diff --git a/.github/ISSUE_TEMPLATE/bug-report.yml b/.github/ISSUE_TEMPLATE/bug-report.yml index 707e6d0ae25c7..4fe94a53c8fd7 100644 --- a/.github/ISSUE_TEMPLATE/bug-report.yml +++ b/.github/ISSUE_TEMPLATE/bug-report.yml @@ -96,25 +96,21 @@ body: attributes: label: System Info description: | - Please share your system info with us. + Please share your system info with us. Do NOT skip this step and please don't trim + the output. Most users don't include enough information here and it makes it harder + for us to help you. - "pip freeze | grep langchain" - platform (windows / linux / mac) - python version - - OR if you're on a recent version of langchain-core you can paste the output of: + Run the following command in your terminal and paste the output here: python -m langchain_core.sys_info - placeholder: | - "pip freeze | grep langchain" - platform - python version - Alternatively, if you're on a recent version of langchain-core you can paste the output of: + or if you have an existing python interpreter running: - python -m langchain_core.sys_info + from langchain_core import sys_info + sys_info.print_sys_info() - These will only surface LangChain packages, don't forget to include any other relevant - packages you're using (if you're not sure what's relevant, you can paste the entire output of `pip freeze`). + alternatively, put the entire output of `pip freeze` here. + placeholder: | + python -m langchain_core.sys_info validations: required: true diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md index 82b7a3452e968..dc4d97722699e 100644 --- a/.github/PULL_REQUEST_TEMPLATE.md +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -1,7 +1,7 @@ Thank you for contributing to LangChain! - [ ] **PR title**: "package: description" - - Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. + - Where "package" is whichever of langchain, community, core, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" diff --git a/.github/scripts/check_diff.py b/.github/scripts/check_diff.py index fab2a1e565103..9ed13da9a0586 100644 --- a/.github/scripts/check_diff.py +++ b/.github/scripts/check_diff.py @@ -2,10 +2,12 @@ import json import os import sys -import tomllib from collections import defaultdict from typing import Dict, List, Set from pathlib import Path +import tomllib + +from get_min_versions import get_min_version_from_toml LANGCHAIN_DIRS = [ @@ -13,9 +15,14 @@ "libs/text-splitters", "libs/langchain", "libs/community", - "libs/experimental", ] +# when set to True, we are ignoring core dependents +# in order to be able to get CI to pass for each individual +# package that depends on core +# e.g. if you touch core, we don't then add textsplitters/etc to CI +IGNORE_CORE_DEPENDENTS = False + # ignored partners are removed from dependents # but still run if directly edited IGNORED_PARTNERS = [ @@ -99,44 +106,101 @@ def add_dependents(dirs_to_eval: Set[str], dependents: dict) -> List[str]: def _get_configs_for_single_dir(job: str, dir_: str) -> List[Dict[str, str]]: - if dir_ == "libs/core": - return [ - {"working-directory": dir_, "python-version": f"3.{v}"} - for v in range(8, 13) - ] - min_python = "3.8" - max_python = "3.12" + if job == "test-pydantic": + return _get_pydantic_test_configs(dir_) + if dir_ == "libs/core": + py_versions = ["3.9", "3.10", "3.11", "3.12"] # custom logic for specific directories - if dir_ == "libs/partners/milvus": + elif dir_ == "libs/partners/milvus": # milvus poetry doesn't allow 3.12 because they # declare deps in funny way - max_python = "3.11" + py_versions = ["3.9", "3.11"] - if dir_ in ["libs/community", "libs/langchain"] and job == "extended-tests": + elif dir_ in ["libs/community", "libs/langchain"] and job == "extended-tests": # community extended test resolution in 3.12 is slow # even in uv - max_python = "3.11" + py_versions = ["3.9", "3.11"] - if dir_ == "libs/community" and job == "compile-integration-tests": + elif dir_ == "libs/community" and job == "compile-integration-tests": # community integration deps are slow in 3.12 - max_python = "3.11" + py_versions = ["3.9", "3.11"] + else: + py_versions = ["3.9", "3.12"] - return [ - {"working-directory": dir_, "python-version": min_python}, - {"working-directory": dir_, "python-version": max_python}, + return [{"working-directory": dir_, "python-version": py_v} for py_v in py_versions] + + +def _get_pydantic_test_configs( + dir_: str, *, python_version: str = "3.11" +) -> List[Dict[str, str]]: + with open("./libs/core/poetry.lock", "rb") as f: + core_poetry_lock_data = tomllib.load(f) + for package in core_poetry_lock_data["package"]: + if package["name"] == "pydantic": + core_max_pydantic_minor = package["version"].split(".")[1] + break + + with open(f"./{dir_}/poetry.lock", "rb") as f: + dir_poetry_lock_data = tomllib.load(f) + + for package in dir_poetry_lock_data["package"]: + if package["name"] == "pydantic": + dir_max_pydantic_minor = package["version"].split(".")[1] + break + + core_min_pydantic_version = get_min_version_from_toml( + "./libs/core/pyproject.toml", "release", python_version, include=["pydantic"] + )["pydantic"] + core_min_pydantic_minor = ( + core_min_pydantic_version.split(".")[1] + if "." in core_min_pydantic_version + else "0" + ) + dir_min_pydantic_version = get_min_version_from_toml( + f"./{dir_}/pyproject.toml", "release", python_version, include=["pydantic"] + ).get("pydantic", "0.0.0") + dir_min_pydantic_minor = ( + dir_min_pydantic_version.split(".")[1] + if "." in dir_min_pydantic_version + else "0" + ) + + custom_mins = { + # depends on pydantic-settings 2.4 which requires pydantic 2.7 + "libs/community": 7, + } + + max_pydantic_minor = min( + int(dir_max_pydantic_minor), + int(core_max_pydantic_minor), + ) + min_pydantic_minor = max( + int(dir_min_pydantic_minor), + int(core_min_pydantic_minor), + custom_mins.get(dir_, 0), + ) + + configs = [ + { + "working-directory": dir_, + "pydantic-version": f"2.{v}.0", + "python-version": python_version, + } + for v in range(min_pydantic_minor, max_pydantic_minor + 1) ] + return configs def _get_configs_for_multi_dirs( - job: str, dirs_to_run: List[str], dependents: dict + job: str, dirs_to_run: Dict[str, Set[str]], dependents: dict ) -> List[Dict[str, str]]: if job == "lint": dirs = add_dependents( dirs_to_run["lint"] | dirs_to_run["test"] | dirs_to_run["extended-test"], dependents, ) - elif job in ["test", "compile-integration-tests", "dependencies"]: + elif job in ["test", "compile-integration-tests", "dependencies", "test-pydantic"]: dirs = add_dependents( dirs_to_run["test"] | dirs_to_run["extended-test"], dependents ) @@ -165,6 +229,7 @@ def _get_configs_for_multi_dirs( dirs_to_run["lint"] = all_package_dirs() dirs_to_run["test"] = all_package_dirs() dirs_to_run["extended-test"] = set(LANGCHAIN_DIRS) + for file in files: if any( file.startswith(dir_) @@ -182,8 +247,12 @@ def _get_configs_for_multi_dirs( if any(file.startswith(dir_) for dir_ in LANGCHAIN_DIRS): # add that dir and all dirs after in LANGCHAIN_DIRS # for extended testing + found = False for dir_ in LANGCHAIN_DIRS: + if dir_ == "libs/core" and IGNORE_CORE_DEPENDENTS: + dirs_to_run["extended-test"].add(dir_) + continue if file.startswith(dir_): found = True if found: @@ -224,7 +293,6 @@ def _get_configs_for_multi_dirs( # we now have dirs_by_job # todo: clean this up - map_job_to_configs = { job: _get_configs_for_multi_dirs(job, dirs_to_run, dependents) for job in [ @@ -233,6 +301,7 @@ def _get_configs_for_multi_dirs( "extended-tests", "compile-integration-tests", "dependencies", + "test-pydantic", ] } map_job_to_configs["test-doc-imports"] = ( diff --git a/.github/scripts/check_prerelease_dependencies.py b/.github/scripts/check_prerelease_dependencies.py index abe3bf3027259..423baf41670d0 100644 --- a/.github/scripts/check_prerelease_dependencies.py +++ b/.github/scripts/check_prerelease_dependencies.py @@ -11,7 +11,7 @@ # see if we're releasing an rc version = toml_data["tool"]["poetry"]["version"] - releasing_rc = "rc" in version + releasing_rc = "rc" in version or "dev" in version # if not, iterate through dependencies and make sure none allow prereleases if not releasing_rc: diff --git a/.github/scripts/get_min_versions.py b/.github/scripts/get_min_versions.py index f3bda8bbc3cc5..f91dd00ee06d9 100644 --- a/.github/scripts/get_min_versions.py +++ b/.github/scripts/get_min_versions.py @@ -1,4 +1,5 @@ import sys +from typing import Optional if sys.version_info >= (3, 11): import tomllib @@ -7,6 +8,9 @@ import tomli as tomllib from packaging.version import parse as parse_version +from packaging.specifiers import SpecifierSet +from packaging.version import Version + import re MIN_VERSION_LIBS = [ @@ -17,7 +21,14 @@ "SQLAlchemy", ] -SKIP_IF_PULL_REQUEST = ["langchain-core"] +# some libs only get checked on release because of simultaneous changes in +# multiple libs +SKIP_IF_PULL_REQUEST = [ + "langchain-core", + "langchain-text-splitters", + "langchain", + "langchain-community", +] def get_min_version(version: str) -> str: @@ -45,7 +56,13 @@ def get_min_version(version: str) -> str: raise ValueError(f"Unrecognized version format: {version}") -def get_min_version_from_toml(toml_path: str, versions_for: str): +def get_min_version_from_toml( + toml_path: str, + versions_for: str, + python_version: str, + *, + include: Optional[list] = None, +): # Parse the TOML file with open(toml_path, "rb") as file: toml_data = tomllib.load(file) @@ -57,18 +74,26 @@ def get_min_version_from_toml(toml_path: str, versions_for: str): min_versions = {} # Iterate over the libs in MIN_VERSION_LIBS - for lib in MIN_VERSION_LIBS: + for lib in set(MIN_VERSION_LIBS + (include or [])): if versions_for == "pull_request" and lib in SKIP_IF_PULL_REQUEST: # some libs only get checked on release because of simultaneous - # changes + # changes in multiple libs continue # Check if the lib is present in the dependencies if lib in dependencies: + if include and lib not in include: + continue # Get the version string version_string = dependencies[lib] if isinstance(version_string, dict): version_string = version_string["version"] + if isinstance(version_string, list): + version_string = [ + vs + for vs in version_string + if check_python_version(python_version, vs["python"]) + ][0]["version"] # Use parse_version to get the minimum supported version from version_string min_version = get_min_version(version_string) @@ -79,13 +104,31 @@ def get_min_version_from_toml(toml_path: str, versions_for: str): return min_versions +def check_python_version(version_string, constraint_string): + """ + Check if the given Python version matches the given constraints. + + :param version_string: A string representing the Python version (e.g. "3.8.5"). + :param constraint_string: A string representing the package's Python version constraints (e.g. ">=3.6, <4.0"). + :return: True if the version matches the constraints, False otherwise. + """ + try: + version = Version(version_string) + constraints = SpecifierSet(constraint_string) + return version in constraints + except Exception as e: + print(f"Error: {e}") + return False + + if __name__ == "__main__": # Get the TOML file path from the command line argument toml_file = sys.argv[1] versions_for = sys.argv[2] + python_version = sys.argv[3] assert versions_for in ["release", "pull_request"] # Call the function to get the minimum versions - min_versions = get_min_version_from_toml(toml_file, versions_for) + min_versions = get_min_version_from_toml(toml_file, versions_for, python_version) print(" ".join([f"{lib}=={version}" for lib, version in min_versions.items()])) diff --git a/.github/workflows/_dependencies.yml b/.github/workflows/_dependencies.yml deleted file mode 100644 index b96fe04ed0b28..0000000000000 --- a/.github/workflows/_dependencies.yml +++ /dev/null @@ -1,114 +0,0 @@ -name: dependencies - -on: - workflow_call: - inputs: - working-directory: - required: true - type: string - description: "From which folder this pipeline executes" - langchain-location: - required: false - type: string - description: "Relative path to the langchain library folder" - python-version: - required: true - type: string - description: "Python version to use" - -env: - POETRY_VERSION: "1.7.1" - -jobs: - build: - defaults: - run: - working-directory: ${{ inputs.working-directory }} - runs-on: ubuntu-latest - name: dependency checks ${{ inputs.python-version }} - steps: - - uses: actions/checkout@v4 - - - name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }} - uses: "./.github/actions/poetry_setup" - with: - python-version: ${{ inputs.python-version }} - poetry-version: ${{ env.POETRY_VERSION }} - working-directory: ${{ inputs.working-directory }} - cache-key: pydantic-cross-compat - - - name: Install dependencies - shell: bash - run: poetry install - - - name: Check imports with base dependencies - shell: bash - run: poetry run make check_imports - - - name: Install test dependencies - shell: bash - run: poetry install --with test - - - name: Install langchain editable - working-directory: ${{ inputs.working-directory }} - if: ${{ inputs.langchain-location }} - env: - LANGCHAIN_LOCATION: ${{ inputs.langchain-location }} - run: | - poetry run pip install -e "$LANGCHAIN_LOCATION" - - - name: Install the opposite major version of pydantic - # If normal tests use pydantic v1, here we'll use v2, and vice versa. - shell: bash - # airbyte currently doesn't support pydantic v2 - if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }} - run: | - # Determine the major part of pydantic version - REGULAR_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1) - - if [[ "$REGULAR_VERSION" == "1" ]]; then - PYDANTIC_DEP=">=2.1,<3" - TEST_WITH_VERSION="2" - elif [[ "$REGULAR_VERSION" == "2" ]]; then - PYDANTIC_DEP="<2" - TEST_WITH_VERSION="1" - else - echo "Unexpected pydantic major version '$REGULAR_VERSION', cannot determine which version to use for cross-compatibility test." - exit 1 - fi - - # Install via `pip` instead of `poetry add` to avoid changing lockfile, - # which would prevent caching from working: the cache would get saved - # to a different key than where it gets loaded from. - poetry run pip install "pydantic${PYDANTIC_DEP}" - - # Ensure that the correct pydantic is installed now. - echo "Checking pydantic version... Expecting ${TEST_WITH_VERSION}" - - # Determine the major part of pydantic version - CURRENT_VERSION=$(poetry run python -c "import pydantic; print(pydantic.__version__)" | cut -d. -f1) - - # Check that the major part of pydantic version is as expected, if not - # raise an error - if [[ "$CURRENT_VERSION" != "$TEST_WITH_VERSION" ]]; then - echo "Error: expected pydantic version ${CURRENT_VERSION} to have been installed, but found: ${TEST_WITH_VERSION}" - exit 1 - fi - echo "Found pydantic version ${CURRENT_VERSION}, as expected" - - name: Run pydantic compatibility tests - # airbyte currently doesn't support pydantic v2 - if: ${{ !startsWith(inputs.working-directory, 'libs/partners/airbyte') }} - shell: bash - run: make test - - - name: Ensure the tests did not create any additional files - shell: bash - run: | - set -eu - - STATUS="$(git status)" - echo "$STATUS" - - # grep will exit non-zero if the target message isn't found, - # and `set -e` above will cause the step to fail. - echo "$STATUS" | grep 'nothing to commit, working tree clean' diff --git a/.github/workflows/_integration_test.yml b/.github/workflows/_integration_test.yml index 40b0ec5344edd..13051f5efc224 100644 --- a/.github/workflows/_integration_test.yml +++ b/.github/workflows/_integration_test.yml @@ -58,6 +58,7 @@ jobs: AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }} AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }} AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }} + AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }} AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }} AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }} MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }} diff --git a/.github/workflows/_lint.yml b/.github/workflows/_lint.yml index 264dfa6eb81b1..057959d5fccaa 100644 --- a/.github/workflows/_lint.yml +++ b/.github/workflows/_lint.yml @@ -7,10 +7,6 @@ on: required: true type: string description: "From which folder this pipeline executes" - langchain-location: - required: false - type: string - description: "Relative path to the langchain library folder" python-version: required: true type: string @@ -63,14 +59,6 @@ jobs: run: | poetry install --with lint,typing - - name: Install langchain editable - working-directory: ${{ inputs.working-directory }} - if: ${{ inputs.langchain-location }} - env: - LANGCHAIN_LOCATION: ${{ inputs.langchain-location }} - run: | - poetry run pip install -e "$LANGCHAIN_LOCATION" - - name: Get .mypy_cache to speed up mypy uses: actions/cache@v4 env: diff --git a/.github/workflows/_release.yml b/.github/workflows/_release.yml index d3efddf67eb17..f458610c6b1f6 100644 --- a/.github/workflows/_release.yml +++ b/.github/workflows/_release.yml @@ -85,7 +85,7 @@ jobs: path: langchain sparse-checkout: | # this only grabs files for relevant dir ${{ inputs.working-directory }} - ref: master # this scopes to just master branch + ref: ${{ github.ref }} # this scopes to just ref'd branch fetch-depth: 0 # this fetches entire commit history - name: Check Tags id: check-tags @@ -164,6 +164,7 @@ jobs: - name: Set up Python + Poetry ${{ env.POETRY_VERSION }} uses: "./.github/actions/poetry_setup" + id: setup-python with: python-version: ${{ env.PYTHON_VERSION }} poetry-version: ${{ env.POETRY_VERSION }} @@ -231,7 +232,8 @@ jobs: id: min-version run: | poetry run pip install packaging - min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release)" + python_version="$(poetry run python --version | awk '{print $2}')" + min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml release $python_version)" echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT" echo "min-versions=$min_versions" @@ -267,6 +269,7 @@ jobs: AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }} AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }} AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }} + AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }} AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }} AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }} NVIDIA_API_KEY: ${{ secrets.NVIDIA_API_KEY }} @@ -291,7 +294,6 @@ jobs: VOYAGE_API_KEY: ${{ secrets.VOYAGE_API_KEY }} UPSTAGE_API_KEY: ${{ secrets.UPSTAGE_API_KEY }} FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }} - UNSTRUCTURED_API_KEY: ${{ secrets.UNSTRUCTURED_API_KEY }} run: make integration_tests working-directory: ${{ inputs.working-directory }} diff --git a/.github/workflows/_test.yml b/.github/workflows/_test.yml index d73ffe65e05b4..9d01508367e0d 100644 --- a/.github/workflows/_test.yml +++ b/.github/workflows/_test.yml @@ -7,10 +7,6 @@ on: required: true type: string description: "From which folder this pipeline executes" - langchain-location: - required: false - type: string - description: "Relative path to the langchain library folder" python-version: required: true type: string @@ -31,47 +27,29 @@ jobs: - name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }} uses: "./.github/actions/poetry_setup" + id: setup-python with: python-version: ${{ inputs.python-version }} poetry-version: ${{ env.POETRY_VERSION }} working-directory: ${{ inputs.working-directory }} cache-key: core - - name: Install dependencies shell: bash run: poetry install --with test - - name: Install langchain editable - working-directory: ${{ inputs.working-directory }} - if: ${{ inputs.langchain-location }} - env: - LANGCHAIN_LOCATION: ${{ inputs.langchain-location }} - run: | - poetry run pip install -e "$LANGCHAIN_LOCATION" - - name: Run core tests shell: bash run: | make test - - name: Ensure the tests did not create any additional files - shell: bash - run: | - set -eu - - STATUS="$(git status)" - echo "$STATUS" - - # grep will exit non-zero if the target message isn't found, - # and `set -e` above will cause the step to fail. - echo "$STATUS" | grep 'nothing to commit, working tree clean' - - name: Get minimum versions working-directory: ${{ inputs.working-directory }} id: min-version + shell: bash run: | poetry run pip install packaging tomli - min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request)" + python_version="$(poetry run python --version | awk '{print $2}')" + min_versions="$(poetry run python $GITHUB_WORKSPACE/.github/scripts/get_min_versions.py pyproject.toml pull_request $python_version)" echo "min-versions=$min_versions" >> "$GITHUB_OUTPUT" echo "min-versions=$min_versions" @@ -80,6 +58,19 @@ jobs: env: MIN_VERSIONS: ${{ steps.min-version.outputs.min-versions }} run: | - poetry run pip install --force-reinstall $MIN_VERSIONS --editable . + poetry run pip install $MIN_VERSIONS make tests working-directory: ${{ inputs.working-directory }} + + - name: Ensure the tests did not create any additional files + shell: bash + run: | + set -eu + + STATUS="$(git status)" + echo "$STATUS" + + # grep will exit non-zero if the target message isn't found, + # and `set -e` above will cause the step to fail. + echo "$STATUS" | grep 'nothing to commit, working tree clean' + diff --git a/.github/workflows/_test_doc_imports.yml b/.github/workflows/_test_doc_imports.yml index 4166b2c2d6335..1b1db0d84c251 100644 --- a/.github/workflows/_test_doc_imports.yml +++ b/.github/workflows/_test_doc_imports.yml @@ -31,7 +31,7 @@ jobs: - name: Install langchain editable run: | - poetry run pip install -e libs/core libs/langchain libs/community libs/experimental + poetry run pip install langchain-experimental -e libs/core libs/langchain libs/community - name: Check doc imports shell: bash diff --git a/.github/workflows/_test_pydantic.yml b/.github/workflows/_test_pydantic.yml new file mode 100644 index 0000000000000..ee48f46500b96 --- /dev/null +++ b/.github/workflows/_test_pydantic.yml @@ -0,0 +1,64 @@ +name: test pydantic intermediate versions + +on: + workflow_call: + inputs: + working-directory: + required: true + type: string + description: "From which folder this pipeline executes" + python-version: + required: false + type: string + description: "Python version to use" + default: "3.11" + pydantic-version: + required: true + type: string + description: "Pydantic version to test." + +env: + POETRY_VERSION: "1.7.1" + +jobs: + build: + defaults: + run: + working-directory: ${{ inputs.working-directory }} + runs-on: ubuntu-latest + name: "make test # pydantic: ~=${{ inputs.pydantic-version }}, python: ${{ inputs.python-version }}, " + steps: + - uses: actions/checkout@v4 + + - name: Set up Python ${{ inputs.python-version }} + Poetry ${{ env.POETRY_VERSION }} + uses: "./.github/actions/poetry_setup" + with: + python-version: ${{ inputs.python-version }} + poetry-version: ${{ env.POETRY_VERSION }} + working-directory: ${{ inputs.working-directory }} + cache-key: core + + - name: Install dependencies + shell: bash + run: poetry install --with test + + - name: Overwrite pydantic version + shell: bash + run: poetry run pip install pydantic~=${{ inputs.pydantic-version }} + + - name: Run core tests + shell: bash + run: | + make test + + - name: Ensure the tests did not create any additional files + shell: bash + run: | + set -eu + + STATUS="$(git status)" + echo "$STATUS" + + # grep will exit non-zero if the target message isn't found, + # and `set -e` above will cause the step to fail. + echo "$STATUS" | grep 'nothing to commit, working tree clean' \ No newline at end of file diff --git a/.github/workflows/api_doc_build.yml b/.github/workflows/api_doc_build.yml new file mode 100644 index 0000000000000..9faaaa1c20ad3 --- /dev/null +++ b/.github/workflows/api_doc_build.yml @@ -0,0 +1,153 @@ +name: API docs build + +on: + workflow_dispatch: + schedule: + - cron: '0 13 * * *' +env: + POETRY_VERSION: "1.8.1" + PYTHON_VERSION: "3.11" + +jobs: + build: + runs-on: ubuntu-latest + permissions: write-all + steps: + - uses: actions/checkout@v4 + with: + path: langchain + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-api-docs-html + path: langchain-api-docs-html + token: ${{ secrets.TOKEN_GITHUB_API_DOCS_HTML }} + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-google + path: langchain-google + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-datastax + path: langchain-datastax + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-nvidia + path: langchain-nvidia + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-cohere + path: langchain-cohere + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-elastic + path: langchain-elastic + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-postgres + path: langchain-postgres + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-aws + path: langchain-aws + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-weaviate + path: langchain-weaviate + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-ai21 + path: langchain-ai21 + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-together + path: langchain-together + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-experimental + path: langchain-experimental + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-milvus + path: langchain-milvus + - uses: actions/checkout@v4 + with: + repository: langchain-ai/langchain-unstructured + path: langchain-unstructured + + + - name: Set Git config + working-directory: langchain + run: | + git config --local user.email "actions@github.com" + git config --local user.name "Github Actions" + + - name: Move libs + run: | + rm -rf \ + langchain/libs/partners/google-genai \ + langchain/libs/partners/google-vertexai \ + langchain/libs/partners/astradb \ + langchain/libs/partners/nvidia-trt \ + langchain/libs/partners/nvidia-ai-endpoints \ + langchain/libs/partners/cohere \ + langchain/libs/partners/elasticsearch \ + langchain/libs/partners/upstage \ + langchain/libs/partners/ai21 \ + langchain/libs/partners/together \ + langchain/libs/standard-tests \ + langchain/libs/experimental \ + langchain/libs/partners/milvus \ + langchain/libs/partners/unstructured + mv langchain-google/libs/genai langchain/libs/partners/google-genai + mv langchain-google/libs/vertexai langchain/libs/partners/google-vertexai + mv langchain-google/libs/community langchain/libs/partners/google-community + mv langchain-datastax/libs/astradb langchain/libs/partners/astradb + mv langchain-nvidia/libs/ai-endpoints langchain/libs/partners/nvidia-ai-endpoints + mv langchain-cohere/libs/cohere langchain/libs/partners/cohere + mv langchain-elastic/libs/elasticsearch langchain/libs/partners/elasticsearch + mv langchain-postgres langchain/libs/partners/postgres + mv langchain-aws/libs/aws langchain/libs/partners/aws + mv langchain-weaviate/libs/weaviate langchain/libs/partners/weaviate + mv langchain-ai21/libs/ai21 langchain/libs/partners/ai21 + mv langchain-together/libs/together langchain/libs/partners/together + mv langchain-experimental/libs/experimental langchain/libs/experimental + mv langchain-milvus/libs/milvus langchain/libs/partners/milvus + mv langchain-unstructured/libs/unstructured langchain/libs/partners/unstructured + + - name: Rm old html + run: + rm -rf langchain-api-docs-html/api_reference_build/html + + - name: Set up Python ${{ env.PYTHON_VERSION }} + Poetry ${{ env.POETRY_VERSION }} + uses: "./langchain/.github/actions/poetry_setup" + with: + python-version: ${{ env.PYTHON_VERSION }} + poetry-version: ${{ env.POETRY_VERSION }} + cache-key: api-docs + working-directory: langchain + + - name: Install dependencies + working-directory: langchain + run: | + python -m pip install -U uv + python -m uv pip install --upgrade --no-cache-dir pip setuptools + # skip airbyte and ibm due to pandas dependency issue + python -m uv pip install $(ls ./libs/partners | grep -vE "airbyte|ibm" | xargs -I {} echo "./libs/partners/{}") + python -m uv pip install libs/core libs/langchain libs/text-splitters libs/community libs/experimental + python -m uv pip install -r docs/api_reference/requirements.txt + + - name: Build docs + working-directory: langchain + run: | + python docs/api_reference/create_api_rst.py + python -m sphinx -T -E -b html -d ../langchain-api-docs-html/_build/doctrees -c docs/api_reference docs/api_reference ../langchain-api-docs-html/api_reference_build/html -j auto + python docs/api_reference/scripts/custom_formatter.py ../langchain-api-docs-html/api_reference_build/html + # Default index page is blank so we copy in the actual home page. + cp ../langchain-api-docs-html/api_reference_build/html/{reference,index}.html + rm -rf ../langchain-api-docs-html/_build/ + + # https://github.com/marketplace/actions/add-commit + - uses: EndBug/add-and-commit@v9 + with: + cwd: langchain-api-docs-html + message: 'Update API docs build' \ No newline at end of file diff --git a/.github/workflows/check_diffs.yml b/.github/workflows/check_diffs.yml index 0149f5ec11a4c..b5729611645c6 100644 --- a/.github/workflows/check_diffs.yml +++ b/.github/workflows/check_diffs.yml @@ -31,6 +31,7 @@ jobs: uses: Ana06/get-changed-files@v2.2.0 - id: set-matrix run: | + python -m pip install packaging python .github/scripts/check_diff.py ${{ steps.files.outputs.all }} >> $GITHUB_OUTPUT outputs: lint: ${{ steps.set-matrix.outputs.lint }} @@ -39,6 +40,7 @@ jobs: compile-integration-tests: ${{ steps.set-matrix.outputs.compile-integration-tests }} dependencies: ${{ steps.set-matrix.outputs.dependencies }} test-doc-imports: ${{ steps.set-matrix.outputs.test-doc-imports }} + test-pydantic: ${{ steps.set-matrix.outputs.test-pydantic }} lint: name: cd ${{ matrix.job-configs.working-directory }} needs: [ build ] @@ -46,6 +48,7 @@ jobs: strategy: matrix: job-configs: ${{ fromJson(needs.build.outputs.lint) }} + fail-fast: false uses: ./.github/workflows/_lint.yml with: working-directory: ${{ matrix.job-configs.working-directory }} @@ -59,18 +62,34 @@ jobs: strategy: matrix: job-configs: ${{ fromJson(needs.build.outputs.test) }} + fail-fast: false uses: ./.github/workflows/_test.yml with: working-directory: ${{ matrix.job-configs.working-directory }} python-version: ${{ matrix.job-configs.python-version }} secrets: inherit + test-pydantic: + name: cd ${{ matrix.job-configs.working-directory }} + needs: [ build ] + if: ${{ needs.build.outputs.test-pydantic != '[]' }} + strategy: + matrix: + job-configs: ${{ fromJson(needs.build.outputs.test-pydantic) }} + fail-fast: false + uses: ./.github/workflows/_test_pydantic.yml + with: + working-directory: ${{ matrix.job-configs.working-directory }} + pydantic-version: ${{ matrix.job-configs.pydantic-version }} + secrets: inherit + test-doc-imports: needs: [ build ] if: ${{ needs.build.outputs.test-doc-imports != '[]' }} strategy: matrix: job-configs: ${{ fromJson(needs.build.outputs.test-doc-imports) }} + fail-fast: false uses: ./.github/workflows/_test_doc_imports.yml secrets: inherit with: @@ -83,25 +102,13 @@ jobs: strategy: matrix: job-configs: ${{ fromJson(needs.build.outputs.compile-integration-tests) }} + fail-fast: false uses: ./.github/workflows/_compile_integration_test.yml with: working-directory: ${{ matrix.job-configs.working-directory }} python-version: ${{ matrix.job-configs.python-version }} secrets: inherit - dependencies: - name: cd ${{ matrix.job-configs.working-directory }} - needs: [ build ] - if: ${{ needs.build.outputs.dependencies != '[]' }} - strategy: - matrix: - job-configs: ${{ fromJson(needs.build.outputs.dependencies) }} - uses: ./.github/workflows/_dependencies.yml - with: - working-directory: ${{ matrix.job-configs.working-directory }} - python-version: ${{ matrix.job-configs.python-version }} - secrets: inherit - extended-tests: name: "cd ${{ matrix.job-configs.working-directory }} / make extended_tests #${{ matrix.job-configs.python-version }}" needs: [ build ] @@ -110,6 +117,7 @@ jobs: matrix: # note different variable for extended test dirs job-configs: ${{ fromJson(needs.build.outputs.extended-tests) }} + fail-fast: false runs-on: ubuntu-latest defaults: run: @@ -149,7 +157,7 @@ jobs: echo "$STATUS" | grep 'nothing to commit, working tree clean' ci_success: name: "CI Success" - needs: [build, lint, test, compile-integration-tests, dependencies, extended-tests, test-doc-imports] + needs: [build, lint, test, compile-integration-tests, extended-tests, test-doc-imports, test-pydantic] if: | always() runs-on: ubuntu-latest diff --git a/.github/workflows/codespell.yml b/.github/workflows/codespell.yml index 3778a8630d5bd..ec6e8af57039a 100644 --- a/.github/workflows/codespell.yml +++ b/.github/workflows/codespell.yml @@ -3,9 +3,8 @@ name: CI / cd . / make spell_check on: push: - branches: [master, v0.1] + branches: [master, v0.1, v0.2] pull_request: - branches: [master, v0.1] permissions: contents: read diff --git a/.github/workflows/run_notebooks.yml b/.github/workflows/run_notebooks.yml new file mode 100644 index 0000000000000..14c70f779bf63 --- /dev/null +++ b/.github/workflows/run_notebooks.yml @@ -0,0 +1,63 @@ +name: Run notebooks + +on: + workflow_dispatch: + inputs: + python_version: + description: 'Python version' + required: false + default: '3.11' + working-directory: + description: 'Working directory or subset (e.g., docs/docs/tutorials/llm_chain.ipynb)' + required: false + default: 'all' + schedule: + - cron: '0 13 * * *' + +env: + POETRY_VERSION: "1.7.1" + +jobs: + build: + runs-on: ubuntu-latest + + name: "Test docs" + steps: + - uses: actions/checkout@v4 + + - name: Set up Python + Poetry ${{ env.POETRY_VERSION }} + uses: "./.github/actions/poetry_setup" + with: + python-version: ${{ github.event.inputs.python_version || '3.11' }} + poetry-version: ${{ env.POETRY_VERSION }} + working-directory: ${{ inputs.working-directory }} + cache-key: run-notebooks + + - name: Install dependencies + run: | + pip install -e libs/core + pip install -e libs/langchain + pip install -e libs/community + pip install --upgrade langchain-experimental + pip install -e libs//partners/anthropic + pip install -e libs//partners/chroma + pip install -e libs//partners/openai + pip install -e libs//partners/mistralai + pip install jupyter langgraph click pypdf vcrpy + + - name: Pre-download tiktoken files + run: | + python docs/scripts/download_tiktoken.py + + - name: Prepare notebooks + run: | + python docs/scripts/prepare_notebooks_for_ci.py --comment-install-cells + + - name: Run notebooks + env: + ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }} + MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }} + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} + TAVILY_API_KEY: ${{ secrets.TAVILY_API_KEY }} + run: | + ./docs/scripts/execute_notebooks.sh ${{ github.event.inputs.working-directory || 'all' }} diff --git a/.github/workflows/scheduled_test.yml b/.github/workflows/scheduled_test.yml index b317a48e51535..0523fbab8fa8f 100644 --- a/.github/workflows/scheduled_test.yml +++ b/.github/workflows/scheduled_test.yml @@ -17,7 +17,7 @@ jobs: fail-fast: false matrix: python-version: - - "3.8" + - "3.9" - "3.11" working-directory: - "libs/partners/openai" @@ -86,6 +86,7 @@ jobs: AZURE_OPENAI_API_BASE: ${{ secrets.AZURE_OPENAI_API_BASE }} AZURE_OPENAI_API_KEY: ${{ secrets.AZURE_OPENAI_API_KEY }} AZURE_OPENAI_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_CHAT_DEPLOYMENT_NAME }} + AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME }} AZURE_OPENAI_LLM_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_LLM_DEPLOYMENT_NAME }} AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME: ${{ secrets.AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT_NAME }} FIREWORKS_API_KEY: ${{ secrets.FIREWORKS_API_KEY }} diff --git a/MIGRATE.md b/MIGRATE.md index 7254e9b7e3ed0..6500865076447 100644 --- a/MIGRATE.md +++ b/MIGRATE.md @@ -1,70 +1,11 @@ # Migrating -## 🚨Breaking Changes for select chains (SQLDatabase) on 7/28/23 +Please see the following guides for migratin LangChain code: -In an effort to make `langchain` leaner and safer, we are moving select chains to `langchain_experimental`. -This migration has already started, but we are remaining backwards compatible until 7/28. -On that date, we will remove functionality from `langchain`. -Read more about the motivation and the progress [here](https://github.com/langchain-ai/langchain/discussions/8043). +* Migrate to [LangChain v0.3](https://python.langchain.com/docs/versions/v0_3/) +* Migrate to [LangChain v0.2](https://python.langchain.com/docs/versions/v0_2/) +* Migrating from [LangChain 0.0.x Chains](https://python.langchain.com/docs/versions/migrating_chains/) +* Upgrate to [LangGraph Memory](https://python.langchain.com/docs/versions/migrating_memory/) -### Migrating to `langchain_experimental` - -We are moving any experimental components of LangChain, or components with vulnerability issues, into `langchain_experimental`. -This guide covers how to migrate. - -### Installation - -Previously: - -`pip install -U langchain` - -Now (only if you want to access things in experimental): - -`pip install -U langchain langchain_experimental` - -### Things in `langchain.experimental` - -Previously: - -`from langchain.experimental import ...` - -Now: - -`from langchain_experimental import ...` - -### PALChain - -Previously: - -`from langchain.chains import PALChain` - -Now: - -`from langchain_experimental.pal_chain import PALChain` - -### SQLDatabaseChain - -Previously: - -`from langchain.chains import SQLDatabaseChain` - -Now: - -`from langchain_experimental.sql import SQLDatabaseChain` - -Alternatively, if you are just interested in using the query generation part of the SQL chain, you can check out this [`SQL question-answering tutorial`](https://python.langchain.com/v0.2/docs/tutorials/sql_qa/#convert-question-to-sql-query) - -`from langchain.chains import create_sql_query_chain` - -### `load_prompt` for Python files - -Note: this only applies if you want to load Python files as prompts. -If you want to load json/yaml files, no change is needed. - -Previously: - -`from langchain.prompts import load_prompt` - -Now: - -`from langchain_experimental.prompts import load_prompt` +The [LangChain CLI](https://python.langchain.com/docs/versions/v0_3/#migrate-using-langchain-cli) can help automatically upgrade your code to use non deprecated imports. +This will be especially helpful if you're still on either version 0.0.x or 0.1.x of LangChain. diff --git a/Makefile b/Makefile index 5519b6d7c2346..8a1099c5b8ebf 100644 --- a/Makefile +++ b/Makefile @@ -36,7 +36,6 @@ api_docs_build: API_PKG ?= text-splitters api_docs_quick_preview: - poetry run pip install "pydantic<2" poetry run python docs/api_reference/create_api_rst.py $(API_PKG) cd docs/api_reference && poetry run make html poetry run python docs/api_reference/scripts/custom_formatter.py docs/api_reference/_build/html/ diff --git a/README.md b/README.md index 963a3ba17feb3..4b724e9b5ecef 100644 --- a/README.md +++ b/README.md @@ -38,8 +38,8 @@ conda install langchain -c conda-forge For these applications, LangChain simplifies the entire application lifecycle: -- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/v0.2/docs/concepts#langchain-expression-language-lcel), [components](https://python.langchain.com/v0.2/docs/concepts), and [third-party integrations](https://python.langchain.com/v0.2/docs/integrations/platforms/). - Use [LangGraph](/docs/concepts/#langgraph) to build stateful agents with first-class streaming and human-in-the-loop support. +- **Open-source libraries**: Build your applications using LangChain's open-source [building blocks](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel), [components](https://python.langchain.com/docs/concepts/), and [third-party integrations](https://python.langchain.com/docs/integrations/platforms/). + Use [LangGraph](https://langchain-ai.github.io/langgraph/) to build stateful agents with first-class streaming and human-in-the-loop support. - **Productionization**: Inspect, monitor, and evaluate your apps with [LangSmith](https://docs.smith.langchain.com/) so that you can constantly optimize and deploy with confidence. - **Deployment**: Turn your LangGraph applications into production-ready APIs and Assistants with [LangGraph Cloud](https://langchain-ai.github.io/langgraph/cloud/). @@ -49,7 +49,7 @@ For these applications, LangChain simplifies the entire application lifecycle: - **`langchain-community`**: Third party integrations. - Some integrations have been further split into **partner packages** that only rely on **`langchain-core`**. Examples include **`langchain_openai`** and **`langchain_anthropic`**. - **`langchain`**: Chains, agents, and retrieval strategies that make up an application's cognitive architecture. -- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. +- **[`LangGraph`](https://langchain-ai.github.io/langgraph/)**: A library for building robust and stateful multi-actor applications with LLMs by modeling steps as edges and nodes in a graph. Integrates smoothly with LangChain, but can be used without it. To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph). ### Productionization: @@ -65,20 +65,20 @@ For these applications, LangChain simplifies the entire application lifecycle: **❓ Question answering with RAG** -- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/rag/) +- [Documentation](https://python.langchain.com/docs/tutorials/rag/) - End-to-end Example: [Chat LangChain](https://chat.langchain.com) and [repo](https://github.com/langchain-ai/chat-langchain) **🧱 Extracting structured output** -- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/extraction/) +- [Documentation](https://python.langchain.com/docs/tutorials/extraction/) - End-to-end Example: [SQL Llama2 Template](https://github.com/langchain-ai/langchain-extract/) **🤖 Chatbots** -- [Documentation](https://python.langchain.com/v0.2/docs/tutorials/chatbot/) +- [Documentation](https://python.langchain.com/docs/tutorials/chatbot/) - End-to-end Example: [Web LangChain (web researcher chatbot)](https://weblangchain.vercel.app) and [repo](https://github.com/langchain-ai/weblangchain) -And much more! Head to the [Tutorials](https://python.langchain.com/v0.2/docs/tutorials/) section of the docs for more. +And much more! Head to the [Tutorials](https://python.langchain.com/docs/tutorials/) section of the docs for more. ## 🚀 How does LangChain help? @@ -93,10 +93,10 @@ Off-the-shelf chains make it easy to get started. Components make it easy to cus LCEL is a key part of LangChain, allowing you to build and organize chains of processes in a straightforward, declarative manner. It was designed to support taking prototypes directly into production without needing to alter any code. This means you can use LCEL to set up everything from basic "prompt + LLM" setups to intricate, multi-step workflows. -- **[Overview](https://python.langchain.com/v0.2/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits -- **[Interface](https://python.langchain.com/v0.2/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects -- **[Primitives](https://python.langchain.com/v0.2/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes -- **[Cheatsheet](https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns +- **[Overview](https://python.langchain.com/docs/concepts/#langchain-expression-language-lcel)**: LCEL and its benefits +- **[Interface](https://python.langchain.com/docs/concepts/#runnable-interface)**: The standard Runnable interface for LCEL objects +- **[Primitives](https://python.langchain.com/docs/how_to/#langchain-expression-language-lcel)**: More on the primitives LCEL includes +- **[Cheatsheet](https://python.langchain.com/docs/how_to/lcel_cheatsheet/)**: Quick overview of the most common usage patterns ## Components @@ -104,24 +104,24 @@ Components fall into the following **modules**: **📃 Model I/O** -This includes [prompt management](https://python.langchain.com/v0.2/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/v0.2/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/v0.2/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/v0.2/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/v0.2/docs/concepts/#output-parsers). +This includes [prompt management](https://python.langchain.com/docs/concepts/#prompt-templates), [prompt optimization](https://python.langchain.com/docs/concepts/#example-selectors), a generic interface for [chat models](https://python.langchain.com/docs/concepts/#chat-models) and [LLMs](https://python.langchain.com/docs/concepts/#llms), and common utilities for working with [model outputs](https://python.langchain.com/docs/concepts/#output-parsers). **📚 Retrieval** -Retrieval Augmented Generation involves [loading data](https://python.langchain.com/v0.2/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/v0.2/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/v0.2/docs/concepts/#retrievers) it for use in the generation step. +Retrieval Augmented Generation involves [loading data](https://python.langchain.com/docs/concepts/#document-loaders) from a variety of sources, [preparing it](https://python.langchain.com/docs/concepts/#text-splitters), then [searching over (a.k.a. retrieving from)](https://python.langchain.com/docs/concepts/#retrievers) it for use in the generation step. **🤖 Agents** -Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/v0.2/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents. +Agents allow an LLM autonomy over how a task is accomplished. Agents make decisions about which Actions to take, then take that Action, observe the result, and repeat until the task is complete. LangChain provides a [standard interface for agents](https://python.langchain.com/docs/concepts/#agents), along with [LangGraph](https://github.com/langchain-ai/langgraph) for building custom agents. ## 📖 Documentation Please see [here](https://python.langchain.com) for full documentation, which includes: -- [Introduction](https://python.langchain.com/v0.2/docs/introduction/): Overview of the framework and the structure of the docs. -- [Tutorials](https://python.langchain.com/docs/use_cases/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started. -- [How-to guides](https://python.langchain.com/v0.2/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task. -- [Conceptual guide](https://python.langchain.com/v0.2/docs/concepts/): Conceptual explanations of the key parts of the framework. +- [Introduction](https://python.langchain.com/docs/introduction/): Overview of the framework and the structure of the docs. +- [Tutorials](https://python.langchain.com/docs/tutorials/): If you're looking to build something specific or are more of a hands-on learner, check out our tutorials. This is the best place to get started. +- [How-to guides](https://python.langchain.com/docs/how_to/): Answers to “How do I….?” type questions. These guides are goal-oriented and concrete; they're meant to help you complete a specific task. +- [Conceptual guide](https://python.langchain.com/docs/concepts/): Conceptual explanations of the key parts of the framework. - [API Reference](https://api.python.langchain.com): Thorough documentation of every class and method. ## 🌐 Ecosystem @@ -134,7 +134,7 @@ Please see [here](https://python.langchain.com) for full documentation, which in As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation. -For detailed information on how to contribute, see [here](https://python.langchain.com/v0.2/docs/contributing/). +For detailed information on how to contribute, see [here](https://python.langchain.com/docs/contributing/). ## 🌟 Contributors diff --git a/cookbook/code-analysis-deeplake.ipynb b/cookbook/code-analysis-deeplake.ipynb index 243ae0141c7eb..e895147d12db4 100644 --- a/cookbook/code-analysis-deeplake.ipynb +++ b/cookbook/code-analysis-deeplake.ipynb @@ -90,7 +90,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "# Please manually enter OpenAI Key" ] }, diff --git a/docs/Makefile b/docs/Makefile index d2b331be9d511..532df0c457923 100644 --- a/docs/Makefile +++ b/docs/Makefile @@ -33,8 +33,8 @@ install-py-deps: python3 -m venv .venv $(PYTHON) -m pip install --upgrade pip $(PYTHON) -m pip install --upgrade uv - $(PYTHON) -m uv pip install -r vercel_requirements.txt - $(PYTHON) -m uv pip install --editable $(PARTNER_DEPS_LIST) + $(PYTHON) -m uv pip install --pre -r vercel_requirements.txt + $(PYTHON) -m uv pip install --pre --editable $(PARTNER_DEPS_LIST) generate-files: mkdir -p $(INTERMEDIATE_DIR) @@ -46,7 +46,7 @@ generate-files: $(PYTHON) scripts/partner_pkg_table.py $(INTERMEDIATE_DIR) - wget -q https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md -O $(INTERMEDIATE_DIR)/langserve.md + curl https://raw.githubusercontent.com/langchain-ai/langserve/main/README.md | sed 's/<=/\<=/g' > $(INTERMEDIATE_DIR)/langserve.md $(PYTHON) scripts/resolve_local_links.py $(INTERMEDIATE_DIR)/langserve.md https://github.com/langchain-ai/langserve/tree/main/ copy-infra: @@ -65,7 +65,7 @@ render: $(PYTHON) scripts/notebook_convert.py $(INTERMEDIATE_DIR) $(OUTPUT_NEW_DOCS_DIR) md-sync: - rsync -avm --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --include="*/_category_.yml" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR) + rsync -avmq --include="*/" --include="*.mdx" --include="*.md" --include="*.png" --include="*/_category_.yml" --exclude="*" $(INTERMEDIATE_DIR)/ $(OUTPUT_NEW_DOCS_DIR) append-related: $(PYTHON) scripts/append_related_links.py $(OUTPUT_NEW_DOCS_DIR) @@ -82,14 +82,10 @@ vercel-build: install-vercel-deps build generate-references mv $(OUTPUT_NEW_DOCS_DIR) docs rm -rf build mkdir static/api_reference - git clone --depth=1 https://github.com/baskaryan/langchain-api-docs-build.git - mv langchain-api-docs-build/api_reference_build/html/* static/api_reference/ - rm -rf langchain-api-docs-build + git clone --depth=1 https://github.com/langchain-ai/langchain-api-docs-html.git + mv langchain-api-docs-html/api_reference_build/html/* static/api_reference/ + rm -rf langchain-api-docs-html NODE_OPTIONS="--max-old-space-size=5000" yarn run docusaurus build - mv build v0.2 - mkdir build - mv v0.2 build - mv build/v0.2/404.html build start: cd $(OUTPUT_NEW_DIR) && yarn && yarn start --port=$(PORT) diff --git a/docs/api_reference/conf.py b/docs/api_reference/conf.py index 0ddf1ce8cf9d8..f8c8895a2d1de 100644 --- a/docs/api_reference/conf.py +++ b/docs/api_reference/conf.py @@ -26,7 +26,6 @@ _DIR = Path(__file__).parent.absolute() sys.path.insert(0, os.path.abspath(".")) sys.path.insert(0, os.path.abspath("../../libs/langchain")) -sys.path.insert(0, os.path.abspath("../../libs/experimental")) with (_DIR.parents[1] / "libs" / "langchain" / "pyproject.toml").open("r") as f: data = toml.load(f) diff --git a/docs/api_reference/guide_imports.json b/docs/api_reference/guide_imports.json index 7c312af840f4a..e0fcde404bfb4 100644 --- a/docs/api_reference/guide_imports.json +++ b/docs/api_reference/guide_imports.json @@ -1 +1 @@ -{"ChatPromptTemplate": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/v0.2/docs/langserve/", "Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_router_chain/", "Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_retrieval_chain/", "# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to add values to a chain's state": "https://python.langchain.com/v0.2/docs/how_to/assign/", "How to do per-user retrieval": "https://python.langchain.com/v0.2/docs/how_to/qa_per_user/", "How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "How to create a custom LLM class": "https://python.langchain.com/v0.2/docs/how_to/custom_llm/", "How to inspect runnables": "https://python.langchain.com/v0.2/docs/how_to/inspect/", "How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to use few shot examples in chat models": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples_chat/", "How to summarize text through iterative refinement": "https://python.langchain.com/v0.2/docs/how_to/summarize_refine/", "How to do tool/function calling": "https://python.langchain.com/v0.2/docs/how_to/function_calling/", "How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_parse/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_large_db/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to add fallbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/fallbacks/", "How to propagate callbacks constructor": "https://python.langchain.com/v0.2/docs/how_to/callbacks_constructor/", "How to map values to a graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_mapping/", "How to save and load LangChain objects": "https://python.langchain.com/v0.2/docs/how_to/serialization/", "How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to summarize text through parallelization": "https://python.langchain.com/v0.2/docs/how_to/summarize_map_reduce/", "How to attach callbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/callbacks_attach/", "How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to add default invocation args to a Runnable": "https://python.langchain.com/v0.2/docs/how_to/binding/", "How to convert Runnables as Tools": "https://python.langchain.com/v0.2/docs/how_to/convert_runnable_to_tool/", "How to stream events from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_stream_events/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/v0.2/docs/how_to/dynamic_chain/", "How to create custom callback handlers": "https://python.langchain.com/v0.2/docs/how_to/custom_callbacks/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/v0.2/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/v0.2/docs/how_to/passthrough/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/v0.2/docs/how_to/message_history/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "How to run custom functions": "https://python.langchain.com/v0.2/docs/how_to/functions/", "How to add memory to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_high_cardinality/", "How to return structured data from a model": "https://python.langchain.com/v0.2/docs/how_to/structured_output/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/v0.2/docs/how_to/tools_prompting/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/", "How to debug your LLM apps": "https://python.langchain.com/v0.2/docs/how_to/debugging/", "How to chain runnables": "https://python.langchain.com/v0.2/docs/how_to/sequence/", "Hybrid Search": "https://python.langchain.com/v0.2/docs/how_to/hybrid/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_query_checking/", "How to summarize text in a single LLM call": "https://python.langchain.com/v0.2/docs/how_to/summarize_stuff/", "How to use multimodal prompts": "https://python.langchain.com/v0.2/docs/how_to/multimodal_prompts/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/v0.2/docs/how_to/tools_few_shot/", "How to pass callbacks in at runtime": "https://python.langchain.com/v0.2/docs/how_to/callbacks_runtime/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "LangSmith LLM Runs": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_llm_runs/", "iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/", "NVIDIA NIMs ": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/nvidia_ai_endpoints/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "You.com": "https://python.langchain.com/v0.2/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/v0.2/docs/integrations/retrievers/asknews/", "WikipediaRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/wikipedia/", "TavilySearchAPIRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/tavily/", "Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille/", "ArxivRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/arxiv/", "ElasticsearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elasticsearch_retriever/", "Google Vertex AI Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/google_vertex_ai_search/", "Tavily Search": "https://python.langchain.com/v0.2/docs/integrations/tools/tavily_search/", "FinancialDatasets Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/financial_datasets/", "Databricks Unity Catalog (UC)": "https://python.langchain.com/v0.2/docs/integrations/tools/databricks/", "Riza Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/riza/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/memory/redis_chat_message_history/", "Google SQL for MySQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_mysql/", "Google AlloyDB for PostgreSQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_alloydb/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/v0.2/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/mongodb_chat_message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/v0.2/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/memory/streamlit_chat_message_history/", "Google El Carro Oracle": "https://python.langchain.com/v0.2/docs/integrations/memory/google_el_carro/", "SQLite": "https://python.langchain.com/v0.2/docs/integrations/memory/sqlite/", "Google SQL for PostgreSQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_pg/", "Google SQL for SQL Server": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_mssql/", "TiDB": "https://python.langchain.com/v0.2/docs/integrations/memory/tidb_chat_message_history/", "Kinetica Language To SQL Chat Model": "https://python.langchain.com/v0.2/docs/integrations/chat/kinetica/", "ChatFireworks": "https://python.langchain.com/v0.2/docs/integrations/chat/fireworks/", "ChatYI": "https://python.langchain.com/v0.2/docs/integrations/chat/yi/", "ChatAnthropic": "https://python.langchain.com/v0.2/docs/integrations/chat/anthropic/", "ChatGroq": "https://python.langchain.com/v0.2/docs/integrations/chat/groq/", "ChatGoogleGenerativeAI": "https://python.langchain.com/v0.2/docs/integrations/chat/google_generative_ai/", "OllamaFunctions": "https://python.langchain.com/v0.2/docs/integrations/chat/ollama_functions/", "ChatOpenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/openai/", "ChatVertexAI": "https://python.langchain.com/v0.2/docs/integrations/chat/google_vertex_ai_palm/", "ChatBedrock": "https://python.langchain.com/v0.2/docs/integrations/chat/bedrock/", "JinaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/jinachat/", "ChatOllama": "https://python.langchain.com/v0.2/docs/integrations/chat/ollama/", "ChatOCIGenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/oci_generative_ai/", "AzureChatOpenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/azure_chat_openai/", "Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/chat/llamacpp/", "ChatMistralAI": "https://python.langchain.com/v0.2/docs/integrations/chat/mistralai/", "ChatAI21": "https://python.langchain.com/v0.2/docs/integrations/chat/ai21/", "ChatDatabricks": "https://python.langchain.com/v0.2/docs/integrations/chat/databricks/", "ChatTogether": "https://python.langchain.com/v0.2/docs/integrations/chat/together/", "Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/providers/cohere/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/chat/edenai/", "ChatWatsonx": "https://python.langchain.com/v0.2/docs/integrations/chat/ibm_watsonx/", "vLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/vllm/", "Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/chat/yuan2/", "Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/", "ChatPerplexity": "https://python.langchain.com/v0.2/docs/integrations/chat/perplexity/", "ChatUpstage": "https://python.langchain.com/v0.2/docs/integrations/chat/upstage/", "ChatNVIDIA": "https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/", "Context": "https://python.langchain.com/v0.2/docs/integrations/callbacks/context/", "Fiddler": "https://python.langchain.com/v0.2/docs/integrations/callbacks/fiddler/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "MLflow": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_tracking/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "OpenAI metadata tagger": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openai_metadata_tagger/", "Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/", "Figma": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/figma/", "OllamaLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/ollama/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/v0.2/docs/tutorials/local_rag/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/", "Build an Extraction Chain": "https://python.langchain.com/v0.2/docs/tutorials/extraction/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Classify Text into Labels": "https://python.langchain.com/v0.2/docs/tutorials/classification/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/v0.2/docs/tutorials/llm_chain/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/v0.2/docs/tutorials/pdf_qa/", "Vector stores and retrievers": "https://python.langchain.com/v0.2/docs/tutorials/retrievers/"}, "ChatAnthropic": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/v0.2/docs/langserve/", "Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "How to use callbacks in async environments": "https://python.langchain.com/v0.2/docs/how_to/callbacks_async/", "How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/", "How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "How to merge consecutive messages of the same type": "https://python.langchain.com/v0.2/docs/how_to/merge_message_runs/", "How to parse XML output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_xml/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_parse/", "How to handle rate limits": "https://python.langchain.com/v0.2/docs/how_to/chat_model_rate_limiting/", "How to add fallbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/fallbacks/", "How to propagate callbacks constructor": "https://python.langchain.com/v0.2/docs/how_to/callbacks_constructor/", "How to stream chat model responses": "https://python.langchain.com/v0.2/docs/how_to/chat_streaming/", "How to attach callbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/callbacks_attach/", "How to filter messages": "https://python.langchain.com/v0.2/docs/how_to/filter_messages/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/v0.2/docs/how_to/dynamic_chain/", "How to create custom callback handlers": "https://python.langchain.com/v0.2/docs/how_to/custom_callbacks/", "How to configure runtime chain internals": "https://python.langchain.com/v0.2/docs/how_to/configure/", "How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/", "Response metadata": "https://python.langchain.com/v0.2/docs/how_to/response_metadata/", "How to pass callbacks in at runtime": "https://python.langchain.com/v0.2/docs/how_to/callbacks_runtime/", "Anthropic": "https://python.langchain.com/v0.2/docs/integrations/platforms/anthropic/", "PlayWright Browser Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/playwright/", "Riza Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/riza/", "ChatAnthropic": "https://python.langchain.com/v0.2/docs/integrations/chat/anthropic/", "Log10": "https://python.langchain.com/v0.2/docs/integrations/providers/log10/", "Build an Agent": "https://python.langchain.com/v0.2/docs/tutorials/agents/"}, "ChatOpenAI": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/v0.2/docs/langserve/", "Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_router_chain/", "Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/", "How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to disable parallel tool calling": "https://python.langchain.com/v0.2/docs/how_to/tool_calling_parallel/", "How to add values to a chain's state": "https://python.langchain.com/v0.2/docs/how_to/assign/", "How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "How to inspect runnables": "https://python.langchain.com/v0.2/docs/how_to/inspect/", "How to bind model-specific tools": "https://python.langchain.com/v0.2/docs/how_to/tools_model_specific/", "How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to use few shot examples in chat models": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples_chat/", "How to use LangChain with different Pydantic versions": "https://python.langchain.com/v0.2/docs/how_to/pydantic_compatibility/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to add fallbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/fallbacks/", "How to map values to a graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_mapping/", "How to pass multimodal data directly to models": "https://python.langchain.com/v0.2/docs/how_to/multimodal_inputs/", "How to save and load LangChain objects": "https://python.langchain.com/v0.2/docs/how_to/serialization/", "How to use the output-fixing parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_fixing/", "How to convert tools to OpenAI Functions": "https://python.langchain.com/v0.2/docs/how_to/tools_as_openai_functions/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to add default invocation args to a Runnable": "https://python.langchain.com/v0.2/docs/how_to/binding/", "How to invoke runnables in parallel": "https://python.langchain.com/v0.2/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/v0.2/docs/how_to/passthrough/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to configure runtime chain internals": "https://python.langchain.com/v0.2/docs/how_to/configure/", "How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "How to construct knowledge graphs": "https://python.langchain.com/v0.2/docs/how_to/graph_constructing/", "How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/", "How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/", "How to run custom functions": "https://python.langchain.com/v0.2/docs/how_to/functions/", "How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "How to add memory to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_high_cardinality/", "How to get log probabilities": "https://python.langchain.com/v0.2/docs/how_to/logprobs/", "How to parse YAML output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_yaml/", "Response metadata": "https://python.langchain.com/v0.2/docs/how_to/response_metadata/", "How to parse JSON output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_json/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "Hybrid Search": "https://python.langchain.com/v0.2/docs/how_to/hybrid/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "How to stream tool calls": "https://python.langchain.com/v0.2/docs/how_to/tool_streaming/", "How to use multimodal prompts": "https://python.langchain.com/v0.2/docs/how_to/multimodal_prompts/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/v0.2/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "WeChat": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/wechat/", "Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "LangSmith LLM Runs": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_llm_runs/", "Slack": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/whatsapp/", "LangSmith Chat Datasets": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_dataset/", "iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/discord/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/", "You.com": "https://python.langchain.com/v0.2/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/v0.2/docs/integrations/tools/asknews/", "LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/", "Outline": "https://python.langchain.com/v0.2/docs/integrations/retrievers/outline/", "SEC filing": "https://python.langchain.com/v0.2/docs/integrations/retrievers/sec_filings/", "TavilySearchAPIRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/tavily/", "Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille/", "ElasticsearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elasticsearch_retriever/", "Rememberizer": "https://python.langchain.com/v0.2/docs/integrations/retrievers/rememberizer/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/milvus_hybrid_search/", "Kay.ai": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kay/", "FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "Vectara self-querying ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/tencentvectordb/", "MyScale": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/myscale_self_query/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/", "ChatGPT Plugins": "https://python.langchain.com/v0.2/docs/integrations/tools/chatgpt_plugins/", "Connery Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/connery/", "Infobip": "https://python.langchain.com/v0.2/docs/integrations/tools/infobip/", "PowerBI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/powerbi/", "E2B Data Analysis": "https://python.langchain.com/v0.2/docs/integrations/tools/e2b_data_analysis/", "Human as a tool": "https://python.langchain.com/v0.2/docs/integrations/tools/human_tools/", "Azure Container Apps dynamic sessions": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_dynamic_sessions/", "FinancialDatasets Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/financial_datasets/", "Slack Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/slack/", "Cassandra Database Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cassandra_database/", "Yahoo Finance News": "https://python.langchain.com/v0.2/docs/integrations/tools/yahoo_finance_news/", "Polygon IO Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon_toolkit/", "Semantic Scholar API Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/semanticscholar/", "Spark SQL Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/spark_sql/", "Requests Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/requests/", "AINetwork Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/ainetwork/", "Passio NutritionAI": "https://python.langchain.com/v0.2/docs/integrations/tools/passio_nutrition_ai/", "Cogniswitch Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cogniswitch/", "Bearly Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/bearly/", "Pandas Dataframe": "https://python.langchain.com/v0.2/docs/integrations/tools/pandas/", "ArXiv": "https://python.langchain.com/v0.2/docs/integrations/tools/arxiv/", "Robocorp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/robocorp/", "Connery Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/connery_toolkit/", "MultiOn Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/multion/", "Exa Search": "https://python.langchain.com/v0.2/docs/integrations/tools/exa_search/", "Amadeus Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/amadeus/", "Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/", "You.com Search": "https://python.langchain.com/v0.2/docs/integrations/tools/you/", "OpenAPI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi/", "Shell (bash)": "https://python.langchain.com/v0.2/docs/integrations/tools/bash/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/memory/redis_chat_message_history/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/v0.2/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/mongodb_chat_message_history/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/memory/xata_chat_message_history/", "Remembrall": "https://python.langchain.com/v0.2/docs/integrations/memory/remembrall/", "SQL (SQLAlchemy)": "https://python.langchain.com/v0.2/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/memory/streamlit_chat_message_history/", "SQLite": "https://python.langchain.com/v0.2/docs/integrations/memory/sqlite/", "TiDB": "https://python.langchain.com/v0.2/docs/integrations/memory/tidb_chat_message_history/", "ChatOpenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/openai/", "vLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/vllm/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "Context": "https://python.langchain.com/v0.2/docs/integrations/callbacks/context/", "Label Studio": "https://python.langchain.com/v0.2/docs/integrations/callbacks/labelstudio/", "PromptLayer": "https://python.langchain.com/v0.2/docs/integrations/callbacks/promptlayer/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "Trubrics": "https://python.langchain.com/v0.2/docs/integrations/callbacks/trubrics/", "Infino": "https://python.langchain.com/v0.2/docs/integrations/callbacks/infino/", "Upstash Ratelimit Callback": "https://python.langchain.com/v0.2/docs/integrations/callbacks/upstash_ratelimit/", "CnosDB": "https://python.langchain.com/v0.2/docs/integrations/providers/cnosdb/", "Log10": "https://python.langchain.com/v0.2/docs/integrations/providers/log10/", "MLflow": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_tracking/", "Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/", "Arthur": "https://python.langchain.com/v0.2/docs/integrations/providers/arthur_tracking/", "Dataherald": "https://python.langchain.com/v0.2/docs/integrations/providers/dataherald/", "Log, Trace, and Monitor": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/index/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "Hippo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hippo/", "Vectara": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vectara/", "Momento Vector Index (MVI)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/momento_vector_index/", "Neo4j Vector Index": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/neo4jvector/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "KDB.AI": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kdbai/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/", "OpenAI metadata tagger": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openai_metadata_tagger/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/", "Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/", "Figma": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/figma/", "Browserbase": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/browserbase/", "Memgraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/memgraph/", "RDFLib": "https://python.langchain.com/v0.2/docs/integrations/graphs/rdflib_sparql/", "NebulaGraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/nebula_graph/", "HugeGraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/hugegraph/", "Diffbot": "https://python.langchain.com/v0.2/docs/integrations/graphs/diffbot/", "Ontotext GraphDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/ontotext/", "Apache AGE": "https://python.langchain.com/v0.2/docs/integrations/graphs/apache_age/", "Neo4j": "https://python.langchain.com/v0.2/docs/integrations/graphs/neo4j_cypher/", "ArangoDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/arangodb/", "Amazon Neptune with Cypher": "https://python.langchain.com/v0.2/docs/integrations/graphs/amazon_neptune_open_cypher/", "Kuzu": "https://python.langchain.com/v0.2/docs/integrations/graphs/kuzu_db/", "FalkorDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/falkordb/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Classify Text into Labels": "https://python.langchain.com/v0.2/docs/tutorials/classification/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/v0.2/docs/tutorials/llm_chain/", "Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/", "Build a Question Answering application over a Graph Database": "https://python.langchain.com/v0.2/docs/tutorials/graph/"}, "SystemMessage": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/v0.2/docs/langserve/", "How to merge consecutive messages of the same type": "https://python.langchain.com/v0.2/docs/how_to/merge_message_runs/", "How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/", "How to filter messages": "https://python.langchain.com/v0.2/docs/how_to/filter_messages/", "How to compose prompts together": "https://python.langchain.com/v0.2/docs/how_to/prompts_composition/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "Robocorp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/robocorp/", "Exa Search": "https://python.langchain.com/v0.2/docs/integrations/tools/exa_search/", "Snowflake Cortex": "https://python.langchain.com/v0.2/docs/integrations/chat/snowflake/", "# Related": "https://python.langchain.com/v0.2/docs/integrations/chat/solar/", "ChatHuggingFace": "https://python.langchain.com/v0.2/docs/integrations/chat/huggingface/", "ChatOctoAI": "https://python.langchain.com/v0.2/docs/integrations/chat/octoai/", "ChatYI": "https://python.langchain.com/v0.2/docs/integrations/chat/yi/", "LlamaEdge": "https://python.langchain.com/v0.2/docs/integrations/chat/llama_edge/", "ChatKonko": "https://python.langchain.com/v0.2/docs/integrations/chat/konko/", "GigaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/gigachat/", "JinaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/jinachat/", "ChatOCIGenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/oci_generative_ai/", "ChatEverlyAI": "https://python.langchain.com/v0.2/docs/integrations/chat/everlyai/", "ChatFriendli": "https://python.langchain.com/v0.2/docs/integrations/chat/friendli/", "ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/", "ChatWatsonx": "https://python.langchain.com/v0.2/docs/integrations/chat/ibm_watsonx/", "vLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/vllm/", "Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/chat/yuan2/", "ChatTongyi": "https://python.langchain.com/v0.2/docs/integrations/chat/tongyi/", "MoonshotChat": "https://python.langchain.com/v0.2/docs/integrations/chat/moonshot/", "ChatPremAI": "https://python.langchain.com/v0.2/docs/integrations/chat/premai/", "ChatAnyscale": "https://python.langchain.com/v0.2/docs/integrations/chat/anyscale/", "ChatYandexGPT": "https://python.langchain.com/v0.2/docs/integrations/chat/yandex/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "Context": "https://python.langchain.com/v0.2/docs/integrations/callbacks/context/", "Label Studio": "https://python.langchain.com/v0.2/docs/integrations/callbacks/labelstudio/", "Trubrics": "https://python.langchain.com/v0.2/docs/integrations/callbacks/trubrics/", "MLflow Deployments for LLMs": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow/", "MLflow AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_ai_gateway/", "PremAI": "https://python.langchain.com/v0.2/docs/integrations/providers/premai/", "Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Google Cloud Vertex AI": "https://python.langchain.com/v0.2/docs/integrations/llms/google_vertex_ai_palm/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/v0.2/docs/integrations/llms/javelin/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/v0.2/docs/tutorials/llm_chain/"}, "HumanMessage": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/v0.2/docs/langserve/", "Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to use callbacks in async environments": "https://python.langchain.com/v0.2/docs/how_to/callbacks_async/", "How to merge consecutive messages of the same type": "https://python.langchain.com/v0.2/docs/how_to/merge_message_runs/", "How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to do tool/function calling": "https://python.langchain.com/v0.2/docs/how_to/function_calling/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to pass multimodal data directly to models": "https://python.langchain.com/v0.2/docs/how_to/multimodal_inputs/", "How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/", "How to convert tools to OpenAI Functions": "https://python.langchain.com/v0.2/docs/how_to/tools_as_openai_functions/", "How to filter messages": "https://python.langchain.com/v0.2/docs/how_to/filter_messages/", "How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/v0.2/docs/how_to/message_history/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to pass tool outputs to chat models": "https://python.langchain.com/v0.2/docs/how_to/tool_results_pass_to_model/", "How to return structured data from a model": "https://python.langchain.com/v0.2/docs/how_to/structured_output/", "How to compose prompts together": "https://python.langchain.com/v0.2/docs/how_to/prompts_composition/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/v0.2/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "WeChat": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/wechat/", "Discord": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/discord/", "Zep Open Source": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_memorystore/", "Zep Cloud": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_cloud_memorystore/", "Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Imagen": "https://python.langchain.com/v0.2/docs/integrations/tools/google_imagen/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/", "Snowflake Cortex": "https://python.langchain.com/v0.2/docs/integrations/chat/snowflake/", "# Related": "https://python.langchain.com/v0.2/docs/integrations/chat/solar/", "ChatHuggingFace": "https://python.langchain.com/v0.2/docs/integrations/chat/huggingface/", "AzureMLChatOnlineEndpoint": "https://python.langchain.com/v0.2/docs/integrations/chat/azureml_chat_endpoint/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/v0.2/docs/integrations/chat/alibaba_cloud_pai_eas/", "Chat with Coze Bot": "https://python.langchain.com/v0.2/docs/integrations/chat/coze/", "ChatOctoAI": "https://python.langchain.com/v0.2/docs/integrations/chat/octoai/", "ChatYI": "https://python.langchain.com/v0.2/docs/integrations/chat/yi/", "DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/chat/deepinfra/", "ChatLiteLLM": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm/", "LlamaEdge": "https://python.langchain.com/v0.2/docs/integrations/chat/llama_edge/", "VolcEngineMaasChat": "https://python.langchain.com/v0.2/docs/integrations/chat/volcengine_maas/", "ChatKonko": "https://python.langchain.com/v0.2/docs/integrations/chat/konko/", "MLX": "https://python.langchain.com/v0.2/docs/integrations/chat/mlx/", "GigaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/gigachat/", "JinaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/jinachat/", "ChatOllama": "https://python.langchain.com/v0.2/docs/integrations/chat/ollama/", "ChatOCIGenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/oci_generative_ai/", "ChatEverlyAI": "https://python.langchain.com/v0.2/docs/integrations/chat/everlyai/", "GPTRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/gpt_router/", "ChatLiteLLMRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm_router/", "ChatFriendli": "https://python.langchain.com/v0.2/docs/integrations/chat/friendli/", "ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "Chat with Baichuan-192K": "https://python.langchain.com/v0.2/docs/integrations/chat/baichuan/", "QianfanChatEndpoint": "https://python.langchain.com/v0.2/docs/integrations/chat/baidu_qianfan_endpoint/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/llms/cohere/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/chat/edenai/", "ErnieBotChat": "https://python.langchain.com/v0.2/docs/integrations/chat/ernie/", "ChatWatsonx": "https://python.langchain.com/v0.2/docs/integrations/chat/ibm_watsonx/", "vLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/vllm/", "Tencent Hunyuan": "https://python.langchain.com/v0.2/docs/integrations/chat/tencent_hunyuan/", "MiniMaxChat": "https://python.langchain.com/v0.2/docs/integrations/chat/minimax/", "Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/chat/yuan2/", "ChatTongyi": "https://python.langchain.com/v0.2/docs/integrations/chat/tongyi/", "PromptLayerChatOpenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/promptlayer_chatopenai/", "SparkLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/sparkllm/", "MoonshotChat": "https://python.langchain.com/v0.2/docs/integrations/chat/moonshot/", "Dappier AI": "https://python.langchain.com/v0.2/docs/integrations/chat/dappier/", "Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/", "ChatPremAI": "https://python.langchain.com/v0.2/docs/integrations/chat/premai/", "ChatAnyscale": "https://python.langchain.com/v0.2/docs/integrations/chat/anyscale/", "ChatYandexGPT": "https://python.langchain.com/v0.2/docs/integrations/chat/yandex/", "ChatNVIDIA": "https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "Context": "https://python.langchain.com/v0.2/docs/integrations/callbacks/context/", "Label Studio": "https://python.langchain.com/v0.2/docs/integrations/callbacks/labelstudio/", "PromptLayer": "https://python.langchain.com/v0.2/docs/integrations/callbacks/promptlayer/", "Trubrics": "https://python.langchain.com/v0.2/docs/integrations/callbacks/trubrics/", "Log10": "https://python.langchain.com/v0.2/docs/integrations/providers/log10/", "MLflow Deployments for LLMs": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow/", "MLflow AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_ai_gateway/", "Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/", "PremAI": "https://python.langchain.com/v0.2/docs/integrations/providers/premai/", "Arthur": "https://python.langchain.com/v0.2/docs/integrations/providers/arthur_tracking/", "Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Browserbase": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/browserbase/", "Google Cloud Vertex AI": "https://python.langchain.com/v0.2/docs/integrations/llms/google_vertex_ai_palm/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/v0.2/docs/integrations/llms/javelin/", "Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/", "Chat Bot Feedback Template": "https://python.langchain.com/v0.2/docs/templates/chat-bot-feedback/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Build an Agent": "https://python.langchain.com/v0.2/docs/tutorials/agents/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/v0.2/docs/tutorials/llm_chain/"}, "RunnableMap": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/v0.2/docs/langserve/"}, "RunnableLambda": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/v0.2/docs/langserve/", "How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/", "How to convert Runnables as Tools": "https://python.langchain.com/v0.2/docs/how_to/convert_runnable_to_tool/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/", "How to run custom functions": "https://python.langchain.com/v0.2/docs/how_to/functions/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/", "How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/", "How to dispatch custom callback events": "https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/", "Upstash Ratelimit Callback": "https://python.langchain.com/v0.2/docs/integrations/callbacks/upstash_ratelimit/", "Vector stores and retrievers": "https://python.langchain.com/v0.2/docs/tutorials/retrievers/"}, "PromptTemplate": {"Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_router_chain/", "How to better prompt when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_prompting/", "How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/v0.2/docs/how_to/output_parser_structured/", "How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/", "How to select examples by n-gram overlap": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_ngram/", "How to select examples by length": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_length_based/", "How to use example selectors": "https://python.langchain.com/v0.2/docs/how_to/example_selectors/", "How to use few shot examples": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples/", "How to select examples by similarity": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_similarity/", "How to parse XML output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_xml/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/v0.2/docs/how_to/long_context_reorder/", "How to add fallbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/fallbacks/", "Run models locally": "https://python.langchain.com/v0.2/docs/how_to/local_llms/", "How to configure runtime chain internals": "https://python.langchain.com/v0.2/docs/how_to/configure/", "How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/", "How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/", "How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "How to parse YAML output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_yaml/", "How to compose prompts together": "https://python.langchain.com/v0.2/docs/how_to/prompts_composition/", "How to partially format prompt templates": "https://python.langchain.com/v0.2/docs/how_to/prompts_partial/", "How to parse JSON output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_json/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_mmr/", "How to track token usage for LLMs": "https://python.langchain.com/v0.2/docs/how_to/llm_token_usage_tracking/", "Clarifai": "https://python.langchain.com/v0.2/docs/integrations/llms/clarifai/", "RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/", "Google Drive": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_drive/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/milvus_hybrid_search/", "Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/", "NVIDIA Riva: ASR and TTS": "https://python.langchain.com/v0.2/docs/integrations/tools/nvidia_riva/", "Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/", "Dall-E Image Generator": "https://python.langchain.com/v0.2/docs/integrations/tools/dalle_image_generator/", "Mot\u00f6rhead": "https://python.langchain.com/v0.2/docs/integrations/memory/motorhead_memory/", "Context": "https://python.langchain.com/v0.2/docs/integrations/callbacks/context/", "SageMaker Tracking": "https://python.langchain.com/v0.2/docs/integrations/callbacks/sagemaker_tracking/", "Argilla": "https://python.langchain.com/v0.2/docs/integrations/callbacks/argilla/", "DSPy": "https://python.langchain.com/v0.2/docs/integrations/providers/dspy/", "Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/", "MLflow AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_ai_gateway/", "Rebuff": "https://python.langchain.com/v0.2/docs/integrations/providers/rebuff/", "Prediction Guard": "https://python.langchain.com/v0.2/docs/integrations/llms/predictionguard/", "Shale Protocol": "https://python.langchain.com/v0.2/docs/integrations/providers/shaleprotocol/", "Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/", "Ray Serve": "https://python.langchain.com/v0.2/docs/integrations/providers/ray_serve/", "Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "Amazon Document DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/documentdb/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "AirbyteLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte/", "Memgraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/memgraph/", "Apache AGE": "https://python.langchain.com/v0.2/docs/integrations/graphs/apache_age/", "Neo4j": "https://python.langchain.com/v0.2/docs/integrations/graphs/neo4j_cypher/", "Baseten": "https://python.langchain.com/v0.2/docs/integrations/llms/baseten/", "StochasticAI": "https://python.langchain.com/v0.2/docs/integrations/llms/stochasticai/", "Solar": "https://python.langchain.com/v0.2/docs/integrations/llms/solar/", "Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/", "IPEX-LLM": "https://python.langchain.com/v0.2/docs/integrations/llms/ipex_llm/", "Banana": "https://python.langchain.com/v0.2/docs/integrations/llms/banana/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/v0.2/docs/integrations/llms/alibabacloud_pai_eas_endpoint/", "OpenLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/openllm/", "SageMakerEndpoint": "https://python.langchain.com/v0.2/docs/integrations/llms/sagemaker/", "Fireworks": "https://python.langchain.com/v0.2/docs/integrations/llms/fireworks/", "OctoAI": "https://python.langchain.com/v0.2/docs/integrations/llms/octoai/", "Writer": "https://python.langchain.com/v0.2/docs/integrations/llms/writer/", "Modal": "https://python.langchain.com/v0.2/docs/integrations/llms/modal/", "TextGen": "https://python.langchain.com/v0.2/docs/integrations/llms/textgen/", "Xorbits Inference (Xinference)": "https://python.langchain.com/v0.2/docs/integrations/llms/xinference/", "Nebula (Symbl.ai)": "https://python.langchain.com/v0.2/docs/integrations/llms/symblai_nebula/", "DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/llms/deepinfra/", "AnthropicLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/anthropic/", "NLP Cloud": "https://python.langchain.com/v0.2/docs/integrations/llms/nlpcloud/", "GPT4All": "https://python.langchain.com/v0.2/docs/integrations/llms/gpt4all/", "ForefrontAI": "https://python.langchain.com/v0.2/docs/integrations/llms/forefrontai/", "MosaicML": "https://python.langchain.com/v0.2/docs/integrations/llms/mosaicml/", "Volc Engine Maas": "https://python.langchain.com/v0.2/docs/integrations/llms/volcengine_maas/", "CerebriumAI": "https://python.langchain.com/v0.2/docs/integrations/llms/cerebriumai/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/llms/openai/", "Google Cloud Vertex AI": "https://python.langchain.com/v0.2/docs/integrations/llms/google_vertex_ai_palm/", "Predibase": "https://python.langchain.com/v0.2/docs/integrations/llms/predibase/", "GigaChat": "https://python.langchain.com/v0.2/docs/integrations/llms/gigachat/", "# Oracle Cloud Infrastructure Generative AI": "https://python.langchain.com/v0.2/docs/integrations/llms/oci_generative_ai/", "Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/llms/llamacpp/", "Hugging Face Local Pipelines": "https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_pipelines/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/", "Titan Takeoff": "https://python.langchain.com/v0.2/docs/integrations/llms/titan_takeoff/", "Aphrodite Engine": "https://python.langchain.com/v0.2/docs/integrations/llms/aphrodite/", "AI21LLM": "https://python.langchain.com/v0.2/docs/integrations/llms/ai21/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/llms/cohere/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/llms/edenai/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/v0.2/docs/integrations/llms/javelin/", "IBM watsonx.ai": "https://python.langchain.com/v0.2/docs/integrations/llms/ibm_watsonx/", "C Transformers": "https://python.langchain.com/v0.2/docs/integrations/llms/ctransformers/", "vLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/vllm/", "Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/", "Manifest": "https://python.langchain.com/v0.2/docs/integrations/llms/manifest/", "ExLlamaV2": "https://python.langchain.com/v0.2/docs/integrations/llms/exllamav2/", "Minimax": "https://python.langchain.com/v0.2/docs/integrations/llms/minimax/", "Tongyi Qwen": "https://python.langchain.com/v0.2/docs/integrations/llms/tongyi/", "Huggingface Endpoints": "https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_endpoint/", "MLX Local Pipelines": "https://python.langchain.com/v0.2/docs/integrations/llms/mlx_pipelines/", "Runhouse": "https://python.langchain.com/v0.2/docs/integrations/llms/runhouse/", "Anyscale": "https://python.langchain.com/v0.2/docs/integrations/llms/anyscale/", "YandexGPT": "https://python.langchain.com/v0.2/docs/integrations/llms/yandex/", "GooseAI": "https://python.langchain.com/v0.2/docs/integrations/llms/gooseai/", "OpenLM": "https://python.langchain.com/v0.2/docs/integrations/llms/openlm/", "Aleph Alpha": "https://python.langchain.com/v0.2/docs/integrations/llms/aleph_alpha/", "Cloudflare Workers AI": "https://python.langchain.com/v0.2/docs/integrations/llms/cloudflare_workersai/", "CTranslate2": "https://python.langchain.com/v0.2/docs/integrations/llms/ctranslate2/", "Google AI": "https://python.langchain.com/v0.2/docs/integrations/llms/google_ai/", "PipelineAI": "https://python.langchain.com/v0.2/docs/integrations/llms/pipelineai/", "ChatGLM": "https://python.langchain.com/v0.2/docs/integrations/llms/chatglm/", "Gradient": "https://python.langchain.com/v0.2/docs/integrations/llms/gradient/", "Petals": "https://python.langchain.com/v0.2/docs/integrations/llms/petals/", "OpenVINO": "https://python.langchain.com/v0.2/docs/integrations/llms/openvino/", "Intel Weight-Only Quantization": "https://python.langchain.com/v0.2/docs/integrations/llms/weight_only_quantization/", "Replicate": "https://python.langchain.com/v0.2/docs/integrations/llms/replicate/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/", "Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "MessagesPlaceholder": {"Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/v0.2/docs/how_to/message_history/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/memory/redis_chat_message_history/", "Google SQL for MySQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_mysql/", "Google AlloyDB for PostgreSQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_alloydb/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/v0.2/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/mongodb_chat_message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/v0.2/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/memory/streamlit_chat_message_history/", "Google El Carro Oracle": "https://python.langchain.com/v0.2/docs/integrations/memory/google_el_carro/", "SQLite": "https://python.langchain.com/v0.2/docs/integrations/memory/sqlite/", "Google SQL for PostgreSQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_pg/", "Google SQL for SQL Server": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_mssql/", "TiDB": "https://python.langchain.com/v0.2/docs/integrations/memory/tidb_chat_message_history/", "Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/", "Build an Extraction Chain": "https://python.langchain.com/v0.2/docs/tutorials/extraction/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/"}, "CSVLoader": {"Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "How to load CSVs": "https://python.langchain.com/v0.2/docs/how_to/document_loader_csv/", "ChatGPT plugin": "https://python.langchain.com/v0.2/docs/integrations/retrievers/chatgpt-plugin/", "Aerospike": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aerospike/", "CSV": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/csv/", "Document loaders": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/index/", "Pebblo Safe DocumentLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pebblo/"}, "StrOutputParser": {"Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_chain/", "# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/refine_docs_chain/", "Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "How to add values to a chain's state": "https://python.langchain.com/v0.2/docs/how_to/assign/", "How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/", "How to do per-user retrieval": "https://python.langchain.com/v0.2/docs/how_to/qa_per_user/", "How to inspect runnables": "https://python.langchain.com/v0.2/docs/how_to/inspect/", "How to summarize text through iterative refinement": "https://python.langchain.com/v0.2/docs/how_to/summarize_refine/", "How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/", "How to add fallbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/fallbacks/", "How to map values to a graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_mapping/", "How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to summarize text through parallelization": "https://python.langchain.com/v0.2/docs/how_to/summarize_map_reduce/", "How to add default invocation args to a Runnable": "https://python.langchain.com/v0.2/docs/how_to/binding/", "How to convert Runnables as Tools": "https://python.langchain.com/v0.2/docs/how_to/convert_runnable_to_tool/", "How to stream events from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_stream_events/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/v0.2/docs/how_to/dynamic_chain/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/v0.2/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/v0.2/docs/how_to/passthrough/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "How to run custom functions": "https://python.langchain.com/v0.2/docs/how_to/functions/", "How to chain runnables": "https://python.langchain.com/v0.2/docs/how_to/sequence/", "Hybrid Search": "https://python.langchain.com/v0.2/docs/how_to/hybrid/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_query_checking/", "Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/", "NVIDIA NIMs ": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/nvidia_ai_endpoints/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "You.com": "https://python.langchain.com/v0.2/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/v0.2/docs/integrations/retrievers/asknews/", "WikipediaRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/wikipedia/", "TavilySearchAPIRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/tavily/", "ArxivRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/arxiv/", "ElasticsearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elasticsearch_retriever/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/milvus_hybrid_search/", "Google Vertex AI Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/google_vertex_ai_search/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "ChatOllama": "https://python.langchain.com/v0.2/docs/integrations/chat/ollama/", "Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/", "ChatNVIDIA": "https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/", "Fiddler": "https://python.langchain.com/v0.2/docs/integrations/callbacks/fiddler/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "DSPy": "https://python.langchain.com/v0.2/docs/integrations/providers/dspy/", "MLflow": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_tracking/", "Shale Protocol": "https://python.langchain.com/v0.2/docs/integrations/providers/shaleprotocol/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "Volc Engine Maas": "https://python.langchain.com/v0.2/docs/integrations/llms/volcengine_maas/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/", "AI21LLM": "https://python.langchain.com/v0.2/docs/integrations/llms/ai21/", "PipelineAI": "https://python.langchain.com/v0.2/docs/integrations/llms/pipelineai/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/v0.2/docs/tutorials/local_rag/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/v0.2/docs/tutorials/llm_chain/"}, "SimpleJsonOutputParser": {"Conceptual guide": "https://python.langchain.com/v0.2/docs/concepts/", "How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/v0.2/docs/how_to/output_parser_structured/"}, "BaseChatModel": {"Contribute Integrations": "https://python.langchain.com/v0.2/docs/contributing/integrations/", "How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "deprecated": {"Contribute Integrations": "https://python.langchain.com/v0.2/docs/contributing/integrations/"}, "UnstructuredMarkdownLoader": {"langchain": "https://python.langchain.com/v0.2/docs/changes/changelog/langchain/", "How to load Markdown": "https://python.langchain.com/v0.2/docs/how_to/document_loader_markdown/", "Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/", "StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/", "UnstructuredMarkdownLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/unstructured_markdown/"}, "Document": {"# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to create a custom Document Loader": "https://python.langchain.com/v0.2/docs/how_to/document_loader_custom/", "How to summarize text through iterative refinement": "https://python.langchain.com/v0.2/docs/how_to/summarize_refine/", "How to summarize text through parallelization": "https://python.langchain.com/v0.2/docs/how_to/summarize_map_reduce/", "How to use the LangChain indexing API": "https://python.langchain.com/v0.2/docs/how_to/indexing/", "How to convert Runnables as Tools": "https://python.langchain.com/v0.2/docs/how_to/convert_runnable_to_tool/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to create a custom Retriever": "https://python.langchain.com/v0.2/docs/how_to/custom_retriever/", "How to construct knowledge graphs": "https://python.langchain.com/v0.2/docs/how_to/graph_constructing/", "How to use a time-weighted vector store retriever": "https://python.langchain.com/v0.2/docs/how_to/time_weighted_vectorstore/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "How to load Markdown": "https://python.langchain.com/v0.2/docs/how_to/document_loader_markdown/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "How to summarize text in a single LLM call": "https://python.langchain.com/v0.2/docs/how_to/summarize_stuff/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Oracle AI Vector Search: Generate Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/oracleai/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kinetica/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "ChatGPT plugin": "https://python.langchain.com/v0.2/docs/integrations/retrievers/chatgpt-plugin/", "Cohere RAG": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere/", "Weaviate Hybrid Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/weaviate-hybrid/", "BM25": "https://python.langchain.com/v0.2/docs/integrations/retrievers/bm25/", "Qdrant Sparse Vector": "https://python.langchain.com/v0.2/docs/integrations/retrievers/qdrant-sparse/", "ElasticsearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elasticsearch_retriever/", "TF-IDF": "https://python.langchain.com/v0.2/docs/integrations/retrievers/tf_idf/", "Milvus": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/milvus/", "PGVector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/weaviate_self_query/", "Vectara self-querying ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "DashVector": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dashvector/", "Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/elasticsearch/", "Chroma": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/chroma/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/", "Timescale Vector (Postgres) ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/redis/", "MyScale": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/myscale_self_query/", "Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/mongodb_atlas/", "Qdrant": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/qdrant/", "Oracle AI Vector Search: Generate Summary": "https://python.langchain.com/v0.2/docs/integrations/tools/oracleai/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/providers/cohere/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "Kinetica Vectorstore API": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kinetica/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "PGVector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgvector/", "SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/singlestoredb/", "Annoy": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/annoy/", "Couchbase ": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/couchbase/", "Oracle AI Vector Search: Vector Store": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/oracle/", "Neo4j Vector Index": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lantern/", "Google Firestore (Native Mode)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_firestore/", "ClickHouse": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/clickhouse/", "Astra DB Vector Store": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/astradb/", "Faiss (Async)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss_async/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "PGVecto.rs": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgvecto_rs/", "Postgres Embedding": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgembedding/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Faiss": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss/", "Nuclia": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/nuclia_transformer/", "AI21SemanticTextSplitter": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/ai21_semantic_text_splitter/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "OpenAI metadata tagger": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openai_metadata_tagger/", "Doctran: extract properties": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/doctran_extract_properties/", "Google Translate": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_translate/", "Doctran: interrogate documents": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/doctran_interrogate_document/", "Doctran: language translation": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/doctran_translate_document/", "TensorFlow Datasets": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/tensorflow_datasets/", "Google Cloud SQL for MySQL": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_cloud_sql_mysql/", "Airbyte Salesforce (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_salesforce/", "Airbyte CDK (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_cdk/", "Airbyte Stripe (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_stripe/", "Copy Paste": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/copypaste/", "Airbyte Typeform (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_typeform/", "Apify Dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/apify_dataset/", "Google Firestore in Datastore Mode": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_datastore/", "Oracle AI Vector Search: Document Processing": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/oracleai/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/", "Airbyte Hubspot (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_hubspot/", "Airbyte Gong (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_gong/", "Google Memorystore for Redis": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_memorystore_redis/", "Google Bigtable": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_bigtable/", "Google Cloud SQL for SQL server": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_cloud_sql_mssql/", "Google El Carro for Oracle Workloads": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_el_carro/", "Airbyte Shopify (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_shopify/", "Airbyte Zendesk Support (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_zendesk_support/", "Google Spanner": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_spanner/", "PDFMiner": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pdfminer/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/v0.2/docs/integrations/graphs/azure_cosmosdb_gremlin/", "SageMakerEndpoint": "https://python.langchain.com/v0.2/docs/integrations/llms/sagemaker/", "self-query-qdrant": "https://python.langchain.com/v0.2/docs/templates/self-query-qdrant/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/", "Vector stores and retrievers": "https://python.langchain.com/v0.2/docs/tutorials/retrievers/"}, "LLMChain": {"# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_chain/", "# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "Clarifai": "https://python.langchain.com/v0.2/docs/integrations/llms/clarifai/", "RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/", "Memorize": "https://python.langchain.com/v0.2/docs/integrations/tools/memorize/", "Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/", "Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/", "Dall-E Image Generator": "https://python.langchain.com/v0.2/docs/integrations/tools/dalle_image_generator/", "Mot\u00f6rhead": "https://python.langchain.com/v0.2/docs/integrations/memory/motorhead_memory/", "Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/", "Context": "https://python.langchain.com/v0.2/docs/integrations/callbacks/context/", "SageMaker Tracking": "https://python.langchain.com/v0.2/docs/integrations/callbacks/sagemaker_tracking/", "Argilla": "https://python.langchain.com/v0.2/docs/integrations/callbacks/argilla/", "Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/", "MLflow Deployments for LLMs": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow/", "MLflow AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_ai_gateway/", "Rebuff": "https://python.langchain.com/v0.2/docs/integrations/providers/rebuff/", "Prediction Guard": "https://python.langchain.com/v0.2/docs/integrations/llms/predictionguard/", "Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/", "Ray Serve": "https://python.langchain.com/v0.2/docs/integrations/providers/ray_serve/", "Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Baseten": "https://python.langchain.com/v0.2/docs/integrations/llms/baseten/", "StochasticAI": "https://python.langchain.com/v0.2/docs/integrations/llms/stochasticai/", "Solar": "https://python.langchain.com/v0.2/docs/integrations/llms/solar/", "Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/", "IPEX-LLM": "https://python.langchain.com/v0.2/docs/integrations/llms/ipex_llm/", "Banana": "https://python.langchain.com/v0.2/docs/integrations/llms/banana/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/v0.2/docs/integrations/llms/alibabacloud_pai_eas_endpoint/", "OpenLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/openllm/", "OctoAI": "https://python.langchain.com/v0.2/docs/integrations/llms/octoai/", "Writer": "https://python.langchain.com/v0.2/docs/integrations/llms/writer/", "Modal": "https://python.langchain.com/v0.2/docs/integrations/llms/modal/", "TextGen": "https://python.langchain.com/v0.2/docs/integrations/llms/textgen/", "Xorbits Inference (Xinference)": "https://python.langchain.com/v0.2/docs/integrations/llms/xinference/", "Nebula (Symbl.ai)": "https://python.langchain.com/v0.2/docs/integrations/llms/symblai_nebula/", "DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/llms/deepinfra/", "NLP Cloud": "https://python.langchain.com/v0.2/docs/integrations/llms/nlpcloud/", "ForefrontAI": "https://python.langchain.com/v0.2/docs/integrations/llms/forefrontai/", "MosaicML": "https://python.langchain.com/v0.2/docs/integrations/llms/mosaicml/", "CerebriumAI": "https://python.langchain.com/v0.2/docs/integrations/llms/cerebriumai/", "Predibase": "https://python.langchain.com/v0.2/docs/integrations/llms/predibase/", "GigaChat": "https://python.langchain.com/v0.2/docs/integrations/llms/gigachat/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/", "Aphrodite Engine": "https://python.langchain.com/v0.2/docs/integrations/llms/aphrodite/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/llms/edenai/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/v0.2/docs/integrations/llms/javelin/", "C Transformers": "https://python.langchain.com/v0.2/docs/integrations/llms/ctransformers/", "vLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/vllm/", "Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/", "Minimax": "https://python.langchain.com/v0.2/docs/integrations/llms/minimax/", "Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/llms/yuan2/", "Huggingface Endpoints": "https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_endpoint/", "Runhouse": "https://python.langchain.com/v0.2/docs/integrations/llms/runhouse/", "Anyscale": "https://python.langchain.com/v0.2/docs/integrations/llms/anyscale/", "YandexGPT": "https://python.langchain.com/v0.2/docs/integrations/llms/yandex/", "GooseAI": "https://python.langchain.com/v0.2/docs/integrations/llms/gooseai/", "OpenLM": "https://python.langchain.com/v0.2/docs/integrations/llms/openlm/", "Cloudflare Workers AI": "https://python.langchain.com/v0.2/docs/integrations/llms/cloudflare_workersai/", "CTranslate2": "https://python.langchain.com/v0.2/docs/integrations/llms/ctranslate2/", "ChatGLM": "https://python.langchain.com/v0.2/docs/integrations/llms/chatglm/", "Gradient": "https://python.langchain.com/v0.2/docs/integrations/llms/gradient/", "Petals": "https://python.langchain.com/v0.2/docs/integrations/llms/petals/", "Replicate": "https://python.langchain.com/v0.2/docs/integrations/llms/replicate/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/"}, "StuffDocumentsChain": {"# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/stuff_docs_chain/", "# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/"}, "create_stuff_documents_chain": {"# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/stuff_docs_chain/", "Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/v0.2/docs/how_to/long_context_reorder/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to summarize text in a single LLM call": "https://python.langchain.com/v0.2/docs/how_to/summarize_stuff/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille/", "ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/", "Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/v0.2/docs/tutorials/pdf_qa/"}, "LLMMathChain": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_math_chain/"}, "BaseMessage": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_math_chain/", "How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to propagate callbacks constructor": "https://python.langchain.com/v0.2/docs/how_to/callbacks_constructor/", "How to attach callbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/callbacks_attach/", "How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/", "How to pass callbacks in at runtime": "https://python.langchain.com/v0.2/docs/how_to/callbacks_runtime/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "WeChat": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/wechat/", "Discord": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/discord/", "Chat Bot Feedback Template": "https://python.langchain.com/v0.2/docs/templates/chat-bot-feedback/"}, "RunnableConfig": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/multi_prompt_chain/", "# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/refine_docs_chain/", "How to access the RunnableConfig from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_configure/", "How to summarize text through iterative refinement": "https://python.langchain.com/v0.2/docs/how_to/summarize_refine/", "How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/", "How to stream events from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_stream_events/", "How to run custom functions": "https://python.langchain.com/v0.2/docs/how_to/functions/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/v0.2/docs/how_to/tools_prompting/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/", "How to dispatch custom callback events": "https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/", "How to pass runtime secrets to runnables": "https://python.langchain.com/v0.2/docs/how_to/runnable_runtime_secrets/", "Tavily Search": "https://python.langchain.com/v0.2/docs/integrations/tools/tavily_search/"}, "tool": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_math_chain/", "How to disable parallel tool calling": "https://python.langchain.com/v0.2/docs/how_to/tool_calling_parallel/", "How to use tools in a chain": "https://python.langchain.com/v0.2/docs/how_to/tools_chain/", "How to access the RunnableConfig from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_configure/", "How to do tool/function calling": "https://python.langchain.com/v0.2/docs/how_to/function_calling/", "How to pass run time values to tools": "https://python.langchain.com/v0.2/docs/how_to/tool_runtime/", "How to add a human-in-the-loop for tools": "https://python.langchain.com/v0.2/docs/how_to/tools_human/", "How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/", "How to pass multimodal data directly to models": "https://python.langchain.com/v0.2/docs/how_to/multimodal_inputs/", "How to force models to call a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_choice/", "How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/", "How to stream events from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_stream_events/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to pass tool outputs to chat models": "https://python.langchain.com/v0.2/docs/how_to/tool_results_pass_to_model/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/v0.2/docs/how_to/tools_prompting/", "How to return artifacts from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_artifacts/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "How to stream tool calls": "https://python.langchain.com/v0.2/docs/how_to/tool_streaming/", "How to pass runtime secrets to runnables": "https://python.langchain.com/v0.2/docs/how_to/runnable_runtime_secrets/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/v0.2/docs/how_to/tools_few_shot/", "FinancialDatasets Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/financial_datasets/", "Exa Search": "https://python.langchain.com/v0.2/docs/integrations/tools/exa_search/", "DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/chat/deepinfra/", "ChatOllama": "https://python.langchain.com/v0.2/docs/integrations/chat/ollama/", "Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/chat/llamacpp/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/providers/cohere/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/chat/edenai/", "ChatTongyi": "https://python.langchain.com/v0.2/docs/integrations/chat/tongyi/", "ChatPremAI": "https://python.langchain.com/v0.2/docs/integrations/chat/premai/", "ChatNVIDIA": "https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "PremAI": "https://python.langchain.com/v0.2/docs/integrations/providers/premai/", "Log, Trace, and Monitor": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/index/", "JSONFormer": "https://python.langchain.com/v0.2/docs/integrations/llms/jsonformer_experimental/"}, "MultiPromptChain": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/multi_prompt_chain/"}, "ConversationChain": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_chain/"}, "ConversationBufferMemory": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_chain/", "Memorize": "https://python.langchain.com/v0.2/docs/integrations/tools/memorize/", "Gradio": "https://python.langchain.com/v0.2/docs/integrations/tools/gradio_tools/", "SceneXplain": "https://python.langchain.com/v0.2/docs/integrations/tools/sceneXplain/", "Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/memory/xata_chat_message_history/", "Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/"}, "InMemoryChatMessageHistory": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_chain/", "How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "ChatNVIDIA": "https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/"}, "RunnableWithMessageHistory": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_chain/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/v0.2/docs/how_to/message_history/", "How to add memory to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/memory/redis_chat_message_history/", "Google SQL for MySQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_mysql/", "Google AlloyDB for PostgreSQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_alloydb/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/v0.2/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/mongodb_chat_message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/v0.2/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/memory/streamlit_chat_message_history/", "Google El Carro Oracle": "https://python.langchain.com/v0.2/docs/integrations/memory/google_el_carro/", "SQLite": "https://python.langchain.com/v0.2/docs/integrations/memory/sqlite/", "Google SQL for PostgreSQL": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_pg/", "Google SQL for SQL Server": "https://python.langchain.com/v0.2/docs/integrations/memory/google_sql_mssql/", "TiDB": "https://python.langchain.com/v0.2/docs/integrations/memory/tidb_chat_message_history/", "ChatNVIDIA": "https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/"}, "BaseChatMessageHistory": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_chain/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/"}, "ConstitutionalChain": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain/"}, "ConstitutionalPrinciple": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain/"}, "OpenAI": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain/", "# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/", "How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/v0.2/docs/how_to/output_parser_structured/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/v0.2/docs/how_to/long_context_reorder/", "How to add fallbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/fallbacks/", "How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/", "How to stream responses from an LLM": "https://python.langchain.com/v0.2/docs/how_to/streaming_llm/", "How to cache LLM responses": "https://python.langchain.com/v0.2/docs/how_to/llm_caching/", "How to track token usage for LLMs": "https://python.langchain.com/v0.2/docs/how_to/llm_token_usage_tracking/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Milvus": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/chroma_self_query/", "Timescale Vector (Postgres) ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/redis_self_query/", "Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/qdrant_self_query/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/llms/openai/", "Jira Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/jira/", "Google Jobs": "https://python.langchain.com/v0.2/docs/integrations/tools/google_jobs/", "Google Serper": "https://python.langchain.com/v0.2/docs/integrations/tools/google_serper/", "Azure Cognitive Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_cognitive_services/", "Human as a tool": "https://python.langchain.com/v0.2/docs/integrations/tools/human_tools/", "Natural Language API Toolkits": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi_nla/", "Steam Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/steam/", "JSON Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/json/", "Google Finance": "https://python.langchain.com/v0.2/docs/integrations/tools/google_finance/", "ClickUp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/clickup/", "AWS Lambda": "https://python.langchain.com/v0.2/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/v0.2/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/v0.2/docs/integrations/tools/openweathermap/", "Eleven Labs Text2Speech": "https://python.langchain.com/v0.2/docs/integrations/tools/eleven_labs_tts/", "Office365 Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/office365/", "Pandas Dataframe": "https://python.langchain.com/v0.2/docs/integrations/tools/pandas/", "Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/", "Lemon Agent": "https://python.langchain.com/v0.2/docs/integrations/tools/lemonai/", "NASA Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/nasa/", "GraphQL": "https://python.langchain.com/v0.2/docs/integrations/tools/graphql/", "SearchApi": "https://python.langchain.com/v0.2/docs/integrations/providers/searchapi/", "Gradio": "https://python.langchain.com/v0.2/docs/integrations/tools/gradio_tools/", "SceneXplain": "https://python.langchain.com/v0.2/docs/integrations/tools/sceneXplain/", "Azure AI Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_ai_services/", "OpenAPI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi/", "Dall-E Image Generator": "https://python.langchain.com/v0.2/docs/integrations/tools/dalle_image_generator/", "Gitlab Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/gitlab/", "Ionic Shopping Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/", "Mot\u00f6rhead": "https://python.langchain.com/v0.2/docs/integrations/memory/motorhead_memory/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/", "Confident": "https://python.langchain.com/v0.2/docs/integrations/callbacks/confident/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "Fiddler": "https://python.langchain.com/v0.2/docs/integrations/callbacks/fiddler/", "SageMaker Tracking": "https://python.langchain.com/v0.2/docs/integrations/callbacks/sagemaker_tracking/", "Label Studio": "https://python.langchain.com/v0.2/docs/integrations/callbacks/labelstudio/", "Comet Tracing": "https://python.langchain.com/v0.2/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/v0.2/docs/integrations/callbacks/argilla/", "PromptLayer": "https://python.langchain.com/v0.2/docs/integrations/callbacks/promptlayer/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/callbacks/streamlit/", "Trubrics": "https://python.langchain.com/v0.2/docs/integrations/callbacks/trubrics/", "Infino": "https://python.langchain.com/v0.2/docs/integrations/callbacks/infino/", "DSPy": "https://python.langchain.com/v0.2/docs/integrations/providers/dspy/", "Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/", "Log10": "https://python.langchain.com/v0.2/docs/integrations/providers/log10/", "LangChain Decorators \u2728": "https://python.langchain.com/v0.2/docs/integrations/providers/langchain_decorators/", "Rebuff": "https://python.langchain.com/v0.2/docs/integrations/providers/rebuff/", "Serper - Google Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/google_serper/", "Helicone": "https://python.langchain.com/v0.2/docs/integrations/providers/helicone/", "Shale Protocol": "https://python.langchain.com/v0.2/docs/integrations/providers/shaleprotocol/", "WhyLabs": "https://python.langchain.com/v0.2/docs/integrations/providers/whylabs_profiling/", "WandB Tracing": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/v0.2/docs/integrations/providers/clearml_tracking/", "Ray Serve": "https://python.langchain.com/v0.2/docs/integrations/providers/ray_serve/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/", "Marqo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/marqo/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Amazon Document DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/documentdb/", "VoyageAI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/voyageai-reranker/", "Apify Dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/apify_dataset/", "Psychic": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/psychic/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/", "Amazon Textract ": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/amazon_textract/", "NetworkX": "https://python.langchain.com/v0.2/docs/integrations/graphs/networkx/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/", "Layerup Security": "https://python.langchain.com/v0.2/docs/integrations/llms/layerup_security/", "Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "CRITIQUE_PROMPT": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain/"}, "REVISION_PROMPT": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain/"}, "WebBaseLoader": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to summarize text through parallelization": "https://python.langchain.com/v0.2/docs/how_to/summarize_map_reduce/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/", "RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/", "Infino": "https://python.langchain.com/v0.2/docs/integrations/callbacks/infino/", "ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/", "Zep Cloud": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zep_cloud/", "Zep": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zep/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Merge Documents Loader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/merge_doc/", "WebBaseLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/web_base/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/v0.2/docs/tutorials/local_rag/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/"}, "FAISS": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to load PDFs": "https://python.langchain.com/v0.2/docs/how_to/document_loader_pdf/", "How to better prompt when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_prompting/", "How to add values to a chain's state": "https://python.langchain.com/v0.2/docs/how_to/assign/", "How to inspect runnables": "https://python.langchain.com/v0.2/docs/how_to/inspect/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_large_db/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/v0.2/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/v0.2/docs/how_to/passthrough/", "How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "How to use a time-weighted vector store retriever": "https://python.langchain.com/v0.2/docs/how_to/time_weighted_vectorstore/", "How to create and query vector stores": "https://python.langchain.com/v0.2/docs/how_to/vectorstores/", "How to use a vectorstore as a retriever": "https://python.langchain.com/v0.2/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/v0.2/docs/how_to/caching_embeddings/", "How to combine results from multiple retrievers": "https://python.langchain.com/v0.2/docs/how_to/ensemble_retriever/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_mmr/", "NVIDIA NIMs ": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/nvidia_ai_endpoints/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere-reranker/", "FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille/", "Facebook - Meta": "https://python.langchain.com/v0.2/docs/integrations/providers/facebook/", "Faiss (Async)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss_async/", "Faiss": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss/", "VoyageAI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openvino_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/dashscope_rerank/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/"}, "OpenAIEmbeddings": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to load PDFs": "https://python.langchain.com/v0.2/docs/how_to/document_loader_pdf/", "How to better prompt when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_prompting/", "How to add values to a chain's state": "https://python.langchain.com/v0.2/docs/how_to/assign/", "How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/", "How to do per-user retrieval": "https://python.langchain.com/v0.2/docs/how_to/qa_per_user/", "How to use few shot examples": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples/", "How to inspect runnables": "https://python.langchain.com/v0.2/docs/how_to/inspect/", "How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to use few shot examples in chat models": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples_chat/", "How to select examples by similarity": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_similarity/", "Text embedding models": "https://python.langchain.com/v0.2/docs/how_to/embed_text/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_large_db/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to use the LangChain indexing API": "https://python.langchain.com/v0.2/docs/how_to/indexing/", "How to split text based on semantic similarity": "https://python.langchain.com/v0.2/docs/how_to/semantic-chunker/", "How to convert Runnables as Tools": "https://python.langchain.com/v0.2/docs/how_to/convert_runnable_to_tool/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/v0.2/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/v0.2/docs/how_to/passthrough/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "How to use a time-weighted vector store retriever": "https://python.langchain.com/v0.2/docs/how_to/time_weighted_vectorstore/", "How to create and query vector stores": "https://python.langchain.com/v0.2/docs/how_to/vectorstores/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/", "How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "How to use the Parent Document Retriever": "https://python.langchain.com/v0.2/docs/how_to/parent_document_retriever/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_high_cardinality/", "How to use a vectorstore as a retriever": "https://python.langchain.com/v0.2/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/v0.2/docs/how_to/caching_embeddings/", "How to combine results from multiple retrievers": "https://python.langchain.com/v0.2/docs/how_to/ensemble_retriever/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_mmr/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "Hybrid Search": "https://python.langchain.com/v0.2/docs/how_to/hybrid/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "OpenAIEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/openai/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kinetica/", "JaguarDB Vector Database": "https://python.langchain.com/v0.2/docs/integrations/retrievers/jaguar/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/", "SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/singlestoredb/", "kNN": "https://python.langchain.com/v0.2/docs/integrations/retrievers/knn/", "DocArray": "https://python.langchain.com/v0.2/docs/integrations/retrievers/docarray_retriever/", "SVM": "https://python.langchain.com/v0.2/docs/integrations/retrievers/svm/", "Pinecone Hybrid Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/pinecone_hybrid_search/", "Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/milvus_hybrid_search/", "FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "LOTR (Merger Retriever)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/merger_retriever/", "Milvus": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/databricks_vector_search/", "DingoDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dingo/", "OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/opensearch/", "Elasticsearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/chroma_self_query/", "Timescale Vector (Postgres) ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/supabase/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/redis_self_query/", "MyScale": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/myscale/", "Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/qdrant_self_query/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/xata/", "Confident": "https://python.langchain.com/v0.2/docs/integrations/callbacks/confident/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille/", "Upstash Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/upstash/", "Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "LanceDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lancedb/", "Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/", "Kinetica Vectorstore API": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kinetica/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "Hippo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hippo/", "Rockset": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/rockset/", "Zilliz": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zilliz/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db/", "viking DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vikingdb/", "Typesense": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/typesense/", "Momento Vector Index (MVI)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/momento_vector_index/", "TiDB Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tidb_vector/", "Activeloop Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/activeloop_deeplake/", "Neo4j Vector Index": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lantern/", "DuckDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/duckdb/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/alibabacloud_opensearch/", "StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/", "scikit-learn": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sklearn/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/", "DocArray HnswSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_hnsw/", "Tigris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tigris/", "China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/ecloud_vector_search/", "Faiss (Async)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss_async/", "Azure AI Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azuresearch/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "USearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/usearch/", "KDB.AI": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kdbai/", "DocArray InMemorySearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_in_memory/", "Postgres Embedding": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgembedding/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Epsilla": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/epsilla/", "Amazon Document DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/documentdb/", "AnalyticDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/analyticdb/", "Hologres": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hologres/", "Meilisearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/meilisearch/", "RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/", "Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/", "Apify Dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/apify_dataset/", "Psychic": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/psychic/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/v0.2/docs/tutorials/pdf_qa/", "Vector stores and retrievers": "https://python.langchain.com/v0.2/docs/tutorials/retrievers/"}, "RecursiveCharacterTextSplitter": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to split code": "https://python.langchain.com/v0.2/docs/how_to/code_splitter/", "How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to recursively split text by characters": "https://python.langchain.com/v0.2/docs/how_to/recursive_text_splitter/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "How to split text by tokens ": "https://python.langchain.com/v0.2/docs/how_to/split_by_token/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/", "How to use the Parent Document Retriever": "https://python.langchain.com/v0.2/docs/how_to/parent_document_retriever/", "How to split Markdown by Headers": "https://python.langchain.com/v0.2/docs/how_to/markdown_header_metadata_splitter/", "How to split by HTML header ": "https://python.langchain.com/v0.2/docs/how_to/HTML_header_metadata_splitter/", "How to split by HTML sections": "https://python.langchain.com/v0.2/docs/how_to/HTML_section_aware_splitter/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/", "LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere-reranker/", "Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Google Vertex AI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/google_vertex_ai_vector_search/", "viking DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vikingdb/", "ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/", "Azure Cosmos DB No SQL": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db_no_sql/", "Zep Cloud": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zep_cloud/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "Zep": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zep/", "Vearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vearch/", "VoyageAI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openvino_rerank/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/dashscope_rerank/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/", "Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/", "Source Code": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/source_code/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/v0.2/docs/tutorials/local_rag/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/v0.2/docs/tutorials/pdf_qa/"}, "ConversationalRetrievalChain": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_retrieval_chain/", "Outline": "https://python.langchain.com/v0.2/docs/integrations/retrievers/outline/", "SEC filing": "https://python.langchain.com/v0.2/docs/integrations/retrievers/sec_filings/", "Rememberizer": "https://python.langchain.com/v0.2/docs/integrations/retrievers/rememberizer/", "Kay.ai": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kay/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/"}, "create_history_aware_retriever": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/conversation_retrieval_chain/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/"}, "create_retrieval_chain": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille/", "ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/", "Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/v0.2/docs/tutorials/pdf_qa/"}, "MapReduceDocumentsChain": {"# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/"}, "ReduceDocumentsChain": {"# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/"}, "CharacterTextSplitter": {"# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to split by character": "https://python.langchain.com/v0.2/docs/how_to/character_text_splitter/", "How to summarize text through parallelization": "https://python.langchain.com/v0.2/docs/how_to/summarize_map_reduce/", "How to use the LangChain indexing API": "https://python.langchain.com/v0.2/docs/how_to/indexing/", "How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "How to create and query vector stores": "https://python.langchain.com/v0.2/docs/how_to/vectorstores/", "How to split text by tokens ": "https://python.langchain.com/v0.2/docs/how_to/split_by_token/", "How to use a vectorstore as a retriever": "https://python.langchain.com/v0.2/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/v0.2/docs/how_to/caching_embeddings/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kinetica/", "JaguarDB Vector Database": "https://python.langchain.com/v0.2/docs/integrations/retrievers/jaguar/", "SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/singlestoredb/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/", "Confident": "https://python.langchain.com/v0.2/docs/integrations/callbacks/confident/", "Upstash Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/upstash/", "VDMS": "https://python.langchain.com/v0.2/docs/integrations/providers/vdms/", "LanceDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lancedb/", "Kinetica Vectorstore API": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kinetica/", "SQLite-VSS": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sqlitevss/", "Vald": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vald/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "DashVector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dashvector/", "Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/databricks_vector_search/", "ScaNN": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/scann/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/xata/", "Hippo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hippo/", "Vespa": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vespa/", "Rockset": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/rockset/", "DingoDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dingo/", "Zilliz": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zilliz/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db/", "Annoy": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/annoy/", "Couchbase ": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/couchbase/", "Typesense": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/typesense/", "Momento Vector Index (MVI)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/momento_vector_index/", "TiDB Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tidb_vector/", "Relyt": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/relyt/", "Activeloop Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/activeloop_deeplake/", "vlite": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vlite/", "Neo4j Vector Index": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lantern/", "Tair": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tair/", "DuckDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/duckdb/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/alibabacloud_opensearch/", "Clarifai": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/clarifai/", "scikit-learn": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sklearn/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/", "DocArray HnswSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_hnsw/", "MyScale": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/myscale/", "TileDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tiledb/", "Google Memorystore for Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/google_memorystore_redis/", "Tigris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tigris/", "China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/ecloud_vector_search/", "Bagel": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/bagel/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiducloud_vector_search/", "AwaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/awadb/", "Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/supabase/", "SurrealDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/surrealdb/", "OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/opensearch/", "Faiss (Async)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss_async/", "BagelDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/bageldb/", "ManticoreSearch VectorStore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/manticore_search/", "Azure AI Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azuresearch/", "USearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/usearch/", "PGVecto.rs": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgvecto_rs/", "Marqo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/marqo/", "DocArray InMemorySearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_in_memory/", "Postgres Embedding": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgembedding/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vdms/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Epsilla": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/epsilla/", "Amazon Document DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/documentdb/", "SemaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/semadb/", "AnalyticDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/analyticdb/", "Hologres": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hologres/", "Baidu VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiduvectordb/", "Meilisearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/meilisearch/", "Psychic": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/psychic/", "Manifest": "https://python.langchain.com/v0.2/docs/integrations/llms/manifest/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/"}, "acollapse_docs": {"# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "How to summarize text through parallelization": "https://python.langchain.com/v0.2/docs/how_to/summarize_map_reduce/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/"}, "split_list_of_docs": {"# Basic example (short documents)": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/", "How to summarize text through parallelization": "https://python.langchain.com/v0.2/docs/how_to/summarize_map_reduce/", "Summarize Text": "https://python.langchain.com/v0.2/docs/tutorials/summarization/"}, "RefineDocumentsChain": {"# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/refine_docs_chain/"}, "RetrievalQA": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/", "Bedrock (Knowledge Bases) Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/bedrock/", "Cohere reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere-reranker/", "Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "Confident": "https://python.langchain.com/v0.2/docs/integrations/callbacks/confident/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/", "ScaNN": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/scann/", "Google Vertex AI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/google_vertex_ai_vector_search/", "Momento Vector Index (MVI)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/momento_vector_index/", "Activeloop Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/activeloop_deeplake/", "StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/", "KDB.AI": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kdbai/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Amazon Document DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/documentdb/", "VoyageAI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/"}, "RunnablePassthrough": {"Load docs": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/", "# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_router_chain/", "How to add values to a chain's state": "https://python.langchain.com/v0.2/docs/how_to/assign/", "How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/", "How to do per-user retrieval": "https://python.langchain.com/v0.2/docs/how_to/qa_per_user/", "How to inspect runnables": "https://python.langchain.com/v0.2/docs/how_to/inspect/", "How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to do tool/function calling": "https://python.langchain.com/v0.2/docs/how_to/function_calling/", "How to add a human-in-the-loop for tools": "https://python.langchain.com/v0.2/docs/how_to/tools_human/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_large_db/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to map values to a graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_mapping/", "How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to add default invocation args to a Runnable": "https://python.langchain.com/v0.2/docs/how_to/binding/", "How to convert Runnables as Tools": "https://python.langchain.com/v0.2/docs/how_to/convert_runnable_to_tool/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/v0.2/docs/how_to/dynamic_chain/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/v0.2/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/v0.2/docs/how_to/passthrough/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "How to add memory to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_high_cardinality/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/v0.2/docs/how_to/tools_prompting/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/", "Hybrid Search": "https://python.langchain.com/v0.2/docs/how_to/hybrid/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/v0.2/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "NVIDIA NIMs ": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/nvidia_ai_endpoints/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "You.com": "https://python.langchain.com/v0.2/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/v0.2/docs/integrations/retrievers/asknews/", "WikipediaRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/wikipedia/", "TavilySearchAPIRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/tavily/", "ArxivRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/arxiv/", "ElasticsearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elasticsearch_retriever/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/milvus_hybrid_search/", "Google Vertex AI Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/google_vertex_ai_search/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "DSPy": "https://python.langchain.com/v0.2/docs/integrations/providers/dspy/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/v0.2/docs/tutorials/local_rag/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/", "Vector stores and retrievers": "https://python.langchain.com/v0.2/docs/tutorials/retrievers/"}, "LLMRouterChain": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_router_chain/"}, "RouterOutputParser": {"# Legacy": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/llm_router_chain/"}, "MapRerankDocumentsChain": {"# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/"}, "RegexParser": {"# Example": "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain/"}, "TavilySearchResults": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to debug your LLM apps": "https://python.langchain.com/v0.2/docs/how_to/debugging/", "Tavily Search": "https://python.langchain.com/v0.2/docs/integrations/tools/tavily_search/", "ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/providers/cohere/", "Build an Agent": "https://python.langchain.com/v0.2/docs/tutorials/agents/"}, "create_retriever_tool": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/memory/xata_chat_message_history/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/"}, "create_tool_calling_agent": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to use tools in a chain": "https://python.langchain.com/v0.2/docs/how_to/tools_chain/", "How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to debug your LLM apps": "https://python.langchain.com/v0.2/docs/how_to/debugging/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "Azure Container Apps dynamic sessions": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_dynamic_sessions/", "FinancialDatasets Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/financial_datasets/", "Databricks Unity Catalog (UC)": "https://python.langchain.com/v0.2/docs/integrations/tools/databricks/", "Riza Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/riza/", "Bing Search": "https://python.langchain.com/v0.2/docs/integrations/tools/bing_search/"}, "AgentExecutor": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to use tools in a chain": "https://python.langchain.com/v0.2/docs/how_to/tools_chain/", "How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to debug your LLM apps": "https://python.langchain.com/v0.2/docs/how_to/debugging/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/v0.2/docs/how_to/migrate_agent/", "Infobip": "https://python.langchain.com/v0.2/docs/integrations/tools/infobip/", "AskNews": "https://python.langchain.com/v0.2/docs/integrations/tools/asknews/", "Azure Container Apps dynamic sessions": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_dynamic_sessions/", "FinancialDatasets Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/financial_datasets/", "Cassandra Database Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cassandra_database/", "Polygon IO Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon_toolkit/", "Semantic Scholar API Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/semanticscholar/", "Databricks Unity Catalog (UC)": "https://python.langchain.com/v0.2/docs/integrations/tools/databricks/", "Passio NutritionAI": "https://python.langchain.com/v0.2/docs/integrations/tools/passio_nutrition_ai/", "Memorize": "https://python.langchain.com/v0.2/docs/integrations/tools/memorize/", "Riza Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/riza/", "ArXiv": "https://python.langchain.com/v0.2/docs/integrations/tools/arxiv/", "Robocorp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/robocorp/", "MultiOn Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/multion/", "Exa Search": "https://python.langchain.com/v0.2/docs/integrations/tools/exa_search/", "Amadeus Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/amadeus/", "Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/", "You.com Search": "https://python.langchain.com/v0.2/docs/integrations/tools/you/", "Bing Search": "https://python.langchain.com/v0.2/docs/integrations/tools/bing_search/", "Azure AI Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_ai_services/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/", "Ionic Shopping Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping/", "MLX": "https://python.langchain.com/v0.2/docs/integrations/chat/mlx/", "ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/callbacks/streamlit/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/providers/cohere/", "Dataherald": "https://python.langchain.com/v0.2/docs/integrations/providers/dataherald/", "Log, Trace, and Monitor": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/index/", "Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/"}, "AIMessage": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to merge consecutive messages of the same type": "https://python.langchain.com/v0.2/docs/how_to/merge_message_runs/", "How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to do tool/function calling": "https://python.langchain.com/v0.2/docs/how_to/function_calling/", "How to add a human-in-the-loop for tools": "https://python.langchain.com/v0.2/docs/how_to/tools_human/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_parse/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/", "How to filter messages": "https://python.langchain.com/v0.2/docs/how_to/filter_messages/", "How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/", "How to return structured data from a model": "https://python.langchain.com/v0.2/docs/how_to/structured_output/", "How to compose prompts together": "https://python.langchain.com/v0.2/docs/how_to/prompts_composition/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/v0.2/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "Twitter (via Apify)": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/twitter/", "Zep Open Source": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_memorystore/", "Zep Cloud": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_cloud_memorystore/", "Google Imagen": "https://python.langchain.com/v0.2/docs/integrations/tools/google_imagen/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/", "ChatOllama": "https://python.langchain.com/v0.2/docs/integrations/chat/ollama/", "ChatOCIGenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/oci_generative_ai/", "ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/chat/yuan2/", "Google Cloud Vertex AI": "https://python.langchain.com/v0.2/docs/integrations/llms/google_vertex_ai_palm/", "ChatGLM": "https://python.langchain.com/v0.2/docs/integrations/llms/chatglm/", "Chat Bot Feedback Template": "https://python.langchain.com/v0.2/docs/templates/chat-bot-feedback/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/"}, "ChatMessageHistory": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/v0.2/docs/how_to/agent_executor/", "How to add tools to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add memory to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/"}, "Neo4jGraph": {"How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to map values to a graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_mapping/", "How to construct knowledge graphs": "https://python.langchain.com/v0.2/docs/how_to/graph_constructing/", "How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "Neo4j": "https://python.langchain.com/v0.2/docs/integrations/graphs/neo4j_cypher/", "Diffbot": "https://python.langchain.com/v0.2/docs/integrations/graphs/diffbot/", "Build a Question Answering application over a Graph Database": "https://python.langchain.com/v0.2/docs/tutorials/graph/"}, "AsyncCallbackManagerForToolRun": {"How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/"}, "CallbackManagerForToolRun": {"How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/"}, "BaseTool": {"How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to use LangChain with different Pydantic versions": "https://python.langchain.com/v0.2/docs/how_to/pydantic_compatibility/", "How to pass run time values to tools": "https://python.langchain.com/v0.2/docs/how_to/tool_runtime/", "How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/", "How to return artifacts from a tool": "https://python.langchain.com/v0.2/docs/how_to/tool_artifacts/"}, "format_to_openai_function_messages": {"How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/"}, "OpenAIFunctionsAgentOutputParser": {"How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/"}, "convert_to_openai_function": {"How to add a semantic layer over graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_semantic/", "How to convert tools to OpenAI Functions": "https://python.langchain.com/v0.2/docs/how_to/tools_as_openai_functions/"}, "BSHTMLLoader": {"How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to load HTML": "https://python.langchain.com/v0.2/docs/how_to/document_loader_html/", "BSHTMLLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/bshtml/"}, "TokenTextSplitter": {"How to handle long text when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_long_text/", "How to split text by tokens ": "https://python.langchain.com/v0.2/docs/how_to/split_by_token/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/", "StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/"}, "PyPDFLoader": {"How to load PDFs": "https://python.langchain.com/v0.2/docs/how_to/document_loader_pdf/", "Google Vertex AI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/google_vertex_ai_vector_search/", "Azure Cosmos DB No SQL": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db_no_sql/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/", "KDB.AI": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kdbai/", "PyPDFLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pypdfloader/", "Merge Documents Loader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/merge_doc/", "Google Cloud Storage File": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_cloud_storage_file/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/v0.2/docs/tutorials/pdf_qa/"}, "SQLDatabase": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_prompting/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_large_db/", "How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_query_checking/", "SQLDatabase Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/sql_database/", "CnosDB": "https://python.langchain.com/v0.2/docs/integrations/providers/cnosdb/", "Rebuff": "https://python.langchain.com/v0.2/docs/integrations/providers/rebuff/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/"}, "create_sql_query_chain": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_prompting/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_large_db/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_query_checking/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/"}, "FewShotPromptTemplate": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_prompting/", "How to select examples by n-gram overlap": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_ngram/", "How to select examples by length": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_length_based/", "How to use example selectors": "https://python.langchain.com/v0.2/docs/how_to/example_selectors/", "How to use few shot examples": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples/", "How to select examples by similarity": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_similarity/", "How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_mmr/", "Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "SemanticSimilarityExampleSelector": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_prompting/", "How to use few shot examples": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples/", "How to use few shot examples in chat models": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples_chat/", "How to select examples by similarity": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_similarity/", "How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_mmr/"}, "PydanticOutputParser": {"How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/v0.2/docs/how_to/output_parser_structured/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_parse/", "How to use the output-fixing parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_fixing/", "How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/", "How to return structured data from a model": "https://python.langchain.com/v0.2/docs/how_to/structured_output/", "Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "AsyncCallbackHandler": {"How to use callbacks in async environments": "https://python.langchain.com/v0.2/docs/how_to/callbacks_async/", "How to dispatch custom callback events": "https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/", "Bedrock": "https://python.langchain.com/v0.2/docs/integrations/llms/bedrock/"}, "BaseCallbackHandler": {"How to use callbacks in async environments": "https://python.langchain.com/v0.2/docs/how_to/callbacks_async/", "How to propagate callbacks constructor": "https://python.langchain.com/v0.2/docs/how_to/callbacks_constructor/", "How to attach callbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/callbacks_attach/", "How to create custom callback handlers": "https://python.langchain.com/v0.2/docs/how_to/custom_callbacks/", "How to dispatch custom callback events": "https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/", "How to pass callbacks in at runtime": "https://python.langchain.com/v0.2/docs/how_to/callbacks_runtime/", "GPT4All": "https://python.langchain.com/v0.2/docs/integrations/llms/gpt4all/"}, "LLMResult": {"How to use callbacks in async environments": "https://python.langchain.com/v0.2/docs/how_to/callbacks_async/", "How to propagate callbacks constructor": "https://python.langchain.com/v0.2/docs/how_to/callbacks_constructor/", "How to attach callbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/callbacks_attach/", "How to pass callbacks in at runtime": "https://python.langchain.com/v0.2/docs/how_to/callbacks_runtime/", "Google Cloud Vertex AI": "https://python.langchain.com/v0.2/docs/integrations/llms/google_vertex_ai_palm/"}, "RunnableParallel": {"How to add values to a chain's state": "https://python.langchain.com/v0.2/docs/how_to/assign/", "How to invoke runnables in parallel": "https://python.langchain.com/v0.2/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/v0.2/docs/how_to/passthrough/", "How to add message history": "https://python.langchain.com/v0.2/docs/how_to/message_history/", "How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/", "How to chain runnables": "https://python.langchain.com/v0.2/docs/how_to/sequence/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/"}, "RunnableBranch": {"How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/"}, "cosine_similarity": {"How to route between sub-chains": "https://python.langchain.com/v0.2/docs/how_to/routing/"}, "ConfigurableField": {"How to do per-user retrieval": "https://python.langchain.com/v0.2/docs/how_to/qa_per_user/", "How to configure runtime chain internals": "https://python.langchain.com/v0.2/docs/how_to/configure/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/", "How to combine results from multiple retrievers": "https://python.langchain.com/v0.2/docs/how_to/ensemble_retriever/", "Hybrid Search": "https://python.langchain.com/v0.2/docs/how_to/hybrid/"}, "NGramOverlapExampleSelector": {"How to select examples by n-gram overlap": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_ngram/"}, "get_openai_callback": {"How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "How to run custom functions": "https://python.langchain.com/v0.2/docs/how_to/functions/", "How to track token usage for LLMs": "https://python.langchain.com/v0.2/docs/how_to/llm_token_usage_tracking/", "AzureChatOpenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/azure_chat_openai/"}, "load_tools": {"How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "ChatGPT Plugins": "https://python.langchain.com/v0.2/docs/integrations/tools/chatgpt_plugins/", "Google Jobs": "https://python.langchain.com/v0.2/docs/integrations/tools/google_jobs/", "Human as a tool": "https://python.langchain.com/v0.2/docs/integrations/tools/human_tools/", "Google Finance": "https://python.langchain.com/v0.2/docs/integrations/tools/google_finance/", "AWS Lambda": "https://python.langchain.com/v0.2/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/v0.2/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/v0.2/docs/integrations/providers/openweathermap/", "Memorize": "https://python.langchain.com/v0.2/docs/integrations/tools/memorize/", "Eleven Labs Text2Speech": "https://python.langchain.com/v0.2/docs/integrations/tools/eleven_labs_tts/", "ArXiv": "https://python.langchain.com/v0.2/docs/integrations/tools/arxiv/", "GraphQL": "https://python.langchain.com/v0.2/docs/integrations/tools/graphql/", "SceneXplain": "https://python.langchain.com/v0.2/docs/integrations/tools/sceneXplain/", "Dall-E Image Generator": "https://python.langchain.com/v0.2/docs/integrations/tools/dalle_image_generator/", "MLX": "https://python.langchain.com/v0.2/docs/integrations/chat/mlx/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "SageMaker Tracking": "https://python.langchain.com/v0.2/docs/integrations/callbacks/sagemaker_tracking/", "Comet Tracing": "https://python.langchain.com/v0.2/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/v0.2/docs/integrations/callbacks/argilla/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/callbacks/streamlit/", "SerpAPI": "https://python.langchain.com/v0.2/docs/integrations/providers/serpapi/", "SearchApi": "https://python.langchain.com/v0.2/docs/integrations/providers/searchapi/", "Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/", "Golden": "https://python.langchain.com/v0.2/docs/integrations/providers/golden/", "Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/", "Wolfram Alpha": "https://python.langchain.com/v0.2/docs/integrations/providers/wolfram_alpha/", "MLflow": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_tracking/", "DataForSEO": "https://python.langchain.com/v0.2/docs/integrations/providers/dataforseo/", "SearxNG Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/searx/", "Serper - Google Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/google_serper/", "Stack Exchange": "https://python.langchain.com/v0.2/docs/integrations/providers/stackexchange/", "Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/", "WandB Tracing": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/v0.2/docs/integrations/providers/clearml_tracking/", "Dataherald": "https://python.langchain.com/v0.2/docs/integrations/providers/dataherald/", "Amazon API Gateway": "https://python.langchain.com/v0.2/docs/integrations/llms/amazon_api_gateway/"}, "ChatBedrock": {"How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/", "Response metadata": "https://python.langchain.com/v0.2/docs/how_to/response_metadata/", "AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "ChatBedrock": "https://python.langchain.com/v0.2/docs/integrations/chat/bedrock/", "Amazon Neptune with SPARQL": "https://python.langchain.com/v0.2/docs/integrations/graphs/amazon_neptune_sparql/"}, "get_bedrock_anthropic_callback": {"How to track token usage in ChatModels": "https://python.langchain.com/v0.2/docs/how_to/chat_token_usage_tracking/"}, "CallbackManagerForLLMRun": {"How to create a custom LLM class": "https://python.langchain.com/v0.2/docs/how_to/custom_llm/", "How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "LLM": {"How to create a custom LLM class": "https://python.langchain.com/v0.2/docs/how_to/custom_llm/"}, "GenerationChunk": {"How to create a custom LLM class": "https://python.langchain.com/v0.2/docs/how_to/custom_llm/"}, "BaseLoader": {"How to create a custom Document Loader": "https://python.langchain.com/v0.2/docs/how_to/document_loader_custom/", "How to use the LangChain indexing API": "https://python.langchain.com/v0.2/docs/how_to/indexing/"}, "BaseBlobParser": {"How to create a custom Document Loader": "https://python.langchain.com/v0.2/docs/how_to/document_loader_custom/"}, "Blob": {"How to create a custom Document Loader": "https://python.langchain.com/v0.2/docs/how_to/document_loader_custom/", "Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Cloud Document AI": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_docai/"}, "FileSystemBlobLoader": {"How to create a custom Document Loader": "https://python.langchain.com/v0.2/docs/how_to/document_loader_custom/"}, "GenericLoader": {"How to create a custom Document Loader": "https://python.langchain.com/v0.2/docs/how_to/document_loader_custom/", "Grobid": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/grobid/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/", "Source Code": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/source_code/"}, "LengthBasedExampleSelector": {"How to select examples by length": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_length_based/"}, "BaseExampleSelector": {"How to use example selectors": "https://python.langchain.com/v0.2/docs/how_to/example_selectors/"}, "Language": {"How to split code": "https://python.langchain.com/v0.2/docs/how_to/code_splitter/", "Source Code": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/source_code/"}, "Chroma": {"How to use few shot examples": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples/", "How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to use few shot examples in chat models": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples_chat/", "How to select examples by similarity": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_similarity/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/v0.2/docs/how_to/long_context_reorder/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to stream results from your RAG application": "https://python.langchain.com/v0.2/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/v0.2/docs/how_to/qa_sources/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "How to create and query vector stores": "https://python.langchain.com/v0.2/docs/how_to/vectorstores/", "How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/", "How to use the Parent Document Retriever": "https://python.langchain.com/v0.2/docs/how_to/parent_document_retriever/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_high_cardinality/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/", "LOTR (Merger Retriever)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/merger_retriever/", "Chroma": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/chroma/", "Confident": "https://python.langchain.com/v0.2/docs/integrations/callbacks/confident/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/", "Psychic": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/psychic/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/v0.2/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/v0.2/docs/tutorials/local_rag/", "Conversational RAG": "https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/v0.2/docs/tutorials/pdf_qa/", "Vector stores and retrievers": "https://python.langchain.com/v0.2/docs/tutorials/retrievers/"}, "merge_message_runs": {"How to merge consecutive messages of the same type": "https://python.langchain.com/v0.2/docs/how_to/merge_message_runs/"}, "PydanticToolsParser": {"How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to do tool/function calling": "https://python.langchain.com/v0.2/docs/how_to/function_calling/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/v0.2/docs/how_to/sql_large_db/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to use chat models to call tools": "https://python.langchain.com/v0.2/docs/how_to/tool_calling/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "ChatPremAI": "https://python.langchain.com/v0.2/docs/integrations/chat/premai/", "PremAI": "https://python.langchain.com/v0.2/docs/integrations/providers/premai/"}, "chain": {"How to handle cases where no queries are generated": "https://python.langchain.com/v0.2/docs/how_to/query_no_queries/", "How to pass run time values to tools": "https://python.langchain.com/v0.2/docs/how_to/tool_runtime/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_queries/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/v0.2/docs/how_to/dynamic_chain/", "How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_multiple_retrievers/", "How to run custom functions": "https://python.langchain.com/v0.2/docs/how_to/functions/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "Tavily Search": "https://python.langchain.com/v0.2/docs/integrations/tools/tavily_search/"}, "trim_messages": {"How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to add memory to chatbots": "https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/", "Build a Chatbot": "https://python.langchain.com/v0.2/docs/tutorials/chatbot/"}, "ToolMessage": {"How to trim messages": "https://python.langchain.com/v0.2/docs/how_to/trim_messages/", "How to do tool/function calling": "https://python.langchain.com/v0.2/docs/how_to/function_calling/", "How to use reference examples when doing extraction": "https://python.langchain.com/v0.2/docs/how_to/extraction_examples/", "How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/", "How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/", "How to return structured data from a model": "https://python.langchain.com/v0.2/docs/how_to/structured_output/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/v0.2/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_few_shot/", "Cohere": "https://python.langchain.com/v0.2/docs/integrations/providers/cohere/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/chat/edenai/", "ChatPremAI": "https://python.langchain.com/v0.2/docs/integrations/chat/premai/", "PremAI": "https://python.langchain.com/v0.2/docs/integrations/providers/premai/"}, "RecursiveJsonSplitter": {"How to split JSON data": "https://python.langchain.com/v0.2/docs/how_to/recursive_json_splitter/"}, "FewShotChatMessagePromptTemplate": {"How to use few shot examples in chat models": "https://python.langchain.com/v0.2/docs/how_to/few_shot_examples_chat/", "Fiddler": "https://python.langchain.com/v0.2/docs/integrations/callbacks/fiddler/"}, "XMLOutputParser": {"How to parse XML output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_xml/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/"}, "InjectedToolArg": {"How to pass run time values to tools": "https://python.langchain.com/v0.2/docs/how_to/tool_runtime/"}, "Runnable": {"How to add a human-in-the-loop for tools": "https://python.langchain.com/v0.2/docs/how_to/tools_human/", "How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/v0.2/docs/how_to/dynamic_chain/"}, "StructuredTool": {"How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/", "Infobip": "https://python.langchain.com/v0.2/docs/integrations/tools/infobip/"}, "GenericFakeChatModel": {"How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/"}, "ToolException": {"How to create tools": "https://python.langchain.com/v0.2/docs/how_to/custom_tools/"}, "AzureAIDocumentIntelligenceLoader": {"How to load Microsoft Office files": "https://python.langchain.com/v0.2/docs/how_to/document_loader_office_file/", "Microsoft Word": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_word/", "Microsoft Excel": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_excel/", "Microsoft PowerPoint": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_powerpoint/", "Azure AI Document Intelligence": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/azure_document_intelligence/"}, "InMemoryRateLimiter": {"How to handle rate limits": "https://python.langchain.com/v0.2/docs/how_to/chat_model_rate_limiting/"}, "LongContextReorder": {"How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/v0.2/docs/how_to/long_context_reorder/", "LOTR (Merger Retriever)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/merger_retriever/"}, "DatetimeOutputParser": {"How to add fallbacks to a runnable": "https://python.langchain.com/v0.2/docs/how_to/fallbacks/"}, "CypherQueryCorrector": {"How to map values to a graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_mapping/"}, "Schema": {"How to map values to a graph database": "https://python.langchain.com/v0.2/docs/how_to/graph_mapping/"}, "dumpd": {"How to save and load LangChain objects": "https://python.langchain.com/v0.2/docs/how_to/serialization/"}, "dumps": {"How to save and load LangChain objects": "https://python.langchain.com/v0.2/docs/how_to/serialization/"}, "load": {"How to save and load LangChain objects": "https://python.langchain.com/v0.2/docs/how_to/serialization/"}, "loads": {"How to save and load LangChain objects": "https://python.langchain.com/v0.2/docs/how_to/serialization/"}, "set_llm_cache": {"How to cache chat model responses": "https://python.langchain.com/v0.2/docs/how_to/chat_model_caching/", "How to cache LLM responses": "https://python.langchain.com/v0.2/docs/how_to/llm_caching/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "DSPy": "https://python.langchain.com/v0.2/docs/integrations/providers/dspy/", "MongoDB Atlas": "https://python.langchain.com/v0.2/docs/integrations/providers/mongodb_atlas/", "Astra DB": "https://python.langchain.com/v0.2/docs/integrations/providers/astradb/", "Couchbase": "https://python.langchain.com/v0.2/docs/integrations/providers/couchbase/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/providers/redis/", "Cassandra": "https://python.langchain.com/v0.2/docs/integrations/providers/cassandra/", "Momento": "https://python.langchain.com/v0.2/docs/integrations/providers/momento/"}, "InMemoryCache": {"How to cache chat model responses": "https://python.langchain.com/v0.2/docs/how_to/chat_model_caching/", "How to cache LLM responses": "https://python.langchain.com/v0.2/docs/how_to/llm_caching/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/"}, "SQLiteCache": {"How to cache chat model responses": "https://python.langchain.com/v0.2/docs/how_to/chat_model_caching/", "How to cache LLM responses": "https://python.langchain.com/v0.2/docs/how_to/llm_caching/", "Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "DSPy": "https://python.langchain.com/v0.2/docs/integrations/providers/dspy/"}, "create_sql_agent": {"How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "CnosDB": "https://python.langchain.com/v0.2/docs/integrations/providers/cnosdb/"}, "PythonAstREPLTool": {"How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/"}, "JsonOutputKeyToolsParser": {"How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/"}, "create_pandas_dataframe_agent": {"How to do question answering over CSVs": "https://python.langchain.com/v0.2/docs/how_to/sql_csv/", "Pandas Dataframe": "https://python.langchain.com/v0.2/docs/integrations/tools/pandas/"}, "OutputFixingParser": {"How to use the output-fixing parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_fixing/", "How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/"}, "FunctionMessage": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "AIMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/", "How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/", "Google Cloud Vertex AI": "https://python.langchain.com/v0.2/docs/integrations/llms/google_vertex_ai_palm/"}, "FunctionMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "HumanMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "SystemMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "ToolMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "AsyncCallbackManagerForLLMRun": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "SimpleChatModel": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "ChatGeneration": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/", "How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/"}, "ChatGenerationChunk": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "ChatResult": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "run_in_executor": {"How to create a custom chat model class": "https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/"}, "MoveFileTool": {"How to convert tools to OpenAI Functions": "https://python.langchain.com/v0.2/docs/how_to/tools_as_openai_functions/"}, "filter_messages": {"How to filter messages": "https://python.langchain.com/v0.2/docs/how_to/filter_messages/"}, "ToolCall": {"How to handle tool errors": "https://python.langchain.com/v0.2/docs/how_to/tools_error/"}, "SQLRecordManager": {"How to use the LangChain indexing API": "https://python.langchain.com/v0.2/docs/how_to/indexing/"}, "index": {"How to use the LangChain indexing API": "https://python.langchain.com/v0.2/docs/how_to/indexing/"}, "SemanticChunker": {"How to split text based on semantic similarity": "https://python.langchain.com/v0.2/docs/how_to/semantic-chunker/"}, "InMemoryVectorStore": {"How to convert Runnables as Tools": "https://python.langchain.com/v0.2/docs/how_to/convert_runnable_to_tool/", "FireworksEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/fireworks/", "OpenAIEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/openai/", "OllamaEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ollama/", "MistralAIEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/mistralai/", "AI21Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ai21/", "TogetherEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/together/", "CohereEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/cohere/", "AzureOpenAIEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/azureopenai/", "NomicEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/nomic/", "AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon MemoryDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/memorydb/"}, "JsonOutputParser": {"How to stream runnables": "https://python.langchain.com/v0.2/docs/how_to/streaming/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/v0.2/docs/how_to/tools_prompting/", "How to parse JSON output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_json/"}, "InMemoryByteStore": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "Caching": "https://python.langchain.com/v0.2/docs/how_to/caching_embeddings/", "InMemoryByteStore": "https://python.langchain.com/v0.2/docs/integrations/stores/in_memory/"}, "TextLoader": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "How to load documents from a directory": "https://python.langchain.com/v0.2/docs/how_to/document_loader_directory/", "How to create and query vector stores": "https://python.langchain.com/v0.2/docs/how_to/vectorstores/", "How to use the Parent Document Retriever": "https://python.langchain.com/v0.2/docs/how_to/parent_document_retriever/", "How to use a vectorstore as a retriever": "https://python.langchain.com/v0.2/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/v0.2/docs/how_to/caching_embeddings/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kinetica/", "JaguarDB Vector Database": "https://python.langchain.com/v0.2/docs/integrations/retrievers/jaguar/", "LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere-reranker/", "SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/singlestoredb/", "FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "Confident": "https://python.langchain.com/v0.2/docs/integrations/callbacks/confident/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "Upstash Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/upstash/", "VDMS": "https://python.langchain.com/v0.2/docs/integrations/providers/vdms/", "Vectara Chat": "https://python.langchain.com/v0.2/docs/integrations/providers/vectara/vectara_chat/", "LanceDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lancedb/", "Kinetica Vectorstore API": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kinetica/", "SQLite-VSS": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sqlitevss/", "Vald": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vald/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "DashVector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dashvector/", "Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/databricks_vector_search/", "ScaNN": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/scann/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/xata/", "Hippo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hippo/", "Vespa": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vespa/", "Rockset": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/rockset/", "DingoDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dingo/", "Zilliz": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zilliz/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db/", "viking DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vikingdb/", "Annoy": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/annoy/", "Couchbase ": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/couchbase/", "Typesense": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/typesense/", "Momento Vector Index (MVI)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/momento_vector_index/", "TiDB Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tidb_vector/", "Relyt": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/relyt/", "Atlas": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/atlas/", "Activeloop Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/activeloop_deeplake/", "vlite": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vlite/", "Neo4j Vector Index": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lantern/", "Tair": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tair/", "DuckDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/duckdb/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/alibabacloud_opensearch/", "Clarifai": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/clarifai/", "scikit-learn": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sklearn/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/", "DocArray HnswSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_hnsw/", "MyScale": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/myscale/", "TileDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tiledb/", "Google Memorystore for Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/google_memorystore_redis/", "Tigris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tigris/", "China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/ecloud_vector_search/", "Bagel": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/bagel/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiducloud_vector_search/", "AwaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/awadb/", "Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/supabase/", "SurrealDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/surrealdb/", "OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/opensearch/", "Faiss (Async)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss_async/", "BagelDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/bageldb/", "ManticoreSearch VectorStore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/manticore_search/", "Azure AI Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azuresearch/", "USearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/usearch/", "PGVecto.rs": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgvecto_rs/", "Marqo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/marqo/", "DocArray InMemorySearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_in_memory/", "Postgres Embedding": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgembedding/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vdms/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Epsilla": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/epsilla/", "Amazon Document DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/documentdb/", "SemaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/semadb/", "AnalyticDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/analyticdb/", "Hologres": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hologres/", "Baidu VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiduvectordb/", "Vearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vearch/", "Meilisearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/meilisearch/", "VoyageAI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openvino_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/dashscope_rerank/"}, "MultiVectorRetriever": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/"}, "SearchType": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/v0.2/docs/how_to/multi_vector/", "Zep Open Source": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_memorystore/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/"}, "init_chat_model": {"How to init any model in one line": "https://python.langchain.com/v0.2/docs/how_to/chat_models_universal_init/", "How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "SQLChatMessageHistory": {"How to add message history": "https://python.langchain.com/v0.2/docs/how_to/message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/v0.2/docs/integrations/memory/sql_chat_message_history/", "SQLite": "https://python.langchain.com/v0.2/docs/integrations/providers/sqlite/"}, "ConfigurableFieldSpec": {"How to add message history": "https://python.langchain.com/v0.2/docs/how_to/message_history/"}, "LlamaCpp": {"Run models locally": "https://python.langchain.com/v0.2/docs/how_to/local_llms/", "Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/", "Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/llms/llamacpp/"}, "CallbackManager": {"Run models locally": "https://python.langchain.com/v0.2/docs/how_to/local_llms/", "ChatLiteLLM": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm/", "GPTRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/gpt_router/", "ChatLiteLLMRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm_router/", "ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/llms/llamacpp/", "Titan Takeoff": "https://python.langchain.com/v0.2/docs/integrations/llms/titan_takeoff/"}, "StreamingStdOutCallbackHandler": {"Run models locally": "https://python.langchain.com/v0.2/docs/how_to/local_llms/", "DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/chat/deepinfra/", "ChatLiteLLM": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm/", "ChatEverlyAI": "https://python.langchain.com/v0.2/docs/integrations/chat/everlyai/", "GPTRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/gpt_router/", "ChatLiteLLMRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm_router/", "ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/chat/yuan2/", "GPT4All": "https://python.langchain.com/v0.2/docs/integrations/providers/gpt4all/", "Arthur": "https://python.langchain.com/v0.2/docs/integrations/providers/arthur_tracking/", "TextGen": "https://python.langchain.com/v0.2/docs/integrations/llms/textgen/", "Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/llms/llamacpp/", "Titan Takeoff": "https://python.langchain.com/v0.2/docs/integrations/llms/titan_takeoff/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/llms/edenai/", "C Transformers": "https://python.langchain.com/v0.2/docs/integrations/llms/ctransformers/", "ExLlamaV2": "https://python.langchain.com/v0.2/docs/integrations/llms/exllamav2/", "Huggingface Endpoints": "https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_endpoint/", "Replicate": "https://python.langchain.com/v0.2/docs/integrations/llms/replicate/"}, "GPT4All": {"Run models locally": "https://python.langchain.com/v0.2/docs/how_to/local_llms/", "PromptLayer": "https://python.langchain.com/v0.2/docs/integrations/callbacks/promptlayer/", "GPT4All": "https://python.langchain.com/v0.2/docs/integrations/llms/gpt4all/"}, "Llamafile": {"Run models locally": "https://python.langchain.com/v0.2/docs/how_to/local_llms/", "Llamafile": "https://python.langchain.com/v0.2/docs/integrations/llms/llamafile/"}, "ConditionalPromptSelector": {"Run models locally": "https://python.langchain.com/v0.2/docs/how_to/local_llms/"}, "HubRunnable": {"How to configure runtime chain internals": "https://python.langchain.com/v0.2/docs/how_to/configure/"}, "ContextualCompressionRetriever": {"How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere-reranker/", "FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "LOTR (Merger Retriever)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/merger_retriever/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille/", "VoyageAI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openvino_rerank/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/dashscope_rerank/"}, "LLMChainExtractor": {"How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/"}, "LLMChainFilter": {"How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/"}, "LLMListwiseRerank": {"How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/"}, "EmbeddingsFilter": {"How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/"}, "DocumentCompressorPipeline": {"How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/"}, "EmbeddingsRedundantFilter": {"How to do retrieval with contextual compression": "https://python.langchain.com/v0.2/docs/how_to/contextual_compression/", "LOTR (Merger Retriever)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/merger_retriever/"}, "Comparator": {"How to construct filters for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_constructing_filters/"}, "Comparison": {"How to construct filters for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_constructing_filters/"}, "Operation": {"How to construct filters for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_constructing_filters/"}, "Operator": {"How to construct filters for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_constructing_filters/"}, "StructuredQuery": {"How to construct filters for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_constructing_filters/"}, "ChromaTranslator": {"How to construct filters for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_constructing_filters/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/"}, "ElasticsearchTranslator": {"How to construct filters for query analysis": "https://python.langchain.com/v0.2/docs/how_to/query_constructing_filters/"}, "WikipediaQueryRun": {"How to use built-in tools and toolkits": "https://python.langchain.com/v0.2/docs/how_to/tools_builtin/", "Wikipedia": "https://python.langchain.com/v0.2/docs/integrations/tools/wikipedia/"}, "WikipediaAPIWrapper": {"How to use built-in tools and toolkits": "https://python.langchain.com/v0.2/docs/how_to/tools_builtin/", "Wikipedia": "https://python.langchain.com/v0.2/docs/integrations/tools/wikipedia/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/"}, "CallbackManagerForRetrieverRun": {"How to create a custom Retriever": "https://python.langchain.com/v0.2/docs/how_to/custom_retriever/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/"}, "BaseRetriever": {"How to create a custom Retriever": "https://python.langchain.com/v0.2/docs/how_to/custom_retriever/"}, "LLMGraphTransformer": {"How to construct knowledge graphs": "https://python.langchain.com/v0.2/docs/how_to/graph_constructing/"}, "RetryOutputParser": {"How to retry when a parsing error occurs": "https://python.langchain.com/v0.2/docs/how_to/output_parser_retry/"}, "TimeWeightedVectorStoreRetriever": {"How to use a time-weighted vector store retriever": "https://python.langchain.com/v0.2/docs/how_to/time_weighted_vectorstore/"}, "InMemoryDocstore": {"How to use a time-weighted vector store retriever": "https://python.langchain.com/v0.2/docs/how_to/time_weighted_vectorstore/", "Annoy": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/annoy/", "Faiss": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/faiss/"}, "mock_now": {"How to use a time-weighted vector store retriever": "https://python.langchain.com/v0.2/docs/how_to/time_weighted_vectorstore/"}, "RunnableGenerator": {"How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/"}, "OutputParserException": {"How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/"}, "BaseOutputParser": {"How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/", "How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/"}, "BaseGenerationOutputParser": {"How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/"}, "Generation": {"How to create a custom Output Parser": "https://python.langchain.com/v0.2/docs/how_to/output_parser_custom/"}, "DirectoryLoader": {"How to load documents from a directory": "https://python.langchain.com/v0.2/docs/how_to/document_loader_directory/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/", "StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/"}, "PythonLoader": {"How to load documents from a directory": "https://python.langchain.com/v0.2/docs/how_to/document_loader_directory/"}, "LanceDB": {"How to create and query vector stores": "https://python.langchain.com/v0.2/docs/how_to/vectorstores/", "LanceDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lancedb/"}, "SpacyTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/v0.2/docs/how_to/split_by_token/", "spaCy": "https://python.langchain.com/v0.2/docs/integrations/providers/spacy/", "Atlas": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/atlas/"}, "SentenceTransformersTokenTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/v0.2/docs/how_to/split_by_token/"}, "NLTKTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/v0.2/docs/how_to/split_by_token/"}, "KonlpyTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/v0.2/docs/how_to/split_by_token/"}, "WikipediaRetriever": {"How to get a RAG application to add citations": "https://python.langchain.com/v0.2/docs/how_to/qa_citations/", "WikipediaRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/wikipedia/", "Wikipedia": "https://python.langchain.com/v0.2/docs/integrations/providers/wikipedia/"}, "UnstructuredHTMLLoader": {"How to load HTML": "https://python.langchain.com/v0.2/docs/how_to/document_loader_html/", "Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/"}, "MultiQueryRetriever": {"How to use the MultiQueryRetriever": "https://python.langchain.com/v0.2/docs/how_to/MultiQueryRetriever/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/", "Vectara": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vectara/"}, "GraphCypherQAChain": {"How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "Neo4j": "https://python.langchain.com/v0.2/docs/integrations/graphs/neo4j_cypher/", "Memgraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/memgraph/", "Diffbot": "https://python.langchain.com/v0.2/docs/integrations/graphs/diffbot/", "Apache AGE": "https://python.langchain.com/v0.2/docs/integrations/graphs/apache_age/", "Build a Question Answering application over a Graph Database": "https://python.langchain.com/v0.2/docs/tutorials/graph/"}, "Neo4jVector": {"How to best prompt for Graph-RAG": "https://python.langchain.com/v0.2/docs/how_to/graph_prompting/", "Neo4j": "https://python.langchain.com/v0.2/docs/integrations/providers/neo4j/", "Neo4j Vector Index": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/neo4jvector/"}, "ParentDocumentRetriever": {"How to use the Parent Document Retriever": "https://python.langchain.com/v0.2/docs/how_to/parent_document_retriever/"}, "InMemoryStore": {"How to use the Parent Document Retriever": "https://python.langchain.com/v0.2/docs/how_to/parent_document_retriever/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/"}, "YamlOutputParser": {"How to parse YAML output": "https://python.langchain.com/v0.2/docs/how_to/output_parser_yaml/"}, "PipelinePromptTemplate": {"How to compose prompts together": "https://python.langchain.com/v0.2/docs/how_to/prompts_composition/"}, "CacheBackedEmbeddings": {"Caching": "https://python.langchain.com/v0.2/docs/how_to/caching_embeddings/"}, "LocalFileStore": {"Caching": "https://python.langchain.com/v0.2/docs/how_to/caching_embeddings/", "LocalFileStore": "https://python.langchain.com/v0.2/docs/integrations/stores/file_system/"}, "Ollama": {"How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/v0.2/docs/how_to/tools_prompting/", "ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/"}, "render_text_description": {"How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/v0.2/docs/how_to/tools_prompting/", "MLX": "https://python.langchain.com/v0.2/docs/integrations/chat/mlx/"}, "RunnableSerializable": {"LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/"}, "Run": {"LangChain Expression Language Cheatsheet": "https://python.langchain.com/v0.2/docs/how_to/lcel_cheatsheet/"}, "MarkdownHeaderTextSplitter": {"How to split Markdown by Headers": "https://python.langchain.com/v0.2/docs/how_to/markdown_header_metadata_splitter/"}, "HTMLHeaderTextSplitter": {"How to split by HTML header ": "https://python.langchain.com/v0.2/docs/how_to/HTML_header_metadata_splitter/"}, "EnsembleRetriever": {"How to combine results from multiple retrievers": "https://python.langchain.com/v0.2/docs/how_to/ensemble_retriever/"}, "BM25Retriever": {"How to combine results from multiple retrievers": "https://python.langchain.com/v0.2/docs/how_to/ensemble_retriever/", "BM25": "https://python.langchain.com/v0.2/docs/integrations/retrievers/bm25/", "Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/"}, "ChatMistralAI": {"Response metadata": "https://python.langchain.com/v0.2/docs/how_to/response_metadata/", "ChatMistralAI": "https://python.langchain.com/v0.2/docs/integrations/chat/mistralai/", "MistralAI": "https://python.langchain.com/v0.2/docs/integrations/providers/mistralai/", "Build an Extraction Chain": "https://python.langchain.com/v0.2/docs/tutorials/extraction/"}, "ChatGroq": {"Response metadata": "https://python.langchain.com/v0.2/docs/how_to/response_metadata/", "ChatGroq": "https://python.langchain.com/v0.2/docs/integrations/chat/groq/"}, "set_verbose": {"How to debug your LLM apps": "https://python.langchain.com/v0.2/docs/how_to/debugging/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/"}, "set_debug": {"How to debug your LLM apps": "https://python.langchain.com/v0.2/docs/how_to/debugging/", "Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/", "TextGen": "https://python.langchain.com/v0.2/docs/integrations/llms/textgen/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/"}, "MaxMarginalRelevanceExampleSelector": {"How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_mmr/"}, "AttributeInfo": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "Milvus": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/weaviate_self_query/", "Vectara self-querying ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/hanavector_self_query/", "DashVector": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dashvector/", "Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/chroma_self_query/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/tencentvectordb/", "Timescale Vector (Postgres) ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/redis_self_query/", "MyScale": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/myscale_self_query/", "Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/qdrant_self_query/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/", "self-query-qdrant": "https://python.langchain.com/v0.2/docs/templates/self-query-qdrant/"}, "SelfQueryRetriever": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "How to add scores to retriever results": "https://python.langchain.com/v0.2/docs/how_to/add_scores_retriever/", "Milvus": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/weaviate_self_query/", "Vectara self-querying ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/hanavector_self_query/", "DashVector": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dashvector/", "Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/v0.2/docs/integrations/providers/chroma/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/tencentvectordb/", "Timescale Vector (Postgres) ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/redis_self_query/", "MyScale": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/myscale_self_query/", "Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/qdrant_self_query/", "Astra DB": "https://python.langchain.com/v0.2/docs/integrations/providers/astradb/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "Docugami": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docugami/"}, "StructuredQueryOutputParser": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/hanavector_self_query/"}, "get_query_constructor_prompt": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/v0.2/docs/how_to/self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/hanavector_self_query/"}, "add": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "cos": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "divide": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "log": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "multiply": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "negate": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "pi": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "power": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "sin": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "subtract": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/v0.2/docs/how_to/example_selectors_langsmith/"}, "adispatch_custom_event": {"How to dispatch custom callback events": "https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/"}, "dispatch_custom_event": {"How to dispatch custom callback events": "https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/"}, "Cassandra": {"Hybrid Search": "https://python.langchain.com/v0.2/docs/how_to/hybrid/", "Cassandra": "https://python.langchain.com/v0.2/docs/integrations/providers/cassandra/", "Apache Cassandra": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/cassandra/"}, "HTMLSectionSplitter": {"How to split by HTML sections": "https://python.langchain.com/v0.2/docs/how_to/HTML_section_aware_splitter/"}, "JSONLoader": {"How to load JSON": "https://python.langchain.com/v0.2/docs/how_to/document_loader_json/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/", "JSONLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/json/"}, "UpstashRedisCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Upstash Vector": "https://python.langchain.com/v0.2/docs/integrations/providers/upstash/"}, "RedisCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/providers/redis/"}, "RedisSemanticCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Redis": "https://python.langchain.com/v0.2/docs/integrations/providers/redis/"}, "GPTCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/"}, "MomentoCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Momento": "https://python.langchain.com/v0.2/docs/integrations/providers/momento/"}, "SQLAlchemyCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/"}, "CassandraCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Cassandra": "https://python.langchain.com/v0.2/docs/integrations/providers/cassandra/"}, "CassandraSemanticCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Cassandra": "https://python.langchain.com/v0.2/docs/integrations/providers/cassandra/"}, "AzureCosmosDBSemanticCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/"}, "CosmosDBSimilarityType": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db/"}, "CosmosDBVectorSearchType": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db/"}, "load_summarize_chain": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/", "Infino": "https://python.langchain.com/v0.2/docs/integrations/callbacks/infino/", "LarkSuite (FeiShu)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/larksuite/"}, "OpenSearchSemanticCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/"}, "SingleStoreDBSemanticCache": {"Model caches": "https://python.langchain.com/v0.2/docs/integrations/llm_caching/"}, "map_ai_messages": {"WeChat": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/wechat/", "Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "GMail": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/gmail/", "Slack": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/whatsapp/", "iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/discord/"}, "merge_chat_runs": {"WeChat": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/wechat/", "Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "Slack": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/whatsapp/", "iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/discord/"}, "ChatSession": {"WeChat": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/wechat/", "Slack": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/whatsapp/", "iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/discord/"}, "FolderFacebookMessengerChatLoader": {"Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "Facebook - Meta": "https://python.langchain.com/v0.2/docs/integrations/providers/facebook/"}, "SingleFileFacebookMessengerChatLoader": {"Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "Facebook - Meta": "https://python.langchain.com/v0.2/docs/integrations/providers/facebook/"}, "convert_messages_for_finetuning": {"Facebook Messenger": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/facebook/", "LangSmith LLM Runs": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_llm_runs/", "LangSmith Chat Datasets": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_dataset/", "iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/"}, "convert_message_to_dict": {"Twitter (via Apify)": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/twitter/"}, "convert_pydantic_to_openai_function": {"LangSmith LLM Runs": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_llm_runs/"}, "PydanticOutputFunctionsParser": {"LangSmith LLM Runs": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_llm_runs/"}, "LangSmithRunChatLoader": {"LangSmith LLM Runs": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_llm_runs/"}, "GMailLoader": {"GMail": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/gmail/"}, "SlackChatLoader": {"Slack": "https://python.langchain.com/v0.2/docs/integrations/providers/slack/"}, "WhatsAppChatLoader": {"WhatsApp": "https://python.langchain.com/v0.2/docs/integrations/providers/whatsapp/", "Facebook - Meta": "https://python.langchain.com/v0.2/docs/integrations/providers/facebook/", "WhatsApp Chat": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/whatsapp_chat/"}, "LangSmithDatasetChatLoader": {"LangSmith Chat Datasets": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/langsmith_dataset/"}, "IMessageChatLoader": {"iMessage": "https://python.langchain.com/v0.2/docs/integrations/chat_loaders/imessage/"}, "TelegramChatLoader": {"Telegram": "https://python.langchain.com/v0.2/docs/integrations/providers/telegram/"}, "BookendEmbeddings": {"Bookend AI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/bookend/"}, "SolarEmbeddings": {"Solar": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/solar/"}, "HuggingFaceBgeEmbeddings": {"BGE on Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/bge_huggingface/", "Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/platforms/huggingface/"}, "IpexLLMBgeEmbeddings": {"Local BGE Embeddings with IPEX-LLM on Intel CPU": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ipex_llm/", "Local BGE Embeddings with IPEX-LLM on Intel GPU": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ipex_llm_gpu/"}, "QuantizedBiEncoderEmbeddings": {"Embedding Documents using Optimized and Quantized Embedders": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/optimum_intel/", "Intel": "https://python.langchain.com/v0.2/docs/integrations/providers/intel/"}, "XinferenceEmbeddings": {"Xorbits inference (Xinference)": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/xinference/"}, "LLMRailsEmbeddings": {"LLMRails": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/llm_rails/"}, "AscendEmbeddings": {"# Related": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ascend/", "Ascend": "https://python.langchain.com/v0.2/docs/integrations/providers/ascend/"}, "DeepInfraEmbeddings": {"DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/providers/deepinfra/"}, "HuggingFaceInferenceAPIEmbeddings": {"Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/huggingfacehub/"}, "GPT4AllEmbeddings": {"GPT4All": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/gpt4all/", "ManticoreSearch VectorStore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/manticore_search/"}, "MosaicMLInstructorEmbeddings": {"MosaicML": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/mosaicml/"}, "QuantizedBgeEmbeddings": {"Intel\u00ae Extension for Transformers Quantized Text Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/itrex/", "Intel": "https://python.langchain.com/v0.2/docs/integrations/providers/intel/"}, "BedrockEmbeddings": {"Bedrock": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/bedrock/", "AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon MemoryDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/memorydb/"}, "GigaChatEmbeddings": {"GigaChat": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/gigachat/", "Salute Devices": "https://python.langchain.com/v0.2/docs/integrations/providers/salute_devices/"}, "OCIGenAIEmbeddings": {"Oracle Cloud Infrastructure Generative AI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/oci_generative_ai/", "Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/v0.2/docs/integrations/providers/oci/"}, "OVHCloudEmbeddings": {"OVHcloud": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ovhcloud/"}, "FastEmbedEmbeddings": {"FastEmbed by Qdrant": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/fastembed/"}, "LlamaCppEmbeddings": {"Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/providers/llamacpp/"}, "NLPCloudEmbeddings": {"NLP Cloud": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/nlp_cloud/", "NLPCloud": "https://python.langchain.com/v0.2/docs/integrations/providers/nlpcloud/"}, "TextEmbedEmbeddings": {"TextEmbed - Embedding Inference Server": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/textembed/"}, "LaserEmbeddings": {"LASER Language-Agnostic SEntence Representations Embeddings by Meta AI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/laser/", "Facebook - Meta": "https://python.langchain.com/v0.2/docs/integrations/providers/facebook/"}, "OpenCLIPEmbeddings": {"OpenClip": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/open_clip/", "LanceDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lancedb/", "SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/singlestoredb/"}, "TitanTakeoffEmbed": {"Titan Takeoff": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/titan_takeoff/"}, "MistralAIEmbeddings": {"MistralAIEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/mistralai/", "MistralAI": "https://python.langchain.com/v0.2/docs/integrations/providers/mistralai/"}, "SpacyEmbeddings": {"SpaCy": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/spacy_embedding/", "NanoPQ (Product Quantization)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/nanopq/", "spaCy": "https://python.langchain.com/v0.2/docs/integrations/providers/spacy/"}, "DatabricksEmbeddings": {"Databricks": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/databricks/"}, "BaichuanTextEmbeddings": {"Baichuan Text Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/baichuan/", "Baichuan": "https://python.langchain.com/v0.2/docs/integrations/providers/baichuan/"}, "TogetherEmbeddings": {"TogetherEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/together/"}, "HuggingFaceInstructEmbeddings": {"Instruct Embeddings on Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/instruct_embeddings/", "Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/platforms/huggingface/"}, "OracleEmbeddings": {"Oracle AI Vector Search: Generate Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/oracleai/", "OracleAI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/providers/oracleai/"}, "QianfanEmbeddingsEndpoint": {"Baidu Qianfan": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/baidu_qianfan_endpoint/", "ERNIE": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ernie/", "Baidu": "https://python.langchain.com/v0.2/docs/integrations/providers/baidu/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiducloud_vector_search/"}, "EdenAiEmbeddings": {"EDEN AI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/edenai/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "JohnSnowLabsEmbeddings": {"John Snow Labs": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/johnsnowlabs_embedding/"}, "ErnieEmbeddings": {"ERNIE": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/ernie/"}, "ClarifaiEmbeddings": {"Clarifai": "https://python.langchain.com/v0.2/docs/integrations/providers/clarifai/"}, "AzureOpenAIEmbeddings": {"AzureOpenAIEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/azureopenai/", "AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Cosmos DB No SQL": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db_no_sql/", "Azure AI Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azuresearch/"}, "InfinityEmbeddings": {"Infinity": "https://python.langchain.com/v0.2/docs/integrations/providers/infinity/"}, "InfinityEmbeddingsLocal": {"Infinity": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/infinity/"}, "AwaEmbeddings": {"AwaDB": "https://python.langchain.com/v0.2/docs/integrations/providers/awadb/"}, "VolcanoEmbeddings": {"Volc Engine": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/volcengine/"}, "MiniMaxEmbeddings": {"MiniMax": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/minimax/", "Minimax": "https://python.langchain.com/v0.2/docs/integrations/providers/minimax/"}, "FakeEmbeddings": {"Fake Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/fake/", "DocArray": "https://python.langchain.com/v0.2/docs/integrations/retrievers/docarray_retriever/", "Relyt": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/relyt/", "Tair": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tair/", "Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/", "Google Memorystore for Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/google_memorystore_redis/", "PGVecto.rs": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgvecto_rs/", "Baidu VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiduvectordb/"}, "ClovaEmbeddings": {"Clova Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/clova/"}, "NeMoEmbeddings": {"NVIDIA NeMo embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/nemo/"}, "SparkLLMTextEmbeddings": {"SparkLLM Text Embeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/sparkllm/", "iFlytek": "https://python.langchain.com/v0.2/docs/integrations/providers/iflytek/"}, "PremAIEmbeddings": {"PremAI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/premai/"}, "KNNRetriever": {"Voyage AI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/voyageai/", "kNN": "https://python.langchain.com/v0.2/docs/integrations/retrievers/knn/"}, "SelfHostedEmbeddings": {"Self Hosted": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/self-hosted/"}, "SelfHostedHuggingFaceEmbeddings": {"Self Hosted": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/self-hosted/"}, "SelfHostedHuggingFaceInstructEmbeddings": {"Self Hosted": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/self-hosted/"}, "AnyscaleEmbeddings": {"Anyscale": "https://python.langchain.com/v0.2/docs/integrations/providers/anyscale/"}, "EmbaasEmbeddings": {"Embaas": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/embaas/"}, "YandexGPTEmbeddings": {"YandexGPT": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/yandex/"}, "JinaEmbeddings": {"Jina": "https://python.langchain.com/v0.2/docs/integrations/providers/jina/", "Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/"}, "AlephAlphaAsymmetricSemanticEmbedding": {"Aleph Alpha": "https://python.langchain.com/v0.2/docs/integrations/providers/aleph_alpha/"}, "AlephAlphaSymmetricSemanticEmbedding": {"Aleph Alpha": "https://python.langchain.com/v0.2/docs/integrations/providers/aleph_alpha/"}, "CloudflareWorkersAIEmbeddings": {"Cloudflare Workers AI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/cloudflare_workersai/", "Cloudflare": "https://python.langchain.com/v0.2/docs/integrations/providers/cloudflare/"}, "DashScopeEmbeddings": {"DashScope": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/dashscope/", "DashVector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dashvector/", "DashScope Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/dashscope_rerank/"}, "TensorflowHubEmbeddings": {"TensorFlow Hub": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/tensorflowhub/"}, "LlamafileEmbeddings": {"llamafile": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/llamafile/"}, "GradientEmbeddings": {"Gradient": "https://python.langchain.com/v0.2/docs/integrations/providers/gradient/"}, "ModelScopeEmbeddings": {"ModelScope": "https://python.langchain.com/v0.2/docs/integrations/providers/modelscope/"}, "SagemakerEndpointEmbeddings": {"SageMaker": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/sagemaker-endpoint/", "AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/"}, "EmbeddingsContentHandler": {"SageMaker": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/sagemaker-endpoint/"}, "DocArrayInMemorySearch": {"UpstageEmbeddings": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/upstage/", "DocArray InMemorySearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_in_memory/"}, "SambaStudioEmbeddings": {"SambaNova": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/sambanova/"}, "OpenVINOEmbeddings": {"OpenVINO": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/openvino/", "OpenVINO Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openvino_rerank/"}, "OpenVINOBgeEmbeddings": {"OpenVINO": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/openvino/"}, "LocalAIEmbeddings": {"LocalAI": "https://python.langchain.com/v0.2/docs/integrations/text_embedding/localai/"}, "AzureAISearchRetriever": {"AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/"}, "AzureSearch": {"AzureAISearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/", "Azure AI Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azuresearch/"}, "RePhraseQueryRetriever": {"RePhraseQuery": "https://python.langchain.com/v0.2/docs/integrations/retrievers/re_phrase/"}, "YouSearchAPIWrapper": {"You.com": "https://python.langchain.com/v0.2/docs/integrations/retrievers/you-retriever/", "You.com Search": "https://python.langchain.com/v0.2/docs/integrations/tools/you/"}, "YouRetriever": {"You.com": "https://python.langchain.com/v0.2/docs/integrations/retrievers/you-retriever/"}, "Kinetica": {"Kinetica Vectorstore based Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kinetica/", "Kinetica": "https://python.langchain.com/v0.2/docs/integrations/providers/kinetica/", "Kinetica Vectorstore API": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kinetica/"}, "KineticaSettings": {"Kinetica Vectorstore based Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kinetica/", "Kinetica Vectorstore API": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kinetica/", "Kinetica": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/kinetica/"}, "Jaguar": {"JaguarDB Vector Database": "https://python.langchain.com/v0.2/docs/integrations/retrievers/jaguar/", "Jaguar": "https://python.langchain.com/v0.2/docs/integrations/providers/jaguar/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/"}, "BaseStore": {"Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/"}, "VectorStore": {"Fleet AI Context": "https://python.langchain.com/v0.2/docs/integrations/retrievers/fleet_context/"}, "AskNewsRetriever": {"AskNews": "https://python.langchain.com/v0.2/docs/integrations/retrievers/asknews/"}, "LLMLinguaCompressor": {"LLMLingua Document Compressor": "https://python.langchain.com/v0.2/docs/integrations/retrievers/llmlingua/"}, "ElasticSearchBM25Retriever": {"ElasticSearch BM25": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elastic_search_bm25/"}, "OutlineRetriever": {"Outline": "https://python.langchain.com/v0.2/docs/integrations/providers/outline/"}, "ZepMemory": {"Zep Open Source": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_memorystore/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/"}, "SearchScope": {"Zep Open Source": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_memorystore/"}, "ZepRetriever": {"Zep Open Source": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_memorystore/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/"}, "VespaRetriever": {"Vespa": "https://python.langchain.com/v0.2/docs/integrations/providers/vespa/"}, "AmazonKendraRetriever": {"Amazon Kendra": "https://python.langchain.com/v0.2/docs/integrations/retrievers/amazon_kendra_retriever/", "AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/"}, "AmazonKnowledgeBasesRetriever": {"Bedrock (Knowledge Bases) Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/bedrock/", "AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/"}, "Bedrock": {"Bedrock (Knowledge Bases) Retriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/bedrock/"}, "CohereEmbeddings": {"Cohere reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere-reranker/"}, "Cohere": {"Cohere reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/cohere-reranker/", "self-query-qdrant": "https://python.langchain.com/v0.2/docs/templates/self-query-qdrant/"}, "ZepCloudMemory": {"Zep Cloud": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_cloud_memorystore/", "ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/"}, "ZepCloudRetriever": {"Zep Cloud": "https://python.langchain.com/v0.2/docs/integrations/retrievers/zep_cloud_memorystore/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/", "Zep": "https://python.langchain.com/v0.2/docs/integrations/providers/zep/"}, "NeuralDBRetriever": {"**NeuralDB**": "https://python.langchain.com/v0.2/docs/integrations/retrievers/thirdai_neuraldb/"}, "SingleStoreDB": {"SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/singlestoredb/"}, "MetalRetriever": {"Metal": "https://python.langchain.com/v0.2/docs/integrations/providers/metal/"}, "BreebsRetriever": {"BREEBS (Open Knowledge)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/breebs/"}, "NanoPQRetriever": {"NanoPQ (Product Quantization)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/nanopq/"}, "ChatGPTPluginRetriever": {"ChatGPT plugin": "https://python.langchain.com/v0.2/docs/integrations/retrievers/chatgpt-plugin/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/"}, "KayAiRetriever": {"SEC filing": "https://python.langchain.com/v0.2/docs/integrations/retrievers/sec_filings/", "Kay.ai": "https://python.langchain.com/v0.2/docs/integrations/retrievers/kay/"}, "DriaRetriever": {"Dria": "https://python.langchain.com/v0.2/docs/integrations/retrievers/dria_index/"}, "DocArrayRetriever": {"DocArray": "https://python.langchain.com/v0.2/docs/integrations/retrievers/docarray_retriever/"}, "SVMRetriever": {"SVM": "https://python.langchain.com/v0.2/docs/integrations/retrievers/svm/", "scikit-learn": "https://python.langchain.com/v0.2/docs/integrations/providers/sklearn/"}, "TavilySearchAPIRetriever": {"TavilySearchAPIRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/tavily/"}, "PineconeHybridSearchRetriever": {"Pinecone Hybrid Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/pinecone_hybrid_search/", "Pinecone": "https://python.langchain.com/v0.2/docs/integrations/providers/pinecone/"}, "DeepLake": {"Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "Activeloop Deep Lake": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/activeloop_deeplake/"}, "AsyncHtmlLoader": {"Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "HTML to text": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/html2text/", "Markdownify": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/markdownify/", "AsyncHtml": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/async_html/"}, "Html2TextTransformer": {"Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "HTML to text": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/html2text/", "Async Chromium": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/async_chromium/"}, "create_structured_output_chain": {"Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/"}, "HumanMessagePromptTemplate": {"Activeloop Deep Memory": "https://python.langchain.com/v0.2/docs/integrations/retrievers/activeloop/", "JinaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/jinachat/", "Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/", "vLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/vllm/", "Context": "https://python.langchain.com/v0.2/docs/integrations/callbacks/context/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Figma": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/figma/"}, "PubMedRetriever": {"PubMed": "https://python.langchain.com/v0.2/docs/integrations/providers/pubmed/"}, "WeaviateHybridSearchRetriever": {"Weaviate Hybrid Search": "https://python.langchain.com/v0.2/docs/integrations/retrievers/weaviate-hybrid/"}, "EmbedchainRetriever": {"Embedchain": "https://python.langchain.com/v0.2/docs/integrations/retrievers/embedchain/"}, "ArxivRetriever": {"ArxivRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/arxiv/", "Arxiv": "https://python.langchain.com/v0.2/docs/integrations/providers/arxiv/"}, "QdrantSparseVectorRetriever": {"Qdrant Sparse Vector": "https://python.langchain.com/v0.2/docs/integrations/retrievers/qdrant-sparse/"}, "DeterministicFakeEmbedding": {"ElasticsearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elasticsearch_retriever/"}, "Embeddings": {"ElasticsearchRetriever": "https://python.langchain.com/v0.2/docs/integrations/retrievers/elasticsearch_retriever/", "Infinispan": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/infinispanvs/"}, "RememberizerRetriever": {"Rememberizer": "https://python.langchain.com/v0.2/docs/integrations/retrievers/rememberizer/"}, "ArceeRetriever": {"Arcee": "https://python.langchain.com/v0.2/docs/integrations/providers/arcee/"}, "FlashrankRerank": {"FlashRank reranker": "https://python.langchain.com/v0.2/docs/integrations/retrievers/flashrank-reranker/", "UpTrain": "https://python.langchain.com/v0.2/docs/integrations/callbacks/uptrain/"}, "ChaindeskRetriever": {"Chaindesk": "https://python.langchain.com/v0.2/docs/integrations/providers/chaindesk/"}, "MergerRetriever": {"LOTR (Merger Retriever)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/merger_retriever/"}, "EmbeddingsClusteringFilter": {"LOTR (Merger Retriever)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/merger_retriever/"}, "TFIDFRetriever": {"TF-IDF": "https://python.langchain.com/v0.2/docs/integrations/retrievers/tf_idf/"}, "PGVector": {"PGVector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/pgvector_self_query/", "PGVector": "https://python.langchain.com/v0.2/docs/integrations/providers/pgvector/"}, "Weaviate": {"Weaviate": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/weaviate_self_query/"}, "Vectara": {"Vectara self-querying ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/vectara_self_query/", "Vectara": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vectara/", "Vectara Chat": "https://python.langchain.com/v0.2/docs/integrations/providers/vectara/vectara_chat/"}, "HanaDB": {"SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "SAP": "https://python.langchain.com/v0.2/docs/integrations/providers/sap/"}, "HanaTranslator": {"SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/hanavector_self_query/"}, "DashVector": {"DashVector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dashvector/"}, "Tongyi": {"DashVector": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/dashvector/", "Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/", "Tongyi Qwen": "https://python.langchain.com/v0.2/docs/integrations/llms/tongyi/"}, "DatabricksVectorSearch": {"Databricks Vector Search": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/databricks_vector_search/"}, "Dingo": {"DingoDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/dingo/"}, "OpenSearchVectorSearch": {"OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/opensearch/", "AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/"}, "ConnectionParams": {"Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/", "Baidu VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiduvectordb/"}, "MetaField": {"Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/"}, "TencentVectorDB": {"Tencent Cloud VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tencentvectordb/", "Tencent": "https://python.langchain.com/v0.2/docs/integrations/providers/tencent/"}, "TimescaleVector": {"Timescale Vector (Postgres) ": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Timescale Vector (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/timescalevector/"}, "AstraDB": {"Astra DB (Cassandra)": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/astradb/"}, "SupabaseVectorStore": {"Supabase (Postgres)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/supabase/"}, "Redis": {"Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/redis/"}, "MyScale": {"MyScale": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/myscale/"}, "MongoDBAtlasVectorSearch": {"MongoDB Atlas": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/mongodb_atlas/"}, "Qdrant": {"Qdrant": "https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/qdrant_self_query/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "AzureChatOpenAI": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/", "Bing Search": "https://python.langchain.com/v0.2/docs/integrations/tools/bing_search/", "AzureChatOpenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/azure_chat_openai/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/v0.2/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "AzureMLOnlineEndpoint": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/"}, "AzureOpenAI": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/", "Azure OpenAI": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_openai/"}, "AzureAIDataLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure AI Data": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/azure_ai_data/"}, "AzureBlobStorageContainerLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Blob Storage Container": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/azure_blob_storage_container/"}, "AzureBlobStorageFileLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Blob Storage File": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/azure_blob_storage_file/"}, "OneDriveLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Microsoft OneDrive": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_onedrive/"}, "OneDriveFileLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/"}, "UnstructuredWordDocumentLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Microsoft Word": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_word/"}, "UnstructuredExcelLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Microsoft Excel": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_excel/"}, "SharePointLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Microsoft SharePoint": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_sharepoint/"}, "UnstructuredPowerPointLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Microsoft PowerPoint": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_powerpoint/"}, "OneNoteLoader": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Microsoft OneNote": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_onenote/"}, "AzureCosmosDBVectorSearch": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db/"}, "BingSearchResults": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Bing Search": "https://python.langchain.com/v0.2/docs/integrations/tools/bing_search/"}, "BingSearchAPIWrapper": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Bing Search": "https://python.langchain.com/v0.2/docs/integrations/tools/bing_search/"}, "O365Toolkit": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Office365 Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/office365/"}, "PowerBIToolkit": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "PowerBI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/powerbi/"}, "PowerBIDataset": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "PowerBI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/powerbi/"}, "PlayWrightBrowserToolkit": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "PlayWright Browser Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/playwright/"}, "GremlinGraph": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/v0.2/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "GraphDocument": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/v0.2/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "Node": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/v0.2/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "Relationship": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/v0.2/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "PresidioAnonymizer": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/"}, "PresidioReversibleAnonymizer": {"Microsoft": "https://python.langchain.com/v0.2/docs/integrations/platforms/microsoft/"}, "BedrockLLM": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Bedrock": "https://python.langchain.com/v0.2/docs/integrations/llms/bedrock/"}, "AmazonAPIGateway": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon API Gateway": "https://python.langchain.com/v0.2/docs/integrations/llms/amazon_api_gateway/"}, "SagemakerEndpoint": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "SageMakerEndpoint": "https://python.langchain.com/v0.2/docs/integrations/llms/sagemaker/"}, "ContentHandlerBase": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/"}, "S3DirectoryLoader": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "AWS S3 Directory": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/aws_s3_directory/"}, "S3FileLoader": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "AWS S3 File": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/aws_s3_file/"}, "AmazonTextractPDFLoader": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon Textract ": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/amazon_textract/"}, "AthenaLoader": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Athena": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/athena/"}, "GlueCatalogLoader": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Glue Catalog": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/glue_catalog/"}, "DynamoDBChatMessageHistory": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "AWS DynamoDB": "https://python.langchain.com/v0.2/docs/integrations/memory/aws_dynamodb/"}, "NeptuneGraph": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon Neptune with Cypher": "https://python.langchain.com/v0.2/docs/integrations/graphs/amazon_neptune_open_cypher/"}, "NeptuneAnalyticsGraph": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon Neptune with Cypher": "https://python.langchain.com/v0.2/docs/integrations/graphs/amazon_neptune_open_cypher/"}, "NeptuneOpenCypherQAChain": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon Neptune with Cypher": "https://python.langchain.com/v0.2/docs/integrations/graphs/amazon_neptune_open_cypher/"}, "NeptuneRdfGraph": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon Neptune with SPARQL": "https://python.langchain.com/v0.2/docs/integrations/graphs/amazon_neptune_sparql/"}, "NeptuneSparqlQAChain": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "Amazon Neptune with SPARQL": "https://python.langchain.com/v0.2/docs/integrations/graphs/amazon_neptune_sparql/"}, "SageMakerCallbackHandler": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/", "SageMaker Tracking": "https://python.langchain.com/v0.2/docs/integrations/callbacks/sagemaker_tracking/"}, "AmazonComprehendModerationChain": {"AWS": "https://python.langchain.com/v0.2/docs/integrations/platforms/aws/"}, "HuggingFaceHubEmbeddings": {"Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/platforms/huggingface/"}, "HuggingFaceDatasetLoader": {"Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/platforms/huggingface/", "HuggingFace dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/hugging_face_dataset/"}, "load_huggingface_tool": {"Hugging Face": "https://python.langchain.com/v0.2/docs/integrations/platforms/huggingface/", "HuggingFace Hub Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/huggingface_tools/"}, "ChatGPTLoader": {"OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/", "ChatGPT Data": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/chatgpt_loader/"}, "DallEAPIWrapper": {"OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/", "Dall-E Image Generator": "https://python.langchain.com/v0.2/docs/integrations/tools/dalle_image_generator/"}, "OpenAIModerationChain": {"OpenAI": "https://python.langchain.com/v0.2/docs/integrations/platforms/openai/"}, "GooglePalmEmbeddings": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/"}, "ScaNN": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "ScaNN": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/scann/"}, "GoogleVertexAISearchRetriever": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/"}, "GoogleDocumentAIWarehouseRetriever": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/"}, "GoogleFinanceQueryRun": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Finance": "https://python.langchain.com/v0.2/docs/integrations/tools/google_finance/"}, "GoogleFinanceAPIWrapper": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Finance": "https://python.langchain.com/v0.2/docs/integrations/tools/google_finance/"}, "GoogleJobsQueryRun": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Jobs": "https://python.langchain.com/v0.2/docs/integrations/tools/google_jobs/"}, "GoogleLensQueryRun": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Lens": "https://python.langchain.com/v0.2/docs/integrations/tools/google_lens/"}, "GoogleLensAPIWrapper": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Lens": "https://python.langchain.com/v0.2/docs/integrations/tools/google_lens/"}, "GooglePlacesTool": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Places": "https://python.langchain.com/v0.2/docs/integrations/tools/google_places/"}, "GoogleScholarQueryRun": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Scholar": "https://python.langchain.com/v0.2/docs/integrations/tools/google_scholar/"}, "GoogleScholarAPIWrapper": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Scholar": "https://python.langchain.com/v0.2/docs/integrations/tools/google_scholar/"}, "GoogleTrendsQueryRun": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Trends": "https://python.langchain.com/v0.2/docs/integrations/tools/google_trends/"}, "GoogleTrendsAPIWrapper": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Trends": "https://python.langchain.com/v0.2/docs/integrations/tools/google_trends/"}, "SearchApiAPIWrapper": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "SearchApi": "https://python.langchain.com/v0.2/docs/integrations/providers/searchapi/"}, "SerpAPIWrapper": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "SerpAPI": "https://python.langchain.com/v0.2/docs/integrations/providers/serpapi/", "MLX": "https://python.langchain.com/v0.2/docs/integrations/chat/mlx/"}, "GoogleSerperAPIWrapper": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "Google Serper": "https://python.langchain.com/v0.2/docs/integrations/tools/google_serper/", "Serper - Google Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/google_serper/"}, "YouTubeSearchTool": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "YouTube": "https://python.langchain.com/v0.2/docs/integrations/tools/youtube/"}, "YoutubeAudioLoader": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/"}, "OpenAIWhisperParser": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "YouTube audio": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_audio/"}, "YoutubeLoader": {"Google": "https://python.langchain.com/v0.2/docs/integrations/platforms/google/", "YouTube": "https://python.langchain.com/v0.2/docs/integrations/providers/youtube/", "YouTube transcripts": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_transcript/", "Build a Query Analysis System": "https://python.langchain.com/v0.2/docs/tutorials/query_analysis/"}, "AnthropicLLM": {"Anthropic": "https://python.langchain.com/v0.2/docs/integrations/platforms/anthropic/", "AnthropicLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/anthropic/"}, "AIPluginTool": {"ChatGPT Plugins": "https://python.langchain.com/v0.2/docs/integrations/tools/chatgpt_plugins/"}, "AgentType": {"ChatGPT Plugins": "https://python.langchain.com/v0.2/docs/integrations/tools/chatgpt_plugins/", "Connery Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/connery/", "Jira Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/jira/", "Google Jobs": "https://python.langchain.com/v0.2/docs/integrations/tools/google_jobs/", "Google Serper": "https://python.langchain.com/v0.2/docs/integrations/tools/google_serper/", "Azure Cognitive Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_cognitive_services/", "E2B Data Analysis": "https://python.langchain.com/v0.2/docs/integrations/tools/e2b_data_analysis/", "Human as a tool": "https://python.langchain.com/v0.2/docs/integrations/tools/human_tools/", "Natural Language API Toolkits": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi_nla/", "Steam Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/steam/", "Yahoo Finance News": "https://python.langchain.com/v0.2/docs/integrations/tools/yahoo_finance_news/", "Google Finance": "https://python.langchain.com/v0.2/docs/integrations/tools/google_finance/", "ClickUp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/clickup/", "AWS Lambda": "https://python.langchain.com/v0.2/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/v0.2/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/v0.2/docs/integrations/tools/openweathermap/", "AINetwork Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/ainetwork/", "Memorize": "https://python.langchain.com/v0.2/docs/integrations/tools/memorize/", "PlayWright Browser Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/playwright/", "Eleven Labs Text2Speech": "https://python.langchain.com/v0.2/docs/integrations/tools/eleven_labs_tts/", "Office365 Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/office365/", "Bearly Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/bearly/", "Pandas Dataframe": "https://python.langchain.com/v0.2/docs/integrations/tools/pandas/", "Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/", "NASA Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/nasa/", "Connery Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/connery_toolkit/", "GraphQL": "https://python.langchain.com/v0.2/docs/integrations/tools/graphql/", "SearchApi": "https://python.langchain.com/v0.2/docs/integrations/providers/searchapi/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/tools/edenai_tools/", "Gitlab Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/gitlab/", "Shell (bash)": "https://python.langchain.com/v0.2/docs/integrations/tools/bash/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/memory/xata_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "Comet Tracing": "https://python.langchain.com/v0.2/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/v0.2/docs/integrations/callbacks/argilla/", "Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/", "MLflow": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_tracking/", "Serper - Google Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/google_serper/", "Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/", "WandB Tracing": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/v0.2/docs/integrations/providers/clearml_tracking/", "Amazon API Gateway": "https://python.langchain.com/v0.2/docs/integrations/llms/amazon_api_gateway/"}, "initialize_agent": {"ChatGPT Plugins": "https://python.langchain.com/v0.2/docs/integrations/tools/chatgpt_plugins/", "Connery Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/connery/", "Jira Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/jira/", "Google Jobs": "https://python.langchain.com/v0.2/docs/integrations/tools/google_jobs/", "Google Serper": "https://python.langchain.com/v0.2/docs/integrations/tools/google_serper/", "Azure Cognitive Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_cognitive_services/", "E2B Data Analysis": "https://python.langchain.com/v0.2/docs/integrations/tools/e2b_data_analysis/", "Human as a tool": "https://python.langchain.com/v0.2/docs/integrations/tools/human_tools/", "Natural Language API Toolkits": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi_nla/", "Steam Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/steam/", "Yahoo Finance News": "https://python.langchain.com/v0.2/docs/integrations/tools/yahoo_finance_news/", "Google Finance": "https://python.langchain.com/v0.2/docs/integrations/tools/google_finance/", "ClickUp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/clickup/", "AWS Lambda": "https://python.langchain.com/v0.2/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/v0.2/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/v0.2/docs/integrations/tools/openweathermap/", "AINetwork Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/ainetwork/", "Memorize": "https://python.langchain.com/v0.2/docs/integrations/tools/memorize/", "PlayWright Browser Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/playwright/", "Eleven Labs Text2Speech": "https://python.langchain.com/v0.2/docs/integrations/tools/eleven_labs_tts/", "Office365 Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/office365/", "Bearly Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/bearly/", "Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/", "NASA Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/nasa/", "Connery Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/connery_toolkit/", "GraphQL": "https://python.langchain.com/v0.2/docs/integrations/tools/graphql/", "SearchApi": "https://python.langchain.com/v0.2/docs/integrations/providers/searchapi/", "Gradio": "https://python.langchain.com/v0.2/docs/integrations/tools/gradio_tools/", "SceneXplain": "https://python.langchain.com/v0.2/docs/integrations/tools/sceneXplain/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/tools/edenai_tools/", "Dall-E Image Generator": "https://python.langchain.com/v0.2/docs/integrations/tools/dalle_image_generator/", "Gitlab Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/gitlab/", "Shell (bash)": "https://python.langchain.com/v0.2/docs/integrations/tools/bash/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/", "Xata": "https://python.langchain.com/v0.2/docs/integrations/memory/xata_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/", "SageMaker Tracking": "https://python.langchain.com/v0.2/docs/integrations/callbacks/sagemaker_tracking/", "Comet Tracing": "https://python.langchain.com/v0.2/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/v0.2/docs/integrations/callbacks/argilla/", "Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/", "MLflow": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_tracking/", "Serper - Google Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/google_serper/", "Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/", "WandB Tracing": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/v0.2/docs/integrations/providers/clearml_tracking/", "Amazon API Gateway": "https://python.langchain.com/v0.2/docs/integrations/llms/amazon_api_gateway/"}, "DataForSeoAPIWrapper": {"DataForSEO": "https://python.langchain.com/v0.2/docs/integrations/providers/dataforseo/"}, "Tool": {"DataForSEO": "https://python.langchain.com/v0.2/docs/integrations/tools/dataforseo/", "Python REPL": "https://python.langchain.com/v0.2/docs/integrations/tools/python/", "Google Serper": "https://python.langchain.com/v0.2/docs/integrations/tools/google_serper/", "SerpAPI": "https://python.langchain.com/v0.2/docs/integrations/tools/serpapi/", "SearchApi": "https://python.langchain.com/v0.2/docs/integrations/providers/searchapi/", "Google Search": "https://python.langchain.com/v0.2/docs/integrations/tools/google_search/", "Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/", "Ionic Shopping Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping/", "Zep Open Source Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory/", "Zep Cloud Memory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_memory_cloud/", "Serper - Google Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/google_serper/", "Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/"}, "ConneryToolkit": {"Connery Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/connery/", "Connery Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/connery_toolkit/"}, "ConneryService": {"Connery Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/connery/", "Connery Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/connery_toolkit/"}, "DataheraldAPIWrapper": {"Dataherald": "https://python.langchain.com/v0.2/docs/integrations/providers/dataherald/"}, "SearxSearchWrapper": {"SearxNG Search": "https://python.langchain.com/v0.2/docs/integrations/tools/searx_search/", "SearxNG Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/searx/"}, "JiraToolkit": {"Jira Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/jira/"}, "JiraAPIWrapper": {"Jira Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/jira/"}, "PythonREPL": {"Python REPL": "https://python.langchain.com/v0.2/docs/integrations/tools/python/"}, "GoogleJobsAPIWrapper": {"Google Jobs": "https://python.langchain.com/v0.2/docs/integrations/tools/google_jobs/"}, "InfobipAPIWrapper": {"Infobip": "https://python.langchain.com/v0.2/docs/integrations/tools/infobip/"}, "create_openai_functions_agent": {"Infobip": "https://python.langchain.com/v0.2/docs/integrations/tools/infobip/", "AskNews": "https://python.langchain.com/v0.2/docs/integrations/tools/asknews/", "Polygon IO Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon_toolkit/", "Semantic Scholar API Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/semanticscholar/", "Passio NutritionAI": "https://python.langchain.com/v0.2/docs/integrations/tools/passio_nutrition_ai/", "MultiOn Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/multion/", "You.com Search": "https://python.langchain.com/v0.2/docs/integrations/tools/you/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/"}, "AskNewsSearch": {"AskNews": "https://python.langchain.com/v0.2/docs/integrations/tools/asknews/"}, "create_pbi_agent": {"PowerBI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/powerbi/"}, "AzureCognitiveServicesToolkit": {"Azure Cognitive Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_cognitive_services/"}, "E2BDataAnalysisTool": {"E2B Data Analysis": "https://python.langchain.com/v0.2/docs/integrations/tools/e2b_data_analysis/"}, "SQLDatabaseToolkit": {"SQLDatabase Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/sql_database/", "CnosDB": "https://python.langchain.com/v0.2/docs/integrations/providers/cnosdb/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/"}, "HumanInputRun": {"Human as a tool": "https://python.langchain.com/v0.2/docs/integrations/tools/human_tools/"}, "FinancialDatasetsToolkit": {"FinancialDatasets Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/financial_datasets/"}, "FinancialDatasetsAPIWrapper": {"FinancialDatasets Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/financial_datasets/"}, "NLAToolkit": {"Natural Language API Toolkits": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi_nla/"}, "Requests": {"Natural Language API Toolkits": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi_nla/"}, "ZenGuardTool": {"ZenGuard AI": "https://python.langchain.com/v0.2/docs/integrations/tools/zenguard/"}, "Detector": {"ZenGuard AI": "https://python.langchain.com/v0.2/docs/integrations/tools/zenguard/"}, "SlackToolkit": {"Slack Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/slack/", "Slack": "https://python.langchain.com/v0.2/docs/integrations/providers/slack/"}, "SteamToolkit": {"Steam Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/steam/"}, "SteamWebAPIWrapper": {"Steam Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/steam/"}, "create_openai_tools_agent": {"Cassandra Database Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cassandra_database/", "Log, Trace, and Monitor": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/v0.2/docs/integrations/providers/portkey/index/"}, "CassandraDatabaseToolkit": {"Cassandra Database Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cassandra_database/", "Cassandra": "https://python.langchain.com/v0.2/docs/integrations/providers/cassandra/"}, "CassandraDatabase": {"Cassandra Database Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cassandra_database/"}, "NucliaUnderstandingAPI": {"Nuclia Understanding": "https://python.langchain.com/v0.2/docs/integrations/tools/nuclia/", "Nuclia": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/nuclia/"}, "YahooFinanceNewsTool": {"Yahoo Finance News": "https://python.langchain.com/v0.2/docs/integrations/tools/yahoo_finance_news/"}, "JsonToolkit": {"JSON Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/json/"}, "create_json_agent": {"JSON Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/json/"}, "JsonSpec": {"JSON Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/json/", "OpenAPI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi/"}, "PolygonToolkit": {"Polygon IO Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon_toolkit/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/"}, "PolygonAPIWrapper": {"Polygon IO Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon_toolkit/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/"}, "WikidataAPIWrapper": {"Wikidata": "https://python.langchain.com/v0.2/docs/integrations/tools/wikidata/"}, "WikidataQueryRun": {"Wikidata": "https://python.langchain.com/v0.2/docs/integrations/tools/wikidata/"}, "TwilioAPIWrapper": {"Twilio": "https://python.langchain.com/v0.2/docs/integrations/tools/twilio/"}, "IFTTTWebhook": {"IFTTT WebHooks": "https://python.langchain.com/v0.2/docs/integrations/tools/ifttt/"}, "SemanticScholarQueryRun": {"Semantic Scholar API Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/semanticscholar/"}, "AlphaVantageAPIWrapper": {"Alpha Vantage": "https://python.langchain.com/v0.2/docs/integrations/tools/alpha_vantage/"}, "GitHubToolkit": {"Github Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/github/"}, "GitHubAPIWrapper": {"Github Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/github/"}, "ChatDatabricks": {"Databricks Unity Catalog (UC)": "https://python.langchain.com/v0.2/docs/integrations/tools/databricks/", "ChatDatabricks": "https://python.langchain.com/v0.2/docs/integrations/chat/databricks/"}, "UCFunctionToolkit": {"Databricks Unity Catalog (UC)": "https://python.langchain.com/v0.2/docs/integrations/tools/databricks/"}, "GoogleCloudTextToSpeechTool": {"Google Cloud Text-to-Speech": "https://python.langchain.com/v0.2/docs/integrations/tools/google_cloud_texttospeech/"}, "ClickupToolkit": {"ClickUp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/clickup/"}, "ClickupAPIWrapper": {"ClickUp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/clickup/"}, "SparkSQLToolkit": {"Spark SQL Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/spark_sql/"}, "create_spark_sql_agent": {"Spark SQL Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/spark_sql/"}, "SparkSQL": {"Spark SQL Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/spark_sql/"}, "OracleSummary": {"Oracle AI Vector Search: Generate Summary": "https://python.langchain.com/v0.2/docs/integrations/tools/oracleai/", "OracleAI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/providers/oracleai/"}, "StackExchangeAPIWrapper": {"StackExchange": "https://python.langchain.com/v0.2/docs/integrations/tools/stackexchange/", "Stack Exchange": "https://python.langchain.com/v0.2/docs/integrations/providers/stackexchange/"}, "RequestsToolkit": {"Requests Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/requests/"}, "TextRequestsWrapper": {"Requests Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/requests/"}, "OpenWeatherMapAPIWrapper": {"OpenWeatherMap": "https://python.langchain.com/v0.2/docs/integrations/providers/openweathermap/"}, "AINetworkToolkit": {"AINetwork Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/ainetwork/", "AINetwork": "https://python.langchain.com/v0.2/docs/integrations/providers/ainetwork/"}, "get_from_env": {"Passio NutritionAI": "https://python.langchain.com/v0.2/docs/integrations/tools/passio_nutrition_ai/"}, "NutritionAI": {"Passio NutritionAI": "https://python.langchain.com/v0.2/docs/integrations/tools/passio_nutrition_ai/"}, "NutritionAIAPI": {"Passio NutritionAI": "https://python.langchain.com/v0.2/docs/integrations/tools/passio_nutrition_ai/"}, "PubmedQueryRun": {"PubMed": "https://python.langchain.com/v0.2/docs/integrations/tools/pubmed/"}, "GradientLLM": {"Memorize": "https://python.langchain.com/v0.2/docs/integrations/tools/memorize/", "Gradient": "https://python.langchain.com/v0.2/docs/integrations/llms/gradient/"}, "create_async_playwright_browser": {"PlayWright Browser Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/playwright/"}, "ElevenLabsText2SpeechTool": {"Eleven Labs Text2Speech": "https://python.langchain.com/v0.2/docs/integrations/tools/eleven_labs_tts/", "ElevenLabs": "https://python.langchain.com/v0.2/docs/integrations/providers/elevenlabs/"}, "create_conversational_retrieval_agent": {"Cogniswitch Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cogniswitch/"}, "CogniswitchToolkit": {"Cogniswitch Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/cogniswitch/"}, "BearlyInterpreterTool": {"Bearly Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/bearly/"}, "ExecPython": {"Riza Code Interpreter": "https://python.langchain.com/v0.2/docs/integrations/tools/riza/"}, "ZapierToolkit": {"Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/"}, "ZapierNLAWrapper": {"Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/"}, "SimpleSequentialChain": {"Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/", "SageMaker Tracking": "https://python.langchain.com/v0.2/docs/integrations/callbacks/sagemaker_tracking/", "Rebuff": "https://python.langchain.com/v0.2/docs/integrations/providers/rebuff/", "Predibase": "https://python.langchain.com/v0.2/docs/integrations/llms/predibase/", "Eden AI": "https://python.langchain.com/v0.2/docs/integrations/llms/edenai/", "Replicate": "https://python.langchain.com/v0.2/docs/integrations/llms/replicate/"}, "TransformChain": {"Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/", "Rebuff": "https://python.langchain.com/v0.2/docs/integrations/providers/rebuff/"}, "ZapierNLARunAction": {"Zapier Natural Language Actions": "https://python.langchain.com/v0.2/docs/integrations/tools/zapier/"}, "RivaASR": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/v0.2/docs/integrations/tools/nvidia_riva/"}, "RivaTTS": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/v0.2/docs/integrations/tools/nvidia_riva/"}, "RivaAudioEncoding": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/v0.2/docs/integrations/tools/nvidia_riva/"}, "AudioStream": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/v0.2/docs/integrations/tools/nvidia_riva/"}, "GoldenQueryAPIWrapper": {"Golden Query": "https://python.langchain.com/v0.2/docs/integrations/tools/golden_query/", "Golden": "https://python.langchain.com/v0.2/docs/integrations/providers/golden/"}, "create_react_agent": {"ArXiv": "https://python.langchain.com/v0.2/docs/integrations/tools/arxiv/", "Amadeus Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/amadeus/", "Ionic Shopping Tool": "https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping/", "Streamlit": "https://python.langchain.com/v0.2/docs/integrations/callbacks/streamlit/", "Dataherald": "https://python.langchain.com/v0.2/docs/integrations/providers/dataherald/", "Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/"}, "ArxivAPIWrapper": {"ArXiv": "https://python.langchain.com/v0.2/docs/integrations/tools/arxiv/"}, "OpenAIFunctionsAgent": {"Robocorp Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/robocorp/", "Exa Search": "https://python.langchain.com/v0.2/docs/integrations/tools/exa_search/", "LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/"}, "NasaToolkit": {"NASA Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/nasa/"}, "NasaAPIWrapper": {"NASA Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/nasa/"}, "MultionToolkit": {"MultiOn Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/multion/"}, "DuckDuckGoSearchRun": {"DuckDuckGo Search": "https://python.langchain.com/v0.2/docs/integrations/tools/ddg/"}, "DuckDuckGoSearchResults": {"DuckDuckGo Search": "https://python.langchain.com/v0.2/docs/integrations/tools/ddg/"}, "DuckDuckGoSearchAPIWrapper": {"DuckDuckGo Search": "https://python.langchain.com/v0.2/docs/integrations/tools/ddg/"}, "SceneXplainTool": {"SceneXplain": "https://python.langchain.com/v0.2/docs/integrations/tools/sceneXplain/"}, "WolframAlphaAPIWrapper": {"Wolfram Alpha": "https://python.langchain.com/v0.2/docs/integrations/providers/wolfram_alpha/"}, "AmadeusToolkit": {"Amadeus Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/amadeus/"}, "HuggingFaceHub": {"Amadeus Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/amadeus/"}, "ReActJsonSingleInputOutputParser": {"Amadeus Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/amadeus/", "MLX": "https://python.langchain.com/v0.2/docs/integrations/chat/mlx/"}, "render_text_description_and_args": {"Amadeus Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/amadeus/"}, "EdenAiExplicitImageTool": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "EdenAiObjectDetectionTool": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "EdenAiParsingIDTool": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "EdenAiParsingInvoiceTool": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "EdenAiSpeechToTextTool": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "EdenAiTextModerationTool": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "EdenAiTextToSpeechTool": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "EdenAI": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/llms/edenai/"}, "MojeekSearch": {"Mojeek Search": "https://python.langchain.com/v0.2/docs/integrations/tools/mojeek_search/"}, "RedditSearchRun": {"Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/"}, "RedditSearchAPIWrapper": {"Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/"}, "RedditSearchSchema": {"Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/"}, "StructuredChatAgent": {"Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/"}, "ReadOnlySharedMemory": {"Reddit Search ": "https://python.langchain.com/v0.2/docs/integrations/tools/reddit_search/"}, "YouSearchTool": {"You.com Search": "https://python.langchain.com/v0.2/docs/integrations/tools/you/"}, "AzureAiServicesToolkit": {"Azure AI Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_ai_services/"}, "create_structured_chat_agent": {"Azure AI Services Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/azure_ai_services/"}, "reduce_openapi_spec": {"OpenAPI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi/"}, "RequestsWrapper": {"OpenAPI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi/"}, "OpenAPIToolkit": {"OpenAPI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi/"}, "create_openapi_agent": {"OpenAPI Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/openapi/"}, "GitLabToolkit": {"Gitlab Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/gitlab/"}, "GitLabAPIWrapper": {"Gitlab Toolkit": "https://python.langchain.com/v0.2/docs/integrations/tools/gitlab/"}, "ShellTool": {"Shell (bash)": "https://python.langchain.com/v0.2/docs/integrations/tools/bash/"}, "PolygonAggregates": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/"}, "PolygonFinancials": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/"}, "PolygonLastQuote": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/"}, "PolygonTickerNews": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/v0.2/docs/integrations/tools/polygon/"}, "FileManagementToolkit": {"File System": "https://python.langchain.com/v0.2/docs/integrations/tools/filesystem/"}, "BraveSearch": {"Brave Search": "https://python.langchain.com/v0.2/docs/integrations/providers/brave_search/"}, "RedisChatMessageHistory": {"Redis": "https://python.langchain.com/v0.2/docs/integrations/memory/redis_chat_message_history/"}, "KafkaChatMessageHistory": {"Kafka": "https://python.langchain.com/v0.2/docs/integrations/memory/kafka_chat_message_history/"}, "ElasticsearchChatMessageHistory": {"Elasticsearch": "https://python.langchain.com/v0.2/docs/integrations/memory/elasticsearch_chat_message_history/"}, "UpstashRedisChatMessageHistory": {"Upstash Redis": "https://python.langchain.com/v0.2/docs/integrations/memory/upstash_redis_chat_message_history/", "Upstash Vector": "https://python.langchain.com/v0.2/docs/integrations/providers/upstash/"}, "ZepCloudChatMessageHistory": {"ZepCloudChatMessageHistory": "https://python.langchain.com/v0.2/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep": "https://python.langchain.com/v0.2/docs/integrations/providers/zep/"}, "SingleStoreDBChatMessageHistory": {"SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/providers/singlestoredb/"}, "PostgresChatMessageHistory": {"Postgres": "https://python.langchain.com/v0.2/docs/integrations/memory/postgres_chat_message_history/"}, "MomentoChatMessageHistory": {"Momento Cache": "https://python.langchain.com/v0.2/docs/integrations/memory/momento_chat_message_history/", "Momento": "https://python.langchain.com/v0.2/docs/integrations/providers/momento/"}, "XataChatMessageHistory": {"Xata": "https://python.langchain.com/v0.2/docs/integrations/providers/xata/"}, "XataVectorStore": {"Xata": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/xata/"}, "CassandraChatMessageHistory": {"Cassandra ": "https://python.langchain.com/v0.2/docs/integrations/memory/cassandra_chat_message_history/", "Cassandra": "https://python.langchain.com/v0.2/docs/integrations/providers/cassandra/"}, "MotorheadMemory": {"Mot\u00f6rhead": "https://python.langchain.com/v0.2/docs/integrations/memory/motorhead_memory/"}, "AstraDBChatMessageHistory": {"Astra DB ": "https://python.langchain.com/v0.2/docs/integrations/memory/astradb_chat_message_history/"}, "StreamlitChatMessageHistory": {"Streamlit": "https://python.langchain.com/v0.2/docs/integrations/providers/streamlit/"}, "Neo4jChatMessageHistory": {"Neo4j": "https://python.langchain.com/v0.2/docs/integrations/memory/neo4j_chat_message_history/"}, "TiDBChatMessageHistory": {"TiDB": "https://python.langchain.com/v0.2/docs/integrations/providers/tidb/"}, "RocksetChatMessageHistory": {"Rockset": "https://python.langchain.com/v0.2/docs/integrations/providers/rockset/"}, "ChatSnowflakeCortex": {"Snowflake Cortex": "https://python.langchain.com/v0.2/docs/integrations/chat/snowflake/"}, "SolarChat": {"# Related": "https://python.langchain.com/v0.2/docs/integrations/chat/solar/"}, "AzureMLChatOnlineEndpoint": {"AzureMLChatOnlineEndpoint": "https://python.langchain.com/v0.2/docs/integrations/chat/azureml_chat_endpoint/"}, "AzureMLEndpointApiType": {"AzureMLChatOnlineEndpoint": "https://python.langchain.com/v0.2/docs/integrations/chat/azureml_chat_endpoint/", "Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/"}, "CustomOpenAIChatContentFormatter": {"AzureMLChatOnlineEndpoint": "https://python.langchain.com/v0.2/docs/integrations/chat/azureml_chat_endpoint/"}, "ChatKinetica": {"Kinetica Language To SQL Chat Model": "https://python.langchain.com/v0.2/docs/integrations/chat/kinetica/", "Kinetica": "https://python.langchain.com/v0.2/docs/integrations/providers/kinetica/"}, "KineticaSqlOutputParser": {"Kinetica Language To SQL Chat Model": "https://python.langchain.com/v0.2/docs/integrations/chat/kinetica/"}, "KineticaSqlResponse": {"Kinetica Language To SQL Chat Model": "https://python.langchain.com/v0.2/docs/integrations/chat/kinetica/"}, "PaiEasChatEndpoint": {"Alibaba Cloud PAI EAS": "https://python.langchain.com/v0.2/docs/integrations/chat/alibaba_cloud_pai_eas/", "Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/"}, "ChatCoze": {"Chat with Coze Bot": "https://python.langchain.com/v0.2/docs/integrations/chat/coze/"}, "ChatOctoAI": {"ChatOctoAI": "https://python.langchain.com/v0.2/docs/integrations/chat/octoai/", "OctoAI": "https://python.langchain.com/v0.2/docs/integrations/providers/octoai/"}, "ChatYi": {"ChatYI": "https://python.langchain.com/v0.2/docs/integrations/chat/yi/", "01.AI": "https://python.langchain.com/v0.2/docs/integrations/providers/yi/"}, "ChatDeepInfra": {"DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/providers/deepinfra/"}, "ChatLiteLLM": {"ChatLiteLLM": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm/"}, "LlamaEdgeChatService": {"LlamaEdge": "https://python.langchain.com/v0.2/docs/integrations/chat/llama_edge/"}, "OllamaFunctions": {"OllamaFunctions": "https://python.langchain.com/v0.2/docs/integrations/chat/ollama_functions/"}, "VolcEngineMaasChat": {"VolcEngineMaasChat": "https://python.langchain.com/v0.2/docs/integrations/chat/volcengine_maas/"}, "ChatLlamaAPI": {"ChatLlamaAPI": "https://python.langchain.com/v0.2/docs/integrations/chat/llama_api/"}, "create_tagging_chain": {"ChatLlamaAPI": "https://python.langchain.com/v0.2/docs/integrations/chat/llama_api/"}, "ChatKonko": {"ChatKonko": "https://python.langchain.com/v0.2/docs/integrations/chat/konko/"}, "ChatBedrockConverse": {"ChatBedrock": "https://python.langchain.com/v0.2/docs/integrations/chat/bedrock/"}, "MLXPipeline": {"MLX": "https://python.langchain.com/v0.2/docs/integrations/providers/mlx/", "MLX Local Pipelines": "https://python.langchain.com/v0.2/docs/integrations/llms/mlx_pipelines/"}, "ChatMLX": {"MLX": "https://python.langchain.com/v0.2/docs/integrations/providers/mlx/"}, "format_log_to_str": {"MLX": "https://python.langchain.com/v0.2/docs/integrations/chat/mlx/"}, "GigaChat": {"GigaChat": "https://python.langchain.com/v0.2/docs/integrations/llms/gigachat/", "Salute Devices": "https://python.langchain.com/v0.2/docs/integrations/providers/salute_devices/"}, "JinaChat": {"JinaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/jinachat/"}, "SystemMessagePromptTemplate": {"JinaChat": "https://python.langchain.com/v0.2/docs/integrations/chat/jinachat/", "vLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/vllm/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Figma": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/figma/"}, "ChatOCIGenAI": {"ChatOCIGenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/oci_generative_ai/", "Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/v0.2/docs/integrations/providers/oci/"}, "ChatLlamaCpp": {"Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/providers/llamacpp/"}, "convert_to_openai_tool": {"Llama.cpp": "https://python.langchain.com/v0.2/docs/integrations/chat/llamacpp/"}, "ChatEverlyAI": {"ChatEverlyAI": "https://python.langchain.com/v0.2/docs/integrations/chat/everlyai/"}, "GPTRouter": {"GPTRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/gpt_router/"}, "GPTRouterModel": {"GPTRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/gpt_router/"}, "ChatLiteLLMRouter": {"ChatLiteLLMRouter": "https://python.langchain.com/v0.2/docs/integrations/chat/litellm_router/"}, "ChatFriendli": {"ChatFriendli": "https://python.langchain.com/v0.2/docs/integrations/chat/friendli/"}, "ChatZhipuAI": {"ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/", "Zhipu AI": "https://python.langchain.com/v0.2/docs/integrations/providers/zhipuai/"}, "create_json_chat_agent": {"ZHIPU AI": "https://python.langchain.com/v0.2/docs/integrations/chat/zhipuai/"}, "ChatBaichuan": {"Chat with Baichuan-192K": "https://python.langchain.com/v0.2/docs/integrations/chat/baichuan/", "Baichuan": "https://python.langchain.com/v0.2/docs/integrations/providers/baichuan/"}, "ChatTogether": {"ChatTogether": "https://python.langchain.com/v0.2/docs/integrations/chat/together/", "Together AI": "https://python.langchain.com/v0.2/docs/integrations/llms/together/"}, "Llama2Chat": {"Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/"}, "HuggingFaceTextGenInference": {"Llama2Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/llama2_chat/"}, "QianfanChatEndpoint": {"QianfanChatEndpoint": "https://python.langchain.com/v0.2/docs/integrations/chat/baidu_qianfan_endpoint/", "ErnieBotChat": "https://python.langchain.com/v0.2/docs/integrations/chat/ernie/", "Baidu": "https://python.langchain.com/v0.2/docs/integrations/providers/baidu/"}, "ChatEdenAI": {"Eden AI": "https://python.langchain.com/v0.2/docs/integrations/providers/edenai/"}, "ErnieBotChat": {"ErnieBotChat": "https://python.langchain.com/v0.2/docs/integrations/chat/ernie/"}, "ChatHunyuan": {"Tencent Hunyuan": "https://python.langchain.com/v0.2/docs/integrations/chat/tencent_hunyuan/", "Tencent": "https://python.langchain.com/v0.2/docs/integrations/providers/tencent/"}, "MiniMaxChat": {"MiniMaxChat": "https://python.langchain.com/v0.2/docs/integrations/chat/minimax/", "Minimax": "https://python.langchain.com/v0.2/docs/integrations/providers/minimax/"}, "ChatYuan2": {"Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/chat/yuan2/", "IEIT Systems": "https://python.langchain.com/v0.2/docs/integrations/providers/ieit_systems/"}, "ChatTongyi": {"ChatTongyi": "https://python.langchain.com/v0.2/docs/integrations/chat/tongyi/", "Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/"}, "PromptLayerChatOpenAI": {"PromptLayerChatOpenAI": "https://python.langchain.com/v0.2/docs/integrations/chat/promptlayer_chatopenai/", "PromptLayer": "https://python.langchain.com/v0.2/docs/integrations/providers/promptlayer/"}, "ChatSparkLLM": {"SparkLLM Chat": "https://python.langchain.com/v0.2/docs/integrations/chat/sparkllm/", "iFlytek": "https://python.langchain.com/v0.2/docs/integrations/providers/iflytek/"}, "MoonshotChat": {"MoonshotChat": "https://python.langchain.com/v0.2/docs/integrations/chat/moonshot/"}, "ChatDappierAI": {"Dappier AI": "https://python.langchain.com/v0.2/docs/integrations/chat/dappier/"}, "ChatMaritalk": {"Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/", "MariTalk": "https://python.langchain.com/v0.2/docs/integrations/providers/maritalk/"}, "OnlinePDFLoader": {"Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/", "UnstructuredPDFLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/unstructured_pdfloader/"}, "load_qa_chain": {"Maritalk": "https://python.langchain.com/v0.2/docs/integrations/chat/maritalk/", "Amazon Textract ": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/amazon_textract/", "SageMakerEndpoint": "https://python.langchain.com/v0.2/docs/integrations/llms/sagemaker/"}, "ChatPremAI": {"ChatPremAI": "https://python.langchain.com/v0.2/docs/integrations/chat/premai/", "PremAI": "https://python.langchain.com/v0.2/docs/integrations/providers/premai/"}, "ChatAnyscale": {"ChatAnyscale": "https://python.langchain.com/v0.2/docs/integrations/chat/anyscale/", "Anyscale": "https://python.langchain.com/v0.2/docs/integrations/providers/anyscale/"}, "ChatYandexGPT": {"ChatYandexGPT": "https://python.langchain.com/v0.2/docs/integrations/chat/yandex/", "Yandex": "https://python.langchain.com/v0.2/docs/integrations/providers/yandex/"}, "ChatPerplexity": {"ChatPerplexity": "https://python.langchain.com/v0.2/docs/integrations/chat/perplexity/", "Perplexity": "https://python.langchain.com/v0.2/docs/integrations/providers/perplexity/"}, "ChatAnthropicTools": {"[Deprecated] Experimental Anthropic Tools Wrapper": "https://python.langchain.com/v0.2/docs/integrations/chat/anthropic_functions/"}, "DeepEvalCallbackHandler": {"Confident": "https://python.langchain.com/v0.2/docs/integrations/callbacks/confident/", "Confident AI": "https://python.langchain.com/v0.2/docs/integrations/providers/confident/"}, "LLMonitorCallbackHandler": {"LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/providers/llmonitor/"}, "identify": {"LLMonitor": "https://python.langchain.com/v0.2/docs/integrations/callbacks/llmonitor/"}, "ContextCallbackHandler": {"Context": "https://python.langchain.com/v0.2/docs/integrations/providers/context/"}, "FiddlerCallbackHandler": {"Fiddler": "https://python.langchain.com/v0.2/docs/integrations/providers/fiddler/"}, "LabelStudioCallbackHandler": {"Label Studio": "https://python.langchain.com/v0.2/docs/integrations/providers/labelstudio/"}, "CometTracer": {"Comet Tracing": "https://python.langchain.com/v0.2/docs/integrations/callbacks/comet_tracing/", "Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/"}, "ArgillaCallbackHandler": {"Argilla": "https://python.langchain.com/v0.2/docs/integrations/providers/argilla/"}, "StdOutCallbackHandler": {"Argilla": "https://python.langchain.com/v0.2/docs/integrations/callbacks/argilla/", "Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/", "ClearML": "https://python.langchain.com/v0.2/docs/integrations/providers/clearml_tracking/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/"}, "PromptLayerCallbackHandler": {"PromptLayer": "https://python.langchain.com/v0.2/docs/integrations/providers/promptlayer/"}, "StreamlitCallbackHandler": {"Streamlit": "https://python.langchain.com/v0.2/docs/integrations/providers/streamlit/", "GPT4All": "https://python.langchain.com/v0.2/docs/integrations/providers/gpt4all/"}, "UpTrainCallbackHandler": {"UpTrain": "https://python.langchain.com/v0.2/docs/integrations/providers/uptrain/"}, "TrubricsCallbackHandler": {"Trubrics": "https://python.langchain.com/v0.2/docs/integrations/providers/trubrics/"}, "InfinoCallbackHandler": {"Infino": "https://python.langchain.com/v0.2/docs/integrations/providers/infino/"}, "UpstashRatelimitError": {"Upstash Ratelimit Callback": "https://python.langchain.com/v0.2/docs/integrations/callbacks/upstash_ratelimit/"}, "UpstashRatelimitHandler": {"Upstash Ratelimit Callback": "https://python.langchain.com/v0.2/docs/integrations/callbacks/upstash_ratelimit/"}, "FigmaFileLoader": {"Figma": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/figma/"}, "Baseten": {"Baseten": "https://python.langchain.com/v0.2/docs/integrations/llms/baseten/"}, "WeatherDataLoader": {"Weather": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/weather/"}, "Tair": {"Tair": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tair/", "Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/"}, "CollegeConfidentialLoader": {"College Confidential": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/college_confidential/"}, "RWKV": {"RWKV-4": "https://python.langchain.com/v0.2/docs/integrations/providers/rwkv/"}, "LakeFSLoader": {"lakeFS": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/lakefs/"}, "FaunaLoader": {"Fauna": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/fauna/"}, "OCIGenAI": {"Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/v0.2/docs/integrations/providers/oci/", "# Oracle Cloud Infrastructure Generative AI": "https://python.langchain.com/v0.2/docs/integrations/llms/oci_generative_ai/"}, "OCIModelDeploymentVLLM": {"Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/v0.2/docs/integrations/providers/oci/", "OCI Data Science Model Deployment Endpoint": "https://python.langchain.com/v0.2/docs/integrations/llms/oci_model_deployment_endpoint/"}, "OCIModelDeploymentTGI": {"Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/v0.2/docs/integrations/providers/oci/", "OCI Data Science Model Deployment Endpoint": "https://python.langchain.com/v0.2/docs/integrations/llms/oci_model_deployment_endpoint/"}, "OracleDocLoader": {"OracleAI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/providers/oracleai/", "Oracle AI Vector Search: Document Processing": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/oracleai/"}, "OracleTextSplitter": {"OracleAI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/providers/oracleai/", "Oracle AI Vector Search: Document Processing": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/oracleai/"}, "OracleVS": {"OracleAI Vector Search": "https://python.langchain.com/v0.2/docs/integrations/providers/oracleai/", "Oracle AI Vector Search: Vector Store": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/oracle/"}, "Lantern": {"Lantern": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/lantern/"}, "DropboxLoader": {"Dropbox": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/dropbox/"}, "ForefrontAI": {"ForefrontAI": "https://python.langchain.com/v0.2/docs/integrations/llms/forefrontai/"}, "CometCallbackHandler": {"Comet": "https://python.langchain.com/v0.2/docs/integrations/providers/comet_tracking/"}, "CTransformers": {"C Transformers": "https://python.langchain.com/v0.2/docs/integrations/llms/ctransformers/"}, "BiliBiliLoader": {"BiliBili": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/bilibili/"}, "TencentCOSDirectoryLoader": {"Tencent": "https://python.langchain.com/v0.2/docs/integrations/providers/tencent/", "Tencent COS Directory": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/tencent_cos_directory/"}, "TencentCOSFileLoader": {"Tencent": "https://python.langchain.com/v0.2/docs/integrations/providers/tencent/", "Tencent COS File": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/tencent_cos_file/"}, "OBSDirectoryLoader": {"Huawei": "https://python.langchain.com/v0.2/docs/integrations/providers/huawei/", "Huawei OBS Directory": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/huawei_obs_directory/"}, "OBSFileLoader": {"Huawei": "https://python.langchain.com/v0.2/docs/integrations/providers/huawei/", "Huawei OBS File": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/huawei_obs_file/"}, "DiffbotLoader": {"Diffbot": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/diffbot/"}, "DiffbotGraphTransformer": {"Diffbot": "https://python.langchain.com/v0.2/docs/integrations/graphs/diffbot/", "Neo4j": "https://python.langchain.com/v0.2/docs/integrations/providers/neo4j/"}, "DeepSparse": {"DeepSparse": "https://python.langchain.com/v0.2/docs/integrations/llms/deepsparse/"}, "AimCallbackHandler": {"Aim": "https://python.langchain.com/v0.2/docs/integrations/providers/aim_tracking/"}, "ModernTreasuryLoader": {"Modern Treasury": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/modern_treasury/"}, "GitHubIssuesLoader": {"GitHub": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/github/"}, "GithubFileLoader": {"GitHub": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/github/"}, "Banana": {"Banana": "https://python.langchain.com/v0.2/docs/integrations/llms/banana/"}, "InfinispanVS": {"Infinispan VS": "https://python.langchain.com/v0.2/docs/integrations/providers/infinispanvs/", "Infinispan": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/infinispanvs/"}, "CerebriumAI": {"CerebriumAI": "https://python.langchain.com/v0.2/docs/integrations/llms/cerebriumai/"}, "GutenbergLoader": {"Gutenberg": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/gutenberg/"}, "WikipediaLoader": {"Wikipedia": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/wikipedia/", "Diffbot": "https://python.langchain.com/v0.2/docs/integrations/graphs/diffbot/"}, "ConfluenceLoader": {"Confluence": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/confluence/"}, "Predibase": {"Predibase": "https://python.langchain.com/v0.2/docs/integrations/llms/predibase/"}, "Beam": {"Beam": "https://python.langchain.com/v0.2/docs/integrations/llms/beam/"}, "GrobidParser": {"Grobid": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/grobid/"}, "Typesense": {"Typesense": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/typesense/"}, "Hologres": {"Hologres": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hologres/", "Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/"}, "ArangoGraph": {"ArangoDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/arangodb/"}, "ArangoGraphQAChain": {"ArangoDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/arangodb/"}, "ArcGISLoader": {"ArcGIS": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/arcgis/"}, "WandbCallbackHandler": {"Weights & Biases": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracking/"}, "ObsidianLoader": {"Obsidian": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/obsidian/"}, "BrowserbaseLoader": {"Browserbase": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/browserbase/"}, "OctoAIEndpoint": {"OctoAI": "https://python.langchain.com/v0.2/docs/integrations/llms/octoai/"}, "OctoAIEmbeddings": {"OctoAI": "https://python.langchain.com/v0.2/docs/integrations/providers/octoai/"}, "Nebula": {"Nebula": "https://python.langchain.com/v0.2/docs/integrations/providers/symblai_nebula/", "Nebula (Symbl.ai)": "https://python.langchain.com/v0.2/docs/integrations/llms/symblai_nebula/"}, "Writer": {"Writer": "https://python.langchain.com/v0.2/docs/integrations/llms/writer/"}, "BaichuanLLM": {"Baichuan": "https://python.langchain.com/v0.2/docs/integrations/providers/baichuan/", "Baichuan LLM": "https://python.langchain.com/v0.2/docs/integrations/llms/baichuan/"}, "ApacheDoris": {"Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/"}, "ZepCloudVectorStore": {"Zep": "https://python.langchain.com/v0.2/docs/integrations/providers/zep/", "Zep Cloud": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zep_cloud/"}, "BrowserlessLoader": {"Browserless": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/browserless/"}, "AZLyricsLoader": {"AZLyrics": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/azlyrics/"}, "ToMarkdownLoader": {"2Markdown": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/tomarkdown/"}, "SparkLLM": {"iFlytek": "https://python.langchain.com/v0.2/docs/integrations/providers/iflytek/", "SparkLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/sparkllm/"}, "Mlflow": {"MLflow Deployments for LLMs": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow/"}, "MlflowEmbeddings": {"MLflow Deployments for LLMs": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow/"}, "ChatMlflow": {"MLflow Deployments for LLMs": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow/"}, "GitLoader": {"Git": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/git/"}, "MlflowAIGateway": {"MLflow AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_ai_gateway/"}, "MlflowAIGatewayEmbeddings": {"MLflow AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_ai_gateway/"}, "ChatMLflowAIGateway": {"MLflow AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_ai_gateway/"}, "Tigris": {"Tigris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tigris/"}, "Meilisearch": {"Meilisearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/meilisearch/"}, "SQLDatabaseChain": {"Rebuff": "https://python.langchain.com/v0.2/docs/integrations/providers/rebuff/"}, "SnowflakeLoader": {"Snowflake": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/snowflake/"}, "CubeSemanticLoader": {"Cube": "https://python.langchain.com/v0.2/docs/integrations/providers/cube/", "Cube Semantic Layer": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/cube_semantic/"}, "Clickhouse": {"ClickHouse": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/clickhouse/"}, "ClickhouseSettings": {"ClickHouse": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/clickhouse/"}, "TelegramChatFileLoader": {"Telegram": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/telegram/"}, "TelegramChatApiLoader": {"Telegram": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/telegram/"}, "PredictionGuard": {"Prediction Guard": "https://python.langchain.com/v0.2/docs/integrations/llms/predictionguard/"}, "Together": {"Together AI": "https://python.langchain.com/v0.2/docs/integrations/llms/together/"}, "NotionDirectoryLoader": {"Notion DB": "https://python.langchain.com/v0.2/docs/integrations/providers/notion/", "Notion DB 2/2": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/notion/"}, "NotionDBLoader": {"Notion DB": "https://python.langchain.com/v0.2/docs/integrations/providers/notion/", "Notion DB 2/2": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/notiondb/"}, "MWDumpLoader": {"MediaWikiDump": "https://python.langchain.com/v0.2/docs/integrations/providers/mediawikidump/", "MediaWiki Dump": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/mediawikidump/"}, "BraveSearchLoader": {"Brave Search": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/brave_search/"}, "StarRocks": {"StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/"}, "GooseAI": {"GooseAI": "https://python.langchain.com/v0.2/docs/integrations/llms/gooseai/"}, "DatadogLogsLoader": {"Datadog Logs": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/datadog_logs/"}, "ApifyWrapper": {"Apify": "https://python.langchain.com/v0.2/docs/integrations/providers/apify/", "Apify Dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/apify_dataset/"}, "ApifyDatasetLoader": {"Apify": "https://python.langchain.com/v0.2/docs/integrations/providers/apify/", "Apify Dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/apify_dataset/"}, "NLPCloud": {"NLPCloud": "https://python.langchain.com/v0.2/docs/integrations/providers/nlpcloud/", "NLP Cloud": "https://python.langchain.com/v0.2/docs/integrations/llms/nlpcloud/"}, "Milvus": {"Milvus": "https://python.langchain.com/v0.2/docs/integrations/providers/milvus/", "Zilliz": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zilliz/"}, "SemaDB": {"SemaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/semadb/"}, "GitbookLoader": {"GitBook": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/gitbook/"}, "Rockset": {"Rockset": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/rockset/"}, "RocksetLoader": {"Rockset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/rockset/"}, "Minimax": {"Minimax": "https://python.langchain.com/v0.2/docs/integrations/llms/minimax/"}, "UnstructuredCHMLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/"}, "UnstructuredCSVLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "CSV": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/csv/"}, "UnstructuredEmailLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Email": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/email/"}, "UnstructuredEPubLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "EPub ": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/epub/"}, "UnstructuredFileIOLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Google Drive": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/google_drive/"}, "UnstructuredImageLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Images": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image/"}, "UnstructuredODTLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Open Document Format (ODT)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/odt/"}, "UnstructuredOrgModeLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "Org-mode": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/org_mode/"}, "UnstructuredPDFLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "UnstructuredPDFLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/unstructured_pdfloader/"}, "UnstructuredRSTLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "RST": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/rst/"}, "UnstructuredRTFLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/"}, "UnstructuredTSVLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "TSV": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/tsv/"}, "UnstructuredURLLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "URL": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/url/"}, "UnstructuredXMLLoader": {"Unstructured": "https://python.langchain.com/v0.2/docs/integrations/providers/unstructured/", "UnstructuredXMLLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/xml/"}, "SelfHostedPipeline": {"Runhouse": "https://python.langchain.com/v0.2/docs/integrations/llms/runhouse/"}, "SelfHostedHuggingFaceLLM": {"Runhouse": "https://python.langchain.com/v0.2/docs/integrations/llms/runhouse/"}, "MlflowCallbackHandler": {"MLflow": "https://python.langchain.com/v0.2/docs/integrations/providers/mlflow_tracking/"}, "SpreedlyLoader": {"Spreedly": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/spreedly/"}, "OpenLLM": {"OpenLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/openllm/"}, "PubMedLoader": {"PubMed": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pubmed/"}, "SearxSearchResults": {"SearxNG Search API": "https://python.langchain.com/v0.2/docs/integrations/providers/searx/"}, "Modal": {"Modal": "https://python.langchain.com/v0.2/docs/integrations/llms/modal/"}, "OpenCityDataLoader": {"Geopandas": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/geopandas/", "Open City Data": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/open_city_data/"}, "PGEmbedding": {"Postgres Embedding": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgembedding/"}, "SQLiteVSS": {"SQLite": "https://python.langchain.com/v0.2/docs/integrations/providers/sqlite/", "SQLite-VSS": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sqlitevss/"}, "Xinference": {"Xorbits Inference (Xinference)": "https://python.langchain.com/v0.2/docs/integrations/llms/xinference/"}, "IFixitLoader": {"iFixit": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/ifixit/"}, "AlephAlpha": {"Aleph Alpha": "https://python.langchain.com/v0.2/docs/integrations/llms/aleph_alpha/"}, "PipelineAI": {"PipelineAI": "https://python.langchain.com/v0.2/docs/integrations/llms/pipelineai/"}, "FacebookChatLoader": {"Facebook - Meta": "https://python.langchain.com/v0.2/docs/integrations/providers/facebook/", "Facebook Chat": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/facebook_chat/"}, "Epsilla": {"Epsilla": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/epsilla/"}, "AwaDB": {"AwaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/awadb/"}, "ArxivLoader": {"Arxiv": "https://python.langchain.com/v0.2/docs/integrations/providers/arxiv/", "ArxivLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/arxiv/"}, "BlockchainDocumentLoader": {"Alchemy": "https://python.langchain.com/v0.2/docs/integrations/providers/alchemy/", "Blockchain": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/blockchain/"}, "BlockchainType": {"Alchemy": "https://python.langchain.com/v0.2/docs/integrations/providers/alchemy/", "Blockchain": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/blockchain/"}, "Anyscale": {"Anyscale": "https://python.langchain.com/v0.2/docs/integrations/llms/anyscale/"}, "StripeLoader": {"Stripe": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/stripe/"}, "StochasticAI": {"StochasticAI": "https://python.langchain.com/v0.2/docs/integrations/llms/stochasticai/"}, "Bagel": {"BagelDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/bageldb/", "Bagel": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/bagel/"}, "TigerGraph": {"TigerGraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/tigergraph/"}, "BlackboardLoader": {"Blackboard": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/blackboard/"}, "YandexGPT": {"Yandex": "https://python.langchain.com/v0.2/docs/integrations/providers/yandex/", "YandexGPT": "https://python.langchain.com/v0.2/docs/integrations/llms/yandex/"}, "UpstashVectorStore": {"Upstash Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/upstash/"}, "NucliaTextTransformer": {"Nuclia": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/nuclia_transformer/"}, "NucliaLoader": {"Nuclia": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/nuclia/"}, "NucliaDB": {"Nuclia": "https://python.langchain.com/v0.2/docs/integrations/providers/nuclia/", "NucliaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/nucliadb/"}, "AnalyticDB": {"AnalyticDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/analyticdb/", "Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/"}, "GoogleApiYoutubeLoader": {"YouTube": "https://python.langchain.com/v0.2/docs/integrations/providers/youtube/", "YouTube transcripts": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_transcript/"}, "PromptLayerOpenAI": {"PromptLayer": "https://python.langchain.com/v0.2/docs/integrations/providers/promptlayer/", "PromptLayer OpenAI": "https://python.langchain.com/v0.2/docs/integrations/llms/promptlayer_openai/"}, "USearch": {"USearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/usearch/"}, "EtherscanLoader": {"Etherscan": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/etherscan/"}, "Arcee": {"Arcee": "https://python.langchain.com/v0.2/docs/integrations/llms/arcee/"}, "WhyLabsCallbackHandler": {"WhyLabs": "https://python.langchain.com/v0.2/docs/integrations/providers/whylabs_profiling/"}, "YiLLM": {"01.AI": "https://python.langchain.com/v0.2/docs/integrations/providers/yi/", "Yi": "https://python.langchain.com/v0.2/docs/integrations/llms/yi/"}, "IuguLoader": {"Iugu": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/iugu/"}, "CouchbaseLoader": {"Couchbase": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/couchbase/"}, "FlyteCallbackHandler": {"Flyte": "https://python.langchain.com/v0.2/docs/integrations/providers/flyte/"}, "wandb_tracing_enabled": {"WandB Tracing": "https://python.langchain.com/v0.2/docs/integrations/providers/wandb_tracing/"}, "ManifestWrapper": {"Hazy Research": "https://python.langchain.com/v0.2/docs/integrations/providers/hazy_research/", "Manifest": "https://python.langchain.com/v0.2/docs/integrations/llms/manifest/"}, "OntotextGraphDBGraph": {"Ontotext GraphDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/ontotext/"}, "OntotextGraphDBQAChain": {"Ontotext GraphDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/ontotext/"}, "Marqo": {"Marqo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/marqo/"}, "IMSDbLoader": {"IMSDb": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/imsdb/"}, "TiDBLoader": {"TiDB": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/tidb/"}, "TiDBVectorStore": {"TiDB": "https://python.langchain.com/v0.2/docs/integrations/providers/tidb/", "TiDB Vector": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tidb_vector/"}, "DeepInfra": {"DeepInfra": "https://python.langchain.com/v0.2/docs/integrations/llms/deepinfra/"}, "RedditPostsLoader": {"Reddit": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/reddit/"}, "TrelloLoader": {"Trello": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/trello/"}, "AtlasDB": {"Atlas": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/atlas/"}, "SKLearnVectorStore": {"scikit-learn": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sklearn/"}, "EverNoteLoader": {"EverNote": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/evernote/"}, "VDMS": {"VDMS": "https://python.langchain.com/v0.2/docs/integrations/providers/vdms/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vdms/"}, "VDMS_Client": {"VDMS": "https://python.langchain.com/v0.2/docs/integrations/providers/vdms/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vdms/"}, "TwitterTweetLoader": {"Twitter": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/twitter/"}, "DiscordChatLoader": {"Discord": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/discord/"}, "AssemblyAIAudioTranscriptLoader": {"AssemblyAI": "https://python.langchain.com/v0.2/docs/integrations/providers/assemblyai/", "AssemblyAI Audio Transcripts": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/assemblyai/"}, "KineticaLoader": {"Kinetica": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/kinetica/"}, "ClearMLCallbackHandler": {"ClearML": "https://python.langchain.com/v0.2/docs/integrations/providers/clearml_tracking/"}, "CohereRagRetriever": {"Cohere": "https://python.langchain.com/v0.2/docs/integrations/providers/cohere/"}, "SlackDirectoryLoader": {"Slack": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/slack/"}, "OllamaEmbeddings": {"Ollama": "https://python.langchain.com/v0.2/docs/integrations/providers/ollama/", "ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/"}, "HNLoader": {"Hacker News": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/hacker_news/", "Google Spanner": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/google_spanner/"}, "CTranslate2": {"CTranslate2": "https://python.langchain.com/v0.2/docs/integrations/llms/ctranslate2/"}, "QianfanLLMEndpoint": {"Baidu": "https://python.langchain.com/v0.2/docs/integrations/providers/baidu/", "Baidu Qianfan": "https://python.langchain.com/v0.2/docs/integrations/llms/baidu_qianfan_endpoint/"}, "BESVectorStore": {"Baidu": "https://python.langchain.com/v0.2/docs/integrations/providers/baidu/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiducloud_vector_search/"}, "BaiduVectorDB": {"Baidu": "https://python.langchain.com/v0.2/docs/integrations/providers/baidu/", "Baidu VectorDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/baiduvectordb/"}, "Aphrodite": {"PygmalionAI": "https://python.langchain.com/v0.2/docs/integrations/providers/pygmalionai/", "Aphrodite Engine": "https://python.langchain.com/v0.2/docs/integrations/llms/aphrodite/"}, "PaiEasEndpoint": {"Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/v0.2/docs/integrations/llms/alibabacloud_pai_eas_endpoint/"}, "MaxComputeLoader": {"Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud MaxCompute": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/alibaba_cloud_maxcompute/"}, "AlibabaCloudOpenSearch": {"Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/alibabacloud_opensearch/"}, "AlibabaCloudOpenSearchSettings": {"Alibaba Cloud": "https://python.langchain.com/v0.2/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/alibabacloud_opensearch/"}, "DocusaurusLoader": {"Docusaurus": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/docusaurus/"}, "Annoy": {"Annoy": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/annoy/"}, "BibtexLoader": {"BibTeX": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/bibtex/"}, "Yuan2": {"IEIT Systems": "https://python.langchain.com/v0.2/docs/integrations/providers/ieit_systems/", "Yuan2.0": "https://python.langchain.com/v0.2/docs/integrations/llms/yuan2/"}, "CassandraLoader": {"Cassandra": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/cassandra/"}, "Vearch": {"Vearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vearch/"}, "JoplinLoader": {"Joplin": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/joplin/"}, "ArthurCallbackHandler": {"Arthur": "https://python.langchain.com/v0.2/docs/integrations/providers/arthur_tracking/"}, "AcreomLoader": {"Acreom": "https://python.langchain.com/v0.2/docs/integrations/providers/acreom/", "acreom": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/acreom/"}, "KDBAI": {"KDB.AI": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kdbai/"}, "DuckDBLoader": {"DuckDB": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/duckdb/"}, "Petals": {"Petals": "https://python.langchain.com/v0.2/docs/integrations/llms/petals/"}, "MomentoVectorIndex": {"Momento": "https://python.langchain.com/v0.2/docs/integrations/providers/momento/", "Momento Vector Index (MVI)": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/momento_vector_index/"}, "NIBittensorLLM": {"Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/"}, "AirtableLoader": {"Airtable": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airtable/"}, "LarkSuiteDocLoader": {"ByteDance": "https://python.langchain.com/v0.2/docs/integrations/providers/byte_dance/", "LarkSuite (FeiShu)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/larksuite/"}, "JavelinAIGateway": {"Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/v0.2/docs/integrations/llms/javelin/"}, "JavelinAIGatewayEmbeddings": {"Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/v0.2/docs/integrations/llms/javelin/"}, "ChatJavelinAIGateway": {"Javelin AI Gateway": "https://python.langchain.com/v0.2/docs/integrations/providers/javelin_ai_gateway/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/v0.2/docs/integrations/llms/javelin/"}, "TensorflowDatasetLoader": {"TensorFlow Datasets": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/tensorflow_datasets/"}, "Clarifai": {"Clarifai": "https://python.langchain.com/v0.2/docs/integrations/llms/clarifai/"}, "DataheraldTextToSQL": {"Dataherald": "https://python.langchain.com/v0.2/docs/integrations/providers/dataherald/"}, "RoamLoader": {"Roam": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/roam/"}, "RerankConfig": {"Vectara Chat": "https://python.langchain.com/v0.2/docs/integrations/providers/vectara/vectara_chat/", "Vectara": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vectara/"}, "SummaryConfig": {"Vectara Chat": "https://python.langchain.com/v0.2/docs/integrations/providers/vectara/vectara_chat/", "Vectara": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vectara/"}, "VectaraQueryConfig": {"Vectara Chat": "https://python.langchain.com/v0.2/docs/integrations/providers/vectara/vectara_chat/", "Vectara": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vectara/"}, "PebbloRetrievalQA": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "AuthContext": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "ChainInput": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "SemanticContext": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/v0.2/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "RedisStore": {"RedisStore": "https://python.langchain.com/v0.2/docs/integrations/stores/redis/"}, "CassandraByteStore": {"CassandraByteStore": "https://python.langchain.com/v0.2/docs/integrations/stores/cassandra/"}, "UpstashRedisByteStore": {"UpstashRedisByteStore": "https://python.langchain.com/v0.2/docs/integrations/stores/upstash_redis/"}, "ApacheDorisSettings": {"Apache Doris": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/apache_doris/"}, "DistanceStrategy": {"Kinetica Vectorstore API": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/kinetica/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sap_hanavector/", "SingleStoreDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/singlestoredb/", "Oracle AI Vector Search: Vector Store": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/oracle/", "SemaDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/semadb/"}, "SentenceTransformerEmbeddings": {"SQLite-VSS": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/sqlitevss/", "Vespa": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vespa/"}, "Vald": {"Vald": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vald/"}, "RetrievalQAWithSourcesChain": {"Weaviate": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/weaviate/", "Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/jaguar/", "Neo4j Vector Index": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/neo4jvector/", "Marqo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/marqo/", "Psychic": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/psychic/"}, "Yellowbrick": {"Yellowbrick": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/yellowbrick/"}, "LLMRails": {"LLMRails": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/llm_rails/"}, "ChatGooglePalm": {"ScaNN": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/scann/"}, "Hippo": {"Hippo": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/hippo/"}, "RedisText": {"Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/redis/"}, "RedisNum": {"Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/redis/"}, "RedisTag": {"Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/redis/"}, "RedisFilter": {"Redis": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/redis/"}, "VespaStore": {"Vespa": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vespa/"}, "NeuralDBVectorStore": {"ThirdAI NeuralDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/thirdai_neuraldb/"}, "VikingDB": {"viking DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vikingdb/"}, "VikingDBConfig": {"viking DB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vikingdb/"}, "ApertureDB": {"ApertureDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aperturedb/"}, "Relyt": {"Relyt": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/relyt/"}, "oraclevs": {"Oracle AI Vector Search: Vector Store": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/oracle/"}, "VLite": {"vlite": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/vlite/"}, "AzureCosmosDBNoSqlVectorSearch": {"Azure Cosmos DB No SQL": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/azure_cosmos_db_no_sql/"}, "DuckDB": {"DuckDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/duckdb/"}, "StarRocksSettings": {"StarRocks": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/starrocks/"}, "PathwayVectorClient": {"Pathway": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pathway/"}, "DocArrayHnswSearch": {"DocArray HnswSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/docarray_hnsw/"}, "TileDB": {"TileDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/tiledb/"}, "EcloudESVectorStore": {"China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/ecloud_vector_search/"}, "SurrealDBStore": {"SurrealDB": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/surrealdb/"}, "ManticoreSearch": {"ManticoreSearch VectorStore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/manticore_search/"}, "ManticoreSearchSettings": {"ManticoreSearch VectorStore": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/manticore_search/"}, "HuggingFaceEmbeddings": {"Aerospike": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aerospike/", "self-query-qdrant": "https://python.langchain.com/v0.2/docs/templates/self-query-qdrant/"}, "Aerospike": {"Aerospike": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/aerospike/"}, "ElasticVectorSearch": {"Elasticsearch": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/elasticsearch/"}, "PGVecto_rs": {"PGVecto.rs": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/pgvecto_rs/"}, "ZepVectorStore": {"Zep": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zep/"}, "CollectionConfig": {"Zep": "https://python.langchain.com/v0.2/docs/integrations/vectorstores/zep/"}, "openai": {"OpenAI Adapter(Old)": "https://python.langchain.com/v0.2/docs/integrations/adapters/openai-old/", "OpenAI Adapter": "https://python.langchain.com/v0.2/docs/integrations/adapters/openai/"}, "RankLLMRerank": {"RankLLM Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/rankllm-reranker/"}, "AsyncChromiumLoader": {"Beautiful Soup": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/beautiful_soup/", "Async Chromium": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/async_chromium/"}, "BeautifulSoupTransformer": {"Beautiful Soup": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/beautiful_soup/"}, "VolcengineRerank": {"Volcengine Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/volcengine_rerank/"}, "OpenVINOReranker": {"OpenVINO Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openvino_rerank/"}, "create_metadata_tagger": {"OpenAI metadata tagger": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/openai_metadata_tagger/"}, "DoctranPropertyExtractor": {"Doctran: extract properties": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/doctran_extract_properties/"}, "DoctranQATransformer": {"Doctran: interrogate documents": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/doctran_interrogate_document/"}, "CrossEncoderReranker": {"Cross Encoder Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/cross_encoder_reranker/"}, "HuggingFaceCrossEncoder": {"Cross Encoder Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/cross_encoder_reranker/"}, "JinaRerank": {"Jina Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/jina_rerank/"}, "DoctranTextTranslator": {"Doctran: language translation": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/doctran_translate_document/"}, "MarkdownifyTransformer": {"Markdownify": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/markdownify/"}, "DashScopeRerank": {"DashScope Reranker": "https://python.langchain.com/v0.2/docs/integrations/document_transformers/dashscope_rerank/"}, "XorbitsLoader": {"Xorbits Pandas DataFrame": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/xorbits/"}, "OutlookMessageLoader": {"Email": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/email/"}, "TranscriptFormat": {"AssemblyAI Audio Transcripts": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/assemblyai/", "YouTube transcripts": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_transcript/"}, "ScrapingAntLoader": {"ScrapingAnt": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/scrapingant/"}, "AirbyteSalesforceLoader": {"Airbyte Salesforce (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_salesforce/"}, "AirbyteCDKLoader": {"Airbyte CDK (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_cdk/"}, "Docx2txtLoader": {"Microsoft Word": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/microsoft_word/"}, "RSpaceLoader": {"# replace these ids with some from your own research notes.": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/rspace/"}, "SeleniumURLLoader": {"URL": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/url/"}, "PlaywrightURLLoader": {"URL": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/url/"}, "AirbyteJSONLoader": {"Airbyte JSON (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_json/"}, "AirbyteStripeLoader": {"Airbyte Stripe (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_stripe/"}, "GeoDataFrameLoader": {"Geopandas": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/geopandas/"}, "VectorstoreIndexCreator": {"HuggingFace dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/hugging_face_dataset/", "Spreedly": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/spreedly/", "Figma": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/figma/", "Apify Dataset": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/apify_dataset/", "Iugu": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/iugu/", "Stripe": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/stripe/", "Modern Treasury": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/modern_treasury/"}, "AirbyteTypeformLoader": {"Airbyte Typeform (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_typeform/"}, "MHTMLLoader": {"mhtml": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/mhtml/"}, "SpiderLoader": {"Spider": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/spider/"}, "NewsURLLoader": {"News URL": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/news/"}, "ImageCaptionLoader": {"Image captions": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/image_captions/"}, "LLMSherpaFileLoader": {"LLM Sherpa": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/llmsherpa/"}, "PyMuPDFLoader": {"PyMuPDF": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pymupdf/"}, "ScrapflyLoader": {"# ScrapFly": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/scrapfly/"}, "TomlLoader": {"TOML": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/toml/"}, "PsychicLoader": {"Psychic": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/psychic/"}, "FireCrawlLoader": {"FireCrawl": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/firecrawl/"}, "LarkSuiteWikiLoader": {"LarkSuite (FeiShu)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/larksuite/"}, "FakeListLLM": {"LarkSuite (FeiShu)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/larksuite/"}, "MergedDataLoader": {"Merge Documents Loader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/merge_doc/"}, "RecursiveUrlLoader": {"Recursive URL": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/recursive_url/"}, "PDFPlumberLoader": {"PDFPlumber": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pdfplumber/"}, "PyPDFium2Loader": {"PyPDFium2Loader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pypdfium2/"}, "AirbyteHubspotLoader": {"Airbyte Hubspot (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_hubspot/"}, "AirbyteGongLoader": {"Airbyte Gong (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_gong/"}, "AstraDBLoader": {"AstraDB": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/astradb/"}, "ReadTheDocsLoader": {"ReadTheDocs Documentation": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/readthedocs_documentation/"}, "MathpixPDFLoader": {"MathPixPDFLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/mathpix/"}, "PolarsDataFrameLoader": {"Polars DataFrame": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/polars_dataframe/"}, "DataFrameLoader": {"Pandas DataFrame": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pandas_dataframe/"}, "SurrealDBLoader": {"SurrealDB": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/surrealdb/"}, "DedocFileLoader": {"Dedoc": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/dedoc/"}, "DedocPDFLoader": {"Dedoc": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/dedoc/"}, "DedocAPIFileLoader": {"Dedoc": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/dedoc/"}, "GoogleApiClient": {"YouTube transcripts": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/youtube_transcript/"}, "ConcurrentLoader": {"Concurrent Loader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/concurrent/"}, "RSSFeedLoader": {"RSS Feeds": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/rss/"}, "PebbloSafeLoader": {"Pebblo Safe DocumentLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pebblo/"}, "VsdxLoader": {"Vsdx": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/vsdx/"}, "NotebookLoader": {"Jupyter Notebook": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/jupyter_notebook/"}, "OracleAutonomousDatabaseLoader": {"Oracle Autonomous Database": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/oracleadb_loader/"}, "LanguageParser": {"Source Code": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/source_code/"}, "SRTLoader": {"Subtitle": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/subtitle/"}, "MastodonTootsLoader": {"Mastodon": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/mastodon/"}, "AirbyteShopifyLoader": {"Airbyte Shopify (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_shopify/"}, "PyPDFDirectoryLoader": {"PyPDFDirectoryLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pypdfdirectory/"}, "PySparkDataFrameLoader": {"PySpark": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pyspark_dataframe/"}, "AirbyteZendeskSupportLoader": {"Airbyte Zendesk Support (Deprecated)": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/airbyte_zendesk_support/"}, "CoNLLULoader": {"CoNLL-U": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/conll-u/"}, "MongodbLoader": {"MongoDB": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/mongodb/"}, "SitemapLoader": {"Sitemap": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/sitemap/"}, "YuqueLoader": {"Yuque": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/yuque/"}, "PDFMinerLoader": {"PDFMiner": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pdfminer/"}, "PDFMinerPDFasHTMLLoader": {"PDFMiner": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/pdfminer/"}, "QuipLoader": {"Quip": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/quip/"}, "LangSmithLoader": {"LangSmithLoader": "https://python.langchain.com/v0.2/docs/integrations/document_loaders/langsmith/"}, "MemgraphGraph": {"Memgraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/memgraph/"}, "GraphSparqlQAChain": {"RDFLib": "https://python.langchain.com/v0.2/docs/integrations/graphs/rdflib_sparql/"}, "RdfGraph": {"RDFLib": "https://python.langchain.com/v0.2/docs/integrations/graphs/rdflib_sparql/"}, "NebulaGraphQAChain": {"NebulaGraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/nebula_graph/"}, "NebulaGraph": {"NebulaGraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/nebula_graph/"}, "GremlinQAChain": {"Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/v0.2/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "GraphIndexCreator": {"NetworkX": "https://python.langchain.com/v0.2/docs/integrations/graphs/networkx/"}, "GraphQAChain": {"NetworkX": "https://python.langchain.com/v0.2/docs/integrations/graphs/networkx/"}, "NetworkxEntityGraph": {"NetworkX": "https://python.langchain.com/v0.2/docs/integrations/graphs/networkx/"}, "HugeGraphQAChain": {"HugeGraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/hugegraph/"}, "HugeGraph": {"HugeGraph": "https://python.langchain.com/v0.2/docs/integrations/graphs/hugegraph/"}, "AGEGraph": {"Apache AGE": "https://python.langchain.com/v0.2/docs/integrations/graphs/apache_age/"}, "KuzuQAChain": {"Kuzu": "https://python.langchain.com/v0.2/docs/integrations/graphs/kuzu_db/"}, "KuzuGraph": {"Kuzu": "https://python.langchain.com/v0.2/docs/integrations/graphs/kuzu_db/"}, "FalkorDBQAChain": {"FalkorDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/falkordb/"}, "FalkorDBGraph": {"FalkorDB": "https://python.langchain.com/v0.2/docs/integrations/graphs/falkordb/"}, "ConversationBufferWindowMemory": {"Baseten": "https://python.langchain.com/v0.2/docs/integrations/llms/baseten/", "OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/"}, "Solar": {"Solar": "https://python.langchain.com/v0.2/docs/integrations/llms/solar/"}, "GoogleSearchAPIWrapper": {"Bittensor": "https://python.langchain.com/v0.2/docs/integrations/llms/bittensor/"}, "IpexLLM": {"IPEX-LLM": "https://python.langchain.com/v0.2/docs/integrations/llms/ipex_llm/"}, "LLMContentHandler": {"SageMakerEndpoint": "https://python.langchain.com/v0.2/docs/integrations/llms/sagemaker/"}, "TextGen": {"TextGen": "https://python.langchain.com/v0.2/docs/integrations/llms/textgen/"}, "MosaicML": {"MosaicML": "https://python.langchain.com/v0.2/docs/integrations/llms/mosaicml/"}, "VolcEngineMaasLLM": {"Volc Engine Maas": "https://python.langchain.com/v0.2/docs/integrations/llms/volcengine_maas/"}, "KoboldApiLLM": {"KoboldAI API": "https://python.langchain.com/v0.2/docs/integrations/llms/koboldai/"}, "Konko": {"Konko": "https://python.langchain.com/v0.2/docs/integrations/llms/konko/"}, "OpaquePrompts": {"OpaquePrompts": "https://python.langchain.com/v0.2/docs/integrations/llms/opaqueprompts/"}, "TitanTakeoff": {"Titan Takeoff": "https://python.langchain.com/v0.2/docs/integrations/llms/titan_takeoff/"}, "Friendli": {"Friendli": "https://python.langchain.com/v0.2/docs/integrations/llms/friendli/"}, "Databricks": {"Databricks": "https://python.langchain.com/v0.2/docs/integrations/llms/databricks/"}, "LMFormatEnforcer": {"LM Format Enforcer": "https://python.langchain.com/v0.2/docs/integrations/llms/lmformatenforcer_experimental/"}, "VLLM": {"vLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/vllm/"}, "VLLMOpenAI": {"vLLM": "https://python.langchain.com/v0.2/docs/integrations/llms/vllm/"}, "CustomOpenAIContentFormatter": {"Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/"}, "ContentFormatterBase": {"Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/"}, "DollyContentFormatter": {"Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/"}, "load_llm": {"Azure ML": "https://python.langchain.com/v0.2/docs/integrations/llms/azure_ml/"}, "MapReduceChain": {"Manifest": "https://python.langchain.com/v0.2/docs/integrations/llms/manifest/"}, "ModelLaboratory": {"Manifest": "https://python.langchain.com/v0.2/docs/integrations/llms/manifest/"}, "ExLlamaV2": {"ExLlamaV2": "https://python.langchain.com/v0.2/docs/integrations/llms/exllamav2/"}, "RELLM": {"RELLM": "https://python.langchain.com/v0.2/docs/integrations/llms/rellm_experimental/"}, "Moonshot": {"MoonshotChat": "https://python.langchain.com/v0.2/docs/integrations/llms/moonshot/"}, "OpenLM": {"OpenLM": "https://python.langchain.com/v0.2/docs/integrations/llms/openlm/"}, "CloudflareWorkersAI": {"Cloudflare Workers AI": "https://python.langchain.com/v0.2/docs/integrations/llms/cloudflare_workersai/"}, "ChatGLM3": {"ChatGLM": "https://python.langchain.com/v0.2/docs/integrations/llms/chatglm/"}, "ChatGLM": {"ChatGLM": "https://python.langchain.com/v0.2/docs/integrations/llms/chatglm/"}, "Sambaverse": {"SambaNova": "https://python.langchain.com/v0.2/docs/integrations/llms/sambanova/"}, "SambaStudio": {"SambaNova": "https://python.langchain.com/v0.2/docs/integrations/llms/sambanova/"}, "LayerupSecurity": {"Layerup Security": "https://python.langchain.com/v0.2/docs/integrations/llms/layerup_security/"}, "JsonFormer": {"JSONFormer": "https://python.langchain.com/v0.2/docs/integrations/llms/jsonformer_experimental/"}, "WeightOnlyQuantPipeline": {"Intel Weight-Only Quantization": "https://python.langchain.com/v0.2/docs/integrations/llms/weight_only_quantization/"}, "Replicate": {"Replicate": "https://python.langchain.com/v0.2/docs/integrations/llms/replicate/"}, "tracing_v2_enabled": {"Chat Bot Feedback Template": "https://python.langchain.com/v0.2/docs/templates/chat-bot-feedback/"}, "QuerySQLDataBaseTool": {"Build a Question/Answering system over SQL data": "https://python.langchain.com/v0.2/docs/tutorials/sql_qa/"}, "OPENAI_TEMPLATE": {"Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "create_openai_data_generator": {"Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "DatasetGenerator": {"Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "create_data_generation_chain": {"Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}, "create_extraction_chain_pydantic": {"Generate Synthetic Data": "https://python.langchain.com/v0.2/docs/tutorials/data_generation/"}} \ No newline at end of file +{"ChatPromptTemplate": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/docs/langserve/", "Conceptual guide": "https://python.langchain.com/docs/concepts/", "# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_router_chain/", "Load docs": "https://python.langchain.com/docs/versions/migrating_chains/conversation_retrieval_chain/", "# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to add values to a chain's state": "https://python.langchain.com/docs/how_to/assign/", "How to do per-user retrieval": "https://python.langchain.com/docs/how_to/qa_per_user/", "How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "How to create a custom LLM class": "https://python.langchain.com/docs/how_to/custom_llm/", "How to inspect runnables": "https://python.langchain.com/docs/how_to/inspect/", "How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to use few shot examples in chat models": "https://python.langchain.com/docs/how_to/few_shot_examples_chat/", "How to summarize text through iterative refinement": "https://python.langchain.com/docs/how_to/summarize_refine/", "How to do tool/function calling": "https://python.langchain.com/docs/how_to/function_calling/", "How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/docs/how_to/extraction_parse/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_large_db/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to add fallbacks to a runnable": "https://python.langchain.com/docs/how_to/fallbacks/", "How to propagate callbacks constructor": "https://python.langchain.com/docs/how_to/callbacks_constructor/", "How to map values to a graph database": "https://python.langchain.com/docs/how_to/graph_mapping/", "How to save and load LangChain objects": "https://python.langchain.com/docs/how_to/serialization/", "How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to summarize text through parallelization": "https://python.langchain.com/docs/how_to/summarize_map_reduce/", "How to attach callbacks to a runnable": "https://python.langchain.com/docs/how_to/callbacks_attach/", "How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to add default invocation args to a Runnable": "https://python.langchain.com/docs/how_to/binding/", "How to convert Runnables as Tools": "https://python.langchain.com/docs/how_to/convert_runnable_to_tool/", "How to stream events from a tool": "https://python.langchain.com/docs/how_to/tool_stream_events/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/docs/how_to/dynamic_chain/", "How to create custom callback handlers": "https://python.langchain.com/docs/how_to/custom_callbacks/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/docs/how_to/passthrough/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/docs/how_to/message_history/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "How to run custom functions": "https://python.langchain.com/docs/how_to/functions/", "How to add memory to chatbots": "https://python.langchain.com/docs/how_to/chatbots_memory/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/docs/how_to/query_high_cardinality/", "How to return structured data from a model": "https://python.langchain.com/docs/how_to/structured_output/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/docs/how_to/tools_prompting/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/", "How to debug your LLM apps": "https://python.langchain.com/docs/how_to/debugging/", "How to chain runnables": "https://python.langchain.com/docs/how_to/sequence/", "Hybrid Search": "https://python.langchain.com/docs/how_to/hybrid/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/docs/how_to/sql_query_checking/", "How to summarize text in a single LLM call": "https://python.langchain.com/docs/how_to/summarize_stuff/", "How to use multimodal prompts": "https://python.langchain.com/docs/how_to/multimodal_prompts/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/docs/how_to/tools_few_shot/", "How to pass callbacks in at runtime": "https://python.langchain.com/docs/how_to/callbacks_runtime/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "LangSmith LLM Runs": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_llm_runs/", "iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/", "NVIDIA NIMs ": "https://python.langchain.com/docs/integrations/text_embedding/nvidia_ai_endpoints/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "You.com": "https://python.langchain.com/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/docs/integrations/retrievers/asknews/", "WikipediaRetriever": "https://python.langchain.com/docs/integrations/retrievers/wikipedia/", "TavilySearchAPIRetriever": "https://python.langchain.com/docs/integrations/retrievers/tavily/", "Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "RAGatouille": "https://python.langchain.com/docs/integrations/retrievers/ragatouille/", "ArxivRetriever": "https://python.langchain.com/docs/integrations/retrievers/arxiv/", "ElasticsearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/elasticsearch_retriever/", "Google Vertex AI Search": "https://python.langchain.com/docs/integrations/retrievers/google_vertex_ai_search/", "Tavily Search": "https://python.langchain.com/docs/integrations/tools/tavily_search/", "FinancialDatasets Toolkit": "https://python.langchain.com/docs/integrations/tools/financial_datasets/", "Databricks Unity Catalog (UC)": "https://python.langchain.com/docs/integrations/tools/databricks/", "Riza Code Interpreter": "https://python.langchain.com/docs/integrations/tools/riza/", "Redis": "https://python.langchain.com/docs/integrations/memory/redis_chat_message_history/", "Google SQL for MySQL": "https://python.langchain.com/docs/integrations/memory/google_sql_mysql/", "Google AlloyDB for PostgreSQL": "https://python.langchain.com/docs/integrations/memory/google_alloydb/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/docs/integrations/memory/mongodb_chat_message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history/", "Google El Carro Oracle": "https://python.langchain.com/docs/integrations/memory/google_el_carro/", "SQLite": "https://python.langchain.com/docs/integrations/memory/sqlite/", "Google SQL for PostgreSQL": "https://python.langchain.com/docs/integrations/memory/google_sql_pg/", "Google SQL for SQL Server": "https://python.langchain.com/docs/integrations/memory/google_sql_mssql/", "TiDB": "https://python.langchain.com/docs/integrations/memory/tidb_chat_message_history/", "Kinetica Language To SQL Chat Model": "https://python.langchain.com/docs/integrations/chat/kinetica/", "ChatFireworks": "https://python.langchain.com/docs/integrations/chat/fireworks/", "ChatYI": "https://python.langchain.com/docs/integrations/chat/yi/", "ChatAnthropic": "https://python.langchain.com/docs/integrations/chat/anthropic/", "ChatGroq": "https://python.langchain.com/docs/integrations/chat/groq/", "ChatGoogleGenerativeAI": "https://python.langchain.com/docs/integrations/chat/google_generative_ai/", "OllamaFunctions": "https://python.langchain.com/docs/integrations/chat/ollama_functions/", "ChatOpenAI": "https://python.langchain.com/docs/integrations/chat/openai/", "ChatVertexAI": "https://python.langchain.com/docs/integrations/chat/google_vertex_ai_palm/", "ChatBedrock": "https://python.langchain.com/docs/integrations/chat/bedrock/", "JinaChat": "https://python.langchain.com/docs/integrations/chat/jinachat/", "ChatOllama": "https://python.langchain.com/docs/integrations/chat/ollama/", "ChatOCIGenAI": "https://python.langchain.com/docs/integrations/chat/oci_generative_ai/", "AzureChatOpenAI": "https://python.langchain.com/docs/integrations/chat/azure_chat_openai/", "Llama.cpp": "https://python.langchain.com/docs/integrations/chat/llamacpp/", "ChatMistralAI": "https://python.langchain.com/docs/integrations/chat/mistralai/", "ChatAI21": "https://python.langchain.com/docs/integrations/chat/ai21/", "ChatDatabricks": "https://python.langchain.com/docs/integrations/chat/databricks/", "ChatTogether": "https://python.langchain.com/docs/integrations/chat/together/", "Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/", "Cohere": "https://python.langchain.com/docs/integrations/providers/cohere/", "Eden AI": "https://python.langchain.com/docs/integrations/chat/edenai/", "ChatWatsonx": "https://python.langchain.com/docs/integrations/chat/ibm_watsonx/", "vLLM Chat": "https://python.langchain.com/docs/integrations/chat/vllm/", "Yuan2.0": "https://python.langchain.com/docs/integrations/chat/yuan2/", "Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/", "ChatPerplexity": "https://python.langchain.com/docs/integrations/chat/perplexity/", "ChatUpstage": "https://python.langchain.com/docs/integrations/chat/upstage/", "ChatNVIDIA": "https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/", "Context": "https://python.langchain.com/docs/integrations/callbacks/context/", "Fiddler": "https://python.langchain.com/docs/integrations/callbacks/fiddler/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "MLflow": "https://python.langchain.com/docs/integrations/providers/mlflow_tracking/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "OpenAI metadata tagger": "https://python.langchain.com/docs/integrations/document_transformers/openai_metadata_tagger/", "Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/", "Figma": "https://python.langchain.com/docs/integrations/document_loaders/figma/", "OllamaLLM": "https://python.langchain.com/docs/integrations/llms/ollama/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/docs/tutorials/local_rag/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/", "Build an Extraction Chain": "https://python.langchain.com/docs/tutorials/extraction/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Classify Text into Labels": "https://python.langchain.com/docs/tutorials/classification/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/docs/tutorials/llm_chain/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/docs/tutorials/pdf_qa/", "Vector stores and retrievers": "https://python.langchain.com/docs/tutorials/retrievers/"}, "ChatAnthropic": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/docs/langserve/", "Conceptual guide": "https://python.langchain.com/docs/concepts/", "How to use callbacks in async environments": "https://python.langchain.com/docs/how_to/callbacks_async/", "How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/", "How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "How to merge consecutive messages of the same type": "https://python.langchain.com/docs/how_to/merge_message_runs/", "How to parse XML output": "https://python.langchain.com/docs/how_to/output_parser_xml/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/docs/how_to/extraction_parse/", "How to handle rate limits": "https://python.langchain.com/docs/how_to/chat_model_rate_limiting/", "How to add fallbacks to a runnable": "https://python.langchain.com/docs/how_to/fallbacks/", "How to propagate callbacks constructor": "https://python.langchain.com/docs/how_to/callbacks_constructor/", "How to stream chat model responses": "https://python.langchain.com/docs/how_to/chat_streaming/", "How to attach callbacks to a runnable": "https://python.langchain.com/docs/how_to/callbacks_attach/", "How to filter messages": "https://python.langchain.com/docs/how_to/filter_messages/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/docs/how_to/dynamic_chain/", "How to create custom callback handlers": "https://python.langchain.com/docs/how_to/custom_callbacks/", "How to configure runtime chain internals": "https://python.langchain.com/docs/how_to/configure/", "How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/", "Response metadata": "https://python.langchain.com/docs/how_to/response_metadata/", "How to pass callbacks in at runtime": "https://python.langchain.com/docs/how_to/callbacks_runtime/", "Anthropic": "https://python.langchain.com/docs/integrations/platforms/anthropic/", "PlayWright Browser Toolkit": "https://python.langchain.com/docs/integrations/tools/playwright/", "Riza Code Interpreter": "https://python.langchain.com/docs/integrations/tools/riza/", "ChatAnthropic": "https://python.langchain.com/docs/integrations/chat/anthropic/", "Log10": "https://python.langchain.com/docs/integrations/providers/log10/", "Build an Agent": "https://python.langchain.com/docs/tutorials/agents/"}, "ChatOpenAI": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/docs/langserve/", "Conceptual guide": "https://python.langchain.com/docs/concepts/", "# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_router_chain/", "Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/", "How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to disable parallel tool calling": "https://python.langchain.com/docs/how_to/tool_calling_parallel/", "How to add values to a chain's state": "https://python.langchain.com/docs/how_to/assign/", "How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "How to inspect runnables": "https://python.langchain.com/docs/how_to/inspect/", "How to bind model-specific tools": "https://python.langchain.com/docs/how_to/tools_model_specific/", "How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to use few shot examples in chat models": "https://python.langchain.com/docs/how_to/few_shot_examples_chat/", "How to use LangChain with different Pydantic versions": "https://python.langchain.com/docs/how_to/pydantic_compatibility/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to add fallbacks to a runnable": "https://python.langchain.com/docs/how_to/fallbacks/", "How to map values to a graph database": "https://python.langchain.com/docs/how_to/graph_mapping/", "How to pass multimodal data directly to models": "https://python.langchain.com/docs/how_to/multimodal_inputs/", "How to save and load LangChain objects": "https://python.langchain.com/docs/how_to/serialization/", "How to use the output-fixing parser": "https://python.langchain.com/docs/how_to/output_parser_fixing/", "How to convert tools to OpenAI Functions": "https://python.langchain.com/docs/how_to/tools_as_openai_functions/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to add default invocation args to a Runnable": "https://python.langchain.com/docs/how_to/binding/", "How to invoke runnables in parallel": "https://python.langchain.com/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/docs/how_to/passthrough/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to configure runtime chain internals": "https://python.langchain.com/docs/how_to/configure/", "How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "How to construct knowledge graphs": "https://python.langchain.com/docs/how_to/graph_constructing/", "How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/", "How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/", "How to run custom functions": "https://python.langchain.com/docs/how_to/functions/", "How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "How to add memory to chatbots": "https://python.langchain.com/docs/how_to/chatbots_memory/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/docs/how_to/query_high_cardinality/", "How to get log probabilities": "https://python.langchain.com/docs/how_to/logprobs/", "How to parse YAML output": "https://python.langchain.com/docs/how_to/output_parser_yaml/", "Response metadata": "https://python.langchain.com/docs/how_to/response_metadata/", "How to parse JSON output": "https://python.langchain.com/docs/how_to/output_parser_json/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "Hybrid Search": "https://python.langchain.com/docs/how_to/hybrid/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "How to stream tool calls": "https://python.langchain.com/docs/how_to/tool_streaming/", "How to use multimodal prompts": "https://python.langchain.com/docs/how_to/multimodal_prompts/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "WeChat": "https://python.langchain.com/docs/integrations/chat_loaders/wechat/", "Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "LangSmith LLM Runs": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_llm_runs/", "Slack": "https://python.langchain.com/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/docs/integrations/chat_loaders/whatsapp/", "LangSmith Chat Datasets": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_dataset/", "iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/docs/integrations/chat_loaders/discord/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/", "You.com": "https://python.langchain.com/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/docs/integrations/tools/asknews/", "LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/", "Outline": "https://python.langchain.com/docs/integrations/retrievers/outline/", "SEC filing": "https://python.langchain.com/docs/integrations/retrievers/sec_filings/", "TavilySearchAPIRetriever": "https://python.langchain.com/docs/integrations/retrievers/tavily/", "Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "RAGatouille": "https://python.langchain.com/docs/integrations/retrievers/ragatouille/", "ElasticsearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/elasticsearch_retriever/", "Rememberizer": "https://python.langchain.com/docs/integrations/retrievers/rememberizer/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/", "Kay.ai": "https://python.langchain.com/docs/integrations/retrievers/kay/", "FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "Vectara self-querying ": "https://python.langchain.com/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/retrievers/self_query/tencentvectordb/", "MyScale": "https://python.langchain.com/docs/integrations/retrievers/self_query/myscale_self_query/", "OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/", "ChatGPT Plugins": "https://python.langchain.com/docs/integrations/tools/chatgpt_plugins/", "Connery Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/connery/", "Infobip": "https://python.langchain.com/docs/integrations/tools/infobip/", "PowerBI Toolkit": "https://python.langchain.com/docs/integrations/tools/powerbi/", "E2B Data Analysis": "https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/", "Human as a tool": "https://python.langchain.com/docs/integrations/tools/human_tools/", "Azure Container Apps dynamic sessions": "https://python.langchain.com/docs/integrations/tools/azure_dynamic_sessions/", "FinancialDatasets Toolkit": "https://python.langchain.com/docs/integrations/tools/financial_datasets/", "Slack Toolkit": "https://python.langchain.com/docs/integrations/tools/slack/", "Cassandra Database Toolkit": "https://python.langchain.com/docs/integrations/tools/cassandra_database/", "Yahoo Finance News": "https://python.langchain.com/docs/integrations/tools/yahoo_finance_news/", "Polygon IO Toolkit": "https://python.langchain.com/docs/integrations/tools/polygon_toolkit/", "Semantic Scholar API Tool": "https://python.langchain.com/docs/integrations/tools/semanticscholar/", "Spark SQL Toolkit": "https://python.langchain.com/docs/integrations/tools/spark_sql/", "Requests Toolkit": "https://python.langchain.com/docs/integrations/tools/requests/", "AINetwork Toolkit": "https://python.langchain.com/docs/integrations/tools/ainetwork/", "Passio NutritionAI": "https://python.langchain.com/docs/integrations/tools/passio_nutrition_ai/", "Cogniswitch Toolkit": "https://python.langchain.com/docs/integrations/tools/cogniswitch/", "Bearly Code Interpreter": "https://python.langchain.com/docs/integrations/tools/bearly/", "Pandas Dataframe": "https://python.langchain.com/docs/integrations/tools/pandas/", "ArXiv": "https://python.langchain.com/docs/integrations/tools/arxiv/", "Robocorp Toolkit": "https://python.langchain.com/docs/integrations/tools/robocorp/", "Connery Toolkit": "https://python.langchain.com/docs/integrations/tools/connery_toolkit/", "MultiOn Toolkit": "https://python.langchain.com/docs/integrations/tools/multion/", "Exa Search": "https://python.langchain.com/docs/integrations/tools/exa_search/", "Amadeus Toolkit": "https://python.langchain.com/docs/integrations/tools/amadeus/", "Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/", "You.com Search": "https://python.langchain.com/docs/integrations/tools/you/", "OpenAPI Toolkit": "https://python.langchain.com/docs/integrations/tools/openapi/", "Shell (bash)": "https://python.langchain.com/docs/integrations/tools/bash/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/", "Redis": "https://python.langchain.com/docs/integrations/memory/redis_chat_message_history/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/docs/integrations/memory/mongodb_chat_message_history/", "Xata": "https://python.langchain.com/docs/integrations/memory/xata_chat_message_history/", "Remembrall": "https://python.langchain.com/docs/integrations/memory/remembrall/", "SQL (SQLAlchemy)": "https://python.langchain.com/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history/", "SQLite": "https://python.langchain.com/docs/integrations/memory/sqlite/", "TiDB": "https://python.langchain.com/docs/integrations/memory/tidb_chat_message_history/", "ChatOpenAI": "https://python.langchain.com/docs/integrations/chat/openai/", "vLLM Chat": "https://python.langchain.com/docs/integrations/chat/vllm/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "Context": "https://python.langchain.com/docs/integrations/callbacks/context/", "Label Studio": "https://python.langchain.com/docs/integrations/callbacks/labelstudio/", "PromptLayer": "https://python.langchain.com/docs/integrations/callbacks/promptlayer/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "Trubrics": "https://python.langchain.com/docs/integrations/callbacks/trubrics/", "Infino": "https://python.langchain.com/docs/integrations/callbacks/infino/", "Upstash Ratelimit Callback": "https://python.langchain.com/docs/integrations/callbacks/upstash_ratelimit/", "CnosDB": "https://python.langchain.com/docs/integrations/providers/cnosdb/", "Log10": "https://python.langchain.com/docs/integrations/providers/log10/", "MLflow": "https://python.langchain.com/docs/integrations/providers/mlflow_tracking/", "Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/", "Arthur": "https://python.langchain.com/docs/integrations/providers/arthur_tracking/", "Dataherald": "https://python.langchain.com/docs/integrations/providers/dataherald/", "Log, Trace, and Monitor": "https://python.langchain.com/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/docs/integrations/providers/portkey/index/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "Hippo": "https://python.langchain.com/docs/integrations/vectorstores/hippo/", "Vectara": "https://python.langchain.com/docs/integrations/vectorstores/vectara/", "Momento Vector Index (MVI)": "https://python.langchain.com/docs/integrations/vectorstores/momento_vector_index/", "Neo4j Vector Index": "https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "KDB.AI": "https://python.langchain.com/docs/integrations/vectorstores/kdbai/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/", "OpenAI metadata tagger": "https://python.langchain.com/docs/integrations/document_transformers/openai_metadata_tagger/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/", "Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/", "Figma": "https://python.langchain.com/docs/integrations/document_loaders/figma/", "Browserbase": "https://python.langchain.com/docs/integrations/document_loaders/browserbase/", "Memgraph": "https://python.langchain.com/docs/integrations/graphs/memgraph/", "RDFLib": "https://python.langchain.com/docs/integrations/graphs/rdflib_sparql/", "NebulaGraph": "https://python.langchain.com/docs/integrations/graphs/nebula_graph/", "HugeGraph": "https://python.langchain.com/docs/integrations/graphs/hugegraph/", "Diffbot": "https://python.langchain.com/docs/integrations/graphs/diffbot/", "Ontotext GraphDB": "https://python.langchain.com/docs/integrations/graphs/ontotext/", "Apache AGE": "https://python.langchain.com/docs/integrations/graphs/apache_age/", "Neo4j": "https://python.langchain.com/docs/integrations/graphs/neo4j_cypher/", "ArangoDB": "https://python.langchain.com/docs/integrations/graphs/arangodb/", "Amazon Neptune with Cypher": "https://python.langchain.com/docs/integrations/graphs/amazon_neptune_open_cypher/", "Kuzu": "https://python.langchain.com/docs/integrations/graphs/kuzu_db/", "FalkorDB": "https://python.langchain.com/docs/integrations/graphs/falkordb/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Classify Text into Labels": "https://python.langchain.com/docs/tutorials/classification/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/docs/tutorials/llm_chain/", "Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/", "Build a Question Answering application over a Graph Database": "https://python.langchain.com/docs/tutorials/graph/"}, "SystemMessage": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/docs/langserve/", "How to merge consecutive messages of the same type": "https://python.langchain.com/docs/how_to/merge_message_runs/", "How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/", "How to filter messages": "https://python.langchain.com/docs/how_to/filter_messages/", "How to compose prompts together": "https://python.langchain.com/docs/how_to/prompts_composition/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "Robocorp Toolkit": "https://python.langchain.com/docs/integrations/tools/robocorp/", "Exa Search": "https://python.langchain.com/docs/integrations/tools/exa_search/", "Snowflake Cortex": "https://python.langchain.com/docs/integrations/chat/snowflake/", "# Related": "https://python.langchain.com/docs/integrations/chat/solar/", "ChatHuggingFace": "https://python.langchain.com/docs/integrations/chat/huggingface/", "ChatOctoAI": "https://python.langchain.com/docs/integrations/chat/octoai/", "ChatYI": "https://python.langchain.com/docs/integrations/chat/yi/", "LlamaEdge": "https://python.langchain.com/docs/integrations/chat/llama_edge/", "ChatKonko": "https://python.langchain.com/docs/integrations/chat/konko/", "GigaChat": "https://python.langchain.com/docs/integrations/chat/gigachat/", "JinaChat": "https://python.langchain.com/docs/integrations/chat/jinachat/", "ChatOCIGenAI": "https://python.langchain.com/docs/integrations/chat/oci_generative_ai/", "ChatEverlyAI": "https://python.langchain.com/docs/integrations/chat/everlyai/", "ChatFriendli": "https://python.langchain.com/docs/integrations/chat/friendli/", "ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/", "ChatWatsonx": "https://python.langchain.com/docs/integrations/chat/ibm_watsonx/", "vLLM Chat": "https://python.langchain.com/docs/integrations/chat/vllm/", "Yuan2.0": "https://python.langchain.com/docs/integrations/chat/yuan2/", "ChatTongyi": "https://python.langchain.com/docs/integrations/chat/tongyi/", "MoonshotChat": "https://python.langchain.com/docs/integrations/chat/moonshot/", "ChatPremAI": "https://python.langchain.com/docs/integrations/chat/premai/", "ChatAnyscale": "https://python.langchain.com/docs/integrations/chat/anyscale/", "ChatYandexGPT": "https://python.langchain.com/docs/integrations/chat/yandex/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "Context": "https://python.langchain.com/docs/integrations/callbacks/context/", "Label Studio": "https://python.langchain.com/docs/integrations/callbacks/labelstudio/", "Trubrics": "https://python.langchain.com/docs/integrations/callbacks/trubrics/", "MLflow Deployments for LLMs": "https://python.langchain.com/docs/integrations/providers/mlflow/", "MLflow AI Gateway": "https://python.langchain.com/docs/integrations/providers/mlflow_ai_gateway/", "PremAI": "https://python.langchain.com/docs/integrations/providers/premai/", "Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Google Cloud Vertex AI": "https://python.langchain.com/docs/integrations/llms/google_vertex_ai_palm/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/docs/integrations/llms/javelin/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/docs/tutorials/llm_chain/"}, "HumanMessage": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/docs/langserve/", "Conceptual guide": "https://python.langchain.com/docs/concepts/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to use callbacks in async environments": "https://python.langchain.com/docs/how_to/callbacks_async/", "How to merge consecutive messages of the same type": "https://python.langchain.com/docs/how_to/merge_message_runs/", "How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to do tool/function calling": "https://python.langchain.com/docs/how_to/function_calling/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to pass multimodal data directly to models": "https://python.langchain.com/docs/how_to/multimodal_inputs/", "How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/", "How to convert tools to OpenAI Functions": "https://python.langchain.com/docs/how_to/tools_as_openai_functions/", "How to filter messages": "https://python.langchain.com/docs/how_to/filter_messages/", "How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/docs/how_to/message_history/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to pass tool outputs to chat models": "https://python.langchain.com/docs/how_to/tool_results_pass_to_model/", "How to return structured data from a model": "https://python.langchain.com/docs/how_to/structured_output/", "How to compose prompts together": "https://python.langchain.com/docs/how_to/prompts_composition/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "WeChat": "https://python.langchain.com/docs/integrations/chat_loaders/wechat/", "Discord": "https://python.langchain.com/docs/integrations/chat_loaders/discord/", "Zep Open Source": "https://python.langchain.com/docs/integrations/retrievers/zep_memorystore/", "Zep Cloud": "https://python.langchain.com/docs/integrations/retrievers/zep_cloud_memorystore/", "Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Imagen": "https://python.langchain.com/docs/integrations/tools/google_imagen/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/", "Snowflake Cortex": "https://python.langchain.com/docs/integrations/chat/snowflake/", "# Related": "https://python.langchain.com/docs/integrations/chat/solar/", "ChatHuggingFace": "https://python.langchain.com/docs/integrations/chat/huggingface/", "AzureMLChatOnlineEndpoint": "https://python.langchain.com/docs/integrations/chat/azureml_chat_endpoint/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/docs/integrations/chat/alibaba_cloud_pai_eas/", "Chat with Coze Bot": "https://python.langchain.com/docs/integrations/chat/coze/", "ChatOctoAI": "https://python.langchain.com/docs/integrations/chat/octoai/", "ChatYI": "https://python.langchain.com/docs/integrations/chat/yi/", "DeepInfra": "https://python.langchain.com/docs/integrations/chat/deepinfra/", "ChatLiteLLM": "https://python.langchain.com/docs/integrations/chat/litellm/", "LlamaEdge": "https://python.langchain.com/docs/integrations/chat/llama_edge/", "VolcEngineMaasChat": "https://python.langchain.com/docs/integrations/chat/volcengine_maas/", "ChatKonko": "https://python.langchain.com/docs/integrations/chat/konko/", "MLX": "https://python.langchain.com/docs/integrations/chat/mlx/", "GigaChat": "https://python.langchain.com/docs/integrations/chat/gigachat/", "JinaChat": "https://python.langchain.com/docs/integrations/chat/jinachat/", "ChatOllama": "https://python.langchain.com/docs/integrations/chat/ollama/", "ChatOCIGenAI": "https://python.langchain.com/docs/integrations/chat/oci_generative_ai/", "ChatEverlyAI": "https://python.langchain.com/docs/integrations/chat/everlyai/", "GPTRouter": "https://python.langchain.com/docs/integrations/chat/gpt_router/", "ChatLiteLLMRouter": "https://python.langchain.com/docs/integrations/chat/litellm_router/", "ChatFriendli": "https://python.langchain.com/docs/integrations/chat/friendli/", "ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "Chat with Baichuan-192K": "https://python.langchain.com/docs/integrations/chat/baichuan/", "QianfanChatEndpoint": "https://python.langchain.com/docs/integrations/chat/baidu_qianfan_endpoint/", "Cohere": "https://python.langchain.com/docs/integrations/llms/cohere/", "Eden AI": "https://python.langchain.com/docs/integrations/chat/edenai/", "ErnieBotChat": "https://python.langchain.com/docs/integrations/chat/ernie/", "ChatWatsonx": "https://python.langchain.com/docs/integrations/chat/ibm_watsonx/", "vLLM Chat": "https://python.langchain.com/docs/integrations/chat/vllm/", "Tencent Hunyuan": "https://python.langchain.com/docs/integrations/chat/tencent_hunyuan/", "MiniMaxChat": "https://python.langchain.com/docs/integrations/chat/minimax/", "Yuan2.0": "https://python.langchain.com/docs/integrations/chat/yuan2/", "ChatTongyi": "https://python.langchain.com/docs/integrations/chat/tongyi/", "PromptLayerChatOpenAI": "https://python.langchain.com/docs/integrations/chat/promptlayer_chatopenai/", "SparkLLM Chat": "https://python.langchain.com/docs/integrations/chat/sparkllm/", "MoonshotChat": "https://python.langchain.com/docs/integrations/chat/moonshot/", "Dappier AI": "https://python.langchain.com/docs/integrations/chat/dappier/", "Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/", "ChatPremAI": "https://python.langchain.com/docs/integrations/chat/premai/", "ChatAnyscale": "https://python.langchain.com/docs/integrations/chat/anyscale/", "ChatYandexGPT": "https://python.langchain.com/docs/integrations/chat/yandex/", "ChatNVIDIA": "https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "Context": "https://python.langchain.com/docs/integrations/callbacks/context/", "Label Studio": "https://python.langchain.com/docs/integrations/callbacks/labelstudio/", "PromptLayer": "https://python.langchain.com/docs/integrations/callbacks/promptlayer/", "Trubrics": "https://python.langchain.com/docs/integrations/callbacks/trubrics/", "Log10": "https://python.langchain.com/docs/integrations/providers/log10/", "MLflow Deployments for LLMs": "https://python.langchain.com/docs/integrations/providers/mlflow/", "MLflow AI Gateway": "https://python.langchain.com/docs/integrations/providers/mlflow_ai_gateway/", "Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/", "PremAI": "https://python.langchain.com/docs/integrations/providers/premai/", "Arthur": "https://python.langchain.com/docs/integrations/providers/arthur_tracking/", "Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Browserbase": "https://python.langchain.com/docs/integrations/document_loaders/browserbase/", "Google Cloud Vertex AI": "https://python.langchain.com/docs/integrations/llms/google_vertex_ai_palm/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/docs/integrations/llms/javelin/", "Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/", "Chat Bot Feedback Template": "https://python.langchain.com/docs/templates/chat-bot-feedback/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Build an Agent": "https://python.langchain.com/docs/tutorials/agents/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/docs/tutorials/llm_chain/"}, "RunnableMap": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/docs/langserve/"}, "RunnableLambda": {"\ud83e\udd9c\ufe0f\ud83c\udfd3 LangServe": "https://python.langchain.com/docs/langserve/", "How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/", "How to convert Runnables as Tools": "https://python.langchain.com/docs/how_to/convert_runnable_to_tool/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/", "How to run custom functions": "https://python.langchain.com/docs/how_to/functions/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/", "How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/", "How to dispatch custom callback events": "https://python.langchain.com/docs/how_to/callbacks_custom_events/", "Upstash Ratelimit Callback": "https://python.langchain.com/docs/integrations/callbacks/upstash_ratelimit/", "Vector stores and retrievers": "https://python.langchain.com/docs/tutorials/retrievers/"}, "PromptTemplate": {"Conceptual guide": "https://python.langchain.com/docs/concepts/", "# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_router_chain/", "How to better prompt when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_prompting/", "How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/docs/how_to/output_parser_structured/", "How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/", "How to select examples by n-gram overlap": "https://python.langchain.com/docs/how_to/example_selectors_ngram/", "How to select examples by length": "https://python.langchain.com/docs/how_to/example_selectors_length_based/", "How to use example selectors": "https://python.langchain.com/docs/how_to/example_selectors/", "How to use few shot examples": "https://python.langchain.com/docs/how_to/few_shot_examples/", "How to select examples by similarity": "https://python.langchain.com/docs/how_to/example_selectors_similarity/", "How to parse XML output": "https://python.langchain.com/docs/how_to/output_parser_xml/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/docs/how_to/long_context_reorder/", "How to add fallbacks to a runnable": "https://python.langchain.com/docs/how_to/fallbacks/", "Run models locally": "https://python.langchain.com/docs/how_to/local_llms/", "How to configure runtime chain internals": "https://python.langchain.com/docs/how_to/configure/", "How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/", "How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/", "How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "How to parse YAML output": "https://python.langchain.com/docs/how_to/output_parser_yaml/", "How to compose prompts together": "https://python.langchain.com/docs/how_to/prompts_composition/", "How to partially format prompt templates": "https://python.langchain.com/docs/how_to/prompts_partial/", "How to parse JSON output": "https://python.langchain.com/docs/how_to/output_parser_json/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/docs/how_to/example_selectors_mmr/", "How to track token usage for LLMs": "https://python.langchain.com/docs/how_to/llm_token_usage_tracking/", "Clarifai": "https://python.langchain.com/docs/integrations/llms/clarifai/", "RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/", "Google Drive": "https://python.langchain.com/docs/integrations/document_loaders/google_drive/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/", "Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/", "NVIDIA Riva: ASR and TTS": "https://python.langchain.com/docs/integrations/tools/nvidia_riva/", "Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/", "Dall-E Image Generator": "https://python.langchain.com/docs/integrations/tools/dalle_image_generator/", "Mot\u00f6rhead": "https://python.langchain.com/docs/integrations/memory/motorhead_memory/", "Context": "https://python.langchain.com/docs/integrations/callbacks/context/", "SageMaker Tracking": "https://python.langchain.com/docs/integrations/callbacks/sagemaker_tracking/", "Argilla": "https://python.langchain.com/docs/integrations/callbacks/argilla/", "DSPy": "https://python.langchain.com/docs/integrations/providers/dspy/", "Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/", "MLflow AI Gateway": "https://python.langchain.com/docs/integrations/providers/mlflow_ai_gateway/", "Rebuff": "https://python.langchain.com/docs/integrations/providers/rebuff/", "Prediction Guard": "https://python.langchain.com/docs/integrations/llms/predictionguard/", "Shale Protocol": "https://python.langchain.com/docs/integrations/providers/shaleprotocol/", "Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/", "Ray Serve": "https://python.langchain.com/docs/integrations/providers/ray_serve/", "Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "Amazon Document DB": "https://python.langchain.com/docs/integrations/vectorstores/documentdb/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "AirbyteLoader": "https://python.langchain.com/docs/integrations/document_loaders/airbyte/", "Memgraph": "https://python.langchain.com/docs/integrations/graphs/memgraph/", "Apache AGE": "https://python.langchain.com/docs/integrations/graphs/apache_age/", "Neo4j": "https://python.langchain.com/docs/integrations/graphs/neo4j_cypher/", "Baseten": "https://python.langchain.com/docs/integrations/llms/baseten/", "StochasticAI": "https://python.langchain.com/docs/integrations/llms/stochasticai/", "Solar": "https://python.langchain.com/docs/integrations/llms/solar/", "Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/", "IPEX-LLM": "https://python.langchain.com/docs/integrations/llms/ipex_llm/", "Banana": "https://python.langchain.com/docs/integrations/llms/banana/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/docs/integrations/llms/alibabacloud_pai_eas_endpoint/", "OpenLLM": "https://python.langchain.com/docs/integrations/llms/openllm/", "SageMakerEndpoint": "https://python.langchain.com/docs/integrations/llms/sagemaker/", "Fireworks": "https://python.langchain.com/docs/integrations/llms/fireworks/", "OctoAI": "https://python.langchain.com/docs/integrations/llms/octoai/", "Writer": "https://python.langchain.com/docs/integrations/llms/writer/", "Modal": "https://python.langchain.com/docs/integrations/llms/modal/", "TextGen": "https://python.langchain.com/docs/integrations/llms/textgen/", "Xorbits Inference (Xinference)": "https://python.langchain.com/docs/integrations/llms/xinference/", "Nebula (Symbl.ai)": "https://python.langchain.com/docs/integrations/llms/symblai_nebula/", "DeepInfra": "https://python.langchain.com/docs/integrations/llms/deepinfra/", "AnthropicLLM": "https://python.langchain.com/docs/integrations/llms/anthropic/", "NLP Cloud": "https://python.langchain.com/docs/integrations/llms/nlpcloud/", "GPT4All": "https://python.langchain.com/docs/integrations/llms/gpt4all/", "ForefrontAI": "https://python.langchain.com/docs/integrations/llms/forefrontai/", "MosaicML": "https://python.langchain.com/docs/integrations/llms/mosaicml/", "Volc Engine Maas": "https://python.langchain.com/docs/integrations/llms/volcengine_maas/", "CerebriumAI": "https://python.langchain.com/docs/integrations/llms/cerebriumai/", "OpenAI": "https://python.langchain.com/docs/integrations/llms/openai/", "Google Cloud Vertex AI": "https://python.langchain.com/docs/integrations/llms/google_vertex_ai_palm/", "Predibase": "https://python.langchain.com/docs/integrations/llms/predibase/", "GigaChat": "https://python.langchain.com/docs/integrations/llms/gigachat/", "# Oracle Cloud Infrastructure Generative AI": "https://python.langchain.com/docs/integrations/llms/oci_generative_ai/", "Llama.cpp": "https://python.langchain.com/docs/integrations/llms/llamacpp/", "Hugging Face Local Pipelines": "https://python.langchain.com/docs/integrations/llms/huggingface_pipelines/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/", "Titan Takeoff": "https://python.langchain.com/docs/integrations/llms/titan_takeoff/", "Aphrodite Engine": "https://python.langchain.com/docs/integrations/llms/aphrodite/", "AI21LLM": "https://python.langchain.com/docs/integrations/llms/ai21/", "Cohere": "https://python.langchain.com/docs/integrations/llms/cohere/", "Eden AI": "https://python.langchain.com/docs/integrations/llms/edenai/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/docs/integrations/llms/javelin/", "IBM watsonx.ai": "https://python.langchain.com/docs/integrations/llms/ibm_watsonx/", "C Transformers": "https://python.langchain.com/docs/integrations/llms/ctransformers/", "vLLM": "https://python.langchain.com/docs/integrations/llms/vllm/", "Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/", "Manifest": "https://python.langchain.com/docs/integrations/llms/manifest/", "ExLlamaV2": "https://python.langchain.com/docs/integrations/llms/exllamav2/", "Minimax": "https://python.langchain.com/docs/integrations/llms/minimax/", "Tongyi Qwen": "https://python.langchain.com/docs/integrations/llms/tongyi/", "Huggingface Endpoints": "https://python.langchain.com/docs/integrations/llms/huggingface_endpoint/", "MLX Local Pipelines": "https://python.langchain.com/docs/integrations/llms/mlx_pipelines/", "Runhouse": "https://python.langchain.com/docs/integrations/llms/runhouse/", "Anyscale": "https://python.langchain.com/docs/integrations/llms/anyscale/", "YandexGPT": "https://python.langchain.com/docs/integrations/llms/yandex/", "GooseAI": "https://python.langchain.com/docs/integrations/llms/gooseai/", "OpenLM": "https://python.langchain.com/docs/integrations/llms/openlm/", "Aleph Alpha": "https://python.langchain.com/docs/integrations/llms/aleph_alpha/", "Cloudflare Workers AI": "https://python.langchain.com/docs/integrations/llms/cloudflare_workersai/", "CTranslate2": "https://python.langchain.com/docs/integrations/llms/ctranslate2/", "Google AI": "https://python.langchain.com/docs/integrations/llms/google_ai/", "PipelineAI": "https://python.langchain.com/docs/integrations/llms/pipelineai/", "ChatGLM": "https://python.langchain.com/docs/integrations/llms/chatglm/", "Gradient": "https://python.langchain.com/docs/integrations/llms/gradient/", "Petals": "https://python.langchain.com/docs/integrations/llms/petals/", "OpenVINO": "https://python.langchain.com/docs/integrations/llms/openvino/", "Intel Weight-Only Quantization": "https://python.langchain.com/docs/integrations/llms/weight_only_quantization/", "Replicate": "https://python.langchain.com/docs/integrations/llms/replicate/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/", "Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "MessagesPlaceholder": {"Conceptual guide": "https://python.langchain.com/docs/concepts/", "How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/docs/how_to/message_history/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "Redis": "https://python.langchain.com/docs/integrations/memory/redis_chat_message_history/", "Google SQL for MySQL": "https://python.langchain.com/docs/integrations/memory/google_sql_mysql/", "Google AlloyDB for PostgreSQL": "https://python.langchain.com/docs/integrations/memory/google_alloydb/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/docs/integrations/memory/mongodb_chat_message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history/", "Google El Carro Oracle": "https://python.langchain.com/docs/integrations/memory/google_el_carro/", "SQLite": "https://python.langchain.com/docs/integrations/memory/sqlite/", "Google SQL for PostgreSQL": "https://python.langchain.com/docs/integrations/memory/google_sql_pg/", "Google SQL for SQL Server": "https://python.langchain.com/docs/integrations/memory/google_sql_mssql/", "TiDB": "https://python.langchain.com/docs/integrations/memory/tidb_chat_message_history/", "Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/", "Build an Extraction Chain": "https://python.langchain.com/docs/tutorials/extraction/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/"}, "CSVLoader": {"Conceptual guide": "https://python.langchain.com/docs/concepts/", "How to load CSVs": "https://python.langchain.com/docs/how_to/document_loader_csv/", "ChatGPT plugin": "https://python.langchain.com/docs/integrations/retrievers/chatgpt-plugin/", "Aerospike": "https://python.langchain.com/docs/integrations/vectorstores/aerospike/", "CSV": "https://python.langchain.com/docs/integrations/document_loaders/csv/", "Document loaders": "https://python.langchain.com/docs/integrations/document_loaders/index/", "Pebblo Safe DocumentLoader": "https://python.langchain.com/docs/integrations/document_loaders/pebblo/"}, "StrOutputParser": {"Conceptual guide": "https://python.langchain.com/docs/concepts/", "# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_chain/", "# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "# Example": "https://python.langchain.com/docs/versions/migrating_chains/refine_docs_chain/", "Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "How to add values to a chain's state": "https://python.langchain.com/docs/how_to/assign/", "How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/", "How to do per-user retrieval": "https://python.langchain.com/docs/how_to/qa_per_user/", "How to inspect runnables": "https://python.langchain.com/docs/how_to/inspect/", "How to summarize text through iterative refinement": "https://python.langchain.com/docs/how_to/summarize_refine/", "How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/", "How to add fallbacks to a runnable": "https://python.langchain.com/docs/how_to/fallbacks/", "How to map values to a graph database": "https://python.langchain.com/docs/how_to/graph_mapping/", "How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to summarize text through parallelization": "https://python.langchain.com/docs/how_to/summarize_map_reduce/", "How to add default invocation args to a Runnable": "https://python.langchain.com/docs/how_to/binding/", "How to convert Runnables as Tools": "https://python.langchain.com/docs/how_to/convert_runnable_to_tool/", "How to stream events from a tool": "https://python.langchain.com/docs/how_to/tool_stream_events/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/docs/how_to/dynamic_chain/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/docs/how_to/passthrough/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "How to run custom functions": "https://python.langchain.com/docs/how_to/functions/", "How to chain runnables": "https://python.langchain.com/docs/how_to/sequence/", "Hybrid Search": "https://python.langchain.com/docs/how_to/hybrid/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/docs/how_to/sql_query_checking/", "Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/", "NVIDIA NIMs ": "https://python.langchain.com/docs/integrations/text_embedding/nvidia_ai_endpoints/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "You.com": "https://python.langchain.com/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/docs/integrations/retrievers/asknews/", "WikipediaRetriever": "https://python.langchain.com/docs/integrations/retrievers/wikipedia/", "TavilySearchAPIRetriever": "https://python.langchain.com/docs/integrations/retrievers/tavily/", "ArxivRetriever": "https://python.langchain.com/docs/integrations/retrievers/arxiv/", "ElasticsearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/elasticsearch_retriever/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/", "Google Vertex AI Search": "https://python.langchain.com/docs/integrations/retrievers/google_vertex_ai_search/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "ChatOllama": "https://python.langchain.com/docs/integrations/chat/ollama/", "Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/", "ChatNVIDIA": "https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/", "Fiddler": "https://python.langchain.com/docs/integrations/callbacks/fiddler/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "DSPy": "https://python.langchain.com/docs/integrations/providers/dspy/", "MLflow": "https://python.langchain.com/docs/integrations/providers/mlflow_tracking/", "Shale Protocol": "https://python.langchain.com/docs/integrations/providers/shaleprotocol/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "Volc Engine Maas": "https://python.langchain.com/docs/integrations/llms/volcengine_maas/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/", "AI21LLM": "https://python.langchain.com/docs/integrations/llms/ai21/", "PipelineAI": "https://python.langchain.com/docs/integrations/llms/pipelineai/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/docs/tutorials/local_rag/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/", "Build a Simple LLM Application with LCEL": "https://python.langchain.com/docs/tutorials/llm_chain/"}, "SimpleJsonOutputParser": {"Conceptual guide": "https://python.langchain.com/docs/concepts/", "How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/docs/how_to/output_parser_structured/"}, "BaseChatModel": {"Contribute Integrations": "https://python.langchain.com/docs/contributing/integrations/", "How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "deprecated": {"Contribute Integrations": "https://python.langchain.com/docs/contributing/integrations/"}, "UnstructuredMarkdownLoader": {"langchain": "https://python.langchain.com/docs/changes/changelog/langchain/", "How to load Markdown": "https://python.langchain.com/docs/how_to/document_loader_markdown/", "Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/", "StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/", "UnstructuredMarkdownLoader": "https://python.langchain.com/docs/integrations/document_loaders/unstructured_markdown/"}, "Document": {"# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to create a custom Document Loader": "https://python.langchain.com/docs/how_to/document_loader_custom/", "How to summarize text through iterative refinement": "https://python.langchain.com/docs/how_to/summarize_refine/", "How to summarize text through parallelization": "https://python.langchain.com/docs/how_to/summarize_map_reduce/", "How to use the LangChain indexing API": "https://python.langchain.com/docs/how_to/indexing/", "How to convert Runnables as Tools": "https://python.langchain.com/docs/how_to/convert_runnable_to_tool/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to create a custom Retriever": "https://python.langchain.com/docs/how_to/custom_retriever/", "How to construct knowledge graphs": "https://python.langchain.com/docs/how_to/graph_constructing/", "How to use a time-weighted vector store retriever": "https://python.langchain.com/docs/how_to/time_weighted_vectorstore/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "How to load Markdown": "https://python.langchain.com/docs/how_to/document_loader_markdown/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "How to summarize text in a single LLM call": "https://python.langchain.com/docs/how_to/summarize_stuff/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Oracle AI Vector Search: Generate Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/oracleai/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/docs/integrations/retrievers/kinetica/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "ChatGPT plugin": "https://python.langchain.com/docs/integrations/retrievers/chatgpt-plugin/", "Cohere RAG": "https://python.langchain.com/docs/integrations/retrievers/cohere/", "Weaviate Hybrid Search": "https://python.langchain.com/docs/integrations/retrievers/weaviate-hybrid/", "BM25": "https://python.langchain.com/docs/integrations/retrievers/bm25/", "Qdrant Sparse Vector": "https://python.langchain.com/docs/integrations/retrievers/qdrant-sparse/", "ElasticsearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/elasticsearch_retriever/", "TF-IDF": "https://python.langchain.com/docs/integrations/retrievers/tf_idf/", "Milvus": "https://python.langchain.com/docs/integrations/vectorstores/milvus/", "PGVector (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/docs/integrations/retrievers/self_query/weaviate_self_query/", "Vectara self-querying ": "https://python.langchain.com/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "DashVector": "https://python.langchain.com/docs/integrations/retrievers/self_query/dashvector/", "Databricks Vector Search": "https://python.langchain.com/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/docs/integrations/vectorstores/elasticsearch/", "Chroma": "https://python.langchain.com/docs/integrations/vectorstores/chroma/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/", "Timescale Vector (Postgres) ": "https://python.langchain.com/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/docs/integrations/vectorstores/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/docs/integrations/vectorstores/redis/", "MyScale": "https://python.langchain.com/docs/integrations/retrievers/self_query/myscale_self_query/", "Deep Lake": "https://python.langchain.com/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas/", "Qdrant": "https://python.langchain.com/docs/integrations/vectorstores/qdrant/", "Oracle AI Vector Search: Generate Summary": "https://python.langchain.com/docs/integrations/tools/oracleai/", "Cohere": "https://python.langchain.com/docs/integrations/providers/cohere/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "Kinetica Vectorstore API": "https://python.langchain.com/docs/integrations/vectorstores/kinetica/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "PGVector": "https://python.langchain.com/docs/integrations/vectorstores/pgvector/", "SingleStoreDB": "https://python.langchain.com/docs/integrations/vectorstores/singlestoredb/", "Annoy": "https://python.langchain.com/docs/integrations/vectorstores/annoy/", "Couchbase ": "https://python.langchain.com/docs/integrations/vectorstores/couchbase/", "Oracle AI Vector Search: Vector Store": "https://python.langchain.com/docs/integrations/vectorstores/oracle/", "Neo4j Vector Index": "https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/docs/integrations/vectorstores/lantern/", "Google Firestore (Native Mode)": "https://python.langchain.com/docs/integrations/document_loaders/google_firestore/", "ClickHouse": "https://python.langchain.com/docs/integrations/vectorstores/clickhouse/", "Astra DB Vector Store": "https://python.langchain.com/docs/integrations/vectorstores/astradb/", "Faiss (Async)": "https://python.langchain.com/docs/integrations/vectorstores/faiss_async/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "PGVecto.rs": "https://python.langchain.com/docs/integrations/vectorstores/pgvecto_rs/", "Postgres Embedding": "https://python.langchain.com/docs/integrations/vectorstores/pgembedding/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Faiss": "https://python.langchain.com/docs/integrations/vectorstores/faiss/", "Nuclia": "https://python.langchain.com/docs/integrations/document_transformers/nuclia_transformer/", "AI21SemanticTextSplitter": "https://python.langchain.com/docs/integrations/document_transformers/ai21_semantic_text_splitter/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "OpenAI metadata tagger": "https://python.langchain.com/docs/integrations/document_transformers/openai_metadata_tagger/", "Doctran: extract properties": "https://python.langchain.com/docs/integrations/document_transformers/doctran_extract_properties/", "Google Translate": "https://python.langchain.com/docs/integrations/document_transformers/google_translate/", "Doctran: interrogate documents": "https://python.langchain.com/docs/integrations/document_transformers/doctran_interrogate_document/", "Doctran: language translation": "https://python.langchain.com/docs/integrations/document_transformers/doctran_translate_document/", "TensorFlow Datasets": "https://python.langchain.com/docs/integrations/document_loaders/tensorflow_datasets/", "Google Cloud SQL for MySQL": "https://python.langchain.com/docs/integrations/document_loaders/google_cloud_sql_mysql/", "Airbyte Salesforce (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_salesforce/", "Airbyte CDK (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_cdk/", "Airbyte Stripe (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_stripe/", "Copy Paste": "https://python.langchain.com/docs/integrations/document_loaders/copypaste/", "Airbyte Typeform (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_typeform/", "Apify Dataset": "https://python.langchain.com/docs/integrations/document_loaders/apify_dataset/", "Google Firestore in Datastore Mode": "https://python.langchain.com/docs/integrations/document_loaders/google_datastore/", "Oracle AI Vector Search: Document Processing": "https://python.langchain.com/docs/integrations/document_loaders/oracleai/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/", "Airbyte Hubspot (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_hubspot/", "Airbyte Gong (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_gong/", "Google Memorystore for Redis": "https://python.langchain.com/docs/integrations/document_loaders/google_memorystore_redis/", "Google Bigtable": "https://python.langchain.com/docs/integrations/document_loaders/google_bigtable/", "Google Cloud SQL for SQL server": "https://python.langchain.com/docs/integrations/document_loaders/google_cloud_sql_mssql/", "Google El Carro for Oracle Workloads": "https://python.langchain.com/docs/integrations/document_loaders/google_el_carro/", "Airbyte Shopify (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_shopify/", "Airbyte Zendesk Support (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_zendesk_support/", "Google Spanner": "https://python.langchain.com/docs/integrations/document_loaders/google_spanner/", "PDFMiner": "https://python.langchain.com/docs/integrations/document_loaders/pdfminer/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/docs/integrations/graphs/azure_cosmosdb_gremlin/", "SageMakerEndpoint": "https://python.langchain.com/docs/integrations/llms/sagemaker/", "self-query-qdrant": "https://python.langchain.com/docs/templates/self-query-qdrant/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/", "Vector stores and retrievers": "https://python.langchain.com/docs/tutorials/retrievers/"}, "LLMChain": {"# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/", "# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_chain/", "# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "Clarifai": "https://python.langchain.com/docs/integrations/llms/clarifai/", "RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/", "Memorize": "https://python.langchain.com/docs/integrations/tools/memorize/", "Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/", "Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/", "Dall-E Image Generator": "https://python.langchain.com/docs/integrations/tools/dalle_image_generator/", "Mot\u00f6rhead": "https://python.langchain.com/docs/integrations/memory/motorhead_memory/", "Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/", "Context": "https://python.langchain.com/docs/integrations/callbacks/context/", "SageMaker Tracking": "https://python.langchain.com/docs/integrations/callbacks/sagemaker_tracking/", "Argilla": "https://python.langchain.com/docs/integrations/callbacks/argilla/", "Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/", "MLflow Deployments for LLMs": "https://python.langchain.com/docs/integrations/providers/mlflow/", "MLflow AI Gateway": "https://python.langchain.com/docs/integrations/providers/mlflow_ai_gateway/", "Rebuff": "https://python.langchain.com/docs/integrations/providers/rebuff/", "Prediction Guard": "https://python.langchain.com/docs/integrations/llms/predictionguard/", "Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/", "Ray Serve": "https://python.langchain.com/docs/integrations/providers/ray_serve/", "Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Baseten": "https://python.langchain.com/docs/integrations/llms/baseten/", "StochasticAI": "https://python.langchain.com/docs/integrations/llms/stochasticai/", "Solar": "https://python.langchain.com/docs/integrations/llms/solar/", "Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/", "IPEX-LLM": "https://python.langchain.com/docs/integrations/llms/ipex_llm/", "Banana": "https://python.langchain.com/docs/integrations/llms/banana/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/docs/integrations/llms/alibabacloud_pai_eas_endpoint/", "OpenLLM": "https://python.langchain.com/docs/integrations/llms/openllm/", "OctoAI": "https://python.langchain.com/docs/integrations/llms/octoai/", "Writer": "https://python.langchain.com/docs/integrations/llms/writer/", "Modal": "https://python.langchain.com/docs/integrations/llms/modal/", "TextGen": "https://python.langchain.com/docs/integrations/llms/textgen/", "Xorbits Inference (Xinference)": "https://python.langchain.com/docs/integrations/llms/xinference/", "Nebula (Symbl.ai)": "https://python.langchain.com/docs/integrations/llms/symblai_nebula/", "DeepInfra": "https://python.langchain.com/docs/integrations/llms/deepinfra/", "NLP Cloud": "https://python.langchain.com/docs/integrations/llms/nlpcloud/", "ForefrontAI": "https://python.langchain.com/docs/integrations/llms/forefrontai/", "MosaicML": "https://python.langchain.com/docs/integrations/llms/mosaicml/", "CerebriumAI": "https://python.langchain.com/docs/integrations/llms/cerebriumai/", "Predibase": "https://python.langchain.com/docs/integrations/llms/predibase/", "GigaChat": "https://python.langchain.com/docs/integrations/llms/gigachat/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/", "Aphrodite Engine": "https://python.langchain.com/docs/integrations/llms/aphrodite/", "Eden AI": "https://python.langchain.com/docs/integrations/llms/edenai/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/docs/integrations/llms/javelin/", "C Transformers": "https://python.langchain.com/docs/integrations/llms/ctransformers/", "vLLM": "https://python.langchain.com/docs/integrations/llms/vllm/", "Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/", "Minimax": "https://python.langchain.com/docs/integrations/llms/minimax/", "Yuan2.0": "https://python.langchain.com/docs/integrations/llms/yuan2/", "Huggingface Endpoints": "https://python.langchain.com/docs/integrations/llms/huggingface_endpoint/", "Runhouse": "https://python.langchain.com/docs/integrations/llms/runhouse/", "Anyscale": "https://python.langchain.com/docs/integrations/llms/anyscale/", "YandexGPT": "https://python.langchain.com/docs/integrations/llms/yandex/", "GooseAI": "https://python.langchain.com/docs/integrations/llms/gooseai/", "OpenLM": "https://python.langchain.com/docs/integrations/llms/openlm/", "Cloudflare Workers AI": "https://python.langchain.com/docs/integrations/llms/cloudflare_workersai/", "CTranslate2": "https://python.langchain.com/docs/integrations/llms/ctranslate2/", "ChatGLM": "https://python.langchain.com/docs/integrations/llms/chatglm/", "Gradient": "https://python.langchain.com/docs/integrations/llms/gradient/", "Petals": "https://python.langchain.com/docs/integrations/llms/petals/", "Replicate": "https://python.langchain.com/docs/integrations/llms/replicate/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/"}, "StuffDocumentsChain": {"# Example": "https://python.langchain.com/docs/versions/migrating_chains/stuff_docs_chain/", "# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/"}, "create_stuff_documents_chain": {"# Example": "https://python.langchain.com/docs/versions/migrating_chains/stuff_docs_chain/", "Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/docs/how_to/long_context_reorder/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to summarize text in a single LLM call": "https://python.langchain.com/docs/how_to/summarize_stuff/", "RAGatouille": "https://python.langchain.com/docs/integrations/retrievers/ragatouille/", "ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/", "Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/docs/tutorials/pdf_qa/"}, "LLMMathChain": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_math_chain/"}, "BaseMessage": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_math_chain/", "How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to propagate callbacks constructor": "https://python.langchain.com/docs/how_to/callbacks_constructor/", "How to attach callbacks to a runnable": "https://python.langchain.com/docs/how_to/callbacks_attach/", "How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/", "How to pass callbacks in at runtime": "https://python.langchain.com/docs/how_to/callbacks_runtime/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "WeChat": "https://python.langchain.com/docs/integrations/chat_loaders/wechat/", "Discord": "https://python.langchain.com/docs/integrations/chat_loaders/discord/", "Chat Bot Feedback Template": "https://python.langchain.com/docs/templates/chat-bot-feedback/"}, "RunnableConfig": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/multi_prompt_chain/", "# Example": "https://python.langchain.com/docs/versions/migrating_chains/refine_docs_chain/", "How to access the RunnableConfig from a tool": "https://python.langchain.com/docs/how_to/tool_configure/", "How to summarize text through iterative refinement": "https://python.langchain.com/docs/how_to/summarize_refine/", "How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/", "How to stream events from a tool": "https://python.langchain.com/docs/how_to/tool_stream_events/", "How to run custom functions": "https://python.langchain.com/docs/how_to/functions/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/docs/how_to/tools_prompting/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/", "How to dispatch custom callback events": "https://python.langchain.com/docs/how_to/callbacks_custom_events/", "How to pass runtime secrets to runnables": "https://python.langchain.com/docs/how_to/runnable_runtime_secrets/", "Tavily Search": "https://python.langchain.com/docs/integrations/tools/tavily_search/"}, "tool": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_math_chain/", "How to disable parallel tool calling": "https://python.langchain.com/docs/how_to/tool_calling_parallel/", "How to use tools in a chain": "https://python.langchain.com/docs/how_to/tools_chain/", "How to access the RunnableConfig from a tool": "https://python.langchain.com/docs/how_to/tool_configure/", "How to do tool/function calling": "https://python.langchain.com/docs/how_to/function_calling/", "How to pass run time values to tools": "https://python.langchain.com/docs/how_to/tool_runtime/", "How to add a human-in-the-loop for tools": "https://python.langchain.com/docs/how_to/tools_human/", "How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/", "How to pass multimodal data directly to models": "https://python.langchain.com/docs/how_to/multimodal_inputs/", "How to force models to call a tool": "https://python.langchain.com/docs/how_to/tool_choice/", "How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/", "How to stream events from a tool": "https://python.langchain.com/docs/how_to/tool_stream_events/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to pass tool outputs to chat models": "https://python.langchain.com/docs/how_to/tool_results_pass_to_model/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/docs/how_to/tools_prompting/", "How to return artifacts from a tool": "https://python.langchain.com/docs/how_to/tool_artifacts/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "How to stream tool calls": "https://python.langchain.com/docs/how_to/tool_streaming/", "How to pass runtime secrets to runnables": "https://python.langchain.com/docs/how_to/runnable_runtime_secrets/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/docs/how_to/tools_few_shot/", "FinancialDatasets Toolkit": "https://python.langchain.com/docs/integrations/tools/financial_datasets/", "Exa Search": "https://python.langchain.com/docs/integrations/tools/exa_search/", "DeepInfra": "https://python.langchain.com/docs/integrations/chat/deepinfra/", "ChatOllama": "https://python.langchain.com/docs/integrations/chat/ollama/", "Llama.cpp": "https://python.langchain.com/docs/integrations/chat/llamacpp/", "Cohere": "https://python.langchain.com/docs/integrations/providers/cohere/", "Eden AI": "https://python.langchain.com/docs/integrations/chat/edenai/", "ChatTongyi": "https://python.langchain.com/docs/integrations/chat/tongyi/", "ChatPremAI": "https://python.langchain.com/docs/integrations/chat/premai/", "ChatNVIDIA": "https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "PremAI": "https://python.langchain.com/docs/integrations/providers/premai/", "Log, Trace, and Monitor": "https://python.langchain.com/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/docs/integrations/providers/portkey/index/", "JSONFormer": "https://python.langchain.com/docs/integrations/llms/jsonformer_experimental/"}, "MultiPromptChain": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/multi_prompt_chain/"}, "ConversationChain": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/conversation_chain/"}, "ConversationBufferMemory": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/conversation_chain/", "Memorize": "https://python.langchain.com/docs/integrations/tools/memorize/", "Gradio": "https://python.langchain.com/docs/integrations/tools/gradio_tools/", "SceneXplain": "https://python.langchain.com/docs/integrations/tools/sceneXplain/", "Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/", "Xata": "https://python.langchain.com/docs/integrations/memory/xata_chat_message_history/", "Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/"}, "InMemoryChatMessageHistory": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/conversation_chain/", "How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "ChatNVIDIA": "https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/"}, "RunnableWithMessageHistory": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/conversation_chain/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add message history": "https://python.langchain.com/docs/how_to/message_history/", "How to add memory to chatbots": "https://python.langchain.com/docs/how_to/chatbots_memory/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "Redis": "https://python.langchain.com/docs/integrations/memory/redis_chat_message_history/", "Google SQL for MySQL": "https://python.langchain.com/docs/integrations/memory/google_sql_mysql/", "Google AlloyDB for PostgreSQL": "https://python.langchain.com/docs/integrations/memory/google_alloydb/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "AWS DynamoDB": "https://python.langchain.com/docs/integrations/memory/aws_dynamodb/", "Couchbase": "https://python.langchain.com/docs/integrations/memory/couchbase_chat_message_history/", "MongoDB": "https://python.langchain.com/docs/integrations/memory/mongodb_chat_message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/docs/integrations/memory/sql_chat_message_history/", "Streamlit": "https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history/", "Google El Carro Oracle": "https://python.langchain.com/docs/integrations/memory/google_el_carro/", "SQLite": "https://python.langchain.com/docs/integrations/memory/sqlite/", "Google SQL for PostgreSQL": "https://python.langchain.com/docs/integrations/memory/google_sql_pg/", "Google SQL for SQL Server": "https://python.langchain.com/docs/integrations/memory/google_sql_mssql/", "TiDB": "https://python.langchain.com/docs/integrations/memory/tidb_chat_message_history/", "ChatNVIDIA": "https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/"}, "BaseChatMessageHistory": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/conversation_chain/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/"}, "ConstitutionalChain": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain/"}, "ConstitutionalPrinciple": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain/"}, "OpenAI": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain/", "# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/", "How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/docs/how_to/output_parser_structured/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/docs/how_to/long_context_reorder/", "How to add fallbacks to a runnable": "https://python.langchain.com/docs/how_to/fallbacks/", "How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/", "How to stream responses from an LLM": "https://python.langchain.com/docs/how_to/streaming_llm/", "How to cache LLM responses": "https://python.langchain.com/docs/how_to/llm_caching/", "How to track token usage for LLMs": "https://python.langchain.com/docs/how_to/llm_token_usage_tracking/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Milvus": "https://python.langchain.com/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Databricks Vector Search": "https://python.langchain.com/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/docs/integrations/retrievers/self_query/chroma_self_query/", "Timescale Vector (Postgres) ": "https://python.langchain.com/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/docs/integrations/retrievers/self_query/redis_self_query/", "Deep Lake": "https://python.langchain.com/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/docs/integrations/retrievers/self_query/qdrant_self_query/", "OpenAI": "https://python.langchain.com/docs/integrations/llms/openai/", "Jira Toolkit": "https://python.langchain.com/docs/integrations/tools/jira/", "Google Jobs": "https://python.langchain.com/docs/integrations/tools/google_jobs/", "Google Serper": "https://python.langchain.com/docs/integrations/tools/google_serper/", "Azure Cognitive Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_cognitive_services/", "Human as a tool": "https://python.langchain.com/docs/integrations/tools/human_tools/", "Natural Language API Toolkits": "https://python.langchain.com/docs/integrations/tools/openapi_nla/", "Steam Toolkit": "https://python.langchain.com/docs/integrations/tools/steam/", "JSON Toolkit": "https://python.langchain.com/docs/integrations/tools/json/", "Google Finance": "https://python.langchain.com/docs/integrations/tools/google_finance/", "ClickUp Toolkit": "https://python.langchain.com/docs/integrations/tools/clickup/", "AWS Lambda": "https://python.langchain.com/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/docs/integrations/tools/openweathermap/", "Eleven Labs Text2Speech": "https://python.langchain.com/docs/integrations/tools/eleven_labs_tts/", "Office365 Toolkit": "https://python.langchain.com/docs/integrations/tools/office365/", "Pandas Dataframe": "https://python.langchain.com/docs/integrations/tools/pandas/", "Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/", "Lemon Agent": "https://python.langchain.com/docs/integrations/tools/lemonai/", "NASA Toolkit": "https://python.langchain.com/docs/integrations/tools/nasa/", "GraphQL": "https://python.langchain.com/docs/integrations/tools/graphql/", "SearchApi": "https://python.langchain.com/docs/integrations/providers/searchapi/", "Gradio": "https://python.langchain.com/docs/integrations/tools/gradio_tools/", "SceneXplain": "https://python.langchain.com/docs/integrations/tools/sceneXplain/", "Azure AI Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_ai_services/", "OpenAPI Toolkit": "https://python.langchain.com/docs/integrations/tools/openapi/", "Dall-E Image Generator": "https://python.langchain.com/docs/integrations/tools/dalle_image_generator/", "Gitlab Toolkit": "https://python.langchain.com/docs/integrations/tools/gitlab/", "Ionic Shopping Tool": "https://python.langchain.com/docs/integrations/tools/ionic_shopping/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/", "Mot\u00f6rhead": "https://python.langchain.com/docs/integrations/memory/motorhead_memory/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/", "Confident": "https://python.langchain.com/docs/integrations/callbacks/confident/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "Fiddler": "https://python.langchain.com/docs/integrations/callbacks/fiddler/", "SageMaker Tracking": "https://python.langchain.com/docs/integrations/callbacks/sagemaker_tracking/", "Label Studio": "https://python.langchain.com/docs/integrations/callbacks/labelstudio/", "Comet Tracing": "https://python.langchain.com/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/docs/integrations/callbacks/argilla/", "PromptLayer": "https://python.langchain.com/docs/integrations/callbacks/promptlayer/", "Streamlit": "https://python.langchain.com/docs/integrations/callbacks/streamlit/", "Trubrics": "https://python.langchain.com/docs/integrations/callbacks/trubrics/", "Infino": "https://python.langchain.com/docs/integrations/callbacks/infino/", "DSPy": "https://python.langchain.com/docs/integrations/providers/dspy/", "Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/", "Log10": "https://python.langchain.com/docs/integrations/providers/log10/", "LangChain Decorators \u2728": "https://python.langchain.com/docs/integrations/providers/langchain_decorators/", "Rebuff": "https://python.langchain.com/docs/integrations/providers/rebuff/", "Serper - Google Search API": "https://python.langchain.com/docs/integrations/providers/google_serper/", "Helicone": "https://python.langchain.com/docs/integrations/providers/helicone/", "Shale Protocol": "https://python.langchain.com/docs/integrations/providers/shaleprotocol/", "WhyLabs": "https://python.langchain.com/docs/integrations/providers/whylabs_profiling/", "WandB Tracing": "https://python.langchain.com/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/docs/integrations/providers/clearml_tracking/", "Ray Serve": "https://python.langchain.com/docs/integrations/providers/ray_serve/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/", "Marqo": "https://python.langchain.com/docs/integrations/vectorstores/marqo/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Amazon Document DB": "https://python.langchain.com/docs/integrations/vectorstores/documentdb/", "VoyageAI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/voyageai-reranker/", "Apify Dataset": "https://python.langchain.com/docs/integrations/document_loaders/apify_dataset/", "Psychic": "https://python.langchain.com/docs/integrations/document_loaders/psychic/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/", "Amazon Textract ": "https://python.langchain.com/docs/integrations/document_loaders/amazon_textract/", "NetworkX": "https://python.langchain.com/docs/integrations/graphs/networkx/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/", "Layerup Security": "https://python.langchain.com/docs/integrations/llms/layerup_security/", "Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "CRITIQUE_PROMPT": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain/"}, "REVISION_PROMPT": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain/"}, "WebBaseLoader": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to summarize text through parallelization": "https://python.langchain.com/docs/how_to/summarize_map_reduce/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/", "RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/", "Infino": "https://python.langchain.com/docs/integrations/callbacks/infino/", "ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/", "Zep Cloud": "https://python.langchain.com/docs/integrations/vectorstores/zep_cloud/", "Zep": "https://python.langchain.com/docs/integrations/vectorstores/zep/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Merge Documents Loader": "https://python.langchain.com/docs/integrations/document_loaders/merge_doc/", "WebBaseLoader": "https://python.langchain.com/docs/integrations/document_loaders/web_base/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/docs/tutorials/local_rag/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/"}, "FAISS": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to load PDFs": "https://python.langchain.com/docs/how_to/document_loader_pdf/", "How to better prompt when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_prompting/", "How to add values to a chain's state": "https://python.langchain.com/docs/how_to/assign/", "How to inspect runnables": "https://python.langchain.com/docs/how_to/inspect/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_large_db/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/docs/how_to/passthrough/", "How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "How to use a time-weighted vector store retriever": "https://python.langchain.com/docs/how_to/time_weighted_vectorstore/", "How to create and query vector stores": "https://python.langchain.com/docs/how_to/vectorstores/", "How to use a vectorstore as a retriever": "https://python.langchain.com/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/docs/how_to/caching_embeddings/", "How to combine results from multiple retrievers": "https://python.langchain.com/docs/how_to/ensemble_retriever/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/docs/how_to/example_selectors_mmr/", "NVIDIA NIMs ": "https://python.langchain.com/docs/integrations/text_embedding/nvidia_ai_endpoints/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/docs/integrations/retrievers/cohere-reranker/", "FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/docs/integrations/providers/ragatouille/", "Facebook - Meta": "https://python.langchain.com/docs/integrations/providers/facebook/", "Faiss (Async)": "https://python.langchain.com/docs/integrations/vectorstores/faiss_async/", "Faiss": "https://python.langchain.com/docs/integrations/vectorstores/faiss/", "VoyageAI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/docs/integrations/document_transformers/openvino_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/docs/integrations/document_transformers/dashscope_rerank/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/"}, "OpenAIEmbeddings": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to load PDFs": "https://python.langchain.com/docs/how_to/document_loader_pdf/", "How to better prompt when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_prompting/", "How to add values to a chain's state": "https://python.langchain.com/docs/how_to/assign/", "How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/", "How to do per-user retrieval": "https://python.langchain.com/docs/how_to/qa_per_user/", "How to use few shot examples": "https://python.langchain.com/docs/how_to/few_shot_examples/", "How to inspect runnables": "https://python.langchain.com/docs/how_to/inspect/", "How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to use few shot examples in chat models": "https://python.langchain.com/docs/how_to/few_shot_examples_chat/", "How to select examples by similarity": "https://python.langchain.com/docs/how_to/example_selectors_similarity/", "Text embedding models": "https://python.langchain.com/docs/how_to/embed_text/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_large_db/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to use the LangChain indexing API": "https://python.langchain.com/docs/how_to/indexing/", "How to split text based on semantic similarity": "https://python.langchain.com/docs/how_to/semantic-chunker/", "How to convert Runnables as Tools": "https://python.langchain.com/docs/how_to/convert_runnable_to_tool/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/docs/how_to/passthrough/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "How to use a time-weighted vector store retriever": "https://python.langchain.com/docs/how_to/time_weighted_vectorstore/", "How to create and query vector stores": "https://python.langchain.com/docs/how_to/vectorstores/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/", "How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "How to use the Parent Document Retriever": "https://python.langchain.com/docs/how_to/parent_document_retriever/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/docs/how_to/query_high_cardinality/", "How to use a vectorstore as a retriever": "https://python.langchain.com/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/docs/how_to/caching_embeddings/", "How to combine results from multiple retrievers": "https://python.langchain.com/docs/how_to/ensemble_retriever/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/docs/how_to/example_selectors_mmr/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "Hybrid Search": "https://python.langchain.com/docs/how_to/hybrid/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "OpenAIEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/openai/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/docs/integrations/retrievers/kinetica/", "JaguarDB Vector Database": "https://python.langchain.com/docs/integrations/retrievers/jaguar/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/", "SingleStoreDB": "https://python.langchain.com/docs/integrations/vectorstores/singlestoredb/", "kNN": "https://python.langchain.com/docs/integrations/retrievers/knn/", "DocArray": "https://python.langchain.com/docs/integrations/retrievers/docarray_retriever/", "SVM": "https://python.langchain.com/docs/integrations/retrievers/svm/", "Pinecone Hybrid Search": "https://python.langchain.com/docs/integrations/retrievers/pinecone_hybrid_search/", "Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/", "FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "LOTR (Merger Retriever)": "https://python.langchain.com/docs/integrations/retrievers/merger_retriever/", "Milvus": "https://python.langchain.com/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "Databricks Vector Search": "https://python.langchain.com/docs/integrations/vectorstores/databricks_vector_search/", "DingoDB": "https://python.langchain.com/docs/integrations/vectorstores/dingo/", "OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/opensearch/", "Elasticsearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/docs/integrations/retrievers/self_query/chroma_self_query/", "Timescale Vector (Postgres) ": "https://python.langchain.com/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/supabase/", "Redis": "https://python.langchain.com/docs/integrations/retrievers/self_query/redis_self_query/", "MyScale": "https://python.langchain.com/docs/integrations/vectorstores/myscale/", "Deep Lake": "https://python.langchain.com/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/docs/integrations/retrievers/self_query/qdrant_self_query/", "OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/", "Xata": "https://python.langchain.com/docs/integrations/vectorstores/xata/", "Confident": "https://python.langchain.com/docs/integrations/callbacks/confident/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/docs/integrations/providers/ragatouille/", "Upstash Vector": "https://python.langchain.com/docs/integrations/vectorstores/upstash/", "Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/", "LanceDB": "https://python.langchain.com/docs/integrations/vectorstores/lancedb/", "Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/", "Kinetica Vectorstore API": "https://python.langchain.com/docs/integrations/vectorstores/kinetica/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "Hippo": "https://python.langchain.com/docs/integrations/vectorstores/hippo/", "Rockset": "https://python.langchain.com/docs/integrations/vectorstores/rockset/", "Zilliz": "https://python.langchain.com/docs/integrations/vectorstores/zilliz/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db/", "viking DB": "https://python.langchain.com/docs/integrations/vectorstores/vikingdb/", "Typesense": "https://python.langchain.com/docs/integrations/vectorstores/typesense/", "Momento Vector Index (MVI)": "https://python.langchain.com/docs/integrations/vectorstores/momento_vector_index/", "TiDB Vector": "https://python.langchain.com/docs/integrations/vectorstores/tidb_vector/", "Activeloop Deep Lake": "https://python.langchain.com/docs/integrations/vectorstores/activeloop_deeplake/", "Neo4j Vector Index": "https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/docs/integrations/vectorstores/lantern/", "DuckDB": "https://python.langchain.com/docs/integrations/vectorstores/duckdb/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/alibabacloud_opensearch/", "StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/", "scikit-learn": "https://python.langchain.com/docs/integrations/vectorstores/sklearn/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/", "DocArray HnswSearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_hnsw/", "Tigris": "https://python.langchain.com/docs/integrations/vectorstores/tigris/", "China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/ecloud_vector_search/", "Faiss (Async)": "https://python.langchain.com/docs/integrations/vectorstores/faiss_async/", "Azure AI Search": "https://python.langchain.com/docs/integrations/vectorstores/azuresearch/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "USearch": "https://python.langchain.com/docs/integrations/vectorstores/usearch/", "KDB.AI": "https://python.langchain.com/docs/integrations/vectorstores/kdbai/", "DocArray InMemorySearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_in_memory/", "Postgres Embedding": "https://python.langchain.com/docs/integrations/vectorstores/pgembedding/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Epsilla": "https://python.langchain.com/docs/integrations/vectorstores/epsilla/", "Amazon Document DB": "https://python.langchain.com/docs/integrations/vectorstores/documentdb/", "AnalyticDB": "https://python.langchain.com/docs/integrations/vectorstores/analyticdb/", "Hologres": "https://python.langchain.com/docs/integrations/vectorstores/hologres/", "Meilisearch": "https://python.langchain.com/docs/integrations/vectorstores/meilisearch/", "RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/", "Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/", "Apify Dataset": "https://python.langchain.com/docs/integrations/document_loaders/apify_dataset/", "Psychic": "https://python.langchain.com/docs/integrations/document_loaders/psychic/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/docs/tutorials/pdf_qa/", "Vector stores and retrievers": "https://python.langchain.com/docs/tutorials/retrievers/"}, "RecursiveCharacterTextSplitter": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to split code": "https://python.langchain.com/docs/how_to/code_splitter/", "How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to recursively split text by characters": "https://python.langchain.com/docs/how_to/recursive_text_splitter/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "How to split text by tokens ": "https://python.langchain.com/docs/how_to/split_by_token/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/", "How to use the Parent Document Retriever": "https://python.langchain.com/docs/how_to/parent_document_retriever/", "How to split Markdown by Headers": "https://python.langchain.com/docs/how_to/markdown_header_metadata_splitter/", "How to split by HTML header ": "https://python.langchain.com/docs/how_to/HTML_header_metadata_splitter/", "How to split by HTML sections": "https://python.langchain.com/docs/how_to/HTML_section_aware_splitter/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/", "LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/docs/integrations/retrievers/cohere-reranker/", "Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/docs/integrations/providers/ragatouille/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Google Vertex AI Vector Search": "https://python.langchain.com/docs/integrations/vectorstores/google_vertex_ai_vector_search/", "viking DB": "https://python.langchain.com/docs/integrations/vectorstores/vikingdb/", "ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/", "Azure Cosmos DB No SQL": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db_no_sql/", "Zep Cloud": "https://python.langchain.com/docs/integrations/vectorstores/zep_cloud/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "Zep": "https://python.langchain.com/docs/integrations/vectorstores/zep/", "Vearch": "https://python.langchain.com/docs/integrations/vectorstores/vearch/", "VoyageAI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/docs/integrations/document_transformers/openvino_rerank/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/docs/integrations/document_transformers/dashscope_rerank/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/", "Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/", "Source Code": "https://python.langchain.com/docs/integrations/document_loaders/source_code/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/docs/tutorials/local_rag/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/docs/tutorials/pdf_qa/"}, "ConversationalRetrievalChain": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/conversation_retrieval_chain/", "Outline": "https://python.langchain.com/docs/integrations/retrievers/outline/", "SEC filing": "https://python.langchain.com/docs/integrations/retrievers/sec_filings/", "Rememberizer": "https://python.langchain.com/docs/integrations/retrievers/rememberizer/", "Kay.ai": "https://python.langchain.com/docs/integrations/retrievers/kay/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/"}, "create_history_aware_retriever": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/conversation_retrieval_chain/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/"}, "create_retrieval_chain": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "RAGatouille": "https://python.langchain.com/docs/integrations/retrievers/ragatouille/", "ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/", "Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/docs/tutorials/pdf_qa/"}, "MapReduceDocumentsChain": {"# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/"}, "ReduceDocumentsChain": {"# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/"}, "CharacterTextSplitter": {"# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to split by character": "https://python.langchain.com/docs/how_to/character_text_splitter/", "How to summarize text through parallelization": "https://python.langchain.com/docs/how_to/summarize_map_reduce/", "How to use the LangChain indexing API": "https://python.langchain.com/docs/how_to/indexing/", "How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "How to create and query vector stores": "https://python.langchain.com/docs/how_to/vectorstores/", "How to split text by tokens ": "https://python.langchain.com/docs/how_to/split_by_token/", "How to use a vectorstore as a retriever": "https://python.langchain.com/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/docs/how_to/caching_embeddings/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/docs/integrations/retrievers/kinetica/", "JaguarDB Vector Database": "https://python.langchain.com/docs/integrations/retrievers/jaguar/", "SingleStoreDB": "https://python.langchain.com/docs/integrations/retrievers/singlestoredb/", "OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/", "Confident": "https://python.langchain.com/docs/integrations/callbacks/confident/", "Upstash Vector": "https://python.langchain.com/docs/integrations/vectorstores/upstash/", "VDMS": "https://python.langchain.com/docs/integrations/providers/vdms/", "LanceDB": "https://python.langchain.com/docs/integrations/vectorstores/lancedb/", "Kinetica Vectorstore API": "https://python.langchain.com/docs/integrations/vectorstores/kinetica/", "SQLite-VSS": "https://python.langchain.com/docs/integrations/vectorstores/sqlitevss/", "Vald": "https://python.langchain.com/docs/integrations/vectorstores/vald/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "DashVector": "https://python.langchain.com/docs/integrations/vectorstores/dashvector/", "Databricks Vector Search": "https://python.langchain.com/docs/integrations/vectorstores/databricks_vector_search/", "ScaNN": "https://python.langchain.com/docs/integrations/vectorstores/scann/", "Xata": "https://python.langchain.com/docs/integrations/vectorstores/xata/", "Hippo": "https://python.langchain.com/docs/integrations/vectorstores/hippo/", "Vespa": "https://python.langchain.com/docs/integrations/vectorstores/vespa/", "Rockset": "https://python.langchain.com/docs/integrations/vectorstores/rockset/", "DingoDB": "https://python.langchain.com/docs/integrations/vectorstores/dingo/", "Zilliz": "https://python.langchain.com/docs/integrations/vectorstores/zilliz/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db/", "Annoy": "https://python.langchain.com/docs/integrations/vectorstores/annoy/", "Couchbase ": "https://python.langchain.com/docs/integrations/vectorstores/couchbase/", "Typesense": "https://python.langchain.com/docs/integrations/vectorstores/typesense/", "Momento Vector Index (MVI)": "https://python.langchain.com/docs/integrations/vectorstores/momento_vector_index/", "TiDB Vector": "https://python.langchain.com/docs/integrations/vectorstores/tidb_vector/", "Relyt": "https://python.langchain.com/docs/integrations/vectorstores/relyt/", "Activeloop Deep Lake": "https://python.langchain.com/docs/integrations/vectorstores/activeloop_deeplake/", "vlite": "https://python.langchain.com/docs/integrations/vectorstores/vlite/", "Neo4j Vector Index": "https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/docs/integrations/vectorstores/lantern/", "Tair": "https://python.langchain.com/docs/integrations/vectorstores/tair/", "DuckDB": "https://python.langchain.com/docs/integrations/vectorstores/duckdb/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/alibabacloud_opensearch/", "Clarifai": "https://python.langchain.com/docs/integrations/vectorstores/clarifai/", "scikit-learn": "https://python.langchain.com/docs/integrations/vectorstores/sklearn/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/", "DocArray HnswSearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_hnsw/", "MyScale": "https://python.langchain.com/docs/integrations/vectorstores/myscale/", "TileDB": "https://python.langchain.com/docs/integrations/vectorstores/tiledb/", "Google Memorystore for Redis": "https://python.langchain.com/docs/integrations/vectorstores/google_memorystore_redis/", "Tigris": "https://python.langchain.com/docs/integrations/vectorstores/tigris/", "China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/ecloud_vector_search/", "Bagel": "https://python.langchain.com/docs/integrations/vectorstores/bagel/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/baiducloud_vector_search/", "AwaDB": "https://python.langchain.com/docs/integrations/vectorstores/awadb/", "Supabase (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/supabase/", "SurrealDB": "https://python.langchain.com/docs/integrations/vectorstores/surrealdb/", "OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/opensearch/", "Faiss (Async)": "https://python.langchain.com/docs/integrations/vectorstores/faiss_async/", "BagelDB": "https://python.langchain.com/docs/integrations/vectorstores/bageldb/", "ManticoreSearch VectorStore": "https://python.langchain.com/docs/integrations/vectorstores/manticore_search/", "Azure AI Search": "https://python.langchain.com/docs/integrations/vectorstores/azuresearch/", "USearch": "https://python.langchain.com/docs/integrations/vectorstores/usearch/", "PGVecto.rs": "https://python.langchain.com/docs/integrations/vectorstores/pgvecto_rs/", "Marqo": "https://python.langchain.com/docs/integrations/vectorstores/marqo/", "DocArray InMemorySearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_in_memory/", "Postgres Embedding": "https://python.langchain.com/docs/integrations/vectorstores/pgembedding/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/docs/integrations/vectorstores/vdms/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Epsilla": "https://python.langchain.com/docs/integrations/vectorstores/epsilla/", "Amazon Document DB": "https://python.langchain.com/docs/integrations/vectorstores/documentdb/", "SemaDB": "https://python.langchain.com/docs/integrations/vectorstores/semadb/", "AnalyticDB": "https://python.langchain.com/docs/integrations/vectorstores/analyticdb/", "Hologres": "https://python.langchain.com/docs/integrations/vectorstores/hologres/", "Baidu VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/baiduvectordb/", "Meilisearch": "https://python.langchain.com/docs/integrations/vectorstores/meilisearch/", "Psychic": "https://python.langchain.com/docs/integrations/document_loaders/psychic/", "Manifest": "https://python.langchain.com/docs/integrations/llms/manifest/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/"}, "acollapse_docs": {"# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "How to summarize text through parallelization": "https://python.langchain.com/docs/how_to/summarize_map_reduce/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/"}, "split_list_of_docs": {"# Basic example (short documents)": "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/", "How to summarize text through parallelization": "https://python.langchain.com/docs/how_to/summarize_map_reduce/", "Summarize Text": "https://python.langchain.com/docs/tutorials/summarization/"}, "RefineDocumentsChain": {"# Example": "https://python.langchain.com/docs/versions/migrating_chains/refine_docs_chain/"}, "RetrievalQA": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/", "Bedrock (Knowledge Bases) Retriever": "https://python.langchain.com/docs/integrations/retrievers/bedrock/", "Cohere reranker": "https://python.langchain.com/docs/integrations/retrievers/cohere-reranker/", "Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "Confident": "https://python.langchain.com/docs/integrations/callbacks/confident/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/", "ScaNN": "https://python.langchain.com/docs/integrations/vectorstores/scann/", "Google Vertex AI Vector Search": "https://python.langchain.com/docs/integrations/vectorstores/google_vertex_ai_vector_search/", "Momento Vector Index (MVI)": "https://python.langchain.com/docs/integrations/vectorstores/momento_vector_index/", "Activeloop Deep Lake": "https://python.langchain.com/docs/integrations/vectorstores/activeloop_deeplake/", "StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/", "KDB.AI": "https://python.langchain.com/docs/integrations/vectorstores/kdbai/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Amazon Document DB": "https://python.langchain.com/docs/integrations/vectorstores/documentdb/", "VoyageAI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/"}, "RunnablePassthrough": {"Load docs": "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/", "# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_router_chain/", "How to add values to a chain's state": "https://python.langchain.com/docs/how_to/assign/", "How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/", "How to do per-user retrieval": "https://python.langchain.com/docs/how_to/qa_per_user/", "How to inspect runnables": "https://python.langchain.com/docs/how_to/inspect/", "How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to do tool/function calling": "https://python.langchain.com/docs/how_to/function_calling/", "How to add a human-in-the-loop for tools": "https://python.langchain.com/docs/how_to/tools_human/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_large_db/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to map values to a graph database": "https://python.langchain.com/docs/how_to/graph_mapping/", "How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to add default invocation args to a Runnable": "https://python.langchain.com/docs/how_to/binding/", "How to convert Runnables as Tools": "https://python.langchain.com/docs/how_to/convert_runnable_to_tool/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/docs/how_to/dynamic_chain/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to invoke runnables in parallel": "https://python.langchain.com/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/docs/how_to/passthrough/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "How to add memory to chatbots": "https://python.langchain.com/docs/how_to/chatbots_memory/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/docs/how_to/query_high_cardinality/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/docs/how_to/tools_prompting/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/", "Hybrid Search": "https://python.langchain.com/docs/how_to/hybrid/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "NVIDIA NIMs ": "https://python.langchain.com/docs/integrations/text_embedding/nvidia_ai_endpoints/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "You.com": "https://python.langchain.com/docs/integrations/retrievers/you-retriever/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "AskNews": "https://python.langchain.com/docs/integrations/retrievers/asknews/", "WikipediaRetriever": "https://python.langchain.com/docs/integrations/retrievers/wikipedia/", "TavilySearchAPIRetriever": "https://python.langchain.com/docs/integrations/retrievers/tavily/", "ArxivRetriever": "https://python.langchain.com/docs/integrations/retrievers/arxiv/", "ElasticsearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/elasticsearch_retriever/", "Milvus Hybrid Search Retriever": "https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/", "Google Vertex AI Search": "https://python.langchain.com/docs/integrations/retrievers/google_vertex_ai_search/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "DSPy": "https://python.langchain.com/docs/integrations/providers/dspy/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/docs/tutorials/local_rag/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/", "Vector stores and retrievers": "https://python.langchain.com/docs/tutorials/retrievers/"}, "LLMRouterChain": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_router_chain/"}, "RouterOutputParser": {"# Legacy": "https://python.langchain.com/docs/versions/migrating_chains/llm_router_chain/"}, "MapRerankDocumentsChain": {"# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/"}, "RegexParser": {"# Example": "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/"}, "TavilySearchResults": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to debug your LLM apps": "https://python.langchain.com/docs/how_to/debugging/", "Tavily Search": "https://python.langchain.com/docs/integrations/tools/tavily_search/", "ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "Cohere": "https://python.langchain.com/docs/integrations/providers/cohere/", "Build an Agent": "https://python.langchain.com/docs/tutorials/agents/"}, "create_retriever_tool": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "Xata": "https://python.langchain.com/docs/integrations/memory/xata_chat_message_history/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/"}, "create_tool_calling_agent": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to use tools in a chain": "https://python.langchain.com/docs/how_to/tools_chain/", "How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to debug your LLM apps": "https://python.langchain.com/docs/how_to/debugging/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "Azure Container Apps dynamic sessions": "https://python.langchain.com/docs/integrations/tools/azure_dynamic_sessions/", "FinancialDatasets Toolkit": "https://python.langchain.com/docs/integrations/tools/financial_datasets/", "Databricks Unity Catalog (UC)": "https://python.langchain.com/docs/integrations/tools/databricks/", "Riza Code Interpreter": "https://python.langchain.com/docs/integrations/tools/riza/", "Bing Search": "https://python.langchain.com/docs/integrations/tools/bing_search/"}, "AgentExecutor": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to use tools in a chain": "https://python.langchain.com/docs/how_to/tools_chain/", "How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to debug your LLM apps": "https://python.langchain.com/docs/how_to/debugging/", "How to migrate from legacy LangChain agents to LangGraph": "https://python.langchain.com/docs/how_to/migrate_agent/", "Infobip": "https://python.langchain.com/docs/integrations/tools/infobip/", "AskNews": "https://python.langchain.com/docs/integrations/tools/asknews/", "Azure Container Apps dynamic sessions": "https://python.langchain.com/docs/integrations/tools/azure_dynamic_sessions/", "FinancialDatasets Toolkit": "https://python.langchain.com/docs/integrations/tools/financial_datasets/", "Cassandra Database Toolkit": "https://python.langchain.com/docs/integrations/tools/cassandra_database/", "Polygon IO Toolkit": "https://python.langchain.com/docs/integrations/tools/polygon_toolkit/", "Semantic Scholar API Tool": "https://python.langchain.com/docs/integrations/tools/semanticscholar/", "Databricks Unity Catalog (UC)": "https://python.langchain.com/docs/integrations/tools/databricks/", "Passio NutritionAI": "https://python.langchain.com/docs/integrations/tools/passio_nutrition_ai/", "Memorize": "https://python.langchain.com/docs/integrations/tools/memorize/", "Riza Code Interpreter": "https://python.langchain.com/docs/integrations/tools/riza/", "ArXiv": "https://python.langchain.com/docs/integrations/tools/arxiv/", "Robocorp Toolkit": "https://python.langchain.com/docs/integrations/tools/robocorp/", "MultiOn Toolkit": "https://python.langchain.com/docs/integrations/tools/multion/", "Exa Search": "https://python.langchain.com/docs/integrations/tools/exa_search/", "Amadeus Toolkit": "https://python.langchain.com/docs/integrations/tools/amadeus/", "Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/", "You.com Search": "https://python.langchain.com/docs/integrations/tools/you/", "Bing Search": "https://python.langchain.com/docs/integrations/tools/bing_search/", "Azure AI Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_ai_services/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/", "Ionic Shopping Tool": "https://python.langchain.com/docs/integrations/tools/ionic_shopping/", "MLX": "https://python.langchain.com/docs/integrations/chat/mlx/", "ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "Streamlit": "https://python.langchain.com/docs/integrations/callbacks/streamlit/", "Cohere": "https://python.langchain.com/docs/integrations/providers/cohere/", "Dataherald": "https://python.langchain.com/docs/integrations/providers/dataherald/", "Log, Trace, and Monitor": "https://python.langchain.com/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/docs/integrations/providers/portkey/index/", "Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/"}, "AIMessage": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to merge consecutive messages of the same type": "https://python.langchain.com/docs/how_to/merge_message_runs/", "How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to do tool/function calling": "https://python.langchain.com/docs/how_to/function_calling/", "How to add a human-in-the-loop for tools": "https://python.langchain.com/docs/how_to/tools_human/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/docs/how_to/extraction_parse/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/", "How to filter messages": "https://python.langchain.com/docs/how_to/filter_messages/", "How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/", "How to return structured data from a model": "https://python.langchain.com/docs/how_to/structured_output/", "How to compose prompts together": "https://python.langchain.com/docs/how_to/prompts_composition/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "Twitter (via Apify)": "https://python.langchain.com/docs/integrations/chat_loaders/twitter/", "Zep Open Source": "https://python.langchain.com/docs/integrations/retrievers/zep_memorystore/", "Zep Cloud": "https://python.langchain.com/docs/integrations/retrievers/zep_cloud_memorystore/", "Google Imagen": "https://python.langchain.com/docs/integrations/tools/google_imagen/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/", "ChatOllama": "https://python.langchain.com/docs/integrations/chat/ollama/", "ChatOCIGenAI": "https://python.langchain.com/docs/integrations/chat/oci_generative_ai/", "ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "Yuan2.0": "https://python.langchain.com/docs/integrations/chat/yuan2/", "Google Cloud Vertex AI": "https://python.langchain.com/docs/integrations/llms/google_vertex_ai_palm/", "ChatGLM": "https://python.langchain.com/docs/integrations/llms/chatglm/", "Chat Bot Feedback Template": "https://python.langchain.com/docs/templates/chat-bot-feedback/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/"}, "ChatMessageHistory": {"Build an Agent with AgentExecutor (Legacy)": "https://python.langchain.com/docs/how_to/agent_executor/", "How to add tools to chatbots": "https://python.langchain.com/docs/how_to/chatbots_tools/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add memory to chatbots": "https://python.langchain.com/docs/how_to/chatbots_memory/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/"}, "Neo4jGraph": {"How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to map values to a graph database": "https://python.langchain.com/docs/how_to/graph_mapping/", "How to construct knowledge graphs": "https://python.langchain.com/docs/how_to/graph_constructing/", "How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "Neo4j": "https://python.langchain.com/docs/integrations/graphs/neo4j_cypher/", "Diffbot": "https://python.langchain.com/docs/integrations/graphs/diffbot/", "Build a Question Answering application over a Graph Database": "https://python.langchain.com/docs/tutorials/graph/"}, "AsyncCallbackManagerForToolRun": {"How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/"}, "CallbackManagerForToolRun": {"How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/"}, "BaseTool": {"How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to use LangChain with different Pydantic versions": "https://python.langchain.com/docs/how_to/pydantic_compatibility/", "How to pass run time values to tools": "https://python.langchain.com/docs/how_to/tool_runtime/", "How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/", "How to return artifacts from a tool": "https://python.langchain.com/docs/how_to/tool_artifacts/"}, "format_to_openai_function_messages": {"How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/"}, "OpenAIFunctionsAgentOutputParser": {"How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/"}, "convert_to_openai_function": {"How to add a semantic layer over graph database": "https://python.langchain.com/docs/how_to/graph_semantic/", "How to convert tools to OpenAI Functions": "https://python.langchain.com/docs/how_to/tools_as_openai_functions/"}, "BSHTMLLoader": {"How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to load HTML": "https://python.langchain.com/docs/how_to/document_loader_html/", "BSHTMLLoader": "https://python.langchain.com/docs/integrations/document_loaders/bshtml/"}, "TokenTextSplitter": {"How to handle long text when doing extraction": "https://python.langchain.com/docs/how_to/extraction_long_text/", "How to split text by tokens ": "https://python.langchain.com/docs/how_to/split_by_token/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/", "StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/"}, "PyPDFLoader": {"How to load PDFs": "https://python.langchain.com/docs/how_to/document_loader_pdf/", "Google Vertex AI Vector Search": "https://python.langchain.com/docs/integrations/vectorstores/google_vertex_ai_vector_search/", "Azure Cosmos DB No SQL": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db_no_sql/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/", "KDB.AI": "https://python.langchain.com/docs/integrations/vectorstores/kdbai/", "PyPDFLoader": "https://python.langchain.com/docs/integrations/document_loaders/pypdfloader/", "Merge Documents Loader": "https://python.langchain.com/docs/integrations/document_loaders/merge_doc/", "Google Cloud Storage File": "https://python.langchain.com/docs/integrations/document_loaders/google_cloud_storage_file/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/docs/tutorials/pdf_qa/"}, "SQLDatabase": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_prompting/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_large_db/", "How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/docs/how_to/sql_query_checking/", "SQLDatabase Toolkit": "https://python.langchain.com/docs/integrations/tools/sql_database/", "CnosDB": "https://python.langchain.com/docs/integrations/providers/cnosdb/", "Rebuff": "https://python.langchain.com/docs/integrations/providers/rebuff/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/"}, "create_sql_query_chain": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_prompting/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_large_db/", "How to do query validation as part of SQL question-answering": "https://python.langchain.com/docs/how_to/sql_query_checking/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/"}, "FewShotPromptTemplate": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_prompting/", "How to select examples by n-gram overlap": "https://python.langchain.com/docs/how_to/example_selectors_ngram/", "How to select examples by length": "https://python.langchain.com/docs/how_to/example_selectors_length_based/", "How to use example selectors": "https://python.langchain.com/docs/how_to/example_selectors/", "How to use few shot examples": "https://python.langchain.com/docs/how_to/few_shot_examples/", "How to select examples by similarity": "https://python.langchain.com/docs/how_to/example_selectors_similarity/", "How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/docs/how_to/example_selectors_mmr/", "Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "SemanticSimilarityExampleSelector": {"How to better prompt when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_prompting/", "How to use few shot examples": "https://python.langchain.com/docs/how_to/few_shot_examples/", "How to use few shot examples in chat models": "https://python.langchain.com/docs/how_to/few_shot_examples_chat/", "How to select examples by similarity": "https://python.langchain.com/docs/how_to/example_selectors_similarity/", "How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/docs/how_to/example_selectors_mmr/"}, "PydanticOutputParser": {"How to use output parsers to parse an LLM response into structured format": "https://python.langchain.com/docs/how_to/output_parser_structured/", "How to use prompting alone (no tool calling) to do extraction": "https://python.langchain.com/docs/how_to/extraction_parse/", "How to use the output-fixing parser": "https://python.langchain.com/docs/how_to/output_parser_fixing/", "How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/", "How to return structured data from a model": "https://python.langchain.com/docs/how_to/structured_output/", "Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "AsyncCallbackHandler": {"How to use callbacks in async environments": "https://python.langchain.com/docs/how_to/callbacks_async/", "How to dispatch custom callback events": "https://python.langchain.com/docs/how_to/callbacks_custom_events/", "Bedrock": "https://python.langchain.com/docs/integrations/llms/bedrock/"}, "BaseCallbackHandler": {"How to use callbacks in async environments": "https://python.langchain.com/docs/how_to/callbacks_async/", "How to propagate callbacks constructor": "https://python.langchain.com/docs/how_to/callbacks_constructor/", "How to attach callbacks to a runnable": "https://python.langchain.com/docs/how_to/callbacks_attach/", "How to create custom callback handlers": "https://python.langchain.com/docs/how_to/custom_callbacks/", "How to dispatch custom callback events": "https://python.langchain.com/docs/how_to/callbacks_custom_events/", "How to pass callbacks in at runtime": "https://python.langchain.com/docs/how_to/callbacks_runtime/", "GPT4All": "https://python.langchain.com/docs/integrations/llms/gpt4all/"}, "LLMResult": {"How to use callbacks in async environments": "https://python.langchain.com/docs/how_to/callbacks_async/", "How to propagate callbacks constructor": "https://python.langchain.com/docs/how_to/callbacks_constructor/", "How to attach callbacks to a runnable": "https://python.langchain.com/docs/how_to/callbacks_attach/", "How to pass callbacks in at runtime": "https://python.langchain.com/docs/how_to/callbacks_runtime/", "Google Cloud Vertex AI": "https://python.langchain.com/docs/integrations/llms/google_vertex_ai_palm/"}, "RunnableParallel": {"How to add values to a chain's state": "https://python.langchain.com/docs/how_to/assign/", "How to invoke runnables in parallel": "https://python.langchain.com/docs/how_to/parallel/", "How to pass through arguments from one step to the next": "https://python.langchain.com/docs/how_to/passthrough/", "How to add message history": "https://python.langchain.com/docs/how_to/message_history/", "How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/", "How to chain runnables": "https://python.langchain.com/docs/how_to/sequence/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/"}, "RunnableBranch": {"How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/"}, "cosine_similarity": {"How to route between sub-chains": "https://python.langchain.com/docs/how_to/routing/"}, "ConfigurableField": {"How to do per-user retrieval": "https://python.langchain.com/docs/how_to/qa_per_user/", "How to configure runtime chain internals": "https://python.langchain.com/docs/how_to/configure/", "LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/", "How to combine results from multiple retrievers": "https://python.langchain.com/docs/how_to/ensemble_retriever/", "Hybrid Search": "https://python.langchain.com/docs/how_to/hybrid/"}, "NGramOverlapExampleSelector": {"How to select examples by n-gram overlap": "https://python.langchain.com/docs/how_to/example_selectors_ngram/"}, "get_openai_callback": {"How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "How to run custom functions": "https://python.langchain.com/docs/how_to/functions/", "How to track token usage for LLMs": "https://python.langchain.com/docs/how_to/llm_token_usage_tracking/", "AzureChatOpenAI": "https://python.langchain.com/docs/integrations/chat/azure_chat_openai/"}, "load_tools": {"How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "Google": "https://python.langchain.com/docs/integrations/platforms/google/", "ChatGPT Plugins": "https://python.langchain.com/docs/integrations/tools/chatgpt_plugins/", "Google Jobs": "https://python.langchain.com/docs/integrations/tools/google_jobs/", "Human as a tool": "https://python.langchain.com/docs/integrations/tools/human_tools/", "Google Finance": "https://python.langchain.com/docs/integrations/tools/google_finance/", "AWS Lambda": "https://python.langchain.com/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/docs/integrations/providers/openweathermap/", "Memorize": "https://python.langchain.com/docs/integrations/tools/memorize/", "Eleven Labs Text2Speech": "https://python.langchain.com/docs/integrations/tools/eleven_labs_tts/", "ArXiv": "https://python.langchain.com/docs/integrations/tools/arxiv/", "GraphQL": "https://python.langchain.com/docs/integrations/tools/graphql/", "SceneXplain": "https://python.langchain.com/docs/integrations/tools/sceneXplain/", "Dall-E Image Generator": "https://python.langchain.com/docs/integrations/tools/dalle_image_generator/", "MLX": "https://python.langchain.com/docs/integrations/chat/mlx/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "SageMaker Tracking": "https://python.langchain.com/docs/integrations/callbacks/sagemaker_tracking/", "Comet Tracing": "https://python.langchain.com/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/docs/integrations/callbacks/argilla/", "Streamlit": "https://python.langchain.com/docs/integrations/callbacks/streamlit/", "SerpAPI": "https://python.langchain.com/docs/integrations/providers/serpapi/", "SearchApi": "https://python.langchain.com/docs/integrations/providers/searchapi/", "Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/", "Golden": "https://python.langchain.com/docs/integrations/providers/golden/", "Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/", "Wolfram Alpha": "https://python.langchain.com/docs/integrations/providers/wolfram_alpha/", "MLflow": "https://python.langchain.com/docs/integrations/providers/mlflow_tracking/", "DataForSEO": "https://python.langchain.com/docs/integrations/providers/dataforseo/", "SearxNG Search API": "https://python.langchain.com/docs/integrations/providers/searx/", "Serper - Google Search API": "https://python.langchain.com/docs/integrations/providers/google_serper/", "Stack Exchange": "https://python.langchain.com/docs/integrations/providers/stackexchange/", "Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/", "WandB Tracing": "https://python.langchain.com/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/docs/integrations/providers/clearml_tracking/", "Dataherald": "https://python.langchain.com/docs/integrations/providers/dataherald/", "Amazon API Gateway": "https://python.langchain.com/docs/integrations/llms/amazon_api_gateway/"}, "ChatBedrock": {"How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/", "Response metadata": "https://python.langchain.com/docs/how_to/response_metadata/", "AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "ChatBedrock": "https://python.langchain.com/docs/integrations/chat/bedrock/", "Amazon Neptune with SPARQL": "https://python.langchain.com/docs/integrations/graphs/amazon_neptune_sparql/"}, "get_bedrock_anthropic_callback": {"How to track token usage in ChatModels": "https://python.langchain.com/docs/how_to/chat_token_usage_tracking/"}, "CallbackManagerForLLMRun": {"How to create a custom LLM class": "https://python.langchain.com/docs/how_to/custom_llm/", "How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "LLM": {"How to create a custom LLM class": "https://python.langchain.com/docs/how_to/custom_llm/"}, "GenerationChunk": {"How to create a custom LLM class": "https://python.langchain.com/docs/how_to/custom_llm/"}, "BaseLoader": {"How to create a custom Document Loader": "https://python.langchain.com/docs/how_to/document_loader_custom/", "How to use the LangChain indexing API": "https://python.langchain.com/docs/how_to/indexing/"}, "BaseBlobParser": {"How to create a custom Document Loader": "https://python.langchain.com/docs/how_to/document_loader_custom/"}, "Blob": {"How to create a custom Document Loader": "https://python.langchain.com/docs/how_to/document_loader_custom/", "Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Cloud Document AI": "https://python.langchain.com/docs/integrations/document_transformers/google_docai/"}, "FileSystemBlobLoader": {"How to create a custom Document Loader": "https://python.langchain.com/docs/how_to/document_loader_custom/"}, "GenericLoader": {"How to create a custom Document Loader": "https://python.langchain.com/docs/how_to/document_loader_custom/", "Grobid": "https://python.langchain.com/docs/integrations/document_loaders/grobid/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/", "Source Code": "https://python.langchain.com/docs/integrations/document_loaders/source_code/"}, "LengthBasedExampleSelector": {"How to select examples by length": "https://python.langchain.com/docs/how_to/example_selectors_length_based/"}, "BaseExampleSelector": {"How to use example selectors": "https://python.langchain.com/docs/how_to/example_selectors/"}, "Language": {"How to split code": "https://python.langchain.com/docs/how_to/code_splitter/", "Source Code": "https://python.langchain.com/docs/integrations/document_loaders/source_code/"}, "Chroma": {"How to use few shot examples": "https://python.langchain.com/docs/how_to/few_shot_examples/", "How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to use few shot examples in chat models": "https://python.langchain.com/docs/how_to/few_shot_examples_chat/", "How to select examples by similarity": "https://python.langchain.com/docs/how_to/example_selectors_similarity/", "How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/docs/how_to/long_context_reorder/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to stream results from your RAG application": "https://python.langchain.com/docs/how_to/qa_streaming/", "How to get your RAG application to return sources": "https://python.langchain.com/docs/how_to/qa_sources/", "How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to add chat history": "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/", "How to add retrieval to chatbots": "https://python.langchain.com/docs/how_to/chatbots_retrieval/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "How to create and query vector stores": "https://python.langchain.com/docs/how_to/vectorstores/", "How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/", "How to use the Parent Document Retriever": "https://python.langchain.com/docs/how_to/parent_document_retriever/", "How deal with high cardinality categoricals when doing query analysis": "https://python.langchain.com/docs/how_to/query_high_cardinality/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/", "LOTR (Merger Retriever)": "https://python.langchain.com/docs/integrations/retrievers/merger_retriever/", "Chroma": "https://python.langchain.com/docs/integrations/vectorstores/chroma/", "Confident": "https://python.langchain.com/docs/integrations/callbacks/confident/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/", "Psychic": "https://python.langchain.com/docs/integrations/document_loaders/psychic/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/", "Build a Retrieval Augmented Generation (RAG) App": "https://python.langchain.com/docs/tutorials/rag/", "Build a Local RAG Application": "https://python.langchain.com/docs/tutorials/local_rag/", "Conversational RAG": "https://python.langchain.com/docs/tutorials/qa_chat_history/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/", "Build a PDF ingestion and Question/Answering system": "https://python.langchain.com/docs/tutorials/pdf_qa/", "Vector stores and retrievers": "https://python.langchain.com/docs/tutorials/retrievers/"}, "merge_message_runs": {"How to merge consecutive messages of the same type": "https://python.langchain.com/docs/how_to/merge_message_runs/"}, "PydanticToolsParser": {"How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to do tool/function calling": "https://python.langchain.com/docs/how_to/function_calling/", "How to deal with large databases when doing SQL question-answering": "https://python.langchain.com/docs/how_to/sql_large_db/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to use chat models to call tools": "https://python.langchain.com/docs/how_to/tool_calling/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "ChatPremAI": "https://python.langchain.com/docs/integrations/chat/premai/", "PremAI": "https://python.langchain.com/docs/integrations/providers/premai/"}, "chain": {"How to handle cases where no queries are generated": "https://python.langchain.com/docs/how_to/query_no_queries/", "How to pass run time values to tools": "https://python.langchain.com/docs/how_to/tool_runtime/", "How to handle multiple queries when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_queries/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/docs/how_to/dynamic_chain/", "How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to handle multiple retrievers when doing query analysis": "https://python.langchain.com/docs/how_to/query_multiple_retrievers/", "How to run custom functions": "https://python.langchain.com/docs/how_to/functions/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "Tavily Search": "https://python.langchain.com/docs/integrations/tools/tavily_search/"}, "trim_messages": {"How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to add memory to chatbots": "https://python.langchain.com/docs/how_to/chatbots_memory/", "Build a Chatbot": "https://python.langchain.com/docs/tutorials/chatbot/"}, "ToolMessage": {"How to trim messages": "https://python.langchain.com/docs/how_to/trim_messages/", "How to do tool/function calling": "https://python.langchain.com/docs/how_to/function_calling/", "How to use reference examples when doing extraction": "https://python.langchain.com/docs/how_to/extraction_examples/", "How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/", "How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/", "How to return structured data from a model": "https://python.langchain.com/docs/how_to/structured_output/", "How to use few-shot prompting with tool calling": "https://python.langchain.com/docs/how_to/tools_few_shot/", "How to add examples to the prompt for query analysis": "https://python.langchain.com/docs/how_to/query_few_shot/", "Cohere": "https://python.langchain.com/docs/integrations/providers/cohere/", "Eden AI": "https://python.langchain.com/docs/integrations/chat/edenai/", "ChatPremAI": "https://python.langchain.com/docs/integrations/chat/premai/", "PremAI": "https://python.langchain.com/docs/integrations/providers/premai/"}, "RecursiveJsonSplitter": {"How to split JSON data": "https://python.langchain.com/docs/how_to/recursive_json_splitter/"}, "FewShotChatMessagePromptTemplate": {"How to use few shot examples in chat models": "https://python.langchain.com/docs/how_to/few_shot_examples_chat/", "Fiddler": "https://python.langchain.com/docs/integrations/callbacks/fiddler/"}, "XMLOutputParser": {"How to parse XML output": "https://python.langchain.com/docs/how_to/output_parser_xml/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/"}, "InjectedToolArg": {"How to pass run time values to tools": "https://python.langchain.com/docs/how_to/tool_runtime/"}, "Runnable": {"How to add a human-in-the-loop for tools": "https://python.langchain.com/docs/how_to/tools_human/", "How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/", "How to create a dynamic (self-constructing) chain": "https://python.langchain.com/docs/how_to/dynamic_chain/"}, "StructuredTool": {"How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/", "Infobip": "https://python.langchain.com/docs/integrations/tools/infobip/"}, "GenericFakeChatModel": {"How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/"}, "ToolException": {"How to create tools": "https://python.langchain.com/docs/how_to/custom_tools/"}, "AzureAIDocumentIntelligenceLoader": {"How to load Microsoft Office files": "https://python.langchain.com/docs/how_to/document_loader_office_file/", "Microsoft Word": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_word/", "Microsoft Excel": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_excel/", "Microsoft PowerPoint": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_powerpoint/", "Azure AI Document Intelligence": "https://python.langchain.com/docs/integrations/document_loaders/azure_document_intelligence/"}, "InMemoryRateLimiter": {"How to handle rate limits": "https://python.langchain.com/docs/how_to/chat_model_rate_limiting/"}, "LongContextReorder": {"How to reorder retrieved results to mitigate the \"lost in the middle\" effect": "https://python.langchain.com/docs/how_to/long_context_reorder/", "LOTR (Merger Retriever)": "https://python.langchain.com/docs/integrations/retrievers/merger_retriever/"}, "DatetimeOutputParser": {"How to add fallbacks to a runnable": "https://python.langchain.com/docs/how_to/fallbacks/"}, "CypherQueryCorrector": {"How to map values to a graph database": "https://python.langchain.com/docs/how_to/graph_mapping/"}, "Schema": {"How to map values to a graph database": "https://python.langchain.com/docs/how_to/graph_mapping/"}, "dumpd": {"How to save and load LangChain objects": "https://python.langchain.com/docs/how_to/serialization/"}, "dumps": {"How to save and load LangChain objects": "https://python.langchain.com/docs/how_to/serialization/"}, "load": {"How to save and load LangChain objects": "https://python.langchain.com/docs/how_to/serialization/"}, "loads": {"How to save and load LangChain objects": "https://python.langchain.com/docs/how_to/serialization/"}, "set_llm_cache": {"How to cache chat model responses": "https://python.langchain.com/docs/how_to/chat_model_caching/", "How to cache LLM responses": "https://python.langchain.com/docs/how_to/llm_caching/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "DSPy": "https://python.langchain.com/docs/integrations/providers/dspy/", "MongoDB Atlas": "https://python.langchain.com/docs/integrations/providers/mongodb_atlas/", "Astra DB": "https://python.langchain.com/docs/integrations/providers/astradb/", "Couchbase": "https://python.langchain.com/docs/integrations/providers/couchbase/", "Redis": "https://python.langchain.com/docs/integrations/providers/redis/", "Cassandra": "https://python.langchain.com/docs/integrations/providers/cassandra/", "Momento": "https://python.langchain.com/docs/integrations/providers/momento/"}, "InMemoryCache": {"How to cache chat model responses": "https://python.langchain.com/docs/how_to/chat_model_caching/", "How to cache LLM responses": "https://python.langchain.com/docs/how_to/llm_caching/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/"}, "SQLiteCache": {"How to cache chat model responses": "https://python.langchain.com/docs/how_to/chat_model_caching/", "How to cache LLM responses": "https://python.langchain.com/docs/how_to/llm_caching/", "Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "DSPy": "https://python.langchain.com/docs/integrations/providers/dspy/"}, "create_sql_agent": {"How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "CnosDB": "https://python.langchain.com/docs/integrations/providers/cnosdb/"}, "PythonAstREPLTool": {"How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/"}, "JsonOutputKeyToolsParser": {"How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/"}, "create_pandas_dataframe_agent": {"How to do question answering over CSVs": "https://python.langchain.com/docs/how_to/sql_csv/", "Pandas Dataframe": "https://python.langchain.com/docs/integrations/tools/pandas/"}, "OutputFixingParser": {"How to use the output-fixing parser": "https://python.langchain.com/docs/how_to/output_parser_fixing/", "How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/"}, "FunctionMessage": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "AIMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/", "How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/", "Google Cloud Vertex AI": "https://python.langchain.com/docs/integrations/llms/google_vertex_ai_palm/"}, "FunctionMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "HumanMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "SystemMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "ToolMessageChunk": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "AsyncCallbackManagerForLLMRun": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "SimpleChatModel": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "ChatGeneration": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/", "How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/"}, "ChatGenerationChunk": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "ChatResult": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "run_in_executor": {"How to create a custom chat model class": "https://python.langchain.com/docs/how_to/custom_chat_model/"}, "MoveFileTool": {"How to convert tools to OpenAI Functions": "https://python.langchain.com/docs/how_to/tools_as_openai_functions/"}, "filter_messages": {"How to filter messages": "https://python.langchain.com/docs/how_to/filter_messages/"}, "ToolCall": {"How to handle tool errors": "https://python.langchain.com/docs/how_to/tools_error/"}, "SQLRecordManager": {"How to use the LangChain indexing API": "https://python.langchain.com/docs/how_to/indexing/"}, "index": {"How to use the LangChain indexing API": "https://python.langchain.com/docs/how_to/indexing/"}, "SemanticChunker": {"How to split text based on semantic similarity": "https://python.langchain.com/docs/how_to/semantic-chunker/"}, "InMemoryVectorStore": {"How to convert Runnables as Tools": "https://python.langchain.com/docs/how_to/convert_runnable_to_tool/", "FireworksEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/fireworks/", "OpenAIEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/openai/", "OllamaEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/ollama/", "MistralAIEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/mistralai/", "AI21Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/ai21/", "TogetherEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/together/", "CohereEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/cohere/", "AzureOpenAIEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/azureopenai/", "NomicEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/nomic/", "AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon MemoryDB": "https://python.langchain.com/docs/integrations/vectorstores/memorydb/"}, "JsonOutputParser": {"How to stream runnables": "https://python.langchain.com/docs/how_to/streaming/", "How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/docs/how_to/tools_prompting/", "How to parse JSON output": "https://python.langchain.com/docs/how_to/output_parser_json/"}, "InMemoryByteStore": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "Caching": "https://python.langchain.com/docs/how_to/caching_embeddings/", "InMemoryByteStore": "https://python.langchain.com/docs/integrations/stores/in_memory/"}, "TextLoader": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "How to load documents from a directory": "https://python.langchain.com/docs/how_to/document_loader_directory/", "How to create and query vector stores": "https://python.langchain.com/docs/how_to/vectorstores/", "How to use the Parent Document Retriever": "https://python.langchain.com/docs/how_to/parent_document_retriever/", "How to use a vectorstore as a retriever": "https://python.langchain.com/docs/how_to/vectorstore_retriever/", "Caching": "https://python.langchain.com/docs/how_to/caching_embeddings/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "Kinetica Vectorstore based Retriever": "https://python.langchain.com/docs/integrations/retrievers/kinetica/", "JaguarDB Vector Database": "https://python.langchain.com/docs/integrations/retrievers/jaguar/", "LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/docs/integrations/retrievers/cohere-reranker/", "SingleStoreDB": "https://python.langchain.com/docs/integrations/retrievers/singlestoredb/", "FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "Confident": "https://python.langchain.com/docs/integrations/callbacks/confident/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "Upstash Vector": "https://python.langchain.com/docs/integrations/vectorstores/upstash/", "VDMS": "https://python.langchain.com/docs/integrations/providers/vdms/", "Vectara Chat": "https://python.langchain.com/docs/integrations/providers/vectara/vectara_chat/", "LanceDB": "https://python.langchain.com/docs/integrations/vectorstores/lancedb/", "Kinetica Vectorstore API": "https://python.langchain.com/docs/integrations/vectorstores/kinetica/", "SQLite-VSS": "https://python.langchain.com/docs/integrations/vectorstores/sqlitevss/", "Vald": "https://python.langchain.com/docs/integrations/vectorstores/vald/", "Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "DashVector": "https://python.langchain.com/docs/integrations/vectorstores/dashvector/", "Databricks Vector Search": "https://python.langchain.com/docs/integrations/vectorstores/databricks_vector_search/", "ScaNN": "https://python.langchain.com/docs/integrations/vectorstores/scann/", "Xata": "https://python.langchain.com/docs/integrations/vectorstores/xata/", "Hippo": "https://python.langchain.com/docs/integrations/vectorstores/hippo/", "Vespa": "https://python.langchain.com/docs/integrations/vectorstores/vespa/", "Rockset": "https://python.langchain.com/docs/integrations/vectorstores/rockset/", "DingoDB": "https://python.langchain.com/docs/integrations/vectorstores/dingo/", "Zilliz": "https://python.langchain.com/docs/integrations/vectorstores/zilliz/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db/", "viking DB": "https://python.langchain.com/docs/integrations/vectorstores/vikingdb/", "Annoy": "https://python.langchain.com/docs/integrations/vectorstores/annoy/", "Couchbase ": "https://python.langchain.com/docs/integrations/vectorstores/couchbase/", "Typesense": "https://python.langchain.com/docs/integrations/vectorstores/typesense/", "Momento Vector Index (MVI)": "https://python.langchain.com/docs/integrations/vectorstores/momento_vector_index/", "TiDB Vector": "https://python.langchain.com/docs/integrations/vectorstores/tidb_vector/", "Relyt": "https://python.langchain.com/docs/integrations/vectorstores/relyt/", "Atlas": "https://python.langchain.com/docs/integrations/vectorstores/atlas/", "Activeloop Deep Lake": "https://python.langchain.com/docs/integrations/vectorstores/activeloop_deeplake/", "vlite": "https://python.langchain.com/docs/integrations/vectorstores/vlite/", "Neo4j Vector Index": "https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/", "Lantern": "https://python.langchain.com/docs/integrations/vectorstores/lantern/", "Tair": "https://python.langchain.com/docs/integrations/vectorstores/tair/", "DuckDB": "https://python.langchain.com/docs/integrations/vectorstores/duckdb/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/alibabacloud_opensearch/", "Clarifai": "https://python.langchain.com/docs/integrations/vectorstores/clarifai/", "scikit-learn": "https://python.langchain.com/docs/integrations/vectorstores/sklearn/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/", "DocArray HnswSearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_hnsw/", "MyScale": "https://python.langchain.com/docs/integrations/vectorstores/myscale/", "TileDB": "https://python.langchain.com/docs/integrations/vectorstores/tiledb/", "Google Memorystore for Redis": "https://python.langchain.com/docs/integrations/vectorstores/google_memorystore_redis/", "Tigris": "https://python.langchain.com/docs/integrations/vectorstores/tigris/", "China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/ecloud_vector_search/", "Bagel": "https://python.langchain.com/docs/integrations/vectorstores/bagel/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/baiducloud_vector_search/", "AwaDB": "https://python.langchain.com/docs/integrations/vectorstores/awadb/", "Supabase (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/supabase/", "SurrealDB": "https://python.langchain.com/docs/integrations/vectorstores/surrealdb/", "OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/opensearch/", "Faiss (Async)": "https://python.langchain.com/docs/integrations/vectorstores/faiss_async/", "BagelDB": "https://python.langchain.com/docs/integrations/vectorstores/bageldb/", "ManticoreSearch VectorStore": "https://python.langchain.com/docs/integrations/vectorstores/manticore_search/", "Azure AI Search": "https://python.langchain.com/docs/integrations/vectorstores/azuresearch/", "USearch": "https://python.langchain.com/docs/integrations/vectorstores/usearch/", "PGVecto.rs": "https://python.langchain.com/docs/integrations/vectorstores/pgvecto_rs/", "Marqo": "https://python.langchain.com/docs/integrations/vectorstores/marqo/", "DocArray InMemorySearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_in_memory/", "Postgres Embedding": "https://python.langchain.com/docs/integrations/vectorstores/pgembedding/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/docs/integrations/vectorstores/vdms/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Epsilla": "https://python.langchain.com/docs/integrations/vectorstores/epsilla/", "Amazon Document DB": "https://python.langchain.com/docs/integrations/vectorstores/documentdb/", "SemaDB": "https://python.langchain.com/docs/integrations/vectorstores/semadb/", "AnalyticDB": "https://python.langchain.com/docs/integrations/vectorstores/analyticdb/", "Hologres": "https://python.langchain.com/docs/integrations/vectorstores/hologres/", "Baidu VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/baiduvectordb/", "Vearch": "https://python.langchain.com/docs/integrations/vectorstores/vearch/", "Meilisearch": "https://python.langchain.com/docs/integrations/vectorstores/meilisearch/", "VoyageAI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/docs/integrations/document_transformers/openvino_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/docs/integrations/document_transformers/dashscope_rerank/"}, "MultiVectorRetriever": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/"}, "SearchType": {"How to retrieve using multiple vectors per document": "https://python.langchain.com/docs/how_to/multi_vector/", "Zep Open Source": "https://python.langchain.com/docs/integrations/retrievers/zep_memorystore/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/"}, "init_chat_model": {"How to init any model in one line": "https://python.langchain.com/docs/how_to/chat_models_universal_init/", "How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "SQLChatMessageHistory": {"How to add message history": "https://python.langchain.com/docs/how_to/message_history/", "SQL (SQLAlchemy)": "https://python.langchain.com/docs/integrations/memory/sql_chat_message_history/", "SQLite": "https://python.langchain.com/docs/integrations/providers/sqlite/"}, "ConfigurableFieldSpec": {"How to add message history": "https://python.langchain.com/docs/how_to/message_history/"}, "LlamaCpp": {"Run models locally": "https://python.langchain.com/docs/how_to/local_llms/", "Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/", "Llama.cpp": "https://python.langchain.com/docs/integrations/llms/llamacpp/"}, "CallbackManager": {"Run models locally": "https://python.langchain.com/docs/how_to/local_llms/", "ChatLiteLLM": "https://python.langchain.com/docs/integrations/chat/litellm/", "GPTRouter": "https://python.langchain.com/docs/integrations/chat/gpt_router/", "ChatLiteLLMRouter": "https://python.langchain.com/docs/integrations/chat/litellm_router/", "ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "Llama.cpp": "https://python.langchain.com/docs/integrations/llms/llamacpp/", "Titan Takeoff": "https://python.langchain.com/docs/integrations/llms/titan_takeoff/"}, "StreamingStdOutCallbackHandler": {"Run models locally": "https://python.langchain.com/docs/how_to/local_llms/", "DeepInfra": "https://python.langchain.com/docs/integrations/chat/deepinfra/", "ChatLiteLLM": "https://python.langchain.com/docs/integrations/chat/litellm/", "ChatEverlyAI": "https://python.langchain.com/docs/integrations/chat/everlyai/", "GPTRouter": "https://python.langchain.com/docs/integrations/chat/gpt_router/", "ChatLiteLLMRouter": "https://python.langchain.com/docs/integrations/chat/litellm_router/", "ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "Yuan2.0": "https://python.langchain.com/docs/integrations/chat/yuan2/", "GPT4All": "https://python.langchain.com/docs/integrations/providers/gpt4all/", "Arthur": "https://python.langchain.com/docs/integrations/providers/arthur_tracking/", "TextGen": "https://python.langchain.com/docs/integrations/llms/textgen/", "Llama.cpp": "https://python.langchain.com/docs/integrations/llms/llamacpp/", "Titan Takeoff": "https://python.langchain.com/docs/integrations/llms/titan_takeoff/", "Eden AI": "https://python.langchain.com/docs/integrations/llms/edenai/", "C Transformers": "https://python.langchain.com/docs/integrations/llms/ctransformers/", "ExLlamaV2": "https://python.langchain.com/docs/integrations/llms/exllamav2/", "Huggingface Endpoints": "https://python.langchain.com/docs/integrations/llms/huggingface_endpoint/", "Replicate": "https://python.langchain.com/docs/integrations/llms/replicate/"}, "GPT4All": {"Run models locally": "https://python.langchain.com/docs/how_to/local_llms/", "PromptLayer": "https://python.langchain.com/docs/integrations/callbacks/promptlayer/", "GPT4All": "https://python.langchain.com/docs/integrations/llms/gpt4all/"}, "Llamafile": {"Run models locally": "https://python.langchain.com/docs/how_to/local_llms/", "Llamafile": "https://python.langchain.com/docs/integrations/llms/llamafile/"}, "ConditionalPromptSelector": {"Run models locally": "https://python.langchain.com/docs/how_to/local_llms/"}, "HubRunnable": {"How to configure runtime chain internals": "https://python.langchain.com/docs/how_to/configure/"}, "ContextualCompressionRetriever": {"How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/", "Cohere reranker": "https://python.langchain.com/docs/integrations/retrievers/cohere-reranker/", "FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "LOTR (Merger Retriever)": "https://python.langchain.com/docs/integrations/retrievers/merger_retriever/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "RAGatouille": "https://python.langchain.com/docs/integrations/providers/ragatouille/", "VoyageAI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/voyageai-reranker/", "RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/", "Volcengine Reranker": "https://python.langchain.com/docs/integrations/document_transformers/volcengine_rerank/", "OpenVINO Reranker": "https://python.langchain.com/docs/integrations/document_transformers/openvino_rerank/", "Google Cloud Vertex AI Reranker": "https://python.langchain.com/docs/integrations/document_transformers/google_cloud_vertexai_rerank/", "Cross Encoder Reranker": "https://python.langchain.com/docs/integrations/document_transformers/cross_encoder_reranker/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/", "DashScope Reranker": "https://python.langchain.com/docs/integrations/document_transformers/dashscope_rerank/"}, "LLMChainExtractor": {"How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/"}, "LLMChainFilter": {"How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/"}, "LLMListwiseRerank": {"How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/"}, "EmbeddingsFilter": {"How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/"}, "DocumentCompressorPipeline": {"How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/"}, "EmbeddingsRedundantFilter": {"How to do retrieval with contextual compression": "https://python.langchain.com/docs/how_to/contextual_compression/", "LOTR (Merger Retriever)": "https://python.langchain.com/docs/integrations/retrievers/merger_retriever/"}, "Comparator": {"How to construct filters for query analysis": "https://python.langchain.com/docs/how_to/query_constructing_filters/"}, "Comparison": {"How to construct filters for query analysis": "https://python.langchain.com/docs/how_to/query_constructing_filters/"}, "Operation": {"How to construct filters for query analysis": "https://python.langchain.com/docs/how_to/query_constructing_filters/"}, "Operator": {"How to construct filters for query analysis": "https://python.langchain.com/docs/how_to/query_constructing_filters/"}, "StructuredQuery": {"How to construct filters for query analysis": "https://python.langchain.com/docs/how_to/query_constructing_filters/"}, "ChromaTranslator": {"How to construct filters for query analysis": "https://python.langchain.com/docs/how_to/query_constructing_filters/", "How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/"}, "ElasticsearchTranslator": {"How to construct filters for query analysis": "https://python.langchain.com/docs/how_to/query_constructing_filters/"}, "WikipediaQueryRun": {"How to use built-in tools and toolkits": "https://python.langchain.com/docs/how_to/tools_builtin/", "Wikipedia": "https://python.langchain.com/docs/integrations/tools/wikipedia/"}, "WikipediaAPIWrapper": {"How to use built-in tools and toolkits": "https://python.langchain.com/docs/how_to/tools_builtin/", "Wikipedia": "https://python.langchain.com/docs/integrations/tools/wikipedia/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/"}, "CallbackManagerForRetrieverRun": {"How to create a custom Retriever": "https://python.langchain.com/docs/how_to/custom_retriever/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/"}, "BaseRetriever": {"How to create a custom Retriever": "https://python.langchain.com/docs/how_to/custom_retriever/"}, "LLMGraphTransformer": {"How to construct knowledge graphs": "https://python.langchain.com/docs/how_to/graph_constructing/"}, "RetryOutputParser": {"How to retry when a parsing error occurs": "https://python.langchain.com/docs/how_to/output_parser_retry/"}, "TimeWeightedVectorStoreRetriever": {"How to use a time-weighted vector store retriever": "https://python.langchain.com/docs/how_to/time_weighted_vectorstore/"}, "InMemoryDocstore": {"How to use a time-weighted vector store retriever": "https://python.langchain.com/docs/how_to/time_weighted_vectorstore/", "Annoy": "https://python.langchain.com/docs/integrations/vectorstores/annoy/", "Faiss": "https://python.langchain.com/docs/integrations/vectorstores/faiss/"}, "mock_now": {"How to use a time-weighted vector store retriever": "https://python.langchain.com/docs/how_to/time_weighted_vectorstore/"}, "RunnableGenerator": {"How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/"}, "OutputParserException": {"How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/"}, "BaseOutputParser": {"How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/", "How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/"}, "BaseGenerationOutputParser": {"How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/"}, "Generation": {"How to create a custom Output Parser": "https://python.langchain.com/docs/how_to/output_parser_custom/"}, "DirectoryLoader": {"How to load documents from a directory": "https://python.langchain.com/docs/how_to/document_loader_directory/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/", "StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/"}, "PythonLoader": {"How to load documents from a directory": "https://python.langchain.com/docs/how_to/document_loader_directory/"}, "LanceDB": {"How to create and query vector stores": "https://python.langchain.com/docs/how_to/vectorstores/", "LanceDB": "https://python.langchain.com/docs/integrations/vectorstores/lancedb/"}, "SpacyTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/docs/how_to/split_by_token/", "spaCy": "https://python.langchain.com/docs/integrations/providers/spacy/", "Atlas": "https://python.langchain.com/docs/integrations/vectorstores/atlas/"}, "SentenceTransformersTokenTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/docs/how_to/split_by_token/"}, "NLTKTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/docs/how_to/split_by_token/"}, "KonlpyTextSplitter": {"How to split text by tokens ": "https://python.langchain.com/docs/how_to/split_by_token/"}, "WikipediaRetriever": {"How to get a RAG application to add citations": "https://python.langchain.com/docs/how_to/qa_citations/", "WikipediaRetriever": "https://python.langchain.com/docs/integrations/retrievers/wikipedia/", "Wikipedia": "https://python.langchain.com/docs/integrations/providers/wikipedia/"}, "UnstructuredHTMLLoader": {"How to load HTML": "https://python.langchain.com/docs/how_to/document_loader_html/", "Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/"}, "MultiQueryRetriever": {"How to use the MultiQueryRetriever": "https://python.langchain.com/docs/how_to/MultiQueryRetriever/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/", "Vectara": "https://python.langchain.com/docs/integrations/vectorstores/vectara/"}, "GraphCypherQAChain": {"How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "Neo4j": "https://python.langchain.com/docs/integrations/graphs/neo4j_cypher/", "Memgraph": "https://python.langchain.com/docs/integrations/graphs/memgraph/", "Diffbot": "https://python.langchain.com/docs/integrations/graphs/diffbot/", "Apache AGE": "https://python.langchain.com/docs/integrations/graphs/apache_age/", "Build a Question Answering application over a Graph Database": "https://python.langchain.com/docs/tutorials/graph/"}, "Neo4jVector": {"How to best prompt for Graph-RAG": "https://python.langchain.com/docs/how_to/graph_prompting/", "Neo4j": "https://python.langchain.com/docs/integrations/providers/neo4j/", "Neo4j Vector Index": "https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/"}, "ParentDocumentRetriever": {"How to use the Parent Document Retriever": "https://python.langchain.com/docs/how_to/parent_document_retriever/"}, "InMemoryStore": {"How to use the Parent Document Retriever": "https://python.langchain.com/docs/how_to/parent_document_retriever/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/"}, "YamlOutputParser": {"How to parse YAML output": "https://python.langchain.com/docs/how_to/output_parser_yaml/"}, "PipelinePromptTemplate": {"How to compose prompts together": "https://python.langchain.com/docs/how_to/prompts_composition/"}, "CacheBackedEmbeddings": {"Caching": "https://python.langchain.com/docs/how_to/caching_embeddings/"}, "LocalFileStore": {"Caching": "https://python.langchain.com/docs/how_to/caching_embeddings/", "LocalFileStore": "https://python.langchain.com/docs/integrations/stores/file_system/"}, "Ollama": {"How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/docs/how_to/tools_prompting/", "ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/"}, "render_text_description": {"How to add ad-hoc tool calling capability to LLMs and Chat Models": "https://python.langchain.com/docs/how_to/tools_prompting/", "MLX": "https://python.langchain.com/docs/integrations/chat/mlx/"}, "RunnableSerializable": {"LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/"}, "Run": {"LangChain Expression Language Cheatsheet": "https://python.langchain.com/docs/how_to/lcel_cheatsheet/"}, "MarkdownHeaderTextSplitter": {"How to split Markdown by Headers": "https://python.langchain.com/docs/how_to/markdown_header_metadata_splitter/"}, "HTMLHeaderTextSplitter": {"How to split by HTML header ": "https://python.langchain.com/docs/how_to/HTML_header_metadata_splitter/"}, "EnsembleRetriever": {"How to combine results from multiple retrievers": "https://python.langchain.com/docs/how_to/ensemble_retriever/"}, "BM25Retriever": {"How to combine results from multiple retrievers": "https://python.langchain.com/docs/how_to/ensemble_retriever/", "BM25": "https://python.langchain.com/docs/integrations/retrievers/bm25/", "Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/"}, "ChatMistralAI": {"Response metadata": "https://python.langchain.com/docs/how_to/response_metadata/", "ChatMistralAI": "https://python.langchain.com/docs/integrations/chat/mistralai/", "MistralAI": "https://python.langchain.com/docs/integrations/providers/mistralai/", "Build an Extraction Chain": "https://python.langchain.com/docs/tutorials/extraction/"}, "ChatGroq": {"Response metadata": "https://python.langchain.com/docs/how_to/response_metadata/", "ChatGroq": "https://python.langchain.com/docs/integrations/chat/groq/"}, "set_verbose": {"How to debug your LLM apps": "https://python.langchain.com/docs/how_to/debugging/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/"}, "set_debug": {"How to debug your LLM apps": "https://python.langchain.com/docs/how_to/debugging/", "Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/", "TextGen": "https://python.langchain.com/docs/integrations/llms/textgen/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/"}, "MaxMarginalRelevanceExampleSelector": {"How to select examples by maximal marginal relevance (MMR)": "https://python.langchain.com/docs/how_to/example_selectors_mmr/"}, "AttributeInfo": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "Milvus": "https://python.langchain.com/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/docs/integrations/retrievers/self_query/weaviate_self_query/", "Vectara self-querying ": "https://python.langchain.com/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/retrievers/self_query/hanavector_self_query/", "DashVector": "https://python.langchain.com/docs/integrations/retrievers/self_query/dashvector/", "Databricks Vector Search": "https://python.langchain.com/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/docs/integrations/retrievers/self_query/chroma_self_query/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/retrievers/self_query/tencentvectordb/", "Timescale Vector (Postgres) ": "https://python.langchain.com/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/docs/integrations/retrievers/self_query/redis_self_query/", "MyScale": "https://python.langchain.com/docs/integrations/retrievers/self_query/myscale_self_query/", "Deep Lake": "https://python.langchain.com/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/docs/integrations/retrievers/self_query/qdrant_self_query/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/", "self-query-qdrant": "https://python.langchain.com/docs/templates/self-query-qdrant/"}, "SelfQueryRetriever": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "How to add scores to retriever results": "https://python.langchain.com/docs/how_to/add_scores_retriever/", "Milvus": "https://python.langchain.com/docs/integrations/retrievers/self_query/milvus_self_query/", "PGVector (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/pgvector_self_query/", "Weaviate": "https://python.langchain.com/docs/integrations/retrievers/self_query/weaviate_self_query/", "Vectara self-querying ": "https://python.langchain.com/docs/integrations/retrievers/self_query/vectara_self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/retrievers/self_query/hanavector_self_query/", "DashVector": "https://python.langchain.com/docs/integrations/retrievers/self_query/dashvector/", "Databricks Vector Search": "https://python.langchain.com/docs/integrations/retrievers/self_query/databricks_vector_search/", "DingoDB": "https://python.langchain.com/docs/integrations/retrievers/self_query/dingo/", "OpenSearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/opensearch_self_query/", "Elasticsearch": "https://python.langchain.com/docs/integrations/retrievers/self_query/elasticsearch_self_query/", "Chroma": "https://python.langchain.com/docs/integrations/providers/chroma/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/retrievers/self_query/tencentvectordb/", "Timescale Vector (Postgres) ": "https://python.langchain.com/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Astra DB (Cassandra)": "https://python.langchain.com/docs/integrations/retrievers/self_query/astradb/", "Pinecone": "https://python.langchain.com/docs/integrations/retrievers/self_query/pinecone/", "Supabase (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/supabase_self_query/", "Redis": "https://python.langchain.com/docs/integrations/retrievers/self_query/redis_self_query/", "MyScale": "https://python.langchain.com/docs/integrations/retrievers/self_query/myscale_self_query/", "Deep Lake": "https://python.langchain.com/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "MongoDB Atlas": "https://python.langchain.com/docs/integrations/retrievers/self_query/mongodb_atlas/", "Qdrant": "https://python.langchain.com/docs/integrations/retrievers/self_query/qdrant_self_query/", "Astra DB": "https://python.langchain.com/docs/integrations/providers/astradb/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "Docugami": "https://python.langchain.com/docs/integrations/document_loaders/docugami/"}, "StructuredQueryOutputParser": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/retrievers/self_query/hanavector_self_query/"}, "get_query_constructor_prompt": {"How to do \"self-querying\" retrieval": "https://python.langchain.com/docs/how_to/self_query/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/retrievers/self_query/hanavector_self_query/"}, "add": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "cos": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "divide": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "log": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "multiply": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "negate": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "pi": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "power": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "sin": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "subtract": {"How to select examples from a LangSmith dataset": "https://python.langchain.com/docs/how_to/example_selectors_langsmith/"}, "adispatch_custom_event": {"How to dispatch custom callback events": "https://python.langchain.com/docs/how_to/callbacks_custom_events/"}, "dispatch_custom_event": {"How to dispatch custom callback events": "https://python.langchain.com/docs/how_to/callbacks_custom_events/"}, "Cassandra": {"Hybrid Search": "https://python.langchain.com/docs/how_to/hybrid/", "Cassandra": "https://python.langchain.com/docs/integrations/providers/cassandra/", "Apache Cassandra": "https://python.langchain.com/docs/integrations/vectorstores/cassandra/"}, "HTMLSectionSplitter": {"How to split by HTML sections": "https://python.langchain.com/docs/how_to/HTML_section_aware_splitter/"}, "JSONLoader": {"How to load JSON": "https://python.langchain.com/docs/how_to/document_loader_json/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/", "JSONLoader": "https://python.langchain.com/docs/integrations/document_loaders/json/"}, "UpstashRedisCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Upstash Vector": "https://python.langchain.com/docs/integrations/providers/upstash/"}, "RedisCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Redis": "https://python.langchain.com/docs/integrations/providers/redis/"}, "RedisSemanticCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Redis": "https://python.langchain.com/docs/integrations/providers/redis/"}, "GPTCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/"}, "MomentoCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Momento": "https://python.langchain.com/docs/integrations/providers/momento/"}, "SQLAlchemyCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/"}, "CassandraCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Cassandra": "https://python.langchain.com/docs/integrations/providers/cassandra/"}, "CassandraSemanticCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Cassandra": "https://python.langchain.com/docs/integrations/providers/cassandra/"}, "AzureCosmosDBSemanticCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/"}, "CosmosDBSimilarityType": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db/"}, "CosmosDBVectorSearchType": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db/"}, "load_summarize_chain": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/", "Infino": "https://python.langchain.com/docs/integrations/callbacks/infino/", "LarkSuite (FeiShu)": "https://python.langchain.com/docs/integrations/document_loaders/larksuite/"}, "OpenSearchSemanticCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/"}, "SingleStoreDBSemanticCache": {"Model caches": "https://python.langchain.com/docs/integrations/llm_caching/"}, "map_ai_messages": {"WeChat": "https://python.langchain.com/docs/integrations/chat_loaders/wechat/", "Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "GMail": "https://python.langchain.com/docs/integrations/chat_loaders/gmail/", "Slack": "https://python.langchain.com/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/docs/integrations/chat_loaders/whatsapp/", "iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/docs/integrations/chat_loaders/discord/"}, "merge_chat_runs": {"WeChat": "https://python.langchain.com/docs/integrations/chat_loaders/wechat/", "Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "Slack": "https://python.langchain.com/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/docs/integrations/chat_loaders/whatsapp/", "iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/docs/integrations/chat_loaders/discord/"}, "ChatSession": {"WeChat": "https://python.langchain.com/docs/integrations/chat_loaders/wechat/", "Slack": "https://python.langchain.com/docs/integrations/chat_loaders/slack/", "WhatsApp": "https://python.langchain.com/docs/integrations/chat_loaders/whatsapp/", "iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/", "Telegram": "https://python.langchain.com/docs/integrations/chat_loaders/telegram/", "Discord": "https://python.langchain.com/docs/integrations/chat_loaders/discord/"}, "FolderFacebookMessengerChatLoader": {"Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "Facebook - Meta": "https://python.langchain.com/docs/integrations/providers/facebook/"}, "SingleFileFacebookMessengerChatLoader": {"Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "Facebook - Meta": "https://python.langchain.com/docs/integrations/providers/facebook/"}, "convert_messages_for_finetuning": {"Facebook Messenger": "https://python.langchain.com/docs/integrations/chat_loaders/facebook/", "LangSmith LLM Runs": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_llm_runs/", "LangSmith Chat Datasets": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_dataset/", "iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/"}, "convert_message_to_dict": {"Twitter (via Apify)": "https://python.langchain.com/docs/integrations/chat_loaders/twitter/"}, "convert_pydantic_to_openai_function": {"LangSmith LLM Runs": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_llm_runs/"}, "PydanticOutputFunctionsParser": {"LangSmith LLM Runs": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_llm_runs/"}, "LangSmithRunChatLoader": {"LangSmith LLM Runs": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_llm_runs/"}, "GMailLoader": {"GMail": "https://python.langchain.com/docs/integrations/chat_loaders/gmail/"}, "SlackChatLoader": {"Slack": "https://python.langchain.com/docs/integrations/providers/slack/"}, "WhatsAppChatLoader": {"WhatsApp": "https://python.langchain.com/docs/integrations/providers/whatsapp/", "Facebook - Meta": "https://python.langchain.com/docs/integrations/providers/facebook/", "WhatsApp Chat": "https://python.langchain.com/docs/integrations/document_loaders/whatsapp_chat/"}, "LangSmithDatasetChatLoader": {"LangSmith Chat Datasets": "https://python.langchain.com/docs/integrations/chat_loaders/langsmith_dataset/"}, "IMessageChatLoader": {"iMessage": "https://python.langchain.com/docs/integrations/chat_loaders/imessage/"}, "TelegramChatLoader": {"Telegram": "https://python.langchain.com/docs/integrations/providers/telegram/"}, "BookendEmbeddings": {"Bookend AI": "https://python.langchain.com/docs/integrations/text_embedding/bookend/"}, "SolarEmbeddings": {"Solar": "https://python.langchain.com/docs/integrations/text_embedding/solar/"}, "HuggingFaceBgeEmbeddings": {"BGE on Hugging Face": "https://python.langchain.com/docs/integrations/text_embedding/bge_huggingface/", "Hugging Face": "https://python.langchain.com/docs/integrations/platforms/huggingface/"}, "IpexLLMBgeEmbeddings": {"Local BGE Embeddings with IPEX-LLM on Intel CPU": "https://python.langchain.com/docs/integrations/text_embedding/ipex_llm/", "Local BGE Embeddings with IPEX-LLM on Intel GPU": "https://python.langchain.com/docs/integrations/text_embedding/ipex_llm_gpu/"}, "QuantizedBiEncoderEmbeddings": {"Embedding Documents using Optimized and Quantized Embedders": "https://python.langchain.com/docs/integrations/text_embedding/optimum_intel/", "Intel": "https://python.langchain.com/docs/integrations/providers/intel/"}, "XinferenceEmbeddings": {"Xorbits inference (Xinference)": "https://python.langchain.com/docs/integrations/text_embedding/xinference/"}, "LLMRailsEmbeddings": {"LLMRails": "https://python.langchain.com/docs/integrations/text_embedding/llm_rails/"}, "AscendEmbeddings": {"# Related": "https://python.langchain.com/docs/integrations/text_embedding/ascend/", "Ascend": "https://python.langchain.com/docs/integrations/providers/ascend/"}, "DeepInfraEmbeddings": {"DeepInfra": "https://python.langchain.com/docs/integrations/providers/deepinfra/"}, "HuggingFaceInferenceAPIEmbeddings": {"Hugging Face": "https://python.langchain.com/docs/integrations/text_embedding/huggingfacehub/"}, "GPT4AllEmbeddings": {"GPT4All": "https://python.langchain.com/docs/integrations/text_embedding/gpt4all/", "ManticoreSearch VectorStore": "https://python.langchain.com/docs/integrations/vectorstores/manticore_search/"}, "MosaicMLInstructorEmbeddings": {"MosaicML": "https://python.langchain.com/docs/integrations/text_embedding/mosaicml/"}, "QuantizedBgeEmbeddings": {"Intel\u00ae Extension for Transformers Quantized Text Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/itrex/", "Intel": "https://python.langchain.com/docs/integrations/providers/intel/"}, "BedrockEmbeddings": {"Bedrock": "https://python.langchain.com/docs/integrations/text_embedding/bedrock/", "AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon MemoryDB": "https://python.langchain.com/docs/integrations/vectorstores/memorydb/"}, "GigaChatEmbeddings": {"GigaChat": "https://python.langchain.com/docs/integrations/text_embedding/gigachat/", "Salute Devices": "https://python.langchain.com/docs/integrations/providers/salute_devices/"}, "OCIGenAIEmbeddings": {"Oracle Cloud Infrastructure Generative AI": "https://python.langchain.com/docs/integrations/text_embedding/oci_generative_ai/", "Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/docs/integrations/providers/oci/"}, "OVHCloudEmbeddings": {"OVHcloud": "https://python.langchain.com/docs/integrations/text_embedding/ovhcloud/"}, "FastEmbedEmbeddings": {"FastEmbed by Qdrant": "https://python.langchain.com/docs/integrations/text_embedding/fastembed/"}, "LlamaCppEmbeddings": {"Llama.cpp": "https://python.langchain.com/docs/integrations/providers/llamacpp/"}, "NLPCloudEmbeddings": {"NLP Cloud": "https://python.langchain.com/docs/integrations/text_embedding/nlp_cloud/", "NLPCloud": "https://python.langchain.com/docs/integrations/providers/nlpcloud/"}, "TextEmbedEmbeddings": {"TextEmbed - Embedding Inference Server": "https://python.langchain.com/docs/integrations/text_embedding/textembed/"}, "LaserEmbeddings": {"LASER Language-Agnostic SEntence Representations Embeddings by Meta AI": "https://python.langchain.com/docs/integrations/text_embedding/laser/", "Facebook - Meta": "https://python.langchain.com/docs/integrations/providers/facebook/"}, "OpenCLIPEmbeddings": {"OpenClip": "https://python.langchain.com/docs/integrations/text_embedding/open_clip/", "LanceDB": "https://python.langchain.com/docs/integrations/vectorstores/lancedb/", "SingleStoreDB": "https://python.langchain.com/docs/integrations/vectorstores/singlestoredb/"}, "TitanTakeoffEmbed": {"Titan Takeoff": "https://python.langchain.com/docs/integrations/text_embedding/titan_takeoff/"}, "MistralAIEmbeddings": {"MistralAIEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/mistralai/", "MistralAI": "https://python.langchain.com/docs/integrations/providers/mistralai/"}, "SpacyEmbeddings": {"SpaCy": "https://python.langchain.com/docs/integrations/text_embedding/spacy_embedding/", "NanoPQ (Product Quantization)": "https://python.langchain.com/docs/integrations/retrievers/nanopq/", "spaCy": "https://python.langchain.com/docs/integrations/providers/spacy/"}, "DatabricksEmbeddings": {"Databricks": "https://python.langchain.com/docs/integrations/text_embedding/databricks/"}, "BaichuanTextEmbeddings": {"Baichuan Text Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/baichuan/", "Baichuan": "https://python.langchain.com/docs/integrations/providers/baichuan/"}, "TogetherEmbeddings": {"TogetherEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/together/"}, "HuggingFaceInstructEmbeddings": {"Instruct Embeddings on Hugging Face": "https://python.langchain.com/docs/integrations/text_embedding/instruct_embeddings/", "Hugging Face": "https://python.langchain.com/docs/integrations/platforms/huggingface/"}, "OracleEmbeddings": {"Oracle AI Vector Search: Generate Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/oracleai/", "OracleAI Vector Search": "https://python.langchain.com/docs/integrations/providers/oracleai/"}, "QianfanEmbeddingsEndpoint": {"Baidu Qianfan": "https://python.langchain.com/docs/integrations/text_embedding/baidu_qianfan_endpoint/", "ERNIE": "https://python.langchain.com/docs/integrations/text_embedding/ernie/", "Baidu": "https://python.langchain.com/docs/integrations/providers/baidu/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/baiducloud_vector_search/"}, "EdenAiEmbeddings": {"EDEN AI": "https://python.langchain.com/docs/integrations/text_embedding/edenai/", "Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "JohnSnowLabsEmbeddings": {"John Snow Labs": "https://python.langchain.com/docs/integrations/text_embedding/johnsnowlabs_embedding/"}, "ErnieEmbeddings": {"ERNIE": "https://python.langchain.com/docs/integrations/text_embedding/ernie/"}, "ClarifaiEmbeddings": {"Clarifai": "https://python.langchain.com/docs/integrations/providers/clarifai/"}, "AzureOpenAIEmbeddings": {"AzureOpenAIEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/azureopenai/", "AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Cosmos DB No SQL": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db_no_sql/", "Azure AI Search": "https://python.langchain.com/docs/integrations/vectorstores/azuresearch/"}, "InfinityEmbeddings": {"Infinity": "https://python.langchain.com/docs/integrations/providers/infinity/"}, "InfinityEmbeddingsLocal": {"Infinity": "https://python.langchain.com/docs/integrations/text_embedding/infinity/"}, "AwaEmbeddings": {"AwaDB": "https://python.langchain.com/docs/integrations/providers/awadb/"}, "VolcanoEmbeddings": {"Volc Engine": "https://python.langchain.com/docs/integrations/text_embedding/volcengine/"}, "MiniMaxEmbeddings": {"MiniMax": "https://python.langchain.com/docs/integrations/text_embedding/minimax/", "Minimax": "https://python.langchain.com/docs/integrations/providers/minimax/"}, "FakeEmbeddings": {"Fake Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/fake/", "DocArray": "https://python.langchain.com/docs/integrations/retrievers/docarray_retriever/", "Relyt": "https://python.langchain.com/docs/integrations/vectorstores/relyt/", "Tair": "https://python.langchain.com/docs/integrations/vectorstores/tair/", "Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/", "Google Memorystore for Redis": "https://python.langchain.com/docs/integrations/vectorstores/google_memorystore_redis/", "PGVecto.rs": "https://python.langchain.com/docs/integrations/vectorstores/pgvecto_rs/", "Baidu VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/baiduvectordb/"}, "ClovaEmbeddings": {"Clova Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/clova/"}, "NeMoEmbeddings": {"NVIDIA NeMo embeddings": "https://python.langchain.com/docs/integrations/text_embedding/nemo/"}, "SparkLLMTextEmbeddings": {"SparkLLM Text Embeddings": "https://python.langchain.com/docs/integrations/text_embedding/sparkllm/", "iFlytek": "https://python.langchain.com/docs/integrations/providers/iflytek/"}, "PremAIEmbeddings": {"PremAI": "https://python.langchain.com/docs/integrations/text_embedding/premai/"}, "KNNRetriever": {"Voyage AI": "https://python.langchain.com/docs/integrations/text_embedding/voyageai/", "kNN": "https://python.langchain.com/docs/integrations/retrievers/knn/"}, "SelfHostedEmbeddings": {"Self Hosted": "https://python.langchain.com/docs/integrations/text_embedding/self-hosted/"}, "SelfHostedHuggingFaceEmbeddings": {"Self Hosted": "https://python.langchain.com/docs/integrations/text_embedding/self-hosted/"}, "SelfHostedHuggingFaceInstructEmbeddings": {"Self Hosted": "https://python.langchain.com/docs/integrations/text_embedding/self-hosted/"}, "AnyscaleEmbeddings": {"Anyscale": "https://python.langchain.com/docs/integrations/providers/anyscale/"}, "EmbaasEmbeddings": {"Embaas": "https://python.langchain.com/docs/integrations/text_embedding/embaas/"}, "YandexGPTEmbeddings": {"YandexGPT": "https://python.langchain.com/docs/integrations/text_embedding/yandex/"}, "JinaEmbeddings": {"Jina": "https://python.langchain.com/docs/integrations/providers/jina/", "Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/"}, "AlephAlphaAsymmetricSemanticEmbedding": {"Aleph Alpha": "https://python.langchain.com/docs/integrations/providers/aleph_alpha/"}, "AlephAlphaSymmetricSemanticEmbedding": {"Aleph Alpha": "https://python.langchain.com/docs/integrations/providers/aleph_alpha/"}, "CloudflareWorkersAIEmbeddings": {"Cloudflare Workers AI": "https://python.langchain.com/docs/integrations/text_embedding/cloudflare_workersai/", "Cloudflare": "https://python.langchain.com/docs/integrations/providers/cloudflare/"}, "DashScopeEmbeddings": {"DashScope": "https://python.langchain.com/docs/integrations/text_embedding/dashscope/", "DashVector": "https://python.langchain.com/docs/integrations/vectorstores/dashvector/", "DashScope Reranker": "https://python.langchain.com/docs/integrations/document_transformers/dashscope_rerank/"}, "TensorflowHubEmbeddings": {"TensorFlow Hub": "https://python.langchain.com/docs/integrations/text_embedding/tensorflowhub/"}, "LlamafileEmbeddings": {"llamafile": "https://python.langchain.com/docs/integrations/text_embedding/llamafile/"}, "GradientEmbeddings": {"Gradient": "https://python.langchain.com/docs/integrations/providers/gradient/"}, "ModelScopeEmbeddings": {"ModelScope": "https://python.langchain.com/docs/integrations/providers/modelscope/"}, "SagemakerEndpointEmbeddings": {"SageMaker": "https://python.langchain.com/docs/integrations/text_embedding/sagemaker-endpoint/", "AWS": "https://python.langchain.com/docs/integrations/platforms/aws/"}, "EmbeddingsContentHandler": {"SageMaker": "https://python.langchain.com/docs/integrations/text_embedding/sagemaker-endpoint/"}, "DocArrayInMemorySearch": {"UpstageEmbeddings": "https://python.langchain.com/docs/integrations/text_embedding/upstage/", "DocArray InMemorySearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_in_memory/"}, "SambaStudioEmbeddings": {"SambaNova": "https://python.langchain.com/docs/integrations/text_embedding/sambanova/"}, "OpenVINOEmbeddings": {"OpenVINO": "https://python.langchain.com/docs/integrations/text_embedding/openvino/", "OpenVINO Reranker": "https://python.langchain.com/docs/integrations/document_transformers/openvino_rerank/"}, "OpenVINOBgeEmbeddings": {"OpenVINO": "https://python.langchain.com/docs/integrations/text_embedding/openvino/"}, "LocalAIEmbeddings": {"LocalAI": "https://python.langchain.com/docs/integrations/text_embedding/localai/"}, "AzureAISearchRetriever": {"AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/"}, "AzureSearch": {"AzureAISearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/", "Azure AI Search": "https://python.langchain.com/docs/integrations/vectorstores/azuresearch/"}, "RePhraseQueryRetriever": {"RePhraseQuery": "https://python.langchain.com/docs/integrations/retrievers/re_phrase/"}, "YouSearchAPIWrapper": {"You.com": "https://python.langchain.com/docs/integrations/retrievers/you-retriever/", "You.com Search": "https://python.langchain.com/docs/integrations/tools/you/"}, "YouRetriever": {"You.com": "https://python.langchain.com/docs/integrations/retrievers/you-retriever/"}, "Kinetica": {"Kinetica Vectorstore based Retriever": "https://python.langchain.com/docs/integrations/retrievers/kinetica/", "Kinetica": "https://python.langchain.com/docs/integrations/providers/kinetica/", "Kinetica Vectorstore API": "https://python.langchain.com/docs/integrations/vectorstores/kinetica/"}, "KineticaSettings": {"Kinetica Vectorstore based Retriever": "https://python.langchain.com/docs/integrations/retrievers/kinetica/", "Kinetica Vectorstore API": "https://python.langchain.com/docs/integrations/vectorstores/kinetica/", "Kinetica": "https://python.langchain.com/docs/integrations/document_loaders/kinetica/"}, "Jaguar": {"JaguarDB Vector Database": "https://python.langchain.com/docs/integrations/retrievers/jaguar/", "Jaguar": "https://python.langchain.com/docs/integrations/providers/jaguar/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/"}, "BaseStore": {"Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/"}, "VectorStore": {"Fleet AI Context": "https://python.langchain.com/docs/integrations/retrievers/fleet_context/"}, "AskNewsRetriever": {"AskNews": "https://python.langchain.com/docs/integrations/retrievers/asknews/"}, "LLMLinguaCompressor": {"LLMLingua Document Compressor": "https://python.langchain.com/docs/integrations/retrievers/llmlingua/"}, "ElasticSearchBM25Retriever": {"ElasticSearch BM25": "https://python.langchain.com/docs/integrations/retrievers/elastic_search_bm25/"}, "OutlineRetriever": {"Outline": "https://python.langchain.com/docs/integrations/providers/outline/"}, "ZepMemory": {"Zep Open Source": "https://python.langchain.com/docs/integrations/retrievers/zep_memorystore/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/"}, "SearchScope": {"Zep Open Source": "https://python.langchain.com/docs/integrations/retrievers/zep_memorystore/"}, "ZepRetriever": {"Zep Open Source": "https://python.langchain.com/docs/integrations/retrievers/zep_memorystore/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/"}, "VespaRetriever": {"Vespa": "https://python.langchain.com/docs/integrations/providers/vespa/"}, "AmazonKendraRetriever": {"Amazon Kendra": "https://python.langchain.com/docs/integrations/retrievers/amazon_kendra_retriever/", "AWS": "https://python.langchain.com/docs/integrations/platforms/aws/"}, "AmazonKnowledgeBasesRetriever": {"Bedrock (Knowledge Bases) Retriever": "https://python.langchain.com/docs/integrations/retrievers/bedrock/", "AWS": "https://python.langchain.com/docs/integrations/platforms/aws/"}, "Bedrock": {"Bedrock (Knowledge Bases) Retriever": "https://python.langchain.com/docs/integrations/retrievers/bedrock/"}, "CohereEmbeddings": {"Cohere reranker": "https://python.langchain.com/docs/integrations/retrievers/cohere-reranker/"}, "Cohere": {"Cohere reranker": "https://python.langchain.com/docs/integrations/retrievers/cohere-reranker/", "self-query-qdrant": "https://python.langchain.com/docs/templates/self-query-qdrant/"}, "ZepCloudMemory": {"Zep Cloud": "https://python.langchain.com/docs/integrations/retrievers/zep_cloud_memorystore/", "ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/"}, "ZepCloudRetriever": {"Zep Cloud": "https://python.langchain.com/docs/integrations/retrievers/zep_cloud_memorystore/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/", "Zep": "https://python.langchain.com/docs/integrations/providers/zep/"}, "NeuralDBRetriever": {"**NeuralDB**": "https://python.langchain.com/docs/integrations/retrievers/thirdai_neuraldb/"}, "SingleStoreDB": {"SingleStoreDB": "https://python.langchain.com/docs/integrations/vectorstores/singlestoredb/"}, "MetalRetriever": {"Metal": "https://python.langchain.com/docs/integrations/providers/metal/"}, "BreebsRetriever": {"BREEBS (Open Knowledge)": "https://python.langchain.com/docs/integrations/retrievers/breebs/"}, "NanoPQRetriever": {"NanoPQ (Product Quantization)": "https://python.langchain.com/docs/integrations/retrievers/nanopq/"}, "ChatGPTPluginRetriever": {"ChatGPT plugin": "https://python.langchain.com/docs/integrations/retrievers/chatgpt-plugin/", "OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/"}, "KayAiRetriever": {"SEC filing": "https://python.langchain.com/docs/integrations/retrievers/sec_filings/", "Kay.ai": "https://python.langchain.com/docs/integrations/retrievers/kay/"}, "DriaRetriever": {"Dria": "https://python.langchain.com/docs/integrations/retrievers/dria_index/"}, "DocArrayRetriever": {"DocArray": "https://python.langchain.com/docs/integrations/retrievers/docarray_retriever/"}, "SVMRetriever": {"SVM": "https://python.langchain.com/docs/integrations/retrievers/svm/", "scikit-learn": "https://python.langchain.com/docs/integrations/providers/sklearn/"}, "TavilySearchAPIRetriever": {"TavilySearchAPIRetriever": "https://python.langchain.com/docs/integrations/retrievers/tavily/"}, "PineconeHybridSearchRetriever": {"Pinecone Hybrid Search": "https://python.langchain.com/docs/integrations/retrievers/pinecone_hybrid_search/", "Pinecone": "https://python.langchain.com/docs/integrations/providers/pinecone/"}, "DeepLake": {"Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "Deep Lake": "https://python.langchain.com/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query/", "Activeloop Deep Lake": "https://python.langchain.com/docs/integrations/vectorstores/activeloop_deeplake/"}, "AsyncHtmlLoader": {"Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "HTML to text": "https://python.langchain.com/docs/integrations/document_transformers/html2text/", "Markdownify": "https://python.langchain.com/docs/integrations/document_transformers/markdownify/", "AsyncHtml": "https://python.langchain.com/docs/integrations/document_loaders/async_html/"}, "Html2TextTransformer": {"Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "HTML to text": "https://python.langchain.com/docs/integrations/document_transformers/html2text/", "Async Chromium": "https://python.langchain.com/docs/integrations/document_loaders/async_chromium/"}, "create_structured_output_chain": {"Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/"}, "HumanMessagePromptTemplate": {"Activeloop Deep Memory": "https://python.langchain.com/docs/integrations/retrievers/activeloop/", "JinaChat": "https://python.langchain.com/docs/integrations/chat/jinachat/", "Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/", "vLLM Chat": "https://python.langchain.com/docs/integrations/chat/vllm/", "Context": "https://python.langchain.com/docs/integrations/callbacks/context/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Figma": "https://python.langchain.com/docs/integrations/document_loaders/figma/"}, "PubMedRetriever": {"PubMed": "https://python.langchain.com/docs/integrations/providers/pubmed/"}, "WeaviateHybridSearchRetriever": {"Weaviate Hybrid Search": "https://python.langchain.com/docs/integrations/retrievers/weaviate-hybrid/"}, "EmbedchainRetriever": {"Embedchain": "https://python.langchain.com/docs/integrations/retrievers/embedchain/"}, "ArxivRetriever": {"ArxivRetriever": "https://python.langchain.com/docs/integrations/retrievers/arxiv/", "Arxiv": "https://python.langchain.com/docs/integrations/providers/arxiv/"}, "QdrantSparseVectorRetriever": {"Qdrant Sparse Vector": "https://python.langchain.com/docs/integrations/retrievers/qdrant-sparse/"}, "DeterministicFakeEmbedding": {"ElasticsearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/elasticsearch_retriever/"}, "Embeddings": {"ElasticsearchRetriever": "https://python.langchain.com/docs/integrations/retrievers/elasticsearch_retriever/", "Infinispan": "https://python.langchain.com/docs/integrations/vectorstores/infinispanvs/"}, "RememberizerRetriever": {"Rememberizer": "https://python.langchain.com/docs/integrations/retrievers/rememberizer/"}, "ArceeRetriever": {"Arcee": "https://python.langchain.com/docs/integrations/providers/arcee/"}, "FlashrankRerank": {"FlashRank reranker": "https://python.langchain.com/docs/integrations/retrievers/flashrank-reranker/", "UpTrain": "https://python.langchain.com/docs/integrations/callbacks/uptrain/"}, "ChaindeskRetriever": {"Chaindesk": "https://python.langchain.com/docs/integrations/providers/chaindesk/"}, "MergerRetriever": {"LOTR (Merger Retriever)": "https://python.langchain.com/docs/integrations/retrievers/merger_retriever/"}, "EmbeddingsClusteringFilter": {"LOTR (Merger Retriever)": "https://python.langchain.com/docs/integrations/retrievers/merger_retriever/"}, "TFIDFRetriever": {"TF-IDF": "https://python.langchain.com/docs/integrations/retrievers/tf_idf/"}, "PGVector": {"PGVector (Postgres)": "https://python.langchain.com/docs/integrations/retrievers/self_query/pgvector_self_query/", "PGVector": "https://python.langchain.com/docs/integrations/providers/pgvector/"}, "Weaviate": {"Weaviate": "https://python.langchain.com/docs/integrations/retrievers/self_query/weaviate_self_query/"}, "Vectara": {"Vectara self-querying ": "https://python.langchain.com/docs/integrations/retrievers/self_query/vectara_self_query/", "Vectara": "https://python.langchain.com/docs/integrations/vectorstores/vectara/", "Vectara Chat": "https://python.langchain.com/docs/integrations/providers/vectara/vectara_chat/"}, "HanaDB": {"SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "SAP": "https://python.langchain.com/docs/integrations/providers/sap/"}, "HanaTranslator": {"SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/retrievers/self_query/hanavector_self_query/"}, "DashVector": {"DashVector": "https://python.langchain.com/docs/integrations/vectorstores/dashvector/"}, "Tongyi": {"DashVector": "https://python.langchain.com/docs/integrations/retrievers/self_query/dashvector/", "Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/", "Tongyi Qwen": "https://python.langchain.com/docs/integrations/llms/tongyi/"}, "DatabricksVectorSearch": {"Databricks Vector Search": "https://python.langchain.com/docs/integrations/vectorstores/databricks_vector_search/"}, "Dingo": {"DingoDB": "https://python.langchain.com/docs/integrations/vectorstores/dingo/"}, "OpenSearchVectorSearch": {"OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/opensearch/", "AWS": "https://python.langchain.com/docs/integrations/platforms/aws/"}, "ConnectionParams": {"Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/", "Baidu VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/baiduvectordb/"}, "MetaField": {"Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/"}, "TencentVectorDB": {"Tencent Cloud VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/tencentvectordb/", "Tencent": "https://python.langchain.com/docs/integrations/providers/tencent/"}, "TimescaleVector": {"Timescale Vector (Postgres) ": "https://python.langchain.com/docs/integrations/retrievers/self_query/timescalevector_self_query/", "Timescale Vector (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/timescalevector/"}, "AstraDB": {"Astra DB (Cassandra)": "https://python.langchain.com/docs/integrations/retrievers/self_query/astradb/"}, "SupabaseVectorStore": {"Supabase (Postgres)": "https://python.langchain.com/docs/integrations/vectorstores/supabase/"}, "Redis": {"Redis": "https://python.langchain.com/docs/integrations/vectorstores/redis/"}, "MyScale": {"MyScale": "https://python.langchain.com/docs/integrations/vectorstores/myscale/"}, "MongoDBAtlasVectorSearch": {"MongoDB Atlas": "https://python.langchain.com/docs/integrations/retrievers/self_query/mongodb_atlas/"}, "Qdrant": {"Qdrant": "https://python.langchain.com/docs/integrations/retrievers/self_query/qdrant_self_query/", "Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "AzureChatOpenAI": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/", "Bing Search": "https://python.langchain.com/docs/integrations/tools/bing_search/", "AzureChatOpenAI": "https://python.langchain.com/docs/integrations/chat/azure_chat_openai/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "AzureMLOnlineEndpoint": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/"}, "AzureOpenAI": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/", "Azure OpenAI": "https://python.langchain.com/docs/integrations/llms/azure_openai/"}, "AzureAIDataLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure AI Data": "https://python.langchain.com/docs/integrations/document_loaders/azure_ai_data/"}, "AzureBlobStorageContainerLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Blob Storage Container": "https://python.langchain.com/docs/integrations/document_loaders/azure_blob_storage_container/"}, "AzureBlobStorageFileLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Blob Storage File": "https://python.langchain.com/docs/integrations/document_loaders/azure_blob_storage_file/"}, "OneDriveLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Microsoft OneDrive": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_onedrive/"}, "OneDriveFileLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/"}, "UnstructuredWordDocumentLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Microsoft Word": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_word/"}, "UnstructuredExcelLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Microsoft Excel": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_excel/"}, "SharePointLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Microsoft SharePoint": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_sharepoint/"}, "UnstructuredPowerPointLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Microsoft PowerPoint": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_powerpoint/"}, "OneNoteLoader": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Microsoft OneNote": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_onenote/"}, "AzureCosmosDBVectorSearch": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Cosmos DB Mongo vCore": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db/"}, "BingSearchResults": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Bing Search": "https://python.langchain.com/docs/integrations/tools/bing_search/"}, "BingSearchAPIWrapper": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Bing Search": "https://python.langchain.com/docs/integrations/tools/bing_search/"}, "O365Toolkit": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Office365 Toolkit": "https://python.langchain.com/docs/integrations/tools/office365/"}, "PowerBIToolkit": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "PowerBI Toolkit": "https://python.langchain.com/docs/integrations/tools/powerbi/"}, "PowerBIDataset": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "PowerBI Toolkit": "https://python.langchain.com/docs/integrations/tools/powerbi/"}, "PlayWrightBrowserToolkit": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "PlayWright Browser Toolkit": "https://python.langchain.com/docs/integrations/tools/playwright/"}, "GremlinGraph": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "GraphDocument": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "Node": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "Relationship": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/", "Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "PresidioAnonymizer": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/"}, "PresidioReversibleAnonymizer": {"Microsoft": "https://python.langchain.com/docs/integrations/platforms/microsoft/"}, "BedrockLLM": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Bedrock": "https://python.langchain.com/docs/integrations/llms/bedrock/"}, "AmazonAPIGateway": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon API Gateway": "https://python.langchain.com/docs/integrations/llms/amazon_api_gateway/"}, "SagemakerEndpoint": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "SageMakerEndpoint": "https://python.langchain.com/docs/integrations/llms/sagemaker/"}, "ContentHandlerBase": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/"}, "S3DirectoryLoader": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "AWS S3 Directory": "https://python.langchain.com/docs/integrations/document_loaders/aws_s3_directory/"}, "S3FileLoader": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "AWS S3 File": "https://python.langchain.com/docs/integrations/document_loaders/aws_s3_file/"}, "AmazonTextractPDFLoader": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon Textract ": "https://python.langchain.com/docs/integrations/document_loaders/amazon_textract/"}, "AthenaLoader": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Athena": "https://python.langchain.com/docs/integrations/document_loaders/athena/"}, "GlueCatalogLoader": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Glue Catalog": "https://python.langchain.com/docs/integrations/document_loaders/glue_catalog/"}, "DynamoDBChatMessageHistory": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "AWS DynamoDB": "https://python.langchain.com/docs/integrations/memory/aws_dynamodb/"}, "NeptuneGraph": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon Neptune with Cypher": "https://python.langchain.com/docs/integrations/graphs/amazon_neptune_open_cypher/"}, "NeptuneAnalyticsGraph": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon Neptune with Cypher": "https://python.langchain.com/docs/integrations/graphs/amazon_neptune_open_cypher/"}, "NeptuneOpenCypherQAChain": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon Neptune with Cypher": "https://python.langchain.com/docs/integrations/graphs/amazon_neptune_open_cypher/"}, "NeptuneRdfGraph": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon Neptune with SPARQL": "https://python.langchain.com/docs/integrations/graphs/amazon_neptune_sparql/"}, "NeptuneSparqlQAChain": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "Amazon Neptune with SPARQL": "https://python.langchain.com/docs/integrations/graphs/amazon_neptune_sparql/"}, "SageMakerCallbackHandler": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/", "SageMaker Tracking": "https://python.langchain.com/docs/integrations/callbacks/sagemaker_tracking/"}, "AmazonComprehendModerationChain": {"AWS": "https://python.langchain.com/docs/integrations/platforms/aws/"}, "HuggingFaceHubEmbeddings": {"Hugging Face": "https://python.langchain.com/docs/integrations/platforms/huggingface/"}, "HuggingFaceDatasetLoader": {"Hugging Face": "https://python.langchain.com/docs/integrations/platforms/huggingface/", "HuggingFace dataset": "https://python.langchain.com/docs/integrations/document_loaders/hugging_face_dataset/"}, "load_huggingface_tool": {"Hugging Face": "https://python.langchain.com/docs/integrations/platforms/huggingface/", "HuggingFace Hub Tools": "https://python.langchain.com/docs/integrations/tools/huggingface_tools/"}, "ChatGPTLoader": {"OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/", "ChatGPT Data": "https://python.langchain.com/docs/integrations/document_loaders/chatgpt_loader/"}, "DallEAPIWrapper": {"OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/", "Dall-E Image Generator": "https://python.langchain.com/docs/integrations/tools/dalle_image_generator/"}, "OpenAIModerationChain": {"OpenAI": "https://python.langchain.com/docs/integrations/platforms/openai/"}, "GooglePalmEmbeddings": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/"}, "ScaNN": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "ScaNN": "https://python.langchain.com/docs/integrations/vectorstores/scann/"}, "GoogleVertexAISearchRetriever": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/"}, "GoogleDocumentAIWarehouseRetriever": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/"}, "GoogleFinanceQueryRun": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Finance": "https://python.langchain.com/docs/integrations/tools/google_finance/"}, "GoogleFinanceAPIWrapper": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Finance": "https://python.langchain.com/docs/integrations/tools/google_finance/"}, "GoogleJobsQueryRun": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Jobs": "https://python.langchain.com/docs/integrations/tools/google_jobs/"}, "GoogleLensQueryRun": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Lens": "https://python.langchain.com/docs/integrations/tools/google_lens/"}, "GoogleLensAPIWrapper": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Lens": "https://python.langchain.com/docs/integrations/tools/google_lens/"}, "GooglePlacesTool": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Places": "https://python.langchain.com/docs/integrations/tools/google_places/"}, "GoogleScholarQueryRun": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Scholar": "https://python.langchain.com/docs/integrations/tools/google_scholar/"}, "GoogleScholarAPIWrapper": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Scholar": "https://python.langchain.com/docs/integrations/tools/google_scholar/"}, "GoogleTrendsQueryRun": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Trends": "https://python.langchain.com/docs/integrations/tools/google_trends/"}, "GoogleTrendsAPIWrapper": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Trends": "https://python.langchain.com/docs/integrations/tools/google_trends/"}, "SearchApiAPIWrapper": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "SearchApi": "https://python.langchain.com/docs/integrations/providers/searchapi/"}, "SerpAPIWrapper": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "SerpAPI": "https://python.langchain.com/docs/integrations/providers/serpapi/", "MLX": "https://python.langchain.com/docs/integrations/chat/mlx/"}, "GoogleSerperAPIWrapper": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "Google Serper": "https://python.langchain.com/docs/integrations/tools/google_serper/", "Serper - Google Search API": "https://python.langchain.com/docs/integrations/providers/google_serper/"}, "YouTubeSearchTool": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "YouTube": "https://python.langchain.com/docs/integrations/tools/youtube/"}, "YoutubeAudioLoader": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/"}, "OpenAIWhisperParser": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "YouTube audio": "https://python.langchain.com/docs/integrations/document_loaders/youtube_audio/"}, "YoutubeLoader": {"Google": "https://python.langchain.com/docs/integrations/platforms/google/", "YouTube": "https://python.langchain.com/docs/integrations/providers/youtube/", "YouTube transcripts": "https://python.langchain.com/docs/integrations/document_loaders/youtube_transcript/", "Build a Query Analysis System": "https://python.langchain.com/docs/tutorials/query_analysis/"}, "AnthropicLLM": {"Anthropic": "https://python.langchain.com/docs/integrations/platforms/anthropic/", "AnthropicLLM": "https://python.langchain.com/docs/integrations/llms/anthropic/"}, "AIPluginTool": {"ChatGPT Plugins": "https://python.langchain.com/docs/integrations/tools/chatgpt_plugins/"}, "AgentType": {"ChatGPT Plugins": "https://python.langchain.com/docs/integrations/tools/chatgpt_plugins/", "Connery Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/connery/", "Jira Toolkit": "https://python.langchain.com/docs/integrations/tools/jira/", "Google Jobs": "https://python.langchain.com/docs/integrations/tools/google_jobs/", "Google Serper": "https://python.langchain.com/docs/integrations/tools/google_serper/", "Azure Cognitive Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_cognitive_services/", "E2B Data Analysis": "https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/", "Human as a tool": "https://python.langchain.com/docs/integrations/tools/human_tools/", "Natural Language API Toolkits": "https://python.langchain.com/docs/integrations/tools/openapi_nla/", "Steam Toolkit": "https://python.langchain.com/docs/integrations/tools/steam/", "Yahoo Finance News": "https://python.langchain.com/docs/integrations/tools/yahoo_finance_news/", "Google Finance": "https://python.langchain.com/docs/integrations/tools/google_finance/", "ClickUp Toolkit": "https://python.langchain.com/docs/integrations/tools/clickup/", "AWS Lambda": "https://python.langchain.com/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/docs/integrations/tools/openweathermap/", "AINetwork Toolkit": "https://python.langchain.com/docs/integrations/tools/ainetwork/", "Memorize": "https://python.langchain.com/docs/integrations/tools/memorize/", "PlayWright Browser Toolkit": "https://python.langchain.com/docs/integrations/tools/playwright/", "Eleven Labs Text2Speech": "https://python.langchain.com/docs/integrations/tools/eleven_labs_tts/", "Office365 Toolkit": "https://python.langchain.com/docs/integrations/tools/office365/", "Bearly Code Interpreter": "https://python.langchain.com/docs/integrations/tools/bearly/", "Pandas Dataframe": "https://python.langchain.com/docs/integrations/tools/pandas/", "Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/", "NASA Toolkit": "https://python.langchain.com/docs/integrations/tools/nasa/", "Connery Toolkit": "https://python.langchain.com/docs/integrations/tools/connery_toolkit/", "GraphQL": "https://python.langchain.com/docs/integrations/tools/graphql/", "SearchApi": "https://python.langchain.com/docs/integrations/providers/searchapi/", "Eden AI": "https://python.langchain.com/docs/integrations/tools/edenai_tools/", "Gitlab Toolkit": "https://python.langchain.com/docs/integrations/tools/gitlab/", "Shell (bash)": "https://python.langchain.com/docs/integrations/tools/bash/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/", "Xata": "https://python.langchain.com/docs/integrations/memory/xata_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "Comet Tracing": "https://python.langchain.com/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/docs/integrations/callbacks/argilla/", "Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/", "MLflow": "https://python.langchain.com/docs/integrations/providers/mlflow_tracking/", "Serper - Google Search API": "https://python.langchain.com/docs/integrations/providers/google_serper/", "Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/", "WandB Tracing": "https://python.langchain.com/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/docs/integrations/providers/clearml_tracking/", "Amazon API Gateway": "https://python.langchain.com/docs/integrations/llms/amazon_api_gateway/"}, "initialize_agent": {"ChatGPT Plugins": "https://python.langchain.com/docs/integrations/tools/chatgpt_plugins/", "Connery Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/connery/", "Jira Toolkit": "https://python.langchain.com/docs/integrations/tools/jira/", "Google Jobs": "https://python.langchain.com/docs/integrations/tools/google_jobs/", "Google Serper": "https://python.langchain.com/docs/integrations/tools/google_serper/", "Azure Cognitive Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_cognitive_services/", "E2B Data Analysis": "https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/", "Human as a tool": "https://python.langchain.com/docs/integrations/tools/human_tools/", "Natural Language API Toolkits": "https://python.langchain.com/docs/integrations/tools/openapi_nla/", "Steam Toolkit": "https://python.langchain.com/docs/integrations/tools/steam/", "Yahoo Finance News": "https://python.langchain.com/docs/integrations/tools/yahoo_finance_news/", "Google Finance": "https://python.langchain.com/docs/integrations/tools/google_finance/", "ClickUp Toolkit": "https://python.langchain.com/docs/integrations/tools/clickup/", "AWS Lambda": "https://python.langchain.com/docs/integrations/tools/awslambda/", "Google Drive": "https://python.langchain.com/docs/integrations/tools/google_drive/", "OpenWeatherMap": "https://python.langchain.com/docs/integrations/tools/openweathermap/", "AINetwork Toolkit": "https://python.langchain.com/docs/integrations/tools/ainetwork/", "Memorize": "https://python.langchain.com/docs/integrations/tools/memorize/", "PlayWright Browser Toolkit": "https://python.langchain.com/docs/integrations/tools/playwright/", "Eleven Labs Text2Speech": "https://python.langchain.com/docs/integrations/tools/eleven_labs_tts/", "Office365 Toolkit": "https://python.langchain.com/docs/integrations/tools/office365/", "Bearly Code Interpreter": "https://python.langchain.com/docs/integrations/tools/bearly/", "Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/", "NASA Toolkit": "https://python.langchain.com/docs/integrations/tools/nasa/", "Connery Toolkit": "https://python.langchain.com/docs/integrations/tools/connery_toolkit/", "GraphQL": "https://python.langchain.com/docs/integrations/tools/graphql/", "SearchApi": "https://python.langchain.com/docs/integrations/providers/searchapi/", "Gradio": "https://python.langchain.com/docs/integrations/tools/gradio_tools/", "SceneXplain": "https://python.langchain.com/docs/integrations/tools/sceneXplain/", "Eden AI": "https://python.langchain.com/docs/integrations/tools/edenai_tools/", "Dall-E Image Generator": "https://python.langchain.com/docs/integrations/tools/dalle_image_generator/", "Gitlab Toolkit": "https://python.langchain.com/docs/integrations/tools/gitlab/", "Shell (bash)": "https://python.langchain.com/docs/integrations/tools/bash/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/", "Xata": "https://python.langchain.com/docs/integrations/memory/xata_chat_message_history/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/", "SageMaker Tracking": "https://python.langchain.com/docs/integrations/callbacks/sagemaker_tracking/", "Comet Tracing": "https://python.langchain.com/docs/integrations/callbacks/comet_tracing/", "Argilla": "https://python.langchain.com/docs/integrations/callbacks/argilla/", "Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/", "MLflow": "https://python.langchain.com/docs/integrations/providers/mlflow_tracking/", "Serper - Google Search API": "https://python.langchain.com/docs/integrations/providers/google_serper/", "Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/", "WandB Tracing": "https://python.langchain.com/docs/integrations/providers/wandb_tracing/", "ClearML": "https://python.langchain.com/docs/integrations/providers/clearml_tracking/", "Amazon API Gateway": "https://python.langchain.com/docs/integrations/llms/amazon_api_gateway/"}, "DataForSeoAPIWrapper": {"DataForSEO": "https://python.langchain.com/docs/integrations/providers/dataforseo/"}, "Tool": {"DataForSEO": "https://python.langchain.com/docs/integrations/tools/dataforseo/", "Python REPL": "https://python.langchain.com/docs/integrations/tools/python/", "Google Serper": "https://python.langchain.com/docs/integrations/tools/google_serper/", "SerpAPI": "https://python.langchain.com/docs/integrations/tools/serpapi/", "SearchApi": "https://python.langchain.com/docs/integrations/providers/searchapi/", "Google Search": "https://python.langchain.com/docs/integrations/tools/google_search/", "Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/", "Ionic Shopping Tool": "https://python.langchain.com/docs/integrations/tools/ionic_shopping/", "Zep Open Source Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory/", "Zep Cloud Memory": "https://python.langchain.com/docs/integrations/memory/zep_memory_cloud/", "Serper - Google Search API": "https://python.langchain.com/docs/integrations/providers/google_serper/", "Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/"}, "ConneryToolkit": {"Connery Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/connery/", "Connery Toolkit": "https://python.langchain.com/docs/integrations/tools/connery_toolkit/"}, "ConneryService": {"Connery Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/connery/", "Connery Toolkit": "https://python.langchain.com/docs/integrations/tools/connery_toolkit/"}, "DataheraldAPIWrapper": {"Dataherald": "https://python.langchain.com/docs/integrations/providers/dataherald/"}, "SearxSearchWrapper": {"SearxNG Search": "https://python.langchain.com/docs/integrations/tools/searx_search/", "SearxNG Search API": "https://python.langchain.com/docs/integrations/providers/searx/"}, "JiraToolkit": {"Jira Toolkit": "https://python.langchain.com/docs/integrations/tools/jira/"}, "JiraAPIWrapper": {"Jira Toolkit": "https://python.langchain.com/docs/integrations/tools/jira/"}, "PythonREPL": {"Python REPL": "https://python.langchain.com/docs/integrations/tools/python/"}, "GoogleJobsAPIWrapper": {"Google Jobs": "https://python.langchain.com/docs/integrations/tools/google_jobs/"}, "InfobipAPIWrapper": {"Infobip": "https://python.langchain.com/docs/integrations/tools/infobip/"}, "create_openai_functions_agent": {"Infobip": "https://python.langchain.com/docs/integrations/tools/infobip/", "AskNews": "https://python.langchain.com/docs/integrations/tools/asknews/", "Polygon IO Toolkit": "https://python.langchain.com/docs/integrations/tools/polygon_toolkit/", "Semantic Scholar API Tool": "https://python.langchain.com/docs/integrations/tools/semanticscholar/", "Passio NutritionAI": "https://python.langchain.com/docs/integrations/tools/passio_nutrition_ai/", "MultiOn Toolkit": "https://python.langchain.com/docs/integrations/tools/multion/", "You.com Search": "https://python.langchain.com/docs/integrations/tools/you/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/"}, "AskNewsSearch": {"AskNews": "https://python.langchain.com/docs/integrations/tools/asknews/"}, "create_pbi_agent": {"PowerBI Toolkit": "https://python.langchain.com/docs/integrations/tools/powerbi/"}, "AzureCognitiveServicesToolkit": {"Azure Cognitive Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_cognitive_services/"}, "E2BDataAnalysisTool": {"E2B Data Analysis": "https://python.langchain.com/docs/integrations/tools/e2b_data_analysis/"}, "SQLDatabaseToolkit": {"SQLDatabase Toolkit": "https://python.langchain.com/docs/integrations/tools/sql_database/", "CnosDB": "https://python.langchain.com/docs/integrations/providers/cnosdb/", "Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/"}, "HumanInputRun": {"Human as a tool": "https://python.langchain.com/docs/integrations/tools/human_tools/"}, "FinancialDatasetsToolkit": {"FinancialDatasets Toolkit": "https://python.langchain.com/docs/integrations/tools/financial_datasets/"}, "FinancialDatasetsAPIWrapper": {"FinancialDatasets Toolkit": "https://python.langchain.com/docs/integrations/tools/financial_datasets/"}, "NLAToolkit": {"Natural Language API Toolkits": "https://python.langchain.com/docs/integrations/tools/openapi_nla/"}, "Requests": {"Natural Language API Toolkits": "https://python.langchain.com/docs/integrations/tools/openapi_nla/"}, "ZenGuardTool": {"ZenGuard AI": "https://python.langchain.com/docs/integrations/tools/zenguard/"}, "Detector": {"ZenGuard AI": "https://python.langchain.com/docs/integrations/tools/zenguard/"}, "SlackToolkit": {"Slack Toolkit": "https://python.langchain.com/docs/integrations/tools/slack/", "Slack": "https://python.langchain.com/docs/integrations/providers/slack/"}, "SteamToolkit": {"Steam Toolkit": "https://python.langchain.com/docs/integrations/tools/steam/"}, "SteamWebAPIWrapper": {"Steam Toolkit": "https://python.langchain.com/docs/integrations/tools/steam/"}, "create_openai_tools_agent": {"Cassandra Database Toolkit": "https://python.langchain.com/docs/integrations/tools/cassandra_database/", "Log, Trace, and Monitor": "https://python.langchain.com/docs/integrations/providers/portkey/logging_tracing_portkey/", "Portkey": "https://python.langchain.com/docs/integrations/providers/portkey/index/"}, "CassandraDatabaseToolkit": {"Cassandra Database Toolkit": "https://python.langchain.com/docs/integrations/tools/cassandra_database/", "Cassandra": "https://python.langchain.com/docs/integrations/providers/cassandra/"}, "CassandraDatabase": {"Cassandra Database Toolkit": "https://python.langchain.com/docs/integrations/tools/cassandra_database/"}, "NucliaUnderstandingAPI": {"Nuclia Understanding": "https://python.langchain.com/docs/integrations/tools/nuclia/", "Nuclia": "https://python.langchain.com/docs/integrations/document_loaders/nuclia/"}, "YahooFinanceNewsTool": {"Yahoo Finance News": "https://python.langchain.com/docs/integrations/tools/yahoo_finance_news/"}, "JsonToolkit": {"JSON Toolkit": "https://python.langchain.com/docs/integrations/tools/json/"}, "create_json_agent": {"JSON Toolkit": "https://python.langchain.com/docs/integrations/tools/json/"}, "JsonSpec": {"JSON Toolkit": "https://python.langchain.com/docs/integrations/tools/json/", "OpenAPI Toolkit": "https://python.langchain.com/docs/integrations/tools/openapi/"}, "PolygonToolkit": {"Polygon IO Toolkit": "https://python.langchain.com/docs/integrations/tools/polygon_toolkit/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/"}, "PolygonAPIWrapper": {"Polygon IO Toolkit": "https://python.langchain.com/docs/integrations/tools/polygon_toolkit/", "Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/"}, "WikidataAPIWrapper": {"Wikidata": "https://python.langchain.com/docs/integrations/tools/wikidata/"}, "WikidataQueryRun": {"Wikidata": "https://python.langchain.com/docs/integrations/tools/wikidata/"}, "TwilioAPIWrapper": {"Twilio": "https://python.langchain.com/docs/integrations/tools/twilio/"}, "IFTTTWebhook": {"IFTTT WebHooks": "https://python.langchain.com/docs/integrations/tools/ifttt/"}, "SemanticScholarQueryRun": {"Semantic Scholar API Tool": "https://python.langchain.com/docs/integrations/tools/semanticscholar/"}, "AlphaVantageAPIWrapper": {"Alpha Vantage": "https://python.langchain.com/docs/integrations/tools/alpha_vantage/"}, "GitHubToolkit": {"Github Toolkit": "https://python.langchain.com/docs/integrations/tools/github/"}, "GitHubAPIWrapper": {"Github Toolkit": "https://python.langchain.com/docs/integrations/tools/github/"}, "ChatDatabricks": {"Databricks Unity Catalog (UC)": "https://python.langchain.com/docs/integrations/tools/databricks/", "ChatDatabricks": "https://python.langchain.com/docs/integrations/chat/databricks/"}, "UCFunctionToolkit": {"Databricks Unity Catalog (UC)": "https://python.langchain.com/docs/integrations/tools/databricks/"}, "GoogleCloudTextToSpeechTool": {"Google Cloud Text-to-Speech": "https://python.langchain.com/docs/integrations/tools/google_cloud_texttospeech/"}, "ClickupToolkit": {"ClickUp Toolkit": "https://python.langchain.com/docs/integrations/tools/clickup/"}, "ClickupAPIWrapper": {"ClickUp Toolkit": "https://python.langchain.com/docs/integrations/tools/clickup/"}, "SparkSQLToolkit": {"Spark SQL Toolkit": "https://python.langchain.com/docs/integrations/tools/spark_sql/"}, "create_spark_sql_agent": {"Spark SQL Toolkit": "https://python.langchain.com/docs/integrations/tools/spark_sql/"}, "SparkSQL": {"Spark SQL Toolkit": "https://python.langchain.com/docs/integrations/tools/spark_sql/"}, "OracleSummary": {"Oracle AI Vector Search: Generate Summary": "https://python.langchain.com/docs/integrations/tools/oracleai/", "OracleAI Vector Search": "https://python.langchain.com/docs/integrations/providers/oracleai/"}, "StackExchangeAPIWrapper": {"StackExchange": "https://python.langchain.com/docs/integrations/tools/stackexchange/", "Stack Exchange": "https://python.langchain.com/docs/integrations/providers/stackexchange/"}, "RequestsToolkit": {"Requests Toolkit": "https://python.langchain.com/docs/integrations/tools/requests/"}, "TextRequestsWrapper": {"Requests Toolkit": "https://python.langchain.com/docs/integrations/tools/requests/"}, "OpenWeatherMapAPIWrapper": {"OpenWeatherMap": "https://python.langchain.com/docs/integrations/providers/openweathermap/"}, "AINetworkToolkit": {"AINetwork Toolkit": "https://python.langchain.com/docs/integrations/tools/ainetwork/", "AINetwork": "https://python.langchain.com/docs/integrations/providers/ainetwork/"}, "get_from_env": {"Passio NutritionAI": "https://python.langchain.com/docs/integrations/tools/passio_nutrition_ai/"}, "NutritionAI": {"Passio NutritionAI": "https://python.langchain.com/docs/integrations/tools/passio_nutrition_ai/"}, "NutritionAIAPI": {"Passio NutritionAI": "https://python.langchain.com/docs/integrations/tools/passio_nutrition_ai/"}, "PubmedQueryRun": {"PubMed": "https://python.langchain.com/docs/integrations/tools/pubmed/"}, "GradientLLM": {"Memorize": "https://python.langchain.com/docs/integrations/tools/memorize/", "Gradient": "https://python.langchain.com/docs/integrations/llms/gradient/"}, "create_async_playwright_browser": {"PlayWright Browser Toolkit": "https://python.langchain.com/docs/integrations/tools/playwright/"}, "ElevenLabsText2SpeechTool": {"Eleven Labs Text2Speech": "https://python.langchain.com/docs/integrations/tools/eleven_labs_tts/", "ElevenLabs": "https://python.langchain.com/docs/integrations/providers/elevenlabs/"}, "create_conversational_retrieval_agent": {"Cogniswitch Toolkit": "https://python.langchain.com/docs/integrations/tools/cogniswitch/"}, "CogniswitchToolkit": {"Cogniswitch Toolkit": "https://python.langchain.com/docs/integrations/tools/cogniswitch/"}, "BearlyInterpreterTool": {"Bearly Code Interpreter": "https://python.langchain.com/docs/integrations/tools/bearly/"}, "ExecPython": {"Riza Code Interpreter": "https://python.langchain.com/docs/integrations/tools/riza/"}, "ZapierToolkit": {"Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/"}, "ZapierNLAWrapper": {"Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/"}, "SimpleSequentialChain": {"Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/", "SageMaker Tracking": "https://python.langchain.com/docs/integrations/callbacks/sagemaker_tracking/", "Rebuff": "https://python.langchain.com/docs/integrations/providers/rebuff/", "Predibase": "https://python.langchain.com/docs/integrations/llms/predibase/", "Eden AI": "https://python.langchain.com/docs/integrations/llms/edenai/", "Replicate": "https://python.langchain.com/docs/integrations/llms/replicate/"}, "TransformChain": {"Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/", "Rebuff": "https://python.langchain.com/docs/integrations/providers/rebuff/"}, "ZapierNLARunAction": {"Zapier Natural Language Actions": "https://python.langchain.com/docs/integrations/tools/zapier/"}, "RivaASR": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/docs/integrations/tools/nvidia_riva/"}, "RivaTTS": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/docs/integrations/tools/nvidia_riva/"}, "RivaAudioEncoding": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/docs/integrations/tools/nvidia_riva/"}, "AudioStream": {"NVIDIA Riva: ASR and TTS": "https://python.langchain.com/docs/integrations/tools/nvidia_riva/"}, "GoldenQueryAPIWrapper": {"Golden Query": "https://python.langchain.com/docs/integrations/tools/golden_query/", "Golden": "https://python.langchain.com/docs/integrations/providers/golden/"}, "create_react_agent": {"ArXiv": "https://python.langchain.com/docs/integrations/tools/arxiv/", "Amadeus Toolkit": "https://python.langchain.com/docs/integrations/tools/amadeus/", "Ionic Shopping Tool": "https://python.langchain.com/docs/integrations/tools/ionic_shopping/", "Streamlit": "https://python.langchain.com/docs/integrations/callbacks/streamlit/", "Dataherald": "https://python.langchain.com/docs/integrations/providers/dataherald/", "Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/"}, "ArxivAPIWrapper": {"ArXiv": "https://python.langchain.com/docs/integrations/tools/arxiv/"}, "OpenAIFunctionsAgent": {"Robocorp Toolkit": "https://python.langchain.com/docs/integrations/tools/robocorp/", "Exa Search": "https://python.langchain.com/docs/integrations/tools/exa_search/", "LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/"}, "NasaToolkit": {"NASA Toolkit": "https://python.langchain.com/docs/integrations/tools/nasa/"}, "NasaAPIWrapper": {"NASA Toolkit": "https://python.langchain.com/docs/integrations/tools/nasa/"}, "MultionToolkit": {"MultiOn Toolkit": "https://python.langchain.com/docs/integrations/tools/multion/"}, "DuckDuckGoSearchRun": {"DuckDuckGo Search": "https://python.langchain.com/docs/integrations/tools/ddg/"}, "DuckDuckGoSearchResults": {"DuckDuckGo Search": "https://python.langchain.com/docs/integrations/tools/ddg/"}, "DuckDuckGoSearchAPIWrapper": {"DuckDuckGo Search": "https://python.langchain.com/docs/integrations/tools/ddg/"}, "SceneXplainTool": {"SceneXplain": "https://python.langchain.com/docs/integrations/tools/sceneXplain/"}, "WolframAlphaAPIWrapper": {"Wolfram Alpha": "https://python.langchain.com/docs/integrations/providers/wolfram_alpha/"}, "AmadeusToolkit": {"Amadeus Toolkit": "https://python.langchain.com/docs/integrations/tools/amadeus/"}, "HuggingFaceHub": {"Amadeus Toolkit": "https://python.langchain.com/docs/integrations/tools/amadeus/"}, "ReActJsonSingleInputOutputParser": {"Amadeus Toolkit": "https://python.langchain.com/docs/integrations/tools/amadeus/", "MLX": "https://python.langchain.com/docs/integrations/chat/mlx/"}, "render_text_description_and_args": {"Amadeus Toolkit": "https://python.langchain.com/docs/integrations/tools/amadeus/"}, "EdenAiExplicitImageTool": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "EdenAiObjectDetectionTool": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "EdenAiParsingIDTool": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "EdenAiParsingInvoiceTool": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "EdenAiSpeechToTextTool": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "EdenAiTextModerationTool": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "EdenAiTextToSpeechTool": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "EdenAI": {"Eden AI": "https://python.langchain.com/docs/integrations/llms/edenai/"}, "MojeekSearch": {"Mojeek Search": "https://python.langchain.com/docs/integrations/tools/mojeek_search/"}, "RedditSearchRun": {"Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/"}, "RedditSearchAPIWrapper": {"Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/"}, "RedditSearchSchema": {"Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/"}, "StructuredChatAgent": {"Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/"}, "ReadOnlySharedMemory": {"Reddit Search ": "https://python.langchain.com/docs/integrations/tools/reddit_search/"}, "YouSearchTool": {"You.com Search": "https://python.langchain.com/docs/integrations/tools/you/"}, "AzureAiServicesToolkit": {"Azure AI Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_ai_services/"}, "create_structured_chat_agent": {"Azure AI Services Toolkit": "https://python.langchain.com/docs/integrations/tools/azure_ai_services/"}, "reduce_openapi_spec": {"OpenAPI Toolkit": "https://python.langchain.com/docs/integrations/tools/openapi/"}, "RequestsWrapper": {"OpenAPI Toolkit": "https://python.langchain.com/docs/integrations/tools/openapi/"}, "OpenAPIToolkit": {"OpenAPI Toolkit": "https://python.langchain.com/docs/integrations/tools/openapi/"}, "create_openapi_agent": {"OpenAPI Toolkit": "https://python.langchain.com/docs/integrations/tools/openapi/"}, "GitLabToolkit": {"Gitlab Toolkit": "https://python.langchain.com/docs/integrations/tools/gitlab/"}, "GitLabAPIWrapper": {"Gitlab Toolkit": "https://python.langchain.com/docs/integrations/tools/gitlab/"}, "ShellTool": {"Shell (bash)": "https://python.langchain.com/docs/integrations/tools/bash/"}, "PolygonAggregates": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/"}, "PolygonFinancials": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/"}, "PolygonLastQuote": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/"}, "PolygonTickerNews": {"Polygon IO Toolkit and Tools": "https://python.langchain.com/docs/integrations/tools/polygon/"}, "FileManagementToolkit": {"File System": "https://python.langchain.com/docs/integrations/tools/filesystem/"}, "BraveSearch": {"Brave Search": "https://python.langchain.com/docs/integrations/providers/brave_search/"}, "RedisChatMessageHistory": {"Redis": "https://python.langchain.com/docs/integrations/memory/redis_chat_message_history/"}, "KafkaChatMessageHistory": {"Kafka": "https://python.langchain.com/docs/integrations/memory/kafka_chat_message_history/"}, "ElasticsearchChatMessageHistory": {"Elasticsearch": "https://python.langchain.com/docs/integrations/memory/elasticsearch_chat_message_history/"}, "UpstashRedisChatMessageHistory": {"Upstash Redis": "https://python.langchain.com/docs/integrations/memory/upstash_redis_chat_message_history/", "Upstash Vector": "https://python.langchain.com/docs/integrations/providers/upstash/"}, "ZepCloudChatMessageHistory": {"ZepCloudChatMessageHistory": "https://python.langchain.com/docs/integrations/memory/zep_cloud_chat_message_history/", "Zep": "https://python.langchain.com/docs/integrations/providers/zep/"}, "SingleStoreDBChatMessageHistory": {"SingleStoreDB": "https://python.langchain.com/docs/integrations/providers/singlestoredb/"}, "PostgresChatMessageHistory": {"Postgres": "https://python.langchain.com/docs/integrations/memory/postgres_chat_message_history/"}, "MomentoChatMessageHistory": {"Momento Cache": "https://python.langchain.com/docs/integrations/memory/momento_chat_message_history/", "Momento": "https://python.langchain.com/docs/integrations/providers/momento/"}, "XataChatMessageHistory": {"Xata": "https://python.langchain.com/docs/integrations/providers/xata/"}, "XataVectorStore": {"Xata": "https://python.langchain.com/docs/integrations/vectorstores/xata/"}, "CassandraChatMessageHistory": {"Cassandra ": "https://python.langchain.com/docs/integrations/memory/cassandra_chat_message_history/", "Cassandra": "https://python.langchain.com/docs/integrations/providers/cassandra/"}, "MotorheadMemory": {"Mot\u00f6rhead": "https://python.langchain.com/docs/integrations/memory/motorhead_memory/"}, "AstraDBChatMessageHistory": {"Astra DB ": "https://python.langchain.com/docs/integrations/memory/astradb_chat_message_history/"}, "StreamlitChatMessageHistory": {"Streamlit": "https://python.langchain.com/docs/integrations/providers/streamlit/"}, "Neo4jChatMessageHistory": {"Neo4j": "https://python.langchain.com/docs/integrations/memory/neo4j_chat_message_history/"}, "TiDBChatMessageHistory": {"TiDB": "https://python.langchain.com/docs/integrations/providers/tidb/"}, "RocksetChatMessageHistory": {"Rockset": "https://python.langchain.com/docs/integrations/providers/rockset/"}, "ChatSnowflakeCortex": {"Snowflake Cortex": "https://python.langchain.com/docs/integrations/chat/snowflake/"}, "SolarChat": {"# Related": "https://python.langchain.com/docs/integrations/chat/solar/"}, "AzureMLChatOnlineEndpoint": {"AzureMLChatOnlineEndpoint": "https://python.langchain.com/docs/integrations/chat/azureml_chat_endpoint/"}, "AzureMLEndpointApiType": {"AzureMLChatOnlineEndpoint": "https://python.langchain.com/docs/integrations/chat/azureml_chat_endpoint/", "Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/"}, "CustomOpenAIChatContentFormatter": {"AzureMLChatOnlineEndpoint": "https://python.langchain.com/docs/integrations/chat/azureml_chat_endpoint/"}, "ChatKinetica": {"Kinetica Language To SQL Chat Model": "https://python.langchain.com/docs/integrations/chat/kinetica/", "Kinetica": "https://python.langchain.com/docs/integrations/providers/kinetica/"}, "KineticaSqlOutputParser": {"Kinetica Language To SQL Chat Model": "https://python.langchain.com/docs/integrations/chat/kinetica/"}, "KineticaSqlResponse": {"Kinetica Language To SQL Chat Model": "https://python.langchain.com/docs/integrations/chat/kinetica/"}, "PaiEasChatEndpoint": {"Alibaba Cloud PAI EAS": "https://python.langchain.com/docs/integrations/chat/alibaba_cloud_pai_eas/", "Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/"}, "ChatCoze": {"Chat with Coze Bot": "https://python.langchain.com/docs/integrations/chat/coze/"}, "ChatOctoAI": {"ChatOctoAI": "https://python.langchain.com/docs/integrations/chat/octoai/", "OctoAI": "https://python.langchain.com/docs/integrations/providers/octoai/"}, "ChatYi": {"ChatYI": "https://python.langchain.com/docs/integrations/chat/yi/", "01.AI": "https://python.langchain.com/docs/integrations/providers/yi/"}, "ChatDeepInfra": {"DeepInfra": "https://python.langchain.com/docs/integrations/providers/deepinfra/"}, "ChatLiteLLM": {"ChatLiteLLM": "https://python.langchain.com/docs/integrations/chat/litellm/"}, "LlamaEdgeChatService": {"LlamaEdge": "https://python.langchain.com/docs/integrations/chat/llama_edge/"}, "OllamaFunctions": {"OllamaFunctions": "https://python.langchain.com/docs/integrations/chat/ollama_functions/"}, "VolcEngineMaasChat": {"VolcEngineMaasChat": "https://python.langchain.com/docs/integrations/chat/volcengine_maas/"}, "ChatLlamaAPI": {"ChatLlamaAPI": "https://python.langchain.com/docs/integrations/chat/llama_api/"}, "create_tagging_chain": {"ChatLlamaAPI": "https://python.langchain.com/docs/integrations/chat/llama_api/"}, "ChatKonko": {"ChatKonko": "https://python.langchain.com/docs/integrations/chat/konko/"}, "ChatBedrockConverse": {"ChatBedrock": "https://python.langchain.com/docs/integrations/chat/bedrock/"}, "MLXPipeline": {"MLX": "https://python.langchain.com/docs/integrations/providers/mlx/", "MLX Local Pipelines": "https://python.langchain.com/docs/integrations/llms/mlx_pipelines/"}, "ChatMLX": {"MLX": "https://python.langchain.com/docs/integrations/providers/mlx/"}, "format_log_to_str": {"MLX": "https://python.langchain.com/docs/integrations/chat/mlx/"}, "GigaChat": {"GigaChat": "https://python.langchain.com/docs/integrations/llms/gigachat/", "Salute Devices": "https://python.langchain.com/docs/integrations/providers/salute_devices/"}, "JinaChat": {"JinaChat": "https://python.langchain.com/docs/integrations/chat/jinachat/"}, "SystemMessagePromptTemplate": {"JinaChat": "https://python.langchain.com/docs/integrations/chat/jinachat/", "vLLM Chat": "https://python.langchain.com/docs/integrations/chat/vllm/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Figma": "https://python.langchain.com/docs/integrations/document_loaders/figma/"}, "ChatOCIGenAI": {"ChatOCIGenAI": "https://python.langchain.com/docs/integrations/chat/oci_generative_ai/", "Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/docs/integrations/providers/oci/"}, "ChatLlamaCpp": {"Llama.cpp": "https://python.langchain.com/docs/integrations/providers/llamacpp/"}, "convert_to_openai_tool": {"Llama.cpp": "https://python.langchain.com/docs/integrations/chat/llamacpp/"}, "ChatEverlyAI": {"ChatEverlyAI": "https://python.langchain.com/docs/integrations/chat/everlyai/"}, "GPTRouter": {"GPTRouter": "https://python.langchain.com/docs/integrations/chat/gpt_router/"}, "GPTRouterModel": {"GPTRouter": "https://python.langchain.com/docs/integrations/chat/gpt_router/"}, "ChatLiteLLMRouter": {"ChatLiteLLMRouter": "https://python.langchain.com/docs/integrations/chat/litellm_router/"}, "ChatFriendli": {"ChatFriendli": "https://python.langchain.com/docs/integrations/chat/friendli/"}, "ChatZhipuAI": {"ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/", "Zhipu AI": "https://python.langchain.com/docs/integrations/providers/zhipuai/"}, "create_json_chat_agent": {"ZHIPU AI": "https://python.langchain.com/docs/integrations/chat/zhipuai/"}, "ChatBaichuan": {"Chat with Baichuan-192K": "https://python.langchain.com/docs/integrations/chat/baichuan/", "Baichuan": "https://python.langchain.com/docs/integrations/providers/baichuan/"}, "ChatTogether": {"ChatTogether": "https://python.langchain.com/docs/integrations/chat/together/", "Together AI": "https://python.langchain.com/docs/integrations/llms/together/"}, "Llama2Chat": {"Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/"}, "HuggingFaceTextGenInference": {"Llama2Chat": "https://python.langchain.com/docs/integrations/chat/llama2_chat/"}, "QianfanChatEndpoint": {"QianfanChatEndpoint": "https://python.langchain.com/docs/integrations/chat/baidu_qianfan_endpoint/", "ErnieBotChat": "https://python.langchain.com/docs/integrations/chat/ernie/", "Baidu": "https://python.langchain.com/docs/integrations/providers/baidu/"}, "ChatEdenAI": {"Eden AI": "https://python.langchain.com/docs/integrations/providers/edenai/"}, "ErnieBotChat": {"ErnieBotChat": "https://python.langchain.com/docs/integrations/chat/ernie/"}, "ChatHunyuan": {"Tencent Hunyuan": "https://python.langchain.com/docs/integrations/chat/tencent_hunyuan/", "Tencent": "https://python.langchain.com/docs/integrations/providers/tencent/"}, "MiniMaxChat": {"MiniMaxChat": "https://python.langchain.com/docs/integrations/chat/minimax/", "Minimax": "https://python.langchain.com/docs/integrations/providers/minimax/"}, "ChatYuan2": {"Yuan2.0": "https://python.langchain.com/docs/integrations/chat/yuan2/", "IEIT Systems": "https://python.langchain.com/docs/integrations/providers/ieit_systems/"}, "ChatTongyi": {"ChatTongyi": "https://python.langchain.com/docs/integrations/chat/tongyi/", "Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/"}, "PromptLayerChatOpenAI": {"PromptLayerChatOpenAI": "https://python.langchain.com/docs/integrations/chat/promptlayer_chatopenai/", "PromptLayer": "https://python.langchain.com/docs/integrations/providers/promptlayer/"}, "ChatSparkLLM": {"SparkLLM Chat": "https://python.langchain.com/docs/integrations/chat/sparkllm/", "iFlytek": "https://python.langchain.com/docs/integrations/providers/iflytek/"}, "MoonshotChat": {"MoonshotChat": "https://python.langchain.com/docs/integrations/chat/moonshot/"}, "ChatDappierAI": {"Dappier AI": "https://python.langchain.com/docs/integrations/chat/dappier/"}, "ChatMaritalk": {"Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/", "MariTalk": "https://python.langchain.com/docs/integrations/providers/maritalk/"}, "OnlinePDFLoader": {"Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/", "UnstructuredPDFLoader": "https://python.langchain.com/docs/integrations/document_loaders/unstructured_pdfloader/"}, "load_qa_chain": {"Maritalk": "https://python.langchain.com/docs/integrations/chat/maritalk/", "Amazon Textract ": "https://python.langchain.com/docs/integrations/document_loaders/amazon_textract/", "SageMakerEndpoint": "https://python.langchain.com/docs/integrations/llms/sagemaker/"}, "ChatPremAI": {"ChatPremAI": "https://python.langchain.com/docs/integrations/chat/premai/", "PremAI": "https://python.langchain.com/docs/integrations/providers/premai/"}, "ChatAnyscale": {"ChatAnyscale": "https://python.langchain.com/docs/integrations/chat/anyscale/", "Anyscale": "https://python.langchain.com/docs/integrations/providers/anyscale/"}, "ChatYandexGPT": {"ChatYandexGPT": "https://python.langchain.com/docs/integrations/chat/yandex/", "Yandex": "https://python.langchain.com/docs/integrations/providers/yandex/"}, "ChatPerplexity": {"ChatPerplexity": "https://python.langchain.com/docs/integrations/chat/perplexity/", "Perplexity": "https://python.langchain.com/docs/integrations/providers/perplexity/"}, "ChatAnthropicTools": {"[Deprecated] Experimental Anthropic Tools Wrapper": "https://python.langchain.com/docs/integrations/chat/anthropic_functions/"}, "DeepEvalCallbackHandler": {"Confident": "https://python.langchain.com/docs/integrations/callbacks/confident/", "Confident AI": "https://python.langchain.com/docs/integrations/providers/confident/"}, "LLMonitorCallbackHandler": {"LLMonitor": "https://python.langchain.com/docs/integrations/providers/llmonitor/"}, "identify": {"LLMonitor": "https://python.langchain.com/docs/integrations/callbacks/llmonitor/"}, "ContextCallbackHandler": {"Context": "https://python.langchain.com/docs/integrations/providers/context/"}, "FiddlerCallbackHandler": {"Fiddler": "https://python.langchain.com/docs/integrations/providers/fiddler/"}, "LabelStudioCallbackHandler": {"Label Studio": "https://python.langchain.com/docs/integrations/providers/labelstudio/"}, "CometTracer": {"Comet Tracing": "https://python.langchain.com/docs/integrations/callbacks/comet_tracing/", "Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/"}, "ArgillaCallbackHandler": {"Argilla": "https://python.langchain.com/docs/integrations/providers/argilla/"}, "StdOutCallbackHandler": {"Argilla": "https://python.langchain.com/docs/integrations/callbacks/argilla/", "Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/", "Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/", "Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/", "ClearML": "https://python.langchain.com/docs/integrations/providers/clearml_tracking/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/"}, "PromptLayerCallbackHandler": {"PromptLayer": "https://python.langchain.com/docs/integrations/providers/promptlayer/"}, "StreamlitCallbackHandler": {"Streamlit": "https://python.langchain.com/docs/integrations/providers/streamlit/", "GPT4All": "https://python.langchain.com/docs/integrations/providers/gpt4all/"}, "UpTrainCallbackHandler": {"UpTrain": "https://python.langchain.com/docs/integrations/providers/uptrain/"}, "TrubricsCallbackHandler": {"Trubrics": "https://python.langchain.com/docs/integrations/providers/trubrics/"}, "InfinoCallbackHandler": {"Infino": "https://python.langchain.com/docs/integrations/providers/infino/"}, "UpstashRatelimitError": {"Upstash Ratelimit Callback": "https://python.langchain.com/docs/integrations/callbacks/upstash_ratelimit/"}, "UpstashRatelimitHandler": {"Upstash Ratelimit Callback": "https://python.langchain.com/docs/integrations/callbacks/upstash_ratelimit/"}, "FigmaFileLoader": {"Figma": "https://python.langchain.com/docs/integrations/document_loaders/figma/"}, "Baseten": {"Baseten": "https://python.langchain.com/docs/integrations/llms/baseten/"}, "WeatherDataLoader": {"Weather": "https://python.langchain.com/docs/integrations/document_loaders/weather/"}, "Tair": {"Tair": "https://python.langchain.com/docs/integrations/vectorstores/tair/", "Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/"}, "CollegeConfidentialLoader": {"College Confidential": "https://python.langchain.com/docs/integrations/document_loaders/college_confidential/"}, "RWKV": {"RWKV-4": "https://python.langchain.com/docs/integrations/providers/rwkv/"}, "LakeFSLoader": {"lakeFS": "https://python.langchain.com/docs/integrations/document_loaders/lakefs/"}, "FaunaLoader": {"Fauna": "https://python.langchain.com/docs/integrations/document_loaders/fauna/"}, "OCIGenAI": {"Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/docs/integrations/providers/oci/", "# Oracle Cloud Infrastructure Generative AI": "https://python.langchain.com/docs/integrations/llms/oci_generative_ai/"}, "OCIModelDeploymentVLLM": {"Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/docs/integrations/providers/oci/", "OCI Data Science Model Deployment Endpoint": "https://python.langchain.com/docs/integrations/llms/oci_model_deployment_endpoint/"}, "OCIModelDeploymentTGI": {"Oracle Cloud Infrastructure (OCI)": "https://python.langchain.com/docs/integrations/providers/oci/", "OCI Data Science Model Deployment Endpoint": "https://python.langchain.com/docs/integrations/llms/oci_model_deployment_endpoint/"}, "OracleDocLoader": {"OracleAI Vector Search": "https://python.langchain.com/docs/integrations/providers/oracleai/", "Oracle AI Vector Search: Document Processing": "https://python.langchain.com/docs/integrations/document_loaders/oracleai/"}, "OracleTextSplitter": {"OracleAI Vector Search": "https://python.langchain.com/docs/integrations/providers/oracleai/", "Oracle AI Vector Search: Document Processing": "https://python.langchain.com/docs/integrations/document_loaders/oracleai/"}, "OracleVS": {"OracleAI Vector Search": "https://python.langchain.com/docs/integrations/providers/oracleai/", "Oracle AI Vector Search: Vector Store": "https://python.langchain.com/docs/integrations/vectorstores/oracle/"}, "Lantern": {"Lantern": "https://python.langchain.com/docs/integrations/vectorstores/lantern/"}, "DropboxLoader": {"Dropbox": "https://python.langchain.com/docs/integrations/document_loaders/dropbox/"}, "ForefrontAI": {"ForefrontAI": "https://python.langchain.com/docs/integrations/llms/forefrontai/"}, "CometCallbackHandler": {"Comet": "https://python.langchain.com/docs/integrations/providers/comet_tracking/"}, "CTransformers": {"C Transformers": "https://python.langchain.com/docs/integrations/llms/ctransformers/"}, "BiliBiliLoader": {"BiliBili": "https://python.langchain.com/docs/integrations/document_loaders/bilibili/"}, "TencentCOSDirectoryLoader": {"Tencent": "https://python.langchain.com/docs/integrations/providers/tencent/", "Tencent COS Directory": "https://python.langchain.com/docs/integrations/document_loaders/tencent_cos_directory/"}, "TencentCOSFileLoader": {"Tencent": "https://python.langchain.com/docs/integrations/providers/tencent/", "Tencent COS File": "https://python.langchain.com/docs/integrations/document_loaders/tencent_cos_file/"}, "OBSDirectoryLoader": {"Huawei": "https://python.langchain.com/docs/integrations/providers/huawei/", "Huawei OBS Directory": "https://python.langchain.com/docs/integrations/document_loaders/huawei_obs_directory/"}, "OBSFileLoader": {"Huawei": "https://python.langchain.com/docs/integrations/providers/huawei/", "Huawei OBS File": "https://python.langchain.com/docs/integrations/document_loaders/huawei_obs_file/"}, "DiffbotLoader": {"Diffbot": "https://python.langchain.com/docs/integrations/document_loaders/diffbot/"}, "DiffbotGraphTransformer": {"Diffbot": "https://python.langchain.com/docs/integrations/graphs/diffbot/", "Neo4j": "https://python.langchain.com/docs/integrations/providers/neo4j/"}, "DeepSparse": {"DeepSparse": "https://python.langchain.com/docs/integrations/llms/deepsparse/"}, "AimCallbackHandler": {"Aim": "https://python.langchain.com/docs/integrations/providers/aim_tracking/"}, "ModernTreasuryLoader": {"Modern Treasury": "https://python.langchain.com/docs/integrations/document_loaders/modern_treasury/"}, "GitHubIssuesLoader": {"GitHub": "https://python.langchain.com/docs/integrations/document_loaders/github/"}, "GithubFileLoader": {"GitHub": "https://python.langchain.com/docs/integrations/document_loaders/github/"}, "Banana": {"Banana": "https://python.langchain.com/docs/integrations/llms/banana/"}, "InfinispanVS": {"Infinispan VS": "https://python.langchain.com/docs/integrations/providers/infinispanvs/", "Infinispan": "https://python.langchain.com/docs/integrations/vectorstores/infinispanvs/"}, "CerebriumAI": {"CerebriumAI": "https://python.langchain.com/docs/integrations/llms/cerebriumai/"}, "GutenbergLoader": {"Gutenberg": "https://python.langchain.com/docs/integrations/document_loaders/gutenberg/"}, "WikipediaLoader": {"Wikipedia": "https://python.langchain.com/docs/integrations/document_loaders/wikipedia/", "Diffbot": "https://python.langchain.com/docs/integrations/graphs/diffbot/"}, "ConfluenceLoader": {"Confluence": "https://python.langchain.com/docs/integrations/document_loaders/confluence/"}, "Predibase": {"Predibase": "https://python.langchain.com/docs/integrations/llms/predibase/"}, "Beam": {"Beam": "https://python.langchain.com/docs/integrations/llms/beam/"}, "GrobidParser": {"Grobid": "https://python.langchain.com/docs/integrations/document_loaders/grobid/"}, "Typesense": {"Typesense": "https://python.langchain.com/docs/integrations/vectorstores/typesense/"}, "Hologres": {"Hologres": "https://python.langchain.com/docs/integrations/vectorstores/hologres/", "Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/"}, "ArangoGraph": {"ArangoDB": "https://python.langchain.com/docs/integrations/graphs/arangodb/"}, "ArangoGraphQAChain": {"ArangoDB": "https://python.langchain.com/docs/integrations/graphs/arangodb/"}, "ArcGISLoader": {"ArcGIS": "https://python.langchain.com/docs/integrations/document_loaders/arcgis/"}, "WandbCallbackHandler": {"Weights & Biases": "https://python.langchain.com/docs/integrations/providers/wandb_tracking/"}, "ObsidianLoader": {"Obsidian": "https://python.langchain.com/docs/integrations/document_loaders/obsidian/"}, "BrowserbaseLoader": {"Browserbase": "https://python.langchain.com/docs/integrations/document_loaders/browserbase/"}, "OctoAIEndpoint": {"OctoAI": "https://python.langchain.com/docs/integrations/llms/octoai/"}, "OctoAIEmbeddings": {"OctoAI": "https://python.langchain.com/docs/integrations/providers/octoai/"}, "Nebula": {"Nebula": "https://python.langchain.com/docs/integrations/providers/symblai_nebula/", "Nebula (Symbl.ai)": "https://python.langchain.com/docs/integrations/llms/symblai_nebula/"}, "Writer": {"Writer": "https://python.langchain.com/docs/integrations/llms/writer/"}, "BaichuanLLM": {"Baichuan": "https://python.langchain.com/docs/integrations/providers/baichuan/", "Baichuan LLM": "https://python.langchain.com/docs/integrations/llms/baichuan/"}, "ApacheDoris": {"Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/"}, "ZepCloudVectorStore": {"Zep": "https://python.langchain.com/docs/integrations/providers/zep/", "Zep Cloud": "https://python.langchain.com/docs/integrations/vectorstores/zep_cloud/"}, "BrowserlessLoader": {"Browserless": "https://python.langchain.com/docs/integrations/document_loaders/browserless/"}, "AZLyricsLoader": {"AZLyrics": "https://python.langchain.com/docs/integrations/document_loaders/azlyrics/"}, "ToMarkdownLoader": {"2Markdown": "https://python.langchain.com/docs/integrations/document_loaders/tomarkdown/"}, "SparkLLM": {"iFlytek": "https://python.langchain.com/docs/integrations/providers/iflytek/", "SparkLLM": "https://python.langchain.com/docs/integrations/llms/sparkllm/"}, "Mlflow": {"MLflow Deployments for LLMs": "https://python.langchain.com/docs/integrations/providers/mlflow/"}, "MlflowEmbeddings": {"MLflow Deployments for LLMs": "https://python.langchain.com/docs/integrations/providers/mlflow/"}, "ChatMlflow": {"MLflow Deployments for LLMs": "https://python.langchain.com/docs/integrations/providers/mlflow/"}, "GitLoader": {"Git": "https://python.langchain.com/docs/integrations/document_loaders/git/"}, "MlflowAIGateway": {"MLflow AI Gateway": "https://python.langchain.com/docs/integrations/providers/mlflow_ai_gateway/"}, "MlflowAIGatewayEmbeddings": {"MLflow AI Gateway": "https://python.langchain.com/docs/integrations/providers/mlflow_ai_gateway/"}, "ChatMLflowAIGateway": {"MLflow AI Gateway": "https://python.langchain.com/docs/integrations/providers/mlflow_ai_gateway/"}, "Tigris": {"Tigris": "https://python.langchain.com/docs/integrations/vectorstores/tigris/"}, "Meilisearch": {"Meilisearch": "https://python.langchain.com/docs/integrations/vectorstores/meilisearch/"}, "SQLDatabaseChain": {"Rebuff": "https://python.langchain.com/docs/integrations/providers/rebuff/"}, "SnowflakeLoader": {"Snowflake": "https://python.langchain.com/docs/integrations/document_loaders/snowflake/"}, "CubeSemanticLoader": {"Cube": "https://python.langchain.com/docs/integrations/providers/cube/", "Cube Semantic Layer": "https://python.langchain.com/docs/integrations/document_loaders/cube_semantic/"}, "Clickhouse": {"ClickHouse": "https://python.langchain.com/docs/integrations/vectorstores/clickhouse/"}, "ClickhouseSettings": {"ClickHouse": "https://python.langchain.com/docs/integrations/vectorstores/clickhouse/"}, "TelegramChatFileLoader": {"Telegram": "https://python.langchain.com/docs/integrations/document_loaders/telegram/"}, "TelegramChatApiLoader": {"Telegram": "https://python.langchain.com/docs/integrations/document_loaders/telegram/"}, "PredictionGuard": {"Prediction Guard": "https://python.langchain.com/docs/integrations/llms/predictionguard/"}, "Together": {"Together AI": "https://python.langchain.com/docs/integrations/llms/together/"}, "NotionDirectoryLoader": {"Notion DB": "https://python.langchain.com/docs/integrations/providers/notion/", "Notion DB 2/2": "https://python.langchain.com/docs/integrations/document_loaders/notion/"}, "NotionDBLoader": {"Notion DB": "https://python.langchain.com/docs/integrations/providers/notion/", "Notion DB 2/2": "https://python.langchain.com/docs/integrations/document_loaders/notiondb/"}, "MWDumpLoader": {"MediaWikiDump": "https://python.langchain.com/docs/integrations/providers/mediawikidump/", "MediaWiki Dump": "https://python.langchain.com/docs/integrations/document_loaders/mediawikidump/"}, "BraveSearchLoader": {"Brave Search": "https://python.langchain.com/docs/integrations/document_loaders/brave_search/"}, "StarRocks": {"StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/"}, "GooseAI": {"GooseAI": "https://python.langchain.com/docs/integrations/llms/gooseai/"}, "DatadogLogsLoader": {"Datadog Logs": "https://python.langchain.com/docs/integrations/document_loaders/datadog_logs/"}, "ApifyWrapper": {"Apify": "https://python.langchain.com/docs/integrations/providers/apify/", "Apify Dataset": "https://python.langchain.com/docs/integrations/document_loaders/apify_dataset/"}, "ApifyDatasetLoader": {"Apify": "https://python.langchain.com/docs/integrations/providers/apify/", "Apify Dataset": "https://python.langchain.com/docs/integrations/document_loaders/apify_dataset/"}, "NLPCloud": {"NLPCloud": "https://python.langchain.com/docs/integrations/providers/nlpcloud/", "NLP Cloud": "https://python.langchain.com/docs/integrations/llms/nlpcloud/"}, "Milvus": {"Milvus": "https://python.langchain.com/docs/integrations/providers/milvus/", "Zilliz": "https://python.langchain.com/docs/integrations/vectorstores/zilliz/"}, "SemaDB": {"SemaDB": "https://python.langchain.com/docs/integrations/vectorstores/semadb/"}, "GitbookLoader": {"GitBook": "https://python.langchain.com/docs/integrations/document_loaders/gitbook/"}, "Rockset": {"Rockset": "https://python.langchain.com/docs/integrations/vectorstores/rockset/"}, "RocksetLoader": {"Rockset": "https://python.langchain.com/docs/integrations/document_loaders/rockset/"}, "Minimax": {"Minimax": "https://python.langchain.com/docs/integrations/llms/minimax/"}, "UnstructuredCHMLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/"}, "UnstructuredCSVLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "CSV": "https://python.langchain.com/docs/integrations/document_loaders/csv/"}, "UnstructuredEmailLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Email": "https://python.langchain.com/docs/integrations/document_loaders/email/"}, "UnstructuredEPubLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "EPub ": "https://python.langchain.com/docs/integrations/document_loaders/epub/"}, "UnstructuredFileIOLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Google Drive": "https://python.langchain.com/docs/integrations/document_loaders/google_drive/"}, "UnstructuredImageLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Images": "https://python.langchain.com/docs/integrations/document_loaders/image/"}, "UnstructuredODTLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Open Document Format (ODT)": "https://python.langchain.com/docs/integrations/document_loaders/odt/"}, "UnstructuredOrgModeLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "Org-mode": "https://python.langchain.com/docs/integrations/document_loaders/org_mode/"}, "UnstructuredPDFLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "UnstructuredPDFLoader": "https://python.langchain.com/docs/integrations/document_loaders/unstructured_pdfloader/"}, "UnstructuredRSTLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "RST": "https://python.langchain.com/docs/integrations/document_loaders/rst/"}, "UnstructuredRTFLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/"}, "UnstructuredTSVLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "TSV": "https://python.langchain.com/docs/integrations/document_loaders/tsv/"}, "UnstructuredURLLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "URL": "https://python.langchain.com/docs/integrations/document_loaders/url/"}, "UnstructuredXMLLoader": {"Unstructured": "https://python.langchain.com/docs/integrations/providers/unstructured/", "UnstructuredXMLLoader": "https://python.langchain.com/docs/integrations/document_loaders/xml/"}, "SelfHostedPipeline": {"Runhouse": "https://python.langchain.com/docs/integrations/llms/runhouse/"}, "SelfHostedHuggingFaceLLM": {"Runhouse": "https://python.langchain.com/docs/integrations/llms/runhouse/"}, "MlflowCallbackHandler": {"MLflow": "https://python.langchain.com/docs/integrations/providers/mlflow_tracking/"}, "SpreedlyLoader": {"Spreedly": "https://python.langchain.com/docs/integrations/document_loaders/spreedly/"}, "OpenLLM": {"OpenLLM": "https://python.langchain.com/docs/integrations/llms/openllm/"}, "PubMedLoader": {"PubMed": "https://python.langchain.com/docs/integrations/document_loaders/pubmed/"}, "SearxSearchResults": {"SearxNG Search API": "https://python.langchain.com/docs/integrations/providers/searx/"}, "Modal": {"Modal": "https://python.langchain.com/docs/integrations/llms/modal/"}, "OpenCityDataLoader": {"Geopandas": "https://python.langchain.com/docs/integrations/document_loaders/geopandas/", "Open City Data": "https://python.langchain.com/docs/integrations/document_loaders/open_city_data/"}, "PGEmbedding": {"Postgres Embedding": "https://python.langchain.com/docs/integrations/vectorstores/pgembedding/"}, "SQLiteVSS": {"SQLite": "https://python.langchain.com/docs/integrations/providers/sqlite/", "SQLite-VSS": "https://python.langchain.com/docs/integrations/vectorstores/sqlitevss/"}, "Xinference": {"Xorbits Inference (Xinference)": "https://python.langchain.com/docs/integrations/llms/xinference/"}, "IFixitLoader": {"iFixit": "https://python.langchain.com/docs/integrations/document_loaders/ifixit/"}, "AlephAlpha": {"Aleph Alpha": "https://python.langchain.com/docs/integrations/llms/aleph_alpha/"}, "PipelineAI": {"PipelineAI": "https://python.langchain.com/docs/integrations/llms/pipelineai/"}, "FacebookChatLoader": {"Facebook - Meta": "https://python.langchain.com/docs/integrations/providers/facebook/", "Facebook Chat": "https://python.langchain.com/docs/integrations/document_loaders/facebook_chat/"}, "Epsilla": {"Epsilla": "https://python.langchain.com/docs/integrations/vectorstores/epsilla/"}, "AwaDB": {"AwaDB": "https://python.langchain.com/docs/integrations/vectorstores/awadb/"}, "ArxivLoader": {"Arxiv": "https://python.langchain.com/docs/integrations/providers/arxiv/", "ArxivLoader": "https://python.langchain.com/docs/integrations/document_loaders/arxiv/"}, "BlockchainDocumentLoader": {"Alchemy": "https://python.langchain.com/docs/integrations/providers/alchemy/", "Blockchain": "https://python.langchain.com/docs/integrations/document_loaders/blockchain/"}, "BlockchainType": {"Alchemy": "https://python.langchain.com/docs/integrations/providers/alchemy/", "Blockchain": "https://python.langchain.com/docs/integrations/document_loaders/blockchain/"}, "Anyscale": {"Anyscale": "https://python.langchain.com/docs/integrations/llms/anyscale/"}, "StripeLoader": {"Stripe": "https://python.langchain.com/docs/integrations/document_loaders/stripe/"}, "StochasticAI": {"StochasticAI": "https://python.langchain.com/docs/integrations/llms/stochasticai/"}, "Bagel": {"BagelDB": "https://python.langchain.com/docs/integrations/vectorstores/bageldb/", "Bagel": "https://python.langchain.com/docs/integrations/vectorstores/bagel/"}, "TigerGraph": {"TigerGraph": "https://python.langchain.com/docs/integrations/graphs/tigergraph/"}, "BlackboardLoader": {"Blackboard": "https://python.langchain.com/docs/integrations/document_loaders/blackboard/"}, "YandexGPT": {"Yandex": "https://python.langchain.com/docs/integrations/providers/yandex/", "YandexGPT": "https://python.langchain.com/docs/integrations/llms/yandex/"}, "UpstashVectorStore": {"Upstash Vector": "https://python.langchain.com/docs/integrations/vectorstores/upstash/"}, "NucliaTextTransformer": {"Nuclia": "https://python.langchain.com/docs/integrations/document_transformers/nuclia_transformer/"}, "NucliaLoader": {"Nuclia": "https://python.langchain.com/docs/integrations/document_loaders/nuclia/"}, "NucliaDB": {"Nuclia": "https://python.langchain.com/docs/integrations/providers/nuclia/", "NucliaDB": "https://python.langchain.com/docs/integrations/vectorstores/nucliadb/"}, "AnalyticDB": {"AnalyticDB": "https://python.langchain.com/docs/integrations/vectorstores/analyticdb/", "Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/"}, "GoogleApiYoutubeLoader": {"YouTube": "https://python.langchain.com/docs/integrations/providers/youtube/", "YouTube transcripts": "https://python.langchain.com/docs/integrations/document_loaders/youtube_transcript/"}, "PromptLayerOpenAI": {"PromptLayer": "https://python.langchain.com/docs/integrations/providers/promptlayer/", "PromptLayer OpenAI": "https://python.langchain.com/docs/integrations/llms/promptlayer_openai/"}, "USearch": {"USearch": "https://python.langchain.com/docs/integrations/vectorstores/usearch/"}, "EtherscanLoader": {"Etherscan": "https://python.langchain.com/docs/integrations/document_loaders/etherscan/"}, "Arcee": {"Arcee": "https://python.langchain.com/docs/integrations/llms/arcee/"}, "WhyLabsCallbackHandler": {"WhyLabs": "https://python.langchain.com/docs/integrations/providers/whylabs_profiling/"}, "YiLLM": {"01.AI": "https://python.langchain.com/docs/integrations/providers/yi/", "Yi": "https://python.langchain.com/docs/integrations/llms/yi/"}, "IuguLoader": {"Iugu": "https://python.langchain.com/docs/integrations/document_loaders/iugu/"}, "CouchbaseLoader": {"Couchbase": "https://python.langchain.com/docs/integrations/document_loaders/couchbase/"}, "FlyteCallbackHandler": {"Flyte": "https://python.langchain.com/docs/integrations/providers/flyte/"}, "wandb_tracing_enabled": {"WandB Tracing": "https://python.langchain.com/docs/integrations/providers/wandb_tracing/"}, "ManifestWrapper": {"Hazy Research": "https://python.langchain.com/docs/integrations/providers/hazy_research/", "Manifest": "https://python.langchain.com/docs/integrations/llms/manifest/"}, "OntotextGraphDBGraph": {"Ontotext GraphDB": "https://python.langchain.com/docs/integrations/graphs/ontotext/"}, "OntotextGraphDBQAChain": {"Ontotext GraphDB": "https://python.langchain.com/docs/integrations/graphs/ontotext/"}, "Marqo": {"Marqo": "https://python.langchain.com/docs/integrations/vectorstores/marqo/"}, "IMSDbLoader": {"IMSDb": "https://python.langchain.com/docs/integrations/document_loaders/imsdb/"}, "TiDBLoader": {"TiDB": "https://python.langchain.com/docs/integrations/document_loaders/tidb/"}, "TiDBVectorStore": {"TiDB": "https://python.langchain.com/docs/integrations/providers/tidb/", "TiDB Vector": "https://python.langchain.com/docs/integrations/vectorstores/tidb_vector/"}, "DeepInfra": {"DeepInfra": "https://python.langchain.com/docs/integrations/llms/deepinfra/"}, "RedditPostsLoader": {"Reddit": "https://python.langchain.com/docs/integrations/document_loaders/reddit/"}, "TrelloLoader": {"Trello": "https://python.langchain.com/docs/integrations/document_loaders/trello/"}, "AtlasDB": {"Atlas": "https://python.langchain.com/docs/integrations/vectorstores/atlas/"}, "SKLearnVectorStore": {"scikit-learn": "https://python.langchain.com/docs/integrations/vectorstores/sklearn/"}, "EverNoteLoader": {"EverNote": "https://python.langchain.com/docs/integrations/document_loaders/evernote/"}, "VDMS": {"VDMS": "https://python.langchain.com/docs/integrations/providers/vdms/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/docs/integrations/vectorstores/vdms/"}, "VDMS_Client": {"VDMS": "https://python.langchain.com/docs/integrations/providers/vdms/", "Intel's Visual Data Management System (VDMS)": "https://python.langchain.com/docs/integrations/vectorstores/vdms/"}, "TwitterTweetLoader": {"Twitter": "https://python.langchain.com/docs/integrations/document_loaders/twitter/"}, "DiscordChatLoader": {"Discord": "https://python.langchain.com/docs/integrations/document_loaders/discord/"}, "AssemblyAIAudioTranscriptLoader": {"AssemblyAI": "https://python.langchain.com/docs/integrations/providers/assemblyai/", "AssemblyAI Audio Transcripts": "https://python.langchain.com/docs/integrations/document_loaders/assemblyai/"}, "KineticaLoader": {"Kinetica": "https://python.langchain.com/docs/integrations/document_loaders/kinetica/"}, "ClearMLCallbackHandler": {"ClearML": "https://python.langchain.com/docs/integrations/providers/clearml_tracking/"}, "CohereRagRetriever": {"Cohere": "https://python.langchain.com/docs/integrations/providers/cohere/"}, "SlackDirectoryLoader": {"Slack": "https://python.langchain.com/docs/integrations/document_loaders/slack/"}, "OllamaEmbeddings": {"Ollama": "https://python.langchain.com/docs/integrations/providers/ollama/", "ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/"}, "HNLoader": {"Hacker News": "https://python.langchain.com/docs/integrations/document_loaders/hacker_news/", "Google Spanner": "https://python.langchain.com/docs/integrations/vectorstores/google_spanner/"}, "CTranslate2": {"CTranslate2": "https://python.langchain.com/docs/integrations/llms/ctranslate2/"}, "QianfanLLMEndpoint": {"Baidu": "https://python.langchain.com/docs/integrations/providers/baidu/", "Baidu Qianfan": "https://python.langchain.com/docs/integrations/llms/baidu_qianfan_endpoint/"}, "BESVectorStore": {"Baidu": "https://python.langchain.com/docs/integrations/providers/baidu/", "Baidu Cloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/baiducloud_vector_search/"}, "BaiduVectorDB": {"Baidu": "https://python.langchain.com/docs/integrations/providers/baidu/", "Baidu VectorDB": "https://python.langchain.com/docs/integrations/vectorstores/baiduvectordb/"}, "Aphrodite": {"PygmalionAI": "https://python.langchain.com/docs/integrations/providers/pygmalionai/", "Aphrodite Engine": "https://python.langchain.com/docs/integrations/llms/aphrodite/"}, "PaiEasEndpoint": {"Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud PAI EAS": "https://python.langchain.com/docs/integrations/llms/alibabacloud_pai_eas_endpoint/"}, "MaxComputeLoader": {"Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud MaxCompute": "https://python.langchain.com/docs/integrations/document_loaders/alibaba_cloud_maxcompute/"}, "AlibabaCloudOpenSearch": {"Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/alibabacloud_opensearch/"}, "AlibabaCloudOpenSearchSettings": {"Alibaba Cloud": "https://python.langchain.com/docs/integrations/providers/alibaba_cloud/", "Alibaba Cloud OpenSearch": "https://python.langchain.com/docs/integrations/vectorstores/alibabacloud_opensearch/"}, "DocusaurusLoader": {"Docusaurus": "https://python.langchain.com/docs/integrations/document_loaders/docusaurus/"}, "Annoy": {"Annoy": "https://python.langchain.com/docs/integrations/vectorstores/annoy/"}, "BibtexLoader": {"BibTeX": "https://python.langchain.com/docs/integrations/document_loaders/bibtex/"}, "Yuan2": {"IEIT Systems": "https://python.langchain.com/docs/integrations/providers/ieit_systems/", "Yuan2.0": "https://python.langchain.com/docs/integrations/llms/yuan2/"}, "CassandraLoader": {"Cassandra": "https://python.langchain.com/docs/integrations/document_loaders/cassandra/"}, "Vearch": {"Vearch": "https://python.langchain.com/docs/integrations/vectorstores/vearch/"}, "JoplinLoader": {"Joplin": "https://python.langchain.com/docs/integrations/document_loaders/joplin/"}, "ArthurCallbackHandler": {"Arthur": "https://python.langchain.com/docs/integrations/providers/arthur_tracking/"}, "AcreomLoader": {"Acreom": "https://python.langchain.com/docs/integrations/providers/acreom/", "acreom": "https://python.langchain.com/docs/integrations/document_loaders/acreom/"}, "KDBAI": {"KDB.AI": "https://python.langchain.com/docs/integrations/vectorstores/kdbai/"}, "DuckDBLoader": {"DuckDB": "https://python.langchain.com/docs/integrations/document_loaders/duckdb/"}, "Petals": {"Petals": "https://python.langchain.com/docs/integrations/llms/petals/"}, "MomentoVectorIndex": {"Momento": "https://python.langchain.com/docs/integrations/providers/momento/", "Momento Vector Index (MVI)": "https://python.langchain.com/docs/integrations/vectorstores/momento_vector_index/"}, "NIBittensorLLM": {"Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/"}, "AirtableLoader": {"Airtable": "https://python.langchain.com/docs/integrations/document_loaders/airtable/"}, "LarkSuiteDocLoader": {"ByteDance": "https://python.langchain.com/docs/integrations/providers/byte_dance/", "LarkSuite (FeiShu)": "https://python.langchain.com/docs/integrations/document_loaders/larksuite/"}, "JavelinAIGateway": {"Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/docs/integrations/llms/javelin/"}, "JavelinAIGatewayEmbeddings": {"Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/docs/integrations/llms/javelin/"}, "ChatJavelinAIGateway": {"Javelin AI Gateway": "https://python.langchain.com/docs/integrations/providers/javelin_ai_gateway/", "Javelin AI Gateway Tutorial": "https://python.langchain.com/docs/integrations/llms/javelin/"}, "TensorflowDatasetLoader": {"TensorFlow Datasets": "https://python.langchain.com/docs/integrations/document_loaders/tensorflow_datasets/"}, "Clarifai": {"Clarifai": "https://python.langchain.com/docs/integrations/llms/clarifai/"}, "DataheraldTextToSQL": {"Dataherald": "https://python.langchain.com/docs/integrations/providers/dataherald/"}, "RoamLoader": {"Roam": "https://python.langchain.com/docs/integrations/document_loaders/roam/"}, "RerankConfig": {"Vectara Chat": "https://python.langchain.com/docs/integrations/providers/vectara/vectara_chat/", "Vectara": "https://python.langchain.com/docs/integrations/vectorstores/vectara/"}, "SummaryConfig": {"Vectara Chat": "https://python.langchain.com/docs/integrations/providers/vectara/vectara_chat/", "Vectara": "https://python.langchain.com/docs/integrations/vectorstores/vectara/"}, "VectaraQueryConfig": {"Vectara Chat": "https://python.langchain.com/docs/integrations/providers/vectara/vectara_chat/", "Vectara": "https://python.langchain.com/docs/integrations/vectorstores/vectara/"}, "PebbloRetrievalQA": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "AuthContext": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "ChainInput": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "SemanticContext": {"Identity-enabled RAG using PebbloRetrievalQA": "https://python.langchain.com/docs/integrations/providers/pebblo/pebblo_retrieval_qa/"}, "RedisStore": {"RedisStore": "https://python.langchain.com/docs/integrations/stores/redis/"}, "CassandraByteStore": {"CassandraByteStore": "https://python.langchain.com/docs/integrations/stores/cassandra/"}, "UpstashRedisByteStore": {"UpstashRedisByteStore": "https://python.langchain.com/docs/integrations/stores/upstash_redis/"}, "ApacheDorisSettings": {"Apache Doris": "https://python.langchain.com/docs/integrations/vectorstores/apache_doris/"}, "DistanceStrategy": {"Kinetica Vectorstore API": "https://python.langchain.com/docs/integrations/vectorstores/kinetica/", "SAP HANA Cloud Vector Engine": "https://python.langchain.com/docs/integrations/vectorstores/sap_hanavector/", "SingleStoreDB": "https://python.langchain.com/docs/integrations/vectorstores/singlestoredb/", "Oracle AI Vector Search: Vector Store": "https://python.langchain.com/docs/integrations/vectorstores/oracle/", "SemaDB": "https://python.langchain.com/docs/integrations/vectorstores/semadb/"}, "SentenceTransformerEmbeddings": {"SQLite-VSS": "https://python.langchain.com/docs/integrations/vectorstores/sqlitevss/", "Vespa": "https://python.langchain.com/docs/integrations/vectorstores/vespa/"}, "Vald": {"Vald": "https://python.langchain.com/docs/integrations/vectorstores/vald/"}, "RetrievalQAWithSourcesChain": {"Weaviate": "https://python.langchain.com/docs/integrations/vectorstores/weaviate/", "Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/", "Jaguar Vector Database": "https://python.langchain.com/docs/integrations/vectorstores/jaguar/", "Neo4j Vector Index": "https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/", "Marqo": "https://python.langchain.com/docs/integrations/vectorstores/marqo/", "Psychic": "https://python.langchain.com/docs/integrations/document_loaders/psychic/"}, "Yellowbrick": {"Yellowbrick": "https://python.langchain.com/docs/integrations/vectorstores/yellowbrick/"}, "LLMRails": {"LLMRails": "https://python.langchain.com/docs/integrations/vectorstores/llm_rails/"}, "ChatGooglePalm": {"ScaNN": "https://python.langchain.com/docs/integrations/vectorstores/scann/"}, "Hippo": {"Hippo": "https://python.langchain.com/docs/integrations/vectorstores/hippo/"}, "RedisText": {"Redis": "https://python.langchain.com/docs/integrations/vectorstores/redis/"}, "RedisNum": {"Redis": "https://python.langchain.com/docs/integrations/vectorstores/redis/"}, "RedisTag": {"Redis": "https://python.langchain.com/docs/integrations/vectorstores/redis/"}, "RedisFilter": {"Redis": "https://python.langchain.com/docs/integrations/vectorstores/redis/"}, "VespaStore": {"Vespa": "https://python.langchain.com/docs/integrations/vectorstores/vespa/"}, "NeuralDBVectorStore": {"ThirdAI NeuralDB": "https://python.langchain.com/docs/integrations/vectorstores/thirdai_neuraldb/"}, "VikingDB": {"viking DB": "https://python.langchain.com/docs/integrations/vectorstores/vikingdb/"}, "VikingDBConfig": {"viking DB": "https://python.langchain.com/docs/integrations/vectorstores/vikingdb/"}, "ApertureDB": {"ApertureDB": "https://python.langchain.com/docs/integrations/vectorstores/aperturedb/"}, "Relyt": {"Relyt": "https://python.langchain.com/docs/integrations/vectorstores/relyt/"}, "oraclevs": {"Oracle AI Vector Search: Vector Store": "https://python.langchain.com/docs/integrations/vectorstores/oracle/"}, "VLite": {"vlite": "https://python.langchain.com/docs/integrations/vectorstores/vlite/"}, "AzureCosmosDBNoSqlVectorSearch": {"Azure Cosmos DB No SQL": "https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db_no_sql/"}, "DuckDB": {"DuckDB": "https://python.langchain.com/docs/integrations/vectorstores/duckdb/"}, "StarRocksSettings": {"StarRocks": "https://python.langchain.com/docs/integrations/vectorstores/starrocks/"}, "PathwayVectorClient": {"Pathway": "https://python.langchain.com/docs/integrations/vectorstores/pathway/"}, "DocArrayHnswSearch": {"DocArray HnswSearch": "https://python.langchain.com/docs/integrations/vectorstores/docarray_hnsw/"}, "TileDB": {"TileDB": "https://python.langchain.com/docs/integrations/vectorstores/tiledb/"}, "EcloudESVectorStore": {"China Mobile ECloud ElasticSearch VectorSearch": "https://python.langchain.com/docs/integrations/vectorstores/ecloud_vector_search/"}, "SurrealDBStore": {"SurrealDB": "https://python.langchain.com/docs/integrations/vectorstores/surrealdb/"}, "ManticoreSearch": {"ManticoreSearch VectorStore": "https://python.langchain.com/docs/integrations/vectorstores/manticore_search/"}, "ManticoreSearchSettings": {"ManticoreSearch VectorStore": "https://python.langchain.com/docs/integrations/vectorstores/manticore_search/"}, "HuggingFaceEmbeddings": {"Aerospike": "https://python.langchain.com/docs/integrations/vectorstores/aerospike/", "self-query-qdrant": "https://python.langchain.com/docs/templates/self-query-qdrant/"}, "Aerospike": {"Aerospike": "https://python.langchain.com/docs/integrations/vectorstores/aerospike/"}, "ElasticVectorSearch": {"Elasticsearch": "https://python.langchain.com/docs/integrations/vectorstores/elasticsearch/"}, "PGVecto_rs": {"PGVecto.rs": "https://python.langchain.com/docs/integrations/vectorstores/pgvecto_rs/"}, "ZepVectorStore": {"Zep": "https://python.langchain.com/docs/integrations/vectorstores/zep/"}, "CollectionConfig": {"Zep": "https://python.langchain.com/docs/integrations/vectorstores/zep/"}, "openai": {"OpenAI Adapter(Old)": "https://python.langchain.com/docs/integrations/adapters/openai-old/", "OpenAI Adapter": "https://python.langchain.com/docs/integrations/adapters/openai/"}, "RankLLMRerank": {"RankLLM Reranker": "https://python.langchain.com/docs/integrations/document_transformers/rankllm-reranker/"}, "AsyncChromiumLoader": {"Beautiful Soup": "https://python.langchain.com/docs/integrations/document_transformers/beautiful_soup/", "Async Chromium": "https://python.langchain.com/docs/integrations/document_loaders/async_chromium/"}, "BeautifulSoupTransformer": {"Beautiful Soup": "https://python.langchain.com/docs/integrations/document_transformers/beautiful_soup/"}, "VolcengineRerank": {"Volcengine Reranker": "https://python.langchain.com/docs/integrations/document_transformers/volcengine_rerank/"}, "OpenVINOReranker": {"OpenVINO Reranker": "https://python.langchain.com/docs/integrations/document_transformers/openvino_rerank/"}, "create_metadata_tagger": {"OpenAI metadata tagger": "https://python.langchain.com/docs/integrations/document_transformers/openai_metadata_tagger/"}, "DoctranPropertyExtractor": {"Doctran: extract properties": "https://python.langchain.com/docs/integrations/document_transformers/doctran_extract_properties/"}, "DoctranQATransformer": {"Doctran: interrogate documents": "https://python.langchain.com/docs/integrations/document_transformers/doctran_interrogate_document/"}, "CrossEncoderReranker": {"Cross Encoder Reranker": "https://python.langchain.com/docs/integrations/document_transformers/cross_encoder_reranker/"}, "HuggingFaceCrossEncoder": {"Cross Encoder Reranker": "https://python.langchain.com/docs/integrations/document_transformers/cross_encoder_reranker/"}, "JinaRerank": {"Jina Reranker": "https://python.langchain.com/docs/integrations/document_transformers/jina_rerank/"}, "DoctranTextTranslator": {"Doctran: language translation": "https://python.langchain.com/docs/integrations/document_transformers/doctran_translate_document/"}, "MarkdownifyTransformer": {"Markdownify": "https://python.langchain.com/docs/integrations/document_transformers/markdownify/"}, "DashScopeRerank": {"DashScope Reranker": "https://python.langchain.com/docs/integrations/document_transformers/dashscope_rerank/"}, "XorbitsLoader": {"Xorbits Pandas DataFrame": "https://python.langchain.com/docs/integrations/document_loaders/xorbits/"}, "OutlookMessageLoader": {"Email": "https://python.langchain.com/docs/integrations/document_loaders/email/"}, "TranscriptFormat": {"AssemblyAI Audio Transcripts": "https://python.langchain.com/docs/integrations/document_loaders/assemblyai/", "YouTube transcripts": "https://python.langchain.com/docs/integrations/document_loaders/youtube_transcript/"}, "ScrapingAntLoader": {"ScrapingAnt": "https://python.langchain.com/docs/integrations/document_loaders/scrapingant/"}, "AirbyteSalesforceLoader": {"Airbyte Salesforce (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_salesforce/"}, "AirbyteCDKLoader": {"Airbyte CDK (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_cdk/"}, "Docx2txtLoader": {"Microsoft Word": "https://python.langchain.com/docs/integrations/document_loaders/microsoft_word/"}, "RSpaceLoader": {"# replace these ids with some from your own research notes.": "https://python.langchain.com/docs/integrations/document_loaders/rspace/"}, "SeleniumURLLoader": {"URL": "https://python.langchain.com/docs/integrations/document_loaders/url/"}, "PlaywrightURLLoader": {"URL": "https://python.langchain.com/docs/integrations/document_loaders/url/"}, "AirbyteJSONLoader": {"Airbyte JSON (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_json/"}, "AirbyteStripeLoader": {"Airbyte Stripe (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_stripe/"}, "GeoDataFrameLoader": {"Geopandas": "https://python.langchain.com/docs/integrations/document_loaders/geopandas/"}, "VectorstoreIndexCreator": {"HuggingFace dataset": "https://python.langchain.com/docs/integrations/document_loaders/hugging_face_dataset/", "Spreedly": "https://python.langchain.com/docs/integrations/document_loaders/spreedly/", "Figma": "https://python.langchain.com/docs/integrations/document_loaders/figma/", "Apify Dataset": "https://python.langchain.com/docs/integrations/document_loaders/apify_dataset/", "Iugu": "https://python.langchain.com/docs/integrations/document_loaders/iugu/", "Stripe": "https://python.langchain.com/docs/integrations/document_loaders/stripe/", "Modern Treasury": "https://python.langchain.com/docs/integrations/document_loaders/modern_treasury/"}, "AirbyteTypeformLoader": {"Airbyte Typeform (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_typeform/"}, "MHTMLLoader": {"mhtml": "https://python.langchain.com/docs/integrations/document_loaders/mhtml/"}, "SpiderLoader": {"Spider": "https://python.langchain.com/docs/integrations/document_loaders/spider/"}, "NewsURLLoader": {"News URL": "https://python.langchain.com/docs/integrations/document_loaders/news/"}, "ImageCaptionLoader": {"Image captions": "https://python.langchain.com/docs/integrations/document_loaders/image_captions/"}, "LLMSherpaFileLoader": {"LLM Sherpa": "https://python.langchain.com/docs/integrations/document_loaders/llmsherpa/"}, "PyMuPDFLoader": {"PyMuPDF": "https://python.langchain.com/docs/integrations/document_loaders/pymupdf/"}, "ScrapflyLoader": {"# ScrapFly": "https://python.langchain.com/docs/integrations/document_loaders/scrapfly/"}, "TomlLoader": {"TOML": "https://python.langchain.com/docs/integrations/document_loaders/toml/"}, "PsychicLoader": {"Psychic": "https://python.langchain.com/docs/integrations/document_loaders/psychic/"}, "FireCrawlLoader": {"FireCrawl": "https://python.langchain.com/docs/integrations/document_loaders/firecrawl/"}, "LarkSuiteWikiLoader": {"LarkSuite (FeiShu)": "https://python.langchain.com/docs/integrations/document_loaders/larksuite/"}, "FakeListLLM": {"LarkSuite (FeiShu)": "https://python.langchain.com/docs/integrations/document_loaders/larksuite/"}, "MergedDataLoader": {"Merge Documents Loader": "https://python.langchain.com/docs/integrations/document_loaders/merge_doc/"}, "RecursiveUrlLoader": {"Recursive URL": "https://python.langchain.com/docs/integrations/document_loaders/recursive_url/"}, "PDFPlumberLoader": {"PDFPlumber": "https://python.langchain.com/docs/integrations/document_loaders/pdfplumber/"}, "PyPDFium2Loader": {"PyPDFium2Loader": "https://python.langchain.com/docs/integrations/document_loaders/pypdfium2/"}, "AirbyteHubspotLoader": {"Airbyte Hubspot (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_hubspot/"}, "AirbyteGongLoader": {"Airbyte Gong (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_gong/"}, "AstraDBLoader": {"AstraDB": "https://python.langchain.com/docs/integrations/document_loaders/astradb/"}, "ReadTheDocsLoader": {"ReadTheDocs Documentation": "https://python.langchain.com/docs/integrations/document_loaders/readthedocs_documentation/"}, "MathpixPDFLoader": {"MathPixPDFLoader": "https://python.langchain.com/docs/integrations/document_loaders/mathpix/"}, "PolarsDataFrameLoader": {"Polars DataFrame": "https://python.langchain.com/docs/integrations/document_loaders/polars_dataframe/"}, "DataFrameLoader": {"Pandas DataFrame": "https://python.langchain.com/docs/integrations/document_loaders/pandas_dataframe/"}, "SurrealDBLoader": {"SurrealDB": "https://python.langchain.com/docs/integrations/document_loaders/surrealdb/"}, "DedocFileLoader": {"Dedoc": "https://python.langchain.com/docs/integrations/document_loaders/dedoc/"}, "DedocPDFLoader": {"Dedoc": "https://python.langchain.com/docs/integrations/document_loaders/dedoc/"}, "DedocAPIFileLoader": {"Dedoc": "https://python.langchain.com/docs/integrations/document_loaders/dedoc/"}, "GoogleApiClient": {"YouTube transcripts": "https://python.langchain.com/docs/integrations/document_loaders/youtube_transcript/"}, "ConcurrentLoader": {"Concurrent Loader": "https://python.langchain.com/docs/integrations/document_loaders/concurrent/"}, "RSSFeedLoader": {"RSS Feeds": "https://python.langchain.com/docs/integrations/document_loaders/rss/"}, "PebbloSafeLoader": {"Pebblo Safe DocumentLoader": "https://python.langchain.com/docs/integrations/document_loaders/pebblo/"}, "VsdxLoader": {"Vsdx": "https://python.langchain.com/docs/integrations/document_loaders/vsdx/"}, "NotebookLoader": {"Jupyter Notebook": "https://python.langchain.com/docs/integrations/document_loaders/jupyter_notebook/"}, "OracleAutonomousDatabaseLoader": {"Oracle Autonomous Database": "https://python.langchain.com/docs/integrations/document_loaders/oracleadb_loader/"}, "LanguageParser": {"Source Code": "https://python.langchain.com/docs/integrations/document_loaders/source_code/"}, "SRTLoader": {"Subtitle": "https://python.langchain.com/docs/integrations/document_loaders/subtitle/"}, "MastodonTootsLoader": {"Mastodon": "https://python.langchain.com/docs/integrations/document_loaders/mastodon/"}, "AirbyteShopifyLoader": {"Airbyte Shopify (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_shopify/"}, "PyPDFDirectoryLoader": {"PyPDFDirectoryLoader": "https://python.langchain.com/docs/integrations/document_loaders/pypdfdirectory/"}, "PySparkDataFrameLoader": {"PySpark": "https://python.langchain.com/docs/integrations/document_loaders/pyspark_dataframe/"}, "AirbyteZendeskSupportLoader": {"Airbyte Zendesk Support (Deprecated)": "https://python.langchain.com/docs/integrations/document_loaders/airbyte_zendesk_support/"}, "CoNLLULoader": {"CoNLL-U": "https://python.langchain.com/docs/integrations/document_loaders/conll-u/"}, "MongodbLoader": {"MongoDB": "https://python.langchain.com/docs/integrations/document_loaders/mongodb/"}, "SitemapLoader": {"Sitemap": "https://python.langchain.com/docs/integrations/document_loaders/sitemap/"}, "YuqueLoader": {"Yuque": "https://python.langchain.com/docs/integrations/document_loaders/yuque/"}, "PDFMinerLoader": {"PDFMiner": "https://python.langchain.com/docs/integrations/document_loaders/pdfminer/"}, "PDFMinerPDFasHTMLLoader": {"PDFMiner": "https://python.langchain.com/docs/integrations/document_loaders/pdfminer/"}, "QuipLoader": {"Quip": "https://python.langchain.com/docs/integrations/document_loaders/quip/"}, "LangSmithLoader": {"LangSmithLoader": "https://python.langchain.com/docs/integrations/document_loaders/langsmith/"}, "MemgraphGraph": {"Memgraph": "https://python.langchain.com/docs/integrations/graphs/memgraph/"}, "GraphSparqlQAChain": {"RDFLib": "https://python.langchain.com/docs/integrations/graphs/rdflib_sparql/"}, "RdfGraph": {"RDFLib": "https://python.langchain.com/docs/integrations/graphs/rdflib_sparql/"}, "NebulaGraphQAChain": {"NebulaGraph": "https://python.langchain.com/docs/integrations/graphs/nebula_graph/"}, "NebulaGraph": {"NebulaGraph": "https://python.langchain.com/docs/integrations/graphs/nebula_graph/"}, "GremlinQAChain": {"Azure Cosmos DB for Apache Gremlin": "https://python.langchain.com/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, "GraphIndexCreator": {"NetworkX": "https://python.langchain.com/docs/integrations/graphs/networkx/"}, "GraphQAChain": {"NetworkX": "https://python.langchain.com/docs/integrations/graphs/networkx/"}, "NetworkxEntityGraph": {"NetworkX": "https://python.langchain.com/docs/integrations/graphs/networkx/"}, "HugeGraphQAChain": {"HugeGraph": "https://python.langchain.com/docs/integrations/graphs/hugegraph/"}, "HugeGraph": {"HugeGraph": "https://python.langchain.com/docs/integrations/graphs/hugegraph/"}, "AGEGraph": {"Apache AGE": "https://python.langchain.com/docs/integrations/graphs/apache_age/"}, "KuzuQAChain": {"Kuzu": "https://python.langchain.com/docs/integrations/graphs/kuzu_db/"}, "KuzuGraph": {"Kuzu": "https://python.langchain.com/docs/integrations/graphs/kuzu_db/"}, "FalkorDBQAChain": {"FalkorDB": "https://python.langchain.com/docs/integrations/graphs/falkordb/"}, "FalkorDBGraph": {"FalkorDB": "https://python.langchain.com/docs/integrations/graphs/falkordb/"}, "ConversationBufferWindowMemory": {"Baseten": "https://python.langchain.com/docs/integrations/llms/baseten/", "OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/"}, "Solar": {"Solar": "https://python.langchain.com/docs/integrations/llms/solar/"}, "GoogleSearchAPIWrapper": {"Bittensor": "https://python.langchain.com/docs/integrations/llms/bittensor/"}, "IpexLLM": {"IPEX-LLM": "https://python.langchain.com/docs/integrations/llms/ipex_llm/"}, "LLMContentHandler": {"SageMakerEndpoint": "https://python.langchain.com/docs/integrations/llms/sagemaker/"}, "TextGen": {"TextGen": "https://python.langchain.com/docs/integrations/llms/textgen/"}, "MosaicML": {"MosaicML": "https://python.langchain.com/docs/integrations/llms/mosaicml/"}, "VolcEngineMaasLLM": {"Volc Engine Maas": "https://python.langchain.com/docs/integrations/llms/volcengine_maas/"}, "KoboldApiLLM": {"KoboldAI API": "https://python.langchain.com/docs/integrations/llms/koboldai/"}, "Konko": {"Konko": "https://python.langchain.com/docs/integrations/llms/konko/"}, "OpaquePrompts": {"OpaquePrompts": "https://python.langchain.com/docs/integrations/llms/opaqueprompts/"}, "TitanTakeoff": {"Titan Takeoff": "https://python.langchain.com/docs/integrations/llms/titan_takeoff/"}, "Friendli": {"Friendli": "https://python.langchain.com/docs/integrations/llms/friendli/"}, "Databricks": {"Databricks": "https://python.langchain.com/docs/integrations/llms/databricks/"}, "LMFormatEnforcer": {"LM Format Enforcer": "https://python.langchain.com/docs/integrations/llms/lmformatenforcer_experimental/"}, "VLLM": {"vLLM": "https://python.langchain.com/docs/integrations/llms/vllm/"}, "VLLMOpenAI": {"vLLM": "https://python.langchain.com/docs/integrations/llms/vllm/"}, "CustomOpenAIContentFormatter": {"Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/"}, "ContentFormatterBase": {"Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/"}, "DollyContentFormatter": {"Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/"}, "load_llm": {"Azure ML": "https://python.langchain.com/docs/integrations/llms/azure_ml/"}, "MapReduceChain": {"Manifest": "https://python.langchain.com/docs/integrations/llms/manifest/"}, "ModelLaboratory": {"Manifest": "https://python.langchain.com/docs/integrations/llms/manifest/"}, "ExLlamaV2": {"ExLlamaV2": "https://python.langchain.com/docs/integrations/llms/exllamav2/"}, "RELLM": {"RELLM": "https://python.langchain.com/docs/integrations/llms/rellm_experimental/"}, "Moonshot": {"MoonshotChat": "https://python.langchain.com/docs/integrations/llms/moonshot/"}, "OpenLM": {"OpenLM": "https://python.langchain.com/docs/integrations/llms/openlm/"}, "CloudflareWorkersAI": {"Cloudflare Workers AI": "https://python.langchain.com/docs/integrations/llms/cloudflare_workersai/"}, "ChatGLM3": {"ChatGLM": "https://python.langchain.com/docs/integrations/llms/chatglm/"}, "ChatGLM": {"ChatGLM": "https://python.langchain.com/docs/integrations/llms/chatglm/"}, "Sambaverse": {"SambaNova": "https://python.langchain.com/docs/integrations/llms/sambanova/"}, "SambaStudio": {"SambaNova": "https://python.langchain.com/docs/integrations/llms/sambanova/"}, "LayerupSecurity": {"Layerup Security": "https://python.langchain.com/docs/integrations/llms/layerup_security/"}, "JsonFormer": {"JSONFormer": "https://python.langchain.com/docs/integrations/llms/jsonformer_experimental/"}, "WeightOnlyQuantPipeline": {"Intel Weight-Only Quantization": "https://python.langchain.com/docs/integrations/llms/weight_only_quantization/"}, "Replicate": {"Replicate": "https://python.langchain.com/docs/integrations/llms/replicate/"}, "tracing_v2_enabled": {"Chat Bot Feedback Template": "https://python.langchain.com/docs/templates/chat-bot-feedback/"}, "QuerySQLDataBaseTool": {"Build a Question/Answering system over SQL data": "https://python.langchain.com/docs/tutorials/sql_qa/"}, "OPENAI_TEMPLATE": {"Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "create_openai_data_generator": {"Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "DatasetGenerator": {"Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "create_data_generation_chain": {"Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}, "create_extraction_chain_pydantic": {"Generate Synthetic Data": "https://python.langchain.com/docs/tutorials/data_generation/"}} \ No newline at end of file diff --git a/docs/api_reference/requirements.txt b/docs/api_reference/requirements.txt index 1d7a22e15ea9a..ea310541ff418 100644 --- a/docs/api_reference/requirements.txt +++ b/docs/api_reference/requirements.txt @@ -1,5 +1,5 @@ -autodoc_pydantic>=1,<2 -sphinx<=7 +autodoc_pydantic>=2,<3 +sphinx>=8,<9 myst-parser>=3 sphinx-autobuild>=2024 pydata-sphinx-theme>=0.15 @@ -8,4 +8,4 @@ myst-nb>=1.1.1 pyyaml sphinx-design sphinx-copybutton -beautifulsoup4 \ No newline at end of file +beautifulsoup4 diff --git a/docs/api_reference/scripts/custom_formatter.py b/docs/api_reference/scripts/custom_formatter.py index d8efb5e558da9..b74231eec9859 100644 --- a/docs/api_reference/scripts/custom_formatter.py +++ b/docs/api_reference/scripts/custom_formatter.py @@ -17,7 +17,10 @@ def process_toc_h3_elements(html_content: str) -> str: # Process each element for element in toc_h3_elements: - element = element.a.code.span + try: + element = element.a.code.span + except Exception: + continue # Get the text content of the element content = element.get_text() diff --git a/docs/api_reference/templates/pydantic.rst b/docs/api_reference/templates/pydantic.rst index fdb7a940e3aee..63ccf6765d96b 100644 --- a/docs/api_reference/templates/pydantic.rst +++ b/docs/api_reference/templates/pydantic.rst @@ -15,7 +15,7 @@ :member-order: groupwise :show-inheritance: True :special-members: __call__ - :exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace + :exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, model_construct, model_copy, model_dump, model_dump_json, model_parametrized_name, model_post_init, model_rebuild, model_validate, model_validate_json, model_validate_strings, model_extra, model_fields_set, model_json_schema {% block attributes %} diff --git a/docs/api_reference/templates/runnable_pydantic.rst b/docs/api_reference/templates/runnable_pydantic.rst index 19a8346161453..11841ab35638f 100644 --- a/docs/api_reference/templates/runnable_pydantic.rst +++ b/docs/api_reference/templates/runnable_pydantic.rst @@ -15,7 +15,7 @@ :member-order: groupwise :show-inheritance: True :special-members: __call__ - :exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, with_listeners, with_alisteners, with_config, with_fallbacks, with_types, with_retry, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, bind, assign, as_tool + :exclude-members: construct, copy, dict, from_orm, parse_file, parse_obj, parse_raw, schema, schema_json, update_forward_refs, validate, json, is_lc_serializable, to_json_not_implemented, lc_secrets, lc_attributes, lc_id, get_lc_namespace, astream_log, transform, atransform, get_output_schema, get_prompts, config_schema, map, pick, pipe, InputType, OutputType, config_specs, output_schema, get_input_schema, get_graph, get_name, input_schema, name, assign, as_tool, get_config_jsonschema, get_input_jsonschema, get_output_jsonschema, model_construct, model_copy, model_dump, model_dump_json, model_parametrized_name, model_post_init, model_rebuild, model_validate, model_validate_json, model_validate_strings, to_json, model_extra, model_fields_set, model_json_schema, predict, apredict, predict_messages, apredict_messages, generate, generate_prompt, agenerate, agenerate_prompt, call_as_llm .. NOTE:: {{objname}} implements the standard :py:class:`Runnable Interface `. 🏃 diff --git a/docs/cassettes/agents_114ba50d.msgpack.zlib b/docs/cassettes/agents_114ba50d.msgpack.zlib new file mode 100644 index 0000000000000..8f22e6adb9537 --- /dev/null +++ b/docs/cassettes/agents_114ba50d.msgpack.zlib @@ -0,0 +1 @@ +eNqFVW1sU1UYBrcfhgQlEhMlRg8NEBN229vbj63DKGNzOnRu0IqAWebpuaftZbf3XM85d1u3LIQh0YREcxMTEzXRSGmxzI0JBAySaBCjBH/rMEr4YdQoGn+YqInO99y1MGTB/mhOz/u8X8/7vKeT1WHKhcWc5VOWIynHRMIP4U9WOX3eo0K+UClSWWBmub8vnTnkcWtufUFKV7RHIti1wtiRBc5ci4QJK0aGo5EiFQLnqShnmVm6tPy38VARjw5KNkQdEWpHUd2It6BQAwU3z46HOLMpnEKeoDwEVsKgFEeqq4K1NjQxoDyYSW11Q2zsmVSLaYI5DpWaARF1w0gpR8mYXY/p4GIQU+Jhyy4NCoo5KQxyKjxbisE94KwcTCoIt1zVswJ3oAUcok7ecihiYClaY9REOcYRdOhyWoBGrGHagjAhHsdSnRwTSe4JCcB6hjB6WtCcZweOI+CDSsxDDgWEZOAgRihHAcGKboSzzJMI4nHoG9Fh+IYQPY4Lt6LAPNtEWYpwozxw5KWwasBSkEFBCrSIoYPxkAvToFxaAbfjoQAZnP7T6uJIqiSbsSHkuQGLJTegTkhuOfnQxATcKTVYnJqK3HrQgUVQlt1DiQTowES1QLEJmnqlXGBC+rM3qWQGiKOu1KhDmAkJ/PfyY5bbgkyas4HOGlFzDWTo14YodTVsA9+VBS//GHZd2yJY2SNqjFN1tWiqlpvNNSUqDbTmSP9UR6OOSH8JRO0gPRyLh41jo5qQ2HJsUKVmYyip4gb2M4sNLiZDEEerL4xfWXCeXoxhwj/ci0lf+oaQimn/MObFZPz44nvuOaAv6lc7+29OVzdeTxcLR6Ph1tkbAouSQ/zDOWwLOnuN5GsuNdiNmKYnNT063WDJBmnLgn8onmo9Alp1QX10fwVCSk9MlmEi9OJn1fp6vtP3RGOa3y67q9wF0/HPdnOrBRmtKE1dpHYPRZPterRdb0OP9WamOutpMksOYzbDQfo5GMijjeFXScFzhqhZ61xy7HOh622pZbNhH6VWf5tgWOqnX47ruj634ZZIDgtiOSpjOZZKpf4nLjBDpX9C9afpKc1ozSx0mYjvnkNLeS48cPV6KqoeqGjdLZDX62mg0S3RS9ejt+2u1YvWLNP/EM6DejS9Q+R6jQQpxLaYu2h/b7JrqMtJnBzViM08U5PwylMtEMSo9OdQnEQTRipptMbNeLYtnkglcjgWTyaTuqEn4/HsoWEL+7VoOIryjOVtOtPZrXVieHK0dCAbv9q166mO3p7OqZ3adpZlwF8GA88Oc2glTTnI0a8FqWHBOa2A+/aOXf6JNpIi2QSNJUjMMHI5om2BvWkI6JpAyup1CP5N9lUWXqRPvnjg4O3Lgk/Tky9/s/Xc5lUH3jovzu6TX6/45ezOI6OREP78jrW52OrY8edWlkZ6rI+PNl3+80rLD6tv6776+tjIuvvPXKEPP3Lnr6/NnBoYO3l5+sD+gQ2XtpfXbJo811Jq2nbymYO2e8/6bd2b3yA9masb7869f+HLf/rH55tf3PHVSyuvkA/61vxtf3e0+c0H86WP/vrx7Q3pWDqDm1dVP71w8fS9Wy8fOL2+OZza9OpPM8fe/v7dncRYtXFy70Ntj8/O/3x6ei/UPT/ftOz8H/et+B3O/wLqW+ZT \ No newline at end of file diff --git a/docs/cassettes/agents_24460239.msgpack.zlib b/docs/cassettes/agents_24460239.msgpack.zlib new file mode 100644 index 0000000000000..5e3daa87d36a2 --- /dev/null +++ b/docs/cassettes/agents_24460239.msgpack.zlib @@ -0,0 +1 @@ +eNqFVX1sU1UU3yBREIiJX4kY4VLY0GSve6/tuo8/MKVjfIxtyAYOcJbb927Xt76++3jvvm2lzAjjDwN+PWUQoghhXWeaMjYYERE1zkxZ+HCJBDIiQqKJMRElUYMxmnle18KQBftHc3vP75x7zu/8zumO3laiGzJV89OyyoiORQY/DGtHr062mMRgO5NRwsJUSqypq2/oNnV5rCDMmGZUFBdjTXZilYV1qsmiU6TR4lahOEoMAzcTIxGkUuxK/t9xRxS3BxiNENVwVCCBd3mKkCOHgptNcYdOFQInh2kQ3QFWkUIqKrOv2sKYGSgaQyqOkuccHU22M5WIYhtFBZsS4dycQVWVMM4FwXmXq9yOwShVsuFtVxvOcKusxAIGwboYDujEMBVmBFrA2XaQiCHqsmaXb4N9aAKHiNosqwRRsETlrURCIaojKFbTSRhqkltJEcKiaOqY2SdVQkw3DQbA7AtOtM4gIVPJOLaBD4pRE6kEEIyCg9FGdJTh2mYe4SA1GYJ4OlCASCt8Q4iVqga3RpiaioSCBOFceuCox5x2AbINCRhimEQxVBB3aNAYojM5Q3PckUFmTv8pdXIkOyWF0ggytQyLMS1DncF0WW12dHTAnS0MWSeSTW42aNMkKA22EJEBtKmjN0ywBPJ6MxGmBrMG7hHMUSCOaIwjqkgleMA60rxV1oqQREIK0JkS7b5mFGmlIoRoHFaA7+SEl9WPNU2RRWzbi+02prPC4exc7jWnbH1xIDuVWR/6cnkUr4mBvlXEO90ep6u/nTMYllUFBMopGFJKahn7x5MNGhYjEIfLzo6VnHDum4yhhtVTg8W6+rtC2kxbPViPej3HJ9/rpgr6Ilavf829z2WNd55zOwXBWTpwV2AjpopWTwgrBhm4TfJtlxTMhpvjvRwv9OVYUkDaLGx1l/BlH4BWNVAf6UxCSGYaOxLQEXLuTG92Ug/XVee6+V3eI4lK6I71SZUuFyFXKaonGrJnDwneCl6o8HjQ8pqGtD/7TMOUzRho0EH6IWjIslzze8WwqUaIlPJP2fYxx52y7GFTYB4Zl11T0Cz7p5Xw8Dw/VnhfpA4DIqv2iwl3eXn5/8QFZgizBu36OL6cc5U2TFRZ4tk4hqbynNh12XySdj6Q0aL7IO/kk0Oj+6Knzsfj2ZjKJs3JknUazgFecOvrlpWuEr2Vonc58QXXR6pWY6n2RDsnKtSUOAYLn3AZQbQzawy5giVBF1/mFjwCCXqDJWUlPC9K7qDXzQtC0OPqbpWxlRKcAmqmtFkhR/1VnB/DyuHqM7Kxeis31PpqVvrTjdxaGqTAXwMGnlWqkmQ90UGOVirzNAy4TpLgvta3wRosE8vFoFfkyyTscvOuEm4pzE1OQLcFkrC3Q+aPZXtyYiMN5y+Zv3tGXuYz/cW3qqun+2Z/9dmqM8NnBy/emHXr0tKH/yh85iEH+fb1G6P7pQMjg86ea03JP4fqr+8bX/jDzr7huf4ratXlby5vad9Y+1PfhqsPvrSkL33he27uxU+7Dx/e8/Pe0c2PBV6pGSk4kQ7zK6rnRZTT57k5X3YuOpfobGmoqVpndj7wFC5Ynz5Yd81aNX9425MlS26+W3le6dpGN885crNr6MK8Ga8W0LbruxY1mkOHpsX3Lvz97YX9czw7l00729/4xdewh0+9kx59fvXQJX91y4G6zYFZvxSMR45pgx0zbzniZ55eUTRv1+fCP3t9obpnH89r2tMZmfneE4FDC94PzC7sUh8dKcRp6+TV8BuvBXZX/rr/5IJ0eZzygZc3HRzdss/sPra4tvGF4x/5Rv7aVxP68bfFQNT4+PS8g+n+7afy8/L+BTWeI00= \ No newline at end of file diff --git a/docs/cassettes/agents_482ce13d.msgpack.zlib b/docs/cassettes/agents_482ce13d.msgpack.zlib new file mode 100644 index 0000000000000..7cd296f03490f --- /dev/null +++ b/docs/cassettes/agents_482ce13d.msgpack.zlib @@ -0,0 +1 @@ +eNqNVktv20YQRi75HQtdlATiU9Tzpjh2GzgvVA6KICiIDTmStloumd2lHjF8aPq46y80rl0EaZtTb7n01EN/QX5NZ5emIhvuAxBAzrczs/P4ZqjX5wuQiuXixjsmNEiaaBTU5vW5hJclKP3dWQZ6lqenTx6Pj96Ukn2YaV2ooefRgrmaLhhfu0meeQqoTGanL/J0/fHGzeMGHsdzWDeGpKEXfO3oo3ud3mj8xXwf7pYvHz/rr9LO4aGG1TjyH84f9Rot0sAbpbVYzqgmTBE9A7IEig9JmCDjA6OV0VUsQZVcK9QNEanujlMo9MyY03RBRQKp0WYi4WUKcZpnlAlj8fwrhGF1LVxrU6GWIBGdUK5g50DSZZzkWCqhrzllGZ2Cqg9OzmdAU6zvD2+fKpDOaIpWm9+LNRZUOBcFVl7otvH32yhJMH5nXyR5ysR088v0FStaJIUJpxrOquPNmzvenbd7uRBgO7V5OwcoHMrZAn7dq+JyHoCY6tnmTdgN39XY0bqAzXtaFJwl1Fh6X6tc/Ix1LLDf8O2Z0lSX6vUp3g5//XmegVKYy4+PD+skvv8PX1evPw26fng2BokM2/wkpkysTu9hJpsPB5K1SNgjYyhI6IcRCbpDP8Af+ezh0T8kZ4n1DUYpsTYfb949rsnyb1xpTHLO82VcFrGttaF2YyhKzluNusOVVDcOSdDYcuv5cUMzzQEv+XLHMRXkQCK/mEpyvKOUHBXqqVgul+5FFGZAzGSgzpYxjeMmz6uiNYfkuCloBvjSvOS02SJNCdNKp7mH+U9yKRg1eJKXQsu1OXgqmIaUjLFxoEg+IaMMJHbEqCFlUKXdc3t9I1lPThCGboTz0tSvYpYaFxcW3oNcxSMxBQ7KWmOIXLMMYijyZIaaQS/sRZ2w3/Z3j40L00DHHzjYT38w9P3miYmylBLztSlyqjR2IMUo0yv+goFv/e1oXHXZH0YdE5KGrIgTY9lxu7U8QbnruwHKTMUpNWUJbJFEyrY1xh2jbY1LIdbGF0uqynpekoqr3boQvW606kYe+vSCoO0WYlpVPzVJB77vmzSXTKRxVpiEItevgbkFum6nBlKYSjB2vWALMWki2H+0b9wWSDlVSoizF9Z7EFpvW5iZcMOB2+9XaMKKOMsQ82s9g1itCpmVGcMKmHr0TbUSnpemtOZsAsAVZ3PYLecncKemJtJkxjivNNvbFCvQaHY6Nk1cERpxWFWa4RXQakYWTGFZ5PipqRQDN9rFrF5lvMCGzk2KQddea+SMGX4OycAi5cIw3L5OSyRQ1Ye+tbZA1QcMu3tygjOIgyVxlH13MOj1/aCHg767y80eOGl9mvjPcxzsNcHJgwT5aV4uj36LfJrMFnk6HhGHmKGgIjVMNmS6djtc0dkSrlTUU1Q4k/oCb2ZDuLQ+TFTOi7VjnuTg/8fmknqDHeXI6a10kWUQkXuIbh0+w2UJ0pD/iRFr7T2Oe1IDuTXCnW4W5m2yV006XyNrQvLH+wOXjHG/oTWuJks75ZJbtQPzkcGxHF6Oltw3fz2EPaKcjJgscqlt3LfRHQDJMDBysVTqJe9e6mkfP3ZRu3NdU6uVbj9zsSl+Y9h2o8HJ3wjDCKE= \ No newline at end of file diff --git a/docs/cassettes/agents_532d6557.msgpack.zlib b/docs/cassettes/agents_532d6557.msgpack.zlib new file mode 100644 index 0000000000000..f6bacdc3ec172 --- /dev/null +++ b/docs/cassettes/agents_532d6557.msgpack.zlib @@ -0,0 +1 @@ +eNrtWH+QE9UdB/lRRVBwKlKldc2ABzab7K9kkysK4ThQ8Y7DOwbRO7eb3Zdkuc1u2N0kl8NzAIXB6qDBEQeVqUq40xM5UAQ7pxbaolIY20JbBQttBZTyo8zY3ghisd+3m+RyxwE6I+0/MEzu7fd9v9/3fd9fn/feorYUMkxF1/qvVTQLGaJkwYf55KI2A81LItN6uDWOrJgu52pm1NatThrKnrExy0qY5V6vmFA8ombFDD2hSB5Jj3tTtDeOTFOMIjMX1uXM3ssGz3fFxSbB0huRZrrKCZpiODfhKnAB5b75LkNXEYxcSRMZLpiVdDBFszApHRMtk7BiiEgjEf4YhKIRZmSiq6UBq9FlpGI2SRWTMiJZ0tQ1DVkkA8tQDBPE2ixdV/MLaWLcXsgSU4qaEUwkGlJMMJCZVC1TmAvCWEBGpmQoCewIzBwiHD4CaVFFQ4QOM3GlGclERDcI2HbCQDHYnZJCbkKUpKQhWnikyYRlJE0LGPMreIhZJookVVswDTJERk8SGgIOSwcBMw37s72OY0CIYT1pEaDPAGcQKAW/oOIOLQFUM6YnVZkII0IsmAeCRsaDN6BgFsGUYiguwg7muxIQImRYiu3w+S6b0x712mqpJmySquuNRDJhezGTsF1nWoaiRV0tLUDDKaIYSMbOzSttKGHVw3ORZAFrQ0tbDIkyJNrjuZhuWtkNZ6VOBzgOJSwSaZIuwwLZV6PNSsJNyCiigjvbJRxXOzez7Y0IJUhRBX+3OlLZ9WIioSqSiOe9OIxr8ylEYlvOnm7HmUZCAmpWdnOoYIe3JgOZrhGUh+U8zPom0rRERVMhVUlVBJNaE/Z8Z+lEQpQaQQ+Zr6JsqyO8rpRHN7NrqkRpRm0PldjT2TWiEfdzr5fSjaQG+YWybRU1Zy+Xn+xejvXQtIff0EOxmdGk7JqIqJpoQ9HJRZF2qA2WpPwkRa8reEmF1LZi2dU+OvAS5GoCsg891AoqraS5KAcRQTvfb8vX7Iszpheiub/fNbkpEJ3s21MNxU0wPFGLEgSuPYL2l1N0OUMT06rq1lbkl6nrMxgb6gxI/QgEpLIQ/DYpltQakdxe0WfY97i6t4WLTYV6tMh8w4Jg4c9sjqMoas/N5+U0oEAUDa+YY4PB4AX0gmeQld2I90dSQZLh65xd+rh79xB9STpdL29PK7YHLBpzHs5uewrcxHm5+7aHoe9tzxtNKnL2LRgLFD3tnmnBKn+suoql+ZkV98TT8ebqOu2NJlJS9aRMWtD6EWknRJOV3UNwwaAYZH0yI/MsoliRpX0RnqeDFO+XIsFgYHVKEbPttIcmoroeVVFHxVSyQoSWQ9baaZNtmzKnOlR1R8Xae8i79bAO/qsTwc+arqHWWmRAOmbb7aWhwA3UCuJ3h+ZkNwakoBT2sxQt8zwTiUjkZKibQgIVEySHu4MNMQtbnY60rf8NNz56eT/734C6J/bd+etJwxcLY3d2DV4eHy+f+FnX9wbOPLZ43Gvu7R+1apGPV+358/DP/7l86fNPmx/sTF/FTvp4wcJl6U3jXjn0zgMtfzn82br7Dj+9Y8Vm4egr7LgnzizdPZLp/OGiRaO+GhP4dMW27IJFHu7w1knHG+ZSwsHRS2uMhsPoheSgIUcmLRrz0/1LhNzDf4t/8kjwupWfyo9+/vLLVz17tPPZNz/9/O+Jd44/29Xy5oLLjH0PfPbBqyfI1Y927Z968ODi4wsHVI0pv7k/u2W8eGzrlkGrjtEREh0bd3rpsiMrjj5xR6z+6gMn1y0YOzo+hb/pTNczw96tndw+YujYE9fmTo2InNz+2jW3ZUc9dv+sIZOX/3LvnY8f4MELX389oN/OT64IRvv363duOH+7FM0dXLSh3IECB8X7XznfBdNCI8rY6JlSM6RVN8XHh2rvbqxEk5PzZswJNMm+6dMheWo5qqqxmseYUcAZVyl2ixoRgYKXFFPSAWNkMYNZ8SEhj5IgwLgLWCTI0N9jWIcop0AKwMYGOEkFvBdkHdeLDe4YeFBTn+QCtwOwQLVbY8mEIaaF7jNH71klnj+p2BNFKFvSPguDSMgGkU0ONBR7hZfxsPC/I+SgWmXfqNbqTGdX3+K95Rytbl0h9e/Kt2jGz1+gn36bDr74Arp6L5+juaCvUL5r8Hmo6QII4MMIcI7N9SjgvYM+LJ5MLpgwroiuqnpaSCaE4nnJVa4lVdXtKoTZ+SpEDzLBVUwwOApaioUPna7Z3SvVwkpTCyvBGkkDzpauQn2k02lP3ixcKrhGgKeYNq75ZarueK4MTlZl+KgJg7IeSsvcRJmBog5PWQU4AU6CmiJiuqQDthsZPDFLU/CpETdSZBJ6hAjFkQFhwWyQN8DC8h4+gL9sTSTNMB4OiqbMahYUGavIS3jv0k0hpEURnAxsaTBRxScIASV0KQacNM/wnI8JsFTpNFbRjSsEFSynqLIWbKVzGrW3qIqmBRGQwUq5lz7ACVtfCUdvlYFyzodNslA8IUhY0ufxF74j8O2nPDR8K6YAIcfztpM0WSn6GEOV7eOkpmWwLkVyPOv1SrLWO1r5T6+fa/JzXtDppWnWk9CijvdlvGkaMBdvM61oshBP4A1xHqpAaLQJfo+vQJBR1EBYjqeLJMXAFlRWV2K1cDUwzaSBhHjY1k4ztrYiWcHmMkFPIOBQJSUhxONAowp8mGJzOZRYMq6AB7A/AthbNoLiWRhHEFJNVWlEpe7sJpb4FFsqxRRVdTjZ4hYdIub0+extQp+wgI6aHE6mF9Hm5GyijNIJHe6QDiPt4UppNp8jnIKANuIt0n57WfwdV3B+lhNBm5JM4Qy3h1G4P+XjELClbYITBzDb39ICNQiFZUApUx44lgT4IAOFXtrQcR9ocXdXfBVMxNQMUaj8qSAtQaLat7Ie5eomKkIEWbh54iQ6uyt0zxUTLO4s4FW9/mAYyZJf9IX9KMjzwSAbCbPIx3IcYiXKLwfCEusX6UjYz/s4iZXlSNjH0pTISn7ZLwX4Hg1mdvdSRBh3TNO+PuK7cRwuVcWrJ5Ffv3hjjpxngx6PB3dtniN+tZ7w0fiXCXgIvz3yMfgXWHo6GQ6Qforry8tOj7XBR8BtxFUO95OW7+gt4fLrL9pbgpvoFhRNUwHcBJEe0hgy8vda/KAggH7M8M1eFOwLeY+r94UQDl+vFbmwWhLO7zPl4NwplbdPNUImXT03NS0jh6braRdcrkutP3vbvQ13bOvlmvvm1+PErodx/fkQrx7k6guCDvcl3LuEe5dw73+Oe/V21+qrai8qIvXRAC4yLtUnKSpMYWzKj/L4VKAzhRGIgFMaCk++uEML36iF4lZrCsgw9OLlELrqpfflS+/Ll96Xv9P35RxD8dx3+8DMX3pg/j88MPN9PTD7xAqmZjYT5Kw5986a1synKius6unnfGD2USzFRCQZwSAghVk6GGHpCBfgGF+EE8PixX1g9nFUgAt/uwfmpu4H5vqZ+7TdNUMfvHbHbGLs2GFzPjy0bNhTV066PNk5+SXmkT+NPvSbstGna15sP7Ex+tGTL1h1zzfM+fKr/8y57cXGDe+GvugMn/rHvuN74xM7Tnf9e0PzX2ddfeOuyKlr2Y3KwZXb2jdGd1KDJw7IHfnj7UPZ0ZN3/KhRnbBmxb82/2LwiE1vuX/bPm7HDTvXXxF2L+nafGDbrpNfuG97/PoTP1ky4Mnk6NDK8O6QXLX/+89tXHeTtH7Z0Oe2rBjoz+bm7R24/ve7BnZsmnD91RMDkzOrto6+tfbVA9elOl5nm7YbQ56ZcnMgcHTBlqZRweVr3p9Ej1HEWRNu1fa7O0a+0vZe56CdVW/8PIIOrPzk9V2dLdFEYteRytmHfjzqXa2/8OC8MSe2/uDk8OZBJ5qX/IEd/8jCsgP1u6nEV7OPbnvqygktv6shH+t8PxdaP3VFKjp+yJmGcV/f5R4mkdtPD919Suoaseqx7amRzSO3fdl6CzN0+5n31nVUt03Mv15XPXO/OPyyfv3+CwLsDoI= \ No newline at end of file diff --git a/docs/cassettes/agents_56d8028b-5dbc-40b2-86f5-ed60631d86a3.msgpack.zlib b/docs/cassettes/agents_56d8028b-5dbc-40b2-86f5-ed60631d86a3.msgpack.zlib new file mode 100644 index 0000000000000..28cf39fe489e1 --- /dev/null +++ b/docs/cassettes/agents_56d8028b-5dbc-40b2-86f5-ed60631d86a3.msgpack.zlib @@ -0,0 +1 @@ +eNqFVVtsFFUYLjQEHwjXJvqiHDcIATrb2QvdbuVib0CF2tpWuQXXszNnd6ednTPMOdN2aUoCKAaqwTEEgiY8yHZXNxWoLSGKoIlNNMELGqLUEEN4gBhM0BBF5AH/M7tLCzS4D5uz5//+2/f9/9ld2S5iMY0aUwY1gxMLKxx+MGdX1iLbbML4a5kk4Qmqplua29qP2pY29kyCc5NVV1RgU/NigycsamqKV6HJii5fRZIwhuOEpaNUTf0y9fteTxL3RDjtJAbzVCOf7A+WI08RBTdbej0W1QmcPDYjlgesCoVSDC6uEhrSkihKo097+srROBQzpjEO2R/AryW6TlEt4FEjX8SQoSkEcYqShHCUorYXNSKVGos4gk5trOspZBCiCghkR9hIwZHqTFxYhJnUcG0YMS1p6gTFLQikGXEvWku7EbaICAoR4QpwKk6tur/OSVrqTmDOUBIS4yQB+FbBB1WJLoyKjm2VSAGJUcMgXPIDX7LfHxYx3MLyjAlXAee4S9NTEUawpSQiULCtcxbpAGfhoBKmWJopFBXgGpTHIWLENYMgCpakth26j1ELgX6mRRIgk9ZFyoEexbYwFydBgWUzDsBCBi96iZGYrbuO3eDjslAkEhusm1jIHR8xTAhHqc0RxLOAAkS64BtCNBom3LIEtXUVRYngOF8eOFopr2hAE5AIUxIkiaGDXo8Js0YsrrmT0+txke7pgVYnRhIl6ZR2Itt0WUyZLnWMWyCapw/k8ohZ1yyiCnILQbdOgNJoB1E4QLf2ZRMEq7Ax+9MJyrgz9NAOHAfiiMklYihUhQTOR/HtmlmOVBLTgc6cInR1l8zJdRJiSlgHvjN5L+cENk1dU7CwVwgZBwuDI4laHjbnxHxJsEkGd07VFOuoaEnByhpI9gaCXv+JHgk2RTN02DlJx1BSxnTtpycaTKx0Qhyp8Bw4mbzzsYkYypyBJqw0t90XUjDtDGArWRkcnnhv2QbMF3GydS0PpysYx9MFvD6fNzR0X2CWMhRnIIZ1RobukXzPJQe7EZDkSkn2HSuypMNo84RzNOQLf5BfX0Z2ZyAkt9muNChCvvk6W3h83m9eV1Tz15K56XpQxzmz2tLKkT+E2oiJxO4hX2W17KsO+tGapvbBukKa9knFGGq3YPRjIEhDUfyskrCNTqLm6iaVfcwz3pZYNh32kUuFlxfEEj+ddFCW5bGFj0RasCCaITKmA+Fw+H/iAjOEOyOiP0kOS/5Qe77LZcHNY2gyz/zzXagnI+qBihY8AjleTxGNHomevJ6gf3OuULSkqc5ncI7Ivhcbarv4ho6e+hhes622pTbVpqnm+pM9kqJTW5U4/IcRyR2IHu6MoYAcCIZUfywmK1gNh6pilWQZVn3hUDQoV/nl0NEuDTs5n9eH4pTGdXK8brVUh+HJkdrcsXGy9ZteqGlqrBvcKLXSKAX+2jHwbFCDZNqIBePo5NzUsOAWyYB7a80mZ6RKCSvRyqgfk6pQQPYvk2phb4oDdG9A0uJ1cP8rd2byL9Lov/P7HytxP6Xr93/7/JfPlb0eIcuvf5jWpgXW1cz+4a1nh+ZmDq/zBz+Zx25c3PNj96GyaRumn71Zeu3NJy7La7c8fv3UjdPJc9l9kSM3r1ddWrWyCa/8ovaac7Bs7z8HX/UN7JjyyoJ921/eOGNxy6w3MrfC5zuG3xld/+mSfmvLATKtf+HQ3KWXvrpNW38bOXD8yh9HPp4zf/fhtiMz7uxcX3bz7b+vXpxTcWFkntMqlx5WLnz3+/mGedOHm++896Sx7fbI7CZlhXNo1EQzT17d+2fnY33kyp7LVbfONJzdYcXrnxr+6d2Zo1NPLV7Sf+CvVUt/PnRuFjR5925pyefLN6zwTykp+Q/z/kl9 \ No newline at end of file diff --git a/docs/cassettes/agents_688b465d.msgpack.zlib b/docs/cassettes/agents_688b465d.msgpack.zlib new file mode 100644 index 0000000000000..33bb129502267 --- /dev/null +++ b/docs/cassettes/agents_688b465d.msgpack.zlib @@ -0,0 +1 @@ +eNqFVX1sE2UY3wTE8I8wM4mJH6+XTWKy6/qxdusSldExRDI3tiIwstS3d2/bW6/3Hve+t62bSxRQo0TxAtEYNU7oOlMHbDhCdBA1CiJgAokai4gfKPCHGgU/QgLB524tDFmwf7R37/N7vn7P73m7bribGEyhWumIonFiYInDC7PWDRtkrUkY35BNEZ6gcqa1pT28zTSUfGWCc53VV1djXXFhjScMqiuSS6Kp6m5PdYowhuOEZaJUTh+/aXa/kMK9EU6TRGNCPfK4vTVVSCii4GRNv2BQlcCTYDJiCGCVKJSicftoZQLzBQzxBEE9BMOPgRQNtTc9JAx02nGoTFQbJ6nYlInoExnVNMJFL+Rxe71BOxynVC1k0nDKycRxt6KmI4xgQ0pEDMJMlbNIFzjbDjJhkqHoNhM2uAFN4hDR4opGEAVLSukjMopRA0HfukES0J7STaoQliTTwNx+0mTEDZNxABYyuNAKRmKm6jj2gA9KUxNpBBCcggPrgf4c2u0hIBylJkcQzwA2EOmGbwixVNPhlCWoqcooShAulgeORtplN6DYkAiTEiSFoYN+QYcZEYMrDuP9goN0nv7T6tRIdkkqpUlk6g6Lad2hjnFD0eLCwACc2RpRDCLb5BaCdk6B0mgXkThAOweGEwTLoLRNmQRl3Bq7Tjs7gTiic5FoEpUhgbU93qfoVUgmMRXozEn2XB1xWrkkIbqIVeA7O+lljWJdVxUJ2/Zqe4wjBQ2Jdi3Xm3O21ERQoMatPQ3FOqpb0yB1DbldvhqXd7RXZBwrmgpaFVUMJWV1xz4x1aBjKQlxxMIaWdlJ5x1TMZRZQ81Yamm/JqTNtDWEjVSg5t2p54apgb6INRxqvT5dwXg1nc/l8bhqx64JzNKaZA3FsMrI2BWSr7jkYDd8ojsguj07iiypIG2esLb5PcG3Qas6qI+sz0JIbrJ1GZgIOXJwuLC0W1uWFad5sqQs0wjTsfY1GUoV8taidqIje/eQJ1Dv9tS7A2hJc3gkVEgTnnYYY2EDpB+DgSwuDn9YSphaksi50LRjzwtX27KXTYV95GLhxoJh2a9WpsbtdufvuyHSgAVRNDtjxhcMBv8nLjBDuDVu9ye6g6K3NjzZpb+mI4+m85y89gr1ZO16oKKKGyCv1lNEoxuip6/HHejIFYoWFdnaC88Rt+fh0PLuhse6Fre2xVem+jzJjh5fI2vc3StKKjVlkcPdT0RHEL3cyqO6On8s6CXRqOQP+GpxjEheH/H7PCQgByQpSrZ1K9jKeVweFKc0rpKdoSYxhOHKEdsd2VjDjasfbWheGhpZJbbRKAX+whh41qhGsu3EADlaOSc1LLhBsuDe1rDaGq+TglLULwf8xIu9sZgkLoK9KQroikAy9u3g/Mc8lZ28kfaXlt+z8ZYS5zMj/FLLso8Xzt3/wSOvnr/93JLn86+93Dfa1nqrIBzedcc3X/yq7vIlX7j3u86yeX/W0dOXTv9xc6LrqP7jvs/OdV3a/cCeJ1Y8+N6Xv43mT0zcxWbMydC17y+KTSxpnbv+zZmHT4yuKmvV5/j7jn6/t9nvOlw5W9hCrPL5q5eHBz+cVVZResl7UaicSctajgQP1izY/PP+82e2b/n0r1PNrm/fmDh5KDT+yuCTvyh/5zcd+OeZY0097nnBNGY/LbztueMVg7PPlh24u+b1Y4dKT219a9aajr2Ll+3A8x+/M1I+uuGrxvHNFyJb0x99XVnx7OD96Z3o8/KzP5zZaP3+4ieDG1cMoYoL72w/t/bizSUlly/PKDm+/Ok6XFpS8i/VnBjV \ No newline at end of file diff --git a/docs/cassettes/agents_77c2f769.msgpack.zlib b/docs/cassettes/agents_77c2f769.msgpack.zlib new file mode 100644 index 0000000000000..1e7eae5764b0e --- /dev/null +++ b/docs/cassettes/agents_77c2f769.msgpack.zlib @@ -0,0 +1 @@ +eNrtWXlwFFUaD4cILIqFIIpbbGc4gpie6Z4rM+O6kAuQkMMcCBgYO91vZpr0dDfdPZMMMbvCAopHwQjIKrAuJplACkiiEGsXTygpKBWvcgvQYlFwhXU5BI8VBPZ73TOTSQigVeruH1Ap0u973/e9733X772Xhc1hpKi8JPbaxIsaUhhWg4G6YmGzguaFkKotigWRFpC4xpLisvKGkMLvHxPQNFn1WCyMzJsZUQsoksyzZlYKWsK0JYhUlfEjtbFK4iIHeverMwWZWq8mVSNRNXkImrLaMwlTggso99eZFElA8GUKqUgxwSwrgSmihkk1AUZTCS2AiBrEwC+F4EVC9U0w1c/GaiQOCZiNFZgQh0gbqUqiiDTSCstQVqsba9MkSYgvJDJBfSGNCfNCxKsiRmEDXgWpIUFTvXNBGAtwSGUVXsaOwMzZhMFHINHPi4iQYCbIz0cc4ZMUArYtKygAu+PDKJNgWDakMBr+EjlCU0KqBozxFcxEhYp8IUEXrAEZIiKFCBEBhyaBgFoD+9O9jmNAMFVSSCNAnwLOIFAY/gcV94gyUNWAFBI4ogoRTMI8EFQiZrwBHrN4VTaAggzsoM4kQ4iQovG6w+tMOqf+1W2rqZqwSYIkVRMhWfdiRNZdp2oKL/pN9fVAwynCK4jDzo0rnZ3CKlXNRawGrLPrmwOI4SDRljUGJFWLtl+SOq3gOCRrJBJZiYMFopv983k5k+CQTwB3trA4rnpuRluqEZJJRgB/xwypaBsjywLPMnjegsO4KZ5CJLbl0ukWnGkkJKCoRV/MTthhKYlAposEZbbZzda2WlLVGF4UIFVJgQGTYrI+vz11QmbYatBDxqsoGjOEt6TySGq0qZBhi8u6qMSejjYxStBpfyGVroREyC8Ubc4tuXS5+GTncjYzTZuz2rsoViMiG23yMYKK2pNOToq0QG3YSMpJUvSWhJcESG0tEG1w0K4NkKsyZB/6YwxUaiF1YSNEBL21uzles88VFySieTBtSGMeRCf68iSFzySsWUQZkglcewTt9FC0h6aIyYXlm3Ljy5T3GIz2cgVS3wcByU8Ev5kNhMRqxLXk9hj2/abObeFiE6AeNTLesCBYeBhttFMUtX/sFTkVKBBexCs22txu91X0gmeQFt2K90dSbtKaVW7s0mGftZ/oSdLoenF7YtgesGj0FTg77UlwE1fk7tkemprVEjea5LnoS/Dtpegc7V6RnqnOiIRLa5Qp9qn3zq2RCpRttSQrSCGO1KD1I1JPiFotup9gs5wOm8NGMQ4f8rmRFTk5q5PzuVm70+ekkL0hzDPRFtpME35J8guoNXcSmctAyyHL9LSJNufNLMouvCd30wyyVKqSwH/lDPhZlEQUK0MKpGO0RV8aClxBMRAvzZ4Z3epi3WyVA7FuZGetPh9L5kDdJBIomSCNuDvoELMgZnSkN3oN+81j/dP0f33KlxcX7Jx40xuvTn36zC3vf7XMdzJncGne8ez8p9Kf7li6Zr/m7yjNfWX7aNPReQffOvf24a9L7ntg/aqGN2/59u0PTsf4kScOzP72+7On902/62Pp9Yfm3DWidUrfZX37VZ1qeMi0bdzzCxc4y4+8nnOMrrB7946hVuw9k+lFkTkPLbC2Dblz34sXhm9Mr13NcUXZu9x/FdoveoYyZZu/DNcN2Pqv/t7Hdo4YRHWsGGzZ9qon/fHP9uQ/eaSictSCyUNq7nn9G7loaOsDn6woKR7qd7zTNxJ+ZDci0UNMbRYxwjN8wOQzr+Z9kHN07SMFvd/cU9eHb3ntmwnetUsGV/VaIw3sk37MG3zh1iUS7P/ixT5pw84tX8f0Sku7PJC/nIrjBiLqIG6AgIHfva6rM8G0txpFdNwMCxFSK89zZGWXlVbno5zQvOKZrlrOUVAAaVNmpwqri7IwWiQQxpSK2oxI+KDUWV5lJcyEDwZxZARWa2YCf7wc9PQAlma4MPADwOigxgqA8V5OwjWiAzoGG1TbIznBbYAqUPV2mDKhMDXeznNG91k+GD+d6BNJ+FrSUoGBI1sHjg4DDpL9wWI12+CnNdtAsvyekSxmTEcbxlvGX6a9bUmk+7R4W7Y66av00B/TtRdfRVf35RtpJ0UnSrYJn4Fqr9L17bjrX2ZzXYr2QL/s5GnkCqli8kmCINV4Q7I3eToyecSQIGSaEgE2Rom4QQ6YkqkFBz+N1/AR03Rf5xplsMaklDVCCpwkTYmaqKmpMccNwuWB6wJ4kgljqssQJMNnGXCOysAHS/jI6KI0I5PIUJDf4MnIhe3DuU/kGUxnJUByJYInKkQenxFx20QqIfmI7CBSICCYDTIGWGxZ5iwXHumaSNpqNduhXDK0+V6ewyriEpZpkurNFv0IzgG6NJgo4POCF8kSGwBOOsuaZXdYXTYqdRqr6EQRgnJ7KCqjHltpnD31LQqMqkEEOLCS66aPdlO6vhSO7ipdHrsDm6ShoOxlsaTD7EyMfTB2UmYaxrzq5RjsFlp3ksjxSR9jYNJ9HBLFCNbFs4ZnLRaWE7tHKz60OO21TrsFdFpo2maWRb/hfQ5vmgaExdus4UXOG5TxhuxmKkGo1glOsyNB4JBfQVgui06SeAVbkF+Uj9XCRUBVQwryBqt07bRV15Yk89hcq9vschlUlpe9wSDQqAQfpuhcBiUQCvLgAewPF/aWjpd4Fr59CAmqwFejVHd2ElN8ii1lA7wgGJy25BYNIuZ0OPRtQofQgI5qDU5rN6LOadeJHKqRJbgxGoy02Z5K0/kM4TAEtBpvkXbqy+JxkMf56SHcOiUUxhmuf/rhthSPg0uX1glGHMBsZ3091CAUlgKlTJndLjihuGko9NRWjvtAfWZnxU+RoLAj+MaFWMhP/erVpUozic7KzCQqyrIJksBFAfc3nMk4mXrsDt14kgkXUhkL9C8y2b8sAd2ELu0DW0VWRUj8m5j0w20zE4kOVi5BTidH8V1C580DalLhTGiWSMHJX4KHCe5cOEaC2cS4bGjpuGHeQeQalS5EIGusxI62SWaiDPobSENr0tMOrp7jEgowxkBZerpaC1dT4Bf1KUYgsnlFlhRNt/sOUIcQEQTDkhfauMPMXWNqdVrtNkdPQTVauo5yXux8kweyxl3/E71U9Jd+tpeKTKJTkFFVHrwHIl2kMUTFb834ucIL+jHDD3uv0K/7XS72l8dSfG3nucQ6IbgXVMz3uSUn52BcU8ISssuImeX2OUxwaU+1+9INdzfZsKqbU+6vq8SlUwnflVfC1kqQq0wIGtzXEPYawl5D2F8cYSv1fnWZqv2xmNdDWf+fI19liKKqqF8Q/cDfsxOv1Ljte39Qd8ZdXPUiRZGSd1to2NeexK89iV97Ev9Jn8QbrbTD/dO+ibuvvYn/D97E3T29iedPd0tu2R8qv28GN7miBKmlkxVauuybOLIxXBVThSjKxVqtVZTPyVH2LJp1ZNmdPmT7ed/EnTRkos31o97EexekvImXvVd0O33T96tWNU3N+9ui0RMDJzbnl4zfVloxcMPK8QfWZq0dVlf/9QmHO/3CUunQm+O9Exdn3P/Cn7888Xi9tNbRNEB58dbiolZpx57Vrc9uKRZ/P2fkO8Vfbz8e+zxGHXCsLI72Pxi9Y9qjv+sz7tO86IdDx+YVHFwZO71v1oiRg8ZYV9zYfPjYJ7WedWt2lEdXzSj87osL+aX8mj3nS59ZNo5LtwYKiUUbW9KjW+c0HW1vKVw6g8nd4BgjDxq+W35q+Z0ZFX0zCFK9/vZmBzFu8ZIhc9f0/3Qg9cZT5Fu7ipf527Lc8+f/9rbHD00ubHt06fih1208POkvpxcN4I5PGXjqxJbp+1wdpWnPLx6/pGLaowXFrdJN726ZN+zspn4jVx1aOKKp7eNtz2TUfmQeu+M98h+n8wf1DWwuG37b3TNKtTkPrKo6GrHc/If/fPPd/ietZ5bIx/cttOd1LNr5iaD1Xb+RkZyeEUW7GkbNePj8/FPeh0u03TS/rmbmoZdu2Os5PrV2Qt31y9ffmSEee3Dw3nRXce+6Fbdt2kmstrS+1t4UHHB922q1eIN93xO9vrSM+eqVtPCwux+O3v2rvR+ty3h/yUT+Weq7G6cfPf+F69zKdeG2f589P+SudwPtdbevOHJj5arPTm/cdfPA53OGRT5fz0kLOm6omHqL/Z9PesSNJ9v8dNDWEHzwosuZV91r6L7l3446c2o79Vz7zNE5S4WpucLwA2Od71y3fgI5Lz925O/ndmw9f3LcyScOxz5cvMvR/ifld+uGje04O2LNr4tHjrzQy/hLwpHS6aPq+6Sl/Rf6+rIJ \ No newline at end of file diff --git a/docs/cassettes/agents_a13462d0-2d02-4474-921e-15a1ba1fa274.msgpack.zlib b/docs/cassettes/agents_a13462d0-2d02-4474-921e-15a1ba1fa274.msgpack.zlib new file mode 100644 index 0000000000000..2a4334d2c235b --- /dev/null +++ b/docs/cassettes/agents_a13462d0-2d02-4474-921e-15a1ba1fa274.msgpack.zlib @@ -0,0 +1 @@ +eNqFVWtsFFUUbnkkqFEUjIQfhMvK409nO/vuFh+UbbEIpbUPeYVu7s7c7U47O3c6987SpTbGAqlEfIwv0BoSZdkla4E2gJoIKlHUgIkVjbEgkEhC1KAhKgHxB56Z7kKRBvfH5u4933l95zt3e3MpYjCFaqUDisaJgSUOP5jVmzNIp0kY35RNEp6gcqahvql5p2koI/MSnOussrwc64obazxhUF2R3BJNlqc85UnCGG4jLBOjcvpk6ZVuVxJ3RTntIBpzVSKP6PWXIVcRBTdru10GVQmcXCYjhgusEoVSNG5fJRSkJFGMxua4etbZjlQmqm2QVGzKRPAJjGoa4YIXAoteb9j255SqhdAaTjqhOU4pajrKCDakRNQgzFQ5i7aDs+0gEyYZim63boOr0CgOEa1N0QiiYEkqG4iM4tRA0KhukAT0o6RIGcKSZBqY2ydNRtwwGQdgIYMbtTASN1XHcT34oDQ1kUYAwSk4sPXEQA7PNusIx6jJEcQzoH1EUvANIZZqOtyyBDVVGcUIwsXywNFIu+0GFBsSZVKCJDF00O3SYSjE4IpDcbfLQTqn/7Q6NpJdkkppBzJ1h8W07lDHuKFoba6eHrizRaEYRLbJLQRdNwZKY+1E4gBd15NLECyDtF7MJCjj1tAtYtkHxBGdC0STqAwJrD1tGxS9DMkkrgKdecmeq6NGK99BiC5gFfjOjnpZg1jXVUXCtr3cHuNAQTSCXcut5rytLQEkp3Hr/apiHeUNadC2hkS3z+/2DnYJjGNFU0GcgoqhpKzu2D8ca9Cx1AFxhMLeWNlR571jMZRZu+qwVN90U0ibaWsXNpJB//6x94apgb6IlYs03JquYLyRzuf2eNyhoZsCs7QmWbviWGVk6DrJ113ysBs+QQwKomdvkSUVpM0T1s6A6N8NWtVBfWRjFkJyk/VmYCLkqy9zhS19p35ZcZpnSqZlqmE61uElhlKGvCHURHRk7x7yBCtFT6VfRI/VNQ9ECmmaxx3GULMB0o/DQGqKw89JCVPrIHI+Mu7YR1w32rKXTYV95ELhiYJh2T+tjF8UxZH5t0UasCCKZmfM+MLh8P/EBWYItw7Y/QliWPCGmke7DPjXjKDxPEffuUI9WbseqGjubZA36imi0W3R49fjC6/JF4oWFNk6BOeo6KmuTnR0tixuaazgy6TGmvjy9TWNCjvYJUgqNWWBw2NPBEcQXdwaQRX+gOz1xn1BjyRVhCpiPtGPpbg/RPxB2eP1xXamFGzlPW4PaqO0TSX7IkuECIYnR2hyZGPlqlevqKpbGhlYJTTSGAX+mjHwrFGNZJuIAXK08k5qWHCDZMG9sWq1daBCCkuxIA544uGgT/QGhMWwN0UBXRdIxn4dnD+VZ7KjL9LRUjT7uSklzmfi8pfql3266N6jHx+r2NZ6orFp7c+tmzaIm3d81l/7Q7zP/8EbWxbu/77h6ul5NUe+3Xj2H9Y148KEygsH92y7vG/LPad+O37RbG3JXfrz7dMPz2raPPlkxfCrrpaz0x7YPnfFJ++m2nfcfdeFeQ3VfXV/hYefCqzE8/u3Hf8Dr359bdngfcFY5HLq737/1R3HQp2rntg6YWH4zJEz8Tt/DEyaPzx95taXZwz2oYd8F58ns89NWX5/tvbJCV8/uL32uzvmnqi6cj49vHe2q6r/2YFzqdLX3jqy4M0lc2q/ELZPevSRny4dXhSY+Wt16+Zv5nTuFhZ8Ho384pse2vQC2zr5/KkFv/fOmjrS/srUWM1KLTj58feuqQc/an0aqLh2bWJJ36HzQaO0pORfBzAQdg== \ No newline at end of file diff --git a/docs/cassettes/agents_a3fb262c.msgpack.zlib b/docs/cassettes/agents_a3fb262c.msgpack.zlib new file mode 100644 index 0000000000000..a145c26208738 --- /dev/null +++ b/docs/cassettes/agents_a3fb262c.msgpack.zlib @@ -0,0 +1 @@ +eNrtW81v28gVb3soir310vNU6Na7gEiJ+rLkRVE4Ttwkmy/E3ibZOBBG5EicNclhOEPLiiGg3ba3AoXQ/6DrdRZG9iPo3roLFD310H8gPfRv6XtDUl+WnewiEX1wDjE58+bNb968zxnq46d7LJJcBD98xgPFImoreJF//fhpxB7HTKo/HvlMucI5vHN7a/uTOOIv3naVCuVaqURDbtJAuZEIuW3awi/tWSWfSUl7TB52hDP4749+dlDw6X5biV0WyMIascqVWpEUMipoeXhQiITH4KkQSxYVoNcWACVQ2NR3qZJEuYz0GYU/EeEBkd1fF4aPkI1wmIdktkdjhxlVQ4ogYMqowDTlSqWF3KSKGPWBSkUxg3clhJdOHFBfT6zoHvcGbcloZLvtiMnYU7L9ETBDBg6TdsRDFAwSr5OEjrCgxwNGBPT4/AlzSFdEBMQQRsyF1fI9mI3adhxRhU+BgwikAsJ0BpN8IFk39vTAPowhAxGTgAGFEjBA9mG9ehdwTwjtiFgR4BeBcAjbg/+BxbUghFbpithzSIcRmsGDgdHAxAVwJGlL22U+hRUcFELYMhYprjfgoKAp9dPcUqc5ISRPiF0Sh8hTDUItOpAuD3qF4RDaUGV4xBwUbsr00RSp6HzEbAWkj4ZPXUYdULy/HLpCqtHzE6r0JQiOhcpggS0cmGD0ee8JD4vEYV0PxHls4z5rXR0d7zIWGtQDeR8lo0Zf0TD0uE2xv4Tb+CxVKQOxnOw+Rs0zQCEDNfpmXQ4Cez0DU7ozAPUPSNms1szKV/uGVJQHHuiv4VHAdRTq/n9Md4TU3gVmRmpao6Nk8BfTNEKOPr1J7dtbMyxR3KNPaeQ3an+fbo/iAJSMjZ5u3Dk5Xdo5ma5qWpa5+nyGMS5q9Ln+s6b/5+L5WOLjocdgOFWj3DDK1heZyDzQc+WOPqlXa5+B4oagiuwPR8BaxfLjQ9ge9p9/P00N+m+338+29n8/+OnhZdiq0bebES+SyirZYiFBwyRWY61srVVa5Dc3t59tpNNs4868IIrtq5LWbSMx3PeI7dJIMvWrWHWN5vPtCAyjC9t1JVONp7YbB7vMOd5YqBSfb1DQfAPnAUcz+iwQho0tLwqT9aOJemDFykjdHuwuvo4Oa+Vy+cUvz6SMwKx4gEgOq61W6yV8QYRMjb5GQRjlllFZ3U7EUa99+IIsGpn4zhTPEeIBRL84g3KC5wjwIDU5k3oxnkrzw+MUtMGd0Tfw3C5b11cvXaG9u5fu3Kv1Nv3+rnh85frj7U/2OB0dW6ZFekL0PPblxqaRSH1Lq8no6eUHt9ZvXtt4dt+4KzoCxLBNQVyBCNjRFotA/UbHtidiB6w7Ykcw/O76g9HXTbtldxqN+qrTYs1uwzEu3d7SgeX3R4nf+e+PB1pX1kiqgG3Qy0i95VBF0Z8lrqcw01koZu+FtYMCd7Bf9mBtN1XNYvKyq27K65eu1K9X1MbVVh3IZ7lAQxKwClRKDiwDzTIJRWdEoklYe/ioCH5ThBBpKMaYtSD2vLRJosgDm2WN8RioduJZIK00WsUChIPpNms4JPBv+NZbqUzSCdsdT9i7iyWzgASQ8sBh+4W1cnG2H2Gk4zCItsFrIrGTvscgw/u0FYXgXvf3ex8+uPq+s76/yq5uA1USas+MtMkSYZJkHWR2MSFs9xx6Ugh17DllwbAhip69YE0ys+CkZbLQROwIcEwcgpA49RLUa4XCBO3pwl8SloMdhJMzCB35d2B7dgqSBudJPKQLwcOeQZQ7Ji5tkSW3c8hyx7ZTGE4gne5XRPgytyLCKSRz3DLnvHBNM52FqTXM+M9pd7TAiw6n3Oicz2yUhwugLFrSdF8Bx5xeIn07XSElHk+XR4nX0wHsn1ma9LvvklP96eyMqlo9mVGdyHW/yLpvJHndodWo1E9JnbLY/ClWOvtzkffBuHBAM09Ma0aZi4Wu8DzRb8dhe1zFZHEtqW6yN+4n1SBGxjQowAvInisdae9Nir8tmGszm6tINgAolE8BR+2IIwzBmfT7/b6ZYsGNwB2YjsKFgxXQTi2YFdjnFYxQ8LAyM8FKkaxErJfQrEwmw3ZbQOIdDbDjg4BjXYfZDpNEdMm6zyKQOpJBvQIk1VVztYlvmpNhVSpmrQLv6kmbO8giHVG6IWR7PegxSNv1aIDoYXrfZqGwXaC0ViurtXqliYX0pBtZTHI4Um6tlcsrQ0SZ1It6iR6VCnYDNJs5c/wsSBQ12AnFPMvmWq2OkBTzw7aNI+umlb134b3eMnFJXLYdimKxtJACh49ljNm9lnEcBAPkxe1EsqWS7QTzu5W+lhq1/UatBDxLllU1w6CXSN/BRVuQ3+Iy++Bd2n6IC6qZ5axhVzc0zHrW4LBexHDcqjVu4hEiuHLrCrKF4l3KOGJtv6O5WxXNbdzMEW6lZTZbSavNw7bvQ1s5o8MWTZW0uLHPQQIojxa+6zQXe+G5y5gnPb7LpsU5aZySKSK1Xe55CWV1vMSkUVPW9TLBVSjtaRPKylyjpqzpRof1Q8HBS2tCy6xNt2m6ZPAebOguLtFq6Gnx3eeon7Ak3RLvoYbrx14MCpTsQ1OP1g3JPgDsxnCIPtoWEZh12Wy1arVmuQ5GT/vtsWUmPnti/aeaPDpA0L4OeAbtBjM3sQnsbdBkYhCHgvc9yzUo2tHKxoKSU2KlcqsUa2PG4hmMuWSPZyuBmzPGbm7Wl2yCVpEbIuiRuxSM9yQSPOJ51XWYMMyGaOaQy4g+Y1Yk22BpYB4KFLFIwIYiLpMHKOGSE6abQgShSyUbzyxNYprmJFScQHaVeZhGkwciJut7gjvkEnUyMpNUyyDDgdTcO2wA5mymsMYc9Ot7uB4WODTC+eY2udKqLNrjxNvr6NdGJ1ZYq5rV+vA1HT7+5M9v7PCxSCYDp6rA6dEPJ1XKJDshr3jkmFZCU2dzp8RYPHbDAoy8rAIbPpoBfXK183gTSHMSeQgFBlhSktyfEWd3YNxONjChvoi2F9H2ItouPdruaGd1ttV+7xC4wMwvAuFsIAT5PyoUJzGg/UreGr26bLMoElAikS71JAMHfnHldXHldXHltbwrr8OK1Wy+1juvav3izuvN33k1v++dV7W26M7Lqt9i7oZ/69L2vc3HrcuD7fcbruW/2TuvZqvTsTqL77zedl7fndfWB5v3bm1uNfx7Yu/J3eb97qBm3++ezzuvVnX1xJ1XZfiqR+av9/oLLBaFhH/mboDOwZ0VwhqTpRh3gp3gEqRDGdalA3AIhBSspdMImx3zDnNBA6W08Mm2ToJefsXxxmAUCaSWbLnXPgvFwSHXGsNY/vQy9n0KCRfU8qgiacJ3DuSSHfyMC2uZ3kFobMvHM66a1tCgjWkJLR/MtqtVd/kTq0n5l6PSos1EIg5y3QSH1FvLvNBehOFfX22Sd6x6CiOH6TfeNfOWAbmm8gploIcST/hInyuX2B7E17y2gshdqLBhM3LJbwz0SCCFaYvMwSC5fNPf4CwUvcd7rirO2sHyUZzwiLlsQc3I2x80iB+65J35FGb5OAyrnGOM3A3dd/O0xiTPx5wSyk6Vu1YEIgIseFTs8Cg5tjFJXs46cZlX0xuTfFNJiGEu+K/c4hZVpFV+28xVCHMZ/fKF8FsueYd7oAy4Hz0hHJDLOSjCzkOW3cqn0tE3f5BcN/JKLnf9E7l1PpaRFps5q2JyeJV3kpWenZEwEnvcYbnvD6HEYYqCrua/Rc7k9Ci/46KIhRDp8zzbzDHnS2/M1+9cI1TmXpf3mecBDuIJPHbPAYER6Q8hMtXoph8L5BnoeQAofH0ZnCcMAJG/65r5FmViOrmZzTbt5H6YZWshLH1ak9zeYxH1vNy1ojj91WcegWT+hw5ZUPMG5yDYhyFkQXJ5P+xafAcg8NOf0INqmuYU7PG4NTl51cee56FSChwsGfI9/5y6nZHFvHIg5Yq455Iu5dGUzSwfB36QmocvdfK/EbnBFPEZ2Q1En/BuvudL468MKViryMurJ0VSzp7z5y/7BOT7/aDzdf+kkwVOG1xI8J1/0mmt1oanAXr5DzvHI/8P7fUwPw== \ No newline at end of file diff --git a/docs/cassettes/agents_a79bb782.msgpack.zlib b/docs/cassettes/agents_a79bb782.msgpack.zlib new file mode 100644 index 0000000000000..0f3a9234975ff --- /dev/null +++ b/docs/cassettes/agents_a79bb782.msgpack.zlib @@ -0,0 +1 @@ +eNrtWgl0FFXWDos/gggIAw4DaNEsIZDu9L5EGEwCgUBCyAIIBJvqqtfpSqqrmqrqdDohIiCJDAg0qyAQgRBihn0LiojDriLi/KIJiCyHXxBwAAEVIb9zX/WSxQB6Ds7xnAmHk1Tdd+999913l++9yrR1OUgQGZ5rsp7hJCSQlAQv4sJp6wQ0yY1E6ZVSJ5IcPF0yMjktfY1bYKp6OSTJJUZHRZEuRkVykkPgXQylonhnVI4myolEkcxEYomNp70nm7bMVzjJXKvEZyNOVEQTGrVWH0koglxAGZ+vEHgWwZPCLSJBAaMUD6ZwEiY5GIJxEjbe1p0gOZpgCJbJQQTDEaJdUTABa+JpxGJOiiXdNFLqlCLPcUhSamEmtVZrwQolnmcDc3GkU55LInMY1msVESlQDquARDcridYsEMYCNBIpgXFhX2DmGMLPRyAuk+EQwcOIk8lDNGHnBQJW7hKQAxYItkUSJEW5BVLCT2CxJLhFCRgDM6iIUSKyu1lZ0AMyhJd3ExwCDokHAdGDBEJ2PN4GgrTxbokAfQL4g0A58BNUJHAuoIoO3s3ShA0RZNA8EBS8KrwABrNYRcqBnCSsIF/hgl1CgsTIPs9XyJzyU72l1taETWJ5Pptwu2Qvel2y60RJYLhMRUEB0HCUMAKisXMDSifUYuVtWYiSgHVCwToHImmItbklDl6UfFt+ET2bwHHIJSkRR/E0TODbkJnHuCIJGtlZcGc5hfdVDk9feTZCLiWJY6HUL+XbTLpcLEOReDwKb+P6QBQpsS2/HC7HwaaEGOQkX0VM0I6okV4Ido5Qq3R6lXZzrlKUSIZjIVqVLAkmlbrk8d21B1wklQ16lIFE8pX6hTfW5uFF39okkkpOq6MSe9q3lhScRv222nTBzUF8Id+6uJG/nC4wWDOdTqXRqExb6igWvRzlW2snWRFtCTk5JFIOuaFTqo1KtWZj0EsshLbk8K0xaDVlEKsuiD40vRRUSm5xWgnsCDp6ZF0gbVcnDw/u5ldh7UsGwe749sQLTCShNRFpyEXg3CM0xmi1OlpvJoYkpa+PC0yT3uBmbEkXIPTtsCGDg5u/jnK4uWxEl8c1uO1Vippl4WRjIR8lZaBmwWbhV1+JXq1WV/V+IKcACcJweMYSncVieYhe8AySfNvx+pRqi1JrSvev0qAfV0U0JOkvfAF7SrE9YFHPB3DW2BPkJh7I3bA9evO48oDRSob2vQvPVrVmTIptODmYj/GMHJxusgyZFGfTm1Myd+QqKZZ300oJqj9SygGRK/mqCEpnIW0GHbIYSANF6YxGM2UmtUad0W40WrQm9ZochvSVa1QaIpPnM1m0KS5eGUdCyVGmyWHjWzdo7IiYpIS49S8oU3kbD/5LJ8HPHM+h0jQkQDj6yuWpIcEFVAriqTFjfdvNlIWyGQxmjQXpzHaTWhkLeRMMoFCAlODqIHeZqaX+inSwaatnZz0eJv9rljgyiU+LaX2v3/4XBe/MYZdmZIzsNzSihYq5027RvG1X3s18h1+xsTr1meqbjh7dJ21B2Yd0K5cQEew+R/Uns74ovrb3zMDTE7i7N24xz9z+qKLtmLhxRaofJ18otOkuW6RVWdwT2g5i32feUWed72rsbl/WPupMZNJw0rox6vMlT1+5fer4jLKDb+dW3su94/nnHU+P4lO9J19Y3vGLd6bMWLHwyOvu2PnpndpsHdLu6pGUNu1v6Le87Zja9kLZPX0C2k+n5jnIS03+qs4wjC86NfjYj4ax00+mDI/9NDr12M3Lq/ovHG/9898OFB4+cjXJO6NbR7bfoj6dOtqIq0t7L9m/8KmDmf1ntT1y+fNXD7Xu2zJhTOU3PxYX9TiyJ5Wd82T6nXf3frp819nC5ZMm9Lr95bm+Q74bNsWVvXTY5c0du+yak96pcFOzE3Gezx33ht79MmtHx3+dXI7YigPqYSNeX3p56+X09itbzGwWn0dPN//04QWzY8aIlen9llUs2LV5w7LZlNV9uUhs923F6e+7fXXF+5dLn/3/8klvLhg9qbDb+Kbjxu8akbb2/PdLErSfNWlXuOrspnmZat3+eUev96K7r58WpmQ3KO56msZMvDbiqwU73/pA/9F7HdY1cUt9+g45qu9INm+3rmxx5+I+0l9uJD7Onvp64jXu3L59RUz62JlPxH6R30JTrbu2exwPm/7zz83CFLHvjT7WNCzsEQGY5om/J4CJJGpkSVFkoNyCVF0FQxHL8kQsVpDGcBSSAQPN0Fy4RJBiNm7+LkQxdoYK4QZCcpASEWjNIuEWITkIHuMWOwwhQoZDkURCOMsSWQBPCH/BpwmOF5wky3pVGVwGlyCFiwTHUJifcCIk4ZlVRBrJEfFQrilGpHiCAYwCEIR0SwxGNRQjeQkPIzkAN0giFhQRkhdO8yDKO2vZ4CJISQoCTgIKgEwfwrM0oKIhUOmIWIGhMwFHxbDQKwQyj0gQoQvTkUQ8IzoQmMqBhWMcpGAPYC2Qp0gbi38KgJPS8TvUS6wLDHUyAJe8gG+UAu8Gdo+DAaTjJLPBR4xEZAoIvIZxGWAumoff2LYcBmMmFZ5GImwgmOmQHYHXlhY/kBjEy28OMgev00vYyRxeYGBC8Ch4ALSAcyUSECFAN8wajrEgxJoTcfTAuiHQQPh4YFpRXpgHrINFY9AIrkqQ42hgIwZuxMCNGPgRY+ASjUatfqQg2KBpBMH/eRBs0DQEgi062/D4sTGxBoOWHumgsoRxw7VZsfcFwRoboi0GpKFMRookSVpntgAoJY06vV5HAkL9fUGwSau22+y/CQQ3yagBwekpSdldYlpX94u9qDFfUb52sbL5D+373Lm0auHWxENbB3yw/sJsvbPC/nN+laH044RLCde+SYgmT64+/OIPp7+7fO7rm6XOgZfev/092rZnd/XOv095b3Vclzl6ty+rskN05Pxwoqz3jvcL2+RXpcbP1RS9s/Zg1qp9iTsdi5N2s8sM0bP3xbOX9har5sfvDf+ua/+XvE9Ob9ahckHMq1sWT2y+t0/l1FY9v0r4ZnovsjJhakzW1Mgbs3sWHn5/c8RU6p992mg732o+quXV56//6aXS/i+n9rkR1nv+gDn/Ku7g+3LUip1vJGv/b8f4FzcUSd2u3SZPHNp98e7c2I/DS19pY7ml4xd/e2zrhO4bqrbnp5xLmDn3xPHi6xtSOx9f8z+Fpw+eR7quh59tc+JCZcdWHW6uWPH2m7dGz+yx6uKybfujp+wrPtYjesEY2+C94yrarD35c6X7uTlTmvhhJZeyv+RSkwfByj21UaW/s8qQ0t9M/GiySdN8BQxbs5FX7r85rFcppQ8ymGLSUrMHo1j3pOSx5lzaMHw4RF+aXp2UPcKEu06wUylEAF/2EPgKQALMgTFqoL0CnzYy2MSsNDQGh4wv6RyQgy4ld0aKBaBgpXmcZzIqwB0L5TZIDnL7OzNQ5Zpaa0AgPdYazFJ/FPCXHyjLA6EeWFg+CnefGLn77PT3lFCNidKqdPB/U4y/HQ5uuB2W+od9a/pG9b1PidwYTJnEwP2G1mB+SB3+LZV/xkN01Z++RGNQG4JpvxYDqdyHdA4D7hz3WVydxD/52LkQpLlfnCjsPBwmPFa3yxrCV4pozs2ykYrg7vrfgpsGAaAIxRVAR4mRMFZVjAmgUTjI1DkQRBJxYBoAO44hYT63ALhUEcwMj8ejCtiCkwRnB/CEIkeRH87yfueFAyoLxzAVHsLrTBAeSYQLKNPPE14zGaZTAOslwYsHRnEMRpy4BgO6hzNHjBMJsDOYDUIHWHQmlcmM32RNSo1Wq9JD3oRLeVaGxioCElGJvGiN4TIRoApZGkxkMfqwIhdPOYBTY9Ka9AatGR8Ma4axipqWRKgtsJ3hBdhKP5KVl8iSogS7QYOVdD19GotaLRtbw1FfpTlab8AmScjpslJY0qDSBN/t8G6wqPCSGNFKk9gtGtlJHM2EfIy7nOxjN8d5sS6G8ns2Koqiufq7FXiNMupzjfoo0Bml0ehULi7T730aLxqwkxov08NwtNXpwgvSq9RBQrZMMKoMQQKN4NyF5UyaEIkRsAWDRwzGauFYIYpuAVmdNlm7RitrC5EZbK7WojJb/FSKcVmdTqCpg3yYInP5KQ63kwEPYH9Y8LvcfPEoPNsRYkWWyUa13VlDrOVTbCnlYFjWz6kLLdFPlDkN8jKhVEhAR7l+Tm09osypl4k08rh4hpP8jBqVvjZN5vML58CGZuMlaozytPgdDrcQn7AkmeLOwREuP2bC2SuwD2ZZWib49wHMNhYUQA5CYgmQ1mqVxWIwmsGVijo1HdeEgsia7K97B+CpVQugHCOnDV7kGjaZCNQJrQHHz4MKgp8jiuMFyaEkA6nnFskoKpTiUVDVlKGqNtAFFWqAE0x09JZ/DghNXqeoxIPtIRNBEaIgo+SjZ72bjPrWq4g4B6Ky/bcVkFGQBhIEnBhJUA7cSXFVEaBPykdcJyj+RTEkaDeuzDV6VfVcbdCbLcaGfO2vunIXsuJioojWqbTmgkd0qdXqbOOlVuOl1h/4UutXhBDGItC7MEdyNumNxKZnwnYGb55qVSU7DgA5hLAfwFqBCOKMBvALC0pgR8Fs2cJ0GckHL5dwkEXXvgeSbZDtDVGAxQrSmOvXXbTJ91R1bqTug9/wZRNDBydx48OslzFTKWKqTk8l2lJMPNLGcohRFEx4yBaMr2ev36R62zQ+PwPX6wx4zngQhssAuYygoJ+7Eck1IrlGJPcfR3IZcil6cNY+SqDVQOb/oeAW+GNC8NsHrsnWX1U9cZUVrUgQ+NBlBxTUxg8tjR9aGj+0PNoPLVqTWf9oP7T8F/y1keaP96HF1NCHFjOnt5mdw/JSUk0ptMc+OMdFGQdJ9/3QotVoKYvdZNQaSLOO1pMGymJCappSq40Wk4kif98PLRaznabNv+1DS2XNhxY69RTXIaZ1dUdd+/ZD35j3SidfQbPyVi0P7Eh2plw4mqtbc/TkR7PDP+p7vvinJ6u125+IiO1fFb1z7ty5k/X/WHpyu7dibOTAyDPcD9W3D+7+NtNryZic9+3onLsH0+OL5hxSfdjZQ/dd0HNO2Nddtyr+/lZivzmr33rttRe6frzyk63qBcdGzzpRZdsx7o0PXyB7jU470zV54bCBh85FfPb1oh3zM852K3s5b9rKkQN6ucoeT5qfE7vpervzYUvVY61J85QRT13Z//zEH//WeknLqkL2sdjCjNdbXJqe9/zIrOeGlfV6amiz10s2T795u/p0r/5jV545s8cbXdQv+ezwLhnHSfo6ebFJx89nHX756pttr2onKl4lL97eFLtvvW5xyUtHR1zN3Pb08ZyX2jzbdqE6/vFWKXRx98IBMU+31G2NHdTryFpnxIAeiZNetl/96+nSuKcj4x09q/Mv3FvM3xkQsb15/uJnYptN/9NERYsjzY7wugTNgda7Fq1e8GV8+6qUspIi5ejKx57c1zkveWbv0j+3uVVcMffoJ/yiD/qe7v2UnUzrYqv4dH7lvQj6pxdfVS5dNnz2ooj/7XFiSIeXIja9ub3nez0HPmfY9MIHHx5//0D6kIi925uPOl62s1Pgb4c+fndxh7eahoX9G0Kvsho= \ No newline at end of file diff --git a/docs/cassettes/agents_b6a7e925.msgpack.zlib b/docs/cassettes/agents_b6a7e925.msgpack.zlib new file mode 100644 index 0000000000000..ab06d3fb9ce9b --- /dev/null +++ b/docs/cassettes/agents_b6a7e925.msgpack.zlib @@ -0,0 +1 @@ +eNqFVV9sU1UY39wD+KKMqKghcqzgg+62t+3d2i4+MDoQso0NNkRmluX03NP10tt7ruee260sC5Fh4p8IuZoYNegD61otExhiJMH/+oBBgolRM2I0IAaNYmKiSEIIfueuhSEL9qE5Pd/v+/f7ft/pjnKecsdgVv2UYQnKMRHww/F2lDl90qWO2FnKUZFherGnu7dvwuXGzIqMELbTGgph2whiS2Q4sw0SJCwXyodDOeo4eIg6xRTTC6fq/xwN5PDIoGBZajmBVhRWI1oTCtRQcPPEaIAzk8Ip4DqUB8BKGJRiCXm11rg/MDYgPZhOTXlDTOzqVIkqDrMsKpQIRFQjkYR0FIyZ1ZgWzvkxBc4bZmHQoZiTzCCnjmsKZ3ArOEsHnTqEG7bsWYLb0CwOUWvIsChiYMkZ26iO0owj6NDmNAONGHnahDAhLsdCniwdCe46AoDVDEG0yaFp1/Qdh8EHFZiLLAoIwcDBGaYc+QRLuhFOMVcgiMehb0Tz8A0h1lk23DoZ5po6SlGEa+WBIy8EZQOGhAw6JENzGDoYDdgwDcqF4XM7GvCR/uk/rc6NJEsyGcsi1/ZZLNg+dY7ghjUUGBuDO6kGg1NdklsNOjAHylJbKREAHRgrZyjWQVO7ixnmCG/6BpUcAOKoLRRqEaZDAu/toW2G3YR0mjaBzgqRc/Vl6FWylNoKNoHv0qyXdxDbtmkQLO0hOcapqloUWcuN5ooUlQJas4T3XlutjlBPAURtITUY1YKRgyOKI7BhmaBKxcRQUsn27UfnGmxMshBHqS6MV5p13j8XwxxvsguT7t7rQkqmvUnMcy3aO3PvuWuBvqhXTvbcmK5qvJYuGgyHg7Hp6wI7BYt4k2lsOnT6KslXXSqwG1FFbVHU8P4aSyZIW2S8CS0RexO0aoP66HgJQgrX2VGEidAvj5Wr67m3u6M2zR/qFhfbYTreB2u40YQiMdRLbSR3D4VbWtVwq6qhR7v6ppLVNH3zDmO6j4P00zCQ1bXhl0nGtbJUryTnHftM4FpbctlM2EehVN8mGJb86RU1VVVnHrwpksOCGJbMWIwmEon/iQvMUOEdlv0pakKJxPpmu2zW+mfQfJ6zD1y1npKsBypafhPktXpqaHRT9Pz1qFp/pVq0Yuje+3AeVMPrmb15deeax7ra9GQ7zXQazdqWtcl3RxRiMldXBLzyVPEFMSK8GaThqB6JtUTj8ZYEiUS1uE5xOE5icaKSdBxrE3kDe5VwMIyGGBsy6YHkGiWJ4clRen3ZeOX2LevbutYlpx5XNrIUA/76MPBsMYuWeikHOXoVPzUsOKclcN/YtsU7HCcJkmomJJzCNJJOE2UV7E1NQFcFUpSvg/9v8lRp9kX6/OSy5xfW+Z+Gzl0d2c/URTu3d5xrGt9X3P3L90nj2Iqzdz3X+O3iPQ8d3TW86cW7r/xz5qtV3Q0/PvJK48Cqj9fd3nX5yGh297J953Ov5ztDBzafPnF+tH7B0QtaeW3zfQtvGz97T/s365VDn5xe/mzkllNLO/Zu3fCW+tKmDy8cP3XpzqX9+IGWnZcvxgzx6vHhW0fKe36u/7o8/tpfJ1ZueLpx5Z57H2746bue1iVnXl505OzvPX989Okzuy6lXvhiyXTg4rnJ8TsunXyj9OuCurorVxrqflt9aPvf0MW/54vuGA== \ No newline at end of file diff --git a/docs/cassettes/agents_c96c960b.msgpack.zlib b/docs/cassettes/agents_c96c960b.msgpack.zlib new file mode 100644 index 0000000000000..c0321f66ac2ac --- /dev/null +++ b/docs/cassettes/agents_c96c960b.msgpack.zlib @@ -0,0 +1 @@ +eNqFVE9oHFUYj7RYWy/qIdBi7XSJipK3O7N/kt1ACem2SUtNN82upV3R8vbNtzuTnZ2ZzrxdktYSTBpEFONDyMGDUjPZrWvMJrZasLUQ04rF9mBPXQJV8OBBUDFeCkJ9s9lNUhLinN58f3/f7/e9N1IqgGWrhv7YtKpTsDCh/MdmIyULTufBpueLOaCKITt9sXhiMm+p1ecVSk27w+fDpurFOlUsw1SJlxg5X0Hy5cC2cQZsJ2XIQ9XsWU8OD56iRhZ029MhSKI/2Cp4GkHc8tpZj2VowE+evA2Wh3uJwZHo1DUp6l7PudfdDEMGzbUQDedlQAFkG7oOFPl5RdHvj3jOlRTAMh9m3FEMm7K5dfAqmBAwKQKdGLKqZ9gXmTOq2SrIkNYwhTJxK9bmZ+UsgImwphaguJzFZrFpairBrt83wLtP13EiOmTCenfZHQfxKXXKrnQ1cPj6hjibuiB6A0Gvf3YQ2RSrusb5QBrmkIpmzX91rcPEJMvroLpSrLicPLM2xrDZVC8msfgjJbFFFDaFrVxb8NJau5XXqZoDVor2rW9Xd662C3glyds+90hhe0gnbCqNNRvmVkheSSlzVQJIbEOiNNNgSQM9QxU2KYntFy2wTb5lMFrkJWneHnG4InD7h1J9MT6NHWmoeb/pGecAV4d9222prYK/XYiDKbiqC1Jbhyh1iAGhpzcxHa23SWwoxlzCwrqd5oIcbIhfIkpez4Jcjm4oe9WzOpbF+2tqTqWofim4WO4vc4KiKFZf2DTSghxnze3oBCKRyP/U5cwAZZfd+ZAYQf72xPKUoWCyKmyUuXy16niKLh6OqGWTyFU8jWhh0+iN8YiBZLkOGqkyu8bPp0TJX+g5FMoETbNPhTMnjukZ6UjyWPdXg4hoRl5GlD8vgGoLMUhZVQhJaWhvC4fTYdkfScvBFIhhWQqmAnIklArKZLKgYlaWvJKQMYyMBpVoN4piogCK19aGlQ6cPNrVezg6fQL1GymD85fAnGfd0KEYB4uvIyvXWvMLbkGRp/d3nWSXwyRCUiESDJBwyp9OE7Sf35vGAq0siOO+DrVn7C2+phY33biz590nmmrfllfevzOwID51/pMpe2L+9N3m37fvf3N7y5X+92bb5hP389c+/yD17x83L4x9/Pj1Bzj9z9PPjb6xaC3NzA0v/vnRr2Yltm3AW+q5tG9h/npPMu7smtn69uG7O0YGKs33fhEPOVvHvWPPfnav+eXb8sFXj1/9sjwQpt91a3/tWfrZ+Ymgzpsk9tKtJydi20I7F98Z2bEwGv564sXvKxfojzd2z9tHb+3tHH6wc994NfmhLzVW2d2yOPz3N62dHPfDh1ua8G8wusTP/wHDg2Hi \ No newline at end of file diff --git a/docs/cassettes/chatbot_16.msgpack.zlib b/docs/cassettes/chatbot_16.msgpack.zlib new file mode 100644 index 0000000000000..ee5287d564f0c --- /dev/null +++ b/docs/cassettes/chatbot_16.msgpack.zlib @@ -0,0 +1 @@ +eNptVQtsE3UYL4+oiUpIRAGNoQzEV+9613dBhK5rWTe2butgDwP1evdve/Tu/rd79DHCECRBMRGOh4+YkLCVlizb2ITAQIeCEdAIaHTiUDSCgkFQgxLAGPF/XSdb4JI+/t/3/X/f6/d9tzafBJLMQmFcFysoQKJoBR1kbW1eAi0qkJV1OR4occhka4Kh+g5VYoeeiSuKKM81mymRxaEIBIrFacibk6SZjlOKGf0XOVCAyUYgkxl6aWUJD2SZigG5ZK7xhZUlNESuBAUdSsrZmcbAk7yxFEbwEpOxRIIc0OWqDKSSVcuQhIcM4HRRTFQwG8R4VmB1SwHJSPQrKxKgeHSIUpwMkEABvIgSUVRJRyJw56p8HFAMSvN7w+RsHMqK1jM29N0UTQOEDgQaMqwQ07pjraxoMjIgylEK6ETxCqBQGK0zAYCIURybBLnhW1ovJYocS1O63rxChkJXMT9MyYjgTnWnnhuGqiEo2t4gCsITMNdkUI0FI4nbXDjRm8ZkhWIFDhUN4ygUT04s6N8brRApOoFAsGL/tNzw5Z7RNlDWdlZRdDA0BpKS6Li2k5J4h23PaLmkCgrLAy3vrbnTXVF5250VJ0nc2TcGWM4ItLaz0Ij9Yy4DRcpgNEQY2g4iR0OYYIE2dDUcpqPhCD+/MhX3NvjcvkQgE/Evaom6oKXBllGVQBR4EklHxJKmrZ5YY8a7JIGRTovT5nDYSBdG4gRO4iRWQTjgoromni+TGKLG77QmZWFpNFjqaFWZtAf3lkb9ajAN1DIcOJsbY4FUucXS0lRaugJvttaHV0hKeUuSteLVcqiijqpM+SvCjb5kap4RRacmWWZ+uZ3ylfPxeHiJB/IysaQqmai2OJx1lYnWJGyx2JdCAvf5M77mitio8AirFSOKEToIm4vQn54RbnBAiClxrYO0uHZJQBbRtICXc6hkiiqvzSIegs+O54tj0x6svE3hh7NliJPagF9iTUaL0xgCotFCWGxG0j3X5pxLEMZFVfVd3qKb+rtSsK9eogQ5imjoG6F8no6rQgIwnd67kn1AJzvqpB4+mlEMpEUoA6wYldbViNUN7wssULZneLIwKMUogW0tuNUGCqxPtaZTDK0yTDyZ4gl3q83KRoBKR/cWr4gS1N2ggDBe1jqsbqKnqBnhXSfKlcBIAiPIA2j0WRqNmZ6MCCUFkwGNNpSS0YZMPJXWZ2y+lbRbHajw84ysQHMqA0JqpAzyiJnyPKMoAQ5SzME0hvYF4FieRY0pfBe3n6xl7ehy/50GCkwAtCfztkJbiUOjLSSg4+tJ3Iaxud3u9+9uNAJlRSZup/vgWCsZjI6GtPBy/50GRYh2Qu5Kj1hjLKMNzUaHsJ2hKYsjQtppB0m5iQjDRJy0Gx1pO2F1MfRurx/zUnQcYKEC/7R8WVO1pyrg3deIjSYSFhSH3w55AcoCG43mQkBCjdE6aQ6qDFqWEsghrDpPk7bXRbsBQdAWwk1H3ITDjpWiNTSC9j/tsvqmLbwm1uT0dgqxj8cJM167z1B4JqDPrVvKphPCt8Tkdb+3briyvfvII+t2DT7RG5l9cubCoG9N++SnNrzh3NH/wAH/pXvarpduviUd962f3tYxlAkaNjWbxl1b+upvA1VvpgYvnb7adzC/xO/7ZkH3jOXPdv4b8CxoO8cZ+zOO5uqvGk4M7Pe/cpb59cWtb81Uaxlfm7zFfGij/1R334SvMwG5eqW0NfqnKXjRd/BGMrt/8Zky04+p8YY/nm9bv73Hvrpv3c3L2b/m+Aenm05tNBC9j0+pJ+um/DwxNjW056HzRy8l1m54x9x7wfn5p4dnLZ54OXPvke4zPyzfcphL1j545ezJMx1troa+725+WPXc37FV3tfP7Zvk9yU/gh29x76YP9uw+uiW1IyehTP6r9fd/8E050T83acnmb3ht4+5axq3DvwylK85+2gtc36Qc12bdXrZ+AsXN5/fNu167eIwPK7OubHwyw2PhadmOq62f7Lt6E+b/rlXL+oEQ2xNDRkabzD8B46XMHk= \ No newline at end of file diff --git a/docs/cassettes/chatbot_17.msgpack.zlib b/docs/cassettes/chatbot_17.msgpack.zlib new file mode 100644 index 0000000000000..0121d6017bb95 --- /dev/null +++ b/docs/cassettes/chatbot_17.msgpack.zlib @@ -0,0 +1 @@ +eNptVQlsFGUULiURa5RgIgJBw1A5EuhMZ3ans91y1O0e7baWrW2BFpA6nfl3d9id+afzz+wFCHKoAa8BTYzhCLTdNbW2HBUQBUWDJ55RoAkxUWNUqhGRgGAI/rPdSkuZZI//Hd97/3vfe7MhEwMakqAypltSdKDxgo4PyNyQ0UCbAZC+KS0DPQzFjrpAQ2O7oUn9c8K6rqKy4mJelSioAoWXKAHKxTGmWAjzejH+r0ZBFqajFYrJ/qurC2WAEB8CqLCMWL66UIA4lKLjQ2GVNJ3wz5aJCthKFRYRhRqMAktuIKAVri0ibjG27KYTVTBOCLxC+AkeIQnpRBIahA5FPlk+HGNQyWPfW4GW4jxnI0JOEgovg/LRgR/DEhmKIGqJQqpOspCUJUWyLBUsY/Av0jXAy/gQ5KMIYIEOZBVXUDc0C4mmHGszYcCLuL7f503oCEOkmz0ja9bLCwLA6EARoCgpIfONUEpSiwgRBKO8DrpwygrIdsTsigCgknxUioH0oJe5j1fVqCTwlr54FYJKd+6KpJ5UwWh1l3U3ErdB0c2+AE7C5S+uS+LmKgRDsaUUvS9B4npJShR3i4zyOJ+0mtW/PVyh8kIEg5A54pjpQeee4TYQmZ21vBBoGAHJa0LY7OQ1mWMPDpdrhqJLMjAz7rrR4XLKm+HsFMNQjv0jgFFSEczObCMOj3AGupYkBYgxzD10WoAwIgGz/2JLixBsaZUX1MTD7qVepzfiT7b6KtuCpdC2lE0auj8IXJEY12pLCHZXqCnpXhwhGYfNwXIcy5SSDEVTDMWQ1TQHK+ubZdmjiXSdz2GPIWVJMFDBpQwx4aLcFUGfEUgAw0MBx7KmkD9eZbO1NVdUrKKW2RtbVml6VVtMslOLUEN1PV8T91W3NHlj8XkEzs6ISeKCqhLeWyWHwy2LXVBG9OLaWGSRjXPU10RSMdhmK1kCacrrS3qXVYeGpUfb7SSdy5Cj2VLaenqGuBEFSkgPm+021vmaBpCKxxRsTOOS6Qba0IF5CE59nMnN695AzU0KT+zwYE6ax3yaVETYHEQDUAkbbWMJxlnGOspomqisbex258I03paC+xs1XkFBTEPvEOUzQthQIkDsct+W7McssuNOWunjGSVBQoUIkLmszO4msn5wUZF+z8HBySKhFuIVKZUNax7Lsj6eSsRFwRDFcCwu084Ua5dagSEE+3IuqgatMDghUkZmO+uw9+Q0Q7zrwnelSYYmaeYtPPqSgMfMuowKNZ1EQMCrUU+a/UUyn7BmbIGdKbFzuPDzCEkRooYIGoxWD5QxM9E8QtVAFPLi0QSJ9wWISrKEG5P9zq1dZHaUYOcjow10GAF4QWfYbFvp48MtNGDhW5e4CcM6nc53bm80BGXHJk6OPTrSCoHh2TA2GR0ZbZCD2Euj7sSQNSmJZv8MfGhhgw5At5ZwzmApzTEcC4CDc7I4I04oLWEFsdftI928EAZkQ5Z/ZsbTvMhV63cfaiKHE4kMqIOvpYwCkSIFg+kGoOHGmF1CFBoiXpYaSGOselez2VcqOAFNC5wNE99JcyVkBV5DQ2j/067D2rTZ99OTaaudSujkmNi0rXfmZZ+x+HPjhv7iiUUf0BM8f17dcvKXO96c3rdnkmdMwaZv53ZN2LJD3H7k7MrPYuu7zr/7UEbOH0ctPPX3s8HYtDH0o/tn7jvw8/FG34fxK68//VwisWLdF+Urfy9b++lKePzwC5uPLR2YxBWMn3Oo6drBgQMzwIyU69ozNVvPCVU7yW3est2ZT/rGbZnz0onTk6dl7pu7x7vjke3sLurH5ph2eEa1Hi2A9+a9d3ydO/DYD47lFbu/m3vXzp/uOfDzhYL1zdtc/DnnD/PP7Kr1NW27/Nq/56eeLwr3TNi0ceLESRc8LXXaPV9+tZfd1z5+/uI1joJ/LsefPXkUzX/k650vzb5OX9r27eSazfP+cvVuvr/nc1KrLNPVXXcP/DY9P/Hnlfi6WYzgn7J79bWHH8zv/UZ4YGrvwvf7p6Qurng+9er10KdzL62oujLw1O9nA78G735l/Mx/Xz71x47Kl89UOMLPTfxo++lZvQcH8q+uMTuLyjzl2eKOzfM9UR57PD8v7z9er1OE \ No newline at end of file diff --git a/docs/cassettes/chatbot_19.msgpack.zlib b/docs/cassettes/chatbot_19.msgpack.zlib new file mode 100644 index 0000000000000..50204dbbb689a --- /dev/null +++ b/docs/cassettes/chatbot_19.msgpack.zlib @@ -0,0 +1 @@ +eNptVXlsFFUYLxCOYBHkUIiJrhuUKLztzO7sWRC225YeltYe9DBQpjNvd4fdmTedY7tbCpEifwgBmQhBYjRQll1TF2ihICCXoAHDVYIJFIKAAQNiCHIJSsE32620gUn2eO/7vt93/b5vmuMhKMkcEgYkOEGBEs0o+CBrzXEJ1qtQVj6J8VDxIzZaUlxWvlGVuK73/Ioiyq6MDFrkTEiEAs2ZGMRnhMgMxk8rGfi/GIRJmGgdYiNdSxYYeSjLtA/KRpfhowVGBmFXgoIPxkpsMUk28BGDQPNwunGKwSihINRFqgwl48I5+IZHLAzqVz5RARQCPCdwuqaA70j8KysSpHl88NJBGeILBfIizkVRJR2JMNkXxv2QZnGmv6aNivqRrGhb+ke/lWYYiNGhwCCWE3zaZl8jJ04xsNAbpBXYikMWYLI2WmsAQhHQQS4EYz1WWhstikGOoXV5xnwZCYlUikCJiPB5caueG8AFERStoxgH4c7PKIngMgsG0kQ5TERbGMgKzQlBXDcQpHE8MTEp/76vQKSZAAYBqRZqsR7jLX11kKxtKqKZ4rJ+kLTE+LVNtMTbqO197yVVUDgeanFPyfPuUsJn7iwmkjTZ2/sByxGB0TYlG/FdP2OoSBHAIIyhbSBiDEIBDmpdd2prGW9tHT+tsMHvqcxx5gTyI3W5M+u9DmSupCKqku+F7kDIVmcOMxa3ryriqQgA0m62UzYbRToAaSJMpIkEBYQNzSyt5vlsiSVKcu2WkCzM9hZn2RpVNuw2ebK8uWpxGKrZJmivqfLlN+SZzfXVWVnzTTWW8tr5kpJXH+IspllyWUEpXdiQW1BblRNqyDTg6NQQx07Ls9I5ebzfX1vhRrxMVBSFArPMNntpYaAxhOrN1tmIMOXkRnJqCnx9wiMsFkCkIrQRlIPQny293AhCwaf4tY2khfxGgrKIBwYuieGSKarcHMU8hMePxlOT01Jc+IzC46LZmJPavlyJm2Iw2w1lUDSYCTNlIJ0uyu4iSMPMovKEJ+Wm/IUUbC+XaEH2Yhrm9FI+zvhVIQDZVs8Lyb5PJzvupB4+nlEAwyKSIUhFpSWqQGnPygD52dt7JgsgyUcLXGPSrbYvyfqGxnADy6gs6w818ISzkbJwdVBlvB0pE1FCuhscEOBlbSNFObekJL28a8W5EoAkAEHuxqPPMXjM9GREJClAhgxeUkpE65rC02F9xqZZSKvFhgufaeAEJqiysEyty0Y8ZqacaRAlGEQ0uycM8L6AQY7ncGOS36kFKGtRKzbe9byCggIQr8o4lWwrsb+vhgR1fD2JZzCU0+nc+2KlXigLVnHanXv6a8mwbzSkmZd3Pa+Qgmgh5ES4VxtwrNY1ER9qIYRmliZYr9dKOhmWctTZdXYyBGFlocPr2OrJBR6a8UNQluSfFs+unuUuyvfsrAJ9iQSKxZ4XRFxAssB5vbEyKOHGaK1MEKksXpYSjGGsUne11uFgnJAgGNrBWu1OwmYFWXgN9aL9T7uovmmTb4rFMb2dgu+nAdvfXD4sLfkMwp+nT5UP24ULM9Ivdo/7EcxNHJTKj90v7ThRsnFY58Abv60nTk4q2PNAGbty9Zy3bh94bZJztku5cvuNS4cXXD2WPqMri3evq1nO1axtevz4Bo22PXn8sPvI2cftU39+kv9g5MVHTU/vFYGW5pUHOo9++8fJkjOusYWLokUzwPg5Z5rW+G6qOwuGtmwYOGd1xeaJE95ecd9WDSqrtx3/XJErzrIjtp0/dDc97TL8goxn3P7s/CHpr2XU0cTk8gsXRn88/KqxhdoOT8/9pc44IuKenn3pxOvzhm+oPdg+5pzbvchUcnNMs23IOvewmvQP5ma27Y92Xj83+p7mWvy16/re5cunqXfHDDzrmjdg9sHGVefN4+9MSp969Nbll776wT8yc/zhEa9mLb01fe+ICW1/Vh3xPDq5e/Ki3TtC5TsWr2y6hsLcvmv/jCqxPDq3ammNtW3thIOnruy5OH1oGb8+tmZJJ7p3miiamWntVoyVX05+d+L5oofd/z799OXBy3auvNSUt+JRYus7S66Bq52l9aeaT2zo2H+oc0jm+4ngyGu/X3zlvusSOz+0rnuw3plBaX9faJq3f2Ba2n8fyFxp \ No newline at end of file diff --git a/docs/cassettes/chatbot_21.msgpack.zlib b/docs/cassettes/chatbot_21.msgpack.zlib new file mode 100644 index 0000000000000..681a79dce4038 --- /dev/null +++ b/docs/cassettes/chatbot_21.msgpack.zlib @@ -0,0 +1 @@ +eNqtVWtsHFcVtuOSoraogRIaXmViQEaRZzyzM7vjdRKi9Xq93liJHT8SOyFs787c3Z3dmbnjuTO7Ow7BqQsqNAE6FfwhQNrY2S2WYzet1QanjtJWfVhqi0QMqus2lD6UIiigkKC0RAp31mtiJ5H4w0j7uOfxne/e890zw6UcNLGC9OpxRbegCSSLLLA7XDLhgA2x9b2iBq00kkc7O7p7RmxTmd+QtiwDNzU0AENhkAF1oDAS0hpyXIOUBlYD+W+osAwzmkCy80b10L5aDWIMUhDXNlF79tVKiNTSLbKobVPWU7E6jWpGCaa2nqo1kQo9u42hWbu/nrou2ItbT7WhPCUBnYpRAGMFW5SDbMpCMnC2LMdYdAKSez3QLkK0DlOaQ+lAg1v+Z+F+ZJvlUErB11NIQ9W4RqDec/+/WOwlFg3JUPVMKcOiBURriq54kTqxceQXWyYEGlkkgYohMVhQM0gjLdv0kFhG3F9KQyCTNp+rWjOaRthyJ1a2bhJIEiToUJeQrOgp93hqUDHqKRkmVWDBMUJZh2VhuGNZCA0aqEoOFhez3MeBYaiKBDx/QwYjfbyyRdpyDHije8zbG03EoFvuVAchEYo1dDpEYzrFMUIjwz5eoMl5KbpKNEOrgPApGmX/qeUOA0hZAkJX9OsWF5Mnlscg7B7bBqSO7hWQwJTS7jFgagHhyeV209YtRYNuKdx5Y7mK81o5nuE4RjyxAhg7uuQeKzfi6RXJ0DIdWkIEw32ULUoIZRXozl+Ix6VkPKFtbs+nw7siwUg25iRaowPJRuTbJTi2FUvCUDYXSPgKEh9K9Tnh3izNiT5RCAQErpHmGJbhGI7eygZQtKtf01pMme1sFfkc1ncmO5oDg7ZcCDHh5mSr3VGAdgsDxd19qVi+zecb6G9uzjC7+Z54xrTaBnIKz2zH3Vu7QHu+dWu8L5LLb6QIOzunyJvb/CDSpqXT8d4Q0jDbuy2X3e4LiF3t2cEcGvD5dyKWibQ6kd1bU8vosTxPsxWGAVZoZL1nYkkbKtRTVtod4Rv5x0yIDTIt4P1FcmSWjYdHiQ7hKy+XKlPjaEf7NQmvHW0hmnRnWk2lnvKJVDc0KB/rEygu2CSITayPim7rGQ9XyvTcVIInekyg4ySRYWRJ8iUpbetZKI+Fbyr2GU/spJMefXJHaVgwEIZ0hZU73kd3Lc5LOtby5OLNopGZAroyWC7rzpRVnx8s5GXJluV0Lq+xwUGBVxLQlpJTlRTDRF4ZQojWsDsiCvxExbOkuzGyV5bmWJrlfkOuviKRa+ZtxkCmRWMokQltOe58vQYK3h3bzHN+PkAOfiOl6JJqy7DbTrQgjSgTb6QME6oIyNMFmswLqCqaQhpT/q5Mf+yO+knyyRsDLJSF5D1REsptZU8vjzChh+9t4hqMEAwGn7l50BIUT0KCgji9MgrD5Ww4n4ZP3hhQgTjK4vHCUjStyO7818giDllWhEno5/2JhD8pczKAAAQkISFLjaLo4ybDrXQYSGlId5f155Za+reHtsXCT/XRy4VEdxiLb8eSjrCuJJPFbmiSxrhjkopsmQxLExYJVleo351qlIKkrpRkE4IvyAb8dDMZQ0to/5XdqDdpy6/J+4peO/XUC9WHvnLwk1Xlp4Z8rl613BCaY9d8/+8frf3qEfH3ybWfef32zO1tP6hp+1b60w9+KfXwHX8pPPOvFqv3w6HobPGw+fY7z//7yovoV0fuqor86I37fTOf4wuHz5374/7CptPOlYsDh+I/iX/3TfEl9PTF906fmnY6D88+ewkJF96Z5jYVDjb/lXn9lrnhs3Pjb/7M2fHeKXV1jZiu23P+668Gv/zyjumFv12w9hTnF154i//8ocydW+6qOnD+o1+Y06uPzN3z1OG74Zl19gOZoZlbHlm1ENvR1Prg0V8+9uptn9oYEqNDb3MHztasipx89+PV34w+dE/NcK7uz7P2ms1fyMye+WH08vMj2pnfVYfWtSzUfPDzqHP14/sOfLju0tToF4/vvfhP/4n3X7t14t3nJgfbf5yIf2LOfeunzG37/Gfxqn9k9eSVVP/7NXd+e8OfaqaVe098duQPV/vAzvrOvqm9l564fOTXmU5h/vLYXns2OrHnVnVy/Xm6d1Pk2Uczs/a67zzSPn988onp1w6Of2MhvyFYN1TtHTk5+Ma1vx1cVVX1Hzp3kQM= \ No newline at end of file diff --git a/docs/cassettes/chatbot_28.msgpack.zlib b/docs/cassettes/chatbot_28.msgpack.zlib new file mode 100644 index 0000000000000..85059e884e01e --- /dev/null +++ b/docs/cassettes/chatbot_28.msgpack.zlib @@ -0,0 +1 @@ +eNptVQ1sFGUaLhI8E0MEcxygEqbFCGJndmb/t00Tt9td+kMpdgu2Ndj7dubb3Y+dmW86P9vdIpdYNKAYdRQRA2IPtrtYSqmCxQNr/EVzhUu86F0KKJCeJ8JxdyoceBxw32y30gYm2Z/ve9/3ef+e952uXBKqGsLylD4k61AFvE4OmtmVU2G7ATX9qawE9TgWMssbwk07DRWNLI7ruqKV2WxAQQxWoAwQw2PJluRsfBzoNvJfEWEeJhPBQnrkH2tKJKhpIAa1kjLqsTUlPCauZJ0cSlqwQelATFAiSkAKUApSgQ4Zyi9rHVClgChS+TAsNErHlB6HVIScKRyl0tggGhEkIj3NlJRSJSoWoQWqpTUdSiVrS6lJvqpRMVWzUKJqkTRJ3dCgWrJ2FbmRsABF6yqm6LQT0xKSkaUpkzuO/Gq6CoFEDlEgapBcEDcKKZpuqBYSy3jW5uIQCKSk3xTNyMSxppv9k8u0F/A8JOhQ5rGA5Ji5J9aJlFJKgFGRZN5L4pVhvglmbwJChQYiSsLsmJU5ABRFRDyw5LbVGpb7CvnRelqBN4t7rdxoUnlZN/c3kCD8NbbladJPmeIYp5dhB1K0pgMki6RBtAhIPFklLz80UaAAPkFA6AJXzOyYcf9EHayZPfWAbwhPggQqHzd7gCq5nfsm3quGrCMJmrnA8pvdFYQ33DkYjmM8b00C1tIyb/bkG3FgkjHU1TTNY4Jh/p7N8hgnEDRHfmxr46NtEamiriMeeDToCyZq0pHQkvaoF9sfdaYNvSYK/YmkO2JP8Q5/rDkdWJGgOY/d43S7nZyX5hiW4RiOrmXdeEljiyRVqQK7PORxJDV5ZbSh0t1pCCk/E6iMhoyGFDSqGOhpbY7VdFTb7e0tlZWrmVZHU9tqVa9uTyIHs0wL1zaCuo5QbVtzMNlRTpHojCQSKqpdIFgtxeNtK/xY0tgV9cnEMrvb01iX6EzidrtrJWaZYCgdbK2NTQiPdThothChm3V6WevpH+eGCOWYHjd32h3uXSrUFDJLcF2WlEw3tK4M4SE88nmuMKI7GupuUHhWpopw0hwKqaiUsnuoMFQoO2t3UpyvzOkpYx3UkvqmvkDBTdMtKfhWkwpkLUpoGBynfI6PG3ICCr2BW5J9yCI76aQVPplRGqYUrEG6EJXZ10w3ju0muqZq39hk0ViNARl15t2aQ3nWd3SmOgTeEIR4skNifZ1OB4pAg4/uL5goKrbckIBoSTN3etyO/oJknHe9JFeW5lia5f5ARh/xZMysZBSs6rQGebIN9bQ5UiqBlDVjFQ7O5XCTwpdTSOZFQ4BhI1KFJcJMrZxSVChiIBxM0daGE5GESGPy34VNq5kZFzF+92YFHScg2ck5Z76t7PsTNVRo4VtJ3IBx+ny+926tNA7lICo+l+/gZC0NToyGs0vauzcrFCB2sFpfalybRoI5cj85tEE3x3EwwgHgYV3QaxeAxytE7IKd9fp8wOvdGwjRAcDHIR3O88/MVbUs89fXBAab6YlEohuUsTdRTsaajKLRbBiqpDFmLy9iQyDLUoVZgtXobzH3e3kfZFnB5Y0Ar491u+hKsobG0X6hXcbatPlX0pNZq51y7NMpB+ZvvKMo/0wln+vXdfOofJyd8dS/Op+dbhtqfprevfl03anMoj/vWN897b8bP+rueeWTLX+7+8SK1gX/PjR707zyigsfffxE+bqRb8O3dy/dubL77ON157uO/vWAB1/MzTd+On969NCVw1+vfe3ksYuXzl79+upoa/1L6wbvah7ed86oZ5p/Hbi24dyGVrbnT707Fs/e+Pai0Kld/q3iqhffy5yYi3+MtG76ef8fY8MvH1oYXrB71v+OFBVtP+y5eGH6tUce2rJs+6z1Rw4G3im7a8quaveDtY57f3M+WM8MPGA789nZc9v/Q1WEtn3wq9H+U4m90wa/uPw8eIHatGhBddWqS3PQby/vmbag7ePp2ZmhE3Ovr952qnjaM4OfP0yf+fvMoefuCd4xZ828OVvuq32jND5372nt4aF1xUs/QB9e/Wq4d+bxJ42yV+f3VXy//qd/bj44Aw0v/N1fHhudfmnrlxueOPby0133fF889bLrm9Tl78TFVarfXVl+4UHl8ftGv/w2ZhvY9nr3i/E1X+z++frSrbcH7x22XauZd2XuyVW3Zb97aXTzs5dKz7j3/DDv8IyjPxw/NoBexYO7Zn/1dtNI8ZU7re5MLUqffObNT24rKvo/8WSElQ== \ No newline at end of file diff --git a/docs/cassettes/chatbot_29.msgpack.zlib b/docs/cassettes/chatbot_29.msgpack.zlib new file mode 100644 index 0000000000000..f527c3ad040b5 --- /dev/null +++ b/docs/cassettes/chatbot_29.msgpack.zlib @@ -0,0 +1 @@ +eNptVW1sHEcZtmMiDFQlrWgoQZDJFclV8a539873kchY5/M5/mhs43MS2xTM3O7c3eR2d9Y7u+e7C1HapAVUq4qXtkgkLVWwfZecTNIPK23quBESbhtSmhaIKicFEkT5UKlStWkDKqXMns/Exrkfdzczz/u8zzvzzDv7ihlkUkz06mmsW8iEssUG1NlXNNGIjah1f0FDVoook709sf4J28QLd6Usy6CbGxqggXliIB1iXiZaQ0ZskFPQamD/DRWVaSbjRMldqH5jt0dDlMIkop7N4Fu7PTJhuXSLDTyDxAYWVNNAxWkEIDCwCS3Eg7BOR5EJoKqCsg6XDlgEWCkE4mwMSALkiM0QcaxiK8d76oHHJCpySWmOWkjz7KkHK3K1402go04DnVhbAbcpMleBwymSc7OZqN4N2AR2suJA3MR6koIcqmih7I+JoMxwxKZglGk3aTNoQS6EIpTGel0ZQW2XiFWKqCsdKhmWpzxHTGAgMwUNCihxN9sNQSpFzSBmIJgGtlEPNEac27RcNKQUUwsysf+vvCwUU6DlgA411Ly61G+zGY0oSHWnkobF+QinYR27SJ3NieyXuqo1NkhApoVNsB1lOqErms0KfGBPMYWgwur9Q9W6yRShlnNspSWOQ1lGjB3pMlHYvjk/T+YxK0ZBCZXVU2KadVQ2nFNKI2RwUMUZVFiMcp6EhqFiGbrrDbso0acrNXJWzkCrl0tubRwzmW45Mz1MRLijoTfHvKsDkfcFeeHJLMc2DOvsCCinQqanYJTXZ5cvGFBOMxKuci+cwmLwseUYQp2pbVDuia2ghKaccqagqfl9zyyfN23dwhpyipHe1ekqi9fTeXlR5ANPrSCmOV12psoH8eyKYGSZOU4mjMM5LBRkQtIYOQvvDQ/LieG41tQ1morsjIai6Y5cvG3rSCJIpJ2+nG11JFA4nfHHpazsDScHcpHtaU4MSAGf3+8Tg5zIC7zIi1yn4Cdb+wY1rdVUhN62gDdD9R2JnhZ/3layYT7Skmize7LIbuVRYGgg2THaLkkjgy0tu/ghb//wLtNqH8lgL99NY519sGu0rXN4IJoZ3QKYOjuDlab2Rhht11Kp4e1holFh+7ZMulvyB/q60vkMGZEadxCBj7blokOdyWXyBK+XEyoK/YIvKLifY0veUJGetFLOhC8gHjERNVjbQPsLbMssm+6bZD5Er7xcrHSjn/V0XbfwbZOtzJPOXJuJ64EUADFkAEmQfEAMbfYFNgs+sHVb/3Skkqb/hhZ8qt+EOk0wG0aXLF+UU7aeRkopckOzz7lmZyfpymd3lENZg1DEVVQ50wNc32If5jpan1m8WRwxk1DH+XJaZ67s+tF8dlSRbUVJZUY1IZT3eXEc2XJiphJimMRNwwRxGmWbE5SOVVaWfFditQqcKHCCeJJdfSyza+YWYxDT4iiSWee3cs5CvQaz7h1r8oqNXj/b+C0A67JqKyhmx1uJxpxJtwDDRCqByvNZzm3mKtYwO5jyd+VVoc5kIwt+bjXAImnE3p+ir3yswgvLESZy+d0irtP4QqHQqRuDlqi8DBIS/c+vRFG0XI0oafS51YAKxYSo0ensEpzDirPwNTYYhnIoJKFGJDYKSAxKolcKeYNS0OdvjAfjfkE6HmnjIu7jwMXKBnSKrYPd4W0dkRMD3HIncT3G4rNb1AnVcSJRiCGTnYxTklViK6xbmqjAuPrCg85MUA4hQVDi8XgQhQR/I9fC+tAS2/98N+m22vL7e1/BPU89OV+9d+NYbVX5U2M5zT1/FtbNf/S9B523P4Ui7R+eCH/OB6y1v76tNtotddx04qX3siHPzB8/fqT5H+bah8auHbp2NfHvL1XXnn/wKz9MjB8Wu+s+unho9uDQhg/vujj7nw+uHb96yxP9v9h79gD405nwB1/3Xz5rvz4+smG/Z/bSixM3Baf0X02/MuY5xye/eyTatJD/4o8eu3ViuvNp39mHZ+72XzzfNL5rfP7mn95Rde+5fz2ev7C++Zc3/+afXeLL9bu/MPvbdfe+O1kXbU/Mhy9Mvf/ZLz9d/c49e67MHYCtn9+x4f4Nl8M/uX3ghdMH3ng3OV7d6225g3sz0vXa4R/cIgu1NZ0bX3z7ypmvztacxVt2v5Y/f6BYOpj/69G/PPrE1e7B+chb35QWjq7/tBkvvFR7CX3jzOXT3APvK/ccWTN3+PE1z87fWvfqxpHvLyQeuG/f75J7Hv5x88nS+v39B0//fnv92kffOfeZvx9961ThklNzsBQ7sfXKqaFX3zxZuvid83eOmYfG/nb7xzVVVZ98UlO112x73VpTVfVfuvWw0Q== \ No newline at end of file diff --git a/docs/cassettes/chatbot_34.msgpack.zlib b/docs/cassettes/chatbot_34.msgpack.zlib new file mode 100644 index 0000000000000..b5cd2131abbd4 --- /dev/null +++ b/docs/cassettes/chatbot_34.msgpack.zlib @@ -0,0 +1 @@ +eNptVWtsFFUUXh4qGt8immB03NQo2JnOzM7OdtrwY7t9bWu72C3SYkydnbm7O+zM3OncmX0UMAhIIkZ0UKL4AvrYJU2tGApFXlYJ8YVRiBL7Q40xPoIiBuMjVNE72620gfmxO/ee737n3HO+c2ZdIQ1MpEB91pCiW8AUJQsvkLOuYIJuGyBrQ14DVhLK/Usj0fY+21TGFycty0BVFRWioVDQALqoUBLUKtJMhZQUrQr8bqigSNMfg3Ju/O9VXg0gJCYA8lYRD6/yShC70i288HZCmxBNQIhEEqhG3FYJESEFWaJuUURQRxlgEqKqEsVYXErCgoSVBEQMrwkYJ3LQxoiYoipWjlB0ImqIuoKSlLec8JpQBa4TlEMW0LxryokZvhuVu4nwvRpRA2Mz4DYCpnfNI3hHgzJQ3a2EYZEcJDVFV1ykjvcY/I8sE4gaXsRFFQG8gd0YOImWbbpMNBVYU0gCUcYp/spzY38SIssZnpm2N0RJApgd6BKUFT3hvJ7oUYxyQgZxVbTAII5XB8WiOIMpAAxSVJU0yE+ecnaLhqEqkujaK1YiqA+V7kdaOQNcah5070biSuiWMxLBQQTDFUtzuL46wVBcJUXvzpI4+Yqu4oKRqojjyRtF+8HpBkOUUpiELGnHyU8eHp6OgcgZaBGlSHQGpWhKSWdANDWe2zN937R1S9GAUwgtvdRdyXjRnY9iGCrw5gxilNMlZ6BYiNEZh4Fl5kgJYg5nJ52XIEwpwBk/19Ulxbti2pLmTDK0vE6oS4VzsfqG7nglZJdzOdsKx0EwleZjbFbyBRMdudCyFMkE2ADH8xxTSTIUTTEUQzbRPGxo69S0WlOml9YHfGmkPxSP1PA9tpwNUqGaeL0dyQK7lgKBFR2JcKaRZbs7a2pWUit87V0rTauxO634qFYUbWoTmzP1TV0ddelMNYGjs9OKvKTRL9Y1aslk17Ig1BC9rCWdamX5QFtzqicNu1n/Q5Cm6upzdSuaEtPCo30+ki5FyNNcJe0+w1PaUIGesJJOH+tnd5kAGbitwPo8Tpllo3X9WIfg+PuFUsv2RpovSvjW/lqsSedwvamUE2yAiAKDYGmWIxihigtU0RzR0NI+FCq5ab+sBN9sN0UdxbEM66YkX5CStp4C8mDosmI/7IodV9INH/coCbIGRIAsReUMdZBtk7OKDNfumewsEpoJPAd6im6dw0XVZ3qyGVmyZTmZzmi00MP5lBiwpfhI6YhhQtcNDojUkJscfrhkmdLdIL4rTTI0STNv4dZXJNxm7mUMaFokAhKejlbOGS/XxKzbY0t8jN/H48RX48EkqbYMonasFmpYmaiaMEygQlE+kCXxvACqoim4MMXf0uRFTr8fH95/KcCCKYBndIErlpU+Mh1hApffvcRFGk4QhEOXB01R+TBE8PsPzEQhMD0ahtXQ/ksBJYpeGg1lp9CkIjvjZXjRxYHKSpblBF6SfBwdkCV/wBcXBA6wYkBgZfGNUD0ZEqUkIKNF/TmF2s7WYEs4tK+DnC4kMmJMfpkKOkS6Eo/no8DEhXEGJRXaMh6WJshjrrZgpzNSKQmApgHNCTFaoHk/WYPH0BTb/7Lrdydt8RP1eN4tp544Nitz11PzPMVnjvVsS+tRev6GP4VjR3+6cu+xf3YurP2od2z2k7feXOMsfLssv3k7qG5r/vyoceX1a9upjVsu9Jd/ITPbE+xv/E2e6JaWtQNPzFMUe3X1y18NpBYtP7Z+ouNcSnjspch24b0XJhreqdq7fsHZFzf2/cQOnFx57abjdxaurxur2hs4/cxfxvsTh2bdE/5sLzl69/fzX/hw1/6vz/y2v3rTqm/XHyS29iZuyT7t8fAfj/6ilA1/MffAq31tvX96G3hhyexHN1uv098cPhd8cayKfOCDuVzL71/+8MrIj2PPL7ht98Rr/6zeOndfTZg4tXU+RcwfOSKMVh9fXHH66vzJ8ztgZA333akT7971V/iT5x880njHNZH8hdEb5M7Q6E1jD+85eN73RGfDwHXhHfe8VPXrprPfdqw6s+CPnqtuv2/el6dX/7p9kXP7hpMXfk6rX0e2Hbrux9ea+Pu3dU2sBVsWPde3p/VMZNt42cIbFty3sY9JnODPX+Hx/PvvHE/Pp9wjHbM9nv8AoSZdwQ== \ No newline at end of file diff --git a/docs/cassettes/chatbot_36.msgpack.zlib b/docs/cassettes/chatbot_36.msgpack.zlib new file mode 100644 index 0000000000000..39bd881487594 --- /dev/null +++ b/docs/cassettes/chatbot_36.msgpack.zlib @@ -0,0 +1 @@ +eNptVX1sHMUVt2uhlLamVmkkJKRkYlVtFN3u7d7eh8/BpOc7n7+wz/FHYqc4x9zu7O3mdnfWO7v3laZqkqKgJkXZPwCJIgXiy13lGoeQiEKIKRVUFERLPyCRGxSpRUSE0oCaFlWt1HT2fCa2nJXudmfee7/33rzfe3OolkcWUbHRPK8aNrKgaNMFcQ/VLDTjIGL/qKojW8FSZSQ1Nj7rWOrSNsW2TdLp90NTZbGJDKiyItb9ed4vKtD2029TQ3WYSgZLpT83H9nfriNCYBaR9k7wvf3tIqa+DJsu2qewA6CFAAQK0kzZ0QAkRCU2NGwWxAxSQBaAmgbqwXiYwMbAVhDI0DXAMihhh2pkVE21S0A1wJgJDZUobLsPtFtYQ54TUiI20tsP+MAa333qFtD/HR1048wadYcga53ygw7HQb4Pa9DnGWwB3kZGjnsvWdAxMB0kYQBLjgQtGwEFl3asBv0irXXIu+mpAZUAvQQMqKMd60OZpjs6lpDmbWVNmwliRlcN1dM06B5P38S2ENTpQoYaQXSDZmzSgtqO5SFxbORATUFQouW+0tRWUTCx3YW1JTwNRRFRdGSIWFKNrPtstqyaPiAhWYM2mqMxG6hOEHcuh5DJQE3No+qylfscNE1NFaEn9+8j2Jhv5MjYJROtF895uTGUFIbtnkvRIGL9/pES5ZoBeDbYwXLPFRl6YKqhUe4wGqTxVM26/OXVAhOKOQrCNHjsVpeNF1brYOKeGoJiamwNJLRExT0FLT0cPLt633IMW9WRW4uPrHfXEN5yJ7A8z0bOrAEmJUN0T9UL8Ys1xsi2SoyIKYb7DFcVMc6pyF36RzotyumM3jVYUOK7e6I9uf5SJtk7I3fgwO5gybH7ZRTL5cOZQFEUYtnJUnwix/CRQCQYDgf5DoZnOZZneWaAC+Pe0SldT1gSN5KMCHli7JJT3eGyIxVjbLxbTjqpInISLIrsmcz2F/oCgZmp7u597B5hPL3Psvtm8qrADpOxgVE4WEgOpCd78oXtgEbn5FWpqy8Ee/p0RUlPxLBOuImhfG44EI6MDubKeTwTCO3CHNuTLPXsGciuCo8TBIZrRBjmgh2c9yyscENDRtZW3Fkhyv/MQsSkHY4OV+mR2Q45VKE8RG//ptaYHidTg7covLGSoJx0F5OW6gOBCBhDJghwgSDgo53BSCcXAr1D4/Pxhpvx21LwzLgFDSJTGvasUL4mKo6RQ9Jc/LZkX/TITivphU97lEFFExPENKJy5yeZ0eW5yfQnzi53FoOtLB1J5bpbd7HO+kK5WJBER5KUfEHnouWgoGaQI8rnGiamhT03NCBGJ+4sz0cXGpIV3s3RXDmG5xiOf4m2virSNvOSMbFlMwSJdFLbJXfJp8Oi12NdAh8SwvTgt9MZKWqOhMacTALrlJlkOzAtpGEonS8ydF4gTdVVWpj6f+MWIG4lRI1fXK9g4xyi90UtWC8r98pqDQt5+F4St2CC0Wj0wu2VVqAEqhIVoufXahG0Oho+oJMX1ys0IE5yZL64os2okrv0LbpIiyiARFEKR7hQJixBIQzlEBeBfFgKyx1cSDwdTzJxKCqIGavzz60lpoZjQ/3xFyaZ1URiUubyLVkzMDFUWa6OIYsWxp0TNexIdFhaqEqxRmNT7rkOMYo4DglhKSNEuXCI6aZjaAXtC9pVvElbvy4PVr1yGtlfN+/dfPTLTfWnhf5u3rSP8/gw1/Zw4QcPfxhNHPzG00tP7nrr4qnHOsc3Bq6CYf3Eh6SS3Pm//XdsOX7X9H0XPr1y4+Xtvcdm3vus9QPLfyg4/EbqnctPfPva8Obf/vz9Qf/QK3eHf/Xa9Z985PrLGy5uOP6Xq3sGgsPxEeX0ZLmt+T/vVvqO+t45a3c1HW796MrFl9qy99yLJp5a+KNv78aZ0Uevd2278/XIJ0Lm2Jkbn33epbfs+P5ru47+NPPDPvvVyJ/axPdnr29kH/nmHbAl/fbIydaHjnz8aa/8h3c33dN2ObN44cSN32/q/+f033f+becvH9ic++SpN55M3n/t2ed//PljG2LKf1Nbn/6gZTFx7EDrVzfdtK/+bnbmma/8u/WFrz/4xKWO+0/8665HfQ+1lR+/ceTmfRMtsa1DhchfL5XfypNX933c4XvzWqL5gfe2XT5Y2Dudunh+jrkUeuTCVmHT9Ml0/RBbmh5//muvf/dLTU3/B/U9eXg= \ No newline at end of file diff --git a/docs/cassettes/chatbot_43.msgpack.zlib b/docs/cassettes/chatbot_43.msgpack.zlib new file mode 100644 index 0000000000000..fa62ee2c5d484 --- /dev/null +++ b/docs/cassettes/chatbot_43.msgpack.zlib @@ -0,0 +1 @@ +eNqNVQ1sG9Udd9sxdbRDlRBsAgE3b1ABucudzz7HrbrOcZw0zVKXfDRJW5Y+3z37Lr67d773zh/pso6mWjSIEKeyTEMMVJLYNEsDoVFhlBa2roWxCTQ0TYRKaNpQ+VgntI7SbdLG3jnO4iyVqCU7ee/9/r//x/v9/+9gOQdtrCFz1bRmEmgDmdAFdg+WbZh1ICaHSgYkKlImdiY6u8YdW5u/RyXEwpvq64GlcciCJtA4GRn1OaFeVgGpp/9bOqzQTCSRUnxn9eb9fgNiDNIQ+zcxe/b7ZUR9mYQu/H3IYYANGcCoULdSjs4AjDVMgEk4JmriPLQZoOtMJRiPkyGIISpkknTNoBRTRA5FJDVdI0VGM5m4mdY1rHL+OsZvIx16TnARE2j4h+qYZb6p6caK6zRCypLfa7DM00QxE2DuZQK1aAdDewU2WItYcvL/MKICM4M/l81EjGWjpA6Nr10brwpymplmUo659XPJixBfI2sPLQCjYcYoMiYw4FWo76c7BlKg7m2lLcIGEWtopuYhTbon0L+Y2BAYdJECOoZ0g9baoiIkju0x8Vx4qKxCoFCJvuvbMKEiTNyZ5bJ7BsgypOzQlJFCE3WPpQc1q45RYEoHBE7RmE1YEbU7lYHQYoGu5WBpwcp9FliWrsnAO68fwMicrubIkqIFVx5PebmxVMgmcecSNIhoa/3OIu0PkxG4YAPHP1tgacE0U6d6Z3VA4ylZlfOTtQcWkDOUhK32nltaMJ6pxSDsTrYDOdG5jBLYsupOAtuQgsdr923HJJoB3XJs50p31cMldyInCFx4dhkxLpqyO1m5iOeXGUNiF1kZUQ73CF+SEcpo0J2/1N8vp/qTxpa2vBrriUfimdZisrklm2pAgZ5g0SGtKRjN5KRkoCCL0XRvMdadYYVwIByUpKDQwAoczwmcwG7nJdTS0WcYTbbC72wOizls7kolGqVBRylEuVhjqtlJFKDTxMHw7t50a35bIJDta2wc4HaLXf0DNtmWzWkitwN3bu8Abfnm7f298Vx+M0Ojc3KasmVbCMS3Gara3x1FBua723OZHQEp3NGWGcyhbCC0C/FcvLkY3709XRMeL4osX41Q4oMNvPeZWdSGDs00Ud3xUFh42obYolMJDpdoyYiDD05QHcLfvlauTrynEm1LEr5poolq0j3VbGt1TCDMdEKLCfCBICNENgXDm3iJaWnvmo5V3XRdVYKzXTYwcYrKML4o+bKsOmYGKlOxq4r9lCd2epNe+LRHWViwEIZsNSp3upftWJj1bGvT8YXOYpGdBqY2WHHrnqqoPj9YyCuyoyhqLm/wkcGgqCWhI6fmqiZ0LHluaECsgd1xMczPVE8WdTdFc+VZgWd54ee09TWZtpmXjIVswmIo09eFFN35OgMUvB7bIgohUaKF30znuqw7Cux0kk3IoMrEm+kUhDoCyosFls4LqGuGRi+m8lt9ubA7EaLGL6wEEJSB9I0rByvXyp+uRdjQ4/eSWKIJRiKRl64OWqQSKSQiCi8uR2FYG40QMPALKwFVinHBwNOFRTirKe78N+iiXwlGBF6MJMOCICmiBIOhgCgCmaelkQJiSHom1szGgKxCtrMiQLfc1Lcj2t4aO9HL1iqJTVgLT3vZRNjUUqlSJ7TpzbhTso4chU5LG5YoV0e0z51rkCOQ52E4nKSueSnENtI5tMj2P91NeKO28sY/UPLu00yfXZW746G1vspnDf1+9hl5ZGviDL/h7JXvPnhmXdvwO49Ic7ceuPnQ21/91tq4abd/+cSbb/947PrLJ79e1taseWjkyt/3D358+kbfkYFZ333H7uw59+En//r0wswN+ZeKBwYuPLnrjY3n//r+n88cP7/3B98efWp47OPev/3Ouc/N3tLnbvnj6+PK6NHD/nsvzde9WbqN7xp/+MS57GOdA492a9Ibl8jeicM/e/fUXd1gw7pCu893+mT407nQ93543WhLy9l9a5+LzjYMrd7wBOk6tD563djYWfX7N/U1n+9+eeSxi5EzI5Psxacv75v8xbrCkZv/YA+7woe3rP/lDf+8mB99tftW5fHknmP7hw58NHk0+8TYkfc3Dk1OX/+Xt8bXK/LIK+81tVz50it7nn/532JrQ+Jc9tefPCB98Tv33/6nX1mXV+147vbA7O+Hv/nkf9L3ZJSj5B9OLPtBWRe/MJq48+SP/BdXj9/d87r0wU97Rg7P7O17r+0nX/nN3l3++Y1bK8Vd44tfqEvtW+3z/RfE1cHo \ No newline at end of file diff --git a/docs/cassettes/chatbot_45.msgpack.zlib b/docs/cassettes/chatbot_45.msgpack.zlib new file mode 100644 index 0000000000000..85d17e80065a1 --- /dev/null +++ b/docs/cassettes/chatbot_45.msgpack.zlib @@ -0,0 +1 @@ +eNqNVXtsHEcZvzQEkCrRIhQ1VEk7dRqQGu9692699whWsc938Z3lR/yIH1BZ+5i73dzuznpn9h42hpI0BAlVsGkFKkqLiM93wRinqQ2EJI6QmqqpqFTxkJAdqFqoqESrtjSo/aeizJ7P+IwjNffH3c3M7/t9j/l93xyv5qGDdWTtWNAtAh1JIXSBveNVB066EJPHKiYkGlLL/X2DQ7Ouo68+pBFi41hLi2TrLLKhJemsgsyWPN+iaBJpof9tA9ZoyjJSS2t3HJ5uMiHGUhbiphj42nSTgqgvi9BF0xhygeRAIAENGnbGNYCEsY6JZBEWtFu4AB0gGQaoBeNzAoIA0SCQ6RqgDCghlyJk3dBJCegWSFhZQ8ca29QMmhxkQN8JLmECzaaZZrDFNzX9cs11FiF10+9tWBZoohgEwUEQbES7GDrbsEIjYtPJ/8OIJlk5/IlsFgK2g2QDmg/cHq8m5XUrCzKu9fAnkpcgvk3WEVoAYEpE24gGqLoKUrSIuVu4eYTumEiFhr+VtQkjIMbULd1HWnSPp7+YOFAy6SIjGRjSDVp3mwqSuI7PxLHhmaoGJZXK9dXA3WUNYeItbpXgeUlRIGWHloJUmrT3i+yUbjcDFWYMicB5Gr8FawL35nMQ2oxk6HlYWbfynpVs29AVyT9vOYaRtVDPlyElG24/nvdzY6ioLeIt99Eg2lMt/SXaKxbgWSHCcs8WGVo83TKo9hlDovFU7Nr55cYDW1JylISp96FXWTdebMQg7M31SErf4BZKyVE0b05yTFFYatx3XIvoJvSq8f7t7uqHm+5CLM+z4QtbiHHJUry52kX8eosxJE6JURDl8H7KVRSEcjr0Vt+fmFAyE7LZ1l3Q4iOJaCKXKsnJw5OZCAqOCCWXpDKwPZcX5WBRCbVnR0vx4RzDh4NhQRQFPsLwLMfyLM+kOREdHhgzzU5H5fqT4VAeW0czfR3ilKsW29l4Rybp9hWh28nC8PhoNlXoCgYnxzo6jrHjoaGJYw7pmszrIbYXD6YHpO5CMj0xmsgXDgEanZvX1bauVinRZWraxHA7MjE33JPP9QbF8EB3biqPJoOtRxHHJpKlxHg62xAeFwoxXD1CkRMinP9Z3NCGAa0s0bzZ1kjonAOxTScUPFGhJSMuPl6mOoQvX6/Wp9/Zvu5NCe8ud1JNeitJR28GwTAYhDYIckEB8NGYEI5xIjjcM7QQr7sZuqUELww5koUzVIaJDclXFc21clCdj99S7Cu+2OlN+uHTHmVg0UYYMvWovIVRZmB97jOpzqX1zmKQk5Usfarm1lupqb4wVSyoiquqWr5gctEpIaTL0FUyy3UTOhR8NzQgxsTeLB8JL9ZPNnQ3T3PlGJ5jOP43tPV1hbaZn4yNHMJgqNCXhpS81WZTKvo91hbiW0MiLfwhOuMVw1XhoCt3IpMqEx+iMwgaSFIvFRk6L6Chmzq9mNp3/RXDXrmVGl/cDiAoB+l7VxVq18pdbUQ40Of3k9ikEaLR6JVbgzaoQhQSDUYvbUVh2BgNHzTxxe2AOsUsb+KF4gac0VVv9UG6mBCjIZUTQ4KsKLR6giLKES6qwIgSlqMyL4jn40kmLikaZAZrAvSqnWO97T2p+K9GmUYlMX32+jNftRC29EymMggdejPevGIgV6XT0oEVyjXQPuYtR5Qo5DgoRyO8GOXEVqaDzqENtv/pruyP2tp7/+2Kf59W9oUd8v3f+2yg9tlJ+n9nneDuvnJz989XxM4dR96/OJe60T2XXkkMn9w7+tvHLzA3ln929qNp2AXa/v3cqaeeXl2N7gpcv/PrO/7RikuziYuvfsVIlZ3pb5x+682/xh4K33jx/IMzM6FT95wpnlz71sA7i/P64r3M9ckD07Hwtb2lP2v3vfKE0PO35f33Dv/gvefSl7kj0vMH7vr72JnHlkp7GPaf4/8607z4WlsgEHH/+OaTu/ZN7lp6abd+ffzo5xe/cyAgpIufeuqXf4l9aV9vMjjyB+/ts+8O3fnyfecefffH0e++/jn5tfzUZeucwdz04MFrux6+68OT88tHpqdf/8yVN07fiIWuLZz+zw/dtPLiMzsf/f47r3zQR/6UbF2Dvfu6pp5/YQadUi7v/+Ijsa9W935h/9WPRp7c/caeez6oHHz75uTY459eekD98MDa/W+deynNHgyuvXf10kD299/8SflIrOVHe86cmKDF/PjjnQG5s5DquiMQ+C8J5Ld8 \ No newline at end of file diff --git a/docs/cassettes/chatbot_48.msgpack.zlib b/docs/cassettes/chatbot_48.msgpack.zlib new file mode 100644 index 0000000000000..fcb5b94524b87 --- /dev/null +++ b/docs/cassettes/chatbot_48.msgpack.zlib @@ -0,0 +1 @@ +eNrtWVtv20YW3r7mqSj2dQGWKFBgIdLU/RIEC1mS40sdBbaT2GkCYTQ8FMciOTRnqIsDPzTtH+BPaOpIheGmLRrs9rLZ533YP+A+7I/YX7CHIhXLSIG+F9SD5Zk558w53zlnviH1fD6CQDDuvXfJPAkBoRIHIno+D+AkBCG/mLkgbW6e3+/uH3wVBuzqr7aUvmisrRGf6dwHjzCdcndtlF+jNpFr+L/vwMLMeZ+b01/f++CZ6oIQZABCbSifPlMpx708iQP1iIcKCUAhig2Ob4WOQoRgQhJP6krTE2MIFOI4ysKZ2KYiuSJtUPo4VrilTHmIEn3mMDlVmKd0vIHDhK2rOUUNuAPxJmIqJLjqWU65sfcmU7Y+dpUDbpo5BX0mAhQJuJkb+3PMh3DDSiggUM+e4ozLTXDiqYEvtRLXXOaxWNLDuTx+CxkAcXEggxBwjJv7iK0Mg9iQoVfP5jYQE5H/75/eP7e5kNGrm2h+SygFNA4e5SbzBtE3g1Pm5xQTLIdIuMAoPFjkKroYAvgacdgIZolW9B3xfYdREq+vHQvuXaZRa3Lqw7vLF3FoGubHk9HrLjrR3Fq7P8W0e0peL9V047uJhilhnoNp1ByC/sz8xfovqws+oUM0oqUlFc0S5VerMlxEL3cJ7e7fMEkCakcvSeBWSj+szgehJ5kL0bx1/93t0sXr7Yp6Pq9Xv79hWEw9Gr20iCPgHzeUQQZTjXK0EX1pzCjnQwbR1f96PWr1+u6dnbHdetSpd4Zb0/7G3ROrxguPStNQblnQHI4q/cKEFpuDw2nrwVDLVwvVUqVSyte0vG7oeT2vbRsVfnfvyHXbgWnc36gWR8J7aHXXK6ehOWnqrXVrI+xOIGzrUH18ONgabxYKJ0fr68f64+JB7ziQmycjVtTvif3tPbIz3tjuHXZG49sKeheOmHlns0w6m65t9x40uSuMB7uj4b1Cpbq3Mzwd8ZNC+SE39M7GtPN4e7DinlEsakbqYcUo1Yz482pZGw54A2lHX6H01wEIH5sNPp8hZDIUz8+xDuE//56njfyiu3Ndwn8+b2NNRm82ApZTClVlH3ylYBRKSr7eKFUbRlW5u3tw2Uq3OYhL8AobbSLXYBTPJO1yW8HjIxAg74TS0mrfHwTEExbWZWfZA3Nqh94QzIvWb1b/m7j6MbVxPNizGkx8LkBL3YwuD7W95EzTtto/JK2m8WBAPHa6aIXozaINxqeTsUlD07RHY9eon5aKrA8htV6nKn7A423QIc0V0Yta/VW6sKzDC4zd0PKGZuR/wtAYxbaLY/F5gLECxUNUTqOrnEsmcc/dKebLxQom4jYeX9QJTdgP+23uYqWK24ofgMOJ+fNEw/MDHOYyTNTib3pAi+i8jMo/visg8QDDo3xeWqTZ+NeqRACx/TiGazOler3+z98WWpoqoki9bPx8UwpztmImX3DFj+8KpCZeGOJyspTWmBldfYSDXqlarZQL/T5AzQBSM0rlAjVNbLNqoU/KtPZta0NrEWqDtr+ox2jePrrX3N1q/f1QWy0sresnBDb3uPCYZc32IcDERBfU4aGJh2cAM7S11zyKXtdoHQwDwKS1Wt2olLX17v6Csj6bxXnzBr/+5YlJJGkgbTBTbagxv1FkN63ZWm/Dw73u0Wh3x2zv8MoDUaiufzKg4+1HyAQq7x9jfaYa+jUj6osKRgGKFS8BbS6bs1DJLWlllVW0uI80o6rla6iV8FjPQtcg8NHDeAvL71m1ch9IpVorxaZtzmjMtEi0zDNhojaMnIqWJVEbz1I2U9+ybKyxpEQVBwFYoSDohhc6zllOdfgAK74vkomcipsjvfbQfySOVOrp2a1bfzigrlHZZGoGRKy4uCplWCwUP8xwSGpiEwL4WGRoJGiQDIgEiPjxKcMiwcLiQQZFAgU+rmdQLBQbT7wnXobFQvGRPc2QSBrEZNkNK4VC2hmDpFAIig+uGRgLRRrwcQZFUhdjllHI8uadIbFEYkyCjEQSMP6W3bLeYrEOlIQio5G0TbLbxVsWIdn7mxQKHsr4tXj8e1MGSQJJdsV4e2KwrE+Wr7QYONkdI/sp4Nnvh64KyX11JfhP2917nae3bv0fs0k9Cw== \ No newline at end of file diff --git a/docs/cassettes/chatbot_5.msgpack.zlib b/docs/cassettes/chatbot_5.msgpack.zlib new file mode 100644 index 0000000000000..983518a3a0ec4 --- /dev/null +++ b/docs/cassettes/chatbot_5.msgpack.zlib @@ -0,0 +1 @@ +eNqdVWtsFFUU3ooajCBqIiQKOlQFA72zM/uY3W1dsd1u6RbbxW5b2qI0szN3d6e7M3c6d2YfrcZQBCNqdHyExDey3TWlFBBEXkWEoPiIrxqlKiTGgI/EaJRgFAze3W6lDfxykt2Ze86533l859zbn09CDUtIKRuSFB1qvKCTBTb78xrsMSDWH87JUI8hMbs8GGrZZGjS2KKYrqu40mrlVYlGKlR4iRaQbE2yViHG61byrSZgESYbRmJm7KG+chlizEchLq+kVvaVC4i4UnSyKK+X5lOBhTJVg8LlFVS5hhKwIDYw1MofvJ9IZCTCREEUVXXgQECWFKlgqRAZS95Y1yAvk0WET2BIBDqUVZKHbmgFJIZ2PZiPQV4kWT6ZjSGsm8NT497KCwIk2FARkCgpUXNLtFdSKygRRhK8DgdJsAosVsUcjEOoAj4hJWFufJe5jVfVhCTwBb21GyNlqJQc0DMqvFg9WMgMkFIourkzSIKoDliXZ0iBFYqlHW6a2ZYGWOclJUEqBhI8iSenFvX7JitUXogTEFAiz8yNbx6ebIOwOdDIC8HQFEheE2LmAK/JnGPHZLlmKLokQzPvW36xu5Lygjs7zbK0a/sUYJxRBHOgSMNbUzZDXcsAAREMcyMzPFGfBFSieszcxNpcr2sQq6Rd4Joc2aYbuD9LuIAfHc2X+ua14LIJEk9YZmdrCS/mSJ0mVVA2FxWCKmVjbA6K9VQ6uEqnm1ra2DLkK7lpuSQN21s0XsERQoV/gva8EDOUOBQHfZckfKRAOMmmED7pUgDTKsIQlKIyh9pB8/jAgEDtjvHuAkiL8orUW3RrjhSZT/WmU6JgiGIsmZIZT6/DLoWhIUR2lraoGiq4IQEBGZPieNzDJc1E7QdJrgxgGcCwe0jzSwJptUIyKtJ0gKFARlTPmGMVMp8u9JnXzjrtHMMwVZSkCAlDhCEjXItkwg6uolQNJhAv7k0DMjEwIckSIab4Xxp/bGadZPPuiw10FIfkoMg7mOJzYLKFBgv4hSQuwDg8Hs/+SxtNQNmJicfl2TvVCsPJ0bA2Ge++2KAE8RqDh9IT1kASzbHbyKJL5MWI4PY4BUZw2p0ujol4nC43B+2RiOjkbexWXx3w8UIMglCx/8x8bUdTdWPANxgi2D6E4hJ8+uuyaV1dQqQrLHuXpWK+FX6PPx7IhOuW9kTcyLbCkTH0QARWx5Nc2JYW7NXR9oyvNQ5Yl83l4DgH6wYszdAszYIGhkNLmztkuVYTmeV1LnsSK22RYA3Xa4jpatpXE6kzgmlo1NLQ1dkeDaTqbbaejpqabrrT3tLVren1PUnJTjfhUEMzvyxV19DV7k+mCJu8HvNaqyjSmxIpi7c0IYBMCCDzYWMq2Yn5qKLEYg946amnYRVVT073oJLIVJHBIs0EyZuXYUjSobcJKXDsWVIDIymJ3non76+XY7Gu1mokY6a1MRlvsnGu5mXx3iTqsTnbEEP76zL+zobopCIwdjtgSnXgGIe72DwXQv+fUe1qB5MHHgTV8WssryCsSJFILgQ1MkDmoJBAhkgOdg3mCOfN1R3mTrfggQwT5hxh6PAwnBPUkCNzAu2/4yFbuBWK99nqXGHslOiRsu5bHptuKT7TyO/8ef2patR/97Vrfz23/qcXB8rW3L3f0Trr+TOJZ7iZHfxBecNLYF/W+e75E5ZFZz69+pE/z/TtzyydZYGr8cEHrPetuunkEnrOZjBy54bmga7uD7cu9q6c/cKux0+Ozl447519sz44vnbvJ3u49S+K3mMZ36F7N9y4YPS29d/fcU/vplP9LY+0vvvXdWff/OLzV64cPTrr+iX3fHL6Zdg0+4ffTpVZ5p5FX4XmnF6Dpy+YM7Ag7ve7377rsoPrWvOvbmvrXLjz8PuxU0Pzfjrwd+eh/lRq2yl0dO26mTMun7v7ivfWuu/89umZz2254f6+44uML4NfLVq/ePS3j1/+Z/OqBvDLXfH69i+Poy3CmpG+3y0nzj7zzZIVr0q7ORqfC+y9esbh+de8txF99MfcH49d5fx59KGNQ9TC7BuuHd99Gvy5e8b04dvPLv7s5qFNlYsHhl9nn5jbVtHYltsx71F34NbTTSesxYJOs3xwpN8Tusxi+RdCumK8 \ No newline at end of file diff --git a/docs/cassettes/chatbot_7.msgpack.zlib b/docs/cassettes/chatbot_7.msgpack.zlib new file mode 100644 index 0000000000000..5f0946c203b32 --- /dev/null +++ b/docs/cassettes/chatbot_7.msgpack.zlib @@ -0,0 +1 @@ +eNptVXtsE3Uc7yQKKosKIjFiqEPFwO56116v7eaCXdfSbtmDbsA2GOV692t7a++xe/QxnERmBAUlF42PGBW3roUyXopzzG2AgqgsSkBMhnEhSmKMgJH4h4MR/bXrZAtc0sfv9/1+P9/X5/u9LekokGRW4At6WV4BEkUr8CBrW9ISaFOBrLyU4oASEphkXW19Q7cqsaPLQooiyiUGAyWyqCACnmJRWuAMUdxAhyjFAP+LEZCDSfoFJjHauamIA7JMBYFcVKJft6mIFqArXoGHorXQYqms5xJ6nuLAiqJifZEkREBWpMpAKupogTecwIBI9iooKgghIBzLs1lNHt7h8FdWJEBx8BCgIjKAFwrgRJiLokpZJAy1dKRDgGJgpmO6B5MhQVa0/TOjP0DRNIDogKcFhuWD2r5gOysW6xkQiFAKyMCQeZCrjZYJAyAiVISNgtSklXaQEsUIS1NZuaFVFvjefIqIkhDB7eJMNjcEFoRXtMO1MAi7x1CXgGXm9ThKWFHsYByRFYrlI7BuSISC8aTEnPzz6QKRosMQBMm3UEtNGu+friPIWk81RdfWz4CkJDqk9VASRxKfTL+XVF5hOaClHXW3u8sLb7kzoTiOWg7NAJYTPK315Brx2QxjoEgJhBYghvYRlqIFIcwCbfSaz0cHfH6urCoWcqx12pxhT8LvWtkWsArGtURCVTwBYA9HSb8xTpvswcaEY3UYwS1GC0GSBG5FcBRDcRRHKjFSWOlt4rgKicHqXBZTVObXBGrLyXaVidtRR3nApdbGgVqBAktzY9ATcxuNbU3l5a1os6nB1yop7rYoa0Jr5PpKL1UVc1X6Gp3RWKkeRqdGWabMbaacbi4U8q22C5yMra6OhmuMpMVbFW6PCm1G8xoBQ52uhLO5MjgtPMxkQrB8hCRGWLHss3+KGxHAB5WQ1o2b8N0SkEU4MKAzBUumqPKWJOQhGPk6nZ+crtqqWxRekKyAnNSGXBJbrDda9PVA1BsxI6HHbSUEWWK26ldWN/Q68m4a7kjBQw0SxcsBSEPnFOXTdEjlw4DJOO5I9qEs2WEns+HDGUVAXBRkgOSj0nobEe/kykA8FZ9MThYiSEGKZ9tzbrWhHOtj7fEYQ6sME4rGOMzWTphYP1DpwOG8iSgJWTcwIISTtW7SSOzPS6Z4l4G5YgiOIRh+BI4+S8MxyyYjCpKCyICGS0pJaKPFHBXPzliZCTebSFj4Uj3L0xGVAfWqv0LgIDPlUr0ogYhAMQNxBO4LEGE5FjYm951fgLKWNEPj/tsVFCEM4KpME7m2YsPTNSSQxc8mcQuGsNlsg3dWmoIyQRWbxTYwU0sG06PBjZzcf7tCHqILk3vjU9oIy2ijT8KDjyCsFquNYBjMb7bBA24GVgBII7ARJspCBw44XIiDokMAqc/xT0tXNNXYqz2OvkZkOpGQWnHyBZHmBZlnA4FUPZBgY7QMHRFUBi5LCaQgltfepB220jaAYX5rIICZbBhpRsrhGppC+592yeymzb0pXkxl28kHTxacXrx9ji73zIKff/9VvKf5n7AHB28sf2Twkv/Rvr0XMgbnhS43WrZgzqtF2DOt4NATsXtRcGrOxJ93P7XirMPw7MjluYHoOFlQ17fqsbrUuW/+ufjqjQO+4bLH97xw3/nY/M3PLlqz4ya+SLzq27yHXSPenF09sDvwcof4TvE593vbSqhoS+/bf0ifLlt4/rk4fwaMosmuS1+s+/ikNFy8fXygsSGonvpx1+7CiQ90usFC4TtP4XCmcCS98ET3trGPLqzfqmtg3n6ox9n7ZLWnWkhSlW7H3ytD71ydp7Tv3PWa/SH33IJujJ39VvPrG35r3hW+Or+x9fIYORS9q+xI8cEmQ92See70ElI8uGfWzo33erdu7N+55RgiLj6OXcG/vVjS+eHjrojtl4dRdsO2B8SR7mTZdxdffGAjcXzJjg7j7Fce65iYGF57om/h+7GqITk4obS8+WvLtvWn3z36y76nlv9Mdj2SGnzYs+iHYx88rfv+S/v1zdHecmbxWfKv+73k+mJXqXrjHss1h/r0/KVX+Pj475u7uE7PuqV/vp756vm3opbOcfOlM95vVs27zoXZrXhF6Vh/4U991xu7N+zb662ueeNormOzdJ9bCub+dZdO9x9fx1Kh \ No newline at end of file diff --git a/docs/cassettes/chatbot_9.msgpack.zlib b/docs/cassettes/chatbot_9.msgpack.zlib new file mode 100644 index 0000000000000..98dd3b8f25693 --- /dev/null +++ b/docs/cassettes/chatbot_9.msgpack.zlib @@ -0,0 +1 @@ +eNptVX1sE2UYH/AHxiAQFI0m6lnBJbDr7vq5DhG7rl3LZJ3rYB9Ex9u7t+3Ru3tv9951bRGQDzFEiV4wfgTECFsLzRggBBWY8ROmSIgfUTeJCajx2zm/IvED3+s62RxN2t77fPye532e3/PcxnwKqlhA8pReQdagCjiNHLCxMa/CTh1ibXNOgloC8d2N4UjzHl0VBhckNE3B1ZWVQBGsSIEyEKwckipTbCWXAFoleVZEWITpjiI+M/jnGosEMQZxiC3V1Mo1Fg6RULJGDpagcBsVKpeoGhS1VFAWFYnQFOsYqpa1FdREWyiKyLS8jQqiLooDMhWiAMYC1qgM0ikN8SCzZDzMqBIQ9/9jtZBMyzElZSgZSHDJ5Nj3EYmEeCiaorii0Q5ES4IsmJYykbHkH2sqBBI5xICIIRFoUFJIDTVdNZEYq3ttPgEBTyr8Wdns7gTCmtE3sWoHAMdBgg5lDvGCHDf2x7OCUkHxMCYCDRZIyjIs9sQoJCFUaCAKKZgb9TIOAkURBQ6Y+srVGMm9pSvSWkaBk9UF8240aYSsGUfCJAlvqLIxQ9orU6zVUWVlDqZpUi9BFkm/aBGQfHJKUX98vEIBXJKA0CXqGLlR577xNggbPcsAF45MgAQqlzB6gCq5HIfHy1Vd1gQJGnlf4+RwJeXlcHYry1rdhyYA44zMGT3FRrw4wRlqaobmEMEwnmdyHEJJARqDP3d0cLGOqLS4vivha/F7/MlQJhqo64xVIVuLI6NroRj0JlOuqC3N2b3x1oxveZJm3Ta3w+VysFU0a2WsrJWllzIuVNfUJkm1Ks80Btz2FJZXxMI1rqzOp71WX00soIfTUK+1Qnd7azzUFbTZOttqalZb2+3NHatVLdiZEuzWBhxZ2gTquwJLO1r9qa5FFMlOTwn84qAT+INSItGx3IskzCxflko22FzupvpkNoU6bc4ViLH6Axl/+9L4uPQYu51mShm6GEcVY376xrghQjmuJYw9Nie7V4VYIYMKN+VIyTQdb+wmPITvDuRLE7s7XH+ZwnO7awknjf6AKlRQNjcVgQplY2wOivVUO1zVTg9Vt6y511cK03xFCh5qVoGMY4SG/jHK57mELichX/Bdkez9JtlJJ830yYzSMK0gDOlSVkZvK900uqroUO3h0cmikRoHspAthjX6i6zvyqa7eE7n+USqS2I8WYddiEKdix0puSgqMsOQhGgJk+K4mb6SZox3BXJXhmYZmmFfJqMvcGTMzMsoSNVoDDmyHLWMMVghgbQ5Y4vtrNPuIoVfRAkyJ+o8jOjRWiQRZuJFlKJCEQH+WJom+wKKgiSQxhR/S4sXG91O4vzSZAMNJSFZ0XlHsa3MK+MtVGjim5e4DOPweDwnrmw0BmUnJh6X89hEKwzHZ8PaJPzSZIMSxG4G96bHrGmBNwbnkUMH5N3uqJ2zR4GTYWOQhy6eAx4mVuWORnkbX3XAF6B9gEtAOlLkn5GvbWvwLgv5jrbS44lEh5XRF1NeRlgWYrFcBKqkMUaBE5HOk2WpwhzBavK2GUeqOA9kmCh08G6nh3E56RqyhsbQ/qNdt7lpi2+oDTmznXL8rSnZWx+5qqz4mUa+ly5pj3vDnzOzHxq+OHfT2WtW1weP9fcOWaZMl4PHF262uJ+Zlzt66oXyu71/Dy/M94BZa0bOr10XHj4Tn0o1009ShQYV7mxo2fHbmeHvR1xfFE6vHzn5wIlX0I+oZdbx41H6jve8n97Q+8dpvc3ovKnNWHzhnT38o/sOR+/nM7vOrJvxauO26qH2U0Jg370ren755s76vL965c5zN++7elPr65GpZT95ThzK7x+5rwJUX2yasYVaed3pX8rLzofq/AOzm1cJbfcEWg14xPfbkg/XHHyf2luWHLr/1Zv7vfPpc76Hh17blV1V+HLdnJGzw+wtO+4aqHrr9/bnfn3j5adyH2WGtly75LttLyzQeupuHDg5c8PbWzfcMufBr8D6S2fnnb/zxlPzP5gpzThxrPrk1pFvb98JywfebHosu+Kvs80fDTR989MPWy58Eh5MzXh6V/3Mhf5PpgcirneOfv1sy6ntrj7x+o9XPpE5NFCrBv+ZahZ4Wtn2S3vqVpHnfwH0sWF4 \ No newline at end of file diff --git a/docs/cassettes/classification_0bdfcb05.msgpack.zlib b/docs/cassettes/classification_0bdfcb05.msgpack.zlib new file mode 100644 index 0000000000000..ca654fe1145f6 --- /dev/null +++ b/docs/cassettes/classification_0bdfcb05.msgpack.zlib @@ -0,0 +1 @@ +eNqdVmtsFNcVhqIKqBCQtBTaRGRYVSRxdtYz+15bkCxrtizED2wTPwhy787c3R3vzNxhHvuwSyLIgySkUaZtHk1aU2BZO8YYHFDKy0WpWmqVSAmBNnIikyaqWpqQSC0tVWNSemZ2jdeFXx1pd+7j3O9895zv3Ds7+jNY1QQizx4SZB2riNOho5k7+lW81cCa/nhRwnqK8IWmxpbWfYYqjFeldF3RaqqrkSK4iIJlJLg4IlVn2GouhfRqaCsitmEKccLn359zqdchYU1DSaw5aqjNvQ6OgC9Zh47jYZmCZ21Ot1xTegpTPNYEFfOUICeIKiELiEqoRLInE0QUSVaQk5SCbERXCaD03yiLeQpXYCkqEFR1AWuUBA4Byga25+6OiAAhJATO9nE3lTBke/czIJtKbmpKvTaMYKlKCRpF0hS0sJOKURySqSShiKFrAo+prAABM3RKMrgUJREVgzuwQBRHkF7CcTgph0pEbEXA0LDq2LYFRiTCY9EaSio67SW0JMiCZSnDGAtvBalIFLHYpRMidnHQtuKZQKIGNByarmIkVQzoWILNI91QLT+Mi7HG7JUpInDWWK9Dzys2iam9W+5utC0DGUm2wcxgObZtK4OVM/r/4oAZ5JtTBaVs6XCUNwqyA2Xaa6ezaHc1K5NSST+9Diwb1qY3O1JIUfJ2uLABChCtpoZ4hxXZKXoQI9COwyKPkkkVRClksAwvG+p/mJS6cdBOimSpaXtbPZqOIL5AArTgtEdSQtKShtUESvFy087/9FqL1BRjSKnbSXmclNdJ+SpZWpWYtEQBYyKSkwYIcOZeNQXJgpYqoSXFcjOhYpmzW7BaQnZ0BR2JAjRvFQUL3ypzq9xKsDcie3OAKrlUgpF4N+Z0ANu2ZVt/CiMesnZx1uJCimi6OTzzjDiEOA6DtoEm4YGCeTDZIyhOKPmECOEchHNBxrZmzME0xgoN3DO4WFplHoYEi2XhVHdrRB4qnyO0xeXm6UGrsmjgK+vm0UYgEY5VN+WhNmWKdXmDLuZwjoY0CrII+6OtzZlFxZ4/WTmhIC4NIHT5oDSLpcXDlTZEM/fXI66xZQYkUrmUuR+pkt97pHJcNewwm/2RppvdlSen3XlcLOsKjMwA1vIyZ+63C/0XMxZjXc3THAEMcw9T5AhJC9gc/3tXF5foikurBBfKcp6osj7d4G/oTEaiHiGnhdc8uD5AupCYr+8Ii2vT9fGmZCdHswF3wOvzMKybZl2Mi3WxdOc6LtGNW8KNm4RUMNusIUMw/FtFb6vsyrR5G92bvKmN3Q3tDIoq/iifViLt9WGdxDdopC7ToMfiET7R2BLcEGXWCkKrL5BLRKLxjeFaCtgZGYFf5dvYvNYIxcV4ptHbytT5U/n1zclQe+tD4a2cHEn0xPPB+qzwoHuTEqygF/AHaKbM0M94g4z1DE9pQ4QC0VNmgYXBARC0AvcSfqxo1a+h7SiAEPFbY/3l+2lv44ZpDS8p1IEozdGoKkClBqgWrFBuxu2lWH8N46nxeKjv1rcORcp+Wm+pwZFWFclaAnS4dkrz/VzKkNOYH4zcUu2jltohlRZ/uCJonFOIhukyK3OonW4u3cx0rO5IqbRooibhPOix3ZqjtuyzPbkszxk8n8pkJSbU4/XASWZwiaPlJXCmWm6AEC1p5j4PGxouz0wJbxD2ytAsQzPscevE4KDOrM0oRNVpDXPwLaDnzXGnhHJWka3ysD6PH4JcCxcsJxo8bjHidUQCaWq1cBFjkSD+RI6GCwmLgiRAZuz/8neGZhZ8sPjYzQY6SWP4Iun32nllfllpoWIL39rENIw3FAqdurXRFJQHTEJu94mZVhquZMO6Je3YzQZliH2spA3lpsxpgTfHvwOdLh4zft4XCnkDQbePifMs70dMIs6y2B8IBRLoUCRKRxCXwnSLLUCzv66jIVwfi7zRTlcqiW5USh9i/TLRZCGRKLZgFTJjDnIiMXg4LlVcBKzmcId5NMiFuHgo4AshhvHyTJBeAwfRFNoN3RWss9b+ItteLN0Av5n98V275s2ynznwu35dbw7LHzCLT00u+XXfwTWv/2zs3EFW3Xpu+Y6j6zYv+Qp96J6V34gpr/mHPzo998d3xubfvnxefGet587Pt55ZNraKX/C7VyZfH6n64lTsrjd0+svPJl7YMPCf4xOPPHrigw/fuf+OR5/IX2JOznV+ueG9/ne9D+15Kfov5a/P9y4Yip1Y17b0bLAj8wB3dWDNq4dXd/5kwOyM7sqNPPOxd/0f/vL5+2O3z3df7T2zjPutvGj1P5fvpri/Xdv/LnXb0nnjytOsEn3ia4oj1pdedOU25w+uDjxmTFT5Zp9iB+853rxPOf3cj64s+2bb4LrhR651fv9A29nq6/eN5h+++OHFlyfX+74+2vfF92ojmw6cXVGYv/rCkUD82e1/rn/v5MaPQi84/1274NnZ2b1S0+Qflz8XWtxdHVmx07nzlc29Y6hvztJfrTCv7fr20+rYD/MLn0mfU7dPbLmwJjaoBd+8zzx/efTK7tjjCw+8eKwm2Tu8+8m3m6Ptycw/VvYOFF5sXbowZHxrVp7r/ezn5+99YPKT3W/WnG/vyl15qmbxypd29S060/HTvcl37nj794W+4fs/qbp66fjlJ9HLpy/uuRDnn5r76kTt9oV/Grm36rWv1nzKB4Sm8b2dXZef7yp+uuSthiNJO5FzZsVGjCNZyOp/ARcvjAU= \ No newline at end of file diff --git a/docs/cassettes/classification_1c12fa00.msgpack.zlib b/docs/cassettes/classification_1c12fa00.msgpack.zlib new file mode 100644 index 0000000000000..f51a70e1856ed --- /dev/null +++ b/docs/cassettes/classification_1c12fa00.msgpack.zlib @@ -0,0 +1 @@ +eNqdVn1wE8cVh5JQWtKE0DJt0kk51BYG8Ml3kqwPHDIRsg0GbNmWCB+BmNXdnu7su9vj9k62bD5DJlMmkz8uaVpamjCpjUVdY/NVSKF0hqFpISHJNJCZGhLoDCkNk9bNQFo3bTP03UkGufBXNSNpb/ft7/3ee7+3e08XctikCtEnDii6hU0kWPBAnacLJt5gY2o906dhSyZib1Myle6xTWV4nmxZBl1QWYkMxU8MrCPFLxCtMsdXCjKyKmFsqNiD6c0QMX9h0oVun4YpRVlMfQuYJ7t9AgFfugUPvrU6A5/aTst1zVgyZkRMFROLjKJLxNSQC8RIJtG8RYmoKulQ9CxjIA/RXwQo/iZ1Nc/gMizDBIKmpWDKaOAQoDxgb21OQgUIRVIEz8ccRrJ1L/pxkE1FNwtKPKlF8oxmgxedtCGRMBAKkyN0FpPG8J9nECMik7Fs8GdiQRHJrOJOXwXjM4mK3Zhtik3fpnUwoxERq+5U1rDYEGE1RVdcSx3mePg3kIlUFautFiFqqwBjN4MSUimGVWqZGGllExbWIFxk2abrh/Nz7py3UyaK4M51+6y84ZEYi9Z1d2vsGuhI8wzGp8e3aVMJrFTD/xcHzKDCgqkYJUufrxQoCA206O29XTfvkbq104qK6fZh3XaDftInI8PIe+nCNtRcdYcUiT43s2P0IEegFp9LHmWzJshQyWEd/jyo/2FSfMyAWmTSwdy29/RCLQT5BRKMQiu8GVnJytj0hkApUxpqxMRle11SY4yhpIEKJljBhCqYqnKWbu9lXVHAnIr0rA2SGx8rNZCuULmIllVLQ8nEuuCNYLeGvOwqFlIVGN4tCy6+29hugxVhb2X2zgSVcykHI5k2LFgAtmndpoKMkQhVuzRhWq9MqOUMjj8VhpAgYNA20CQiUHD2ZbsUowKaXFIhnf3QPjr2NOP0t2NssMA9h/uKu5z9UGC1JJzKNkr0gdLJwbpc7lzudzuLBb665RxOAol4fWVTHo4vneH9oaif29/JQhkVXYX4WDc4p8/w1o+XLxhIaAcQtnQ0On3FzYPlNoQ6exqQkEyNg0SmIDt7kKmFQ4fK503bS7NTSDTd6a60eNtd0M/z/siBccA0rwvOHq/Rj47bjC0zzwoEMJxXuT6BkHYFO8PXW1sFqTWjLVT8qEMI1hlL2xvDjWuyibqg0knji5YvjZBWpOYbVsfV2vaGTFN2jcDykUAkVBXk+ADL+zk/7+fZNUsEqQ2n4skVihztaKHIVuzwBjWU1v25laFkYEVIbm5rXMWhOiNcJ7YbiVUNcYtkllFSk2u06jMJUUqmosvquFpFSVdFOqVEXaY5Xs0AOzuniAurmltq7VhGzeSSoTRXE5bzS1uysVXpJ+IbBD0hdWXy0YYOZXlghREtoxcJR1iuxDDMhaKc+xkc04YKDWLJTk8sGt4LejbgIsLb+9z2tenTvaBDfPZ0oXQh/TS57LaEZ/TWgCadE3WmAo0aYVLYYAJcIMTw4QVccEEwyCxuSA8kSm7Sd5XggbSJdCqBDGvHJF8QZFtvx2J/4q5iP+GKHSrp0ocbgsWdBqGYLbFyBlaxLcWrmK2vOVTsLJaYWTgOujy3zglP9R1dnR2iYIuinOvQuFhXKAgHmS1Ih0tb4Eh13QAhVqNOTyAWHSytjOmuH2LlWJ5jOf6X7oEhQJu5wRjEtFiKBbj8rbwzXKGhTrfHFgb5qmAYEl8NN6qg2iJO2ZkaooEyaTXcvFglSDzWycJ9hFVFU6Aw3m/pxYI6vVWw+bU7DSzSjuEVpBDyysr9utzCxC6+G8RtmFAsFvvV3Y3GoIJgEguEj423oricDR/Q6Gt3GpQgeniNDnSOmbOK6Ax/Bx5aA2GEcawKRaUARsFIFeJxIIaCoSCPMlFRDA8l6tgEEmTMpjwBOoWa1Y3xhvrEkVVsuZLYpFF88yrohOqKJPWlsAmVcfoFldginJYm7gOslvhq53BUiAmZWCTAC5FoSOSi7CI4h8bQbumu1z1qvVewbX3FC+D1iZdnPjdlgveZBN+bN60W1H6Rm/b5K62zRuijL4R+Ftwyf+432Yvr73niD4+eXR2b/4ZYf+PMB0tPb5l5MPU79uXHpmxIjl46d+6ROYu2XorPfnyEP31h14fSi98aGfxk9KgWG9Lf3HVq9K3d16+NoDc3LkEPV6/NMw+9cvxS/cruRLz64qmDs+772uo/X/OtGxyUbtR+8by+ePaRuTNf2LOsTbMP7mR/cKai4erHdPSSUn/fj/7JP7joe8LRxbtzi7fM+uqha3TPbCl9z7BRP0X+yY4Zj0tvTdS2Xrv3+29PPvj7Y9rzD008GUstCV31vT905aONX5r6/Nwj7105tfLTP/3wnac2D7z7gNVNzn9+9dySocLm6y+/2v8Lc4ryzAN//8tLO6etPzDSFZn9WOHd6ZfXT/vC/matIVwzapzddmbyI1NjYowbMXde3bq06jcDM89Mp/cPt/14e/zna9LnL38qV/2NRk9O3XHuw3033mne+pUVbE9sTvfg7meHAo2f/fal/8zL77XOz3940cj0Cfe/PXqhuZDa+o/XK7eTtX9NPPh+5UHH2Hzio8/+GNjx7dDC7SfvDV35179v2jOqv7z3ePM3+oY69u47xp2dvOuD6m27o03r0hfmtW3sOR7b/sbX3+taMf2pwsffXd744havipMmZDKfPGdDSf8L0feGaA== \ No newline at end of file diff --git a/docs/cassettes/classification_5509b6a6.msgpack.zlib b/docs/cassettes/classification_5509b6a6.msgpack.zlib new file mode 100644 index 0000000000000..043f693a2a81c --- /dev/null +++ b/docs/cassettes/classification_5509b6a6.msgpack.zlib @@ -0,0 +1 @@ +eNqdVmtsFNcVBuG2aVXRKiEEJSgMSyEqMOuZfXh3bW0DXtvY8WMdr8E2hGzuztzdHXtm7nhm1vswprzcVpAEBhHUCBIabO9Sy+ERXCCkJFIrCGnaPKCJaqKkTSgllZO0aqRSmirumdldWBf6JyPtzp17z/3O4zvn3Lsl14dVTSDyzDFB1rGKOB0+NGNLTsW9Cazp27IS1uOEH24NhtqHEqowsTSu64pWWV6OFMFOFCwjwc4RqbyPLefiSC+HsSJiC2Y4Qvj0pVmv9NskrGkohjVbJbWu38YR0CXr8GF7RKbgqU3ppmpKj2OKx5qgYp4S5ChRJWQCUVGVSNZilIgiSQpyjFKQhWjPA+T/g7KYpnAJlqKCgaouYI2SQCFAWcDW2gMBESCEqMBZOh6gognZ8n4aZGteTWXBTk0naQDgVCxERGxiYqrgDQHLqTiKgD5rjnACTxZSARUTCkJJaVjFEgFDEmkqksAyDJEkxIi2MI9tW07ZVCJiMyoJELYNrIcZifBYNKdiik67CC0JsmBKyjDHwltBKhJFLIZ1QsQwB2MzxlEkahhWNV3FSCqZ0LEEAUF6QjX1MHbGnLN2xonAmXP9Nj2tWEYU42GquzE2BWQkWQLTA2gbGCiAFVj+qjggBjnAqYJSkLTZCo5CKkK2WntvMmt9aia7Uj6n+v93e3vcjH5BgCJRi34d8sTELVoJoYK0spk+oFhMhXwV+rAMr9sh1pMkdVPqBh4laBRkK6I0IALns5alIDNYplSVWWkxk2CYE5EcS0CC/T+7i+vTdCRVQYeUg0S8nQcmrFm9ZhWZTJQE51bnSk1YXwJGIt2Y0wFsYP1ALo4RD4HfORwnmm4cnl74RxDHYUhOLHOEBwOM52MZQVkO1RAVkY5HoRRkbJFujPZgrNBIBOXZ/C7jKFIUscB8ebdG5LFCOdGmJbcuj5qlQYO1sm6MB8GIlQ3lrWnoUDLF2l1eO3M0RWs6EmQRvKNN14ysYq2/VLqgIK4HQOhC9zOy+c2HS2WIZow0Iy4YmgaJVC5ujCBVqnAdL51XE1aQjVyg9VZ1hcWb6px2lrV7jk0D1tIyZ4xYlXpy2masq2maI4BhPMccLsZHxHJMjxtDPrfvEDCqQL/FW7OwTU9oW4aBC/zb87lC3z0YbCyS+MGMucM1wItxpk4VllMODxXCCuVgHC6KrahknJVOllrV3D4WKKhpvy0Nx9pVJGtRoKK2SHuOiyfkHsyPBm5L+BmTcPDGNB/aHI1TCtEwXbDKGOuk2/InDt1QczyfXTRRY0gWMpZa44zFfDKTSvJcgufjfUmJ8WVcTiGCE1x0vLAF+oKpBgyiJc0Ycvp8hwsrxdiPgq8MzTI0w75olgwHqWY6oxBVpzXMwRmnp42J5RJKmXnmd7JuZwXDMFVm3xcTPA4lIjVEAna0KjhgsEgQfzpFQ1PFoiAJQIz1Xzg/NWPYDZtP3Sqgkx4MJ23OxVjPy6UScFIAvunETRiXz+f75e2FilDgrc/Hek9Pl9JwqTWsQ9JO3SpQgBhiJW0sVRSnBd6Y+B58hDnsZDiei7gQirijnggb9TJet9uFMONgEeM+EqijA4iLYzpkJaCRq+lqWdncEBgNAXiAkB4B7740c1Y4zEXDEckflPu8PVFHsldo0F2aXVe7EO7trpbbddTTla7Qe5uYdG+8s8UZjdGsx+FxuZ0My9KsnbGzdpZ2Mt32gCrXhtrsdU7PmlbNE9JiMmlw1MYavc61Ld6umlAog5nqtjVtAZdXbmnXHcmm2GpvOrk2LsZiyU6mMZnysRXhNdWrKho7fa1tLTUPA51Ij/vLq+AOoUD31PyFEqGhROh8gTiLBVJF8VYS+O3T22EVVQ/3I/MmUgWVBdmE4Q0nV0jQsb8FLiATeyAGiT6B98uxjpq6IOMLPoRXtTbX29ujQY/W3lZX0xRsCsR40uRyBeuaPGo40VASBIfHSTOFOFQwLq+VPTdN/4pWneikSyueDir5i2AO7imyEI1mQ1iFCjJGOZEkeOjsKs4C520ru4xxL+fjIr4KVyRSwXqj3gq6GnpmEe1Gfxg2jwXrRrg5mz+qzs68umDHHTOsZxb8pqb0trflfcycgavLxr6Yv6S+/uNUT9XP13qEi6ebPz237duP/GQdt+6EsLfu+rXXlnxtbWLj0bH+DW/6fvDyjzd99zE3XzZK/2J1LpXa+PQH4cUv7Qx/cm3BgSMPfvKHifcfndr+eqbj0altg5O7rvjX/PPFyfWLq86+7fj+109dqKcr3/Wuz76Wufus8Y3KrkVJ6fkXkO3XT35zrn0I31knzDvwzOmTu1fHqUWvzKq+w/ev96/PcX85+HjKHv7rW/Mu2fjLi6tXNH62dMUT6FwbQuzmp+bMHTxuz7wR2/TU7nvuvrLhzvvfRX3P/urg/ns6wvveI1dPZgY+H1/2Tm7HuHj/x2dV98X7Dl37zX3dmYefWPi7vx979sydi8rKPt3wt8XJN4XO2j8+RpUdkr+YPZj47MNdW1eip5f9edeVnw2jvf7I7B3z4+91u37kP7iCU89/VDt7//YTOfrfk57t34qe8M3/cPANNjX5n9jeg+eynj0HPvK/s/PyD3snltKNny/dGP/pxWWutsvcDG7k3vFnnuzY9OXZjq0XXgidOPqPmYOLHu+Y3PydbO/+5/bdFR8Z2bAm/OrU5NLu8T3X0/NWKcr5miq2Zqh5qoXp544tu3fJ2t8/5HxQfOuQzf46fxe58Bd/2at/WmCxOWtGWfUCNQPU/hewh7rA \ No newline at end of file diff --git a/docs/cassettes/classification_9154474c.msgpack.zlib b/docs/cassettes/classification_9154474c.msgpack.zlib new file mode 100644 index 0000000000000..62b01d4c17bc7 --- /dev/null +++ b/docs/cassettes/classification_9154474c.msgpack.zlib @@ -0,0 +1 @@ +eNqdVmtw1NYVduq20CaN3ZmkgZJO5R2aNNRaS7val4Ek9hqD48c63sWxKZ6tVrralS3pytLdlx+T4pA0CaGOmOlrAqHGxpv4CeVh6uBCS9tA2yFhMh1qPKWTmdKUhklLCEmnzJReadd4Xbt/qh963HPOd8655zvnqi+TAJouQuWuMVFBQGM5hD90oy+jgc440NHOYRmgGOSHGgPB0GBcE2fXxRBS9fKyMlYV7VAFCivaOSiXJegyLsaiMvyuSsCCGYpAPn2pcF+3TQa6zkaBbisnvtlt4yD2pSD8YduuEPjalEKmawLFAMEDXdQAT4iKADWZNYEIQYOyJRSgJMGkqEQJlbUQ7VmA7D2gSGkC5GGpGg5QQyLQCRk7xFAWsCV72C9hCFEQOcvHw4QQV6zsF0E2Zt2U5+LUEUwTchx7UWA7y0MCp0IkoF5ChAB+pgmW4FmNQHHsTwOcyMOSrKWtlLBpUAJmznEdaLbeNrwiQx5I5lJURSQDSVlURFNTwWs0fqqsxkoSkMIIQinM4XdzBwVW0gGW6kgDrJy3gICM02VRXDP9UHbKXLMsY1DkzLVuG0qrVhDz2Zru7rybCgorWwqLt8fW25sDy9Xw/8XBarjCnCaqOU2bLZcoJhrmomW7UDfrUzdrJ2cZ0/3f5iFcyzsKBBSs4iLMAhN3Pkq8VZg0NjMHNhrVMBvFBFDwYznELTBJLGjdwSNEncDVZgkdFwJkOUkTCBI0le/K7KOoWWC8JrFKNI7p87/inpcv8pHURITbA/N0uQxMWLM3zR4xK5G3OUuTyw+hLQ8MRtoBhzBYb1tvJgZYHm/85YLioRjUkTGxuLEnWY4DmJ5A4SCPQzDGo12iWor7VJBYBEZwByjAKrsx0gGASrISdj+ctTIOsaoq5Wpf1q5DZSzX/KQZy1LxiNkcJI5XQcbRAA6ioqasMY0nkELQdsZrpw6lSB2xoiLh/EgzOWNYteRv5AtUluvAIGRuuhnDWeOJfB2oGwfrWS4QXATJalzMOMhqsps5kr+uxa1tNjL+xqXucsIFd047Tds9hxcB62mFMw5avTq1yBggLU1yEGMYA9QwB2GHCIzZD8NhTghH5I0BJeHtEBzJTrEGMbodaa0s6GyvVEKI7WhNu1FnHZXujLU0OIUoSXscHsblpGiapO2UnbbTpJNqt/s1ZVOwyV7t9DQ36p6gHlVgjWNTtNbr3Nbgba0KBrsAVdnU3ORnvEpDCDmSddGt3nRyW0yKRpMtVG0y5aPd4ebKze7aFl9jU0PVk+sJHF08IfIblehTVdUByhd4AmxurN9iDwkBjx5qqq6qC9T5ozysY5hAdZ1HC8dr8sJzeJwklYvQTTFeyrwm5rkhASWKYsagz+F6DfNZxWcJeGYYbxmK631DmIfgd2czuTPlQKB2gcL3D1VhThoz1ZpYSjg8RBCohINyMATtLqec5U4Hsbk+NObPuQktS8HDIY1VdAHTcNM85TNcLK50AH7EvyzZZ0yy40qa4eMhT4KUCnVA5qIyxlrIpuxpStZUHcl2Fgm1KKuIXZZbY8ZifbIrleS5OM/HEkmZ8nUxTjEC4pxwNGeCp6LpBgdEyroxyDC+iZxknncjOFeKpCmSon9qDgwOt5mZjAo1ROqAw+c3ShuzpTKbMntso5N2Od1449fjYcNJcR4E45EqKGNm6uvx4QkkyPLTKRIfKUASZREXxrrn/g10Y8iFjU8sVUCwA+C/iAxjlZX6Wb6GBkx8M4kFGMbn851cXmkeyolVMB2mF2vpID8a2iHrJ5Yq5CAGaVkfS82rkyJvzK7FH2HMSF/EzTgFysO7XYCKRLxCxEN5GCBwNOvxTPqrST/LxQAZtAhoZKpaGyrqa/zHW8h8JpEBNfvzlFGgroiCMBwEGq6MMcJJMM7jaamBYYzVVNFqHPVyPi7ic/toH8t4Ba+brMRzaB7tDu+GzFFr/UXtGM4eAL+6a+6ru1YWWFchamrbNUcV97w1WXzrwQfmzl05Ay9u7z99/7bY3TumV7W2rv/N1TOxK4Mlfz71wKzvzeT2m8Qvv5sQmEs3dtIvd59d9XzhJ5WeddN/Ku2fa/vR0JvNjXuPP/al/jdu/mAFeHWqrJ/6wleObzjwj8m2/Tt/v7uybPwq++7L3feMnXO0nf+70LkHfft4d2hgXOlhpozvV1eLe88PplZ/bbTjk58/sePTq29tZF86rE+t2C/0P13CXf/o2AHj+YsrZ9UXaLX52c+rtppX1xS9s+brY9djffF31rk+dfLYSPH2119RT50fvEGWToSu1/721tafzI2feuzCxx+1wmtTmf3hP57ZMpl51LVvYMQVWSnuLLp5bd8q7lsnPujyrNuQ2dP39OnTq9Snpr68u+iDd/cWDlx33Ked1R7n+nug/sO/nH7/UonRU/FMlY8fFe998ZXpK66Ppx75zt0nnzxR92j57dVX3jvU/sJox6GL/wL/fAS8/+vZPZc/U/Q9Zs+9z/ob2goev+yeSbx99b4f994497Z3dE04deulh4ofOtL61oqpigcHRr/x1/H32kOnav99ceu1C/ps/S+onhm/+Lc1/g1/uHb5c8jWP/3a0OsXXA0J7rNbg2uBL7x2Fzj23DnwYVFBwe3bhQVfvGf3i6iwoOA/rld3HQ== \ No newline at end of file diff --git a/docs/cassettes/classification_d9b9d53d.msgpack.zlib b/docs/cassettes/classification_d9b9d53d.msgpack.zlib new file mode 100644 index 0000000000000..bd2873d686301 --- /dev/null +++ b/docs/cassettes/classification_d9b9d53d.msgpack.zlib @@ -0,0 +1 @@ +eNqdVmtwE9cVNnXJBOiDtilD2smwVtqQZLzyriTrYdfJGNkKfspYBoyBMVe7V9rFu3uXfdiWXZMG6DDTQpoNMGHaIdTYloLiYAKURxob8mpJG5oOTUN5NDPptKEtLcy0k04JBHp2JYFc+JX9Id2999zvfPec75y7GzK9WNNFoswYFxUDa4gz4EW3NmQ0vM7EurEpLWNDIPxoWzTWMWJq4tlHBcNQ9aqKCqSKbqJiBYlujsgVvWwFJyCjAsaqhB2Y0TjhU+dKrw+6ZKzrKIl1VxW1ctDFEfClGPDiWqVQ8NT3G7ZryhAwxWNd1DBPiUqCaDKygaiERmRnMUEkifSJSpJSkYPozgHkfqOKlKJwEZaqAUHNELFOyeAQoBxgZ21hWAIIMSFyjo+FVMJUnNNPg2zLuanK89QNkgIATsNiXMI2JqbypyHAnBJQHPw5c4QTeVJGhTVMKAglpWMNywSImCkqbmIFhkgWk0Qvy2G7yimXRiRsR8UEY9fQapiRCY8leyqpGrSP0LKoiLalAnMs/KtIQ5KEpW6DEKmbg7Ed4wSSdAyruqFhJBdNGFiGgCDD1Gw/jJux55ydAhE5e27QZaRUh0QhHra7W2PbQEGyYzA9gK6hoTxYPsufFQfMQAOcJqp5S5crf1CQIqjV2Xs7s86rbmdXzmlq0IUV0z70SpeAVDXlhAuboArJHuqId9mRLdCDGIGeXDZ5lExqIFSxFyvw50D9H5Pcaxz0JJA+6ra9oyjdQIajCUrUy50ZQUwKWHOGQCmeH8pEw0V7bVIFxpBSTznlLad85VRlMUu7OpO2KGBOQkrSBFFOP6uuIkXUhRxaUsoPExpWOGcEu2XkRFc0kCTC8G5RsPHt0rdLMAd7K7J3BqiYSzEYia/FnAFgQ6uHMgJGPGTtR6MC0Q1r3/SuMYE4DoOygSThgYD1UnJAVMuhlBISBDMLdaRgRzFWtgdjlQbmvTid22Xth/RKedlUrNWJMp6vRdpmcudy1q4rGtgqhnUoCiRqGyraUtDeFIp1+4JuZn8/DUkUFQlOR9tHs9Kqs/7z4gUVcT0AQudbp5XObd5XbEN0a6wFcdHYNEikcYI1hjTZ7ztYPK+ZTpCtTLjtTnf5xdvuvG6WdQdengaspxTOGnPK/Mi0zdjQUjRHAMMaZvYV4iOBRAzBGmUZD/MCpFSFbo03pm0Fm/qGUUgGfudkJt+190SbCln8oGTeaB0kxpqMaCJoNUDFsEp5GI+PYv1VjLfK66GeaOkYD+f9dNw1Dy93aEjRE5CL+kLeM5xgKj2Yz4bvmvFJO+NwHJs/NEka96tEx3SelTXeSbfn7iu6oe5gTl400ZJQEQOOW2vSSX3fQH8fz5k8L/T2yUxowOeFWja5xKH8FugqthsgRMu6NeLzhfblVwrBz8JZGZplaIY9ZtcMB1qzD6MSzaB1zMENaaSss+Uy6reFVuNlK71+hmGq7VtDMnkcM+N1RIb06NVwPWGJIP6VfhpaMpZEWYTMOL/521e3Rith89E7DQzSg+GezvgY55kqtoB7BvDtQ9yG8YVCoVfvblSA8oJJiA2+Mt1Kx8VsWI+sH73TIA8xwsr6eH/BnBZ56+y34KUbxRFmWBxKsIEgQkyI82Efw3E86w/G/SwOToQjdBhxAqZjjgCtTN2K1tqWhnA2BuBhQnpE/Oy5GaXd3VyiOy7XiG7Ux3kjamNPq7+1KxmOeMV+vXZRc2OAdCMp1bKiVqrvaYm3Jbs4mg14Ar5KL8N6aNbNuFk3S3ct5hJrcaw2ulQUgn3tOjJF079O8nUo7t7lvqhnqU9Ysra1k0ER1R/he9RwZ0utQeJNOqnrbTUa4mE+EY0FmyJMvSh2VAb6E+FIfEktpBMZQk1FNXyBqNA+9Zp8idBQInSuQLyFAqmmeEcENe7p/bCaWgxfV/Z3TDVUFqgJwz/cezHRwDWt8PlydjvEwOwV+ZrKJe31ZiguxXujvg6mzi+kGtuToc6OZbXrOCWcGIingi19YrNnqRosCkLAH6CZfBz8jC/oqOc29c/I6nAnXVzxdFTNfUZm4CtHEROJdAxrUEFWlpOIyUNr13Aact5eu8I6FORCXDzk5xGfSPh4JkgvgqZZQLvVH0bte8H5nnwqnbur3prx4YIf3lviPKVG+2ryE+a+oXcn9l/Wd37vobI/vfT39x+NpfeenjrUPvxNrax1yz/R774fuXplW9nMLnP9/vHB774bemwqM4s7cWSu92SvcLB9zpVPHjo3seej9UND15Kv7V7+8Y1rV85/tP7TTb8UZsbODPsHf/WPpjObm3d0PfOXxl512Ve6tPHa+yIHr+5YsIluy9KzziwTLp3avlx7e/K3X04+vyD12r9OT8a+82ApO7iT+cUf9v5xV/TY2INvvrN7qqPRc8+cDUePvzm/o/Ho7J+yFzq3z0uX7nxEbKi6dGBe/POdY3U/Hp67UT3SOvLvufNmW5cfW7D++qcHDh9/evfUA5cvP3/8RvnjysUPf794YkQxeh6ewO9v9r1+beB6ZAv7TOfhycDrNQsv3j/1xon5a5a+9+2GSxfeeGRG+LS2fDHVumZzV2BW89dO7Hnh5Pwbdc9uaaC+lJ517/b6rTN/1rc18vYp91PeV78ain5Q/fjTrvGHJ774g6bDz31y7Gb58OzVe7emttX8+cLfxr4+LHpLuB2XD+1qfbHk4xefvGf13vbz72VLG56YX554YMEXDgYXjcwRdtSz2YqNN82xlQdOnkd/vTihn8Qs89/JU//ZteYb3N5m3T0na7x1vmHjqsxVbapsVd2v72/+zbYnIZc3b5aWLAx+7rm+0pKS/wE1Cc+Y \ No newline at end of file diff --git a/docs/cassettes/data_generation_1ea1ad5b.msgpack.zlib b/docs/cassettes/data_generation_1ea1ad5b.msgpack.zlib new file mode 100644 index 0000000000000..9adaa68c202ee --- /dev/null +++ b/docs/cassettes/data_generation_1ea1ad5b.msgpack.zlib @@ -0,0 +1 @@ +eNptVQ9wFOUVD0QEnUJlwDIUKmsEDvD2snt/cpdkEJKLhCQcCbkQAwnE73a/vdvc/st+u/krDAVUtA66dZxWGEXIn3NiCCBUIRCkQ4GOLWNVKIYKSiVVChpEOnamTOnbywVC4Wbubvd77/u93/ve771vfaIB60RUlVHdomJgHXEGvBBrfULH9SYmxsZOGRsxlW8vKw1XtJm62D8vZhgaycnMRJroUjWsINHFqXJmA5vJxZCRCc+ahJMw7RGVbz472tGaIWNCUBSTjByqujWDUyGWYsBLRqHYgBXKiGFKUCVJbRSVKCWIWOKJk+J0jAxMIYpg25+Dx4hqGra37KJqlBCK4+TWW3YeG0iUME8hhaeSCUEKAOmilhNMYci1mYomIyZjuGqUIgF8mynE86JNGUmUpmMB9gEcoZCOh/ydlEmSsWSKh0MAkrdiQjLE0M3kwVGIUI1YkgB4UTKJnBqlutUBp6rqjhzKUaHK1GKkxInDSTlktUHEBJarHYtU3WZKFZqyZpsKdQwcQ5CKY9UaJzUCIYR4AoZ4HEvA4P9gAFoRI0iyl/MUFejqlK6aCg8oq2qUstuZAa9WhywqomzKtRJWokYMENwMAzuJ0QxxIVZUJUTUHGtqlHAqWdiW4aQydFXCdvHgTPSMNatgRVZ5LNlLUc2gPS4fbZh6RLV9FVhl4R/OCCMZXgQEzGHBwLIGggNHG4tx+dckYhjxIMfzaQ+1x1RiWD13SmwX4jgM+MBE5aEG1s5oi6g5oeqCBELpgkooOFkHqyuOsUYjCWrXObTL2o00TRI5ZNsz64iqdKdkSBvNGr7b3GVnR4NoFcPaVwok8ooyy5qhFxSKdXkDLmZ3E01AbooE2qYlBHw6taT94EiDhrg4gNCpPrM6hzb3jPRRidURQlxp+A5IpHMxqwPpcpZ378h13VQMUcZWIlh2d7iU8XY4j4tlXf49dwCTZoWzOpKFeP+OzdjQm2kOFGNY25lOTlXjIrb6r9XWckJtRJ7PVEYq8+oL6wo0JhDT/WXZQW9+BGV7V8q+p4yI3zBJNOKuLa5kfSrN+t1+r8/DBPw062JcrIulGRJbKqsBWTeFrEi9GSkwGkrqw6VNgTyG9Qkhb6gWB6safGbWk41RthgpXiYUxEXCMj5YJy9frBqSr8oVbSiOqVFUmp3vDS0LhVvC0VwK2JkNIj9/cXGVLBhsPalciomsFOWFK0t8+WZ+bGUhLjdNLVZXF8/i8fIQw42g53dn0UyKYRbjDTD2p2dYG0O9YbX5fOzb0KIaNDve0AlHBsmubwcd4j//MZGabjtKS25L+OH2AtCk1bdIF52U20+FsQb95fZSbFYO483xMVRhqKI7mApTcU8J7qnQkUKgZ+knhyWf4GKmEsd8V/CeYu+zxQ6VtOlDl9K4SVMJplOsrO4qunxortNFBXuHOotW9ShSxJZkWKsvqfrGlqZGnjN5PtbQKDPZLV6PGMEmJ+xLbdF01Q4DhGiZWO2sx8f0pEzDwuuCZBmaZWiGPQC9L3LQZ3Y2mqobNMEcTFGj2ep3yqjJbrL5HtbnyYKTz4W5zUkmj8MgEFUGaZJceyZLKuJ7m2gYGFgSZREqk/xNXVNAwgeb99/tYKhxDBdawpusK3N4pIeObXw7i9sw3uzs7EP3dhqG8oBLwO/rvdOL4JFsWLdM9t/tkIJoY2XS3TTsTou81T8TXmpZzod4D+Phsj1+NoAjWYLHiyJCxO9n3R6vP7AruIgOIi6G6XBSgVaiYMXSvFBR8L0qeqSU6FJt6B5PKCpRREHoDGMdKmN1cZJq8jAuddwJWOV5K6x9AS6bi0R8TETgsZcT3HQ+DKJhtFvCa7dnbfJC/2WnXU8lemw0M+NX49KSn3T43rxplP9e+Tn7UN8PDz9W2zLqvqI5c38z78VTb71tnZ35fGVH/urB3Ze7G4WB18efK7jROvDswpZvjj3/4z/mL2g9fzntyL8/dx7Z/0nXO1uZ3t43n1rwpjJjRu+uH6e4P40f/oB+5PDpcx9tHXxt6uwx0dJvrod8DTX+Uac934pTPp43+8ylG9JaNndbzdp/vrCF/KSo0puTM+OjRWePv1T46qX+K285+3Mn711Xm5627sx/l0yde2KBMOrVC9PK2zbRf3FuDqbN1hdv2pOx+tSvt1x4wVjy4qkTq89GN26unvPx8en7CsZVLpv84M++H//ZS9Vjzrmb9Ilk27MTTt0/89j07vDma1MfOfBcR0fxc2UT1Qeypm+/Pvo82zx27uZ1jqrXM6dz1z4QLwv4SPmEx8mkiQ9898yRCx8uFMe8e9/io1t66qevPxlY+a+KI3+N9zvM95bdPDR2UHJpX7/z4AZqPFwZysBvj772xEbvmac/17rpA+8vLCm56Jm2GfVs+t0fxlnVH554PP3lWfnnrZ19Gw4N/HS0/NX+777NSNy/bsruR3eczJ3zytVXvPHa1Z/MKpmw/W/ur798xhiFb6z9xUT/zs8qxtYFA18e/Gpt+pTQxSUTbkz8oulaec9jK1HxwckDx69fUdKuHhxc9p9S35JJBxRjZ82js45eui4NRpeenr/nh5fHlq+QmxK9h25sq3ujbeWMi6umnXxie+LvF5ns41e+ENsnHWvp+77iaWnH4J/6bx5Xrk6xZZGetrxwzqdbQSP/A186IWM= \ No newline at end of file diff --git a/docs/cassettes/data_generation_4314c3ea.msgpack.zlib b/docs/cassettes/data_generation_4314c3ea.msgpack.zlib new file mode 100644 index 0000000000000..e9dc6c51763cb --- /dev/null +++ b/docs/cassettes/data_generation_4314c3ea.msgpack.zlib @@ -0,0 +1 @@ +eNqdVX1wFOUZT4Si6ScdB6ztWLdRB4Ts3u59X2J0kjsIIV6+LgkxhInv7r57t7n9yn5ccslQhrS10jqQhVahnZHWHJcaQoAYEZEPcQo6WGSs/YNAVbRW2o4VRqfUwVb77OYCycBf3Zm73fd9n/f3fPx+z/sOjmSwboiqUjwmKibWEWfCwLAHR3TcY2HD/HFexmZK5XONDYmWYUsXp5alTFMzyj0epImUqmEFiRSnyp4M4+FSyPTAtyZhFybHqnz2XPGmgVIZGwZKYqO0nFg7UMqp4EsxYVBaI2awQpgpTAiqJKm9opIkBBFLvFFGcDpGJiYQYWDHnoNPVrVMx1qmiE4ljtLY3XptnccmEiXME0jhCTchSAEgKaLVwASGXLNE0vXo+qA6lVoBbLME4nnRCRlJhKZjAfYBnEEgHU/blxGW4fqSCR6KAEFe8wnJGKZuuYUjkEH0YkkC4JVuEuWdytolrGThJWXEkix2MlyyrlNpvO4DLAbWdyqJAhwMS8uIUl2VsFMe8KqXrl8HM7LKY8mZSmom6aMCpGnprOrYKjDLwBuiwEiGgYAkA8OEiWUNKAVDB4umQutHUhjxQPiWXEo1THt8LoV7EcdhQIc4VB5ytPck+0WtDKoqSEDEKGSqYDdPezSNsUYiCWqTn95l70OaJokcctY93YaqjBVoJs2shm9cHnVyI0EUimlPNkAQVbWexixoTSEYyh+m6H19pAF0KhJoh5QQxJPX3PWXZi9oiEsDCFnQsZ2f3jw+20Y17F1xxDUk5kAinUvZu5AuB/3PzZ7XLcUUZWyPRBtvdFdYvO7ORzEMFdo/B9jIKpy9y6XhhTmbsalnSU4FDPu39PhMfSSsJM2UPeyL+H4HgtVAUPhHedhmWsZgDrjAf3htpNBBzzTUzZD4TtHiXAx4sY+s1MUywhsiElgjvLTXTzDBctpf7g8RNfGWsWjBTctNadjfoiPFADWSK2ZoH+FSlpLG/Gj0poQfcQiHbJzwQack7tNUA5OFqOyxdrJ5+uwga2PPTauLVPUkUsR+1619xGW+t7+vl+csnk9lemU60u/3iSy2OGGysEXTVccNBETKhj0cCAfHCysztR+FXGmSoUmaeRHEL3IgNScZTdVN0sAcNKqZtafKZNTn6KzSxwR8QZqmK+Bo4CSLxwmLjakysGNUOG0vqYg/1EdCx2BJlEUgxv0vnISGnQvA5oM3GphqGsOZOeKn3efobAsdO/hOEtdh/JFI5PDNjWagfGASYQKH5loZeHY0jFc2Dt5oUIAYZmRjrG/GnBR5e+peGHT5vH4kRHxCOMiyXj4SoTkOYTbsZYMIIxwO7o2uJKOIS2Ey4QrQHok9Ul8Vr42OJgA8qqppEW89Vzyvq4sTuli5km5j26p6arpjGh1O6aHGSNRfzaKIv0MOrDHZECAkWW/X6jYmoJJMyBvyB3x0OEQyFE0xFEPSRqpeVsOybglBtgf4MDN1PYmGvnAVzQSEuD/ehaPtmYAVXNGbZFYjxU/Ho7hWaOKj3XLrKtWUAu1UMrM6pSZRQ6TaH2+KJ/oTSaATmalKTwUB4hShLpWFFiGhRcjpBvHNNEgFwbsiqKTmHocVxCq46RoUKVsBnQVqwvBGMk6IJq6sVxU89QuogZUR+cpVq9tlwWR6jLZ6bMhKbVWirS5QbVWnOmpws2Vpqe7udJDHrXGam1WEkDdI0oU6BGl/2FXP9dD/z6gOtJOzO55s0Kav9BFFNRRREPIJrEMH2aOcpFo8nOw6zgPnzVWP2JNhLsKxrA8E4vf6OcFLVsOZOYN27XzIOdeCe7dvzDt9pyRPFO+6++e3FbnPPPh9+aXZ9Lpynl54+PPlix84/9hfYk3/WDtU8+baN+ev2PgMvVS8j8lnSj5etnnhZ+9+7dTmX36//z30mG/7jvU7i7+zZsc3tk8835E57lEuffL2mbtf+Hj0C+HYu8f+eezB9z39/UfTh249dfqB+w/2HW9+qOX1rS9daLrrLZu6p+PEB/323k93f6Rb27bEXl109d70IEU9NVX9eftl1tr/Rv2pJ9dtYoOXBxYUXX7w6P33tH4mBPf9agNx18/OLjj94X9KXo5dKWHafr+po9m387WttfbJs2fIarv5QHfv5u8OPT1/0aCVa9944LaJ7z16afIna9bE6r4qb7mlM/rewPy6RV//W+Wli/SVOLW4/PzQ7nWbco2Rkne+Wds8cXHpb/a0Xm5ffmH5yY0lx799tpJ66OIT7f9m36r/08CGV7518f2nf73wxaHbN5xM19Sfk2PLH342t/RW38RP73x5Z8+FL3aefvjxP3/l7WWXhraiK39NJfPb6j+4ejW2bPe/bv/htv82TO5p3PPpJ39f9eH2M02+O8fe+MGrT65c0PTRgeeHF3CPK4enDp5AV+5wuJhX9MfxHU9M3FJU9D/qSetg \ No newline at end of file diff --git a/docs/cassettes/data_generation_523bb584.msgpack.zlib b/docs/cassettes/data_generation_523bb584.msgpack.zlib new file mode 100644 index 0000000000000..a980bc62f7858 --- /dev/null +++ b/docs/cassettes/data_generation_523bb584.msgpack.zlib @@ -0,0 +1 @@ +eNqNVgtsFMcZNhAohYYQUkGkhrA5hRKB97x73nvZcah95mGjw2/HgFN3bnfudu3dnWUfZ5+poxZKFCl9LX2EJE3UgO1rXQKmJpASniEVKULhESmV0zakQmqDaFASaEGNGvrP3l18lpHak2zNznzz/a9v/pmt2TQ2LYXo0/Youo1NJNrwYblbsybe7GDL/t6whm2ZSIONDS2tux1TGV8u27ZhVZSVIUPxEwPrSPGLRCtL82WijOwyGBsq9mgGE0TKvHfXjS0+DVsWSmHLV8Fs2uITCdjSbfjwreqzqVEG6RJjoTRmbBkzJlZxGuk2AyDFVrDFaHREdCwxiu5BkkRVSa+ipxgDedSMTVLgKTaZXsWWKUYxGcMEB03K4O/UO/UGXc0wOG+RskysT7WwTNGTxNQQne3Kb4LhMibp6N7Io6xLMqhAk2EUi9GJDd/YAjovqPwUTadiFvmfJwH3TQQphiqUMhLxsIouqo6EGcUuoIljG47tGWzMhVvRqbcSjVmLTClTyvTopFeHnJiMDPZoScFtFeLDpheDLkKEwJVUVM1iLEeUGWQxnb46WDCoG6WdPvhsBVO1yOxh1ulKSraZZsXCVm4pjiQmjvoqmNWOmWGaCZImtjTjNKhAt+kMDbnTV+voPYrZQydkMCQiMJJGNoSPHEnBnju9xFSlXgXi9ApGHacS1C1wm5iQ7gxSGZJkcnrqY0BctAQQG4NEk1gQJzIV4lhMCuumV2FfKeMziYqpsBwLm76BJ2BGIxJW6VTKsNlyf5C1HTNBKLZQhC4RqRSxxadDLSj0zrX3DRRtymv5f+yADRK2RFPx0lykeGuy0ou2M0kTKuvJM1drP2WZ0InnqJ0xPLMk0Y1F2wN8oWUPQAknIZEJKaVAxcba/0lSLdrEzEEVO5fX3NTUsGgeaLmQDuXJQwr8lm3CSfWytxoUOJnQm5nKpyqWTfkor0UHOe1CWjKMZUMw3lm6czxF9iZHP0CnCkeR1m8iHM+NJwamIrxEwgKVEvWML/UMYETjSCLVwtQM1iBvCJRFrXH+8EBWxkiCar1fMn9QJpbt7p3cL/chkZ49Fg4DkcBb95VUv2JAD8BJFU7KCPRIHXsackd6MDZYpCppPJzb5Y4iw1AV0dNLWbdF9D35nsrSgKcuj9DjwIKWdNs90ABOVNeVNWagsesM7xcifm60j4WsKroKjZpVEfgzbHjrrxcvGEjsARI2f2m4w7nNe4sxxHKH4khsaJlEiUxRdoeQqYWEseJ504G2q2E3G2ucai6/OGGu3M/z/vD+ScRWRhfdIa8QhyZtxraZYUUCHO7L3LBISI+C3fFPu7rEZFdCq+LaE+3Vm9d01xpcRDbDjdGYUJNAUWGjFnzcToRtx0olAl317XyQsHw4EBaC5VwkzPJ+zs/7eZaz5PUaiWimkwwlNjuJWju9bnNLQ1+kmuODybgQ78KxjnTQCa3qTfH1SBe4eAzXJZukWLfWtpbYarDDn0rXyySFGqI1Qrwp3tLfkqpkwDsnrUhVa+s7tKTNb7ba12NL0+uqW9rXBWucGnnjGtzsOIbc3d0TknBbnBOL3AsHQiyX9zDECRGO/vYWtKFiPWXL7iAfCEV+BS3TgC6Gtw1DziDarYMgRHz2rWz+rt7VsG5CwwsHa0GU7tHVplLKBMJMCzaYABcQGD5UwQkVwSCzJt66J5a303pHDe5vNZFuJUGHqwqaz4oy3BRYGondUe1HqdqhlNR/6Oss7jOIhdm8V+6eDrY590ph62rHckeLJWYK6Uq/Z9Y96sm+t7+vVxIdSZLTvRoX7RfKlQR2xOSB/BZoetQMOMRqlrtbiIb25lcKwhuBWDmW51iO/x1tLiKcMxoMvahYC4vwLrIz7niphvroIasq54PlIch8ZeEubwGBEA2kaVXS14EK9+fhPhYaBlYVTYHKeP/zby7LHQzC5temAmzSAxekmxW8unLHihEmpvw0iAkaIRqNHrkzqEBVDpCIwB2ejLJwsTd8QLNemwrIU+yG1T19BTirSO74w/DRFUwmxTDiRZGLCkjko1w0yqFIOMFzIQFJUbwvtpqNIVHGbIsnQDdbu2F9dbwudrCDLVYS22DkHqVZnVi6kkwOt2ATKuOOiCpxJGiXJh4GrubqDe6BiBgVE4kwJ0kBJIjJAFsDjajA9oXuBmmvzSIVipcW3TG5vMpXIQjlvkpGQ1WREKTXe7p+dzh3k/x+2rklz8wu8X4z4O/2bbv5D/qfuPlHr66YZR2ckWn6wYcLhdk7Zl07GX8hJt0vBHdssO59qwn98ePji366ePzL5+fec33hsdN/fWjaN9oS8x4Jbx1Sbnx87aq64nh2n7/8+tnWQ+fw9cv7Xvro1D6y8mbk6TmHPo/vuNQWvvjc6vtWpBpGbzy8c9dVOfRSfKyuv/Kjksv1F5vaw4/+4s9STP/Pe3e/cyFSuSK8vm7OzlObppcYH76988LPD5x64OLJz95snL3r62e3LCjpz16+a9Xs5aOj398295EX8W/5g9qrx6aPvHtm55NLt7+75CvTzs95Z8PyTVFSe3r34i0PffZG1eO3Dgel6MITsQvKnLOX5s18vy597MSRE4tSHzTdMrs++OWJLw3FB796S1oavDD2wnF19rXtl94Ya/vnU+jl6dvnPffMgr8lnj0Vu3pz1Nj1j5lz/x1r77g26+Yrf1l+nDUynQ/u/1HmyPJrv+7edv7vi+oeu7fx9cOf6IsfO3p/+5mR0Q2ZBSfHO4KjPevDD9z3HXzozL9OpUc/eVs4kji09Gt3n77y7E+WfPPJczNflFI/Xjx3YOj5H36e3fizN2uuGK+ufHRp68FjkcGBs3uXPTXwrcBv6sef//blttsrd4if3kOrNqNk/viVwINQwv8CaSH3Yw== \ No newline at end of file diff --git a/docs/cassettes/data_generation_8a5528d2.msgpack.zlib b/docs/cassettes/data_generation_8a5528d2.msgpack.zlib new file mode 100644 index 0000000000000..07bbd045e8989 --- /dev/null +++ b/docs/cassettes/data_generation_8a5528d2.msgpack.zlib @@ -0,0 +1 @@ +eNqdVntsHEcZdzCgSqA0VUHQqFUWJ6Am8Z537+Hz2bjk4sSPOPb5fDa1E1fO3u7c3dh7M5ud2TufEyORRKWkILrIhULzR5M458p14uZBnqRUQFELaRGiCrgCFEpKC6SgRkUofah8s3eu7cSVEP7DN/vN95rf7/u+mT2TOWQzTMmyaUw4sjWdwwdz90zaaKeDGN9XzCKeocZEVyzRc9ix8ewXM5xbrL6mRrOwj1qIaNin02xNTq2BH8tEnoeJJDUKr3z8zV1VWWogs6peqkpbXA74QjJ37CSVMWHcdnReVS1VWTYYctDZXrV5hIskpBRGpsGkFOxImpTGOUQkjka4b4D0ZJBEHW45XGIZ6piGlERSitpZjXNkSBoDgy2JWKckQmhERxLPaFzSKRFKTOIUBKikwvQMymrgwKR5cD1AomBNJDSiiZNUC7eecllv14DI1UI2x4gNQMIgSFFaXnHMTSTWA1XNQlgNCwMx3caWwKS0o0kmZlyiKQnOj0malfR4wSqbaratFUpCzFF2Lsy8QsluoGpsbEwoCaKwjQyxub2czgNjA0SkTZNDCMCczxIUkppd8p7URoWmhAVgeWSa8jyIH0IHec6f3yf1LHL6UVgsEcULQyi/KZCHeSuykdjmC4j14tUPkB07dgyQpUJFdU7t8voWkImW9VIHKrWSnofxPD/RBdJbgRXiZmxmP8r9HIMiDBOLFCh7+ReAVSDQQ/B/4vCmvEpRlyyIJdlecI6SqWDew6wHGqdVI8OsWhomNE+8Us4AyhgaAeuSTU3IHZNy7iYeRlIzhdThaC1O1qqWEloOcpS6bJzTOJK6Cxqp9gqgxUbQjR1YNEgPLUgJyKFQDWAbUpPG9YzUgaS2lNRPHfgGmwy0JKMmNjB0teElAShxh5V6VTRfTjQu2ItppHHwXOJN5NdKTbOQp1TUStUDMC1S3mgiemFQDB+TFwAKBeQmTWM+mMQaE2iPlSRQN0nxTRzTBElWGxnkdBgRIfOHakFEYKV6Qwgx8Ipu8soQMubtgUwoQ8jdRmLfFxYyag1awsnYZAZpBpzgOxMZyrh7bPGEnNF0HcEMhCDUAGTdo+lRDDgbKGUCwFPAC0He/HWnhhGyZM2EsVcsWblPa5ZlYl0T+zVDjJJp0OeIcFlUyq3bUw5DtqylQcM9FYMkom01XQUY5URSfcE6n/L0iAwsYAJlwGRTg3yKlrd/YeGGpenD4EQuXxNusWR8bKEOZe6RDk2PJRa51Gw94x7R7Gxt8ORCue0QjrPInWzqujVceXM+XMCnqr7w8UWOWYHo7pGUZjJ0ZpEx4nZB1in4cA8qx+bwMRFJ84w7ofpr1SeBZAuuJ7S3WCrBPRNABrr0/CR0MoODHoq1z7H4p4q7JjYBMe7FZhtXS/6wlECW5Ff8QUmtrVeC9aGg1NLRM91UjtOzJA/He2yNsBRwsXmO90k945BhZEw1Lcn4BcE4HEfkD10KQricZGrjNCbuwXUXb9pGIxZlSC4n7U73yd2lq1tu23S0SYNBKjeVVN1zhMq6kFRLWQcUbJSDiAaccbpUprJ3Wbunl76qT5aVqJ3WCB71zuhe9OosPzqSN3THMDK5fFaJjAYDOIkcPXWqbAJtKJKG08tZ5h4O+ZVj5Z05pqcAWEVWFVlRz4npqENhC+QsanOZIR2eHrzgzlZDB4uqbgyooUCtoigNMCN00zFQwkluolmoBdYgQS+bVDPOj8jQq8jEWQxl4P0vP2uYOxEIKcrZWxVK08E9EgHfyjML920kvIsjLHASjER+vLTSnKO6SEgJnF+sw9DCTNRwlp29VWHOQSCgZNn0yJyBjA13dg18DEb8/pQ/Egqo4UA4pBuKGgqlQv6wjmqN2kCtVjfT1CyXCiDh1bo7uam/M9rR1jSVAPdNlA5j9N1XllUODuqpwWS2ERp7qL/Xl0jqqrolutXf2ja4k5od8a7WuK+l09gWDQXzTemw3dabltWwPxwMBZRIUFZ9ik/1qbLSG7s/Ft6axlE7vzGlxEi6Ix8jLNftqPfb8e7Ytm0RtjOi9/US3tI11FzoS9tRvW2raZsBzDa2aCzu64kHzHhdoc8cRZ0Ik1iERIFMjWcaaxrgUWbBzccay90oQzfKpV4MzPVig2R4JdDoWzx6G6RWeLTGiFlogCaGWkLwC5d3Am7nxk5K0Ow4YODksNHYF+4zwi1ZSiIG25oK5dqdTbj/q3Xx9rZhOxvP+1ltMqEE+/qdxEIQAhEo3DIOtUqwThSPMp/6/5nV6T554XCRY1bpdT5JKCM4lSomkA39407pJnUMuEVsVATOu6P97qk6PaInk7WaGvFHIkpIkTfCfJ7z9uEomhBXkPdW/3qx9CZ5bllq1cO3VXh/lVvdF8lPlRX7/lXY/+ivJ16tOXK1efWjp9d1f+LiZ/Y8cuf3rrw6snrX3g0P5WfuXmEdv3rjyyd/+O+1FSuG5OSKQv/frPFP52bfY/etffCF4XfPvYF8N1Zu/seNHuL/zfWZte/+7MDFvW89+9SBX25Zvd7/uQPbx7913/HAG8vfic80Xgs9MREaouvXLd8Viz//oxfv7fnF8aPsmfNnJmxe9eDmigprqPPspet/fflAd+Uj++MvGYk7mtZ97cl9eZzzffbop3Ynzr9t/nnm2xsuH9I//zvkjL322g/+sD7x7JneXS/c9tvDwdvfTj+snH7ok1/a8pfVT6y+9Ni1t6Lta17f/pi027zy/aHW3ePf+NXLBx63O25Hl0dWqKfo/uKhE+M3XipefqdIx+Pkwol777lr8I9q76GDr1fsmL32VO7EhjsG/7NmXTt6bn3xnpWrfv/mTwau//z9x/8Z/PvAF+5sf//KyuWVX7l693uVFRUffFBZ8c3J+uZVH6uo+C9z6hD/ \ No newline at end of file diff --git a/docs/cassettes/data_generation_94e98bc4.msgpack.zlib b/docs/cassettes/data_generation_94e98bc4.msgpack.zlib new file mode 100644 index 0000000000000..81f2c031fbccf --- /dev/null +++ b/docs/cassettes/data_generation_94e98bc4.msgpack.zlib @@ -0,0 +1 @@ +eNrtVntUE1caB9RqtSpbq+1WxFlOEY7LhJm8A+KKQRAwEohStCjezNwkQzIzYWYCBJUqira6Wge161aFoyCxoIjFB4rg49S1Uiu1tj3Ftnrsnuqx7bbW9bG2ut07ASqu/WfPdv/ZY85JMvfe73m/3/fNryJQDAWR4bnQXQwnQQFQElqIVRUBARb5oCgtr2eh5OLpOmuWbVatT2C6J7okySsmxMcDL6PivZADjIri2fhiMp5yASkePXs9MGimzs7T/gthkQujWCiKwAnFqATspYVRFI98cRJaRKUxxZDDJBfEHLzHw5cwnBNzMNBDi3EYJUAgQQxgIlTkKfRo532SIs2qsHzOAtwwqPrzOQ0lwHggjQGOxoIJoRSQSRU2W4QYRLn6MWfQY9CHKp9LdyBZPwZomlFCBh7MK0AH0kPmRAwIsEc+DvOJQV8sRqNLQEH+7BMlI0qCL3hxGBCxEujxIMOpwSQS8rmFMcmUxAsxCVjMLJ7FpgPOLcbEYTGpjIdFmy/FpPKCEiaW5mO9yoENFCsOrAJTrKSf4wecsj0LJZomQBS7BaUY3OH9mA2Z9isLM5AoF2aBGMpoDu/DzEhr3uJ8zvognWAwouRH2igYhnPwAgs8ijLLcAx6xDyQc0oudKojCKRr680RKUbFYVEC74FKzdBVCFGL56EdlqehR9lyeiVco9Lhkk+w84osh3ZJ9I+uBgIWLRzAI0K0IUHWi3CGBBVbhMqwOOCCgEYovBgSXufiRUluehhZewBFQWQfRcLT6Gbk3c4yxhuHiu3woAtqQAXgYPD65QY3hF4ceFDJ6nu05Gbg9XoYCijn8YUiz+3qRR8u+b3w0eMGJTscYZWT5H1ZKIjk9HirH7UAh5EqrVFFNJfiIkIZ50GQxj0AxVPvDZ639T/wAsqNjOC97SXX9yg39ZfhRXmHBVBZtodMAoFyyTuAwOq1Lf33BR8nMSyUA2bro+56Dx+406hIUmXY+5Bh0c9R8o5gIQ4+pAwlwY9TPLIhbyPqKZ53M1DuvlFQQDkK7GwSkWvPTS5KK0zxEkaXYLCazNqpdmDSzmV1L0p2g+QTnXZ1QUYuqeNx0qA2aHUawmjASRWhIlUkToiumSxvZAWfQ28v8tlTpOLMIltWqTGZIHUOi9ZSAM15xTqfflqJk8wAnJawmGG6I5s2F7Kzp/OSR5enchZnuHgnyDJN1VqyLbYymzMRQ9H5ihk6aXpGHuuQyCIxdyYUWS492ZabqZvqm+qamwZzfD6vq7DQrafhbAtB9QvPoNbjRG+EekJrJJRPUx82ehpBrtVp1TtRc3pRj8Nl9ejKULIVdQiH8Mw7gd6htj0r8wGER9elIEzK7akCE4epDZgNejE1odZipD6B0Cbo1FiaZdYuc6+bWb8Iwb2zBMCJqGvxaX2QD1AuH+eGdIP5F8HeroAdVVIJH3UpDku9vAjx3qjkXXl4Ts84x9NTWno6C+cFJ+CYsqBbuT2I+pKy0hKa8tG0q7iEJUxlWg1jhz7Ksa9XxSvwihsUEM6Kch1JaHVNvUd9wGtAyRI4SeAEeQj1PkOhPlOy8fKChIuQQsNT8svdcSwoVZosSUPqNHp084loXFMeHw1tCCA8i6ApJiqj2MMD+nApjgYG9DAsgyoT/O19O6Eg0KQiWh8VkHg35EQ5oA3WlejoLyFAxb6SxQMzWpPJdOSXhfpMaZCI0WA6/LCUCPtHQ6pZsfVRgV4TtSQr7irtE8cZWu5+AS0KSMrgMBrUhMZgp9Q6I00SJjU0EDQEWj2w6+EecypuBpQL4rYgAuVAypyZyZZ084E8vD+U8Cxv8L0rBzhe5BiHo94GBVQZuYHy8D4ajUsB1iNbOclz5H1GykTZ7TpA0nqgpRxqfCoaRH3WfgZenTJrg+/xpfVKPTnnydCPx68eEhL8DEDfn36SqpL5C1PCK7+7t+pc9XD1wJR3d0cXfmBuGGp8YffEfQdO3V5+a22bZkJy9j8XflkZlnTzrZX+H5PaF7fwA0LMlXOWnHY3+s8fvhz4ctGdm/9ovd09se3+/Unjftz48n39j1tuvPbe7vSyihbnmVvxus5DzLiJe//Q6Z/S+Enb2qvr70rF68tn1L7vXdp0qiF3paG229q27ntiXJYj5i1HZ/aZsPIRISEXv+h23hzU8caglBojY3071zXmambIhOavY/6yat3OW4VVqze1vHiTvL1ibOvB8pgnv5l0tDTWNMUStqElEFE2PvSGtco9MOJv4R3eIbFDS+adn9B8YOGN0YtG7ju4qjkhr+ZYfWrrsFciI98BYWMnH5trini6uWPJjo+OrBi8fE/0pKLB71a/uXtJc21FxomoFeH7LzyZFzrstwkXqd/cTXpib8aI41c6t3WVdJ0dN3/T6nO3Mge8vvWTDuaSqeSNozWNYv7+pRrTtav+9Oq6i0/sO9GxJ33DS6M+uhN6bE/r9m9rPraMbWV8jUfMl8auPX/tXFd++clpW8uNr3YWfj5at/neaxfG7Hx9Sz5+IWJU1R7ViGsmx6KAvCxW/2nVosptw5+5E/lp6fh7oUrxBoScuJ3ReDssJORX5XzPPeZ8/TmfQPsf4nzpnEJOkHYfs0sBghvL5BinS8JyGBEGKaIF0JgFlCZgqT6URA4ahX3iOSgvDnCSsk5BbwZGcD9me4/Z3mO299+xPY3+12V7mv8ntkdqHrO9X4PtmQw6QBFArUb9AAgdJHR2SBoJtZ6CRmjSqv+HbE9PGo0a3X/G9r7/d7aXY3nt6eTw9r//fuLiJ8J2vSJo2p5fIxxfQ6763f4knQZPmre1IXLyW5eP8mULQkfO/+H6/KOdjXe+OjR4QT64ssCz5rT+3MjJn3Xpje1Xvxv/dfipoyNW8+tPd91YeeZ59/przkF/uB+9ef5s87uWmxsiVo5iK4ns6oRqi4OvL6m9s36tqxWrgbNnLGu7LK2b6//iuGvSn6s36hIzC69cbxsccv2z9m4q1sVfIb46GjX8Tfs0R/ndgQuWL059qiHB8tzM8q66L9fFSgfGH1raFXty28jNx9pCood9OBNkbt+0JeaVF6Izlx2vqhhmTbgU63K7p1RuvPt03Mkj4stwAYx0VwzeMHzR8KaGUXFbq6p3DhrTfOx+xOT9wpJoqmhjHJMZau4csiIs98q24WNjNj/14c4F5ISD7xWFHaisPXt27clnE18M/ya/IfGvqu/qB8rRT0a+P+BP3omOkQdSkzdPf+b9oY0nxpwsarRmh39wmZ0xFTZucg/dfcd5r/T05+LoypqbZwqufzAocGvukI3ms3mj0s7vPRV5rKbp0u2azhnPcPa5MRet7ww4VXuNqT5U/eHGrR2J618d9cPYjz5t++nNjwdFS/P5pre3RBy2zov5o0rflrQmUpvdopq3c/r21m9dh7Vr258N6SGC4sEfXtagIv8LKjDlHw== \ No newline at end of file diff --git a/docs/cassettes/data_generation_a424c890.msgpack.zlib b/docs/cassettes/data_generation_a424c890.msgpack.zlib new file mode 100644 index 0000000000000..08071df7df43b --- /dev/null +++ b/docs/cassettes/data_generation_a424c890.msgpack.zlib @@ -0,0 +1 @@ +eNrtnQtYTFv/x90JqZMScY5BR0kz7bnPlKimi+7pXiJ7ZvY0U3NrLtUUB0VRyER1kltKJUlIqeQuhCTR/eISouQkhPDf0+U9COd43/zP+3inxxN7r99e67vW+q21fp9n7b2EpgVAAiGLxx2ayeKKIAFIE8EXwm2haQLIXwwJRWtSOZCIyaOnONg7OSeLBaxqHaZIxBfq6+mBfBaKx4e4IAtF43H0AtB6NCYo0oP/zWdDPdmkUHl0Sc3IipCZHEgoBH0g4Ux9xOKQmTQeXBZXBF/MdGayhAj4D4gQwaUhQCpPLEL4QFxYiojF9UEIJVwRE86NhqCDIrAvnQPRWTSQ7U1lsdmwEQphFgTKChUiqBCbF6jvxfXiOsDPw2UgLE31EWgMFocn6CL679mBHEgfYcVjchGmPEgXYcoCfbg8ISyDwqPDKV5cxAc/VhgARYYfFvBoEF0sgPqMyGQMgNVFOPNEIBtBYYICH/imJh4AdBGWXKFYAHJpsCkbZHEQxhyemCuCU7F44FNtRBIZQGM+p03I4yKcOCwR80OBH0vrVWKLx6HwnxWIHigQjf+aQDRmgEBZ0xFJnwo047DYEoSTiMf9y/YzQ6O/0H5o3AB52K+2H6a3/ex4gQgJT9zvJ9Df9BJb0A82lSkQ8RCwPYILVwXBEcN+R4UQNCZPCHERoAgBF03ncfrsWSKEkCcbAzJvlBUayBOz6VwtEYLLE3BANtwK8JPwoyj9mbqImQIeG5L5tVgICWauWALf4cC1Zctu+fBFSCwKjxSJBVSezJYh5vYMN29YpcwiZKZMkMzU214s4otF5rISRCJZTh+Y9w2iL9rCpnRISBOw+DJrmUmvBYLRb4JCODFltUCA7EBQIhs1CFgvXdYsvTayigoQAkjIh4v7V3PJ6oSSZc8HBXDhcEbCHtV8ATwNCGDv6L3k9ZT2uRR+rwt5s+g9lyIJv6cGspnHp6+S/SZ9tfvTSCgSwD3QY0PvdzdvGty2X7Li9/vbV61EMvfzpvW430c2XDGH2qeJ1e+O3jSZO3qDPe74WWuZuWzmZAkgWR0Xf1jlT2s3sCYDVX+q8MtqZK7Wr4ZH9YVoos+o6euaz9rKbsq8Ba3b00AQyIEvGCBbCMmsIQ5fNtRgYTITFLAijQmBdNgDolPgcSOSZn28GhwEaTQI9neIC1cDbmvpAZ9gFl8XQYcYbHjAZsArABfq8WZphh8E8ZEgmxUApfY+Jc0G+Xw2PHZl6Xq+8DyY2bdiIGWqByZnyDwTCa8vXJE0xx4WYWyp5yCBly0uLBVHQgHZQUihCGRx4SVCiGSDsJ5Ufk964YcJfJDmB2eC7FsSpam9D2d9aMMTSvfagjR7p4+yBAU0pnQvKOAQcEc+vC+Ae4bFgaRpFIeBxfUl/lkcFgXPlMRDH2UMz2w06d6ebsj76GFIJJAgabKulyYBWf3tw4a4PiKmNAWNI2PS+8dvWCr8nEgsDE2R+dSVi2l9q/Eee+v+XmwYMinFFO4YaZG5gKWLwBARThAfgQEwOASaoA/g9LEEhIWtcyalrxznz/bDIWfYMYUMuC/M+vs9jcYUc/0gegblsz1eJOtxuDoy/fDUiYSC+PBUiuxTJc10Rzr2xiFIS9Mjve6F5Al8QC4ruKdYaVFP1wcGBwXSaWI6nRkQyAHIwTgsiwqJaYycvkd6RpVQCAtCcoTSZAKJkNWX0t/4GXBdASQaQALofNn0QIN9TVYZPk8gQgohGhz5iCTSal0OGCRzNEMsGo8lAABggGBxaWwxHXISU015HLh7hAYIvgAOQ0B6QRBStjqxWfAijuz93RdVCaUpcKAAHBtoIOL5QVyhNA0H9Pyc+NBCAMnyl1Xiz2xwZDL5+OeN+rPCwiYkgFDwsZUQ+lANGsMRHhto0JdFMpyaGdRvjmTRpdWa8IU3nk4iM2gYGgkCcBgcGkMA8BAeC0FYAgagUgHcQYo5kgLSmBDSqccBpWmmHnbGtpaUDCc4cwqP58eCYmqGDvf2pjG8qRxDHyu6lcDUytiU5IwWu3o7k9ytAX8/T3cK0cnKH3Jwc3QKCGAvshBzLY2RaCKGiMNjASIBCU9HKDQKjaSaG7v5BZt6GAcGCxeiAihsd0sMTehpzSQu9OQwWCI3Z1NzJ2N2oCUImIp5TgR3lMDY1kZAklCcfNy5Qro7hglRg5iWHE9CkDVICSQGLCTY+MDdCYqYhnoGCNg54ZlUaNg3RJDwEEH2DhBs/wAxQNB7nMAQ9fF8aIBYCEfN9ly2xAAeWbA3QfDf8CLgxBJBhnZwEFW9FW4DcQCLbmhl7c2jeUvoQn8rFxsHEw4aj2E6u9PMICqAX2Rh7GEVxGP44HEeKG/bDxqBgCMggb52IAA4Uo/3/Cn931SV6478cMQj7XtCCrgf4UWLy2IwUp0gATyCpBk0Nk9Mh6d2AZQK97mjsYc0h0Qj06gggwowaCCODtCQJvCk2Z/bv+aHFNm60MMJq1N7l+XzQ+umR40Z0vMzXBRjH1VrNP58+yvVsFK77LtBW7pcx65NLTMJyYxaVHwYW/2KxrhH+PVeYfyhwLutJnrzH6a97Na8Kp4xIn2U1dCONbq2B+Onz+fuUopoLLzGErKu1b8qT2Ivek9efjVyWkw6/wLW8jeXAynYotmupXbuwSapD7dxKmttpWm11BHF+JTkzMeShIORvyq9exjHykUt3aqVpjlS+/y1tcomXhd4V5hTC4zmlN87StUe0TqmJGSLctOOTWqnlJ2X5Yy/NH7vERtCcW7YLaXdP2duaPFb73kSrTpMd9v1w+8I/AVPtR4oYras5E8aVhYYNuMyWt9rLp8mHNl8NPQXD2mzJ15t65v6F/uqNIX4124Ork+HK3rOT+p6suke2Xmzc5l2a+Y4nYpyvFNjvDi3Jjr7pZ0jNmjb7d9O2hFn0S+k+0lMGs1yLG+kDIPONl23ythrDvniuNloxs7UvKl1WgWG7AtOBiMq9PwWH/cb0lbQUEgLynNlxrrcdg4508Sus1pWab/yGHJNF74hJEh4hrS5JZ/x0oagkbUrYMv0K/bs1MTukXbJDY8lcW/tXYjn0kVBJIyNQmwbI6LzF+H2iWcaT9EfuVZvWt5+8+1PSG7USrgb378fPmR3J6KeMnzIkEEly7J/mizl9Pbt9PZnSAxnQyIS8HA+HwbG+rI5CIQ7B0Q48uCoWiSE48aPAmV9hDWmR9XH0XIvk8O5fRgy6yPgpRQFy/p83Ay3kCxZTpVyqpRT5X8PVTYMUZZz5T/Plam0nhhdWt3xXx6if4fg+TNMTSJ9G1Or/QVTE38kpkbLmXowmBpHJzKIeNg3SRAOSyTQ4XYlYAlUiEFgEEEC48tM/R+zGhWAPRxL/jZWu/8nq/UE+jCw8WoBGNjeqQ67ZtdU5R/aRVDVjmTXh7dln/WaHHmF5PlcSQXPVuyoH01mbZ9UdX70u66d0y1/xhYbvSgDlEfbmRjg3/DzfnvXdbh++dv7+xubKe/X50ZnnNwvfpXfPVTiWFWvp9qZsW3c/h0mMbe2H3p6UWHLY+qSrHixS6bbrLJci1h6WLIH/qCP6tvS0kgzD++to+eOHMWsurYBXbzpLhHCGb5bHa72ys+MNma5ETPLdsPqPB2XVRGI4f6UzfYO7hSmI3tibMHQN0xTq0aFrIqplOJTfEPPAO+Z+Qtf3vKzW/OuOAHd9Ns6DcW9D/ns05uuInEXJk3TWh+uX51Xplvi63GwY9+27sVMzy5uvbHgxUVDyzA95D1kZ4xS8agp+uAbYW2AxzX1WaKGsa3JFxS4BGjRxs26/jfXD39JMYGWXIk6PpJl0lk3pnXNHcdAr1qmY+lh7fvnW0ZUJtkRx3Uci169//L9w4GKu1ubjtevDUxcW4TDTNOPnue+ZdLEiwXPpttNodnfvXQ3cW5qUk7yplbsNrp7lp5WREusrSi/4NSzY5XBR93f2t98vtArgy/0IWltZfw+LdLvir/dmJXDk568KB//cEd8ZeDWHYf7qW3uulFjzAeb2or/aWqTQ9HfhqIPdfVvo36ii8dnskAYa+CInAsFD5RlhcOj0J+Xhf1UFtwaX5OFkbOanNXkrCZnNTmryVnt66xGHGRWI/1ArEYEiP9zrEb+HvufRCoDT6IDWAgkEvFEEAcBaDSZhKZjAAgDojHfk9UIZAiP/jZWeziA1WyjagHl8PZXatRSO37rsYYu17HjkNaLPZlKz6mqkjvpUnNzjbzCNd0vZxpM9VEPvg7uTHBrX759kskqbpLK7gkxsW1XO95GdHQ9PbXyxIoTfisxTtltjWnTr0E7V7wvWK3peqye59zteNSx9MUoD4Nt2R3aU5IfFVwpsZWmQeRhjz1xh/r31357ENeiPxcVOzpNbVT6uYNrlU22FxODUybt2q3C6lA5NDm0VTnDL0a5acf6nzbPeHgqZnLMFB2LDaqcG8uuKFYppex5Y25JW6owdqhmm3b18inHpnc1SOYmXG/UHje0PDDM7A7zZzv8MXR++CNnip7HLP/kWo0McRwvMrC5npBg3L0nPCM8RK+FiVtvv9DCNik8Jdz18iavsqRFWTs65k9q8TU402Cwtq3JP7yWk1tqcXHTXlaF8WvUnuML3ViOYalAkOXYqVBK7sYc7u6H+LlRLsHzzx499Ozq5nlPIhBXoeAoosIyr8qQvHG81HEhtvrTNKIxpMizCq2vWyKemay74N92dr9tcSr7mmLhLEfVKyXs8rBX5YyCOXp835ca1ypr37vgkYcrZte1asyO2FbgMaOoZtqbNU+nTeYcqaxIai860VB+53jX6F5aQ7wYlW412LR25p+gNTkOfRMODZRFJJE/VWYOZ+EHtzjCCuL6wVkOlGaJB77QYugB0rB/IY2Il5OanNTkpCYnNTmpyUntq6SGG1xSI/9ApEbC4P/XSA0NfAdSo2HQEIDB0OhUHBEgo6logIDD0uHZG82AGQrCf09So5MYmG8ktQcDSS26ppfUbm0fPna18sUDGc5t4KK9vkoHtpVgNimgcrUOa6kh75x0s3M/k5WjPv1+guRt6YVfwfGi4WrDJaqaHB/GrvnxafWSXXmFD9LS4nmNz26enP742a6fLz3btxrn2vQuL6bTEx/PNEhemDz1UKfV5siMKIye23nMXOLw7CrtiZdrNjEuS9DJDe3+cciOO64SU6TLqsi3NpNprZjj15P9KqboxO09+NN+E+UDoY92npschEMPmzni54WkUFGoys9z1DmFDb+P5j/cseFJvmrx8Z/o47dnh2m+r3GqvKHe6ao85/3uK5PHNL5wJUfeuu04fMIlvHO8hr6xJ/lOwb6kGm6J+JDn/SjRsD+iNDI0dl4f80JgWjtShE/B4zxzJoRN8KJiZ7cdXn7CQ29UnWRrRkvRtqcBiT7nhyhYTkZFn8n7Sc2DcK1cI2dckbqdDmpjWdy4qKIoVzf07eC1Id6VEVMk4odhQN7tX9tVTi2rldRFBJ5dGxagPy3fbebuqCMKa+q7zuLB1srs5++uzqQ55c6yC3JEjb0PoR+dFjEnLoklknJDovWedSfrNGir1KyJcDn70KEwwPHiE0LE/Bndiim6C5iVOo2SFQv23tvW3Qdqi+bYvLAcbFA790+DmhyI/g4QDURbLAb9qTQbHhtEODPhPoYXq4G6bAEMikT4QqPhP1WG/zrc4uSbanJUk6OaHNXkqCZHtb9ANcKgohoO+JFQDS1HtcFANYhBBgh4PB4ggSQ8iEVj8WT4F50BOyudQcKRviOqobFkeJz8p5tql7m1gLLZy9djqbcOz7AOUPWrnD0mclJ6LbRYbZjtRoigadGUvA7sahxnteneiIfhUWRsfOAvD9agNyOdx5+ThiSFHO166jB/5a9v2zrvXn7bIl3wpKT+QveM7q16jcRfUw6Fvljp0FWZsRdRP7cz5sq6tWZP0BlZJce9eJGZdROMnKJ04sRF3qqXr54ZXZhmlltCrCyZZbl6gs6LueCGQ8+emkennldPd487YY7Tv2CwxteKOl533+ShT7aLdk5Vahk/ckr07BqC8b6p/DHmpi83NlkVwaQ2vjKMfmTcCaV36zPvNyQXLWKMP9YWan43WUyqNKIIFG/mh+8MWV9MPHwgqaYhPjBRLD1YPuWcnm+6b9e5Nu95h66JcJtsFFmKB+7tmKG1ZFb6z0d2Ri7P/3kZz3LZVN1SfuHVI8+HGEqyNPzv5UYxd0CXdQ8Ya6jrEodNTTpWoVipaiPyvFeNKfRa5vtYgJ0ZFdF0rKAUJYkfElnQUN5QlIicliJ9UuV+b5PNtI3PKqIXeKkU/6ZkrcR7MTmxvIg3zzB5fahEQnx0erkPdkm8GynX4HzU8S5vlxt7HjjmJ9rCrLaN63pxdiJlV5NdaTJ3QrmIGTI3zdoKdWlB3yuQsfWaNQt/iFcg5VD0b0DR31K2EIRnFkn/d38DpZljMYO2FYmR05qc1uS0Jqc1Oa3Jae3/8xVIHPoHojUyDpC/AjkItEZmUMkghKeTSHQAT8dRQQKBiCNjIQKDiGfgGNTvSWtwwVjGt9Ha7Q+PFvkA1HJnXHZU86scwayJrUVF7nGZUVbhzjgTYTQhKif8fREi1t1uFffY71ih5IF/yeTh1ZSzRtPICoYZzW8KX/u/zEFmNraX8CLa37qhXpxcYFi3svtN86RJh848me5QZn3Tyt1QR5N1dc1ait1kl0rxovibs09emliWa6F2OVwal+hyNKXpRUDCwahH+R3MvUZKim8S0MVVc4quJ7f8oaARJ3I0TX653IiJstyw+oiO+aoQPUN/SvbvSdnhZaa1s7XFIyecXvfwxESvfW6hG1bf1rcMKDSi7Va6xbJb88QqAd3EHaOhaPaY73s69d6kbU7jZvV9qZZJdClClgQSo2BQ82R6dq3OeNAqLH95KyebmRS/HLhl3ahQa8966ZJfMnHaDrWq0RHYOm6UOAHhcSdjosWT8HUlezyboyal/HHaf1b2xEjren9O2HpXosuJkms+xzrFJ7ZJz1Keehkq6YVsGVIyIflIyHvGMf5m89e0B5tD/O6w51X7v769Hf1iLsfwuCedbRVdIV1hOnFkVMHOzmXzcxLiZO8+qjSqNr/PKPhlvXXzQVfFLRRWuMeMk1U2K0Lf31UQB25mGBH1JeS9rdvfDu/FtGWMkbMGfUvt/H/Hu49yFvoLFvqIbLF4IhmDI5A+FeYJsemg7Js/Wcz+OWUWeJystM+B7UBlGPxXleHllCanNDmlySlNTmlySvs6pREHl9IwP9KeGhknp7RBoDQ6REOTQDQGQoM4AAY1AhGA4zc6mgqQyBg84XseKoJBAyQM7T/dU7vE7flQLXgstfRw0vlIan3NbmN720RKSPpY0GYjdMtrBMrI82z7UgeBrpaR3rwrxGfPdjVvBUbtiQgfumD3A9+t+5WUnv/h5zD96kuteb8Z3LqJvaDevV09utBeaXPx2CNvbOtOuh7IX5SsqbdhJzpvzc49vkvVn6fqHHmzfFhJpyatGnjtkp/lOr9qhwckWbRER8mcLyjL3qVA27AjlRhcYVhkdPZwJ37PRfK0Mdv8VGjLNm74yejBmmfphinj7pmHlF/PneDYsGpF2byCdpLVK/PN6LL02ZeezOlCd1nQ1ILtX5gnoI0MRpjVWMhAzeYSEpc2ybwzNKfdtNFki3pzasH+9ryWYXfUkThkNyBYsPuXKqwO2MIbxxpXdMp4qpbXBdsFD1bMyXvMDk3Gb3+9jLW6liONn9hZnNzaNbRN+XpqyS2PmtAylHvFdn3UovQJsQr6wcj2w+KAvu/UdNvCKJKEpR2ooSlTzP0CntSLQL0cfkSpin7yXf524t3us2SwtTLnxVPGlkNz8K9LE2e1aLtXPM8cfXkvUiRcuVpYWBnk4fx+/6PgDu2Uwmr8lQlrf5m0ttVX+Ghi3fQHluKQpNGHk9UqF1uV/mtPrXKRT6zVD7enJkeiv4VEf2sb0o3HZsCrhw/CEeTAMeFnXhu1w5K/JG3ANiTu69uQ8AIhpzU5rclpTU5rclqT09r/554a9kc6AhKHl9PaINAaCNLxVJCKBslkOg6HRdOpZBqdziBiqQwySARo35PWiFQS8I17as0f7qnZyk5/DG9/p9Zz+uPzuq5balWA6FQBWJX0bJk25i4z1sx+z6os43dvEAa25cMKH56KWP68g7ZrzNCCMM9VNZauZ5mTiHk371a+aV/58O7r0wu6Cm8+e1A7PVGlfWdDozMMazXd5uf1XKzNzjI346unzI2IQWdkZRwv0Ilq1d91yujnbe63oo9rxzWHhtWWzVzc3HxIYOGZFOHZbbNGmbqg6Hpy21MFX+lePenQonhDkxVWKsOmJUwe2lL0QhdJCQ6P1E3emMsB7g9jh7lcX7E/BX1wxNohcyMsD79VCRrfvboOkXB9iexMkeeg0eXr+q1Td8/JXx3ceErbI7nZNVCxwq258FFwUUlU5/g76ooVinXJZpRZkbwKcv3o5VwEZ/eNw3n3jvLUxML7aS6EpOvSMyjSvOTn+tciFTCHcAdqLCstnJ2bMdZTy26N1jpwxnXKvgjXCarsTk96NcZgWlNF1W3qwgl5p62F25d2zB46/nly8saV2CVVvvvfZom1DatJ067hShdMU5nxm62f0kHClEQNc27CL9fNTx/PYBiSvGsSlsZakPJCItUl705m5FLiarqilpxtdah9l7l5B9tuRej7x1MiAvZzormi1yLrSzNe9X2qNtYi+s6go9rFf/z1RzkR/T0i+lBary5Y4KfSHODeYcMdj3Dk0QUsH/HnxFmigb/5jR+WiJef1y+HNTmsyWFNDmtyWPtPzusHBhfWcD/SGZAEtBzWBgHW0AAdAvAkLJZEQ0MYBplEh2NLHBVNBsgkEp0EfU9YoxMhBv3bYO3xZ04WudF/ssgNHdtyTuLUKPfV50Kbzlk43NPn+vqGzAzRneTyqv2iZV5L1rnzERLG0pPP/O0mD79pcl72FuSNx+cT8xJvVHZcsEDOP/py8fvT9xsbefU0t+NvOpBhPSeLqHZ6HVVlBiMtk3Zk82O2bMjYb3tiTqVZLtJ8WXasfpzYEBnZHGx8us1feqDj+d6OdVYLldTeJADFVZLlyRa1JVrp7nHzLTZ07gxUyfBToTU5XBjDb4/V4iqUTxmbo8nJ4YTdIjYpZ657MvX00d9mXJzszjW/dF+4e37ZcP2z61MKZd+rPQ6Vxu0RkypX0Xq/V9sSE6dx85ZDW25iodjj3n7RqJ6TRX55tQVz+kjI1fMtStTFFE/K/iCf63Mbx7DTzkXM9H5iXmWgeljRrpSfd9nt1RiF9Y/Np+U/nqlzhJ2wF6/9OOyu60VzZpbNWcVRU69OkuReCR+atUOR6CToUJ5XGf/HrwdVjGiVBnVv3O6uDTtcMn2qVr7F1LS7Cm9aImaArZXHXj6lxh6ac8OJEhRDGHs/sdBS6b5TIiu/6NS+er/jFy+/d8Ef0MzKOelBsJkQ28aQ7a61Tuz2ti/HjYYMWoLTsi5sHf+v3bWKsOUjrAcb2Ur+a79Yk4PRVw6p/OKepC0YxIKhB2HChqOdQB6P/i3bkrL/8k7+1Zoc2uTQJoc2ObTJoW1QoQ0zuNCG/5Ggjfi/t8NG/A7QhkXTsVgCDgeAaDoNIODpGAIRouMYRIBAxDKIxO8IbVgsxMB84w7bowHQZsiTvQ8Z+HbsHUb15udgdU3NKNvVE6bUiBa6KOPEcdUOKUY7y0aFvw8xnhO3fcgSUp3wZUdRtPDc5PRROqM6NBcGFC1d0eU8f2Vt6/S8anVv7sq6lZwjhQui9wUfC/GdbzJNp/U20arA9cDetuCNKZkJ2SLtMWGPUm0uH78Ys2R+aCkhneJRe0NnsfpcjbrTWTG2nsddd2bGPEyiLphVPNkgmveUqdE9Ts36jl8Kpd0syuGq7Ns1fVOjoIPzFCjKeg6eFGYoB8tcMXxTmPS0YbzJY2LohtU/1Wtfmj7q0ejX7CVa68rqtbGjzhylRISHwtS27MI9jQyhYhFibfgxX9/08uWFtXSz/Gh15RPpSRm3FcSzql5uEd9fVVpUoVxZpn1d43Hsg3KCU8OKpVlH6ClFR1QST982efkGd8liYdya+x2aXlMddk56rJllPGUBCdQU7Fv76NjD1mWh1ZkLb11qHib0iU+cQ543YenDyj/M2lWManMDXzQ1blTfVKK98s6EtXmzbS5saUubjvqJdrK4SInnOmXbo+A79F3XR5zOqbMNzt5eY/Js7vaaHXc9Ct56q/E2ryl/x6gGyM6pS1Rjqu9XaXWp21f9kYxBFjTse/X7HutOpV5m892ZHiBjtv8Du/lmHA== \ No newline at end of file diff --git a/docs/cassettes/data_generation_b116c487.msgpack.zlib b/docs/cassettes/data_generation_b116c487.msgpack.zlib new file mode 100644 index 0000000000000..20b9866b17e5b --- /dev/null +++ b/docs/cassettes/data_generation_b116c487.msgpack.zlib @@ -0,0 +1 @@ +eNptVQ1sFNcRPoiqGERUN2oqNUWwcqGXBu/d7t3en7Eb2WcwNjnb+Ix/gqn1dvfd3dr75923Z58RRXEqUYUWaZVWidKWNLa5K45j82MawHEiNUohCaS0lSAOpFGI26QJRGkStTRpRWfXZ7AFJ93d7nvzvvlm5pt5Q4UsNkxJU5eNSyrBBhIIvJj2UMHAfRY2yY/zCiYZTRxtbkq2jliGNPtghhDdrPD7kS75NB2rSPIJmuLPsn4hg4gfnnUZuzCjvCbm3l722q4yBZsmSmOzrILasatM0MCXSuClrE7KYpUiGUylNFnW+iU1TaUkLItmOSUYGBFMIcrEjr0Aj7xmEcda8VFdagL1YvfozX0REyTJWKSQKlJuQBACQPqo7SamMMSao9KuR9eHr0utT4FtjkKiKDmUkUzpBk7BOYAzKWTgeftyyjJdXwolQhKA5E2fEIxJDMtNHIVMqh/LMgBvdoOo6FJ3eQVN1gzTC6F7ednC3nLKm8NOsN6du7vU5lv+XGuT5GQMxl43PIlAHE4KnFVKA7bgAAERAxJmYAGZxOcFlGSRDkCUlVNlhiZjJ73A2ijbvRNWFE3EsrOU1gkd9IVoYhm85tiqsMrCP0SBkQIvKSSbGBYIVnSQBBg6WIwvsruQwUgEwfzVUzqa0UxiTywVwSQSBAz4wEQTIUv28+lBSS+HuqRkKOUY5ErFbqbssV6MdRrJkN38/Cn7MNJ1WRKQs+/vMTV1vCgUmuR0fPv2mBMdDbJSiT3VBCSq6/3NOVCrSrE+LupjDg/QJghClUF9tIyAT15396cXb+hI6AUQutgJdn7+8MRiG820DyaQ0JRcAokMIWMfRIYS5o4tXjcslUgKtgvx5tvdFTdvuQv6WNYXObIE2Mypgn3QLcQLSw5jYuRoQQMM+1kmL2har4Tt2c+6u4VUN69UMW18W3VfXU+tzkQzRqQ5FudqeBTjHlFC7YSPEMtM84HuhjY2pNFsJBDhQkEmGqFZH+NjfSzNmJlGRYsqhpUK830WX0uyW/uSTQPRaoYNpRJcohvHO7IhK7ypP802IJVjEnFcn9omxnuU7Vs0Ioc6fOlsQ0ZLo6ZYDZfYlkgOJtMbKWBnZSWxaktDh5IibJ/Z1ohNRa2vTrZtDdVYNZlH6nCLZemZnp7esIi3JxhhEb1IIEwzRYZhhosyzmdiQRsyVtMkY49wochvod11aEf8WB5SBsEOjYIO8dkzheL8GW7aekvC943Wgibtmc2GVE4FIlQS61SACXAUG65guAouStUlWsfjRTetd5TgkVYDqSb0L71pQfIFIWOpvVgci99R7DOO2KGSDn3oUhoP6JqJ6SIre7yDbpmfvHR97bH5zqI1I41UadB1a8+4qu8fHOgXBUsUM9l+hYkNckGJx5aQmioe0Q3NcQOEaMWE5MRiE8WdBd2NQawMzTI0w56E1pcEaDMnGF0zCG1iAcYcydmz5QoacHqsKsiGgmFI/EYYSIJsiTgJ+tAUUKa50RmasobEUwM0zAssS4oEhXF/i/eIaY+G4PCJ2w2I1ovhxilwblmZlxZbGNjBd4K4BQOhxF68s9ECVBBMYgxzaqmViRezYQOKeeJ2gyLECKuY4wML5rQk2rPr4KU7FIuFkSjwiE2Fo6GAGAwHQ1xYiPGxYDAY44KT8c10HAkZTCddAdqF2s7G6kR9/Hcd9GIl0U36/EVbUDVTlVKpfBIbUBl7TJA1S4RpaeA8YLVUd9pTUSEm8DwXjkRFxAmpAF0Dc2gB7abuRp1R6964j+adeqrpV5cdXbuvxON+7oLvjRtkW2LfJaZ05oP2Vaeurl/xZvuxubZvNezaQE/tbfn9W2su9Yg/O//TcN+T//13mfeXV9cMfuNK1Uwhov3we54/XEjdnf+o+bkfnJg9Xbj2Xt3w5P0vC59LM+VrHrpBrivJ99+LPiW16f/Z++Du7ec2fPLYd49f9ZP7Vvzi6Mf89OWJyHNX+jbeW3Vx7uj4PRU7zkWCiSNznUc61InX9yub+Oynvcs9nwYOxEYm/yFmmx/utg/UHl5/bLpqOWPv3Lzq8Y5tX/Tk+4/yk3On3+qufOBitLJk9YrjIyX31I01k5VkZev3qcpLgeH2D6+tOPHon9cv/yK0am712me3ris9P3j8pa9dK5ljPK//7enKkkOeh5Kr7f0j/3vjRyuFqs4h6ukX/3jx7QY9OqdV9jz+4W/WPVxx9t3G0kP1Qyern/nV9JUPdqzff6n05M837HnlOx8/T77a8sDVz68Prz575oDX8/Lpj/4yHU785PLd72xYeyb9yrW9+3590v9V48SF9pbOP73zz1eHrz/T0/3EsPVZas/f7z3/5b8+ab7csl+4/9u1h96NXHjhm/Gp9ytOB958Yo9bmLs8E1//suvcco/n/zbry2o= \ No newline at end of file diff --git a/docs/cassettes/data_generation_ff823394.msgpack.zlib b/docs/cassettes/data_generation_ff823394.msgpack.zlib new file mode 100644 index 0000000000000..3bc3d78d23059 --- /dev/null +++ b/docs/cassettes/data_generation_ff823394.msgpack.zlib @@ -0,0 +1 @@ +eNptVWtwE9cVFgV3Op4Mk2mTlikk3agMmmKvvCutnsRJbRkbQ2TZyBYGTN2r3bvS2vvyPmTJlE7Na9JQaDcphIHpTAEjUY/Do3ZasIF0Qh6kSWFaJi20E1KnhTRMS1NCMtBA6VlZBntgf0i79577ne+c851z1xcyWNMFRZ4xJMgG1hBrwIdurS9ouMfEurExL2EjrXADzbF46z5TEy4sTBuGqoerqpAquBUVy0hws4pUlaGr2DQyquBdFXERZiCpcLk/zzi21ilhXUcprDvDxOq1TlYBX7IBH84GIYNlwkhjgldEUekV5BTBC1jk9EqC1TAyMIEIHdv2LLwmFdOwrSU30SFHUTcuHr27z2EDCSLmCCRzRDEgCAEg3USbjgkMseaIVNFj0Ye7Q27kwTZHII4TbMpIJFQN83AO4HQCaXjCvpIw9aIvieAgCUDyrk8IRjc0s5g4AulELxZFAK4vBhHukNe6IKmK5goTrlZFIpYguVt3VRIuSckIWIfl1a56RbOJEg2mpNpbDRoGilGIxLVmXYfcfI8R4DUpMu6Q4yX3sOCsJJyaImI7ncBSc65bAyuSwmHRXkqpBul1+0jD1JKKbSvDKg3/wBojCT54JOoYFgwsqSABMLSxKHdgXSGNEQcCueh4eCCt6IZ1cHrRDyGWxYAPTBQOsmK9lOoT1EqoAy9C6QYhNzIuZsYa7MZYJZEI2cxPnLIOI1UVBRbZ+1VduiIPlYRBGjkV3789aEdHgoxkwxqJAYmaxqrmHKhTJmg3E3RTh7OkDgKQRVAbKSLgk1eL+2NTN1TEdgMIWVK+lZ84fHCqjaJb+6OIjcWnQSKNTVv7kSb5meGp65opG4KErUKk+X53pc177rxumnYHjkwD1nMya+0vFuLX0w5jQ8uRrAIY1h4qzypKt4CtC9c6O1m+MylVU4lkoqanoatOpYJpLdAcijC1SRRiVkm+FUYyYJh6KunpXJqgfQpJBzwBxuelggGSdlNu2k2TlJ5ukpSgpJm8P9ljJuuMzLKeeCwbrKFoHx9lop040p7xmf7FvSl6KZIZKhrBjXwLF+mS2pYohuhrd6cyS9NKCsVCtUy0JRrvi6cWEcDOzAhc9ZKl7RJv0D16ognrktxYE08s89WatelVDXi5aarprq5uP4fbohQ7hV7A4yepEkM/xQQp+zk4qQ0Ryykjbe1jGPoAdI0K7Yc35CFlEOz6AdAhfud0oTRv9saW3ZPwVwfqQJPWiXpNqCQ8ASKOVcJDeRiC9ocpJsyEiIZo61Ck5Kb1gRI80qohWYduJBdPSr7Apk25G3ODkQeK/YQtdqikTR+6lMRZVdExWWJlDbWTyycmLdlYNzzRWaSipZAs9BXdWieKqu/ty/ZyrMlx6UyvRIX6GK+QxCbLj5SOqJpiuwFCpKRDcnz0wdLOpO4GIVaKpCmSoo9B6wsstJkdjKpoBqljFsaakbMuVEooa/dYtZf2ef2Q+EUwSFnR5HAc9KFIoEx9kT0kRQVxo1kS5gUWBUmAwhR/S/eGbg344PDR+w0MpRvDDVNgimWlTk610LCNbwdxD4YJhULHH2w0CeUFkxDFjE630vFUNrRH0o/eb1CC2EdL+lB20pwUOOvCfPjoDIZojk9SHp7iMJWkkyztSfpDfMAX9PlC3kDyUKSejCA2jcl4UYBWoW5lU020MfKrdnKqksiYOnGxFmRFlwWez8exBpWxBllRMTmYlhrOA9bympXWSJANsckkk0RBPsiwvIeshTk0iXZXdwP2qC0gEYqXYa3htLfaGWYYr3MRIaHqoB/SW7x++/N2seXU6zMOfWPLlxzFZ6bR8va2r9APH/+wYtVTsb1PzsHb59Yeriz/wPHlJbMWbyt4z732t89G1z7/87b/PZa7tmp2x/cOXFm4YsUrDzkeauNnvOFLrJl7++N/jd28+vm5lh1nY+duvxjDuZ9eGs8d+3x8Qef7u50V2U/m/uw7bd98U7p+4LXxZ8Y2Juixpsvnbu7W/N/P/uOHOyqur0w0PHam/lLz2Mj4eNZDVv1281t7dpbdmudwHL+unJmz8MldZT/aUvGHvc++9PtKOeJYcOTss0ec87s27PqgKTz7uT0/vr119Y30qaby82VPzTqvrd8865f9jjLizf55I8ddj/zkjO+7ZYnLMwsb9358/uUe/JvN5YnL9BNfvPHM41u2979RHpy7/bNjZYfXLJ4zr3xe8OaVbz/6av/IR3dO7Tu1c/fw40Pxct+BT+cY18O5VyWXP/C18L+rbnyU2PRheMHF05teGV9dPv934T2Pzs5JLdvyqdjMH3Suu/Te0+SunUe3jiYuotObP7kmpq42nHxhuOIXQ398/z9vcbeefne09uW/X3r3vXdCxKb/XqVO7v/nn5hrDY/85dMdtVu/teDK2fMv9nz9VpnDcefOTMfbf93wxOtfcDj+D7BWzyk= \ No newline at end of file diff --git a/docs/cassettes/extraction_13165ac8-a1dc-44ce-a6ed-f52b577473e4.msgpack.zlib b/docs/cassettes/extraction_13165ac8-a1dc-44ce-a6ed-f52b577473e4.msgpack.zlib new file mode 100644 index 0000000000000..9de117e001ca1 --- /dev/null +++ b/docs/cassettes/extraction_13165ac8-a1dc-44ce-a6ed-f52b577473e4.msgpack.zlib @@ -0,0 +1 @@ +eNq1VWtsFFUUblMhkEJMCgaJRm4XDQnpbPfR3e1WUWopL4E2to2pBJq7M3d2L525M87cKV2gEFqjAXyNGo2ikUdtmwKlFNAIocQGrQkPf0ACFa1KxWCIRMFIVAiemX0IFPyl82P3zr3nfuc753znTGtnEzFMqrHcnZRxYmCRw4tpt3Ya5DmLmPz5DpXwhCa1V1fV1G63DDo0M8G5bpYVF2OdelVqcgMrXkyLm/zFYgLzYlFTdYW4MO0xTUp+lff9ao9KTBPHiekpQ0tXewxNIbDymEmTE9VThDyiBt4ZdzbrNQthgyDMEGnWicHhj6eJIazENYPyhOpFVUxJZo6QQRTShBlHlMmaoWLXWDY0FfEEQRzMvGiBjJKALWmIaRw1Mm2le9iEFYsgTXYcYs4NGrM4eDcbiYS4lvFQBC64ZTDELEVB4MO9m7WfYaZwvJ6WIvRPgJZJjNvCK1fAT40KMSBqojCSCeGIYwDFTEIJbKKYorkragDaMritahJRnLvpbAsKNuIEfjkUyIGHJEKiMPBzvPq8PmdP0xt0ePPD2sQyadAhG7pDQcaKSVwLTUkXhCd1l69sMTfPDmh2XQYBMay6BtWgltSxREzRoHrawrPgprzjmGZxhJHuGnsdax0bgAACM1044OJUlhLzZvTVHsySVfKtlCBiyuKptGb2nBqkUiMRGVuKE5WzN5pWLRTJQXfq6xQsRclB8zgJbhA1RTP+P9cu/K2+QSmOZ0RlV4JpLoTGE7yBsoabkvSfM5rvekEqwSYoRYJeQWl3LQ6JDKAWW0FEDnsuqKOSBjGhUdE9BFJOPYEIwWpGTC2dCYIlAHqxPaGZ3O65dTTsxqJIdC4QJmoS8Ld3xVdRvQgBX0fD3dAdjLhas7sbCdEFrNAm0u00jwBDg3F7r56EIcQEZ/Q0F/u8gYg3sDPdVILD2+7Fuq5Q0RVg8QrIc0fK6eiDnsw9hbA4T9jbo9Fgl0FMHQYWaeswOfSR2doOVMmxLzrTg2tb1VOZGIdz7mufA7TtQ3MNWoQCEVRDdBTwBUqQP1zmC5UFS9G8xbU7K9Juau9Ib0+tgZkpQ4SVmax0igmLwdTprrhjPj6BBicKhckRS5p0FREMomLK3Jv+aDgSLfHvv93EXdudAZ/77B+NYBJubwuUHLj9BGa/kRREp5gfBgO+UHTI0yzclYCgUgZDMMujf7Stu87apQkduqsd5C5h7/D7ss9Q4b/6d+27o9FoKFwaCYeCgExYk5YULD0lVQHE1AQaFjhVid0OBAIHHYWYpuDoAQY2ZFnRVgrweYlTZm+d+XGz0KgBdhbB0SoTk+7l4L70KUyy5mT2aKtvT3o//fkUqGQPIRyN+kojwUBAxjE55gsQMST7cTgcCIUlMRYI766YK1RgMUGEGld9duec+iXlixdUdNQAa2LY3aKiWRJ0i0E6wPbp8np7X6kYFWNiJBQSff4SyScKT1bV9GZElxVVu9Nq7nd4fUdqenyWu3DapnE57pO3yD7KBmZPqFw35htr4/xxhcd6rrcurHtm4sZjRwpPnsg7fv+GgvPf7qj+80z94/0f7Z41wKsvXDm3ZVP/d6ySvD2p7jxb2bVx+enNdcsuvVb44HB9/uTfZved+vT9ok3jH5rKpYJLWy6re4TIxTXLiL5VzB8Tf31O371vnbOnFY2f8U6owvfupFNnx4082j97V6B0yYZXJoQ8Y49Wb3lzUcHlyOJfBtYO5059+J6zK/p+Hx6RR+p6qk7nH/7y2pWSi3/tPX01tK4iNPDG5p+Cg1yc/Gp8cHnB5M9/fOGBrsq2eU+t/fXcSxMm9lW2rV+kWL2Fa6+0Tew/OD08WP7syNLBAX/LlB+OHui6OHZSB32CXHg5QhPTTz5Wf/2q/+fge+uufRDTZ9BH1vRWVVf2b56VP3S4tu545I/kEa3/6yUnp0DSbtzIyzmxXWk+k5uT8zfUHYmM \ No newline at end of file diff --git a/docs/cassettes/extraction_cf7062cc-1d1d-4a37-9122-509d1b87f0a6.msgpack.zlib b/docs/cassettes/extraction_cf7062cc-1d1d-4a37-9122-509d1b87f0a6.msgpack.zlib new file mode 100644 index 0000000000000..5ea02b181de84 --- /dev/null +++ b/docs/cassettes/extraction_cf7062cc-1d1d-4a37-9122-509d1b87f0a6.msgpack.zlib @@ -0,0 +1 @@ +eNq1Vl1sFFUULtSH6gs/DRITEy4rUSGd7f62uzU+lEKxNqVAK9LwU+7O3t2ddubeYeZu26XUyI9B4AEnMZFfCbB0sdSWlhJSCQImajUGeDBiIRKCxgcETcqP1NbgubO7hfLjk85De+fcc8/3nXO+e2Y3pJqIYSqMTuhUKCcGljm8mNaGlEHWxInJN7VrhMdYOLmouqb2YNxQBufEONfNksJCrCtOTTG5gVUnVgqb3IVyDPNCmWm6SuwwyRALJy4983GrQyOmiaPEdJSg5a0Og6kEVg4zYXKiOQqQQ2aATrkw1rE4wgZBmCLSohODwz+eIYawGmWGwmOaE1VTNZHdQgZRSROmHCk0wgwN284Rg2mIxwji4OZEFRGUgNhhhijjqJGyZnuzCatxglhEAGLODSUU54BuNpIw4iyLUAAQPG5QROOqigDDPjvm/4qZjuN0tBWgBwnGTWI8kl5VAlGsEaSY6E0SiRQgLYFiWDGEIaRiuRF4hJGCsIaKUIQQjjhWVScqpRSDo2njmiKCzFSgYZ8FsyawVwKWxsJEFUiZ3kgqNqIE/nJopyADJYeyYshGcHQ5XcLG9Hod3tywNnGE1OtQO10QjmDVJLYHUzPt4wndzi4Sp3ZXRNCxdQmkLxIUDvMwx2IzTEzZUPTMvmN+uqRQ3zA4IBxicY50wkA2TuGuYwMCgBpNOxpQETJQSObVdrSXCqSSNj6CUPGQCtLhMQAYJqNpgPERM3RbHZgmqiPjc4QSKjSa7mrWJiSQrnWYRHBcFWUStsczrYVe2d0GeYm+pTmIaA7Rt3q7hf8fdFoh47BBqGm1RewbkOFClGiM1yu0/qGy/+eM3rBRQKjYBOmBxinKwLUJEtmALNRAZO542IQNAyfSXmIsKXBaEMtKYeUTTrfZlIRo6+UYU+R0HJoQ7Yc0CNay2m5LxQgOA43NyRgzudU1fq51Y1kmOpcIlVkYsrc+ja5V9AIE2Yor1QFXmxJb+lZHIyG6hFWliXSImy/BxKPcOqYnYIJSSczNlkKX01Ps9HRmJoIkeFtHsa6rimzrtbAButSeBn18oyt7TiU0ymNW0u0OeA4bxNRh3JKN7SaHe21uSAJX8t1AKjN2D1RXZpO8kjMtCdeSWKfKDaUAeYpRDdGRx+XxIXdRictf4nOhBVW1nWUZnNon8uupNTA1I5Di/GxZUnIsTmFmdpQ9sSDHYeAQVdEUHkqYyloiAWfCrQMez+ct0qN79lrSFAqT1Up5XPYzOPNxR4NoWKEAL2nAN2Z1BINBf5Hf7w/4PnvUFz5nRkKSRYsPeT2u4qLjT4Qdw+t/KpiVcge9/kCR/9RTqdtsjrhdY8+g41/ZZ1J9EJfQJpaQ4npaqxKoqQlELHFFI1bS4/Z5TwqJmKYkBAGfG6iyypol+DhGFWrtn3OiRWpkEHksghArlRP2YV9fZhcGYUtibGu/vydjz3z8JSVsDaJiL8EB4sYYewP+YHHITXyBkNuNQ9gbKoq4cXdZuVSG5RiRamz1Wal5dQtLqyrK2muANTGsDlll8TBcF4O0g++S0jqrLyAH5ZAc8HpCHq8v7JKludU1R7OiGxNVUtw1+1fE+vb08PlyQmjGtrwc+8nds9hNf3ZNHt3q9uf/2CsN3piYDKz46FrHwOSlv3wbmms9V5E7PW90ZP0WecUlvnHn3rO/35h4cGZP9/dnqrr7uq7v7dq+oIvXd/8m/5Rf3Dnz6sj0pc9ObUjy7lHf8oVfvZZ3+MyHy8roro7Bmyd23yxdPbRLmvVyfg1qjc7eM3xuybUdW6O3y9dsWrdq9Z5fT3/QCChJb5kz74pn1qvl+fn9k7Y3b1k5OGHiN62XZ/fe3bX43IVJp++dv1xza9XtP/vvbd5Wc9HPFjl137Q71tTSd78Y9vRUTplauW3n32r/eyteL7z5deys9M4tV9/kI8+/tPPCbNZ2r3Zt5fU7c3qC2z/xdu0OrHl/X+7ukbJ4oG8gdEcaOhv8a3Hy5LLd1S8E9/WeWb1nizx9R6j/j/vGUMXVobeuvzjqSzmH326a0tvww6GBeXfLteaRJbcvNrN1x84Pz4Bi3r+fm3O+oS5PmpiT8w/FrtoN \ No newline at end of file diff --git a/docs/cassettes/llm_chain_1b2481f0.msgpack.zlib b/docs/cassettes/llm_chain_1b2481f0.msgpack.zlib new file mode 100644 index 0000000000000..d8941b0e1a6d8 --- /dev/null +++ b/docs/cassettes/llm_chain_1b2481f0.msgpack.zlib @@ -0,0 +1 @@ +eNqdVWtsFFUULrb4TvxjpPERx0aDms7szL63a4Nlu7SFttvultKl0XX2zt3daWfmTufe2e4WQUTkD4KODzQhosh2V2opkOIDFIwxRGLUaDRqMT4SH2DUKLHGIAre2W6lDfxyk93ZO+ec755zvu/cu6GUhQaWkbZgXNYINERA6AJbG0oGHDIhJhuLKiQZJBW6IrGeXaYhT92ZIUTHDQ6HqMsc0qEmyhxAqiMrOEBGJA76X1dgGaaQRFJ+6uiaOhViLKYhrmtg+tfUAUS30ghd1PUYooYVkUCGZCCTQoqChmUtzaQMpDJhLa3IOMPQzBDTRkRFFrW6eqbOQAq0g3EeE6jWra1n5mFm5FvmepkYGnVr76FvVCRBxX6V1gnrtn00uhLoExMDiipdpEQFQ/qC4uq0G8Q0bAye860tZaAo0V49WsggTKyJ+dXvFQGAFBVqAEm0AGtPekTW6xkJpuzqxmh6Giz31hobhFBnaTFZWJyJsvaJuq7IQLTtjgGMtPFKOSzJ6/BC85hdE0sbqhHrQIQm0dTm6MpTmjRG4Nx+jt+XYzERZU2hfWcVkeZT1Mv21+cadBEMUhC2IgGrOBM8MdcHYWu0QwSR2DxI0QAZa1Q0VK97cu57w9SIrEKrFOq6cLuK8fx2Lk4QON/+ecA4rwFrtEzDq/OCITHyLEAUw9rJT8z2R4FammSsXULA96IBsU5FBx8q0jBi4g0FygV871ipor4XIitmSfyq6rpCM+XFOrzMkOsZp4+JQZ1x8k43I3gaPIEGt4dp6egZD1W26bkoDfvL6k1RKsKztJdAxtQGoTQWuijhh23CaTV2+lSfLMzpCEO2kpU13sdGZ8aObWuenFEXi4y0qMkj5W2tw2Xmh0dywxIwJSmTHVb5wIjbJSehCVIHKiG6gextaEKsiq1dHsE1UbHM9n6M1sqzAs/ywkEqfhlQqdnF6MggLIaADjrJW1P1qpizddboEjwuL8/zQTqMQDElGDOTzUil7OAgoxtQQaJ0KMfSiYGKrMqUmPJv5RDBVsFDg1+70IGgQUiPm1E/NfNH5toNaKPbJZwHcQcCgTcu7jQL5AsEvIFD830wnJuJ4FTxaxc6VAAKTpeKx3Oz/qwsWVO30kVCTPHJJO93wYAERJfkSfmdHp/g9fqB4BS9EtwbWsaGRJCBbKysPqvUHO9s6mgLjcUoegihQRk+fnxBdSIBUomk2hhP5Nyc2aeoruYYkHFPZ9ynu4QeLrBU7423rFTTaLi1vSvHmRLlyef0uT1On9/DChzPCZzAJtoVXVo2EHP2upSRZr8ZjSbC0e62RC9Cq92mSgY6w5isgJ2puBBvXcUZuWTK2x02V/uGMvnWeIuYBss5X743G44sHUo2OaNxdbBVb6JciiTT6AgyVJkybUxjZT5YOh+sPR3eBufsdAQZqayARm7+WRhkWukNEdGUfJCOFZUSpE9RhTGZwMZOpMGpJ2kPzKwsNQ4o7X7BuTI+1J7Melr5UDfn9iXwgAupnTmva6CbI95m4guhgLdtThOEgJ/lK33w8u6ydvjzqf/PrF7pY+eOOxvRZ67CkoawJqdSxRg06PhYY0BBpkSPdQMWKefRprh1wA8CIOmSUv6A3+VPAR+7lB6Ys2j/HQ4F+04o34kPFu2h09JHF4Rv3nx5VflTTb/nzpHHhMjb/LUb//z7yt9/uO7lDub2/v6aen4fs7HruwbH7rdOTSqr2LG/vra+dF9RvWLTmfufXjPcXlsdb3rrbuXgoj3dH3/fsPcoeOX4m9yqyLsnT//w/bpz63/84uzpf6qe+Ob59xdd+cDQPVcNbFnqaHtu/75jjZs+yR85Nrk9vO7p8IfRh+/8/PpvS1MkG4wE39lWuPuyhWdaa8HPtW/u3D7xW9XC7R3c8s0fnLp058mbhUu39XStDy5+9sTxt6X1Gw603PTTxG2ll4TJvl9vvObZ6c7dnUv+WBL7pHbFDZ+dunfv6Datf/V3W8nl2R1XN48srz3zSMsvZ6drwG7PkenpLQ013KHt9z2D1svv3JWfWLZjekkkvvNE9OBHnD6x2HTVvPfX1lOt+pIPQP+nUV9my1NDRf/RO04vtHtVXbW8pufemy6pqvoXOupqkg== \ No newline at end of file diff --git a/docs/cassettes/llm_chain_3e45595a.msgpack.zlib b/docs/cassettes/llm_chain_3e45595a.msgpack.zlib new file mode 100644 index 0000000000000..df51bda179f41 --- /dev/null +++ b/docs/cassettes/llm_chain_3e45595a.msgpack.zlib @@ -0,0 +1 @@ +eNptVQ1sE2UY3iCKI/GHIEQiQlkkKtnd7vp37caQrRvb2Fi3dowV0Hq9+9rednffcd93WzsCxkFUQiRcECIhUXFda+bcRkD+BBOVP6NkigacGogGIYZEwWggRsDvuk62jEv6833v+z7v3/O+153pADqSoJrfL6kY6LyAyQGZ3RkdrDMAwpvTCsBxKKYa/cHmHkOXRhbFMdZQSXExr0k01IDKS7QAleIOtliI87iY/NdkkIVJRaCYHDm8vlABCPExgApLbGvWFwqQuFIxORQ267yKZB4DG44DWxTKMuyU1JiNBANtEuZliVdLCotshTqUgWWAkggDpXBDkW0CTlwar2QgoBdueIHcKFAEsnUV0zDltHRUcmLJL8I64BVyiPIyAuSCwGqkANjQLQyG5jZk4oAXSXku5j2WikOEzYGJKQ/yggAILlAFKJKozQ9jXZJWZBNB1Eqpj8SngmxBzb52ADSKpNMB0qNW5hCvabIk8Ja8uA1BtT+XD4WTGpgs7rOyokgVVWwe8JMgymuLG5OkN6qNpZ0emhlKUAjzkiqTYlMyT+JJa1n5x+MFGi+0ExAq13czPWo8MF4HIrN3BS/4gxMgeV2Im728rrid+8ff64aKJQWYGV/jZHc54T13DpplaW7fBGCUVAWzN9uIQxOMAdaTlAAJhrmXSQsQtkvAHPkzHBai4YhSFgonnLTRKiuOyqAgoeaGEKc52GbaW6G1hKpXKjHYWVPfmKANkaFYzs45XXbO46JYmqFZmqXC9bImLmsL2lscclelxwgEwlWBptpwC4SrnYaC2xqqEK4DDdEQG6pZReuJSNTdVGWs5tbFkzWhaj4mLKe5ZEtHlb9iXaTcHggp7TVaeamNRGd0SGJZm1zvYe0rQ+vqIx2uGsbXRDu5MGpzQKUh4Xa0NdHYXYk5H/S6a8eFx3o9FJOL0M04PYz1DIxxQwZqDMfNHtbjfF8HSCNTBjalScmwgbpThIfgqzOZ3Li956+7R+FZqUrCSfP4Ml0qstk5WxBoNjtjd9pYV4nLW+LkbNUrmvt9OTfN96Xgvuy4RgkNq8YonxHihtoOxD7ffcl+3CI76aQVPplOCiQ0iACVi8rsb6UCo3uGqq3cPzpZFNRjvCp1Zd2ax7Os7+xKdIqCIYrxjk6F8XY5HVIEGEL0QM5E06HlhgREKcjscbDugZxkjHd9JFdCAoZi2CNk9CWBjJmVjAZ1TCEgkM2Gk+ZIkcInrBkrc7Auh5sUvpSsIkE2RBA0IpVQIcxEpTZNBzLkxaMJiuwLIEuKRBqT/c5tTWSmXMT48GQFDNsB2a+92bZ+Ml6uAwvdSuEeiNPr9R67v9IYEOf1cvajE3UQGB8Ja1fQ4ckKOYCUnVVQf2JMn5JEc+RpcgjbgV2Ielgv7+IjEYHxsC7ew7HAzXgZ4Ha77YO+ZZSPF+KACmbZZ2YqQw3lK2p9B1up8TSi/NroOyWjQqRK0Wg6CHTSFrNPkKEhklWpgzTBCpSHzAMewStEHEAUIizriQocVUGW0Bja/6RLWXs2+3J5JW01U42dzK+Yv/WhvOwzlXzu3sXbWfgZ8/jmm/9Ov3a2ceFzC599si3zSK/vteUrZ+2+vPCwZ+PA7e1LX7/7oreg4KnWxT9dLX3nj7kF+X3da5ce2bH2YMvwheHQG1d+5ZacWx+5uefXH46d+u3HK8ifefStB6YpLw9d/uDa3tT5NrEqfbrX98UTgR1FZ2f7pYOrO97tnW4MuXZd3Zo8Vj9v2ultzVvm6TdmFSw4caTUxwV/nqHPGB5YvvXilw8umF9ckL8NNy7tGlxc9zmz56XaV7/5y9iZWnN5aElizqLdm85v2jjn0rnvWqvXPH+9aXBn08ZVnjffrj/zd/3skq4tm2/9fgffWjWzv+e8/umB6plTdqycP+3brpn1006dCFw6c6PM37Sgrvf22aKvLwTTu6f8sk+4WXv9meHvZ39kf7jkWvOhAHdy4T9TrUJNzbtTtWzX3Cl5ef8BjH8o1g== \ No newline at end of file diff --git a/docs/cassettes/llm_chain_3e82f933.msgpack.zlib b/docs/cassettes/llm_chain_3e82f933.msgpack.zlib new file mode 100644 index 0000000000000..f2968c0213a7b --- /dev/null +++ b/docs/cassettes/llm_chain_3e82f933.msgpack.zlib @@ -0,0 +1 @@ +eNptVWtsFFUULpSgEh8VRGOMYboaf5jOdGZfs1Mkpt2Wtva9Wyqr0XX2zt3daWfmTufeaXdbqxEJCVHUkYjvH6XLLja18mgEQYxRVDQIGo2mKBpf8YGvoMSoIXhnu5U2ZZJ93HvO+c7rO2c2FAaghVVkLJpQDQItGRB6wM6GggX7bYjJxrwOSRopuc6OaPeYbanTN6cJMXFNdbVsqhwyoSGrHEB69YBQDdIyqab/TQ0WYXIJpGSn3xr26BBjOQWxp4a5c9gDEHVlEHrwdFuygTWZQIakIZNEmoYGVSPFJC2kMw1GSlNxmqGRIaaZyJoqG54qxmMhDbrGOIsJ1D0jVcw8zLRaOVfLxtDyjNxFb3SkQM29SpmE9bs6Bj0J9BcTC8o6PSRlDUN6QXFNWg1iWy4Gz4kjhTSUFVqrL8oqcmmEiTM5P/+XZAAgxYUGQApNwXkxNaSaVYwCk25+4zRAAxar64z3QWiyNJ0BmJ+xcnbJpqmpQHbl1b0YGROlhFiSNeFC8bibFUtLahBnqoMGUdtc3ZmljTIYgfOHOH5XhsVEVg2NVp7VZBpP3izKD84VmDLooyBsiQROfsZ4cq4Ows6ONhl0ROdByhZIOztkSw/69869t2yDqDp0CuHOhe5KwvPufJwgcOLuecA4awBnR7ER++YZQ2JlWYAohjPK5wFCfSp0pk/H4yAZT+hrYvGMn7PXa7qvPgpU3N0eE02f0M1JdWZPrHGdnkKDTa2dGc5WeFYQvaI/4BVDAVbgeE7gBDbeqpnK2t6ot8enDdWH7Egk3hDpao73IHSH39ZJb3sDJi2wPRkTYk23c1YmkQx2Ndh3iP3pbFOsUU6B2zgx2zPQ0FHXn6j1RmJ6X5NZu5qh0dkDqrKmV2sNCd51sf7WxECgiQ93cX4xjnt9SG/PBH29XRwJ1hMxjKRg85zwBCnE8qUIg7w/xLvP5Cw3NGikSNoZEyRxpwWxSUcOPpinJSM23pCjPIRHjxRKs7e9o+U8hVfm6iknnUNrLbWK8YpMFJqMl/f6GSFQE5Bq/EGmsa17Ilxy031BCu4uzm6S0rBhlvIFkLaNPqiMhy9I9kMu2Wkn3fDpdLIwYyIM2VJUzsR6NjKzdNjm+r0zk8UiKyUb6lDRrXOoyPrBocygAmxFSQ8M6rw05PepCWiD5FTJxLSQ64YGxOrYGQt6xcmSZJZ34zRXSgKe5YVX6OirgI6Zm4yJLMJiCOiaI1lnukqXM+6MrfEJAV+QFn41XUVAsxUYtRP1SKfMxKsZ04IakpUDGZbuC6ipukobU/wurVDs5ALUeP9CBYL6IF22O4ptfW2u3IIuupvCeRC/JEmvXlhpFkiUpKB0YL4OhnMjEbw63r9QoQSQ8/p0PJGZ1WdVxZm+kR7iCb8EkkmJktIrepWkKCdlPiRBRQ4lFN4bkF4Kr2XDMkhDNlpkn1Ooj7XXtjWHX17PzqUR22HOvGAKBsKGmkzmo9CibXHGgYZsha5KC+YpVqQ25kyFgAQSPhiSAAiGkkBk6+gSmkX7n3Q5d88W3zQP5N1mGqm3FoVXPXRxWfEpp59z58hj77e/yVds/C27bO/3V595dOl3myqWL2dClUvqnFPa8ug7fT9vWTL+z69H1GemLuKko98/ffQYd+VisujpsnUtPVt8Hz372dThr0dPPP7VFPvTwcKnT54+u/tjdPzLv/jNl5+4d/TrsVORrm8u3XPT8OvvjSkPv/AHfTtMXv3jmQPll61Mb3/RuuWuttSpv/cMfpxbufTI4UbPxoqDv153cHrx/cyKve92qfySWKXy5g2Vr2/dvOxIBblHvfamG7qVa38ZndxG+t+7ZZv+2O6t+pYfz5z93Rd+4o+pS9as+jNy5/U/fT52qQLMe6wPPhzxHE4Ndg9/suK5wtv9x6Yariu/5mwbf0x8Ax5/av0zK46fvrXjbqZFf+NdztxZ0ANLj2565KRTcV852PrkiZ4fnv/0ZOvJq/799gq3UuVly2L7Oq5fXFb2H5UFMyI= \ No newline at end of file diff --git a/docs/cassettes/llm_chain_6bacb837.msgpack.zlib b/docs/cassettes/llm_chain_6bacb837.msgpack.zlib new file mode 100644 index 0000000000000..a8acc9ea3bb70 --- /dev/null +++ b/docs/cassettes/llm_chain_6bacb837.msgpack.zlib @@ -0,0 +1 @@ +eNptVWtsFFUULi/TABoSrYlBZNhIgqYzndnZ3dktElK2hdbSd6ksKMvszN3d6c7Mnc69s91tg0aeKkaZf4gBHyy7ZikFpEFEihKor6AQHz8agpqgJCoYwRJAMXhnu5U2MMk+7j3nfOf1nTPrc0lgIgXqk/oUHQNTlDA5IHt9zgRdFkB4Y1YDOA7lTHNTW/tuy1SGn4xjbKDKigrRUBhoAF1UGAlqFUmuQoqLuIL8N1RQgMlEoJweHup1aQAhMQaQq5Ja3euSIHGlY3JwtZuijlQRAwrHARWFqgq7FT1GRU2oUTV6TFVQnCKRQaoOi6oi6q5yymVCFTjGKI0w0FzryqkJmHFl3ngtCwHTte45cqNBGajOVczAtMfR0cmJI78Im0DUyCEqqgiQC4JrkGpgy3QwWEZYl4sDUSa1+qFkViYOEbb7J+a/X5QkQHCBLkGZpGDvi/UoRjklg6iTX54EqINCde18AgCDJukkQXbUyj4gGoaqSKIjr+hEUO8rJkTjtAHuFuedrGhSUh3bA00kiKq6iuY0aZROcYzHz7AHUjTCoqKrpPK0KpJ4skZB/tF4gSFKCQJCF0lgZ0eN+8frQGTvaRClprYJkKIpxe09oqn5PIfG35uWjhUN2Llg893uisI77niG4xjh4ARglNYle0+hER9MMAbYTNMSJBj2O2xWgjChAHv4ajgsRcMRbVEonPIw1kpV46vbJAW1N4YEg+famcASoyO0bIUWg921y5tTjCWzNCe4BY/XLfi9NMewDMdwdHi5ashLO9vcHbzaU+23WlvDNa0tdeEOCFd5LA13NtYgXA8aoyEuVPsMY6YiUV9LjbVK6Iqna0PLxJj0NCOkO5I1TUu6IlXu1pCWqDWqFlIkOiupyIs61eV+zr0i1LU8kvTWssEWxiOEUScPtcaUj+9sYbCvGgtBGPDVjQuPC/hpthihj/X4WefpH+OGCvQYjtu7uYDwngmQQUYObMiSkmELrc8QHoLTn+eKs/duU/0dCpdlqgkn7cGlplJOuQWqDRiUm3V7KM5b6Q1UerzUsob2vmDRTfs9KXiwMLtRQsOaMcrnpLilJ4CcD96T7IMO2UknnfDJdNIgZUAE6GJUdt9KunV06dB11YdGJ4uGZkzUlZ6CW3uwwPrunlS3LFmyHE92a2ygx8MrEWBJ0YGiiWFCxw0JiNaQvdsbYPuLkjHe5UmuhAQszXIfktFXJDJmTjIGNDGNgETWHE7bw+WamHJmbBHPeXkfKfxCsook1ZJBmxWphhphJlpIGSZQoSgfTdFkXwBV0RTSmMJ3cYUiO+MlxkfuVsAwAciy3VNo6/HxchM46E4Kd0A8gUDg2L2VxoCEQMAXODpRB4HxkXBuDR25W6EIkHHzGupLjenTimwPP04OYRDgOFkWWB/r41k37+b8gsT6vSDikyOAFGd/cCkdFKU4oNsK7LNz1aHGqoa64OGV9Hga0U3G6Asmp0OkK9Fotg2YpC12XlKhJZNVaYIswWqtCtkDfikgRXjAS1FW9EclgV5CltAY2v+kyzh7tvCmeTHrNFOPDU0Kzt1aWlJ4ppDP7dt4G9d0kp216fqt6Qht3TEwf8Hs/KnSmdR9G10Xnm3dcGHrpRl0/u8f7fOeJ6bUb75+c/BY75bq0rNlD03+ruP9zoX8x+d+tr5/YfHxi//0Xrt69qlroS9/5Y/uDF1e+/CjI1defuVMf6JGi23zDj/Y8cB8qbbhr/LwvkO3knOq6st2rE1U7tp/ceubOOA/nCnrWXBqtWvjrC037j+vbupdcCqS7Fg1ssZXOnSjttSQ10/+pvdyaNXm4alloaWzf9cHMnvrLx74Y3DmThWefnvuZ2890lm5bO7zP+1ek9j772G8YNHwrEtvVL40sr30ymOv/3Z7ZOPXLee6vhjZ5JsaPdnAfiWc+OWT7St3zDhzdXFTaF69dmuIMfI5jZ9W/ulrV2r/XLzrIJ3QZuOd33Zl/UPczWlOpaaUnJj+6mtzJpeU/AdOizBy \ No newline at end of file diff --git a/docs/cassettes/pdf_qa_11.msgpack.zlib b/docs/cassettes/pdf_qa_11.msgpack.zlib new file mode 100644 index 0000000000000..7bcb604b8e4af --- /dev/null +++ b/docs/cassettes/pdf_qa_11.msgpack.zlib @@ -0,0 +1 @@ +eNrVegk8VO37d9vTHtoXxakImWH2MUSPnaxZstMsZxhmM4stS6kQSSokoUW0IQllSUVRhFbJ1mYJkV2yvOcMnur367e+//fzvq/Pxzlz7vu6r/t7rfeZua7gNC+Qx2dw2LOvM9gCkEemCqAH/ongNB7oKQT5gkOpLFDgxqGlmJtZWl0U8hh1Mm4CAZevqqxM5jKUOFyQTWYoUTksZS+0MsiigDQag+3KT6FwaL51B/dtYbC5QsEWVcDBAUvCYBEAnohDAFgcBgfd8CQCAkBjMXh4CAVdMBgUdMES4GEVeMzJCQFsYXFoIBNisUUA+giQf+2BJNPISBQKswUiAdlUDjzmQufwWGR4vy0UMh8k4LYEpLmBZBokY9MsiRQ3Dl8QnfEr7kwylQpyIb7TLKLTXf0YXARAA+lMsgC8SuWw2aBIK9FXPUCQiyQzGV5g6tSq6BtkLpfJoJLheWV3Pod9HaIXgGwBUuDLBf9++qqQD/KQZFeIIvqWGQRC01DZ3BdSMBtAK+FUlFA3fJB8AZnBZoJ8PpJJhvCkckXzBT9PcMlUD4gJctp40alTizN+puHwoy+ZkKlmlr+wJPOobtGXyDwWAZf98zhPyBYwWGB0mrb53283PfljO6wSGq1EzPqFMd+XTY2+RCcz+WDeL4tBAc8XSeVAPKLPo1KpHI4HA4yu63NxodJdKCx1OsvOlOCzW9vQFK3ERplh9b1ISmgb090+VEuckg/OR8/IytKU407H4V2RaCKGiMNj0SQ8Eq2EUkIroZGeVvagiZmmm4ennT7XnuPrwuLokXSFbFNrjz3GIGjnucfH0t6O58qj6ltps9GgL4rAIdpjUVx7HSofY2jpp6XP0Cfa7dbVMkLxzQS2dOIuNM5VDYDQCb0YNPU9bCbVh2jtZ832tDa3ILJMdF0MdSzp2hQhSYghaGpaGFiamtNBc2/e7p/g4TAEJGoaIQGFU0HBfxkzvsEE2a4Ct+iLaCz6Mg/kc6GIAw+mQioTCPnBKZAfgpXlaSxIeZCNL5gZ/XDhtSk6kE9GF+nxGFCgEAFLkAtgUBgcgCaoogiqWBVA38Tquvb0Nla/dcEsKx6ZzadDbqg74/JpVDch2wOkXdX+rbMXwM4OWRKGz+MwoUEmxxvJ4TFcGezo89uL/mYa9OFy+CByGnT0dVukxVQuQRrqXJ8KPKQopqNzfx/R2dNEHJ4rmc3wE0GPLhJFjrefjzeNKqTR3Ly8WSiSHw7LoIBCKv3W9BIujwNjgZmx+NEXsThCxvTMjO9ehfSFQqJRSBT6Dl/AY1ChUIUVwuXwBEg+SIVSnMA3ug7BIvvAcaqOReOxBMh4agCDTWUKaaClkKLDYUHezVcDuDyQySHT8n2QPMguTAaLARlXdJ1On/zoFDy0+PbfEwg4HiCbH52GF7kG6u7PFDwQ5g8L8YMNjkQiFf6eaIYVTEIiofJ/peKDP6NBY1j8239PMM3iAop/3WeGGsmgRdfJQA8uKDSORCBQSASQQiUR0RQCjUIjoEEUho4HiRg8OlNbD6lNprqBSEuRD0en6diZapoYaufaIn92RqQZV3S8RKexOXw2g05PtQR5kGGir1KZHCENSrg8MBXiZaFpF31LhUqiUmh0IpGEwZFQKCxSC0plM9z+ct0UOFuLTpsDqbA52a4P1y2Tjlg4S/Q31+qM04ubqnmXqptdstwT3xboWGHsXBeGLTwNyO+1sVkrfwHYIr1IpmAoqOd5W3pjo9zw7FQ2vopUdluvL3lytDOzOOF6ZWZJ8+TY4HBnnXjQZFRPtoNqStBkf+3kWK1L0PhgbdDExESQYr9qBSevrWAEOVk04t/c97knaOLExPfHk04D1S5BxAWZZcp+eQUPeydiya3eYnWddxTnBZxaznzuTvks8X29qynyoO6n06yCcqW1Ae2eLV9RO2k9yqnG1y8aBg/GrGFamu1WMEiYb56OSLxdewTIqFw7+3JK83JsZXdYmdFTizY7v4f9oWfWWcUr+9vuO1Iidv/ZwrUHzIXHR9sObNTIfs5q672uK8tU2eNUX/7m3oOFzuLXX5R1p8R89Dxf12Epr6DXRaerVwWYqT/0iBlajz9UfmyrzTI6+ia4Hn87L97+zbNtlIRY5sOUMBnry/3d5V53ap7Jjy26Vl24Lv7i12d7wylpN+KuYe8w57arZp9+5XEuVqfLe2E7VtJuXr/AW+41i1UwJlDRlWgqC98ktVosLX4RfuPL3PPq2zUe3QosXjlCGzAeWmtRMGcw8ILMjR3mvkOtlOO3Xz64HK+vyvBncKlP/d28N1+6uaGlW2VQ/+iuqA2lvn8ck+gp6Dow2G1BUR94BPKttx+n659levJ4+4QfSBcynkuMe51oPBI7vDMz++kp5nJXkpuExuOlUZ3CA/YqoeFazhPRmxQbv4zcKG4xVy46fbvDSaHg7YJFhZVLH6vriJeyF5CCv+Cqy3NPtD66HC8tVhHZGo2tuKFoOpwecvZWvcSKC6HropZu4b71Nc7NVF+mr1/srCnTEV23oCc6Z+A1Qf71nbKzl2MbPXsSSDjNc+QUwb7NX3ap/fnUvKPU8UGZRNXqnZOFzS2BrzAMLcYfw01OKI/5Zt5WdP0lwZp6pemf+HouAtUDtjuOLS3LYCFqC16tvnWAXvnizK1P53MENV0nllCeNs1eIe+pXm78fnlBsp1ssfS+o1IJbkaFdW1UY7OKtD8zfUJ2No+6mXX1HbrVkNnbe7G80TwjfL5Xcp7m0ME3i32Hrkp+dfjKsC73Lo1yE5wTKK/xTMN+HnlB2nZ58egSUtfbk1kN+IORGDFvVW/pBdS+UNsQoa5YKct8e+pqZ6f7WyyMvSpyNgxV9W5Lb45w3tq7wE/mUwNz72j5n7V018OWUl/8VPKUaoT1d2tSFHckKpd8j9jOiItZFZMxJw60Pn5Ra4k24lT8fPEW9xX6yZtLPc/63Dg5PD+r3LIntStd5V7sfcm2frsTvX2HXC83ja6qKGM15ehd1g0/FeT/YVNmTAV/Z4x5UbdeZXWpsm5PvGPv3O8mudmNKyMfj52+9nZr2+1vg7U5jhY6T74duV0Uvzj6dPY8sDLb0LQiJSG2N+fw93Bk2LekaiMC7U3IQ+aA7cvvobyBV9vnpFWq0TUy55+Rkku3eXFBuVzJd2n3ZZrp7PHt3euzvr1oX3k2A7iqHtWlb1LR7nxm39dEcSv0tQdf1KnHJRDO4pTMHdWrCfLLz2ILUjz9PjiJNyL36zvuqnybnGC+6rOBdUH4lg/Gtdnn2pRy7xnveNT1/g8Kqi8yxC/dbZGzmtr9/AjcBZqFFC1bjdF4y5ojZruyWeLL6dJGt+GrS5VzCes9x2RS2E2f3fSWRPim2YA1oNexc6+8Fuk1ByZWBXRqNh9J2tgdwLixZJ5YvhLXlHkZf1/RR8d94xmzXWlfsNTCB9vyvyv2jo95lSM7tWNOc5bzx/MUaPFSLJUtq94NLlRG6y6TjJ6wje+ySjyt9layNniI6V3pPCrcpmTkr5VbtTQ18ZN92MmkHAmHarkvrz6tCqQvoWkj+5YllT/ErKkbSD2XfHQTn9+IKBuvE7+H619Sfyl5mX147pI/AxWl6s8NWd+dc969Zu2SyHcGpvNsbhhrDnSZ6Bt/OEYVfr5eXCxdv64P3fnC3+2Ufs5JbsADX8Og/i+t6FDWpcfd24Rrkt/ldsb6tKYncG99P7z0Y85gvGJLSkKu9JzyGs9d5ytXx8X3OuuXPZqd70fTl1EyUrQILlO7lz17gNtwKHHZ4A3JuozmnpuGvUSMVWwA+a1cutFu2xbLzfes6V0uEX38XWzVjlzLSq8//MIYxUL9N6bueoTm8fXpHoz7eILjUe5bOqV1T8xNj9WR7X8EgWOxaiusEAYLr5w9lyB2sSi40+mEwdmipvWWS+3msj46xqd2HH7XLTtUE8BmMbqt117co/tSq/OhZP4QRp5xX16+HLUjv2m+eXhl5+z2K+Knl3tEHHd+PBF+Iv7L8WX8gqPVHD+xw6V5thNDzbcsVMX/3MMbSpA+qJK++uVao8gv3y+t6YsVtyk9+8mg1tS3coTuvfP8pmO44BLyYZW6tesaBp2oodWVXP0AP4UajdFjjV8k145l5K0o7xt9WGjRlf2sEy++7dRKitSeGPTefXfnaAe6XMGht5dmKToMYCQT50kFxnw8ivBvt2lL6mIsDhmRAcOrqJ73Tn7VL42dyJmNtcz79OebSyuFKfiaHZ1hpJhwVT9u87qnSfeXZbpYLSnz9jv6kii/XLfoShj5TZJK304ng4Gor9ru3gmtNi40jpfwzbW8+6GfJe5JF73PWUD4FGr76GrvA6dJhMUxMQ/Ze2U3o4223axeHDgoF9QZZ8MAS/oDdtV9aYtimpt+vft6AzYmoG6RmbNCjb+PWZ22053xFjtbc8mOgcZmnZrVHskL1/QsyEoOcApk2u3UlDVzSM3sVqa+CfTCyhz7FvH+TlVxv43pe08Cdo1N69wj1Fq8BINnGDhKYn4w1bv+pVnGsdxV++uTm+aNBDR2VLfTNHlfXHBchXTwYRxN+5qi6tv52E3ZbxrOOd/O1PH8njP0ZXjB6OvM4NbqwSRmPF67S/XkqpGOufXD1Y8lWpAFVxPGCrcekyp+cj+iSXFhxRw09tUR9GPWia39a9qNLcMv1UvXpGr1hB21Smwz0ctSzdu9XPVsRtz3B6dpBz89GR0UtPuqFbjOydworS5lEuJrVXhzd4Nv5B7OuOattQhtDQHj4AXLnG2hwy9Pfdj2vSg/T1mVdPTu+/DHGFP5fJxUjHPmiiP85bJcMdXkO+0mmKx8fdWjfnXPUxP9Dkq3TMwLfdVpjEKePKGaR52bM2dugL1iLUvJ/tp+x+JFWKn7pI0P3rBq0k/HriMdX18otWmxU17tG/C71zODBo/F4q5KAYPUuqzFLevy08N6T8Xo27DZtgfuJvjlSvPu0Oolai/fPLskRkqJ/xA00FPpeT4X+1oO63Bq2GkJwb5Dh58Oyu06a2+O3nn/ub3q4Y8UT8+agbAgf+7S4olHe5axAko6n4TcWNCgYP6Ctvd+/MimNEMZ7cZc9P2IwMGE4uUy7/fHpwZS4kIPc7SFnblLix3UHdsbU0r4aQm2uaXXPy6KTyjHbN/laGtdd3zdgWEHs+ucoDCf2dhbF1mlhQ5PHdc0mM9lDDhTTyHt45IzieG7kGa95ms/pEmraz0bkGmt6S5pDrz49So1P0yhqhQp2GiwY2yv6ZhOo5F9nU0Yf252o7/fIa2bV67MS/92AZsmPc/kkm1oz9iOyqvU4NsHMxYZBHgCCz7qGiWFaUew9ZOw9RZSdfcaGKkaBz92mwUgdifLlOMaFLPPK5UCo/uO0eOuATRd322B/YVNktuwlVE9ppyyU+RMnU3Oi/IkXlTsRY72zfM8qKb9IZsjbH/QWuoYcEf+sOD0HoOmje6tj63teGniOc07NttEr0/cX3EleFf7USXHLesHwbXy5klfy8/6fA5TSFhnvaJBwaeo4/64rd1St5r+rxVyyFGf+HPmQR8GhicLFNAW4i3r1zDzuD6E9UfCNzvQFFvvWJ7Juq23euBtNvg9Yul6M427V25+dNfzavm2x3TQxGPvXQ/kzS8XUjsDA5UpS3RWb+1yzHdIdwhjrV4eGfXHCuWM9q/9apJPkTVxchn7XzZs81vH0f78PFnytPeplYnXwbhmQtzGB21kPVd+4lZyUcnychnp+C8eDYkZLWcfLJGWu2n3il3uPPfhXvciTa5OUmN759Y9QYEhHolRKi9ea1R6R+oedcdVcIrT9y5pDTFtM9A7yfNGh1+f3e5OHugeaG9bNtA5pM1UMku8pxYXPOFuqbXhxLqxfJdbV6XMiF6X117a/Nws0D7uvr3/eA6jZjQr6l3GYsmdOJuVS/LCV7fTO8OYX9Pb3/C789zPCKUODzxa6nxjg3lk+mmlqPDtHSVGJdzGy4qFYbcjT0f0f0hrtkU+MJLTwhntP0EPCU3IVipzOLsrTF/73tEii/MKGqpSDQG6xzMnTlF3jMbmm+Vg7yeYro34mPg4rHqtfq7CqziJj7zM/TczafRNL2bv7myIDxeaUD5MjtXvlz5w9ZjcIrOOF/rUvd2dOV9sNhQEfHO79S11tmX6itz7Q6cCar8fr6rrKGi2VnA+2wnkta0N0GN/8srkvbqnpnq0MsuM91p6o7a2soUlRSNT9kNnqMX+IdU3CC2SvqVUtNTzTqaZnZ/PuSsN6iYqRppHWlYmxSBu2qyw/zL8SlrjvTBX/h15bV11s5BC2rvJ4mb/1/BzGrTkFOO9zt7e1xvIlT6rMpYMNHLoG492iE8CJ2kOiPhqdfs10g+10pbsKec09V+jO5yLdaTsLPreIvnVMXdrzKmi3UpKoZsme1X5xh8ievOH8IPjq7bq+kQ0NA07Ozbu3JUYnZP1mSbVYDFyay74xqH+/WmWjEtMbgWRnbhJKzjz5qxbJx9c2aE+YOx/KjXk8B7FLjVOSZJL1SL3T5flQnriw4IM7gbXGd/FGH0JuSG90mxBrBpnR0f93VXfFPbNyXTv658bspBoOqu3Ve+rv7wfenxA7fY17I6AB1vGXkShmzfTOaZ5TDeC7vcE8dN7ynQGMqxkvzaIqXldKNtXJj1/70CivmCNvV9tEav4MKdoea1qgoFxrOR9YvGF5MymyccFseEfV+wzu4Mueh0+v37WwE5/NGM313pTiUZ29rFh9sqel1Ih6pXFfgOVh4quLzH4GFMp5lW0xuVuzP0M0+VopQVb/DJDVg1FhVYxy97QLia9Xe4/vjCJUy4h5iHzanvt7DCvZIdNW+0u3CP2XIjoc7tt9dYsqe/pytMsXqaDlMbbjlpxZhTRXu5ZGLFm346x3sK9psdnuSni5ZbZayloycjtTNqaljm5N3nccu6TlysN7V7Fjkml30qWQmMUEo4lv1brFxcn8f26/ZI1XA1yg/F/1L/deic+Y81or9HQh/DTn14XP9A/tegbUTlJbYnUse3Lj74+IOHOT1A4k5dzJE7ZCLcmLOpcQagk/0l6cm+J0y6yXMH8zUZNceMTZ+e1X4vzqYvKy0ze5YcKbjMIyzJ68KwOr9GVq2vctiBf0bexak+5Vec8s8VIR6mn+6SREU8jooWSEVn2xtHu7i9Hul1cwtWqA0ZGZVOH37muVA2RMqCaZx107XY68GnuubSNS1pfF7w+vUOYo+UScOmha0HlmyKGvN8V/xKxM8xTARIds/QK7jzPQXwLLi6pWPTYb/dNjpTrUfHG2piSVyrZifZflvqyr2k8CQjSJ9g8xox0Yle1x4m3J37D+A3eyQWuSpxv9n+Z+Oigp1bZ3ARLMD9pd9BnTqSFIPuoSnXRwdFXjLC9LY7SlUW4pZHGdfuO99ZtmnwsXuwb9zxkyZOGrVWOUub1e2Icup4Z+hXq7Ku7pKj71E6z1tBWkOyd5H7jddcCz0tnhVTP5pQnRA5Zr/4GT/Viht7wkqIP5LvFt1eWyS2eYK3FnDBS/Jh4OnsV9/KC0xrKoZxAT69A33Uk85LuRy8uee5XiVhZx3bt7+o02/Dwut6jE5dcQimxYjccb4ORkmU+tB1XKv+Md30c03VxtlaTfWFocnGT8eMlkYvEVn2NzRZ3eqq0R/6RnHkKoe/Y7V0pAsfq0TmODhroQnsZWU6Swh9b29Z6vWl4HeZQsW0/OsOaftf50ru+xcPl16qXl8R9qos0HWC8z73lrUMcPlPwprrtSf7LDIUkNrXWxKC4/Mb3wqUUt5gX6XKHHYN2GHQdzHucqjp/kSlOpabuVkDIA+fncm+X9f6hvP1zt+mwnYdW5jZ+/tnVAcTEltPaXHlnwVirLHWfubx7zAedKumNWwim2JXxn27KysStsKE54+deFEO+larP+t47v/T8IC22Bb+580z8wTXP0x4JX4s3KouHVHBdTj6tnRQn4s+7fVNR7/XZ6K4T97Ak5N2dLZWNbam2Vd0vFh6S59zMGlf91PJ4zrxj9OwXp5rUWtULpDr662UepXnf/WZ37t6HE7GlR6+SPsTEzJ1zKSYsteq6OXNE++C7dbOeXf++bWPU4TlBfcc/BlwEed7zl4x2bHofv1OyJnl8pGVwz8e3IbajtWve2tVgEJwmrXN5NpuVFJRz1bYTe5/qG78r3Ud2fBWptq2/YrWjg+oz5Z51H9om6wK9L3RyG2P8Nxkf63jleag2s+LZuh7DnvGBeBUqOmRrr+RSRkyFTwMxgekeJX94YsXhW+OtB17cCaL4qFJ3OXZknXAddDhoK3Mt0/nKejz9gSMnFzT1neCZS7sMvooKKkdXNfJUGzcsYu1pkClobHU6pm7m8LIrc3lEcHfdIH/83cFqfszGu/7NmXFuf+gHLFYQRxRvpKn1P+PllFqpu912ZDLK31dwmAereG8+JxAW2EQQjc1OZDkoEe2+fly+w/ZU7I6kewvkqila+aiRVmLV6gy3AtqQ2U4xe6dzLyhWpx81bVgRtTp/4n1OpHe3RPWH85oOis/iH2VfkTTm6vuUbN/yGq0OPLvWvciUff2mdHOkWousNrN6eX3gk+fv3KiD7RXXQq0v7lzq9/GIWMXKIIovo6qhp1CsBh3byVGvr6NQ80j5z15ELr4dH2+lvl1yqEnj/Ar1qgKv/jsaZKdNYpX+3SkuE1la/aN8udi3mx589ry577Cc6rdWM12D9/1ZNcrSE30HJNo+2k1+E6YmSlXcLCvJ0jJXJQReqi5Qm9+aakFkqO+2cx90aeJbXPxkXJ5rauS9cdi0IJaYss0lqTtklJ5n8LZutZPTBY2VQhrxxvH8M3bJjTUB1dW0c9Q3zx6uPPSO2N3ZIVu8ZqDM0t/On6krb/0wcKzk5XvsRB+v9ZC/ZPieVEKX+Lf4XQX5GL9mSb2FSYs3t9qfuHlf48Z61bZr+PpHcQWKSzc9Lu4XG3u6tXTe81BtGvpel5oZDcwYPXeuLVGl753g4p3+JPm1Ica1r9IVy04knnW5qxP4DSseUarpRR3SCTJf0FuZMYf7SrtUbM6Rm1EaTxYPlbxBW5QlvWvunzXSAl57/0c732v+snmvFHc01Y/sazIAWxIms8aV1OlFKVflbsVXW+Sy5mzgTfrmxWjU6VS2CFcvdl+1+k1qalZ7hfhFxcFFVxPd+tXF74DMx1GYt8xDT4cqdleNxJU92/te3GlkQn0s0WYzXnrx6OEDfd7OaTKZ7Qfa/M4XaL84viGgX+PJzgfVI88r6Ps3NYz1yff6rzuxoK1SIT5nUNj7UTdl1M9UMa/eu3ms2Gb1t+7lrsi8TcVdwas/FTF3f7udKMSdy53b04Y74bTzqizoZnD82QYb1U1RZcwu35p7OfZ1pZi3hZL9ox33e/qVozPowYVcsVe+1Y85GsdsXFiBO554na8oCPQ+ybMKSzAhYLOQocZrzAS5uRO1xacaoybfnf+0zemjye5jZcHVgcXKzoi1Zmj16gN/dI7wR1rG3Z53rp1/6nGEi/p6pxplwZscxciH5F4JarI079ajiBWKeSWEUyH9W/cnBxa83Ap2FnpLvXxzNKhfQTKO9/1Q1N0Ow5e3I++/P5t+DjFicI1VhalaL/VMmP9WRpiRsVlqQeTVnRq57rK4Q7LNG3FzXhpLep4dr4p73VsYgOKv+n78xKjt7LWZIV1eT5cNDtfvskz+xpd5hMrijQTuXKXEHHvRyS3cJaXX3I8au7Nh+YmrD1W1ehC4u+MTlYdwkv07/S+G5nct5mwwlhkL0O4pDlz3UGryfUFp7Rzto5Hjh569sroAPnpk6//89nyVUCXP847rViGVtzWID8V8bvY349UqHg0eNwgjvjPbFhyQWKJbLrYnInV5AF7sofLkvdRvDRG7A0xj+56qfT0ae42Xv3PPQJTzyu+Pdnt09swaFfZ/60h0ONYusaq9pzl9/+Qo/Dt6ZvOyg/l3WjJ7Hu7fnBwyOdJzbc5kdNPzyeMy36rx896m6U4M75y8e+DrcJpHR/XX4tDUJ83jzZNjOSPDTgeLQ+kGLpM9/UEBzR3FE4NBs2bNmpycO+vD9gcy74BZs/5JKVv251I2mS1w43G4DOpMNXu6ADdVy367nLBvC4vs4zJVKdmiCqBRGBxcnZ6mgmvc+7bwOEwQrj7DxSq4MD1d8YOHbNzIAsCbzAdMGR6gHB/ggV4gWwgCDDZcwsPu3BLwS7GbyiQLaSASi+TDNTkBEi7zoTAYEsyV78sXgCyYyo4jBMg8ECCzATKfz+ALICkAOocHiCRmcNhIMpvvDcJ1EUBA5nvwlQBrPggI3ECICi7jwRNcBkgF+QCHDsC1WgaEiwaIgPsIAAEHmOIgWjPDVQkwpAO+0N40DltOAHiwOd6i+SlSBMAn+0LPkLy/0sxszgNBgA/CmoH3hbTKYAlZ0GIaABcdf+IEw6Ay+KCSI9uRbUWmMEEY5XQRiO/I1jO01NY0FukPMDU00gW0LDRNdQAL3T26pta6gIGhvoEx9G9lCa3+RWQBzIsP1+9gHNNreTCCabPwARoDsqsrD3QlCyB9UHyhGbhGOAWCC/LIApgRH3RlQRwQMDmkO4oQVg9AdSNDRmOKRGKR3SF7cHkcmpAqAJgMNqj6K3BtMxNzTQtdHcDKDPgxjoFEFsJ3GBsCMGRTlQCLGWyQakBABo9WwgAUBpMJbwm5EZ3Bp5KZIqYIwNuNQXWDa5Y8kMyHBECjZEVw0ARZSKssLuQ1NNi6PxZhAIgNeVpMaBKmpgp5PMhKvkg2KBTwIDoKGfIyBABXreFCsRfI9FWaUu7MViIfp0GODTF3Y7i6QVb8S6cQSFOIuRugyYJ8kkpGALpCKOZABGDCoNEgxeqS+QJgG6BJh2cBecctuia6mo5bFBCAprmxpgiSPrSLAGKq7cZgk2fkFNWeYe3DuLmQsiGXgkucvgARARAQjmzMlPAAZDgqZC8oYgEuhwE5EQzzNyr+OxF/GONvHGUGAqS3KW+CIHC8IIAkSOOQt/6W+e/t8l/qH7ByY0DB8IsBuDxIATwGpIB/bAoTkC0H8YLDbReHR4NyiEgyBGDDYcFTIgRGDBpfblpEKBq8ATRRFgFg8bIINHoaOUr2V0CIKUG83aBkyCczQUc2lIAZXtAnKNREAojiWRduOIJwQogtQD5HCBkGMGdCgQPHFfRBADfzQIFFFpBF+5DZZKavgEHlw805LHgE0jZc6ofVyYfEEwBQrLqJkh1CtIIDP8H5kSwyM1XkOXCuBNk0pICDhG6AAKS6sTlMjqsvlB6EbJqo22DGpt4QdgrIhFMi4A0FGkAX8qZ4UqkgE84BUC4Q8qDgd2UIIOuIOgmmepBEWdIGBGaWCyAbAUI2g86YcVEyvAHM9CdmrjyONxQeMHghm8mhegAsDhTqIJ3OoDJgRxAld3hLihASHTp7RFChyKHxGF6Q4I5syA7TzjPdWgLZBCaEDghIHkhnPAgNFC98IRSDfMCVyaGQmSIX1zM01TTVNoTyz8+Jc8rxDf8mvfzk1ZAcU2cGD6RCbvQjS0HO/0uO+udJ6b9z/l8CU4cBQRD88PEpf8XJAnQehwXIoFWUiL/PlxjYPWQwaCXsP8ynUwr9EeK/ZhkcThTrAg7sBb87TSCzObJ/YjiDW5/H4cNHIM8V3pAzdcxO0/mCZMi1wBllYfCoKQ38lLlwWCW87M/BzoOtDZ9W0/E+c+5QOXwBpLrpUYjag8bxZvOnPY1O9uLwRCcbfHK5TqUHCA3IcIUCdcYOAOgzNQ3Avgpxgw4RAQN2Hkh2Oh8UwPtCpyA06cqgwqiocChP9xT+gyPc1MzCygDQNNG1MNTWdGTL60BnNJknAsCaMgVf4adjEfvTCQnIAtoGmqb6ujN3KKfYahtb6xia6juyta0tLHRNte2gT6JJyx8r0f/hSkf2Xz5N8YVPbw5H4A0bRwbyLoQKiQh/wCAwGBVAhAq+QCNoBAGHA/DQAPTvyNbkwocuE8AjSDgidMWRMIAKNEmCCRAoaDFp6gkCA+VLLvxeARAJOICAxQIizKILHkWEXAF+EnG1MrOChJp+47GEgGCgbVEqMCIVBBaPhW4QLXyBRogINJEEEKEBIrz2Z6kA6M+RbUmGX4sgx7KZSd6AtpAv4IhShUgkDBELfSAhCBAYNPEHaxQCrUIAkARoBL78xQp6pxa6ugE/xydEi8XiARUEEYv5AQ86pkkk7P+UaLqaFqaQMS0BLV09MwtdwNDUStdC19IKgN8PrTRtRfwgG+BxojsajROthT+jVEgACubxn7yk/fxW8/Mh+1emU5nOcP8oqf3bB7YoZP/2zFYCfpcAf7wTiAAgfkoPUJhyoNicObj4ImNNnz5QfGKwEPXUa6IoZCEXgI6hv6Uiyf4FhkyjMUSvvtAwG8q6ogX8f/TermttYWYOnR8mhjo6xrqAriZkGOitT+//zxyggsAQUNCdiMCqqECJYNqBZWCPJqIAwkxUzyQAHAJPIMBXDBGAYUC+JwtgIe8nAGgs/Ez4NQfgoUSBJ0xlEpHL40goAC16Iv42TtBYBA6tMpWUcFBUqEznDlEA4/AEUaKBcf4XKUAFgo0R3bFEKBHBjESyEhEqEEdRQkD98/CHMyYsPvQFGkDDSLBYkfxwspySH/+/K9W/Ff1YBB6LFt0xUN6Zin6IM5SZsLBu/6P4h7+m/C7sMeh/Efb/E2/n/zr4sdgfwf8j0fzrNIDDTkX4v8wEGIysEvzLhABkib4aC3nwzyAoJdRf/fdRU933WX/3U8v/vQb8PM0ZHDM9+CglLE4J81/24E8t/n+lBz/rLyX/0vqMRaIISBT6b1vRU3A4FOE/60Vf8c970XHo/yO96HVbfsj1cxPzVH/zVG81JA0Kharb9k8p/2qfjk7Bkkikf8FX1CUdfQuWD4kiITFEqykp8Tj7OuB3K6d+JpzGk4oT9XjXyfwTyh94ZqiBf0r9ezw4lP3Vn9q3C6e6t4k+XDuWtooXB0fg2PLMfbToxpp8Xo4PUtR2Dfe/U0Hk9C9+0XUADY/DoqA3IioRRcZSUBgUikwgoGlUEp2OxYM0ykUvBjn6KloJDbhyOK5M8B+2f8Ot/xwKB9KfFRnSM5vDBv+Njm8KhUKENqdT/+2O79kmPzq+jc1NjOaiJcYVS87lMeucHB4WMcy2h73TlVBAx3eLmch5YLLcPwfFxYQnSRVWk4fKpdQaWgOtibUuBVEtH6rYZ+oj0owC3rV8tKh6di7wGO6OvGv9yg3GaONDT+Oz7XfjbkcmzfFqD0YmXc3err/8+dX0et/G3Di3Gt3dKx52+046XBlAHw46V6LYRulDqLvN27TwNWLPxvpZc4e13wXWMN8lEWnv9BqWXpc83fRY+4LC4iNNhovBMA8VO1z2GmfSvGNzEDdau5j7c9nVS7vme829cVuHcDI0VeOw/N7Nz9adPBFqk0A6uFr86bfdfFnZFcN2i1abEDaqK7H1E8rNXCcjb2F3FK6r3FD2CrfiDzWZXkWk4Vd5mp+izLEbJ1cE3+/rf8+OQlCfxTxaZvgoI7527Xzqs8lPFE8V/7lTv5hPhmSduD971qz/BcFI8Hw= \ No newline at end of file diff --git a/docs/cassettes/pdf_qa_9.msgpack.zlib b/docs/cassettes/pdf_qa_9.msgpack.zlib new file mode 100644 index 0000000000000..c98e7136cb9aa --- /dev/null +++ b/docs/cassettes/pdf_qa_9.msgpack.zlib @@ -0,0 +1 @@ +eNrsvUuuLUtyHSj1NAd1EoKaCdH/H05CBUg9ohqUmJCywUwWM0lAqJ6gCWgMEqSOplADKdRk5L6Wubl5ROx9zn0vs3hOgp2H+/bZO8LDw9y+y5b95//597/629/9+re/+af/69e/+f2v/vYv//3vx//87r/+5//5t7/6v/7uV7/7/X/5H3/9q9//x9/+1X//P/71v/m3/+3v/vbX/++//I+///3f/O7P/+zP/vJvfv2vfvs3v/rNX/76X/373/71n/29/7Nf/fW/+9Vf/dWvf/Mffvff/91v/+o//X//5J/98//n//4Xv/7N3/zd7//Fn//iL/4ilOB++Yvo8/hP6SX88he+t1/+IsTu+vh3dvWXv6jJObf+UErAH+L4b6w1pfnD7H/5i+Rzmv/tNY6ftFjnl6P38sPYQ5z/nt8M8xtx3mv8I8wFeNdKGf9OfX3fe5eD/LW4sTxfQljLi6GM27c07hFbGT+JaV6k+bncMJcW/PxjcvMOvc2FZV/LfJaGC7Y2L97m7XLI86sxxb2aubhQe5IPWhk3zTnNm46buRbnGuYdQojVXfbj2Ing29w8/gYXq6HNx+n6LM6FdbkU81xWnXuMZefx1/FRjg6bV+cSkovRycXGczbuKv83zm30Ta7d6vqX7s34d2plPmoN8x19k32xS/Ytzm0aC5vLHP+Nc7Hzoblk/tuXliMeLM+N6RliXZyVurlXYX5nypCvWXdrXGiuO9UgItvntUqYp2HcoLv5JC0WOTo1l/n9PBef5hOP94WHS/MGeIzmQxI57dHrQ5dxeLiIkNr8RnA5Z1naXEp2oY9/pzof3M2TE7qfwoAbt5bm77ld48relTSX0+fZyb3OV8uHDj3UPGUH7yDgyefVxjuZ/y05yaOOlx/n9wLe29x1nuGo2xa8h0jI481Pe7BiV3ruQVboQ/Vz6d4nvN1S8VLnZccBn/dzU+SwMfN745Z8IJHnIezPN6lTvMuUWmx7nrs0Vtbmd+L8HzxMnQIzFtKOGz1psRzx3aXyPnEc8GA5TaV5lX4Kd/ZQWL3LjtdWsWOdBy+ohOUCQc5F/+p7mNKwnnTI+JI13zIUQjOvvYZ5gYp1rg/LPPvmFz3NYxfb1Czz5fZW57H9P3/5i7/4x+1Y2/GHlo7S1sJebMc4viEvrZOmHR2abv4RSqDh6HQ3RXv+f0p+/q22ZQiH/M+NwE3n+qfWDXIi4tzdMPWBL4Uaez5+HpszHyj3edC8F401VGBcGqvh+IqKTG5tHO4w3i9PMFY8ftJcdXyo+YHzn10Zdnd6CPPqnupg/mzqhKHfp03h5576axsg6kLzMczQ0Nmy1brWvUizOlmvWWTqDftzW+ayEVPoHPSKm5+Xpgs164+t6jf49p4X/nbFsrsi7lw//3payADTx4ecNmAdDQ+nJy6hh5sU53+GXp0qMIUpQCnwgLmHh86Umstr4c/5zHU6JNDg3KBqNsgFnE5f169525KneWxlugRYDm5L+xZz0F3q0zgN+9b51vy8mp9e37N0vXpxXEvqcGx8gyOSYP2GLS1wBoq6BNc3yJ8dEvjiPKThh2Cn21QnpU9V+if0OFvdTodrCkHAF/Ao9ne4UFC7fRPNrQ7/sKLZs1PRjGValFzdT9/mrS/HZiV8Dw5hatjXFbxMSX7+E34bMkxTKzi6NVf5QoHn+fCDDh3pI1fcppmAnsCNwtjmNH8MHxZ/hJrObW2Qrz0ub9DDufNDRvLTGofxWYpiOkrjK+M77cX65Mu4Yh+GaC3brpPfWc7c3Lj57L3A/bJrHjbtwbbQQor7S5WRVTUYBQi3O46TFZ+eSvT5MMlTL90eo3gYaQiubyl85t3YH6XEYxTa9S3Zb40gdMZh9pmPO18s4st3i+g4vNQBpbQullOUs9Md83A1Og4XTxFOVxunpOBVT0cnIaAQCRsnfZ714sKK7lNlBIBYo01XOiIKfW+PQ09XO3a8vymxtQwJmQryj3yLH1CoNNV0kHpM4gxSmpHRGC+GTqNfUVyJ02lEqDFCCpxEXc8MNbIGPbhXwg3yPI19yrDZaT/84Lb2Icy724eumS5K8NeHjh0r6zNGCxDYlKfP2vA+c1OnYYfniM4RpR4pl5CgZb3eaASN4rngVnSIc0NaxiVs8NSx/NWIRLN6Yj6W9cwhU02YZzxN3/UoxAT7mOcXxAd/IQnVP++JSMAU+DyNEj6UrQ7ZH989zElMSyvxb+KltOatg1IQ7Eafygo5cHqHYY2yyBGG7m04bvxWLHEaJSKZJ4BXzMO0r/0IiBMCbtzmo9EuwgJSbmOZarckDbeHHZxmdNwTEW+ax2ZY3SJvdt9zP2Aa7kOyUbTE6h23NOa8dzw47ykqxr6rivvQvw1VTBVyd3Ep+aLCNi3150+siWVCowJpywFFquVF+PLGxFBssI5Dk09zAkX1j9ty3RZ1HurKGZeWVuoRrug1EVlXGob2Dj6fh91tvtvb2gwadvtIDuQ6swrUTfCvqg9TLyQ330WnlzcVo0kxxPmT5DRRutJb2SGzjYXirPCfaerKSv2sGQo+WO0SKI/z5NdvXchisMd2zCfCb5dybT3IF33OK+89rEpZG+KGaWHq5Tn/vrc4t1YPDfiQ6/XbPGheJObsP7/DM7/nXu0iDXHw+oaH3peVDNuFVM7Txnn5+kzlr4WXGtfGtDjPSLXfHLfQ58mla+6xT38c30xj/VMgkO4v3kmOe4ZdGY7qTOeiljAOKN7B8IiSPNI4EsE/pGyxHSO2QRwyBCTZKDXkDu3qfDbmHXs2jkS2wRbFFG5ECdl94q1BzcewxXumlmH2eLphFmBeTKgFZ8XHN+Jzy1/LXsGTHnrMH6WR7GBk8fgxIykd4Jv0kF5VYMbrKTutVehpLOcmtlRXti4Oa+kQsVipwCJDiIeozEDBt3T7Xq6aN9kftgDn6vhwFqLacuFYRAlBfZypxfz0lYaB9e76p5ogIQku8TDfWW/Z1E7C9UjLUa+eLy9Swt31+8N4I8tT9d3rn8aLQWCc+75ELfuWXT0o5PvG9q4/bVc90metdA9QUgvTc2k+XL87Xmqlm9GwXcXp5dRXG5HFTNyGtJI7JSHjuZWnCNZ8iI4PeKobFe04o/rt+OINL/9zXL/BtkWvif706jdxeZAZ+hxFP19jg1T7pO/Yt/p0ibp+7rRq9eqrK1eYkeHKOYT6wS8ksRN9hVB0+XKfKiqF6Mr993IeGkw87Yt/evbg1olAYry81uAjvmiqNCNETlLqcQpZHi8oaVwT581anwcqxwqHgNqDpgZXkiTku8V52dVhY/QZkTS5f1XeeWcaHZq2FJECyGRQtVp7EYupCx5Oi1oxnha52S4UX262hSyLb6I6YfwzRf3ofE8QadlsiqfI5fONllRyydU1v07hCM2q16Qc1HOvfirr77HSp2skORnDIKyyJq6QkGmK8BmGm5IlzzAsSaaKFmuYxhvVVyoLaTGvAzlebH5xW92jSI8Iei57VanvfipPPh65L8324W/kSWV1dVZAUbXk7jTG7Cg4pXmMEZANT2Oeuo7LDlddQ2xzIzn2YszFpra4c6xDoMWKL78DudKK6iwTkpInYJLvA0W8M265HaZ3WDjxZk/3oqYnRyRrfkncI1o2hu+61OHyoSJ9KZfvVIP6PB86U1Kmtu+FvseUtrFjWZ1H87AsRgzvemagPXJk1x2+mpXD65CrjUCtl/c/rcuetIiNKE4LkcMDXRXnAKQCq+1qnakAebpfq+m363Z6Gniv4fGVdl4zl9iy5mRhllLytb6/cq+yxUMMnB7gZWjqusewvf5+oSXaNaRkUA1Xjfe9Vv9wG9bsgI2IjJyCO3Xaih0CnOHq4wcXTGvdzAdfHe3xH42uI2yi8VSHFlLXJ7X0JhiwHvhLx3uc/L62pGcgW94hYeZPslEZzKJB53lGjEtdMfZ0vhxJBrghPP4ElrCoBDWRoZxcknBHVEYDaowp2uftQtYjs9oFDwvOBn+XXIlalIJEzK905oHxgFDkOR//n+YqU4yogF73YkluXd8erwGR/rwnPC5m81+qRkoO88oBSVxEFYF4IdZX/cLfJLEl8xvYBMkFQR9lj6SwK0FCPMY5Ar0JLI01CEfVNFLPq/yfncpxLg7lmuI1sklNX12v86+l+fUwOSddFWQVGjC67lQpO/Fjj42IGh56LGs4oo2Zrfh4L1xLbrYTtr5v7x6Z6VLUGkY4NR6m7Lj1CJKm51xWAgPgD4ThybmsjxrC9YdjRR2pC4e9HdaqaCg2g5la4rohl1BR3p/Rq1+l8rHguUkJ+K+o2AuKzyFdIzYi4GOeIUqvJMRx+46EPrdYK4mlaMaHam8Yn57kTaH0hYoBo7uxXGQ5v+naNeKHF5J7W+5OBcgQEI0sStmHFwLjCaSDVxHGk+GjytLZPhPDM0lvdgfCPUzZAoasSqwGjA6upCT0S2orFU/LFFty94s8yT0k2l5mej9LAVVoOaaX5TWtMylHAWnd1PTXFPF9muwlqNkCtgsKJaTCEM8tZMfw2kJ8zkQ+5H/NR0Uvvz/LKxP2RmVG5qGD3nqYi4ptxJvq9UNE7E9eG/O4cDVh+FiuMZshwExZF3RCaDTxagmIDpCvOOJQC8Jhlh0vD8B8H2ttZaXuxjGbJkYTbZLPOjaMpy8QiRMB8qLQ1MCsl98hA4W9JyRKXYc71qDkUErMXTO4Ae+o6wZFQEFSlrqeHiaaFRE5j2KlAfyMg4Payp/Cc6xEaAvqxY4LwJ5md5ilTGALMnmOMGIUClUvAnHLewnyBZAOxNKxh/2EkUUWHO4yAgqvGgkGlFACyh+KUbibn84nM79WTRMwe5rZrWJKRHIrt7qefDyh0x8QeIDiJyoGBjbjPd367ewZxZVKXMl1X2pcwObko4OqdL0cCho7zNzq+CKy8YVOHBEAXdOnGX8NyJSOWL9Y1XZ4OEHruIenAIc2+0/IzHr7YuaoV5H8HC626tvs8Q6dxuGyxzReVOxQI5V+WFh6InqGlAAgTFcF5Wy5Y13yuXwdF9PhhsGdSYh9KKoNaYrhSK7gk683eOx936bNfN34f+NkEv2AMiQgm6cXCC/iK67MOsK3xSRY8AVwrM8HQZIkT4fhxTHwpbufJfoxZfEnY8BGiILLedua91L/LMjiyWxJPp2Kq6zKX1/IKoshzbd3ErsPcQSammXfe+wgapghA6JnwJ8DOz0UcRHa2m3sGlNUpfcHdw43kqtDhfoSp3tYe7h47EDw+qDq20G9Zuf9eeQo0qyzYyOYLfd1+1jmKUzc+2TRGFtrb8KEbS1ooXNtKR1XkQ1zfVWZI4qrIxQO4sqgXpNGFCL/T6e01lWkHXErBMvvA/qdnwMnA64evPXd4dFRCDTLpzPGD3hyeeioBGpJ7i40a2eQ4sxOk5OZXUyB4J+ey+HwTWhH0NAAgoWMgeRtGDCmYRDTgvaZbRyeIT5L1skNBf0qiJCCwK2mLBbRlYDtDTXkTv12WqRUi9TYOz/hW/WsOVJziQcNPfT+UC5VbN2qjhYwCg5T8i2smmVvCrbqDYUpdBjFkEpaeZ7g6saNFmx2zAoHtg9jNGhGOTX0tDPkrvln4Zy4l65Xn2f8tAiPr6goBvNw5FhT7cujmEGsIl28ayvgerfputGh+xcbPU/pV12beulZUy+XRcQUqWnbkueAvoHaovw/+zT3//NffYjVksaKTOIIflDUlIqXXxWZYUWIw4v5QLCZhXCPjKwwUUZU9nR8awppiWnrMAeQicIOn7IgW9Z2o3cU2sF4CzEDHzB+t3yXgiITv8JI2iYM3magcIvi1YGavbBhYUCY+5AqvimzRVaVoQigOCrU1dg8oDo2LoUFc1br6JkRk+af01trx+H6xHam+IxmpguWQ3hQunSJ2faQ1WU69C+TCrss9AJqIinqd0gX43l+LpEDhcqOKPyTT2XzhU9Jnm3naqpdnSIWNuhIFDV33OL9PepFgOODZ+qd5kYLmljCXirdZB7pI9/I9z7U6oZ98zGDpmoq4UEp7tZs31DHawVxrNk3/iwkVyFHJa27ClaPDmCDwBrE40pfADcXsJSVvh6/Lkfs5f3uESBATHIgMeQal+C7AHckdegs5lcIM1qA3rFxS9YSwODnZZBAQw+hHmCTUmQWQfKGBO5FtqhG/IbhA820IsTG4V6VjVha73qKcDAr+1AK+rHTUpEd6DeBRj5a1Z0nvwqi+BQtl8jcXlrwN9fXuRVriXVEtBz6BE+q57QEwDc0Id4T7vKAkklA0V+tCnasQXuHiITlwl/EfvpCPMYSCUPGxaV6fiR2LGdBOS9N0jPQj99kqWetYr/4awKBHmVw3q+Qd0EYi/M729MUYzWUbsx60Ksg59uqwc/KcLtLc0kAydnMGO+Ipi02RZnMM1aSFLMx7IpbJ7KU6p43SpYhCnH4xX4F30RjADEYzaM5bZ4ajsfSY4FIn2GoIJhplxXHNsf1g0rDCxh1yNDwTXfXxKAlQoXyivjaFpXx6POgAYzqZWdXRuWKgHhEodERoO6kuhzHv9TTzHQBYNRnr5M2fTxJOR6BfSBLb6RVNOio1731XhN9XaDcxA/HRrf5DNnRs7FY/qEvV9WESS/vf7ycZ/UUsgnTXaL3gagLu5Cav/rXrwAhfChmQdBn2AMs+jdZq/JRwAKx0Li87HGxCkcQKXpmpCNMGaxSEFwgoJ3ZJza9NAD9EVyraWRHuyfSExea9Bd0Z51eLiPh0SDlUlijGkFGaMdQ9wc7M5eu1yMUkzxr3Giilx4rG3WAPmMoxnb6M+ASyRW4cWjLQ2fdlwn23XdlX4/8UkrrEPwogl6RcHol/rueLWoK3RDZlQdpeh/ySFsyVgCQl7+k9oMvmoyj0t7OPJ3E5dDVpX+fA9gjijqfH+9SvOQHKh5qKB/rxmMTNPqqKPck5beahejax5LghPrFZfdiUoxVJAnLOqetOHUCGeZp+Ve6CJD7OOpsHiioJbr3R2D8ApXxj3thhZS5ZK+4sV3FvFQsX+Ej2EYdNhjnqNC7V9VlCvm1br+UsyAjGHxRA7Rw/mGlz4kwSuivYby4v9OlAVk/SIJAhH3Ifh/XAr0uvR07GD0ehp148cUDIQQfymBu3yEdC2pA1hp8tTDNTkIE/pk7rHD7F6+lqQ9PIibFvdjVMKXwSsA8sFLrbb0T0SPXdVPlN2l/pdJeiMyR4qCzfcNEYHFMquzH/sxaljFq6fWKbLgu3bdE5+3+pyNuft4kNAXlIO2xeI3dwc+A4z6zKVKljrW/gMRJMryxHFTzhvxXRzfnT+JJVqPWwy9okkEqs9ZIVxv9kx2YkyEXaf99eeO5Bm26M17Cw1WOVbWN4lytZ8N/3N0+Hc13+ByZvccjf0ridBMaAsDse9fi4tAI/X08cbaXMB1QGQXG9oN5rvomzzViVEc0FaH1twjlI6MnvBS5sEcoP6Dy3pvCl0aPtuXTRi8izWiNXkbu4hNG7+FPWjOlQx3Z0fmRyTtNg0n6+XYzAdb5jVvr/cFQa2/waSbv/NJIE9mcNIWZta8ouuYukkzEmKlP20PxXsppUBCy3qQcsa7cKDrotg9uJObykz4aoSrGYoqVfHcTQ2fR/YPYAjR+Su3zEeF7e6wTPCXQ76aVn58hgQAr55E2TU2hKmrxx0zm3Xx3FAJGzGM7Jt2H1uUFpDAQzf8zriD9twXK4LLDf0BTVUHt8kcwVeyu+smmKtFHupqqkPZlcyb0JFVygEJqcQ2UFxDyJGkcEeBZADuFO3XzNi5JwBKoEhnEU3GMU0g1BnRVKsgdSo7/8VRaAGIE72Iav5KYe2xviqvcUH0siKlr7kf+jEg40cZJu+oJtWPdwwGWn1YOZjiwfiW3pcIJ7zktiF0QoICAYtwJb7eQr/EVd0YqMBx4kvFp9Dsn6zSnFDxZElEKE+xZkrrcFFDvlklpeFcGxOdzcDvl23YSi2Vzlm5Zot0QqHERp+nm3rWYlEjXhAKNWKqQiGmKr6qY1qJllnvYp4T62N6qXNvKm88WGfhlCL3Caj6YNeBVfXaQwMr+Q4aZSqggMcAWi2kNytFr4GMAT9q3WaxFDA3DD+aN7E3YuPCiCB4p1SnkXXQdogV6RE/0EWTLKfdFzHUxSqS+lpa9X4kpEUOHQhgfL3RCyCoLuatOwayXQ1dOH15AX55RiA60Jbs1XsJj3K/BdqPzhjk7RYdEkkRB9A2EoDKcYehNAjC6bbuVXQ7cebblrn13pQOijirDsCmrZNA6FF3SS1bAG+Z7cq+cpYqeQbuX8s8KTbL6JlHkkOxgzTuVQvC2/ITs1wByevKIyjOx55G1qF0KvSkvPiD9frSsCtBKIXIh1MXCZYQvN+0RyMxKGryNvRP5goB8E4fW1LbnT+NKTuDqCCm+wDrOHHPa2O0gKaJoMrXwYAguoLMY6QcT650UdbRtiBRaYGW5wJoEf8asanWKVozIzOwyWSi4UyeOG1DdxIMdVbvb+t1Rp9OiQ2YjB7VWQjMhUVsCfll8MMNENkODDrrciUuZEYRCZyp78QrK0jUfH5ceWjouu/QV71dL1Fvt0jsetDqfjreduNymLcHQA108GAZN8rqJr8BT2LcuAS4bsr0HLSHpbVuLCoub/nq+98f8nC4X00MjMDypkbgmihGMqyiSGFhu19c+9w4sYDjjQ6kfWFJ6H8TjVCQYaT5w8QnlXedFY0HjEVNFYoOhQiM7hze1CaGtwfVVzWrsa+xRKwNo3ZML7Y5I7BigYt929adBxUtviyQjhKOcXhSq/9n+Hlpkp1Qk459svQWEYsTdMZinkEcwyvqHbiZKhzBSyltITumPhrcbL8+2BJ7vqwKUtltnYWEk/IP2bP1Hyxhyg7aT0VO/+kXsZPvPDIG/fQLvH84Lw8ibsEHxSQ47gBH/4WEZDx3ZIyBlajuYFy6h+ONTv3nisZT2uW2T9XPbY1z9XcP9UjCbFGe5WUf+HWU5HzfFgLCeJNbyY9PsQrg+0pvFX6s1Hz2B9xu1e7481mLNXlfxJN01MrSB0Nw8bQb9puu3asWEgcSxvcpdzohsX+1D8fojKQpfMc/iODzLHD5rCt7t56mKJ93L0ncQmpOLrgjoEvkjKYu1mruy4OsSv/yn6wm5wc/WEyvPjJygj+1ZTxT6hsWkG6+lXiLMqDg+WyF4Rxk4fNz47qwaIO8PnFVCLWTv+OpT6JeUUyON4vMZPTf+oE3wAHKm1fFTdgcB0jsBsNRPH+bkXXx/mI+lvOiIPOQ7VuScAbSUuHc3gd46Cd+ik7ZbUyEu9qISb5lgk3xteK2VPje/Z9e2cyLUAwniwlVlIHzGa82KCvav/bLTGzcdFz0qxGhYa7Y4bugTkb6B9XCCkMHYkpkta9X6kvdrjTDBr+0K5ANK/E/kxCM1x/hpGO8oAMnYwisIpyN9EZO8CGpIlivPKlmedC3yQ4MVgiWRYLePUCy8833R4qlNR1q/58H903yyJafAZjYcrYfOJyQuWRuKKFy8HTOkkpljokiBzR8+fFPUoNHKTB0trpFxCGrSsufKtl439X6ajG4XIhzPnSttA7A3hIPRw13bfGrXb1HRZ4/pPVC+H60hYgt5NmkiK3kT+GCpu1WxCMzWDJ220e2V+Qm0X4axMm0QXNe8NXes1ABY7JEsh+aDfhu38ZZFjIlRprRZNaxdOaBgQGTQWdrOeMhkCUPmbVe/0mbWyo6dwKrtWPZ/Kc0SJZJSacjWXEecuqh1ppFApW8bHtDEADVrWo/YBbFam31kqrZ6Jnb3FAzAjG+/u3QgYjmaGf+Ga19nxqEX3q4pIec+PPm0cxDkGeUJzUyWoXOUw9qeWk18o95zIE1j5QCniufkXenK+zf+BY/00Ml7QcD8Jla0IsoLTIxc/QA2JD+Y0FtC6ydB0v2qW+ewaWpdLwdxNgtAXF8CAazPJZ4YenaS0uEJ6Lujw5TIT7u4l6f6JDwG53ho9Lj0m0UhJ3B+mi/yj0KxZYkgMMBvxMzNbWZy9f0iUM6FCN3tRKUOlB8xwRlEZbmuTkYZMtSUTRVjcIa+hQPVCxp22EZVVi1D+rgjRhexXsG3P8Wxa1YrrWEm8vfx+lFqR0WzCzPp5iopJeQDFdKivgfKfr6MQpKnJiJcXhGzr7vZVyh39uQkNiahBBn2SL2VmksAE5g+JdZnStjNpF97nTZon/M4wGGCco/TBu/xovr+HfkO3HJCK96ir8wIJ8akfnXdTPLYZfy7Yx+f/lFuJFfw+s9d6WgQQpFNIMal6pClMW11SPZyDlVYe5M5FKfn5S6N7eyrRFU06z7CpW3AE+dHaCgQOc40ld1NKOU7z3yrCZLoXu23IriPvnpoqbPRcZe1SMDk1yJo5wSv4SJwV/Di9uQIXpZdNhVNLaA5r17blKaS0wPNyUyoHJZIX6mXE1ncFSVX2EvbldmJ6g80p7FukoaMt1J3kxF3OVU4V9x6LJuiz9fMQAxkAPQwoZOYQ9eaolrff9BV6DBA2E6A9MCWKH1jUhrpUIFMvVQibzcR+HB60amSl6xvtftgocY7WU7Z7oNMHHKirQuRPCNZDRVH92zTJ/PnMKeC5YcIx4NPLtNDkczjj7D0cZJZe/A2N6AOr+Vy87leK5QRVjLSoUh9tYRkIbTmIdMlJE6cIHWMO3v6lhFd6o8XMsiLAu3RWBamB0JOSzxWqwi5XdLdIIQF/tV+0XJkKR096/QZq+F4iJjgeCaS020Sr2BrtMQZF7Vr3z+wIYQOso/RMrrAr5aeOkL6bsRrl4hpzUOoz8yM3DXTS4vSnwR35An6zo9gCGEa0Fn21dqmzgLzVHB+jUUgKgjdx6JfKXYS1qnIGb6dgtEmkoLMynASZyMXmLaUg0eE2aGPG6HSad/O0uA4yeyD6mg3gwIyy5MmaFbyfX1nZiWmxEwWdsrap3ksSPKmuxLESmAH0Cdw3K8TjQr/MbQUj+Ulh+2cxq6iMTXmxmmCGMHDK5Oh4ROd2DcUNPE8DTV5upHcSSbFgSPgWFNXVr/dS5rSS2l1+LNuh+rgihkPzEyo3mh4N2vMoiVc3+oxkdJhdRnvAV+Aq179J2nWoXn7zuu3sKEoqQdSPPVFCxU9WgLowvGQS30Bf54U6xwWvAVYwN/Mxi3kLVR0Wu2BNZ/Lj+XuwsiX5QwcT0XvBky+CfQszR+MEnedBfATHG3juEseRNAnHg6ADHZqyS5eqjBxh+dMDEY8Ys82OKLJi7sjkTUf5V+oFZqGi6FdLme1ByeS+5XftHHvK3BAWoSxlKnmuR7ELtJNee8hopEPTjOeHGF+nE+MnOtrTBOepCN3mZZOr5Gt56EtI0sPipDpuK84cwJsW+8rsq3A7g6fQUlo6GRxOUB8Fu8WBJQ+c4SlH/evbPD42ks8QjJfdZZg5VhvnwByngg505bP7r41QZ7jx5Dfbavnd4QMcSEMjUecq6IS+asMw0iwUlYkYggmQhwBRb2UkeD/gsB8AmgRo6styz5duqbactwTtgrns5MuzDirSz8I/Wa3+TcCmTdxD53GtnNamn9mZqLsyXAIvBefx+JHcJV965fQ/DIqeXlPjNbY9SpnB6VDAeRAR813MXx42DoHJ8ZF+U0KkDbTLnLms1Xxk9ckcvL6phrl6aQWbDLKzavYgKS3OqXloC7ht8NVTVAXiBt0MLhct1kcQbx4HWUquYcU1lkSYhTU1C9MjLyhOPpNsqYEPXyrJW+iueyuLCNRcdMkvUImvqMiXH1sB2FrRvnoJnLjh3FNmAVkP2o8kmMKpxHcal8y0fcli3P+Q31w/U2V+57VMq6lyWJZGDEO5+FkyECXBKqdgurbMHwMbFXjMTREcbq0jhoKWLM278IivYJzjIRAIlCV0SsCRMaMFuOOG/RgOofLSjoHmTgp8yT9A1FtdrbkhTcQHXm9rGfAnNeHTVjHS4wB4xQNDFtbb8IRUF83N4H8hBO9laSJZGHYA/hYZaPy59O0tPJcwzNyOhax15NRrOnElR9On19T50P/BnVKmNgMkUn+vSwrWYv5HLRfa6qLpjq6/xwtCUMhWMEK2jU/wppgyenW1AXf68kjBCa8ONzPbJ2DJR/9Qo5igb6oXGCxG2bljt57aU4At+bGd6xXIlxtfIA954SJffkALl7LLDvBQN9Wg+vjNH+pFT2xNr/m6RJKjxIWmrs0YpqX2ufMrN1Hklr2rNOvVHP3RZiX2LlB3mKSZaPmudwFTxDICKeKlm8pfGEROFLxFp2TQ85vZsSjVm2u6G5TXe6JZLqso20vyod+sp5JCG0w+QJ6t+xujEMMJ7Ld5qe40vRYyYRbZjGGlilLuJlhvrV97cDg5ygD05l9wH/2bJSfO44kcVSkl1Ez3pQtdayN5CqRXEUhTAb9YsYk5wXtykoi+KYcnKtx8hrLpxi9zU4KdcN3I5OljGaXijLLWpCJ0K3BGckNxTSm7b7m2hhXsy3Hk+9zj1p1seuL8llHKAr1EdeoJN+NDawwU4Y9iDychqFRultIak3dTHRZ4bxUNociGN0/Xcl4sD6yDgY6Q2/G/MA7Mf1LI8yLSk2C7rayUCymTUxaXKAwQt52k2RuPeXV3iWeE1vRd1LZ7IUQmds+eXanpKCbyf2ZLOFNqV1WiAGhjxt/gbcyTjYZz1CWNqTt1Eu6/QQH9SSDmNFayrby3b+SpbDgdr+xP2aYDNHQLYBpPQhJLJk3xzFEZ0sJyya7dHSpZM7kbitKnCLBJAxbgnuWTmX6ap2SwlB+F+Cut9XGJ7AgM88YCMRXb866JJv61zS/LvbkvfgQFQ5Mx67VylCdRFmFdPYhmacjQcmf2ENp7iq0qtzCDakHT2BCSCvVLFyi46mR0kya1RjOQTqT/kI/LwMLIGK7PnXz01c1txTjrhtbRj2z8ZGL91X9mCgg3YxpdpRXzshhU6vsWE0rBDNZkBHWKboM7XuEZaCGZpgrF+p7fXdsp6tP6oHl8Lj6XvezjNjSkGcIlNttclp29Jgms+3d9ubO8tZhi6kXG1ktJzYy68Tl9QY04k22UgaFNDW+jJYMNqhHrNObwHf9vtZJxFAdJvgVl/ZMtId0pEmTtrxKmgxb5LpbyxioUNNO3Tt36OIf4XA3CmM5OhqYomqEA0iSNai0ROeYnamlbz/Fbaz3PPDfZ7XLRcRQCXAUm+tduLMLmkEXOJCea2JCFPMPzUnGDyrKH1LDM3Xs3ek8ZGnjS9NuSd3N4yLfO1wdNgzpHJ1IGUDAkGq+dYyXTgCSyWBipKMy1S+ts50Xv7Z86UkkkfAiz/yGAA2QFiBWM25y21Q621ZYBFUzbPpCt1pavdyhBZ1E6Fdrua9UDq0ciBW00a993PBVGQi4kgaLmXzz9a6owFuOhA/CCROgeXfyaTMU7hFZtRTLyT234zvzkz11Qu5BlyId7ciEY8guxghKE9hHPkX0fAswrf9Ad7+5OwdtxhBSYoS30NeYq4Kgce4MrEt99biP2GZsZTcFvbtN3sp8R9yDtoqyGu9BGQ/ewgVSZujoXwoyOT9PCIlUIlP2/kUsbDRB47hzBBtdZXI2p5Q9+wrjn0N/XPSbIXoxVj2KLNFxIPZ+rpbJcooGacDKGntqdq4VJ2lr5xZyrdvI3ebfKJbl9HruDpqtQep6lmjdtlFq88yPNubGet+uknQ0OJQthfe//ljqN7h3c2xRqCbZY0VtBh3zjQPSZKiKcPiIi9oeqqvC9QhMKt0aBd+NY4hpT/VE30ThtlCHo1bFXdDPYfZbPLL9Qyl6XifBgbEnrkNiXWOmKTEmYOX0WUpaSfedM6xhY+FJcyHLZIWP8y/703psxaGqbyjPOGJKBFDsa9vxIUWgs88ynInKPQyvkJOeIt6yVgeyk1YmEVN2KpXidOAdin2ijIRccvN4mCSVQ4mSx6DB+8ayAdXA4LCifYwJtQgKxGyYjE+sYjK4hl2Ozfc9yq9oSz1UakPYmzYBD3kWcjvK7onMygxx2Gy+YWdyovNxmRKMxmmLXcrThnIyUdPivOd7kVKbkgxNhEJU5IKi3ApKmpvPpWklAuIhGXidF9Y5Bazq6OKcyPCWdnKZuRoZKkNSsG+03oX/9wAf3DJ3Og24Fv1Laaj5RCfYtNT7qvkyAE272LLmCDOMae3olBieQLZD0pgERGEEEdp0X7NOEElFAYRDPfUnHCCbLlMQ9qGFt2657vEJu+tH1AWK3xx5JvTlfUM/oAdiu5SduO1izBQYV5AilUKfzIeiL+90m0mYo+qr91evT0Z6mlORi4RxZt4soDXY3FToYbrFKXKcay541+WLdHAAfz11bYO5JwKak1ncmmUWRYTrWbKzWUO8wWAyFxUUE6JILrq+YY2CItMMRxzO9OMms0i0ec4L4MhGTa8eEJftzEQfCHIgIj6yTrfIxxLgdrXoW6w4q+LAOe2toCMw3erpYRR1VG48jE1L130n9AXeg/Dyqy6PMYsrpOXQGQ0cmzErMbPCJ0y6pw2VkK8o1ru6TXuVNyg8IsffUWCo3gsDkTupA3Yr1n2443DnW7sIhcHtGLETeVOHBvVj8X48Okwtr+lQJ+jOSbhVcOXYVTF7iOg6mznBZhaGb8TT66Np4ufPcwt5qVXe1yBeQ8IgA5xWc/4WR0xg6wMbYfESwPMn5G697O3YCccRCMWdi9a18zAnVrERBNdwEKbh/7tOpDeprIZmhMtjCWROIMnmPcDF81Mxa2d2IxHqIx3otYLxyvWQ+URuwduHRdE8duDkpRcQVb6AxbPQ8kaKrZGHRoBKISShix0DQmqiW2DD/ySeZMnxCEa8uhttNS+M/5z+GxUFEIiF3dU++XjR6rYPCcHBviWTsewM8eDjIOqMM3t4XcxL3VNqgssKclymnBRXOrzpYxXhN0DrMMIba7lMsekW9Qoe6H7jAtF/r2xI6dKHV8NlXnlm7m1epSGkbGygxOQP6ULBGwApIedOG340xWPjXfaY0FgXvY2sxofYiq72gRleFiOp0GhMQtzO0rWxG7P4dvJfLirbYkZu86VgCRv0CL9qGGGn2F6BSAfrvSQhcc2xHW4fJOn6+uR8uDPHSkWDQqGINwQbBnJmrtdZdEpCWV3Mm4A6db9tZlrwLnqwnAMG4Mhmlj8PricXHNy1mpKCtIivrRzoGEagnGjU/0FuvWLiH+fcMUxgliSkOOWxdG7DkLKik8QiesE+RnmbNQKXqiHIOSse1pJkdFF4AJkKBZpOgg4kK6KCl0Noe9yOhN/YhuQ3weJhfyoX2g/eNha3ZV5jWj2JRqC4//Op+7BeeiZAO9PbgmzhwJUatMUsMvj3+YSfm/tLcqhnpjhRMCA0csHxSVEhDEKYHRrb2bsThihRhbl+dA7UpISJjC6KAvTfwtr8utVqz5pPYZJCY2MUkcY0/fAc2oIfNxn3C+QxsK0jDNNUD7nOmX/0ddWZueHKdYF1NzumepKGnSPHjze36kpCtCp0iaVbSL9h5XyxpVSVXtWxabGirJA6Jy2fUYYnsdiOpSZCFF68j/u4hPEQRTomv8di1c+lso7n/Lmh1RXtI/M5NkdBZ/bLb7pAziYuUIPIZUvqFHiwsj5kCZ3tyr1XbXkiF/kC8D44Suy0Z0l+SiqQ+v2YeCdTIV1L6an5bRc9BSCbNL5lffkhM2dmoV/DWZO+mE021Radx3k01EUAhC33iZCR5F2wg97uQfCRGTSoXeOtJO7XiEiI3G/LJueyqehxerDzyP3O/7Csy6Z29o3lA1FQ2exr9mfVrlkJq9rt8zx9QgtaDCooLx0vzC8VcP+pYh9Zu2q6maKgRPHWdhQnxclidBYt5TKj17F/2kl5HXPLW3D7WHS7QKJr1FRrQNkyuaYTB9ckw4empqFAiQvfy+EsEiZsK4dcxO2NNa2P/YwLmCKOqXgI07ptwl3ZIwLQzgz0DpCbsIi7TUMsOeGw5v/aspSrW1BNjlqwVzKT1fpsxusc5irTZ3FH4iMzgbyvLIbjCvAKsdeVT2UOfB3fUHSQRww+XNUxT0dm8x8c546eB3gFomUKOoxqXQWnV+k1QZ+XowNmhiYBSQRFp7YW1ZOHDU85QZEF9SA9oxVT0AiTCkurPhzkePG5WPMn8fdwXhbBwlBKJF0pq3dBuJiPyXHSWYzaFSw+HQQ2jv9Qvcp/2Kpw7C6DoADWlNp3yeMQfWSfb5EcnWs4tcQWPvZn8lSc2P5DtTFgYevXVumEQ1NLqx7QJF5NhM26DQcWNeJuK728JsjdCNJaOFVYznuISkSmXIhFTPpgp6ZGQO/Tiuj43Eix2tQhy7R126+s3d6+OQUdghxGOJF5wGMSQPHMhLPBzgL/Z/cUyaX7suctklEjB6aEmo9PGCZJRxZSYu+RFq4p1RB8zIU9JE7NL3Rn3GZwnY1+IRxchBQ1lY2K8OnMcNyasLc0CHaJBFBZNtgXr6zq95WFXV2pdacnLy0dF8RVGGfPwh0OZ8IyL8TD5TfX3MCBIYytHyAEUUVwu44ixtLdGrTLBxuEPfayrfGpnHHzR7u8AXnTat3fxkI86g6vnOlOCZs/CjxZCpUjrlScq73L7u7pqMTIGO0g1PYb4Vf2rPkcUAE/vmTamOh1MW43AbEHcJSnUQR9Tw4YXwMuMRleaqesUBvts7Uc6yc9552HlTQKueJwoI7SIrYjDCMTdCxWUd4GuyfMQoucR+SwAl6PSPQm1ryDqqIndxjrOm1W8mYx80in85KdfqVLbvkPhdkCjkJiVQ4xKjCknD2S/UY7wGY8uXIEduMmBUwmjRzf4+GSAjzt+zE7QKMUmoNkFpTrG0aIMwkro0lWTgWA+lyU57CimYL9q5BW5v/3d9Nurji23LW8WAJM8WdNfanoJxsS5BfGW8qdLLSy+rZxq6zd2ZQMzyvWJVRlUN5LPHcTwxdYzgt5XGfjsqbKES9Sf4WMZ0m73iWD1dbSW7+OtbOP9GIBpsjO4wNvr8i8new2UH9DMlDICR52aHeoDZ+dsSxxl6y875zVgbnuO097xDgMSxMi1QKAemHNjtZ+DcNOANg9nO52AZzbjBgycbtBPq85y37h54S+LLujBYzKd3zoyhoqI0mbmMqBZpfsgk/E/wTtj5ZeSoPtyjJSY4M8AXAX8J+Go5P+EtoeSFi05Ibw8lUysV1wFhGLMr9pYtWm2fhttW9cOfQui7SMcHquzlkSVR30EtdiH2/s1luP7K/VMD0PPwhlxKpc76p7yBBPvdNC2jSQ8yD/hB++0EcUBPKLB4YKQR+VKp5Tc6RyTHSS5zQxKsXSFQkSmf933ZqQoZGTmqPLjYYR01H0Kw6gK2f86nP4q7Z4ji3gZD9fbAJtyle8Xg1RYFRgVpOepe3JvJIihmHWnImFFKpZxFKtM+KGnbvbnt6Ls6R6F7YXznfTwc5rsrSqP3b40Mpjek2JqagjL41HKAzTwXqj2s47i8zSx6YnRQ4bx4kUUDbvlRYTgcNE95UcNqdWXgFg06VR0FDpSKu13gPua971EBWIVnwokyJY1ymd2J+Wgj2KTA1mhZgKHR+3ch93ZuzITxEktxVRnpB9QdbTT4Tn8t0INmVbuTUqEQ1fuC+Ff1wv3HK6pgbrkUzDdpoSmRdveSr0sB6LfD3cGwo92XG/58oV2oky1BSDVZgNNt05k1w2guJVcnIXOBKX/xxNRkK6SoTvKz8W4jkE48kT7EAKTXYXhIMUdWWtA+do9UosZTnyGmeO3Q43jcQPA8uEuRWZk2bcqxc3/PDwOO10JToV5m2u5zNmnt4vqLU/9GaakdpDCaSm3N9Ju0wZjbBEyHzz4dZHcZtXMmP6UuSisTUK1rs4yiBufqdLeSqVsPkNOohVeqM7dRJOhILJXpNzVV87AziKU9TeGAamt/SU8UU8yJnH0y/NEGGp90+GZk/HTzxir+dfYOm8x5bR5MumGAIdFX+8dsluToQelj2KxemkJqBloWVX+UzmdNFv4ue77Pewl0Le4TUiIc6oG/cmeuePoN3PXiRi1NpBJjJsgj9hFYc0IgKH3CItLML1/HUO7Pr2j6G0CW0ZGokFkDbti31/WN/SjnZMuapZ1c1OUfORSZf5kq00cq5kWKEDpdVhc5GHtWat+3TOwVMmc0P8uSZ1mmI7E8iMO1zLrwYy2PuNPQfVYs99J2e08ZGsKtedwbkxe9SJGEItHXoc6AdhzuvJZuwiaFiHfgcWsgHkDvY06Qzwq3cvJQW8nOq6NOYgkjLcAsbOcCUIwS0OetaO/XfzGiQZjmpOEE5TIDjCQmS8sc9sHEjpYqSNGfn/yUZTTf2oeRbEkzsn2RoZ/GET/dniQ3hTfCgyNuvBvM/hnAHS7cnelojbBmcoTAyTUR4IrZR8t5Q33vsEVinXHiftHJ6q6CrEUW3BdrJ7g9oJVRkfwJAEr75jdm5agPphr3QITSOQpSINME4a6QT87YskiHFtvT8+p/3xVsl3FSDpiRQ1Bdeds+HYHPlR9xUd53O5vMcQohABnkhkk8v5+NrH1aKy3JNwwOmcxnPaPCjDDY1/WMwSxWNQBgVdCte7+uezThm9Ta71RwcfO/TZDCWkJue2YtLwxGCx8odqB1zLyHkA3CL2oDtnde+wXlXT6zrULFaQHi5PRCDIt4vZ7yZtkSDSuh9fCkzVLmk7roTMB2huhwbxXWmArr/WNwxn0Pz4DmuzM+bNW/c6eiFGtCNoJyeopX3qUD0EkC5yLytf4/X6q2hdJf1+LRX6rENy7Qv76AZx67YYtTF+S6tg/7agotOapN5bNNmn3a1wz+E2nMautzmiBxF3LfYjG8jQeV9k+Lxwqr7q2jRJg4PoH5TG056zjRfZ0hFlpKsyjQE9RnG1gddXXw5INmc4nC90ltweWj1WskfyvTP9qQMW9u1li1jWFVNM0EnE5Dk6bCGSDzYoHqYQ3s/f6hySiTtiB/0S1rUXxzG1i+UMjhcHwFxIAM1KqeWhmk5w1OWMhmR4ruqB59lx79jVqsPWo9enRN4pLvRhjmWzIJFrtCD+8jqbZOE67KbeliixKWfZEwOzFeiQMTIObdbxaeuP6qvVzk87SBVY8O9UCejVbeHhKAaeeDkzT5ufq3Yo+cDK1sv7QvUOQ6IolaqGJ4wDdX+Slhfk980DoYL7D3TvS1zxzjCUKt7AFgHuHWMj3udur063/Xq5dDXT9q0srQ+hOg6aEAYGLa2+fr43jh6ZA3p8dmseNNe9LRspmlwPSjUhW3WC06+qbGiZsDPVe2Wkhsc67q1M+b5hwmtUioISu6ra1MCEV/wG34TYnNS7lIbDI84KiVgLhZiSgszpHJwH9SWsGqQXjGjlK4UNWEaJ+UJahqer0tlJi9HzvS4zHstm1YJzKoZoe4RITLXdy1bXiJgIZNxNZh60MlVTg+2ZJBXxUX9sFxkUsuVpbzJph4RxAJM2rBdiLrgQRi927NB5L96HOH3yOthxTRt/OU/KfvcNF84wssnAxOWeVD1sHwhryKg5v5JScyEZ373QPZ+ytRv9gGCI6NTYcnuzBgMZeaOFYKg8OIUaqn/Ud48X9GzP4Fy61UecmxKK9AUUjMA9wXxnhm016VwgsG/tBp3c0trK1FaPZWZ7mdDqsgnap2NkVNsOQdWcGAPzRL9GZxFx0davu73FWHLRSk93e2iRSK0DHx/Hrzn8dm2KKgBxYs1dPKZ2JqgYpunIMTb8LEtILC70dSIwY/5S6jGsmNttG4jF85bG2br43D9rRO5CSouy4cTsQKjED0Y0imEjegBCom+2as+mkaFUEcpDptoZn7GXIxS9O0eG+7B8itvRuV7HTCH/Ef1+81V9Y6ZnjwrwHh2wdF8BU/0TeiB2GxXflzBiiSGCyr0oXegmyGS0nrM65cyJpObPYI5JD5MFEUS3fMKUZ90EBXSeMAsB2ZIU1jENnGcRds/yTiQK+SHg0bW8EWcqKCZbSrgjV9g2vXwirZ+XrCQod0TqhGEbgCE4U7zktNmxqVRKvM6ZOmZ7Cixer8k/tQPb5jnGz+M7bW9XUAwjqS+Exvh2L7lYgO+bo+XTscrgnRaw4ilBq4lWcwEdaSe5jQ1aKZMVSX7QIstoajQQyleRLa/aagql0dgv4mMP5XqwEp+TPXZiT2J+imX3r5ngi587ThoH2NN031G+9KPjb3tp4z+ZcCPtsrlnuowQROZD9pu5ciTSCu6DHR2A+KGXTbXNab9DYfszhoHW+joLIrhkcrq9CdlNvDandNWtRVtV8Jk0WrELW30OydPGulyP+SjhMJDSccEMyh6//BxNSTwOP/3mJKApe0RDMqOwsplds0fMC+9nyUxqAILDc5kEjTvPETbHcXBLjpjD/Lxt1ZVLDskcx5jpVqwxrH5PPCtCFuU8HfF8LlQdFRKs7/D4afQDtsVMOix8kAYm+YodZ8a3kGcfhM4/VJiJbwozs7xWHujKMVRtyEhnL2Wi7VE9PtsQwDjb2JRWkZIBcKIFsnIxyAOzZdPQK/lMakWANqQDCEW9nHa/l5Dis3gsY0DjcuDibAdDTzc7NE6w82z2WQkhrwTWcik7X+GBqoUiXVd0O15HPaoqlchR2iVhauCmbtvK3ivw5ZPRkGOpAEKw1fA5enTVLN0qAUpNEeWVDNYa1GzIUcowIDxVX5JQ+CtYu5Bfvrdo8f9HzXFvq2AjdmH8ucRIkr++2TUbOhsNY4VWzCj3sZJcOybzMoGp6IpGjA/Jqt7Q7SdAhM5YpCGiTw5071dEgjhu+rIsjgOVx1geMA4/Cd4gQn4+VehbZ6pj0dkHWrRhioMh0jE7kKNqGUNoq9HMx65ydJwlP2V+gKBtQlJ+Y+ORJORByht9NDIOBc+AHithzK4yZmt93iKYkpHtQp5m/Anwtm/8DJP/PUDihuEjPEK/m2YzyfFJdv28nB8nKy1o5P1jz4FL189TYts5TtQaN421ywHfJLMykSbpcMJHyfKYX7wGX2+/KFYk90n+FdIx/i6j6JF93rqJDaNzO9esT2XFTk/HdNGk2BuXDhIlgc30lJ7V0yKtV4x5QF2/PiquJ00jQYNFbBGZk9Bpe4V9qV9qwWO7v/mKQpOOzl7vRKwb3Q6AHsfCLVZf9vjLdXNaE5bx2GD4gUs+ySDS7s2pawSzMVBqlETS7ThxqDK9QGjzndZOULeSeyp5sVC47bQNW0tJ6UvRO4iKz5kyGDb2fZZ7jmeRQS9M0tgBMunqxYrTKnR7Pe34WrFin18CeZLpvBNIuVc2TnnLi6sUAC9M3+IAG+R37MB5O78GmxXBokjNQIy9Yf720vqWDzp/SQZw/gcwPDIlw8fdvu+if+RjwGX4mrzSAbUCjcZZtp350Fer5sKY2CjvbrIdo8UJrdyRhf2wCRy9UZvpwx5DvIcYdnIQbXhdmr7wKngvw785bOTP0vw+1OOe532ZeDrOMzZj41ICmQAAur/u0RzkWhSeWnZWhYSQ94wBOS0Kn2zh8uk0bb6EFvNJ+LN8ifFf9qHSif9q62IrShMuo3r0HIhYINEcmdXcM5ozEFshr/fdenZKNKk54vu6ws6n4WtMbMNzzyUdQ5zHEc7KY0VpXjvjP9xu7dZO29thX6iTdtR8TCYsyWkeTDwdlziPQEXYniWSMfjGnhUfzD1nKyP15ebtwj1pLhO5Cjj3z3ub7o7BL0d8xMaZBcdk2buHfndGPa/zdTXMwlEbtFnUcSg3YgDx8na8YbuUfSU4O3V3MwNCOqENp+YJA/kP7isRDO7SVu+G0+8xASTIWUmDqrz/7OamD6aXzC5cW62/5UM8odmEbNf3h3eOnjgd30BW9hfE6wwUD7L2oBrTzNnaw7cKh8vBBrkuZ1zmcaZYdWYlaepazqbp1T+yOs42rnSAAUPwh69yO8HC92NmY9ELh0tSlaJT8t9d5jOhqEcC4JzNviVSOyL9hLFwJenQaJkUSTNPIZjCZD2Ose3IiIi2YrahN2FCRy9zZ/lPwZ5BywErs4/0hfKRkpOhA3OdW1++hBWvif/J67KWQoqjun1NmiG4p7rpRDVA+S8eDJdP20vHCQLH7EkoHLL4XZYLlZgL0e8IeHJXevXY6FGS4uMDrrfX1qQnanDkOcVS0YNiUdLt6WMLIDmeRNGiiTNrEmoPte3UMDjuSux9Ja2a/jEkNg+qAAM1KPycEGOd+Ta8gE1SJ8NXFrsZ6UA/eDxZNoMg8Ng1twrbMhCdYyn3LfHWCH3PBkCP9kl7fyE9vbxR1sHle1u37Yez/ZubKrlp38iwlIRb9nCZvAot5FtYo+hl+E5B2yl84qpN4mytHioQPWpkGNdBMKxJz77VerzGK96/4TZ5RObkv/2SK1OXHR1iJ/r7ybRkdxkUIXzUF1oW3KxRWwLPQG5FHD0ScIovAlekot9SxML0vGz6acOjK2PXiBdcSyxR2SPuOiRnJegn/Qt1DSv/nvu7wF3o9+Z9OK4GtwDHwFDy0Nwtrjq0D5xV0zaNkeR/aqtnMPLUXi/9DosSNtQV9m3jzOmkIe/Hv2eTX6SCzVWYdZEhFhJP4BmY1OdElylize1RewB7nzWfvLIITxkiagIUAqhhE0fp+NQ167rGkchYvNubWpNxEHdyZApPCHNhyqMoBJaoE9VclTdTRMjQRjQm3JS1sUSdbJk83wI2AS7/CPWzzmGwfnNCd1XSAeuSLeVLpGuF1OF4K2Sr/IorOxq7RogC/vjh50Zr+0Iowf7//XowQWHp/kcWzPUi+ZqHTUZxizBL77XOoqWcvUIzO2kqQGcGJix2RRzY6HaFw/z6ELkimdF0FI3sAmaOIlrePV6S83KjEmOxIHlXLizGF2hbmQBsWpjE5YhscdMSkdC47HF/jnjf1L1lrj6rOohKheIJ7iP1ArPDCWiiHjwC4ue0gDGWfA88QYE4P5Ruy8Kyn0agcnDUJoKTfrJN2uU7srkS38rYjLjGTK9cc3IvU8uMMeLZh9cW4ehEveNQfZfFKiiurSqKkFmZ1DscKAhfkaoGKDPc3eG5//bVTAr6srWeRyUqdwP1Q1TMSJW2wd0iqkt7VXHYD3YvO0g1VDov3VLYrwoRXsaOcJTqvSDBSE/a71UPBpT9J801isu+Oe3yTKDbzlLGLnqzXYQfga0PGuvtp/qhsnt6NzyskHNS8YbMywznF85K29N1PEJ/+vmSnOcx1qE/NHQSW4fs85ElXaNQLrkvc8AjRHhPZF9DBIq/xjpo9cjhXh/ggRmvqR1jvl5VB2xGOGhpFs/SyypGGy5+Cjk9rgW99f0259wzOmCXi99keVKk3+WN2LGF6kKbok/fE5QulaEf23aLLft48w0bH+ksCmFCsG6O41+n2eqloUzpopAy7fFkRIjBwc/1mrHn97F2A7hnp21nlL69ddKN7691IiyCMiF6Usld6wvHUFa/EhpHKk1cNDLRQQFm+qXhyjykV7nnMQlnJtlNWiMqs+dIFa/YZn5leNJJHei5vYKXgqH4rqu3Q83T9T2tbvHNGj8hi1G53pHs6CUdCchJ+Ke5Nbbk9rZoDzzZRuXs7jFluazZdx4bQWOXu7I8YbJYrf2JCLKzOAN9J6kfMtPVRc5Nn4V8c3NUgJlXprZbhsoSY8UUC5fZyEOup/tEXaWYingImWzPUqomx0gIuRxPys1gvGpuQravSLK06nYnQdaTdvxVmkDTHmNI462co1u7MMN4n6VCSWgxfkqfc8enhuB5B+dvi8eMUN+yIq/qHnGTfdcyUAUvIzPT14HMtyHjli0VVZ/WhVMY1RREfZHl/KCTadwI+jcr4jdZ8NKBQ+TzQlu1l2/5olA/a0iYCqUuITlILTpHrxCe+IArtU+SkBPoLKhqdGdqr28yD0LsJwyMncVRhl5+GydrOLY0U3rtO8NjDIMddz+cV9XZsw5FgIMYCnpw4k52mrdqxHuR1IUXg++xztiSKckxPSKc3QBn8+YPerHsmoPwYrS659mGu8o3nLLDM6mPppPW4wcsRpTZHq0z46e04R6Ho8kIg8VbR3vSmbkGYH1WZsJhwhokbbzfvPK2pYDIazjFSCrvFHgC1FL46znLG9FzZ5MUcqryKyE3/QNc6dnIRW12qtQKz2+dTOMukxgbDAQSzcr7xhXmrWe5gBUlzZvKsBgUZUq1uDS+W5xnH9LmRtzgxW2FTcg9scnneSjJPworoXPw6G4SnklkXl18+qlJG/kYQ3qj136u3MtcMzSe2DO56X2m2xTWVQQ0Y6bSk8QVaRC5UV+eEHwIahJzbuaatdSWZUtRZiRqBHFa59iGmygg90Lyez1lhq9xehgIyqnQLZhIGq9My4oZeELXWiqwTQcJCZ8pSf43pofejSB2Vo0ZXlXZ85mYapAB52ymZ5qGaNnywlllN9XXXiVxItGVfm77HndIENZb4BU7r2UsqTMc5WDlfDP2fA3UUu754JqyAwwvivN3fU6WNpgumBlnIEsUILvFieWgA1Tu35Hn2N+R/ZVn0o8byMFiCxbDErG2LI03a5DsUFow5kHx06/X9ryVt6Fh3BAZSMiZJzrIgB50bToEo6W2YKyHVuIQEDROHCL60PfS0kGzfFzm5WKYlytKK07tI3MDaODyhbF/r0Am5d0bdbaSF3pXQ/t1EK7wi4vfwhDhSjPUZR8rSMRiErKn0HZgA8DJt1qxjooCO/uxUty8beLNCaLwu0BdjpsKR26/ctnwN68kxS7SVAWpceQ6JwUWmHhKR0Fvz5wZz5Q3hCY/zXiXNpKkea3c2C0O80JoojKv2O/FzuJf0CCea9J8+m2hCVCX7UIEDk2AveWOySgBONwSigo7iNf5fB1mL3ZNyY7YNlv+rBFBFSX1LGDcWh8VmUOl9JlEOLA1nY46Wd8V9yBqwC+IzzDHQScSLwUxIqVuXqp/eklidrlPG6FDh4QFkNq6todYu8wQfo05W8AR7cYWEnN2SipkAHjnL7iuZYU26yktd9rTtqKryVmR760dGA5R9WvmyjY32nq5cbv3tAZU/Ev7wdCADNhoONBTLJbk0Z1iyxDyKJLKQKaX6VWj7EST3Y+9pJhg36vffUKixXa9vNd4GH+epKgxN3UXD3gLwT4AvSAEElnmZLK590KyNTRwXRlqPkcDfmKcPGJ19qDeD/pA9+MyWZ11pmh0qNOzZ7Po25xFAnDDkImAWR4fD3LHcZfsLGGu5AykNLNQwa/8RzrbxFaJWUAkF8KKMjnkcGcV1zQEnZ7YMPdDnnF1ozFlitdl0jQ31/yT5ZTxwefqKRQxO86KIGNjfM5YxxYMpMxnWtd3rtFWMx4yjjgn95D/Ra5XNCqkUPr0TF4nsGOKOIxwzEew+0dO2RFBqWiAa+ojlJoZh4QsLPMYggMDEvnTaVm1tJ5D2U3CVdJ2mzHhqGF9uMMvM7s8azRNKbQtwa5G7TGgFcIwcJeacngMCSt6m+u8Q1uh2g/KQ4SYUzxVC1G8DLfzZC/aXH+XjjaTHIuKkDH5TQGmoZpqn5ljmnf64DGb3UkuoHlvQfSwj1zenzqV8jHFUnJxmUmComTuc3wdihxEpX25Zanq9JphEIf3lnq3Iyn84x2kr00wklll7wBr9syoE38Pm9r4vJdGb1PS2iIJvgx88Bi7RyyAw7AXyVBFv3rVkHYe4ZTWSI/bfKrEIWiPoUd3zfXlW7p24hrKwfM4ku9vhOPAHWw0t+gtL/mB+Ax7Zf6MwUfa81AFeaJqiwOsJSSUORH+Mb5kChNtlghDLA7fJqiEBqhowxA+yN5d8lZszC8MzK0QIPiWLRVRMe0mj9UcAtxfJPdXd2Y+IjVbxmE+9Y93fTO3dBgInAnCvez7HrpeBwnU0rUrfhgOrwHCgrhgZZWGfBNzXaCXx+WXCdjrtn31XGFoUXOTE/M5V5DDSkzh7Bamks0iRbXSQ1kYHDJb02MRtqt2AmkEEATSg8fDYnOtwzXdYqJb0bzyJwoSYCdShvy0+/1SBBXUD95PFacUley+PVb7zYzex7KUFIzp+tG6e60b8ViqpnitTYRzvddyBOpHpVR9c+OJbJoU5ARbVpAnjfFNOKzSxg5vEvRhnMoaDje8ci9s9qXrEOHO4HgHIw+SZc6HqaifKmDvjUzraYqAkWMoDWzJnuivuTp7xaFRk0IDdnTBL5LAgogqju7eA7UC5/BGpcOyCs0vYy49BMOrQP4vq+VgDAMaPEsP2ZWBS0I8M6ZcRmSXp8rITjeSPB36jQ/BbdkzwggaW912e3oKWe84TLCl0hUDzhFa0UzE7uwQZ9rLzljbuYGHPkIS8SdWQM0ot+0tP2Kmhshjweyg6RxL0ZTdK46zCqYBSXhJi0C9p5vYtezAxcbkHJz1cb9F5EoU/VmDI1RfBMdU3ETQ2JxqpqHxERi1IxtVnXd2oLBcJB3z3NHGS6a/m4Gj72Gmy+wGhELeHTAHoAQKUGhquwXVahO3EKMxbFwkg1dC3iqAaYhjhdVhZ+MqBgJKJkK3Gozg33TtCm3A2HUbssBlSgWlZknQKyc/9Ps4K87A2AkcyOEcIydTSPsZC14hgA+A5XeKjGrfh5W26WpnAseHbATfz/bK7vkqWFaD2xsudAhWl0sTDNs4igF4wnn1q+ADCj7TGyk0JnyfzE+YBhuTucbj1sIAHrQ3Ml6b7rG8VuSiPNuW16xaySbbUytRAKuzVbFXni8RIOM1vBtlYPEE1wgEH4ng2RkQEyW8gj+wUksyUvY32aLx0c4vlKUmOaUMPGxtklo0hQ29st2vOR7dQpdv4nDDXBlEvNDox3SIh4AJv9/CmV9CA4aMhqlpVfEIzDBg3hHuwny43M4HjLVQYZNTfidihxO+/NCuxEAvoEIxL10YoeVIkVp2pzzPaVmxJPdhN44uGs1Nw7uzfGyN82H3bAv3wZyIumKZjPFyKdEBtj118qiebBh5kYj7EotiIZgPyHsiQWibTInk/7aR74ZjS9Ilm0kA+AB4MrUpwud32dCUZx+dH7PlPNac4MeRTLsKYVsub0wfBs1iNCp18o8BzTetcPRKJH7mzZBu+uqL3KE/6jbZxTXWlB13YZMuCGSlkHGR4ktaM39ocAkQ/DH3WA4Zcx+EgXUtDUpCDBVRTgsknZzJShxKaGsfylLD0R2nvu2CLbD3JwuG39wWQ8WXzSWqdLWuO/P94TXSqyjqCfje4/pEyBJcOdST1MNHpB+d4RuT8WSaix3aEMZqnaXJDxwu7fPAg8KomauxnbzEvA+1pNru1rxo57XfLHfkfZKJF43+sPCe1yNbnmHv6czK/DJNu6Nkm5S+12aEXfV60KuS0q5e3RaUX5PJC9oPhwkRTKDlNf8O9uhrL3Gl9FKjctQMkFD0rXaroQaSX+uVt9a1R06YugLnSiV/JETHDQzK7tI2bXQFS2SmeJhkwFczreTCnpLTYuswRDeTu6aY6ZvShEVdhWwGVLahvhrHy78SaPpYIr70saj7oqv1kQvrLFPcjIthF6HjfdiVz9mR3S32EoampbHT6d4Oi6QlLDP9j7cojfMoneYivqQ4/gzbExX4nnjMuXMJSDICLeR5oGqRj6mFXkE3s0hXnXS3r0vPuiDxvu4ChaKuaU5RWlfXDDaaFF14qhqQLmYtf6A80VQ36+ftoWF/nwMaHfO7WLM76tgAMXBFEHt6xZQ5maYmc3wIH2Yy8EaEEMuJGr3TzRyx5N1LrmmH0i6cU0NlY4X9OGtql7MDZCYuXyu+h7Y0Pu+LnsWivjXzoETzaO32KF7v7NH9YpvNkGl4bR6WPNmn6uvNlXc0wa2qEXjMWJCd7RDBOyUbt8cQwI5AFHYDjYO2JI48E0jakc2a7oS3TEzP2u0OB6RzEkNpy12BABWGxz1xlMBCNAmmlQNhlahhjlTfXGt7DeNF6EgAsDsYWDuT6Uys3tlGLmwPZhtzJqxx06YTzEXLCPzJCEF2p3LzePU4ZzIXA1Fa9mQAwRWbP2IcQVRmphUKJcNJ00Wcj2lMmUFM8AC3qEaWIPrd/5FT29QxPOhpa/bkdFqZy4s6Y7wld4ZGEk1S9oLT4YHyYLKZ2LGdzaQqOHQr0PuOPBwbW6+0VBvxQBRbyYqoEjpAi5kfN3DZIPmYhQpdGSQnAofK/yuu7IgHKDjJNR1NUkpRuHg4TBE02c0KScFGRwNvTGVF79+ndMGTPTyhpoKlyezg59UsB5iPZ4g0dFSTEtQ58OLjjN/2QD5ZMe0R5+Y96c5D84c8xsduztgVr5B6JEfsCD+3WY4sis5bqOvwwOEU+3g4xQLIFSvy6BobdWLRdUcahdMsOMuTVQ7QIshWWG+yHzg8yQNdocjCn8a7u4UoNfEwEB6+e82Bde1nCsXtuT0dg+qxATVnQRuwQeILL9BWOoaXPyUL9PrGTfk4X2G4Lk4x3K+zFGU36c4vgFIXbkwce5LcZU6igHVdaN+wCfQq2gZbOF3KWRJ82YchEXT3Ng8ItIZYogKmGGlrrIeVpOUe+1k3j5eSLbG7UfEQ9/52UI/PbNzkv0o0LUcy8rEQLsgUA6rcmHuGQfWE5MmbNRJyUCd23b0P2/D3yjopUs8O76ubS8fP8MAZbvYfVj6aC0mKs8XwEfoeEKuZNdWGs9lbB7/xy6/yVFRsXp9kk4oN3P18Yityu8EUDPPYs0bY7GYvdAPPwV0LqJwRj8womct2jJ6dxZX3shwwzZnUfYCWf7yxVLB7Qp8mWZSdTSgcXTnJ1g+RXvR/0EfI5U+wjg4Q4pD5RMoJnGQf6tnqZ7iEXyO93740sTp8XQ8GlZqa+2lACqt/ou5/GwjZCAPdQyf4iwKhLawchBpPOcpr9tkcAQKNfJq6qwGZNNTYyujnM6dSHBvmMIXhW62ZRSXPvogbYaHBpLN1aXUiaANB9E5D0E9xG16wuvfYXlR1QrdE783yPlGBzBbAXXrLzsAvJw5sOUOmE9IcEpyPOQBsm/e75r+ahaKZBuY0UvaaI3UuH2DMGJLrN1U03okvVnFIzLpZiuU0+YinM2ObsoMTaOm4RaU9s4Cn1M4hOwYi6vsmKTYbIR0huQrkFuwajpGrbHyhz+Il98mN1izGlV97CGlaReOi8RW7azKsxJA4TnpaCRPbYrEUPVzBb7nyZRNcyUpTFVRsJfg+FKi7vXGq0cVniVunlfIQoYrKmbDkac8up3EUk9v9xqdhYaG8Xpfo79sB5dBfNoFzmpp1tmh/kFiMRQc38f4kO3iMgWw6RIAmPgGutYEpsAWYXtai868KfkzfkKmDPjx6j3Pu1lNIaJ6fySfCYbIFZJCpSavZ7P4QCFfZLrmBd1l3mA5jVA5Bo1fh8Oxwz5L8kI5ntim2QwENjZ3WLFoy+3B7xqtb9xJfxRERTJAADn9k1ogdccZbCQnVpi+5sFUnieTLkONblRCBOu4q/LAyUcPCoRaWIycZsMtDlbRqpZbEwVnE50reymm7+sYptiiACU3VIJTi1JKaLVhsYf6YUGPS3IPzegVxRSkxLO3jHz4JIlRl5mMx4JdfC6rvE0GXNsU8QVhLUjoaacoL7lB1JigU+sGuXVSpKr5KSXk/pr3xpzdrbjDc8bPMUsXxB7qcnZ4ChVeVL4VQqqfcoGcMOoahdGyvKNg2Rkbcmuy8VklSdW6TvmHTquJ02IE5bIrv93H2FoVHHgV6QPEynt02kZmmhC++VGbrCptQ8oIjFa88z0YaPadKOjU1elKkaO03zBdciDYPO7VYc1HP5+ZtivCXi3RVKiakXBjtz0gmbBAHQMe9QuqMI2/Z/14VXhfrpgms9ynfKuXjI3x1hfmC+Qzj5bILfzPhuOYVqMWWLs7+unReHqMz0DlkfYDhfqSDtCOBsoZEqZFwcb8nB8//S9o0YHSwPuZdl5GqdCfgrlkM0UcXHL3lxDrPPbKiB4enQ3Kd7+rOAf5Krbys6NWoHREhP+VdvvKKDcul7DtQfcGvIRHopDNdom8YXUyYZtU4bZo3SL7WtG1gtZcaOj1zfCR0QymMixTDT71hXYtrrvcgL4EmEFKXhl2f5vmMCU2q0LRn7PYoz5q80RlCRykzsS9FMPom0fKIFNJDVztKRhKoJr1Yw2pBMRA7uUeJCypm/GmW5z2n6+rkiMBSnz9+tQs5nq2AxPV/4AFQBxdfbW7oBRdixORxmSQluBV29aWDUp8+9/oeEK0Sm+CTxTiHded0wKTWnDmQZn6ukF59fVNIF0KvItQq5dLK33Yna4qsZgcU6spRJjaxPx/RTNDIKPve3rXByiLrLq95tzHTQ6VN45ZgoocEH7sx44MXqK/ura9pniVKrdlMkjOd2RySUA7eidd5foJGkR6MdvxE+YDQlm2CaySZEKz5bHH4zFlZ5oorJ8qj7PHc3kb5oJ8oA0tqYA+rjglFaRRRJ0cdMaaHn7Apq+V5KG8Xh0NpBy9qgQWjOuSayeE9qyhczPXZLLJXNnRecLLj92GAN25DVnOe1sz/d0FpOkfkB3yTtuMfvAkkKys138dQTq7vYNHBCPEJ3dgUo99r4XvD2xwzqWEfG0y9cuAJs9iwN5vdtDjiOXPelDQKqNwQj1bcQmAK51gDv16I9wYtvxOHt2NlKvfEgJ7pZ9tmc01iG/ji3PB8ltcaSeKTZnXiTIWt1rW9Q+AwZ4IFDgZ+tmojHI50GyAVetXxdhOcVrQ+YpKekg3Ssm5hJmel+egAb1hd5CQsxt1xe8h7LPBanK++tUVJ35HmTx0jPjbIYhZm865n7EFw5o/RYu509eIpx504Iepv71jsiY/Ztj1A+84eEjyiPH0fpwNJrYcCLanziNcjsMcAzZGtmC8RyVVOedyvn+iZL7Qc7ezAmSxJ8eC5JOQ+4KCtIjBGAsZ40agibnxXCVAaTrgJ2uFWi3YLpQ6ZzaZLpTZyhcLDGl44nO6jNBAc3JRagbDerzSUzqnLgMazy9JkSs5Wr+hreW5VvuKkhZYzHcJn83t7XhI7wkjKIIS1zIe4aKdKGCtMbmGq1OzvpLYSWPN3wo7ls7oz6Ck7G55EIZBrNXFcqGQW1Lhb+hWG9bdcwzWLFkq6sAY8OjakWheC06uXZGkX0B1KfjEGt6yJVbKGbJ4AQnkZyknz2E54TQm7xUM62SNr0e9dq9iR+xM42xdeoYI7wsb3XjrNabRMZ33rdrqDhGO5JoPsaEFzSuM3/ph59IlHu0yhu3WLSAeTcnl+migoVGLyCOs6wCjWXBL89zYDSUH0flf1Flh4+CBrgKyBE8x+CI2rXXRn4I3RTeO/4Gkc4fsxJWrY0vn1VoLNlj4QQp1ESjIXc3v6lmJZ/H235uuQ1qUm3bLh2my6Jl/bgxmPhAIVfdWcRr4I1f1KRc0gLO5hxJxzUu5hEF8lQRtFA56rc6StIB8IkukkfO5euyfo6qUf3Iw28mjAZaevjCKah/tbLFQ9SpId8byXw5hsb4pFJ2DKMXqCjk5vTvO5aBwir6/B0b/u3FQ2O4CDhmsZjj4fJ+TCTGeZjkXlgPegQGQ6qJDMTdjvW9uzwF5hMq5DAkwcjUcXAr2sjKOdszIf5ghVYvPMiN0DUsu60Z6qS8gOpyq+grHyLZtS0DxhOCColfJICPNyi4cCkAvQ0RruXn1lRGWtgmpqm7L1tljTvDHcbTjffo2vDqGHoyuy9k3dv5Z7tRKC6stLSkimSpC/0SeGPVVCnTlDOVpWAN/DBoAyHIuWvkerKV9rWSo6jcC1riwp5tc0pooVWbDu80ULH0GPSWsU8gCbkpbtaKAV5COd12O2ekMrbGZRhu/1mh4ch3eCckGiWakUMyuDCWB1NIs7jF12T9d/L8pMqnntkZT2djtmjlyzhi34SkgpVzXzzCxJrckiCRsvxcAgeMy1W60lnUCjTvxVUmmxk0hu5M532umDPVd5rIVofJfXpbwr00M2YMAyTbBZYKtF6cKiRHLEXFA6pe+4cltDhwxxyDuV1id0YhB+v2ZOuNQu82U87sx2re6b3NwxRV2UPGuvHBaRNlFMLQcOWSYkJUTMGsrJPrawe7L8caTeDV7wOwPXFEKiY4jtsyDrY8YHm/wP0RdV9b2BW7eqrtliZ00Yy/ayseQyXN7npmVKSaYgxyKzkaELY1lO7A1EhOm4xJeg0fdAD7+YAAJNQUeehIbsUUSaYuc2Wm5+De3WZjFnAC3GCUIXISPlAACZeeHylg+CCk5BzBpwk46JiSd8jhbzr73ES4NmVEAV10MVcECRmOYwcnEzHnnEv26njF0/x0rx+xwT2s/j8VLEtnIZUZ3ySkTn7slmuZLhOYN8xrJGKdO77jqygl8VyBNLwgoMlwk60jSiJCPXUr/gzlPoKsYu3akBZKCbtwC7qOBCuZdF66UzljXJy0jaobmLXaiR68nwkRkjauchOWNG/OgYOy6fwDRKMV+zFJqXNmthx97BpaAdhYmFiCHO02p9HXkONgaSEkVouWgP4WTxWcPms0bJZ/ILAriVqKFFfaeaNoL1669Vt3Y5niNMS4a6JSS/pKAo/byUDSKQUa24t5UZz6w7Hqf218/ETsaC5EaMOyGC01DLpXnApJU2HPdHuqmHtglv26k5i0pDL9pO6ZHy9UyI5UtIgGdpYsj35CWDu4zVP0i85zTSCyrmY/CP0VBr6GddsbhpqhfUiY0HaRPqBckXWU6vrdzyqyYfbInBH3qCTAZV4MqJ7AmWTzxh3hCftYErPIBpWUhtinTAhpDYirBM06KHNqMStPVsMtl0TQZJfmhl8uAKJsAOhabphBUN3zScoPPjMp4wtYM012CkDMXcog4BFXYkFebTFOpU6z2981jIHIFID2fH532UrZQUm1bLUkEO2JxQ4rMTZiLKXOo3c4h2ETHCT0vKDbBmA3IGMxqabSlzmQucsq+6uMOWM2UOnMlYmEIpiDfc/CopkYnR9fYwiPhV0CoFG0hFh1e2eBn96r0hW2lc0Xxdn1/FTJSruE5lPfdYesQobVfe9I2bKRG7CnpM3YkET5SN8/MkDa1L3ZaI4qcJH64a6UZR1JlOY78L+B9wBjs9CU6nDfp1/pPDbfyDQhrvPR/jpzhTYjNuPU+XEMTHZczBHUWxmvzZOWfakmWoZF1vwmTNi86/Gw/DfrkFULbNfh7cMy1v+qphBYrm0++zK05mdi/8ZjIu58su7qEecBqhdwCltxQwUuN8wQN6l7WdKhPjxCkewkuNeLQUpT2S+anpGCtHTN2PiJj0RUhSFHtoxsTagTjGYsgJ5wBG6EU5cWzk08YBEzOZZrOqGEj6/J5Ape7PDWKLWtIjhhaNrQgKqPeH6690clKKitlWu8j8svm8xWqRJpu0X6m86jGRUTmXs0ZWZiQI0ZVzMkO/UViSbBFv0RTKzQSJEIDjs57PZzLbdbV4tBA1QK4or0uKla/mGpGdj4mSqVJG+kSSaylP2PFPjQKg5RaMFkIY/72WbOahJ4AaT69J8fvanVquhOd27pE04FyGQZR+UAw6ToRwOmBgE1atcZjH0z/QU5LYPDyQRplZPpY06twJXgXqgeV4ccdL19G6qS64PDWSFfQt34wNVsKQ5DJJE+pD4QrnattFqEy483568u0ZL4pFVsMUx0ic3V6ZGUP9sia6cr4VChb3ghXFzeiPZNKzaL4akMWbM347GytNxnb9mL7J7RrS6UzktvGOj1fDBoeYBB2Bks43Wq/O0fJq4CfuaAm2HS/oQYB/UaPDn9W5SckZxh9nUcjDtrvnAbNL4piUKwAPsQy0lbRJ4cpUb8MsTfhRl+GNAB0nRXrzi8O3YDxaNmFs+imdcj9AEE5VxXxIsrMIfK7XzC87Gnaz24hMOKt2E/7bst7wVBrJ3ZcmtRU+OArva0PXks+qEp1ytzO0ZHe6r3xnH56WB8dkT6GjhNPb+ex+2wj0kymLaOLCz/3ETr6QiJFgIc9waNdKyeEeAsj3TNpehpQah9Pn+ornvMQYLtdlGZXO3r6IKfWK3yekbS/iV2J3LiO34wEIVh+z+nYhTJ3Znep2FfRWnyAg3jk7fnLXy1rSEdP8ks9e4R2C2i27+89urSm3cfvZWx4nJOk233GEEOvkjvXCcGOKhw9RO+FM/j0WUAL65SP47FaEKWdhz0yd0NliuQClBB03a96QT/+cLCcR4HgPqVq4QfIYchK85zufK5O5GByBsliZps5S2Ljv3r7OoYm1GO0Y4hfOMa2bWq9I0JwwIODSdzRpNrYN31QwQHoNDQ5HimSMxE+GSNTNer0FnGJijsAoIAlniMampfY5uG2N2p5PLY6CSfN6r6ZgigYCtDVV6rm8OueCAS38ZVe31H4keF6O+G3C88etB8yJtpPR1dyXZKlJsxVhD5d4PQZH2HhJmy0o4vlkta7KpNO5Ny4o8QlvI80CPu2Y3mTyqUMN1OgoEHVDoOT7VY+aau597ZIcLhseY8BHVNqcPyS8f9iNwonN+3StwetpAxF7yv35KJtOx3FqLyDC2HTge2mqwFuNqn7MGUNI0GLfEE/fw/3l3Hpsm9fAYmx+0oErQhh/RD2yZPg/RtLGpiZJm0gH4eYB7MzU4Cx94eUtPcqurhHM6aDjcTq1nX72PCMj5FM8dV7Y09D2PeQLXM+eprLSRu2ddNrlPgzy5cRHC4o/4HaZFS/09v0UKb3QHRjR3ATLcNlq7ccYDd6AbLkXygvpnesKyuZXk9PaOnekM/nKl813Y5inLzzgRtdIK0xc5yJXxfSN/yDJZDIrdPuF+fyaaN5dfqZcx7IYdXINx7RdaaYTmjOCey2aJ4dVSxo2U1sX0bbLkrUFmWwqnkj/gYAT8/Rh2CCtvwCCEiCQQ8PGdoDMyjOwaE2VfBhJMEw+Ybtff53avhbKhtBmpH3h+zDG2SJPWaekPcr6FevzQvgIf2ikgXVqMcQsgmSFUzmIjUB8+7iKNbQR6qzbgT3XlRhGQAFJCK0EMOjDIIA2FyXJ24sSIIUSSVro/otN2yOWHrtgRaANe6TEy1eAd5LIyFhUC0qxmlzJJa5lQzOi610I9wNl817fDfnGeAczR+oacKcRA2gpDTDQEUptqgzpbzpfH3t5UAm+OiyT8DRo0nM2JZ1Ca/WvSAG7LzmwSClQxAhsCoVOOqJrVCVyW+vDqmRybVQNntlvv46taY4cQYYLLxdqW5ALkUwxP49aOxBN/tx5atK7u8eMlG9yHmxPtxRjyu4Ve5GskT5s08H+DBCQueln4YVT2DErmtWjlkmDnXcU7YUgyT/5kmSw5IF1qOy+QZ/Axsn4dGZxIdEkgrhR+Z/DIQMGgO4Ss4yFpCIgGbjMSQPNA6e2EF+gc7Zkq4QTEYwR6m4ryDkUxigrDmdv7NU8HyUUwcnQPZKnraR83s/HKc+BTYtdg3r5lQyh+X7L1rl8iIpFeKVBZDcryhNEpuw4QSFcJ3WWtOfPiLQLCQV6fBvgW7XuJgsZvDv05hsI4la2H47HPBAzj2mw43gggzP0xC3AnQohfhStmjSggMFIpIDgeJc/yTAhx2XDYumpokDc1Z8mwYeaPPvyiZ08VcV+s+sT7CpbUXOvwZ9S5rWtxQ6libWtxEtKXg+pRrqbkljAoHxDs9s3muHFvgbtI6hk2F48Fo6DE6oUnuwA8nLMeSGkzzRkfvElXqBzHwrca2AGRolaC2hxI8yLBj2wb9MnDzaNUcJuOE6FM32FYwh3ru4ay7DSXJtK0TJzCEDJkwK7Iba4potqN/Xhg32gAplmuPIkVCK2zp1OCQ4LnbAAYglpqpGuBh3OnV11dqCXLS2GjeUboZNfjWJ2psxn1nprqjxY802jiXReqNf64fMRUsUn2wXNh4XIvXb35VC58e2lZdcayxC7IcmkzIcQwjtF4tmT7lhqVUjo7Ey1wP4ae2Y5f4VkQ1PxIkn5hdajxFEo/QWmRcseFhxLXNOPxmr8ZXcJJYkauRPGwwiyZc2aZeHhqqJAmgodskriTtbezv41wYOrd9pl9rweqodOHgDEY4+WByAD2m9qJjK9J2cdSuNK28zG2oHCHh1hCo+S0nNBYAEiipLf6do6rj9AwaQd4+65FXyxaZ45zNp2D8Hrk2DfJ1BcCQN33ZOdQDn5J7YeU4oPGWQKvdeidCOxyjS/fU9v4YhBoiDsd0lRO3iLnQfWkGfI24ONPWy6kWK29urF86iLiMeM/hrDnQgHq2QXj6mBMvnu/enozMRxwMwiEiHNyE/7NXUi5qWzfklhk6Yv7J0hId6tWHu61zOoa5bA6/OYsCs73+eIAcF8wTkdBefdL9ammBCsJdJbmzK/rD8DyMSWKRSdGwk2BZHSL5lZhknYtBaSYugqEiuKjmJRkFXPlGyuaM+akxQHhcEMPTzKc6sLvyk9eVFa9tXu2PrJzv7OeBngiSmJTzBXFD6Ywmb3rnMZbAsrskpZ+9lSdfHkLJL5X1tbsYnJKVmPUAfbTPPRjWia6/b6fPFEYOFSCzNXJCFdN3kF1s6EfVJqbh93UGoGjNFX09F0l37RYVJaOaY/Xdq2TPH2gNLJQMRvs16NqVzeVWo4h/IW6fsK/R4XT0VO+/FmcZIiwsLUw5WG77jR15J0I3nMgwyLCCRTu97eVT1Zc4XuHaAxsBOhceQCc1tZvk1ZI1vo8rPVNTOL6b/vcOD44t5zyaZ6CdzcSrDAYseuHN9D6HcyjbfIGN2XFUPIFa502/MKzV9rLUsO9nIi8IbyrKaMsJ/PEKJgCMmnFMqrJuHtwK5hbBA5FgfVgtIxxpTFpmb4pgxS1ipZKIohj04h/SKBG0ecclAXbISCyfJlSKdyBdBAsIA0kX/gS86dcoquMU38MbbFI5yHZ4jNODFzRuF+8ALW6Cj4puCuK5qRk2zIHogw59u1e2sToNo5emUG/Mkc6jbwlcrcE+CISOZF/E/aRjVvZEJxyV/4aq9TI1sIKvaltFVwAIA19FP4K338mt1RQrsmijYktCPVKwXcK3enjxfXfFIbJkXUE9JmJr8mS8zA+YZR3aD9LoS3+qmxrLh66XCvpO8Jx2M/NPgbM5wQDcTVYaO6pq5aWYHY8F1Qh0jyIoRjz7m7+7aGt5sCJNyFJbsrW3URYC55LXzLLxBFMipWZ+ya+xwXxwOvl3Btst+HtwPdNF4Dyv5ffZE6tAveq3mFYrxZVbmiHGMCDoMv0bwzezjuBNC7vDWsUz4BQtKW7hm1+mopklaLV+yn4trdSfTySGsoal3DTo2jet89HTL7u8wI7ThX1gtZZgwICnRnl7hB1hzGJFRFQec0xohCC5O88tgIvMrm4pXuSOLPaZKJU6Ow96awAGS6bJbOPunJq3FrVTOs647joOOBV5A5pb1FxUqF0/XeKKRjj+z4sQ0NtpVOabw94Cr+zrZ0p6LbfkFN10jjtf7bWfu3F7/1Ij2gWi2q+LODnUt7U1M9ocmi5V1+eDIRvV4VxiHa39uJsEzZw0bWBksZ+yYrIN4zoUnsWm4NteSroSvLPXwC2swezKeyLW0bJymLLJgk5ckFw4YpgE8WOOjCQ33Y9V13MunU1s0sAq+tcHaNPum46vc1FJs0Fa/PYgA5yqQz7UVRP33YByFkLp+Jgzr8y3VmeDaMe2TbMBz4yYumjCQLDuyuyUnZAsIcP8pZSzrAGwc/Re16kdlVAnH3HAnlnCYKEucMIKiHrqGTux1oo2oIRr+1TkgSJSBTdaT+pXxtCLwPxXqBmN/Qbi9YDhZL1w08vkt551y1g7/94jPaZLodLiKCc8kwLYbKtS0C2MTkggSbK6PANpPn11ubVozgXgOWMDd7qQy6BEyj3DGgtjVNPNr74i1ElA4eg6YGFUmqDM6KOqa8bQrI+zMb8ktkxTdWfM+Sr3uorhT8/Z5oRZRC5cjXlScw+IrNIn/ztObhaKATFRJfRxaXqRRSNFziJFdlOdZ1taHmRdmJFEU7pyMHELMWfN8X+mdBIcK37ro1WMAk9A9R2rlXo06lDCsRM/QDuWRzDK9FxM4Tej3A7UFKmMlci7PozA1MoG4HGN6OaU86QsR2JDYMFELHGujIvslan5rlt6MTfdmsPdCujwcFzk2P98bmTZRq8ryz9PN8IRY1dHaZ8bVYQmONIrLs9DwLUw0FgR3LJD942EIliacyoy5l+J4IqUHsk7CWxwaWQAh2WTK+5efGP9PFu+lqfVjqkwGv53AjOtBDRS4ms9SK4tOVRIJkiOIJaev0+8czVPJpk2hJ06er/TI373wzVCkVFHMZO43CWPAridA4JaVruE+y7apDRemsK/JgGfLrO7AGSFLDWA4pIh95S8YOoS3D70nQQFaxdSctEUyuLZfuNj02DKlSuhpx5wz41JBjGQdkaFLx2vf8caJKaG+/z4qxxbUiPbTY1cHIoSnsVM8+k+krqwsfiw4+GE8EYgG3pzWTUEEcY0NKkGtsG1zK+SQ51gvh0QVNIj6AwQiQXn1VjBiDFmS8OM0JeizXfIwIvs9mFT7BpYDOgawnNfeHWFfAVA230w90i5qh2PWMxFiOlDkVkpHi1BZwqN5GFRecOqhBAYfS5yCPcj4GvErd8TY78+YPiQ+o1cdL4dHMqVqXzI8a40qP1/dgsSC7gpD1uyz2wiDHSqor6Wr8bjOLHJhvLi0TV6oNNWPr6D9pYBkD1X2vt7GVQ4xNQ1ZSeB/0dNupIUIKoVJscWQnbtyqSYdFlFstemJcamVRmN0H15vJedySHTtg4DsCl9ndEML0wYDsmSsXFOQCxr2esyBsLDhSj0aO9jC4i2f9mInB2XtysqOppbGEYqaQCG+FI1eoX7iKvDvIYmOSu4rkZQTMF06vU6jGOz+mYz3LT2hpiYqMUyM+bLfjUIoErTSP37dY6NK5DqTwZfODv/Rjlt+j7a+HwRhnOpyzUuq4grMj0oJQFcCJ02VkmelHpLAd0MfHQR9OTjkqvU2Id3vEzLBIcZi+aGqKuBKeJI5KKFo9DHviCBkQeznzd49bITGwWzIvExI7e5/bZkjkc5Et0yOObOrs581MQOVgqZzo5nD9O3/3tJja9HTEQHWUNhGr16ktx/zYa2QpI87LJt6qdTX52DlSe/aiKVDT1+zIRa3kcn9invEt1Of+OUluWU9HVUOul5GjL5saOO35gVzoKRlwzI2W3UIeLfRyJmaTlny+wTJ30QfNT/cjPFyruEKMrJPUhdRcSUPO/J4hvXFRe0gJON90869y3+TsiVpeYPHKFKJoXCxvxC2eZ3mMO54KYZBw3gpZVxnvMihXcqRkz3F6cvUMTZ2cIIhob/XgDNuQdzN3Pdhpw7tvl3WtEWy4FbM+OlkCxAdXTS6tfPDQFqdFKvywC4DPkuX9w2R361pfutGH0Q/3jJ/J1bNyTuaNtVbMWmyHLq7szYGeZlrO9q3jIv1ah5YmVJjOP8lHs/eGJecNXtvzObm0vOB/lhJtDCvwNUNmE0FfYn5o6ZVdiH0C4E4VEd8EvdfHPngZgO4ocrzVRrFlqDAW3b3uzPPor8ldIMEiQ84FUjI5OsODvh1baeUKW6FmQ/HetRDc2S8o9AXsY3UbFUq9Gt80NRi54nD04b6toXkSYP9v9r4rwZVcR3ZL9Gb/GxtmBAiCaSTVMberevp9zOtbR0oxaUCYQETL6CtKZMXm+8MRsB+SNLRibRnOGhaZq099Z/Z0DSQ+OBxq37Q29Hh88Ic074TUVHVEsivbpwnySJU452Mr9VA33pyZlAfa4V/xJpq0i2mebpVgIYWMW/sgAS0nwuDy11VcsHRNwRlWeRna6VSY8Kwgv0ks5TlVsX1bmmFD39twrW2aOcESls4CEe3oFSBRGRnsLaF1CZpbG2FITE+aSdcsDeGATdNPFz2lz+rq6VWv8lhQYt/dLPEITXtQz3pcpknnTDowPGkhiNjUiQjoZJXvTluuhNSxpmxkkVxVv1xeblUuz2o0I+SPeTsNUE8VOpyX3MjaLNDb4vQocQrL8nZyDb0H+fQi0Jf95EfmdCWlceTeT6u4P5zKdHH2aszV7CyhLIt5oWypOn+dUR7EEruy8wmwfTG12v4moXjyTG6rwra4om3TvLrNBRfwgQCAwX93Oa+1Tlg7wyWGTGGnotmZ5Udq9t292BILWN1JVYPjuaifZUI2arzWzm2Xw6CktrkPPG895K4ax8AB3GQ2BRZidrochKcNP4Mw5CR+xlA3wsrhOnM8Sx+4YJdSkt34bULvOcWDWlzImZC0ISmUGNv0NtLqf3pB9nQVauWNn4QvkEeZtz0cKZ/yHTqFOXg0FE0adLd1YpoatvgjBuWK90miDL03ShR8LZkI9KiDwMzXKXRFtLgL6mUu9T/pMb5luBK5vwbONo7GV6f4vGzgqGS0zWFWrxdbo+Ff8OzHkfsnhg6kKDOGyfdmw2YCvQG9STBTRwVnJmibaJt0cZ7hySNJj55M89FE1EbWqLAOQzmBjBkt9vukXbfySsNN+UOX5+XDlly4BpnM3l4xOQIPkPpKox1OEFL/AcPUjp6Zy+lU0aaIOLDjF1VkGZzJJFfpC1Yd0NAnAvSZA59YkyyXxx6fSXW8us27WSXR7ThsSeM1cbjYzOP27+DZ5rHGDBSXUKwF4RfJ6ofXCW35sMrH2ZThw0Zqucsjr7zeMlYaNRw6Pei9DDspEdK4w7YymlqlS/xooaade8RFjI0R9UAfcp3hSdFCRb8tSU9wlDHIZf5wriVs+8MCuBGW7pPrt/lkTYk+DpbYfhaNCHLBrJ5Kq4o1tp7X7A+05Xt2UVHznIjhPjuL/zTdPeZNBer1Iwd+glFTsenputj21Z6KvTP6pzTmjZLp+xLtAzssnYnGmhm0WNjPIO4i2UxJg0EqSh9m6pwjtJ1f4q0xJlsuOa8rUSxH9z9D0Mmlzv+pQYs5NPb3R1gYphLtmD+2TEhGO6yfHZYVWbqs2W/EOq5Mx/6BpnX7LZ3wbPDx4HvABdpWw5dAPRZdWQOL1Q4C2qaEQWiZuFDCqERF52YmInaKPGEfZIPp9Y0lmT6blliqWTHfppCZiV6MOAeMxheDTxDWPJT9zHN9BO6Co+vY8BMJsiGHCkAHc6y1bb1jtuvGNDAwrbtw0if6fmT8f9iYlbmstBvBy5BAwCosMotP3gCZ92Xeb6h795Ntx5IXNxdV0N6PjJ7g1duyTNYGnhunSXP5sdV2+pm4sXObyp0RiaGNLQW1EYoWrpTk2Y8PzaXPdCxmCtMt8VypZ7yocb2Qon7dAWfyn7dCY/cdcScR+BUJXTQTCjoJ7o61zfkSgM63Evqfve5nd6Vk0KRzeHEc2DQwQAlsqyMtPgbXECbyUYanbiE7q9tlHt/P4gOh+d94Mvvyj9zL3T20za2QhiP8G/+8CNWQXI656EY6/ICunruIY6B0BC6A/YRi09aIWnvSBCBBkeFWmEK2D5atNlWymjUEN6eGqn8e51dYtlLcmi+kif8kToGyC1/IlBf8DY/idOx7z6dzJQFAVSaDRXpDo8sZ3KbCDDW6Gj872YGanvNoxyWnKdcpiy/X+0uC+ofzT9cY12ALv2wOvnL8VwJyI85PVK0QYVjsuroaxAxR0RU8LUZv+y7xqmFy19+QFvHci6DpCafE0sohpeY0/ZqVOt7cZKIB8j1HprvBr5y/HYrkuspqfziYNWahfSEoOuhJxw5eem3o0wTVAwhmFwpPmFZC623iL2KMe7+eyEKcyuqGNcIKM11IBcZL9mW/SGti36oOZ7vepx1ulBNXOsKt3FemzEaf/fkpzUuF/khW/oFIhM1FkNsOaFIRLYLHKUrUWQwuM7oH0E0EWTiPqIrGqOBeor9DKeQ7DPp0Kh4jGUL8lEwDNY44S65soBmLGZYKpxCjaDpaGEDthTFHl09FDdsv9qngh21Hv4/FslN0kBCGQ3av1DtpJ0Nf15JGraXK7ocFqfnuJAxfN9yfKlUPFJzz2E2Cr/l249rwqRd5AEtbLFIZ86yiow93QIMQZOZ9Vg5xjQ1OJycPjy5kgOAuw5f3ry2EyXX5LwIGTKM7pl/TYsq00bu1rkIwcHPK5GhcopFx3S3/2hERx3r+5xtdTLQ5x39uo3+qODym51Wfb/c3mi6T3dtrUhpJsImguvLgE4Jk4NWJZXNwmVwVFC76caZ/6agJ5Kl8vIppR+nqhZSejm9tFxIzsVNMinvvR+xR4eirhcpw6WGzGugN/b2imjfyCNygI6yoi/rVNMVzfLT/TICjbGJaVWuP/pKe3GaFibc2Qa+PKhiGYYaTRTDD27h6RLxBSYrwOelp7W1d/LK2zil+LIT8LG2w9a97tArG9fuUGG5h0jikI9ybXY1ph9Mj2CGMng5fT6FdxQWMumTXAmz2JdU7nQizzGGcpjMDkFez1rV/IoWVODVRo0QBpWhg9gPGagsiltphAxjWeh3vYT3r7EGtDU1AbXF5m36IPW3xOu9qbAMFOOgCswVK1ZM21hg5zzcdM0bqLoNdymcNOhMFt+svjsXqgkj8WwpvbVyOTbn43KIoxGV3qSCdnduEdTQcWkcZskwLAK0RUm8aDa1c+n4lzWNvdxwjtM4inZCMLu0Uhsd61kLyGkc4gMqks9F0QHNE6/Y2XqLgoQRwYqjL5Dt2zjfMmpV7PDWZX291o2rQZmI8rB2B2+/Hv4e9+UwqzfgGZNl8lORgRdGITpvcoxXMYFKGzF38NGtza3DJR40fwFbnU02skCa3lURsxTatYNaOIjrt++bDtirSrM15I7xtRmnmtBenei4oUvE5cXIDOk07quuDRxLh3pqC4Np6WtNCYRxuGnooVEexSOMscxOKDEENFSz+6Lpe/xJjJaZc6ZfT8MiQFk9hM4pGnmNlU8iKcWmUmk31wmIq7IHSIEMoGLwO+1Yip4IX4vhoG+nepcNSmdY0mehTcuf4Bbbiff9xnjrBHgZl2m4YZi+SyGFsETYQ/Y5jJ2n+mJd0prIZjf8q664mmEdVtI2oqNykOW6SwkZ+bURKi1j1JH0gGZBTs03CSW9IehqSS0GQBK3Rsp1dTFvXZMt43FSKDCuArNqO8XjI4DN3aBxmVUBjN4aVyuNUcXg3N7WcxepmscUsodkkzFMtOoGI/hELdeJeWLev+YRBWYsUiwCFDn+VwHGRaEv04yOqfkv+yNSU6QA5YSJVKuaonZQiI4En9AUOl5QWB5LrCzrBt0IOhsrE0P8cIjfa9lwgfUk8LDAQ45AhIvwbz50AdtxTpQTN4Q5rzilzCCEIXr/vIXqpw3LUCLM9S7N7y4JGhbKBqFGkplqBDt1SXrn6X1sSvpH4/gyfw24qwZfXz+INKOROvZ3RP+fmDJmNhv48S6AMcglW/MT1WCWQCTaaW0eInMwVer76Qm8lW7nnY6DoBSCfTSrEsZFJQ9KfFNLUzsseZ8+ndPSlqbqc1MUOIJVGjDm1NaQ5S2GwzH1VRQjTpi+3U5Il55mfyyiUAnmr+i+9zxkUXT1+lu+wLVejJN8SM8R2XBGvX2M8p5aWgs23HeKVucr0EH2ikyzWOSnnrGyG9cMHraBY7lY7w8c2iRH4abNfWopgiauzintgM5xRRF35hqyIAteMUtW4qZJuzALND+YIZkXZ5bhrPM4JqnM8Qp9+j+GTi4DZUpHd6TuiO/CGaO7ImtPRvwj6nJVvLJHSmlwJMSRbBe2x7jTTuw3rDsLG6jfLmixCihV1fhPwRiSPwooNS3Z7aq/gBs6O8VxlPJZVkmXBzZ9ELCSkTT/T2jJezDfmSrulpaTjJ2g6tp3v1Y5XQyUqZ/ykEU+yXPLl55y2vdEcgoKqrCwm4yduKTnGw6LwiUzCVRJVtPQIh2RuR0ss5w9Yk0SKpRI0SeGoxm2JWnO8maRVBV9ge2YxN1eH1bsFFe2hb/X8VWumvSEmvtaoReFh9zDQ8dr9SYeSxQxwnd4xBHty+6qptso33APm7h2uDihpU5iyznYRDm8u2ML0IQ9XdT2y36mpN6Da8CWVuUd0EKjvHrUr0gfpnwZKWGg+GpUMkVBo1a799Vm+uWlmx2KgHpH4f/CaUb14fjUkaHn05BbU16GkjA17yGKgyxdIBRk/LruE1paQldLWgKuoJPVyXqaLdjcv8FB/0HiVs7Yj+GuOLSR6cR8edLVY6tSJUndM9PCsK6Xb0fGHGCUvRIgntJs3GQV3BM0hBfTjIobNCxIGqcALxXfSntRvtW/Kj+O0kivFs6imk47WiqPJu9wUc8Lq9e8ZXw3QuzDzLsFqVifPxvAzbR3Iyt5JDaYVy97zefqDaQ+7AGtI35iXsZkm7x4GuCFlpNdMFiwvbtYkoF5SGaz0+4Z53J/LhNYipY3svswsR9UjhVixTPzQvSAX421Jflg4hGAqlpgFFdn8YS96QJPXGL/vFsd9bLJqQxbjdTMSW36jnVJxaZcAwM9+j8LBpXpFyDHVIKQiawcZTKmcPuY+zWszv484qZEXv9YzMszA23nVGfISab6YyuNFQWt0j1uZvZB3CG5w2r6EgDlqoRPISjc/Kv/JOO9Rq+tUoERNOuDqi0mx+wb0dSa/WgGHoyPGoYlCWI57gu3CX3UHnzv6Oql74Nz2F0mpcb1RS4m9n3juvqQtHF71647fmg7Ktl2FGQ7pkCPBU4aD1y8iWPLSa8ANr0DfzuB8c2jiK3pmGjEOkiNUrwK2sXa2oWoV2G5Cc1/Jhgul3DUBPvRXCcNWU2ggq0+iWnujmcNtuNji8c8tKWvWEovwQiN24LIglVbjunwtCaXZvBz9TNXG1Xx1g0neacC5qST3ayZ/sXezvFHjacJa1i4TOSCUDe6TwFwgObABC3olxzEF1Sqell/FnpnWBFsSlSx8UBozaR+uKwh/MjNyDJWgVcIKBgNsK15TyfsWaaqwOlOIPp+HW9slF5vjhuxcAi7dnV+UkOl4XtT1jwv1cIz+OGQ/abyLQUxqsJHYkUX4wRdYYxIWS3/X27AY0U4nz4PZa0nqSoO8ngI2SnGfiRycUyQojwjHsToPxje0echECQtucBA7ncg3bf8HY1KaqLvkw1LjJVjN9XnR03ua90xYZ3xzooGAIAoy5mR5KkSEixY2GhfhtiKxNLMENsb3IceT124MxvoSTi87LmFln/nZ2/veHDtjJi5H72piP8R5XTthiI0kO8ynwgAmeZ5aqDsBF7cE+qmoXis4ndXlQ7ocXbEIUr5WtHj+i19mFrxxj+ytN2rGH/LsF4l0icsmarzv7NgzIFM4cGIJjiVvwwkEWBNpJhaDtCfy6dCZmEc0FbQtbv2tKTW1yb2dRD5k2CfKPXufjPh9ug05k09n6dhnlqb1D5O1cyFswYUO3IHXUQQQ3oXoZ5V6KmiwjIEcbYYrfU3GrByyFj/l+NgkSAvU7vL2LKVJRDbPNo5yB5nBSeHMrwCq3JBw8sNMWl8n7LrL5yNyijv/qIE/XC3sxjG8yMOdVxT0w3JuWR8j4EE39OFAGiFjvais63v2dFFrXvXfKV6n4L6xQCC4+DnDnTnEzDJSmTksOQG0/4bWKza0U5bgb0qhVz6r8UR4nVUjEWRuTIIyVzfp2E1YN661upjWd/NoJReWyCzuQes/ciIojERuS8L4OZOpfzje5+LPpbtP1CTY3WSZ2QmH6SvDDc/cfl3Ym7RwLTT7JLvdbICczhWUnfETN/y8+gKsOOYRwMbLI98WIqbg0nPbzx3W1zStoUIqxFVscLIN2aUt/sqL/oGhQZOS79Imw8Uhj+2+aOfzlZHxuadVCN4Ippzk799sWBLe0G2ibgRLA61snC2i3ji2BNBLYkRQtApeY8CiQnHNO7W4ydEDXXf2ueeoRFxVtd2QvLcgpP9uKcurvO7sFVcENkMjmSGSPa2a/mz4NGLUxd15CawfkaifoJ+SlxNLe1HACMtmz4WvXPnMbU9mMHpQqWjbq3fk3y8uTAnNF/2ZFekhDX8kDRHhsaiHGks7FqgqfHw4VNMzkOoZ2RUWa78kNtDzILIWBt+E9udOEUp1wWkvBDm5fP7trY93g1v57Uepqh1urtMnIp9GhVDa01H6ZUTS1MfDTUnqxoWpTh2ZPjIBUvmOaQf8Yol8mzz5OQy8jbM5dkLzzy/FDqmoCazSW7CZquFJYataafHJWX1HLQo2vkTh5DxP1RV9Imj0qtl7wYUv2nCBNUxakC/Iq2pHwL3E6j28wfBn8B06STAqupkoZbHgtTKFVCS72tonbI9cwGfOd1/qIkvZZukkGHDhF5JZ41V7UrphVfthzKf0mCkyry4Yf+g7XYiALWwPEZh2veM++wHjnPcIe7PcBDufy9VcDtU1dpZ8VqiSaJKxvssBjtlNtFRIRe2WsIkOx7ioNvgDRtzgcqQYDtkVEju9w+gYrmzBTfv91G3OIGngyxJeZInBi/MqAIkkvFFcPkxpVwMo8ACQwdOXZEbJsBm3rvhxS/A9cRaM4BC5yhPUYBJet+5acoOZLnyBjjK1PI3YbjtkrlzfSRiZsJOPL5mjk5jdJeakf0KlrXM/jGgTMgJSX72WrPM2cfGL5PfwGHj3fbdRqX5pna1gPFfHdXXwA6tCA9P7oKKdoOHjWjM0r5IISvNEe5TvkVtgSbXNtGn1ZeYa0hiVIYKK4Yp0MjtrX3OT+jzP60lD5T4PIdxQHXeYOdXTv2g718ri/Et5MVPIjowL4mzO/Qe0CL90kQkb+KVpaRoVZTqlTpk/sW1PgwOu53Ub87wbhmlTi4SvXkMXdTUE7hjYbI3ivw1bKNZ8chQPh3ry9EmcSqRLTEtBR8nIyslVmEIpsqu0ZGQKiU7vH0YBfJ9lFQAo+amDVzcMx6wXqmnVoN0P8eahvmkoecNh8JRlYRroQXlqGHvtO0cJ4v7etN1DJ6/G3j/MWjxcvZd7hbpex187i0Jmx97dNCc9lJn6W/xQpD+hr7sYyVrGo3RLSH8RGWRJ7pmCWwxp/P3s5u+0ohly+KwJcPERTSqKe7mIQjBFKsUPeCOlLraI6xM0JGe83Ku3wuvRyL/RXuONr/M9AoKt4/g+9feFmnol4+BTTd2lHjYC5Cj3A68GIg5an0X05KAlIceAclTCoAqwn+0LO7qpNhF2tlFWbcZ7vETkbqiuK5V6zDUK5WEpZScTs1KppneBDZX8kaNooVpTntTUWM8r4FtcZgBZyl0ir4xz7VdFCOx3DrAcLqH1lU3foo07aMPlhC3JOnMrvW03ufiqXwi35gwsYNY2DXTZMm1rnTihYYPqTUJU5kcs+fK9pY4B7wGeSw4z08kqoORMCb7N2ujQkMQCNrwG5dttTHkBuYSIu+p5Gp4CMTo6AitBuMID8k8JF2ZqqmgT+tYRfyfbcM/HtYOfbU+FiSdluthCyQStubUEV+FnFo111phONFZwGKfU095xR5kPIVuUfojvObIdBkZwjmFJsujhmzUwLAp743hE58GI4+s8RcMp7Br8jWhmb3jZzjNJlNCuY+lXuk9rdwmwKM+vmjw+acWmbASTQG5VA5oIqdfpo57OWsCJYmfEPDVMy09szDANyW8TLEnFZuLarqbkIG5aR7Jrc/vpeJvEwKWB87oiGjYYXlp4LuMIrtiWtSUSFrlNuna4A4Y7w/ZLnzAaB3ngvI2FBn6ZzEuXhTVkD0v9ReN+cXPEpJg+m8NLwk3IMCFMMSzi9eVpCPoAKho3ZLMTjkTNzxryDfburk5G4oavJtFHbHaAS70n8Sy0EUKfCNPZLL+4bgiJgePEZnfCTy+nPmsMHXKlikklksGffk50mglvwpNP5oWO5Qlk2U01ZZxVPGAhM0kb11jtWYnthyYnl06H0fSc27YmTjM5qlSiOU7u5EQkz1J7F7p0SabSjNCwnyC2MWoMIISOC2MlAI4l+L7tBbWAu4t024ZpSAXEjpnCjiIuJZkelJuAiHO/71ZjgFmMGPscJ+sbjmvawATgKF0glKCEZVNsmXabsWtc2GDPkIx9a7aatTOfrSgFYJaYopI3C/nSYoqXu1zp4k02mJb/rObMAocraSvfidT6LYzhUUzlxC73MVHtO8fWjvnOM/MSja9US+41PvUfBcl/+1sPFYfDHEuBOhClkerCpp+ypWJH5JeNN7D1PS86HWsQDKhuX7dLx2v3WopjZ7TEZhwZXO+yNs34f05SB8b/vr4/1dwc044wlys94wNTqD9pzNVlNm4VJzeD+X4ooCia9yhjxErNLq17yD8uerPUFHnoS1FAHA698N5GRUoxxSvAyS1k5KULb2zlUYdTB5DjhPWscsmndbmv8OeP+/JlJU3Y/46nULIj3CibA7R6k76T8GOlps/tIpIZFpzBSZ0tMuJfgbgvUfVDMucnV03KjPA/zPwpo25TXTLa5FrO6gXp2di0zfpMmL+haVfx69KH1QSJ7rayF2yCsJjAfyCDyG0eeHHGTrVicLizzkC/OceTmpu4hCvfIp0m+OCF2uGxRCb52R80XPVLgHv8BBewevBnX+2ieGRgUbvqsW9AAF6r47JZ/H7jCCFNEbQY8yaKNbio1PJhI6on+71o5DV0EYVUnxrZ5T8hkocGlyB6Vc2bWOtmYHtVly1exWmWdKyYa1sB5OYZfvI5WhlKirVZwPX17S2KSZpxV6xxWXCAAXD8xbBSGXhYnTYbKqcGcT0BKbUXWKKJ2QAyDfpiELM6j3fvekOxF7drYcT+yd3Rk+TVln6WIH7Q+4KVj3V9USQ/vekhK3mfdrsxaHqLUp7u+q041H/t8Rbqt17P3hs032iusAAvsh6P8GnuyX0nU0HtfiPHzjKIJ2l6WnxGq5dw5iVYSgvz8ie8LwQt2LBxzwbSItIkUtXkaYySNgzL2X9e22ttofilW+ABj2pUfYmaZSPjqWlnMMjexSSgfIdsBzaUF2KfL9KpPapXOovVy7Mhig9Xp2iErmcP7+PUFhAqJDeIdxNgze36kKqBPyeUOCx9TzoUtoGXHYK8TXlA8JNDJVtO93Nw/IcS0SZXG9BDzo4I/32t5LdYlO11xxkeGyQR6jneDyWTbz3CRfgNqojaW+ZVZSGnI+xQ1uLhN+Zt3T9Z8o8W23S9MhaLKD9RwSprPa0SKt8UPGoebVnQcEe2NAu0435KymQT6DLP49A6pQfn4EQUlAJ00S+lQuJXVbLaqNMbYzF8RcXOOz8ZRRjLj+PatK1zzVUsaVLl+xi0WMmm4kVPbIo1lrT4/nJd4pRHch71t7i3baH4IeB3s25FaWwuKHEylYe4pdJmUk45YsVCncBUEzp1slu3HP27BlR0nERkZ/4V70KUtgf2Ol3qz8sBTuCioMEdRrueVzswyzoViVRuaNwl5Bydl1Z10agRKk/2km1n7Mk9W/IVoeBhhYejxWwosNpoEfkKc3l27UUR+ZRvYfi3Qj3JqzIxsBwq60/TKETyATwcDdvLRY5678MWca6ffEXpKwEKTnNfvJQta+ec+CqUJgKEcTE0S7rXXIcPh5jryRbaR4K7U6/pxR0sXEPrpfInpD9WkO9mX5H2i5x1ixTJBB/SFb/Cfqs7eaXquUcbw3KmpsAzAdoI2uM1yDIq1s3yd9akKQiznSyZNiTpxt3rNQVIB1QoonZWyFg7EnWUwW2L9y7Oj3bT+MEaXTEBoeHYpTR7jzurGOWjPdliTsx/AW3KG5x2Xp1kVJmQizE7MWxwQiHqrIlSjrP2EAvpdVrTdNu3GZGdJuyLwhSYiCs5OnttQTSY3hE0UHaqS7M8rN59t11R0iYapQVyAt2HFcS93qFgG2dTfx3mNpIXXLEyJK6AR2CVU4nAMmIXqe4txJb2P1MJq2VhUE+ptY0qjMIzsTMqrw/gKbrbVrqAfpCBIOB0Nu3NHkENyHELs1tnbRDuVYRB3BRKaZaE7N3u+yWwPclVLloTZj40tB/xdkgf5e/FLY3XlAtt4tg5mIuKpEqZMIMcoz+LnlTF2Uir1MLJZmwfax9oQfgCyxPLlGKZmQfeYt9zbNPmj/1b5snavReDtGatkS2BC3sXU0GBgmRlvNLuQ1TDoRFa8k4fRtZ5th6mNMNT1mCWOIvx1LLo4cwMxjCjbuuMkYQ1jtZdfYZh/7U5g6aDR12IuHrvW8M0UpRhaTYKulNYjFJXmTV5l3XGTARw6kY+mrizvalTWRrWLU1I5jWcQacKGvHks9EVrYQT3Yb0GIlYhyPMmMppkwmwdr6jNbCAGxooVeM++MwECt/MjDmTzvD1z0hKN7SJC+mBuDVEsgU8g3RMPeXiYR5z8vmphE1SeaRwGEzRD6AnhjYCZDTXeHH+fspgNQorUDOlyHdePG0148pLWV+A/6ybTADEbN9g0y83hUEpRM+fzn5Wfca1gkiJ97mABDWfIsoVgA7NcpgQNzEiJdU26JSg78YX8U11hezWp9HocWWO6IcKbnrJu3rgqwsEWvlV6DYi3yBQHIqdVLLpLOEyrzgXudxEbx5h9aXzatHySLptpe5iVhLamdB4Rljy0hJ7IH3lIrH81D8kSFEmQjUn8gRnjgclPMS/lPB9B3xS7c1evRsxrHEITG3kvDGZh/qJI9/VYQzzNRC+vFWE4gXN0cDkCOAiryB9BTEWZyd34vYl1gF47h4uYBMbHzwJpGfcEgjLs7kkHyyRy7hOfdwzrCuNZOIkg+w6y1Nc4PvyAS1PyqnGX/NwmfPGoZMjInqTSWGmjZ9Pqe5J+QqAEjNLoo14kTVvS3BmR8REW+bUPrXn8rB9k3tTLEGjaNwb1gLWoEEkRfjMbOZOyq5tZ/OWXD2twoE0OJCwfWKlpNyctOvtmqmXkj3EAr/HYJitge1s1a2GyuH2u1uAJ6d121RCpI10gXQowcKfAH0bZox6wqaOSuzPcDCXLBv5zqEKccIp0d2DfzZOFuyG2Z+PblTwTiXHhg3HixRcHtXIkY5d68RZyBERUkF+qlmoUmpMX0l+r2UB27Z5rDOa6BLCmIqSp3JbjSCoqQqMQ69D8+nGaYNDuz26u6kMNW4+T/iHaHsfUwsm+EAsL258HBIc97KC3kDkV0WyAr6hR3ydm0LC5h3LHMh4i/ntFkAAm6tK+hTvtJ+l4h6XZH1Nil6uqjWXu8q89uP6KUiosKPEq5yt0wzikxfMrhi6ZSPEakpHqKwa13VB5wH3mShtUYyGe0doOJViBqNoLLvjqquk7YDxspy3QbY4HC6jp4TTuZ1hL/KDQZOXeYcQPoxZFvaCXBlrAeKgnzbouUUy2YlXD5N0ZJGLFqEf/S0+avEIipsnpTJ66yqumFSy2wY1l8/e45uuPDiX6y+ylRIkufx7cF3NeINJCw0+BBED4SgH9FNOhEnKW7qFcRwJHl6/aRx7VJuYJBFizFzcjXJy92uAdWyJtjcsSs2QiFBAqtidS7xGXiUmxAUF6S+3fnO1/maoKQRD3Cy/RpebZce7DkXLQUUz3ShmqHggXoZsi1OVCZEjAU8GCazPn10Vw2EenME1y+Jqz7Fxo+TeXfDkczrtOj2NkdfYK+CTcznve0b8njcXEx/om2hJ/pzxalrpOFbpaqYhFNmhcsxdXQKLoX1J7pEuAOefF/RwsItccC1wAyM6HY4Neklw7XC7dhBTS3i57XLbCoq8cPQWopRYeUJlsCatTgQXlobfGovZoKY1s6FkJjSt2eV8VXpNXRTFcrhIDzE06Uq5KE1CiB1C2+vW23MMK6MMzzhJ58KKPzt+/GIyqFLWKbjkmM/Fwb0VlnLFbd4Q0mdwk7FzcixwSeKXGPMiZkIwVMs0ZQAWOHtriUoISrhmjbGQBEhuUwi4gydDi7uqZ+9lTpNVrbnmKTXLCRdFvvPlRBkkMyu+VwfUxncf48SrprZY7PUcFEp6R7UOcmByUT4Jkuli2w2rmncFtO5KZxE3bR2yRy+k2y2HDIZ3YUFGAEi2jclPanXMgtWoI+E1dx3Eexiy4DGI2qKDj9kOResocoJKnyUsVp5Q5savl8QAQ12lvidlhWUmbwXBhToc9zzQZuvoHTWzbKEbRtJOKpcxrQZ1anRldgEzPhfOvdstsMh2+rrxhqeG4MB0EvRFJYmNKb/2lWZvPwKAF4V6JGMMzxuXjgiC4Psx/M5s/WLpdLOqsZsK6UuvWo0djif1F1xNWwnYMuLSrkfterY8GQX5CLPXZoy5VCqENQ/BWjr0APe0yo7cXWaTiG5TyhMIH5wf/fdrDlHq+6pvJy0yfk7c1k3L/0s6rycR8Iscq4USclo8cr+EohsNxOhaqupehmLPjvwbV5vp9Or8LT7BWHh0R5sKgogFeJcVWNzWw68MsOeJ5PCZD3k9iI3TD/WVOAFd7SregWISS4praahvel4ZuxKLD2TskLghMx7Iq9eEtr5aJagFcS6hYfKW/gOgtd98jCeu7OBU/FYqVO2EYzZrezkaYo3toGxTS2R7zXEFAWKCZZ28RyxTeP9Ah3LZjAYydMOhIKU+tmg1PZqMH++PvNiuxUo24fwfPFHEesLqE1F3ddFx8bv+1HQGNV5W34crsuzO8PlXr29q2nawvazGU5S7wYqLiwPeHD43oBn89tvbywmybGaaU3AbySJAwWGh6i017BmhP/mqiuJMNVX83Pr32kNY9fANpgSMA5CpKeIjLG8dbPlIrvy0QauycEsqKEMxho4WNOF/cWQ+hoMmPZ1JawHiglXdDoZLTwyv8vJN8ZB6Og2P3RpozpCIRxnLJu374cHmnV/jTuDm/MMHGXa5WZULkQIjNlM3Aj4jqxi10MuyB5CozNrorGrqSHqG3vfczTrh6hS8qSy9UuAl2nqcRO1ZrF0t+HDAAODoTkX9RJSXO4U+9hMKj0rMrNkMS6RFn95W/zL7+ZZBaxToK4ACIlwUpSV/zz9l9CjGSsxsxGSuWNwcqqCGdeAIBL4X9bM8W+PV9LYTLpFx/xkMmBAFgwrsG45rns6KdlI+8oRSE4SY1R2roW3dcOzQ5E3MJZS0oywkMesAJxBspJc4Qwe2F+fhN3n90gofK5P7aybI+ixPhfYVHtUUacOCEp9zUQZju/LkhuTOpUYrlaJn0rdMM4nZNqhSxhilAZRZatyEeQy2bBF5LpvFoQnBDCmyseBmDxO5yvf6Wh/5pQlAmCQIMDLzT48EN3cKMV+1YmOm8AOWXDCV7sUmMJz+t8Rw4oYr4n/EAlhYDFtmQ/jGXdVqcXVP6m4sqd6s4dh+qEH8vR9wgUq8fmtI4uoIflOD6mHytPicWDNEH0DOF5mRGJPBPTBslWuibgoA8ziupxlqYeFRzbNq1Se0z9awFFzSuM+PKykrbwZzM8PGq5J4xF46vLE+H4TOwnQKPxHFQgy8wX0LJChcnuMUWPpwgEZxnYkCzqZHddjPjpSVagBqDjmqfQBv3jVL4MHGeWT/ZiKNnXWl3bzoze+s5Ledq0ZxZ1S/KPjJ12AZgQKVZRUIEDk7VfDcc6WUdDIyhHs9PKGoY8J1gSko+zzz4aCrEfB/gPfTgdYSjqxXc6V2jVt/uuO922Mw6605bX+deIx1OrZVfeuBfnocCA14sd5YswRFNaaXSyD7VJwMji0ZjWNc3f+at1HKycBbEBV6jy6wcQn1Cdfg1eQ1LblEkxrpyJZhe3XwR1zm92GAl0caY2Sva0rgXLJ4uRMPB4oYO+aSGPbXMuknaKKW/0Es+HaBlSnDVhUyIGRBeacz4t1pWm4eXxmmkk3RLwZ/YSecoQioFhr6dSRJnJGJ7T2tIhscxU36O/qZX68NVeMIyLVVWoqka2K0RC3pUBSqzOt90+HyhFtXpbgLATyYwzEBUWOqSRmsgmNDRAA/sTJYSmInuVldGvMctWBjLobr28uF3OdS72+0uHis9yqKA0wgFCMgdHkr2i3qc1E4jL8tOgySial7EnCbNUPTKonPpnjypgTRRfrejBAJhSh+1ohf6JxfGs7oMp4bw5sDBANhoyTAW/AbCdc4xIs/YthJVR/ykx9egtg8aW8niTZurU5ZveDjJL5YNMCZc+hTnlQmsXjmG5wSu7DNa31zhiGM7CfwJ3qnmlWFJAOnhtxD9An+iW9K4idguMXizcs+8FQnKsXEOHGr8QWb6nUO7yklfJkSbY8kVVKRYhBtbp/i8T/o9ZmjObkAmCpphHws8IMFo4WiJV2pRnc2QK3wP3VWrm70Ke+M3h6TbuBQaXU+SSibTS2YEX9W8ntKCRkFo8C+rsyMhaDQuJsAm/zTT6Uvz1I6v5XYq42kTxbY6OyZmRQzhtbFVElv2hxp5/lMKl8CCC+BY/QhbIloaaAXvBKAAJCQ71lkpZxunUBsLyLo4dT3TUwMZ40R7Sz3Uo8+7kTZxzJGWnTcz5oPHp7J6ljjXIjSXJ7eb0V5m9CRbdKI+5Hf6nReqK6Iys3Z6ZDWW7ptkgrUwmIWldR8qvCe1YCNFIgo8ryqtW/DNWKMJ+C/eOyIsleGcPgcyW/f5nkIc9DdlalP/KUaa/TxFaN2JFiuE9WuYtMVjRM9XDtyrxRE217NiteyuglrIq207bZfpdJyOTkHV4QyZVJo4UpD0QNxgqxr8xvD8nV1QZkGSCX/4olDomBup8u+EVh01I04R1LwA60L3cbev2WhMBVe13RQ173HV1mdALi7cay8SK7sDH9ip7Mr208Vh7nYB83mcWz3lncvYLj5+bQATFARmREXFc2SoCBuhf1FROsEdC8ZbIFZCx5egR3SsKRiSxvDgMyqPlJXIQJbRY9UiI3YuNb0MB/VdLjnRjeeFXrnVIM4U8sVW8jARmz0JxtoYcQbOnzp20WYVO5EtGVP5ZGOUugCZAZlYpOGCGFaSVfoltKaknvip4xW22chw0lUOtcke1V+V+zkkUhsJBpcjPgUPYmSbB22EvB57hzRgebrGYl6V5Z5uNvZsuY+KLndwr2NY0PCpjjRhSJfeHDfzi6IUCGmwEOMeRzGQav+FkZlwWlWXMOQ2mxGxuBS7yQutyqKEChgKthWsa6ELJBOnpkKulZMaNNTs33/pNuRKS9/tYKTMRaXd93gdGNolIXTjEES9HHqq0jhtZP8TDBzcGSlBz3U1yk5loNipWUFrX5kk7eBqcnM9jrlM0IKWqAz+MhZ7m5Po9jTNpI2+t//tNTA0iKIxo+Fvu7P3pXsfSy7oVOJkqohyEcZ00QcUHLU48DPJMckaqI6+zQvB6BJc+JJvV7WPWny6YiAJfYAR8HhhK8WESTFprVfmv5aVCaPiRxGnzhbR3gXrjzrhJGzylFb0kwoUeKJVV+ZGq1O0ClOJMxPtjmWBWrXLHvRGGwEbgdZiWFlVQ7NsWLQlz6wsuo6ydL5tBFyJxU0Nspp5I4he39z/U3GLeEkBvTAtWF3vN1JfI1A62FW6eCPAFFziLsHDO4T7EqvFJZJjfrUZ+JGZsxDATnWhZs27wsJ1xG1eaT8Cdscf/aTbzSFE+mlsEnnpd7W8s2xYPYAwaKvQvgQrz7D8kyHlWu6g1eLBwzc9ogcq7Y/ZHKnlwmJSdLg/Z3Ht7x04GXDjMLK0cyxJ55tz7VZTWZy5ppGyUkSB1H60ytfCRLPHjx/WkWKb26XexMnDFpMEOBCMBHt0wUgTV9A5Y3LrtmUSGbveCI1iZTjSWW1X1Djyo975CFXHhMrzMaFWdxSMSvhBcS/GO0NYbIzvDziG9tHn6l2ZSSFx/XMW4kyt9/nU7JxcwMpiRghNB2TrT2ZB2+itwjeKfUUpkKDR3TdyLoinhVztCgUXpHYJviaa33K927uA59lHIfr92lIG0NnEYD5xgOcKYPeA3rN4wJhGV/nQg4nh487XJNjRmdCQAOS/5q0/SJ1W6WOBxBQicq6acseVheFVdcq7Ibrd5meak9lKiIDOYjzrG1Md3hYzbi5StcO4FmQMsCXCHFio8QJtF5fNKyi5XuWCFskPvzAJRu6Ag0kTkgTkFWjTQp5plSCiag1llnwY3BtNLmkPxrkeEnTM6R49eWsLPMVAjqffH+VdAnslSWy+NgR0stMfV/ZdajqwMtHvjvBJTrEfgjzVxBn8po32R48qTWBxkmlatCBXAZ3C1ZWKqFxqYIKmIERVFxElC0E7ebZNiPCPTx3+3Oisngvza2gIN09gDWmzGxdIKaYvQs4rpMyR1xbrFOa3b9R/W5bsI8ghCgJqGVqwUdfNdPJu5RBI67shHo7rS4trF8Jfng3DY4op0DmBpu/5A1iRXHn8XKL56gKAG8yLW/AgkmNyAELwbtp8eC+FXsxM4s8UaLZMutCrcz7YRz/HE5SktLogVRUBKJz7LS04TME+hvaRsR0XHWTjkFoXqYKeY+LzCiTrq0WTdt0CI0wvGVtATE01Ryl0Uxvupraxo84J3AVCclsxNMOgraCU4vM2fDgEeinJfhnqr10zQkR5QyYx5L6NubSvOUBmLIi5wZYTga227hMVMZcqBX8tO1k57HJ0/PrjKlr+kEZuFBt6EaR3eAgq0vAQe61GETDtx+lurAgWBxu1pQhuILQhKwEJAhkDWzs1j4lDoRz+1RR5MIuyq5bHsv9V9kQSj663pVysPsiN2Lwq4wt1smpSx9Y+vRF4x/Xq40cl+yFNCwuNB+ju/MHOstgciGSRkFSZNvIAJoN+5CCohMODoeuesKnj3WdCjNc/LpYtikDHebqktY5DA8I3nBYPlGLs5WDRBAcpFTwMFBOEXo4YATNSIIROvHNOr34pIzGx7s1O3e9yexIGf6exZS2J7voL/P+pTcno6IiqDyix237vBzGeStlZmHYXVt4LpEE/gEjJZD9SJOi+sHa9DEMDwYZBGKTsZAGBFzZ4DEOTNAElZHPeltm0J8ErSMHr7pKLWxTAr8TTKv0zkplgtSTnKR6JGpAqzqeH5sI6BR2fK2M8jD9bOU6g2NDr5rb1B3pav2ir8L3ojB90j4FkjN38pKqHmmMUy/6HD0+Dk+GxPyDm20+tPuTvGlmFCtzX1kTfpuzVwHsiWmyWJHskJeJKLVRXsTnlUIw3STTC3CulxsXwvo9s53ngHoQpAzskqtZgSqpE/YbtpA4wzMbWyFp7hOxunxTYc9SNTL0iA1wFF0PhDZJOjw6EpbyRsSiCPOuW0JQp0GuHD9V8OhBCzUFiX5YKiDYZDXBH7UWDLlMlpqD6FuIaa6e/MQPFpwm1MXIc51ETNQTMh0Sgo5vMA7l9MZxAys5Ve/ZZF5nXUjad4sAdftJv5yOidAnIRmG0+CFa4+hYjuu4K0avHhSo24bK4XNtKUitpY4FQVA8+4PSxtoXRHrDK3G8YuTuW3cYd5ChQNqeCO4ZfeqAmt8mjJeLBQZ6gVhmGm0LIv4ondEHDglLHCO2NzPVsZhCMqek7ouXNdb+jBThdTIMHydqJVhxJHkx2cy81BL3hH8F+wu/FIU7NsrMe9xe6DFxCvLgB3zhCl7UnR4ErNUSm2xW8nBBAWiXWMmOy1vABxiOI8RwkCMlHISqs7jzA7bEpj/BEnk2NJwfDMDSmTWAioZyhQLRppxMcGpxgDQtbl+q8EyZdJoUTYRWb9aU1ryP1hdRs1wYF7lPA8sd7BQYw+keQLYa6JVO0XrmPjnHlpl9YrpYTSYZmUygGs6t1ZfkWQpOqm6CdfXtn3N+Ld2LmrsSodfeGF6/5Np6uGhe9phPe8BuMyEeECD+rJDUilid0TF8Woo4SRmPIiKZpLL0Nu7bskmHn6WUFuSDzY6+WHaMsTMxwGftSkyxTSozmVBfPgtH390woSJN8RWTSuB99jDcDJONg7LGeWciNJWccuYTBSAZEIzUrB5HPtJfXH0AcP6FtQ9Fvx9zcS8WJ/LuIXE+brzbgjZWIIQOKK4pYUWnr1bE07q5l6pKDVLuY83RYTCdnDUxXILV39f5BSGa93j5B+aUM6QujHJKlr+s1/DHFA9SpQPP73CkX+cJHBh9gE4oG+d6YPRfAOPx9qleMFaJ+VIhlsM9022srboBWCix1NgABb/XKI0rVPanzx/nRgvIQ1WVu/hQ69T5JZhWYZt/Y3QXBbMv/hO2c3DVkAB+/V3UpaLPlffvFCqpuvMzV1AzlGmu6zcO79y2kuycfb1LB5ozhj76m0z/G+kd73bpJ2pmtebtKPYfd6khijlYauaExSpWjWNHBpeZfel9nhP2R0LoW2OrkqjA+kv+6/u3+zVIwFG+EtrzU25HDE2VMQdAMf+VLfk777wBbp8DRXOmoPbfQBDDGa/o7yHZCTi9TPBdOodj9AYvbiSQ2DZEpHm0irl3mM/uUBQggYBNTEP0XIP1lVEIjrIrjq1yc0BTCACnU/GBtI9t1LbHcjDnlO1JHcuvNqlq39pOAeSW1dMPL3ErFBi3/OkskqOdWoFwG1ooQXT3zkIhzsIwLaWqlmkVroys0BxLF6Yfjby2/Yl5tqyd5JEUizPXNwi8T4qYYFqB2TeVgTG7Dkb81kOiWmjssLY9p8Xm6GZJUK+QXI94h5sxb54J01l6e5d8BbG7DW2xcsqvz/7qD11UBSPQ9uBqnZAR9ROlS3NuNQesJkddqVTb76khj4/QdEzTcD+a0RxiLAanNCxy1A8zmgAR/cdVSMo+8xrJZCfTOMy2lEOpHvkekKJ2pGD2AvJWJEShp2NIG2yw1R2s2F8SJ0rZEdMkPQ8jxwAUqkghFNe1BHiea4nUm8R7xwZjha9Dn2ZsWvO7e3cr/DSw4VW/gqSfrhpeBM9Ryx09fZfep0lrXEVUMr3vzn/n875cbMAmUb5jtOAukbkTz3eKzeEunzWNtUM93j9bMlpAg2on+FW1kk1q0eQ3WRE3sd8HdEnJmGbop4n6v8gmS72d2X2orzc3YCGK9FlPFqpHdZUnY4RR8X7WadjWU8je5UwGSvwIl9CEzdisAxQYl0ESKuen5jzCMHPKkmiTgsdubGjl/sJ+IZ4LCQ9Lf05vr6Gc6FoiHrfNxqEHnKlKhoQM/rFFLMSex+tYBdy93FNo+smZtZm57cXtPLpt1uoiuZ2FBD0uHLhDI6X6Xk+UK8xTl4QXGM2BB8agrg08WHP23DFXIpdQcRvuQKZygmqFfSGkgDeRwlbXoDfnqONTqojM0inh5CxmNUXMvZvmaSu2uilwrISiEd6jIL6bY6u6g2qabnoIGETGHDxjEq/qaf0B8ohTUbM7GVneeECESEQkJ54EcoDtgemvG2hw/Nyc/nBLshcA1KpcJm8MOTbHdQ8gh0fatyuh5QTcNxFc37mV8e10zP30/G3yUbD2yY25DKoG8PMpCOBimD5yxrsOp5zqwdcbu93+ZF+dXcpL5FNIYUv+CnhnAawXIyr0U8xrhgrYRwxLkREaACxUYJNB9EI86YEZJYw/eCNOoN06sQgmojz4cXIPxU6zZ99M79DQymV1W5fVpDwypsziaUW/wKRB31iIOiO/gGboNMP/uyf/xoKYwQQkjEKAePcHyz2ZXIJzm79tRm4feDWQI6R5BH8pprPL27xP2TEJYnVFJ5LNCQNL2EYNIxB7Z00MrqbOOdg95xUc7oQNLUrfRwbyJlXNfocxA1zmFX78VhUfHTy+HG8ZclYfzIwwWACFrY6EoWHCKDh0ttWKuBfxSMg+melphMK+CVRTZvITIM/Vt4rJoy6m99b8Jfh+rqqwGN0lwGRJ0Bnr0+0Q1wDvx+cJyE0nZaDfU/btsjLzjzYuK0CUEe4AHJSgXi0optLmKWueSSnXFtTr0vRg1mkp+C6uYVfYR1bzMCPHLg6j76q979t20kDOKtI2ljCwpBot9vGTO+81bJe4zCtEAHd1uQl7PBzUcAgcLjkfNMdJeqRTRMbKO9Jc7QrW3YmAC7i6YY7ZbvLLftN2aCAAJW9USksMDE5GDiOL5U0x4c/BPbOTDlK3sT0ophoIL1Q3f70l0dc9ekvzypfYS8SmHwPvkkWS4tWS6Xse0RjzKPE6Q2V0qjgkInmXNyalU54Rbm0RBJeoh+e38zJs8sZtdHhqJE3PCmTvIOUZ/IG52FLhD7VCfyJXZGtQswgNU6E2sP/RgmL0B2yYEIsBIU2aaZHgKbUlpEdnll7OwhOydpWU9GhfdRulSdo+xUjeyo3ffS7IqffuI1TKWFno/ZX6PMtCyMxzcM6qyYOtN9u0T8bKMXSnuZ8llvOVVHNB90SaMaQ1vUtKj1BF2zMvi6FxATEU6elXC9y1L35rAs0U39libaRIzyX0lfTgBI2rzEHuZEg67bgySLHLpyDvl/mmzic3H3WbiFcvh2hU93qoNKBxZVoWUkZyaEoimHOK81FKmCvfrXTBPzkuiZ+KkWzliMBLbSEtuYl9+epP2OJgtifTG5Mqv2gmjBiJFWTxR2T0QtZOkFwur/8fKdcsqpniv7vOPaxGrp4yjX+gIHOSMqF1d6RmL8Yt1lY3xM5cQxn2/KrVUyOiyTYa18iMaDV5mk8iFWziFdzLnYNQYt15msLtz3xc4thDC6QCEA4bfKTVgiFzY1hkOZngW5iIFBxQnRLDlOplC9m8gaT2lFgaTfQwUgsPI9qq/PUnBl7Jvs9FlkR2bOtIC6+w3FjuE1bishlZAFGVNr3GTrIlhJJB9QEjksDOKNeVHQVfVdKOHawHDcRCodJHCtWNgZndGKP2DUtgeu+09Ia6lLDyLuqnEzclprIXR1IztUItJoAxSU9O27PmTmt6EIaxnilX6GBHNhqYCotgb5016bHPplmYQATmUUiqBGEK7iUmbGc0DXkxX/AOLUvfHYVJ4keiFJLkb2b9kpqi0XOUAkn5lIh48f7mo/hAwxz8LgjlAV3XMd155VbSMDjisNOVEBXcH0xKbuxRfvE2R7vIfuKgOjoAWEXxY6rB5SoWeSjzf0X5IvZinCLQfB3ubAVc3t2OBH7RPXIybGhCcmILjF+WivEcz3IrrXcybRhrJL8pS1+5KJmxaNPv1MejXQiVmdxvd7mI0gXB5VnfWJJXAsOs3FzQQngpCqkYAq4nGdK1Wndwp5FzuDrL277Owt6y7DfIkRSOlAmwrfloMszlXSV3RX/Uby+nfm5NTEAm3sKZGdntTB20G3umlvN8HeEvEXasv0tciEpDHosVMgz0GJWiW2jXv0s/DWzkaVNJ7YfYjib9BsVWAW2iwbujm1tNIALWB0S0p404t2hpk8xnhI6sFG/8fXr0QH2dFz2TqPPTyEhZBVFzjiuqVtnZJg8FGha2RgTRBjNldmyaGaYvfcYJwnCKDbaeW3e4ozkl/BqJJrJve8mQlDSDullZwM4He/Ve3216XO+L7WL2nQsafv9XBcBeQTmPZDtivDFTApa0qEkL6psX1sMkD3aj6yNbOdfABFu+8AXfkmDL5QtOFpCLMEYJNQgoiuMzAO7PtmzPyIQtXOLRghVH20i9p6Nt9vXJyo7IkXoN2A2mwjobdL/dKRFWpRE0py9FHJKnfeSOZ9WqEM0bO5MpZ3O6weOpKq8DKcmKQB7T0PNLdjxEXppcMEDW7I/Yd465C5ONFaLl+jB0JM+55wBWS5GXYmuhTyyXUtvUEgsES3gs8Ey7yNh/SJjMxLijQ6RzF4f74WHjPydFqKOoTj4pr6XxMzhP/Xj+5XkccO3WlExyjPYu7ci4mPJii3nI1QhSI/qXtp2UQR3jSzFiZ1eFWmtjfcOw8hbl3Hpi/05aD9HBmS1EeP/QChKmkVSCY2NljS3mIFF4FYYlwlSbHCMcCdFIdzC0TW9o+buyQGhK3ob2WbM/uQsoZP9QHIt7+ov5joe7zUdvrK486RRj3d1arC64wJg/iGnk+9wb+t3DFYv5FCrp1t1UYLImti7mF6JmTjyymXDqGBmJgf0XYZemALx7DUNKAPDXcL90DobpqoyNNys3ioBGU1acZKgxI2iMTmTEf/aRohQykk8aPXQInRsFXhpXtp5geYLUB/8+Cunc9WnUOhuAozNr5xNy3o2/rOdr32D+Ut7Pf/2N1B9/Le8zIW41LN9hrWxp0EYR0s4UkgLT3+E+AgZFN0eEsWSVoT/EBJq2aIiTVRXRFqxhRNzEvg03GLwyvaeaXFhJuajM3X/iDdfvVxei+5szT1Oenw/4T2rurI4oy3sCSWut9kBwgTm6paIporG21X+Uu0jv1TrpHUYVxZSz/Pc+uEFUX7DR2XzNIwCgWWIJdzrlfx8zuEnE4dN0onbJCUB0xuxkMGRkA2ncuqihc79CIAzeAk65VIuo5TiEiKmYOifdxtFl476e5GbqIaebMuVKHeoYK4scmofnkhxFd0SS0EDLlsDQ1fgz1F+8RsPr4Njdug0NE2vE8+GdCjf3Jr5XmMg0Ug8LyMWDQB9UTMiHXKLk4YZ2Sa6sQ/N5ad0aoYaD2uhEVkg15UkVCJT5iR4RB3UXCS2VCXd53k75Dv7HuhKisMEqfsNLDRIBE5bB8gyuDAnUZVQgTIwVGTKwlfk0edZQrb52pU6pyb6in80VXNKzDAvwL7t+wTObdYGu1ykNvDPctELz+nccuCk9jVOTh1R5ZRjMmsF/57XmVFBQctEjHwkEo0bv+t1sRUDyhKY9JDMLWiDPkp0r2iL9MXbsYpSm5+epdAgSWWADahNyDxJTrUYZQ+s8STKqnwxoeh6cAO6pdfhMSvo9kZA2mMigeyNk/1Kvkw8t7aXaoZRJauV3RqnokQLQkc62X85hUjlcgbN7JnYlCBBuiS4eKKaR/qwiFnjEtTevklUYFvE3oQwRPAhRep6o/tU1ax9MerDv3E/tajMr0ZyTOwMrT9unuGAuL2+k10r6och8ciNEmNXVnnLACJlVtigxCsshrlRKRrIJISGBXZsJIpySw4tKzcHZWGlJMhiFTejL2rACTtOHoaTeRfDWTvuLgWUpU4ykQqttx8xUO0eKGyXH3flkcJEyHPQw1veDA9hESGofpHo50pHIO3HYMqElw4TI6J2moZjC8RBXl3mj9oTZlq6aOqstwKgcCP1e1M0lvdpHhSkaNiZtIZvSfouM2hNQkt3xmA746a6Qvfdp0X7JMwhZA4/1TDp4zqnX0xF6Uh5nfMe5+UjeiKEMzuKMyHJ7sFMtOfuxj1GmXkLaClMzHSUtk1Rdiyhy7dgLnaPPyavyIFP8YLH/KMRdBXyz9amIgHnnAwypRtNHbp4K0zrcFuVQ0bY/4PBJVA1jpveVsDYcUm8OoIk+nIbjjPQUMo2JAeu3vdCRy9vgcELXHJ/g8hrj2TmcfVO1rrgawx9f85o1Z8Q7mQ+9fdGzO8tGRchGfYLaudwyEMWwTf+aFZFYMsOKpEeNRRa6HMC7rajPIl02K0oc6ntI1WeWhE56WmKDUii2siEjHMetJGVhBa4mWZpgQSkj8PZTocowJB7VURfvDL60m0gA+v59HShPvZpl9ATlFFWdVjZJJLiVsBtZLlTGiC5TK7qXRzQF8BXauC16pRW8mwvoLhsmX7QcACb+pokMuHTguu8/rFQrkBvLat3G5a7Gluo6/Ma+1u+GOF2MK0n09UlNXxLL28mJnzZLPsiCcm/3eed6vT2xo0EtMmx/CNUBEY80isHu35yhAut6k5koRAi1o0JCM1IeySg2n3nl6kGETaEXAiJXrVRa4Lcx2Ijg2lhm6Q2CYFqHP9N2xenbd41kA8L+eOtLc9pJy6q/Vl3m38jFCMjprQAFn2CPb5CHKQ1UQn2zFv6qU2HEuj5JXNWziJz1GtAuYkCSKfjfgcveNwzRxO+lpzffXHLTSwEn33eHNhwJMNP3pE0xU6BGH9pScfaiVyNos4r3+zDVVg/KvgcT6kW+7t1ipZOWpOHzbTYmSK3+IapmQgan9Bs9zGKvYUXmdyv4gHmFdcRe4r+KgIMFNTZmxjNVc+OAQZueD75JFq84UMwcnviwHqUHxklElgRRiTkVfRysfJZGIBs/q/BFj4/CDE4bj3otXA4TnIySOn4Pt9AeMkccjiJBPDm+PAzbw7L9YzdjP79h54O1v8/039jIh7tw3DOSRRIHCbJie0wMpnC53tF1h1AHPJyJOysO9stp0o1tV1n3Yeoap5oSiOJBZnynrYjaNlLUY2AT7bkIkz4U7vu0c5OsVydg0VP50n7efn7CIXSZb9c2MxEzexEgjDePp7/OPZ41HE20J1gN0evadqjaXkpgKFzhMh4kZwNJ84AV+uV7sCt1eO7b7bMMBUkDejBjBmvRAUtV7XgATj0EgklQGFuzHKYjUe1xTPPxMJb3aGwcFv8N69/el7l2q6CzMLhm77gG4OV2Sy/YImUTKVRYh5s3XUCqXBovkWmGQV7JsB5Is+HL4PHn1+ksEg2xrYBQYrRrBafG71rPfryE0JuOuxKoFaW/Uh7ei6zCMIhLOqE62vslBx+QjyLngfLWkCKQnTcbQ+agqPoM2CtSRC/eGMWavZ/ODyhTFEW9U1KB6sL8eZNt1VKbFY7YVzG3qCmxwdVTi6mVDDJ7HgzJtZRmXDyUMSlRKAtcAqYC37X4lsaD0NmxOBeE4WfpY6UL/pjW/31/qleYPxs50F+/2tfEgkq1NxFNWC4pG5bHZvPk+z//iFp1lkSeEwfBezU1anMbc69k1w6afLdQMJJTxY7QXebRC+550B38dzmFx+ee/cOhuk6mvMnrNtwe9CTJ18uSUFv0Zw8ihPzS1Y/6aLNIOhTAzh+26yYBRvAej7IHomjWKlK6lLKZ54GfSUgieRyS4J176QFj0qne4QVWQEe7CAkKi1T0uX4ZYX1so0oAYlxN/3S3Cjdk55QoNUBwO6FO3p4hC9ILPIGs4TkIpg0+QKM8IPtZ4aJJbMdlbvY5IMTHk4rL0Cg45WNUBSZ+zKbBcCLHTccu90MPTPELuwAnbwGGa9A/AxF7l23lLxpVsisjhWFrZmv/9e8zHQd9FY6D5N990TdeULKEAZm6Pl1//hwhKc9wMMxuzZP2ZyypHGxfUR8MItaL/Rn0eltrCaRQK0EW6EQ7SzWpXeg0sMYxqnRWqrk99uK4K2M8yV+BwqJPYZGGm0JdzHJfsxX2dgpjJ3t1xTLJ8drgdTH9kLyn74EBv66KoGBgcOk9LRhaatCYQ8RibRMmZmtg+0EV3hQ7W1CqbKbaQiDkeJqmCZLycUpues0U+/LPTJu9DRR/5lawPd1n0NdXfxLRKB1Au2/QEtWyotskciVkfppuJ/h1PwPkAThH6j2vs9vsDUB1fVFsoruxiaha2i4YJYCgQk/X/07TmFk1Z/tfi8+XE4flt6v+kmaz4Tv50SfmWM8PW7taHRryxb9j9s5CQ2Nqs/XlejI2kTg0SUwqeRmfiAokVYjli0mQ9A/46WaLZWf/ORqYhs3t6ZJvOqaHKj6eG1m8C1tJHzrF+v0Gw5OL027xJsfJPL9pvfNPG0FUz7v/6DyI+bZLfjV2Lxlj7p2/Th/4TMMSpxy+vX5keZWLIIJld8bFhYiOcHTBvdrOuNwb9u2JRAP1+S3T5oXm6ta3QphYcf5mzOEu+Aq7M9rcDIc494uYbtL+saMss0rm6gYycH1VRmAeqripPP34v0qrQg57D9TVIBuTWfM6K76tUQiqSNFmzEwIQlmvIkkjPsjm/6QARbys8H1ldvzvFnb9guYD/N8yRfeoAv3rGPt56TjsNLEpV6maCVdgUITS2D2nk1RfpQpJXsl2su2DRfZhwKJvrxMQ2mFl9TKNyx2obl0550brVndqxhm8F6g4civpAaSpccs9LXAI3loDJlb/WRndXKbXQLdZjiyx7WAzu2DrXxeRERr4zoyVKEqObsPx2v2B83PLcyX3Uajmjqp1avJ//CCPg7SK+LQgt5fKooOr6AClxrQ/Xy6o5ke9rPCZe50oTLEve4Ja8rFfViuiHW/Zk99IK/++XJl7/fxcO6I1atLVuY4xSDoFiQqvRTk5F/9Uvmjv3TDbPRcMCTm7Y5u5wI8z0wsWEJCs+fKJN9tpCM2/9KU0Db0nQh4nUayb+0bVN2Lo+0w3F/rvq8tG3xUZqRzVjZ25YU1V0kPLVjRWmM04u49LKR9UYNz9gm8MYLkPt/UxsypX39zuxG5XHj2apr3X21+M3nWpoVlyzzYh2Q5G5KEjDb4c11v0WFdmtgJcXi4Gc9/WO6dXGepn7y66M0k3FWub/aWNaPK81zoxxvTqy6qZ+H15Msa92K3uSA5oNWOPr5dOQ8OMepGrn2xSK63vw1XpGxu2+P+0W+IU3Cz4GEt3QjIQjPsa9NDQMS4bnzjWcBNsH/m9U82+kfWWzJUurNh/TPRxeOKPEYbDyviADMOaJfgTn23pQ6Cn1+wbUfif+Z0D3kQSpa1/W5VkvGjaL0ZuhX4sINhdbOfnY5tPvRrh/rs9LnMlTD/5/QSOMhHNrdTRCSH1FgL/FKKHxjik8ueSmoPX0J4913szt2uH+EpeuNe7vZ/1P4c/xPSK/+t779yfVcq5bU5Mt1qNEFHsQ3AGNxMP85QmYqPDHUycjxIccs/n9wuV1s+pysOnomwnwizZ/IlnlRJWhfvX9pcwS82WSO1ZuWydGQLK9SBEtH+3s8/lYzu9Je7knc3NYbdhhAgngYxc+nuITFiXEB1nOvsqxnTVoP1H3d38sWe3Dffw4U5Nj8QO32DDS0ht9R2XZBloHL06eGQee/TZeup59JL9Pceu00eFjJPdZvn43yEdUaVujdlfx9cnOdavzIz6Z9Pq3AKlnMqIKUSTsnA4bwsvORuCC9zNb8S13udUl0mu1E9gBqywnvmInTth51jayH3PYaz/mxutyPxPYUPTpdHVYY5swzHWjFrAdWHdvGjaV9WlCiNRUJXzX8FWZf5eGIT/v+jIz3diP/W+v+N+V4YLvRox4h+UqjKCQZIoD1C6bX4WHJTdrFb/Eci6PJt2+BjDzrZzEjp/JbKjABwfFj4zGbr+QJxPfqeM+sPFNJdgBhaNtg+EhFmtyrfrDSHqc1ntEYA2ytMx0n91qH9S0FsrA9K1D6RWhex+A1mNXxjVge8CnR7gtkNPZs8ioUB1lfZj20q/Hfvuo92bFwlX/Rgomd6Y8kCU2qbWUbD3N1qD3uXq7TuRyNnyG7JX/uyTiDPdfAIHc4Qgg8pkik3+MRAUK7yuJVEYUSt8T6HU1MWqy8JhWXPfsYanLiHQs9up8X5VCJWWZfJkoyWA1Cbkf/Y16oQj/OYuMRVAHmWQlTk54NXFgwkf3JgatjwTg5/PSuXyzEfJXcl4w6ll/zM8bdA/S5ky24k+vILn2a6tYk+4KCkY/3CSMgWWNJPLtDv3D6CsZSLhiZApoxKtKIy7V+v4iUeWT7bzcTecl2D+icmV9PFoNhRcHAhob9POKmFfVwhE82AlS7wCTE6t38v+38PDzPLEZt/Du5rKIyW4osaz7mwcUZFvAvTgygO3/AYG3k5z7rDmL72kivX0+705JNTrlf6CP5sv8nmBSaHomwI0QrmkCcIIffrtxwvgUFESggFgjTf4EEeuIxfNdktZtk7/uU3dMSfUzO/pvKsv8bdbCR4YKrBqGloIsj6NzmP4UuJWG2d1fAysfc+0EFDUpr8iFOXmip3lA0pWAehy2HA2pXB5YZpi9JHwx0JJ8LmYHtJvPQV+g3pzSsGQGNDofxx++Rpnu72xb7RlauB/NIraUJl0PQk4fZiAH+PtjsqMpbnGmMipeqF3Oy6D85WmzfqxRw/XcllzpThBZcsQyy6xuJ28y+Y/bSLtWf91/lW3s7G9KDFmRIdNQgFCIEUlZz+H776mx09JW742mYTIpP0npnrL88hPbpDzlHpYLyKc8rYzaClcCvTlahvhHQUEZ6CkKJ2H6zVCEipu9YF7kEJpEc7tNkYIw9DPh7hHPatTycPoJJx7F1/s/GCoD8T5p1fONObBQ7qdv0ZPK5VobpOOXnCL9sc6OFbIZt7AvdE9M/1qzLsN1tOZHSuWw6cS5/suC8f3jj30GyfWMOwu6ef9o60d6RU9d2wR8bZ6Ld7hNmZ8x6ZukGWs+kP7A5B33/n8e0n4mv7cIl4fH0H8uCA3EV2hmV+fdqfm5CF2Rf/nI4FJjCHtwb4Mg/bS4gCW3tSkHjbFCNmROUBBUHMo3IDkj9/fk6gIX6OqmhCSZ4F67/JZhFHCZRzZyvC9TcXKRH7IpPB9848mPQNHSoYiLLQ+hlT/KQvaHn/yssQvK7hM7mGced5gemdvu2eZ2r/rwkVvpQL5I1KamV2IDK++yCU/OUgi/IHL8iPcf4l+SD85wI7P5nmtJ2kMxqdlJxmtu2BW/B0oWl9nm4mTpDqFDD6e60WSS2dtFo+2xQ3kPbXUg+W3G/16SJQ7vetkyuePzpkl8n5jGv+0e6HaUQP0aQHM3KWpXnvtzzdMOTS55OkzZE6bAXaTs8E+6c8kSHOpk4hWB/4IsOyOp2RJVrx8nK6SvFsdw33R2qkP1tU6uYuNN2vdvviitufpY1V7LhL0ohaFmk7ryjivzOlOfBzDelE86oeOOea2fjbdlEg+pyPjMnL1FrC3VBOSpk6od6RxJ/OgeolvN4LNHtos6KMzMUJCBDZ+Ne8zocH6g+HCTxncujEmF3lmYQhKqxD82p2oj3xj+eZG9MjGZ18Rl6tQIc7OlFsjaogsmWLvkh4P2df6pIEVRzo+Al8FwlbH5niIfVCInFKhHUd/oz/lKPnn+1Uu2t3Sk89T6e2hcfGp+vnflL3U3psgbLomNd9UGYG/jfNUH1BlUngY4g42n2vDZ2T/TuHhfxvTb7Xmpguc9aa7s7sUZNyhmFFwQMODd/LvvLmEr+ISWefWDGbq5tTInON8uKH6uQ/raosn2l+LAICsX6rtKUIHtDoL1+kti7/lcAGcqf+pZjibsJsHumt//3yYjITQA1cbT6M+hlK227/TI6WkDZHLVDa5cbrkLAiZ6om2lex6gP3aRveZ3fn2kyDxKmSOn7yqoukqKnKumi4b3IKvW6+vDgKdCxGLN0XWZOkpr73CDWxQDoamCf57mkpH11HWURhGNrf87qK7bSK5yb9T4P8nl/1/R3qx1UK2Ih+pZeynb0ZYrHVHv1tx+atL9Pbx025SZuBpTN3mNlY9+5c+dO6Cr7S9SsUMDs7U4IS8x1syClPEtPuJHynbFWm95pYl1E9TtJQxQTiB1eWkBQc4uqQvHZwVsd6uvAgm0bYwzbOKBjDJDN6FwM7P8nN+Xu5F0Ih2NOaIAaiIAqj5pPWBeaD1w3IePivGv0PV47mZaVqZTdEc50iQpGO7BU6fZS/5W6Th51C+E3h90E7qmg4KtIJ0lKa852ped5x9zGr1n0EaoXp6BTjvhEfRZt5AQyUuHwajpWVb8BOCu3TEY2hSeanDFYTkO1O41er4gYQcVNowFqJbDKzMGZgk0wLt8yUFMk4Z50gWyrT7PCHU6Y6taVBR5HxvHZW73kTDbsoyHwiEsNdZ5ViZKxn5boPheOQ0TV6PZcZ+dJUMD8/4o+tsZadlCMwxwr1oDSRncrrQCKhdGvwmEGwbqQbXHtHurJz1c0j2mkU8CU6TJjnUNkoSUmJDxq5bQmExO8KK+3EoIoxP3gzd9I1Jgp7m0JoBgxMUfAeoQVNkGHclMtAs/WTX2DXGBdv7u4qjSqFWB23yWt7T2AjeNfnMT2r0TzrfDFgehT4shHEibyANUTjXnXPeWHq6hNw3l+mLPozTB3huD+vAe9G4GEbBag01K7h7l+LBQE2vNKgLu3x7Y3fx4WX2kzaWNhflY7u73zGCFW6wqG/fGQ+CzSNhglLSjluhMpxZo8wU/BuQN/xfmw95l0tdF1rF33xhnMBYrwVLdSoikQxF9DDTikapAOK98TJYBC50LVW1LhHImTYinqh071OCB3WTe6GSpYpIVpjtdbIKh8UdfDue7M1ZBtIuMmcR+d2OXW+V6cUrGmbiX0II/Qiur8KszgM7L/wvSaIxYe8eR5U74LWF5tWGtO4rDr5Pi0o6uatgVmXjScZCgXTjOZJcwlIvxzDcu6NoPZpLqvZr9yyiLN62hTlOn0crzZVqteGmLY6q75WFHpOITPqCwkjUqRWqU7gWdvwcnNIq00g1yTaH2bFiL9GHysu4XLWbxZ1dEtuioFYSEMPlD1SyttPY//6JvYHMdukKlRqn1II9zbyhmz4GKGeSggbFww953TBJLfha6Fwu17Yh/0gR9Kugfzgg1l9ot1vMZ701jTDCQTrlAsbp3Xh9tb/bYUjgPsYkYg3zI63hTT+CONbejrZtO/E7ifDJUOKo68/a0HRPo+k5jSPZPVcKCN2hQ1Ln5fXbvrNb0UlfjcR8+qm/bu8Sq+ckj/AqxRomolJtyRHSsgg8qXXpufhiIT2irjn1AbotU2fpDRv+iyjh0jKS3T8hf+o1juhg9QeWGzOTfbKhT8msWzOyok6aZZAAruR6vYChCd4bfBXtH0EIJftnlfap7vG7Fjz7Addw0jS0GrmqkNq9lHycte56E0lBrRve7hY+WGSTP/6Ths3rFd4aAOl1Mz3J9j4j6xpP4Zw2f5br//ItX4oudYqAKO/Fp7KuwZyS9b93BtOBa4/1BouvtpDV3hgQ39TRU6hBm8zJ8fs3xtlBeaUrA5zCmyGDyqw/DqV+ScyiSaqMN7r5rjaPnnxXiM7vCHSuzTHQ7Q035tq8Kl1HTPYSBT+PXrrpVvqG4/w3LzOCg8+8f+LAmAFGcXn8/lf1PC29d7EqcLGjyjEig99rnPrG7XBMeUfx5LIT+YltP5HQ0lmtyQRwnr+2lwmvWylMu9jtU3Q9a+Ean85B/wQMKkj7RjyXv7BoPtCeGRSznDgz0RHn4dCSrTSQjzDEK1LE+4djh5d3nooH+OchXJz7eLpHMmSC+nNPpjk8mSWXsxmkoX5b37/wvx+JVLUTGJO7pJdTDk9cAxr4qkGDTA3JOsLupudMCx1yxgxAbakm283FOD72kDDRHmVEL5+KbKYMUDHRXbzD5W36M4XeOZhCzGHbFbpKWYIyS/CcgpT3BIkWXLAZGiiJ03PvtFat9z6VdMJwrEvG2OFaPvnMvBhzSzziwk8BQmw8J3IsnFPJ2jIijuXkB1sbeLD6ftRkKXOQt+T0PANP32evRn3OiBKEAbFmzOho7lyjUTGphB8R69/OtutGG3Cvy6w8MH8b2T/MvXb37aq6s1k13stgFsFhfiZiMIpLLvVfZ9+nhHv9l+WiA/xVq/7C8RfMUNV7BfiOD+rNDYy/EUCnP5MgHP5748hjqzIPZQ54CZWdwA2CyiNeond/SEc4782fW5FjN6LCiz0fQL1040sr2frmVUH2tJk8Xzylnyr7zU/JEjcC1GBpYqc/eVvvtZyn6QK90nh8T+W6bgS1t7oCYyIxGk6egQa5ZEB9/yHw6q1jcz3lG3cL603vIf/fMXjsplQX3Yozn7AkLyKF2SATftCYHFSa09p/ZsX0LaVXvUCDXua1+q9fML0vciOyw2dbVruz4v5PWvUqF/0b9gEsXzsPT1d5L8UKt18/yFY+qvMYVv4d0cbEf4Sn4kB3u1MOvEVGQSvzkjfILud31maMEwzc2xR+4MeaCCSYUz5gAYipE9ZICAc/ANGaphE9nv0uht4H/7Pt8OF9mYjTRJgveGksqRJllLmmRbJvadFeqKUMU/+nF2GB5C0TWeSozs6o79AIHPup3hsuL+A9Ixm64L88etlSZ9v7ys7dO20zS26YVFK/yyLUghvNxP5iWiPWgCQHP37W7dU/XWqIvMjv8Za9G5LwT79wJEDSppooVIGK88fJVU6ChdVlJC30HbfHq+4J9WWGV4T7vuzSugR2+TNyo8Asuz0LI/zd+Il2d7rQjXyjmPE0CMwFit+lpeFxqOWFp6X5ToZG+3HlwyFaWx54pn4kG5OgG2A1quMXHI4zGvAH9FFGOt1rFxJod62hZt9MtW6rw2hLKtJsyWrUxCm2PunJ/YvL2rq/Zv44GIQ+V7j0naJ7NOnvbFmL4rJfd8hi99HYsg+HHheor5b9IJ/v+tUtl5EixUSxfl2pDcN0zxHuW9zQS+On/sSMHYs4itgbGc2P8KDUD3iSPMW0B7a0KxQKPJDH4+y9f6PkX/8l1s6abmgn8/8g4IjXXuinuhXiRqNr8cD4wMIKb3SqlQpF7bEbn8L7Pi4KXOclbq0qhPdWQbzHm24pZacjbiDf8APnaN4abh5EPr+ck7hDE+9yfp9iFGNvwhT/c3E0lIb6rHc7jmjfn3aWWb+4mVDGmxquOoCfUkgsN9UJ9f12zbRdDu5J1Et3W4mmXrdbkY97qdsgd9PK51q3zc8R7cFcPO5xyo4P4kC11/OLlke9Zt8ApsPvwdB85eTTrKZt1yOeDkfpnSI2VUywPc5HSlIDMNS79NL/9iY0pcSSbj/vhUx9zW79LDq4TfyTNKL97cSTZbq+ReD689TNMqH+48xXde3CyFus7Rpn1ejfsskh8RMyfu/SBz953McpGn7eeP+Um4mAuTzxdTMY1oG4I/PszKSMjl+Sc64pamMxCSDPMDQhubk3Sva0D+WaDGEnZOdGy5qyqX+5SyL8Cr/RjLjlvtK8gIPL/OC2MuAxHdGrttTIRw6Zs1erpbJYCBV8L2GNFMMHdfUNoOfc9T99qC+lHPp7RVK56C4kt7143bE42N0yo33XzLlzyRT3Baq3PxDhStwJ1Ab4iP62NHNu4FR2ID3JpeyYr0UrxhdbRE1yZMTTm8PwGqpOzx2U7zu/jaZMo6rgkfGPanQVuoWrAecsykC3rwR1762/L3RO997a6//8FGDbfzFHtvfTKJo+BzSjspYSbG8ZsZdF25HlXTNzpV0RcCu3fClJMoM5Ftt/pIQSU6npV6hXzcQ9IzYju+zK+HWK6L4O6/8H8id7Gj+m3+4hfTf5Fhu+yb+J7mTrUfhJnfS/2D49RA4P/nw95EbiPX+m5JTMCtZhJNUaHyveLPOOoNcM9o/iVO6fSebIGJA6pDN91kdfjvjX8j8/FF9rJs1EjLnN9mEq+qahI0Ir2IGAc/neR0j3Shs4X8eP/SkcmZRRFRVxMffFNhNGdyIUdzW5++yRJ/AeazmTPh1FOHr4zWXeztZT8mjbURxyx6tGvqPf5VfkXy73b9/KhH2cleicVre7z2wZ5ctMUp9T4khO0/+AnrYF+TzzNDBPrmI7dc8llbcKUH0x9RDvqQVgql8UJJ5kxIy2Isv6rTcwTBsaudtsmnLX3+SQfvl7BF3qgtlv1clYXEHZblsxa/gYj5E6PyPRzVjd0fKi5BPA/kKmf0fTTDRZ3KwRw9ppqkAwuP9ZGrvRB0MXo4zZsA6IhjxMDjD/XqRXnpInD7muL6SohoX0qsUle/HphoTARQK2ivHXR0nDKjHmNJ/PWZ/LXWl3dLsF77+Q3axPrB2GXjEubs9ZNfdA3pow8Q8Z69CbKv7SFvFi2v3pEgX2IXht8wPzElbYmHLXWESZbQVdZ/3LGzVLWKldP5o7l/NXu30a7f9Np9wsMVfpGG730ZfSl1FGJibf/BFAVMnjJjt0r8ASVwJz/x3X8pcTRBNApvviYsrlvgwP9cOy8UptnqfTIZzaRb9pKX/AwmsnRHi5h9uaSGun3vkhti4UxvJdvwrfivKY/CSKFA/mKT4fiO2Ei4r8TAKucAojHpxVadcLjHvALbeSwRkeryIdIf/Cszzz36DLTX0sQzCRhuWS+mn8KBqIOMp0wKyoxdqCAxQeqrGURxeVZq5onG0apkUxCKqskhtSUU0ZRHEQY2WrChQXG2N8ayesHFiDfOQbaBgJvQPcLBJ41JGEDzpqzqdWWR2qsuGwrzfb4VFSWfkI/6uAITRS33mjfqrwjWSG8kdxHIx3CYraTrfJkeeUnrJsQMA2QaYyyk8driyvc7goaBpbfh4cW720pTucNhb/WuiWujfz0v/xHlZdGEvxWM42uZrOskJn6kNAUUdVqK9+Ih/OsvTIvpbyzcN44k8kfpSMW1yLdtJ9RBwOFscm8+6CJxdWkHpsBjC6ydUgwF0bWk9fKBgQX+j8fnShXvTQ/y+e/grsM4sONAvJPdJsvFXMIG3MM6vtQs/ADoJyvxFROdFD+8PZv7vEb7fdrh/BH/6a8jBz1GrDHL/0dbi9Juw1YuQ5t9Grc7c3iXzPhsqZcE47JC/tGofIDpF8uYPIzo3JDBu2N/oud0QmkZi9YT23HvuV1b4e49TZUv6r9YU/grM9KHKIEJXThN8NafqJt70F+ClUrH+XvDSc8vpB22yvw+pfJYsfqwVPLXM/g4EVOK4rsH8nwGCjk32KstewPA4ySvHT2LDepjS/1LqX0ipm2xc33vzPpU3iF9WOIhFiaEReiTXYxM54SeeaKPPu/Okbjq9b7lSzWNeEaYaWNkza+s8ZmBXtMZGrui7Fvwll+XW4aXF6wh+aFUWgXkbdvAocfms60mKuSeq8LsbQzirMcvI7NwZqIq4FkEL9YmkngvxAgpe06n6VdZ2evye/fEu/wX+9r8nFPy0B4qqrUIKMjSVVRY9yLserRdqgfdwjVXdSXvhWPAhN8VrJ/f4a0mTbz98tXJIe3p/ubgFN2UD7zdMFi8k3LGJRqRN1bz/OBr+cG1WQrned2JpLVUV3/M7iZhLA0BNyoL5LIxyR9CgVdTSWt+Az889BIUu2g2a33Bcb6VX5G1kxCr9cipyGeUX+WQLD6j2XVmqrC4Mh/w0L+7s4ytKSPO/U9DK5UWxiHJAX2r03/V/bnDen4gAxV/SAfqN+q7yhmJ33PxDSXvfyVU46rovhSfz1M+gZfe78q7cwzwKQYvDh/LPYkiHGb3d7SeC2hxVOeaBSfe/bfRX+EdJaG/+cMtqb5EpZ2r7JUX238p8r5W5J3QXWXH6rkYfSCpDw2MOKga6VYyRTcbAcQUF1G9b7gh+WCha6j70u6iN7jQfhSiqN0YDPqYd/OcC9HOguky55VUeN7q2nP+la29EGuZDD4+HpSq6aw1CP+sZNbZTNtYUtv5uvc8O9xdbHF74tDajbtO5TPS0HiZdr5AcUwhI5alaQXuM90AEvgRV54ZsBp1L1g0BAmgVeFtsMiazTX060o8VlMHq7vYV1KGUPthIXjAdTHZLVs/Olr+tZTF0O8LtPia4ntvG6Q6fX91Ojsn0CSuBHeZvNKbYkusTm8plpcgG/G95nW0wiL9icbcMPx93SyBr8PBz0hlhpucpjXzdz+fy1Ib/iOMGmmpdbCr7uCZR/lRN4qmXwAMKY3P9mKJfypTP3om40SaeqnFiNybnkcvPlZ2HGsOFJvRqHmyTACoSnNON6UMH94bO4gGP/Ssp/vC3U/wkR/kZY53rDa+EZzbMdNiLusRrfk1s3oenXaoAr4oWG7KfeyCifXrH9y8dmF/VbxmjSq+YIWKi7CtUp8Kfw9V/SU/vK+mXF5l4tjavVPVJzNZ80GjZsgf69zLru37Wlln/QEPrYxmtqdn13XQ1RYt1IQNvxTUlFf/LspqCzHydd51Hv0LYiriQzJABGhCUHTCmaR57LTDIH0zSX0oJVhw0kJ7i+MWevD6zHwuFkedtmgUZSyHMMZ3oKij70IZBkBRI69oCPAJGxE0lbEWQXN1Cjo1d1PWTCo+j9ua2I262gsAKf+cRNP4prd5sFQd99+OmL/AkGetP3yai1n6S5ZLbVwrwMFy2odnYLlSOQ1HG5/e9g7yjWfjP6qnGGPOUBOvDAyhriAmLOeL4PJ2Ko68gvjhLZPVGePmZUG0oc1vdHXVOEk5Bqul+doZha0Vmxwu6kkmvOm+HCOFKnulQFWLRfFFJWPv6sVQIMe27Rty0bQ1Dx5okLsjfjG/FUALQ9EmdRm6GxFQI8NBPSPn2BKu695NxqMUDpJY4u9HhxTS6rdTgU3rLcAeeMMmJUuF5sLV2Wa8Mc7kclAgYIy2gi31q/poW8e82tOdOThjbD0ZdWGTHqM1w2crQ/K8YgEcwELs7xQv0f0SD2sQ9z7d30D4GnneWe59nmKcN7N45uiig+6MZToO3T6e3wgXinrioD3Dw8lWGQNcbkCXEiXLOqLTP7pV001axyv6YXR5lzHxFUJYZiaEmtTTj2bXyeTvKo5S9EcBGI8rrjvX2CiKGzMlPG/QMTWBtRbkcl09HL667OWaQ+7TbLZa6geRbOV6BSIkLM4Bo8wCdh01lbs5K/Iz2I+EM1JLcdfvLJRD7bmUk32yEVduGMOFv6E1mUqU8UyhiyqkgXK2G926OOUDjBPkn+/T6Ng5klrI3sfU3zLVMrzCPzze9nA1/Dj7DR1/du/2K/sx0fzapvO7HFj/eEQSkESlwlslZckFriK8oxWRJtKAuAbM7zgQMXUZshTIA/bIR7ap7PrY6XsBXp8rr6K+TwQOMjD567Kxxj/W5F8cZ0uauirxjqNFwQnAXUociwlHw2oyX25S2H7syzWIkgxnrcZkcEGb8MAo/bMiPvAZQGxmbsZz21NGN5iiWvrvliUxzOMvsyHva0runaZomUnN1j31NNm1/GgMIfLJMzRGq+A5DOJ3chh630Bij4tpGGqR5bcpA5Ys4Up/cu+g1kgujBWXBKJ3qBUHtfg8Tnd6QYB7fVxvHKRwRD2xO037A6Tatt5po+8mL9ObdtJo1HLfeFcV2eRmJfVfmexi4uJSdeBGh5QGCy2P5MaKqkeALCWYZAMNqTyA/bDp3DPNkuP37iuZHXI5LxadFNsRJ6h39g6mdGhE54BgWYVTmzZM1YpkEGPjJcsTpSBTjMpDs2fcd39z14wQ661CMM7wGOyyKv9j3WqdtH/EisiZZ+ZsDKiJUNEc1pOC9anWmA64FvY6v7m8MVQlmx0lFJwv6eAt6vo/UV9d+Gm7r/Splux4P0ojNqrpHua1qCLev/brdvsSHsFaC6+9pdXjXU7PmaCs7usCQTzXLxR+Z67WMjoQFMtHGFpp1SuhNhjkorBXYvDANUkFSHG7X+a7mTyT02m7A8aa17cJuXLokMhY0Vs9xwFOirxckfaRw0f0zfr0rjLybVe6Q/bQ3zQFs+nqg7ARYCoPHzf7c+hvmz4yxbDu5IjNOW9qQ2s7T/wLqtXukoLT9+1ynj3CtMcsJiPf9HEQeLxTix4fgqf+Ikc5etUqAHMHVzvXyRWae3uIrifeGUJHX12oNRykHGfRxk8tGwrHpakPMpwm/cjRC8EU64OOSi4FKExh+SIVkYphrHzln+nFxoobnw3vsDEmK3pI8cGOjI3RmniKrnwsVdaBLMIGJnfiHCzXTTXde6mytgJVHqLQoGoa76nbXpSBNRY8HbfuRuwLB0iXzSTu2rIpPUrrEHDhMR7t3uQzBwUpIpX5cYSPYZF3Ona9oymubmujFR5zeyOpZmW+3Fo1pMMKCvYA+D/SR06To1deTpzCT5L1bls25aDLB6kASOVPQ0kdeCr4nxhXQx3tmnJTAehxTbSNbHmlCYrU75UjFwQ2YqF4x4Sk0SlDB1kaGnvE8h6kwg9+zetE2To/DinbBtIzZwJbzAXgiJ/iDB79TuS1OQy0Iy08TVedq7I9KMZUpLR4S9lyrk56CQ75x3ExCokntrHn5STL4//z3UCpSXPJNbkszxNkRuzaHPTjYgUxYCHg/XTevljFCufDFpVKzhavZX8YlfdyvBebw3aYuToOt2633cmUShCblnFa6Xy9HK74/vdDAvW0GtuZkn43LSb9d4FVfkqApRqDdR6Dh7EEdEW58eMRRtGvKVDnNWuOqnfmhjipY0vGW9PTQsdOB8EfReIRVk0rWQ4feiz62/l64/E71Oi/Pfi/5ZJCpkbVb/DYrwjQuJdhcDopyp87xNTQ2znEoxa+fUOMqP/YQzNND1PZw3GLMQ2/+9XIk6UbfPioaUMk3GhfXsqDunggbL836xuMidgoLYj6eY8ss/aFaheNBb9hem5K9iJoenDco4qMQ4sSXr4PmO/2F+Qi826pvEhI5ee0rkoYMHomPuW56O51rUGNntTvG5O1K24dpNjmGl8O5GkpnFEktdPwyxjFVM8PUJOYbLmJOz8fPJEO+Vo2VQDa17ZpveeUQw40FSS5uVe1Z9VxxfGvWtMmiZSheiP25+ln3hoVmiiYFplli8TnYFrMmTt4MdsQnzZ/GPA2XVBq2H0NC8k8+0kDDWmAm+wDQRNSXegbMqlfjCR68ewhP3AoYyB2xSJefmbMuZTUBFBg0xwjENAkovm0pmuI8OwDnK2qMiPUBx1y9h8UKRWtUjcmDcVqI4QH0RX4HxY4cZm43iQoH3MgWTj/BXlTcLqdrU69o+iPmhmYubfIq2Z1osa7sjthCAO8R9Lw4QwvMZtNGweOnmDciQBKYKuYNbuIYmMkWrBc1ZoW7zfvw9Q1TjzEcc8mLAst1nOaj0EQEzTEgxk6S5AyYVIRhjM5uqiumxh/A14PgNDU4UVoc8vLj+PMqVvapTtqevs2OhfW9j6IhZsC4F+Y/615okU3MjhWmOunrjuASN+zPGOpMaRAReaqIkeQuwFRhPFso+llxz2TybAph5g5YcythkRt7eFUOSbCe2XT9MhEw9jNEzE16jdC3hyT6NqTrkbHlhEva/oOEtMA8O4Plp7Q0jFB0NT7npjnvON9J6g5+9tRMIBLSyMLNhS0gGWVZAG2XYW7apBNtUWn3l7CqGSwgwyTniWiPBGjuBZu5q+k1yrWPe8g4iG/dhZ6iGldz1pE3oxncfAjkO9M8HlwRSvF6/DR9wNjnaAvrYZi2Cv7OryTrjm60F8m6kpFc39ZjmueFYpPdY/wZ5m1nUOc/wbi9KE13XzcyLST/5RAveoIRusCHSth2bJ3YahtSpmDJWJsDVkGyAFPbtQbIuZev2Tv3rYFgfxFNgDJ/2rqdScvvZ3Slvl9U8SVLjpd6u/vgiSK7OzxWLv8ljW+zkw138NGem19YpVbcjsPga8hl6OXdTcriKR1377PixB8/VpDubHD2bdV4w07BeOcRsLeNjpFJWGFPVfD+qlQHpNok4nJaQW2CyfQK5M0UxvPqEm52wsJH5PWfS704vVJuPeD4wUTgq/4MFO1PGezuJ053aG7NmOHfX+Itu0dPL/GV8ZxTYMl16JFxdJL7MI1OqSNWRFWre0UaenIeHPeynOkRmUYead6nAYT1Yx/C/aXiocwHewHPCIKPnIKP8k3c0qHXYt0ZsRvb6WKRcavph0Ru+w/TUDO3dfOIJZmRbyuWtpyIG2I7u6uyeJmjuaKWT1SgYyDmc67trWACH5yc364oCsp7xW7WpojTJQMlWPjzs0bot7C6Y5fBw/3h77ARJIvR5NsEVSEYPrwKQl4wyWf1nDuS7xue7Je7w3phDzM5TwYKWDyQAq5e80nfBOcRrzeu83Q3JdnxjtumNbmUPp7Vozpat1mVItLfns+bcGFE2Kl+ekF7Yu1d0lSCWZgRJNVLT8QpENOOTUVef+me8DsicF42dO8Z12DzH+5HE8fdz6rDvRnccnC5kCsE9cjGhAnZg3QnkuvvxrM36ZtZZleQZW21GKJ63MQ/YqQz6Bl73n00Lo4hC0vJ81W9p4vUa6guvyjkIABsnoU7SjcxXEuQdqcPib3bOhMkZHaVf9b2nRs8InFR7IHOjPbNoENNbLAj+TiejRB3hHnATFygSTmwQFCnf5XH5lcsSgKO0njkbP9xxPFo5DjL0GFnupXw7famPe2BIzxIJ/CH1vjXIj87zT1qtEwkoA1+xGKmRwDODtOOmp8leDowAZnqxWyIARfj0hRaLU6DAY4CDMGfnVsPdm6qRTBkZAh7mu+YuuKEf+vEfS2Qlna2f+bHpWIE1ZeywFF2m9wAVuVikoaledILdplb3gooJRjvGfzrdakNOv0qRtbJL3bTEYoc3xfSaN6hewSoGOn4WJfVdh2XpdoTr5e4YOqvX+YuQnfl/jU8lSB0/nHVgZ4dkf+5H+DJwyAsIuN0sq2lxPm3dtDkwm7GwK75g0cOzhfqQi1ssKIs3eJ+h+Kc3QTrv11Bw7KrBZC24VrslX+DwjaUF1d4zlMZysiSHAMsHQlojvaFUTxnc2TQgdXPufXXx8Scc0BgyWSD04qBBGQ3fXdzScWk9CGaXHkqgf3Q19kEeiSFu32px6YnG/et9HElJnf7NAw3zuHl8jXQ9cetiGmQK8ewR3bUAaw9vbe+dnj204y5W2N9+bIcu5cB89PS5AeBqOCEBj48P2kz0SdmY6WNTWfq3a/uzqPL+wDmkuTq0v/AitF0HdQ+YE8CcRjoJpShmEXYEakc26IzDOPFS5RAz6kZFsyOxjG07HZccMGTJsYFzfAc8FJ4ZYQsIDDOvHaI3mal9gglCR6QuYi2s2opooGdyEZ/jy28tSmaa3tGZ8fay0fIcvZ8lM/kqvE76oMuuqcUwsz54PjRR/lvdu5mB4n4cSu2edWrCF4jpsUUtthQyxNk3/uLLzahFWPz+g/fjNhF2rDlcMXo0TBYdjI5WyAhVgdJgcL/ndXzEo2iXhXnHEmO8nrtzTITT/B2ec0M7L+ZT07b8BNr+nBKqCUm/24tXzP9Ii+nzA7r3AvKDe4gHIF3v5IqpREigiSudK+VohPnvgCNsuY0gCssjQBJdTH5JJbDx2Vft+q14NFhwnfB6JOcg+g2TTiMxJsL/pV53WiD1lgGDRqFnS73GmYXTu7O9KQGRT7LhUoyR024kV+IsU2LK+PAwdw33Jqx8yutA89TSX8yqQP+9z/NatcbS3iggYI2BL8xiGNt3S8YQmiHADvrVqf+FuZ4Xz8yjwteYukCl0PNepw5KQFSnx3S7CYTsR27u1v/9tjZh53O6utOEdfLq06RSBEANmkzFstFa+kYD9oLCg5GbEpzw8PRbgzi1bzfTHqIeU762bjx+7eLdjRH9g/NW4jBB7meuiPZionC4lbHPFr4tIrVAC6Dly16RrANuGyGl08SbuxcMBYOdzNvEqAAZqXKVG0sTTUFSlGgkqUX4noGcKGOaV1J4ULSqqDVInvSPjti5HU9H7H7yZ3lTUef5guX0otjphIWTGF8fFcLLxyb0II+GLvsdjjUlbqQ4yfmdRCdVeELu7hZXrBoX3ll+3aHqfcfGhEmHr33bRtJiWX3lVhhcAhBYbVHxDGxh+MmQstYfTkjd/oYwpWYVvRCZiqCf8K4daMNnL9wtoexcutsPo/KzOFMGU2z0EE08foJK2f45e+ZvoTH+crsiUYJmsCvVnZ5wqUUqxZs/GnRRlwgwxFasuQuapV15qg5e92Gkf9/BRcWjzLkMVm9INpLJzv7+Z0GIuWQ5k7P1Um5fAQo9XYH5mZUDbTRNgojFbBldcKX8WsNKe1AYdp1nA7+xAV0o1j7uhTHrTQT30cmROlOGY/iskKiWiDTvZA1dcPtY6RydiO6Rwx1L+dLVgBeevFJo5W1dsM4FUU3W8vkQj2v5Lt5rzXJeHP0+8Q3paBaishviVzW34qbvAwhnvfV6YWEovj/2LvSNMdxXHkl7sv9L/aoCBAEKdnprKWnql//mPm6nLZEUSSIJRDh8TygYD2fLQjA57JPHy4oYi8iGpHKmwdLVZe6AA4nzDE6JspydnsDyBdL6njdxceZ/cb1S2RjVdD5GM6DNj9IUut+g069nxdrNpL/t/v0zTV7hFCllG/kmNbmcwkQ33/1A84zzAWysa79K/z8+w7moy+svVnTW3nC7JLv2koyk+9Lm3NNSlXk/A/YrvEaGWR671zZDuneby5GIVnyIu6zmQ/D6MGypISRWiUynEkP7gsPu0aYQp+enlSdmMroiiyQ091nfR0FJzvZfUImlBLE/A8ZQY8L5aYHiddQ/eW5Ep1f5qoiOTRuc10mhKSKZFwGpDVDZOmlF2kV4o/sfAl15WRwqY4Mwe2CwwXscjG2XHUIH61ubfbpw2ddApOXkELZ6aquLAsKo35mIFqfOXT813JWr+bw607OTdT4V5OmeHWZ46xfl5aPN1PsWlG0yIS2uWUgEhtzIYQ19gXq1q4cna44vYruFJ8gycL+O4JooTnt+ubvVt10+FHFod1mn8h8d8B2/fseS9kOu8IYKNZlvn9eWU85ieKx8qisBFGE4bGUzRbwycbKU7KQL+Zwhm0yDQqxGKGnniLD6wcyADoVZoj54F3waBpbTUvkmJMxJea6TSbomDz7uh7e0/Z+yZu0PFQKQ+2e4VbCc1mJGEzw83QVdulzfc3DopNi/iDE4P8cw/oryu6kpwbiahgNZH0XuVzhYdhjnDnrEZeh501rYrdVX1z+6qQ8V/1U02K6UphmfuPiL79t8ZdbWPMrNsGkXbIz2s1gE/tja/hqI9AtMrMdOhcMEmb//gcl/pHppfdbXJfIw9r8aKd/eA5wqx/7+5Pd9I09TrbF8TYvNPqPbXICPHz00yJFXzU5S6/Bt9wVatbxXtTHE1T5dA35BkRdmbzJlHWPWoSqIaEnsoPWqyEJmGY0YNDBdNcTh1793jkvRkQknz0Tuq7WH3xfdC8/s3Rsc585zxdzxQKNpGBJ3qbRNFfXBbjVoBllDelOcaQiqFoR92Tdr2hl6j82iJq2lN1HY5DCHNcjKGdskvndXaO0WLWYChXR/upHmFmKBK6BMNaoFj5pmYTuIU0umN55lXDaWhgZgs8JfLEH1AqU9yNS1rXmlVj3mh+vVAO6qmrbWt/gFAU2j2GjIjgeEYbfyFZufyO//QgXe7Tw++GOJKNhFl9FejKdgUUFlkxBfhL6dBUC+/NLuHfFgLctt/314/m6dslXIsg4c8TOcAJvs5OqFvcijhpcpIxocRXKmahgEgo3I7UpejESCFKzwpdb2xvrxDNZlcWWxWAvF4bnwePYsdRiZXbLL1EamtDS/c8mL7JfbKbImlyLChNB7jELD7uvkUXAj3oL6cviJJmr+BLXn2q3XCkAd5/xt/dZszdOMQS33B+kZ/l1F2ShCey9mKaO1jg+DPCNrD6ZLMQR+jQof2YAqUx6xb6daLFSE5LwTcjUq4KLpPSzE/NkdoU1JVppmjaIW+PpgYzOiaCHA7eBpoqYYrAPTj9eoJg2seB9x0tChotydCwLMovDu6DThM7cbr2yENVjrDUAlhpaa0qhX+a9xTIyBwbD2iZJKd+zdHfyWXiY3tXUY2Apaj2YsMH24+mkpxe3rsJZcDCBBihwChUVx2V4Z3406TgxOFR18m6p1DPEs/X4i/Bxwpbov0QG1HzPpuY/zj3N+m1P7/V9sT7HDUfiP6qFIAOXmelsQY0ftUlEgg1rAwkof2tmGHOAUMShiWJTkk8UzuQmwxYO3i4t5SDc/mqx8gubjKDnbxmsod1Oc2kbf4adcIuIcRxHYeuAs1fdRjY1lmJdKVW3kToWT18krKFjJ15gcTJYuWRqr8/L2OYoLO4jVmA5asvST6NxpvGaBAuAXLJd4Q+AE6GDINQHb5W5AhP/fYYjuZQk3uBIaAbnWbdYeO970fvnrWj6qI221WL+jlRvYbqjzaONxA8trmYELkxMPTkfpFqWpzrFSp/7xCaKdUZOJ9fpeUJQ9JZWf3NKkmCc7M/z/YBD61tQZAnZtHrvQRFuGEHzWGmo2uCFU0rXKzPQ70h2HdywQW+WUX+2l5LBfZMPlnpkSCBaUtiExIiJvUXLkuIzYwioILO++ubZPVBO8hXzo58mrX0xviRyGKTJIOCj5EW/+1NVNaFwyixPiaHdUTyRr2idYjy8ba5qeTPiMQuJjFL/JjfbDDyxXveysx8evja3ARsmgmTczNCgvsjmSB3hq4aei3OhVPTcC3o2kaOlufnQSDwpuHXEJ6LHs870Uqhw+8cNa2bWh3cMidu2t2CDlg8nZmIanuSE0+sshqSLziVzTt3NVh4J2visNBT8RPouwW9DfbcYVfMoip5s24RM7gMF1x23R6+wchHhrWnnnOrdhDNy1or2njAWaW0yOHz4mBJR4DRp2sVh227l6xJtd/TICss20bu8A1IlMvYMBW8r0nsbHkZ+yuHRhM8h+1cLRKA011XhCq32tgxZQUwpd+BOWxomWkWY8qcHOiYhSIRF2h3QqrHuyIwOBc5R11yRZEuaeRAcTZg5VPb94X2Rwor6MCsFIaV64nlI7aX3FN7J9Sy4W2FASf3sDjqPVLdeR74oNh8vwvREbbiSlAOPO9KkQkwLONcrUWhtq0RE7xQL9hcO3CrwUjgngFzixaH+c0eGsIOz2/l2YvgTLMREWrhxsu4nBR6ohXY/NITrKPjjnokyms7R4VtoY4/qFL/rHejT2sYBICymC4rfAWm8aeQkJXCTsPTyc3Dgp6ad2+ObzBFrRt4nn5s8M4naI5ipFwyEi2G400pOyiApCt/UCvxRA3WLJyn4Osc4e8z7kj01UgvDfe/6+Amkmsig0ceV/oKSlIM/J7++bzqP7+LX4kVPM0ezm/3MJlSmGBehnwFngru+AHBs2GZ9D7sau/Yg/7YlrCmY3XmRIxX+qV1qz07PCu0/XcqYtPFwS4TxX/+oByGA3ESYNXHqcinOngakZVNRqr5dUjsFyIYtpr/tY6aWZP1D9v7OT4oumq+3/iqqiktEY4NznC4fz3GyfEkDirUElrBCcEGeOJ5JtvHSTPiNcVFck7tNM310F9o/axvFa0XexXq8cn62CDOteaEUI/w6CpVLI3CIyplaKTQTKGBDNTDR0u4KE0gb359TOr2Le6woTwIrJfA3NieJGe0ANNS7oqxqeQsDgAh0n3EmBS7xxTLmC3QkqNv+ZOB27ea/d/TG40xO4O5tFwl/tRJer4EbL9JStOtlQ/xS/ZPXvkkiZha7MjLXWTNTsZPFtLcvU2Mf2scrO5g30L+PrFYaih/juhsL6Vj+xC9nuQj5h/Fy3JcmkuW/u5Gx00KPL5MHwBADLGXNQI+1IFk4iVxWF75SAFn3K1Tn3KY5a1kBeedx3TS1AmOq2iP+QhIIyXgu0TFtZXWCIYMA8Rek5U3zzS/KltyVZtGgSHRGCLJSqGrb+kypjvkiA/HKLksSGf5VU886NHhBFRktRATDXIKnAzvQg/agDUN6+TSR0lvYxBl0Ev/TAWyakj+wSR5LXWz/hBecXcvnszFp67X+O9kcxOwPk7gVlRcVeC2L5GgRl7BVlnU9pkdd0GODwtH+hcRjHneZiohIuw4vg4tH8c1ZmGLEn43coegTlpPOqOI5zWOxHuscAve0UlqNZJGXJcReRM5npYa54nug0HFRr8OB8D4mopqX1ERys2cjoxKWkBFIRlLTlEWEYQAKglbgEyZqBekdTkPr8FdEmZXSyptnEAlLrhQbWUHI2HKzuOWar/urip0VVr8HwbSmvidt8+KbfLrvtZamk8S6Y9XSQNdVzHF159ldXfyW41gClJPucclhplofVoucUwHiXyNSQUrkcsAaunQquXk5iReTD079P2Y0X2i1qesQiHyYeJlrXlMG5XuJJIE37N8/ZpcLwRwtrmKpR91oCnd7OQfGXLXvStXV7t4Ujjp03RMl6HgFO3ehQESlRtyB+kHUqie7nZRbAArhDiOXWw8HdWigl6AaK+fbY/Rr0p53btl94vRo5gZwYUlSMq/wTXYb6QQhpnOhNMRuBpScRzAfbCOD501qV6My4qncZCOy6i5dRKXtefFJuO3nVlYNhQdeSoH6gQybzccinEpQ64MWQ/zRxWzjPORswxI7aPVbS9sX0N1wAhCtTepDt5qsM1u4806xtL2H+0K4F6sMFoRFUAZvoSt5v7wZsodZT4pD4ju0kq0sKhO2l9C5XXPaWABfLFHQYf2xo9PYMaj0UZ0At4DvijSTJlF5oR7Y2GgHBHwfRCnJtxiKMoL4lFyd13r6rdGpb3CZrxgOu8Y3glXyRhV575zjrDZCu1Y/JCv4sZEq2Bl4nZ9Jkuyp+4tDGdxknkynS2qbg5Sgx+VvLM5tDwh2yy1eyOh3erPHefW3TADRzs1pf3pnbch4hylRzYLkUiXOpAlRpV4RZt2BHV/YXCh7RstE2vy80FW1o0yUYCFgiXJiMx8qKMWl0LcTwbO1i30rTIo4bH2WphLYnothAYVAXS2IoICopidHtrfSOFA0UfK35FWB7K+5CcPqmIV/tyyG0uCJH5A7sunzX/ZQOxhH7lt53ptbys9Wij6CXtlsdN8XXS5Z2WGsktJd+EQxk5arniJPz+P1bqLSnvp2xEdlzPQkyxAnWHDQfv6xsg4R4NeGktMhSou70WGEpLrJ2k88YVbELH9zH5eIvknOt6nr/e5ZOHVUqlq3LyO+m5EQCwWm8nq73GIZbItnxgCtSXTEwg+N4kwrGXGZZbem7Qh1+jieNEPi4a0Xzqufw8E3OJIJLkaAtdkJTzW9wgbo1E0k6hNkdRm6xrrERCV1URZyuFUd50meu5T6JIoqSPeQXIR8TmRV+nMG9C6/gxzZRP0Y3vyfTuXcmmKQRrt86fDOkhEty1Mx5bBOulvALay1aEJqqW+Mm75iRQsB2M1pF8emB6XxqVT2oOcPQG9tdVukOGgtB/CidHoxBqucJ4q3+VCeWx3skhzFl+eLXk5SKS6aUzdSqwPOqwcbQhFWbq+wXlZGunt1K9K/+x4fYvoXU7saPuWuhHhztEnbEwvld1heTCkq332JdkYNz9s25csPSDWqvJGZ8+GCfvX696mvqschkaCUKAycXwHNs0LK53u51YQhxcW165JuPQQ3lERAGxYKODZoZdr1el6MGNjgCF3fVhAL/9ufcd/tdF8DJaPv6mKiF0uPZpdLOAG9IsF+chqJdtiTTNNd8OrG54gdUqsGRZS49a0sTrJcHhn2K3sdmQxZbdhpC6FuilecgY05/jOxtAVraJh8fg+62A6sV5+o7QAuNQ6LMi3VSfk5BlmUs7ZDucpSE4uAPXHz228VXSBy9xNdkDTx2wD6koTkjdF8Etuzg7GkJaPlSCyWv/WgbfYz2kHGwtxyVHp+i6sW5oK/YJhzg3n2cYQ8KXja8S1Zx0UhYVy5Jfsk9n0deQQ5sRZ0cGDvu9eDLoR+Z1Mi50hSqxUIUyTOdrgh8JeSObeytAwU1Z+MyBzFXbdZElx0jzyJCvhzQiOpPVxAsQVcfltvjW5q7KQ0yH26q3RLt2HUugn63B9Abk6Pbvu9iGBJasTsl9y7MzUVoBJXMxh4X7IPSzBR6F2XIeCGs5Vpw+aTwm1NjNm9fsUSEJiWepjGnxJ1XXvH6cSR9GHYPUQwa53xh8V1C0AAAWEf717bxKkGZqgqT4vHAgaLSeRj8Up0rhLB2Hh/59C3RcMsqdgHQrR/wCTQjf9MHnVRcwnb2KE1Ptt5e7NWenwhaY9uhLcIEvOipANVZ/mcWNlTgbwseAUsj1sqXap7EI8t1gxb5UQMcLObRXxb+ythkLomjkhwnptmnBzE3d7FQtUvfeoAi8HcIe1EdNGLlG7uLf6OEOnTiknx7Z1eKGBSDVXL7qEvcouwTizfMNuhvhL7eaKJlDpq8Wnrg8nFKf+dCUatx1pznQmkTdCDtQvm4WW/ICgbE7G1qNNb9Hmva0jusqhdj013X2EBF/CH6rS/oWMjIvNxaXZM4PNymctMTwKoy6Qtlg98TdOOmqNpSkVnh2XOYExFbPXDZerqcE8qwWu0YIQntnXCSV/poaTUyGAOKzIMl2fkq+u/s2epVK2tK1rcRoRojnq45USP0LrM9yu2CX8zShFzFLjO/fY3HVdaW76FMwxhNXlhrgid3PqA3YooEvD8pCtTu54LlnCh6AeXYZF6+8oNSB4q5UVhDNSN8OQisWgJHHlXjYlrRS4lBVGdvyZtLLwmApkU7P5TRzcztFnDPJ55y8eShOK7bbC9DXWYJHXdmw1Ha8nz/LFLSIzDV0eWOZAt3NCnKP0ffWNbIuWARwv0ucdzUxdakAxMLDexx3s/YITvEUiKuuxORQ+cl2mJW1lIuidksb9CYU7cv/KrsOWAgFgTMV500XGvoRwx5Rz5pOkNw8OPYAiGlwSoCSt6mE5+nJsyzN4ZPXLzRit85wGQDmYmzmtW3eQ1h9R0pG+7/DKTI+Is2dd/piS2cchRu1TTc4HqEUnsmcCDt2f8iG2JkQiWDoHK3T/aONRiPvjmO5/iJRT0lzsPF7kATEcWKkoUVrIq/ZHX+C1AeqvqWe8Ahz3BSsPFnohJW51gUrOgPHJD7q3LS5sGMBjQK7eeASHVRRuCx0p0mwa8VI6kflvhZQdaL6/a8CKwDSeOFLt9ghhiXowGXAz+BtNa3reUY9dKW5kVATYomAEwerrxmJMAnxeH9CI9IS4K5/0wBqnZypYEd4+8LxLf648n0DrPPwjPc8BOC02TQGNFKs9pW45aTdWmlJC0EODIgsVkmD5aofUCxCys7hCBBSCTPtl/0/ZuU0+U4ujYT3/coOZkOV+V5kSqcXkhCHCCbC/9LBZKbAJiDcd0o8qASCpA8kOfVtFWqjyuJohxjpILoS9SN1rsbPRL5VY2D8FPZkzGDcfMveyYWdLVct+RO2bRQcJqBzyiZX1eXhvnEyZDoDXwXPCyGaXfj28Xwos+y2OrSWmk9HOxLH+q4DTefyfcUTgGdgXjMSIytUZVffPVR91ybAAURAJnb1Jlmcn7cyDUPxxU+vJOB+RivyjmTIuzi3yEGngC8PPCc0zsJkD2o14u0/6HcSUE1fAQyrVRrWRyLSVOFujx6E6R0CkCUVA1PFzn2TAd+eE4k7Ad3AgkOGL51YC7fImpbL64VrFa0DhToJ1JnDTsn8AkI3R2iXqmIJ5xo3cRQMbHohF/Z1bbm3qFVKjrchLhXAv5k/F48vQRH9y7pldqymE/f+fZ1nWfLw3o3qSNn8w/BO5qY2tsFO82PeRMa0pbdWyzgF9KA1ppeLU7rOxGz7IVcubkLTqdVU4Ul9MfwqlGf4a9qyloA6cwcFfJw03aGKtfKHQtRDjkpVIg09+0rakWAD8ImWHBpmsffyO/7Ap89+exFVwqcz8C2i10eFwWBcA/bEzaghfZEqD85OIawVGjrDP9QRizr4p5NJQ7RCXSAE0uSv9FUa+yq5fNgqaQbbRxofmFvF1qq9wNNAE/WK7E5hcQmkRiKuBLTS1gLEpHqlDNPe4Cncv3dS/lnpsztRUjl4uZdmi9krJmz6V+hZq0gL6ZvwF4rJw61DLqp7Se9BLMHEMjX9jyQmd5U6h+3XxH9IYit7phm9/kr63hZT/ABs1YOfJbylfsLMIGz2rIgdIYHtrsh2LeINLdIXpmmS95gllkdWlL/ka/CGFafdmmfeShSaf3Fw5c4YMt7qgttoPkCL4KK5m6eI15MwwjPTzypijxMnNvig5MJy4ayFk6FSDd6m/moYf9/kG/E0NC0uzEEz/wUnPc0LpRq8lBn3c8uHtWEW7gpayU7Q4F/fKhzZafBpNWOrq83lxFDy+kPYvQE9gfMNIHAqfTggoVe0vubUvq/6a2IRwLPuSN/2qmLp8VsKe1W6p2i4bBNjZjI51OFE/6q+CetcWiJBUO2rAi3Js1KVO35sLVGtMj/nvHrzvcUecSJQLGlAhapa90UavJ0S5JnWvtov2pBek9r3mSPgptHqYgLunI4bPVA3ikch9lVURPikS2TfrqSE2UJ/BU5Cg9E0hNGymFTO+mPciQJ/X+HDgUaebNjLqUhphOakMU8+Am+ifeQNP0Mo1Vdf4ePvjQ6JfEWb6PSVVeuQq604wG5Pok50EqpRq16xWmzTONgE4/uonj+em9YLXkuYp47VwrsVLd7YSLWxiBtbwZR3pzhmdhh15ZBw+tTtZRQlzREJG0R/V5C8WyMRHf9zbXTxLs2xUnzTRF3/7hu1qOV8fujIqfTGPJNSVlgnNh2RaN+9ybuuo26/Iq9wBQK67r/pfHsFX3LqXIOtNhjXyHzMwzE/cak4YJsuOXaeLa2gPSh5F4mDCp1/bGNpCQn3SHhIEnaXdgoIfhx+XhzcdNd10aUJDYSZmJGWw3IZmcEKSzgcu+ppxT3ehFxwn20A4wVThB2tiJjqCs4HNMD2AGE+1OWMNHnEM072WBx05lUhOrly3RWfT5yCGAPSX3oicDUWUtMNkXMleImdDeQ3kASdL+E7TC2ktLRdYDtVmk7DJf5JnEkFtRSsaD4J95k6gBJm1gXDKnLFAKtRhAOhsMkoJAf894tb8UiWWSxMnWTTsvlKl0ct+ZvcbtzOFqGVXyuXIS3NWwWMKYRzRc18jVsjRHzrESp7mN0CAUQqgsrSLPezoQu2Hib00qYXYK3iwSTxoz270/uSe1tsfL4is89rKLAFKIryupJ/H9F3vqDvzzR27Ae2VfG87B9Hx7U3px8T02iXBLGF9p3WF+Wtvz3PcEAINgniuclRWY3wzjSknzWODxn7OSFptpTE7iO/X6en2qMBgTvggARRqgcIpwUWAN2VdpFqnJUkBnnW1pf+fYD3O4Gg7O1Ot05c14dckS4zPesN/KciRelNpGdAv6pnAVaa5iXeYBLkzgpumS4tqa5Apsa17inWydQJYuuBIenmelreYp5Y9EzMxkC8ILQMSEfJb3u9igMHNnJf0RzWoMbpxD7qUbYT0Ik7aytmT8P+t/sB1HUhswcXJVOH8/s8Wh8FOzeimUTpnWaNSDE+tC/ttEy6913nuqz66OyFIDBBOYD5BD6imjTUgEe7/QG7kbW/SkE0jey3cHL3wTsUxARu4+9w+cPRYfJKRZ/Wdj7c3Ejh/GfDthDkTsPHDEFhP+vuVH58xlYWQb0R5i7b9nuBsB4jm8QJzN/fz8hmO/VravZIxYS5sSuagz8VMpxb7REHZrTzwuZnM+yf2J80zxhd9Mbnwb9mn0/k8FXpH11P32louCcmFOu2PG09T5PMVVrWImJBJM1v6hV+jhUXnNEEnzYRcMgbgtPYZ9fmVHDZxVAm7zgr6s2SYmn18BgVMKN46wNy9U/EBhFMQpW6Itj5qj1r6zh+XMKGT8PG/qIE+Ty9gv5vi8mBQiM4yhEH8dvDtY+bZe9cgcdc9xyYJfXLcbKISrLBvC4DVlDuajVmsZ+OF1eBJm4etTSk2gUaSAoDGxISO/CKSlNPT46LSFt9FNGbsezWotRlSGC8neBSsFGJO04LkY3V1VImOPCZNGV7Afg9l2UxM8JGntP+86o/afGDaxVddwx8bDY9FrmZRBPNtDXvCvTAY4QVi2aWcLug2ZOn00ElNWRjj8wb82y2dYpI3dCCT/dip2EA0HDbZKlA/3v9Z3f52qTvrX4Iw86fZhUBrUy1etzHHgMe2WEhnFpT5/7Qo7FKFjth+//zaG+PW3Dans08cQQC7pcxPlBfr8CaxE0lhjauArV3KZwcsMMYivXxRbMrxSNnAnJJQhejiLiHkddW6JfVtydcQfPc/eLhCfl1QPQLO6yakKB0abjgQT8hmeRUvB5uA2TiZL/zTc6WxRUonERoBHTRs5mVYKBcE7aZdY339szyA0LiAFlgmvf8UjxRRBUApa1tCV9qnv1DxEs9kuC9uXMd5P9JYUWEzwqjzeZ4hIBgPJeeCw2uosbEZ0ZfH5e3QRl6jCNwKHjMUZAT2B05HAsHuJrYarRvSbU0hycVqTNoIIdxodYpOcaHn5pji+6Pxn/F1M6fFZMpHRzSVbKS01zIMq9bJyr0juyxyNryTNS6BpAglJjg8nV0uK5mupov2FgCsyvwAZI9jmj78/qeuqkoqzo1vg48O3AdBWEVnm9PXgKcXZcmNUAr5zbG0BeX/Fp+RJTemoqqtgc5Krs/WLsklwi1vBxI6XmMzWfHPnJxMwgnS3c9sW6m2Sksq0ei+IFefhSRrZjOvVFRCs00dVMMvTlGeWHLS0AF4ZAx9eL4DDRveR/HZxVtZY861B1ND5sX/OQ6n+Do2+UXKIBQg11SeTuxAmr99CQj9gwCvlclxpXTP1zL1RqPac//ucFYbd5EslMZkA/drWhfB6WPo2JZZqOrE0PqjNx621KgGEPEthYT0O5u470MzY6zs3f5hhVlAb6FIiW2g8iZCBX27z0umCWl4jhc5xrCr7nBMXBMm+s6JjffUsIdmz2FyJjuZ20h7baLyBhXZ1XcqYXuUJuMSQ3RcTF71SJUSFKlIwjw3p+LXUxpEjEixKRANuIkdSavMPgGGAlrUt1sK+/dWD5C+yoeDxZwsCVYSUI7BfoLdlKtHdkY0IN/M1REnB2ao1vX5ki0wm0aUecsJGG1HhGs4Ie/BXDy9xFlmIKwwJ7X6DhY8zZ5vZuvNoA917ogIPD8iTrHLzS3aX5ewOuhqDHnyVDyYkU42YGdE7bJfouSy1AJCkIPNytRPUbWP7KMAltLDV+VstCcrEShdZnxigsaJzXXyB1zWHS6QXnYUIkm6RY6ccQr7rOAOui0YKDURdOrkf3qxoCbAdOlTLscM2wj95hKqSHJdSiCeQzSy6fb19Y3UpTopd3zU3pyIGrfT7AzGXldpM7AmjDWtU540j0gstOLdDjs2JTIdCTxvOVcal2/uNSgwqkxGeEh6QCjLSSuKhhiSS1Y/O6pu3J+8llnnOPVJw33f8jaqSbpuQVPYy26a+sNlBJb4zaAVZqPAIb3O/PMkujksEYnvaSZ9r3xS/C2As8nRRQfaTRhDtltTmOnvVhKkkrD2OgEEAlUAbp8LdXlSw1RRMJwvVnHNF6M7mjrzJPUsSj+n5WpnD/nPHNyMFlJuk1C0UKVg0qIgLpoVhvnRnamZ1XfXygnYW5eHZNPJEIwfuvGrqzb8QKCh/MUk8uk4Rb5oycNsKWL6q2SsiF/x2RW46dUSHdC0nyOlT2TdHtUonJVvBojsIuS3iRbJe2/TtilrgVIUGDEdRTqMLtpI3kzJFx2CqMUTEA2lCRgDvgOwDyFyq20nZbwGWdIy3aR3tlAaXY1k8q1/Ol2Rjwf7DXu8fqDnBBYE3khgL1Qau4dQIDG1sAJ7jpfTc27iKbCfLk5ce0UXP+RUkdTFo1vV9G/6YFtSrTcy/nqLvK5NMkValOyCVEVheY2ls4BSVun/8ztzsY+dh40s9JCVPTwgGBx61J2cpY5hxUsxza3jDoR+7fNv/818RXl9i4/drm/CN8sfYWfFdbnG8Ui3zhQpzUrhyfFq84rFVTT+LjPpz+kHw8agyj0hSl86LtCLLC7jgxd2394neV+dmjOjf8UtXg2LcYKo42e1OsEBtqYc0UkTmhVd4l/2UJ1u6MgZ25CGKOV5OZBP799V5XlXRTbSOsgjz/NQxjah6FOMj+nyw0B0ESfppGhHjNUHX46MJbtJ6ngUZODUt78cMetlmUXbnIeiFREwfPDFZ3/Kil8cDUgA+LvBtxs7sDTlCt2QBZps+oZBIlIJzbhiGZsPTICUr1DEnFzHxJIlUwhQla4q4icsnAHTtnG0rw0JXrWTwYkmjF9JhzwuQHmjGgfv2kPm+HbOpaTLWsZfzfoyPwyVANyfH+qvO8cIW4R87vNH0/meMJoHZDH2zQplfNmqlrZQq284uHhaGx382DTY1gqYaKAKN4UiWsl3WtBLe4pVvG5IHBMNj3lPs2Sr+8oN/zASc5YHHug5i01xq+qC4s2Imw85yvEIJeUcA0L58OfTvvrdVJQD7JVs1CebtWw53TdBo0RRqpJo2Kc+xddBYJieulEX8ZpwkmD/ylLMS9bAFVhsY0pefzJuuSl57rDw0J/wtg51nca41PARhXJRfXvMGNREkNwU5gDXeioNYM6/cIM6O15qjNEoFt0hV5DmYySibrjJnFPd8mrUYHr79wUl2o22aZHFl8inx2Fzg/Xtsw5hnhdV0TsU80kXt4116dUm550xSdZ761GP1nVoOceW75fZxV005S1IsYlK+7jAotzyZ1FhswbN0ej4dMtHOb+WY4bcAq+lNQiC5h7y6mPig5JMj+sjOXmpMLborx6vTrp+//jFsGxGzINtKeh64iG2ZJP4xNay1F/2mj32mjITwtBsW7blN5z1RVCJxypbOFI2+Sr2t9sZ5EELqpGcIjiAmAq905ORiwlUsNyiSqExXsUlmmSh8971Vkx6EPiWhKIXAM/HFeWhAB/r4+d2TRZ7lFeUeliPY7iWInq7wt1dP/v4GbIHsUDP8bGb2wbD9CeU//pBFFA6JpZfUVilFTHXrE++3umI82ZeVN69gjWnxCWwVf8E4VXwNFnNu0ZoPZPDjmboYRMSwIwqaYyklHmpYUqnIfhFA9aVkwQIEgcmGf+SJjsFenC24PmOq3y+eNWCp+H9wYMuKJtQOQitQpp35udYURvVB3bYC2X+mum0xIiJyHU5fMUujlkUoZ6d1EVLwwKWKgffxtUdyMnMJ45rgb9+90Lk+yZDjtnrjVNwqaD8Qup293PlAlqxuALXVNlZZ2hrsFq5imlouY3ES8/JoeE64Rbt7MX82kZYXuNC7PBJ26x89QoVrgic1itP2RZb/hwvncbzar0rlxEGQvSnE/FjA/KmCOYxf+c4DS6Gau+dtefxXlcZrm2nDz0vOYt0AgzOFZ6nDHPVLPvsvqD5bEqyP6s4Ulak0IOjm/KVVaD4Yh/ntAjTFYP7Mse3Hly2OP7/VX1Msl7ap5zL5KouyVG6qhWY4xCxxAf5XMP9bCtKfFoVifAeWuyiiFww0t6hQN9xbxC4FYwlA23gNMPp1J4/kH5PrrWy6nDxA8XvrfL301WSTJr0RKTIRrAuLWZOIfY5k4Tfz7BHRhuub0Y8FjLX4EbudcQNxfI3W4hK0fh2UrD08zTMFYS2Bb3HkekjTRb/YW4JZIaTjF5LWpWzsap7be3sLk4d3teWOFZqrJVL1gCrYhKjdtfY5TF2DpWfIbGlnJnt1l9u+S5xiP2fS26eq4h+3FSOdQX5iq0kuAGrZc3QPv6bNW99oSz+z9BWxaFcXTRDfMmuOGdRRTRGYG/G0KnGqXK8AKXM3jTCmZBe+WhU36rK6SnUbTzYth7O9NoHtHOhrXKBrNM9+nmr32PD/7x57sSQBGiFqL8PUK/e6dbK2AYzwq2mv9KI/FKL8ALVNn3Q/8rfRR/sTOfDR5+xg6nsNUbncaw2TY5DKFLYl0xRyGtP/cW7JdcOLQDn8WN82yQXwEQDlMtU8LsNsEzb65ybje5c4YBelkauYJMvk/dDWgt5ctJ5RYT3O++rPN8KMFE4tSs1S2Laj0VVYuZZ4tSSVWlOfvSWcB8Evb8u8dyPWPjwygLDs9aegUFxACVolNPQG+GTZa5/JcPuwyEhgS6mPBm4Gl7WyE2OcEmJC1C89lc1FE+EciwsSV3UxpquwJ9Ewf9ywXr/Ynn3cwyogL+hRxaINJuSVSBtfjSSn8WS/VZKH0ikS0AbUYqDPyXZYbV84G5OnJk+vmsNbMuCPDKIfC/GIPxX9NojluqL5IJPl7dinL4WEDFEF23CHN13SlqsQWSK+nS0feetpkdjqfpvlCj45jVrwoadufGGhmydQmsI1S6CgkzVRxbizN1TpW7LZJsl4ZyY87QNwNjlbZvU/vAayDv95o1Lck8fBjSgCO8g4PSLCWepCV71YGQe//OlH87Ho0d60pnJNWnxpnhUaIeIDdqbOKk6C9ArbpxBaYUGIn/zZbNF0Ye0y8B7ToRV/5oE/d3O19XBLoTPVeodBMvizr2ufQa8jtpozaDBYMd4mtbUnd01fSC3CKbBzccjLM3Av8/J8Zo/0u7cg4uBZO7HqItP8euxWjqYzRR3rUe1bucG3NihUIudw/H4OicXLK26KRF0MuOotdRoWYMfck+8D6fG/a8h3bKN3SKWmZ2hZYhEtTlc9SRPFd/MExGa9Ao/mgJyhoiV9gw3CLXrJPTGE9dDYC7cOdddIElBUik80WSIrDSiketqUZ5qG4TX7xcuAxQzmvwZUNo6uFtqNsaHdoJb2n0WpSapKvdNRno2G8rTDVDj7p/EaJq15Ry+7+ZOb3CljuTgnpAZXS13fpL+Fd6DPDtSLY2+q0HvpsbygynljsvbC5tCm3jTjOPwF+IkQNDjBFQpcGgnp1s2AWGaP3uS4H17ANSm4bGN3c0edXAI3XkN1CSixpnQIuFfQCZ6fNXT74ZqZ0oUxUDPdXLQq906p+saKih3lquzek0RiRK46tZU6Flf+X9nskR62t4DqCDOj7JPFPFfVSkpr5C7qGodBqJKlzWsqrMgoFaIF5iDkF0pZ4VrRd5KAEZA4sChp3xutUoJXR5DUDZbV5RLWHfAIMr2dduOmhbhxchRtbJ2fSFC4f5Z8DPuFtyB+pwgJaz33og88othUdfljs24WwG6Z+VbBE2X+oMOBpbr/Yoy9zTUbqQgCVCOMAuMU5vQ81ZKVLGrn8YBBv39e3G4Q/KKyrLousKIZWT5+N/nHawQg5u+fjwea12adhnwNDKkllsrZKxW8fbLtrYw9PpUHlZlG/zYuOokZbr8LOfTFhvL0lPv3Y5kSdLdr+aqh+8P4KFst1C3cyuTb+i7FOuktMFkFFKRdE81p4cq/J//zNm3+S47DykxcbUjJEKN4fbcA/3rTrv3ugfkdXqPPTsnqunpJv3rzikV8pfFsjazXuAhrPyEYEIaV6ws7q2JCEiRQcFwWIAnp5bCOxdjrntRk3a6rbJU6KqSgmsQdr9QTaLU7Cizt3B+ewDNhkoL8TPqBexOXcTt+FiPVcVa+1dN+nmtCKoE21stnX1bjWSVpDPxahG3v1/eLo2D6F8NVSOFxNcXmntdfdHq+/jF25LLmv9KOVAeHsKH0mIe/iuIj2CgEbnMtmyMj/OA/f7n/hSM2s2SgOJScmfInqxC2X8vK4XgNvmzvRh8r9f3Ej8v3mH7G8DhJBYMc+oho2ulfMgW4+6G9qoOZAhz4jbLYCL/bn20ui15J1w+aQkoj/91tzC4rUcj8zJPhksNoQFZmIqZaPuhjWRKVKdxPxPFy+0mwhnZDu3dvP9doYfLObXHFmDSd4ehDUwLc6SzXkPxtntREh7xYz+bWLGi+sj79pQnCsAOlPTI9VbcGer6GqhGST+dnBeoyzPH3RCFnMIOBlaR4dFG8uG7J+rqG+S1e3U8yXY19thjfQlvDcRpQtQ4Nhz23ad6efW9N47F6+4zUaJwk2kMq6Mhuso6f0/ffDv80qF1Iie8K74ElZZCjji0D9txJAQdbjlNalEI6Wv+wMcYAACHwadvNU8ETevPc33Epk1iNFuEUNGyBZkeDG5NvLSTSi8F92U8iWEi7W+23dAkkMpVtm7+igsAJvY/SZRLlevNEck0cQzKfa5de3bwsFKmPbX6l6z+Ri9CeQDTRW8wlmvPmURrqEhKi+fKwhbfbTU4lEknt4a9DkpR2ybA+ToLHzTSVFM/PPI/Yh+26T9MMtkM+X8dwUugN/zdn35uzz0zK4yWHlbh/BglfWvKEU9dIp8aO1lORTcUjh75lP+CbFY+8OmDDZcolZ7BODoPdFmGoU9sprKNs8V5txAw8vav60yzpCjTxuumfU5kLPnlp1StZqCSqgDgy0Ss/2GPc+5hwTSY3zMWmVz2ctQ29oH/IVAnbLz6tjP6HuABlof5ij1qvMs93JK9q1hjD2HSUXK3JAdJ4eKjxK0dcx2SzgBVcXfJmAuH+YO+a2lXo2UC8yKveQnLvb4fVlXzcttutaXzPl7WqOBFVdZMD1Z54Fcvi5w6qnzgo/5woYPg5vzubAFWPXgng4v2B7fwzUgczSugr3EU+tUmhm33JsBe/M8sQea4YufCSpNsK+ECnYHD5QBRSPhg1elYDK31BT6Tg0iL0pbKHTE/T/PXz8eBQJS8m8RvRz6f/bAj+SNLXQapcPA14Suul5LjY0VNfR3Wvc5eUgO4AOFxKQpNj9DvJpeSzvV4vAeKhINO55/D2dvbz5GrSZDaiEX0INpppahu9+3wkn8sq/aIpIXrWH6GAkh/d8mjOU4lOEfVeiCze9nIA5nWJJdzCRYlak1/T7FKzA9ZQzc90x9t7XMLTfYaRtO0wULcLJpR39MU56uSGr64/nFt0/zQ5jk9X+HVIdgtJeV6SIGnYQO3HD9VrbgknwBz7WObZ2dfXlDayupLnMk7Z29GbqRfnD3FuD7C9C6r16NK/GzSDuEi00Pw6u5lyfTgIQ6nldjgmlkH/3z20rrVP7PRuX8dhUY7Peiz1XmVqn97louYJU7Cc+xhAXvYUkLCinqmiuN2tumh2WV2RJUzVepkzBvAo8mM7p11C89X99ui0xdTPwCLnW9WUkk9SrlpEPi8vr+0cUY+RBbb18ZY78dBmlSicCJqctffLyB/t2R+ZDDCp6NzkaE31mLme1DgTpGNfk1JQzSmvdvmNccUfeflij4N3p730vtqjY6Jcq+7GL+/TUbcyi+yr/Uu+IrN/bZW2r6dtRSkIOB8IvNCIS+llkXpDxqTpcc8MSlu6xArmoLIUVXaWMpaL2gAkoVtZiERGlgzLIgrM0a3j31R8tYhb+lnXvarXGnGNI0QUexU1SjxX1bBDfTSPA7uZqZHoy3n7cU+6oAJJfKAZQqJ4ppekWTVqkBq3INtnu5t1bZQgZYrjiE3LY5IVbNcAJzxUM3ROiv6rIqCivvl/08Hp+P5ei5vwh4MjfE7O8JV7eBjzcFznJNXWJ9rbarAaOWfx3k1lIkpCx/rRLtioRv5pfFmRI3ttFB5votvq0dsbx3jr99N5/CO3w0yaC1N1WDHuIqr2UE7Z8mMirbLnt1iOrJMUi3EjY/PhYHdBbANrD86zBKszl1ki9L8toZ3vl3zMH9JdA2a8BgwauyxQF6jnuvHWsdRKgQ1biqoIFEQBbHWSUIcdxRhieYwF9+QJM+pbK7VQQcVpPojULTXfANrqIbl54io0Z7TcMZPZ0ZowoOgCw2rsjGAnNfCxsgDeH+hy6oIrgjmJFehfh3FbNbfD0vi0ZNWAzpfppHfl1f0TqyZuH1tF/iwIR//9iMYXeSxP9ZkyM1kNlZ+saMPx5AzdwLnQ0OwjSiQkdIjosct98XBC9RCSLhyNkOlCSjHSIoVG3adriZsvjcWp5eHWyncgJ2IuAYBH1wxgCWOeqtP2xivPjKpi8IvdBykW4DliYpufiBBA7WpsbfJyQaDAxZnKlUzRxzjP8ZCQJuz0F2Vyzo+k1a01JxnqLzumdEfSSpty15FmdjmcEK67vfMZp3JS3CARXpdoYtV8LRBX+V6IuIBaq+6HLA+9vBK833GdkmMyWEn+N0+THqPKx0VmvApoDEgVo0PBNtogmDbtfvd63l4s2JMdFel1zqNIfuS2Xjg/OMyte+VxenlBwUtK0CwQ+iTUcjKlDfnZZLYiD/VaVaevkV2NLz+m9EePFGYRKgIpmOY8ofYtBXc7aLT8gInrFJdxSptBbn57gHRNv6c5mhi7wfmMg6vti+QhFciU3y39Z9OtT3nTH0VstR0Y1B5wQt/alGUvEL3clBlO2stNOX2NhKrw2pQj1u9134MLdoLzEt9diYQYFHn7emN6vzyvZoAkTX3M724pQlWXC+7TPQi+Tml3//iqFlWJX/6b+v/F1P+YfatQpf/15i32/vLjf9K8HaFXnPhbkw2HZ/6FfbPlDf73C/u2F4yePvvQvlkQpP1vpt++s8PqpzuMde8XO+wsOtsQBVXjA22+Kr/UT36q5L7cYKsm1EwMw//+oe3FbpvlIPhiil+aWA72bNEMC9nMftB9yEH6CH/N/qqPGejj4/+F+5DhGmu+mC5FOt3LL4qI/O/3noM4ZE+ffcdzULCx+df3/Yb24dYiZuTV1jpBHhZ6gCWfbl0xArTAHzbgBPKH/032PzPZf15WIr2FgrDK4tE4SMNUEzIDey7iS01gYaXdcvohsNgjNFlliX6UGHUFZvTm335fwdmTtdyl8IDgmpa+hn13D7/FSiktbtDBsYCYbtST5MWvO/lTSSNwWavaF8ykKJjV/ITeBLjgOkGmAErV8dBVKy5CAFHQ2xtXaLSYpswFKfke9+vlVvJ60aE9/C6cxDuc4hjDw5fBURFEV0SweSWin08OSv66Pt4q3Q7V9bvi0TxcyTP25ipYr0k41VFtVciATnnzL9eX/EepKQuzXX77qyqrCCRx4HbhqCPeApZm7prDfHFnoBmuzFKesDoRYK5IQcn8i13r0fQIjz318B668E07bQmWqSn9/mXW+gq2nq+FDDhL4TOjRmc8pEyn6LzK9fcxtLL/mqrP6AN3C50CZ/g2C4x3HOp6S4Dz+cv9uhh5iIe7r3pFwz8A4RY5ftxSSa0PKwX13XRRDl4z7WiCdcvm9D3tovHU/Z2ma2vddktIhVTEr8e8X4YE5BdIyyZxl1IFe0MDFUQEmQ0VWkcEmdzMTuakudJUclzt6rUspaEzW3xopQu3CfZqbW4TJydfL/nVltoTv9tK0ZKtNDDj3fUKCZrm5/2GVZ7GdzVshOi6U7ECN7PXbwYbHCoF43zpqiE+9TyMHFIh5yGPYOFij0vzCZluoBsW29PD70nr5EiUAoPpUcn5+uGIQuQmSMcjJlpaD5L73FfVBMu5rx7wyMIQGYX61JP3roI/NHrKKJA6BXgyL1h0Fllxk8vj74mMGqmkZ44fFtsfZ5AZbU+CHHLPK8PfPrPnXMksTY5wMHLeZkyeFKvAUyyNK45S9RmsJTJwXCe4heqjOq1RiJEBCQ8ZRoJ5IeWfE4WlpXfomn9+7EuSuC8wk0c46c+lk+pknelrvQVGWaJRBaY0ffowcRd4epiLP3+YSrTZ1ptC/5Tw/po7YXzAEY0BTtH0gCJDhV6t0M14+2/+V/eL87KCnNmnRhZNdOwEYIWU8Me7Ql7b62yhVPyh/RDAmUJhlflroxwbl4QWmMs7AEytbeZuPIXqqXglSU6FjmfQFye8Y+SO3YXa7fyUxc7Lt7zI7gM8+ppCUiruJYeDJkZfCCdF4/XmURutY0QJr6MBYy4J5fspIblIql20iUwuUH62mW8Q2XIRkHgMLH3D6UntgV768kAWbQymIIFfSljAYKc8j12YOUi+j8WGVx5YF1aCyN7hBUxqafhOixWopBdietwmL6yVaTc8zah517IwcDoDFEwiYoAC5iki/Z0gu/z3PRiOwEYOu7r4Gs8B8noCZWf3b2HD4/XH8f91UuhCuV54wOEweSk577x7pTs9R/YBLZLKGoTp/zrQYD0aghWOUAQHlCzURyecnGNFLoNwCBLAhgrzmQ+GjJC/x/lInQE+LEJAuRVyxX6S00YXdABeS99TvdFlBTcIWs6FKYGiE1zrrnkSsJXEpGR1+mJQekKZar4DCuymC48isy+SuxF2c9jdpdVBZyOkh/erJFUj+C3bAvVxCqB12svqN35k7x2QVjDiMiYVYmmql2fuM9WidDIqDXQB2OXhsXTZ1M4dom/p6gnLN63ha5v+qWPb1J8SWE8ggkqipqgKAIHBg4Md5h9HtKQEsL7MEY+3QnA+xJdcnqMkGQvlU7ngcSpx7Yg1Kp3MbPviMNTtnBksq+eFIQL3QZXSOjHlSOT31WKOKC1A2Ykmgo9HQvOWJ8yIf+PSXcpzc8HrUpzPVVX6Ji/5ocZGl+Pl0rEyy0FEaMzbnZMShPoUgaFyGtO1DS07MmBiO1aGYnCCyKKJN8VcKznWHRiy+UmOEJMeUaJLNyFWnAxi6Ogdk/e2h92u5Aa2CkKuSU2CU7sZrZWMKWmC1AzV0o0Pu4iJFbpklX3J8If4gqVREtON86I7MBVykS+W7kDak+7s67qMO4Grf81wV+g9yUNlsfk5ChLxCRra5GtmPJ3ixri2trv18abqMAtUqlR3xZ0aK3molVUvoLDpLVzkf4gjwqLMcMxyLIUDOqiOFJBlPzXMU3GGx40muypJbCu2He+85stICd4f07jz4Jjeli9ikYpjcbqE2GXItREcyaITXZ7iKLKAyNtPGrC5Cceo2sbJu/PRKmGneCZk9JW8kXYl0JqmKq7JlBrC439sY81KWZbWeDXC0CuaLNTFQ+Yl9skZD2yzQPGE69sbL0HlYHLXQXvCo8mKvK1AP2VOE+VCwD4Xqc/9FwxT46GiuoH3BP7sszsO77uxXCmP8U9H9RvlkW1auuQe4cumESeHPJZX5rn9BamK6VfTebR7fZz7kEod0WjYmJENC+jT8W4dcJi+EWcl/BmzrkzAvTTKxnjKtTSnuoNgqvJeVXYpJZpJv45wXIwUl7gR/4b+7v3eVdLa67byUyNiUdQVF0J58p4HjTscOuDT0lxM1Dhr4EthpejpmY69KI4O7rkcewWWNGotog5XVFHCGZFugpOLquVIbz7vBhhyhCLuWMLUFyEdxV8y2Gl3fVDBc/nNfVxLVGRq/nLTvHsWvmdo05jbFw/rbCwwW1a518/LrSyVXFPlREiWT2eBp1T3jVUPVUFpzDhAqsbX1aMkxOjcyKRDRCsBOqGZ8uAa5T3OQSVK7+n7EqvkGqlJEx5apXbIUuydes6usB6clLkoqTWUsKyWreF7dyNOI2SUr2V6wjyuhEKdP4Fq1HeqwlfN9U35g+y/jG2p/tilWJzSOvsOflkxWp60Q9ba0pt45Mwnx8JwiH1eXodw5mk9Y5nveKG+wfbvJ28c0oHDeYIgTu41KYi7ndR8lDC+PiU3qNfKl2+LxZrHArOKMvK37hkWAWME59LUyhjTo0mMt94TzSAQ7hd9b8TRI4Re1Icr0PlR6dcnqlx7YFwAqLBq5dcErBdAoRGZaCacPOQJ6D0xT5RMqpQ0/q6qZrlK7/KaFAvESnAhPUho4txZA2BSNaUlKcl4jJ+LvCZI02tiS2Frr6da9MfQ8wCPBV5IrE13UwmTmLoyb2MHdL/g8mXlKiMeEa2IEUMmrz7u+SzvLuXB/ziM/Dye75faZ4GSeEgrvb8uhRUQARdlI/ZB1IapXveTl2EkrNngGPuWuTIeeByRbTDUAAAxwPIkdCKxDHEsuFkhGDee/qF8gT+6D9xIzmI79IDOPQAzmIpnGATbWfOmAJbDpLJPYJlZlkLGU3iW5KQynFRDa0ewFFj5vud1RkS36y/e1D65SRs2AEa6BkWn81odUbUAMWkyujMW+8xJFaU9yI6VciP2tzIPLhumuyNpKOeQCl/x9fOEQ55omB03pflKRovQTJFAaJANcR2er7xdSWWCBgSgDDuhdHzGgusz5qMIJguq7B6hv1K0fuSDKt2GMCGYW8jDcOWlJY2CRQEsFb3sa6MgiRHI3I9kuS3fUquOBhhiHr/n4u9nl9GuTq6ZSzPHYzAQXuIkKdEUk++3ee4KSbvEKdpaB3kGYE8vQu7BqILpUqLhi8o9U1KjahwkHxQn72z4H3UzMldTWt0NQ8xd2eRpypwaY6nZYZ9kJNG3d0GeHOy0KIrqW27WwY2ZD7sXD2zagZXvkuKWwD/eJqUTfG22Jsp1ENMqURzqRfRa7VZ5urZxf41gLut8HCIHZ3IgRn/jq9H6xafDAtR9Jo2J3JzXcvjyXxgGpkU/MQwU9KuIJaNov6+kGwXM0lb7MgbLGIHDI4N2x587vOlsOfgOS5yDXoT44CGl1aXW9UFaYaG60Q1u8XygQ02PAxA/SA/8Lnq9baX7DVudqRjw5LynxLk/xL9GkPWwnBjHpCo0XsSwwKWtRfvC1lB7Q7/0cJZzVRlYWxyjYWQ4sPxeueTNh1GAQKBSldmOt911ibCo4Qrgj/ZkSIblApiacRv4Amj9G1lio2/3oqXM21LaDOi35TeAsmAQQgIp93C70xKKcCXgJuhRGQ58DLts80sTSbe5vnpRCyt9iHQskUL+dZfriKvfe/szlTtuqoyw+d8Ro7x1uhhVyUUSx+6WVK3jNR2pa2mgyv//89E3BBEDSPEtL+Y4Rc6zWeB8pBBD0Sf9GMR/G2fdx+mtemSSiLeEpxnlUa2vwVxBhKkkN6QF2O840Uvbm++eHuo5htSq+2QM2HivXXJLNMcYcXnkphT4pV/ewc9IcbSacGRditLg36AwX2bj1JlpeBTQeUrz9KKqog0AAZ/Yo79Y4iLJXzBJ2TmbEoh0FYUqd3pnT5BH0dkh7iAioWmKNyJIBhIUrzXCztaQRTVYKnlBnbPxH08M4cLili15XiODKoeR8OfsJUAg/PGjPAgzN1p9tO8uvhnLGoZsEBCg/sKbboM667YXI0RTNl76Th2ufBa2sLzdpwoMwUskklooE3EjomaAK9YIF5ri6acuOk7KZ8l0Uq6sbDvrx+hUMDxsAXWQ5GLb4Aqr/MQyRiR8o4XvZmBje5OBbd3BpOMVcXwAT40ZxB43TTdPMgalKcDn6SU9PzAjIPPUbx6VKVHWoX7CvEvPjB26KUT5mFV2+FIjhjMJrECTaF+6nLvKLLjDt8lk5FbXKREgQzRefpEGZuR4tEGKJuFMxW/9HxutMk0nRbZOlZNKWLq9/7yn1BLqVkAbNyWqBl51k0zkeOryZvhGldLg9jhJ9jZZcrCrurQKlKKJS43fwhawT14A88sjKE6z0NtERR6p7Qqo6mrF4TrTygDvEYUdJ8zDd3zsCKHXfpxcgFeMk7ekA47MyjRWFBH/QQf3ejCfLXieQpsWRie8/76E1wuQUkkWSF58LAszX/RveiL6GlN09zopfPO2PdjRJt2b7KiL6ZVn6znn8jBCoooS4LFUq0mVrWHYNR2mODkipdFhKg06mXzCLFxjz672o/cCLzSye70L55mg0XYY3iY1zdI3WXgEgnEKHxd4/6Er5yJD2wcO4eWtR3IusuAqYtpF67ViHnyETPxKGI1nz267iQTOonKkEtEzV7DL+DIvNNw+JNG2ODkk30WHEx8p/yhrCfM2mlyTKREd8YJFc4T7YpKkYp5B2sT0Cn40n/EJFd1gh5PwHlJy+c8eodYs6c63phm8Rv3I+lCRkRe/OqXMQihSLydxQXGP68kEt5W/POKbvj5NekB/7AfYNr09zGOCED0RBVW6jtMVRbLVNHFqJfknVPVyBNoUM51pVjkCgXLNZD4MKoHMCo8IvWNvgZYd3vMqAF/O+pR/Jv4dW05EE2vd0Ihytk6RXcDsUaY6u2NWJthCEhuzfshLFdfmzuVGvYiVwj2PtJzalSCcyCc68nkvQgtwapXWBEjJxDg4mNeYL1mQogEczZ9xOCW/h1ssI2PMtwz6aQeMswQwJwE4sndAym1FpXGnEvZ4b5NWMQbt97GlLBbqL19QC1M1xkVcHtps19zipPEis8ZOI1heHHaeGJdrOQIR9Ptvo6x6L6W0bv4u5x5VTpIzGpWADZWur7uiS9jWUAUSisUxnT1kFFQZXjjDh49Z9DsGpqwlC6OXQXr+oEXU0nW78VH60lvbfk+qmGJQpKf6wT2KnudZDKpGTq+bbZH+RJ8Y8Efz57y+AG+8mOPnsRRt+90KrbfbzNa0Le0iuVi8pxEEFq/LpzC000i+iQR81q7q6QMgTkhkJdfuPX7SBBSPnjw482hcySxhoqnbPhVjj1dvi3wafNlvltiCaZ4Vq4TjIOMZVj6UUgxmQjtkytlzc8NKX720s9Hg6jwo+5MVaY1O/g6K9U7Up/6kEc3Tr3j4COjKZFJoWEu17PLfkn+Tekfpk9qntRkDylGyRvdqKDVskFrjbfDpeTbKKwyk0gQZDO7NS4eF6kXGhoOBKaox7cXNHubgKtuJWcZCd40OZQJo1vCHucVrgZ5qQdWI7M/skKQuCAruLHOHGU1J7A5/A8nKBNS8vcR7iBeDHZfXQ3N2zByugL4Er4dXaBOTWBwbz3yaOPxnDhgD7Wf5u+vGs0uRnM2EFphf9LLqQZenkaHJPmww0L3SL1cnflGIMUov90uxG43BOpY0wDuJbNyrNXA5OIBIPTs4puw2nokpsT92eNMhbxJcs9iKHKPzCDdfDPdyWVZEz1Vh8+CylsbaVIBoYCaezvV29dUYfYlTSq2QAYsWKNiDxTObeZ7zlqZn9/3a/jSjmXp+xzTUAswQ8mIjUPdLSMqB3xwCw6miUr1JV65Wab4SduFMZF33tipK9cgSSAhikE8d6kFZUKQKUF9+AZVGfEbWgJg+onxX3nisEB762Ot2ADTNi3hOesmZVSlpUltPUHy32bzSUAtmPRcJCmrtjbWs0BuRRxrONh3wPkMMAeWN4wQ5BAVS27o1DxzPKMcpbg6tvrg650b62GZXzNvLZ+T9OhI8SWE6481j2fs2uwI8UDaVeKPa7ZviPzOhnvvjeIpnH92Sw3z3PDv7TR18PQEjASZr24b/9lLdjPb9IepA09+c3iP0wstoNSygKd6cycnYm3fqmWYl3Ua41yejTlqpkXPRmqngVa7mRG0FLn3r1Q0N7XKNDEm+kX7CzwLK8P2x3VcnhgFiCju9tiSnILwUrpcFgfkbB743XXPjLURXJ4eFlwL13vvsIWTHLaArzj7UWkb3VeBRRRm7Js+616czBbKMqEwQGX136SGfhAYswXA9IkHuA0bJp6VKVbLr28233kyNhGvbe9yV9oQYPwNkE2IWuiK3FwVzijz/3D1uwcAqMsMLo1TY1olc2G24dEw4Y3GxUTHDId0o5pkZCTmEE3CPkncziJ4MA52NzYiWydVtDpeOvrRM7gvmgt+eN6FKMqquh60QJqDqR1jULA+K0UkoQpC/Ybps2TXqirasOlPEBV+/jBMMyeOLzjQmnhiv8TGZKP78cb6EQvNEMScfHGPvZhsie2u4S/iX9moPsG0AhBwZ0QMP79z3h5UDR1sQ5YHFKIBLWdad2cH0grLwOajF4Wqa01r6q3NErtSaflkopWSBY9At+nLWMEk/ca9+3OiDqkJCwtj7aX/X853SJ3qhaU6jcMvlDUfxOtJLISJU09KToec4MNmOxXaMqfUY+nQUonJGFM4nmwbQJR+VO+Dx7b8xfr/mxadZ3udNtzVAm2ScCZZFyjws//4nmR4WikfIYLS6yobYc23hKFbrjvjD/gmm/csn4s06JvLUKVEKm/ReT4A/3Gq+P/LqAbHCHc+9+vzF3Hv+waNa8vHfeEA5LQ8/5OZjaE/MZa+bvMVv3EC8N6kBrqGvpxSzsvCn336InRVlxmEj0i1uwx0ekxpjzPu7KDMtGnfk/FLOvs3ScggVM62PyGap/8WtCdgiQtCRcpe922h2l4XXxMH8drXtRN1EEkLYREeGsGcUcjcUOau28nFRwRNnWiv21Bb9Rjj4OymC5W6FvjcgoKyecATz3QNQ0XvwyCaEfproNq6PnFw1ytctxUuJW0soc/vC88OJiG42kYxjN9mfTLXKpUpMEdQMHo5L3NTUGI6c7S0IbBJL0aGuTM0rmeeUYGUqJStJqmdp0yfQxKpQq36XdqYzJ5JyNee5JeMxEBDtJD6ZT+pYj3AkgpY5Zu4gKlMVleEYip3RRyS80U/BZOlXk8q6m8Ec5hAzDxUeEVdmAZ5pWMyrvE3DrXgrFMh0TJZRviYsCytAHHMlyW9jMbm7vqsS7/K3lkriRhuGhJu1uVQ9JjJi7XL5nP2Hwk8zPjnLCn/b+BUY3HJ9qBq/qfEYBzbHSJ1DvGWqKJrk0w3fcAyZLUX7wOsBUIqBqcx17YlBFdSU19wm1yljR+A24MSyD5RY3eoFtef7Aqs5pVDMeWmhMkrBRiVTH7/CMo0nmrrk5ixYLpTIVCqEv7kRIRpMMA/5QV0tfPcK1eoGP4utExvIxgkvHn8PG+HRRcy90WkZ1Aincg5svrFtCeS62vGxfS+MsCYsOgdeNhzKvCwXaNUKUET3PSfGIf1mv84AUn3HwDoZZ/DmaVGRlmhDeQGHEV69NNcxTiWEP3+cCnPGRlmufuih7E3NB5LS0qp9QEgjcPza1S/Zt9XHBFarJ+HZDLwwLHAIx+bzxhLiObi82c26D2mPkK15A2xltdvNjnpSVPEgcgrIWlmJ2KFdkVpukyIuZJymj/6PhZFLAhkRSFH1vaYtW1c+HK3pEHAnNeROQ/a27hJJcD6vB2rfIuWGzOwsashP/pAHrI3LsTiTFOXNDZOSDVF0HkdcxzH3ak1ViiVlVWHPC4sq5PMvEMLXtvvXPIyeMOTBdBpQA8zKW1clkVihoK0pCHsWjhJhJz6KIQsMSqZTuogJJwWZJxH6j4H1yXBnWPDgJ4fcw9avID3vGVR69BSP0xklOt4q8pBqJHRzYVZ0xu/IfYOO3jXdIYhLvfsbWrOBE79XmAj+8lBYQiTxKXd/CO/IawpAPSknqziOt5Uasr9gQGFzDGayMBUCbmohBnM2MQqoMxcZsV23G1TeII0V6hVRQF6ghMItb7f6YpIrcUOS2HfPt8zCZHETDcFkEEHiKLPRaWEp0N6FJe8sGUZ9Au4quAhFW3f3Zyf9/XkpmQ1JRp2XlYkRfBT5vfUxmejBPV7MXOPMDacraIVPFoqs5z5LjF16GaoIssoO1eRl7KZfF1kJSVcjMia1kiPDNVKjPAiPjgepRTQfdxchxQ2DwQZu39vexGvyCd3XucB42zQ2KRg4EPj0rvx5gheWHCk7CldSwaS2ttURlSz80RaCgFnEeiehg4zg3KKCfsiFiheaw+DTLSrbWQt+/bRMovwto5U8w+UBdPBkdnAF0a9g88DipWhNuyc63GS1LITFmc9Mgx5qYNBJ4bW5n8kqIBbdiytVlTZYrTs3Dv8mNLKUPi/LQxyRGBC1jcn6VvTJhbRB5/MS3ptJxBGCOt1nYkLGVKFyp1hP2yVHiCbmPFJQTkbBokilWg8fRryqAlSuRkxAiQF5maJqZggiPvOB5mF0Jk3HVchzYeh2mUBkoXMaUy+pInxhNVzSf01J53kjBZPnIxEltYw5UfKcQkVZ6sMzmL+V3hcw9pw42eEMnIbxJX+0Ni1uvQNa+EwZsym5YmysP3Z8j1b0wT50CkExlAQElV8KcMGjyB07NL03fdIwTLtTGnYgdlHatr+1INqf7D7KwJ6z/UiaaT0WK4VKkS9o5Ef1iSE3nLVcV7vtcK/K43dJfxsrAc3cKdWrDJPtzSk1Sk4zkBA3rrcpTnBm23/clDSYhQuK9DR8UdwKGydewhYMRNwszkK4ilXTza+7HW8Cfwkv61wMsVIRgaUFTypEJtdbejwVbDAV2MF4GcamwGX6yPzgiAoTew+KgVTTUTeeWROOh79hoDPt5kQliK9OT5fGlMGwiUA81niHh3qxt9jluT5k/7NNGm8EBU7pSqWrtS0ygEVk6bdM7SZqgi4SKt3apAGtRkotTpksnrqpokGd3XjE+bDVj5sLXCqeHFDD04Dv0JAmZfterUpSaV9uY0YdRwn3z9X7Nf03QgvEQUylPjAlbfuGjC7Ghm495XEqqEiMeevQkO5C59wWrX6SrTmom14cltsTikoFdTqYsv3xFmaRJRQSgLbc83wVioXG4uSOu1KoW2msQPpNZlrIlJrSneERmLatCZWKJLxCGtNfVWbTLTtWF5po/7IxLx4SIHKLpTcS9OZB7DEvgjJ3DvfmUtMtzIPbgrbEXct+8gTLAjVQHxLjl96t+7RfxO1wO6lo+kiXmaW3Gi02JZAgcJirMJc2XTqSzDLwxHd4p5Lj8R1OmDJ1i701slsRx2AEyBvDJKA31roXZZ/7l21Oc17KFSQp4kaoNd8qjF6PhDG/Gubb8V1KP2G2GJzDfGs/3w/wgAtZA3EMdB1EtF4sl9QUmJLWYkx2qWgb+QIBn6aH1rNRwit5dulhs9Wr6crqxbwh4zBF8vuqi50CS412ehEBhgpb+gMLYs20Ksb8kaP7bB28830r/VrnP5NAvTnDj734jBMKNL+CU2J6sSsSGDBG7NCVC1rIR005UDLT9Rbu0miT4U1Z7CmMvqlYc/JqUja3A7iyKZkDSzoiDKSvCFnwS0cKSeAxqQqdu4jH4/bSN3qiZx5sYRl/6OHTpGfLE+f7vQpL+LK60nDeCW67zBJLQ06hkYcJ/KurFxGnWeCJxV8/MmNGxvZs6kNIQNrcVJNtOOYLmjUuikVr4lYyuaVaVLfhpfARwZ/EfDAxfNOBiQ1cm0BJDJUAvL92+NrZ69gb8rC7th4gMkAJiSggVaUrR6GQfiCJxu8ILxggoNvDriKwXS5GlAF7747KmwXuLPTknXkc3fPs6iuTX4R/MdqTnbUU/FoIk6p0Occp+ZIws22CHO7JHu5FiBGOsQt/B5Kp4sjYXFdJ5U1eaXsv0jQlTYAjDlEU5P3tYVRdyAG1oG5zePoun5fHORxDncl393LhcEJEoWGRI9FfxPWlssPJKkLpjUQ9WOmGf1+/OCdCmsfEh/reH54Ud9tdVxz4qZx97G9rPxBnaAl0Vr6tdfXmTNmY98wiE7wifVNxnVKfGVSEcpRfLosctNnmEuAHhDbqnjZYtR9hZxH4No4N/qiE1d0S0UU2rsNn7UenyUSCqJIYLyG9/KYTfstcxAdmbOnDQuV6UococHs8FIf98GzqHhFaQpdgOCi+v8UB22a82KNluDKN1Y93xOJs9IdwCFNtpiOrInsK7klTUkVuXWrXUk7EMJmhppuFlmtH9koXWFvXl8QXTlbqm3fCFJBKbi1vbKwE5+SOBun7E801Qd6gnqThZnugmWnT4jR/2gHsGd56TS8KuplQUtLa3K4lyV9mN3hJYbdxWV39ON4p4us/dGwzZVGP6l1iILwHOw9yMoX9+WF6ZKyhjJtnbVsSo8v940mYNMsWL7iCDbQyhkY0LOsiuB4FfRT9OnfG8xZcRw5ltWYyIBwraXVCsipKINhpi2WO8YvJTb93WwpMCjCnt4ozxqgKkogYBNofsIEyOJLp5g523IIrjbVntHu8IayerYf4PsVvQmW9Eq3tlkIJ30+ctHcdHa2T00/AONv6nA/T3JIFRSHcqHbYafQSN3BJis9u5vftiRs0MOMva2hRSVgqu2qxaliQKGDagnflkQJiBnhcuyKK/Qduo0wmckAW+CiBaS6s5qWBWlBhlDgZ82kTb8aFqjj5s2i36eGXpn/D7QRGVUGasy+0TL8qwtUJjWBojEkYtMoXA0uRZ8A2BN5q3hg7s3gC5FPdWF2idA5GNlAhijaxhNQBfPrC9YK/w1eURCuCOXknoKfXb+sq4ALVKiAeItKY9fbJbSlxz6ZOjt/uPMGGR8UTTRoBEO4NywMnpKABjX4Pj3lDFTcluBYZ5EZwt3JAgsDAE5gOcSHfNMywT84TU+5dnespK/ICF3b64vtDq9MkkuYIsO0IRGNQSDYFq9T9Djcx8XaS6SUVMvJzRqOMug8yTQ/9GDsNXBpxAgpVf96wFKaKJtPKw75mt6WOJUHUynzXPSaXb5dDJMhBUWqbkkQqiEcKAilWLWdPpF5LyQ+k0cMcKWNwwVSxaXtp0w8zgHS5l2DzMjnVBQb+pNFjYcpRtgHyqa6r8hW56EJ2j50tnDbiXoZrg1xbBgVf6yGr6h6OChqliYa83jRR/h6dAfuvcxGeyji/r10BzIvncB8PFscM4X1q5CEj5xVTgo0dPFwvU1vWMRqPhEiD3qcgOSUAmOSEpthzWZUrDVHHEZq0IGWvW+CK5wImaRiE5i2KK9P+jnOJ9BE9hr37X/QPyWOIhF1VCd1FJtVpahjW0E6xE5VpvfFRUftxqdpNE1aJ8+pxQ4jv1kKo+vcykfezKcfsQNl6IJP6k0ZEtEsHmJxVoEUhb7JG5MYYm8GpAAlpmPYJTx4c0vChWJES2CDtElE2cB3ZalqQDza0bv7F5lFRkRAIIm0aWAlTLQH1cqMVco0jKdkAexyJmpUohWaDUBqlH16l71/xCO0FuRm7AbzXHk7hVeWysP32aKFe7fYyEnuPbiPaTGm7YWQ1Xa2GwPTTsEJjjOgZFwy/uX+T9mc4iO8yMiNk7sFC42BscpG8K9ywrwgSvyJAXGl+Yl04tVAzYIciKt5HwyRjbYSR1OXL3S0c6/Xf7fZSz2XKdlW3qCeJE6cQBp84gWVnfeByAb6E+DvkOkIxaFgKUuMP22cNWhX4Hc6ccYambRK2b48TqVpuPi7QlJzeugGYLv1l5gICGwve6QOvzyLMCydB+6Y2Asj9BxTC2D8LzP+icCx8u3ROg351LNas/w3oA75OOZaYQnqzDkYonuq2VgX+m24fNiB6JLEDF1+abkWYgW97luTHe67HZ2NF6oRk55DPKFpQ+HpZI6CAPONaIHq/gDSUWTn6C2TUSa+QSN9PJvjmwr2b1lhBa81+uaoMTYbd7G1u9hGLwNup6BgjcqdWxmYgxc90PWkoe8qPqt///M4ex6jANsJSpghaLmqMUpE2Nq9J1zmqOvc/jGAPuBRpufOLrVHkg6dV7ed28gXxH3/Z6HMRjMDXi5T6nIequ7cTeCg0rJRMp5MBlVHKDPJXZe35DskB/qqjA5PETItOPEGPg4cqdAbkbXMVl77MHE+l7VGkIG7tk69oAjBb/S4Bv/mtD5smoaxt/jB7MotHYuS/Cf8HJ3xeWmXOXyQ9kD3nsxRgKob5Us+4dREj39lsbbXpCnTlJjG5jx2X6Jr71HFR1HAi7RgiQLb1CQmuCHZ90dBG0zX8ft6SNjJuxPkWumN73YRT68M2t1/AFKFwb0t3CE8s7ux8G8IInWKPFAMnMO2pfwS525gecNtlLXehVKUgIbvnEB2XiLKwWR/zSEFi3LnwFh01W3aaV0j74/HydEai+PDFibNxjFUi8TJUE7auSDhWH2s3lQLV7U90gkTh6eGoiqHmL//AgjD8z721DgcxAFETfT6WXPfaTrnbnJxr3CzX8ZfbHarcoRATM9znpCk7wtK4Q9Ess0Ky+cLUax7+szTxVtbay+nNOZB6PH62Ht6jiTCyf1m+6/SGVz4tmWvQNbRz40vFA5i5CYwmjTHHB8Yu39qLjKX1ya1YbJrlnDWAGE64HkfipK43vZxh7/e/TCrc4Yz3fXE0JeYP1UQkX+6T+rfuk5DBRfPig5f7IuSlIfnfC/wLX+Bnhk1j9l7XIXqG4+OE8j9h29C9Kld0ZXmsOvLXxm2GxcOL6C8+e2fc1H9Mud8imRBj+66xWzkg/edXhm52ubUczsU9QuG2sifETj7uk7qyIKClNWsh6qVUXHQLuIc/5XWefXXf8KtOIkg4G6KsM98BQNsisfOZ0N2D8BfzoVD2ZTXUCrICLyByPfefLsmOQmYn/bmlEUzMxxM/ie3+ViXsdRPLazTeCX38Wm8Om717FGharlMuctOooBYKvLnrKwp0yGiPndgH09xEDGlQISSmVbRUvSGdzHDZCiBETiLy7TTaP2SBS2j+va7SrgJ8HSR/7+i1TMiM5e8QMj6RKEa//Kl6vLoVHhvCNKSSZKKg6L6zum1HobQvs7bsiLU1fVmrSW+YwNVPh2hvnKEAmCFZ6xdBBYEM6V2F3BmOfMUAIutHJgcIUQh5leGmhLQTt0vlCX9KtOZAolMXdzCMEFLIoy1ljlvIxaZvpmCkbp/y2cTL8UuDw2ITHGYA9yaxrVJF3/IWpjdzTkLots1RmPYBo+BMGlzV/e0RViWNlsp8/XJyWgF1+ZgcZhj+tlFbnMZveK/fldy+Pfuk4PlqAgS4u2ZAVtS2hslbap790US+fjxiiRyL8juKbqoqf6fN54NWtGfmsLFakt9fr1AtUqjSMX9knpyOq1YpwY9lxFw/tXj0YfhmmM4y8yiAzaiibamkn+5N+laBsvj0Js/3A3m5adEfENXfStLd0mvCZ3Jk1rgViTb+mfTa64rJq5TWsFBJdVHHRkOd30Z3W6u2fOFVaeersJFp0z1sJF/8jTkssjeHWyyzv6yfl5AvibzMbBZJS16mONcmewPpfM4ho/l8i11F1hRtNh4Ygg4ssICGZBQOfSf2cm8G8/I38nj3cDGPUDPMHvRxkGslmGBDG9t0V/akQD1ygNSY0X9nSNeuf6fYtgsk1PCOvD5ZoQ25BEemNljAREn1hkQ/F1QHHxmZNz0ZRBJTj4BHhBU2MrSX9FJ9INns98VLi9AUOUuAvRh3zVaUY8VJ7L6Fd9uBmylrTSGeRadirOeb+cRphrlaVJ7zugBM40Qz1K/Xz5GSSioszIPxB+bhWwmj/8zI32hGBLNcvXmMnucJbPMk2M02u0Yyu/WNC/WyfaPtXwhsWNV/I8n19xqZVEv9ARtTv2Nj+KTG0gRp2P8TTM2Np/vJHf+RmSE7uqn9vnHYn0L7X+aALrfXcmCOIcHT/POHqe0b6KXoDLjG8u6KUBC39kac8npsQbPpMzlIvVM0yA/rilSKduINW4+AqceoGsDmWl6hghyCuVRuFNR+Sv8c7ZBIepiY8s4ee/+ruPIpEyt+CjU4gCvQJNzZYo6002W5n+scb1EB3OsS1KakpMs/Do841Vjikm9j07gkaxArWj2SL/JkvkyyhOSds0mZnAt7KqLgu1qZbMaMX7Yc7ve2/Wq2JVTWctHtvFbJaQtJHKddnmKPZyzG+clxibUqC+8OBBb1JaVDO2hLH5ADmLq6s+7zzCBDL8lF2UfoW2QSHv1av+PStJgoI8kiv9O2clJNC+5X8SsTChn2PhWohfwywAnETxKVa0Lod2DPD4F82D3zAchnmS+pNaa2io1A+RHxl9nhy5Y40W4HGLayoQWubqqr9+xul4QP5pn84yD9Kv20zC8s01gYONVbtV7US3S98SQaF/8iqkKxR7xTn1YWZ7yO6+8dIPjFNx2uwsHlBSzpwGGpy2zpWKLZ1c2Gby2C1aAL5+Ie1WZthKFBGxfI60A2oojOI/Pl87JNL0sKn7IqX+wSGw6abX+XxxrHW5h764tpnPVHmYNTNID5eZbZ6L2tIUoffVGMEvKXi9KP1k6GlMhsx+v1Gm4TZ1/Vwzva3i2Rg2E9mNKfc7t3Uj8cCVc6utkTLbVdReTm832VKQle8/VFq4EkeSFvJA6GA/kcG6QyG4vE52h5aYl2TLGmjIUec3axBUjrTWEDMGrQNEY93eqwktrwUJCPb6lqp86/6IG4izIRdcFbdjnL+HUVIiaytBOMz8ZXs8eMuqfIpgJvcsEeGAXA06phY7Ygz5HcCrshF4UmKEgAvKo+genb7kfvo7LpC9fSjEWQ5trFZVGHBjr36jUkydtr22haA95V7O+2UYbe2REs8kg/YSJX59trM1k+MZPs7fyOmSxzTf9Sc6l4imP3eCtkYsb50mSm1fpTcu/71Ifu+zfspc7gw+v7yGx+eKyKjOZuLD9ZdtO2CEj9/8vjrrLuX3JAaMh5MPRH59OvM6eJ+RSPTGdEx1iPJbEqhf3D3t9akJCzxpe0WV9a4M2efmSBN5sdIKLxHQu8IafiBhFh4+bnHUmv0OrUvqaHzWBiTjw6pvAqHqFGuwGnGuC3Kowu+k+DDM1rSA7XABpjgg9III9w8yEBcKZfDKUh9kJk97qfmKc0fqAIfl8W3gBXKBXmhdEvLuchNGZ6q0ALTBZTLKqZyWAeHaEYsu2hGL6YzJ4KJHbhlZ4tWWMWUN5sPDWYbnbkgXydzx9BF6TYKgn9RCOrotiZSECCRlfkwsa+cMdnY3LRCkmA6AdtX23EVW15Nkw25dniXu59XvaCJqdtPB1x7Ts6iF0kwUiUxvmLwB6yJKtTlK0mx6WkUbEsdClUqs7I5ERp9uiPYXgCjN6OY3Yyaad/YG6RqyKR2ObFPAT/9RAgFPPBEASuaf/7w3kIXw4ikFbwm4Mw8/BmEL0QkXHO0n1R5Ej67a/fhrbh1npbhYR4fDWq2pA4za+npn28UmVmwuqKrcm2Nj/vFBlBe9gks2kecPXPVqd2+tqeu5erk/d+t0GUDg51sw8en48sMH3wfHw0BP/68T/fGWYZyH9/9fovP698sSq/O4y1AmGOj89CzBu+e48QStKW8Zl48JTzsE3ZnSnJBlBwnwfsy7KA7aNZdlMA4V8cug+ocI7x/gd/kUzi0P9vvv+x+b4VhTt55u9xQXQAB1Y4acPDRL35CbXI1Pj2U9RVHCUShhmDD86stFeK7UoDvvBjyLMLvSDyxJDtW+RTtuKH4Jd/Qh1tknhtcuLUsBeHGSH66lv3Lt0SIMkhUxxQIbTqrgwDcrJ5/kaGGVJVC710lDI72cO2iwsiTlR6Nir9lAgxJMGlEelknEFnjnVzrzWWHlSMaCy5pjh1vqWNOVNm1ntyopU2SzKRnl6moMGUZEBEWpBeNcwHvMbt8d+8gokm+JFp9pg9uceaipdPHVXej+wyDOfhxVRswIvMzbCHp+I37sRLoM/rzUWD7e8buSnicjFJNsiaHxsJmaVlRTqYRy9SWn8fTHZlwzaOY1Qp+JlOybcWiM13OP/28PV6+7ppnNDvP6drM5kiIGPr6guxraf5MUI+XOkpgKa05fjr48hXbT1b/sYOjCXVSHw7lQRcei1lKcgIURV8oVE5GzgQ6Y9Dqhtty4fWOzTFfNKLxNmdcKvetmhcVLyJ1/fC7KpU6ZgbtNXJmTYbPMmQdqwFPQYz0m4/AlN8lR2ZeatVUw2JvALfq6gWF9qnyY7FUYFeTSHmBgI6+SYUG0tUnu0GINXeSLkpB3qqxbYGmsqM//fk5n6Refg5Mpiz7ej9YIWGETLsCQfKA4dPYqfPjTbDMwf7kmiDvhVxe0d0YahMPDbG7HTNaffJtncxDs4Wjs824vT7GJHzuX989Rk+/yH5qDQjMO88ru/k63/ieyaU6/ZOhW665f39pgM+7cP5QWlKOjW+rYGDixoSxFVn6iRaPV/6xkVVXFhMBjBhtp+WXWR7J69vZ0ASfQ837htw/+NarWcFjb6cBZJZugI8oPxzDCiW9U9PJfSY9OEp1OXNT1B91R+wpzCdz0+YG73iy0WY7zIrtRgfv5ai/vPw7u1Qho3O28hAMZhebJO5JSLSoxTluPNldCxau93LEeUMz0rTFKj5VRUPIhRrU3FMGTJYBSxplmuadQYTK4Cz8OEbjxtqLGmCQb/eUN/bK1wI92HIJHXhofWa3/nOHyILIFw3U63hcGI4UT1u61tKnNuFZ9D9/HHTu81VRyrp/ZqaQwVOSD+O+zVV/ZgfA2DwuUH7b/5/4fzLNclim1AYA53Txp9vR5/PaeGd+jmA27f30deASj/c2OKBweQ74r1w0TBnujze6/y4rSHIvRr5u5K++ipnfn5UXtnm7MVNQ3r+2JkHJJM3b5jpESJ9EkWfoexG8mmRvV0i9mYbEweyxFLFdW5Xh9gfrj6uk/Ol5vXMc6WTRm2t8U/W7rkq75fFOT/exbVfCrv47weNFLIW/nd/kpXC296efP2+EAl/May1ZB49sF827XIcRKnXFeMAXIv8fmEzFRtFOmXTensgtg7M/eGPl1y3qlOgfJChZbbfUrQTYpvgcCGARO5HHEivQiNU7V3K47LNhpVC6AgSmYDsplhH1M8j+b2RoqteNaeuIbAZQmSAn5UhJvVjIBzUgFjccVkZ71ICZZzIevzUhkPe5i8d/EpJCHuy9UFuBKRgGPm83E9GU0/qZNc3l+fX3cgKgBA6lY3QqMyT9sQHtle8t7FLV4DYHNGpsBpRC1Jte7TRYoGTIyIfN2VLdpWlxsQ00NjuJYlKpA450mwqjn4ss2lIQtB09RUz9a8oqO9Y4jWoSIGXuoTl7Sgw1eY8lEHkQqExlZTzlx7BXfT41l+UG4U8kP2VkFJephwMna1aRg7nQvyo/gR2jLgZTB9RXoDYlCUtY9g6xPLooA6TGdIyUW53OITEXgV0fa6A9o8zHL3tqT60+WPVcMHc9X5Em43uzG09yQ+sY8g1FVdpyjo1sbSJFKSWkmTR9bZIMf+dQ1+7GMUO9jhPQRjyrBpB8LvW174uvgESyjGGr2gIfoNRgxVLonP026yn5aW4MqP9C/MJHQ1SY+j+sWaLG7GwuYLM6v9Tq/lsr0iTw+TIS52/nGJ2G7rK6Dbmd/x7v4rH+mmEpJ0Dayo2Qupbri+VtGUyxhvNO2c18eXGv09ZQ80KrJZNHVmuZJ9M3isHRdOMR4JGgj1C5UvFafY5NOWwd6IKpS6i1KlmbxPvr6nQnrvXZBoM1XBhTMPfJJELy7C00vVmkEVHqo3FNebqTOIsJSWz23jZb6HKpVLVF4CmLaJ+cMswf+XgpTkkAEn8LPqCbKZL3j3QnSqv+NsQVx40rIc2b0FiVhtO8cYXAeBe7h8rpz9RTruanSlU71SmT0KOOw9sN8tjehgu+PlsAUWshPcxxfFWSDP/BX4d1Cn+m8lfMJNsv3t5W1Z/d8XC/bY5unDTo/C572ZiE8O0HAXjE69zye4bAI2vw3RJvd2DH+aXq00wj4ksM9X7RlOE3y3oyNOfJh/mT4eZqqhNNJXRUOPvlHV1xcJQr2Hmm284ClCsrm8VoGdfzbVKnxFpc4185dlDnQPzrB+HhAoi7HgpZJhAasGSVjxRPvedimH9AcCdA39TSYcK/VppbQwprJHPmtgv6QOOIAf9hcTxB5LnEt/dwOxbqV9mRkqyr4Q3DT0fAuTv6Wwc1KB4bbyhyHok5fqU0sZePzMN7dYRcRR8C04KIE9XRGKau/DVNecC/JQH0Slhx+N0pvLbprM+QDUufGZ4OZ3WUfrOnEL7p/3oW/rGjK4UC51I9mRAKJZFpOXJntHyZLGMGjd16fcyieK1HUkT9k8VWH2j/J8vdR8QKUn8hmHiIrD1tJ6PD0AYbT9oioyN3OMrDWCCA+meCku7WDhfJCUSvIE/bCw2x6VTBI/OJ5fmyeDt4UQfdT+IeVK9GbtNyN3HTl0+hqB58TVjbVUpSSMvmFs3Wn9d8IYPgwyzhgsvfzFUxhEBTOLCXqBbMlEg64QzhyJ6nHgiZsJKNWXiBceV4DZFdc70p8mAIaO+Bg/ID3g5GtkxC+kaQ6HMI07ANmJ4xKYkGUht5sIvYbY0m1gicxmya1I8ABu5+PD1UkSi5L/5/W3z+xO03NKuBtP4YA+NxhO32l0IWkS+dFQc8oL+LdpWJeJWqm/2/xnZWwtJRj5oTHXeUzQJGS5m0+65qJV1a7k+Nea9elIRv14wPSGgiW2vvDwcaDTgji2G7cedhdc0Hz/7398Et+XxQr5K0v0eeXB9fcKRRXSUXDg/3Wgcjt2yjmVlHMk9sRSu9Bk/WHqRM3i7jWfCtxwi3D9ac5kJvh+5zXdoxbXUXcovAFNKpunt238SvDfmwhc2HJ9oYMKzlhWZuE2i0RpPi+x2tMXae6SC/W0e6Dct7UswqjE329CE4sbOU3O+PiBlHbTT7vPkf2AqBMqZv2m2eLp/82cnfJuFh1VWypRleaorhRU4G5XrLJ0QXvVAkQHJhWLtezHGqMVK1TezKzw/Q9DiOAPjkxyu9CdP3MBC0S8emf3OFdEn+AoLiJW2+9wxbmIw5cqm+MgbeEvAg9igtpkCYtWxoQMn+C5OdJ1lTgIYzGNcdHXJXp0ECqR8DJO0nFeNGPxtisdqS0soHZ3orPJ5X2fUNQEyRqEz3ilHSo3XM+E2F61A296qaF6ATzWxH2fFedLhwR2Q7eRE0SEkLWQDO1hoYXMm186hBjzKYilOieHLzmLDtPSlY8HFIfLrkh1nuabXaeVPNhKEKWLve1rkABpuoW8lieLftZtBTqTyLxt/EfdggZgrkFEd6TriF0he1HqfPUHDlkfi0umNXfv67x299lZQd8jNrRfArhsZUjcBLXiU5BKi1OZ0kdM9bKW1O2vlWd6NXfnLZVRENeEYI3EZdgiyEomACa24CpE/KWHQ0w9DE/LGVVRAmujD4sxYvHWtLrJNyUGSnDc4v0XgViA8PPCN7Cj+M36fvyb6ox0jw/ogbIQAi6BtII8VRklSQwtACpVuVjan+cvF3bTJVRY+siGIm980nBfLErNfac3epf483ztf+EXALJEACSOFlqVvvxvTxlSGLxKN3H4NuyaX2BEYfMzqUUMTqXn38LRsqUhUf0c3xKRKpMOyHRtBugwFk/BXDVgDPdRMSOszW4akMYzO6tFLdrVxPfiNEUqFp/7O7xV93vqKplUw8Izaj/mCg3RtNPW6HIQhGv+PastIYUa3T4Wu63S02oGuoOazo45sW+1/MhcvcQG/qJOL3DaGdZp54K38tph/fzYAfLg4mUjJv9Kp8+1uHh3Fs03Bld9ivZUxUztSEewKxyOJbyRksmmVcP24g/8lz1dfPp8EBNnrY7J29E8/YACRVNZUv9Jb2rIJj53pBjIm+RtHvljxQRYvBenyC1ZwBfVP1JetnZgPgyn9FyU0cBMaJnMX8SHJ6roQgD+IubrJnrklnHcLHV5iH5beW6Y+9w90nS4Pj5HNVdDZinApbdz0slQIrLS+jGEEoxsbeqlP6NMQrYVcvDJMU9guVNUbHrEbTlJA6yviWp73XcjT0YiDGhiJuDUbmzJCQpxAJL8IVT1dwpCQ/C3ZlVckY92j0mXYIS60SJnQ4YOX8bq88lUvD/CZXGLSKWagk9zDSNPC71vsLPP7eq9hA9ny4M+j1ORaJqVech0PVJDpMKKB08qgFoEzfSEsJ7m883XChR+XF/FcQIAUqjka9zVxgV6PVImrkHMAxu/f+WgrA+jnijmXWSX9Ii+6fvdyxVkJi7TcSbkvdSZjt/bc/KJTTGqvNG+3gnM7jLjez1akf6snpnleEYBcVu79hDCaftw/RmYNk5CAM/aSAMKjVgTmlaQS13/ii5N5X/USGKFqN0WDcO8hn1qSJpCQBxKeFmCoStseZoISjrUgqGq3oFDK1TpMs5c4uDhC1FDaZwQDfRkq4nlSTR5XDlMx7xwueUBIWbiV7GF6EyxUoHAEDtmOKKA0z6yo31yBEbdF7TKeocXtxV37/W8ct7KGIg6t5GDFWR6rGKmi2Z3H9UgnTTOJVxgFkiRmQeyaflAk7V3NR2tAwxUQ2LNRuHmnEnJg+BAZBcUTb5v6ftwqtLFUYAdvJyrzIrePK4LABAlrQhYqmCHRAo+KMoDUI+xJK/2MLRRr9hvZPo9ajzYXYSHJmouJEU+PBEwjR0qPG4XofvhyqvEjpIY++lFWeGhMKW7h+gaCtH89ounuNOF7QaPdF8OnZkWrDJPjlIOWA2r98uEZruWcAnvqS/vi25nrNNUtLe5jKpNia+ppxWSThyUulFJLOW1xgp4ow2SV/UiRMxj2LFE8VRL3ahmvXGPYBs9TZvyy32dtf5+U3/g7xqpyag7U3uvtjegL2VctPPdwFx9HjlN0z64jqDBDC5BGagBWic6w45FVCT/Z80n2j1+uKhgewwXEjE+gReNulo15/bCXQnFYtOaCJyN5mJBCIpNVaEp0tUgM15oC0SK3AnNpIaR59xlcMam5Wr2+1cBTw3tsALa16+GlKQuu4/DO6s5VCj6bo4YZ5zzLSpzLWoR26TLSqArUhy5baaB4/jK6Qw3H/M3Ar4qG8IpQ2xaWqUHQDBxRuVPJ9WZQ7yuAr0TALKoazPcYpLrnCWFZDahvn9hQ0L+dl7Wkxf1ii/hSxK0Ru3qc1kl7NynjMSv3Tg9QggySpmexOce8lbmL9ZCQ68xHU2qokIwTzCPAfDLCFXFae+rF7R+HTrc45Lmrr+UFLSZpHDFXkqQ9afnJEO4reaTSbBC+VY99XX2r92HxMtlzLYDLsaHSXVie7HHztG7mhWXXnpTo/Is3F2cSQ7dIy4u7sCV1qVsKswDWYCpk2lerpu+zK4ye2cF4J99fpSCm6+MaCKsEt18cHlUbDgrA03/BOGcPHu1m8Pel/9FaZRhxHTljdaapALU2p4s43Oh5IP1o7mJ2yr6LEAUze8TVQpo6t2fKSNUWYVoPwraLvdAcKSs3nPJio8sTbCVduY1eGHrcEVrN2fvQJI1d6BDQoTOMHOXQja62PRWBLh3uquJ711kaDYxhexdwHEo0tGuKWVh0QfcnO2Hi46y9JipBHuHW59iWudnb7gSTZrCG3tNTRUyKqWAwVQLl+6jRJr+bfI+iPqAcVp8TD/0GoDlPx1Mi2Wcf0/ZB8weLU4ZBFaw08uSZ+R/T2atYWVXuII81c+fVUAS82lQSFkCIbvaS6S0uBdW607hJ1PORq/FMWxVijgfGFmO27HO9EuX03+T92OTdOqaKQ9HqZhZzLSs7hl2U4RoZy7CbywiyDtLIuJViY0sULhBNB7bwgBJViiOpsIhHgobh59LbjuqyDfe5WOFBKT4vOWtNWEd+8yhID6fQ/Y/r0ZPQwr36Ls4wqzhoDt/UG0udy7Nyqou6LcH/Y+894KyqrvbhGJOYqBF7jTXWKHh230cFC4qKUVAEWyJSBhiBGcqggKLGbmzBaLCjqFjAgmDFFjUx+lqCxt6SGHuiUYKIJb77rrXbKffOnaGIhu/3+96/Ye49d59d1l7lWc8jEh2tGkw6sBXHc+4gaRT7oKiOIXeRSebmsoFrGrX/An0VFM5J4tVbse9DZ8VhlReH5ZRD2ynkLkHCOd/sFqoH7VyTqnQgdvdhj3PhqOJGrzXz8QMIgdDWup5gi77Z7xCV7AqcFhHoqPqlHA4jtiLl4SFMl8FlrWFezMcRj0npcfSeXyK1w8iV4eDt/IRYWlCmkzhcZgqCdJFn7o3rMaQQ1YExjYDki9ECUQEXSkTzEAWhVsxbJZ5pi1V+0XELQ7dyJR0nPHSVSBdOhqW3w2TxgB1a2rr+nLFMKZqgEF7QPSnB7mSmlmGPmJUVR6QTzC4BWXmceeSEt3DtJUU0SRDNKlPQHFIycDCIPHNd9p/LuQFjzrcUgUdMM53VdCgSrZlQQFX5Of8NHfHzCUjzET+9wDVD0cPGlifttqWO2X/twKv8Q0zdCOGy5KjvpiXNqjxm9SZ01ako4zRMA3vlspVa2lcqO0PGgYRaI2pyS5vAjmSk4XUlz2YdjC+uwvSWAhoQqRdVTiGjSEUavmYV1+D3UChIKlJNPjVf3g7imRyddRDEwIQAlDZsExApJrUwRZKKGsYtXlPsrVC+GaP63NhpCZed4oDwwSwm5j2MB0diNGm8svnnl3Vc0DT1/BMatP+sEAIw00HyFbeMfSQW6gPLf3liwOpII7AG2bYcvsZnnmBOcLKjbJLNR5T26LWPQr5yAbXWZYfpizhxEUc4hEO5KUrSMMxBcThTyEjh8w5m4SHEggBGAcoH4jyC1cfKD0uSekQuw/tbJiSgkLQiIf9gO7I18wqDbSOzsAl2woNFiONIZymQGgiDYGRThaYOwlXU+etIUrVnD6fWAQBPANtjhW3ehVVjqWc3KX5dU4fXlyxwj0sRYgwv4eYafoxV98ywaei1b9/s6EybfXF2JNUkVrHLRddCQqG4LF7GHYPofBicEpV0rHlhLdqMdgN/x0X5EfVr5HaThLuejazlQaxW8FPh5ZBwCwnrKusfObNRZyj093AFziMmP2U4obBPwfIkqH9DF+4lo6jf+fIM9TvysYVnlkeuoLJitrWEMsmNP2dmJCW5ztWoTavOTs/6nfXIn05Qmalc5YUKBK9XeW+Kbm719868sYcMYrQIWQDA91kzVkhsg6X833x15ykBpYaEu8sebcmU/0im3FC4t8pufyUFtIXC9Z9CoTBzklgAa8C/1HuKcqGM8Lq53hvkvhgQoCARr7bd7bk0Vtt6lgsS5twLGSnNVAaGa7v2bIYBpXyidGuoC0Us77Fyj3EtIAuKBEs+UMS61qKpHqCwQqkpxZXjQSUqJ+/p5hOr/NgQpji0V7oEMPAdK/RajVVHOjA4bIgw4oCwkmmMDqldos51c2poz+aBWDeCAirs8YRyVdAiMxaQybjKYz1ovAyozdACPtWn0jFHaGFdJJiN/7F39m8AYAYrn8ETl9XDISHfheJc+rQGwO0QWsKNTwpHQXkkSQ4ZAe4s9+U86o8PHnCpQ+XXg93hyRqyeAy5QxKaeEIjMBtKgmOHoxOQogkZYjM9sO29eCmqxmbJkZAcz//vQqU0hAfIqxQw4WGorsIcBof874oTP6xseJpVL4u9w1LMm+P0t4Br2Ad43eel3JZsuxZLIXKoEHopFxnYA4N4RbNPdZUPSAWGyhLdIAk9bBKtuF+STMUAE57Y4QI7E+M3C92mLAMWtnssQc9XYN+EUBlOLJt0TtxFw4nQNQZgMScEOee/CWNFBXGGkm0SheLQA+ZBly6uFZCSoVuAXsWPTdyLWMlKqz6H1XyqM3iGchxpfbAerKXBgFNf5osfE6dRlCIJK1aGIFVQ6cp334lAJcbVF978Qp7Lmj1bWEDiTA3HJw8OiKPr+t5mcYbdWiEmAcaXSg+sZwr5mhTJCtGXxOQayAmi6W5PXE5COBfiTqGdyqGNzyFbhdqz2rFyeuMXJQZ1QkhG6DvV1QNyEX7afR81pXzTCf5uFI/H3iOG476XGclFcW4XYmJiTlyXkIyYoVnqADUiFI99QE5VwlsplZmzmDK7twBItWwRv9mL2J5iXX3mB6t4SxJNUKjlxbINmYpepj5XWD8XV2sP7aVMZepzmrg1EJqxqliGJfTaEZ9MXhzVuNwiIAXjRpZq6xbmRZCgehrVLJku0UKtvLGswvBUXmKNst7xRd4e4qrqQTTl2CxQRxBd56bORtfG0U9aCaxRCBcZU7+u6JroILZcnb6vzoIAV1LVqSkL37UYF5BmBwJKQgmkVpBNUlSyTsViQoEyFxZJpjZugyXJU1B4Hr8an4mAttLD6Vv7DvLeoKJXmgfeFpC41gcOGamALre+ZLUgmWQCb47ZfdxilOSOQSaJHQ4Fj0qLuZDOow2iJlqYdQxmCw6uS619DXgwZGqROYw0UmmkUoj4hCnsMVMKj08lpcGd3kcbQA1ZDxWeDrYjuvy0pXFvO54VdQ0QRIQt/5ajJpptBfF6UU2YKIBtlGn10qzL5PWHGexGrO3A3iJMZYMiFOvNF8+5A7+IkFnNEssT1AZnOIqcqnEaIwJyfxM0DckGLFQpMHgmRoDALgSU5oeVX8YCGt1uhqLaHu5xz/EWhEEclIak0ZygbBrhcCYgxkkd20I+4LGtkSlBjzRJktSinjS1pHoZrnQLfyuZBqKka/MsThEhjm8sDBQGBx3BRb4dqB7JiGQxm+nhvOzfJValip+nSMq0bGpKpybaOGBiqC5/BuGk9Bk0d7bdv6PDiXXf6N4MKGnp7s8sTzO00pakgwv0IqgByJhvcEg0h17yFCMmc7mq1GsgQeejUCSbLQa3JfXt7FkERJSmZQkVuSxttqvFOBVOTyrmW0sF1z5NAM1cZuuJbKJYYOrKta5YRy8Vklf/XKAlRUWknCeLcVTekRWEZv8VSUnrcN0s7BgVK2hNJ+7rormKtgeinsMmEWA5U47c46BwU971BT1mVAvkRvbdisabS2QmG1bSvYo0B5Zy3zeMwtxKKgKduEiCwilsvKjrHp0xEEeDfY/eU66btlTUrlZIXOp+x+zQkH4sthuZqxJqLzARuUo42NNvwkAXV8l+EYXCVanV6m1EzYWHto01TkBbgVvtiao5RvyI6c7wrWO7qWv0E2lCyjpjI6xcZubhMkhDB3vUEBC4GLKNuTS0FhtHvWJITLCSOvorrnyreUUhLQtMrwZmx8ofAk+g1wEL/1JCK41NWMOso3AfxTiE+Q77AoMJNilyCCNtgQ0nI8j/mYgu0uTCtBoqQJuAWsTWHbvpCQgua6axqidsaiIFJ966/75TtSgImPk1J/IKP1EhqaKZ/mRkZQm8IMWftr4z165sCU4nz4VZNuegVdI+Yq6qOz0Ki6wklA5gSERvMZxvMCAalpbgNrGdLQL7s6gzEczY8BRSRWCnvj2v404w8/Uwc804N6ZOJaY6VZPs0zK7y7KLx1oTMdQqmthK90dWBGCRTy++Gs5xG6ZhIRjS0aPQUGSVmGgEnggsBqZQpBZAwhohzaJPY0mdpCwTKJv4kWcMk8BGHHQTK3esNE5DGh9qC/iF466L2qIptB8aIy+YH4F77agqr1UWW6dLVADSQPy6JBYQ6aiQGQEaURgji2ld45hEkdCvxiAWAE2NlDOEaMN2N/MFUXzlbRQcUV65NsHCLPWjLMZQtimTevQJStcjTKMigC0y1BHg46A1Arc3EK5ZPnjr+XBoNU2lC7wQdI7/EHqvNBBjMBl0gBKaei4S41IDGxWiZhB5w3mG3orjtco81X6FVq/E5/RkaSxQbJnfTcKv48CgtQv+KqUGvyABPG0htAByAI4s6wSVkmlgr8ZncmRns6lSYBnhtgsFQMFZImbFUboxTctEEiqzl+LAII1KCSLm0yRwgFfyE7CByn4TJtz9QQJgXCpWpV0Bcg6I7ZcMdS156DMQRDnyMY7sK8a9kVE53hN+k5R6fISlGKC+CgL5X5wpykE9E00LJOMVo17XHNsqMG5wxMUqXEPIl6ahpxoSfXYYlotCOoZmJC0R2M4tvC5j6Ksg+K/IHoHoISRDVUxlbWY8v24pWBAhr+sLbaH6qSi7tSoDFGSW7Ky2C+0ecCrRmmTONjojEkEd0WJFvo6V50hwAxGg7PFC9IxLuyI6AQ8jZbBPjceKIg4+XS3BVsoUeIOrPMcibZIEVVmBFavGj9oKkeYuxZuIsA0t1g1honWYZhEIQAKtk73C8NCRhKUZzkwOhhH7lbCLBouEeSiMiYYspEZn4HPY3+hWE2pP3MIGgrBMa8NGExjdEGatUy/Faux/6nI9KQUjqaFQIbiEXnDgsJcVA7mYhcIpBf4hBknyVDNvCeO9WWbsYqlevIo4xUpvqFghdpAJhRrx8JXYTQYRQ+cs+8Y9tO8R6wKIfsf6ytV+rz63HH+GBraWCpV1RmbZXVj1zYRdFSwIYwguReIFl/Pzi+oDi2B2bR1DIaTvmzlyB3NhAiJz/Jk27BqbjY50sIUuW8q6hl7jYZZDpNUTHW/btHKgo2R9GrqXyp6jbLU0Adkg4cFK32L7YO4KDX4Z8wVE67S7Wxoa0uKCh29wWzhTYH8HkQgAwAy17YUzBCjnaldCyq/7MFWd4miH2xqRpgt5ckofVuPklOz4CLgHNH3RebL+2bLZyOkQF5i/KlpkPi+P6kghmotdFvODxHcZWV4OX6SzpKgqSIiVu6To0FnaG09YV+WLFhoNVKBQLaJOIAYJJohAVJhiS666hRgGDdiORU5b0ZoF5hoZfzlFBI1wUrno21bcbBSPQJNnjQhkKOCOlIBegP0JvMlU+26ESqILZHupsZrwyxQC0f+BX8SOoBQ423m2HM9SB6Wq0BcnmcsFAoTojCkH4TGH0v/Jai4DDlJwXxG3PcGw5ZDzLDwXZE2VoyhLM6Vfy+SQOjAOSUnwIECzBW8VF2FXGG49bBky7TrLeEEQJqAz74sN5RRAe6kGBTos+QUoshUVJ5EgdYaWAsrxAT4WsAXaB5ok+icrqIwqHwjEBjUZnS1oIwgSPwsNSOE3JfN66cY/j5DVmIWxyB03FxSlQSHpIoDa3NExRT+OtI3hN2kkvF6xDMEH1JCMjaS2rSYgVTz69zYRIPC0TgKEYlxqrbh5vq9UtWbHvfFcnFazNetWPPLQh1jtuFfTGDfXmq3b+0tdQ45BIYF26un7pEQdQvC8NbSmOFy7/SVIXFCdu4Khe9Flb9s+aCo49qsg1xtoy1Q4p2HNMClSma6UaOqzFkD2ic251d7DmjHi3yX+dWTawesx/7r13WZaA9Hw1/uOraxV2Ssuhru67VDMokMfe4WZ4n/RZarm1YeKY551U3v3zxoumFO8f3C9gPgGeSoSf++x4tVW5f6KLql6RmbJO5m/oKhgwptGS11YBnWKb7aSSyy6ruoZhuc00VmL7nGswgyL5e684v0m8xdX/VNAIXNu951S7tZIoZYEkF2dtn4DxldedMdVudmQBEhxCj0ZUKXK/F+R4Mlq/f5j0czR7H/jyYfDZXd2xZGvFoEtmxzhO4UEsr1EBz7yKSnLwUM9cDUhPHPEGbQEZVOhgmcZaa3YSomnGXVyicXQRBQUdas0ElmXxQWGUL2sa7WDTJK5TzKsVFyAp6GRF6SVsDTC/WfqVpb/inOHrUBVLgK1KrOzXX2nQtgV8BcRiC7HqQqALeUzD1bjLuLxtXq0MSOY3Zwelog/goIL8S1S7d0slivMbCXAgi4tErKkkqQ+/4WnTkhmd3lMRA9SDcgvi6jLeg4Itg9hdThLHWZ1jAj2SCL/ZL0OlXZyfWVOYHCGMs5Aa84ckntZVpKF9EBLfBUoBVb78TY4Koue+7y2g1KatgLrvmyKF+MUtzWf6/LPmTxBXFLQGbeOELAYdd+suHS8JL8CY8NGDUWAvtcKtULKJCBS8o2iJWCD2IpZEIObjTh12EY7hmCUSmpIVHId9u+RvDyAawKOXHDlxZYsuFkLUYogkLhPE+IZ162+G1IyMVECCKw7t2pvJMwsAV1DCBhsi7GVtOBSeXpIxNI4+bfilVW450reBYx+Ad1jdp/V3ABoXEo9BwyJlgskD1FtTCCHUPD3Am421SQjNYS3oK2hw2tipxjsDcIZqKdiyM1D6GR5JbCdExm7SCxtRROS0qrXLWxAEPhaWgfnjUdC3CrWd1zacURitIWihLfJE8P/onbn2a5c0fY9hxqDuPGixo4c/1C1fYiMRYC5gAWyooQcanZIrGQ/KJNUOEAtaOlRH5hwhqwiFOxbLL2Dj4s6nq3ikkAXCzJO8FscfCROA46OWdqm1EnMWkG8PEZUkSyfbjxnOE3YbgbGIPVKhxbnhPxzCruGNSuC5gOsRQmdVCHuRXQRXjkZ0FkiA0UtlE2B7BZxXGgVU+qgbRoqNVFpx2J9TNzF01KKXwAmLJ1Dcx4lQ9wi6Hsijoe5W8E45MqJptrr393PmSsEOwqly3gHQGXcLpJHM7r7BBSJaLgOrPoXSoMCrwB4L5JXTq9xpDDKQj5BODIisZ41lzYAS4Xlj9aZfzangrhUiIVVWFC0J27O4iUd/Cv+Gas0jlriwgTlyjv79uKFF1RBVR7Fjyw7cxhYTM7KU+yGFCyHg7PzaM0YAC3QXrlYhcmak4LTSLlV+87r7gmbBkMEh4oyl4nnWYDDLyydYC7jJLC+VfJMfBj+fGC4ywnMKjDoCD+FfjgpwChCHkAyx4RNKQd6JIAgm9gR4f7Qz4+GI4GFzTycS1CXYOYmANT0t+mFnH20BhOaQY3dZMjibGtZ3FhWXrqrNWrqBrpSQZHgxB515BmXCSq04Z7yLKalBwTrcpjoRIEwdAU8vLZsQvE2j6nTMHfEUOADDhD8RhgeZlDxYsGJjB4rBCYYXPbEsohk3sNmVBLXUZU9a9lMaobbo41k3xVm4xq1Lrw4KSOZKn+8DiwiZvLRTGvbUsKnYHOW7YraW4EDPaK1FAoFSwpT5HxybNFFHhvNy0cWViK3Bgn1GnfVt1QeDI9o1hQbUaAujd9NBE+zoRe2b2LDIWqBlxhUYwSAMwXazNHZgxvQ+hkRBJ1DQy3mihh29KeoVOt68M14k6L0rBO4x15plgYAuxIEFouTAs0mtF2E/4kVbXS80HZRUK6s5UrZ3Bi04wB3umAstDsQn0PL/TKB4WRaEu1iZ1qRq/6seUOdFGivwfPlkHeOem8tZjyzLiVxcys1JN9NlGGvQFqitsHR28uVZPsYsaUphV7giCHJtkzaFL4LixKQX/SBMfIVOv+MUpFlYjZ7EDpDwgTVjIHA5HwL3iO0tXoUQjaiYzb/7bhrMFgVqfeV46RI3KUN1DPhqNmjJcAr5TzNimpm4jnXd4IqZxKilChzgz8YDxt5KbDpw9YCWCpbGyx6ehqukuC0Z1qdgvZFimUgvDLQrJhXCZwzdtpzfNpWTxtwRXUSgim4/DDVDanvgJCz3k50Mq2JDfFf9dST9I1AJb01gUncUY0wd1hL6DGrJOzyLZUkk7BizDfQIilC1KNmhaqoLLahRb0SIfNn1e4Qt8gJDUUAs0uoe2r8lLhdjeENRDLZVJShwhArRMRRq7i9UpA7BIYK+0eAzTQRinPOKLMirbCjSioxuV42YH6DLFvJhzM53mgS4nqftb+hXekbNOi2nBCs7wjFPJJDmWUEdhe4TxduU2Zb6cLFnvt86sQRXbost3Pd+St2UCrIddtY0RWbQzScDVSk9DS0LJB72uam6hlx9G2L17stpDFOSvC0qJjXnpw49aY8OjI5J1YjcS/U+RB8iyrV+OrV95Vrdqsy8nZ4HcZAwApCF6oERw0BRGUAadxgUsNPamgjFSXdtoVMS+yExskmV3oBI5NAZcPyxPG0ymKa6Y06ltrYZWylLL8BI4W1SSVm4fL58JLiTb5JL9Tw7e2cCuKiCxNiJXUOA7YxhMhWvarwvtggo3K61fWntxlcoZHngy28GvFMCjByLv1q/D0e5z4y1glJKI13pIjLE9YZC+QUfIrznetBDCwCaaBvbLfbj8pJYD3iRvdWO9gl2BDCkYkTCx1xUclrn2OKTlK81oGuydzqUAlwSfLS9u2Qncl/GrgTrNMXoTmcY0xdtrYSvzG7uGisCIVpsmPXSIQO5WbXMo+J2NDKbi4ARUsyxxgaRjOB1w3aXeMCQQFqKRxXaGSv/LZyVELYSR5/AxZcMa4y3mCCOSWB1z2GQgmyZmrvghOqgc3LBdP4u5l1VH6UxlVxHfHCegh4qSpPVBA5SlnJD7OxmXMhkM5HQQ5JIOicw0PspKoUyLB8Mtn4NjCvlamvkm3JBhYSEk3xFNnNL1KhcFdDAYKkfldzSChBtpUAbycFSil0LaLpkO65lQsOXo7ouMKKFlDBrSC0z/FQoRB+YePMeLRtZW8QKBKJVZD4aGfeDolSbEUtcXlOM93E5x8DmUC0N4PoiB1lZoWC1KzChm+RZAi/Y46/QuQBu4+lnpcULSPeqMjTB7uxJGKBI/qNf4uSG8T6mkCFlBki0txGiprFn8lVtGVQi6eB+lUjNwXcwrhXEjhdePNUn7bsfHHmE/ka2jjslKFsxcJrYAk/SI0+CU/t5dHaIfbYxuzNi0ZUqUgannrwXsip2zACvRxbMYxYv6woVzzjxu9N0sL4taQOnWjVV3B+SvGRaGOzb8EQ55ThH4HpTpDiuN2E6Ex6D4QGQiqY6XigqCkGhE2FSxyTHlmblSdkMVvOH07kYsspxNHEY8uzWwuBrT47FqM3iZWbaMdXvaKYp9GGhEy+2l+8QWzxOOKIsTOE+lSyhMSPpA6vTHhqLy1oEU2Jahutifl+UifNuu18R5h03NkhUiIRsZGGPpw2tHWUgACzqaC24lcj7nxMvWIKq1yQvBXYX4WtiLng0wPihAYfHQ9+qgHhTWDPiOB/aA5FGRISHqVYOt+rmM2EYNYkwFozmZMq38Gpdw2VyPajIRCmSX1SKRFY0LxjkmtiFED0GOHLmacGh+9YZYtM34hIabbdr9rSAbAh+5k4n44fgosOdAYSZnPFBOjJFPGtdwL2psdominwnJf490THjYSMugFKS+gbHhfCQTtcFHgDJDYm/uGJKnEo7xDu2NcnJDQMcKAZ9Gco16FIqBctwtaBVrM5tkMAoym0C4rL6CcKXYwcVFuwVtuWnaEzO4MncLPFy5yCEmf1nSEwdxR/BTtVc90IePQJpCLK0lLUehcWcukTTS63hxsGsDBhv0Q2GAoOLjeVrXNXftUHZDWLEOjbBBoz/AeLOkjQrUYcPiRaJaBIuIadILMSt1jbt24l8lctxBNyzQeoBxCXoBAkgYcEyKp0xqXM0FcLqI+iprIuKrQUqa4pyVJa4/cB1KNLRFv8YHX5YLETzfipEKuIOEuDN3OCmpKibHgoWlRzzPh9mkRfD2yLHM54+ZiXXRkZrHvcX5QxEylmf6MzX9Mq4JesnjRfgveF2VRMZtv94MirwIsfwetttzbgUBfDrRHZbZa35AQgMc6WIyFoG66LWi9LkFojeluvvEEFuHfIU7MUuRPfgksDEv7L7r7Fc3Mh44Su7xbg+VsA/50Ld+IW9e1V7RIFiqk67toSdTSbUirornstrprYPfsusV5X3Z+vM9gUKaP1cVwgU1EsRlow3Sh00MaOIFJfKw6Cn5caood2kCC0reHuG0nesAjY6+Lu3ILLACXIGnY4uts0lZGng+oK9XfY2esbPZRgPOxTvQuA2kDUdg1nDCFax8AEEX3B2HFC8gehkCBhUbCa+8FWp6gq81cdzYwR+0REPJGnqbDk9a0/qZQ4okgyUc/zSlkgyugi6h5ckaKgLV2YJewF1WgI6mrRrrLzYh4BRyFQB63eN/sF6zhb6I9CUOkGgzc1r/uM0SgJ5IV36zxjeLUxP16dMYcLb2vKHlqXuaGej4K3aTKYT37588UCZSGafYygAGGRv8cjDzU0CGCbXyRgCAm1SNI40G3W569UrFGdyXF4FRuqAUeBOSOoLSV8Ezy1+nUpdObCBcgBPQ8JALyqq365JgFYXOPPGE6tUji1hCceKQlwZY0ZceSwwNIVcTgEasGe2p1xTSoxg5CEtYkOsaxkVBfpIcBFE5+0QEfM/AuqPSE9KvYk4MFxXPEAg02p78EAaAmHxnsNhSaUDjL/iVU6mlr/h6QINMRVgq+yBOMagTs/aOyihA10c8ApwCcbh9KnXUoGDT9FKAgXWgALyMzwxPPysxRZMwSgALCHA6nGXTsTFFG5P8qZRwjgBWQape8kkOgr4CQXkAxnnhW4+kNBXAnCB7iQY4JE2DpIWo6bjzKQmYsOl3IqFTzHOuP6aSvSDqpUehQTRbxIOJiCpBT+IclS25h41VHYw4tms1AQtqZp1S8DASKC+5VP5FBK0E9gJC91KgUhucEZS65UPouSpLwgK8m0zub8sZCGf0tTTy4FumjlHxMxrzFTHnfLkXcYh0po4CdEPAD+t0xV9rkyo98ap7bKPiRYrn5TQpoUZY1sE272P42lEWkGrW6LjzrotCLzbZn9ixfdEWEaY5HTxvSzZQ6zSrKkSvYPnGhRJnFbqF7g0OMPuiZZKjGiKuw2mvAcF3VOALTALBqSh4VDVgGDuHjV2GjMskqdSZbpxEsvckHKDpxN9eX0QFFHWojSP7A00E/lz4xwB46aLaVLSaoEHJ0qX/ccpgzK+FZfFV4U23UV1b67QFKZkfdGflERnRZnbaCFNMtDijpL2eUxQW3ueIW9ZO4/7/vIJMkdF0aY/33OF+tZgF7cZVOyzDwkhRw318KjLSMkSKo8JkMiuoalXldHp9iXBA44YDPBW47hKVETFaPVKBiy/atSW9FLL1gLaJ2KnCsEA1DG8uLpmVZbIaEzDNyL9vmQapkP+e31IZWXpivEcv7wJtmvBPl6VEou+JAiYaqqC6mpb29Lk9Jji8nk0q+HDUo4bMHWnEikuMzaauR7zLpcAsRPy3TLS71DszG0vxiwG6zUiSQ04i+NnEimmP9vSj29uAIyH6e5Q6v5kEmOH73kQxVsq2jDJWECf13yn8K3/QvGItbtFKjd678lUr9RFYA7S/ZfBTKky/ZfBf0qyvafcdGz2us48viDngCeIG69sNkq6iUkUx6H98yUTPOc8+VOJLVErMtW+du8ynWHCtTL73GtS0PzROc8+jSQ//DSSIFIDwrLG8YgRlDwwtxekZCSr2KVHWJTcanaECf4sAeF5TPvEe2w8AY84QUvjUX7NrONTKwdXBMRCYCGJLILqpNlp2CxnIJsLbruHK5Ma+Rw2+eFymVeaLu80GwgUfg2E/DX+h3QLL8URwIolrbL+fT5FDNtqjQOpIQwVnogzIbRpVZSJMGvrJoQMac2pWVmkhoLWNXISo/cAha41pxPmpRkexKWTwoYR1PlsWHmf+RSk8F48PBxqXla7VPKo7YyTkmCREo4KOGr9JJqb6YSqsvdjTijYcsWxQ8pxlQbrDHcXLn/4tSPiwS++VSmbTLEZpW4X6+sJQ6JvCSVpYk8m6QuiXqkoLRw9caJCs38TJDSxITVson+gDTrZcYclYva5YywfOYqVbmhhmgmm1zxrghC1EoOWQLY1dquiPF8kirE+tHFWDXlSZj2OZlqvoijBpQ6bzc4LSTkrJHJJumEZgXX29xfWVcDAB4YdUquI3mN3DnxGy5VqVh2BhblGaiVpl22C/7HLGGkpJEC/n6pSdFiKze6pDKIuWMbapyW5ZxInelgXAK6ishDCKcDh4tTIdOIlhbJbkvfTYskK9maGu+R+2+GVn4RyPLA47Nd7pU5kNAzn4NBAI0QUhKIxGNrLE0u9BA6QtiIt8oOB5PiyFsJD3XfE5ZIxLKYBIA3+MASUGVZGHeGIjxguO0DEeWDgA7kk4xkx8vmK/uu5mhq/xvxyxJg2IGQpJxXCzYbokpqEzPbZqb2fLU9hIOFHaaK/cnwihgeEGUpKIzVkFkeHNvGDJ0JUXtvRMqC37F8OTHLXXW94qA+jylzofKs0gV+HQVAHcKBGQWcK4E0H7iuMuEUkVwBXrSoZ0wgKyFAJrERvhICqUBnY5nuhILjpHRIxsN4UbwGmH0tNy0l0s2zPa+aOfCRCOoMEOClqghxDwkkSOsXwe6kzStSi5DJdpwTBuTDSEBtG+q1529AtkULmkJWjsqoIiYey6+QexcJMGv817ZR81RbumgSsIdB5WgY2yKd3p49GyPitPSuiPF8UNwLNgXAb+Ah4CCYm1miwYRhSxyTbye34o4EeNTCE4y5w2bJpW1URXIkB8uLDK9APmKaZhg/Qq9Y/gwiE6/iKuaNKr0Wo+dzxOuJyPqzQB2D+QCksK/kNoUntSs+FQ8vqjFbQnbR2j1jSbMIJNQism2gzxaQ7vFE/TQV1pxw4TCrxhfzdL2Ea8/vkCokoSEusymMWXTa0tj6qCE1XUZhUwQ/uptQ1ro8hSND57CRBESoQJwkvcdKgZBOQuleYq8KAwAlEJ1ThYLGElRnCPBkMQbtT0iO6H0ZlnriE83g5MLTzHIhM4RK/DMF9JdqpHBK0L4y5zRZnYLy98KfUsIqoaWWXmMROrDouqaJJ0K1V1TiV7IVUAHyygiIA9C3AZ/BnMvUnrhq6AL0PJbIT5XTcMe/hpEhHjOYbvSu8GeMBRb1uGtVXFNkXSOJ8+kzuxtx2zKraxHL8hDPlVf7SOJBjJzcamfSGF4GR5O6xGZ8NCmDVKgt7gDlTpnfD51dwGzaikOL5LgCu5MSiMww7cQ8GY8lK+bauZeS0axxtSTv5TEI7lhA7WCea5FFI6msLw6pOjQU/uCJl9XQPAniHXYYGIBQgkIX0AyAJaxIQST6gl1xdAq0uXGY26y1jWNgD5LScbXh+FDZyJHwkdKTwRQ02QlstVM+VkygbGAur2wHY5u6DY2XWqvyg+yuRKEPiREas61MwKSGuhI69TtYQCEnkkZRTPl/iHScMrNHbTZbAg7fP81KNqXA1gyRj6hJFkTRTEOsFI1PA6cXnFPbpwKzx2GXSJ/9h4EKVfFZJUEkCccqS1aGBbZ8KnjQIygJR8MT8VvVA9dgHyWIsSHVkYRO+Ii9OWbKtimwBDTEPZs/g4pS7s6GHiAOwBhsaEFiY3uPcng3uCk1VLBS6XVGUFYT2a4okuQrlm10tk+sTw6WBRE3bPWxn69X+i2KeCPbkNsBmV3VSvANVNEFFQEk07bMrDq1zI7KksGRRDpyq8LFFKjzl87x+Y4cKrVrKQ+zH1/OVfMglngsXK9B9iMal+LMc7URAsh+/HYCIXEtMQoWzCHT2DcrQK6G+UAaKGRpiloxyCSGTboicQ063m3wmi3uAof5xP454xwnmX5nhPPak4FNRXiB2yH4kLH1R1nDZRnwGIQlPP88jQq5NooUws4EdAxDC3fE1Y/0hxy1CJD7F2hQ0A/hsP7EkRMgkSfsMwY0pcYhS4JPkmv0ZDJIe4DzlCLnSc0kmFlU/65JIrIUerhpcfQwabDsZUJTGW2p8Ka4NzEascIvUQ4Qbn1p5bJQkBHOQdXDgnE+EYmf37BX0Y9CFxfTkTlO46zESGTFIbReqkYU+672crE50GThTFGc/jAbWVW/xzhFL5BaNZ2ggej+q7gltabCk9W7u1YBbXz4Ku7SYoKg4pNA7UGmrnsPR25JAiGHmaIIgMs7GI9btZECUDDCFhohs5gkdAHTUtZKaZwq5cLhuhoAqiOhCgUprPIi003N2L68s6AUXlVa31JYVYMQweYBShoSykBZZUUxHDY2yRrfHOQNC6mDssaGMnBXWXHNFg+rxW75ro4IzwbFuExrb0kMVdpJUY4nKy/p2fHB6oIlL+vAKEOhlZUB4WE2RojAACWYPCwTxgXQ7OsFSDxhrRVHC10gUfUxD4drrTAJVxISsJtfQyJ3jX4RBxMDzotEkXssXEXFhPIDFhBPQpRiA5F0pxQzGMCcdR8tj/DQPuPty+S45tmlw0bSKsfKf8rsrMJGoDJg8z2qH7K79R+rCMBfhFDHTVkBeiJaP1YsA4IxFjYm5kl9v4SKmAnCvClP91g4F+YS0oEPIYbMQtNtvP9ZdpJBlKPwzwyIpwv/bDY4tUOwFA+tBVOBstLaVziPtiMM3rPes5ZhlrG7P/NvmX1fBPxJlZbiAM3blP/BeB1+QcGHJcaXYKhDIijkfqXiiSekpXg3E3cOteQp+steRLvqTZdkm9VIvsGMIb1X2w4cBQYYNN9clqCOi8cKSdrslkpFgPARLAD/z09Dm0wI9Uwh0QM5AnPruH6Ny+gvLMtf6DTj0zpvYMFEICjhvi/TBDJKVLtjvS9JYx+mcIVKANHFjUowIJmm2TNdofACiQpduZ3bvmNKkLQmWMs1fYpcK0RFg8S/H1IzauRdh4WIWDqr7EUTm2TgQ1qrjAdqKXHatBMrZP1uOYV3XyIsV3Ej4mbBLUS8Rhx6D21wEdPgfYX/ZKAVWNdGJNx/Cw1ytCfr2YfG+Q1OpdU0snuSkKq+HvFgNRK5B9L30MS7EUW6CnMLAX0GzgZtKGW7IXZzeLbVnmIEHCPYgvWoVybXxA41AjNE9FuGt8VGkWY8CG1NN2cMdSUlZla199S98llVM+3cd1GFOUBS0nb30H45MtEBHU58RFDiCSYyiCeq6IKo52Qo7Ia3a6p1feeBEx9oaOKPYmtnwHmiJASW3uWj0K1b5RxQ7ndRqv3lEe9+8wnfg8QYyW55aXaPrmfRizBtPFVlXC5KBcbcinVPURQOM6G1No8HwbBUlSLDJVioNm4e5ZsvfEAdwW2Frh6ec64K7n2SBE6LuuyrDDc9pSCkVJdZpYzpjGdS153OgmRkmk8oUEguV9lHLNw/lYNSZkaNh+MNrbl7dHYnWVG+eK3LiEry0STzS0icbyAV84mWVl3G+swSFSnNWm0GDLbtM0OEQWrb7lmIL6rZH2x/tFNMmWyTi4jr4Lj/03o9Qwzb3O8r3lYTJApHh5JaJiiN/WFSllDxpy3ClfsQWtDcTmpTyFBmoUIrVL6n1X/DHBDA9i9bh699HQroeuguU4Jrj1AUqPEo4N+ElqxtIqMW9MQENOwuOry+Q+/ms3wWSygSDnV7CD+U5KDaBnhyLKwoSHdo4/NV9gNJILUPpN0qAQ5OBLkRkLDncJVaZS0wMzCc6piWXI0Tq3gWq45VWXhxc8+nmRIeVjDB1FfyYkFsDNoHdCS7G4Dpvu7GKEW1VuGFQSV0HFjV8dQhYK2uLTIY10adZMolAe5jViZbdFWWLd2WsrL0iFykmUIxXhYmbBL+O4nn1opYj7DlMkfJHVrFBQBFCtjlUGfQIPhnP+Dfc/H3W3hKcAgrvvXvWQrPUymmNHlQfGeomgUEfNa2WDyQBORBKdyBWPFhC59E1TyO0YVWGeZMYtwKVXufWbw24+WAquJzGE+8iqzmLD/+uDnF4qpQmxOF4BykD1AH0UsiO22uXplB1ZIM6sUdQ3NHInJcSdvRTn1ZLNRHq0hwQY46yW2ARRW/Zma5eAmlipcTX3CI821XNTBFpCbG9t5zAtrM1pMOCfOKAxmEpyKqX6zLFNn0y/673vRAwnmd7LQRKbjZKwgCjPDtBOktEQCfSoR/LZ6WEuyuMSMGw6GER25XWiEddgNVI1G4VFNKA1UIXnd5g6MoNh+XNYMQ2McO3ufxIJpgq4O0vL1OI15iwhMeJeBiCig6RAkgItD11lH/BgIxEgzA3cg/ABsbKsFwQaHYoZNgRaCe/+HYvCBogDMOEGrE63HIHzAEUPgv0BT5TwDXgmYqoSjfDmeaOrRVxTSRDPQfx8uRR4HZgCfNACKYVNn7PqP2rIiXm4TmRMDAmD0nHZpcEB9khi8DPQWDrYlimXYO0DiiZBT4FMIJrZLUE1pAwq5gh1O8QcKsWqluMMYpl8yDCAGtqH1PeG5UFXluUU1GFcaaWQyLVQYnw+OByhvmrMQjqH2iPIoVdRfOOldpl2v9i2Gn2ZsFLo2ioC8pLiEDtUiLmlZ+S1DjL3pgGU89PC6BbQ9gnngfIvtf+BWGmDZ/cXD4Ik4ifBRFJnCleOL4ABBQqtD4MAfHwWKMgxl7SJX7EgP0qxa+am6ceaeJHZQfc0ci4H3AQZUYzYu438uEfzSL+4oPN0yeiaWwfk7dtRj2nlW2pdhS6R1dTtF1jZ4uCMMiKbbnwOMD0k6DvGuQ8RWJRsgyYhgJ3mxeQNc9P6B0K4QqbnTYDwGfNrcIQIrjVdQYZ+AIYAnguZJ7ZfsImwxsgdiglwItJe5NhN/C1jJLojL9BuZzYIdxpJqUCNpKDBkB8g07BfGVJkpmGf8x+/7BORMJc9LAgHAALCOMTJMkt4ZWltcruVYu9MTpcZungfzzN3HgWfHzoPNUAdFTR5JvmycSuLwg2kJgGRpUSypU1gsamSMSmqisUQKHF7OpGiJA+BmO7xb9ukWZE+VEp9MEu2lSiqYZ4EyQv/cGP5Xcuwcw1HA1oEACzjs0MMrQR2A8Zom/xZxCs+SyrDdYu+YMjk2QCNMFvfj4jGZveehoIcpLYeM1AM1xVpNYpyW6vwXjT0osfWYm4W0hOsD+ChDaKAD+dEKQQAnSumClOIgQwg6RKUmK3Ylw86Fos7X28BLYDgARWkBYGpsHTCtSYWzEiW/ESRTeBYz7/lKKud+4eR2uBlrREqnAMgkP1z6F++9b8zIuaAIfjRWaETmlwkdj0SWLbohKuIijxVQLZO2iSeFJ1nEBJzfrVeNYiEvsmA3LglyEA1FTJJiibi6NhaLlzoK5hoW/LNCwoQdKmAse8Z6w8nS5u4+gF41XH+xhaBZzMu9MeKdQSu+USPBtrf6Ucl3bHJORWZMZXsEEWmCTYNAslaU20p56f9OiKeRpEpTWob+lcH/G7kPxFo2tOXFvlzcQVuc79WlaQUR7LUXR5hY6nm1NHNXCCbKtwVUlPNaPCYjaScBmoYdvJcR4GbQeb3xJGcs3mUWNe620veRsuN0okK40N2WUx4Mw91v2Tp6GDwILIHyE/1/pJZcns3kbJxVUZCnJ5newrS/IF1ZMQok0IZVJiaIuRbV7K5fFfY7RpSQrzo4SJBIuSnKDsdnJRJUo+2oUti5kBoCeLk5ALqncI+SviAbQlFR5FpcUnetoVvNkGjX4RyggtFMEU2WegW/mdyRliyDtWpbUCTdc7t0Vtx0XQjlXFZyq2D9SSlVJqfrtaK8zn72lCTZaSm1ZPIpuJgb3aJEltI5Z3IIo1UiKdrVjBPHhWwUBL2KLbk1C9vOxKSn43TbTXI1ZBPkZojwoEja388vYftpKqtQmwKqghapJNTFbq+HZP2cxdimkibCCXfp5Gj5Kfaq0ykdJlg+y1kdpJPSV1v6or7anSJWK1XYwPElIsQYxZCBsieqyxR2I+y2zDzMRMibEOWhtl3EWSl+LrXybuOZVB3lOdaS4LONMVHYXFh9tkXfVq6eWSMcSHbSdfYaQTD4tVwLAN0ar444zJPg09oiR1CXNQBpYCuz4al+LdwXE1BZBWbStJmzDewbFx4lvO0b+Fis3S3Q866UmABvBW4fh1a5QaATZwn7QULVJAfdqf4urIIUofByjYxgPi46Y/wdW9fEVGlsvtRiQBPYpJMl2TDB7DTAgUqg9pXgc0JJC/Ets5y443jDf0SGxO8feFm0QlltMzWYViRUCsZzOpkiitkVr6YlKS4+jZQKgPB/AQ9yZfeGMUiHNUXCnSQ4QxVPmGXTh8e7AQeRp5g10MVUSCJwI9s7CsLH7EaEKyMqVObQI9FQAO8iVySjNYTQSlhsq93Y6K4joURTGnMFO0ZBrlZVBWGg3lp/M2GTiGpKgS19UWBl8SArig8Uvu75ZZLMouClt9IRjkpQEOkUrv2GeDlYwwQILUgFCYQGnUTGh/G7GpIxPh3uOC66xjRjOLeceLqY0wHu/1S/oEyGgfcIwLUrAz0UYJHccIELINEpv2PwZJvw8doVRSAHZlnvgf0hkzB+H9H4S0/S+KpN3AGPnyhxlP9kph7sF9YiRxbzarrTLAubA2Bxg/Ui8h57UVQrV2OwMBX6NoBxNQlkQaYcgCeLSm5iDgPo/JdJlW5QJDpIiaAC/FJEhME58gx+EFrU5jST35YcCIVnhobWpRWFtNLDcU5b6tAvB8k2teYuZvKgApyXk8FSakEyc4chwVP0Lb2P4ul67lQVozxxQaBlrdQ5CdIJwCptrs7mCihn5po7dRRrYxBzV3OyAdYpEy8i5YXMASLfkG/0ICflHvKwtXgBg8DEwAGI2hwaI0rXxkD2zMpL3U54NBhMANXHouc8lc2TCEBaCLE0l2vGuOOe2NLp6tiYdR5SlM4mckrkBQTOicQmE5+PC5LLNpIYMYaUPR2a8mahaTbGA7nwH+IQADrdUZF4Ut5j/9VovGTFP6kRWQA1mk0b5U9DWQrqdrMCzK3IFmedgs2KSHkzL1Sl/TaokWasl9KSxDxGxDwV+lwA0JNAigXBLJDTCdB6R5TNQlYo0InQMpwNWmqIouOOkQ8IMKJQs9p8J5tDKcKNnzy1Qn0nHiqiSJLcQFbRmxTWQ0PPblhmnDO5ChtIwLJsEwsAhZup1iZuCyYiytXEyPUvql6Nbw5AQZwKxqCXo4rpYYyHBKVFupTbfaoXxM5BcVlu3HLErEGmhyeGAbdGwGoXcXx3oZ1L+ls4GRJBQBB5YQ+qL+mVfdqMOX0ZKCBZEAc0qA71Lbbe/qt8rantSeIehI5VC+Tfyo8zDLOIxA0kpQxjHqEnLng5rhpjXcFviBel2k/Tor+ovEHvk6MHgEuYBJPY+iDAYFq4a3YQkJODbYgxLLQuxtD/frGFjhsUDBVorz7BgZmJjZs9/3dasrSasXkynsdB1YjohjY4BNnKKVCwDpgI8+h5xYUkdMaE9GNbFg6XD8jseN5nmEL+40TnUXuEwaAokoFh7gT4FlQQHL0mxD0LRgs9ktTKKkWQ1OQKggauzflES/OLuTMFmmZlKdLGuZZtsitUkobO7trRWGIojBGk1ogpjGUs3huN4wbr0aTQU6BMMrm7FT4v9L7wWy6gd7eFB36BsvLYUp4WqSqAWSMyxl7wwJWkJ7hYWzhYFsC4VX65FN6POs2G8xVp4Z0JpULi0xTBEKyqirdC19IhnSoFWPxJOk9CcCN0h2nuctvuZaUohEUG1b45FtDQ+jgpsy8SWMImEKwighp8GiISWla9xSanXSYO2T0BwIBsrdJohHAQPCQDLIDUgORJXVvYugeSa9UXDR8A6oapBwjyVOE8Azo3zjfA/CoA1+G8EEwjI8pnZF8pbDsJimBl25iAkBgEY0OyIN11u5l0AYWHlqYL2XD9T6DNARjBz32tbMkzDSIj2wDJzL/EMk65kxJPwcSz4YVM+B6cKESqQRzGXQwYyV8lkO/ZBrPSYRUHXDeYBV457PthIKNXrSWLFJCHEU+4gPwIyjmBwja3uEjmRA45G+QBTCEfpJM2Keu481A6KfNgUIYVw0FmWWNSO3BqSMHzFNer9Qeepj8IVuJd4fgGlYiHYzHEvcxKKoWZ0TIRcvYqhd5b6Fv6VcAmwSI0edoI5eoTw4l8qmRbIUSx1o3LuLHCQEEYdkRZ23XDlsHeWys2VtowFResMIhyW5hy2mdu6Dr1oLlS/ssYEeD+l+haH/YCvlGKxA1xpTBRUpifFOK/0i2BCLAIJwf+wGe1hsZhrB9WG5kN7eEjxCNlAgnB/X1OIxanQXhoGlCNJ6rqG0EVGkkL4aHz0tEeLkzT1CZjspEAjIaBsNR4JAZqLdii6/MWtv61B8xE5GpwDao6lDxG5QHIZP1lozmxrY+gfCEE+TbSgAQqzEHsNrlqFhazEuyox2zH+oGJZaDCyctvuMJ9xwl+tsYUgiaxJJmQ1viMLuN3yUQMIc+kfZoYNNHOa7Z/NqjN3W7Q6CvBOlACKPO9tZo+CueFUW+vkuCtRZtMZvYpmA7ZAMAdcFsiLARBIiacQX8Xcz/C/Mqz4KOMSiAYo8xoHSe7x0anAnlvbLGyvE7Bt1LjtboFRmkkI78UncGvZ6bP9HdIbbZSkCyTJ+BvQSmmhSfjsAGzS3KGrATiNS5gAQhMkdPCXUOsEbUxKvYviEeQ++anQpiHvnI07YJA68YfWJo2IVwQhoN0kMePNXHJAQwd7/PsWo85KB2ExVYjtwm2F6afMpNou24V6hq1EgVdNvJgZOoug1oIBWPBkas8e5u7dscIjmzIfWmEmHw6NVchCQQ0LyHfIdEz8YV8E56F4Bv8Hv6JSoeMzXHtY5V6k79iGmeAC5GwczTf1Jzq6ZyL31IR5qtqDud8KvMw3TxXmssG/12a/eXwAho+pK9OajQYHSiEqSEK0X1G48ownJhyAqi5C3vBztpNNA3pIkzZy9aaIFKsSA1X42gCEExLS8dvj49DoQlBg/BbqHA7goCEc6FqAHsm8HgweuAc4x1DPq4gYc4RUqCDNjKYZQQ4U2iZNDAU61TKRGTRO5JEjMCIiTTGjIh5LDhEVBFx2AqyXpTnUI4JJtDh9FmgtNMEeTSvzlCOI5KnntU6pu8U4EgmSjG+NSUQbniCMmwrP+WANYw5mghaYJUSIkGIET0FhMpg636jSvAaGABwjnIw0iTP1Cz1ZdgckBOWZOeBldLXZqxggDZyx3kbgnctTzFgUrx8iq14/9b0Fsm9VewvmA3ETnMOwaq+1pL5LSCRgeMsW1PwMIp8W61q6bZMmteai4gkHulvQPydIqsKR68NSqjpBAKncn2hiafZrnhZsWlNYn4AbAFuwEpGt6hWPQm6PYG742/I2bnnKtxF+3cSCqads54TQ7J/NVBC1JDaYvfJEDYtRuOeQaZzl7DqoAyPnCaUQudEkhVJIILcst9KZhZU80E2HhaYAxCkudLXP1LXilUYP4VOa9Rt9kljBNY3a3RwrCA4sLnni9YtjnIlI7TONXwaotoRZtT/i/4f5OPEtypbfv/YXrRW1/2ZeXoCXxfD/0S5tlBCYNhq4Guw37PYWCtNooehi9nYKbyMS5kexKDcjXh+I2qr7+ipsRuVwpOY/0PsHqBe6FCYmgbML+NlKahWCeMzXowKqgP4HzZMEjdBSNB53ZhTiaYOLlCITnuXEEpx7Ok0woArqIcZ9pegVI4yGSlWvqySxaw32fSvXZ+G81L1F8U+VXw0fT2EzueoG0V/nDdsWbwm7hqzkEzQD1ztdxvQx6PLGttLoeBITO0FsI7mLN82Zxp4kId0hTYGDfWFmyRKWIIhhYaaqcBKIB/tkdrrTO4VbQUPVq1Ld42UbmqOQIqoV2xDHpvoxyNCW5ENCTQh2T8JkUvd1o7AiVrhKAGLV5s1fYmWFhE4hzPoJBgrUmLIhXtvLXTOAvfmfemM3ag11Kit13Oa4KnMrG0Op1BIzHI5tIMGGFepAO62fjlRZ86JB9Yul2LfCELfHfSUQ+Q9pChKMqCVg94NU/hpt1aRD0A/+kW8SrWBL4rGw6jZdgPSUuUmkb4w1X0ZxX6/YJpSt6kFRS0FJRUpMakITtQCxcbMGgNUDl1vor8+0tyUzUpGLqSMzomzdN5cZwcwMgzZiYMYBZS+JtYiaZV4TgjCQw+I+M5LACaM0bkd2ZxdvKuifSUMyjVRApTa/HAT2ijG1VZ5MBC2ZBktZAZSi5md8Xs2BwzJwZ3xSIkIvZqv7ASI2bnldoLaElRkS2II1ADoztNJVxMNLoDmRtl1UWGDQ4NOOdt16EHA2Em0dRGL/WucL5ZCjS8t7xb1oCfFUoq1pqAvalk7heoZnhTmorGs2SyBVS/9WAcxjHS+XtYnSu9vfgDfknpaN8sQXZao2WFgTkfpOaZWxS/ZCsXce9tHBU9xlBoFJ4pX1KoU+8MKgKkSUyFDGLqb+fk/lDzfN/95re2wMvCdyBCrt5R3NfHAA0FZcxaDZCW4T1joCWZlFSwSMh0x1hovXVogodH9wzyZGNITQKXEN8Km759wNnlicDZQn4JpztT8QRONunSo72HtGXKM7o6rge4oOZOSn4BZQIs2wdTOXHi/rQxKAK4vqwJHUDlzqJrbktIy+AZtlAMCHCy2hEIBeoowTc8g+hI1h8aDQqYJZDLOB0BdpEeBLYApSMIjlM2DpdbCXGVwjgQ6YB77md67wb5ku/GJz6Kqo9ja532nnbNb4DVX4DeSxhbQUNN/Bf5FExJAEkYawXlKV3wfuuItAuZpie1PVMM42WQBqU2Mkoyhya8EqGgOoo7czTi0mPerYK5DI+9a+ne9DhF7U1Ls88d4sPRO1j0DrU5DbNhCbYa8549i1VzLXyNuem28pg/AHdEsUrcqSmW+g0ZGAbLe4HCVjXGY4NZB+5eg1pQ4pghZDg6RZ0j5DFh30ti9aHfOYXTRqeZWShV00p4Qb/RhZahbNOUGIjildtMAHY5kcq6x7jUfYdSdLdN0xtQA5VVXXkuTWHwmuAfXa1vUXwmt9oFptyS25RDaANfD/47NQ9zFg0HZR6xQkQWS19BwRYKys9QTayhNQgK30CSmyE4sqT3Ad+pA5q3EOSaagLUOHQr3H2SrBEvE12PF6NlVuC1fqaYhtBf5GIUOnhkftt/stKKnyFkWEaT6ycNWCQmQRNVahFSNAolgWQuKx5e6dPbCM+Hm0jWMaAkIICimi9WA9belMEQj3GB5r5IxCzGjqCTAskRBFSnfmEWAReNuKeUG2NXo4NlxpIJwSrnRZa85jyE5h5sM7qsU69dXjdlv0rWwfomQEyFmaxyqAWB4K5NlRhV2S8hTyCbhsmd2w5Na+ynkLY85wyRS4/pbMfKZV5lMv+lOXCqDCDRO9CGfWcmWIxZYkQSAzzqkSvlpCRInvwTJzWm+1iclaONzsrgkrY/0XEPwD8Q3t1yHTw44OSbY9N5MOxjYaC+ak4WAs1A5XX+sON5uyuBwRYrmmg7akrAClX/+1W80K0NpFeSUl+CExjgdBmJRgB49jBIryWLYrJs48lOUdFnZWeZVZjZEvi9m06iqTShfbpIaMZmZS8Rx4BCUkeIEGkhLuW7GAlpAqBoA0CZUlomX1x6GgPDKCtneRyNfkSoQJ8X7PN/otSrcZbDUw4RShQixaTNwwraxwhoO+PVuWairS2jsSN7EAKL5eyGRo66d/Cd04vMqS8JrTSFK8+qGUAIk9CsRUEqpkiqpwDZlpAoqbhfdB2+opBWekHk+paiGp9tUM/8EYsBeV2jvJE3iwVn78EjTQpO+SRY/VhAEguoB8Eil6TOgd1ZWh4eBQce3Oj6X/wQSR0CGCh0buktdDpNaiX5821rrqGGnZQgDov2pcpQkaGpzPxeLX1xl7Rru1Ysy/yeOPhekWf3Dih6ZyEfQSO2G2fR+7Mlz4AfcFSrKBZnH5KcS9zwGW5rBpGjEFvNIyykGJU8NZXVx2sm3nMFqcoHmbTfmVRuNW+ZQSh1TiIHxMGPAtcE8dnd+yrsFkYd5cL5I3t5hFbPRFuZ26kzspyq1WvziX+Hlt27tLGrTTuZeDzVTsSo2vzCZhONGgvQ1oFXAKKME+bYXs6Tb9sjAvzAhbdK4T+gqpl09oQ/CEvUjWN182I7WuaF77cNRyo1DmOQXlcg7EYoviDEHfT+mMlQK+qxmIlPDCHNAq9hHFmwRcQtQMQ9V7+0TXB2rEQtWocHssBVeHZbZDPQmaEVXP1k/KLSj9em73xTK/uYToormg4oJyG2YWeRiifCwaIEksX3pJevzrv5DaspcyBvjb/ba5yiN4KNaaLIqgcWHSmeTrtyEIs6jlhlk6JdwTQpFF5IQtHrhn3LpQze2G2Vmq7tZFfECyyKI6ELGl08RzNak2VQujuPtrcfF1rUKBgE6VRYkodj7tIn9yuV+kVTvyH1/LOqQ1t7Jts8bmssU1XeBxfi0vLxd1nNmm7AIkTmqVQjO3/FK8h2RcHkD+1HZPJnwirqgRwkt7l0qnFAFdUqJUICN1IAuRYKWcU5/b7s3SOaXQEoAgQnwoVY7jXIACmnAfQhkCc/9jqOxFLDzfuu3A0QCLUyB9YGK2QOXydfty0Xyljkk1N1/WZ/0mDDUPdROteVjVi0CLoL9msUSskMfOGKb6pgKR7W06QDZhXNqS9i04QHJR70qXVS5MmEWdWm7PXDUSpTlCB6lFoQriu+bAHUwZ1yqoeoKGs0BBxAqZowaKASDNFkiCLNNE+vWrq3HcErghrXWxs71WRg7f0KbZ7OQSLYIaOEwNZOio3bPYb2/svLZ5SOj1yv5VA7kw8VLXZTSzyEAQflktzl/OMNhifQToRLiVWAJgAN4+aEVA9wbYkxVA5dvEl0B1LelULnnI5wNYnkGJQiiZIPkIfJCj3CQSVFNPBgw4TgoNwrCDoQNUoKBEoPygUGU2ARn+X+06R7HIlPmpFGYI041MEZLhR3emK81/C4eADhO8j8Y0CAYLJS9kjgtg+zkOUgAqkmrPqo5PAXULIACp+yFKMBCZQ+1yykh2mhPMtKo2PNHMkdZ+8uOHQWMCAQNV99NSWKbqw1NWJaHuBxoLA5s//0QJOBDj7QElskY9s8I+wL3EE79hyn4XmzICK3JsiO3AgZHWUTAJIBzATmIuFHwZdYBS5TuTacLD2ZOgP4aiJQy4xxMF9MZpkqHLy7Qcu/s0/qgU0gmhpylE2MAjwnGSQdOQJp5oO+JQrnjcXg8kvg+jaqyxq4m72ZAIWCGLOqH2CrTc6tCYGmTk7bOJCaR4gNpxxy+PxEUchGOjU0woqnh4o8KARDsiKcCBW52uOgaO1N/AUp8AP7GGBSlkc5jZD47OgAnuQtCY5UtTNGCgIh6YCCt27tv5alZpBJlfUlaTHoo4/QDOmKXANkdCuBGaveO+XJyl4MtUmNCB9xc/Q9pI02NOWK1rJ+LOwVqD5XWt/LtOsc0fKImYwKjWc5IpAlTaFWPEHXmz5WfyLDytSUaniL1DzmIlvDQy00DXzBKrWuCpJVMN4GyOkpiOC5B7fRMa6aloYgmBIhLlSi+Vhtcj+LfiM3Dg+CBkwkZldxSmqfDnwsYR4LVxAftBaWF/CqyggMdlXs5y6gqUsAiMSAoXEYytfS2cAWlpGDQMkjA3soXXZ4qkpAVRGW1pL5pLAPAS/oBiRKhLlPkgQ0FYwZn/XQrk5ahPvXCDzT0yO0QqqBMww2/r/NiM+6MDOxLRHDAgi2BcuUeGfjpwKrmXj4echR+W9iI0SSyYToE5CvcYLhDy1wHxLc1cuBwlb5A6WqO2E+XM0/OXCIMy4iipLHlWfapojnGldeUn7dzWag80bolXL+HATdYW88UEq6lBhVw/VnWwLlatSPzI7CFQK+BKZStImkuRDTy9E22+glprSCkUoii0/NQxMyWONd8DizWMDD4hQL+60qmqIoLm7GM8Z7OWJI2fUwlkmPtMguogNEayhR+ilemAdgJa+LtK8K6DT0gv6p1/gjkMEN1m+A8Kf+c0w24T/x0UvywfT/Hv6J4adzWTnQh/1yB6UCHDZKV/T1F5A9n1i3+uSI2ga6bLn08IQSi4zPSYxh9IUYSZa1n+gYqxrNwPUlX7OzJZI0UZrbEdQNNFZ7iABfgLpdW1IPhCkBmzALvNgsiiE8cYz/gYGeofUCeIVMqMS53GOZxYi6aazAS21aRIpK0iTRJNvNuM1qw8A4EmAlUweBtTJOAnSEj+YbabBR2Lqgi7HPlrvdbJbJtazpW5Xyny9orIK+IodoH+rcqC8fECwmghpB8w7YERU2BPzLARx+JkVpcMBdGqKapZgjMgnYT0FPCNKgXiiCmqtOFaMh6LuWlUudZe756o1NNIRiqTFLCpRCivLQQC0hLQLfZnbCiEibH8Vic6KNgSLCWDYo+9Fyv7QknI+AYAjUAlLIr63LAczrG1/h+D/d4a4gY3gaJeSay6JhLBMLq+k9eG9W/zgsb5bVRw9asXSR7a5VMqiZcMCTKNa8qcULxd1ZgLL2yVIAYVLkZh2Vp9ctEyMCSw0BIcSljL7KngqFtJU8k9UwFQq5axv9aWTIEnFImBgZIs2JLFtmd4JEZatlvq3R7VXr9U87Lw/rm3tVznRMEsCxCG536mRZKimdSwne1wGeT3S14nky9d2NfJqHq2+h4kQfV32Ovg7XIlbQHCBFogs6AzwkEU1KoqxSDoiAFNv+KrWVnUFOgj630l8znYiKjmgwJB3/rXzI9Ug/iQh3GZ/QWv6/dWSqgswrycTgTq+aVJUUSk3tFF3kFlQjj4uBpygNLBbAEBjCoCQiaeQh3+N2pjWyJk+1kF72Q78XGkbR9OhXEEFbKAGLgyNifPoyCPxEHgGr+VgB9jrB9IblGPAVCQtmrvECoRD9xMYCJQsgLUnql0yTDoYE1A5sInRxLYwgmGxhbKZz9v4iW4cAhZiGExqPdR7QQ9idsfKvhGHEXkAVeBSmDt/TWbviJ4Fzp5FrONE8z8Q8KPQQkV7iXzirYF0W0GUIsgyDFOnIhZ+19epHBNakh+M7tPzZ2behaDFPLWxkrIhfolVJjTIrPipb/IFCoTu08t7E8LEGgzfj+24lAP+4Qg0WqXwp2aIDuDiD9nDBznC7XtoaHSRDHE2YIwBpgUDS59AlmvkJXTGSNAucAlAtxNuwdj/QwuPdES2H6w4b7NJd5/1s/wX2Dch5SLYv/Z35cUhPpMcIEK8R4QxCpp4MrYRNKOM16nojjXEC+ZUJXZPDFjABMAcmPBkZEWZHdAWaySN4C0MbTcI++/F7FH+11ZWo0FSeWlZ81Jlp7smlC4N0Fp3IfP3PyKLvmEeQp350YQtxb2X4sxuRkSd4maSjbGRmSSeuCEuQYT7lRTghBW/BCOzC/IpkFcDojZP2DtAYuM7t/gygvDc98tPlkidRvg/Op9J3N6YBAq4fV/iUsOhpYX4HGCxQo24RsSBFCsOyMggsZ/Ksl8UHAm7Kfc/yp8jAkgc6l3yPbjmrsQNW42D0mD7EjMPagWdr3t1CJKpd7RKu5ScOXDLI8qW6loAYillRIWyMhKEtFNwx1hK26o+FtxZyXU7kKilENOEeuhqM8urLI490qlzFYCK6KW0lduIMpM/WfbpgIcdKYzwBFLa0WhUMGUy8zn35sRKH2hlGyBQiEHicFSFej0RKIfNeSTS5cok+hhePa8T2x2qAC5ery+tK85AXwIK3O5rIBlj/B6Qc6o1NdrBJk6rDHA0iKhN2Q4IOzGuZDoHSYQUnCfJKrV5VcDYWZco8SDfcAHhv8NjwPzIKXDKUdJjaiQLKGGAlVUrVNU+aBeoBA2n4IuQ0g3WRkQ+G9cAUl4yeeMv+YZNcK+xuBGQAGBYBbLK6uToO6Bi8ell41JMVcGttAmWi2SxD0DT4IJCNIiRsGhhsG78qi4aDaodjWmVmawPOFri2CoMw1bHYji88UnO/ME69TIhOeyQIBJxPnj6NaE+VISIC3mcw6pCO0vtitbORp8LWDutMjLMITUUzAGfthMxilNokFC3hgpKYtDx2mCz2uaT4AKPwcUIl8k/U8l92E0VLcxjQbCpxDJEHClrFpAagWKqmifw8UBIRZHVUOrsbdUjcincKX0WccK5TovReGhGLMXUgoFjhiMF30Iu2ABS1RTpLrKwKJMaCtjAkBUK0OCz9i+3Ay8zVgmexE5+XVATxP7I6DQBUJEeKRrqN07FQbMqbf28ZBolzazw7zWONPUFbcDkJ9qOOVgrK31QtGrfJEnk8DF/ItyOXyLlomRTWjWwYqAYjzDuhBzPL4I+00RXaYRPqEdCa/iCdz7iNMItgvWECxhXFuAn0Llc7PXhT2lUhSnufaOKZ3qVjZZjel2kSpEaGCqtedAhv/DU1QBhfcz5pBkdHPNKWTuYs5tbA+H1lHTcWySYTOmHMeSoA4hGoqlZzjuoAiFhUArVgc3l7aZhhS1iBPICmIOEtcW3S+zk8B2M/CRCtXFYolKsNqmjFU1/PYEEaCIASsaQVkVQY86UdmSR+1D7W8izF56TcpW72oGIjO2zKIQjgBTIzOEzYgNqHislUPDy27iFFsFeUaHtjBjtY8AevAJRunhwBbvIY783SkrMjUgxY7FuaA/nv82gSJ3hpIncqqI9D5iZQvGXqW2QwSfPU3QThDl9j4ceJiiSqcpyMJKdyTspxVinUk1+17HJNmlQTnK9nzTJ3wX5qKHO4hJqHrjuQ8bCU1WvEa4qWrW6YPdZK1Mj6R4txKVZMAAAgXBjdPKap5aLrRP9sfUqei7oWmRgKOzrrMGvKS2ZQt/66IUEsaHCjWxrLAhSgpjeTOcBcBUoMevNK9rOuB+QplAXDKYbwr0DtHmMj4W8ZurysEDdBRaZ8Ycn3vq2OXNlaN8gRn2eux756wB3oZaoSKZ8B4w5OXwBcEgKZlG0NNKQrdizaHGiVBs2GWaY1tD6kK6EHUzIZM6zIkFVLDSKYSEJhNOC0i0BXoRZczri1jbXNivkHirbITeWrivWg33M8XRrz/cJylXIpR2l0X1y6L6ZVH9sqh+WVS/LKpfFtUvi+qXRfXLovplUf2yqH5ZVL8sql+yUX0uMC2BIcchehRVl4bomtfGPwS6J2hFBT4CoBNAArBShgd3C5gLAvrKogbh+BvGtIZodOGDd5KB4muKXf3YvZd6rw3jVOw7wN7QPMsILGbd8Xv7hBzC4uKWqA8DYX4nUd+ihZLcdvsSb9NJK2zD4SrFU0FIEH1iTNrGVmBBhwsj1T4Vgc2lgCuH30L7HVIoIa0D28Nbr7ppmIPPgwpYC7s14pcFoLEjqMP3VGi8JNJ6UOtiFrqgsOubZFl5PKsL2r54d4TOKOWpkLTQxM3iwnbWZO03M1uPR5MNJp4wqjN+kBUuwNwK0anr0KmSYMnlczC9gtdhIb+SWzQ4jgobZ5e25CsAP79hKeFll8pSeKlkMu3LLpVll8qyS+Ubcqm03/c3xniz4c0DG4ZttsMmm7U0jG3p2DC8f8PAgY1Ngzv2G9ivY5LQzcxHGpoGNFf+re+g5lHD+7VUPty/3+gGyTebcO2Qhn4DG0aNPvfqIc2jWybe1G9EY6fmEQ1N/Ro7DWgefnO/AQMaRpin2gdMvHHw+MYR220ysGHQsH4tDTcMaG5qahjQ0tjcNPGGoQ0NIzr2G9Z4VMNU/NbEW/qNGDGscUC/yt+3P3J0c9N08/mWhqaWji3jRjQU/3zDmNENozr2G2w+MXFWDzOIXffevue4liHNTZuQTlx3Sm4Z23F0S7/GpmENo0d3HNbPjGfqCPj77PgPI/oNGGoe0vEo81qVkU3FL98Uf6Z59MRr9u03oEevzCP7jRowZOI1/UYNl3xm/O+jxjS1NA5vmHht157Fn7N/DD/HOhHSSc3IPHj0uKYBE68Z1G/Y6IY7Ml9uaBk1ruOAZvOMiVcmN7n5GdbQNLhlyMSpglVyA9eNahg9orlpdMNJU803W8aMPvFqsxwNj//p2uHmGeZVp/TYx63ja99Z9+rdzdJMvLfbqMbKJtukV8OICksbN8Znh0TuwMQme+574PSu9pcOLF2JGQeO6tc0epBZjT3cyl87YMiYpqENA2/oWrrmsytrbl6o8gajmoeZfxzWfHTH5lGNgxubJl75s3tzf24YO6J5dENHO+iJ0w/ueEDDyDENo1s67r37dNx/HWFjT7y9fFvPtB9qHjW4X1PjeBj6xHthAx09fuzRAweMGThwyFFHD0/S8Zw19m8YM2DQLPuVEaOaK2OpPGz46IlX6SS5yf7FLeENZr6SjiTpmJC7RreMahxgdmxlQkY0j2rpOLphwJhRjS3jJr643fB+YyvbtbMxDcYsJsmOmzQ2DRg2ZmBDrzH9d28ebhZ59I6bjBjVMKy538C7x3YcZdZlWOPwRrO+8H9H4SuPnni1MF++s/iBluahDU2jJ15b+bP5/+6LPzGqofL8ykuEx/A0Te8p/5B7FE8Taa7Ru7OfGt0Qj4bQ4aPvLH7APsIcJ0Ll6Olj3Tc6Ng6c+OLm5n/0TdKGxKzoAJL27z9ANrBEqX79BpIBMm0YqGQ/dXPXbh279hswpKFjL9jHE6/d/ZD9dt1376439DLP79rcPLSx4byXllu+b98Bg/r2H9550PBD9pNj9++6936kU1PSg+15VNqJHLTf/mMH9OKdxvKx3fY5sNd+zUcO4mJwxwrNLTfnJRUdSaekkxlkx5EHHtqwb49dhwwdecieIw5tHtd3eHO3dI8xTfv1Htrn5w0Nh4zsM7bXoYeMGjxqwJ4Hdm0iDeMS2awOZcmIQ3cfMJru3Wv8bns27qkO2X+P3fZJRvdoOXiQ6k74YLOi/VqGdN5+x03MJm40U9PZnrSO5qR1xHPG3DnbcZOBsA86d8oa1h032aulZUSPpmHjdjQH1GyoBvP/9hve0KuxpaHzfs1NDS+eb+ZgzFGNAzv3aRo2YKzqPb5308jePQ9Qw/fdo+/eu/ca1LX/mHQMlbvuesBevfbrOaih59Gj9o8mwXhGHRM7DzLhGjZQGHo7R3X7wR1jw9Gxx4jKuTPr2NQ8uqlx0KCpvRpGmUM08YYBw5rHDDR3xKiGqWbND9j1kImz9IB0QP+BAwf176f6p0nCOu5mrK97mjczV1cumKv7Nw8c96uplaPXNPiP3+n0Yv+Nz/zhd+D/W/7Ai/Ze49adLjll/pfbXj7+jpYLfn7eJc2PrPzdLTfT87rvvtpPfrPpch9/uaDThLvvnqY6Jb2/t9uTdz356P1fvfHU5OMvvue+w089/r/z3p48+NkOX33x9vxDR2705FdfvP/U8V8+Mnnn4//7xefzP/+q2+F9F9y29Q1HL9jgv5/PHL/O8+9OPv7L1b6a/9hXP/7s+cnHn7rnxmTmjodN/PSEY36oPl5vm3VuOP3c6XdNu2W95g3nvnzr4wuuO2OL8S0HPHjiq1P323PMtSsNmf3SYQcee9/2787afvUV9rvknb2uuW3o0bzXiiu/vc/Rm/5ts+1Xu7n7f04c3vHuh7v87LRL7//tx99vmnxOy4wbx/H1zjt2ubseXoO9d9rFq7x71+sP7bvWmEHXTf/wB1d9uN3Ws3rs+Xn/Nfc//snHVn/n1tdveSC5Ycg5t9w1Z6UtR5/61H/O+ezoY3Y+sdttp/e79OmLP+g5Y48/vP3MeXv1mCx7DBh25XpvnNj9wZfemLJ9v+Wv6bn1wDE/m9Dlim1u/uumH9z+cO/LD+enTr1jufmbb3fG0LXWGjzss7FH7Pz0D95vfu2jK4+dPOjfr036/sjlH31ycMPOT949Zp9tBz2xwoy3JvfqeuWHm5+z1fChL0/p88NVvjdq9ha/73/sx3Muee673Wf1ueaG3rc0fWebCZveeFvv7f68/14vHtrSd6+XN/7pDjt3fGrqy89d/de1Tjznyo7XjH/lgw2Wf7LrQauu8dLdl7y706m3XPeXHbdZe0HPcy8Yq/561bprbLrSze9O3frVSzed9dDyc895ecJLk/fb65SxE16eucmck1teuvXsHx5x4Uqnbtv1wy7jL++1y4wb5zzaZeXVxGV/PeWTOVsNnNPEuvXqOrnzqOV33WLkzR8MX+WTX55waYv6+06nHsObT+p97gM/Xe7wNcet/eyZ1684pnPP+f+Ycu20ltce3bb3Q58f9uilz9719hfd1l+++4F7DJunf3D6JQ9+fFafzV+ga6x9RueZnx3xq9fW+Hmfll+8+Mym7/Q94q7nNzqaH7/7pQ/cvcKVPUcfdfDskZs/8/JaPUfsdcKds9/+af8FZ66wyx2r9x86+KqWCUdOWf3pO+7Z7NPXhv9z5ODz1/3sAjpx3it/+GLmjluc2mWbQd3/PfSqq845YZ85b7046ta77z6g8+EbP/HDP/S+/KKnXrr0/v06bLvL/Df2/OlNtz8xZZvNL+l859+/f/r122zQ5ZqptGtLpwNuP274fq+OXe2xH5zS9ZgHOxwwb8iav7z3oM8b/vnbvXZ48t07XzmwwwsfnPmjnSfd/fw2s1de4YiDkjX2efmzcTfe8nnXyQ9+uvutp/S94vpbfrD8ZbM++Pn0FybPvehZtfwvh+7f0O+m7d+//k89Ojyx7vbNd184v5nvN6Ch49SfTL7o/R/f9upk+cRan23xyd6/+acc0/fyvTr8+uSGE3c8ctOm22aceni33jNumSO6nD/29Nse/HD9u3++/M6Tnv+/lfZo6D/93xNGP7Dgzh/uuPypkxr7izknX9p4wTm/+t2Fq06/do331Davf6dP81q/6/SsvGzocX9INpi/4cguK/5lu42eX+uV85/eatum6QcsIIf97Cc3vTjxJ5Oe+O3Mz/o0jdn8xgn9z9r89jd/dc45G/U+86wFAzfc89KBo3+gV+ry8Jw1792g5czvb71dy8/PuuaqPR56b+YZ8147c8NT9+fPbvyjazZ9Rb561rwZ56SPzL3n2d1/3nfswWfdtW/zqr97595JK574dqczpj7w+hG/+cnc/aZ0mbD7sZ+ef+J9z9y91gUXzf77M/OOOnLTWw7bba23+h/z0npffv+U/Y/Z5JPBLz/Xa5/bD7pu7EWrPdJluwXbPd5r5QVTZ/9261lPjH/pxjV/PHGAXvWYjY8bdfv3Xj1pvRdXOPUP084e+IM5y6+29eGvz5t51cgv/3b57dOaV9pu4M07bjz7lIEPvPvMZe+cOP7Dppeu/O33n320+4Uz/z1mv2seJz1ve2ncw1sMnX35oKPWvuK1bcmEm1/e4tqXH7j69NMm7HHtvP5/Zb2vWn3zzhv9af5/75nU5+kf/vDJHz30+bQX931k8InzznqVrz1u+Zafvzph/Ds91rrltlvnvLf30JU79Lkk+enEtXq+Nrv5xpOn9vpZ95NOf+6q1WcdpFecs8rzG7954TMXf0hW/vkB171w2Tbrz/nlKlfudMG25z324W87d7tp0rvPj97yjWlf0fdGkkf33L3Lclvs2v8vc1b99JKD1/ld10+evWNoFzJ3p6v+lc48446ma5rO7/vsaoMO3/iiAUMmdDmx59l/3ef6P/77wdEHbKG3773mDXs8OOWhK46+8daN9+Qbf7bBWmu/sdnGlz116Kl6xebHT9jjrP++9+g0cWT/d15ML3uuT8d3Rmyy7aD/vLjN5L8Mvm+FR5ZbrdeChtHbdJ6/3js3jh94Wp9D594/d70f7zhoaNOQxjf2Hfqd84d8b+fT5q2x78E7/677KdPXvOqRkY+9Pebys4dsv+fQG+aMvGzboTs88sCAuXv9ZIja5tWh235nO75hevJn8+d+MYw9cOT+M/567H1TPrp1s4OGX3/h6md0en/oDo1dx8/p8PyXq829csU5f/nzr6bc3meHs67u9/tHTtp9p/Mve3Pd+a+88PJZx/z99P577Py3aYd0uE5dvd5JT62zyo86PHLOU9Muuv6KSx5Z/qYf33jG1Hfue+ClDyekj9977b3Dj1zn4Mv5h+/fcfN1d3w8rsNOt5/7vTuuWfWJDW8/99+HbNvhsXN/fd4BH1y/BT9jzsSe/+j2s9/duVzP615c7YA3DlJb7PPmcnN/3PeMNw6b0P2Rxz74W+9tB9+w0TlH/exHr23w0EerX7P537s9uGfLsGPGDr9gjcvfW+Evl77e5ZgLe7x1zsGfbProuHG7r7PXXluf98Cff33s06d+seLb1/1f43lDuqmXH/3D8lNOOUt/PuK6tzu9+tSqa6901ikPTjug6cCPTj/8T+O/mHdmY7+pdODLE34+ZdbWB8jTrz7tbzf8qeU/r0+7bqXtVNfXF8yYt817H498+ILlDjywZbvH1p521w3df/DwqMN+O+/gR06//oamKyZ/tXvjLp/euUPjZn/ueu4h3z1z87+/OuUncx5Y85RV1/vXkcc1jvtibtcdTlnl1utfvOa7X3zx6Z3rTh5yaLcFe7zfv+t/J8+b+Px5Ky/4stecjxZ88PSLL91/85/n/eXB9w58/J1HThvxfJcH9pr8wT8ndvlgszUPGrnlCkPmDfn0s9X+MffaQR/tu9Zqg//xwe/fOpR/70O5zpMfrLL2EdNe0ze9esveG9x54BsfHnPEr3r/5pzmlQ/63vgznz94lzcf3Ig2/PSdvl8OnPbYkKfv4g92M97iajOuPPtfd73+0jov3NfMZn64winzr3x3eL/PV151ZrfNnvvlYeez6W//+4lLP//b6vve8da7Vzz/6HUXsrW2XOfDU3Z+aNAv73l38IuzVpt577unnLXlE/d/dtKcnR6+6qRTVzj79M9n3f6LXc88d3rn57t3v2bgQXMb32gaP6F7435Txm7+y5UOu/Z76557zHbrvTT18pmvdjr1t5dc8HjHt4c/sc/1Lbt0mPXlV+8c8/JvVty060MP73vm+nMGNKYjNtzhsd2a9dRZ2/xr1b9/dNQfp9y+xaWdOm910oDLfnmROPDmix999d6nJ/U76+BfPSMn/2vu7BPf6H7Pqk/dQbucMmrffnd1/vzgx18bd9P0m/ZZ7ukedx4xaIdJ7675z7XX7v74lEfOnPbXN+e+2fPxTbZ864KHe23y9hsNb/a9Ytj//WbzPU+Zss0V81a64crDeq750vyLe5z46S6H7f/J6TO22Pg/f5x5+3Jvdf/u71vueWvn+7qOGnr/RUcPn//q/AU7vXBJ/24nXnLkXHLvR9seetv4k6/sccmle5zz1pX3/X4jtvOKb/xn+Ifbrtv5ngH6mItOv//uj7977fz7NtMbbXptS5+HGj5uXGu6OurScz5a45CXFnx8V7Ldx5tfNurGSRO/+tGA/tfM7LXPtKdW6zrog5/e+rM/PvBWp8MPuJM9uumTb/1mzwFHfzHrrz964tf6oc8Of+aPr9//wKsny8PmN77+RI9ZT52w30enfq/P79/bu7Fv563Ttd7dcPDWb3458y//efmL1c6Y3fTbY8de/uQqFy53zxm7fnlOj1vE7UmfLQe9PaPTVX97dZWOn/a54ZZn9/3xlI9WPX+9n/yrx2M7Nf977sj0ju33+svjm38+7eV/H9Jxw5X/u2AQmXxOt60aZl/1nV3X7L/dPQuGsFMmHP7Ojhude9itu819+b7f3f/heu/3PX69m879/Ykb9f7u2hMPfHHuKv+SW6/94HuPTNrm7PFrnHTnwxtPH/HjzdbvueVVzZcf8fpOk578st/2yx/9wVZ/v/nJay8eNLd7t/OePXq78/e/6JmLXk2ufv7xwffNOPPjOZN2Wum49xvPOrfX/Mt6XPPiGQn5/H0184odOoy94uMHz2u86e7tn9KfNd9/4/oT+na47JO/XMHnf3fkY1N2f6jHh+yu0Wd8eOq199y/ygmr3bjFJv+4ZPsF1+yx7k7zp6zRo/PGs/c/dO+Zn7QcvQ2Z989Dz+VPq+sO3XCnGx65av2zn3pv5pezXxv0z2eG3H30GStP2HvC2mfe87cb3113+98cNvfs788+bO67a3fpmtwxqcOMI89765l7rh287nPnPfzFkeofX+yv1mu5ga7yr1cu+GTWD1/f4OBD10xe2fH+oVvt+sQR4/+zzt0rb9BhwrjdTp5xRoeBW0xf6+EPT9vyex+u94PvbfCD915Y8Xfrv3LUBf93zwfTrz72/C7L/fvS58ZetPZmg7d9qvOUh++Z13LXy5/O+8edH688++6D/7zcyXR9tdUrD24+7/tn0oHPznxi+40+7TNl1R4rP9ty1gcXn/CLj1Y8+cIX3j31mEmn/zs5+uR1p9y5+/Hz7x+515N33v6W2niLq574zikndb308+U2a/rJpPUOvG3Wg88c/viCWYd15D3H/4xsdcCslsv3mXfdi30+nnLEc0+1dHlh9rbD9p0zaI9LT7ts8/uHnPnrHs+vcmvvT1ebd86vfv3W1a/NnHf0f1954rmNrnh2vWce4TOPfXrurNPemPnyjHmXn7bXZ28ddu/9+096YbdnRx6+89jlD195lxO7z77mlcappzVt98xKhx87cOdJ54x8fcpWNzY9PG1W54tPfJuc8P41G1x4f9OkId3vfuK6aRekq89tfHXO1Y9u/+PHHltxxj92GnrMKts9c8iKM46aet3KU687ustNZx1+z7FPX6v+sv/9x8yddPc6by5/3Faz9cYv76Z+M/703juc3WHD/ftsvPLpX2yy1bSpC17oOqlp256XjH30rBe+2uRJ+tGK3fvd/s8dv7r0l92+2OX4eZL8cPLFbx+10u/G93v4yem9u/z3iw9G9778004HjnnpNxsed8K41dff7dhZ+x52/UF9e7608Rl9fjF3VbXhns/d3LuBqJea/vvJzp8de+vRy2/Xbb19Tzzyn2P6dudrb9Bt/UeP+/zyObTnL0/t0dDvqedHH/zg8r3X2W2/1d6e+8GBw04Ytv5nTzx/Wt+vjnj3+tvphV+92WPvHa5Z7vQ7/rvv41fe+vSvtrrr+5P3bxwy5vrL501f74YTfn2bntHz4JOeUHv+a3qj6p9svPf5HQ6bMOfB7V+/aPptB5xx4SM/+Pncp2+ZtuXOUxpPW32lcfu/32//49ZpvP/eY376i/fOmjGv/+6fvP38QdusNHMw+dmbnz1y1ZB9H1z/zE/+9vAjD572nbPW2Wm9j+Zc+vEtF//4hZVevfjLL04YvMFTCy55fe6sP8/9/Y3v/fTS1w75w1lXPf1cry263PGn3f983IJTxnyxw1WdX2j8eMtNf/3Yxeeuf+Cf77jgnLfX2mfVLQZNffepSWMGPDlydrf/XHvtzjuf0XeDbTY+ftwvtt77sb93Gf50h8bxy/+DXv5Cx/NeHXLfszvu8tHMG9dd8NaOXSb9ecrbh3Z/tNe4+/65YPZrF791edfVT9732Sf+c/s6x32269/1/KcbH245s/uCq+hP3l7z7A53rvBO12kT75px/Mxjbp270RVy7KO3dL9sr0NPGPncpA4/uyXpuJ8cOnbBdx/7sMtKzUd+8eYKfzhx0v59Nj93zz7nzl7ryNtmzX705MePmTz3tjuPu2LiyycvOPOj1/b/4Owt7tl9m8F/20x9+sXc+b99fcMf7nfWPp3fX/DjP3/wzPcHztPy2Nsbd/nb/wMGQPm/uahKFr/5uxt3RhODs0wH4ovhpaM6nQKoTkbCtm7oRNwKHE1PSaMzs8+KmtmxAzAe8B6/32GeczrDEYaiNgiWUZLzj9I0KAMZM1sMu3osJdhrW8hccsmbrBs3KdqgpjJ6hpXNlU+R1o2wtcPl3/5xfNTwQN88R9WrO6WjVsje37wd5vqpHg8JGiG5hwrx0qKJhuX8kiE93ySMULlNpzxNrmBXwsz8fXjOZ1E5ZLA+Ns8vr4LNVzBpwHSaEct8CJyS66qCVbuIMODUi0ZL1zK0Hz4xzVbnmMuc37YI2DH77bd8Erx3rOvpgFnko3vO744H6Lu/sV4Zy3xQ7vkG2sCYqVwWn3zK3IWIXqZyZGQtPNNvvpCR+2kdsjpJu3wOntkZPkx6sfgU+fbst2yGyzajxBJDP5+X0YFq3/1NPKt4R+y64Xs4mtmFOJk1dNx8xTIiWsDYdVtTzlX+adGXl399GRqzmleg7c8Rw6eI1dP+1ZfIT3SLOa1k2nyIYQ+6TgjzH0cjnzLlKKDgEhKC33wTibed38DuKm6whKRXSj/RtUV3/7PEx3e46MZrJGL07UsxbUvBnvCjA3S0u5SZ8nvsxkPb7OHb5xKyFtxc3Ob8DBe5e5OgaR5oxBEKQR2PLjHWi1Wn4ggFsK/FPSni8WjPVWCN+lc/8IG51J5V/9ai2NH3xL26Tj2ufeTA0Mch1mU0RHOa7EJYWj0w58v3w36tCAC3YUWs7uylfDSIsPzxd17ktd2vFG1epsdAoHx1bjpuVM7466MY/uZP9hq5/OMTtkqMdz7bPPNAvR4tYq1Ywn/8oN1cUSOeG+6i90bTjhAIYcKI/ApsMV7hM9KWg02+/Xzez7pe/fiZfvUlGm9NKUJybGSSu9zMR0PSMBiH9Px9Pw5SEmG+om+/g/vFKPO/+VUKcfv1Ex71X/6CpWPPf/lVVBJdRV+9wovn621/hLNxhmdcFSyuDCma2mF7hvQYCuzbZ9fssfHD3/tj+RPV9XQRHhpss0Aj9tNq86/+z3BTKh8LH7mOmNx9SrDK5PHlhZZPli68IN2LATMTrezG3PWP8H1eRkQudfSnP0rfS1hQNgKiLdlTKNRMJHhFS8TbohlBRmZDwsNwSvkKlurSnUOXuI3udhPnqQFTUScs7NWhHsxtHcA3X5NrZRT1JL9erWaKl46YtwzS2XSMByCd+X/1ZziT5Kh/9ZgEuupFszMbI9w/H8SiUAf0uI8NoG+/zKK2TFIpSo9H8LLQp+gxXHlPB2kLiNrAyEd+5wpVyayNh3hPJ1EU7PGjiCqakXkghkkaNIuzDfo3b5OknM1ajG1koCGPV7TdbSI0pOZiRAa7PokDrlX/7RceQXVi9vn86UZzOW90M0+vLMIq66i8HSlIL7tm5Ch7uXS59BpyDknH9l9+7VJPayCkC4LnaX6hL09UsOyxjqeasGgWzk6DAiFIyOWmZkg8zeUFIrjtSERzJ5LvjtXDVmiBhaGu1v3eKbf6Nx/gVhpQXfz0QL2eLWK9Q89mrux6YOzgQbxk10TTZx5m7dsXfc+7jHS+bMOzdlL3NXPmg273wU6bQT+pB/LNK/VjuWkfcHesGPNvf/uXv/2usInjv7VozD6eCnetgx/PRZTHkaotQ4yIPxW0G5MC97B9hoit712H+OGCtxBn7Z2KbtjX/ZzrFcxlXLJQGlA3CWqwh73wWbNVGrxz5uJlD7o1rKkorKtueC22ga4qqsOudLymo8+0Bk5ruSR/zzfWH+Sh73kYVa7uELEs1OiPh0g81kE9/vqdxjBa5sgW60TBawGMJsmZk1nrjg9+I/z0k+HXpuATP9Mr+s4Pa1//57/+/dvnEedS0YgNfgmgnUyFQmJkEX91zQW4FD9xd0srPhZl2euqo5r0fT5rNX1sQhXgekyJtfClfK75PoZFyHbMz/WYf/vgC9odOx/LJ6mp5+/5yi8vk9Xh+K55ULrb3/kXi09l1k2LkG0g2YQywZVRdBzdPxrgZ9gy33l2NU2TIkS7tUjY9X2t6t954/J7HoCFRT6hfnkSDPR9fqq8NqVN3erdgr+6mXg0H/t82vS9h5Zpr5Oo0W/R+E5ABFTYiEUid2rpl7eGqyQT139f0+EzDyMEQ7Ah5nVBEfeObgDsgVMKt9SPeOKsVdTp1Mb6a3OqB60JvKX3DIIvX+s2Va14i2jTky9f9fkYcK2HEfc7soM2q8f6BhWIlXkj9lC1/HERmga++YeK3/VouCk16MD+GwAA//+knEuzgrq2hf/L7XKrBAQSmrxEBExQFLEHiAioPBMgVee/38K1m7t1T3M1lgVhZo4xvhmI7ni3zmeF1a8A+WPyVF/5X//g7QYKV33lJ/YrXMBHNqAqjAFe5ycm+/G5jt8OqFn5IL1Fi6Ku+k5Tf8LVZKRKBBfHvNDDccf37IkLAypE8ohUKpu0/9VDeHjwGJ2Rnm6fc6EBuwgFJDeq2I+GKn6gm3UxDvjnEI7HNChUK88FrC033yQKfk4AMOm0zg+SvrWtKoev781C9SEZwLIYUw6UjeJj515U/dt9bB0AThKmF7p7pet8S4NH/Zn+8Yk5wfdY/X63+Z9+r7x2gqPrO/guN525+l8X9JFAkDRIO2/l6eiXvwnLyhYs20haYOGUDvWcgqZ/vK8EWohx0LNwlL00B+s87a++JzqrEWACeq/+1WFzMp4i9bvbZogPbsD8y/fQPjo0fUpBv3WkmYfIdBukdoUMGtHqEvCVhCdGU3Xyli9nWlDxlQPhmMZVbFFfwY+XIsmfStbwsEOQXl8HbPr7qP/lVYCTZ02YaHjhtHErA/7P71TAf/73/3GiQPj3EwXegA7UcZcoXVrl2YHEECNqpWEMJmyfGuX49AMaTS+ODeVkRGALjIYsz2Pd03121MAo0xjJ5VY0p+1Wb8C4rfek0dTM7KZEsOHhJN1x9MJ31pp2zIFrE7v4+YyndJrkEsGDecFoGd+7fuGvSQA+n/uZavxkmcs1iiKoad2ZHvFOA4uGbwYsyNzSnXxkHqludweot+GG/eippwxPGwvq36DFnvGOQ1oKzgBip3hT/1BJrBNxKcHb5+JhJzu9q2mvOR/YjtuILDd/CSftZDjwYXcuYYI99KwH9wWcY/+DONmrvUnlWwtojzHDfiYG3mx/Hgg6zs1HUCkE0LdL48JAQE80QaAAMqvMUG8vBKkJb8+wL4onUr6v5Eq26X40pzQ/QsAvuzc2pG1XTfAU1bDtsE1AHQT9tFETAtrX84u48YXTadffDCXM3gk9liXsZ++6t8DxdC0xPtxGcxo2R03ZfOcWI+mkeXP1tmow9geEExKr5jyrxwxmsbZFbXFwPSF6NQ0s5X1CPmzThaTTwgaAeghovJwbtljx1YfpRBHZYAJ6Ir9sF6obTSPiMSHpLGFdge0lzuhRGzVPoO9FhDQM3vgRkSpcuur+AZ2fFhi7rQbI1OaWrB0NHbuv8+QtO8sXoXIrGd7jR5wyFngSrI/VjbrbkIWzosw5jPfmh2o4a9OpTmcOWGXEoe12S9jEvGOp9JK3x3uSWOlgbmgMqvKdI/B2L/0CrGBQq31fU13J1h265xtIi9uE3aQ69dO2WTtu5br0oLjHlDFAJMh9zR32PIdjvSs3Lhw+S4LAfuub4+A8B4hj3aA7oAOvO39nDUoPbODDZmdWYnIfHch86NO7Ew7pAq80UfyNt8e786Pw2OW05+A5FUV83C0Ka8yLn8C06kxqq49vOKzPFy7F64LU8Tym7HkbazBUjotN1r7Y8uwvEB6WL09eSjb1y9RGFpilEmNb3YD++ehVCPWrhfE1YFm/vB5OAR1PzbB2kXlvys9fH3y3/oYi2atN5hsnHu4aNBOx52JvGMLS2IznlNKda3HmEHOHDr65+Ii1khbV/eJvHEgYzhCbd0m61InNw06ueESK1EhH+ZOVytXEC+E/5qHfPg/+Bz7e/gXvpJB6o3QjEEKCQqptnmU6QEcuoaIPB2wlc12R8SRKsIyAhi109Bgrz+4CY0u6km1ybM0WDeQMXylQkXydDyb/dA0H9lc44ssx/LLJL06JOrNUQyJ388Ktple1Kjv+jj7r0AZsL+81OO4fAj58rjob7u0cqC/jaWKNPh5gSPMdhLzBa9RZ67+P3nIOzZjNSGL+wKa01iUQwHyDxIdlekzZf2P4OulHuvepn04kug2wV88RNmNp4y30bOZqOfMKdZTHs1r4xzaSRvXaEAXJGZuPmjjAkkMtgU9jzxbwSgi8Kp8aQUXaVfNtf7nA/A0lfHYbuaJoty/hjj5P2HDtXTpFydaF1yZxqRNxz3TxFq4B4CO8qCZ0jTcU1nmB3OPjom2gbcxpyhoEu4a/I9WSIsB2L5hAveruVDs2erj92IMBTubUkk12vlTMN+4iNOc6wdo9S6pFkwIFJEMYIHHbDIAkz9aC3RsdiKSlX8bWfguNfnV0SnEFAzX2ERQ7BKgn3zCYj/bSwewMGqrt8Cac79FBgr5h8IjpyckbLeVdw/hmU3Sibl/Nlfwq1a9r9xjZ96GadvOZg1d598a+ZpOwe73fH2jFkomzNnHYMByJBWV7tIlS2ZI5Amo78GvwHo6/yh6QB7JjiNtCp/mpP/Xj0V4a2AStgiBYDv1UCPMA4UEHdB/rc7qoXBtAfMgk+miozUSvO9VQPm4+aIrLqJ/MckyAe1t8ImfFt18sPLnqut/XfjNVNHrLGSQ8SbFdMT38Xb+6D7mY7vv+Dcg1SwIZ3JcIHwtfC/nHQajh+6ReaZyd3j2N4LaQNzrcENWXW3NG+TGA6/4k/DHcg9nC7gesh7qwHqCzx1heS0D2xCt10oh6Uy0xDnLZzsPHk7VhdO1vknTlSmx93ioYHOXuAHnCLhJvMwTT6TEEyoc6Mw7ZaTGHVrR5GH6rC+rJd+NR4RuVcOOSHHHnt1CxZX8+A1GbdIzkMU6Xrjp9wG/9vCB9m8uHTBGkyLtif61vgT45CX7HxcK6e9/2PQNEAYdr2RK5/VyqWbzMAfQPpws2N0LHpvLVRsrL5Ayse32fzhvJv0AbFwne7+wD6AzdqNWNv6XYEvFSzaQvEfQzbsT7V56C6S4lAQAvS8PP7MxXLUsyC3bL6YJEmbcYfxp255/+48PycsF0Uj4BWJ8PPuj1ka3rcQa//m50e5kNDz0uwcjxX5wZvJJOjiEGsHx2T6zHuA6ZNqIPzAm5YW/VC77sUCw9U7HHXs527KcvimllNrb8u8lE3pYDOcFoh03BHioi5p4EMSAp4WrOAVP5ekUQ+Zea9LZZe4vtOhOMTgqix/YEzDnITzws9OGJrftW65etkJdyH2xz6iN7E9IQJYG8rgfd1bnZs4lraphi2OLzej8j20a2Mm00D4mv76Ff5K9hg+okmfgmqh2YZ/OQgWP1gsSXPye2dAh2QAZ7heLooZgTOx0yZfocK4yKtEwHsjnVUNvIInqb12dF1KNxASIOdYwfvtQP+ddyYI5aRPfEuPQUymdFuXj+iB+q+DGXZvvi1HSrEgJAte+n/Ex90IP5RncP+vaad2TUcCKqQeYYW2mjFr4Lt8vpQJH1riumjXatmh75IJa4ZzZVV1GDLyQudPe4CeFwT+MztLb5kTqO5YbspUg29Jc5pm5ZV2Bw+skFMRUR3mlfVi1i7ilweJ9SanxjkJKwPDRA1BadunYUhUTEnQQS1xIRm7wo3Cp7miivS/8g28IwK7EfPB9yF7HHB2x01fh+3x24qb07Etd+UA/HjwWPVQWJOL040OZTNMF5awbYx5MBpt0l4OCdP/v4yOsemC7mUABHeBYUPyfNXOoEidAWEoRxnvvhNBuh9NM3Ap2WZ9QI7i5Udpc7DbViNIfy9brAfTsbSIiaCMzZ+LIh6LmJovB577eni96pbppk1PUrrRI2qRvJ19zrSRlWlA3T+3iGwmh9KTYCDiyjIk0wdbcJ9nYHzePTpVRgczs71IWoZbNYnQMo0sjFjn712GLlJxdu2eJgm+0+KbvwRwVavf2gBzk4pDTikxwwrX5gHD0Sj1yPcvDTG7rqqUlLs13gVvVkchq4kM35PSbw5JkHFJnwlLJPqkHlnRAe2wppWHuVPgPkWV1T1/cC0GwaYYI5YCW11U1aEU2KFUDf2YYejsiohO99FOG0dP/4+0E9VS48c3qwnij6ANrG+zM8F5yNDfnOMXJna39/JDPiPkvAyKfhYzgC/4btF5bZkt3lAczhdUv3zbszF2MYP1BuQEHkzWZfLR9PiWG0HSRCzuo7ZbvpkcAomzh6Wv0qWyQZwftWyuhldxb6tT4WEITGDj3nOwOjeJHP8FIWN3w9lAcwTf3BB6t/oM7z9krnYbN8YD3WBRENpw0bIl87+MsTxevhA3LtwBmE8cZFH+2ip9voKZTAtHKbiJNMqsWKHz6MPkcZH4qeS8cN5wTwOmgJkp+I9c39eokAKj283p9rts7ZF3/7H1vH8AumR56UgCgPSPUzzE32qYgB90tZYg3e7b7lNbwoP38Wrf6V4WlrwVG9NQhGz1dKi+LmK+dLHdEzeEf9MiWCBfvLk6DlRPdgvo97DmJU7/FlvGRp70SPBorv3YDtNc8ww30geB2MBL04vkgn3Tsv0E+fhEDjbHsz6Tv/Lw/qlWT3I1MTA7LXSaKmP4jeUr0XF+7rniFv9D6ASelm+dUHtSWlAKRXBh/kk7T86RONbkEGT9/cwJYsXb3RiZ3lpy+odvSLJzQijOGXezyp8yaBOd+u6kWU6D3Djvmq+unpui6I7i5Z/ZvjMdNtp59fIkJil/3yNp0FHKaswjvXys2laR0O8nHX0R2bnFDsP/sAPpVEQDGt3HCIhFgDinp9ELXig3AuSuMCkPneUX867NMlcLsc/voZSlBsLtXpiqCVFSHOTL8zF9nyXUh3dxFxB6f3lthISrAccEfay1NY95sDoZ1934RLix6MM9/EsEAWwkjZDN4szuCssHLZIhXC0pwkeRtBW4gRTeKbzOZPY4tQcnaMbOP7y1zqwl2g4UIDW0Gt9Muqj8oz5XtsjYNvLgbuPyAKUkxxYPc9ex3uLjzwFsOe0lb9TPl0zTP+TM8OP/dTmu849fnYQKQute5ReboMitG3D2yAt1hNnZjGsLVf49//T3q4FeFab2j+Hu7pnOagAKmxB0RGnQKm7sVlcCvId/rzU2R7ACUszO1EZrkcqjkAKQ9+euSlrhkuATzE0JR4Bfs9mhgLN7MPfn72sO4fsrfuMVjzN6rr+Qr+8thXv/rYvLHanA3taoDLy4zp7nP2+ulugwjmcnOiLpe8+immTQOF+upQU180tlz3QgSdetrhu3d3PKG7eAYgl/6M5s/37bG9jDWA14mYdRAyb4pTj6xHVHN6uN7v6TyU00d97esz1gpPNkmv1L762W8dJKsMA35mi6iu/nzVW6vfHuSwht02qahzZk4124fQV/29YxKJnMSqwTNsYIq59udfzKn/Kgm8Bx+GHv5LDlnoRBE0o67A9oPbmwsK7iJEbUqRGF3rarpJRwJKzm+JqKNduBUAy8CokwuC0+Eb0o/kctDB34HM2/FsCtSReHh6qyY9nZMWzBk0LDjNhweaCu9uTvP7xMN+c/8Sdc8tFSVpZMGlDRhRITTMSdhFLrzpHiM8bypsYN6xgEt+kbG74w2T97a3HKz7lXr77WD2wphkwH1qA726Vu4RbxEbuPIOulvzd8ddAQe+G5hTJ9+c+hmcLRdqUbZmCmfLKmLFBrwNuwFtHn7cv5q7ksDNl7VEcC3Oo23u+Yoij0fyqdYJnaraLnSj05Ee1/WjE1fU0KlONj08kr6qV78DbvqBUbPl9/1cTH0Eu2p08TjEbfjbL8rPr/pKIbChhe4Cg1DbUc9JFtZ4yTWH4D5F2MtT0WPEV22gpAeTXl5FZQ5SJkSg8+8F/fGbqR1fi6qItkrtY0LCQdqwAIJH8qGWNb3S6egfDFie2Iz1UdoypmTWBTpNfMXZQbcqoQq+jXIacUVtNJTeKPbbCzzcXZkeU5Z7s277CSCRc0Ig+yJz8YNjALLY2CLu62qVuLRdB72pEqhlxXNP/JwEwErNCzYbxeznw/mU/OnnjRh8v2RltKiTFsvULsZdtVTO5Kje4B8okk6FObRPZwLTrnBWccP9fNdrCNOzZ9HD5/piC6ffDIhIweE05vqqpQaUYFEpMnWestB/MpEN0F2ITfeFYfbzxm8vQOpnn+IXfXrLx1sS6N8vD0KdzSNkq16oV5G74N2wt70fL4M3o1vQJaiTau2nCYx4uyF8/B4AG89DBvYfd0FLLvBs5T82/MIIYYtKJlv7VQnPz6eN1PvubH415pZQtOITNvKwqFiixh0ENQn+ub6ze8jUNb+h+Qxzb2zgFIGYi2NsR1erYv0wTT9/QOT8gnv2mGcJeuSWUH3gGKOQRRzcebP0t94rL0TQCiee+rljsunHi0Hk2tROijSci50TQf4Uu/i+8rLpHRmfnx9DfJnsvT++OFn6gQb7dGuy/sOL0E7yC1HK2mRkue4G+Nh5HjW7CLDphL3g53dIvXEbRrRrAuXV/5NJt5p+wtV6Kvnh2Giz8h8hOPAKxA/3hJ3JPnmUjTvpx8PI52hw/aSeegcEUXclLHEXxpb6coZHxXVXniGAOf/OAzS94YPDSNY8YVaPOYyuRY5PY1T1MxAMGw6XWqPmRnABaMHRh7UX2/gUXkZGeE29wH0uOGiq2rpitZ8mUIYfmeqWcTBZC3Y+9Pnz7Y//CnyrdzBpeo18x6JIJ58sCUTfIP/Th0G/g+lvPX/rNQbxVfr5FUKVS+cxdB8yeAC3kLocvLLpzayP9B0ni+bh9pBOQnOx//a7e2pAyJ7YKSEBHMAWtEZv2hQBAfa2etLjUr9M5sOrCKovGckHfz7mxH0cGzpd9UHCoWwBUdP+Ind6OeF9rJ/SJQvVBdbH1w3vwpvlCRUbPyCXDmckG+KrYs9HW0DNOpcU1VzDei5411ATix3NMnEy6fVmStB9VCMRntXoTd+cR3D1v9RQ+qVfbm9TAX0++HTlQ/16/2teC1O6GwExJ2zfO2iysV95awKmMtQiVZlUsvp5G8yyGdWg41qT6u/rKeTPiiJC5j2PFK08cyqsZALxXv+gec33Yx5mi7LxBYr3CNTefPnGxi8fHJUq/wI6xkWsrnyFTJhT++ESH/Lf+iEV1ueQInKI4T3jypVvhyE5HE1NSV0hwfv9+VUxBLsYSufLGfs4ZubyUowSyh5/pdpmf66GzW7Dw5kLpzVf3MF4oaoF6TvfUH+T+t5c7LTon3qirlfxN+k4/Hg+3hfwW9FUsxMIu9qkj1vzTflHnhRg5Z9oLEtYLV796OB3CHfY//HHszBkcAnzA7ZeThguCXFtsOZRNJlBkXb55h0pY+8hrBWVw8gWnLO/+j8/QACmOYASNBnt6TH2iDeqNCFAn7QDfRB/Tin3tD/QhA+X3kTTZmzZJ8GPryPu1M/96o8j6O9ai2LE3/rpx2tMSVQwKrGbits8zqH3tRWMSBqmCxUOMXTv8oMiOn5Nls5jBH489/f8F3r2cnh9dh3eTeeMzVfpQ6BgnTbUHcUGzPy262CckA01jIfBtqVv85DL9t7qF86VKLuaDbv8rZDy4L9CErhl9pvfoK06HML1+SfAHT8iXvlCykuZGv2tv7c7FB4TAMth9R1GfCLBt59ZEWvwLx/xO8P8yytVbT+oaV+/IdlTPoFS40LE7C3oGfc2CjgtTUYD7kiq1T/z8H19v4nccnVKPjsug6GQmOt8IjWZG3wCGEg8xQZ5HqoxcysXNnJe/uZZJnvxvAuvxywgcPWnczFVETQF1FGUfL5gS7iLBnYFd6LGJ1+7yDoP6eQXj1beWbGn0pfAvl53FEdCyxZZqGw1l7wz9k5bNaRCEGfwb15lSSKYhtLToGfeX9ScH535p3+X45Wj+EZHMFrKWEPbdPqfP+9nVQUDXOeF9ESHDfv1X9loS5/I/eKHPIluBKy8A/VBujPnXDwTiI97h1rn6Rw2GzIPqjhuPYyC+djPt1Q+Q3cZbHqyUcGWitwQjK5lTo/i0ez/eNnKQ8gyo8b8cqwv4U+/HVnfh8uJ29qgfqGZep+sSelOvF+gmQTTb7/88roPs2d4o7/7X2hR53956uf3Z/MiQ9h6HUSTGnY9a673+sePqEM9pZ/vI+aUSVYg2o5FEY65xRbwm8/ubkrXNz99KvwvJkQo9V5c/KaBJzKUOL18Uka2g5zDTx3o6wmgjq3zxM+Pb6/+Xg5XftWBVyqrSPCI3m9/fmzlXdRxOBRO7keboKcHAV7rL52/xF2A704h1mUXskmcj+Tnbwig8pkt420RIX879HS/kXRz+xzcEj7F5U2x0aCebb+9DbUzP2Avtr49W/0yFF+PDOsbYqXC20j939+IrXn7x5fALy9dZ1iE3fYACri/jzK2yCcwWTjHPjgzp6DPwO4r9uPRtVQmaLPWzyIuhQjfcsDhoxUZVZeJjAD7RAR6PLLRW/k+AcKb3+MA3j/Vkl/ciyoKjoATv9J6ZuiSA4ehAlj/HuSQZa1zBj4otmQ6BnO/vAzaAWhLHZI/Vx2Iv3n5Ycorai+j2DP0LGJ1nYcRZc0LC3dl8MevidoLRjU7xSiCw3Y0cWQ4h3D66gqCqSA+yGzB0Zym9+4M9Syi1KubIp2gIdTgx2u9u0T7EpxnApfDscMOae1U0H3nAjynnH55PhSvm9gHBxkZRL69T94SfIcc/OZRnvGW0vE3n13nT9T4Tr35m1+D/+JEgfjvJwqq+PuidhHilMUaO0N1r7wpUv0cLPw9qoFR8S+aClkCmBX3Csy2RkmRO4vmJNCsBngfI6Te4Sfsk+SUA/QyepIZ3D6cDvw0Sap5c7AxqknFNPoSAQonA2d8EANRvAU5fKaGTvd8fmKUuvAMfOH5oc6Gnjzm7kGgbIcwIeD0TtL5fNQ6+KLnEynwkaTzxBwbCnoi4gMLTx7xN6+L2uwSQobmOa7vyDUS3O2uCfV3c8UmVXIdkEY9RuzErx030W0121GOgCFfK9Q/ZbA5tze0OXGHdHq9PiXwED6icZ+5KZOSxYf7M3ljh1yKdJjRR4P4/NEo6gXFqw/8tAAh+3wRhI6WLscysuFmV76ot12EfrTTuwaC5KYQ1ZN7tuw4ywXPx7XF+mevm1OubSHcoexC7y4oGb1vJBfe5sLFRzQ0af/INyJ4HXOPWvabq9q7LyqgFzKeiPJnX4kv953D/b5gRKrJt2dG1V7goS/OOKVX3pzjHSlgSBWCHXS+AXKzWkVxn06Oten4CZeh5HggQZDTQ+QVjFU7MEFkaYz6GdFTVqO9D86m6NDDFtdg3Ln2GR4OnIpEEh16Hm/vBlSkvMJHfdmFvOrGBjT9AGAvm32vOXA4AOiJauwq9dQvR75XoLKxthjBrwXaePcpoGhNJ3pxX+eQYcOxlbjlamqhx8djkhZDgC3QEJFWozk1wr0EzrCe0TbB1/ytB/TXBOO2RAaj991P4HL9LtT8dCewfdWGBcKZCNjNeBGw09atoXByd9Qf0gLMsp/VkHtEW+zXRl9N2ZzZMMjEAltT9+rbt5hqMBv2LySkcpwOcjdkUOsWA/twTEIW9oYFH7HY0N1R5LyZ48MCzlz0xd5DqUJydq82KMw8w3rNHdhgFQaBcK4MAtqeeiR+ei4MZDHG+xGFYIpFfz299blhfHztGV8bV1dR26HHWlHYQMycI4LHnS9g/9zbYLSrIYPHdrfgY/rxwu7sXi1Fe7UO2Zoj8uYvbCLgVO+E7rzeMynd9hcwC3hEQJVh2PHqgjbDOR/oroVnNm9eRge6izghqJTfdAhqx4Hu6xhR5KRp2IToGICdea7QlJnvkGm05aFjX2aq5coI1norlelmY+ww7p2OT1vrYJlfNTTrzc1jQwQnYBha+qvXagqGtIaz7XJIvla3cOJOTQLX/oMRG/V+JPhbwr1/1Qn8yLzJ9K0QQDeEI74VgVWReTsoQAXFjF33kjCeKWdNjXabHeG+sdTTcrgWcLRvLdZfhuh16WYeVDuUvvgYM+zNze3QQN+FF2o8+pfHsKFZMAdVRTjjwvftNW1jGAZegUTpMYUt2pSS6salS4bnuwV94ngNpKb6RhtQAW+W8y6B4+nc0UMYW+GM74d/9jveWXYovndqBEbudUYyC0/mfOuPSOHYkKJZ9rcmmaQvB5BTBzg5mb1Jd7eCB1tuX2A7CnhGVWNG8PyyZ3rs3LCff/2FFuoD29nm7Q2vFykBCawG4wf6htMk7Bd4TrKMcC+yAq3T1VbFJ2dQ34geYHns3dU4lDqZkLU1xw3iRahP6IqUb2WzpXyjAe5l28GI7B0wdO1dg+9kUhC5X7m0RUOiQcHfxlSXzA1rze+pVMmsEOrsLk5Piu9EVIzCkLo7NprT6e4O0OJUkXqqnKVMz2II+ziDSGpszlyUcxGphs232M7bzpyMWIkUX3h8MOKuokfOZCJqdRoyVLV3w1zrq1Ep9BDdS8mu+uunmT/p+PLePPr6xH81eDHngYYGfXvTjD6GDAe1xlpmvtNlfpgd+J6mkp7XfvKG51aCGRAnapPoUC2tJBMogzEjsmK80tF7zIFyqc4utXgj9qbLMzbgqb51VLfH0mP8MSuBZWVv6p7nLFwsYSJqoRJI/bax0mXP0KDEyfGKd9+DGDKz5xd4xkFHMyN6sIWLzEZ50AzSg9lbbKvXdQJlZxdg7fYxe1oGsg+lQ3hGwhg8vDnnBR5ub6OKgPX1zEUOqxgKJBkRHyn7isnVsVOaoC6wbVdCuiyZU8PXdvMgnfEs2WDrMAZ+2BYYX+Y3mEKwiYHDzR7a0sII59acJqh4eY93p2Vm6/EJX9GX0EfbfftinRxWyU+f6aF8JCFJQreDU3nWsRduHbZ1q1sNDVtsSV5oZTrvyEsCzYczqc6dSpMo5+YC3MisMZIlvh8rPS7gJiAhPQKtS9lrQ2IIO2Wke7AANqeuNEHDMFLs03MbLgN+c2B6bC7otdYfOT3eEK79E8Fl92ZrP/XBw0AXRHnPYnyubTnI1wmHjQ10+sVRnjZw4rTBRlYe2JbtdAsqmnFY+8+r7xd1amC9XAqc5k81nZcpssHXc45YG3PRXL5zG8Gc0w7Yao6aKZyKUwlm/f3CWsIl5nxo5UVuyviDDfkwhMvIH2q4zINJ97P77f/0ZN1vpNaryhyb5c0BJ743WN/VLph5Rw4gQLxNTyB/V1P/jBrFj30V767k3bdPtizKnLEz3eUDz+bGAiLYZ1ZAz4JgeOKtQD78XM0U+0u3AY16rnIFpl5OiuHKsSFbCXZQ+Rb2WldPl7v0isDy4ngE0zYyWX59RfDxHEfEi5dPxaRRM+Betpy/+iNfZcsDB5OM4kA4m0swcaKyO0hbfLtFr3SS4XIGUcmp1Mrddz/96q27x0ci2xtszuHlZKjLC/J4739P4RhVkIcHX+fRa6tb3vzYsEAtzQNe+7NuCkZxcH/1TfWtbpkzLZZAFb0+wlZcaD1LknsGs28YUpOaX28OXpcPbHGL6OGw9NUsnHwCFSmrqN8Jezb1pnKBj/lkYtvTIjY9Ho4DxdL482tgti5aA0yy1+lPP5ZnNHKAv2MfqWLlML4tnQa6ceHSVHMP1dY4pQUMcvmGTSXcmUwp3RrIHDKw8XGMavbdIoHCd7mTdstzrLk8Yw0eguhFBFEUwGjpiwiv2tnAVqEaXqvxVwsIFYIUXdUvG+JgLGGuG2eqK1cUskZzaqi+DwhtkrRjE5eICojzaaHBnBzYlLZOB1KrjvFulD49afIgV8+FqFFnqJ4970HdVTUoynSXYBYu6s0m8BLbMRpc9E7LNkwNSHPlTcZsL6dzaYQ1fD8vN7rf3cKUn+Migflevq39QGeTvqc1WPUWgXT/YaS4lhIY0GGD9+KkpTTy2QQ79PQJLwp8Or7rI1o/phJii2RPbzl9mwtoZEOh+vXUhX9+zHtwGYLyfTKX02Pk4OMR76gDJadnZhBkUHut7zBGA+onppwNaGGwJxtm3/ullWYCtTm+0fMGNv14IcpZyfxFx6h5VGy2BeUMGeAq6u+fV2+ZH14HOGE+E/X0rMEg1k8HvOPBxDfO6qrlEnQxFGLTRert0ILmV88f/4Kpe0MqW6/XUuCxs+hObpeQVf16YqJYFrK8C9nsm3EZoD0fAuyfSlwt+6cgwtaZDjS3Ayfl39RHUAXlTPXi5aTEoFWiLutI/XMpq2q5X44EHndIwN6OJz3RDXj50197P/j9sv1uLmCtD4w9LJvj8zVwsM3AlsiiPfYsDBoRqLzyIDBtRW+WZnZW1vxA9xCwcEGs4NU1v2DvMBnpooyHD/gU+IhEw/j2naHPZ2glokNXPQnHHXkpsPF1A/GuZvWT1UQO0J51QBSusFJ+9w0teNoZLkbpdwA0cNMCrn6e+roweYtBqxjGg55i83iTq7nSgwKufog+3uPizQR/CxjYyKfWfaxNcvoWESxQc8RZ8xy9YRLwBFf/ivXSG8Mp0g+DstkVL6r1fAAWoWujPz0yL99t/43JGEPPNDOk9mEHxvty/UBDkGPqv4epJ/4Q59CevYCohXn02KJOHdzteY0+wqNojt/uXIJxJRQ+oqE5yctWAdLn5OLjkBnhyzUDA0qbxPrpH+Cj7KPB4asd6PHl1+GC8G7lFXaDd/Gr9KY5bhIo+81I+Ip3K9btYwiJNwMkIUVP2XidB1j6hYLz+5ULx/V5wVFWBbr6gUpY/Qh8x8TE+2a0zbnX7QX4VUypfxFlRrU3zWCiIxX7Xtow8mY0h5p0yrDv1FooWoJE4GUqGF71qGrWPKuEL/WDtY/bgwXcJQLXPEDkufW97dOIM9jcfB67x/02bCuXGuASFgDvbyBNZ3mSEAycF48a4zWYbEtMG5pl86TRUzxW4oseLFiX7xP1l92Ozc9XzcHd91AgZc1vi0T3BO6uVovNfh+GrFKLM8yKZkP3B/4CllthI3DmrneszeDWswt7FHD1h9R+LnrKk3Gb/J4vNoHqekQoCAemQ7rFhmsc2RyJbgOWmZgUqXwTTn4jBUA7Ti6aZ2kA89tpJGg/zmeq2dMApm2VWfBzryXqXV/Im50OijAz4whJZmeGwg03EjA1/k71WfIBtXPZh6KUPMi45mH2/ZQRxHVsIwJ0D/z5tSDMBOzzUpnOQNJqtWJlSbabo85Yj9oIukJh0MvXuTAqaTEH+u5k/J5Pz74ZhUCac0g9aasBWvXnDD6xiLElPeWe3TeSA7t9vUfvK3lXQz8POVj7C96HybGnAwhimLTtjQgaTL0uUGQEd/fGxoe3VKTz6DwdqN/5mQhuycDPT8CS2JgeuqsOtunrJUIMjORPb2a052K4290S6opmCYag1hy1Ezvxr/7m+AYj2ML4So8fsQ0XiLmLUlzPJeLN0yUlpsgWdRnTCNXs1a37aaOALDE6Mp/zkS3v2HPBUWtjfHgeJpPcc8eGX6F9YsNa31kf9kkJBLl+0mTlCx3f1wkARXMknPYx0+Wq3jPo+W704zHV8L50HLzomYW9qnbC0XY09+fvaPj1ntW4PHYIrHqIHWd4mks2NKJiPF/8z7+Hk+XLvKxZ8ZOeJir043KZJ6jYAFEUhCWjrZMZUIm6x6oPB0D3XhHJv/ziS77fk2vvddDhmIeE7yFKp8v10a1H7hn1bz5fjRddc6CuUoJWf+TN5CVcgCCYBvXKdDZnzL8zkKjc6h/7azgdvVEDJfrORADhLewF/57DQzqbuFK/OGT0YVjw4isffLCcT0/V/FpC/KHk51e98VTcS8gpEcXHSa4AU0qjhrZhvdZ+a5nzducjGSDR/tN7wfClM3CPUUx/+Zx+vmMMXxe7oPuvqQHhp6fNAXo48KMdm4Hk1LAOiuTPH2/P3BlCHunJz79525U3gaiQbLx7Cr43d3miKdYgbajz9BM2W/rCwyb4FFhnuymcH+mtA3GCr9R+q3w6R6LRwPGrcNh/YWo2VbPyoFPd0suluXuLpjQiDEjzQdyaX+f087Dg41XxpB9yr5qgF1pgOpcLxltjTCfVjTWYmzeF+vEyVhOXcAqMl37C6FkV/RLLdQzLyduv16cwygPUgTi8BPTHIyYx1RpY7odh1bfAY3RbRTC5bU8U8YhW86d/1JBuvzPG0rBUy3AvItg6y4F6eliw4TGdDPj0goUe+9vNY2v+h5/ieMSeHmpsLKCN4PGzuHgH47Ja+MCxYb27NGg6ay74+UvV3I85/eWZ+XHWXXDZ3iVqDrPU/3joz2+jTclr3vJQ9wSufI9sYGOnRJJdC1yc2wGJd3NOl7HDvrLyCJrJ14qt+TD55THEYXT76b0LX4LyWfmhxiimig+U8TyTjUu8cAypcAEt7hHGfhz0sxNTA65+iixRWnmLCsoI/niBYSyYzXerz6H/5Xwy19wBTMCPXOkmpZh6H2mp2GB94I93UbOGRTXOV57/05v2JrwBW/MxuI5l98uH6ezEXw02sqZg/XSNVl5y0sBmKe704IISMOdz+Cg3OphIcvY7U3A6XoR1P3jUtJTYY54t+UCU4gfec5bbb8/D0f3lfWxQewb05q362Uo5NuPKS5Wtnxry336jGxv89Uc1L2UyF68mXHnXB9rOIFAk3GxA0CvVIL93rtRs74Yn/tZj4IMF/fgd+67frCh2rxDvo2NnMoDkAaz5DaNNPqbzPZIDiCDKKO5Pej+rg2ap3yO2qNFmPhjzoUsgSvr9yltgOsjYccHjSUes+dGbzVq5P0M1L2SKO8dNt6XNiSCZTgP11EsZTo7AeCBtYgtrZmb04w0Xklq49oTqsg9DpmB+gZZny2QszNEbvNtYwrr8ngh/nYOUb0utgTZ8L+hx+D7CNY80f/14d8tE9kwEYQLRMvj0caxmc/g6Xa6Ab3XGRpsN6xtB50xm7wum905JAdPrIQbr7//1w0YgpxJaVv6m+racAYGYi37+H//+niv3a8A1n/7lu9HBcQFpZ9+oG7UmExexFaHiZT21oXICy7uLITxeoEXW/WGKX2XDA5+ri19eqmbFO5VQNa8OXvNXShzlZoFTqRmozc7ffvDgwQWNtj0hgI4mIBfuUsCjGufUHBXM5tG5OT+ejril7sJl14sXsOortlb+zW8GvYMH7Xum+DLvAHsAzYBNOp3QC7tmNVlKD2G7FaW//jnne48oqWYA6t05XG1JvnMhKFWBfH95pXzbBLKTXlHHbxYgnr7FBRbf6x17n1vN2DyMEqgRCRF8vls2rIe+4duBPHW3gR0uyqh/oDHvXCL4jg/mkK4nzHI/xaloWWk3dnsf/vgeclKQ/niRyjrnQU+nq9j/zUsG/rzQQ+u7/bbk+gis90MTfXsPBz8qc5DwwuGPb639BsGrFhh0x9kMDIMEeRDk4Iak/lWBac2r4P2Gw4+npH88ZaNyAInZ5m2u/Wz48/fCO317sy0s59/1Yexty2p9/iXsDh1HV/+bissZIfkiWAGR8m/BmN9RDhxQmWA9x3I11RM+w2i4NOhm1BGYPttnp/z0zjze7tUkHFQJJH77JMM6T1j9GffjJVi7Xq7etK0uNkwrIOGVX3gi15yyv7yhn9TCnPTBQ1B+7xyy/ZoaY50alb/+gGReFVN2RM4Hik2PKGbENPkDL03gKG118gULACvfv8Bff//jczp30n75afUbQz+ivZj8eAI6rvmlda3Qhs/Rkugx/fQh+/Wvx+Xk0f2LuwJxmrICYDFTqfN9T+ao2SUH9qMU/enhXKfzAgvQ7ejPP22fUm7ATAVfjD++2C+/fFb3xKO2p4mA1Qj78NNe9hQZl0s1331Rgi9B+pB5Ql/Q8fe8hmK9m7F/zc1wds1AUzeaalGje1t/vAc4LGqpaZs0nO49mhTd9B9IdJ+tSXY9dwFNG/bU76Nr9Tf/ukbrNx+te5eS9fdByto93VfrG736nn7+9rsZV304PtJnA+L3fY93DdJ7Vg6PEqz8D7HDxvQGduVi4IHjjlrB3ktnDhIIVn6BQK27ZvuN/QHepDumOEldtt2m6hko9Nogbt0PVHKGGKqieln9lQnEtT+J6/yIMP0zgiUVthF8JZs3iU70ay7P6A3/+idho14x7EUfOA/li7ons/cmqzAG2OxigiPnmPT0upwzKBnx8ccDq0nIvAGMp6BDw8qTmfPRP6p3aCcCr3mVLq1+9AE32jZRdy5gQ60cml+/w65oGqz5kIMDzfZVY8vVrOqP7/CPqSVMe4h9lwqbCMgtiOgv725/v6/eNxnVNxsWfroRBjDQO4o4Tzmmixuqlz8+c6xrBUyqG2iq1O9iNH1D09tmKOCUj/oQcJaRVzh/7ngCV4WFCObZ0i+OdSqBuqRbaq/zv+XX351TUWEUSBmY+mfeAeb2G7TNu77/Rs/DB/oP3SPdgWpAjG7LAsXxkWHv+iLmTO6tpOLWv+CEXZaebc4PDdKj/cR+cJdC9j76jrLmUyRugqFnHR4SmOyWZF3fXS+copsLfvWcxGHrsf61+OpcuSKCa/2JK8+GJ6mJaAq93pzKRT7/7ceo/8optezchqmE6r/586/fgXWeRF3jWQIWxnwA1v6OmuL0MWlpizz8zXsnnvDe7KhuB9rT40qP4TEyxU1+s6CDh4zw97H2ls8yJIBtUxvrD9KDZZ13wXX+jMA6j2R2PiP1vzhRsP33EwWpen7R/a6BYOTTAoGC1CcaBS8ezJWoK4AzPltqHMeXN4sMi2CKO/Mo8C5j08mpeGg26UI2B7sJB2WTiKDJziPa+so7nNCh4CDcCQE+hFyRDtOSdxDn5yt2vq803brFPob3oqmRPHWhx/bESwC32YvU2XV6NWlqywP3cy3osaAZIE5MXGiKG5NUvbp+BVjRXbC/rwTasVuwOMzN4G13HZB0x69wOgR3DYJk2ZDp4/fhJJ37AHxyX8Pu3urD6fv8lvDB7ia2ZNs058Pj7cMkHXgEZuqlPDx9HDA8XYFILkP9LCW9BfqL9caOy0g/Mt7iwLp+hLsVojdG2ZiAfd6fEFXFuhrQi7pgJLNCse6U/bBdlhKWgRGtX7UxQjE6sRhazWQg6DqfavLUdcJjxzx9GJIBmDg9OpgQrsQHZ5DMrjidXSjlQYcNjm89Rlw4gP57Can1kKg5aepLhMjqeOwtyrlfDmfgw+kFrtitFslcrovbwOG701EnCzWYZH+6qOnZapDsvaZqGuJtLrkt2VIvHbhqurPtADWXaFT/VHo/oew8Kfptf6PedQRgzKHMwcm7S2g+9jBdhDTi4OtGFcS1Cqnm+0qU3J1rYvN8b8Bg3Q4W3G3WrwSZTd0zLujOkGytCGPr7APq7bsGsnb0qV/rCVs+mMthsRUqamps8Kbmm2gQhWhHkZYU/ZCP+w4qpmXjx/07sDbvHBeetiUkSjAYPat3vQa7u3ahp1389gTPvfDwWZU6tsDuDZYZVpHik6QlwpqAF1NeCvWyiRg2Xt9zOg7omMO9obXYR7D0ZjsvIyiYxx1SleWQTvrkxyCWRB2b5kGppmWvWZCxWqN5tZ+86XGMINS6+oaN76mqBlJ4CTw9yR3vU/+Zkvd28qGsypSaqnQH7LHDrvKmU4z95TGmU/m51XDyUonMj1kLRRHsG1jybxfv+7OZbo98gkDb1QPZ3LZ+OPY6qqEzoQ3+Pw7qbW05IAzA8AG1wWeR16aMVdRMWUR7SCGR1WCO/r/+zuF5bqM95Gj62EKnSHL+ptbuWHrrkFWS8rwPZ+oezG6g0dho8OvH2tADjV3r69x0Eym1fdlBFFGtAjOplrkKRsSWiAceWjv6Uke/FayL6CuHo6hIGFLDR1SO0xCcO62oLUmvbOu/jx7k0+gTb2tKbxzYPoTulNyInjNB2fpVc+BS+tusru6WzcMRJ+DiSiU4fglofdKwUs/4qhHro5y99SwaKTRMt4lHr7tgGYPaUAffU4kRZc9gKeeuB+TUGRaNx1/NWvEDas9jTJGUlB477U0HqjLOia66Ipvi2z4Hf9YScsfDnlE7u7/B03BIXb7isslzcwF+P++O9TTQ4s3xcM6F6ywkz309/2XFTvk+AFFcBOEwHZo0gTj2Q+JyfDtQA6++Wlj9Sp22VALWnS4JzKopE1tIWbDclR7Df4+oJrQa28yC6+HSqIQaX+2JRjdqEiWN9Zici8wJtpegbsqotQ1xi10+bMRKMOzSWqfYk8HbCjEPZctEy8xn5uXnlQVJ8wmIxZc9YmZo9ort3Wt6tKYILZxUbf8AAAD//yxdybaqOhD9IAcCCglDOulNUBR1BuiRRqRNAvn6t/C+oRN1kUrtLqTUSL9nZP7iF59Cq1BgUdSEuoSbYB5B1oB4uQHC8FOPd+5RcEFRNATbb9hnbXKZasjJoyNLcX4DHgiMqS0MLBro3K+W+JDZ0NgPFlm0/AqoQ8wUmmlu0ivqD9XOS4EGd6fTQm22FwGJGncP2lZO6OGZeXx3s3sJyiqgaINunck9LRnhw3BidFLcIl60s6jAS4gINqkjVmw+4zt0x21EtTs2OGsvbaicka9j7SD2GYeV0sIdFQ36Gg4imK+9L0Gvgx7Whus9mzeNfYanK1VXPMzBfIVCD4TWDKh7VO98uZvbFHCSdWjnAyMT5MNRAP2TzGTngzKjl8lsIFVzjyav1zObt4edAdrjlFM731gV2YJwAxUhrv7ff214T6F2fIoYedWxmvXPOYU40L40Xfs1v37vLSwbXUZUNjqTCU0aQueYBNh/vCowdfrHV6q5Nmlo+2+wxD7N4bqeCLRqH7ADdc5wGA2Gre6vM6fDqXqB7twXOHxOTdZ//eD9q6ffeg3jINsj/D43BJsJUTKSbL03bHf5F/EwbQJiKA8LlJeRY8N/bGJ2BiiRu2r7xd4+dmIGR/8FO3+8Yv94/+NrP0hgkocmfvZGGbM43Vmwo7FHQ8kuhhHWfxvQvJBGTTidqznYlVBZ62etLz9b+5EGn7nckEXRpoGZOVwTGUcn6qn7mgvs7tGaKG/wul6c/X0vBLhVneB0vl+D+WGWFqhMN8N65HUxRxcfwtPuDfFRibfx/CnnEvgfLcXnI9qZnaxki8IhVLBn3ezqV88wS/gBh9obD0RP2zs8ZHsHP0NxGBbepRvFjP6+ZEfmP/P3fepxbwQ4OFHJnMHXvANXkiyst6VVzdlVvEA0BwKSD+WRT+ByqmFdjy42KO6yRTt2b3hQDzU2us/ebOfttYT3Z+vgQPMe2eJp+l19jrNKrROsKjYUbik/7uMde/A0me32Zb+gEJQBDVpHiJfcrxf4vm1DaqOjlgkjzxjUzn2I0W2rmfz2uLQ/PMX65nkGXeNserB/NEfs6sFt+NdvAX7mVHuXaTBHL90God04SInGsuLN33uBbEI71OVM56zZSgwurSkRQZe21TSCeJ3SYx3xY9jPA71zBpW136/84jWw5pifoVGaW3xAAajmgVyI+lQ0F2PH+cTzXRpc6CGGaXiNpGHetdpb/dV/UHuoWtwDTKCYBRESnd03+K54pvbmboMP/TEI5vq6tND4ZAnVrRJn46M4KjDb1xZ9HMqJj/vP04ZhwXSsH+4fk93yyFJdQc7xIerait6aNR6oqwB9P7E2LLVauUCUx4IarvwZ2BH2BhAackDijZ+rnQxFCEXRsChesF+t/UWAtTIN5MePuLA59XBRUYhxbDIwlV2gAdaWKT1WtRiPWXsSoI691RcSlrglUyvJ5YVwxL63czVL2ufyWz/qB4+cj+JA1hMS6YLe72NbTdThEIrhZ4s29qPKWttkBJjstqHObTIr1jfgBUA/JBRb301GFJyW4JqWE9qu/Et4oIutiq/3l7rcFePlvuk3ANLRpEEeuJzu1LyEmYsFsp0tMxOl+M+FirNUCD4nOxP/8p7Ak3e40HA+NyY3nE8C7KAVsbc59wG/pAAHQPi/DwYQlSbsXeJzwP/kDq1TOhDVFDsfeBoHPng9lD/sNokQcJO6b3Cj6I8eAP/y5a8uy3+/J3wkgRMOreVXP2h5CRz0YiukQP6DGv7hy2z9uQrc0y8jcqUEYA5r2QW75uVS58cP2ttthLHaPam34v/8MHsbotkT/umNdSTSGS7m00CkU1C18hUfvJrCxVbs+HzhSeGqa/0TdRHMgaVZuh4QrQfSrXx9LrzzRRGLJfnHr5bWihpoaFKJZOzXoIvVLISXu3hDYF92fM7VewntzaLQ4wc1gDc36fzDT6oBNoHRwKoPTw5DRF3717g4rg2rbZdivaBNsEiVnqtnQ/ijmebJ2bjfzncAnzxb+dliLmHYESidCov0Rd4NrAYahMbhvSXbh4SzXb5VCIi2kkHtXWJUQm+PoTxLwgMfg0AJ/j3vrbvpkXJI06BmafSCMH9dV/zRwJIFZrJO/ULY99F1IN/1jLj+JDkixfMFmDIWGrxZWoOv9lEEk7tvLSXe1geaNtEh+PFx0NDCxlq3OkJV7OagkN8yff2pB8D5nDI4RUJIza+HwRgYTwOEl2q9VXLnBPM9X+/UeVgd9vrJj2fxLTSw9YwtdUg+DUujhg0M9CrFCJdRRvyjFqlPe28SPtv3atog14ZmsF/Q9t1NfLZ2jg3jPqMIlkUB2P3iGND/GCnVL2oNpujlWRBjaiEYxBNnrwn3wKzoFfuOUpi8OVgvyMTAxFpTQMD1r1DDYEiP+F//Xg90yxI6XRFfTluwTFXog0/9koicn25geao4ghdNDtHKBwNuCRcFTufgjM24ZubCk86HBodfQhpWx3x7lVr42Y01tv7k0ZxOUdUDxK2cOn6+jzk96AzuuDUjWL8tMHby5wwTtuxJGkthxWL3eIaJcYsQlKOBs+cXnH98giwrPlG9bBHUXH5HRbLRgTTrWwYnMdOo1fcsZt/J2sBZn0e87q+BlYWJYIFngpLPOtXvBrVFTd0/mwZBpleiG5GLsjn5LjWX05ZPr17zYWgihrEq1QPf74oG/Pirvkh7vpiyUsLPCbsUHffbYFr1njw6qMdOqHwybqN0BJJX79Fm5cP/8KWdvhzJai7EPI3NNTlCGHvhdcymz/ViwXb3+lI7u3BzukuDD9d6J/tSLwduITmCu1O8kP1hywMOEsBglVnNj89nnO3qsyox+4pW/ch3t0axYH7PM7QXGyPmq34CSe1jtE9St2LHjiHo7yOXTOt+auFGOEOUN1tsKoQOLPKMO4x1/4Vt71HzGW+iBL7AAVKMD0HAauBuwB1bElJX/sGjeEzB19Yqeoo8L+Ngjiyobm8uNuG0/PSvIaObUqIp9rZg2h3rEI5bM8Su2BjZ4sQnBs+3LEaydKlj+hr7BDrDSaGoU8iwcBiynx5f18NapzUWiWpszx7ZEOIH4hUKLVjxk9pkfWfJTHVBXfk2Gb7xvRqdqrirPz/BuRvXeD5s5gamjq/RQE0+Mdt+9hvYNH6Ijy8mczK2Wxta7bLe8ZEJFSttogBr0S+EATbxucu9HP74jx4G1TAZu08PzsS4Y/MRfuOZir4FAhDVNPPmKC7F9U6jH9+xuj/P7J+7Za868Y0SsNbfIkgr3qo1J0DZ72OC5FMEC7mUqbXBLGh95o2w3+8HHKTFLma3/G79689hI/G4Y8orBw/xeKfu4OOKf9YTyKakmtQqjEc2EF8gwJpef/QQv4pg2jtyBKrLX4F2t8kcprCefXX9jL2b6w9sv51TtdG2EpHSrT6It66OgPF8+mhviy7g+SdJ4enIZwIupVDRQNgzqN7KhgZRjThvlnMNgrv/R4+nzgnEMjkhOIO3hOsltqqlfD0MqKsNxza+r3dAOaPxqy9soH0bT5/2qMA6FS9Yr2WWLVXiQLDqbbQHNjAnj920/Ycud7Rf9aGIN/fkx/fo8ZW18bzIuz287dyBzEUEA77qXwj6LsG3xDzHs9rUAqwN4GHvjdVq/n7pBSoSCqheRNCkzZI2YO2nhD3SPmCjNp+VSA5VtAX3XTXbwf4NllnpUR+NRiWE5ZGAHx9hf48RTCveK1Iqb7Cm6wSw2GDKD79pBncgq54Hx1e34l+Pvatqxtx9fyDsKvVLVBrgbCxI28JKuO6R+viOYIZFlEPxIfj0FAZVRaT2ub4zH9r4HsNsmJ2hCGGulRFd9VJM8GZq91/9YtMo/Zxidq40Hwoa6sgO3mAwxaWkrFPAEPUPaWoy38UQ5qqOsR8e9z9+lwB0Oj2pIeg+YNOR+eDPXRMY995k5KcPfvzXeYx2JaKu2fz8PbQHn4PJq31tQzE4y9TzAiNYBikvIdy1mFrC92Eumyw/ww6AhSixNA6z+Ia1ypurSI3tNsqYfDgIcPV3//d7X1CGcOW36/5yMp5vl/EfH09K5zQ07vvew6tz3uLD54GH2Tz7BthsDxI9Pr4h56u+Vd7ZpUJbAU0Vba1JAe11WE/QfVE2zYVMYBBKkK76JVj9xQVa0jSv+vzK2Z1UF+g0nyc1DPtr/vOXk1YYqf7FG8497TWCKZJC6mnkHLMqu0dgdCuGVKCyYYY2dMGr8mYkRl07/OPPl/vuhhbDdoJ/euV2fLypOUGULaV0Q+B0nVS0ERI9FnV/Y4NSfx6o9kj9YOcCP4J/R63G6U1LgFSYcFTW9cSXF6kB//HFYyp32Nv9BcP+KggCFMapxR4tPoCtQ57UzidXJOyjafV/SgTw9rlQo8+OfOkkYMFgWO8EXTbhIJyy1f9d+6UtjnO2EENQ4NNWTByc0dtcjo+2VlZ/BjuJucRr/e/hO+ntH38bVj7SQgmu1b3yQVKZiQ9X/2LtR7q59v8Fbk6ui6NITeP19214q/YqmXQ0D0tZfVJ4ec8VdS77wFyiYGxAXfI32pggyZbjeL7DEJhn7LE+NueWPgQw9c4T5eL3tupdNYHqe97jMCNmJr7Kaysfc+FEBPoKOLsolP38BiL/2VHMOiHaQ0Jdn2aWsw3ociptcP3DPj7i3jLrA8Vn8PNzr1+6CRahajWY5Mik1qoHJrPmElyq24MaXdRU0yPJFHh58wqxzacZurmYCcw+SYKdrj0H89h2DPz0FkiqU7XTxNSA7/hMyZK/PjGzcNLIG5FA9NOzrRR7Arxu1zfKjtol5vPuQACYoxzjV++DufDSC6xIciEzv5aAMN8V4PFtaWgnH09georOCwRxblD9MCUVs7vLBRz2mYPEVf+OuWs04MBJjwNjc+Ji3BcpbHBPqZ0EtrlIlZfD0S0Y2YiFW/38EfU5cpUe1KUHiySCM2DX80itfXSMd4FT9jIDi4sE5834ur8lwJ9WRa/n7S4QtkHe//YH6Q+pYjKRP2zFIvMHh7kpmkuwLdkPn2nQuKd4FrIWwfK7Kegx9v4A3/XlCOlrv0fCmp+wzX2x5SAU4D98JOv+gPZQheSaR+VA8ruBwKcLYqpdGjRId3OXKtGl9WiWhh/QXXtDgN/H+YQ1/NQzItP1TroOq2Sp8yCYB3e24GOANvY3vpTNGz4Q2NwagJ12gdmUmeYbOkOsELU3jHj3q597HzGMnLofWHZUSzhOxMb2hx34XOSWD1a9TNhHrwNevTAD20iRCIC7LF7531nx0IKxKVduLC6X/Awb63pEwngpQJeLjfbT99i62hPnA5P2QMmME4L9esv++Dra8DiviZ5WdwPvNosCfvlNUqrfjOtGBGFl+hk1/awyf36K6sRXSr38tAPT5KYlpPEnIXI/9RnzmT6CsxV81nysqNiq1yEdiuLnf/7zJ374RZ3HMa/YgeIIrOv1z79iax710w9ogDsQ905jNj/9QhYQCP/7v9AvptWPvQLx7O9HKOTrlPNu62ac9FMKitukYOTe7VgM+0MJ421z+FefghTcEvXG+QUj/fMFY1DWEaSl+6W6l/RgdoMHBHbpn2movekwgG6qYflyJjKv+dIMxj8GWftO8QF+q2r++QtYzjE9HAxU/fIO+BdFMQ1XfULZ7aoB/2khJHkPiy/JCaQ/v5hs5v0lnm8wsWBmVjdsm/NxoH9ygcBXyAPq7iDjMzq9F7V4tCUNk0zlvf+n2BBhmGAdxO2w5mOJOmjCDsH4FFdz9PLsf37pLx+iw50R2L83b7TNdGno0qiFENsXn2bH1KoE5LUbsPq9SLiBJlu0z3eEA99AvPbfYFdubhqoxmxEor6vs5+/DxPjGtEVTytuOYgBVekH0ijvkU8oEX3wyz/rDY7McV1feNhqIb6tfvV0956aQlRHXvMW3ZRGM3uB/cbTqeFbI//xS2h97gNRgr0NWAaCFmI78al7fwwD/fnrWm7aGN8HNxjlcH+B0VhfsG00Tczo8dHAcmw3aFzXr320LFXX/Is62/BSrf1bUa/Kw6JX0xyGeX0e4MGVMzbu4ilg5G3e1Wdcjkha8YxN7wKqH9nsiVwceLb6owmMhXOFneVQcLaEeS5/ZucPO+3T512BmlERMy+i6E/98KXYvM/qxEhFmATPGbnVqFX2DZJWvXjn4/r/YOEtwW99wfLLj1d/GElC4Zt8zZ/V7twWODKlb0xP8UGAqfu08ZrnVLy+XyTI38mZVGteuWzWKcyNdTtiv244YIWevqFxKLfUb3EbzFAwInXFO6IGQWr+8+Nd8C6oUZw1Pq96FyyI1UhyaJwNPz/ttrwQ/flJ84iOuRy9dJPqiRsGbPthG9jdkg2Ch0sQzMc6XfOYK8A/fTLLF+ZD9Zuq9D8AAAD//6RdSbeyPLP9QQxERBKG9CBNgoCIM0BFQUSaBMivv4vzvMNvdodn4RFJqtl7V6jyct9k+w3v/Omb2D1cD+yvPgD/+Ab7cN2wBCcuFOU3qbDutW48x+9X+/85USD+7xMFZc7faKxG4tYlTPOBYWwVUWFRi8PurUow9ceMRqf3wrpbNeWwg+WJ+DuNL+gY5Q5MoirB6PM+6Swvuwa+fvkXW6/PEr9hJaew1/g3NhXtyj6NJKzS8aNRbB/Em7d3RyWXvpL/xIakL97C2ksD7uvvR3VVFuKVU6gG3rt1R+5xi9jYv6wM6DYA5MVzh3g6u2oEKwn+sLr8LnpnjTaEvr2/of0V8DHLyLUBSfrTqAW2rurn6y0HhkMI4le2i1fZSx/w5jYctuXDDgzTq5MkJio11ovHAOjzikVQSdwPK6EFhknl1QQ23zhAh+1063IkigVt8iLYfWVtse4+ZQ8Hbboisd0lYNVfugvN8oapcW5vYNn3UJQEPbljFEONHdb2sA1+hipWee5aLPv9mMCDxPfUxfa7WLpbmUrlZZmwExVSTJpIyCDrx5yIaqEOBy5rW/gYORG1n6piq+orHFx/xy/e1q9g05gl0LLGJ77laqUz+16M8HyUzhjNjx7MK/+cQV7yHcWL0Mesj0kEHvXyoIV7+OnrtfVKOMhaS/2JQW+S784b/iTRpsi8Um9MgRJB+XieyGv+/oZZXAkHw7tywY5aqDW7tyCFsRL12PnIp4Jld36EbuOIWH2n5sBOL6bJPQE99h3cgSnXlEROfZJR5/e7xewxklkak51KTen28UbFBwq4PMIce9a5ANN5sBVYTV2FL9ZY6t3KP1eAynTCp1xV9NkUdhm093pE1VVSvMNVFyqo6uYHK+Ble4z6miKN4jpRM8RNvX7kZwknHIVYrfKSzWq7IPkZBSXVD3o2MPUHIDzXOcG2IEzDp0o/PHh0govV+fur1xxnD9AMBaBYYp9iLZu8A6rjnHG+A9942UHJhe7+Q3HQ8xOYvo2+Suqg7+g2dgnQFE0c7M3qhnVLWopV+cYRsEh/pChDVbz3DjQEUn6OyM+xN0Xn1LQgFcsntnb3pGbiCVaw14Q3DgIu1Wf+Xa2w/6UmNtfHZWAGb41SAJBIlUz1dHZ4xhlcYVSiZfldPEp9Tdtl7niiT6x6gJm/ZwS6cfHon/2PXIvGv/Uj8sySYan2G6I35D3WTfEDemmuVti+nJCIiLrFbCzef/aIv9u74b7q9pJ6pwLa79kBsGt2ioCtPVrqCtwYr3cu4+GjqFSsj5o19KFcuHAdvw+yV2ONzfT2duGcpmesYdetlz7IZrh9HzaHux7zl2XkoEdFDq2Ao/WaDYIoZ3K4pyiX93q3HOMZluM5JMM02vU/f9oLWoJ9Shs2Nnd9hrzFauq8u69Ogd5kMLrscvLxpXfxz1/CJ/ERt/kvk256JOX4/aSaFdBh+bPHSR4R9t6zCZZBe6Wy8RNq8ph4a7PndgZqtNZ/8aRmmi4hMC7QweZmv0sw1CNsHywnQi1+2Sheyx58vfWF7XfEdFLDSoNDIS74cjA0sJyucg83e6De7vrwlo47cbCp3SdFSc/Vk+zIKwz8VcLa33pE/ouDPIQGzmSvi6mnjgSSr1kRMdFZzIIxWGHXdXck28lSk0AfUiDYT48q83k/9NLczXD/9jsSPAMUsyN/b2D2SQrqnp6/es1edgnNLHzRcnEe8exURg4d7VqQOi+ruCenXwLSKOaoWYq0XuPokv3tBz2NvwWs4sKLEP6ohIb3bLLDnl9D8GrJjI6GLw0tEhkPDaNVCH9UzXq/62gOw+B6xbaRU7DysqrIRw6dKJLXuF4MLjFg68QHrNduARbfWw14TeqOatLZKlb3mFWwuEgidq/7O1gdM3GhdAhvNLuYD8Aa/hzC669J6Fk8tmx5VScHNjfZwMEuc+I1tj8cqMI0Izyc9gNbwl96BPxzm+tOi3o9vFsHKHtWIhFW/TCm3oCgqtwIAfr3UEwgOK5wyy+IE5ZXPJ/vggTd/ZdSbdn99HkXfnloHtQXNtuDoJOhShLARK3GhtZn3p/9gcvhN+ItPhQrKE4iVOzrg2LoPxj5nYNWkhrQYM058DpprxcCYyXsMS7DpmDkW6bAbqOIJEr72uJFN4MXrx0xDnZVTP780dbKllqLrRTr+7pm0Hs8bGz0Zs3W2z7y5bVwv9hIQi4mD8NIjlu+pyeUV/U6XhoJfoSD8u/6bIX7Dn6q653i8NeAxf6+LFje3yFV41xne78sIXxfXILqbmriv3gLaiuqsbfPDgM9N68KXg7DSM3aszyakWcr7QUlwchRWU2/otj+2SvWZW1X9JXojPAXHBV8LnWqj7k0NBCSucWeKiFdqDTRB8NuvOOr+LDq1XIzF+YiWHCQgrO+huMcAuDQcOJy+eItB0nvwWk/SrjkVa1YLiRHQK2MEa3f/KKzx2uXgsIoVXyVDzu2MKlLpH56MHyC352+2ZcDcw1dsc295XrOzdiATch6tCtDI15g/PFhek17srOMEMxz0jrwOe4nHJyPn4FlwY2HUZdiesLlqC8C7hv4U1qRHF2BA2SvwTfcz7uO+pzSsTkFTgSlahWo+cJyMWulOgOrrzychA2KF3kasn/4RT8/zXjOL3sObvENK34+DPNR3c/wLuU+RVSU4znLjxzQfg6gimsnbEXEyMEk/t400K5pPcgRc6CcqC7VG/uq/7PHOe5yfP/4F30VX7kGr9fgSb3yjgtqxAoEK8fFiP6aQF+vAkmhfMpEjC4XGJP5l0N4BFVElTxRB/b7BQ7cu1GAdR1tJ4q0Tw8/6xjRwoK3YT68DUNOFO+JHbxcwHr+8iF0EhJSzOq4nrVznsKzdfv+fV+9XI6nHp7OR0QO13SJp3onzQA+7Q5jsA/B2I75G17L0KPatbTBgW5zH8VHl9LgfXwUTHsab/gwtQc2y9eL8e4eNUBzdAvN+bxjf/FM3vAKqiO39mhxHVvgducWq2Q31+PPnQ0Y9smDmmT9DCwskA+0LzHwyfClupncIv/n3zq/e9UMErOEO/H9oOhyKQva8OdIlp9iQQQlGxj9i8elkQpkX3utvq0fJyXct6RYyyrGRrsfpfNZPyLeBro3v7PxAT6doVB7PNje3noEK4z3dUBP/uPAZtqbGnhuUww2fO0t2HxxcpO9A2pPx2hYF/3mgyXQB6xxHe8tp+u+l+g9UrF5l4A+a+PYA/TrBVJLmcSWjxE5wM8RwgGzBn18JqYLYRbrVN/4x+wmjgCV7h4j+OX3xaJy4gpv6q2hztry8bIM5wbkqaKT1aiseH9Xhx6MeuXiDd8PyzOUMqhIvINL60sZobic4Wefnaj+ukf1dN5zJUhsUaOhuj/UE/P0UEKxFxPJ2pv6HoqRIHeRI2EETbdYt3wFXeXiU/9jVsMiVMEDctvk5SEUKGMKP2Rg8x962rcjI4j4GUyN3R71auDHvIzFHB5u457+i5eTgjT4Vi8ada97mRE3TxP4bNozxY+kKFZ5r1hyVJ9r6oPUKFZmz2/5heYLVdCk6VMeDQgWNVaR2H0DNh6hFsEeYoZYdvoxSs/7Euqpo9FytCI2B4+4gfiI/vhLUS9mra7gosCIGNHBAL0IxwTCsljIPvgo3mFZqHFcP/ORqsfGqAWjFVpo7Z07Lqlh6wtODeHvebFd72Dcv6ZbBDZ7IFkvNcV6v9W+hM8RxipJIsBo2YjwKkh3ak3+zMafKxrQLwbzzz48sug3BPj+i6nR3Ae9Cx5FK9lfeqJo4tuCdfWNgJ1rVDQtWnfgH5Il/vkvdt3XxRsM3iJQ2r32OPg+h6E7qvIMl15Z0UF8tPXKak2AZS7cUNu/x4KtwM1hVnoK4ZKeG5bA4gxYiweMkWxfwLpQK/u7H1ZLHXtM2UWC/GBliU9n+gbrfr21cE1SjZ4YF4PZGjEHNOmz4lNy+8bzrpEa6Y8vGs+Tpq/ntSYQvsoHdnOHHxY3QP5f/EKvVrvUzG/zBPw9r784XDFn4EDg8XJZqG9+mnioT7Mv6w34mwJAinkARiulxTPDOhf3McOV6x8tdx/QQB1FRpOfIsDra7+gV0051vs3besPrzk0yKQDW/carI7h0X4g8qy1eFXVrYdU+JWpG56IPlb3qoT3+83E+Jy8axozMYIPvFsI98cX2ZQhcLjva6y8LjFY/Zvrw6Bqv/R0jEr2Wq6WAKxXslDn4L+G1VSgABU/c+kfH1vP4tOF8DdJ1DnfEDu86RGCy2rYNNhlXbFWcWFBx85sanR8Bmb+uiSQGsYX/+WX6fogM/iLx0Hj/gaSFDOBh+6+p+7FOnn7m9hAGGq5QbUzT711iaEF3Upxcfjt+pjx7hnBXUJWJNyOr5hd3zOBdSjuiZBenvVyj6w3dKW+wEqkGYWgw/sDYNJcqat4ChCyFy6BlMcRxW7BDWTRz0g+DKcRGcsSM+b5iQtzzb9u+ItjfQ0rRU58bcZKPj/Z6DPpAQ/3Q40WtQrAOj/q9z89gW35YcV1AsF6COZ/eHmpd+sM8HuyKL4o60BRf+yloKEX7HnHZFi3+AY+RPzQ2yObwHwos04CH3JFyWIJ3jyY0AIbvsKnZ34spvlcZLAPnQGbujLqdLaRBl+l8aBec9oV9PBBAuSeS0iDyW4G+nFpB7d4S9HgbidItufd7BEt8/c0CKkfRBL9oBLJdQN1Ipu1Ilf+e8CmylXD/DmoUFajuab+PCo6u8VBJMEZP4L9Z+/WvFaeVthchJSIbXL1ln2ea398kXBhPLN/fEIQvwp212ynr08yZSDWuBdZivHlzdNnIiBfTR9BPQrq/R/eOvdBTK+KrnlsbXcd2PgbghdpVzSzoYfwwR4lgXnlDwQRI4MmtALqVlM3EPcYVrC57Qwi4mUPpp48KpC55LThZSNmW3yERrMcqEJ+5TBz0u0hNZaXUd2SzsU/+9r8j6zTrWBrpEpv+EqugKo15cA49C8Che3ELhIsvV53+QfJv8++QB1eLmz644scSm5od48oWPSYaUDTxYzw5/YIBl+QESirYkeWY2MMy1xqPOjTXUhN9B0GWn/cCjyfr4ZaYXr0Ju13lsDhq3C466UmvheyH8GjLknYuipb313T1SB8PR7YfAo16yttRrLquGds6JcLmG/87ILlmVUUm5oZL1mnWWA1BgMJWzwWeFnVZLiCy9ZcdB/PylJ18rNVHYqe9btY2EUiEJ7eOtbzUinWHrQdvF2PNj5XOWTT+wP/4Vfq7sJTvbonVkJ2aj+IeRACQnGyQjOHGfYLz43H9uz4AOachO3Z/8XM4NEI/vDuhue9+TCySvrjL0EuVMOaFCIBcWOl1PFyx1uy+JDKa1bOOEn9r9c2DtqmRD5yJKBIZeyA5kreha2B1aFHxYh0NYQCX0b0eXzn8XoEIYK6aqY4KMTRm9bFVGCHNI8aAiFsPrx9Q1J1+0OV0/zV6QIflcSMeutqv5+9xs4zDnzXJyRHxsVs5lprm7JX6Ti/LBZYourZSGf8VakteRhs1wlE/kDJzXLqgh1rafzTF7H+nX8622ZAgKXXVuz0klFsTpGBzz4/0dPbkNn4h98uRVtTFHKknl+O2spxY6R0w/vFsla9I//xNQW8vt6kUzMBxZgXFH3eP29OhA7CvUg8rNx0YVibSMjB261Kmn4DV1/1QWrhzs5/VE2p5W35a4TC1z1R58lp9YrurwrsjvIFO0/uPczZ55dBmrcuEp+xwdhwV1uIeU9GXd2vw3x5aRbM5+5CYz7RGbP0S/UXv8kKODywY72OQPLlEzV7X4znLd8DmfyKTb8zhoXAmwtvvISInNW9NyX60YHluduRO7M8j9eHrIKB0/v4L38seW0ZQM+jedNv8LDf9DjRockL+9Jg1bPwdSxQEyRTtRhVj2/u3gpEuUixsRtO4DA4nCCh2clx2PSpx8JLvv7xdfQrdG84XkjuwwVPb6x/Ta8YxPyZwXqoLbI4bhQvKi4I/MjDhypDksfkeSx5mAI3xf7Z18HhL59PX3/AVvSjwzK9Iyj96ZOmeC/j5dGeN/t8RBg/EhBT8/cMgT2LDdXvizb8dvcDhE57sinG6gBI5P/gUdOl7C+fsfECkwy4y1PFG/7X56WbJRjNnxEHt89+mIuPQeD3e+hRGBuY/elNIHnFCfZg9yt+ze2owS1eIKaEk77Wy9yAhfkB4ohwBmSYdwja4HDAbn95FYLchz08NZFOPdid4rnxK1H+p0fcI8qo+21LiD6VQ0P7HhYMgeT9559YvVoxWGG1T6C2JimNN31wrkRpBe/2+6G2Zt/06eC2DXikzwtFNV6L0ah+FmQ9ydGh7PNiDt+rJG16Fb4rfVCwP33vClSPrExN6sPy2uYXN6CZ5O9zqIln7B7iH19FGVKKP3+DWbtE1B9O15pNY5jKmx6OrW6v6xte5AH9SvGW/5Sa3Q+pD4VlLkjvvvY65T/D++/5Nn/Qhv55LAVp07sxKj9IZ+w5W0B0XIY3vVufN3uDqlIQagGrZQR8jgkE/p5D8+XaDjN3GXh4UsorjZSPAEgYcBbYrlO0eokuWG7mwDVJNMSiVwhG7jII/+xNx4exEOKDroFo/o4knoxV3+oTkvTSjgb+w6Od4jNFlsGuoZseWy/ZeqzAFwwpdbT75M3nIFH+xcMIxGc2w/3qAjOLXtS5Db7+XdNyhldBvP/3eezwI2z4b0rtv/wMRV6CDU5X6r3nD5vuEargkl/4DZ/4+nqwCwG+kgvAyqG9DtMK4APS6jRTww+U4dAmLgdX5Z3+w//zGucKdOblhi2cTDH5Dt0Dcm3IU68zEFi9+rj1BLJfSDo9T3V7A0H3H//d6jm8+xAj8IeXdWmbh6clFwOoCArYX2+n+HCmGQcP2Kg3vdhgc/0FPoSfr08gr77j1ZdsCN9LcMD48NC9fVA4ApC1NsZYnWqPjZnZwqcyf/CVr6/eMtlK9+95/Eu91JOBdhosjIdKfTBFOksd6f2fP271gk2PjKQppA6qJyPSt3yWgNbdEfRKDadgG1+AN5L3mz7WesP3VFRwqy8gITl39fik1wf0hPy9+aMaTx+stiA8mo+N7zX1kuiLC0d4LLDnP9/eoY9JCGMvkAn/rCjY9PEVvEIcIDkXlPpg3wvy736Iivdiw3+aDD7jFV9xr8bLOR8daAUvg57duwNWSzCTf/kaQbOPZ8eQDKhRuSK7ok/Bn74nb/gWiVv+2OKvAb/PNqAbfo1n5vQtFAfuGUymWujznz6y1afIftP/lyNxrKNtfRI0N32qL2n9nuHuuLvgjZ+D1TMODykREoU+Te1TjGZbvmGswRf1z37NFo6lAnAbV0TzwnGASGWq/dUXCFlOTs12330C+9Ng06B5XYtNz3BBfKYvdIyscJjb1YQg2vcZDeTyWc/uHrWg1tsR7daX4/Hi91DB/vV9Y6s/SvrUd4MFp+FyQ2DV98Wmv67H105yEWeM55gNHE7BC60XqsmtM8wb/oF5nfjUATUutvqoAm9HBW71kH5Y7yclletytfD2+2Km3s4bn8ptAo6c8dejNQLrM76gRQ8O3upITScfPwqluv3B+mwAkIONP+PTUc7rkZPOJQiuNx9v+bFmsIs0eHnSM1r1evC6+86VwLPVHeqY9lLTKnRSsO3PPz4xVkRPYRgLAJ9k0fXmKLa3KTBCglXxaIFDtk2hdmDXY9Qchs1+RV/c8Dx+1HiNx2tpGTAXjws6LIhn5Au9BETykad//rUQeHbla/LqEL/pBz8zyxOQ3JLjtv67+hdV1/Yvf1E3d5JhPURe9Ic3sP3syEBN51bJfdshXLbrD8zujlPgfsg17BJ12fTOhYMvswVo7emhmOWqiP7lI0VhvrdfrkgA1oFPaKmFb28p15KHt1Lfo8Om7276nwQ/x+pAEQuedf+XD//4bLHq+3g577kHHIul3epbb/Dbdd8cPKL0S81rYw3LNWMJNMYqJ2tlxt4SWIIB/viatdTcwE5ykIDm2GtUu5zOMe8YqwHPsHEQP21vAJoldsHoJhQHlqwD9j3Fb/g9vDt6sl9woMPUlPD/caLg+L9PFFzVntGgfVvebKTCG3I1K+np0bjFcqnSUnp9TgY9x4E9/BRPTOEzONvYrEIPjFo7d0Cw9yYxX/OXVfIpM6Apl2987spF/4InJpCI/AW75TLoJJBmDtKbe8Uo+ZiAp99MgZekcNGnu4xFZ/cvTTLGd0k1fR50Zr9lBegv6YQOHQ3qSa8PLmQ2dKmuizlggjmvMDLBDbHSv3urYrcjvITZQLWJ9PFo9y8FrFjXUGfXrOhE/pLDe5LqZLy1u5i5j6oCwIwHwnRRYsy5hxmUn66Ig4/meuuDeBZsWxHhmBQEzMCkFciM1sUnPdy6dGqu9Xd/bJ7VyJsPTfGAo/O7YON6szxemz453CmFShV1mYoft/vNYP32DjZ2h5++LNMwwpmzIPaT9jBMBapC+KbsSnb61qMwXWcB4kQPMAqVszcFxZ0D4eNXoWNPvGKFsHvAwUpMjCVrx2a8G0qYhecWm2lLhsUbQgMq9+yLo23oK6PKHMLvq3pj9+4/PAaeeAT8DDD1MJbrNdqXLuDTRqZ378ex2e5/CnSOKUf9k+oVa3b03/Dl8itFlD70ucqFBorH6Yxe1TUcZsUoE1E55Q5WoqrW2Y+tPRzgZcWKIVje3rbrHuy62w7r1ruqh5e1ILkWKMJoSAZv5LcI2T/HkBpSNNZrrv9EWLvmj+KxbeopNL4G3FVUR2D7vePMoREeHjPAmhcKbDIuQSLFFyfGd/OHiyU9Tg2MkF/Sc7+9Y6QLawMm+SPhYLfgYn413gyz9pNRa3zDmtBle+cuhRJZ1vYdk+vPbeHOz194W9m4PdluA73AL7Cbn7/6nJm8C8M6srGdm109B+ScA7TcRBokMV908CF0wPSFB8bEqgYqZREHNdRRbH7CuGb6Fbfg2KYCdVcABvomkgtZPLSkc5yuYODVuXAkO5tq1U/T92iaExn7yta1OVeH/S6bOYmEQYjwq/TiUdp/Kvg8x1+s3tbRY69PA+EPzS7O6vJdsOLIGnipxolw5yrQGV7cEVi8dUV7Db7Aot+1fGc2hzs5mpeXt379fAUrvRqIvQVtWO4cMf7Wm2rX/AqWU6RwMHaEGQmGcRvGvAtLqB8+PDWrcABLVqqcHGrQxM79YIJFyXsX0peXIu7eI4/ZpRLB5tNb5HjIlJrG+gilktNCJFzjWGff4zOCErcTqbP3FH1ZLUmC2fh1SKbVQ83O9U8B/ChR7JHgEy+DKuXw/PlekRTae8Yi9obysetP9KQNIO61Subh+A09infhLx738SkDn2AwsBcdPX1u2lGBSWvcaJFz3sDeHG9A2NUG+b1+urd62C5hhxwLKyPl44UaUQfvjzTa4pEE5mOZZnB/eydkLXf8MDf3hwD5t1ShT+HVMfuu7zc4weiClfn2YmtedCJMLzoi1xb/6gX5jQv1nXigBj/NOv0er9Hf92MtykN9cnbkDeKhNPHZfhzr4c+eePIBhOvwOiz3w5JCMtcRPmHpU2zPo8HDmxUk5j9VvOS+LcDBVd5486fhd9RaBCso6OhyVld9Fi+/HhaT4ZK9ecgYWyU9gv0pe1BMLGU4JDywgHVaTeyZGOnC/XFyYJs3wzbK+KOzT2f68FZUCi12V+IR58LncP98GwRo7iVm3v6KJC3rdzT4vifG2luRQXsuDmgpDwZYbvuzAa93eCHzmsyMFPysQaIfJ4yzq+51BDkSEL83jiJZ7xi7A4/AY0BntEOTCZg9ar5cfsmD+mC36sS+LyX0iwPCp0NWDX/2DtEtP5JDR6fhV5LRgZeW3LGX31Iwb/nnLx9R53EIBva+f0XonRGgfj3P9VpdSx9u9oam3UJjFhc1B0/335OerrsPWBqd9PDgziV98oOpL+edlkn7IqhwsPc9j+m3ToMaCBOqnfdFPF/HkQNDmF4QOQm7miUxkUCt5RN1u/QQz57pJPBm+ohA3zL0sUnfBvzzz1HY9cUc4ukhKvf8i7V01wAWsZ6TjolaU/t4TIvp4wMB0tj94tMp3IE6oFIDYvl0Jvv1AsB8z9IE7PJbiOb8o9fs9ZgRGMRrjD0+2OtLh0sDpvf0TG0zXcHM3SIF/qK1x9bnbeqHRvFDaH1XHkmBJnvjzFkETGp7p6hP6nj6EEeDYmCO2BmhzBjLsQ+3/Se8w7/Aurgkka4vbo84/sbqFanTDOnvcSNpKlY6S3dhBsVOM7FF30m9KP1owMadJmoWbVoQz4kITKl+x9b7PsZziD+PY7ZKAPv9Ze+t8/uTgHqnnHGkDnk8CywIIbX2BjneGq3er/LUQ8D7NX4cuVkfEwn1wNN9H99eP13/t1/GCdjkeAqfYMH8ZIAfM0acItSzrysnEdjuTzhw3HmkAM0KW6Ut8Sl9/tj6nocU/OEJY+xozdxLkcDPE16xHtimfsir8QH+/BvBB68vfOUqEvHRjOD2+7f82cHX2flg3y7JMO+Bm8D0m7yoLdc6O6SC54NICiTS78xyWCGLQ0DG90oDeXwMk4U7AhPVWyhuVcXbXyN+Bes5SfFDPwN9+j1TBbphe0BiuUJAshN6A8gJAnb5SiyWQfw48PGJTqQSjmbNuv7zkCquxjRwf1d9TVW1h1K1c//hg2lu0gruKW9RDWTfmOyfFYToarb4djdI/Pd5IF+cH7UbVwQzp8Ya3FPBwnZY+d5yTz+u/GInhoNE/Olf8eryUEqGL2oQLuvOjSUHeDryyW8vGsO42DEHz4skUd24U0b2XDLK0ym+YdsT0mHK3sIINaPbulTCO2Ptu2th231zagn2UacPzyTgdXUvaAfnz7BdbyA/ihT7TinUazmuHFzc/Em3/D5QQi4CjFpckLX/nWuWKV0r4bcK8Z8/7/ezDmUwiTN17DqO53bHHJk7MECac3IpiCtm458/08BCjU46uRPh5u+kpqAHJB/ePAycklGnPlxi2u/dGXpHXsF21Qfe+JTWTorT/ZMiTXA8ZvWSBadLCwnbK6z45s6nhDY39lTj7pVHE391wFHRDYoqN9KX39yFoErfZzQGJRc38imzoHIxG2pOkgMOf3hdvBWYoo97ZKvfPRrAmeuE7ZuyG+aL/7Lk9+35IetrB4s52t7BybLmhx+Uch7bs0cK8rncpnrEQr1ez14LvjJvYD9oFX1RpVaD2KY9Pn1/0TCitkzh2TxfKFLT0WOR12vAfhfO1su38thl5DTAYDhQzQ85tt1PgNfThVLrxg46a17hQy7BKGO1us7DogVKKW/rs+HhJ5js9pnBiUMqNcR1rufXFHIQlsGL6lebr6nWnQV4b1SOLN/ypPM7t0Jy8+ksbEyBUazZK6gkEr1rwlH68Gb44HroxLqPvfD2jdm0q7a5uVD8ly8G/YobKJr5jANZqOJF6RsDvKElEXoNbvFykF6RLPCPnm7+FdMtHkiHwXoQzgNhsT7tKIJcZIRomV/LMCJ0T+GPX0TqfTuFrf7pLcCt5IMthHowPk4bbK1uJXauUxKvFwweII4OClXk491j4dnqgdA/cux+QaNvfKGEho9ydIdpU4xvPhjh6QJrqnlhCtiIzhxsrcanWiz5Om/3P+3f/ged/Qbsz77mxpqwxS0oXg2+SmB5KTxqIFwOyw4PKzgMxgNb33viLe+4m2Eo7lYkitZVXyxcjdCb3nd8cvYjGK8f0YfXo8yo19ZXMEbraQZ//G/L74AMmeNDIXE6WgyTWhyyZ5LA7y14YFTRlo2H5PyGD/c6b3wHDZPE+AQ+3MtM3eeZsJESY4UtL8n4j8/ut3wMkZe5SEjFyltnfWlk68WMf/bdv5VPAt72ekNQbghYh0xB8kOSeXQ8ZnPB1Il7ACbLB6ocEnFYg0jUQLjNKTyF0hSP78uZg5ZoCNge8BJPKjtG0M5yEb1XsnozsqtG3uI/Wl/GXp/cTB7hK9u/CBxzy5u758EC8F0nNECxUc+Pfh7/2WNY9wNYn89zCCRlcJA0Kg2b0/jCg1PBxdT9AsNbJ/WWQMdU7lhpqVGz1Q0iyX+fVLrxK33mByWH2j5qSJTuDDaf3gMHHZoS6oRdAVacKC5Ez/yHg9Ve4zF0RAKcSS2on1rxMJ/WjwRNcMKEmZox7NViDaH9yDuqlbtkIJfd8gAjiHqUvxdpGOfDjYNLQxaqtLSp19fu4kK0bHU+ObrHa9+uGjzhbv7Hl+cRkAdUXc2nxj5qwLxcLxJoOeCjd/V760u/zBn8mJxDdfe+K3pHllP4AfKe4rZk3uKIxxlerKyg6QnVHvvDx02dMiK211u8fK9nB+b6QcVGxr0ZyYtKhCnrjX98+c9foI9fA5Inux9YcV57YOjgSsDz9hiW813woXy8u6gObNPb8nkKS1rkqNpxAZuTIhKh2qeIquvWA6CIBx6Kw/hGTKhoPG77+w+vmLvGBNRL61La/TQLG2rvDIyvywxu8QIduIenE55EM0xrVaaatdcZpcocwQw1N+yfrQGw1v018MOHR/o8Dj7ojE6ZAfvJGZlL5TEw+S2GUv8jFWFL9a3/8cN7o3NIFIcBkJtU9jDQnjqRu/ceLFunRflPL/Bax2Drrc9HuN7UaMNbQrG2etBCO8tEiifIAdbVIgE1HDnqyBbHph0eZjjbdwf7+IX1P/1BflKxpC74hGx5fncIPmiYkRVkdsw391SA8fAwiaCetGF97e4uBAsIiZBnA5u9SY3AXvffGImcE/PnQ5sDLrLCzT+aYTGF8xvcgKCRPWecmFCfpEo6RsmVxp/lNqzWXnyA18czUM+ZPOtn/diA5DJfN3s0BrJLaAKtHVupFx0Hb5aCpgVPKpVYLaLOI/2FzsBkjxhrHXnXM+Ck8d/zKzyfMFbPbvjnbzSy9jVYRuZUgMW/FvEmPemM5TYCOo4YdUTr6i1+XSjShSkKjq/jL9748kP+VexGyLmadDJ2miuvRfohEnRN8C/e//HXoGA7MF15hfvHR/Tr+CvGKjnxcIQ7gZ6E+FqP8+HMAc26joiB6uBttYcHEG83jFv918bjQcch+MvXz0vUFzRuFkeqZr7G6rf8ef/0B+/qD9hdq25gXT89YD4cdhR5YI6n3Mf8P/x1xJJZCB7GD3gUOpHe/vDuendGuCxaQv/459hwgwa3z+Og1xY23vApAdPvW2D/MijD4muIh8+PFFBFfrj6pMeyD2KHn9HuGhyLlS5XF7rid4+AMGWArHdlBJdxDLD3rKu/+DQCysofjfrfMqxRUCBwYZqCFcKb+rIjz7f0F9+MfWSAObeNSP6chwZr235NU6FW8uf8a7A55z5gnTZWMIJ1gLoXbIsx2CMX8PMRU9sphnpiKS+Aftbijc8N3q/DiQHjp/um1kOu6tWR9ymsIK/T+/c9gf4vnqbDVaE2nxwZCSSRA5GEJdQFzqxv/A/CX7ketxPiczFzorlC3jj32FYF21u3z0M9PsdbfOWHNb7fHXgr3gpakM7p63uuU5DcVgGbieUyqh70Hn4XvqFWlRX1hidC+D6vP7Je8wNbdZYh+Jw+JyIlYz/QVc8q+cU8RvjeGYZ5CV8O8NyjQ53yegLL+evlkvwqfWwZxnFgmm32MC8dg17DatSpYIrrH/4h4m5uir///+PHBBzXpV6bG/8AC1BqqqOv6lEzFx1ASMBh9Pzc9Xn0xRX+4YtTh+x6vjSdBa/P4UVVziP1XNDA/8NPaN30plUSD+LhkcGW6gvIa0aeowIGctWpfVUoIIfdKMA6LXwiLYo/rH6XNvA7VAtVBuoXgnNQWqCulwCftKEoyIfpDRQCfr/NLXYAz6nxNsU2UTGG86dml1HQwHJQDGooVC2E334QwE2uEVbrFQwrLxsteOI2x/61pUPDOXiF3+s7Isf0eQJiWj9ncNe0GYn1YV/81Ggy4HpOU+onXlMvg0NdSIhgUkccPNYRQeXlWPbO+FQ3q7c+D2EENz3s3/1YuQhvoC2hiZ9tyfQtHjdg8e0BY/YC8eSDXAFHJ7Wpcq16MJ7WSQT2fDts+L4DLbt4HVzt1KJB974wujh7F1rYI9h+f0pv3fIBKKcRYV/YucV8aOIShKK8bvrwfdOHE/eP72OElZ9Hdnvwhn/4+AGOT/3zp2f/xcsTJcxrIlcR5E1fxupjjYFwb/YSNFYBU2/Dc/OWr2TBPpgESoburZ+fkIHgMX+outUPfs+T9wCb/xMmVjuPJNe5+seXwFDvBvKN8RsshCqEGXfMFtOK3wDzF0wd21HiqZJujXRTjj32pzwAI8xUCf7pb/5j7kCv5qoBPQNk1O0LR+cv/s+Cwc74osNy08C/5/3YQ0Lt66cZ6DJzxh+fJoergtkUfkAE3bfkYlO7Tt5PRnEHt3yEndd1qemnM5HkLCrAhnz9FLMT9Zr0p+f6Dy/xltjGiaRVPw47w+vNXpfz2MPrFX4Qr5mgXhzatHDTZ6n97E2PHZ2zArvMScnsFu9huaj9CAtgHakumqM3ntyRk+qqKNEuW1Od/9Pn3eaTUrWMQp2CrpTgFn/oHz8SXtUvB4dDrqJZPsr62l/oCmb76WB9w3dz7IVQ3h/5FGtIMuLDjncT6Nq7hZr73alg/V6bobmcFHz7nBBbkfqZQXiIWmq4NGQk5n4JXLGq4YA/12BRCymEt0sV0ocJKjA/36CHQfp8Uy15qvp8O7ghTGbrh4TTT/DIUXIQLAGRCQcevjer9+Hxp3di/ydpnoBciYNgRgYOvB8HVs6YMlA0zCZE5Lptxsq7lR8Z15LFfhyH9cctGpQc6FGl7gf2I3zWQ+emQOrIYTWwWQQupMZroUaYTAM5djIEP+V5JSwa1VoIblvPxzGAWFmTkNE70Al8Ba5JQPaw2crJYgOb6aLhP/61rvW+BPOchxhHa1vMrUXhYePPGKPpA+bdr4AwlMOUGhteWOXhgeBf/cD906/Hi0VgK/sK9lR3GtZgqWcoHRv8T+/6hz/y1VvJaB2OgPLjr4Ha1u3nnog/j4yEE+FfPWS7f0wwPFlwRIOJde6DATl9hBQW6yLQP76ynKp1ld/bybrd7zWAfe0NI/xqx5E66ysv5gq6K9j9FAvRCXJs49c58I6CQi3e773t9c8UShpXYNsSEGOcBn0YlwdMldKtYjI5lgGzRvS3ePqKmZTl8A9PYSQdDzE5X8JQ1i15/lcPI4L9g396JzVXaa7ZKnkRFAN7RHslgvGcloMG89I1iLjzaL1Y6aWEyfVeU4NMSvGPD/zpb85l/Wz1K+MN9/t6pfgN7Zi+PiP3h6epdfTPjPHjq4XWaTaJtDNhTSs+XY+HnSWj19pq8bzYBQSn06BQz+hvBdOvdgPfxSxi649PxtPVgA8WiZv+qcfLbX+zQL3TzjgoswTMtmJ3UnPVQzT/cDfQM6gU6L89lcw7bgJ/+gqY5K+EvseHHk+MAAFsehABz1opRqHWE3jsrxdEpOOhGCuozX98Cv/Vm75DG3LyLiIJttnRqg+bfgaMO2jROD+terPPFl7yXPqnf28Tdo2/+hU1XroeL0r+dgC4Nhy2wHipl76rEdj0Eax+rmK8cp+llTXCLeQI4mcxm5VOwNueb/R23ZmMZs8khebNUf/Vi+c/fM8u3PFPDylGzRxLwK15hHEHD96624MKJMuyR0KeeWD6q0/8xc9EOry2KR8k+6u/of0kdWy2tc6Aym90aRmrOSCis1qwOasV1vTZ0+k7Ze6/eOAr19RbDu8+AhM+n6j3qmdvPsp9C9xRvOH77OvxwsSTIueh2+DTpieuxfps/uIR9ho90ef86YVQifOM/NVbBdGRLOgHwnN7g5N47GSec/k1uDx1FN0GyxEsmdyJjwxjq/sUHb+9Ec/7zUSO7a9nGx+y5BLbGbYvVczYLyJbm/crTybVyIdm53YIyPUpo2oaKQXval8R7L8v/b/6xbHKNHj7BiUNHNJ5yzXiZ7iaCqOXOffZvu8G9K/efupPwkDltxiBbb+3fN4XC98KK7xUZPoXn+nz3hn/nxMF0v8+UQAybyUcGi/DfNfYA1L37tLA1AioLiOfwO+Jj+nZnSYw0oNWSl3j5TSQTFQvQa6HME/ZnZq28CvojtQVvK7ySJj8CtlauXMqL5HuoiXJLcB6vbPg8dVK6FiZebHcD84b7uIZUb25WQX7XMoKyums0MIIcDwrBz+HrzyxKG6Eyltfb9eC/Ng//n3f6lQ+D+U1OyI4FzZbmuGUwRVHGj1xdVfMT+hl4B5EF3rCnRqzbZyWFPTrHkEfrDW7ozSFmXfH1JOXtV4v7tuFwVf7Im71e0Ci5vuAZ4OdMY6Ol2K96qsD8flCsBuhAYyH4NTCcREMbLe6GU/d0W5h+11NdOa9CbB1b6YwbO9nasXdT1/5R6/B8L6bEG0ERRcwZKK8rT+ag5O7dcEcM7D6LaCu+xvAth5veOC8FLGlCGK27o4zmGjtIomcVG9OkbR19fx22Ptygr6Ut8cMlF+xw4amJcXS3hoO6sJY4JOyzVX/vrwMmOe+wF59XweWekkLXuy8KQTXup4+Fu3gR2kT6q1pxebKSBKws98lNY/7EdCeYBf+LNyhg0w6NmufLwel07MhnL4hhrabBJCj+IgY/ATx+nyYHaSBe0bHrpXBfAhODXzvQ4uw5tbGcyBjCT4T4YJdejgy4l2cDDwKWNNnUKJ4Xe6qAzZlhqpZmA3z0To32zvNiJ7MJY+Xr9tYcLGyM779/Q2VUoPZVN+RfPCUYi/ZvgL/7T9SfW/fjX0Ibu0NYx9c9qBPZ7iC/DOm2Hm4r4HgJBjhvRxKrMTnOm6dyhAgvi46tvrryZvf/uSDcowRVg78s14CT8vhtbBVlEi8VkzS9OhgeDVcikYj0tdBFkpw/lUtVsLgq69oxQ9wt/YKdkho6nvuKfTwUwom1V+XE2DaOUTQfKlvAlP7C1Z7+YXgpGQ+gvWJsPm1jzO4R+OIyAmjQfiYLx9+iBRv+596808hBoRmPuBT9MbDKnBGB3JxP+DgwgxvvowwlX6OSKnvqk288oOdwPc4v2nw2A/eqiQr2l2y6EoN6TTXlAiOBuG5v2NHDgVG0rFKZFgENvatKNWn7ogbcPn+HjRIDkrNcJs0EEBgE/mF9oAth0qSren3wsZkn4bZ0Z6WlGS7ELuww8U8tlvF610DbEj8u1hf8ckH9k4TMAbejlHUza58sdAJgebX6ctbMAWYasIJraGl63sAF0Dov5fbKzDQRA8XyDsC4tCAQG3w3hgfLkgXPhI/yl0xCNR5Wh9vDfQaQrXVd2TlKqtg0Cgf0rHTMLY9asbsvs6GfLl8w239bbAuSAn//JvaZ+0RL8FyUcCsJ5A6p1M+/BBUS0Ds2x6fvGPskdPh0UomM2esjNJ5WB76R5LfGloo2s7cr63QRfDAtyMCn88wTMlOR1C4dSN6xs1XZ0N+FGC9DXrYpV1dr+/w08HSro9Yp1yrz7Q7/R9p57KtKs+s4QuiISKSoslJRA6JghOxBx4QEJFDAuTq/4Hra+7ebq6xxlQJlar3fZJUapDY3fn3vvtxFcWAwXWZuSltT5zl8owkC12wBtbUUQVdbQQGq3D8zd7l/CT+CA5qJawEw3J/2eEeoqO3fVLFtyNz/LNfFB62sydO/2WIKmPVwhmZDypkFLrBqL4FbJqzwnB8Wpec+J8jVNdxJIe753u9fz2KkH4fFdtNb+SxuWkMSFmkMRzDJxuUk3yD14m0DA/dPhK9+zsEZplryv763KSR/e5hcKf1L17KsR79EA5R+aLqPanM6TMKFHFPMfBWlaVu0I0uhpSdNLKXTzqfNTVP1Fz6yli93bRyyuMOI1l93OnqVuNsvgktgGJUOrsd2xxNl28aw3qaDSrrkYN4cdhjuFPWsoOfxojjZnTAe0cWs8l+V65rnobofKgPzP3kVddm3btVykm2yS2rKJpmtI1h9zILqjhHPRqbBxMRtcIcd0t+ZsFg1SrhV2BmEhVo+ppgw/7i+Ewfb6tyrJWxBwyOy05lZZfToGs5PD+rlgXuc42aarf2ocCPYuCmGmRc+xxsmB1pwFtOFK8/sY+M7sHxj5lHaiDppMkpEh7mROxvtiu5cUr83+cRnFxpN5SJb8H9GZcswLjyGq6JIcifRl/qm4fGfMtEuBW7julka3pMmq8zzI44YMGPOnPSb0kL3kfwqDRpu3K4fNMzSqPWoTVSeDe8zvsWvjlPiZ0Wl2hu2HhUjWzMqIS9wluel6J6Oo/MT0iOaEp1//d9xCUuy3jyOCngHRqPPIrL1hvFiceoTO9fRiZ5b/70AerfVUj0U9xG4zuZc0g9pyJ40NbdRLZvWYmweSTumr5MVttZg/ZfP8VyNEt8FBPbADoqOfGZUpmjXYgJvG/ijpDgRqPf74PANnPyq8ejmGDtV/+I1xlzN35Co4Ayqm0qvnkW8dOxpDAID5N42yMzp+d4LNTu9JKITYOUTy4DZyvI75I4fwrjUyEFEtL2l4n89EqjbfwEzkF8YUt96bjgDzGqOkmgo/icym90DzTwibjGyqWb+RS6+x4q2R6Jb6sf3l32jgOPBP8xXaqSaKqrU6IW982Xee5f402Gth8VMRYN8lQjmfeV3owgoGO7PE9Y9hZZ2ejv0z3Ir95P29hXkGLUOi3fXlayI30/QNrXD7p1Q5VzY9OKqJUrC5dLvE27tXeE13cImGGIrTnpG0EE+Ri8ySk7n3mfCRKAKMtHtn8VOlrLArdR0OwoCdrjDc2l3s/gzJaPx/q0NudALA1ojU2zzKdXRr9f7YhW+n6Py0b58unodyEkOX4zSw0Gc4o+25u6ufU6SeDx6qY23iZAvpsT212VTdeycrv0oNh0tGSGUY6qPBXoHlkzXuZrNpH2rQHb7F0KSqmV4sV/GiCuOMeg5zlnzdj2W3LW1v/0Df3NL8jInuxsZccl6aJoyP/rQirNVIjmMgstNRled4zg3HW8iHgDTVuzYEtpXLIP7nN4anuNeZOmRkO3l3P4e3oKVlFfojc9XJOlt3tObH49mnyTVDeoI2Nk+PUuOQ2+Ug1ss3PJ/qrqqGfmR0SDy9dsqQ/mrIx9C0dc1eyxwhPqI+MdwpQvp0lZnUfTXPgaMtvHF0u39phJzlZx0b4uI+ZMLo+45eYYtH5n4/EY7L3pl2+3jUaIiRzb22jLiu9Ej4hkxYt506TtJCj6uWDWbjJK8a/YyzDcb0BcrXtlvNP9HM4qfROjPBqcTfZXQqf0MzCrv23QOMtlDLzFBu41V42+R10SgU7qB68+OUSDI/Uu0NtosnRazYh+hxtFTC2edLPU56ZeBS5C9q4i3ku6Z798isSzgxhxC80clvmD8PZpsuBpA6Kbv8cDsWZyia6xMhrfGFtoiTfiD43qtaZ4k5Dqvf/wyuYnxNuwEWCDNJ3y4hRE/+qL+eEFnbXTlI38294gfjx15mcV5fNJGxOI/ZTjQkJ2tD7qggSNHzK6PghFNnbt2gGUdzFG6LstJy1/27CuP5dlPC58Xkk6KOIFHZYztIo3qrtYUZz7WWLGxCavj4RkhjrZ+Mv7qE2Wp10D9p8nMK3VzGxzevY1Qslhxv2ptiJu9FKCpKNlkP01HL2J/Qk9CmO3ppvL0lXbUTUXLOk5UjR/5nK2tdaHz0GKiN9Lez48V9cEbeJjz/YX9+J1m/IoA9GFDzPC8ZnNL+c2g5oWGA/tEXifP/QG6bW+opNUyRkjl4yC/HTuBB8I7cYNP+N/+tz53JXo+7hHGD3bZiLW9VZ74/imGhyEXcjiTjx6oz3konrewoWQ7f1jThn3bVDaR0f8/bbLpjSbz//+vdvcCrOPgmuPdnfFJ8t4onWr+gYce6UmfnfVuvF+EmOgveeS5XL0rs3ruFAaSfxPr84ud134JieJ1hUZs6GjngstxCHbXbRv1lc9EdHm3XHiJn5cTssdfXDbv7ZYyYd0ybdkhk0c9hS++203qruHDGJNDhiJrCvHrX2tQNfEGzGNOPFmhlwZ7BVjuFvyATt3WxnqwI+IdzZe3lzfZgHO2n0gOMxMxJVqO4M5RjYL5Oaz+Mcq+T0/FuH0LXtx4mekP50MC7X9iVhVj4DeYj+S3WV+dNWDz4X6uJ5udBK9gfd5dMfQHyWVHEjziuZy7iT4kIYRf5mPw+YGCpKubY8FlGjeZlBuN8B30WUuPejmeDr8HUHNzx3TZ2p3P32ILL/YEGv0anP279cQfn5SS71TKX5Ct1D++PZIQdb2qPb+tBQsP98wN7812Rjf0QPN1b1e9LcQjR7uU7gkmcLcN753/XOKBVhd65Zu1xfu8XK9lRBFlrnsQLGyzTpzDPjaQUP2Qi6YzDZlH+ZVe6Rvvim8cYoHB+i0+lD1E+NuZOZHQjjzTEJUwe3G7NDdwLTPAbu8E95xXvs3ONvIwJvpsfHG/HFooUjpmegMIc4fyy0i7XC9UpkNvTlGwalHW39dMfubvbvh9c0LiM/KhThB+/Am4Sm0inU6BsTun4U3/11L7cdT6LUOuMk2h7KGzSg+mLZ1y4zp1VDAQQ4lOvsv06Olf/UR7Q8uc4PBiRZ9KwBg9Q9PdVN64xmtMbwe9hlfzpPfTVe2b+B6+iqEULHtpr5jlSLdEwWvZbwpv5IitDBq3zULyHJG/Fe/2ocREuIWuccxMSR1Fc2Yio729KTb54rBqrKCbgLfL8fLampgyU9Ec5q9KYpe3quLv2LWyT9H41AFLqyd6IKHSs/L+Wxcj6hEt5E89BZ3/EiHB7QeWMw5iH3WaYmGgcijy7BRz+acHj4P5SM9ImYEQusN3klJt+vjiJif17EpCY8Rg8Myi2HZ/etGt69dqKYuw2vmH7Ppp3cPWuozdyw6zm/HSYb2Uqnsp8foVXVtGI6u9c9/TJMWiOB4x4aum9CI1tIzucFp1lx22a6UbpT/0hsEq3zhZUKYjVP8dmBdbA64tHd1NHPoRjTamsls9xahKep3ChByehLz0hz5eGIfBX7jL1jUM2f5zmKYq2f9Tx8vftRGgX9bE+xUN8TlE9zQki/Yef/M/vu+s9q/2f3sYz5c0usDCdZ9z3w7lLy5Xb8r+PDJJ91OrBa/xo7oYDkpsbPg63EWnCRYX/wjiWTry2c+tDIEPLwyzHnucfkk3kCLw5Y5TFB580h3PtiSt6PTbbp50p21//mXKNWzHw8MlQDW5uJ3S97SJqiRLpQFcbNUN6XjQ3HhdQraJR9v+PCSvwk8pOKPedXX8UYDOaKCCNbocP3+8VaFSYDtgRJa79Ax4i9NiJGfnK8kMJQ1751aFpUfL7ws9Ww+aXLy8yfkuvCPhuh+ityj9/rxLDToRhmrwIQbFv1u5JSVWwd+ekAPw4F3pHAcuL+S+af/OtEuIEHbnaAz03pM5jzJLFbcuJbI/vF4Z2MdPwDVavVi5pQN0aCfKl9ZeASLyTZF04W8Dbh/xD0LNp4W/fQS+ij4xfSInfk8xyfnX7zZonTJuMehhktyVZi96LG+dQRBWfQw8w6tlPVylZ0hs4wYK2uTRdPrTFq06fcO/Sz6h/+ZHoXivv5S9PzkaLB6JfnFGxZgvY+kSk2OqNyfz8wO+3fHo/KrqVmU3X/+omO7cGuhJV7Y7hCN3TgPggwWjzOG82+ezV3d96hMn19mWW4QzcU2kzav3Clpr5R5x5/y0iVfuw/MdY6vaDx+ngZccvTA0suLOE0P7AZCL7QEf10TbZ69Y4OsTDEh2eHjMSYkMnSw+7AL/vJy8RMhbBXrTnRbeJYzbXY1LDyLHabXK5oOetLAUOCQqrdbXtLJzCS0+E06iNtt1qvylMuuml4xX2tBJsknQwO+lhBWh1Vn0qvv/asPzCHaq+NnZZ7hx8MrR1uZ0/6ZJoh45YludPmRcfElGz+eSfabmqHpbUQ+0m/PM9mbT94Nt8rDcHMDbZlfB287NqIGp3soEu8sxtmwmjmo9mWzw4pxVcwRf5UawbbcE+Nwr0uebXNL/XttDPb7vOnHk514+2K7VRihGcevEPkjsTCv55FPYq3d4Ci/nmSJr2xs4VQpS75e4mfM5jBxHXDV5MqC9PwpJysKbLTwFbZb8hn/C2QX7lv5jwShtebFw0YyOr3HhFm3vCiHeH920PTHl3ve4zaa6dXvkbv/qmSJh2jhDQqq2MfH0pP2He9h1NTf5yVBK3jd+NdSYO/lDO1ZTrJNqBciaMFk0+kdrsrB/1oOBOM7XOZ/4w0+eYjw8dWGOdInzUbnZiVQRpWNoZf2iJ+yxEWN0e/YMTqVGR92mqDomnRj9kt6L/ERVMitFIn5+60XcVGNMVIXlb56rBJEyXlHUWl1AZ314Iz6/HFo/vkv3OA8+hdvCy+jsnV5Ryx7KiMsvJO5WqdnUyk8evR2HQFPxv1mTrJJajjozwg3juyg5femKPyeENFv083kW3lvA3LmjuyzTinbho0hcLkwGNne994sXRQDLe+XnMi2NLngJDL8eA12JZNLsnFwgbo2MO0y22jsT2Rphnn5EP2tB3y6kEEDlfyVbAcs86amL5YePGtMdp/PMZI4lCPY0mGHedDW0Xd87GuIDfHAng5q0ebxyloIJ/7Ea52O5aJnGiRNrwvZPd6HbNqy2VePzrLDhSse3+hs2bF26AOqmFaH5vhCHgpaVZgk8+SU7PVOLBj2bc6I/DK79aIv4D0KxdJTL/QmX95paCj8kN0Wf7VMDwph7NTsibwnH1jeOWBWbUB04w5eD3vl8csndOO8FMR7kDX00yMLr802mvE5w3SmJ2L/4m99zCoUw6Qzy11u3Qvnl6L+maVB3MeZZHyz9OT7VMmOXDT33bXyyTXQbz7S6XX1Jri8R5Rv4xXzZ0ErJ/12bNGqsDBWX9tPybH1SGHhf8SQkJ396jNMn3VN/HM+l5M9f/ofX8Cx9jhk4/2LLSTGkkGskH+7UcHFTVn0IdHq09qbvlkgAt89BmYAfmY8ISdD3euTgJVk00RT4h1rdeEzzE6LTbbwfRvdJqOii/42F7/mqAt/YoF66Dxq1yACexvA9ruPX3K5e42qNqGSWI628mZhmOxfPaCrP/WElvqbwi4jO5zXpz+T5+JRgL3OhWXtv8vEy2rbQBbbFUUfX+OMX7waLisxJvt0u4t6HOYS6uZCXerLJ/oX7040+2S30guPdpdSQq0nWMwvRa2bujKm6OgcTnRCpPX6bv2toOF2hHPd/Jhz8BUqeHL3j5hD//QWPiDC8Iac7XNfiNimPCrwLW8vTHG/Xvhu6aMXOWQYjm3OuSsdXTCfkcCChv+h/uev/KryyKO299n8EbYunHTdZMHJCaMxeL0oWM78Zbu/q2hSPhQKODF60eshd5b6Jyn//v7qbbn5ocY7hfASDPRzVV+IR+fcBTMgIyHJzkX81F41eChhyYjUQjSzMX6AcHExcRe+NLp/twT9+M6GxYLHV8+2gdVGbhle4WnhkdhAB7FoqHIqFXMoD6YPe9w0y46XmM8/PbXdgU7SZf5Rvw+df3w0WeoX/cq6q/74pHk4GJy/pnUCM0+f7OCGd979eMDx6yZ406u8m/M6zn/rb4s/2XUcFQ8fgo/2IQfFsNAI+/kBVrYViLPirJzmXn7AwrNY8Ilpt+Rv958ezjZObI7lsy2gnuKR4c33hPg60zRlWR/Ee6s7eLx4NBZ4r0LCgng2kfjjuVURnplTd2+ThonrwqqwMYmf1O/Yr560cA6XFjaf7vv3OjzQOWsuLEiGMBpfGbVhWc+k8qLfm9JJZlDJpSRBn/zxOUwMB2zvE7HDjTTdlHHLgo2rKcRWLynnx+1VVm8d3v/LN/x+dUc0Xr2E/Opf/1pHqbJC7bJjkpNOendc+sdH+C4VO2ZiaNG9q/+YTQMFLTzCArSq8eLXdXN+AEnkxe/R78JLF15Xofpw25Gjvr5Fc3rOFJDe8oM550gpJ/H4qaFI+zMLMUGI7z+fIxyi1ws35afp2GeT9v/ev37dBGiU8ocMmZhUOLdzak6bz+sMbmB4xOV1Y46tIwnA78KRLP4wk1RvlgGfGaUSlfuyG/8K+v/ZUYD+7x0FpFIdZpQiyubHNZnhMfkpu7rqN5soHEagPgqZz7Mgm1jKfciN5snOnRdGQ2ExGUEQlrTNJyGiuooTtP2YL8ypjUse00aB1HvsiJ3wv46Zru8o7rZlxEAPEXHVGVOI8Caj81veZ3OGqYXKi9kw16lOnEssrxBoxoHOqdmW7fAsU2UTK4CVTBsyvmu+MnTT8CT6ebXOmCGdNHWtjjmz3NsrGz9umyJ1XE7qdbeMj91+WyvXuMIk0DcHc9wVRxdYrVOmT3+OKbVyIqIDTnVMe3nI5tJmIXTnl0C0+pKVfQvIh/AzJ8R2L8sKZjlRqMy3RA7e1+j4dl0VkLnOm0KwATQIveXCezSOzA2OnjmqjuSjx7nxqcSQG61HqwDVlZCLJQWvEI026AZ5NU/M2q+LbAz8tQSX5yDTbWj7vCnL8qFEeJ0Ri7sm4jPCLtixMRCz3i97DOWjCPsi10l6GdZmm58fKeqK80zIaazKUXgoInSrIiRuEe068XX0NVj1jc7MTPyU46C4CQBUMbPMHsxRqTQR9Dnp2ImnRsb9v2oGJfowdnD8NWr/+lehvvj9xPaa8PZmSCsbhW69wSomMp90NalhlownMdaD5a3vwioHoedrvC6rG+rI38lVk9Re9tAYftTH7y3AW6N3tvs7fUrmBWaLikEK8VRs+4wT0c1B7uyauUJ8j+a9chBQafQuuWU453N0NWyVf14PDM9xl23CsDlDN7En24Wt04mFNVuK9yhq4r+6zuOH5K9CO3VSsVQPfjfFbzbCTuUqIZpWREy9dQ+4qt0Jb8fLLpoe+sFRDFJ7hHT+PRvSQT0qzWXj4e1xo3Wsw94ZbNlZsQATGVVhWLswGm8gmgZTNAtjQ5Fvu+bS9bAzpyP+1vC3wSPz368465u/hsLjdDpjRTOCbNppmwTeM7nRrZFZXLRyXIEoqyWzs+rgracNSZXs+grJHpaueDPCDriV98ar4CNk7FlZMrQfdSRB9PEidkmSFrrnx6ezdo45l+VDD/JwmunXPh298fYXGqvVdrnn/P2Ko6F4Sw9YieeEnCT9Fb0JGx31+VfKuM+wxmc8ew4qtGZm1hdqs8/yEqAUgwPbH/JDt662dwXQug6Ihfomm3bXq4+KzBpI4F6DjpOv76NwIdypZgzZHGJzRGSVmUQzda9j6eNWg6DGGKfP3i6n0t4+AB1p/G88p1g4VLCRRIOcrJ1udpeNawBXjYZ4PgRcpJu3ry7/z5LNWsymJj+LkN7rC9m/3dKbVt8aILaSE/mzxlM5t74JqvJoVLxif2U3t74HaBlvuo62Z861rj7Dhn5C2my3eTSj+yFE2oNomP9tDXMck9xH4X4dEn278bu5GWpX3aCZs/1Lv3HOWk9GcOmfBN+Xngrrr9+iNmpDanyNbTSe/rwY3u1rR8W/d8Wn/WuO4bm+CSRbnqdf8sE2f55qok3fdzQRuVJg+xTu7N94ng3WoKvvhAQ/uzvq7fD5+MUfFpTZikZHOPaq7nJMX1ktesO5LVzQq/eGWbF4Msd4r9Xg+PGX5tfDHQ3Jdo/hWbArXaPEMzld3yWoDn1EN9304nzJ5+BFzwSPQ74y+/ZYn9FgehUz2V+KmmDr9igehSdbxqNsnTj2YW2PF5ZcbDPa+C69IXzY7+nW8dec4ug6Ak8vKlaktuZTdhkMCPYmw+rgt+VY0teInESdaNcFtUkrVXmgiM4vQsY0i/jf5t7A65YEjOzQB3Gt2NbojxVXLKLeyWaHyhpahb7Nsm2OuvmILyl8xtnB/GqK3oCvvIDf798XZeVNEmx6SBRDYzsSZOWc4dpCJR0EvH1jnU/99LSQGnUpwfzpLw4xEeDB7D0LBnbvJqUUGvRpyoRCqJXm5MR5qu6+jyfT08seLfGPUV7oPvGW5xmaQY5B0EadJVLteOwYIoDcXc7kpcK2bM/GVkQrgSiY37bPiB2Sew3YcuNgLU5+xq9iJcJhV66YTg2CNsm3LiC+WR/y+FMCcxZI6oC7SzyS7OKX10f8a/3mC7PzeW/y5rjcO2ntORbxetX1eX07QlXmwAxuvz2+Op0KKAYxxE/6daNN6n4LmCXtSUzX2mW9LVQx0u8Fx6X9SaKliQYG2tocy1q75+vd9eSrNvcxs24G81i7azG8bGQynK3nkvrRkKKt4bVk35K0G82hsKEO3YJYwirv5vKzFtGSX+n4ckg0jWS5ftWu/rD6vDUmH4wpgTkv//A6k+1s4vrsgli1O7LUJ3O8i2YC9Z7WeLWeBz5awkaAy1D0JIixG834kdhwGfKepI0VlzMgpUGX/BiSi6TsMpHFcQO9IO5Iotx4NhyLW4sOm8+FwuromtP+HEvovFFU4kwK5uNm19nQ7Q4nQu5vPZquY/hA790Xk0OvyNEUFroB1k31CJnA6Ki3mo/qXVy6HBuP5T6BffGAi9lbWDo4QUffdtQA3cOLbv7kazTtBv+IquY+EGtVRB07Z4eHEukfnZGGWpzjRyDDkl+Y/X5o2eYV30fw1p+WkLV9Lnu0jns4ll2DN99+X/Y+tVKQnQwRrc11JLXPjaEIxirAR3/C3oiMOYQl3ukEj66cA7GJ4SNoxdITKuym4i3d4LBAcyswtWj0rHMPUXf9knSnhpzf93IPN1M5M7KeBzSv9VuMfCX5EOfg99kQ20IKSvRm7DBe3tH4dgVNudm7nK7OF7ObOmGuYByqIzE67nMeQWLAUo8YScOvyeMgPasnqn1JqCx7wH0JLbc+NRq7L/OxP17yQs3TeM3waDyjWdlbDYjnfY8lPv11//L7qxYPLEgVs5SW/A2ayXd0PTxEbx6eXQLL59MpvXx455faEd5tuSP+ssQjCVYmQr4pYkbm57ocfWolavgZE2JoZwmNyfaaQFQOEdnzexJNwWiOcDyHiGGqfsr5gw4NXJQ+oGJVReUS/xZo4yWiyZ/+9Wh2O1SA5VRhplM8zGFbZxJ8v9ER3+JiOeNF1DPi2i1j+sGVy+EubAok/31ubO/vm25a8j0SDDVg5IA1kx/vcwgzPyp4luCYbZqli3Gx+5R4Ro8zX8bfQN5Bv+G1vfbQpJ9MCkrlOER3PrtuXVMTQBEqkzzHNMvGRgxt2AfNgQXoK5Y8MZwExKerEMNG647tDnIObX5KiRUKOz5ey4MLXDmZiz5rusmsSgeJJyXHcr0LvbEKIv+fXln/6rPvjq16XQuIuecrLseIf22kvdEFw59EM+puri5UZ4eQOIy77LNrXgo8a+vEDOM6mcOTvyskfDYWs9H48fjhPdmA42PD3HE5M7HoQfhc3e6X39Hopr2AmrXWM93bCd6wmYYZ1E45EML+yvL7kd4W7E5kpJ+itDz+UVY3wOvvH3MC+V3yby2PoPfbnE5zJUZTYTEFbslmR99p/DTr7bQHiPyWkMMw1hFXvBcGK6gfDEcRNieMDBuqrWGzpb5lnJ5JiMqlB4nG3tuIbV/bB+hz2hFjW5JovK8OPXiW1bHL2zW9TbHeu7A3aoTXUazz9XdlY3S81RWxYmeDpvx+P6NxfhmYTlXdUbrcYqV+nYrZCV+XfCWvGqS9t5dFL3veuOR3SBstIiT4CBFd+SKAy3zOHBYxTvHHl8CJ5zeGKeYm+2bKA27JesewYT/QzISDC7f7JBFzfa3RNG32KdpZdcPMen/3+MVdu/Ctzk/i6Nuzx/te7GHROyz+nr3yO28TgH3QHvB6GT8unlzpp++XfJNnk/aJAGYhdohu7V7mmAR+jpBHPLzpI7vbfHEsIG9st8QLh0c356+tjCB9LDvCrySbDFwXYJGppZOkv7JRZukMl3TaYxSe82wUoxSjp+qdmb86ut68m3IRnHh8k9gJV+UUnYfin97dZ8cO0UUfgjHtPGKmwrX7+WM4UioRjwyvaHy4jgVNWo10Okc3j0rCykLj5s6Zx1nbdafsbkG2v2r/6t+3zXWM1P1CVMV1Zw7uUy9+/pntZ9ybY+CrImTTbJAD5udy7rVZg5p3L4qQUfBJOXoV2pwEj3iD+PbGMWkw7OSNT4z79g/NvTfGav2YvsSV33055vUthNfZrjD3oqnkz4WhbLY6Zl7Q7L2N6sgJkL86o869HMre2z7OCCVJT7tlfLtvNj8gfYeUGOcuMSdiliFENwOYrjWiyWn/tUGvPhtcR+9N2fzq8dzVJTtIguWJx5Xdwt1V7v/y1WaV2iHUVSiyQ1U45Xy79imKrtEF//iBlHzlHvS1c2RHsFk373da/MvvxAmMS8dO+1aDd/BXEctRUo/niQIQ2587Fh+86KiQ2ApYVVcQ7dtGaEpTw4f8GdVs77I1mhRIbkC395xO+sPwpNu1SkE2ny7RVV0op2f4NLZymR7xdO1oOWTmBGh0t+/f3/PKbrfh1gDnSg5qhrN/ej24TmeCq22GaPgSRNQEGcFVTpuoQYYSokU/MUtOdDTse7kFo+4Ilr2T3c2p7QtIFLWZaWHPy/67Oqaw77MSs7MidTNhbwH9eMH+CW9ziJ6lCEgpBOK269Zb4sNAIN23dLwe1N/3S5BInUNHZtTZ9OnqEU6jC1isn1uPy0+mwNYJ93RSyh1aF0ISos3I3swoT042zN36Bql322FZufFoSof1Ua30tMXqwO7l1P4Ziirs+pk2gnDh404yMbiB9SKZrDpl+04xBdN72fSXf+fqViqQPnmJ0TP5RqOp//lKdFBa5haS3PG9JbjItx2TqmvKzOmKjjMs48sedVZ68+G1dLXV3zoJ+H70RtjkR7WZviIz1GtaUmavAbpzKbDd63vJxpvU1Oh6SAc8ojQ2KXoLGlwj6Yub9aiY4/bq5ujwvu+YvcFGx53yk//iA4+hpkRM4eQMUX2TSXBw9UgUnUxGg3momO1ermjUZTBQEWx9clgtxHr9SAq40Zj804dUGHOqLvp3OZ0pebPNvPYXP3h8i003pTKvwXn5L3bRX7LXP6DKf3pu4UVG1Jf0Nf+r94H4NNB69cdluGh/PvkIdcbnc1zJQN+OQexTfo/Ylw0F+ucHzn+M8090iqEqC2BO4mXezw/DEfOR7VfhnznevjsLvFg8smzz/kPS5fNxAa2rgMWFzqNRvNm/LushVdiFlvVx17YQXPmZ7KxxKnngywYKpnQiPmW/nlxdDuv3a8LrrqTZeK6DGpWfWqeqOuQdTdXEhSVfM+/0mKNfPUXvd3UmOFuH5cLTMPrp3f06EbzpJJ+OcDoSiRyyc9tV1dKz4GkfPPZclY+y5ak+q338icmPdzL1Vt7gfDy9mCVEyz26x8f840HsEM+2t45tIUGsdz3mjmZjTnIzaUplfqTf+GU/vwSLXmH2Ptjz4VMsO0qb4x871WzTzef1I0Re7asskNImGhb/A8o4HZnnVcicJ7s9w6MbCDVSs+346RjPUG+MKwv+ipM3Vsm1QO4kXJkpa280747hUR1d9MZQX6po0aMpvEVVJ4t/8+aFR6qLv6HyN3Ez5pJGhOP0uLH9fdNynmWbFNIV/bKA80P09T9toy68i9nICtBYbuJcXuohlSZp9MbZ+eSw8NLl+T5oMoeLDDRM7+yAj6+O6f43BjMK7nQi2MrGb2QWsMnWA9OYYUfTp1CMnz6kfrt1UL9R+h6NOxAJyX0tG/30FEP7WY1Y3m7z5f3vKsjhvmdRezQjKcTeDH1v5czNE83jdnhqIb7ZH2oJK63cvN3RBw0lL+Zb8y4bgwu46FdPXtbu5Y2ZP8po8kEl9nsjdBMtPwBBt61Z0LS1yRb+jIRCjthB2967aUxiA2wzcjBb5qP0wOlN+fHtUnkI2Th5Pv3pPbIXaoRGK8c1qq+STA7dYZ/1P70At+5IgmR9yFD3khJ0v5Rvgmc+8/6VGWd1J699ui0+Bh8fd+SCIfy9mXf7rHlf1Fqjcu2RscOdjNnok8hQ/bt0ZVZQ84xz2y9Q+Z2Cf/qZbg8vEf628Mdc+e2XfHNNzv/4vH4Lh264Dd8G8CAIzL9MS4vaCwpRH7/jf7xnGuqdi378ePEH5b/xPx+jFxaH+ZT1Yx+FyqKnmPX523tz1KuuQqqVQ9y1syrrUDk2cKu1mri0W2fzPkHJP9656An+NavShbvp74nNd7dsfTh7GGWliplzfFbdj/fDFoqO2VUzZ0O1vcugH8MrM57C0ZsNx5/RRfyM+JdP2FJ/lCm8OSweXOlXH2QY3I3yTw9Qxg0RmlBJmZtPj4i7NPX/5c9tk0R8jPjLhsa5PTAUWPDYV+lEtPBRZq1333JWzrmr4kd1olsxGMvBYq8bGL5UM894mmW/P7Q9vHLW4ym5FdG4fW1C+PGOrasespmucwPS95FiRd1P5thPrxBWfauTw02zzMFTFQWp1nFg9oMi78dLUY+eAVnmF+9/fMH/y8d/9WBjSFcDrKB6LP7N6eYh3MvwJyCb7DZI8N7nQ1ZBeI9vbLfCcTY6PE0g4G8V8/j2Z2409zmiRR/jjSOOWbs7hiEY4s1kx45RT8pwbUP2Odu4fFeuKV42exGOHyMnmkRv6Ke/1eV94FWZ21xyv+t2u4w33bwGyWO5ouew6BViDfMUDQZTbTSl7mPhWx80aVEuqyvpVVGuSfuOe9tjjrIX+bI9v8sZX+olcqw2Yv7YLj1cxOYMDhfsxU/rHjfvK/yLR7b/9p9uHm9z/eMPxF0LQ8eL19mG6ZJuSWCXRjb7j64Hdk1rjKp6n/W3b2BDXq9UYj7bGf3Lr0fpGpD935+dTRYOZaQg8cF+60fzth0T0HuU0+2nT6P5+okKtPBR4j8t36P3ql32BjsC2S18iR2nIVaeYx7geTlU9BmdpSt+1Ibkpyf49JiEn14lh6pouvHTyYB20v5DbCkRO/5eTaL6OLc+w+cuR5Nv32xwq8ObnlHfRGO7dE3/2JmNh2U9YbJlt1YeHSNMf+ddNJZleVOrfLoQW8Er/t1Mwwj0Nbnsx18W/XtWF3/wj8+toSwNlOycAyGvzO+mkXxDeLj+kRzIM+DfH388UePLjPVQeWtsO7efH2bObXOOvir9xmCvNn94ysXQnPJzU8PBthO8Daom4rV6btWtwDbE+1grNNxz21EKrZ2ZqTwe2Y+Xbr8f21ryWRSNL0hk9OPz+ungmgvPluEmzx5WiHcs53MgO3CH7Ebn/mlHPPg+JWXh5z8eVop/RI3RRrTvdN5PZfcNLwaFcnW8sAdVP92w6E/oVnlIjofHGrXBtzCgK+KZ2X725nN3cUM4ecqFgvpXle2dvQxVeO+eBH9alrFXfJ+BXZOaPOj+2vGXUVCQVDtieHfdePOfdm6UhR8TLdTSqLkk8e3nH5gpljKf5k59IC06zP/837S7nvCPR9D1+r7rxIVvoBs9k3/1Z8BYxTC4awU3F7uMxu/So7VCQciM+Xgxp/O6ucFK/w7YXfJLbe23Djj++UtuW/lSjucwLEDNLiMhYvkq2RJfv/inYpM+ENMsB0McjcKPr6Nl/aGBRU9Q6e9rdnyMUAM+Ezr8uXtTSZmgu2h3eF0p5w/dlOwsqYHk2oX95sNw088zavMoZWa/MaIx2BpU1a5Hwi4vHdAvn6Pl+xhJhSJ7f7vMgXsaufRCEw2J1uV/AAAA//+kncm2sjy3hS/IhiBIQpO6JlFA1B4gKqBSJkCu/h/s92ue3uk7FGExM+ezUtw5YJ7DmdpLtbLRVN0v3Pw8PvWvNxu/Hb1Bb4F3fL7wddyp8q0Bs/Bk1BfPNJ5if17l4xM+/njL0KoiVID1Kjsc6hYfz83xZUG9JT8aWOoysPRtZlC6kwBrJa3Z4jvHk/znF4PW4fPR2O0h6OVSwn9+d3r24gHOqqaTg68zf73+qCf98VGnwhZYT99jAI7wNdDrNXsNs+1WI1TaHmLr8SRsy/cWCK9fZ+vfjozQM3cCR+dk49MqnuuNT1SQZMSi4f1WxOufn97bs0fL6MeBlVryTrLN5IX97/AeWJNqHnhavk+Ic2i26/k5fzyB7N+7fT1zBYJSSKOSnDFqYnbTlOyvf4z/+C/38Q4axKvXkYVoFPS5tO7+PzMK4P89o6B3ogz11xMamPO0DeleJXf6TM/qIFzuHwNGdNSoV18u+YKJ3UD7sKtocGgJW/TMfcFRPgNC3NMYL0kjvsAc7D7o2LBvzT6qasm0uS/Ykn4oX1BdSED8KAtWOgnki1IaCIhr/8YqXW19cl7LC170654aursffimY02NqO/HWwV9zklyUHXRfTojahvE5U69hBi4o1oks++bQNUX8BUEHJ3Rg4ZrP0ee1gvoafwgAfBjPShPNYNd2K9nz+KfTZpI3otH/aBjfW33RfC04jm44UGTrir9MVvsFI80wRlx8q6dHfQ6gKK5f7DgxGZbrtiYjcw86Yo46AlYLqQWz8UWomd1aMPv3rISNVpuED68NW5LgFkiPuG2wWRzsWqiF0oDcfjdjvfCznJhTA6Hyaq70jgtXnyhHIgiXb0Gds3QYaG9vp63tZAW7uoXZ5D92X3hbYwkdSGXXAjrqCtz/BhsrHryARbpkJ/CcnA4H8iLGc5daAeSH4ITP/eearxwFCbwaaoJkd1V0wanjEb6iyKC+J33rFW/HBIH1Z/91DHwqobyE2/2mWpxfYybstEx+OFvHHvN1zq71TYNr/v5iyxx/9epT5SvVUdCTHX7c8lXHJIFqYK5oTICYT3fw+8JbkyFsRI0er4JxVqA7XEOKbiWsaXPvMpg3KYe1FaiAi7ddbRuhf1LErrk+SWezh7TJFxx4+jteb5/7DnJHbqDueZsDpb6QA5YqyxETlTQ/7C6bf9sLCXZ+whWw9hxZsA+vF6xKl3FgPy2bofaULKyvTj5M5JxH8Or5d+yq/FtfP841gxGjHBKuNq/Tfggs4DptRXHMNEbO0zWBldVTND4qw59hhURAmTVgfefWMSP7bgSnVmqxGs0gH1UWWRCCMiVHUU78ef1JByCg97Kdo9aDxbhAUaKnDhJiJFRfH7eDAufse6GGPfu5cNDLbY1BkWM7W/VhHr/XAN52Jwc/ji/BH7bfk+KTUmItae18ud2KL1BP4krtYk/ZNApdAEOiydgL7E8+BbcK7UO4Z9S/PEZ/0eq+gk1YuLh4wyKfhERp5CWe3lh7FfkwPrK2hFcEb9Qr7zedyfFxBqBwvvS8P7uAO/eyB9PpyxCI9lO+zPrUAzvrRKxIYJ+TpCta0KzCCwfO4TwsX/fcwDQTHRpQtLK5AV4J3XB6YMeytJgdY3qAIbVsbDd3n7Fca28QGc8Sq3f+w9bfsduBn/AxcZhcPvUch04h69xppfo+W/89D/hbngo2BqAMQpAHN7DpDQ7K8h2vWT+f5N/yUDD+zE3OguddA+9O2VM1ln19MU+vFwyhzKgCWaavsH6nsEslnhy2ep8hH3GQ+3kKOu4tVR+O+muVH4bcU8MwZX3aD24jdcgySPFzR329z0ELBFQv6K+eF2CPPQzbnYakw9Oql4PpnsDFDRwcTXujXmPLbYGYewckOlqhL/v9JYLsUipU3d7nmTj9C1ald0dHlX/7y/KZJdl/XFskAe+cj6UMCnjonJyw2Dvo1Ig9Aj1ZD9EYvLcO01Ul8PzlGJkfPDe06gt58MFrLpIuJIxngxtWWJRvl4hA/sb04VoFmJ/DCU3J5TPMy5JzsJVSTJ2ORsOQ5woBZlXfqGPylBEdkxTyIqfQ2+Vj6oesF0/gm0JMVU1x2Xx88QEUzxHE6hu/tzU86irvl1pDDEJWUzF0Z7jVMxke1cqIuvz6v+eDNeEb1GvhHkbILoVCvVdl5vw8mCd4/90TbLrjIR8eLiqBdiMCRW+zzdfYLzXwcilGwL2Z+TxL3AH+1b8ZaXRg9q9NYNQDneJtPJzFMy8BJ2kiwv+2bRvYR+mh+Uuu+IHJfWAUvS3wdZMntcvTbmjlQqrgt1A96h7Rt2bY0TJ5ktOMqvXyzBfAbhI8zt8Ro+rnDmNyBZ5kDdmPIp94jA3ffQGqycTUXoYqXoS2iMAxc3xsTIIUzwVTVthrzgXjpJxYN5zUBtZHklBbk3/DPPFpBbny4+MUaS/AZHC+SV7txtiuHyhvo6jgACDCmYZ4P/rkSlYI/bdZ4nAaNcDCc32Tx091oRbnUkDf43ATN71FMCKBfriI8Q5Gu15E81W+A5Yg6XYs1F2DPWdy4yZ+4ApObZ0jeaj5ekmHsoHIrFrC20/PZ2AhJXwmH57MRWOynz4LGYi1jGAEdhZY7rETAOe4b7GbrCWjMp4coN1nlSwqvcYs/kUjlN67M1bI4Vav5iXoAb4GLdYz/BrY5bEQ2E/djDW5/MWrG/AJzLucIomaXr3p/QqXWfOx8rxe2PjkshKW54biaA8/bN5XtwPodFfB3rGd/YU/uCI8EJxiw+KQP8KQBZA/Jym1+/M3XnDpVPCXhi+Mplyt54/JI3BPSIf1b2Jv+iKeQOunEsZqAuuRW6cKTpoFMIqEJF/5GN0gN/gLeXtprdP3WGcwVRWEVfDNc8aJjQFlMzlv4/GqE58qDVxleEGSeH3nbC1XC4LC+9KQtUU+1S5u4bs3XKoLhgioiXYGjH1c4rBXk3godvkI1qKZsc95e/3BbvoJcl/rgLXnMg/LUUMJWH7PlHyP5uQvtiZJ0FcWney3eluYsU/B583x6JAWR39O+eN8HI8nD2tuXbD5r74i/X7HcYaVek5GdJBO+bYr3NwM/jq4QAOtd56xt0Qp+w5L1MuZZ++pVb2fjO3KsQSHS/ZF6x6arOXM4wu2fiLhQOSBTwr38E+/qGe/7vHwjI43+b6cMb5G/hWwFxpn6FSBRs/9R8indCi/8CAxuH3+GM87JfxKIhEH7LahNvBiyU7Q58UHWvqPEC97/Q0Bh/sLAq69AhZY4gi1XzcRlmFlmJ25M6TrUO1wSORzzWGxn8H7EnvUVp6dzvb3myF/I/eEnbbUAR/lZgNNX5+QdH9IjH5U14DJd7lT8/hTmLCNn/AJ7ScaXdvQZ9nIEOhe64zmeTtVxT5LAfw8HZc+LsIXEI8rdhCfjZoanzWu2aZvR15YD6RNdJ0t/eUBQftmOWGkf9VrGW+E0XiWVLEUcehyM/uCz/c4U6MnM1iouEryO88xNTe/upoXo4enxO5IYnHE70LFlaC7tzVCCtf3BRLLBdgvbw3rdvoGjIMigePuYlJ8zwZ9rpzZgbKZnsl84k7DIKG4gOT3mtERttrAmtUlUJGKM7Xuh4vPuMvdghmn3TE+Sgujl9W8wadFXETo8aWv3kuN5C1vUPO0vNgytJ0EhzkD2FPjKadDKmawHvQMCZEvgMnb7yUwdd8P4Z3cHhbgH09gZI5JYyPd5f2rszXQuWeThhlr9PV4GBKgFIc34R62A8jaPzTovryQOo+9HI+3WCyhigILn5pdqc/fadPPwvsiPnmRnBqx9p8e2XWQs3FGCgdvKOyobps4ZvtFzOAu9FL0TSe/Zn4zZZKuwytW86utL/XrheTnPePI3HbBwFYhu8HHTtKpC9tqYL5wTOHVtEqypHkHWn46e3BarBPWlm3NfeWIDgTdnNLYNnHO7YblAKtWS7C5nH/1UvVuAL3Lu8Ye+tSAEnAxYHmqP2hWDZATdaEt5It3Sp51ZNaz8boZ8J0mCdVN7jUwdfdRwMPY90jG5F4vIkMQ0NMAiTw+mT6ORCzhlm9QHXupPgmN3cPl4J2I0F06f7kPbQXQsHew7kb5MMWXBcFjtYMU9x4clsCtRPjbjlWUXtUnH3+tUkrte8lptOnJcg07EeoMtySVfiSm7/u1/Lte7BxMH6zP5XWSt/yG9r1XbH4+muFT0BpCxU73uXuWVjC1bBebl0X2l2pXiFC+aRA7ia4DIQvUDG4TTqka1DSeqvNLkvuL6OFw9NShO6n5FxJw+tB48/O0SnxLwmE6Yd/cufEincMe5n153PT/Xa/QdzV4eEYvHPDWNFC5NQso2ncV+6L10pfkNYhQFS7Rv++fq9s+gMN8A9TdW6o/bnoC+XUv/OkpWL7vRQSgW1Mc6NiNp2cnRDBw24gqWGQ6617nmyzgBqDV+T1rlrO3Ip+quSa7r/qp5/H6FIEQpwt2Q8kGS4bAFx757oe1q/UBfY78FB7fYEVrck0YM6Uqlbc8RbjmtMZrBNMedH3bE6kyvgNDYTrD4ftWaHC7JPGye6c9yM+9i4TyVNakfas9/NJ1j/15bPR54ssK3JOxo3m0n+IVJJUiDe/CxHrarP5UfbgGvO0hw8FD2ftMO956eGjNM1l8sYmZnSQ30PV9T7H8ecWsatMVHsfDAc1bnmBf++fAw2H26fk6isP42pse1GIgYuMpiYB8dV+TPO0golOtNTGxn/sEdJF5QPAc9GyC2dxId0unaH948WDxhjEAZ3x1qKXMfb6op7SBqz4rKB9NMV/5a6zBXQJk7Bdfvp4F0nNA96wCbf4UrMJiasez9G3JrkVntt4+5x2UvGKbEd9M8QDHaFvTVTvYAarrMw7OI1w4HU7/eMWY3jzYCO2T7B7ZHfStkRBQPJuYBhlbwaxta9SbWurJgtUQLE44NeAvn236DWZk3QqwjbcYP8WunlE3FFCtfw+sbP+/9+wWQmvvFIjf/WR/zKaqlKc1TwntvFc+/F2P+z1F2NFyBv49jzecOeoAtfNnwdYDUIaHIw3vZw2sl0Y5yX/6suXTeF5/Kyfz4feFxGrbpRwXpQX7OwDk4B9ZzS6P4wigGa/YOzytYVn5/Q6evVNIg3FO4tVP25N00S0d25616LNbgUISncKnjup9fDa+awtqv2Eia58cdLb5m7/6odr349QrmrMIbjQWayWmOdPn/Q1qvm3TYOBSRkqgnqAVrgL9d/8/kMsAr5MvUTjC4onb9yJAkxKRTR/jRU3qAM4wPBCgaqPeHTUrgQcSpuh17OehtV21kC+flYRHvhb1US7Wl7TlD2p893o8Hj/uAZB4BTiwpcTvDLmo4FK2Hxz6OmIr9FVNTvCZUAtpCuBUlhngpJUOqt+2MMwqyyy4fT8Ngve2Z0RYzmDjP9R1dv0wBYtX/Y2XNEwu5iBEM9tOe4J7/Gl7wMgqvyB0Q/oggsNrMaMW5sC73hn/9ItlzZvALc/93b+Bu8EnB9biO1O/olq9ho7Uwl07rFRzfs+BD0ZeAn9+Itz8CA2seZSfs/jEduPc4zXOLilMEovgkLUw7v/8WpmXHfZPJxiznRDMMIn1hhzNBg1zFCWHv/xJcVzN+aoZrIf7TL9S278+2XoRcwhn/5jjzc8y+rV/HtRdPUJw04vFyvMAmuZuxaF5eOr0RjQCicGZNH7iAkxcxe9kQPgzxmXqxMs5sE6w/CQNfZiHvU5mUWthZwQeDuK9BFiV6AbgvsZh2wO1Yiu97DMw8I8DDlWfy4m0piPMkLijwQsqunC5Twas9XqmCAXuwOZHm/1dH5HLUPEXPVMrqLjWSE1GLZ1PghuS/viA8n7p/syZSwWBOAVbnhfyKQlOSDoGVU6dX2XFExUlESax2mBXbnds1nfGCn1T2CH+tz8BOhk7D45I6RHInJTN8cN+QXe4hNQgTsCYyHUZ3PzQxkMif/QWaZajD+fQ2zOY/GXKuAielSymTgWk/3iS1wQPGu6mL1jhsxjBTFKPWvvaH+YtL4GZJB61HyctnsnseXAH7z+6+TfQ/fkzfz9fKa6jT/05tSz4y3voL18vWz75yw8YXS7Mp2blKdCQHZVGN02PeUiNCF7Ir0RzOvr6jIhwgDvKq3jboSaejfnpQO9UtjSoQrT5mYclSf2iYlMS6bBc6IDgxrdJU3/sfD6n70IOZFJRI9vlw8LtKxHEUx9S73VeATWGWvnL7wj8sjAWtjwK59VQ8Ma3fOH5Cw3QPRQJndzB9gVPDgk8/YQSe8NABvLnlzc+g+1Ecn3waV+jVKNi6yiy79DYPF/ITOlUJEhmVpPKz1JQLkcPh6f+6o++IjlQEa8yVWIVDjONLwi+1fdl04MXmG/gZhz7TDYRk+gvbsd+4ICqxxoRZ7Hw2+/ddf5+f6vHl76YL9pAxwQ3qm48buF+2hcseD+gdQUqm3y0PwHy6Hms9oeOLZlHIJCM5E0t/xjXsyhXHlx79KKBdVsZdTx2+5ePHbLt9m28TpYED92VKnbo5IuyPkXInp8D1gxx1Uf905QSs5iFOjo88sMnHxLpvYrSv/oY0TQbsrvTRTKLDs6X9ncL/vgykbLeq9lHpDOQ968vDUXc5hQdfQXEh3JHzbbPwXDvDgY0uiygoRD3bEmlhwj1KwmoqXN5/Y8vyNynoqhKrzqTotaCd4hirEjfiU1cJUPgl9lKVf6OY0F8P0oo9UylDpC/+Zpdm+Qv71DTlB0wX4Dl/NU/4sVs0VejkiJoa1JE+OVsD+w9ixr0srT6l8f/8dGnNbr4zx8x7HgZvOlKR77V48VmwfYDsI1Hf/w1Hm944P7lmb/+wAFMXgr/8rA6PyJ/ZR+nhbtuhHir35rVtXaTzzMhdOOhgC1tbsDVZgs29u6JcdHOtcBbkHlseMjTO5gOO2idq4kaZddv+Y0v4bcnBhFPnc2E9pwZ8CY6Oj53STusssXd5Oy2HtHOJz1jvC9aUHUs9S/f+jOvNhLkV1nAGnpKejvqBoJHK0vJIb+l+ZKPUgDLvOiwgycvX/74lIkP45YnlEHIBzyD7iMMVHGHn84UJiXwzw8YKxPqtusiT5YftkCR9859hovUAhFKH1v9vsFa2SaBz+THY8MZW/DnR4H00wMiREUfsyEaVvizT/32/or+3AcfBCvl1WN0ZUv9p6/wj2/pgdz7KxRkDYSCJNI/PrOcZCRKvsnvENe8DTa+o7MHT3atk41HDkw7LxochzYjjRmNbPndThKMg6jFWPKNfBmFNwKPoy5hVaVC/q+/8XXOF2xDZAPufZxnuVgwT8OCPsDGG3byxhuo1V0Exg5pv0IyfgbSJesOrPL66v94JBmfdNb/6gdu/QXECl+K6XzBHtjpUUGD1HH09dqTBFbJ6Ymjm1bnbOQPK7QMaP/1S/K//s2f/0H7D3rGJLk4O1hT7k41z3wDDmk+B7PP9UkWM/uwP30F23iH8d5+14u3Ez1oVu8bxdwuqZnIvTOZJ9DEl0PYgPmzvEv4nLyO4oQqufBwrVI6NopFHfab9OGXkgLaNZqo8vXD7X3kIfQCsv71M2qOzJojlzQoyZpcOUZzmwAUQOu/W0HmcjoO4MuteSecvjCi+x3agZ3FmOV2BP71o1yLf+Ts0xQGvCHcYTN5oXxxws8XbDyb/vGu+WocPehMuYaOW7+NXX2h/I8H3j2Xddh8oT8eh8MHnIY2Fx8eNFSxon6b9mCSd/4XvFdJwuHavvwlCU6B/McT3GASdSZEqQchKFKyzI/Vnw6mG4EIJQ/sF2fDP3QDTOAQHy6oGcHDn40w8P74Dkb8y4lZVLwU+GvEDHu1orOZGBdJwnrJsLWP7j6jFZzha8d12/vqDPSPp/yNj6H7nuo1/9Yt4H6OQj35Kg/kEEoa5GUJYOfl9MPysnkI73fWkKP3GsDGt0VY/A8AAP//pF3JurIwEn0gFiIiKZbMImCCgoo7cEBARIYEyNP3x/172btee+VKajp1qlKlCxWt8DZGo90ZM1r8H94seO5ffU+9OQ6em1nk/TZXA+SsvDsLYpQs9d+xUCWH9cy6+13Hw+6RQBsYBIMfj+Yf/wlbqZ/olnVqNse/uAFV/BZUTkOCpkd5w//ytYMlGXweZa+BrL1vycXOzsvMN+2uQM/vdBw+e8SOh5yqylcP/ot3+vqK4Y+PC14sNOfUTJp/9Tn9OZm+hFe3GqY+PBPrEoV88deaukIJkN0bDebXyOUYVql+xdPdOJmc4Z+FSl4R5t0eCpo3+yFRLvFokvtiPxMT6xCu785a+CgNcdMyE/ir3xH/8Svnvfyu0D3uCNspttLRrO4atPAZf/g44ws+VdZmXzOLtdicdgLFf99n+5Nk+2tFHk6olH8e+YeXjq9luq7jlYQEt68/P8nZQHS8vv/4k5KP550Lf/UU69DUJguMyoELwiUhgsT86XL1ZFjqn3RrGUPWJ/4V/z8dBer/7ijYf/Y/OmevRzbifSJBldcxO7iR2tEXJj06m0bFsJ7q3cwu2xxy1rTsdkw+Pru3B2s7f5Q7FSLa+Uy2lyE/eCTMSXEZUXPdPeF5voTEPngko7a/9QDdxDcxMa+60YmLC8xPGzNH0yJ/+qa/Bgmv7sz82XvxKZCxAmmcfplty0U3WW5G4e3vLWIetC8aPrqQoJO0QVQs1nLUo6UhNU1Vje0vG5EPIq5cWJ/nI7Nuyieab+fzSbna5YTHXfLh/FHrHrRc8+l4ffXRVD8/NcyPl4in6taaTK0PKYwnLyO+Mb6iT/7hrvJovgYhxZGYc5EfU3W42xOVH+2mpOqzN/7ODytqVvv8vr8J8EIXi+3ivI2ob3U1zFXX4O+GW6a0EqdGvZbbhHb9ui5n1To9QZQNi+Ei6LLpqpgSimxS4PXlxqIldNxRVm10Zr68lA+bbK5hcytOxKrAiKYpLwp52N5v5KYNOhpPNMPIu1GLWMU6ybiRnxvUv4OZENmfO+5d3yOsFWfDdG8boK+oPC2wuZQxrYrraPxKRw3uKjWYF297n70eugCzdjWIhsMg4xKHAoi1jYife2U2vfxfhb4vEuP4EczmlDfJqCR1oJH06fb+uHIKC/7eZ/tgWTRJ1TSr3b6uCIl+ScTF1S1G53U/McN+5Zw9tXRE0pA+/+SJevK2RuiNtc9s4+Ry3nyauxIOY0y00PxFffLrThBeqjfx+y70p4OUV3/PZ6Rr7W5jrto7OvkCwjJw5A/IHkMkr1CH4fvmJQ17v4KbpGvkoLZTNF1vIYV8udNpYdnNxlW1qaC9by50db6vo6nqcwM2RvwiRmN9y6m/ZyHk+tGir2KXlLP6rAylPf9KcrgS3WfKYw6gvYQqMS6eZW4w9B5qbpQt5xv446E1Aao12uIcpwYS1VnRkBvba6xaX6+c46hrENgxIt5DXPljMTg5lIPskNdvmDN2qqwArK2QEuvirc3mkiQKWivWhpgX+5jNSZrkQD/1gR2wppszotYIr2744fWU3LPxMczFqltbAguS3yEa09WoqPfEa0hwvubdUPW5pp5X3vIyZhkxn517IDjeMu3HLyYvvsqIDkbq0MkO6//a62M1runWqDeon+n1qSz/H6vd5VsONIodGJteJHroDv4ciZcR/emzR9qO0xRzCsv5Ycm/S+bcv68GFOfmheF81UrRe8sjsrqKk0sFPOt/nu6odm1hcvFH09zMP7NXGSXL1LdJ7bqXqCrIHK2UNsfonTXMPrqgxdQnO78Ls/5T/DQon8ims9mX6J99ZY/ugGV11/jsfXgHUFfxme2Me5iNN+eUw8V6qEQf5rxszP22QJdArog5zMeO29GpUGNCgR3OdyuaBVmtwTiebjjytir/isAp8vLTE4+e+DPHsu4F6FzVI86GatGYP28jzK/YIPfuaPJ5eI1U1REViHV6Fv5oZ6YCbocMGk1Jl41f6WagWyMfmP34GHzIm3CExD0IePxxyeQTG0Ko1F2PBe/V+bO7nSlo7c9jxq3+RlOo355wXtMJT+cvoDYwDgKyq3VK31l6K4eEFye44rNKN4+txqXZeOTQNNaFkMrqzVFY7oxvt7xnmu0baLwkoaKeTuWZ+ai8RLz4ziMMnTOz3W2lmLz4PDzA0rsnOC9tsw/PX0ExaObjzYN5UR+cEgO0LqxoeJdLk7Wp38KGbjZYmAfZHy20MqAL54Toy+/t1E5r1NezkojXqh/OEuNj/XvfjYLSjO7SQQb78uKMFEfmT/1zVABGgig6u3U0CFSqUbxDjBkbp8qmI1xceHjSmnlpMUe8m1YVUvbJjr0qXHTTdggA9moVksN3HBB3diqFg/jcMu/7NsoZWleE+/WN8bbscTmmT/wEpvc6u/dKm00l12v1kJxt5s9NGY1H4iRgBuPMrkbtcPGzSgKADMXMDu9gDju+akB/Vj7mjFloZjynMOETJr5WQkavz/tTGQ7xhwVzGXbioX9XcIrmPTF2xbKKFTINEs8KyHWzbEG56a8Q8lp6MnNK/GjU4qsBm+NgY+4vGbFZNz3c4YGZDo6XfY5Pt0HeUdlgQXfEcgy3sgHRyAA3h+XO14+fE/CzJUPp2k9HbX/y4JlFhOwfDGWtC2GsnhO1xDUxCGdS2M2wUtfAXO35LefhEVmwUQ9Psk8ftOvDhyaBP+6ehHyVdTZe5/aJbrdoZn4sbqNu/vk96lNDYHpFeDmh315DdZe7jJzv52z8s+/prWbE1eLJnHcPswAtel2xOSVdNH2cbQsVE7YEe+e4HL/TeVz2e9lEW+xlHtL1E5xwhYl+rUZ/zttlL50tAV1DxdD425VP4IJr0tTJfE5lI5cAqe+B+BsVyuF4O6SQrz8tCVZJG83CHScK1QxOvJ+3N6eD1NTQNM6FWMMgIOod2hHEn24yV4uPZv+Wyxjow//QrTHSbFQ+ZQWef3lgpa/7iN+ZGwPIbUF0V9KiaW1XAM6xbpiffi8mxZs8Ub+u+f4nv2k1hCfY/aRlzVdvlv2VHHtUn88xOaTTo5ziZvtUykFxSJDwEk2PzVSggjg2ZsVOLtnDEWPEmW/g3tOlktN8zBVDwje6qqzen1bhz4Jddm8ouuoQNTuKZFDoZUdOr1tl0mibarAfVmtaDvPUjZDkd+Qqskmw7FDU+UcX/8UTWmycKhr70/2Elt/LnE+YZ/QB6xOw12am/E9fx0K7qPcLEpldDdslngWjepYuy37fdYdGiIYAdoW5dMR+EaI77X6BstdlFoy5Zf7Df5/sETH/W9fZMGyNO0j8/GTaLrG55Lx3d7ToL67LKEDz+qTXcA73V/xYPbBP46hs4Q4vTNyZ6OXaLoZQOQqSywLxMpR8tXmN0HLDp94Fkm78RloIqb9a0dtlE/OfrSsujA0VKb+t32VzficOKDTeEfJbpro56/MTisJfeoxDLeov0aNBwcw7ZlblsWsvTl7A7LqEEP1MeX+cl2mWlekxT80cc6rLXFIdKW/YA23E7CfLv/nPvol/xK9yWu7wKexr1hT6MUKbpyGn6M9/2TbtTfqn/1nfYGIqXz8bo+/UwsnyKdGLevBnkx9Exb8vW6eOluzPe37z0El2GPP6Oogms6vu6J/9obgz+7s09aqw7y/krmYb85tGq/v2oEY227WtmvHBtU/wCKc10aTnLeOn3UNDFzkRqJToWvanj/CHlwIi7Pl4Ru9W2YuzRduzaZR/9oDUaryQXfMNEaeWfoGMiwbD+Y2Wk/QSckT7WWN79VJEg2d2Mzp+NUQ0Be9L7p0tF+SxdBZ5vsvpdyzu8q5o78RQksmnTtNcoHTBwb3KLP8PT8PPPuzxRruVqH9f5QBeVSlRVRW/fGzfaw2c8Cwy7for+Pi0aQG3JuTMUIpvN5+HdQDIvyvEnhKIpoZtBEQ6a8fOy/kPwhRjoDtRY9HuO/k8cPeG0l3YlZm60HIa/gYBDQHziXE7KdHw2vuA/vAGyZ9zNqHqMKNUHg60i8VbxOuj/ARy3zl0XSh3/19+Z74px5u4zXn7l7+YplDjcbdUbE5VEEDnnscFn8sZMwp++oe/ZHpOUb/4S7S7OwZzvwero3jcFRAjcaTdW9X84UdvjaLdFRVvaSqU7LdSDNDs3UgHMZv+8pEWWkJLpvPMQXR7XXlbaOXzYn8fxJWHEsA+0SR2LhTwuWtOo0rKUCH7db1on92lcAmUijjhOkDz/C5itMR7stsut+Z/wRfD/jOZxH8eCNocXiIgyuOU6BWJlvNXMfrDf/qCbygJhHGrvIQco1i8ZfNDl2tIC0/E/YJ/R1y7Bhj7h8+MFxm6KZrGForKWO6MnUnJm9KTwAbzQJnsnzo+/3wKnkQeFJwM0BL/74BuZIe7MdOitfN8x7DudhKWLk/uz5WoJ4CE+Y3XsiD5NKtZg1BgxXSrXopsvC+XgKft3BB74998fhN+DnisMxkerImP9WYTw1EIKNH07FSOzOA52qVrTMjwKMp/f483c45pXn78CXfmrK5O15Le4nbiw63tnL98gOyAXqOZZ9qMIlsEYhunhs/ng2ehPZzvRBf2EhrNOu/B2bgGM4r1Nxpv+jVESY01Qm4G8XmF2hEEHe3xVIxlOSrqq4D64b6ZtujXv3gl1ZKNVyftZM55KylycsUrFnTHEvE8Nma4CZtgyacdcxT3TQrd9TIxo+hGRA/CXoB0LDK6xMNsLPfrWZldjzDnpkjZGH1iA/Yv/CN4Z+7Q+D6nNbrEVsK8jSzzdkjVOyz5IG028hf909/rHK6IH/kz6tu3qsGiD+zgOUo2onuVqE8lDAmeN7TjOk0cqKeHS8zHseI86I6jEmxXT5osfEAvWoOLlK8X03U47v35uiI1WhfHFp93U9KNbnO6bJf4T//4gvmDMw3oeTXjPuEmf/er3gB9N6lMU/Cv4+AjCQS+Arqe+l80/MXbBc/QLcgCZ+BzCequcOlj2FvdHJRyCurV2LM/+Q/nUgjgEjsJ0c1v7k8mNRxwNp5B1d9NzKhwd1L1n7/68YvfXaZTo1pbSImDtIM/y6/QUBd7oOuFzxHdJr2g029wiYFpzvlQiXek4u+bEEc4m7Mp65aqP4SJ7ZqHEg3O3acwNnZKpXi3LedvlTcQXuo38b+1k3F/4hdwu62B+/UqQvTyjVrA5vpF5bTQo7X2fGr/4utukkLEV5vriD7v1qWr4OpzacFXCGw4s+y9TBkuBqcAhw4pFoNJ6Fi7Te4wro4H5q27M+dFGyYQiNqLjni5ETOa6AJidpIItnoazYlMNTQPFsEbJ9DKzVb4xHAUucv8v+fvjRLA8VKRBYGrlXzufhdld7B1hn8NXfbWjqKyUjew+L9nN9edh+G5bSS8OW1KziPhPEPCtID4btR3w9k0HdUva5uuVo+X37I4k1Hv6yrBY9t102pIQvR8b35sD/ITjQH3XQjc3GbpbIPfv8PrBSJsUrrqVyt/EvhWhPCs7siniWbOyS1LENW0pbW5a7uR1tYJPGb+yI6GG5NFGrr/4wfwEdFsaSkCGN9vnem368HsV05rgb7jKnONzuuknRZf4KDPPdvVIueTEtxE9LM+bLGXNOL3vqDQgeyTl/iR+XTzlzv7h1tIdLndmeO0FUPYnh8Ow2Prl0z2jADmz9Fg/pKPze7m7ID4JhKWKoii6bQWa+X6gIRoR3hF46NZnRDz8gN7/tljdnjIYHzFmTxzkvjjXz4uT17ObLIzyjG2ckWttz+F6Rc7z+o/PJr66gofbwepo3/yPtS0x+qwrzp2baL7H95j5uNocWn60BBZ+KkRfff4deP5HTrK0NGAmRt9Kufq9BSUmwkHhmUH8+lHrGX06wfTSdp4SweBcUL6cL2ywzy3fHIZ76F8bm2i5emq+6lXo4VrZ/tU3BPD59GjbRD2zROzmuTTjWWQJXC7HWcqYtmNRmydawh2SkcsJjbdwCXZA2Wf7nDRKSGaKiKLEFOrJO4n3fHNw4EYzVwnWH5t0m5en/aVivIEEd3b9nwwg2vzlw9jrTjcs9kpB+sPD/3DX+P7KmPkSEWz4OfKnPGmSWHB31gojBjxxt2eYMEjzCuRi8ajCDM8M+VHT9Vz4Mz4JDJMsdQQYqGmmw6iIYCt5SIh+suOqNYqDTqsrYjdhFVTjndpon/2SXbNtMvGw7e+wGpljewQvUI+J+o7hOIundieZFPJ6rmrAXnrnB1kX+/ma65Y6L4+ZsSlr2MmBYYNcFd7gwpHRKPp5l9OoG1bn7n0rKC52UrCv3x7H+ldNC35ADKa57Il5fTKRqLdWtgDSGRfFrI/tb9LCm68WxOTZxvEjuxnQFiB+y/eKIS+A1gr/ZGcspcaDXvPjlXMzjKzN6/a5FK0T1EO/EFMXfB4u72uXDi+Njuq5nGLRrh4EuATcfAmVMauNwbvhOTVtiP7Pehc2qb3WflYUU68FS5Q/8enU8wFOobmPpNOxi2E1ysIMfr8InPeivSifN4GZYZ9bqPhmJUGiubKo3/8J9N/dxH1aZswTT/e/cEv5Ar6N56Zabh6JCpGKiqm/xaI9TZQ11+kOoVGaBlxtFjzN1LYjbB/iSY5P7I+6iFpnhA8XxaxpmWmWZHIBrI/d5HYvWma09le8AOLRWYs+sq/vadB6C79/r1p+pNlCw5apd5I7CV+Tnvi1vCTi5F+VaPK6E8OW/R61hJzXptfycv3Ldga+k9gunxJzbGyJwnd2SXDUlMM/jSVmrstL33EbM3+IN4sM/9uq3vN9KDfc76+2heIL8pIhSLwM14JbgLcIwYVwV/5TeQbTwX7+olOP3mLBhzOWPVO+ZHCws81m/gWIOsh1cTZl5op4ZEU6C8f1V/ej8+ju7LQRtI7ZvvXU8SqJ6qAPsYVSY77lvNH2eWwTwyJBKtC42st5y1IsG+ZKQsfs7+OgfgnT3InYpT15n6bgwTcwlNRH3z+RNf7Hx9Gx+FGuGQkYgh5frJxz3aHiF4zSYKVASrzk5T7mym4F5BcxRtzXxulHFtdl4G91jPRJ+uQzepbb1R4eC7R7rJprqu+MVDsvvfM8N2vP23g06PmtjsTw9bViC72iO6asGbaDpNMgm8XQKm9XywojBJNxeWUIhyEDgvbnelLwTudt3/8460sZJMluzxWxV/zIBq/lD4deyKhWLtcqbRJeTYv+ThYTsuxqvu77I/fUuPXriD2gpfHrQuJ8hd/9G59MDl3w1pd7JvYS/3k+9pO7rIuICC7/XOIhkWf/vhXuhVWTccOxakCy76tmBY8SMkjjd8Vpc4VKurbxKdVDDXEw2NP3KZ4+u2SP8kvcdnq3F9nc9CeFw1wakQYLec7eTXk2wXfE2vjrLPxV8shgDW8F3w+d3yJd2oCy0xjst34046vWugFQcBPIih8wsM7VdODeFjyyR0S6f7hKMLeAWYd7K7rH10sw4InF35Ey3rrRUSYoo/IsJif/d67qzmkY56R1+qx8uePryao8QbKgu876jgiq/kvPv/pjznvVKnZrvLBY0R/fTKpf1812PbNlhlT9C37vb2vwWGAF3v+lPSvXrXd7V54zT+rqF9Vqxq8U3Ekhxn0jOWXJkHJwBOG1W3XTYbYNWjBD/hfPh+11xHS9lrjPzzL0svDgof/JGS34ZXfqZ3bouV5zHWOVcTw43pRQmW7Y3okrng/Pg6Osk/acJi7UYkGWbI8qL7ewLxPmqDJz1OA7cXJF/98RdPeO1zAun9m5rv7i9+7funBIj/2F1+GI1w8JEdpRNWlXtB4r8xVpu6mE2t6EL9h2kP5w6t047+3iL8PbwzZjmLip6j0h0yILLCrTbrwM1M5R1dWo9cuM/F0pU7HIuE8wtV+T1gggoI4u70aZN7Qh87Bd2NOyDw1iNjFgEXjYJtLvpHCyzUeNH5c3G7Rx+ff+9DJN8ts8sxyhKVeSna0svzxHb4usPCf5LyPP5yl0eYOFE8C3R4x7ui3yls4Jr+YaPoR/FE/qHdl4eOYrjxKxMaTYMGLFxtihvW7nJVLKEFajJgckkop+6XegHzra1HlAnI3LPzCv3rIcbe/l/NfPnatinmZcfVF/Hzd/+PfqcjzrJwg16VtKrMD3n7Oa38eBIyRKUcBbRd5zS+meFBM7pZckR3yyQxeDYy/GJNXkdkdWwljCwtfSRN155o/gW8lyLhk4NUtsEuaIL+FrCJfLC38Mnf1u4v+/P3jfDogvtQT/+kD9n7vkiqXRFQVI4jxeIRV1v/V9+rp5RKt0rbRHz8iZ4/fgarP6zWTFryDBD1ilC31veF01p/Ajs6XmVOhI4ln7gh7tQ6xkpxJRqXfugDGngf8x4dOmubmqPGvLrEazEw+ngQHjt/2TFeOsDb/8Z0w3Rk73U5KNtI6CP+dv3buSTd693WBludTdcE/bKv7GuQwPcjiP8zZb28AC75mu0Ms8YUPucDhVcgEY7tCI0qdEdV4Vpj2RKxk4qNWlP+jo2At/u+WghHaEzt8dY5m5/fE8G7PJdvb2PAbQ9YCkO41ZUYYmtG4LvcUAQvu7HK0o4jqRQWQL2Nlr/xVofb7yhwEwuHJ9CeryuGi7g1AZV4SE82xz2v6MSDDw4FY/ufQzavjeIGbUvi0FA2TT76jAnrsq4FpI46iMUfHWt1cpz0LNlqGRldZ12A59oH4WqSaQ0a4izRerOiaXanfm+FehjVOHaqepa6c1JXgotF87JhZXQtz7KPfCX58U2NRlVhZBeTTQFVmHZ2t88nkUyW7Sjr3N3KL91rHvzJTYOC1T3bSazbpaK1OKFSuHfHHe8/5c4MxeBlzmT1uRM5DmA1Vo4aJi0/EEf/UuaNSefaZdZbzchpkQUZ+nKzx9he7XOo9R4TL+2mRvSPlEVfmUwuad+W02XDPn15V56K+Uv77+dAJyyU5RZ5ZnLhe1wlvI9zGg/PA4+igslf4WlLedrwjtz54Rry1MwPG/UrDoLMA8eNJnRV7N72Jb3Ap4635sNBpM2yZ/t7sO2Y7NaDgVq9ZYF47cwbbDsE0b4iR4SaWjehrjvqMjz/iavPHn9Lj1oH6y4/Euo8Xsy3pp0CRcvMJyZ4u33yEN1X1vamQw3e/NC0VyhNNjnsjbueuy+FruRdIiB8QU0o/0VQOpxjR/c6hvGdPf5CvbgLe+UDY7hPMS1OO0kL+ar5sv9q8+LzRjgIIW0cgRokqPl6PUw2WPL+Ib5a3bnx3dxl6TGqmzyfajQ8YQmSISrJAlsSfrswIYU7PGXE/Y80nMchC8BKKsKy3uTlN3zpHKSm/xBnKdzbp6BaDu1vrTCtQZI75PkwBp09G/AijaPTtdobp+XuTXRFUvNN9oUDcLL5sN141c77MWQKS52hE50rP59dNLZSJNC9mP+IW/dLjZEEalCnucM0QV8SkRkJftxQx8W2OWZqPf/ZJjKRZZTPfNi1SV2gm+mhUaD6MUw8r8Xijorf2orl0Bw9VWaKTqP52iCfp8YQUad0t+qh1dDNnLvpVUoWHW333+/Xe8FZC6VS0yLsmmvbz6Kmf0hnJXvk2fBKbcFQ3x5kRg9d1N1xUXVPVb9pS+XjWOReYbkC7LW0WWCz1OZ2tFoxJ8elbLORuyuP6ifSeesSsrobPZ0ekW7bjB/pZKS2a1vQ6oiC1YqxK4pBRWsktwse7i/n5bpZi/MIOmF4WkYONlGjCr5+Erlt3JrfH8YXGu/bG6uY5vkl4aLg561Uhqz3fOiyS0k9WrRwG6PNwzpSLRsnnr/moIHyLJbH3k4Y6BYcBMlXnwxZ5L2P02ydMRjMw3H7OaLbetxA6wFfmvJvQn+GILaXfyEeSFVvVZ7/oOEORag3dbF+rrPePXQ0x2C/m2oUbfWRkSPA8jogZCK+iodGCO/rzn0nR6Fw6/SoMtTp1VPlpRjlWy6XCRBCP5OluRj6f1oMBoynUxD89E7Otz8myiNi5EbdN5owfxmXmRVmUxPhkXcmLz1pC69v2Tg52RHlzfckxWi/LAffsnqKpS+QLeHucYlWGVdnHL8eBbh2ssMrF3Jy6avKUZt0KtLxZEM31Nm3R9Oze9Pe55yW3xjJQr3VrERvf+mjusNej49comX7ps27IfjNV/87LMFTT54+dBzA6r5gd1jBHPBA9CRIkWfhDtif+g8e2QVV+e5KdTSVEveQgQa3wJ9u3IokmmRkG2HjcUuFz2PnzWbxdQJA/L2bJz5wPjuiLcNuJW4LXmlay1SuI4aZt3nRFymvZjPfwrp6K/sHuONWzvgr1Fh3TnNBfV53Kmf9KAfKkI8zaDZ9szFkywqW6H0kgjieTx/YvVPK7h5i2ur19eloPGnBmAt2E2wr1atoUoH1zj90rW+06bgkjujqPnHiH04bzx96VUU3HHzsu/nbajURAcv9omWZ8gI+TlgJkdl+z1DU0Lj7c2oXjdVm812xzPvUFCmCxdzyJRdIxM8hH8OhBwkpqW/786EYXjoOmst3x5/qiM4+tsiHhQoFND79N374GieuLRFMnA4k0owEUD23NLvl4Nhd9w+Aery5eJTjIxl01ybCpjg9m6pOO+FvnKazE6IY/afBZ/GV0AivYfem3iq/+aKbWCJuBl1gRfA/xNH49l7UXH+Kd5mfE3+s5V4+DobKAeFU3rs+eAJ1MAmbub0r32z52KdrevIK4t/W54585l9UdaTgV5cveX5+ao4Z2yR7YEv99dnREgHcWv1m6L3bR7OgvGamtcmH71Q7KT++iBlz3khPnoVklD+57DHUyErpVXpM5NskoqVWePYkxPt98EvyNBldonuR8vzPOZ4o09PTnnGCfnDJuzj8XwlNssCAseDeVuyNAsHN2zBCFc8kD7D1BvLIf5uYtNydjm6VQn2cDr4VTUI7a74XR6yIgom/mtdlH6r5QGtaU5Jbth67ZJZOlyo9ng2XH44g665eGXh9VJbsPrDOmiGEFjbzvCb6c3HIUhBbAmGSfHM6SX47zMjaxqrdXpp1Coex3BQe1/BCT7a3L1+dP+2CgAaqZmEjx0fjL1Rltm32FaWpsTaoFvxMs8Z/sXWfT9R/BAahV3mGhtgvzH17IUGLT9X7S+Ji/7g7KTS9mtqu3iG9WXxc6CK7E2h8Cv1cO6zta5EdOx/HHGbek+c//ErvfHbtBXQkewqHwI67eaj6Lt0vJSCYBlcKDHC3+1UG3ybCZ9o5ENLEhjxHq3x5deeZk9spKauEK7ZNhn8zR1MdwV20FTkQj4ZTNe8NzYdv4FbOeIXS0wx6FXHN3y/k8l60cmYUa1CWUf181r59fMUT7h6kzt01O0XwifYNOdbDHteHFaDxvdhTi+XsjuFE3XUMzilFc1lcS5A+LS13q5xt+0c/Mw97M+WL/sPhLvNEl3M1ecNDQom/48xSP2YxjCOD7W1lUbd5K+ZOvboq+q9cKd6uXwTePwYzhOro+eR1MIfuoB1FAL/2usdD43NE//PCFx8x0bkyofK+VHB6OrTOzW6XlfAClAOUoEnYpct/n4WXbgiM1AXmqCXSF+K0NeBqnFM9bmqD1STv10Faax05dqZa/KftQuFTPI/PcNshm53FOkffCIjnoWd39+QsUKueOuH6rZHMbai0s58H2LmYRCy/bBsLN+Ynf5XVc2nhwAs/nEf/J25y/m5gCTKRntve2fDHZbAWockUli3w6XqzUFH36WmJmEt/8P3+AfD89MKNGs0kPlSyjn3i1sZDNzBxHKdRUve89rJpmxelxmyvIMUHBm7L3o/k1rTy0DrMLc1F3iqZTczNAn4lDt5l+RmyqZA+OlXZhh+vzx6cTvj2V8H21yD75xVH/7u4KVLHs4v7aJtlcn8Pgz/8yPAwpGv1NB1DTZUiF81TMySv4HYjQTWwvMa1cr/8DAAD//yydydKqMBCFH4iFIErCEplEhgTFAXcEFAERGRIgT38L/7u0qLJCddN9zhc6XB/O5uHMETPcgwrGfvttoGNdI7zkZzn/4mHOYc32i5/il92QgIc12wzj8taNwFvl4JjnLQtxeCQMKrcKHJNiOXYUCFE/CykEPC0RW0bYwXy/OS5o8+JB18/YNsSwylrIg9zH+qmpOBtSR4CRQjyqnlFAWNuRBPZTEjOjWg3lGKm7XK3au4Gd27vreonpOZyds4+qrd2TqXwdc3hX85gq39Hiy/20ME2BhObbBnDqxpa4DS4zQtz6tsaQdGMDuxWqqArSDWCvHUigd04kulU+DegshZpAjAOH6XHzJPxsvUL1uU8TRha/Ml+1k6/SzehhV4n0ctxikGyX69jo8I1MduKH4B3W+s/fREzeDS50dfpC09AantgIWx/s445gNAwKoCe5hVD5XFxa9kwweiVQHwC+fRmjz6AROVUdHXazP1NZ3I/dDLd+AupqMpkhFS6Rf/4Q3YQdVTLVj2arOy9DmpaH99HRJsP2aNfQyzaAGeaEvbGppkb9lLBlFjE1LrHty1Fj67AcErABYLoBw4bXFrpIeQ0QMECvI8Th8spQdywIi1H4UO+GTOk3O64Au8jFA+4PrsJwd9Qj6RMeHEhAYmHNbd58sBtDA5tzusPZ7XHgc/LydChsPk8k3JQajBgdBVUuuYCi/WEsJ/UjFlC3cIRUk3DOMnYIlVC+Peg2Oz4Xfy4JyoQPGjYUZeuN2veGFLoKTayL6BRNY9fGMDNMERsweYLptvcgXBf7FqPEHfk4zakLMfNCqmplV/70FbjolsKcLUgjXjtVC4OKh8wMJLmjhf/VgRQqEka19CZT5JMCRiOpKaDQ9v70+Wkanuy3nnnJN/j5qiZSPNfq5J+fnnyHY0y3xJtEdEeAqYKHNt/8FlGmiGe4k+jM/Dyr+E8P/vVTK3hNZDxfPB9wuxAZJrXWSU3iaxBkuYPdxvl041szIeRsB7GVwTUp3HH/UKpHjNCsPFKDzfZypMXrYrIlHmDU28MDbthTRusyRBEt6ZCDdWQ3dPV99aR7ffgILyCymCPz1hg2L+8EI044gmERdWtx9263u5m+abz2PD5f9NCFp5TqzFBOQTkRAgQ4Z5cG+4VlGJORZRswrOsYUftj/+9HqyasMO6/ExlQ9NXhK5F1ZrqSS2bqTra6s3cDM221MHjgm7laNjjEzid+e9PX3V9/+UNH4WV7cgZ0c0NxvULyp+Il/4LQBtr+VuNDcpzLAQ15pXpOrLGHHBfGoqd0SEjwQhe8u/H1c5IdoDzOBcYx6kmTnakA1WFTYp/HhsHqnJ5Aq2gVUtxTW45VY5xg2QQhM67QNWYG5xAqrbjGwWcX8XHvKmc4B9KexWYbkDlwQAKf75VKx3H9ALPVpS7YZMuQXhVcot4bXqbyVWWPirHjlpw2hxm6BtL+ro/2PDbwkz8ECuXNmk9Prel/fGHphz1h6+NLBF4NSgSK49T1g1z2f7zil+9zEI821D6Fi3EzHYxpPBZr+MqljHmSCLrhE+5cpbUlTtNpNAGv8/oE6y5U6Qi3e8CKtypuLSfS6Bw6C5I/XkyI2KplFn1yb+a4j3/+lV3KFILJhUAHk/PdYzOQbt3UCCiFw2Gb4/cgf8ox/nIfqtttjD1VNrtJJYACB4l3nHFRM/78zjNdXRiyZKPsLzLu4XhRJbo9H7RyzA9xDPHXWbNLy/ROzC93BOqKm0zrHzoXve1LgfxuFJTdBT2aS9ifoHzjB2zvkqkcz1Fwgq/8IiBRqE9gaHwrhNq4i5i95puo//lzOZ8mvA+3FZ+JZRXQDoQnkq8HwidxJg2oR75F6yLm0VIvTfB7Xva33RpMkpudYTvqK7zUE8LP2zyBm/CxZh71dUBv8HGCd/MSMOd8YQZTtHsK14Ed0PlNvHLxKylc9DESHnNKZt3+pArs+pFpT/Dmi35wlOB1rLDzzWUyu7Vfgd//WWWa8nnRf+C6hivsxpnF5wsKIVjiz7zsRSP++oARvqX9iv31e01rUri/eAyp1dQaUzdOEHohOCBQ7kTQ//hr7BxE5gjdqvxOnJ1BkekSw9+XHy1+WgDlEzXYgnNt0OscJfB1vh0QRMkyhPoZ8r/8n80gIRRRPsOcdl+qlseSTHhXx+pPj7lk0CPpGRdnkKUWofd454AZnYQQLnyYzsYbdZOtuw2IWqVlJr4IBnVnK4GrbgyxFU3Em3YsLqBSyo8/nsiZi64Q1SuDHoTbNmrajRz/8dRfvx4rXVfgPZAiBJi4MzjVjBQWN42wOA/ziGuB+IDNtz1gY+HDfA/iK/C1ClHx2hhcOmlJD0ZfDZh+akw+Gmv3BP33u8XmQcXRmGpfH/z8Hkgnz5N/PGBvOwMLNuez8ZcfsbA+/vRO93v+QHbfI2Y1t5cxLTwCzjsxYsEavg1qWdEMpYw42Exy31svv9Vff70QMwd/evvCTiHG97XbgfZIRPiwRhuf98M7GuOPFKq3rTsztBknYxQoPYFT2uvYnsHoMSc6aerB1UTEr34NetwcC7Uiye7PH/H62iU/Pbnk15vz4i5pENx0jI2Fl06DKc/w0ow3Olie7E1ifVpDgv1+Wb/lfYTL7gFu2/bIjKtf87jt1zU8pGWBg6NgRLJM+h4qj/WO+WHbkR8fAtzUbXa4Ha1IPkeNtg3imWArrj4l4xtVAWTHCOLrxCLcqPMzHO3sjD38cMHCC2c18ysF249GB2ti7GtguPfoj2fPboUacN5WE5VW7qf782vw7ussXvzvKB1cF4St5OIlHt786SIFPq/PFA1y3xCWAdeGLS86Zg4eMfj1zvS18rgWDD8FWFJ791SU4rtrsa3rqjf/eHvVEoPpZy3iHQ9XFYj1Q8J82YnKKRJSCpkXbhnO6AlM5SXs4eH+utC1ikqjN0TzCm+H50Dp/uYaf/FO8OuDd5V8XXjHLYXP56rAgdYZkShUZQJvc7OlvbG6lnN2HCsggE+PRn6NjeFaHv7yHZ8pOHrtR077H7/AzvHy4mPopzo813XFkJJ/jNJSahNmp88FI3PldH222Ke6CK/YuQ5jOYhaksKr8ugQc42jIdm63kKFXC+IA6XjfC23CGZ2lbNTDWZP9KJXoS58Ab3h8lmsk3ai27qbU4weMySUQSWE8+688KJvZ3AB7NbK+7t3KTwWNfnjn22bG9iwvq43SkwvYALRkwpf1SXScywhbIp2opvkHYO51Q8KWNExY+cvcTu54LDavEtzZI/PoEWDVJ03//kGCFvCO3Kl0C8+GQIH9PLma5W24Kf/F35KfvVGWeo/xos/ng+JMYJNKFx+/p3w7OnXUMqUD7aeldhNPZxHmJxKCbuCERk91ogP5EekM+3JkTduMY9h8IkEpsX85bHHMViDpR4zr9hmBpX90wwTY3dG3L4PhNPaEGFry5y+owkYlNmqD3UriH68p1s/A7GHrt6/8Em3HG+uQVwp68AM8K58fsC0ex1HVXmIOxbm5A74/XpJYPkZJoysfR6Nv/js1v6R7eqbSkZfoho4AWYyfdmvmvQnESG4aZjpS32f1czewF5RHkwXr61Hk8ETYb/DIg7qe0OmbeTnoJuGiJmHoPfaYv4m0PX9DxXM/VDO1vakLJ9dTtluaEtPPm/zWN0bTv7jEWBqBPsBD6aWMONqYoObsNfhT1+KT221jPAekcq15RV9Sv1uTOtXDeVLSJYRh0834azbQLXdLPkqNdG8+k4QNNLhiQ8reQWGdFo1cDp/IfZ8YerG1zE7A2FVy2y/R2rUD98KwjmQ9ywQq7KcRfJG26V+UVDuznzGrayAw7Nk7LDZs278niH87efQZb+ScL/RddWJpDVD0liCv3615BcVTPwm7BrU/o+3MOO9t0hOSe1DkQQX7DHx5c2PDzzBCzhaDC3il/36R0DGBl8yP/Ka3/qW/sn02qN8+uX/rx9px5wQWv4DAAD//6Rdy7aqPLN9IBoiAima3EHABAVvPfGCgCi3BMjTn8HaX/PvneYaY6+9NKnMmnNWUkWH/G9/aLPUF6fwuarAjpwv2donz+J10WNoxKNDFV9SOWutowvL+lC01LPm7d2gSO5XW1wXF55NLg7vf/44Xs9nlA0hhQOUXzb9+ZloIrsvRks9iAW9HPxXP/UfmwwrmbFGvIZyBGD4zrYNiMnit4votOMci4rwTcb1pD//+BvebM6DNdqRq//jt3r/LNDCx1p4HL8Fc3pvKmfD/9ygW+MVC3qdob96LozKz2EO954lj6vxBuUpMsguddcdp3p4B2NFz2xXvPNw/OP/f3rghXmacIFtdVjinXjVHaP57/P9neeg/eV8Mt7X+c8/wXzV3pNR6WQVFbFlUdA3ez4dbof4T48w46/+tD6dfGhVsyKmcbT5eOxcWdPet3jxh7psKIdbqmb7HeD1q4+S0Rtn+re/VK7kDs2ZRWrY50ZI1703db351FtoJeNKZxHP2XRWHP/vPDDjzSb+E+Bjwr41RyqrlmiNXjCfgF9Lg7jYqa2xMgMVWuXtUG5My1jKwEvRgg/stDuaSDo8usufH0dMa6izv3omiu5fkzaupCd/9QJFf5v7xQ/+lb0m5rZ22DCFQvnZdowf1sWfX0U8s544U+u9iJRXm7FwFnFSo9Kn/58mBev1/75S0IXNk+08y8hm1WI1grHymFl3X94Hl3WKaqnYsYA/svLHyLD0QasGdnq4djhmCbkgrVo/WSQMdUe/czqD+rhwXPxayqkm7lVo461P8GfQ0Vp1NhLc6scZr27Jqxv2b0eFeodd5kS4yJj9FkbkPW45s1W34YPk3m+gnA4aheDlW7XW/VS4c/VFaThPZb/yAh9G9/aha3aLM55Zww9Cea9RdRJJORYT96H9KAnVPMtIZmbeTwheUUYspNhZr0rUVCXutHQ+O7dkbs8DRut0oxEzbMdueg2nAg5Z8SHbg+1bc366gmIO95ScqpBb0/aenzSHrC5U+vvZVgussRtZ4XUKWjale/kA1nvo2W6PviETr1dfxnGhUzEtPb75eI0Ib/Ol0707Qjl5Z6OF5L39Ye2tpGhWiFGoy9/Hn1tZ8tm85PFyi+bJ7L2khFRzuADKrXngURZeYYdKRUDrLj6T8+HWloM8/Uz4wkrExYN8wjEvyzuiSl7S+d4boTRJF4B6vRaYjo4HNNri9o5irxio6j9PfKrcsoWiazQWdv7Javm3pzBJYoHH+Z6GMzc2M3w6KSMkf7TZ+Pl9arhQVyCREJilZGcnE8ppRQh+qG04TlZRoHwbKMQW7nY3qquXCXqQGMT+zEbCm36OYDR1hzLpJqAfatseQhrumWf/hnCOVr8nhKR1mL8t3hbXff+Eim/yIFH4ia2ZK5iimL18Yj7mJvwXD16GY0beOs5GG6eFOrjqiYTDQefj6xnNaLSjI8G/mXGuA02h3kUuIbenlfBHrcfQP2pCdnD+hcP1pF4g1NKemf4u5X26sQtoThuDahJyrOnbiSZQHT/oJAjImhoTRnW7ExcL4bHhzfIzzM9RI6Y5TXzcjocKvupUMQylmPVivpUBldTBaHcJkLh6PwL0PumIquaLcfbYtDH4pVESbCoHNDrmPkLOjvvEkRbLNGhfKTw6/bjEd5V9/uJpsHuXPIRSDrk9XKiaG0il48h/YYNezR3+1sPV7zmak8N8Wj3T0x1rt73B56J6t9o9A4skt/BZ8iQubK1UMCZkvblxFjA9167WOmD6udbLtT0pGF2M0WLBGJbdiMl3hpMZdFisj59sro7rC2TWs6Bldm+zuWr1E0gjutFDZ5jdJn1OI9wnSgiJ+g+acqJEoGwFA0/0sU1Erl8wfPw4J6eKbqw5EzNRRfNuT65iQDNqs58A9nTfkdd6o/IxwW9R8+gYsvMF1t17v44l6LxYYDu7H8opb+0Iio+3I3/xP+VkwnB9tjYzYO4s2mz4E05nWWLWro3Qch5+sLoXN7ajZp0w/dqeVL9/zsSTtnfeOPtWgGaxzISu90puKncT8MoImecVNp8v7u0J7/0vY9uK2V2/7B+Qu3lixFaYxbG/MWGLSpuWsIrKKWhlHc7aWybR/Q58bh75U6uPfkH0Ma5C7hzRE4Xk5xD/e+izmXZJpQTHZqTa5tlYU/DzXGSoVCCm4X8Q1cSrDHtdFIneuko2XAqNoueaeswpQomPf+s7He8bYlabizUv5xd148fB8i8Mk0nV8Ayn2SpoqRVjObB3nmvRMfGJ2exmzpOVr6OrPI9sF3ubbLAf9ABUjx4sOtN3x7fIEmElPiUWKN86mb3IvwFFPcfrclV3E0MoB/Zwn2S39o4ZL675DX7ezJgZGFU5cu2L4cvEBKu/S4/m1g0xsPF3wyvN25Ud6luA6NmfsTrtw3IITh8b5PL9xSvnnoTj5zdUsFVOIrPYjiKquHEO3W5Dqajobz6rs1NAzB4+C7tODWd2/6ZgqemJRYd2FbIX7nR5dC8fFgvmuxtVieow18OV6EcSoVEzuicyVt6T7YZU6D6eKfUQabuSri4eKzn+qAIatnbNHkP67OatdnehSlL1b72SWZb9EW1v2yt7znheXoHfUtSvi44Zg+ok8+UMdxBTzWWRXELIzfHvlUGZEF9vzGzsvf0FOr3Hy3q63frR/kYotYpiOfg1Fu0foQyPz6omJgjnbMSHuNe8q66zw6mQkkGs2xY26euIux8WEmpnJx2O9t1m0WFdoJbbvx5F8saiPD82yayqUgGGlD7ZgmdoweMUrnOkE1Kqdcj7Q9Civ3xAot7h/WNd6Noqd0/MPP+EbCLPOID8d0pZ9OTxf9/347ox8aKsRFyzyh5czyP4SwaEptWukOGa8Q8jZJFgSdzasBWFlP3h+RykqQiPn+gw55Nty0nqjVQz41dArE3ZlMPHup4gM+IDs633JuHs9nJB2YJBLkt8L/lSB7peJnkdllvodK9X8Hy/NBKc4jSbp9UW4Fd5HRU7bIfjR/UqpH0NSjdZ0iSUj0f6t74YVnFQTt8OTEC7fUtcOBwypkRKjDbTMyd2uDlYY0VzCZb1J5cVsJIueAbKfT0Qb3Pzu8l7qT/UT37IzGV/+rwsn8quLlua/fBz6Rv7S+F8l+5UOrdva04CI4Wh3B1olXjV3yuei1ZrrsYMKdbDMV87d0RHL8UqbPfZuH2ONZwI3Gjx8wLOH3p2gm7mR+JEk5v0vEwj2FXHG711B7sc95vGBqedExKWeWl1qJxAMZzpgtUxtLpJGxQfjHNo4Wlz+oXMW38C5edUL5IRQ0K9rtYuGk3TwZL/3aCJu7KA1NNWJLv3aeS9VrEnSrl9xYrQX63500suIE0a2ZKPs7WnOi3iJLVwrV3UrN5zv0b51leYbnliMr6O2ajl4XmL0SWOu0lnvQhL/mJYayDrP9Ophk63VlT5HPxuCpzQhrYVTBbVtZfMXp3dUDqqW6YDnviID5f+X34SXz+p4+ZXNdHr8uEkWvjo9NmsToDlZ0YcL3iVcyFZLbztJsZiN/2sWXq+fPi4dkyixp+ziT03FUhRa1KtWAGiQdiJUM3FkfnpzeVzc8AFEC7MmA29xde6fBRRE8d7kj7udfkV4zxAO0fCzOTRtZuCHbjIXT8dTI8Vy/qiMX344xuusrMS3hDhAFfxErO9IGQhk6qVin5O/SJk6EvePHaVqP7eKMNaYpBwLYAvwscw3syW14LVvyxlhmm+m8ys/RL1C/6iX50gLCSfXzbut5aPlvgjW3E4ZNNeMEQkHW6YWTvP58O3Ax1yqthkt3LvFi9Oqztk+DqTQJdKPmG7LtDfed1XT7Nbm2VTQK3KA9luvm04bsdbDeZVvrJrLOQhby0VULKpTWZ+bndrrHRT/su3C1+VOHee1R3d41NFjOH8Tvg1M1WoxtRhWFB9i+P0ApDeXpQ5b4eiNpguM2RNNGAlcoxsNDfJiO7PZc7aCa7JZKfrA1zqzYo45f7JP7J6NeHotinlubzLxuzZpLDWHw+6HnCezSuz+aElP7GonYRkMjXIEc+tnC14xuePfDFRv847dhcCs9vY190ImXzxSRitXS7qje3CNvzt2D4u1GxACjzR8LZMFkrU6gr8ukVwfazWLHhaYTinc6X/xQtZ8jei2vkIf3jJdtGryhb+9kPu/KnZ9v2a+HTxC6oZoGBCPqcmpJ5eP2Fo73u8ouSLGt3AKjqcA4cZErct8XMOK9g81AqP6dbmvXfdy6BHjz2dNktXLWn/+CGnh5IYWGdZz0UJg3l3G6KvumEZ7SPm6Bv/FHpHD87HarOXoDTtC56F+RvOWper2rT6FGxX3GX+beeLitLbgzI3HZtsOlm2Do4ZNsw9TEU2Xy3d11bHfcYs6fDg7bY0bFBSdyCOsL6Fkxd+KRztp03c8/Iq8FMfT7DoWbK7PA6hyLfbCH0sVSeGXUXdxE64Qoi8VCrwjVC2Tb1/IgH5DH8PGu3GPjZv0J+OMeVVZ4ciaa63P37JfC4YSOw5XiYVmj1NPP/NZ2kuXCiJ6lGYjX3Yv1g9o2L/PtAPu40ZLSTrpz0h3iz80U3EptAB5m728Ur6mN3GHDsdEfl4IF5VWCEPmJ+j3Ky3ZBv9Pkmzvf9OgMTsjTfalXQzDr0DyB+2YcFHMvj6FGo60h35jatFX3K+YndV0YuZGJHqJXMQlhJsn2+Fapm6Q5N41FvNmPaMLXq3nK7YuMGt2nsErx59SHVpVyOrVIAiSUd8Yie3Run60JDAMhM09t71gqZdnhEjLm7JWFiPCMr8W2G5PS/Pc7Ol72jxehE/1Vo+fpymBuN5MakQd2M5XiQGiuFpPxYSQ+Lsjy+Q+LZhkdnvs+bR5jPsN0JLPGYPaODoJMDf/uPng4ZD1cc1aHZgMsMdoeNPzQeQ64vL8OGlZ5vLF2NwbXlFvM+vCznzNVv949tGscn4cNn4P9h714o5qHyjX7Zc4Vn2m3jd/hxOhREBOtknxLws2Wab5feB3WTMLCIBmtg7LyCLSIFzdcZo1PHk/uNPs/bOEh5pMYZT67m034Idjs1OMiG2/B0exGqfcTu+z2i//YpY0tAz4+nJHyGUvIGuD+NgUfS4Yrhm04ftPn3YiVomPeGMjj+86grFmnT5IaE/v0Gs5W0y2qA+Yb7dHsSfg9liL2fW4XXKSipsM42z1a2/wCOUVELWqYTmb9PNQNujz3aCnoa9fd4VcAqUjtlfYUpGJlijZr6lNQkp6tGkPwNps8Q3VpPQyaTPVnWR45g+wQZv+USlVIIlP5Bdcb8ghj8qwFMf30y/b16cB3pbg3jHDh7rp5uIuvXy0ZL/sCz3mrXkrwCNn0rH6rYSeN+0k6C+NhxjqjWQjIFQHOB23gPbatZgMd3XU23RX5Qv/O4fHw9XObBryiGb9OgnQRP1R2bl8pCNONtS5F6eKkXRoUCDKNutUsv0QdWENgl7TcwEcYI9Ob8PcTLe2uoHiz/EHI3NFn/h8j88Mt6Y8WV/ljmShzNxP/ssHPTtRlWuiflhhtOK3c+kxQyjX6+JBfdfRx/TtkDSqNz+nbcC72QMEyImPu7bTzilt+aAaI6UQTq/Hhn90x/O+2jTxJ5oODeP3/2fH+ILSdlNRfYCmBRzZmZX1V0vfX4V8kPPw+pIvW7k/S6ChZ+R4otDPue7H0BjJS75w1taHdc3WPQIuY8Xx+LfnZ+DOAl7+t7HhTXbFdHhwS5rZty2Ouf9Df1A/gwbtr8cp3AyAA5A8b9vcgEH5ubsD+9nppQHiO65x5zN2FljJsMJXqdrSdyHW1nTVxxMaNmpoIpm7aypHyUfzPgRLHrQTb4TKBSVRPYWPdXzZb1NKPNPteCLmtCLe3iq+9gkzK6Pn2RKRTH+85+Yu/DJUdoE1R/fIalSftAc+dcCnbTGwP2ZGh1jvubCscWEmf544csViTvs8AezbZm8y3/6obqilqonfkm4tx19yIhtMGNZj7FQqwBalhbkvOADXaXWD4y4TtiCF9Yo/lRZdW11RYIaGt6x29kFZKY3Rt7lnMzSsfYh7twf8yLhy+deJwD47I5Y3Cfrf3wRadXmSW+xOHWjNm4vaPE7/33fIarEEa0G1WFk0ZPDMu9Ozabtltiaonfz33ksHv7EzO9E0NhzfAH19bEYnvHcDebaKkDMSomOr+nc8dWtumianxcEx35f8uthr6I6Hk2yi71zwiKsxtAL+27xV8dsULtqRgtfZMbluLdGmY+HPz1FPCnVO77aBhfVe1xy9tp0bdllR9JCaOs1lRvxnIzi1MlQq+pAfCGxStrTj4oEWXj9+UNJnvq0Qh5CPQvUgf7za+ErZTYGo26yxpvSFv3pGavdpNaYBacLQFIDndydXPYJbiTwFHbHcqoFC7+kOaDQuZFtDjv0x7dU43pOqMBTtWTfnZ6rsAk2i746ZfOXxDO8lUpie+9ZZQz7Gx3Qz/4wZ9864RxM8Yh+XdoSHckSGvl2i+FofD+E2KcuXPSRiya0M5ldy9tMpdep0v7O12vRv4PIkp+26D9GNn5dLn5TBC9+ozjv1K1VrMLDT9Madbfg9eNf/IJTlumfvujoXzzfoXkRr3Rza/iKH/3PTyFGsUGIJXHrArbyNVZ6NevWt2l3+/MLmcnVd0Yv+XBHysvSmHMYdxa339L85yeTLRN5MtJItv/4GfM/TZ5xQd9fALm9yvRvRZOp0uYKulZSyN/+z9g8xcBX0TKHroRwypKfq5LhZhCHpn42y/okaX983oJV1G0w7QS4C2u2+FEO33zAE1FB8ztWt8aNtx9j4XMvQ2OudrllXKu/FOKa+lg1X4RX33txgIDGN6IrWxPxPSU39HpJMwsXfjLgNnmiBU+ZKzS1NSV1X6tnJbxgeXzX4ZiNVgqJEMxM36/UcMh87KtD+9yzSAiKkm5Lw9UWvxVP1bPoxjboekgf6Y6Em/23ZHb7nUHBpzcxz7ywSq1mFCbbi5g752k3fZYuUQu/Iem0C62NNF4leLubHI+wzD16Sr8IpnPjLect6iZH10Fbb+WevK4jKrv80/XwjG46sRePdM66QoKFr9P28DOSGZvP+A+vSFLOjjWam2wEzS8KEu4QRv/84bizfyyEwC3F/DbfQXIyi3K8i/nYnL4mMivL+ecfSX/7Y0FRU/HohnxM71MBa/31IAufKr/bphHRyR8yvOn2G4v3/bGFv3qPqyZdNjWvsf/bL+KH4RAOqrMR0SRJBdX3q1somZdfjIQrt+mmD6SQs4dvAi/IyBZ+no19+7ghKa2e7FJd0m58VLqufY/GlQSxuO/mgDIRpZungrXhVWR//jOMJPxQXvl6uIm0S4Q8HvQkOrSvcFy9j/4ffjFr/7C6KQres3aNpSOxv8I+o4X36ZEonSZiro6hNfPx0aMlfzNsxDXnbF+7YBg3mW3RTecjsao7LOvDjPJTdlwKellJNpWJD+pqzEZvtwFoPyjBlXCvun6a/Ts0ET3iYeHX4h8fYReLEePoCBnPVFjKeJ2P14N178YomnXtcHBOzD5cH+F4Ki4Y8raoKBJVzock2tdaPT2ezJe3SjgnwTaFe5xW7G7U24w11TYCrZF3VPqIr3CW7MiHeNtrTE+3FaKfQ2eDcusexIafiPjC/5QnrmOm1083G5VAMeFX7xHBoI8Lv2pjtNQn2J8/uM7ilQ/9Xhjpepe2Wb8vn8FffFKerWgyL2ENYx+MxKx9C3Fp3Evagq94JeyO5ZD2Vqy+DpZFz4PgoEkbJh+ecNiQbRKMyxSqJZ/GWx+v0POdMUG/XmDPqwCX6KRn4veTHCD81m/mz8PJGm3RuP/xX+bWRc25ypb7xt3hjA9B5Zfjno4uSt7hj1lRZaNN0mo2oM1Bx0Kw/XTTSyLFPz/juiJaSB/prgY7fZjMREX654dVf/7Eki8P5Rx1j1z98wOtbEWzttGrAsZGyJluGn3GaX44LV16UvKHl0s9UwbheKuYKXM9WWsf3UcC3VZUe59GRG2WgybYpsKC4FCXw+LvAF0HFon2Brf4BzwJlFcf4fH3GBLa3DbFH3/F6srahpP4mFrwd8mZ3pd6a7+no631G4qorD+Fslj0p7b4A8R8ylM49T/Hh+o83FjQsrwb8/7+RL8hVwlBTyPjl/nno278OsxbWyn69/0/VO+Iqd6jpK1m5YQkNW1YKJUr3rO+mZG7VwMWXk+XbmwNlQIdnXQ5Py7vtXF7g7kbfXam7y0SP9OzQtPePdPNflOX02PXS398FdexNnczLYoKXteDiUHWL+HU79Tgz19d8vXAZ7yTI9iPrCMk2r5RfyouEfJLqyS7IX2WM+2yGlxh59BPCo9k7C/ohvbBwVrqfTSZX34Q/9U/mH1Xim78q68pArn8+/8+Wbzxtfk5a1R8OYeSJZ7ioihxZWKDM/IpefBKjbHz+OOD2VQcagGkLsQUpucu5HhzF9CipzAn0h0tfqUNm/RxZMEpFrPBbvwILX4klR+JU24+3lsC2N96oquk5ZM33Vsw28+a4XmS/ulhtPi7f/WRbKnf2NCnoY5l5WajeW+3LbIvm4IqwnZt0VfnxhDrCSV2PE7hoNdc1FKl29J1dTS64a+ehdlmpJq93XbL+lzU6zlzWGRYn6x/CJmJ/j9XCqT/faXAWVU11ZzTPZvAEJ/w9tqA7TzchjR3chuOrLKp6KQVGs7Ty4YDOh5ZqpheNo/VrkXTIbGwRE7vrF95pFI7SfFZINFrMt1WMYVeSd54oo7W8Tq9FPBMsozYwWWHRpPWFOr2ZTNv1VBEHXs9wvASTgxj3bPYqNUqPO7jg0Te3UGc/e4u7N26pDzYhIg+2O6gON76x9ym3oQ/29nmMM/TnpmPfVbOfNqMQFe3jAq7XZ5M5fp3goMvABbPuVxS+xbb6OmPOjPqX27N4ZBhxPK+x1JV4HCU0ODCqlQ/RD+qSTkqu68IH3fMSDDW32TGFi3gcZ8fzM3gW3Isza1GImLjb2WN4RgIDYYLxh7byRw61u/GA5jOZLFIVVxLetS9D6S2j8yFdip56gwxkrfql45HNenGlbkx4URnk5jkG1njg111VT2mhJ2W78ukWXLhJ4olCaJbEVJlD4EqiP2XpI5VdEzplvakteeS3X2bdiMox5talobK7HMudzx0IYd3JlNm3k5FOTwZuaDjxrCZm211PtarSEc4JgWL+l7Mmn4HBaRGtCVBVXw6KkzjE7R+eBPPjF/hFOu5qc3WJyG6UqWJ2PifFuxTeSHWcVN1o3DZp8i3PznR5bzLmHPDTzCm4kWCSn9bPFTNEXbHVKert+eHQ8N0Gx7ZMhq8suJw6MWri/Jb/WT6QOLFQvmd0BpHMtlK3cx7/+c+oXoZd2LyfYR6IdVH7TjRM4uS/NtxM9Xuaojwj7iAOOpvNK7UXdZLdIXU3Jrs/WRrdLx/SMSUIWvP+aEHvf0WxN+rRTcz99qD7NKIRcnUINqXDoYTk0Iq/oRPOStfV4AeHkDFWCqsCYJjjTLr5VOJ8x9q/HG4o5mcKMEdlZdG8WME4c7lzM9/KBwCz49BliAhJj7oSKwbBaPUwFu60qbRorc4llE9rhGJXokXzk0RzbA7XbbkUiasmyB7idA9jA3xVffLqZfFBWyHlhLn5UA2yVDe0N/5CqrCKel5ugPw/vcmHn1XIRdIcVrtjiedRGmCux7HpaAdRHiRkyXa1k8+xXdtvXr7dP06CR31+9sIbOMVtF5t2pKX5/wHxrnBDFvFjOiq8SS4BtsZK8khzYbl86EqWxtYpuseTfO8vSAzdEayc77CkvJ8VX3sDZO45Ft2nCXbWJ1JSik1WWStzwMu4GV+r8RW1tgaU20PSBk+MUkDdc6GkoQzTKEckXvnuqW431qxVtdRzu4oa8u+BziBQrsrnZd4n7G3saE8xTty9fCho73hU7V7WBvmdJrJpwf4NRwdKuL5oStZFeafEcgu2eFZ4K3VIuXqo+8BW2TXiG8+Spu0QBpTAM91V3c/WEcSFEK5NLn5rMvu9nnX2kVcOwz/YuC08Zsbcvv2QOmtHpIxln0B6PEdEm9ULyVr9v4F5NUjI9uuUy0uP0uq0Z1pkugUPLMxzXYC6rwhIOZoczTzew9o1m8y/u1VsxTTzBFQNlUa0e35x7knKiPk+epI9GR+Z71Z72oUeqPL7q/ka01eEN+0UN8TElj6if/Fk1LsIoFO4oGVdO3faljr5xAvD37KMT88dSDqSSFR7lKLY08EuIYEURhGLeuNqMDa3r7vmfF7jeFYe0ME8s4zGb7ZPz5IsSZB1D0ZMW/yN5z24MlI6Z4CVm9H3g1CPqYgOHnD3C/zLL6OGhO2ovFhGO+bjKPgegK9ZyJWPzXtKFr7FXwPkUXcy661eH1pbICvPyySJwr5aKxysJh8Y0/t4WUjjEtjuPPNYvj3XoVNvlVnOCrbEzNXR9pN5zwV4SDpPypV+rab57ClCDuVx066PGRDowcXaArhQvxiCkPen643+BkXg52rj9j16XfzQ59QXzF3OR8LU5UgVOwTOzggID5fbgeYiPulwrgxrOlR0xip9wmzA5FxIg47oZUvwhMzcrTcZMOC3NeCS+0vr+zeHU9esQ8qWzVkK4plyJu9flGj5vSg0+vnZesgjEVYQzqQrfP7WP3tgUW4CHdMDt/nLhvn+9hrb58mzNL9YzkzbSy0itc6VY3tN6y9cvrBcR5zZlpiVM67qy/CpJoGi4ZXZk07awxA3Ic7Oob3V/bvPK02nk5X/kMPx1sUVSia1jXZxg5K2DhqEchCdqASkZdXe9dEhYNQjiyIoO76WUrtv3xJrJWqdL20uedoqM87Cs9cz9a5Zujqx5Mq9od/ffY+X+AP30k23PmcYwOj68eLmM+UI58cnaVAVk1NXM59PqfZtlfrcYOwnCtaMv/F897Jb+Sle0LI5ibNkWDEDrkfz5uSnfNLrcraeUv0+8VDkzCpFXw2esGMA75nvMy3o7LED5aW/E3TcWkkKK4dut68dGt9izMTJMYJVvZaEzZ+n6og5ZsrsfeXuhydYv2E7oY+xLQMB83mJqz+8B+XBIloWK94Aa8fdlgk/SzO67cZQWrGhwXP7wm/zVkMs6iUdAzUG//3+VaSvmHWSr2W841GIkBEkiV+6oz3ZWirFz4CMbrMRRObfEEVk/2LWdHjWvK4+B2gHFhEiL+yl2FMhxi1afxjpu4Qa1xzCwDw8UOiPmCcnxUO6uE928RS08jqUeKncPs+Pgt+yd04HDyM3HpXkcNyvhtHZydU1LqLz2XchNw3ugIt8USc39igwYh+LrhMXCyou5AMsS3X8DdNzzOo2k293LRAftEX8yLyyzlsgh9ylsFs2OJri/vaTdZOn0Chcfz5ZXNzzGx4TdOZCjMdUdNehxlqNk3M1L/LEKEqqKDsO4vtXvLB6vdb6wAOjk8sMLaeJd2kD0Bmv/f4dxiajBsb4wnBEwRiFY+AM4QbFeiVM5wX5FyOpZli9WIVa9wJ1SqZAvK+aI+KPDDJ7mo3jYmTgx+amI6bexHOvbOPYW/dfLbzRlzOviNgiBPfWPjxwOfUYRd0+vgKua6/Wz7W79gG06x/zHi5Jpr7U5Krm0t9xuJdLdGIV80PlvzAXIEbZT+cXjN4mRizJHvM1i/NHJAZra9k13VTR+VtYv7DM2vLTSR6yiVCPbyAajtNL4dwLTzV9NL4lEcPpWNhQjFi07zGq7eK0TwwQUaP71UmunrOwvmcvE2IVixh+hKPvfOsZODXp0scqcsSjufWBnn1yoif/zKLnau3D49PUjN70RNiGB4EGO89po3b03CcP1cJ1DR22dFRGBrx4/iDwniUtCCOV86rahMj7XgocHemViIt/AgM43AhkTf41mzGXxOGF5yoxIu6XPjBiM79esWctZyWo1+uVZAh0ela2kqoW+L5T1+QnWILfHK+oYw2119OXtZHSVjdlCeQFfdDN+rng+bV/emDlgQx7bRcyihuQxvE/XbHdPWnJaPiuBR99PPAAuO2TRa+c0NlV6vMebwomqrqVMGiN+jvJITl5nGVT9AXcsdu49LFpgx4hDaHsGFh+TbRWL8vNjRvlTBjg+uEPlroIYgtn5hEptmgbI/+Pz2TpbG/DKLTTxBkY8lsJWnK6Y+/f2S7I4Eu22jk3vOGmKjFGKGLvYwqfqnIn5qILXys5KCQHNJTLhHTKoNs2m82J3Tdeg2dJzC6ud+pF0jHi4fHd4i7US4DXx0eok0CowtL3h90CTlC8cDqwu9Hs30GKD7GCbH3XpWNRqzOQI9lSNdSh7Le034jWrFWx6pxazL+qFv9Tz8w54c/2ZxmRq8RfD7RrnwXqJcZkmD598QWJyfsQ1LmaJtvgn/7P2F6nP/4J30nldOJj80cQKHGLeaVJXf9X7wliZsyW6k6NAi5nKp56XyJWXduJwr3RoWf+Qzox17XaB5E7wkTsb/M/diHTlrHnGr9WywIsSRUTmEFGITLYOP1vf9ZTN7PJqTnekXC6S52o+LgHmRJSJjtSNtEdArtjoJL5ROjVcxM+s5Lyf6hrUnkqkY2roT6gv7j49WI+sdGDeAIxwlLzUbJmpWaUSTw35PFS7xNwjTXKhE+D2IkiZX1y3lX//J/sIkfnIdCcvrjM//wsqvvU6v98YttpOjWukHKjBTjQ0noR24ySdcnqNOlU/CGpS2fH0VSwbUOjxhQH6GpYb4NdpJqzKs+aTmF98wG/NpeiB14YTedz7wH7zZ65PnZ/JK5uZat5tK5wuvHC/NJyOUTmJIRsDC3vuVYVnmETKudmHd5H1D33C9dYY7PgfjqOQinWdovb7EliybHYx4OcCaxqhYe0I0Zr8JxNVQ+yszbihmNkXbr0ry50GUrSrb/8ERKbdWf2ZFZyvwtB6e739HmsG2Yu3vyksFY/10R2ZJdcugQTbcbgJfVFMx31S1a+yUftZ8olXj0VgbalKZ7gqNVFcS7WpuM+dpNVb3DzmOe8ZATjiOnQEv+xdPyeUb0SwLN0DHB0uXZZ6PcdQd1vRVSyrZxjRa80gEKecsCr0BJ7xnKDa6FoDIX/F0o8YHhP73PPGMFfAqnjwqTqhv/8u+obM+HP35C3Ksec75ne4CORAaFhHySac9OEVy0i0OS75uj+fG0TPj7++qVk3DKnRb/8Q/2x0/m9DT52jtTKbEWPsLP5jH48z8w52mSbfJve1cLcoyJEbtBwh9PXwVZ1u/kfvwpnK5y2sMSjyw8rz4lO6+7Gxw8ldPN5T3z2f+ZEdp2xR2PgZdavbkhEro4jffvfPCzYBdQ9o2FM6T6pYS9lYtkUTIWvqJ0bNSoDOHxC3R6KduS7+1KhEXPs5NVGkjEcfdPj+OC73s015cyAvF4nYjhnDkfjFj+wff0/LJdIxqI7/fPAtqDfyKHyzPlY/b5AngPoaDryH3zJf/foS/Uju1eTphRFCR3EE8vlX4W/Oq8/vJDUR2YDEObl/OKVE/wV4VCDIu8y0HZfSg0uehi2JpJN/v9bValfH1d9EkfzuFUzsgwT28qrY61xeDV+/Cb6Z5Zx43dzW+5FkE9P9+MvJuo461NIvSMib7wMxbO/uGrAp3rDWbpbP/5Mbr2GgdM+vw3l+PD7lT06m45iVDgJ6y5vgsYs59DYnnalWPDDyM8A/mA5TPZ8RGnkIO9jzq23QVL14FzO8KE7IBlQvIIef/N2n/46RWRbknBRb9BN1XZf/lG8lMKv8jKSDSMWjL5/V3902OUV5+HxT1xGmHxM9juKW7D/nthTxSq/ovpSnKwemX7OqhoIzASjmpsTXD2DmgVOg9aG51oTVI0HGTZF5+MBJ9DOMZcvgDV4i15Tr6ViauhD9QF7wk5eSQbb/RSg6PdU0a2721IMc1+kF/zIzOx6GQ0F08xSl+WQKdWKTKW38ZR293HFUV52ix4NZ4gqn2T3Cr9HXIzSlN4YntgvnpurXF+b2NUf4Iz0d9DYvX7Iwiw+FOMpHNlzV/p5SPHzBGz30Nb8r2vXcAw0zfzS3NY9MihhiW/4hmLn2zeF+0FgrvU07Egm27xDyp4ouD6932tMZB0F8YcONnus6rjznEtIzaLApYP92/Y/Om/KtsYtFLPh//4G3z0bOFvFM3L99X+/EwyT5tkMqKfrTYfuyXbvdZY7CxEObTp4YfnhS8v51tGSz5h52l4JaPfn034nvOR+OuqTPqzcLugR+GF//xfOnyPMxjEd0iI00sy3SLzrknfg0cw3m8zfg6EGPXquaXtWHvJ9NiMOhIPuxPT75cvn8aKzGBjnWCl3wn//Dy0xA8LjZWYDHV6n9FFNnJmzruS17JjPmH8kDOWoq2f/NPvej+IJDB3cSitGiKhCevPhX9hPs/Wtkb7uXLZrnWqkK+PZgBbKdww/DkuV2jJJkeucl3hjSr9lvPZzeriR5A/f2v+87cWvU2i4+/6Dx/Rn/6KPCHIZKbBCHvr4pOXkKQly0er0s7XpmLutVgn8+wdfFj0Jh7t2UdTftN0oNgOie9ePn/8x4SfbApku3Y+2dRE4Kr199AQM4PYmk5CHMN5H9wJmYS4m810U6E1OlS0mJ9uuNlvkAs/u7rjP7+LnQczhrWRpczJlLf168egRd9LrZCd49ysaU2nGP74/xT/KOLjejcq16GNmF6QTTmvj3aMbs13Q7aNUXbc7mKM/s5bUO3LbMzH/VN532FDTPP1TtiDZxRkQtK//BSKS7wgziTAm7E5JZPiRDUq7EZgbsXj5fev9z++xvTAS8N5lde9sugDjNJ3kAypM5noaBZXZt5kL5zOoWmiTEsvFPo+Tf7hIePIY6bG3tYIfUkh+sUpMe4ZzkZFvgto29wCqr78W0Yfx0ZGjq9MzDpdG2vKD5kKi59G84GMWdc/1RzWnA94Wvj2sN9d6T8/afcUm7Av3X6GTyl5zFviYyzX7R2080UkGfvY5brqNxTWfBpIuH3vyykcHimcfueUzsv+8D98j7o7I4/4dAwZCq4pDE91h7t6EKwhTBQBhKmIWJh/+pAFw97WxEx8kXtZbbNZdsy7ht02Jnjyy2xMy6/9h98sDS47LvF8XQDyx4ns7pAl00qoDmCa1Y9511TpNt5Pd7W//TPoacW7YGpaMAPrS7YHHGZTo5sX7S++MCCTi7XUygivJbzUW84hZ1julcXPJYvfgsa9XgSgH9wbs4cpytZ1mo6wYj/9T492Y91MWFPMbsN2GJtos+gL1VhdIrZPqk9JsUVzgLekk2C1McPf+njR0XG7uhCPpQGaHvZ7hN/Oq/74VTaWbj+iy6o4k/DTrEPu7IcUVc49pMrhtesWf4tqn7VwJaE2Xbp5EMld+eNLN2P7tabFX0CK2WzY7mmYydLFACMkzikzF393mgdZhIOysxZ/PgsZ/HYH1FnPGq/6ixVKveH3wORtR+zzdEOs/BUyiBvRJLY969mm7/oI9vudQCI/J//8etQZaUqcp8EzfpM6EZ6K6VEVrjWaHTky0YJfVOjoxZrXKJe0W5oEjPBKCCcpXotqYbxKtnuWLv+G6zlCF/PZY5n9eMfKbIrAd5qGLfmgpLdoeeIz/CKyNJroxDpczyB4S6eHxQ+lcxpKIFz5joRnWiZcWrpmrUPzwZZ4ycR5DnOonGeIy1VzTqad71OQndZi5PhZrmzRxwzBUxBItOiBebaMWov4SsbiQL68ny8/X5XH8kPr1kfd0D6EFHbD2id60Mglf2yqWHXfmk5M46Zm1A/wCP7OzykSTBXNvohUJLjVzLYvh/NxJdB/9atl5AJPppvVpEhqnwXbuZqHpvN0diEvrOUKxvjs5jJQbFj0At4YqzsaFdG+aXYcFMxf/Jx/fN/XU2B/+zX3pyz/x+dmqwySf/p4XtVr4j+JW/7mprhBNnfuP/5Fw0p1QbyrP2JF0SYb9s8M4C3DMvggvfHpbOYyuN/9wIIrZ9Z7D0SGBj1ysnvJc9ggJYvR4geRQKJKMq085wlL/sQJ/xwXPfTDoCd+yYhliYiFZ2FWazr86HrRo1OYdz94KrrHyHbusha3lqvpB/tGbrhIQw4jvagfI5OYV6VzRpGhnlSo7YqEWAI0N8fE/vPrGRnufUhZYt3Q4idjUTG/WW87Rg6O9kxZyKzc4uyX2gC7/Z3trqMezo+r+oT0jnrmrL9zwlpEzWVQ0oftXl+G+BzmFVr8RbLw5aTvy1j459egKZyzsfzJI1zcIWZYiz4hffgyhs2NNsSbhlUyslwXtbo0HeKd0MeapKN7U297lxErohlv+20jAYl2NhZplVjzosfRuZskur5rbcKQq8+o4/3AsnL+hGN4sX8QHq5vEklno/ye3U+vGaePQ9xrcUym9IRi9dU/G2LqX17Of/ylsDsBa/dOCafzby2A1bx6LKrnuWMLH4I2iV40V5XVf3z8zujE7Hvz7ppm02DoNyGhaOE/PFSD+V89JhSqVzLdLhDA+2noTD+Faz5ia44hM1KJZXWodNPjChU8A/VAi3lXLn6bpILs9tFSP7rzcb7kAVob15Qs+TP58/+1o5apVDwNezTsb+ENxU2xwRzuz2Sc38YBfBQfmedHFD2e/Cz8v64UbP73lYJoPRAWiobXzZkqPNGTXu5sax5cNPW79QW8drZY8Lggi57ItQdP++3Y+ehPHZsvpgA8lHZYCKxN2aVT4CLSdFu2daU5GV6losLzfkJ4/XP0UMzhGoA2iMvsS9Urey2HAwpKfcfCNguz8R1GF1U85TsWGpxa9OMlNXQiBIQ0t7psxxy7kBmiTbbhjpd0vKNcXY3vL7Nujyrj/L0TYf3oa6bnVc/n28Qr8MtLwYyszPi46n4ufCT6IdFdItZkny42KveCyXwm7q3pYE4p2grum5D51WbjRVOf4EqNQQypaDjfrH6pWt+ikJzjqrZmte8CiOLqjBVCO84jOaHaN7E2+Pe0hfBvPaH1rxLVeDhk/OQMLUrO3Zd2vHUtEUWXEd71Yqlc1iQZxUy+o/YiOWz3Nj6IpxsWobCVTBIG8sTnlg0jnE+qxsj8CjLeVbELy/4Rr2tuGQ977qKwMwh5fD5TxiRlNAGs4EO8eBqz4T3JMdr/7iGtvfe6mwjbXOCq3GYWyDTIfqspvsDoiDPbjtd7OW6k6KCUH+vK7P7XIVrOo6llyq7F0np5lXjh1xpIe/gQPHcimvXqOkOzlxQs9qudtaEyquG9eRES3ZsK8aTHFTork0e88FWEnbcrZ01svhXBd3oux4tViLC9zgecz+/Wqq7R0IMWcov58cdZ1uOLkTXUmPnKd1P2qveI1QMXRGJso8Ba1gsj2bJr8m/9eL7XNercnrSnPMr4ynSfaBMeRmIJNE9qxHwVBfoxJhFoojVi6SLD9XveE6P6ROUUT78UnW2dE6wjvePB+3CHetgXzBgetTXIv4uEIjEJaL4aK877do2REqU5Cd/lns+rfSui50p8E7cYdpxn31sP6pcMmGWPrdV137ZFRfZ/pF3JloJIEPwgDgIilRyRRVarUBDxJoooqKxVLF8/D3uOc5tjv24byKyMjIiSyjFjfvLYo+nC7sv0Of2KlWbntEJrTDmakoKnwTGg+tisNBuOs+sR5y7N7bzUG2wH1STnzNW8JV8BNAlvkt1m8/H6fUYzlOpHh7jMpt44KTmPjsED07XHVm1/br0cGK4Sou3HUzo63Ou4ai5rRJ9Ge0DTN13tYN8+CuI/x3SebqsRlKvLrwk5O0jvzzQzwC14kemHRC3W89MUUbohDd18lHXIto8aQ2WtXli+J6k3qnIYgEJv6rK+TTSRW1qhpX6JS17PdCqmQVX8w0Ulhl1edXYbTiVkg84oevb2vOY/y2zkqMMkfcqzPneNmoBye3ckEBHX9rh4cqDcvh2xL/lUjLdA9xWrGXQWicYwVxmv70CYmiPD+Pwuxkfd+L96IurbTsI+tRQbredwZts0PhRTsTm5wObSYIaxT1CtR8xGTbubmZaqgTff0TYBn5wzYglaF7YdJRNkjJhka2qhN8QzbmBHsi8dVgrzaMvXR6BmkjFVzZHelY+vLKcfN6Rod74Uw8WTZCC7YUXM71eeaz8RbXADriNOI5e//LvKD5+MWH14M3qUr7/6c0PWtiPgfQTre3zAiDn9PCr74CXfv5cAzws+drTzAeI5PROHUA9N0TaMobzOPdttXuU8xAx28ErLA3GUtNf79SvPoS6ZjqfaXc+jjjkRiCxvmXpTt+ng1ySCdLPeEbzMFZ/Y2fM3X3V0mIq0Vzp9joBhxUkRw3lrpFOJZAnqA7kzM3sU83BwIQN1yz+IoYvndIwfLwlqMp7xlKqBvuCZATeqcMzj8WEerWb+wL49xswlr23KPzboCtv+ZOEN3zcFbbrQB1Y4Ah7SRzVPl04P0BRLL6IfkrztJ7SS0HNL0TKD/utN3uqlwqGx7lTyipM+bIz1C1K5ZUxbHTpvjrXQWAYBbDFSQqGgJ0tv5J6sY6YL4gfN4voaQMb2JvGTR49mJwMKxkHKWLhPZ9TguI1Qj31jyXeqz59VcIVQjkumpo8Kzc+EiTA+Xcz2wN/mwVKaXN46VcRS9zkUE2JKh4Qs0thhP5yKSa6DUnmGq5oq8zZOR1saOdSBW5BfPxhDu65g2+UZ26aOlYr199zBW42EX/2iX70o5coC4tO5S0fXuC6nbmgusz0nL2rxes1+/YwRMHftUD6+Ejo+qpJ5zNnPrTA+AXbHeKKCnbBiPO48SXYLUcQ/PKnaJA7Au3xdujrCgOguPWNwdrJN/DCYZiq620DZK0+DqfVj0/anWxDD6dSobIv0lz7UlhmBFDvKH17NAc59WOqX+Gtp8MZ6rvO/9bPd9690nNBaguzulbTfRkI4663Dw4JPzA5wWQwm62y4DWJItPi4b6nAVR9QI1rTms/VcP083Y9QdZs9uW3vfjGfVkoAe6UwCMm7Uh8DgXVofhQqce8nCw2nrs6hsuwN01d2hAbZZTxyLDrSlbPuPXoctBi+qtMTFevFPEWcSpXN3XOIrR0svTu4fPZXz/swg7l/dPz0x2/uoWGn/YJXcDobJpa38E6nSyV1snCnH8rVQ6XXZm5N8vswyLSsjDycA1z5sFPlnpBzOOnd06YVsuzuhY/xchCycjhLcKjlgG3L5JXOFB0i1DWopZy40lBXqxVGb7F7M4c8n8Vyfssyq5QqxPaNvuhnY6eCvgjtYXLtefo4mwhc8voQf47KYulnVP5csUdbabqHNCjr7t/nN7jcaw/5GyCaFJ1ksyZ6VODyEr6H5M1MO2HtyEqHl0MZVIJvru91l539gcZ677H03eFiyvAbA3JZyHA9VN4E/OgjKZ4veLjpfFs/R+mIpgp0lqUfNeSjMr0pm+yLMb8/3trBUhUbMD71dIyFTTqEp/yoKL1YMkN/xN50Tm6lvBkDf+GbWO9OjTcgVfIJ29MgL6amVhu08FtmWafWW/hZhr5FtiPaKlqltX64feCtcgc8qfZHH7YkV3/xwc+FH4wHRQVFv24ORJ3cCg1c7UZofjxVKr3eYkrVbxmBj18Ccz/Xtm2W9QJmNzeU3ZJYH+ljFwHjvzKxvuQ9jwm/u4rmquYZobbjzVbgvGT3dR3xFJtFOqzoVIErBIjyHDThvF7lscIObGB7tCFoPj42Nqou+EqWz+v9ujjFSJOEYRn8FaRr97v6yGp4LJnDDu+Q/fjUyuFqtgvkbztt+1uFNl5vUCHbJOn8TL4iKrbxhzhMGNBgqYKLRMM4M+elNcUY2s8KDjLdEN/kjHlNnK4D9aOciVmZqj4al1cD6xzfmDVkKhJmFWVo2h12xPgOR73mktGFh4Y2f3g/ZYfVgJZ40PXCv2dmRAHE04dS4XsdinEzph1Isadg3kdpOIVwngDdBp794tdvYVRB3Igtc7TTVR+2e+0Id2l9ws1rpxTVsEIV8nEukKCvg2JYTSZGaoREYr5EU5+VwW5A/M4uXeWv3psi4y3B1hGezL+rO2+e7ihAid8e2K/+h1goE3l3BMxi7j4W47dSqFxZw4ld7wnyxqUfgXJLHpjnwA2Fe9qKMPLkzcwTH7Vs/oguPN8Xynan9p4O2uXRobCSHuxkrdfeYKlqDN8jwcRpLRx2p+75Av+QqszcSJ90/prqBE9VPjKHj+twqLZ3DYJlFqu3rdcei0ZR/vVPZlZ2mP7yB0d/ujL7lXT6mFqCrQh5OZJFD7TDqY8jeF1tn84czVNackkFKwdqPPURRvNI7B3StGDGs90fwuriWrARsljDm+B4LgajRiLE04jYfulfg+wgDTrlU9Ef3vXx4yXL8z44UkQujTclhZ0AaYI3u/DDHQ14nm1Fk3SL9qbwh08a6O6uIvaH7VOqbHcdwsXhQlxeteZuT9cNyKe5wkpooXZWr30n77amTHDjQktLNMmQ033EjDHG6bATohvgpxARcktib66D5xXlq8ynaThn7V+8u8bSmBabesrr+cApjw8+EvLeScWCrwt+dgqlR/pB/ShaJbLVV4I5esjT4ce/5v3x+NMzszhc7wMc53OC5XCjtXwslFdoA8Em+3Natz1uiCE7dnH9y1d/2Wxlhc0fg5hFcClY19hX1FyWLTngYR6QHwywbyqZmId7mHaQehw41ob74+/jKJIPyKdPil2JNulI6uNRGfE9oCIXysWQje8YvO4eLfit6sMcAycveIO5m9vpU/19UCRMqkg042Gl46N++ZDRd4030eddzHfE+VB1RklM3eHbGT26HL6q1xPjar3m+dZ7GiQsxhSFHz4c17k2oY0rpVS4cG0xTtypAdM+YuYo1TntfuvxIn0W/XI09eGhmBxsB3Kk7Dhd0BQfyyMcDO7N9tJOTqeYHChSP6sz266ueiqI97cGJWfsiFmdlHakydOH43PX/H4fDtdjpqJFzzLdcMx5KOK3BrF3jYhehpnX35NLgI4YP5jTyIYn1kUQKXrKZKwk/qMd8HpP5amKvrhrHlz4yxeSN1LDLF/v5+Fp0+aPH4i2hr05rYcMor1PiVbehHTcqvrCv1QXS2RdeMOZY8fNxx52eNWP1tx/HrII5vUFP38g5RO94dHNt3gMy/UGsd9e/+5/f36rbbdRB1fZ9meL2N8dbSv/zQ+wvkcHpldfX5/yhxNBfpsJcVjG2mFZv2AIVwMP6vqWDrWaY2WQpzszhTIJF30QKcv1yf4WFuns9V8ZLNvcMSNrccpT+uoQm6Ai5JxD2Je4ltE8q19yu9UGGiSpUcG5uCJFAHw4Iq2kYBMZ0Wm/d+b19flK0G+9Oq1Fw74kMYXLF3qmHbhV8SG3tEG2cNOJOpVKOAXZeAXP9ky2+A1zPesXHzyrqPGPj04OPRgQopXI/HOporW4kTQI8IfHa39voJ8+kS+6ruGxZEVBnRZF8ukrU7b7pkPY3y94BzhICdGr5hEO2imIwOVvR6xIwSH84/uuIJ/Z7mAd0MBfrh1E/vtI7EsPqLu3ggosCFvmeltnqZczBYbXb7LoPY/9+iVEn2bhI5ewbR7RBwL+7GBhmF/tfHZrFzzFGIhesCmt7lVzg1sqfSkvV5Au8evgdKpU9tO7VC0Pg5LG55wZHDTp9LhcNNipOwPfU3iiKdtLCUzN+0Se9a6cx3x679DZ0Gai2aLddg0Jr39+QbT4NbMd0wrMrrzjlTrVYdMuWwrd7nujSHG4tk4GxMM5PjzZ2bJVJDwFTQRVf4zM+xz4cHhaG1HmjVvH1MUP+dUHWvoj0WKzCKe7d21guT59j2o3D/Kuum0WvcZsfiN4HV6bHcLzzmeGnE76GPCTDKc4q//05dD4qgiGerswd+nXnYNRDtebnDA8a7FHp/az5CMxyWXXpem4mTc31CWVQqXFD1j0WAwlJzOGtx6n908Z2XD5cj1dD63n0VAKEkjlmtGaHcxw/OSsQl9e9uioRkMxr4zSR7SSDJKt49KbPkF8g+zGndl+0R/DxbU4NID/+tVDytaazEHpnCs6Ho2iGL+v4IMsLhPZgi/65Cl+8PNvKFqvh3DcJ06MtPWlJXv63SLxs9clkL5Xge3P1YwYJ/YDOiRbYGZ1bMIhh4ML6Ua7E/cTRO2P76Ov+LwzXb4e07/16lnPmjl8ERbUJNtlC5RPyU+/Tp1S2gppTUz8u75JqV28A6Rk+oiroLp4vdS2CdDd3sLSnc/bOYiCF8zP8sUyVOBwvB1zDqy27IiXCCxl2vvwgo8ic3/4McprXwM9ffVk1+VR2FejN4BobFTivDS3nQwXHzfuYTyRnScUxZBsTQMekTsy9SG6+mTlVwqTmd3Jwsfbn58DQ0KBbjxXDYdc277Q5WQUWOCIVTCDNyho7+GyvBU9oQYxW4L1KNClH0Xtun1OsWwcmUXXl7qeaf7gXHQ+ZRLTr/y7HT3X5ZBPQGZhNxZ6R9k5B+09XZiWm5E39J9btbGPXkM0eZjRQNvAhcw19uSipL3X2C8pg0LtXbafeN+T9Hx5ibzceyRb+ED3+/nHfxa/LRy9/T3/8UtaL/H4+b2w+NFYenlPNPdsoIrwWEVErY8sHVm5FWGfXP1f/hZ/8cVDMqUfsjWybzuqfMPJ+/ZeYKkNzHZtx7SB9Vg9mUdI6PVVG97QZmgGZg+nuqDnJPr88IqY2eusT6JV5FB87hnbWdbTG8o0z0FfaSHlZfydp6uws4E2z5iQd8BaFpzMCJZ4YvFUNR4tV2aG0m+ZLP2FFLM/tdcfvydkRU1PMG/2FRZ9QbzbahdO4+MQIL13VvigWp+0e5qRAVs6+8xzW6sdvf3pBcr4TIh9Ce203+oxhjDmObp662Y6hZzw2kibLGaq6TXh+Pj6N3TfZCPzJe0bTiUXNLDkFw/77tVO1t22QV+pITMrM/eGitMS0HtvxYzDJQ9nYcomeLxLkfJC/k77dP++wcL/yH7eimGfehaFrZspRC+DZu6Nsy/Dt7jtGH4ThurTLYmAzfOB7CXd0gXXuDZ//oJZ6Gzp15yPyhuZ8FA/Lu3bfFwBBD94kqBEVG8ctpcgS19Hgo9o1IevADEID7dl25Lp7dy8mA2DPNzJ9dk5i3/IJGhsXJOFv6C5vnQBSrWm//HrUJCBj9HyfJh7fw76/FHNIwLt6dCWxyPit2R5BbB2AqxMvK9Pousc4SR7N7LEL2VqYgFkaX4kP7z9+VUofqCBzntjasdxUn30q69tmWjp0PhKg+7vlceszWXfrjMuBCDnJMXCdxzRKOCNCB/FOLGIe9fe9KwMDKEx3tlxX3peV++CXCnCb7ScetcUPVIxh37+b7vogUFaEfvnFzBN/AAap/WwnEJSALGs1ykdkJ9MKHgZKVPT0wENff3F4FxLRPZmGxfd4q9tDmeREdvLt/PwLtsEuYGrs0XPh53qljmq7A/306Pz4BUPFTVtR5gW13juCVtfQY7cmAYLX5qtgItA0qlGdsEwtJP98VRUk4+L481m560fViah8XlOCTEgT0fNPlC4nJBPXIW82qG4rEoo3tsLM/ZHaLswTT6AD3uJeeHMtb3n51RZ1h/bbw+aJwbZmABvGjY7d+e714nfiwH4WVl0w9oLmiXPUQF5EWMmdxsRjY9dAPnq5pM0OuiIX017fzMkVk4lLTuk0+p4boCPX3ti84+8GNdvtEO/+sO3qPDWWIcE5AhWVHrhkz6SrhMhEJyJbeWN59Wl77twiXuBqKLkpWNrmzulDdQHVujdRUOX4Y+87BdikMjYjuevBPBZnXSyX79o8euX4CUrSoXFD65+fArz+YHocb5u57X+nX71y8wvB/pg61cZXW9S8vPT9fF0mUo01V5AweRKVPOO80J33doybZSu6bjVM/+Xr8V/KNHyx7JSi57NdDu3vMGNChGai36k3OI/DWWGjD99alp3rfjjR6s+I8SZV9+5ubCTCBn91sy82lo7Sm1xBdk4F0Rd/KiOj20bjs9uxw4o6MLf/0OqlN6WYR1T0ZhkOyi0tSfMPc0E9cv9/+nTaZTkf/ulGll7qpzTulj0rgsHsDnKn2YeNbsTleQl3jSfSiXtr+Y5gcZKVCx+8c6bQH6+lOdnPRO9+nYete6qi4JgXTCCMU27OXwloL6fR7Lw63b6kGf1W59Mt/sxnZ0XCVCIFHHhq6nXX7eBhvR+TJmXVKY+eLdRAqtXR7bsn6WjcX1k0F0en7/94X6ffTL4HtUtO2+Ksp2fUX6De1TscBwoMqLJPdhBj7FBfvcz8x8ngoe22WDhJZrexDm3CdaZUhAvOuizAN63BNpEDjkL5qNtCimPQVtO2VVLhPVpd6IyvFZSzjwlPBVzWqouOubBlpHjtJnnsyGJKI1Q+tPHaNmPllDLx5Rs8wPX9u7WNpSVW5oYYKjn4RCUAxL84xMv+B8OjdPuUDL5F+K+dDcVZv2C4b11MmYt/KJyz9sS2sOtpMOSj6nXoxy+vOQxq70F3virj2DvMix0tVeIdxtkdD7dJLLfHl76fBcuO7jo65YKWUf16cdXlv1tFuRnreUJiCo8o7eJEV2JaOm/LuxhU1F4jmhmcvxswHRQTqyBcuGvvysk2Rt/fuYsTPEEy34oHY7Xtz4l+asB9rhvmfVCa9Q4VT79r8EH0n9/paBavXo8soB4k80djjA1VGDqtA1aVoKbwE3YnZm9wZM++0X+Gx54YEajuKjX6kIFDy2WlXK+tpOyKzCQvHsT5x8AAAD//6RdSbeysLb8QQykk4QhnfQkCNicGaAiIKJAAuTX34XfHb43usOzjroCya5dVXsnObsBm/vnE6mBZhQ4Sh7HYCVsrsEsZXfyYqFezMddYcMWfiXCH7s2mHCUEZAM2y4O0/wziSgPCCr2UUQSX6PhO5ilDVn7PaJPb+tgbYXMhoZyPVNPvMXDqh7wCIUXD2kApKX5mM9kVhwRXok4F1owiKIVw1jORqyR7tXM/UW4Q0e8yUgQX0k6NdpHVAp91HDx2X0Ae9yCOzBKp8aYlypzVW2LQFx16nZMY22O8/uqAL3+vtGCpHNKqjP7qvdrdCdi2miBpEbHGp4N8UvRy5kHaof7K/zO0x9Gs8k3a6O2GVzLeY898fFtKKGcBUhvYxq1RRQsnmSVcHRvLj2ghTST+dxvJQ/0ooY1fM3p/gzP4O5/c4wf+RBQ2lsZ6LjMwDHpDoOwk01Lqfd6jPUW3dJpKYMQaP0NkKP65oL5/XiH0Fw+HbXMAzMnwbiVoLwYjLrvuDSZJH5nJXzdRYrS1RwYQ/cOcu9Mxqbxh4exMeoEVNKoYr8nS8G6UcvBLg1nst64ki2P662DK7YifHTAWrAdYBxo7Aniwx+rBlLby1f9DFWEL+EYs/m1egT81sM5bSqTFWI+wsbLXWoeYD3Q1+etgJcbSGSViqVhR0PrINAyBReZU5tk/x4RvMUcRgrmpYJZmdWrXHC6Yp9rd8Hal6GopOwSYAvubTCEjdeBS37xsD3+debcfXIIf+8Px9UzXQ8R5IEFxCOS4XAJFk/WS3iuZES1pno0DPtXEdTDRjlXXmBLeFdC2FXxA3uB9QBl7PZXkDcVj5RxPRTkiYYrzE+k2p5fawRnl43wLW+7FpfdeVhakdNA6jxStLYwB6InWJqiUqiR9eJ2bLUPbafcyFpjH4vHQrAdu4anjluxMRsV+H0fRubXwMbF1wBVI9kA2QgIDqOFDXNKMhvAl6xSM5S7pn/NzghDdvSxJVwnwIxX7e/A6HhkempGsDyPxlltLjaPzc57pOyCXpr6sEpEXbPVCrGQCxca43kl7HHEqeB4WgU1sXlQ66TTYL6NuQFbKDtYR/u4mBuZK6F4JPw2Hw/zqzzWElQS/8L6sGwlw0tcqXkTQCRfk+1gbyuMAcndlNpbPFHuoCfqzdRSnB3v0FzFvUcACtwnPp0+92ZxOA7B0/mlYHs8reZaRViGz8P8pEV26M3Zf7+vUKSpRPZDcW/W6pL7IGSmgnWtejdkAnUC7vls0NQoPsOGFwl8deVA9XXizcG6ybmyrb+ti5pjZILaDI72NcbaemiHpVy3rrnqNGFd8fcByXWdU73v/UK9v9fMZqv4lIAnIY/uaZA1bP9qZgVorU+Doh4ZQ/Hbho74kJFAhz79Vhe5h8viJtiUDyAdCYm+cC+/fazZIwOLdXkbUDzyJRojNg1MJnkFyBu+kbQ45jAbY3+HkR7ZWLNnB9B/8bS+eKz53hUweYIGZGsXUcTdL+m8WTdQi6wGW81uBGSuC0NBPjhSm80lWwol7WB9O2pk5U6gWcv5eVW1wXewyX/jYr0/TBlueEAz05mCxdmVRFHWnKMHsZGLUR+aEoaXTRlF+1O6QnzkYH2rY2yD0wcQ1R5CmJ6CHcZFdjNZAw45mOJDjD44dNhsHR8IvLouJa9EMAYGA9GAzQWV2H/OacqwV/Cw8eKKsIOYNdPEn0qQn0QXe8lUgdW83zKIJF/f8lkSsPlxamFzsXgif4WP+b1uJ9jssY+oIV1uw1KAuAXRHSx0O1Rte/7Vgh4qJfr395oBux64GJ7cpcPOgSSAXa7xDK91+KQn8WOn82t2CJRT0yHNQeQbkuvbfNBAp9t8FvPlrIuqgXIRKSDqzX/z5Z/Re8uvXzYK8NCCGuOSgEdXsTXXhhKmjJhYr9ha/Ftvgm+N+Nwr72B9iX8W/OzDPfbdwh747feAOhUlEXXtVMzzO5bV+/VkY3zZr8GcdaaoHHe0oda1VIIme99WCB3hD2vH7wIooZcW9s92pXb6CM25StoYJjfmECZHZjo/ilSDYL+/UfcrNcG6xmoFdHum1JQdoRhfa49gevJ2+OAs4vC5fWdLdZPLTOYjeQFajh0EXXIPqPb+Pps1q94lzBsPoikpVPMTdFEJ7v2dEDW5ScH89NdKmaM0p3b6tIP+6ZcGKC+JSbr7ozXnw3blUb/7nsibr1EzCWZeQsHbWRgBPUlZSfw76Hf9idr9ujMXvcc13O1CjLPrnQ+GciQQQgaf2H+Kz3QtpLMLb+SZoA/ThoHCsxtDY2wNHJ4ye5hrfUqUDf/pjw9Q7ClnKB5fIbYee44xn9c6tb3fBmx6xbMZ/w4GD78n9IfNUBwbxh/eoiwF6eUfXo0SUzPwSFwF++f1VMxHDrZg93RHiqTOKVjWJyuQAo/SyLntTCbuZA3q8x0gtuuRyRhOW/jNpCc6tudDOt/rLobKWnf04LB5mMFRyuCWX8gM87+BrLkxg70MDbSbktRcL8eAg/lprHDx1Rsww3SfQbnamYhf9ojNSjtnoPTCBwLG4WoutXfdWgBcAYnuExUfHJUjzJtjS+RleAS9PH4tULYvCefSSIOxv6Yc4LVkT3F83hUsrMNWgS92QvI+6UzmKur53/jWuyayOazWHuyMXUUP50wf5nE3uPC5VAs1F3wo6FItNhSufkzt8TKac8EHsxp/ew1v8QqYefuTgZuQnhoMJkMPjtIZYu5bEckIHoBt8wl2HKWk8dK/hnIHL4Y1jkpqcJdTMxrP3ahczf1EcbHTgn/5o3SnHQ6P0rNZ7cPYQe6vD7Ge5F4qevyrguEr6qhjBA+2HpVbCE8BqrGvP+qB/fLxcfcCaBff3wWRyK6Ee5ms1BLODIwaLxO4H7a7S2ljN/MkbC2fEZzx6W9amzERDzx0JFuj9lm5BGNKSvsfP1ErrjenVnxUoLEpJLzpTCYL68ZWP/vSo+ctfsdYlTrIVnxC6/iIGDnVPgQ3eEM0EhUTiMLuwYFffr++z99g9Jf9FwB416nXvuttF0rsq2fjsaIAB0D4v1qRz8NCeAB/egF7K5SG+Rt/EfDPZ0zEXnmby9wuEI5XUcPa8bC10FyhBeP86OJL5gmsnESYA6/UAbXZKoJlP2jujz+gZNZstmizmMBM2SXUv/xZxTopUwwOQnWjzqcqm9W2aAtmyUGE+wTWwJZqsWBwm2xsHmTSsHSpNMj9eSM9qM9zurRSVsGu0jG1HO9tbvy+VF68TjHuksJccXhM4CVv//BlV43pzFs3GVq6LP742tA3MneHqvodCdz7bTHhCIQwd76Q2k/ONGnwdFq46RsaGEFnLtK6l2ExlZgWs/pmc2O6K3TnGlLj+TgBsSMuD/V523/k3rRGfIlHW7UM404ParPtktpKqgchF6idX8pgyhr7CoWr0VO3LKtiGeE07jf+iD2MdLDpM1txrcH68flgWcoPgZd81H/6o5lRnPvQwrc91o7kwJZE6BW4O9QWdQVBD/jB/eOgFNRvJJwzveHnbr1C2+x0skq3YViW7a7dLZ/S0D+7w8p73xg+rG2X+x7igdSHu79X7PWMN3wKmB3wV5g7a4sjzULpHF2mHPzwz93HYzCvp0yBEfV0wj/2HJiO8PYFkLc9qtlkAiS2PA2WLaQ09qMQLEd1cVVJiiUkgpSyN0r8DnTWdkiAHJnFcn+GGbQM38aB4STB+g3a8y/+kCjJLZhdGcuKPpcAa9+7Oow4lntgNkKCncw7sfl8TyzA3PVv40/NsGgzl0BcPU5I/OXXXPc4eNxNDfXHQNz4TqDA1LkM+PC32A3VRzWH5SU2sZsJf8WsFGEH1u/jhe56GoJNH11VyLgnuo9fsxEOsRKDPu1FtP97+2BpZVkDPz5hylFTUIFjBmha4GJ9EKxgVap4az1ZBjJ+P6yg2Cs2vkle1Lj4FVuzim4tz1RBoGg79n3iPoeiejOxppp1Q1NKDOhy+E3YtFbFcg2Sr/pc6oUs5v6aMqOdXLDxI7Ti5o9Nse2VwAL8kSzVvkrnsCp9+ExPL6xFvQTWJ7JkeCanDxIUa0lXG+15yM7thLGcBIH458kjvITfG1JexzHd8pUBfvnqclhtJvWFlyulZ0kY75jJls95NYAF3jqNLLcuVnZUaqhnZMCWoNZseZHX+sNfajM+Zt/f+7/uWEt4/6sFoiY/O2CeFkItCCqwDuHnDA1Fv6OmXvvil7/gq8PFNt5jOmPHksFn7xxJdXJENv3iYRhvPdYGTxuko/SYAfcuK+q/cFJIhD5a+H4PZyTFTgFW7F8SiCTjD0fVZW9S7F95ENy4M+rNttr4mXlWnH4JKbLWgE39o19hnz4RPgzvrJhr/RWDxhZarCdXWsyP8qrB3FFCiqQ2Spe53XPbxX0ujSrODfh0elhAeL1HJNziw3YqzjcBX8cX6KGiVvMcoYPgz28xcLMH3/BV1ZCIWkCaadXS6QihC5cmPGObE2swb/kDLhaokQK8zFy/oSGqlN5sai2CwiZ0fm4HM6sWjrCtBXy7L7mf/t/4sA6k8/k+g6WxCKov2p3NsVvlira3THx5eNMwsyjsofPRSmqG871ZhsPWQtR9M+x0h2PDT1KiwFaTeyRKR4FR2odn6EmAIWl3T9K14T4ZOMfNGXHKTk7Xv12XQ/8cvn/rIyXn/C8Et/h9QVIWfdgavvoKWrFl0IcOymKp3dUC2eOe4OhstME4d6kCC5A0RFC0W7pc0lqGVA1Wak7eJZ2yZlRg3nxLHPrnvmH9n3OF8ydWsPOI9GZez/IV7r+zSK9weQWsz60ciLSnVFdCZo7GWJWgyZaK2grJN3ytFPjq7gP278esmDljPf/8IAJXpKXshxeD8gxx0NUW+PFXuJxyAync6JjTlv+USM8Idk/3ulh+/k/IgpoiqX8Wm3/Sq50q1VS7jiYQwfmFYCXdJqwPVAzmRxlrqpZ/3phY88LIaB0tWOCgwHoldcUU3lMCRfp0sHPgK7bO9b5WhpHISIbTMVht691CXN1OGHF1kE75/t7Cu1glNB4O4SBiX12h0w/tv+ddR+tow2sWv2h4OlfNLA+og+gqRUh5pV26RrdrAu5+WiOQmcScY1eXoU3D/ofvbNWIwIP+SXKyvpoP++Uz6Hx8C3tne/nnJyrZFHeEh0LCxs2/AJ8iONGD4h6KedR6pKQNbjAudlWwLDcNAchbHtn0dDG6MlYgvKg6dR39lS7y99NDar4wdR6HfTMp9fGqLvXORmL6tM2FBRaCm39C4JW9miU+WHcI7vqLLEqYmj998eM7m/9zYuuGd4o1PW/U+Bgu2/RSAv/2XEz26h/fzNHldQUFNhk9BAg0i6vJMZg/XoLR2HvN8o3GGbz/Xis+DK+8WPK9agOqeis1P+Na9NcotWDzijXy3d7nfG+aGFbI/SNNIVrpJALfBVXwEqgxPt9gw58Mgvv1Rr2h4JpRANRWZul8J3MZ1GBGmPUquFcHHNyBCqa53nE/PkgYP37Tj7awBJAQXTY9dgs2f6EG1oN61J+3XQyPsoXw1UUFRh/vO5BPtrXg13xMs2upmHPQRwrMHtkXb58vlug0QnDmuj12r+qzYAKX1VCSauef3pxGW9Zg/+QNmi2gZ8sXPVd4M5QBB4YXmvPjT6r2y6J9qePhgC163xlg+z7d/Mhmzre77VV1ziiep3uwtBLT4C3m32QX7vNCkNb0CnF1mdCDFzpzOhfM/+lLGmx6h71Y8YXLwfQJiPvGZPx2kZ+qDxF14SAFzCzBVVlL+Ykf3RkHPI8qHzoiP+Pk1Xhg0+d3uDTojH7xIT+K/XbKw7THkRrdwQRjJqv1rYqpewVOymSy18CJ/9zxQcsWwBwz6uH2f+z9fSzAUPK0VXYmJ2y8Xg0b9GnNgZYPb8ST8sPYDuYlUOqAYL8fpWL5M40c2PQcE0gmpxA4rcgV+WkP1B+juKDKbTWA0nZf+uM/G39FPz3wGx+jAgc0sH5fEdnfLAymw/E6K+O5sAiXz3rDP/KzAS7i+YN9S5ma4XEz7+BbgwP66UmaqxOnFMAF2Mlww+a/gy/CHTdRJPZyFIg6XXm4+UnYKb6oYZLkxfCR5D5G+qljoz56EMwSEn/1BfYuxIRAvzUANsKwCeaYu9tg4+v0oGi3gr1r5oJPdNFppIoOE8nCVWDLx9TPeZouhzhd4SWcD0Q9wXOwxNYEIU+ykoD7bgGEMLmGN/JVqIaOGltPz4j76UvSC8LTHPVvdwfhC3c42Pg74V20go3v4IP4Hos+fB59+PPLndgBbBRha8F+FwjYluSWzY5+2vQQemNPQ7653vqjCxX7Swj9CMhcJSKVsLlkFn50V88cKfV7EGDmb/lxadiP3/3yu1W2dUB4X5tVPRNTfNj4yxqV+1XhCeKpDVIMfn4+EK5ujCN1TZkETp8VKNnNwOj5HZpFdbovRJL2R/1NjwvW39NQv/X+gMDmj27+9h0i/iHgyLLdYqsHxepWb9ni88ik4IlbsOENPalNXKyOHViKBW5/OMKWba70G85K+uofdOP7BX9vvRn4CyeRWbgLA3vXwFfmj/mlRvqewHY8jQ0SzSppIZc2+75fc6ue3na++dka++V/cavfUPNDwmK5V04Gt+cn5x7qAT/uGlcJL38JDrNBHeZEbDNo8sgnLOTXYRGVyIcGuopYM489e4b3NfxXb3EeXjRMnLaXwQ1eOuq/jmExExL1YJfeNWqHhpMy6yZfofTpAmruOj4gW/1KDb2xo05MvmDa6hvgN76tnjQs+f7cwsPfGmGHr/iB3UgPQXhZfeyadVcsqhv54MfPnN19LdZPerfg10luFE9ZZJKX+GfDQWlCGhzqm7nYzstQ1elp0cM5cQYRIlbCF5+/qf8k+3TidQ6Cw7t9Yvd6TgpmlqX8ww8aZCYKRh71LjyuiYvWGwfB+H76BF76fKJG+nkDGutmC5ir6AiWSfvf/BbcbiJFwBwLsb9VmTpLoUi1t35tpnwv2PAgXAWUbP7MlyxcDSqJi5B6gmJAv8niq0lxY9h6l0cw5XvVAhufRnCrP/zTr5tf/M/vXKwLNcDmD5P64tqAcI4+qtJbf2PUt8Kw3t7rF5bt9CDMS/fNrPEzgfsS1ji80uOG95kGs0dkYOta5uYsHJb8X70qHOK6YOXUQNVf7Qc+ONsp2fe2TyBrC51u+TWl/jcTFSeKQ+rd7A8bC2av4BeP9sFu0jklSgvpbjxv9RJ7IP6UJGp46WuqI+AXzGhfPtSzccA5iPpgGiEOf/mS2vrb2vwGoEHj/rUJD+MbGIOPL0NVL1S0nJhSfJbyM/7qR0i4hcdhNps9geQt7hB46AFbjE9jwNM7NDa8U4vxkd8NcO+8fDttcQJr0JAKXvrqhJZblhZLlL052FVXB6cb3/6cc9GFqv6JqDmtWsEEldMAD0BFWiisYOw+CQTpYko0iOtTsDieW8NgaHJsu686HcLaaqHgUZ5I/O9iCe3q/vQFAndwAys4TwjCa3ikJWxOKamd2IdSkO+23xOC2fbrEh4zC2J07h4Nm+RW/OHr5j+8wLrv/RHcxaNB1rF5grWcfQV6ZW/iv5tFGYvynIfCVetxwkG/+dV3lXUyPKwrsWO2x93SqUp9PNMDNXYFne+SBaSgem/+bNcs3/C9AgOZ3K/+Al6CKcMffmEkVftiBKXXqkhydey/Ijkln1NsA9eaR/zzE5dL5l0hGKQ92fzUQvj57ftBswnI9CwYapNHyjPtBOo/Rb0QrGtU7R9Ujejhj4bNeLqBDrbjcUcgsbifPhbBxOUmNrsoTQdxd6zVOA8q6mN5SLd6Iv+vfpCZThQIc8ND4KHRwXZezMEsMeH8e/8U8yw0Ce+7M9T2ton1NpbS9XL8llCpPUJW6XJr+kmQcngRD3/YjBWt2fwWGSzz3kCS590YeWJP+Z9aCvb/d0vBfI406nYhN6yjAxQgfG8GdY7UD+bEOsjgHAKXuqJhssm8Bh0IPBnTJJ1VkxqpbcHL4+BQ3YYxoC9Xt8C7oSLVxvu9mf1l9lUBcxHaKT4AS578IVjuLA3HJ5UH63U5rPBsvgzqyUBtJpTIEMaX8kr1STXNuYVOAj+kjcmrfzyHtTkGHWQIlUjxD5+i/3vxFfwwcSCTb82MmrdOhh8NR9TWd7HJlstswddz7WkwThYT4jr8wmmWFmzcjhVj/Fk1gH+OFzTj653NYQHuIHs7AzbOow/W4ep/oXb6ZNi4asfmJQtvA2jX4xPrk9qYc12OIixz3aRh96HNGiu3O3w5txhH8cgF819REEhvFwfJotGwhV7nGgQP94N2qb2mbHf8XuFBkL6oaZeuYaG8n/cWuyPy3vNkWN21apWmMiTsUHxtGJ5uMshWvqZXw6rBtANzotz+WgHjJ5eylfPPLkCOa+MTNvxg4qWHAizxKGNkps9g2XurDK75K8JOl3zANt4SpCyZCd/q12A0RYdAnPQhNY2Llo69JcVQaJhHUb3sB9IpR0P9vu8e9pXbXzE3QZ/AyvqDGHnHIRjT63GESnDokPxl32YJ+TCBXC9X+FDA58Ay/48AWr9rpPYCYdPtOSowjlWIfYvPzVV7uiNsQQ0J08baJEF4c+HjnSjUXK/yQO5I76BPO4miDVKWg/5nK9mtc7A9TZCN/jpxMLVPAZoXOgEmDBoPfYfEVJMvRcCu0x7BXD1jbH8tfiB+2chguO2PSMVXKWXCYS7V+O4esf+Kz+kqytpmYSQLNrC9B+Of1rrQVgYRKcWnNanS1AZME9tA7Jjszbnk8xyyWPxSR6udYOX8uws49HKpswZd+nUviwb/1PWGTW00TIGXHjKILl1Gw9C1TXIpLX/v4uRF6qt2HKYbLEtwtF45Dv8OPGNGk/Ggf41XpHLGESxJeSeA164lTvXzoZjhK87UMjdNJPjXDkw1r34BuFkuPk/f1zAX1gcBXsvL7W5fcxj360UE/Xg9Uu0B7gPbHet8VwTyvGnkgS1H8XqH2/rAmnwBJs12M69OJGqwlfA8m/oyidVvNcc4VIIsnfWl5MH0o8ZKXgfLeefmcBiTE/Z3pB/YhS85ZWLJE2Prfijm/VvSwNXZaTgkexOsnFdlUDmLN2w5r2Ir2amJEl6jHQFlBNP5rdxzKD/4I85Plz1jTAfXH/7gfOWXYGzPng2t08HHF+TtzUUa7FC9rGNHr/thDMbicV3hGN1M0gzzkM4+vEK4LxoezWC6NKNRxTHkeqUisPvQoXcnYO1pnR/IGhI9mLKqmH+/T63MLYZlBztLuRczj03r9E2ZUPUGtBc3pc7ybIJRnQkH1bDwqJZkY7NohLPBo8g6IgxPdSC7zHPBR6la0haWZ/KYV3xoLHuFKN79lk7v5B3D8Pul+JAMa7oiLbjDXzzbR/Qp6DWV7vBhWyE9TKwP2IvgBIxK3iOh2s/N52AgWYE+9tEHRG8w8dJFhnASe2zffDVgwFXusFpOTxocxrVZDqKM4B2qNTZt88Ho8TzksNUNl8j+haSs3g8+aA7Tg9BP27JlylipumF/RUOYPcDUqVML/PTb0mD3ss3+ncVINXIzoeHZxmAt8iIGonH50uhbRabkFJwBRl8UCQm6sBnrsuXhWZX/sMPEtmFpLNyB+DV4GoTZg7GJv1bKg+MsihWnbcbg+cxVt7plZBFjMgyE1K16up3O2OPEOZjYsyphAWUd7VpVZtPxqMpww1/6R9K5GItHvMJxsWsia3/tMKJzVAPZpj0NVn0oFvIRLPi38D5SgvndrPHjpcCzhCp6eDUpYOPh5kKUWjkCbq8VLAFghVs80BhyTsDWcRn/zeeaXT7pzFrVUKKg12ixe9mBoHkTgVKtTFR/XydzbquPDCqrgDT0I5ay7t3UoG7rhXr9yW74FbMroHSXkfgZkmCl8AGV+H4iOMDvV8DWxHAVOG8tYLUjFrNw/4vBth5xVG+W6GiiK9TUBmDdjaWB9eP9Cg8clxJJ8IOUdTefwMAsGKKf1gJLYKU22JW0oJqn2SaBVcKDbT2S5W51DaPmmIAVLCMNtlvd1zQtQ/jHDzxRAtsq1nr52Mr4V1zw4dodTPEZoQq6EPlEeMvC1lJRieqxCQDV3LMBFll4a7A6iyMCvS2zV/iXjXCPrybWx8QC0u5YX2FxCiV64AuhIJ7zjaEmfl8U74rBZPAGLUAlCRL1/ezNKXfmq7oCNmKjil+Anh9FBl78VcCac2DpallVojLg6jhZ7yZbu+oSwx9e/tm9wsYxeiP4/aYMQbJvwHrk39U//AlT5wuWK2treGndww9v2XR+oS8wgnIhUjIfAobHylZ3z/kPiVz0KkjvtTNIk+MDI/ukpkOZ2K3y4nMBybmCgvXv1F/BZSoDIj/roiDZuzfA/WlioiA6DtTPD+4vf6ClNeZmDI9JD2+RxJFact/m+mjMUDWC+0KjgOJgsRyeV89DEpL11Y7FCkLHADlveBg70t6kPDxcYaCxDk37K2lG5kd3sPEljBX+Ecwp0xP4mk8e9WXasC+3UxOlT+0Au/zl1bCKl2MAHmBFZOMX6xtvu/ZurYPxH3kMzPumMlw8/o6z5sIP9D6zUJGVk023/LHhfX+GVyq9sX0J02A5t1cR7tRxxIbohObql42icOjtkrX88mCRvnEOpMA4kJnloblK7+ULRcOPKP4eHyk7ZUqlTnsux644OuZ4DlUeOvN4oE56ewxEvnwVYC4xJt2auWwppE8L3f2SU+8i3AD7iHoOA3XyKXJUK13VvJWhfvRyJKV5XyzxZRABmIGF/Q5kDTtcAh8csi/EOMv35nw59zzc1huStRKw9Y70Vt34Atl5wQOs8prcf/visJkhG6zZu9JU+WWNP75tLktvIdDdSUi4h7ukowqcFdCcKNgc5qBYP9mhhfiJJqpp85FN4V9GQHgnBfku3sr6ODdaQMEYkF2rPJtJGmwEnzNIafByUjCDY1jDIlBmrBXHIiWdtSiwMLovEfziHoi7x2MGG9+hhul3Jvnpge+79Gj0xDfAlL+dAfRdfUOcnXQB45exU5Z9HmOk9wbgK/Y4A1q/anrYG3rKzy/ZgpVs5qi7+TeTvVzPguk7K7HG8tGckm5XgzZvBmpzMRzWN06Ieo/+ZsR/EqdYe69dlY1fUo3fWrY+Q98qf5q4p0h+uWy02VMDmS4c8QHkijke9y8Nrga5IKUDfEPEZNagPsoxdbrEY+uf7dxhzZyE+l7RmdNzs1CKZxCgp6IcwSxehwxoYv8ixz1mzXy1cwtM7yzC+GSV6eRpZwPO7fJESmym6bYeePD8MwYE3fpkTuj2N0PbQoRq8QelkvTKFXDXTI4Ij5fH/uXXqSUatR4kLITcka/wtx7weWxS5rw+BtxRN6DljcrBUi7sCxIll+jBI+bArN4Zf/yexjBrwOqpXr6PLm2GCy8xBxZQNMP+b7Zo9lUPw5YfOKAetoMFlfhtrtdu5CB4jCcif1Y6TDHkERQ0b0BSo7rB2IJjCRUcJATeRo2JG96rA6fU2Km0R7PUf9f4H188wOEzLDUvfIF69TU029a1WA760Yb3P/+Nw0MTm7PWQQP8+HlkluawqkJ2h3csVmSdvbpYL2Xow3eOEmodpC5gwuDykKFij8TJ3A+rUt5m+MDXhN5+esr+cBoMu7eJ9bgaQJ9N6Rl2Dfd7f2axjLv9DMdBdDBKxYrRd8g4CNtpt+Vfr5ACz+1g8lAMRMFqAOrOHg+1Zx6QHVhrthwMW4GHxtguUnhqg5hweQ03fo42vlgsrD4nsBL+IrIIXVDM6DHXKhi+H8RJHGyWVz9wEB6VE+KoPoGp2XbNIPWF8GGLLyZUlaYar9mjB7/gTGYtK4FOu0NoiasASEZq2/CkFyZSY0MBW/yG8CT15Pd86awCvELZcgrsyCwdCBLqDvb81qLlBTs2Hz3Ag+xTF9heuTAgbnRFQD8GOYKlbjTCEHM5RM8vwL/3PabRrKie696pWT7XdDnFkaaUxnbQ7e2WmswKvxnovn215f/OnNlu7JSrDI/4IG27zgiOKoCcS0N94JTNcpCIBq8pyEi3cqM5Xi7nHo7LcYdEOVnZemdHTt30y8bXUMM7nPSFP77orWraDFUu1sCCa0Z1N9JSohfJDFaZM7DRN0sxPfGUwNMAJDQT+zBMfvYR4SCjD0VEW8GiEzcGrxQ5NJA/8sDwdFKgJaYydt/8oWEaSkOwiKtJtUvPgo8qsRBu74tqqs4VXynaKeAgJz+8UoN/fDQl2onGWSIOKwiOoapUbku4l2kFwicManDZ5w/seW3fMDFXbPDpDzxaHrRla32h2e95CGzMezOs42YZrmJKuGbNBrb9DUgV2tg6RDWYL89dCYuLZFHrk7zTTS9Y+w2f0Y5bHMCnkaxAUJ8bjKz3G3wYvGq/8aNN35gLf/wj8Hv5dDiCF9aQ06rxUDN1h3CK4hc0Nh7tjz9hh7xOxRznRgefum+R727ZgSkpKkXF34oRcTL/mrn8LK1a6W2CLxTLw+zKhQKf5npEyuIlgHeaPIGYiQqS5qo3h0UVE/A6iRk2j1gH61gPJTxyykKD3nw2w31m28ouCqJc03fz47cQe+cDDopGBtO+/d6hO0n2b7zpFKVkBbWZmdS3S90Uw7PAwS3fUZzaSToN+ef6Gz82E0UzeeZHJfwwfqAncDHAkn35DmrlKUKr5L6DbX62kjpXIqF/PJvvNj6wrU9qQhUNy5B/chgH9IkPB0tLRcGLNPjj62g+8c3yAXCE45LuqHWIDDAf95MGq1v1otpYOCm1R2uGnmCZ1BBuPSM3s19hZ+zOONw9craoU5LDfZFdCOhNfWBZ4NRQ8JIMLTacwaZHuR+/RMLpeynu56di7fFuif7xxU9S9DK8n2xA/dWfAHtUYwkb9zJuu9iDYX4r5yuw6wUjfgR4YEr74OHlsOj4kzyldImdm61UHE2x4a1pOuXyJYeipUo4jEQwjML9GMPLSrpfvmeLflsqNWw4kajr/Cx6M/9mP/5JzSOExZwyLwH6dJioBfnRXHcZx4FgsNV/eDRu/h90zSzBt3i8m6tkXmwYeqVOD+BSs5n7miGEj9ih7unDsf4lNPV/4yW5vZu3YHfJTy8i3gBySj/FUVT2DO3I7OtPc32+3QQ2md1QD8k4mPvPkYfjaLZYO6bLMLNWMMDBJT1Zn8AKWGQmX3XzSyju+kvw1E1phv3yHcn+ZkfpKkWSovhccCVqZAqAShSMv/dJOuWdpSzc0xb8+OxPXzGdDR0QjEWmfgNps+xpkIDY+CuIOH/8ht2KpQObn0HDiLXpkgaJC7Ms1qm98U+elpEFFl8H+EBuQ7rOQ3EFqM94JN6cF1j0/V0GP/8Na3JWMKcQNXjtzhbVt/xD9HgPYa5dB2xxDz9dT+F8hye62kTY9NFwDI32Fy8Eso5L6S//gcd+pQfDTQZ2DP1WHZVrjy0L78xND88QF1xCvvfeM4c/OdFUql957OWOW6xI+Lbgae4I/a1nprB5hRtfwkG7benKv7UB91l/pw/V/jS0H+85jOXBRjyoDum824U8HKrMwH+v83PY3CcC216haKmJx2i2k0Wgi+jye75UKtRQgVOSxug3f9Pj9YHAqnidRod8ahYj+q5A2E0l9XP9ZjLz1ik/PwN7Oic1dNNX8Dn0Mg4vCwoEe/FjCB+PFjX81wzYp/gTYRP+XYmw+aXrfmxrqHzuX6pXf326bvxR+Su3ljCMs61FmcjKM7Iu//TNMpM3B89tl2LXHeNg2VMzgayfjgjykT/sNW8a4a7/UOyeOqdZb/c4Uy/H7eKd0/5gih+iuuDnN+Kul8zJXIELraRUCSd0DVho83eGRxnJ2J+qbzOcH+kZhsbuRZoj1pl4/NojfBuNi13dfgTUVepe2fwhIiQ6DdZNr/38ICI/H5bJgLuWcJ6r66bntnOsx3u+3/AcB39CkzLJbzKoZGFMNX9oi9/622cHWSWT+Oc1UkDtGToPwrCu999ifhhz9svv2E3exrBGW0nPetMLjhY33y5uyHPoToKN/eJjBcJb8ngYyYuBFCWvTTYoMAG8etZo9Aq7Ya6TUINyFFo0tc0HWNIg90G9XwIkPpdPsDYD8+GZHESqt8Y8LGbd5mAbD42uMEk3fVOBQGs9io8Fb46ws909epE3jvD1Usy7ncVDpJURPY3uB0x/3CGD71F8YOvv78tWI7AMNTp4LbUDdb/F31mGQL8kGD+zuFmq2VjhHfMV9UDkgFku+xxqvWXh6NadGhpLrgw3vv/zK5hwF0ml5P0xwT+/a836kwgOgvD9h0czOkcVPASZgG+bX0GHOS2h0Cwe1qOnzaTiAmt4/HwvVB+Tls2fv8CCBznO8aVJLbAMMXeFj8/eQfXEV8NYKG4GyVEyyBK1d5NPzNhWiVsDavHthc0TrDv4SkOHZu0ACukj7hC8P3VM7UIUU3bTDQ2K46DjkBOkgXz741Xd8AL7XmGbknZ/cmCavxk5PjYkfOIpBn+5v8M//5jYXuortiSG9OcvLuIMXdgr3Ep//vl6Z38c2PgTTWyGCgHd/lYwjI+tpR4V5lJIzxZiLztgK89fbL4O3zs4q8rfdrHzECy02U4BA9YDb/qyEIpy1aTdcIQEyJ1eCKc/WYN38qcTRRdOwfxBdaJmFTphtOnVXz6Am1+J/66lb5JZ4JHCO9aJDONkAVLsmi8oxNClWZ4fGDs8Bw78/LBG3LUbnp2vynmu32R/m+dhLiq7hXlqyGQenKqZ3/4UwoQRDu1szxwE6PobP6sKjE6+M8yJFclg7oVoqy99wTom5Qgf+EWpkRjvgRxa/1+9iMjh6ZrOzTx/1WnuM/rDX149eR1o8rmk+b3/mDNPeg3mp+FABDh4A7twwgybfLcn8ulzByS7qRrcpcUJo97wgpXoVx/asv7Z/LIgYDyMcmgAo8EGrcVtS0lzBuHx/KHh8+QFws1WM3hoNI2kGt2n9Ievm59Kw9cu3PipaMNTnWdI+Ep5MUpu2f3yGw5ZxxU03L+7rUV3pYf8aBYSB/sRbvUjJOTcDYwftvYQ+MOVzGR22VYvuMJHgxHald+p+Pd+3T3Lqb7lB7a31CsAXCJS+ztU2ymW0lVZps8fDezziS0MxgZk6m6gQe0SsERu7Kq9AleM5lM20MV5ntXf94NxagFTr7YPuzv4kHWKsqFzerUDW34lI9k3jBz+nsov/pDw5c1g1eOFg7sTf6AHaTmC1bL6BF4Ks8Aud8LFrNK9C1NinKiZtk26rgq1leQPeT98LVbpve9hrmYYW60uB8vn3GaQ71MTb/UCc3kf93fAUFgSceVCczmU7hfqqzv8ng9M98LzgUQE7R+fHx5VewfbfKNThaO0ywVfhJAdTHwpJsbIT69Y97+YiJNmpDP+/p1Bsw4W6s/xF7C2nnuYYWxSnWuUYKji0wjfzSRia6tHUJ/nCbBEq6DOnifN7N3GDGzzS4Rr9wpWTOEXvh4XiTrIfrLtFo4a1gcY03zLL3MUtCO8MSWih5y7scUBg6Vs9VlUgW9VzM3SlXAkn4Uac7gfxtMt7ODmf2/4c2mYuqojRI5vY1tQl2BGD7mC7919xJYbOmyRcC/C13PuibweCnO2P6IBTtz5jUMvvBbVmpchmN7niOo/fb3xIWArHxFj4fZM31XujuqJzjbKN/624e8drKFxw9p455o56fs71A/YJiA8uoMU7mkHxeCebvpBHxaxmnIQOWyhfmSRYjmTfQ/JtJyoJ+yf6fTDR3yK/6jZPUpzTu7CHW71C2yk881cPO1uwAPMbLIlM8YHzrsHW76gycwOg1TlXKV8bGCjmtZiwDZ+pNBM18lsW3JBzmMu7/VRiTE+PKpiqk5FCO1bzVN/q09uehdBPtU+2GLxEqzfDw5/9betXuSay1vyxP+ppUD5f1oKouBIZMpPxRLNkQhk+xVTd47uzadR5RDuauVMD3wapuzuqCGQZo2n94+sFav2QBVQ3pVOreUyF1N8bhDkwDpSHXNFw7LazqFoRyN21ud1mGXtskI1qdftIFc/fez28hdqbbCjXqp0ae9Nag/FiMzUB6cxHR2BdsCbFkpt5R1t91FWhvpWXRE7lzBiX/wQQ8jVpCWN376KxUHyCN+2GdEgOXYmfW0HFp65bVd77E+M7RxRgaFHXXwQi8JcXv3JgJ0vMqKM4GKyRgQtUAzZwunb64J5fRgd9IWyw57ZP8C6vzyue/Vl3LFb/o3mqj/TszqL6xtlqden6/sa5XC6BjPKLEcOZoW8Dfhd8EyauLs18/vjruA0FjpS0IRNcbAkDRbn3CJXBRlMBFJ1B8L+q5HvjmxdSTrMwFgZMbYdMjUzWa8QuvX7TLX1WQcLU4QrlDo44KgOzuYozSEBy4On+NLLx2aiVmSBpBAGIgenplgRbhDw5xsic35ai+VkZjzcva4GGnw3AfNY2j140YQj3EfW0uWv1sLf+KglXmHaOfm1hsHYYaxVHT9MNwUmcIaLiKNAkoo5vTUIzv1kY0343sy1tPAZEFmhGO87rphXplnQHVsbO84yFlP42XdwX8z5Nh/ApPxrbcHx6p+pjfGLrfuhlKH7cgxqG+qjmJmZ+hBXIqD6J7g0tLjFOXzrpoBxSJp01T5R8vs8EnZ8W8xzBytYXc8CNa+OABhrXqui31iGZBomBb0X6wjQ6/sk4FG80kU1KITg8Xliq7JUNt7f3xrwfCn+7msB7FoLFVTOkKfGtp4m8+qewU5UbexRKTTXaBf7MB9XQm0o03T2SwuC6640iejYSTOV52aG3D7VcNSWcjpLXQSBOMxHGrmPZFjaq79ZcgomqrLTgFg4++2gRHHE3qmZmtkIqwqoNqdi4yUuBdO4RgTJHoTYVXcyoH1QxerliBast2vXkMa72lCijw5bT0gAy8bI/c0/RcLqDfN+2/W664o9ER+JUUwIGf7O2u0J4v6Ehs2f5SPCbWcHAie/SScFWVdVlE8qDmStS9ezY4zqCF+ARuaJmWvSX2IAgm6h4eI7gGWaQWC6s884YNIKVud+4UDxupX4EJgpYIhqNag4cES7pz+DydWdEl7u1MLRzJXDLHUHDganQ4C9pUpT8cwi/xdf2O7LJ1vSRxgr78fhhMvs5WzxRg04BtcE3yLqNpJv369w9ocXNVVRAER2whygh23Rf+9fIW8NBsL3Sp4x/QZd5vZXeDVPBj0ITZ0u5MHX8C0Hd8Krx79mRU0/gsW9DEQSvwOghjYTaAvxgBEK5JSAvxFBCZgFEm67qHkSdV5V3zyfqB472GSe5vvQK8OBCP2faTK9rHy4x0eVBgxLbD7PpgHtDxHJuPgOY+r7ysO1MD3s3j6GKQlitG3rjjhsPG9Vsewd2Yfn+zOh3k7phzkOghxE39Ih3/scNEt+v5Ht8swnqsa4Msf44crQF+4dNv6yKVhOZilCzhpMsqD7m82G8Vx/eIz2q4vSeQ+v/yHtutVd5Zn1BVEYkzSUGDAZCQNOnXHA4IAJEqCr/x/W/srTnd5rOUjzphGjFI5Zf6Orx/NXd4/cm0GIPJcYmWVb8+HhNiCz24cE4pVl0xxRD9UPyWSEvZxwSk+jqfcf68HMk30M5/NQGrDUGyPCsa+X/S/AvX46GOmbNJs7vB7hc7g0xPDmyprj7tLCcPJH5nRRV/Pylc1wzZ2AqsFTD/tsRTXAQv9jdjZZ2ZD9LEPHAv1hrZ7kus298gQLfmI1z471GF++CfDPOLI8Lp8FzQ6fD6RB8mUbYH1BU6f4gJU0b3ZLjACJ7PXtkTOPKyro2YZPN5s70OfXgt2E8YB4dG16WB3zJzGHo9+NN3a9o/IiPtlt+1kX1Ok3EawmnWIRziUftw/jAImPLOZ/8DZc2/lNAmFg4bIfT9nYPVQP1oe3yxLW2FzC00dDr4NlMzdM7ZpnheahPVUGZvw8BXEWTD2aHWvC6+Zch/zyNpdB6n3JcNTZndRLyoiI1ZvEvmZf1J/MStEX/ia31FO73g8n0JuVlFM1R2k9dcfiDr+n8KEoGGP0s5ssB111MYXmrNbv/fFyQJLZ+8ze7Y4ZR5Z3gNet9JjFujajhKMedMH+EGfBk+k59Y02KFQnW1bd+EyftxdchOPM7JXfdvyRG7OeTqcdywdJsei5fiZIUo46MUdlg+a5t67gvNid8t/FK8Ttxrah0URgpOn8sL980Em9Y+Sx4Fbu63ldfg04MOdBV12R8sFdBpv+LLQlWLrY9Xi/dTPCKttRVItSNq1/EYUaAJE7f7pFnw9CBCuyvpLg7o11S9eFra3bTibRZ0wL+vxhgON56Bf84sv6lxSern5hznU+ZHPZT3cAZwoJMcHjo6BeNUjlc0nsK6oQxdvX8lRJ+SPGpH4tttsySX0ofUKSjyx1zN1pIqo6vKWfEvkdd/V1gnpP+TBrne/qHl2FXNv4/YsZkpZZ08c553BxopTFm/iVzeu0FPUmphbbeOsSsatcebq5v4Z4vblEaPokiY0m7QbEjesPGq7tM0U2XMJhTaKvNbbD6gDTQ2LEFFKBd8vn03g3ewy7z21Ib07u/dNH+M0Gi+4xtNoQfmxibo7fgu2GVoQpWB+Js1meav7TDws+kYPrzPXwFZsXyJY6U4luPSQb6e8C67gSyNZpTTQFx92MTqGs4zTPntbY7ecTajQJ8OG8MYpR9L8n8LbXG3Hey1HH9zvQ4A9vorj/8fFldle9gI1CzOD56fpGXY6AmbPETF8Nu6n+zRQ+4t1npmBurPl8biu0zw4qw3r2XPSkEGlRFIlUFkLbkuXLwYOnu7pgTbySYm69ZwXeMojVeLkR52MRUegO8574eSbX//QiGgaThFu24eJveop680pLqvzqsJgLd5LQwmfsT09y2usnMIUyY97DX/PP8PacZQhY909vT+XxoiHHaCjJD63R8dJ5lOiylmTmJEkazruTnSI4Hk503MOzWPDJhl+/ivFnc+vq37WsKp2bHmeXFLvFgg8H6MNLSowXc9H88EoB6bfnmWr1dOwkc52I6JJygapfqnCalcMBsdMzp79bb6BZCIwDkLeU4QqCMRz1cNvC9d1hss3XtJhXzk1UYvX5YPH+N3FeeX2O9i9Vx4u+yAbWG7b+x88bIqB6uI16hcSbcmb7Zf3Ft7eisOgXLLjPd8i/Qy1A++4Qw2LFuyELnRGxSH8wQ6m1rBdvvQL3p3Wh0+74tpgfeMoffhH/bL85W7FJg5a4d8qNrM7mq+3m//ifPOflrnSxldD38LlQMZvqgj/NxAbl1/hYXPltPS16TcPXz4m43nyql/0tQfPIXCr5x5y3hauK8CT3OxWGDcoaMqovkBzSM/MGniWPqgFIfuoZW/xPvdQDhvnntMz3zrgQl3pGr5f9pnBjTibmGzSjP366h9oh5MPn6YG4O+sM+/O3mA9866E/vnvAA3VjsrFb6JrjmWx5aoRcC+ZEz6aXxXLbPYX8uUwt4qeBsCDF34w3ckX1LqYRlsytU3P0jkzIZ94v/O53c9o8ErTsf+bQoea8Smtb35rQkL+/H16VN6vHd/ak/Lz6oFGL6hzyVeKxwED5n/5MkVXFP2J+nW/WP0JkI+4GIVYuo837RZ8htnJHrIcEipk8BAxG2V5ZvP3siwW/JHT/GDMx5qcZysgycl2ey5LtlI8aTtu28eBU6V+s6CuF917WaeB+T0DI7afUjRBf7qjfCYxEOH/xxQ9SqA1ZowePqWjkap6j4v24UjXTnGLqupOA+qGs6Zj3YdYObighsV9NxLp8n2jc7v0P3C5ZiKX5fkZT//3coeRKi6dFL/Bd3TtQqqpKvOjA6nmLIwEWPUtX0q0uuHQ3WojeiU6sKI66+VgYkT6/tilz7maUrVV39NB6DgALwcUs5IDuTijfthzP1f4c/t6QlpCkeoSh3bX1UFq3y9/+JO5R9BAX5FqCqB83zB7ZPhNfURWh1ftiEq+/Nh1rg+CDzoo3kfh+Maw1twFDrqUjlkm37qgLOdarZ7ynIV0GKW/ivQR/9bp+JYRPDdZOqHSnhm1OiZmtX9XyVMTLX5HN+/LsZnB5iRb+xfPWu2WTLjRXOByMI3O7BhX04TUARS+UJDKq5Yj5MshfKw2dbfErsuTNtQkg7wmhcJF+1pjIW1HLv7HMXEDUonq1TUEZ/J441wBlzKzgAiJ7LEfqZqebQz08oMPzEzEyxUMx+vuRas+Va1E+cLWYfPV2h8X/L/vj1P3hFUJH78OIeig7/ujjHsxXXTN7WoUFNw2FAk3zjODz2kJzZ68MKJRyz055oiDO5TrRnXGX4bPVrNB8JvUMvjyXuDeqoJ7XQp1Ae3YIVV8H0Rrs+/WDgnCdMPfhHMNprZsYNkm2wZ1L1t2ET4YCPKUGiaa5QtP2UDVQ0eVIKydHPnvla/7To8SQKxzK/et6gL/6MF0DZ/OC1xDk6EyVJa+ZAwwO7KLPE6PyuqsHNVwushGHaPFjXzQs76evBk0n+Bw3iMu0aMGcDIMKx9emG4/39KA/Pwaic17fUXt65ldduTs5Cc+1WMzjuW6Bs6zDAiqSTlrRkwSHg3kkRD0YNdOMZT88rQsxBfMZMl4PI7RS7DFLiTH/ZaEzw77WHKy9fw3nn+4YgOlrB4KNsxAyUZcroNO5wxovLGsqj6mCrEMnUvlXRrUoj1GPxHgfsdiRwqw/So8ElnrGUyz1fKlnANM8p+xhXK9oTOMTBvIWM2KdVw6f5uXu2eMq2TE7Upxs9qJvAt69fP/p/+zj9D4Gt5BdYsQcW/Pvcon+Xk88jI1a1H++At65jtn2dky7sRjcRl34DnOzmMNfzacr3KC4Uj0k12I4TL2NCqXaE2O783l/uMYV2vE+xIufQLO9lzRQSabjJ767aOInlYLj+z/ims9D8afXIHYLjEWLftCkcu31l0exx12l3axjdwQ3yyN2XF4/bh9erpwAjrSJDqybNBydwCp+Efm6/pTxdY8ldFaC6Z/+bHh81mDzO/rEtt2TNQvG5gXb3hwpt201o3962l4hissPQV0jxOkVKjHFLHy9bbT+PbYX4GlvsHRMHC5G/QPQWxotFizrO9w+0n9+8WALFpcWfAUdXzcYJE75uAmKHilzn+K5frOQ4fdmhmq5K1g6b8rip+pqrinf4Pan5+pFzwfa3//Hm59ozavk+kIr8XbB5cpyiil4JiUsfuif31n0Wa8dsmoZHD473bCPiw8Q+Xxk/nrTdX0/2h4MSq8v+m/Dx/nn5/AJRM5iByfFRPLDCfTxkzF78f+jpgyz+ucH8CEPu/GeDYba4EFjBkHAB/NKZjSfnrc/vx4OD33jgKIMT7pcdsCn8EYNNKWHKzNW3SZbr/duhPbJOiZxOub19D28DsDt9kFX63WzrP/JhiW/Y+Gj2BZ0eBu2nkjmlkVmey7G86E8QUafPnEv2zBs7tMzBbx3czz2SRnyZJWVf/kec4z1WP+uYmMCkz5r5gy3GE3l89zorDTOf/kmb36ofMFZa29YgO6Dvk+alroufSs8PqW2+/v+6LbPOMM/pcxm0dmnkMGrJVvT/KJZXaUnZJnf//IVFtDdRY8qvqOCcRas/o5KQ1/yYnJpqk84L35bY0PZk01nNTVthbZH0QYv9bWK61EP4xY6Jt5YmKpPa/Q3PNLm1c+hgqwp2cRGt4Itra4Y9cKez9a202DSHoAnR2f1yMoy0ee0xMTLSNStCewuqLJ8kdivePdf/kIf0ge/VeDFKI82BWEYQka4fgy7PNhcYfHLFIr7K5y/le3B61YtFxM9KzS5Gg9QWsgdCdZ2UHCZZi0Ipn9cfq+g00AXez11R0R23rrkw4Lv+qLX2VbNlWw6j/iEHn3MKXrf9GWKxNPTu7iPmCd8OZq25fOiV9MylfQ+dt0Ubn8OeKi7Y/GjX/hs66oCuPHipZ5diytjeYc/fzuuuk0hfTFu0fruhMzmZJMNi37RRuAS2+5vfjE2bG9Csjl5ZNFHfCi70wleSrin6zzO/vkFTXyuAkbOilnL+1cW/eUXJN5vDqgzJVVBV/c94HRMPohfmO+gUPAzrAqm3LEkOzuwNe5A52qvhn/8/E8PxNrK4H95uLr8P8qbYC7oWugSCP36wIyV9Sm4sC8DKKeTQKKj3qG5Xu1S/XELCra5qX7Bk+xso1DxbHYZ6tni0+1cIv1t3MlfPjyusg+Fv3w0vFpGJ5WVRv/ly0agJWgMPlYPywQAFgZeyuc0SQ/6wk+0uW2+Yd+w23JxD12RIL6p1vAkjaB9iBTi74sJGUu6uwnX2q+YZ4lhOEnrU4KYfX8RBxHPkm7ONVDP+61CXGRd+XRxkhG6xy5hgXcdwqkZBRvOWnMjSbxc7/uXVxrpB2G4f1fWeNEUDfw0RnSg20fxy3Sv/IeniTjbxWzsjFwf7fbwj5/7hu0NEMZ5y3B3yi3xKB1TuO3GBJ/++hVoSykqoiJjvjytC2nzLA4wpfl1mXOArWmzEQyUbneEBM4Lof45hi9IfNUi1td3LPFkthpk8jtlIcUdGqWfckeOH/5IvHy+P7+A/Ds9smg7G916zcMrHPv5TcVH13f8czsJEHKvZ8mi7yWn32BwaI/ZRcrLgq/e3IP8iRvi7MompOQnCmoSXRgWX+s+5PdiptoY/N7EGpHRifJoLxcBiW8SNedzx6P0B9Adxj0x4jAL59pPHF2Qppy4Yfrq5oHjFH163SaJGPgZvcE+h2y9/RBXCO1w2mwkUzNtTWDR9TEWbKUqDXpnQ7D41yrjR+ElwPfnOLRzvlrXv6I2+qsfOm53PqJQqAaQdLr86bNC/mRpBEv++cev4b+8aTWtKHHu7bfgf+u96EHmJ9WmG4d7cQe1Xc/4H/8yxA5gqf3A7OrlI+lbRd5ffsMy9M66od+2Iyz8wcw8e4bjNgxE2CW/lEUamOHYX3EDf/gRp6PYjfpvo8Hu5B2YiTW5o+68v4MhL8fxTPyrFzww0MLPzIEkL8RfNrz+8mYWXI0n6t6qd4Hz+BuosJ5/9fi2lRSa61QQfHoPaKA/lILrrBkxT7ZsNX/5PcobjWrR2yjWkSyPkMUrwPrb5hm7kmU2m7fvFn+t1INkHUrQvtWGbG47WkyRLM/wUvw986qWWpyeZAXdmkOPm8VPys3mWf3pXbY9CZu6/+svuv0pZ3vthYvxI2P4wxNiH8x31yR7M9AtgW4Z/iXvorsO3QUumkRYSCUH/e0v2E34wcziWqCxUbMZHLTTCDmepIye1mcBPne1ZmQbd+H0LTsHNWF0JNnnGYZUkIIRzO8yBfGZZ3w6PvgJKXqvLvk4yTrFG66gF5sBz5WehxyyIofjtgESLPg13tQCIzjmJ2JPqy7j1tvH0F8eLR1Wp4kPkbwaVXeGCXNmkWJ66L6t2eYoLXh77Pr+6rQghyeJpFtPL9qlPwNW0r7Zloim9XWXI45Lnr/sT1rw46cxYF18Hiz47GrOs/eowHsX3wk5jKgY6p9GtSUvoMLrcbSmJb9D7y/XqIrNddF/ZCzAh4gh26Pol/3L45b+KHNP63X4r9/X7WYdNxfP5/3MPUdVNl8F081PDKe5rU7gl7srI/Aoup69vhR2+7YlG29tcHlPzwCv9e9HPEWIOAM//2jezkzJX945bMvfBdrNO8Tz82ZknA+vEpZ8nA4znmse49UdLfqReeWsh6P90RIogywnsX14ZNR4OKWuh8Keait6y4azHQrodC0CgruTaP3127SXfTdw99X9Tlwes4FfcfKZJUfVUk++guLJfDEz9J/dbHPkwb0p7yxo25z/q89F39MBH+t67k5Qof34mInl9WLGs2IOQApjm1nv3dqaW6Hq0e7uv9nxFGvheHvvezi0rosHS6fhdN87Dnw3m/WSH9Fs0csjGF1nEfth7eolTxZBDOSSCu5za43SQ6Vox2lI1Xr/RePlw0/w2HdHio5pGk5/fuz/c6QA/d9HCnL0ivHaY03BiXD9oI3ixMze6EXW7qRLj7ztxWOOvNtYkiYdGnR0mwvbnbSo/r3m0xXOslaz+NBC0fswz9DniU3X+l0qqFApH4TnKyHxzYtRR/PoA2ob7YkrXOp6IPfmAPfvOWE+WxsFf0z9XbNHwWKkV6uw9cSLBjIOPAr4oqPh0hUOkHcgEAN1O4s/Lp4Nsx5guvLLruOdv2t06jxCKraTbQ3ukCTwvR6/VD3+bIvud+s7StWvRXBXfbO5y4QPqt8RX6YqyNaEqvaDZF3JSTF5ViE65GmjT7R0rLN1Yo3B4/wBpQ8zYg2Hvp6yrZ5C8D0WVKHOXPP3TRDA5KcfsdzrtpCKeU9BuTUlc+1VZE0lTT0QWqHAcm+QTEIuvkKuuQaeQ8/n02ONR00t3StVUzyhFrn4jpLLJ8MoZj2fEnayITIjh+0OG6/jQWoGEAg3jVgnKy+mrbbpUf5GNvG7ZxtOpE1LKEVo8SQnFuKyfbsgLuk3QmDyQvH8Ol3hYpQJ224CDTEEzyt4ffVlJvvea17/xhf6ED6zDRZpMdRFp4Gk3FckXi6leH+76wWFUAEJSXwvJtJeSi1v5C+WbsSwxNX5dweYPgLBt6tfrOshVeAhoQavdenX/TxhJcEwZ4QY9zGyZssMGxRtvR8zQ+/H59OKeNBG75E5+HYquGOeW3jmVGKWsKf1+OAbisx2BHJBQ1cP+XIX5stVK6oJH9Lxp1QZunN2XIav+7hY28dKQK3/i8l2E1w4zevXHSK9fDJDeK2t8fi4KHBbWUfa9uWunpOMAzzUBpMwNuxwdtapB6tDIrMN6w5ZM5+bAHhzb4lla0drHHhooGCluxTibh+O8YtQ9Pd6YwqMmspd3QMdDztiVCeF80F/AKKvecNIHajFsr9eYOlExkC1pJC7zyzCbzts6ex9inry/TkBdy+rWD5eV908OlsN6JjvyLUU02IKL60B1VzZZPN8n7L+O1oC+qzyDXlM8AxHg3mzVvPhQ0X8/qJZlvea5jjHJ5awswzCY6az2pkQMb8G6H67289B5sAeZHP+rTMq+zboq04wCHlUUT2/E7kEACFA3r9yrXdU8i/nbKxlz0DU+GyZe7w+uvFpTRU8j90Zz+Rahnx0Mw/ssByo0FXfor9uRwMlwkzo+lHO4fy1HRu+57NNjK6Q+W8wzApZdmNSaTv39Zgp+gw6igi5qqcNX4eXygDBH0ySDPED0ef6OsPF36sE72XEJ+XErrCvwWH5sfnw+XWAAzw26YHydVvxaRnEoTG7jEl+ns2Qp1Ptwd1IJxbi+7pm1QsZiFS4YPbeOdVjUe8w7PJzxeL8VoXUKF82OgYfnQTf9btj/dKiDyWZ49x4+GjKNMvU18J6YD69YIsnJb/ArnU6HK4fS8vm90yAP0SdLfVq8dXdN9F6J3rM0YK3xc35Z8MJP7fEr+6hNcbGFOh1lSZLPf2KMUqbAK5K0FOhenhZf0aiBOvygPB60j5du3xf9FH8jkQRRMXwnXaRHh+/L0JWh/2yPmoFtvcJGN6Vn2wkYe/A4atgQs6jjaZ3n7VwUk4hM15Vbs1czS9offlNbGMcdGs6ffYlEGzcsSQagTWWimzDplZ27NzOz2L+9r8W3JtJmN3XUcjlp/QCReQGc29hk03H/TDDhvQ58dL011E+VBFckUvI1tSNTDp92xmGnSVR6T5My12LKlWoFB+Zx58vNJbKygGMMoXebJjqwXjcRSj2KsUTjW0+zucyAA1+CfHo/c3bV2h6aLYyn230Seyo7EeCVjfhAde7yqpndwcBFHLoLvVadmNmKRFsIbkzguu2G8LycUKsa3qW2gJF87w6RxBP15YYJljhOPYYUAFiwnakPoaTZUgn8PjPpbnze/G5TCUDtSUfmKPPE5ozN6hglFjOzMzu+by68hFsJT+w42MTW1MViB54mYaYCUJusZD2NrxsYUUnfC1Cvu0GE0DDLXEO5hvxL/30sKm1HVajaxvO8ZyfQGihIOR22nUTS+ZEZyupIWF1QB0/orsIp/BTMQzKwxrWMtHgvPZ1Zq9OKZq/T5bAsRMP//YH299B03673Z5Fx9uVT8t+QtWK36guq3LHhot/gsRGAaVDX3V8Z6UY3vnjSGyPG9YkTmmpr9zRZtnN4Vln7mW6nDAv2Yk/bc7+9sdlqNdYrNGjGLc27ZE5Xh3iPisdzdm6uGorybLoWinkYqifJYVm3ACzhGHD5UR5jOg6zudlvYJ6Gp+VAVQiR0LoMatHd3+/ats5fFN16LaZOHxPEhRTsiFXWSfFkKS0h1goHbIfsG5xN9tcQH587wTL6xVvu/fwgqU+yeamd92cR56DuEqXkefflE/rbk+BT/aRxPH3lo3p4WgCquwPiR4TD5uDqQBiM4+W36O0+PsmCXCks0o85WVbnN+8KxjCHdGzdNiFY1cVieZlCmILnhdD/b3bqBeNhLl78s7GwmEi3J9VgCFz3GxCoWTAXWl+bHPTw3r8Hctc36/KPXNP8hzOpu4Y4K29HCMqNGG713YGpFJb0oFKSt2j5+0AnvRtCb4OZccFN79C5LkRVWu41tNetUZY8J2YpUWs0e1DAzVYPNPvYxOHNHlQD25HRSFBd0sL7r6UEyzRJblf6ndG+VMxQEW/jtngIjQb/SGFtFwtp8CHqJjcYKrA9/ME83olW1zdxx5KeuvH/vRG6+7Ag1X8C4jHYlo3mroJ4LxKJWbeVM7n+NNG+rwcYXWilYNGmWHjDw+Yd7J3Hd07Vgqb1XIQ5GEGGY3IukWVuVqzaL/qiiHbrhPYyhKlz4gYXLooaYkk0BjbbM1PN+1uTxvMa+ov/H3iU+HqDix6mTg9J1yu3bP0p7/wFKI2m5uL1kDQ7gTi1zFH4/p+T1DG8Z6RJlZqtt5hEbAqVQzrL69mq82jRdK6urLtfbtMZXnzFzzFh0mCpPfquYNLgJ5l5rDo5H+66ZszCf74W/9xtaar3eYD8fH9Ih6gc833blLpXl9+2f5V74r5FQYBCGnOyAZvt90o/U4NCl4nBSt2FHbr0+z2avS5mMxkiW8N60w9QKVqRxbZu7Ib97JUoYt15cR4VWLIXzUa0bakhGz6ee54vdmbkAvVSDXlmtejrq9SpCRfG+tUOtXsmkQAsnp/kTBTXT6tZaKgpxNZbGd9xXBi1/4OwzqeCSnwoaAotlL4w9v7Xbug6U/PG8fDlcWPAWUT73MA1907tGbRlDUk7G3UncP3gse1NWe/X4q0fTlR2K+6jH6KSUHQqSILLvexaPQ5dhA0qx0WX9+fxdKpC9DCd+SIzc6a2nsLoA6eQjaZ96qH4Ug19FZ+GVXWnRFORawq//CY30Gx+t7WbFDv7ZZZVBSs6TeeARxFzNghU4J6fW0LCW1+05H5S33Lh/Xzqr8ujYfhQHNLHrPtAX7KWWTePoxr7sX2B5JbKeH3sx2KiW09G21W95KZMhJRV8HjgkI7tIkvtG7GWat6EDHSMWz7UzhZv7OA1PX8ZvHNG/joe4MJYpWpJNIknv1qNXbgq/oJC++Uon77PDnwZXbMPBuJ2ahdHyNMZG8Q63psu05AVQSed+ioy3afgv/hfS+aCYt0g3ZDeuxTTZvzCzE8GoacN1qDaukakaClfk2nnZGCEqgaW/AjnP2DSoGLpsZw9WiKwRNkCb13pcjiH1e7kYjyFcK0W6bS2E80LnpRv3wbxsI8udWLX2hhlR1yEj1rFPaTvMlBWskp1v/wd9Uld13bVxPWHwMqeKrvczj43xP18Wcbzvpxuds2qQlWuvcGDZ0jB0idDmsS9OWum1s5/8AaoQCvXu8O8cs2NdCXJwHD+TkoxpUctH/fZ9Evfs2IvbvDJPcqfZfo1c3Y903Yzf2JfkL4duytlbl+jl4u+9N/M9yQAcG62ZHN1wi69W88C1qlFAFe6WWC2HwKFFRz9iE23eg1PW4jE9Bjv1oGictFM4NAkX20dbZZIVJL8tSU0I22R2I1D8K5ucwtPFZ1Tuy9o9S8zK1U96R3y4zt+hsu9aDpQnpgdF2dJYvnL7XXsuzqk9h6rkK6agZA0+exTO0S4mx+mE6K/vTtNB5L692YvoGwKlbMdn4v1MyTXYKWvjAxdKfueHX2RBA9LJEANpU1R8oOQ9kfdDoDCbN1PVw0lU7Tl0699eO8KyUTFcHxzsz4d+nG3TWT4Hc/TMQnw8Ya2616AP+4tpj1vvjdnDxo8M8/uWP+7uYgAQX9BFunfGXLxQgWBNBo3pqE4uZb8PEul8ixLgIVo6JH87EaIlTtacHsoW3C9hh60j8/Ze5xE47b58mG6SgMLBL7UyGVriXqr0vrUfUe5IgP03tE93bPl4XveP/ZcAPc5vNgzuQ6FnfH9gPKJ4mZaZNPOL4754KWz0+w/7IKaev6ETwktcHzoT9306r4lCBfW0T5PSbZGMbtS4sSqlJhVzqFWGjrDxrI50Hcku+t+WptK0T9gi71cq5Hq4kojO8HwrO5bfk/v5pPt5wFW/nZTb5gGLp+v3xI+J0G1NemlkJgRIAl/6Jmn+9+7eh/+rMI9RefEcojvYodSkzqD+GoVvkHvmP9osImicP17vZ04JikLp6+jGe821siPIe8InulOBaT9y2uMO3NgK7j2c3G3tYcaKWrRMwPpFzm2rOFXNsaVBY7FFJyHmfd0KyQNtlyxPio7mZY/Cul4aTXM7stSD7fVWZlxtqilDU9QoHgEOvmZBnfdm8D/viuKJU2HMmu0VCa3l9UvwtpN+nfxtOMcIwYrvFk9ZqNTkhkxz2V632d8cOmoP8+/0ak+5pbH7bosSvCcui7lnyIY+XPH7GdvOoXPhQq9D6eNebf1Vu35BMN/CbrSWdTzGp+PvomHNJ4SzD+VkX/fZ3nP/34p6/5/OdvLPf1Jkbvbrr5GwQaXBTNIzglxBqkGEpUymqMRTQ64ShrxklPXHlgPprqYt7f2PIIjlez1KqvxcjdKYAzHDLmyf7UjULeKbDwDSlFy67/8eeil4lXVSbiCCcV2EdHX/KNlzWTae/Bwv9Uj1dJNxXZNwFDthusB0eLM2beXrDUF7vJ6rFbe8Uv/csrWNBEKJsDNbnDSrtzZl+eAedyrwhg2G8JIxLfs6ncSh9QmCthLgxPzkKxVODYSQeGhc6uuax0AXrntyP+ydsz5wJTTHDG6It5rEsWT6fOQ4s/xKrTmtb0p9dqa3XBU395FIP4bvI/P0NCp5o7FtzEA1oPlyMzl3oY3kosQbmN7lhOD5uMf8OTBzC6E9WcT5v9ZIivsNl+C9r8Zvjz0yLIZ3pieIyzbOp3U4XONf3i8VjvODXySUOUpyIdpUTgdNseZ0TOL4rlRT98nE10Afzyz4wEws0a7zQKUJelj3956rrcSi8Y2UvEX3OdcK7utwEyYEVpFxuvkH932/Kf/3RYz7vXELArrIfTkW1NvczGx3XvQX/EXzytIgfNkBoSUnevHwYZfzr2MfYjHKRiw5a8IBvE6VKB+cA9c2G1K4Ywf0f6km8Q4yD6Ia9e3ARDdhqqztTOeLQzFTgewv/y4VGz0QUJpVyx+H19WUMkWwJIJ8qJuez3j6ynvZr8tg4763WYzf5honozWkCVv/22d5MSbHXqiakevsWUhpqDDCZ4JI4TF/3pJeUcfdxFj2C+5KWBjvRmjaW+uNbdp1EPf3kylc7tXPPDJqOw5BtYOLbPbK6O/AONFqzpF1a7bGpiHoF1thBer3IU8oK38Ke/iVcaYvfWfo8IJe56YBs5qRE/sleLGH0TRg5yySe2siKoR26xqBTnYh5enwNM0eVGjNXKLeTHxbDRReCYuHsBh2PovmdAATgsuDZhh9oEJzA7pCdk7n58Lnwz101BUKhS7L2ahdE2h1woR2J87argc5T0usBfHvHlrYr++A0Wf01ipud1+6ffl3ydxHvE66lNlREteQXZ+vcpHK3tW4BsvLElX/U78SYagD5dsGXBb1WiWQxsDHz19VmIXSOcVkKcoot/VIkV8gvvebzwD5xdsn3VUzEf6eOk/eWn0YGK1rgvUw/IOGDiUGyG4+l8d7TkE9TE8j9lN95WKNCaTl7hZeBTPSPWmlrE4o7O+gBojsi6gQ91GrK9fvF//shdUQFr9HDIRltQk7/1++dXxz55pX96AYMmZQWfa90Bvz5nLNzyH+LfCiq08BlzH5vBmu0xf4EySTdmiu2Nz1PTt4C/LpBgtVeKqYBA/MMj5k4WLpb8/4UmcT4s+TbOaF73d3BFjxHj+pmspu63DZwkTSAxdQmfVp9Sg/RRGSQmF5OzX5Bo+mZ9/NLfgsf/8t2EmBbBQ2/W4id+Y6h18fG3v/mS13sQ6MYLK5GHO95bVxH8C/8s+c2Wz2tl76Fn3ktk0ffL+zUaZNfdzKIbolkb7uerbmXempxX5yScVnbggRqqDyx73xMaC+crAtuvahY6VVqLcdQdUDtbDhbjYF2PIUKVFigfkcVMFztZ3cfBXx6LIQxe2TQcqYLOn1/wl5d0k3zvE/D9Q0K2Zxpk8mVnY+jD9si2JFHQX78CzW3RkDh0+o5569LTbOVwYPEeZZ0kVMoLYsRLnLavVUd3UtpDlyUPdlv0+LzizQH8oYzY4aeFaDwC2GD3o0P++Iw+1/kMx7V6JsHjSYoJaQ6A7g03Zm3SoJC9kzAipJLtoidmNLOjqMBV+j2Yqx5f3XgTDUHfQrrczFaG3Z9/QHqPziSSsdNNZ0/MYcmDlouXniGF1BNhPkHKtmC8UC8Z63/561/ehf75jfx42bFYOPrW50iPJ7CF+EqinzwVw58fXfQECdt2h8SVKSowo25D8KLfpsk2JCg0tyUBjC36x8/OXY9Z7L2Eoq8+Saob9leiwhjzbLSuaaW/9IPMrP5rofWST2lLPsGMjX+rm9X5ef2Hb/JSL7zvxpP+HZ8vZpM8qbvmO9v6WQSD7CCrQ158xxm838tmh764dv/y4/YLFkboly16pJrBCOeIOZn/RDK/GVf9lxOFInFMrPGbVjOkEb9gbtSbrlvyQFj4AA/jLgw5a6dADwXDJ/61r4s/fawteInFDU678TWFEQhR98ZCHCXWmAraB714LJBwy30+XreK8S9/85uEhyObwxn0fDewgJ/32T++F6Sqw/JhkPg8xBuA8iYFzCAE1eNkog86OM2aZWpKunkjJ43+aC5rYss2dKwrjFZvB9lfvt+G04o9BBS3h4BqE7LQTCwba0fxbi39DLUYvnp4QU9Fm/EUEQPx9Q5L//JSc+lnTLIrU7jujJgU545wdtlejH/1Gr5Kic+x4Lxg0BRE/voFvX5petjv4pJ+46wqxpQbJ6R77EZ5/7X4bHnGHcRsckh4W33+5b+oV64G2yz8/i9/+qv/CF9uiDdfzYYHX22pXtVlOI/0d4dYEXVyWfoR4763c6ieacccq9kV08WUK7SfryrVDpLVTX966fta5cxjIBfLo3n0zy8QY3hnFg332h0K94KoWCRZ129+ofCXn+PZFHk3Xu5F+4fPzDXXI+fnimNIV0nErqEahzP/vk9wNm+YOLrlW3/6Fi39AfxlDUK9Q3629tf/iA40D8d7dRZAWAVHsvhzS2K3qdf36+JKlvVCrE2cFDH3PpJY7x71+BC4BlY3P+lVKErUFaub95fHYhyJVz4Z7nz/6w+wzSm00KiI4Qs9uv3pXx73YTe1//M3dOyltuj0+Jyg1TXUib+XhHr6y3u+h/uTro1iDudeuh3AfEQ98/fSvZvY1nCgFIWWmdp2DOfacEf4yzsWfOTd5fo/AAAA//+kXUm3sjAS/UEsREBSLJlExgTB57ADRxBEhgTIr++DXy9710vOeyqQyr23biUpIUN95vkk6C5qyXepl/2b/0t8W9ND9zDc9XjCcx211jSI5xiuOK2Zbw1OLu/eY4b8s9gwg0Y2kh7vyoR0s81/fn1A58C6wjKehPQvzCcrGc7/4s/bkLXVb45thtpNfqGXdjZSHl41B42jiH/+G/p3///PkgL430sKnFm90W79aboxaM0axujss+j+V/AZTwQj+aCazNv4ZcovtB5B7c0r85RKsYYmuYiw3XQZ092q7PjjqtSgadcPntFly5k7uAXUhj2Q8CvogewO2EfLnlFCbqd3zveRrMLlIeDlYHq77Dde0cPfVylYOJfndEr/jET7imLCiBTvunnSzneQ8m9PQutolpOZPht0xE+LfvJnhqb1OTpAs08fzHc3ljXti/ci2emezvHEEcPo4IM/riJiH84dGraO66PIcxGLdtettU66OVRvd31P9sLNyGWeeS7afv5Solt5Z9Hg3lBACWzJ3oSTNYbp9Q4DTjjTy3ufTrwqTS3Wky8WvrrRrZce3bDvxAezdfuvm8MPB1h1h4p4xwLScSXPtiYquwfx6v3Vmkz+FtWpAYPy/LqzprfUXKHlo8Cs1ePOJxHLPVhoZOxOCsF6dqVSQ+LeT3hM2Svvq3UJv7+T++hLQf9p9FZd7Y0Cz/HUdNWqCBLUlO8QfzqxWnp3ye6/8TNPx3fJ/NX3DPepfjB7kmI+t1t+R94tSxi2tSPiUkgTeAQqIXbKv4g+5o8E9jPvMKK3NeJDMB7QqOqMRLdRLqdvXjlALqeB2E0/5LMXmi1Ehl9h1WCVNZ/yYAa1168kTRKrnAscj6CSfE/nb6uXM8T9Ey7b5s58yeHBuPGGApjt51QWBZFPvKokkPKuJ0SMz+UUb7J+c1H3F6JPUd3xNtbPCzzoTJfnAY0br6Cgx/qOeN65yL/XtbLEgxaRnRWaXK4CVwd5RTZU8RIpnVaFFavfGE94lkSS8yrYNjCFB4kF2/XdmhUR+eD7xpuE6bZI522cULR8P/2gsurauHw50J9OAV1blRT06iw+IbDiDx7flmVJ96SRlKiaHRZk3iGfxYsngqQkPtGNHILR05UR3rIUEytJynJ0KjMEdb8c2/6upWAeXp8a8EovyOFW2MGk+KyB1V5fkzB8Ah+2ju6DZ20JSboWuhFvJ1f9ti9EBfP8DujmHunqJzk6xEjjIhj358Rc6dFwwarSsXxambsCerS6EKsLEouzP+utOfe0IaE+3azmcjEPkIXVk0qq+cd5dlJCNQs/T7aNDmPO1+UDq5yuGTPydZaPdlIDfEW5pzxOHmhOJXuE88uMMT/KVT69pW5ZRSbh3+8tz8dqxa8bRgJuhunonvoChuenIWEhmtZ6p1QhFLmhk7M5lOXX8M8YjFcS4c2j/6ZjrMRvzQ3dkGW3KLem4r0N4fzSNUaE9YOPw2CJMFtpSBzFrILJ78Ie7YUgZTbSPasf3XUIK/S3Yls6/+UMVEWHU+EIbCcJWT4PRpchyTgBscV8CEYBDyqkotEwb+W7nAb3J9Vwdj6wfP/+pKOh63d4jM871lb8w+l02ysg+/We2fb3yUdDX0ooS3zP6HJNaXDvnkhIHI9s3xG2hkGOZ63uzjfyIE0bzCSLW4C9YhOza6/d1wYtQYw7GVZOxrIkYaHcy7y3iLFRfN6nrWIj+aCY5O/VTGhw2KkGMX0I9BMjXo6t2h9hfe1TZt0NXI4rWaYoqN4G8/1NymfzNmawu4URHv1qVU7v40vR/kht481lV1jTKRZ1MHhlsD+XlTnXbOwDQ87IcKfP+cCrSgRH+VyYqQmmte7e6wLm1Wak5eqRliweFBFViWuQ464bUr55EB+AVEcqo3Lkg9/tCvSiWU7n05Hwz8EbTLCPO5UO1DbLOpqMt0ZPZYzX76jgw2EdXTe1NgiE1K8dmlxDsWFUTZN5Nu/QcM68BiIjWGG0Xc+89deXFlo0HZjuV49uysqDAh/4akx39F06432gw+H89dg+jYd8ZqKrw6ZydliZH++Oj/eriRb8Zn8yROV8ts8mWj6PX9tXY00bzkXokdAzTIoZjVS63MH7uxyZf4vsUhaG7IDG2eIsonZRjm32dGX8plvMRfVlTYYfh1r2IibmZrkcfB36LcTJ50Z2p+c7n/SXMwJZCwEtL1cl4FLYXSHKbyb9nLdOzrtNEmoCZDXxe7Bz8SPIIUTDvOza1L4dCxvBAbOJgEXFH7Voc329IUlml7nmkAUz9ScTQrrsGmlvbTmtlUBBilfEVF74d9mFCRBeXxYWSHEPONq/TOjO+Yb89EQb3J+91iJ+YH59coPvwu9waFcx8/f3PF34oUGPHH2xMFRl2uyV/AzCjm/pZL3MXHpV9hMSzamYnzVuzpWHUUB4fR7Z5VA803GeiY627PTF0vV9tYZ7k1zRR7cuxNb0RbY3bouubNszK068VFriWbNe9xUxvY9fTtIrdrUHJRZx89rhYnFRW9h9io788ItFiX+A8h2PWA6PTjdKsv1eejdu6Mbmz5Lnhq0qi34iPn8d+RQcjjUcYykgJLI26VA/VoK6nTqb7LypTaneHQu4HjgQIqxXnN3TagTUrtb4tVGOwXx9YlB/+KGX91cwVStFRYrgBcS3WFuOkmyM2oK/RFdPfylfl6cQmO25zPAdj1NtM/a/52G7YMoDXh/SGNLdxWIksNy8L0s3BtbMX+JddqY1RtDdYVR1c9EPLVriWQftLHOqrfGzHDrqHuCIgj9iUPoqe+PpSUC34ZW5eV2jaV+8Ri2oaoMYl/UBjdH10wM3o4BcIs0Oxr4Uwk2QpocF/4R/+IBO2+sF8/HPL+deiR0tSm8X4uQrzMe01SjaseeBHd2Y5BOvBhE+0MV4KlaR1TsVkdDqYt6ZUb2/6Ti66llTPfpHtunhD42t+nEhPDwHZm7Ng9X4z9WM3JG7tPJZg6aO6gekQ9sxB6+DvL8LS29Po9os+M4s3ptFD0rtusy77M4dT583QNkrMvHctVPaYXQ5wgkySnbBRPiaPqsrqi/bEQuOVvGx+ivemn89CsR9j2u0xEuNKiLWxCXyx6IkS6/a7oYj5o4PP2W0k49wO5oN7SZTS6fI4TF8koNDMueQBD/9q2Z3VWW7Z5vmw06pMCipSMluvAg5e7+kt2qF8o1OuJM4D9xJ1Vo+7tnZS445f9aBBAb/GEtv0hoNf/dDoTZrJWXm7mMj2XIJRqVU++ynd5l5nwtY5hOFQlQ63hevRC2l6o2H2yh3syrgTP3pL/dSh510884ZVJlnM8N6Lb2u99K/90/8rLnzaUrJCLOKd8TYxztEO+I56HTiEfPSpRHaX/O9w4PiI9FT9kr7fvBMeBl8z0j9+qDxWD91oBGemSN8XtYk0rFFgay6eO6JG7ydrSvCwvck2uCTtei1Vh2eVYOV5EpL+knvMzptHw7zD1afdi+SqbDofxIKydLVkDgUSkP4EueUKelE9bcNq/JIiFuPbz7eRN5CJYwV206nK5r34ejCztzIVF3wrIHqqsOx9BMW0tLg6x/fnY/9g+ULXo4H0S1gvOVv5veQIfHvlp1h7Wch/bLcs6Tg3hXw/FwddpikbcnbkWSw6DOmXzdxzufF1F85w8TslX7IJ1yv7mpX0BiztPlLC20jHSBpebBY4GnQp62qgnv1asr1UuTzRrDqXz6BwUOtRc/vSwb506PMF50iX/ShD87zY2Gx3k0WV1amAvIqCgme/SoYNql6RcWqeTHPxHY+P5KygRg2KrPya5JO6i2iqOpvAQnkDw3Yxj2/YRuZLrGl/JNO1nWy1ZltLGZSUuSjp6MaTnA22Pk9tl2riMj95ScsDJ9Tx1fH7xkCWXFZoglmIHtSDNo7xYyuycEvx8Y1HVg5/YkEH6UMhiW+kHUKEK5Vc43aE4p82OiPFEt/Ky+XDPF7QA/lKWJkxVLX78+JDtX7vsa1Yo5pU2xEE0X5w8Scjatg7CzVhB0rDSxvSqkbXbmJ0e7z7MjWqKqcC9FZgFpjwjB/tu+U72UvgYuaXugTwMlHQuxsWdB4pzCX53wSzqOuQU8wnnavoZyANQDJ+WaTKDR2gWTv/AT860EgW37q0Nxc32f48ZOd8rX1TQLUgjSmGG+OxRTQpF/5qOxTzny180pROrln2F+KM+bf4IS4vU9MqPr7fdHL53JWDqsMtptm+KdnF3xJtOfq5i36A1ljzKIRpqdwXvLTCo2PT+qqPv1u6S9fW/Abq04giMT28IB++gSd+fGE+UHuFn2S6nBGx4Ei+WOiddKpIVihaBEzmS5LfjxIgJOsw+Kj8EqJqIkOteHozLcP4YL/mYrso/1kOVtOkal07oAAeUpMTTh34+2gJrBy6InOmqB0dFeM848/WfD3Tjp+a3MFDnHjUNG0GRrnJGpRbr084i/4OU5ziFFU8edPHwSD3xkKrD+mzXSAOh2aOcfqwgckqlWGeC2ersi4rx5st+gn8fd+/l6optcruXbz9ekd1XSXWws+2Gh6H78KfNsS4dM2XFntYXXDqrdiDuVLPjMmxtdZdnEDcZNrmfOwkWzIjps9c5E9ddTZfHswXnG05AOndJKNa4bS7yDT13O169YbLrWQ7rIjCV7prWO3dFlSzHY9FYd9tuQ75xr07TAS/2Cdymk521pNinHNIltedR8pfDZa9b4VxNv4Vj5Hex1rivdqsTKoJudoX0pabTgDs7Zul/6Lh18+6mtxhcamse5AX9KBakltBdLNy0N1GQ+i1xbn4/3uU0TBtcnF5nq3/vHX4j8w71B05fyYC6zVZSbi9WkTpuLy/+qip37+BmI/fsrqjYBXzDlw9rjyMww4dnC89xGfj/ux0H5+i/fcB4t/Iqqwca+EGNes4uyCh/MvP/zxVzB/t2MLO1YcsIaNsGNDoByRFi8deYXkVbJ5BBVxKjNmzkThlBPA0L++X2J83mU5H/fogO5m+8SjcmJ83vfTU+u5ZrFLvvt04xZpoD6U544R5oicWtrqjObbm7Bwd9xY4+2wdmAZPxL8vTXEvjW46G9X5+ynv+dAaJ1FbyynDH4vwSQoU6bRr9SSaNFb00uVfNhfXltirR5NvvglI5z54cTiRQ/++Eezvo8/5ibXzb/8Bjmq6tDp886CWQ5eB+1ZeRdSSCJLhyRQRJjn8E4ut55YI67UAt3u5p643V9dcrU5jPAnEp0Zf2uvm08ocuH+iSnbnZ6s/OGl5tpuyR7Gxkbr9j1TTUhsj5GFf0T/Kc9ourcaFTYHy5LnGBWAWm1Ny60b/PPH4OmLmOwSVJT9uz9TdTNsfWaZZcmZFNYJ6iMrw90r3Vlj4NsmnLY3jifh9kp5NAc96rBt0Kn1AmvuiGer988+Z4vf1LHerJ6wzDdiflu9a9REE9Av/my291Kuh48EFOrfmX0818G3x94Iix5jzvq2ynsreR20OKktFm1wwIdBTt/QOBql6Of3WJr4RswO1rQYxS+as6h21EBGBUWv9Fby7DRiVMhdRcXDWV/wdpp/8cR0Hsnp5Hd2jxb+Ypb0h9JJxLOzXJv/1f+gjjrQLb5SyXCu3RTVYgvj9vwiztJIo79snCe8aO5SJEz60rf1+Fb700khns0DNEmKQyFXrxNeWZs2n3vlbMPiL+LWYHk5ZNb9iJb5ynazYKHfeGs4yykJ0YD4t7AtEdaycWfB8v0Ln8XATRLQ8hvIaMjDDlT6KDbM56+u5M2NFqh93WUSnL0sGNUZCmSd3Bf7m05TydxBL7S4V5+RXJG/YPiiRoTz10qJF53PiD+dbQJFbul4s/LFoDe9s4rU3pIYuZ3Ykt94M+wmWSL+LWKcXduLgxa9QlxzUK35w5MnuCNf05+fxmvxIkFYizv6TFlfDm+pjKH/NhXZ0cuQzxvBHeF4Fl9s9yFZOaxMm6Kmqwi9KJUS9KuTQkFb3wW225RBOgWHM8BkH5+M8O4ZzM9cdH7+FTEpMXOxLN3kh/fE2WcJmhe/D31B/sNCvPM6ta1WDRBt9fOzHM7tKT1rv/xrl231kuM8G1VTfX4Xvt0Hc6VrCtysAf3TM18Rryjo4tckTrieAuZkQwKPOhwW/1q2xm0uvpFUgUWS4BMHc2wNx39+EiaFEPzj/9P2wemm7B+oj5XzW/359/awz/LplU0CBHmiLfpuTFl3OV4hVx93rH0fOpoEBUKEk/xM26XF+ywVWYL04oCJv1y3xqGd1bdWhhi5mZpPa8VzUIaKLdH7BuVdow0OWGhmWLjsDbR+7vsDMs+4IIR3XcqP4DXw42f7cD5ZtFcyBZ6rh7Twn4541XkZzEHsEm+5/xFvNz7IWdWxH3/+i49Qkl/Mk6qPNa4HAZCUNyuWl+kr5WJmCSAG94j4kvNB08oMe7BO/osFnbLp2OdW9ugStTuG831S9jdRuIOUNl9iZ9oHTbszbdQ9wR9i3LMuHQRlk6nW69FjbYMD9C2jhwOLX8W2MpxRb+j6FYxvUi6H5kbW+pVtBFUXOxPLFfH4pLTlGR2K1YeuFv+ut/PNCPxQVGQnuAaf1d0lRvZMz8QMPvGCf4605Acb3I9lwvnXmf87X/W3RXPqXDoXzHNYkCiuGz7YV6Sgy7YLcGYxvxRPzjuBoXm/Fz9p4DNRD9JPj7Kwuoho7bCL8LvfJb/XSzEPXiIoxvNDskfUBtwUJlsTxCz+9zziehAEVV6RcNFbNzQ2rm/DRs7Q4p+05fMguk+ossBm5gPBMh86Bc1BWlBlfjA0++tHvPh7lD3aVxpI2/GSQDB8pn/6ijf15gD5TdyQJf8OFn+uRXFS3agyqJf8l/+hjZxh4ggfI5BLpe/Roh+IU3ohWi9+D/CN7/zzI+ZFf8GrPm9J4GYlmobTSVQ9Ri8Y0DAuhdbpCYr3jIk/vRyLLfyy6FeduSejCvqmwfHPb2Dmztx0/Hh1E3jRi8ucfEURM4WNDa4y2hS5mcWX3wth+210kjWnCK2vf+IZHmNxJ4ES2os/5gpwuXUvgpMdC+Yn0q4wjdqWbW3fKDntVkfIjsp7mZ/M4nE0J5o0rBxmyCntpkHO32i/9HZXur8JDcs1fKAtqbLoh5n6Gx0oe9UMF/k2nw73fa/tJtkjCz/n0zdvE5QH5YPGjj533J6OGM72ZSZbq5KsqRxiU7spR0ZlwX0hkUr7q2arvYFXkXVJF/8Qg2ftCFWY2qRdboQqHApQF/9I6TopfLZa7CYJXU+nOh+dKtKVTmXpzx/r5j+3Vf7lNxHCjjWB86jVr45t4rXSJ2XT532F7Bt2RCe+FMyczTPEMt4zLLEaDUa7f8P60LdYGP2Wd/RPH0GWsbT4we9y0dMOeLdzwrKfXnW2uqjRaW0QfOj1QKpbQqHe7zJm3wqST+y7VkFUtg+8qffXgD9rT1dJ2d2pVquM07c8nNGP3yHdFvkv/wGftmfmk3u7LInjLeDsYpClfpNOZto0oBjFh5FD1FsjghDQvpMeZKmf8T4xaA/u/Z5SwM8Ojbo0j7DUX/HwfZzSSSMVRj//DymhzedXZVCgp2e5+KVN8PPn0RT+lcRc6lGzW6A3uOOYMydcQz5888GBOHmPJHk+3Xx05Ur5V4/AtqbnbNo1MTo65Y4qz0AM5sFoanRlzmrhi2ULWXqcUV3mL4Ify6lxVDo5cDy+RGabdm79mz8/Pbj4v92U90Xx0+vMp/DlI8/zBB3W8YFl6X3dTSIGBa7MTrCE17ol/+oRXUtr3FlxkE8/P/9uflUqrA5Nt+CJAz8+i4nf8p9frmF9K5BotO/op2dBL46IGHDTOrY//fIN38bcc4/leBMVEe024vY33ta0+Ptq7TnHpf4XoXGHjwpqLqlLDBNkiz2uyltriWuySPqqvH3mmxj96mfR/c/k4jpav9FSn2TRGuudfKGdAKp0+uAmknv0q4+oiz9ANV3+Bsv7G5E0xi/yqydP6Z+XgHoZTBKN39bi5E1NUFI5J6QCKJtfvnYotA8zLbO0Jsm4vNXR2oksOgVxsCy5FxEpv3fi4HWXj2F6adVlfv2Lr/7d58/l1A6ThJ+LxYf0L7QXvJtZtOKpNVpzQUHOPh2efvx1Vi0TLnN8pJJi5h0dD2GC/p8lBdr/XlIQP9oNM0LrlXMUbmvYX+MH882Alb0w8RDWF+vFPN22+FTSxgU2rV3mn6a5ZPz1jv8DAAD//6Rdy7aCOBD8IBYCIglLXgLyigIi7gARARF5JEC+fg7eWc5ulp6L52LSqa6qTjoQ82FDjkm47VIUFAYyYsyi08MO6t4IBwb2tewi13NeYFnzMobYr3yfJYoK1mN3T2FayoxPIaxBV3ppBxdUEnJSSy+kCee38CtUPV5Z7THQqXpUh3oyLMz+Gv3qjjZC/Vy7uL/o3bYreyrh5YBcchKHmlLK30fIPm2TyGexdBbrqwvgnD4rZJy1qKZLREVAOdxhwb7ydJ2vrity+y5BtxDHw1xWli6W32uGdKKo9Ks5uQoGMU/9EVeLNtXXvoXrw735SzA7GQ4DpZDiwxggZYgOzqx2ogrTfXQn7sAZ4Ouq0wiz2Vl8epaFejkZQSdJ4+AiNV/f9TpUbx6uMcNg/9hNIWXfbAIfu/7qz8rc1mvX9wJkjnJP4k5G9agiWECubWLkmKmlrYd3loumCx+ouEcmWCdSuCDYfRJ/N57qgUDjpcIXt1N8EDevYS2kowBJknXEM1eFzpz4KmEbxRo5vgxVW7XvxIJtvojbTWKGF75XIWhtzz/orU5xpDQ2POQHBemm6GfbeGPRMwLgH4xlojN/8XtANP6ONKfYZ3QsvAR434eCvDpKQxqMjg1HtynQlesRXZzRauDMjiZRbfCi684ZOxgaAotz9BmytesrEVZ+VBCvcIyaE85MLO4aNkaJDqp6/upjDMPCRci74FtGs6c+SspetMgJNSRbp4cSQBqUFTJ3UxHSHVOL0ISav/WxsbS9AtAZ8plYYi5pFG0O6qoFe6S3CL1Xpx7uUsvCy8FzkXNzopDmME1Bzwg8OsuPMyAJZ7QwlL8ZMe8s1mZSPXxw+xAFM9Hagvl6e6RALUnpw1o9hhz7PWOQuvyemLz6HRbGYSE8p48KeckRZWwWNxbktPSMP35UhTPI+2bbtUd8ydLUgcWnWw+PYeKg/HimA35fg7Pk8JaFNE65DrO/uD4IyfmC8uDNO5P8ugrgUnIE79hBHzB+fyuQYgh8kuDvMJ/j1d9d/KnH7VzNw/o1516SYdwgBYbfeuVWTpeq/YlHtnX5OKNsRi7M3jcLfz/nL93WZwl+83dfHjuwJAZZQXA09/4sP2bwQc0+gvahrPybH1XZejneDWBylMPr80mGpfLsCArIuyP9ppt0etBvBbyiS7Bg3lyNflu1gONubRCy5AOlthM3f/ETH7PcwUP0UqWHHTvILUo9nM1nWUr9qRlJwehNSE/sIYeVwMvEZj5GPavAh+L+vYhIOW9Nh08d28B60i1yZ3lP6/3pIwJmVzlEk9i9Q8JTIvzhicF3Jpg5Cyfi8bqPkU4OvDOPwpaCXxFHzCFdnCk7DQVUyfAgvn7d17QjexsqXtoSWZmNem5akABuSXf++uU/NeWdKoXiIhy3u7Z8bX3Su3uAY3lHGb0jOidjq8JxZj8oeWrtsKx5F8MDH718/nBdnX4oHhh89XOFnKdR1fSYJRgyVr3HrC2/6Xw+NDn0ZKXC+4sy1oNRCwzUXx8fi7rc1os1XVWY4KNH1PX7dXBeyC0Mgn4kbi/P2piRLwangRXxih4q5d7zc4b1znd9aI6SNtG33MD9LddJsjg9WJEt9T+8IxYc4mF+DnCGQGVMYjKco/FcIwRQOIc5Xpbhoi1ac2+AIh9YdOyuU7jMkWXAlcQZZrL5ElIhUntI59eFaIearyd0/KZQ5O4B3svNI8ShlEE43X0dt1F01bAxvkoASoZHilisA6GP3IKw1D7EiE8O+MP3LV58zk2CbCn2hx7YFTKJ5z14gGvrK8C5oCzRJ3d0Jk+YITwcPy3R1OEKlhnYOXxJQY5f2j7IZu94wHBbbyTzllKj5+nWQtmuP7ijHzakwYeq0Dkjnqjv98dZ5WSK4VcPKh8+v4K2TC57BgzOT+Tub402Xac4i/XOdcmxLeNwfX1cGdaMZSMb2xu+CWoAxTD0kdZacFjk8K7DfVcZPh88GWctj9gFPWv4CB28d90/2pKVsKrlyCYPz+Gj9DtChj1mRBeOb20KJ4MRjenS+PsQ8/XnTnoZ5v0QYLpqNlge5JLCI3YpJvcW0g3/EtitduFTYI5geUJlhoFzO/uipJ2zVeCEFW7vjx6i9aopg05neLauBbGfskQx0/sz+I2nfYEZXQ0Rx4fBcAOExpkPp2OiJ/A6qr3PHU+mw8KDcIb2nfsSbZ45p8uktoL7/YEhSjA74XpgLvIPX5B7sE/DtLRX+YfnyJa0OSR+0KfgkecILxSZIctMgwGPYeogf4uvhf2eR+n3vJpKfs3NkWxAhA+MT6mgDPSVOhF8ufXLX1lSDmtzUS2go8cJL0N01+gqGwVM3+4VWUd6pSQzTBtGICTI4wkbjhZyXECuzAOhnUjqJbkKPQg+CCD0Otv1lFyFDprfg425Qb1l9FYdOuA4XUsQfnvOH96tOLgjR3kv4bxDMpQ+Znn64bG2vOK9DOHVZciR6wkdb91DgPn9cyamrSl03XIKeHhcgvfF0a/bVVwtCMBSIM99a/W8WI4PZcvIkSk3j2xmV+UMd0p3Jlb9NuuFi+oAtN0h8MX7vteWT+ytMP40PtG8EGdf8GJYOMHURj4WbUoHs4yk3Hr56DnOcbaa86EHbCJif3l99Ww/gdCAG9/yocGeAH60JS/p55frg4j0tJ9I4R8OjfsgV+GWOrMr3RNAw7bxETvo9XKegQjiNdn7NYQ1nT8FH0mmUk9I0a3QWQXREmDnCVcScbupHo+BYMPSTbF/aNgy/MpimIPPsF7ICXEILEwjlrBnRJ6YWaKHHMzTM0jERiZ2dR82fH8aIvYKF5edI2jTK95vF+1UObLsa0z3qvZpoDpaZ2Lrwp3S47NkpVNlREjxnz348Rtxmz//IH39YXz1ZSTxI1P94h9gvTkFIAzoE+NFrsJFHw88MBynRM6+P2eLFT3zQwANhyC0nUpnXoUPYvNw/a2XbCgqK4Eyp5ww07C0puNeZSQttXYkdStzmOpLUEBucN7+HptZRiT7YMNHXiCCgttl2P8+//KXG53cet05TQ+38feZRVa3Rv19C0hfjz4I1K1k5HgM+DQ5j4L1e3L42vqKML+/z8QLa6zN19O5AeDjIqSd1InO8VPqYCbhN/KExsnoetdV+M5QT9BVzwDNDGSDKX4K6JcvpvlkxuBk9ewfP1rf1yCAbQcCcmTcM53x2QrAK9VjZJ6MIhvXdyJAu8tLZMa8Fm7jz8NIK1OiXB9cvZTyBYINb4ntbnfJ9bIjwv0xlpESvdVsNCOyijOTT+i491ttDIREhstxPSHTejr1ei0OPASrKqBN/wxT3Z9lmEZWSE6m6of9g506yGdCSRTnVWozYwsseKzmixiho2h7YbJ82B52EUHDR8327R66Pz6D1+R11DjVdERYVGxOnt3zClbsDgxkcHEiKHKtYfGeIAHg+02JFZzfznL2Tz3Ez/bss8LxqE1XuZTBidoxscxuHNY3jHr4RIvlg18+whpNoKXFPb4jDtF2bXUM4XoaiB2WqzMrzUuEn3vv+aIcJ5Sen+kMf/zPo8tpWLipZOFRPBbktPE73KdeAwO56oh35httCZoWw7nYrARmV2ZzNKo8OOv8BSm3wA3X4ZyIhyARj8hWROKsa+tiKOxgRNTnEw3r+/PxoR1HOTG+zRvQa3w6w9W1riTjnmY2780LlD5Hbuevq/itcXd5x8Barnd/h6NxwM8068DG35Bf7fJhthapgA8hFn26S7xsb0t3LL7ZwUbqqXMdejtBHZSkZZGWdjOYuGVm/vLnToBHh797siEVuvfGDZ6rbME4MEB+CE6Y4v4xTDXubKiWU4n0VF3r7X0D2FIC/KgIQ4eusl9AhzMMzJJD7CxEJjrUIqnzIdt19WI6exe2D/mDrNASMopzAYKWWANy7GQF9O2+Rlg/XyHyF+E6zCowGNhc4gue6yTO1l2ZGuAF3ZTk3AJDOjpCDt+Z1yNNHTjayfmpE/cXf/D3yOXqQTzMrcStTwWX0Vw4iyfMjCTXO5Mo+6ULl5clusAICogsHagDuVVLD+e6P/pcv8SUqtuWXXQ6T0hOTkO2KEzdwO15fxGLtZ4j5jbDvLkffDEuIFh20cOF6L3dTW7enuFif4QC8ilbEOswOZTLTkMOnJ2AcU0FpSbb/IB7foTEeH1vw9xdTz28z4yHtBJb2crkCgMfTBMSf9NT0yT4f/yCBCDvh2VnnBMp2q8V8SRmN9D+snVNKa7qpo87Z93yC1zP0xuZrXDWaGPdG+gEUN0anQ/197eef3rpyN1JRpfvNwbK0hPi6T2Xrb4xlT/+6s+fbwxmGoEGbHiEVNUqs7lSjjnEzan0+W9zpP1J6lVxP2qh/93yy1zIfQAOqn5HFjmG2bzHeQStYTQxSLnKmfiHU8LyLDHkiG1d+9O7/biuPuQWmC3NZ1/Bp3jukbWXX/XkOUcI9zQiRL3fhXD9zGYBpyG2kBLxFV3y4RTAT5iyeLfyXj1R6iUwKm4qsqb1MXTiclalibcW4tnP0Rkj5rlCK+2PxDQlOxzuQR7B3j8BPOz7OZuc942BzCMxiVyhaphnjRpQtl8f5FqiEi7Prbj080+u2/gt6fxm4RpDhpgCoXTpLJmRTHMxkBefhXBuThMG5hfYSGU1aRgQK/uSTqfAZ0atAGSJ6LYgLM/nklCu+bApUnjZFW9ipVt/e9XURDhWaMZtn9+1eZL3CVhugkcK09WGWYvcFnRQMvz1ttMo3fgYiI+5TYyVSbWVc0QMivGjbv6VXC9Pv1hh5hw6JN/zl4bdT2dBvIxXdLrc23Bp7usobfyB+Nv7rdJt4cHmDxHjcA0crGg7AQwXGRB701OUuxgMLB/57BeHSsvWsgKCmPO1hKWWsZyFpoiHT9NokGzXlrPEw1pJm7+G5N31Eq5MfmL+9MHPvxmN7JzA12AlJJzWPpsPPNtA6IGKmExjD1xnWQywz0eNKC5gB4okKPz4JHqb77nGLB4hQH6uo8tL1CnuhA+G6Zc2yE1RTWkJpQZ8eoyIXVcMwKemyeGmB4jVmB0dFzeLYMEQg9hGfnY4bip5yXwary3+kpDb9N92Y+2A59q80k2/BJDqu8ln0elQr3RnB3CvDTw6YrvRVt0ADXDstiG2l6Z0XF7WDO1DVfn7mK/DpZTvDOCXevW5162q5+Q4dACv883v0rXV5kcdlT+8Je7pFTn0pDIR2Pw2FDw0w9n0RgCuEUHEqpQl7JxSw1KuXjhihjiu6VOYcqipXENOi1BlmGuE8x++Mpf7oW7bx1pCsx4WvD60Vvv5hfDO1bn/knIpm0l0TkES+DXx/WzTCLurDUJDZImyje+6M6MKbPkbi7X0CtcH++6BquKFqIE9afTQf0bAwGWHXLyVlMWJYpAo9ss/nEgyUN01WfDzC1l0utf0kPcCVFrW8L+mikMKXK8Bm1+HNj48jKWX9vDnh234D375DQr57BOf5gNdL8eLDmXedIjxVhsw77UTKzmKKPt7Yeul7byfDNj8JWKzLxSuUvga4Ul7PnzhPPqA6owNQVmUKynY95MujSzZIIC6g5yrPGQr0/sr+D5Nmxy16KyRRj8VsL189j5Wbi6g4e06wqv6cf7y73yI1BjKMlV+4+tQJLECVLROJpd+MkIaHK0ViiWroeiCLtv63qVgrhrNl3YVRxdPECCYug/E4kXv6skJNRV68/rY+IiuLcy6i8GmX5CetRZgD5VpwftjNfwtf9erO8zBz2/Bs2mnYHnWui8aCb5ufPFaD411aaA97KZ/40sLhAIEHw+gn7+zrOVcSDd7jv78tfF16VcYvfvCZ7BoAzG23QSWzeyiLOUqbQm2IxiPz1nwofUt6TpZIQ9Ncef6e0lms/G9m6GUH84npKJHBRaYbI26T7qElGW4OMQudRUW06AjlftQuhaxVkF3Ag+kzEmW0bNx9aFdeSbxIOcANv0oubjFO15eYgOmJUlc+FtvKO5Wh+yRWEH9hGYfmGmnbf7FCIW45IirBh3Aovp1oX1xjlhYiaLxd+OZgwfThkgbjqVD7kEU/+HJn77Z+AOcr5qP3PO8y94HU+klyHQPnIqx4bCvvouh6Ejrxv+QtpzqLoLL+Mgx6TVXm+Vc6cAWb8QsHUMjeZ3zv/WOjD6/O4uSHeLf88SSe9XB9uRi6MRPRLwPD8LlvZdTsPmf5D6Cgs5Hxu7A+H05yCZ4qnuVyc7wXvAWjpp7X48p5wcgmp8mQfKCazq/L75k0/DkH6rdNyO3Yw2hsGMi5Fw/hbb+8CCOS9fX35JMVyR0PbzEioH8QCKgPzmtAN3Q4JBMmqPG+8/BgPoBDkjLQDtUwz4MoNrCA5Hv06seT2MiwDIcbXTZ8vX8qPNKfCJq/fhEOI9mqUL06hykAbwbxqe+JlJ8LGzkpJyq0eH6tmAiG0/cvkVBI5v/KraX996XHqKh8S0vGODnfyP12tD51nizuPEPco9ui8OGHxHDrR7ib3ps86MTDDd/D8VXYch+fpT0sVoHc5s/ztW4tOGTFArRavsCvj+9XFzW1IfQijKcyaLw5+d4+WfOll+9g3HOGvn5qyzi8kj8mpQQWejMjK2o1cLI1D7EOrm1s0R2Pv75RXoHhuFLHuwKz1chJKdtPmjyUWZgTGGDTnqrA57mZxneXayj08H0Bv6sbFtDj8QljtgBZ5kEY/3TU396y+PyHnysxkFmiPlh3uMogjd7jTY/bR9O36KVIUnuHfnVK7DHeC7ouO+Al4t7deZYoD6EV5/B88Z/MdkzOXzKnIMQ6j9hz/TGDB3etpB6NBxn/3x+BFgm4d0DqvBxVpNTVijf7QLppOOGxc53IyTL3iIWHzED6YVnCh9Z6uGpjsRwPjc79VcPIJrp8WAO5TmCnGfxRHbGjM6C0+tw191q/D0RYei9m83CH5+x2uACyOjMufSrX5kTspzFc46MaJhdiKzHc85WJycpFB78GTn+NwyXWJ9t6UPCAoM4fDn7Qd6NMLtvrnJ9q50x5PYV3PCL+GUQDOu83kVocIOK/M6T6fqp7B76Sb36u14bndXU/P6w+a14OrlxABVA6r+GTe40g7VTZOQfqjqcgTbJQD/i2ueeF0fb6gUzHE7k6XOueQHzTXJiuHaaTE4/P7TwPzqY3jrZ8tuV/p4HsQmufuHuk5qiTO2h9GIbkrrUcvhhn51hkdWyz79Vfbs4wu5/+ZxYp0c9LJaqluBeZwkW9vJrGPk31IHRvGUMxuyYTb6k6OLmz/k7Sz4AYiKngls8EGcbDyqaXAH1D/9BupWjP/0JY2WAPsGRW8/8mzXAMj5z5LPvHcV2hCxo7LIOsxXHOqQje+vnxxPz+dXBqoiODYaLCtAfP938IOg1l54YXtxnC5E/Bvz5Z3Cr90xTf4LwKQa9n8kKcKatniS9pxtGHim/znCXMAu4u/LCnBbN2qRkSwQtiXfwAbD74a++t57Jm5iqFdbj5MyWyDb0jnQaaCHthVv680d8FrBNOOO92sOSF854V0vssNT9WZUOhz0m+pcWdMtXFqAAKuQ8Twdn5b5WAmsdD3htlJnOFZ5z8TlOnC/6zMXZ/HAZfO+A4sO2funnE4t/9eL70dvXJFZCVlKWjiD7vu+dRtzlLNj8is1/CYbmENkx3HXXGrnyLtSWPjrEkGvb2J9J83YG3ukTsL0vye4XB8xJ8XJhrfVfZKj4Qulrf5clENx2/tez3mDJPNpAVZDBD18of+6cCIhJ/sawcQ7Z6jGeD49KYKINv4eVn84l3Op5f/WhJbmU5U/P+b2wIjqjPF5hWEYRUmXOrtdMFkX4gn76V9/57q3CgPkLYmI8TL5ewqdtAf9BTgRZ8h3wwFhi8XWSI+R9+CyjxNJKcI6ZK/G0lxKSrZ4GyjfvI3OrD27+iQvfl6dOkHgU6JIWybZFf337u9fLcYiQBOsf3nPd1cvG7qr0/2dLAc/+95aCzLJrn7ycJ5hvFy0AxRjrGBLhUa9jG817hw0rIrfnWlv1WrXgY+EnYuz6i4P5dBhhZbYjMV+8nNGb4bfgIVpXpOiMps1lMFfwA9ozOk3mZ1iW6chA9S67yHJwC+j39DUgJxYVUZeXHdKmCaD4UbDtx/n60ObwuvbSkT2zxLh3cYaDs95DVWx65IH1qU39dbNU35bgM7c4yVbKuCVkL2tAXCJI9fQ2rgkMKBmw9JFn5/1BbgzwuVaRmemx9jV3Ei8O8xH7D6cdtPVRH1UxKWUBRclpAOvt6eWiQF8ZcstnTcdYylS4vR+SBycLlzpOVjgs0Zkg6HUh1bd7Q0YP9hiML8FZQL0wW+s6nlgupQMRWCMHr2sq+SJUQD3Hd5JD92NUyD7e3nTBzVMGX98EWAIwzPDzWwigaOScOPdSrCdD305Jow6R+6HXwmo4mxVUiH30dy6CNfnIogWkdC8gpwwaQPX21osHobSRpx4yByM6FcB7Ad5nH6KULYX31EXd6Mtt15ZMl7E4WrCoqEhO9dWmi9zXlnjpxBvx9LwZ1s99UaWx/xyRtXJ+RqB1KuCubjjk8fsWrPQZGn/zf3y8h3o1hoMBvcdHQ9ohG7a71j6qOPunq89X1zZcgqFspSezJ0j2+HO9xt4aQbi8NeJO0o0uhXfTYYSWElNIWrC+wiiFg1oa5MSrTzqTWA7ALSYxsi+zF87u85ICLcoXZK/1dvds74/w7gU1XtkXBDPHRy5I3xsEVel3wI1ww9AT9AyZ/KrVfJpTC4LJa3zMJyVduVPSgJ79nnxKnimYkwbk0KgxIjL3fWgr+I4VDOg0oBNxX/VyxNUILX20fC5x+aF/2u8C3po2xCvYDWDYOfwZ3u+Xyb8qe0ZbNFONwGlcTOKJjgKWOxO7cHmuT2StO3Vg+7cgQG9O9d/6qSlDvizsKqxhgfW1YZ8UwmapCBg9TrccTGZSuhJy2M7fD0dFox0389C6yyIqHqzo0DeHdTDu2YUYZVoOk/vWIBCU64hML7gPKz4HwS451iVePqMK5lNjrZBrgI+On0NC10MddNJ0zxCy0/DkrHvU55BrDj7xb3ESzoygFHCbT2LEBRlWlmrBX7yqwknOVkH/uhCIz7PPvpJxGJ2TvnVoLjWkR9wZrAEVXDgeB9UH9vPhrHaFWtDte8NfPpVfr4cdUeGEmRqpy6sPV0TfhbjYnoOyfVg5X3rvKqjcmwWZZbjX5vkTJtKXsT4klsgQTke0nGFSdifif7mjM5jL0Impoi7IPRcJWLiNkkqmdSNJSpqwf+KLKl5evky8w/6e0fr4LeGhUFeiSHvTmafRnsEvvh2ruWXz4VzEsHWnlGjd0xqGmyNjCa5uRO6GLGtDiL8VvIRXzS+PYURXQX+58BiYR6LcxTakb8GxwXL6iHi8reEwVnc7AXtyguj4Zqg2BS0u4P1j98hWtR7M38DC0EQk8fdLrYIlhBSLVclVPo/xRGeF1zB02EuFtEVtQow9zgUB7Bt0tK5PML5UzoZdxBn4BN5fjT75speaQ1vgvXR+h1gvJ11k3w9KnDB+hUud3wQwd1qO58RmNPoBOwi7BnH4cCiJhit7dqFLR4mcG+fr4G3+YMYzE5HD4yUbJ+vmQqAxhBhhZFGWiUVm68r/9elbuYd4W6/irnENdIleS7jcmcKH+aU4Enu4lzXJUqWEJbRMoh/ZMBuRnq9w3e+fuDOcR02EYAfh0X3N/oo14Hye18ACXuFHSE/C0iHfLihhSB2DWNJDz+bGaXTYHvvI5y1bzcgp+9p/72+i1wesZSmOMHpdd0TzeU5boyzpfuub3BlCABUhl8CjnUzI3ZEom3n3tZ0ydXUS6FcLTNb+3oNfvvPn3UDX+uM24OmJFTHyVXLWygptmN/tnByfsaStRmjMcMNXojteF0736sSDj3jDmPVvRMPmN5fhdNQfyDVlfZjs/KrCPAufv/wBtvV7hm37fhF9BCKYgRjOMOdOLTIFRR/o9/TSpZ4dTsgREh/wGtYSWFWGTvTvwjpjG2Uq9F+wIoZQ2gOtztUMy0s3/+XfRYCXCgawa7Z8X4brb76bRJbxocGls5LjXYZv+fv2wf7kgRV4iQ29OdFRVIdBuD49tZQUvcfEER8dIOIuKKCZ3+iW39J6/hjsCMq2oT6JoDuMLphmSJndBUPreMn2YvmSYd69HOIHlwFMp/GcQkATm1zu7YNueMdCpL3krXHlmo2K0K3iBzRndPWEkzYnhq2Ct+EeiM8nMmW99BnAnfgFyH+wqTZ95pSF4k4dkGyPJ8pn1Erh5K4scjthyPCWD6C5s6kPWPE5UGidcqCkrkrMm4jCuX/PIgwxUn3eu9fakpueDy+8rSG9/Xjhqpy2xuU8cn94Q2dyMWzYMqGADKHsN77ySOAClq8v9dHgzJN3iX75zBcTPQXzbb2vQHw5BF/0XqxXa/c6S8OtOCEvr3C9ZP08QzhLKzm9DFgTsLCWdHWLD9HdgHNoo7k50OIPi3fQ67KRH1IIE2NVEVov+3A673wVRteYQzLFe2d+vdoGnt7bjYefrx0SxKQWvIYvjFyWVBoezqgCUJbfRDUMMZuqVyBL0ksufGBe42wti2sH648UobP1IQDL67rCdtsV7y6XFaz8Q14hk4YhfnH2TVsqtWylDw06/zV+spD6p7AAeii4JFojBFb5Mp7hbhAfPn9f+6Gf9kQUSxG8iSkfVm1NmVMn6akUIPRsquz3+YcHxIejn80WsVXwNVUOUxegbIlCRQWpKOyJUvoheJ+rQwd5U5cwv6odpedATSA+LHv85dUnmANVzcERNjlS+wMbjovU9XBqtR6pZ3wO9yYxGriTKYc/N5H8+OAsvar+i1TN+ICZu229STot94VpVij9mros8Sh5E/fceRrpoj4SLdz4xCj2e40G170L5cJyUfIJSo3c168hzrkaENV5knDs34IIOTGvfGHlcDjw7yQB1nkK/H7fUbqCUWmlv/Hr5GqYw6vYQ9waMVLrgwLWKAGtGIs6IFZ3cwG74SnIIScRa+dzlBQPJgZ2rElYmGc2W6z9pYd10r59cbjLw37JixEcWeGIAkXxAFcsdv/jUxufedH51WgdZO/5F7l8v3Xl4R4NZF1XQvLYzMPESKwqHopOI0nS99nKnc4t1KJiQZpTpc4Q1WUAHVakxKXxCKhvMAnANFJJUL/vISntswilMvN80Hp9jZ3cymHEH0J0Ik2hLQK8VyKfK7K/8yO+7lJ/ZqCNGpNkcRxScsbxCh0/uSAD4wkQN17+fj+yBJ2Es3h86L/86Q+eNIazoX4qiHTrQkydSGCaSS3D8HTe+Rx+YTDSaTpDzhJ1Yry/SshC35WBlWRfYl/agzYfznEMg/u+IUhkzIyvvq8OpEqvIvXUnGo+CL4Yer1XEM/JeTp6F2BAeTf2RD0132E9saUMeMYnxPBACNaES0fw0OQaOfuw0rCVcSMMlbYjv/ywcEzN//InrvsUhyvwzjYgCOZIh/C48WcrgCbzqohcdc9hll6sD/dk8TDImS+dV+A0MHr0D597ZLdsCEc9h8KtuuDd6XgF8xkIJbwIF4M4+9NEJxiHPdxrq44M8a0P8/uZn+H5kEN0TNy4Xr2er8S3kHYYKE0D5kpMROgQhhB/3jmgwzsRgsI6UGKqzOhQxRc7uFt3mwU+Mc5s72cobeuByPhr1wvbgx6UwVnxOymcne5itx1UykHA3PHqZcu0cDHkGZcgvX4YA/s6pj74tCr0V/aVg6Wr2BLuBuGBFM7eO/1XuRQg8dDeXyzrC5bPJK3gsts9cPc6DA5142WGG//F1OSrYbnwXx48yUP2+e81oTRS7yu8LS7GTSerw7Jv3QAumnUkx8Z7DTOd1Uias0zxhY1fzr/8Zlz3gb8/zxbg64/bQp4vE6Qze2eYT69hhLETLH/5e9z0jvSZphAz/e1Ku9o/2YDPMkJMy/O0ffm1I1gxRw/J0CwAvUrPRvz9nt16uYXjjUAM02lwMFN7yJn3O82WNn276Tu93r+yUYbojQkytI+RLQkpLcA6n9HbxVOhLXaxGrAYMEXK+9MByqZuAgRaZ/7CRUO4BsF3hI9R/Pq1umMyuuTxCDc9go54qDUKQhtD+5v7yLrGKOR+evbCWxrx11kKsaIfmcPkJUdy6/iVjkGdMMCPMP97PpuNmlFhM0YrseOd73SvRuuh16PiT1/Pj+A9w73U2Xh99XSYPaq0sD6LPrL9PMjmB2UD+LknL2Ttkt4hbpSPQDhgmdiqZlNMjhcZaL18ROq73GVUEwQdott+Jd7WnYE3hkWXSGW5SJb1yFmER6nD00Ic9ONbA317HTji6emvRqqCRaWBAZK9yWDOTD/ZrD0a+6dnkfZ2vOGn/8GdTWKi9amfUXwQkh8fIR6ZZG3OTjwPn/rui+tr4Tj7D3NVwY/PWfr5BoiYtSKUUk4grg7sek0i14dK+RWQkcNLuAKrkMHjBlvivtPc6fr3LEjdvjOQSYtumH7x+c0YwWcjbqaTq3GF1H7clZiK1oa/+IFrLARIPj6+Ds35qwhvqEeYBpGe8dqAY/A1Ze63frR5KJkZyFe2QYGRVmC1JNeF41diyfFwauiqzWUhBWwM/UO6Io3TU7E8rCflSk61ww84WaUeHlnx6EuvhWRfV5NyIMQHGZkGu6fLZw54SB6+RY4aFDQC21WEeucz/qFpHLq2hrVtOy1tEh7epbO2ioHhq6GjX5OnCPAe9QWgvqpj3lt29XQTvykw5JAhOrFP2nI9Dwysz9vFb23D0gnUByheXq6MdDljwuWF50gKQY7JrQz3Dj0Hdgr+/ACgBs4g3aMG/vj6/sXLIXevFB6yzntE6i5sAdlfrzIUDqNMEsORhr/3//FTy8f3kJyyly2NRhAijTxTOqdTlQCZp4s/hPEro5O+jDBSZI0kirE4q1elEdRGxyIegDT7wycjLmoii+UrW4IW53AQ7jGqdqe1JjfDaOBr1RLkRG81HJGyw+BzfnbIfI+uNq9CW0IXqm+ijB+Q4SlhcngpW4KFjzXQ6XtQZomxhYYUM3cb9gunqNJH4zxiXrlryNUFy0AHvm2i7NaRLtLYiXB3Mh9+RfNZI9YxFOFBXkx09HBEcXeSerBntxOZ6udFf/MvXvkI+zQ3FG098msM51wO/M9ob0dUzE8CNj2NfGaxti1qqARd43HEuZjUmS0nziH93iVknucOTJwiM7/8Q+S4Lofx2GbGn36Q47ubDZOad1ATlprIL6UKOzuuckkA3kr0ZvwMRDdbF5ZwO5IUomP9py/ej8MZi8/kOszj3pVBfDu4xHqRGHRgz4/gynQxPqSdSMcVaC1UmJL9089zYqiq8CyNgGj85ajtb1/RBrbP8JsfdaqXhHQWrBjTw4cvdTf8rzE4BsejDzvBCVfXrywYsIyHxZD7hMuozCschhUgZxzcbKXPzIBJ2Z988Ru1w8+/hVW5rzADwoPWb/4OPAxBQZTz8B6W05gkku3f3khzRj8cg907Fj3rK5Njo3nh+lqPLPyWl+E3/wBr6M6A/THkiXkPm3rOGakCtIr36KenKWyuPCwp+yR/egu/lEqqXgX1l9KngPD6SfjTq3o4Nw6NY4WBH2W0kXUt64FMreyL9JtJZPOH6cLTvoWbXkGbHwm+H7Q1cv6e7D/+stdt5wzOTXXAHy841NPSfFcIn/cQP+7Jh5K6FWRgrI/JF6txHmZ7Zdif/4SFWexqKkmyDV+rkmAH5w8wq4NdQKC3MnGEqtaWnjU3PTD6xD4oX2etizL98Ud0/qYnwL6OgQ+v3zFEtzK8OX/5pn+Sow9y5gREu0INrF45RaaiGeFkxZol3dk0JmbHB/THbw5SuK7IJsfE+cPbLX8gR3vaw1Isai+d3vqMvDxJszn6VjzE67FE+hoRuqyVPkLOEnR0200ATEd0CH75jhzTTAfsUDIrGMbUJY4nuRmNw0YQN3+HKLednFEjWH14UsMZ2cDQtGUstq4k8Tzj3XFJwbI0rxkwQQP9El7C7W7puyxueI28qWud6VmPsWg5i+/PrYHBMl07CG5NEyKzG5mBxPGJgZed9EDKXTQyXi/fOgw+4wupWMu04fYVLfjN2xPSQHkEfVk8OniQqUk8fgqG5XLNYmjdewfpdRhks/u8p3DfYZM4Z4kBQ6qxATTznU5kzhzDRZGF/Iff5MzEkzb+9F5YsOHPjx7mn5/6w/vf+ywtiHRwO1QxUSPVCWe29Bl42IedLxUb4NUk94GTZhk6yoZbLxz050N0jThk305VSHP+IcJaUy7+ftP/SxkbMtx7nwIdj1cv5PnE78Qufz38VTNMsOm7+LDpH7zHR1pj5pO6v/hFys/fdISIBeajvSK7Gs/1H99x2cgn5oZ/E5GUSGpsR0O6m3+zLd5naN1V0eeY5FiPVyuK4HN/SjC+lW7Nsae3DauIT/D8Tb+U5lcz/eELMSgVM/51PRTwsh+4za+Z6Mp1tgy4dXZQsvFpnFyIBR/nACGv+Fg1d94ZKrAmRiJed39ny1j2LnQCoiMj7mow7sv7CK02aIl345hstT/KCIfZxHgSFW+gCHA6lPv5Q65XFQF2tr4M/PFXb/v7d3H2+e/3IvmbfgGJXpovtvhwwqsrNMPcAZCCO12OyJMcNtvWrwXvUJ82v0VzeG3u8r96jwivjbNOsFdhP7Wqz1lfK6N1O6vAsxSCTg4qwZj6AgTnZX37QKhqB7PoNkJzN+vkpmht1sLdYYbNGK/ExZcyoxfzZEP1rcVYCNQoo3Tr8sxSqGx6+UpxCsbm9//RKYZaxnZps3XxHCLkvUA9rJFoG1APA4B+/vj842PI4Tti+fgQ/vH7tWi/GMtXoM3lOSwkFmjblt8jBMvmXwPKSJd/+c/NGjqYma+AoPT6GpYPciN4B4+cbH5ONt2ZYiuhahdkfSwHzPqSR2DSn+7G/4mzcE8xhQjLN4Sa7ZjOIpW9VN5vJgZ3tna4wA50qVC83N/GvyalnYjg2N735Bevda+3DFwH9orkl6Ju3QpXRtrwaat/JQ4dg7MMNvwnWmCfHcoNtxLa/vWN7ERP6fhSJQukp+iOtMCenT9/7VbfFh9kWxfJwE4NMNj+gygP/xXi4Ox2YF+mTx8+Db+mu56Mv+8TX926VP78kFgcXXK7h82wiA76y+9/ftafv9S6JCV+2tPsffrEwY+PIdtujeFX/wLxez4hW9hHm/9jJ2DSOODvmi9xFhXhCr565kIcfncftnqGL54XJ0IuNl1tLoZEh1s+JycfheE8JkEDt/oi0m73MyA7hzn/8jU+pCtx5nYmCRDU1selWL5CPHYLD56f9euviuLRSevO/M9vwzsmULP18e4N4G4Xpf7qqdP1PEDofL4msTRncMhWf4W38dz/5SOquI8GbPhLVC/lwq84xjagXkoxwyclWFwjLUEx93vy88tGrVRcoBNwRUcq1nQljVpAMPHcr/5Gt3rHCuxQFDHwzXL4q+9u/IGYlZ/T9VdPo3vBIeFjHwyLUX9ziO56hA+Xqaqp/yb8r57p74vqnc3fBLEg2WUtXvbo4ozaY7ThLx7uW71rbZv1LL2stUL+88A669gdWFCzb4IUlOt1pwjlCoXic/M5MzXDRXKCBEqh8/J5ZZRrWrZTIIqvE/nVDwYajm4OIh6EyLGfD23m3W8pjf37SOy1NkO86TvYXYsbsk1rH6799dQBeBAHTDf9sMA46+HuYJ0wO4IUzM6Ha2B7lwyivZ1pWG4xx8KtXoL0sEWUStmhh9piupj86sPPa2pDf+d6KNzqMVNwvDEw2lcN5rXHqs2L4Yrg54erAbUzLtwlM7zTE/t7X2ddnUoE74qLiIludOiHJZbhxm+Qvp8aOrE96OBn/d6IgvKm/qvHbXrOp901yrr7ffXh7nR8EBOjDxg3PvG/thRw/72lQJTuA7FNyQLr5fRJIY2n1a/bBITTh38FonveKQQFch1S1RB0qGfFTKz7HYAkfYQufC5vkZgx/wGzWawqvNOU85nem7Sxk+48iLVSQipHlmFuHwcVfEr9hJThEoHVa4sA4s/xiRkJfRxs7CIB7gL8IerlalFaUWpIXaprmIu+fjhZZRfAIcgc/OXmZhjvZ48HHw1DXPTe5NC95zewZIBNLHG7C1TNn812196LeOtih8MNsAY0JjNEbtla2vzAZ1ZcDtEXt6Oj1Ly+zDJYszxG4SU0KLEDiwf3UyIi9VN52thWewMer8WwncoPKVleRQ/QflGJwbrPerkFayrhV7RD1uetOlz2VArYf9CHGJxydVbrerIgFhMO6XG61sv6XUbpXDEtcgFMtfm2QcCCIkyOxyjVaH5NGrA+QOmzxZfWs4uS8vd9cju/+3C6OHcRpvsOIf+enykRZ9mGBh1ldGa67VTdfoQgCXd73IZrXI91Kq8HoQwsYnGrMdArOorAv9cTsb9PpSa//8fZ5EN8mC71ZPa5+Btf4sSWk81um1aw6r4lMg+sVRMa0AJmX45Fhppup7YPigHjgyIg/ahqdDllC4apuRuRGQWzs0jCOsIC6gySW/urfX337Et90G2XHk6SNtV96sIwlV2iee1LW6JW3xrLljekPFoHLJIgYhjWhkaQ/l3r9RVHAUib6IBu9bGjM+rtFVqCFCN/+QjD2EWhIGliOW6n0vJhep+oAefMjPzyu8dgfLycQiRbSUW59EeNN7jyLH1uaoB3WqnXdBxEXUxxkyDPsORhGIpmhG33StDRFC50tbTjRsk1D2k6OoeUW/MAOjlpfcPzSkr7yRTh7hMWGEdh7cz7ECRir7F34pqtXe8T32wPysLIxNi/R4A76dpAQf68kYV33sDzbHGGovc9I7de1pDK6YmFTe87yC7GbljvLWvANAtVJPMGAvP78GqkPOt0pKC7mc3ad4SgcKMaPVRCHVKwSwJmN5BwY4oUTPr9FgC3NrBfpU6ezZO+prvsk/RIzvo+G5fLqYDiEDLIWyBL6fTRSskuzxWyHuDm0JroJURDxhFHrg71uq0fKErZQFA2jNn6/LYqtJr0iVshreq+WfwSZp+094dlLLdTaXdBHPfN17/cQDUsj7GNYNjxNTJi4QTmh3DMRR3PBjnprVQT1RAMaNIiQxrNL9sp2H4EMn0YKIJrAcaUffjwLd1YZAQxrhduekHJ+0QWyXfqFPaqHG4XK3xnfLDY7VTKkJRgnPsSHV+TDtavQGTQHi2b3D6fRptNc1Zhsxp3IkM9zJYP/z3DfWSXf59nspQt4C8GQerJ+AC60LSFmsSqmL2Xb9rvlRpDZT+WJNg793qer7MqdRStRL7eRzoGQE7gLTu9N7zr6HorHgEUTWFGJ27Wh7VDlwa2rPBG+a3aTlHv4xaiVa7Qc8w7QAcOY9DPlwK5sOCGbX5TsMUzZir6qufGcnk4v7CCNLnqa4qrCP7Wp19pVpPh5I4xZJNKJfJxlkO+kJMW5mCCeKH0rE0X5yJCjNCFKM8r1ia2jBpAqbHD/5B2LV3K8sz2BzEQUUkx5C7XRIVGnIkXBETkkgD59d/C5x2e2Rn26l6tqaSq9t6VVK1Cf+A8cLoeNHu8EW2T/yG2ii4HYMqtZk+w/rKJ080Mi31ZELevbDqMKxOSoF5KRFeBc8WTH9Cm2QHvglcddbNVm+BIeUC8nYON8b371tA/+4wZY6VxLplsRrw6NSz8Xi8l7/YFBSfIj0xL+ImzjaPmijCNJX3da5/z8Lpx5MdhlxEP9W9Ef+fPlhuXndtnnM25qYpwbmhGy3vxQfS1vJcGmyjMqL47f1hplwrk7igwa3xlaAhCqsKSv1hqoh3iDsTVv/2Wuq/tz+wbFhBN2ys7mcdTNMdGpyJq0COVy3US8V+83PbCxFw2v/xpUwUSVOVJZ1qRvaLxah8DtDO6ZBla6vLp+IcLtM99C6/cR2PwT3WpYHxcW1rKpEWco911mbvbE4+cxYy/tt8G0lOfYFBqK1t/TTtAbENtvPobXGNOu6JRTglkxE8vri9hujYhv013piJy74Zndyigp8WMxSV+z6NTpzB0ksE8XDzQyPd9gi7Ev2KQeB/Nm3TokaXEW2IPH7f7nWfFqiKdTmR4drNXLP6/XSUk6NeuMcd9A4B3wYEFtqd3NJFDUU7dRYSJ8jyaUQWzbH8SToj7aPyhPl22aH9MKFbiP8tfJ2gbo4+c5fRVZFo220GRoJeOX8ziFi9/eAHdyGFDXIsO0bAeXsKuvjCNqNtz2H2l4+6Kssy4YyEnLl8/9pqn/OKpekeNseCRA3htrpH07AjGFCamBIWvzsRaJ8dsHh2agroRLCxKueH3w7CNkdpVWyprfRfxXE8SuI7UJl5kygZTXvCAWKYdCa+1XvIxXUmyn6xsQobtgc+TsKPyZb1ZEXer6dGsJJcKlESq8MrRc3+WDraM9lVjkj1cHl1TC6xBfLt54t1WKyKuFXmjBNLVJKFSlf/lh1+89FBv8fFxyg+KqdR3pjXD3Riyap+jV3Y402nJD3N4+zZQieUyWNiro3F3++0svhFL9mvEzTgGiCb5yhwmGj7Tdm0DcbeNGVmfbsvsdjRDXcxbOknmgPoMj6qy29mXZXKuEzV8X8VQq1+fXD/FzZ/l0zcBKZxSLInBqpsvovtAR/UT09krGKeBbsuwfF+MuvDJuXExcpR2Y8Bu/PpAU7/Mar5lrfnDVwafXkmLfv6J/5hvjCRyRqUKJYFYO+Psj/HUHWAmlsvUz87PWq+gOgjB+YlHJSj90RcVilJRMpiP2hKN64PvwJrgmmlJoEbrLLRylI23pVFhcu9GcNUbsmj+IsRJ0qxHCOlA4KSRfRe7XBTKuQehV3Xca80nmjp9TBX1Y+2WfPZFY3ubKTorxxMJ4RZ1E2tHVbmR04a56m6DBs8iGC3xmTl6ezN4W0YHhAUYyYU/az60x6hG1+DWMdL6vt8ObkVhS2KDbvNARI1d5hWAMXJm0rcczehbJsor4SkjO/Hczc/n7ork0ozxt6BeN6XvUEKhOtyYoewzf7PYE+y0uDH/WB+MqYxSDDH9ezDt2L792f3EFRwvX4/ot5vsc19Ksbz4M3m+k79OPCY7HY5nrNLkfn/yOXIulYxqxyIkDz98euxdB4xekYi2xAdeaE6OUrkumZMlL3+urkGBlnxArPe17Sp6tqR/fGO/E5tuuiRFA+0YPRg5C3Y5DX0ooero/eHN/ZujQbBVB+ht3hNHRnFUqXim//Cke8C9MV+LMEf37PpkWo9Ug2+Oaw9ewvdNrMdn6r5ofxfk2r50v/jKJ0upG/jFD+80vvi4q7EEj+3U0Lm23z47xPIIj1Jz8EHJs2wk+BqA93BEZmmfOJro53yAjW9/mRp6HR/9zjWRjXYtC1PdQ2umySbs27RiRAktQ/rhpap79gwP8owmY+9L0BmVyIgKPRrm765HHxICw2FI0FwZeoE20iEkeGZONEOO8S7atDLDZNp3s72KZbD2aE3XnvA2JnPbVBA3lYDF52RkrL9IHpj6VWY27J1s8r+PeuNZpsDUPH8YP3wG5Ur/ED3gQ9dLflxB0ggqCz9uhsa6WJmwnGem+rQsuZspDyAh3+Npq08Zo+JhC0OlUebv7N74xXf0VuWR4NEfu0n7tAIot+XZyV4E3mOLX0Hh0ZdKC18a0xjS5RX/mV2S57cbXT8/KCU2S7x+X9vyhS5HGXq7eRNX1/Yd9fxKRTanKuY0Mv3J3Oa1suw/BZgIEiN0luGUqye8yVbrru8gy9HNXfiFvQmM1l43B3lFyQcD+tt3G8dtdSgtfaDFcrN24ccp7D97jD+bskV9n7cCMP1oEKt0e8798HqClKQrYiWWlLEX6egvn9Dt6KCOuodTpSCV6Ut7y5JP71wxQS6XLibin9+t51uVwFmVMLE9MHzpUoMJC54hv3w5W6ZRwOrPn+huwYfDm+oPFJQmZX+48/j6LrQHmNvTQOy/2wvNP3uk0r6iMAkJ6ha+CjfEACMFvbpp+/dqFUORdLbflC2f88wTZfyWZeI6Yl7SfnPBMAYHBUfV92JMtymW0S9/GZZpIU7FdLu8YnFpa12OBif7IYVG00N8yb0ZzbmEUki7OaDIb/pyPuC7AIdNeacl+aJyei4lWKm6Wli+rnTUfa/iA+RJ7tg+f01G52brBxrk9kpCSog/88e1Brq0oFOYWXV0vLYJ3E3O2WJ/NM/HMIDqPQTMytgr42GPbOQ2w0TM8Li8yrVrHZ2ls4v5qjuhcb8GFf3ib2DsKj7Qe9ughZ8Rc+qGBc84V6Tp0Z0F67OZSaPRxLCcP7qJ7tdsLNdTDH0VRSRI7G82WQpt5eNpWAbL8LDsZfXb/vNXZyjf3bzgbXQPN19irpKkG51PKv47X1tHC/3pRTY36G5Nu/g342xrHAXYV61Jt0/DRpuRGBg+ue0Sk6h7f2KpaCNdnc/MjzZhyfHRK+CnJ1jaR4zop/M8mF6PG7OnmES9+xdv4fkqdLKvsMT7J1pTEJ7NmhgPgfHm/jIeynjYrKmgD5MxHLpJVQb7ouLd7R76E38bHhSb5wZ/orucjT9+eLpRRCzPJeViXxUW/Er8ParRXJSvBj4bIWGOiXZ8rtlIlSS7eHjrvU2+aeX7CR2x55KfftLd+msNW/n9JEHcahm3vZWIcn718HQxx3K+iNpDGR9py3744rd+kBtRJEZhlgZfr74N7HbmhWVeYHbj49ue0KGAmuxXc4eYtitaYI5WsrDne2NW24+ObMn3WPAK5Y65JnrAmd4QIcI3NOajy1KEBhOzJV+V42pSTeVzVk/sr3qv/VFHzRbFprpnv78fszav5BfgjKnh6hVNeUx1cKQiIIveUo5EM0WIFxj3T3+xrWkGh+2eRP/xwzQWr8r572JhtuDD0VodPbRSK3k5vyYaYWM+QAnHgV3cjPvjdnnVv38YZ+b7TdBJF1G7gSo2bOFzecYPytgrXXfXyOuab8uGP+oEeuXs/vPfNrNj4adPEa9FbsmdvNflLUkMhm9FZXQ/vAev7MW0rGkipiiDCqVaUobx94ykr9fp8PfxR0amd1Julviy8443nzlm/IkWPaJWsoDYWDyTxhgvn70EcHp7//Qfvm9dBx2eHWHkUULHLkO6hdNGfmKRxKtosjzRlD+vc0ts/4CiH59HjqOdcOBummiwU+0G6SNMmEvbY8a/K0NCj2nzJIEZ3rPp+GcXMJI6YvvI1Y2xbVVbmU6txfz1xY449a8ApcdD/Pe87f1xA7sYnruUMO0VHbtx9TQdWOdeR/uF7yznqwV4HjkWWCKjUTEvMhIHc8cwS658tuZ9AepZXRqhy1+j9zvXhrqTKLPx1+Fjq3ne7htEDfvxk+m7Uk3Z/dwOxFMUoxzqb7SFRvYRnYnZ+ezvlp3Qur16eGsupbQfvnl88j1+bfI1n3scHdBR/mCiC8ceDYv++Pt8Ol12tT+jM0tB9JSAuY6odk0tIhVN44mzoK26bJZvf6Bgg4cY2qqLhoS2Avo27ZqpF/tUTt1lTuHPfen//KvHFrqiR+bILF38dzqx1wleQ2oSdcHT/DInsJt3e5OZUl4afdJgD3y4uiSs12XXnPUG4FjrZ6Lq5xOab5uJgv6sByq+mY3mQLe3aOttzAW/fEoeg3yFQEpNcvryFvWjUzTyQYkUzD/h+NMXe/jxGQgratQ//PRcOYy5/srjc12UCUy75Ev2n4/pS2WwcaCQggR/nOQbTWWanIBsuI5XoR9y9iIlhbLoMqbOl9boujXtUfdHX8w4V1U2kkid4b4zwn94aEpuTAd8WxskCUMVjfxBE3hM6ycx76HfIV0EExa9gtgs8TkF1wyUdb+JKcTtK6Lz0cLyFk3LvLFj2fFFn1PuevIlfrhrs/FunWRl0QOxtHkHaLyBqINoBT2xJdfk0nEeErScJ6IZXp1x3AQFPNgwUZ4dW5+H15WHJLazfvw64618P8BmwAkziO76Y4SeMlrv8IvoT3Xi02XoG8DHxGCEa0I3PC+3Ct7NrOBYn2pjPCaTugxikkiIIqsbLu7fCS7r9YqoFdV8yRrc2+/3eLXg2T7PQw/+RFrTr+Id/M1x53nwvkCNxXUaRc3P33RXCrE4CHs+v5pDAIeLzJgt3xW/E+7WFv3+f3jOWbboufI/vrkraFsOpyKTwZ2mhnn8bvL5YSUtcovVkYXKNit/9kJJ9dSwsC/qjp5Wcg9HT+TMlsZzxB4+evz0DrbXU4vz6D1eFWnWOV4vz8D7h1rFkKYPifiGfYyW+oaKFj5P4RXKJT2vnyd4Cd2brq346veGNMfgsk4m5nZSuWROWx2uR62kdjRL5YBKXKD4JD2omKaSMdSWmUM2+B754f9Fjz3AKJ22xNxAZ8xl86Hw/JwKOjUXky96eaCcgzMmWB8mv3f7ZAuvo7olPmfI+HKwHPnHf/ySi9HMwliQTbIvqXLOWTQVti7JC99nGMPsi0t+/FePwAXXSqnH2QnN7WEg8QZ8f8k3N+XH5375eh1MSvrTX5i6uqvdr36i/PTbBb/xHz9HJp1tpnsFQ//y5yuOMbEv7qeb+lFM0akrT2zB274kicnpn7648AN/ZOElgF73ayx/n1pH4z4XQHWfPhUG656NKpYp4tL1b9Gvvj7HKzuHA6g3gsur6C/xPgd3wCPztfabLXgQQ+XYD6ZnstDxvWZgNNrFndjy/e4PK/ZX/fgc0X963Wt1DaC4bFwWNCovh1/9oZ4+hPLLuvDHvz+Zonep3unu+af4X+rTHqz9bk23W8PMXj/8tvCtH5/w1+fTnMJ+hxEh6v6c/fg4nF5Hvug9RcalcjIV8u7+/ukp8w2j+RcvmZEdPWOU7odCQbVnsX37FLNF/xzR8BeemcFY73f6h/YwpMWAx9sz96cFr4HmhjUza+Np0AgFDsT280hcfHC6idp5Azq9mMT9M14d7y+CB1h9boitlGM0XIaqhT9jLpg2kTRbbyR1VLK0inDS+1rHYTy3SE7Ynqkq8tDoOPsCKbePSUh6evrt+3OUlcjuJRZYf4M/i/V0RYt9mX9Vcj6Gr07Y1aL8JvrNefHxMH+rrdcWGvnxTbruVjf4Vx9c6gFfm/kPyOJ9zExFxiXX77MJsgof2gRSUY6P202WOzlK6dw2eTR5quvBk6Qxe8B16qbmKY2ABhsT17izbvYVdf7FU6apNe5o0AUSWvA03cm7U9Y/brGMZh5XuA6syaCj0SRoeFUV3rWO5LON4xQwXFcb5i4/09Vje4UHYxP+9hfOe8j1G4ixYVBFeowGfz7wFsWvdv2vXjaXwcoBdrSuWKrFQ8evqz4G1LwJ2QuKFPXqW6ToHWMbz8btVs7uLs2RIpP5V09A3N3UOmhP8YS3ZrzPJlQu9ZQCdVRY9AL2bVwJXDD2xI78ymeNNOjItoi9+G/F2YKPEXOMkvITo4jf/g4V6jNyY/b2WnTj1xp7YFmyI4Z2zo3Z+dM82J3uA+WhvIsW/bCAXQI9Iz99f771CbzBjtiv3jUNxREjsyo+LBCJ2E2766eHBX8zY5Vuy1G/netfvsArOtTZ+DxtRng+cEfjQteMcZilK/hvfidhcIWInlZzr1Q7fRmUowldv/gDUuWMEGfh050DtxqIUhZYWPSP9vmlOnrT8o6rdRplc9caEjq9lsGAilJ287rb3MCQjIG4r/rK57XviMo4FikW9OHoT561D+CnX1rCoBvS0XwtfM8u6bTzNF9a8Ioy86Qi+N1NaDzm7wZM92zQ7VLvlYa5aNBb+RPxenurykU/v0L8d2zwRkhKzt+uIMHfe0tI9gle/J+/Leuj8xBK0eS6yojYX3VhSWBNPt/jtNr98p+2yddoEu66AyaPBWY9PsdufB/KFs36NSeEMKsclSza/vROKp6JY8wZNCdY9D+MqsYzvueveIXy7FyZe7uHxnAYNzb8f64USP/3lQIuCSEJ21MV9ULsSqDdZco8uAe8f72VHoKkWbE9vb1RF52OFTz79sAs0lZdT+RGh9j1UwySrqFpOzbLZAvGmUXXG2OK30UM9/vfSFdfUiAu7uMEBiOfifs5tyXN766KyM48sIz1c9bPIz3AY+MnzDfcYzYoxVGS/fb+Jv7fzs2mmYQF3Cv9zfS3X/hTd2YCStTkROVeDw3+aZZGzhX4TD3dKaqSu/XYFWIsk0DnCWKS85SQSKwHIbdXVdIAbjOkxz2hVLXCcpK7nYn6ivZEHZDlT6EjzfDqIKMr3/qg77IehFdlQTy7uBszSY0aHEf/Mk8cu2jYARZAg17E48FJECfZKMHKu43M+MtWEb14U468cRfSuQ525RSNlom4G2tEtS85H//m4ADD5AnM35kvn44hTiCwgpAEnutz7v+pW/R3v6UsFsvM75wqOoBfX/dEv90NNMXeNkVr6ZRiNp5ig9rmtpJre5KYVWaiMV31W4MU82HTcTiKiH/Nc4BO5+DFDLbdlt2fEcqoP59TOrtDt8xO2/bwkihllnp4Id55Rqt0nSvQWVe9bNzcqhM8nhojVs8LxK0UUShfK5uYYffxGRDNhlfRIOKv7HU2b72nupW+3pFKdu1zmqwuMlRGGpJ067yNdiu79q60pp6FZX2NutTUe7DUWGWnLpSiXjHkBnzhlbL9y9xkM9ThDDt2dYixOqFyHhCqIf4oDxZYz6ybrzkSoSpwxAz1G/njhWsmfN4bF2/wp/SncWd4W4lvq8XemrE+rJ43yOmfTIK/EvNpEqQDOiqNQwXzdvVn2xwrOEj0RgLnUfl0twIMf3pvs5BFmiG6XJihyWKD2S7kqD6EjQSd9b0Q04r/svHCXRMuhuIQu2RfPiWoalC/HZ/E2NZnY3pGTYN04cqJVm36bDLRQ0IrYcqYO1yqaHgYxxuqcVuRvS2/Oq7vXzoEs3gh8a7aIJ7uaAWP0iqJB7aajd/STiHbfARiZHaffcn3z4HqfFNZel3VnNv4AIrAOVDhe9qVjWLM7WpsasbU86Mrp+xTtErVyDNxX3+TMT499aCkKxRTYMmZj/FLMYHB5Y/KmmgaolCde0jQ+cb86+GPN1oGHpixU+NtGunZ+mT5AJvD/otPq0by+RwYAsR34lMuV3o3t/Iy6159unizEYnf5ZPpoGO9iumMzW005rJYwK58foh2do7+OL0dFV2HcSCxtI2MOZXbE4RfPhLjPk9Gv/mosfLYzWemzvBC8+IPkLzFDSFrRTN66UNU8CfvSnwlC8t5cymozJG2NAKW/ZJqvC+AJfKIhUwq/O49XGI4dIL7i4d87N2ngL7dhuNPwVbGOLfIQ4NHjsQTZpP39JI/FMe6NMxRi7CcRX70lMP37NB1z3U+rfTtCdXr6kjM51U3pGcwSdBv5yex9tEJDWbeb8ERA4M8W9nr+g+ABOurLRDnpandVLX1bef73yfRHEte2m3uenBXJMTyEX98XitNAc7NvpGwBpYNj4eRKsTZGMSo3QKNXFUKWNaLZWfzF/GbXF7B2yeL7f8svrENkEF1P5SZoSYhGj94jro+DpkhHE1jXCcrEdbB0GLhvpU6NtfKFpI4tZgfhWY3YCETIOuuO7ZXgm1JPyzNYTv0LotI72YjfoozWpOkY6GoydnsS98GCjGR8UtPTD5fvKmAx9NgeFjyE89IewKeRxe6qwc54121rkGwPYvKr2+NxkFQHFj9hQYz2CswRjk8bpU19SYq24XiDxZKHWBxxNie34tuXuINTM8iw6tJydAoD5IA9nza0PEm/flTk/Q3iOrjk/jXwxpRBhsb2blksWBrShnl6bCFTPID4pyOTTcQvsMgan3OsnvdommTH3OoT32K59u9RL012BKUwFLmdV2eDWK8E0Dpsjsj4R6iSqBoRpqk//3yF59yMewRSfCZqd44ROPdjERQ9R1hBtZeJUu/hx4+/auhzXRDfh+25wJNSzs7tDYR4terpUIjOy6t5lddDnfuBZB/vhkJ9ve9/xbmr4qSndwy7XDry6mIew8OhlgS7bE+lePZwc1urxwSdkymqqRd9ofRM5Q8Zt8ua2OUB0EAHtsxUf94ifiZqrFi35ZG8vP1ZfRjvJUgG9GTkCz/dH1GLzc52Jo28w8YstnpPBvUS2UwMxpQ9L2n6Qn96dQmeNM9u+mmVICW/IxBYWU2B3AbQc9ymZmq0vBhL+W54vECMyOxSCk+dpOKqMBduhMezOBDHgLc3aNCSA8rf9jkl0Ie14JBcHW88XG4fDx4+qFLrvK8KseDmgXoEDoGyerYNb7VWi/ggtmVYPzgXd+cc0d5Z2NHR+WvMTpyvI3IduiD4e5zLPlt3CewnGcqT9ckmh4RS1DEqhUJrCcqqf54U/TZyYDHdWOX3HT6HPx9pZHsgCHq45sGv3yGpctwyNpTWXo/f8TTBGefpw+xRd+oL2ipfDin4Vm1QVoGvWhfvOWj6lcAd/3zoKLwFru+UF+qIv2ZD2IFQu6PjqO0KPwbFGJcb+APX21o0FuuJmb96dRgcRpQEAdU4U2/D1E/t9yD79uNmZOfx2hp3DACT5093b1WWtYvD0LgmJ/WeJYOPRqP6zFFjey5xHzuHxF79bcCrhg+JLpkZjnT6SD98MoSH6pu3ggjVfbT35o4DS38HrephJbvS+WuUyP+NZ8YfZqHx/Q6uHQ8UD0TBcL8Zq4VMv7Ri5Pwy+cs7AXXmNKbbyqJ2CrEcmKCJuO6G0HbhzIWQe45pVMqgXOagTnnkxVN19lKYcEbdKg+m+x7ao8CFIXssECxuE/DaVbBpsTA24MyZNPj4V/hrOtHsnyfkgXvg6184uuZhIIR8fEvEA6wPkwPZtjaLZpib0yVbkUmWhknFfVaBg4400fHSqcEPlc1sYJbIKrszxRkzu0HlZA/2DUzSUL5NGJPRZcTx8RJ1Uc5797eAZgaApVwNGT0+SlHpEjuSOXzQS2b8oVt9MtPgfp48MlX0gfwb71j+uO59Uf/MR3Q8SHqyyuKljNx/nvASS0HLM4vu5M6tTxBfX+0TD3MH4PvjG8BlXSyWcjVe9Yf3l8MhePneDrt42z4aksj37J9MYdd646rH72G0Z2/dHc83pf11BIEwvgmWsA6Y/jr7g/UhAJbPt9Do1fmW9id1DWV6Kxm0mtYRmCsujVen8+1P8KwPYG4/W7odrb9jBbhOoZTd4qZs3UsYxS+ToNk/x0Sc0UqTmNTq5Rz9DTIHn8Mf+4l9aEEFg5ZkJKom49RBKDv73vK7/PRmLJg7JF2xoSF+aHlLNeyFPyS2ywUhsqYt99JRkn+9ojVOX/dmHy+BXBv5Myz/bHsXeEkgiU2HVWyoo8YP65M9OybAzt39sh5vzZHUO/fF8Pm7WpMSS7T7SH0DGZVXOkW/DrK36P1Yr79tCPxl3/Q6NtM99Oo2xx6VYdfvP23X+YgF2j+O+6YRszSZ7/49i++yvFQNsnnm4PZBBd2VoJtN4TRSYQolgamLR1rplx4zcr9vkx8Tt/UHwgu8S//MQekhz/BJm2B6ZKCJdFz+SZ4H0zF39cawbeQojFszzmybi+TYD8rokGy6gPErpsyu783EbuPTvsv3uKj2JRDnOHDlq30BAvmcgVFO0vyPzxiHbRjNpWee4VU+oj4cH503VSrrQfyoMYUimPoU5MsjbZ1qWNGfP3wSX/HuaJ2+proSeb5VDnaAjLda0RCUbtmc/3UYrhfDieyf9N9yRf8gtJrytjpssdoExXsIdu2df+th9Ph5TZI2Y4TUfOg9Yf98VTA6yw3xJAR86fVNvYQfh5aCp7bIf4xIgo+PuT0PeZmxkN0vcKHeV+8WvCk9Isvtc0lor42E+rd6NhDxOoVsT1lm826gUZYk7ijyhVPxvTX/d1gSjAiy/rQJDSm8OObJHh/CqPtJfWmvPf9FoM66Z3kH7MWnrcOYdGK/6IxYM4DNWZHmC9bafnbHwg3rkm0JtSi6bFVEqQnx5DZDxoaY3POPehXNwGj6vvKRk2iNjxHauKRETXa+EyWYOE75L5RF8numngg2I5Fv/i9M4YR6yqsP7fTv/UMq3sR7PZy90c7qrVdk//V+T/87ey3RTY+VpUjs/uH0P3WR3yOLuoVgmp58quhb/m9KZUA4rbb4OnueYiXgSygMKw7ily/M6hxEWz0w79WRudyUskVw5uJD+Lj4MMpvZ30H//AUtzzkhYPs0C/8x5Wn3M2XeF1g+D9tIhWF7E/NqdNAEaSX9k+VGY0ru0XoP31esewGdxy3IfvE/wdXxv8p6FvN1bB/iBfvO7zwyfZDONLROS7R5grH47G5h6dILgcVOLQMcl++BLJyTnH721oce7+7WvItnNI/EKI/dG8rVpQgveZkPtyxW6E7RVtB+pS3m4QmpOrLyMPGxGe9KRC819VtxAcLye22A9N7PGUZWV1P+BZ/Ss6iqyGgjUoEsMHV+Wz2Cg2gIdSzBd8PilnZUakyG5LfPPQdHM0Ex5vWhEsqRvEj2c3QOKkpGxvvr/drEg3ASRN7/BEdxbnW346KEHbz0Q/jIo/T59dDfZWSbASPBN/M3ZDsXQJuBBjd9hnw7dGLbI/eUVuQ2yUY/nCJnInidDq7aYGPwaDgxb/YUl/d6LN6m9D4bva1f/wwqSKOVbC3WwRx6lROR+MYJZ7S67xOqOncuJmO8vFt/4w+2ECZ+fvM4VhRX2MXlEfzS+FmoDTymd3weCok7au/A9P+4dt37EVCil648uZzpg65Sy3SgpOLTKinfZxNB2qodiGT+P+0284P9izDmdUfZn5nGg5W88ih/nufZheee9sFjo5gO+O7HG3fP73sg+WKwzNl3m1GkXzRthSaL/PFV7H6R3R/XWWITQjn8Ln5PKplmwVwNulBDdo8Ac5SDAsehV7aJcGTev1WYVJiF+EHPevbhK9PxneTHowZ/ucukl8ExF9SUPZA3Um4uWn2kL+6TLixcdtxnbGK1dO7jok78Ej2fQshQL97LucFzTMYlRAMIYp0aVDwGf7fW/lwDQEeiheurEhvd2D+DdHFFVfLVvi99I18fFmNncDtPnhXSLdCdOqTRBJY2jHSD4ddDxevTGad94hgfh1Wv3TD7g0vCWIcWZR2V7nnM/TBaD8BJx5dVt2AB9A4L/TTopEdNusfRIs54cv8Rr1h2ZHjJdT+wMrHRGc3DvQeXyvONPnwtvhMnng5nx6Z3x1bZqf/xGtK0c0JUnSoP03KFkw/+URF4/jVfGTy8zsU7vjfLcLU+hho2C2Zyc+BdtP8duPf3oDO9iyCm14kpm98+1yPKGygOx8tkmgPgTUry4goL8m6PAQSx/+ncWskPP2cMPDY6tlQz1eZYj3tKZCsYsintwnD+XP3GXRbf+NptARRpm89Tu+HYMimlegpRD26URc/L7443jYb5GZn7t//KxrRAIgh8YKl8FgRzODlblFu1tNzFZ8+/TSPWq5UqdgWa+azSdnF8D1Y2M88cOcsQP8yfDpywZPMd/5YzNfTWVVaS7lczjyUfiqDfq7rs8kWPLNuqxQDGqnrhc+tuoo1NYMEpNGFuzvH6Of3qoOFvrzfvovnyy/NkGh+oOZxknl6z4MMQhGaS75TDf4aUMPqMkSAyuXTVX+i2/RifR0vY9OnPfXqwh0a7YszHYpX/IBINKePLx763M3K+pkwncX7pn7Wr2iOfz8CWBf3QOzFFyU/KR7V5SE7MAcjKKus7/eFi18n1je94NGjrxYntCQ0ym0N+UwPS4YdvtTgaVM67rhsHo+4K6/H8ymcx6Nd3YT5J+epz79wZ/xHq7wNbe35f/zbrwJeQPR/nkhe0Vq0LQ/Xgswot2F/PxjdxShB+N1GkjQ/iGfO+4rVkbBipmu/unlen8OG2TQb4e3m0fcTfeGOnD3twLmXhd0oqZ5GJKISMSWJZzRk7PDqEE1wvIF3tHk6Fj6rQ8PYud17x9+W/gm03nVGL3xymvwJ+dKx/Z98PsFL8PZoSML1cwxvu6m0tEvnybmkXN2nJCDhnP9ZsFaexsMzEFHljbPTMe0KZf4HMDrvG3IaSKjPzOtMZE1Gy2G08bzmXHvYoCwuNDtdWXzf/j947Ym2a+fG386knopCQshMfVmLGn91BI5q+gVby7qNxu/TnyD0wtECpvhWy74VYLFPsSeHpY/Lk/WQb8p/WK/ohvY47xFF2PlMOtyuZZcpm27W/QbrNHdm8/n0cbA/0qb/PjLFMlfB+bvuWdq8SoMvuXXE9yH2MLge045vwrRg7PTjxRtryP66cPo+TwA0ydyMBjONgV8335Mq2mzlADrhwz35Htkbs9EI1eMuQFrWEkk7OMtb8Kr2yKiuJSOSzwdj10co9/5+/uK12zhtwHE62QmmqV/y5++Ji98i3gbRiO+PpcFfI/7FyPp6xlReruqYGnjTA550BpzO8aqYu6+PpW6m5/99EsI00QYDDvOjU1qej1igXdnoeN8y0VftdGXPkQKwigj6aVQG94Xv8XSsv+jK1xFqEB4k0Xv5z0SsAPy86sycwxwKSlZp6LmeXmx9DNYPk9NnQKM14iukqfH59K41jA8IpMt+qs/34/fG5S3R45R2ZjZBohrg/FZBQsfTf05mwwVLeeF/epPvBH3AL/6BjnutfJf/j0oKSK60c3++FxrKVymT0wnPTER96+iDqsMFf/pB2uwJLTsNxavl3fW7Gd0gk2grYm6avNF/3ft//Sd1fguWTmrwj89/DZ0o88E73iT83y5Jvxw/PI7Yk9Hi16Jx3do8+k8aVv5EXg+hfthzOZzm5lAVjOjc+k60fTTF4tv9WGqlpr+mhmDIP/s6fdJgf7x1aywLsT+7qOsNaurA5fcK5j/RAVi3juZIadnmcpw73lnOn0B8tut2aIP+2LL//7VH5hdMpfPma+ocNkeOR7PD7+bPS24AWzsmWl9FaJBmF/qv/iEa9Jk8/6QSLDgV7q+MVb2p+RewMWu3R+eiaZtt5rRw1yu0C71MmkjjL3yNwsC5tcbGO1NkjzArargdjc5xsydVJfvviyQvS5DxIrznUIv+Q9aL/FzOrUXAY6dsWf7z5ghelnLDYh/Y0TcqquNaf3WPPS9XjSihrfZWPBZD+9s7kjwjoVoMLp9g3xTUZlxHs/Zoh8XkDubP6oAS0umhzcPtQXPcR00Vjnnm1kA6j0ezM21PzQar7wCcu5c4mobmTPphGTYh4bLfLIh3Sh99jo8PAV+fNrgnee3YLwOAyX3Yqki9uv+p19gUKzIGLJTJ0HkmVd2ym41p30y1Mhvn2+sSUq0dPU2HVAOnc9s7c2MMfLlGRZ+STehckLjJeQmINovXVymFE3e4B7A7dwr8fwgjMaf3pbs1YmYquLwkfyd1OUOXojP4L/8qbqmFYrq6EncJv100/VuVyB4pMSaVO+zydb8BDw5GMgVWWU09Z+Nh3oS2Ox2KGbjp49ADaeRmJuizKbA8BuwZq1lhki8bihYYgLWdmecnpq1385DT9FaPktYWeIZZ+85/dXjiB3/fYwxz/UaOjP4sKsmVj4P8/yhXIYypz15rf0pjJaur6eTTpy0xahO1fsDIUoj6l4a1o3rZCOCIKUKU++5lU2pdvHgoYsdCZz1uOiFqYQM/fb5l9/H71DcYNETiDX7vUGn+72A+5BYWKozXM5/TO9hZ35fWN1f06i45lyCn35t4BT7fJvmMZT33elfvaFdgZsqWyjIP/4xF1vpIQ9FvF306Vs0mrdNAy9xP+DtdVWjqStMXRk1hIh/ria/r4+oR+T8dXH8PwAAAP//pF1Lt7IwEvxBLERE0ix5icgjUVDEHfgEBOSVQH79HO43y9nN0nM9qDed6urqpIv5uJvHe6jB3esmXCSTGC393BBNm9b4qz+KURumFEAuSvLXP5maj5PDwTRFLEXn1uTpKtIQCiKfkiL4efPZ0iv4DuSBN94JexI2DkdlWV/qd7844+yIKnCTqcLyQ0fRv35euiKvUTAz1RwGo33CvUpv1JwDhrhyODd//Ui66HHeoNjF/3ekYPO/jxQci+g4ClpgdvySvAxQV8eMelp455weEgZF4LnU1N9vc+xyO0fnTbKMpLFWJo1cUQPYZGecv4aDN73DKIQ0mwl1Bt/NenZOezQqgPD8dmjGnO6LYXXCD+LF91U0ti8jhibxG7pfsZc3znHTQLgjJ2rgQOdM2wAG9yZxrJweB483SSeAj5MP9QbLLyhkqrU9fcQPhltyQszf3xNESuVEHR7OBa/6QoMBbi09KLIWifH4luFTfLul5eqbrIoNGR72ORuqeR8UU206Fpgamsiulx5FrwvfEdx0dsaTXZ+9wd6HNghCRUlQvwLOmt3WBUSXlsJ2Vvh0Wh9tVcntgmi/IUDcOTQG6HGNqeYkn+6nfA4z2h63X2r9VFpwyNYW/HCww0Kmf6JJVDhDyo60WLTchA/ytJR8r0OJ8z1uODvqvzsSeXuhwcYxzCGCQ4m81roTsren6LM/MQVeFzkhaXLPPd79IESibdzG707LOSNJ36MvC12ie4bicQ3fU6VB9eJVH+Rdf9Q/d1QGKac2nQmfG3q3QHoIG2qEt7CbfNZjWN0qASvozgp6TA4VuFqukmBFE8SE6GejY5gHBG8eqsl/hTtDd7daop1w0M2i8SmRrEkY7/jv27HHldtgRsWTmFQZCo6UFFBAbwFeTcKvmIRnpsGIqEDNfN1n/H7wJKQE82Pcqu62YFqcukj+OhG5KxBF04Zsn8Bk6Y23UrpG8yscE6gGZUcdWxgytovrEtFf7pNd3KdoxI3jgxsGl3El3WjBkCJYMOv3DnN3H3Ou8N8dXZNlSsD72qJZqDQGdffWKWlXbLklF/qwn5QLcT+mzGfPqwXoPO+C4UDVgh/83keCZr6weMaRyWTH60HQBJEQvGsjpj+8Bu3wdKFkZbZoaLqohUvKu7HSEyOTdos340H3fxiF+i1ix4pJSlAbPbGfYdPxHUkFmM7MIveqb7K5x6xUi8ZbKITvmf2xMHM0p/OH4DbTssnKTi6gx0akzmsxNhhMN0GnuS7xT9dJNmc347mKbzFQ28VjNKVLk7g/9BXxFeDRsp4M+vT1Gy0hSAsum/yo2k28ptbmES/xVfZgTLZJD7v7ZfF+XtvgeNjDwmfaeRsyKw4aTrc7IeGbZfPxmEnIWV2EUT6TVcdx98qV733Yk0PIOv55h9kRlngd50DoixmXoaKiwJpIrCdGNHnOsUH3/eSS5GCtOS1fmqG+qi4j+uYrFqyL7g58dPdID7pOsz5k1Rv5H40Qc/dAxU8rtwlcg59OvPVYI3YsvLfyS54nqm30MuI1P+cQyNQaZ62VvL7ZbR1QlIdF/Nmuo591LUTlapsF8Ur8Lqh4qDBcJEowv7Z5N4/K9FRLxkvq79MVp2N5iP/7e8j61XUPso4R8g93SkK6K6QvfFoIHv2amP2h8NiHijKM+9Ijl3MVdmOw8p7w9cAit8vu102oaypYf44nYjnfJ5ryl3BE+svVMXz1yvydjs4Ix04yyc7odub0ow784SEWYT9n88o7YjULP4ySDu/4mggEo+XvxBBgMPlxLcWwxOfIMmEyazm/uQi7tzs1pGUwZeS+ZTXVPxbZabkcja9U10Cqw5G6G73taEe8EYLxIdNgJWBvnsVHAvc9d6kxbTw+LXil0t/bx/A0Aq+1KtOCwn7ouJteczHCeR8j9XwM6DJq0OT8k1Yg/m4HakuRkLHUUJ8KuQ0Mc+dY8P5UkR7mcpPhSTnsO+abtQUsxnyUP7MXsejWHeHl/Xx6cqVfxmRvqyF106rU9yPW8ReSMFzUW0Kxd9igSdqlDRK6lYFXsmp0zCKChfipP9OnkeveXJBVA6+LkhBHQBWiNa0xKuO+pddxNDKeDOcGPYKpJkGURcVU+E2MyqcnUU80dx2v3JcEvZQF1Kh6w5zYVvWRvdy6CzLpVkzyWpMgMllO3dFRzCkvihI6ff3CkuPYHj/lTQLpylmRHYy1N0tje4daxTfqvyvNE2+rrQ95stnh95J/5kebMjhEYoxD0T90fLioPlSHUqPH0eG83Uxjq1Qh/Y5did8dD+zpiMzDs1zwyUVj8q0UdOXda9mPfjEJW7OCzf3t4G1WbdCgfXwLdP99pm7hf7t+MI0UHp+4JT4OGpMVRXKHhqsKdaNiyjhKZAW+FUTUl6XO5Mv+UZof0oi3+aZo+iiVCDmk+/H43uhIClbmHXAdXv7wBs15XWrwsxBZvEkf0ey8E+cvXqlVBB7q9yXqwf8YhOyqCzHnzToDtBkib2TsMRVsJbOnOq+sijyWfD7priOC/TIE4pT7gzm/H7tFcmIaOX+slzeQ4tnAeTXdyWHGX49+6o2rfBbvY3P3yAr2uVgx7N9mh5HAD+b0yAcDXL4dCLaaXze6/smClNkX4o1C6Y3P4Sko6fCsiX0/IDSqqqXBW3jnxOGfPf99LtcnShplO8qfIvb4ghfK26hWuPyOSsTqm+yj2Ug0co3uWz6lVCkhJx9MNVG+FvNBn4/q7YEFahjLkb+eDbMcNXaNRcNi2bj7sRSqqFGojsQfn/q9KwGJzJq4DBkRY4ljoBhoP+ZGORQDP20suJ6wRXctW5tc8LoYnQjmuCvYBTG/ke6KacwZCZ5p31HBK2KocxWTq31NuvljnBuUQ7DG0X6+eRN+p09Y9i/xv7rt8fcnaNDqeHLGlaG8C74T8xgaItlU79cnb36vjimq1xX6xzcH1ypiMFcvfUTeaV2wgN0sNS/sEzF3qPJmd+AOPKcqoljouoyfnsiGh9K+R2WsymIWnqOD4tPwpPvGpd18Wk6FR5en8he/xXS9Mgb1KZTwnJkBmn7nYwpOpmJi330tm96xVqmhL1FChjOORnqPSnj8Bo9YQqAU0/lNZXi7+EGcZf3YbDkA58dZp+Zt8ZpPDfUOke+Z9GDGPZ/uUmnDW/+1FCe/VTT7Yt8gcaYasdL5y2l+/vmoP4wVXfgnmm4/3YY9DWvqyNezN8Vn86lk2iah5qjF5gzz8C8fUXJej8sgQqIgR5b2xB/uvUfPXB7B2NQKHmPniKSF3y/GC4iaVz8xp6vquHBQEcHvvRKjOflWMnQDN7BY3D8eG4MfhvW2mYlmHlHHhrJ/Aqym9cK3gogf/BLDQV/12JyJF7FwaM9Q9yeLmCLb8uHFJheU6/o6rpt2MV5QwQbsxdMoV3e7Y9dIjgHXxwsxa+vT9Z0oYCQGry91O36PZiNpLAji3ZWYfvfjo+sUDIQT3eDtZfcrhv77HtVQuXd0N5wbj6bKplGGm0DGXgoTkw63/A32jjpja6p6N87iJQH1qx8x+mxzPu+RMypCemyJLXbvoqfdQwBY8fUoVWAinqKGIVLKJxxv7aqoZS0AeEfvM30u6zddOruHbKPtaVZirRB3Ma2Q8TfoMjP2nWQkbwtQs9OwfDQx33TE69Glby704XdHj43NaYYtCXxKLpaZ8fF91tCyHnTvrgtvvutPCzUJbohpOg9E7wdTRLLrWDTRUqVoR2V7hxPaphR/IqVg1nwIAbzWGI2lnqD0kMzwOq9M6hwiz2M/R42VI+omuhecT/Qvv23uuUOW19k4+QcRARX2RIucrzczi/pgXJwXNW+sM2fSWSks9RgJ1B8rxtW+lWF9NXdY7Q+H7PcVuQzECMsxzsZ1x/EpsaFAYzbK56H16NuoZ9DfYkosV30v+N5r0HobnS78M2sfDuvVdLjXJGAXxRzUCHykP6IrORw2WTaW670Gyi5oibvsb94o2AD5gOm4XfiomCdTi2713SUpQ3k2n3tDgDote3JYRXbE1hxrSqULOVn4bza/UWHD8YBjLKmfvpv22KzgA+gzSu+6yib1+slVw0URnj7ZbM6+fBOQXGKBkD++8DjvZpj1Zaqd5SZoLtfMUSN50/7FD2erNCz/7Q/x9KQZ48vUpiXfjlOqmB1rR78HRxb3eBuuPh4zx0yAhV8s9d4poy8kYLRL9j41ur1jbvRLIIMSsAdW3W/d8bHUY1Vsz08sxNfKZGq1MiCJTz4xds67m2pTs9WGiDZ1lniZzuXFR3/52uj2jcn3q+WWSueysVgVHz6NAZxBt2SJ+Mv8oCU/aIjNzpXa6qcv5t2PHP/yP7EcUfTY6/u0lIN0N8dV2XJzTqrEgPIyXYi25N/Rj20GhcJtvGq2TTZY105U7l3sU2O47/g8sLD9w0NCXqKNxvsLCdDr592oLvUvLSQvBPObOMS1TdcbrttURMG0r0Y2X3/LLf7IhTGvUuKL2debUfAQUbj9xNS+3BJvij43DZTfqNN9dL+hnq3F+Q//x7zbNx7bVJ8S0otl0/BQ2J1kLFNJ0JRu8Gfhl7yXnQQ96dBgOS4f3rQzy1kpWs3E5unyNYetHBhK4q8uI+T4gWa9EzREd/6e+J7sZpM3NAa65/w2/vHZaeEXKE6PJ8xOjxzNiH4MMC7uixrVw0dSXveGcuqcK8GKfjTZfe5aNN7CYlQ7hfNpcGUX8tyFcZalki986wkrdIpHoQfMh/1JlhGrkUfs2ybvFj5ZAW3KzQi3eu9xa2CS2guChjerlZh1P73p1X1TPXHsz5+Me/LXhpXqaMuUx7cn/vEnL1luKc/Xn9lutvrxH19KL4tFavnSNGgvW0S1TDiZExZYDMGzcfF2xjtTLNSXjGjd5QTbr3vBRTs31Jfla8S9NzPqLkruK6/ql42St2XFHGqGDTcqdfTQPT8Re/+8BNYNfeCNg7qiD/AS//jzplkifjrqyYOFsluwpYYAgTmkdC7R5attlnhPi3ldeo2y8F9C3iQwh0XfUNTDrh9ERf9xXmzlEv09bxe+XZPhS/OGjX5pqLPgFcuCe4h+FD3Gzq7TjJpFaqAiOLgUk2QwqXc1DZge7pdYTThkbfIdFSQLzwP1NiLzxsss3pUGfRP8e7otGr3p/YTnVEbEM3wx6xf+jgy5ION0n2I0RKBXSnd++NTwfhhN+D44sFbKPT0vehFF0rcF8aQ1hHD54/3TAyZjm5K6tfYmk39fJi/8g5wZON3PbsBFW/FeE7LoH/QxRv5f/TPCHlNzQvbNhy/byTj2C98c/vQYGlTNUh9bmdjspuUW+nigOHaOXCxzekbLJTlqiw2Y0ze6Segsx0ei3eSGz47gK6hjCcOr8ITMPon2/r/1XOLZ++OHoN6bkSz5zeTO4W3AIBzP5Pa7iMW8v0xnoMgvx3XmfqOZ3rPyj19RGy/eyMfaA5RlVkFuyhqhqct0BUKUatTEXz0b0807Vh+4h796HI2BIYuwQy8YZWrrnD2fZQmMvn8kcOM5q6Lv7Q5JILfUW/SXKQtoCsG0q8iu/SxGsRE7Azkoxjitx08xKR+dgQiGhKW7/854ZqQx+sO/ItLqiJ8lUQF69GN6TS5t0UPdOPCSL5z81X+ithExeleOPs4CDN68+lkCLPUx3b21qWP8l5zheFNv9PA9mHymemcgkv52xES7azZ21m1Gcrrd47L1l6ks1jMB+6UJ48KXzfkywxOtfcHDj1Opdet7xt+q/7YV8k+/EaaLiP70hL2DvG7+vOe3ehLvmNqdI3aDAEyBhX9TvWa0YKWlVPDeSDdc/9YnNN/CIyjncW/Rve3V/EuTzIWF7xOTXSLeP9ZUREv+J9o3rBHXpVqAlxl2o/oTvWLi/WKnk7+u9KA2pTkH6Okgq/eaMfnMXTZblWmDeB0nnC718FyMjxz95Sc2bJ/FQIq4hfM97amNfMynzTD60CppiJX7xvHEPz3gs35ecDXIctZaGhphBbgbVVaSjB0rWdo+OFxp6g67bN799kf0qktG//EDSS1FtOjBeCouh076nbsctnmtEm3YPjt6ON5yWPQcYuuHwNs+Xo0Ir5UJJCBa0LFCvcrq+4t76hnZoRBFposK7zSXeLZECvrT371auReTWrAPs+krf7B6mr8lIUt+7LeiX8H9tNfJQb1hzo6vp48WPYRYacG64U/fW/CCGkt9z9i2tdD7Lrl4dbGKiO7fRQi+rWn0/uBXRNHFq2DZr+QgU959DXr01V9c19QaF2OPv/iUw7z6p19NS32Pit2nJx48u4Ib2SZFnrJ5jRunjzOuWpMIeft5UNdfPTuWrNMUdu24JQHjZcfSr9aqUWAlxHou1zb3KBMVinA58qx+etP2VjvwdXcpXd5fDH/6x7LexMykKBvpPatg6VfgT/K1vVFrtpLiz31Nnyd4mxwlTAHP/qRk2e/RlLodRrtjoy36mID6rFMciNjrQHcf5eANHRTCP337r95mYbidQej0YeEXuccj/DvD1xMsLAidFzHD1lJ14Xfj5bze83m1bxWgs2RS3TNSb96ZGxkGEZ4kVpnOxekaK7DsT7zeacY/PQmO+RWNxx+YZlNaSgmHSIqJ92mDgj+ivPl7HiHZTeMbPeH4D1+o/ty8vDFOPBnW9FYR+yE+TSYQztRau37IwbWPBa28pb7cJAiDXF/4mm3XGGYj1ehBWSPONPTJoS/4m7p1ImXrdg5ciE/0iZPH9RtNbnHAwCZiEO3e9N248BWYViykzpmsCt7LWgqtXDT0T7+f36iz0Sc9if/0dHqyjBxO4hPT4No6aDPc2jecV9qNBvPTRn/1O4S2U9FbR3pvVrfxcuS239E0CXw+XtXsiMj6dybuRabmsL5fFGiwPBGv2vGOjc2NIWCDR4ywqRd9v0rREMYTcU310/HxXo3QsZSN7JI+M373ty5Q5USIR+jbm9jLb5HqQkyiRf/txVMnoONtdaMHvy2KsQ5mQ/nb/9cVey35LjJAFa42tT75r2Ma+uXKRc0SnIX6LePuupHBDs7LVEM9Mmfta70h/DhrTEO668QtXvuKOpQmyfa7cjFeRmdUXNOYuOqEsyE73Xsg+pXQnfya0FJfSbDo2TRozTdf9OgcvP2dUgshPRNzQdfg93JSegmNVTH+1V/asZyI6w7fbFp9rj7CEY2ocSiqYljfHzJ6MaUmuvXx0FQbsYAufXsZ54X//+PjtdhVeNO4tODN/RbCtrd29EXgkUmft/KGvXW8LfujRtSdUAWXjmq40pM8mp8eKGi9Ow/EVtRt1/31Dz/l57/8cBaN3zL19qCM74UvsOm5faNFHyALPhSMznIFRWuYxPy6rrfoo2dY9AtyuOtPj6/ExkB7v1WolTyaaL5IHwbROLO/+iviuLu+UXdJPlibixvqQ2I9/55H9VQpuv5P73UqnBI3MJapoqabwqKX0Wyw/O7f51dSWC/8SkJzypEGm0i9jNU7mcxxazYOcjzfw3KgVlnbav0TlnqTGg9+6qbbN5vhU9QdMXDwQdPZ4A5SbGdFrX7g0fTz1wyOpf8lwQ750XCaWgb4HtpYtG6jx7/meAbf/2zITrn9oj99HxnyhxC84NkwNL2CHOOXjKq4umS0Ps1PuKRTRyxyOHUTF90jHFtlDNjpYaBFL2rh/O0LkpF3uxitCC26dING9eKTZrMdWgYg6yMQff3qM7ZOLvc//KFOeLh6XN6/S1gVkotHblzN4dhuj7DUL1j5Pp+cbXLxuExlaPAfvrJCD8I//YgGp/L9x6db0HZVjqdtp3rs5GtH1cxcwByd+4Kmt0eFyrnF4/Rp62zpJ/pA36sbtW8bY6lXDzE4d7kgiU0T80+Pg1rKj8SQJQvN5+BrQSbZM1n8H3jDEs1QpUsZk/2aMD7xsPFR/21csvQbzBl1aERL/qHEY303HdQtgyE8T8Tu9W80nd+1rKYX2yaHff4omgVftt1mA1j1u6O59NtE5eD81ni74BWLx7eiCp1qEO8cb0yaombeAoU93tT0t/ye0v+nZ8BBCNHQHKYKVrmyxu0PftFcrvfGdh1QTBY9zlz6NSH6sr2MH79vHEnvR+DDJTq/aLjgGy8BmFLODf6ntzD/O4dQL07kwvoq8rE4NjPyoD8s31/tei0OHfVvve2h3xcMvXc5tO/DnnqfbY7myOYlJIHSjmJAFO8fX/p/jhTI//tIQdn/onGrkVc3rYSxBaWOHWoIjxcf1Vhr1JcTyDQRX/lyCs2b0dO3PvQV85PZF42SwFmdv5Tcz3ePKdE+BNzAcfxWjyAarV0aK3lav3DC3mLHr7+bAOGzDgjWLxKaTs7DANlxGDWQDOa4dpw3tKR9071k9BnL0jkE1Rw9qo2fRzYF+0CCTZRHxBO7IJr2ueugvW5wrNqbsaPr+irCiCKDela2iyRhu7bgo8dfvLWQaUrPcJ4XSWVFgoccdqMm/84wRM+YGpmGCnYs1g3s75wQzVrvs+kYCTPS9qVGzVDGUf+cWQ63bawRx14fvU73nwLIhWiPrINbQbcrvVWDGhNiCe01mwL9vgyWO6TUsywd0RtC8xZp+EAP4nobzXtbBWjX7W5EbsQL5nxcET1zLwhAjQtEg1mTIUTjNL7ixyqiqq0zcMbngQYr2+IzqqMQHYZkTTxtFxUDMhAol8QSSaxyyevVLsiR4YQDsbx9WdBv3MvI8N9HQh76lLHZ7Uq0etJlUJEyeHQtH0p0k/KO7uIxz6bPbQ+okA2JBrGqerk+3A0QXnM6Dvuy4JPR30ewMxMTN5zmrle7XQ58rhRiPu5aJD0KWQDGHJ/o7Licl1TbBqQTC4nVwtOjv0cvwOf5dAiJNj/OlIgckf994lGJmcbF1Xm5FaPEL5yhWsxY/MoEeFiDNML3BxGT10tLXjvbJDroE+fD7dUrj+vdIjudoMVL5gnw3RVn6vO3jNjGU5gU3GWNhPJ36v5+L3xwQTDUps2lCXUAitfMo5AHm2wYha2i9NVtS7QkwGjIYqcHnKbPsb3urWjzIaUEwoul5Ji9t9FUd44CsHZv4yY/R+acn3UB9v3oEP390RHLt3IJugpPYjxDseCqIqYQdlwe5c08ZP+e/0W5PKLjhyPuTLaDwr11JqGMiohH95+GDg5LsFD5324ei2GEq0so2c8syugqIg6cCG0whILrTbc6i8GVdwIhEzezqe3LHBnCJaHWiPqMR1erQuqPSXizUtJutHZhvPrU2XGUOqdAQ5pNlepYxCA4DzbRzPS7DEdkWCQQbrSbt4fegcvl9KJYDX4Fe33mM3La00B3d8i7ucpcAy5MWOP03pBsXo3ZWVmPpYG303b2hvp71IAJ3BozVJ+XeCN/8KNQfDGP3ii9aYukIR+xYt46k0XS6wnTtduRYI/20azIXwXp6HAgr8+18NgSf2phpsutGYGak92QO6h96dGzOB+85helOUr7N6Gkrs6cb8erDNV31sg+uVuIuVYuQ4L5ju4xdMUkhqsUpdteGdVrhBHLrFf7b//a4g+jRkmKEbxiDMjf9y3vlomRHD5X4+L60DFP2AqwH52YYpJ/zWnTqi1sv+We4tU9i1jiJHd0kK7LGNe44bM+y08wazcct/SMM5q9MhHd5dWNHKbtbFIapSnEpWeRQ1ZdPBbfOhuum9DHorcvu2H9YCGsHpcVCdh28S7eyyPczPiOZeP1jHitWDKq3eRB9tuuQSM5Szb68cX7eYpLk63zj/QPb5rgZpgb5BMbINkBNbeNmg390arQFPsbqifbjTnPa2RBtT9diN6fnsWkq6GMQBdcuv/UD/69ze8WuP+9UEwHlg2Px8WHk5EL1No7cTQhJ0mhji5f6r1V0ZxLNRRBs+aOBCbczGXqyROu4n0zbpyrY4rmt8xhtNsv3Ye47Bh6Oi58nfhHrbFs+JJPNJird0sDP7kVU50aPRh+fiSeorxM/u7kM9rvjjHNxsfg9a4bMXDPYkP1luqIBVerl4fHpqO22U8ZGw/3BJI4WmG+Sy7RdCEXC/Z979C4llpEb3rfw/n9M8aZW3bXxyVLwfTuQJ+7886cNvoxBuR+nwQXtc7FgQQhohS9qGtc5myMOaTQdSOjuqaVfFwH2wTVuNFo2r48Pp8/YQWXVDlQM6+30czb0xleiTPRZUxU0Y8C0dCVBWcSpCT25uhTa2iJZzwEs+WJ7uVngcWygFiPOUbMkNoefg0eiRs5scdN+9SoM5O21BRtjQ82P88QYyvBP/3Xmj9P0RLQlHVM7cUcYkCqqW0Pb+yNKKWcD1jal8hbPX+jqq3e2cCpq6B3GejEzOtbxg8vlMMfHseb74XPE3s20PdaQZN+I3szkk9P2Mv3L56nKCnmcP76sF3JlzFfvSteCSNlaPn+eHOSQyS1sTgjMd1xevhys2OJc3zC7mu2VKM4LJixXwZrnmyGpTSeUGOrLUPHbucRa3XtC4r7REOGsl/jTj/00bwOphTk8L4ip5Z++HSdVQvws9HJ+XSx+PplVw6SBff87/OX/Qyw6sR23CZRW3RW+cDKbnWR6Y7WYjG5dJ/DePGv1OpCyudzvAthNYQyOWRg8yn/bUflD5/8PsDR4D1AQRmIBrFRWZrDM9828D6oW7J3tLLjLlbPQD9hTQ2tD7xJ20hPuL+NkART1fF5bfQWXICeiMOkKprqc3WEdmNFNBDzyGNt8GtAO2iYnt7yNxvbehbQX37ZovSOBu9n+Kg61eU4VYwX/BrYT/h9DhIxaOZ6XFTnJ6TI0qn1dJyCvT3ziKS13mBE3TwajbgX4Hd/nqi7dZ/eX36FY3OSRkm7VYiZ6dVH9UGPyavavjp2yJZT6yeLEdM53zvO9nKLlvcTor3ygp+ESUTzHO3H7VMezfkkxzYkj3hD/Usx8PFRyADwJW+sHOou4laLbXT54oTan1MdzfBpExVuL5NgkCpvSLNtiXK9TeguTFg3uasphNRsCLXm4BuNWJqfyOI4/8cXlkt7IUokLFP7edFMyW31HMXr3KPOTTp7E72rufKL1zX5h2d/+X4Tej7xba+K5mG1xYrYSzrReKBx6Xi4n//4BfF3+6Bjs1uUoAhrHc+NVHVTO2ugevnFHqVpqIu+7xK29f0qGDflVuILvjmAg6NC3GjtZb2/PVjIi8sffRVqkjFs2zmY396iO098dlN3WT/BWPUv6sYpNaeR90vreyNR3C/e3/sYJGReJo+YN3vsBrPXQni48XtU3icPbTbH81n59iubarnlRfOgODHURfiku1gfvJGX76fiDhPFMrKqjJVXEcPC14i34Ol00IIZ6uj6/cPPaJQ6UYDb8a6NT0vg0fwMFQb+pbjgYTimHg8bY4a/fHzbylq2cVO3hWllb8hhPq67Hu2HHLT+VOI8WQ5HDr+4hPWmcOnf/7tNHrsz3AI6YSjSNhqN+yGBs6X2ON2sSt5bnSOAPe2V8Sv5cjTlzz5B79qIqbm5ddH4rboZPSwq4X57XXezW35tcA+2R/Uo6c35lz/fCOarhdfxmEfMdpir9qfx8m89+WlADWzCgz/yn6+ajfI8l7DZVsJiZLXmHOzYB/m0l6ml+TSal/hVFjxY9ovgTRq+OXA/x0D39KlE03ffKEhelTlNa//jca2wDfg87w49rBju2OkXWsAzb09twd0WvTHZR/S+yTNxN40eTUa/jNQN90dqZMMR9e/VWkaBQ0u8gZqZPNWPR6UY+hrflent9QBej4C4IiVX99wt8VIqRiGY1C42UNBC/h3hj39m+PfNJuOzT9FKnGYsjdnYzcn1foeLPQzUwmbHZ9wNLtiNO48qXlquBfdFOBxPIUanr18MYrhK0ED9mRjrX5sxId3HEA2f7bgGc23+/vjLgr90dydBNteuKaq37Vmjp1vVZyzIQw2qK8Z4Zc6DOV3eWagMxo4Q34tfGWs3WEAeLdgIqhaafCgHA6zAV5e85Hubglsi1JN0JO5mVSI2X5gMg6I4xKyquqOr348B1qw/vrDy2DPHMxSWWI8vodp7Itp/cxSsZ5169RZ5rAhfM9jm+0L+XtPtdsCQ47VBHGHIeZleLhLw27gl+u2Ydgve3NXomu5H8TPtTLGFIoFUPvbEVC5hN/WXnwG1J3VYMlbg9ffLIYG6znViyBh7PPoPAAAA//8snUnasjoQhRfEQEAgxRAM0pOg2H0zsUFApQ+Q1d8H/7sESVLnvKdMxbavEHj3LSWWwFMmKidDu2vsyjAfCZdXq78M4KruSJG8i7Zb/KoWZIpCFA/HyaInJ2Ar8TLc6spv+79X/tBX2vU2rJ+MJvOVfX3N9E4mjbL7Ka0f+dQsU4lyZhRuiTlGYQxi+tCo8djeA34uXhaQj48G8Rm+Ev78pAr69i0flMwS09kSbxa4249HZHHfJpO7RJZ+cb3Sreo+i6mLrRLcJukJxx5O5lu5vcDnld+Z6flhMOs+OqGbUGKKw6RBwyYWbfCz73aQizW0FWXPK3gmy4b14X5qJ3crV3AobmfmZpPXSqW8shCKLvynF+k/P6WeN8chm7O2rcNid4Cffvx4gR217oP6KtCIKlOMxuLeW8jG+ZEtt4LSybm9O2iq/DX00W1OJ+ckipCCvCFSvdkFc7vDioan24s55PPH+12Z5do2ykdGmIGCWT2oNzB/UwkDS8XDjV07GOzqTaRdi9Ll9ecYmHDxF96+B/PV6JcJX/g5aHjjtNLve4lYMImmy6+iO457H3aP3ZVFh/OXz0qWEOhu24Z8khSSXvlbPYAdc/9f/ZrSrZ9Bv9+41FOVLOXkqF/BbSuRRRJ102anPGwwrLElkPfHYH4dThcd5xpb9L8qqjGVCdDPSyKCWvYBv5qX/U8fqCXOHuYiGTsI3n5KLUcK2vHslgoIbb5meFnfsXYjAg+/SeiyPoVUJH6FEhy11L2la9Ql4ezrfvbe0u0zOCQTTHUMdaEHy/dL8TRv5w1I22HD7PM04K+cyjYahcla+GiPObpHMSz1kO3zyk7HfWR/0N3V9mRlm6ug082KgLS7PRl5Cu+kh2yVozosLoMw1+didD9oAF9xBJIG5y7h3ru8wN0pArI8wtRm+VDEevMNrsPif9J5qDcueh8fETMsdw6YKzcljK/6NSyT/HBvYCyixb9Tqzy5nAVe+ICfflvOww34NHk5OLeJUkLca8tjq5mhpoeemoXYpWzXowZ4tW97xX507aiy64y048pkjsxe7fylWQyKL2yZsT9m6bxVlRza67mm+OR///E2nIIdpoO88pK5ve1CwL4x0Ku6TtLxQrwTRFerpU/h88W8b7wbWMWuZp5MMZ9MN4v1es50tuyXpHO6rkSLfrDbon9iqJqWlp2dO/NPY8ZFKa9F2AuZzaimN8WcjS8NXlQ7UbdGI/+XRzRiLFB3vb3g6e+V38DUhcePL1rWSUUIefRElComLuRkvszoM1qUhp+uSLg8XzpY+JL0vU6TGa8kESYWCMwy1LLlmhqPquppE7X78xHxXJEGwEIdsPSrpnioubHXj+HhPExr1cMsXtkxxHvX+uWRvI+foQULXwzqrDeosxVygCjUHVLip8on6ZLIIKRfgQyL/xvP+jNDnyw4DWvyUXl3F/YxOiTFgxlVvdQTEXVoPNxkRgtdSbhum/PvvLNjf8k5v5Fjgxb9W66AvIvZCT8y8l8QUvekdYij8+2CUG15Sx4apmxu4wbk+1siP72cdn8pQTc0D2T58y6a75e2gcG1OTWW+ja16XCA/fpOSG4dvaJfeE6jIf2wqLxZrfg8vQ19PMfLVIidg+cdUWYkVfqFzK8yKrhQCyF02ufI6Bc+LT8VUo7sje0w13c8zIfy8gHVUyZqqFuWjhtIPyp+FdXC51bLpjcQCEXDoE7Q7IvKnT0Dnlx2CFhTiqZ3ezxB5Z09RtfHFe/fTqagH99vgu8mmbVZMpB6uRXUqzbHol3uriHn+SkHeTn/012tOshW+n3oS17h8c5DAWllzhn+NkYyparkIiSKH0pWN5ROsuOFsNG2EhGS4FXMx9XDh4WfySr1cjTJjhnCY7ZstrPfVTLxYnkrefctWaS8Xum//C2bR06jeAhSceFPXahYTjekqNspmXoNUCq8ybTol1ZzI9bP6zikNxeLfOrSP0V/ctFhNkLfYhQHXGpVHW9oKKdDuuRLFcy+dKALj6MxNkyi77AeDp+vd2x72TGJLsXGjppZMOLp2xoKyPevRGn4ngKeHuzFLyclW+ph0Jr5VGr7vTwRHYMaDDjAIVrFwZE5+SEJOAodG5q1ndAgMCreLfv5x+Ms2qVZO+eu2KD2eqyXfDjCXMTFBWJ5fFFb5yc8O/tgD75nBQP8hX466mMNsGYxI9PC071+vM9wYDuNLvU2Hd3u4gP5uIj+8vwaTXqHvv71TnEftOmw6A2s4ZoM2uKPBzgdbXThfwXdxOklGLXH4QNZejaGcc6Cdg6T/QPKZAiZGW9fBX9OLwLr3NqySBgT3P38nR3eb9SrWINGNr9jqOdcZzT1ct4mNrkqS71k/tkpk1G40hPY01b7rU/7j2d/9coz95+CPz+J9ssTqTVlI+airj3gL34YA3oMm+CfP7/K6E0dfncLMbpJHzC09YnceHbh/TPclOiUT/qgEhsCRv20gjXbM2rkVpsw6fsU0ZKv06jamliSzXJG/87nF38QW+ob5PJeol7uf/HwMKGEDag+dcy5TId354bw2a4dsn5eAi6uz679Lx8LVvHIubnjV5BkC5hbnAUkNbMhaIhfLkTWuYy5A+kDNDA7aj2eYdDVyT7TFz/JyLatirn5agKkJhWZJckmmk4HNfuXtx/l8JKyQtj74PvZH4uW/TZlbGWAQ+idNOvKTEeuvg/g4/uL3bjctPNkTycwILyzv4r5iJ/rnYCq0H0seZaMeTS7GsR736KW5HUt//GIvBZ1+utHzBpGMbrcD2vqeleOJrtyHnDTQ2DhX9ik44//Fv/1T0/5n3w+ASm5+OsfpSPT58+/vP2nB5n1jm2ESbxjYfhnF1N6cgd45F7EgutGKDo2v/fw4l4/gDZlv/W/weLniTJ6E2bfVX0AWav2dGvCmI5qXWvaPUtDajw9Cf3qCcr+tJmGC3+N0TKGc99OCnOejKaTuW42v7yZkUd55VxUHhuYT++JRQtPrff8YkFqyw8WlJ+47TYTiZEWNDM1yGkfNFtVydCS3zKstWXayMBdsF7rlDqvr464YFwUaHJ1TSNj3wb/8ipb7kqyNm9zMfVWI8N7w1YsqravQCqj3ajj8qQPr4VfOq6+T7DwL9kH3zwZ8ajKKInPlMhZuce/vB76uDWH1XWZ+5Ba5wYa02bM8/ku5a0ZGf/8h/Xjn7e59eH7QmdqL/VtjEUkwt9OI9TKzlrbuS9fBlTbHnPXc/R/vhVkmjKUUecm0mx4vrbwwiBnWsGbn1/4u1cNw6CdUp6+rQ4OpwOn+BMf0Vjawgbs8Hlj9qmX0vaZko/WlrUyiKtz2E4qOXYAlSGxcPvYBQvvuxC+kpnkgfBGk/pMNBR3j/3QHHuVV+Q07mHJE//1u9rhD8fob6cQ5hl0VXT7S6KAorwasvTz+LDkCdDQKqPkLXPEij4F0KbqTAPHvBaVqF60Xx5NrXN5aoeVGBK08B9b/FA7RffqBku+SlZUSVt+NEzrHw+/cMJSVn5bGz6Hi0rPn8RMJ19sAXlI+BL1zYt2gNsW0E5iEenDi9rO2vfbwSX2oyXfiYK5F1sFmHv90O2mfhezwUNFfvyRLd3g1bnoJF5tNE7MgtHrtgmmX31f/DOzhaxN+E5QZUjNSGSWP81opoflii5vyMC85ILnnPSZVuwgoC7O3ykbpztAdGnuzF9Xr5S/XxoBvTpU9KafMOe5one/80bd6C8PBrz9jMD2g0R/+cfAit1eH0c/pPTEJzy1XWzD13m7RKilHI+byd7DWhdfLK5qGsznilnI6Jt2+T3rokLOO9N/+YZdRqSdBFoqqKifFnUWPzexHg0/Phk6eZ7QtLWSjb5GOCRFr2RtvfSv1CaUgoX3VNT1dBvDZys5ZOpbD0/4+G6gvbsCEar0XPDcwjac3+qW0tTbcHmoNz4cXyawf+dh7OACGXGPbN9ul4dHlv7Bsn40OGSbQBz+AwAA//+kXcmWsjAWfiAWMkkuS2SSyQRFEXfiCIgyJUCevg/197J3vaxTpwoNyTcluVcgprb4N9rF74TPveFQuGgjJhH3T8nsG+NPX/ZTmTsZh7wTGhkjn0oWfZ83XtlHP1P7wwMqr3avkkfzPUX/z5GC9f8+UgBX7YgVpv3ySSPhDGSyLRaam5Zzz72o0HbvIzutd00ymcupJFOwHLbVkszic/EQ4bxjM9vyk9DRefJlaB4rHaOk0Cw6vq5UQ1dcUhBpG47VwyrAdZ4f4snu0isUJRhKRQzYLrndLOqH2g3C42wwU4peId+thAfax9uaDgpc0TBdyQHuclsR3yme1sDt0YCNInj09+x34Th3uQj83OVss5tcLl6cW49eDdrj9bPBlgz+SEE0NgbBG3XHB7H2RkicT8FIvzdKKa6mCIaN25CgrryOC+eXDPNnjnFr+Durt6XtqK38Kyb2CeSc6X5+AM1ZXaiQXO5W4yXMhXz3lomf3rqc06ivYSXIMwt/I7c6c1+oyG33I3N6wy3l5wFU+OWiQezZ+5Xj74Qr5Pb1GdPstubtfLj+UNTdU2Y0e8/iBdUqpOe1Q+cmbC361GMXjsJPIf7z+eXD/DvKQP3bjiTT7dyNw/ZoQsuVN9nWg1MOzevuoV811sRfSUYuKhDfoNLRlgWv56ejm4N3BHoOa+bfJBQO/vD7gVUoe2Y54jqsiHqRIUZrTiGyP9ZM6XWGaV+6xHx5u27sy6ZFHUgPYtXrTams1HUNkdyXJBy/BZpVdKqACupElv9vManoU/iu0g1x1Mc64eyqedrnGa6ptPu0fFbsnw1H/Hky+7hZdzODV6rbB62hap4ZpeQZnbqu+t+JxNNHLKe5FTLN8+ctIavSzeW7uRvh+w4lZjdOH86/+lUj4zpmJP5UQseabQLQO36HG1HZWrLjhxk474RjId3F+cBOtoei874iUbj5JY196w24HH6UGNkZ8VEMshrMj/0i18v5w/k5DWd4D4WJ5+mZlv1WOh1gs9VGrN6/bUiP1TsG8onuxD0jlIxjnVEYHOm2FD4/ohFtGg8OW3GiK0ub0HzfrWdUOWVJds/7bI3Jbd9D+T5PdKUyns+J0j+WKiICCQ6kDqlu0Pjv+XQaMpL8hsQz/74/sXrX7pRO1g6wD1yDkaNQdRNI5x8CO0e4P/i/kE3R7K6E9vvDy/dZGikILkBXDCRUo2cySt37qF9M80SiPKq6EYd3Gzb66chccS9as+lJKpokqjJjPtrdOGdZC8/3e8DnjyB1dO2XGNZHG5PId7uOP/rwpenx6kCLejd28zf6GuhQpSNdLqR3M3+9IiRszBYrN3SxRpkGGlzqaEuOdzu1pvjiRNAbmUpOx6Ht5t0QUx03SCXuvl/GSy9u+naIPXZnP5r0jnW6wuU5DAwfrNZq/ta/t8IdCYprkQ8tQUuh+rlj9n6OrYlO+xlun+OVruvvt2PTUzogrrhXZh63527EknpAWH/uiWM1CqJPPXORvstVOtD1I+fXYDiAONoZC5tnaY1snWsASfSm6+SXWXOcYqwt84els9mW/HHxUqBXu2bbevh07GwZFTyNAyIeOQdl3d+7Fq6Q2MR5h/d88vH6Abp+j8nfePM4HE3YJbggwf3dW5x2yQyul33ITpX2yeTiTkBJT4/Ey2jCh6B6RNrPi7/MDz5L77nscwV+rXKqtg7wsSlvAURXXDHbf5TdsPfKWmuEK9ApNsZk7Nc4AwyySqzhsE+m2A2Wcporke20EVv0gxQZgnw2mZXhB+JxqBpwjfMnczJl5ByQ0wL2jIHCjbyT6XfnFfjvrUK25NqUs//QW8jSYWS2fKB8LGGmEOHVmW2GjOTzztQLkIVizQx1EJPRragH9rm7UcnPq3KSh88N2GvSidV4oTUyWTuiaKNm7Cl+hnBQrkUMZZ6GtHg6MR+ewVZDNZwbFkq6hOY//MBV0eNWFD1r3r2XKhzts2dBfGzy/tDzI4jNV6CS+ljnfTs1FNWdrbBnhy0+b9xjCrbo58S0ZpFPC1+h45A57LDK/Zxdak2D0yr9sYB9P9YY+xsD3v4xZk9YX8r5FmYYIbkvWCj3Hz4Znx/A5n1nVEh3Y9InyNO0ynmXhGwkiqZ6Z9+0YB8SPLq9GyqKJBkQ6N2ObN7ny3JEQq8g1OmHYKPfhGOs3wBAyRL22Ph33sUPjuEJ45r+Jug7+s0SA4heNHTm1brsU9ZmCHFe0DHYLoXdvaUQ5UPX6XP9sPI+excpzJvqQVynu4XTKby2MBnaQEyYoGRfuR9h/2Ir5q+kV86vknfT8v64tKScbuXoFHYF32xH6AzTraNDt47grE8BrZ6qH4rSxvWQK710ZgRyn3Qu9wM41ZnFjuOu4zxN2gg0T70QL9xVyUM8n0a4X4MP2U3DvhyQUNjgpo7A/Pr7LafQmK4wSpstucU4TKZE627Q4HO1jNc6mRQsHxARQhMLVH7mI7m0PzgJPSEW7F98TPT2hqyL2rEtODaXP9tOA/ta37C8DtqE44vqQu55LXFXZJeMoTVe0XX7WJPQ99uOTZFmo/tGvBDy8Q3Op66JQY/1A9mSiqFRuTcxDJIqsoXfES1qpwbruVdI9GFaOZ++gfi3noiV0k8yEOkqwrBnJjPI+sdbPTrE+nDJJHZlXyfkj4uRwlUp9rir303Htqod/+k3rD1rZo3VIywgkM4b4oTpO5/usTqimyfnVKp5WfK+jn9w0JMTFoLomszz4dqCvzpYzLlvzuF4YDcVNOGoUykuq3wq0k0Gn/bikpND83BcqVUAK/eJ8XeVHrvZso0DilpZJ+ZTNPg0bW0XXc75G09XwS955HsCyDIeGCHTu2PldPOAbuYrBtYNyfSFdkZTET5ZuDlc+d/70f2OtiS0V1U+BaMZQaCbIttiacWrNXljlOlisdwjTnlXH7QbsoReJuGKmblEFpX5VX6YxSRQOW879wDPLVBm3FdFyLfhtoDIr0Oyff3MjsvjWoO9gjPi1huxnOpsvKE0KXL8zo7Ap1x/Gbrg8DshRmOGC/7C3/zDf/N7vFX7TA+cpKGKYGzKEUmSi8aGa1RrVcmaFVU0IHysV2SLzF9IewGuaPVRdwuf4Xy81sMD7cUko+vzLOT9WfwU0OhzSaeAD8nf+9aHT5yz492WQ8bH6vpv/ZvBiJNht/8V//CkCT55J38VE6PN+8mYPZBDMq7sGIPrXT/Mr/oWMQAMQPO/LqwFbSkQhif+VTsO7kS13Ata4iaTFC76JfiHz7tX+ivn4bXDSLlmT+JF8duaD3NzhFf7brFWV79uDm9NjaLDa2JnLK3Qom9rSI6ZR55aG1tFUe9qeB9imfmDcc4n7KU2bJ8OYtswthKu698IzYhLNJWjETX9q/j96SOsOp+HxWU3pTD78R7r2VPls8xVFfXjI2ZBFJTW4D1zF43JeMLMttV88Q8yyJtrwUK6gmT5/BEKmmeOleV5/Z9/gVX/JKZWJOEUu6YBWjtVdNEn4bgKWYYOiuazYLVTyjG01AwGR7kxb233ycSHp4Du/nLrEH6rjrvHC8AO/C3z1BMkXP7sNBRuoi+7GRYJ+c/WrtD38Z3tiEc6rn1FgL7RZWYcwSlZuWro2kyXyLYtDpzfvt4V/fFrZMMnGbrDyUVbXX0TTJyxnFYv74ru5TakB/3Vdz9yKX4I4VXKAmainB41bGg3T8yZzxwtYUH/Gf/4gSRu2YRUCVcxug3mDq8W/pxW0uABrl4923XHN+fRLQogV7HJgpZiNEfP0ANDOZyxxqYuZ4mxf8FNb+thXsZvbJgXQNj6EYU0wTmN3zOGC0cvOl+MHRpPeP/Tu5XnsP3O/DuC3lWQV22Dhdyty4WfZ/TnfyIK93xU7u8YgXhPqDyoVdKf51CAxBAZi9pZCbn4CmbtdnmI//TyON3dGNZ7H5PNVfC7PnVIhAqEIiw5FIW8PswPXVUqgttw6+aye84AefXSCOR5n8OFr039sY11Yu7olv/hu17tLz7ZmjuXz+OxprB1/ZREt/5hdXk2i/ruhRAV+QOVcyplGfi5vSeG/GjRWNvnx994EPtlkiXCazKQdMkjG73sOr7Cj6t2kcXXsoU6dC1/vTA6dZww9zmHlnK2vAruz/e0+JMcNe+6M9CY3zwSNKsHn42iEcCpIs52F+xxSuZE1jdAEQXXO1jjQ/Je68UfkEWv8Xrxd1r80TDzwp2dTON56AH5VUAS2BtIua9wj5JR3VJlve2SGTtPGz22B50OOv1243jte0gafsSQR1U5WjPFoIOoEK9iDZ/n7ypDBnmHZPtkvTXuH8OIUlM12dNZSeHPswoVfXThSXaB4OfTFr0o9PvNHq9WQ9TNsRWacJOAM5xc7iGfSbIc8aE9FRsnCmXz2KgQeFFDzGyvo0HOPPqH11Q08m/YFB0N1gufMLMJg7B9xEn6p3+JJ2pu+DffEMHblu2eSYd40A8j2NuNRZHh0nAUvpIBoWzMxN9kKh/WURHBzzl/qfikBaLWOXygx8r02KY6zWh0BrVCf3qckEjhv5VsVvAgX5+qN/UaskvuqvBsdi+2Wf1wN50ey6akZ3fMlQw7FGs6//74iJDFHzbukARwPuKI2SdIk2kWPRlasjnRXuM7i6/dHsPix+h3FdFkZNHZg6nwn8R+rA5o7M96C/14i5lzqQ00PAOiARXijG3mvdPNaVNl+h8fKfZt/KdvgfuCSRf+zycEXgHTCA5xSLvjY8qKK9p1BSXG4q8HeGrqH9//42feX/tF75sD2dlBmojB8WAiQfD/+f+curIR6Py5+uL5ioKS//H9oufY7uA2Fv17P5fz5c22u2ePWFG6NTqdP3esK3DlY9AI4z+/dQg2j5wPgWVCg08VVt0jDkfB38nAzQPB3cRZydi6SZHZjwkzkuPKalMpvuqXVtCW+WqX4k7f3uBSJlss/eUT/fZ909NtK7FN4Tb5lIUvD37HYMd2uf/p5jfLDHD355AWnVsverTAcOycB9myMMt/qbPF//ylVRhdzoW2MlFntlviPLsSjeorkIGTEybWOtn+d3y98/NFn6wY8/E0eCIqzuzK7IXPp5useGCO4LLHouel9PLD8Df+ViVUaFLWl9uffia/fX205olMNhT1yyCxpc5oMENR++fHj0v+NCnXNoYbOq0YHl5RMmwFM9YNAQJmt/uM94jnL83aVE924ULciRwCAb2OL4ddVtIrkaLC9CAVpx1zeH4rJ7OtXHCNfia2+s6S2bvdXNA9oyf+krdMPp5uIOr+mS15SN7XsXXT4vP2h/lpJSXTJyg0SPXtBasfJJd8M6gvYMohxdV0ycp52AWGVo2yx8iclh1/PawbPFXTJZG7HPEQpW8BeXO5sb32OYSjvx8fercKHNo1sOJM/jgqLHyMv8E7SViuhRXMuLtT6UVfHU+eRq97svakq/o0LI04LPPP/2FBWSM0JrdLj1Z+hmmbXqJkrtaPGC3+h53Tosm71pcK9FgZHvvLi2bbfYuoXsUNSyvpy6fpMNpI8OidhKv1r5ztz8VAiVcU+Ajdoxs7MTygr765MudFjY62T4UC77CI24+klvNXCfC/+bOs/3y815oAGwPrJLATvswXQ9T/+ZElX+ilp56ixJAZC0+B0YnnpzHqWHUdLC+fZ+a8zLQlj6Labb6FbAhCA5JR2zLnOg/dWMfhTdttj8BcM/7w+fn4aXDd3taE8F5e9PCkQdBuxSXfrEsaXA1TL+Mho/D+HPOOEewBuaQKVqLkFU5fUpuw4p968b+OxbgwARS/M1+qaO6s+bbqA63PfzYJks8lbCKl1mDJ4/DV1V/WXP/EH5gSXdNJbU8JT5IbRXMX3liUJjSZQYh+mlY8M7z6+AaSDx72wEjcD5XV/JpMp9aX4ZD0Z4Z9Y+jG82wBCvosZ49dwPl0jbsYEqldGl8EQT7V9IQhcPYNicr2nEuhsb7+y1ftejt388nLW3h/ZILHixsi9McXRzQoZFmv1mD/MkN3jM2Gjm5fW3/+Bwp4f3AbZHLOS93w9EnPOhIe87hsNn6S6s8xTbAu11s0Dolh6sK+s4gbULXk3uVkw2aXACGaKOc83coYVKJYzG8+m5BjHNnI9Oo3XvX7V/dv/S/PX/LdPJwn23FhyTtIWJyXI1/lzQOcNUsj1x/Np2bzASRWeF7w8Wn907uPX8mwPg1TOcjD54Ge8fpI6fpdLPjtef/0mWQmFeeP3S0FpWv2xHM+QjjdSwRoOalM/vKhyTy/VKSKHSF+GDh5/1QK+x/eG+03D/lf3tZ1VU8sbz50S17wgE329qnA8iacS/M3w6I32FbEJ2t85ceHhrr7iRnP0ymkCJU2Up5TR8j9MIWjNUY/KDuhYtFpKazPwFRBXcUmu41VyXnISAqLvl0aXWA0DVSN/vwn5nSzSQYv+bpw1r2J4BReCY++agDYcQay+Ilw8UM9/OW15pKXTC1tKbx5+cNVbzllc2WHB/rTs398O6rHhwhLnkICw9+Fy1WeGH3zgBAveIjJHAwWBte5f6juW33Xz1H/AwaWT3Zx2CddZYZH6PPWJmHztMJ+6a0EN+GwwsLzmljS33q5XI9vtjmu63Lyh18LT5jXLLwxPVQeF++ImnYXUP40Jz4ZyOlRAeWH4Gyp2mQbXNS3PKEU+X5bjtunuvgf22V/fn7x5wAnd2WT8HWryz5ohBltjEhnvk9+3dgww9PL92nCP23lhyz6qh6MzaSxyyZTER/vOQV+UH/sfG/9kJ+V4wtt8ptP/vzQKN7z+S8fJFhZ52huI/EF+pjtMVKjVT43wQH+/CYel/xTxnvLRYF62DAL6L0br83WhOriAtkev303u+dMQFv8LAgmgot4yXWKMtc5M/z7pharP9Lvz/9StDIOydCBeoD2fCrY9vn58N6x7lfUCrcjM9B5Y/Wv/HYDuhmvxFi9twkrSlyB3SkYU3Wec75/H2fNMYUNsfhb6+Y0fUdgjoJLbFLW3ZiLyIClYDEz2ruIFnww4dr9umX+I6v/08slVDrz5dlC0rWsbzC3pYXfx7Xb/cu7lv0zQgI/zyfqyhVScztmdtrV+U966kc4CZSQzdNjaHKMNPunR3xR+YbTOmoxPPPXllmJNlvzxr2lMGalx6LmVoXSQXod9XlTP7B8XYu82nR+gWpfdpb9NGrNnl7JYJAyxHoas2T4BK0G87IDoFxlCY0rtQ/ALPwXI0n6CMclPwRYuS6xJde0xK10P2jsxXVixv3mD7+if35olz0zxB+7YwoLPzHyPIsWXfwXfC7zQBd/Zo0v7xKveReJxLgeso4q9suF6pj67M//jO1H6uFlLIEdrNfdFBVBAPmulNmu/Kr5QNKuRXjMDszB6I7mozPbf/k6c86Clg83s4ygMsaR7NbVOx9tg8to7UW/5czU3LE/v3s1e5fsU4fnn9OqriAfC8KMwv8lfXuYX3B6ogaPPXl37eZyfv3LN0I3nMJ+yXv1N3//COn3r3L+87+LXiDbbJr5st9kIuL1j+V5h+7f+Bh2ssLTmP7QVGfqDVKF7rA4CGb+b3+Etv2K5LfDK5+I9bsh/tS/9DOgMp9s/yeq8SGVsPBpoJt2VdlDag8S2zwPaTj/jW+ZXUJi2FOTjKV28daTV72IRcaQz0ma9+iRBOU/fpEi6ypAdmlHtlnyLm5WtQvX+PJku6Hs8mnj50dYq7FBlp+TPz+B8v02xprMbDSdNRVAl0KbmdUhQUueKcOveV9Iws7HhC/5KLhSoRNzTHzE14csAvuXSAteDtbgGI8r1HVqk3/5ny1t5/X9WU70zE+Pcn4+XhrI6Ltmfnz28mm7d15okDTx334otxV51Mm+scm2VUI0PU9IRYZ5i0jiv81SUV7xAWwfLOa/CruTX29z0Y/jA0vaRQ57/0Ladao7lyWPjvK57boe3fZ8g6H9jXyoO9Rq4QOtsOqV55Jr/CdAMjMNa8lnbS16QwBp/gDD7mRb8vpGM7gNxo49Ywfn4nitKKw+2o5gKq/ycdFrWrq6Grg7RF9rPmtJAQ/YelgkQ8SnIrhnUEKts13LMova7ltGSx7zb/9njH3f/LefAfWjLafmdQ/+ryMF2v8+UpDcxAOJEvfcjfEqmMGxqhUV3MQoJ/lojxC3PWF7dXvkQ5HKAdRi9GHHi+OUU0ZKb+n1mbNdmLdd5zhnCtuTLuK+7TjvS7hkIMhYobD6ZTkv5W0BnFzXZPciNOTKlgDSuqSiKLFZ3p8D4QaDhGxmf6+HfN5sVRc8tpGIjd9aPlyVjELdmhdiNuuKD9fI+QFl4p25j/uE2KRdPCgVLWUeVtfldL9/bXAykVLlWmEuz487Rl/u5njKb3P5+ft9+ZUkui6qmU+2fnrB+zQnxDtaYs5q3ziA/v1yqp+kPhk6RZtRan2fZLtGJ4vfGkzhfi0Hqtyjuhzz/DYDSaUb2bhVgeaQWC407vfKnMt24AUS7BZEq3iy6HNWrRk/n0fwL3FBP3DdllNbbQxEr+oGz5uzHY5wKwQI65vP3GvhliMb2iMa0M3Fclon4WT/fr/1euoeWJM2n5AeLfZAuwc4JIW33fFb41I4XVYZCUE6J0s3jQgeJTKxlpjbUDyVVxVsMvfMXQvvkkmS+kJAvDPLuuFjUa29qgDq/GBbzfAR/RqCC8Y6PhDzu98tt546DPou/xLv298Qfxw2LzRmxyuxr5dNosg8DQA9G4QlsfQQd8d2hMcRn8gmXjPUvh7yAfxkeBF/PjuWPBDbBlJXLSPj0ot2xiaATZ4Xtvu5PeL7N6IA5YuxjSBuLKWUty/4HYqUbJLXyvr3/GX+4HHjB6GkCMEPDlbYseAq7sOxv3KK6KoMiCEMdjhLtvRDw74YsHJtynK+qycRTuS5xmKaXSzaJH0POqgWcSPPCUczDiIo8YFgITlO5YR2iYxERZUJcWPRGpBCWkTFWcNrmFyukPhwgDFxO4J1Z91RxwxiZJrHI7EEdV/y7zQKMMdvm5nPpxUy9i1ecAno0gulFsNx/RQy9JYiTDZfYnOe+M8YIbFdY05Us5PSmB6gbZQvMcRgk4/Gd5vB9VFMxHuuvh27N9kMGjo65G7GYzgib40BF0+H2Sf7ns+X5ZbIzu9TZqwvXi5RfghWr3FKmf+Jgq47ebcAXql2J7tbci3nZ7TvdcSWQmuJlIaj94gj3Uz1O638Q5Jw4fQyUXKwTYbjocg/ZSe5oHIX4a+SzeG4r+tUwz9zS8inZ+GYPbSD5l8OBa6EFe3mMI5j+EhHRozX5xNOpbmJ4XXLBOJ83yxZ5s8MyvUYkZs9BXySG6sHcbicSXwIUMh4udF0OcwlEgyBm0g/FMf6Z8V7tnkjP2zC4PWAlSM4zPEcsfve98oNpohOxNt9XIt6v/YHIo4Zwwv+8Xc1BrAN+Y9qIow58zL3CG0jfdmmTPb5HK0N0LyVnZJzgGpruN+Zi/pDq1B1M3PErbsY6LFrflgwOPuS7mdHgKqvDLr9w4sCtimYprVhZjjqCQdzfQX7GofM6KwknIrBjLXce4RkJ+2/yfBi1xrqi66SXa043fhOHi0yzfSIiwyMXDo2Zg+Py6Ukjivvli2hrAbhHefEvfiyxYIV0lBZoAuxqr4Op06ZZ8i/msssFojW8n4p7C+yQlWUDnw87NcPuOWNQqEdvW4eX58XshvqUnT6zslcjucexgPPiHNW3XJax+sjSH39YoZOHqj/yl0NfjlvGB7en250w6YCj509ZjlHpRyVMteAyPsz1r6azNnqZ1ewK7WCOGvFLueNW2h/65tZgu4myqq5zGAfmc82r74IuaH+NHgcoxNznuyTTI/75OnPn/nFCnsnCR/RLUZdY47Eaf2tNVaxhdHWra4s3d0MNG+mTtP6s1ozbzOsQioxoQXaVpSl3hYQj9cBQDUVd2K8XnEy11b80GbtcWdbO6HlYDXlCPfT8Ymf6/QVztrRneE7iB07tzul7PPppSIhfTZYLYqgnKK7Y6J9labM2E6bbm71toZDgiPmKU9izc939oP8W3GWjnROplVgXMGZhy8zx8MjmY6nDMDmykRX03OTzOI2NqCfpicJLi8p7w/oE2u1IEhUv3/lnPOl8NbY6yXBCH1D/iJTpOMZJ8Rp7Tmng7pSwZnZl5Hf0UXUXTEZqZiWdLCaVzefV+4MAcgm2/7WCPWef4nRgt/M2PitxYmGba2f3Rlr8zHruHA8iOhjIIXq2d0OZwTKA7ofuxPPfhrJMv9UmFPbZY/k4uYLfmAAXE5Yr4J1MlKrf2gvVwISJjbJR7uoR3jwX0zMhQ/lBT/BrkKbkXVqhPMf3zFhO7Ddve+s+fZZx//wwak9AZUvbcaaty6PZHuYqwX53wAPftRZJDmncsz4N4BkiloSl5GYUCVb3yA4Kw4JyObBp+Tkamj0vhEJQLXQtPNiT38mdkg2bIP5/Azt1x8//OG3pTSXWwHFg3MsmAc1YcZ7WwPg90S8hU9ZnhYeWPnWJO73F+UjzcorNJo+EVeXjKQVyBjpf/z/YRkNx/A696BURcYsiHbdMN4CDW3D6UeCB4Nkuu6W3qMrohDj6335uOqVCBb8oxyiXTky833U1/J6xw6hNIdzTj4erOFBsAhJ201aeVfRVy8zPL8aqZyZAjNscETJZv1y8p6cIlW7iGlNuftLEr6DR7b0CvxgfcGjSTwXB7R7/GYWaUvVgdNMAMYhlimAsupm6SJWUIiuTe6vo4kmqXVlNEuY0i2UPZqN/Dwjy/hU5A8PB7XmmaZDNVImfL4WrwLrCo/A9FngwCafDzdLhX0Tz4SkVp2MrD8tjadyny3vhyub6Nrr5J0islvm72Qn7x6spdCiv/XOiCvbrYDugWJQ+YIDPsa6VKOPsVbwlEllzo9+c0ST/AvZAQInkfz30ML2dU9Y2FYy6h+Zn8I1md94xISgWXID+Z+eIc2vKGeGPUBSpBxwUZi1Ncuj0euvfUuJmT80xFrreoNSUVMs/LxTOJJub+jvsN4yyw/TZMGDCuxL86GopkYingP5Bp7j6ZgPcpaPN+YW69VVfbOY/Ix8Xi4hwYq9W7ZRI7+bio2CYdEzbLf2XIvXU61BmpWIWdMcornb367a+f3RyY5SO//KYpmiRX/h8cPOuaT+vAqRyfUZHm2v5FSvapDkRR/m0jWcr7rxgqdX9WTbnt8h9wYnBuV4V4inUjmf077FsK3NBY/bcelVfdBgjsmE+bppy1GMPzEIYyPRz/5kIbq/713YCfbAHJbhUMKOPsPzXnp4ioWq65b3Bd1jJzDjrg8564Ys1X7n2WG+4BRdR4VphPyefQmOf7ty4c8MmOAMxN5jl89EfBxgwTvm10/BotpqLwKjF4O5z2lXcgy/B/qk0ZYFi35mmiUWoG2uPf3jo+n22tzgYD0E/JqKpvu1S+/dzq8kYttWn/N6y5dGaarCDNVZtjh54sGf3vDtt1fKt3VngLC1CYuHWrbG+1k5gHveClRauWGnZMP3COtdfWHmNFql1BZI1C5PwOxxUsSSefT6gJ1wNZhbXJx8vF33v3/fx8DLEcKfU4ywe7Tznz9K5g5OGVzLJ2Yms87WpEdZr0n9fsdw9oyS6ST4LeDCn/Gfvxu7XJC1ahc4//h64d8aTuS+ZtY3kZJJWjkjgDo+SB7fjXCC4jCi7kEEPA5di2ZjnmzdfN/gD48XP3NOwTtKLZV+Upg31fEjQoJAI4S8rJzBWT2ihd8puE7djWs5KKAvrg4WhRUuh/iyruHxgA+xiqXx00fb2Ho6jz+Wbqo1mt+Bn8Hq5e3Jdv9orHE+SPXfeBDyynjeXJW4h1poCqw2Rsb50Bkm7DCqcO7Vm1x6um8NJXKuYumyHdDUyUOFOMnWy3zehMx6blK08C0en/smnPb9I/g3v4geyd3cftMH+sFypEWcTCTb6SqAa2PGJJqLueSfux7Ao/wwjDIShHPTqPI/v+t83yT/wyNdCfYdi+6tyaWHexbBt48uw4omoGkImgcwVX3S9SqTwz5g3wrm9gLEmY0PGtJau4KDLcCTuhURTZjUokdg+Ox+kqJEboRPD6O3X5OoEE8h25eGBvrgSSRUVy8+ma0qQCWPEa2fspmPn48Z6Km+++DvGc7W1AfPDD29uifhy/X4PKgrTVt9MoNdGBuSIXgVL6jkOSKRdpnyPz5A/X0r0k+iCAm/H/ciPJpgwlURhvlQmn4MnxgyQqxhshb+DPRFbxEjQqI10stYQVAcKxJeins5XxLzBz/PVJjhZpPVWhRn66OxPpNwPyblqO4uMrjm7GHZ+Zghe+PeBO0lfzFX42s4q30ZoXdYbZl/KjdIfJ3WBsTGvSRBMdrdeJb9Aqhk75iXC8+cp24oItsxb8wwb3rX7GZLQB47eVhbPXn4arlrw6O52Sw7ek04vo6dCAQRjtf1U/iv/97msk82zfzlTPHuARKHvmX29RiV/Gb8XGBL1Y8Fn7o/faipeqniIbvb1pKfBGiK8gdu7BtHFH5mpa2YrGOKjROa+w/21PRxjakuf6xQOvQvrBW2isiW1T+rJ4lC/+Ud9g2qZFQVp4X5FR8oL29pOfmROv/5m//mG94OqX/+hYSM64ibXMCo6RKbrtuXm/M//VIONGDOsn6n8+cT6RulLOh4HB5WG5YrAfLv/oVrdpUXPsLFPz9iT2sPDe4nDDRHPTRke1xu2brhu9J3D8FhwZaIvJ39XwqRYTGc2tG+lL1f0aKVQVOCFz/dN9LroYc5tMy3bwmfJ/EcQ7z6dViYsiqZz+kvQHbTuywacIr+5Ttdwjd4ftEgmQVtivQLO//YJvVk9FvwBZm34omrZ5l009u+1BCi7EMM1Tijn+aLKeqO7pFZ+UdBtK/zFI4GOuP1kbiW/Pd8tcwwRZJXWKPz7n6w3aQd2/rfNucLnsGu/BLaOFKVj054foFKgwddmRcpoY8in7XOryXiLvjFCHFcdHoWS9XKdoemQ/+L0HMn5lRe8H2unN8M6/PzQAJUfdHIzg+snaf2QVdIZ/k0SO1jfXRvF5YbrOh40LBxba8zzuI0tPKx/F4fgNrwihFofTgdNncPsnG3ISXsi4S77F6hwPMy8jy20r/PA6n1eZJF3/Ph/Bki+Kpp8KcX+KwMY6aHL7RlZjbLqLv2VfSXV7FH4CshHzVio5MYOSzNpaslz/7viIbeDJkLN7Y0Z39c0bTvMJ59XPD+b34ufhoPw1IIf/9FxVpUsc8cA0uomz4HjNrrbYf//OV4iPsDWvwUMaS7yBe97sHafMlYL2Q9mdtf90NeVasM07Hv+GVYZ5r2Ko8EK9oDjfHRn6EfvBNLx0bvqDKMVz1X0g3Zbsaw5I7z7LXbKHj0W+RD1wejOEIjzSVu7d+n65rru9c553vMN4+3xd+4MuF8a15kN5pGLp2+0gsefi+zXYEO1ihpnaf98b91Zu980dcaWjngMLNZ21z5iP4B/fnV01mtu59S5ipM+wYT0xJ4Mq5Dv0ALfxJzYChf9HONku0+Zpb7S/LBje3lSFY9UgV+75Lv9ssVibWyJWQMnW4SpM0VUr1Q8Wp4XMIpeLUvMNPVHR/FW8fbzVRqcAYnp/yzWnf8PG56fck7iGU4cTnaUU9ROWQKM3zDQ6PxJRk0kXdjf3pxnsV3+g9vyI/M1rg/QA3LesdlUD46XoVZjS7isWaHgeVJj+7UhfxwssnmvpK6of41PzgfcInB9JNwrq3sAQyvHNwt+D4pyeYH5u31ZKe1UpUzfk89JF/zQbDcG+FcbCcXDBVWZLdfq3wcDVdALmSYYPnbJf/0wNW2kkX/1st6LX+w6Cm8Wub75O2WxkvRSacifl8T7p9DDNJbjBn+N5/RMYa3u3HYY3h/yuX7VPAdlkYr0M/W7+Yc6D+/FUa3MxJDtm5hdTo/ySa/HbqFD6+AxFNNpZcQdZrEhB8kB9ckpo9NNPKv+NJ/009gHrQN/xtfbckrKL8e7HwKn/cjvFL1TtGwt/Lpoiay3p6iB9meTl80JatoBr8Mc+L1ECXzunvZIOIDI5vFv0waqQJI5/nHzEGMQ6a6tohqdliqwKZrPvzpWbraKWx73ERh//f5rfjnkJMd+AmXguEGHS8I84qi7cbNfndE+6Z22OYbjNboeZGNqJGVeF706twcJ3WdbOuSagd9Tuj+frFBSO8NMYVJLLklGgf9z/+7I51z/nU/Gkjy2BO/zfflfKRzAfvKsojT920426niwT0MEmo/f798tuxrjV6uAuQv72GiVD/+/A6VqXvt+Dq3Zrjy6MaygzhY4858pWj+FBs6pyThw6KnkHKcAmLrtRBOGk4BEjMVWUTiTTgGWw+gxDFh9yXfnGa6LkDW1D2zK16GPO+WKo8NdXGxOdvW6ITPApD4W5NIfrgWd9xKg8/n86bagheTsZEjeK+6kBjvtcHFrXg9gGuGBa7F1uHD41YC9J6fsSXf6vrLfbBhufxPIgAxH7KqtSGK3ZjWj0y3poaYLvz5neDyOuXD5sQALkH/JNkce+HIBeOnd/O6If4BBeH0hSSDT9w4uGTB0VJ+1+cP1Sz2yL/18By8A8ivK2ems9M6qVElFfB5VVOF32s+lzfVhPx+/RLPeKjh0GiWrcefxwsr+4uY8EO4bv/lReHpO+fT3dMidOX4RqLPe1PO305x4erXJ+aMXynnLc1voNDVCWdYvXSsUI69ltx2PTsfhjEcGzE/QPrb++ymXfb5n58AN0Iz1i+jUo53ltXw7kwTy9TVutkxzRiacfdm+N0I3Wxn9hHyw9nG4snW82nJr2Hahoxyw4m7uTs0NZjvkZDT7oi63o4qCp1668jpFBVld3jR17o/nKrliDIq+3kVzkhzvxqVKu1lTWJ6d9FBkU5sySs4O9tCi7CSv6ketXs0oXVrwF+e/5ffMSqsR5jko8q8N8ZIWebr2tIKnTgsWefz+XQFsPLsRDB22m6aXE+Ew3CSWdSOv45lFIp/fmDJU8optoYHCPUrIKGAt0jCN1+FQY7OCx+niJPdSoUsPXrEyoRfN905ilC4NTELO/2bM43qL/iqx4Cc0mcaTm4dH/WF3+ns+zhc8iP5T89jXdre+fSYR1fvLqnFXNw+O2k1MwPUS2SSYEe7pPGV9QwuXDEe6aou51/vB6jpqjNxFz0+C9XggtmTaCgsgS980aSgodSha3UUOraDpQrJ830lG1kvkjn4OAEs+T8JE78KJy+qe+Ru+4oESvns/vyutsPrimFbypN5f9/b8DuPDgYpaJNZICpGC36TDVi/fHCRg2Gv6k/mv2MlpIkNP1SQ64X87Wcs+XMNB68fWHYdX90c1NdUU9jhR3Vsmbk03kwVWvF3YTgstt3iJ7AmdCz7l099L8N0hbvz2bOAPopwzHyU/sODu70cSFIe7xgiNgPbfpmfTMejNWqdvy/weSmM39dK3QOo9xDDXMzdkpdEf/nqv/EY7d2kgXAzuqXKifvfvGyrCRPDw/kWtvLo9f/81+LPc7a+CBW80LumqyBc5X9+T2f+kJJ7XDv5uH3mKYLLsWT+V6UdC4+zCtZJSujffsvIm00P7/AgUnl3eyHu3NYG1EH9wLw1Npw7bq+i5f8Tc7xt+XytIUP+j96Zoz6O4bTsd/3xIQs+ybccQza1+oIHLJBPBhK7XBbBrnybbPeXYzJOxsXU4s/thTXr6HfzX946pE+fbQ6HV87OeTBD3QwuudbfMuHzOgT4+uGGGEt+0vRhVaGgsPYk5KIbMqG9afB5XRPitvHip/BJWPvlg7LQq9/J/Dt+ZRStXgG7D1evYzHewLoOqge58Lq3FnypdFtoCyzm/RH9LCwZyPC5TCw11ixez+Cixe/RdalbuTgwrYU95ckyXgZa8DT+yzuw0mtV+Oc/0O+mJ8uVsyKh3eFdg7kfKHW/vz6Z99tIQH/8F4Ba8okw3qI9OWXML5ptKV5uTxVdVq7M3J5vQ4lcvgWSX9Ql+POZw395p9ZVCh4z6iY8N1ITqlv5xOru4/7haQxrJXoteWBT8nltCX94g1WUF914VLczXNjp9+eXrdEu6Px/HSlA//tIwXUWCA324yWfydtJQQoylTgairu5feQZ3HGSMs+Z0pIKU/NAvFG+zLhEz3IyydrWvqcmIrbrvcPBsqQUED1ELPRdxerlZvXQrPy+pm/PJ9308TsNfFo4ZLdvduFcdBsDUmezZaZtp7xfioQDWvcXdplZWLbG57rcwr1kxJdLwgdSrk3YioaLQbYja4hXhxpG/5IzUmz0jp6kpoI0DCfmlMsp031r3+CRXHP8iq6VNd/TaoY8mc74zt86astP6MEDOUBMWWr5KN7jSi/iLRC7aK1wrK3DDHfTydlmpVRdmTPHhXxzm8jG/Vacdm1PIX/qB9w9h1c5HfarK/BmqxKy3kjhKJWVCdsxMtkDVaXFmvdQo/iWeiyIMOX8+44N/aJMawza/hE2++/upYVZnGJJLgr+jiFvNe8civijPEs+JqujCiVsLxQ9B6ObNoURgxd4I7GjfG+NtWakUOF8Rfz7/oFod3rUmn6rYnLHglOK9tP6waNoexJuqz6fgr+eeraEmVP1QtkWehzBlxRv5g+7d8iZd7HBfsRnZm4uJOesXtfwcV8G2dZgl7MX5QXYMvsRgz7GjrmKZaKDHM70s1GiUt4OmgBkS2zMz5Dmk5aCDfY7HUjQeF4+zZ4R6Ay1PzxtK4dLnHED3A/PqfA0N5aiJ8cIBfj7YERJcMcby3Hh0R5EFiSyYo2a6sUQimVHjCPf86mX2xmoDcPSa5d0cum2P9C6J2XkeHiHXDlie624T0aW+RlOz0ttgOcee6rgr1jOp40GcJJfHyx+SV/Ocb69we422MT2wcmXXheAzBWusJRrBZ9n8/5Cl889IeHGefERba4U9dtrRuzl77l8DQUwNHNLguF0zccBzxGahnEkVopjawwO3k0rx2bHrNOehc3eGwwNt5HBPOuwRLafww1W1iHCqp6M1nS+mkd4g7AjZnZxkWTqb1nXX9mJ5ILWWnSCwIDVfqbEaB2Tj4nHUu02KwFx3nYa8peSGWAZ/MaCUHohWor5FfkKcyhaG14ona9munrA98qCoLetEXa9CaVEDBJU59KasVf0+ud+vWA9xWnHXTFabv2WAe0KfSqnzpsNFNYbn+4j7cin+3ZzgDRcv2g7nLR8bk4bA4UO3hDrUH+76flRjtrmVA4YWWChUQ5TQNO4PRM33rhWb09XGXmPCVjoK7dkOjfXGnTB35Lz/nCz5nsh2/CKdxuSF8ZY9vv15qFvrtsXcU8sSqRMEGK4+0PJHKTuy3lzO/20ww1m5suhmvS1dR2h2HyvxCzvOZpMvRGhvz4Gtu3e1OLbbhujPv01lF11L/9JbDn12bkZFXYRcHq7lD1o+NaS25g6nDEeaNrfetnFrzgfF/yDTxdGyyn8hE+WpaegV/hCRf1gWdIl3LZIHdCFJsMq4pImHWu4yR3Gz9V/SDq3XWWBGAo/EBeiwEy55CQb5Kgg4p0oWwU5DTAM8/R//PcbdCXN+tK0Kx2hmK5e1OGuAT96dL1V8S5PQkD34BE5SKyLSWyEEBfBMIZo8R+EmZn1hPIihPNaymsytmq6A/CNTejrulDMaNuK2B1mPYruv4nHfSW21UsrC/T7QizhP6UqoF2S6tT6uDNfqxMWsBRKzSw8aw+PMPpvbK3edpaCgVf83T3SP79zV+qRBa+HHDR151EtLW5JP02TAKVsttTmBidrJgs2ki8r/ePHQhcaAuPeODfKa5PMymGnQWvUUuQ0iVzNpLjf8a497OlPvbO5yAXZgP72g6h77XfFMvG4gWtZK2FDm4av7Pau1SA9BzNqby/OhyjLkf38VcKFubJZX5/GE7xmkWn5cbcF+73XgJ+BQ2apK6NiLSzNgK1LXBo+wSzEvHFyfM0EFjJ/Vkxqt98TDO27sDk1P4TldNbASfe/NBzIBk+xV339wa/p0ebPiqoSqtF4RmhWsqAnffzgB2Sd0XOWusEze1MTbvDwmUx9SZ/MMdncZeSUHKhnvYJqMTunhDZVHtQcj03FbRY4MDu6Ecql3ZBBpvccU2lXh1sry4uVKADYuxp76ucBI6sQHzTUnokfYmGev6lt8OFyrvPIvW5Xs7NFmoLGupiaU9hW9NaxAVQ6fEIejx/CrPtFgEu962mEDgz3qPdi+F//dk9izkjpHPCFSVPkKZpjLm0ppkDXl0Gto1qQdXidMlDb0/z1+y6hYZvd4bIrnlR/md+UgT0MID+sI9U9ba14N/UpppNjR5HaCGQ8NWuM9cC6R8FwGfAf72z3bdM9wgtZHz/pG06mZtGLe/zw9X4lI+xEJM/KV9+g3OwYx/LnEbm35pJMxFsAHntvmYfmuDfFw8kpYZNuzSj73z8bQmoY21/25SkzF7zVU/zVGxmS0JK1ypmoChEVZtn+jmSWKuWY9plBnV+zraZsPL7B6DIvbFtHS5iZ+W9oLfschfCyEoYOwwL2K+giHcQP70mpHSDX98IsClFtjkjWYhgUbwqn1MkxW6t+/AcAAP//LF3b2nM6EL6gHrQUGYeKqgqJj+6cle5QtEiQq1+P/usGWonk3bUzo836gLtwohaXpj8D+lG7EC1SZWtE3WNQZ31Ad/ElEWIR3kKwu43H96u/U9z5QsrgSZo9D/2rjeVC+4sgee5HGpBN2YrghQ0kMntFzWtrxKvnDldwciXMPkJxY779jkyNEpexi9ruCkHUdwPHIgs5lZKumPlzbkS8O7EV/rYF/zi2AfN9YUg7Ptvx7woEzfqJPpIVbrlz+T7R+zj8EXld3/DYq+sIwpVIiHyWPKuJDoUDdiRj1iTHTTw8DMWDb+d9/p2n8dHqPjp32ci9vh/FRM5zVdax6DldP7xYXoyfTB/7zVz1GO7T0dwLH6X3x4q8Na9NRyveVvB8CYVbMbfjKcvyLwTBXTDJ2FfpdJaWLrKs9ci9Zp45WQ/PCJ77U82NdlkiERAkw4n2JWHUuSOe70GGUNfmFhQFtSZqlis4RaNG3a3fWwN6j7bO9vmTGpH7jbtoG60ACwHBjatSyoMhDeHN2ZL/zkeTeKsLWHb9ZNLyebWmE7FDiOpPSF0t8xEHfchQdKgQJ/ftEw+29XVAOicwP6/fDjWzK7VSGpe7HlsXQzT4X9Ch/fCtGnxT8b2zr2JtCkzpxXnHLM2bHMYp0anXv054zT5D/nt+jrWjUfBgiCNIfU3nflY90vH2/gzwZH1OTTl8peOlyDpVXuE9GaH5YvERMMHysLbIpLua6B6el8NrVZ5o0B7a//XrrIdnvWQgEbwsExpdfjN0S2ssdn41AYFnRQkcm6K9IkNWqtXKJmv3UKLpsBtWUCePkG9n/fXNHp8KzftFZPZ5i/6RMANmvUjpKsNFfE1eV/28GM9s2imaYLcGLVQEE+NG5HrxiC+1py1ov5j5nuDpxFuGvmX+IlNxQ0IMy8zXzGK4UF85g1W/qMYgv9wEDc543Yq19H7CgcofTqybYY13Bi7cz/NfAhpdLUbLWYU//Pun90f1oSjIuasbonWlhIUcqiXMepQ751tUSLfdJgRzkUn87+k0uMPpVYbsLTuzPr+3g9zJF3SKhMbdGX9EAF2lHcqbPJ/3T9xtHbnSFB1/uROHRltlQXQByalWbFmgRyEOVVlBlpsm+9xuWvs575CnfqxlyF1Al7aczx8K9X3IyfZsxlK3FTYcMqmnkZn7ePqa6grqVsgEqUaDx3OVNrAS+YOb1/YZi4GUOdjRjNftsy7GTe6GIB2ONRHdX9VOPzxGyuJLve6SpMMrvC1guxc6qdK/ExIxf131rhtjon+mV8rMpgLYzV3s0r1zxmy4fZ4Q7E57ut0+jta8/zm8NxDQxKqWosMwhZCe3ynd7nd6wdZKQuBdH12ml5KRrq+N2qjPDXtQ7FkKFsEwd5kzQ07QPorEpJ53B6QqB4PG3P20o2Z3GkhknmebFko63pLLHX3rSuYbp7aRtD9GX53Zi566W+MvHmK3PoE4vzaU1FTgoVqZd8DZak/NS4DxdPhcwn/3Ww4XtTXzKwCOWcHxPprQiLrzBLiy9mT7YPNPb5fUh/1g69RMTjUap0ld/NN/ptoxS/BDfgW5drf8/uqb4ofn4HzeDxoEttV21jpkehBkgknPnWSJZu8toJmuCVEn3rYDOwZfaArXpdYgh1anNYMJ7nm/+vf5s56q0G7RFTz4nj3x+TtLIQQXZJAFKgssnKhsIA/EkfFD9LIGHjkd0qUxpDaW63QsXwPAufn23F9PUzw8896DPNwCJai0rBk/mPbl/oL6svSX9vWDVip/koxvmt0iff/Wi1SWzPqimWfVXu+IXgQiM7/j7vEIv/oYyyYl1u2Jh3q05lm3lwXfbpxdKpPa8iGKwiPTe8JwGxAhg4h0wnffy186leMhA5kNAZkUHljjX0kq9CaeSxSFOe10nOZBfUoH3LQePZ4EPErErseGLLDcIxHcbQeJaEn++dtG2lo5mGW+Y1O2ofFU6u8JRZZpc3tBbTxNt6Wt3JHUkqEBB4+e5pRoNdy9n99sp9MCLVBt20dqhd22bfNk68DvPv7ymHXKA0ed/R+bZ2FZA04jGcLarLi9Hz7F9yh9KtCL+5eMzW4Rs40uOTDGdsxWbu0L0dwTG8aTdibTyit+ftpGEbmH3E2Om3T8q4McFKnIWb7eOO3MD089ib2eTNLOLliZkRPM66Fm2mxS2V0HJ/i9j0V5GXCbxu0THY70Tf05zxikLX6CKcs9U27aVzBDayrI3vaZ5HknF0Kym+iXF9G9dBXWwLCIdAxYMHl8fqyu2ofNPz/UeDkSAwSlqRXcOfJNcZy7BF0tgDC/C6JT5BRDfNMzqEbD4I98oxdsb90ZkvuQ813nrBHLsu8X5bdNxQmNroWoXxcTpXtbJXdyTIrupzc0ShI2pdm7GPrSOMBRrTTy+gZgsR/+BdgLuFsGGhqsi0I0JXTrf369g13lwgFHMnkOl0iMN8/1tY+BfYodUVv931mK4Lt4UKb3ZpTOeZeHqPn5474sjekgHdIJcHpoqS+CBrFyPNwhe0Ux9yVlSHmW6dq/PGS/6W6iA+9twz2+pPzQrk54iMxYA8sYM26X5Tsd8Le1Yb/ut5TPem2AuWRCqS2D/vKd8fQ0CBwXWkbNpQno88tDkuvGodsCJdZcNN7BzH//8K6nYh+h8NAZPL2XFlqzaxOCvFIUfo3UkyXP+Al2N6jc86sqnkbVciBUzz7dGoyKT7kyPIRXr5bbu62Jp87aXWDYiJhv9pGfTsFgzPoxMJlSrDoxqcFqAcFlP3dxWS/izqdnG0RQRpSuml08In7q4N1qiBN8l1Me88+cv61rGkQVw+LFUl+Tzilwe4sN6zvKvgfO9Ugodvcni5ma7AJaXdZEujX7+HcfgEhNQI05L5zxX4HWGGUmuPspZr77wsyv7I/qoh1VFGVgCvPDfSNMrGlXPkvA6u7Og1nfddXxs1A3V4kSLd6OYtqMxYS0jN5++Zo1PlCQgT7qPp39kCUWwf2EgnzNCdL1Dxb6u73CcYSJE3JMWjHrTW3O50g65y3cF1cC835SUogq7S7x6KNeYhmrpm3UssPVNbXkcWjonIcVg16Rr3rVqjN1b/ttu9a9zUpnfaqT/L7rraF/bS5Q1PeAKeqjRWw3qAoo6rli6GXxghun2x3N/oQTrc6tWY8T2PRYYqqy1dpm9XkpkO/1P578NU9r5rsIxpNyphtovhZ3xsD75Tsz/litmP006uyDRe3y8im6qEAHNGzrM6fq5mhNyyS7QHKvVDJ/fzsZycZDyovfyfotajGKa6mBc3p5P79YzPwfQYcB82x+H6LpXwckr5cB9bMpxdMJbw+Ac1jxWZ+0//TVsml3fD9WDAmmGgPUmN24P2VF0a/cYwdhAX/8HGy/1kOKlRxWih3ROd9Ca19OPFhaoU/DriTtEAlcwVJONKJHFcHqu/EvoGSnnJpWPKZs+At9XTMjzlb0zsV4axr24xsmgTSh0fVn/1dX8oynIZ4W4+uux/rTmv3rOuVkuzQhzA4uvef3Xnw3j6xEyxpdSFNuHnjAoEWQpumD2+7STqfjlDfo7eQG3aaaKXqzvX7R4VrsuHOY2nhs1Q+D+0vR6Wld36x3/aAlnNWbxPFuHhTnqqqBnD4p+M7vp2LKFp79Wx/Fhvq2phCYgub7yfe3v4VgoVoDdMudSnSyKYtRU+IcDtm6p8StRTptdN2Bnz4wjuUZj9Hf+oocdzhTR30tU/7TL0lTNAwG74un9cddoOAvUihWfUuM94V/RZo1BNRhny0aN0azQj+/kxnZQYzVUZ+7Nq12TE7OBzF45kDAX3YGdTel3Y6P4NDBLy9B7ybBYw8y0Z7bZ8Evz0QupvZ4qqBQ/o5kurZGOsyF+jBsxpj62i0RQlksNQic6kqWenUvxPWU38FE1yeTNA+nk3HyfACH32hwIvJcoub7WjgE1S9vs358D+m5Trm/XhDcsNR6Qu0tGJHn9zG1smzAzFd0a42kWPWv/fU/AAAA//+kXbm6gjgUfiAKkS2hZBMRMEFQ1A4UEVCRJQHy9PPFO+V0U98rSnLOvwUSuL6AjO7WWWIvtd0P0HkYLj4noRCMbIDOn980oV32PbXyEPL8i+5TS2OLrBzCn35CCvfTi7GbNBjTw4UiZTQC5fCdETSbWSDSdB6SpX4FPnwdwgKHkhMGRFXIBF3Tw3Szvr7taX24iaDIl5hu5EcNlpWuTXAn6Sne6EsCqGvfMvhUvR3d0p3UM3feeFCf93dSngs1GHn+BKTZEWm2P/f9kJnyGwRdA+nlxg/eAM6hA4aEbPQZ3DObi5m58Go4FyQ4qw7wfLPSylsGifxRN/36l9dyPYCktDz0LN+PHXA3g0U3YDvkwyErBZitPB/HLlAB4f0E49L0cEYKORhFtq1++TTlBiIZdIcisDpM5C+Pmn7jc/0ezghU+qEe/WctwLi9rOg+VLZgegpo+Olhit0brClfxIT+fk35eoMZSKu26YCZbUpsDFOXT+9mQWD3bHL+CDgCDDXnEnL9RznfBixZ2hTa9nrmeeGuni71rvjlQyhXsAWk3DQdyB67HT2uwlcwvu23AfWj4GGzCjdgemteCraym1MjssKe5+UNvJhbAYfXqgvY8+FDcCzOAZnfRhfQbUiWX35A9G/2ZTM+lovusD6htnTJesmMwiP4rS9t9clI+lKOLD0+HTuySkPblvKqLIEoxghvMqMES5TjAo7r4YYDbdfwXZdjAk+tZdM99aLgbz3xt97meTfBHrjeg+drdsOWUh/ymfspQNJnw/XSNpCqfmdB1xES6uPvy15SgUEwFPGMGo+1NZOELtW0S35F42mjsjZTXv7Pv1CexwSztQMhpALRcfBq1eBvvc76NDea8o3rZ453oEHXFd1k+hPMl/I+QWuJNKTe71o9hc93BNzsjP5+zyCC2YW/PNppmk1OOR781ruwF/SXnuf7R23avM7UpUtVT+9OcaBTNgL2VH6QrbqHEI6CZOGdauU900XQAt9nGSqTw8de7skowe1StUjNAQbj49YIwCoHmyJn5bNPaFUl/OXJSvUQk9EKF++XB5K6q8tgeu+iTuf8hq+pObJRNS+Z1mrGk6jHbcDIaf1sNI7neONGWj5QjCfwq2dXkmSwKBFQ4E08tjho5IQt5uPYgBfyPOwe37he5O2zhP5epmjR7kneikMp6VvRcmnep49kUd6WpUvTafPLq3umlI8LuI6bnABB8+2F+zENTA3DiK8nLLfHt/nLJ394MKZCS2C+bwecxFnP5t3nK8JvttGwtUKXnrY7C4L52ayx9TwXQUsZ8WFUhxUph4bUNPMPHrxmy5puyfyw34Y7C7D3coHaGBg2M7Z7pMX1OsTxdljZXO97Os/TsHuqo3o+bN4uiDv6Qh3Xs1NyXxd8l9U7ud2BDObXBfpQO75O2Luenjkx5G8LNNso/vyT1PRp89PDSNhu2nqK31oMz5qeYG/rUntab+wSzOfWxUd/9GuR6zH4qp8OKvuVw9avsBIhzx/ohec78lcC5KfXkfBYWYEoDq0ER+kWYMvcJ/WykkUNpsb9SMD9U7FhP64aOFC5/Vv/mYLQf4PY70LEDmsrmUEkIVhXWoaaXbMH42NbSP/rkQL4348URBK36MSCOXvsNwTORBGoIe88NmBqQN0pIp8eE6dMJuUmTuBigQM1Hh+HLfrx2cJhRxBSzHUQTKmgvUEkzQAbt5vH2HMHC7h45gUHL+MBpnml+VDbjRM2XmqfsxoQQbvr7y3qpscpoaKXH6HetRZ95I8mYVCvLXjMrRvdvDdusKAgqGAeRCdseeXWZmnwrGDWThk129TJ2ePzeQN6uX3p8fRQ2eIST4GDkY7E9MUV+54WJQTrYb1BUmBk/WzdnBAKg7YmZYNtJn+yroEPb3XE9rMzgrkNVAsWsOyxRWcGxmTzQfDQDh3dHhudDU8K37DtyxUC96mqFyszK/14Sa5ovbfGfgZh00HpIEG6RbGckOuzf6st/lZkcrSGLeSxh7ALLzFZrRPE2KudDLCdtiNZvUYFzPi85xvTjRpFaW3YA82jBgaaf6HbzfPVE6cxERS+zRsbr71Wv5G+VNouS5/YWbmPgN3bxgFW14t4c5nTmrXXtwPsrxlic9tYvSQrcgxz+SFRowBHe1KsWAGPfDjTB8yu9nT8CgM8fxeZol4RepKX1IVF1GOyDtMbW4YTiuGk7894R8g+WJw59qAJxggj96AmrbCZHPiwUgmtjMXhZ49pR9B7L4YDurYZM9uvBcnSPjAqHnwjnc21gVYkYCJeU5dJoWmLENrjnZoze4Mlt5UCfLfZjQaOdLdpG548GO2VL7/fVTCerLsAPUJCjFtlHfB6aOALwIj6vSzl8627DeoWsjuC2T4PZnxUPRhe1QhJ9n5VT+MhUnRVP2yJFBhaT8Bym7R77oaoQsuYT8+qbuF2i3JqWjaxx2x8QfAW5QoH6/hdT5nWSNA7qTLRlh1k43qHCxA77y2qTg5jX3BuJRjeugTbgbuw5UpgBa7BPiWiLJlsKi891Ir340oD+6rl0+geByiFxkwExd/UsmJO4q9/UHXOwkCaRFPSrx+XIdEULcYeSz/B4yR9kOrETjBfdmEGBdO8Yu/pdzYfbwPOSlySuU2bfE42nwAQQO+/EETB7k3NSCzzxb9VaDUM4Y6eHlvEpo+1quCmNlRspCvXnvPCiHT+eWwMctUztaUe9F5pT1i/tWopd/chyOLRo8d1uatHwfV92JNcRwJyxJw9d+INboONhHfnEwwor0cIgvxMdFFp2RDbxkV3ysVFFB7e9q9/9Nk2K6KuDVbznVrTv/FDbYPrObDdCpon1cXJszNstjlbqd5/UIK3brpLxJHgEoInrqiry/d+dE/fAeJnYRKIisUeMDwo8F0UAd4qz7yfh3F3hJ/7hdLdqRdrslLt8IcHRLit3XpsryaEyTqMqR0Aqa7Fsix0Y3Ig3qZaGkzi06rAo90ZCE5ani+PVdfBr/O9UndePeu5vZoCTGJyxuh7ZcmyUoMQ6B5NyPVojjZVJPiG00rI6N4MK3tZHS4XqLn5E8kk2drktD5b8GrKa7w7Vc+eXeG5goF8PVEzB13OpEctgO9XO+Mt3ubB0nTaAGrlZVH3PmZgwtQQ4HkbQ+xFNEqmUvAtuP6WErYe+639fGM//uE7aprryp5lKSoAPXkZNe7Zqm7Nb+BAjg/ovYivZKpO8aArudSSad+n9UJucwj92+fI8aq0Z3X/9bRMaBrq58m3nw25eoNGxGfK8ZSxyWw07cLt1UoT62RmszCp95OlYW/Xuva0XzIEBHu68bPq1GQBoTSARCmfRDGFwmYf61TAzT4kFFHa19/1EE16WaMddaHqssWLuxJ4YXjAu4d3ttkVPkpQOsadHj33m0+VZ04gWbMCPS7HNmc6fFfwfiA99aapDH74B+5FlhN1A/t6lu3vDT5fBaTBI+uCJZHyEtpgwUhI6zIYX8VHAOW7vNCbev3YbKlVAq/secO716Gr5yqJLP0TDSts729B0p3PvQYlLdtRj+E+Z6+o0qB1lDvqZYpdc/7SoPu8HBAr46Je2ncjwHdOPRzescOXcNYixM0U4bAyJHso3uoFzrZdUT8rXoCtnEMFwz1+4J0742Sqj0UIQuNJUfV6jP1wcPlbr7X7pdaY5/U8FkwDr7UiYByoJJ+rye3gJyIruhmVp83O+tECF/wykcB6tV4OztOCVDy62JODa74cnucWLs64I/oQdfbYb/sYWt1X/Pu9UrRdIrhe+ohH4BOgIn/q135oC5nsu2VLj1XVAhYWFjbu2aMm/hd4QKNPjTr7QQAM+qIFCxXdqLvbGzYx7tkCb6mb/vgraC7T6GkN6wKkXbyxZ6uCZaCRn2+8A7HK+P20kI8/Ao6k2yyWKxcelHuFL9reqqd43EJ47XILO/JKZH98plyqK0ovkZJTT8laqOPTjLfbYAzmUTYNuDh0Rz0pPdXzaVGQpgkCobs3iO1RNS4IXp23gp41eSUsvPYGfGiajW339LQX61ZEaph+TCSf3282l3PgwRcQIqTsZjXg86EATTlG1Pwec5twfIbj5lgjkVRxsgxac4Rfx9ljnD+cREpytQP0sdnSn97qe7AosB78K3US1QnW4FyKUKgED4e3rOxpDQgE2IpO+OFj/lY3HV3+VnWPz8rF6yd652fnuTo/K2znJF2IjhPwKutGdNjXbCnEdwFfydUmanre5NP8iiJ9/ymO1JUmlo+mvXLg13H3+OrONBmKa1nAzj0ZpDriKaDEembws9cB3kyJ1o9qtrj6QShFRB7HmeshxYIrixpE4teb4S65wMMsO2jOsjWbad51cDrne+qZ68BertvdoPcf9sAYZtdgetmiAW/xsqWYnM797Myeq3UV+1KDPDt7dC6aADr7o2MHFiWYmzgvtbVxudONq2o2WYK4BE4R+1zvNmCp3YMHdW9MkMD1ChvKYwW9eT7iHWr8ZJ2NIwTjYQ65JQsZ16elbq7MBzmeDZQT+eZ1qq0UBvX625Sz+G6EunaSTmSO9CRnqRCVQAGvEoHV+GDdfV1BeGX1DVtoGRNSu1cP6qFd0UBHx55UJbAgWak57/cNY4+LqYBlW4SEHx6VTB+jW+CoHa/0dDQcQJr7c4I7tdoT4bMN2Xe/d0OtdKw7Ubzt3HO9QTRTyU2KdXcHWN6vU6AHRUpx3p5ztqTtAhleDkgt+Ma6nz0bNCHbLdiJL5Tz65Po5X7lo9OomLYczpP/0/+Egu/HnhRci/C2Cilav6Iqn1ITZ3D/zC26ffVtPl3AN4Vm/Jbx/jAR1n7engRx6zzoLtQsRt10I4GoO8XU87aHfl6TsQKRiVTsKQMJ6CtetbAJ0g3eUp3UY9Yf0F99Lp/dyZ763UvQjnPOSKcIT7vDPjZ+/ECxDsZ+unVWB8qv+MHGp14Ye/XOAvtPmFCHnlObRl6YQiNKHex4YAzGX79KoTVjK+hte+6mrIHuphLpntB1MjuXBcJreTth0x5Pfa8FUwk/ahTS66kyexnVHQETizrsxuxUr8/ngwTYjqzoPvjk+Wh9vAuIDy9IseTF/SRoTIJ3vdnSFDp1sJz2DYJORxjetOehn75ncIHtw0lpnvSmTaxPXACS3BgRQ0tOpvkzGuASRgvpsmID6GQ2CjCio0OT+rjt5Z+f4n6Qur3ZJcz+DCWcH57L+xfnNH3bF1A11xIjcHr2g2leIrhWE/Kn36bXIRS0l9KaeLu/s74NP4UBL4PZkUWo3sHcTXEDPVyV2LXVKGf2p6ngDSgl9b+XIBiDPGnhdHQEjJ+zD6as9CFMn7eFRmdxB5idJc0Pz8i7N/1kycuPC8OHUGH7+ybBxL8PJECayPJ67HumXc0CcHwgyqUX8vl2DxZ1SK4iunwXD/RmfnFgSvzqpzeC+W2qR7jvzxQ719QFU9BmFZxF4YC3xTgHyySlbzhlfkSdxClz7h8RHJZXiTf3+ydhQxK8Ae4zgk0vNHv5jnzEH8n20YTKLF9Wxff4w3+67Q86W5qInx5K7iNRiXXLp+LaFnC/qfkjzXkbELl/H6EhjRm2tqIUMM2A6Z9+dk6PK1u4n4SSRyq63d+TWhriuYQucU2Mn5ssGBQr00AxbmWink83e1H3AMH1/nvFm1dUJfSTVW/dVK4mRmh62cvppaZaK8QWDk76p563dOvCq7leU39Zj/UUR9dU29ixicP62fUM1dUAh711JzoUJTb3tHC1+2HoiS7am2DJFYg0/2Z5Pz5I5nPTLTBtmImEKof2cm8zC3J/RDdFHNiz2tqWdnpfv2QZ87wfR/e9/PAB72X0tJef32XuZcJ+Ddq8P+2FGP70XGDldb88Xt4EhJUOiXC+2ED2lLiF5tpZsB/3Ps8rvt1PXyNawk/wNeKwhBcXl3SzAXYijv0yaWqGDDTRdA8mYaM4UHQmj4abscznzVm4Qd1y1oTxfEAexrEAL6UzsVG4UTIJGpAAdIsSG2CTssGQoxLy++H+ip+16kg+dMNdTFatPSf0iJYJnqm0w/tn6gBZOtIJXMg0UvcSXZIB1j3SNvZ6j3/+ewH6BQIbTJhoimAGrE5EH5KbdCSwFfbJtNGtG7gp7wP1cVPWy8FdL/A4iR/q6LdzP1xIdNEfD+uN7WNm9VPkvTPwnoQtYtkasG7KRQKhcUU4dMIALNdn3ejXAKdEdTdFz/qj4eo3+BiQbp5OgVjHuwL26Lsh02M6s+GrH276iTIfh2d3At19P3m6trZMineZHTAdkhL89KorZsCetulHg1cz/uLdaufyJ5KcRfcq40Zu58WsJ6m3wl++gy9P37fXn7wYgONoX2pW+4gN9VAfYXE/rnAgvtdsLNlDU3/+7Pf/S5i/Big45xYBXXvlf/7hky4Hai5t1/f6tloA58Pxu1eudS9pGwlsv0NKzcij9bTx8xtQ7xUmr28YJdP3FR6htMkSajPlmC/3/eT/8hF0CvdfQKTYgz89jXm/9DQeXhr45SFbgZRsLMzxAvzVFhOlPL1zEmnPmG/pucbGtH2Aqd+NAqRyd8KuhT3A7rZrgK6av+SFaisQ7Ra9f/NPr4Vf5svPD4ZLUfA8RA+Ww/PRwQysn2RMMilnvhVf4Pk7ybirQZtMNDpegOj1NcZ1viTjxh8r6MnSm/eTl/z0nGq/iI6xfaD1u1HsVrek5YrdtduD8fQRDeAgOSUQ+xZY71/5EXy/ypnGw/vMZHBxIIzqQeT8PNdL3vcx5L8frTyyJK/iE9zAlEomxlMf2UuC2gE83SSiIduWf/kLvFjHDfKrLGFzcocpiLpzjIOUv5VcF9MRPggriH6td7/8TBB/fmdzfWv5tD3mPgBj6mK8q9OAkXsQQ/Z9yNQVapSQaLvEem0bBlnfWrueYN2H8Fl5I7bWG7tmXm8OuiKkNdKLY16PuPJdeIP3gQA7+iTzzRE6eK79K5J6CQWL/lwaOCtRicDh1DJS1dsJHo8rn26OO5kNZZAYkER+Q/HqdbLZBrYZ9NbbmgbS1k/EXVK0oCPKHt9p/ub61SQgKi8vHLyGqJ+dt61A5VJeKb7Gj2BOlDSEpXnIaCBFet6v1HsE5IiV2DrxndvFsi1gZYIXRax698sQqyUw4DLgLRJaexnGJIPz3FnUuN1awATtOunRx7aRrpfbenp9MwfAVxdSG/Q0Hwo0RFDq0f1Pby1EpRLAr9ONbtO5DnrtnWUwZmWPtPwG+1EncwGaUTRowqiZsMkcNDC38oD0XLWCaXRvAyTXcoP9Tb7P+fwTmD6LBTu7KQJkMjMJSo8NP1v8+mRzunJa8NmvAFrBTA2W6btpf/kLRtJY/Zvv1qt9iXHg+PV0SYMY8u8nq3cF+yFKqoa/UhYjnh/k82VahdDZ3Nd/4zPv3PMC3ddhINrzNQUDXWs3yAakkbmWleSXJ2v71i7p/v44g+X9FUKgXb0Gn5vVuV+/bwmCpy3WsemLD7DIxT2D8Ft/0Py87AM1S0IHeq9jT6ikpzmpiA31n7/fBXfDlrwxzAAabj71nr4fLDd5NcBLGC94+y7DYNlfjoWO3WAi8uNqghlXlqu7z9UdSZdISeZ99vDAlNEbdgQ9tAeul8AryW26AXqVkPxgXnRmnAu66cxj8Menh8fZo46gDwGLEq/66ROc1a5T//UXGs2U+odVFrCj9GrAL/+3hMq15agi4e/z2LDvVdCDSyj88n6kfAFgn58e+PlhtEmqnm0T1f3LK376idXgLUAaX88//ZaPzaBfIPc/eB8ULc9njwPMjP2eNNJpzBfRMyPtz5/RsxQsantyoZAFC2FX+WWTRTArwPNn6nnMSuTcsSrJTrCFPY9VeVtp0wLJ/Vpia1PogIbz5P3WA7A1xl6/3GSZwLEoIN2S5GNP9qXV4ONhvH96JJjQfB9gkVkT3lu+Aoj8PTTQkHxEhA+c6kU+OAX0b4ZH91IV5bP+LEtIVilGS9N92bJWwfSnxzdAt5J5d8gFMMqflP70y3QUNQUOA9ohMDCNTZPlQrh+ow/25pfN1pbZpfAZptVfHjQe3H6AnK/xBl9egPj4EOknWAAyNReJjYbcNVCNpAdKws+2lqPyUMD54bt/87dcd0UB9OCW8jxQA6JUuhaMJVEjz8Mi21MqLA3g/h073C98f35GEVcWevtWzeYscVygSu2X3j9tELBY7hwN7iaKH8bS5DRKjAqGdMyo77y//VwGLwd6ljhRe/ONcgpr09c0WmvU0ZOmXx5Z+AYbt4lovg1POXvFcgd2ZytG8BksCYs0cASGZn6xy+tlNhzWgDV9e9g1ayWYP2izwHL0JESnfgoW15cbqFy3L6RMkxEs6ppYQH8FEOnCqc8XlR1iqK0NEz800c6H6pQRwPM56m/nTb/4hSAAOZpL6ljfd81Idwz54U02UuW0Z9POngRdUM8Ff1F57ucA+QT8/GGMln3CQtHRZOsYFwgmQOw5vyDI+R57xlHqZ7xtEdip5R7nKFn18/vb+EBVoUJPQLdy5mmfDK737p46sDDY2ojDCs5xkdLN/b7NZdP2IRySXKTYeglsgEA5wug7uUiJowbMV9LdQKXXKlk/r+tkEMorhMgMNKSV05Avh8MsgN98oTEq86VWPR+sK+VC+Xpcwgbl2ekqSzNqiCzq17IU3fT47FpEVvdDPqt4ragqA28k94c7Y9HpFMPTjdho3vkXPn+r7sf3GKkezFleNBncmcij9nzdBZNiZQpMN68Txh6Jk0EziwuIfP6ITjJ8cyYNogLbuYnxSXHXPbtUmgc+6XSgmK+PyWKlIxAaNSUTz28W1ehimB/cktqauQW9p2TdX33/1hfIGx+PMD58IHb827Oer0fjrd9uRKQ74S7ZrdT7CH5reYO06XHKZx1aGawH78r1am3Paqa5QCjxhszZoWJ/+heMRxdJ0dFPvunK6WBL1ghfYHsL2C/PlLTLjjpvKv/yagK5fic1r/8JCaSFP78no52Ty5fTN4TxhG5Inl77fmmFxdVv6u5O2DQqyahd9bfG1yt4Pgv6sfJySX3LzYsI0miBv3yb18+//RGwdoGvpaE409q2/ryiSoHD25cJywYPLC06S7/1JIyQqgTTS+r/9CXdpppkt9rKbH54g637EPP1ih2E0V77Ypv7gwFOogfF4PJG2vfSBzO9rzL4YaFGf/qFcH0Af3nRfqcnYNopcIC/+t7LyLTnrt61EFvxiZB04AcfntkFnk3cUd8PHwFTDmkFk/S14JOTEcZqUhjwtBbvhGpinX/Esr3Bx+a7ocENI3uugCXpt6VcYdtOzoz7SQOSpXvwPDHre7KOMsj7ldqHi5rP1PQmKGeBiX94OHC81RUBUKRdv5a9gNU4gHZnOni/E0u2NPHYaDxPJERZffMpuKfpL9/55T1cb587+DXPPv3l5UyvwvaPzzYbvNRLGcg+BJkYoDUr0vpv/ZLnLfgeudtEFE73BVboc6K7ldDVU/8ELqzXMaN78rZyUZuVDt6LS45tvNi9VM53BH719OHz9Zm+Z/KX71lHYLDpdliX0FBvd2ru/EvCzDxyYB0KIzUvzr2fahVGv7ybrNNHZE/w8rHg/3mkQP/vRwoGW94Q8B5sILFLFYO6y3qK5Yy/1ViEDVQukkUNQbWTyTCMAnrfR0rtbjUE/XQoGzi29yP1c9QG4zVMPSiO8Yyde+KzaZerDbBB45BpOX7zWQDRW1f1Yo0yy5HyQbyfCnjeZAqZ572T0NGLHd0GzZ5Ggrqp2XRoLcAXlchKzkowC+CRwvXjc6GOdCf99KK2BgcpGJBmORpYJhx3MLlKLX9LvUmG3uRnJ8fPPWKbiOT0sn0rynw0TIxN9wKW8+bQQnGMHjRgBzEZ95/bBDdRaOFLJD+CJUMjAmbTFygeXBos6EsXmCbugLGcnZMFilcCSbZg7Dg7kMxfbczgLl88Ip8EF8yPQqjAwQIhEb+Kw6ZYfr41exeZ1EqhlEzVa77pNd/YEsVLUY+p7fIlqiYlivZeBcsRbjSYJpuKmvP+kcz7zy2Ex9AX6a7VSDA9bu0Auwfe4s2cRsl8O1UZfBBxh2P/jMBAfC2GkrhvcUh8yEjdXUW4uOcTDtghDkT53VQw/lQmH891sqz0wdeOwu1FH0VUs/kaHhzwOQmA7tV2BuSwaBp8YbPA+7LY1YwPFQCxc+Fnufc908b8At51S7FdZG8w0r2H4FEoTLxLpnM/7z8HAUqmopA1/hi8Hq4+pPvtgFZyNthL+QwU2NzojvQrSbAnN6aWOh8tfvbXaWateL+W2ucEN/R4T0zAguprQGcEECnETOyvaUWdXsAKY3fCYr6cN9dWYxqUKe7Wfb6UTyzCwxr1aGW6VU7jtVXCB5EkcvwqVr2OpiHTsqJvsTXwzeDzaL6B+Wjm2COm3E+tEl/gYK8Xuh/tNmDa+DjCwZYYes3pt57BYkC4iXBC1GQybZZHMIbOqLok1OiDsW61E6HZdA4OBWokzHIFV/sOGqJBto1qKjfhUXXjEtBNM1fBLIAE6jlLAiRK900tlc+tBAdpJ+AtGHeBVD79hffDk4YnY2uzbmV4umEYV5yJl6hfpOeE9NecHpDo7Ca7x73SQsnUjnRLvRDcTsbCd1LPRl5PcU2DqvJX8rvM6LmqX0m7y4UOnGWykNecVow1AynhWR41bB5tHcyJCm5wbB8K9Zx4U0um84UgZ7FKsem6bDEdakEbvAoiuHujX6d24AEr1S8UxYtmMzGbFX0r+xSxIsvtqTe7FvL64f2hMbLSxxgehTs//BJ+6+V+nlLY0XCNN818D2aweAI4lSzlePNkA6AT0se2sHk9qvYE6BTqg+SP1Bcvr3y4JcUAKsVxsFU/r8mAyRWC63AieHsS3mBcP94hrLsrxuHJyJPFdAYEusd+y/sntZegjERY+JgSGYwXxnA/L7quWh12obgOyP08HaGxpDLeXMJnQj9rvjHevbeoXWT7enrRnQvtXfzCSHxSm122FeTjmfL5eHP8LHyOHwfqfJVvMu1yzYOD5EnY7lavfI6mt8uvd+d444BJUO0Fxp96pFswGgGBYn6BrfYyef3odj8dWgNgEkEcrCQhGKrX+gK3cmCitQ48e76GN77LsPFAVQp7e9rl0w12FK1RZBjvZLmfmQ+i6DVS40V9jl/DBX5Owpk/9XZIJHbpL7CANSLiPaEJC6pehD7aJHR7ElKO300FBlt6UjMonoCNXtyCvdqtqL2JCB/fMgYXzRTJdPVf/TK63gTXjybCOTtUfGM/7PN+jYh6O1n2entkEfwO6kx3yVQn7LOeHWgYZsfrUbYJFPnZgk1/4vVcsWWzXzz9OpxvfL4/ybikD6JFUfOiRQ8r/nvyBdL9ZiD1YT3nbSw/GxhFr5z6H0brOZq+FpDf1Zpud9dDMuxyeYJ0ldnUCF9GzuTGrIByWf/45Bss3jm0YHnwWzLrS9m34WtD4FbevTB6nF0+/4jA/lCpvF5yMH+1JobKRfzx6y2YiK96mvd9zNSd8J5/freAwg9VzscnXn+3BQbVEONdq70C6l2zktfbCz1MV2G0yPwQet/bmcZ8w7Hp6hupnhtCg11UuvVsWpGj071rcP6qA9atfAjMptPQ6xK+GBldZ1APltLiINvGgOWRwvsNZZwfm7q9Jbcbn1+fv/Xyric37ipt/Xj3CHo5BKR8GqW+lXcyr8c3Gx630tdRD0Ocr6RtLY9eEkLU6wrvBzHp43WIOH8+Ob+I9lS9mAclESG8H+1nQkzndQRb2Qv4fIpgTG3vCAfJ35HLUXbsuW5dDwzSLuP98gnIEdoduL2aC79+HpAMNR28DkeLLIN7q1kz1B7MjVWNJsNI2Ky0cwp/95uh7x3M1zCbgKo/KrzRQVFzfv3pGYfzlx+MYAmP8GBpM5mDwgTze44GeHu9MYEnAyQsj5gH7d2h4Xzq83o8a3/86+absl5+/PuuW77LyNtkkuk0CG4iZGGzaU3OT1sR7rfnDREeZ7dnzdBq0FjODd3Y1mjPqY0qjp+Q9/eenzV4qKAaeF9+vbae5HfbgMVNH3x+w4DiftH+8Nb/sFU+7XLlBlf37/GnN3quz97AMKwt3u6uM8crwYdBRQVsGIYPxiVNECh8dPrhk004noN33cvo22rXZLrye+wPpcr5Edr0JFwbeCqnDT3M+5bX9+sCf/rgeE86tqi91cG6y13O13a+1N2jAPttesFORK7sXrcbCx6FR4wg4ZKY9ydIrmsVCY+zbo/rx9eDrznN+HjV9UR8xeLjk3N8Gm3C+V5/EJmfHm12ARMzPYJb2aPU/XRJPg+26gE+37R4nGn9189bRzqQFIqbZPYLr4V7tZOw81V2CdPG6P0bT1T55zXHJ2OCVgqv2DWBmazpfqfB+PM0+HhumDwdOgmI4yEkA+d32bvGpW423UyWFLaM80H74xM0B0UH5t/9cD6ih6N9TZbDIkTQjcuF67kNx+9eAOvHW8eOdC+SKXy5EcQk6rj+ueSTYVg+PAq3G5LyzSefwpfnaPGnvFEffb/1Ij3nFAxScOD3bybTxcfOTy8QyQR1TX96QHeHkOO108tFtrGgRqc3DfbVvv4K4Fapkhgi6uYbZNNm6N4/fsbGiyZguPqWoc1H2+D41oKhN7sO+mgrI2nCYsL5+QJvr4ZRx9lZNTnCEKm6an45fzVgetxGBN/190UNw2gCWmRmC1EvFDh8vk5cz35FQDJWUt9y9sksgGPF9Wf4w498OBmiAw6W9uDjS/tWo3IJs6JF/H5GrmfKgtePzfH7WTO5MTLYau8j7yeaTK3yKEC1mWSKxKffT7H8fQNVLwY0jrafSPczI3B6DleuD6yE6wfC9XaE1nO61LPSguZXP1yP9fmY2ttOPcsEcD032MsRBi6/PkHq+uEF9FnHkH8/paGXz/18O7U+9ycPxMjKYNJ5UwzgKNzzH/7w/h9EII5RihalT/v5q/U+1/cGNY+2mvP51YANPickg/Ges5NwMGDrRQK9q63Hfn6E/33i/JzacrdyHI5fGpJQGQR/eLgoXUVdKALAnnXE6+mRU+8oN/bQKkdHP6zxExtX/1UP83EvgfloEVTES2sP8zEcOB6vsA0axSZBebbg/azlODD0i72MrnuBvD5Qclg/++nqhzGvR4/ztdGPX6324Vkmv4M3sp5M+CJohmFdkXhP9sHsF64ImaYbNB7cGkwnAzqcX2fuJ8uEitkUgtaLDjid8C7geuYGw5MRoqV+xv1UvVYucEbt52e3NYHirQSFvw+wqS/XZHrc3kcInYtEvedtGyyHZUa8fs74UUQhm6rXYgC6uoQYuXvQfwWQZ2BsH28ioXIGTW/WCzhvcsLxybIXZy9m4Ke/I0GNwNq0Yk1/zact90PfYDoZYsv1l8/1La2XzX5u9FZrKA1WkgHEXS5yr+U25LsNRH5QluLA7wBSsrYtrycZ6jL4tG86DZ8vO5F16S1oleLsaaz0QbLmfkErYNnRUKNx3u5yzf/hNbUP6yfXH14FNbpY1Gxau580KmW6vYtNojgxsyd7d0B6f6gDjn9GIsdrTwKLew6R4O6XejGd8cj9ygYb4Wvi/uTgcf3aom8yveqvEzwzeHt9NkR0dlEwhS9LA/GHn338OPfczzULTK6yyvXehuNB0MHpSSoyha8RdF+oG9w/Hjm/aj25nxcLnkq25/zb2cy7HhfYevGB4yfNp1iuCNfLGfcfdi4ahnfj+hRx/NzmUgdVF9zPmkF4v/btyRCOoLkRmRpX//zLD476MQww71e1Xo7QzMD9rNZcX0X5dEuyCdrgU/zwM5d53qHT/VagHjGHfFH7YIH77RFzvO1Ze/G3DhjsdcnziJkx7/pofr+fjGorBpMb9y6MP2WCz5xPx/d8Crn+ufB+QIEUlA8DbJ31lYgRUdkiPVkD1cAH/HpWsJjO8/LjV5wUmZXLeSS3gPsrtL6EB873rICncjkjrWduP9m7NOZ6e4fg86WCcbAlrg+LL0o/HeF4TX0tqKiH7mfVZwv6Pt8699ucfxvur/gj3iPAhPc770fD5fXxJpNhHPp1NPUx+Okrdf1ouZ+bQp1pkOB7cFRZp/bIgMlV1HjesOP9tcoA0+ANDQIt8wmTewpf8/nK/Vvbj6aVSjrqVwqf/73N+R9B3n+IgSapReKrAzxv8hvFRfTsWbw2RDU82Xeu32FNdembgk2EKO/3IaCjVzTcb924f1r/6WtI93xjUVQ2+eLsgQR4/XE8hoB84dqA9zOoed7wrpfR5WfJX+XTzx9yfWzdIN07I8+jPv2i9jaCp3J26OYSCv3gxsOitVoT0JD4ji3K7y4C3N8TsJKGYGqV9AjCk/nm/ngJaDM00p+evz1fic3HW9D3W/5WHDs0/fzL0wpYYu7fl5xpY4pAf6jvnK+e/bykxfunl8hnd30HbBNZGtcrLbneTrgXb8lDBIt73OP3p2MJqbuIaKdyTrlfCTh/rhE8rPcXfHHiOvnNL/cPAK0O/RfM+0/e/uljh/u7cf3oJFUcI21c6ucmWH812nG9lJPv7XRg60RVQ6DRSeH31+dTqxQpz9Pe+LoN9L41DNMC1Wa54V9eMGlUyMB5c/V5/yz9oFHp8svbCNhXpc2e9dHh9X7G0YuaQAxfOwTG9lZg3K0V9n3PvzwrdXjeUueTeL9cQFCRkfc/6OnopW+YFb2G5nmfJoRdyrf+yz+8502s+VndE79+yf2xWs+//G1sH0ck9BDw8Y1d7qdlUvnnLqHToXzrahBoeH9WIVik56r8+U9eT04+O8E3U3XVgIj0UA6+S3oqoD9dl19eZ5NffiOJ6Mvx6JPMSsvekGkrA7ufzrOnWO488CDyAUGN5jnpIDvy+vvQUKAjG3qzvOiLe1aRor2dQIzlWuT9YWN7Ewn2+NXaFO7V7wFp6BsAcoRW+cdnpr6o+UB8JuitF3lcP745vl1KXeiPI+Z5EPs+CjHifvPD/bnA84irA43laKJVty65nlYVbZczneN1w1hQVQM0ltOO4/3HHgUQx1yf14h2653N4vXuAnc52yKZ5xsM9frwy4tI+7ypwXAy1BjYu8RAJF5snn/ahOuHfwAAAP//pJ3Llqo6EIYfyIFchIQhN7mboKDiDFBRUJFLAuTpz4p9hmd2hnv1bm2SStX/fxUSnyybPi3oR5w77XNcVbz+BWzefZIWyu/Hk/ufd828y/nN69mbx9MxGXTdf//qNTUHZ064/+M8oG35fNs8ni8ZOG/zK5lTywQL+vYHzott6qnvu9W9WXXi/57p7qw0FmsG2qo//mpt42M4053V/Pmdi3iPelmTHik8y8MXlySQQj6eT7i+tkeen4J+w9cf520bznsiMJTJYdLK1ztDaoGsWnzPx4n7yxOvPxX7ivfRhufthXC/2IMZLJHK/WXG42vTs21sm9ogeQdszLsmWewdzOAjKV0iZtGxZx9R+VsvPD909TLhuwdb9SNzXjXWi9I7JvcXiO6btg05DxnUXz05g9FhjKsXXr/P5NXMDveH868eJFyvnBL6q2eD5Ok4jUkXfrxLHAPOpyjqYVFPvdFseLy86CE4E0YPYvAE8ruOOX95WcOLGrYiCTub6kuq9dNKCSN4lqlNNKW9hj8e/vPLXH86nN8mKsxU68n5Wwnm8vhWwV6MBJ6vT9bgFxD+8VhrG0/1stbqN5CEaOG8cMvrFZLgI7ldsL5S5H7Sde8G96ai8H6Dw+Nnn0PWaSPdzqee9XITbdR33ZnEi+W8p+GzG+BgyQvniSnPD3rK61XMeU3MpC9cS3/xYWjLFcx0Z97Aqk8Lro+e9ThY8wB/6y1S6ZoR9G1vcGxvR84j3V4QrncPsG69RhPvdwhzyi/yVT8B5xOU91u2T76eBv58FSOGXQka//4//8RuuV1qus4vwtKWnsfXaYCcX/D601jsuDrZ3C9NRHFDN/zT19fz5kA2j1IvQOYOHdR1K+P54Vu3Kl1KrscXzg8W8OOR3P9/OG8dk+lFHQLrLnvy/HHiPHnq+Pr++dMknF5Uf/L5ivn6MYBwkL8NfG7cI1kJjzfnM57w03f04oZKSDVp4Oef3H+8Jky+gyWnvF7ZXM+VIa9XA//8mOuLF/cnmcd5O+T6dA2IvZM6YIH3jsAV1YslR5/yF9/4F9+L9NAkNV3dEjJ4hdeLg6U53O/0PB6sYrzf2MD50hsb4W0dTroeBHBvAosc6seB879ugBZ438np0yWJHD6//JSlF+DjgWuy1tqF65kXPc6nkE08vrkemzjP0sJ5OWUruFP6nNejH/92O64nLe4fZa6Pwxv3cwW9CY+uJ2/2NHk8rn+8i3E+QCA4uIh/nl2I8VRLvJ92oufjSkt+4wF4PSJSsT1b7CPCEkgCqnh/rra4Hs80aOcHvLXMJlxY1jzBL17Wcu7yfOJCrn8EorSqy+u/I/H8GiOQu1YoJgps4JwaBx7fW64/2wMIn0NBgK49+Hp7pJwXUOw+a8L7KegGC51ftOrsXjwfHk2YqWbO/YoCBpUCHbywZfH/XwEq5EvJ8zdFXzc0+XrI25++5/Ox5/lM8n58jfM0lwnRaxtwfWei1WExEsmwWwmK9/eT859TyD4iO6nPjXPn4/ftx3gaIFz1acP5086SclQFWqt+Es6zct6/uy2w2vsR540i708VnNd3H1Lk7soaT1ZgKlwvYrzva+7nscnn/0vN4FwWtBlqAhWt9DivDgu6jXVbedf9izqcr0xHXYuAZCj8FIZeKNg2RgL/ew4o6dZuL9Kdt8AfX0bCI+kp7mfE+1cZn+9NT6f9l4C6y1yK7mct7KCQS/Cn5/ZNG/WTcD3pwPuWFY64Xpiil95p5avp8I8XLtXDnHg8IO4vLR7f4QG+sKly3kd5fjQmzlsmXs8lMFh+vgGtd8g5jwssehDtCDJ1VXI/pCRv6SHz/g8BfL6UcLiXXwn++nHnZz1YXG88tR/vyVL5AXh/y1aTi/j562fRR51Dnj/iH88MZ/H+4DtP9umP11kj3RkqNE8axvvUqmr6qI8T1BSTIaU8SsVct7tf/fFpuaLPmh5XhcTX14A4DyjYoz5G0JWDkNfbtlhYRha+3i88334Bm/afFLq2sMep7UuMyo0VaVyP8/Xs9DNYnIbH6/5Pb32/aqXy/saX822H80O2AjulX2FrL87J+Ot/cT3H54+Gf3ooOhohibwiYfNyyh1ezxOeb5jF6x3i+q7mfsSypOqBJc4nTZpKVwV0YZU4ULy/Mu4vO/55n+jHOwnj/fb5p7e5/sF41xegP4ie8Is/zoM0Nuh6QEChQ53z/Bv3L1sBPLes4eM/FrN4b3UgGarJ+xdaP+4+p9v/2VIgC/+9pWBn55ii++0Yyt5dmqD1fUMaOYMOKIykCoLSEYis347WIu2tBhwsYaTXtrXCKb0bC6xlCWJjNUbhUJlqDpanPaJP23YJP03wqRao97G3lRowiuc1gk5ovrHuTs9wufldDn1rNaGX+61Dutr0AnRC/U3Pwalk10HTVKhFY0Jg++iLhe1WKqy+4oGs1/ACJtkNDtBfwhyp5m1fMIHWG7g7ooZuQd1aU6S+M1DEiUCWFpJ6aDAwVb+qJqyHzoXNcvqI4bTENbWsdsPYZveNYfowIryz8hzMXTiu4FehGGnhrg5J3r9MeAdti5bT9ZswNuRvuNe8J5mVr5LMuzEOtMvN7LD7nMxi1jv5Bi+eFlDnVm6TOQloBraXwkFM66xaTIZq0lDuZkSlZVGTQH6WMHvcesIgO4VzF75WMFo9L9QrvYaxZntMoRM7LsVeee+JzA+CjnenDOu7tgsnsUhV+GTLFUfR2eqn+yx2MGGtjHeozsGY9SsTCKtSwr4oC+H0np0YdNpMCHClh7Vou2ADp5U80F0lqoxOL9ioJ4x6GoVOWMwLvyXU6i57bKxXtjWtI7ECcmD2SDqYY8EMsn/CY301sLV3ajah78uBm10s4rxW9uGsf0igOGUfYzy9Uzau8vIJ3cB44VApimTSxJMHtbeUEi04iTV7z2YLbte7R8MmT/oF+sob8u+neE3TvnOF66TuPn2N3XAXFHMhjid46M8R2jzYp5i8VVfCnfbIqPFVvv1E+FuJSZGaaMrmwGrJ8dGps6XsEHs/JGuuo2sKvfXY4O3rtquZLBkb2OyGGcHMZQXTfSSAaWWcSb8jX2vQm28EgXD5YkOTbvWcwWWQr4WVUGNLhWRcJv8AB2d7QdNBeYYDHT0Ig0xusDeeZjZPx7gDL60CVO+kph4APwg3EC8NNT/7HsybQW+gXnUMY69c1/PT/OYQb2ULm/Z61Q8e35LRRGpJQ2lr9QsN41Rb5NUT++A4F327clUYPmcFm6y3AGsSbwBp4Z+osT/cAP2oUgOLb3OnSNhWYYdL87ZOl16ijuhhthzdrQO9U1NQXb1Qa7ru9rbW+vaEni31i2XbPQTNMp0rdV6ZboksUFawLrd7aifbI6C6OSAYNZfLL15C6byoGbzfNxqOnt86IdZmL8DeOWxxAMdHQVYfVsHg8lV+8W9R45pKULGnkGhWrrLlrFxNqO3qFkFciWAMGT84rfzGOO/EkM3VSTDhk9Z7bHh7u5bdw1xpHvMKegoTGdC6GzrgtXhLxLW21Gx3CDxINucM62ljAybQfgPxVrSo8Wlu9TyoTQPrzXdPtLKYCnJJtwOsZfOD5oM/JHz9HTSanRBGFd0lzOsySa1dY0Zarh3YsukhgvtjZ1Hv1H2S4b2aOw3GYYo29xssRgffSxUHak1tc8+SaXl2B7jCvke8JbfrpVgDHdqOB7E3T2VB7erx1KL7cYOd60sG7OZERF3h0CMbeWOwiSMOoBz8jizFfpVQ9xQIYOBv9UJhD8Kh7M8tLF7nFNvV9A5ZeHAWuEmCnrr6HrOlt9UT3LRRSMBr/7CmIPxMarbsdaQF/pQMywu8wfZ2exNtv+0ttkOToP3iC5mxWk95EGWw9tsDtYYoY+z4ahdYjt2K7rZPvZd9wZ7gR7451Lvvz9ZwUdwO0ixF1NxH+2S65acUetvJwbe3/kqIKepPGMYnlTrZqrUmD1w8dXk641889uvYQvApXlwcOUMFRuuy8mD8+u4ohv49mceDBeGxrR7YFLakZup1LcBva7/o6bFoVjt8hQOs70+XAPXggamv9x14z5+C2mZ/BQt5b/lBRuuQrCFz6wU/R0eVr8maumzuwuG0v0zw2zov7E9vaJEpO74BEk1CHfW9+xtfgNz2goNvw9i04QcP9aaMifjke4XAWkEwl+Ga+g9rrsfPx09VTx/e9MI/jy7W6g33LTgT6VwF9XSUvjb0touDtyK6FhMbThHUH3cPrSzeQnmPAoRbdympVWILiLdmMMF1UnzshekzbKUbiaCd5y4O0mkuxju0Uk34Fieyidc2Y7/1kUlViLeikYW/9Q9m6WhSJGpq0p9oOsD++7hg3uRnc35DJty3rknGTXYAc962NnTe056a790lZIdn6sCtfXxj+xVMNaN70kCpEAx6Pt4hoNd51cH1ev7QgJqztQg31oAkGx/Ytwe7/+Rr0oLrTG8EZisdyPJrGwGj9TzqfoIILFkMM3CXiys1NGlVj8Z6W8JEVk1qQ3UH2HB8thCx3MaRYB/ZIr/2DdBt4CH5NKVsHg/hCn5y1cGHvpeSh77oETwLzgmt+s1oTeu82kBlPoXYO3VuwV4eaWEs3Z9oo00+WPw6LcFjCTQOZis2M7fqIA4cxOtnzthv/rgewtg2ResvP/Pfx456cdlsRJMK+XpC4sU+1qODzyWsWtSSln/+/NoELTjAtUSmJInq6WJ9FzhImwbb5i2r5zi7Z+AxJC7WmXxj8+dyhb/npe5DEdhwlB62Br1OoFsj3RRz0FklIO+BYEOt3oDniyfoyVtBGz18Jkv0fgQaS6snPmyGVUKC1dYGwskzqSGa35r2h0sKRTsdqNUvyJpTujgwY9sj3r72bTHfTaIDbzk5RJrIq+D6BcIYPEx8Q9ddMR2VJf/TT1quLYCN99sbHK+fEHv7iB+cX/kpnC2wI8oYN8l0TdgAl4+3o9jDavFtx36leCtHxVjU7wmL5MsNStdbT9GDVdaEjajUFuUToXX3cHsSYl+Agh7vyC9/PVebTQStKXGpF1hB+BWQdYDKQVvTQH2BfgwnYgOez5Ec+HI9h6tLCQG/GCIqxrafvrPR/vQc9vyIn7iIW/Snv2y0mepZfHVvaCXU5acWRIncTfcNvIpeSsPX3gjb+/qrw9PmLJL5sv2EzBs7D4pWdabJ5h2DZbPcJKApSUK2k7Awuu2OJdwP6Q5n+PEpvvqmEwCiwYbiuXN7Vl8+K/h0oyvmz2ORMu8JsFZdSUMzqxkxK/UJH8Z5oXamXcHQV/oJalp1QyLX2+Pl3GfKoXvKaJE3fih2aH0A2u2sEQGOXj+ZwnoB4/VN/uph54WiB1rpvkV8J3Hfvy71CdJu3uGbFKx7JljKCoo5etDA81NrFl/PBuBgU6PpmimMjE8YQ64/SHxQTGtI0NaB9/fHo8HgNCFHCy0AZ/lLgtg3euE7+y0QlsGk6dx4/fQUzRRs66dLI9aF4VS2KAWD/8R8vs71TKetCpJxNnDoxSFbotFaoLGBV+pk85PN9ny8QaNWNeoe7yUb7qQ5gWzEdyKvxgbMVFNiGIIYYws8tZ8/OEDAXulIeuNef5/r2NRIOGdoLerrhB5YPGm0YzuM0++hYGk62GqumXfqXu9dwvb3YIIKJh0iufwqaOXoDqiS0KP4nZqF8BbOb7iyspT694yw5XtkLdRCdUXNlVCDOZz4KU5OtKauUkY8Pk4SuNXpih6e8oPr8Q8/H+7xwdsLqMPJrkYPJttyR2+S8GHLA6gp+O58TH3bhMlyVo4msAfZ4fU7DJfdyivV99Eq/uJTROo1A0b49mhwERprPEuxrUE1TnHysDLAdhp04Ofx3qOCnlDY15tYh95wixGgJ2JNpiAv8LiXztj83PbhuK5kD8SgNonWtrVFPvLcwd28NDg8s1O4fG1pBftxaYimlNuajUamAyyXNYE0rvoZyZEN9XzRqHWsSDHdWmPQui/ZEiE9IWuqN0UHWTLs8Jk4n546BhTgtTAS1PpRWfd4ihzoj1uF6uBqAOFtWibc602NDUG0Czp8pw4GV5tSd3+Qe7JZboLKx5/n+08xWacZwdgH/EWCewmWwbM6cF0ejNpHvsWd53vNAviNhPt9ZHw95bBthAIJ/aDXy3jvVvCA5ggHtCx69h6VFDIQDTRyFMcSzmchg03butS4Hobipz/gfp9t0DL6CZiPUE6hsPv21J6btmfeBG4wrZBMaPdw63bI5Ld6hzeN4nvm1mJfb2P41bwt1yNlOBnri/TT2+jxHZrkzy+3fBcp8i95P++ekqOtU0sjUpOOyfzqzgc4nADBhnH8smXwwg7OtJOJEgQPNqmwrrTAMzD2kxCGc0ZxqqL1ekee9nJJ5tFw+ZYnX6bWIBnhPNkJhDf57RNZ+S7WHHm7G8yDd0eGx7qwWHhXA0Bf44iEN7ISdtL3pXJPA59uxc2257zh/a9+ut/fNS3iOv/5dbJZBWkx3+NLDqtmXmikvl9gaUiQQgtfAd7h3CtE/v0gcJHK9ZKWvOdvHqunbnWiu34WC8L9I1iewKTmkvdsmQuigqt99rFheE3fboKkUdfE0+i9krahqMK7B2faylQ/YAUs20/2BDB5B9Syh5Cx9dq5/fQOmnZtZy3u9vAEZ6N9cD28AbOk+RvwXq8mjPr+A+jNsQcAisMdiVGn9TP3T+qbnBy6O9VeMg9epgNkFYhIgq2F07MSTjDHbYBdkkTsj58UUGToy3MWC7yDpPD8ReSHIgDST8MBHLXGwEYhIMb0pN1Amm4t7CVgD+Y5e6wgBM6XBtPI2Pg1FlMDrpUioeKvY83ZA2q1rH+w1/c0ZMcCERhpg42NpboUon8YAriVWIHmy9a1ZvD4buAgqQ12WLcUY3WCOvTpkGPLFVfWWxe3wc8vU2d6VBZ9nXITKsb5iANff9RMegAV4vKxI5O4burltnm18LvPC/J5TmYibU+FAIb81FBjD91wGr4whvKjDtG8UvcJW5t3AVC029Gjsxz7aX9HGRC07kHgVmQFk3sqgLNgn6jD9ckgW5sVOIVMJEpapsU0hwEEc72xaHg7vjmv+WRwcdcDYfn8TkYtrhqN8yu6dRaxn9fXlwS8MX7hwKV+QnBplgAXZEP9Y/WxulyJMxChR4393JUAufZVDgRDlWmw++yTb3x0HLhBboAtXBgWz18SbG+rFzblzTdk5/NmUaNvqdCd8g3ANGTrRl32cUYLZ836Ge+FCe5650LUnXCq+882JpCABVHr1DzC2RU6D3bQt3G17lxrNk+DBH48DVDfA7P1+T5h8tR3ODteaDLG39RWf/ztN9+1qNwFSL9eTXU+H1SQ0BNsjKdB1poeAemx+ZogVslIHcG+WnKu2Caga2mkW7RYIedvOXTBd4v3S6Uk02pDb798ji2rzcCgwvoJH1OV0G3aheF82XsTVAm5EyYBYrHFxaoKZOmO3U9zTmgNHic4uoNC8VdeJzRAYgm9cz7xfPoOGUXX+Dd/+BJjGk4gDVTI9u5AA5d+i2pG5QHWwe1DnVN5ZvODFCkkwdpCwFlQMqYszGWx1yXuz67FHy8ZCk9BdVl+rX/9cnSrkNK/jF6oznqmPV10pciM854mrUTAcM9ttEqfed0rqbVReb0nMw2MWnjOigk++cahqQuPjHWqAqEwSBFGelYlTFTOAvzlu9BZUDGJmdXAOk6v9FwWcj/tC9GGx+srpPr1tQ7phcY2fBjHBbvLKCfj9qI8IZpfG7wTwrHn/rGBPF5QHZxJ8f2cog4OD5NS651OYBrUDdQaNZ5HrgesxX+/JkjN2wUHmXbqpyaxU4hYZuNd1Ff9aMYBAlnVnSja3Lt66Tq/g+axumK7H6qeNaatQ7+/YorR3CVUe9j8FEXxgvE9+9R0H8AJ6rbiYTN6PfrZwwcJsv12oGb5PNVLeBxuIN8fROqvbOenhzr442N4utB6PByNG9iKmkMxr39yWIe3v3yN3vo2Ec0keUJr1ZaoSaBVjIvUb6CVTR+MebwuXhV6UNtPAvpo0jn5tqu2g+I8GjR80unHw97wYxYTtXfCFYyFlU1Q0NoHz8dtMe/uwwQy5h4R618eEMRUPYBJ7y3sHPDSzy9QrIBElY66bRsUmxmVMQzD/eUX72x4RO9UM58KxO718LLmMt/YcFFeERHT6wv88Z59Lco4uAQFYBa4LZC9w4i0uTz0ywZOqoafhYXD6Dpbc9CFJdyfygzrufm0RsVRDmCd7T0kVFpfkPfV1+Gx2Z/Ig8ff16nKAFyk453z6FcxIDm+wWwoAqS+zqReXK8XoNnnB/LyrBGMmfLIYHU4MWriB6lnb3Wzf/4UW2Pc1/PnY5ygSA8GxuAYhMyuvhWowxjS8GKjZKHo0f35Zc7fezIP9fu3/sndw3kxfk+6rhm13WKrxDWY2pK1QKrTB92e2TUZ6tXqAM5TX/2Nx5wM7QL04fIhm+Ca1vNezaa/fIceTLd++Rq4gfVCjPP8gWm5+tNTeHccVEB4/+CPdw+i5/XTST868CaECd2eLwuj11nq4Ho8tWg9XXC/iNJho/H4xNZjfFjMNzboFz8Uc/3PtMVAcPf51jTwd2/A7qQdfjwGb73rJuF+sIFyPEg0vO5ZTYzrI/rVNxqSQ1FMmyKO//iIvu4+1hw/lRIKBxohzoeS5XnqTXi29iGZiYPAdNrvJ7h5vTqM5kkMqXEtBYjv0MIJeF7ZOLmvA5QbaNDY1fhbsE6uQsVeQlK4kmGxkTVvKCnoRC39YBSbvr50sEMLReruMxcjVAwE21sQo19+Z0HZChDHywW9s9lkX8+g/JQDflHqkodg+vHA9VbwcZpOWU9/elvMowdFfnQsxADoniZZx56GnvXu56OtB7AwbZ0e19OumCKVZD8+SaPGrRjlfhaga4Wws5Zf1ndzu0ZqefLuOIpXSTGfdoINm9duj439VumXn583kXT46cOeDd+phQ8LJmSDydAvX3u1gjx/E5DpoJ+O0sOB0ToluMSVyNgVxgN8U6/A290jDAlhE4Q//+w8JcxmRRQqyHk6NfXQrwWJPlWofHYBDl5n1I96ty7hd58V9HTAh345L0v2x28Uro9/+fW3fvAff3mBZAV7U8QYX8ZXOO2/VakFhF5o8Ar41lglzrVDpu4o2hxef/2zH6+jdlqzYrmBFQRxQGX6e156eI0ZfODRxaHh9oB+hATCk3Y5YizyUxJ3B9PT2vuiYvPnFzOokl/9xwgqx3BW4T1QpE1m4NvuvWaMuGoHeX2n25oFQPz1Qx6YukQOTiXoGmKeYLXbH7DD+ekSfdUbANu8w26ob8M5U/hFg+m2wsFaYv1Y5pMD3c4siHJR9/34xp0Oz2s5wIhf9MqOZzGH1ii4P/1UzM41EODp6Dww1xs9e1360x/P27Vim/z4L5QET6KBswGcrwsI/nhwMI0JmJkiIrgI9UAjPYjBbMZmpH0EK8b852zyvdsNijM1qFnYikX7w/6keeYxRittMnuZ62fQHUuVRk3qWMtejXh/Ek54y9fjYEAAEUDuv+8J91rwpObPny1Sr8JpZZ3/+hfzGz918ApBQZ1xjdmvfwQutVohjSSvfoaKEWm9aarY3lRWIf3i7TBjE9HbQ7WWE/060JCOkG7p6ZjQ8F0ukPfXiEQts/7z1/Jmd8TbJNr106BOEKwFkxFw8JKeuZcygPWTlXhb6XHCfv780FUyikPnAqY0/RBYQJmh2ipYz2YUtzB1XImawhbVbA1ED7qBrOLwe3MSrvcHQN6EEHHY1WEP/TECkhBIhPD1PXWheoLxq9/RgJagntEb53CYRZsGanYq5qegwZ8foc5al+v3+YV1YBmxhy3UsJ593z2EvN9Efvma8zrpz7/G4tqu54N7smF+rPSfHi8mpvoN/GylN/qMZsroyyMd1EWSYE+p7Xo5vJQJWDtxj/VDeQ9JY2Y57N4Jpm4r0p5E768HP2TN26fHwJo574B1eIBINLMw5P0tBwbCB2MjM4RkznTbgZf8IyBWfVHBedPpN554p2A9oV453kBnSTE1iEMAu647HSrG8UhxbD7r7/Vm5L/5xZw/MKFoNFOV3+8eY9mzmfD65Ce46uwb3eG8TZZnrGfw9fk69MrrFfvWeQdgpX0xuu8pWPCUlerWPr8RINuTRbsRNeAVjRNS7q/UYnJ7q8A03xA1N3fFYt3ovNW40WsaPZYjmLj+VUFQBtTPV00xkuMx/j8XH8jif28peDQrQoONGwBB/rIDSC7JRC1t+rAxYb4ANXSIKV4lfjhOlTFALOt3Wu5faU83zPFUnPceNouLFbJurjvo01KkJtA9a2mbhYDu80rx7l1/wbLv1itojQ7CpjdaxZycQADtCUREtuZHPw+iP8BqUxKabuCnn6Nrc4MZAls03q9CON0S9wBX5zimuu6igr12NYFbmghoBWq/mO0aRLA8HQqq14RZ7HV0YnCuvg61augyZmSZrtLipGMLg9Fa1uPSAHP0I+p/XmIyhe8gglr5jLHO9+H1TdoTGNZ2hI3j1upJUBhv9fleLnjXuT6bQWt0UMwySB1ZAMn0jUxHy3RGsSEGBzBfWPaEzQmO1N8oFRu+bTzB5Z1rSNwpJya52zjVHrvlQhZtlHsKlCWG4WkQqbn162L6ttkC87PgUjMpS8Z20rqF4XWpqBOHQzGxItDl92PJ8G7sfdaue9eB0f4mYvM1QEadj3+AefG5ICDa22TwhCACx6lccHiPt4XkrbIYPh+fM3me7DaZ16trCezTXqQGFc9skr8gViqWDBS54NvT6Vh3MHZDD4FpJwAS1g6Bu61eIeHCIjAn6pDD92Y1oE0XxDVfsgRqeqBiLzREMB6uzAMHizDs7XePYtHG2NTS+HDDvtOvGQ1EtYL7aT8jb9/3Ncu3/HC6uTfJkiZjP8m74Q2DUIqoa0KQfJX8WqlqGe9xsZKDYp5gnGtYNu9IITgMJ/M2CPAxKiZFykJ6pr/VBpjgEuGt18BwLAbggIPiu2T9EmxLHuu6ha9u7rBHopyR2/WaApG+YrLw+BaKhxtDS4tkuj1Nn2LsQrQBiWL7+NqesDXfzvETju7boN53cJKFxmsJ3nBhIWW4Tcnv82Afpybe46mtl3jjV2BzWg40bD5BPcEdiCG6mXeKPk/SL8gxGrjbmhX+i+f3c8lV6zuLOFA2236uLGcFqT9/qHmovIKgzRrCnaP42I71D6DfMl1B5yBXSAtWOFyO6wyBtkIDRT4hHIH6Anyt0ECjKd6GDC7LYX0zkvFvvSzrd2bCSmq22BKKnTVBJx60Ua9OONzq234SUlPXmiHOUL9mK7ZoeyOFz2jfU7uL3Xp2FEOFjlSEaJHVpZiPwIFw0pcj9p2d2I9DdWwAmFyMtDu4Jd/j+TjA7kV6ApMTTsbzq8mV52buqaHex3q5oRhpEJ0R3n0MwRoTZkjQz/0A36FtW2yofQdOrqDjM6mcWqBr7EF2pSrVy4AVw4W6B8js+U1tY1msCQughNd0HrF33Yvse3gdB3h8ooUGp1GvxejalPB8fntkvryykECgNhCtfA+t6hWpafBwcjh/lxTbw+NsLXjtV8qiffbo9YUFY8WqJ7BHrKUWvpps7qzmpAVtGqG9atQFM6FxgFUXEapn3tdi55X8hst4a5HyEvKazahv4Uv2DYyyHDH2LcsVXC+BgqNcpcXywNcTkK8bQNGkMEaaF2pAFThbtLjS0r/NdlHh5jQdsD5us2J4SkML2kQ+4qizL/2Mz9iE5hhG1HdXcbJsRuOkqcbcIFmLnHrKL6YHEvIpCCszLxyg4jrwtYoGikvwTebV15mgN/Ljo1b1qp70WxDD4+rtUUMYvP5FPj6BcjYq1HQzr5CfzrqBR6VwqLFb79gkTuAAy2vq/OVrsomXFj6hbePb95iw6SEFDviWpKe2t/mwyXmxSj19GKV6LmYFeTdZAE+l4GF8Sq5sIlHGLZd5IAAdq2ThZz9C/bU02NoNrTWNsqnDFE5Xen8fSEHl3jeBctw35PWFAIzDPr4p5w+ZaWQqab/IoN7A+lFd6Na/PBP2lNUM/OpPOjzksD1YQQQ/6nTGvnjUwRSZ7PmbP+pdcNhPrtkI4HOLz0TiiHHKxUyCGVK21BXbdz/r+lWC2LoJCOJ0ay3wg0oAjOFNb37MD7LU+w62n8MZZRtpqqfoPUyQ6nKCrU/1AbP2GCJwLIGD2PN7Loa9eNJh1SFCt9/bvhfZw5H+6lfgRmrRw0WNIVtnEAdS+uqnw5uV2o5dfBrYhs5mpB4JqNvGJutIt4uF+X6uft2LTkPYbhPiRssGviFdoXlDFsa+qZpD9wsl+stH7CrXA9zsPzFRUuXYL1DITDic5xb7dpkzZmVqA4trYdNwdanC+XuPbxrPbzSQFsrYofUjlesHbLrSoV7MR5zC1XRGqAzACkwPybThHFYp3d2vabh4T+MN6VIdaX7+itboLU0JpSSAZLORpp68e3VQ8+dM8K4ofEZPq6sO/MB8oI2BJsYu09EEmSvmOIWrPSN7Fw3AEaon1o2Nby2NcUxhXoEtDmyjAlMuxoKWRG8fW9e07Cm+qE8QOk2EpLciJcPtA3KYdJKPFAh6a6Ej4k3UT4nNdlnqaYpACrHKZuyrybqmrF5O8HUXLPyr7wteGxXUV/IDPdA1C0fnmLUgxFVFt1kd9TP2DBXmdrFFazQmNeP1faPWtzd2XdazxdqhCZbYccgU7mq2hLIqwNO5d6gjvqRiUtZNBS13qrF1fsjFcjuqE/gcUwvjMWusGbMrgTxe8U0XU6v3qloAP73n8fgb2cMRgHtYnnRXTjabw6a5gWhfikh5fysww3aIINcPSDH2RigcM1bC7/Gr4/sztsPZxq4DVhdPoXoVaf1MrPimIkcK8a8+f9c0TtWrlDqY18N+TG68HgzLiXpKmoPljpYJ8PqCbXU0k8UprjdI1xgQ6bseLIYqtfqdwoF8PwmLYV0aELYX80z93j8WX8v14Z9+ws+4sebj4EsgPfgudYSvweb2HZfwE/sG9qOLYQkIsBKm1cXFVqLJBROPSwpMV34gSXQjaxHfVwRHM19je5ZmxvN1B7JxT/Du5GBLfhSGp/H8RlafJ6oJnw9wNZcCCa3x7Fn+ver8rk+BHuz0Gk7DyjRh8V0Kski+XI9rSd2AuxfnOMObd0LZIpfqtrnJ1HkXgzW2++H0y4/kaadXawj3JxvcjP1Idf2V1cNRDAL4/domvdUr1I+27kPQg32LvZHENUseRgRPgu9gP5LDQlBcNwBqV+0p1189fTryG8T69kp9Z3es26c0dCBIzAeaOsEDZF8sktKTxsDFayuAyQI3Bwb29KBIXvvJyA7+oAhqAFGbzY9kWm/iVusKrKE2Kd9FbxPjAKPgUFFzccdiPhhDCZy7s0OS55uhcIGZBOogtWmcvZNi2ReqALKq8eguPQrFl5E4A/FGCLBrzUa9uOn1BkpsO9h/CWo9sstwgMJ7VFExhF3N2rpcgcoyc7J69rdwfIz+tOm/2ZqabeoVrJpRDPPLMGF8G2xLaEKWgYctbDHq2qYgr0UlMLCXB1lHN1SPiTpk8BevUTkK/Th9mhh+zmig250isWW4rQUQ4NeNXM5axQboxOSnb6nNfLMQX5m/gCyNZrJ09S6ZLAYqkDLBpzHGJFwEQZ7gUzQv1GXioxg3hyyHKzlT6PkV9mC+3IZcXaPPDke9KBQ0XxmeNqCho3lwiK0hApkK+62cUpNtPEu06qyDoibGaAp3FljA3T+pubMn1N7Pz37J0WAD35bvBFyNKpkvZ0PQ7I+EsL43k2K5NtcT2AdyiaQm+lhdx4wMXpq4xMHG7dj8zoaTWg/nE5ECaZ9M0zS8gaklIlJWw4u13SNbYLN1bOxsraEYNxd1BcjleSTlqr7VS6I4HVAd+Mae+gmLZWKxrcnz7UNNufRCwYtjqPm7mSGRsCGZ8yF7Qlh+EPYioQinwz3bwMtlJtiM6a4eD68rAcV3KshkbL7hHC3ZG9bByca4eSR19zUGE16Q4NJfffx+ybFRg8G9Yefy3BfT+RME0PL7iAZNkxfT2cpUqJvHJw3e7F7MjckcLWhPEY76c2AxoVRPEHjTHpumtau7xMkO8Pc8qCqVcJ65VwQ5q4lUta4lK166gXl4m6i5/Yz9pDngAPDKCZBQgQiwCRk20HwXoQbtnv38ug8neHxGC9aVymMzCJcVkNYdoH7x0Jko0mv1t77DO8E9A976Bp5edSEaVQmb1zQ7QcTSkMhrRQQUXOu3tgkygI2LO7LppLkHmNTTDYdllFsz065P6FAkES1YUYtxf6q97pKFjU3s9ZIbLSqIkuMNrbheWTZ+bEPtWL5ouGYrMKCPm/7GgwbfomPTPggQvGnzgKRTCepF5heXsTZqMfqyW8jEZn0DXE//6Yk5wdn7lw+w3RrPejgH4Aa/2+cZKd2uAuz6XL+VUTOPZN49rF4+JFcb0vv2gH2RhaHYmMBRcPC84/B4rQqSHK8Z0IGNafn1XuHYgKyEO3G/0GgMaDLNz8CE+dtxf3op+e4NYwMrhw0U26VdiCQAOjw15pXaqI+A3CkOgthoQrRZhSHXz36qWpX8QGCEr2SxV00ADP+Eybxbj2BuL0hVT8fpioOvcuSXm/oOqNrTFofVSy/kfOec1JUBX9TvdhVjp7yewMN7nWmYJOuQ60kJ+o/jHYcu7uo/PjJo24QI2D9bbG0YJrzoZEYCCKOe2ZqTq0r3wWQ0YcP+9OHsYYCjR/MKp3XdPGEv7DTqIbfvyc1AHbzjdEt5Pu0n9xxDbfOgCgJP4VWw6KM+ISDRC1vHw6GQncM1+P0+mt+3A1v268GGu2PoY11ZJRZ91iiGbzZ3hPuJvq3sgcDSlC/U9L8yIzelMWH79XVc4H3KlmhSJbh9nyukeOLDmo77bANwVHgE9mKaiOYVOypTsUqNY70DpCizCGbPcsZ4gnZIlLd/AlyP06MChmKxvscSNp/tCf3ifZlUtYXb9ITIZ9xJIX0UfgDSVe9QFAt2T3LXeALtgmU0kaxlrNupGbRGG6H7ak6K8RRfhx+/oZyvgIXFNYQa7BS02WROMufnIQO1JNk0SgSlHu0y69S7EVHsr4YtmJ5S00HOG6g1XUzGXEt9w2NhXrn+ssN5soAJH+rhguRhb/QLLrIYzM3rQF358iiYGTo3MJ6Hju77Y13M3uk4gfdjyqgZ7+ukv2yNCGz755N6d3PqOY9r4XrbKrjdZO9k8iw3B+9uGNCyuLtiFkKfQLyGDCfR5VxPgR9DyP01mVXtzBZzupaQ0Tj51Yd6GOVAV4fCNuj2unEL8foCDhxX6orIp3vI5GlWU2BOb0yd7eNUL9Q/HqDRJBLWwx5ZcjOpOYTbXMXIspWQMt23lWeU9DR0RwHMZhe3sLwjSlacT7DRTVdKfvhu8U7EPluAubTqg7KerNKMv4KRshjcLTejlquYQHhvj/CXz/H5AHowR8Z1geVmPxL5cDXqpSgzBA/y4UadIPtYLAprAd5UPSezEmkhCWtEVD9x72TD+dRE5aGBr4+eUTt0BzY//OwJh0gysFeJIliKWp1g0CHxT+/QJu0HZbVgmZjr21KQq9448FZMOZHXRV8vJySvoI4aTPfF6cBmRrIMPr3nBbsrzUgWK89SuH2+EZlv6gLGNvAn6J1uEv3xU2prTgZus8P1vDuEI+qzBrY50HE4wldBnMl/wzl8ptixyFwsZ/2YQePTYIrsixAO0MkI1MNEorv2RMNl9NRBuzk3ita2iurl2TQ6eFIyYntFo57dIrWEfPWQRyFoVtdeM0+97j4ZtcymtebNIc4hRfBL7efw6Zfc9Sugloc9DY8g6IfHIZYgOe0gRnXVJHMRDxncvo8V3kaaWQiw86EaRb5Pt2BwrfkRM1sRNoeEqInPL24pFglStPqSnx4c2rxpIdcT1LqmsJ72+2YBQiPusdNdTwlDmo+g7l92RN55b0DoiCp4PMoF3p7Rvl/YK7a1cu9eECzHtO5fR+cA6/WSUed5ebAhfAcIPOZ0S/fmxeqnpg1saB+qmkbZrgqXh57xtzZ3KvaBtwVSslskyOghwcExn8JZrLL8x4OJwuuP2l5jT9vr+h1nBcwZs/dLo8mb5wEtzdQmk7aO2x+/I+pL7sBknQcB5h84YWs+notlPtcr7XPZHpHAx5dx/qoJp88eu445W/P5ZgjQtB2MANvr1mwqx0VxL9KOgL2dhwt7ZfZvfZNlDct6cm7xCpoN2tBwe6OA7iS53bQX/Yz1x51YvD5tIOdHJLrBS8/G0nAUMd+/OP/aWJMwxYO2NFWKswsO6x8/AiQ9J0RVNq9+dPSmgsMSn0iX76t6lu3hAH/5VG2cKVxEs17B1XREZNEPC2uVNB7gKMsJeuSbtp9+fu0QfV1EOc8ZnBd4gu7zSXGwl6ZwDJhrwtdDPnH+s0laYcoGGM8L38L7etTjBLP8L/63wntfzybyV7AlJxO7WvTup/BtRiDUgE82xS3up7fGUrCXjyXlPLNelJG3CE+2jrf5wi/6uBmZpus3BYfzCtfT2YpVyHkz3dK9VE8uCBBEe7aQGV034YLmYwZ5/OAzFiXr58eBN34D6paH2Wro2g3gatnJnO9bxcz9GOS8FbUjmWpyqgcb+uZKQt973VucF5xgwhSXbAqogl7Rl1TdUBFjXS21hOTLNf35Y2xsm2syrOvhCW+7Kqcp+0Q118srmI0JQUPWdwn55b9vMp3podtaoSrs0RMGV/mGrfdOLtrH1o3BqD9PWN/pfsgm5NtQD/cSykikgu9bYCZ8rsUTNX7ztSniAUqPHGKzmbxkxD0IINTxhojr2A3lDUMe7LdiSu2i+fTzc2xO8NWxjjqHfJ9QzTN0GGlSyK82TKzFm50BpJ/bQubf81C5aeD0lQ9oEXf8oHGeD/74VavpvWCqrILKowXo0R+tpP/9vXx8CDxYK8DXh6T99CUfr+IvHgonmnBhlK96ubtxBB907rFr3uawtcDJhqqzelNrN3gW+/UDxP1x/8enFm93vcEwON+w3WrncGkNo9SQiATqv786YOJRTWG9GUYErJ1e/Ol7+yMgXJqK0JPn1b8BSVsOvN9xB0sgx7E2xFSj4VIqgLTeYP70BDXnr2XNoc6Q1rknkwbTOgDi4XUdwI9f5n207adCBBmsbMVCm9VX7N8gOEbQqsQHUja2Wvfdbsm0VwsMbKVCG9LrU37Do8y3gJXKs//jA8xUtV89Y5MnBAg6m0QggrdxgcguQ/yrd3Try1HNXOrksGG3kRSwfSXs+KgX2N2qE055/2cR/Hql/Z7v14+YvDN4qlyvk7nc1f3ifv0G3rOLhb2DL7Ll1z/i8cX5Q5+QH7+6aWzA+PwmxTjDZQV5vqRB31E2N3d/+s3fb7zY0p2W4ee/ac79gthl2Q1+a6BTpKR2sRzKawZ/fs6+HM16FsPmANuSfWnQalVNnGRRtfxtu9SrlUfIYuoj6IdKQIMZrJPxub92UKr3LzRxfv4dMmZCfgMSdTz/GS66fL3B3/MaRKmLZQbHCDjr451yHszmsxpXgNcXJCPF6OeNZLSafGcN3jWpDYTNExzAaO9brJPMY/IhX3dwL5aMIiNZJXR1RgF8tr1J2t3XSGg1OweodC+MeX+in4SiacDNbhzsBNK+WJxEVUH9Snq85f2HeYYLhFW4ImQp5F0xDduhA3vdvJNe98Vwul9iAYy35UiDS5kn42brCL98jpF9SS3eb4nUcNArHOq+aBHhtbS/fhrClusXk3vOVjBm/5B2LduqAjn0gxgIiFQY8gYBqxR84AxQERSVRxVQX9+Lc3vYsx667rlLoZLsnZ1K0vlsF01iMgNSG/htDz/m53qTj7nEUyTJ05v94WNnB3sdjCrfUWu16hEPw+0eDj+noFkqjFavrdIWAvK5E+ddfBL+Vw+Mg/lON3Q4JV02rl+wxGMc1by12MYvVAjPVCL4nfzqT8zqGSUg5ZQPyS4cl3o2JCrMLKuSgP/Tv5d8ZtFbgb9B2x81+3YqCTHOuJvvs3GH/mieif7ov3zhC+6/+h3Mjzbkp2yLYdGPiI7YjrNmZdgwG17MrMQw0Tpfb33QvOjNfPXTJTxOTu4f/yQ4BztZv6cjoKU+Tbw6dWsp2qAAFv2e+d/riU830xChs6BjD90Swnl64BIt+EasIv2GffPzMFryBfxXT5ghWM2bsVQFQnqH1/1f/fpTHlostnTif3ocouv5RD+C9swnTZtVUOuiwXOdD/nHKm+++v9cKZD/95UCqt5DFrm218nP4+6FpvC7Z6e6U5Lh0097UCRnzczeH/kQqTwCZI0XdtXSjUVfr0OBHt1uJB4Cmg+/PJ3VsdSvzNhaXz5FXZLB90TfxPLrI+L9lcyoH88SMf0vQgwp8hluj72O26c85PxjdTpcPbFi+01CE7b8PQifYI259Fx1vcLzGFo7svFUfMec6qViggffC8ETi8NpEo5fODjxj/n23FnzcH0C8rbxm0oo2VvTWsle6Pd9RcSJ3Mmaleaion5aBusHd1aP22irABPVnmw//Yp/dmPfgDu0A9aWKfDDWokbMBs1J+RsJslkXkcTdtebSdVsa1mSMO8rDZ5NS9ymJPlMik0FG3EemO2VNKGHNLIRPF8tIfuDx2WleSgwH/ofMfErS2gg+T58A3tgzk3t0VRsnndwA8FjnsrBYvrqVEB2liNmeF4QUsE2Bfg9bhviP4o6n375flwGhc4kDI7PbqSP5dr9I8NYmr9u/RP6lY5AnHKihystH89qH6Hu+t4zS5fbegZfSWF/NzcsCKMjn2+3skDNsrvv0KctYrEvB3Brjgy/v08p/Cqyb4L7c17EKsO+m8wgxXD8aBou15VZT491OWvz5l4TS5eDbhoOkgrf4f4gxip4c9atfg3oTJOIgY2vxbQ2eEEKUUtM6Nb1vEraGX2G6cd2zqrsZjlf+tzuvcMsVbL5JKzCF6oTuSE4qc18xM+mhQNaR/jbhDgf97GqgBl8LozcvFfORVG1VWfzWUSyNOr44Sfc0eXsx8Q8/cJknaQnAPY0Gdm1scHHQ5VRdfpNAx0qMnV8na9TdMbsSccMuo6O8lf5sw+iF8M64av3yUe6YwXMEB3J+sWnqdLO5ueBu+Y118Nr57wglpOBBOP3W3PHJxE67jeE+Q/3lnDW+yl8TFnAmiB9u/l4DlNUxByIdXVRPWW9eYb6QmsSyaQJpxWu78AL+cTswzHI55zpoGWbcibWPB/rulQdDLohXwlZ5+duRnI3oz/7Ch4qrpn/mRXQ9GvC/M92141oH8crdgWdFceO8Om7jTA6alFMK59Tzm1U2LCJbY9s0aznv+MhsoG6+Y5Z3ugnYvTTRXX+8gvzohfkrISNAI/UXFH0aMVuKuu8hO9QPIhvKLtwDPJnDyf7YJDdelmM0Z3rI6zXxRvXByzkg7N0FTr0Z+FmeJcJP65vDZweu57YPVRWJd4oRunqmpMEP3gyZnIrg3cLKrJtll01s69FYE4hYjY8tx0NJD0A9zeOtKG7TT2/rasPny62iT7jW/7P/6riJTO3npaurhoVaLs5JLS3kZRT83oSYUDFk5bYJRbjyW5ZfJIEJDgkbj393hdXdRKaUvXhVcmkeOodpqYB5v+cPu/6+zPWipDt8KrYvq3nzS1eaPEPZr23HZ8MxWqg9EqRmTt4WnSVtCOcs9OVWHlp8sUeMpDhrBAD/Hc+Ibqm6CM9X1iR0Jf3YsJeiKdCSpvmVCR9GBgY7sYhJ8Q4burOuJ98OKFyJG7JajS327sLyhO5bBtlOJmeUulqTJcoM329Wp7n4aqxLGywtL24FtdkrUWhsC7x8Cibeq7qIYWPVL9oc6HL4HryLSCjjcsiJbT5rN/DGHSHnhkOyzmcHnauQNLcKfMst8l/c7l1QZwVykJ5m4XTct7I9z4WIVMbWpwug6E+OBHpJvhVNd/vupcKJ2FmnhpWvL+JbfAXf7DshUMyDU4ggiavZKpGgZjwvRD2cMbDk0T6cmUjF/09WO9ow65Ouc/nXeHcYc36lhknOufD6rDHUJV3kbnDW8/npxeX8GqXLrRNP9djeT9GcMtTix0M4YJ4ErYKiBWp8JzW27yXFZ/++S/b6TLO3/YpaDbHrVziXMOhNetD7cLaE0ZmHfA9//MveP0UgUQFLa3edPYKbE3rxbyA7+v5fLgJUDmlT6JPfOELnpQQX242CRqjzL+MVgD9sdeId0+VcBiO1Rci95MzPE4xWjP578rXx8HIIvt6ihS3gCRuJrLt1jGaIqr72lbKz0t81esxqtkZLd9Ps8tayGkdRwp6xVubed31U9N9fz1CY0lHEsTuzKeuCQNQv8EDr/YHD3EcrUq0rlBBJfH1zudz3VYAUvEhpq+btSxhtYAxXGVs+1idOpppQCE/+S3zF/ud39bBh+X/4zVNnJpfyceH45jbVJhej3A6gTAiXz38WHhff/MZrLuCaPPCbL+5P/POfmwjIMnrSkf/VNffRh561KTZ0kWj18n0SDhVU6f1qPZJaz4RZV6m6owyKXR/a7FGtHwwWNuRnbb+JXzBO9Sz7kvCy7zOR0XWde19i0diVOyJZnCtFkRzGOiL7JS6L+8Fhn0m+/RnD7bVx0acaVXRyMRZ3S1LLN7BEXYKrIkO5jXpoR8CFb2niYTxqrN+jXAdEY62X7I9xl3Hcp2nUM7tk1m1mVnDZGzviFq4oPJNevOpLOmoGhfyJgG68GSivN3Dc6PumZNun8mcmm0EH3wQmX8N7mhGv7EH2ddcEtppHY7J4Ljocg5irNKnzMc81mYwov2GxG00h8z+eRV6iEeL+V9vZ/GN1o0wxRanHcuYNYtsngEJ0Zo4QRDns3rpffhFh8Veby2alWsvwqHcnUiyz2eLhe8ZQ0eDK5XpbvNf/LXeikPyMcVdr+FDAycbdkx38cRZfbwUEHcng5nuegyHVBVcVLYko8+VFlvTu99huHpyxSyRJgmPDj1o3Tl9ELufSDjq9kuEA5IiRrJdkzMbHW2EdToz+xZ5NYeLYCI1qj543eTff3wTTbOq09ldj9ZUj+oX/s7DFHmWj7/9SlDfTikzm3c9HwqLybBmtCUh/Zhc+m5tDPnP/BB9fWH1THaHXnscZYzRdN6hv3i+2Vb4jUehKLup2yp7aIp9xopIcLrxPEwBOPPTYPbVONZzYJcmklr/Rk7biFu9cJtS0HorYNZ6XNbVPg0VPpv8iccTvybDplFddYlXFK6iafGrrAuaeLQddjYyA02Smu83B2f/I74ndstUlMuMcIJqyoTS69YbrZ5BM9wH87bm22oXfgy74seZ2aNb2K+bEkPQrTa0fTDUDYk4BdA25E5skoadbH61Fo6OUFPBHRzOP4m5DOqzJ6IXSptMB/fQa7fNsyRu9zO6eWhOJhBtrTDbHaqQh+85guNnpdFNfO4R15n0/fvMtubk5LNZmC+VbuYV23brmbeWp51Ra5UKliMjsOZkoxTIFNoTCbRktugBbQKQgvaLX5P6TMZWOrggiVeNRdUj7KaybJb8QrSIZ/cP60U4j2DqfIeE7G1akrxFAdyvxglvPGbX44ZQDBNeG/R5onEyO3Ixgnz7y0ifQsfS5un/8SN2rMdHMmNtI/7Lb367ndr9ApUEiBv4zsiJfMLZPRV3tPB7qkijxLnn8z384Zv+Gj/dXGy8PfioNVjwqy/dWD/8eOnLrZjbnIqcTqfyBYf0lhF3v/rlk8eKEaTzvmT7xX8GQx2P8BLuHrPNilgyWGdV/fY8oe8Lz8OpOiAdnWxhx/T2ycPljxX4yHhku1e4T3g3GqMWiLlOjLwd0Sxh9Q6715ViOV27Nc/iRAFfFSQsnLa5tcT/CnnR7UzIyT5a/brmBfzxM8sQt4iNaJnqsWknstXSaziO2YnCK3RPTBcKvR6eMz+DbohXsqvNG/rHz8r4UbKtKhqhvOCxtuQLdL3YJ7/BTgW/CCKyG+UNGlJVtgGzOsP8EhRoTpL7V/Ve5MC20dvI5blKvqCJxYG2Cz9r/p5niumKWYN4SugtQ1SlleEQ61YY3SQNX4z8NCZU2Y5BPkt4viNTW23p9L4vUyOahwoxn30SPic3mXcky4A9dUZMt9fCPlR/Z9gM5oxl00ThdBdFHUa9fNH6nulcTH8WBdKdE7Zt3GWqWnu6w8FIe7JFn13Ok/QG6rnT31Qet2k+TULRwvSJfawu8Z46cjGjzlxKiM/UtNYrUQT47oT2v/lQs8nuIP8Cj4XTecc51qM7uja/ECuk/yK+G1+N5lhGRNcjsRP5e+vOaLMrtaVvZpdMTL9lsMt8zEL5UVr/8CTStgJxIfI7kaG7jmp+zvHJjCVrWvJ/1Krjh46v97EbtykAfDbXJz0OjCZcrg+Npsh3QsKFD42hzah6/P62xG1OkFQb5/JCXLnvmOPtj/mYlJmuPMSzRfCkOuGIn7QFf+0ui/MSuxuDbrmSbV4PLDqAjcRrMPqaQqIHMXdghGL2Ou9h6SEhRH8OCXvxh43++K5Ty10+JMKqgOtGAmbNs1jz+rgsQrG3IyE5FxAVbzRSx97PWeLO21D2LQTQ1Kctc7arVT7p11CABBsf4oH3rOcrPSogCMpEdKEo61lv5TPcr/2T4dzZdPR2+xYqsuYLsWu/Ccerc/6iTiI+hr/fTzshQoW33tMRHyprJB/dB/nne8x4lUM3r4fZBf567Yl37nZ8HuWvinCyqfEGfXbJVDb+Xk2aghLzXFzq4V6xO4qasaBzd7KTOVmHPTRr4hJfGiXE9oEsQ/rYNCwq0syaUq2SteNWLJlRvTCajvZB18jDIBTRT4XGKnAFELuAY7EeH7mYojSGjLiHxY9IMl3uXQT9oYyI0R421nC0rzpkZzEioVnYCQVfyWB1zxpGcn7nI+1kDBm+OuR0YxvOWVE22usOMRaNa8H55Vi8Nn/5jNCaHpewvJvRXex2TD+FejjzPfKB5zcNfygSOE3NKkL69ZWw/bqquvFyrZU/voqV6CHlc15ACsft9sjM9c6ouXFoXbS3bMz+8oNuna8ylWiSwvAt6hIeJO8vlNPqhNcLPvTSdWvDznk7zLuIeiiX0k754w/0+yjqZMnHC5B20pVFrzxIuHG/BWg5v0VvueV8DH0bGcdeZ0ltZmG7ZbQFawzfBBc4CscTniptJ80uiczVueOL3oM+tJDo/Mrdbpx+Wom8sTyxE0rGcJA0XYcFz9l229XJd3mfqNe3IsMjvNF8WWkp8PVkkGc9GBa3IviiUyoGWLxFS4ky9F1Yfg+52Pab916mtSq77sUl/7XzuVtrJWTy0aCTaiQ1G7SvCp+B//Dmsr2Gsn63YpjifsXs7SGzxLP3OG+W/J7KTWcmc1jOKjRrJSaPyrHq9ZV8AmBXQSee5pSI7fWxghm65cqbSbsh1VoRpaP9Zb5p6ZYI/TtAS35Itpl1sWb0ekRIkbhF0RH9+HA20yN01L+yQy5ZSEKn6wuYUaokBalBY+M6DXzOBmPEeUT19N3053/5YdN/ntafvgJurMuEfGSy7GZvSrTYO+Zqe0B//BquFryZWd8+1vw4uzH43tsiXlpsOj5dkA9ZpmssHFNc81DKdHXwrjXzUS/mA/7FFKYkC6koFUo96efHYu+5w/C61OrejEP4w2eir6uq5t24HeEkrz4UmcUr741y1SM1+ZwZSXwpp2786YGnSUSXfHfJV9MIPmeKiFFXOJzW0luGRS8jQXx4oyX+F2Dd/YDhfN/XvZY+VNjfTgNb9LVusk/BSzvJ2oeY8xp133AtvsCcq4SEn8FGPJzfe1j443JeOmLivDuqDZoJIxZddn1Hy5VFGlzJ7lE2HWe9nqLX2TKYsbHEZHiaCVY30Xpa8Bh4n7CNCCtNzelUvSji+13dgCg7DxbQfss7+0dKtUyCnm2PcVhP31AR0Bvm96J3tharr6OAFr2VGaq44tMbvU24Inwk4bjL6/mxTTCs3G+Pi2w2cpps0yO0qpcTsl+KJbc2L2HsHoT+nr4ftsd0DAA1d42qAw26ceD7DLzvmLH9a/TqsR9kBZoizlh43fzC+VxXJbgxNYnlvU+59DBYgJwz2hJ3qyr5vNiPepeOVxYq+xBtqmcmwudsMWL79x2fD/5rr5XN5UYbM31aHC6yjpoySDHvZTmcF3xBfq16C/+swvHnTq12Pj8KzPOyQvOi92qLfkcCJ/8l8yiXyp+9YP7edmgScfmCRd+k2uts5ePmgXX44JWONWXTWt/f+XoH3TECZqeWlPc7CalISAT3z174JF8zgGSoC6xI4wmN0jL+Z0D3J3MDJ0yk3QX7QBoe/LNXuuk2GRIwG3FcPTw0mRdrD5cxn7FkY877P/35MWsdia5iFXK5vjZoh6szbgN8qmf/7Jd//JvS8LQKZytobaT1RsB01jrJT/y6PXq1r4DcRqzXbfN4mejWnNmfPs6HJZ8Aun0LbJd8t8n8tN8L//ByipyzmYzXS4dhJ40uuQ7Cq+OkW/nqzkYbPA8Hy6KkmCpY6hFMz9mFT/evL/zxSTwv/v5rdtNXc7LJJfiP33o+ilEYPuiCXwLnxv0UgPWzZeaaZh6Oz/E7okU/JTdHHOp//PrpVne2LQMfjf3YfRGvdwoLzeKV9H/69J9+v73uW77UIxSohr2Jxxnfkvl5dBqgnntl25/u5NQ9FQX604v8b1xalB3FEvrtfCC739Gs2aIvot+rJ+xmOWYtxti5g/y9IzylNy1n0fFAgaNWYPp+pyN08Z6VpoJZ0MtWmvLhIE8yAnM2SGQF23/xAZzzZkuIf23roQkj9e8z2yn0Es7eWhfhTx9Z9KPuT68HP+MiXfKDbj0oJIV5e6iYIe6/4bQKZfovXie9tUVztFIrNH32PnucyMeiV1ooaMEXqix6NHcEX1QX/YuSG7t14wslPkxJGpJT+Vsj7uzKHha8ILus+uSjll6Uv/eBla96zWc7M1TNe6k3vPCfXBwiuYHX7qMSUwwNa12p0x6m9r7557+96aQKsGu8XBFwvWS0rX2kGbpsMayIliUv+bj2x+89tDXDX6Si6F99x+l7PxzbOirR/nYZ6KbUpJDP8jxC6WN90XPCbjomigxaVJ9IcOW3kCvqSgcXizZ75Hrcta7/zLQdLs9MV8rKGq3jSLWLpkbMuE1mJx5X1y+aZiwywmifd2rRFUDvckJMz7TCqREOIwh4GPHa28T1lPm3PWTy2SC+qP26Wbw1GLyDXpKoqIdwOtpXE8qAvUkgNR6XbxmncFkW9ZCnuu8kEA+RdrgGDYvil2CxY9tW6HPJPKxovLFm6hx7pJyFjBDhdOx4ZE+qpnrafdEr14jmzBf+/JvZi/PNf/WuOPX3RBcDsEZ8Kc/o7WKThL9f3fHms7e15s5XxJo1r5vLbyYjuMqMkVyfa17saAHF4x0wp3nLydzl1Rct8Y/pyTKIy2WmChdNiVjg5Nt8fPl4D09t3hHjNlX1RBS1gvvVOjF360XWn94JXaVfmCNVr45nJ79F1rh9U6n8XfjI0N0Ecy4TElyF0frZ8U2GJJBlFlyIE87fW33W/vhdvN49u8XfTXTU8LKvG/p6lL3yBasby/C0tXw0rZX4pakPlhKsT14uV03moyW/wYLz4jW/C2r7Vw+kc5rKCY0zRYY7GhDdCdK35vK8yeAxFi7R3esL9bKNZLTO5YG44rHLOSu+zZ8+RDxxrdXDHx99g3el8MPnbpSuxjIV65lgLRz75fd3R5W9SMmszmmTP3+DvQshyZ1zlUyWHKh//JNghzX1gr8A26xomWdox3C2litV9010ZvuEPJPpmIyylu8yxsJnk+S8bnod/vRjHR/McJhCbwRhnhltDrPUjeK5OEJ9MS50eIX7nF1NcEG8gEku5ePHufJMFTjc9JpC/BJC1udiCTyFlITfzk5mvRXOsMQvgj9ItqizMUqI9eyM0et0z+dmb2N1X70sFp+Ldcei47WHqFIfJGjEhQ/Cwdb271kkkeBZ+ez6v0xZeieJ98FizdvyKcAqK38kdIS8G2UpF+C3l2OydU5aPoREr6C+9DXbJzbN+aN9p3/8khmnzTuZrkVVqtLpfSSR4/qJ+DC3R/X0upsER79Xvdi7q8VMDZZ6Q5lMfOu5aKnfssthoB1f8jOkP894qRf63YiPqFHDKFDxPoOu/qY/q0fIa4/Eec+BNc296EOFro+Fr/N6lN5iAMv3/dVzunEbGSpa/IvKaZ90dMHL/2vxwfp/XymoILgwnKEwlG63q4puQYfZbr37daMqYYBs1dvM5duHNb0cvocemjsLrjpOWG/ffMVp7zZenQ5T9+35aIIr8xUeD7LJ10VexlpgJ0f8032z4/p4eqmP+jWTQNDDfOxKw4X70WfM1xs95K2zs4FdLj/mNswJ55FPI5rYPcWC5QXhGLiqCXdFeeB3eH129KiXszYdG48E7wB1LFmr+kJ59sw9yad6dqvbCwWP8I2V8kMtKjl7AFnZtFgLyqs18FU4IuRZIots/V1z1oU2fAN2IWT3uofjZlAqkDXzTZHY3LveeOiNducwYuF9rq0pXScyXOXoxdwp+/HJ6+xYcyaS449zCLr519xkOAkmMGJkezSWWjDCHG7vxH/KWy6H5W4EEtoBCSNFs4bQuL/glMZXFkx2EU6122EwNgZnhnTlCSVZ2yPHffos4G+eDw+xsJH3q7bESc5PND4hk9H8MgOyE4t313MxLDco12o6r4udxU9VF6mn4LDCorp/55NQBTZCJxPjF3/rtZSii4mu3TFmMe+vfIqx2aBj1mlsW161nH1nbIKb2S5LsBHnQyzvU/g7nyn7PMOx6tYBdPcQM0N/nBAvtz2FdpPfiafHS/vrxzaBFtKJbE9UqZmXCgKKemxjUR7vvG321gvCYjZob8RPa4ZJu6P8UTlMz+Oum2J5n8Fyngy/z1Y41WapQx69gcrlYddN2+YawEpREAnl9Taci2MdoeiyPzHHDRw0/qA5wn5/H7FsMD9c7DdA49QJtJQ+trWuxZuIPj+lxjxMdmjsES6QU6YfZiW6kYvt/nTehHP5Zg72GmuwfqkCmTqfSDDZYM1jfXdR70tPRozAthhWDVkrjC3Fmb0p+Zy2TwDfIYREv6Vk+yiWkPVdFlmU6J2M6uC/4HA2jsSgKO8mOQ5EFFB/prB6f+rJOZq2qj6TA7HPbI+4QGAGpr8ShhO87n7BQd2DhbCOuYAImk4KXwZV6gohnJ/R8Pe+WlP22PayqkPW9RUAPmQds9Eqq4f2Emer7IBaZijems/zvRXg8egkqpYarcdGDXUwzzKmAhI+aDhgtYS6YoyFU6rX64HJGKlRXf6dj8UPx8cZSnywqaJ0CE0XIgHsm2uMlTQzLHqyQIcD4mv6QGWQjLwsXigbqYKF24/VPbLVGfJw6XV/WlUy7q4bE06CDsRBtpWPu+tkop2p5eR8OQlLF3oYQ7udCkJK5CTSz6NfUCoSsTD67vN/8aXDlx2u94/WmrVB3YOWmRKxNr0Y9nVyc9WNC8B0YRmknefeMhUArsxJ5xb1hqz2EDy2b2J/lJ3FDd3INJzf/X/xgO/wd4TnjXn416xFPgeFWoGieTdGNMG0GN4pMsSbNCFkcOauv37TFNnj/GYEjWuLX26jDcndt1gsXO71SOw2grZqfbJ7NKeabc7ejHxROpDw+B678dD7LtIU2aIvydjWIxaFFM4+wpgPVYPGvi6OaDicCdkqqzKZ3tc2Qun41cmpy0jN5ZceaGvtlmPV2e7qWTjtsbY8HzMOyp3Pe3r9qlVxPLPk2rkhPVzVEZ7CExGruLY11/sshfGsdXRcu3092pu7DtK1a6jkK20yFs1YQYj5h9mIDWiMvV2F8HBgzB6O53BabUSMJMyPLEzOx26U2D6FrT/uyG2Jz6PE0gw+ghgzY84ra2TYKf+ej+mXU5izA7x9cN0wIGZVa12/Tw8+dIo5UPlZ/pIpRQ8diDTeiPMUXD7Vbo03keJtmf4crXwEO5ChL8Ybc0Y57Vj8deO/+EXF0/6b9N6LRCjTXQs/X3qbDH17TZG8y2oKuwLn9P0dvrCHUCLG8u/0+3FmYLK/Zpd+FYXj9QIUFjylM9VfCT16awy2sbrQ9Y8o6Kuvqxa6+xbjZvfzu5747wyKjZwx75w1iG5CUsHuOf/wijVbLuGvXYI4q3uyXWmHhL29QgHncM2Ift8XfNDi8xEK17kxDKEUjoasUlDAbYn3qa1w6l08oiCN9nTtjkk4B8W8SIa/jIVaNXB+CjYuGkO7IV4UQci6VDRh+cz83epndV9H0tXFf4kRDHotx8aeapF1ueLN7xR1Y3kUAXZfJtA/fKWXlS5rdiuapFDWViL553cKqvHYM9LJckfrd5bBaZd6zO+fuF6rP6FH/PXQiblRbcTc4STC15pNgkM7yLljiCMcX8+CCsb32Y2Pd9qizj6MzFurt2SWRS1SFzxkrl5G+SCeNQGZ5ibGq93rbs2j9x2R8oyuxIlfKz6v0voO0S6Vybkm925WveioMreSSNQJvJ4jDj1icrAmrvQ5Ix4uu4G/ycsi3iG/oJH47xQds5/GiDg31uxWpwaoLhyYu5KMel6eHzjuC6zi07aWU2GvaMK1XZPtanjVvLdPAVpR/UeMU/rO52+YFuCetBBX+TeyuKttKrhzYaTCCn2t77t97NV1zLd0nX04p5CFZ6jhsyPOpaZ8fMfvAH4vfcN21TELv+LoH2E9dNk/vJTs7xdgRc0fcbqMddOTlQK6PvcSXYmzG847q6w09ZLPWPskP2tI0cNUmVOaLMytr9X/XmIE5kUyqPC1P/WI7HmG+WRqeDVKb8SbPBSBStRgRupu0RyWzvjH10jqHe1kSJfdgFcUJMyrOUFzPIoCeHp3J+b5p4WDZVguCMdl9/a1Z0nvlgjQq7hi9i/eXjbvFFb+3mUevrmLRHtVITXNiUWn7ZOPenj9arvn+KNj8l4Wdyz4IimFyLCfNAn1b+0dnbj2YBdpu0l4PWZfZYlvJHIe2JoqeZWiXD4UxMGXmdNM+wIg+Sdjxa7LpDPY0KqLPxL9ro/WaOJeRblR90Q3C8S5/PJ9CL+diyVfCRI518W9ZhfrL1VZ6iZcUMwGqsn1KDqJfd7vnl4Bbuhu2Fa9+4jfg2OLbkIaMlMNDvW8lYrX5p3rN5L84ZVbnV5gfjuJBbMboFGdrBn2h1tNtfVuW884kAHdfvdiuQzys2j9OzX/3tdldbGt5zcNjuhyOd5ZmFYj+v3xl3H6CYO8v+xCSX5vZlDkwGf43RDeo+Kl/vkf09vglk+NE54h+jmA1Rqtuj6ngoLyU/EllvT4hLPvjGdNvuxNQgRMOXfitEDjSVAw9FrF53c0nqF+UsCbqvXQxHqRagu+s9CLPvm88+oe+Q97II42f9A8u6MIU3e5MTdWXsm8Fp144+7NH10FTcTn0E7vKLrEJ6y+li7sXe/18Md/zZt3RPQb7u9aGIHOwve9tFiw11tIx1Zn23fa5zQcfwW6cOPF9JUVoXHVKiOUx92HkSXervVjGWuAyAdvlvOZ5B8I0JJBIMEnb6z5gQ6+dhDlapCnbIv6RsAYdT+jZNZdfXL+F88U8xqyv/dD60NXoD8+Ejzo3I2u2KrAuv0bo/IxWRM0EkbFOI2U5xnK+XD0FbCM6vmPn/WFOaj/+FrUayYavejmovveErEs8Bnxv67d2/0VsGMu9DUbjroCn4d5YNa4DxMp36x9dN9sYro5PMOut1QHIGFaywJLPXTiNt8rEG5uKvMT/OJzG5SltlfPmERX1wzHe+M38HF8jjWxcOpxWFt71M7FlpB3urK4gjdn9JGmL7HlUeD0iZeuvvq+w6CsrXy20KdBf/j++CpO14rTE0D5BIgeiXlLRuVuj5u8PKrEJDTsBts+H2HmYsjyP36Ar4atPdK+ZLvW2NUzmFesOqfyRJK7aqBJfm9GQO+1SVfJ/EVMvrBWgVdxYNf9A9A0wveOWBe/Cf4exWRI14mITLkllCu7rpvqLA5Aa6XfEk8x4pfNkKqrr+1hafk8eaZwh7oaGH2536VL+GO44GauS3b5T1oWW7nRRrmcVWK9pSQfQ/keg7GxOJX4haGpyk0brs9Yoi/pICfT8UdA/Tvvr4ircOEbGAQh+1BhGjWLXW6KDUf62tCRbfv8X7wL/Iwwd/45tfwN07uqmHnIbMsHPt2Vyx5IrgokYKmbTycF0T97Zbvy/eK/OWkp+gbDhdirxzPkZzkOtHh1lP74GR/f+ClAoQeIRNcz5jR1L2dgTmXikV031ohFOUMxoZxq3+odzt68PUJMSwNLRihz9vaOCkxSBHg8imI486eAUXMqJ2bH81j/49PByzlRRVMvXbf+JBnysgoIOZe7nO9wOYMWYJG+8LvuuPfLvmjtqjYJjtxIqKcSCsHLO1GVntc1s1q1AtcJLvjzNjs0TX00wuPxk4gvDW3HBXBGFYLXTLa3PLJGPTy0yEOnkZmW2IVMwdMRKsUomLHrJj7uPan44yPEOghzx0GZS/B/sGJmHNX5rHiwRxczY8xb+NskNLsYtJ9pMmu93CUr89n8wz8KliEn3SdLFDTpv5DsrmoZTofqd4fKvCvEXlc6Z6CoJQzefSTOoHi5uHazVv17Xl/JmUX/8l+7EyVGJDNGYxBIEcphJxDb8gv0O0cVRYafCgRXSpjzFbqJaOG3mLv2bHVWomdgfKKIGBcv6/hB+YG6FW8JMYMHQbzIvzFKe2axJZ6F4+5J7qCesuifvjDXv9sL9k0eUzBiI5zhrAfact7/8k/5j791Q5BTeeE7I1dwD+ZBfRCy9V5Jb9/KXvuK6RrzZl1ZQ7PFFWLNUV7s0ebTa7ZjbahD+c/f64WPVlq3O2b/zlu8/Pwzav35h38bsrPknVWWkA6DzHBUJjlL37iEZzqlxK3JvaZGhGJwgq/FLtv7pf7157aA5X1RbaJGuJ5OsP/jn3TB8/x7OR0y1A1+zvBZCDgb6f2otpasMuMZO3xE6a8HZ8RfEonqsvjS6CPwM19gUfsIw2kHXYY4rW50459YTW/f2Eem9nmxXb+68wmIZcN4XnW4Exuho/ngLKu66J796QVUG+YYSjPVyf74+iTD+J2qPz6Ah351R3Oa4RiNodvQnyu7aNKq2YS4u26Ywz5Qf7GTBWh+2BkL9btl8VzZVQjlq5rOjWWHXNSHO/rsDYd8UGYhHnzmGZoyt7D2dITkF8fODETtI3Kfyn0yhe8nhnUhN3RTtZ9FP0D9X76NuS7JSf85LPwanUYqb3s/X9/vvIJn3x+ZfYcbl0M/+UKCzybVbms9n717nIH7Uzxyil8PPiFUuMjbUv/PfjmrfVtUp+PLY/slf6E4EOBffvJRfT8Zp22cqZdbohO8q8xQ7D+PCjneEzFPNzGfKnmdwkuvAqbH5yIfConDnz5FCtqn4ZhZNxna6utjcfm+LkBPqt2k0xOPyVux5tjY99rGFQAbQOS/gNIiS9DcRHoKqfyqyILf6J/+cn9pNYs2F+DshCGGxb9IVBq8G6epjDT1cp1ZkP0HAAD//6RdSbeysLL9QQ5EBFIM6UTaBMEGZ2CDokibAPn1b3G++2Z3dodnnbXO0VRq1947SdXzzCtP+NSgnvY223801e+rd6qA8WYJneyxyOleDN5/68GugjYl/Gte+z9/g3h1+zbHcdOlcH0nNR5F647mLkQjCodmYJr8+SRdsAKA9N1UCz5TxOHlpCDrWkYCaVvm0zGMW7iCb+OOKjVnm+MthW8x6f++z3jgjzcEt9Rk+cL/lv1SqKJxTsgeDzzplUH7wBc1MQlZIfrNoieVGwVnGbzoJX32q29I/+GAmTvhm4zWvaAwHI6E/OHpwu979ExpQddfZ178LO0D5LS6kcBXv90IDtagVYsrCzWh7Lqf3QN68owz9/DyS774R//4p7+/Hf1ezORCsWwrZoar7fOpMcsbOngeYc7xXvBxlYcGWvw4oi1+88zn68JXR4Ps0Ov+zy9WijjQyX187vJpezpbqJaPFXP75RX8KNMKTl6yxgqKbUSl0bNR3OUyC8nTMSfp6wpwF46Uea3bdmNdr1P4tehMXH27Rf/0U5KbiOhxW6B50euy9ZUSuukbv0O54B3hc8sx8fFeQkxzyPiXL1TqDy/Oa2oIcFO24T/+y4l6t+AhKU/iyycNbb3L0wY/WGkU5Aug6fTSK3VZf2JVzZTM4XYPkDHFJO70lrvOW/eSUm6bB9O/z5jPubW9oQW/mLN2k6QnI8IgR2LOdofdJZ9tu4jBWSmUGLetY/LLC0WwbwqX9lo05xP+6Gd14dfMiNR9uf0Zr1Fd+CsJj2gy6fVs2vI0JuHfFdVy7PmowbOsZkZ+jVvOq2uSwcyXLnR6rXeTcVr8TklCeHrFXzQ1ZncD/zbqdEvxD41UTI6w5OO/zz8mpnGGLIMjeS7++ay5tQGjMNrsrFRfvvC7Grbx5DLbaa8l72/7GB3LoqHvzDW7P7xTf+vtDiO8T9Hid9vgG1JJ8C3j6JN1XQub1fX857eb069vMFT6d0OMtat1o7NdOcja0CPR7/MzGZvQs9DrPuzZnt/NUiiOwgqQbep0dQLwuYL1FFbXekuc1hQ5/1uv5WdmaZ7PeaNPglJuuwfdnjP7L54f6FLc00pfC3yODKeGJX5U+uPfVFj08jup6brKQv63f//0GGWK/uLTSixAPe+lnDj9lOfdnWepkjw9kSr+duL89C4xrJl+w1t8t7ux/13eKDlaFXMjw/Rltzp46nI+QJztbY2ot3MyIIiuiZNgC1WXM9eAJ21A17vLZE4HPL/hzx+28lXfjat8Z6AsWCuEXB+rro1sX4Td5rg8IbLanFvZQ4Dd5nym7j3v/XFZb+Ss5Rdzo+eNs9c1uiHxjj/M6ndKMuQPV0BaKLXEW/Ql51fyRtpldol3jhs0Jmc5gsWPI3jV9/lUOKYN1RRuiembuvne3H1LWfQwWfhxN97jQ6tSaM5E81ySi39+bMLWLfnHd//065JfzM2GfTe2QexB/Hl8WPjaPfKmW42RKh2yFPNXbSeiZE62utu66r96NDIcFshGjC76vUa99f3ZCmkVn7bZU0TTVx8tCPfII2a1Nfzt24EZKnQ4EvvzyLpJ+uoC2GuhYXF2jZLRcuX5z+9Z+Ei76GXpDB/9rTIvHfVOOD4IVaZP6rDrdrQSXl20Guxg32NRqXboh5vKgYuZv+n61zRlP27KFPxfmxB30duL3x0jNLIj2d9PaT4+Th8JrNumJs7ix29WYr0C/yLGzOpqLd+kz1evLv4rPgSBm8yRbQqKPNZ/eL4rxUwtVmjtxDbZZbrdTQu/+/Mbsby3eceOZe6hQ2TPzP7z1z5qUPztjz98NmfHRQX68z/n+Db6czwCAAhRTIwwFBI6uE6tNFfnxxypQ3yuV1sFrMAQsLwdPwmvqDKj6yU/s4De/KX+ZS08h5rQeaQO53NTBmp6EGeiDcpYjtFoxvDWHzuq+L+vyd+TUanneByIW1zv+YQIN1RzCKvlPDEvx30RGNBdwycGjjgfzRBW0FnJyBwF7OX8K81AJU5JwoBaJoevX6HFP2PBPWHmpJ0PCvD15UAWf9DnNV2evNHVhzhvW+zGy+mawUHffalcXO8JRWfJhvNcUeZbXeRP9rrzlieUlHiWrKEpe0wziCs9JYbUuf7cfQcJJHV3J17y2eWjepHnP/+dLHolmdlWWKFpg4E2aRAlnCbRSm3rT0t2dvvM5/nxBthKZc/+6j8n6skCSXQcEpVPqewPT/ZBxWDHxMLfshy+m2eBym680laJJJPKeRf87Qd2cp2tOS/1E2LS84UPqmiodv4RcB8BVs+ZXLLtL0nVXXVxqZg4B3/WAxQB1eBAcHE5mlN/bh9/fI2c/Kte8ge+COAPnw1dZ8sgxA/VLTWM+Y0Cqn8JtcijgkHafYnDScynqbdmhRQipWILsz9VN/Xx73x3x/elPz6bXIB6GeR08dnb/Msf1ZO0w1JfRtT3yH7AGgc1Md52ySdF0gQgujbQzY35frfwa3hQIyT+LbbMMbgLGFXkg9mJ/W4d4/3qBq+eHpmuvz5dvfATkGqXkp2FWvPPX0artLXI/lm9Ub+cj6j5+myz4HDFHedq5gG/fijbXxqj27pHU4QFX+hbN3/+fBxDA83aHuN+OT8cTwO/oZ1fi0Rb4jXBNlLglEZXLEdGaY4eNw0E6+ObXaVwlTM9X/Xo2wqPZTDzF42ns3v+nwYfSP/9SoEzzx/m7GWzE09yLiLpt4vYruWvfGxk4kCcHEOWXS++OR6fNZZXXzTgFaY3c1JXhqay6NYQ7Xg1Ex62OSjNqw2ISYzenFaSNqs+2be4UzcXxH7XLkY6V65EE+UJzc3TfMNtvg4svL+fJt0wzwEp/X2YnxzDblSDPkDVGgaiWekeDVFlPCBrHCAms0p/MM++CPMJ37EI13s+VL9TARtV+7Gcnz/leO21G5BXzfDrqqOSPa/hG3WWZhNd2kbmPEeXxTJ+R8x4tX3J0875gIrxiuxHq0WDRBsP9Ph4IYExr9Gw3mgOKD/c09WcUn94tSSSTkLSY3h1QU6zHXhwuGxdKjBJReOBdmf4mRNm7i9zkvZh+xr8XsUCSUbNR2tcH2GTbEe8Xq9+Zi/E+x74561jgUl3xCXZmEHI6oHt38qnHE96IMEZ44G+D3faDZraaEgzNf63Ppy/lldJ0yf9Eisw3/nYZYqGzt/dh6pZ8uKTE11v6Pa8nIlPtQcaj3vbgdXa+lCxjZk5VbEXKZIWZCx12iZhpeU6sB2UkOns9cvpNScZdBfrxp7OfpvwOmkNBMJBxY2RNzn3sFTBZXV22U449eVv2JwKdGkYEJfzxZKtrwa6DRuDhJB3JX+eAwVWxUcmdlRW5ii0zQgfl36Zc1puMf62lxS+r+uR6eu3gcbpc20RpOKNGapkm9O5f93gg+IfCd/9O+d3tbWhiklADJ9pSCzjMlaaKhCZI4t2vjHPpgAhITbRt8oP0fJUKrCTHzssuWsxmdfSWKvGnsr46pzkbsh66QwpU3zKu+jb8aepxHAxtjZWnne17M7uaYRtQgyyL8iBz6Ek2pCstjmtVxwnv1M7UfWU2jrR3FecjOo2lWB1G1OCM5SZ4wM1Z9hM35huznqRT/dd4iG0mW06ENNHfVvwGOJNfaXS6+YlQjR1gA6bqiOuNay6ZX8/VN97afT49qKc744tQLR5qwTfq8H//uVHYGsWSaQK5yM+O5+/z0/V6SKZbGdER3B9l9L+/EvRyId3toZbC4ykx00yVLERyf0ybksMUGeO+W3twE21Jbw561pCv7mgwXctrXETKVDyfEp75J7skflmMvvsG2VvWAn5lWaPYlN232dfwPdquFh090M5988shZv/Fikc2hF9U2kWVHWtiUw3bcZrT31W8Lm/dmwP9y6nll4/QNi2O6JvyMan7dWLUeAfJXI4MzuZo0txVrViPuEtKkpztr0pUMPE/LFgjWfU6EqdQnJ7EWIERVXSGwkkQMhSaNX9bv7UP9oC7dT4S4X1IPLpa4wRuMdzxZy0s9CITpUFkZswrAJxTf5w0Rtu2bwM+tCHhJZaWoORl1cKTD/y/qXLb9hAdGeJsaHm+AjB+MMDEmo+Mnt/ez4Dl84v3LzvWiJMvzhGctrELBTW/N/nh3tztEmmUGZSK+E27FZLF41n1PDGSnwMzYV5LAyWV3+/ezcisVoLuLpB1U2ppAjKPfIJ07FXJsPjOHiK3A018UvXLvnMSk9d8IfYR183uby7YbjTWsEQyF3Ci/ryRh17VszWu43Zfw0thTwg8YJ3fTIVzrtW3fJzI8H32SDGD3sBylQZWMgO37z/ZMcIkVH6MhL1Sr7kT/QP343fB8p5wUO0tdiZWbxIOfPExw3h5Zb31df6ZHoY2RvWhryjW0tPk3kUhAKeWtyxUPNzn5d7d0Yn4dAT8uC7crhUdQDknclUvnlxN40POQVt1HxyPz8/SSOY3w84dnlmzlVg+fAsxPfS9cGngvNreP8XnyUezBmaOqlLR6/hEWQ3uullwWy8WytCRbwN7e1M4YPcFYXKt9WFwo1+8vkuSoBItS6ZmX4uydTKWwPGQ/yi/Kus0dFTLxW4aF3R9d4jPs/cvoVxFkpcT/cdn9ZLFw1iyiHzTmw0v0iYYpWtAg8jw9uXIpcCA65Rb5Fzdj/7jURfDoh+kbDAOjp5/9m5GhxWbE3Fxv10s7TJYriExYFcspNejrO4NOau9hnRi8Oh46vjMpuzcy50k81fzlmmG6BgU8DCZt3k4+bXeLCfVj3zXX3NGWtyA7KsiQimn6jcaF+8Qgv+sN3Pt3N+SX+jUpsi0EnRlJK1N2WGRqBvLEtpb3LlUgkKsZoL2/HUynlpuR6s1iJlXugNJsefrJef4vWy4FdoVuWpk+RLMwAjobXORyvILIh++oHt7hYyB2GKFaD8ecBi8dFL6hx1+JcvRoYXijoIb+VD9CsxvvGvHD87XUPZvlLIPuXXZOzh0Urn8FaSdFtKSW+kxw88nreZeGlmmiL7vgs43+iVTlvlxxk6DB+4H5lM9qW997nlXCvINa4y8xbMCU0G4wbl/Xmh2+75K2cPOxRGyb/gd0tYOVabZXDR41QQw9pXZkfveg3n4q3gy35z6sbh56eQq7rHzFDWyyF8zkfkbW8tI3hu/T6u3/a//WEY33s595GW/eUvVrwOyjm+Sw/oV7pGlfBMysmJDg+grB2ZpYwU8T6RJIiV0CSaOLBkNhn5KMXRkQkh6FjOVF1lCFmAiW6Zkk8ru5jBPz4MYjfup5yDqnsoQp0S5iXRupwe1Xr+yw8WvLo+H/WBCYg3VofH2D7lfaxAD/Xr8yBJnvcl1fRrBXBQJxbEaxWNqnJ4A6nIlehHi5dsKIxYvRzOM16vols+abFwhCZ/tWy3eWz9ebWaJEDHwGJ+O+mlmJ+wBwveMTs7JOVsh7KgYq/3iHvfZx0Tj88jqN2qIOZj+zXH4Ok9UN8GBbud4o5P98swIw0/nP/wB+8wBaCfvS3llx8x+cW+O8gI9YGRTSfnrE5aDfR2eDFb327LcUydGMSp04gRbpJSuK+alfJ5JITOPdXMzcGqCtU+ooqKvfo2x1hVj0pmRDbd1sIR9RfvXkNs2Rd6TaYJcRcuPRjO02R2c/qZY6j9PJRmpUD20/WCmIkzAViYxizPRtuchpYrYPCli1Wy68rJT4oVpIbT4rIPBz4j1Gbw3LovFqfyz5y+O0lB7HNwqaDmLz4fSpkiYVvvGJ5I2fE/vlKNVGLmOX6b7HYSDfm9mxu6MdIGjVem22pRpoxKv3OWz9UyOOOPz+P4fPH5bbk+u6OjTOxeNXwaj76FJn+9pXOVx+YcbjY3FFdZSaxm7vLpWEZUTYrTyPwz1N0018ZiumzuxJOvb3/6w+fqPIl4vg2fctkPZ6hi9Yx5wqeSrzEX0L/9uO4uPjf9LABZCY9EY3c5HzbqJwY7eOfEW/Jh1qw4gM9O2TGDT1k3idvOUBa+xIz8surogjfoM35v2Ktk0Ry3o6yAe20yZhYaQ1MOxhHFCjHpVXWnkiKpGWHKniUzx1WS8PhVA8jK+kG/n+PBXPiohQrdLomhJU45bj71G1l5u6Fj6Ia5kN+2HtpkNKfrX2Cbm9rVMoQrv2OB5XzRuPA/5B2zIzOFeURT9+o8UNeTxoJT3CFqzxcbNqIPWE6mA5oMWxaAWN2FYT4gf+H33j+9Q3C1L//Fh1RqiVeVP/qjbaYBoHX3wWpdxZ3QyHsH4vhjMlf44JLnwuGoqveHQLzPT/f/8fdL8amJh5NL+Uu1XEKDXFgE05GbY+fXBsxSxEkQijxn8u4YyI2cBBg9X103KsJiubrUIO45MnLevMFABeIynZm2MZleUYoWfUT2qDDNaX/Oevkb+w/mutvX0j8PArisrYTslPxp1qKIPNjXZkvIbD6SuVMqCV79dyLh/seTbkTfFjWXwVvy95qPfizbEKLHkfh/n0cffgL0868je9G75+NwHGdo2w0mmjYGiG5mb4bTre5I8BZExG80tSHqfoh27fTq5lV5wRBeHYdcNuFmufLqYpDe74pgbZkdO6n3DHkiLWg3PknO53tUKMIzvDC7NGSTq7vOVjy7nnEnJD1i09zN6I+vL6/vzSE7PiJIlGgiet/O/ng7byRohP6NWerEfIYMP9B26inLP/Eh6cOrG4Chbr7EKek6YY9tLUKxa0K2e7KQ8/mevuFrdjMxC42gaa+sV1DoVkm0rEsTrmX3M4I1iwleTbT8/ojeQt6sBCzn+o+PZpyc4S1WL9z/pgeaG3ovIHrffmyvo285cbcS0VOLOoLPntDNXX2MleX/MUdtSz72Q9Aur/pL5h/WWrnp80aBi7GxsVLwsuMX++RBPVoe0bvBRVvjkNwUwH5EdnFo8C2ONQsZZ2DMz0bbZ3/8wYizHfOX9ZvKD9ZAEz4b5snfT8fZisbodsYGsSbjlSz8bAXtt8iIf8V3PglPJwK3liO28OFurIo+hfZ2eRPLk1doatpBg5fuHRi+HQr/T19A2bOQ7bR27c92EdyUv3rgvZ2onLdhheXwqsQkiE4ln+o80eDabFP8cfJ9zluv8NSN6AJVvdjO6cF/1gilMyVav9aRKGz8FH1elwrHm8Q0x3R2KdLWkYbf+eXRjUJMehT/nIEEayPK6Rw9V6hzqhFXC98bos3xAeKoiEvXKyuZLog//vwFouvqLufTfmuhxZ/Ac7hJunFMtVg1I3dm+lXPy8/NKmNY8Jp5y8vrmfToA+X4osytL2M3CVOmgHU+6yT8zBv/j6+i2Ol05qVYK+fx+YrUtUNkQvDs+b1h6kd1P1ORbszTxGe/7ykaTxuf6I1xMcfnXpnh6Mx34r6bN2fv572F7aO9EGe1jvi8348VkpPjA8uXa8C3D6EIgDyqlO1ke/YHXSlSsKQ6JLqiZeVYOnqrLvjEEh/jcl77/hE2/uNLUXlqfB6tVxYsfgjD+07P+y6bNURPA2OhwKNy9E4yRQteLXrJTLh57wXgBHHitHqYTHC+A0Qki1jAwm3yKX0jQuZFu7Ng3swJ21XqByWWs2NBjd7JB1HNgfRzE4k2gYt4LZEYycn5gVXPLhFV+jSD5yQOxOPxuRvGyTJAURKD2YufNTaV8IZvbz3J7ts8fL7+7C10Ku7Bn15Co2G6Rzn7nm9LPfDRdJgTAS31nmjXc5fPl+F6RMeV7JJfdnp1nT/eA2V/LVfEaAkpZ1TsKRwvkUuIHe5NtinrFpzZyAjeb0s0Ln4DWJnUMd0R1I7d1bf1x2epen+vfe5e5geUY0nZ/vYT+XjxTvVffOhGjoWynVe7GKzzUScPdxJM9rMiA/zXdUt27brks9JHqfq3fidvavPBT2qA7rsMGvxiuauVlFIUjENOAnc3oDlZ3y3UR8kTb9U5TaYi20TAH9cnnaOj5S/rVaB6k62I13was58dcQWFhUxm7UBE83k8rNSjM97pSr3ppbD5NQ5sND3CIz+c0VyZhQOpdDgTZ66ifBLMbwXedXAYFjXXL61dukLb39QT+zX0/ph7nwIC27CY4UhdSZubp8jzCX7MPx42aFb1uYLDalizwB+LcqKnooWprHP2eF/mki/xgM0z2REjvzzKOt9cMYKV6hDndWvzcfEDAA/GmSo75WJ+m+FbQynW5C8/0AjkI4DBTjIxseiW87F1xX9+rcks0+RazwBdmz0mWhnleXOdpwqsi+2z8Ne0+SSZcFMX/4/ZqL501F0GVzr15s126+87H5JwHcHzuPdp3LtPNKD90lUBRT/ma8sg1s/3O4OoWqd/+Do1aZaiMbxptEfZJhlq18nQCsUW3WyDF5rcaWXBH/8OidkhdhGMBxByXAaphbM/98LQ/u0PRvjXLrfWLgU5Xr+2GBY87YX1xkChV9+I54Rfczb3DYX9s37in9SEiK+h8aA1A0zs1d4xp48jFygaA/cff58/wVtT1dTR2Kkokm4WVzcPhIGZdHO3cp8v+g4t+Y6rPz0x14qGfptLxLRKEpfBXF8FaabBie2vDLRZ6sP2MBk6CUNFz/tI+FTwV2/Cxb9TuGRpcLhdOZ4el1f+fR94qi58maqfeWNOqRMoYKl4y8zzw+q23/AqAXl80n/1cPzzj/zrLGLp/T2igdnPMyC86fFf/g1jLo1Kcll9Kfhj0fEePWYUJ+eQBfct5b0mj29kSp8nizbjL5mjRlnB0WgA821T+f/8931514jfTq9yGNImAktbt3Q8Xst8dtBP/PNzqcjNY7m1cdP/vz7GWtl7XQBotunEjGG7dLndNA6oKDizQCta1LupcoadfNuRHf9U6F+8PO8eL3hvcK4Yyecf/8c7DXezdv4IcC/D5cnYeuimkfoZcrcpEGe679D4lAqq7qIEsz+/m91oaqHFf2fe6t2XfCqunrJbaYzZB4mbXKokB4WvMsF0rcg+PYkJBkfHb2LLnuaPP//gQbLplyddspSMkmau1D+/3//mOeLuURaABbVDC13e5v1zU1hqK58VPEvn+4JfaQZDPr/JP37wixVHfqX8gN+LvzhekyqFN3J9HH/tnTkm39fjz6+m0lUgCW/CYgTkFhLxy1Njjj+2ytBs9xPZb/SZz251q+BL9vs/vd997npbQ6Tsfmzx7/l8FVsLXD2KFr89KAcxWB3BXll3th++SsJv8SaD7QgfWsrlOWFHLTTAosxnTt1ruaL0UaZGlyknxlxH5tgcXjE0hWSQ0BBDPjyOX0eVxIvNArFhfOHXimKeo4RFON6iaf667z89Qu6h8sr/nad8e6FheFnv8V0+HJC1yGGhF1f5GE3lCpbzIRb+Nj2ad9F8Q4nl7djix+TzVXxbsPAJLLpJZM4P2zSgQqn5z69i0+aTglDqEtnh7w9Nx+p6BgFWMp5MmyAR35sPUsTbm2Ax8Mt+lYsY2u87I8H5J6HJirwKzNbmf/y8nKeJS/AYVg8WfJNfznjzUuDUKS+aqBfO+V153WDkn4EETBf45IapCCe3Oi37Leg2/O0o6Lw2vsxhSM0bsz4/ZLqSKmJ87a8/fqtv+5c/xEfs64/GKVlBdraqf+cv3Fg7o6zhm8PuzvgwFz0i/ukTFko/bM6F6tpw388W0yuwcnGakIIUSyn+6e/hgtADdbc8ovNp53aTcQstmPQjYU7nbdESbw3c2XLwZmUqPv3Du5u9Csifvq9/93JGi3+J//y62d1UFZjzfYXZL7B9YTiOo2rS5r74GYXJLbZ9QDRCQg6LXzMerfCNlviwveipySCryIPLSb4RvO9e+axEKoVkQ/csnC6SP18OqxrKVBqYXYnnclz4IfQXx2Nav36hKSpdAV5ofyeLX51///TsJtmMePE7zWk3MYys0Hfp6pKsl/ZOJoXfqN1wveznudSiGlSDN7T/Jvu8z6WDoE4njxH8vsTlOBwkD5JfkBMz8M98fp7uBlyYeKd/9aM7qdZZLY9Hk8SpvDfH9Ppr/+JN/vwVru88G8hgW//8gt6PJxtKpJp/9cbnLHM1eWSGgRd9m7D5Hr0hqM8R5cn6aA6vC9QgPeiO7Luu/Q9/elBa435tjPlseO0ZXl7ypa8vlsu+blRPop1l463OSp8/7VkBM9znWIxY3c3s2xbo93qPxCvW9n/41eLPEPzCtc/E4+X45xcRQ+3LctlvM7y8wxdv9i7JZzwLAozbPGS7Dnw+ZUwCALeqyG6ph+xi3gpA6UiJh7ZyOdWPvIX9NilwKe7viPpZbP/pKZYjtC+F4SjNaOi0lN0bdve5yqNUXc5XmCnu73yu34ED4iA8ielnB39yvShQ333zZJ5AHmg+YuYoATgjiXR5m8yVWTswG94eKwJZ8WbxX9RXebsz43QIzDG86vjPr6LS7WkkPcs1CdKiPeP1YIs59z6mCCfsrRm23as/tb9PBqvDxSQuaD+zDq96oKodFORut34+TZ03K/KdACXNAyVcFj3vL//oajXRbu4S14BFH+OVoh58fmrlHmrnWrE03e7zaaN9AL73iv/D73HnXh8ouAqff/qY35Xm8Xd+vODtaHIDNE+15PTC0qvAkn/nkQvfZYYS+b6Yn2wPxbf7i+Db/d1Nh8LFELfrkDjnQMjb5+muKYu/QXvl0PJ5MLcUTthZMztidTndnGSG1y9Wad/sP4gb4HioRIFMFnzxB42g/n+6UiD/9ysFspW5JNzVn3w8M2NGkpWKLErrJOfPteaoTkxjRuYk5DztawnE+61k0acOyn5zFABNrHrT6Q2ffG5U9kYuUu9s1+2Kcsykqwierx6Jrs9uyaPyZsNAUpOkryfkU3Dq3ujyaHfMuYyeyZyMRHDg+4hpTTjxQSnyFkY1qrGw/wndlE5XEbrQFrGiamvURPXOQLRdD1SiVobGlzc5wNq1hrPtwTXH7RFF0Ki7nk4GZHz+vgQHXTNyp9+yXW45nxMMGd2UzMYl4uNDrwGMn/8lZH0Xfdp17hvsh10RF9Jf10SnopdjbpfEs9S27CW/juV9kaVYuvjvkj+y1QqKtW5iqT4t66kzT7mbD5VpamglEz69U9ScvRxT61VyfurbD7C0fWP4mjwZ0cOT0NqWIrbXtko3y9fEhu41vOirgrf/az/aCq1sRWW6ZNs+x5l/lDU39gjZZwVqjo/xjI6ZuSf2biXxpjpHGeS34oU3+x0q6Yn3EQpmZGKU5pa/adDzqLwOl4hZ8rkp55vtf+DN24rpHojJ7FzWFkp5HDDyooelEVEeQ2N7H7yRiM1H/FVXaK+ly6ACN85HS1ueXd1rk+nxZcc35ylegdfUOdkH8R5tw8yUYLpHIQk8ZqE547WC7JV9JDbE3JyL17aA5234MIsYH3N6hn6FotVtS7erqu5GT5MckK0sZk6v+Ki3NMFC/YuqxCei6dNBiEX1fThneLuqWjT/0lqDn+2u6Kbbad2GX+wIlLBhuN2KMRo3RyEDXdh2dN0mx3I41W4NzD6GxD5dK79vq1cPY7vyCOZZ1M3G7twD3haUrqvkjLry0FBwvsaIy+1vzXm+9gAIeCrDuh12VFBrjIINeVGoH/vk7/foKdkW8bi4Tbi3bwSU7DKJduvjJmksWZEgyZYjPS1YddOErg6COHHx+J1V3pdHV5FlV8dYNqwwFwVbWWZZ6msSjA+tnPe75KjeJu9JcNjRhFcfc4ZGdDQSXOTQ7Ln/CeC6l9ZMw3KZD6tZdeCe3Dqm89eb01F9P9Z2lGO2+5BjMg+dlqmnYr0hzqjs84GcXoJaJu0RK89Dbg6oyC1gTi0w85CIJneyfbT8P5eln5PdzZ+0jSGIqi1edesVGk2PWDAfF8G1Nkg+p7adwvcZdkv8Sn/amUEEbtM4JMTzwaz32pypS/5hGtoVH2cjOyNj69+I1ZyPfOyqogJnfyrIrX78ElYN9xaOitHjuV3jRGiqd6T6b1lmWO+2+bgae0CN6LmUV3eZDy9T0qDyPga5DWZfMrOTLGX5vlTe42Vww6FMEXx+DyryQciHw2PWQB+UiHhir5cj/G4YPbK8xWo8ByVrhmQFo1Pviba6nErq7Q62Si5Fwi7XW5zPbee1oAubDr/Kl885KW8tWrvBFlev1adkortY0q6J6F9+zRfefkAUrhsSPOUq6cw9VWCNCoXg9Zr4Uzf7AbKxzfCYP3TOykPTo40jHMneimnXeKYjoX94dd5HXTeuUQBw/I1kVwuID26QKLDqXiPDNHqV7R4PGE7BxaPI/T6S+fOCXtmN14I4t1OYcO1dPOB8Ox7xlLzkhMYvLwAqHs/EZAZwPqw3D7TEiwXk2JqU4MJTV1b1ZJYwffL6olMNeWhp/C/e+4SvPzKG9VnaY9lu5pL2nQaoyXhBrMR48b6TLQWFGyxQVe5yPkO3cUDLqyfbDzej7Ka10kIjehox4vXD7JNb4aiO0efMoVbGZ3uXS/BsU4Gu0T3r2LHvekDdWWOBL4s+37pOC7XoDMw/aJE/oYvTwosZT4YfGyHn3ZBFEDxiwoL8+DIn5eKOcCh3V+YJOaDpbs4RlJtVQYgiRWjyTe2snsfVmnnbg+vPUuRipAqfmrnL92PdelUBW385M7TO5uP9iDN0GOeG1vn4W/osbQvg4rtnoX9RTZ4f2Fn522/ukwvmNNQS/k89VTe37g/fkDaSBP+UKvSnS+0UYLzfBQuaWuq4FwkxnPujQbDz0ruJznoB7v4MxKv2u5w/1lqvztXrzdwivZbjwKYzzJN0ZNbl5+ZTWYsAB3yjVMn2vdl/qm8Nu24smc+Pq2S8eaoN+zGzyX66Ffn0lx+XCD5UkfI0Z4VzfcM5ON7JbaonPkWnugf181GYJaODPxr0kMEBPyizT1eT82Nf9siOh56Ewov4dBSiz/L3BmaVvyKf7+SmKJJhpXg7L43OG+Heom+AQmasP3Uym/M0wtO72sxsko/f/NWf9plLxHxJc8Kd1cEAcXhkdNVlJ3M2IcCQZcFIyMmNltlnfQTGu2jIRaxYMgcXiFDUO2/iEv7MZx+3KWzuz4jsnbjPx6N0PoK3SjDdavHI54R/M/D2Z5uqCN582ja/Gay9U1Ee0JHz5uO+ET0aHvEz78bHwNMkSBLbWV6ZPMsx0/sjPJz9iX6+560/boyohaqXMPPO+7Eb3Me6RZvwfmVOcerMSQ6lG4jrmWHoH19zShTWIgKOyvaryimX/RKAc21WLFBNPReTl27BdI9DvB1uRjdlU+qg31Sc6Peyo+aCdytQCdgkiWifj9q2X8H+q9/pZiRD2VhjfYMF/5fvHyT86pw/SvdiL+I5auXPyjUuAIPP8Txnmj8ev/INJMNOSRSZcTn1s9eiu3lTSWAeI05/wmNGf/XJxQ01e0eTRSD74kacZAwSXh5e9B8fXPC2Y8oHKjSIJ5PZGjESYes3GVhbz2D+gleD2nSC+lEqCY+ncJ1T6U0tgLBdGqtfTt24Tx4U/UQ/Y+6jefNxY6QWsDCR8ajOPprqmldL4+4XnopuXU5qcU2hrR8m5pFroXGvKSlsyVgRf6nXnbYJMBwejxsxLXfgs6DWARQ3Spd93ZkTmtcpVCTc09XBNpJW6VaCUifi6y8/S5rwAeQIvIgymozmNFqfQBF8t6bPxi2T0dNGRzEKbJDnPtM4NzqphuutROyPj/6C8qxA1HtvhuMoKVmUGQFcby/ELPv+Mhd8xqAV5MZCY878cZ+ce3n7uR6YV/U96m/exkKKq73oJEeXXMx4oaAcbw5s99w1Zf+qmIIem9lj4WRLqJ+N+Kwe6COhaC/uu7FaLDBPrl1CqkRE/PuxznAeYc3C7cJodxtnmfW6veL5sOkR/XXBEYCtUtq/zE3J8sPvDA/lmrIgl+tuTKX8je78cSX+/RvxPz0h1/o7YPvXzS/5ensvUD/RjtliqfH5zLteefYsxuJ66PIprPcRdOR6J9oS/079KApKeRSQEIf7fNbnWYInDC7TPPlb8k18C0DpzgMdlcsFjan+vYHrryUMk+kl/HNoPOhJ+sNjana8t7V5Bf06C+hcu09O65csgdVNEdkZheCPdw8B4BO+MuK623IOl8bIYBxiZltE8//xXdX6Bcyuyt6f0ukgQv4Q11RkDvk/AAAA//+kXUm3qjAS/kEsZE5YIpPIkHBBEXfggIDKmAD59X3w9bJ3vXzn3nN9JlX1DZVUTGkUG+9X/6juKF8wH5Ozrkp84VIUDqjY6ieBOPBf1JGlnX+nq77F4/rB+j3MwQqrIYLkc3rS5/VIhse5jzP400fsRsxEGsXRAzTXjhSxHBUkevmpEl+oSs0bqYu1f8kI+iixt5/P9TwqwQm6tmkQ8H4HBVMajcD24+0Qv6TEHM9vWYb5V9WJCKaw7srQu4GU60scpquXrMQRLQirPx3jDX8ZJLYKGzn+w+7Bn8B821c92PmvM/Xvepf84hPkX1mnBrfTWTes/gwVK4vphdu//NmQhghezt+OpPb1r6Ct+OFghQ0LhxQOYNObPCyCqsdOWm9vEfORDp9e4VBXe7q+2OAsA88bLRAH8g4sSWumcOOTZMmc28DKXBDBr35Bg25vYzf2A/bu7UHRsHsA9smX9Id3FBnRA0znpahgnb8lxIHdkszdp4+hT2KGbd+++OvEx7Gm34GDlgf8DHPlzY3GeGQTYeNfy9BujyvSnY2Umi3gV89BNx04BCq6A70DjxDeFq/F1pTOBWO7mdPcrhsJFcie/cMHdBW+1KhyPxGuSzbCMGo8HMuEK0bv9jmBJN/z1GoCmy1Pc/FApy42PsaW4c9XOc411goJkbj93hR31cuA+l1x6LHVYP3DN1VYDwBxj2hkyxyKrVon7Qkbx+gIlv7ZGqp6NF7Y+dSBuXQt++HrH3aOXDqwA/fXgDixBKw3ZsW2+IxhJiku2u3uornc1FYGC/5oZKjok01KON+g4LuA4k+SMpJDdYWN975h005ubHUQSf/tx95/aYDKjRhDXntWZJmH2F+EEERwVrk9UtFB8JnLXQ24NqGFT8W3YfR4qDK417FHfvpg/bvIJxisiklNZsjJaEmVBwPptdv00uSzZNz4gFEBivVGBExrtkHF2/6o1Uj9VawogvuqTsnygZXZToq5gli4etSzNDcZiWIGcKs/1AoCYVjlQYLwntkzmQ3F85dCrXRQn+GKdeekF8LhTGSgNR8VEbBjA3UjLYfHQfsQBXXEn5/7MofcqUmxE/A6W65q7f30FFL7sa9//gXgW5GSWrwHxfIwFQI/tbBiS0sPybpenw0IYnDGVhm4/mquygx/+NOH1VCML2/xtDF0jlifQjws1+Uv0i72G9Df7/PBe+f89DCSyCcBvDZPFTQuvkSExI7rWdelG9j4L7aigCXsL99bmu/DBz0OqK77WRsMIH8mA+2iZqhXrao8eCZDSr7qvi6YXNSiBsJWob7qfYpvXMccUIZLTb4b3xC08gphTqSahsPFGdaZz5rf/qNWVitG6mzIQBppOT3/gX1B/vpTCx+ufUbKl9FhvnrcDIs8MGmyM5aBXgU1ANG8pBs+YXN+n9wZnscT/fkZCdsugYOTqgvUjdQ7W0wF3CBrpRt1wqs3SKdxcFX/2OrUHc+GT9f4LIMIelfCNj3ct4O5wtXCKbnaz1dBg0PrwYvOiWQ7XQT+8aWfX2PI5FEwsdnl8MfvgsX0inlQLPmnb4nCZ6PPXrkWw9N3vNDHdfgO69/Lm9Xa3lnUvCehOTf3IlCf4xT/0x8i5f9cLXwHGq53xlJPD3MZ4elLLtigTTLMVznP4bw9X3uvL765PELLA3WbRGi1hTOYd98rhNFRTJGkS3lN5OrjQK2KE/T2SjyIlL96cGp0Qj3w5zBh09NgvFs6DYsLrmdubjh4OpAVe85BqWflpHz+4Svr70LC9sOygk3PEaXVbgMbxfoDB1oYOBBaXPf7dVXVXl0zooaVn4z1aS/D5402ZLk5sjlufAzIIlH+q3fUoidgN0k9PiLrMyzgckSwqJ+Q+u93kMwo+eu1TU/gTb+xt7ZyERz3E0bdxgdXdRB5+GydEGM16QrW5jJS93f1SuZ7qLIZJ38ObNqoRrP/oMUcUTSC9Jb61HRJ4o/PfZtBn4te1Bga2Sf7FdzAtt+I/h2ZOV/3jQoDEjv0iNmuaPFbyOB3Xyk43MGyXg/oHcDjWzepm6lK0UZvGMHpb7xSffNjZ3QbLWhz9h7Vk+wP9Hjo859fhE1yT0xyvAgc9I7bQ60AVmDza1VALD1B4jBlbKtfKoz0Rf3Hp4VC7XXNeVgfan/7cRhu7imFpuRRkryTT8Hkhoug0ukQu5tfO52WU/uPPzvDlIFVX6EBf/V/w++ChBc2wvUl3+nhp882/wM+M+uJ98UrHtaclbL29j4UW8b9PTD5qDvQIgeJyN1TGKafvhV916bRDy9++bPxX/L97Jk5NNPlJC9hlGK3t3bJfNkTA5w9vcY/P2Gh1pTCX70AKp3N6W6uPHzAbXamW+BiLjyh/fllSDpJPVtD1MVQ+mxHihj8Fq0h1TEsCC9SvTS/yRK3vgrsYa0RPChZsb4cPdiuhH1xOL/+Cr6j0AXP1gpxdvHLYmshbg+zZQccFIoHVKUaIYgezyM+2k9zIP7LGbWzZ9TUC6upXvpnqUM/+hZkkl/esJavXQmLl/8gyz40fCkWdjHElypB2vfigrXBUa45gimjWYW7ZK5OpgFuAmuwX9Edo5/p3MPBWzEN1hAM//LFHtaRAM6zfObn4Qd22dOgx9iqfEL4KwGbPsRmcDyY//zvXVEH1E18C8za4xioN/PZU10372z5e6i6Ou4p3vQb82dbZyXQI/xGWrXuk396NDnnlKKPgBnLhcWBDQQp4uhOLdhOOleA1+4VYdSAgEzOLgCdyhCR3Dgo1vBlNzCQ6h1BcXQG//zfnaNG2HID1SerA0TgHU6YpqguWK02mgv73fVDDdoI7F8+cl0Y/9P//RUCFS5h9MT2EbzBckufBIDiFG/8+wjYRQAn5cd37RFTNlFrXGH9hh3Gopz431iQIpBdQI06xpx6PbMmgtzpk1LvWFG2/viJd2wnNM+tWbOf/triF2dQLesFnzsebnhLpCDu/UEs3iXwBy5ATJGNgX/suxJKH0qxqzz7ZGb+0MLN/yd8s9B6vUO5+udXue45ZxMBRQb9+XvEzp3rfHaq/yLNP/Y6aYpvA9ht5+Vw/JwVGirOKeHv+96Bf8yOELjqfr2q17yCZlzZiIWJXAie6arwi1GOfv7Zhr887D5ejENlAKALWxzBcBsUrhuKZwpyqBg/vUgvG/5TrWgfoP0rTXwtEGKrh+ptys76R8Nja/j8bTsCgR/33aaHLsM6ORKCrAkQjW1BAPP7Mzmg2WFtqycya4MkOcF4nm2srxeYtL/+kbDagKxeXvj/8P5wNj9YL1sC1mc29WDTb9jLxzNYR23iwaZXEH9asmFtX4uq/fyvfONr88GzYjha5oREC5fm+npxGfjhkaBxWrHOEeIVZbjkROD5lZHf5+VBfaEm+IJtf0YE8DYFhllEKBg7mg8YXXmLnkf+ksyi30GY314I+937ux2uanpwMKiLUS7IYL3DxYF2d7Px8+/I/OXvXLraMkUW/fu+umFs7gmC0+cckMWDaTJ/7rkDBVc8Ub1tXZ9/nOwYbP0HGu+jeRjLU+DCa45PhLsOdrKkppSCqe0YtfPSSli2CwP4Xl4y3vygQVLivxy6h0tJ7vE6DmuOLx7c+B6Sna1XsKteOhz+KKOHU1wXvGBElrb3G4soEqvMtjgdKqgOpwktrbMki3SxDCjHDsbm484VI/fQey0qlxYHyekLxlnZV/CXPyosxH/9PaBPKo9A9/6y8UzNE9yXAcXh5NyLaetHQSNC/tYf+Bu6n7/6y+eDuH/XW/3uwduNXQKE996cpe+lAabFC/TqdXNBft9nP8kHapyj2l+T17Hd4u2Cb4jqCZt3AP36iYRvgjdbb3DptYnX3zR4tXdzkkLlA6XTNSfaAJH50xtg82OQMPTexp8vH3hGXbv1O1J/5QZoAO6IG+z/vRUwvHP1Bq/vxqHR3NbblTnvAX79Je0Lo4Jx0qOFkP+e8eEmOYUIqlr8+X9ozXfXYXqFe/UXT2SX7PbDuuMuCB6Q4296nCTTXhE8gL+lhx9g95d8Skeff/1NJF7cB5gFv6rgcLca/Dw1B/8LGmioxlpeqLEXZH/IxjaFdvewN35zLLZ81uHJM6Ofv5qso/bmQf+8yvi3/0S5Jhb0AJw3fA0Syh+9FGx6BylVV9ZtcJsQvO/dlP55kPeJEJkP7WtKJd1PEeezuM4z+PYauukjw2TR+Ck3v+KO5Nt5Kqak9WY4LuNA9eTR/vQRB/FRMPFfMwBz+bRwhFnE6dgXaVzMe2nMYM16g3B5hP3lamoOnMM/E+vbetMthqVQbxK8bxxWD1LRcKBL3YLe/YvmL+9Wi0Cq72psb/2V8ebxpfbTRz//gJ53SFa29cB2YfuMNX8vFxq8yCHlibxCuKtlqn2W2ke/fkRretgBSeL8UXwnDMwjVW/ws7z8Da9yk2VjmcJff2hKLuk/vxRc7eaFD5aUmuy5cz14KLPtyufFS6RN//zwhMZpzhdMOO5nWLWJhtRjhQHd+hXgtx9b/wb8/EOw+VP/9P3689f86F0Q/p6CejVWNQVCKxo0lF8jmKVH6EK/4M6E//npfy/v/3v4QP3fRwoC/h1j10S3YRn3TqvGlIrU+vPwsH5uWQNfV5OnxrpGxQjZ+QSTcJFotiuPYBrV0YLmW8yxcfNUn2DZe6jzXT3RPbm9zNUcdoGCJm/Ehzb9AnIz3RTcD72EDRqoxbryRQ75pxdSUxVg0Z2DzIVp6agUC9/WZ7zWf+CVTSF2frdUhCTzoIc+Dd6vkTVM7j4/gT2GM1pX5eLPfr1mGueXAz0CQNikKUcX9ulep5ZKo3oOSxarcrn7kOgZduZqN4cYrl8TES6ZlXoRo6sBjlHVoFm5f4Y+EvxUndrUwHqyC8wpkPANgkvSo8Ud6noVvmoPDXQU6DHGX5NpmZ5qnZheMOqDZGCH/nICj2qaKarW3KfH6ptBbeANutdGai5XOAda9H0yxHM1b66vNedk0RteRPiLl2K8P6MTRHufojnZjeacqXRWsdQ69Lz9nIK66OHfUq340HSDP873IFDZYoV4H+VL8SlZmwHz+zSwF0eVv9Dxr4XtA1/QkNv6IObpl4c7vnxRn9eEYRJTUMLUMBQafiKULM4ha0D1Uj/0GLtlQYfHyYFJvzMQJwS1vzyXCwdZAgxsj+ZzmP/+khx+iWjjcHmv5tr/vSqoetGKjbUxgFC+y0zTrcTDx6uEzO4SwBwKSFPxtt/m0hs3C0CO2wabjy1j39GIYNCoHQ31IByWMwYVJO9UpTY97c2JL+8uEF3XxFnTOz47zbqjAZu7Eu7jGfXabG/zCj0nUzMSl2LtU+4DdumtxPsoqMFyn6IURpfFI6O5tMla+LcSXgBokKYHYT1Ke7OBiywesbmOzUCU8gOBetUKbESEDuP8EFT4Z794bAx/szkztKwQF4NLw0TXk1m0vO0WAC/SEKpnQKP9dYTgtAb4GLt6wkehbIA1wwWhC2uGxTkaEVyzTsSHv9IEonbYI3BBrooPs32ul6MeyGplim/sXJE4LFeuU6FNeIwfvvr2F/Von7RfvB5R5SXTJLBIadV2xo5n0+Ldc3Kr3K5eQfd1/zTX5CPL8BuBI2KnczksrRunO/haLGzWfeNPV9t6QKt+W/j4tn1/hMPe/eUXtkTeSdZmvI3QrfuZOki/1vPbe9yAEMgStRiai+n053Lw8K3IZmFF/jq5owtjLciwSR00rErabaeMD3DLJ3MQ/ePNAkkA9tj3s1PBSucaw/jpXrDFbhqbDVtJ4TjtRnyUz1dz7TJLh7f+PuKncrLAchfGCmbHzMH3hD5qPnZ0S7OcQqF65DBzsoNjDnvWfqh9dXi2vmTtBqcr7HFWal1BnvJfoBi3OqSH674xZ/KZeADOwRd1I5+B1S6ABbBCj4Q+Y55NX8SLkJOzJ2JlXAAiF1cVWif2h9QuDADrqrLXlGFNafDx7vWoCDKC39elIVy1qv5wLMoeOrePgnZ6XporW24xlA3ljfc1akzWP18lbG8NxXtFHuoZvZ4VBCsfbt+PG6ZPZMRwMB5Xsnta34I9jtsbOy9pIOI5ZyZzhmaF13OwYEsEk/n2eaWEv/obHtbt7aAMcOqjSs40xHmfzAOtkeZ3oUH6WUjYsjQdgV0Wp2ipzz1rx17NoTcddNShWWLLlXvJGh4uCz40VZOsPLl7KgLck9pU+AOzK2o93NPuSg1xyoc5p7fbb32oEbrXep1sfdXQXX7gcBllNq5/swwb1e2wrswdo+HfWQTf7bwnXlhTz7dm7wHXdk8E7DQLLHrxirWA/8akFDrT/62Xti8PArm2w8tcoIktcMuZiUPIqDl+d74FZz2i9NmXC5iL8Z6C7nir6aGprGKGwsGALLl96aUUvsPi7spGW3x4pq6huAUDrxcHg3Q30h9+LWL+kOHUbi17IY+GBb//ekjNHNB91HJgsqI1AOIl+yP3nBLz3VwHFZ7Z8KK2hIdiTaZdD2nVHUldy3/1PN+tAHxNylErvK9sNd8nAi1be1BdF9/mKr1gBq526WJnttRhyQ07BZX9DDFy94E/G8fTCC/geST1OlqDNN1RrxIRz0RL+RrQXz3d/o0d4+4Wyz6VbxDwICKwcsea2eshhk9sWDS09D9/ITSb4SuFC7XP12wbKCkFsACVQN73/dNkXZOnUINERmOFWTG6c+ECd73VaH6eKJgv8p+ohtugtQDHbj2zE+Lh3a0nshwP3LCCi51Cm1KbHu93yxTT5xT8q6d+bpfDKO3+xH/47cWyMrAHOgbgJs57epdlC/RJ23/A67029AAmmKyH2zNVLPOhk5e4TZbZnd83WPZ1hnX3YieEnx0RRmdyoIa12zPxr5sNCC3/gd1tHgf18iKAl0fCYRxZmbl+KmCBND5q2La1cGCPY5ZBPe4r7HWnzfKvTA/cD61ElB2NE2axE/kXD7haGpM+0B5pwrQH2NiXa00WJQjAMSob7L3GcRj3QSLC9bLoOMxfei1i7VnC5+TYNFysV8Fk4hGgAL2he2VpAMlOV1m9hOSJlPu9MUfu7cnQqkaE2H7qzfXdnZt/8aMX13e9fp8AQrGl1a8e+LMrf09AKMYeY72dhgkYPa8KvWVQ+1xyjAm8zsH142b41s2spuAdplC5cTUK3cOFrfFUZL/8+eFfvYjnPQ8DwZyQ2rIKzCrfz5DX2g4fpKYZmL5NhXmlVYpP2YBB92pyCN7HTMJGlorDQmi0Qp7kBZJa/PK3KRI5dO77E1LeSVYzZos88Mb2TQ/et/CXUdIJxD6aiIKKup7RnXfhi/9c6P7ZEnPWyFhqe5gf0aw1U7GaL+X0iyd6RN2fv6DeeMCYTiI2h/Fs0rd0bmBfI586RoN9NjRcI298hSzfI0qkdB5PYDAvmKx2SIvVD3YPxW/nLw7l975mx3uewvWSvrH3vnbJMkruCJy7eUK7jwoYK25FCw9HPcbuO9aGToNNpQ4vYSDQXNxiHTFqIauIQP25fSVTb9wcyBuSguZ6P9bLxWoRWIJsxrH4SdhqlYMMuM77o9bwrIYOmtgB4Usf6N7iPoC8u3sD9Jc608MuGGo2JfqqSWy4UDsbe0C+TwbhdeUv9BCOZbGU7zKHH9t5kN1FLgqBvUOo/NbzsLMbNp9Ml4P2vrOp/ef3Q+fzSgVXkUoIYPvPX/86WVeyrD398MVfIHRj+HK/V2pwKGfMywsELmqzvUW4GEXf/20W2tkFG5+y6vnA4kg7pVCnf8/XoZDSuUnBLRt1JKPzCpYzOoo//CFCU2TDVv9d8LErhTrnJEjWQ/5uYc/XN7RseEnx8a3C0LzaG18fzdX3twAMQPO/wc5+MKH127Bi4985kE6kpO61xoD5+e4G/hI9xY6q1f7CbsoML8Nc4oDn5mHwLycLKjdY4z0X7lj5w7/MoxcybE+OMVFJdRgcEhPbNtX9pX7cRsBOlzt1z2JislvhBPCx2C51d9+5ZrfbTlb/6rdAj2boDOunaWboe+SDda0JE4GO11ZVr9abZq8LK5a/L/2oIwYD4X78DpoHC0yBOdHwcW78IVZeI2gD1dnqSVDPovGna5a9e1Cv244cr5ysQ+CaN6Id1jpZcj3pNTg3ElGxlZr16mocwF1MKHp0RrEQJe2BvngcxZ+R/PDchcXduGIzAF9/XSVxhYX+12PvFRvDcpPrFqyp6tGwqv+GIW++Inwdxhpj4nzZ8vcKLbgThBXrxdWuf/EPg1QbsQvY5DNmhR48ZckfPcZpCJbkueuB+Gmf9BdPDB/fMpy6IaF7d6iHxXVoBv32FGD7WJvDwkmAwCcRFrzvaVMwt/JdWObZCV9uRGebfvnAqyNdCYvEv0Jc1xeBzOp5lJk69emQywQ6KHxhhEk7zMtJNoCb3t8Ya/v98NNjcDBknoZVLxdLb9mr0nV+QARWkYGpn3gbJmqTLb6rZLa4fardpOCGuEdXFavRFiJkiWJgrGHss2NFs394ftgFfi24lkZAUhCeyGl092dA3BjSvzXZ6pPgT01xbsA8jge88Z9hJrXxUGeSUuw2SwDmjwk4WJ2PIsUkRLWUtXz2D9+PHuSL/vzc+Ld8bbC9s3eM+IH0gOQQK9i91hSM6/kUa+ZX/+LwcubrVfi4HMxk84PgG84m+Y1c3vgEUuTbkzHdgC2U3n87rKs257NjqY3ATbgDknfCw1zdsOxhmfMU6183KRoVchBOvithu92Tet0dpgd8i9Gw8XfFXIw8EWEDniri2aGrp7/7a1THu9iSHvWBT7xDlcMz614I4OACWmvfrOC7D0rEb/qC9s+ugiNWBiSX2rFYJgHE6qY/yWo77bDC+FaBWace9u5vGyy93ufgOVUl2T5vWHX2dcET6xY9/Zktm5e0I5DX0+KX76BNjsMNugd8ofrTMQoB7u8Z9GVdwI7zvBZzHFQfuPFXiqb1OIzHTu7h5p8gqFs+m7VPdPrlE+GS4l0sHiflcJc+SqTI56u/BLM+wnc22Gih/q5gXKrKP/5FZC936z5L/Q+UaX+i29cv5rM5oX/1actHc1lb2wHPqSw3PpjXc/y360GNK5+oqH4nP34CP6flgO2TfEjWyTvzcCirHIfCVRjGNak+8BspR7w/6Ydi5YytZTVIh1/8Jp2U8Jm2utWK2ObPrOYgIZhXYYd/9YsPnvsP7FNTx/v1LbPNr0jh5H9jbA6+lbQ//Yzu6oNoLuJq+tMnm99B1Pn72fBSH+Hu0E/YueqdPwcdfkBBOUXY786oXuXiT4W/+nQIRz0RLog4P/5I0TRUYHms7+yHT4hn58t269dv4OsT7OhJpfOwaOrKgyKcfezx1TyMG//ZbuG7FFknmvSlkFsgLS31H/9if1xewT25B9i992JNtaIegT7HLpJeHmDLJeAzuK3vxkeAP256BD6fvkt2zysYut3yt/HXmicgD77JW7hub+NeTm9sDeBej7/81rBkkaVGlr/hA4IVwxI21S8CzB5XBPrD0JL8/n6DjgMXCy69kZJl/+f57CzcXfB4iSrVf/ymLXz393n//KWxm+ceJsHjQ51QWQFL28jVfvvb5/6YrB6yZHByPy0+pt5f0g/RyQI/vhqtzR3QyuQyILEAYn29S+b086f6Aw6JtPGBtsyCFsQT51G7/J59qTK5HJS9pdGf3yDR0CvBX2Kk9Ld//9ZTUNIIh13/ZfP02TfqTy+Ua6Oxbb9vqoM6uK1H4y/rq/r884M8T3TrKVcWB958LUJzXzgmewZshm/Jf6HCN0u/nYu8gmfnElMzPPLD+jhgCLb4whY7S/4//bSoX4FawzSbvfT4M7TPGVdIiV29YLFJWzh1gUxE494mbHe5uBCc0Ret+zIeiHXXS0jjgFArazpzBVElwuDcF0iULqG/OIeogbvDNkX0RkpAV/21/vCHWgPQamryvQc0OMrU/rNMJk6O+oCnT4DoD59m7m3IcCmCGgdT2tWz9slSMD93F7LrY6tYy90FwpSTR4qssB3on25F0C6/kHCbv7icMaugKr33OEhVPBByeJAfHqO5uNrDUnb+DNK/qULdrvWH0QYeAtr06KmPuL5Y3skx047z0CI1jipzte5uBa/p4Uua4yz6U/TWZBi+ng4Ch7vnz62ax+pMmEf3pEf1z2/QinD1kbDRpcVIlBO8BcVAzeyy1Oyk2hzY/FskIxSYbNVfs/bDr5/+YAzIKkQwVxFIsxrMprEGQHv0EnXROWar0I0piBz1RHgjhcN4Hw6y8tt/rY93ySgZWqwAXolw6H8+7B8f53zNIVrvy/X4wvINfjkrwclTOxTiIpS8IjmsRqK0SGZrccf05xch4XY9DOwyvRF8mOmD6pe34fd/c14CSImOxmpvg0V/f12QDMUd7S6RCYT0eNXBMf5+8X7jrzOL7x4gTmZSn6/9ATySNIIHWdhhL32nCXv6hqUdxBnSo6GaySzDeIRnFjrUZhUaqLSyUlt6PaXWLRuHef2bVc3mtIQIX1Yykl20SK2sPx3J4GqaEnfeB1AoSI/tbPRY68o0hS/BWMn8dVmx7JZrAKA5mYi7YJfRRL7FYFIPhO6D58FcTOxWUOx8DTvXA2WTx0mZyqo4JxKYbsVI68/4qz801CcumYdJKSGWemfT8209nIDUQmEywVYvLv7mZyPVPfEaYQFfJu3z9YlhGYAVzc+w8xfJL4N/+kGJ76d6Hns1A+hxUvDmFyYEhsMIb23eUad8HZNlXj4jKLu+wna444bx/sxS6ARyRG8XV/Np6Roc2PCGWjVXJctzgo0qR/mBfIDVsWX+tqJa778YH3cvCyzhdGzUgyA72A4vX3/uVK4C7qq79G+wsnoub9oDxvtORD++yGJp1jWe8CJa18Zg6+l79iDnVwOSR3Zny/4ec1r03WfU2Mdvfz5zmQMdZbbwX93vzPljMg5mV4eicoGf5JfPivWq9gRO6XGYB4YaWL3kD749CszWut/u1Gz+3uZ/1OsibXgE8yO2myKrl0t0meGmB/C+7nf+eLLUFm5+Nw4T+hgWGZsf8Fd/BRpWy9Pkz3uwTbmoroQsU7LV28MDOGE6UO/hiIOw6YGf/sXhli9s8QUH4uvHxsc5cf05E+JRO0k7FS2co5g//QKsiiCKOu7jL2L0p8OvPts4ct8xYNSPeHhtbjt63NG4EDa9DweT9VQPrmIxm3u9hKDRc1ogyRzEaqo8oCeORkNZbthoOvetnqJ48wMztvAVEsHWb0Ivd/WK5TnxDczk/YcoM9gNy+tjtfB13fPY5U8Pf/OvImhzuwSxYTz7r9YXiPYW4wEHvr8H4sZfQHHXrzgZWMFY8QhP6iQ/HcRsCvwx9mYV5nT0KJqUOSHf6/UGkt4JiMBxV5PBRy/C3SGIEXh9SjC2wusGpXV9Ud/kVDDiuOUhDv+2FmzZ+iyRTxHsz583tunp5Y9/SeiA1dVCbN9iHUji9lBsq/YzDbqZDXQxSxUqt8ql/osnCYtMM4dT1yXULh2rkPg9MsDmH9PDHMBkMi+nEZ6XZtN7JzYsRl6IPz5LoG4N4OfHwb/ktuA4KA1fOhZtD6Yr16NZF23/52fA3HDeCOIvZPNFbF34qUaLHv7KGkhuDXlYyo8zacr8PtDT7DrQ3qMe8Sqda1b6JIWfxjzjI5ovYOm5uddmza2wHvgumw+CyYHN/yPTJJ+L5TGD8Zc/+Hjt9Hp2yesBtHDe43Tzq0lo3vn/xl87vHxGzw8CyyLx6OZXJ8wmtQov45CS92lHzDm60g/Y/EjqeDYu5q2fApcgn6kxZClYOW9s4OZ3Ienu9oCUQu5AcPnr6eY3gymq8grOekypv+1n/5SvAfj51YE8hMmMLtcebPUZb+tdEDbNKhR9G1J7+FrFfAECgpftmMnx9XcYNn3dwrcgRnQvaPtk4TOdgwryZrJs+EBuSJLh4bs7ItChL9j81fW3H/g454QtuRGmADQ3Af/yYbkLTQXl3UkjSqugenmn4/yLX/rrzzBrcCvQv2lH2NZPmb3PUoGND2G3FI2BTnfUgpizEXX/QMt666EiAOPdH9I+ESrEefcZQcCiPb0rTlyMxmHQ4Um43bC76Y956hqobPtF1q3/uxQ75Kp/L/FIkmwphjFGtxg6kGrUMdJ9va5i6Pz8MOrOceizhJdldav/ZC6+icmcdp/Du2vHaPT9F5iTg7LNpkY9YXVv+cxUJAQhHXV8PUOTSSKNXE25ZxwBLx4l8/NS5nDDp42fp8OiHsMUbn4ONvdAqt9y/OHgy3U5ergWyB+nL4thM5xE+pcZWUGatxpAUarP2GmNbmBpm7mabBgU+/ytASs/I175Gof0569v/iPHg9V1LuSZa/og3WPVgGeGHQLyBPmsq9oe8s9PS83QmMCsh6/4xz9/ei4ZuY4RGO8HkTz1dtry5ZOqk0du+HjAUr35qTl0+deHIiGf6zW9HUXw68de2PzyZ9OqZZi1LAt3pLj58/OaOwChPsJ6pdpgPZxMF5rZgAnkubmm+TOeoen9SfR4H5bNb5JkKPoHSMjmH7UyF2SqXu8Y9bpCTTrHY9z/daQA/O8jBS0ROho+r2XCPpKcAUU+n+hheHLFokoBD3dphRDPwrxevuP1pppT0dLwUJC6E0RPhrci77Zb5aX5eb/kB/Q+Zo0kWf0yBguSw/f6jAhUsxasieumUFGRinYyuvizvpYEDNLhSf19lCSrPD0ayKn9Sg+A44fxOUUI0q4WkcDCNxjVMvY0k/4hInoxHtoXTgmMXWmHgJppAxnjyNXEw1oTtn/0A5GE7wjPzvhFKhd8EpIvxw+U+XOHD8tDKqZT3KWgON6jbRD+ia2jhVwVhbKOr6Bbh+V6Sg0I0vqFrco7gTXIkgx82jrE6GT+JUx6ZQ4cKSZo2Ho2qy3ODy1w7JSaZ00H4go5Fbxbx6C+i/qkrwwvgtbFcPDBUM6JSGt4go+/KsdeN80mu6aLBS/5alOzKxuf2ejMQfeV79GuaVu2kHM+g7Ay3tQf0yuYCl6Eih70PpKEYkyoHdYB6FFp4bty25tLb3Wn3+8j0aQHsx2xkYLDX6UiaVtfVn2VEXpFfyZLLYbmZCzxDG/++0yPXw8m8yTxGTA1PaJ5N0X+wg4XDj7r/klUf8qL9dmpOZQ7rsCGpJY+23NPBPWAl7Dnoqe/MOR/4O37WLDOCeearPx7hQ/7FuOj8WqL9nJaAjg/3wz7dcIYDbTMAtJ7tWhIy8RcR2+ZYVhdNXo0nCuY73YmA92b3xRFjQDao/nK4QGkJj4O1idh1F0cTcpCgoPPae+vh+jNA5Rtg7KO+A8wsB4r2aR3FVvomPnd2Tc4SFgS4vBRZslcHcIGftDrgo/EbpPlxlsBfNrgjtQ6ug8s0DIHOPdThU3Vjgr2uOgxfAACtrdFb8msvKQWXIF1oYfiXNYMXewHcF+fiTqv9cvWyksyeAxvLj4/g6MpNdHAw6nGOVk4eWDjcClu0NlHBbU61wfSOHcBxO15T9Hq/LF19JtSFl87G1v7VwnW6wJTKDUHDwdj+vbX2GWWNp3/Ruzuyk8x11RqQVNd7/hYms0wGqcvgobFIxrHijvQ62Xg4R8X2duldxmQOYmdHZjrC1m+57ZeXtN31RYta7GB88mkOI1HTR7EPQH7sE2IzBuBZtUOonrKoMkiezulfHvE9Ji+I3/hnEyEpu1M+NCIui+d8HYrgIgpkr/v3TAG5/AD7veS4P1yGQeW43gESUsd7ETU8Oev0+vweJFSVNe6U0v5Aabwun+qSK3bvcnWF2gBE5oBPxdyHaaBV1Zgv7MdzgylrIk9W7wm1uJ2Co5SfxmnJIPkfX5iUzooyZJVpa6NlvjC7vIw6hlZQwobHx5o8HdZiilcFA/+8nefskMxoa7UNZChgoZbflE96GK41UOUWNrHXA4KsyDfMQOb2jdlLHepA2X0N1BfW0yTxaIug86bbLID8z1Z96XjApUL3tTWW8sUxeQVA7/fI+pd0ZXN4vHLQ7W8N1hvkF3P0dj3QLDbB35GzctfXQwceMdsRBq6voclXBYXYjGiaA7IVJBP7HKwfM8NUYLyVUxVrbhwdMYD9rTlAta8v3OwuGQc1fn5w5j5HkRoh45JkVIZRT8Ez1iVW0eg23ON9QiVGwFx9vjiozrt6mX5cBB63cfE+i7B5oynewYxqiUa/uWHgf1JJAeaEVvUUEHlL4/zEwIWDgdq1VvLYZn6D6TdS6RBeyv8UXlZMlRPhoUPjuglMyFzBVJO7tBbOe/YCi2XgxF0dWy9u7no6qLVAe7RF7sJdIrFrFIdwrW7IcgEvZi/O+70q1fYBfVSLHyY8fBSJxP1yqMNlvXuphCjl0SYdtQSusacCnF72dMj+HxraqM7p1y+hkKtzL/5sz1KBlRPukWLasUF8w5ohpW52psFKoHJUGoVNo11oX/G38efuO1tYutQPKjrcrhm4fdLIGPUpv75BPwRCZ8K3vePLzVn51KzS4scmHpjTBOrkuo5Ds0W/lV5T31RlMxlqzTwO1Yy3tvZw2enhxtBD68Kdobr3Wfh1Dbwhw/Wu4uKmUj7Hk6NfMLmzaCM5od9o7WQXbCPlnXoPUnNoHW+BNRpRJ7N+XQ0YM9rOUbRril+8aRa55dMrdiszDkMjgTm9J5TJ+fnDd8/OWzLKSIE1k0xa4vfbIPrEgIm/ALT+PZi2DObx74fS+a8LhcIfYmDRFxPR58PA/iAx6PSUuPzFNl4OSkBmGlQ4NPzOxbzb32ChM9IZVy+xaqLXQRX/2VQRw91NiOYu6AurZHalaeb899NzwAM8pW65ePAVpDINzDGM8bxDI/FIohCC+9D52JPGl0mioGhamB+XfDVfgsJKV9dBJOg5XA+9W+f5P0Zwq/1Pm948vLp4+JGcH2fAqxPQs62ejPDnt/l9LDxndWT1hwuYCKEfQ6Peq44PodNFSzY9LkvYxXNLHBbhB3GZuOYa+LqKdTfPsOW199qovHXDH5hGmDP9mJ/w5MePKbmhcN3YRXDE79kWBzjhggstBnxW09VN/5Bj2XTmUtk3jM1aasc8XvzsMV7xGs83snUv6K3P2uL2agEyUecx+2nWDj0gvD5asJffJtrZRixllZihVHIGcnUnTJeqA/whv0sXv3x/bxncOj8hXCvZq7ZS+oC5Y7fOhKKOavJJ/ncYKDxIVqOsetL4ZeOIF5vd3wv9jdA91bmwVuRddT2phV0f8BCsOV6DRvzY5s3+nx84MF+rGgpTw4TClB9oKHKPukWxyvm8wch9bc/eh686kmlnwdc6uBAjbro2Ky0Q6RxqvDAGx7549F8ZVr+8s7UzGyVja6vVvBzGxYy6ZcXI+fupoNEfLiEi3ZNMiNt18KahDbZ6kcyPf3X6befv79ndopz7IH5cgXs5HzEFlGIPK3m9Cs+yNc6WSejbWF+OPtEewCH8bH9jrRb+ADYj8lhWPNl/4GhGxbUPqBLMb9wOgL3kPk0M153czilLxloevYg7LlrauYE8g0aiv7GV96TEiaskwXNkjsS+ADFwHjj1oLqcYzRun88C3Yhygjp3Upx2Gr9f/NvfbGRmlL1ZeOh6HW44cvGX+aCaPxfBhvPehFe/ZS+ZE4GgsE2aN5q+zhZdM9BELVWhQ031YslrrkUhGfuTt3AuA0zEkgJFy1viXZ6nIZ5SEuiXafLmToy/6nn7048Qb83EeKtqgLTlNolDHcwxmkxm2x5WhqB6dku6WG4uoWgR4sIrqbLo7n8m4f1fvx7wD/S3bf4PprjxJU6dO41okYGxoEmD2YATX97RCimqZ6Dc9iA1yekSL7f32xRwtaAi90t1BLH1F/91pB/+089F+1MdsJiBM/xx6SHQXqBVSeZC7xC2BMpkEkyT1xpQCo5AT4IRVCsX6//QJC+XmgGPBuowZeNtr1DhIatno41lXoYVoVG5IvOkrmjJwueI3AkyvfwV6w61VrQZY8D9ezD118lgRLwABWme+O0mMt0Uzx4andv6njz0V8GoSnh/CwONKRgX7NCDlbQzN4TwQcAw5LdqAsynTdx4c/zMN53TwjP5Xind087+zOhdQTn55fRoJWOtdT+TSv8xQtnvihYIzo/YHo+lNQx6eFXj2/qj+/f3w+crPtnkcFT3z8JQ02RDGdHzeBseidUDlPJxtsZuNB0YIKxEJ59ykGcgmUXIRxk7MVIfHzzv/gjH5l3hqm9dRD0+SpjK7M//no/Xh+wSS9nerhkQ91rQuABfv84IC0s78OavjwZKmqg0njKK8ZmhY/gcgz+kCw/rWHsy+dJrV9cjA0764r1/ZJvsHqKAUaeVib97epy0HkGLv0DqV3wk/z1oGDuGozv/cLGxFJL6IVKQv3nEhZEBmXzw2983NmmL3BOJGpf8vboL38p894r9AeZp6a7T3xp4zcwPak8RuauSxZDGVTYrX2HMcGcv8TDjQDXpn/YIbI8UMWoee0uCD01OcNORL7xS1gu/Ih20N0sNPVrKCop/girH7q/6B4KYIJotPE1ib3bM5cCwxIRWWJFS6i4rCk8DaZEkbk7JtK9FGV4+YghPuaWX6+SuaxAe1QSdY+qUW/rF8OrbeTo9WWGT4pX7GjbelG0HiFb/XIsgXwzJmyoXGiusQscKKj7Fz3k16lm6OMh8OZTkTDWalt90QwQpv6RsP3rXM8Wf86AYXAtefHneqBnZ81gWvEVPj2bfSKhu+LA/OyENFAzl61ldTPgG1kBNc6aMFAvNUtgJuGBGs/dtdjqnQO1x8nH3q3vk8nKLRUqffFBcx5L9WT/7Q31MNACiTCpfLbm50jtPs1rE4I7/6dfwJb/2A1K0SeJ/oKgmxeT7q/8sVgi85z96im1T2gtphQiT934KOJ2/c1n1sN+wOL1Lik2j9KwPG5+A7f/H9rqzcD2VuaC+zM7YUtvZUD4OpuVU98+qTeHU71WJl0BvCEHHy7i21zMuTVgWMs++vxFn6FTnH0PPaH1caJ+eLCeFLOEmRA6RDJPNVvIqTSgVd8/NNCF2Z/jU29Ar1spPqbveePTFwhSDVN87DuJjedxEdWTvCrY2pvfgiYZzkA1yCesk6grpo9wPsH7V4HYqCEp1mR/InAGcU2dYq4B7fVshWYJj//8gYlac6ntOOmIvWvXFmzsPBFGfbfSY+ngQXq6fgVNzYhQezcuRduQ3FU3/Ytz3qvq1rnd5u2WuEOt9wiSqdcMFTr4WxJOsVrGHs9rDn984+i6GqOGkKRa344fqm/1ZZ4jyYDuq5kIOz8PiTQsBVTpYFhErKJXsuriK9JIqNfY8u3B/KdH8pd7pklmqz9/hAM/vn6Qn9dkVDMwQ7mDBQ3+BI8tZ+tygrCNETV9ewcorGJD5QfhhJRrp5lM7BMInf3z8It3xkrFGWGPyEydncyKpdwejgmcQ4rtamjq6cP3H2X1Tyk9zU7FNj3o/Pwd8uIzNJDg77vCLf7QYqz9MGP+aMCdAz6E93pYv+Wz4sJA/Zuos/FjsemPmx9RX4gyDwUgjAFDuT4DQPexci9W7s5FINcKl+7z2ADLj0/V1hVu+/Uf0q5kW1Ucin6QAwGFhCGdSB8EG5gBIgIq0iSQfH0tvDWsWQ3fuushJKfZe5/kHCtfTsDzfvaEmu/h0sz7fUThT9+6rHxq/OH5nh25lc89GrwtQgpWvLjyWVPH6Ltt4Y3uL0SJx1bHtf6ZYbcpTiRNrf3wy4eg+vQOWfUWXegkKwLdpjwRV7qsXStoh+HKH5ABcaYvoWMrIKZiR8wuOsR8mqsd7AOxIIH+JGwSTS4BKx/As+m2gClnmoE1Hq/5Nh5o4XgB0GMtJ0FnYJ3yl4CKIzg4ZI3nYP33DHkA1iM03wos9d2vJMEWeAxPt1M+7ZFfw1XfxGzFQ0tXPCF8BocH3pRV0yyiaXfgzu/6gG7u1jBvnmcT8icxwrM3aDHT+PwKxfJWomObmAPTJ8f70wtOdtTpJNzuKkgbfkPUw/xsessqMAw83/zL7wx+99mP/xD1Cwp9PsPvGfByq6LIkAhbglrtYEBPBhbT5ugK2yKc4TCOJ6I3ijlQCylnmagaIod6MIY/fTbOlgTLx1IciGkaggTbCROTxEedHmaPA7T5RgHvul6+/OJndy4KpMSj4dJUzEYZBmGCoqTa6HO3SThp5RuYY77UjNOmU+DuI1yRgz5tTodY7kRthHdy0qjT4FvYdeKgCAJeCn6I6Z7jNnBQ1Zqs9hczo/RLKfAl5Y+/4Ak43k8fCfhzEMVsqkQM1/yKu3s1s8nV8lKSx/JFAv7lx8vqv3DY0zToL2STj7/8fa0gJAeCnZi3s7MpuuOhWr9vjJly4PsfXiG++Bhdek2WGW6kjuIZh3bO//CVnVYhUT+sdqcbcyL4FgpAvHofNjSsAIYsFQFB0FLdCipKBoTtnhIlXZhL9g4H4acKD0i/PD45604vCsoTMZGWpqb+XfEmaDePNgDvkwPE1b7lFc+h4KWoLu+xawcvuHfW+Eka+kxD65cfAy559810jp5n+Zf/HCkqctqIiykPYeego51SsJykUyEB68XQGk/zUXx6e6n4DHf0w68L9rlMUhz5FEgHh7rElEEPV337Fx8Ygd85gz88oBVZp8/5Pa2hvL+qKIrKTKe6Qiy4S/cdZips3Xm45SXcK26E2bue9FXvDOVhP6eo3K9d/LQbr0BXFOqAXWoak+BxfUv73j1ifs+BHJdUr+VE2CtI/QLozg3Z9mKz0VI8g6VrFpTuawm8LZv4P/vdR/kZWHZ5Jwdnvq98MbRgqD0bpEfPOSdCvzaOl72ChBO/jgioLmdYsFpc7a2LZ7p9QuCWNv3TS7AzF9qPX+Nm1T/ea/wFo4mPwQJ2Niu4z/cKd4mu4ZJ+hPx+GwYJvjjHwdIc7od5VA5v2GfbNgDqoDJ6vKUF+GiE4P2in/X1fa+/fEp8R+bXcSJkhJoGO3S9CSKbsG93cHk2PgYjx+Kv8M4z0GfznrgN1vJlfMkKLCdZRGojJjrLjtwZ6k+HD/hXMOl0jffgOtOQuFGIdex0cgdXfIXUa7IH2K3aSl79iyhPvxnIS1HbX34LaFOeGY+izIHGMz2jH//76YXgW+8ua35VwF5tmo3cmRVGzsf5NAsOPg5c9UjkjIusT4eTrfzpn8phvsa7lZ+DdT2IY7mcS/OUYejq9IVWfg3wr75Dt1MagJqX8lVvr+BeFbxgtpZ9TlP6MWFomjqxl7YBixM5GyD37y1Rf/UHUzNCaV8oE0G/+pDaDBvAPvx31bdkl1rHJ4RxK0vI3EvFgDvumAHnd8Xvp+8M2HQkbqqDQARWsOonngRXPoGQ/b249PI9a1CyrA6FtmcySooLlJ6CrgdjwHWMvfeNA72D1JNgeHP5mBxgCXculIKX038YWfV6adXrAnxWzHwXPK4tWPVjokViN2AvyZOfPo3BeBXBrOWZAGMKujXeti7VrUMN1+/Fe20rDH/4YVYfGTk6lwObS5mWMMlTSIKz8o7pYwmpXPn9mRiR6bs7oxUNyRW5mpTbHuqzH1eGvOIFvLeLrzsnB3sEv/ocCs1jM1RiMP7wHLocxxms9RHjp4cG8qp/fK1vIsCx2n+R0i8TY9edJoAfvjPGzzHnpm00w1XvRsbpZTX00n0jAKh3Qs7GM1d+3GnQ2lZZMIn1Th+es/yGh+XLgrGTt82QPLgN1GN0JJa2vQ6UPxcKfNF7GKz1haFf63FAVYQGueJO1Ds/7gx4lX2CtKTauLR6PkNooowjPz7354+HZWB4rs6gYedSiWDUVgTLnXpjy0//X/2b2KmVDCy4L4a86mHIbUILjJtnYcKfXmgND3vACnEkKFWGh1Z7ZNg7EfqrX2KmKotLjCsxgflN+hVf3xi92bwGh1GSycFBaT456fcKf3q4Nt19NgpqOcLonfzhT7aoKm/Cu5g46yDbTb7W76iU5DkMGqPeDfhaJZb444/2ijenT3ksf8/Hz5i+4pkelUwiyOkCOS+GfFGS0IPYvXyJcerYMM7hVoHLYVgwuJxC/aeHAfNDZmSZ+Uf/1aug4nUuSTNVWfGTsIH3XdUiY7QnwA7+4P3pUejWTQxLBTxLH20ieJmFzu220eMqHnLvTlY+OVDBDR0oThsTy8r+HU/+4NewcluN3Pjci+l5ppm87icxDOObz/079OQ1PyNrze/0vLwsMIS9QxQvZGB2QOLBukcZ3mbuNaYO+UYQeFaMsjlMGpou3Bm2VbPDzbcy3D/99yOVb6SAq+ROR1pgeARnHS/cpWnoo58s8OMLUmUf2KLPlfJ7HkkPtZMLjyWZoWegGenW2vWoIKyT3YlmyIcVdvu+pgm8SPsNchEa9QWWaQEFe+3CufL5edPREg4lbdCqVwwseGvenz0dhOAIFtcWOeB8W52kn1fPyO4ZmnBjljkJygOv96RR31DxhB1yGX/RJ3IYot/+kWMlDjq7kbEE7FOeiOEeXHfVKyzY+7oQ8B0iLotLoPz0waAYry996i7CFdo26AJCP+pAq8zZw+olh8jmXi+Af/v943c/fyJyfAkhf+CdVW9xm+50Pdb/60gB/O8jBW7E5STYVRWrwPAyYDh5DomqhcVYzIsQ9s8iIgja7xhvJesM8XVnECvlsTsNm2YP8LOEGGqyktPbuxLgLEYt0qdtE89lcrxCjnUmMolEBqYdchNyXy0IZsmNwcxdnhG83HBMjheQgnHZ3Vp43fZnYibfezwuFTChXUV10Bzvm/y7dEokp6SbkR3eR9CeR6uGF9KZeIfXU2GZ5I0wOCyAaCG/Bbj+vFsoiqpJ3Pj4GEZ/fy/hN13CYHkWNqNiXkRSWn94zGs9jWn7thXAi1qBgk20AYy7zVc5ikoL9/LUu/Ne/QTg9cgx0qkexzguAIabBNzwI+D1eJHWDv7nIz4gJdvfhvmoKRJ8qJsz0ZezllM+HCwQ7KCPtKudN0LcEQhYkFjIugeyji+dmUnOnRhEj9R11tXxioEYPD/IM68kXr7sFMCBc1pi3Y6KS9uFj6BgxwVCb+cFRs4RFSgNuwUF9st35+TmFLB6whoFo2/lYzTWJoRftSYHGbhAwBHiAG3tnngb2QE0uG84+IEPk5ifE8cW65FqgGyqA8nW7x9zj+uhoogpCUA7A6x/nlf4PjcHzM9fIV+eFxNDrH4uSK2WDuD8/tBAvTNMdPe/dJg/u4sA92K8D4CuvsBi9WoEQ//ToIPTeTphdfUG1v2NgpO2LxuWZJcKUlw9idJzg0tv+fyGqX84ED3rKzaDYTJAesMyMqvPzp3gcZ09XvYlcr10YdNziy14dr42cRA23fEpJBDKM26RIhx1RklYR1DbvztkGF+D4QOFCvzYfY6s27HSCRN9AyA+mZFJW79hg3E1ABWKC+Z4+TOQTV1fod34b2RM24nN2+cthFYSHPHHDojOoD9k4ILoI9gRKdPplHMG5HNBRIfV3phnJByUTf9AvMM6qKBKOQ72n2OGZ73hXSqYwh6WmSXiHuiePkMnOcP6XOfrnIt2YIax1PD3vT/7WlJna0FPLitkvnYaYBwuOMANOELWtDyHBW/NK2w+j4locnZqiAU+HVxV7WArOXY8Jjet3H6eLcL7lyesEKuTZKMr7sgsW0dfgq1qyOt+BS0cLgOlh7CQrzv5SZAlmA3rA+0s+doYIte6PNl36o8ZpIyekBnVSs4p6yx7774Tg8y3knyOdLMTHcWxEer2MZjtRBcAsNUzMna3tJlU5+SBHY5S4tZbXRfSY2HCy+uEyIFIL30+JcQCG3DXUOaln/xv/3sjJOj0LL6MDUZpwN/7Gbx8HKbO5mfYrePJnGWoYqresw7+/NnWCtOl4ceuYdI/M4LOPoqJYYg1NF99ENR2ooA52d88uKSWSzx8FfJJ4bMAfu06RAppCn12dkwDB3aHCCWnR0zjyC2h29Ngff9GHzdVHMF8V6TEabDdLG/ndoYlxC3e0nDbUCkcFQDLtCcK9iV9FEezg2WWiuj42k1xF05uDyOnOiOvXmfNHbdfCl9PnAUSzZZ8jJ4iB52MKsjvg4otfLkpwQetjQEt7RvTDtQJNFcJA70DHhCxfpZyk0oL+b0/e0j+Gx7zdXBHhYJhfA/PFt6P5YccU14flnvvUXgZN1rA3qrdCOLMzXD3RGVAQ37LlnKrj9DUzYaYx00yLMQ6mfKIO41c70HnsjrNQ3jbYUJQ5nlrGf2bAcVqPWJ6HzZMQmdbf++ng/zhTsI93MOYzCcMh3GfT5s7DKA1J4A47+QzjMvu0QJjzk7oeESRy0pd3MPlPR0DOlvQxTzQWuhPryNax6cNdIO6PVQF90qMZ6S7i2zxoVQ9NzVxb2OfP6uzg6EWX0W80yXmDqUuSqA/Ikb0YPzoi87DDpaoUYm/Cdp8yu20hd9zaq0l4HKY6dUR4JWeU5Ln6jcf7kFtwa2tbzAtqZB/D4qbwScHOKK/x36gaBEpTLIowx/aJjrTiVTD0yHZkCLuDDbLPJvhPbo9yBrfGSMJK6D1qnSUJ3k+EKd9vqXDfeuhwyMOB9rmyQym8fYifrvh3eXk5IJ40kYJIQ9dBnw/2R7E19ZAyREVzdCThwHJ4jnk0dk1oHbsY1BkmoHQaW3UemirEazxBx1v7qth5lxsoNgsN3wiqZK//F5zIJ86PPE9SR24yT2NP38henNzh6+88TYgldGIfOtyZTS/PxQAK3zFzT3BgIn1t4QpYjaOO+XdzJPyLGDuRAKyjUfs0uORKTC2/B2yN4ky7I6HHMKKRHeyxr+mF1GnSJP32OAt3s0DkfeOAH6/b0jqbViKrzUDETsBcvXRBNPPPrPa1FHQyzBezIt2lTeTZKLb+XUDeJOlFjxXrojs1Lk1TJN6CmAy10iTr89mtmrOgLa8uwe70+4LxmxUE3nN11jgA7dh36YW4Ft9q3j/oW0zP0YngmoelSteYPEScSyCcijIyDvfrvpS9SQAyWd3RcedrbElt0+tHB25EM+Hmuqr/TgQmEaINEpTthyv5lVc8ycWjpukWZZOCeX3EdnBNuCbeHi100aqxzIgPgVuQ1Z7kbmTkZPEZ0bOdkk0gy2OJ6Sv6z+lNrBE4Wvr5ACVrY43YJJgsa0Z0gyLdyeHzzdgo8htcH/0qc7G5KRAppo+cc1ry1gTNArIkbghzmnS9cl9gAIS9dwgg236YeHtOwQn2j7RtXtWrAsx6kHNJRrRQM41L/eie+BYJRPSluQDZvXW1UDsqBlc2s/YzFTpr6DwsEVMobsPs3R9WzC+39/I1HoIBn0WaigGzYfYkznoLEfuKNtTe8cUDsowW/tzC1/Cxiaqc/zkvR0fMFjxI95dQMrmQdUVUNTBHlP5+hy6bMd38HiZ+aB2jst6xMZPQLgTNORsCqDjD32M4Jf/BFs8NPOmyiOIr28D/fIR0/LdG0gbpwi+l8VquK2iVfKlvrpISwxrWMavu47nei1E0Wxdn2g8zPB0Py8kLy6v+FWexwjMwXJAh3R7ZuPvfarbuUf5O6H6srlzHhSHwkG+3Og5DY7RGR7BqUUHoYvdTplsBYpu25Ag7lKGt8bcy5dXjMhxjWdVow6j9D4/19mm8VnH52PuwbFVXKIUu/MgGOut7ll4V0QJhImRsK1LmGRhhrw2/jZDcXiUgIvpg+hnpXFpRncVvD7mCZm7vR2TsbEjWNWoJr87FLPt5y3079cjMny5aibFFSigAZCQPeaOvtj2XMthgnKCUGXknHvrQ/A2wgPea9UwzJW7zpIFeoDhYcD568HFhQw32onYRq7rVL1HHWTlYBE3P4jx/By6Eb7S+Y0O7VA089vbZBI3bzSic9MpXrTroYAvZGFifsMTo69TW4vZ/RhjQsNH813tUbKBnaKDul1i2hVbD/j38xFdbfEwjPebe4VnWrbI3tk7QHOTVr/9D75bGg1s0uZKEtgMiEvUka14eIQP51QRJXS+rA/Y7Sp9kZtg6aN3w5yqTwjh5nQi9j7VmTCcpgyu60PMqK5yRlqCf+tF1CsXufR8jD2wUbZt0JyN2J3H8V1Au0HvlT/cdfJqXxD6oeKtR4DfzRvDTwgzVN+I9WRHxus87GGFMiHYD0d9+MOTH5FpBA2lOuwKsbHATgh8YmUV0ekvX6z4khxWfE+9aLSk1LFUojmUMqK+Gg4+VcEm1pZ2+qCQxATE0D7oqIaXeL7eRgUcXqJCdKg4P//EgBnqKeDq7uDuhnTzBh05LcTfdtd8zK6VBNd4Q/x9fBsYH3gGRBF/ICG2HZdhnEO4CzIawARWbOZdWQEYmgxZQfnKWaKLyg9f/vnbRC1QQzG1H8S8bLf5Ep/7GsTdoUR+cnLyZSdbJohvQklWPpfTGdgjyG6FizRvQYCX46mGvoZDciwez2GC0beGr5S+sUTmOBfu6622R9G6yLwAErMlOUlQMM9JsLeaZGBfY9fDneD5uOKLGvzFa1N+qwEPYLDeWs1byAQeBrwvu+4Otsc9iCrVIEbxtWJ66YIE8k/ji5zhmAyLObwFeLkoCEf9gejYgF0EeH0dVJA6u3XwXpmA5V0ekXM8uPEidsMbeEmwBMfioTY7pssZqHc3c711IgK2rj/0D8mZBHj31ifPiTYQB12Izrv429BzjEr4PRUGcY+zwCaweVcAmGa4Nkfpcma/jw64fsYncuSp18fzqFTgRmaAl5ZPANW71xm6/DoYibZ7na7xF1a3Vx/IVxnH3WUyavDyyj647fYxW9RKxsDROJ+cz8o0kHuaZT/8FOwPYtYs367awCyzEFFb8wNI2PYFuC/QXPlcA+g1eu0lgsWSIAVCMPOqN4OlZHEglG3vYm7Z7sFuvz+RaM0PnV4zD+q5Ewd7kbn5ctuOGUgup2HNxzVLcnffSfc+jognbE8u31uhJ3+eO4RFn2FQ65ElgGfbc8FcWHpDenIzwVeAjBye0dTQONJL2GydKhDvRIv/+BdXJtd/129zkwxgzqGJDscNdqm1CUZQn7gbcS/LvelWPgb5Vp9IkHnqIDjLXpIuFw0hVLi2y7K2DcDefPgBZ2kxW/FsBHRfuAW71V5n/7nfgKd2sDExPatZ7o9zBbWq55HxVjl35hWLwtP9uuDJQ8owT+4Jy0qAzgE8DEGOb8vJkLlhGyHjbNwHlooKli9ZdiN2ePeAwBe3DB5kgWESOHXel6DroBJ7BsptI2Jjc/M8sJweCUGc6zX09u4EuJn2a7ORpxjPj8mMYH/iB+St+H7cCFsKyehnATWxxmZ//AZQl+EGmWb7bmjAHldw7bPXn17Egiyf4eWQd0HvcjBmpWi3kC0eR0KBGkDYvOwMtB4p8H5x5mFe9/OHTwJOjMxh6c9GAZdcQMT+Lp7OsGgEcMuaO/LeCWwonpkCf/rH4Qu6uF/jHwTXS0gOaljlc/2EheRHcoh8XZUYzT56BDcXGJMrgGI8BfaSwV0uY6RYu8UlCvCuEN1LGACaATZkTRdAn3I7DJfhEpNBzwzw+Dz0YK0aunzUuwrUG/OIF5A7LnvpJw8M32rEEsCTPv3444qfif00njl5JQuGkX9PAnpMG8bsN7LgUXmaaMzVmC3xeoupKVr+x7fZLPHpFeTnPUZpmekxAxPnSE42K+S4nq3F+5dSyevkL5IceKf5W2/+m/NEU4jp7gzJDiA3jBG5SvUx5lXnFID9vBn/5efZ82SJg3ezA9mAH0a9I5NgbKFdwIvRolP7mJYgesw6OT3uHugPy6zAsjYmorD7C2BZ+krwenAEZEbvMF6bD0RwMdfGusPjOkybYg4kGks9WeNvTi+dmUBRMDR0Gh7CQAvoBCAruJgcpvCTdz89cY3/xLtGGltkmoywU0ch6LRqaPD2ADsxeYAag6dxzdmPb9C0oRj28jH+i1+rHoXW/DpQ/HZmqO13HbHZbDFKcw7+9Dgsb2Q+nrxqW0K+oRPe68LUUMM6tyDUtiM5mpWqL4frZw8fjwj99Ll4tc/+T7/UvSXL5zjxW3A+bg94P/HLMN+frIVJAUtivuuGYeFVG7A/7Ybg8/W8nG2101v6mpxHjM1bi0nUWns4435E3nzScxbOJQY/PBZk3nOY72PDycZBoijQa0UXuGW3h9/nZCDN1J+MrHxhvcWuB6SzNbBQC1TSmt9I+rJOcfXz34M/ekirljimGj21AIg2IE6sv3Qm4ssIz1PAIdMO2mYMvKSA636hH/8m6LCNwMe7Poh98mSG4fsNgcmDgJi7/TcnJlIC+IUfEMxTabur3lTKhXY7YdD0hs4Fauf9+Bhmqx5IVz0WTKYgEB1jLmePZM/Bj1hraMV7gH8yUYKzGLZE+2ZYXy5nZfPHXwO9rlyafEYB8pukJeb5NeXT+HUT8PN334BHQBCJMIQJrZGuGGSgY7Y3oCyYI/JW+yCvwC7h+j0Bg4rj7p+eXP3iHcpPkz/MHT+H8qqHEYPqMlv0R2jBxxkkwdLPh2aMdtFZXhqqI+Vqm8NiXpwrBEKww6y5DcPMu7wG0+jMIz/cnAbq0/wMu6/4RepoqMOnlcwSyt08k8Miai67hqYAQanpxMzR8PNHB1jM3P7wVdNvUCVBRMcRRXE+rfmhqGCY+Dmmze3pLteHHICDq1nkCJ+YUYtmBXw+cmPF17BZQOdoMCb0hHQT+/mrP3sF+OND+8+sN7BxJXiR6g1m73kd5JslEUChqwZbc/dtvqv9g+TTXon94Ph41QsTOMJgQxAn3RtyIfEbGGHdI+8q62B6O48rYI20J4Hiqznti3sPTGsafvGCzW8h5cAt8hRyKnYPfd4Meg3N7hoRP4zngTrLvAeCMG0xz8uRu7Cuxz/9k1hBfcnJPeidnz6OV37PZjVpK/jxzo9V/zgM+If3VryMRZc7geEm9hFE9wISKygP+RzWeQIzetOR6hfvmCrykEDsQo/obKPoy1kxNWnVm4kjWtucvPTU++P3aWp+Gmp+jzN8ciKHVj0qXp+XgdXeied/LZ3e6R1CN7Rua3y7Dn/6Zo2eA/r9/vL8qh2c37JIjNMVNdygugpId22Ljt+wiOfOO3OgeXIvoq/7sUOStpGBOyXIRTpq5sEFEbT9UUCm1zTDPLvQ+j0PS9/JbHavQC3BZwzMnz2AOZz0DqiyYCMVOnk86jUIQN9aV3JcHNPlUvUL4apn4vdd/OrDJQUmjKbrlhxoq7s7sZlKaFpkIIZ+6dikOqkHEZIUYlgTBzq1KWZgXF0akIBv8nmNH2D1V2Q1+wwwZT6bkBPjAB1CJVkHQccztPXLFi8ldRmzs0z6+SNCZ5/E3WXHURgp7h2pqz68rlcPu80+wVXLB/GPD4L6JNyIVtJrzK5G9IYzgB3ObUVjf3x/1UMDmrB0oN+3vQervowzQO/u3Po3CMVuNomXQAXstr4qwD0DM7J9awLs3VjZH9/27soM2Mk4jbLJfId4NtnkU6R83hDm5Zt4Qqi4bxhqpXzTXik55EgZuNLLTfiFZ0Cy9i6Br9XbIWxgWaz1CkWf7r0x//RP4stNE3eBFxay0Ek6MjbvOmeNqJVQBc4BGY/NRye/eKFcJAv580VmC3enBeSDSiaHD3Tz3a+eJoq6iW9B3TM8LsUbrHo0cY6zl+OwOEVwrZ8Fbd29XHrPl1IeTKwie582YDSbSy/Jwm0kZgxp/JXkvoJrfkJudrXi1X5NUTCvCVIPNWy+9mWcAXcyc+QS1QMzeMwCPIWx8Ie/5t/+rfowHtuN0yzgfqJg1UfxZvpk8fIqmQBzJxRIYJxOOb3J/hnWcAr+1bs09x786pEkzedX3i+vZyC/Fjkjh+RVM7zi1/2AJY4EUfBhnbLnI3jJhhvydDWMKQ0tDLMPcQkq3K9LT9Aq4S7fYnRY+Vx39GULzs/zQi58oOr85s4Fv/oDXvlOvuDuy0FzjkzknKbGXQwHdBIukIdc1UxdfJP9K/iecyvgfFlphFpGJrh/rgHOX1/VxSWoul99McCf1s/ZTqOhjDd0vdt/u7tT3fs9DMk+QPdePjG64l+48gvyw0OE1d0bKIF/RtaB7wf2Fts95PBwJRbyhRwLc7T2Kd+lwUBmmeGqyPeg0C4n4jwZZOOaz371JMxdezde/TX44X1SXqMbows8YEjOpw8xwgEPtIkCA5Tb4VdfaxlDh10EjiBu8bJfxnz+1Rcy7VHgGtzahkzaXMv3YryiBFdRQ9PIO0N/+hwxZ01nMCxrIcy+dD0yZSDkvWPdS/irjxpC1zWL4m4oWPlywK31I7oslwJCvWIkXvMndax7AUcjb5HlMyOmerEY8o/P6t3wGYibimf4MtgOaZWmxUvDkjPMs0b42Ve+MHtXgZUf4D2uooFqss3BHeAv+N3sD4DvHtfwj0/n55s7dKn63cDBHg6YYczFbOvbHGDqzUfOwy4BuaTM/NNrLmzD64ssK5t1UIJIjEv2GKh8Movf92GJJ2E+6zULYCybfsBdskfD/FZR5M3GNZF/GBJGeeC0cHrjO7JP3h18M758g8OlV4g9PzJ9KZx7K63rSbR1vaeRsQ78nyMF8n8fKeBI1yCbNhf3ixrfA5tPgUhqK9ZKibAHpaDaEjXt2wGnVetB1ScaOeyim0ur4aFIkr6bAzFh1F0Pk5vwzgOCbC/y2azFFYW7dFbRZdt83OUE2wBe/GuKlCKm+WzbyhsetrxMNDrthtFbGyltv3VFgiNgOeZrgGHQvo+YaxlxiTwsV7lpssNq/F6+WB/BhN4ncLDkXux4sj6CAYdboRNtGwDwtX+N0vK0Ju4W5wOLYjmUYuHso8Dej2zhH1YNnJfYEIuFL516nBqC3Vu6ITMT3/nCttSRA/6TBNyjnV0Mvs8ShC9hiwKvqQDOtrSG5zkwCFpmiVHl5pgQ7vs73j6+WU4tk75hssRbotQfC7C7uxGkg+54eJmTa8PxiFBwIiOPNHQ09Hn4JBwwO9wQA2sTYKrktqDJnB4FqfHSmU2aDJaV55DTZC4u2aftBtZS80B643XxlMh1B0dZyVC4/S45vfsUQrv/7AL4FXnQbxZaASI/RDxEop3zHLrvgSBZAgkyjQFcTmoISXVpif09C/Hf+0z7s0lOp/Q8sNS+mHBdH+IVmQaWKrEccNsEBVF9W8mFby85cCexCJmq3cTLdm1MGjpOiSxn+LhUUzwBKlkAA9hcekDfO86EJ7hzkRdWob7ckmm19a0WtKq3ZZNz9ArIrP6Gu9///9y0AkhBvSWImXWDUzf1pNIWUnRkL+iS70PtZfpYFnRcx5uO1YZCeRE2gChtW+e06OQQ7lKqIuvWWAM7T0UIj9/rFh1fZGC0wGMLYTzWyDF6viGv676VOHrof++vf/MDmIGaJBHxozJmSwPyGt7s6Imce/FldH9ZZqjiWSPeces2y2fvQyA8JAfZ3fXTjOrGnOFz6zN0cMxjswtfugeW42Um9gSbZv42BgePl9IIwL4QcrbdPhVQumFAtJuS6zR8Jgq4BDRAjm6kOX0XIgVdmoNgy8x6oMp4/7N/lHrRBIixr0L4kqUbCi55nbO6kWrAOsSIn5tPF7tZH8JPpEhIuwxEx2KoldtHFObEVCulYaz+CrIqPMXgXT20hrtWYSEju9KI+bwv+XJPhwKe88gi7vnxauZnqV7hWS8agsrBHRjvjm/42HcusoKzDXZpe0vgc4sY8q9HYSA0eVdgn2V3pNwMls+7TTeCGz0kKBCmhztq/lKA8+8Ey74Q4hmC2JHrDOoYDq+HzireKgCsuD26P/tRn+ajJ0DDgAK6sC8Xs8J/GnJc5w3xxGKIsVoJBaTGcZ31qmUxq0vXgyWybZSYegpIcMprQExzTyz05dmY6oMkncNWDFh2foOZ3QAVQOq/7DMkj3NEvLhWdSZfHxnQSFYGu/r+jiloJAsk9l5GgesnbGneVg0tzRZIUMlQ78acBjB1nilxeSdki1WqIzxd7znerH9fxseUgXfDt0Q/Cl+3T9T7Hsbb5x450MDNZO86DJW8X5A5KSaYuzQs4aXBDlLSpNdfbjUU8PA8MbwPzl9G3ic7grwtImTmYdOMiR17EJz6E9IsNg2U6xpNvsNRJ5e7e2X0qSya7B5qHHAb78zGtPtWIP/UT2IDV8tZcfco/GrRE5l2umuWNvvuYaAdo2kMvDSmspxasODjmHhBcx3oeQNNuNWdOdi5ysadyubGwfvu1pIgLjs2SstNgFc9fmOayOcBHz+tB/WjZ6BDPOrDMu++Jog2YoGcj/Ziy/6TvmH2lg7kQFLFXfq8OsOXk51QUFz7gaXIS+BhkDUsd8HNZX3cKNCdrjHye9FhRFa9BFJ8g8QbfW+Y1TQ0AJ05StTydNWnlHoa1MXogjtLYfkkt4YCgXxdiPYM2mZ9HwNKN5oRdTIXfbrZ6hmWV0hQwGVGzk5p+4aZUl1Irk+L3r+6JIHFkiRISVUPjCawHNhq2ycxl0+Sz9r94sAwGb9k9eeYEtXtoeIbb/Loedo8xVyCoCjFGsu92DP6WG/Zg4yHyJa4l07AU9CkU/SukImmwJ2/llOJkZteCXq+GZjLx9iDdb+D/TvRG7pkfQee1fBF+kPSAHPt9cjZ6JyIP/nqsBxC9QrvPQqQvc2vA3mNegtCg20DXL1LNgeKPoL3pmIBFhPmdkgqrlDRdx7xXl912L0WaQ+Vzy0i9s3nwZT4ZgZD6BF0yzwhHt/o7oB+298DyATisq7db6CvlkKw8bymoTCJK1gl/gc5Q5S54/B8VlDhxTvSrpqXU4fwIezMDb/u39iM5mMjSSseID5HQNxq+1sJ+8WMCbqlpjv97IM2uEC/7xsXuQ/hVsUAocA5xrv7RzFllywpKjMtZmMhfPcwfsAClWGxY7PwyDIAXk8vkDKnzT9BtfPgBH0Vy4pyzad72hQ/+8bCo7oxUhxFCj3uWmFxgnojjHtaw1nNWuSMp5ZRTTEEmO4xQX6STzGlZ3YGnVQCZLeTwWjezp685vNgu8wSmLL3K4OYTEeijNx1wLxfjUDU/TNx7G+lL7EyhzIm5IjfZzjpzNVjR+rVh0WMUJUY2R7CROacsSPXJ4eHxa2GUrTQ+vsgQ2u+fSnwF1879qljJl/XEsFRX7uYpNkwic8+Ag+SzcFu7M/6osjcHl6ygpCgjhs28+gzS/F+if/y3cC61IJ339gjc9cuA9u93BYAf3qj21dd8q963EeQU9SU+MZWAWwnle9fvENHDrTu1I2fK8w4LQ8kIn1i2gnhDF2GjdU+nwPFUdrC3dRBFLxedrz63xXm27NJzhflFZN213ty8ECfgOuKBeDBSD1gfiJMnOP4Hqj+0sp1UEKMJSIdYyrylgHt6wjxrtPrgWyzIQHV+TwiVyN1TJn+Sv7wwIr3WC9omgkNJ37jUZne8SS3nganF39Ch2Cdo/2SmwS+aUqCTcguOl/0SyIjwefQYVZOgC2B5IA1XpGgem/AmNH7HpqhtCHWvap1qhRLBlHAUeSHjhzPvlufoeA8B3Svu4zNlfVJoMjHL/zxz2c22mXcAupfB7xH3wvodkZiwESsLeLdSQDwxNwAnvmaI0Hw2OST+e3OoEyyNriu9srQ/ORgXsYmFvgQuLP3HnvQfsSC2ImnNL94KsFK2GOy3bT6aLWaBEPHKon7DUt3Zqd/AAAA//+kXcm2gjgQ/SAWIgIJSyZlNEFwwB0oKqAyJpB8fR98vexdr995Kknq1r03RVWmw1h2N9h726Y1fqy6g1vLDemjQ4Y1m6YLoW0LEnbuBeBDfqgjaCnRCZtrAyWzo4QmdK1FzG3Wdi9W86z/4pOkhcP76XJUJJApl4C6hw9NmhU5hNp1i9qFr28tFgWSDUx0KYj8zLtk4TdP2B7HLw6Zv+VsK7xu0PSLiu5F1+O8+q5qMGhmRo178k3Yh9kTsLQgIpp2caup3c8ivFl7E4Empglzb/v6x3/xA56MiqLnBsHbSijRut6tgmkaV41arkOKHauoEyperBDuzCOnnrjpOYNp/gRw9wmpw75jMgHDf6pQtWNqk2sfzG2gDSBTZ53a3o5VDC8lBe7ZftL7Eh/rHx/Yn07zMnn2FcxeyBk8TqGN3tQ0Of/h0fN90XDgJWMyHO50AudLGNFUUr58mGPtrFjBbkWNKN9ycSM0BCx8AZ3OghcMr8I4wtjTXnT5/3zuT4oOvEMa0lC1bnwOg+gGVxk80VDN1GAazqYM5X3kkE1yIBb98ScsYZFwQakBFQ0ZQWM/muS19/SEXQ/uE+J9piF4Fj/V3L9vg3qLLim2y4ecsz25QmDyJCPTW0E5WfAR/N6a0G0s98t6pNCobU6vb7sMhvoTp5qsaAq2jsLD6pbGamCN9ysciDzp2buJUk2LgYeRoOv5JBxVBO2A5hSPz10vMhZ0gNwjA2ULf/7Dn2X+CvkCKQzYOYRPwN9sRHDRN9IS75os2QL1Tq+wn+Z4fYaJKTnUClzUrwe72mlxEkKMFOPEp/ukfqCJ52VwwQ32/eWZnSEMVIg+81fO52agRzgGnzdhcsL57PDbAPdSNiNVz145P5r0DAogd3Sn4m1PP88BwoN32uJQP7fBzDOxhCcWn3D4bl/V3B5GE9zXCqX2NL44s9T7DRpATfH+yLpqiFqUqc31CpD8HWk1bRLAoCZ8WzJow6qfofIwIQxkuOhjUA3Bhn3+ztN24c+dqAkmjJXPQDb6LUkGofjUcLtGdxxCMoFlf0vwGqYReyTRweiVuwk+MH8v6zkE7NCHGXDW1hNNFRQ5LwsLwfVrWGM7B2NCD49E/vGb3/NZ9G4u+NyfZWpuX24wW5MqwMbotmTe7WFCT2HZgLN1+NBd2GtBmx3iDCzxis18te3nu/ie4KKvKVbTJpif314C9NhbaHNFTjWyCT8BA6VB92bvW+xYKZOqVgUgq9cyWOYFvA4MPvQwStafYDAENAHjLNyX+Njna5rGk+bFkkGDYvvq5+1VIzD7yFuMTQEH/NzLAuz2n5DaCtQr7q4zAn1uKHgrH16AF6+UwYMMI+yn91U+WzukgxpIO+yUYtUvfkgNl/hFj110rGjP5jMstOODHl3XAhuZrKDK7O0Bh6bJ8o6tnjEYyA0T/lBLTpzvgIAeaSX2TnIL2Md5SKA1oxfdovFq8TxJU9COmoGTpzwD7tc2A9sx2xBuKBRQPL0kDU+KjYNy4MGw/B6N7NTD4k/UAePejcCn197oXjhdctFdbdEfnjsisC2+wXINr8XNwkcZg75d/COw8A3qLvg8SY84g/ATNMuVHeUzWAZ/aPc6JdqR+f3wSjMTVpnbEdk7PZIpanfZnz/gj5+Ic82w06UwJ6DpRd3ywVkvXceatYb1mRvWhqXkCQLhVNMbqqR++uWrxY8gSz4K1m8vFxSOM0iuD6fp2+yQpRCNnJEVetkVZ1rtQy7NAv7xp1mwsgygqL+jldaN/egoof77O7V3gZ9PgVOcAfTvDvYnWUoW/S798jPdv7rQmvE1lWBkzytsv2cN0HADC/iZVioJjX5tfU6FWcB6301IvlRuxQ765aYOuZbR/ff7XkqcjhE0L7VCf/xhxg18AgO7G2o8tEfCSNhF8HLONnQ5rxb1bKmAqbxLkLgLumTcr+ZJs5OXgT9kmKxlfXXw48POfX0NxlxKTbiX0hkfs4+R8N2rMuEwgTPijtRa76+8hTCV7YRir1St4StmE9Qfr4HqIvFy8XHcmVDqPz11KhYnknoVRLDwP7oNbCnhvvJg4OeP4M0oWpyXLwlOotoh6Tt/OauWxrDdV5L//KPWPk0N2BzzEv3yOX3PTIUOthMc3z6XhB6udQ2Pj8CiC74nHKRGB9E83GnqnVY5vzzjM1iFqY8zbdoA3l7jM0y2yZ48V/Ex4J/nIMCCsCPd3gMJEDds5Z8eRmyYimQ4r6sbvA2WjLi+//RMeZ9uf3gmum7Fp2PYMHhNmLj4KWYuvbU+/cNrw/h0YNGzIhThpCz+lNkzJ3VLWEpNTXi9dJnSg2ut+oq4p/fC8BJah1oE85M1IGHvs2TI5C2CFzh9qb9+Wv2Pr6jZgNZ/euZPb3eAcnSLnpP1x0/wuUuJGA+on4BhPsGtlPbo8NBWOaXr3IbN2g+QIuz8vllPzVHdKk6KnTl+5cv6D9rnGLn4vMTjZFiCCzXNExE/93XA86bKAPu+L9gTn6j/8xNlFlr0rL0CazhUlx3UXo8jqrRKs0YvBAwU71Kle1z1Fbts2hsUE8HCBoy9n3/jwvaRSdjGVsAn9dsX4BOYI90a603f/p5vvdOPNO+0ymJr9shAZ9xdtFkrDBD9Yu7grY5MMtvylExgp4jg1rga3UpA4fxFrz683YobNdaXV7D4sfYPH7Gn0zRff5sy/vkpREBSXjHB2X8Ab/uGgOBrgel4vvsw/z5f1Kr9S8IOEyCq7+9NGgaHQzAn748Atuprjy22lLhbzboDmJ0VbG+alo+v2xbB4LXHOFRuQa5Gr0jXVGbtsGvOYj6EYNVAPynuNHgLcjXD4/MM5Ykh+ssPbX1ktWZ1g49T52r007VpS3gbHyORnu47Z9fgiuCxyQq8D9SGkyn6HuH9wlyMqoYCGr0DBImaXqjOqdAP+SX5wCY8vJESf+xECuqiARvRHKmhnigY314iAKm4nfDt2W0s9oqOA7gzUyTrW/3Of3wTJOOOUfRbr80rStVsu9ku/kHJ58pfxT89hC1+pnnz4wc/PGPHUc8HLI4mjBME0UZ46YEYXUsCzDjyCMtajdNx19rgtcs0sl74xngY9VJ9XL7B4pfdrHlj5gLUp8/447d51wSVCJoojGh4Yeuc7ZuyU/WquNDdomdm37j7aulY1+U8XarJ/qbF3/NPCRvB0gVRVH/53xqnJJ/sb1Ro7MFnuvDRhK62aQaXeCDVNlgnY/U8hNBorxXeXpU5bwIWxPBrqzXalKLVT7soR1CsXg+qB687YIaUppDXRxlnwalN+DCaOjxclIgG193FGsOTLUKROR3hh0Hp34XQ2vA+fVbY4JlTUdm+QhjhO8J+7vLF741M6MIiortM2SXzt+ki6HmfD7aX/EqW8wVfySvB+rSDwRjtWQjTxE2pKXz9RFrwR7WWQTKW8+j5NFnXTt0olzuZhruSL3rL1ETaVfjHHwc1jgqtvoUAG13QgCk2xxu8QPYllWRYyUb4+DrssqGk9yL99AzwkwQ+1aZGUyF8gjbMRB+qlymj7pM5vRi1KIWhGWNq6koG+O1yL373EzTaVTSYhv6uwsITrzRK2P5Pz8IaiDtqtoX8i6fw5xcisFude/rjF4ufgNYpMPvp3gcx9KpNjM168825SQYIamy/qb+PTT45tC3hwvfx6SkqPXE2jgoW/YWjd3mweF7CHSxYHxGZNBc+z8a9BL/7p52dN3yaxk0HI7Y6UavfPhL2en8J7M8m+vM32LF92bBRb4BaiqrmTewep58/SKJFv3B7D87gKO5Wiz9Hgtk0dQGm82GFbSEUAeds//zxdbJOTp/ku/3GZwjSTKLIk0Mw0jRm2vbTxNSjzQCmky+VgEP3Ts9P950MvtbKkBzNL0Z6i4LhIM86DB9ZTV3j1uSjrRcDLMfcw/ZJ3+ZjossxVM/HN9blSxiw6vgcwOKHI3hYQ4v19iGEztp4Ur+YT0D84RXOVy7hEVm6HvpZBrQt4wgsfn+d3U1ZPVpFRTZSNAWTLM+Z9kzxF8E1d6vpK8YMng74RLfv2w5M2zkUYUGm4/LWumn9+StBmCTY+ChVUh+WEnLt/kmxrzqngJfKtgRtkjDqw7znTJjVEnpC+aJhG9sJD7WeAeLPIdEW/2/oRtdVFr1M2GYof/oBwscy3M+qQjdn2wSWcLk/oKf37QNG3MASetpuQIrsHXImkuyoXPLxS3eLXzZQ5RyD8DiesLngVc/iDfrzm1L+NZOxPykmzM3PB+8u3yfgd5jbMICA0t/zMFAx/3f/gdh7LQXcUK0a9lOs4l3lZf0Sjw343UftSqbldDmPYLWSI6xbzYfz5D7VEGQbiFaRowN2d4MOXIvCQjJ0P+C3X1q+u79w8D0+c/byxwymwZHh+8n7guanR4PjTqE7UdH44NjiB+rns4G94QPAct6f4HxiOQ33qOuJ18voj08bcruruOwbEbT0fKL7wmiT2e6tBtbuUR9bYdf1Qz14BL7b1UjReSLJ5Na+Cn9+oL1ZOYHotmoIRd26Yjdbk+WV4VYCqnkFRJVZG0wUyREIoEKpgYowH9lakGDABxtfAl2wKCP6TZO/Jae29rYSVjC5hlSfXMSy9s6JKCMC6XBrkAwftTVNngtByqiIpjZIOMsfrgz0LIT06l3e/bxhcggvtDtgPR/0im7Uc6398qcTXPJ8NC85hEs+wt7i3zJR3g2wcvo1eZm10k+0ZR8Yp68BG/fESfo063VwkryIerth7ie4rkTwOx9JVb37cfFv4Fpv10TcNB6f8y1nQAq058+ProimHXxt0Y809h8Sn+k4MsAlLlAjPUIwCdiXYRMmb7Rm/baffOsaA5UZOyIkRQN6JVk3cLVSI6y/FZKQcp0df/GBpMtXB7N82HRQ3Nw86uvZK5lW6SYCciM0f/eNfIAjUf9HSYEs/ndJQd18Cdm0Xg1Yeul0oDZOTa23xgIqyysZam55p9h536qRSZoIrpWdUjNk3GKni9JAX7lmNAS3Z9BcTzqBLLhAtJK2PacEBQJMjwXE27bR841ALB20UfVBfH1/5Kw6NCW81KVExP07DNhd62oo1juP7pdOAKOgLcN4ttkZb7uDBIjwKj4Qre4qeZn8FEyHTP1Aqz1pFEVuYFGZdBG04hUg6tt+W92raEII08+FWs3aySeWWAOoL0cBO1mMrInsqhgUq4dOmH28J9ytfF/ZoNnF9mdd9exjPyUNKIqBHbW+B0w83TNw8+JhabTf9LN+7Rqw6V97NN6PmLMrFgUoxZaN1Ou26tn+HX2gJ9Qfer+ZIKeXl6irhz51scmM0Nrk5tzAIPlssR0ll2pOhtJUpxM5UeNRpzntnkUsn/Hrgh5CZVR8XCy/oq4TisrVq6cNlTNoPoscW/aV9ERs2RNmL2ePcal6QReXhaxWt6eP+KGzK3a45zKobV/D1vrrBZuDsbPhuHrq1ICPdzVqeCl8GJlOreBQVdT2lv2dCaFbip6AhKXgw5WKdtSyr6gaodxmkAbvGlWrvdevP9UD/fYDm55657M6WwLUCvWBQ+XS56w3vr765ZucbEb4tsaCpx94PHobHMbWPZndZJrgd2oz6r6uEqBytnWBd5BKilSt7qermzZwZcCROuaxt6i32wjQT4wU711kWmzbm4WG9V2JHQXsek6/tQ1NSbxTz3tug/X60Txh504rjG5O2PPVTT9C99tusL35bpMpMrIbbOszwq4/NklnF1mq0uBbI02bmn7ZH10dI7EngEVlT+bO92FSFCfUr8w6mYTt3QVetY3RPEOVj0PaneFVvLhocxJKi991XIPt+7zFZtK5lvg++iHM/NEn01e7gUF61D5g7lRSpw4zwFT/WcLeRhl1zsus1siIb1D0n1ucLFXQ0vMg+7DrLIqd1rPBLLQ4WszbCdvfIgvG+X4fwN7DA/a36hPMxedZQj3ZVzSAGq2WV7khFBAWSE/TfTKtdLNcZZs7pj64OcmE3hdJA3GEsSnuXtakXVmkDVEioLttyzlHJyZCsJtUundRaU1u3t4APhc1RUSwgmU9fMjkoUEC/Sr9fIrVSD3Y1wfGfH/u58uWfcDaLwK8pUgHUol3O1B8gxHxbI7AfLsUujKI9ocIJCj5/PCLM7zHk4RdYyqS2XnzG+i7+obz7j0GlAwCgddmw3Eg+zRhqT9DrShQRB2f6WAODmgAhzmocSDVqCIWxjK8k8jHh9AOcr7R3ya824NDb5qp89mStwyi6nhHwcq0cz4bYQQ193nHjuMESX/7fDMYuPaE4hVI++kT3n0w2O4T74kyA3rDLVlKKFLq5duvNWbzflKrSyqTUtuPCZdBdoT1Rz9S7yE7iTgNvID6vnCoqx+d6g9fi4j3eGd8qoQU63UJ5/Xnha1TEOXDyX3G2sk5CNjwi66fofxKtUM3v6jnqHVOBfOJ4BQ/j2hz1ZWKvYpnCO82cZDQpmZPmFWetUlabel+wacxj3MTXr5kQ8Mva4N21yMbLOefuj27VKzu9Q5e2PuN7conFicogNDo/Bjj69GtZnOlivBiRTt6Avsyn7KXzGDu0hVhq7i0aOWcMgDmL6F+PJTVFLJLCc+O2FProoCqdQuUQvfbb5CWvnDFtpvlSraRz1hfgRVnFnZk9SbpM0XWuQ24B8sYAnvdYjcRxb41i7GBHkjfRAbABPwgySk0QG5izx1rMGUDSmG7QoDqeHUF0wGZJTQzO6VWar2rqQprBvc8u9AAXAgYDsp4BO9VeacmfhYJ8Q+Bra61T0wU3wPVlGb5EazSZdStcch7Fs2zDuA2PdPreG97Nn2/BEgTyYh25XZAlvMN91cxocXy++dIaQkw0deixqYEyVx/jBielOBEA8N0LZYfV0sVTTtS8xIknCjgLoCyTS18Q+WhGu7yR4J8N1/IuI5jwCrNOoNNcwmpuzy/VHugAEvxDrZCu7aYbFk2zPebAzY6tcq76O1CGIedTHHsOr94KuDpONR43yaHfCbMvEEeqC01482X8+860MF634TYP+9RMksXUMBE1q/UHPK+57vmOMFqWhp7+oXfD12qfeD6aGJsttU5mUQlkaHabGvSlo7Qc4S27A/fvNIpKn4iYIC1oE347/P24rsGDmFH8tCrd86N83zUcNu9qV+reTJ5zaEE+mr1JeTSShW3mjqF6ykYqflovZ4fT8lHFaPDC++6s2uxM9kcoZ/6HQ5YZFbScypV7ZEoDMeP1qsIxP0TWrYS/osvz2sjgTOULWy6hRNwd3xMMHrbOnbyuqzev/36fIOIhuf91+Kd0Zcw1M8+tRxH4TO6Ux9o77jEhhW3ybiZkw/0DmKJz3PZJj88gtlqKnG+Fz3O7pP6hFfveSTrev0MZuAPvmL5eoHdbL+u+nV2nKAcfT7UOw6fhPeKlMIimnu0su2DRZzCn8A29u0f30lYi4gI58G8U5Mnei/mmUWWrowUO9DX+PA+0AlcOArRFHkWn+pREaAeNR5OdLkErO7dBm6DyUDsFDWc39eKDPjy1rcN3Nni9fj+/PaTml/tVC14FMHnmAPER4/nRPBTGdydwws/ul2XkL6EZ3i54ZK6z49Utbb6RJBCfynxyoH1ae0rgsLuFWN3bY18aRcbgtqLMUWP4xDM3ubzlMUoeaFNHap8NIt3B398NdT6SzJv5rzWRBMxbMwwAzxrrzd4b12Z6iItOH3cTB/elJBRx3H6ZLJHwDbL95P1y/erESXXpzqybU6Ds3sC/dlNZKhvXRGjZZYlZ0D5wG5d2US4Xw2LxxlBYPAUgLdqZlprMZZv8A7PCtWPd8wlmbxlrbqePWzRzTLrcnAF8F1PA9Xx2coH9H6I4IWTmPqvK67m8ixMwBUMBZXlZW1xX9RCMKfiDR8/ppWMNOgaaLdqR+ClvXN6/u46mA/PL90f91VFXo0mQvVASyKyLs+b2wMRGOdHRIuL/gwmHhQN2B7HAuNu5yfzb/2V/bGju/s2DtbV9YBgZZgStTnEnFdNWYMVnJ8YqZrdU4T2DIZTHNHtS/PB5nxTdDhga4/Ccv0I2mclFT8+Q/2yry326tNYfXbiCwcP+RmM68ezhEG8KrBD0xwM7NtIsN9xceEPZrB5cizCJ9HLpVHyAfCt+iiAh5on3h9OKGehHaSwm66M+mrrWPOL63Ap1L0Svpz3oXRek7bJ4ju2xQgGtT/enmB1LwwCoIb76apXNXTEalr4K6nmIg5S+DzeHnjnqTQhYSm5QFdRSNaByvg0IZ2ADeIuNrNh1dOL/pEgiqmE1o/tqZ/mbGJw+T7CgpDlg7oY/kv8LIPk6op/xzsE+kr7kukS5NZfPAgCW5ijUwU8pF0N7yT2qf0tVIuY6y+Bq/vNoNc7Z/206sczNDp3KWH9moC53rsDzuduYEcUbhVLomMI3z1dYxvZejJVL0OGjxveUvslKz1d3dyjavLuRo0Y6slGv1kCDM8kxMajlvMx+8i+qu9vDs0XfrNemd8bcMTXRLddrldMfmkiJMXmQcQVmHN26CwBvls/xy4L0ooLOI1gm4oKNVb7iPPDqUewpEGBtIUfUnDVnuq03RKkCDjIWeorEOykEix6pO5J3XxCsOAxDZVLkE9tuC9hksdHatcTAnw3eSL0mrCmh0O3vJT1XB1h4toJDg6nUzUlhi8Br3JiBAyzCSYxe7kaDcMAP843ng/swRm0VuOKusYk5NOEXAJrmJ2x56h2Ps8zE1VrHz6Isp5PPWupqEM5TWIkKhLseetFH23hi4g7HxTwd96pcOX1V7K6aquA1+P4+dNfiAiVxXK/O0NzHgPsXh5+MHtjqsLqksloc8lSMKs3IsKDIW5p8LWNZF2uZl2LbSHEKJbOOcuPi56ZB4Ld4Z1aC989wmUAGUb7aL28bx99/tXDAiHWNAbrpW/wQ6XGcM6SaZsrNrwJRxvHJoEV+X2e180C1W8z4KysKgR/+TAQH1cwxx1eBs2EB/J9bEkyuqwqoeLiFLshfFRMbfMYGG9LR+Lm+86HOZMniOtXguBn1YBJ0ucMFKu7Tj5qu67aeVZFELwaETFkO/0kTCtBkcNZw9jezAlLauUMk4MxUdsfz4BwoCFl+X0o7dmmJ96mU4EQm1+Kr8emp95uJYAf395PD1bx9deW4ILvFFdjm/zwT12+H//wtIKtq8NuLy+NwvGn//FPcK+tD5IW/jzNSlXCyh1LGub8W3Hp8ZjAFXY5ErR+CghOI/WX/5BUad+gxUF9++Nj++15APOc6LZWlep+wb/uj29BjncdaoLzMgDP5AU8b6YZvc73MFj8BwShGZ6wv5Z2YBR3eqbdvoKJbWbYgPnvZwjHfExxeMdCP68lEsKbZM4EqNssYSepzmD8QZAiK1zlc9+NJljNMier5fnbVNjf1NcdNjgQsG2xUtbP8Aj8J2Ju4Vh9T5+Tdp9vIRFkGfPZdfQBNplo4ziz2oCdAqMGvjE1FNXvMmfCRRe0u/HcIW16sJ7y02HSFn2CdyclAnP4vCJgKUJNFr4ARPt67n58fcmHL2tiDzDBYEWXwUnRic/HuyPDX37ThcdCMFzlDFcJvlMzCONEbFenDOZD+SXa9IirYZMdSliYBBLpwbWEmbLvQytKX0s+VznTHOkGqUB76vQ25VR7ZRCCUxGRxpiEXz4LIYwONj3njzn/48uH2avpzsRXsPg5IqSXnYJuTPCTcT2kNaSyEBEli3ecyVImwEraISI7a25NpfNif/F0KMCLL/pygME+NGm67Dc7168BNm/CfvhRsS/kRFnwfom3nE99o9vwQfMdqn/+lmWzWDsnZx1bt8uhnx/++QwdU4+QFKdbi65BK4DCzxtq5oIYECJ+U2jN7QGtTm0SsDi4hpA2l5ZITmjxvqn0I3wg90zTRDz27NVHMWxCl+C92RhJ3T67BsLkvsXVwkdr17GP8LOVn9g7PXYVG3Icq4s+w/483IMBCwtenPSKyGUf5Ox0mRu1XLHtwv8dQCApIrCaVY7U7pkDsc8jE84uXlNzd40t6eBKE6BcFIgg1hWf/XclwcKREF7Wn8+VbP3FMxlxdE3mY700kr9sz9Tsmz5gtQduoNUOHZqV75QveoCAZb0xTl9uPp4v6wgemtDBRudYwZR/+AS2gDh04TO59F3vGnXIniV+wGJ5WcMmkXqUDERd0g2AL3gCtcDZUEsDa2sOWC7DZ/xC6I3fTUIJPbiq8TZ0vKWbTT7TNCMgqaX0x5+rSXoMPvz5S9a93QWbe+uJ8LPGK6TkW8eaTm4TwZUa7mher4aea2t5B8+5Piz8dJPw4nVjcDvqM7336cdiFOEaLnwPW5foHbTLeQDD6RpRU3gYgB1Pl1Ad7qSi+8KJAiZfnqEGTreI4n1wz9+wV46wH6c72vjNJZiWeAILvyHaGSAwvJkI4VpND4v+8BIukzL66RmkhSUKltnykUbcxx17r8K1WF+KRyj7YUVNXZ9zfpGuLojn4YD36Qv3P/8HNhV/UfO0W1nDIE7+zz8hEz5bCfvkpAQ/fet9x5XFBxhJf/7AT+8TchIboLpsu+TfOvkcTxcEn5fmSX1rHfDhWKZ//jDdZXvI28nSalWXY4DU/c4MfvirSsXaJILq24kU2lYK7mK3p3tjbVjr+KEIYJWeKd1+psAaEbMjuE6uDXa3jgOkUtaP6sIPaPA5GBZPs53w4xsLXwb55I+3Embn8EGksmcVV19lrT5lJaLmG/s5+fltaScJSEBll3N+uk7gScwSm07/qcaXVnxgl/QjtoNVkIOMf21wenwPaFIGF0joJNzggI09RYt+EGU+dzA7vWX800PNosdgWccz3me3rOevUUOQbFUL6/5VyQeU+wh+ZTjiU3eQ+FgfBhcU9SfBuq2V/bQ7hiZ4t25OF70b8OHLCbR8s6C7B78nVBwetz99+IuX7pcvHlO7wQe/6KrZ2G6fcIrLI3UREoO5Z9kOPuewpsdbrFi83Uku6A3zin0QaxVJ6vkMb7fbiFSIHf7jb2DBa7JitW4N0mW1g9p3DcnKWN0CyTnEA3it9ilpKDQS5sNRBUv+osF33ACa750IlmdkUquv4n5+yskHGFN5wvtXAwDJNBXB5ByYS/73ck53ZxnkByuhoXEA1aTorwlQz/T/9CBPLSOGydkzsYeSdz5y6y2oYSvvkaofnwnRK9jBrrxYVGfPpUvAtC3gOieAPJXB5U2Y1BMMpyhCT/X0yDuI+xIgb7pSvXF2gBdmZ0LzgyVEIyvuuWA24R8+nfZP3o+7sXlCct3Z6H27+MmsWLsBhEG4oV7xifn0CU8uaFbxGnvjva26X35LjRhgAzGpYuLplILGvpk0t+1H3zad2Pz4E8aifgmmz2rUYS06FjWZMQQNH3oRvE79iQgXXbfENxMFdfG/caBXyVIiLNrqPbc96gX5FKyh/Mq0xogNjG9rMZn4XtnB0swztDkO+35WLDT87nOIIG5xtf5cvRpezjeHPlahHDBDOzJggyBDMjb+AQAA//+kXcnWsjyQviAXAgIJS2SSyQRBEXeCioAoUwLJ1ffh/f7e9a7XehSSqnqGJBUh/+eHqzIJ/vI/4E+j0rU//++71qcxbzmDdok4DU/3FizVdjE0vtVn+kwufc2XvRXB1R8kG2d35vP9Pc/wEKoaEnTu5wwFPwEi4XPEIV/6gWlFvjbOX+8x212/w58fCKyUdKhrQl6z6KNDUHK+wZ5WBAE7PuoKmnVbYe8et3zxylLSVr5ErZOzA4RW46qse3flW6+E+afAgWqcekQivWByBy4qNAUxpnif2sNO104uSLRFIAndbQby6xcdWunYUdN/1vm8HT4pZOYQYbzG/2KpPwRWvoI+kzcGi79exFTGNaJ24gjmeCc/QV75H8UC3yXTLi4l7XfHD6JYNQjmWj40qpZ+QooL8Zzwv/WbH3QEJIsSCthjZiUUdrFPzXC61791/LRZDRyMtCEK5jIU7jD6Dve1Hn75749//dWL/ZiqCdfe9w2IYbOhf36pcAy245+/j49K++SEP4wn7E9WgvGVfPmsv/MUPJ9hhJ1sccxFitAd4ouoodHfFSZ7dscn3EiPjB6ESxssBzVr/vADtd9nzP/47l+9x2g53pMFb4QzdCJfwccxaAf+fJ9nCKPEopgfpXr1Xx2g275AcSTFfP7DCzOzj0jzepnT6JHFwIefnHx/aVN36/rBP/w79ylNVv+dAdKnAj0kTsjHUFA2f+s/hK3rVdPBamMo+6gmgbignN3AawbS52hjV7oYydLMTxU2m+1MD3Q3B9T37nfIBdfE5yjZDT9l7fJCqwbRoxjHnJ+7mUAkfI///DzmZbMLhXaosam4f/3BeQHBVk+wYditOVyOpASi/NBXPfCsF9iEESzObI+WMVVzOiibO/jTi96UvADr4WjB9rmD+K9ezu7BSmG6fT3wcUAwmY7Z6ENjuLrUu96XmsxRb8DbT+R4n0dhzqoUuPDeZSXNDiIPxj99tL34hPz5v6uek4B5RC96lJpDMlfnkwBf4uL9+RF8HpMeAvctF/TUGCRZTtH3Cb8F+lF/P++CWXBCHRKtEjEKH2K9fLbv+x+fQ7y4LsMiRU4G1/mjThYvYPzejgje2uiGs5Pi1fOEsvOfPqKWc+s5aX4kBGln50h8+33d3jWGNF10VCJEj33Coo+7UV8bp8C6rPxq7u6Ff3yWnl9dlS+Sov8gO9EtUsbey7nCP5GmpCr5N95TG55KaLasxsa6HkzOjzACQR4viK34v/vn/1UXk+6nH+LjPpRCeC2OFfXTI8lnb3sNoZ6XEkU/h5jz67DcYYwFZeWPZb0UR/0OSDA8sX92lXowpq0Bd5Gp0L3mwv/4yKpPiRAl12HnTtf53/ro/ra5grkcvj7454+fPjyhh/RuqemOLWiTtSWfp8m0ALubMdpcyDCw/udsYGuML+w1W86n23X6gVPP30TBjl3zLXcM5f+zpUD8v7cU8EfwoftPWOfz6WGpwJ/6kR4RG3NCSq6C4fRtyO6k/8x5HDQLbKbmSh/v9T6IUokN+E5PH5Ra0y2hTbZs4N7by0RSv7JJ6fdNNBgGNwLgaTcs0Qs/4cXSY4pezi4YVb8QlHv1qejx8DCDqXpgC1J3iul+G2w453eOtJ+n/bD3ckhOD8soq2Vp/WjY5hBQPg4bdepdD23xxczp6fPT4acADvl9aG3OZm7+QNssNjWr/GiyZnOv4N6JJ7xXrRzMaxtkuOncAHvOVTRnLlYN7Ct9j89bowFjPmlPuPVViMNi7vOfEOmx9vd5vPxOyXzEDwaPKt6jcc7K+qf6hQRNohg4NlsczDYvn7C4GCr1btshYZ1MLaDmAKPNPtuYczHAXrX01iIC8F1TCOvDGRpdGNO9lnUB+5lnCTrmIcQHpZQ4m66yDvKjD2hwr6p8iYzYgAvXO6TY3K5nFu8dWAIf4UPwFGpqHlaL4cB3aBsVzkBRdpChGl0KIm4NZ+Ce783gVUcR3aduMSzvD4CQMR3Ty9Zoa16muATPFNr0OdysgBRu2kPTunSoHTS7fhRa5kN3hREcFe3AXNqnajSpGhKP4zXpeRy2cPs2fAShMIL5lrgCcAE+E2UXn81l/moImP7WxLb7ERLe7S8MmP1TIhUJGr58zdyCCrwV1HVUB/xex1UyKXCmtgBNvpsT2YcPrjs4HKoXn6HQ32HZjgYNrstvoO6Dn2GXnjjFp9ob2LDNfXDEwxftlFIC43Byn+B+ZjPSgH/l/FQAF/ZD1qLNdb1bqKMjhNWhuK2/vwXjxT6N8HG82egyvpNhOpSHHrAb5URlxMmX8+Z7hpXWpfTwrHcJE/kUA/F9pSiWzH3N+XqqQh9ograWp9TcT+xeXp+PcA2UwYyskwMesyQT1xO2gKvT2MDlmP8IA35TL1fz/oNlSwwcvhw+zJqThJBNjYHD6q7z8VuiGZ7zn4OTSxMNfRwHRJnlbYGDYv4N3fOo++Aglg09Zpecd46d60B9Og8EgicYeDhUz22R92d6kKhm0mV36yHU0iPeB08/WOTwlcGlLiWktvntb75m6Nr6lQCpbTiLd8RQh/4FUZwOy9rieT0lVqUiYrYg5kw2LxGED+mOXTBVA9seDQb5w/vQQ/Q4DzyaxxFsnlaDfd2bAZOQAaH+27gUCZDXbOpKBp0yX9CWapd8tPmvAO9Z2OKTj2s+TSXzteybLPhofpyEvBUawQO/pBT18ducoq+QAtt9GtRXysKca72VgZa9GsJvxTFn72IRIOnwCy25U+Zkd3UkaGdvRsTi6NdkEj4FnDbthR7SwxBwX6YbqH3IDYdpf0jYcrYztZD4gNJeWiUebFLtOw4mdfqEmgyDbw9fdRwRttgaGHupmkFYXUy0uJ9p3XWZIJgnc0pEid5qOg71GY7610dL01Ewh0LnAKfZaUhZfo9hYbEvQW/MXKRp4DT8y/9PoTjYaewuWLz96Q6fW+GBjffZTZYL0s+a/Zm/az1FyTQKA4GKGNp/8c2X7XNh8KkNGCXpkNSLWasRoDweqUnvI1i0Um3BA2YDDcLPhvPdWZ7hr3vlpCaBU8/BdprhZb+ziDhoJuDoIjtwk4OUouMwBONUyhlkh6dIzZhLfL4nVwnehaimXi8dAPWnOoJ1u6+QWOVzPcZensIkmV3s9Ak2mfQCBJaxyGnYS1Mw2z1owaF/aqTyQZZMhxL/YKM3EKNX59eCobc69D4zQYo+GgNLxvcZ+tHZpfFxXLvqHN0W1L4a0CNJ8nx+vtEGRHpzo+mvy4ZZeaIMHPg1pe571yas/G5K9XvPbHp1978VL0MZQolwHN6rJmDX34ZAhzmM/osHxy4YnO26p86zFutR2JAnvL4dgRrqdwnGR2Y60DjUJ2oj3POpebMzvHzhid51b+bzUC0IlrKmU/sja+ZvnncpsCb5h8NdfMtZ9mAGyLZtSDjCh/zffE8in8hCAnO9i7XcwPzoAmyv9XgMqvmsOVP/wY7nesP0Fw8sLgtqXJGdTxh8VKCIyEZbJzXrZXAvZ3hNZkzjnAm8d17sDrX3VUO0CEuTP9lnA5eTKGL7fT7W4+TcGWjyX0UkH7xyNmr3FOoSU7FtvJaE6oEHobcXKA13sZJPP9o9YfoMEIHDTa/n8R6e5WRHDmuH0yAXdj/ogE9dvnEERQ6WJ6sKyH31i7aPrcjpbb8+Xx0Z1E2HImGnYslg0xIPu8VcJ7Q57MP1rkwHJ9WmrGldS716gfcHkrsQ16xFRqWt+YitTAE1YZ47QsBPe+wFTznoJuzdoRRdLoh/QgfMf+N3+SwmtrpZDmbxZvlg34cjNeNDYy7xrokBHLoQ45OeBnR7Ue7QYNaADYQ/9WDW4vw331hf7HuydPLnDBXLPOE9CeqAL8YzA5OlQxq4e5z8w2/F2p8Ix6mfz6FzU0GT9xXey6fWZA/sj3AgUoZ2e26YO+f31mEt1heyBE/fXPDxOf7xGXqJHqeA9jnPoKVlOb7E/J7zwNU3UAD+QkRHfdc03n0ZvMF7s+L3LidncULAbSqfGp5rDOSqZk+w4uO/91l049TAYex8vOJd3oT3oIC7/v6mdrmowfL9iRlc8RYbk/UG9JwtFdSlWUWy507BfP3xtd6xFJvWJASLXzgGiFbjTHP3jPNJOzsgpQKmOWI/Pl56qP/xEcI/YctX/sKg0L1mejjLFl+ANEKtHbIXxpZ3G2YvcbN/9faG2Cf/45PweKeIhrp3zkcKJgNa8c7AoaNOYMZf1sDdOLz+4jNhEw5cpdi2yd/zmr1Lq/Qfv1rjKx+Cm0Lg3Y417PRSVbPEewpydkB7sqz8lTbR0YKPDz+RbUdpToBERpVsBQU7710FKOn6EmaHcE9zm3cmXT4/GfTI2uODRB/myj82wIoGAe9vhQe4mgMBDDj9UEv3nGR5DFIGpvflTQSxPNXL+8M3IMhCh16uqK9H/XWM/+KPvnopztkG3CA4FmqBUdr3nHS+K//hK5qAfwWSg7weeu7To/scb4dB5JEBJeU4IVH3fsGYteodRBfjgz4f+REwfa5KuNZPHI6lubbMtwh8f3iGXd1btyjOv/nf/KNH8k7mXupncNmLFhKvyK9JFLg9lBr+pr4dJWAxYq+CKz6T9r0zgCDeLBdexVpHWliYZrfiu7JdbJW6nvDinYY9Sc2zsMLH6furyf4DBTiMg4/mV49MNjnPGHxezpn66SHKl/OhiFTZYBOBbmPVK790QHp9C4iv+Ut2y/hUZ/1z+tMr9XJQPzEEO3rE3oofRLKfDvyVjkQthDtz1F92BBGzdTI9tixnkZHPf3yUXt67vSkeysMPZrfnloaNndRLaycqHB7BlcjpAPPJS3xXeTbzDmmJghMp38YEavgT0HC4lQPhtZjC5bQTqV4iDRAHfiXYFeBIDR9kOe9os4F/739K1DSfbN6Hf/yPxlsiBJ34VmdoKrBDqvrdmqN4C30I3OlLpJWfLPdtBP/Gn+yo9k0Y1GIG0yh90NDm/XqGBujgOEsFdk3DX+9OlTNVKySdsFX/8Ew+3dX1eYnYSzrgNrw3SupNxhqvHef1nc3Qj1IXSVq2cGqJbQVliYwY/2wZzNJSbrRTmnjU10CYL/1U9n/1iR6ptgAOh3qGixOe6P3v8+1zmbVVXxBgGjRZHEgs2EpPB436eODj+RbEAH33N4y1q13PSrIncOFGhyCYvGE3OnsdUpyOWH/L55y8lCyCthMJ2LAFMRlF/mYKDL0bNi/NPHDFNx21vCJMzcmqB7YBJ6icqPfGQSYHgF/e4h2ePc3GbnoIOXuTqoXiy5mR5l+LgGW0Z9AVvip2r4uZ70RbF7Tz7SkT5UMtvvvTYxO8HbCTXejAx0oq4FzF8T/85TffCDX8dloaQGG9s/Z2QH98glze52kYynnyQaBsdvR4rz6cyXJWgWXTFtg6jmL9a1Gqw3PeO9TeGu3wcWnZAqJ1Az7OWZUvySZKNSKcHCJ+q6SeKy9h0JU36YpPasL2xbyB56Z60QNWLP6Pv0rR9YLG69Ln8zY1XSjWlUa212Np8tf3HcGfUBtE4jECSzBJM5TRucTXWyEk88O5p3BzePkU73FZc00rKuDtJUqEb7WAOfaSFJbxjlMsvlwwaxqJFIkZKTY/8q0mR2zE2jM6D6h86ruasI/kA8k0ZgJv+T5g9MktqGWPhvrTt85nq8ElAJdNgfd94iQsvsuNoprGjqJMPgVzu/xKeEkq+18+T/DuVH/PjzZOugeSyKcIHPytT42nDoIZVMtPW+szNTJFDhZT/zLYxtUB73VvbwqakyOw1kuSPwqQf+txKNW1HuEwSe8mjQLjDsnhSbC+hxeTCJHJ4Pd+t/ExLOpgnl9OA8URVBRnl20yWW/lCQq9JdTKLmMw3/fUAZa07DEq5+PaXtzuwf02eWRTHu/Jind3eD26Ana/VcaXLEwrWPtygOQ1f3n2ADO4zFJP4EmP1lMwVwsyEmxJi5huLko+p1p3vN3/8Dz55W7iatJWPGAnZzng01VhsCuUIz0Gz1cg9FLFtD++PgXPl8m2399dXXo3+quXteDJPVGduNmi3G0MTprD8wlHdgFk/lY9X9+3hXfwUrFvGlPNsFW0AEaflkDVTMwvyg4qwL+TRpF2rfksRHoEjntBQjA9JJzf9o8z7F5WjoQqJ3wZtayBzndtqU6SJ5hX/0a1x2xPX9N3DFjvuhastCFFO88d8n4htQ4Z8bY0DIt3Mp3figp3n8LFhQYoZwsZdLDqYcKC58B5PdaltvJdamPlnS+DNJZQOeYS6YrjaRi+6v0HpLiqyS54CkPutTsEd0SasC5ou4ChzHGB8rJ2SLEjZo4fO/bh4Ks3AsHU1SQcfgQ+VPxASvgB+eIXSAfhJEvUvSIK6OO6pH98jx7K5THMux+0oM8chVq2IAMCXL2CcSB7GC2WBMiqd7Q1PnDzcux6ucmNDC10F4lqvNTgX3wc95KEHcn81ePzjSBsD0W54lmcNPLFL6Eg1FeKocBM6vDPCIVryGgkaNdAurxBD2Shfq58pE3mS/S8K3WGZuqarVKTPz1khccvxveqS3gn3ySIhAjRP34+mLGtw66nW+p14ZJzuX1X4GTpAd6fmqM5P61bBdf6hKDbNAN9PYU7+ONzoud+OXPQ/veP/7mO2gLqtdsQnqXlgVNZqPJl/3AQlKu4JJvqbiVSFOi9dpb4//L/Zt1xcU0YRoItZPxfPoB9GaG5OL7BMhdzqcEq/mJ8XWg9h/Uh3f3lswHFaz6e37MLxA8J6GF8X82V796h+coxap/1ZZj9ZvG1EuUtmqp7VbPDUvsKJ0JLlnSITG4e9DOc6pJiY0sE809fgnO5dlm7V13OhxtrwB6+ejKr32lYjF0twC3spv/8nyrWe8jb/QYfTvov4GYtMii05EPD9/kGeqbnAtwX8gFfBq3m9CiQFOzrT0z9xp4DLrddqS0vpyOKzT81AbclBqkQFwg09om3sNJc+ChUmTDdMwA3PM+H5TXE9L7ytSF3vUyVhfeTyALsTPpkEwQw+rbUOI7MnEtlYLAN5BF7u1gIWg2bDTyc2g/aunspId2+MODVed+xLQvlMJHMjoHE9JTGoQFqrs9jDMLrqSCvPq7AuMFX5w9vqO3uGz53ct3C0326UOSkb04WMhhgC4eJ2u7nnHDQ7EaYnz4uNoZ7EEjO1S5hDv3/+DJdfx86+bahZmObYAZuoQPx3jfUo5q/+iEKg0BRc7r3gVR/Vz4AiTYM+PhyxJxNThqBArgHHMeHKmdb66KCGLxGUq96TfWTQIbptRbwgQXHYTkfzpHWN0tIra3R8GV/9s9Q2W0jJCaqlsyEdS4MTs2I+r/5cc0HAWFk2Xj9PqCWSCoIf+oe++r3Zc7yxajAmp9Y1ycEWD2+Z+jV33L155ScKfvi+efP03DzrBPGvesIv0Q4rVu8+mQ+b6YWJhvwxG7zK0326H5n+PXlmGjZBYAWSIQAVd91ZBnfYz2Gp2cDKRFe+Ok2rrnslmpU+tv0QY3xwsNSCHUENtvdBe8nqwx+0mtG2ra/U+xsCQgY2OYtPH6YuPrtF5MpdOjhJTh2RFVNOgy/y+EM5YeUUMSCG5/WeAern0jIy9mZQzQ3I3S8saVpOsj855rfJzSVTUcN5+pydiqUDOrVmaBauI2cCod9D4/WepHj990FfF+oBIThUST9dWk5STZ3C/reOFH/6EY1q2uowusrZwQmynGYrc3Hh5EMG3xAGOXUT449WP0AevjQ/X/+vzXQO/WuaBmo84Iu3NPA/oefbOp+DH7XLWnH5ueCxSAbCA5vJ0Payr9mmvoj3GzFCz6L5VLPqz8GDJnYGGXyYvI/v6SzDJH6AgxrZkVGoXW4+eGHHd3MJbXzAnoqUomkATufbfsUwQ3TG2yq35hLUbAeCXAigT7nbNU3VySpxtMdaLH62bvK8w2osvXIgQ/kZIb3cAZrPcVhu4lydvP1QkvSvUMt4YZq6cNHAVCXxtTxhCJf+SGECb8OOET4atLveT6D7GJwokjtO1+olY9w4NEH2/HhOywa3ksQDkNILc9tA77qXwAeAaemZNbJ8rf+86dfXHoXhzneVdVfvcCOJ8CckQzrwBSrB/7zz5YP0meQUgmTnVKmYB4mUQYPyygJuKKL2e6DF4IFu7xwoI9OMIl85WO+ekPVU8/N8cO7FP7h1d40Ff77458oUA1q4TQ0Z3w8Q4DfVotN9zMD+ul7Arzx7qINP5WAjEPXwEhaUqIg9kkWtptcWOP0Sj14Ogc78+CmcP0+RtXdyoWsZXfYNzxEsh3NOde/2wyu+ULgnOk1h87+qZWTciNwF9+S0fPz6p+++W3JZli2VuGCFc8ohqfNMKlJUMA/PWR0s1CTgxrpWnBqR2rL2paTJgrO8P2FLfbSAxkW+lTOcBNXC2FN9y9efWjyKyaf1W/m5sE9wyPuvkjJLmcg/flL4mcM6E1q9wmblYho1eF5W/WEM9C/+ppp2YbqZHc22QeeyD981doNM79/flezbd/UFm5zMskqacHOVwnK4l7P//AH7OGjpz6YWnPZ69kMgEu/ZOs2HuCpnW5ANoGA7i3/YbLijjOwrgfSIHjmNXflbAOj6uLj8Px4JMx9LC0c2v1MXW/Qa7ryXWge/ROSLs2FL/VYGnBdX6G2o76H1W9MwT1Qr9So8iAZX2xLVENXdlT/hO96AtuTAIWHFKLtcPvwRQAMQPO/eikQyMCXyfw4N2Dukn0M00Nh4dO3GodRbkH0tx5Aj06qm7vX0ezhaLAM2zupGDhiU6mMVRQgDUxDTud5auAzSgf6V39pmyo+bEKXooVRVo/fH+9h0D8sarz6U81sXm9AoTcEo6ho+PTQvi7UNu1ChBUfOBcjSTNTvcd5JgecfZdG/6ffrEGrzKk04gJeYPYgoN2ggf/CoIA/4W0g8ddJ65FWOYS/0JfIYrbHfF1vNODj5TgYV/fWXDZHz4CZ3n5RPcMy4ZVnGNq5tBKaj6URUOHg9X9+FpGF22WYzTz4/YvvPz+bi28pgmA3Hf/89HxpIq8BT9R1+Ohfofl7P+wU7sUowXeprU2eNxsBivB2wZYdeflMwUf/89fx3/onzW/M1yo7CbAF/J/JduF6xBf6yR9fG7glkhLEHgE06MIzYH/rQf6ZnbH96lPw9WhjaWwr6utFCnb+Dw+Q1nO8747bhBeO28LVz0VLlXvDbneWGRBf1ky4rMF8zqt5hgZ4RUS1Iw6mLHyW8M9vWv0Lzi5v/oNXnBrrehvg7HncqyADro5v28/bZCK8+9Ad6Jt6a/1gQib/QDrcTRp4gw1W/ltC4SGE2KjyIWdzsC/Bt46fZHVled+10hmq0bXA4fR1+FzHrx9UPiTGR2/wkvEdFC0sjdmk1kmvAK/v6gy7uvrRvefqfBFhlMH/z5YC6f/eUgDL0aTZ9/4JyFPPYiAnOiXNDzyDpdZ7C7yTLqdW0Qv1QPxSh49faNDLg9+DxUe7Chp0r6BWMJaBNNp0B9AcW3qIeZcsjLxaeAV3m+I9zMHciWMMN0b/IVrhIMAf3kUAD8ZU6rtYD0Z2kS0o28KPmvJX57u5G1So7JoSh5XmBTMiPx9yM8QY755DXXZiE4FDc6rQJklX20eaZ22TAJHAV/9NmF6yAuTTJSTLbTvW9Jb3LdzZQYq9URDyWbIeGxAbxQ8H5tzxeZJvGURNpuOsM0owzwxJMD3oGxz09rolQZvu8B58zxjbWKuZO242UH0zi5S/O0sa5/hmWrJ8Tzhsox7M8LJasHPp0LN5bMxle8oqmDyUHFu3K+OLFEgx0D6Di/oqtUxhn1pr4yLPoh536mEpNT8Gtz618KH7Dpy9hucZzEKhUqQMLJ9uzusOHnt5g97aHpkD7dNK9b3qg718uHJuFlmrhHsW4uP3Nie/CD1H9UHkO9KKuRqYiK0Q2P72QvUtEoYRkdLVLOBtqYGibULGZy1AVRSPdI/YFpDb7RDD1jtMRPO1OGc6qCFotJ+CXyL/DKy0LzHMNbfCh655J3P+e6lQAV2H8cs4DrP7MAnY35MnKvd5nvcXO97A1/bQYcelbc1P6uj/jRfpC/IbxiXtRwiqn06j5YKHn3d4IdBl6y7aJRX4nJH+CROtOmDXToeaSfxnQB0IB4oyoOfcSZEOh/xd0GO3HwNet3sBKs7YYH/GXT7XidvDQiA7or7pnS8RsAsoFtQm/ss0kt2DjBE8b3ca1uPIHFjlfX/QlAWPgOXSJJNwGGTY/sYbNXK2NpY15BGAwj/hgxjszLm0A6gSeNPQnDa7oY/3IIQbKLnYTNulnt8vQ4Dx60eoIeI0Z1NSRBCo3x+2g1YHYucWIcxm9439N1X5vGm6EZyrYYcNo+vWrg1dBjZqqOADLr9DfyN7V6Oc//AxPnoDPVySDBDZ9/GBfJKBv5dbBqaH1RPRh8dg6Q/vBqRLWGG3nU/5LNyN55be8juqD/bM2WiyVPv81kbYqhjWY86gAH9X0fiX32wJrxb4quKH8LCvTIaaolRf13SgB/kpA7JpgPGXz2RW2luw5K/hp/Zpe0WQBr9gfiswBVnXM2obewpo/NIN0HP2xOEXzGA+mQdfveyOP6pn0sHkM1LvAFS9jn1PdcxJKmdXa26ahR+JjAfeH9wY3uXsgE+DfBpGXEeNNvhxSO3rURpoi2YLOqq9odarM0xRk60QXuqLhz3K34BY613r+xRd0HZzUIZJ7Q8VvKSeQR1udTVvFckFv+vOoKGOcz4FPE//jb9rmB6fb3Wsgku/f2Pv0zzMUdhGqvaXX8dd0/DFOvUpYC1iaI4jsx4/md1DsQMhWsrPbPLTfEDQUJlDLp3u8MXcDRk0h9+6haT/5vybaA7M3DbERjFPgMVh5GvZRAGBVSLmzN0lMphD9YN1Ykx88jU5hsTqt9ixXC2ht2Hrwttbf2B/OA+cREftDoUOq0jdMMMUnHVzTRQpdxrcVLnmxrf0oXSwE8L7A8vJt016mI3Rnh5L00oWeJRnaDRRhq3Qfdc80xXrr75R3SKPYEGnsYeDXCnUc16nYH4UjxHoo7FQ+1LNNa2KVwWyanMneaa0yU3WCVFo+3mjR2k2yXDwN08QHJofYhvhm7C4aAikHZqp/+k+gBlnOYaHrtQxOlpbQJTDOYO00Lu//OHidvR16CkUE3g3BkCHcCfDKBQiml2afphq6fgvfhGz4ZA0dmercN87ArWbmzbQ27Bz1c4wWrL5+/3w8kFwF18f1OK+AcSe0R+MXz1Baup+gnmnoBRiNB/pXRXHYXovKgEr3tCjr8XJgiX3CbvgfKTnz69ICHbnuwYinFNv//aSudO9GL58t6H371VK+EHtBCB2Skgdi51MRnayBZ8QPsgi5f3An9PSAxGXG1T+7nHO4v1615IQlkSIF5yL10KqgL0pSox+xdukxrd0NamxZny9FNeE3qNch/l0DannuS9zWRTqK8sX2tQyWpWT8TkI8OOLOj0WnpKP3z2pQPGtZiSrJ2aSS9/doXRcBnw86JBPsn/T1fT0ldC+99/BXz7DcPRvGOc04AsRixm+MQPUAnmYLzENYpgVz4Hi6oKT+eiHZ/huHR379LcFjB5iB675g43cjQOWXysdRNcvI6Kednw5XHwL7p37lq71PFnEdzVDjYmYhrftO5mDwc3gcH0mayPnc83YrMfwJZxd6vaOVpMb2fvaab0LNJK0IJgl5EYwM68Eo9PgmXOxNhpH56ZH82HyB9amy6gpb4th916xfIkuOx2qJ0iIrGc1X//vDuttK5HufAnAsjm0CM7gColIfkYyfpebCsrLneB98bvXrLdfjSp+BBNHy4UO0/ec3sEk7Do0qUfGeSPWDGrjpSRaaVo53b6lOzAP8IiA1k58nS8XbK8oxRgJpGbzO4NwnR9shr1hzlajyxr6vTxqKXObTFEvy+CdDDn2f9vYbMvSWSlyeqZ7XCQ1vzCYQtafALn4cArGllkVxFTi1Ev7zzDNljTDSi8Q9vXLxZzUHldAqcc9NnztMbCg9F3g+k1LQys85fz7jA3wO60XN6XdDAbstHewbPrHGu9dTuIw8+FtVwaIHcNqYIN62ABrZ0nUiF5NMn/TMgPPNrbpXrGyoReF+w+0nj1RWzzNSQdQfYdNbRn0rvhtzXbypGvxS8xwGFM/YEvqZdAyvwOBgvOpmTJWEgy72qf7pvoMLLCzHj7VK0Jj3zz59Kw3Bjg+9Mvagvticj4FP6BvlQix+gb+wwN8u9p47+fv/LM5EAQZrW748Nr/Ev7+Ukd1vH1GrR94mv1WKCA0mjgj6gi/w/KafmfYFZ8H3k+PijMVbu8g5jX6l290HR8IYqlfhfmu/pRXLv3FD0b5V67HR8t+8AWMkiLnWaxdILwKANM8k9M6f4vekRE8+1omC2JbTiqP9tDqRpsWmnX8wwcVelnf4QOruoD4JZxBYqYN9r/XNBeAkz1hVhQDvT2SpKabUyfBg6ecye9exflXWlIDkt9ZQMDOPgOd5s6CDb6HSFvv6hX1riWQKoaDltTYmRydRAiT8rzH+HaPzSVkvxFOu0LGvuI7NT+obwlWjW9Slw5koO/Q2IDL69mRuggMICxLEarR9cOo/i36pAuQJUOlJnvq2EXDl/PmE8K/erDy2Zo9pUmGd/iKEK92wKS5HTzhl8MahwrZBwszbyWI28uBuoXw/i+/pvsrR9x087y7OdcM1JewowfNNsxdGoIYVu9SwPHhe8rJyveB2po7IrASr3tfJxna7N3/0zdjt0q2+RmI1No9Jc4a189g0LQ21bey+2/8Qa8nCdo8VTWZdnPsKKFyLlG9jVC9u52OPZRvYKFe2YpJ/9sf0T88PR7xG/CHsg//4pka0/YVMFJtQrC+L3afrwNnyqHIYJuXMS10BQ9LeXyq6jCkjOJnpnCmO/pGc4LfF/u4eg/ERtOo+pF+pghl32R87EcEDyaC1HRyzZyT8Qvh9iETItX1D4xD1zsqyd2JVGjn1pyIrQOD7WVlNDt3GPVBHsFjPAU4uKlZvRiPsfrjq0ixxUc+f7TCAfD6scn2cT0MOyISB97ze09df/MNZumnMJhFtUgAvr4GXliZAEP2c+lVXbs2zAd91o4P40LX+puQ9+vsw7yLTWwd+XeY1eurV9594GEzO13BeK/KGMJInaguJbucBelLgCM2vth8h5eAGLSbAc7hmeKv5oPJpe4GNEk84uMaz7se1pGyn5uaOj0vg+XT+zJY+QM25+kCFuO3f8Kpbm5I85NNPZM4S+HmbUPsxwGuf7iOWm3aBBF2y0M9cKKbljZ5YUCoU9umBC83CzTmI8UOu4tgFhGT4dRHC0UgzfIu2V4FaCXoSlF2Gus+Oor3v/qMg5YFCTkYdQXtzCtoiMStuWiyhYCfkhFt1/cha/37x691i2gmrfNG/YtXHNSvblgO/uTDRrjGpFRaxSR1ctvALXDE9XOvnjfeHIL9OJpkpzA9EYrvFIFLGhhoaB5LTW1bKdZToE9UJwnlU9aup8g+oopNdPkFzC36DPaaZeMinxbOJaBu/vgkPb6XM2dkt/brbRqb7C7FNV/exiEFpYu+NIT328CIGxLgKqaG4HExcgLKXw+f/Vumzm1z5Yvsn3T4Kzf6X70cFkauDVjrP7XT0MrFt4FToIq7I/ZORh9MrqeWQN1sfMT1wgzoN9EsKAibA/Ue2iGfi+8Uw8en5Ug7rP1PlKYLYdVLObWqeA6W4RqU8DKujerHizEIZ+kew5Ny7fHRMERzhnOtgpqFDnWy5MR/z9Y1lB9JZ4zkXjdZWSIGBSSuW1r83OyO35OvbPXxh33na+XshVkIb6Ldklr7/GoiuwcDbofTi7rP1xfw04v1MKi8EluC24MpvSoVSB/ViL7yMwMUSTcGa1RG2AmNX7JIi0WgfXYSIl8VK59Hs9Phj5xnslSRFDBcv1XYp3xPeIamfEz2b1VDn52K+L0+mFzB37Omic8n3tMgydnKlyBrQ0aN/fYCdnl/U2E4ujckf+whWaIy2cAhr4vVb4gS5r+/mQqPxpEejJ/A/9VjLKUVQvXbrAWxG+8QydELe0YFajoAuYfrfKFeDWTOxucgqal+blc/qORz3RwkaE2aTH01yDhpw2KGu/jywDh4j5zrKJehMssuTR9gyrn4FhyI2zqkh7V+jK/B1mFYSQyxRfFN9u4UC5bda0fERD0D+vAeEniXuwqv/J6Lf/z9uEk+SPEY4wufGviXfxSdNz7gX7Ms4aFENyIf+9dAnvmeAR3vz2Qr8k/NH95DALcveCH1ljtgedYbHWxmECMQ6G+TB4wZoKkdA+0msAXjuF4EVCrJkWyy0ziw+Ov94Ay8eK3X++Hv/VTzsDmSDx1fwYovd9CmiUD1x+6Ws04UW+il5h19Ot0BXParMxzQ5YKnbh8G01of4KoX0WDOHpBG5ZHCZxvZOHIMq+Y3qbD+/CTqaPotYd9ZbuCwLkG5K78d82s2AsCViMa7tz3sksY2VOXLfRo833vOnCO3wOvwvlBX2szJ4lwEAv/8K8cUPHP33CAE2MMWyF+9JIlUN3DaeBEN7OxT/+JvD2GaCme6v3d6smiPOwGX8Tdj2z4vw0gPPINQaCpqb3e8nnHGfzCKwJ2AQN+bzPjs1rtzxxYXffMEHJ+CVJW47GBkBmrN5LjeaP/GB/9dHFFtQsiwMmH9/p6Cjk8jBCtfwvupnNaugCCChB4logFZ5n9+BJC76YAfp/oClveijn//T62UNHz+hkEBVj2IzUQzB/4O/Q3s31dl+rxnWvNoMEIoDDuPsEXpzXl+swiOyl1EojmKfC6YH6prPSGiiGzAZ+vyhPLXlmlAjGrg2Gkz2CTRSOBxqfJFEa/WP7/BqqAJpKceRXDFV+q49noe07426ob+9vgsPZqad5OXwpYnJyL+0iRYrIOdaWArOfSwmX/mXNHrXR3LREbb4D3+x2fe80/GwdungEW/VoXkXFzoa0TCMKHx6f/5IQS41iYYn1LRAObhCz0Kn10y3zZbA8aep6NZ/rR8yopAVW+JkOKgLKFJN5O9gdtlQdiV29CcN56M4HvuZWo9L/d6EUY1heUlI/SPv0lsjyvI+F2h3nOj1KMggA34qwfoofwCrtzDGAqFyakLoGyOmm7L8DR6NXX2L5yLKRsMgDabHdnuYc7npEju0L6zgf75wZNy/7Tgkd1HqiPtzefU9nrwD1/P1w+Y0a2N//jVn98DROMxlmCcbbT6l86wHD7PHuydbEuk5OIBEDBVh1bEGdYL7wdW/ziD+lPoqWeLj4RlhM9g1d9orw1v/k+Pq3l0ofs3NoHYTX0Pk8GusFedQNKjLTKApry/GG061fzzQ4C2Zx1G1Q6DmU6eAI677xHJK1/f+R0mMHmAHOUr3tPDbMnqxYWA4s3hVv/zT1Z8xSalR85EHIZQrgQb/+Fn52edBPSK+tSJh9RkWZMKsKvtECcrXkzqzT3D3TNKsKWDM/iZNHrCwq8T7PbOo2YfyJiGq6eJfSRPgOlg2MDkejT//Mma160nwQ3t9+t4dfyXJTKEJgQxdQZ/Uw+6KW3WLYJrlzGompP88Suw8lWkHo9fMCjrFtz7OKgUNa+hnjax6QI5Od5ouOq5BaA6Uw9XO8f7R0zyuRsOKfCoeyVmYLQ5fWlJA51R2VEzO+04/T7vBhya/k6YulvA9KwlXZnNZoPkK45qBhYq/ekX6sGtCyYp2MRw5YvUKZs8YdnZiP/0HNafT6MW//TpaFMdzWTc1wvaZxa8bl+IpOhaBVx67wtN6rmLD/V2NhccqTp8TdIN75NbZzLJhD04jf8DAAD//6Rdy7ayvBJ8IAYiImmG3EXARAFRZ+AFBRG5JECe/izc3/CfnaFrX4DQXV1VHdN+wXQ4KVE/6334xVuqHZcm2woQwEnyP1Tdhl02+wdndF7fXWZuT3kkEVc+oyNcHXZ7Uy+aToymyOoXMsN3RclWCBuOOtcTZp9WTfR3/RkPiHbCfsZjwZch++5N4s/4Kj2/owVbHQ7svLGu/nTPthOqRemBX+vtM6Mt0RVga81huvNMsukZrwI4vSKX6Imx8sciyypwD86R6S1W0SCKCFCvWBt2vSyeWVO4qoYO98UVK0Eh+lxOJUUJjXtN5ufPhlfE96BYw4dY7/qa8eZMriio1ogY9yxCk/dkZzTjDfOWqxJ1Snd4qeaF3HB1Q33URd1HQGHyHInZXZ6I/fxwbuJ5MENMEP3x0ZdAlTl+BE6VZ7ZHVv5x541xh4gN30KBpStVeGgHIevDdR3A8JUNzEVtVQx15cVgW6HKvPR68UXW6xJyP6VJLvZSzbixgk4RhnVI5v4WasP1mKtTGEf0rx/j1F0FxXfj4mXmBX7/HCeq0vh+ZJ5bCS2vI+MKu/TisH13+nAGtQZQ2UaJ84YFJpNTQYYhOsdU+qyuqN6YgQiN6tjEMzTkT7oyxsrv770nS9GXLtYUvNUCKLzUrTlU8L0qhX2J2IwHaAl3O4ZHzK4U1psTf8968qdvmC1Iz4gvNpaCpFSdiOYYZcF5GHqqqN/h5wdEknVR93KfpOGsnzR/Wl6+Lhx2NMCK8ymzVmbyAHfNb7GUvp/miO4LgMXdPuMxPh38DgtA0WBWws/v5ZOZfuRf/jBXQW8+nKMBwDVlTDY7v+fTr98w+8mM5Nqy7dyb34GGpA3xtvspGpTTqYFX6ZoMH/RjNtW6jeGdNgmz6yQyxz47KlC/LgrT76oYsQbaPUzGS6XstTBNPhkDhuN5OjDN14KsD2p/AsqIRILbsS8oDb81zP4dnQRxE4l3Ka4g0ZKKbNZu1/LbehtAjCqPeIovI3q4nWKYwiRi2rq6mGPvbxOANIiJ0SEjalrxnMCWGyu6fiFizv0FGeZ4Z9a7howx0mtgRZmOQXTsdlqUWvrX/7HuR6XolcsEsC/HNdsslw1iTuJoUJ5OS4rqdOOvfv7MeX1150n1kfktl+kVZv+KyiZl/NM81xMIvTaRWW+highRisLqtPnx06IvtJejfkmWMJdqdcGNm49B0vCBouSToGnGHzgtbphYmXHm/GPWr7VI72e8vN96NFXJuoNff9J8b712+OmpWd8R8mxRMV1cpYOF/KiIf38+0VfWqg6ulLgkGLaDz2QmTzD32/7xKfbqFITr25aqbfJGw62aGjT3Z5nWnT6I289bCdo7uZDtdCVoSnLrqioCeHiY9diPT8HyEcfklDi+OYbxZUApxsXcr3J9acY3tDgFCV7HZykbdiwclFbO12x7i6KWg6HkYDTCwLwu5Hz67pmLqGEObLN2g2IVPlwNNXy4k3N3fBXDiR0d0KY8Z+ZZfpp0Xg80108WZP0B9eM3LWHW73O926BlsosruKQvipcKOZuveDnAzz8jHnrMgybn/l/GhAxzJXR438JBAG/3pmx38g/ZtCA4hyhP9Nkf17Nfv+n/Gnyw+u8tBfJRlNjBXuv+0ljIIjp6oLHsbnd+99pbV2hsCJhdRLuI6c8RlE17Ndk1jZ/+uN9GHuyxqeBT7ynoG2jEQ0wqT/i9W2+icelqlRpP/YOWhybMuCkNjXpx5Tsx+4PRDva31NAT5TlVxXWedaNSD5CL557h6PM0J2e3b8C/HgM8lqSN2nyrYvRWhAteC5Hmc5YuBKXcDhtixngo+m81BOox8k7zLu+JT9/WBJC/+MLsbGeY49LwFEgrtiOEX3b+0O3bVDk6G2OO/XUxnIdEhgvBHQm6MveH5Ukz1HdlZ8Qeb0+/A/cWwg7m2ccP4GbvHVYvuDRTRWn00f1udX9IoEXRjtghy/3ptaYaSqb7kznrtCmmBW9idBUFkY4kWJvDauQdtNvuyoxF8DTHVLq7UCByotVBO/sDB7OCFwsHQvS45eP2psjI/6ZP5gZUbPn5fhWAp/eE4YHN57LL+wRWN/IhwdE5FLxmJwqbtVAT3YpS3gcdV9C8vngVGHk2JOI4KPFVKwiWtYM/NfLLBf+UX1i0PPW8yc9QgzXWBTOi9d7nUGiOemuCB9FXVdtOkbS9w+OCEhKQSWobSWkV9Oj3a2Jcdq05ZPatgYU76cQ6hqgdOq+nKFmOa2IVoo0ou34VWN7ygWAiLM2OvhsLRpFzvPSXdz61jnZWl0qhUFggLRt8Zf9SDytHp++gPfHh+b0laFzA4nc/xUiOOwkUf4nooAee32XnMVdTxRrYLlYZ/4rPy11xS31D/JUa+7ToUYJeZrfCeXeXI04E2YKuS7dk177f0aR7RgxVdnQIUcK2HarqDUhlg01RMaSIZQ6VEdweNl5MgRaNsjrUqNosCgr7mhXj/YwcMPgZKMihWHTvCxmQ6ywmvKoOEI3H4HlF9lBpbCPAqR3rqZHnLRMewcfGQUtd3sfwPRmMMrXQuFSiS45iVWmxaEQHNI7h+Yr87/lJ/LLivBt6rwRNWDnEyw+8qJMsV6DFBSEYj3XEcnORI2f33mKxuBJzAPe2R8m+vBBr0KDlgWkki+DCMQtI+uBTJoKCUlT5WNKuHhqz224PS+WpUGFgGZoepazB7Xh64qEczPmg5xHDxdJztr2sdy2v3TFRPX0l0X4wP0UtXlUNXu9yQbv5fUqyYd1BeGkIe54utvwwiZ0yyKuAuL48D0/abkqwKxkzx3nso+HG+0BZhseSCqZxMLnocQvkXf0gx31s8mEzBi94zLOabrtOKdpmpcnqeJSf7DSvd6c4ylXR2kdBRXxRzcEXQxGug6sTe1EdEH2tKw3MQRRIMAmXYhrVKIQV7g3mN99LxF9+3cHmnlKmDZsymw66iKH7PH2iv4J30R3G4g76UlCIpgeNT9EKXtCq945hVCvm5GxSAdZ5vKODULeoL2dLr9C9NR0Pn2UxbB0/RGgbu8wYjb7tlk0WwPq8afFw/h7RuPn2FVhsSok7hDgTl02GQXns7hSczQdNe/EmIHzWlsQvhaYYrou8ggW8DsSix75oTmHdwc2NTziXXlrbL123ggr1nO0cfjXFqnoLcB6+KjMWxdEcqKAAeofzLjdlnaJpF+rTLz+YRvpDMTzwtwZkPTxmXruwmLwvc8HTFR2v3Euc8Ve5rlAViE+2O507f2i2ngw2R2cW1HYWDfly3wFtPm/6frSWWcXmyYAH4nc6XFbvqHsmhgfpPZdYcHTGgu8Du4Fj9WCU5sU7o7xtFBS034Rth21Q0IWjlsDFfEm7SVgX/AtLRVl82ohYxZX4U5aVhhJEN43dFV6aXRytOuUaVxv8sbdPNKzuDxHZ0atlWDCTdjLliwyHoa/pm9wb1M3rqSwgP7C0PgmI24fuDFXyioiZfAM0qedegKfUvpi1eeoR/dWvvXCdmLmvPhGjCn7BjJ9sE+dGVCNlZQDb1ArbbfwJ9agySjBI3bLs1h+j6VZYuTJ/xrw2I3OSdisXNLL+EmtbfnxuWRgjQe4l5g2S2c7r7yl67Ex4CuOglfYf967sWFYR/ysWUbex8qtK9rVF4jJ0zQnubQ1HDy2Zbj+brNPW6woOupSQQHV3UR+3svbDk1/99Pm0nQe3OI8EM1xXBfexakBwjjgxouclGpOLICDhFmzoW+yjlmPr7UGkFzuCn8NkjqomxVBmNWHYpQb6q6/Dds2Yay8TczxcaYyctL4Tk8euvzpukz087w+fBJVMs8nZnWtwynhPx7rfRWxxHgL1q7KGbQz6jqZOCQCVuFLwmo/HYq7v51/+EuvqK+aYnUiFjNPKICbsg2h8VJcQVu9MIIbzPkZjNPYatC7RiYPVMOKdL4By658rsgseOzSwaVFCbqpLimZ+xBWqDMpX7RtCotu14M7bDYEwrybb5GBl41O3jV884PaHz6TxAG6FfCD+buuaoySRu3LioUM2qHv7oxqHAYy6WdDHpznyiVyaEDov11ki7IuMN97VRYFeysQM1CwaXhLPwRlPKcFnu4h4GW2D3/PThd69Cn4/DqUaxcrANvuVlFHtd1DaPrDJY98GGX2UsgEqm2xmbzQXDZ62q0DpB0wM+jn4g6LBgOyXuWf2Epnm6L+jFPLT8UzwwBD/Jnz/QsJtC8QR9kXUfx4bDR6S0OI8QHomzddDs9tOtvcTK9pQC//xFTP5dmgK2rBW5vvBKHcPaAy0jYtADAKsrk+vaOr19ws27UVm25tncDqWxhk29/PckfPagil0mpD8yD/sfPpMfFq/VFF925QS7XX8ZFzwUw0xqTqx7ek++hM9blP4ipbFst3W9YdU1hx1H8prykXv6fPv/iKiLd682ebYM5P7y85Zz+8Dl6GsI3rm6byly1oTL3wkxbjMsgnyp+kR/yAIZn/GwV4pC7HCclNBwaPd2gVh4RC87D5uttqpVgnxyX8Tc9MUZheGsYyQxBYMf/iqYKFyxNDLyUD0Qs/a9oNpgoZkYZGtuHhHPEuNAdDh9WDk0xwRtaNdrWjWVONL9zTn9epz9FnkmB2y6DPXR+TA7mphdl0ot5bbzXL/uz4esmvNuViaAmoPCif2aHuZNK6OFZRZQ9h2lT7b8W4/MMx8h5Hj0zZ5ksAV8rfsEjvbvcxuxnM0ySUmWOGWL0pqlQLfOJxspWAyp6X2bZSZrxDjsR+KMc+zEpnKixFdN91o5B98R1aKrrRqzMYfSOMJP76IoZJxJm3SykXfqfrS7505GadR7sJnWn0Ycct71u3q0xXm+KJLEJ/FNN2D7seXyNY8rPhEiU9/+U0HpBktzegK/9Uj93shfHjbYoWoF8jEzB5223mVWEO5nTZYeWRKMWiR90LXNf/M979v36gyKliGp5KZzpW3w3aSNVjaccqwwkt/mMTWguqoySwcmoSPcfuJ4Sl9X8xxlYCPtp5RtA2hpOq4F6NW/qR75ZVPATGaLTGlFO8kSMzCYpvqAFm9NDsPgoWxZttaXmUN3IsGFhI2mT3HE99cLBl5A4+Ix/eq3618q1Y7RaYs4nHtT++XVqOZnzDtsrKj5Xd3b/7w0D6Vkt+ZLzP/yzdByfrsG3mqAMXlROb1FaJBq44dEpbpndiaWmRj3fX/1s+6XbbFmPNqQj8+YKKUZ+1u/xDRKVxh4prTENHjqgsRKmWDaa/jJuNZ6k2QPuWUJPxkoVVcd9Ifv9Oz6ONzWWsxcmvFpkOhNGgIF9saXrLwYoFmvbJxDNIB1BVcifmtk2JydhtQQm7UdEiqwe+3I3aUM1pu8TI5fSP+QZEDymK2jDpyaFdUwbniKTeL7N/q0LL0vbyCtdVjtmkG3RxRSDsU1WFEAu+9RVLzuIRIfsk+Mzz8zLi/1TT4NN89HoVNlP3wG21LqcPsh7e6+3VgxiPcRmWZjXtylqAoTJ1YM35MIQnP6swXsPy9MD7I50ZEwxYxvIijYzuJ3DzDvuQ6Vk5Hkk3s+pTVQdQu+N2Ur2I6PwSM9qGyJpr5qaKpq9YT1JvuzTY70pvcPr0cJTleAoLr777l7i7EKFsbOzbrmawt1/Ierc5nkegOXfm/eITTqQv+8dMN9QwwDi+R2OnSj/hODSpoqbDBU5qu+Ngz9AKW+A/azng9BW1aQ3A+cAxD8I2mWH0KMK8/FT581Xbz84GZugbRe0X50xuKp8s689KqLAYltRsYH1VIfvyFa7pWwYjcgN2tvYZWPOmHHx/DvDpb/+4XcvFLtq76Lbr0cNCALFcl5ddualuQsj0y7YPFyGrF/Al8MiBnEyJ6mutf97ahUk5MfuHFwrWy0Qu1QDVy88L83jrycuUHDcx6nTj13WmXZxdX6IefD+qrLSdtHKhaVQ9Mt9fP+f9vJjjXt4oY70iKeJKId4SFfqDLyyfjfCvqe0jADYlprfbmrC8M2KUVJ/rhs2xZ/wglkD9UwIOaXrNxlCURKZ9syTTHePFh5mtosQkr5ms7y19OFxnQ8H58MS8nFdFZbytJIn+YOTyX5ihuFgpsW1chV6EfOJV2Kw/ypkNkXu+2//GL8Bo96Ve1h3Ya91WO8jB/M0/YZu2U2MZLdZ3ZIpaeKu88zS5V1xcH4vVvmg3H51GBa2R1zLvpT3855xs8L/WZuMa7KIa3P4Vw1qeW6OHybfKbKN3hOng684de5+LPHzGwv2c+QedoupExUf2d+CEByYxiXBhPCXxgayzdNpU5GQ2naH22W2Zu+5pP8/P+/AisOhx+9aWGIIaMbAxqR/zg7Gt19leY98iUtoucBqNbIgGzyrD2p+ei6OCn/x33lfzzWyLNnJj1fcR8OBlnA3JL00gqrb8mb26fRImvRsF820jNwYZF8OM/VPW/IuJvPpVQggYEbxFp6U6WRdhYncrI7bOPxnjhYxgDzMisX7Nhe7lfFXeJCF1FzTaauhwcUNP1hiLlvC+Y3SxDSJ0kx2NxmbKf/kCvDO2oaOb3md9/XLiI1zOz93GBpuVFydFakEamzXpy/Mh1Bb96TDphQOPkHC3wE00g79Fuov5a9tNaTy8alXVN88U2eTpw8PMNuc/+y/x+ZTBUq8cSNDeTfb+vDlzDXTBzZGVBV67nId7Fd7aX304mGYKjoOXaaRhZKyLnXL2KSImtGyO3xcfsFrdIgB8/3t5PpFh9QVWQultOxK0D01wGGnGR+wgiFua3WzvdtqhWZGoGVPmt/5FEAry11YAXO9P0p/C4t356mK7jTuOrTbQJYI3vFgs8NW8nHqYawO1mk4Oy0tC83ve1sDzfmde+6mLWnwrKMCrw1/OSaHRX5gA4wgYVpuPL/MP3G67fdLk1cTtqjeLC7I9R2O9lzlfcEoBqxQaPT5GiqT7JAwpJeKJwgSZigenFKIgeGl499C/ip4Y0MOsTXKcGi/jl/Ngr3+YcMsJ1KZpCkp6BErPF07FcmDymTQ7IunnMBvHZDtmdvpS53hCvPt3RoH6dGq7r8cP0z0rMWO9sQXnlQzDX88QfDpZEwbZUxHYX7hYMCteCe6tZJBOksJh+fttaEOdTHIttW81+h7r0tju2e6457xaWaQHZ7XOyI2GOZjzIoeuOAl0Xuzqj0XWo1HVSZ+wx+12raMPvf36PpqbXiIMUhWjx+UbsNOfjdIn9FyjdnhMn/pY+C+aW5hO9cqy+n6rfbQNXAJYZN+KYGJkU/P0dpXVQswsfl8X02Z9DONmiRTZXLCFKqtWExu/eYvfvKjfHEqYJjWkf49o37baXT3qF8OW1ZxikLRpMPMQQWhufjvbTy1Y3fHaUZa7MZvErNhthnRvwlZUV5d9aaodbILhI3a0m5i99k4vvy2aCMuEHpnunwmQPoihQSGlJNt/XoRXvm60HIddqEt8u23Y6tWMF3TqLMD0RL5PrzekMe1Icye6M32bXqWcXyv3NJNpRD4rRwaMMSbpbEOuFF0V37awOHHeaB4EkCE3WxU/Q7K8QbyNQxHLpK4CUwkSI+36aTFydXOS+nh0haZL5433xclH3DFTiD93Cn65fA8MLL2Xm77a12XYHqJVFHA3MOMKSdyy4YNhfy4YEkdnyYXWvc1Clh06V05FFHfoUIsz1l06qMBZDV0jlz78iqTMa//IF0WdN5vxq6bi6lX9+6BikLp+2y9cLygPcqSo5vT/tZFmC5cPwifN4vaKpxOUE8Iotos96fvy8gw6t8dViaf/G0ZTbzzsEy5NL1YdEzS4tSwxuLdvsfGvO7chWVwOFLmyZ9cKP4u4XiguD7QBzDB1HY3/NE5jfN9n8/G5YehrShKVDfs/P9Az2v+fHnX4g5nBd1NUP39l27i+M79G1FPBLFQNJF5zpz7UA/HPL2da46nzi7x6Ds2prtns/VZNhq3dRWN5kgqfjPAhvs1DQ2XXWs9+uZWz2M5E6NhijKOhbFol5oGrWUJPsmtcFZ5tuQHN+k4BuzWLlLzsLCQo5MGPtnhF9u8yC2X8ie/ldZXwf7Gq4XzYjncTohbp7ek3QJtrNp0RuLsUqN1c5IstlyXQrUtB3/yoNuHbTje3EtZbJ5638gplvUPrWN5HYLCuAb5OGZBcqjU8rY7JU63sPML0q64grBjbQhQQdc6btMePHbRKuvzl9EoefSl7fAslDS+12ZTu7YtnU2Kvuz7/Txnj0uWEUKbqplYGXTdCiH79FPrciljSm53c0xAGI3yFnP77MN5fgz38mnulKPj/722k93y8hpWy34yJTOpRNrYhnRdf25GhLKHyrETM23OKjs8wFdV4/jNyIZNOPf4nZbsCKc2mz7rZuFFBeH4ORJ7m007MKRcVQnZ5ZWWJyeiNjDJN60fGq3Rz94SWhF3jKw6K8zrZ8vBzLAcxXcqHicObZ97je5fC1vQ/bbIosW8mfNITZ/8bLrUnbQT6/JLhXvoNX88+HE+lzWG1lwrR7h7L++QEH4BWtqQy63Q45mwfR2qJFr9uTko2yKtcwUmvFTqh7m+0XljKc94c9sWIbI35e9SIcO3E+FU4O2p7uS4AVFyj5+XeivysGmPOFrim6ojaXngL0WZThLTIazkPlhtdfRmy8F2ofrfxlacHmOYVMN/ZHc0jLDsPJq1fMrM6W+advnM0eEXuJCnNcbYtU9Q/YJ9ja53xi8+DtbPWaGJnrBdU9L0aHVOuIti+8YtgGGoC3bA5UlochYuXOz+EQqCdiHnjs88V5wMrPvwoeC8aH+0Z3kSGULtNjueEc3yQNVRu1IDsF3nw8xVsBbjWz2HYqXc79115Wr/ddT7bn2DOHxCAJfN/PmJn0TjLe3GQDfvz38bp9fUqJ38mz/02XuXzw53xz0PgoQ+L79qOY/csEwuthnlVv5Rk3i+uE0LgOyM8fp5d0G0Bf3CbmLCc9Wq0e60kBez+fQlQsza7z3h1EgoqZo3xW2bCx6pnf7yvmG7UWTfWoN/PJbA0LpM+7GMERDbiF2padBu6gwd5nHsJteqbrmb8z0UMW7L6bM27Wsd1OP77/muqY7H/r+yrqGCjRW4Zfgt4Oi1sGoL39I13M9WKIo0X365dhad60wNrTFMMe6wrZ7FdJNDw+ygvm/i1Oq/hiDrA0DPjcamfWI6XJ0WuRgppYMTtlQ1xwaaElqpbHL+ZtBIzGTRKef/lO14bVmkN/10tgY3/BU3DY+MuNIb3QsNimxD1A6X9fyzQEoe06EiSREA3jkwSgjjUmCacyos4mFNCUH3uig+IUY6jWKcz8l4rY+JrdqOTTn36d8x9JP3+seBbVX35N2vcswzlAHc7nz1/vtAzU7LRRsDz3U/ubvK3BouGCOFWm8VXjXT0IG/FA9JmPDw9kU7jc2IHoQeoiEQ9urVx1XDIdlKod9SltlPJ4kJj1dTW+Clh1hnQ4L5gflVYkFtZhAvmgmSQNH1Ix8HpIVa8ugek+VAVfni976PzFge3Wp1fWv3AbAHj2Cwut1aHRXfmDslJCoDD7IcM9jWPwV8gh9spl/HtSRk0N5kFBtny8ondhMAlywbnPfFJvh19/9aarwl8+95/D+oX+ny0F8n9vKeg/k8YCTVn73NWaChybysxOvLydRpGekXg7hMy19F3EpjgWQT+flsx0+MtkJ7S+Q2ZYO2JcxXM0vF29QhYNdrTztIoPLD/cVS0CwFJUf/wB+gmr3vCeLb9y8KfCmwQILW1g5s5YIXZx96X69t+YYV48o+HJ/BS8k7akKLI3GSsutgLhKDyxsCtP7fBwLjXq4tUSr3VuR6Pj5rH6XBx6Rr7SjQ9BlNVKCy+d6dPCacftww1hY2QFMYc6QqMjfHLUR9mWjmfVjMSvmp7BOhRvYpJDh8bQIHfos04hXr+XsuYdcwl0df5SoKwH0VR+7AY+y/SJ5au7M5kU+Ao4DMXE/qTzt3CejYe0a9izDd2+Ct6UUgd9rHUk0JSLKXq+DHB9Kl+83OG24Hmsn6EXiEvh+YWMGfm2Q8YLCLGv/YePmFwH9GnKJ/N0Q0IDyy93QHY4UuTdCsSa7hKimi5Sssl4X9DQ3SbKxfnNssOfiE0HoUbbw3me9YHvLT/d3FK5L+olRuP72A74oXSQ3Pc6O9swcFb68hWRjrVsK++VlsYDd2BflCMx97uXSbmzlRGUj4ZoL8NE0/K72KOQiozMv1/wI/YTuIavgGw+4ReNN/uTgOoGAr6Yst5yKTAVqPeSRazuUUdsZ8kdWi4vOR1DxyvGQ6AFIO/iDTO5rrfT4/hyVPH4sejCoJ3Jp4PUgNrYX2KT6MMnO0EhPOCYs63+DdrRMVuA5117s8BYQturXxSjjbUPyI7hl/nJCNoj7Fw3xKsut2JcHP34Fx9UDdJXMeJAKmGSzj6JQtduJ+UwdbAr4oTZzmlCXXBcizDH19/fT8L2OyGc1yUzHrvKHMvk+oKofabML3XV7Ov9d4CoIF/iRHca8SB0XDRp3pdZD/L0u9XHlqEPQCP3zB18fpPfGsC7G5jdq5QPpvqVoSqFF3HkBZ5n58kV2j3eOvGVp1cMm+FagppBSOL0VnKmJa4EW/H1IbbTWtEvX1FtTQIx79dTwQ9L24UmGg7ExCrKprCa8MLzFoxhbp/MUVKOGMX1qibGZ2FkdMYDWJeEUODm1e9Pn7JWDvg80OmtVOYkqYMCr2pImLNZXjI63PaO+gnliOBUWGXjY4lqtKmGlPzFk0nOFfjHcsuIn9cZ66TUVawL4cR19q+MP6osWDeSbDAjzqtoCp9LCfnqGoi3f3KTmvZDhBsLJHKc1iaflPisgOKWDgnVPs46r9c01XgECjs6bRnRUKMD6tkd0yGx1Wi4BtYZ5OUXEX1qlz5ddrcrRKsqx8rdbtvmdbMmVBWbNdu+zgTRx9ndQ2kvCPMeUpKN2WP+5hTHFQkka1cMq4+tAM5NHU9qgVrmClaiHs/Gg+nbmEbj6dM1EM/TvtPzQuUdZ4mENmOVYpQgWkzzgAwATxmY8228YpJLK4dYxQ88XYXR5zQlFZwV7hLXhj0SE+96BxTAglnuO0VzPJRKc/lIREMKjcZ1lKWo+0qEbCK/8elmnr3GUfrBq8R48X63zLHaRC7F8aF1i+VWHT1Yv6/HXz0webDkZ6U9b715FzYg/sHJ9C8/lOJdcFXqS3R4vl5sJ9cvv5rc2gL9oPR0+dYvaLCriELRpUemN7smGwM7klExre7MSN6vgjunYQJZeBOGZf/ts6Pfe+hyOyTEUqiKvkUbvJBp329sxmPOKUoaqLavBXPX/hPRPu8a+EiaRRnaqwXF4XBVxVH7ED/rPb6iKKmBB7uB6KNl+mNXti9lxid2kkbH5NUUaAhVzzVem9RF4+96110xMuInrOWq9C7Bl60TXd0bJxr2X1RCoRQdC8LJ9Fe/n1vG1sUzXrXjUVAkUKUhZCE4r2xKk3OiLDNiMlyfT9F0fy1esJi0Azs0p8IfHcfzYNGbEtM+nBY9DoQSNVfLYI9zJXF2OCt3uCnNhQphwvkke2cNBWjZz/Fw8PlhVcRoldwM3N/EV9arbhnCXP+o+EKkFXXCJ5D46UB2Aon9aaNi8ZdvJG4L7n/rJtmD8tpqLMPbKeve33ODBv84ETd4nE0a72wRVuuSMz0tlxkjfXNH5/NeIbY1aFxUbPcOnDsS8RauFo23SkrhcVmGLMjSqh2N3heg0gkm5po+i+lx1vYw+m5Al4OgZZNyUCjc6CdigWsX0SBLpgt2Ie2Iy6JVy5tdfobn8BKJea/2Gd89/b/PePhwXAyj/7zCzDfYQzgQcxSHawwv+CC6uTKDj/5GseB79w7EWMVvPuy7w4BYYzXE/jiSOderEO7bLCLbGq38JnwuRaCduybnp2WYw9gNOYjDxSJGF8Xt2Ll7UW0v6Z7ozw20nKogKTsNv7H0bZq2aZN2QlQXboSg/a3tdG+RohaFiA5Lc8n52rm4P3wg9qfUoj6vXA0NtZaRY2f4GT+OQyWvDWHDrPRmcX5KXynUE2U/PoMmcyMYyMwVjVhG8jZHa2WJSEwkjzhbOzcn5kO97sOxYlb31c3hzJ0AUgMlzPrGgk9FLmuQ77szeaRt5HMt0UQoph36W/+aQedB6n1KvPYyF42OWyfo8JUiRp7nyOwSqnegZkKI1wfX5aNLuQKB6nC8gMRvB2ESOtjrnTPjYd+Ol7VmwUKJDXJppLRgh2xfQ1jlAvNW/JYNuYnuICH9QZxRgHZUfeMOOyXT8dDMg0N+/NDQ7jrzL9MnmvFSVLQjNhjZNE+Tb0x3AhJYDru0Xvf3/Cquk4lYuRRlbMnWLpxMRWfO63sxx6N+sX58kE6PXeVPoVZN0D7IEhcON8z+5PIBpgZqdjmEz4IvD+4evOl6Zls34IhNfDdv0dzXf/hCbdlLoHLRlbi4jCNe1qaH4vCc4+mzMCKx3WQxKK+poPtG1Hx+U59nsHznSrbKg7UVaZwJdZtYZ+f+FaDO3jQSiIno4ZU+NlF/8i8CWqNIIdp4+mR/9UuaGGVWpggmE3MuK16ShfRZBDJqs+9ngNUrd9lxjq/5eqnapw+Rmc/b1+fUWO/Xl1uUEG2ufzQ0A1hD58vExWnWir/3/8M/PVotM86tL4bVoAOzp3mHVhQ1Mlw3XUDM523r9/OZmOBKlYRXTOmz8RKKDYirB8NDoOXF8IsXYhSE7IR5C9lmUia071428e1TYtI4zlPlLrEns1RGsjEztwbQbrqSnXDpEBfvR4rivFgxbWP52XizWaK4bmuzjVc4Re98Dv/u7xf/4zLPO7XEB41YhV1H846FCd79Y71rxCxv2XGUKzRU/EjHrbdsm/sHySgrTkeMKmedfX948XntB7zqF18+2O3Zge8Rq8S+36eir7FfIVWVVObnR9w2fV7WsDgFB2bHdpmNu4MCgKpizZxvPnJOn40L70CM2Waut/TbrwWovMnG7choRvVHgNFYMgcvRXFTrKaD0ADn9MI2YvfldI8ajHZFkjDdia5ozASrgp0muixObxbiNQTKT//88aXx936CUD6xLLI/Gc+6nfBbb7Z7ZHE0H1xKwXjFHeb38I5+fBFd8bCiasL3nL/y+g4uYQPzI6KZyzK55ui6oQHxTue2za8HbUDqK8toecaEj5SW6V88kE2j+10/FXuY8Y5oRNq043ql1fCm9pXeukXvs8axpXVRPHTinRcqGsz72oDjo+vZD3+HpC1eUFuDQNUq7H3uPtc13BRj1itdjahcBjn0Uq7Q1axvBgadiwKRG1TerOJs0ku3RJ382eJp5fXmYD8fCSxVm7If//zpESVft5To6OOZY/W+DBCHaU6V4801xwsjsRJaxkA8f00y8QZnCvneWjItri1f6hfHXPmOoYlBkL5oimksK8ZDuuEzi07FXH8S0MJeouFcb7pQShuw8XLC4mH5zAbfEUs1ELeP3/8zx0gcBQBTsrE449UYGpsrbO1FhEuX8YK+hEyE0RAzfFSvvtkthaulJPL9Toybu+Xs6L89EEfjw3ZBahRScjUd1Ejh469+VnC/TEi6eCJV/PeNUzZpFsz1BS9PqM1mvKZwqbs1Hm77TfEX7z88VGDtR1O+f1M01x/8NG7HYuYvOXquPg8S1E2PJoZTEfBq09H32w8L5rVKjhZr+sD1qXn5g5vnoM71iPib6/TH3+GQKwsaz/EzRY9TA93L08nm+vbMfn1cVzC/H7bRkemLoTyIPz5KSO/nvClojtXVYAIt6ljnfff4uLAkvkqnvHm042qb5nCx3y4WXcbbafqcBZjjFY9wcVo6pqOszHqPaW/Z94f3d1+rDyHYsmshHyJWrKQJUN7FxIhzJ1seNqYIynye1v73/l8pLeG5iOaN8Yi2s7/Q/PKR2OSmFWJqPSlowoSokFvvaEqWq1LRrvue4I2+zz4kiFJgjrAm+Lncz185OF2R+RFa4j+K0OfH/fOFJGQ+2Da/BRl/LS4JutZqzHThbqCl9v6GEJ4GC08Ps8/q2T9ApD9h3MdyH3X3ZBf+6QNNEi4z/n9T5Nj2kZAfP4I1BQTlrcE9s7bZeGhGB13xNibmer/Ket/bh6ro+U/8yy82HaRa/cbvFA8bq82m9ZMmaI5/Rqp5y+dDIxPstOCNFwYNTC6Im/O63V+BaAmRTKbku0bR1ZjQhXBg5uRleqq61/OFbcjxxeddWHd1bcCGmOc24HRcv6Yfv6PS0/iYw3cxlJArskg/e1ia081/YlhvM0IHmtNiMu2TCE3kUUrJN+LcMhcuTJr7ZVcJV9kwfsBDx1MKbJu1DE2PY2Oh8qUd8ZS8jYK7z7FWV+uKMyOZWwSydfeUGX+JJlufaDRqUimJfL3jcd1VxTS5uaX+/Il2cw0zrghSDlO0T2c9UJi0mE9F+3aHmpmB/DDH3JIFGH0vIN7d9ttBsbUrRAvlwOyeJya3unwC2g3Xn/40m08xOqq1XSbEiFI5m+tfB9HVU5njSR4at9fG+ukhnMd3P/s+n2aNjJFtmWZHWrs87WQPoBsz4k7x1x+2F+cMN/qOSOm7z6jvNGkPWmZ+aH03962ULnUMM36SoCgffLx5bQfi6sYI5he37a+z3DeSqKKLx8c16XA7O0hbdXu2r9++L4FqNLD26iM74xQVfNgsB8V+fTZ0wRwr40puN/A8diIWnguXr0TDN9BuvPW/eDf5pSz2cNzHBxbO+Tb7bdf1r/7ZYkM50w7BHYjpTiTIDS/7wx938fLoKt8s+BgxtVKEWk+ZjVrtL5/BMs+YPPzczYZZz0BqrBMWbCVqjigVHLjaywK/bN3zB3vzEqFsEgcvZj45oodyRaWtErq813423Z1SBBScrlSa3GU0fYe9C3N9mevbpwASQO2/HYeLeEafzXUgZmN3BVs8lyVsd98n88f3sZjC7z5V8/WX4tGJgA9LIXbQUI1HZi0PViGuvqUFoRKG5Pe8gz4aIloKiUhLde36Y2cr9TpZiYh54ob5POtsAFujV2bjRZLxOf9WjVDticn1Z0vf4bEB9BkWbLO4bNv+SnILFC08Eh9vw6hrjbsAs9/HZj6WDd/7N1fL+nZjuk8OaNgqtyuy21dGNgJ6RF1bVBqUz/PEtrxOOCX+TYHwcQ1Z2EViMQTnvQHVu7KZO9df9spKB/34yf0uCsWPr4ETjAUJthI2mysUCorR4kL9wJL8VusfnmI6lka8q1f7XXh6Duj8OL2Z4cBc31dsQgKkB2I4sGsnHMp3qKv2y8zTeoj+/L/rxvoyYsgW73asipX3LP709WvHh7jUJFCK1KE8Hba+FMf1GWQpuuOijp+8K9ZWCAE89sy9774ZixZYQ3963N5++NRbFwGMZL1lzihc2ymdWgPwIruR7cF10fISQoPEe34m2TK7olH98gTC/v0l+pl7rbLTjxpEcmASp31jcxg/oqsW0/JONl9T5N3DOTTrWV+RQOgOfr84fXN4Hu0Ds61QavmvHm3TxCMkEiK/23eXCRbHY02Cav3iY93BFUWLkBIivLV2ggxVaOavlF5MjsbFfKoYroUjVavrm3cckwkdXp49r1fJ++gQUHACXhBnva34FO92IkRXV2WGia4+nT5nQO3Z97BcDkPRl+f5tDXXisht1XXoT0/O+pdyKxWzEenbEoqymwc57Rs++wcSupnbkWhJ8Wmn+9Y3wHorVzzteBVN3noKQVwnZ2ay7l5wmm5KuFnpimnJBfP+hdcSOpexRqzLQmn7wxsomv0QZr0QK564ZVel0AQ+859XUU9nN//pd4a38tacX8ELmZ+jS4LRlduJuAuq/PJ1my30bPjF993lA156u9Qc88o1IP3sdwyHeddO1YhzZeYHZFe5cTT79xS0ldUzvJ5WJsunKVRn/opzR5mK/iI95Z/+IvFy43Op+Laikun3BgvZ9dlygscKZn+F7ehwQn1nT7VKvT0mybdpCt7s6jMcx8+FuO2o82VePEWY6zGz9bfUftFrX6vteejJReJPs9PjwVV/fGAskkNBW+VgoEjrM6rS6mGKbWVhSP3d5scP23GQ+xB18XL512+RzKpSfnyfiguhjIaZXwI30YJsL9cUTSaZT3l97Ja0360yvvLlQ4VUaQqZ/9pPfmdeQxH0VNJnPzcths+AEjBcj9ClKM6nhj0zF8wPtMS+rvJ2jA4WhSGo5D8/cTzqBwe2IJ5ZPF+/U4ox/uEFnm7uFg34MVEYdkFG9GnZI950hxCMpr6Ri5rr/lLZq1iZ9SX98ZFBJ3wACfZvZhia3DbffhTUOR+ZWZy7tnuGMkWzHiNuj1HWidqUgFvcbLZttSib/dYXPGXxzUiysIpR1lcA9Hx54yGOw7ZdPJcV6LDZYsnXzJaJi26Ay7XldDzAgY/DNS2B0CpmfoAxEmHYn9FTJgbByl7PVrW+TUD0tk+irRceGuQYLHiz+EWn2V+a+y8Udprk/viVOVwbNYTNw/JZ4GkOEkupsmDutzDt87iZQxBFNTyHXJzzIy26HX7swdquEvq0zpdsaleKCML+FJCdUtitFH7PKQrfkUznmSWoCSsFQ34+Vz9/PhrOHAdojn8qZFe9FYs0OwPxrwXzzosbokuKGoiX+YFF12dsznzIgYeozzvQh6EYzpfD7AynDrHp5lP0FugBjNtDwYJrYPqdzp8GqFnCqErgbA62UV3BZPUar/TPoajiAVlw81YLLBRKkPGK9aLyZmCzi5fVfDhfLh2a8ZAO5JWYQ2qYOVKfo0ycQ9Fwrh6TF9jkcWQzHhbDXE/U2R+f+xezHxtNnrrxWMx2m7ry//TuqH+OzJzrwdv/6h78+IXoCW7LqyjzlI23GYl180rEsvBwh5Mp6+zn37DofXjBfXWyCFlyK5reMRJnwlQyTzKmYiRK16F9GcS4/R7MgouLcgAOhkdn/Mv4vqYWamYNJaTCKRoPVt+AfN3otLKHmznuljVG6pPLjDxuLGJSnZQgHKqQ+UprZnVsrAeYMHpR8Xyu2+GnP4Ll+U0ubsD5AMP5DI9w+LDtThXafvtw9+BLywPmRzH2/+JjYzZfKpAH8ps37zpIjnE/+wlGJGIzN+DiBC2Z+YfJAsIEJMdnzjaLwsjGmzd3yvoumUcQfLIezg8FPE9lzHgxhPpLKNZgPLCCc2spRXygegASPx5++sCf1tppDwf2lYnnuFZB3YP2+vnn5I5WPBpE85yD4bqEnN4nJ+MB+QDM/cu53yxn/W5oJVg1QUKbq+eaXNqQXHGlUiKOtm39KY7z81//8GgN+VyfUQxDPg/yrsOKj0Zvwl+/YCPd4nba9lmAfvli/+rBYrwb8D1KOR12n6kdL/v7HfqPe8MqPjr+Cu3nwfOGlNGFb9z9IX3LA3SbRKfl8lAW4/P+vqOsk4P5FPJtsfrz54b2QUwmraLRwJnz6z8x+zRORV/pXf7Xzwl/z/frR878iIo0bdFPL8GurTdUtXujZWifavDr5/nereDT2QIZXvBGM5/EfLo3qQP71wLTpqwn3snyN4Yffu+wHs+nwh6M/2vwwfq/txRc10fO/K4X2pG33zvs2P9Iu5JuZWEk+oNYiKikWCKTzGFScQeKCKjIkAD59X14Xy971+t3zsMkVbdu3VSqkpRmT01B25LcUriL4pVqI32o02+6AHrVSkcVvFb5pEZXwPMy6vS0zS7OpIJlAJIfs7/98FX9G7qASLvpYGDzOjzySXdMDsQiuGJ3Mi/Osh2vHLzkJPP3gf6pf7fRbGH7GRC11K1ab33qieurhZ3/Y+4OURpwIryTgfokjZO+2hQkEANLHfy9ctnGxHVkWTp/ipJ6aBDZvPsEMpROSSl2hbonWhmLknXUdJwoQe6Mwvoq3ah6w294Gsd8+Bj2aNEVAR+d5d4PN+PxAff5Vcgi5aGz4Fj6QHJddthU9g6b2vBOAL2XyN/ubZstR6H8SONwG3ye3I75ltEpkjZPH1E/sE8qq59pB02xjjRKZy0WRo0mqH7fA2y+bBbPCtlNcPsxk2o2eqqTbiwmLKpk+Xvr+0HtdnprcGrLB829o9ZTbf80UDnob+x3il73zxPzEYKnhT3tbKBFyG0T3O/5i3GwmZ0BX20iBlqBqRaTAM2utw8g2JlP6t0y1o/T/dWCM+wXmup6kM9NWSXQlWuVFKeLTrvOJlwbDbtYk99j/CFhvCBmhoCN192MZ+t81pAjcU9/DMOPOn2Mtb5bu2NcDNh2dklyK8H16zPJYX6x2W3uItxqLcQPdhTYzH3LCV4nNfRvw4bVSzb0E3jc7kUcxGE0Rd3tAlPcSmQjmC+HKAOukFstNj41HqqnxTgI65XjjQiVILI+ns0UnLftU/dOdk6fETtBnyhZG5iYp3xJ6Iv/t17rIVDGgv3b/Ttfqj+e4vpKayOj13NX4ZPEc2yQ51SDAs03elRFO54sHny4X8cAG9qWsHn0fgKw2/lHHe1S1nOdugSdLrlKOO26cUac/gLwHj6HrVz8/P1eHqGGvEm+x30+Erx1QUX5FitMyh1GA2EP6eYSky0oD3X6xqkJlced/UngHIftD7QSOT4O1v9n1FO3hwZ4T/9g/XxxEWv5pRNXf8Tq8/5Ql6Yy9zBnnyNRm1nvp+VRFKK4yGefaK2YzwFaLhvD+I1URuWxXrTjrUPlp8ixbniWuty8XwlJaMjU3kRxzqazTmCrKT01neMhZkabdGL3nUZ6Amt2BvmzU8A+p3tfaqDMBz7seJCyH/KnrVI5zF9UBfZbfCDEi4t8oYXpwmtratQ+mWPc8867gNjSffINkB2zT2d1It5JG+wvTuwMyB8mNNl8jxP8OPfDaSkFiTRpgS/bk1KTQjsG0vsdvmkgP5lD4uNmEItKMqns+CMbWf+6g0ei3j+Y2O3pwbjL8D3wb6ptvAiNyiEQoBUynnrJ/uF0OJYaMKDWyE3dqv129F4CKj/3HBuqLbPl+Y0SxGWiSY2zmNfjH54e+s+J6nl0ZhPfngp4au/e/3h4V48hpw8om/DFH36dEE+7e8xDka2zjLrzMx7vYN7R1b0JWN0mOSNEKCNJL5IIOzAfET/XJZGQzX/8Trp0MZXthyz6ayMcQ7++Y0YFJ4MwMhws65HGltIXA1DK1MG3Xu1yKu0HEYS+elMNu2LMZPuhwIrv5Ct6X7ZYuV1AbNuIKnAQ++kbB/baqNOldv89rLNTnf2fv5Clr5eYBvwlhVfmptTEvKP2tx+qILsIPlW5X7Pa67eEkasNal4HKaZyHxEwultHuPvWcRZ0noZD3I0zduy6YcywsgzW9RBxz8dsuScOAS2cNBpdqMxm4Zws0EuORyp+8tTlKXEAh9t9xJqNNursdxsNbZv3C1uBONWdro4yCjE3Uat522hILqYGWwIXqs6c7Iyr/Yvqqd/T44eY+fLWMxkORvhZB/9M8T/7dF/kQU/T/tnPHKensCNzj3Gc1M5MD0ElNSI/0fPt2zqkqNUSgn6EFU+yeNKV/gI2xzbU9j6eM8lzYEiV1nuE24u+Oj/faIJDuxHoCbIhXuT3mCCCT0CEPTnU08lLEuDkV0w2t6VCc32PS/i90IVsf1GVj5tXUSHh2H7pGg/6nQZvEcVKdsWOJB6c7/e8T2GWBxX/xY/duEoClVIzaomu75DKFXiRcZ2NVb3harrLxgBukdL4ySLv8/F8rn3o1kbYt9/pGK/2YMKDkiM+5aiMpzHINHgdsxM9vro8Z726VCBn7IFNGSrGNlbpSoL8EccqzXw0l5qgiRYvKNR2bm1Nui0tkMlxHdYyclL7UzjJwGV7E2cTHPttzioB8qSwfWFPbn3vvS/NP387bj8BWyI3neAtXCOyaZHRD4P6bqGWXB6fdJSo066sOhAikvgz7JSYJ0kpSq3S7bDxPV3U+XoVGnDwbviH99PQLjY8tOWC9eo4oflSmDzo3MHE+sfmcsZv5Qn6sdWw7e3MeNp0oQJLUm/WwSM9a/0IicCidvGbJWT1dDCVBr6FeMCeGh5qlgTKAKYkStiJpLGfPu8RIG5kkdqv8JQztNiDqG9g63d8ve/Z7XUWxWomMVb9w4dNvf7TYPV/nMQbV13Sj9WAMDQRVUuMVWKMciL9ne/xhdZyh+FxEX+HXsQmMaJ6LjXOQMfS4fzdWNWMWbt7Acrz8qCOrL9zdhw/muj+nkfqr/H7O79EWxyn7kUWK3TU5ZS0ESgH906xqc5o/lTbAfrQ2fov8Vb1i2e5DYqEDY8VpQrU5RyJHNq8D4zalib0TOV+FwTpvcLyG2cOO/unAOBWYZ8e6N4Z7coqYUdYT0+3c6wyJU8D5E2ZQch3+1LZfToTeC5DQQPn+VNZFQ2uFAD7YVmeSM6aP0ndeXrU2JNDT4ev80Hh0h/J4b155HMgWy7Kk7tNOP4XoTWeu5C/doe/9cfz43lrYFNGP3+Xd29nxTsR1viG9V+k5FTuMwJ/eHVsbkK8kOV2R3l1+PgSPAf25x/SoSsz8msEw5ks6cbDJf0dsGUopjMmJjeBhlqFnnpNU6ehFW0gR+L73NcBtkAsRagb8x1WLoXek/rWR2gcnzcq61HDRrs6VrAfwcGn47IOEnDey0FVZELN8pCqc+LpH6Aq+lJ/k449exxvChx/TwPLSW72i6N0Gdz1r+DPZhLngqaXhaR/7YaeyvMvX/ZwXaAPrS3FoszyuY1YANLXdrCf5Eo+0Wgs4LiEKbZbWcmFuM8V8O5WSEbw53rSRK9Fxu8skaXVf+oku04DL5H5fuV4vEPzcxWhQU7ONDnIfk9BLC+Sfc722Be4BjEstu3hj++VcXvp54pnDRhGP9LTWKls6ps+QSte+4srG+pO2z81WPEAy6ou54Mlhbz4KtiWNEtF2PTj3wvCl+vdH3m9cYbrhl2Qb7lX7LEocmjKuRMK7j7zxcGibH6InoII1gEb0quPWbczFKij0PJv5qyqc7+/DkACp/PFsHjmy515nLi92Pq//IU/0nsLsXXyqS1d7HhR+dFGKPo6BLCo5yw8KiJKfO5NEHfH9a7YnCsIn48Dda37G03aM/Nh+xB/1I1OFvvzX+i+y0j1Lr/1tHk8fKTH0gPbYfGMf9at3v+Lvw+3SPJJup0npC0X0QdkDupye+4uohaQK6no8GTM3FoaSpXQp9YtOcRjeBBEUBWFkDV/iXl+KUvA55Biz2effApPcgTn3fFC1bzp2BKZFif+xTv7Wzg161WxRK3S7rCWvBQ236O3iez7iRK+2vE95Y7KB6QN3PHKL/vtXEgKTI6YUiPBIxqY5bmHUl0cah4ME82bV1FC6rYqtdxTgWZm9xOg6O0Q1o2kZhdZjqDg165Ma3wj0zFMRPcSi/6ZTS/UnYJbAd922fvzXpv6+S/fW/cXq4Vi1+PlJiqi93A5fGK0dWg+GPs9P20bbNdekG/nYqv8xUciFFzbz1dJ1WDxgpDwazyc0lor0PXxqKms8G9ncItvhc5HZ+OzlW+PsKt9yYykyGc1x9auW5EmLTtq+Id5nZ14v/8S+J7s9cq3+qHZoFODVrzyx1R+OaMV+gGsfI/6Q/nO5+vxxkHKbwqsyF6hkrRLM/SeiEmtHfFjwfPyDJnDLsDy01bz8T7TTHzsq/gvv6+J3lQE/Xq3wPLr+kXz+neIpf2e2jGb4/a8VRJxryolVoLwFVM6w0d8fNIDNr9TWU94pBe04gk+of22p4rgDH/2gPXTXkDNGETaH7/0d2PY9tPu2Kbg2eqOfMewrdmffzvh5uRvWPeK50KpBsDf3ML4Hij1AqlmQPopFXplxYDmt6kEqHN3R3wKXb2fvUGsYPjZH2r/+mCVcJ4CEk7hTP/wWHhKAgCP/BvVRLj2/+y/WmdPq0fp2y+Dffig7vyL8SnvdId5dm2C8kwe2ALzmhOby9eug/yWVLLHObPATQYIffmml8y5oClU5rvESZ+UTN/tKZ+8oK0AH6oaa7+dzdh3OCswy0T9w29EM0/r4LAtDOwfHCsfd59AgcZjHbbPNOtJQn/8Ydt8X754CUN1IKy3UVBL6RofL313a3wbNvpFIsL6fSE+bgiy2vPi8+hc9uyXqgta7YEey5fmdN9OKOAxnia88kt1+ryeNtg0EvzGV2v1D08hz/RkjY9+vqCpsZHNzRuyT/xEbfNrIEjrEy9sZvwxnq6oKSWOebX/y9dXOKsec1jxmSz8M0S79fuArOlA7kOgst3KZ8RJ+QbYlruREXM3X1D15ROq20UTD7x3V2A/cg6Vv9tTLOhNR2DxotAXtqeq/rL2foHmZDAfmf7CFs/SGoi+955a1e9Yr/mRAN/KOFI3UZk6SVwXoVXPofpd/7KJ7g4ApAo1GoVAndktfeMf33DvjxyRU3C7o/EzVX/5E5tRkpno0FUZlUlTxfNvliqwH86dzLfXyGaaZjw6oqYk3olN6ry3fibcL3297qe62t9VQM/9taX2RT4zlj5OGgr9g0qPR+4Y8/5eTqGMwwSfSo04LDWqO2zfP586Ylw57Bv+Psg98QXG253O6FDBAmE6K/ikPpJ8wLNgovD1Tqh6jfF/47ezUVx/k7vnfFrWWdm+zAE10yfOheMSLkCvGiHvT/3Np81zA8CObx13kan2y1PxeNG6iRe/Oaku4o+9J6C9zTRsB9rA5uPQpGBu+4raRX9DK76k4hxgl7rvV8tGgZs0sUnNkoYtctHOxPCB5Fnn9HS8PWrhqei8qHkv7O8v9Uel0QZngNu7gA2rlevt3/6O4+OGnTKva8qG2kTGTeCpuuL5b2zPAVioPFDV2t7YsuIZ/Isf7w+t26eeASqdivrzNVm70HjR9I8fHll36sfsI6QwpNoB39R71g/15WP/+QNVyHFR57SpFQkXnx11N51Ss+4eNUDpfrPyq3c/9PpLg3fj7f2mZBKax3BqpdWe/c7SLvXSXKmAHNuvsHez9vma75WglV5JTv75zuia30CIYfInQ4r6Kft9usMxmjD10nXQxWmo76KGux91n6ql7rjr14V+7DT/FaZyzm4/Vv7hHyH9fa/+9tbPXktgniRNnzSmsXoJoBxOb3/KrmE9SWcD0Jq/Y/MSdWh+OuYFNmmpEXHl1/PJF/ew6lf+rjxbMdW7wJBy++NQXzuc+/lyE2WJGurxn75BTPvkIi29I6yKJ69mo6HvgevvnL8V/Fe/VEJmg9VeF2ps3pXKqt2eiP/4ksnyfFnagw+OE2EiSl+9/qePrvmYP5tq6kzm+QCwo9vUl+avls/Mrhfg8ONN5XktkV35PHpwzoPKr7ZWF/t5i+BzUyufl4W2n1yVN0RFL57UL+ZEnURaFWK/TX/++6yHPROYd0FPteboKXTfNUXmNwMwzibp6J7PmXK17pAdygIrdaaxxXk8BNjfxYK6hpDmkzmtgwmk50g9W+b/+EUAJPSu9MTLaj8DSzJQ5c3xH7/kU/OmwM64hziafKGf6l0vQOo0F+wvo9UffmJsgnepTvi416Z6ejZnV9LSAhFxyhx1LpfWF0/6+YLtrBryVe9IoW7SmuqrfsCGPsvAFSuCtWyj5AzOuQDr+WE9tsx4RwNBFI+/h4FtY7c4JN8eM1CMyl33s3AYcgUf9qpcYt0utHyWG3+CKAkb6o0XS52zXvdhDqPD+kSJZ2y07wMAshfCn9QBDXX0TFAs2Im/PK1fPQdITP78DZvSOqj1germAHqck2HrriWAMidDeOMp1jaFr5KWehFU2s8j26BGztwDWVWLLMYeGjJE7kyHf/pNU98cZ5rrtUji0tdk8bJ9PZ5ii6CBKW9frL0gpqu9IZFsPeqJkRkzw/v54NuRRs2xAbWt2Fn+4+/UwFsNdctoKujxPrvk3eWHnl0ujYhWfkdaGRTG0m9rogDmH2FN2cXzoUk+AF+pJ6KMLGdKJlaBKktHbAoliht8VQhUpHaoGVyOjFYXpADJqic5cI9fTrdEKGH8LNU/PXiJKilDxCoWMqtiF7dzXQ5/+029MDSc+eOGmoTgYeGwcmf2/cOjVb/GzvG5Y+x+O2iomtoPxcEmdIb1/gXwoaxxJBe3nOHQS+D7UhLqLtpTJSbrSlQINqZ/9xPCgQQL+tO3T21xYT81zW24P6Gnjp/vnG3ieR/gq8z0p1TZ1Gs+mP753x9e9/OFf9+l7WP/o8q+3cR/fOov36QP81OpbSc5KVzLtseuMtro+6fXHk9CTX0+vfbsOBINfrwyYTd+3XO25FRE3/ltU8fmZWe36pXA4uFJE4HZ6vibtyVknI7wiXlzPyThHEEiPk5kG+1Hh616JdL18ogv35/b83xY8WD06zgdmF+IGe29RX/67qqfxGx+LbbUlYpFYERhPyuJe0Hnb+Vh85379RzIRx95bmvSVR/s//QC1JFn86eX1ItzO8lwSfuD3waXF1vXv0CgphV2dmNSL8rtMMCav2LneXAZu9mHAMIeLP97Nf1+Jz3m+5+eit3AKdGS+IMNw4Hefbby0X94g6RKoNbjnfT/9M5uz2dYW8K4nj5GT8CzjzuKuw+fTxTMCekcMv39I3qpyzlPG/DtQMOKwpx4+k0FACc16T++MN+qb/O3PxjDp0QDv7SlqBTRtOo3vbOYu8MFXuLs4xXfasEfHi0aOj+mnloliH/3kyuZ9yCjKi3L+B+e/PFt63riGVGmS4LEZIOxrOR39bf6N6z3B9jaPZjTHIMohabYXqkRKb94bn/XPcLfm4WxRTb1nNO7DG2NRwLyL1HHLCkbSdqNR2x1L/bf/Tb4paRyayho8r66iVZ91E+cdx0zc3s0oE2mkCoLX7O5vdoGUj7qmerdkLAhCQ8B/OGNv8OlQ0M9JJKTaC9659EXsQIZBETXllZ9O6tJ/20LUbpoBdltM8EhF+7XQnZ/ptg8WSd1QfzCwfThNerGL8iHbg8fVAgmxg7nJDETY/ku9XW8DtLwOHUWTyNBpWRF2Ev2kkquyr6ES+Y/1vy4QpNHqwmGPpL/+Baj3PX7D8/88mmr8ZqvGsB1eUj9Ve+asw+XiiXnbv70/Zztv7cBtNNeJ4yWci5UYstB41IJuysfZ8uTG+BinlRCjVNbv2ka8RCbx5e/azzUM3uzaP/igS74x3oKBA0gH6Mc//2eZdToBRFwFH/32P3q2QHgUD74hOzaQkDkfn9dJLLsRKqr9Je32Y90cKUfiTDb2Dp0eQoDQFpU2LbOMxtc9zYgHAwRtiOz7plsn2WkwqPCbiiQnu0l7gIfq7zhJAi+q36kt396BDamZELLqXf3//zN2m2sfvrdlov0PP9S7Ph2zthw3BkQ8kvuT3Er/OH9XrR4XqHhLuT6f/r6Xz74x2fZaCeD1KuT8U9fHUTa3f/p4+k0lOqE2CH641c+uxuvft4o9+hPD8SnPARn3jzwgKbh4VPjPao9e79FQbxdf8T/0ycWvnc/8Jf//MUDlip5Jx7ZVccu37n1krCpk5BUClj5Rld16bbf+x/fodoZbfP5fO5d4Dt7IA80iIhdMjQAfDc9EXVXi+fwwIniqs9j672R4jlzFUArv6dG66jxP330+njW/oSvKC4H9d3BMc1vVE5sL+42blD8XyUF4v8uKeA/UNBItA45c35HDrZfuNHktVj9VnD3CeLPuxc9+jJWF3DdSdwbQ0tTfhgQ5QM+g0ft69hth21PuPdeEbnEHLAVyY06j7etCE6+dTGGInCW/CuJ8HyhAbvJxsmrYjJENL3EB/XD36Ee9N8USO5GGqj+Kc/x/P3qHDC5G0hXuO+YuDgp4VDFHeG9IO9JpzEbTnXd+NLHR864+4SaRK1bSp1Q2NdTLG15ZAv1mfrvlqnDGHYEkvF6werSBvmyM3UDyQuH/Pn47NX5ZscBzEPp4OfI8/nitVIEGdYv2Hu+rXx2lLGCb6YY2NGOJWPnw2l9dTEu1KwEGw0DIwbMQ+Vgs7QLNGPj7QO26yMR2nqjUm/bBPDsHrZP8cOPhaitWzTH3IjlsZzrqe4/A/Ak3ZDDNw5jZo9xBK+t8sTqvlTQ4rXbAFSNm6m8t8d8JsWNQEt95E+bw4nNu0fPAQKewx7/DWtWfe8C6o3qR6jwkXpqOK8SpF8lkX30cR3h6s8BwEt7YZmLG/bmzxnAiCWZnnW61NPMkruYiSyjCuZVNPPnjINQTD3qup7iTL/+bMC7N7dYP30ytEzarxSttZF4cu2VeBcqNxv4Y/fFx/Km94IUtB+IHtVCdjuuZDRrlQ/o8ifHR8lu4ym+XlrokuJGje13V8+p3zTwuQgH/xDJmjNd7WoQ8+8nJxszbONZw9sPnMuywd6FleqSRxMnhXsXUSV6nHumN7sJDuLWpLr/ytH88gRevPXc7C/iMCLqX0Uf2M21sR0RythjyhsQylTAWNy7bDp0rQuubFCyVeohpugt+geimj71jkSqP9lUy1CrWxM7Z6VgNDGMBHa7RaKnYFmrkH5LIaEbuVG53Hj1bOMe0D2tCZZP2cRYT++uiEITUVnnPTaLwaSIlqu0+JiiwBGubSaDKWkSxo917q+tiC40r+8dqxuLz1kuZbL4SX5fbAi2qy5N3wP05yLBznfI8vn4Lrp9//v5GJ/P8ioaFpzYcvaH9Aa61uxA7jy683ghW2ffOZMjRtEGta1Gb+lvy6aw/WRwUpqQ8MYeq/OePBvoxcXxoR3OPQnuVgJDPhZUTeR3PN+Glw2ePTyoP9SJMxn3gwBmmbzx8fjsnaXYg4zSEx/i01yLTrt+D14KYKz9Xk0+84WswV24adgR2nc+vfuDjw7G++M390fPxi7LFNC2u87frP5J7wdzQJjyexx/upKxScOfP3zAemOk9RJuK00aEwdR/+Oc6mW5TRz84Z39ycV1Npw8SHE1tr74hy9FdOcBMpL42+bnqcQqh0hc/Zlqheqz5ZW9ecgABmodvQBNuS5F4raIJey9yEtlv2oWwdxE2O9w9euHZTdFUn++J/Q26CIb79Pl8nf+ZHR/RU2s3y1FbcpTX5Cvx3jXyoOMfGlp/SHuxnhyHQ+QtX1l+KgwjpFyumWwK2Pe32Zh2bPp/BIkKXtH5PC7Ww7Zu+0ejqUQYt3zTHV+eZwgmjcuxfgQ/RjFcbuHAsMDK7dfjsbiaXxgVOyYlLu9xP7wDX0u/IEetX6Ol/UCDA3uzKhapWE/9Zme7F/uR6HYcZ4qfV88DbA7xNRwIkXd5s9ugImOtl8zR0MzYUUHn/fSUPNy/qBJuHUaGo52Si3e0Bhp+JsB3GN5kn2k7vrxFpup+FzFD5OKdcxqWepAm7uJGtlmiJdTcuTglWx2BAVVgxastI14/mmKf9CfpTqFotxKL4Yqf4r2n3hhmpeiNV5hbIZmzMTTthX16XFb8S2q2fmABXH1X2rc37RvJHUQgaqqS9WTN6OFeJoJTyb/yLZWLcaqghIU6OZEj5NB0WI2UgOXndj73y+pnEkWpQpuyl2mEX1K/WgEpiH+4ntBZf+zc4bnwYpgPW8a403usJLuir/4RdjjrDqU7fIGSd9rT13vdWaTIdYi8vp+InWVzvUQ2pAA4sPSR7X07Ic+8xJ4tM+EhN933w9OqqXilru8qWe5sbOt+LZE9+/zhk+HRnMmMYEW7HOj4FjXspid7c78h1fmI/iiKctLATmFXPhok5F6UE7XvYjsidATeGdG5NMhQm/RKP2ApSrb7tBFgfRY6NhCdaD2u5ueQtf2MTng98OZnHm0gW54F9/sitTT4aYDSEaWUrt+qc4UG70Cy5FX6cWyunr5WO0HJHqw8EnY7xDLWqUBXCkO1o3ou756pDI6/4x1kMHDQVOSLwVktnindisc1WVCfAL8VrTIVpGvbDTnbwIrn8DHOr6v9mNxMJyqxmeRuTC2T8AAHjkpNhZORwv6cTxYGcQ4FSPK2POpCuI8jQbWZHrt59Ov5KXrdP3Dew4t0ZxO6AcSpsbtZsXjZ9/64ruVar9BV0OdLcGxIW72Ij5OBmaT+hsneNnZhD0JcEzLYzjBmJZPfNl+d/2IjdFFj0MTUuPc+TWT0Pp6dxVncbK4+TxriQBVOdSE6ZoY03Oj7CEuqhGb9ErY8inGEq32SI0yseNlswkmyRk4i+rJzc8nD78mMOVYwooyOTl7Ph0eOG5cfGvxl3gK41cBKavO2K6GTdxRc+HhM9gTPQr4Gy+MyikU5+iMNS9A9WjO9IKWBlrC87DJx/tUJGBRxyNluRl7Jp+eCaLlvsIh8R/5VB2jBLhdGFK8G4x+2j+eEZr1o4Lt9+mTT2b5VRDi45JsZYvW5DxBi75bYlM/0cp+en3nEj2n7ZW6x/oTM57ZEaz4S/bPrqnnpPFaaX6xHDsu65z54WfrrEEK1E+2G0au/hyBgw1G5kH89a+oTAvYlSHvbx/OtV92geiK9/RFqFq+fjF7WHwK9zh4Ekmzmn7cbw4C2hRrl53RqRHjhOkiiXxW+fwSe/XS9dkFNQfj7YuaxsfLVCiB5MyOto4+reJ/+68j18Ku8eHRqL5fJnDDYNPbwYrjwb23LootXyBMqueYNVmRofnxKbFJ+CzuQmyLf/tDj++N2Q8fPVPANrortZ+Lmf8Ed39BoZh563qfbJos2ZDkremtJVgNYh53y1BZkAHrSFHzH7f8FmSM0Q0bjao7vHbqMnB2r4B6QXrLxw1JC3hEukl1drzl/wEAAP//pF1Js7o+sP1ALAQEEpbMMiYIiroDBwREZEiAfPpX3N+/6m3e7i1veUsZOqfPOZ10L9JO5vd/6xFbVTSs2i605JvLh+izfR+fXp7boKsckfrWdilZ9oMBnDOLsWbzE5vrxIaw1OEJm0QWBnLNdjMYVjRRPATGwD5Z5AAhTM5ovsUrWNl79wTfdn39y9dN6gwa3L6PBrcTMWn2WloAg/VHQ/nVMaLsqqu63+EnkYwsSrf1toKfVbKtZPkGjELdgN/RJGTK4qBeewu4/36Pfyl7cxDJDGEZfSnh452Yrsv54YPuu+bY5zyUrtZ69YFV8wb23KFNp0Y3FOWjWCWRoF8VLLoHJTRT6U6PW75e9u3RUbqrSEk4FnPKylypgPc+lfTwELdTsygogdNKEbY55NWC2Pc5GGa92PD4AOipO6E/Pkij1Pqk3da/+x+/ehD8MYnceh2g+5jgImR+MLb5Zimd3JHGr1tf0DYvJUiU10Stm6al+zuyCdRWCDb+lZvMn4oYcvK9poEu/YLlIgQrjLv0TA1V4s31xfcjLLzJxi/jdgbT2Ulb5TK6Edav16JeIkPS4NnTc4yj/ZDSJA1nMIfNh1pl6NQzcdUGPJ+Si/inScD3O5wqGPvFDg1xZQF+hAWC1503U1sdhIAZHOzBxpeJdBiGgERBEEJRZAY1x/lpjhGH7/CG7AJHLQIms6dRAfmlE8hHuGvFov2+EGR7acD6rrHNmbaKDyeVz2ggGEaxt8Vcg1aAAY5+qsBIq7E7jCbBwCjjLgV7Z28EtUuyx7b3nIo5FhoRit/9BZ2vrheI4nkzBpmSEjnO9YCPsd1D5+7d8QFGAusf+g/B26f5IPkObHNaKqTAZ30wCTzG8cDi5l7CDxtPFGsxl7KN7ylNRW44uJenYvXw3INLaH+QdMYPRlqvbFSZ5V+Uynw2LCN9P+Fjn++Q+LlI4BfeneQvnqk+Kl4tTFVtAG8/jtg4tVGxuPfq+sfP0CIX0TBv/ABECFwQyxUY0JODMkhgvyPfbzDVS+VNFfzjC7717RgzDm8ebPqDGpq1S0fcLCHo69zChz++M+x3uRKfnIKs7XRKV3/bguMvsYP/8GL9wEsDjo4/YHxax3RFTc3BVrtP2I9uqzmrZqPA3cf/4i3+zAndryvc9DBFfELAosdHAjTldieNLmjDsvV3hkZYnigWamwuQXlpQOfJFo0uzatYUnkJ1V30e1BHnMqBxZPegb/nRzJun9LfXuSVJXzVaAGJAFjcnCqgjPKVOg/XMteLE/pQ9y4HtAPFu2DLjkPgffE8mp17Msxsx82wiO0E+xK/DZYQVAXkTYGQ3Ml8PVd6nsHf6yATytSArR/bWqERTxjjE74w6i1NC+S2R396EzD1R3Nl+iQS2nt7sViF250H2H/rVAtDpaDfqH/CSHd6ahGdK+abnCjw7/k69XIe/vTPP30mP9+dOUm3pIebn4J9Re0CSqFnQLHMRSRseuBvPYPaMXKMNPsQDEVyMf6eLw2eymISMXz+83PQ2oijOd7nOVZTcHQwIttgBmH3zUAdXltqZ5UN9rvfoqhNgTGRho436Tv7hRC9jRg7eL2bzLye73C93zzSz8ahIJ9v0kPVwg61rsG9XrgDWeGmx7HWEDdlxzJA8BMdXxtfgym5j7dRmRNuJfh7/7JFXkEOqHC4U60JGPvL78pfPjX186tm0/lygpn+2lN78Y/B4pp6B61aNCgONTPg56rj4eMU5wQO1/dAyyS6ytPJAzTMRFYz4Rwj2B9GjfC/t5Wyv3zwVdQbgu7zmy7OJ9KgWjl3Ajf/g/GEPIH0/QEaVL+A9c/ZkWDuUp8a23pg36h6ql02PFDTNwlYogvkYMR8hf7lk798DLm+lLArFd+BvPNJhFTtFQJnfwiW6+VGFI3MGj3ayAbrQ38j8KcnH5sftQqgJ6D0rgKNwVca2JdKGfzLZ/0Lp+zPv4Fncj7iloPndN7ywx8/wYez5QzCpk/gnYMVTuL9WhNxVRt4eYTVxicRGHPBa/7ze66kNdtwqa5ww3/6eosW4JcbI/Boqjd6Oz5wLTjGzgdZ0vA0okIXjJs+hh3ntqRAB/U//fTghBK753UtelRwvFIkSUPDVU+LVe31DFyXs0m9i5nUizMpvtL7TEVz0dOBrVXo/3vf3v061+ulyw0wfZ8+NdX6WCz+9WjB/X5Wcb5HUzEXqMrh60EWapDAY8umv+GfPnz/AsTYyGZN5Q7XFDu62hTT4ZBA+Ym5BwG1uhtqoX+4UP2eByQeQcpW4Xbi4Z/f4m7+GTMOPx46rRJR5909zeWizpKcmYNHNr/KXNpoQtA125CQ2wGbS6kGPnxP7zP1OvlUC3gKr9BGNxd7gxGaJJZBDrQXf6aHSn4W81+82g73pWaWV8GsfpQZOlO8DWpJv8Na51IGpEDdY1fA73Syg40ftPmbrNqXsWmpHAls+IwPr0kKiCY+OejcgzvhztftVPl76FRR4k7USSLTXL+M5+DIUIdNfnFNViQvTanNvYtW5+UEnRomBgQ7LaZXnH/YYp4cBS6H8ESN69kNVvExd/DdxQ69W6FkLqy65VuzVUiE2/0Oxss4t2B4H2bEQ/VXsDKxc3jTYvLP/xl770b+8ZUtfsw1XPoc+ul1xs7PSYfxyU935U+/yfkapXuiJfmfnqVBe3W2/JBk0C2zD8UG9FPWs0+p/I7HcONrTrGfWrmBz2+qonS7v3W/v+Xw1VgcNSvQBnPzfVyhd2oONJVKg/GqsiPK66WY1HXsLliDdBLhpv/xnz++n86XDL7jVcXWlp+EIXMJLHXuhA9jGQzKym4jZDCj+I+/0Q0P1bVaMmy+BdUk4LRIf/FJmjJsB8JdvxZ0zktMNj0x8DCuM3DSWg5Jg72rG8nNM7DpKzSvAi7I33rEUn7BOAcmEC5FrSnlsk/oAc5+sfZDksHGEkwCrsutns2Ajcqfv+/l+MpW6zcYMDhdB5yIKjP/9CO0HxlD7zqFBfEOQQm+JNKoOX3ebEYy58LmDDV8bY2juWRN7CoG2/Pk+GRVwdTf9wrMV71HbWwNNdk9DAXeiG9i6zIYBb9nvgjpPiGI/9OPv2d9gq+XZFIs0XPaz9a7Ai/QHujmXw+LE2sOjIRTiM8T54NxkjwJpBXtNv3T1c3NcB2QC1VAke4KQ0+rtIGCb5sUByStp8OvFOF+0BoEJNQNm9/h/+UPsrIlZJ+TPyoKemsx9Wfjm67nGfYQCmlBSi61wHrVFR5M4Gdh43Mra9Y/uxZwNtaJaj+u6VzU3wxakgGJbL+0gC3HuPoPH169VfNX53ZVxv7n0VBFZj3zVTiC7LQ61IzsJu3++IT9Km184WSdCYUudRDu7xP20n2YimCtIRjbJ6YB9SmjonuboR6UN3zc+By1TqELe7skZPdO45Qan1SCcnXsqTaVx1o4bINWr9XtSi131gfWeTcfHH/HmHr4owZi4ZsinJ3whqPkPbOtUXoIOdOk+PA5fYo1G4cTJMpjIh1zvFroJcuCzZnTqF7ePgMdjpULya3McbysGujA7fr800+bP7gL1k3fQSmXq+39nIcJ9NcZiLtTSY+j4g17X9RyAEcKqcuc30CESofweLYysmx+1norika5V8hH0usQB/OxIznY/Nut8fgYsEfyq+DPuLxJtuH39j5O8DL6EaoWpRlmeTf54IUWB7vNnWx+9CKC9dkW+EB+ZjARa4agT9ID1Z/MKNaFqApw+fpF1B271MtokfsfnqC135nDsrpSDx9vjaFZneN0/tMjeRVBBO4ln67S+8PDVntO1FC8W8FzrkaAdon3eGtTEsyV9PFhMv+uf3pvmMqshlCgV4U6VbAOY5gCB97qW0rG769l6x9e39PkRcTYCgaxjugVWCfpQk/LfDOnPz+eHrk9+atnjH/rExx9QK0NX+lZPvDwKktv/LynQrE2Q80BEs46NqvrMjTTsSJqFeQD9jiapUwCaQzZq8moEe+TQXxlc6d+ul1NDU2uzc+0pxxMr/6bRn3pp0tnGw08l1WDzfM+qtne0p4qYrqExM3P+qm7DoHNb6J/9bZZcvMTbOb6gA9uXdVLDb/aX70Je6OdMwp3OYSd8HGxRh2+boZqff7hJ7WGwyGdR5iGsL9NHXXIKNazSL4G3N4nkSqxZ+MnuT7hn9/qhNInZW8+jdU5gSvaddugyvlYJPA6uS5Ni8dc/37PIQMZvYQU27ZhMhuvImwOxpls9QYwIqPOIDifBYwmxx0IZ/Y+dANjQis+4oLt4qMLXqA54PMjuNTrQ/9tR1JCTGMN9Wz+Ww9/8aHGV7loftGgQdLGDFvSoARzgfocvJlcUd1gTzCdRmWFQtJVGFX3kJF3nXBwb74Luv2/SRr+6IDvhefJzK4mWBNfbuD+bsk0kmQNMP72ruCJlh2+X26uOT9fXQntEzvTw8/UTHYdCwWkz3LC9vvRAtp6qIOa4ylkdW0vnTPHkeBWD0LqVp+Y6yTiFPH4ChB36+t6TPDVByCEGjVSrQ/6Op8z9Q9/8VaPm1zl/vyH54ejpBXrc0YSPBz2JVq2+h5LEXvK4efaoj/+vSjx1jX1mwTY3/yyER44BE83944f8fWWjl/dHaH9ODFsnY/2sEpMs9RB8x9oLRvI6NBSBybhTcDuKdwGS9mQACeudLKv7yvrvro2gl/kHKlOlgVQIawtmOmPPdaKHtdbZ+tZ/fOjXqDQi2Vp+xHyzRJi14RzurRSif7wBdU+DAfhUAICp2v1IkLCgkD44z+3w4RpJGVjsRzlloBSPjKSKOPE2Ce6cMrSZzJ1+MYz9wbHd//8X9P+ou1INcvh4yUL1IZ2EoxHxe22YcRvegRCX0w783yHcgEeZDbsNFiNh0vgr8o9InlHktIxuvIwTRcVB6I9M/LKpE4xLbgQmKUvc02bJPurp9FAPe6DJV1CC2Rcst/yv8ToHPLj/2tLAfi/txRYQ6fTQvlpYK8EIQfPJjOpd8YXsFShZkFHve2p/vme6rkyvid4zLSQpp+qM8foZnEQcH2GSnTEwdzP2hNAu4Vk6bpDyo7ysVedhN9OCQZFwfZ10cLmZDXY/W67tOHnI0IeRh/qtZSyKeGHGMogv1GjDTRToLlLYHcONmcmLGuaJj8XDucBEh5K0zCyyxtBUPQt2tWHM1jOD2LB80uMqPcWunS5HbP73+f0QBsppUs9Isg/NRMn+jssFr255pCzFGuj0F4tKrY3Q0sJFBw8eQKmgZWrun8iBweLVQdzdnYNiOYiwtY1fdVE3suJ8nmMFcbLHYNRjQYReupHwbZd14CV89mBiQkuVA/4L1ugOITwG3cePUTisRae7dIo7nx+Yitw6pSVbxDCUFBSIrhHZeiCd5dAK61HpETmtxgFrdHg/eHfqDObdrB+bdBDqMMntsPwxNZhMBzIv7MAYw4e2HpyphJYa/slQAcem73GdOGbLIBwwdgP88nTNRi2YU9gBRLADJWGsD2c3rQQZIstVbid4r30Bo0SLh1m97t/wusljQjLkAZm/UZC4GXqiJGoVcEqZ04Jghn7SF5dyBaNDwicT+K8lQz8YV8Bv1cSWdpTvNOnek1Gq4XE7yL8+HmGKRqH1xU6rQ+oQ9OOLcdujOG6kJFIwvQG85PGibJIhYU4nnH18vd+2ovhYyd5/eo503c+PP6ylB5e2a/uv/vbCM0PlCie3sKwxLmRw8K1ObR+7W9N+eDcwrHPNQQOPTPnRn2Xqh8fT6hmhmaKH49y4FprOrbOnw4st4RKCpZHnnwbcBgWzMUG+C3LEWsL2aWf4DK7ynfAIVrte1uv9SZtyDu+U++hOQODFxPC9PQAOMCFzoRP4nTQrz8FdZ/dACo9LxPFEcoIW+vNDcSDLMbwmnaUGn5Y1csWL+p6mDPsCpMOxFvfl6A6Hxi2d7Eb0MyPeIic5x47Hp2GcR/WBoAniPD1dzim5HOfRfhb2JH8/HlN5ynrrlDNvBIJYjkGczAb/o4Nuyv1Vacz54lXW0hmzsaH/flr/qTjfYb5T7oTnj6ASY5P3lUGSeMoXu6UsW6MfYhDVyOrcvoFTE8LA54VS8Ga9Q2GVXuYLrjt3znh9vwxWPI4MuDh7hfkSxupmI1DrME64w9YI44ezP46GQprcpuAMKfpxI8ogdl9TbEeElwPYc2V4AT5B740emkuCV8n6hhcbGxh8DFreIg7FWuWSHMh35nT00YisIZep3hYR3PWQQxV1Xns0TI9fsFqCp4L8et5IP/wRm3uV6W56jci4ZNVr5Nda3Di5Bt1du/9sHjobgBFMK7/1jtN7CuBr0j1sXGaJ0D3DClwPpU3mjgZMecl6BHU3SdCO+MK06kR7zEofzBA7Lpf2EzY6ILMW2s0YVNOpyUReWh0pMDoHFZgxfZIoETWHvtmTYPF/vKOmjZeg8NKHwryMMoWxPXPx4b2tRjd1htouN8Xo/juMKbVzgne7jBD+/35G3SvwOih+ftk2NtNeT0XlySBx1/XY609J+ny1jwHplS50D/8Xs7ROkNf/AbUuqa7eh1/22yvh6gRpUw6xq7OrYSafEup+/rKATs/S189ZllNrdouwRyv9yucvhxPw1smBE3uSjl8fk+QVKG2gHa3Lzv4KrsGo8/rkq4v8OzhUySIYs4oU1Z7TQuxYgaEl8wAsObzVEA7cZRIsdfWkyocZ3Wi0Ywt2+LMuWoSCzpCFWFsXO/FT+yOHOhPbkqLBD1Teng3CbBo/KL6bq1At4SgAxXvE+q82Qzmr+CE8Cr2L6pnV2b24XhGQMmOPDWmXwKW6aFqELf5tDWi/xZzeyskpc7vH5qacgvWu6kY0FI8Bc1SqTHye0/blohQopf8vZ0SvIcGnBtkUI8jU9qt+wMPVaTUG1609RIddwRszxtVDXevB7mURmh7+xopdC5S+jr1Myy0cqDepdgaleZrI8uAzIjpawH4amUcRHDdDtr6FNDE2RpxN4OLtSh5s+mteRYEAVTpBdp1+r0cKg5CIDG0nuaJ0cBZZxXu3kfqVk+tGDWilQBf9IKsl0VLhZep5pCrDy0C+yllE75/YuhOekbDSg+KdT0ICbyGxMPmfQ0Dsh7U+A/vaZCgZzEfF4OD9bSO1H+HczrfgiIBXpV7aHl6OthfZM9QJleWsUdzJxCctu9AcqgFtI/3VrpGRXyHhpRb1M/WuV4/Qz7C5jIZSLYO72GUuscJattsy70VEnOVLhcO4tDXqH0WpXTdT9usdUh3OBogl07O5xiqzN112JzB2WTnZ+fCe8QO/9bXEv/UEUoX0cYWS+mwnoVyhOf0PtJwOSc1m0q3AtLgh2j/0aJ0zQwZQW4oE2ovg5+uVXofIbsORxwmk2WuH+8LlYuqlfhm679giYuUh/POvtNQ3WbTJfyQgOPm6iiHWz0spZ6XoD64T+z6r4qxKFlmaAqZj1GwxOkStokBGTj1VC/XlU1V/4hhvRQBNV6351Bv6x8E587BT4lcWWs4Ngc2vERK61zYcmDAgZeDqaE1Flg9LOkswcpHV6rt0oe5XL8+UuilTbFGdwL47jghgfPucEeyYd+Dmbv1PPwltx0CdeOD9ZwKEHJcZeAktC/DMlhTC+Td8EHLy/wV8xAoIpi+kMeR1myz87bvy6dSQT1nC8VkYNFRnEBBNBjxu5gN9/0EH/CZyPJS561PJslg/aYVtYTDk/3xPzX1Yg8fA3kaGJliCO1xn1Ifhlo9+7rDQfKJjjToTt+AnEXF/8M3oh4+7bCmSvsEG5+levKQ2PK4/Vz4VRSB7I9LAOZ66Sv4h6eBIRwLhqe8h/EplRB7jKye/SVtgKzPBY329btef/E7VD/Hs05+59Nj6BLVg9BRiz3Wu/pd02yQGph6TUkfRArSKWVHESL4vJD9R+HZGt5/CthLzMf6Z8yLtRDfJTSDMaBXfGpq+ri+HNChEFJkq++N3zYhbLjhS6Nrd0lXK7E4WPTLhWbDFQ2rn0arUnA3AdvV3WULlb8ZzN+vGXuf2RjEjR+oxN7vCDSOr2D+LTcFUisOifAqC7C+FDsEx3fEYfcmUVY54DCClqQOWlwmFNvnCPa2fcURFyY1nbjzCE0V8//udylXqYHBmXtgh5daQHbSagFKSokefvOvWF2pEaGjHkqUF9U4LMWwO4Ht+yheCzWY1PSrQYG0X2pfVDNdPVs4geDWAvJzYV2MGqyu6leEGjacImWzYogJiMbQp9on+wREugAaQOW/vDgwKVxDcTembM6vNfnDG6yjiqtJqpCnsg9QRh4R9lM+v9YjMMZMxjqApBiX4lGBOD6bNAg+UfHT1zVWHr3zosbcf4blxvRQBe7pRc/SCaRrej/GUFgUSmTdQWz+00s7ydXpH59kxivX/q1Hr/9YKQ/0RgQ9N2XUflR6sR6KnwNfjBuoPYrdsCh3P4OVp+jUNxqdUR5UCP7hwV129GLNkrGElR9eabHF93LCFoKqJMqE4YtcL/JzQvB7xXcEL48yIGehG8Fw/kHqy3FaE8u49TC7zynd2AabPwU3g6eSbVvE33ogHNZfD9kufSGRl1q2eqdXqFQl/yXL3RDZ+G3HE0gu0RPjc3UNGD9pGUzaZsbegoRiSnW2gpvXY4zC9zjMhvt7/ot/TVv2wfJhcg5p9SB04x/FQqWHBB7m80gPZTDU43NnNuq8rzxsbHxqOT33JfTw9YrExUiKMfIHC/S6W2/8CJuz1J0zCD2cE9WYLbBXm9MVHOi9wuezeE3H201w/+GnPl3Ngt5BmijZ6fLF7snSgGjrLoJv15toADoUCPfwOv7pBSJ8wwawHacm4Np/TgjSd1008iVu1QU9CWL7vQ4IO0cEDmDH0Ogc2DB/s0VTa/V+xoGuV+nyMccZil4wbHzlaY5NdJfA71A12O1cK/j3/44gNkhB8B4sXaQp4DWfIuxcvakgNT0Y0JaaA93yhzkrFiYKVn8/HO5oElD7EFyBJ5CY7NfSLn7c0XLhrYlSshjYD1hix0R9ko9E7dR91+O+CBXYHnoJ62vSs7Uy3zksJ1kjk/0E2xbDqwHM6pRj93O8g3WOrw04KGcV+9zuzubfbnu/j3jCm/4axgh6Ltx+Hzt3jprr4zVm0I/TE2G8SNNlp19FsOkN4secXk/68VDBvfFKKTKMQ8Af6VKB7HT+4qiNhIAcep+D7m3CSLSUgK0HmUtAwRUCEVf9NUxARha8tpxI7U0/z+3VeIJZL3/YeBSNua5ymsGg4yIiCns+mDAXa3BcepVqr/Gd0tdCKqgkRoc2/6IQeTu5AjPpFpoWqh/wuTtf1Y2f/stfy4s3NDhajof9MzPT9X3et/D4xhza9VJT03PwikHW6DE2sN6kw5cjGejODxn72/ucc98TwTfKdByIbCyWjT+BV9k3NNjVXdFJvuv/8Rdqv0oAVrT3V6i+lRMpHx+xGDGbeHA+UIlwBzEz199x7WHKKhEba62kC9zzPeyBIyHlfufT6cCYBdHPjbHmvVnwC/bZCsethALcJgczas+5+sjmK462fLQIhV6qsncm2DNsGKzXyb6CR34VaeDMwfDPL9KL+YykLvoxJijXVabViyDFRXa9QhJW4PSrMkT2csZmbutS+UuKHTW7QDZZ5XMGZPbZx9Eu2DF6zM5P+IcfxsY/SGWtPDzlnkXdsyrUy3kXizCKA4061SSlc7aaM4QnDhFpgqnJxvcNAnqQepouwn1YM8vowGsybOpI7B2sUt/xUKRMRtPEmWw2z4sEz+LzTvHlV5szqbdZ30W7x9Gmv2ZiIAfQQHj98b2aiZnpqhm7Vn/5p+h+ur0NteJs6nP2uViNfaOBs+Z+/vCdrcCcM1Uc9hbiO2oNQq4dCRBBNSEJHqOADVWdw/TexFiPm8bsRfLwoXJWH+TyE3Cwoq5TlNmzIcWSVgTzOTs+QbVfQuqlJSqWP324PHiNFnFsAl6DfQ6j+nEg/RaPTXQLIVxfeoK/LA/Z+ueHJBf8RJL7UIf1+cwVcFAuKv7jDww/pRly4eOC5P7TpA1d9BieshDTwFD2wTAmkgXkm3mheuHiQEywK0K//hY06s1fvbYybJW/5+0a7MbGk+cZUN5dti03Tzll1xPIQdUsd4y7kbGxWgGEx/kbU31/CAfWQfMJNPNwJ7tuudWbHvfhV+Q0IvO+UczfdsyA8IrO2Cotks4Nt0JwbldGvY1frd7pEsJE4AycvE5XMJfeEgIhEXganRWtZr+LKsJHYDZI3L0v9cr1caheVVCQ3e2RpEyOvjzY8AB9zksyLPcwHlUFfgcytS5N2au2+k0XmPhAm2tKhHc4gsM694QQP6pX3nIhjO9jQ0NFiYtZ0NUnhGPko529dVX48zvv4AKo9i7jem9n3Aj++FCggx9brkJjgfcJSUTkKr+gvlzFMKXSBYHJ68DcMX4GG78ju3MlBeMRoVX+84s8F5rFqN9aBNUEDUQU4A1Mvw4g4M6XJ/Y8sQfk8uI5aEvtAT2kx6+Y5W8gqRufp2ZhVnWPpFMI9m/+g63sFRdUpkmj7DN7wUh98mCUbuwJPWGM6ekQ/EzGaWhWHFyOW75e0/eEvFFSk9r487PYzNrAgWz46TioerNg/DbI6XfgAba/x35Ydvq2nk+2gP/41Pp6eE8oXiuVuu7jUa+vbdDhx88L7A2vAVALhBno/OZJnZI36/2ZpHcQPKIbxcevCgi2igQ4ZhDQaDAytk7ZdwYdX/IYZfEZCEhTINx1zytRvVNszvLl2sLhfPlQN/acYR2gw4N7Y+3QN2unehEdioDYtC5Fv3MAxp6rMnWmN/bPzxTYdCFQcyYFm13MAWbJivIv/qyG9wup1s8SXAkBGC1BWazDmJZq1bxs1Eb9ly31LxDB9XKM0P69y7d4vIaQCz2NwBUrwcKwUUGQRsrmn4OCiodfDD5vo8fBQ3jXrHZTX9n8YGysT34YG/VXwdjLH3/+zDB7TeDDSc/aP/7O1lwOc6DChVC3uZxTRr0gg+dL8cbB+/Fi86K6MSzVOMGHINKGVX3e/rt/rOVvtgTf4Q6eXPrG3jXu6zFeT1eQNkFDmD1lwT+++FYquvk3+6I5ADcD2/pB3Dk0AB+vpxzSp4BxoJC2ns0mnaEmbEcuOguACe5hB3/EX6k7S1rARgp4ZfOvUfPynXoAiuvDJTlENDqUGqCf1CVAPCY63fipuZ6cTwlzqIQ0WNU9I83TT6C/wmnj100xvi96Bwj0RBwdPm09bnoNAjd7Uf3p6YzvZ/cJKYfeaN3qA3NCOgts/gYBW31kepnCVR6k85lGOa0KWs4PB0Kde9JDMt+CBfzyGWS71cQbf0/5uFZKEEeXBKnu2QA9b7kceNetT8NLZYMp2D/nP/8M3z5zVc/jLYhhtptNfD8XCmPmU2thdFVMuvHFYhpYN//xeeye1XNNzmd8/eP/VENHbK7NqxiBwCUxqqToaYoPo2tAums1aiU/AKbicX7C/lq8CEsTBkTk4lb+1lyMhKOe1QJ7NFd4A4GETfRYA3ZIjauaRYW++QkJE0A/hvB52PUUt6pfrMg9NLCuTBkbwuubkvmpPJWwakJ66UQdCFb/hFtXv4WGp/s0zFJwbODGh2hkP8HADPUbQrmzEprTGRT0emJX+Id/vwWdCybTvAWJmNzwgfQzWId7h2BTzxHq3TQoljp/c3/6C4H34/VXb7HgpxxTajvVEvSjPHB//JVufJVNWREgcD9NE6mFOWNLI94TcHmnEw1vR5wSeuwN8Fh0m0izVJrkcfTv0MuGM1p31if47Z73dquCl396Dqx/flbHhw8ifOwbW8/2yYJhGio0aqNzICymWcE27zscRbgvFqStHMTVitEyXeuCHY4S/KvX0Gj+ntik63cESSMp1I/Mb7oG+PhUT2+7/1fvEd6PkP/z+6lb1a1JNnyDr+Z7Q21/exdk2uuW6r0cnZqb3vvYX976e97YGaN509P70z/9rmXwk1Ktea1QlYMY7YNIq3mwLE/lXTf+v3qXUN/iUtUcqlD9pcaMOvbCqV+NK6kVD3o6vz91Jb41ZUGSUpn1/ieXrVpmXIH/rm+Kf8IIhsd6pN6mzyn8TDw8p88RQe3qp7PbEg2cfmWGQyH4mhtfLGF6l75o2E8p+NOzEg9rSO3wgIOVHisN1tM8UmQcQraqzyP69zzNXa6k0wmHSPnD8+15pwxxryt8TEQlgn/91GSLd5DniNFDvG+KiWG/+vPf6fMptil7uPUKnUBCSG57P9jwLwQhboq/+pb5m5D+Ty+hBVMjWMMHyEAkMvTHX8FXjij/Vx+koaJ1bMXCksFNP6NdPGXpZBaqBY1zfsJWPLwLdqKNBBdpKqi1NWInj6PxhPni3XCwSonJ1ipf4ebnUvN02LbA93ryp8+Q5DfdwMLzqYPl+/2iZnB/FctHMET4p79eG5/9GuXwBLI9xRQHam5++u97BrJ9lfEB2max5R8eKmgs6VZPYuy1kFI5+a8C7U7bIIl196zA56S+sNknjckuLsxBcXnF5H56s3R2oqz945PU6Z8Hc4pzP4eGYUVIkorrsKrgBBXatyaOMnliTLycWuX+cG8I4mUfsDc1O1hYgYfmKr8GC5teBGqCe8CxVJZssX5RCd6icsQod/xiLj05hJte2vT+WvzO0bqqWz0KG0Z5q+ew+Irwz091Pr9PMWx6DhRpVdBo5+TBmh/ICdhGEiO5qV/mejmmlnqNjSPWkvBXLMFNb6BFG/GvnsNWbnj3UN6aL4yiTYY1nEgPiS3sMLJmFSxc8miBC7ctC7+t/5/GmyNktsHIrA9czfIdbqSj0ysUrfaXMYPaJyDuFYwtMyZsIUP0hECQU2pLpyKlvtzH8Ai7nN42vjave8zDG2s/5F2uK9j8xRY8sqdOCmcO6gnkkvQvHyBAh3QBsmPBJ3d84+2UlrnVLxDsHsoHcbaqF+tRn6/wKY6IOmOSFeTm7uf/15YC+H9vKZBWt6fF/SUFs3jbdt0LUkITlTcD8WtYJbxklUyd72TWnzW+aLDjipkGsy4Dai+vGBjv+EhUaR4Ara3hCvKniHB4qIt0uX36HA417dFavrWB+d6yqmPEPMS/d3VNbuV7hGd6cWjUkTkgt+sQQr33BOoFdDaX27H1YZLsfCQ07XOgo/1OFBDdTOoF22zOp2uO0OTymqwuAYwgfLvCtvQAjXARpUvQ2A00AqRTiz+eUsa4lwPzi1Bhd7nLw9h1mQPX9BnjUE/benasyoVNyf0wcpbfsOxjlYM/rn5h+2ZXbAq2wQ7xb6EYYQOmxFD0FUw8B9F8mJN6+YFYUR8PryBHNdICoVjUFkbdyyGScSlT9j5lEuyLtsBRNSWmUPmfEr6FYY9E8YXS1XMYhJe5uVGDN6tiThXdhzjuJ3wAbZCy3PyUMIV+Q+2r8AHs8BkMmKmviJwTKwbrQSmJertQhg+efjdn/eQiEDzCEeMlsgOW7Q4xzO9iixivVMV8PAIE4pEFaHVJwcaCgyt4JjGmj/U1M3rZ5zHwO/9Io3XngyWQPBGioT2SevqlBTu/9AzwO/LAiGUzWL111wNyNCwCwY/Uy8u5itC/2jJGvd0HSxYdn/B3ed0Rmzw5/a3jcYVn68hw2F16c7bClwvpN+gJl5kk3Z6nBMPnCWNsuTVY5lhv4JvrAnpo+Ws9667xhDtJATjCQZzO4Hl3YJv7JvXP+0swxeUnhpS6PvWa9QzIuTRWyJ97DkmBZAWz2d0UyGFakkvT1Gx55EEDk6cqY004E3MtHxkPZiUWENfbfjAvwm1UqHkwCf+mzsDyoDFAbNCRMOJNRcdH1Qh/93tJlsMe1OtlfHAQiu2TKI9rbS7XpXTV67e/Y8/gzFSIy08C7bol1Lhpp4G+rPCu8KfBxzjfZpNNg8LD7W9qHjOLzRNcYpUdyj2Ofs9vMEfnooSO3y04WPQIsHr+WjCRzRvWeIEPfkPR5fDa9h3WrW/CluvUSeCSVx7h5rYy1/2B02BpPM7YkyxlYM/YQLvf9RETwTMP5v6IPjnMd+CGreCOt+fvNVDtfzY2yrdWL02rjrCx5fMmuVKTIfGUQ/Iza8JlzC7I/rVU6u4lYKxff2SYJSOQwENzJQTmZQYzlnsE05fdoXWLd+ZFsgY3fMDuJ2gB+0aaKNt+bVC9A990Sk6yAUF4wzh8ik7QqE5vwbrmM3yTebve4juBSGkfW0p4m7+JLSf1rXSAnmjcb11OsCQH91Cikd2HNV+bMoTzITRw3sot66GW3WFTwSPWDuW5JmFh9+C3ljMNV0lnjJ7BCBb5OlPz7dbDgrt6hSAsMA7B7VjP7iht+LKv0FysqFgeudmqyXMnUzs5RWz9KhEHw8epwAFI3KF/vrUOZtxL3/CNq5cq2Swp9fIkgpGs5nxURQkGa+riqFJpsF2/Ai1Y9dj5PLhh5e6khy/j3GLtoBXDUkTSFexnM0Ur5Km5JgdZBMaYhtjx87e5Vre3pW7xi+As3QBDStrDfAEG2T/MPVsabkFgTe8x2n9PSc38hQulLf4IT7RbQX5VCsHlUk7U5IKfOTn7SoKH09KRf783M/sEr9/uTtTz2BWLs/vl8KjtGQ2HiwAm76BewUP3R+qYXmKuyv1A4GwgjpTb9U9/119qjwlryycwZ31GChQnGVArju6MpYbsQ2bVBeE6QQ7mXbtUyq7Y79DMCydzTYLFUungKvjg67PJevuywscQBmjmz/l2CmHvQ+67XGl6EDS25QML7Dm9J9yVPYoxfOQGlO+hR10Q5cWy8tcYTleZJ+MzC81lHwsQHC3BpE4ypIB3Y+EEreQVYCsYQ7CSfsnVfQAHmjNfHhbV7npw8ydMD5qWFOsyIBHWFV/RhxzbgClMX9WdLkoUL4/KXDVPOIHpqYxUK9k1XZMdSMCABkRGxPvptD+pIVD05INEP38H85uWIVxO2ZmG6/W7bckTIbixFdDggo6BOPZfBaapI2PnHl7A3HZa9/f+cdh9v+a0L1cIX9qFoyFqpoJA98RBv/V/OLhTwaRhboWQiyaJsMOnBlQQKwfIebjNCtUjtsxa2MLHGu2xdYxmtiZ4PkE2fZwtX/Rgbk9WDjmdelgT7MWc64McQkp9nxr18iuWxpAqKByXB3UDNzLnTHxl4LCIDbbTkw72f/nSfF122H3kKpiBf+HB4TaPaIfle9qPPZWAPnoPut0fW37gKkFLrZ7od1/KYHZDzoLxcY2RvKa3ev7L91gkkMjuTk95Z55E+Lu9LHzQNSddlTEc/+HJ6yC19fxInQr4i/fBwbI0gPqCeod7Z/fFFtWmgr3v5yssBCMigpvOJjMXnYfv+HPH0UJl8IwvUwbh8s3R7TwTc1HV6t/6w4Gyknpmt+4O9dT1cQyzMlj/8OBttyW1Ru1d97JkPMHXj/K/fDIQ6xmX8JkmJtqp5MQ2fuTCLX6w/u6llNEjfALDjN5ktbfe350bu+r2+0R9qXXQ9/njDiL7muLn4VgPdHp/IVztoiQcayPGyEci8PuNM8QplwoM5LGGIGwvlHDd+WXOjtSc4GVtdbLbP2Q2+rZuwTS1ZOxefncw22HZqVyzQNTsFyVYOKFuYCFqOn6q3wAsvFXNf3hLrZzww5KESgUbT/lgW69AwF5ahBS5jgTqG2chXYISZcDo04ZqXMuDv3iT+0dj4nBbj8w9twY88KJGdkv0MVeW3nn1f/PnxgcsuPYPQIPnSzOXxpgrKCHHoOFJ6ArGuIsDHwJOEaultZgc0Ltg2nNX6r564x/eK8E+CdFS3B4FMx9RC4x3csRh0LyLNWFqtVnuFs5HpWHL73vvwPCZEuzOcFezM7ZO8Bp+XLTuTRRsfOUOUVHLSKJ3vabPk36H8Y9RqmFdr2cdhr2y3C/89rx35tKIKwE6CWzsSpNbk/1XMsDuuS+o60kwIPcZ+srd0BYaKNVSt6fRrUCjqDM9aOVYdG0c+fDHl1d6ORpGsM+Lnwb0KTgiaKVr3QwWycBb7S/Y+6weEL1EJpDrWEjkzuDY8Dx5TziT2MYRjI+gvtZPTXknHwstuGuGcfcEmtJpmYHxe6iLlRVFBm/a6FIzFntGRm50FSg1Dr6NZsOYmH9P8P38MOzcIWLLadI5aEhHSH2WiwNJh50Bl9PpvOkHUDDzjC2gnQxMvbO2N+mnZM1fPFLtVH3qmd68Cki5taIukBqT9dEzhqIrlEjSv166nkt/BZwzRn/5G4yPIjLAOYhfNMpCI132zRrC4qP+kNQEKxtlcmhgUGCLzBteLbIcKGCIhhw7nj+b9OkGBMLdZ6HeuVzMDuvdDMqx5Cn+jXKw3uJxhO3NxfT6yFW23lwSguNeFon4nephukyvHIbd5UI9+TQMTHnZJdj4K5I/xsoWqz4i2NW5gOT72zQpxIkB/V0AqT3u3wP7Hl0HKih1qXMLA7beGzEH0vlAML4oRtGXeuyqYi3x9Fy17TBjoYJg7MTHht8mE4ekfMIxXM7Y3Od88A+PK2Xu6QFkKJ2q6mdAvCczPXwtoV4Nwz1BsVE6rGH9PSxRnIjgG0QIWw9Orf+u91/+nbLQKNYCytLf/WAb/sqUxs/+qrz3vxd13F40248gx2A7WoAW++sAwTM5HyrfjKfemL7B3HVPB2z8dstnB0a/ntfAFPgzNeMsBmt4QVd4HBUFR6f7Pl2fR7ODZz8esJeUtjkVKjtBYRZ17CRFxmbxzV9BdRx3FB9cPPCPFFWAudWA9ULepxOWuhkuyWnC9j/9RHoIhnBo/z4v5mlrfBsP7ELk4MWC5XTEIcg5+UPg4opgGUB7UtbT08L41qvp1LQqgcwvU7SfP/Iw1gcZwSgqVrI7dN6wgPPdhcOPVNQzUJiuP3Ib4ekdadjI488wm/P1+rceCTsIJZulRJNUJUpPaKn8pJjbxsshf+hbHK5uD3pkFj3wBV+giDmMrWh3ymBe8CvWCuOyDRp7w398x0tmw6TsefNhz7oUifIrL2a3WVo1SVSf2h/nWrO02jvQLSQTn/Lnvl4cUPlQeV/gdv2/eiVb1wfPU1fsGcQplmLzjDZ8JPN6rsy5vfsKeN5ShfSth8Eqa54GZT7WcZLsxHoRO/kJy7KykWr3Y032L7mCpnJLt0bQPls/k7L+8YWNH67BYnwRBPxCHKTgFprf50l/qkhpHlSDWWkuQReKwHkTgeLwJg7sHEQWVH6n+9/9BuuvTUPgIU5E7O2aNe977gnGxzmm5uC9C7rlDwDXD6JY5RZGBeWXQWbWX7TxrUJw6JiDcREW+qimNZjN+939Fw8QePzA7gN7go2fE5Zm93r9wy+lvWikOT4isH7O+wQ0FXfEIffLh8VKTwgmO+OIhEqsh2ViSwYjK39hO0gLwPp3Uv7nV9DyUMxTKVZ/fgTZOdI6rHHRtPB5P2ZEmXwdvBtuCeFb/h2IpB1ASs3JaKHiHyVsqHxtLr8hVeC9sWfsSfyxXoLZPMHaZBxRw6AZSC1/NbDhC/kfEs5kaVUYiMIPxEJAJc0SBJHJRMQBd4CIwM8gkDA8/S24T5Cqzuk+p79UBdR8+Yg+9CT5NcwfKryOh3ngrTyWM59W5PTWtmhSVFEE1CQO3SfjE227fZ7IHts9cDt857k/faoApUbyR/QvK/PxgBwXvHTnsMNy/238ESjw1g+z499DyKe7Sa6w1J8cXKbOI4H6ALzcCXTztFt/ehafZMe1U40vqZ/4Mz5cMco7oWHEMFHeP85eLOdMONLdGL/ygZf/anjsPzKzpfavHQ+bQwy70RaZ8p27aKi79w1s+/ilXVtNM02F6w0gyCnTvXc/j80msKGyziUxqzbIx4LyGOJOvzBr8a+RPrkCvFRyGP4JX2cIwlIHrh8ueLvwlqU+vHS5Tjqzq5cyT4rKiUCu9Z2G7zp1xvb5tYG3fwd2/Ny3eS1zeQZq57zxzLW5898fFt5Fm07T0TDKgYvK1EFMuYxxO9uj6CKBjTwzLKly5i9/2YFct2/moOzYbtNdYK88hJ0zmThj+TE7ENN9QMoXZPPYRmkA9+LhkIOoSc4QTN8SbKyP5PHp3vmvmk4xjHKoYD5Mnu1khYML3lHcUjR69tyj5hKs+ZBdbst59nFKdwv/Y97X5vyBv3/x//q4SWk505+wv8Lo3770hRloU2dkFHaDc8B/YJX+vBO3KWQe3TCj4+x2euqvFPH3mmM41wOtLz8KBeL/LHLIvkE0Nb8wRpze/dFcRq4257u+QIbe7pkKfekM7G0OsB3VE4keHO8s8zSEVE/ktZ/8OTd/P6BE3hJHut7ysXk+a5BcL8UDHot8uuStDoN89ZiuuydnKN3zDpAYM6L99oU/TW1wQ0ZGG6KKXe0M5/Nbkbzf/sqO3bPK58R0OtQ2XUb0zcFyqFRgDPFZ7Yj9rDJtIE2P4RROKZ1eFy8X+hxukMW9RNTNm59nN9FiWP3yKJh81KHMv8HKl5DiNu1snlmK+F0/0uGo5GjOb3WAOm06EEvhUESvmlRC9mEPdihVzq9VcGtp89kSctKGuzaD/7rCyZ1MWqvbMhrEXjLlZd9idryznJW/oY0mpsRF+7btC27vrv2It+iBI/oqag7OfWyzR5cM+RxuK7rqn6l5mPtdWaihVI7uiX2W/Wxo0mcJdmMfyVHYtdEgU5pK/KZ7kyN9bqL+1lscnMtPgjfnvb7qDYN3Ej/L/i35YypGE5yVFyHaN0jbSU8uGVr3A/KNDF9QT5aCxvjOM834Y6gLfq0hadbNXPye5eyjHPHes/jTknduznb5tQHIthsol+quP6X7Vwl9iGJ2ctTCYaDdLgCXjDAtfNJ80VuCXk6vsfOnL53xXVoPqJ2HTPB+ayIhs/sMeYdtRPDKI/bS+QEojCpiOoHtSPudHUOeiRk5dpXeTtfNfJFhU400ODwVX9ifFRfmrHCI0eMqn2gIAeyCo82cJ1c7c7ihrlRX4ZHYccA0uvr7ynPPN/D8EXk3Ca18dck7aIpr4T/PWfpn50zg3jCcRr5gOCsSbTBT6bE3jObL1NfrL58lpFzlNS+8ikmY5/DUDbDwa7zm1cUflTUPsIXvzhSCF0B5dXJC2k7VJi4uazic8EiLkBvbaapeOrwja8ag+kZOT9kfXvVMrOvFdLbsKFJY+gfzDjTzUNbmDxnn35kKi//955PfSxUzJTg47dSIAUa2e7LIwv+irmByDZa7wZgP8AH9XHKS0MLTmSFuTH805rz+z//NvyhHTN4mMfJlM8BSJxVoHn/HEOzSbJiWBm47ssA0JPpRIqaAkWuz3WwpLPrFguUXzhDRzbRf9gdiJqE3172yKyCqNh6VlvuYjtIHw+LvdGuPJ23GxitGj00iEKOj55w39W2J1NSmVPSdM/rf38s8ZFaZKfNUYfsC7KT75FaQXT49i2cMVXGR1nw3D9J0ua38gjmuLPrs7W8AYS0NSXLPb+v7gCkPGp5oUTHOrz/s0cH0jWtGQvvp8+/qMMAgXzwWNo2AaNrEJVr0RcXY3SL+HR0PqFXrlqkMzdrc9X235ifySsbn3EUidwHNeHR0OlIyiyfxm6CPF9pMM4QOdSHe82DVh4xYh8Tyx4E3JhB7hJhd7zk00XIyZRCLhBh/ctAOYjPtoC5Dj+kFu7aDPbrD3n/qFgs1IY+6vYh1NN4fFgZ1VlpeNjJdqq37nZyqgrUjeoc1WnmBwt8lZ2znSlznC71ksxLN0lZVUCNmCuYLErRj8/z8QHgMX/zJI85pbn9Osn+MSUKhftra2JLsh/oduKtfo/+8ss37H9MdsObBs6AD2z59abbwaRoqjCKrOTyIlu+u0VTZmgInWfCZ7vW/eeW1yJBZwZToeovEaiIxOveJTRZ+jwRuLB6Qp7xE1Ogl+41OYlj57T8AAAD//6RdSbeqMBL+QSxEQBKWzDImKoi4A5wAuYwJkF/fB18ve9fLe67vykuq6hsqVKjRH8x8FSOwQuN13VEze96qxU+xAB89uhGwLCbYzzya/z3vy0zfjHwP0hui/ff+j48MhXgI4JnIJQ2eyeivf4k6Q63399hfPkfAy+RsQvVg96gcL/d8zmyWKAhXLrY2/2puTJzKt1s5oV1wOA3itp4Kc98venWNP5+q6Swr3LgW9FjHDVvZ8WbLpvJ+ol03Hozf+sBSYjo+ykIcLZqhrWCfrB/688toJLAEWPZn3fpT0Bg0E7b//IblkrKB+KKaKmU85pufDYbt+6QDD6lGHVJM1QqLMwIbn0Piz68jiOvlH5/dVfnTYKdnn/3TK2dOyRhbOK1VDCeOkfIKA38ILiGBd24RqN+/r2A0g5sHPeaHVNvDxSBQTZ7gIQZg8y88sD3/DLbPY0+11GrGy0B++42djWMst/1VArddU+Off7mE6T2G/DLa9PGaGoMtJOiB/r48yNL5dT5u/iVMvz2Paq8AgG36XmZatUO3za8h8uxzkDzVP2yeJ4/V6zcmMDofz9Q91E61qJ4w/8P/nd3uh5Hf/zm//hmR5/4I5rgMeyh8pQKfTJUymu2aABowAzRkG7+mscrDyxEirJ1bOHRrEc/wA9vqX39yivdOAS33gxDPf5bf+raHbl8G2DrXAiNFIcrQ5N4XGjyEi7Ek55RAuY9P9GH149DuiKTDOyIvwm1+3/yKTqqy7S8C9phHLJLl5td/I2Mt1v467wwT3m8Tw7ZyqqIphM8ScmQ2cfLrV8S1p8IfH/n1O8d6t7YwSswrdja90z0uof3rTyPh72FXgnoGAlykFGJtpxBAi2p7QW7nh9RUh9xnQemNUJVMAVtCW0ZsIWar3P9WHyPluLChAHMBf/rl1++d8b7noOhzAxLuUAeidU0beOR5lf74y6wIXx2Gf48L/vkz64m2PJzNoKEh8mG0/Ppvg96/qHFqQiYi+1xAt9FlbIuvMtr8sARm971HcdgdK3Kib17RvSCkpzeTcsrKU6ok96xBnK2tw+oPeg9KOF+oZv01YGWvrIZILxvs1mXKmBzhGQwD8fCxiZ8VU+NDD+sPfKCvru/9JYwvJgT7J6AYH4p8/VuPT/D/HClQ/veRgvN5d6XacwoHmtb2BTTnsaPRaefm+9s5N4HE2RIRg+uFrcXDSGFzmyNqh6wxajrvS+jr85uGI/0bFgeRBHiO2CAJOtsgQBLKsPi7V9SyZi+ip9eVg6R5YtTaRZ6vC1w4uQz9F6KVVhn92IyqnEiBSk3kHI3ZiNMVXsD9hUTz+swXqT4X4OVFEurz92NYtEvHyRlXHHGgwi9bzKWroRtFd2onyzdaLM0t4BnIEH2fTcOGGRie8io1hr3Ar8GIBGuF1dG8Y4MmarTn61cgZ8kY4pc/ar4QFPcGjLYiYGdCQkU8frDBoh1DHO66b7TCv4cAXL+cyUG8tgYt72ddoTv5jsP1VPrLbpkb5ZyDnvpmsg3ybiUe9LVpYRPwfrVXy6CFLNNksuoPVrG0RidIXfFBtdNC/SWbMwIys0LYCMut531OJMjvB5MG7s0F4z1yJYBWZUAy2k5V2cGuhFc5zbF7/gQRw0ccg8v3tkezNT79FUpSDYEs7Ym4O+r5UmdcDQ6O/kZTHRvVUsceOWTPYk9PF6zny9tuR/hM/1oUPNYNUjmfQP2mKDS8HXrAvKxc4T03rzhTRDdaDC1IIDSFB0Ue94zWeco8uD0/4k6y4q+POK4BmOwS27eAB8RVzjK0y2bBdt+V1SpJXAwj5oxklS2Bja2PV3ARS56aV30e2G1UzMO7RiZ1v7AGK3TyGFwc9YxtZtrVbMSnVSk0viXAvoTR9v8Z4R8uQ2qdw2pgV2ubClAuCAc3IgLSuGVwuHyvexwC+1otNFECeCSoxRYx3ga7vCITCF/PJ2J8/ctZmNYQiv2YYnO4M4P4XycFaGfuqN/9VYyd0t6WQ0/HVPtzlmp+vTsdctcPI9KxbKI1wtSR7yt/wkHMV8a6u0kXuU1hSqQ98o25NXNZ3h2JiY2RyoCJ4vENv4owUP9r8sZi0aYF4wu9sBtwxTD7L54DtXnHWMsHKR/X1ueh0FMeu4/Pm82u250Oi+i5GH2kE2PQ7lrYFbGExCevGcuojikMAAVIOHkvsNLHmuz483IkjfgSjLkDkw6N6VNgC4grmFANT1Dk/R2qEy4bFn/njAD293S7K/rAZvclCqAxpISarRwyypGTrRhP1Udn3raG9Xu5q/D6jHgCXLr67NsoMmiA+yFwdr8+u3KXUdnyH18zQzTo4lUqFPqJp0YsPir2cRcEYXwlOIxjeRha1L2h+PxuFqhK2fyZVUFB7nvF+gnqfq/fakcpjtsRKe/R+g0L7vwhXFaP2q8/ic3m5cGDgzHw2N/iZZ5cbIP51sY4MO9eRcLhkIHwvEpk2Z5/eYdxDQ2LlUgYvyMbweP8VNKvdifL9DcMNGxxDzIpe6DvrVZ8lrMKwdBTMb3easWY7TsSALy08794n5qqfwOF7SskEPsvYjtzEMBh2C6CeeajsT7ioobD461gbbs+k8KndIGtEEGszd0bzEta60qxXH3si9yZteFLNmEmpQ+0b8vvMNUA6uBwp0/s8Cc1n8nnMcKvwg/Ur+0up6KIS3iEOkDcGrnR+oChDBPdNTFaoy6agS+M4HOfzzRrFIGRJ3uZ4PvY37G61ROS2EoB99Wzo74WI2OssfpWvkM3Ui3zHmxkaefBt4lWqr07kU3v74AO2/pQP1iO0bgPxQyYUXOnOgmJPxwSHAB662Y0L4VULfGaZ3CvrXe0DMMnWjjniMDXthdqqkFbkemxD4B5Pd8I/OCjTzv+JcHr88xjT2QcWwOP44HfXnNsIufPX49CK8mjH5f0Hn1Ln+zsx1uukwYhaN69YZXelMhqIZaECx9S3sHLDKHx91ipQ+LP9vu/EXRxffrFD1gf4XuE/Ml2sdZ/hai9Gb0NWeJiej6YNVj58lvCbb8Jv1wXRiM8Z8rc3S4U71OLkfrDCDD3l446/Omd96jyarCuq0ZNyzuyWQz5t9wYcoL4059m8Gd0bsDB6HjEqsOfvyRr+pb1HRWpDt1PtIKz7snaPJpbvijD8kjQBYpSOWCjTzWjfd/kAILKCfHLaxJ/JdNDBaDyQuqaVVr96hH4ursCh4Ij5OOiPjJQn941fV64Cxuey5TCwVqvaH1erWiN09yGH0uOcchVcjTPh66A6zgm9Kowxe+4Ml2h8HV8rDv3NVqPSryC71u9U70M78NcY7WE05xHqH2nhr/6A3+BdvGxsbWLxWEd0DWFMkgv+DoUWT6T7CPIeXDJaNifpqFjVjHCv0f8pk9l1ivxwl1r2MXNidB9agFyOFv/rR/2lq8rma46FM4XhCRbG9h8bt5IqYQGYivYDuXatt9C6VJEOAoV3pgzLzJl73k4bW+ltwOF9qdV/j7BEwmDefG3etrDLf6odmTA2NbfAVt+YXv38qqlAYsjP8LiRXXga6D/5XNKdgTbSh4z9tbCE9zyHavGHAFi/Pkc0OT+Tti0t9hyip49yBXYY+84q8O+v+gqfFPxRnjDVnIi3YEAcNwB7PmhFfFb/ZVpoRdk3u+cfGZHO4V/UepTqwMvsKJKr6FQHD74qkffYd3iH3Z6fkbLhh8b/9Lh4xw/sBr4qb/qu8cTXC/tZ+MvRsR23+4C7KKyafDBfwYlfOYBY5FdrO+Pt2EdBEQO88cC5P1n9fkcHqsCXnarj63juWZUJg8BJnFsbPXw4f/qNbT8OMLHdE4Aw605y0GvKtSX4BLNlyk2pUjUbtQOLsMwfgR+hA6VPcQA6oxR3E8CGJn9oKGiv9gc86GpQNjctno+5a19t3l4WR4eAgP3iIgffVsY6JFBTd8+g/nve07+4RkAeTIs4uRc4HvgRmqszDK64+3qwLxBOpJuGfXn7/OdgBm8zz9+aOzT+dFAVVg8rBpXMxKzuB3h/d2dCROXOmLveyTBqfyqBHJv5jPv8+zB+7DuEPeRToA8xyqAB3An9Nj5OFqbj8SDO9qp5GBWUrWCs+fBe3jScVQUZUXvrLEBbElG7Qz1RvdU4AhPz5rHer4dablw1wZaoXZGH1D1xszjNYGEHvbU324gm/++9ximZ79A298fyPduyjCRkIr1Y34B++BaPOHNViN6pk7j//AFGt+VR7OsHAeqKk0PGloC7JBYG7b8CWCHyi+Rq/fqj43SC5Dp5wvWzEMTbfljw7rwRbTgVDUEBO4BJPZT+cenqcHzHDCVt0oDW8JgPGwS7mbwDT7KbuWzP2u/XUTFXkSI4nc1NfpkAjm/q1R/jy9jDarwCWlpHjFunn9sUV1OhSrWMEZ/511FuTDr5Y5oAuLl6OxPhegTuF+V37HQvmIPl4NgeGGAwLszq8VDVQGtFzptfNGoRC/rV3DRuD/sr/ofG/dHvwTmcNPInLeLMWFwhHAXnieKj+6Sz6bfQRjMZkvzoZrYHB6HAuy7MqJ40xP8c9ekoC1llTrB+wtmjIrnrx7RMBX7iDVHqYSbnqBhebr76yW9cjCiJ0Kv7/JssHOryQpHOXfjmwZglwZBAOAfQ2J0+wPjcp4d5awXJk3ZRQWrfpIugDguoOhXH5+XUoaaLr2of/2TwT+9xHcfSo1abIblYhxsuMUn1Q5mzdgY3eofH0eSHPT5wtc3BDL5mKPlQ3Um/L32MqSvwxHx/O3oL5c1uYC/cb/g44Mk/vQgsQSdw3Wh7uOjAoZc/QKrdu5wdogPwwz2b1t5uuaNnr9/N3+hXFPCm3J+0uMjsod/9erbcYRIGz5snzcV5G6vpVg6Hy3Xrq6BfbqvaG3PtT+n+TzC71u/b3j5MZYScDKQYv9MzcA852KU1BfZPW9HuhPwNhgBSIXmJx2xLemNz6yiesKnVMvY/IMoF51NfXpPcCI/fsTGWo4hEuMbtoWPH7Wh5IzgmhKfSN2ysPGozxcFuMEX69rLAUTyzh6sL7hESh1Xw5JkrgSDIuipngt+xMq3KUFv0L/4WLevYaZnoIPxe/EI/9C/xsTDiYfcH1mxadiPfBbJwsHDh3PQIagmY9ZyXELhsguoWwt3tr7Hd6xU9V1BXHUf8mmxXjU4OZVHgz/yZp1amj0I4kLf8MwZlrf9Jso59nXy2E8NW6u+L+F71W/Y1+ij2vQOByKQGTTgtXtEtvoOrcpGWJMfO38K+SeEl458UHMesmh1bGeVf3zLKFnhT1X1TSHHhCMOi5gam3+QwR/+u2RNI2aERg+/hZejXdgOOQs++QrTKsmpdRz5fKWCyskG+x6R4qU5m9uiLJWNr5M98lHEzq0rg91xNAnLn5W/mrvNYtHOOTKc+puzFMYSnPG9pyo8LKCRJCGGENY3tP9aKpgNFp2gTYhF1vS8XaQROius0F6jqsa7QFy8SodbvFAdXWG+rsYkQalJTjSAWgj2VivP4HhKE+qjaYloVvsZ2OdExUjkK0B+eif9GnekBLtPtcK/q/Crh9jQrSGnfzuth693vMf231+Yz1NvviFsx4yilUhsbq6HErJn2hDumY/+cus+BNTy08e4P4g5LY/cCeynjKPo+ggYCdfvBRrWUuIiXO8RPR+DJ8yPB4LWpb+wpU8VCWqkMtEaysHmuOYx2PCSah9agjX6aLICZu5NnUxkbPQ5sVA2vMHuTbeB6ESHFUZdaFIvbRzAC0mVKAK134h7CqBa2/bDw/1RMLD6Z/URHYcmgFlCQhL79pkt8zErYRhKMvZfg2WIzHt7yv4c9Rid5If/L39mnPdo6T2bzZN7tMEXJQ5FxS3JJ1vKGnmLZ8JKVhjzWdAlZVtvxCvzla3V8kyhrf+9qIM0NaKanbWH/nywqRtziz+7kl2Aqykg0h/iQ9U+7pIKjfvWwn3VSzW2VZKBO1JUuunvrd4bb9h7zgMbcYGM0ed2xQ/fqXZj9T+/BZgvPNJAqjv/p7/li6OfqSkIYzT6ktFAlhkyErxEi6aTATj5rSZHijY/ZHolfgaWeuch5bHvhvXJXracqIVNrbh38iUT7Ro6t+GDmt2rr9rz1SqA6FEb/fyIpb0EsvzLfwR7cVjm18cD4vrSyPoeXz4rephCXQ2v+FtpSbTcD24J99c+wV79XAZ2eeU2eICTiXOQC9Ww1TeZXuFKdpaVD6yonTe8iG+emtv6ku44ZsCX3xm9qY/eXw4elg4P4+3R17DTIz5svhzY8mnTg8RnJGgF2Im7J2pRQdnySOzLz08iG15sR0DDEfoB2dMgXA/59wDfJsSjXFP7MSBAdrtPAx/d0SJzOK7Dchn6FPrZxyHpNymjua2SFMzf5x/d6mdFL43NgZ9+TaxU99fD2dLhWzI1bLxjgS3pfG2UsgoKtGovh4m78eHAW/5F1DHfy6++J5K25jpa25ENP/4JCTQ87KlkqFjHv2TYlpKKtcWc87HjDx7cXcsbeS9FWq1Bca9hr3wGwqtBO4xt9dxu5hAsam71fOHK0wqnJ9XJ5tcZ+y3/4AO7D6xbshQtp3pJIepKk7rT+QHW/pQmsBn6E8bftACLc5QL+He1XGwT+5jPgtiuYPcXXnGQhEq+HUx9QmtSqx+fzBfznnGycZZF7Gz+0xxdvQaSLJbRsuEt3fZX6emUUidSvJzVR5YCn9wtarzjBLDPaTKhe0iuaH8c+ajr070Mu7YI6ev83lWEyTsduMbs0PAk7gHJ41vx85Oo4yv7X/14wk1fY6ehcJgKRawhEHWPvM3IAGvAtwjKf+UV3Tc+yi7ih0CL0M8/fkstXrYhFMoJdW/OGvb7yffgNR19ejKudcR+/DGPNYPqV1mLVnlHE5kPD+7m13yHdYEHDm56nwzywwfiLrbfMFGfNnY/96u/1b8E4vdy+sUbG61cW6Fc+R2qnuCPsRZ9SohuV4tu+gXQ+ghSaKORYf0XH7fIXOHhtTg4K8tjtPmpDTQO/YIdW/OBlN9lCeBs+uJjcF0ZPbeaBIvl5mPP7q/VerxWxQ/fiSxnZsU4sOPhyfl4hIO49Wfl8kfgZ3hgbGSpZAxubz0hfpln/PjxlwZt+Wh3PjaE4Z6zYeo8mB/+uJ/fAKiU6g4sDyeb2jtZNsiELm/YZl1C1b/3HYwCF/fbKwUVRvldYNQ271A+esmAmLOLAXsaagCU0ZQpFpJTNR8eRQzNGShoIXruzwo8m/BqfwKy/6sbn8aNacLV5AoaeilgJFG1Rvkc/y5kdM4cmAXxPcNzfuixu+mbv26qdag10YSm7lIysrtJJ3lS5Zl64+Fa0VWDwYGj0MWhl+Zgavv8DcPoJdDwwl5grL4vE/z05PmyN9kaH05v+Lhih+xocfTHLgIEAsMDeMNTMFy5C4F7H+/QDz/Gy2NJIY4HQDjH7KrlftBKKD7/DNQicZf/9Id8qDobcaHesvURtiPc/BACmi+qfvoY3lfhRK1WuRr0WLxrhdu9MvzTc0smohoE8VNHXPrSjZm9rupv/xGAd8FfaHOT4LXFBbbclqsmfamLX38Fa6zaVzNkkwcUZZGovz7EaL06UgqtSa+wT76Gv/nNJpzZRaYIf4j/NTQzhj5fzNS71lHFc4alwq73faqbcBrm8CXbkDreizQLB4a9VJ+fytYPwG5caZVIoniEMr0o2Nj4FNt9PyeFLWxPwI6zI76QlPSw4BTRR3cpwRKVoIaDWHxxcSM3RljdPmHjcuq//sQskgOE/SKl6LDw4bAvgSDDz/F7wS4IYc5K+lcD05ptekv4YJgb4jhQcI0a//Z3Ro+dB9pRuGJrVtxh43cNWFJx/9s/fz1ofSJvepKaf5Dki5qfZjBy00xxpGXGcPj7cMo3AibG+/QLloUbeuFJugv1588U/cufzU+lKkhFf1zSUYe3c3tA3YEv/Wn7vJQrXI/WTFKrpUjdAGz1F0lKh/317HAOUGyD2/C6jdi32UtQgDIjWzwCftODB+M781u92fusfnv6r/7iI9+21eRbsIUINwV1yc0BK177DEIuuhIOjJLfwnG5KO+nd6dhlZg+LyXvQtnim6KdWzD2lU69PLxCQH3lpfn0IccBFDpdoL6DbtW04amy9ec2fbEb5tk1A/hqmwBVJYP+2nP7EuqoTPDRvscG29brp28ofhVPXwijfobYcnok3IKYLQFqm3/9P5WCB2NdIzmHjU8haOSDsfoDvMCgPF3xI46zir1KncDrpf9Q3GaXHx/goeJlPfYVed78sYMDY3Pf42Dwv8MsNYajjNZFIuDiJf58hYsOzvv9hWIusYz1KLwlWJyvB7Lb/BcGFKUFmWzlNIgEo+I/z8aGrdy21HdjvdrixwFB4qsYz1kz0AdrE6iNgr3hXZ9PHhqekLR+SFF+TxgtNT374TcqDCGrlvDppDD/O6g4gMUjYvHRbf7pg2MRgmFMyr8nvHOvihqbX7js7h385SfV+9mN5nzVStCcSYfxX7FW7enmpHDjS0TJ0pqR5E+W/vkfxsq+/kKOj+yf/vfkrK7mSFB1yBIfUy2M+5xm8KJD9Rzgbf0VsB6VYoarr9o4XIfzwP4mIh2K8+2A/WswRKsoH06QlvaR6ur9web6ymfAH8cj4jrpm6+NdExhWsU51sLYyxeoJQHY1h9bV+vGmAveCOzP5x7BJHxEC0lnB6ZdalG1aq2KbfgMwOuC//nji3vL/svvpOoiAsprS6yoxb7E7iCRzZ8RVFga2Pv5+TnDn5MExUKy8N393MB8XK5PaH6yEQeXa2eM/t01wfFixdhGaD+MbdG/f/hHys0/JtL7j4CpF27U3I0vNmumxMHdXmuRsg7LsPwdBATlyu2oteETg3ub/9U/xO8lbSBHJZ6Vf3o+ZLbP5N1cg1o6PfHRyrvot17w3kotPm7+Ckv3nQ43foSxkMwDe8hFIMH3wyBs7z3B/BfqIzw3ifYPbxk+HmOoJXNBdtLeq/iOXzwQ0j8Pe+Nhm7rm9Tbkbe+z+bM7QCYojnCR9ke6+Yn5OFT5G+4BPhO64RlLGi2AYSjLSAyuK5gBzDmYGjcXmw1XVfOJO4zQJqNFLT2yKiaklg6vQS3Q49JEOSHTVQUb3pJUDrz8X7z9H0cKDvz/PlIwOHVAnZ3csdGZoxEmo3ait3MIweLlXg3CBytJenyQgQjRc4SfRDCQtP+9hSoiFUyFZlGXuMawnj9QgK4X91jlvLexDLmeKKel1KgTDqd8sbhKhx85eWL7+Dyyzyd0CJgp0allXm/GSqxDAIpQgOiPaUNE3QD3cAqlK/bLOgSsj9YnFIVRQKt56/wxnfMazvhPRev67SMWi7kKha/q0Zu6Lmy+Wc8AlMOuI3O24/JhDKoSdueMYS1z/4blXfoXeJdTgwRLp1TzzjrycKrFAWvLycnZKaobcO23U6IB2+5Saf8u8PLgDIyznWjMfX6SAV8dMzKvjTEQM9c95dk2Fxx80DosfcZfoGWZBg3HRYima5ddQOvFOeF1146ElitPUBFGRpF6q/KJdq0D02SoieBck2Gqcj2DVQ3O2JC3wSdfqwrANJoNfX1DCUxOeS8B+jw/2DuCz0D/rHIEUczJCPBXBsZzfjdB1lCTMK86VCTJU1PmJ0rIpZuqYS5b4Q2UyBGpGaTvfHyKZSE7hSnRE88mn3FiO8O3QDUaaGgF5Nb5BGpSq9FM1Dow3ueuh4bzeuAw2aXGknOIwKb5gxSzYh2IH6qZIrT3irzHBQ5sT+kIklyhBETPbz42YpxA+kln7NvfJmJT9nJg+xpt7L/0DxuDrpXAqAg8Nd3RG2YxWCFctPNENX6N80UV54t8puSMw1ydo8UJVVnJDN9BX5OvItZHcgF3wnCmQT0/h1VQdhBO9X5Ay6Ux8tWYAyID56UTeMyhsQS2o8KD4R3QYepv0azZag3XSJPJHgBjmGPu8IRcDUwkj6zNp9561CBNupqacL0wduDCEqq78U4fdj0Zc1KeZZBrRU6drttVjdq9dfiSkxcOLOwbax/UOsxyZSJMBOYwwy7IQBYFHc5OvAr4ozWmG12oqJl83YovgpsKsmSosPZSE38p8vQNQul9wPr69XLqB9UMay95YN86GYytna8DyZ5vODsPNJpOFh4BC6UL9YbHFE0kYinsX8RCMN8Gbzti6e2G3hUIMOSW/dvP/qqecCi4WrUcxHyESSi/8fH4POZ7mOuBPH2eF3xsr3s221RsoPbZBg8VyRDRMJueUDbFL/kCUFXjwapV+EerioBc3IGZZk0L8sA7UQvkO58+50CF5zTfb4OeBzAtYseDrz3uqBtc98aSfP4C0DRfiDG8LmxSrasEs2YycYx1K5rd+bMqWdrE2OOTsaLPABhA57/ZVJX95xZQ9AkPEVWCIQPk1ZZkd9wutjh05zfI2bFBe5M3Iup9mhg6yUpIc0b7im75DyfoHYmU1TTqK7Er4Ll9JdjG2mh81VDllC0fsOFOVcTm3E3kS6FdsKb0wB+rzmzArU8qovjyH5u9LlgPW30hdJwfxtKHag8yp2TYLW2ZzXx3KWGuLDkNyupqrE6snZQg5Gx8FKU7WKUAr7BsmxM+7uQ+ZwJVVihUhoQ6oJfDzGwVQbctAfbZ0/L7LHutIGSIYpzGd7AirkjhCTpXJJ+u8fCxu/dTmc7pQiC8VWxlwaorWz4gED2tiC+Clw7O0lukljucwXyfu3Z7y0DFx34ng+4bsQIqD36kd/ps/HHfvWtFttcEe8Tpwch9lEK+efhD2Ji+B9a1igr2o6FRzZrqiJoW4oH3eZv0Qg/xQOVO5wAKoYUAcrxqUdq9ALlXlWLTGtZoUa2HBJ4C1ak78ppBi9JLtkmGOXXvkxqtQUtbWCzpAat9zYz5nUFBTj4ZRELLl8Py6t4X+STjmuLhQPLlLUYSzNI6Ru/TuvcHufM4eDpnO2ruMRoWNl8k+AnskVpCfRpW3Pkr6EbP3d4KVowBRHIMR5Mj2BGle85w++fBhd93NIHLYWB/ithAIvxJaMVyaCy7WEuUSpkE6r8kyW99rnrC3SQHVL98+4rFpZ5BycNnarJDNNAiqHr4w1dcXFdj0XOvh4QSg+LDNq7raqERLEbwpLdpOFX/9v9h7hnZ19uUIb48EQU/2AcHx7wwlkMgP4E7iRY2gvTNBvYhOiCGBun2opSx8tZDlW1+p2K9emlsvpY+D290RDRe68Wfvlw8wqeXakTcI56NQlDLMOZFEXGVJFQMdGdVyaBNqVWsl2E9BU8PbPGF3WsI2OqWOoRIu74oih7+8N94Z8eGmtKSDXMrzgVw5LOLPc8Z/LnN4AzVGJTYHfmPv/LiJ4bvT7RHC/n2YPpk5AQbLyno8b2eK/7SBSPY1pPw5Q5GdOXyFraR9ab2CxjRPoxYD748t7W8Tt9q2eenRJH2qosvIrCMGYll/eMDOPWfNmNDd/eAEQU89qUk8FlixbNyFIYRSZHmG+urM3oI2tqkrwl30RJZB0m2P6WN3ZY54IfX8O/zvFIjf5zA+BCLFNw9/MaGNlzYqnJSC0Pcr1h7vfR8fmXNCtwqWMiuQ2djXlshg7uHMPzDB3Ge7xDWkW8gGblV/i8/+onfY0Pc7ng341MCfUX+IsXQP8a/+LYD+0Agcnqf3XLtDcMsdfHrnfQRuVpLBjSp1xAcithY78HowZTf77HuVZm/tt29hU37nmjKtB60Unnv4S5kHlEE91P1SujoIK85AaPbswLL3boSOEtli7jM1XLhIn5quEvfHxqe2J8x1x/a/J6PBpedNLDZmokS1CJAglCf/NkuLzrk5OREpOukspUPVRtGr55SN+A/0VRwxQpcTK40sL9fQN6xZkPNMi0ao+ruT2pG3srSjAesC005jK0oPeXv6PlY66bamEWxP4FHf9lRDK9nsMLy1MM5i2/Uo8/vsETR7Qm73Z9Bw53mRAzNwcbHupos/uGaL7j0M+BfbRW7QskZ7BEsRHGlpkByerMMEQbXGP7i48v0ulq5lp5gmGUu3vLXn7lg5KF3flYYpddLtbzEkIfbv//Vo2htu3MPjWYgaKxnrlqmLtBhg8cjTphuGvsp+sbwlkU6RUXSA5LM7Qi3a5VxeHvWEfPFyIQP2vdEcuJH3qnlvYH9VT/RYADvfB1D1VF8Rfpi/z4e/UUVpQv0Qu6IDuZ6AvxijTZEo5dQ+1XcfHZTxPHHf6l6aQzWRGUKQZ2+Qoz8PDcmb84DcLN5B2Nkpz6zM9bAqLL6X74YYpN9LyDZfQZqNzsQsUnMeOn9Oe9xcGJ/1eRmsARCzHVkGQ57fz105xLy00SQQMpdRa3ZDID6+t4ozlyVrU6QIAhfnzt11HWJ1ng2G4hNCIlwPzUGy2K1VR57NSHLvBQGBQE+ATMLe2yfbn/+XHTvFT6UJaM6jF9si9cRHs7nDpvpyvxB//DFj59Q8++lMj6ITxfY7b4GRsSWIuq0ygnE0SWkerzGBku5cAYP6U6p48RKPn4s+QJIev+jaXDdV+zV/qnw8sm4f/xmnoKnBKbd503ex8OeTW8xl2V+R1TqaScz4qfu3St/PDfTY8uX/rLOgQC5DCPq6t+/aLU7f/s5ROgQ9rdh3fi4fCqMiAj+621QmctreJsopD5XXfPlFMgr+H2/ITe6wQvBKINgdG7Uig5Rzg4tlODCix1Vs90zZ5izBMjx3Jda0iIbqxfIsRz0YYNkpp6HeResMtTlZMIqA43B8g9/gdevmhF47QV//OmnwnmdsQmA6S+y2M0HSXuGWzw/h/liq0/4XDIJ+1y1z1fCIRtGD8qROTy5/n7HlQ3c4o0Q6brmWz4WUHg1CjVBIYJtYsEMU2Fu8PF0a6p5jDUOFqMREq6dH8NaBqMJ7MLLNr10BTQXTRm2bTkSIdLNfK/neg+DHjcYU7nZ8NIJYGVTddNv1cDOkdzKJM3/sGG8tGGfxG4L5EoTqGuA0iCyaDlQluMLDsnxbPTPPNXB+aoWVN+fVaPbCbsSqHJCcGjXkz8VeVrCzjgZaL40Blj1jKjwPLE3Ol8aI5ojbkiBt/teMPo7IMBEq3jLG78h4qtIKrZNtIKwP830SFXmz2JpNDIShIDwe0yqhc2ZDPVdL1LzT+Wr9ZmfVGV8jSb27uNxWL3sJYEP/TtSlz5tYwWl14BNnyK47ce4xbeyhFJEdSvcRexapk/I0trBN9sZq2Xj1yD04pZq+7Na8Yy72jAOpQ81jlpYdWzOJHgKoYkxlhs2ncTShGGai9i5hkU+m90bQm90UjL89N1PD+DH8qHH22HN+/1sJnBbX6wxYFVjyV0R+LNHDuVlPYHVyk8BVHfkjkO94sFAytNFufapRTPpVm/8xBDgEBg26pBbgVWxYgj1wATU6XfbEcTS74H9qhhi6coq+tNDcNfn2L1p3jChj5Ic9ufzQIOmnqLlFtStfIs5Ce0kZoF9lHtvODNPIevTPfq8KcY11F+fPTl4jj8IajAmcJLDBGuJg6P18CEFWOhLQTvx0YPxGkwe4Pv4it1IXfOJi8AFRn1mYy1lAWDv3H1C2F535K88xj5roySRD9B+U/86EMZ2ZerJTVtOBFwHAhi2Zg7uQ2EmioYu+Y8fHOzP26bO34NEZBF2HnAaHuO4G71oHLkKwU9/UrD2J0E2UKtv4fnVz2g3YTdfQ86OQd4nH4qbKhpGhTt4cJ/WR+pPHWewm7IbYbKrBow5Vx32fp72sMd9Te0xQcOez/ULxNFxRHPMpohpXGnCmp0sfA5PTtWSoIZQLhyNKFxZGGsXPDgQSuWB8HBd2Zp+CIGnZu6xHydBTg4f8gRvYdKw4/Aam/v5U0KajDJV0+shb7pP04DND6LnNtWqvZ+fWkVixxSBzS+gIJITeUpGQK832R9mZ85HuJManayDbvsrK/Ue/PitqfWZsbjWg4fzq/0Q5T5MbFE49Dx08ulAf/pqUIIhBcipM8SMl1b99Og//qJdmipnWXAswdN5nKjFHWPAzp1/gtmSytTKQcXmrZ7Dsgq+hFevYkXszueBjKuMai9V8Mlf59dyHMof9EfVyP/HJ/REuFDUVLG/3Mt7CoIQ2th+HuNhvUXMlF8Klcicv3Swv8yRA5/QCKi3+QUisYoGxJ9MwUgZJmO95rqqDNr1jJtc9o3xaI0Z7F+jhfVBKvLZzc8e5APHxI/3rar++W9l8+UwiuMsnx/xyfnxNzJPp5ZRtfMzSJ3ao0+7DoZ9EH1rYEitSnPi9NF6KT3pX33QKo3klP9AGx4rtKJvGCpsccTegxH+QyhdS65axE8D4XNJJbLUty4ad6X/Bnte/CPz++YCRsr08vMDSDs8m4G95sz88SkkYfXChsaKt7vP9SN11SWt1i64cmA2gb/pGxWwV8YyuPkZOBSftTHPGU8U6jQe2vW1z0idAR5O2u1EFGlr+eqc5AF71+9RtT8dcz7L7yq8S68LDtLEZ0sVvTa92ef/9D3LPgTBTb+jKVdP0fqwhhNk0K6wbfUHf7qLkg03fUV24enDpk3/QWjPV6pt+SFQrnCg8NU97Ab8Nih9zltQCt2LHh8nqyIfTkqBKuUKWt/JaWBerM7Khscb368H1lrzDFtFvmFXXaRhRdHXht9G0Kgdho9ojEWUgg0fMSoSD5BfvsUNPRJ584M2Pt8q5XK7bnqx8semNEbw4+M//tyOsQvhxVcWbJjJHLWS9dimFIgGtf5e72h+BsyDachz1Cxd22Dc1jJuQ8pTpzxGQ3+xjgj6lv7CHtBLf8FirMq7cPGoyrPJIKfuLEBOjk/U3hUJYD9+JTrvLz1r42iQZ37SgZh8eezlup7v61bQoZa+d0gweZ2JTBB6cMRjgo1pqoxxw1NYnCOROnMSDuP2vIDb9RlZnzslX55B8oanhLpI/mAfzPdc52CklSp1u27nT1gsdJDH4IoOxDUqfujMEo6Vs6N2Zhc5nVsig80fxGF30od/eKgn/AVfkkZnTfppCJS88IyxVwe+JJZ+LYfbxUcHA+j+cirvBZyMk4atPUbG2IhFDEDbmBS1s1KNa8ulYOAPIdWxHPoi47oRdrU4YScc5ry/5roO+ezE4+AU59F6nS89NLwUkblOS3+xuiwDj0SwSKPGz3zZ+A6QYnCkDtM80AJbdWBh+EeKiX1jlFhxDa50xDjd8GNGWSPB0/LWEDzmhb9+uDmDLQtKik/LvqJ9cExhFEMZq4lDwXznjki+x5yIfvpynEUpA5M9ZHTjR/6mty6Qi/cVdV5y76+fDySHsfJ22MT6NxrM7SLSze9Eslw+qnmewxi+tOJOT+Tr50yO6gtclueJpON1H1GcazUcs/hOz/NS+Axwnx4Sw4DUOUzvijVW0cLEee+Rsu8Ug+rc7Cngc91eqQrv0UTFkMAIfxHapawxxtaqvX/fZ9xAzWZJlBKoOY8ndUZeGwTdOsYASvkbfa8YRVMQTTVwkplQdW2qap66todbPSHz01OjVQ/VQgEPYcIOV2NjuXK9JC+jWSOZT8aB7DMwguxzvSNlXISc2YrI//xiHIHHXJGccgXQd62IzRzUecd1hgyfhmtTFMdyxBYurH9+Kj6+QMnokQulf/tjFMwHsxS6uixXhoDKd3KqhDoDAtj4EVU/45izY+720G3fAAcvSRz4Mj9xv/4MgnodVoIdfR1opCW3+Yte1FfW0VRo7/NkVXq52vBphGJa2zTiHGQsP7634Q/e9ILPog+fwMbJB2omtpLTJptOEEfWiK3k2/nrY84a2ApdQQ5cTYY54Jby50fSVF3P0XoJ1hO0hp2IfVFd/CXK9RI6o7cNgt9JoH/MWQ1pM+c4fjoTILz10OFJ2y6OzgvJZxEnqfLeQAUS9uga/fpNSu6FL6xaSBoWPbo10LYnhGjitNUCZnOFKS/uqZ3Up5zGwWEFdfsm1Bh0q1ru5TmFv35Je0d8te7afQJ/+s5M7Ee0KqGqw1xhOQFLn0TzLXRP8IfPCjkuPtNjh5cP56jDR+ea+Oze+ein57d8fwxrMQdvGJqcQvHt4ftrOL9n4Ng0JGzDH1KW3gruCitoSAs2zPsPfQIrZA09Orye924wXmSl6S6kn/l3NefcEMNxOVOqv5N5mJRW4SFUaI+WlI2AvS1J+NVL6pHdIV+BGCHwol8HsdJtqvmd8TzY9B1F4anMxU1/wzpcbtiVbt9o9rhHBjY/lMj3EETzOWp0wAXmE1sq842utpZVkaZpxMFjmzKTfP4Q+KdnPbdmxMw9B+YTlYl8BJ/q5+fCE/Su2PsDWjRHXTbDydmmtiT1nNNvqZ9gKqwNVTPXMZY/0VpBRMkJVcK3Ywuf6ycYC2tLJuOAK77gDhnkmMaT1Uk/OV2iOv7XrxGX0QFT8qEIGtXpSn2/4BntA5zBT39RKLLroPrnP1383UIkk3UVU8TLCB874mNr61/MsWhncKCfD5Gn7jmsA+US+HReJ/TjTyzjOglqE+f/028L6toUmhnebvr7bnMhraMJT5/nG1uokobR5XACyknOqKn1sk9x7jZgq2eo9Cr551/z2x7l1JNLpdrwewQX6MWId0MuXx4ReP+r/6uazOBX7+GuCm74ZFe5wWyrh1AvvIKqlYYYnUod/X4ma4gpYN9gaaEcH7Yjdqe66nfWwYSupb/xsXfratz4+2Hj19gL+5uxcrk7QiTwAXU/J3P4+XNKqkWHLV70fFZiTfj5f/SXr+NxDlt4Za6Hw0H+qxY+egWyi8crdl+yO7AqeLwBfo0XXORa9/PTE9ha6pkiwXEY6YNR/Re/+5s8DN0ueJ4gMk4najW7HKzJ3BK49Uc2f6M0yDVK4K+fgI0JCWBdgqsMdXZcqevEBViZZXNgfBETrUcN+as4t4Xigt1+q8/BMO2E3RvMDzpvF8HK0eLPnwv4Jusbgal7GqTt7j2UtWeAvdU1/P3I2TVYmQeJNDztYdnwQd4+T9qN366bPwADm/rk10/Z//yA+1dN8Q0uB4MM2av/xT8SN73d7bozBJbzKn79VkYgFYLfemD/pi75KlgHByg5APi33otDRRsOThNgw1D30bJYuIBK5Ik02PdXNo15moGfv+gZshuxC/eBACWTR0ShuuV/4wd6/9eRgv3/PlLAIDIp9vHfsHThHgJju15am9wHWL+3iAcffkAUwXL1STHwb6Ci6UxVTaTDVM2lAFIm8dQD4ALmgH83kNfhl6qtdWfsGphIaV4dh4+9v89n5VMgUNJnTaK9wvtrx5U8uFVCQoOxsfz2cWx5eLpLMj2+xapa0Z9aKkJ/49Fcdr5Pulf5hIaVGlg/rCqY/2wrlcHqOqScu6T6Zq4GlYYfc3oPzqRihH5aCOS7RkM9X6J1aT0OgiILsbnfV/5km9wKuLcZYgtoBhP9/s3DSrpQbPfVbhu0nDbgkbomNs+RZkxu5HEwVvwa+2vGGUwUdA6GFr6SKrqx6iPvuBIS4J+x6QocWJGjesq03D7U/hzPEXOTlw3YK/8guUv+w9KVLC2rA9EHciEokrBkBhkSBEXYgSKDIjIkQJ7+Ft9/l1QpodLp7nNOdbozjZuDjw7jJjCoLXpdswaC+YY6IjJFz0cxENQ4jpBwyRefp1yO1l26jDB/sAc9H17CQNVavsJmLn9Y5z/nYQzEWYWr6GQYtXwd0b3+M8HisRZ9jV+Uz7afvkE8MxMB++EP3/4byVAi5Y16mPvlYxy7EKjaNaWhVH9zZktb1Vt/4yimP4/1R60QYXpJeXpetN5dXufoANX0a2K72Al5d7qjDEr8+iPiwUIa8+rRhKqrv8jX9XcDi3i5Bo0+jdjV330+X1YWSgPFCbY666hRS0s5GL4DuL0viRa0Pj34TaWaWrz8BXMfB/NJkkpKrbQutLFumQmszDbxxT7eItbbWQ/XU/8lfa5kzXSywBVu69Hzox9zonnPB7h1sMJI3JnDklvqDBdBn8n+nKvswAq83SoRZOzJVGqWuQwT0T55O+r55TKQhdilmF5OHeG387ICfxyhVWYcOlR3h03FJWihM8UhaTyrjObKF0K4zIcnmsOk15i1jxI4LbcKSRfb0hYDiQRIpL4h8fbE0RQJY3da5rjHssYWl708CoG3hz4S0vrMuHZSS6BFyREb45Vss4tlAvxT6KKDmynDTPlBhosfpVj7PE7D4GkDAbP2+mH99PTYkiuGB1IVIOyas5GPZmYlUMv7GVttTsD6zkO0n7vSILBQRo0l1+wA22D4YDvNfG1Nm0mA2IkxtvIDD1YDVB6Me/mDxE/LGkamvgC+MCdU53nNnfxnsEq9LfpEQNM9IqxE2/ppjqSv74H++iwKMOalTfWbZg2L8h06aPfjHd/f93mg6l6pgW7srhS596RZ8tpb4TF2FmznbafRK1NicF+vEs5PL8fd2hkdJMZ2Lnb3Gh/1Ildx0t7/+PSx2XNsF1sAvZ1kVMPHtllk2iXQvL9/FAdN2owDu0CIVT3Gpm/+2LwT7ypsX8MOwb2maOw6uTPAijlvs6eKgdzyVwgRrgXEeP6ek3J1d/B2kG7YGB+Du8hBp8Lq03MUpRzH5k5Hnuh89JSiFC4Nib5hBh6v6wn7i6g2x/2n68W//TP75sVm+MneUJFniGWrOQ7kgVgMfYPaWLm/nT9/WKXwWeeES6LcXdzOyoBdPQS097VxoMkpWeHrWofY2J0sl63xPEq/GychKfKMnJnGRd2qf3PqNZ97xJyxVKGmZ08isYOuMRYwG+i3oiJA5xowGoWxwvkoj6RSvhWbxP2uhKd0Dalre1dtG6QyQv1aAFS1l3LoaPI7wNueKtT5HHyXgP4jwMO1FalTql20ZJ0TQzLZT2pZnytbuoiVsFw/b4xdq2fzsysz6WDoE9YuDfr3DH/D50iNzHKb0Sj1HfwV5gFFnzHS5nSr0JKoamPbPq3NIk8Vgv/7++EMNnvK0KInmRYY54CUB+cK36h5IO5r+/l81M8OND6aR9ERyS4DMExgsX/y1OE0DEamzDp82O+UKrdyHFjDdhBm2bRir6pSlz35MYQ/63Cm0fir81XhLzOQn1iY5jCYopmefhnExJKom/BDvprZr4c//MaoZaOjzYrACzCuwxfFLGXRspxuCFYkKyn2GNOWcFcjYNzVBM3eqLqz9LrJwBaoS22veuQtlrUMDpcxoY6WnPOjhO/knz/Jyt6LVn5NZrjbvRm+xa8KzKmWvGGW+x+q8dLVnWc0CWK9K3YYxd6gTfLQy7A5rpA6F94YVirsbcCpj5WAb/bWlsy347/4jo7pemymhvt5sGy+DpVR2YJpKJQY3tFywnJdkWgef7EMfV9SqP7xXLBknRrDdcnI5o/msFyaDoHoc5Oxm0xkmGlcd7Bwvet2i8od+IkZM2wDdyV7GOr5zGWiAIMuryiePqRZqvL1gGdx5rGzbx5DH9mhDJEV7olUpZ02s8dqwl5xLCIe7lazoo8SSwXdd5vkOLHFIR6ErnOMsGq/esaYx63glc8fcqisS77eh7qTjs2wIg6kJGdmm7RwrCKNKt5rr03ngzLC463fYb//PLV59K4HaBTBQGg6amx+Gr8OUm6vYtwpTbREHAnANLQtNq5NmU/XleriN/QfhLOdeCvBmENI74WCgD+/chbr1gMG3xMhUKbPgeCn/oaQkf0Wb1ztQJ68DVsnOdJzoNy0VbmGnjSQ6UONk6HmGx7zAKfAPY6X2R7IG6YrQLI8YsWmQjMX9XbL3D4jBC9B4i5hOgbgqWYOtY5ezdjz+iZABqpC9r2hNNxA8xZ8ONtBTO8Ldw4JFMTb8WWjwReg+xcfQNgsZywzx2gW88vX8HWKWqoVVxVwdh+u8Gz564avKne+cGsB6VbRLP7QM1pZgVWxi1hEjfilgAVx1wyGZmhTeTGtaE3VNobSN1BpPOpys+rmS5DAQ5SxrNCQrVhV37Ao9xhFpTxozM5uD9ie0wt1ux0eZu7ImXCv8xVizXzJlyW59dC6ZBnFz4cTLXzx0eHHun3Rcn/3YH4/jg5Ea3vGfqTbzdD/QiRdv+ITu4ApjJ+VUIaqemjRN8y+0VJajw5CzluR8APfYTEmoIPoc5eRJIiwmUyTh7B/A57q/Xx3R9S2IXwqyZtqer/TlnkrCTg3ZY1l1GkN++ZIBgQMOnXsEeRjS88jsCs4YEscKWMsADZwIPei6u9iRlv+aKEBohM9F8QZuEzKINjOD0YWJWDsr5cWhrf5tnVpug/8XeQJPB1YSe3bquUMk5MJ3PNxQjuD+fn8zvYQKEpIsXdsd2wAeXgA93d8xqp+rFxWakINe7m74vPhnrPVC3cr2PAMEe33rmE/L5Xh03EC8ltpqI2bPwBWnAjF9fxw5+veDqECdQMtv2UaZi+qZMClOCSCa/jNumq+ero3XEz/4slqSF0Gf9Y1pvJLqaLVPPYcHJxCR7veDwfyCNYaMttF+A+/ssubd6CfSzz11nDSpodkrmJBpQ7r6uHN5mbPC/Aa2Hdq13+3bj+lCpVz2WHb9Z1ofcPLDD39fPnnf29h526DJuKUKnfunbP1KATwGQgLDTS2aOyjq8kfn6DWAf7y5aJ2PeRSPyTcxX3nrN3pK/i6kJBuw7vz7ajVcOq/MlUiWLnTkjz7f/azW1dxWau6CJaxeaZGP6tgUfRRAGNW1tg4kwl0nYw5aAbcmcaC8MrnHSw8IP5iidqONLNV3bq06D7JyOyNtbsU26A43gtqiqfJjVbygjHY8BX1q+rNlgfAb4ip0WC83G4u06+mCvfI2kYoZ6m2KnGawT0y5O38V2w6c04p3kVLQwz8HlqXFmELqeSBP3/KF7dHb2BXhYDRtdTc4/eOe5gwkaPudutj7dQqhHxV9QT2a+kyUU44WN7MhuynDxpmvVVLSawMHXukbrcuRl8TpLutMagThPnCl+8Aat1vh7j4OEbrg64iNIPDGS0COoPjpdyt4jd9UYx2cczmQJxleDanPXZKx9AIK00EDLCM2N3wJB/dJx100aUkPA5PLlH4dIbntYZYvQx7QA5+eIB6/aToHz5K62Tjl6KMfT+RB6olXgZd515SxQFsWOZ3MEtHJD7JPp9VjVd+PQcvHnSwyQf8sD5/UgwcGI/bIBakLR0HdGj7Jw4rDjsAMqnAgZmg2hjT5dcQpzyZ8JZCi+b2Y2qW9RjL0JEVacsvWrThlwz6ixqSdXhWEdv8Fa74rhFhwwtjHr4KOJZLgHGQP9gqXgYT0rbIMX4lA/v3e0nFLTWxY2ssG4qHGHG3DBvVKwczx3PCH9/D/86XGQ+B+Pe9Jp+E+SBdCgFmvrdg7ZKv2vrHH//wnvutS7ZIk+acOn09kUUbSneZy2wrSIwpVU7iAtY7rVQwSNMee6vKmsWZPecfX74MnzBa1CcdxVZ1dqjaH1i+1i7itkacDdXW59fd8mUBimys0HgWvmxVrpkH5l2wJ1WaYMA+nzOEyrnuqHaJbtFacq4Dn+1vwKirnOFYKdtggkUN6R9f5NrQLmHcqx8ESa/lh3vQdaK1O2UY10LClvmdrGDzX8QL0qeZn+dSFf7wxp6Tduyf/a7UmbFzr6ZhLLS6gOV4PWB7LwQDFUZL/pcP/C0/zMOSrWDjo1t8EPIF47gAjqI1pMH7JpqU5hPA8t3O1Kt+N0ansCwkHBgODqw8Y1RV5FUK3CzCMkcu2mqx8fHHd4iwrdc9uy4Dann7kl3/9NyhzqADY2NPCWcWqJn7Y3KV+FB7Yj1puOGf/fr3iae+OjjgYBSlKm35CqtS1jfLvrE88S62B+wmvBvNyuEwwrp8uHT7f7M03A/BIDldiXjzeTafUqMFfr7nsXktRG1p1l6Ff/6pK2qpTWi9ob9nen47p2g8pcb7JItqTt1PoTZz8wYCtHvvvcX7tZmNwphhFHMpfeyYNUyvc86Bz9ov1HiBIF/N61uH80ExCThRrWGu1esw6NKK2r32jlaLEhPo9b4mx7B+u9NQnK9QFmu0xe9ztOwcL4GB5mQUGaB3V2TKEPqPZ0d9PlzZdBf5Eb4es0t12zmw5WYL5j9+PndGCuje7EJwlYY7dXRO0Lrv4MbwUuGR7IPhkK9d9evhEYsa1SOsDlyWPGVwR+xEvrG6uJP6IoK462KTKmAXuLOx96/wA5InfZ6cg8s+v21G8tot6LDF/+nveyuYXvHPS91o9v2mEE/8ImLtkSg5PyuZClNpfOO0OHzzccNDwNN+BVqd3MsZvF8fkDTijtrGxWb08JQd4B7sJ31NvO3yDVd5YOOn9G78WLTguVDFqb5Z1L6TNxuLYixgLzsVVrhCiw5uBmpIIbXRm5TPholVkvzFU6p/kxbQLd6D8xB2RPiLJ7p5F6G+7CHZB/kDLPW9lKWmm2t6Rs/fMIo3ywPkk9xptD6/WkevwwPkTSXh0LOuwwybPIPglOcE8McyYkHLxX/+QJY9iZtN7/Dg+Csh2YmHM2OimsjwT//yPpf9MBulB+HRsu/4XOx0bTk8PiLcHbkIn2/T012ri56Bbb+pY+hLs1znrwCTqTexU5tmw3SGMli19pfi53XDL5abican3pNF+SqMi6/eDItSwtg/ObG2qixrwQ+3mGrjT80XX7xAwF5phQTxobpzo0g23PQbFBjf2KX26cmBr+ar+I//jCfB34E2+H3olh+H8XVqH7BcjQWrv0sbzX73KeAn5jnER85j6wJzhNLbXGJquGIHfhKTR2i2WwllynGA+hLR4bQcr0Sg94NLZmw78MrnBdU0RKP5MkP9335b2/lcyrroAb0/FJqKeK+9033mQNVtQ2xpkuv292nrYlJpRwT2buhu/HkH//QZHfJPlz2Krofp4XGhsak82cKdux6+HmGCjkug5BwBZQvHcH7Qp3xnGz6+tPCIhG3wR+4OE7pHSLzkuzc1cL0OY90CXWBFDlA18C44WMFnhDfP3aH1wh7NEpuC+Mef/uGtpcO8DbgvPZGTVooR02MfgbN4Uf/sN9CPrmbwMd0nvOnJOQPboEReLx84O+0veQeGwJGGC0nwpk8M4NRbHBRaqmJ3CL/ROqnAhgAbR3SESaKtXVMeYOr8rtja+AJliEFxzOqacDftOzCzDVq4rqK16UN186fvSlN9ELFrlgNbTr2oi3aP3th+oQtgrayr0Or6iQB/3uczvTYFdNObSNilIeCHoisHxdkoqHXUTXfTP7cS9rLGd6M6NOznXP7Hj6Z8u4Et39rg3XMe9UaiMI4VpwDegflDy6bvzBtfOV1p39DzvlPBrLlyDQ6GOWHvSPJhHb+LKWXeuENgw3f/9LSNP2KNU8Jm2fRyUHfehXCR9QFdz6c21G+Pij5P6imnKXqGQE0+5aZ3JwOxKNGBkHg5tdNscpfm0hfwYLYmtehRiqgvtTrQzYdFccqVzeL4RvZPz4tK+wsmY2ACPI+rQn5v55R/s989gHzV9NRg8MhW9DnHcMvnVMk9btj06QDGyzqS03pEjNWxtILOLz8UYWvvTj9f2kEr7SOqRXc2zP8BAAD//6RdybayvBJ9IAYiIimGCIhIkyAg6gxsEBSRJgHy9Hfh+Yb/7A7P8tgkVLP3rqQqXV9fSM9PH2Lq1DakzTl4weyPxKr4JWLx6NgQGHaK2e3aZOwe0Bj5oxaSeLE5G/3+6Nho/9KPZLd9JuVYH5UOBZ8M0Z9+NDWndweukCZEn25Z1B3XTgcc0QNdPOww6j+XtQmq3l+Yk4dPvurD/Ap9cdrNt7yLdjqxrw5pQxZU0g+rTKxNC0PzaHqqGIFXisg5v2DOl8SxZCmjWzU/q994ecLGJ1/xUVlI+V89xd7vO5c/N+sYOb24JUnFL9ngLE4Yym94ZD98zYaS5uA6y+iPr0555FZIGT4HOvYHpR2yOGkQoNuWHUkxlV2xU7of3iL76/R1ubE2BNAPR59YJHyhOX9bEN70mti4X2WDXUcVIrYo/fR7JO6r+Aza7i4wu119jbE8FHd1IZ9fxD5Jz3ZSoiKE+CPf8C+f9G5jVT99m+nXwUUc3UIdno/UYiY6HMqxT7wK3aq2pWyOr1QRv9IfXpjrQS737+/up0fN/BUMHof7AabdPFji9jEzMQtPVziL6YfYyrX47VcC6Hr2iXe+5ai7GMFLjfjqw/RuPbjTrAfDU3QzzPACu/35Ijh/9QsbtL6dfvb/7XYN+1vP6G4GCBwlJ6RXTc7heAug/E427T/bwW1zY8hVz7s4xN69tVZ6CYGA1uzpsf1deLmDuAQFxM3DI2a0e/OhZVEF9/BaM+98fLmr513J4dRZhLnfZMu7o7q34DVZOdPGROPTvVwNv/oBba8+KrtaI9JP/yAG7bV2ADPT0Iynme0sY5cfcmmAwr1QvG3qyuBz/gKzUAs8nrpPS79ZZ8Jcf2Db22pyJy9eAspexsCwUA1Rl67jF0T91mLON1GMsY+3Z/Sk55z58TDw4bbLpR8/pTDvL0OXrAb6Tk94+WgTNHTeVfrpkUxf3GvUi7vnHW4Xp2E4eT2j8eV3Jpr1P9yXtyqjjjoFkJqCTEyz6A2KbduBvtn5+LX67tBo8qH56bl0KJ40Y++vHQPXZIT5Nwb+q4co67zgxDFyy+D29VpD32x9zL2dli1/9YfM0oA4c/2nKfakgasmRcTtpJBzL+9kJTAdje3Zzo7YbhGl6Hb6HmhrX/t2GvfOC8imKrEU31OXy8M2he9RUgneLeyIM6uP4SwqKdPpciy/9SB2KFlrC7K/zVcQncXJg1nfw8xDjHcaiAG4H8cgfggtn2Ih0SFvlwYWYakag3IkWAnbzZU5x+NUsudCsaBSrzt20vdVxr7tJZWjR7VlWjEPMhp9DdTVPW36Od5EwxzfESCQiW7xoh1nfQPNevyffvWqQq2Ae3iv//QEPsdz4HtbJJp8X5VzffEMq9f3zJzN9YPYzO+gOHcm06/nY8m9zav45T8sjUPdTsJJKZRO3pRsI6UvxL3FO4CdgFKCm1tnNFBXnfobHEVKbdlORHPPCJRFiJfu1P3jI+Fdx1T5NCMaZ39Ed0PYkJ2ci2i8T4ENqsgNKgWVhLh+n49gvkKgwnruSmXZSxuuROpoP9f7ls5gOpBm7EycIsn/1ZMX83VVE9QLH2b8AAt/lzInGj/uD+/CR8jdnz5qdFlyE5Hc3wqyfzmXaJj1FbQlg0mCMck5n+vBKntDTb+ZpfHB99u5a9Vhy3ZyHvN61v/WC1k+0eZNh4jJFOP/60iB9N9HCqxrqzE7lBmajidPQelka+xxvycuR9uVhZT3kLArkRV3Om38KwpMWrKdF3sRl5qmVkTt3GBV1juD2o4goGuhG2zHrbJs4uctgbpqCHEDnbv82bQF4kflSazi1LqjIdoSchxcM/zthawDWZCUy/YpsLmLVEvzIU/VXt76bEvJ0eWidVegWL98poW9FQ1CT0RwTvWTzL+fd0K/E+GrL3zmX5/nsimTbQCLZfpgmrtm5SB9L3c4+x/AY0yLcjTri4T6bjXhRhFKY6ISWGis9DsxP2NbNntlpGolnUuiD+tbOz3WaYiINzxJImSWMehbFq5X2+ZDjP2+N9hQ0QnK97Mg+Ju0Gc9yRYG5lxmVits7Ys5qFNBxaBsMy2UWSSZ1AaZ22BDjhD/lkLJKRv4q/bAdv0kts71UgS/FH6JdsoJPaq+/ILBcxszb/tu2zzLAyDkFMtn6yjOrruQywOMi7khanLRyeAtrAe3nxtxbpyyN6W2vOpQv1ghL1SFA4st5atBre4/5u5tdDstm0KBq9zYzGGOcR8+0QwGrYioZthVRtGkLsHztS1Vchxknxgar363bUknIKncaH3cTvZQnJ7i6KvMsNa1RK58RQupyQCOd8hzqs9gT8gw7Ts2uT0EIXx0elpeyvEsvOYeVcd8zK1ieXeYwzQQ6nGVGnueP+yK717R+fK0lc4QujujkZYOSh8uO6Hupj8ZXslNg4ZsisR6nBxov0uoFGqsEZmXeJpO+z/gO4+fWEPuiPjJ+vZ7+9o/t8WHP6Wm/itG9UL/En+15lC+mA4vrqSBa2FfZt3gKCtr3xYb5i0tjsJcTNevx3SyJPTVgTBf2rSFuv2esNvkZ9Xd1eEH4uJ6IbTu8rA6reADlnNyIwUO9XIEYhbBSXzU7uNbS7SpJs+BkeowRfvDdMdk5MaK7/oWXxtIqV7bx1eAtSA5xb42WSXR5zBW9D0viHwOxHbBnX2G6JzbZpZLodq2z98D2SoPs6vMnGydfFEDvG48ZDL2igW+3FEnNtMQqLmR37uWIF454tNnmXNcRt5I2AcWeu0ZE73c5BcpBVpdDkxAtMc2yreu3De5m3DD7kofGoOxKXZHTRqbKe7Fqp2swJIDD8ELzy7RE3zOKAhjyABFn35Sc0+k4KaQ9qMTLx7btEiKIijfpPb4jMkaMa40Db6vI6aU5mlz0r34DJ3bd480i3kZiEx8a9PDOmASb7cXtjnFagNVYa6K9YpUP87giVSLuyPZnfuBUeg25qq6oQnbS7cmnrIhNyBRrQ5eat+aNkNoBRHsf0/G8yLLaOoaOCvu2Y/pwDbIxrOUBvuq2ww+Jblv67LxOgdIK6bL8THxQLO+Kav8dEnddb9zpsQ5D1VrlE7MvlRdxLfzcwVyvfDqQxDaGMl5fYfMpNdymA4um6L3WUVfe38SKzw3qTkKmodk/SGAnqtFJQzfBZ3uoya5mSta5Q1XAdWxSKh02Xisq/mlQ+FF+EtsMetQnOyeB+0G2MOTvk8GPODir151zwGiPIZsSD+5Q2iJiG1z65ZDzZkDEtx3iVNsD76i4pwouj0CHvPLalyPVEyxWlUpzdZOWw2lngjq6+ZFozBajXhcOAVir/Z75Z/7JuNs/C/WFX3e2vQYxZ1wrbPgUJ5lZxmVhjHVvmQh17yvbpUAjbp33MkJ3SyMbV1NQ20vjHdK9dMTUD4No6BYyRbrpfxhG+9V8Kjqkqn+V78RssWkM44W+IDBjhWx2y9Fgx+tKg8YNVsQzgzJjz68HsItWA/NxcXb5Xneu6BKMF2ZPzdWd1GmRIC5mKrNbfeuyxM0CiFfNlm3F1Soa5fxxR8KgvZkriU3GxnQ1QIWvTypu3Bp17DuG6rZwZOaqhcXZQcUyDOFKx8vFaBucTrcJVNksWWpc4raP3rxRKpmcqby+T3xcThoFGOyChcHry8fOEzzYFsWT+Uapc5FsBk0NhMcF80znbr+bO1I8XbkmVqGE7ah+gis8JHeL6eqpuatOrwtIX/GdkAiwMS4eqxqyVpZIFj3abDjtPAFp/bRnHpUsl8EkUvhuig2WfH/jfs36IMJLpgJ9bNuFQfHpRWFzUr5U6q5vPtW9e0c5BPNs9k+SDf5rlSvLaVdQSEjZDozu7mDenIrsLEM1eiF7XlWNCR8sDE5hfHPm3eHVP0q2da2mpM8yFaEbgx0xbtIXceJyE4p15RPtcrTb5Wb7atbyMm+Yncc15/5Fq9VlcXOZcXqn5TgFk4UKGk907IUK8W3OB1A3b0pfr5hHwwGp3Tq+ThEeNFoZfGNqkipLqkR2tkqNGe+YcLsfNfLw7IJzh2kW3LS9RDZi9XVrzf3msN1eD8R9orU7elV2R8K2uOJvJVTleNqWE2QPj5DU8ttoLMrjHQbzuyLbRevzSddfCorXYkn8nZiV47YUbITNeVaYqI5l/WkOJtyLxZeutS+U7K7vX4AXcY1be/XN+qxIOjDviwyrRw7GyN4p/PIN2RWbG++sRO7Qc9k+mE3MV8Q37tWGsUp3zE0j3ZX6xRuA+dJA7M+4Mcbm3GNELuKIxeXQGeNJCFKoRdMmSbCU3bG1ax18P9jN+SVu2ZguJmS1iDKdL4p5/+0G9MNhxchzKWZUO20HWKlwoMvRaBF12Sx5OIcbeej5MqL9ogfQguRA147StmPdY0sJ0Xgk5rXS3em0XyRKegoxVbLvy2Vysp/QQO9b5snLquU3h99hjg/MEp5atNRNbMEpRwlzHloR8Wp1CdS63mYM65LejmMY1PDw9DfDg7lDDPuHRu2/ns28GX/xXlpfwX6/NGYynZVdQiQRzRCBaepGKaftO7TA/gx3gv0wyCZuPBW1TOobc/lpRO1po0vwyBog2hJag3Pd7uC20mPmevGGi2d0k2Fv9Bwv7ucMNf167QFz6xCDjHI+aKEognGaZslgeXCZvT9OIGETk231LDk/qPPs17Qy6GRg1+grJavXwvgY2V5+C0ZvRbIAq7BbkX1DmnK0yS2ArKttdibCnY/HEylg/DwaZtTLh8u98mDBO451gmf/67PMSMEbo4yOrpai5XhpBSXdi0diBUvZoGY1U+b2MMfDd9dO6fuA0S4mF9yLOG+nt6EDRKNckEv5pO60vdYYwgC9ZjxZl91dG87wKY4yluKzw4fz8muDhVd3YglHFw1ITeeuBLuA2XAu0e/zgS6+b2IQtWyn+j04cBeEI9uCnUU8HE8yfGjnYybRbTl+nydTqf1PiM3L1EZTkdYAxZ1mRDf0pO30lVaB7XSYuC9kRhPlAqDmnZ2Y/hap0bf4OigH52oxd6vK0aCFIMIPv5pHeVtO17NRI2ulZMQ/977LDypWfv6DuRdLiBb5jaJ5Pcy4Ryd3cJv1ANfESBg5NYto+N4bE5rUBbq8Omk5hAOmP35C+TPSMy68PzYE0LyIEa320ZA3sgL5YdizZNXvy9GQTzq0j/WDmZfu8IfPYPPuXIb9+YhkzpsJjBF5xI/Xm3Kga+GqJPKnZf5ORC3vNnsBov1rRWV2kY1RcaUK3nEyP39zh6aDzGMkp7WMRZc7aDrLUQHt/RoRc70ZDG5Ojxye1ZQSf3FxjPEaHgrwkjEkjhVt2ylcShjN+JdCUknlKLRVA8fn8KaIKevs04Z9h5ZRZdH8ZbwN/litTTR+VhExpFuXTRv3PqFtsr4xqytyl4vSoYHNxz1hfr8csqkMzjk8PO3NoleTt8NsT2qfDYRO/TY0RrIrHPUsXjNyAT1pB+6vXig/6CtifWtm8G2RJqhMApFZcRi0y+ulE5VfPiLbVdT24eBZv/iM2bZ9zF3nXgK6RxTRoxwzxNeHylQywy+pUF3TjFWrQwhqd3tgYTA/iJ8WnYesxlwTj2Qe59njmgC6mxqZ+VQ77reeBFSodNrH600r8a12VZUL/9JlI0t8DFePMyyPKcJcunnZ+PyMDrLT+M30w27MujIer0BWYUPshFC33513DqA+psQJznnUvCzNXN9a4/OHN4ZrGNvw+AQaOTpKYox0nLs4zF2AfnxrCFu5ALz19mTfVzWaruQywXUMRqpi922M4Vg06s8+tou259MuecMvvmKpUMJymAKRomLTeBjMwMhWc7xDMz+lwre/ZxypWxttR04w2uauy9fpAxSrDk28mvPT/LoDTy41WMX1FE0aUe5KSPsts12uRROVRAsd46RjpNP22dKYmlAxji/MnNhr+VghBYO8LBo234HN6BQxUxmMV8yMUyuiKe26HP1eJxvVR6viU6Wg6+lEtsv0zjs7kK6/eDI/74Xb4+hgq5eNHDOirknUCM32qjQn9U40zPOWGxL3fvwci+Fzl0m2lQ+/eIzp4BTuvJ85WiwHm2yvCTOmXLrZQJamh+VQJnwUXlEMz2pjM+O989G09sMcnS9CiDljBE3jI7HgPd2WxCbPseVRTTVIvCahOQl6PjwZsZSxOu/mW8cbd7UjZx1mfkrlPC2NH99BPAkdzCKgbif0RAL77Oxm/HtwR/kgS5CschuL601gNPPvQ91QLH/2k/FVhUHBAsyz7NeRO32WagL3ck7Ag6O7fDwamnqPrRexTkvDXekbg6pB5C+YJchRtpzxO+x7+0yMZ3OMhkU8H1ktfIM4iCDOO0vowH28ChZ5ccKnWR+CXbQcmBuBXE7xubwqj4u0I97yXkfTWRIFWC7WBtl1XojapYistd9mCtscFJevRLUDkGrQ2ImXAf++/Lsm89Oppy/ifI1plcci0O3TYo+fvjD5SgJ7g3G6Lj929oeHfnrGsxcsznHiFmjmo/PvOZc//AGa2fuzfpFGk7H4dLA2Eo+Kl+5gDOnTDtCjkk/sGk6tOw01AaWX6g071WFvDNEnFn//z4z5+v74fcUYtuWix6vZXqf6dXhBszQoPTbZt/3uF4GubseN+sN7LQtsVYAXru4/PNvy4i7mcL74Gu5lu8q6qOYpavbmhaVDUKH+ZjX5nx60PRdly/k+1mFPFz5mwQW1Q4VAVH7xOpeiuzFlxdVaK++0Jz/+NGiHewhvQXTo+Wev2/smha40gVndos/GfNq84OeP+3KGSzV91RBr44fp33rdjg+F30H1wWBBO0rGAGJdo+p2rJjbafMNj62O4cfPU13yjeH54cOPT5GtmL+imV92sLRsn3nu82Pwn786UxExx9lIvANZkqDONi5x1aLig7i07z/8iRdvS87qvBkUmO6xza7u55lN4VLw0DfILELelhz1z75X5kbWNbscqB51IOaNWi+fMz5rRd7uSKABeshLhvd3k7eTo1TKotmbRDfsAc36kAfG23tTvu3EcjhIGoCV3gtiIUd3RWfpeChe7w5Yyr60nAxJFZHCPcLM1v5yftKfZyDXDWG2edWj1cwXkds1E52Q45WTuL6cIWC4Jfby1Rvd9+bmKDfgwzR4+RkXpUv94y9YWD1zl3tNd4Y8/2LK1DWLxm5bKPC251njL4T59BGT+datZGKZZKvsHRj4iibDpHhIniMfWCXaSN18KJYe1sdltPtq6rV8ECrFYVAyjGXvj+/97JOd5UBWxceBMvf5sgz26TURXOUez/jjVk75UKdoaTn+H79sFEO3UFrtI5ZUh4CzoaomYHW8Zn/x4VndPDTv99/+Uu+lhLAtbBm/kmOIRhicBBm2fWSZuhCNcby0gMwui3F1tsBg23JQfvot81RrEf3wGejI3LKtUxrGILyh+OE9ZlNw0FTJ0x3yw7SnM/5Eq+Ox7WCg1y2WZnw1OcM3gOTWr5l9M+ZZtM04gBbOt8K/1225TCvlrNB8es7412vZ1Zcr2G3jmMRmMrWTUEyOely8LHI2+THr8snEwEtqED147ZGCT908ix3XRP+6XkYrbSuqPzw2ROY6muOHgEz5vCEHbGnZjB9iyDbGlqpj+kVTc24q4MMQEW1z8FvujisKYtuYMz59l/z74AGqsCWTvRhvs3FvVMEPLzB88CR3/D3/H/+zTb6MeoTWCcLW90gFZTKN2oBl/KefPe6bmk/GuDfh+VmqzNgeN62YVqqmqOuSMXPZjHwIBEVCr9vS+9m/MTqKmMDHkK5k81h37tCjm4aeJ9sgZxm12Wxf+p+/mx9Vc1dDrmho1pMYnr+/v28NgF3uWfTbVLeWfz/4Bb3UbNj+mFyyoaYs+OF7OnWFU1K1felQ7nSLYUTGbJq8bIK93gRMf3guH0VFeaFiU3vsVLM0GkiQ1JDdxbkr1e05l7D8FLrT6kmP495yh+2jeSnKe2P++AfnOxLoqmYEG9pX06edculog66fJ+bl75NLd8Hag+RLqz89dTBgmUARKAox2eOKBuxpV5j9jZh56pdLhNYxEpL3gp7nfD2QzaAjHAaXH775Z79vK89Jsh/mK4XOw0GmZp0Izm5bQ4JVpivdxCK2P9T27A8lQHU7VcQznb3Lc5ED7Fki0dXpPbj93ejP6KcfYaEipbi4OY2CR/dO5XF4lr0WKhjspXdijxui7apftAmMrtPh5YF6fMZLZ1jlxeXHf9op7L0YhDzFZKNttlx87Z07gv082PR4aFxmLK+1Eu0mnRjbKs0+B+F9R6kbPanQOxLi16S5wuXg6oy8vw/Eve9WQpWUlrN+7rirGR8or047zfhAQuwa9TH4nevRKWhMd5TThoLjtiL9sG/rTt18kBH1cxewQ2Fk0uKx1NALw454tzhyh9967+bdZ+aMd4Z+WYcgLA4hRh7+tFOlHDR4tTUlM58yuo+ShBB2xYeu7DxHbOYrcE2mmhnqwTCkuzKIED5EjSpzvWG81IGg9jhJ6OLUPLJhzl+I+bcdc0QzjJg63m3wyfVN5c/4dLkd7mpl6olPsOXnaCqDIIdEXsTEuEcrl4c0DyALIs5+/iFun3vn5394+lLO+VJhEri9lmE068niNbN0MG8FYc4hTFFjVkOtnkLt8MOPZfMtuKb++GywvBjleIK1CPBCu9k+AQ3C6yiAlYouldebbTtk5UL56eV4yPMpmp5lKqG7vVvhQ3i4o5XbP3N4ukrNdvP+N/JdCuF1PWts43x3qJ9sDYPeByWxL/lk8DLRG7WubyZej8Yzas7ryQS8SGq221YMzfWGDnR4Hth+V/7qNURGSbY2ienyhrd0ug2QfGP1p9+6M/41f3o58+A7GY33mgLoW11l5PV1jVn/a+BwXhR0sbdXAAtA9L9tfUZHGX76l+43ZzQ+eG6rn1zuiK9pQ9TP+VJ9ra0PPc31xSlwTg7Mz5PZk4/55EqJjp6flUqXvVy47Awfax08N0/iN/stGu6LywTO5ZYwPQsrd7oGcoLmfELC+9ec8d3lBcXDNJm29pnBQ1oH61ZfBVhRBMNgaBWc1fJ8C4kx2zt/a4aHFo1rYuVbNBF7G3YCc30J8/cLue/srhU/vXaur0xuh9SwgF3sX5gTLPu2/wwuRmrTNHiJT3NV9uhNP7xCbufPxNkUva6o3GnWH7+e+dZVua20GK/d0xlNtiMBzPoj8+XHOntz45WD1BglZeq1MH56u6I/pAbrQjaU/BhvbVh8LxNdRI8c8bDfUxioeWWPbVpFA6vAQavIzFmmri985tcmzHyKzevl/We5ADTjf4yUeomGj5IEoLwNk64202uebOcnYHaDSoKP6pR8cc9EUE5vl8yAwZ2endmhud5HF3UZcDbPkFBXC0P8pzfukrcAt2+VES38eMboX10NXSiULLjtY5d/nxcRCuOxwSNSdwaXT3WsPs+CTPa7W+SOWqh4P35LtNkfKCzhDgW6zPFtzofuQAvYeNEbI2WLo36R6jI4bytlu7WouUt3tfBgz2KJaXCPZv69F5R4LZXMtIPzT1+SFInsR4KHLOU0eqX3Hx8i29BVjOlCXUv54esDUneu9Da/OTpMqU1+eJjFJyeAxyfU2JbuU07bbR389GBaXzqrXAmP6ayeQv1AtF+9yL91ntKTsSC7k163Q3I4nuFeHkMK+diWTMOX8P86UrD67yMFkYM2zPRCPVulXJzgtQhuLGgy2+1PzbmW06cZsOxMdu24a9a1QuoDML2+lXxaLe0QrabllhhWo/HJ+oydwj9fh46Lk+h+v1oUqpe4bIiuVAejbVmig744Xoj+tiN3lGUNAxHfJdtuK0C9Kz0UxEthZCS5FBHlFqKgLRChy/b8bOln+Z3bfjw9ph3lIJtgBICLYEdUeoQ9Z6ssC+Cw3OyZnSgPdxw+eQCPc3mhyBn30bh8xQKI5npJzHtbleMYDwKIidLPs4e/fDqVIcDn0LwwBPsIcRINkprU0oHYh3xAfZuKL6QtX0+S1UaedWlPLLTnL5vc3m8fDX4GFPgQnsmuv5wyvprsBFKD+0xrstoYdXJNkdUHXypZLDFEV7294OUcv7gWqnwemhraaNG3A7P4cdUy1CxC1CvRgEFmy4iKt0eApu2jpctjuizplrJpDe9mJKZkPI3paCIZkvdKJURgHho+/N2g4dpKxLpPDz48vMKGXHcMvAyXe7QS9DqGDD4btinebTSckzIH7SYw5mqnhTFlkwTQQ1AzWys01H86JsDpedkxE1Y39P1qWQj0Rjq6FtOvO8j7cQIraWJitzeJDzQRBYCq9sn1dDczyVndOuS+GcFaPVwRW01aonbGVSR7waTRSzk+c1gfYpdFiDlRPawvw996JYh9xDM0BJBH2x0z82NncNmsPFRSKyXeQ/WiwSkghFfd2MQUz0s01Z4noxakO9vVRHOl+2qo0XNzwgR3tdH2GNuw4p/WYUb1NCJax/YZrGBhEFu8/hoH5gLsnm5DnHWpR8MyWMfK9nhZ04WGzKhHvS6jOlB2xGotq1ym5cGEnfoIcN4HDW9om5yVBh/PxDmNatQpilArH0efiM7CKhrfiZcqyrOYGFaTazuske3APRc0quzrwR3PIN0h0GWd2Uqyj1aN5dqgeB8VL6z3tx02qwngoNAUZ+tNkA16eI1hqrMPcfL82g6PpapBdPZMcg8G5E5V/56gcNCD2eMOoqG9QYH2rZCQfVbnLt/fJrww5HXLNLZMIu6ZbgIrLj0JnvQD57qQ12pQLi36XSkpGjza6Uq03ttUaZSKT+n+ZaF5fVTFtyYbmt1ZgG/MdxjtrbtLV0s7AHs3Lgi2Pn458rym6Ge/luk0bXcCx0afdXAk5i7yXHq0x0Y9aXeDuZ8IGQNNFQr5yyyxiHw5mvCze6HiUC7JLrqOxqtoFvRn/xj1/bZcXS7RVe2m7sSSXXPNGC6aM7RH3BNjSC+8/cWLLG2eZNtNg/vGPDFhve8uxPfVa8Y2h7MOldq7bINDp530IPSgpGZKJ7r7GqOrXzBU+5FTQT8l5bip9ldkm9uKbMQob+lzGC3VewuYKvJ5a3CQ5AIONOVUvixk3rVDOXflCDvipNLKGN+h1cDz+j0TbG/A7ffS94xQPhzJyVH3P3vHELzEgmhxz935FLYOF6J4jDzsTSbux15Uys+lJ2aakXb4WEcdcpb2eGXyJZ+er4UIT/HgEC0LhXac2msBHjvkjCy3n3IsnbgG7xlciHGbXhFvYpHCffm+MfO4eUaUO+s7mDvs0PeZVdHsH6BqUb3BR77al1MfLC103x0TZuwfRtlpt0MDF8GJGMGi0vbfyHkhu6Oc6SfF5QOfQg8MoQK8XI6VMTLpIIJcmDVx9fAZ9XN8VuzEuhN3uzONyXoInrJJnm/mp5vOHVeDR0GNFBmr6aYzRuOrdhCdsYk/wepd1vTbBcrlKfYEf3mOBtXpPPh9v/9oDxktSeBBjrqYudL11XJmqdX65x+acB/neA/ValWVd7YDfeJj+M7v6JRNPhW62ij/4qW/sg9k3r92kMqHA+X24TNfxN+oK1/7GrrHlOIqKSlqF2wQVC6Cz06Rp7jdtDEkUD7YIFbCt3w5CYaErnvZZNH+UZZTKfbx7/1Mf9cbY4rWnglf+5HTKXZKg1UnKVfKb/qmi31TZoOzfsbAs2OJmexsMun0OVN4CdGG7DYUjH7/EGN46HJOEj1/u/zjOx3a+98V82gSID71ZwfN9k22Jb/wIbEEDZ6fRUnl20srp9BYCWgdxIyWt6KfZ/uNDdBdxfGfv++0XAB41yOd9M5E47weKE7EwuMxEaKhFZ8vdT0dCB0t9YJGepom0EOLMctZ9Ea/GrwOGh74eCkE1B3zeh8itz3nZL9tRJerfmzDYG2eFFbHik99oJqA/aHC33C9MUTsuzaKyoIQo7x+Wz4lrQn3S4zxVPsdH9dOZcKw+Ey4A7MyeOerDpAmFH/xzxjjb9xBnMxn5dS9zCeUHVKQ1fNE2XezQrQOnBpsZ4qIb5bY5erhoIAwpgVtL47Px+HRTWjH7eK3v8a0se8U6UutJWYtigZ1nK2J+t1RJDoOqvIvX258LyT7ZmO2fYTRGS15ima8s2mnPp7m48H9l0ZMc7MxficA7z5/EUdQh3JI8JjD9mbpRNOaffa3PrmabmxXBl8+rOuzCOqdVMxgWpvxW7f0fn8Te8YbNL1GKax67FKpkVjZy8/MQcLbQgSTpGtH0R9TeH7UEsMujdvBjR0KCkjAnGfwLCdndaNAc28z4zU947tFZoIMlwQLFd25U3qNzvAU3jIJ6gF4pzlNDPidntkevoo7rK5PC3Yarv72oz6H/YSC0dkzu8RbNDzjq70+O3rMMGRSNiWKrQMyHiHbvqLa4Pe728D2ZuosuJ/kX/4P1MfofLCYVR6fvMPC/BdvXLfjFfnmljrvF3N2hhmNn5t0hqW5P1OuxJLbhEVdQO7ffToWyyKa5CIQ/vZHHMvInUq5tWCilvwXL5tpCCwYLONJ/GEtl9xKbA+KV7FnG7rvDd4I5AXoPl6xNAydyxYXQwZONkCR5674ZF73AAkhH2begili9kW8Q6mcN1j6PO+8W6SHDk7OMM4lviJiPfIHVAFjM/5SeScs5ASGKH4RH0UF54V20kCFYst0ppOItY6mqCebr9le0zCauIU6pT16PYXGuvDOFEcHksA3KfpEmbu61as7HJ2TSzUBK7xfnC7DuiouG/qybIomyVgrCrU+JzzvTzZ9mxLA2tYyCfvV5I53ukqgNqucmZ90W07I7GKkgAjEOAhuOXmHlQlS0dxnvFS1PLsR+hcvDeM4GLfdWU9A3X0OGEIhyaa12yrIMr9X5pzGWzTl+BqioVZvbPuZB+PIl1MDczxmXjtu3fEVnm14d6VNbLEz3Wl3sR1ZUoUai+ou5lNDvx0CozuwxCUvo8HvJkHnR+vTC3kN0cRv+YS6VerNs0yziNcH+45e1/hJ9ppG0S8/gG8rDh7X6ht9dRKnyG9Fi8Vi3aF+F3svGDevlukkM7jUZMoZqpQT+uMT7ecx6er8vOk6Ns7lMEbIhlLsBuI9TwrvP2J7h2cYNyzz2i3/bu2rBKDTJdudutod7JNXwFI8n9iuv6wieu1sBRrdmIiLpIl3H3zOwd7xBfN2jtoORbOikBxwTl9z/p4Yuzoga45NMLtVbi/fjmdQzGBHlc2+dul5M1lw9GKD7D/ekw/t0IqgNk+f+I92jN40kwuIwoITcxI+2WdzCPQfnmIm6qtoUI7fYhYSF7QZBaWsr7IgKvX7+cK9vq7buTVFiOChz7Mbd33GMeEWqLn3YLjcL7KxW0cNjK/8g9eBcEdN7ZkyxNedyWw1K1328ydb1oX5VtuLTxemU/VxI5gYLNCzKfO/Iuyw35PNY5ZosXypkd9KFuaKuXAHqU1r5Pknjejnver2K2stodQYfWLnFyMa3h9VQaOLLrSAwWylrR+kcDqZZyzMeOx5Pj1jRQw9mTnlW3J5dZIKNONLsv+OfTnjQwxEqjLitePbYA+RYRTqiYclKR0zvl7CC5opHPGi8o7GID4aGRZIIHjNkMZnPKf97JfK6cPi9W3Shj8+Yp39OPvjBzUXDYLDeVbvMW2ddaFVI7Mrwy4HYSHHoC2rJ9npuDFGcBsdsWQUmNOJZTTaV82C74oZf/vB1kuoQLg99viSnffGpC0HSf3hGXx5KDNfjc8w8y/84zt//iU6HwszSfPR6uS3Hcr8451pK+fj1mPVXJVlNnel2e8P2XRIew3tt8mGLo74bQzVzbFgiiaHfvElMsanVadoxlt03UmfiL7eaB4slcqMZDxoV1JjSiCXpkl2Sv2Kxoc0iT8+yJyZH7U/vHKpioK+Z/zON34YwN5M3kx7jTpaeaaR/OyFuHcxMiawC/OH1wmJBez27lHL1a9zPTO3qV000bNcQXwYEuKZy687vSPz+pff3C4cs+k5rE047KY7XlGxbUfM76YS7vQN8VRiRFJ6zc6wTHlPp/fZMXh/lGt4bfQTlW6rS9usRWlCm/XtialRcNTl6pArXixMZCfZUsbPta/BdqEXOP2SrByMJLTg/VlGczxn2bR83nQkKL1IkXZauOyHz3/4TZ/xTXd6nhIww+L4x/94t1+lsDkXNyzPfJwextCEVeqviH+z3mj65a9ba+6YnRKChug4WurOlDPi7qBq6RtOsarP5jbrJ5k4jPcQXGNgjIR7NxNFWxWV5pGIVJSMjTG89XwAvgjQH7/lZ2Ey1XaHGrZfKSkfqptuqSRsDeZJyzMfH6+5pO9RjMdGhGgUmr0FuXs7kq0Bp2jGqwl6yyJjWRceImmxaXJIR0Oe8c0eTVMdVyA0gzffalyVvLnKHlir95ml4YkY/S8/sDE16cwH2t77VDE8dq8j8w96Yky7g9codzuZGDkbH05jeg6hh7AmzvFq80ldy1cIT+qWSpFgGCtMuAnstduw3fx5431feNA+85gdn/d39D2tdQ8iV7nR5cIVI56sbBMt8nqLxTk//PgaUmM5JtraNMqZn+s/fQq399fV7dPyYKmfXnAY3l6HbBr2aq5Q+0WYaatjS5Vqi+FNc409Zr7R75qx/vk782i1Qzxqz7HCzpNERdRb2XLImI7m/SCdkmptZ4prG6Xx8CWnrdGhQbRVCRYuC/BvffyK7w4KXCJT5XitESdrH9C6q48sWLKJs1CZj3yP/WXmN/tsVWgnHfKl8WGbwPsYvNsvzig9DlsqXWq7HNVh5UA4vCJy3W5zY8yC5wA/PY00nWG04zc9g5xvB2bjlhq0yaYU6Ohu2VZBasbiDRcgi1QRr+Gr/PhxjRbRUccqMlzUW2ougCPdOqbP+GPK0Uv+8RWCj7nmdooiNdA8YpEll3l2dWAYjXo2Twb9TsGxrBVFqqFZgc42M57pnueDAoD1BYbnadY3NtkZMpwoFMb2WY6w60JlsPULIXkoo0nNdjJkhj7gOX8aA7vLV1gKbMucPIfyjy9cv6sOh1Gq8plf2Qgd7w7D9rgxRE6vVzh494h4xcTcp+R/FIhvVk7Xsx7T1++1jHrf2NLR9Qc0qrJSw1OMHLy4+Q9jOCdtoTQvlRL7lPZGF5wVBVRJFLGg6YXLZr3gp/9R+uUaF5fBOgHt9d4S73LWeFdKMqg/fXcTeDuXSgswkTsYAh7k17KlM16CY1JPTD9svxmb8T2a8w97fD7f6C/fha+gI/pFrLPeMPMKDvTM2S09GMbQuVsMB3HTs9mfs+J2jCRY7IyM6HN8bAvzOqGB1Q4x8UdCNJOgU9p7uWC7dNxwSd/kNbD7dUeHxh0NuqWfCUzxvmQWdbVo6VvbK2zxWDJTmDSjubSmAKQNAuZLXERDOpqispVPS/qY9dDVZmLnX75gnh8fjEEP4xiwP1Vsg4tNu3xMSxN9C9Oh2cN0DPEcvgdYXqc328x4j+N714CT5Ca5s5vlLo3vkkKu2waJROWDBinuK+iVw0A8xdm3sjAPQpn5A8EVvrg0JKOnOvL9RREkG0NKJCeE86GxyE6/P11uhc4VvOVaolJEO5fvd74D+6nqsGpGJ5dnK6VQrG0jk83poJXcS+Uz0je7iPzw7/A6nk0ws+WHuZ67QqPy9R0UDE7/p+/WezsUAFPWUO5Tse2s6Bwi8UCuZPd838txDJAH9lpL2azHZpMRW1cIqCv++FfEf/wk8093YsaHazTzWQtYuXtjcVeWLn9vUkDXVnyRu5pA+d6IXEfl7rrFIlv7reS7Gx3u1lFhhiK+jF5BcAXRrQoqajRvuZq7V+DC4cF0u3pm9Ke/vvrojdlNNd2p9W0J5OO4YTu/ENHoX6f8p/8yV/L8chyyj660zapieklf5awvYejeWYyF5a5t2Vs9OvBp1ZA4NxTwbs5H68dSutKOrKHkyvlwV720NmZ9qkXUO4oiWDTcMi/4btDMG67ok8QXYvj3Wzv+8LA/PjTi9AutHdXCfymSq8/Pq8SG2GuHVEGd+SDee1Vzdq63GnQTPbHdRoiM4SWxK9Lr3iRRdeii6c4nRZn1aPKn994WrwLF1tVl4QNLJf0Ua4BVoLzJdnew3Vl/9KAW5q5i2VXLfvkB/fRSe/w4kRS66K789NIh7iODsePHgTBZfNmuXdRI6pTL/cd/8Uqyk2h1H6ZZXyhexLxpWda/u/Gq7nEbEf36dY1lt7wpym3Rv5gv2O9ymvVA9NJ0RMzjZhMNjrfDkK7om20b/5UNbuABbLOdw3B1D9xRlz8hSEFbse2i1TNx1nNRpV2f7JwSxnsaqRpkpuaR3WLK2umoSQ7Y5q6iqllSd5LC8g40VASyRw+9FY9DmqLJdQAv5apG3P1+Af3qF6Zb3IwhqusUdGt4sTmfo8E2jxjdjHtChcx5R73QbCzYJpcj2xTHOJv53QvN/szc5izyv3zyrparPz1vesxdLfdm/MYw5GY28wVZqbKhZduv6kdd+1QCgEEAvNbfaTYmo0XhJBtXoi2+zB1+/IytmUL8EtXZyPO8U3fcKdieZRMahK8bwpZMC5wvvsT46Y1q72+2xCG6kE03vSvQygkIi/O3YQxb9zpAuAztX74zeLnOZfUgaW92fnyFf/5VFOUBi6ItoEkbkQVDvbhRCC4Nan76IBeix6zXfAyeWp0Dm6R8U5U9GlcKlzhGTOkTZkXUc5v+0zho9gcqdvsX7/bemUIZDgExdGfiv3ivdq31xrO+gVgj7F7wtW85s7r86I6y6FyB7BKZSq1VlXzxUa9/fNObBzd22u1Sgz/etLneMCL+bb8DpBLbU6lH32iKyYei3+fNeJ1PXFcF9ON71vF8aLs5nivrxyn8w6dDKQ2gEjuJyYwnog4fbOWXf+h0eR2y8d2t71BffJU5o5CWE8ouKaqNt4k/Tay23y6wB/RVzzHx/JftTp9iLcCnA8o2x+qY/fR65VdP0GOndHvNzW31Xa1WzH8563K4pM8AHkvxSuyZz7ErvtuA9IeElXAnu9Pm4U5KuEkGrKKoQFNIRqwOy4NJfGouObvtagut23rNnO8jLLv9sq1QN1KE95f+hobpNCjAb0lG9iwLOQto6oBIizux1o/W4HN9D5nTQ6UCqcp2/Ol7M9+gzTJqM66XSxHs1aZg+2kwylnv70A8KXvi8AvmAxLtCs35Eyt3d8cnam1CVCrphv7w5BC0Bf6L19GWeOXkYF0Ca/0K2P364py9PDwowUapMD1ok9tW0zcGevM74uQDb3k1PWNwniJhO+eWucNVU9Jf/iLhAyflyPZ7D8zpppLNafMt6fJ51BU9slyGUwVn7FefPR23OcPxsUD9s10WSgbvDXEPS9Uo2ZE56BO0NsOtLGR9rG1ENMcTLIQumfHeRVa7vb0lj4f9zLqX8vZge8zWBFP1bEyLTVHAVj4usajdv+3UK0T40193z+WxHY9Jf0bbq1Uxr31SdyBl1f3xRT/YMT4dxtCCSqCfX/2j5NnTv6O7VK2JYWzXBv3piXzbNUTbEZGPBvQ6wt7osJNtW+0y/l4p4rp2IIc5fzerUc/BDjKfiu/FIeqCWLVh/V7UdHn/6uWyYCiAcFFJhNxU0xgzuwrRzC8IUV//I+1aupSFkegPYiHvhCVvkUeCgoo7QURARR4JkF8/h/5mObtZ9jndtiTk1r23KlV02PR2ptZqYJIh+ozW9Nnfxf+rpED+3yUFu937SE1YVMN87oP732x1asufN5jLyItV6Tgu1PN3AWAribaU+nWmYTlYzdoeEAL7t4GIEqkHwPqr38I8uj8Rl8Komfj8SuAicF8k/zyl6dWbxMHChTqSPloNllGLTfh4li0S52cRrEWm22rdXw5kUVFrrcvtQaAvHd7UhMFxmPl5LsFcGwli0UexBjLxhXLM1pbAgLFgrQSxhbu5Q3T/Kf1mDk8XDvB2alAnR0ND2rNnQqfYbo27FWvm2twoTnwrcKBKFuM9K/FUwds1WH95Ut77gbFqdtZY2G+Ce7CaVOWgD5QQScZ4T4aX/6kh/HAHxKpYzxfnqqhw4cGAgPO+gGm8Jj6oKnKlFlvDZDW4qQf+yBa0wuDY8KGc8PDhCgCH4WlolvEuFHC4pg6NGZWHRc8tG+JD9aa+ddct1gdqCC8dvlHT8+xgMcLsDuzYXbAtdWdrLuO+hdoLyzjor9+ArfbnDi7vW4Kj+Ds2M3sVF+CzUkUrOS7DWhEFwtfgFxT90MsiU0FkeBhElaL0ISSr+K56CGmWU/NO3/nvOem1xonGQiCJMJg9MJkwrcsfNvMthBAtbmE4swyj4fxu5o86mtC5iAHiz8/9IFYC9wHyuXeod9ufrZk+KlXzIfTwnf99G5a6GQ/lrAhoeZayZKSnuIL+3PPUWj+nYZmJY4L+sbZouVzLhj12NgffvMqwuSsxW91bs93KLjP0e0xOMFvnpw5vTNxRLyjtgD+WPxlWkxpjfFdU0LzkW6Gu/D6jUYMitmgGJ8Pfdp2R+552bJ1udgufx7rH+688NSTxDiM0kMgRTUy/DbM+qQm9FgHsHd4eq6fdoQALb7k02McdY0B99SCDaIdU615ZTFr7AsJ2ayzTFFdrXR6vArqk9GlYrF3CHrKXAr++cThQfTMXhVcqQzi8bgROp7fF+rcWQ26+vRGFWQgWrRjuaijmLXaCPE5W9/xs1aqQUnyg7c6imeSsaqCGKXbGqAKz/FZCCIfmRj0nVdj8GZYUeuMvQh98vAVsH9bu7irlLo1e53UYoUVX8Ix7B4ckomw+egcPiphoeN+6V2sV+SSF5emiIU5+lsmKf78RPG/2FeMS6oP0eowcxM6vQRIvmYDFh1rXOMVE6M5LMZh0u78AblfvcHBZhWBRuCCDx1TXsJ2ursUesn6B+m5qiIgtypZZe/lQejKMUfo4J8u9ElpoetkTpyI6WR2EjavVlQi27ydZhNNdXat/x4gmlfYCkzaUrjpe71eKrtYaUJDNFeT1coeqamy39VlCiHXrSjRebYe1+KgzUGI3IKvntRYR58XUdrvvkQx7rc9nyh869XiRLKwvHR9M6Cuf1GAnVnj/GRlgRSX6UOPRmchwChpRtZ4I3vdkS/HGX9bdlbmDmdgy7GVD3SxNbZzgsyQNaaKPElBTv3pwyM0Zhw/9OHTsYnFQPSpfjKcdP6w+al0Y686PaM30CQg3zRCG6ulDxBfQ81X8+Ry8jJqOvZyrwGQQo9Lqz2OPrVk/g2HNsafONAqpLYllslbh9Q7l0r3SQOU56y041V1LcorIWpoNWBybFbAI25A+qu5o8WfN4DWENRutZP6x6aJ+K7ivI4/+ff78UVsTgmGr4k0yjpFrfosh7fOERvqns1ZcHi9wboUbNe/xFDDpOepQ41qPDP17ThjIsAtNq5Pp4bnvLPZbnB6+fiGgtm1XwQyXO1EXLlOo0+W+tXK49rRtgjg2faIzRu6iDgndRegrtG3SDQVJITJ0g2aAqqB3/bmDHy6BRMinBgy9cMzgpd4GZRRrl7Nef/GwDwSL4lHUm+XiWyM4tElE/biVwaRxRQW9r2Xgw5x+BpYC7w5/NrYp+gGzaSRt5eF1ls84xNvsr2hLyJ57u6MnwiXBPDC5/lsvbOunX8KIFn+Ae1Ef1ADd3lqMevFgPYSEmmT+gdUFRQF3kAUEYvfYLAcyrNCfOx67W/xcxkQWwZA8LeqW4hBsgxI8+Fb6O96bhdFMl+ijw7Q5I3yVwnlY8tsMNcE5yTTS+WOy+r/so57Kp4kkPuubNZGnCtrXvkRCEO2DlVuSE0xuy0R9Q5MS9rdej5uYYQyzkP2c5OP94RtFqrSAwfQcBDc8wb5+Hiwm9TCDUlpLhFMGOWBvPSPgzcuMuo9+SUZ2enVQDM0T1vlnFSzfxXFh/XnusVuKQTBDXjChcvlAaoWhGPzm5z2F59Hcuixs+HRelhJ8Vn9H5N1aNWQZCw+iQ5kQAryKsQeoe0g+/QUJPhabdaFcCfevtMHlPhbZohSnGGprzOPzAJdmafTY1zq93CNwcdiwaMz24FVJv9jRDnGw4SlS5cIXibZaWTOknQFhHJ90pK2W3KxVDmqoLRnGTifBZoR1Z8L4LIcbPj+t6XQ2OZB22h2jTjsFo3TbZfCZqw/qS9ABU3NPEEDYfqIxKt/5Yhi6DnmfX3FYdhpb2xjGUPBcDtui7rHV9eUO/ow7R32hXRP6YLCFc+Ws1OvGfbAm8rsCglmuf+9rU9kXrwT5fk02/EqtRVeOqmYc0IpRisdgvNWfAv6iBtAtfrDtPNpg/5sFbOxTv5lL9bD+i8ef9ffJWZDseBiCQ4CNdhbZ5xrrMujvsMTZth/bftrQ2CdH8lKRHcyPevdR+jtXYvt9MoEw1k0NY1uIaZSMr4FcY0+GRuAnVN/40FhrGgLIMA2KvdOtIT7fcXA8fnm6//Z2svD5c9SkmA/xBQnuMLPd4EFYHQ16KO/uMMM9qKFxCFdqf8Y3+OkX6QKnl/ighm2MyZpg9wJ3mrinxrXJErZ6qg/p+zdiX6xNIJkQrkCbzwkOenYb5lvCVmA/Tj22qvHEJEm0Z/iwDjHFviwmLJsNT6v7YCXvG98N43AL9X/xKnrxPZtr6lf/vr99GYxk0oaLC8/NrdrwU2CrC9ICKKX3Q2zWz2zlYNPBG7iPNJwqlI919lvhfnpU1NmVD7Z8p35Wj0ck/eMTc9m8dFDeGaY+L8WM7r7wovLhnGAn77mAbvwJLCpB+LBUer7kN5mD5FcWNDq6NmDBOrvaxieRcEgDsF6909ZIendCrL7aYH6EpbhZ6iPe9mOY/97v4XI8EC0ZjUayMIshpb6KnRxMFvuVOIQ5SmzSfm/fZOp6r/zTC1SvonFYmtdVBOp0uRBVEIycH8zhBOHYnhGwAwamrpxdaGIY0lIZMov99qQEcmlfqb6ez82CmN6Dc1sUeC8NHhvhchrhRx5mRDnu1/xyKw7B6ewF9Pjxb2CJYmKDtMUMLe18YfPNa+5QHe4CNr31ydbJRb6679QYh+g2B9Pp2PVw3VV7/MfHpV4Go+orjkuD/Bjli54HNiQtEWjgiA6TMn+7axv3GhLZ5csWh9y33kPZFQf3dgDszZc8HOJOw/4Jjsly4noP8gcY0aN83mY/RsRUSMPHtEwHbhjt7lwAOOYcdbiGBVR6jiYEFaLYOVgFY0H6i4F6BF+K/aIBMxvHUU2/KEZaA2jeu11pwvpbW2hmNGu6ulk9eIwvJzI3lQ/m8O7oIFyJgpLGdrfBRE0H3xJRcLDpmcVp/BP8aLcr2UHJCcbjVLRg35xsahu5lo+UN3q4J1WBDTEok7EWsQeUrHpgXQiNhky38AOSR09p0I3nYEWAI7Awwxt1svt7WHJUfaAYLQVFjsjAagxfBDZ8oJ59w8EsL0arnUeV4L0Uxs2iRTNRtVckYy8L+3z1d1gF2JJv1Pt5yjA5yceH8sPIN30kBAv/HAroTc2KhNt5zskVXwv4ZoK0lYR5rD3jUgblxeiwpylOLqqL6cE4Iyfs3CnL16tSueDwQYTip/8D629YVOg+LxTbrfuzWF+fOPCWvyWSrv53WP74k+FUe3xgAgnW6vngYeEoNjba1E7EXMHzH7/H+uvm5qtguTbcziPRTrvKWt3LQYev91nBDkTvfHIa81/8RUp5uA7LGJorlI/MolYkeZbog/cH2I+4p3v+w9hvXrMZmJgL0fLG2ForgWvV7XmxHiu/P33paqJdvumBXgTwTaNHCU+3abOoLgJbGuyLcNN7FE+nJFicvAghIMcIu6GhD+IU8SFsdp5J8cGsAFmoWKhqX8UonvUvWMb+2MJlwTo2nOhjsaLifKgN7wHNydNNpP6tnaAQUZ8oj8mxNr1mgrqeC1ruX2+wVtkRqZ2n3hBnFzGggFARKk8D0RBfq2FtqeXCbi88tv338/m2+h+4MP/1z79Y1cujh+DlpHjDR7B8S7eDp7MfUJPUVdPRMWmBfR41HE6GGEz384TglX/rqNut+sDTTjlBd+hsWsrPMl8uR2WG7wV5pN3i1aKoL1ct8x+PrZUHbK20sQNj7pho+fgKY4H2NNWjHgAkbP//F32RCFcwOBhz031g+8YU1eHY1NQXLb+ZHOPo/fEp0uqnQ/Lv/TzlPSSC550C/lwCE47nUkSca2vWb7bfIuSEQ/gPH6i0pQz3GVX++Im1urfhAiyTf2MkWwNbE6jEcLvsiaplQyJ6e/iwaqoH9Y9pFUxCYfjaTWp6iq61n4z1Iepgv3cKfMDsHTDJOCNYHFaXGvyS5/ztoyIQGWJK9XioEmJw7w7KCWnxodAerGM/P4Obn0K0JD81S5QVPqzb1wfVeXBlonF2C5UpTNz0PNe8uvp0h8dHtbV0P3DWWD8/GfjDV2uVjGZNyr6EbpkwsunpYIoMcAdKEXnY1NiDjRYnhvAw0id1gp8yLFH8cf/iN/Xgs84ZeAo+sO+b37TxSbZqr60EWW8Iv+HXdD+ZKtwpdoUzfzcwFhsAAjPyXep0vyRhr3eiw5axN+G+tjjQ9avDPz5D/dODD4iJDBEeH3WA/t5nacc9XCgXnojDCe9ylqHMBOefNSKIgg9ja+rXEOvGlUzskQ9/8U1DhvzB+7f9HcbyeY5hERULDdRPCpgk2iv8w1vPvtFg4knpgUDCEjXsqh26T6aq4O992fR4zt61wWvy9YZxX2sxWxRCY1C47Iekd3UPWPYwCeyiTsfX9o0T9kA/D4Rq/KHmgbs1a+Xc53/+hH2eZrbhTwyVZBZpekbZIP44+QIDoZhosn7WZoZ1ZQL3Rpo//G3Go6XdQd0fVuwEqtewmB0QnL7FD99wLQZDLA4VfF5ORwI1895s+pUDrVpOSKvu26CSs1tC+1602Be5czLHEJ/Adp7IfErCZk0+WQWdk93SZ+A+h6XrvQKSl+7jY2ud8/mcxwSuWvuhJ09wmom/CndtVeeKOrCX2HQ5FzbguO6OD8hjVgMGpwKgb2v8Fz+nQ5NkkHxrQDe8awRdLz+q13E1xZqDEqLuawg5SBTEv6vR+vf8f+fF/8Q0IQvlCvk9H0JqODlNVl+2YhiHd406uW4mPH10MnzVxMfBxm/efJq7AEUeh42z/kpmdvvE8NwFe+rl+pwzUNx5CN9KRMPQrpPV76gPYOtZWEf0GWz7tYKNv2GHa5KAkdBKofI42WQ3NbXFUqDftRhdSqQsRhew7Xm12JkEpKz5YBH/5N6hEE0+kW+ZHcz37RYtb94rbBvjmK/tOt3hFxUJfY5XL2H7vFiB+h197DbnJpkOaTX+6elNn+sWW/P5o2VsnZAqcud8zWtqqkn5SjHWEmkYQDquwM63WfeyFQD6uvs9NJE+0LLvbItnkuDCNxf1OBLrGMxnWXTh4afz9IKPN2v52kEL42w8oTrI4LB87+MFpuT7IVynrdbyfcMRJvmEsH1G8rDplRmWcb7xW/bZrqSAHgB6OVDfut7zZVzKEMQOFagBrrK16BAiVbIegP7x/QV955Om5JcGIyCYOW935xLS187AJtc4gTDaKYGXtiao9rE3qDi4y3Djlzgyp3Eg/gll8EXpSN55X1qiev/d//xtrK/7MR+kns/+G38fejOwB+h7eFtAidHXFpsxhvsYyLfLjI3hazbC/eRvfsIuQgpOQzDsUkGG/WNu0dwQPliTpZPB5qdTLwcgIEnQmtDn6ImsmtgM2/mp4VUDEuGvvJCTIvNsWN0NRGg5HIf1WrIW+LsZUeNtvNmiJ38lbZu/exE6xnbH/AMu2xWgYnxbg6B8615Z5+2m3cYPZnk5fMD0u/vY6Y/PQUw+cQXVR7BDu9tT2hqtj+uf347EKG+GdTkdba0zLiP1NOWdz5/DZQatuJpI4GwVjPIo8OAqlybV63QJNj7hgffqTtT73bpm0Q4thJffnvvzh6w/PaOaQfjGkaV88vncWxlUi+ROg73mJ/PgRi3MTX9P8TNj1jqxfQ+ru8Koc2BtMH8cWCiPFIV/eNzMZ+90Uvmok6lJsRlMmlldtMdelmhk6oFF0GTr8Bf+LtjFR8VantbrAm9cuJI5OsNgGpNZBFs+BQfuEg+L0uop5CR3wmbwCxpSiZ0Ok7v4w87dXNg6nesTEPGo0XB0h4RJhyCGhybrcNqyfpiE760Cv71C6WGpqnwg3k+XN/5NzVFCjVg4hx44t+5I/vTkv/jkJlZOzV38GaR1vV0g6AYDXeMEMBY0OYStFrNt/6pm0vWyhfsae+h7tixLChKJh3/6yTxYiBE0hTrM91+I9fUsNL8/f+kXDpc/Px1Im18AN7+Umpt/SFdP9eAfn3c43gyE5vUUQXqTdhSlcBqGlG1+zqu/oA8TdItlEWlVyXoCbF/ua75o9CfCdUlOSPj7+wvHTrD+JRHaPSwnF6dq7WDuf2402vxJJqlxrTVDotN9ksWMpSLs4R9fsBLLYHM9dCF8xg9CfeFyCGZaSKXCLcWLFk/+2tB3feDBxv+Q3L+3USfbYIwZ3lxqzU9kjd6opiD5cTaNpOqVjD3DNvCm8YB44TUPmx5f1eoO2IYP74AB8hX/+b2BfPwGi/MZW0gqaeMzh2Ow+mD6AMvHAPVmQZupgeEFginrCAc8HUhSmndwvJxzMnKIT5hFfBs2GnqRFiitNYcvZmtueWQEOG+RfdPjL4TZKnt/ejWYvXG9qN1h5uiB+IVFOPu4auPlmhOQW601wwtBwDTXhDp+9R5Erix4OFf7lUabnzUpXHCHgnW+0sC+Pax1kcYaHNbawqg/DKBf9jrRqvRmbn5ODdiaY1/s43ag+8vjE3T2xSv+8g2bv6dbQoN9HoTLoCHua1+aJar8EN51L0W353lJ/uKNuvkDW7wfm/GTreqfX0CAc2iTpTm9vT+/FiO7v1srhp0PHz7RqF6/9U1fiiM8U8L/5U+C8S/fh8L4Rh86f8yXQ5xy8HTljtS+fkZrtCWlVc7kJ1P/3USM7lJNVR/+qGH7E00Ducpc/+fPoRQotjWzGZvqN+gifPaEZKBvX+r++CHd8L5ZCy2v1Nxvb4jVTEpoyk6pRgiyqP8x3UBE7zOE6SgW5LNAmy0afYkwt7kIVc3p1cy2L9vguqwqWRx13yxPf4Lq3Eo3JKWX17C2al7AgG89bJ91nLMXH5G/eIjPw+OW/KIs9aBb1D+U/75PsG75ENgK1EXaMd30qHOa4ekKjzTLhnpY3aMWA/hhK1KisRpo2ogIzu+Jw/vTQJNV3DXk77wgGep+8IeH8K776Z9/b812C3wYrqOyxUulGW81KVU7YQUSV59YLGNDqZ6SsMdedk8GaRcpMXjepRcROPsO5vM15KCTvc/4+MbUYo+T9S+fhvX10w6zd3JEcPjuEzInE23mMDhdtA7nPhJG1UwYoMcYwvHGUdsYw7zj57mAH23rSjmEMBnD388DY9Kc//RXM8q2Z2vOvRZRL7Rr/i9/YefXrau7ESVbwoJAa/8JiXc7l7mo7qAI39zdwC4TquDf/pve/UmRew7/y7fclIPot+kfZl526l/8o/v26lrSlj9X63ot0NycjIa33fai2SmfkZHkirXkoLdVrw0BjV9fOrA/frzhGQ5yDgG2i5bTXz4ZfZ5NOMyfTJXB8+qL2Od9nAh/+bMrZyN6tUS7WVtR8eGfP91EUhes7VCt4E/f7Tc8Z3vjNv5fJQXK/y4pcLZZRJapTQM751kH3Hxn0VCRXmDZC0oI4ENsqRmm14GZ358Lfv3eoMg/DMkcHy8XqP7IHdvzxOej+8x0+IkWjuzKPGXzdP1xsLnQrRYNxvkqBbGopUT/oN1tp+ZsGvoerjJRSXOq+nzydu878NojQMptbZr1qFACNW01KKqgDpjg7Gqws9UfkoZHwGZDecWQHyU7ms3DM1hP93cBrBz6NHGjT7Iae9aphqTtqFniK6Pa1kidgY7HHtUvbCnfUQ1dH9+QHF2tRpDDlw0lM3ji8Oc1yQojiADOhBMO7NOxWbcKQGCmuxqxZblbxOS+F2jzYkEPB5QnLJafJTxh5YLtw3zMia/cOHg+k46ixNATislwglgQBWzs7mbDC4U3w3YfLtQZ1paRAfn83/MS9Vi+g1k8eCl8sc6gabYPk/42IHtz4Y70WVhL/oM5imHzXQNsO+mFsfn3MNVQPu0wijN5YEbVFxAlxRlfLipnzdTMVSBoD5WI3WsB666WbShhklOrRlpCh2QJtRjZMT2Vw5os3umtAvYDPkXy65GPjRlfNPx434jsgV8wKxq5Q7pVaekH9BoWmLtbiP9kGE/ccZtt7V+gfn4/t2J5OxC+l0EGQS2b9LqMN4s9o5KDnTUw7K4zx0bZVUcQHKWFom8wga4e3BkgDxXU+OxiMF/XAw+5hNxIxzWsWXquQ8BGso0Leagsds7jXpNoYCB1lId8rRa1ghehc+jzc+Ly1cuKk3KuuBd2XoQEU/31OABDV6VR7HySWX/2IdSwzmP33LiWpLtNBiUfpthdbi4YY9TNUDFeNfnwvMBoLeQnAEV2Q5K2e1jspuoj0HgtpNFFaXNyO2JTssT+h93GDNi0PtkIsP6WMI5eutV/Q5yBy+C8aRC/hYb14fqBDps6rDs3Ccz+Hc4Qnj4jDufdyNaS9zxYTeFK95fTClbtC05gWvkI37qUZ+TUzxfwGrI3guZ6tOZp/7TBMjUtUg3g5UuhJi3EgXeh4Uvum/5s/ni4nvGHyIl/CRZLM83du/gSGpKADN26t1VwmjOEjc9uZmvyam0Y3y4H7N52VbOwz5rCgzodttlltsU3a3RXApxN1ClEJSBq48eK0DYudhPwG1ZFNEcoH7w9xkJvg7XdlxlI39GCTUU1cymXgA0nbimpcbbngdSHUVfpOZzogS/qhhlVXcIT1zX4tCJqrWKf2FAAuoSvu6+S03aOXS1G7Id1e/0GIz2nqfa3H+f+0wRzfCwvIE+OV6o3hQNY4cgZbKZooMFDeQerulm2r1sPqKsWp2B7n2NwsqBD9UeGg+WRngj0KdxT/7EcAiEhog8ftyDAwe5aW6w6ViZ8co834RNbZ3Q6Dh/4/r2PFPOm1/B/56Uz4R1pBhmS5WeceZBVsUF1re+T2cWRDzY8JlycZc1Sp14FtXP1wadmH4L1dJ/Kf+utV90XkEZsaqjo4gE1EqoCpt8aHv6Sd4wP/Ddj09yKKjzZvxLvL6cTGw3lF0M78u6EcTYXdBcu6FSNPO7YuXwDNs80ucP93ROJKBmNRcFzvMP7Q75hn6c8mNMp4yH6DibRHm1oLV+rKbRvfsqwmX3zgWXVoYO9mT5oFETHrYtCTyAHh4gast9bk3F2RiBau5E6NGJs1VJVhE5ofKjxZjiYBGnygPTIr6j5PF8NiyzlDn1tsMj0vHLNWvK6DznCHSm2f0GwIsfooMlGSnX3buXrGgw6PMjakxpiHTXkhm4FhNcLwzjr6vytPnIZqqCw6TkYnmxbz0LZ4g0NFBUGBJ/5AjA3F8kanZtg+tTvEf4AP9Cnf/zmAyedRShlv5geQFw10+giHu5EV8FIcEnOCvIR4R9+nv10D/hLZq5wHaYrDoX8m8zQfJZQkWufBrM0gxElDQc/r2OCXVGXmrl/K3cQm2JGnct3YCvZgQt4um5AD+sO5tPeWwg0X5pD/VEOkuW4WOt2C/aFfkt4AOwZXaBazgkjc2zvhuUkm3eoHZ8yjubra6DynWVQqWKKn2n4BfOB021t+316EDo7mbNOaMG1dhF1l9uHzdlZ82Dbjw7105OVd4o6i+BomAHhj1+V/XL3UUDuFig4+nY1o5edJUPhIH5p8J7JsOIzX0L/Skbs3KS2mZE+VLCebZ/G1zQLRrUcfahZK0Tfp/9li820WcWZdEIqzL3t1mGvQ/3Wb7fGGzFfxT2ewbEqF0JfQ9TM0g14oFDIG6mc1SZLGDxcsD0f9e+vOemK/V8jO3xEgjze2PRSD3doXZFFI+ulMdaH6gfW76bHgaIW1nSZlRYKdObw+cqiRnJ29xrKB6FCmnNQ8+U+lim4fTmTHl6/yRowGWIIImVPltVNrG53TVK1P7y+/9ZnTu/ZHXrLsSTz264Tevt6J1C7exsJfrpny/mnQjBn/hfbyvuXUPqseO2lSR3FOD01c/bxTLiMYkCx9iI50x6XWd3LsoWNKHskS+f3NjyNqoLtXZazRbjLFdzWh+6t9BustCEdeLpLS72tzd28n30ePvTwikPXPDDif24V2CvvAgf+q2ymn/T7wMg51WRBtw7MNxOO0Lavb2q407mhRlUX/76/Sqpvw8xrif7iOxKGtQVjf5qhNgIvoIE1VMMYUbmH9vjWcXZGUbAko/cBQXeuN3yswJydBR/6J+6NzehsBfwzLAlcdkdED/2rtla4pawK02yJNu07wGKv/rPgTtjZ9md6/bhKbWkZUlxLONnG7fDaU9rxeL+Mt2B+huUIXy/5Sk/0HoM5SW4r5Ji/I1KuUmtedHQCllPeyDInerPMLacCQ084QqmfJGye8x40ZhMhOEAjFybrGINPlpbkO9oFWBqJzTAPDEAkG1oN/wADD/n0+0O1UH7Z8ia0gn/x/XDhnJzVXjJD9VjusL+AS7OQNLThzS4JDepKYOOVl+5w5Ps7Ege1Yus5u/IqPwo23lvp3uovRaVCOowlza6fuGHqeUbaIiw64vTeaeZViztY7tWM7BbkJ+t5vajwap0NerntqmGxbxxR5+BgYyOKvsG/8yJa2khOorAD/UtefK0SD196+Ixyzm4/TYT6cz8hYbob+TwXJw4+9rcX4XeR08zPpkLQwG2L93Sz7PqOcDCkFx8fLtw7Yc2IdTAY0e/f+7YGU+b9i2em2P+GoXDmTF5a44KqpS62qm+1hvuvd9tKZo6Anb0YwTcv+UQ249c2fv5cwV41Sxq80jSgzu5Uqdnb9Kgt3/bN+ouzEvJoLyHivbDFjuOjVw1q+Wg5CU2yaoZ6B6q/i2iYRzV43LzGhqZZP3Hol20yBUYng0FGR2o7B72ZzUf6gYHqhNixx2Hoo8x3of8rLtgsbaMRDDOKgX3ZYxya6zFYJ5kf4T3NApq4WdGsdtj26q375YjHOy5h3QB5SFrzQV5UcsAqyXGqjTjPkeYul2Y5LsEK3sWb0OjRjsH6mIxaiXz9RxGaYUAcvRZB8eUA3aPPbmAlbF2t25MXRsF5Cpg4HwqozmFIU03P8u3nEjofc8QoMapkFbSk1ja+TJaf9QX9xhdVnmsJUrIlC5arJIfAzB8JDQMBJisGWgofOrpiXTZRsO5O7xBcaxtRM55P1rIvvwTK8flEIygANtWW1sNf7xjYdH6YMeL8ZmDMs0BAcmNDv0edC+ckqyh+YBasiz3e4SQnE43KOQJ/8U5VZxRST4E1mKNwuoD2VPTU1vQsGYtXO2vDMlY4/KRva6kN3YaDrPRIraNmWB/3g62k4snE7uOONza66//wmxonocnHdW/LUCitFMFIYfnHOssydJ3nCe3yr9j0yWu0Id/fDXw4X34Bu45BCaJ860rDwAcsuNpa/4bzixYvuR/ma+hxMLrqIcWBYg2j/qzRP73g1dMK5ml6cjD8vM7Ym3gh2PhMBtsHqRHMI5Px2cfTYaGMb0LMRxYsqSfEgPJDQpqSkeTzXroUqtZsYes7NAkJJfsCI7FckRBUv2EZXVeEtzv3pIZ1chvRG9IRDhBm1GqldzIB7thCQuMz+on8x2LyHdwV7nU7I9WtlWAdOkPV9FZ16f6wQ2x+3ZNNr+svbBRAtWbjcuYgOcUMSWaSD+t9uwW5m3wbO5Kt5eunK2zotuGT7peXyRjyZx3+JLfFVndK8wWLCAJnOb2xwatLsvoXtwfFSE3UmNrUMJfFI6ypJaMOAikn5+zJA9nsLlS/pnLQ3x0HwU7rZezfzqQZkD+b2tNlLVJ1tQAk0LP+33oKlXtkg5lut1r5IaGOPCpgPW2Nz1+pzOPj8Wc0a6nB9C8eIoF3DtZPL28QvvbKkaipklrkEpYm7OpcR2B3NQOBu1g2LLz6TF3P1nNB9fMCdvHvQr2oVsD6mA4V7PPk+E+/zq97DuFLEzqitMqbLWfIMljZu22wvCMBEpvQhLnRTGjm13O+7OXPCt1dcSVdo6TDtHtsjXT5X0KdYjDZogfHCvavxaLh6RwBfuNnsDZSjdRJOwfkmqQ9rOggUGN3r5vfe1A4KE+X//obZFfPLnR090zEffduRiA3m741eaQqAU5WRxl9cLYgRyPR54PlpO44uOEVWW/d3iIvc8pgVml36ojKPpjtHHEqlo8yAXJjB+Ip+YgwXyeNopPOs+Un/Vpl49to3PyjLkArhE6/MhpGCks2/S7CtK0yajwTrVm/Zo6Arokq9t+GwRjxrheoj05M4Pn9aZjBehl2tzIgO0cIGXnJi/dPL5V67ww0NY4tDM1Lh80jTNi0F5ZQC1ktU48I1cBc94jgU5tDehD5T7AIe9mFkosivD8PtUXQ0xtV91DrhE/wNfiVQnb/wz8c4d/QzHhqdAhVcY/tU/dJltrSOnjC4EJmg+vApu9aKCqoJ3KgPpLxtKY6fEpxTiODBInkiu4J7Me3goBHxmCtStWFs9GJ9JCQcCBCU5Tq7GYaxf5xn7OHMJXQ65cRhy/Zb9p8+rTq5l+g+d7OgB1PlxbQ42FHVu285DOWriFUeS6hur3uA2mvhTJoOO1MOPORWesp+fD/Pu9LprZhltGFCiuUL7XyRhgWswgvQMJjjkMJ3djfeVYz6RmQ9RyGw9w+QwifT3NHwB8/USIl/Yv39EqmdhCjwayUjvd7aiT6bRjvB5DC9Bc/qf/u1maqDc/908MYL6hP6MktVhim7glH6UtnC2f5nXp0nwP5iPq1YeKT+4CH/F3++YNduH4Q3BvIRN8AI0Dcv+JyYORpM/3vvCLY2GOyduIthSWfvuiRV48bv8pn2AjPPTaU9ZOPmtvVcHm1CWoco23WM31dtD5195NQlkIy2UyYYXZ/dGgXVnwzCtQI4drWEbbEKB2Wi7XaUOTL5o8vMPYyHt6/86So+BzQZtzrMLw1K2n0tx/0J02eodsqMkYTbgFpp+dJpR/uSmat9xNmqq8K/Pw+p64gvJIVXL0S7pkzkJBe52TpuQpBzxbOaM0KJyeK6BPwSY/zpp/9QPjji1b4a6jvBEbAfzXNBKFmuH/xIV8wO941m+cL8iVH3xrxvW5h26IU26PbNEv5dmr4Bimg1i1Yg+n3vYza3TqrRJiFOe+XpVH/+SH//JHmdytgYHsC1u9tDFjrIh8C+fuhaPh6+XyPFQ6K1mkrsQ1/Fnt/AxGGmuVS9G6ODeXrEMEE8hf89/uM47sYbn4btpJxDFYhLkz1j684+TaE/fXjavinVzIP/CyWqCcVbuedvHr8G1a99VJ4ruBr0/dTM1+RWEH6HWbUDTNnTeffykEVTyn2hIEb7rtdO0IpUQ4YcYfbsLLdy9MGyGWEA74TzIUt+39+FE2k2yUfDXjhYXZ/dtTcH0eLmdcLgulujWmYZ0qwyPDiw1xcB8QW/5eLI/VqWInBFx+qR5DzRvibwYs/3ykKtcOg7CRvhr+5ZdvgA4ut2f7Ow8CTIcaXdkhWvjiLcNrvH2T+SDzrv2YSaioobYw61ueMDXH5568juPHn+XGuOfCJ3DeNdubPmv/4TBw3Kd7v51ez8aUU/PmtQTFZeT+9YQz+8PSlq5Y1h+flA9m33FN7FzkDvfvg8x8AAAD//6SdybaCOBCGH4iFgEiKJZPMEgVF3AEqggMyJECevg/ebfeql/fc4xQqlf//KkkBYp6FzUPxrNloFA4Iyl0OuVgr8yX/6aCZx55uP4kXrwtu6gG+k4hxP1NEDa0MlFama6yursXiz9oUlXJwwj7DfE4c7uTBRqsrvMRDxxzTeMKi7/CPd89du77BgXP7cNxezogoR5mHTq32y3pyRNPuVXgb0dGz8GOjM2Is3et/PHnhtTn7zqhAH381UXtvbNkUruIAzMPJwYEpNgZd/Dtar9MrYetLErPw82wRkauQyBMS6+GIkQThBSwyLzxxfNtaAq9kq5Bp4Y9TYsgW/Hg3d4slRC4HW9+c98lzeX3yyw+W4kCdkO662fpjvd1KoBVPG5up3cfz+5Q3f/zKGtN88WM3CdEq2JOpStVf/DkgqMkFa/jV1iTf+EekCRVg+3hXY6EaBe+npxZ9966nsMASbGkl44X/5HN/cgvopOCAdVFYMXKaEwl9teWWht2pNtZH7fKGE7s8qXFCm7jPRFmE2P6khDNudbcWR+2mnLIbDZv0tmXrZ7kNkXzmRuzKWPDb85D34BqaQ7d6w9fsbHlPOHy51R8vo/mambDou3DaPhiiO0YKQG+vpt7Gx7m4KYzml8+wnvDO4ufSADjatdT1xHO39ohQQPPxbWo756hmM7eXwEOhinXX5Bi9s7MI843yeEfvfT5zzkaHgoV8yL/ekT8u+R3xaXte4slE6/fRT+Hrn3mq6u7KaP0h9UDdWIwu9Zuub3Vi/fjyrz4TT+9q6KFCiR4ybfJR/87cGdI4utGtcGgZc19uJC/jQa6Wt3D53b1Fix+m2mVp7PV5igHSPrxKf/UVxh0KQJJ8PGPz8MnQMt/FH7/Crsb6fJyzbYJCzmPYPwvEH3fLrUrc2y1omBQ0f/cnrYBL5Lc0TM2OkZ9/SagX010OtJsqQ2jkpV5F+le8qSfb2fRQnXlCVijSjPXkZSPU94rScHd5Gn/8DDHHwmn3+qDFDzXy7fQ6Yvta+d3882O/9eTH7yY+3sjyr14nR+0brVPMjZB09otUXo8Mmh8/M/z4lC+jTz0t+Rotfjzk//iTPVpKZHY3vNSL4u5s6W80vPiW5l7S5NNXu/JghXsb289dHDP3pe3hDnoVCil2YiZ8PR6dv3EaftNJMhZ+IQGve+9lfr/Y+KsPzbeBp4YvVDX75aMl3rA5bURjXtZb9D7G41I/2qFRYnIA6vzR6dIJ1qB1ctBRPeCOWkv9i8h7TYTMzhqqGp7XPd+uKAO2tw2RPLtlU2gd5D/9GGSa5s8n/SEqi17DwfRWavIcztHveWF3L4fdGN3jJ3B+oRBB3HyMsYyvRxRt5AJ7KrW6+SDOjrJ833A8uw/E0P2ZQtA+jZC86qluNzSw4P4qJ+qnhwZRi6U9XCK3/auHjVEQe7DK04yUiz+aRkffK1e/wPRX7yNrtJXBmeIbDvvwEo9Q3Mofz8OG+mr9Hx9H9zaSsNs5MxruK/OJBs7c0uP2KC7+mx1/+hxv2+kSMy9SeXTpexcnmZewMQpyD+H2CVh1hSgmijZnMtcGHs2OkRHz+7CZIdpIBSF4srul3ihBYFsUb59VH4/T/uKg5fFhdf2OcyGKtFLh36eYoLMQ+jNueBl+n3fm4cBGqZzmHy//89+sPDQq2GXTLI1xXON5HFIRtv5xFyLedjtarkvpL97Nhb/2v3rnj/df/d3BoBBXb1CDtsXmwzvXo3twnkp/2uyoWn8Kfzbvg4WQ3uFQuY07Np09iUBzJCa2jmcz5396ctE/2KInjJjdBje0kgWVelyYdXMS3FQ0WKlJ0KqS4vEcqBzKx71MZu7BjLGv6xlOCmdg20ZnNno2JECD1QGH/bJlSz6NASx6ePHv21x0tjmP3q3lYPN+fiI2Hy4pOt0DEZ+r5ZaIrWDpsNvuq4UnijWzxHD/4/HUCrqDMYvThYBP1jFB2bfPu2/KZ8gUaoH6y3j94h39ny0F8r9vKcD9t6BGxodoxunAIW7fGzR+BEM3fLuhRM/jvqZ6545GdxEiDx1fnE+1YGxrtvfy5QoVUcd229U+UyCSwXtLLxza3cgm5yJnwPmwxfbrXqOJO8REUQZBw8Ea3fKpCgwPdlQ2QyQFWzS5Rg1wqc5A0P7Y16OpPWZlLtORagdw2fz8VBkIpa+Eq6RcTq31E8DrvE+xOlvXbjxuyLLLrx5oyI5VPZnNrUG47wrqXj9dPa60tIKV9P5id31U68bicgtWd5OQanM8xiL9CjzU5XGPL/PlxObvmhNlQsgKm98MG21m2j0yrMzC+rNqfRJqBx2Y5FSkQptdzp4MEdhb7hnr4kB8ksfXFuzbuqZahUjXJPeBgLtlPXZZ7RjCaCcmyme2IvLpuI6p0IQO8gTOpg7Xt/5ERtcEBeSaatx23fVydTkiqb5r1Gyf2iL5jAKW5xOitWrFE9LaSr6S8x7bz+fGn4q+6eEWFEecG09ssNwsPbS6WyQUduM6H+NAb4CtQ5OaV/Fg9Fu6cyBT5gu1LfZlk/5hKTySTqauFu9zKp9GXfFQU5FX2Ok+a+GZQf1WO+zq16obo5hkKDaFCKuh/Kmn7vAKYe+NJXmuEr8TXiSV4JuCQ61tmNfjKtVDhWpvDat+mtSTD6qHmORV1HLGvp5X9u0tz4fz0ls51/JJTV83II1lhYjuVCYMVy1CqC9KnGXlcrU4Oodwusg3IkWzgcTNBxz4GBLQ8PIZuqk9nU0k3QYDO8zpje+3G6q1j28aNV8SZzC3nfYwPPJ32L33X2O6sG+AjmP2xFuhGet3KVoN+Gpahq/deI7ZJ0taOIC6wwY7H+pB+6QeqtwKUXdlWwZbxVRGR93rQ+JFa2PanEeA5fNwsG6/jB6sr4g44cnTXXc+1TOBKEOVcg/Je2y2SMQa7GG8Q499uMrx5FzmVHk+L2dqvr5iN4eEzxAt9At2pbI0Rt4OTKRPrRt+9WtVk+de6kH+3jqMxeSJ/n5P+WhP1BjntBuis9SD+335+Dc+Y5tXyarbVCuqD3cNDepxn4DT7jW8k2xmTA3nmeCoo00442uw5YLFBuLLC1N9+2nqcXdVKuT0h4n6XYcRC06hBccX+DicvX3OGFc8wRFaKVREFHfTUZEStFJXXfh53Q00jfbNhGi0T9S2nno+8a8NIASvIxEyXBq9W5YynEiT45hDuGar+CNt7Ivr4APrOtRX2TUDOBvDkl+4eDh9HpLylZwbzd9712+MsxTKIVMJdVJ1n7NEpTxcpsuNlGxP0RC3Ywk26C5ZffYnxKT1OkG8EyfhKv1U7BmuGh34QL5Tw9LNTsgeZgsV81u8i7mtMULw9iBe9zGZh7vGSJq4Orx2mwO1vieIx2c0tcpFsFxqjI+nMV1CUwSxz0xqxU5nzJ/yK6Hyk4yhACqOqafVOor4/ob3ZuX6Y53UFWhfKaF6FUgLmOhauKHpRlaoMn2C0wHQ5pwfQ1lOdMReoyuiOHsMWL+/Zp+cx/4J8n77CuH7iNhEHkkGYqxyeHvZ7phoQ+ZB7rr7sP2+XzWt18P7Lx9uw67yx3Wi7NFZm7Zks9/k8SBW3RF6XbJCWSNB3K+2QwO4qBpqIwT5JJO2hdUli6mu9grq1H7m5KqhB6r3J1pPq2degYDlIzUmaNH4naQRJnwQQ147POLpmkQR3LqmpcGxfBhzcn2OcqgkETWseOOP/KVpoCmz/gdf4r5P8x46ar1D1HWUTY+Nv4dZ8Abs19+KdaaCU4gvH0y1ZMfFdOs4kRzHEk+dS3722fJ/VMiZQtU+0/PJXLvHX/zSrPiUiMxTo6K6+D6pAVvdoCVHTFCNrY53uil0k5oOhYyOhvSXn9cKZDLw0UD/1ps5mH0d5o69l9+PuyX+RCgVf7UTob+z6dPpEVyZHdLQL77xJJOqhez2NKht6FM+RzLrwZZON6yh2yHusqmJYOUdp/BEllM6by0d5SjwNYLsk93x7/eRyMmweuElH/lT80lTFPNGg3fUIT5LXiUos7x2qF+R1BhvV2eGWnTv1L6iF2M7cXzCdeml6SW48uc1PS+9STcbuv2ET8a6yuGBzEtJroitmt2Oh0TW63pLhNth57PYyEOkfeUEO8p0j8cVQRJgw62oG2pl15fXXgfLJ3JIkzKtJ3lejegTwS1cbUcUU+7LHeWdfS1+egKNHEkbeNylIJTFVxsPaflNYSvqdyKT+cmmjRvukbrL3uG30c7x9JXTAKyNfgzPtyCLp6FEy8X+hbq8357NyegmMCSrHfYzFNXsDMspj/QQ4TSaDSYE2NEB9hlP1upVyseSPy0nn3WTqm/dqJf3c+C6JmdqCfzWGHe2ISL/K2VUY4UZC7CXbnBqQCXV9uPUc/btTfm1Qwdsd/7d6LfHxxvU9YqFwlfo/L6asIku8vyk+ksZWX99PkvkRU5D7alW0EhOO2vD2OMSotvVqNlqE+yhEZwvPqjqELPcbBzgOi+nWD3x9fu6UDCvOhRU2z/q5VTe5ggrLjaxJh9XRsvf3wQhVOkYf9eFwcR1YcrGu5JDUeC3/jf0NynSCULUKu2lhGFoIfA+aDgYIj+en7qlw/J6khTJum7xcc8r6nxIsem4hT/kY/YGU1UFfD7zed3s4ZChFY+48O4NzJ+R53KgPK8Ihyv35IuZaRO4muuEyI7VGRSXlQOcz21paMhSPpz0XYXaqzKE548bGZNjqD2scxpSO4CHT9b0Lil72xbwbqJ8PjX0nAJz5ZaqpWjm5C1KCQTrpFn05JcNcivNUF2+lMwzCDWpt2sZNoV+pXYxsZpR0f7L51gj+62/5t5mgZ4X4EJJqc6IxaP4htPG5LG36Df2vHoqMsZVTH757W99KcEaCFc9t/l3+jpP9HWlN3Zn5xEzobEc4CNKqfPOcsZwIUWgXMmOuvGNj2dxS1J5yac4fGqXeOzmdQRtGkd0F/Ez69POnQH8RqSmLdk5zWe//OWLn76ORyRcPHhsUpveh8vgjyjwJIQR4cLVUfTyMQK+hS4/2OHYSIe4963yrUSBq1H9S9xc3OzSN6DYzggM9R2NjdA2G9FQirBN6M34PT9EJ+EbrkH85HO0SxMwnFwMX7eSr+c+yUZEQDSwnb94Y04sZMLVFBIy0vs5H4+bt47kb9FRXQ0eiKVVlkDRnXLSpcmm7m8ve0Tv0r6Srl/jfHb9xgFdWV0p3j5ixp6MEfRZC3iZH1fUGPfVcquHlVGz3xdscsanBYf68wrJNbWM6Z3qN/AtE9FTIVox+8VX39ATNq1rWU8Wk4n8VR8ldTalx9jLYm/0uMtBKCQ3ux65nLd++p1MG94w+LOW7pE0zK9weiuom6t2o8Laf2fUy3Mt5qenuIf9vbyGc7ecGl5/Ugm4lZwSeJBdPn6ncVQewe6BzXX9NsbuPN7gzk3xsmVJ6oZrZjpo270tamup4U9DyRzY7cX652e6+RjeRAhJNGINC/duwrdNANd7TKgjbp7dSE5b66eHwlGdxnrR85mCu7dHPcaZ/sDJD4DnVy2xexFjfyrs4IhKMYtIvaFLI4j88oQh0eni7wx/OCrSEf3WI13Z9uynt+QVcfZ0G4HYdQW5tFBOzMW4zJqYjZqqol4Ul0ZSDesIYvtQWZfXgHruuMmZ8nqEyvGjILo9OqLPqrWeQJQHNVY3l48/XlESgtI4b6LMm3dX5E9tr9y6tg3HPtNj/pTvn5A4XoL9A5eh+SDvb7DnCPv7ve+ixQkQb1NSv29sxIr5PcLWGbY4ONKmGwLsqCB+ZhSumuKUT4+YSHC38DqUuc86Z+zTyuh5jGqs0vs6Hy+c+0brt/uhwaUvczYVlogu502N9Y9dG+Nl2cz7y+elEz+6ftHTsD+Fm3Bc/h7zp7uHcWlM9EkuPJtz6CQQh2sSji87RZMz9iY6rrUrVqsyqpkBvQNV6JnYvKt1PLRPd4bfeJqPj9vN82a5XrCIN9QrvwP7fX+0+BHqJPyeTcpp+4R0No8/P2jQgydySO3fQFbyZ5PPn/IhKw9V7Khr3XE91sMpQIv+w5bUzmyeKyFB+vr4pPbOd+qBh64B44EmvD1ETc7Ew6qHFnkx4dpzy2b6FUQA7bycIhMLRDT2LWBd3gNsik0eMw5HMwz74xEbzYoZ7ZrT3/LMB8uWHOajMbSpha7r/kzTM2f4036adNhZmYcNPzRYf/VUTslepyl8x07n9x5rCKApuIWbremg9oO2NwRbLqdYCe/daJCHrCx6Gd/ru5I/93BIf+s9tQmcOxa6YwH9Z14TJh3denaxEv3WI7L2R63jBSMKf/6HJidOQot+b5RSTCO6E8oezfWxfUIkpxsctLCp59dpy/+eT8i933PMhF31hsVvk76FSzfVd52Dj1cL4Xzw3928TaIKWjtUw3G3KtjHvl8DSMD6UqeuHkYrl2mKvvijEU6qsC+SOPDQz89opvLyp95zb5Dr5Zkmzuro/+Wn26pw8am7b+LvQQw9EEpXCaVfPrul72IjfFOM8UPA/nea7Ke8eRci3druwZ+QMr4VVeAMjOXPJia7nH8qx0T6EknXrW5+nDcBGuxNt4zvqpvMJmlBv4pf6jbaOp5q5xCh6PyQCLu0S4mwuryR1aI9GV+2xOb9J23hezpcf59nrI1Kfct6L/tYo3IcD1f784aglzGZ+HUXj605Nn/6Tc5Ksf7F08bHhUbvi59tunbcw9Ut7vi4+Hf6i0d3Q1d0mS/5JG6uOpIxjBSnnwqxrlJFMHLHwF5COYOUYtig0LseqHHcNWzWPbGQy2r44MASUjZfvqqI1sG3x/7rdIsZ+1SScn42FsWVmXSTdkRPMM73lGr4ZHTTcHX3INfjnvTh2WX8zvZFQOGpwNujk/isk+QK9efGoCrbYzT2dJfBonep3sRVN+2kqVJW7fW1jAfLu+V5wffW1st68sjn1yHm4BMG5U9/dnxHWgd0Iz1Qg57Mjv/lnychKPzxEtq1mAc8XTL8AfETj8Y2b9D+C2J4FBuUL/nG+ul5vDt5z3p+coUJhFuzcONaAno3haRC1QwHMuf1y2iOFRxl7eRcaAL9HfEe+vRw7qIV9X1LNeajp/XI8nuZaqzr2JQeRAJjm2+xOZ8tNvz8nOdMD+zm6iseNnNRInnbBQQdty9jjnb7IwRNbJGT/HLypQ/lDAaK1mHlm0XMRtKlv/UwlKdmrtm6kErwBLAXf//1aboxVUjCCeNLfrigcR2VHvz0q5cdqPHHE4OrOBApKOacDN/sCVG734YVV7KONOzbw1jPQbi6Mt3nV6kXgD1sthTn133MBFHiYUiUHZkXfVSstH0J9Xg1w2nxY7Q8eGTTfTMfezfd7popDN5oveEj6u0iL57bMbZAtYm/+B+17gbHKeXk0RyoUzOhZu8LyxC06yAEYTuiNnrqqjy8rAPV0mPTsfRNC7CE85ewFAuIPLnCkguqW4TjJLVbB8uu0jR0VCLpce5P3tc5gg2qG4rVVaun19Zrf/yKuvvGQqN6G3vlFy/N6dL6fXOTAJn+paP4yiq/F4woAAFLR6x37t4fngK0cCfNnWZGmnUTH18zaKYrh4N1XsXMbTcRTA2b6Fa4uMZs9g0Hp32dhmNHbmiEu9fLS/xj3z596toS6hYFU7MLhbDTjTHrhmUTc8nT7HNHMVNiswFuTwysP1CN+vvjKqEK44SwZH4wlqgfHkKyH/HO3vNoFLOPB4mUc2GtHwL/6w3XAj1vTxtfNir4wy0qUyV2i5zacnnqpnvst0g4NhHNuJSir/HUyh+/pvufv0vXsQVvqnt//oNtxvgN2B477J9onAv13eN+8YlVDemIZ3wQIldqB8Im8JCsMFTAorew9T0V+Swfhh7we6UtvdLdeH1LyQ12pXImWZ4/Ynq45iXkV7QLa3aeup4e8vDv9/nH7dbvg0uTAae1DyIp1ZrNGTit/DVDH++467MjULIGsgyl5Ls+qt0Ua+0ePSVLD8ESJDbs78cCca+b+qcvn5JKRFCqmx8ql2CqJ45bmaCYZ5tsZkeLF39FwI4qTMQbGusprDoT4URcGmGxczf7dz9A6KhJ2F/m38wZ7g0tvAcblxY6InVvFar0fcXbJjPz9dZx9iBJwdLpSVn4+jWPYHwuFz8veodubxuAZf2hZhQxv1+rxltOHu0hXHgu+6blIwPuapypo+vvbqqwoMP5gDY0pHVrEF/gpaXN2jdkt5cdD8cuH+VqNtMQiVtU0++3f8q8z2lkFbfeom+UIzTy2qQ/Hr8uP5CBertKZN3K3rLRaUzAJPseG3GkIHJzVBWyU6iQyZhe3WR5z5uS+YKI3cgYunkEoYF7qyU45CexnnH6AtSTfCT84kfIY1u0iH1t9S8+xl5rVdiInxbbKbVqMjuHEQ5VZ//xxLVHrQz8TJToLpxfbErkbw8boUzx5YwD1JUfPoW7GdjYQ5Pb0QO/C9HVqbTf/DX4FWEymMdx/uM13Zq1IWz07xnro9X4/MLr//TaiIxTLOjcy5QXPYGvMbf12dtwe+jxLqPOxdNrQdXYCK9zlFLbDEc2JIe8+OXrUOBvXExHzVFhGV9q1/bW53e2wf/pj5Ub9fn303l7UHfpm54N/ZCvv6A5qF7byi+/1X/1irY3J+xMwysn+0/aoCXf/tVbWHT5trDo7VD+vl/djxej9cs8YUvebjp2sB48HIPbnjrKoV7y9SjCq1dPdHdLR/a5CJkHe/6CfzzTmNrT3YRCYDxhH8Y6yn3FBH580T3jnjG0eiwbzz8xiVMssN64r0MZ/Fakdm95/rgBkCDqTme6q7IrY0s+h9MxNAjqmw8aH4kTyaHqD3h3yi/+z39BPs74L55+vAoe8vVCnVuioS50xxu43Nmh/lLfIPo11pWlnvLHw4XoPPawau+vgX+llU9+6/Win0LBjOua3T8XB0rjcaBa8boarCCXBtIjItga18NPD6ny9J418pisCPWceG+R0e9ONLx+5Xo8a2kkf4flCJGcVGidbgL1L99rkX+Ixx+v6/ZK/eOb8SBNUwSxMarYCh4vg5hGRBQxPKhYexzKfAr9TYb0XvLptZmLumeeAvDelvsQPUyXTdI07YHdhw0pu1BnY0pYA+Si6OGyntWioB32cGfZ9c+fTCd9uWtZXQ4roulbz4seRNxKSrGliLPBwODIpvkYL6rXSdt18nWtwmf2eOqFw8GY7nCQwaXxe5kPJprySylDEjJMpFPLdTV/KG5oeFzeZFgtR7Y6md3gZgs+mbzUR4M0bSJ4fS5B2Bfxu+u781ig0sU9Dmnt+VNmPSxUrUdGf/5mdJ7ZLGJRr3Ew37xurpWRV551siWP06DnP78FhBUKdmp2qgnW+EhZeFnYL7x7Wubjj89Try/ieDqYo7zcWpr9eE0+jrvHUXEKTwkhuoioywQhg43enbHln141UUbtCbvcsbHms7mjz6uuIulGDay7X2HJ57UJmkdU+qtXTp2MCnBJcMRWpVzrsTWlVn4ZrwGrHD8wpoEjw5mf5XCMutJ4e8Khhc2IMA3KZ26wT+JWwGnNg+LtiPLe2X3Nn97EwZ7bG2tr2ozI8sYCb+1U6qb7QAO4xpIUtlkpdtTTOv3Hw7DRPXtjtOVvgNSicHCeJpeOgRrwaL0RI6ya1dcgtTKKint3ZryN14988k07gBtiNyIs+oMKz2MEP/3147+jmFEPCYxvMLa6tzHh4NgoqPLgV1/w2bIeS0v+Je8iOdfTeJlbOBYvE1sv00bi2XDDHw/Dmpbz/o9fbTjnkIWs+vA5C7jiiMbXBGHTz1nNLrfmhjYHsglrS18a8XgKJ//43M+Pz8bl4SmnVhmxvsuIMX7eK/jpC1q8u63Pu+vsiZb1N8wWXiMIuK4AhecC+8t4zFk0Z1ANx4ysCazraddaPNjS+Ua19SAhcgtOHvrxU2upJ/7VP4EPYpoq1Rr1ePCL/7WlAP1H4wObL2nYn8OOHXvuhnLKAQ1G/4nmsTkApEHaDLyIPWMkpWSh8G1cqZ/cKzZbq8cNLH7UsFbcO8QaUwUoVnwT0nhYhtT4ZnBbeqVk9tIr4zruKohX4Snkr3nLhhczn/KolHdqNbTLR2KXjeJ0KaYevUzG9HzVleI3oRY+ENkZXWjREHnY1ai5QlFHXmrZyljIjuFKPS295WucgvyZJ6qvR3/Ztv4+gv/ddVSLdpd4DBzhBnkyfXEYRA4aH8+wgluQGOE/AAAA//+kncnWsjAShi+IhUySsGSWMUFwwJ04ICAyJkCuvg/f38ve9dLj0cNQw1tPkiq5KRIm8IiDEC7xA18htarZes0+UK1+wri9jWC51uCkXMKvg/W4QCn7TE0Pn2aooDwEh4Ge5QeC2/PEupAOASnvGlGFZ43ou72NbI7ol4Mzp59wINZuJclWW4Lp97njaFKIyeir4+GogpxafD/m60Hg7uDn9G9EyBoPy0m7zCAATUKd11MGk3XWDPjpmgIjb8cYGXO9BLOpfLCx0xdAoHFrAdfmbxwmH90c0SkPQZ7IFQI3WRzm47s9Qf6QDdShRmGSvIlPqp2jkPrl+KhWfFtWBT2uJxpVBckn4xz3qq2XFrVP0i5fz5ruAJPEDo4SdgMz+BIZhGsyYA2th5Q1qcpB8E1FQttbCIRQ9SCAS/IgqyRnVYey0IcNhg6+6lVfLZlXNDB25y+9ZWJbzXo6aABYlwv2w32X0t1bz+DNy2Rs2V/VXEttn8BwZQU21YsdzIV65uC3ykrqFG0xMB68WsiVdksDfOmGdbkX8Z89Y6OMkoEIw+4CdrWiEFVqxGq935Ua3kPkY6TlWbWOpprBb9R1ePu/iuyNPtlv9oEaJtfbLPlUhN/I5xGPAuef/QNyDG4UvcuwGkfSrVBfLjqR2flULX2winBG9gu78j42F8e79ZD0wof6vDpWc3427zB/1APWfiQFomQoMoST7GMjUUm1jPXSqpfq3KFd8CqHtbQkGYgHFGHHeT/ZbJ7PI8T264UNq8IB45Oehy4Se3y4OmY+b40Yweu2T6gForwisdafoOzqNyIcrACsTpMYO3GRRHoYThmYETAJfBqjjV28c9MuCwYZjpfeQrP724HOmX0XeuXvSUjwsFJJtyUDLkCvCe8oRb6wrDTU5wMYqD4+opzRYnIhidua6vOXD+bzKK9Q/x6P2CO3T85sCbZQeP1kNNAKDuT3bCzY+4mKVrmhbNnsHQCVO2E8Xbm0/dROAQ7ncMSJnrTVSvtnAkHNdIwJhCYZnxav6ut5oCcj9NKFb52tZHBM6gjjPV3drD3B6lI2RDp36+YvxxbiMPVJVeIYrKsei2A4nX/od+5WNvBSbMAZHV5bF5dtFvCb64GDTRcjR1SGfrkXCTReAOPQusKA6EFbQt877+jhiuZqzZv4on4vvEokrPrmsov4F5SK2aBI2YN0OX8DTtnzjx57RwFWpDf8ETyhKGNtfxzB2HK/Oyhv5QUH9kpydu3LUvXAOhPxAEk+nW5NCBuvx9So+ipg/dt0oJpEEFuXZBme05qM6vLzX/jPv1n/DhwYCElOZIuD1aLfrgm87o0rNoEZm/N+eSZwiydI5O5LTtqjNMIPVa40uM1euh4eBEKgwhOZS5lWY17TGX6ofMUa4B/B/D54DuTrp02RoYkpydu0hfvjD1ETeW01K5x4gSFRbtQ8lo98UXJuhuf0rSLwehXpfCa8Bd/eKaVBfv6ZS3MTfIjku0WUQ1QMTDtOd1BqgozgSk4mTeSRhyCLHmgtzzs284tYQGc8lPjwjog5tM8sg9pn51O9MX/mejfJC1hXxaYhPRc5XfYDt99fs5jGTvgcFjfCLQi6bVfr65kBGg5fA1zEyKYeqi/B5GVTBvune8N2uhT5kq5qD3Y5Wqg3whmsxs1rAA6P2yS0fV31obA1mp3fV+o61T2fWzg6sGcyJGvWSfmE7ocXhPqloXZuNGxOJu8Ox0IwSPc+9sNy/uEYbu8bid+XtaULud9fk7VHouT5oGuuiwh/h+CERvMjDct38RIwTIWC8/47mARLBx6mu/CM75fvkU3nbwDhHboavdUqSxfX0w14N0qDHpzjp5ptuxghqONtCagtwXqIjOYvflG8+1Qpu6f2DF671kfc7m2by5ytLQTH+0y9ICjz9X0/XuCJugHOHnyfst3by+CjnDHVTpcSzMCNRbXxA4twYdKCKeFqDeqLKOJD8+KHZjq+XuDlGCF2Z2Ud1v1T0OAhLysiMNEx270/zrA3X0fqLf2Psdm+3xWqH/AWn95s+fykB7Q+NULC7dmZbLIHAzpDPVH9E5Vsee8eCMq15WF8J01Ftx5k8O4AFWsGkMyZczUEDb51EatGPedtux2hKLUytWkM04llpQYXpaQ0WoLTQMWh64Fm375kdWLFZKnl9/AbuTyCfllV8+jxNXTsq4b9351V5KnfC7CT1gt2m8we1gnnLtziDUWOeB+YLSynv+ujvvHuhsWoVUN5vOWVHs4fu1q+ix6rrvzocH6hz5QdEo4H+379UGfNU9bVnAJh3gcK9TomDWukrRAiSr9ojctxWLb8u28tr8bB2X8P9Ni5LzgdvjXGvSOxbrM3cIElpMZOP7KV6p8HlF3zho0XDM3pWrMLNKwxoe7ulJi/6bU+VB8PImrJO84nzVsVAFvbxS9lQQHl0qqFg/I7oU/cgmF1sK3A8q4H2ApmaxAc79hDoYAFGfbThw2EvHhwPyspWTZ9SfNXVcK8SXiy4PVqzvgDY2BdZZvm0K3N1RDfrZqOEsHu7vHO1zZaLMie80hPg9CnIwjfL3BoHZeivVUFQ7ghzFUyfMSJ5jXoz5pnAfm3w1TPu186u6NWg7YIT/hU3mC+XqLeBent/SRyEXEmDYTMgQlQtlMvo2Pyp0+ugXzvx9S4CJ909vafVhWsOyCrlX82ezsheR48GRvesTE3fZfBtX986cV0fHPmZt6A1JGP9C6W//zlDhFFM0Zs6woRxfcEPubzi0arvKuG6dBc4MmofxQ/d5G5RCHJoKyjiYDtecz8pVrh5p80n7gXYKfjQEDzwy+01u0JrABphuJ+fxEaXdVm7DY+0V9XAsKnehDwbfXo4cc8Meo9xxEM7uvUwCdzZyRrrpySFIsO3EnzBVXIa4fl3hADEpWo5L3l3zVZ5Rp6+cnGx5cSsRV9C1eNgNxt+u0ZrMu9TcCqXnSq/9r6Tz8qQDzeAsTz621bgqUzyM1bRjWRk8DYft8QxlRL6EvpNEYPiShCie9c+qd/2Po6hooxPHgcHRE0u68fr8rFkDkahXE/LESXfGU6/Gpqv+XAZMLLrYHAXxYkKw0wScMrIWg92FATHQW21jfZAX96whKvUj6Wl4cI+Wgssfc+9hXby6sFSBQn/+LXYgO5gCZZAcUd51fiR3qtwMyznnx3QlWxzzCc4Nx3JpHaxRtW8BwzuJevM+p/SZOuvydxlM1+iTS9i4FEd/8O5Wk+0tdZrAMSorqFUQDZv/zZPO4dB9dor2HjeSU5y0QtVm1X+lIv3GX5Mq13Aj6PwqGRu6vN5aNqiRqAOkEtiw45O4xODKVrQ9BFPjyGOXJWF4gTpFQXZZctgQ9G6CK+x/oUFjkTp5qDWNh71JEPsGKqY9RAlL0Ju17t5OysvEswOGuGg2JfVkuw1CHY8i1GZ9EKKr7ECNrUTrCrNCBYd4a+6cN7RP/5fxEKF9iJykjD17wPloo9EaguxUb1uaPJQmM7hbwuBXaU8lUt4AZeIHsnFmJX9ZWPlRpdlBTHb+y+8Zi26wXeIXsdP9Qx0TVfBzzMsIpDivY7tM3+lcEMPEElWHs8p2GQp9MJnnEjbteXB8Ju/fQQ5eIbh5NMAdv0LfjTk0EckmCOp7sB7+KFw06CNDZHl0sJhddXxu5okZwRchFho3wpmqOzCObho41qJT4e25Yvr+KXOeCh8IuvaJXmIGdnMZahfVLO+NBRYFLHvD/gs3v9cFAnYtrdgzxR2HMdcfhdvgG777kEVl1m0DQQWcWEl1ZDkyQOqcglr1bxZbewfw6I8OJVSoe9rFjgtJZP6tUqy2c3WXyV3pOSbvU7mx/l+FIWTVnQuvN25vy7igrYcVZEFkM958zd/05wmqQj4pymCNavVrQQuQ9EpBgARoRBukC8sx6bv1zzBSLb+ld/GObUV5s/ryA6b4hr9Y+MsUFJoHwoawS/ix0soHuLyr6fP/Ry6kyzcz3PAJu/ou7kLhVxzXcJoS7kG5+wAPs+OwOebwtPRLDDwdwoSwbjQlep3Sc9+MvfqknTGduxngfsd1RaoA43TJ1c6fIlcOcMurv0jDhlISb7Pj+GGpXT5S8/DyyWhRfsonii+eVtAF6t7hByP7kn++cYguUZGC0gddVjxFqerZdmaZS9Lw4EiHVbLdY1uADjM4/YppoORlk12z+9ibVyNnI+T10H3vZCRcMs8sD8plBW9lz3o+iaf8Dy0R3ur96hGqj1QTT4xwlw/AsjYSdUA/nl5Qr3z/FAH50xDETqqjvkfkqPQ5sfq1HJbBEOmnpBQrAaTHR23eOPd2BDT9xhPvlIAUwRHGpu+uaP56jdNGX0APZF0HfiKEOPkMvGF1Kw/rTMULRsEan2CayBP5TEh68bSLZ+5gobn6d1BXvOX3F0vZkVFYdPD/OVv1FUFFy65pGmqG1TBtT82WdTWl9HpCoztPEj+XzM1Wu8O7TPNx/BPdVMcRGAAdwEQcLUy9fsI03hwCqVu7/6lE0tLyXbqVsBH1x+CSben0/q06SUeiNvDnyl2hd4cxWThvIdgkXIbnfQNGOHMejiiuq2pMm99QQbnxjZXz6C9y6psb1TZ8b2iV7DvHivaOGkJt3sQ1MlvzhR50N26Wi9Zndv5veeRuN5zmleNDw4a4eR7G6eywT4PSL1j/dYRW0FkvP6IhCFz5a082qnBIUxUf+uJxS8S05doSBqVTkBUhWKwfxx5AfY+AhZ+v2Qs8JaxX/23u2QGfAp/M6QsFKjW/wBPP7wCfyajxHjm9cCUj4sDa539Y77QrJS4VxpLXg5Hx2bu+UQ8MshM+DlPN/xdT1bbA2+8gzle6YhhVfDaknDyFWSdQR/+rEaH+X4AE0qRPS05W+h8BUDbPqaHrvHfeuqISJF6h8+gXNQMzYV6go14D+xd4pfjJ3f1lYv9D42hKc49EeeyZDp2CV0e16LeutFUGifDzauLGFrtpPvsEmlCElgr5mU9BlSEvOooFV4itXEaWkG+wtf0nT8VPlU+p8MCkH0w9ctfm4j2i/w6ZsN1VejrlbhNxPVepEF0VNaD6Nh70/w6ZULDrnpWBE7kyH8Xi7upod3wyIsBa9GZ//wp3/YaJNTAQ0bH1C2C2u2FGzi/12vdTCiYVUSp4fqtfCwLR7ddE7hNO9rT5wochrNZDs5E+FWH1D7FWimNJjyCVqfBlGvFhxzKauZ31+6oUBwyzfTD6EZVCpTCbxevzn7nK4hBMN3IsVWn7aVGp2AYVOI+HEg/+wbfg/nFUdO/QHzx5csuOVHbI4fM53PaXeBRlBwaKwuBpBu/VFWg6B9oKs7VqDb+AgYC8kgU43sjaceMnB5q1dUG2GXz9+Tq8DsYi00F+t2ILyNRJAm7YJ2Wz04Hz9VD5TfvNDYfa/VxndmoCht9C+/0kTsSrDV/0htul81svr5At0UVtgB0ofNqzoq8IqzjGb3zzldR1PI4PeoA+yFOzkd1erOgd2yO9Goszo2W4qvKGifEzSpfhLMc9mvwB1ve2pzWWqu94cgQxEZe+xqrpwzTbzXMB0FQpHSaWAeKktTSC99aECrx8CYrc9/+ZYaj49vrnpQlJAplyP1ZywMS1Stpfp3P8fEDgPxTy8ml+CC/fJhBNLFVAx4Y5+RtA/ez+WJc1z47lYOe6HegFUZXhbc+CkOs7NkLkWoXuDwwyYRjq+hWoDxO0HnVaTU+OBPMIOqav54JJKdStlmQb9W8Jef6dEf0o0Hr9BbrRbH7jsZ6ve01FCMlQuSzh97YHdp5eCrshqigCIHU7XcZLiaxPxXn0zAoBd4zmb/H49chZ88QivLFOqdNCtd+u82aAkvJ6orHk2XZ323YFug07/4uekbXmkK8MO2gX7DvHj5Sdl4J3aDG1d1u7VrlcjuIcbu45QL/deP4b7evRGc5rJav0bFwcT7LtioFHXoZcFzodfe39QxHT+Yqsx/AebvY2wetyN9O8MzoHott66oXgu2fFvDxK0P9LGnhbme+CqGg0gQ9XXjFtAxfZB/8VB7+Vk1AHrQYHcTE2o83/nQKhx3Ap7w2tOIGCCd8/q3wo2nkCUuUD4vxC3hIyw+OOi0KJ135y6G/H2FiCmgZFRxL+VfPiNyDYRgfpUpD8WZD1G1Ww6m1KQChFt8p87Gi9l9Lybw9mAeeU8Hk80aUec//YM3vcJeh0cDgY8DHRt1y7M5GwsfKoeLQ+1AmU2q63Omivf6hdPlfWJT9BV4eHvEp7/rzwdpbxCw8SOyH/mqEnc95JWGMZPwgXwEq71qd6jnP5cArmoCIfoKIqSLbqOB27rytu6h/vseB8dlANQzdV5tPxFHN72S8o1/5mGtpBkRXumUd+Hl+IB7nx/w4Qc2/rP6FtC/6XHzTw+IWMI8vH3hE2vc4WjS+fAcgW1oe/ocz3HOJ9QagaTyOT3OX96cBfURQ1XieML3cTjMO3hbQTE2Mepb1weLEiZ3+Jc/tJcx5Gw6kAtoH7yB5kNHguUvHzy9YqG+a9rmgjLL/+PVNPTLaiD4tl/hln9Rk1yIyYqXH8MtfhJ1WjVA5vYGwTBnV4oT98Fmc+x48JtuOg4/+ySfm2pK4FkmGg0FvTOnrx/P6sIjeVtf2qfzyXdkuH+FkG78BCxuGb+gb0ELP/7qh1H2ZMXLLzY28NgGjC9xCIMS8ETJ05ZNU9CjPQwMQmQW/dIp+qoibLwWU38UdSB5j1ss//H/LR+kJGvHGGoneabugDo2swBp0DP8FTHDH8ypCNUTPEH0xVbBc8NinLMWHm/e1tXGFgL25x8O9/KQvAsttigCQsCDxy91ybUK+L96u3NeOjWtZ2GuHxb76rYeQs3l+qsWb+F5oB+IgcbqFZtbfUNUy9Y6fDh/vsNaaksCNeGa02CUC3NZozCGXez6iBs+vbnE1UeG1/G1Ikacjzlm54cG7DwMEVfEJpPOyrUAW71D3fvNNSc501aw6Rn0pwdZ4YguIBIA2NGG1lz23JJAeRkyagZiWi0G9Fy46Tuqr/4Cpj972PYSUXvJ62DjFxa8eXeZapUGQU8ePILTqeOoXTRGKiV4MZQUsxMh+5NaDd0IV6joGibi4Ef5mI2FC7f4gdHXcQNWPZcW/ulT+2ANjBUvI4HD3e+wOyAPTHXVhlCUfJOQ3dsONv4Ywsb3LBps9QIz8PGllk6r4MMQDhUDKR9D0zVuNKwuJSO9YRBQNAvCrvKawHrl7+1ffiHA7rddA1LbK8kaOvh08O9/vLb+sz963pcIrJrhbF1FIMXaqjUp6cRahilO3n96Nl8OO1JAs1X3qLoKx20Q3XNUrrsLwobjhmDThyuEn+WI/c/hxX7s1PhwNOeWJjJ5mus1DxBcr84J7buhT9lZuZZgdW0OR8Nvby58E1hgV99tjCLJGfjpnJzgjfZfxPvpKZhLOibw9IgpPhqCa87ncZ4h++36rR7Og/WamyGQXrc7thh/YAv+Tghqbaoj58DrwcwCx1DUXrlv/vIB64kf4n/xyBW2wZYCyDhQ7+dq48unauOT8h9/IOdjIwPy1doW6C6SsDH/1pTRPd/AsqlnjBfVDXjmGUQVZzFEvLYd6TgwYCn+I8qpjxo+Z4fegLDq7gZRF/OXzifXbGCJ+Qib6mtN//EthVgt9kFGKhIZXAIDHZ6IuNUTizXf5317rQSKdr8knf7q52keCcactYIlDp8rGPuPj3GRGMFa3l0CTmdOxsHrpaXSZ2paZZeHyxZ/rmDTb3fY/kyNasJNCcj3d3Rh3OGYWvy6H8Y/ffj/bCmA/3tLwUj4M3X1yyNnOgscSBe3oBZYvXyeqrcFQqU8klU2cbrUyizCfVhoNN5hkra/zDPgD8cTqmBqDLPeyyFcnvWVOrz1qei3yxrI76QI7U+kHNbIPvrqUYcPIpV8Y3Zvz7tDy18MsjPgJWelhGr41s42WRxvZYvBwheUv8ijEeXdik3afgVZEhC0m/wkZRJ+IcXGAkG7Rz4H83TnZfi1LR3rt/VWDfFR16CJjiI1pwBXTK4zAuFRMzBygDOw0esQ/HSxi0NudFM+mL+hchBrgN/VxcuX07fMYCDVLj4kdgWWgrqxsst3GnbSoUpnFl59eL1zL9SVmlHNFSEveI4mjR78GxdMSaz6sAjFmIb+4ctmIh8buKhPiqNz7FbS+x5mwDGYjBb+smeL7AgZrI6XhGqD2YHVFhMXesnujbjzMcuJeNAh8JT0QlF9C3K2WK4L+pYzsXuszmxpnc8LotOc4IffoYEVt52r+DJ3w/7dOOR0Dc8OTO1eQgvjZ7Buh0fgkU4xehaeHIy12WlQkZWa+vsDyD9zU6+g/wocDa83Gyzv4X2H6x4C7DE+yAU/xbySKMYXH7JHX03n79mHvaxQ7I7di82r5SP4JvaeWkF4BIJbNyMEheciNgV4WKvTPoHzvUX4quyEajqIdgOh14r0rDooZ0C/Qxim6E4jc94DYnxWF3DiMlL73XrVrL72o3zowdZoS/uxYS+cHbhcPBl7IJYHJnRjAU/iVaDu2HFgvRoDp7RPwcW4iSPGCqlzFJHVKrUldjNnK360MD1enjhC+w+bf8vW1lCfPlhb31dzzdGjANpDbBCTRS0VrikXK3/3Q7/ka5LzJPawufsTRYI7VZP/bn14mEwZKQ7oUraaqwKO6ueGD7rcp3M/fgz4Fp42PbyvFZvv7QXCS/wV8TZ/JxAe/OekPqJdg81pa7OXo8qF8PYtsXsIabD4Kd4asc9HfG27OhieEMpgV11C7Ny/P7Y+7Te/J2Vjo71nLmCRuUiWLmfxRf3DMzFX7fyzoODdYzRHdZzPrVP6uzzJOrr9Hiwa1H1YjuhI4Ohw6dLhoIWzGBf47/4oWz+hWsmtR/ZZYDGhMSMRqo/PgIDG9ICVjY+gCmKDaqlaACaPigxVOVA3UBwG89woBGaTlGJn3+eAaSw7weJ4uCIogEfAiuMJAiM4T9jPiJr+89+Lv802m+0lp5fHeALF0b7iyykKU3rsaQPtoG7xXeEqc0ncBKq6ZP3o2zslwSLjdwOM4DrR8KwJ6agIbxemcn+i9mZvX5mzFUU4GyWi508wzMejaYFwHF0aPItbSt73yAHnVdJpMDrVsHy0cASzmZqIa7R7NWZL2sPD8fbDpidlAbsYcgm390H15LI1amy5FQZS4xI+ad8msw9PGdynuKW2QtZqOZ+yGXiaEqP5Cgc2H1I5ho/KBfiyIlKNcfnhYKz8YuyQZUwnSZg5VXbeKwLqFQ10XwcPOO2aH7UcV8uXDwEG+L2jGzZiVAfrkb1HODijjF2wNlXbCfEDXLP5h+2wENnaKM8emufBwJFbLOmisyNRX/jzwq7fHfOVo3DcvxH60Cjg2nR200GDmfN5YKsehmoVPoEGD5cWU4OmVzCdni6CXQkE+hcv2F7dJUBmRkLdX1Oa0+soizDnNIVq+vUC1sewhKoGJw67s1ym7NeZF0jqsaXRYxQYG6o+AZs9E5nzy3REl5cM3p5yQNLoNDk1+ryF0qRfkZIfIjZF76iF4g9csfbE2y7E+7FV1RYfaXRbj+l2ELeBou+WGHdTbBJK0xKiKHeoXoxcMAqfMAPK7vqhaPfmg+UcdBflVdYxvey3IYxQHh6QL00bzX4fgLVWZB/Gcn6j4XMeh9XX1RJ8eOVOeCgCc9HZjcCsK/fUuH/9YV1N0IBnG/0IcNfRnDWrdkCcFTo9X++5uVg9npWZdzpqd7s5Z0vYn8B87xF1r+CYM2X89vCz6xZ8EEAdkOvjvSpbviPlipac/YpcVmh8bHD0bq2ArOB4giU58fg57mlOrDiN1WWPun/2vT7srwOnz/pGH8P/sSl17RE64UlBFCbfnJ1IgKDlM4MoBRzYSpvlAhBuVLRwgVT1W3yERycq0Qo+TU41sJbQhHCPb08spqvYXSG0Eh/R8Fy+zN+Quw4YAj2hKBKCgHFRvALJrDockjcB80IPrbzZD1qpKAzzR6p86GpWTw/mez9QO45O8LwKOvXz7lKxk/jNoCR+HGpwXFvN61PU4ByKNv4XX9+lqkAhKBjV9V9vzsbtdoFd8FVxVHiyOTwGuYBG2X1xYmlCxdSLhsBe4HLsfN5hvmTG2MJND9Gg7T4581LnAXfSL6Hakn+rKd0NL1CuP0B2TPuaC9A/DcTsMpGzdIxTymeFDzw7uGCb8cSc4tvCAytxEc7uYg/ar5nO0J8SRr5vRwOjYV14oDquQc2SbwG7BvYDmsdLi9Rxj9PZ80ENj3u0Q2IL9tXqPG4WvMGcEPWDuGHUzuoIx/PpR/OGkT99ZwFf70uMnZs8rObKlcD5lBg1n3eYLhKuRfUlSpetManAeiIbEEaIXSkWd7M5M3AfoThGCw6REzOmhyIHS+irZDf/+IHpfSvDUhIrJP8aI6DUQwQcLWuH74avmkTJH6OCra6nvnMrBlae5gb85Z9Kv9T5InLF/Z9+O4wtNYnYXTnlT5+5WtKDzb5nYFbvgECLAUbLxggBJLxPnyA+s0UvNYtD03XFB9TqA/H2RaGCQdbp1b+9gkmzhju89sCnB0nzh2F3XjmY1ItKvSe+/Is3AE3nlXoi2bqcSP0DfLkyx+HP1AfhwXcX2KD3ARvv7hGs5Y4jYH+/eOR2PGqptP0f6DSxIV+RHirRPOwtmPxkA5tFvnVZCLoTdO6BSUS9lczJ3hkxNLizTz0TpWx9ey6B9BUY9F++e9j1HZ6DysN/10ey5R4riIs1ivzMZRPxnhdQKeuIg+oSmguC/UlR8MujvhiJbP00mQ/vx59J0auO8lXJTwSm1+WO9bz7/PezLjkbEhwn0K/hYMBq5CoivJ0CsNs1LtWYd1Os958cLL+lkffCAd2wK5/w8KePYKZZb+xyfpnPHBUdeMh4B1un12qyQX1Z0PR2D4wWz6gYoYWl3pRjQA0xeqSUi7IVjAAOQPG/+VLTsC9MIBCN+fDx0TLsJ/tdvtlnAQr7tlC3L5yB5va+hQwCi7rISYd200uAfgtEhHl/YgtHhQzGZN8TbhCjlB1vVQgMrb5g77nsgvZXDEjhd0JE8U96mtOvC8l+sxcEXwILJonLfXikNEabXjDZAzkNKIt3hrVZ/gFSK7Ovsk/M/unNGew1DS5H4UX48ZCBlRw5Xll+jkMxl6vpAj2xgFf+vifylyopM3t0B99iTGmkW3UwR/a9gK+yiQm5b0se1ufaQkWcdZqZUR0wQlsL4OuY02x9H6s1LtMTfNh3h7r+oR02vXSBnmjEOHL6V86gXD3gmxz21DDfn2FZLb2EyfyuUL1b+HT9mpEPTUW8kG/tPQdCZIODKYRk0y/KQCXuuMI16SzqvhW4zZrFLRhelokfJvVN8lB9HjTGUlJ/GYg5vo91rOy6xcMGNJScVl/Iwak/77B2oEnKEExHaJPaRoJtdcO4hPseltyxoAGy9UDM+aJXrewbUC0HImBWBtc//UqNM8/ls8MJBF7Takc9iV3yOZV0qC4ODrH3fVqMmTffAKVWa3iLx+nnoQYlVI71hA7Zwx+WP3+PllWgeuEL+erlYg3VXf3A2/3lZIuXIO3FAE0f9KrGfT7XULOfOXYH08r5mT5ksPkfkrZ4IlRme4Ln4OPRQzC1wXwmUQKuz4NOuFO4sFo7qwR+b9cD6Wm65kt8W0R1OzyAmC5HwRwzsgnaLP2r31KpR3T+99nPO3FYTiI0lNFEFlnmKwHkHLQtfAtvG/vTWJnTr+hL8PWyHAeplwxL4t45GPV5R1GUTOny3hqx35iIKOLNQ7B2168Lw3xREHjxVToQWjggm4SUWrvllC/7vOxVseqP1PiddbacxWaFm39ixJs/kwy5NiupWZ7+vgcrGjINjt9jin1PLMEaRewEdPdWU/eVTiZJYvgCQxQIBG76h7G1C+EvWx/YJ2hgrJScGuJvWSORt/RKbFtx/YsP5Gq+9xU5fTsCbueDRP1pNINZrgsDpt7uiNa832bN6moJY90XCbfdHxULwQFSLxRkN7bdlk/kGsa8n1JjzLhhHqvxAsvLrsPBbJNhTkr8ANwQ3CnOuIl18Nc+YBAnR2r/rAsgC0XJX31BnvuuGWYhKxGI7XdMdd9VAftIOf/3PCluHQ1IVBI0aIzoh50W3Cq2e51dkKZPDQmbnp9Pu4sC09DmkXT7LMFINCBCqYw1rPOXG1hap3sBGhpvatxNnU1uWp4U+2uaZFceS7bUp3qEQSYshDzfDpD0cOvrPagffOAeV0Z+XWgAeChTGt5FN2CbvoDpld2x5vcDa/02jhXDWCPq6b+6YqupyH/6AgfZ4wfGhw0IfJnS/k9P52Tg+Ua9mr+URg9/Mlfr827hw84cnKtXMjDVowo4Rr1O3WJwAf/3fPFNSZA6mDDtzU8tQ/WznrCNuYgtp6cWqooactR+THO6LOHMqf/4g2deU4mdpARu8QVNbrHkveLHF1Wfahk7yfWWzh8tyqStHiHcq47SNY0pgiTKZiJteo7pzHSgUQ5fBIuhMWeSRA94U9KA6qkKhpnS0odpzwcEmrQPyIGjjrL9nrqDWed0plGt/OkPasVFNWfBoYTHLk7x6SKV1ewGLg95bP7IYoxxxXc4PEE/ZTY139emWuemthS9NkUyg7jK6VZfgN3inv/5Ez9Vbwd83LOCOIXTcmH3syFob7VBnUFc2WTGHYKzUjVkreExH4WsR1DTPX17vxKg1ZeHsL7TDKmtUuez7zcXYKnrmygPtQBzjgYXoDmrabIrjvnmvzOYwq+PJP/Gmb2VqY9tMNMTl8W9raZ4MF/KvYUI8fJpzecswCXk5hPFb+eWVXPwLkTwx7PY6Vmma+GCB1SqDhI1kUNGjrtZgyO36PTWlEEuuA+rBJVZeltXzcFknHwJQaJoX7JX21M6d6rSwy0ebLytqYjs/F7wcvdljM5HOaVjkrXQH/yY+JxKzNk3LBds8RUpgjun6/GoEyj8Ahtt/m7O39Ww4EsULmgXTGW1HALXhYd2XamdyEk+ypMfwqnaG/g6Ok6+2oeBB3/80L/2QTV+A5WDUMA8WtI8YTS0swdswkuN+OFL2UJo94B/vOfQxyxflASEkLfimD6975WtuGxrOPNWh00Hvqpp44HQBw6k6PI10vV0yhzgPuUV7VwcVNPGN4FybCZq9rFo0o+U8iBCy5WaDuSqeZ/qrhI1NsbGywjZ+tEsDTTfeYcP1QWBMYlVHmx8h+LsYQfzTE8ylJr6TlGj3YflOSwKONy5DiUc1w7r3IwOjLNSx+FLSIN19zrzcONlSHJXBFbzsDjqdVtiw+Lzl68g+cbq67Qe/vgmI+MY+aA/7xOyfl/3rQtVYMFHijAO39ccLIEuIjgQjdKn03NpM1Q998c/CNl40Px9HmqlH6yGPrf4QdZzhOBp1XNqmbNVseB9K6C9CiGO7iclmHrBL0ArnSSKksuLEcQUBM9fTabp4zGlc7B/9PDX1F/qZKGUbzy5BuP58qNeFtRs41880KM23PR1lrMcpSLY9Nimfy9sMT/fGszt64pNVgWBKAuDBrJZtknrGUYwFDfJBeevIVNd7RAYLw9yB1F/6yh+qNn2vosaxi/I0aBhKF/Vl3yB6sUhOFIdFwjGR+EVdIEezoPJzqVeHS5g4zvUObw8ALx5ztS11zB+Z9wEVlVHGWRwb2GtHki6wlnn4O1RXLBFim7b+RbFUBtZQjr9Vw/z4Bx6sNXn2FR2WT4eHvcXKODUkt1Dldk/fYy1a4z9SIgYNT7LA275EBu2DQPKvfo7RI0soNmcDznjomwG4Uhc6t+NX77AX/uCu/M2C12kkI2W2M6wDveYyMpUBOvI/y4gmZ/VPz24Rr+fCzf7xcaJXtkqZegEDUue0f7XPMDGG0XQMd7EejG+Ano67BwgXrmBCGVlBtKvSBVwmHQZbzyX0WAfnUCh+wM23dhlf/wfkEYKKJ78JF+/qzuCnz0NNNie79h09x7aEQ2QMHF5PjOTh5B7v3nqajyr5vdxTMD+1VY0Ufelydrr+IJSmWhYb8oZEKAXMsDsNNHwr37cRUEB//KtLL4e1QL8YIVF/7ORtPF+lqW/HiiDk2+8e0jZTO0abryD8N/olLNJW1Y1YiCj7m2xcqH+iqdt3CXD1pQbjGfh1YVIpx+inGiSUzfNCdh4Cja39ZLFfYQF1O6jifNwkYLp02Q8tGfSYUM2abrgiKzANIs3dRObq9aNf6sbn8XpxhfXprvFcO5rBVtlooCxU9cWVmbh0ehnHVNBnvQSSLPlUe/XPNgPznqiVr2oEUU2O8CHe3yHu1/bkD2sSzZHcI4B7zwOOErkrR/R4zjDXlxDIoKPWUklqTMYHUWPmsmP5sv1i2XADsz6Vx/NyznlIU+VDzWubpvP4f6QQQWYB4o2/TI7nDqCW8Ge/3iPeFW8EZRjeKTnLDhU6+sou7BlxpNMWE3zpf6KF2Xj99g/JnPAXH8pgYIfHtoXozzM9/YFwaZf0brxzbkXzBBu6x002J5n96z8F/w8m5IGnvis1hYbEHz2iMe62hHW7Uc+hsPspVs95Vbsq5QICPpuIcC4x/m6PPkWwNT/ktLSzsO/eqQ8GCo15l9pshcfPaAUOQN1FM5mf5/Bxl+wXgN9ELz0aYFWCE9kTpx9wH7LVP6r14y8XwJqxkmt1qBJSHN4eazX+40XGdWBmg/uYrK/96XY4LDFRw7MYO8acI3Lz1YPN9UM/fABWwNJxP1Gx+qPF8LsKf+QuOmn9cBR61+++lv/YDtr4w+70/WvfgXskkLlL/8RxXwdgiWcrwloHseYSG7cBNISlif1FosLtZj+NOe/+Fjd9it1NnvoaLMa/9Yj9N9PSlt753Pwrx47bvF0858WbPUDUTgVBfPWqR7GyjfGW31azcOYznD0Bh1Hs6xs6wtmCx+w7fAh+YXVovdlDLJfdqEnff9gC+vd7M++yKcYOZPVAVPArT+9saXxYrpcjL0C58e80OwQ4oBlxkWDXbwkRNgfzHR+Dkrz97woNuAlJYfp/ABWjZ90i+eMjHdWwr/84lBBZbN5C62/ehf7i2fnSx36JWzz8UutLtylo4S/Jdj0C7aeyy8Y/Vl5wC74qfRgbFtSS8lp/upBpGZBGdDPs9DUjY/RqOMEMO1T9wFiMRbp4WIRtsUzDp4uN4/wwxezNdgjDWx8CC01+Ayz4t8ILCW+oi41aP7n7yrvvA7Uvt5BMAbzhOBRrW7YDIIyYKEdP1Rh7nmKaEoHlpLsAV5RBpCy+dMYD5YL/+r5P/+UrIyfoZrCAPvPd1cxIbsrUEmnGIcCgObEUeH+py/QRmMBuTy+BvSfpwONzfmQCm5aXlTVTb5EKtRXPmVG3QPerXtUvupzxaJIaYH9C5p/6z+SxN1W2H8ljnwwFw/LQYwaCCv7iHOOe7JlXyeW8sfvDXVvBLPz1WXYfz419oJH+cc/G/j9ahOOsMryqbhHM9zWl//4grmIBfcAU8pdqKkqR8Zub2WEVxzL+GDcmdlZmeiqxyNw0RouH7Cy8DwD/j7ssd8939Xf+hV44eqFyOGJc+mr9Aimx9Nzq/f2wzJLYgYO/f5M9fPRBsytvxd4cr8aEio7YCO/VjH84zchN7bpKmXOBW71GP7zp7UKdVE9rWZO9lQoUvasPAeeEtekt9t6CobL1yn+1mMxxuM0zNLBvEB6HW0cCrc0X6xM9MFgNWccGQNL/9b7YMjsdYt/12CxDvsVcmvZbPYu5uOWH5Vr08xUe6VrNdQBkP+vLgXq/95SoIUgpH6fS/mSoYKoN8IgguRzAEyQLxn02KGljnJf0smUPjL83M4a9dK9VS1Kf+5hMWwmKXQHQPv86EJOOurU5ohu1uVjEVV1ISICWlDmc23THjhaeKWGf0mDuU20Ul2V80QaA7dsErZD2U9r1anxWO7mAttbA6dLfKLOMQLVVKQ3BNNiPZO95JcVm2/3Wan99IxmOX+DZZgvD5jFxKT6gb+afTWXMVSv648ku/doztee3OEruw/k1U119c1ffglPfLaj7uMMKnYZzRiKK6NYk/MdaAj0epg/iwM+l5qSjyfo1GDhXiV21GxKmRVeE7gKHMZoSPiUaO07gUPqD6SigT3Mx2q7f1o49Enqwhz3gVaA0ZBl7Mq1b0qSeD/Bw2E0sVuMVbVk17yF59B9Ud/sloGFu26bXR40VH/1+6GzKOPBeO+v1IzPZs4uPBcC9iVbI4zmVK2c3RNFb5wfdlSwD1Y3BaLye7Q+DtZ9YM5gXe7w+5YKtORtHyxCcNdAOvYWRfUpq1g/Shq09JCjT9pYJttHfQIkxj1olJyPQ8dR7aXyGMhEug4mkILuxSs0lxTsK8QYxlFWEEy/AUPLpxWqpbprDgQwe9LIPTf54nGXB5yHg0Ok0+Saa52lSM34psDW+8WlU9pL8r5zHEY1oozDdNJ9CDOXq6h5VFjQSuddCcpUfxBeWARzxqfYUBrqjNjkx4xRA6p3uMouh0Ni0GEt9eAEhQlXVCu0aJAypQgh+nkNdk+zlgrhsNyV15zfKHouero+TH1UnzIYscsOfTrDBMYAj9OCD24yDkt3KEaI5Mah2/9XzEn0GP69z4N3mqvpWe8z5fOxClK+Q99krxmskCWHiIBcr6uZ/71HwA2uiZ8nXkhnbpW2wRtHQl3tpg/kfm5mcFIoh5S38Qa8rRu16vPJGXuE/sy5LbsCDNS4o7H8WoNwc5QeBnGe4uAQLdUsntYW5tNyxr7zm6pZfLQE3urLhPFHngJ2ffxcSHdvjzoquJnz53rgYW5KBwTj5RnMSEiMnbF/mdR5ttdg1itzhR30dtvvI1OIRi6GqBB/2K2jIGUdTF1VXphLlsK0GZ/HeQKXx8qjvrodwIqO6gves8jHlkyXYDZ8OMLahBdsbv5Bwn3RKocPKLAtiku+Yv+QQXSRM6w93jZYjspJg3ffHUh1FXu2lu5yh/mbiDioS4ktjPctMM6PC861wMgXvUgMdVL85Z89sHz/0dT0ap9olvBuPhdRbED3mSCqqWdWdbtfkqlgZpAoBXcFVD5nF2iowocatzhJW1TvNeXi6h3Z17E5MB3IJeDsk03zuryCBSSoATLbSX/XyyZT6hT4qJwULZu/fpNbYkBXeg8E7DPClik73CHmQxMbqgXNpVAdFx48ZSV8nz2reT2cZMCeEGLn0vyqNfrcGmUliGL97DnDjMOOAy1xbGz5Nhgm43NRIK1+d7LcmyaYffwNocDvTBwy7pePk/5F0DyUJZKM5BNQM9Ueao8Ljfr0HJhTdXctMCWuhbo6rqrl/p1r5dS/ZrSdMDRX5SVzMGcnh7r7hphr4+4c8JuLlnq2eTMXGmUZVBoxwdHS0Gq+ftgD4v5jUD+xsoF+/sPSuSwrqwNR+IEciIgkDCEodxIFRJwB4gVBEEwCefpT7P+8QCpVq7PW1xl0f4wvvFkrztAK6oVYIwXCS5i2bB+877Fw+pOnXcKkZXrySX0xuasOHrK1Quzc+9S8ZFcM7fP8YtYPoHgTOzsdZHs5Zs5A8uGf/nN6P1LwfHTxKB2OklbNiUqC46T5g4qZB7gMZRIipa3773p+wz/9suV9s+fH/YJVnL+ppPV7IdQDDNQ6CVx2GRECM3bRA+bBPmBn/fMA/IlLBRjt/sPObuP4Y0XKPSzDY4Jl7/su5mzkK9jcN8tgyZIP9HNJEGybYsSlds/rud7dMDSUU8r0U6+aFDHswUPyzok3xx/z1/RPFfKd2zDSqWU9oWeqgAMxe7pd7jNRuixG+XLAyFGPTO43HENNNxwSrozB/92SLIPOWWhYO3IDyLakSSAc6p44L2ltDvwazctHZU5ObN2Byaawg0fsnFj+WF3EdM5yCez8X8qQioKaQppzSKKpZsZ6mTs6unG0IJnNdHp5CH6qdzIw2ZMQtKulgkWS8oBVe/MoiLufz7f76xeqA+FEf6tGLFWys4cEPc6sivOf+B6aEgELXS18Y+3bFMTKZng4Vh5xznHgz2xsHiB7aCcSYskF0p1GCCaoNFnZWVvAjtTtQLvTAX2mZGXSk+Onu8G/+pSpZBBzeu73wPk9S7qx+6M50z38wkjgLdOJl8b0TLV/+hB0Zl49DbwqYaX3ATkST46nGXBHezRVTbzxwgreJsEbdtnzTPYnbSjmN+mO6rm9AMrr23MYT1IkA61Qt7TuQldM2cNqYbApbwSf82ssWuuQQH65bYnrGGe/kyl+g2PrrclBnN2BKg9Nh87tiJkR87wQTdomcPGDxZ81n29+7ggXXsK7LtmaU99/WqDTt/pPr8mSvyOUA/piOlBiwCeCINx00oGVXcN9sZWjFECES4JKjAvhXpfBkWuUEOw9VFNkZow18P6uCDIyH8y/ZtWBuAjfzLxdKlP4j1r5d39Hda9C4PtIYXTLFCq35jwI1guuLf6EQfJ6mlxu4g5yabZJcq+qguKTVqptHGhYbFvDF/Zu9sBrfhUM7fRu+BkcIOgpWYOlJS9+/iHMAd/5DVVblQzzBEkCFh7Am83JGPhkHREcW3FmvsjqWAwJg1rAuooktxQBvtnADpaa/mRX8ioHjpAxw4d3kFj4DTOTo6kbwcp+SMzfbG3/V2pOBah1YszNEj2W2FagP/6ir2Ayi21zflZgbB828Z/vAsxx2kVQf7xKugWrg5De+y8Hr6P8w+u0QKaUquihRSS94tnIBjD0sHDgnugYa0ixlsVcIQfwG7rMNpfd8L39oPCiKnviv8zE5FYnSnjlwY3cj3cv/qhjF0A6dRWL3yMyR6l6c3C512c62KMLfgp6c5iexi/Tcx2Z219+XcGVy2pmIeL8n1dL/pPFj+NpU65V1fwlD2Inv858O8ot+uMbuonRZ6DOz56hn1sx5tpJN4XIihZm8stghwHO/ry9c0+LPheb6HD+iGG7Do+gN9U9Bem3rOcYz1hV89WL+PdDZnK27veQh88OS0s9LDwrQxKJmumvlVtscnv7gjdlNxIP7Z9g1PehBNY3a03FeLoVnDHHAnNyfLIg+PU1+0rNHhill9EdZ9HAkVp0QDpXPVXCAsa0Iz8I0oOs4unPHzoL6DBpkwdD8nMvqGtGMpTx1yRWY9CBQZN72gE2Ntbg+mPSb7uRYX+TI2LyrolZsH7KmiOskDiw04Z20Bzp73z62MDSZ0plHqGer4e/fKr/5YW2nhKqFbEieOE0GKovilgIWhVMcLcuIf1QQtevyyGe1jxMQRqDK1v6gUGkxesImLEbmVlKc/HTjcSC6fBVmNfDuz+hZ6WCOkuvBIXbHEz10KwU9KTvRZ/I58VaxfDzpT0WyTUVE3K8FYgt2WJEje+FWPJRJXI+08y7jmC8t8NKVWraMz9qXXPjwzyD2XE0yQXcw5qdzvMbFv1wYOGRP8XIlbUC3uYqxeI6v4Q4wzGC+U5VSNDsu3hy0t8bbA6BTCwrhnGn+RiDruwbtq9AtPAUf2mdoicUpr1RjL58DVSRxJAh3oT+nKxOHtxs/ZkhyZLAfKYbXQs3N4UYE3iIf/2pPmY+C+6fbuC2vSuBWHdf5s1yBChcgVmVV0NFJ4t8Cr7PqxfwATdIfrsdfQ5eWQ7MIVsTlEZy/EUMOzDsE5UYeWv5EjvZOqjyNAglEU0F7yQ7h5SamLkXTfH589Cv4L/6YutOzPuNpqt/PDarjVKwJqXpXz5jkJkOmNxVVcLfFiLaXlwRi9ApJRiJYMt8XhX+hBMWgGsbYQyM0xVQ4pEMNOvkTk62tPW/zx5k6uAGJUHL+VML7BmYLjuxsPa7WljeMoXO3NgsvBEuxl3RP/76dzq/fichyGX1hX9+7riXDvD7dr/SjOiWMedJSMEl7M9wd4qWxWbaa+FrZEHH/lUklN7DMCai6OBwsAISMnsAU/D2E9XYZzv8vldVzIeTm6iWZEn4sYHQ52wL9P8AAAD//6RdydaysLJ9IAYiXcKQvjdRwG4G6IeAiDQJkKe/C/9zZ2d2hi4XEEKqau9dSRXc7HGTF+tk7ThPA/PKt3jjrwm/xVPwWs6EWp8LMcdzbrVQPvQi3fLKm+f3KvjpdyKSdtUbUBIPyo+PIBY/ODBwhaVA3Xv59Bc/F5zdI6U3wR/1jeacC46VGfBefA7YT+RmYMV9UMBedhMi80cl2coKR9AwDm/qcg+/nleiKeoPb5vtaQHL7NAI+NzuSjGfpKG4SMdR9e/+/RcfcrEh6u33fkTIXJy8jvnFUVyXmAiGR5+JID15P72ACPDyTdbdftMTWOogTvLC4Z9eIdyaGOur2oApym8ZOD7vf4Tf8P3gBDkC1/O2RakR/JAP8BsB97o7IeksiIwK6FX800ucTT9hb9t7wo3PYFOxG0bWzHvCd/2ckVxf8EAVRD3oDZcJ8X5FwWzeT72apMqbRuQN8vErL5nq1qJOrcDOhx8fgcZh2yJmVlY+h28Jwft6j6gt3tVwfYCkhZu+Q5TPA+SfHx5r9r2F6G4cEvJYy07d//kWNas5MNnYK5yy8TkEznbEROkZxnCKPgmOFi2s6fZ9oKsyjPhv3Jrr3utiYITSGx++YWouwaQ+YWw+e+olyo6NEq8+FRg/etQlwpgsYuxJ8ETFjFquOYbsazse1ALyIH8wNMGohg4Cm15D8YzLenqFdQC364n0CV2TVX95+4+fxxwsE3bc0RJAeJe2Qsl/9Xo6ckdoS4VIdlrtmsuVViPIKPwiCSflQI5Yzv7hE4buQ8Ls/pjCnz6z8Z2cGWORAdCKE9lfndyc711/gd+9qCFBkf3h+73pRG2pNWL3+1nr6dWIFiRfiUMTvu6HlRw+DTSu85kaXbAMv/GAv/14oWfG64BdE4jAwhUVDdxAzl8o/USwfZ0KPMpczDb96wZA1B+x8RomMCdAHwEXfi38p78Hc9mnEQQPRTwgibXGMGT1U4NKIZk04l9JQi9jeAQ/feqcvJNc/OG/TS+hTrGdyvrpD60ahkjamVM9hmQIoFGEDCllPprta20vUN59GDa7eV+vRyzf4MKziuoxuSQLfQpHeAbKQICF94xFt70Ar2fLIfwy6TU7Mzn9p48Zn897mJQ77MEzFgE1FdvajryUR/jR5hxnksDlW3znf/gMzfXrbFLQrIFq1HJCGO9PJt3ToYAoNDok38TRpGOvQPBKNB3NV6MNl/jLNPhnQ59eH15dz06pVXCwrQhJm15DzTC7wdj+3n96XT3Pn0yTXbnb0cMpmeqeHGgLaXKJqFnjKtns+wZEBgt6H5bBZCnBKbDM+4R+41lOSmEooCwJ9lzFD1d+fSBAcuGPho9dOUycRm5KdeQn6jTPrbHhpb0AtTP3iP/Id0C+ZFBgn3ccWfIuMNfTbUyBaEUYa/q3TtpSSTPYpLihh5Tf5/TLukjd+DoRy++Qj/ogEGgUPqP6dn0XihcLCp1Ybnrme1j3pxyBwCEi1Tb//nmcVF46zjb6519mpSAZ/LM5n7rrq002fWmr6jT5eLO3Yc7cMlU3vRB9jPhljlov8zCyyZFa2/hZ/vUMOI1WTON8MBJmszAGWzwgiunYYH2t5ALyR+VSreNSthptEsGfXrbpK4DZ/dZ467qd3fpLrsn3x2e3+cd+sDsC8cNdox++pMH3zpKJiIcLqIRuoA9bEcyRHIMA2Gmb0fCzC9m84RsIAkKpRh+3fL2cXw7ch6899t+xO/C2HrTgb6vK+NOfhHquYsAfqL/NZ5hL+GFAVdo1N3wPCjuc2hfj1Y2PIRl6vTlHh28Ax44IZFb5AZBcvXZQ6PYlDeUbAsvHH1dl879o3vDlnACfwDejHOF2jpu3uPMKWHPeFd82fzgoY4mU8c/cky1/EHY/vWvjI//wZJ/nx/XHb6l/vzT5qh5uK1yaKkXi+ZiACV6l5of3CdSWNp97o8mgfVMlqj/dA+N/euHs32/Yv9y8ZBaI08C6zSRqcdE8EOQHJdjwLQ5OrxG85r0fQ8iUgCzuKcz5+iEQOMFric0lPJmMP04lCIvEQAz0/ECvoX8E9Xx1aRQefbD+7Pe4Jir5NBMHltUaAvgaISbyNn7GFlop/f2JaYDfPFvVw3H96Z00ACeUMC06NUB3Ph3J4noGb+DnHTxN/UCETU+a/WtyhJ13dOm5VCrGzMR7QjE+EuqYvDSMe7UaYb7c3tgTbCdhyX6rmpE/DaL2h1u4Su7LUb8nWFN8fcnDvOnfAMWrhx1j5esljFgBn9ZS0KBQmpwt0pFAhZcW9K60LJmOce2BTR/E0SO61Yv1F/PwM4IbdjzMJ2t6fQeQONqL+soQJIt6NErVRaaB7YYTkg6s8g1u/gCjNNW3U6nhDBzhtCk37zwRF1/o4eYfCNj4anf4cw0ACvAkj02PF8HDclTglRq2rQia//QlvXyJ+Kf/slz+avD0rXLqW+Uh2f/4Brq7LnWNWA+70U+OMBk7C1+6Ssjphj+hLFr2v/izrplWQDAvkPp2teTLaXlZ8CJujVHV3B5EiYxH4A3pRAsU35NJrNsZKoVioh12nmavaKIE55MnIWU51eFcTRkPtvzP7/3zNaYwUjZ/jN0THcM5u/npz/7+6TuraZ+Q6pmpRg+hcGDdpj8rdXXssCOL73r5Pe+Hl6PuPZtLgUj209cJnP5MsB6/hxR8XDtDSqvQmnqKaEBpWTyyyjWfLKbv8v/8f1QPhTlv+hTYnQ5H7D48c+DjsFrhpifggJ6HcJ6lrbHi63XGpnUvw6VQtUJdipmnQVwfAas6VAHpI8hkApWbzGifGTCwSo9aLTNysbjXEuii7EqxyIN6qeNMg/X6EqiV7jK24k4r1PaQcYRjE2WrMN89eFKBjD7cwx/Epg0KqN7VC/azAoD+YaFGUabwRKQBK0O/8XWw+QMyt39LKI79ClU1l0R6oG0TTn98jn54nEiu4pub3rPCKb2wbf1K9eSKtIWfuepwxL9YMuRfzQA/vOhu8YX++M7tjhck5bhm02EUjlA+D28E9uInHH/6YNBfHCJxpc7m/nvMoF/x2Zb/utebnsVB2xt7uuWbar54ShE8BppOPVf5mmuH3xw4R8GTbvmYYf3xuVNCHmjyzk4yqUej+vk7ao+CYy6PRs5AlZgFKU8OSSh9eQK8N+mETdXU2Ngq2xZzpehx+AUmWI7xEEDRS//ooTxEjG34CIR8MmP/kL1CIoueBlm+Hqg1pvuaXXgBAb0zPLJ89Ncwyd/jrG56DJlTK8jHy/dbwj/0EP/p4XNWwhi6dJw3/3Or175VeeXf9+Cu15q87nEGrjh2sS2t36RvOhhB7TZDGr0/abial50DOy928WEcc8BiFJVQiMYKcUg0wpmUtQebSWnwYcOT0/N8Pv6bv7gK2pANoaopznhNMTY8gc0N7xPI1d8VW3IM2YbPYqjzvvNPL5vN+73/5XPo7UU+NfOUnQFrRXOp5nluOO3TiAMb3kMqC3dJ33qiA3j1ccHB8y8N+To6CuAvOnlISMPrMK8CE6DU6x1++ipJVrVtxt96wfq3tHN2P0kBtB5XgMNct+qlPcWC6n3ziPS+syT95cA0WLLaIFWxKCY16m8Bsui68YH2uun7fAQ3fRZJzzmsV6bLN5XiEZJ3f63y2f/wMdjuhz6jYbA1DHQC9ienJULbcvnGzxGsClJg3zblkADnJUH/wvUU+Vk1/PgwMJLexla9d5JVw2YKhIYeSQ/mtman51QpdffZ6hKNUzLH6YNA2BkZdZMUMLbOVQ/BpfmjmWdN+eraT0nZ8lHY3Pju0uiL8Vsf2GzGKuzD+txBYX5rWDMGN+EPqmapK5pm0kTNLpkKVXvC3cPakXnN03yuhMMKDn/Z8Mv3Dl/rL+P/lyoFCv/ftxSknCPTrZdDzq6EEKBaQkh1W66HqSVaC7tnGdPToT0B2k+shGbq5tT23IktZqZ3MPwzQqrH4GMOqk9mhd5fJkUQ7JPl+MwUCMpFxcihYJjAnx9AdkYGdvkHn8/48DsGtzbUv17zfF21jwUJjwmNvsGXjXDKLtC5gy/i949PvlDulsE55j7kpG+NFI6KlEIYZh8iTYEO5uTeFJDd1j3aal6a43tujiATvJoGl3gI6ejCGIQphESaZt0UpW6ECtKBQfo9tzdXOmQzDHemgpYr4gcqaCdHlVrMo50h+GCV/L0Ak5dToz3mAWjVq2xAP+AQRk5Bwq69bb1l7vcjdpOCByx3/BXsfTmjBicubJbcJoCcdJkI7L97tuLdZ4TmYpmkqw5+zZpmXEHQsifhDRuH61MET0BUx0X8x0HJehA0CCPTy7BVxlM4jy3LgHWHITZhkNW0gkcevNlOxnafDsOcOfkKeeC8sA25NaTXL0tBr/JnbJ5et3y+KSSC33amRGBzz74DDm5wMl2fyLuoMFf7ZY1QLa0T9a/WgdF5qp6q1zxNpGjIMhl4xTyAH7Em7/Vh5Hz6vArgpb1l7NFKqZn2XB1wnv4O2HpepZzFe1mC5jPosVb4KOmNUHpCFgYrtj67PFyKz60BJ30taWTRL2N6/S5g/uIsaoDArKdT7cTwbGaYYnR/5e8RGgSG5uzgh5wF9aJrGqfmu8ahzq2H4SKcbAgiRcypZWkmEF+PgYDxdJFw0HpzSD6XZ6k4Qx9SndsS1+DISZCGYOsFFJfm2t8aBMNbTbE2KS5YvhE/gpL3VBzlozqQ4N1Z4MOOB3wI1ZaxZX3wwNOr4TA9lYwt3jhH8Mpkb/s+Sr1cx4cGqm+m44PqSozF1iFQqgq8qUE/UbjQS/iEE+sb9FYeXLgEzwECPXAmBGWNsFmIbg1obHxC65PuctZVjgE/r3rAmGXlMEvu6MGbbXPYz8ICkOKxzr/5wuabvQGr9SiGZmrn1HsrV0agHPLQ3zkFDj0D5ms+r9nuIrkfGoFXVU9kK5fsoKHG5vfQ1hM/vW+w4vwee5d+NaeykXkY79ITtR/SJ2HvaJnhTtM0rLscAtTk0QW2yeWJ1v0e5fPRNxt4FMoMW1+FsrExa05RBMIhvmIa2MesjMDu0Bn4/Ig7sz/p+6d6fX5WwqRHlDBfPTtwtdwIrYIH2Kq2VgTB7FX4vM3Xq5dVA/6+z6OGRi2g8eWpvAMTevKTJh/VoyIpVSW/sVOWdtIRjFPoTbsWu5ejkIzh8wvBmIx76lPzO7Q3KaoAnr89mve6wKjUNRA2hVRTZyfr9SJS5oDhXF8JDNQBtCAKK8gBucSWweVg4bvVUI0xu1NDMud6rR4vAsVZmbHPyaReltkKIGT2F+3kzmBCZz4VWGMlQvy0bVExhK8FeW5IsRFTc5h+6yM58w8cuIadsHDXryC7h4CGu4zP51SNICxelxuSqfmt51z/XGDtIQVxQmbXa2YqFoD6+UbGsB7CdWzuBNbdfKb++f1i5H6RiWKHpEAz95UH+ncSELzN4I+A7f5kEb0YjqJoEoUFrP6P/zKUN/bs88ucsG83ipxEBb0dDJzPRVk8YXp4PamFXkm+cv44/+5HDXXrFbf5R6jePzzipZPHtvV5hGXvTth9lFq+mucrgsYpSKn/x0zG2jmOYd5cdKpBsQwnGZSt6rx9us1PXQ9LE3RwTOUBY5DBZEyOVg8PfLxDYpm+GPWpL8HjUcO0SN8EsM/e7sBmD1hvn1k+ezyOoZBrR3rvqjNYVFppkPt7NtR+xJ4p9I+/FixkEaj3ZB2YFX/hVcIMCfvqBiniMI9lgW2NHC61Fq7FaEN4kh8vJMXXpl48a4jhbeu17Z0XO6f79hrDkT8eqU+hkCzPz1+5HVpUaJSxmf38gXJ9vldqsDRL1m4fdkpNqI12r+8npA2xWqh9wjMSRTEF82L6Aojo50xtuTnl/GfYCcAtd0dsdCxgMx8EEkStfsRHx3bD1bsrDYTM/VKTu2mMhIzFcMLlmep/aj+Ml3IqIVs6jkbrGv1bT4BHtoz9pJ/MhWacABRqDkQZL2tOE+Udw/ObAeKdQ8dkfDFXsN/pIY7s7lIvbD3x6tvAHVmasQTrPqOr4hDNo08cNubn7GQ8vObGDuNlvdfT7X7O4NUXfOwlxyWfvTe0AAPkQJSo9xKSelylGLaCCKe+0nqmX9+Cg+/kqO6dJG+i+pxCkStXxG33Z26d3mBc3GTSDfsxYe4dttB1lBO296JprgerQMC5y18kL6eQrZmSbYXJijO+3K5kWP7wWMIKcjwOdPfIvu6bcwCeh57MaaGZ8+l53Aq52jUOV242X8HxuKp4UDTsS/aUdDkrLOUT6n84WtexHlt8f4I+hQf8d3Fw/e/67fn/4tE2/9UvXlM/3Rn1/P1TUuWHP3bRoiSzPEQdpPvdDinJ81tPwfE2wwlXZyIdDJosPghvcMrWnOq9YoB1Eb0jNOm1xNHzsNTfy+fb/caPQyZC1v9dyv6Ht7DzfB+HqYX5DHxFVSla7Dknt/JeArgr99R5vud6lqjsgBpLEZHPbx0IPY5uoHP2GtXWwz4Zb2mpqaCRCnzOLZtRRmdPDepoIKLZUrA8tr3OKRghNpZKA8KalQJ0HemEpI7ck1nt3gp47F4NxctWqEunIwd2ZsuQ6gmMLeD8vUBvtRx694vBnNc58NT8o/A4XG0zZ6FvdNCuUEeRCTJzFqJjAy4z1OmxUmnNbjl1AH1FF2yuez9hXw1E4O61C9V+/ztCYQD/kweEPXoaLr28N2B1Gik97LpxoP0ESrDZI3b/JNmcdTlalevZwtSBK6qFq97cVPLiDXpAS5fTZ6MKQB6thsQbnpkNlHmw3smARgWxB1LmqQElSI7UfbGJ9b6jQOC3KMVW1vchFdB4hF9zf6X+sVbM4ec/ucDH+LDNB5XdzJPv1TAT4frUa/J0EIGnvUToXWn1cD73hwv8coWOQ6ll5rImI4FjnrkYifJpEKAqIpisp/s/e9/w7ibJNgmRj7USfhQ+fsIhvbyweVuMXDykkgdWnWJsM1MfVq+OM1jLu5AeNjzG/+xVS7FK1FB1wASP/GYfbo2t3eAny0ekKfCawqRXsl/yuTmJAZxv8hVj2aiH+TYmBvCL0NrwiDEwWLQZ9G/NiUal5+Q9lEMBXM3zRCrBA4C+VxHCRfjzcfT4rPnkbu2oALod6eGpKKz/vV95JTp1S0UPZ9dIWmAeyw6t4Z9cjybICjA+VgsfRs5J1iuUONDo3RPjF+SHfrHzCu5OkUCU63I13+c4TWF23CMc0Iedr+ua8xAIbkzgXbFM/qYQBFAIT0Qmjz5h6HlR4Ls4iki4XdGw5OZswZ0ki9hfTgNbXWs6Al/ZqTT0+zqfPKuOwe29SVYb3mTxoeFAWLM91U3bCFnoBz28aFmL/esV5KTH1k0FvRjR0NkK/02n2IGb/0H7yTuYcw6BApdVufzsf1h48YDA7JIX3vBDQk/x/QaDK/cmdXYkyaJRAgF+35vte33z9Yp3rfJSt0Zr6isd5mAHZzB+tYCQ091JqDYdYlhIDw7/8NP3T1yegI+jO/3FR+Z17govXGvisEi/YO50G0F1Igm1J28KJ+JK8b/xeX5HBtqQqIEDl/9R9+OZ4cyGxwgfzemPcORE2LxTAYI8cmWseXI3DFi1NKgt6I0DfTqaq2VcW7jZM2kQssHecg0NtDt2x7Z5uw7zPdQQfAiGjhYu6Oo5rq0YbOsbTUa3DAuN6h4eQ5lufC8HbDylDtTpzaC3Lf4zB7g3pfbzGWND8NnKn/kMour5IKr5euYbP+5Vv/AttEpQzdlt53Vw9L9vVNWhywQ+Khoo74Yr+qRLny/Pu5VCtREVxO5Xfegmu2vgdalDUiowTNYw7p4Q754M7c3btZ6ztOV+8Yn+nZhh8vbkRNBQP5js7D5M2OoOSBGOqk7dqGM16ypkgEiMO+yWyst8v04rUvn6jrFzFrJ6XrnHBbJYsLEpX+4mSz/vHoJ7d6G+yXfm9Fuv9yhsyP5ecICNF7eAR+MWUeMuxDUt9HMKv6Z4ndj9+hqmWGfFL/5ibwpeW5Gl+/PHp4jidlYtGi4ygDX4OnUQHeoOvQcDnli10PB7mfJ5bfsL+PGXAwq/5tqehgD+8Be+H54DCdTcARtfwpEsg2FV0XbkoBkuVHMbFjJPehGYFz3BYeZ86lmnIwRHL4XUyusLmK+HSfrxY6q7N1pT6bhwsPdHlyxbvJxKcurUerx61JH+9HAvGMoMLd4MSP+n6+G+Nt8c+HJPHUdVuTPXvQFn0HTe98dPk1WfzBhEZpBRL1Zr8NnVn+c/vLtjmbb1BtW03/OweUA9WMdMliA7Rwa1Dp1Tz66Rt8qs6m+q3eg0zIfjg4Bvf65wdFqmZNzblydEKqmQ+CFVwmpxzOAjvF+QYMjtMAlypsB8X4pEnC7vfIzOgQeP1uxjX0/SfJzsroWSChxs0M8YLj88fb/ee2rJwX74Xp86r3K1ecNITNZ8pmIaq5lML0RpCc7F++gbQDAvHJE2/WJy35wF3zuEsd4rFVvdcY3UH36PPns+acLnl4MzQSMSXe1Yr3WqK3BmpYHPwkzZ/Bx1Tk0lzyc7X72xxbD4C/hCxyK7LhDY/Hc3LvB9SV16mS99Psep7ChfaFnYHg5SsrrWO1ZYzNv0/sdqsL44vlJM5d0SPsysfCZrKanc5HwQuL5ZTTQt4MBQ+xkRxeaTzMl9fAL9NGuI8m1uzruiu8G+9c0f/qjZXSki8AnNP4ovDh2Wsll4GIlblTlmvobly30LSKLq935zvRxoxION/xH5LtHkLbVJDONPt8Naa3FDn+8OLdzwE/Z3EQynYNwF//hsdCnrfG5v8hFcfd7ffpu5yB1LCWz8j6aFNG72UaUw3c8RvcR+lFCf6gokyhhs/AYB/pyvHgDdA+PKGqSEXOEMYZ7FC+K9lgMU6VIFDlqwYM/zjXr6E+UC7m6St+l7B0C9YzH/8CC5ZLFpTifVM8CFr3jqvg9o4M/vEwd/eOq2D9R6jd4fQyk7SaTR9BCT6ZVnxr/1XWzxcL/xXXDhmq0RqvFOZkW+8mC6DJB67nQHLMVKp5zTt42d3utCZu+AAMYyXJCkyqxmJu9sp8CVlGqm2LBVf84WrNNBoIY1SPmSqAiCF7dc8I9/zbpsrZBz2oKatp2abMMvqnawLtRk5BIugTNDyEJvpZbXPsHPPuQKQp6AzPkMS21OEADBjmk4zsRcd5rFwe673jAiDcxZjl8NPDuqgVTbt+u1SDMOrIEJyc45BgPZdScFbv5m8ycVW943FgNzWCdqfkveZM3fkv30OiRkcW3SL3ayH3+guAsEMMk3bCibfkakt3IF657/lvAk/73I25smk6jFmEGNZzcEAzVkTIkOFcxGNyGCubKcRLtyhgNtWzTq5685b7uZ4M5sGD3cHHmYxb+rp/7sxbJXNZ/Mhe+hrX8P2Hk5zTCbIC7Ubf0T0UcxWG73RyYf5jGiRnFta2YvXQ+LT+Kh94b/9opWGFCNC0Sf5Xc0id2PFTyPxysCoU8Txg/mCN+v5oDvamZsRw7CCr4/lbrptUW4fM1CgrVxDGjKsG2KjzJ4wqNQZcjciSMg0990BLJMPtQl+1PCPtz7CbQleqNl8bYqoXtBgO3fgcNu/g5r0gcnDdjZ64z1yLXBfkz2M3xKqkc2/FXP45xH4L2LMN3weziLxrwq+Qta1LxfX/ViHb+8Mrb9gfQe/xf+wy/6+cLw4cpCIMxa58Fb+qz/xcuffYPtfQhb934OjrkcwZt6GbDfpqz+qu7ZUqdszrf1xrHZCVkG3FI9IrYTIzYV83yDm/5FHSPZqkjwx6e64ROMu/kSzvnbU5QzFQNsnc48m4GWacC3Hit2pqoDq/VePDi744ua6qoPYr6nsxz6RKAG8UqTqT5Z4fuuKDQ0MjmZDqXcwwfglh/ertfOvEiw9iKFmkIlDux2YeNPz6OJbfPmrEVW8U8/tec9SOhP79vwGLbsPwqYBbwCtlV4/fGvZPbevAMt4e5il+A4FN7wMSubfky3eBlOca/dfviNuFGXDGt1wDO8XouI5mBqw239PaEKLhekVPnrx4c4aLsflfBaa4aCQPcO2Pg+Rc/8y9axORFYmu+KfIevx5YxUVcFdH8Yu5GR/otf4PtnFwTU3hDSwfQk8AjzCzW/B6deUHFAP/9HXu/3oaa3QyLBse0O+NBUj82+7PKnb5F/eoJgR08YSKWG2N/bHPow7goQ1ssevX/xCPRSD/uU+8/1tJzryy8fQp2/kIJ1sfMSHBz3hfFw+jLWJQoPw8hhWNvwnrBmnQA2ffanP4WsnIf0hx+wPpRVuI7rKP30YOpkcR2u1cGd4a53OMLK57EWFT4ufngJ1TtxZMuBWgIcfCunSfmcB+GHl7q/yUM//ULo2rmAnJROdBsvmM/vO4Tb/KHHOZbMxen7Str0INQOOg/6/BM38CBsjS3uh2fN9OzQyxveJQr/54fCSVcLGKxmg77RMRoYDq/xjw/SCF3HgUnZfQXnr5TR+/UKEvrDx42gVth40r98ZMODKG5yPaCPB975ck0rA7bnMcc/PWJ2XcSByim+G75zh3nTd2Fx/9r45+9//A0G+euGQ/VvB2buTOLf+sBuNWbDxIDcg+h5+8PukM/Dxv/RD//Tg/l6JjMQFA/+WQdEbfMm1rOToVZ5xk+VSGYW5ezufQpwHyp/y6/E5nyvWASM6hqgnx72/sNjJf9N7gWHB3UGa4MfhaKlBxXjfuiH1eie/E/voPjEjHD55ce2fBJaklebMBGMLaShrCFej4yczzBrAMV/jLqPskzWuOwbmB8PFda5oBsYej4l2AbPM5EL5zR8S3bQfnwZR6kE86WF+aqkf7FGo6tj1OsPfzxLW8M25nO2vrz0Brbf1FOid84vp4cG431iUEfmDiHd8LR6sq8Jgls8GSF4V9Bu2jdi1a5JluSqrepvvWO0K4f1M9+O4CLZn62IzRTOu1aLIPXSw+99ksmvjxlkxAowFidi/sNP1p8CsGae3sPM0VKD94QXqXsLB/OHb4HKyT4RUnViM3sY1b/84Eq8MtzyVxk8cCmi1z/pbrJLXnrqL99wVOeR0Xz/WeH0/aTU23EcG/2iiMH6MRoaPdIGdKePRGC7W+404KbQXBQbZ2B/9kvslqkOyGuryXkQ9ys1ZvgaNj0lVUTtfMYFukbDXOU3DfZtaNJQf0W1mH2KFmz5EiQ42nlg4mrNP/0azfFryFlQBEe46dfUnefWnL1rp/zsjTC3dUHv+CcC93xlUzRGdU2r1JRgujvR/4/P1pqC3TKf8L1SYtD95oMYfw+MZL5N6JJVvLrlBxHb8j/L5eoS8Jk4EakbMZo/qcXD9O+o0Wt1P4RkXBsJftytUcxeFwD56e935WzgIOq7ZG4O5gpii37IzH3vA/npKZveQp1zfTBXZycLcBxblbrV/WCySAggCEqBEG7DA+NyOmsw17MvWvb5OjCTRynESL5RPzD6nPz4c5hyEJvSY0xW/Cwk6NxGhlNLqxlb3Rr9yzdFlAvNLd8mwJ1maNgh+b6emip34LddKd74HVtJNHXA/GYzDeqUDGzn+hZk5dPD/u1uJnTjr+r1+oxwNJ9ugPZ/XarkLFDw4eHpySqiPoZlWyrUCNoRbP5ZAKYhvXE4mfnAnOfXgNZcXLf5m8L5PY9HeI4PHk63589Wl/GAf5kxEX78+swmD0pOZONHeHVr/mT9BXAtdunGp59sLvKvA28XvtzyJzRfXt83Alyt33CIhMfAZFWJwUiggiN8lPNJoy388Q0iR8LAtu87QmHvYsRdwz/G1Em7QBVdCWoYtsP9aPctsP4k8Mvv1/M5X4P/aUvB/r9vKRh2uyMNNCLkSweyFVq6rlPc2O8t5fZWIEh4jcatVzN6jfUnpBMu6SGQp3r9Jn4HrnzEUc2TnXxO7XKGpZTJJN1/Jca8GgWQNk+GSt4Vh0U6BQGIzbnHPlyKnDmZtqpNenEoPny6fBGSZwf5rAjpY7e+kv5WngOY7W4YOw9YDMutF3vIquFC9h2RwsFUQgXQwtkjZloXsCaSdYNX43Ij8mett1N1ngeO3raL8GkMgKajlEEF8CsOzg5j7A92Kdg/Bp5MdX1mazfPR9WG+h826+oTzqISrXB1iz9sNCc/Hzt7f1Hg8wiwtU+7cEL3hkDVfUfY/IgiY5qoEhiba4+1z7UO2TX2nzD9ozk1311bs+v13MM/J/TQbn3QhOr3RwO+iRPhsK1N9vtfVppFouZBb/LRPp2OkB8YIhLwUpN9hy9UFmq9aFh9KWClbjrQIwJDyjXehe1hqi7w8IYiNmL7Gs4rkRGcuYrD/iFtk/GMrx0Yj3KDdXbb50xSO2sr/POl5uuuAzrzLw3KmpBSO3L3rOfrwYLRPk9paEIUdgutiGod+S8NvLeVrLlzHWGUSwO2q4EbFiS8BFhDryRL0CkJu259p3I/6bC9wwpYHv2SQlyuHJLDWqzbJr48YQ2DEuut+AZLcx1n+GcJNtW/Z2gSfzx0QNxdHtSypp35NVtZge2nCqgGk0vyaq7jCgUa9hjttdYcwWMV1GdqBdgJTQOIztYYexAzQK3poYQLtc0MFrGx/MbDhvGCI/AwmpRaWaMlDLZ9CsPMsLHpW32yAsQqqO8tjJN7xcCsTXUEz38KQmq2K3PmPbynHEf1FaNL0iTMVvcOOOmSRQMu/Ktnfz+vcBaTkXQ+X9cz0PYj1AzhiSMB24k4kG8P8vWzbelhY0J4rYvh6+vx2P9rrVz0d6cZhlWb49/4RE8zU6h2rz9siyYMWYpBDEHDDdhNuTNgq5RF8BOfBWzmgxxO/PECpVN/1PElf435KrTVCnMXvqn7Taa85/iohLISNIjrhxdY9mPV7p5vtKfOp3+bkxPen0DfOxhv9sNWb9x50NmHN8QFfzCnNNEj1ck7So07fJtr6ZwyeA1tm+JDT5JvNokX+Bbgh5SfkYElD2AJ8tOeI+u83hhx9K6Ad1uOsCuTGSwmuhbQ457mZn+uSYfTWMH7pNypABBA779tto45M5Yrv+djRJS2ZuVTJoqkPXycfowvG2+9FqvStTTxOT7szTl84RLed7igIbOSfOoLPYCn5rxi+8DNOZ3wUVNV6eriSDo3bMrCVlPqeq2pk7+iZF3/ZAUUCroQCasdW64vbYZ1yM4U27OSkFyLDfgWvR1ZQPzNv4+hEiAICwMJrtOxalS340kBVaihnyu2Uq1tYVAdjtQYS2LOXLlWcivtDzRQmcdE6W95wuOplAl8iR/2s3d40boA38/1EE4HMblA3KEOm4q2UZpd6EDxb9uScprKfNplygiZDnIiavWazLwotBDd9D0BR0M3WRu+PUij5ED4qJnCJaAzp3LH9Ew1WWrDb7RKPdwpkYf9OYnB/CclFewtuNJw5HiTWKb5hKKoMGyh/FPPXOlrUMtRjqO7ysCo3I8elGUY0eIqpjkr9dCB+K+LCdcPOhAvdLbUKB3u1GhO32QpJ9mAZKhjBIr6WA9JeGx+48fOeX4w1ryrFr6fuzt1b5LPVtttPfg5bvuhe/ucrHUvKXC7HzbwRwPzGJEIKmGCEdQvp3pxMQzA7RyecNjvUb0uJjnC2xiFNG1ka9sik1rweKpkJJzyKRytOFhhT4aVmq32yNescVIYeORDD5qcJezdyA6w79yLmueDaS63ZoFqw+kONub1BhZhsY+Q58OI6gCb+fy14osi/slvpHz9sl56Ln7CbTxUs3Zxvjp6+fwX78Ln1TbFRVYjwL2GG7X5qjRZ9VoyePxKAoH6ZanXp8vfwOGgfnHwjtph5XirgmfpGOEDDG45c5/D1nv10lDn3p/A/ni9ReB+rgrselmZrF8hKuCrgwU+4ivM6f2sdLBP14y61l41e3MXI6gNmkmjF/8CVG5SD9r5qSHq32kwp8fQ86AtjxL2xzvHZv+JebD+8QX1/SzOP3rmOkr7KQNqZfIS0v6gC9COSxH/1vv08EpNbUYlpx6UDbD+RX8OUD9RQc82HeopoBKE3oN4+LDFf8KaogX9fpywJbcxmO3LVIAIdi0180uXs4F8O1Apz5gasC3ZfNBVCQR6rKLlVulgnJEhwdo0Ooy85GQuJbMjSIZXTMTloCfCzz4/ZWfi9ALFcJJOoAfenx5i7/k6scVLLzz8MsHF2tB+wKpleqS+dzRFYryfc/rIVw32TWPQ6N6Z5rJ+KwU+rULBfvIY6tFZF0flTvsZ+6/RBLNwBQUsSwPi6FqZw0qVTgCjODs4D67PZFZfjQbpQGwCzwSH9btZHNg4ukyD90vMx+UEHZnzTxkZ4rBN2OcjzVBJnvuJNxq5Jk38LEC8/x6J+pcu5nzxykLtgqtJdTlHYMXoOMK9mljY/OEl9qdlMJm6B1L2n96km/8Be5PjcUS0cthOfZSQxSIhq8SJNTnFugQHqqloqdQTWzG6jaAeX8cNfwlghru4g5/7xyOs1dSc/LmBBH2H13GuWg5bb1w4g1yrAHp8W5yv11wp4Bx1Nxy6shfOf/kzA1BVQuzzb7Vm87WWoI8bQtHzrw6XNmueAMvnBIfBlUvm40tHwOWSI9UbUtazzfpGLWq/QOWrJkOvBDceYo/N1MyHuzlH2fECZV5XKe5RUDPVYyNc5+ZGLXoiQ3ee0BHc3xeL+ofv1Vy0eo2A1BUXsptPTcga7/2Et/YEyUUJvZDSu6PAw37+w+5JB2xGDY6UPkIWWgo+qkU91W/qjZ9f1DnfPmZfvBYB1O+EQ/K5tMPR30szTC7vmh5M468e1ME24MNyKbV3OGMzLx4cwHpXw75gvZL3xdp70J8vPQ35vWFOQvLswfmr7n74NKHlcxmB+kEF1f80kU3h9VnB5Hws6dGQYzCytc9gNJAEaydvMJejkm/+96KgfaBf8v0rfTtwwPeJhkXZ15N6ZQYoj/eRKC88DhR0hwvIb4qE8bXXh3/+6qWpGFu0/cuZsONbuPknakL/Wy+re2pBEo0B2Znn3hybwm8gD7In9lLfBcMihyO8X02RuvWRgXVfeQ6UT9wOsQ2/sEKJA8hp1KaW92HhzLXOCAQhelN9s2/yjm4z/Og4JODWCsMkzMn8Dw/98BVZuMyAO+OebIWidcbI8rpAO/Bk6sr3MqRxZDgKmKYb9kx+DrtbdOqgxssFmeoWsHW4KALMSy/EpyG61P/wfSqOXwJzHiXrGajNP3/qWU4eznGzZvL51kMCdofRXAa1g6D9mm9CNz41j05Zgm8Tib/vAzb/IijuxR6wF+c7k40XjGSS055a+++NEZi6BHKd0lNUdt4gbvEUpO16oYdvS5Px67cV1NTHgn295JJJPByhmj4jjT6m+puzy/xtgXHoG7Lb8Nii6Z0CO0VqcfIoPmA7pVb94g3WqdMPJCI5Dy+9txL++NRNdvjaJVzEXsRGioph5kWuAfKrxfhf/Pr5A+8gldSyzl4yS3Iew91LCMnkzd5WiP99gzRJPWz0GRnYn3oXQNCrKja5GIHV0bunAop2op5LLJPKRiDAfdJa2MmfTj59le8RFuB1p+a9SsB6eTwKOH4fMvbKXkwoHg/oFz9xuk+9kDjNcIQgETSMquXAFh/dA3jMbETRQ9vlbJykAMq8qWLf2FXhnDhZDIv70aTOeVbZmt7HWP75q208oQDGPlCKe2yiqrzuc7ZePAV8Hz6kNqf04cyLtgPLnVD//GU9d3YowBTLbONbTr5+E71XEXUo+sh3LeSLWfagISUSWdf2kAjma2hgNIwJkfYGD9Zu+c6KxezdhrdDxqbzeYRKJv0hruy8etUfawb/6DBjjVhPc2V/XgaVhkk0MoPWXMpp0aBZJg5iL7IOU1/4HkhtwaSIYTFZPnC/Qq1u7zhw+P2w4R9HdRptwshIHjVLGG2hFmYMu2/dqMVVyrb57Wu0PhFmU/6ROxhmmo3E9/2esz5xS6g+e4csRgEGMopfD67zPKPl9v6w6bf+t/dB89B+2EqVUlAXdGnJqvesZq+nhqC7r2pUvsuuJnIncbB/1C51fEySfsNrYCxphJEcz2yZ9AzB20RbIvCPv2Hc8B5Yv/UDLanKDfMZX3tw1DJEOFvSwP590WcIhIRg/auFyVKMaQq66nKih6n284V+ivHnL+jBm7uEgc6+wFOw95FkOcCcxD2FcPxrSpouVxTuJ/cqQfGPHmgAjSyfD/peAXwUckjY+NKyHxYHvrRZxHqqcvVcaZ8nkG57hzp2nOYbnufgMd5DHPYSP4y/9bPxaWx0yMz3dXxs1NT1HSR+qmdNd91cQv8WWtTNdRounPS9KAZpRHw4oxNb+UpuYRivjAhhfq/XUW2FH75AsxuqQ3cnFYTdYHFoX10m1j/86w2W157DXvqUBmI8NEWV/IOA3fddzuehL4QfPyZsjeDGt7WbunqsQuzBcwM7Hd6OWg/ogIDnHcL9QcwvsgK67Mff2ezdpw3/cxH2ntHLHB+35whzqfIIzLQ7Y+62ZWEXI0B2ORyTZfxTLrAC6oR19OYTdnACAtvZKn/8LFmdr/iEmfvJEPvrElP8HF1BEVFT0ef2fdeffnBe/TfWgrlk7FUXN7DpO/SpRg2Ybb6wwB39vahv2/qwmL55VMtrx6F9GVR197rrCrwLBUXKrjeTWeSlFh7enIjeJlewRUgu3c++0XoV3vUSrVIHkficKNKsMWckUQg45UuBD6n8ClfuBCL4zbsXtrQ8zafj7hP94id2rvhVU5KOCDZp+cQovgQ5XQqnhatkGNhiYTUQYeA4eN8dChwMfTEwYBsl/NnLTKV1+Ok9wGbHlZ7Y7ZxMHYhn8M37Fw2D6zOfRX5uIYh2D2p+/vRQuL2cDrZSt8cfoBRml+NTCvJjWmPz1P0BkulmpfCr4GM9KrA5j26mwY2vUGN+dCHLYNtBDmc6mrcGKsP97AcwHK4eRTIOgPgHu8sPP9KEx/t6zo7B1jhhPFPM1ZW5jEZIfvaDT86F1vM5MAt4DJIWh5fHKZyuZuaBf3qiCFjOnL8CgiQiAWLcOQULte4SiKIkx56KknpppdxSZjsiiM+arYoEejbKNVMmuuk1+caHSpheOIJR+a7q6Xi9IRjqvbfpEWjDiytR57Pxi584/3LcRwP3gnP+4Ue26Ztgmz+0TLEQ0kKJPegK+5Zu/HLTM50AagUVsLnwds5797cHH0Bp0O7OPuYPv4Dn+f3GunM/D1s85qBnX0I00/rF5lL9jErNmpBeT3rOVt8PBOWjH0IccXljrve/uocvf4LUaNosXGklKpB9lY4iOT6CJXmuDZwUdiXiZq90WmMBxrY9IX5I+ZrkWmZA+l4E8hXuq9nl6VSCG7++kGoau5qIw+EJzSvw6E9vmZcTb6mcNtmbP1OSKVrnHlZ1fkPdM3qFLB3nm1r0GSFqNBn58r74qwKEraqmrdB6FazTEy4X0pB/+P9t0gAOc/ilUb54yfJVvjF8+RSi1RfWhKVYn2FG1x123qwfxrY5P2E6fyk1CqMZ6DjNnjzdRYu6S7Waq/PdPWFCfQld1jQL1wpfZmg6jU3d94XlQ/URHXgNXZusrWeyUbnfAvgdnj62bRrW89vYd7DoPw7WC34c/unDv8Zqh2gykn96ZbwXOyJcmzX/P9LOZGtZGAnDF+RCBCTFkhlkCgIi7sQBRBEZEiBX34fv72Xveo0LT6Cq3vdJUsUqc1zQNDY91ZOnlNBbvg4+8Q8bIguN1k/uOe/gwZ/L1Q/aiPOKA48OFq9iI6q+3uL77ksKn88nWW6m26OL6ME/nmh5xb7+bn8vRV71Vji77TWZA9HnpRIfFardrkXxF29If4CGTU6Y0NxV9wz4UxRj7Xrcoc5ohAXucrHF7jzy+lIHbILboWX4YJpVPztYa2GtH2TrVS1i2q7yoZwP3zU+3IQVSHbB5oWG+odXVLATT2NkOFGCT91rqEu4HzI0OsMF21ZaomW8LCUY8/tNby9frBm9WCK4cdHiIGZqP6w8FH3niWC9ulSIfUf+hlaeEMoCSpKPHj4f661vGdthbfarnnKQth1f1Dc/WULW7x1dZKJSVYmmYqnDMYK0tS/0H+9fdSOoHmTYrfBQU+euPOTdbncla731FsnTUqRZRUzDh3BhNF2MBpb9yQwZJR/GTmEeoVNkfLG9ew7e4BUolYo55ols8GkxdXrJgcQVzn/5UumNDTwCFYe/l8rVQ3a4AAjTr8Khihq29HvDhT/9Z/jvUV+Ox+gKO3260TDuC2/YNBaBsMk0bCVfMVmc7wuQ8Mhd+pfPm4773ZByG3lqcfdtP869KYJ6t1VszVAnc524xj+9fJEyX+em6eajYcr++MpSjPIZKX9+Z/XLrfePZ6w8kwbgisk/vawk28M/nrj78pP1jyfjZApqNjA/Q88TTPReNwjxeXl3wdQoXnnuLZlXvYNOSrwNNf3Rekzb/Xy4nsOObO7KNmHzzXpDdtFsur7PmnHPMIKqvNrYC0CtJ8YSEarj/hUK6OMVPFXI+189C3j7gagolxbcFNGij/R2QEJPEwf8OyYrb5OTUW1vInjLVceezb90urHzAZmdyBEwI7MnnfR1JPnRWuFyqNSe936zC/uFSKGs7KWChu6Yw32wIASxO9WTu6820AdSjP3JUjwuNdsFHCGcse4iY+1nNpWQXRSb2m7j9TPeTdkfLwg/D6Ne+ayqyPr3lVMnfeT1tOOTBowDI+RSi9hb6r7Lkb2xRDI/lTNb89uCKsevwunPH3Xc74HOqGuxZR9CNB1y15H+8aRz6BYj8yACVmUJdcj33Y+JKj/2XBLuyf6+dgA4HvMrPE+biSxbGxCrm9RCrzgaaWJtXDZ/L4cbXALngR8MC8Vs9Lc3QCMcQ/l8lXXaTX4LBO4f7Ae3dzHd8wdBB1u7hHPG7fXhPAUbmJqDii0vT+pp9LxQiir3QE1OiBBfWM8B2piqNOTk0lsql7PkU3tbMcej08f5MxNY9y9CcZpcfcr6OpbLhxiFEn1P/fLH70wWL0TeDy9v1oyygXW/a43zrzcQ90hA/6mM0KlJEYnZb/jj/TjY0dab1EW4/tPrRrfV2a7b6oC8eGI0JJJV//u+dZwu1D+/6n70WeeCKZEbdXj+kEwrj5ax882xf5cCNpnHYwyyzd4US5sH+o32WQIz2Uk0wOGjWOi9J//4gNad23qaekVDjXPssM+NRd2sfhXMV/akXpp6iEZOJIG35Do+rv5j/OMzSiIf/sXjbP7mNxxVycBq/qoQsdvbDZ6nKceBvPHRWk8n2KpGRC3d59h01K8NLK1/pQG96mzlHQQFcngg4hXb3nKrZu5ffWaftukZ97QiyG9vhLPf9O4H2s8v+ARdhtf9Mm+scCTKP4/fEyZI735WfuH17/2TOX6FxXgymxZkrPD0sokUj0hj0kJv7XJsyLWPlpT/XeEdPOtwaA7L6m/lFCUb5hDZYKQYOmenwWHuR2q6apbMD3rTYOV7635yVoxGn75hf8h/1NauPpsXqzTAgycjYLZQsMDSBvkldR11MuVVMCaUBIx5Amx15i5hW38Q4Xi9XfApVX9sXvU0TLeH8o/3rjyTyIsd21gzv2Pd6kFrIYy5DpsB6opWw7oBTRmLf79Hs97MIgy/5558o99HJwQ8DozLdYPtSyDVzcvV3nA6Xjps2ZbD/vQObGw4h+L1e0fLhogZ0DEosbY0Y7GU1iVHYVZe6an5xD372AwgOmYVtohGk2XeXBUkh/wj5Ln7tmbNr5hg5Vf4McxqInja8SWv/mzl7WtXjo/kIn7kvvT4alWP65q6hW+1tbCDHM4bMqd9gJT8AqzQWmXTYLUl+pxrSligvhOyIWKKsDNPoVjGZU8F45kh7XsIqG/biif4aqvBOgGNyEpV10vMfuT/OlLA/+8jBcdEuVL7Fr6KmeiTD5KblGSWugot166N0LbSFuqcrpLeCTO1EJSSRdORVYz6Du7Q47n9hLvziaHxeffeyA0eHjW1d8eWeXIzBJn0wq5x+KH5Ff0Iqq7mDlv6+YEmceIk+KoQ0aPt7fpWfrgGfKr1lvRRiuu68XYZHNitxRbFBM37Iw3BhhzoQUobRIT4paDpzfyweyRtMXXhW4Rd2z2pL5dRQb5OMsH2uW/JJKktGz7aOosJHjy2IvbQl93uEqN+735DcVobbYStPYCzuHts6UGNxvzsxlBDHGBP/TI2BMWuBeXysrC+ab5s/t7QBvojfyPf9Nvo81MZYzA6dYPd/r7zpnGKXbDjy4VqTnTTCeI3GnKHqg3nGbRk9/V0B6KQG7A+6J96bbTdwcCymTB8GdngbQYJ8Rg6rEKw1FMjfNb1Mb/UGGVA83zkeWij5htulLU90XQ2GxDU+IpNNu711k+lDPmtXoXIPSXFXL4tETnWtcThNqT9XElpBGro7skOE6GnZM9xkB90QjhJDvt/6zcK8psaJYu8JUq7F5w/L4PI0cnUFzwrPNhK9w53B6NGS9epGoB68rHLjDlhKY8dFLFniXGyFfslT68i+lbqiAOrfHl0OG462N6aNzbvLo9ab/MW4b5faqoH3jehxV3PQV6Pl/rzvUFz+rQboDkfUPdWUa9vhslHqabLWP+eTMauXtzIN9szQ1mFe78ERmOA0seIhnf120+P0HVBShMDq1mvFHNbRaVUnz6EiLJc6tNz7ie4OqmDjTgaazbW9CGpCYmweS01NP+yWoHMlw7YfomZtyg309g/kBXjQPhNyXJ9LhPy4UloWEhvfdYsiYA3CmdCL51ST4FrcJDsvRc2/V7RuV7f5ujslSU1Fkz1cbOBFDm/+EH2v1FEDMQ+3J9tI8GekFo1t7WUDI5HdFwbafcFU3acBvtTN2J34F3EVF+9yUVLU6zvRKcY87MWQ7zZ5tjyUF0w/3wkCKuyR8PYVJPlvRNLcBUWkWlz570x817X7WKsp56qY19P8E40mA4aC8+7QqyHNH0N8vvQ7LDxMV/J1CfqTd4+UUu4LS7ZjNkUQn08VNSSvJM+ljuBAO5Xi6/8tELAP05Ex+/jiw9+GBXLBgyAbTK4RMw/P48dbbOFzy89YdeMAm/KxgePGsj3OEhyqBfFvcVgmk6P7x+LeH2kaCm4Wdrg4tspaNr5pSQffOeGYzXdsam+prmcO7lGryuYmG5Pp4GfKmWEn++7esmn2Zdn++diw07t5PckXI44e+apR5qvPgkOP0B3udhE9A4HNjjDYYDnaXxR9boriuXGKy5IGdzw4RK+dBY97Sv49SfFWiuxvhL0spG/i8vT8OF0bLF1NVtPcUohP6pOQodKGeBsW0nIKpjWU4CKi8ij1bGdhFGySGrdIGGHAuwHj08y37cSD7vNrsJh4r/7aXs9SyD+xJRa8Uco5rbeRmjvbGcyS9yNsV8xL1Bsoo6qGnWSN9jcALtzlWH7RH7FXFatC2q4brGcu3s9hTqSQC8uX+w+r309Q9V30FDrSDbVnWPj8LNCuO/SLNxuhbaeZ+P1ltXcvWPnMvjJzIZyAqsyO4qP8+KNpv2x4MW/jtQY+H2/hNd1NqfgaTS4dQrjo6bI4JFMNg6eY55MzeEEsHuHMQ6W6MqmV3KxYNl7T2oriqizVuJ5iOAsEeF++tTv77PP4JH7KVX3474f0XB0ZMHnfOq+nT6Z0lnVpEJ7xeFL7qHuQuEyQeIA0Ad9HxAp9Nttv8Yz4VQ0o0VK0issr82dYidU+4Whlw+fT82RjbS8iqE5nDYA8e1EH7N97SeSR7nc3awnEXaF2I8TjgxJ/rz2VNEsXCxLrrzBbe2C0Cx4JkuVejGIOfOoW0lGz4XbcwzdZnOn7pnRZCxNlUeOlZf0ZMtKsksV97WPuo9JtdH/MLZs9QV2bfskJMm2/TyRk4s6gRdxmGTPftL1iwO/LKup59SSt8bnQzyRW4613pF0OonKTfaQt8XBNhrqIRYuAGV62ofovr3oS/kQFzjfk1PYHZOsJwx1Ich5eKQeCOeEPJJIFJTT+CEbhcnJ1PP1+n4OTzKfyzkZvoH0knbrhPa7tjfRXFg6JylXbwnnQFaYwN1uJcSCwOhhH+i9MLWbK9QCr1BXUs71kvav6K++YE3ub/3Qv5cY8oNKiJRjQPMNZRFUzlmhZrRDHrEKz0LvDN0p5rUPo6/vL4JQkL9UKTdjTSmrRXg9hRnbEke8MdvvX1I6ur9Qlg6HRMi4eFm7BEj4XM0LW+82itDAdY9DWfnpS7zFN1RqXwOHh3OFlhvvOADt74xd7v715j12HhD5hzQUolPCSJ7GovQqLu9wn+mJ12Zb3MG6XvhgLy82dItVwu89pViX0lNNDR/xaI0HbM6zwRhGnwFozgXUw6RFy/ZJOilKrzp1t5dRH+rrLZf2L/kUom+nMCLEnQLcN52oyzK9H+vzqMD9in9UE1SnHr2A5AAbfwznX/hCMzkaNzQ3FsLuV7XR+PjuDRFtmwybO4swpvqHBwhvJ8d5tBlYX5N3A+dw9yZ85VzQ8EouBjTxJSNyE8zJoBWxBOv6Ef44WQXzzFKUf0P1CXkltQv2V78fP/mA7+kcF1O3WC94hRYQ/vowEfeX33+LBf/Wkx3a3EXyb7sig+C93vLciSjgfyK1rNeI5j6KLbi3/ZWcOtepuWzMeFD5JqQuhI9kGnr5LS+wUTDeTGaxTtXL5ZvOqdRTvwlitGKGhMTbTC0RK+xPP6HBumOq3H96z961YKCT7QZEygZf3138dIK9Yp/J7qd/CrYXJh7Ryb1gba0v4367yYBI1xv24lBl3FRP0f5XygxbkrfT/9UX+WgNhO2DJRnU9usizVOKcLzlYT0maBThON88Wsxo9sbNqL/gKw8t9ZtKWf+MCyCVoODLmO508vgcBtgcXgo1QqT3s7o78KA+Y428b5WMhtau3tBn8Y8G2v7DpkYYLSjcY01vW5IxKgzRBt0UtcS4eRUetYPG31Pu3RBwTIw42qkhitP0QB0nGhNWk6GRhjdSSO/dsnrm2NsCrZk4rGYX4rFOFzW0eXsR9gx7QNOv90KodIlRwxdEnQjz15CKzzUKOb5Sk+nUTYb8evom9lv6TTqlWd7wGZcXVUTJ7PlqvdWEpeuT8CJW0E6ZPjGoQ9MRnlu2Pd23zfT3nJrS0yhY/thOSI/rgHDPq1SQi8CVf/UCu79KYcwmPwtae/AxLtO0ngTUXWH0sUftc/mqf6u+R9m5voQkYNSba85L0flTGuEW132ycNM6Ekn7GqS0n2/WZILrgl4UXyIPGpcQTvu8oX7FHcbG95O0Tz1toX2db9TaGzNbipMZgeWKX6yi+aNTMdsBoFPDaBipOzTbpjigmBUN6W+6wXZH/51Ddfq19LSIjje57blELrecqXE7vxA7tJGDRFvJaHbQLMTWfI6Cc1Ng7LonNCfoI8qe7js0mZ4xmprCWsB6Sx7Z7XNV57pybbRXShY2j3ZQkC0RyZ++JxNUFaIcdiLI305BdaGr6okXAg7+9Fp4bo9oDto8hXj0axrMxQEtmqGn/F/+b3bUZrPw1UI47vEt3NrdDTU3XnFg1f/kM3HQz6ddugHlRD8hb0xczx4bsYNDj/cUzxPr//S1lGqqTO5906BJbakDqz+joTp9+nksZpANnBPsNVuXtbwQ8GC50hcH3vdTsEThBjBG/omDvWZ55Fh8OGTlAabh0AcF3/a7K4xQzGSvXYKCIT1aYK+YZ9Lo5wcjB9dvpYWjMXaeZoWmCCcLuIu1DZf8I6D5/btzUtdYOvkGyg8t1+IRwiWcOxwUx16fveczBNmrToSK0dBPQq4s0E/7PXaGqvKW33QB6Ni1J+Bu/IRDT/6BkuPuTHV4QTFnrUPA4T8WNqeu6pdEHwxoml1N6vX5uNXzDajPPcFaon11Oo/XzZ+/oL5+jvTdIAkKqnSRYeVPz19fnQuJswEimuYmWYQnH8MjLVjIHQ9uwZJ3lsn3dxCEXMkmfVrzE8SoTbHuLXPNvPdnA6Pyu1DrvBkY+x396M+vY/VczsVfffunlw0ifXT2Z7SDJejpn7+ZJEgntMYr1svdqLPuVPJyffSqEA25UnMRLhaYhdCgysnc6mP+frzQ2R63NBS8Rp+04iqheCPn2AzKoz7r87NDD3LJ8J++oce630j7o19S5bwp+rVetmjNf2HyPZmI93Hxlqre32Cdm02d6Nd8QCtPoL643ipxcJ/DjLojdbKzlszpEaVo7y9xKPC5woYsvExwfyguPSuK6E1/egk5kYfd3FQR/30vBpK9+hTOVOTroeSVFKnpCbAtPA2d0/WjC+LnYdNVvxfsaYL2L972944WLDoiF/3pCeMjsWI6Lrscvgk1qZfoC5tX/wAHPdao1TG1536X6xX+/Gio/NZZ9w9xkbqujKj7q0q2jB26otM3Y2t9OjEqH59X1FAqE3Ghdj390/+rvnaCn4ZmxwcNqLDvyDbZ5v1UbIIOWpv42CfxGfVVbQyyvhg2dmWv6efXRuTB4n8KdrGJkXD1rg3EUuVhpX80Cf1kHYeCBfcY/zTOG5VpjOCMqPVXX9gcW8UD/vxiW0gxWxpd8FEyJc6qjzQ2zR1q/n1/4YfaOntyugOlrR6ptX27Nf9QWwNd0rNKXWYck1GWzhMcjeYXNtZrZER48hHI2/JGE9HC3hSWVx8pcV6RWJZDtOYnH56XUqc+ig/9kpxuIkIgbqjzZWpBj63zgrmrHTLfwln/8yNIgdwI0/vD0oUbyyeofBbQcGMPxXIquQmkkI4h1Ma2GBpQWzB+efzPL3Tfq9GAut/HWHuaU92/meqCZAoJ2fDhHa16N5apPRohElKrZ7+xa9B9E06kcrN3P9O926K6GQRqqYe8YMrbC0VeTyj1IjcrmNgoyp8/p4fNxOn0sRFbhK6qQr2tKaNpe54d+cO3Ml57SNfL+Vpz0qA7Hn6+8tL7tWRY4MfXB+xN3MgoExcOGmocsftI2oQ6yhHWQQxHkq71lXJYiVCYiy7V/FdY8OGV3dBxMQXqGocD2+WsfaOVt5DK9k71lDzzEOpLjvHxRX6M5dulgyl4KmHpciH752/nzfZEbpXjecv3LVlg29MhHOPaq//xhIuORRxeWYm6r1NMaOrFmfDr+x5dqzeQ/PkPAAAA//+kncmysjoUhR/IgUiXOET6TgKigDNAVHoFEiBP/xee6Z3dOWUpFXfW+tZOdilg6FOSrQCk9U8fITMumoHeg6qEmcZFRI7iQJnU2knh91tut8LpOCM/P3IzqID312BQVuc2vkA7HwxvL1fC8BwljQF8kxtECTqmokdv/sLBDTXc8ugFfnoB4uUlkyCV7HDhbvcEHBM3QFLEJSFeTbaEaICY6OEoVvN7uLDwlgCZaF7HhFSJ31dYjuWENPFZh7NtpQUMlsKZxJIcBqq6lBHle+ESb1svW70w4aaniIq0YpgDtfXF+JoCdNY9RP94QMLXPZ6/750zbfslrEr/i/f7JsoGc2uZ97nLiWgNz2ZLEtv+MTFT2QPix6/WKOxfsGueonfMEzyspfWYoZ4PucczlySjgXHuxXJVVeLXIVfRJvqy8KqxBWY2Hkk2/Q9++mZbn+HcNPACzd65eXDTn9Q4YxdeciNFJ+fRgaW2/fUYP3cTXnsxHOi9yiMAL8WNmMyFD7f9lgW1ZvZEus03ZTbMXoX5rWa3wU4nytyP4QWuAXdFv+f/eAOTyqYncMyZrlr/vEKtUDTkbv/PZRQ5WbyeO4KXT/IAy1NqLnDxVuLxWz0kGx+DKaNvgy9HoHRufB/BxoOxuPHGVWvmVtT1IkWyqZ8cZuNh8NtOBG37nzNjy7sK6EgqbymxBYS9kkA4RR5BbjgOgOTUn4/u76Lnua+r9dz0EFDx4ZHNPwCKBchApuQrJGmZkK1yN+6gBW8yQuebSgf+PeSgHF+Tx6U2W5HOv/Pg+q455F4ac1jTHcdCaJ9bzLPqMsynVkrgIa4izGrZt1qSHuhg+zxi7PVXNolCk4LBhCeUKnIb4nh3zsF6znQ8a5kQVugc1ZDH0ZtI5azTQyQIL5jevvOmH6fwQ9/AB/x0TpAezG1GLePhg+QAfG9uY8XZeIQNpSBMkNqnY0b7+ObBk4VHvIrRpZrZsHZ/eQHuvLVyqC/Z1z8/56617awYjh7ov609/fTafD9mFximukbO1d4eliIyffDIopVIxudJaROVzI8/Yu5ZjcrKs0oPYyVckcSywtYiIdcwy5Jx43uGM2/+FQyC2RFDM0C4WhO+QH82c2/PchFYcrtP/viB/CrasE7uSw/E0ALexMwhXTLdYeGRwi9Rh9Ck3+t9KWBjizXymItVsc394gF3vvz0UhBSI+d98L7nFtGfjeXMr9s5h1NVxch9nQy6zm4/wt0puCDnsRcUyremDNTrTiPKE1sDJbsggTznQeTuunBY4ss0wu39eHUel7QPxzHnf3xJ4XWk/OkFg+hXYnDPWllGra6hBzNmi1BPg6AeoAe55SFt+vSkMIVnm7+8Akl6mW9+eK/+eDWel/ATrtVZjOCrecgEnXI2I5Ix8sCJ+xtKOIcB43f1SuHnp71qANn8aB0eSi2DyXnjtbOlHkXwy2+K0FUHrqYnE2ShsyNoe9+fJriqEEinBzp1dqzMgYovPKGPBzoh4eDQzT+JSahcvMV+7QeqFnUv5oH98Vo6QGehvp3Dzd8jI6rErF9fng7F18YDiqUC61LcS/i1jxGKO9vMJv8jj7/nvYRzrnTieCCBVH13BCmv97a/VCrUpLFAStG14Xye2gJ6wdp4B3eQnEV5Ygb2D8EjPz40ypOy8Vyy3yZ5admhKi8v+ErsFMnpp8oodhoMo6NOkAUsDsxU6eYf/yWmv42wHqUzC8tLZWOw146Ujvi6g9pwm4jcNNbA5dqph62mYpLs1kUZRunM/PiKx7/Dfpjbkauh/DV4PHphlA1K/LlCxy9npEmvfTYr/pQCazgLBN303FkZeWqh2nQL+tP3VU5XUGZZjY8bv2OoQma4dumX/L7vVAgfEZLZvCOXDlP4t/6/Rn9BJn7cslH8VrujGU4mkm7aUxm/p+QLz5+bT37+aPiWRxW+A5R5h5XvlXHjPyIqeh2pZfMJx7rgIdx7NkXn+doOK9rdtpax8kWkomCqiVP6+o93W+lNC7n6QERBO8QBXk695sz809Whlo4nEn6/COC7NSVw4+HI2PKLLd/0jqu5E4h1Tx7OyhEpOrLldkT27mrOGmQNC9xHGnhlO450xE39hTl++MhVZw3Me5b1oAfvDP7laY2dhOKPByBrnewBZ8tQQyaVTOI+6FsZL70hwidMT0hNd2dnxtwjh/XTdJB6ZqTsULv7l/CcWYQc32bDtS8+NjTaQ+v9eOa4a7QU5l9FwWJm3sMBKMkMFKtfvVJJ3hlJ8IkBW331lkQwFMKmLxug+PVGkfEJlPfG937+kyjh8HKwSlUGBAc+QYbu7YZZbcUZPg5RROzutB2Z4ocE7gTcIic/70Fv93EJeaeoMM2rlH4HIDBAB9qZGGwJtvsriwhG5/eBSFt9oEtW2seNJ5JTqNbOAsa7LdJ+3PJP/e1UklGLEBYfikeLs5xlzscrPF1jSAzPODtbvqnDgTgKOrUKpcvR+vCQ0viz8VVKSbIXe5im+hHJN/9MMbkIX9joRezttjyk//lFOUCFx6D5Wq2cEu/+9N8p9xaH6kk4wn1T7JEncz3FHVvyR/N9mpEdjaPyHeWD++evpM5lFJp2swi3/QVT+ygNbLHedsBhpxXZztyA3+8Dv/UkB0AB60e2GfAg6/7n18NlKGUeTt8eki1/C+nH7TAoXzvw58+WpSLfv/oq3D1ZYQPYj6IrTREJtvq25SvtLz9A5xeT0WGf+iXc6i3R89GtVjTWPmASfo90m5Ec6rDFDJrSmze+2lDy45ld8xAJ4izLYU7c4gF9WhuiBpYdzshMCvB/Wgq4/24pWAz9QGTFkoYDK2IbwBv/JO4jvIEFlPMV9FrYEUk0T2C9SlEKe1wv5NEftGq8HkIWah7jodNeaaop4LgaqvAYED0iDF3onWPh2TsZeNWf1FmQLkRwHcCAgZgpDr06zAh6VtpjYKPHsBZS6kOpdN8kCbI+JBO4i2C9NQrSTNQ5C/bMC5T8uMarfb7TLundrUt8TpFpJBisNq5mOCcwJJr6lsIDxyIGatXQYniVGoVCcm/h7W6eUE4ipAyQBDVUjdXDTPqdwqlZVh9mr3eJnAs1wMzNbQv1aTSRZDqMQuTrvgSgYAskSfElXEAOLjDN1dhjoBIo66P8pDCOfRkFQeE6s6KGK3ydHbTNwq7pdFGEFWDrdiLux+Cq+bJLcrjPXQ0v1tyEC8ciFnyeV4sYh32lrFc3eUHhPAHv27RlNT9Ds4b7RNsRBZiTs+5afgXpEmbe+N2ldM13tBCfUQGQXvNW9tkLygU6xDojLbpI2RK0pgiSIpKRowuDsyZllcOr8QmIG/d+tZZiqAPzKvtEcuizwo+8vkLT0RdyqjopW/F5LGC5HBuisx8rXI+KLYprV0hIutdPMN3YaIU9K++RyhY6GKuzlcOQcLEHhCEdFuY4jeC9xqs3HoY3bS1/3R2Beicew3TKMIrCx4RCNKSYdq9PRblDsp3qhyk5Pd9aNlulXEIPpxeiGDsrpH2IZvBE0oTs+OEpo2yu+pGlWMaMu++zhUtiCeZdV3rz5dUO9DlINuySPkKZmogZbo5+DZ4MWvCr6wSFItGUoJkVD6Rk17CaQXyRQSukyKspl4I5SMsa8LLrE5NlHLDghpHEg31PkOp2V2V1zjQFF+oaJCtv24m5y9aPVX1aj/O9IST6PZuB2R86ZAzQGmqYzDPo0MgR+/xCdP0s1wQaqrQQSb/6w1rmX18sFU7xwIs9hezsf3ZiopeWdzjkY7bEQn6BIXoOyNtbN2dNcpzARlFNFMcwALP0+RbikD56ZFpdW03CO6hhajc6fjvCmy5AenuwL5BGznsKMspvgw9ud/tETOXbK3QJahE2lqJioeGv1bI40ngki5168PhUqjlK+xd8SPyElM68hfTDHr5wwSImajGb2WqEYgkpkx+RfZf5bK4+WfkPAAD//6RdS7eyPLP8QQwEBNIMuQkISBBQcQaoKIrIJQHy689iP+/wm53hXrq2XDrVVdVJN2JBcsH74fAtaCT8Bpi4/RnrvXlAkyhYEurOmRe27bzUbT6xEg7fc0ymB7skE0vPDcyQSHgv6T9z3trtWVG22gffMtSi4ZzWdzWq3wIu0nhrsqp58mr82Er0H36o2+GFbuT3CuXtL63Z7FMeYrfoD8BxS08k0wKErILSg4VmcxlIyiN3SgSq53PJqDCChDZP80Y1VWx7cjvTCB2P9IL1vnj53dbpY1jjkYwv994zfGSiepIyl149vq6XyRsUKPL3hyjH8FzPHAsDtM21Du+Ck2Hyun6OEa43Rti4A6pbCVqiyE/Lw8fkhJMpLvdn2CqLgS27E/52HXZgjJcNtV+/uWfDkQA8G/uAzVvdJyw5R7b63Uo36hy+m6I1YCtBetvIYTMNvs846yDCbxgTind3h03E+HHocYGA+oKaoLHYojsw7qXRUBDfCT1EJxsCt8xowDVcsgTJVKo7zjqF+SInCcudMoW+AJlaYB79Xq0uClzSpKJO7v/65TeXGdxJcqJ4a+oJ//WrTv1ou4baKRfULNsJb7TZH2psPz2j5msaNWp0iAJ6/zKPCfbUZggczaIxWpKC2cmdINY/72Qymh9qEk+eICq9L9l+RVJPZtMpMljmKxT11iim2gkyqG4VoufdeW9Oy13mlEkKcmzfUYdaQa5D9EuYQN2zsk1+JyMCWHBrE6kO2oLQgTfg1GolzcVv7g9CsWTqrmndEKXx1ifNooaycX+8qZ0LFHVK+SjRXXtVYZM2UjI93tsYmFKsYymoXszVVs6h3PMDdX5FxthlaS15fD5dehWWOZk84cEpuxJn4aiCZC7KK30BZ+zrcNu/T8W8HysRNZGzC8lsF2h6v4UAAveekTmfAS2a0hnygSoWDvq2TZgpjRlYWqrj2JiDYiauH0DwJY8/fE9mxFMNIfik1LsIr2Ihye8FJDuU9MBkrv/ds6cIFm0cbLw+OybsfkGjgDpkIfcUh743c/4N+6Q11/0r1vpEjw14+WDiQ8MZppBtringW3clW+I/i/FLFAIXQZPIptv2ybKLkwW9/GOE98IyF0NQ/Qic099I8kDXkLDfXCoIESupXwUMDc8vP6HG8ZtwXtfnohEqQVFXFunU9GmSs1lIYDw4IVQABkS3NGlhjowUe9uLUW+b1/4OqIkGfAncKJkHIrXwlz9Nf5jMeQuWBBZ3f2HnM8b+Ymy7Et7xecIHsfL6raaZZ7iQAZONf/J9NjMwYOhuTijyS2NOmSzZ8Pnl07/fI9UpLKF/Kxn2laI22VRqMaQbUcSWdOqS4cDFFdy3AU/NrysUJDrIZ+ReN0EopPsaDR23ayE8dAqZTuLV7MzRsWCbPa/YKp8RY1ZZpPALLl8yjeCzefbdAX5v/0mEu/3ymRBZFvyC0xdjUd/UY4efNthhqWNnA89k5SN3qOdPhne1uitepSU1IKT8v/g2iaa8NHC6y5Vs/QmxxeNbESrhLFBdDV4FHTZSAP5xsrB3WyrElHHhUWJYL5yW8sdfsH17oXecThRPpdBPHbfrYIPKIOSsY4dma3cnaJwVnqi75JOQm3Jyoc8fLVk3zPnstZvv//KnF+ga2zqpev8Xv8aDk9mcakqgHuugxf6Q7RGTwj6C+b3tqU5mvp8bdl3Xr1FS07Xe9USlsEKXgo4hH4t+X7/F7QAHbnkQJaFOwjvGAkhbmgPZ3p7gM/96JeDPhh+KsG4pPXx/BNI5dTH2VJFNP/dnoU8lctjv9rG5tfVKU03yMAk8yrig2o13//Ar5B6bnz+9DWLBaE4xvc/3yCQxjix43lyC92u+oJLbBHD0c4Ixt63NLmurCl7z5kPN8db6H6xBDGP2+VHdLJZ6uB/MCnVWfaA2n89s7vDPRlc09LS8HtZ+Xla6IHObv/Du2wc+lZuHAagQIER710CiYvUElE1zIV9hU/uNF6QdsFGjNDy+i56Q5Pn6i/+/51MIRppl8jNt4C9+i4VvQAEBuRPWTqJs0iXxW5T4mkatRbvUrOeuJQj5bGHbfOxqwuYsBvJ1tnT38VDBbq3Rwe5wVsmyqRR/1lfJuN0cRhp8I96fvZ/3Quv1/cPX8ZwHA1jn7hd+vePAOmfb5giDUq147jFa64UHUTrk2LgJarJAjWIolvyx8ueDT/A7TNFe+z0JjIelZ3otB9BU5Ux6W/ZNscO7GKKPbYfikJ7ZsH95L+hyQcBauTZW9i7URX/3j5XZNZlezwG8vZdIpsk3661VFmd0E50pXDRlby7fc+/C+1ocaZj6Tr9+nqILIRj7fNDXE4PX9LdeaPaXbyxvwyHYvRjdhy+vmHhOr6CRM0xPp+je99/NEsN9chMcN8nQd6/yFakDpBbNTnvsz82pDYGfbwo5SQvHJv2Q5TBfyicO1vudRmTb4BjPKhRuZETs1Acx8jmzJX/8btuiBNTtzL9xuerBxXfEFC6X2Ajh9+jR8sH4jExBPuLgc50YkfeeAdlnichrzQ9Teqk1BRVbCKfS99FkP3YalD+LUc2t22LWBHeB/fYiUM8/Sv50d+w7sujbwZhXLLaAPrjwE7qF7lb8WlzmWSDMuxHv4+hoLnoWK7CROYQPWc33FCuugaKPZeOMtAJb/vL17Sr6VMtuO18MPl8PnuMrx+YeOWiKRL5D503pknHDioKu+AKB+iuw3XLvYp5fUEp/+k5Z5KRY3mgWQU1NnaBA/PXLQ58NyZNKGYdHwGwZSCnCxoy/Ib8/6j1vfwwbnJLDGJPP4v/jR2EDO3xQwmPCP78wwTOMEiIdRr3nWV50gIcXj/VZGwrKe1hDA8sbvNsT0Rz6r9TBvFm3jN/IAQ0rP4T2MZzp5fndmmzVp+Ltezhh48Fd0XT/3RqAUtWoJ34Vc0nfQQzXRFmw7Q5Fv9R33VADMmvYsy0jmfzrQYED7H/Y2vlNvbA+CWGuMo2cb9a3nvDt5aJLIMTr+3MLdnZVV/nT77zxzuvF73YlaN2UhMI51pKpPLsekrlHEm7nJ2OLYH2WPz1G/v1tXOcOqAs8trj3Ew32FXPoqJ96ahac7k/ipo1Q3l4gZKh6JsvRPHEQ7yXAf/FC2KHLwTpQj3CGkfhzs3MmUA4XQrhfFxbil084xM6DQ0P38kF0pJcJ6iu7U/NzGX3SnYxU/YpFQLUdlMn03dVvcOQDT9aJWP6Q3ipLfbFSpEezWPrJ/2iaGqUkp44/IcSS3baFzxysp1oOQ7KUT6MDEscVtk47MxGCwTUQ+DdKvdPwQXO4yxvgPHoi4Jd5zw75dEfwXpSwfdz1ftvl/Rt+j/OeSEXW1GwaOUDvmtfp4eg4Pr/fsPNfPsbOyEaTbsZpgvz6eIbqy73XtC+NM3T94Yn3brKw4W00FnTriAh1WUw0uNZ1gMu7D7C91KSY//T68r7dafCw7v58zMPlT7+F6fu09L2NXpKaTAcrZDTtiyWa1lOivvIjf3xaYB+ZA83Lvn/PyxxiKclQvFcAeyncktkaOwm2GzyS7fn2YgNL7w3wij7g0HNDczESvoH0XA94J/Bavfz5AaeQHlf9v+8nt6lE9LhwQbg1br4poPghKX7zLahX+CljNP+9UJoZKtnSuDRn8/vhkfNkX2pBsStmXPu5Yp6en7Wr2cb/xwc3SZcQ9XCtkuG4nFN0OEND/9bvYMBGgdfunIaCs43rQUrTCpaLnYavwLolSxMRC2Hz0IUCVsd+etX3EpH242Kzkm9o+nu+78BwqN07FWKa5qdoN3wtbOp0RuRWDmc434eJ+qZvJdNznEU1N12ZCEnPF2MzJoCuO+OCHdUsC3avhzNa9QsRxd+voOdQCVDwHR70nOihv+RIAKRdE4Pq187w+dvxKcqIsz509+RdtKD2+IbgkjL8PkNTs82XEaj3xYL1fTb7484W7uCy+IKD1T9iHiUDKNYMqz53krkN+jf86a2/eBnL0zuF1W+jGvpGaMt7jgEV276pY/tHtrXRS5HDsj6t8fFKaDAf7vCg2RU/rnafLOqj5NDp9h2wt19+JoktfvjTK9Sbc6tYBGuc0KrfQs6RxWS88uqKB5eeTMERm1M1FBZ63GSXep/GqKe3W3twVrktgU2r+RMSPB5ZsDnioH4dEro9WC/gzI6nOCMXkzqPSFRXPUZ3qK/ZOH3zCdzpKFA9U+R6olW8gHmqP+H48LSE/WAZkH68t9QDCNi8hUBCov8q//Hxv98D9bpRqRF5WcL25TUGbA2ITNbu6k+nxCKgP/mU6lxyM2exFM7wHPT9P/08d/hpwdZ43/70hv87V/vlj0+u+c7wBUXepch6hMX6fGdE1EcJoN+3M+GXzEesaGpFzu6pgTVveLMpYaoNywcoNXlZ6P/5K7VsfkJp+qQrft44JEr+SL1pOqNp//IqdWg3InmzrcJIhw8xMhzzQqb+9GB0K0SDKsbQUXv1I4idZSL8xZv2/V7N+WAiEfpOSMOqOtroH79ef486zc5O6J/fuvqvWDs3er2YpyJFD4EaWDuHYzHHz66B22N2wmbFz++n6giksaXTVCs4c+565EElpAKZdajrNnq4EvI5vaV70dvVfLHEIbjKWQqVZlQLkuvIVphylbF7NFOTGaa7DqLqMuyLp9Zf9CyX4Oamyh8/9+eN7MewsItMmuLw9qdLtHPhHkkB3d/Lr7nqb0B/esGxhhda6ADadv0+3m8o7sXnsolQf7Dv2C4Olk+6QbShzEYHayP4SJEbhYfPK8Uhmuxo9cc3b2jxuQtVTRDNPz9L2US/OeTZVkHk3FcWIM7+hDPXH4uJl4I7EMW6hlIduMWS68xeZ6Gr/943q/XEhdEPH+EsbnE/kfxGELbDgIZa/fYnpZBSqETepidbo8mc3Yzwj79R370LBVFe5Qv6XXvEN6X51KwcWgABOp36gbiv2THkI3gvpCRcdjRq3jEUAH0JNHx9roNgknNkAdzvRxyoDi7W+LPg/siVsFeK2p9RfFHg/qE1dqzBQCKXcx3oeWaHb6Se2OCAwMOpea4l8E3UL/wgA6x+BtXai46W5cffZYsvHuF4Ho7+JAqBAn/v3wkqq59WPwsd8+OeuiFfJoudZTx616Ie/oRcNcci91qgj6TEJqqeBXW5NoO9R95hc7O+/ep/BmB9tRN2P0VlTrkovcCLfhrdk7OJFunQpuitPRhe/bOEPJ/aG+RouIfSx+zZfM16BWTuloS23hoJDXmDg2fxu+GA4+JaQC/pDBdbOuMd3b7MvquqDsa4HbG36qf5RjgemY93i+1VTy7dyUvRn79i8/mRCRvZjKS/9VAWpK/7qvnxf/4RPki7FLH9uVz19mL94/PtXGcxSh8Pj2pzF9dbXooiaCbxRr1TOteLF18HJBaSS0/WUyvkS1Hf1fX9YpeL5GQp1JLIXVK02LBajKa41FN1CIYjPax4yKe31ga9OW6oEVi3YnKqfkLGdqHYSBUNsd9jr8Cx6wSyqZTRn47LPYV3rryItJzLfjk9PoC+UxnR7Po0C8HFkoamD5aokxmj2f/pwzMWT1gX7G+yrs9ICdS+CFszZmjKOzEHO7zreK9EWi/clYlDVFeSVa/UPZvltYTqfw9hvvqr3V+9ilzJGLblp+xXPn//50cdtV2VUF3vLLSEroAtsnaBgSwFRRbQk2x2dlIvp8fIrTsc9iF/Du7mdIkOHioz6qx/c34vfDc8JNIiks3j9GKTKj7fcAm2cbiMVPEn7iSHsKg5YHzesp6s9RZ0Lcs3/vP32cOJI5Dal0SNUH0V8+uyN8B4ls4/v3lpqdqh1e8OAUU+2hrbsEWf6BFTbSt35qQ/HAvu0rALV7+koPgiSSB/dZtU2e1jvvnFyWCtJ+FHgb9osjZqjpT1cJH3aV799PI7Ahnf9dh8/ppkWv1Y+KvHSKt/J+7PkwAVQOq/ph7ZOyXzFtdoXu53D3HKySU8FJ9kwpfRhl6IrZCbbcSGR6I16uqPhmo3tGhKUaT8+Qk0wMoeTfIJRcAP7YvufpGYjPl0aVEhXYpQWvnvdL20ALwl/vC+TLp+9ceiP3yjWj/y5nLVyhRknTeJmN9QPXXcoUVnFbbUPF6Eolv9zj8+SR2WbX36tz5CNR6xCeM2YaNQiv/yk1dfPES/shCC5qLzWk+U0WR6kQg/O+txuD0lyTAV/B24vhz/+X9zoUovWOsBhNWLwZYnN+eghpaFk32d9LPlJxM8Dboh6nRMzKlasrUvczKH7/3x2c+nFLdwja9PAvLV7bdXf2nBr7pHuInnrJ6/x70CPwvlhE8Lgf3zR/78YNsWMnMeWvaGy2mZQ0UZTz4Zgh1BZH59MT5l75puk30Da/0WlyjqWVcL66QrODiEz5hnzp1JAOlYPYfc6j9Me1mMoLg66eq/r1vgJ/KGu+pP2DMFr2a7i2CgcjFi7A4P+S9/BP/qr39+SX97HRrI1OBGI7duk6WRlPjPr/vjU/1IHiIAu3vp6ge/WXf8fCxY/WKyfUysX9o44EH0q5KWzDqh8fJsX//qr4HQ62wrp1WqWl/jhMPVLxvyxGshie8h3j0+szkPZOrUs/jqKNY1qaZxVGiIPF2E8V0N69nEio3y2EzpTn59iz89Aau+xGF9QvW44r/6V09TH16VjK/LXoO9N7yx5hmXZHYGw4bmqtXUrhZSLOndCeEdaA6+rX44XXsEKZfGvdHUAILmfrcboDpbhO5laUiWb1kFYD6aloxO+WSDJNYd6mzjjvXv6Wsuq5+mklcbrPXEns3CJij/1Revkr73Rb4BCel3Ycb6TUv7ydoIOVzUpgvzZCezVneKM1r9ynD+nr7+szlVAXyOUNM1HyeDuGnjP/8hnP78j6jzc1jrW0SpLx1b/Zby/7WlQPrfWwrufXckcIq2xdw9PgBdJ5rUqqUSzbeialFm7Ty6a5CSjKVbKfCV0i3NM78xvxy/eDDKjzwUxesTfYa9xANX21vCeWOTzOdbx4H5Ot+xKY1iwUh58eD5qQfy5oNzP+/vSohQ2BEaKErQL/PlkcFksi31D7rCBt9WCPoKnIz93e3Wr53CQkiz2gl7/kbYq10yBe1P/AZbMnfyl7uFeIhZk9N9+FD9n7e1K/jMa6Mlt0Lm5H6RCP75V2NDONn1FM/TG4TCPYToWr7ZpFzPABc8YXwVTnPfL/t9oDjeYww5PvILmvFpI6vN9xCK4uaZTCoRFBSHYReqxv3Hlo1WGODtrio2zy71p8vPXOAo3wmZccn3NLGfZ1A9eib8ZXNIhFwXM5D3Voj35fBhU3qzCCSPMqJ6IOtmvzmEL+R31hlj4BVzOVfiG955LlLj5//QfJe0GKbP/UE2pX6s2WPJY/SWNzx2p5PmL4K1L1Gv5gvG+klGtPfNF7L1fIs9T+j82XuHEzLt+5dsrr+k+L3KYgDnYxQ0TE0joeZyfMPOQgcaHnrLn/dHx4A4DLoQnv0zaW/6ngPsGpdQuv7aYhokmYOzcZhDuIpnNmnv51tGX2fBfmLZ9W/5mhX0Uifi0KRuvTgQxn/fx3iRuHotCg9QXQaZ+hVN2VQd9hoYH5EnZBiIT9Cz9OB7oRb1sFcmy8UWXShqW8Nmfe8Ysfj4pbq1YoZQyK9+HuDwBjurZrp7tF0xmcPtDPdrlOB0aK/FpIMqIf4z3Wngp4gtFV8EoE2Sg9Ol/5izKF08eMgPK5z98Yn+/d5vy8f4sNnvfaaVSwunvadgp69qNsRtNih9LSlUH7CazNJ8vkNhlAfsr/E1f8P4DPdDXmKTqVe2nCvujWK8TnnXeOr38UWX4Er4lh4MBj6rtoRHg+FSHGigsiX7/iz4e784ryp/hvpkQ5fdd1jrzHU2VVK6//3/t9X1ND2dFtCJY+NQMX5oVsjPRttcBmo8z49iyrnXgHj7wVM37r2ePdol3zi7cab7icYmMwwlBLrRlVBie43xXbyUqqXOMbZuFYeG8T5X6mExBMJtr/dkVpjQgRordtjkopr82qbpwCKig4PDoPjzvs0tWEt12MTesZiMr7ugE3g9xiel6tlGCQclUckOH6zI7eexHw15f9yZeB+99ib/gjYH+Q07fBkG05wnYgXgIf6JH2t897CLF5XkuwM+QviuJ9IeM/VzliqaR98WEUG8h/CVztsQkd1UT4k2WlDw1z32QR98yn1DQBy8KTVapaynuI0G8Id7SvfqgyRUzfIKLlNm0pvBSn/yG2eA6xx+sb471aw325mAQKU93tnkWDBAi6gKwgZTrd6tp4DlOFbVFGOysFip2QfGADnebSTz5rKtl1qLz0CXkuBQnsuakfLhorGrMI6TfjZn720voFi1iT3aLv0E8T0GI7mL1Jxzu+C/NsoAgVRj8yX1yTjKUagabbBQMzpP/ff9+5QwBnFOTmBXaKqvmq1GhmsScfup2ES9XQe0abah+5iuJkOFo4Dlzc+18bqO/uHbVeDqcNP6JJnx7+DCu4lG7NRnx1xOsefC6LzuFJ/MBI2z1yuoeahnapk9Q7M3z4ButfKmh6NmMT4XDFE9TVKLDyd0ruf0XbfgFQHBhvL81OzpkU55HuyW7nKfM2c/vHYgzVxK2Brfo3+RX2BS7hFuu9/WJ+32U4KmPhLCjN2LLVel5aEJIozd5mr1PRCnhaWWd/SSZft6tuqEAMMTCtO76vv0PAs5+hn3murGIBXkdBB5ENCkESBelCzStc3QVYCapuYuTYZke3BhbL1j+B31U0E2gDtkEd6h+YpPw0PRA/hVQ0YNPTdrQYDuDowYE/Vu9hYt8+WSw/WIVCJdtJKN6gAc2tB3RWM0vusp2R48+cRVP7qul4Ql9i9Fn+QxkreCX8W4oakLeNddsWNZkT8FV6UEcntp1KGC6LP0dJpgk90bbLGjVS93VEhwdEWETc5bGzl2hQaeK07UWQ58Mj3Mn4tQfBEJzwdiP+b418C7lig1iOomc/uMbXjYt4Qs6qNOlrxqczTr6Tl8N882+WzvdyKt+SiUFon1o8s5IYyvU4UNrRbZrEguAB9EH7I5TDWa/AYT0LfvDfU+EV9P28K3lC4rd9jB6qMgXZ+F0NzbA9ZytPjzNyES9PU6C/JaWmg6OuOCcHUr6EEkD3NUyM8CFEQT6dmR1r9XzHhkDwcJh5C3/vzVvu6//KNre4uJYiwosA9ONi78ap8s710jQXTIbeyeTJctv6eUwn0twVtnFhbzKGcBQL6r8eG+S4rpetssSKvVgmwvgVcsmo9EILlzIJM6N/U44EMO/rmvcXjMz2x51UsLs34+45CP+oR+4BPC55B//+Hb/JZQCn94ZbQK9BTbmwrZlxuE2+1mYUO1OU3oOdk54T0zNmdN4QF+9PfCznJIC9rgUYPNSWd0V9WQ9I9HXsHZwHMopNahWKJqzb8PT8W7x0X1B0yPmTJVQ421+btnTDi5MXyq7IpT/maiJbZNG+RajgjCAuo/QTdHkE8WpsbpRtkke90Lzmd1pKHS/oqBjCNAoRcZ4bKM7+ml1CL12ac3XE6vsJ/CWF7AYm+LhvxH7Vng9p2SmrOP9XoiPntx1zOs+RPrnJ+t+JsRpC43K+zqu4Cm2YkiZViWF94dBmoyxUAN8g9+R71tQBm7NUWg+n3xwPoOmcWk/n4p3K9xQveh56GZGJKLrDm0w231ahKGfU9EN+Is4RCddj21+0yCsLlQIt3firm+30lhgtuvfMnzp5v3E2HNRyGv4FeybH5YAXT7yNhadrtatG5OidqDzbC3M/16a9/GAa5D2eHwsvCMfrSpgVNLpZDb8G4x5X0HwImMo57TPHzKPhUP8q4vQnXvKwl7nz8DdPEvxX/xPp5vHcDz8xyo+zx8apqw3wvFc1iGH0XRazqd7iWS6PtEd2OS1Ytk3M4Q//SBnk+nwf8Ua6PEqbaf+BDkn+T30NsQyerVDRk1XH87i3oOLyXc0bBJMZuut+0Ciz3sqK1/F59i3+NRUu+zcOYtB4lS5Fbo3n1WvnEt0SS9Ow4aUAzqa6+eLX4rpfAuxk1YCi4xJxpG8A+vQsXYs/mU+jbCzyqiGdtraBvHXKNc+6sQRlTofVYfdiI4v+XyDy+n+l52SvhbXjTMsrSfyp/Io0+Lf2S+ZpG/8hsLISQQ7MrivA6uKnP40xc7/igmjKqeDfCKE+pk2a8fmVmvXa5KA4f7tYvOe68E6Ds8NNK2lVDP5UbjoDjvU7LF6iYZRzqdVdhdvuG05vNRHXiA6Z6+seuXm743DCVARfaMaSCmo8mOluGCcbQloorXgY1wVQPl8d3ZdAe2hrZ/z3NM8lM4OpvCnIuUc5XwN71oxKmfflB/vzPah9SiKz74U4bN9O/9/Vs/M1PM+F++P2r0nQx7K6nU4FHu6PnbXHtWiGyBOYQL3ttow9j7nSkw3r51yMllV7DJOBOYLHEgi//ki0Wu3QieaVhT/fDQap4t6ymCZWti80zCnsIunyA67kKirvg3w7fK4LZrachdglPyjy9gMQ6wcz6pNXknuQVrvgqVz/OJJjk1cigqYoRLup2KJe/cGIqX6VNjnH/F8nQSA+7B5RsqHvb6ycDqALdaetMMGVMxbY99AP5QpngfTl3CrhHEMGvHJ9ZlsSmmv3wLZPvA+hL/zOmF2xDM8jlQne+cgudxYMBbwFIou87DnyJftpW/57X/XkVzZIoZQR00JpEu230/HR7YAJDzAxEUk0f/8h19rDa/0Y/FYnqYoPxxL7BZKGM9fRlqQLCzIzZ/H4Smm65z4OaZh/cFloul3UXDH1+mzn1yaj6epTdiZ0mk/oqv8zF7NyCd7Rt2mKX77NSeKkBd9QnBvno+Q0vOwbtceKxxF9ukjjnG4BUhodo+skwxL282Mj48j/WO9Oz3l39wnp/+rcdZqVQF9U0sYZu8LwUxPYeo5jP5hc+NsUsW1SmIwinhjL3q9GJrvvRgnrk9Xe+HTdr2mSprPsAGubRonnVLQ8Y89HT3oShhbhVIyDe4kvrjYzaHX0vfSDnL+n/rsdbyM4xOdSfch0zJ5KS8DZ5UkNB1k6H//eQmB9Oyf6s+2SR02eshXNIq+Lve5C/fAhDhgQ27Mfpls18UuLnaSP0qf/XzlekSbEJuJJI/BohXP3dD4ZOswvt0iwryLmUOEfa1qfdGr2K5ircK6pPp/PMHRvmzDxBrDxuquRuRDePp2sLnGt3pZRdRf8k7LVLNrZ0TTju5Bb/mI/CJGJPX4V0ly0ZkNkzjkeL9IeFMJpW8AW6ee9Q5Nx6a74znIPbmLdV3neiP38sSwPX8k//hD4ur36LcrieRYjdZZ/fq/LplUbOo87lJ/qT+nmcY8DJhLQh1Nv9UeYDt9c3IvEN1Mjxeogf+Kc2xJgD4N2b2IXLi7kadP710xtsJdvdit+qdwGe977+AnE7rBXvvYlbI01bn77UgN2dT+ONFMd4qVYcZO/VORqxJpDNoEr2Q+W89bY99CM1ncjFOybMmV0ubQMWPGNvF2PnTJlVLkBLyIEvz4pJRE9r87/NwXv2NyeuS/95PIp4yc94fsQHtkZ9Cbnvlku6VxxOcftMYit9GrtlQP3j03JhvGi6HTTEWqehCs4m1sOidhU1VpU3gEz6mRZssPjseXhq4ixBSU+eFfibG5KpWf03/9FJCNiKyEH4JVyIfkrtPP150h97VTWwPuskEPn60SNidSuya9WSy6NuVf3yR7jRY/vSQBph6x3/+1vSy3fSff6UZ0g7NePkY6LHOVv7jC9StAgXuhnslLILJH95zmcPl6FwJRJZUdPysd/AhWo7N7+HWM54/RYDFKKDamg+Xdvu5//lf1F39lmWOPRGteow6WN0U9P2OFLicFY8oL0kspmS789DRLlU8KMpQT11IPcSuMY9D844KYoaFAVIIL3zJuJ+58v03XEKaEwkZUcLcdxSoB3GZqW0cjj3NazCUVX9RZ3tNCvGgBwStfgjVe8Vj26/wrsA1owgf5sPIBqjWrlfXhmEnGwu26qcc+L3yxeFyD+ol3XgpamtfJp3EkZ69JuIpplxmYRlLstk9VWYDrpUwXJ7foB8mPrvLHpEFIoyJVE8cPK1/6wkLUYnYSXQHCA9Kj/VsmfpJyOr1FOHaVSdLeLTqew7ss8uo6S6s+OgHmKD1iEAkEvPm0pJDg2SpD8KJCv56qvfzT19SIxiTmqEW2confb3+/Ee0dF9L+seHT+P7g+jKn9F6/9Tbc7diaQz59acX6C6OST2JXJ1DdHRCGqBqMCf2s0pI7kWxnmIlrJV1r0Vhc6LYP0pOL6z+BorSSqdpRfeIfTTpDdZRLqn50u/9Ui/URluL32Jb8rVaXIcIwUuc41BoGtcnf35RGLdtyI8P22RhteXgZ/FPwlf7rlgcUR7Uy7DBZNWvyXRYwgV98PIhKheXxRT5s6XyHH6S8/np+6t+49CKd6uF/61nSXguYB1RSYTWufbDircgf8/m6l8+zcXYOsq/9/+HD8xcrm9QQ2+Pdy1nF3OvRRxE+00SytzugKbNq22RIdeIWtnnYC5H5sfgqI87SbEQ/T2/DB731qDO/OXZ6hfniH+PP2xK2dscL4rX/PlVOEjohw0PQZDgPtML3plrF6RXWRClnCQWqr/f1A9I2StoMwYvuitDz6TW7pop9bDX6V7Pw56ZhV39+Tv0sH5/DoPPC21OJsMYHg7iVz6D1FNsYX0uoCB5VWWIHkUUzr3iISTcK1dtXpcT9r+ZZo4PX7PUEZQDYa+4Z2zlu3/5kRqGVvs02PgDLM/aCYeD+i0Wpt4VaPbSkRpgbH3qCzWPuE8pYMe8R0nvHKMSrqfzFE5//t+d+77QfcrDP/7VT7L9CJXrtF+ofn9T858fnWIzpId6e2RtuAsb6Hf9Dv/x/VUP8fBTwoi6aVD648nrAzR034Uk4kkyp8+lgD/9gndgV2zxT9MbAvfsh1sqnM3mkAYlyG9uF6YyJ5jkvSMK2OLSYLf1zWIrODf7737CyitNc/44Xx4RaZ3VPfBHNJlmW4JuRjua8rcatdSabeSWk4sPR+2N/vH5x5u6dL3/YpiaMVbeu06he/EZrVPqJguIoSYYa3uFkV84veH0W0Zs08Ly5+BmW3/5meLWJ8XC0peGPOlKaMipqJ6Xqc/BNE2eDCna+SKx/Qkcib5w+CFRMh3E2EKD4FXhx60m8/eL5Bdw91Shgc68urd0+7/rzVb/QBSrnw2z/3xjpwa7ngbjqoD7rHbY4dSoX/Nh9sd38b5rnyYV/Cr7y0/Yi87oz7/M0Z8e2yc9+D/XV0pI0uCAT6u/OI05CUAa/Bdh28Biz6CTI+RP+5J68js0xdUvlxf/rlPjIMf1wtfnEv3pzT+9wt+Aa+Anzrd//uNcflUJfZblgn0TAn/O7f0Am058k0LBY7IsknGG266jBN0va/1m9XOvl4Hg3OgPBfPwcEazX79DoXXkfmmCY6a+TPYkPxpW/Z8/giaLH+hZqha08HddASNIEY2hFft+bu8B2reBGvKCWSd/9QH5XT0gfIOu+9vRMni05h/8l3+nDn1TtOprIk/7pV/I1a9Ads1rOEmfb00uNueBNflHbBeO10+54Inwq60zfuSV5v9Wvqf05bTBQT7WNTvE/gut/IY6x9xnozaf7D8/KETNUtWLXcsccsA9YeyPF7RwY7EOQsYbIqx+Ko2+rxJSrIc0WPn6luvj+E9/4iA6ffo5c9dZzCqJ8MFrm34e6ZRCtdToH/8nrzF/Ad611z99t/KdiwghcvpVb4ZI2G1YCs43u9JrbdVsVrrbBCYSz6sfHPeUlRrAsDmRf/g4cvu0hYIv9hiH57qY2hMV0UfwTuFnxWsS65sFbg/viz3rNphrfNvyqh+oJq0TQh56Fahb2Z9DTju1yb/ra45aQIQVL9lfPpVC7hVKj0n2v/3djNVWHRps38Kin2+xu8DTOW6pmwvfYpo66Q0NEg7k65XEHA/TQUTxKf2Q+cjHiMXdvgWFaAiHviH1YzMvHapGxlF/UwzJVBLPhaN9V2lwUJ2En/joDl0y7PHhkr0Q865WCKdvTtd8zfrJOrjpP7676td6maxH968eGMbHuqaFVhBovUFY+WBT/PlNkHyeZ7KVPnE9vHAVgn15APY83PUj8t0FXDOO/r3feTegBkaQDvi21ivY5VOt9ZesXPn92WR8p+ZwfB432ND4t7/sJhzAiXv9iMBvhX/5DtLs6WArSzds/NN/j/foEij59UDd93UHVR0d6o4XIyH2eOX/9BfZrnpioheJh9iAbyjkZZ+QcyU2sK4vHGHDqNkmlwcYrtGPet2osblbB8WJk41COTfzghmuPQFXcED3djP2TJfzCOhkT//qM2TV46gBycBhvDXNWRVTUe7OtkP/+F2b9x0HXDXI1GVUS7b+4HOwK1c99WoSf3oIqoS2FSFE2f96f/TDa/tXzwifq78+vRU+gpV/UOOpH0zyy7I7HHJJwedXrtRT/D5kgK+nCrs7FBbjLXYniAUuC9vmatXzSffP8HyUDamOucbmpDAnmM92HM6y2CRUK5VWkkt2oqteQvzAN+1f/QebjpbWyzuJLdW0rB82I4h8eqGahshw87FJjdZk1u6Y/dWDqXXU6T//UPmrjyBz9yj+4c/qF1Gdt75okSKtAtA+fUiGITSnqflEUP4WKazOp6Xu48teUbTfFOBsra/Mc+ov//S19UEtY9GwNVAXvEN6rM4HtH3x8l1JSvO2Hrm9+8Pzczoj09R58vqrX4uCWSGlb1W8L4usZzc5B2V8XarwYEVtP8vx/o5uZjyTRXnuenGaL7wCaPGpv5nu9YSmzlD+P1sK5P+9pUCwdzndO0lU8OORy5DGyobatVkVhBcdWxqM4ksP9dTWv2wr2SC+3y09PqayJu1hWWAH/BSy7cDqMdW9AdAIC8W759Nc1OsthGJuK3x3JQlNmhoSgCnLSLqLF0SE5tahzeX+po6nOf4sZ0SDdEBfuvuEfD3mwVeE7S574LCEZz8VsqyA7gY89cD8FYRFhzNSDG3GTqvpaNZ96Q3K9exTf5v7yULrd4u6R5VSczsk9XxtGgOaY3zC+uZzYBNaAS6VNlEo3f0qYcJhtNbZdSp2q9rpiVhNHGzsbgzVW/wwO2BFDpKa70PpdMI1K42fDR77USJ3w5AsbYU68Deeif0PPxRT5K27RBwOEZ4NLhqitbH2QT5PhNDdbE5Oeo1gL9Vv7B9+bcI2zz1BDo5OdG87Axr9Vj+jw/v9okEUvmqGujSC75A/qDVhuWditxDIXjcDm6ND2NA9ZAM+Z8/Dvu9z/ZAO4KFem2Vso5lH9GD0C/K/4g87y8fu52P1eUO36wmRftAylruHCSkePdN9YN4ZW3LHgvMBdBpLboKWRzd0kNz0kO5a6ckITi8GLIPoh4uzl3r2fekxlGl/DSf117Dxcb67CsW5gR2StWgI102tnBbP2OKUii2FGy3qo/3usLlukaN4WSIQhMqmRlKn5uyqjxKdjvYLH3gl7pdl2XbgFcqXOt8L6Sfbsyp4OnaC8cXRfGaMUax+N9eMjArd+/z0WhtDXxuLOqrX94sgn1+ge4WInRs3FkuibQfY+digu9dBSZZpT0rYN+cX3jcPUk9Z1BJAD+KE2+tMe4ZRk4FU1zWZ7evJZ/MzyCBSxgjvz7vE/+l6zUOGNne6Hy1Wz6/N9wxnV/hht0FhPV2q2IVOsHPsG8WUjIEpZsiqdzO1xlRH5Ht7B9AMKqO7h8D86axkKZzE7ot1d4ZkcQtlkmviPfDqyRfbVuViaI7RKVwSre5ZKxiu+isuOfZn4530H3/iIKOygEN/OPnMvWkZcLPyoIHyOvvs98kIErKuoc6PntBSkvi1Kb5Mpp41fM1ppIGGymo0qE0vcjJx4YGHUjncV0uvNbtz/6zUIyd51OuiIGGW2XYgZq8NtcuPyKgvOC+IRxiwW19qNF2q3IWndNmGy5tV/ULroYXyc4tCwTbOxbThyhQqtJ7aX+Pr49+gAfXE3Qivxq3JXrvcBoa3VrhUzQuR5HQNkO+pe3wujSaZfsHkqXttuuFrcRTr6a5FvKoc4hcNMm5CRDspZ/A6Pw65y02tF+lFJ6i3HeD9Em39UfenN8yXbU6Wg38wZ0VzS1DOy4b69yZNlt2pkJBS1Afq+0fdn3+/ZUKHl37Gtgz3YoRlt4BctHzYrvc75MnkqYWYE+radcDmS3QjcPYzIdzu1saAF1ZoqLBmLRwOk8SmfZXy8vWRPmn46oV60Qy5hFyDCB/FIKine3IkgHNTwwFTZ39apOUM+XNx6N/6YnufS0GOORxuceDVg8I3BkgX0SLyr3IRK08/gN687MIlqXmfuMLEqUZzkcLW2Bg++5FAlE/dmwufP6zVwk4/5GjZ39xweActo+muXJCA3T02PPZhTE3GCpZ48wkv0jOrmWBJAO236qjHfod+GUyngYXqB6pxwbaY61LVUGK+FroXbzxjNVcSSLKjhndH+VkQM7ZKZLw9ER9mOUtYvrk2EA3lh8baPNdMTT4V2Jbn02C9HhL6nQKWZknYPXGvesXbCNSy1Oi+6iRzSmwlQ8/TmSP3xfaT5arwFcS/4E7vSvLzhzUfya/aOJE52fD+rKcDQf1JOdJD7Qj18BLGNyq6044am+G+rr9lQcTtgbrL3u5H3bsAmOK7IN3HctGKDzlwT7ulrkbEpGuSS4naCEeh2lYXczF5bgGZTTbds1LpmTFm8V+8U1u4jmt8nIjibiONJuG7rqcf7e5g6+/NGq+3esl700I2V96x7x+fJok/Rgtb5/MkqjqZBQs2aQSxEDn03JY62m5dLf+LX7yX4r6m+7NvweOcm3+zPv2pCsoMXBGJ1NDmYz0j2bdRXO1p+DkMZj3KAutgKKMDGUyfoXbghDs8xksSXlTPr/nvplDgft5XId8lTk9+3D5CV1d3wtkxXJ8ISblAr/YZ+XGOYfJ18c3gWDwd6rbTrmAnoY//4a8n9y9zsgeOV86qUYeTdKuT0X12d/RBAyaz9r73k+F1AI1W3sOXxz5owvmRwOXG59Q9nWg/bKVCAs/I/FAlXFW3KP/ycOWVb8jXgop+FTwUGauZiY0TKpJ5/jR3sOahwYliKYhm4LkQbKkRSsFHT7bOIPOI22kbHLTXZt11i99gik2Bg6l5FwOudyII8d6k7pBOJsnZJvzDR7KOlWXT7PYi7LXlht2kktjcmrIGlnFUsP40XmxG+jZGr+ixx6bhuebyycsJSuN+IdwuDf05+nYSKgblGH5AdE1qiFYGK56sg4eYOXDPcFBmFN5wWHRFwpRD2MLt9n5SVz2W5ny9zRKEu+yK95zz8hfcShVIuWljLW5u/Sw2VQcOjk/Y+1gum7frIBFmfRIcr/hMI3FP4CPvTSKA2PpksKoAad9cpXozi2y5Tt8FCicNiOha66w9X59UozlJ1PDYDs3GrKSgvVqKS/38fyydSdayOhCGF8RAGiFhiHQiTaLApzgDRQFppEmArP4evP8GOCTVvE8VIaVGX5lrVyh1WUImI7EBe+t6DzZ+wMb+rwH0WssijD+BvsWzXpHhGcyAJ3FIjc9NG0Q/8fdAtpUGn8B3H82BL5TgqnkmRaR8Vys5D7Oq5oOOT0XkeXM5yg9okcaiTv+6Z+xaLyJgdeZSvfwT2S8eQXxSCNZa8QTWnayEQLXcBu0e6c5Y9x8ngcV+PCCgZPUwxx9Hg/chdQl8eqhijzy3YVgSgJFwtCpB5toZTkGxYF8qAFvbdg+hea9jbJpUj+bHi42Kk6ZvxG96z7z7dkRNaEsa1K8HmOaT/FA4/ckoMgdgrNZfpICdaRUYs/sr2vZ7hteQnGmgHueI5oMSQm/5s8mWr4f+bp1iGF/8E/XRfWAzhR2CNvMnmvh1kS390XlA8U9l2KLn7cgMgyWoZc9AreWK2frd/lr0do5BTV3xqsV0dAIFobSJugPjMPqPhoMVcV74ED2MQRTfeyhr19b+8Wu2eH9ODouxS7CTW0+2ZFf+A/fau6fBdUoNUmiq9uNNfPrEdTbvnK8Dm3xyaFLQwZvi/HyFl9r4oGgI996C414DQugZ1JTO0TAH5iGF+8akP/4EP74Gh/fVJtS3G2/i734OsCJKv/WBNXOSFZbtXGFTnAxjCVmTwwreXSJIT7ta4MtUQN+8arRkGslWaMcxnDSbQ9Lptn1i2Hg+4GwOlbvTxJj1LVN1izfEPV+hsaR+y8OTryHs3qN3RkM/NKE9gPCX36v10yMfbvqBf/o/T9TUFKanF+p9ug6sOhI08I0TFwdbvlqvx+sHPuNipTiTSNbfpNoGGx9RvIoEsB+/yznSqN09CrDxaq4cywhju87aYRwH/qOeb+ONXrIqB+sxGa4gmpOQbvaqBBWGJVSXASJlffbe6sZCDtfj2f7n34Ol8EoSoxv1ouQRrVB9O+pTuH2xKcn2MBPdhPDWXiW0w88Q9H5578Cm/9h96XG0Rvr5qkqXI4d4/nGLVuOUxFAUWU+kr19nM1fYBP7W62qvb7aePo0CK8GaqX6vu4FpL2jK37ubYLtUn2BhTO/gm6+O1IxNYVjb5+hDmlkFAX9iY6x363BVNx7AfuryGZnefz5s+nXBLifV1arbmgLKjChb/aQP4iLzHISulmGPBdMwimHqgkNZOWQ2DwlbUqTlsFUGF0F5Vw9k42EYZKaFgw8csxnqbgh+/mqV4pSN8cfR4exPGNsP3c6mTv4g6L/vHba5E/TWL3cIVa669NQbBXvgnVs3/qufwOESSeeB52Agb7e2GIaUrVScSpiZTMOawStg+tzOMRS5o4n4iwGyadNn6Jp1gHEcGWwJeFOBJf5efs+vhKd06eDVSwXEf/KLwerDiH7688uf1dKe/ghE/u2LVN2vMhq9Qk69mHhC3Ps9RnN0ByGoP4mArW59RUwwZw6Sk26jaqvvt/qrgzvzWKDd410M7G+4vqFkbYNIaqmtlqAwdRBpu4asu/XNyOv92gPkui3pgThEy/vdK5Ad3RdSWhwavD2KIjy4s4aDQzVHZLPXzz9JswiGx17H9gp37B0Q8SZ00XK6LLq6C8crti/PQ7byWqYox8MzQb08lN7iFP0D/j3iCJumjbdZvkoMHje//sW/186zIAJjz56EVy4T2PSAV2vaNdRyh2+0tKfnCKRjWxBx46dREPzH//kz62/bFdW3LIHgAlyinJ90YKo2dsrh+nyRhbZtNSs80ZValS/45BscW/briICwQoVaz/4LVvBFPXCPzh1v/YmMdSp3VqZbkmDc8cqwlLG2V/rmWVMtZSCa02bRoRtKe6JGq54JKXIe4DDgCevh7VzN3rRo4CvdDfTT30ny+xwMqBGxrqGDxxqFiGCOtZ5aZ9Nli3nmePioQoT9gi8G1uSyCM0+84hYNWcwLTXJYReu2xTMeWHj4VM46m8/OvcoDZseplDWnYTA/oMBP1RODkt7q+/Sghmj3rwgHB9hgE8fSQATVz5iaMXT68cfxvzjxbcO7oirpLvBvDFKIfbmPxy67spY0Zmp+pU5jB0HxMYMUsqDKo5ktNP2yBCNnfGGf/wxo0F6a7POEycXwKZYqLH/s9kSHAPxZ296B98kmxeh3MNZMioi0HMHVhs8O/jzT7Dp1XiQSg3m8rtCsOAP1WhdDiII0glQM5JuFZu4+QFvTzFFbOuvrLx4NAE7Oi9qrLDO5gIPvPx7f50lViakBhshcNKJase8M2jR+QnoDrDGpvl9AfJXPFaQz0+ealt/ZKt3cvi37O9YD8hzIBW6IJWE7wprL0325n5d9sB/1TM9cPc+W8fgcQUW+Vj078JywPJkSaF8zgxqW434HwAAAP//pF3Jtqq8En4gBiIgCUP6nkQBUWdgg6CINAmQp78L9xn+szt0neNGklR9TSWVYsUT/c8fsosLC5bhk5cgpVeGS/9RJXXNYw7Q15vDYR9VYLK1cw73MfRWf+7M6Op/gdB2UsKHsDTo+avtlXTYff7yXat/pgaeigMiLOvvYM1nZD3rMq93P5cJz5sKBzalomG/v1I2yi5s4D3sDWx/WysRLdjvwRb7Hv7pqfa292P56Lws6n8/u4IVtPXBqlcIdyBePa16AZyzywUbri0b30vTqAD6eoGkpDyz3vpWZ7DdBpCu/KoQbmmago/kcBiR6z2Y93K9wFucTdQmfAuGl6ToUJx325Wv74O54P0QSrlmE9FXP8a0aKQC6/thz4F18j7KVgZdw7FpxJ8qYyKPuIHtEEto56fdile8+YsXGgTBvZ7kfifBqc9MwmVyFKx+hw/Sc3BBL424Qf/0hQUSadWHq75g13tmQiA+MHbctYvhOZUnsN+fFfLcRQ2Ytft8/9OTqHA6sCRBeIUUgDMRf/7VvF48KnPSHp8+8sOY5UK5w5tpWthZ8Xaml06Csaweqf5iZb3cghbBYs9/1+K1F/BGJJ8V7ppe6OonJVOZPX1om25AHuhAi++4iyZoF1bx84eTgd2hDwzHozS8s8/axWL0oclAS/rxfDKGbpllSBliZNGUo7Fspy7/6TscCOjD+h58Vbjyaxyt/H8Z5CIH4uHuoqeJekAPnt5JmSt+KQKPsJ561HDQOu171P74a8nqCepT+KDqdrOrmRmmCyQsy3F0Oz/rIW92Ouw138DOZcY1K0WFB+dyr+LgpHv9RHbnCf74HvNIDBZQxhVUv+8NtcXXKWD2RYLgNIkpDYjmG+z5WLeMndSFWunB7QVEjgiufji2Ce+CH58CgR6/sL7QuJjII2+AMz5VjBY7KKR7chngYZ9kWD1JdT30tXpV7Fv7+Yt/tvqdu1++MpzdNZju6pmHaehM6FkhuxDdm5vDNFz50ZpfJu6JCLhGxMXGXbrWk6beEagriWDTAhbYPrLMl51d813joSpG91ld4dBVElX9h55MM3fSIWFpTrUj7wO2eWoEFPfkioOzWCYUjv0ABX+fYm3V27TTrEUajlNHLTPRk62Ciyv0pcnBN3IceyJPAQREMltSOvc2IM/Am4A38NZawsnq4ap4GXwcDj123pUUsDjMbbj6O+Q9FnEy7raghZcrO5JZCId+Okyd+qsnUF/QUrCs+RB+oXfAXtmdAyalAQe1r97TALIBtPpHegHNRTyR7Hpg1Au4DKx+GVWNQ5dQM/tW4Ft129WvdI32ZXg8fCcv7ofPYDj6mgAqWM6r/oJsjvrzArU+Gsk8nYRgaC65C/sJvbHvF4Xxl0/9fSsQPkk/xoqnAryXqoPNq2wXLPS+tlwq0YC9yYoY/74LAnx2TvjHt7/n+t7IWV056C8/3L0Q/vANW4E4sKXNiPRbn9gQPcP4zSf4+V3+yJ+CZeXbEILWwxeelKANd/AFX814R+JB04rly/hKbmfDofjU7Wt+5h46WP0Giq+l1rdtnPJQ1QSJOnvAAfFjgg6eDIVHW/0e1NNSvAao89yIwG6J+9kX5Ql+5K+PtQo1ybw7NzpcUJRRvQ8+PX36wgS7w3jC+QfHwXxTI2FnPPkI7dh17UqMNgPEjfmldsT4YNmb7wam9M4oouQVsFPAOiBQ/rLitVQQuH+aIBYfHlkS1ejpzZJK2Lpgi55q9wxmNOJmJ8uujovo6xaLbXX3H18mm2v+CKZ35g9wt7/8/B1QkDU/KtLwinF4LsqCxbuDD+8V9rDLPyPG3pKkyy9OldBmK3rB9Gjil7jWS6jDKxGbh9t5AtU7OqHLfn+t59h1dVjmiKGNYYgJefE5lGViXyiGUp2w7Wnm4et8Z9QRZz/YJoUrwzsOMQ77iRVTEcoCbJLHCUeNS8EExe0V5Pl1oL/xWyy90OHn1B2IrD6+yWzfEx3C4yhT/LHsQpTSAEL2vvg0HuSC/fiNIh6uLkZoxMUSWKYKp0dckOkjfNlyKiQT/vLfr17GhPINgatKJraI+S7mWAEIRosYrfmsZYtTTfbPz6Hh5WMAseYxhMNBva71tL7odqIX/+pbaMN9TgndzYcGysS8rHoqqqeDUXHKdHjc0cz4dzE91iuvNDHJUP9YTuDv94zzMCB52s4JdTbyAKQTb2Kjs9OebU87Hr6f4hdrjLeSP79pM4QLDTQ8sGnFK2gKV576ySFg4uEaVKB7VClh4pD0M1yiBbrN3aNhPyUFlbTA/BdPWX9nv/qUsvpNdNWz9bz62/BD3utFbFu7Z2s8gL/xrPpjTUfn1cEd6UfSV3utpkI5ciCUY0Rd7+UEMwhNHV4s3sIJehk9YXsrg798HhCtM6ZiN0vgxHUH1JNX3k8Xrz4ruddtf34bEJNHDMHqxxKpGIV+/H7l5a/+wO7StX8vkSrDNyCYov7ZJPRwNUq46vE/v2I6ZdYZvL5xhwNz7xhUUV8d/NXTnDgy2YCcPf+X74NrEQRjUycyaJLbCWvNnIE1nlWo+ReBqk3XFNNrciV4I+czvu2PicHatUXREqrp6m+962nw/D1Y45uq5zYOqKCABrafqqO640krX6M5lHdMou7npfVT175d+PbNJ7WaXDLG4umlcAbhDYHxLAbz0cxdGG4rlUZPEAfDD59+fDlrN0syWyS8/vI9DrPGq9soVEq4G649duzswgakmDqkX5KROeTyYC4VqYQBScO/9Ti39HQHWQpiakRnNRCKgylBtTilGCliwpbx9DSVCNQLNpFr9KsfuwfXgmPYqKovY85mIWCt96EGoFex+iH+X31X67i0nxWcXIHSDT29fMsWsLZTzsC8+iUOhPmcsOASlxCi5Us6aHwTRkTmg59eOpUbp54Pp90dKvS6o7r33PzDn+1rwDT2npufP1iBQxRfcZQsVUF/enhurhg79iYE47tb8fG1FZFyyqJgYc4lBB6wJ1SBtxFMPSIcWPUjddxg328F/UZ2xkHP1vXQG10nBtz/taVA/u8tBe97bVDbDN/9elcUDzlTj2m03qWzUDmvgKdlFQ1O4yshh8ejBBc/ZfS2HTdssLi8A2nVDtjcz00ywy1q5Ysr+9To9YsxZREnwIdeXzCWnKhnL7DcoSupO+x0mACmp8UCjtcHR0NWJD2Rb6IKNeJqNPdL0RhEOVzgAaAI+/JBSwblYDUQPgaCvfRdFfPje+JEYCpfrA1im7Shen3B1T+iuLvm9QvIrgp0YS6pV+sZm3fpJ4dJc1WwyWO75t37zMHpoOk4MoqyZof17s7DQX5jvOGnYlzisYLwjWOSbHQ7mH3pgsDrJEoIHLTSYB8nluGXXyqMw3dpvDLH5aD4RQV2ll0dLMMFxDBLAp+G/tvv+ybUfbjwl4Y0eOcmPD58Sgjzh4pDYvhsdhX1Dq2t4NEojWg/XsdABhuqhtiUX2U9bXfeFYamAqjftFw/id7FhzrUEPbKbOnbT99z4JNJT+y+bhGY6jJoQL3YJXbofiwGuNdjaCwKxraOtv2Mvq4Lw7JVcTjau/r77Q4T9KaipmqOXmx+sq0K1c9doB6wDwFttTJTuC/rUBfc2mSsPDGGc0VTxHUPt9+ir+rDfDpu8e/7E5BVXSn04YDPkrQUE395l/BNZgnrk/1mXykZbMgxJ8HqPV6C6awfCOQjolNfaPuaLenWBYJkMLJ1vkPxde4fAcaLj6ihkK7vTnlf7arefeDjydnUJLuUSPkeYUZyvzwFC+dIJvzG3oE6QVGB6WXlPpQygeHIrmDP7C2XglPxZNTuxjRZZN3fwwd3jbFKVVazBfsNjEyOora8lP2kSS9BvmmTjfUPK/olNhtb3uRcjPVl8Q0G7aqFx944UudTd8l81XVhF94PNSHq8WUs9+s7BwtfNBgl1GNLUV5SQIQDpAidtGByUJeBcnwmOCIqBNP5nEgAKM4NiTffMMTDc95DS4wXHLmiAKZdPtggP9RftCOaVSwznQaFlVmJ3epxA1OISwmqbtdhX3tI/XQzzjE8hpGHaHI81DN77gSwrnf0deNzMd/i+L7x3vmVmpE71bPUVhw4DK2AHX1G9Rw/nq1yVbMv9i6NCibugyeYDdeFqlFZJ0sUAwHSc3smGw1/kiGSvxzccVqLQ3kOC3aSFlV5nbYSRpM0GWMvf8+y7gwPjO+9X0xPJHXgntzP2FamfbDcispW3oRJiPX6zpijR5PDqcs61AbnlM1WfTKhMngxPl2eUfK3PkovfOGHXutMTFzDVZIsdOkhum2LzzbIOri8/BmH3PZSL7FJTBik9wNGB8Oq5+MsSnCiYoQUoZuN8TuZGRD9M6boYVX1MGjfKwxdplJ/8/WN2h9OAgiagCI+mD41ed1qDtIFrZcjvbSC1VnNKR/43VELbd4Gs6l6Vy7iJsDWRdOTSdnuF7jd8xxWj63ClhOtcnCO0QZtmvOYjK9vEUIBCBI2S3yp6ZTsBHgYOgFHm7UkQ2OYQ+QIWxqe+20wr/9fNvhCIq1l5GxSq66D6jC8sHfnvHqsudgEgXo+4cgPloJxA7zD8c4f0Fx6DVtCuGsgf76vXQBip2/FPdaBWAYt2fVDEKz5vQN4zh26AjBbaul2hgfxq6DZtYaaLqnigj1V79Sa3KCYLC7uYIhUQp1TrRRTJ4YphLxxp/Zu0Jm40QUCQ8GtsSX7a6vWQnFhgj4Kglb0BI3CZTHEaNoSoHYtm6RLuwAzFxA1pDEMRlKoRDlccw2rV9lLiG4dXspGRRp2H2eNbTfHNycbBKTE98KiH6fscIV5LVn0rG6ivjuZzwzI/MATKjljTZ9TbsOdaF7pYSMbjOa+pcI+rwj13PicTMNQlXDi8hd1GbOLJc82L3jOVBObwfTpx+3Nf4HH4AjUNJ0lIK10buFB7BXyFW9FMo8lWBtj6i+65vOeVfMthw2ZBuq/dn1NNdN05bfkPKmG8qaeI2PuwOfq47/PC+ntEL6rF4fmt/8upmMIqr/v67zPgjXeIDjvl4ya/dMEwvEdpTI76SJ2Nh+zHjdoMhU6TRHOw/snIHkmvuBmt9ypzY3PZCyXmcA4XXo04MYLhhsfSOCXj03PrJPhipQc7HPuRTa/+LrtpgbaxftJOCoeEhqUC4FRvQDy0fhbMWx33h16pUuwzcjCpl3wmGAr+j51tMsbLG/W+D/8oeksDwnBt7MEq8oZsN18nYAZ6ItglJQ21gIXBIuvtRJ85pJAzd2HJiMk+wnsEPxQjYV6MplmtIeV+0TYUpXWIMnOleCo7GIcHkBdDPdLfgVIXkvAXqbXk77IMfxM691aznXDhjx5dQDFIkSbDT8l40FOTHiM+gX70tp4CoFxDym5TBiteLeYxyeC4104UPeQmWzZgoMJTm33xJryPRnr+y7wpR+PGLuwK0a/zlOwqKaIXbOtk+U2lRzIO/GAtY/wrSk+XUM4x/cH9T6bNmitHN/FwvveMPpEikEIPlxhy44WEadWSFgZBC9YyLyFQ57Bejg+5TPsd5lM3dHRjTkVPi5MybYhO3osweK72QQv9/OIi44fi2E8zDZE3d3G6n6/Daiz2duKGdESh/evCWYv2vuAHKeY6lvHTMiHCBL84fF0lb2C+Ldj98fXwtq8Fkzs5BdMiqEnc+Z868HK8RW+xxPGoS459aK+lj2sd9pA/c8bA/485guod8aAHc8XgiW7tAget/MHLTj1wBiD+xlYQ1lS5+y9+mnzPCKIpWOCpu0FGLN73sYAe/uYFisfW+7X8axcL90Bu8ujAys+mxB7cUytYrTreT50CEISW9QrjgmbyGflZ5B+yO6QZGBSmvAu94/lSp13rNQzv2hXmOgXA/HoOgQ0HS8dzPXxhkOpfNQT386CIu4ee6w/Dd8QCYtLePCNN9lZCmfMu2o6K+I3LGjQTKoxjae6A/czsbGRffi+9an3gt8rqGgQGFNAxSMgwNxujyu+dAbDh28n+yZqsSFon/VUlavCaEljel3Hm0CxzOFbsp5oOu38el4EaQDpzXfJh6Vy31A5rhR8eTo0ietPMR8zw4fVVp6x784vY96vp9YrTxEx4uQo4F9CtEBbbQoa3r8vQNsl4WCyhzl17rvMWPEFgUInB9KD5hqwjWKasFFSAz80/CmmcjPEcCsXBYHzUNbLNYivkPF5ThSiIGOqfe0M5c3DQnJa8UmbOSonb8q7QMPRvvRLwrE7pJFkE34/24V44fUF7l9xRM0u+ibDOL4FaOnQoJ6o16Dff2oe3ibRIZPYOWwRC+kMrfo2YjecbmzaFF0Hq88p/8OP+cCXFaymr0H1/RAzVuTXTvrctiOi/v7NWFioLryB9xkt6WXLFnzby/ATNVIkZF85GDfdIMDNYfeg1qH/1tPpFrigkAWLbEqDFf1426dwE+aAYpnNjEl7z4UXy7Kw36N3TQXrZco4PVyohTP64zstrDG6IOn3eydkuT9+TH1FS4Jl7x0zWMZVRNWSE/rZVdw7/DY4oOZxMQFLPXSHH9jvsJNvXfDt+qOpqE+Y0HtpawVffjt7NxRcQJY7oYwhF8vwe91VSM5FVCxft83k7INNJNbCpxjt21DC9yU5EiGVHUOw9zOEOddl2B/wq5gzcGihd3ifsBqGDiC1812A4Ys5kvc7ria9TziwxhcCoIHBsAnvKVjzL+llxIp50vIGPOQ+wpb8XPoZd8EddoBUFPv9rWAfCVXgknRXbAXjrh9LZ2qVbukpVX0kAnKFyIRaKydEap+FMXzkKVYO0zDjYG8S0L+fmgrkL1dhxMqPMT++D05ujjcTLTUlBZOFmPvpORw+VBqMybYWoJTxDAdHa0yWjQtyYD0XjNE6flsWLhxIL0cDGzF3B0vn9d0/vAncIphE2VzAI0o6bF6E2Fj2rLChP84WIt6cBxN6TJUiO6cDUvLq209qWF6VztJOVL9kjiFy0J2gcIk+VAes7Zeo5XRwJHyO/TsAfR8EgIfLwimkR4MFZni5yPCXL63bdceWI3/o4PlpBNS+AKveklmXoLlrc2zHSK8X370vcK+GCdrqh7qe1fklQHxeGzW/hyP4rS+lrJi+5kufzTtJbqCddkeM8cFMxNG93GFxDnka8uxazwpNTbDut8A//J5rGk3gZBt7wj3KPKAoO8vgVjYx6c74lExdZV3hazOIRHlKVcJmTpZhFOwAYb5gJkJo0AruZoEgSvVnT6zsVf3imYYr/5tcj9nA3HU59gRrqZf0peswyyCmNt61xVBadwmgeAuxLw8SYCjby7Ab5AzxYbApFqaqOSRl9UJkkvbBuHyGfDffwokaMceBpZX2rTJvhPUiQn0o2i8UZHg8VgvipDcLaBwpA6zzqKQGuEzFvHyGMzxdhCM6XSSxX67QtqFxOc+IT+9eIkj2roS1B3vqimJSszrrOXBYgpwGb0YAmfwOyd9yc0Nb4WYVbJC0BT77oMdmJU79JKfrXdUrP02eTW1Mw9BVcKsnH8LLL7UXPpyB4CY8r3enV+t85Eckp8eaI4J4auvxXLYI+iOzfvqmp8GhySEvKRx2ef5tDLhkPJyhCv/04C+fQ2ZPOg1qxy+W8sT5UCy9FsX7IQZdwrGromVPEbsTugeT4fKVwplqTK22cAt+QpYPt53fkO/KV/rHW1HhB2tP7BvTOyGs164Kel4S0ibWic2vumzly67gCd/Da8JOkcTBWZgRTlf/aEphL0BwSi1siVtiTNp1smEijAs1w2CTTGkwIagfdJeqin0PmL+vTVmzDzrikaUxwR4aAkVus55C99Vgyd/qC9rqq0D8RYiDlc+4SnexDkg5PHtj3BxHDki7q0kRiDpjjEGWQ7NMF7Sc9b4mVjaU8HaKv0h68ZLBPtfDBBynLOgDBjJgTei7YJRy+vf3yKUgPDy4DUT81OzZFA8p+sNDtqSvfiSzL8PNNPa/eOy/K79Xgv03RGLy2Ad/em71X4jgfpRgspJLIyenXUONuHYKuv/UApCm4vA3Hi35gL28TVuDHlKGAnaSZB2YnOSSCeOs4KVLucjDEKm4jTs1mSctbuCKP9hdhG0wrwARQO6/CQ72tXDCti954LvyUzk4SjJhpCdg0NcjHvdl/6L6cJsMeoomCH/6y63cpBdX/QJiymaqzseRzcbzfIUOEH0CBN82Vv0g/+ltvB5BFi1vhvARHTocFPknWUa6vcLX03vSoOOjYrH6OgdvY1potDQG+J6DbwYTuRTR81rORnMN4jsIY/tLugGbCVv1N1zyrUt+fHFBKHzB1Z/C5lAZ/ZKr2xyO1LLXRom8QZ3JWJTymV4oOtxvwRyyL4Ro8F7UOYWJMW8lMZPvS/xCcnBri1WfT8DpmyPVdxVgZPWb5J8/6N01qVjiywvCH19E58mtmZ1rDVTvQYQ2VNd6or7kGPoeDajBWSlb6LtogWCMJtXlx2hMXRVdofRx2tUPRYwdjUIGG/cjIGlCXLAQfLkDEcsLDdteD/iv4KkwUuyauuN9KCi0uw5Yaxe60Dtgg2wMV/jpLep85LRfUhz4YJjH15pv3kU/JELzmz+yzadjsbzd0VTUaXlQ//46FItbhbI87VwBbSL11C+jtRngZjfdccjllfGR+q0Ml4q41Dsd7HoK0rMPD8kJkdmaloKomJ2BmfOI3pewX/mzd4fQRwE2YPZk63ycoS43b2zcVBgQ2KY2zO2ywh76xMWM164VC9np1Elci4k/foMO7p3+9F8XX9YdO/d7QVWqmExUnDf3y/fYdYepJ9smRxBxpUrDeVDrpQovuvzYXh4/fQfm2O8mwN4NQgAEZr2Q1z798T3qNMGzn3XoSTKu+Imalbivp+GWhfLqV634+u7nR9QjUIspwldpvcu9V/gUipL+wYG90QETN/MdJJvljfh36AMQzX4K83dGsLpR1XoMUHJVnr3XU587oprN3CKD5AQaxK3+33IpGh7qW1snu+LIwLzZ7Xz4KlqFKOKnKqZIfnI//MQePZaMubNjg5u22Fi/zFw/99opk/u8JNThD0MwcUGhgx9/0pFKEprUogyFvjFoZDKvfgWbA4JrvsDp1ExsqB7qXumPakAOt1tV0D4GewCXTKWuUJ+N0Uv8Ac5NdcEIkT7pne4S7qbH64xW/6Sff3qtrmsP48VT6k6+iTpE0emMVVPAgXALb4usNC2lPz3b5m1dwrY290S6GA6gD7AJ//xTyz7uwbI9JBmUZGnEFtpYwSDe9zpc/VeaMvQBU3N8TrDXIvsP/+b198nOnjfpT18Pn2w0wT6HL3w+ZC8wc2nVgfhRQhqExSVg+jdvQZRUNg2NZGMwqE62YqiORxa9aYu//ER9S8Nq3eVg/PlflVujNd8HxrJMUIfwq58Q1F5DMFzv2gDxd704JtkUxlbeKRK4jiTA+Kma9YxMnoPc+KI4oNuALZv1Yg7H3ZjY5kYtmd3WW7cIFBjxW25Xz4fMkWW5L4J/79NLTgt31o7H6uXA+oHxGfzpd6qRwGA/PxaASappBHpci7futQcj8zTsvmcv6bf0KcBBnk40RiepF0F4RPDnx9pRZBpitW6pvuP8RrJU/gS07jse1jkuyQ8PGfHSBe7SW0Akbl8E0yO/TSCriw12nmhf/PENrrVDwklQKWbnTnlIRXpBU42NYvs8qzE8GOaFnjReKSbpUWTgg43nj88l8/VsqVB12w7rgiAWZPXvQfJWU/T5+UW6dWlgzR1yHPBC109TsiFAe1uIaPBAitVf20NvutRY45Sl/vmrSvLWU4ynvOunMu0RRO/wjNMsgkXj344tDL6Qp2jGckE2d6WR/Vu5x6bSw3rJtimEZJNSBFIXGov72dzh/Y6+hOKW9JMrkwEerzcOcc71waZGrSRo8ueB2qDYrhdT3DpwDkmxjs9ULEs+CxAYT/VPT8yW06Vwdsifvi3Ir14UsP3tb3y/xcLd4X4aFTTwDPazO/IubKwQ0/wgUMZEm56hce8ePz0fTM9uPMOPDAsylZ+hGOxvMsFqeLsYDXwFpnhBi7yuR+pyexC0aljelSpJSgR7MtWrHkjlWW4SArdTBPjeuapwuXcRDdZ8yZzugmD2HJ4EhvILfItFuMPHo7MR52VVPc/N01b4PFj+8HHYmU8Z5lyb0d/7rvFlQiXedmu942nMnwccwCESOjTF0mCQ9zDt//SIYXjPoquqIgQAdDxV25QmczGo68Ux6pH6kmIxsdXaFKgi7QlruACweFFlIGnZnuLdI0um5HRLIdI/zh8fXWB7tWGJqEMDNLwZOVtDB/OrYVH7PWzZuAgS+cNv+Q6KesQbPQMrfiCh5Z4F0fPzHZphLK7xVoOZmx5neS+lDn481Vf9V7/sktfaJQIe2LK7AvKnJz0Pe/1SJUiCkdioeNV/gbjyZYC4SiX0bR7Ynz5a9SxaXtNojMHuWgGlkG/UenpXMPzie61XUtdJnfrn9/7V8/BBccHiisECOEE642MwrvUNRXLhedM8qcZHWrAs+U4QL1jMEG9TL1ju87CHP7616sWeje7hCqvKGrC5gV4yS23HwcDqLCJrj3P988fAZ7iYNJTKTd1zJ6WBh4jvaFb2p2Rq1E6G/de26Op39MMuf5mA7ISQRmE59ITbUfX3+8i3S9cjscP3/PM7CDhoqkGlt6rD5qUWWD3tunWLpQQh3B1CHJyJYUyL3uo7YG6+aNEbNxlTgfrwmE8lDnuy70eUensQ2cV5rT+ajP70fjGzmGr2WPdzzeW2vJUvBTbe3b4YjDs3wOflGuFC7Vyw5qMUcGNDcdBMpTFPNyeD5ybeoR8f//nxcPA+FDUVfAVTMp5KYG/6gpoXYQl+ehja7P7E7jagyfTTp4MjHwi7vl/18mbEhYtyveBrDp9s0uuRg18wEor455uxFZ9B8owwzVf+yZwilGU95CK81lOSob/mkrzWV7ATB3xNjt75BfJ3SjBa64ssS/oSbo7DC0njPUyaOkoz6GxavOpR1rMh4V6AU6Po73nDyQ1j+P9sKQD/vaWArktA/2hKv8yawMnkq+r0oVVOsehXlYNdGcb0+jhci3bPckEO3TSjt+Iz19RSzqEsftwZa+lVL0bHIjG44HhL0a0qavZpZATZ5dHi0Oo/wXiG+SI/Jy7HmsHbxdb3Cx3KRtOvz7/VHYNQgjLHjhQzotdz3yEEq49/xCFSKaCYF+8wT8MDYbR7g0WNXBV+3y6H/YyP6v7rcS7MZ2WDvRBc6gkrHx1aklNQZzECg3lKmUPWSG9st/NisEBfWlgZuY2kYf9J2DBcX1Bf1sbhu8gEi6LTCp7h1kNjfnqD8ZQuKWA9SBGgKA9G2H0rWMa+iLVGkesvSi8cnLd9htbTxQU1eCTD/UvKqHX4HJKuxF4ln6uNTmp7UOtt2UohjHLewvp1Sww6oE4G98g7U1yPT9CJX92H5xHGSMlPbzaKGeBht7FcIsat2YtHvkIwcvML9nfpwZjjtHPBy6hCjNvvG8xHkeigPAUN9iXznQzpo7QBKT4WEpTLCOZDnUtQvIw81jRzSaicji04zbNAg5d3S+bdThxgdoY8VU+PmbXbTRIr2ibpSCMtMZu3u08FkxvL0dfjbcB79lkF+iLX2Pnsy2QZbCOD8vlq4Ju/2YK5d0QIl+14wX4kfVm/vi98fswY69tl6aetp9vgOC4edVAnJyzMzi5s3K9GKl9pijG8FBzcVF1ObWlZWF+chAx8Db7ASUMqY2JTnCnH4wmiJotpMZ2VL4TTfgTUSQ7bgoW8J0D/6ghYde5zsOzINQXmPdhTzSye9VIv0Rkukmdhe1+49dyRboE9HB84LB9xvwjHVwu5eCQ0jC4pYHT2UlAasYrV97dnsyJjGVS7RiNKyH8M9kJ6CYdlMjFqHJVtCVkgfD02GbZSTl2fZ51lR8JPiribXyzL8XoHfVhZiF2CumBVU+mgHHQOq4IsJTPfea7MtuyKFGW9a7h3RA5Wp8OA3f22BOzQoAFG0pth65Z8iwHIzys0iv6J9bu1A8vz/pHhZ++VNNzfD+BDP/kL+OW6xeRTA8A+zYI263z+8kHdHW7UBy1TFmxt1cqYpe6Swt2DL7C33xmAgcuGh0uaC9Q1q4gxbOgCHNddlM6p4QziPvsM2g40sZoLWkCNUFPh/iVnODwODpvn3SmFN5kOiFXOJxiVxoTg7TYcDuTDMxmXkJcV+ZPK1EtVoZ4sYhHoXy0BTZhdGOvPG1O+kvCOr0ZkBdOt6GWINdPE9/lp19vP48kr3vc60dspbsFkBZsruGyvM8bvVwsIl0UqPF9sGSNV/CbjvHuk4HYpPCS+yiEhx+0uBz0fALJTpdqg3+QlwUdalVS7zr1RcskFwdftnKB3I7TGFNklUgR/kbF5PECjS9GeUw52uKN6rNfJIi2SDMF8sHDgWrYxwcrjQDq/R7Tzop6xQ2MT+PrsCzQxZtXsyJ0hvFx8BbuxNdRfibvG0D4IIVZbZwRLnKyQme5TmhyjXcDERFJBe+seiHy3pJ78UbrDJ6tv6H08bgyK6BjLVJs1BIeg65fD7ePD8IQjJJ+Ktp4b/diAa5qe0K7fPJM2PaQL/IqvjiK31oplsosKrPmCqtNVqCcS76+K76I9NqkTsdmpTxxAD1mk0aGogvEyVjqMb/SElOe1AlPbRyE0FtjQm3xxEqFf3gukfvqmeDNfDObo1RWCKkfYtPagoBrhCXzKikSm8WiwZcMEAiQfqNQftXvQ77MyU8YyLxDzc1SwbVVOimFGNhKzbElmtcp9+Cl1DwnQ04P2/o5bWMifhhrf0AyWa8XvYSg9J8Sf26Cg3qHP4TofNDGOczHCUp7A7nxWqaN/asYeZ7uC7JsdqM3f/GAGhmfCiH1M7KWfQ88wL17hp/AnipTXzahQ4k+wc0GEeEZato7XXZHPd4Mou2UoXtt+nynscmuJyI2wb8WpK6FbbCaq+1mQzKdlUMF128o0GvBYT2O8lX5/j2xvslksyn4R4HkWd4S/KmmwHNWok+8no6T4msVA2BLThxf5UeJot4TJMixqqsTHgOEwnF4Ble/pGR6PR0i9z9lO2KvnEdxz0w0b190ckPFS8hCW6pv628ZIprrb6lDPGooNLuCSxYzOCN4y5UZRNc09vfYJDwSWV4QlWRwM/PPbgN/6Ws4oMRaMSAg7dxdRn85xsHygmcH5cqqo3T8b4w//sVs+sIf7sR/OjymGWKI7wtb52hrWeqoH7o8YfbhPPTWHyYTRNdkgKbof6iXyrirUDy8Va8+NtpZ8DnsluHo7tNgbGJC3ILvwJE4nNL9utTGLuiTD7c2vsY5fz4S9NwcCNp/eQ7/nEe1KzvC0TXt8Vp4MMAbGAfKRXWJVycx++eydTHYiXSDz1uHr2bid3d96wsYxuhiLdeUaGL1IhMPlGxZTynr1Nz9IjHJUUwnsr8A8DDYulvc3+Qa3qYThKYqo03EkoPuszcDF39vUyya/prLaDSCHG0zu7Vtn/HDKr1CT94BAvAf1oF3kF+SBoNIIp9zf+Ch5ig5UtzfXgKnKeIXw/PJwXCeYEft6cUEH+yvW6I4rqDIeM5iKL4TPhbZPmMoue8AJN4VGu2VI5tA6qD+8pntBPidL+GQVbHZCRA3devdzlIrnv8+eJVz7XnWue7izYIpvA45qlmZrl4T4eKXqPt8Gc6sUlbziM/beEhdMgZIJcITbN0pP+dZ41Ts3/Xs+iukeTKL5rkBqbDLErPCcLPPLCsH7k97pw+jLhBUGOCufW3PFblqTnhmlAaHJ9C8NLNUzmMOfbKhwmzs1Ht+3MfvCXocWiRIkXXyvJ59WOwMzFMa/8ZvVc38G8XloqerBxKCPM6pgimCDdhuC2XDqzDs8aevzyMQxRrz2H/7LZpcwEbSGq/CPKqRh/PHBkLJah3J8qxDTrXfdBOiuQq8EIXUMEfdUtF4EJp2FqB2/tH64OS2EqZYn5Hu/Vv2YB+tJ6UOj0hXP2Vdxi/gXP0gY3GcyOrcyg6IlIBoOy7tupmVfKexx9ehlCeagvazF/oq9Sxx1Z7tezI0pQCdSBWwlk1/wXazGyh5mMzW1KuoHHCz5Du6kgRqL67Dl0Mt3+RefJshLwGozWUAzXPb4FPo6Y4/JbaAjfyPq1gpv/NYPlGEYU+8rtAm9NeIePi5PjO2Vf9J6Ok+gMbqYOi5j/VBHRgbdnr9gLGy3xZIltQ/jqpmouTs4YBkWN5Mv2/tMZtfDxZIg4Qycfsqo6Vz4gsx7fQ/dbKNhezXeJy90Ovjjq2TlX7MDYh2sfIxeeP1sUEPPY1Dn0ovwj7E1SL8/lVDbxiFaKuNlLNmcCsDQ5pwocR+BgZm3DFqhPFE1SvSiGxY3hbt0G6Dd59wkAyJuC7E07qiaC09juhTJAIdR7tHQZLtksh8plKV0dqlGdLGf2t4KoQTtEDvi4Wmw0bdTmCXQokexvPSTVn9TedAaiWxTTu23j++tA7eGt2lheFWw8rEMBrMW42BrBGt+qVVF3YYefdxwGcy97mbwnt5vaKeIX2N6u1qmjEWtY+1gsWDFExme+6rBZpkaxeyn3gSdg4zJduULDK81pL3tC9jrN1ox94zn5G0cJNiwwnMxI6FFsB4ih/TdvqwneyxjpTWWM1rW9UmU/PsC32zvYO+ydfopUTYIfKsxxvrz+g2WEwga2Mnmha76qR9Ec6zAOv44QooaMINHEpwuyYMG6gUZZKc/UsjJ+kLA1ggS1nhqpaRngWDzu57S+K0n1shvrGbYNiZmHjM4lOmZapwhFXNU+0TW5YzDP37CWhQTeLsXEoI2WBitmk6XtT43cTgsVi98tftL3h+NEduoEQtyvIkZ7DaOS21f+vYTfXI8UPtUw6eVL7JnYlYwhOYbKRtVL5an8OQUC6dXbMKz3C/bXAsVY3OZ0Ls824mo1J4Lt/4gUlfvG8AOsTHJQ3bdY++Lx6K7q+7rp3cxbvUOkNu5tWH69iscOVJtMPl+zUFqF2tJODBqcXfxQ+BLRYfe2MPJ/GBhDlc+iohz7I05UuEdAqMjWHejpaAr31Qu2lDhHz+lY6LY8K35NXZOzd2Yborsw9ZlDnW285nNvl+oQK7SADtiu5ZUPv4ZXvrXl+JTjsAnb7wOcMJDQbMM3z05DnoLe0gf5KK7iC3WVWhgvPdM6h9fGtviu0vgAFlFZlFs+3EPlhzmF6xSY+VzC4O8DCAHCqyjnjfm2jk1cOXzZHuvt8HffP3yWQjDvpgPWtjBs8jnNPrOfT9baxe9p5stSLpKp2TZ7atup27whwinCgTz9JUgHPY3Sg17KOt2Y0UyMPH+8qenppGTpT/+64pHMxCn4TVBp2Q2RZtRCNii6hlc8yN2d2Fv/OmZkCsPFNtelczvV88DENdvGiEzBovIskwmorTDGtexgopAkWVKTH7lB0OxpFUhQbXPNIqWeUkWR/Z5cE7NgLC8oMECgrIDuZ952L46aj/vLy8fWvLTIdzPb4Gg7aDyqQ2krOubWsa6hUjLKQlsEQO2FeoBHqTtBrtHJheTrhU2JKnfrfm/K+bS/nLQ/Z5Hqj+vXjCRJjkrteBgHIbeN/jFv/Ljvz+82tq+LsCAuyNqieWuHoQGTJBn8RW7eb4tPgndq4oa73gyucMnYbJaEahuog8SyVCwpW8vDYSfm4oPbTCxn9+krHiO+Mz/JtOuLytIFxhR81Ns2dLvTxWsgAGodtcEMF6wlP593w1UWjNcrj2/ZCTRVT8WwzbJYqBWyw1RbDXB9AiBC0NWa0hOzUs9H8SbACZFI0Tcuq0xfzTJh9c0O6Hl62rr58lVOu26YG/N72z0UfrjazRvtqSYn/vzIBfELWh42qpguh0UF2rY3NPIz97GUgPeB2v8ERAOz2CRj1AAh3P3xpbNN/0ke3kMGzs6os0eRsH05PwMyukO4XC+qP12E72vAKebjnDipi3m2yu4gwSWMo3dKC5ej5Iz5XHtuhRExqP/+/cUcQ31ysTrhQduoOyUs42bq1P2z/4h6+DuN0fsbrfF2iX8oCu6Nq5bzDPLoGPlnqF94MPf+i0mW+v3kMBdS9VmJ9bDWXlCuJnrA5m4Zl/w0DzHcM1vNC85pxaedyr/8THjZD7Y+H1BHaTaOcH3sYbJfBk7/Y9vRsahNRb5yPPwUFUjDazPK1h++F1k4omA4hH0rJ9mH0azd8Y+plPNrqe9DBMk19Q50lOy+PHSgDV/E+6U9WB6dAP/p8d0oLb1e9w5PnzfrhnV+HvNyMpXlVN5S6g/bdqCfFrvDP30uypN/VT3RnZDQPqEPBG3swSmVLlMYMVnan0ea/5LvQXMU/fB3qHi++kbjwPkqtcJ1fNzYJMdxDrUirpAQlG+E5oYhQ4uffOleD1ksuQJSwHmSE5XvmuQ68Uq4X1aDthV+TIYvJdH4OTnLVHmm9ELKse38C4zSrU1Py7sEYTwrLUPIn+TKSEvfCGQuw3rZblyXw9WsLnDjWxv6eoHBkwZjym81hEi2zU+idrtCHyfbltqHY+bYILmea+sv5einYCTqvG3PpzS/fSn32nnrRf1WHAkYLruCzomWxvmGUsposarXgqcLX96PXyPbj9xXneXjXDq6FHNXmxp8VNWfn6rjl9awm+TbP/L7ziKbiL4zQeE89HF1qpnZ9pl55V9MurIG8QE7nXOYLvjEsI8v6p7l+1aaJjYpqsfzOZGv73Ayu+QcKoKg6Tn0QcTLk5oRp+DMb0nJ4TZ8bL5xXu/HLxfl6Ovi2ir+2xSocuDyjjbNDp6FEzeSyMQcruCuitesCTSJjhqLUDbd/YAjF6cGDZ754Z/eCAs2qWENs4f2OLeWU9WfwL+8G+Zbx6Q+O1Q/o2PM2y3BlVE01Su/bRQ1ZiMRPC2Lg+7EsWkTHwv+POzz3frixjxlX74xiOBTr9kWJPCuV8sfupgmC/6zx9J5vlwucrht90hXvfaftIuywuqHxYSgbQSWNSnzsEcZxI11vFjt2YTw9AHF2rvetVY/SUOTpfDA1uplSRzcdRLRfy+blQrah7MnjrsoVuKHjVgeqrnUyqncAhfLn5kvmEsn+X2AojrTjjIpKn/0+OE6DO2QdWAUU+eOfSt6YUjqVJ7MS6WEsLbS6JmmdbFL75g6Q8FWaLCLZbrJSohSd2OXi7bT8/en0cH1DKbsbP6IyQwPQEGbpz8zddMyMLJv/yj02bt+hcdY3m5XN7ouahPNtRRkIKZhDK+DEoRTEdq38F63Iquer9gG5jtISerC7WdZ55MP36vX/Tizx+aTplXQucgYXxsR2p0kZfqQDEmHn2zqauXAN11+KaSjrYHVSjGwBKu4FdPkKl/MviKHhpo4eyKvTL51kPBnRqolGb751ctjNmuHEr1hO3X1SvaU5hP8JrtcqxXhmlsIfe6/+oT1Oftwmj1wOOhVcwfbBweQdKXz+0eoip7UXv1u8cuTEv4YrQhTCdZwh9ykIL5cqywC+Uzm8x9uu6aOX2o+uDlXhTnL4HT13exqcZPtuDhIckd70iIYpKBaa/8j7Sz6X6P56LwBzIoLRJDihZBFFWd0Vfaek+ET38vfv/hM3uGZtZKzjl7XzsrsT8gzoOMooEjEZsocsBVIwUR3CvIm6NJArDWg7aRn/rQiqeXXOn9me6f3z3iD8MrUHCVJ37lt1nOptzyJduyPHrPLibYLf8P1v58PqnbqL8rsgXB/SV4LbaEcv0GaaHs14fWOsZRQGBUtAvflj/56B7NFm582SHJpcgR3Rw8A0bs3WJ7jNto0acZ5K9lR4a44AErn9f2jx+dqPSIRqELYgh9ovlwyaeYqcYHOcr9iw/OtTEL3+AlKqV1E1f9p/OPb9bCJ26Oi965dkyylls/ubRa+Zs+a1+Pk5XtVfbljynn/Z3+tnDMKfpb38nqsoN8+436v34ZvbwXCL/7G93P8dhNm+c8weGV5mTXkH00Xy0lgy/u0fqvkzYihkzuBhe9Ts8/POg0v3AxdJpixv5mSNBcpUSEZBIdwviHDujiB+BZeyRYN8rqH+/9Uc5c5vmlnFxP/MFJoFdyRvm7nEOp9yXWuIjwn/0J8RZsXBgXZEtRT/bdrJS2A+/OKyQC992WQ7gdM6htTi3GW/fT0U0cZArZyRI26qZHIyhoCgSzt6hrGj0aZ98wYJS7F6qe605nLwgscPpwV18KbVzOzlcVFSjJPdZqFAAmSRsixSlP6DGsjXJ30UsXLnqMdLNrRDwsbCgvfo8AiyxPbpjcAwB0tP/N92TzshR6xTes2nDWJ+enFLD7RgY1xNYF7ZrvrfngvpKdmUqD56z6kghrvW+1pgehFnjUvygHMD6TRoaVRQ1q6tRe57EPkHgfcFKVORi9z0kEypL87SfDmIVlnkmo+WyX/OONRv4i8zDZkRibAzCRwLeaBTfsffJXvz2Ir/YHp2v+9elLGWa6i8Q93OiiTI3+IoFv6ID0z6/2bax3U+Cr4zqPsRtWLWA/0U5gcK9OGGtFFdWsUy2FNT4i29RO8tENYAqe8/Xyl6dOQma7sE5cgwaOoOYsf0gBOAcXz4cSsfNJ4+vHyssJKUa2XJQ/9av/JfDIvxD9Ci0HN5vj508/rPoIbuNuT7X4VkRk4aMgEBlc/ZbeuZbBg3d1CMkE1LpjS/+Ai771y7XfHhudwIWPYHd8zdEYKTsX3k8cwSsfntOLSoD1Emx/EtCurKMzS5RZ8XbYTc5pt+axIJbRaeG/b31kFpOhz3D+1+/ZT9QSORm2y0N6dTr3jXV6KeMzVLHJmgn08bM25EVfYvVzfenMLIoEWlxg4r2Adh0LnTmD8zgN/tZLuo4s+wecYMZTdTjrYMRPJYZrfd8Xfki4xFRhzSl7uvCsaDRL6QWd0EhxtPC0XXED4ZoHktl0xYg9UAflZT/QGPdVzuIrn0BwOGTYPHiom6TsmgHvcgo8IKU8Is/qrcKnsNN9WYU/fVz5U5vEDtaOBY9a4x05YOHzZOlnYIfcdwp+VfYm26oE87D4Y/D/HCmA//tIgfYLVJq1WzffUXxtYYwqk3CBkwN6/vYpmLS0p4GktuVM9TaBu6eCqbZT3uVoO9effDc3B1IgOUFEGuYPlLxBotpkXqLZuyAHesXIsJeN75yZM5RBsw0lf/cLvh3jH0GiSKmVUlMTDmU7dVqtXA7lmerz5lvO7H724TX+WVhrPBuxYrJbCOjpS22F8HoncXYPwmA8+WBKjHy4sw5CVu8tegTJEc1ISV0oeA2j+6eHS+ZIXw5+9p87ttWmiqa+LTmwLTTR5zNUzxMfdCKU5CTH2vZ51Mc+6FqIxb2BHfkx53MT4xg0l33n737fWafVaT5APfcc7FyUoqxau/4BFPIGvsMiBn3xBgUM2eVMbc+t9VmFNx5sy3qH3exMS4aQFECTM3tsvYs2YhW+pqDMhS/ZFCrshrysM9Cey6M/xVZTEr3kXRgKsk0gzRma7m30gM96V/tsrG7zzItBK9foYeBDWMh5Z3pCuK4nPoqmUZImMW4w5/8DAAD//yRdSdeqMAz9QSw+BqFhyYwMtgjisBNFBFQUbIH++nfwrTmn0DS59waSUEt4lPJVNM3BKMLJ0gNGptCNGBuiDpzhXVClOqKMufK+hQurDsxQjU9fXS9WqSNM7yz2vl3zVYpTrB0KLyBG1ji9YneZgR6DvCGhfu6aWf2iFmkH/UMWf+nH4XvtkOC6OjFObWV/WRrtQZRWG+JrrzdiR5enmuzvS+Y08y6bAzRWgEbtwbxwoQzCGUX+TfZYtBq+2XSjrQw7ue3ILfNTPn7kkeqOna7wt24dJOLXPQGnkYDZy1R45fg2MVzXGiJGbQk9/Vy6syat3jvm6pcV5x99in/7I9FJu/I5TywNpJAB8S+C309vV9ihfvU8YGlr6/z9duWdls38ufi3mY2DGguoXu0G5phnkY9svV2Db934Ek+I8w2X1lCUnkesG8T//U1TF8lPYq2I5vzutiigwVLi0fTFpB8Y1rbd0BBsgNPI8Lg7wFNZJ9jY+IXiyuUT1vULE5+e5P77EXmrByoKiCHlK7vDSfhBM7M1Yq67qR8DocZAj41Dp1xjzXgRfBEW/2f4UBm97JH5/LcRapcZ9VTw2QyDHXKM3CaO19w5L/Rq0APRvuHimtR8+MirAfK2Mlgwk9KeNw2ztDLBCos01Y2W9WVoDk+NkPLZoXn49AL6Pg8m5u5pRm8UNJ12NLBFTOslR7zuRAPJG7wm1jbeFfNVDmc4FXNH40Ht+fiqTxiO9dkl1hIPfCe/HHgG6ycpzu8i4vVh2uvk4RBSDKVmT9fdBHq5d+7sOKSN/YqmTvvZi3buMNpLueYR3Mmsibei137uslUMtXP/4G54jf3rrVxTtINLyhy8dDXeQBdR2jUSC+cPQ93tFO208OLHWA5PQTGKt1gDNztmmFN51beeNFu63HwUtrl7S3wXBoWNVx6x+Fnr2XA+Pj5oOS88mC1qRrYzSljOmypFNfC5lqsLxDdWEfOSrPrPwbyU8GSvHcGCORXflYdliE+SzAyaTGg8vi4OvFTJJf7MvYznVlmiKi9DfK8Vw2aQvhNItseOkAVf3h5911Dil4LhtHU49x6ZhqyYUjxWQsZ5Z6zO8EF/EvvZf5Bfuof8nTfT5/gYmvnoj0ddNd6MuJt3GFEsaQnaQZmyDa5pNKJEDMH8VD3DgZv34/2FV/Czn1FPiE82PlO4XJ41XvCuYbm1v4BphmtiXZlk88fKCKHLNm8WXNwtH9FdFsF+CjfmTl1ezCzUZAhf8p0EuRE1k+ANFZykKKbKzJ/Z+PqLsLa5B/PSFf7Ihit/O3BrW52d5dwqHmobHNH1QXZU6x9BM8irvxlZaXtih+1t6qdhggt638SQRS4e7On3Ck1NU8oiVw+K334BX8eMOPJ+7MdjWDtQ21ik0I9l82Xvt4C8wXSI+XeQMuoVbwroESXMXuddNAb3EeuHqV4xnEnUnj7NuPpv7/CkFnwW6rsA+zZPKXo9o2b6ro5HZOzDBwkvVdNzE1ch3IfRxaK9uaBxvcIJ6pKtyDaxsUaSyAoLqRumkpgkQTYDDi9Q/t0cEh3lzL6LZbLTnxPesR9+vO3eoaBA1lGVf489M1ohRnS7axnunlY2Rp/qDFL4BWLe7sgeb+3cocW+DPeKg+bZqvawYSIiUVTYaGoPvYac1XH8fz9ekWANlaHumXtI8n5WRo1CfOE98y/Cq+Gv93YAPQpzzPyMFFMetR6YdxbTtyGIiN8et1gr1ceZEcUr7Um9fkt097sN8zU4ZOMbYgdE1zTwc7+J0WwWsQHnXXHGouJ++ZCSwwgsOG4ZmVQrk25eVEPuEIVEp8eYfTbNy4C3dm/pqjpdsyl7BiK04lwRvO3k4j9fT8n9RnD5eKIJ794lnANqLHi/W0w2a2g4iA9iC4Zpc+VdYz2bpydx8ulkM9nbJeCIoUusz+A2X89bx+BpAybZy5KiL9zDBKJYODG8Htf27zp6BuGTre/KAdFDeltrsnkRf3jdKO3ZbbXXtRoI7td+M6nvywhpd5dY+AcbPicvW4Tz9vb46at+svt4QJ8Wb4nhM9OeMr0q4VvdDljvtCWFeddL10pyJjsbtOiLdWtEGaiISrrfZ1OyrfcI70CkItt+Mm5slk88qzZjcbwTi/96q8fqh2qWYtrctTYAhZu8yMXRjIa3elb/+ISZtWJEkirFDvrxmZ/qQ8QVc61BbcciCTk990yoWvGHhywmDxlNZ7H3tA3dAP7L/JlP1+H4hEhNZ0ZeqyefRFYY+rQMonPF9tNPb80DKDpeMS9SbDSqSoDhFuETCy+V3cz4tE5QeHFjjJhxK9jRRSn6/q0r5m/D1l74WUN2WvS4ma5VMb7qLYbu2/l0dV9rzYB58tReSVkT4yhZXFGVx4ieYhhQeT6KzXTz7Er31/kVD+jtFGzhT4iqa0a1x3HigwBaAopcCCxY/Jtl4ln+6ScWWL7JZ3OuO9h71CZuUy5V6NKlBRi/CnPDr8jp9bH24BjuDsy99xVnZp+GIFfMYq5sPeylgzqEYzMgts+2SjMcinYGC5st+fn/PCD6gdHLKN2v422vnG80BDUubGaQ1Wwz+appaGWIV7LwezStb8gD91p3JFyXAxo3eWmh1ykxybl/BP200g4lTO+dwPxFP46i3FcI6cCwrvxliE1GH4PA7ZyEKtvb1CwcS2vFsWKlFDQRZ8Va0ESbhsTMo7SYB39vgdzqXxYrwpZ/1ldJAOHUTWyzrEdFropQGWhPhVITi8nghxhuPb+SwPym9ixyVUZRKjs0vRoHzt1SEaD7fnxG1GxvM9dyQfvhmf0QwmJ6DdERcTmXiclXf9moWmOL8nu7DNbPSc+LST3DVwEDi5rZRM+EPGIwMU7paD139ngUtAEW/qM87UfOIxkSZJycMwmUY2+/i4PqoXS0bsx5XT0kz/IKYFRCROL7WeKT2DQDGj7jme0TNmcDfr1T6E2lonqTWZF0rKIWqajfLnw4oW/bPZ/gUUH98X0xogTWENBIZD/9P4JoebD7O/sEJ2HBR3u+YlD1JCHOHxbQeC8OTwjnOyKmgttivNyvIhrPck2lzgz4gO6CCKXZfEn04E0/5/fNEw0H+YHBiZriOwtBiS6n7ssMO99mw3qeNej/ZmXhI0DL8yeoCO4pfT3u3TIV6RKitL9+SKw/9J4P2uxB1hsmu2bnSzE8nbLTTmH0pgpJT/0or5Tx559sYyCr56vKX8P9qRXEHnY8m5yHuv/lB8R4aR2vhm/ewZIvETMK93wUcYi1/o02VM4DKxKLz6ihP2opBEurqhjFD2Bt9LaUkJqdOP+bRw/kMM3Ij9+lnz7Z0ueGWOvdM5rF6FiDlIcFW/R5NrzC+Ql5LsvEXOs3exSmUIDsslOosLee0XSjgwyVvqEkEK5TMQob3YBa9EyqL/mCmCXdDhY8o2I+qRE71N9Ei24aJgYWX8XXdf461PZ/BpaaskNjSm4zUuYow9POf/V07d32sDGelG3kuF/0eTcgmvZn/JqdwB5bP58hrD4mBfHLMv6qpRl6u7z98tV+aEvxrAf+1yNeaSbFQ0gLGTKWDlj9eF97yrvS+88X5sa6Z0N95xUURbilQqKeIn6glxYd/tAKQ3cDmznR3QBdOzdU25rfvlqvvARSy18G/VpPe3ITKvz0JxYyCdsKrrUSsHRfUVF68YxmpbrXqjFq6fg4Nv3onQwDiofSE/tlSfZEqbSHvK0N+tw6N/T+5X8nHXraKsu/uBV6smA8rL7MfgifYs78dFCXfJ388OMreEONemfK2Y9fJj36W8Hn1l+YWX3WxVDIVYxEY8yJL7K/vnNW6hqyzonZhXl2LwdjEMP8t7MZWbVHNEbHPNR+5zNz8swmoYzWWvQXXqi2Lgc+5Rc6omj2UraR0Tv64R3c33KCwcqOfPj4/IIM/1Zg9advXkuZMXvrOfNxA9nbCCUNvKg0fnhazNGcl3D0jzWxjKpuxiznFOytJ1HFD7pmum1nGdJQe+IKi37GBVuT4bTtMuJ756iY8eYIEKf/AAAA//+kncu2groSRT+IhsgroYmAyMtEAVF7gIqgiDySQL7+Dtxn3Nbpnf52bIVU1VqzoOqbYnftH/OfH9F/582TviP41Tfd2N1y6qaWGPebRyXqpmrtEFQuT8BK9hT08lT4dC/QsBdL1+0gs84qWanjls/5oX1B/6UN2I/riJOXPdjwPMuErAl61pziY6cvfAhNp2COuZNcEYQHl+OHNrGa04ZFeto/Z7Q6HAxLNti7BPdDKJP+djD5+jNYGQRoeNLTeTVzqgobAhd9i5jYaJztT6kJjpWo0kg/PAEvM3YHael86E77eGDCAbrArr1DcjgPp5rvg1wE9tDnaFZ2CedTmFVQ/Owtkj3MlrP4BIZffGK3Ps3L4rs9g9bpXC6/f+iZMJmCZntuRcPElQEL7pMN92FiErDwgz/9YRQGxi4eg3x4X5+m3g6W+9ODAavSEEEE8grN+pvmY4x6BCsBpXhjiCSYn+uzBiJmPDB+9zTgq4/LwPMrHmjURCcwT6/3AKvd40HNu2cDUa6+BCz+gpTufgWWeIPq7L5DXMmCVfNYzEQwxPGEdz0xAvJxXQ1qGXggze/tetFzL7grlCP1UGf206D3DAYPBdHtV5zAUPmJBu/oLdNtm55zadirAnw5skvD/Uz4JNC9CEDyCmloB9afXoSGkrT43Bze9U8fgIWH4fDaRDHPYkn8+T9qL/6FL/oYxK0Toqm6HXIeTKUCbpIUoznQUovL62sFl0cnkHVXbYtFfngBhXyEdEOzErC9LicQ+/aAH4f32I/79+Br630/UYsf2pjGbV3pQ9ltqZs/CXjd7Fr85W8yWZstZ/PRS1RVvjQ0pGsDcJK8Dfieep3uPc44bQ2W/flxb8ZCwDcxKOF0+3yRvPjtdZX1JrjPF23hN0HOEL80sBSkkYidnNWz8NETQITVvLx1vI3lwXkWsHsug20TRbbIIfV8cAXLI8qVWwE2cUSAsNZ96i3mYhqHr/3zK0Q/i2FAb84BgtVmmfJ4TDrO/cdtmcII3mQ1qWbOTvdagYKirPCiFzhrBlmA981zpCg6835y2Zrpa6VPqNe/dv3w0wMPMkY0yC9KPPIbZr/PEzbcPMDVU3nRElRpNODbZ83x9ZzBL9oHCJ6vWvx+R5cKjjuH//FhnmXRrKcWQ9hxAeJcSc4SSIL39h89KdT3Cq4a6YyEhWeQ6BUS8NMD9/u74awzW+dXvzBm+Y7zz9ozwP18PdMfX+SZu6tA5fhfBLJvbg3WuJFAmf4GodtW3w/GvoSVcVih7yyAfBqHp6374xDQED3DoF30AZhf6pvMk0l6Vm29Cqrh1aLeEL+t+XTwFXg8Yo0IwuaYz2eHSstUAh1v4QUF4nn4FOCD1hVe/j5gtt1W0ChMTF6h6gOtO6g21M1Uwv66eQeD5XFFb8jhjtabXOKT23cZNMOB0PB4e/70rgF//MrOghbM0p3e4ekcDEhe8jcBbCfBhb/hbVFxzlVvsqGsnjhazi/grsovwDUNH8XjRQiYZH9cuAokkW7Nl8V/5wku54uGtmb0UyBmDfxugg3e3EhsTdIQK7C4qRfqfFoAhlOXh9qRvPb0sQqMWLSVyf3lP7yxUp7Tt+K68Op7X/SKHbNnUhDYULKzL3br7sGJaMNGW/wSxuq4BdJnrb9UU2udH0+tJyvzDfDC7YeiGfbB7Drn5Bcv1HJut57jNyJgg8JoqachYLG66fR+Hka6/+I8HlHyLGAMAaC2tqmtiYvkAtrPfCPgtswNu0XuAZLTB2NzXkv9GIjR69dPQJIG1nl7qYwBJqvLjm5DbeA8eE+NrrSaT+YjONYsyrENS8lCi16+czZ9zhl8RLqw8LhLPe/veQfNU4lo+EVqTH2IO9B9XAcB5oW1fNO+DZCTysZe+djU7JIeM3g4RxH18r2Vc1DXEH4ORYVzgOaalewLf/Ub22cc1+Ir3jpw2Z9M4zhDAS8XnTkUuwMOqVP3QyW8S5ga4hXxXCe8fknyC5zmAFO0egRcFpVL93e+bI0Z8dwVZQYXf0xvd38dyC9p1cDdHe9++tiSXRLaICW3D9EO0SFn7qwpcMfyAK3Tp/LXL4EveTgRZYjqgE4ikNStsBsw8rbrvg269gID9TBTczsKOSu8VQiHbs7QYJQHMAnrJ4OKxSJ6yFofyJdj9wKiIpr0aD+M+oX45QWvTHvi/YrL8fBYrxOwgsMGO1yiwTxdhAw4GkF4W0Krl3686cc3D2aTBPOHdSEsdK/BRonTmh8ePIXj5yuT6Xl994s+aWDiRxibu+DCv25izb9+CXWflZ/PFQASWPgFDRqZxPO039nw9bUCIqSTFa+N9I0ggZZOYvVogdkyyAGKe+mB5HthWpM9tUvYnBnRjecM+PchdACXdf7H+z8XzVKA/nzbeL92n8G0UbkL9efHXvSo1lMhv97hRFG78ICE85tzEWD4OpzoTlXCXlab2oGKQ3bUpfW7Xvo/BbxJYozt/Gvly/l96fdbvCGNLvv9KNb9AB2zfSLwmN1ApmWS/vgSanySck5zQ9AXf4jYwmN/PAD4HUvJ150vuSzdNAWeneeJLv2Hfobvp6PfrM0Ro9hhfAZSP//6Z9j3jyLng/O867M+2thpXseAyA9mgEXvEtFRaE5pWSRAVCSTNJ1gcFrKXaFFM0yof4/7+vU7P79+4QY6EWASHzJAB+BTv3Bizn7+zrq7K+rJl8CSVXlkYH6uGNJPnySm5P0h0AkKg55FuqpHz9rY+sddKRhp6Z1zcBa7X79s8ZNVP044RNAN/Qd1627Fq1skSjCY7Yju9uLDogZMxN//+9VP8Bz0fobPGjbUegVmPu/BtoPnRyLiiMXHnAygaaHyiQMi/K5PMN8KbaeGHRLt1A/myz5g8HjevvDespRgFsj18McjAtIvUwqMGsHHCXBEFt7KLyKr4E+Pe+buyZtP5xw0U2TFn/4gappAkLUQ4Ufexf0CvyOoylmDN8aW8f5W+xB6K8YRIP0EhvR6qGAPqhAbza5ceG2bwB/fPbrtsZ+MFSphwjuOFHlI+1kMDhV0i7HGu3j4xou/EMG3UE7UzgUGBlj0d2iAw40+7o3Lee5dHNhYEaSmNW0tktvqQRGxd6LbNPSXftImAaeHHhB+3aiAn1ztAve7CaHn//UufPaeg2/ZxrZk6KgQ5s7nhneH3OH8278h7GxoIabSHefSMvRmHaEGMdI968UvKdrTb8yfvswXPmarSzxSL0j0fj6kngsOSXpDUAs8Pu+dtaF3QF//9V+H6qCIWlWYMfa/1itmA1cbOKT7Bm+lyczFvdIL8JCFu19+6eeFR4FF39LY7tY9p/ja/vqtKN6FGmebkBsgukk5YYsfWx9F5QAuRmjiwlgL8fzmz1Rfp48jtQTjaS3+CkIm7h16ib5GL65K4wAjcn1gvAqMfLKnsoPmpbD+eCt1rsMLLP7jx69iXtVlBxYei93t2fzxdAI7kjZE/Z4p4N280bTv50MJHNuvNQ3lNP+nRwr0f3+kgB3uNd1+vgBMrdCFIDrNK+orQxVMYJ0rYOtGGt1/w8HqyUEPtX2GM+qtbtu4m+digPO19InMbRd0aoNtsA0DBbGGreP5glQETa39YHSfNTBuiqsDpfX9huC6KvJ5rHczZKEQ0Y37eAKitboCH+L5QXeiVtQMrWoBHrz9jkTxvcln2e0Q9GbnjLR77gaz0xgV6Ar/hFZ1tw24gu4awCfLp3sta5ZdeF0BVq3TEaZks0WCg9XAYP+tkFA9E4tASVK0VafuUVAeK4sJeIZQ2fsdXn5vwPOTKkE1Mk/Ys+2ink9e3MB8ef+aP3Ktrjfa1MGHEVSkbvizZiPxZ+juhITIz6QEU48jG4zV80jRYQqDEU4mgjmhK7TaXvuYIRAddLRiE5F7+WZNK71MQMbFJ0ZwJsGUKdCBL7/tsZtquGZ4PxpA/mgR9aVwFYzernW09iVJ2PPXTsDa7OXDhJYxDrr63E9H2SUwqlsPW+vnNWblYzpAuqcEIyUNg4lrTwPuP4ZH904icqao77umMSul4a5v6sG9zi28gaNMzeX6D2sRS9A7EJ2AUug4P43HDq5kA5Nypdi53KuhpEUv8qJWu49jZgi40vbnTMaOJ3Y584pnoTYa4djwxdqaJ4lkUFXOLsLoiOP5lfohFJI4p9a+j+qZvIUGFP49pu5ncINpYtMAo8SUafBddsv23xLCIvcN7JgfoR68Evgw0IUn3ulbGUyFs3bhlMUN9cSDCqZGnBX4YvoDby2jBFPDnggmDG2QHl1f9cSIr8B4fISosp1HPYkhmOFtt9PQpH5JP62OJwjXROxwKMs1p1pxVmDIlQ/eJ+XKoq+NIUKxsU2aDsOzns/n5AWM29XESFTUmsPo2ALT6haJnTw5b+mt1MAzY3QvlbM1qAPLoNYXHdFsuwJzuCtDmPbZHc2b1daSYksXgPqu3hjnCeplTokJ6c7cE6bAVf89F7OtN9fTFWPjYNRTf9cF6GysGrt30bY4p42poidoaXA93YI5OAQv6Ny1AUmvrR2PuVhlq2J/kCi67aqax10nwu/VXHZDlR2fO35wdbPYMRwec8QZNjMRsvUG0R1pGz4fNzsXiGf3RjPdfVl8V1xT6CEoYmNVVDn7RsYMyMZxsWd2PvhOQ2non8HeY+8aycEQEOj+zhNGOtN7uiaWr89FOhL1ulpx8ohwAcxdvcUO7m582OrKC35B0eL7SUs5+cwhguRaTxjbg1mL61td6Bo9t3SzidKAaZxp4MHuT4Su34M1vUftAt+P6oQtLhmcVVVrA9E/EeyiOIo53VxTVb8QTHdXqAKaLvU7SuUMHT83e9kd/XWgdAi3SADf2poMdFlayqNGdzM3AyY2SILPi5jTfCYRZ6voO8P2mDQ4ndy65sKye3r1jnYYa9ExnrC7q6AKgp7uC2ldTyapGdQdYYe39+nM2ex+BWjgp0KKU9MF5C8+RqGmuwPHFi2Gewh8d1LI6uzFMau+5QvioxvSzYcEFiP2B4G2pSLRMv3U8/3l40ApBQ2SYpflrHBdAf7yoRyqWj1dm+cFfj/wQg8NO8W/+IVJaFp4YyRNze+Pp6u3qDTxNcRnUDc+c3VbqmYyU6zno1pGGVDuykyX/BrMo+0aMDTrPfWKh8nXrXapgHGtbOqFWOZ04wQa2BbyGwcTq2P23FANklPLqZXWUj+8dstbHS2Lybiuqp6wV0xgLyccb4Qtq0npDTYMfGlFTb+p8nFTdgwIh8sN26BV+bC6cQi1tt3RPH58c37evzMYuMQj+0dRg/kzzhV8FPBAN/s2rOkvvzhltybPusZ8EJ9r/y8fdF9vxUe2Di6wmO4idsHmZg27cyABCZdn6tevmdOLsLlDNvkH1ET5rmbnzTmDu+0ytSDe+rmcxYEJ3KFaUXc0UMyzHRNBe4gCii+bcz0ROs4wDzAlh6cyxZNZX5u//L7ZbnDOZElo1d/v2xRbvW81qxChXnz2dD+qImDO44Og5GAVB1v6jEsXtQWIYTYh9WOurOHyvdjQVx2Z1EbLY76eC0lTE1GhRpXwnBUb467bZrJe6oHTs7dQLfFxJqji2aVmfenNcAxcE1vhcWN9PyaHMM3IhJRfvpHYJMBzGXlIGnQ3lhIzt+Htwz9L/XoEfI42vi5pV4nuJ6esp+E5MHAd/BipAT/V7NSGrmatyiP1Lsmn51HdJXDzWd5/3abbfJJvdQNVZ0WIwCnq6eHKTWAFaULNk3cHnMWDAdjpCvH2Vm3q+fUsMrDkE7wT95yP+Qo2UBBXLjYnasTT9wAhsMRbj60xFazZWb8u0LygecmnZT+nhhLCl77MInlvGOD+To6gIpQ2dt4M1nPRPCsQ5NVAjUVv0Nul7PQ42JyxpQ5JzwUqlFDaHEpUL/qBtCI3Yb2dNtjxZxW0T+nUwoPWPIlQ6WnATrV2VzePu0cNEaecQSdotW7UbnSji18+jVcvg1myx4SLUW2xi41CmGbDRH/1dMwUaMOOdm9S+b6Ry87pIoJasg0cl7HAiYK7ARZCe8AnV0p69ngWPricyie+fzqBD9/AjYB7uArozXKxJ9fTNECnbNd0S6NvT99xXGqsPjoYcUp6trVVFwYO3NCLv34AHn2gAZ3C9jA+v08xOyRjBUEh2aSXmxQwCq0ZHMfBwtn+S/u5223/9BP2JMm11ty3IZQvcKSGban9dB5uEKh2EGBv54Rc6uSnqD13Tkx3vaxbX0FTS71U9x7eP2sh51M2lFCZkhYv+QVM2ifSgFDvDRpJHzueJe3ra7ldIqQGFQH0lUsKpJ7I0GrK9jGRN88BXpK7Q6b9eQsYz2ALg5UJSf/EU80sJGfgdnQc7J8RjOeHsz6Aess3KFSoa611Phm6FsgX6smRb03pM5h/8Y304Lbqh/Wrh/DKhhW1romRkzenjtZcDgJFbLzHPFjFoqbthAzvAlRZpLVTCIdwpVI7z0s+LPcbrPpVu+TrrCZVJUcwCD87ooMv5OxxVCIoCnVPABtA5L8tr5TjoZoDqM3EWaNVjSyLwrRPteXzdL+dd/k6NhQH9vb+SO3tZMe/+NaMA26IEt33/QTezNQ3H8CRzEyln+eKiWDzMtb49NmRnNfegMBKNjH1Hy7jLNw4CpAzyyX8fFjlRL44NvSixxatShXUXem9HHjoW4i69UPK2QuAA4i0c4cAfouAlMJRBNM73ZPk/AzzSdNXEfS4PxMA7G88hh/AgLxDb4y1lRaMm7JicJv6Npl8P7O+251sQmdKKyRttBOYPvxiQjO3ThTB7TYfH2HE4ONu9tR3yxcYbvd3AilAPja/r23wNkk9w0UPEdahHZhL4SjpiWiv8N7QrFiku7sBlTm3sL98//F8aS/QPPtnuut9MR6kk+GA9WDusMcvp567XZYCg1OJ7jp17FkWYQQ7/7KnW1lt+JxuPQWsvSZCc3NW8yk9TS9YblxEE3COA7ZX+jsMT2dGXVGrAHe7KIUIXc/Yi8cu4JJxUvT3BAO66AOr2+T7SLtvI4vu03VTc5TflJ8epVs49cF0E44EzrqRUUM+7gJ5WT0O6zaU6E8fsXCzDGr8GB6+vTcHMEtbcAGx4KuIneUqH6XgoED9fj7hfb68FfbcfDT4OhxnbCpRASjDWQKLoCJkJYkC+PkLEG1Qgo04N/Lp9P340EFo9ff/+V5XICj8Iv7zX/O5Igw69HWlt9lmAbOdwoBN4UEifpWJj/JTj+BnGhOM088bzL6uiD99RnhGjqBdNecURI430m2Y7AIRrCwHRtttRIP5FgZsM2UFTO9vSpQSCHXnSUoKG4vEqAH9g7PjY0W0k2W+8OYk1MFcvxsHfj/ChdqwvAesGucIrsNsjZE9wJjds7yDZ24P2HimFhDB6VP94g+B1/gKGGHTCxgliClGhlvL+Zdm2lvpB1LNIwV8qV+QG2VPveYkxRP3QwiPYfolihFZ/Wx/+gymq5VHpp/e2dZHoln67FH/Q5ElecA0IDDXKjm74RHwdaUI8JfvvLiw4plkrwwm0fjGm8duD+bq/HZ03V9v0UyMj7WcDw1q0D9jdypYPIswNCHs9xx97z6whnA8RpAZ6yP2brc5Hzv3+oJSsrPo3n8wi1zZZ4Z0meKAv9OjHtxTKcA+0QQiuD7h7P4eJajUtzs1L6lfS1qra7DcWiHh0U7s6V5nws9vYtxWXjxgM5M0XEOK1jrV6mlsxwgOeqQgbjtvQIS34sMh1FXq5OYLTNn4VaC0Lm7YR6mSj8m5KH56BXvfqrL4+z4SkGdegrG26eov0pw7GJzoQp2VN8e8fVkJvFbymgzt4xbQ5rtSYDg5NkVWfcyJkYQzYNHnSvH67fby/kId+BGfMvVReon5a+NKcH/b6EhfeMlc+8yAcjeskaadtXwUj/s7PEfZatGLejC8hc7Wfv7I3jTfgI8IZaCO2wCHVKfxsFfqO3xBc4txqYJ+iUcN8P2ww1Gpf/g8ffwKbI5hRF0jquvRUnX45y8DZ2SAbq9dpdJJHWhof9OcUVmzoQioi1TbhnX7OLIIPvNWoP511QTTwid0azA3hG9PMCD4cjD0sLFuaIlf3r8OL6IPzuGCrgXz+jUpPU0rFZdgU1J6a0wz66CL41rAePKaekx27KVHr+FFquB15PTi5QQoR5piB+mngLmnVoCVaKrYKQL6jx4TrW6PdNxqnHyqMgW75qXh4HrSrVlXx+Gnd+g2UF6AHR/yAF/h9MRB/PjGix/x4fashDR97Mvg57fhgxVPbKURBfOW9Ar83LFFAE5IMNUP9QIKoTsQditwzO90a4BVr7fUGr7rmPTbSoG5ew2x832c+OLXCphgsKH+8dICbiW28udnsbbKrHG27AIu/gqR3j3m7Dw+GZiJvaa+bVf8m30PCOBaoERD6SWfhc6T4MYo30v+9q2puvkN/BCNIR11fc6XqTKwTKeEhgfSBMznWxEGQ3ilxXI/5z0qCTwl80B4Gd/5WJh1Adf6jCm6XrxcHCTiQlU5uZj6vOATnmoHrPk1xb/vMxwPsQib5GLgO3x+cvrQHfPv/JZLfmaNdrjoSWhYpIRSYtF1xQRoUWWFd8r3BETFXi27Zh936lyMpJbsXrfBwlcoLtW8n7R6g+BSj/CJ32w+WV3mwOy8mTHu10YsL/wM7N7VA823xzqmlv00AcNsTbfr1yOf3t92UPc67ZBwpKCfSZoR7T70R8Kg18eT47+X64GuNPSeWT7fvocETu9kj3/1fIKDUsEswZg609XPJ6beHLhmL07EVjNzdhG7A9R0NKP5NTwtFsV+C7xn1qHVfX4Gs7AuTHhQS4dAOrT1FH74DHeW3WH8cna59JFOCszh26NBGOn8K26eDVSB11MbXTY1RbZagYs2qwtfSzijVphoVpD87qdjzewVD7ASDRVna0TriepkBrmbh+i6cwbA9/tCAVt2lshR322Crs5iRW/NfIO0TF/3P38EtrCQES3DmY9lHEe/80Hm5nyNaeMrLgyT4wkJriz35EBgBptPWNPgNdqBuPBE/RQPRxruD3HPfSVOQG8kMVEkTw14dDm4enOJBOwfLy5gb09M1SOZ79QL+Lrm15xkYPZfb4yHo1kPJxq2YOFp1PtWpjWfq2aGF/+mId3QrJ9fe+mrDuyJfumzfKnnJlRo8yDs4H7zqRqaO1DlaKQ+27440925AINWnHDoPbV83IreBS71DmVbc46n55Fl8G3fKN6GVrksGu3vv+uPLd3fWSzOLPfnRxc++crH6sIUXUF4i/ow0sHQv+I7HDfrF5Hv4g3MB+44ELz2MVqzIY/n7NJW4HhQT+gDeieYzm14+OlHbJ8P236ds8sAfvw1rD8XTuos1kDbjiKqs40XgJOLGRz6kiFpBDKgI3Iu+po1HNENUPifX1p4I0UnTeJjjzMbgtm+0Y2WyjnrbpkAh2xtEbhNH8EUfNMOQKCWeO+jbzzTyDMgIE2IRMfsg/F3/vikbX/xE/NXmBtQ0nKJumtljidNlyNIrs+J2ufllT4vv3WaFWYU4zKMeAeukQHfIiMLb0n70bhWEXyssi3944d0c0z03fl7wln6jOuP3TxeYPfNb0iSqrU1uKgsYNP4LvXYVuj7bzP7YNzIL7xNwCunb7yR4KI3lnjs8ummGYa++EVsPfwY8LMzKHAXz2dqfWw3//FKsFLYGYfseuznJR+DhT9Se+WE+XTV7hAyLnDqvh2VTz+/yN/bFNtvY+RjHxgZED5bAfHw+AwmfWUh+OMf8gkfg7m17wJ0SbyjzqC38azEMIOxByEN+zkJFt7ygm+jmbDz2r5ygt5b+5c/KB6EIBbP43eGQuW+f/63HorzIGrOcTzgHT3hmkfyWYGbZUpcgN8JJ3d2kKCA2oSsdGYBUSqMFwxRixD4eo41R0o9QC2bdTR9bnYshs1lBqtzphNp4Z3EsFsFEtWzsH+X/WB6f8tB3+aTT+2ggH1/ll0I42+DqLN+bWtpJpYJZXCp0P1oRpwh51WCTOpt6lmhkouUtxms0zsh9cI7qGKFA/z1HzASLtbXvZBlKgL30Sl8j5xFO+UOSxN9qVsfmuB3fsCST/Dj7MX5nMiuCBtriKlzGfV8OjAj1NXmY9Dt57IO+K9fovjJjp7NzwswpfMasPQ/qK11fs7jrpKggWuF6I5FAgoy3QAXa76Sdt98e67wloE1xhfskX4Ac/qQBRiE7x3+8VaJq7cQvsvQwtnXe4A/nhlW/gPjEWZguV5Ev0XuE9+rZxJwH74N+JdfKo0FPAC+/1e/9qS51Qz4twS8DvGMpru0s8Rj6Ptw8RNIVi40+GKlb+BHF0/0cLgerFmY/PTPX+ENOgTT6Ut9+FhdttisQiHgn2dRwV//A306AUxHX0jANtuYNE5rqZ4k3DUwJ+OK4gdjNWOC1oBgWpfUFtbbfh1dVgkQ5Kmn+5e1idmjLVr4XAXon36BTvISqBUx6bL5p2+lk2Hrdtu32KJwyHlXtYW29A/QfChSa+yzVwQX/Yv3l16LxyW/wB/vw1Hh99KXPRM9vX8oNbH5isdT7M/Q3kQZDqvvN2Y/fTrObk1m6fPK+6vBUp3HZ4RNJ/9YdPtFF23WzYxanxMN+MY/NSCcbBvvtczpeWiaAyzQ+Ygk6YhitrUn98cnMFI+ESfX96kBd7UwqGssi6T3deXAq67k6J0AO5a+xjaCAVQctPgLUNqmmcJ43ijo/dMb+Up86Us+w4dRf1rz8zA0f3p3U68mTpf8pN+d5I43Y6wE1HlB8udX9ZV4sWar7DTIJveA07fF+e9+QHFXB2QOXAwm3UqEH1/Hj3mXBrO4SyPw4/1L/6JmV2e9+DFZxbtm810WV04XPVdIgLdNtu3Xq+NJgAuvp3gt0bgPgO8CklJENLWb+pGjtAPptU0R1/OR09GESJu8j4o3Wfa26vJ7KWC0vhzxo1+XMemiswD1++mEUXjqrKWeFj9eTcTX3cj5an6nMLp+9b98Nn+kmwJ/PMKpNZcP1LKTnx9DAjXfYNGLNrhC0SByF7748PPTX/i08PZ6dvK533Ya7J68oMa8flusOL8k/XgAJ2oWc9jPanA0oP9JKYH2hdbdalBa6O2V65L/akDFnBX6wjNQtbtK9fB9SykgUlLixyD0+WiPrgInTY/xZq2tc2q62gBvkf8kuvkGfSt/shnab3mLlFTD/TQxlYBFX+CFF9czSSMCeCPfya9fLKerVwqeY+7gHdy1MQe4EnXV0QkO7a+UD0UYtfAC1snC0281V/w9Aqg4PMn6em5ynvpSA+tz7RFwKy857UXugqV/Qi0Kw3xQ1LGAh3GasZGsZ4sxrdR+/JToMZescW0fMji74g1fzsrD+v74/o9/IGq++RQW3wa+iA+oGR41MLXIceFBz20kk9YBo9d8JBg8PY7RTQxyttQPsPTLqMG52JPl/P36eRSPUOPUh6MB4Ok10scGXMC6CJCkTeeHRaRSUWoKHg75L48UAPHfHym4a1ZFnXPs9us+3LxAk4A76gwxBQxyf4CCNgd0a1IIBlOMUpgUkkMd5ZHUk1owpic3b0d4Noo9vd2HVh13OMZbWkoxvxz8Ct51sEI6tMR8VmdWwVZ0PnhTXb8B/0S9AEhBXIqxY/VzCH0bhmuxpdc3kutB9MIZNKtWIcPwnuuRHYU73L73EKXIJfn8/XxFcL2FFVptgZeP8PJKQXK03jTwAlzPA3gV0H7tKNLUZbeh7Kw6yGs/RQr+JMsihsiE30MdkFWh1vGchVOiC4Ub40MoS8HMrcyBZH1YdmseL5x/LNOHRdoCHL6A2NMkeBJ42Mk7QvIvj6f2fwAAAP//pF3JlqMwEvwgDsYYo+TIbjZLNni9AcYYvLJIAn39PKrnOLc59qsuCoQyIjJSZPqgQHVfXsiGlQs0hS17o+Z4PTAv2UoNNRe3Gi1GKaTIMJapWLBfBcbgvIj/KV/2eNikDiSlCLHiVr+It6AcYAzPC7qcPou8lZ23D2KNNyxsm1U3ZTeG19a4OpLo/njaUxw1EoTJaBFLufNIeGFxQgvGlyT+ZKpNyZ0+kfAZEGxt3E6EbCzAWB2XzF2FcsrFhlN02bCBuc5unfcvrzvApQ43DMdq3PFNUp5AfCyBhzTRGhpNxqTTxkG4RReGxspjE9ofc5Wqt2PTiO4+WeB26UAc3TGiJSIrD/b57UeiePvNn3qxobCI3Jjg5c+zeftkOwjyj02VWxGmEx3KHn0ueEFX+n7RMf8WqtqXDRIjJ/7opoCoFzhawUS5E1bdNDjXCUypEST4CjeX36ugQPc4VlhMSgWJrVV5APwzEIftq5wni58B5wuXiadJqj05bR7DKX84WPnOpwi//EUhUzSF0n1uditb2X8B523JtvXjnc6zMD0kGv9EQu8obO5IaYuOVfljEc9jMRWbiwIbTz5gQPufPSFYK8hh2g6Pm5zZwjzeDmjanu4sNNi74dn4+Wrv8IvZbeHOp3KN+UhEaEn0p9hEyPvbroX9UrOJcXjI0SjcXwapnBgY1e4lEibSfGCJKRPsYtyIGwkVWOqSQsj1sOx6PbrKcNkWN7a1pbKb3kJRYd7vLLAeJO1XspUtZHPCzGMkQAJpbY3uMVYoz6xdSsf1rtdRVi7JtnnekBBWKYOLax9X5LRuRkkDithNPrK7k23tIbTXEqC1N8xFuQlNN79XtevZH4nXfp7NZI+EQ6mZNSG7TxVRUzILnV/JhAczawUVduJBEO0s8rc+o62pCazd3iPne/tIh/7VU2T3T0aKyaOCrZSAwvkyyX/xJ/jDsio9ui4MZi0fX9R/ds8W0d36Q+epas3QCa2A4Tp8SQyrJfo4l9pDLWQTC596Z/Nj2vSa921uVHrKW0QRjDL8i+f4k9j0A30Iy0eVUq5Fz6bHUwKILhPCwlD1ba43Xw3+9t/1pxRCrC9ZCORsIrJd341U2RwvKrTP2fK+bNp0lOl7tsC3DsOieqbiY4c+bNd+QEpEku5rtlcL4BkFxEu46NjrEpdwu0oFM8R9QPPz90AX8Y04ecbS/ra1KwRRYmL1drS7acaftem2PTF9iBp2aPikO2ZypT1zTjZv03UG35fgWLxK1IzeJ7TQ9i0tmXPXn/mQSi8Oc/wRZ7oE6XQO+ie897aJ1cuqRJ1rMgfalpQs/nsf5WevIVP7neiyPkI0ynengmfSOexvf8pReTmBBoHESGAl+bTtvwmsovhNrqfLbDnpGMN1QVdUxeamEUZUGJq/q77M4XBL+8VQY+RjKyFY9gNE7ccAcDwcPebP+NP+1HuPWKpuSM7EJ2+rp0HX19/BZZnB3t1oTbaFlht3Td9rVDWMD76HRDkODBvvIJ1+JONoZe4uzNOkiz1t+2oHLZMwI/P+7s0kABRahUmCMQ8bHjSqDOErPTM/KKeGLbj+Rt/AiP7wRwzb07eGT+wWxP7oi2hiOHc0Rwsq5mSFb0/B6pEAPbVnZi6nZdq36ZjpHX57xDjqlS12dD3B61qZxNSyrBsuOnUQ/roW2eDlz2YXo+r1s5fc/+Edv72yp3ZG+4C4j+TZ8E07XNDukHYksJ1nzi/vJNHuCuzZzBf26BzyEtzLeMGX+3qVC9ESCiszuTCfUyL4Hx+3ZnfBaLwebNGe4wmtNcop2742qejumgGgnG4MG916nuiHFVj95JLEx4/aCDlyHCBnGzEjpId06OLgDZalFcx5NKM9ucIv0Ly+ePnTAjHz8QnNeM1C99yh8SyeHKyLtGWxf6aR2HSXFvh937BQW2qCPl4FR7K76Om3jzL0DI+NA7238UhkFmb6nPEPRdvVjTjLrLa5VUQJJOO+Iknw89Lp5O8qeC6jKzE7T2qmyJJ6VCxf8vAojmc0FllpwP1yuJJw2i676fEqJjRdC4su0fBLea4dNDRI3o55pf5u+oPm17DanAJixZzkk1tsCyiXskO2GajNYGt8hza/X0sCiPfdcyyJg34GDnFzwfuIz/evDcc6nBvHF4K9/LqFqL8f2bYLomak3s+DOmIGhr6q03HXrWJofODM6k+46ZUcHWATay6Gfe3nK2FaHCrVK4lTvQI0tRffQlVtDcRq+UN8jeDQI2usDiSRjb7rCzvE0LhOyjZ7SOx+vThPy3MLPvFJ3QjhaVoJ3l0/EeP+LRDTlZMDGpJ1Kjtmk7NNaj7BWj1dcm9uZ1v84dXVWdyoWPISDWRvGPB9vBNixKuTzfRXhXWP7rYkFD+zURTWcEiPX5+QNhjQ6CmdDNomOJDosNw2S9fbUqTqd4OFC+SIKXv5F91o0Z7MeqsTu8XnC3V1afGw1JJu1puALneY2GXWW1P5e8TzVwkbElL/lY9aGcvotik2dDa6xbTPPAfKfZizYII3mt5NYKwX18ymi327akQUFC2Q12mi+ri0Ujn+7r8wnT+MRPp7Y8unYgd6ur1aVFHvctNrVRECPx6PdPmFuhtzdfv806dUkk55w4afOMBJdiM276/mnz7b75uc/OGReFfrHs7hXWdR/R3sd47dDFBWLOniYzno93tE2jq8KIJ2pfER0zv2LDATd8dypwlT0bFURvqqbEmwDi+Cv1dmgRZL5cNIZfT5FImDgpwbBbpOT59mehwnCbJ2TFn0xGvUnxxT0+npeyazXszH9jeGoH4cjEV0Vbth7+ATqBl0WIm8ZUPbhaqh4Gt+WOylRcO8ursA97WR2Bc8RmKJ2lgrlolg0SeyIjl4xdrc2O6Hh4TY9jg9XwZylmCxuC046rO1r0B+rCmLN+zbtMZLy9CjmDYkDDQDjXwvFWhIfyviiLXbTOfg+Ybfb7PH0q8Qdt+vjsqaoKxh0YxfQ1Drz7VcmDfmD/0q4uKc1dq0Pdzp6uKm4o8f/vYnfX99M/r99q0HJA1mfovu9jA9BwM2xtSQkFTbdNh+ygtI3/eKhTu7bgQ7jAZgfvL/4guxcRVckBXPswcLQ8pFFSoZ/BJ6p4uwwc2qVwNvXe79nBn9xY345cQLOJw3J6qIQxbxzG8pvNJxzwhjWs5550+wJ6ZLnJSPuXC+tqr/6bvTYc+jbz19v4hFnUmznKBm0n2SoPNTPRM8mhUSwfbnwSeacuYv7qdutfJWXzi8si3VHkpt8+9Yga5a7P1P73XSIjrA9/O1mV0pp7w2loe5K8nTI5khK0J0LFegcG4f4h2nOGfPD93BFaMOy1/yQeOVxjvo/NWJmN8PigZxOu+QqZ2O//CffcU3QUtLy0lYykHe2/GvgBFFEZuPMOaCTtVTd3HlUzTjOY0bYenOT7mTeCNfkGCHtQGgNQjXYX8TdFxfelCc449ttlc9GtvfOgTqnysq4/CJJuzZBbQMMLHe2x5R7NklOjU8JJufmqb9afAU+FHFJFvnIVD7CtcSTOllT6WaFzlH5q6GMnd+xN3V0Aj2zBQI44wQ21k6SBlDr4WyaTmewv6GRNq+DhAy8qJrdWOmy6BevtHrurKw2kfanz7W4MrNNcE7vUD/8Pu40WqC9/mjm9IeWqju9Rmv16EqxrJTa2g3mc/m5iKp8pfvGtl7RzYHKUQjIgsPHkb7Yl52NFOlOGkt1HzoyNa853bvqSLU/axU5n4fbqM0u6QEM6c3Yj7yBxo6uzihOd9mNpK5PRZBFcJ7/doQ+1Wijj6OEwA+rinb0Pybjo/P00OT+ZBwMetpZh7MHeDgHrKIiU/KaRiXEDx0BUseC8VKC+MMMr5y6ZuRH6LfUn7D2Xgw5pr9K/8F0z1D+88rpnX1MVJlOJIWtpefRLzPq0OdMMMJLtPdZ8ab2PmUpPtKL8bLiRh47uqxWVwdDfiuJ+HyIDV9qf9aCONhR6yLXqdMXd04rNybwpxhKafjcApVyO8FYGHuztF8vwW0myFg8+9346re7yCLg5zF/SvpVrV7U9W6ylo6WuKH3vvggtF++OrEVnDTTLvv3Jx1ozQsLoe668ftHsOurznBa6rkjG3PCtjv5QLr4cuNluM0TXAKjpzZ5w6JcV2oXJv9AvKnv/mu14q1yJ6EFOVgdZ0cxR4iFw3TAexDzssjn/75Fftk44p//Bc8Fgp96k5lT7d1ZEBw7t9kc33zaGDfdYmu685jG7fFiJNICUHF1YaFCg874XsbFZ6aFtAFxWXEle4WQiq/TBLV320kjwWyEPLTB33O68fd+87QA3KviMnjL2J7vpUBH58DXZy2cUOVxfYNt/fVIHHeBeIn350aFb9oR+zw9LDFe21MuraCioJCDzbvFJNDI9sxiVQ3FMtEv/YwxJLN7GfuRHyvIA4VpIC1UL+kVF7GifbaHAaW6qrZ9Iq1iyHsjj59pN86mtCwM/Ru/a2ZkTdxx0v98YXNq4yZeYpPEV+uaxUaYjz+ft5MskN9NHr+g57lZ2v/82vadluy+Kk4Ob23y0R7VdslRueVFw3v1+WAduV2jRcL+5SPtOS+anl8TbyX982Hw2odo1X0+DAiSd5sWV81cFf5jk6z3pqy2weD5U1r4t5xGv3hKZr1FQu68zXi0eZ4QvuFsmd/8cd3rvkG2eSY4Tk/5MlnL4Ekfb/M9KHrRnS+7CCJd0tCeVPYk16VJ+T335AknbimIrXkYt0rakJChbcd++mPJ+wyKyfRQdPFV5yzCtJj61Pxunb5r98eWwjO9E0CuU67ZRKjN1q5d4Vh8To0SgplAVVQvJnHl6eOXU2Y4Pt4JuQw8GfUH8Z09+96fRYOzWS8pgvMfMsi87Hvnt9pacEPJS9mhb0uukc3UeDWysDKdJrQaP5uHFXTkWLWBoMQ8/0iivM9fba0yydzcaxRsrJ2xN/aRi46/tEguVwuFKRLEnGXbzUI5CAkXlXa9vj49A7IPPNwjfddM6777Ambc3AkxrA2c/4mlzcgx7H/ft8W0xd9UQV7wA/a9fkYPB4VbK6HHzs6u2s+DnQvISTOOlXs4txxyEQLr9rzmblK9800JUKDs/eqGO7LTgziaMcolWJM7mfqC/HtN552i7oXlT+fOh+JqmqQHbIHFUjm0bB2fj1ERXjAqikfOq7Yzx06uWHyjy/o86e/UZweUhY47Rjxb6A6kNpiiafNS0aDXT+wPphBzSLP8bpV+bmqulQ3HlVK3WuY/vrGaNTkkNmtyTvuVb0Dd92y6DEPLMSUoSjRaf9UmHO4nMQUrH4JnFdZP+fPRiduCuq1287CzNAip2Pb9AgwxGATw/50+XQ6awfgx/MRq8kvRhMtKgWsVzZSafYXp9CsW1iOq8Pf/du8yPcJaC8Rk1h8umiES3+AIT0pWBTj25724TMBjyZbrJTZ2HDFumAYvfBB8GLaNOMEsqd9JWtJ4lWf5+NtejlQw2pLBYFt0x/R4Q0rOAk8FmqPeHRa+GhKsz09vtW9PVpmryGxW1iM8IR13FhrMqR3dCYBv9m5Ys2N2HNtHu0XR3shDvL7q83+F9leT3G0/vKhB2tcHpkd5vucl/j+hIKqBnO7/G1Pq82kohsUI7P2l0M3yUtnB93H3xLiol/Oh0uG//kFc34fTWlXvfX3JxdYmt93t7jQCqKT1xB/cVe6bs7XkSjFwGY/Oep2Z4lrdv9ms17M0vn6CSBs7Vm02ZTRnx+EHmxXkN2haMRwH5wnLFdrFy/zoEYzfylA34sLFdtba3N6pTuAGz+R23nJmt5+qhVaboOWwmo+grGeeAUfc+6ytnrGkfjjN6fhlBwezRiN/dKr4PVO33QYz7eGPVBRQbnuH3/+RjSNofeF/Y9XLAl7HQ1Lw9fQAU0LKg0LP+Iz34BqZS9mlO2yY0c9VSH+MZf5gGox/h6RqllobIhPnEXU2sFJRfP1CM78czTz93wEVPkR/DvXSMx+D9Sp5M14/LZHtmYneCxet1kvlN30NPhX+1HZJGclVDr6V5/40+vrr3il4/Ysv+Ek2Vc8eZ9tN36MzRP5oEfEvCkHe/SDpIDC+IQYLBznzOx3J1jdesTipGLduDicVTT7IXjc3o1mta96C/3xhT3z18qdthgu6Wo367dHPoBx3MF7Rw3y5y90vb8w0Jxv4iLWGpv5yz3oV+dbYESXhq10gTYPgigstm2jZ96XR87hLR4n5g1CR0pSi5O+UlKLSv5uk06lyQ9AEuVGvDmeR7vRd6CvREdpEfuNEuydEv78MLI6fCO+c4MnNPnNJYdlZkXjru1C9G7iI17esYiEqeMY7ktXYmZULfLx2dxbdLRm48vFtBNi/KoI6ObM4t0izX8e1iT0WwQWhafipJNenQ7g9VcN6/aa5uLQcA6RTHOyUcJTx0tpOR+ps1wsT5dfzmW+/MLsTxEMy3s+mt+AAtaS07/nETdF0H/PZ26fHPVMq58w4xnW+dyF7GmoLZLb02Fen5sYmtp+oj+93eaDkS5by0/+5T+XtpX+5TfanE+x06yvx7XzoH/+PwY7TjvhL/eSPtqLLbEcv404WP1TfeOqI2dpQmhs6uiNZn+bpamtNNy0vuHcFUHBTTbIzexnZAA86ef8aB/Ja7aEP/+P3bT6LKblW6rg7bxvZPswwmi8enmGNuyS/fl1aH6eL9xgnEhcpSznevzS/vIhzOVN+oeHHvzlT+GnoE39OGoSmDzbzPmr1S0vkBnQVumO6mmSNdPIuxKl0jy4UFl/xER2zgRR/dhQ3i0ZEoFCLfCC95Ns96OUC8Vt3nC4RRsWy6GRK/QGKtw2oz/nS0XD06sTw996/NUnRDV9dhDtrIlsnP7TjR7WAIH2QMwzEUqnLtB2qJKxycimeDVT+Evrv3yLGbfgmv6rJ/prh7LwgZJ5kBfj0Bd3lRij0eY9dxpJj2rszX7RU4h8nmJpf2mCkeqGSGh1XsJu522Jb8qHRoSfGKPHsiPEMfVR0OxlZCB2rcniy2+f87ojJZzj046Ef/UvbvpPuLcKpeuo/zW9uh2e2ryexP2C1Sl/9cW5noTV58Ls5PvZUSCtnR7zbknQaE2RBcToAuYs70kqFues/NNLWDWUIX0dfOar/SXJiHW53zrR+ysL+cLQiYd9nH63v6HXtFh1yH3W24IK+QvK7hbP+4Ehus88D8jN7YnlfYZuTI5f+a9+xKItfTZj7VcFCldlR+IN87vJsdoDvLZZSRVHl20elbsDBAM/k2jzsubBy9cavPreM+9WtOmfvgQylkdmtKvvX7z1+mNwfeY9HlrX0uIrQ2S/MX7M+eXsR+yAXTavf3qhD/VUguBrf4g/kdiejmTrwHk8IBKYjW+Lu6E7oPrjGa/DaJty9DMz/U+/zvWYiK/vvgPvszeRYBMcms48Hk9wsSvCUleFnC/3moH+9G3MHMX+0+f6XM/DazKuBS21s4Nm/UITdvnY40vWfJTL/vvPP4pmvzaBud5MTovHYPeqZPcgbZcFK/syQlOZ0BjG0JD+9m8jHCIr8GhCDf9mf5eqe8BwbT5HYh1R0HUrvFN0Ne5kFt7SYc6vvyGqJJ+wRDbibpmVdQnlYkqI//u8EbfjX4mScgyZmbEumv1T65++iGOtiaZoMjhsYtVlRV9Z6fR1r4U28y3bzPXTMYnFG8nPXUPcTbIXoxiy3f91pGD5v48UjA+vZ25SmJ0c7yoLPeqM0lr/lZFg1TyrLhtKZlLFbXgl7TGUN61mfqH7tmAVP+jmp3viBlPR9Ie9qqFRO16IGXaLVAx5gOF7GEPi3rJ1LmTlEMJHbBdYrHw9nwbjG0LBTxWz+v7R9fGuMvSN87PZWX749niFJ4bKkTs8JXPjwOAYhNDUypF+k10YTYdH0qO9lZ1JPHZv0YetU4Mi9y4r2NFN+eLqX+C9yGJC3rfOnk6drsBeumJM/fU3H07jVkKR8lLpKjmDGOLWBX3Uzhfi3NOmm9rrx0PHJZdINE7XZoJbJGk/QjMsFg8e9dAvJ9jnvKB6YI0pp8euBjv2UtosGi9fVb6bwTH1Y+b0J9um5jVQ0O+ypMT/dQ+bZ77p6N93DMTCb0uIZNcfUMkOB7JdLgfEl/taAd6rlDlxvU6He1pxIFGBmYGGTcdf8uMCyeaHSNylJBK5spKQmt5mC37a53yZGBlkLs6wtH9IDTs9Dj6o4cYi3iP1On7YcxWglXbM3luSGPFhpaFzzzzm0OMHjS65PIFtkgXbDkVuD/YvafVjf1GZ2Qs5pYdHRsF1Dkv8zMkqGmvboxAN54iOtaekffDa1ZCbpUO2kWt1nOVZi/rYrIj5LXHE/B/ykLykO4oO7laM0hYbsFgUOSP51KRjVjtvKJjlseARvNKhUl2A7aH2mJs7Z8R79nqC6foR1uf16nmuYm3++8TNPRyt/PbyBXhunnTNN3rEuXEsNUluImItepZPq8/+AP1wSyi/amubVxbr4Ws/QxIGD1X8brFSg7+3PFrAiXbCLbWL+rnwBI/fktpsH/EDOi8XAiublZzyi1nKqJsmmcXDIUynpTlaSD8tGTZr75SOLu0xuiYFId7XeDZ/+xN9dv2bme9bIsZrcSvQsFaOLOw+q3zgynWHLtXYYS5MRyju8+uBc/2eyL3K1mh6PRNLr1ZPBS/W8rETz8v9C4HdqiRgciyG84meYPcz9mQ/X1+Ql3ZBc/wxt/WKaJJq4cCtJxJdPW5DJyCpkwWu2jNzko+BuAoHCmrzftBlG/oNl+euAt/3piGuLLLob//okjkaeFr0LB1dFkyawM2R+b9fK8b2rp3ANzr07/0IV2qe8LvOs8gt/E3/Xe/hrwke7/Ijp1EVyEDsfcAcZBtCWOmagnSVXLxI87eY8ltmwbLKGLHeu1v6ZciWITmrAzmuQ6XpGYoUWGIJSDD5qj2xyN7pUsBSZuvPRzc2z90bzBXXibU8nAVLxssXiGIesLaHh2i1cyFr/ataYIUeSDM9736pBTf/xJzHz42EicMn0OJMqUimyqZPad3CfH0M+3eTjqsRGQjMcpoby1XNNDzZBMPGCdmtzBQx1uWvhPgyb4DjgIS4W0hGCW4NvLo5mhAns52/KosnNu/PVMC0NqCK1TO5Q3i2J9dnE5rxgHgXaf7KL64mCKfJY/ZDdnKunOQLGjc3mRiSmSDG36aGtEZlzH2UL9TN/wa261yyPVj3nPKoUvR9WNhUU5JF1K/QKoR0+Q6I+xK9PSnvEqN7k61ZGD3DSFz7g4w+tbUgbusn/8XXyPHuxOzFIaegJ71+TR8KMyzsp9O4my6wXSp3XBnE7pZNIwzoh3fH4t9OF+MiOb/hMNKMbSuu5sObXZM1fjCJbLf50+Yw5CdA7uFBf8X0FWL94SeULgvONnog5f3DbhUYR+ySrbj3Ofs0ugrSVenpK/efqeiPiQPhflMTm1afiN0tIaP86SjsLN/3qNc2xxKGXbHDytwok3U7vwY+WBvmNre2oRsWYS3U6JU2et3lPc85Rn/8t7mMofiLd/jS5It/m9OpmaJ7v1uTXjWYTcudGFd7j8Jr/7ngC1vEdj+9uQab25oR8y6buby5/zK0q+BFtWpOaX3NKgFg92NGut8008F81Hr/qhc4oZ2XysezVf6L/y1EJBf7aOZnOdbp5Df7hkvCKvSRPKo/fM7neM+g24UWsZcRFeOYF55GI5+Sq2lF3RS7zhe0pNCZlTeLVFy3AUaPJAB8PVyVSCTjrtVn/GSe8juKcQj7HXq+1TUjgbm2xcnya3TNXzUh3jCglrVyAZYZ2Gxjn7HobXGagOfP4wDk5dvK0btV6P02Niw/uFs0RVWgwLA7rNhmQ7t0jF5XCT0MAGK298Ae7a/uaJCo85mhzQ+N0tYz4OkkG7bpxkvHMz/wQOqSEitfw2l4EnlfeDohpSOdrtHYObqP1kwOSZ7lzB6UuXCzI9VEXLNP0um+RR7ocwuA4re7Cb6usy9K88We+JECNt+7ugOzHsIg+gf64+d/esK/fB+Is0z/x1+Yp/tPQ/nuoKBxSnsWnIpP2mnx8Q1W/V4Sv0Aj+jqHqtfttxZR+SV1KSvOzxO8hN9g5aDemp5XzxikYEgpv35+0XA//80S4wmzETZsbgWVBVU8Scx9jUsx7vI2BF887iTer3R7JKfLE/zLyvjjUzSeFd1BPH8f6aL0HaTct8KB3ZRIhKzqquOVdMXIdNAV96J/CPFa/+o//CJERI79OSA0IQNWPfWbNEjZ6tF9UWtrF6xqrZgbyWsZbG6IYVgt9ogTo6vg12ZrelxsN2iSPh8HaPGsyIEeP4IvrkamZx/pRZ9tuu9Eyw4hgt5eEeu4DzseH6QSzpb1xerMH2K7OKkwvYIdVppXnvPAnUsMmmYSp033zVLTrwnkmRIwe9Zbrfv8Ono2koRsfxsZ8dEQBiTe+0CCLXe6cW9sLhBIJWPb3+Ygxuvt8gYjMZfE/uaLbjztpwNc80+NZd4FqTjkg4H2g7dkOJy/soo70wGbyiUjq9po5J4Nb8gqI6H6caoaUdNKhn0+FX/xna5Q4vR6gusPHt+hJXgY5id4GdkFj2PIkYiW1wP49elOub4oGrbe/J7/4sFVJklM0UIYIJnCIOZ+0zRs6kYDlmffYtfYWjesuJjanz4mwamYLSHflsC/LA3iKAs5nbYtydDqfFix0mo8Iapv4SOtYz+sZW+as1+AZIRHif/jD6WoPQuGtXxkcYSjZmwcUwGX2SmzV/4tn0JpoYHVNj7+zPj7b38dqsz8p1fZx3EoXJvpS+VZr7IaZw7qpbGjoo0MMVr2dIApVVbEuj6zbtrxdQu1a1Zsc3eXSJh0f4CH6RyZ42/T6LeRuYqOweQx/IVjQw9mJP3pAbpyuywalJjv0OMamnTWH/nvqgcczT8nsWY1+cB4G8It0RMSBg2xf9KgndC4+WyZn3285lv/7BCml71igRwF3VL/VvyPf8mffpnWU2Yh2VJ6FqfqJZoA9BCUQNtSKJuFGD7ydgfBO22x+OaLhq4TeweLRZkzY7SqOV6/Bqy+jxUhpf9EQuyvGWrq+auW83uLlEOlz3/fXLEI7qtmtJquWuv8jPH1k2fReBd7QPLyvWLmrI/4aCALSoYR27zuDeKT57xh1osklFMtH4dWGPpvKt7s9EjfHUVwfyN2LxzmHngvhPrWMcrGzRrfA3Md9X/67n1bmWxr9QTJPFdnvJkSCtL514xB5V9AfgYu2YnDAfE6uAJ8qanQlbZMI07nQUfXTj6Q8gqbZlX52wwuHDnEypt73pcXVYVxurpYTbBAU5e1MTjt8kQcdMi64fDxMwg3ypIZNyA5l9JrAgElOjHoAjd9JV1j4IOxYbdt/owEd5EPWnjdUThrNB1W4638w3uyvTjHrnfXWxXypHPm/VYJcYTrCU35PHs7uYpobBdNDZZYY7riN9TxWxpwmNeHOBvNEv2cv6n429tkk9v37ve9vloo3lJGjDs6RPyooBZsbt+pauPX33pIcHyWL/pcH5eCM40m4DWuSuIs8SK5fVUWQB/siHPFRcS/9/yAPq3XMSfE2F6uxmMJp29bsyC2rt38viVopZ5Q5fPbCJGvbhXc5SEhhHhGN428eUMjm0f8pxf6WGYteqqbNbNmfbCqvgcftk6EsCrRKufFdMuAKOEwlzTsZjmEfQJEwtcZP8emjSpT0V+tfiPhhjT/1WMrdfoR56BbORujNkEvYYeMbF23kX/OKYRCvcTEfyQ4H4bu8kSbQvEZ3mLaTJOiJtBG4LBQPb9Fb86DE7qdb7FkfXmmXESIQmN4IZZCzU5XnpNNcPHwC6+xKeUDXwoKfn24s9iNtHyopaxFzrXSqdTqvOEveaZlJzSIr/5U0Z91f27bYq+Y63tVztuXVejdo8jZX765/K5PMtSqcSNRLZtCGNuXBWdZi4k/gIaYib8+6NuPxZy3YTbyk2o7WH7PFpVWXdBNFd599a/9Dmf80/OxaZCFVtXryfz5/S//3pe5kCwKqunn7X75auGcbr9k1rPpP77SklJn5Dr6+Zy/GCjxngcSfVzUDW8S1vBAkyCWvXaQbIsTRx/jJjO/hF5MXlBr8E+PXN5dx9M44GjW1yTaj1bzL59J1qc7Vv/0yOgyAzl+/CTW9c0FBT3rkZrXMl5hr7G5J90L5A5KSswq+KD+fntqYGSbB4vZ0c15GpvTH36yjdtp0SC/VjHYjm8w54PWaPwexlbf0PCB1a59IbEytRKm8B1SeX08Cv4+8FivT/eEbMmpyLkkKkOf8wM6hc+4+Ysf1Nu6TLx+L+V0vX9R1EZyR06dhO2JukUId1EnuCN9JoQfmiqMP2tBrAV1m9V1G8Qw59tUfPN7N75xD//09PYXRPaEo+tJm/0UltuGGr290C/ggu07PWw0C835uKGjsn+zDajPjstcKtZz/kGXzS3s+lm/IDmRXPbnx/z9/I+fiJ/gVIj0NBp6xa6cOR99F4nqu6YoY5pKnJcU5c8/vPvzDzZJHuS8awsLmbHukmjP4nyS7EDVqhJzFkwhTRnxTKzbx/KK15tLj7jcWyWI8zonXrRuOy7H1wT6gToznxjRaD0DD83ryZxw98y5jddvWJyc05yPTflgf+812j8Rp+tPrkUjbEptPfsz5JX7Tir8MNAgPVgSsc+bd/7E+fcfX5PwREZBB0d5w3ifEkJaedOMTXMr4CbvO2aZmhGxWe/Dq16PxJl6J1eeZa3BTtuozJ/zm+Xf/1+wo4WXyiShoXfVBOhisybmurE7jj7PGKz24ePaiq5inPL1F7RmPDGc1teG/56bAxJ42jAv011baIOpzuMkgL6UqUSzXvRB1vMRq6/Ds/nHP3kmB5QZ1xr10zs9gVX3mERa1OfjmCk1/DbThkXBhSA28cGCzRtjEnzCKp2f9wnIPT3wgs1HFPg7UMFW3YgEhP1ydu2nDI7Pc4wXayUS7HbLS3Q3l5RY58TtVvn0qKC8qTU7PD4UTYNRhTDzN7MW9NVN555L8PILhyqn9aWZyo8eojaSHObo59ie7vEK1vX72ZHsd6wbcXqMPTqHzoHFw8nolKOHPJDD7k3Xs37traAy9MMuILQJ86abpA/z0Jy/kzCq5xOn1FQAMmWFFU0qojm/ccB0rQmrpaZ01Av9Egr3ShgWH33m76LXVSvxmXF+nrs/fEULtv1hTT17aAzu2x0YSYSxXrNbNO0VG4O78HusKcndnkuCIRj+6NPGZAZis1+MPv6jYr46d3pbJaYMeynHeJzxZlwk9ycaHs2KTvhtoT4fIgUy75ox8z51kdBXgwWfOryw7Xr1tMftzlbBqDODxKmqRuz0KHy0/BY5Mftl24g4O4Tg1daeuHrcC+5J5xKmAQOeuI7ST8DiFgUvbBPXd9qIHYvwiZTc3VKd3U7RlFbnN7RK29DFqmrz0cG3Av3Fr79FjehsFUq01dWInWPXj8ZrgQy4wfn8X7xWQUtAtl4aMbwGN2PxET2a/TfKsRZFKMC6CnL4e7MAVn3axdnY61ra6Vj+y4dmvaLhXSWxTcZJx/3n8QIZU1W6dIxbJ7oD1PDk0Ru3l5fIx6yuQ311Pq1mfAgbdiuWKvzh7aZburMfl55QvXXjP/5Mh9ev9dGkn47Maw6P5k+foIqeArZdyUlHr6fPBH2xS8j+Wzlpm12MAql5ntP1r4y60bKLCUoWI+byqrVH+T0d/vwIMvNtOuPtAXwtiyg6eV8hFvrYw1++ZF/zsXvg3aPUq3JzJpuboyFKX62GrOvJx93L30aTXXL44wcy42FOOVnstD89bqbOZHfkdVA0sT5vabl/SN3UL54SVJ/7jbm37JqPq2n31MMNYHbgP2GPf36pFWxOxFyVuWBmojxh8Zm7MCwfbjctvnELs/9AkutT61gV+DU8VXfN7MdE7ckLjVK3j8UVS8azjqZafQIMnjQSt49s9O95LypwFo8/3ky1SjKk9NWCbC9+HY3BYv1cG+jbk3D2Eyfz8ky0P/6IitLo+KW2Qxh/xoIutjbLZ3zfofadj1SX4jYVj20paQ8hV/RrblshZv0F6WsrMWed3pv+MNaO9kKYzHrNFtyw8wP0CltghoSW/m496yGSuE7VWSiJY2HN/trHnPkg+1evQYXbmuzvftYaIPqX/zI7ZlRMw2t7WAdKXZAImmfE5R3r4fJpz3SdsVU6tgtXQnnCb4xYpzEfo2AVa+8BMlLs300uFIh22g991hiNMkNiW0W7P/6eB7nEnax9vBbYFO/YbXs+d2NJ/QsK6PnEopIv8+8rXXoaPww/4p8SI/3zs2D2H/HiyKaIu2tXhV5aO8R+bw75jOsY/M3XYCad1pFYWMP059eSe53LiM31EAg3Q0HwePTzqT1eWtjYhU0OuJkHO837I30dz8S+M+h+cdvVcAy4R1V+SBp+GFsHDbttSUt/7aerzXchodkvZJfZz/nzW2Gxqnx2lJc8Fc/LuUVqGOfEMEjTTalBM5jrRYQQJ8xXLVtT8NtkIq6mPjp+W1FA7esQsgs1NumSH3sJfuRjUq1cSyn3nScGXa1TFj/1LVp5th7DLaAv5tFknQ7f5ZyfJZJLLH0Iu9/sB6HL/bZnkVQlzQ82pQoflDskKMehm/3CExrH2GUO74KcMzR/kjikLQl+1UOIy+ergKxfR+ZNJxctwydc/vxlSgejtuf6UQh/+jNWzW/K1w/d++fva5vttpvu8UKC+t075Lo5KV0f87le+MlMFrr4i4QjYQN0tznRt7o4p5wYW2ntxtmDxG6U5Rx9Aw7C63Nyq25+PuKl9wW0zbbM6Q+xWCKrVuEvn5j1VapIza4F810+KQqyt82mbm1Aoe4EXWv3QydeV37QT9+cE7sRP5v91SOVNEnphI4T+jyv2QRz/YS4Bx4jgY3M+6t3kSi7XgRnyFbQ6tusSHTJZHu89YwiZ/9smT0th7ketZX+6pkkMJ0H+tO7CJ2mlOEWZSlt17qM5P4UkuByszqFdYmhV4u2xitVVqNptfmG6J54FV3iyzHipdp6sLx7R+by2sj/+R15RjldB5TmFG6PCpbeekfMa1lFQ25xCc31wH9+xdO9HihE9mogtj8PBvKevwpFr3rPLHRM0KDECQVtSXw63sQ7/8PzP35l2/eYpjOf+uBcax2vXndbjHyJegikghHsKScxeoc6hNm/xPrGVKLRk/MTnNMiYzvnGQgOA9f0uR7HypKsuoHtOOglc2vKvcclHws/rGCJAagSoQr909N/9Zk5X7bph57fiB7ynOB3WzXjmEkVnEG544V12v/F1xc28ev07/0Ol/Oj1N9OCcQazQ3iQbDkUJ2SG9UU85XTGX8RfX63rNivbtH4y+wYzfhE4rfkiyF57Hf6Wl2UmL+PddTO+IB093HCIrXXQvzaykd/+SRZT/dcqNbFgnHa98S7747RcDn/Cmht9cLSZkzEv/23D0ubWNfUELL2we36b7+aPuWiJ/dVCFl594izuHxs+uen7VM5YEc9jme/KbH++J7Z542Xr4YMe5obp/78vo25Hp9N0N4iB6tE85tRGHKJUGUaLJzrN4Nfsh7N+T8Lod9G7K9e8j52wIzVKYqUl2MnIIfTgjjmMk+ndmnK8P8cKVD+95GC4pSNLOKSFS2TZSGhg1edmf/pgryrQP2CczUc5tjhIETRPjxgQdyy808KU3ZZjzLItEBYqpcjYvjzDLW+2AfM+im/RhwDq9WDWhkwRPayG/mpzvQyi75YvLERrcBvL2irl2dmOfMs1VW1cOD2sC/MfeVbMaan5Qnl9+aO5W/qoDFgtxKkhWsxb+Mf8inUhYUOxcshVgfzrA4zcODv/ncQrBu+9ZsY1Lt0xE8WqM307bYeeMRLieH2HzH4DUlQx1cPOriPoRG5MvRw31sa2eyvuRCP8mrBdyps4jyKtmH+h1paHRxbEh0mT/DWvyRg5emDwmIxlwjzywn0Z1lgOTO0fBpK3YKcpx2z4a40r/rtl0CQ1lP1/dDTMZpKH57N9os1f7qlwj1+LVB+qkef9OpF3G4vMqLd/UdXa/OTTsedz+HoTyoLYavmYkuuJ5Qm/Y8YTp0L/l0HJ9CKTUJIaUPeqVEvoXS4eCQM4Jezu788oTrbLLG8U+t06LffA7w/lkoX3WsQY7I8SOi6ilSq64OZjteTKMBjcskOeBsi4QRXBa7G2cBCTQUavsXo6VEHdyp9z03HzT2USHLxBysBPoqpy+UDsOc3JeVvo0SjtLvK6NPgnkQX6dewqFUTeG+1D4nx/SXYk/g7eH8MFSeLKGyEOrg7+C0uJosf1O2Y6ZE32gbtjwVN+UPDItwa6JwlnBhZMQnWPLMMpnuS4/GitWj0Ku8JRHmGVLo02/krjE6DdhduiQv7LOc1W/awyOqOwqnzGzlcFzsgTfWhgvcfm0pB2iM7mOav7DnpRPu8VPDWNy/6yx445X704tANXkRi2pn25Oig/YuXFDUPW8jr40FTm6Ej/nluXCeCn4Harfcj/q4IxPSj7rTO++rINll46MS7TTlYVXtjJNnFSNwsBOj74S/iumRqeKCkbzgd6YqQ173vprBIqP7amCfi26qZT7tiJ+v5tZiIm4zPaMwnLP3tP+L69yoS1zyJ4XKIYuauAisaJV3hsHzbC6o293c3XVZ1uZCNATEsrppNABhA57/3J8cCfH1NzNo8eyHcdvJ1N9EqEnXFLqX7+77S5/XHFGVVOnGvnLSWvhd0zT9+Om23gYSqNM2JZYlDxHhu+nC+7TXiyN4hbfH14oO3RDFe/ziNOI+2FYqr+orX2QPngybLFDzipMyFvZaOmgwUhShCxHjLajo95KLUdO0RkNJhF3sajGMGQ15VZM9ny/KxGA96vYWM7U47HvUDkt6Qbs8D/ZnxkHKx91S4ur8aP23WCDomz5nugg2JjGtu86efhDCkfs7igG5t5muBAVrhJsy92n4+DSuioL1dBxhNatUMwwuF6PH93Ckym489lGGT6ZvCSNhp4x/ScbehJejPosAyqdNUzO2EULXFA16Mq8nm7a3NQF17b0wdptrUMBYVOjh4Qf6en0sqT/Tbq/UJrncI9bFb18A8lDDzejfQ0lw+fbghuqQiydp0cjZhgXp77bCtD6tueF2pjBaiBawbUYl63EY1zO8bj5P8EAx/+hCKh0PwAjutPTXdpYa+fD6Ye5MfNjMv7RseJv8wb3Hwbe65/QUS37OIeQgSmw2P+ALG4b5hmDfvvC/9wkKtHZ1xv1ggNG7Nl4Mui7fMrAXS7alcfd/wVPYRHZsYz/i5O8BfPLumzcTUjV6B9g8A5oWXh+DHqLZg43Vn5mSvXU4XLVhw+3YJrRe86ng0Nya30d6mC17/mum4Mybt8JAM3MibvT30TiLDk8OP7fiptQXc5Fqz8v0D655nNxS81ILPoAXMkbu5a8R/WLqupWV5IHxBHgCCZDmUKs0EpIhnoFhQREpCufp/eL//BjI7k+xTkt1sM21QowinYXSktprTyClBnb21qx8T/RfO1wDuz8Wkvflqi0ZRIZBtwu/ZRXnraFSkmqKV7+ic3JRl2X51GV7vKWLElzferKqqpfx0jOmC8beaPi9IIaWrrIWG15fqfcqBriV9Fn4blciddwFa3+WJXl+g6066GgDTZZsqiu1F9PIhV9BnacO8VGq8sdaOqbziKU0gzCPq79EI0kifxLvQq977YxArQWM9mI/v5rLyzRYSOcIUiXyClq/Hu7CXTgLmC9eKxvQ8YrhOfE65sEuXaTmELeyEU44XVKne8tMkHwxmTIRs9RgNNXNf4H4OmFjssc6ivSeBJJdZy5xymDxWmtDC9FgC+nf+RrYRA0i+pPvjk2rSzsYDiRfToJCke4+vNTOG/F6nTJ9rs1sKZz+j452lODsfnvqkfCoAe4rPVK6ls74IZvcGL5OBaM/W+tMHFvo9OxVPveNWc5naJ7im2UQuVeks03D9NJDJwYlcfO66TDVzH/BLuYoKYrzpaHwSJXDl0iGkJndvfutVjuxmEzIPBbU+zppTwyz3BjvExhI1SnWtIZ57j7h6+9EHIzd9eAp1svK9EvU3s0hhlvKeHMy6j/rP+X6F700cabSd7YgF5cOHa8Ei+nrlu4Jl4ztFffwjTJPzCa3rYWBCXpL9S+eqOZc7GxbdcpmaJfwytGpuw7HNeaaRkXVzcM22qG1eJ3LYIhMx1TrUqH8lIpY0mkTzTyxOiN2jM9EU04lmlPUl3MhTpWPNS8VQzBh2XWCmxEe6VfEb7Jagq3mDx/B+Lnp4FNJfvDg5FkKxrPgLdOQ/5GbDuRqI9LMgN+QdZfdjU4wxF82gRn1JDl00I7rqJaTy5Y/g3WpxT8SUkMvGDi+2JKHlNvxG9ONylez12oqEt/t7wY+nb2aseDrm3EVSCv8OxFb2bbdEJ/wGQ3DuzLoP2jI8jcZF8XAmbD9fu2jClZnBTr32xKySvpgMYzEgNI6IKtX3EM3uwX7D83Bw6DtsYjTdhEMDY8Af6DvhzxU7D10L6nZWiZ3p22o5ZE2/60jiEueUeBX/xdFDGcQOUW7Nhzbz+RZmhWE6V+9PMVfO6CvmJrWZkV6O1UKHvEZSxTosOftdNUrnkJf5ragSXF83XSc+RAPa3enGNKelxWDWRQ7zY/+lm0NOikn5dIAeeyJR2dfaZXxwgaZg5fJg6XN5Ryv/uoB/jUcwzxx9ElSD36EstDAQHhfCNZAw2qfzndJVL1FMXyeIVfRl7pjbaPbuUQ7DFhyK9Q3njUNVzbsTfF/EbGGnv09m04LUxAVzsGMvY3t7ZcANNWb7xj1EU3zZ7MF4FzEevxcasfqJT+j1y9b/VfSNN84Sv+rlsMO9Js5o/PzmEtJHnjA/82Nv6o9NCmGj/pjNbctivlsDoKC6j3gDyFsY/9Z9aOStTVb94tG79dnAeYgj5jvOWV/CYXihANk65b8vbxm7R2cg61xeqPTtfsW0RxKAOB8TYvpbLppyZp3k6rirsCx4z24WS0b/4Z1i+x9vJNtLDwfrdya+44genYr5+oc3jNSGVgk5wwF6uCihkrO/dGMWdvnOznyLRYgq3eh/NR69k2pPJV16RrMqohdyBClgV+OorlPdYwNhvTLZvlDXKxkn5P/8ClNnXkXCUR0MFJ6jkrgNrr1pa5gPJSn4gt2q76GYTodRQ3EpX/+tP4U3zUVf+kE0BnHwpjSQLfBK5Ydns+y6+fzCoyzv+IjZiSLoc3PfXxXuJU3kyhGnWJ6J/kBh31yYpUHY9edR34MS0ZAQMbtFc6FUW+ifrUmM+dOg/hiOPfimNRKCDdcTcmYFYLFtSWeR5cUiv50ULvtkv+ajV0w9s1s0BIJOMKQCooky9HD01kEqnNWhqWmUHkgmOMTmtpuiNqN1Vqy2uxJ9xctfeujf4AhyQPT2w0W0nzJNtiyKmecJnTfm/Vb+80d/+t5bDtmDohvqBaKNg47YXzwNbmP8tsWrN/UTN8PWMjJ2CC8ITW6VbWH38kV2lKDplimGFB5vtSaYm7hq2eGh/fNLxKljBY3NTk1BatKCyheEuvEVpgaIQc/9+deIL87vGRVK8MCtc16K+bbva2gqTyAefryqdkk+DcSx4hKbdCOaLxd3ixwyOWTFd8TWPhAQn3eXmaliLVv5uQOUal1MfDfS9bHWzBR2+mgw0+Sb/+Mbnl9M1LDMu6lpBKqg01q4bxyfy6g/9RTYu42IztLMKws+TcH8rF3hl9CoRGV7iNE0jCYxvWRZOzQ/9s795jVz+bqrFmG8ZPAS+S3x6zZfaNVlD5BO3IOu+7dM3LXRIPkeO0bK5hSJ4bORQf1NHnOiltep1VUlurNbT6dLqxT9MZR6dC/oGUv/AQAA//+kXcm2sjyzviAGIl3CkF46CQoizgDdCIpIk0By9f/C9xue2Rm79hZDqp6mkqohq9lURbWgPmtUIIcj52BNakOA1/XwJV4jJ2CJ2E0DauNZSJeecSDOAT1DGxoLcvxcB0QdfAz0z51F4PB1S5a8vi+oKq1HosKSTRbklzOMAuBH/LPy22XY+RM0zUkj5V3hwCpKLg9neZdgdvyeRkFlOw5wcB3wc1HMsn+4qaFQcBOQNw5Tu46N8oC6ARMMJC0Ha/sHBvg+YR7jisT/4g3k3/qA9DE/jUvXzr204R85RNe3uVwX04D7Ch6Q9kf1URBefPNP/+n85ZjQ5s9PlW29I46rRHM8Qu4MJv09RYKf62yduSMEf86lIsfrLk3o1Ps1XNdnuem3pVyFY2JA3xlKcvzlM3PXcNtgHyPiDrt3SW6fBw8PZP1gwf58g/Wn92efXqLO/ngBL0nUB2N8yH56grHr6+FCU897dHPNzzivkj/BoXxWWHZZYS5ZNGDYf+gbmQ+KGFVmrvvxY2Qf8MFk8aOO1PzBf4npShIj/JxPcOPTyHLFyuTFqYUwP/kGCbd8NP9l6wtelFMUfdvHl03rnqUw+H4PJIvtJZiXY6WA5bi0RA+bd7n0xXeCtg2GSLDO9ciM831RuhoGkUhJG1D9r8aqPlktOW56gM3yNYTHw+WEDCvdtUx7LpbKXThKbLXsSvY+axCWQ6QiY3FnwGbjtYCSV0qCJE8oF9Y+lX/xYJyENcCKdhrgvjX2JLJIHhBd8RW43xr1HyxbD8TMUIWfPkP639sI2D5aHZisXkVcwVvKRel6DJe1O5PgrjzA0nddCiQkQyxky6ek/Wg7EMnvlNid1oIBKNYCRTeVUdeRW7s2nfZQl1MrI7/qWDDOxovCW5K3SKvxNfjnJ2Vo8HCk7P2EyU+tV9vHiMkhmObxe727ZwB2Nkf8aDYCQT8eMWhItWApjA+m2DxPE7zu8S0S1Mhh2M4O25UbJUIGZbY52ZGsgM+7tvAKZ8qWi5HWP36Baf/Ug6nvcKrc0TYuQfVck3BBa8Fzub/+p29MBYbg97lS2p+WrsrZAULGt8TkuDF4w3FZ4NDXZ1RhQR3nXf8a4KbfiJMKLphbLjmrL+N+x1JfGeViPIweLhPKovvjlLeLuRs4aPtNEUGz6lltBJ8ecN2kEi3P1pZKai6B+tKxX34NRMX4aj998NuPyRbfPVjty4cc+1xLGGfcO1DppoD3N7NPlihdC/j3mJ/ETOuRrfrW+PoX37fDOWoXnVUUPMI/DdPs44H9b39zOBM3PtGMayflGnwJSRAlbeuOjA25Bq6s1BE6/vEmHt+eAOlnm51dv7NyqVoF/vA54mz5ZeJCaX049n8l2fjqyJYT6NVP3kZk45cteV7MBj6GbRDoxavb8T4/F3XL98R5MqucNz32w3difJbeZLs5KGA2ri9kZ2oHXkbwGYDdffdY3dZzDu6WAd9VcULOd/cxxyr0KrjxIbT5yWBpO5nCTc9Gsh4eS7zHhgbZzReJs5zGZLKuewG2in1FVpxMJTUVPgQgHkMcXSQhWXZFPMAsNxCyRTlt2dEJBCiaxhWZ769vkv7lcACV7hN5P3/p/aXVb39Eku+/x++gFz7Qd76z4bk7ErndLaA5cgX58QlmXbLHTy8SK6IamNtDzf/7Psf97gBzFd2Avvd9o0DjTua8xdfv80gJDR/Iyt/wgr56T7bjkVa53O7rSw1yCRKXRyfG3HOpgC5/2cTBACaTvZVQspG9MM3nsVzSKx5gXrWn6CvnekCfZ96HoiyiiIpESda0Dep/fqrBp/GI8UV24MbHidYeg5FFyzpAeK3vJDKZ0dLuwSlg05/EXXo7oGhtOPiagY3Cbb/TEz/2sIozK4KWmpbr0+pd4PVyEc0uFNvlKQchjHurRnFj/rWT3F1dqFViGK1wPjNmPUYIc/VUbXq7Y7MPxgGm6c7/b72Ul579ni9awtYIvj01Q7jxD6Svw37za6MXOPyZ1eaX3NnEAVIAd1TLCJA+CejnrJzhAE8fErwzEnx1bu1hfCZv8vOTV69DUEkuho4sTsXJ/NNrvvqXIBO0z2DpgjMPj2p1Reh2+AR0fOsCJH+n6794peJHjeBQKzkJbPIFSzcBF65GdkeHv7otcX9RIMgC/Uac8qmZ4uYfqci1OGTAmiW4660cCpnQIuvbz8ka7h88kCcpRYeh1RJ2mt8NfL+2QQ5aWI5r2po1FEmwIt19/pmb/nvBTgs1LHzSbdCxcMOwuJ85zJ0O9xaD/FVB0e9P6PzTf3KPa6g2wXZl7xMBvOWnH38kG38z+V13P8Nn4U8kFNnNXOyXpf38VqItQAtksjcMNZSUB1a+bdSyzb8Dv3jd/OgWDznr1Z/fvcwjbam4GhgEBo+IscwtWLzZseBtXHqUxXYcrG4d+/CYpgeic5+1XJp2tdTNTyAo4PrxV98AQ72V4N5fPxAe5juG57hySQVfZ3MWsrpWNj8Sr27WtMskqRLIsAWxaHdTyYTTuoDL92kiU2wUQHv+/AITLeJo3YWfctU5uYcDfu0QGuJ3idUPyOBdLu9RcxJOwRrtt0EPRp2iJIoOLbsKsg+OvV0ho8yNkdrrcv7pE6KB42vjz8dU+vlFAnDtRGRDbEBsDSvxvy0e8azdc/h30hTcjiRI6Ilve5gqqU38J9QBbw6xANdLrm1+fTgKT68boCEbDTo+n04g9E/x9fO7SOAWerL5C4Oy7M4yplzHt0xKlccvPn56chTcbTBJyUslebBbEYxrClOYVh8rUrbvW4c/eQGPwuv/wyOlX6x/9QHnuzsEvELnTNHU9zXiBGsdN/3MwfH9OCFr8/dYjkIN7vZcSpxLB0r68/fhfhdj3Yl1k7GINCCy+TvRbiJkm9+jwHNX75EVS0a5Hnz4gCm7qZsf9Tdu+a77+cEYFud9yd6f0oLnZ5Rs/HUue1XqJhhFYYO0wbIBVcTQgrQYR2Re7CdjX7kZ4GMIdbLpH7bE0esF42t2+Y+vc+nSQTfuQrzVmwC1EmQBPi+iX70CsMtOteAuPybIzZogWPwr4CDxooH8/Iph01OQv+MFM/XbjJTzEgz5eknRVr8chz9c/uNfKDrs7ITZg+KC+iptXSTrIdjwlYPqd+GiJfYxwMpzhfDyip7E/n7icWzyMALNtzDR8e2eAX2Fi6S+LLrHMixEQGevkeDtaQcoCOJLwN6fxPn5Fch/XgP22epdEGFZwMuS+cEPP/7Va7hn/S0Zu6qaEl80Fdmt0iTfn3+8+bOoeBltshgB6QHjXzVxRzEMxvsrjf/p1fDQj+O666ceLol4Ikj9s03K8XqtbvGNYhdz7bDk6wILCX+iX31lzSf7BfPdi8eKObwDZjo3/59fqYb5h237x4A//yDNbvP4KiZOgtXTQZidd1q5ytVTAsLnhZF3Vp7j6hy2Tvim5RNz01NMR3cHbHwERYcCJStLHjG8wFeHy0xygzH9DDFEj22w0TUwg5//q/74zio9YxPfboYA3kHvoPDyrEaSXg7xPz9FP5vLyCThvED988fQ8VCGJt7iVaXFd4x20bcONj6WAeVRDMhhhz/zV79VwHYFTmOhCta9f86A28MTQsn7Uq6+JYdQIe6enB5lFlBf3Y4cbn4p59ULo8R8WGD/zo5R95HfLTtC4Qz/yN+E3M1vnTd/Cd4HOGz43LTrtIqLHD1jhxQxM0exGK41eP09zigkZTKuxE9DAI7vPpLT8mgS+PEN5Qo0gLRs3wVb/W0Bv/qhHb2fCXMVzwDuRcFEPz2U8cd/QHy/GVjM95NJj0on/b+6FIj/95GCMWwEvLtLI6Bj8BjAsUj+cOX2p3Y6nK8xfH40hThQNNly9JYKLs3TIem9upfscQEhaLZhZeggdiVba+ZA/hhhcjiOrsnA9dPAkj0Qch76N1gDcWvsuB81pL9ROq7xeKbweOpCYvn3V9BfCiuFmgEyoivnzpzfScjBs+dGWFVVHixXv/ThzicwWszl2a78q9IAsYcJw+4UBDRwghi29PIkOoqQyd6L94LiR7oSz9kpCb0U/gP2wT1D2mU9mKvWyhyE/PkRiSrcGgUFWQ+BuyfI66rInEcHd1ADGkGe+bGSaf+1IbjL3IocNeLa1X9VA2S2fSHOgN4Jc2vygHu2XPDnJlslFdFrgO87RcTa2tVPWjAXQLuSAs8fVUvEMY4maO+1LOLrh9eK69YIpT/jXUTvuAdLQCEP7uNfHanSwhhVdh8X0rKOSZqYU8DI9eTAk7eG6Ni5+6QvlfsA1FlskC1kcjCQ89eAci08IvmvPIO1y6QYjGEtYApf5sh7krjAUTgAzFSjA7OpPGM4dxkmRzUDDKetNMHz2GBiY84MVvsod7DouQs6rLgF23qfISExj+woxeU6f/ICBglVt+d3Ga/WhQJr36/RMfwDgJXuLIHpEeco9IR2nOu/qwPvn+6ETE7Q2Ir2ngYvjchhcb9R1NNprdTn/ToT93opSxam91ThqoTgVYtsc02lRAB/ItWQ7yYvcz5GdaP65dji9aypwSxZcg/H/NUS4/M8AcpTmsHo2PGRbH6sct3eL3gu04GE1R4yCjs0QfGB/Ej15iNjy/BM4fb9KOCQVi4TtWOgTe0Dc5/jqaXSDhTAdjoPWZM9sbWSDQrhKihb15gXmxTvLwXU9UQMnq9iZEai9PAjOwKy3w3PWOCDFFyqLiKovOcjS15qBRO87LCqZgAwU3u4Sn/xW+SE3chWcf2m23EzA/nIXsHSv8MI8H+fCPk3rJd07xi96t3PBbLIg7Vv8QMsZTl3PjICxy9pV9YZyPOlIwa4Nsm0uLAHp8qbcBd2AVgB1xS7PYYx7tXwlDDpzmG4vLgBRSO7teure1ZqO7cV0slXaJfn45yqWzxgRfBcxp6tWyupe3OJHqA6WDxpR0Ev3nfoKLZ0pFn7quDBvP0h3e8/Afb+GgwnUXlGv/3HjPnIA67gLeQX0yVYbla+iQk9RGg+mAk/BBOFT8Rf0J8KPi3r6jgH3fWSogJN2ym9XRnB8sY76NTHiAlJdnXhq2aY+BIQAEYV7WDAZhnv83nXsqbhY6jw+oh8XdYBmxNFA0IBZWI44t1cn5M0AGtoKrz0N3tkmvNOQV5rCIuVdSuX/dfmIKesGrK3/jK0vJ4z+FfXecQ1n+84S+mjg3qxG4kdyKVJ3OGO4cEfD1g53LdT6POpgr34t8Oj+P5j6z1MLMA6w0dRxVBLwVFbYC4kHPKeaDbX9E8bVOycBvRbX3rU3Ayi3ekcKVKqglV5thKMFsknLle0CTN8qwBRc91HQn5EAbZ2txSGIjRRRf8+Jd21kgNdbvWIvaOfhK3q2qmYyBTXVfBNVvHDHFjxMUSRH5xM9rT3FIr7G0Huwu2DIf2SHNaMvJEh+Hoilu5bAsKfoJPj7MVbfi8o/MrnNzHB3h4XHeUTvKUMEeuIqEnXc0V/6xPJo5GZi1qfJei5VYbQ/UQZeaLJUIjE6cQeyJ7NrddwUHTUhhw9JwVMlU6Zuo/0EjPnOo2zuD5Tdaf4BrKAnbHVHiQLnkhj491TLNjqvmpJFcV9Qm6X/svmC80lxWucP2LaCxtnwPOusi8/IkF/0xvQ2S4naMr9SDw6DMnUY/qA6s18kDDUpXH9bLOT8G0wt/ycgGXu/ww4cSjd/t4G9CrACQy345P4RgxbTN9vAxYmqojmtQNYz1LtqBKyAHGNpjcXczIg3K/pSmLTc9t9m5xCIBCqkl880x8+sU7zkemr/EjlxJzAfGoG5LksHVeVJxI0okTDYC2CYIuXBdSnwouU9Fknr69hLOr2/P/2z5I60IKf4vOO9jt6SJb76XaGa60mxD4n9+T7jb8W+Dz3EZYndE2oQDsL3h5VSQ7xPTMXtOQcNKrlRKLpqwX9lh9hcLreovX0bcrFaHoOdH3soXSWHbbGVy6GpW0YxAiTcVx+8ezubXX7f4K5hiAOt8boKop86gd4Fycd+LxiSgw90UsB75sKWrgcif4ZDuP0ce0JSuF4JWb2ujL6sqYFFCgNsdR7f2xKQlGDlS0QZB53GiO+fsog4Lo+Qk9RYWyAQgGL9ftFxfZ+SFfn+Q9/kdZkD5Peh0cG8uefEnFK5QXsXb0teDlQH2lfjpbsaicOzMvIx8rBadjqHpoc6PcS4UZZvIRN8zGCaabckCeKQbL2ar7IZnbJ0EG9HALC4daBv/xuwwUk5HKxYsgwuWMpwHmwzLliAbE1EVaQfQLrt3YM8LxfZmTBc26uaw0hZE/PwH/i853QXVy+YHejEjk4ZsLWDFBJ/bhHmxxu57GkPFUycNaVLhJqJgaT+yYNOJHaxuRybtnKi0sDabUDyGJzDZryODmgkl2LWO/Rbymo3hO0x6sXCW/DSlZpvTjgUr0iFCnVN1hW8s2hGUQPZNjnpaTTo5P+re9pEUQ2am3LQ+/VmMh6mEK57oKxgajYjjgUYh6sob8Pwb6+wX/7b2HG+wE7dtNJ9O0tsBTX/gElHzEMjlyfUNTVAhzn4kOO+Gq062EYeVV4DQ5yrcwoFyoHObx7B23jf0W5uH+LADe8it6Ya81ZUUQLXofsRryLvoCpVO69rDbTSHToaIn4hIcKvvWpJW69fsFyVyEGpv48I2dAdjLu056DYsk6FFRXuR1OhOvArY1rZP+5tGWVrEnq0U/bSA729cjqrbjUHfKchMzRSlrVMP0vH5AgSWjWTg/Yf1oz4q9GaVL21zjK+Q7PqGqMO6ACrDLlINspcTGrgy1eY0AkqEdLtASA8LHaA6EJG6Kh64uRw6Fu1CMIU5KohgOoyp5nyKeP6w/vGJGiE4X+O12IWzXVuH8YLx6WtS2QCO/fbNLt4QGtWowxO10zQDKdUPC4gRmvT+E4ksGZMCim/QtpGVEAHcE6QNUZOIJ6KTNnqoIHIJWUoiChTcL+LhhCuxKlqFOjx0jcQxpDVmUqOVSWXC5HoVRgJj/6SC3JK6ByEmA5N2FD/IOzNWKtuhQO5WiTg3j+G8nYtiFcLdBF6krydnm8njVUPatBXrH32ZJ+9w20c+6L20c4mYs4rZtEffrEvx3c5B9/o3v3hkzdH8cl02QXfi9q/ONXjC6VachoUigy1rQMxh8fKnlZiajwrIIlE30ezNP3GfFHIQgWhwwaOC8ZI/qlXxP6vqoawEZRYm7WCja10deVcyff9NN2i9q2zBSelEGNpOsFJLQr+wxYScyT0+tUA4rzFsICZSFBz7oO6DlUXUDr9ELuSS1sU2qNEFT5dod9MfA45Z9bD1t6fRLdLp1gVa5qD55/6wlLUz6bTPiskYpAbuK8e7cAZ/GBgwpvjljy2rZkYztGoPdMiqHPiwndo0VSf3zBrYInYIfrsVLmfjkj3xoJw0+fcQDs+RPReK1nuJeKDpix0WKh03Jz3QVtDRWQXVH04Yd2LklPQTjuz0irgm+5gggV0Kr3MYmkuC3nnb6PIfO4ewTHxxRsN44q+OdeFeIfazsQPIJ6WBUDiz6FmJu0zb0zZKfIQSH9O5Ts3ZUplPdDgzSuGH7470DDbr5YCG7+KBw1LYMru7Io9v0WfLXf/TqKtEhoIz9Y5efiKq/knCEDYDX4t3/+sn1AnA9PA6aeXt1PD+G1jwmgkvfEapZ3YrTvvJmt24wwKFDvgdfr8RHgqoYZTBv9hJCEu3FJaxTDc0OvxBL+IsZH0zzIhpAXWO0ILlmyNVb922dVxNvbOL5zNubg0RdcxGm7Z8AufU8hqCIXBXNwB1SV/ziw/V4SGFfbFFT5Dyq3Q8SQdmpuYG5vSFKOB2mH7GvNJWv9PWbQeHYZipywCVj/pYXKf88lztVwTRj/KnzwoFaAwhyljAZIbpSNf2MKsGouLNMhfOhRgfyheY/stosdYFlrS4KuqNnaaC6Ebx23ET/LHcAbP4ErfmLkecXc0vJaZND3EjNa4R2YrHCpDzc9F1E90ZNVb2cMfvrddxPLpBrNz/K2P5DVfLlyis3nGcaWfY20a5YA+sD6ADe+TLyXqJd4wz/QrDWP1awxA2HLx4q52z2Q5jRk/L1fCPNwJfbq5QFpva8FAzuZiPG4PBnG9uEBGxBpyJF6YSTxNsvyxbsHcgZXo9z/8LTZ2QjnZ1cp2XTv/70vXMvHLxsCtDYwyAc7ks+d2pJGiCm47tw7OZ6m7V5bhApAHtdd1IJoGnFc4RQgkmbRHrRFQA+y4UKBBg8SlieNLa1FFfjQw4LY3uFYihsfhgL/Nkhkcct2hHHFkuGVEk62/LZO7duBTbkquP0ykpDFhJ3yCC+nSBzmviWXSxjDn74q5pSNq48NBXa3RSL2Pn+X1Iy4DNYHDJERJkHLPKxr6o/PNRueL6AiHcSljRG6PryR/war8eMbyKuM0JzNe7OADU/QOXPSdnbMnQWa+r0jQbeW7WzdHw38ZFNGHBgPbAkd2wU3b7giK0dVufFLB/qRG0SUbLOlrZHngdI1CWbnt8uEe7EWUEychHjv/cX8zvfBheD+ZdFe8lnCznzXw3ie/0iG98eS5kqvKVxe1FiH9zJYn/STwpOEbpEE31I5fx1F+OEX0UWRsp7/Gzl4BFGKvOiDW2YlXQFeSqVElL8Iyfb7XzCl0CGFsDwBi3KtV7bfH7Uf/ZlMAQKFUoB0T9ziehg3voThFl/ICkoREHAlDXC4d0EMp27KGbrWAxapf0IWmAj4vU+lujtX5J2RAeYQ5CG4x+kXwzi2AT2rufsvvwfV9TZSuZIhlG/dfos/DayeSniw+U0YFOFrXDSo5erG3xH+i4xWsBqnA7zPfGQe8w/7fuT5AdumeCP9rKnmpCTHTnnfF/TD1xY3Ppmgtl5bvM+zF3sr263IV2jMJHqVJhC0vjHg8skjEhw5NxFSh4Y/PYDZUPTJItyeBtS6aESaueitkCu9Ad06kSOJ157JslQ3H1gMLRhWjyaYI2ByQAMGwWR+cCaRxzwGXTRoyDTcXTk6SiQpj5OXYTifu2SVty5Ny3i6E/ujfgAb51sFhxt6omjT31TrBwO6WDgSR+Bh8o0selZ/+sXAzRx8f3znUvhDJM93L6Hn+tSDLV/h97qswWs39yEE3+WFv6oJ2lXFcgg8MihIP2hbv0D7y4OffvGFRWcMnCQBlOVpRQfDssDwfQkWLHHvk4geAaN4PzyU0+MTE6dmokk9cughCwsdeW5Ytov+UAcl908XZG3+6kpPsaZa+DYSd8PrWXicLPih1CTBcEOAEpdS2HN0RK7zFIPZHa4dND9xEKnsZY7rVikHFjsumJ/sEMxeofSK1TsSQR+rBGwvDrnKPQ88Xm5+ZDLKm5mcASnE0hgE7I0/oQsP3cSj42mCYH4YkwA8QWlJVDHSbvxegXeYX/Aec22wkP2Ugbwa9ySwPWaSL0u3eLUStPl3yeLIcazGtH0hf21rQH3jykGmCFG0PyihyaToRgHmSpNYUD6ZdMvfcuURLgKqHiV0GQkH2A3c8LjhzRIKvQ8kva4jMH6ejHp/A4YBPUf4QxSvJQ/jMcFHZjyQ+T4eSt7IlUn5s6oRy5ufMmWa7MNXzFPye190/7Uc6LRVS/7mg1nOaplisPlH+OkeeXM4uB8fxFroIp1JJhCea43B6WTsf/xmXHbq0Qdmds3wbqn9EmiilqrWAR2QJ8bnZMo/p17l9rJEnHPxZgsLkwm8oPRA5oYH5OQGIfy4yMacH6wB1WlowJ+f51/++KC3mhTDOywu0dK9x4Sak27Bs/+W0UFRErZkzkeAhLdkovs6DlZRj7Lf80Wsobw5CK3uwtl+qMT56y4A/9b/Q25fFDxfRbuodSHBYCd8iZblWrCeRqeGp8Ol//m/Jr/pO6CFXYMORvk3fjc8kzY8RJ50ZyNdz+kCEmNOkJ6brxZP/d0Hj+SloNBDw7gQT1NAUNhLxO/Sl7kunagA3l/9iD3CKSA/vz79GxZiGw4NNv6AoXLCKFLkhgA60aCAN6T6xFQ+yThvfhjc+Pumbzq25NokgU1/YOnY0GStkeIrh6+fb37VJWBwEBfwTm2TRPE7Kdef/tNHqSaOq5nspw/Vn35XIwUDepB9Fxah0iODEWzOYTo+4El1nvhloAOjn7eRqc9RMojTaVJAOvMkAbfQPFRwJGYiO3kKuDR7DgV11zF2wdcK7As3JNrjioJ/eCzR/IRuwveWrL94S31+ipaMKIwiL3PgeEoB5qQPZ/Z/h2yBLuvPqHoP52Dd6WoMoT9ckPnJq4BYSZcDa4IauVbWLREz6lN4AI30T89Rq4k6OVBLm1g5guX+M7gNrAXPQ0anSIx24/GsWBZro93Pv+Jh/VJ/et3Mc2quhn9uoHmuDuQY/pVgsUduAq7zXf7FF+OLUQHvrPmQn9/MF0clhOP/AAAA//+kXcnWskAOfSAXIgIVlkwCAlIKqLgDByaRsQqop+/D9/eyd/0CxTlUkpvcm0oo7/7jy9g4TQWci6qh77oWeiZxyxlWvYLaa33yT2+YwA/+6TuTeCxr9OuzBB/Uj+gufniuYC+d99juXRftHkX4BClvXeynNUmXb16eQV763796e1jxR07vcUHEslvrJzl2/u4fX1a8Hx/by7rHI/z6vKC+SiK3TEP3a3Fd/88zpL9bZ8MyChN1H9++XOuTALYtPvkgZkU/R2SswA0nmaBVHxgFpEcwJhfVR19mod3tDTHkmL/iVc9y5wwvDlTcOmJi5Rvn2yH35HmW7HWKjpJOVT4noFlw+pcvTfb3V8DBrI5UuRQimqu6fSLM2SlNw6VICbdIEfT69KFeLRgu/emHBmhOHlS7R3U5OsQRQDXdH9bwsKSzdYk7lB4UjR53/beflGvawYmJDT65gVSykzHFELSWQ7Xt7ZLy23Iy5PGSddRC+YCa/SAGYH0+LlkawvTF9pI3dMu+w9rNjPpee2WS7Hxvk98hWWPs07pPyTb7iQhvmfbzL0vOQAatxKcMReE45er6RkW+Ym8wonQwtybAn57yh3dMKXseeq4701Nq9zpd+RT4PM6UWllYl//wv+ucG9VSifTdKxET8DTsUNV7qin/tp4CZOXS+oUy2OHK/0ry9UfNla/MXJYEWQIXz5/+8b3tJc0rsVFuH2qs9fn8MVd7scHFR+2xpCRqfwls3+aVqj/d76eTovmwy1LA1jez+qkltQeVdfz+0y+H0+OV/OWX/rjy4aROs0je/6Q71gBt0jU+Rwh3Lx+fPoTprG2JgzZlHmPrYx5ClgZPBwS5tP32/tTZFCVxjWDUdkRQo5v7V3/C2bDu5Le+CZj8l0Ig5rgQ3yznlTZHL4rgztSRHgd8T7txsJ9oeo0qYWs+9adfSmJjrPns0WazlPfCX73xL3/pb0jU4KcKwVofHMJJOt4jCD4P+Z9/s5GnPhjzcqDH0+NZTtfEu4Hdbg/0ZImsZ0nQxLDqs/6KZzod+Z8Phbnl/WWwJHfOHk38L19c+VM0X9K2htVesNWZtPzHFzvnYljzmbJf40/2X3seUeTOxs9bIPGEBjtvVITM7NoNlKkDPv9WW51YmvBGT55kVL2fNu4sf9e90TTS8LWdNXdpLl9O9p/mwZ/UKyk7p/UIWvVQn1dlCP/0KKlqzMTfxsYF8e+L64CqBfHK50joG5GxRr6iPKgjFhjN8SECMB6/3x9+6+Oav8FvmXS68vXlErZry+n2XfrTcynCRXiYHcj7ghI48nrJd00bSz/uROjz+jIRH8m6ALe42mPcXF7usvIBUhLrGRHqr/6vPke768XAvrJV9eFycs8wTYeCHj/pwqYoswIkVSb185xfp5B/VQMifn+lDnf10XxdYkn6f1oKhP/dUsDlZrxSqLt+rCK7g75AW7JJk9iduimtgN6FLXXTK5T0Vlo1UoerSqNqUNF0lM0KzC4Z6El2S7TECgugLbSEOurzG87iAhooTP+SanwVLuO7NAC6iBH2DsYvpb0lO+iQ+y1VDl9Tn0gzADCDD6kaynfGQoe+wYyOF7L0XIXm9JISKPcvgYhIqspZH/Mz2LAwn06fFg3hp5rg5q6Sz9wsjKT1UQHMyw5BRmvonKv1PlTjOqgqtOqebHvQpHSJa+zp2TlcJEvnoM1KAeNHavfL6J0KqOxN4hfHk623lZUqwD4bBRu5ZIY7ejtrcBAdoAb/k/R52MsEwD1esZEXMprbz6sGWXql1JOPccj6RhfAoeeQHpFklLyx02MYcOFjr9kv5ZJdLB9+3aIQ+kibnjW2EEjqNtWwD4qkM0m7CuBq0ZUmn0BFixccFBRvFoJVDhUhyfXMB1LBHd/L+q3PJ35wwPR82ed3fBV+a3P3BC98D1jPPyvlcqufAH5E/TwOnXAM0KGCPr9l1BlPSbiw514BM8kO9PUjG0Ss5OEDHJ8vcpY+Opr0GG1gum6v2HPO134IhyCBZ9yo1ExPsz63cWfCqfrq/lY8dy7Fa1/d5VGvlJLouQuqd5rYwQxY61U/ZFZTc1Az90kYVfWyEd7DGRIsHqiuiGo6x4fWA+1+kqlF8yIkvGZwKMDDAZ9e8zmc/N+0kT+m9iLsAVY6u11kgLZ7DNS0SI4m90oWiW+iebU/K51La6rgfAgCrKndEE6ZanHw0PMGW2eBhrO0vJ/omqkOVvfXnTuL27xDrvC8U//mH9mMi/GNlPxtYsPXSTkv9i+AVHoGVBnkMmRvj+fQSbwC9Z3RCJdcbzy443eDDecN5exToYHqqaX0qOG6JH1meHDhqtjfKrHW85cyMkAqjN6fLrbK9p4oCyieN0esmKzrWap6Nxj2eML+8hbThd1yQ3Ya8YPdfOj0kZ6vAjpFwxPraDqVy+VG3gixk0a1/SSENNiXHLwLeFLLLGN34fgg2BqP8UWN7VSsg+RUIjsn5GC3FuJwCfAC8vhdWwKm8sGWNssn2f/yzB+2DguHwqxiZBibipodufVkvhjFn/3h9Ty0ZC+OQ+X999cVqerjdso38Heee0qMlBWudkMH7txhlbN7NMFZs//8jUxX0y35MUYOWIkrYTWgLGQHuhdA9Z4JTvib7s702CUgHrgaX1rlrc/Kdd0pefMWeksSqR/eOTiI04SW+kdrv7663tgo+OUKASX8uU08MR5FgoeponBfNpjGncD5sv0QaLvWHYItyuDdaza1yU3oG1SWATg0CLHPLpRNBWsWxLb8j3D75Nyz6h4k8ibuHaoDgE7N1kuAXIQbNbh665LVv1Cr872P+NkM9y+zkVCMfpG/aSM1nEukCeCoxhdHqZPrrHKqBZby42DrcG8RGWPmwDjeFzLlu2s/8QdSAQGpI5yw+ZVMrbqNtIR16YsdC3SSOekApdQG2CDtlE6a6BA4WIyR/f7j6WybBTWA617J3kFKuRxDxQHhcadkI6lXnW2sSPqzT4wvgsf6B6IDfDiT+c2rNRg3qycbmcXzQTWRvtL56WS+PD2jIz1btepOgqvbEPnSQr3bdluysHIIFCpRqbV7zzrZ4ViB5yuR/E0+H8pptNkCw/40+bwm5yWzirMk+dMmpwdx3Z383bs1tJ1p+lL2PqdjahADJho7WA3lPRuHOwE4bpTS5zc/o+wukzrIqz/Ts/Bu0Gh+lw4K8VHQY6aP7gB8zYPD6SeqzEQvSYAlADIZB6r4NzMcmm6roXuzHChuadWzJE8NMJBR++zq/vRvWn0CaJX+Qr3j6+NO1TYN0DU9n0k2OB5b9mgd1G5EZ/qyL7U73xSvg5vvCdT9nRXGoSkWkHbHMv3Dg1lPbBuJT1Ol3oYeQj4ZIEPm7xRgr5B0tHypLsC0v72xvem4nkCYCvD+CAnV+Mpx98OP3KTVf30Z6/kajzYcXBW7xIlqABqZiiagtW+R/TJcy3mXWwns7VPsC62coUZRUh608+JRW2eNzsL71UDcKMhUDx59OX2DmwRqFBOskVoJe4S6CH5w/fjfjEI//uH19kYzfBLrmTEnKc6gK3lCba9Y0mWaw0D+BGNH3cO+KYfjc8uLr5kM+NCFLCXza7FhduIPxq5t9ftxbJ5Sd/aONPygwZ1AjzJIOetNFbfq2PxTjgBrPKaHXlTCSdy36/1rpc83UYmm527hJHw3Sr9uIp1xxyMEgA2lwK+iOJfzUEUVoP5McEDqLJzbQffFX1R8sf73PbGDCNhPiPxNfCJoavZVg9wkaKgT2xt9UB+PAhXHJqKqvVRsjfc+fPbBCZvfwg7H1uXe6O5UN2yadsTIH94r0lbAf/nSeA2/E9Sb8EgkZOnpbL/bSnKmHaPOrvT6FX89xDtHDfvczmSz04kNhLZwpOZZkPTpnYMN/shMqse3JCWDqAryPcg66ghkiyZJ3gvoMnTGupt03w8KIw6ial8RtIkKfTpbxn8AAAD//6SdybayMBaFH4jBRRAShvS9iQKizkAUAZU2AfL0tfCvYc1q7Fp4b3Kavb8TYg+fBTdjVRqnvD/v3BFcqvyEBOWmGj89CArjdxE1KOq1roAAnzO4kZ1dusGcXgT3XzweLtoQbO+xjkBXiitOCu9jLHdFLsGZpCes1rk+bP1RgGF9iRFXcjSYT5+dALf8JAL8dPWqe74rr3FT00NykAZGQ+hDpXq5iGmRZCypavbQFEFIccOZ8Ux2WaM8X/qKLcCKYen2M6/snflI0z+2glXftRzkDq87kW9kMNYPUlxgOQsjS8eSehTflxmGXKFu/fEaMwtOJThxuCYKOvZguRfDCq1bdMYaZ2U5SfnBB1CrfPzTI+s43o/AC4eMjMNgGiJMSlNBTmfS0LGqfLFUnEiVcSoJ8acmH9lkX+EQOCbFHK+y9aYWBDz3ioX1R9TEa2ElBCBoI+yKTy1n+/S+qWCFo3rwzcC8fzRHme98k/SEffNJS4YGfMfHfouHzCCN/rYhlY4ufW7v+1Iu0ct9sIsUbO1yzVi8wL3Lf5avEdE7x8Omj0MAu4tJlDOza7qungx7y8ypa6jLMKHa0MF53FG0G+wOzLmX6ODlO3dkXVkXMH0GOtytiFLUwCtgu+LdA8HKPIxORVev9/dwhzfUnbf9r2qaJe876IUkQGJSaDm/8JcHlM70gCDtJsA08VNJfyAyqPV2rIBVw8mWEgk4FB17Fmx+pIGcrMbYnsrIYNVJ4eUiL47YiG5BTRtFNIFwvftU73SvZue71Ms1rRuqRslszM9c7WH2XEZSB52dL8cNQR+ar4F4ThnjOdStFujPuMNGmNmAVPUpU4wOYux/9G8w86HYQuCBN6qK58TGA4hMqJmlQ3Mu0Q0ht9YIrkMpIChxb6P7xLUJ5jGc6WOKgoCv4kiFV+sZIRB+J/bTp6BzVIs+66sYTBTyI3hC/0n1w+cP0NadI5iL0Z6iN6X5u7dUCA/h7OJMu1v5+lhACRf9HtIntk85m9+LAC1iIFL1SGQrL2QR3PQZ2R2GPF9EW17BuGtP1ALZG2z5IkDIWQrd9nP7LWH9rgQKPmLXWqdg4V8NhOapW8jyNzjxavFvAf7i1ZS3kaY8uhWsjLgkzBQHg+aamcjyPrWxdqqtYP17uyXcJYaKbYVHwUoGjsDNv9DDcnzW49Yv5YKrT0Q6kzOYR++WQP04h7RYjs9hoRCOMFzaHAfGvq5X8FF0sOUT2r9DdfucH+Hv77Vd+RizyDxVcNPDNDRPRyCUfk4k1dwJ2N4JZs5q8eWDSdhvB9Af5kDOO5f88xPHN/vLV8CqHmrfO6VB+J3A8rWfMrxnhxLt9QMIWNzoRImi1UGV0y3GKmUjB6W7qeEwMMZg0b9fH5LXrGA3WE6A+RpWoX4gPsWc5v/r57LmxSraqXDJt/WpoLcuBdn8Wr6gOlChL181nC8HPLBisj6Qq+c92d9OMO78U5rBB8r31P5CYCzpWN/BT297cHgbHZ0dG8jxUlOTijxbXtUBwXf3d0W7298ln6sP85UkoFey9Xv268dwteIcm0bsxUyiWQTa/ahQbHk6E7lEr8Cm15H0t0f5Moo7Amt5iLZ4xJt/IzzgrLeHlt9+Vx7nSh0R/n7+yWCzrfbg288qWjhLjlfD3Y5oNOcP2fv1IaZc4pfgHU8K2qd2F7T2yUp/+hqJ/CAPZGDOCo9qpmJ1259JXtPHT4+S5CsFwbr1O1ig2aDW3xUPuyaDrjyudxF7x+o7TFV+GmGt8CO17svKpjjjeFiceIteS/5qLKrW6nI/gjNS5Fubz2U2mD//QY3hfhp2gaKE8FV4BQ2qpzqIO78y5VxzBTIjygWt1PPpfvO/aJb3oJ6Z3RF5qx+kkf/0mlySJIPuKIdkxhVft90s+XBGmrbV91fOSHk+Qm41VfqcJhTPmXDMoGv3CwI7DoMdr6UI9nYnk/7VP+r5GK9H4M8iQ8LOmP6rNwxj5El6v/3VozH8VaCRkU+Wt87nE02PqrIblBgfrm894IvdOQJ8WPPUeYVDPovv5woLe7wgJewLNiv3LISn+IAxItZrYESaK0WWdY5wMh8Mon65rLAvzRk783RkS+PEKpQa9YyTQ1sOLeY9FUL+sVJDoWs9udycKjV9NWgvPeyYDc7Oh798u/8pHSNxu+9h2/IpMXaLy1buOj9gFJbDNkKwYl6I7giEQXmlofOQjTG771wYv98ptqxpqdnlfjdhc+6+9OHJE6BU3UClc7BQ86oKwBIDQLj/9iLacz1fT6/zpZGxunOp5qCJjSr7+HCqxy/WZGeu17XXQ0jsucVBBhu2/PxF8NRe1Hg964CVT0+FR18LkESbKCbN3U1Bkoo2Nan5iKdzmWfwopQcRrtjApYfX3u1cUDEAc759B3bFT6aISEiH+mAvVOeB4Ji9RiPLzVY6ak3wRh9jkQAOy9YUulkwjh7ttSXaQaYs0vu8PK8YKqTT5nPBdo3IOyIgwKSJ8GW7yFE02Ljel+bMb/paxAWjojDfn+ou+t4kOHnYNywBTKL0Rb6DegLnRDl0XwY9V7F/I//+NNBjtu2F1W41SuqynswzJknfcTXNWuIYHpHYxc54Ch1lZr9eILBTG+/wsXPnvjnp+dpN/tw89tIufBazUY+h+DWmgH1pvehnjl3MeHAZy9yJqfCWKS/rgfKPR5RcSiSnM2228uyY6dk/elzS9ouS9Y/gKq2mhitcQVQvn6EHNsO0cBcSQKBGTF59FE0cWjDKsmUvVg/0NmLjHrxT+kVGJ95R4SGLozdwJfA2yiaRHgraT4FojdCNXY5sp69vF6WVlAhsrgQm5c3/fm3Vv7l621cL8acXJcjiHa8i9a9+zJWyCwbcDnfkP6NjzV7RjMH3EYoN3+sxGskXFpYF9DCT+LeY7avfQQ8yT8R6f2twbr2fgi767chwl39AlKecAijnmQ0gOQcME6mIdh47T++txzB4MP0dJSptuV7ByKHyCR+biPlyRk2P8xJmz4k5LW8h5W8g1AJ09YmYL0VbNm9th/K4i4Z4RNViTe9pypjmPBoDs9DTGbO3YNzHh1/+ssg+t0iUA1BhcR+1o1p+z6o0TKnCRLeBpuc5wdaqQmwXg3QGJTv0IJTd+9/ejlnPx5Sv+Ub2k0WYZQtY/qvHj+eq1qzFuofYFePG/ZBdYrn9FSGYNcuEvXI1TR2p1bXwWd5NEhSUVDP9BwIYNN/BPxV9rAEl2sJp2P7wfjghIOw+f8fTyCwsdd40pwdBx+yTKnXaAIgyGecvJOjnG58MF5P6ecBkkwv6caj2HTEZgqdzJORsvHQFca5DMPCErGm4S741UcgByJGs838Ye8Z6qzszY+AMZYcQFxZvyplH+42nvCJl/Pk6WC9nu/Y4fAp/6cfq9cTow/3bQamLcePssxVhYNEKYPBODYR2Pg3YhdFj1fJeV1/+ge7btPWIyJIhsdD+Kb6wJuAn9Ex/fENoiiBwZhLSghbv//Sf/zu4nxW6Az9HevoJsTz5eS3EOSZs/Gqe7BGwrMHjn74Uv0RmbG498i/fMXXvyII2LafcuHeMPYc1QazevDuoF5UB/uEOfnsp9t6bc83zsE3YPPzjwDhkNypCobVmK57VsEKlR96OOmfnE2H2whGL8iolR8A6Dc+DTxzcoh0tep8cd9nGzKm6zTwW5d9dJg85NusPul57lUm3tziCm6W7lNUz328AvWaQOfwmLBtnR85Y0uTwNyzPKzHyiFYrsGfLyvm5Yb2devV8/qZH0r2OmL04kGVzxt/Br/5xUuWvwbj+70ATVEKydrtSmOWxY3nbf3B4lt/mMJ0hfDm7e+4GM1TzK+HYhuhPWR88J5+vZT0mME+UXRqnAPHYL0bjVAqZgnfN97DfM1RwbOAM0bRUTVER/d9yOVCQ53ylrCJ6788VK/GEWOvkofR7Q1VoVrXYO2rScH0ja0SwLF8UN1rU0OwXn0Ef/MVnPRuvNBuceXb8uWoOqUg4G9FRJQcagv2HqZr7LZ+AOKsaLEbvS7Bz8/CyR0jwmneod5xx3mFrnD7ozaSdgEzFcP8+XG88eth7uuJg9y18ymenx7Y9MHGl0KHqntJAEvKUg6aV/VNT7EigmVc9BAMKVqpbcLPQKp0mCGf8RAtJ3hnbJYiDt6vvYbt9bTm68DwDOpFd7CVrdP2vAcHckuiOBRucbAehV0I7vMDIqnhp5zd5eMKVaa9sY7/6nzr5wgOJLCwOqW5QeR4uYPjPpSxm5kRGDjGxn/151bpJzDlDy0Fv3z1G6OK2ZfKFYj/1IBa5KQES5wEyb/5lhg61FjVOp0hmuGLhtV2BDTMzBHC7myS9hyvw6p7ug+Qvq7Yv5afYT0jkYfDx7lRvUcX1jXyO4Wh5TVoSPyuZgp/i6B9SQeqvjNnAApA9b/YLV7Ig41/08OLysaYmmsDs8vuRr1eBcOQetcS3O6woImYzcN4IOMdfh/BjEM1dgIRPwMCTI35RB7XMV+H25Eojtq7+CDwQszM43Y/6efmEBDfvEA459Md3rqhJ4znonxcP/sH9L+JSpEDWjY9OiDA4Gm8sHs4t2zmmVopR6HSN77FA/KbNzQlO9Ot/gfLpg/gcq4OZBUa36CNP65gZ/o3jD9+NNCeiFe48QXCb/OCWfbfDcxynVH39SX1+rd/teBg3xLqJeUpXt/VIwKlK47Uf/VcPRklaGX77jTUmnsV7L6qBpWe33Vk4wvxWtPXQ+mFNKBhIFQDy4g6ggs9CIQLpKje9EwD8vBYk/l6eoAhuqwtxKroYs3OL/nc128OXov8TT0VDcNUk3MEE7fmsNoHDljgVeMVdHkN6G9+emwN3h9f2vwNPpzZZ2AyNkrlx/vZ4/wM/vFQ661U6JdfywtrPXy9rQVJmx5aX4JcwbQ7HMju58+nojNhBT+Q7OdzMaxfvnyACJ4kIhpXE9D3fLQheYwA5/n5XpNiT1V4elUXar4czGghgRDQi/yH3lu9Ytdz28DP0cmpMeL2H28F+rl9YJPzd4z+eMk7pgp6A1bU2//jwk3P/PrHP74DXY8PaLrxVAGL2QobUZ/p4ZVW+Sqg9a5s8wsa3l23Xg0gyMDntQPhipsS/PMX7h93oMjw27rjzMCHv/lPfGSPepv/3uH1w+c4GDUtX6d3O0Ot877YBvo6UNE46cp759ioeTmUsZxPe8nZnzvsdEpQLw1CJcihsdBffxI2vQMaVd6OuK96zs5GelV++kBVNZr/6jfoetOmeNNjG1+uIN/TGlV+Hg4i59zlX//BbnPzje7NJB5w+9fyL96WD7tH0sZzKCZgZb95N4DOH/jVC4NOiRUCMa1KjARjiJk5nx9wiLUrOt/+xHj+w44qb3yCXsFeCv7Nt0WeYKREiB9YuVaurL9ri+yoyWqi1o9Z/kjlEVtjtI+nvHke//Fgv9VCYw3WfAUDih6oSW8qYFpTccDZXzoC/sAjJx/Xa/+vIwXS/z5SENz0G0V/sj4IOn9DIBhlSGbfWYaxP8p3eI3Emfri+zYQc4ghDNZ9RW/EBvHo8dUVmmWbUFN4HQLGVLGRQ3fvULvu3tvFNRkHaylKEbGbPzBq3EuG5+C9oPkPLME6pgG3neo4ULwQPZ6rDzJhE9kcDePlAHo6vXzlj5IZ7RzSDWyVlgdMRIrIVBMUUyu58eCJrldsdu8WUN26zpDv8Y36wr4z2vOu2MO/6UvIXrAWtuwLIYJ6ZQ+oMaepXnQyCTAX/YxQ6w2N5ViPJshFN8Nqu9bGWxi8D9yD7cYDsZzByK9dCYlCQozf84exFpMISJzypDqSW7YsgOgQuFOKvcbvAKOL8IDXGJwoulclY3arm5C98y+ZDD5nq+f9HeEBVjY2hfUdL9PrKMCHeIkQd9QTwOpXuQLZAA0SlNWuV1VFJcjax5OaTeoA9hDiCOo8mLBbBiYYECozSMJVwbp5/zDieWIEM+5hon3EucFaePgKms43scVMJxBn5O9B/vJ31D+r6kDHB03gVC6Mqnft8VuvI4z8y5XawV3IJ28vEvhnTB+ydoYH1k+9z6AKzx1Wv5E3UO9bQrlJkIqxkr/rVR8UW/7L1hGbobcfmA9uIRz2mCJ+NoZgdA6eDB9mX2Et2I5h+atiAuE0Qepehv0wvGQ3hDhAGkVenOXzm2i2PBi5QoCVfNgicosAU7cM8Pn1ieJp51MfIooExNfOZ1iGJXHhcrYLat8CYxBush3BgHEG9rznNWfCwW3BmtIRzevfyDZobkJsKwo+VM8pZuDv7oNd7m8Si2sDhgV1LyEDjwRmpRvP1Els0I/jBReFAtks888IFMo33+LfqteWI6NML58z8csgjhdh8BrIabqAw7uqMTEb2iPU9DOmlriIdUuduy072e6DhG29WVkwQcrVwwdbN4kaS1PxoTwq2gu7MVZz4fp56NC+OGes4+AVLAnQjkoDFBsbsW8H3/dd+oBrqsf48EYOWL8s+wB+TTV6mEFgzOmpT2D0zUxqOcUpn/UoQn9yCY/0sMUne8hdCo1ULrA5z3m9mrRSlW3/MV4K31iXszYq0ugWhMv1b7zOSpACAckStZWjENDYu9qQfZ4uDnbSO59D4CQw4+4mfqzBeRiOis2BeKc+sCOfy2GG5WEPbnU/oXlCeb5OxI9g1OAXWWxQs0WONF2RUn+PXRdPbJ210x12IQT4ZkQoXwpP9RX/eaxwPLBDvXvOZavs4ZHSZ7ru667YYwFU3IMjvd1UbC5pkMBpEZPf88DKde8HJMF0p1bZevVyuC423L18RJaxxFu+5UdojLJOVd1Lg7UNrhy0L9YZByetN1rfNHt47fYC2V+G67C0gpEqh2+j03j/kNhwKroHDLOhJXyTOqzNZquBiStpCCYPrp5rPasgxcWEQ6TeY7blJ2R1a+NL0sN6KtRRh25Xv7DqXz1AVNWuIHfRcxpqYgmWvLiVINXLD1rDTI+ZdPcIeH4PKhE7tzGmVggSOOJoh32kTmBN2SuF3ygWkGzHfT3YzzcHZoAS1C+da7AAaxV0n92Vet9WMqbpdRXkb3QSkBDdO2N5jlGjRKfsiX0pHeLFEkr+l98ULXKRz7C0ZHg4VpC69IuHZedTFyLeB9RyiFeLRunYsL+sMVEaBdfzR5Ou8ABLGx9T62AwduhWiF/Sd+sPVTzrLz4DRdtdqHW3b8HEJU8Z2rPywGZh3cFM8RwqsvlnodfBPTDWmOz4q1dYBwgb5CuWrXIPVIU++OvfQKUL6MGpLI5Uu4htQHT+hOB9v3TUuEnl0B6jsYHkNOnUevZl3VZPVYfCl76od/5r4qa22wYCrumw037iYfnj5RR8uxRS63lz457BHv3qMwL4uI8p+fQpfH14nz4Gbvithw/Fy/u/+c/uaF1BuPtG1H1ksbHkyS6DZzQnFP/6k5Z+K3mrL9jY0zWYFHM3gvUmY+w8bwKg6264QmSlhPpL5wa7wpRtqKWHFe3V05q3Ogpd2HwNHYd85+Usar4l3OoLRXx3YUvmdRE8LoOB3pnv5MsruOggdavgX3wustfIsC5OAbbulyWev4dDBbuIe6G/i3EEc392S/iMkwLxWz9enNMF/ctPZDd/jImJPcJ+uzgPly8LzEtPKphFD5maABX1v/5Hu/N2Uex1CAg3sRJ2iaoT5vrxwBucO4NSNVqK7N3VWKpVLIFcckeqp/smnvneukKqvjDd6tUw7eLgCC9fZGPdkdOAnC93DlxO4YtazPwabEa6vL2I3uKn7YR1LwZDAvk0FbBNv5ohMFiFMMy6FltcuQYsheEIj2y18L/4fl4OOng05ZG6XGLV7U6iDWhvYY+ke/GpV3S6+fAMaxWtp87Iy+QNCBBOFCKJSI2x1DjgwDLrDtaClo/HYkivULucYmrpz3ZYjUs9Qm93zagtvPJhWeMmA5EUvBE8q9SY/wMAAP//pF1Jt7I8kP5BLAREEpZMIpMJAiLuQBEBlTEB8uv7cN+vd73r5T3XAZNKPUMlqf1qp9CVkU/973mo56tu2/DrkYr6I/waw+xAHm74Qy0pnPJVLtbH3/Ngj+aG0QmREco/tboiMPdNtIDPITzwQyDjlDOm6He2zBC2kr5Hi3eDxihePhB+v61Pnd9hieb9p0BwWiUBKc24z9m2BxjmuYOxw/YjGH2AY1Ccng0udqcDG6s+dkHhfL9Yf68cYJEKOLAf3xFWVxIPS6m6Gz/8LWho8qBeH4ePDYEz76lt6QYQkuu+h9ewldB+FzmRaDLJgg1CGT2hZ1hP8+jxyv21Othp8spbkuuuheTz+1BNovXA4rhB0Lur//HDFSklDzc+NCkGD8BU31oT2kvrIC5aYDRHZyGFakBUigSvzedRCjmoS2aA//jcr99VMlQqv8NeBxy2x9M4gzYLPCSNjhrthUMQK5F5xFS7CFze//ZlL8sZ7LG2qtsWNb0LIAm6N0Xa9+bNrzy34NIqKlbxr2fLdncZCFo+x6/l2XuDrukjDD8XnaJ32Q0/vzqsIGfKnixpkzIiGqfNHjEKerzfipoBow/hTzm/6G0XdRF9RKoInWM14mN5eLO5SfQVPp7CjmoLDcAeVWkPj6fbgQCXL732mO5d+P7MHVV5hIxxrtsCfvjugf/F58U8ilC7Z1fsXYk8rHmvc5AEw5sa+zIA88L0FlKtmfHxK0QRFe21URw+OWDLoJE3a/qsQnHH29S8ZUYuKKZCQKfILtmBnoHZmR8JSJHi01NnN94ChagAqnJ3qe2p/jDHz9fGds4F1s73r7eabLaAcRUhVpPkE9FGnRBQuWIgcx4jY1386Qv6ruap/8YVG1r8DWWuE54kTtMxZ1YNVThegxwba9Ua//jvTiAJ9qNlYkRkIwdfbfgmh2eOo+Z8i2ZQZw+H8CS8R2v+/vJ/40tN9/xlLFAsCOsiGZHYxTtj2vBSbg9mSjMrcgehKYgNcj1pER96erT3q2WF2uorNHzwicd+qm8BemuuJDskQ87Ue+XCieoXqlnAAH/8RW4+uzc++58yZ4Gz+EqZ2pi+rLQBs6w5FXzI8kDo880MdpZnS9nyPZoWv87XlMguBOHnRfUu1j3ei74iuDtrQ0+yaUezeVlMpVH0H7bjQhv4JtFn+OmmFS2TrkbzSb0RKO5EG3UbP/jDp7/nJ3x64r3fiSX+P7zwHk/BG3/XdwvfgfjBeESdt8QiQHD+IEpxMfMeORpZDDT9hokkhTlY+utphhufoa/FX8AgzNCHabu/ord1j6KlAnkPtSmQMBoeuTf/6bO05274WLZdPWmnYwKDkBcpQpbh7f/02PFTWFu+4YdOry8EvC+yhc9NvjNI3z+Tg72rLext8c8C7WnBQTpTtPMNLmdxuobwFoY6VWWlzdkuWTLlfPk+0S5Z03opHnOmnA/XmhyM+jtsjYQqkIHojd53y8mXIq1iGCjri8BFRoxf9UYCG58kB/yuvG19fKENiYlPstnm85PJJTTpd8WOG769OchtAm7S7kdu5Pbx5lB/h8phNjR6rndWvVfvlQ2jFTwQ7zvSf78frjEgvPkQInb0FAIlK3+gA7RKMLYfQ1S28Ub7qn+DJuQiF6aCrGFc767GvOkRwPUyR3obP6I1bNoAngrVwaruiN6syZF40J/ul1pNIkargU8NDDheReJSr2DLBxCKV6hifKn3NZtkQEC6k3Ny9j9qxF8PAwdx4FrUGCoh+mnStwTSLx5QGIjyMF6+sQjjmh+wzlbTG9vuLsO4FgdsLHSXT3/84iYbNmHv6zCMqf0xgUMznoiYswA/v8IUfi/Extv8G+vFPPOyiGGGvQpZNbu9Xv4fP6NGyXJjeXsvFfiPuceWexZycn0dTJhk0Ui1wgw9ftosVn5McrJQbucxz2UPsOlrItbpOSL6vN07V0hfbAn8YMyaI5rQ200cte9TNZC9Vyewrs4Bgtq3rYfL9ZyAXS6e/30fmx2eh5xu3mix6/poiQoog+ZsH6jxsrWBB0FNZOPC3YlnrmJEn0XMwVZUEqzn4mSslR8h+FPwCylbPNPrPH+VwN8HaL6cmpxBxKUQyzrCpg4BoPHTTuAXfAMiz+IrX25iaCnr/BH+6cftb1P50yuXsuJzZuO+/+NzSD7rR2+/Hg4FAP1oIcFBhrHMo8HDzMsZPp2eL9Cd7iCG7iusNj7aGktaqUQRHU5AXIsbgx7jiwhTVSU4PdOfMcbP1xcug6Vjr+uXev14svlPn5pdHNSC13wTeLug97/Pm/YoNmHjaXt8rnffmv3s0pf5zpHoM9W86H3TvgE46MEVa7VgDETJvAAKgrpQ9b0G0XQBfQY2/kL96+UXjZu/AL/Or0QSlU5M5H3z8Y8vW/Q416vQBrzSTqczVTXp+efvPGDxajysPjQO0L/4faryhdrexWStcPh9oclXezQ7Tgvo7PAinErGiKL+TLAOek6gKTQp1rd4J8F4KqD0vlrYOPc+oP3eWsGGt0hJw3qY61UKYMJ7AkWO4IJ5aPrxX/60zmfbY/0ezYDr9k8iqpcarPjj/OPD+CtpgrH6T5TKg3FXNr2t1mxfSjIcmpuPT4fqxsifX5Fd8jvaWanJVlpyEP7xWxU+32xoHC2GYst0wvuD4wncJ3Dhbxe/6TlZXYP/8wMH61uinzNXxjzdXhmo+ibHibJ+6yX0zF4+Kmcfa6GV1Cs3gRK8v6JL9fZ9iEZnRKG8O/ItEexxrX8NvFmwcPsT2j2DDBCtLDlIx+qO2o8zDVOHNAK2+KX+fijzJY+V9B/ftMKH483vk0P+/AbqPA4coIeHRpQ/PabQsWNjyS4p1Eh8p66U6vW2/kSwQKEmvA/f+cwFbgPm7HLc9KwSke+rSv70KvYzPHvreP7xcGl36h9+GqvN1RZIY24lgO3ziAgvOB7eAf+hahWrjD+dNRk2kf2ir2cgs+Wdakh+7sYnLt6Lxpao1jlouIeQWm5xHsbVWiF4eWeBOjhwwJa/R7hfywO1brDKN75jgsJsK3yKlGHjc+4Kw19qUvRQ53zk4qCFqyH3iMdTaSxXt67A3/f7h9/qLTTNG+XxUjTq7JrAowoNeHAu8gNR6p01/Jt/CycI7XqCh03/SWAorl96XnwjWuXaruCQPQ2s5jHxRmeOY5Bb2KPH9vvZ+GJZKJPIUiK015FN/f3JQy4Gd2wv/GGYEwchWKYuJhJNbvlaXtwMFk7zpTF4CWytjJ0FhOx0QrsNjxZ+l0EwZdaZngJkRsJ4NAvw8rCAePC6Mla/2xVu/hbqNnybXjX3gHl2JFj3HdfjX7ezCtVd6dMzVXSDfG8Igc3Ppae32w7j8XlEkNNUkZ4qe4kmKexteHsdC2oeM84bS3bPgDm9ZiTsy12+NAVx5QfgfOyvv12++eEZ4Mc4Jxw2PSAbt2GEBhYSbG/+M7228UO5v+uBKKk2RHPG5z3484P3u+Y9rP559GFcMRdxctblU/68VMrK1hRJ4k/PVy01RWiyZ4LPftwaTP49efCDDoe3+I+GxgQhrI/VEX03v1PAsSbD4n2dqOVDzP75xZGgF9Sr+gIwcJIS2JbKgv1z0xhM4jv7Hx88i67vLY5ynuU/PmifC8T4trtLf/4Hxt7vyMb2QUdgoXD6hwdrI2kzPDbZB4meV3jsEz8LsMUP2b/zEswgPswAv8wGyfeHxEYW4v/wGnT9ZZjdrcQehKJIdYFcGTnoxATH561AitCCgW3+tkJgP1C39Fg+wibiwH768lS91vAfngPXPj/QHvlyxIRDGsM3WBHG4J4P6/HUptAvB4RdzewGVjlVATZ/H/35gfSZIRn+PR/8DLk3Evoc//EXE0/qf/xs859R+eB/9XSTS1d5jrWMvkVmDus1H3T5udYlRvKg1fw5f4uwFLnH33gYLNlzPTierlsNPBbrUf0ODdj8IPxSpaFmy9a+dGfJDprb1TD2gYI4+GE/QA588xzI2h7+rcdNv9fG2GlpAHfsE2O/5NyBmWrXAA4dGNWdDNciLTkOPj7cj6qXUxMtZjV/4S0MdPo4VbK378FDhI/QNPGfHyx6y22F0CgJxtJ2y002nxtYPyMPHfhGqedL38ug1m8VVU2v9BZH2o+gOL0a7KNLPPz5ffJfvOnOcAL76vhIYWkgj54/L9UTot9FB3/1o+LUqkC4rb4OUiLK1GyOeJhN5wHBn18l6C+7Zs/MksFffkGBzoN1jw8pKEtuj/1tfuZlHxDY3lGPOGwOYJalTwwDBEOsne0JEE/4iHC2sgqxr2ACJtenFX46um71iLReWy+AMBgJh7hrhbZ6lAFh3/+u1D4cm3pNvnsb7El7pTYQ62g9CyaBD98qSN4omrf09ysP35+1o6YOc7YspuvDs1sn5OvSIxC/rz4GfrUGf/xkmH/Xrgdn77vHaCo+3jxSkYd5Gp9pGp+7qH86OPvnB/7Fj+h+vf6vPkKtLb7ESVsbqOzdiaoC+UXsr94Vhg+VntVjnK8PhfkQFARQ3YGqsU6a3MC/esHx1auDcOzEHrS3U/tvvLZ8LMLPjbtgndSGsb/FhgXXGzv/W79C/xykP75K//zVrhoOBbw3I0Kc/XXY3CmuCx0j77Fpch8272pZhN+ibrAj3Kx8q3dZctrJIrX7lAwrshUVInbMyJ6PErZe/I4DG77/6bWhDRK5hU+0ILzxsXytS6M4fLDQUf8DWcQu13MMrN0BkuVuddHyxweNUdIpcppw+L3QvQc7S3Joca2It/yqyFQ2PxaJt8E12C4cErj5L9RSVmtgdxzJEHxWnW581xg1rpNh3cQhPVW9xiY29ARsfhpaAzEbWL6SBO7N9UyPP2sYFne7pWzL3xufzgHdx2iEWz2NSLXsR3MmvUfwh79ww9tVyEkLhdKcsO/obFi1RyaBWQwDsngHvyZreRXh5dmfkSTxY0Ql08v++BGZ84+V0z/+9epiHb2lM/OWc3owwXN9l9ha6hCMk2+EQJBAjE/6a2/0f/N/hW8VcetkeYvmRRnY/GTCG9QchI2Py14CbtQx1x+j6vVhws8oX7HV/FC9HGS9hdewlzZ/HTKagqH5tx7+/DUWNrQCf3wbW6exZtJOCGWpqAx6PsbXnPW7XoK5ir+E9gTXS/68lKBc9fRf/fev/gY3fkjV5Hj2mHp9WDBdpwJfwvZnLKPKpfAGrI5Ul1MIZkERWhgl/gVb5gS90ee1UPntkjfan3ZBRJLvzpb9x9pjD7/nmm6fL2/1U+pUd8mbL2SGUM+NBpsORANRfWlUTLP7X78wrWwCCrc9YW1cNnyt8Qq8qyBi52ionqAltIKTuKR/9Q9vzKQ3gT9cMIreyxssr7ltQX3PWgLfWGfixrdByosl9ctpjZb5p8yHw/V0w5riAbbwwJdh0VQBVW1p0xeNu8oBJ6o0rIy9t77mnyz/6fHzJQzAnPrAlnd36hGZSmLUjSk//q0/csBBx8a/egSPI7rx886Yb2+/AvhlNeSAdsuw1asDsJ/v+81PBgPd4v//1fhA/r+3FDht7FHsUsmbzfHKwzvdLpo+i1+wfNAsgp+MHtQ5OC+wuM5WLpGXjh7ZoA2rMc6N0raSi/bfS8TolaUzcET9i53T/m4sn+z6hW5DYqzevp+cGV6gK84a5Ij/CnzOPrdHBjQp+dCzPt3r6WW2KvS/eUVVlE1s/r5TApPfYJDlKkZgVZQBQVkmEpmeWy/MtbwHoDXtkToLtAE7v4kI7PCTUV9I22genApCBRMOvThYGXN+3CNwWYUW8Y5wqtduWh5g3cUPag2P0Virum1hql40XCR3Pp9hMYlQrT48dqrLFE09VDL4jWQTwU9i5OwSnTJYT9pAHWCrEY+qhwgNlaux+4xNIDRSAkGB7R3arVeDzVEkpAdwrE6IC/WeLaZGIBy9cYeP0/VWz79UTyGQBZ9aiboDM19fCTRZNZP5vb/XS6feU3hbmy81LG8B8y7qEzDsXi72RQvk06euZRgBPcTuI628+YnJfEjWIiRgzr8RPczxA7LLnODLi0PGZHUvWfadr0Xdc9dFq3S9qHJuQIEWyhJELGsOMRSZ+6En4XMEy1NBIlyaVMani7GPiMiyDD4K+UYO98crX4/HUoYvfInILzjx9dJICQf5E5dhu9KLfK7GGEFyaY70DJ8mW29T18qtPlrYjOhqsJ+5m2Gt+gE1q6Jns3P8ZXA6mDmRsOuBaa3DB7zvTjoR4msPVo5UJQx9FCDGva81gfnYQ16JXvjsfk0g7I9rDIVD19IzOV6HxdilD+grxQd7eKMQZtw1ABdjifU5hcYSfiUVljdwQXv29KIVvm86vPyKFXGVScG8uz9GOJzlgLqaPhjzPXw/4EXNKXm7nhStT03lYQTUkIbsSIdRiz4NWLrPgMq4aqN53tNSlnadhtH1eanXxru0UD+AFxHikY9YHd0QdFGFqZorhLUH517++38jnI2aT+eKl1XlrmO3ZvYgdFe/gJYs5mhMAs1bZrf34TK3FOvIv9UsD2MCri/jiBE3MWOkmGv+5ot62GuG9bzvW/hSdhqp9fu73saz2pUExtRoVJ8tx5HxUCWhRt0+9OvROdIURLGI8NE+Jt7o/SYI41Nwolr78et14o/mAY8ZoCcXQDZ9yhMHG/+bkt5zj7mwL1+rfPAkEetu9osWsdBi5frSjtg0EqNeywcuoXezz4jpd61eu0OB4NcXVAIXRRvo9WDY8q2RPazxHPDGxzlNgO+pI476SY3W9vbqwaMVf6gL+Xc956rJK9ejJVLnbMyALVzYQzymgHrNXYu29TXCee+tpH55Rb2eirsNxrPzocefWUeUqCcJfOeppEYs90N3CRIfAgtOpOniNJ9BpFnKBe1sVHXex1h4qI/wWTgjkcTqBNYXGV043PiSXqfrvh7Pn3lVNPNh4ctHStnWwwlCo/2dyeolrlEVSiNCM8ASdd9Pru5HJU9BzGkrNrGigWXtfBHuswVjX30O+WpfdRF2j7WjmuC7YC1W1YRyPQhEunSYbfmQB91w6NE6pw9vceX2C8ayKLAR15rH+INTwfQdxqS8FJ6xmNqXg8n6CJHg3XQm/jL2BclwR1Q/C8SYw9slhl7Dt4hdXjVjhB9MOD9xRaZsx6Jx+78yxYlCbY8ejcXb+z2wjeJO5N6EbNB40YZXOQdUX4llCOuztWC+F2J6zkFiUC79Eng+QoyvurdJbqNcFXQ9N1S7vtyIJk1qgqJ/CxteHOqtxacKmBOO2CHSUM/4jkr4i9WU+v4riNbycSrh/meYaCfxPzYdU3WWnf3Lp3+/f8+dNe4v32IbsSpfXoG5QsSvF3queS1nw/yRYPYuIVq3eGWl82vhVL84stuqGOv9mrVgyz/4vG+Tmh0bO4SXJdfJetM+w1hppwRk1a4iTdqUOUU+WGFQ8Dzefr8nwDa0IbbQnnqKbg5MADcIvMV6UvP82zPK224IT8oeIHFpvvVoCI0L2+MnJOgR7bzxczRLeFgwRF9HlzzKn2ELa+P4oIZ/hBs+S1/YfCwdH4fz05gO6exDoTM1JL6WYFhHEo4AUY8R0dFT4w+foXaUR7LrH+kwl/cigSXwHZrrgIIpkrArt7R+I+H5rqKZHxsd7urwRWRWNMbaQtmGE1B+1Nu/6mgNP78QShzKkXI52my/U18jRPx8odf0BDzy0b0E5laQUaOBuF69/mZDO/xlSE6EkjHn2vIwlvYa1bXPIV+5V8dDOF2O+ESt97YeTFF+uVZFHTd5eqN5mVMAc/FFjbe05kt+fcog1aYfRsI7r1tnBzkgv2IdF4sbGku5egl8+TuCVaWRDZI2eQzS+X7FlmrO0cq4qwRyMSP/1g+NvucAXq33Ax/N6APmABxNWJYpQLPsRPl0LpR+/x6ZQY+650Xrz1tlRZZHaRt/xeuCSuZhpVUV3vgKm5v4iP7yBdYM2TRmci5t+I0kE9uz0Xg0VewY1MbpQaRtPa3dIUFQKfY7qipNZkx41FyQfP0nVpvkWS+SeGhgYswNdcUhN+bL6KfwC3cxOahHx9sPH8eV3bR4YRw1ljfZ7zmB4z3PME7aOl98uNOBlKo3nLkf32OHvMtgt3KETPDZgHleFPuQ6OBD4ItVxmpJXCP/jQ90ugpMx5/2ULb1Qk+OqOZLli48jGIe4ezmu9GiCq0MP+/CIyJv9ANh3FOWr5dkwPoDBPnaFfOq9Ev7wKcNf/eN8JzBQf429Njb6rAu3rbF0EJ7fGq3W1gkJmWyXHcC9ZI0rxfV7Frlb3zR8JvBGr6gBMNzK2I34+RhfpyDBO6fJk/vB2drNFN1mWTd6prAhzsA8offkrqLyfvzpnm/G6wG/vFLbei6YbkewxEKlKaIvd8tI2VytQFu+xl7cq3W+/ghQtgG2Ruff7g1WPvlYvhNsYjSvqwYtftIhrxkEny8zZc/PqwqUhP61LQWN++eisVDHogHejo5fs3y9zWFf5/vt0tvsCyvVbiNNzWKpzeMR/Qo4PxtPOyalh2xHtEELLjLqUVKJ2KlIYSQBvuM6n1xyef9uy1l3vQxEvNdGc3u4EhQPfTbJt3YHPg3nV1o/NwfOVx7aqyaK+tgez8Rerusx6cDM7hkRY94KZMHduzkFlzD5YK1q60C/jwMLuw6vSCUGSJj7w/g5S2/Ezl+iYCeE9eEl+0U6BGXj4FcFC4Ef3zKit5bY6wwJvCbLAHWH40F2sc5iOFf/tdPwIhoaSgh9PLnjuL7qNb/+PGWb7GTfBcw8ce7CbH+GLEvMWqQzxQgoJhbk/Vt8++Y2AcZVs81odZ+VBkTLwceBC0zyW/UG7Cy9WDD2OQqNB/yMmLnnC8gimaOGot8i9pKqCooeWuFlLjE9UrD3wzpK2PYBkEGmBv6EhyexmXDl7exXILCB4fbZcT+10zy1/DRXHkHVpseS9h5q+8/V2jZaUXWs4CM/et08WFezAZG6ZsAetHmACx4yOkJTKq3vMClV/YsOFC/s9mwfnQjAcSaRcSBTgCLt4SB8pdfQ2Gtt0YonQ2suL8R5egr9fLHn3e0iogsDrm3hnHqwk/KvamNmJ4LL7PVwT3VdtRk7LFtWdq1EEUrh7UWJlsv7PgBxL4F+KztvjWRrncVficxwuo0N2zDLw6e4nlA8zSbrL8oYgBt6/YhQqlaG/+7rUDXQwGt3hQNG7/zQXb6jhRf0MOghMwjnL9f7798kOuiCvvv/kzP2UXNxUzxGnhWvgfq/hCN5vrWubAyxBN2s+A3zN7D8SF4FQnhFjrkM9qfJLDxf7Lf9At/D7sCTvWTI4rAqWBmghzDr2Nu126885plV6kFjtFM2NldZIP5rzQDW3whjuq3ehKx3cMmp3dqLSDwGB9RHcQdUbFpZSrbL/TC/RsfVbwZnnA6ji784/v6qFxzBtDehh63bZEiHawXU9RtyBO3QGN2l8HiV/cv9LmDR+Y8FWqKnBcPkWXW2Fl7AChAOxd+UfRFndX4jKTsoQNjvKbUS8vE2Kvnow9zgxOQIp/kYUo9sul11iFS5fdo2fK9EmE8423nrdfuf6Gs/OkvPXd30azIsgo8P+Gwyc3NQIeeVVA/Pb9Uz91XtHx3kgUv/ZXD3qd4gtWQnjFQj2tKTclYjOX4cwroXC42tRrtOPzjQxvfpSf2HKL543Iy3PQo4n5CWfMUeAWUIxNR9Rrk+XyMLRHaF5cnfHXSInbzHQvc53eHVZzMNWM3nVPUtGuQsJu+Nc39KoHNb4eoelgdsLTdroRcIickmHELHq/9bYTZNTpht3TXaAm1awU4xcoIfVTIG9sdi+Ffvjzv3m82Hw9dDHfNdKRnrzoNm56V/vCRnn/fZZhW6VzCd1ljepJMB+ydayluGwaD7fW/ent/IluTreJjxqNh+f3eJvSjKiHrSr4esSTxC/P9Psa+5nE54T4xguaHv2Iz++yGpQq+OmTuFJLEqmODRd9jCNqTJmFboRzrDzdagPji3/Bl05vkShMR+vNtJQuXVvmIktmEH5+M2FetN5iAlTfgUgUaNe9hlA8c5/jQ3icS2ntl4v26rTFKt1Q2EorvdgthcXGVLR/R4wFVYDz9ti2U99ZAvADEge54WYaxdbexlqzJsJd/lis/69lFUpzUNQuGIv17HuyfpAtbnb2WKvfkdyfSuLPYbHyHAjpHLcLO8GxY33j3HhoT2xp7fIt6OTQPDt7RkdINr+sxQoYKF3/F2E+Ct7FUAVGh1vcuRa38jMZDzAVwi1+03C9yTaLTR4KOqH5pOhum90//GOMtJZJ1VcCG9ymUHfoh64irrVHK1YRVuLOpdzT6nJYObaHQWRp12nmJlr/x+3s+RTNqxjTOfEA753TqZr/FY7nfJ6C83/akJd2jnhbwfoDLjssR18rPnKgty2BUYhMtxtUFy3OpTCji8Ej1W0q9EeKP+8dnEP/zn2A6pBKCp3gdsPlI5mGdem6Wa3EHqCUkCVjh+6XKZxDF1PGL/cBO9jWBH5Bm1H8x3VugcvZlbXonW3x2gEXCEcLhUwJMbLuMWhlSH6QVkbF/XmE9ybiTwMbvsFX9OI/+4d22/pAU/p1SjgNbOYfIJPIHGMa0W50RJG2lU9M/NEC4ekfrn/40hjyKRJzvCQjuvUG18QYB/VwqHfa30cdP8/T2xlu/nSAdgx926uZez21MHqATyYHs2lUHK1X4HnA+tMh+4/eMfqrsz//C+ju8gzmFuAHCCVMkDg//jw/7cJS4E1UnzxuEP3x7mviJluq5emNjlwWsRQVQfKgyNoWCRGA4WzOBSfD21uR24qFoFnsir4eesckYeBjCuMHuc0D/+XubnsSngzrWC309QzCvvErdQ0oAk464AYH4elHv0tsDZZe0AUWCDIqufO7NgZAR+RiXBt0q4/WGxy68lq+RDAi/GSVEGv/0Psa3aceYej4j8AuCM6LtWoEleKoPyBTHw6dnLwxzKj59aHrSESm3c+2N5fnw/dP3+KjxGhhMiSUwp9ee4vHsDHMSJ638N/7qYFw8khYlp8jkaSCypBoQxBioyup+OXTY/N3e0YkP25MhEbDpPcaFMIYN0jkkbfyG8F3FQ2V/7ci8jz6MieVagU4IIsLIK6hp2HUISNmhph43ZvkQCUcOQk0K/uPjvnpQYdWrHrau4QimrLJdmOaDSPjV+UZDHb0QuCSqT5PL/mssUDmiP38Vm49J9siXflv4h7cYahzb+H4Px92nIM1pmozl3So6PHJFiL0JVhE7dmsPHr9UI/ubdxnY185HeHbGjNokZB7pm9qFxr3wqTmmwkDfA0EgvcUmEZXvdgufK8qwqOWC1JvfyriUjDAZcoTtCTiDOCpRBoo847FhFIXX/+HxpkdRmy+udxiLvwNXYkwOX0Ope5mxViFydyXnrHXYKjPQwtiEFVXBUfQa32kaiMI4xRs/GGbzMmcKfH177M0rBaxTAld5XFiD9i54MFZLhxGWSTFgZBEJbH5BAI4VKiiybjhaUo/EcH33OnVCXquFTS/DNzVbalxeNZjDpzeCP/11vrAckNE4bvo6OpJGAMnAXD+s4IquDpnJCUVM/iH7Ty9s+X0B40EOZvgTHxfsva+NsSSaOB+2z6O4f0j1yN9mCMXOv+LX+TGAtb9WBajk30rA+2p6SzaNEtT3eoTt3+M4rNRX0j+/hoD1+PBW8LK/W6MUAcFduLKuHAPuT69T9V3OXnerlRg+pSOkWnSjbLGewAWfnf1BM9r9DLbxbcA9TidS7cYJzEZ5sGRlf+sIz9jDWy7mUoDiIWTUKoomYsFn1GH5Ft6bPlvyNfGGrSnlbcbGgVX1vO7sFuqqiKlKTiRaPxLkYBukb7Lhz9D+/d4orDp8LKFjMEPXRnhX+gdK8zrLN/8sAetH4cn8dqxB7N/YB7uSk7ETeYOxRhorQTYmLvYyUTWEseB1uOkXetqJd7a4V2SCjX9gbfu+0XfGBt4WVyX1645yEkuTDQ0xatHu29vR3pmtAJT2GlDVAw5gXWiEgF3WhJ4HTcqFEAzWn39MOB7haD1cBPOPn6CPGR3BYr+lGB7rzkT1YDpMIErRQ94VvlTVHpa3xOitw136DHDCZ7FH/V6wocMmjdr2U8r/6itKfukCMm/zxR7GQwe/5rejRrgG3nwvkA9OdiX+1TsYZZfgK2uHxaP4Qz71hgctbNS4wZppcN7mN3ylz2dRsEmPnbeogZVB/40WfN7yIXvyeQDORw7j04G8BkaTjvzNF9bF/Q5MkHEyjOzvHdu2hcDspZ8QvC8Z+vOvvFXwugI6jGr0/MO2saTYDWBerAbd+Fm9CCvMgCBhnSzFoAHWfsXkz4+jsWRcjM1fbYCJ2IXQGr+HxbgrHJxC6Yb9NlMHIT0yDn4nPsLRHGiDMAHVh1g+JvTun4ixxqu8wqn8rmjjK2y5L39HAIyIuoJie8LXi+XDGKOO+qM/s42/S0rH5zHWdk8OTDkeSmCb8o5iM4ijjt57CYrj6Y2dRAGb/ti5oH48TIp0aA9rIBky/PPz//T0cr57IVSy8kzRQr1c5EhfQqdbF2pGNPRoj34JAIGsEHn299E8tccvoE/ujJ6bnlpbuLrKth6wYUd+TgXKEJwqI6X+OvAD+9MnU6Wl2CD2z1tU96FCdq3eZA2qN+i7Qpr/+BnGG/794Rfkj61AxEKY2DyqjxaEn8ubOoZj/c1PCMfyUfzp8+1WIbOHUJMD6vCmkbMgGeK/34Nv1NIYb82Rrnx27ociGVSseS2fRBnd4E6Ebb1T+Ak4qB7aPT730TFa91QsIHg9EvxE6dX44+egGg83ak9JEK03WCUQgxpixwJJvvxgbEPpfLb/+AH7p7fVbQsdskWWsz//8+cOFJ+17Jzv74cxA47unkj3Wp2cFW+uBX94YKpd4K0HK00guXyP/+pTG39Hf/7zX3zX04hBDLZ64HaJ62/TRy4H7Slr//CArcsLBPC0Rw2S3rGXz+bz6YLVcVPs34cfWHVwCOCQ0XHz47/GFGfHGW71UNKjG8znJ/7OYGjMK9Yqq63n8p7E8Nd8dog///Zg5Osnga1keNQuAmTMXFXryub30du5nQcSZnqp8Be5p352zxj987cPXELJ4eFE3vRX//yrd+mwnRnZ96YFJX7P8FZ/AlTP0hEWzHih+1bfXXJnsRWuWypUqXsrWpYTCqE4Ht/YjpN6mKLtVu+wFgHiU+AwcsdtCP/yrVIYwbCPvucQJEyWsCdfZ8Zyv4qViKxPsv4Mdzsyi1Uwt/qCNnwy5muoIih9xvVPfw5LvzfUg/QhK/YGjOo10LLwMCYlokXqfnL2ufQq9G7uGVuv7Gewv/qCH5UJEg17imb+NnNwq7fjBzmYeavenOqv/kt121SiuZVV7s//obfxjrYOm+kK2sNz2erpB28eh64Cuzp4EUAiD2z+tgRi73cgn8PHz+fLaKZgzmdI8fkxMGZKIAGgNDh69Iif8/huVWAaMhXx7fcTjQkaQ/j/2VIA/u8tBRYWa4rZXs+FuJFNMNXVRI+LtcsH+8sKSBKhoBo8zznVcx3Kn30RUrc1ezDBeOYVOqgEW4v5A2SMshCqc/XDGuNf9VoiW4RT56zY7R/LMLuWH8IwPDrYkCM1FyrUk4OBKp+igSzGIryaFhbyPqRe+CU1o8J2UWOoyVTLeHeYLOAUUBkrDTunIfQmD95NUHwvd1ROb5yz1VAteLuGD8JPnsBYuSQxgL5/olb1qyLatEcTBG9zRK2Z+dFqh/kX3sxcQfv4+K3Xx0udof5+mzh8IQT4h4Jl+IZeR7KHK3jEvR5XOJhig+06qIwefeQVxsbpS9V27zG++Qa9IrOCw8eqO4AVS3oi72LVwOdLokezTJwYCjdPQqJxatl86vIZ7ovugC1gw5oN176Bttwl9KgFfL7SVOzBfuh0Io6ZGS1Vck/h5GYyxVun49kSXghYbGu0cP2E3nj8dl94UCsR8QrF3vpOuxG0uBXRvroZBgu7bASpfuqwMWrbpuxnkMDTIzoRgRfGiN2TGUHeXjpavHgQjc03aJUT3PX0hEcBjMvDJ/AePCU0nxQVzLOOCuiMfkoN4asAlpROAc/sSbEnuYqxhFujBDm9l9hBoMmXfZWIkL+uK5pxh1gLw7YE2dJfsHtGPPvq+3MLlUR/EsnMxmjJpEsI53TMsOqWwcCMKavAywgqFO/h5C0MnB+Ae4nrdvNWAkayeyBYRs0D36Tdki/sIT+gbAg/iprRAovFshkezNQnFQ+2U0TltZCfQZJhtfhgQ/S1vIV3UF/JTlC3wwT+PYGN/n2h3UeUAL31VawUhX6kfsS10eyMRwjb0/mHzxEm0Xy5wBkoJ86m3o2OYP5g/3soe0sly9AlbEx3IYJtalrYbetjPUepKsEblyGqs7U15uCdueCS3GxyULsTGM8VHOHa3zOMX1FnzOkuQ4AmDwHBz1PKmWLuvhC9vRytt6oEYyXrs/J+cwN5jAgzZh9RBYJ9E2A9EYp80HMXwsRQ92QeDom3ptbHhMRyAYGa3kYzvYfVjjD+R7jgZ+fLuZwDAL1bS+3drjHmtkExWLD8xiel48F4cZEJ06Sr0KEGh2jy+D6VhWPq0Ge8P9ULT3UdRk1CCFTr87BfL8oIjsuKkeTUfb1q6DIr5bRkRPIeYt2fhdSGC6SE3EJoezN3zQj8COUPu+8oyunhbbvQiAUBu6F4BqMffGzQ5+OCn2qEInbTrFHW37WJlsfWewhjvVEIuN+oeT6YBrkudQgz5NVkTrJvPp3OdxOU6zVGs379sem8jxvoXzKLWroTRTSNilDe4o1qziIOA+mb+DC8u4Xq76vO1o4wSwn56UZdS9Pqxf8cVbi/qzx1nGiIxrtuFrKnWT49ZsXiNbI5ESiPuzve8lk9P751AxuzdOlZlud6JE8agkkyv9QM69OwDFZnQvwLE2w9i8Zbit89gVv+xSgbFG/on/cQJjXNqL4MfNQX0iuA4aMwyLLDWb2t315GwhRj9VGAnH4eWgsOH5NiN7rawwxPLxm+auVIUV3b0XxxkQXnRjCpdjwxg9W7uw0qftvic9QkNv8u3AxAUJwQH3sla76dy8MGjBeyAmVm82B/SuV35N80C4Jd/uq6mMCd2F5Qd2gXr+nEpwTmIPKoZrwObLngOYE9mlrEEa7Ol+c5t8DZJHtsJPFozCdpcZWu9yhRgu4F2HE2R1jAVSGylD2idSGtDXGwrlgX+bVedsYsQQ8oEz1v8TffLx0P7yk4oV2SK6C9ZsyC4DxAaqwNy+fRTFf4Ac6I/UVswSCkjviX76lZ4OswaugsAe/aH8mS8X296GY4w71ZAOpnwdETWttooYfdEhucUjPq3BILUKWFqNk/13z8vh8uULkvQDB4Gjlb3rkFnSvhSSEtx5yPOLcBWz6k+KqNQxu/Tjx0+NdIT8dW8+b2mhL4MyQRjXtZqWng9wHsznGF1dl8eWs62+Nh/Ow1QnS3AnM2lKay4Sm5B6YOxMcttGA9pDfsW70WMRynHAi/nb7h0x2weyL5MClVFdv+5+qNo/ci4NnI2yl5acpHGwwJxJ9koNvr2dBKq/U3/xjrgmwwsaoIPLX3BYmFdI1WZ7zw8MMaSB35NLDZcA4uREN1xXYQ6waPO5uHt2vwoEVz9o3FFn0Ovn+/mdqrr0frXe4aWF2+Orbk89dgF/x4wDMfI/rsk32+vlwiQVlIO6zyoQXm4B26MMkfFs2//pqvO0vz4f5SmHRjmQOT7/cCRtx7ROAY/mrqqIdZ5m55jbXHo2bzng4ytOL0ie8bn6AruMdgfzs5CEo/NeLhzEp4f8c36lmyOswPBUtQia0V7Td8mV8fTYUk2RfkJygW69fv4SHHfN9Su7mXdeWMdxHK4ZpjbBhv1srCrCp/+Cls47kEZNsifEMn7O3xN1pVPn+A8PEw8GuZUc38Z4/AYXeZSKVYNFqdB1/AID7V9GhrAyPKncXwZ8giUtrnEC0w369y39gaDcqxNpaNH0HX3QVEvv8++VzHmgWqz+WBz794BJR/SRWclGnA+kU+McbdsC2bu7LDaRfvvXn/UxBon5P3Dz/Z+JNtmBAzxnoV3PP2WJ/aw3B7rNiQ6cNjuFeCv/lDwOeuw3L5xi0wLnaOX9E9inq2ZAk0DndCcXRnUcefrybcXfABieKoAorXmlOCWr9hW2w5Y4VdOsrFZSrp3/PRpNQeyhafGLFsZ3SvQynDrKJPoojBZLSf6dYocWlRJM+E5PPM0hmmso0xBvWcz8uxzMBSfo70qWhNzY6zP4LDLpoIbR6ngene1ACW6Qtin2DcXt+msO+YRfYobIZZ379LeKfZgI9h1EZjJ15l6FCw4iMbJ7bMp3mEWTzY2ChePFvrPJeg/lBcdOuaJO9S3yugNl0ZtngrzL+cTgPQppb1l+9rMq9QArQceLK36ltNwfDWwaOkBlbjaK1n+85l8vIwPGpFQ2WMfj9kMF2oivZ3ZLJtflwwdd5K1iAkjDovf4WvV+5R9AQ4Z61a8sB8P65Y/QjvaD36+AHAuYOEwds1X98B0GFtrw49Jy+13hf+zpfT4ZxTw0sHRudERjB4lCtWazLlSyDI+qHOagm1ZR8N/Lv0K/C6SjNaefCtGf+SSnA6UYQkYToN6z2FLQxLr0Dzd76Bufmm/WH7fvo3P8t4cTjoX08ldqLPifVkv51K6U2VJiqtPBp2GYEnpz1Qt+Glml4kydzOdAdYNejdoFCRGhic4AGftOwQETUkFcjDhEeL2UoRATfHloGt76nPijdjalCZ8g+YCtbtk+WxXZeMUDl6HCLOTTR6yUEJfFk7iKBkH+tF+akZRLbRkoUcOm8qPamErTRvFuI8AZJkLx9u8UN10nVscQIjgPTB3RG7C5ectFxQQFCUOX3MUpT/6QN4CYhBdq/VYMIPywl0vypBFeqFYdzWKxxekkYT9Z3lzN+XhbLDhUN9cffz2GkVZbiG7gkx5NT5KgDmK7nluzTuHS+a1NSXJF99/9Cac7Cef2wgMv7EA/njs8uYSv1hf9d5siPYycVv+4XwGzRH6kLHyYdPLcWQCGuIXWpdDWai1wzMbLuY9WIZHok1dQRbvsWeJ9y8acns8I9PYLSLY7be9TSGqnS8kd1P8Yd5zART/saXF9q/7+dhAcPVhmcgc9TV2J2tJ9XXgd/oMcZxdQHTbT3a0JnnkL686Zjz9xbZ//QP+lqpsdxStDUiwAXiTtHbGy8gTeHLCCtyEfqyJnuRG8GifM9Uw3c87OfTQ4Q/cuTRYeamYaSU46HecRECn+lWrx0BFuA5qcGOdSnZP321wIkgQX5+cop7JYQJsWJqKhQbw94rWhl3voY1mhpMiJ9eCrpzUiH2PBrDNl4r1O37BR9vQMvZPCUl9H45T7XTpNX7vZf0oNWairB/+onsLKgipUEiBV0+upYfwOawfvFpiYx8vch8Bf+HtDPZUhbWovADMRAQSBjSiXQmCBbiTGyQXpoEyNPfhf8d3tkdV61VFCT77P2dNEywMbY4tB0U33op+BOlE1EZMkphO2AMrvIFEeU1lwOdnN0dusfuTdg10ss9J0EbdnpTYE04qVlv489dnV4cQ7tvfWDCNbUVaXXJHkH2+oDZfq0KMNn6Rff9WQUjrokCDWMNsFcOd58lZG+Bv2MoUu1dVuVMb/cCZnIB0JKih88ackNg5KKQOpbcmuu0y221220XAZVFygRdlsVtV1RArUKW/an7zo2q14tJT8c/aRg1szagugo91pD+x1gKF0U13wHFyEJ7QHKk8bA4VwZ9ntq/bLnBRvvpP1FX2rLq43YBjHh6xdasGEwQ4y9SzDeiiF6Khf2r911+vRPxuATx/uePl9QXiESef9kc7sUHPJujQgOU0IydpdlSX9upjHcbSv5yGfMVRkfJoxZhCJCIHURwGXFKfnrIgvHNg4cQQSLJUpiNXCXZUAquNTYyDg7N3zJEUD8aPuIOwZSx+66y4eG4qNisaWuu1kEroBnbNj523sFcylyJYHHFR+x1lsdm8nERfK5cR3XFhtl0yudIuU4lxbbHRLBYc1fB93i/ICA40bBm6oab8oHHB/P6L1+NYLD4ivrjC/sruOqe+quPepNLQ5fwywWa9XhB6zxxgG55Eu6OhoI1onk+n9soAtq2ZaF1er9c6LSm6iHtH9gSEq6cjg80wrP7tyM7f6pj9naKl3pIxgUb3A7Ey7FU7/A9HynabryPl3J3iuBD9iK0s6vW3HiOBdI213G28aA5/ys7uMoJorgWU7CkseLAZ6Xz+PTLf9LkV7DBtKZ6T/KM+UAIwIXvOmxkZuOv9uutwdnyPhRLhp8x/qCEylS/Umr2Up1NolxIKu/2Dj2AFDAy1R8eSqrSkvURWOVyGbsZih9xooHU5tmqRU3x+x4k2fLiqvHxC3JP+YhR6EzDZLt7D44wqQAcQOO/sT89tovSdqMFtAFOVEsCbhjmKSmgciE23uoRWJbo1sBHkls4LcPCX28p3wGxXFPqFWcHrBo0HPDzwyHStyVkkfpSSvYdCNjjJmNJOFrAUYaE8LNSgNWS9zw0vU7EXzcesvEpMQdeTq8cB6m7xAMbAAeCv0OOzePeHkjfBvfffML+WhdgeZwpD6+8fqGo9vWSrazoQFHHDxRq6OKLszI0oJX9iFqabcQi9VwN/vlOQF1ALTD//BG8hw/85uo767d6ATd+QWSHD0s26fMDui/HJGCtDTDDr8WDjScibsszk6OCHq76uUMzfNJhntDSgRr4I+K2+jJf3lgE6rrvqbP51UW5nSqYGtDBFz1nw5hMXg+hAnf09HYrc70m3gt+SilBkthx/lj2UwrN2LJReSVqPKTxazvo+4nxL++TyjqKP15Hli2vjlEVXBSDtilq3tfZZ8tXn2Gonv5oYDzkckxMaiiGaKtkgib1592pMsC/+qf635L8ObgDzmG72A+rVjmh83Z3/QkJ2NRavmTPwxxC204cVHz+CrAG1x1UNp6JDwrM/VVEHg/L9qNTb8asJPtOt6GC0Adb2Wkwv8PzcIclPSw0sPtPtiSHXQIke8yx3c7aQJ+PRwO91U/J4lzrbPF6N1cTr23JKtz1eP7p5eYn6CFGLzBXry8E8VNwsd7jQ8nGdruIbm9/iarCzFyXy1eB8XPvkmXTH6KonqjsjTKkOMmegIkyNgC8Rw+MVu0EFrV1UsAqPP+3/h9L4Q4Sr26pqTkyaILrjgPz6/r+l9/XrrojuOUx7NfTfugxIqO8+SWKpOUQ7090mcHpM2rUcs6DOXsnhYPT9W5i19RJ+QWKUoA9b0VknzXDsCL4tsDG41Dx3Ja0d4qYw/DCGfRkBEq21OX4AHmDejJufI9Fi3sHwft1J6vBtcOqgjxUpfqZYvt8+G046BBsuxfFOHO0X75I4dNfc/I56w4AXuxeYI2SN0Xe31Cu4t+SqxtvQPDtZ+V8sPgO7ILv7sfLh4VOyh18Y/GI3WyeB+bKvgGNa3L48WZ/jjmjUXG/m5FASlqu7njj4dO8nrHbGFNMiN1a8IZGh0atFMWrnD0lWJWxsY1/y9z8dw9NJTwR8XJ8+csiZaHCndcXtpH5NQlvfiBw9LJCu81vLV+oOWDLm4Q0dcTmEfbazz9htwTyr96EPz+G9if2ZUzXrREOc1NT7QaGYVQESfuXr/8+uNvkLk+g1usGDTYeuB4/EoTJ282x+0y/jPDmF8I5PPsUc/UdfNvr14DQnKXt+Vx/fkXLA6LZwvQiVE02yZJ2UaUsulEj4x7lcsZSApPsZSPp2bkm2y2HFApXV8Ka6Edg+Ra6Im/8G8GdR9mgnIsVovJgU83gi5K515cNYfXMfnk8W37+flezFbvg8zTXswJzUEem8o+XL6jdIRi755Ao9wKAUbRnDRY3b8V+tX5Mln3OlrqcoEiKsUjM+Xb+iLBYw5risZ2zpTpfFNgj2qGNx5qr93eaATumJd7mA2PyR/NUUXc8GmZ/kI211AXgFLEAH79VEk9Fck5V8+xlaKin6zCqpulA/aj5SOhAUvKBfpyVLT9SX1+M7J8e741PSM3HHgBxVf9WKGXhjR4Oyp6N7jPcxuvljb3HFzN6OC/jP78sNs6xFLsqQqotHDUC8uqWUZ4zC6grF4ivba5nDBluCpNyumN9AWxY+NPTgjoM263/YmT8xq+hIRndVp+1TJje+woOt/uToii/xM2mtyCR4hhdCvlmsk7reHB+AonIGz+cYzFTYH47fbCd6wws+mp6oOmEFDueccjEmCwWPFbj9ecXwdR7ggjft9XGBxGrwyjldgE3HoyDvfIcWF50oyw5nU+jx3Yqg7VOxq8/Ra3nfGdLwY8p/BOVEzW3+rDlQwK5NDRoDKbzsJAVewr6uBm9Xg7NMBzOC/n1A5AInMfA3k7/gnTXtFv+TLP5FF8TaFwvBxxv+UDgRWkEDHY7GlHHKsXjR+LgWVITUm3+fkHtHsHcGjqK9MHxRd0eLGXLK9sWB5HVc0Iu/3iw9RCqn95fZGE+D/RgigWgnaRYv+fFWvb3AJO++h64Th9Kci7JhlG90ReIzc7/zQdAr7pN4E19a8i725q/57Seh2dpl9DTT+/r5HpXbnLdU2yaOttrYW8pG7/5139Zb8qnUdMBZ4iz0BVQ5M42sNrjnQaWtYJ//PTnbzV+0QfxrPA59KQeUj+cjGGxukX68UP898yzYU27uwb/uJeKRCts4xm8Sgiei6HSX79mgKrUQBigIz2KD71cp11ny3VTM2qEEQHT85RZ8Mf7glliMZunVwGbS/ymxsarqW1cEvWY9Aa1XzdlIE3XcGDjvxiZh1s2HG75Hf76Qy634Hj2uGcBai30qReG76y25q6BokMUjAYsZvNdeY5Kd8QtkcdLb87apHU/PocPzxwMs7jTQ/WXv3TneshEVK8rKC8KI8I2/6rdqdLka7AP0KI3E+ie+FrAZiQEe8vJ9Wdx50aQ/8gPvPFVQJ7fbw/WyDniR+qeY/YxJ+6f39y+n8mLz8sFTpdWRmLRFtnS8+cHOBbriIOq0MFC1qMDjfJFqb4vx3L+8fktDyHavs5gUW6HRrHti4OUPafF+20+/uN7ZReJYPrciffTG3rVZd5c3lfGqd+12VHPOYjD+heHofrg2JUa78ktl+Zwe8BAqk5I+aoJWMTwGMIuYzlZ2eqY6+PtzGBy3hh9f/UsKLVKHcRTj5S/mzp8VYIvcMu7GG/PR4v6rkA9XRSMav8zfOshc+AzCg8YfYXa/yb0zv14NfX/RA3spzUzgJJmOTaC5VvO33ar56H83vQkBmTirw/ISVyN8ma+soVarxWe2r8DRls+m4/HRoS32lwwMquLuarztVP2q9dSfcu7q30NLfU3XrmvUJtsvY13kO6WCxE2PrgW/RL9+D92zNkZRpfBHtqkzSiy+SZe//xv9Xs+euKvui9kn23LWXi5Y29/foK1xunjX30/WLk9bLzAAk7+SKm1+d3vL/8ftNOJHoF9MIXl7oSAnaQjxe5RBAy5kg26xMl+/YiYGF1oqP/PkgL4v5cUvHnEUa0Qm2wN3RAq1nfPCMisxzClRfeA8jXPqTMdt7u5ROkBv0vm0CDK1e14lVVTi2LPkanmzXjWrroCxWt0wubQ6Kb45kEDz+mkYk3Gli/c7XGFdh2U2AI156/7RS2AeLRbiry9zVYhzi31Ct8u9UvJNtcHB19QAp1OjTcnA6r0oIdu1D5QPmf3gd58PgXrLSmw1w48aNpEghL57jzqdUyLBeWNeMDew0q4/bfwp4/seFC/3RQkVNdbOQY21wPmRDoR11wxl1y6zZAd0hZnwV0E82e7mXxRo+e/35/eTcKBly8jjHU4ArazdjbM58eXWjF3LMUgGl5w2X++iIUHKWOfT01g19wqsi1bMxcZzBLwZb7HWPi7lAvL0gs8adfP9vtpvFZN1wHo9SeqSZ9pWD/zhrC9yxGB4rYbumkvjRsi/9D48p78+e9bJOCQchI+rgbJxkeYO4BeH3BbxTQOJPnKuaJ+Lj3iHs4tnkNXn2HUNAC7rEoGmoaQB7DJR6pPiRGv09ITuLoepKYKD9lcf84aFJ38QjPBlcp6er4j+HYcmXqNymXjeYUiVIdaQCrODoOAlYMCgfJqCb3Lz3h1JuOuBrVCMaqgAcROsUWoLkWIvWq2AclBOMNgXxjYX+y3OV+erwu87+YH9kN+KNfdsVG2XTMSPrKj5q+W+FAAeDUOWS/fvc9GxhJIVMPDwSGq/UX9O3HQs9I/fHPOhi9IX9FWWPQ5UaScBJ/drpEGL2pfYve57RIbZ3gBk+05GO2/hil+0r0E+539Rkp0L4bJRZjAl/f80GOsSGDm9ZcF2eHeknnKx5ihg5XCU04mrEcBX64n/W2Av/TwR9Gf1PmNuBw9eC8eZ4zFux2ziSgKOM1KTAZhj/2x9QMHpPxtoid40k2x/uQB/BYDJuQG9GHuwSMFi45uRN3frvEyKnoC6V50sBfdjWGftDpRz/olQNDhzIyxP+OiEtA8iTjIp3KQhUKBx9z44FPNlxkrn3EHs6wD1OJjHky7xzlXgWwoRDG687/vtTuc7Bs90URl3V8Jin96sBx9Fk922QSw7l8pxjwnb3shxw6eSXdFu6mBjOn30IJfJ3jSh46Hcn36TgG5F59hHe3Pg2DgWwedh1UTVSFKzL7uWVJX4aRTa7eLwBoEfKcGpflHuPL58EdQTAbskhNH5KoUBvqAVg+FTCvwwXp8srn2/lZYrs4XP7TPn8meTjqCMFzu2Ey3g50/75MEO59b6cGLnuWmXy+QIvuBfds7lAyxvQQILlIcjPUNUDVXZviMxgof+/7M1vSkigD5/guxk9f79djZOQj2uYHkY35mM81UA+4c0yaKsrom8y4nAhpL9qjzLnJz/dJrBZK/daLB4avFrE5jBP8aASGpm3Yl2S9q/nsf1BEqoxQN8JeAs5qG1N/m24r3LwsKjwfGl/562A4u3XMwJMcaO32px6x8Zj2s79FKDd8y2DLHrxSabHRp0Iwl+Epf0QLuIQ7RGhleyUrSWQBeuRuSvSMXT8ocR2qRvQKK3/0U989dIcL+NcVEnQWrnE29vAMokoii9H0pR6dVZghQWmDUdbq5RszSIJK+IdZ3f7657JWLo6av0KB/X+dbTtiP7uAqt5SA9zHxl6dxH+GTaw2Kc6uI2YpqD3atcKZWqn+yhctKB76/c4BjawJssZXvC4qHTsFGlXUx+b3PmCtf1HeuakxClUWQIHvAAVATc60/XfB7fqprVesPt3MZQELCMzaSQ2WOrW85MJUIT731TwHrzbQbuMq5Qz7aaWDfFoo9HMT9k9qtyJtUDOdQkUCvo12Ar+U6T2GnBqL9Rw13d/bnyzO5wA/naVjTH21Jm1MJYaUcAqrF6zCwqpREuKfBjJgzCzHhqpSDTSl+EY8B8sV4F2owa8s74X71bxqYBD93cCfgXBTmV//TXmrEpg9246g02dP4KrCV5BV7x5ueLd8V35WTviDqmZPp9wcjh1DXmgd1Cpv5rOg8BTr3TsJB2H+GkU76A7zQ2uHDPuP9rtMuClyPFCNmuA5Ydtuuo6gzOjTv52c288dAgdf4daCORU+MlMPXhhf5+kA7GMN4m689vD6nkMi4qQDJq2cOP5yj0aO6NOYsiGQFumG42NU2h6XbVg88PQc0ut2PPklonqiOcOypm4AWzFF7RaBHnwkfujsz2V17zWCGdCBzX1iDkEvnGS6evqcu/Tz9Wbu6inx+mhY1i/U6fMXDwoPmCj3COzj019rCKzhy8w2bGY/ZMuz0FTwPaYqjai3L9WB0HCz49xm7H7SWY/V30GCY7zQ0XKlczsMxf0Cpa3Wk8p8CsKTdLnpxuBMSI9QMP70CW/0my+O9i+mlriA8A66kXvc4+OTpa4U6/3kXvPmRjKhpAKFc3nfYFoSnOXNp5cD9LFr4tL/t487e9w/lG4MELX7tmONRSnnojJFP9cXIyzlUKxtadD7Rl5f7w3RZviu8xo8Dtm3RM/mhFy/wYQkNda7bQZtP8clvyECgplzMw3x2Z+df/XU+KRyma5sr8Pr2VOylcVrS1kAJUAxPwscvzDJ2Fi49/HNLg6I2/xvYIIEZVJk7IZGLhniEz7GR+0yQsX96O4PofMYZHFBuU81a+mHZ6gtEN3DFFjHLcn2EDgcF4XmhviuabKbtvYP2Ubni02f5gmGUC0+9nOcDzhrGx/PdvVSwfUsTDcLYjkmNpxT6kFhIuXBCyYqEe4G5eOUUrVLkj264z9XbB7zJV0rzbM2kawhfL4jw5s8G1jlDoXTuIaXPE3ybay58ICjDvxkfuFsGpiNVAvBqlwnjlXT+zAdghGKj2dRfYQ6Wn5463jPCdtda8ZLgfQQzT+9Q3hdWyW9+CTi3k49v9TkwRTVKHOhpB0SAci7ZqmtPEfDnPiLtgfsOxH/eRyjy1Y3qVqsNqwDEO7RO6oVa13aMF+zf71DfGqInmjwZsyy5gq9+OFKTi/OSCl5mKw9r3yBFTC/xfJRSEbZD3SB+1+3LaRk0Q90/2ye1P9EnW5vEqOC7aAfy+en1YEkdmC6KTjd98dc33ZYgOI5MVnQ7sLEYzhLo5+JEHdctBhJ3l1WdQ+GE9tv4WAE5i6A4lCsStFsL1to6rjCTvQmpWx7gIzkyQBMuXyJ7As+msUM5KLo1xUEMPbCUBYugfJBP1PqUADANWTZUwLVAy+5vMGk/0ln+0PRIz0fZZYtp9Xf4atm0nYq0ZlMYODMIPC1EKpvXYdn8PuRO2EFqcpuyKVT4CD4v3pnsw13PiNXvI2DqtKd68fcxmZorq6IP+gljoy//+QnlZpvbrp8nX07u++HBQ1v62129Tkl2tw+BeQT3JPdHqZzW+weqfnCRsH0LSEz2jsRDb8puVPvyyFzI69Qrm99EchXcs+X+zI29xu0cigO8H5gG9xWwzTr8l1fE210X4S6Wa1IMiZhtftMGSlFY1Lw4C2Byf4ogFpOOOpnjZwsYIlGps/GN/eL2HpgyFw/VLPOS3pLTEncYqiOgx3OC5Cf8mstzsRH4bLcANanA/Jml5wvoFOmMrVTXM77dkQf85bk23HlgDlf0gGUSeVinyp/P6Fd5AfFPzLExTEs5fnU/BOrh5WNfn2fGTO6SwJciTtgzp9JkdqfyIOQ1De3T6zFb53DLHjftgV17zbKf/1R+/k87ODWbEfKCbRcFxLidbLBu/hlcJ0WkmB7KbIZE1oDRkZqoZnQzx+CVR6oY7Wy0D+A5G9XKnZUF8DNpjpVWsvd44aDyfpv0QEeYMRU3CZRGycEeu4/DEIm+BkbnNaPvp57AZJcEAdoEAvYa9RUTz38rYFvhQI2/6zQsPEcQ3DWwJrKUajHd5iNgdJ9iP7NgybzLgcB1W/J6zO8aWP3nnUAkMJF4iZ2Dhc7aQ5WGV0ZP/MdgPLjiFGx+kAbfUASzEKcKtF6OgtbZy01W61cIf3p4/DOqjL3NNIJvKT9gV9IP5rwksALfOv9Sp9mbpnAgf49ffsM/v7lc9mkDkTSE1KhWsxT9s2DDr73O+GiPudkrU/lSy49q4s0PsVk4sggW9ZRii+9DfwHDXQRNQ0xqhM1zoNv3h+dhVgnQb8LAdHWCsJ/zE9WO350/PsLOg+TGKiLn+2u2MPcvh+or/lJ313/Lf371VDZHrPGviyle314EH1elIeLg7/3pfpURvNNGpJp+GOPmRV53pd7PFT6+qhdjgowa+PMveGoegBWTPIJpnnN6+OsVfy3rNVTPuXVA4lBE8agdhAd8f9cAa/t5u7uc+3SwTEKPtNL3zja95EHDHXmybPqyLzpDgij7s4iyXQxG3jSYwfh5ChSn4wHwv/ysLXxJ39v4FO3xYvzL7/Kt4GNS9MoI7MgvSVu0abbkI3Tkkc8FUoV/pj+TZozAbjkt2N3FJGM0bQyof+sc60oFNv21VrjpOcFtMpRrUnkEqlwvYL340/3pKaoGoO12USD4BmyBo45+/pgA4oeAnbX18vMjSDAvAth4jAQvEImk7fszYLprdrBF8baEngVg82OdMjTfPZImoQdEXkvl51cI3fRp5NLRgbNZ6lu9/RvWnz6tkp0hcPZtIObCF4Kv23tkPerf+Mc31E7S9hjbiV5OUUVTWM4EorE+PWPmDg4HWVSeyN7TTXO5XQ1RbY2qwMZtMeJ9FRzRbzyiImzUctl/t7vZv22O3WO+sFl7SCP0T2tNbdPzAaOV30GjFnzslV0Wr7t3WkDwqhz65L1jyTb/A879X0h2p4ubCZz3Gn95avPHsb8GL92GpYm9zT/uy9p9P5yfX6DPWajK5W5XM0Q3+YoD6xTHRDLnVP3pDyR6A9a4e6wgNE5HfODzxp96aazAaZZibOnnLqYyhRb45TfsKPwwspfjQbExbKr7sIxnDFUCYnv9YFdDziAcZGarP//lBIIG1nfZOmCrF2hftFK2suvqged771ItzI1MBLzTQ0PUlp/f9v/9vN6vFbW5rz2wr3RKwfn1WDC9VkpGdbWG8HkO91iTvCj++X2gkaXA3qDt2SgaigjPr9eCkuOpzmbLuM3QOht/9DRmmM1uuCvknx4cc/MwCMrb5oEOAkYtgepsX7A8V1ldnYg1gjSbnOrSQHE+R1ueywARHOMBvUU5Ynyt7vE//7flk3/6N6Vh3UE4qy9qniSt3OoB+s1fBNSmAbO0XkaIHV7EWFw+5fwGbgNzLIvUG50ym7/8PgARox/sK+cSEKwGCsRzzVMdROdyPd20XhVEoBOS+ytbt/EL/zxIsTZtWyBC+uqg1NU6kjn0GBaw6L3iGjeRSAX/Lesw0GY4v7M34jaexetXKYSu4/UUt4lfzqCYNGXzS1t9PA/sizUCP8NBo+4HReUcrvYLCrdGQMXHrrMpnkEKp9euwU58i8vVK90cKvHs08P4HIdFN0/9P55wiKgP5tMp4+H5qVvUdOa/bPTOkwQ+d/mOVsX8Y9NZvxVgGs8r1b7PCIxqpc/K2zdi7D54lZEknWy4fW/q3VIvE47CV1OTNtXoxQqSgf14TlEIHLWHIsqod+NzSCRqkvlrX4eVBY8cJk53pA+giuaXbEurjjM6okW6mkM17r0LeEakol47XMAKChgA7VJcsSXofrwuV3+GJxMBfEqM1acjsQqocAGkD3j1/enH7371Gu2jhq3XtxFBFm+7uBX5NpCyVkIYdKtLjZz25mw3iQEqyDVE8DXeXDQ0RDAPD0/Cp/onnr9BrvzjZf4j6Hw2Fo0E5cRiWz3hGNnyiLLVayKM/BGwjZeB5s+aabAkLltu54sB89J5/vLLsJjeOVD1cDWwQQ1+WLS7o0BpnyiIPWrNn7RLZEEJOZgeL4PrK3NIKsicUKfHQ4uySXP4h3rS/j74IAVVvEZWWsCxvWP60/eZbhebHF+3E+rehWY2jSV6qjx/aqyP53BgEs//N086wasulzPoO8j15L98ZAzVyoIOMCx6TIlR8rX3N0NYWzuKL98gXn952ywscWthTNnqJUIOl6e9x1ZxjuItH8/KHhwwxrllxMtXnQxFNFhO2PR4llu9CdSNZ2Gb1gP4x7c/0qnB/vuYmMuvP2BFL4NaQmoPy3uBjXI4XmuMuNYFM2mq8B/f2FPLHtaYmBV8CUcZAUMwhuW5oED58ttFOZy1llTghDvc+ABpZRIMy8YPAR+imh7uFmLfl6lb6n6XJgSEvF/O1xezodS6F3yoCM/GSI40GD7BDuN+QOUUBtoqHarvgvVx1/r909dysHMfjB7dvmVMrl4vuLyKCv36H+s30Ed4EGMLm6UbAfr5TCNchq/3488m2ytD8svvaF9w8cDMVRxhaxkY694TMhoBmYfb36OW0/jx+vNffWxk1L1zesbwOb0rP39hSrxiziwqcmhU2Qup+SiZ/3j8731qfVGVswlgDjzoRjjQsT/Qp/jHw13D1ejVdbrPRrl35MkiGdU+BJhsJEEOsHjpqJuclqzrhbqBvfVy6Db+wf76p0awPjkBUX48KRIYD9Ps3mF7ywekPXsOEDwRolXUYMxQEorqI3JXGmBfAat/LSUlOb8bbOzfBlhZZF6guwMtYRKv+HRSwvwfD9z4JBB+PF2oY0LtS/bK1od86v/p1Wm0LuXazyduz2ZjNw2nt1Nu/ZcR2sXVRe16+w6zCfgCtmogY6971P66PjtO3p4XzY7J+3P+uuYQ+2OIj248lo08qjbMMRCxdgnyYUbG2ICkvWuofs4nf3J7eVasoGzpaX65mcCyNIH2mm+8Uhg3fq3lqsai8NfvYmxSwkL96b0FJ3dYrIlaYGfXN3o9tCSeZNGwlahXDHxg+i4b30K0qsb+9cLunhuyH9/65Tv8bqdm00ceKa0EVrr1x0y+WBwC20+u0+M6V2zlUpBAIYi+/97f/jWQSsFeWNLLO7H82Zm+FeTu5QX7zUP2yfVthFCtAgsHJntlzOQeF4jLuCPFUf9mc7sjL7Az6Q6x6aGWbYfuCdjmH3bGWTbXm4kqsPFJ8oYxzJbb+aHBzc/Sw+tVlpt/7uFF7Up6OsGduZQFiMCxj0cibP5746WRet3lLhEKTweLtfsqQKppS10p1bI9fV14qC1iifZuPA7fDGALPupgpdrWz1vhuZ2hRS45jhdxzcjfVRxhZGOKcgiKeM5f7/znx1Gs1r3JbucB/fwyxdvzks3/AbtcRSJwt4ytgHc6yGmhiyPgHMuNfzTqNp6ouZ5O5XxQz5G69UMQW8QoHgdd7iGcdy9sXu+ZuUQCEGFp9XusJxiZM1n17VQHe6Lu3/vOOqdVVvjkagOfjn/RwGJRvoO/79hRS7YqRuR1UMBY/WFsbLyT3/K2uvFRnL23UyO3/h206ZMQGKNLvEi0UqAvqiEaw14vGT4oK5jyRsFeAKBP/XuvgLsRDdiYvdxfOC8h4GQGAP/REcZkbxrGP77nE7mNV+wUFeRuhxb77oGxdpQLB2z1CZvTQx3aq/fuwFqbGTX6bsfml2bYQIEMI+5PcnwG8+AO9pHtk1a9e4y3m0QDmz/AWE2RWdVZgX75lP7tLYmN0jgp0E/NhR5exy6bbw4J4PVxLqlp5JVPjODLwwk+U8Ttty1h1Z3xaie2Htnqp7lUaWDIdygb2FBMgU33Z66pPz9lt+LF/y6DpqlFTVNUFec1XpyU2zrE0R3rVSEB6jdarhrXY0S6xh0H5g4ahOv619LjIYx99mkfheJ87wv2neszZs1Nr9Q7BAY20Pzxh63/I+la9cAnxzbYUr8+SP31W446mH2a57sE0EtbYM8bPLb1kx2gwy6n6cbb12h6BtBkxN3mw91kHYoSSO+XhDrg/mKzvYAOegbXYdfcT/7E/30K9Wg5Bo1T34/n0ykWYdRLBr1tesFWExfgFKcffDiSfpi/uh8B52HXRB2ty7AaUdhBzG//uSuWbMVqIEFyWypqacpkMkU8h2APC0g9uVfBj38C0h5mEobu0VzREaL/65QC9X8vKWC1AeixJTt/3qlyqMjPQUfCeT4No+btHmAEf5i6+sXwy0e+PIB5UiA1bxyL1/L+cdQX36fUPeeM1Ya5v4OX7QZoVl88m83P4qnNWCxIGF9BxjNXNUDRHyiaQeQMPOzcl3KBbkdN/zMBwpHxAcsLKqmmi368OredDX2tq9D69/Cy+TDfjO2gxB31FKEbGNc3BugOzYRPCdZNxq6qASqp7ehBDep41Vr8ALkiPAispzKm1y+XQNh3Nra9shpWh/M5xULoiHaG6Jj8Tl1CFfjHP2zlzhdMyc1d4aA0DsbJLS67KAOFPOP4gL3oaGVzW/cvyCd2jmqvVuJ1vQwF1Idlpci5VGC+9PEdjvz9RfViWzWfwC+B8QFWVA+en3LWtUmC589Zp1pxxGyBN/kB6+9wIhJTi2E9ZhqEf0vdUONxSOIlDGsHNmO+0ETsimExa6ODwU4Ssd7yTUyn64qAiiILYx4MoD+NUwhQdYb4eC2mmCJXcWBnGhfsmiaK2XONIAwekURKMXvFSyxrCZycVaTOwTtn3f4vC6E+sJW61V32e9qHhRo9uROByg6YxANeAldaqdiJPRGw9C9D/96X/lJsxrLbt4CewBJ8ClsGGDwOBqCRdEX3Wv+WY/E8iMp9PSUYLYZrUjdLeUhomBL+eU/iNb2dOwhq5NJD/JYZdaO9AfMjfpFdeDoOq11HBXy685MGevlklIPHAj75vxP2tPngC2Mxj8rueZKpcfXFYS7vFoK34zXDx+eBZauY6zOkX4tQYwi/MROaiwSrTrKxt38hMHMEF3AH32+kPMUkYyq/ryBh/UJAbUdsCb7xDN/260qyUQniUaXnu7p/NJS67/wWr3zp38GwFAo+nOepZHdH00DJXi7G6UtjZPVuHHhk5/N0jQ9TuQiPOQLG/Eyo9TbKYUQfcQXWwtvY8ZNnzF70lsCdLNv4lGMbiJQvbPX1d1+x9qh6czLpI4Cv10tD4HbVwPJMPA6iSNNxqrgErK/jCuHadQF9E2D7i3pEFqxfiUnm9iQA8g2j+27p/nSqT9cxXjX6ieA8XwZqCbBjrThVPIw8fcFWMKrZZEXvEFoNJ2FftTlzm6+WXKnRiyLh3TEGtNiGwVXJMTLvtc9s9ejAU3JERL3+HU2mPENN3Qk5ocYzNAEdwyJUn1GJUK4NKiBP8Xb/zS/CJZc+Zq0KDWXTH+xL31c2WjkNFfW4YBzJE2Iz92gMOKe6iCBpDcaHL8FRk+DBaEa+6cAG954A4Xl5YMSLRbletTyATd1o2FJuzsAY1CXYuzhFu0t/jNn1y10AiO8eRZEaDvNq1BaMmpGjh/wUm/Q75yLI5rGgLhr0eJUaLCrb+0Sr2fn+lJ6aBJaZf6HB7qEwsl7KAhpxcsLBVbZMQTH2M9QYeyB10y/Rso4R/NbtnWJy49hK+cKCUt0PiHlZy5bLnnvB72hh/OzxmDHtc47gOdIzavXL38CC6+ECd/5NQWJ/dWMSZagBYW9aiDVSxEhRKQS8TzeHWqG5N6cJFJ56WueM7NkujTtxDREY6KjQ49i9wBA/ugSa8O4QeX87lMNQH1JILpmP9SeV45kXtlXyCm/gQA4Jm+6im0P+/pIo1mfDZKm5jABL6pue5L/UZ3KiWfCSi29qEYfGy+ltIFgt/Z5qrqMOvXHjQ+B4zgW/4Ykz19/8mOqHiT1S0ZjdS2bD6hA51JgewkDNvWsDJKHf92qzddM7WDgNoseJBdkEou0Q9pApWO/OTTZJaTVD+AzeNGWqMezDoqzgUUr+kPz7flHZ3WESDT4NBPnPXONeugAxDHRq+c3eJMexeIBW82aKzvu+nHRIU7jTlRntPu9d1iUSC4HbVh29C9QYVqkKbXgqc2HTAzlebs/UhqiKIfFlvx4Y/w44ICT7Fu2vxSlmqK4RHMM1J/KwROX4daYClrQc0XNqbFOEf8xQz1bLY33xa8D0HKeAJ/sQ7avQLtn8cHLYdN6NsNq1h6WaXRsaeoGIXN1vJpu+MYEnIeGxJTmCz9DFH+HQzS6S97e6ZNc19OA5LUIkH/B9YL/vz7fKmx47/212/WFQQCiHPfZN6phixaIGBt/xjXi6B8PU3C8WYIflDzt3bo6Zf7c5ZavH2JovWTk3wWL8BwAA//+kXd3ac7ASvaAeFEXGoaIoKm31R89QVbyqfhKSq9+Pfvtwn+0bQJKZWWvWxAwybfBpZp3mlJ3Xaf7DFwLvY1Wx67fJYWUOBra0MDXnJAsD9chmkSivQkn5RU5j+MdXqtM6Kt5UCZFnCyH17Nfp3/4hTZYEoiQJj8Y7BAxtM+tINkIWR/SV/QFIQVRjUxiYOaOta8BXk0N8v/K3OVSrh4XW1muP/52//nEyaPCmXtaX9st6AAz8mPB+6W4x648hgZy90Q8fzel2IYlqw6OkpmOFi/0rBGhNbths5DPidKqWRn5/Z2yy4o/TwvUEBIeVQr7Fq+inp25b8JyZQI2YW/6k4liHU3fBNHyFezRQW64BHMOlOJF4Sr2yYBqXJBUH1mmOZv6aZdh+Hkk46M87Gofj4YI0Yb+itm3XaBr3agA5+uyx0X0qf4J2n8Hz+1r/8KnvUJd76HIIC3zg7Oy3SWF18E3Ox3AaHLGnnvuXqZcqlqm+pm00RxeUo3Pv3EL6irjPNBO3EAnKQBikRrTYkwtZVds4Zy42p3HPQi0vpQfV9f6JmIeMC6TVGYWCeX0i4ss60fxHesHOu+Tm+CBKDUmmr7Ctb+9oYo0CYD2qExFC7cjFBd9QmsslvV4dJ2WRuJc1+5AneJdvbTQq196FonlZYZadsopuC5ygnFWI2tvvnznv/w4ZepcbHsLCH1owoQbBOr/xzgQSDbq3ySA7MYfqAWzMEUdkQvXu6JIl3kRz/kxUMP1LRYQeTFMQev0ILzu74+trikxxragCrK7llgjwJ3CiatvyF5/J6mJKaBrkY6st+L807lf4KMrV7R/fdt+fLJqDQzHA5u9aYDOUPxXfHD8yVDYDav+p34rMpqcr3qj/YevV7/moP+oExqQRw/kYJ+a0Td4hdOpRoxcXP6v5rV2OULeqjfEmWqXfSHEvqPDVC9337pDO6sfqYOMGd6q7r0003C4kVtv8/iTvj2Cn/FhWjaZJxzRcL+c9Is8hYMdzTarCW1f/+BfvtQG7W76plvh5U8ne3tJtHPBqeoUjoLfQM3x47fV+We8FqeHQ0C21457vVg8DTqn9xQ4cZzTgQ9QBM9Ac9oH+rojjPpsfXtMd6+RojD/vVhX94knDTSiazVt5CrDbVi32y3idkoMkSXD0eE7k/edkTvM1ztCjNlpqE2FvkufZKtHKazkNk7nz52kt58gZnw6Bju+j2fzzOpDWqAy5/x75tL93CSrj00QkfnI5yzyoIawEHe+KAzeZW8byj09Te6jEavpsnw0SotKhP3/ifYIE9GnuDtUXvsXOVRGraNv41C++3Jz8S8vQkXGRHu6rQ7pBzX1Q6XFWKX7WNpqU/VqC3Gw4xUzK+0mPTmd4BPqJmsFH8KeLbReawU1Kza+19oejadgye04r7F+rT8TGrXaD4C4XRGi0zJ9EmyeoDd45NrBipZIfIQHI5eEv+eDLnF3DyLRerV38NLjQk1V9XrpuiHdSopWR/os3tyDn+DA2jckNOntg6eyNtw9BR5NkzhOIbd+E5BTWKTtIK0HdoTbF5+OtTgcmRzkcToNEbaktq6FNYxmW/cC77PHoJ3IyXFj4L7V6MH0JH+Qalv0MpSOdEKkcjcGZTgF2g5WHRiY8dbTgGfb+OsxJ/zUloFJ5pd6CxxtNeySA648TIk7znrbfWEZ/QWkReeHHw4InsMKmT2SlaHue2SsPpLp+UCdsRzRs/D2BN/I+ZPMhL3+yis9R8a86YHdqviZLim8DT51ibO6uW7QJ3rmKlnwoBFER/emXT126+5dIf+q+ksLYc9Fu0gV8qM0inVn8XmmX6/oUytIyKQ9v7AH8ediHgjCn6Vzo1xWc9eITom/FqiXeqeD5QUMv+43HxWgiJRomw8aWMWz6seWHErajjOnVd7aVKJIHQ0t8wBZxcToZ0uWsKZZ8wmEw1xV/9wcJ7f78Brstw9X8UHwPnrknUn1tl+asi68c4kO1C4eOf9NpRZwCbrM80+CT0YrWT9Yhsf02ZDobT39OncpGue0HRHm6DefXSj7Dfro+/tk7l+8bCfA6v9Dt2478b2xeGMw8xHRrVlvEgvWxA/CTIlQOpmDyXOlUSFeeGwoO03paSN8zXF76iwgvw1zyYa8FKd9V4d+2VxFTdDNAb29nYPwVdZMlzLQhjIFhPXSs/pv7SgxiDBY9/uX7StTe+xj6p4wIPLLOZ/cRJvSyriq1Pzrtf/kKeLYU0l0hPVLpm1QAj4efhOLWuFSE2svs21J6YA/isPo6KsuWv+DNkKXtLaXNcC41ej/SpfdP0LP+cJzgPPY0lHO2R0IneBcg+7dGovqzjiYR3gwVvnzB/uNeoCnsjg08v7qJL2JkVP/4v1bnGVkt/jVXtwNDMrfP2NWtpdHp7UqUYn0QQohvljklXR6gaHsi2BoelUmhym20NOCgOzHu0VTvvjbsvlJGD4mn9L/1g2MNd2z1CUKzaqwZLPZF7ffzi6ZzygvYK8kH+/czrybLggCOp+PSiFc49bOC6ARqLa9osLHKasJzW8Ju+27xtgke/rjYI5zaA8M//sQPbSNp1/U2wIbKL5yZsD6jv/smXPggMlln6wIcDrcnQY/8hUbRC2Som/kbCs5+E7W76WT83k+jFd5w3qosRj/89uJpStnGDAS4yWJJnWg39vNmdFSwRuVL9/pe6IfX+3SD1UN+0AeSdtGsWPtWPTCWYuvU19FYtooL2WaV04OeGj5rpiP8y5+Reup7dpftC9zL1e2HZ1UbjEkA0TX0sLN6/6UfLWQA/aOsqDFwnP6FmduAoZQ1dq+49id/SiV46iNe9JKIT7kIubLoXdjZ7VxfxFVcoD15Pxa9Q0PzbjjXKBUtNVRJTdOxUs8duON0pldn+iAybqpBbSbFwz9+Sf6+ewN2imWEjXYi1az3Bxkt+7EMwnqbix7CIFPLTSjeQak6MWyP0Pe3kloLf6GouROEwFWpky9/VefPs4zk9zHC3vbhR0J5hiPU8l+Lg7FN0RRsKgbXrhXw5RBaFfMjLqFXfL6FsF6VP7yb4NXsFep3yy09pxZr9MN3g1olojiNOsinsx5+d8us2pMd1fCQUz2cVAeZ82Uj5SiKnDEUxdjn/+wxi4mMTdcT0s7FfyWUwaqh2Ou2FXsVdaJFRXWhPqd5xU7RqoX1LXLDeS2cKl5I36MKxvUcanQV9/Ow6hmKTygn8/W+NWfn9teo291fij3X2KSzt9YnjYaaSk3KzilLr7YrJzvpQ2byPEdM33oSqu+WQ7fFM+Czbx8Z/OKJX570aBbl/oJ6wYkwfr/W0cSM0Ubeq17hkC5XFl5MFdBO0v5++XLKjle90BZ/xru/6OHPK9bJynKe2LDXNe+OV72ENr8+aSBw7E94LgrwuizAiSq21YzO3wL99DxruqB+ul7lo7boc4RVGUbkl//+rcw/At56maVunWrtElcdYfa6RlPctxbovdHTxZ6j+Ww+ViBH0hB+t5fSn6rVwwZhOG4WvWTqO582KtqQhPzOB40/vemHL3uAvl/45w3GrbCj13Yb9Px8jRNkxpNH9zUUEe/35wtKdsIHm5umR7OvSTJiXLvR0B42Ed1vfFVJAh6HiRqU0Tj9iR7oRz8n8v0jVUS6TiHc9nKC0/s56pkvuwO4251NA0vdLPjxPkN/Aw8H93uGBk3pAG1HFVOnHZuIOWfqounv9SRSIVT9j7/+8+fdJd/6km8kN7gknYMxmnKTLRcGUV0+Tng/GYEvu8dzBtNXFImw33hoPnVFplVqopJ+ODXmVO/elpKdJofmY4/TwX0jAGd8OUT25boicVWF2sKf8Y/fEcE53rRFz1muzPgVX/gLOEBG7EjWrp/90hfQmm5lqt+3tTl9y0IAAX86GujPDR/8rZbA181O9Fk1Rco2+VpGjQIxjrt3ytmEVB2pkb0Oh0+Ge7aReYjO6ycJa/QiFZfDydUWvQSH08NY8kkWgFbe1yHqhcacd0NSw2ujydSZP39osb9S22z8Fz4I+Oyz4dIOECcwEPTT45IKWWC88RQ2f+q3Z0yeYuTB0afPq8V7cpukGH54ZY7vHP2zrwglb+r35xzxmmYu8LXqUnfYfyOWV42OxPcgYtdWtIpe1/0F2YcswREr/hC9xZkEUqnr+Gp3Wz5ovlUiXbqK9BCmn4rPa7+E0+3Bf/lKPzuqmqNmCwaO1pud+dNvNenuMupu+b3i8RyewWnKWzgPxDY75p0AdEu6YNweznzhvwy5YTHgHx//tKqaoPykJ3Sb6Qd/6gMuwGV13tHFvjk7ZccMWeuxDYVvj6t/eNAoqzhUvaXHnyXVLjBDmcmdlnHFYkd2QVm/9LBS9ic0X7y3rC3xkZqtppvC9XBb8vVEDlfgCpy5nCXghPhNlKWeo6oCJbB+L4XJTRWbc7CzZQiuFwc/UlOpiCIqNYRrf0+kj04rtvJeDbif6Lno02Yv/PzlHjsutrpZ7OfmaBTo93ypCm7+91lkBViZ09EDDCckhO8Vg9dsOnR3yd/+eOqKHK6ynVLd/NtUrSPdLbToJaGgPtpq+PGVaiO9Cfz5mc9exZAg2frYYelnVj9d5/6Gfngg/PjJV31mADzZ4INU/PVd+plLuFj+Gdv3Z+2PoXE4Q4o7wK6T1uh7C6cQaX16IPP5O/Ycr9sSrV+3Gw3aUuTc+NwvsF0PIT7kn0fE211ggOXQM8VL/WEeO70Fvdd7mrpfB3HX/1jqkj+FG76W0/Fkpw1s1yTEGE+ffmTC1fjpVfgJw4y4n4SgiFAbNFrOizvtYPz0fmpK2q4ivTre0LtHWzIe2DbdnISdhVgf/NHs2h6r2UuQjP42thDKlYzRPJQTUV6Nr5Bp7z4rKnd9ALevqxP+aoqeTxtU//YLG8oYogEjZkOHhwN+Ninjc8k9gha+Qeb8pPebP11bBgNHWbha4i0TY0VSl+eHqIxf0dQHSAJ9/FjkL0YFL5PDKgRRff2F8int+kn3Njmk183lH1/herzOYAgShxrtjVaztEZH9M6fCbZ2Se/Px2Q1qPnB0bBxXHvVWHJvQO4Z7cKqv56redPHHnpqcRpqzlGI5qf1zuF6yZ9kPU5x/+PLoD3+QmqnarU0vtct7cdHs1SAnk4b1AC8mEwtMSqrXz0KpDDeUn9Qh2hoB7YEp8DGsS9b1fydfBXab9hjl6zSalqdsxwFX/Ki5m7l+lOhegz99LHSbHuf/eyt+JpP6t++h2je9EcXTH5TseOfBJ+L3lvQNFkQiGh3WzT7pSlBbfp9uNTf0g81DiEYV7Whhzgd02GJH7BTbCPk2dDw/tEIA4TxioUaGwZ//vRajeIuOONc+iN8JHPc/PRVnIpCv9RfUuvHf7D7i++7SDFAZZe/cC6eAyJRmRfofS+/9KeHjiuAXP3h4VUL/tJ5I34HpBxxGk4zNbikCnRA2uMThvzOHJ81gWWpJ/BC6hYryaSx0tqgS3eR6uq3TKd0Ji48aIvpoS10n2mfrADFybtQidy3zyK7yrRfPeqnp/7sCXmvZoUX/6rm8zevoUSI/NPnx2FVTWhbi7/6VBAx7emtIMUthGobm9GUXrkFi74SisftO52OspyjayyJdKnf9nNSt4b6878MZ3VELrEF2tTDGYffEPezvQssdK2ISfEXXiZPH+8SvNH4C2XRbFFHu7gA+dBdcLDwo1Gxtq2iO/FIcwNv+veiJ6MnilZLvlWbc/fHLui2DO781SfnpT7+rx7xqyfRLWNMi1D8pqdWDfpJNj7qL35RlxYGEt/vb4he9OCEwqa/+nR9M2R4GJpJw+3+VLWetTGgDgKF+sfnO+2sG2uBSsWVPu+r8b/1n+X7qXXqrVTcubv/nuf3l2/d4ouE/o8rBSD87ysFj3suU7vdoZ6fPZyrzkpKqHEo9/6kasuM43S8ELYJi34Y8fqCbKwfabTfHyOuEjMDKch2ZAw1Eg3VobDhYPI1gUuKzPk7bVXtNqNTKIlvhrj91gdYteyCQ9ObfS50foIOm9VEA/Ip0NRccxc0udKo7lWs+gjiroEBl124yc55ysRbL0GWtDM1W2dIeWweboiXYGFTrKqKNJmqq8waGnr6PJtoOqhRh6aLnFGdQxCxN05tOD/pLURmsOX8T9wakGjrNZnbUo3me5dl8NjJAX6i+7af5nJHoM/eEz5YmPH5lJ4DdFSAhVyBsBqv5mjAx9mvqZe8Js5z55DAcRNgolKDIHZc9QmI7+ZORM+O0Hj22xqdVmUcMk8YIxYVVaat2umCrWkzmtwwJw8uf+1AdfXupVNDCwu+3rTDVkMHPu+iswUrbGU0G/o05dWrKZAw6hM2JSSaX+3zNSA0pFe4vm/l/lsNewlpmVMS9jAS1AVZFUNpcgebynGHhkLqAqikq4D9NDNM4aVvXcS3b4kGGIyq7e5MhmqSlkbFl1s6SI/lryBhZRN5HPSU5uKUgK1t72RIxXU6P64ogTsnl3BjaJ453Y+li3CAfIxZ/0yn1nEk5YpvFdZDeFZDF8gEyEcS8S4QaDUEgisr12ElUs/AUzWMZCLo1edAMTufow/KH9Lve6mz6/8Qsw9fF91OZYb3ab4zyVNSVJA25IvNp/7Xc3h0McD9DXRn6E3Pj8YjATfLBuwu3y+NJz0H7RA9QtHZqRGbuJvBN7jMRLCskHNBPDQwQn3C22gN/ozr2QJ+k3PsPlEcTXTKdKQ/pCu2evfOx11YdjDagkCP7/QdzaWtEXTMbgUZ8NfibGRYV8l4RXjnkjKalIzI6NArHg0PK9WkSdUZyoNdPiFXjn+oTVjponFcyjHPdWCKmaF10LyXKyOfjZCy9cDOmuvJOsWj8km7/KMfNeG49kNazR9zUDW/gTO6t9gX5ls6vuhGQN9D2dLwSUuf87a1gBpDTQ+n3jMpPMpk/TLvM5FxcjAZ+74bND9yg4a0tqLZf9ay9qSfAIcDSCY9xs8JyjFfhR9QDFOka8uFxqkD+hCcqWJOvrL/7Y+XCduexyEuALPuiz3I7Yhn12jQTkfZwfYajv1YIpRBPs87fNi+7/50PD1KUPkcE1ny5Wou1KMHr3Z44CuX42qa+qGG76Fo8YXs52h8FGIDkxidsBP/gTmlsiBr8yMz6On28ZaSxEz++TtJSFtNpNseAccw48Xe+v5vetRIT9Mt3iVLI1eneQP81h/swo85VhtL19h1lxIV8ibtup0lQRC/U/JR/SaaUmGXQac2mHSMziZRHnqjwW59pFs3CLhQtqkKO797Y93cE3Pat7szDKfdHTt3/scnHjcS/NGXTu0x3VWTd3hk6OIaCd7PbM3nbIMSOPlVjnXbc/qhbfYhdJNzo8Gdnv3x5+/nZMUJ7V4Gn63KJOgQnmWiPf2Uc6esdcTn6RCucfj16VAXhvZmQRoqZPfspxVODLjw4yrUjut3RJ/H+gwBTz3qJuHNZLXkFeprU5TY8IubuZyHq221RsG2+D4jdq/0QPN3+4HqwnVTUd4WNmLblUkPnTqheYz+jlDjTqJ2t92agi/LN2jt8EXEdrdP54enBOggMQW788OoBHvSJTgP1StUmjMxhzPIsXrJ7t8QDttbRaLjLIFLtjH2/zaFSZI0aMFjxoUwh0d84NEmRl0/2XhX9zUfNsugHuV5PNLXmnz76Q/7ydJIsqcevQb9mAv0DFJozNTG2WSyy92qUa3Qiu67GKXD5iJLMATMoYf1k/BB/J5krVpZHvb9XjVHaSmx36V8Q8OxzRGzZi5BP6sPkh2JzPkc7RpIGvlATVZ6vqRf+jOwqKR0H5JbxcdOZUDXb04NnSXV/OjXDP4DAAD//6RdydKyvBK+IBYCImmWCIhMJiiKugNFBERkSIBc/Sneb/vvztJyKMnQz9BJd+MPH+J/KiOSYuargDablgTjTeum0sChai2tJW0FrVO2G9Uz0Dh02b44H/05urxPqH3RHGv0G5mT+RgB6hSlZFezlz+pu58OxdNyl/22NifxJKlAkveTBYdt3A3idYgBZ6rF7OOk81myZ/xvP0L+yvk45kUCbBw6Ysafffe5DE0FR/+dESJ+zSV+/Gp4yeeOOO8L8LmehZsqWpsPC85p6s+xJhra3WkZC8Tdi8/2Kazgol3bZX1/y/lyunionsWRub9+7sb22DjwfeRfZktYMnvyNj04yOOGGXcj4b8WWKJ+VW9D18t+7E4/R1anzqDEPCm7iK7eig1dd90Qfy+seS98sgSUOgYSVEFpzo0TAhSbvCJX3cjMOb59lc3Ob94kkLe7tNfnNAcqNwLZG8dtynvWYliBY9J5OqXm9JZyCqdbELJ9hkvEjLtYgNMUJ7Jv4sqfv2UwwpmfhGX/ueY8PIz2j+9g4Town/3KuoKT6k5Uuhad2UNT5BCGISJbBlnZa7dRgYtkb9lhi+8p/f6uBTxbyyZB8hz4qC0Wzd/79pWsSqqe7w4Uuytf+NcJcWmMHZjDMSC3WDyW3SX2LRhWsUg8A21SdvLIAyUPIyP6yx675nitTvDH90zmfLo+7xpDnVl1phtsHPjI1w0GLhYj2Yr1cu9L3lsgaPsS5+Jl3fXT1c9hXb03xOjznTnyQ9WC5HUGXU31rxsvIojqfl8cyRLvutkMGIVrYjzIQTG9ku4KL4C0cCYsVJ7uS9nvY0FL8x+xH8KZS/ejKajUvyVsK50cNBwEt9KwIb5IsBWLbspEFkJg4WCJX7LZrbfbE7QCytheU5xyvIyHRB2OtMSrnfLyZ2FfO7CO0ZcqsePwsb2qCnTeysKjMF7S8dsAFEDrv44NlILt0fYhvssZbE+G7/oWE//lWpH0Q5YFNFjZxDcVr1wX1RNgf0r0f/uZV0RUwTaEDsv4uTx/stW1FXgmFamkmn29OlJwo1lmJKEJn55lckalfBWJ6/4MNF/g1oPweh2ZXvCZD/4Q52r42pvEvin7snfWgor4/bdlRNKxOTdR6sG7diR2b29pNF7QvlJFtNSjdYKVT1HSKWg6Dj37+/11PlcnoFxN6ZtB1tEODapKFJcxTxrbrtt9Rk+b2EUjpu3IaKqKVkDCD3ySNGeejrR1T/CB/sn+4vf8tm4K6s7hnuyP/rr8vaWmB1ySM5aC1OrGRKvOSPkWnM6XJk5H4bzNoDzfIuI257c/7cw8g9sz8dmOBwTxjabZYFvvK3PmSTSHwJhsQK6n4/em43yQYPMAb8s1oofC2NEL3Cg8hfSyVGFKS273hopYtLszb1vuUb9+cQMo9jRmWC9A7V/8+ThlTzWvKtNu/7ifoH9tXji1N5XP9M11/otvbN+bdiRzmViw2b1VcrhP64jdm+MDzocyZ/q+2JhT3EweRM5KxR34CZpzKpzVAqI9s/G4T+X3y6Iwh3PAdp/rUE55eK5RcCtTZtx+BIl//MNIzDPbbroI/fEpIIrPGC7eij+/nu8E/LT3iXsvVh23jf1Z+4s/Z2E1+H1h7mcozj5QSc6/5ihu/AKepjMzd5pfaDaOL0fl6yiiTfU7+2KqgAIMzy7Dpnc0p+w3WODw25a8dO6nbF0QEQG1U+aT2yNd+FyBBvd7JdvthPmE9lYMdcsqzH+vJxrv62P193vEk6wtWrN3qqCWFj+C55PuT9OrUUFWnwHDYdRypi53wYwKLY3ihC+aQhnr8Ft/L+yPH07plDeadJoxcdfOD003krfaHB9PZJeENufybuz/4cP20lT+nz5Tr4MvMm/ppc7d85P+m9/5Z+vdeGDHx5+eIt5zc4kmW1AEuKYfB3P1ci977xa1oOtlhDWneSJu+TUGQwh2eFz02RzSzQxa4ztk+33akcijVQIveelNPP5qf0qhldGlmwVcXBo5nc3ubaN1jlvm+ydirv/0yMKnqfbirc/7VSrD9SZ+8CoxZp9KcSdCkl8pzd/pNp1GlhSgOoWIxUUvUsO3EqB3o2fBJnX5OkAHB0Zxn/zTyxRHQQF3IQmYdcZvPj81qwWvYUesKlPlz0Zs1xq8whMWVwIveTY5AiAlFsh2rgZznE8PG8zjJcOaXozlaDTQoj4Y9zTvSZv2kZD26KTvd4xg5EeDLDxmdAk3IXMwrSL+M3IdEubKbN8zZo6vY2ZDsbtwZtipEYkmIwnEl4fMzM+cls3YVTXqO2236LM8/RcPPTePMKj7uZz++M9tI9dkn7zf3aj4S0rrIuyZP10nNFETNbA26hvBvJ06LiXHGS16hrgmrvisvz4P1aIGIQf6jfxZd98WhJhi5v+OVilePn6AQmAXLHmvDDX4o1bw54dgI3PSGUdBrqryG9HVLKS+5BePGOKh3mLtYTcmK899jPBAD1gbUBv98xfmclPR1qq26UglM9MYCiq84fSTzuDNJ/VPn+nh59NN5znUkVTFKlWehJXjGCoz5NVlJltrblIe3i4zTJLyJNEm/PBRJHsBxmu7omquUtSb2BHVZX0Ta8sEk16e1zN6fPL8X3wrrycBkGQKO2I/TsGij0BF89vd/uPnVBGEGrCwN/75QWz5PChldSeeL+y6v/+rHZI4I5ZQG/46sPc3FOfxh9gnr+NMDmdFO6FLQ6xjbvtztQ3Gf+t1gjspx3XoJjB6+kCCZPS7P30MYoa/xDpujub4PBdYW+IVVuJ3xBc89oDfu6UXOt9xaXevRHhsL4wdCrHspvKb3CBcY0KC7dvi3LwcLFSP1oE9eyjRTK9RgJZ4QJbmDun04SsFlvhBN+6vQPNG3TsoV9Xjwi9P3WygE4VKSs5/8ZFP/JhUoH7ZTHzrKHHuYgPANQKPpYez4Y9toVnqo4lMcqBnKerodMjVhS/hecH7T8x8BXWH4ctI5qzSZt7fFZRVHqfz9FEQy8D3wKXNUoUDl2ji9u2mWpH3xuqiR0a9d2ZQvV2ONR9ENOiqoqhsZB3b//lhn/c7UzetUjCMrNhnp9UuANl8KyzoNjtflmw1AEG96KRDds356afLGlmpO+KXBYm45VOsrjURERuaTUf7Dk6g8/xAj8mW+XTtPHO47SIdi+XFieYkDdqN8eBrzLexjuTkPCnQfWROV8oQRvI7eYagtaijm9DS0QjPJobb7qiTp+7uyjGzxhpm9WFiGG9aufDlHvTNNqKr+TRH/bL/VI6n0+L/ncrFb4zVJV5SKftNaGbG7IE9ajMxOxFH3NkrAfi6+MTf2+dhspO3f6BFLxIjf7zSORtSA76P4rvgFaS1to0S7Rs+DbZTazH6fc+PBpCvlFQTptqcaXDU0eLn0dXid00PwfZg0U+Ureiv5IAbjBo7eBEvC7g/aXMX/PkrzKh3e3++V2UB2Ll8mL8Xrqi7bgsDnKPGGa6xGi385gHB91Ixj9FrObbH3EG3580n8bcfo+nsPDLkb+InXmHkp+JLdz3kRyuJ8vd97PjF1xXtIllbWh03k8/tt9ODUVsq2dttEI3rFzJgP88SVYI548PJzyuovZjRuh1cNA5CGwMDHjJ8OE3pRMS21+4PTWB/eDxqVDqhg4QPVBB2i8X+WlVQpMqJGLd49vvHzwzh0gYndntfHst+29l/r6nCrCP6Sslx/Pf8howKzqHqa0Bo9yZ6jyJz5l2gwGc3uWQXODVnf/opWiG86JlNOv1GV0WXEIWL/0aXKgGmALVylfEUnhL/5w9Zrr5e9xhrt/uOy6p0pfBOIxuru9/FHN2nb8MxVPdEXz0Ec9C0TwK/W3Ilbr81U74veh0QkTWKvKjpuNiaCQrtlYLV7COYnbNXMNLT+3YpQaeVLLbvD6gr/cv2P3rpZk9CCix8ghgG1X15Wn0E2JrIILun5ppDrt4cePbiD5Nv5qbI8usAyO9S01KLo+UId5Frvy/O//nP8+H4C9Cih9jBXm/9ftFDEG3wESdk6XX9x9+zU7XHh2d27/7xl14xuqXr0SeaeWcpsF35n0VfWn6vXtcZECkN6KbtNuYw6t8c3M+1YIQdFf73PpKqs8qsQY660ccwI4Oz4N/41NtkuYyu3hyic+jT4TzfDMTdMGD+6S790+9g1r1NziWN0tm5XANo7pc12fePY8QPS1UlrWgNPD3pMZ1H11Kh/uCMYGlVpKPZvgRVPdcJ24Yn1adNlDpw+up3YryufrqsD1U1altl1pgZ5uQPWaEehfxGglR6pUPMTBWyy7llz2e2WRrLoADEUPOZ/RBEPu+uugHy0vA0MA5D2d8PmYGsfObEVzKlY2MwyzApP52Y9/rt016WMzhXD4lt3yn/8/sEDaiVEmOt/lJuep6C8p0nkkP93qGJP84jZO+liujiH8x3NiwtY+MYv3sC5WD94gxtx8uTWN9UKrmxVPkIt9mMheKtmCN3NIyW/bvohzod02LM4fvsM3Y492U5fN3koQbVZ0t83PNyGU8BSBxgFjSnMJr84nFWQRE8vNmfT2ZjtlcAW+kdouPfijfrcHuD/ocL5rg7KKddxQxQyvpO9PWPlrMiyBVa+Cu7fYyVL0buUwBjdnJiHEkXsWD0AEahjohVm5XJ1HIbas/Wtpn5vo/lNNzOFISn+mGmYfy6qbrmMwSaYpJ0ss4+x74SwqIXqfS6qN10fSUhgDNwtld9OxVrltt//JIZ+WOVjmeL5ujoXb90zjqjG3/fqkB/+CLOJCuZqd4D9LleJbpqXwXif/pryT8Qu016f/5SW0B23xZU7RovFQ+7pwKppr+wMDQCp8bx6sFzKyCy6DGfH4fxpP3hYaxf3JIZWD2jwAaG4Tl9/PkCYQ9BpF+Yjn8vzs9t5aCFvy5+glFKl6GpYZVbGTsMqE2HP35wRZrGFj8+YitUJHD+aQj/Xv43HXcrNUOP+0Mlf/7hkq/w4AvoQXaR1KARIxn++CazTsr6n7+t6XI4MnMlvKPpMuS1dmSU/ONj4/NV3VDfrXYs0JzAZOzRP2BlJzXVvgfazQu+IZoEJfPrskF18B0q2E+VQBy9rlJ+m5QYolOoEcNzqm7+y5f07e1OXotf1yvvLEZN0apUsu/Tkv869H9+Gc1teYz45b07QWQ+xEVvvsox0foYDiRjODelGI2+MsZ//iqJr2TVDe02VmHlb3rm7z8BGudnHMK3qQ64+zZQDpP0Cf/8tmX+2vRTjFMI5HetiY9mUs6jYLQQPvMr0w9Vb/7ze73qZuDxNW+iv/zSxj/dXQrGYeiofi5P6La69Mx+1abJevHYaCsf9cT5Ho1oQj6aYfM8hX94Z/ZYqrCW3XYHZovuO6IN7ihYexsR3fXf5njJxkz75xeCr/IZkFODNV9ey3yk3dgGI9X24vWN5a++7wY9XReqd3U+zI4KLRqe9FGgkoVbct3HF39c8jmaJ85rzJ3ntxv/xluZkwKL1J3SnzO2LeKFYDGniuNoTl6iDcJW0omeDbuuF2dlRmJRrul47k5okkwrhIapMdGLvWfOr+cvQfHKG4gXTZK5fN+C9ZvHdFr03KeF7w0Wvv/nd/qL36uAvZ1FRsTzJ5oKhDIUm4pHMrnzTXq/v89/4832r/oSTesyF2A49iUxg/KMxpu/XAZbszc7bNKHObdMT7TBso7s+ud3dmPXg3OnLvN5b0R/+lxb8gFY0U6vdDpOWQUbU8Nsv/itdXT5ndTold/JzpsfJZ3oXYeNLDi0G1pScq0mCuBMseh0jaKU/uWDT6o/4U2muN28G6wbLHx4+T50v794vOQHmP34/P79X/X2ZinZF+fJbI0YV+Dce5dYRbxFfCxWAZrYVcMJMyjn41Zp0RJvifF7dd38Tp6LXrs0ZOGn3WiclBD+8suXDTaWevfzDXqSt7TLsRLN6ft1Q//yu9Q9RuNf/ue4/1rE7u5z18MzjzVxY8UsJu4cNSbbJ2BmlcqewmT76yIzA7S8Jv/y4xjJgnouFBfL5i/vpmbFi41Rnq9UW/QQfxdqi6YH/iz+ZlP2N3AN9Hb7hEVdaqbSmnYeihxNxbDkd3kzHLL/60iB9N9HCj5m4tGpkLapXHrlA6rXWmQuvVXdXE2NCEr82zFCbIp6YZYa9WrYK2bXDLpeh50IRT0qDFu7wWSOdckB5bpHAvacy3m6BDb4Q7ojhrtVU9p62wSSmy4QXMTgU1D9M4jXeGSOXUbdbON+hO9J0tmD1DuTCmoew/pw2BPTPyKfqhuQwd2GO+Zn8ikd50Y1IDn/3liN7DKlgn3wkByJM0tvxdachNZ7qDdRaomvf8yUH5+pAdGj0MlBYt9ytM80QXXk3fHKzcdyNMs81NyrO5ArLIV/pwlTaE7lF3NLczm7PHYZjO/ojWd3q0ZDcGsySNeyxLarwl7SRGcBNo+fhuXg9e3Gfu0kcJbeF2acD1dzDNSqB7vVLGbSRFp6l3Q3+ITGQPS9UUVN9toKAPfkxexHMqXzVj5RCDf1E2tvbvJRO0xnGP04ZNZK+Zo/cT2cUf0Q9+SgNVrUz2I8QyPrZyr5VokGtDZDJD0vDVaek5XyogkbkBPfJN4vvnXjU7FysBzzjdf8+TVnvxZG1N1eNXP2d4/X08Wy4NXmX1oMeu/TuRgTLRN3NrMzqefTFdFG1Yn5pOIe1t0Y5VMNm598JyTScpO+/MmAp2+4BKvRBs1T8VZgL3g34r7UBE2aebBhFPuauOIwmk97LmzosmnNrGIpzPuJUIuiu4XYltVGSq9CTZGZRpT5+vPlz0Ga6ChocU5wqMecPlYNhWRneSS9h6I/vrskALetZ+Zuqnc6uvSRgaXgO/HIzk0l2k+Olh1+FeZ2Qc35WzU62Fn8Jtalas35uL0lMHSX99IbuUMz0fkN2VXLSeB6pBzvuatDroNL/A35cL7dWCekGezA9G4szYnvTAzuvo5x7h325vojNgp6WR7FaEmZTaGr2cjoWsZ2td9Gg++BByMy1nju0n3Hh/kRwqVYTtFff1YpmQd9hm2q5OTSqtd0bpbC9bdPGLGDTgb0my2xh+WC01J48ovY3tZt7X1HElbyncTZnaQOyDYTqHZWs3Ju6SqAlURvjJjqyR/a/JSsutuzXijs6Pf33DVQFcY2npqzVI6n/UnXpraTMT97eTep1s+BD9EsrOjEiOTTwW83h7KW2fajvPjyvgdXyTWJrT/u3XA9r0ZEs/uH+Ie4inr/0tzgMawHejJ6zOfHJN5AN26IOA90MFn20BNNFHXELPPQlpPUZjraNkupysheTqVtmgoCNXRIeNKoOdSD1SM3XD+Iy7SGj0g89ppxCWXm1QFB815qPbQVFCCu2+74+Mh6AG+gGdlrvO/aGdwH4EHntC/6Yznz90FE59eeUyaHZTSf6nMPQ3d903n0MR++dhWDoKgaXvW/zpzbMsk2z29/Jl4kyim9XVcy8H39ZuQUrstpN0e15qtmQ3z34kVTjn61ehiPW7JNiyTi5mlO4NbVFfMTSYl6BY83ddbWHiEEan+Qza8Hw8l+EPd7ePPWkH8YLgJqmQ933PVr/FNgi8BhWzxtot5xQw8Jr4owJ86eKU/ThwLr3+ZEjCr8+NOynrRa9iQ8QbiJKNFRAkE8pViKxJYz8fb2oDv5F7a/7wbUuaetCOmeff72M+d0bkc4wgLJDMqUkSWl2H7uBQtWeV5yIe50tMQjRr6bEk0oPN/+4i3brYYgWtt9niHuPQe23Z52Kf/e+Qipyn8En7chn7YfkOH3s29YzMeaM6k631QL7ZdTd2XoD83wo3DbTjWx2+2vHPyVI4LlZzXb71bvaNaiFkD4PBXi0BSZ/fehncEwYoPO7jZJh+yNCgDyc9iu3G47dg5PGDp/bWJtwYfuG1wE5ObIYlt7O6ft7sti5B6UL6VIyUwOU+hoRH5MbLfubtFffIDo55Qs9ccdmmr7IsObUxG/5+ljTtdYkWETX3oa+cfU55ojUxjeP84Cbffxu4sUF0B+MmaWEBmcy/5R1toij4l5GEY+fdSiQBdfqslhoodOyt68QN/TWqftuX/zt6x4Z4gD22b+JzJ80XFvHkhqYRGdog9nY+DdIChTgZBScZcqJnqoCXBKqLL5rvnklQJVl3hL9CpbKO3Kp/D+Gj+GO/yNuleyjxEE9Ex5jralBGGrwr07+sScU9YNQjjdtOjCMnzEZh01ZWaowNX2g+dcUEyeih8A6K8Rc6bB8UdZCmeN/K7aPzwZxPUn/ltfWMnha07zOpZRLyVHmh+uBLVzodxA3VQN85vn0rJo4RuWULTsYIVfzpvECKHZIQsLc2L5M9YrBXBNC6z0TsmnLm9UpM2pSLzHZ112NXYKkMdCI7tn9PKn0br2wFKiE+N8WJtzH5seGE4bEW/GJR/s+1HXnHNxwhKbi24cH2MI77V1ZLs2qNJu8q4i2ELi0rkoIaXnlXiCWyZsiacleUnnS1LB/qDlWH6uLuVoxcYDLesVr/VjxgevlHsIVwr9W0/przmHLXiR5pADOvt8vPTojEZPWrFtIb2j5tLzGDTYFXThK9EffoPOnIG5oWx01PodFfisfh2xhvcXzbfrWgTE3gpx5Cfzx1crYdh91zcsrh3d7KnpYch1wSVODl+f4/XUgnBR33Tyv2HHs4d+Q6yCK17JoZly73SLgdLXAWun+uCz20MBtLobB6zYZVSO/Ofk0O3ymdzOm405hddEVUca91SJ63c3l7dtiLK3cyKv+Dh1fbRjGXjXpRdc5iE+KHIdwrwuNsSq448/8ewRovxZd7Q/bKCczPoug/S8Nkyn1rljvqXm2muNZ6w80ODPOnmeIUg8hRZFl3dz6q0MUOMqYEdWF9H0XKr+8AESrHLu+FyuWgWsxpuo6GtTyY+WC/B8ChoeC69CdCcdHPT3+vdSVT4/bhsZah5sSRS6dilR2wuBCYcH2VZRWo5Uqs7aapXYy3pvzPkuaBjlaiiTrYQOaL74rIIBpS4jBGxzvFuyAjRLP8w4bj7lPFK73bz2W5UEd2i7vmkVB+Zz/mT2GF/8ecFbpALsiGOXvJzfwq+BIHx6LPA/vjnt5rQG1VW2LHPsvTlnd/0MhO/PWPn11JyUluuw4CVeVyutmyvGZjgaUsn0VW/z/pmhDLpLnbB9O+g+Q2Ung69uG0Zm8kvnaxBUsBRQJSSLdp34ajUMNj5t8O9YSeUff0Z1f8/oimKWTik0DXKq3Y9sP+4J9bW0UlHaBSe2/XkBmpzPaUQ6mkJifz+c/2LXypFfsivbTtbjj28ZUGxYz0x+0vl8PjQNOhYCZ3/7awpuzQO+q9Jb8Owe9WGObditkU61hR8PxcXFoL/2O3xDAZhDrawFSI8ZUP5pcTeBIVRoujIDDzmcyjVRdE9DRNkQQxq5z9/b9ASed5jYbpftSukZOyHcUBMQvXmFEU/TswLnPiTsekc7c30Jmx794ePeVdb+BJnew+8076k4vPdI+sPzhZ9TtT24nLuK0qMlflPVau6I4/WmResYMmasrl3Ua4cp1vaZ6eBeaN1UPs/ZA8UrxyPeVRrTHg6FqAHrR5Yc7wkape9FUM8XJcarUvlxbr+MFoJ9YDE9c1s0muygo8qFgG6mcp8uz+torZHazBnXIZ82ZHVDCx6RXeLG6fwXvywhb9l+0QtNlE8VkvlrwjLPnyXbv+4eXDP2putbrCOun2wFvrMQ4o78UDdV6lkH/eEcSbTclpyPvDfU/HpKmLFzrE7aj+sCfiz5EackWUqz6z6EelOcmG/SIxp7iZwhNB0gfqvUUVsIo6eR30UjejeaJtMcoUe08QBfZvAjRu/3Hv2C24GlrcH8mRaBgsjBMYn9DJtuTDrx9KcvqLDwGVoIigenWl9jdd1rvGu+jY3yhOB/fInXWM//9BTRX5T43Ir0hfutvoTI4cJHTxsK4/o7E+tMT0ha+PSGWes9MQa28Xvhe1OQMFc9lo3tk0s6T9oNRDZmf+tjtGLvoW6AH7C87O/+Zv8e8BqVN17h63upJ5G2sOg93AOOOOcfJVMX/cvM6/lnjkUYV0DTx0RnAMJH3e0owOPYUVEZqnLu2RnDfE1/uJ2xibi/Prfa6vYGYk/oHvHz2rXhOmNCDo1QlyNBLoX4lNyYyY41n9+enaHViXSY81OOhgxZNTqEjcEeHovQvMwHiEf9xZzz0guX3ZtA/f7whra7V2fyz/yVQT89SrYL2yKarRRs2IxOh8VlvPqLenfQ6lYCHmPB8eenJnsQ/nKJOK/YKcV7N8xQbtQKN4F78meuxipcL4XFrNNJ8xd9r8PeOs5UkWjh//E/FG6q54L313IE/WAgIfA93MfTFy18vNLcfGMxXa8p56fneyk87u8pVy+vtPfp9NCU1vLYn576h3/yUDu4EPLEl84sTuDRKhsqBPu3OZrvbwDlcNpi3kjHiN1J5KhiG1VUebeJP2d3J4YjEIVY2Xnyp1FRFXRLcyDR4m/M+8fd2iieUeBp8GtO+eVnQ56/c2JGEfOnXiE3tIwnwcBIOc0W0PVLZz+6+uPXf3qzDWyRbO/7DI1Ks32AMujCMn5NOb5e4QOt5VLCxRLP5q2cUFiyA8xbi4Y5nTWDas4wXVkQT3tOt/Kph3R7Py914rt0+HvfOG7uZPE7/PXj52IoEnugl8NNSpu5WRphBqsNsdPyhWaHryq4nrwv3QSSU0pT97QByTeTbU9Wnn6kNZLhftJtEo362ZzV0yqD0nyZWL1KY8TfXEugUyqZbYNY4wvfOEP44hltF301qdbbgWZu1oQ8as2kX22y1KJ1LuzYssln3+ACYPvnHdnWdO1Ptf0U4ZlvZhpiG9AEmdNDHikaFZAi+Hw9Zg76+QiYLfRJNG7HnwWpvzeIK5/O0fRUZQt23enJ/vwBhgAU9UeiO9bszozmnbRz1MEwRDwLeWIOC99Bfj6W+M6FAk3dZgMbgbk1+/Oj5v3jaIMrnl0SkPrjL/raABVeIlUzL0WTtm5O4A5PgSqv2Ok4AlEBtn21bL+Z527Rn2ckPIKZuY6IOw7e74QidxuRw/fm+OsimUV45eKGFA/SmbzjY6ypvfok1un0NGeVujVsRq8j+3316Sa1Cw0Ny8cNIdL95E9GbZ5BLwqfTk9hNNkrIbF6lDZf4lr83K3/xvdvvRxEz4zkaspFjX8bl7ln3U/5Kt4UoCuKRS6zfTZnfnnbgANU0s+6U6KRERNgo29Ttl38jWk/KzUg++CzXVgI5nxKfg9V310Z0SeyTqfruFX/+BveTOU37f/0/xK/8O2omykHzbyB2WQe2S6F+Ed3/6nBwteZasU75s1+WGUAbrymqaficuH3jqb1uU/wed2Y/JfcRsRwLlHm70Q0T0gVwFXbhOFD/4n41lZadFx9L4QwHnW8+eYWWvCIXabr3uT46M2Qf88GMRa/bLpoR7w06rCpdLyzaMZ3DTZr+S0xW7n9zH/69Hv3jwu/88q5vVBPXfw5+tCTppvMgzPDz6Avpj8qu5M+7/sDFv1L67uQdly5RjVS4SmS7cnSI9nX9yqsy+/2T8+h/t2dMKzD5sB2wc+J6HqoavjW4Y6iRZ9KBU1CzUoLTOWPd0tn5hoxwiaRsGy4xj+80+p6d2CHhd/zvPE89bwiJrNXxbH8i/co+nklOyzjOxeTL25Ojdax3VWy+HwQNzXoO1En+60TmtSQfwFIoxgTbImJyYPd1gB3eAlUvaeY835V1nAhYcfiePfh0/b2MtCfP7yv+9rskw5C9I6+Fe7O7725LupXDQe9SpYrSmeTXzBr1YVvMc+3WNpP6a6HQtu59IP6U7rMXwOwyfYMd9o5HfPO7//9vh/mB7N3kRpuFj+AjureKHvhGypo2c9UagMrlY30ZaPmtlbI3iz9TgqqXQCbMnfI3/4ebmN4g4VP/eFVt1ktN5p2U8UW/ad307ncNGCe7CPW+lVe8qt5TFCQOArDe3Lp5reHH//4vWtxsZsOs2NAUc8KRq1B/PklBC0gtw2JbbiGOVOHy2DjcEOpVudowv7Rg6UNJvOg+kX8j3/KXDAYedRPc9798gTEt71ni//dTRuyvv3zw+7vb1n2R6orf/4N/exNd8Gft6292uVITvfl0agEqzPcLrgjFt/b5mybjoFS8XljBnkSPiSQOP/8b9D4zW9Lr8zQ+qvb5HZkYzq/y1eB0AwClaQQ+K/LGwWGwrOwNIOfDvz0NmBzsGt26O6Gz9WrUkNhjg+6yS5y2ZvvL0ZnqbywfbXSyr/4C3wQEjwPem9OmrmzNjf/dcaTOejon/++xBuyH9YNGst1JICzLijlXun4k5xNoWJN9zXDjGyjpRZ1AhTVW+LkOwmNd0tQkOPNiDjO6pfSg7ipUH9rMiofDmq5jF8CzlLy3cvrqRti1yqg5niLl3J/nAW7rQ7WcVaIJaXrsmfSLKM1b39Uqd9dOn5aq4VTs+owbB1UcijnGGHPuGLh8kHmNPRti6S182XR83cu50h0dVTvNO0Pz8wf7TcOdJcqYfuiC8zhl5sKLPyWCsjzzfEcRSPSd7JOvPbwQ3MLFx0xgTyoFId6p5JvcQLVVbfkoGzGiG4GZAF6CW/63TqjT20pbf70LHP/9O5mH2B48Wlgjq5dokE6BoDUXnmSo62UHY8fkQBPwT4s601b8DR2YLwZ6eIPmqnIGruAKbVe7CWHZTqdJgdQ82qTv3xS2Rdd3sOcyBQ/X1dq9t7lriDTWj2pXLNHx+3dpoLfp1/mw7n5s7O9ZNAz40r83XlMp8dlM8L9Fl8xvPeHiNffew2ZR0dillhBEz/9DNhl1Ylcn/Ye8fOvO0GMht2/fAsvkllWb2kBi19+4dMQHSuw6Mv4F5/l6HDytHEPnBzOatb15oUDeEf9zJ7HbcOnO5itGrFMXPwIsVv0vAqNG76JfrmXaLxvEvtPHxH3Mc7pLDn3EQ3vjjN9iN/lOD6UE5jCnLLtUwjNWVPvMnDtPTFP3m+6MVbqCrV9YLHzHq4l/+iPAB1Cf6IbElb+dBhtgFc4HZl7pkI6GMEcAsh2+8fv04na3kkNH8oJg3NW0tnbztmff03wnkglqw5dASfZfjFj0AOfv5P+DK1xtwlGXmdO8q7BSP29deLatxsfa2mtoK0vK/T72W85++OD0WeyyWX77Dp6nrMMSO7kuJ6nsOuX/Bri60NO3OShc16IpoJqNiK8WSlzx9YuC5F3PX/IafQp6pf1C7dJyJjjDo9oDpMTqH/5usFxtXJeI+MGRf74/uFj2aWHlYUG57Jj7u/No8a/5DdtWQ/EVSMcyVzNVPiYN4/ts3Y2+z+99sf/yWurlNQ3dEHrpMYgxmVG0b/4kanplRhPLkV8f+zlv/wWO7DTmtPdr0ngJrxvxCu3B7MRPlcRZJN7zNa0Q8QfaXeDTL1fiatQz+dHawvaQxXeRJ93uPuHJ5/g+6Ut2f1SvvabGBpSz2xXLVX/pgn3aOHv7JB89/4ciJ2tEPM2ED+T57RHqd6oQ+FY5BjETz5tOreAxL+l5PnuXn/4cvvLtzEd2w/Eiby3Ed78YmLh+z6dVgSLSN3UDdOtb4N6Lg4hLP4Zsd9HoxznA1P/6bFv1p7MOVmZFBa/hugYb30+3H3893ws3mA9kleDV8DWcD0WLut/EsLNDY7B+8hs9t2j6Tq6yj//afHz0bgfVg8I493I/uVDeKfa8C9/kp10U5q6i71Z/H08S4ZuTmXP+n9+3mv3irtmdec2pJWypbJ7rhDnt1MDZVR0eJx3uGz9Wp7hnrUN828JIL7osT//jhxyO02ZscMW/FbZkRhCrvrDzu97eD+Ppz99Y44hCjE6PqrNEm8Uf/7zB/qG2lRKXDml2d05Q0OqmV39Zxp93OAWgDWla6zK+3vJH6L4gJNsvYhujutoSqkYgxT9VLJ0wY7m7EpOf8/LXod3W3Lj1KkgfMBlR+Valu3F/1ZowV+8em1v3VT2Xwrbj1sv+Y/RZF9uiWjxK5gtHexozipUowX/aX8MyrKZD18VaJff2RNULxV9unmgn9G/mLkKxm5C4SP5fxofgPzfRwqU+pPgieYoHUNRPiHWPq7skK2rbjLN3wjrXmTMSpyypO9QptDwVcGwxNcmux1CBV6VXuPNfpOn7agUBuJihTAiiVmKyauLIQqinhB6/nRMbnwbbbOwJHsiOSnfKvoD3s+TwNx+X6aMRvceNkQ5sLP4+HH2bj+zOp5sjwTJxkN89/I9wMnxwMjLUNN+vxQawUFwJXZTVSbTt1UNCPqYZZuDzX+X3gckmzHGG9Hcmk1CUgzDIAHBX+1RjhVaNWiOcEY3xnvinPW7s/aImoG8bLtAY9EqLbQv38Iofa5Mtn0HIQq/lxdxDTB8HoVJDfTyZFjxUl7y3+rlwUEfe7J3179u0nRVBlG0f8w80405RFypkFLhO54G1TfXvqhZcBfoi5ia9oj4vQ4KNdx/GsqDGaVcsYsTiI3TYX5bbs19jHKExCjuzE+fL5+rZDcCKt2E7FF164btWc1gY0QEX+RHVf4ex0OB6r6JcPeUcTT/oAqhCGVGHFu1/R5R5QyPfc/oyrYLPue37owOvtmwvf5KTVbmrgP+9+QxryBFxx5WR+EoDA4zrKHkg7NBAnoh5c22h8b216vT6Gn7Mn7jwbECc7w4igyrXHWJf3hYiD0Py22W4xQSX/x9zda0Hy0ia2kixrz5RP1m81h6gXcfZojrKhq/SSwia3f9YS3QXT4q4yaD8aMuM01xx/WjSOFwrj/Ea86rlD0qP4FV5++ISfPJZ9f1M4DdBBZzvSfr5vBmnZGbJ5w4Ddsg3n4KQPhsRzT0Qijn3EkDCPbGljhaFZWTfVRmYPAheLROGuLT8VYBJDwgh90uKOfd7mzB/eOWxGyKUzRB8jWQrW4Htr1UJqfhLYihUNcFFVT8jebD5DaoFrhPrPLL+KyC0QPaPz/MWMtlydNuNGBUU8Cblokdr4Um3Nwjo8Py/aTwqbrUM+BTeiLBqtb9daQbmXYcbx7z5F9v9kZFHJBT7BIikYL3g9aosN+iH/HG8GmOI2aAoC1NCt+r3DXX4+MMq162GdH8vOub8ZStXiEe2M4JS3Ps6T2G6CL/6BiXTTRl8aRr9+fxi8WmomlZvN0ehJI/8NukbiRZj8sNzsfwwrLH9mXOteTGME1TTXbxZdX1PoYAQC9CEjyXHWOE4IBr9QJtl//XaubQw2+yl7pqxR79Iq7U0PoXn9h6/I7GeIJKWfYPcVNl0/Vnd3ODy9zM5G/+pny3QPKZdMQ7JA0fC6SPGjweB/asb7PPovBUwed5o8RFhh7Np6W3Xy/NETF/gmmORWVVcPntJEwv75PJS/33QKgSU+Z4adQN/XoMtUP/yBlRcJEOr1qvIU+bG3EK0vNpuN50OK+JTdXHseR9o7ctJPr6xrDeK9G8o1cZuvFdEC+JKj68WN9uspep4aw/t3zSxqJFF0vcsejmNHxq3a0O19v+iDXNb1FXO0GCDn2Wk63f7v0RshzDdatcWbjvh5SWRHbg/LEwcaRm6a0objzwv6HHthBfEGPzdINNKvrEzY4Nmg1tsrXYkXrM39/LAjilAVet8glW5rgcqr4V0C4sA7b/jqto+Io7BVibXYmZ2N9yUlo91KrPDHglinP3ky3NgufgY7YNAiniKjnM6m84Xdiu368R1xtFQa732LJzGazKOWR6gX7++slcUzPKyXk7Z3g554kcFamJxvqIYhhe3MZz7AycrwLLgqQ+n5jjKDtzCiZ7hs8u5ySw3kZHL59khOq50VnwnWs+m/a5gWOT43/xtTN/bERXzm3mrK26G9mn9xbL/Mf29nODJsVrajhWWcD+xQ+yyXXE+37FXEvd+nOf+hnqnfRJ159gTL/RJjvDSXVE4ofaKZqsYKk6MdEjM8pvYtKxuSvI39wNZqTdI+JkkxtaHLKGyln7TUccvzyoaxTSjWRtyznMlAQeZVIxz9/eyykaggKO1SPAMPVmKXZ40wJ/rBxibTeqPzMDO1DG5RWPq9nvKHkpAObrtmbHRuvREH5+NVrwDs+X4VnyapWLUOrxk3j0lPk03Soi1D5JaVNPKp8Gd63A41W3NHxmn24K1qoM7n6/Yvt0MJdCpOtZlV8nn8qvbs/l1/wqQJCCMznkUtnN8ucWwG9bv+nUQf/3/CpAPHhY3l63XJyHvQWFSUaGDx8xpU5U2toZHR22vbi8nKTPJYbEQgk55EkUjQ/ByJAiX460WF2PPp+3zgNWymgx/37OU74/qBnqRzP8wx9zaqKhgU3ie1QZu3XHdg4GpE3qgNHnmiLmV5WANuNuOVL0IObceyiGkxWYJBlDzeyr32hpbSjbxF+5nHNSdOIf/hEfr6JoeFynSrtr24zosaP4U3kwTxDjmrHgN+74ZDyfApo7+06l1lV4v/aGpVDs0vgg6dd8NEtcgdh4HV7Hl0s05IIYwPBMdkSvdd7RkggOesZwZochIun4930TWT0L9rtjSWMBJygOh6Vwe2Fw1ldtAltJjemw/6XlqHd8BPW1nimc8xT9FDW8QfDWJdwwx+Hz8+jcIOD+QPY3anXjj6gYtvn9gWvCg3S07kWhxYL9XPD0lXKnrpdT0k3FDrqD07kksqdGrtLhcXVFKdvISycIq1okRqCmve3cRbC/qrTwlzQdrgkKwU5hTRKt+kXj756dEJxjl5E8+fnzUNYCKGCf/+Et70S1gP58TTFaVZY5B56kwLHgPv0UTZfy0djqSMzDkc6XQSv/xhum1a2i4tHfRVOdJqF2iUEjgeHwdJiokWvYcS5U7BwtXTpmt4C/asC8Ny7M8doSAV3Ifos/oymVv/Lgh7AxhZAZN7vno2CXD/iew6UKxKZF7Le6euqCz1S+D67Jd44tgLztDsRjlHL+bj8jCn96TvbZkZvj82uHWjVuN8wAXphj3NwK1YqX3skLf5yze6eAUn8TtisaP2XawWogmoqMka1blbxILg1oVrkmB4kMZm+q3gjB3dswciyxyY9LSu2x+WQUerZL6VO1nD9+x0zh1pfD+hy0IJ7PM7tXk8TparMcgfwxTNei6UeTe/o2sL8mJf2LH2LJHx7sj7+citLTi0b1lc+arkw/5m7RtqRPfTxp+s+cKTwem47H+PgA7XGfiROIBlo/BpbB3349XGEfTdJlF6Csb4AFQSX4LD0jETWZMRLnPOYdTf2Hiq5WdGP+bTP6syrFDRz0ucerJq7R6O+WQodUJCw6HLpyFHu7AP/JDnQTQYra3IkwyFdvz7DhuH4finIIpTFkWBPoPR2CCc+w9u9rPL/NzpyxfjxB1tQqcyXrXY4Xw5phnuFCJ3twEJeUNECv7N0Re5etyhGt9Ezj8gqoTAsDUbfPKLo8ep1ern5uzn/xs5/649/8o5aQRkTm98QXvWSW8n64huDe8jUL5N8WybJgiuh/JF1b12pAGP5BXSRhxmUoYTKjKNypr0JJ1Bx//V7a9xZrDc8R7+R/WsY289IFejINdl/T4cKczd7w+Px2m/4rhfL/8ZppZhA6XXD73c+RlR/e2U6Fa/affzayXFlHqhkEtdoX8UMk4LShgWD7yzoBkprNA+qqhmx7/Xjp0qcVhdi/ZRSKvTrL3/rdsVdSpvYeWNTY0355iuXh8t3ypurvMDwtdLI+yBPi1q3nIHg7IX4Oj9AThXWYmdX1csIG/RqtOvbxACJKbtiqzCOSDz004DybIaz72QoJtGe+qV1flITGkyBRDK4O0yzs2bZ9O6NyjOBi1bm/JqtJf5Tz4pntL4cPw7Nog8Qf/+7gkvdvEoevavwsmuYKpvMTgt37KN9eUcD6L5kRpPZF2o9B/ACeffuy2Pe/6P/z9OqKGbWlboPvUO4j6CcrC2vhYqnGIi4mPL2uZBucDfXD+8/f41lxFz8/foAlChhz94iMqtoVJ8iu9xKPX/pWsllGVxid8gcJDrIeZf2yLJhw60J+ejXpWwa7zpw+Cc99tfgm7cwSQnUsoocZ4vSbSDM0EoqHGjdIGvH5Au95d8LLZV8BVcSJZU/4wQt+fSppHvUZLPJuzrZLd2i5UiCAB4p1zF1GvNdxHupw0T5ytpbXSAlt8b1aebQ6kyAwnohujg9sH9f6hjYf4Lc8d9bTKyhL0k2sRKuCjvowWkUD5ed718oKxomxAJcD3nv0ff5Ofg8cpMsZ8T8pUnO3d2FnPPbUFIMA70GupRFeOpNq6jam0sXhAa7ejmTrrw9T6f0VOoykV2J4uZSjfKsAg+358qR9ecCjsC1MgboLl6Apf8vx8WrglE/pLOh19In0oIH39p6x9YkqoCq4CuxPkpZk5TKGlKj7D/xrrAOZ+MH7rz/VRRzZZh/XZ74/u2tbw4sl1XMWefIvyjJzyqN0Vtz3o5oDYMB6f3SosNQLybda7YC50ObMsfPTeSFwowPza3tkk4okleTGIVyfeE0QjLJWPjdlA4AxZPjaVBjJ/K+LIIs3NcHJ/IGEMQQHcMhGiyCz25z1Pe4PIH/ShEWXvafENxmhJV9uTiP78T7z8r2twJTHSDjlQyad1cVC6HEkwXVho++NPfr/ePj1A0Lb1R8w+XX88W9Oys/XgcP8glIM1jd/lN3COYFlmiqqxWQ7ql9+Pw+5SWcv+zIKx9Z35rk0XFrVmjzThx5a8AoLRVBbXoB+bkof3nR0peP57+ax49zR7MHSTRJEugdkod781y/giW/S/359PoMzFkx+hMff9ATReNqR4GTO04+D0sYupzFvfoc0JXdOqcPXroiwYrVo+Z/frWDyym90eWRPpNrybw2obr3wPFg7St3GLoNmLkMWw2hIWeKiByz/0hc2UwiAGo6VBgcv3rIteBgjs1PjA3s/WLBfXyMV0zSQxKeRhUm+S8U5GFbQa7EgPlrSVuSVSoDcHu4MzcMUCOnPdkBESFGrWRyAuOw3d6Avdjae02zTTn1BZxqGe6BrWLxGNeVl68e/i80yBexhQPlbT6peTwVU4T902A7HhCGv6ZH45cux6jjV88wE3CgXB7iM/Wmw+AA9to2tC+gyXrDdZRkqFnwPAfw77lPMmZWghQmJ9j+f9PRbtPLnf37+OsgzMtL8j0YgbcGN7H74u/Leh1VVZcSL43FU9yZKoHweTyQ8WpaiwW7pgomv8MwfcqTB630Hi+d7wcIUntUSXP8y6PhFT4fSyEbxcS4V3HqPgZwnPubXj+DAd0vw0ytPWE3awy07XNl64VZo8ncujJhxx8tEdkocpeGCTi4wiUE8Ao7/vN2PX9jO2UrFbiPNrKaZv+iUL4DGFjAx0F4lZPJPo3TouwEs3taYC4OgwdodLDvbnHJq9MxU3Fm/LnDCP/nlW/XsHwN8OhdBtkNIR7bcDjqY9I/5Ndbbb9GeJNyNe0EC0Gmj8JvAMkKYcVbt5kWrNDPlcLUPl2w1l+P4DaJ1ADditmYr0o/ehCf86zdY4IGuFWJW9TBtzRvJza5U/DOrr2CTvTCFeIUBD1ZPDKNRuzLk1q/x18/B92080bEwEyRF4UxTAaIj2eRo5UmZHCO4Jc2L8nD4nMcJz2DyZ8yPF9+RPw7AguvP/Ey7ab307hoH9t56+yx4xAhM179AMa8exJv6AIF1mdjdCt5IXOsPxFNvk0EavxRbf+tdy3f5jYKjTjWqJr/5tnnTw2eZfWitL8NUpivSWdrs+MS8qLdnrtdvA+p5sCWuqTVjo/S7BZB9W9Mav7u2u++XB/hdVia1e+Gk3/vmfoLno75iSI49+hysNweu+npsM+mf0HZvCm8Pd9rLXfdaMUuiCh65Lcgu9HjLnHqdAKDPU8zxK2rfs7K7wJFWbwpI1Y7/AAAA//+kXUu3sjAS/EEsREDSLHmJyCNB8bkDRQRU5JEA+fVz8H6zm92s77kISae6qjpJ91kUAKINfOnP322kVxTAtIlyZu+DNec/vygcooTh9tylg8oUBZYbtSDOrJeW++qrq5cjEuZ4Dmf+tQJ1cx0r4pyZ56NP5uogGE1F1kWY+oNomYM2839ctWVY0i61MjVInyrb4mufDqc6yrXcmu5En/0v6XwwHc0l+hFrs74eqjIwISivEtEz+8hfvuvrSO4k9tNLPh/bYEL2wI8z/nnxhNLmBhFhHW4Ox7c1iJP6/uVfipbknA4lv7nqKOdfctOdKW1nPaPO/iWdSmOLRglFgtbmvKXqe4xK+ed30P7cEHu7PCOqxUsRvtfbjdlq4pZDgdwBmLCPqPLj9zYoBUhMN0ly31fp8M3NE8z8evZvXlZvVp4OM3/A7Ozc2rHPRQdBh20qbC0nnp6Kb/75TfrinMZD6V0SCDa6wc5Y3PDvXb5G8KBxMfsrEHehJCc//YGn8pP47WbjJD89jJUn7tIpWlxq5BTbCa/e4bsdZ33w8wfYZqV/y+FXrzjc8Z6Yr9fK/6tPTOPuMNcr6riLm10N7lQ5jCyXsSX76/UehPv7yWxuI78Up0+HPvvX7D+jZ9xfr2qHZn2IeWm9OP1onQTCdqrx55dvttwboNMajFl9evMf/qIPfBSsSJZjSbWoT+jdaHvmHIaG8+e4E8FrpQyftUJu2dgGA8S74cMcyYriadyMNUAebZj9elE+3j+G9+f/bq1iSid2NQ/oOCxG5vg3IZ3n8wS/esOw6cJ47Fz3hg4gbOlREPZlf4CDDdnD0GjzmXbWtJt7bxPrbfz0YDueUJyrxlI5kSTnI/qW9zSBAzt7+GCh1Of7q1TDYyGUvZTQbSv/+GTWNcB+/IdbudWB1pgjs5F+QZ9rp7zVz/6zxgudimnvTeSgzvmXrrY34k/LZX1An+IEZHNka388+iUF9dNT4jiH3J+OGe3AHA8mli/ULqedEDnwywfrlT43Xp6PuM35l3in88f64IkLyk9/kVvWpuPqqnhISFc5W9+aoJwu1gpgXn/EXJx3lnzVdKodT4KGX8bxxWc/bABDJEcWnp9nq5vxE0mqoDPzuunTiZBagtuzL4n51r/pON3V5BffxOH2gCbn0NbIWMGFHW8E4kkFj8JyNe6YvbrW1lyfaoCmeGLhRzTR8nZeVajadA57hIZudWLn5GA4SY0XQvD0h5OS19AvmUK12a/hybqKYEPyDzG5+kJT5ewd4O9iTTai5aesFaccGkFFJDCK0ho/vunBjMeMoPDZTksKESxCh+BVTjZ8yneLPZLSYEv2Jqv4YJv0hH5++VQtasQDb5g0sQt68ngLisXkTSGBdHw4zA/SKv3xNZjx5ecX8Cl+sAj539bHyLu/0nEFGxFWheUQd3/exaOr1zaa/YkZj1+IzfU25TdedjQsrUknhgg+ac7Mqxlp+d6wTPU6TcUcX7bFP+cUYMj0DUnbY1IO7nA0obDVkZm56bX5JzlJWrTzXvSZbvbp7I8nGjl2K7JdvVk5qUGiInmrS0SXln08rkwk/OohLOjY3PjH1udGbbcPcZ7fN681OZVQby23LHAez3g8VeeTqhcVI1iM3HbSVKPStGpHid5eTH/5kCIK2qj0dGme3invtcyEi3yQmKu+DhaXh3eF6kPYUkFeKj61nEODlp/6StzDcUiZzdIILuymEkd9CSkNdk8BrcpuQ84zn2G/9VfayQO/91OL6MynUSCKlOik9n0uWHUF766J6XLKHTTu1tsDnBHySFifRmv2oxqUmfWWuM7jyGf+haF/RcavfmiNepYVoDcdZ1n6iDhXBe0N0c59sSwWynQKjJ0IBtUTqqyzZfr3fE8ebrS57Ur0q2dqu1kNzPPl87C5ZHBfrQPi7KeWD/SuNzDtnnesfqbRz7dEHLTdrYqYmy3vFgf76Wm/8XWG/Im4dj9MIF1L91f/QcO52Qjgx9mOTqNiI4lupwlKrobE7J8nRNfrmw1DFZp/fkGnNOsL/OrNYXY7xJPmXQd10+IbMfefPJ2W66H484N/+mae3wMsV3zHtvfIjavNM7zB+yIlc/1gZ4mH1TeASISM/OndWf+pHfZyQp76Ku4lsVOhGuc77d/6N+agaSb8vu9xfbSICSBmoBTlhYRn+KQcxEgAsy/cX72jnKCZTPiGRYZVCSNO31noobs6hIQMe7sdI9wnSN0sZOb3dIuk1D8oqNJqmWwDPUun1a01/68tBfL/3lKgTrWLgR8MX16GXEB9TRVGxlec9hu5GWCbsIBZTLpavb8XJSgquafTqeU+U9bGpEIeb3FJAZfj+ihVams2IuYO07ms1E+sHSO/JfbDZHHzLr4i+qrPCyH07qHp6tc2nEReM/f7Pft8G9xdCDVxxy53Ovc+JZCpXHReBFcj88dqdWvgLmlL5mZegIblFCbw1MmANcOCtBOPugcf++CyYx8k1rCAx4SSr2Bj5ZZoqNudIlNLnuRK1qJflJMXnyT0OGsu05W3WcqTa+WaWA4aOUX3Jh2EXvNgQUKbhZq6KUf16ZvoqOsPvGoV1NL3wjvB3m0fdGDc5qOIWwx59LwQcx/aqfh7v8t2f2WWKotlrya2DeKGEbxqk4CLVCwuGqocQrbOWS37MTucoHncNOZ/pNKfvDiTkCQLDgv4SbR6bFkdUvBqYm6EeNud15cLWJ+pJNYpEvzuUhwbOLVDhRcfPW6rx3tRraqVKVH0xVD2h2OZw95BA3Fv0rUdlPnSu+KURRglny/vfEsJ4Nm5O3ZqNMIbXpm6mjzDK/uNf5+/jLemHhYyczZNV9LFqwjAM8oec++o+GPWowlEFa2Jfgq/6Jswb4+WtUyJb56X/qiyV4Py5U0jm4cVtaPPjidVdtd7sn3nZkzPzi1B8lY2mHmbKmsqMSpgvZtUKt/ZPe2q5mKCe048tonUAA1Zfx1Wwfec4xzqYzmqdlMADyOb7DUnQ/xGUx24rjDmf/GtHfbqAcO+ehvEez+3vigeXReJq+2Jroj7sgaxbAZIvmCT9aa9oM8bExNl1bgnFpNWPgATQOy/L/AwgOlFlARpkVqTVa46RN/tk7bWblGObspMtbKENds0wqkclEFSgSzWgBvy+pR8r38DJOuaR9b5UolHNV57aHX0YkY0Wyv7vNML1Ib7BC+2l1c7ivdQREyuRYYRMcrlZl1TFF4thYRa1iLuKHSCMLh4zJeMxOoPKw/QbXsSybqvj5ydmqOEolg9EeN4WlmtwmoXupWes/WqRJyV5J6DkfQFVfnhXXZULJJFPkoxs+NFzgfhkRRQC6eMosC+xwOx8A2SpxMSp45PKb8+2xpu+G3QqYRFPHn7yQE9jy4s65rCmlZPdw+X6/VF8PVwRnxZDIN2FYyC2I3l8S71XfE3v1jj5wTxm8crqBVhTaf8VMe9uOn2cIO8YT7x9uWQiREFD3UPEr6re0pXTzeCp1JzctiNlsV1ZE0QRReFOOYw/770FLXmkWnMRgfZ6jfCtwMjeZ+IXx0mq0/8RoTxMRBy1hdv1E3Z2YYVQ2v8dk6rmOn9WlVlucloTV691WVb9QBz/NPuk2KL9h9rgmev6MxAO5OL9YJI6vlwEulSXxuIle7pDZVwJcym2jIe5/nV+M5AxP1c39YrDUiFeLi3mSNJJp/Oi2MyH1vYsRv5HK2pW25rePTnJwnBfbW991k18OxVHQ9+3fg8imQHOiFZMR+qN6K2LuuwL8Q98QLDKgcBIROtyudAN+h4iac8ogM6v0NGNrtL2k5616qw2tVLKtf0xVn6GBLIt3uL4HLe0kO9wETIb30WnKFEXS2UNuzA04he6p942LuCAn6byPR9Ezu/f6qlC+fitWaO0lwsvgr6DD2bpGDzfPj90CWB6naIse2iMUopR2sPPfVwYBs5fqVUGuYtIsaASTrH8/jMWALT7ljS0V3IMeugeSMH1TY7RQZueQClANmhdogV6WHMc5O6sHF3E/MNg/LhIic3IBQG4k6JUVLH8Tok+IrJvMtlHXfjXT1BeLxiFry+nU+lYUxAStzv/P8YTf2SXtTv+sOpbI41msLHMwNzAAujt234ffbQ5t7ZooCrzK0439aRqt4Ccc92xWuf0rI6OjB32aRTLsoWY9vEhMVLubK16JvtUIfhpG4NumXk5FvWpJ/NE2y9t842xG3KKVmHKiypjYinrZxYFkTPQTuvk4jx2i388Xn251s5Nm8KVkf87lh2LliaB8xYPXI0GuSboKexeBAnWjnWFHUXERSaCcS/xlLZfmP5BoJ7qQhJF4o1bZzPv/VNVqrpD3hbN7AbLz7bf1/P8nP7HBxAneAQw4u9UpJDgUJr1iIJDeuWDvRd5ZDV+4GuvgGx2A0iFXmL45bC6ErxGO62FVTbQ8b2A9N8qhv5pHV8jJl3EZ8Wt3TYq1mjPwh+hh6fkvVaReXhsqI8Uio0HMvK/eEz205pnU6JvAG4mN6OhSffLbmz6DsYPoHOjIPSpN1YrSJgQ9HRHiojHg/t2oFqeQnI5QEUtZCn09zra00uaZZbfDKCCvL18CLm4b6Mh/Wo2Uj/xikx5+/v3MEQtaPXrIkxd6UaBO/YgSxudWbadl7+5Tc32pvMf9tPi6Fl9EaDKjZEL1zCB9J3Ikym4BAvtXd8kh15gKsnd5grIfKpt1dt8EZnxbaP5xVN32d8QvIUrQnR8mtKY/yUoILiQOXHI4hHTLEE5cN80JddRiWP2+q06sKNQMHfvuPeTZmOfFMTif+RLH9c35Y57PR1RLap1fqjqPcn2ClFTL/6Zot4jpgHhyPNie0cWkSb5JBAT9c7Zip15A/UCm11dYvS33q3uiNmJwgXlU6s3SFvm3hVAQz05OKJPgJrCndlBe92ZZPbezHF3NpwDDt3scHbNul4fQnAUWXNlDFfPXFK42M9odo2c2Kd3WM5PrPPBXYbO2A4WGctR599B7lKPcq3K4h/8QJf2VDZ+vsueD+80kgbu2jEktJcfP4ajU5biDsJf2a8G9bH2xus4uKxU6o+43EgI4VTYy6pWsV+PMEyPSHjbCsMw7aLh8/g3sBx6AOfI3igP37W2klJ+SnKrEEWLiYcUmdFgmo8lGJqbxUQdtd6vrhfLud8NGgzPlBGArWkAPsIkr6iZGtyKe0/Q3MD6zOUbHdQtbTpLk8XXnVlsv2cT3n36Se1fOgPcv0GzG/Oi+MF6GVvs3C6D+k7PuYT0ApNdHh2ojWGfWGDujuGczltaw2/+dlZFWUxiqOUvRS3RqabL7Ao7yvrbz0CLa8z/9uipUGeiWYqts+CsZr81y++Zj7BwsOySGv/ep3ALgjF8uVs+/JiW3ZgXMQPWbei3i7Di15oh5tUY67Kh7LPjcJTtUsXMGs3sbSXhUlX12c/xquK5ilXns0ehUHiMR2CKxp7bxsBWi48rL2aCU13iBtw3E/CnJXDOVfW2wlh92PT4bwR40aP/GS1kMcDc3Y8Kgex+XbgS36D88WgIXb9khPcF12Ol/Lci3Tmr+BpGWZbi0zWFF6KAtSwK2Z+o6VsXeQ3CKLDna2ZFJdLezFgLb3Wt3n9rdLhVmMHtmp0YYb9rEveenUOU2Jjoh9HbP3iCWXthJlv9SieQssF2K0Pd2bcjs92epxdQLkZb7BwHeJWOglKg+jlGjHDi5tymi9jgF/+CN5PqxXXjeTCotefuBkFPeUk2p+0j31ymSPWL59f66KCOR+SmR+1o433ipY93ZodnvTmD7fnxkXxt56YJX4sLv7iVYj9Mz7uOzEdnobugp3fF7j++m4qCt69AyTIBnOk5GMNhdEpSF+OGh5WUKOBWmsHtX7RUsuJ19ZkmOsCsJQ8yS/f8sm1CjhG25by6Pb1h6rc2TDjF3NtV/Kn+wWwaiSs+MsvfNaPaPORBLaZ8yt7OeUJzd9HzPyC4teY3Q5w/mgZ05/N02eTGlbAUdCTENNdPCZ+I6FB1aRZTwwtm6anAkhYGmRzZ/d4MKoa1ErPPiy8sg5xRfAm5ExTiItV/pl7sRYmjFTP2Sb7HND4OWwF2Lrijnj88G5Z+9nqqJP3I9nsO4qmwbxLf3zPth3s81fjTYBkusLij3+ys9jAT++636/s8/cxFBA7HVfEXRaN/z0f7jqSp/2acsV3LfF5z2v0W5/YojC/T2Oiluhbusv5kNLynrm/59PSYfMpRM9rYCdN8y1Wny8f7++LjQ6bjDC9vFnWaLw8gE2FD1iVp2PMfvog6d+U3vxXYdE5vtDIUEq1Z1D5g9g8qaZgNGEt+cpxvZX7AtoIrTH4Wyce5HjVwBWfPSrkcR4PT9XwwKVtRmVJ3rbjGss1kLe9YsS8an5HH66E2OpSEk+6Eb91Fj1FIr2UzCof53ho99cMBJJ3bBOe6pJf5RCjdP4wLi2fLQ29rkZa8tlgmJR1Ovz0bLs6ucT3OouLl+/t/cMfes78lc+Oi6SBkfodFR8mS6fToA5Q7r8eMd2Cpfxhbi8Q7O0Aq7Cx4zENyBu5+RXPeu3Rjju+z7Vk8fjSlclP8bSKvQvIqySkxZzPOzcNdZj1HxX3bd+Oiaa7cDdWNn6pMvGXCTP3UKalQQfFe/NurYCOsnaVzM+T0v4Z2ROI5aQxd+Yb/BvLGQoT/iFrQ7Z4E28K5fd+5M651A5jqwSwykwPVw+TxNPntmlgKGlBNuiopGN1XGKU1PhI9POi5T16sgkN0L+IpYSpP6bJOlvJxMZUkQ+dT8vjdPvjNw7ZlHwKLR0giBcbXOPWbJfaG2UQrvcms+7k3Y7aQyy0g37a0NV19/WpgZwc7Fja0cXsB41h3zhgLQyZOCsnRuKUPRxoHXdP0/QppvWMF2Dv7YI8SJCU3eGm37SdGpnEVDwjlq+DswfkRBML3SwvpwFl0p8ed3bnA2eKbEnazN/IOrpZpbR69ibMehrzO3FKeXFxDvARGucf/5OG8QIb9Khx63Ulnyx88dRhIPafX/LH/5SyC5h5fmntJB2WNZzvQfvD25Z3+VuEenuZew8n3Rw/0/Snj6+zPpm0PMvhs5wIWT8MyxLbvRSgZi/c/vyZ5vo0Ghi69xVreH8s28e5AJguhwfR32+h/GKKRfQ+5S2b5wvx981WkeSrF6a7tmM1M39Ga+wRYj/UN5ri1jsh4/bY0QUeMvTDNzAnUaCreuApdxavDpJ39mbGCUflJBW8gJ31psytx0fbm1sy66sVI0bvTf6Un18dXPHRI71r2pyv4iqB6NisiRMen6jXLpH04w9kI35b1BELZ9Dal5Lg96JD00qrB/hSXcL+3Jq3a6+ah8qzcmZh8j2ny9/v3dadN+e7NJ79rgvIcp3h442/Uv6IOhM2L7BmfV5a02AeRRjLi0r08LaIR1Vrc3iOX5lt1saVs83IJDTjNy23q1s8IOlzgs/hfiDG4Ubb0cgCHc3vi9VZ3zbfZ3xA2hFTumqTDk181VZI1nSZrM/vDE36a26wqQkjc5rH0/oE3lPVrmqiUE0QJ4vroi1qsz+B2y++lZMcShSuglVg5XN1/NHGiYqKAiZmHo8d72c+hMr7fsBi/yH+9E4bFS3fwFmSePORkc/aU51Q/LC1vn6isZqOFF2lCTPMpyae+OZZwFFbbJi1etJ/fsqpqm/kgIY95zNfQc5KOeLx2W7Q4MMKo9DKY7aWrnoqukFzAU967PGi39jt2NjLN9BUpcSkaMNH1X9mYOcHTuy1MljsWKiu+uPP66+38Yfjke5h4xlPFn70lT9xvam0o6ZtWCB2atnhbV3PjT8CQs7PbToUr+AA93VJqXKno0/jyrqAMNGSmaV54N1lSAu0U/cmM1dgpX1veYc//8dryps1nQtRhfVGn7cQ5Jty4iQMkFUkHlXvg1B29fDCoF1o8IcHg3BJ37CN1m+2jm5lOVzSE119/Cxi9u74iatR3YtAPmJNPN0dSv59aieIstYlFku0mGqfYwZ93Slkc1tOnOrZNoJXc9NI8MsnMz6D6YwRnRTPSHvtIeaQHRqHWSut8dlefwbILrU7C89aU3KW8QqC6HSnq2U5oB+/ApmQhGDh3Phj3+cdHI1VQrwUtil3msBDuzHx6dN+uq3y82eD7N2Tn/84rZ56pM18BWvTqrNYsHQj1LxfDrPYpUmnzisjTYrNn9+zbpeNHUmaJ7KSNpIep5NUoAK6tdT86cfxfJhPnds3gbgWblN+keoMJBkcdpvxb+S6XkHPlvrf/LIbTU2oRoXiSSvUlpfuqfrlY7KP0iKmVjPUqLLXO8zP7rKloaULWlq0OVs7I45F+u5yuG+tgKyd475sYIcU9SkYATNz8WxxoiodmN6eUvQuCJ+854FCrco6Ic+mT39+JSrqs0+lZcHaXntADtvd8khsVUnTxmP76m/+De0ZcxZlogCnpydgeD/LsnPXZfbHfzb13vPZy2kPcJO9HXON2zaeNuE7AS/YxiwME2GO17mxskS3BBdrM5VvFjToxPYmrmf/u5dl5Kiz38jsBhUxv31uDvzqDeEi6tF0f3BX3R7n9bQbS/97wFWF5vxPF7NfO5ik85D/GcI/vj4cm9JBte/VNDtIW2uaxwfFJ90l2H1s0tG+RROa8x8x5/Gf3sVXQrW97aiyqjRrlA9pg67XjYaF7bIvB4yaDiHX79nsr8Qzv6zhcFuIWA35uv3zozU6q1i8w3OJWq/AfvUBm9dvzKeqMkH/JPnPf0DT5tAfEI1NmTkKhlT8fLcFzP4TRp/kE7eEjwPoreXhL+628aRH/gX2zmpgZNyeS845bn76nq33jZFOC9ObUD6KMbmldpd2s58FVx4NzHSG3uc/f2meH2L07xAtpfXKhODzGZlz2j3S6ZqYHXxf3oJtw5NlTdvrSlf7F0noR2ZPn32f2kGe45H91tufP/ttkoDMeJByhdX//IqNvnDQkObNBWb9Tq9iu0q7ZbUpYLl7J39+Gf/54csLLcjMt8u69fc5muPrbzymvGty9XMKrR/+xW3pZhWg1a2e9UgaSxPOMw0tNY/89HcTH/MBZn7DNk2R8GmRlRHEdy9iwSscUv5eVCeUBDtO1vvmOT+/KMBzJpU4pX1D0ymMT+in909i8I157AYq5Hryw+uPNYzuZYLOthELyGfp//QMVLy+/9XHpgnXNyQ+FZPYvc/TYW+kAaChGplrHnJET+k1gEG4Hwg5fXeIn1IeqGpIC0IKIW+nSEU39MvP9u1k8mVVIucvH3vm1Pjcut8GmPkxzg/pBrW33VSAenkcSei/az7casdBQ2iEeNGXejoa59CB5tD55PHCY8l+ekgWfZ0q0eOMhrneBbMfjIfCZfyvfjKvT7zw5luRlfR+gJxXJtltZcxHe5wOEOcTYhsjLcrRDe0LOMZjT5cPo7T4dcB71c4fC2ZQ1fCHS3Gvf+uTke3lVf75bUW5Ecicn2IxZWsTpMfTZL4wVeXgw4i157Nomfe56iWP7zSDVZJ3BB+pXi5nfwxFR74jXoCoNTeyEEDR24JtyTvm3Fppe6CxLpOtGHrleMBdhdbjyWGk31TlQC+GurplfUjcpfBCg3grRU01sEFc86Cj5dAl+FfvpMLoDmhgF9pA1pgP5smnazk19UJfjXDV6NKQLTS0dlqhKDUzjBZYT6fctF0oL1ZJ/G+jxP1PjzzuwZFcp7SO6d2TDoC26EbHg77n/TPzGljt5rtJq6OCuuNY6HC4aSKzWHJP69nv/OE30V0hKumcr9SZr9LvYy1YfBkiAVVCZBGrfMhpt78jCmX6NNiD3hvee/7VgyPYAds92w/iE/Fu6AVHha27IUu7eX7AEVuX9po5+CPdVaAdl+uIeUZ2Qv1AVvSnJwieTBQPbpJH6k9PmuvkzakTGrXGp5NETyzNWjbrS6iH+QjlTVq1Q2vHFeRReSH6VkktaiBcoLn+xqzdQW+Xyf45odlPwk1Wn/zZPxWBg3Aj68Yey8ILzsp/+erxE/Ojc23ULzUl4tS7Mp350hvOn0WGhUl30775KBFUg7tg6awnKXtF+S+/U2FSJ85PSkrVuT6Lv6/a4/LCrCbwSDMSf66nTefxUcCgLiSGrweZj9lDU3/+EHObJy07VAedKn72KQk/ytBO0uJgQsYuCllHmVS2XU5F9HisI2a6Dp/96a2ImsSpSHDde+nf8zo5Gtmu9/a++GrEQRVtMuL+Go8+V1ju/V9bCpT/vaUglM4ybpfPDRKXJzOB855PbPPal2kXtq0OUWHvWNSPWTnuxuuETtLqRLX89U2/7/Klg1o/AuafC8rZ1fR0FG/oka7MT2tNRIkTzb8KCvGM/IIm9/SpUMLONyoXz6EdD28cgJRbDts8Uu5T+5bfNDXYnJi9HsZyqkZJAGneU2NWSuuPr9VRgDCIc3xK2mU69B9UgJ0FAVaOjR9TwnWq8sVZYtjH53ZcqoOOSlc7Uvnc5lZvsAWF6Gw5xIOnZnX662uqb8dMmLOsBj7qmalrz/RTECz6cju8nQ0F+eh9yNYz45g9v24B5iGriFHpJ94JG3oC8QATlh+KGLMcuATZ91VjoblpaCxO5z1c7KFkkez38VvcBBe0zEqKvYsQWEvqtRUiNrHnXfqXcopG30bJQ5Ko8kyElHE1acBRuIO776bkvXCpayTlhsOcNu/SkWYnBUxtvqhSWbol76W9BPbCuuO3xAW/82+PGokHYcIrKdxYLJZWIrzy9EHstFukw0NublC9zDutR722+s/t1oHz3efMxV0VN9NteUBK9Pyy9RHJLbuqY6OdlUvPwjUJSr5eRDdwIiMlLtmuW/n4dFXYpvuEbEEq4yH6sAHRhasQm3h6Ku7H+gY3YlJiTDbyu148FRBv84Qc4kfrz+8nwWUvZMwZu09Kt6hU4ZrNvWtuxaudem2UYGGqNnMhXvGutJVIfbXZvAvT7lJaLwKKnGV9IqeP1rfD9vWq4LHaq1SLCiHlYykJQNXAIodakNGke64OETQG5eqckj5toENjfHYYrTOvHDJhmuCyZReyWS0sNDXH/Aa8UVLmW58kHtpxe0OHVjaxwG29lJ/PIYDV5k7YhvOaD2qv5YgY9oEqorMuxcaZbhC+jID40W0sh9114wLPihczzdXeH85HoVHdjCmYe7KFxjM1IhRBbbDN1wu4fKx3wepGLZVsDpPsD551bWD37i542cG2pWjQc435OSU7g+zQsB/zm9ob3CHW7RS1PFS9A/S3g8RCzePxcFnmkYakw5VZHXXSqV5N5gLd3z0j9yjkg2amDTryj4rZWco4O4oQwKCGAQkX6IWG4cYAfZckxZMEJOaPfSWplysRmHM6ee0HHukbHpA2xD6LS96GTn+B1lZ64jv9GTF1GeQwYNEjRp+82t94QhwullixrTr+jJHVaGHunOlCby0+5MtOAiXZu8S5Ld6IJsg9wNDlLdmtKyirGEIJtLILSAj93mIP/5BrQxy/2UbRtbiV0nSAtx0cyfpScfRt2tzWpkFck/hivFC3WIU1OlqRRewlp3xM7q2JSlvPmbktcDy9LVcHsbpfmLcRG2vwzjYon1ewx/Ut3pRjeOMUQiHakVDz4rh7r7oGLqcNZnj/XfDhhxfx6yKR9Wd9jXlEpWkVxM8lW3vaUE7IEPaIR6eW+R+1KvnTdCr47qs1uT0ujdU+aYzBGL6UrB/HdzpcedPAK5xcCqIsId4GlgiRcHOomKhxyl/kdlKvn+pF1Y85xKPwUACVgi1hBeIr6j00vbXf+tkEr4KzlznOJcI3YO1LMt7f/Y0H1f1zY2Gliv7nKIoBkKhSiTfpcjzsrsQFfbnvqBj6VzTK1lmErnJeDB/yyOpOti6A0eE9ww+k+INHxBqxLyHMMLOFNVxUVUCr02KJKRNKa4BLUEF8VCJiu88qniRpPiVnBgZxJJ5Z/LNqT2jvYIHZ8cP3e9PQByReNgUh7WHyZ/zvIGhvhOGD/4rpkSkBKLbPMYrDymdmo16QfBI6ttl113Yo79Ieqe92Q7U5nmmXhxKUx6PP1lfj6E+PN5XQ3gkEhrvUbkdZWDuwM9Z3evtuLD7slGHQ+qYY8bTsC78PZPmEDHY22bbjl7h9CKsMzr0IWHwqSTxOD6PRLFyozCs/td9S8Y7V/FkGVDs9Kz7QvMSwyRKDBRQn5dAfXAwEuQ3xSs+Ze8e7OpovECGWJ5dodApDgmuKGRb0KOLd6EINIdwCZhMv/+UHFcqRfIiTr+24v7wHAL0Eg9yf4qnk6V1JkH80Lebd4xOnlv/IUMN2860xnpWO1SffA1dTg+G+QHF/X0MGByPeY3n7WMfygq8auKWXCg+vzdfn7SIfIHNgT5eRqPPp/G72sDAVm1mPTWnx51MJQON4Yhu5nVKO1AcGgOk1S8Z9PO6tTQ5r/xrP82/Hwy8/lGvpRZdFWqJhmx0jMB7SjcJQBNaA794FodV9y/7wdJPqgebL7RVvn/m77AfjXsN4epmEVPjAB/X9wmp6EC4El8ayHM2D6AA9M4Vgw7xxqhwSFx56SYjf3st4XLysGgLiXAl+HTf+5L9UgDCmcwntbfi//K9qx3zHHtvjNeb0M2FY9Y5HcLOJrcEVMYYirGKsBP0d1Wi/UoClxoG417Cxxqe/UiAqnN2MRzEa++AbwLg49MzI7xf/e17u3mDpZ33OByX60I8aILk8FWwrNW48TO+80Xb3x56OyU7z3/vDVkSnk71mM38paYIRXb23vjcbm3n6h6+JVp4JDouv9SWJ4KCzbJs//tHWdnLP4D7IGrHn/Dhss3uEzNAqKR+tnT/VPpvQoe72ZO0GgtXhu5lo78EZMcr81udEe1yAgu6y9YF8rTEb/BsYh1ghFmZ9PJYofUOH719mXPq1PyjlxUMj1U0MvttwhifVBG1wTOKcXzKn8nzKJm6OLTMukYWk9ZO7cBmaRbjs6bKclFzzoHMuNvPBq6xpbO+gXQRxRbbqemh50l11GK9soovl8szHy3sQtHBMTWbspQPnUppOv3yO5ez7sdhbR5362syNSByeW5OSL13Y7IqJvsTuVrLOczC890lEea/F5TxfGHTjIRGytHwuDSuhgjQlCub3l8YnPytqLXn6BV3Qtc17e+HbqKBphdWcPiw+Rn79w3e2V82O9zsNhpXzuaUsK7qGT/CeqvnWnYwEvipx5mUpwJ3iN/ODzRuNbhCp0NwXDlWOR72UlmOaIG3rpsyx2acct9qAtcX5+GC7/K5YnVJGLoDZEbzUxyMf6ydLUFVvQwxvw0ml0HgmWnPVd2xr7vV0dHftG2Z8pkucs5QOK+ENKIjMOV+YSAyMmw6Vl3WEbEbDH6mgF5q29VL8QtOVT4au2mi7FH083DsdDcf3QYHdIz6T8EsyxHeplUFDuM82/ePcDnP+/cvPG21tpPwdnrrVfv8WmX+Kn+WwVrYZvB42p6NBRs66UffQRZBWzF0EBRp+fFcoQoE4+8ywOm1bCrBdSj5+fmWHDxfTOsDnIt5YdlmqfDq3ogBsqCM6HO3Mpzg+O7C+MYHS7cKLpYNwkaB2rBI/1xW0g0eggVPNUnz2dmM85RccwGY0LrjcHF7WiGyzguYTBGznKz0f740ywD2jOgkKVCPun/0aRXkUENdIAn8JmAkrN+sVZvjOk/NqtwMobTNn4RQE6WQJYgIz/8ZCHw7t8NI1E9ZnvmU+m7A/rJZrEdmRvieW7Ywpe4tRrf3mP24SEf3wR42PakSXKjb4cqkqJrxk6YHbYDWhMTw/TaTj8xoL6c5sxfDh6rB/ZBYzN21mNRjPvQkzhTCrWTf+dJfXtmq+RsLCKORlPesn0JvwSbZP6xWPYXShEEvsSUXyMVqxM2WM0ioTKH8vup8eM9HQyyey8fOsnfEiQUkXdOww64MJqKmivX1ZUQmjIq5b5TqA0VxCdvDWtzTPl50Ip9v5RTabeun3WVlnsIrlNTF8x+D9GZ9r2KEtJ/p27OKPddtNqtQ6ETOlB/X/+Gp29EJCmsUn5RHOMzhtKaHLl61bw2B9BbTKA0T01LLL/rpzTXi6EJDzqjBb8eRf9+CfRJf5d/pFvG49Cn3fPrGobPJ4FFOcwKWKt2QzuDHiseB5cNdzh3gl7BEXW1UHcr9tiUEGOZ6abzzASxYfePF7n+azuanJgXc/fPDfrNYVbcLLmJCzlKE5f2IwMv3M9MN+sqZj5LyhqQuZ6a/N1hqCvq6BOteQTpHftE1T+BmIp0FmIUk/MW+SLkNqEu/o9JzCcnivqkYz+kLD/HaKSv55DabmTjkjDrmU5VTOF8dqx2KHm26lz6fELQ/1mYto5T7tlKtsJcLtu16zoL/Rtj5v4xpFsXKi3BeSknk7RZhvecrx57UvYx57PYYd5RrNkSXx6ZB9MFxeL5Hp+lkr2ZPGAdqFQocldlki3sY3D0SfdcQoW5/L3eh66vqUZXTM74pfbygvAN2rHstlDO1QBG4FbEu/+KyOBA0CnwA+UqFh9WZ/S+57eYPOzhUoMt5Pf8LqTtfy4/bEgtbVLHqEOAAHd4w59V5p29wOAnh8BMLc8b5NB7fTVHRdxg79hq+9v4wPlwIM5e1iddLPMZXuuf3jy3i4eWnZf2M8oZV9eOBS3NL2azlx9tN7xKeljkYPqRUokluRx+ibqZi8PB04hA4x60EspzSQHNhY4u6H/2j0+x1AITfzRbbdJ+WzPoKu2OdUu37MdMSG4oDr3i7kx68boJ6Kpmi7IPrRFixKFiVFP78HHss2ne5N4WgAw4tZi+rUdjErJG3haV9m+ErI/+LpuC1LXE2XdztsTKqCWdQPGt9fGhquvGhgtehzqgWNyPvzcldpSHEzEofaM+0fNXe1XEMGFZ+K+o/P//jLTx+NxRb2oL8Gh5y93S4em2GatFekrIiHEseSlmOcwKePZarGG8TH99nTYf4e5jO98BlWbApacnfweHvRcnqT0kTuRxCYT8sc0VJ/1Mi2tQ0xBx9QL42N/Rsv3C2WWsv2QSOCcdgp8/rYpHR/2Eqwvn4wsx4r9scnQAnVPQmv0FtDfWsvaKdYFgv3wttiav3MkfiO7xTGg+K3bHpUSCDvD1XvscSn5doZYJccChYcEisdu3QroXzdDMTrVnr7nfXCH76E108RU2G3rVXNE3Kme7hv+fOrF9C2YkywxVk6WEdzAPXsPZl3TMOUImgLSLXOYpmz0dHAL7qOkue2IGuyRz88VWC7N46k0WnH6Tw+sDM2d+LYbFP++VvdMo3Ipou8uBNHbKL0tLP+/LY/f0RdqAFeeWacdrNfgQzUKWwtOH4qPoa9B4/WXjDP8Kk1HYSLCLI8alS+hY+0SbliQjmGH/K4oNIaFE8Q0YksGP1och8PLzc8gPXZv5l7DT2/L81WUH98UxDOU8wSBUz0uCGbGCvv0nK+eJ2QZ5sOCY2z5VfW0RtQEb5jZn1rF3HYDxW86OdK7BiCdKyfnwTNfJ1Zn1EpuxGTE1zOq5iZQfy0pn26dzXDqAualDDx6ZVZNUxVRrB0fsloyOlh3vVu11Rb7rd8/Ok7h5Ij8cZS8qfmpgyokejEvMPXiJdfpxzg62DC/K+B2tF0rw7M/gmtj00bT4/EEuEp+TEzHtycG0UIgHJ6SUl87A8xR+p8Zff8981Bb/1xa3nCT98xXCtrJC66pgZ4HV9kXYaMUzO82/LlOvOdXB7iwfOeApihUdJV6A6IrReXDJ3340RnfuvTe9M4cHg8ArYuUgvJ6V25aDOeMcPWq7Kb/SBwr6NFf3q9z2MvANSvY+a0VutPR6usgO5uF7bPCEWtKR8TwI9NgctZ302/eHQPEv4PAAAA//+kXcm2gjgQ/SAXoiIplkwymyA44A5QEVCRIQHy9X3w9bJ3vXyLd8CkcuveW6FqHgwJfDSTsZCNw1Emzj35zlGqCjD7MTiVKeh9rR5MOPvrJTO327TlbfxeA6IoZvvuBNFUmzcD/fKDi5K3Pop15m6nm4qxkEg8GlbFK/ntJ0bPd5SyhVM0oOVCQse4f3m/8/rT0/hEwjQdpiWtQTV4yOY74R538kMFWcYI7b7VzuP9OlmDaowhwfypckEYsQK5zXMsbveQjt9llIAqVja5Vm/DW/34nXhLxD89xHrmFvD1PIMo0sFFyCtpjX584Hd+eRwUtTz7mz+8jkZP3Z1RVxkvpmzkbTpoZRnLM97QxWFnobWtCaGsPoRs3q8SzXjcSIl9XRP1+jh4DLfPDhx9lVDU3sqUwyN6//wh5nd7NfrF8/YiJj3TN5ciovfj6AK21xpTW1PwRvy9U5QeISa3tbFCXz1cZFvmFRSvBs3ypsvjsJDtzaNi+DXZkZCMLwXKixcQ7d4F3uDZ3XmrX987pns+bplXvmv4NI5FfOvl60xi4xreYRyQnXA5oI130Wv4JM1z1uuHdqi/ZgxTbFxnfyjWu9ClOfqkS59pk1umbHDFBSKnkuGFWRUeyzdfF4IXUZlThGHbfbE7wHPtRGzWe+XQC/ccpeZ0Y97q+eG1sj0eUfaZEvI7P6t6Dybg9hHjzeuDvT45JxTNfgMzk3YVDdpFSWRznxjEECu1nTbsNKBQDRziZsa3vS+JocBLmvuF37DBx2uFzoD304bZq1OIhvoUmfA1fcKUrfAtR6v7+BDEG48Y51fddoF1vUNr6zcqjdhLp8P6NiFT3eRUPFtdOa1vtYmwxnra3j1PX20WexN57yNlB+X2mvnto0ZLd/nF4oeScngJB5As+9Ax9XaR2l49bzsgqnn86UPez+/3x2fxa6oj6vZ6KG2W3WXO9+t2hS6yBO+yQ/P+jPzPf2DT/US0Loqi+X0MSKTkQ9cr8tZHHnw1+MWDPhxeHr0/jy7a58aFJCtTQHRsTyDdzUXIvEIX2sleX334HhOXKNrZ8DbiIrzDrUuezJGKEXFPD47bTEqHXz7XR1g9JbRzzRqvnevNexbG942cTR0QZxsZ7VR1XTCXBEySTqLXCp/W12C/Pm3+9OSAHkcR7oJ3xa/MmkraxasCzld/RaxA6tvZH2tQZ2OHOP7Z4MP+oWhAK4sy0o48nZ7Oq0JPN9hgSc1jPnh2dYSbUphkb09etIpqfS1/h+BNvBm/uklKAZ0t0f35bdEkBWfpz0/zZr+R58EHw3Fl2mT2j398ef3zg8hx9uf493QYwEsnmZGdgsshbTIKjrwdmK3UuT5NjqtBWT5NhodaRMOMR1LKcpvN55VPQsRiJGcHD8u7bo9mvl7BZlrZzL/ITzRRdvWhHnYS0SLqeJt883ThvLIONN94+/S7iOsGvsfYJfvtRyinfGm7sIRFQnmzOXvrdOt2f/xuU0ZZyX5+yRy/xKRvh09n6VahniwVPNmDFjFH8CU4yecrsed817/vyRkeub6iwtPEUZ8nYQ7mN8ipTES7nH5+zpyvmC8LVTpJnu//9oMY/CFHvXYEA/JQeTOHW99yCJvAhlG/h7Nfu+PCaVqKktF3E1PW12fE8iEQ4ILPZ2YmWNB55aq1/NN7hvSSOA8PqwIWwTZitvc2eTNc81C2GO0YWXYfPk4iaSAY3xssxc+Gc0sO12j2HzDvvU85ndV+AXM+ZaRqzx5798pZXm/uJjF2qcmHza6zYeiKds5nqPzpM/TTB4F2rrxeSHEMP36mq9MS/fxsaXfO7kyNorXHN1Z9/9Nv2071I+7e0wWa65UUrk/J6yvBC9DPf8fWmXpzfs3huDJsctMcog8sdN/wtGyLpNe1EvEkWnZo9r/pMzRsPuBhRWFKiUPPZ97yRvceGfrc+IEpTvZs53zQAT1+bKIi5On8aH8qEKY2otvL2PEhXOh3OGenF23n+KfG17vDX72HxStOX2d0hvpgUBYbudMO/n6poOhoeHT8bt68/5z8GLSlcsToq6Yz/uMY5voRFWf/hndy64KlKT65HiTgo7Yvp9/6EzV74XK4KUMmf/0Hw0l+PUb97E/Lj318p3wKF+kwrtQA/G/tkpCtD3xsDOpKJz3Umb6YmnZiQitK38Jomb94D2m/eAwgl0+mEqPyPUTX67fx52fthA7KPrt+hh///dMP048/bYTvHl8GmyPa+WEOsx/KYjXp9IpdbgEUbSAQw1jsSt6aoy3tXkuDAsVSOTXfdJKcOaeRJTFn//CJ5ZUnxuz88dTZjwYDXbLiwJxFgtIxKVYd/PLP1edvr95cL/e/9dGKalvW+vM1QJEOmO2fl1M0WKntoyi/q3N9+6azUc8bwLagsZvsRulG7QYNsNb3VJBbMWUs/0r/60rB9r+vFKT+OqRTutNSQbKuFdqJF5fZ37FtOardI7J1sFl0PT496rLbAnRrntXyILdyUMW4Qt1t/krwBZY3OM5gQ7TJJ6KOBykats0Nw3ZvmZjL4sPj8a0uYGpqzHBw2XqcVdccCeV8y/orYG+s1SGXt/0jYXvpELdd+dpnm1LQLwQzr0yne+4k0BpTQKdrMs+WmJo1yI0MxJDQIWWfUI3RTfU9lnzCvu2b+hNAmaUyXknBJWLOVwxhcdco8Uj8jaaN9DYgHtMHHReayaczxwOYaAjIKbOEdmzO2Rotk5dOtNst1Ydl7WiQc8vFU4Otkle7RYjeg8+Z7nwR7+v3LQEnF0c89baSrtv1KoT8BgbbE27oo/RRY0ktxx7n1Scvx+kjHGHztQq8fmexPmIKRwQSOTK3JK03bKTbBPyxvFGuHGudr61QBMm5HZhfbY9ojIc0gMh8K0RJ+SGauld0l3LNjYlV1UI6fKZxjfDDk/Dy/E30QUQbBZ7JkZBbtP16/H0I5k9ua43tItSkL+u+z9DWPp7YTd3uUX887A2I2n7HrPx1QFMQLEzwTuGX7Q3+Lkdaxm+Um1uHWPDQ21WKRQnaezTRRvSfiK+aey4dL8gk1vH6mW/lbQNYj9ESl7K49NpdpktwFZqUOA8ilz2rHB9sebVg+2LZ8u7+GE2o0vub6ejdppNKPzWQTQkM3w8knSC9VUjM7CPbr3ZdNO33/A1iV9TEPkqSxx8vcwBYNT0zosUyHfxx/oxgNExyssUmndafVoFbn3i4pzvctrG2m79qxiXR4LArp+5tmLB3gj197JM2HYJFGoByNx2ihM855V8XDZqSzKBCtFhGTL3kNtzpWWa6mgvRZHfpHVps1Rj51YpPVtsIoBQCIv5rCTrfOds7muMX9662irpizUK0ERDBqHs23vTSEhuOdZQwtdzqfDW4VgylTzjx6vTlTaEiF/CFd4y3mezqvdsEFdSGsieal8hefywvBailvCFaYRcld1BiwCU3rsw9hWE6RqQVgJmrKzOZW+jToZ+SZRiVmGnXRCw78ZK4gHzpQqd1cij5qRsyWU74hMds6aXTMxgzWceNRn/x9QqfuwbYRS8ZOdx61FxkRZONTRKTnRRtEX+EwhFO9kbEw7PZpfRbxADDOzxjcbnxEMMKzaFffJ+EOMd3NJym/RpeF2Fk+2jr6FP/BoqCh3ciZN4PJok8l9KtEpFA3LKya8qnJJvkTfCWKxbqr/cxk4dmLTO9eE/pOB2389emu4wo98FvJxHdO1ixhUj29tYruS09MzDIW2A+2aYll79tJT2T/Mrw67D3JpTMcy+k04IuxttG74jcNKA2Qk0MtsLlQPV8gCm6OrS+0H07LbZaIftqkLN7cLnqUx0/KJweIseDCJPe3pb2G32Uj0W3lhzwYX5/2HXsw0zD7TnXOz+DZ7mZCBaSMBo+O/8MedGtye880OuhixEl6or5YC+97sKZAdd4TXHfaL7Hp5P6Rk9J7OlaWzyjcfp4HbQGJMTXqg8az1RN5GSnMKIVu9z7nPuv+ds/vH0IuddELG2A3c07U4zGT5vJ6nww0LQiZnHmOjczIYeDhm068TxGw2SlIvTOOWT779Ip2a0QJFTyzZ6Z7yz2uoHXLpwP+sA8knp8tbDsEOWf6MYsWjRlVxd2vfXX45YY5bcqJ/HS3MG+RTndBmOuj92ubFC5vDO2w9bVmzZnFaNoWni/+G4H755lECznK1DKtIvawfkYoLqhS9TV5ZE2VkAG5D/XC+bXcElZuiMLdBXqlC6iw9hOKTuc5VISbaYs101LF1u3kM5WsWfY233a7zLRz/B4u0+8Ye0xGq/6PYa0Twayrw9y2uwg0yC7ViO7IrObS/SdBvuv0DKXPxOdM3txB++ebmhbxUU7KfYzB3tvnZkuiw99DNFgwjJJtn9/d6eHO0EnFy+8Zq6mC794E3znzmb88RhW3sWWtx+F4OPt7n0/lWBDGFsrurrMLVnXlvZGordwiWkHE++lbSqglj4Aw6rX0ZALpxi5pr7GQrR4RPyrjXepmKSUuEenLpncZBiMiknMquk26tOnd4ZtLXIq1wc5GvrPTYOtkJ9puZoSveeGYsDjORlM98tjOWzh00AB+hfz6/GpT7rXKYC2RsxOr4Wdjhc6N246OQ5FRkqjYVpJioRqCZPd4pyldBSeJsiHpiL73TJEk+c9O7TLnjdm5KuDx+XYGdDv+YvgstWny7MCCNbVa27MdW87lT7OktXlIiFT2aJ+PNo1DOt7TnaiakabXPNcmOOB7J/bqhzrVzdIA9Itoh7XJZ9SWnco2pxr4q/X+5Y9lK8Iarnc4Mmxv+3QRc8jOoq3iim/fF6Z5zcYCJbMPfqePpwePIGXVX8IUfEzmlxXyWTton0J6SbZa4RNWyEV1x+CtaXWjqanJdBemcd072J7w0qEHM3vSxd9IpQdSrIaHZnrYeG5SPjoyWmDDDSsMEfvNhpdvMrRtcoOzL5TL2WGHft/+d1+1oa3+YSSAhNuLsRDVeONdZScpbXSP8nuoI68LkOkgZSLT6JZl6Sd5GwhoOzuxZjl78jrbaQOoF/klPIur/nUVs0acupi3M14wnuzq2CDBoUdym3JB9jEAGflm5Hb2uMlD+7pHd7tXaVD0jdev77eNFS1zUC8XSV6o4OkBNqTXRFr+2o4Px1OMeyWye4Pvyd6CkUYXPOEJxHrurD7jqFsHMuB8lfe6tN1eRXl8bwWyC7c373xqbUZfFfsgwdzK6f91t2Zv/zDMJRXPlyXzhvWH3gTorwhZWxdgsQ3cc80x/6W00sLXanbIZ+K2ga8Zq6HIS+XfOJe9KfO1yslkX1TPxDLD5RoEw9tBeRzmojlnK1SOONDJa/LyqHp/YnLyZfEu0Sf9IiXvFuVNFWQD0p4/zBl4G75W+8fPrPr0h/5aN8XBtKltT7nF1qOawv5sLjerd95THty91x4Wfcbs07FWHLM/BrVvnxgvgRTOeXPokEXO1uyW6wNvL9XO+F3nvHidWTlfH4V9EjyBX1SMLxVMJzewIpVwJwxnIF7NWowpmlK+e1StlPSiybM/JoKTDx4m2FzrNDlSz6Y77tFOl1IWMh8KIEy7dLqw7BzNVT3T8Y8Fuf6pCR8AaJoe8R1Q6HtfutfZleZGXji3rhPtyFylHOEQ9PD6TCabShRvGnn+/J+OZ3GvoBx88qYQRDwzvABpMDFCV5CbvC2MqmITpuzjuXFRS57228b+Ds/8+9tdnieOMu1FdNm/j7Vz/wMR7pQ6VbwhbR1UGgiwGo082E3WmVB4sJhEdu0ar5ayvm5WcNCIxqWpniIeKwtDFietQyj4hOV3fGe2NKMr8wTe0GfDgfaoXIZvjAqBzltfEnMUAzChq5cY91OabQI0II7Al0mbKlPO8gU9Mu/kub03veHB7x9KUwV8Krsx3dkyur67jGN3dYpZWc9B+xeHaLN/KwJs6CShWWcsIO1nDy2sb1CeummQhdCMkVDuXmIyLvve+ZqZtNOsTw0ECwZp/x5s1uh334yePF1/cv30bA5DaJ8qVoFi0cp8fhpqYnAbtKRvkIXta/nURaRBh4l+5XmcO7J7QLwWeuo6NPAG18HJUN37WQx525yNKrwOiJ+XhPidU/X6+MhCsC7bgJmaotnyqh1wvDtYjzn62XEssIIkBhQYCZxvZRrMg0AT1pJiFVeIgrroQGxy2tycHhZtkQjg+T60gevdotD+ccXdR03zE6FsBX++IeV74n7dnQ0ZEMTSNXxs6Ibud6n/W0xhLCrHYW4Lpn0Qc5ogYpPKBIn9ZE3lK/dHcZ0nvu87+5p9+Njsz7D4Dx1vW8NpEGtr3WCZz4xPMsKI7J4b4irKmU65GTI5eT12mPOEzVaCRfPlWb9RtkpH9Lh9lDu8qdWzlSa+QI93otMtnbWl8x8wBvn/YewZDEdp+W75M5XDNAvX3g8LUr+4zvlMmPE+LBvO/JzUsBPz/nrdV/yJC8Vya6KN97Qh61Pi/dgyst1PLBdHS3K4RBaGpyfRPrpNT5omVzA4tscZj6/57zQuwTdVOxhkesZp4ViBz98peqsn4ds/mpm+fbfzFt+urKxE0eDdYBaKq+0L5/1qwSoz1ZsX2+LaEij1wJCa9vOeuXmfZM8pFJpfX0cktujncLIWgDG8kDItnTK1XR6SnK1CSOGOd5x7ja1BLsoIWxfH27pGCLRgIM5Mbp1xiLl8S3P4R6WByyN5F2Oz+NKRM5q1WEh/n68SemXCuzE8siMcHUqhyJ0Yzguzye6Wpwhel9kRZEzySPM2ejNrJfKNUoaR6Cbz8NNV34Sa7/4wOurZUQdsl2Muq1tEyfSo5IXk1sgWGUl7pm3QqN+/VLwz/sUy+mSel2YKSGkvhCS6HpUPUEVg0pOvnLzxz96TT4tfnqSuHu/T7l8udrSXkszou12H33wfFeR/vTOU/Fbfl9usWSkyZO+Zn7Vmc1TBI0rOT44g+qxCLYaWuLxjOffl05ulkhgGu6GEcgrRHVJc+WVzTgVz/U7Yp/QiWG6LAc8V6MQzzXdlddWYuPYK/R2dexyV1a04Ma88GSUP/8C5D4wycNM9u3UH4tAZmEGzHM+STmFtNTgyGyPZuf1mQ8hDSnkXvQmhttRfVy37A7j5hoy7/Ic+NBF3yN6o9rDU2Fr5bpYmwAnQr/4hy/TNeADbO3zCY/OoOrr17Gq0NLFjKmP9TMar4/GgCauCFMHL/L4vTrb0O63d0YeF8PjISgxjOH9wtzsFLZc+aqLbWj1T+YJzaEcw/ykSMYH45l/TnzGy1qmo3hnDz0/Iopx5yO6vu3wMLfensSvH6CFtteY/n0H3pg9OcDBO53nr+STdiKydoYfPu+2bqAz4dtLSPTAnfWZGo3cUEwQLqPKMLr06dSJ9wLp/knEq5XReqO0jdZoe4sCZvzi9zS+ChjwxmR4vF28TnVbE6muoRB13m9Bsg4VkPClEjaslmVnfJVGmiz+JqRmScmF70sC3b+IRG2XNWIHf9sg6kYGUbyq+vNvYJzWLV7Q8p72IeQdmvkiFWd+LaTRC+BzaTS2m9ww2mSFP/sjhkNlfxm0M94Vcp62ElFT78p5uds1aD0elpQPpRdxJ//UUID6nddHamv/sTcRqkXMFDS8yvE5qpWUa3ZMQtOjKdfaVECz/iBWTa8RXXgnBZgWTkw/J3Y6iGipoFvCemJrwrUdjSVbI2dnGex3njpa7xtYIudJRaZI0Wh5XJHXfIqY9b6W+kDIyoZjSTmxeftE9eYkiiiaBhVvV3KpD8ehqiR7e7gQXFyO6fgSgKJEuiyYbt9IOZx88Yjorrsxq32xlDcnKP7wZJj9iT7BSoBmfPp7n+G6VN9wOj5Ssq+wxH9+GLoX29f8+3ftZsYPePl7zCwxU73NT3/0e2lL1IX2Rm072RioezCIN1Rdye/V3QU4mYT2W5siutvLIiKa3//2u2VmJhRwO3smM/neaDc4cyq5/aIT/biPMeqMfV+heu+kdAHlFg2m3AHYMd3Sd2i9W/4qpurHdxg+e240/PQV0XCPqaW9dHYsNhhOx1tKl+vvwKe7LlO4MAkT69yi9I/vCmL5pcWmRGnThnEC4yLUmU1qu+zKzUWCyzYdmaU/eDmJXxCRJJHtzM+OUR+RUgD/ZvpEK/GXj8fiLcHJsCwsyTHVZzyYwNzvEJn1Z1u/jbQDsm92RLtezt7oYEP8+aWMrG5VS6fVgcpG1Utsn9snTj8XZkqTNb7xViRrzu0HTtDLym5MdbcNGrdi66NzmRvkoA16uokKswJw7h1R6kb3BowjCabkbhD1BJ4nLW4sQ/N+EOew+aR8FRuG/B5imTm9fy6nLWwARs3UmWudrum4FgZDvl8TDUubCtpx0fYuzOeHbsLXOp31awPcwx3BlV1G46mPB9hL2goLN3E1f1UfTADadWTmMcv4RLfLQXqV2ZHZo7wqp5wEGHxf1JjSDbb3e/4vfokvapLXqZkhovu18mlefZR26sRzATNfYGafrfhwvIc2nEjxILqdh97YW4aILPH4YpabYT60oW3Ayu455dJNbXsHG9Kf35SmnxWakPWVQN6tN1TY5SrqTLLJ5hGsPlHjrZlyVh1yCC3U0nmMK+LCtxdRGO9WTA/eG6+v36cEkhW/MGdnJmj2Swz5tQwUtne1U8QlDyvbxb5OiOrvLunsb09AJ6MmZJVb3mbVnAuQGpURX+8P7bBBOEHpdOnouIInn3iVF/I5WL0Zlryn15kgnFFdL23irYaYs/olG3CMjg/MvUutj8euduFiGAWerGPsjdtXbqPlOhkwBE+Fr7dxaiLn1Rb0vLzSdqSrUoPTQ+J0m+hjOm1NpZEEXQvI7N/pA68CH6pAx8Ss95a+nvWAuL9mF3b9OoJX9Zpow3c8ucS9xpu0/+XbWa/PeufWTi59HX98mrbfinK+ai1XMgX0oMup9GY/qlLgWa4mZsaPZbpqL/s7WKKb4vXNffOpji8dWn8Wb8zTt9B2ZYgUuG8XOV3l7kaf+XL4yxfMPtfvlC+TqIaAnR4kCNbnlKuw0yDULwZzHH+JpqQfDPmJaUcM6JRU+J0PcIKCXT6FP9cDxkCygGnMK/uEcw3kGkXBrqQP5Q1R/9TKO2jn9YPYy02LuNa0s+LTXWIwcfSG5wprsPYWDHMj6b3xeh/vaPYL8fcjf8rvXbm+oZHZkZBP7rXczKCApr8o5OfP/+pZf3roz9+RPFODuf5ChXC1Kmd9EsKwznLiz/u5cvLHGc1+MH7T16Pllu+dUW52S4axpvHVsbzkaBsAB0D4v9Pvzx9L+auQ3hAHG5VgdGwQb/TChHebqeSi1HLLfvW1do/ubF/hhHf1M9bgvh8edIiXMh+qYxaCipSJWU22azerWOh+/Jz5n96O+KdKhR9fIErUdynbOdsM+PAEpr52Q0RrcxfA7NcTU3ysvbGd6vzn52NpnU5onD46RVrR+MS6vgR9qrk0gX8zfOZ5JxNtfvp2YGlF5bXH29obqASWeH4RZwzTlp7xU0J5+pWoOEqR1341ew324Dpk17rHdiTq8g5BM4jMdRwX/eHHznecmb9YHrsdIlMEJ+vYLnc3HkuJ40N1TNtZf1ho8KXcll31Rih33tuIz/UBKb8tDIYXB1NfC+lFggE3QN831+RTXNzeyPj4mNZeUZbTzM9gY5cGcflT0qcy0s9gZUeKV7X41Jtm7TcgAd0TExuGN9nJ2Mjp5BUYzfH4h38//2UXuqgcMDFySUtfAfOkVIn6vXLGsHzj93xeP3rXa4MNrNgETNUGPdpI28oFI3ciojbbZztG8vUIt7Mz9wzLPmh4662J+Ee7MnVnZ97089sb4W3+6ZFWA7kRZTUIKASVno7wTQOUBHVILgm9/f7fgLMYrIhtt/uyuZ0uxZ+eOC8iKxrhYgsoWJZfDOf1mk+krQvYvwIDv5tC9vpfPeDp2jsWzfpystpCgNVjov/6J+VTVaCTKZsHH2m68PNz9wv+xm2dvnR2K18F9PRxYXZYPCP6LD0JlmclY8H58/J4MPQiFJubxrTNW0b9Im6MH77hJDDfHm9OQi7/6n2u6KuIyg6aYMZjYtf1k0/IDnPQpvX5b39YYjyOkE9IoevhjEu+yzwJzpfuQuxGWkWz34lRuDxLhNRdrI8h5hjewpgwZfYbx6zo3lKonwyiN90m7WohMuTT5qiTVErzdDxTJ/7xDTzsBl4OUozmrhpdiV+jWrdcu6oJou8Qzf6f6k23e+6iTs5fLJQTEv3px4/o58TPhj4acfaUYM6/9M+/P0/rO0I1/Xt+1NW8ucOjYTZT+u3IxxQPIprrK7R6q/Lsj0sKmnS8xG8o4nZIaJzAr941+xd8wODEaK6f0motYsR+ejf7Doj+9G7fnDoMcz5kp9lP30A9AShaeMPf+fxOH+7+vy4F0n9fKXh34YbZdTe03DpFAfreUUU30vLhDTtLAVkSvh7z1X2mN/bbVWBrlE/mHbui5cppnjUrXtfM3LGq7TJ1U6D4Pb2osCi/0XiM2R26pSti6XzJ02kf62+UOlNHudt82uEV+Il0D7SWqSJK0bQb9z74QcSYN9Tvkj93qzvIcWISw3wc0/Gxz0wQJSbiumYeGg6ifoequLzwliLw2JFGLpR+1bCMKzrq9kZ3RN4NYuJIoVuOwWtpgrfB0twaT0L9VtGohD79idhLqdfHNZ8U+fO1G5K+LrSdFOV5htQZOqKl+ZtP0ZjWaHmYQir6/SHibo5DUA/Jiu3HeVbVV2/fQHfrI5anboHG17tzwR6uK+bwRaF39yCr0G5xxnPj8h1f6RsFZBHtQmKeb/MoOcm5A/cVwqyhRm3ffraV1NbRQKton5b8aicGuJKXMN2tDl4nBWOGmpRfCHY3ntcn2eCClRxy5tivazp4dx4j7R588HM/Io/lOf811t4QzyG3dsDfdwzyRVjS9xRto/7tnwzwjNxlh62xLxk+jSII8Rmx3Xd4pR0i0Vrer8cbU6/2t2T06UywU0OGFw1n3rSNGIZvfeFz1wiFj/abhFJbCHti22vdWzEexTCIuw9RnsaxHRoNJth/zhXByc5CX/UjG2j9FAUKfvPUJ/q0NLi62GHe7v5C9LxITaRQV2au2Jcpvzq2CJHlpkQTYNV21nfxBkXmJXEjgbV8s/NFlG27L+XXleMNt6+pwdaQENkpsp1udLcO0LCrKmZk6rWclKWUQXg0DsRD2i7iTjk3hjqqJvGkZeNNyTgFsLbrkFi22pa9u3ZAmvcPQ5fTcrx97QmZ+0/CnENh82FeLyQebhc6VIu7PnbV+ggV5B+iLp+fkl7ecQZie++Y0qN9ObFxyDfDbu/S1aG4ofHyPnUgrfyQuMoXRxvPljJJKI4HEghk7fE70hLZbyIDLw6Yos6RckNGoxQTv1wVKX2XbQNp8RUI7oNvROvxKoIuxIB1wJ+o+6w7A5Yo3jPTybOo4XJ4Xkpt/KV347LiPf4+XThuwh1tHXIrm80w5jLTOotEX1P1pt11jGVrEXhEv3WXaNKq3QRPX0jYSZF6nee5X0Dilw+y6xuMan0jK6C4z464+8uq7NTD7QjF9cjxxn3mnBqCnf3FD3+/27ZLds+3bHm+yvbmjnLqVF0C5gVcEouKzjnayD7s1ICRsGntqDldjDd86PJDdkeNR5PhrDuZaXnCsnKlpSP1DQlVnaQS7UljPi4v5hHcg/kmisS8lO9MK5Hk/epLnMOr0nnTsDOSVEjZ7n5Oy9FbpTZETRIyYq6+5TTQVQiVY+nUXFobfXA33Rrl1yEgZO+EOrtL6RuEmJ6Y55wEnV8fvQTKsdToK+cr3o/qkCNQTwfiXuhVn7pqNCFjfcR2Ac6jIcruAxJXmUbCsLxEoyd0Z3hmh4jgfk/1RrZkDJLQeoxM2q4dq1qsoDt1DW3bcR+NaK+58O6yilmtcGuZsDnPjefvNyw2zgNNfaWFsnkZbsSLk6VXfx5xCIeLMhJt3FlRrx5iE27hZ2SYN7ZOu2proINUa2T/Vic+LWkmQjsdTPLDI/qcYhFW1fdD12Jz03snuBqo9N8NM191n06vlxog10QlM06DHwnsVtwhJ4PEfvj3IXCt0Hcq1kT5fF4617ZEArGtr8y2eMbH7/WYS6fA2zNHCpuyo6veRN5G3xN1WRVoFPbhEbb05DB9S0feGQ+vgtdpdIhCHkevM7utAJK6SJkim8Sb6kmhf3g3Px99TuegkLf9ktHJiBXEs+51hsP7ILM96r7tsNdXc6PHRmOu5egt82yv/uEDzu99gFo3xwEilwyz+LxYpLSSPQnuj29AF80QzXhohZA1po5RGOrt5O6Dt1S/scvU11Irh1N3vQMV6chUPykivj0Gk3x0HiOG7r3TV4vEeUNzti2im72GVrH3ECS2mg4YGmWrt+1xa8OFoIzt/WxqpwWTCjRmRkj8Lqdtm7WkQ29dOxPdMFI0fI0khrrTLfzqnzedp9QFhIzHHUM5fTz2i9dnirbMwvdXOYW8NgEnMWUuA6XcvJ/XBZz4cCdKv7ARx8csgFGQEwo3si5pUB0xzOcHL+NcKTe/559v8ZVd7ZbN+X6H5V98WLmpRqPB7yIyP/qX7K/ulU9HZmEAr4jwwbqF7SgLcQ1RMF2YnhHbY51UaKC2+PbjD3z60nsN5rMy8WJzT/VRvNxz6TAcIqKohyLqtG1Y/9afaI/DvexPatSAulJMclS0JOpImFTwXNINIdFNioZRNQGM2/dGfvxkUBo8QFCmOZ5GW2vHSb68ofNNykxfGXkPrilKJNuOdArfU9kPaTyBJYsjsS0OqNfXoS17fXrA1aq8l5N4LjJY201IcPpA/Ctgx4bFUXowRfZ37ZR72nyF7N3gzbw+vOmLCupVqzPbb85/eAMCWvjM3iYbzqfmYsOMz5hNu5z3/POM0X27exC7nj7edPAPFVBTUckl9Ts0+OYwgOUKH7zii43XeM67gBXDOtl1bpUyG74TGr5z14HLcoOmXZL74Fq7gJbgdfqA9gsM9Ig4frPlgPjhmXYwGbynYr3SUjbHAyri5ZU4m9UQ8W2DF/DdWUC5eNBanrWEoihXS2IK21c6yhPSYF4/4r1wxsfiWnVwvX41uoVJ8YQuKBXozoZB7MfC0ddftrvDu7tXzE0wbl8X4oiy0wuUGPVqk07PKRDlNv66hJxNdX6eRcEXMoslyeHLuV40EtRZ/CRGHKiI1+bRgBS+DlPmfM0HKirw+boNFXY7JW0OhTWBt3n/ZjEq0ZRelbV8vNUOiWe+s84urQ8yToaZX9QzfxiO8rCLN2yXFHY5rU02oWi78ohx6g9ef+U3G3aC4zNHO3ZexzJfmAd/KCx5L0d98vgQIPkTicSx62Pb/vjfQzdXbM5fqM89qwFJHei8Hl99esE8W/pxJ3TcC+uI00fnQupUS3aORyHq7LAY4LEaX0Q33DCawBUzmPks/l7AalfP6e7C/Hx6po932tTjVfrFH10cvKidHn6uyX287wne3JE3dKFdoyQvvJm/tmgg0YDlhXcP8LavymhMryAhVdrodLW+++108K8VyOMBz16Dn3L6VCcktckXr0v7gkZt/1YkSGSfuE5ZlKwNOyolZydlDkWZ3i8v+DzP/jvQxaXel41W7QbkyJZEhwPQqE/SJIc1khzifh9m2/9+T1HaGTHYyS/n9XalCrw984rNdd7fQQM0di2z1OqQjlQYNTTnf+y7e5Ovzh9+/jt/ot+svenjfTVIo0Gj4FXLcrqjRQZf0sS4XazjaNrKA0B8hpAdRUXkU1+mGQqOZ/UXL+mqUVoDlJ3pMOsS6qmgRN8J5Of6xDwJKB/BxSLar/mNKe09SodTs9cQbtQjMcjVbqfbYqSyZKULZn0kwZu0fT2hHR8nvJCMj9ex+yGQF0fxwVKy+qbT2vxMPz7CPHrQ+Prj6gniy8BkZlgW6egJ1REl+fnOdiIy0fr9fPjwvQZHZuqxwuup+Ypw4vNs9rgM0LgYbzGEkVRRaZ8EaHohGkqYr2XiZrTS+dOsQpjiKcbw9NN0+MXbyXwemCZvd97GsF4KvHawJpdubuQ4quYClGPHmK0DbSfd111Juzcqmc9LO8W+E4Nxa2/M9vtDOh6TvfHTU2T37d35wiVdwNHQMLGvT6az7rCS0IyPeJUtC873vVDAySwPTL+xqR2TiR6RnXNCy5TI3vhZORit453H8P6itH2PD2fYuCMillqNKW0u2hqiAAxyvV+faFxewwmW1uKLP/SwQZQjoLDGuxVx2fYVDc+sx9Ckn4YY1cLxNuFjbSIxVO5Eq3dZO31cL0axD8D2ekv45l0ow996jutK9CbqcIzm/I7fTp6l1SLtMlja7pnsYDWkw/UhNqDIYznzT6ek+8txgiy420xDWcNnviSC1w8twQ0neo+q2+LHd+iEghsf3/hbwBz/uJ717m+9ZGY7DSHmRKNhnbV3iP0FEC389pwL21KDFu42fZeYRoPZ5zXMeES3wAzOy5N6hCCxF0zxWlWftFeZoGsZLJiq6hHnWdeft8rxdCJEOQnRSGrpDFMdL5glZ9uIn0N6B0jdLXOkWNV5sjuvpVNjF8T9Zl76px8O55VBfvG7uT5eEsT7QqerDKx2+u2PQm2ZmedkaIenafvQLAeN7JJXiQYl+g4AqlOR/TKHktXWtkPB0T7i5FU80R9/XSKcz3p61Kd2qdigyHJAt2RHW74x7gZs6NVnRrx/t/wGuYY6rz/SMTgE7SZ+Tmd461in24Uv6GyVbysU9sUDr513yMfYe6xRktsj87EVpPwMAwaj1vbE0F4ub7PTIQdR8z2SWUPXDvH6VMNZf490yV5tND7TrfvzF4hBMh2t1OAbSGtUMKK7ny4a6uyk/cXjs9sf26HfjAVclKwi5Ot17TdeB7EEzWfCUh/c044+FAOYfbn88TsuW44L1+uhZvp12qMxuilnudzWLn6z9VLva95W0IeDy9y82Hj9Ug1c+ZfvGavN9o//eXd7R1kh2GhkozyAYewJiXLn0I7LuATZqrISL8Vo4tN6zM9/+Z20rcpHmX/XEMw3Rq6HR1+Odh1R2ZamCm8qpeHTylMaeD2GO7HHr6Kv7qTO4W7utT89wyOLZyClk06IJhqcbXaoQ1NdteyMosrr9Y0NErqhDq++vesNx94OQLAljS6jckA8tItQun/vWwpqFLY8Fh9ndNbJhRnFPSqZ4Wg1+MnaI5a3WkS837wHWHnviWFN36eDqCwm1Dr4gJ+v5TwOxn3lyHGrDbMMq/DYQFUfdhWNaH1Nxba+fU0F/fll8Xic/RnjDT++ogjhIR1bmQ3oph9fTDlGkzcMxlaD8vV90JWVFClf9rkgZeZh94f/jeGsKXxEHvztz48/oZ1w3uLBK0i60cprB7V29UkuhIdoYuZyAYvqFBP1OyTRqDTDGZ6DGRIza2+covIrweux8Mg+5Gdvyt20+sUjHmY91sk3Udrqlsfo2flibzNF3hFQHWRUuH92kRBveCDP+QYv7KNUMrFLk59eIGlI6ogbjtagsS09KkhvoxQGY6sgvVn0zPLQkQ+j1lUoHnSLKQcO5XhY1xXaKSX68WM07pL+vuWv2iP2++Sjsa3rBN2/QvTnz9Eb9IGkq8cJr0tM00Hbhg2gOsyYzXVBp9aC32UWegpFcmZEU7V45rLjkhsdk5fIObO+OexS40JvY6xGA4mcBPa3HP35XaN5tdbw+eYGMdr4g2b+J/z8IBYz8tRHP3tStHwSj66+feNxw07XcA+UlllyQfhwOUQVwoLSMF+9fvXBIZ9Cyq9VSa6t9dVHd39ao9fplTFng96z3jAniN/qyHb9U/Y45M9YviTGg2jy+ou4KucTwgrpsLww7XL0uFxIvhAmbI+Xuvfj/4CTd0qXV+HucWFzfsPwSHxmBaLRCtL7U8uB2+1Ypu5BZ0RWYoBqnqE985tavmmGzND1ia/F/oim8TzVKHRKgZmPi+JN6jvBMD+fbk9ZGE1OuapQJGkiXVTnlc4Wu7YA47ZxCZn13yAd6gBa4iNi2EDLDjZXF6KcBMwVG1vvpGB7h/P+bc58uS65U6oFum+tB33HAmm54WwzafYHye5zNmc/bLrLY/v0iFnaF85XzzpBzesasf1myr0xXscx7LulgHsN5+30eH5iOH+wxnbWxfL6NGkpMnB8oDwLyz+9jr67HRA32jR82JmhDepKM+lw4NDyKio7kMcIE/N8lLzB3VQCfKeTQ2xRKTlHktOgQH4XxCgq1xNdMa2hcrLbjB/3tHO2WiZrERJpUWEcjdM8+m0wVgNzLssCceWcBMCXoYm5YSA0x2chbzfyDo8zvr/apYAhBWFNvNeRR8/77Hs3K32LeSeTdKCCdYc4+xTMuFaPiGuVUgB/WcbPvyhZbec5yqfNjrlK57STChsfzftPwh3bth0VrAxuoC+xJDb2j9838JkWEVMzgHJU348MMG8DYvqO3o5XwQNpTKUX5bMepATOAiiiHTEtllKvb+XPBJ8HTYlTfThiC2MvSuVy1zMrNddpP1z9I7zXZk5MJ4eU6W4ewPrJLKYcr3Y7BAEsfvmWaHq4TOnsF6Cn9miZMXZB1Mx+PHBvXbC9/aqiIWvK+hff5Pd76exPQmQuKNkd6mM6RNl5gse7uBKvHffpeFKqNRyemsU0O2yi6Qy4gVjjEh7Lok7HqyANiOzvInHFXp+7QEgVLDxzjb92LZT8V294mW7J9EvaeJ1DWCF9voVBRyvv+WAd7RiNK8/68xP6H/9CmwvCZiy9vel0vk3SrGfY/Pui8ZtMNgiYLvGij4xS2OiSBrO+ZIetZXN2i5CI9nr5xksx2JRs2dcCvMMHwZMAp5YOVA5gV0kKU8/jiw+JGSc/PxSXuY70vq3zGK5Tv/nDk1mPmNAX6pkYL7WKhmD7NBBfmlcMwwUQpV4gyL/3+6tvdIfrGh7d5cysI5tQxw/DHX2JsCO3FWEtfxQBoKdf90yZhwHzsU9iWF+299nP23lrFZYY3rqvs/OsF7m/2/hwHpoDs5pbxd/V8TGh/ac40AU8n1FnNa8YQbUo8OqyvKDhma7jn/9BTAardlrlizVCd+uKhx717XA/eDEsLxPgInyH5QCbgwtcfXBcDMsBjco3pKCIR4UczYK1dNZv4vYuBvSVvPS5f9qYo0BOVnRbWIuInsFs0My3f/qrXM34Cui27XAz4wO7HYsO8uu7ZNojGSL+LpRpe7D8+x/+rt57TwJHnrsE4O7rDerhdIbKRmei0deIeMGC+FevYOYysDkPUDPBtazj2V/LyzHKrgUU07We6xPb9pf/oS3qnB3bVNd5drrm27legDvZS1quSX2Ofv6FGtgL1N++9gA5xw+idnuhHc91Yf/pgc1AQ29ajIH7Vy9Rp+Gld0/Txj99RQsjzudPax9HeKzPHQ318BFNyajfwXwmV2Kek6CcPs7xjRYLT8FwjOWWGY7bwOzXk2BIS+8XH/Lsf9OK+Qn/HmOWIQF3yx62h4PefXeDgvou2dGtdNqhcau43U9/kmMRy/rXNOwMLknoU+Ef0q5ka1WeWV8QAxWBFEN66UwUFHEmvIqAijQJkKs/C/c3/Gdn7NKFIXm6SlKLn56kdO0CDR41rvZ6EK+LR3NHFr4dmfM4ehVb9ChKzKvFiDD2qLGdmwu4NU/EO1+35ixdrhHMc/hhXjYqXdNkFMPjXVyZZtvnX94+QxVsRQy7YYrn71g5MNq37eJ/R85HqmPoV67E3NZbLeOrzWpZcoN4Fg1MflG6Ee6PtcpI/HeLR/bX5lCSYCS7v77MxvvRTNVEtNeYHyS5mw8vWUTUXp/YPhtf3Vg3GxEMa31l++qpxt2mmN5wrdqUrkoaZQPajwDWRyzw+PSDYFpdNi5Yd2NL9o8P51w7rVv4+3P35Jg0J3MWnEv94zu8zbxjRxd+VuQtT/F28bcjf2/X8OP/ePETTNxdl3rIXSP+8bgKqM0+b7iq1hsj+/k0p4BvSvCVyw5P4ifOOmf4U2Cd9md2OF2bijc7mcIzaUz22HA148OWjgBZ8v5Xv+l/84ln7Yau9t4c9NbDrNWhNBNK/W0XsHP3UNAzk2Us7jypmqXUtRTleD2RIPKOnNdx10NX5pzg7adHPe6UZQtLtsHrTXXvePH463/5A9E+rRbPfS076KoeYnZc1sNIxVhRhEoV8Ki8r900EM1VX7YgEs12x67/+cdHpwKVFj5f8HlEdVoBbi7WCXE13yaQGFsVy9M9RO1t/lrwIZLLHsLY81798y3Y+Y2Cx2nOOO+P6pJn61+2X/SkuHm+2p+eIf/yfmcoWjVs84n98sNR/Rulf3nNX2nRYDL2VFNO3t9EPOOyyxb9d4NTPzT/8ut5NbwtedGnODOkK+ralp1ka2o9Kte1VH1/+YZ961X25xi8m5l7fqM2PN3p9HhVXa9Hs/D/2lKA/veWAr1QBqbNHzmYvn3lwIXIHfO2vOjGUTqPUDrvM1WepoE4O/YAN5tVzBn7upvr/DUC/TsDvWxfp2DWMD6gR11jrGzjqpplI3vD9oNnPFe1jHjZOXdFjq4uCT7nRzCf1UaEcaPtmUccM5jkulvDxTjJ7NSUb9RG5XWGKGchFnK2Cmj+MSPoH8GLbu6sRmMiKHcFF3ZNDDvog34UeAt6VAQsc2GKefrtFMTbtUU3zlM1G+MVzuiizC7ZW3udj8MblWiMjBBvaQbx5M0wwlHaDcRQhLkbvXLZdSXaMQvL6K8ar4fTDMY5PrKddD519Yx9Co4Y35nG9UM1nkpGYQw4xkoCFE2a9ozU9V60WfBhSdeY2UVAX2EEqoaqYW7c1ViocVKuqBCTe8zT90kAeXP16Gx+8qqPr0KtbD/hTMIwP8XTsw3XsFfQgRF17wd8FUcFGpzJIXuZ991gX14UyM0/Mstshmz07pOC7iZjuD++Q3P8pg1G0BuMWNWqDLgckwLVykwpNxGtRkm/CujrpylL5NziVLbbAj7+QpmWcMiGc15iNciSBL/dsOTjSfQSUKP1k5mbp9zN5vcvgRwuHkWZaZsz/ag+Ki3PpegY3YLxevPe6G6f9yQYHD+bb/US6a6vhODTezapjDYN2P2jo/kt6eNxnLYKqJExU0nKW/7t5n2ELJm+WHDdCF3f3XgOtRlgEk5qgbguZAoMK3wm1tlaZZN8t0HJtLPNzH1GslHYSg7UsrAiweWgoU2/UzDyZdcipiDtTbElqgbZFl54HrqBz2y4JIC104PYf08hG7cUAUqG4YpP73rF+6j1DihcI4wncQcm/aBglLRWallc2B/OK7W/wSrMUjxHkhvPcLFGpWzmD7HcIDJns68j1AnviXkXcjDnOZV9KJyxoBB+D8F0kL7wW3/EvToa38idR+EzpWeS9+99tnZkVYABeS3x62+XsYIdLTV7vw0ShGchYK+kiNTodlwRHDjHmA7rUYLi9j4wQ8OHYI4exhpdtxcdK15O4+Vg3Xvl6LuA1qqQdqznjoJq08Ps9/1J7vRe1VoHEXsDT8Ti1X4EI1EY3rKvwWeINyJIXmaxoE5ac1JFx1H0whEoWPEnpigIe4j25XKx7GfL59s9ctVahhULI62qKA/UFHzTNUhga1owi0ObAPhNiKfiOPNZyKmA7GDpY3pfJfE4CqiBz19dk+P+c4snKxha2GduQC6lZ8Sb2o5BvSH2Yob9qipm5RPA8OU7okfCwKfc2PTQHIMbXnFHDNry8OpBnLUH0bOTWI3VcZUo28Z4MqKLJ5Or/jcFfe8AXW+ytTnsb6YA9+ztE5clz4o3z76V3kuPq+7DxKrfeXsDcrtKmbmcURrRNXLA3NOCBEgrYw7odkJ2SN/E9wyRj9g7GPLyf1losAsfJauRoNoxlWitZHZfM/3eQN1nEfF30h11TeOXwFvtzM5y2WajXsoFqGJzZEYxa11/mpUbivIhxNy9xxlLinlEaNsGVN38mWgWRu2t9sea47XwCtA8wTsBJ3pQyiBcxYxlxxGlxRww7fUcTTaLzRrCquiwsMwHfhi6Am6ZOxEy90JHTYZCKJTzma7dlW5yt2Y3ZHQlpiphKJvZNnTh73Hx2e4tG9VWmZ8Y0PGKmZmddzHXXW0EpcsCYu4xr6brdorUxkoTokfTbPJPygtg6q1nWi503aCNSQm7Pi6IdaBJ1VTpOQQvTA7MW8G+4t4utZR9Ek/ETdDd/Gp8yOFZpyb7rZ9xuG5n+K3nrT7vq0HKFAq79G9k9gZ0ROcoO6DC9gx2P72joNvorwjGjbFnwe07VC+PDWsQx0wfxO39jze/97UaucqMraHHve3IM8LPwWBk7u8VL9HVB1HgJRaIOHXTp+gMmHP1TQv/FJvzZQUOktzPme13vA2Yp+QR7DM/wFD/afH6uZwif3/eJeX3p5SNRle2qKpuHo1dyefjWzFc9VEGOrPclR5sBKILYCW0xkuJ0eyOclfDMxsk4gsbNRtX7foE5e1mY/XsEHN8hmcXTrfdGq/PEo0bZX8z4PMIDXaW3YhPlpssjYC0gg7K3jK3lV9gQPM0kfA2LpbsuhoBRaGKi1aqqolTu4Xpe5uIf5y35mjMbgHqnW8WftpnMwpCCt03qJiW+3k1JnZ6Q/mFtSR4cDueHnXbImluTGY7S6S2cQMXzmg2aJH7UH17q4vgtXvOy3ikMb+u0lnR90qHx7hzOvqxxhYsuX8Ra5OdzElcMUkRhrtB3G3vZ3113Cawv51ykvUyrsa34rtQN++c+N/3Jx4VLYlQKBY98S5iFXMdhQDZVnhR9nqfu1F93XyQxlBkzsKHdE+xKL8h1BkOly11hI0imOHOIKZ4bjpe81UNp7zS8RbfHyYVK7WUt2ejILtMeFT95u2vYRBu7//wVnT2a1TqDFHhFCrVQH07h1fuHZlm+1k8oiTwgbVph7m5W1XTRhTHH//TrQQ7Pt3di4Rut7NBlvnajckk9sr2hCdiruwGMVWDWpk+PMawiyBugtvngPYXmZDwCmv+muZDhHTc3xhej51ZO1omoYs1O/jjlMPSSy9XQI2bAzG10gimUyxbsD2oGwpyn2SzUIVr9Ff5iJBx9zRn7YIcgKHZE+tBnoiXkoGR6E4F2Z8dFrDM4oaK18wku+0qqIbw9BxhHYYfZo13KZi+39yFXXEKyU5iobmWti8HTvlTZzt9Hqr24jWgyp91Qoz9Ts34oc1r+KtcxOyGvLr+6LM3ymqoWTRYt2pqEhGDfG4s8sMTvvWTFAT/rjMTG2U1+4nTw1pYDZhxJwnm/O+eK7v9yWeYh1k1/ebfoUzeRF/4n59xvobtOzNJoFyZOb5FHqqr8JoyDxI7nnf6X/lPX5qF/UELXzTw48cpTl8xc6fOVZyThPCmIa+Kl2sUoUVPEnftlGYzXLcjlM34YcnfZozfQi+36IiSL8F+f0X98XnwoT2OAm2/3DQ3kRD6sO9Lysj6QAMad4YCj+c5ouXCh2N2tSVQBu3LfvqGW0nuwPMOa+Y3q3XwuW06QbmYfsP8CcZg/HuuDPgz3jviJ4ART/ul4ZEUS8RIrOXi1lkr1VNxmol3lKDi5VSflHnlScysLEAtUc9ruNTPgPiiHAbTxLwTutuXPd64DysY9pU0w+f6lIkTo9QcpPNprXwe2GC4a3U0/fQP/3xc/Jaymzm+Wu7CZYMo7Q2IKz7d7hagU+sTU7DuAav8BgP7eIzsLpuoGnOqzEjom5gFFrfi+SWNJYh+KjAcmvturO7cUT6rUSS413wuxlMxw9meNbK7ZFkwI5y14CeuSYKJbONp1wbND4+Yv/qGMVc2o//jA2a6UssnI/wmiFxPJbFMXQkGM32mcNZ2W2aPKxuJwetM4a8SWmYfdJWPrb5tkOIbDXOLjZhNx+YSQf29BRSU+NsNX64J6qL3mCNcNbRVd7c7iA8xxNJqs80m345GmNqwYNHWeGY/PIX2cRmH3/ziSbwykHOyQ4q8pEEjwUujluPnSp+RsEdbdm96WGl3i4rX3owZdKSBs7iTSRAVWjfP5zaEqFwaaxzADCaBePB7PkLWf18+PceWwoEeFToi/6+j/oMX8GCM46Efqm68YK9A8vpzIzuWf0wK+4sACz/ieoo+wZh90xo2pxsQP2Fx8MMrOLHKYMHj/e3G1WdIoVqd/9iCp9X3prV3ADdcEe+RqibzuHiDA5NTjJBmxP0wNgkyn+WR6dpORv/4C3P5hGehRgFb5jdqDyuC+R7z7ps7Vgt/9XzFG8GmnJWSj1H1eKfEeJ3tgM/fwfnxP/HauAjYdrnFa15rMcl3Mql4O6IWbePMIM7VPgTblUlENCD1Sgwt65ZTNy4gQ4ojKqWPfSXam/MN3eVhYjtNELrppD3uoM/xgeLw4GWTK5o9DD0+0XmwlI6Wt1v5T9/uF/7lIHwPKL4k9B++bEIfABzcqfg8rmzOb5tKAMXDMgsrJ+xo/ne/gxP9UWImr10w7f8iRS12b0LMvb7lc0tUA+R5Bf/wmn9y4w5K+8npCM8pns7XLEK5jACfhHQ0h26la4ge3vJv/qL+ckzvcL88Hwtf/5ndu2wStOuPBXPec7+sD2kpkfc5C6flyEFOpjvo6/6PGVrzqfpWX7WK1E4foqnnImOrQ/AGpVEF4q3OSjwzJXagKusbnXDmZdPjQhVwtd2RjvnE0Cx8yx5yWQaiD/W2m/frvofJSUfiaWlujomh56BzZ0XZ31Yzl/XqqmfjaVHx/Rqr6UhVF1nnnYOf9Qd18+S1LoAn/v38eTYjHDdAD7XM9jIPO7E4fm/wLOcXneZnXC36u1RIWnDcPcLZnGlNMSKynDDN310y/rfvffC35ZsENyIG9ZIvKGfN3pJg5bFsUlezBOGmV/Fw6rf/fu83ngseSsHUB56P2O7WEoeVfTXd1OyOFv1LTxrREC9630fHs5yRYFnf9fN6WG4NC2NaLfpgyB2rgcfzEhHvYpyy+Q8kH6zT8cL8OifdHHToDd3qVjDcHdqMMiWzIE7dP6pamhPM63rC6sI/xHmv3EB0rD5HJu8rEtzEb9xn170Ed6EOyIHjPpvlzWPR89cAb67pMR7f6tFBm3PYkQUfUSv+PZYtnUVIjlifOGPBzgGVGCNFXmVVnyxIFYCOaHh911E8DzTWlCW/YfvQiwPeKk2OThmLsHh97Kr5slyDIT0aneVWUQVL/iGBHK5kLKyTuOOHSuh/foMEy81Bg2/fZuRsJaCr5YZ3+uP376ru2KNVv+acRjcLXisv+ukVPj936xrC7Sljzj03u837mBvIFZFBubl7VDytHA0GX/v51yIYoyENISyObBmvJpgEYYUVc11GTC/uuOPFvGzRs71m4RcUsHvhO7A5pUCnZTy6DSIJFOazZvprUwb01a3Hf3rZ5sIN9Rfslegos4DOSdd3oyQYgL7e+4sl/RFm2yMoBcxzuiHtJXnHw1Tu3/A4zHei25LFJ/KgPuJf/CaGne44+/FJUkDC7K6JAlaiowuLPmPuN1VQ1wGn6PFwV1g8sF0mmn0foeI1iMzfSQKff/5v2L03zJE2U/UN8bKlGmAgiRC+zOnxjCka/gyT+Eve8Ht/8Ea3iNlBd+KLX02BPiaP7UvexaOa3lNlU6/GRf8YwXYeDQCPliUu2nsYTOeH7MMyfkxLdVJ1+Fnd5cU/EcfJLt2YSKc3MHirVBwfLu+7S12qPObpkt+tq0H+KCPo8/FAtzvvac558UpBaF4N3ZdXzof37oPhxw900fObZbzAC08HPBcvC23Nk7aGDlYxc9I78KGjYgLL/2PG5rPcKtN0d/kIfsrsJNRiHsCnQFEm/7H95s/ks/j3aNBzvKTEEkllznOuORDrqMDK7AVoOl00DQ6b04euNw1B9HAtGlXdGJx2ddIG87CWJMTjKSUOc8/mb34ra0EdmPUJ4mA8Pg8uECMW6SYVrojL8W65CFz+sh3NIJukMq3Vj+Cl9MeHo9qNBhxC+ULFXV7Gi/8+qA82cBJ+vkdzPvO1Bknhf5ipuUtjUGVey+wTMPp+vw5Vc1eUtXx5CykLrHAy2wVfUF+/18QTUyGjbLicfvqSuHrvmkOSWP/yBhaGYsDZ51y/4SL7LXOYuzHHi6+8ofPxnvZ7c9eN6n19gNI8XynfbxwuRue7AffbnOHeinfx/MuLv98zZea+Ccyf/0fmJtFxuyIn9A+PDppgMk16FWZ3z5EP15fPmKetWNYK+RvQ5e1/8esabKppV9zXyvJ9psFzysbE8HL0y99ui3+e8woStHZX3cKfF94t6xnpa/r3049Iuh7ycek1PRDbtcOqfyY6qMyp0aJnn/znD0AnpccsIR0DplvyGvRNGdIC+epPb2FYh/hDV+XeRZMLz7f62V0+WCQvFk80niMY1HqLJXKts/nvTd7Stb5oDAdDXQ10f0rR51rJLLCuPe+7I26U9fgKmY7xvpsuTPPR2YIjuRveJhsu6aOGxT/hcWj/AvbDXyOR2L/8jjc1quGqJytiuatn0D9J7yizP51IsJvluBWH9gQ3QXguW7YO8b/8S2g+DbEal2TcW1Dr+fR2eCMzJ5gWf6duvkZGuWshNKCxkuBKWMEMO/0gOqwlBabOIMSwhDEbh+F4g1AsexaE53vwXWtdi4KhaNjflYA5//yNj48fSrtDG4+7RJtBH7uZuHgVouGnp6XJeJEdiWjAzsFeQb96h9Z2Hz6OblGqLv6bsRATIRtfT3wC/1S+iO7YWse3l8hHjni80y3p7eqXv6I8fV7pevGzvZeV8OMvstRTzOmKXIxqu86WekJUjezrzOBu+4npfvMKxqxUerhlQsFIoHV86laehiKctGRXIMRnbl9KeOXBkfZTsq868yBLYFNJwr+8Yzye8hTCp7xfGk9KFROUewOLPvjpyWr02wnQfTfeljzJN8en54TgJifMosUfb8Swo0DnKVj481PNMtq06DPW74Ufak6ng6ap1aNOWbBKOnPMN2n7818Mq0WQzS9mUqid1CenQBCDWUndHHT/y5gtRH43Gk91DVpKU2yOtdqNhaMIkBZjwK7JJu1G8EiKFn3Jwo03ISbHuwKOZ5TR0UfvmL46GH95P90INubDoo/Rsh6IFnfvbsKHiw+/vMLL3ybaDsYZwGj7B1USFptzn20c9Hd/ZmTHvgbasoA44K/jdvHreTCEOFhutWMXElpO11Ej2d7QT78srU1inrkeoDdKIyz/9Gca3RyIU/+PQkikql/ep3KV/JEZt4/K5/r7LRTxsQ4JDooGcVVbv6FUPJ/or40RrEfpPEMmzadfvoImg4wHOcKnlp3MZh+P38hPYHteE6YB3ZtzG74dCLJTwn55xvwwohTOF79imv+kfP6TnxjpXKJYbVnecc/SXTC+0sh86xHFo9G1ze95Meof24DhWrmhdeepuHyVBWIsW+prRan+yyMm+0hExHrNY37EdbTePHoAe6ZfLJSFb46WIrcwH0Wd+NZjjmndjzkqLWGLn/Z9iNn5NFOwi/JCdHTkiJkHWfnhMx3ty9Ys9faogWsUd2IFQrLk7UOPphYXWJV5WPXNqj8hxeE9sQ/NMRh3YQaoeDGRzthtzEnCgoCW+gWdLWGM59fm+YZiVxOmvV0zm/KwLWEXlhkzTTojxoLleoyFf7RUZ9V4OR7u6lJ/YfYn8uIf/qkO/qosmMglW/yZACHpFaLb3dccu7t/A/55uWThh3jRc/if/7Wm6GN+hQAZgAsUE6PZCRUzd3sLEVSs6TOqk2ygjlCATgqPXN4Ri9tT/dJUSF5PYp27uZu1U+3DzpdU+rHRrWOP5BwhO+zftL/C0v/OOxggR5mLmwvbB7N26l1p4beffuY1NhQXVkdDIqESe9U8mVYEh2rZAk9Fq5qm0q5hFbUJRcfHBg2X9PJGSx6L+a9el7qvAxyNXUd5Vpomd9ezBSY9noh1eN44jTKkoGV8SLDocfHiRAZKsmqHhZ1SZEv9sVR/+Xi8fH/7dzks9ZDaZwf1rGXr8Csc4DOHFrvvFC3mf+bq9NM3dLQFP5tTdziAdv7Lf1t845rY9k1Rdp8MCzxE1aBCB0Bu7pFZk93FNBuerrq8b+K+33o2Kto9AvkjJmRfaZ9gTFBXAEl2b5qH+Skbv+djBJ983LC7UYWIg/CM4KyzMwnkOePsMM656uP4s9QDC94ndppCUrgf9tP7o+1MMyz5Gka1h7O5OEkJLP4Co+lLEe3PlxAustuyLIottAkvEkUrll3xM3vOMV8dzBoW/0uCPkIx3+hDhJb1TvKlnjyh4SSo1QjAzklYxJPl3ik6lKc3S376+kD4Womt00AV39S7+aN/e+WXr0/+RuOL/4/QUg/BsdBN8UQP1Qle4zwxV48O1by+x4myPaw2bNEnaOGzBDlbBfBaFdKK/fTy/2dLAfzvLQXxctWuk/+J3fQlPEJW0LZU6aMim2Q/HAH5F063xu0SDO06y4FfbmtmR8dT1p4P/QHiLIko3+Ivr+XXmAISyyOW5vXGnL/p3oDk/RbxJK8o4hfdP6CmODXEN59uMEc7z4DN3s7pd+67YGb+4wTXtP6yM4xBNT9OeSu78OcR56woGeu/D4yuWhEzK0EnNPnwieCs2YiEx0/Xtb2eKLB5WB7LeC+a/PIXivJ5nTA8u9sctQU0IriBbxCnOw78G77uCfLX7oNpsz1Uk4V1Tb1Xb5mE280nG4m/3PVmuAHT8/OJ83MaY9D2eMX04j0G/XPwBUiESWa76zqrZjuiM+zP+4gE982ARpUJd/AzI2PeWuiDnveOA0e/lGlx8qV4ErVnoQbhucR/29wwJ5vebqg/bQHPg/HhrJ6kHDWfyxFX78uz4gf/68L12ibMWrldMFyTsJabJjoSVytLNKnoegPJtd7MGKw4mPPOGNHrFU4U2kmJ+2jbOeD3jktwq6OgvyVpDtf0/aXjfTjFM7oXLnC5wOywq4Og2/T1CLaSfJk1n+Wswc79DkfjdaDbwf9Ws62kPnxu8hUrZiQFfWEJM+T+4NGqsAvOuKmOCF9zh8rqMerGb3Pukd7Smmh29eqY8NmWINwfGgmDs19Nyd5yIfpaAR6T28A5fioOKMh1mLkatZg98qBGWZqcmSN42WIRJgvGPFKJHR3X2bTSAgeGY7AjwUEXu1F+STcU3uYds0Vy68bNuqIQQ9mTcDqJ3Rz0ZQ7m8/PBsv/nVVsv3IfACE2xuMwPZpeHEr760yDW336D5t0jC5GulWsqei+34ql9tUBw0hZPwtOOx2X+K9cHW7Gw0/x4xF/ZgFyVDpSrhc/582UZaM1XV6KTpZfhVtVP0CZwYJaaFnwQVg2GaK/emJdVTzQq/qEB5WmbxK7Oerwd9qcW7G8ExFh9lWyiT/DhT7pkeB7iKmDV/nBQdxcRE8375MGcVUQAvvpsyf5SzjFb9x6gjJwEhq3Y7zh5axI87usEt7mgVuzmG3RVlNmLvrfvVdUUljCir3E32P74eFaTm3FL/aLtg/iHj1YNIy1q1XhbDK/xuzLnVWPeYNqVGXOxSPlsRYGA9kPcYCWR9XiUyzCFQnkgEl7kMJ7XhRWq1V9KGW6fTjaIlnQCK2harDZNy6lqajdVsP9aZvWRW43nYi2A6N0+xFMLo+IfRZJgKMM1uT3CD6eDd6Ugv3qJ3MyKx2PqO2sVT3zLdg7sq155Z6GitM6V+GYkmZOoWyegZoaxpF7zijklOkH2vF+pSC53k5ffSFSK9S1i7rhReCf/yTkU6zQiWG3qeBr+XglwfBgJ6YPI/K1PJG82L4q+qR+82pHd4VA8ROYIacD5MN0MuFyldsGHPef6QbnL4ys6EXJgRryprmsBDvO9YrrwtLPndwwb+GZvm1iCjMwuPO9bqMRiJl71kbL+DwnRb/4y/65uESuKKIXrtUnwdHz+xewtlo6CD68/tjxvxuwyLZDvAaXD8aF306PPI6jys46Fg3zp+LFVSmCkT0m4f2lZ8+09ioxXwJi+Fb7BsOSzSoSlG57Rh5jcvB4stVqVLtnHWobGbBs2cNY1xBZ8MZl8s3M0XTqXKr5lZeumqi3QjwwzPxBlPjNsJiA4t5bpWyYH7PCuemAXlBOD7OZ4OijFTUX1bUvp2Y/4NMfuGrajcWA6YZ+Kklvgo9vLw0R7PbRuGV8NtAQnzMbEM2evtkQ0aLsbsVRvRP2puLkQWJnMPJoxNIiwuQMVmo5+Db8y+7+sV8B5vXfMuQWbivpN3KDdfVWz/eA/M9o/7TtcXHpYnv+Kvt5qzNVIxhKVHrAz56Bvc1h9VxILvwctWCTFDE7d7Wi54PkkoDWGh2zs8MbMpm4i4vUNodsO//BhzgzhjWI/ejHyfPvV5PDQgFnwTRLec7faKoIvgtsnOR5PvpQNl2MkKO9HhZf3rcb9Mt+heqc2S07+GHCnRAm46s3DivgO40G9iGt4OKNGrN1aRNzcbHLIvS6nDdm15rQpUguJh0pYLi5NsrHt+xLWN9ow7CdZPHdW4yCxLDqy65FcTfyi3JG1UV2iFw3K2mabjsDm3Z4KiaKaLEzlFmL06klAVp05itJcot/4mE6vo1l0eaQmtAuZM1SUz1N8mVHHyw3x8cXnUzuyXM5wfKSThsZsrCao4X67b+hqfZeq5mKfMZyYWPz0Sjy5l/oAWnI2GWld3eTP+hmC9RKXUxK7ivN1INWwXe0I8dZCaNafyovAVGqVXFhAzFFx6gbW3XwmRjvP5tSmqYL0dNjiS3HZ8n4FmqVaouSSUPDi7h/+WvGG4o8DQ8Wq4dmC6P59aHcrP/F4nOU79OcRiKmWYjB+e71X4/qeEMdLpGo4h88TIrUgEH3q3XhCUZnCmqtXtoxnXL+Er/bTK5TKl6/JBFIAvJOntOB3W83bb9jC+1tHzFz01zSxIIWT3Yx0Iz3GmMXxt5a+x47RIqdKwM1z76DrsdbIvT0EwayIsQT+zc4ojnc6Gmx/uwYsswJLWKSoT/fKWtG9wmeadKFdL7+kFPqtlLD9auJ8LiQQ4Q9rKnEf8AnG3+fa6uFgdHo+Ef9q+xR9a+oRzbRWnIouiiAN9hNeL+txUuYUtou+JPv6Qrpp5jf8ww9irXwx6/U/N0S9IK2YvcabYD6usAu6V/rEXvThVg1uiwRcjcz+foeKqcHNVcnK0InzjXjHjx9cgM1PGp5u9srs3O4ggLcvRHb4HEVzElYFhmwuHeJF4yGYjttLCAueMe1TOOb0G49dImNij+EX0XDjLqc4XlvmCN+d+eM34MllR+wJ1ibf/7n5Tw8S43KT+LSyjpKKZ7plCz7y+Y90BmywkZNdak3ZZLyuAHLWrfFsW8+qW/e6AP5tl1FltFHFJ0WNkJBUF2IIbhGwo7Nxgb66M7M72Qxo7OIWzZ39JSErCz7J+3GGUTzpzBBczVxbZd4ina8b9oeFQ9XPn9MdUppKeGLBJZ5VU0sBGfHfsr5RNpp6cVfnl6ax/d86znpJrV30479Fn6D5PN5E8D2B/qc/pO+hhGTbVOQvLj7BeNxqkfoxRxPPD2HpHacdIzjDIWW+0lwqVu3TAzpGg7rwbxr03+ZM4XIUT1TanJ1gFM8XAVGh7chP3423OTYQHKjBLN+58CbPfAf8TRguJVZuTqy8Azocwny5OJSag67JI0jf60AMJPnxN3/YBthXn5CwHtf8q2at+PMrzBtB42N3tGZ4N9+IWeMpRlO7jnMIWPEltsJefOQ9tpQcVgfi6+UeTbuLd4dLCxeilWxVjY96OIGylxEdvU9u0lUT3JSFr1m4kv/4FFfKQX4kykCMh3DrOLxlCWXf1GDR5AjZtM69CNhuZizYCFtzbuGFlY0NDru6uRWIpz40ICP4SP+2+zkY4wuUsNnGe6atz1U200FWgHFtT/QkqtDveaF+jgd2PR/14B8+D65uMv9vP1Tzy6EC+ivclIX8nAe8xn8KSt+nEn+X+b/VGhqCeMtPzHJ3f9VY9IWrrlQtIvFHytC4Sl8F0Lw60vXiv2j0iVKon/Phnx4a0W53B0edfGKvND3gNQ3zf/yz0lvWceksNrB5k4KQz+dg8q5+veHQXB+Lfrmg2dyrLpLDfEfMSjx03D/kGpxGBTPcl2HA83nq4SFru//04o6/RXgFpkZc9HE4D9OpRXfogewE/cj5rkp8Jfxudwzrs9zNybhpUJ/zF232jtVNbXqQwI/AJuFUOdWoOH0Lsji+iBkfqu6fX7Onc0z2jewEc6nfSgjuCcFreWd3c/W3VWDxjyTFIubzGN18cPK7SczDJATTZfJK9NnsfCqPoKENtac3UtdLCSu1jvFm4Tdl7TWI6bUsdhNrjzP0K+jx5lYrnAlMOcHuYyJaytsa8b+lUUCsX4E4F7RCtbjBJerthrBzWm3iGd3AhfCwnfBUy0k1/PRdqYk+HYXbIx5+/ujO2ZtY8/majamPRbhOmxvRDu5gzpo2KNDNnw0hA8rjSaa+j7xP/8Hq4h9++h5tT+hBZStw+bxyT2ugwV/NHINDNpgvmNElVVs6L/gzF1CIyuEZecwh22883pLDXa1Whct2gj7xWZraCM5d2DFdXmH0m98KqquaftdCGEzFqSmhEpZIDz/WfDLsKpX3ewPj7Xkes/bHP2y298y+mkW34FEB3fVsYXnNIJh8LTvBa3BvRE8tuWJYb3okll2K1fMz5EueEAK1EkynYtvFU+BKgPJqs8cdjFU2161XwGvwb1Q8uBYaz3UDcJL0mgpubaN1PyU+TE5O2R4xt5qKfuUg31vrZOcMajVO1b5F3S2dGNnBIeP+yTV++ImBvO3Fv8qLnio74psVzya+fWqw+NXFr99iXhS3G3zM2cRSc5T/W8/fkuVkR8jaHI3r1oD9cGxo3UduN12v0hu1fyAT09rnGVODyEUL/uDf7w2v+7sGdpgd4gRL72f/RIUlwn4w56VLC/43d3A394KFnn0OGNaLXv35963VS8Gw8KX68wc+dkgnis1TBNasPMoUSs1aOwg1iOvGJpe6iYNZGoQDKMh3sBDvnpwr9zxCc+8lxMbaNWBaQzHsFOtMHs/LrZrEP6xAXm33VH41d5MOrzxCK9WIiIlHKZ4W/JYXvc72230UcGNza9CyC4X2spTG8+WqK/A81z17RIe84w9N1wAfyz+8HLhAfBK+hx9+0nG2h47+9PbrhSfcjJsbYsEaQiW7ZwJzlKSo5npp5Pnq90ujuFLiU/JdthgeNyumLXpq0qBUIFPeORbr1RC0qdpaP/zDwmPAi36a1+BmEVsiew1Nu20kbiNHtJjjvdxufCkRABVA6r9WHeOqkX/4V7deCRe0s6gcrYpglva9AvltIzLdDoNujoO5QbF/eDHLnINuzGISoYcz//iaZ7M5VD1Urz8bz3/qJuB89x1hNF2FdIv+7n/8fMB7ShZ/Yk6BOwKgPCmI4W6Bt0gUKFIuwgpvy5cRTJWqnGAZD7pRdQcNDfuKSrMPCtrut6tuilaRhsznXWGeeoyqjQdhDry4BcxdfaOAgiCXQHLpQyItzsx5TBpA9FU0OHU333hKN+kJFn/HyJ91Cpb5cYCbIe+YG6d2zCtv2bKwvkXEssxdsP3bagWwx8am1H8F8Txv/3x0ID6lKysounY/nRxkHpM98ffbR8eHfd6i6VFP//KisQ1jX22m25mFvO5N+uObO1CgL/32fwAAAP//pJ1Lk4K6FoV/kAORVzZDBEEETFAQcSb4BBV5JJD8+lvYp+7ozM6wq7r6EZO11/qyk3T2KOK2QV2yANznYlu+F152BVUkKxbohMc8O3UUeLU2MTx7Gy2sZVJBFvojs05oIwZthmfoZD5jtj7wKOdvf8EBVM1htvFMbfGWnysU6eeQ4Saa3ipWlwPMS5WQdOINQ2hcZrq6Dt5YNequHcrF/Q31mB3+eBCNnvfBoMkVUb0dvu3wvvIrypSM/PQ85vkbgU4v1x0LF/I2GNJXMEwtjAgrb9VrB9LEMizCJaOwSV4BT6JNYRiVV/75v5HwV4WyV/7E5WXRTrfWPVUDPouMeM1+VvahE87Q6+Cu/vyY0Iy7BTr3B9pzkFF9qO7wywPMndbD5B99+AK/EdsY3aAvDZ6g0+5tkuXSN3MqV4YMUz5nobJY5x12UPPHj/Bx09vCmeUuHM7+DJ9nGkdTPq5QlQ0a1oZiUQ6H6j4z9vfVAld5frf/eLAXhydGkrEv2XjlFEgPCVm2mzDoPx9mwubWRLTm0iH46SWMx6/HTNBewShJR0m/P08vLL+WWTzM1WKFXlU8Mu/4NVtldb50P15HkuHFgnFTHHSY+BSx4mzbUuub6Gib+nviSm4Q6Fy5eNCEKMQztBYxhdl4N+5l+qL1xJvEphXDHz/XmlPVDuWBmzD5fQxHrcvHfIbekFwWAtMHlcpuN93KNn1NlhPfmfh4rXvlRUy8M20nPWyQsuKcbY0B591xswyRGcZztozM0qa0H1UtfEpXhivz0I6vmTJDE98mRYFnce2rXQIjua6o/h1ZTCc/+qunzCFz8cc3jUqbx8TdyjZ6dafrE6loesilbzMh6EGPwN/PnCmfZ+Wffs2/hkp+PHp8Pxdn4DPPptK+xvn4PFAPFh/vzqb/Z2pBlyowAuvG/DB14r5cKE9wsi0h2LUlNE76A8uMKSzM/LWghySL0DevHBbjeR2Pn2DToGv7JYREdx6PEx8BJRD5xCvvZfOmyIcrEkDMpCnbyR+kcDc3V9qdgz4er2twwTGtEPNDPmt5+dI7mOoDCft9m7M0k03Uf7cXqqfNGI9PzaQQnoc1mfh0LgrmdPDTc/vwrMpBCo93vaj4lgSiS+1Ryi77H4+ld/2zCsYf7xzVxZORVm3jYVzbK+hb7JNVSd1ygbFzhkLSdQq7ryya2MM1aOF1jUWenO1RvnMVJl6DP2Nn2v2hblXQiV5PeirZHMtbihTF1Nh64he/fKRP+YwlN4xyRUlGy3gdVitcqO5T8PJR6mhzZREh86gq2xxLiZGGucMmfxL/8cHJH/75Ax7NyhQsxStIrhOec7kyJN1en+Q/HtRBG0pw97YSlY7+Csm6nOvQvAODBevwlI+3aNf9+Bbb+v0h58/H0kWZMz0ctdQ+ovvMaa1P+xv4MfGfPu10qie4cafxlIO/vCvwfsCDI5lIVns5gtsHzsSeeFrj7N/871T7O8vbXEw83/jltzN8jZy90oyiiY+SrVucA+7NqzfYZnQnppMsyv4r1BqN7pUSjFI7XkjFcg+u0VzYplrbqDtuIwv98oW1O8XxMOUFfRs6mNjm+RGIa37nkGx7l6widRXIpvnSf3yS+GfUteJrOhn4EC5YESsPm5OZ+TRsL5XpoGeS/Te+0n6YM6fXPaTYp2wF380nY+ZWPcZc3B4ZBPNvSohO8ZSPtA7xdv3Fi4S/Jr8eZHD1U4/8eAFvMiYjN/6cMdqTOxLHR97AW6Nz4pxss+0NdMrQXgtVtukCPR+kKLj/+blwltml+BzTFMJsPE9+LIvH0GFcV17zEFf4XQZvdAYfNr+WiYO+DwZoV9OR4dOSeW5Zx1249E1YT+8RkUyogr0o26NAeZlYitQq6JmbZDDxVEIuB5azROiAtu9ozny5etjCHL6W+vhQ948/jdnhweETqwP78bV+vjrpcARrxYKHY7d8jG8DWGzlkPPEH7h5n+8hv55mzBxlo2Th4mbBJq11Fp6Dbf7L36Ctnles7jwmBtLkMkgnUZOwtRalyB7y9W9/0TLjfOId3h4KqxFka542P7+eTc36OoU3I//k3/0N1iQiyq7s56a9MgJawB+f4qflMIM9CyQ6e80J4hvP2iPzuLfpgiEc97Ob1iBjkRiT30+CIVxaJjxNyWfm5gNBXX+4Ci6wC7GKrS/4i0YpJGl3ITttmInuvK8KoK/vgV6sMxZsEzoYdTN9jqEIRTBsjqoHD1kT7Jf/xpHZma5c9AVxF/Iifz8KPUL1MawmPzUvRY4hQZOeYjEf7vkwzX9jWq9sl9pCjPub14Bt7u/Met7adnhulRBsrTVYoN5qe/jlA/ysfCyp6qHlskMiMNXrhULg6mUjgcvRtW0J5lPwY796IoFs0f2uLuNOPtwAUqUpsXI/Kqj7lMu9cShjC3+X2gdNetfBQg23xJz4eCcNhY5++ew4+R+xttlbS2VWkqVqJmUz7PeeMQQkIv6QBOXw7F8DXB7YoU+rjEphBHsfPu3cxVo0LhA1VxKFYZYdib+v3wH9KqKCW6r2LF9u6pYzmnTwx6vJXSkH7bk6ozzKOjqbeO2wzLTz7/vJcRudxLA8JdiY9IrlyyAWvU470H/7YZditQmkXB9qKO1ji4foVOd02l/Wp/WDVbes8z794g7NT4uA2TuT2k3pPBLYKmnHNt25yZupfqHTo+vZbb5M2vH1fpxRMqiYEW8boMawvQz9l5YC499bCobjac/IrBPtuHt9AD02eMk27eODxq9lZkYUqQqz9afTjodWqWFW0QNbXS7T25erRwLuLK2ofGTPsm3uDw/m4rjuF/zUlSM2Ni7kloOIc1ye0bDZDG801wUmW7x+x9/n65CiaG/VLHA3KKfx0YyM2D66zJx5Q8kiK7ujt71ziCPIDY2jtrAgqfcJVRvyDcZTcPLBaR5r4nvxq+xxnZ5BMiuP3ULDjKWaZiryluYOH6/9t+yV9pzp6eX7JubgdzELP9cVWq5xRWc0uYsBVKjhGM7nZP063/PBloMGTobH8biOHqXYTFvo72JGqXqSm7huVkgHJaQmM9Gcx3ygwRmSipwxWi5bJF7iKRvvIbEY0WQzZlgSEeLXymKu9iVCquplaNh0kZF1tmdxJ3WXSK/K+5N5nyfPG283M9EJlktmKwsqxu9tkAx3n58YuW3vaBxit0Cm03yJq+BDLnzavpFSXh90aSw2iG8fgYRSz1LwDKpH23u92MMqVw/kIvu7djhGaAVyhgGP7PW1haZ9nuhmojvDel7GwzyWO1gIprLlRbu1bOFZb6NrFoRtR8sKBH3uOOgf64HRLaNoqPyMg3coCdasYCdoA28LlEat6bvyHq2wVvGgd9mrJ/anGAJ22598CDu1I8vy6pbC5McrqvbnET9qdV/yWQ53dJgdt3QaT9E/dc/Uq2b2Za5dX1t+XX8KeCD0IZu7tMv5mr2v4C54R8yE6+1wsbICio+9wU8zqnKx1o8cHodgTfzX0UD8YZ4T0L+xgcEsPCF3fhABjXRCtsNSlMwxXAynsKuJJZdDIIy5EqLh0tcs2J39Urh1rsJhFx0xnxtI0KPXR9r09zPnQseyDy53C+JVoRCs0K4cnufORPvE6ok/1L1N5X5boS/JDLb8DJYQ3mJ0QVGMG51P87et3k4Nqpp/MZp+n0QD+w18kZRkh0XbikBYjTFerDVZHu5W3N7yqwrv6AD05dYQdGzUfbipYsTCW81aCqVlgj2uEPOuM01QeqwLkG+tjfdmVMXsvH6e55XXr5k1P1WiXfYDhwxVCm0W4ascZvUjMyJp7xNzeW5yqj12mYE1GmJZGOtS2W5etba3dGDmK9DikUF5/f09xNPTtvwG736A3N52ZNX2D9Gp0aUAdCxaLLLLJebQkQHN4qpiZLUO2uH+zqa28WvLnJtCSlFctyl4e296COC+EkMn3Sv0SCOVxHV1Q13vdk9tXTxCEnurWTm2WZkYw2MFrChRnoucZjMkB55DrJLJYoQs60BLkgXZBEu3fKXSYoBF2i5piu5jKbiM92g5dxfM3823bT9XtAGMvfnFL+UBNr0chQv8dDqSUFL3QijX1x2O3YSo17lu9ydOUqiz+sLOd0JjGhuzKxRDJwhWzY092md8RlS+z0jQ660QduunYK6eKgvOUhozQbIVmMZTJxuku6WoBziDUfpnss0FzoWRfGcgFrxna2vr5eJzVe+w80aPrBups7vTZkL20t5ndhE8WxoW1QDZATxClPyFBiRd3vDqmwO+mP0pGCx/ZoFEOcMK2jaoCTOHwnfX3FngxJ7NHZ7o+trVL3ixcKe3/IZrB/pAA+IFyTYf4ZEWsJxafjazw9IWZXaXYayNLXPfC7kda/ezgvPLXrFN5cztUWXjFbo02TE/OdfBpK8egJCW5CBJa3uwlsPeMEtlh6tx3YvBWqoRzIvqzVIDhTaTdx6F03Xmk+V89kEcXRtA+G6VLChhHYvZKk3Aj9ZbEhy6t+ijBargbt1yFqyLt/3tdxcZdMnJmD2ek7KN540F2CEeM1cnJOjuEz/hcaFzFrpKGQwC7jr4YGXMNoguatrnKxgv5hqPL21pj/tXncCmxoi5Z5oEQ+mMFJiGGypcoEKwjXkGLJUPrBr2MxeB8qAw6SlN/cMi7vTtx4L48K6Zl/edPagJPOHWdjrm9SsQSro8U9gHVwkPlTZd3LzPa/S8nztMt087HtaHbgD5zhdsq9MmGHbsm4JWKwIrD6+y+/UxS2Bar8Qa50rLzc4JwVnpGdWsYBTD8N6+Uf3AKQXHXOYcN8sZ3Of3Iws0tre5ZtcziC8mY+bu0Ymx4vwJEt8YJMTnPmCBye4/PaEqXq5srhZ6CvObIch6F0M8XnZ3CaLmfWf+GyokyNGSDcZKkxGvrWzxHDlG6n7QyWZ2eNg88O86clJzw8j3smzllPsR9LckZstnkKPuoSbTlj2+M3zjtuDWIkjQo3hhWn6Kwe7vmGeQnB8D2YjVKERgfu6gdteSOMoDgh4e6RWSb+aQq0LDkqv6c/itJ4L1uR4PUz1Gw3VxIttDM/zWbwFNlYTEjYMmEOlyTyHY+huqFPIHsZxGM1iuw4p51+5SjpvLpwG/UT/Eub3iXND3IBlTPSfeMWeCLvINRU/ns/vTA76y6go+7evOTOLynK12KiBc5gOt6eMVj5V5zJBErimzMPbKobh7OoTnr0/NdenFynWrr2A8KgXWk9ncvgTtSgLbrEf8mYWQizxcXtGIA04sI3LRUC3eJrI34Ze53HXQ8L4jih66kKlqj2XO7He5R1M9p+1DbHKqe54JVyF9mZspPBYFMjj4orgTB5FHziZ9RsdcSjDaRxc0fZ4hGAPZkaCETzzs3TCFlxxiZl0/n3zIJRQiWy0tsiKj0o6rT/uGZtjtybYbXqjX+8BE3YVn/6zv+m2vgKD9mjjvyo0XvqydofsUFrtMfpIS+jUNmxkb4hW7FZLvp7YDRk+ELqZ6yPLDGsNiae7ZOZuZpTI7bSxId/RB8Kqj7ciLsIKAshkzn+FaiI73JnyffIc/OqJtfxhSiq4SnGl9qLAtXizgkA/Rl5DtQ4n5+LxKsNwvNeJdz5aQHmpSGNI7VKjynL/ECC/jid6PS09IfkPt8NOPR7pXKdibi/iNH1ittWTePr7HQhERhnVUrckt4247xH6bAUHRmp31ZBH09JzPtBcPEoxmSxoPVVdHMH84L2oIptg8nTMXvZNMZkfpnsTsVCQdgr6s8LO8nMse36IaRFUD22r5PB82n4dlnE7iRrk680s26Q1i6kpjQdm0QX8VQ2qko6kTm+3kfBjsmYvUl1UQ/xShfDDT5g3qdDH68Kv/62OU6L/5gkm7jFuIfBVcIxQEN9aqHZT71wVt8zjTwWuzYCjyr4T0JqfEl/RNzvll8MGEfMOWj4NXjulxm8L0RAFbZ3sSj1KiuGiLyise8m0ixnze3eGUnvfE+zz3Ob0rhf+rR2Sr5beYD5c5R3Mqe4wUdhIz87ujMNSljZvFAO2fXw5ODiH2xtnai1ipsHLIuivZqGEZ8CUuOEh9M6MqCmdiuCFfhWRxCOjQs53gfOMUiLumzy7Hx94Wx/j6Rt+5ssZSvTv9o9c5ka8shBwQNyGTIQLZYpvrKRX8udIydN26HtXUq4EGY8klfdIvqu2rqKVBN5wNdc91FsjXVa68mM2hjesXsZ/JvRX6fkyMfVG9WD6bWkbb6PJEyxsv6KwLLKEYcwVDMD1J4tqrdcvfWa+jRWgc6cxdhK1ySLcmXN2xY1a/qWL+ImyA+7pxSeiYj3yqx5Hxyz+F9XojDt2ao58fXArFibnY2284PDOP+avlN//LF7PCL+j4ONTtQIOggu1DWZAAz4egazWyR+1xydkaT2+NzjzjjJZZcqBvA4WBWOu3ATyfSSwMyyDvX6eHZ2T0aWI4P1jJrm3zhO26W5M8LuuSuX5ZoNyEiFiWocWdXFgWusefkK25c0L8lPoF4m2tYamX7wE/n79PtAljhkW0utv14eGmIDaLBwnNwkPjrllbqH3pa/Kr/9R3NzKMh8pkHjtm7bcQygxWSYFJ+o1GexxifIXRTq9kk3ubQCH5Q4fDea7jtoRPLt7qRtUfbPZgllxGtuzO+Qotb0PB1qKZEF+cvtHinrZ0XthJXjcfO4NBqyVizY0cUSzWFP784uXRB6zggwl6SFxm37S3PTob5P3mE8F6fw2orkAKj3EVYz75e6rRGYb0vb0Rd62fxa2NDk9j8uskGOzG5ifBdfgcZiPxDvudGJL4+0SVgQPme0pRiqrpOtSwzZ3qz6zLaVDvEnBvVkC14rkI2C2/6uijJSuqt/hhM7fOdRSR0WHWUR/K8TOELuRedqT65IfFFocU9ssxoGJz3ORTnqn1/qiGWGy/r3ZQeTWDLPD7v8+Tx/sHBuJ89yQcP04weOVyBk/j8mS2lcn5sJO8DNabjUZV+nDyhRV+K/DQZkacp9kL3hfE020231DttPvk3bS+DFIudKqR+Cn4GUYTajdDePDWy0BK1wDgXIqIqsecoe/gex3iK/1EBzTf51J20jCY0WVGVfW2Edw67lVtyo802omNLbpEeoMfOdvJb7qBsFY5h189wymQgPvLhqNvqVrkJFY7JKqm6tCvHiTRYYi74/Wow/Zj3cmmQwINdgw+shNzRa7foY7FempR9p8JI46bzhHtC+IjULZ40ivbFq2ldvDLQz+96+flegW//P3nZ7fBFwPfXnfMT3cbJLIFdcEPKsw85hR5l4aFCbfzZ0PH90UNmCCRa6x4I1PeKV4grQ8V/9VT4izcMu/uq+XKCOceJrvy+m5fUjAmxjQ+eP69PMpp/utoyn9YrbN1/ucHJn9Nfn78xxMM/Lk2VDOSfcmvNLXQ2agAL+q5KaSDHq3gkNErswIx2ZjpcOvjsFlP9e7409sK3TWCmJOyaytORUGR9q6O5Le+mJF8AXQtsvHpekqRGPLVHgr2WlIul1Egysf7jSKlPTLzUpN4aDZ7AD5sVIJP35cYunTw9EnP2Eoml7xj8i7U2wJfiPPc+/ZgGHEHwZmYtKu2R8H32jGDTxivsaRELRqm/I5ypRuYN9OroDkQnYOV9C/irNEbjRL1ZGAmrmkZrcyAh/oFw/4dEQzz1zcf008EcO4uAfvpQWMcL9e/vDPl/3zRhfIAQak2ZEP5oh0vIK/gV88qH1WxuKbz6UiN8iLunG+FiIwxQ7RTEmJqchJ/nDSzYOJvFL9Cgsa7Tmo47bYfOk+/Xs5CMDk6EEuicj1LkKLP3Dd6zbjL3EvuC7kYw+Lnf5jzrt5x86tv+enukR1+sHiMxdZDGi8vWHu5fTnqvW2CvVrO2DoMOsSs5yqEovZ05k75e+DiOSDnWi3JPvragVwsyjvMD94N18yBnCpZHKGcSFdGlt3O7suotZA3pA2xWHUJBsdbv+E43lZ0ftuaaGi33DLe/HX9q28Dm18BoPGPbL3+SPaobHwVuVv9TBfetsyHixVdYbbRddyJobQHfHm5MLue1InnhO1wpO0dna7gs/MpQvH3G7g+LL9XlznZ+xkM4nw6//w/C+r73RbhSYu0dwGUrac8JgKTPfXFoYxIoDFuT/p11veWCsxcVFnAO9/ewxY9rmwrxQwNYURUGHjYU5j8w5CdRoym+UCs9WMnWGupFPkrb83cw7tqh7nshoCuKqfDbez/yXNKWTywzNo250fkZcY31oBZTdG3YyotOKpnu5CQiT+Np2DnGcUoVYRg6Rm0y8hLdFnOK+Y++rU9vlbyFUWnK2PLHx8t7ZkHhtJmVD89jyVF50DXw07vyFpkq5KvV6cQjsl5S0IU90HT4yaFXW41kx/5tFM+TQEe7xvb6HYlhumeWEgWx4Be+vcpEJEV3eHwlQleeFs7Vgy+Pxs3XNtk82zjgJVZLcP8Qo/0M/mJTt+sZ0iddQ4Lnt+iFaW8i4zJfzNPT4OSaXi/h3SOPLa+nGeieZPah/G2Kwm+oKc95bsOzJSfWbhb20hJxKKA+jtgUqx7Oeffw7zQh8R0SHYvH7/8n/78FAniXZhrnXfr/viXvUMP1KNinsFzu8zoXN1pccd3cQT3jfbE5jP8IGGup8tS7mZFuXV65lwwsECcjT3xqHi0QlZmOlyfVCV+lw5iMJa6jALzcSTLHTeCzjP1648XspWPqpxuDLvW+Sk/suWPT5zkd4bsDf6y1f5K8z//ZxSK8cfP26/G7wbaiiWuPptNPmTKt4FpvHBzkYQYbbioP/0kedm0NuuUcKVJG89k3lJflhPvno4suAHzb8Yo6JhwC3CaaMSr3TYQH38r6T8/NNtnaTtuJQtAMR2Mx4vd5Vzut2/0Nx+ttRuMY5dh6FYrRpaxs0Zi8ULWr16yk5Hwks6t0vvlGbbSH1o58F28/+Mj82/gxDzUDxiG8KVMfmgWdHy5bqCp0pCsA23Iu0PmvcHOrwGzqqWIR8PbuqApnUdMWbGQwkcW6iOkdxKy0G+nywUqpJwGBc+1qrJFdjQaoP6HU127PlBD6NQSKFcpWU56NzxvwQrxnRGR7ZM/poelLAvWnonJj9dxLEiHfnyQ2OUe1WGlV3A23kDM1Xpe8sSFBrqrumErj7t/+R8SQ7PJ5lLaJb9FfQVn2VtgyUerfJrvAMVnuWHLr0+nI0teivbvPSHe/IqCZo8tD+gav9gqT+wAhdcsheXiFBIciZ3Ntpu+1qf18KtHouf3sjYmPsE2+70Ui0ctuXBJVi7LuqklY10tfCgN1JGls7ZbBa1Drn4OMNLq1wL5+mwB1rGRUOPJl7m0dK8z+L7sntkTrxX3dAiBfK0Xs/EtQ5Pe+NCfNzWVJ15YY3S4AyXDhaoK2gUdk08YXadT7JtLWbac3t8YyC1FZM0dDQ1xx1WY9PVvP2BI19JsujW1IxuiaIhXRivD83G/kAM/ha0QhaTD+QhbKjtbB41HrZD1Qtu3VJ32X7qJLwO/vq1pfTilXCzaJ2yEleL5stsF3K7mFLWXBLOf/+dX2xv0cGZeWBDvupwXi/KJKjMgJKiwjSTdtDDUkfsiVhb2AV/1C+n3+9nRrJ/izx/2Xe5TmbsvMbCs5vCrLx47qq3QOmviGTlhYaPjeIi2JwkVK/HBQ3V4B7w5p3c0rS86pI4T8+lgA+jfnUE243YI+MI44T//uFrhHvF3sHEhmC8YWZv6pRz2pcThHcgG2+5Pz3b8+bdqMazw3JltY3pXEg9NeQxrUc7L3gq/b33nCY+O2TgEzJC1K/rtnwQT/xlD1uoQeemM9tPP630UFT9eiBVTN0p2rJd7VKn2nfLoa9v8dghrhOqqILcYdu1XvKwO9onZ/61vYQbfCGJEjpROfG7aj2yQ6NY2++3ndM9zZcFuaM90/nlfg/FMhtCY+CE55edXLBTTcEFVT19mN5u36GSNX41f/jSrgxv06SeaGWLsBVkthYj7nX5uIMw5IuSiy/YwlzGG9WvtMPe2D9vh3sz3sA2chGyDLhCC+6MJnqo+//xZP+BPBp+j+yTe5hK0Y2ePphGQ0+tPr7ncO2+4BnAkq3uxR6PuiyeKWbRj24nf9OY8TJGTxS+qTHrFZqtrqtsre4Ybut2XX2X7AHDLh0888yML8YF6BhFIFsk3yr38499NHOZYLSM5aK62OYA7SypCNPmeT/7jjgZLTRiptG/QeplXA32aJrlYe9P+7W+hzZ1L+I93TOsLzfURY2kp4pxD6VvwyjPBkqfS2yMaGxfaUdn+8l477KaHCPbHXGe2aszKTt8QgLWrXihyXlX+5y8seb7G9LwFUb/vggJ6+AesPLrcFtZcqkGznJitACSbyeGjNpzSMYlHH6+819zi+ttfIJv6iHKWH0gIq9vuiZXH7BgzrbMoNJ26YsWoLXNFdRIPZYl8/L//eCZG1lzcST+ruBMfOYSn89rRYeJ/49FAKpryKDF3YhMIQTIXZi/JJZutX6G2zGrpt3/Fkm2ttZ3VO3fwpfcO96N6iIX5PVE0rXccTTxMHMsnBvVlFuQQD70t4vnTMtZz9caOj5kSd/nR5/oVsgc7Olc5GEYWUHRtvPmPr+QiP733cPl2CxIcZrbNJ/+E7mS1nfjtC1Ew9Tua8ggLcpe3k19LwVrXlJ2C5btlUZDu0WN042l8lHwcF4f/9PCBIf17SwE7QMHcp663LKLuU0fbL2PB3JsHXWPwwnDOj5jZy7WXDxoZC8NqjRBnDo7LzkhIBLLuMLIdM1l8Cx0NqISDSufHvRYLL+gaVC+UB67lVxvw+/zzhK+CF1TeubU98gXH8LKMAJ8W6S0Yms07hHPQNiz09nfRrfeDB+L7LLASP8ucHxfSFZpbTqmmhctguD0+FlreCpt4/jMO+KcQCeoulcUy66iW44i/K9jI7xWFT6AEzKn9TAe5coj9VLSWIdAxHMjWZdueb+3Ry88SgDydCmbhK+c5OtHpom9OF7HYtc3e2KfGzPRi3BxqLob91ntDMkh35td5V3bNKnINFKZbrGgXkg+hZs6Mtp4DlT5LHwljNTf1/uNHVPVhEy/m0SyC4/KrUum8u5Xj7BhLIN2KFbNaZTM9Abi3AAe3N82XrY/Yzdzewfzec3aeOctgaKKAI9JqAQlHkebDs39IMDwvL0K2pA2o46oqIkqiYPjWuRhNHqdgXIIXIdreDhbfWZSBUZkG1a51aYtjsE+h0MnIrNm8sAfrvengLHDHvEXxDmhWtqGGb2eLeflHFn1mnSjqHGdP1sGxRoLOkQ/PbJ7RDy6LfDhYkouGAz3i7vilrZC2lxAN5vWE1bgocpqvnSuELy8gVpzq8eu6SX19s0tc4tz8eclb6StB7q9szOGptFV3pSs4BsOS+T0LA0HnwoPHjmKyaj5Sy5apdgWnOk5d3nAK+PR5wUFdN1Tj1RIt2PHtAZNrlyz3l3M+FAoLUUF6idjd4NuL03FXqbVy1YnXSK4QLEGu7qX+Dc+dq4uGDVliqFjyYun5/ClZtoJB2zmXEyNDz2PRZ40Jp1V2Z1GYH/L2QDaRvryLN5YqP7KH5Uy9w6FNCxI6uSPYC11DxKAEyrdxaA+fGz1DzuFDh9xOck7LOdcV55GTbXiUYr5Y2m8wDIUQ3yYsn8YTw2PgN6of6j1qGld4xuw0exGnNB/tsBvLFcw0S8aZD9+4s7dnFcxqtqYgRSigbS4scF9Ux0apFS21mJXOk9gZGT72mRhYU+uQbKaLvl7oLQbG5iYYhzol/kJ3Sz7KmQfWQtzo3dp2sfjGK44G+bxkm6eRt+J5BAtu8D8AAAD//6RdSbeyMBL9QSxkTlgyg4AJguMOFBEQkSEB8uv78L5e9q6XnvdEAjXceyupGk/kqllK2GtOWcIyTQXE2Ldhy4Pqtla61Zc8TVm1SH4vRuAri039Fl8s9rC2tok8N5LZA6YlmF6awNIPdKyzpmZs/q0cNNM5xemH8DXZ3wxRg1es4YjfdhF3v7jUerN/0zDzHsP81MEDnlJvwShrUraE8vUBvdMSTn/rZzpIIYBDcCfyZt8LXvcmfO2nL7Vv9wHQIilmSNzoTcpnWNaLensEUHr3C/aec5TOIOlscD23J+xc4kvOvCYvYC9yM3VON7OeBYvrwbFGPvYf0Zct0sNyoaleGfas1q5Fxj1k8CavnOz4FFr98Q1lSIbHC1/1czrQcYlFqAqFiE3HPw5r1RyRlnnOhXppZeXSGxYllF9eR3j61sCyZI8V7tRbQPfTJwMjSl/6nz+g5UjCYV0ASUC5f1VIDY42GG7cNYDC2ROJXFtmPTe/VYb2I1uoK0ynnGQnvYFyrTsoISdSL6ZgQE2q4wCb4S5Klwm/b9rf80sIsdl6lwcX2Ff+SW143OdM9ScI6xtNqbs/14wR5dzAzb+oi35WzvzEjGD0CULETjirl6Onc9p8GxIkqS2frvqH8yH3ACWN/K+Skpd6zIBQviuqmxCE83eROpjA9UztM/xa83oXefiUuwAXjF/DVbLUCHpHPqbH760M16GKWy3Ioh91hLsTsgMntzCqq3Xr2nOxVsNIewhEMaBBO13q38cmqiqs/IceHCpYXePtZPipewFJ3WqANRu+HHwi/0DP3U8BfcmACJfPI6HOZy0Yecb3HmJUpOg2HYdhdM6vHnhDX1HHXh7peD/QQr3d1Zoe8vu+XpmtVmA6yglSP5zHRMPIe9igDmDrfNsNVKddDL2jGBP4S+uUvSX/BslPcqnOy/XA7mWG4PPKldjmy49FRU0tYaj2CKk75Ia8dsIJ2NaHxpuG0uWa6xU0jVeMmqsTWWtnRxXwj21Irbs259O5ObTgc7xus7tFrxbx8qoAlbQO24UY59NSqifYcmJOmBA/LZoUgwqp2Lt4LxWhtVidy0P/VLsU6eornxtvp0K3ECo04c5J+V296KoMEIf1p4rzpbB9Ha52WVOjsPVB2JujDu8fO6BBGqKQ9Z3dgTQMIA6Ws8CWy3Rc1S8LBqIqrhr+Qifr4O8WNNjhUpLOqmQ20EiyHT7cfLme4o+jwo/dNPjFOCtlsv6OINItgA21XNP5UGbB33pwtNjfet0/XxD2IpzR0jdsWKEgEmCczBsNTEGx6GlyEXyfhj2qtwley9jdEKwNCZLhVNjDzIDC/9kT9ptrlS79KzLBA1Meh73kAcYDS4bC2RGpre6f4S/KsgoMOyFFK3/VrKG9sBFal9eerDI8sCV0kl5dTRCQydHdVLwd7xDY3F1DtH3t81V87wLAaZ+AGjo+DsJenGM4KyeIN39Ol48MArD7BBGBL30DxhOKVD7JdTRfJZ2Nc2OdoCPHJuJee7ueG0+S4TlKQiKkdsWY1qomlJrPiFpJKPOvqK3ln7+T9gfncDn1tQ/mULbxSdR+9bTld/h6mD16rIdxWOdsJepf/r99Si9frqeeg+NnhtS0+CMbvWLggQMijQa31wGsXdDb8FqdK2zfmGkJNIlNrVz0hhbaZA6MZbeT5nzbG95fIylfPaR1cE+8lAYbXhKq842Df/g2fwlrup6dVwCOIDcwTjSdkW99k2Gv+U/qajJiy4+73WAdQge763vbwqn8gr94Qqr8fWLM65WtUWwr4L94tCiFMsJvEHvUs4BmLcJr1bVIzfbUfqeC1dlVssL57Vt4v/t9huVBfRv60WVrROq/2Zgc9BaG9SxhvYENm8+SfoHDtc9wpHtturyGuw9fH16jV4QsVkuzlMHX7ocJtQzTkvrO7mF8ufsUf9HNWoJrrW6zZ0WamW6f/+Fv0NSqSjHXVvVPlrpKfUyPmp7ZQMN579e95u2vL7Iepiod5+PqqiaWRCJIxxtY97e9CGIjDFApfNecBShNYEMvH+wKKRfOB6SrWlqwN1GmT8bWw3VfgfU+vxHvtIk15R+mwgrvHRztxrb+ZY5+0TjtG2z4uAdMfT9mFWLDwuYhjcLt+bgQXg8a4nkXsWU6SRU4X+yC+lG8txZZ6krI/5Ir3qtn11q+QhRBLRQt7MwZZxH7bgaasv98kGxe5WGMLZgB8GMOdczTtV68qXHV4PaJqeU1EWCPINOhpNkP6rIY1zxKryYQkm1whxRcwFo/wbbFOLWwdyEim91Zs+He2HHo5773bO7tmwv0ZLApLohjrYbKmX/rJ0BlbU1541fCe8I8qj+WPl9S7BAY7qKKhmPo1dJPByVY1UeIDWWxBrFI9QQ+0v5IlvuLAnIQ3AJ+dDOmumF/88koTRdmXH/FujhLOSXf6AQcVyb0ZRlVuKRWogP0upk42Gk8W56XewI8OZ9Rb3FFuMjnT/WPj8y8bA1SGmUdVGMkU10uDukMrmKkhZ8sxkFEfgOpzEsE090zROy4nlkWTMYI0S86b/i5D6edY7bQp3Ah0u8916SabRm6cQFR883f4TxIJxlKs3XD1oMf0p+yBBwU5flAEa64fP5dfic4wi7FYZQGIW2r702tgXmh4Y9UbFn9sITmTz9Sv7ma6WJLcwMlfWs7oySWtXpI6KHMhQpiQqxZ02p8OOhXYCLy/k7C2Xw1Phxz+MPRS4d1/9NaGSwVLklZa1r9OxgDAYu1x9hULo01qa4pAyGSIZHuYV5TW1cSlduhmgjd6Z2zm2KYIHjbBr5L8jsfvShpITZyjPVx2ofCa/4mIAh5ExsFo/nKf1pb/eMzqjOeLH5ypBjevE+JmtdOSNstXsP3cUR/+c2ao3W4QZLsKFKAfQLkrfmm2txeCNvh6cvILutukPebiT7Gl8goLckMUeDb1ICoy+kjyEzoU26h9mqVKTufrhm062SPg+39zzf/foFIfUvY9cFU0593dLWoc1y8BzbPyGjZEQzVDmHTcixrCjlt2+LVmjRabK9eG+Vuw0qwCXUCxc+Xr/eswJ+9mOk8D0vy5SvguVlDbaQu9exKWQ9JK4f0oBuvnHqzF0Dx8gowUh/Ldop/5mFUxAybl4OQr3pZmpDTgxR73WowaZWfiQqJdyKc9zAGsmtPruaa9pkizgThFN+TSLbA5NHA48twqd5RB36Xd4itq/pmS2plppLsaIx2UnOw6KvSSy0bryf0Mr8hm/k61KF5u3wR+OzXcOmXcww999ZgI/60w6/73co/PYEarHiANQKN+cf/0XzWXWt2YqOC5TB/ENCrD2OifQvAwY4e1L3W48CEyzuDmnjRN/zvsS2+2lAsj08czO03XLyddgLrgz6QeK3Hev0tDMEdVg/Y1fZ6KN53fq/uD/kP74XLy6Lka1/grR5F7EfxbyuJ+wjKkL/iaD2MNd1/Axv+6RGass9D4iRjA8v0KGC3v7j5EpWyC7vw2tBIwVXILGkyoVimT/LOEDf05EhKOIeqTQP2NMDoaDPS5Np0qBPBCxAb5e6CDU9vJc7zMJ0WfdSazP7ifGi3kkD60lXX7X4YNU87nbWTlyjo4O5IWb22U5VH/gLF6fTG8ZbvljzTkbbxRxxI1jAMaNEKeD03J4xGTUpZ+7zHcMObW3z9WAs8fSL1Cvc8ATv/ZW3xRYXGxPc0K2CSLkDxRlgNcU6m6MrnzJuxD/NUvmALUy+l+JBwcJphTSSZ6DWZT08fdBcWU+QtmbWQ5p2Aj1pG2NB/HlvDtvFhVCSM7A6/d77WYX9TN76AxthytlPdfAkfUiJSH7z4tO/k2wyVatXxn30yNZMQ/MZCRwPFzcLprbBCS5zDCfGvuK0X2IoFPLw6j272Cmh6cy9gzpKB6vXWKJuj4wheJrr9wzPs3Tux+rmLFfWrX5SLh6tRwmz5ptgKjGVY8/tlhGVoA0y3fDTvMygr2//jcDpFQydcPBUsmdli9FssNg/DLwIP9bBgL/WncPqE0QOQY3+gqDrfwkn0QgQO4/1M8bcj+dzAKICfIhOpcX9hJvw97195Lai9rYeIRE3gQxie2P7O95oZP3P843f/8vNyrw8xlDJ2p3jxumEKroMMz0JAsb1gBkh28hsVHJsI39/boKjB6n2ofC8narTcj7VHMpuQU3SRor5MhuV8u6tqaHmHPzwQ/uVjeJQLl7rj/QS+qWpctE1foq9gbdONf8gqpONE//QC1pM+Aq/dgMnnY83hmoMjgUK6nsi08bHpYRwz+NrGdc2REA7LR2Y+/DVgJXK0u7KVvuMEWmmF6P7NiwO9PocWmj/zSPEWb35uJFfwDH8cRcf4lC7ZeH9A1kAfF/vXbNHiBk9AO/cXksnXMF/PztWHvGh9SP9rjnVrds2swbOcUzs8eUDkxqUDYlphbPvPyRp16q4wa3iHnm7MDLfZySXY7veffsvuyOdAWFQyOphyFi73GOra0GkQUceeh3X2fw8AB/9Og1Bn9fSnT94eUoE4xifW+sls8oc36IG8c0bWqzXL2Xg+Ycd+WIy1FzCCV38/0vC+2tbq5vIKgsaEGOlhPMySqpTw5F622d3nK1iicnY1xs0ZdQN7HSZdnlXtaZKKmi+Pq1lpwgDIcmxRpIrfjS9fOxhx3BOR601P+fXOibB/FIxiy6isqSOkB3/+ZeYgDGcjaGKAb0mLJk96W6MrZd2//OikdgUWXZZVyL7A+se3SNiO/j89rt5/Qbq2KfWVHrkRkdMHzOcNv4Pe+TxwVvZdvsT3LAKb3vIPr827WjEhjnj1n3+Bl+6UcOqeK0bTdap/B5rcNBQ+W+p/3MVafTie4Pb+yFQ3Tdh75zyCzXnrctH2wrBGptFrG18m2vn4HKYDcF34brkIb3pPKsmJWoD5aykISu8xXL23K8NN/6JennoD2fRwaGt2TmM8uumSOfoJWG9VoAcSWfk6SrcC9Ff5hXNQCSnJ2iMP+zdZ6d652WABTGlBp94FikuzYSvikk7rFTBgpH9aMB7ufAuFqW3RW8dLTf/462pXNbUPS1R3iTuYgMxj8V+9cvfreriHLxUxj6tDBncdD5Vc7aj5o0+wfA/AhmNccmjm5br+bXgVnr76Acet8wPz494nkAblTJM4+FqLv9+3//DSvdJAvR5+2Qo2vQ/bcefV6wcdTa26nnfYLG4YLFVGXag41vGfXr0s6O1C+aPp+NDINZsvkZ/AKU4U1H9FMMz6QyhBX19CjC91MLDJvc3w2VBCNr2M8bKOCeSTu05aIS3C9SC4D0hJeEb8ZRAYi477f3orxnFe1OtPa1W4+R9G15uer889tEEbCgSb9JkOH39vtGCzj+391unq96mt/ozjgXqFcsypNO9uMBP3X+y+l3NNY3604cFfZ1Rla7vhnyyCGdddaUQvx1pyfVGHf99/7ag3/N0fiF5yRLNNH5H6R8xpvymrcNg/l5qYl7SEs3KB5IGoky40VB/wah2Pm15nMeEPT9vOO6NJu+fDmZx/5l/8x54ifYYlC4oCfIPEQ9JJrMMpefg8hGc1J6w+UrD5YwKzL9Op95zHfNYpmlVf5Pf01uJLOPUvW4f2bFyJtjt+rQV1vAhroF+w3u9Sa74cLzfIB5GLM1tzcuGziwkkUYawUb6dfN30a7DnuQHBTa8hRQE4NT8fZCRC+gNL3d9E+DTHCofv2k9HJxcQOPweGT1s/sfMOFdh+ukUwndUZ6zJ+l62kRkgSZE+G397V1rOtzp2ijwG7HE5EGiM+Eh10fBrMRu+EN5W54nNJ6cMGz52oT6+Ltjduv7wmz8oW31q+/0un7V3kP3hUxpzkWWtSf66gNwveqJlsV2vxy57AHY0tlPHDwEwOVkf0LxQRN3f4Z2O6QQDML8DC83g3IUTmB4m2PAEdXWjSWdln8tQ7wUNW4PJh5PSfzIg+JcOb/ormH+d2kLTeMbYoDKzKDyuAZyzeKBOdPBDaa/kJ3jUFYdu+XtY+jS+QCTsavT92iGj7+LegA1PEI3zK2ul7F3BjR9sfHH/r96j7uFT3bbQCzUt3MGGScVZNKDfFxvrb5QAeLx41DLjQ/qvPjINpMF+N6pgw/c2TMz4Tp2p0xkrbvDylz+op0hOLf4WgOBWr6GbPsMIOZIKHOvIpxb72oCV++Oodal43t7HvRYla0UaENA/PTsdn94WH6plIK9z5gzj3QArXBRXQtwnYta0rVdtUA/+2RNrK7rh95NOnZrG+aroVgI3vIi3/FTPkeJDkF+EI1oc7ZvSb1z4sP21T+xJmf5XT7KhFfUi2dlnA/DfZdeD1r680OevXqDZkgld0z3TAwFJOAXhHKmy9dNIWSPE1mx1KvA+/fb/7ImljmaDLf/h0LuXNd0JjwuMvPyB/fQB0+n+q0Ql0CREQJVcLaLmJVEh2bZAbPF/aWoQw7oJdgS+fZ/1OTiO4FGZMvY2/t7j++xrPFed8X4UI4vf+CgoDqpP5gY2YATFtkXacRL6/HzXerYOmQrXnfmitrWf8nkOH+UfvqbnsJOsORCTk6b3kkb6zrjk3XnuZ7jxTTIRkFjTbfYzSI7dAQk782lt+lEJD1/JIGvpfsBS2LquGQFyiCgHSjiarUG0A0smAmwf100Vtjw8NKpLFiFawVTYvgl7UNsU33War1t9CKppyDb9sLLYcd/oWtMKAj7sVVzP2c+W4abfEOV0hgN9w0sFNv6JxKm6g/XYJYUGhGjZ6nGnnLFUneF02AnU8PkqnzlD1OHe0DgyC98knQkOC9Co85Hu+/v3Xz0KbPgex7nFp+PrTU1YtI5J/WgnsWnTo2DrpRk9sNIE0mvioz++jsBW/xUAW1qYhj5E3EtmOdm9uErVbt8jtaaXzOYanR8Q4NQnchTvQ9Lf7QzeumNAX4so5exCIQ8KOXOIqpRzvlzXr/p/bSkQ/veWgl+shhTDkgdMzsOH6nxIRE1ph4bl2Xs8HJ90Irt+gNYYecoJDng+0whqXU7fv2mGb9+8EvbDA5teZhGBmwQcwrrzbK0HBfZwWOsLAsqHz9dmJxQwf4Y7six7ByxI4kxgyVebBoE7sP7cvxv4vV0G6vKkBY3p3USQGrFL/Tgi+ZrergV8usoNB793nM/JUeagIK9H7D1mfxOH5hVaADKaf289W8MU32AjoxrN32NvTVWTqlDsdUTWc+FaZNkdG9h2n4Xug8vXWrX9u9R4s+uwDo/3YTblRYTZJzkgdS25mjzp0gNaTRVioZuCMde9C8zsa4Z4Rwry6WkYrQbib4DYU+hy1sXDBchQSGikne8WPWhYBXylrQh8IrMWK67kNayGHyRXp4+1HMWlhxW/iNRK2HkY+VG7AdX2BSJpzt5aP20/Q2lkiOJavlhT6k4JUIiHsXV8/8K5vy4zYPBjYo9T9GElvjyDm3gzscvh0mKP05pB4kAL32hVhivbG7r2+gURmU+LWQtHUenVHmBG7Xw02djjlw5xsTtQ7AfpMOqJ3ULicBZFXyG16BmmKzyKFx6R6TIO7D7KBVQV803dIpkHahpXExpmeMVG2d7BLHQOryZnH2CvPZrWmF/3Juwz9Yf19orS5WVeEBiqKEL17wtr9jipGXjpGqBolRywakXUA/jyA6I9eyX/QGs3AuHOBTi4ZGE4TsNtO5VVZPigJhJgO6WNwCqilOogGcKVYQeprjDH+H4SCZjV6i4D8UEDAu+VxaT7yncQw+RI9aKP6lmdZRHKFzYhEB8/YFbnWYT64dhT+3ic2GSf8gJyq2pi40OrdBkbeAPK50RoFqp1Ojqa0oGLtqXcZtenizEeK/D1tl3u32eVLlL282FcEI8iwSIpHdafCdex5Ki148qQKKneQXWffpE2rLO1coEYwMg999hx3z1gflj0sDwNhLwfaB+Sx5OWkPuhCUfO2wQM1xqCythE+PRJEFjD1LtBk5YFPSRrCRYpcW/wnnpPxDdbu747XtvdvCQ1PXyU1mL35kxUhy9TWiTqJZ3b79OGR/BscagcrHqZjpMMW3KKcKTr+3rur8oKpKiwqe1If7PMfBO2uHJwGP8uw/pbyAwa0ZGwfZfDlFliHWmqcFtJ/SVJSh7q5wZnIo5EhLlfL7c1u0BA7zHi80BiayqcL/B7IhCjtnZrFn7jAD7Ovxzf+8FLV7DkAYxKc4f9d/ZL2XnieW2zF3p23wEjVOgRDGphxq7EB2ye38oNBlHqkc61pZxc1XMAt/eFoK7/asbK3Q1w/TRTI5tw/e/5goG90drfK8YOVdlCC50++C9ejvdNZQFnCtFHHiy2/rbZbNB5iBRD37bEeH5WQBvaF/aPbm8tkfjLINbYaaMQU70oza2CgZwlFFftr15gptzgvugVbLgjqll83xfQ5coFG9PDDllzpOQv/lBPTeqQ7UxDh6dLAZFYKShcv9xiw+4QXan+eSb1/BaGFTzuxwB9Nedn/T6/nMB02pVojoNPyBxpJwJUKHsyhtNgTV14f4CTrK7US9UiX5fD3MDLd9bIpO2Uek7VXQSzT3zA5phM1pTqb1vTroZG7ZvN2HQ7Pwrwybo7mrndCP7uT2NZGNEgKGDNdN3MQJF9Qhq9v2JKvnPmg1t5eeLgeThaK2/fC+if+hy1g/xImdpLOtznVkD3h/3Boo6e9FAbmhfevp8ve91vINlxb7K8S6GenrgrYXn6EWwHhQeWPNRO0JfsI70cuCXvHi3cGh+efGpee5KST9uvMD/dC+ppu4YtI8tPKo7eV1S0Rj5MuaME4DlCjRq0i1J2da1Ii2z+iw+K+rWoxp1XhQvBduo7XQYypmMFjoP/wK6oUmt9tEEC5vI6E80sjIHVl2sChTsMEFf6x3ox1LmAr+3IvCx9k3qWhS6Dng47vDfovpYsJ0Bwf5Zv2LVENafHmIygDeULUQYtZXPAGbJWpx+N+np4yFnRfCBgl/cT280ttRbkPnVw0u9XlO4TmBPlO8ygxaWD2lcUpYsXbLMh3wUlotEnFskemQoVnPpUlxuJTX1+MCHRcUcE3m5TNveXCgylU2IcLUtInfoxgvTQX4jmmBmb/+J7jq7yVhLf1Yu7ThBs8ZQ649UeeJzHrlbtkxPF5/mVsoPmqeCjFCU2daBaxHg7PPy+2v3WuHsJN7ygw3TSSqo/5xgsJjy4kLwsgsQyVNmM+GqG94MlEe0of6z+wf8iqGlOhcODGNfr9aPqalR3BN+iV1T/+rMuwul9f+N4ub+t0YniHmqP9Ya9VOXS2ewzWeVAX6P5UTR5B9fDA0rONnu2Ci7hvKuqAK7u6079bJs9v/uELoipcaSR5U71xDd+Ao1YK7BDn90wrVksa0eftIgPb1a9EsRz8PazOew+9Sbsg6sIoaQRg0AxMPOZH4Wbes4vHfbrdqnnneQk4H4wJGqEaWQxHf0uf/gA+8ZTYez8esrqRY/O1NtOy1bjzriAw+xZpCvLaVhuclGpeMltHB2QPczD++3DcY1jfFgPTjp3J7eF4YtTcSAbckhFOMsA63uPSB96Dacd2eLtKbihsxT06Sx0B1HJOXvd7u84EOsgXdR3KxZI+yhtuHJiBkEfWw/0qd+ZxVi5lcA3vMFteGG9+jAA6lPcY9P6HfLZ9qcCTuYn+2cvZKnyEe6LTqFeEhshC29KBH6ma2NLupq1eBieBDakRjTYkfuw1CSMtZfEpdi75xJYF1HkYXh8cUR51HNN/+K52KSM7qWrlM5p+3Bh3zoG0hT1G878np1ghXIXZTtyr5lMSQNuB7lFU19aw6jedwEoNMMgABZA6b+zdcpqNjfJRTvunDP29r/6z19vMO14gvV1ONTCWMyRFn3jJ8X6c2GMSYoL00+0w/g87/J5wwcw9RRA99zo5yz83nyAnVQh86vp0vnajid4yr8Eh2/pWM93Tu3gQJoHvaTxkw0xDCvg2e2VAOw/rfEvXpyeY4b2YWwyHrWhCA/wmdI8apqtUSV8wFDpMHau1GH0scwJFK/NjZ5ko86XMhsr2JJLRKPyvAfzkJoI+Lc4oNbVrNJpf6oJzN59QbLNH1dx9+MBYc0Rn9/nBbCm+2VwGmOCLa66/+V3BHbZo6fWOjsh+aGGALGaZ7S7Rm644S8VEk0QaMDM/SD07k8G+TJWZN7wF53MUw/LVwk2PFqBifeCDD6/Yki4VfqwVUn9Dur2e08NZa7TFVmjDXyILYxSfhtDM55UiJ9FgE1e6QfyGgIX8KdwoH6uYEDc98WFVkBEagXECmfpmdiA4+8OtarHh7GXKLtQFj78X3zMyVcsLsDBXYtd7jsz5qClgb4ZfXC48Y3hmrUn4ESmRM2T+UqHtl54cDpeAsQduz2Yu+pTASH0LfrCLzvnpWExARRHRo3C1GvJr+ITNAJFptae93JBKqcLAOHjSr2XGIEZPvsLFK5SQUP7LG2z3e9/Xa3aP3sb5mJnyhr/sQt62p4Xa13Age/z+cSWcfix9aX8TCjkzwN1zWYC65dTbHW3ryU0SGMQilm/8FqF7i71wq1v9nUpdS2oThO+0njOV22lM6gf0MN6U1/A+n2DCHj7aY/1oh/rabl8CECHzEVL2SqAwtZ7wKC6TKSWKMtn1ioR9HSuw6EtVen3cNr30L8vB7LTn0dArEYxgXpzCMau7ILleR5HiBqOUv9w7/LF3skxvFnGHalfF4Q0/nYZjH/y6+99gA61Fg9tQUuw1zz7en60fAvD45OjESqXcMkYgcofXrAP8AFm+bt//OEnwrs4t/pwdhJoK18DB95wGcgyqz301VHHunqjOT2+Dj18JMaISP5OwfxRt64qrWcg4X1eGHuR5wUakmFhfX45ubBf3g34w1eKUL/A+h6LEUxUfZLF43JLDOVShxW0TmQnTISV61CumlUdX2T3u+P6H15PjcRFUmCc8tU67E4glhaGje37//iSdbqF9Jw/vFpQ+tMI6cX0UC3RNJ/QoogwzztIDVn8DsS/9BcY1NKM//xtVe62qGXvrsBhBE9s7h6/C/yaqYutq2mmbJyUAkYKSfH+0rfpbA/fUrWvYUh20XIMF/P7hv/wani7yPkEf7eLitrXSjjPN61lIsMMTol0oAeVr9jaoEcBPys2iZasJVv4PiogfUcvjGhghzMFtquyOVpJ+/6+h1mnwQOwW7fHpt0BNlFXDWC7Zz2iG97oNGHutRvOf0RSbt98Tnigw9wbLaSBiA1LMQFdRYebi/WEcNY4zLoLB+vmYJ90Tdrdbs4NbniY+jUq2foUNB7YiX6nRpPmG1aWdXh+Z4hIMy7AeNyRGdzIYUafnJfz9az4pXrPBQ6t7zhLF8XLOiBY8ge7wRHXIi+oBXiFgk8RibucvX/TCk9CamHnbKwDMaKKqF8pWPHe9NScuUFgqvCqjoTf8PNSwCMHhatQYNsbDCCmSR4Dg923WafX1WJ6HRXwPK0FAfT5TKfidXKhL7lHHLwMv54vl3mGd2Vv/vEdsHwvhwhu+RGxgjbheEoPLXRmtaF/fHl6xUIAi/Q8Ucc+V8OGvx+QNtvZLP/rhbOkn5C28EZNvcn2Q2mclgK4F26PgDQG1sJdDF6Lb7sRR8jXcwasww3+5IIhOPi4/off+TDf40A/GKze8hcc8Hr+y4fpD0ZZAZ8f+sJ4hzprOnbJCH0TfZAWP7g/fSDaGnu+Kdr8jzWaXf6tHx8cU2UTLw8ZlLTRoEm/pAM7GeEN2tzEsJk59TCfDsZNS0BUYtRQag3XUx8oxHu5iK63J5jqV3OCzveA6UVKXpu9nh5APvYASXetYus5/cpwJwwmdW6XepjhaCSQVrRC/NKicB7ePx82oieh6axJw/o93GyIh2uBliYF9Vg71wzOUSaSncOF1nTTl4t2HYoZG43QDmxY3yY8nOSB+i2ohn94yVjUI0UZ9vKlMo48cA5vlXCfXw9IzPEFvAi2QaOnLoN5/mqtsppCj90yVMF6uKitXOZKhKf98VsvNBIv8Cnvzxg5I0i/Tfe7Aa4sImx/C8miQDMCeM8lDol47dgU3esSFkWkIvF549lwP4srPPf+1hSg8nO+W+wCqhG4UHst90wQP6etpMhd6L/rkcg24cHaydivkc5Ycjqq8ASrN7bTnWFJq9nIEFuzSA9F1KQ/RWYdrPbx6S8eh+w8QRHEP/WFI6GT8qV09//V89Th7DHWsU8GVn87IlQcFIt+p1+kRNrFxJZQD+FSwx7BazVi6reGC9jyqlbtbLYePXyuwJqUw4WHZMMgkntK6rmoHP0vH23+mOXzENACtnWxI70WlAPpW2ZCaRV5Ao6hMYioJT4cby2gDtzfGD3DfAWuCsw//SOfdcHtYc65K1Gt1GHTMTyJsAnaM9K29TLh4fH/8OLL4QaLZcSxAefOEnYXoAMpu785CH85JRyJ/ZxhnNhaong8ka/Jmi9/zzvF+ztG4yNmS6ltqimpEfr61AMDi04xXDh1RtJqXfIlxNAH9+wCaHDJhnAWxHHW3skRUn+KnsOq3fQHgCJhZNn0OnY38g56X/OAHVUaw1kT5A4kx3dED31p1Y9d1Qcw5JiBoy6D+fBY5Bhu10PwqfL/7F3NL1WAQ3APwfLHx7f4jLG3mgMrjEGFF4u3aT6xMpw4xVLh/iccqd7UIpt3HTkBdU50sovues4OTkWAg/sWwTd2av4JXgSKeeTh/fCprbHuZ1NTAv+Cja+B2Oh5bxf86b0y6ex0tAdawqhXI6oHv2GYuMtehBefE6n9SMth1rX3DbztW4e94+WTbnypBDzWZeqpfQr+8K4SS4zhSIjdQdKXIYMHa2vsb/0OKSPaRwdbPkKK6ARAecWaD+9wXQgsz3u2ft8s0nRLdzf8dk3n6BIn/70/lDYhKXnlAa9fwaD6ppesxJ9XbaqrA1G5xxQyvbYL+GcfTvx7s9nmzRjOqmVjnVlcvhQTMxWHr1Ia6aqzDRaAEBi3CNLns1fS2VO2Lajebk+jVVjyeT19XWgEQMbhdwb1GAhfH5ZC86Ymt56GZYtPsJk1h1rStaqXP30nbpMZo9YA9bTlE7lObJW8G8GtV6ZWOhw40FL3ou3q8cT1GXzrq4K3+ADYQ+IfoG7Kmajz6ZKz2oA+5Eb+QaZnf8/nblff4GQTl4bx0QFLGR1aVX1dI+xt+GfZ10EPz/mpo2e908FcfuQIXpDXUddIjFSAv/gCQNtTUteXd72Oc5+BxuVarP8CPh897+f+8QeMydZI/hFdO7jhY+rba89m8/A04Z3XY2oZn2zL/7MOjwpXb3wiscZtlAE8mZVF2N/zWK0rgnxHDti5d3M4KV7WA6V/lthX/PFfPoS5KJw2/FFYZOO7EA/n4l++n/IO/MPDaEqDpR73fFKp0i98ISGrBrb6j7aCu9uZo17RlOlcqvkJWpM/4r1Q79im/8fwxFadEH6f1H/8GPrW1FGT3o6WaF0yF3qjv6M+rXRL+MaGCSsv7KjLYT0EXowQ/Gev5u+Tzra5nQI3EhfjuvykdDbiWLu52+BSlQ7p/P7aIjhiaNO7pJi5JLB9BefoJuIHeZbbYDfvoR6/5YTD9PoDi/dVI7hvcYW+921wzcnDrTqmjz0tsu8tXLh+5P78mTql9g677oRaVRCHD+K2fEfnJjnBYX1fEL9vonA6g6UAdimW2F0MJ5RA2AXwacwtju6V9Q8fQXQdBmIXLx/0eyL38JNmAB+GdQ43/pDAivN1fN/Zd2vKWAsBQaTZ6kFtOEeecoE/bxvaWz0ctspPmMFIGVMi2GezFugPIshXu5WGpSYAsuED5ZFY419+Tpdjl42g8V8/tNze33z8i49/+c5TZjlc7WO/ldynCQdB8RiY9lt70OweBr1RdWaLN4kZOIJXS/3MkdNV5x8X0D/uI0W04sFykfYq4HZxQu9Ia2q2EGOExyUy8eHyMoeFP78vMIC6QZR++KYjxOENbPUYJD6KuzUmPDDhErs9dm4Xq55Gll6grisZ0jZ8/lcvUJfHQ6UbfhyknUIiaCaHHC1eG+Rk7HAPmbxLESdYKF1v9JfBgJ9rbByJkbImMwvNyMUBW1zgD/RPH3e5aqHR7BXhxDd6rG36I3XL6cOW8mcVamt3MuKq051Nf3yiQZG96fnffHwL9Qz/9ESuELctp9I2WO54INTJeTnd9GcEQB8XaHUfLB9bgdfh9/l6ElU2btZ4RIcZiufXiE3YjulyySITXpI+pHjXymwwQbJqJzUXkPT0lZoK3kigR1eCHXtiKRVNIfj3fL0ZF2yJHD37hx+icypZ002+VBBG5IRt9TAMwx/fnb9fRKgfsKFNyzWCCUAlDnnuAlawpL7mvsYeHy4Sy//hsT+93PgcpHzkprOquKv/Jm00NoDqS51Bx5UdwhfSve4XkePBd9V17Cf6B3z/9H60X6849PI8nR/WWsGXO15wsUoOW8WTo8Pj+HthdHQ51h19o4XWKQuxKbA2X/7wT6HkCUUxIdbykdQOEME54SBWFkDHV1LCTV9CbDlxKROaqv3TOxFTheswvwPEwY52B3qd7M5arWYxIZjkA30Nh681nDzcQH30FuoFILaWhdWNdsrcgfBf1823+lUH/+pzxla/+nyNyoXdOzxiR7NONdPkYwMUt/pS5+Rd2NwNeqxtehGidyfO2WDopqY++T1SX0ZXb/zO/hfPwKg0OROavoXhjT7oPsJLvvzxI7h7nTC2aoHNeqTftN3+LWHPgQZYJp5C8COsQKsdDxZ1JIkH64FIRGuPIhg/13cF8Z3Psfv+GsP6Wtz4T++imWzIVvcE1xE+8aAgxvqS/cPzDZ48HBTeyMZ+n4jg3+/vkB+ui8iJsNGuZ/qXDxqodggGVtVSK95x4fzRqajc+OMFGzflFq6pJrsQatwR69ZJrcuiOpgA7u0PETf9fn3SpVO2+hgN7/EpJI2yxMDYsYYeTHHN/+khrqqYaPkcpHT6uMf+/9pSIP7vLQXKe7jTMMUBEBrb6OEHh2caXG9tzly71eEOixU1aqNjQyqsCVgn8Ub1QZgsAuysg3o2R4QTB8hocX2P2ym9knx5X65Zho+rZjXOFduyOeTL3/WRsasRs573kD1ysYWGS23q6hmulx+KIvieQ0KD8tkMq6MZLZBeLCXzo3+FbIDiBQYfzCPla5Owuz+6AnZmP2Nkxmo4hr9fBR/T7NOCPL9spsLQwS98d0iOoBUu4ysl0MrTkQhoduqV8tVlK6x+KbKfJ8aW/aJrvgkcvL/Nv3BWh0jcdgWViHsl93o1xSaBrmzlZAGzNtBd67rw+7A57Nwpq8k+tlYN0zfFh32ABvb2nghq961xe9QLNdHW/KGWyeeNA/EksOXAzb52FYMZ+/gNaiJhvgDDTvKJnBlviwqJzkEA1IIwIOdsjS4/G84/klH0/TTpoFjUBs2SY2znwymf940oQsuRW2x+k2qYRTuG8GZ0HNZ5dZvVdFsv0LtHLs7l127Yfu8B6+Wzp3sLcikzYWGCA1ZqmghTkpPZ8CLYPhKZ4kmSh487Byrk7vFC0fu2Z4uiiAF4cNFKlqT8hQtV+hVun2k0PN2Qlup80Uq2Rjgy/Rws71W1gdPhM3aSyEu39bgw2E8tdtSFWUu0OLK61vhFPlo1WkwKeBOetBjTQztHeat9fwm4TNqPWit+1c9Cdxuw44Mcu9nTCNlUHkyAv/KMb8DSB8EPEh2EtGc0zH9lOKuCZMLPvA44irp3vorSCwLxkPQENuMhFQ6c7EPbgx8aPk4/azHmtYL+2xPRwKYxXLA0RKBsdYe6EEJGtO87Ua13xmO9TIyQMnN0wajGPn3EthX2vR6hP/sh8uE7sPVU7DOgju4N+825TZe9WEaw7EhHnRqSsH7uHATvhp4RNXk/8zlIpBEKxVlGXNDTdIXb7MwHCzFayngO2eUzrRB8lisRuAMPxiiaI01ifYXNr1gy6s0QwYw0Lc7h2ueD3V9keO2yHw23z5OaJB08lrsQrfAjsKG7mMWuwYtCcfHZMfKOnh2wYhjQ23fx2MzzUIfabD5JMtynsNuDstNeui3T0BWEeunK8AR+z/JOTxxrLCaNNxM2H8VAvx88Dos8HS//1h+aZLAW1+JH7cAfHoQF58dA9uQ7wmPe2og7pSGbjf24Qvt5HvDeAI21HI+b/VruDvutyjEa0wcHav/E41up2PXSFjcCxyY08D5dhZRFs91orGoATYfrw1pWya9gZbUJ2kXBnK4j/tnwKvozNf78uV3BDJ4CRuj1rdN03WcaBOrtx/+zd8bM8Z//IaZwozUiVTHBIT356L2vhJpE7zyG7cr3ZDkKZcrCrEPwWlo/auaPsBbqwx7B6CA0GG/Xp2s49DDaFQqa2xSkc9yPFRwPX0xN3epq5ipghq3wPuBAma/bbB/JhP3+ecR7m3nDWquXAi5S/KXpa/rkFFdzoHZFoCGxz8xhIZLsK2hWz2SJuGve121D4Ey9Ej1O4TSMyrksNGLfF+zr1QHMQ/WuIP32OeG6+JCuf/6/vMOSBrdAAb903N/g1v4bH1hg1NL1CHU4tkKDvbSXwnFx9EZ7xe+K7gtXrelnMXygWI8OiYtGwJz9DjF8OdaJWp+LwSTgH1eYxWJJo+QH6o8JxlEtTr6O8/ynW2srQQT35StB4vPc1Av9KDr8Hq2c+kEYWP/i+fd+y5HWOtaw5J/dAz72skr9gHYpfXdLBLu8yLBvHMS6XVffhl5a/6hX0nM+6p4aQPU28Cjc+jyRywua8D5WX6orY1Ezfx+P4FjEX2oHr4ERcLMzKeeykR4+WyP6rIl4+LMJxd74idKZv8Q2zM9fk4Y9vQ1L+70l4PSTBiRf485axHQb3Jy9EFLw0IN1HvoVXtnjQITJGNN+yy8AfqUL0fYBqbuPECfa6yly2NQtvxa29Snune+xH1A/Z6/76aI25+JKVD5rrZG/3GzIwO1DC8qUfPZGa4W9ISbYzvWw/rM39fIsd9jd3+pw1uDpBBMg8kg5n7yUj1/rBURUx9RTkT+MQ/WrIPejOXUXDTHW3BoC72P5RfBlzWy9yvFDeVx/Bka8a6eLv53yTT7TRB2GWjbm57yC+zoUiNxXOhOEh8HD6HddqZPmJF8htkXoNeOJHrUE10tM6h523OeLjWyj4JfIjMFHznuypOEC5vOPlyHLsIp4QYgHZgX+BZ4qNG5/3xqPx9up41dmkXb4/YYlrpUHRFHzwDppW2sV3qBR6bE+YfeumGBY9aWANoyf+FQ8pnS0zCuvZINqYfR58elyPKqnv/eDkUbLgRj80mmKvjr4oE4HMLs7oYJ7UArUsR/lML5OgwrOl7KhyPGfNau4cwtjNb+jZV8JwyhWvKxp7upjvYpm1ktOkMC6FkxsfzMdUJrPPuyn0wutN+80sHk5ldC/6xGObsnN+g9p17KlLK9EH4iBiEiKITeRm0QFEWegiIDKNQHy9Gdhf8N/doa9utslSdWuvXeFyl/9WNZ7scPv+hx/bhFIK/z2efUlBqwdbwVaz3hPhNRqEBlOQQ8Clg+kPb/klGVdmqEyZhnW3A/fDa60u299sQyxWrfvgHJ018JAKgU/9d3sDuuJeIj6wkiV473VB4r3Pmr26Zn88GxubHeUoin2sV/oc9d/iRtJz5Iz/dJKezRG2i0GVQxvWPExDQjb9wUwbm/5Izw23bjEB2KhwGN7iFlKN82TA1IfV9ikOzeYfngj322f8M7TRez7XO7iS6UG470HJXv6hQOBKcV08XHTSUoTTy7mw4CV/bVD8500R/gUsULNrrHLWZ6DOxhlxqijKY9yPuVlC6690wj/ErE7SysqopRNjEihTgPmaPoIv3zRX2SF6NXi7zD6vkc2zVAzFq9AAP+S7P2Rngib8GFfoyZvvtg4oEPJXw96JTdCZFD77jno5Qx1C7y7wdiWt8ydPt/jEU7wiOkvH6e4O81o6+eu303fu86ON7GCquws7A751PW3e35HWqHH1Cm1h06ruCfSwl+JPNEkJbfHaUbm9zP5k+UZOg9H04FfPF5XSopqdNv1EKUnE2u9EensdcYJel/OD2qtXwSNq/bhw/19s+iSf+7cnN1QOk8HRNVEX6etLmYSksiIsD4pYje23cuE3hF7HGDv3c2iCRIcnPyBXTZ4+izPaSYFyDvSnSaRsr/IpEZGoNnYtF6JO3P88tZVbRpUf0mKu7kc1RjxoX/EGtftEHkYBwLNVvtSTM1V14/Kcnft7TyR9Y0G5fyc/RzdUYHJNjOTcroMvALx4kct9akbujo4Q/CdeqyFiqP34l7wf/hFje1pDqh2xAJyUIQIH+MZ0ej9HuG9zyPqHTZ1MFv+yQGiDj7+1YvuFt8iKIM4XvgsYnNSuwB9s38Q+gm9lLzEUoD7eO+pZyurtN+gWyQ9QaX+cgC+m2k+fqB3pJ5aj4eG1lZw+8Bx0wsUR9eWzd9bfITDlG+pcUBDx7Y6Nbf7tcVRxbNX6cBUaYZ1dhWpdYwrtORHAkqdB/7sIBdNhRXlciIZPL1WwhOxqo8yGCtdJk3OZfqYwT6B6+SH1JXetJuik0PQ5LwJuWiS3wnLesLroeXUFOpNSXVHCWXq8yPOTsWMxlcU5dJxrQTY9HWXtcaRxWjOc8D43o16LxgxB8F7b+OdVbouC+zeAHG521S9xX03ep7oQd5yL1/At0dK3oL6AS0THapFk4aod6pbSdd9faknVTp+No4I6QAavfKW2E3aVwLgulVIVlctKOmxKuaffsE/PkD3i+W7TpsLgaHN2XR9fAuQv82d/vTQtFsMHviuI2yga5H2Xne34LbqeH+/bdtg+LK1KanDeY1NnZpd76e4lVTByLFh3RDqBew6kM3hREY3i9Im8fNMfvLxiK36PjIWt3EGN4odf33PvW59eNwd4CBdBr/v3uk8mK8cmadHu+SbzzZb/WuiK8sORC6aF6LGsydQC1Av319h8/26uaNDl07kvZvP7jik90rC63qDtetyMZAWWxGceo388dN17d0qWPiJP97bZcpguDqDN7sPwn+TnC18cgbvsKnwTn9fU8Yqy5T71z3DB8VL9amJhQSwGq2W9dGCP/268Els2HypMytbG2i4zJEvHr7uwhebHBiVrtR2KyWYs28YgY/PK59X3A/7wJjzUPJBT829WwfTpCiOnE674+I3tIxdts8CHlTY++vDJUvnxK41ZCl+QdbvTHHHBy0q4COJ4Z3QWuV4fEoRWvSSLzhfR3/T96TJYLdvqjQuh5hE5SPs1vLdn1/jiCarXgOUUPfYZN6FsdckjpLBtg+fLfqxn8oqh1yzNkt+PYN5rxARLf4B9uY777Lx04b/+OCU2d20eX6NPzzVHo2ZrtP0cEZytpn8zfcrlsOiL1CxKm1fGgqtFGg+Vqhvdg+qbqmezkRuJDDiFGNXyHbuHz+cz/MaO+sdQexuGTx8ebGhv3rM4rVWo18+mOJ6TqdQHXiU3Yw7NlwyM+ZJwgy378cl21t6Yn0VwBkpmNTYim5PnYxdMaLnp20Ii4zGnbJXWwE/31RstlzO+i3vJXB4GZhAu90j1jt1C316jeiOzjt3sjJ9BC47HPA+lV9omi9VIa8c0fR/+CrEmBZ/8SvtCxwsfLyXk4ny2BCH0GXNVTbAecY6Ptjra8AefKptefleYfce2i7RbxIHQhz5eG8oeckczZ3hbc/4l5/B4ieMEndYLGshUMs1fU8K4jaPglr8+YvY5vLxYMmnH59jY5SvI2iE0KCpPdzc2ey0u6xeXeKvtp+3y4JOMeTFzyBjdXPLMTtvz+jy+lhYyUasvyvDrkHFhkEfmswYM6ldIWbEDj7FQ8mm4eWHYBbthR7i+zedv5WTwZQtFz/gsEQt/o6VfNqYZ9KdlZLRfFdU8Pg+9+QVfVk5LHiAhulc0cMGQsR2GkrgIpsX7I+t1o0Lf4IWmZ8/PGeveuuDjEyFKvn55U7B2gL4uLxPd6IipfRgvUxY/DVqP18vNA670Qd2fV0Xv2rbTeegB3QuVQdX+68VzKlSZ7AGQSEri5CyeR5EHvYfOOBr/+4DakSDg7LmZfrBrmxSart6CNxhLn0xfOKgVztrhkh73PG+sZ1u7a/FD8gzVf70nBAbcvjDB7JmvolYs7ylCexaLfkU6rOdrDlpo+mHv/0eXT7oocHzmf78Mmp9oUamqisEHd/QkfO1N6WlPmFlqZ+bQKmWKXwWxXvJr8t2Mx3vqF95FbUbOJVDmc8cWOR29qXYuaGpg50Gayu3/uEh0l+RbPFFQpA9bPXezRuAUD5jf7rFXtk/KjGGykkYVhd/ZX4G7QdyY52QXz5PZTc4P31O6oHTuvW3cUQgSSFSs0208hUK7AOrNBqX+v9M//j52eBv1PGTMxtflTLDW7y11Fjwka2Or+WKGMywOcmETcyr4E//+CBeu1lkuglymGPqfmpfr8fXJMoajXifm7ZNNyr72YL35fjAWkuMYDIl2UQLHyXlUEVoxPVWRNNnD+QFXxPNVrkuwJXIlfp690rZ4nfIS/xTbOk7tOCvsqU3KaTa7pa4VH9IBnju4qfIvpPO1s0N0eJ/kFYIL2yWVl8JNNUxsNuva/RSP0oIi19CxsuMSrKT7Qrtg1eDfd88udT8aAosesKHSq26vrI1E4qn+aQHtm5TVmtHAi8xJxSjnGfsbnnCXzzILvqm8+1xGsXFvyESbrZs5pYpd9MeudhLYmuZwuG1QG9iuPCPTp9ASQvpeSwLv8nMpOud+WXIg9PPZPPg7ktLhXLo6KoyNV937LJH/jqCSL83f/1c6+VYf4QYndLKoAueuoymo4M+0rPB6vO9d4VYck2YhVrHd70sXTqexQ9a/ClCd4Lrbn948T1IB4Kc0zWYZXlXywsfxOp7frH5rTDhxyeJcNO2aLzr9xj80vHJdOdJOt+11ISvW4fYOhEhnUspy0D0yQ5rndwFzAo1Edav8YHVc267QtoIn200rBrCLXqcJfg2IjQFb3r4phd9PF4sB5DAadTd8EI3zRsll84TRngxZNlEtDZGE7kD4Y3zKaDbt2vC534UqfWRMsZeUIC8+N94r7IdGnA/aX/+oXzr/GCMx8RDTCTa4hfHHf3ynwR1unTCB+FTpsMz7hTUffXMJ+fphubDYZna9a1cv0sfK0R6/DLgIX986tfHIaU//7Ardho2Pd5Ay+f7sI6OmD6l04DqfZwoIH+7++IHr8px3fEZlLv2hP2gLth8e9xmaBB1fnpD72ewOPRR8QWr8pl28zt8Vyh+Fx798fnJrV6m/DibKtbl5IB++A83WJ2wufDV99maR7BeO4Gq1qZnc6rkGRwOWPE3Ax+kzJo/AjTOfu1zvnnSF/1fwU9PtiNnpENSeQLkmrPxOy87//ofFQjHm4gttkwxeGyD7I8P/PEjrgoyuGxuInVt7RiM2zypIed2hLw1vGPsdJwU2U+ikgjDclL+sTp4oN55lx6eosU2RxpywL+4KyFLv2BWs70Au32o0luvqUi6b3JBttLjDqtS4ukjbbd3WPxSbPdDW/ar9uHBSy0CqjzTK5u6Oj1LZbnRFn+M6yZfKZYjUjHDp+FC3Dn8Wpx0L/o34Tju2zFk3UaQ12npi4veEdr1jUMPl9tSdZe6LjtN+2qLLZmje5W9Uf8arAi4qPJ/+N5RPrVyaPa3M/mE18ntt3nSSvlTkrG5/DxfavSBVuXP2G1ue3edvjd3WD7PZ4seHeN3rf36P9g+ibtu7Yf3D6w6lmBjlXlsDidmoTQ+vf2bqZFu0kPbByk4EyLKBnLr8HE04fyodeyqT0NfF3xP4OeP7xIu6d79MyVo6Q9QvbT3+ozN8AOnJnT9OZoK9IdHmyQ5YOwflfQPL35+qXX4doixSjFQsolPNO24Zzn21d2BdczN1NFTgwnjddLgtuMEquuPrctOx63264fR5Xl1wd6dKphedo4PLz/perJvBbTUG38rbwN9frybHp6fusHqnffTvrwzAQiXmHh3qW13xNOUSRuvNbGTHRs2rd7hDOnAaVRfb9RuYysnS1YGdPvV47Jdr4cIlIOy86XLOQpGwpU+FD3/wbtFn0z7+8mRj3rCYbXZeinNhEONfv29RU+n/eYoj6CT/uiPh+pTMqONJGTeXwfsnZKwo+WrP0LmRhdsJb2NRkcOjkg8rQPq7j6knM9bywQUGDzVFVEp1+uJ+GiDw4bIlZm5PdkXPFyTtqB2MF+CBa8tWRCKFXb0dJmKzBoCwwcrdOePu46EmZrI1k3z/BV+7lO29BPgtmp4bOmbis2fwdGgtCIe28XtHYyndUbgzvkzXfwbvdcK2wdemlXsOy1NyfZ5i5CWSQ6pTyRKG6IVMQwOmfGPrw5TMIny0n/BPz0gnP2+gCC3BmruhZPLbOXk/OotOZLPx+0u22uBlv3x88ucduO5vH7QVeV/r2gpiOxktYLFL8aHM3PYsP6ABvKoPHDyUAs21+P3CK1n89h8l9uun99XB67oJWArRSMiNqH9X39sv1LSXz0V0ev2BqyF3Zm1fG5x6Oef2FCq5cbx1iAtfMIXfn6b+T4SOYqrkgal/dV/9RSW9aaG/4mCbmJ7C8R75lFFsM/BfDi8cvnXjzhv7VBvODzG8pJfS3/hxjrpsyaSaOs1dg601cdyfFd/+K5teWDU8WQAGDuVcKrK3GovyBzwttUvfuyAPuiQeEg1B2OZyji7f/n/Vy+4OE5nMz8et/6bn3CGlilyN3W5qHfBX5eP1+7Pn9wiJ7B9BPtXOYES5NJ18kJqtpyC6BKvMF+eMXb9SnPZ25AAkVYu6POMbHfUNu8K1q7f+aPxYfqEuFpAHtUw9hL4BKPZnhxwn56No7MTBcO2Os3y6/YFqiFcueR8rUwU+pcHVZSn1Qnu+qBIh4/S+ZsHBynhW+SA23NH7DKtTKlYHjP0OBsqNX/9EWQHJkhb4Ul/+TgYOdHQgkf0yqK3O5+8SQIPxujPjx+3lzr7v44UbP77SEGymnWqFncBsdUbIvTcOh51ss5Ox7f+UGC1fe4oLnZt0B+3pQaxcNKxt7LyoBtRlIOZKBn15Jups6RfG3DNP8TfbFpSztUj12S3ut79yUrX3VzJtogi5bbHCq6agDxfjQmBmvF07z8PXS2gnQHTUQzprThv2FdcBhNr37z0myp+LRL8TEC3SEq2khZ0U8sZGtRpL2Cc7wvE9Mc1Qym3WBinWu3aMhZzKKtHivfXMGLDXOoieObg4d36/WXM3kIm9fFDoYbQl8H0xc876DcpwOp0bdLZ1amPrtJ364/dV3enmh80tPy9jxw3R9NqL2gwckWJdztBd6f1aSxkXJ/P2L49SMdWha2BE5Vv6gnTVA75t87Q8I40rB5nI1gf86cIZRCUWIvpKmDbj2Mg5e1hbK4uB9ayLtBg60NOmk2hlKNYmcsgaG9LLUP4oIfksTOoShpgtS4Ud/ri6116Tqvc3+SHSadCSiS0H8XeZ2rH9NF0DQ+d5t7CobR6pUzZtyFEL0Gjh8aQ9PmUGx5UsarTa80O7mfo8lFueDpRU+kE1in7NgI6NQXdsbDQ5+YemZBz34zIas3ScTa2EpR8n9HDxVYR7arBB3jhG3a6qkxHKkW1tMQb1pfvw1TvJgB95jy2vfodjHv6qNBRf0ZEug8vNiF+w6E70w9UoZLqvi98Yki1+2SEO0152d+FOEFBMh5wps2PdPbedga55pU4veJNyszv3KLxY6+oRdQ94rd2UCO/S4/YjNsVolr8BVSsONn/uIUYsJsxxvLeTBN/aypHNunPjS/1eVX4DXeZusmzyQeJrrv2+cNIu3oYV7U0qtIbK4eJC9o7E2sknDyTelvT0vv6kgkwH04Y/9Zv5P2jBHP+XmObM6tgeut2CO+NNhMBfxp9CFpkwivR3/77eqrT8V0iQ8p1NybXayiwKcvsDNV2ZePf+vKew2UgX6hAZoE/pY0WvAy5Xd13+KZm7258VpYAzqUacZhzis7i/bdA0mjIZLb3b302Gy2HfVQ/sNarSseIX0Sr5JO11IlFLhhW9d2Umpnf08v1ZAUj97ItUOOC98eM2C5rNiPI0bnkfeFoheUvn9CyXjTdC04wx2o8w63oVv6qh96dZy2xUHF4H/ChKnw230zlKFdzfvHfVhS5Y/bZADy/XIjVwXCDKdbyVr6b9QnvWnlp8UczB7cXHPCDe67SGgmYR3plFfi037Z6e97dBBjvDsOOuLIY3y2Dpy+aEFBd1LxgDL3G3BpX4vjrJwvKuQ7QEV4mp/svx1e6yWyTGHV2H2J88calpXQNwYjbFT3obVfW9WxXIKyfORG7UdN7PCkeer28M3Y//cWdV5rEw/fr3fwcV03KunwrwYUcb/SURnvGf+q2krzCDbAWYS+dLJxrskS2BvZC/62POsgt4MOk0F0rs2DmslcM2B/WeFejVO8/xs2H5XnwIdDjjgT2zoHL29PpGX83aMhe/LxdfsaHarq77B5JvhTeAoGICbum8zpMOXT5OCKZOCIjYvayAGZvu9h9bDq07K8jLflOBHR66ExWPiP4inegsSGYbKwvEQ/VHJyxrWa7kr91sgecFTbYJ/q+nB1uVQMaupEeqkAte9boR0jIxyWCBpDOcT7X8lXsMQ3vnaZveKc5o3LdBBRDvdHL15TxIHT4hO2LcyzHaPs4Q6qKE1buK8Lm7D5VsN0bGsUTbl1yrqkG7pDOWEWoRzSol0FdN7sjMtns9GH3LkR0lOGLzXfYlwNE5yNMN/qlqnN7LP//1eCi8YE/f9MqaM6q5MNIgpzuWvLR+3VgxQh1o4mVjNj6LPX2fXs/dg9qb4q8pNrWV/7iEVtG49bjVb3DgUwnquUbhU3PvZOg1cGwsbreLvlx6UwAf1OTuVfzjo0oKmD3uQt/+DD5ODmixyWWqVs/84D88ExX59nn5DtfsptV9mBWervk/wsN1YMRKO3jlaqGtSl7r9j2QDrlSrMoWO5uXVNHrNC1xvrFGhEB8VqBNn4kf7SDEo31JePRIKYVYQ/isdFeq0fgX8oTOyv15Q4XPjHRM2slavF8zKYoLgskqFuRrBxTDYT50xUS9Xdbwouy7U5zpRhw3XYG3affkI1W2PnAKvtBuIBa+ubgzTmkw46nfsw4NCZWrcEl0yNqRFFXsu1HM9F2b2p+9u5FxLxvJYKbBjsi++fc/eWDXDs598P/btLRMAMfjUdfvu6bYE780oBVdlZJ0R8HxOJnMUIKy5SeMD2XE5q8Gu1054QNvnX/8BnZ+3GLb05x1yc03CKU7FTqV3bPscnIUQz6mWt9QWJaN+LLqZbPuqjg62VfuCRw7AjhWsdUC6Q1I7rQfgDn1kQNu8/YghcfePn8Cytjt0VNvy8NWX7DFu+doxIMs14oaKmXSz6LZdfenRiQEirUrmLV5WdjkiAo+YoqZB/pzBZUB9GRDNSM2ycb20wW0L4ZVmRY6veYHM0WLqGsUM3g9/pE+OsRnbD1pKqUPtGsHl5Eeu4+FT7sekNn3ONWSF365rC+7D/l5zeHkB1H+HoTk26MzW/94wfYOtw1xuxLaaDwGntUSVoxaLcmEyU8RY2/+RT7lJ1SVQPX2R3ImMlROp6KEsAKDyef+0n48t4JMLGjQfebVE2Fj5lzP3zBV2rMHTk0Iyd/eL7B5uuIUB+X5xiOTrKidr4rXTa/0xp1ieSRtbkbA/bZnUx5bVwM6tnFitH42Y7yxVtnPhzWDzTmfVfDcDFXZH3m2oDJcaHAztibf/HM+ncTS5myMXxus+fcXki+CoRTm/psw6UBoRtOkhZ+56PT4elO3o4dUR4kKXXekxiwfudGYB7BwgvfLNdCEoSA7k+RoKX+CZNcVPIuDG1/pJKqzxs5FNBUmB7Gy2G4XgtFAA9PxR+/mY5i6kiGmZ/JfEiWFt7aA/StXR+bbhEH89BWFXi1taepd/90JK4GQJ9TYfgyc3SXSk6QgzKYgz8PK0tfo0tkwsM4LINwY8Mdjw/+DodPM2K70NtyOhBwQL09G2omjxZNZhP5sM8KRL2u0zqqrZMeCXCzqYb2NBj4g6qBqJ+u2KIrms7CXZih+IhffO5k2vWYZwW8MIsIoudJJ1uTST8+STbUOJe0EMwQvpEcYdfrAsS+jvWB3ZA86cF0uG4+2GcRtnh7wdi5kI6OKCvA50lLRvnyKfuKGzLQHscQq08x0CeVBHeo9e+FDFMruEMhEuOP3+6OMOtDpiUScPKElv3N3CHZHx0oLoRSZ3X0g9F47U1AZfumTiYJZb97cx+05W+MuqfDSp8GL/nA8D30WCnVvU52itr+8TkV/E4fb/qYQ+yyiazSkaHhudcSZK5xQSAhG9TjyfLR9yCt/EFSKzQbzy5HgqL5SzzrLn85xR+kcOc33dUI6ePzy1uw4N+ffll/9qIAmYxXZCUZLCVTphD47lhGlZ2yQ0t8cCCvjmdsp08TTbfPrMh1Mqr05DwGNNONIMFpJhZVbBzoCz6bYBzLjLR4FBBb4gU9wsyi6hDEnXBE0ggLH6M/vjGan3mU12G1xye/R+5k2hCiRHxfsfINd3p/OcUVWvkKRzGjdzan5yiB7dG5YS9Y7gYfk5cB0lf7EIluXikxVrv4x1fwT2/1Cx8DvpZkuvOlbUemF68sDbSdPx3nKp2124r/4Te9OcarG9OTw4NXO3vypmqlt6JmJHCV3lt//Wkv6cS+KIaPdhDIN42/Xa/frx+04Ilf0niVMgikAqzqHmJMD1M33D6SAmOonn1xLgOXLRQYJdHhi93bJe8m9dxLIPB5h52HCym9eU8N8HM70N2aX7s9Z2QJ7Kf1a/n9fWmBmjO43Ltd6j3fjefP9QzFdplC4F2/7pTsj5YkBkVCBLwWglFxTxzaTE5LNUks3N/no9XR7f3W7PNgvLlXC4REvRF2uWbufH4pCfiW2eHd9VQH43c4m3DcrBjd67XL+Gf3Xe4q9a8+l6M87UFaRYCnsKH65crpw+apCbBbvTxsh0hfjszEjkyUl+lv2OfB2rh6c5DLbYO1VTIEo8YnAjx2toTVejqko751QnQ6nQ74YDpZN3VZ66CjnTlEXOrDbDZOgVaRlVO8XZsuWR/zWk4Ds6GO0M7B/Ao8AaxH8CUS8uRycl8vQW5eNaY/vtFtlrekz5E2ENl/Dem803lAQTpoP77DZgesHHWyTKh2AhL0Z3OdQJd+OcJHZwmNFr8zoNqJkf9ybrI7H5oRQLWCyRdex5RN/MHW4KfnRFG0y/6+vnvo1F5Ksr16FhvtW9KjNcdfqDfjT8pevlrDPmof1OnY2NHv6euh/VbWlrdWbHeddK8CCSgLSYROss765k7QidUytqJ8G0zsyxKkjZVE92n8LfOPuxLguJGXt+anTUeizdSj114UsTPePLQZiOFB/1yOfC9Tq1h4qDm08CvsllvDFSzhzqOu5EoylaCzcURnAeq3vCOnTpvZtPB/SNfZDdsMa+Ukp/aMIgbUrwz0SeeU2hYMoeP4RcCZJbmZylle4p1UR/WSNpcANLTb1IQ6ryxJx2dH7xC2D4J9UWrSefOYOXncXDfkt75LPuWo2ScK9dxLy4YoHD15MusdflTBq+su5+NdDk0vxJoyRsGcUtWBQePO2HYCwsaffg2bYou9oxMGbNvICVxCzcW4ShQm7IdZgY1Xe1jZntaMPZ4XDU6n4ED3cGzR9GJchegh3uPD59To7Fx2ArSZ7lB88Y5puw5TgIvOLMI9TEDNc+/E8PTyg8/hu6OTk1KEcGPrDdbkxVKU9qIBp2MY0/OhGYP5mN4Jwk80YFX/9PrYJH4IrHIf1A+1TzqX8VjAjlxDfzytqTuOKOHBMIsz3nENF3TWEVXo7I4Z9b9PnS166AzuHUs+xI9zSp9G0cqvo5ZgJbIO7vRiwgccEV3I+7Hu3TkYogLY+hMT+bSb3Pnj3I9/+mFY6v0Y9hqHbsza0V1x3aTEtKoMyXexwBbPi4jV5zJG73Fn49Y+Vvqffl67x8GX93JTju0qFeG6c77YNnGmT+SkmaDYo0U257nr6vVlk//i3+flJx/U6VRLP36L1ZN66jaOdo2A3IQn1TY6V05CZtagtt2LjDx1unF9WRXo50dkOcqDSY+PH4DpfsenrfwOxsRLQySge0htlmE0mvujCMVWDf2Fr6UjPd84tH2FJ2z1upJuvHJbQQeGsfCnjPU39+lI91zMSfU6HFJ2/l4t9NDPR7yratntla9SALHaL90532WQ+Vcp5Om1tqlpcCFjiDYG9NfcJcI3qtg8F6MHdgwT1l4mcadm3fiw8VqPrG/BMmXh+3Tg5zcs+g5tzt+nBbz5WqZ4Gra74Af5wwt3KgVEcXQqILkcZ+qE+zebhMxvf/m68E+RjVM6Anxg2OPH5vHSp1jtMzRhkmIlSbtFT1kmDO9Qw7p4unXzW53uMqfcXbIdDk46vU2o4ZnVEj4M11gf/fCRoc8tLvCvnr5Ukt63utWneHn+spfvpxrFQqBTy/4+0yW+e1nSe5VmKLm70zGejtLz+aZ+uhM1xIfHe/yr31gdArGb0SgCnCNloJ601oJx71kJiPfLgHXWyWkPLO7R5ro5+qJSWmwqeGn+88sejo/TOSTnHnozDLC74SGlnitEcHCznh5ypex+9Uha9C7VvfXMpkXfbo1r71CXvbKUHaVClISbUdEfvs4S5Wcwjq8Muyp/1tmU9w6sP4Sn6nns2A9/gVVJ7q9rlLqzcOdGKETjSf35PaNBYxoHE1NVaoRhkI67Qj8DmCvHF+JnGYwWfzAR/5JDanOmEYy2CBV6uBbBinbXXMFIRR+9WLTCfmldlvoeOyihpYK1sXQRKiWZhy2qnkT2x6TsF74o//TSaFJFnxO/M6E7j8sVPrGVjloAI3wP4oqsDEVMp7M6+7KohYUPv3oUWNvsF894V1itPhryxMNktjtfch8imst7yaOgFCpSJW8R/fwpefEv6PMx9wEbU2iheAhH6g2wTNFlaga3uGb4uPC5Sc7WJjoVzx3VwgOvEydtM1jyif74NmO7aZSN5stj7aHJaa/SMgRif++ED8MgWPSf8tMfFLcS66i5v39+/rYvHWaa/uIH1e/VzpfhtUHUH+IKwvZJ/MbQmnRK8QxgQuKTKU+4joqqSEARbAMbSWN3c3GFCBb/kz7OvJuOeLI8aB/mhdom5vTZszKCFv/KF1/Wgf3599NRCrG56PeyUwJBsrGU4F1afdKxELQW+Gg+0p/+nm3kRbBpdIvIOT6isT51+c8vItS5+CW53nULFv+Sqgt+MXvLZ/CNlNeyH447nRtBgvredVjbh1vWHx+QofnzaYg1noduKi+xBPp7d6V7ZpUp2Xa7IyQ7nZLh51c9tqKCCjpI2N1Ku1IgwVBAVA493V3zS9fyuLr/+D7VdYjLKTBfvayRzKOawE8BK6LqDi05HygmnBFsZtU5o8UPo3vD2QTT43bjIDpVK5oo23Uq8MF1hmMlnQhLH3udV75KDmbvuos/v0whnqQQnlvL8z/aQPVB5iIO5kOAqbe6Dt04W29/O2/GF04vuezS5JD6kpJwCvUol3dzOsMd0vX9tuTn7I5lcjfQ+MYOPcC57cjhYPo/PUJ3S72j680jQ6yKc2o2wgb1tshXQKMsI6tL+uhGOo8a7K/fM7b2+z5ln+EywxSPM7YNzU757dvxwGiEjS8fBZ0Vv/6JxZECu8v3G6vVq5Vn2q6wkYkC6jfPKEeL37z4uYU73oVjIj8fZEcVIasYWzmHGW0eguGvvOteX8/7R/TX33CdhLgzoeE//aKym1qOi2aRGtQlSz7X6SSuagki9Qq+tOiHv/g43OsK43VhuePX45U/v9Q6UYX1z+9ykUGon+l+8fvH8zfIkKhFBVlViYL4nz6trqZPza1hBet72N5h2X/SUb1EbFa1M/q0n2Tp/5x0Fnj9CMpmt/Xn1yUN5po9HDR7UfLH35u5dCXY0575m8wVy1naj6a88D2f29pRtzk/xRyc3XXwlbNxT2ms875cxbLor1lJg/n8shJw168Qq/AQA6aF0II0mjLePTdVUKu0i9DZowHdcW6JyK42QzCPnEVIeGLlvD7WNVqJxdEXx/OhJOeXEsMQ6Tz2exWn86253OHHD4zDSwvGP/6x+OMe5ZTy5yf+8Vsg7qUc7iL789+pSs2ynI0y4yFIqbb0N/Jyept8+/PT//CtW9ZL3nHVFXvIwB0jMyLgn5Idxle/LimObgVsDl8VL/yEzYGjRvJPL9tLP2766ammfG2xs+i1r+dyIbrhz514p1YN2E5/HcFjFxdrrwsK6jKqR1gcI7zT1FU33Zz9+Yef1N5NZTdNnJQBX4sy3S/70fKjlqOlP0EaruJYoz83nugOtxnvz3NX9kjY88h632x8yR2tHPv6LoAAqY33opfoM6F3AykrnGBF63A6LPwe5LdmYGt8SWi25iaHZhb2FFuBEIxifu4BpGL+5YveBITEKCbuCx8WvjglXZOjtXco/J+en7XIK376mF4WPO2/HmigCK5B8VK/ujU+jvKCR4Sna7WcnedlhEM4m0SIHA+NnJHFANjoqOdWoktrfzTB+Q4PHEB1LZl+qyw4bjTur9+ZX7NWhExZG9SUr2Y6lDfDl1sDePzjn8PpvY+l/P2ysG8KxJ2+Xh398IvGC/6yuxAav3jEv371+nsMalm4mRV2qxSXzaYQLOT5wuBvvXoXTHImGz89t+gnM2XTXRTQR8PCwq9jNGKe5VBrdU7PAffpxu2uDiFD4QWr1QDlBGtw0OHyFLG9+Mtzllcikt2+xadGScp6qT9ysmkL+vOXmLuqLan4SF8yu7HTrc8f94Pwa//Bahp90XDMn9JP7+P96cyVzemNEym09hwZG9Fi4+n1nUGU55qw9vthlHdeZ5DF3YfiwNn884Pk8WARafEvaZOa/v91pED87yMF0vQ8UMcMJjTTMQsRvnwYtVO5QVNH7SP4xUegCrGWiwP8fkaQ2Xe627cbRATBziFO7AO1fCSVQ29LLWqMVvFbPm501oYkguZCdZ+/SiidM849Q1w2nl9sP13Q72JIkGOKPDWmbV2S09zEgGzRoqFMVMQ+Tc7BMBQxdlI2pr3JwRkybm2S9eWT619S32ZAe/OJ/c394E59bYrS1QSgF3HvM6Yqkgewf+7JWlBWjAjPKgFVdBSM1c2JDei0/aDPdvAJp6ldQENp5GWjQweMB2sZVHl7i4gvkg/2YmHQ58M6NVH0siN/a1lHNm2eWwGGLN2T6iqlwewONFsG6XZENMV1Nx9c8QxvZbj6+X17D6bmKonbo+9p2DMbXp+D2jDkQ7RqsKd2jT4zfIwR9kyeVHqZd7P3HiPgGtMn2/O5Ksf0aMcQE3VLTXRM2BTWtxyGfT/jg25TNNjnJEI7oqXYv3g0nbVnIMHjeTmQzQW0dOb8OYP9Hmn4cKjCjh4+oQUfRQO/JYod8B2n+PLjbG3oeSo/6fJ8PEwgzdS/n5qgLwczg971BALvzUOfyiYy4ZPjI+ki75FOtWwX8JIFkaqVnHfT29hnwA3rBtuCpLnDHumiFHAPF3sd5zIWvzkfpHbeYIOTxHJ+xlAD9gyerOzG1JnyUXiImupErcYVS+J/XhViOxJRK3nq7ugB46G8Dk//+zZeyykem4BcuVfsBGOXMi0tc3SJYoV6ohG5rHy8HJC+Kx+792hKqT4rLVxv85ukSs+xUe7FhSLzCnb+BwAA//+kXUu3qjyw/EEMBHmkGSIgIGCigogzQXygyDMB8uvvYp/vzu7sDvfa+xwjdKqqq5PufdrxuZiBojs++VRd9gAeQOG/A2f9IKDrcCnoOD4bztv1zYCLIwAJ3QQvn9e9lUM92ayo9o+o98GvQPIDgUqFlC1HFJoYhmdiEpvIScQNUvZIPShH5u66Rzm9rzxGB2hGtlO+v24y6UmEIZ0kRkgcRGshwi0iVbMm+0BlwXToLKyL/RQxo7PGYGjowdDPh5mS8KmeLHqnz7d+72qJPNpjWY482/+3v7e/uM2GILI+0L6SA8NzYQajsnv7q5x5KjMDtkJD0pgziFl/YCGzvpzXkW6DGs86sdDUR0MVIBvO6XkmThV++T/8OHkHnaWb/RjRlqI11Ne9S7yN1i6nQG8jyPUqJ05qzsGyvqe+6VFGafw4W/VorQGWERH4PR+eZZ28PhUkxsqk0z3oIz5bcAN5fmQkrLsq6uzU+6C37z3JI7Z9Pj7W2hvuki8S5zJtrNk/rT2dm8rAorXjBtOadrHqCJlFW116l8v+PED3mHT6kqy2rK7wHKHsC5MR6UejMUg4gHx2Rhbs8iLoH2vtCdftx6HIX586GptSgVbrbk/ck+xF3MP5ExTYDUsj5g/i9B5gUDq7ZTfH3FjicfcR4MuHGM8y+vKpMvo3slPzRYyQz9FAtlYC8fi5MRslb4uHRn5AzQndFnzYWXN2uMyQVoVEAl2NUctQr6Gbccn/8ACxJnv2//Byr8GUDX2NNfTeDF9m+2qXTfCKY8SvP5PsqhR38xWes64lSoDF/bGzWHpS3iC/bikxyuEbzZfxCaiPqcSIKxhlny+ziNlnaomV3VYll+ejpw+2uiP7dfcsJ9weQb9cxy8zDItb7XBM11rOrYpZBkFoLhMf4ALzm7lsmMrptdoI4NmpwEyxNrI59+oa3G80kJ2R5OV8tS8CFFM70q/6KqN5Y7cfNK9/WzpnH9X6Ol3jQ5ZBTYK7FXT87Gc14Ex7UvW8zqzxa3g9OnarM/G7uuka9Zw/YSpTkT2KvM3m8NbMkJZdSN+NLaPJik8zrHmwZl4xRnyWSjdG5DT5WNNGr5v7LtXgt4xK2Y7nW8lRPdggXEEnVpLHJWVjkoD4xWSJHxzNutVpcIqrL23fShuNRP868K4Kj841dwPpb/3n9DJj/ZzUnL9ftvMvXty3PkdD+d1oOojLvXPJ76IZq7/TP7zTB+wu8fAYQb4oV4IhDMthraoK/N5JwcKhmbI5El4Y/M/xQZz1ifGxeJ5TKOSDSaJeE7J5/fikMEZmiPW85+X8YMcRVQ8v/Iu/YNx+TAHqc5wx90xqi413sYDnkB/Y/px4XJqCu6e28zUi23rFOBue1INgWC21bA1F1Iz3CRxTp6GfExyidYxDA8SeR8yqjns0x9dbBXdaFMwwxiHi+tf3oZVCIMapuJR8vNYH2CR7hyqxW3bzQ3vGIH5DwsK7q6PR4QPVPlvYEGyu1tE/PfI8eg0zd7u4m6z5Z8Dnuh6Ir0tmOd9Cq0L6rUkJXvB5DBIkwND2jBRz8ba4djVjrWzqK7l4D49Lb//wQbs7fmEVBTNqnnv0hOTSXYgfHAG1ZzHQAO7OFdd7ZiFqFG0Ll1UVsJ3rb8uJqND/4QM+L/jPuXHM9Z/Qbkmg1rb1731qPx1jnotxtqzX1K7Hjcz259+14+tMNNAvqz08K2GCWtErTDQ9ni4hkvKwpoamJlwftk2sXWaX63y2ckirXCKu96hR+9hXNnh3DbBSOULH74/XB753UyCWk7RlPdy3I9LcUSP2d9dEc5mYAnh3BYhDSYuG5PStQSL8gOUfukeD3HmpOn+fJvPW9WzNtzBYDjbOzt/vM2pRoUZDcXWZF1w+AdfHtAcTr88kOA9PPrbLrdqHMW6I9fEfwWi0lwqu+SEjJ7cgVhXaYQv+4cbxamX/+HQ6X2LIlNOBuWNoZNL5+jTg7Dsp8S10ssaq8irYp5QwZ/cboh4cJdffbiITSykqNOqvpaYkyjNdZ+dLN0GyHZFvbwO2L5zaYrwYqLboL7wKN180d08zhktqrdgm3W+i8aoTDw70ltCpj7pszNQ+hF/Wesy9r37RvFPCGdY0dEhoHMVyPq31D9I1qSe2TjdcOsviQUfRzWW7vYN4P0vbG/glzv/4Ihtf/T2EcowZCw6vNBiuxjFEdxnuzD1lAp8Epe3B8ROLbMZPHvTScqslNi8K22iU8Glv32xYrRyPrj0tsmjaVBU6xErKrErwrPV8cd9QGQaw84JX/bPeGRByvSdGT6WyOv5OImRzK/zbT9wYZEDT5q5RlCfHbLg2oqE93bpl29VyP+Lejr5uV0eE5S43kHQ6Bj7qDXFHImTPwdTzewHPKdEp4F616GilHzTE5o3Ozzgt2UX89bBP9Ia42MfB9LoXJyjHhDGTBU63xllmACYfhWxMHAfcFVSK3J8ZsV3a2hm/iIzCun88sbLTWdn8phnA4GS38P3LGtG5AXTedHd6wqLKe8OAGTZb36Ll+6F2w2Q4FdyBKRT98cV8O771QpAdRsb9FY2+ewxBDU4C5tl6Z3H9yiuo6frKSHu0SjbIwQnM87MjbsucUl7B4Yniz2nGkuJSxL6ufkL7oRGYC8/E4o/DaMMzeyXkD4+5dy0ddA6VDbufEw/Jz8/PhOv7b9Z99eZjomx6GO+pSjYNnjIud8kIL11U/unH8X06+zAb/MEc582zyZj0GWJ+s8j+cVqOaBWzomdS/mOncR0G41EoEnRObga+pq0dTejueeBl2+iP74O5/xRvtL0kDlvwJBCN9vFBeuTEzGyer2h6K+QDweWYk8QcH8G/9ZBZL2jMto9siOvjU40eF42EtlXzSaxkCsv3J5v91ozGgb8VuO8YwuvNx8vGo5DEf/kB8UT2Cli3qdt/er9b9Hgfy2kONfI2//RL/7f/FrxY8sEXmkmrj1DsrCcWg+rb/ePb/CWUJLyW7rKfziEcxfSINV16dyzzslBTOqdlIfHMTs6iZoYFfzGnlhnQYGA5nAKnwor5s3ndzF6KzH5vYE3allGfNgcMVR6XzDm3p2ysq2kNvTmhf/g83X9movdcdCh0QscnT64FiNaKS4JVtMv4s2tuwNx0hcfj6YnGZlOGcCXA/+PPTFoK0riemSehC5q32rqAEd4+loOZRoO1W454r+qI+G+lzWbV3KRwjj4XLCYbP+IJetsIUVlm9sK3E7obnq4+ghYLqjt37EhVE36JuWZ7a0cQ+8vHv1ZpYLCtGrHVl990Gz/ftJRXijWBrBZIGZSIXIXDcmtRxBSeRbLC3/GslTxBrQMSCndYHsNntujHUekDvGYeW73KmcopRW7tJlj5e7/tAzRUaixn3iqdoolkz0I/dQeNeXtW8vlc68m/+GAeOXbjWn+fUP/lCu4fuO/YcbOe4cYvV6x99U8031PrBuHTNfDnkxOLroqlq0p22LND06Buai6zolvyek/nA6oRx5v9E+YrvhEPth0fvP520xZ9i5n7li36duoQ3ivBYc78ROVMNjeAo3g7Lkcc1IwzfO1BfjzuDK/ZjMbj7gPwl0/8+Q3ies00LdXOL5oZ+3c0rgJJg6IVbsS4V+ty/g7HBLASesyOGr+k2rH3YarCO9m5/rebon2NwX78vgQ3q6hjqnAA2F5ih1123aqcCK18ELTdkeD8uMvkRZ9AtNZcio4oLP/8Fe30bWr6Ro88o4ufgMj5w8muHmn2IR7q0fL5VM/7qGuy8GjoC5+SnXp68UkYch8My5SYufx79hskHza9mjE/n7KuD4arjZb8CyvqEAZjRboC5OCzlFw3M5qzChRttW72xNc9L5qH40HUzQf682sO2eS/dBuW+CJBRUdOpSzFSIud95IP+l2d0XuLLvfuSLanlxN0daQ76M/vEFuRln2+IwYa9olNdkjZW+LL1FLVc8MfBnKNshFQI6JwFR4Ioe84a3b3p/YvHuLFj2na370GzzcOix5w0ILfB1hvtAedH8mQUbN95zCt+oxZZ3bLxlv0+V/+5+nXGhUheiJf1SZChMtQ8rhmCgjV6cuM4Kp3kxx3JxRo0RVrYroLeqO9fIDJ34iKzU0LhkUfawse4jHRq2AU3KaHsmmvjCx6g/W/ZTDeaF+I9eve2TTfZA3OUXXBsnkW0Vzkjwryc4vY5r27RG3jcUCLfmcJ/ioZszrnoJUnsKmwdb5Rt4LDGzpfxMwyum0mXSX/o53tu0NqJ8iiSfK64k/P/OWPnPmrt6At6yd7WZaj+kB5BcGgT8T4CWur1rgQQn7Y/On3MeoXfPzz16juIDuQqsuuRsX57LHw4Oy5tNcfNdrR44f5zeuGxnHV0r98lmR94JcsYu0JJgs/yT7qymg+mXYIKnZ+zLVYE33qLfZQ0OCEeaJZ8fnjXnN02VyW8QWB20lGxbC26C1mDyGO6KJvURRpPjOKaERDaoEnbyfk/csHx00ltnAjp5S5j6AIJinSTKhUhinc3Tv/p0/XFDt/8RrxnGY2kMcyCLBNzpxP4rWC8RCW//Hzs96ZGtlFAeYd8ICvbr2IUK9sWbTL7I67dVyBM8QGiwVN6erk1Vdo2Z9s0TMWfx1fCTT9NWWO4XM+HmP+BhmnNxKFK2SNnKxH8DfHN3OBfLPp8IAWiYdHj9UFL3r99Rr1Gvkbut586mzankPjzw/Ekj7HwfD4oQo8wT3QsRy2Ub96Zwb64yNTi74d69ilRajXtsz/HtpgEpKVoS/+Al3vfvtsjPwEw+0MlD43d7fjYBU5iEj5kF2OpIDXkWTDS7rqbNGj1ojwr0LtnEWYvx9qSXPvWcMmW6d4WvQzX/SeFuiuiT+tG//5g88//YrXqTlb9S803rrZXC+M6C3PBhcFGlSiC3T+ru58Yq+NAYfV44ojNXgFA5aeT/jT64ufGcmneBRACfQr2bx3cjQLt50JVt0DsepmKNmJ7zFwSWtx8XxrAV8fhvwvnpn5jJVuknc5he2kesz8rnTOTkI2aq/X60jcNF78l+C9hoscHJg36j2aU1Hy/uUf//w38GUM8fGxI0GWOtbw+PGPOurfPdn+Yj/T9sF40O0qQnT6iXnHKH/GurE2ZrbxhSiaAlcyYfFr2aKf0BBMFxEy5XAg/qdkaIrMY6sv+oYiMErENXPAEPgrEXM1eFm8PwYpLPkWsbXGRfxxDg/o9fNKZhM/D+iGblOYrZ/HnK10tcZKdQ7Q1ijGQnNSs/4Pz4v4tCVBw1vO7vESL4+zxha/pPzcCk0D2hrx4n/uuKjs3p6OpfRB4uX/nxZ9gqiuGng9xR/UoZMLUG2XuUQXZYPEUrmbsOQTWBB3bjcf8/CEpvImUh6usmD+Bt8aVpcX4D9+mp/146Z9LD9ldrJpM7qXIhul2uX1589nc2xKOaqGa8WcXlpnEw+dFNz9M2Z320XWKJcthmvS7YhVoNIaD+XXgJ/p+3jUdSsbRjQnILIKyC4pz9lUSXcNDUc8sS1tJWtqd5ub7kRrE09ho6BReiuAot+4/lcvmOR59USh2Z+Z6dhaOeUZnyFcT2cMTiMGdbMpMfAHjskSX+U0veaTViwQtF++3/g+3X3kRW/CsD/53bQfRAXVqWfTfsq25djM3g1c8ziSpRNN+a+esILTg3n26tMxeg/+07cfUTDLyTvrB/i+2yPWC/6O+r6TDzBp7m6QrKtrifHXfYM5o4Qtg9yjMQS0/qvP/OMv6Wz5GpyOM1B5yTdnrLLDH94S89rVwUC2wX/5t7NetdZ8CF9vME/MZO6UysGUbfwcLX4VSdNUzLiyHhI0xMaNfuMw6MZ8vTtA/50UrGfUy+TQyE9QD1vO7KDadjz52oCs3bf7e/7BMLszRtn2EFHxr/5zpJMBbdfrNE+KIZvbNOmh4S4leyw0wT98zqtBoN9z9QzE82knwopLH7J73cputjJFgEXPE/8djMFM1mECGpK15Uj8phxHf4qhxfGJ7Mje7750dT7B/TLumG3ecj7vCwm0z8Cuix9tlNL00k5wuNANC86DgdbP+pKCgWqbRWP24sNSD0Lu+D5RFOqbTuw7+QSWaf7+1a/GhQ+gStgRa30lIn7Q309oNuKFnRr7widRNVqdbHqXri+2w9dzcyj+8IuRx87upLJJbCjAutOVen0vgzxvKTy+w0gFOR+CKsr15ShxmVB50Y8039AD+KunhbW34mejnGYtrNRiTTUZHtncxXwG+slMYu52Yjnuo6OpL34ovq73LpL68ybUly5KdE4qGjB3GRW7+J8E+/YhG1JL9GETMpeiOOozltvKCR4m44s+PKEpkgMTtZf1kbnz3HXTog/gxfMAywvfj+SRin/1KPy2lRIxR3ZsrXgwiSz+RTDtkOSBkb85ru6DHPXPY6nBO2ofVH3drFLa2ycHOjnxmVFtt8G06C2kpbJOQXZ8NO+sKNUx71QsqGLIJ/fYOKAfDh1ztzfMKXPQcsT8eyL7Af+C8b7tHZSUwooY1POt8U+fft/1kRzaRFq6bUcY/uo7rmUya/6FhQZXKBjZ1iepGyLzWMOpWJ2wYF8Daxx4q6FlfWTjGHXGV6Q4wKKP/ulfuUT6DZW7YstcSf523y7tfegn487Mn7cpKZJ7E1AavLFgnnLrT7+gP/4xlnpiO/bopv3Cp4wPnXWwxr96SZQ9MMEnkZWjI8AB6ldrYZofd9FffUT744ftq/kGvCkf4p+/zQzv/SoncZhtcLzffenYFZVMeiSAHrOVku3juI3m7bo9oT9/xtLzI5qO2iDA4dJvWBIfdL74s4nO7G/C7gP+Wb2UCR+waILZ3sylrlv4FRa/BbOQGsHc6EP8l48yozQCa3R8X4NnygZijuvQGija2aD+qooFV2HqhiUedMqfEdt35av842c9bhSb4KvalNPjxys4enpKgj7wO66kRwct+Tqdhc86at74888/WLpWmku9Kon1Pz38x799360OaEuNjFlBfC75JvRGSN/Vjupe1XSs9qo3uPU2IU57X3e14L561InPF7v0t97qtx9f0KyaAlXcL+NzvqEnNEzZdvEXPqj/Garw54+RP3+fDftnof+rv22db9Ywv9Ogx8aDHXp67qR8m9Qwr0yDLPX1//TK61BgstTref8LvTda/Fwq1SepHNhrZyLvd0Ns4ZtyGNj8hiXfYsGpdtD6rx4QDTePqig4IRp+lRj9f44UqP/3kYJOde5s7+pWtk57Z0TFKIxY2qRxNmP1LiJ3c/2xQP+ZHc9OPkY3/rszcmjeFq/jVaqaoTnTWvxOvI1zQ9OOudhR4LPCuTBssJ6+0ZdsdsE6GC/npw+r8nAjgXMUs7koUAvO7nZiVixHaOxR8AEq8YGRpLGW2VZxC4E568Tb31rEE3YRgL6mA7MOsh/0n/ScoLDLXRLiH++YddWfEG2fFsu932wN1+Wal377YLaxA8xHx/AE6He2TKLZ/JZ9m3kjgp36Yb52/FjTrV6F8NrViOxlTwyY3azf6mvTmbTuv541z5+kR0+pLUi4/62tQeVLY3+1plS53TI+HszZ0c/rkJFwnkXUf5RcQ1Ik9cxVyT1gin++QZKQEq/uDeHyaXXLgV92MvFuN8TntCcflXwCl6oqwt0UOoaJRrOIsWahpOSGqooQSaW9PC+OppsniGpwmi6E3BvGe0nnGrzuXUCslZmUNM49DQgEP6zmYxLxHTQJ2B79EeetbrM5zje9fouqNUWrn8GnRFF75K1djwq7yMjmB4UWpaY2se2zPHb9bVti8G72BUu30uTTK+g09PfzvO7FYDLG3wmczS2koyOdgxEOb1NPMDEJXhVRNqnROKv39DgTf4sE3hnqtAZneyPEwzcvGt/pzQa2zn1GzAIiyuJrrcabEjOLyF9Op8/Zgdw42Qzrxdka3XH3RMvfkyNNRM4D+FRwEbSIePpXDfjtbYxaUQsN83+OlnXU/ZxAfpaU2GLqdGyf0xpJrnTGcPghPjoHLwYkqS+sj14XjdG8plCeYo25ayJn0wt9cih6eNBnujQ29MM2RXcj6rF2dt4WlX/eG8RItFnSqCJnUnulsLWHFVWkL4lmck0OWomTNXFKtYnmZqIfWGUHhwWv/Md7c/+IkbrFGS2X/cCtRuohuPE7ftN+X4qnE1BQr1ghpthLqK2Pww3895ywsJzNYCKVVeuvY0cIfkRpOTxQayL58/qQrMjN4Du9dgWaV8GOkW+jdgNeB4Yaf0uF8t78BPz0ODmrvXxXmXlZZl8/3u4yq+2BqT54NeeD+6510zMZcRo15uPtXKZ6bh9cLKRREo0f7yxAkQsntm3LnM+K61foiiqPbPOyCwbbOjxhdTlY5CGJTzQVQV2Dc7xVeCavQzbPYmGjbnAcrEpokRTWZQ3muJGJdZFnPofN6QapgCgx6/5bTsSxDiBF0oPccodmTPbjCvDoWeShiR/OlfY86lj0IpbGN86HInua8LvQiFm9aXCpwbcPjEXesu29rLsejLZWPewYtNWOTz5p5TSCP88l2+q0KvvDe6p1qZRU2gm/ZzA/Bb1Ft6hqiNn1Pz7VxRH+8JLYUvqx5mp6Ud2RsgPz/NvWEndGiOFvv1qB/C75difPYLgXG4Px21ri00tPcKYhZhGWt9b48q4KnCnGJPCOeUeLgrd6v3NkYnjSPZtNp6Hg6NmO7UO9Rb13CCrt41wEuh5Uxaro54A1wfwllI7FL+OC7ofQhhkhrmtXy63QrIVGuc30o6d7TqtNO4OZWgmWK1LyqacXE/Xb7YYF5nEKynUbxdqxXku02Y/PaA7U6wjmYXMg+9Yrrd9xlYrQb+yJkXNjIn47eRW8tsusLBxtAnFn7A34cuvKdmTc8PUsJst+PtgUsVzteuH5zQGDF5J0f2v5rMqWAOo1VKiQRVI0Kz/f08zDxmL2ee9YnQfPt96f3Qy/8Yt03NzxXn/du5ReOSqtuZm+I2zA+C78EJUtty8Ar1e3ZmEz+1l//bYzHMKdyPAloqh/17cTWvCBeauvVtIhTg1Aey3E4P78cjzMcwu/oN+xC7F5OW+dD4D52TzJZh9co08X+Bjl+enHvOG77cbNvniicxFuiC2nZiRdUwEjVd8ztnVTyMZ5r2iw6g4RISuxt8b4tBKQ+iWEEUHsoinxVAFKP67oTyYo4t8YfORI1ztFZd53c9zvbCjp5U611bG2+jbbfWBpZsiuK8Qzrg9eCnZI7wRLhWfNaUhCUL54Q0zrtcRvIdhQu8OL9uavKrl0S+nCl9kSHzvertQRL/GXUWX11boGSsmExMQqC4p8G0l4HZhAxqDAtIhk1K/3+gjnNgyo0nzNaGiLM4YRFwf6S+wVH8s06qF8n2O2l70RzdvqmwDaKhHL6znkk8fvgGxlyIhDKOpYGY8aek5tvcQHoHmT1Afw25EwXzma3Vr5+QDdy/H/8D3iZ1KMUHyEK5XqMstGYio5GNG5Jrt47Dsm3+JZ02nVEcejiTXTOF0DPU4WOTW9Zc24uddI6qQVCYwj6Xrjnh+ALF1P8D6yOk4vZa2Tz87F0oIHw3g0cvhG5pfmzm9v8V3fCCA+RIOut5R3fY/sG5RmPBAvuJkd9dWDp5/f+ETcihjlOA9KAapEGuL+iN2N7zqzoUxiHX/S/dI1xPickOB/CZ15T6MJWUjU9uzxxeKYGtY8fuKTtg9yisuHnC+Do26fP/1Ddjo68pEFrrI8/zvDx6gNxshc+7D5mCeCT1GL+O3tzaC3H4lYihlHwxO164Vfl1nMzj4brooICOloz3zh6JeDy+MYoZ2SsK2Vnvl8BlOD0kwG+rwZb4sqP9ODeP/y6agH747fTsYH0Be5JFz0GKtifWm3Nr6ZGb5wIP3F9839nMhJ7mPOw3xYawsfkOWKq8VH9/eEeCgFtnuOgBZ+AbVNr1e8yhqfT64VV3/xzPC68NAcg2/rRSqYePVrimy2nd6DsjpfiNuRLmjvxRSilXxq2fI+y84Pu3D5frdlv+uI2c0qRu410/DzbTBraorbCJH0lLHSfY1uRM/nB4onlMTzbla59neHm/5+Jw7WHd0s5eHyFhHVp4oQEPeWiMbnqN/T44qiLudWPXR7U/Mqh5KNFbTddPX0ZTb0vWcm67uAyq4noAUv//YH54XpKAAb1JGFr8s2yW0P5PGF2PZbKrxVL8FHs8Y+ZvvR6zI+yG2qxeeyW54vtUbakQI63X6ytPm+M8rti4Aqy+JYWX8PwZzkNqBcOQbMDewxG/VD1wI6Ki3bpSPj9DeVCQpXxWfBq2vAR5c90UY0HoQgsUZTjy8FiKVYkLNA7WAgTuiAROQNntxgz3kQfkRQJhzQQfNU9LmduxTi86vDc/SKyo93sCqIzs8Du7TEDUT5vl6uFSOFCmFUBUNSq2+Y/IfE/NXRC+aimEVo7WxHhb/3vboqNUI7LcHIPibW9OzaFs2d1xPrIA/Zb/wxBy6acl/21yua2uKO0fdi1swrbquACbqPoc2vDV3J4jubczyGIOflgQpLfIjB010vsyyb5QiLivqXd3WgAEFllmyO1jLD3ER+NYZkf9Oh+3u+0DfbjpnnF+KznfQxFCmYxBu+364/mrOG1s+nww6pYXSiuX8kyLnf3v+e99QIkQcLX7NgcxyCkcxKqLSH65NtN+mlm7RI/SD7QClz9/Y5m8+9T0FEa2HRe0rXb/bJU08LRWPXfEyy0T1sAPRblTG/dMaSmztEoSbDD18f4zkb0bOuYFe4EtX0Y9X98QOCjar803+jYPQHaJ5pT+LP/pHNd0FL0fPVYiqfbDX7lHWmoeV9kuCef8pR1JGDmjj1yJ55P6vBlSmi0o85Ca3fL+OWqjuoJuxHx4dRBTx7byr9xr8tc3/k003XWqqAnieHhPav66YSUQVOB0lnRrpY6mFPDUgFFWHU5Uk0PLJ6DeqLLKrqN1ksepwUcM63nGClOFrMz8tUG/QxYMlb/WaLfhCAXwIZz1VvdHOBeY6+gXmkY2n05Sjf5QrqBxOX9fvZ9A6+b3ikqzuWJaKiBX9NeHj6gY4bScxoe2Tmcqt/olJcvpZ8QaDQpGlAHIdOwV++DNZIXXqvvQ+aWnw3ls9vGbk1viWuntUJbHH4siX/Q/Nf/Dj3G/un96oHhRot+TXZU6/K+Gl1bcH+DAHxL05ZNrvycUOLS8UKoThz0RwePaCzNhA/c9qAJewh/FuvpFCzHJ3DxodVdDKovqyH6YN3051XZmCBRF9r2q+NCsKywIQ8G6nsJR1p0DxvPZU0+uQ8M30DkjcZMGJ5joaGZiPStZ9JtdKJEItZ3KMSJw3brmhtzaOdKRBNb5H+fJuV3G5WCaCzMrDgmbcRf5iEwujn+4VPnbJ1nN8NFSPozE8d9x++oMDhBtnWJYrYX/6/5NPEXZNLVO9Ge4a//G4vehMayXs0dDl++XiVNyyYxM0elnjuyGZOlKDvuxCjC1Uctt/rQTc4VjQueiJnmzbB0cj3KtXmh/de/h5l1HSeCiz+BXNlgjKutPcRCgCV8rUZBlKJKg2cTRoStyVtNCuXjYC8wtnjeeqjSNpG1zdEm4VLJDPIpqbIKkAN8hc9FkR/+IzUPX6RzTZgHZduxyd4ju2y86cU+aTyyQe6HR9kdxytTg7Cfv0vnwqGHEXj6kA1KFKBEPu8r6yZfo4muodRRhyD7qxRP7TiH1/g6qG+ER3j3Ia//HsXj2E3/K0n0p86rkp1t3QVQie0GY1m2W/G0rsh+ED3dfb/8uleGPs1fCPjS/a+vkXyiV1zWPQHsU97q5xfhdxDE6dnckfeJZsVOfDANuiLqo8xLenvWM7wyFcD1UPd57yXXx/01NvPko9b0VRmvwQWfUVM2g/l9MiaGuh+/lLpUfqW/BMFAcn2e1zyHRq04e4mwnjK/wcAAP//pJ3JtrI8t4UviIZIldCkEpEiAbHAHihbAalJgFz9Gfh+zb932nu4ByRhrTmflWQRHNzURzZc/i4FuHPSm7r7SPOWh7Sf4d4UDyhejcOw8EswwsM+NUivgyTb/GTy02sUneNjuX0vDtjmc/PvUbk0JHkrY3ccEJ8Gc7nwuj3DFDQ3+k8/XfGVAz7NXey1TzFjY9Ml0BqphVRX7Txa8vPzHx9Yg8/qsenXOPHbRvSnRyaLJWeoz0aHlvmmeqvfpSlMvfqKXS7qhwXfrBBufA7tX+UAqBpoBvxmxkBPr1n0RqB9NFiiS0dPxZxnq3eKkLxm7pnwfGJmcz+cZtiAycV9bo8lm5oegVG3OXzULN1bpbs7AwdZGr7+lVNGo11oQGZ6KQn/tC6jZxxJcO/tPSKd0/M/HgZrU2dkfmpHbz9HpzN8Juc7NYbxyPaJxDtiaV9KGiCVls0W3+G9l0ycbeuVjcePAZKbrGNn/g7xvFeZBGtPl4lysT9br/R7Csljhtgrn345DflN2/zYB32r8gKoCwsO3opAQXBdE6/VX1cJsOPpRRQ5MrOl5dIbCOjf1pioqYd5Gg4G/Fy7M2k3P/bjG+o1R/rPb5bkD/Eh+DL9QfZ52WVT4dU3uIvD4N/6nrPrV4A8FVLqJGkaj6cw8MFKHYqtdyCB+X5tHWhCYtKjb/Elseuag7qkFVSfbzL4x+N4USDUvImrudafT/HzI9SIPvt4sePY+elhfF8xb462prmQKrmGjyPGGePdpJDn9XVFtOkyb7lL61vd/MqW//fZSqrEh/IUXBG7idtF6oYrbPEqQZKXGuVYSk8LYM3p/+XfFZ2uZxDN4onq003MVuWONHXTu4TNRj+MeJ19uK1nNJv787Dck9VRuduXbeub9+avlBdKkoMjPSlgNFfh7lyUdXBlsnxvfUZuo38B7X0CZFvPZtegxIVaed1jKw3CciXW4wnnW778i8fErgkHN95MA85RvSl1xB54N5bS48Yf1hdaBKjhm4qYbFy9FT/uNgR78CHrOPqmIN3dFcb6W8OXOLA2Pjf0MJr3J1JYn6Zcrbp6b/yyQvLm/5YS1D89LaGWfEuP/KFtC5P7xfRwSBQwHjW3/seftZ1XeUvPxXDzq58fLwKLGgs5HBa72k5tap6w8QHw45fuxp82f0vgKB8kQi6xPyjuKUxUzJ8IPiRlNaxr9ZKgl7M3YYpxZTRdNQfy8VZy++LSm21Nc9TeefikegXMW+OnZqubP8d2Lhve3jIfN3h5lQtSJQeU81e6X+DKvAA715Qf1mQ81uCq+F+k7CIv2/u2o4HM+6r0eLHy7PvjaSCQHtSzopu33iFyZHvJUmxGIjHHeBVGmDaNTTgc62xm6pJDQ9OEjTfP5cYjINwfxSs+EjwN618On4rwLuzf/JmUU08JzEduRAoXNfEU2gEBwe61wyiO22zzgzUouXuP1NXx2VcuJQgSW+ER9Jt9NhdtGsJxOnwofnTj0P3iy8Gi66b3W7DYcebC6C3A7XnCTQ8rqXLWxJluesdkYv90wfg5rGTOtW+8znzcQ9WtdezwXzKMu7C2QHMf39Q3GjMTb/QPbh/LRPyN/y5lRm+Qs5sHkaO5Bmz3Mp9QfiGwzffbpOOx0+Qrh/ZE1K2Duf/xxC5MDwh+1ne5ttFYAS2+t1j702xz36JoBV7PeiJnM2FdMXwV+KUGINwjZmDFct7C5yX84Ec2I7DKd7OCQfZysPbQ9C0+QgK+jYlRE1sCG+1Qu6hJCqzt/2+NaZ5vqJoSCZC8A7NJPThsvBt2NM1tzPhucFx4c9GOiK7lx/UFns7QCkdC843vS2Gx9Ko5j8eNB0P281PQPc8n/GDANIkvx4l61B88WU+foVxsM17h2RE7kuy/NJufe+Jv8faLLTWJvOlQRgTmFaypbRB3WJIWztDJrRQ75Gt6otFBG6ym49O/e9cMP56rnLX9/JvPcgEx88FjV3vYn9YZLIHt8HCbXyJu+uvn3+Cv3hOszuyxZ2EZcOPZRO0d0+P3L9WB5LGc8Ok5ywO90vwGrecokn1WmgNzn0MKg/hl4HhnyGCLPxC45/WEgBclGdNOig228d/W88tcDubZhZsfwv94ZRuN9b/60iEpGza4z76C1wL9bXylZtOwNbroxqTd4pcJBE9+rPBkHM7YGb+ttxzM1IWSjCzUDt/38C9//HiktSRvRrzHIwVWOAKqQe9gipWl3KC6VpCafyIcWMWvEnwm4Z1e9eReMq1bWvV2C8rNXx7KgTRjD15aNGK3se8m+eScBJ9tuNCAOKdhLtsngUZrlmTRvS9Yjbo7wxR8S+wVT6fk1Xk0wPH0mKh5EnWPr5yXA0/24UqU2r5l3ap7BRSlD7/pkyaeQfhB8JXEK5kLbQDdeyhztbceJ7zV28DaRbWv4NAVqZZpBWARDVuVuzUsEBfM4nnjI1DN6wgtkQfLVlevTyjL+A/7m5+r+IDd4GK8KLV2CY3b17dp4VvuCREty2U8m1YLRBfhS82ryA9U6M8F2HgJ1R7aJx7HzOdhBMXzP15O7mPAbfnSob7dBN7qPpIafuQBEpaJcvbLB9C6kAWxbbx7Q+jyf/VH2yWXuIOx2sOUVjt6WsCnbEvpacNLUN6xu4uGbMI3P4Ti8xMSKUjdjZ//8WBb3/hwL7VsNetegtv3hoPJacEcG5wjgZdSE4bEr7n84oO0+Ak9tCVX0n2fKAC/PYvst98PtaVWwFEO3pbPK2/TC84WH3cB7NZpIP1CU/g9agjfGebZKm63jozXI/rxEW95e8V/8+17zQRmTzv+4+00wOrk0egvfKrj4ahj+0hISXklCUFRX070UJbhpu93489fIyiuu2zKhzdS+Ub4bP5VKld6iXp1LV1G/XOTelRWbjP4Av2P2q08sw4Jrg8sSHM0WerHpFlxqmDoezzh7jECv3oVzJ/wgK9JeWRLyz3eMHrzlMg8OMbrV/846jYfyMFp5013id1UyyEpEjDJQbub6xxELb/HTpK+hrlO7itICjmh2k+vymxxYJ9kD3y0rOP2PpwE+8ujRIMVrWAMV6UHbr9iHJxUJ2Z1pbrg0w2U8EWQZnMhnXP4suICdRAs3qo0hwT8eFlyTrcjNeSuKTzjJTRUWyNETZYFRT74GT48ym/MNj8O9oO4Yod9g3Lp82cK7W8q0OOC43j1umSFUcJn9EZkCay13s/KVl/GFyXxstGY/gj8fLoOHyt8KLurJFmAPFb4j2+vhvDuAX56GvnV4375EJIPe1FjHUMgbvVWMKmrR48Tnk2i2639/9pSoPzvLQULOzjUXq65N1+LSAHdIFyp5+BwWC6hb0FVh1uv8daOl3T3INC5zB1FRRqUo4mdBH640SRy6EqsL6EwQiU3DOqpt75kuisX8EjxC9sv6+PNdYV6+FhsEUmB3nur+Pka8ORRSO1mSU1ydgcLNDPd0aCkeGBysrPBY7FEbN+5AKzx0Cqw3QUDPWhpCOaTydXACyGPrTi+laMtbiXetKI0tu2wnPnjA8Lb2CEEm1gxh+vNduH561TYeo6ngXUEV0C8PQLqirfFnNxLEap8kb+x5kqutzrR/q20xBxJd9e3XdXuYEEiSCo2nqePN5kvKYXw89ojFfR9uT6FclXl9iniYw6HYS6dRw59+atTLzG2rhujn0LHaRVscLVlCtv/hxPNCVJ2XchonHsa0GvRoXiv2cP0OT8KeJVrn/r99crYCYW+Whz7L3U6XIG5m8hbKSvPwpo4Whmp/6Qz9NXXGduZ1g3L7cIbsBKpjl3v2psTf9MhZNupzuh6u2RLVno89DoUUT0y+ZK1D64CUDYQ1UOpHNibLgWIzvFA+Hndl/3fM6pVFaQ+RQdEytXPrikUzwVEq/xevPVpJj28KlGIBDPcDTTVBgUK5c3D7sVWANteFwT3hpHwVege+3KnG5z/Pi4+3K2mZH/5c4bC3X9SezfuTXaLIwVWeVxRe3EDk2VnrQdq6VLqnHYoXky9KGQXNg3+rdea3Ar393v87PwtZd/bGSjbqTT+OXbD3OyHFAzeW8fRvqLeDNJohG452OjtHgTGwqNwUchHmHDwnnhzPapVDnd7/0E1i18BMzUtBfJMrmSH0ZEtdlo+oVeIIhJt049nCrgL8GrTov6j+saTgA42nMTRx0e2d5nQNpcnzD5cgXW+7tmo2NoIj6zuibIcWzbdu8CAa3e/I4ByCdBh3b1hUxgntDu5c8nIyTpDUpQLEuyjmzGds3p1/GMGxcPTKJdXko4QarGAgy+XeC0nIAVqeuLgF7v3jMnfQYK6I9zo8cibjDh5f4F3cnOoY5E+ru6NLuyGFIvU4m6PuJvYx5aez6NB0Ro82KJaHISC4fhYexUfb/6q71BND7mJj8METRZPlQ2UrNx6AYt6KZzd0oZ9s5d/692bL0iTlJu03XKQ697AJH3h1TbyFXqCrDBn55X4cKz2MVpeeWnO1egVcFQZT7jiyw2ddzghxXOMM7aOHDCpctpO7dbhFafL0WFLFvcrJIrtYnc5y2wd1I+jlvb+Rm+fIgLsdZsrmOmvBp+SczOMX9aM8CV9P4RLlY9H42m04cP7DNj6qEG5CF4iAPWua9TEflnOxPt7wnPIki1ect4YkMsZKjtfx7c7F7BZf8hveER6jv3KnkpiQD1XHQ6cqAufViz6nncGx9sZYldOnXKCk9xDKdK6X3xj7LpeDLBE6EC1rzGV7CCZT3gfXIA4Y1d7ywkrNyjsMcLHj1Z60xdbNby85oU+QtU326d0kCCTTZOIyWRmy1/Q1bBnYYVt9ws8wlkHCRKmjahUI8OkmE1nmAupi3YZf8zoe5fWMHs1VyQEzQ1Mj8EZgeUoK9WaaA9WP+kciLSbjw9SaZf7L/YrWLpaiTXZkctJEqgFhTt4U80zM3Nh7V8IuE/7JJJsRN6McuDDvaC96AUeI3OfUakHbX/KiCg5PRjXs2fBqi4N7Pjml827S1JA6frlsKdcEGOa8H7C+oLf1ObIzLZ4scJd8qXYfaJuWPjbCcK/JA4IW5WeMff7esKw9VzsKNo1YwuXWUAc/l7USENlaAfaI7jGlYmPp0NrzodY2k6RfB5U186WOXBaWwFdcCyqvwfKZoTPDngsC6CmGhUmmT1Z+31PCF5iPSMW79dgNIcL9Zc/LZ51N8lBGNsKycbZM5ephmf4Mq5naond29vG04XRrkmwUZRpPHdHDUHu0z8p/pYwnto2KGDcvAt8mjybiYdjVcPnO8fY7ow8W8g98wFOXjk9Sk7PhjQIR9V/RjENt/naejXNsJmnHTael7O5jhfyhCfkH4i4ivXQyY2twTwYFrQf1JpN/euSwIYhB/tcOIO+Xg81PC/qnTrnMzLZ4D8Q9F5WQb6nt8n2wGcC/PQ3Ee3n0AbjEZ4v6jZ/VLc/Y8ym1k4hluADH+5YKuebUEiwHp8qPe1zexDOqeXCXbcQiptTwej47n3Fe9kF9g+dG08XbdAUj1O/9AS52NvGL4RUOBBqhq8jWP98aduvyOVEIMAq92oeVlCPZgmbU1eDmVSLDdKzqpCPgcaSgldjwCJsjti8/5Xxqr7jFUz0SfC5er7Z3BhhCM8x98XaZ/8GrfF5jTCJMg/xf/LNXLb8qWaHq4R1Z+bZOOi7GmScFVKjH07mTw8o+zcMqLZmWjzOIU7E3Wr62HHXT7m2vB6qKSBnjNVcjMfn/tEqusPfMN5z28XzTRLCg/L6UPe8vw3zPushUOxXR7Ea1/GaO9r2VrxNLWMSvcb4M95KJU76f/nhrB5csPi8hO2/uMsG2rs2xP6Vkup6J97CrZ8KEmaM2N59LK8ub0kKlHOT/NMPnTtLLhxeDwvjoWHDEtqVD7rvC1DfVVDGArK/wUYTXIqoFphL7sg99B7gis5i1JbTe8laJeo/DllAW2frphd+8QgfBjcuWTDqNuyOrxMN9LM/CE3s5bIzaTY+N10Qs6qbb+orrSl2xVtkzkWTVXCU/e1i/HIepnm7eDJ4wQDtI1aW//RVX+5aav2Rgze9Oeep/vKdb35XsGpKMEMnap7ovdtZXg0GS4HQfJnUMoraHAdaIKimKKC2eSADccs0hDiWTljj+5aNFRFneOrMHsmv0htmrTtXMGe+irho92cycXqv6lM58NjTJTleWSVDIPbrA7Hv7Wjub4czVPmDu5JViausQX+XM4ym8YqtRz+BBaGPpeL7mlL/Ix681euFJ7xauo6oc3/F69SKTyiStsePOSjKRQF3DX4ToNFNf5osV4oWJotk0+3vA6V2aIApDynFyjMrF++gIwiiw4H+kY5m5BO1TwhePkMr4Vo21B/2VMa/xdj0yiHjtREJ0HO0M41hjtis4neliI8qpWmncnHrbbu0v9pQIsVf/rKlg3nx09v4YHhOtj2fAWliQRwgYY6nYBoQ+HDE/MVP0ARcngCuuL9xsK9ZRrfqMbw+DtFP/3vsvX5ngAKXQ7wfZWb/agwCN71Ig3ZfsOXv5fYANjzGmnYrvPZ8CjngWa5O1qJU4iZdjFnx3/0bB7jbLtKN1AISxXIxaoaoZJ37eiszU+7Uv8SfeFbPTwGu3z+bIsM/s4UcFfffeFl9GMSivCYEInJTSSgQzZs2fQHk8e6g/SOezbnPHj58lZ8I2yp4DcPh8khA+ndoyTwWirlow2sGURCkPz3jzdqIeOBGs0lzqVq8teVPZ1i/r5iip3eIefA6QPg+cUdqfNKDt5fYKsCpLgIisr0Lxsefz0G8SIDaFeWG+XUqRvn4yE/YG3oR0Gd3kNRLPcU0t/UPINLh7kKP232R9OSFeAVINGCyX++IXckAZs8hb8Dr6pfaUi8PjNWqA63ihqm35SuWaoMEiz/JwK/j5wLm5uAXwMEkwX70vA0jezQheJ+VDqPmrZWLt28tsK1n7Po1ypYtHsBndXuTNTMDsK7hG8K0f8dEuYPTsLKGoJ/+pcZivLPFO5x80Aqxi3aTAE2qv2weZpwdUgseI29OtovFpdVvCbWd7ZRtrLmAGSuP/fVVlXMwvDUlRHRC46Hr40GcXwbgS6+i1pHLvMVuwrO66Slsd/tlGDmWtkq9f/wRpfp0WdtE8g0KFxNjLxO9cjbUoYY/v4CjVxhP3P4lwPHZ7IlYYi9b6URTmH15ts3X11zs3i9Aej4LGzIyhr3FbwhqjlvsVPDrrc7nVv30LbW9BMXCvusksMVvajUoGjZ9k//iHUrcVS9peHAtONnmGRsj1YZ9qdIVcM/aIww9wnieRJQCsxkZzbZLYcSzGjggO/I6Uj59PixRn5+hO//J1JZfI2O7+1eAHCv/EMt1r2TruXLVkzdBHIRHvhz542O7CProYMRHS7zy20W985kkSFrfDqvfmklAlGcPwsl3K5tFyiBUoMZT714NbAqURFP8rMLUrP9gRu1MraAPV0SdOFzjNdWfHCybS0SzU8Cz2aqDHvLieyZKJJ5j8kpfitzuK5s039gA/MSnDvj5p1jyqMlAnwnghvondfmTNTDxzTh4itWUap+9BoSfHtu+B8L7EfBmck0MxVjyCvW7bv75awPAqjOodsV6to6fLIS5kLhUr+nR3JN77EM9b3qiOk3rrYlvW1BaUUt2mqUO7GMZFfzDt4FqZokGvlOPNdSjVSKKe/+y1bMSFzTMd+jxFD7MpTy+Nz0FfBKFkjnM7EHPsEZPD5/dF8moVdcEbM+Pc+XqDGKwbREdDS6kp0e4fY5X1CvJmxyxtTuNw1w9ixz09qAgBoJ+oEzIEVwOS4rx9nw1hJ8eHufHCx/sTjYnzjAIjPLHA8lI5odtvh14f3CQcLtFHaaX91WggDiOMCZRcxLPewNKzuJRZymqsptYZ0FkoRc+wswdlvEvtNXQ3T/R+ncLhj1x61RBn8IjkvH3YVN3MhP1z3um+PVlR292XqGvnhA6YOdens11KbgzsEc3m4RWDGImJ6L98yPYsWSQkS+KCzUvNA7rzrdkLGp5F8p8VVP7c9eYeF0vGqCT51OrO3ceK7IjD/qz/cV231bs8uNX67OoqDVeKjCN5zJUz9zhgPZgZt5ip8MTVoe7SVTcmcMyCdcLGN87g4w70zK7Y8C1Pz5DnwK4bvowm8HVMnWMpCoy6T05CeBeoJTsXzUGy6sBM2h6rkeH0PC9UZNAC4h+XRFw8LzFRxqCIykeRNUubTY98kwBDxV0ZN78Myn9uwBzn5sw/tN5b9J3ZIXTPYiwZb77bHWIlyqb36e2KelAbFmCQHOmAdVEcR+PB+XWy5seIE9htrJFWERH2fwFUqi5ZEupNjMslsXGdBo8cy326T8/jZ0xepdsV6UtGE6mhPUpwhmrl+dbyeqPiE3SDOaYfbQW+kdsoupQ6Ww88dcc3rZ+mvuyP3p8MLQGkMerQ427oJv8Hzq3cMqOBQEoPoL1IPEFXK7WDSd8pcWL+NcJW6O1cOOBuin89BnobgXVrE4H86yRm/JZ6ys17ogDpE2bHsJnVmFz4kWwzDsVyW9+6+0rvY2Mud9rLv/yoU6sYlhyZ2lhn6MYVZJSZatIIkGdkMrIciKyN/3i4Xj8fKnmQ70Uf/MZAG6HAH6+zHV9u5rS3JocSZ/jzVvcS3GGE4w+GOeC+cvfAhT2Adr0385bO2nx4XS4IXoC0o4RW3DOUNRvKvV9bx3GOTym8AKWktpY2Jnzsx0F+Dm5Etn96by5bP4JBOmi4Yu1oHKVmb4ClksFPkzI8+b5yfuyBc4z9T/WAmZnXEJ10w/4lH8wWMlJvUDvtdTYif4URh6vQoC/fLYgPWHrFg8VkOo1geurGtaPBXqlnW4tNWpB8RbJzKDqHwPznx9cP59ToWCvHwg7xa9sPp9CqMpx0mz5b87WrDivyuH6iGggPOxyHQLjDNPT7YJ/fniVb0yCRTxf8OEr05JsvEBxJupi9zrq2ZSulQQ1ttqk2W/HaAQU2NCink4PUKhjEl6fPrhwcKYHPahMZt2DFmzxB6lfTvLYN7yNoJ+Pd8LTmxbvd6VWqCpiBdmjpQE//gSppwb4VPO4nCLRs0BQGjlZubryyJZvYVq3BrarahqGiQcIqrmdU8ML9WHjeTnY+BL1bnVTjhI/SGCeqUsW4V5kY1u7FzCq9oz/+RcIu15hGb1iL7qaA/35YyTUGVndF8rAx3IrWJ5DHZs6C7fexZ9ZXY/PC6njgXhToIQGpNPJp7j9St6yRmdNPR3dhrqRuGb//FD2mCwkbP5kWqOzocZ/kYV/fIHPLhn/T9/et/gsLkQxZEsXL0jc+N4UnGQHSt3O3fhgUbJO0lz1eE4GmmSJ7u01yaigjC43nKTfgM2/9wVLrVGjVaJy6U5mCr3CYVu+r+JF/Vi86nHhB4eCHHkzXG4QmqVQUJcbxnItb0ny40nUldO2ZAdLuihpc7cxoly0bXluchDeVG/z69Ww7G4xAfCvWv75u3nTk/BvzQj1hdmKGdfYCmxE+4Hd9RB4TH8hAQR0K0lj1AC2u0/8P/1q3v/MmCfX0FAPe8UnQKOVycjJP8MUZjf805fbenTBzlshEvz8M6z0qNtQEiyZYpTxJSu+Wgo/gX7Crnv/gqnzdu0//WaPlmJuvG9rVJCb1Kr0g8lrh3cBR1kuqduQPWvcK5/COX48sXP5CCU5utENzrNmU82Ys4w9xlSAeM98smx6QDi60UWdb1WHT8fqYc6gU2aQHQUdH4iP4+VXX9DcS0ezmEJG909f+zceJswJI4qLLTijq0d1PZNjWsmPBAbSsv7TMyJIlVXZ/AX6l9/DQrHhb/5fW/6T5YtE4OafECAfo+S3+YfL1b4REdZZuah5Uv3TV3qSzObKxOMZuj2paBAeL8Msvs8KHIq/Kz4hUpZDJL0QuCZpQL1TwIPh9Rh56L1YjeD4mLJV/EwG+PG/e/i9lEORYUExjhfzX71mVcSFwEQLfHxU7rHHqj9xhrl4QESBzypbf+MZ+e8bttZy8thN9DjwQERCCieow+pZoaPqvXHFuioSwDw7vkFLOpZkpo9tvdlKD9E1eWIvel+Gxb3fCphrwm7L5xSwXOl7aKyn9udH4lludpbSEH5rGbrzmdBJMoLo8/Z+/M/78RJwea0LtWLnUPLnrA7lF1gJ9Rq/8ZZqOOdqWp1kxLmXz7BIobOCIvwe8bGOGm95ihcexrBa6a2qpgAdQOK/clGkYgYv9NKosavaeL4JvQIPz5zSA9kZAz/ouwrgqSTUMt9uvIfaUQPHvnXwz98QOGk1DG/hEZVX4rHWxFqi8mlgENi7FRgPt7H++TvEcv9ZTm8eK+BSiAbab/WXeYwvN+gVe5GAEUBvvc4JD80T0ambqt9sfhdlDxuRvRC31X8mKdRW8FDljryD47lkEMy1yglkxLZX7rLxp4+Hg9dQSxB8wI4QJPDw+WjUP0pryV6uOUP2963/433VkD7hVX2+8LXcS95g4u4J9dMnJRzH5HgOj9czgFD5o1p3DWLRNPhW2fjfxsuDYTwczQLsLkZKj3ycsSWYBh82tNxhvEJqzn433uCmR+kpdBM2Utmwf/ECSVny8ahbfJD6KoQA68K9iGeHfgu4voIWccU3L//L/4brb3rD+MdX1F3HCGL5DgO2HnYX+ImSG0XjUrFFEhrrV79D0uUjDIRPAgcCKzzjfPNPPFxyqNhS6FIrfX28Naol7sfXiIhuo9ePn3i71ePS0uN1aIZJ39Xrzx9jlJ45MHFfOMPhOWo/f87Yzf7aMAvnEl8jbY5XNa4h7NrBQWL45YdRQIIL2XupsXvuD8N+1SX480vUuy3SQDZ+BSfjpGNc32hJsiKdYXS6nrDeal4s1mQ70nXoL/iXn0bF4TnAILhQlxNew/Rq2Ao3/0mfPncABPjuDItvdycAHA2za47H8cfzydXOW2+CGtYgR16IBnxLzdE7KOdfPMJG9dQYc2PHARs/o77ky0MxzPACmT0ctiPve68SfF1RtfaeIfE6NCW9N4UCP43Xb/FdH/Z9ryO1P7Nuq5dagC+E7daqLf+fg7/eZAEoHPXMHQ84gICA5e9ltHC3Rw/601ezdmgLsOWD//STaX5H+MpihnUou8MevYUEOp2w3eodfob1c2wkkJBAxVh5gpIN665QfvVPZ/PPou7Kb9hGSMGWb/fmrIzU+NUrqJfbvLfVEwxF/kY9tX/5qa3eCMhtLmKn4d7Dwr7DVi/XJHzY9M5o1UELfvx4q8eZDFc+Atv3QnGyemymXWfA4kn21Ie6Mwi549T/4pWztdwbt/rE/6vxAfjfWwqqfpIpyl/DZsHVXDnqXkmPypINS6Pnb7CguibDSflmXW5ZNjxXekztb+lmq335jnD3jClRXtFajmicJYWPqIkUuRfM+e98dlWtV3okK2aXzYySCujQMrDfjvwwHxJoKcdT6NGzmj5L1q51CNJybahvO+swOQ+zByXVRrQU+gimg/dHQFA1JRHGa5ctjb71ovYrHesvrvbI+co48DEch/7Jp5GtF1HmYb5jd6LiAJfLkF45+EbFhBq2g+UYeBWBf6kcU/fZDPGyS3wIPSO3sK8o8rD+3Q0Er7V6wdZbaeLF2hcXGKVciV4kOXuL+jFT6ConDTGxmcxxnqJCPVw6HmPRAmAtrLiH/cRMalo+KLtPzXowkFnDEf265V4dJh82r8jC5vb7+WBKTzmASk2dt7UHy7FgK3R3D4WIj8E15/xphFDFD5eexEvksZu+1GDx4Akn5/cd/BtfP+D2iDsHGWA7p7QB8AwLcerXZovwvVygBOIF69V8MIdAur3hC55UArlYNtn1+uAB+lZvepXCOaO32/8BAAD//6SdybaqsLaGH4jGAkQSmtRSmSAoYg8sEBApEyBPfwbuO27r9E5zjz0WapiZ8/+/mUIJ4Dfb7qKz+TeYfAAQ7I/ZkdrHHc9WYr1lcI2jljTM1HLh+CxFGByhQAOaB9VntAMdHs+5g/F9Kge6JyqC4fXiYr0zX2x4RHUEt++LzeYEqymaVgd+hlEk/O2pGcIl7FZ410lKj87zOowNcgNgp6+OrJFtbavsygaGZzLiAy78YaV23sCiazt8Tm0un22z94Aw9zz5w249LOq9lMBUXUtsJcllmE+4LeXqDx+ITHzX2Imvvob1wwdEbI5Lta580oN49gKsucPsLxkPiWTPioP+PgVn0J1WlDD5whP2L/e9waJWzcBXylWKnWwcxs91f4Z36ywQcLqt8fJnAFWOTijHmnN9V8u4OGd45RqOInrVqlWbMwLvEx9jz++PgPFK3cIt3hEcKYgZxnIPIVXP2FMmCOaR7UqYpTubVJ/kHbfTtso5uh1WfEgib6j3wnGFVmRcsU7K0CBXOplAvDkRNcKb6S/4MqbQus93rLXiWi091p9/jszfqJnaz3i1OOkMLi4C9AjwG0z03LVwQXWDeM2p8+1i6VZ5zybE9kkGFRMYLEDzxS0Nbp7KePHAZ1DCSoaP+IiHxQNaCbRq/sNGdN0zNmdGqrSjmmGt2u56ujVNCw+3e4P2b8OK14Owl+G9OiDEZulizP7L5OBlkQVsj39hNdtm6e3hX0DxoxtMf105ewUuIwQf7pke87nBFwp9qCmNIvvDpsrZ1+CQ8C4+QDz6xLjLd3gNW586R1cfmLEhw1x7q9g+hed4OQUTBJOaYKqdFmVod1wQQJEPEUWj5vqTrdEG7OMlJFJX2v6o/ukS/HAVIXWcuDFJjJ0N5TPXUrNEAlsa327BcvrKGC+TPTB/vCXwdEw/WL+f6phhKxThV7/W1E/9JWaeOpzh9bK3sHk6/8WtY1sltI+XCckN1cEM924DteWs0HTLF9MlfM9gGw9E3kGVM91IJVDA1xsBEG+7wKvpKcfXdsKqEZl5q/3BBt4PfxH6a/eP6vM4QgTN990m3whXoHW+txFwiSFRy1yvYJXoXYW6K+bYk5JvNb/5UFW2+Y9dfFcH9pG1s3IdVpva4qNg8+R1HJBCV8SOl/X5rOxZqGAU3ugZjl4sSFDK5LVwBGo3u5St2Z0rwLM8Zvjoey2bI/rXw1l8cNvfezHzfZGHyHvWVKsuIO/n09eGH7A/YX1ww2Gp2pcKm9Mao+86EKMTw3CEvnfNETx+X8O/fFd81YBewj81nunO7WFL+h16HPeasXyEWwSXwKup0d0cYwb6fgb7mIWoV4xLtb73qg2H5K5QxycSm7jtYFe4CEd8PBx0g3F3QQcfco2pLRffgTVNZ4KAVyN8eJCQLXlRrqBvC5fafZjmTLn7CfxOrxf5IxyJ18dfY0KNFCZVuaAy5lRIROh18IO9l2IwMVKlBIrdtuv9MKz+HJ8MebubdqQ+6mWjO+mBA3WXz+ntED0B26eHUg5CRrB2OogxXaEbgd15MBH3OkT5oiTvGv7t8gFJV/COGXdXdGD1SYbE8eLmVaLtG9iVYUSvnJcbsz6UPfz2Ox11n5nFc2TNqbxe8Bn98uvAfRMepojdyJy3b2NrJsuwVmad4vukV7v98UPkT2ffqDt/9v4q6F7/q9806UMpJ89iTeCvPhrTSxgmD2gF3PItNarTnK/6XZ1hfNFD1EzdFcyf6z6Bt16OSHGp5ng+7ekMWJONRMq51memCUOYarcd9g8CH//evyyiYMGvC6iqde18D+qZKuLrsKcGeQoKlP3sLSJgvy3GjH0xwvKxOyMBhY6/TjfGw/iihtiEeuUv0nbQ96YXqLYbUoN+boQH/fyB1JATK2bxM41gmdYZWrKPXZEjOJmK5NgGVh19H296yoR0Qgxb3Z+Z08K7FjC1JZ2q0iHKGTBpJK/KuKL96aHE8/UPcWAqqEWdu0YNNmoGBO9DrpO9XvbG0pttK/P0pFLbOhQGaVzNgY+cHVC1+07+iuyxBclDn/HR50OfDmoUgkD9xNgV1XKYDtOlAQGvR9gb7jNYl/b0BPcwSkijJg8wTd8U/eoFqd6KxtY8trN9BJOE7PXPzMbb9T5LGtsQRPigPi28VwFWPbujzr1itu5ImSj5iebUPoV8vgq63svSRBn2Q8sA8/d2J5A/TQZWcS5V5L1XzV99oUbTY8DUdwZBBeseH/u/tVpLeXjCPXy51BLXPzCR1pWUycENWer54y/GdgrUNp5EMi+3ap4u/gxs9v1Q69Rt+Yvbi+CkGgZZJ/Qe1kehtjCenQDr/rlhY5aiu+wZexdru0HyR/NY1ADNhYZNqTOquUHu/+kZ+yTn1QJ6jYczl/poaYjMls8fMxX+fC2on787tpqxl0BFGHSMYzEaltOuD+GLZSvFtL0MzGpWB0a1EVPXOunxHHhAhX+3IcK4kVQ2A32Z4a8eBcfvq2JdvJbwiQObjK0+xeOWLwHtmwR1Fugqdj+kKzT3lURN822A5bkvAyhEco79Z1gac2i8OEDeo04v2/ix7BOJyut4vVAkuurw08PyS+pGGijdiXXTIuvw1T5OWPXTBSzzJT+D7Ag+2NJuUr5CZd9D+ZD1aMcul3jpzaIFU+weqJt/zmwUDvoII3hO8LE4xoAh7HAQP5881dLqPiz1+WjLv3qudvgD6BLmEdz0GzWOqlnNQHdsOEqaTxSANTYf/XqEtdBl1NrXT8YKIebh3zlLsZnaXNwbi2hD3e1V7BrBkm/zv/yNJz1E+8GY+tq24VFrQmoNccSI8b2HQCOlST3V1wxxwpkO+ff+ic3McfJ1UR6mrLbREa1VX1X/9ME2f9FyDb5+t+lDwJw+JnwpKQbxpo8H6RQwwg9j488CbHlgOzajh+6ogPn1fazwsBfupJm63YZ0zybclVgnc3LcDXPpHTOZO3IWRWd49ue3mxP4gL5CD+wi5Gum3HS4xSP6TGkF2JIJpjLYYUkf3yb219fVC+TmDQkN7pUar/EbP8GlPu+IqETNsGoyX4CzmBrUZIKcz4+PnEK38WZqfBIt3vxPoGT5q8JuIjVg7r9qD1WFlvgoVeFApzJ1wDjuMaLVS8vZ4/uVgDRYCTZe2xK/+s9NYR6EFj08zG74V9+D5n7GyDYPA3tEdbgvTteGqrusNuggSClgneZiU0mWYbpxIw+TQLxQ42Kv/voonF6yuXNPDe8U5PRf/OzrGQf3qogJ199S+EBHF2tzJDGqviMOvtJQpEGUamB3WuYSfrg3wZq+IfHX9zLDTR8R7rM/xevp4kUwpH2APSLMOf3pM/NPN3AgQQMsuqv3SrEXTMIuduSTYbrbcNMz2D87fTWzT7CCW/TBGN9t3eeBvl/hsgYaEe2cDItDDiHc/p5akZIYInvlKpir50APErPAPPWHDKoZweSvP6nxfIm+IVy9mBEpKnagC7XoCe1Lu+BDmXPspzdkuzG+1N7iZxHlFwTxBw1kv34NYw0sLVJu0ReT5bQo1VqaeQ/Tus3xGcd6NYKtuWrJhYCPiX6J5yjjdZCJnxc24djH7Cq5GSzV0xU77mwYy+csruBpPjQavEOUL3nRz1BiWUZR5d0M2lhnGRQEVGQ2uxv7xTt0L9yFer7aVAzXXPTTr9T/qiJbKmdpFJt9PmQ/BbeKPP6IDeJ17sheubesvZtN8M/vJPXeMIRBnp/wmk4K/eXD7uf/0w5cyLDVj920y2ewdJJCuo7J/hLpggicKAF4Oy+9Yv1fUcKXaGA0nG5RznbJ6MDMVhH1bttd0afTUwVbvSWsN2i+IC+V4Oavf99/WPefSoIv9j1SZz5bvlDkhQdrpivo73Ht2IJe90KOOMiIUlVjvN7dJASb3qBW02xXdh2fHtz8IdYP4BuTTc8BB5c6doBtAMGtrw58XdobkfvVreb0ss9AHkQW3vwUEKBwSWAs5DZhf0Ycs+PEE0jxPaPe9+b5q1veWiAf0h4J2i2Nu+PZ1cGmv0jzLqphsQY5AL/x1Paz609bvoIBAB3a43sxTMH3HUHhQ2OqNQc5p2IfpL//x+qt2fkj/xGfv3hCghSGubjbBx6o9vBI9h3LjDVsy0JRo+8XW4dn57cR/WvhAicBW9XRihe5Sz0wnJCB8eafSaHPkXI+Ehe7KYbx9nkZTHevGKO27SpmoDqD9SWqkeh6DWPo1q8g8iueHkwygpWCZYRmbVf//CNrsEhgY4srNdkaD4xv36pSGfJCPg+H/8ezIKc2FYIn9c/vFdcKIHjwcNMb6UBOFz2E4zqf6BPx93i9SFUBE5m5GD+uLlv2j20jh/jiKFbEDKxSvSL4EnGP4FZ/+9d7VOFrOBC0mJzuL9lrMeWBrCqaq+US/6s3W3xTH8QBYM3iyf94k/kUknyBfzsPvqfQoB4fF2Dm7ZsOx6C40WO5t/x1q0+wOF0aehAyO58Ie2SA9nVC9cGdh+X47HmweieG9cvLynnjGo7/9Em346T4p9/A+bEdZB8JhTEeNU+STVX4w5qrtYxkd7EEMpUdMr+0YlifSVjAO6cS7OmuyKbrYUhgqCCPgP6W5Lv7/Z7J3+nxokeu1WJRm6MRvBw7/+Xb7ZguNYKNza845k/8Tx+JP72CNQKqeD29ahO2cQHp8XAo/TXZX5CcOf1A6MaLVrc89SBcXxY2o1H3RaleAxia5emffqZ5ExRg45cIWs8hb193tu2inl8o7g2cr/LpxsG7lQhk8f6ew1wJLFPAsX9T43zv2XIKPhAe5dCllnd85/3Rkjl5428ImK8cLKGWPYGKZ0It1eoApbft1Elti5eIl/y1nN0WHnbojywjjox1/xlkmC3nD4Fx1w3sWEUyPO/VgmoofRrsRnUOwmQ6bbti5Z8+m+Hj5vT4tuW7hbvmIfCv+xv2U0EaWFC+EdTS3ZMel4OXz6ISFYoq8D5ZYnYY5tjuzZ//wW7nrmzOpJbbw9PzSkBHqUFC7srLZiw5VE/cYJhfUebIMfbRxm/7fGmnoFDGb3uhv/nKSnEXgFMGK2qkr9MwS/zdhKP8OmKPlVw+s4+5AnL2TGr6cmXQXaAnUBL1HVY94g1sN9AZNLehJ3/yA8TtptfASzz2aO3vZTW+uT3/iy8cvPxHPilvP4MckPfUXb+V0QXKswEbryFK0gnbRYCggVrc1NQPrQrMQ1urkKU8oXqc8fFypo8SrvMlRNA5VlWbOH8ePEkEovmvWKpfPoIT6D90i1/wz39NsX8gwuHp+vTcVSu8zZeWOq/rd5hLwSVgesgBuevWwGb1z5PAj8f5htPky2OkUN70Kg5wowPebY3sx3uwVyVVPr3vJx5YGD2JuPFxmRXBCNlyPlJzvgNjDbJAgnyv2lT3OWQsSS5E8NsGH+qWVwaWfAhq6JirQqhrMsDMEK/wK91UxP4MlrOP7CZQOiYK2pu9xoQqzjNQR/1hy5fuwMfQCcBOMGQiWgd1o+qmCtcXvNHEWr7x8tPvJytWqK4FdHueloCgsxdsru+BEbO1uF9+pm6K7/HPH8lNYI0U3+3SYGFuO8qn+FuwulzinL2HYZTDen9Aipr2xtw/wgKm43YDUl1g9otfeXt/+GiQctj4Xg9MdfdHwOSgYb7TsgAbHybixkOW8mEUUEqjJw0+yj2fb4EbwYmLdbR25guMLCs5+KQ1pOdSemwHnQ8B5Bafp3iMFGM57baLk/po/fnZaka7jMADqix8oBEaZqdpdbjpXXxsonpggA41vL41jVrc5W2sWXQncMvv5DkOcz6qfGf+48vHnVjG7LDuEnn5RgX1tv7Gr35DMKQyWuOMz9u9YK1w98pc/Jvvy8YHZdNOPKynUg3mjceC49X4INHlib/oXDEr30/tbPw1qlaztSD4937xXa3ETb9BdBAP1Ci/nbE0w9uB1sESUWVLAaDxMwyVTe9Ro5/Eipp0rpVfP8VX7xdDaCezhBvvRl8YfOKlS9cGpm7xotcPz+UCeRS2Miz1HrVd2RiLH3ISvLxJhg/qYG8X/wgSdNNmJVLDJrZy2xKc8aRQeuyG2p+Nt1xCjpwBTgCf+OtEdncYkMtA5q93Btv4j3AwWgsfvqKTC/MlTuT2bW8Xa9zD7cq8zgZR8rgQ8XqxfLL5RzBdWE3aXjxXmx5OoXIdEZK1Fx5YoCMCXpf+htG1tfIdxmsPEqHE2Oo7fxB8+2FCISIqVptiGr7d85xAD/UIH71CG3ikwQYetTrEj82/EGmv8ECL6x/va/1FjVwbnovpQWQihPFsjPdEkqnkbLzbjEWvMhK48RPqv7v3wH75w/xTDXr9+d0x/PBg08OIF0LTeOyZE4E08CDWarceZgc+EtAJBw9B+NcP89hdRujPqUTvn1gw2KZ/wI//ejc0MHZwJBumbvkic5GK/vzm021JbIy3z9eq3d+jGcHx5R2xfTxOv/hWf/oG+z5iYGwtfYY/PW9FMQJzoN4QLG53hAqz27Op8e0eWoeDiLhTtW0pfZT97/cQjsPEn0+Zd4alGl9R5X8yRuU6taH5ftqIbfxn2fpBoDWSN/7pfzaKpa2c0rONk1N4zslBzVewP3mMWo5/zWf38a6hkiUDdb2Bi+k0LvAf3zWfPjaYHbUB3PqN+OcXa06uIUy/oUTN9e2zecf6DMoZLikePoT988enieUEdgkAbZbad+g66ZWqW/5nvs/x8OFAjO+7t2zM4OoTuHulLo2vqxEPYm9mitpLPeJ36MaWh16QX33ACBQCm+xSt2EblxCxm5uyX/1W7pHMqPoaDowJXURgZusIO7/+2/kk1FDfMUyW7NNUS2IvLdz4FppTSAFzvfiuKHPq4IyPVSBeZSSDjVdTd3/T/YULlifY/ByRe6eM+zRcErhVdgRtJxoW4y+6w9O05NvFKoMxPcodD/1LBLG15H017aNp/fU/8d3ka+Nf/Q46c8G4YLMxBY+9Bx1zVn78ftj4PITv6/dBVbVhxnzASitt/B4J1dHK1//3p2i3ajYTLTdCUJhbHv/0Ev3F52yNEY1ZbefsWGUy3Pq7NBYVi7FyfKQQCUpC/ep7jX/1FHL78E6RccExXU8BhNzTKahz2e/y9hZoESR8KW961GF8FEbBT79t/QEJdEdG7nC8Ex4JkZL47HMjInxHSfXj7/706+8qkmVijbVLvl6kofzpVaqnkgl2weSr+3/xuRfVWNjNlIeqMpXY4xXHnxxTVSFIa53E0x2x+cK0FQqX8wPtkfkAW36UAXseWqzfysBfCut7/9cPONnRPJDPIzfhCuwLKvtXF8+ZVEAYabqKt35AtW68QC5QEmFj9L9+y9snXVk6+edXM2PMpIIDqqV1Gz/+5D//D9LdI/7Xz6IMyhz0LfON/Sahw/g1T+avH4MkKVur+aJUDeSch0xRF4WAbP1ZmdTJi/qddQDCkhx1yJ8vBZllVlWEdVD8n5YUwP++pCAOdZPaTZfm8/raQ8B5cU/1j1X7k98HLXRD2pA1b514eYIFwr52Wnp8+Xuwspdxh8Ljb6E+ebzZ9NrfejB9oorIXb5ns63devjh5hRb7QzB+Go2Sz85Xxy8DQzYsfKQaBGo0sj0i/zBoiaEvB1harrSbNDm63CweRQIW5lQG0MZRRlckgPC6gt8fDapYglfNf/B3qPHPpvTYwr83Jao1+m9MTLo3qF0vVFUvzTXYDWviHA6eCu6PN/vimlKlshdkhzILMQjY9eVu0PT19/Y77+GL97jYYWhKAPEtRGOl+Mn0MGJrSWaDZtU46tpS3ixhCtWk0pk4yNYEkXfTm1e5e8IFhZkCdg+nzqLb1VsNxAIzo33xf7t7DB+FPAMP22XYbsJ22o5Di8InHcLKMoENqzffd6Ad35S8NH3i2qhrwMP29x40UDMr/m0vzuhvOqtip/J3xnMZ1UaoXcMr1j9lKVBPnLRwN3LPiARB6HBDkfnDHaFoWNXFgYwg5BL4bVpH9Tk1bcxhydLgn9j61GNBm08VoedCpP3k9/G0/O/9wo2UGzbM3WSHFdzbT0JuMR9jIRMMH2x4e4I5uotxL6TPfP5m/ze/5puq1THgZ3ufCPfjlTGqlb/GSTHkgfThx1i9Jd8q2WLNznyny9UaD6Nl2+nr7K/5wk9thti/lozDy+Vjqh7vklblEkrmDHXY+9D7/moHxmCTwx9nN+evc/81uPhPiJXqn6/5bBwMpeCOf2W+FCj07AI7ZsHpQgyxOI/Pmasc87y48TnhNluZ6yHN4jgeLqYGPnI89m+iDLZOrkWdbj2bcwHywohCc45EgPpbazV3zsATO8+VHfCY8X2ta3CXeOo1LqmgrG8b2f+F39Yj7ShWl7Pxx2uCxmolnOoamLLE6H0KCfSsZLzmfq3trAuix0O5n4fry+3L2F1GUKswZcOxBzPnqJpTU3AtfKG6XtYWyXrrlesP272MMtHbwU658lY+xY9G5eWBGCMYo5sd7iC+dk5PHTxOmBdJad4Bl75/LOvpxa9mf41aLXoSGaa2VDMnpY/+ZYqKfbHrBHMDcNfo+PfdooJZxB5p4vVoqTRtiTnrtF70RcGGxVPhFG+nLGtUX4Yu2sN4R/k/hCD+blaDJUWcHytJilvk+vTREhm6HRnCR93yxswbi16xXi+KPl7XgJjXlqC4BZv2GXl0xjFVUUwd6wjfsjn17CQixNBGt3/cFL7rbEgLa6VhkGd5lco5xPMWAhhLEb4eNMCY1E5h4dbvkOLN5zzNmeeKd9B9iWPFUfxnJbYA9lNLSmqh5fBmBcWSn59ONSd0jCen0PnQbIXD9g2eMEgOTjwgNy7EBtXIfanzTPBW+ABajehUwlaFmbgIYUIJ/dXXzFFUDnlcgcY7c2VGvPl4SBoXSODmvwtZKvpjSn0+M7C+ri8K3ZsBBH2tddiV4VhvvqXG4G1wTSqhrfO6KrzGYF9rt/QOn/VfCmUbZtsxwnobsc3NvLPkZOd8isQ6a4Hw/R8eB6chfWGzetlGLb3acP4jzDUdNA21teCapCPUKOP5+r5y/PhOYD7Pt9Ydaahmj8PuYbNGJn4kICdMcnm3wj5j2pR7cIXrF2rqZFPylCRMnhBfyFimCqZRCPqOjsYLzG/5+Tf/PAb8BnoCxh3GIjkQt6pMxuTvUclFGM/x4aKXLa++rUHPJ+pNBj5bBhbcMlgMXyO2NRYCVhxY2cYfOGLgMqyGRX8iod17EEy5OvNoJmxv8PwEPg0sT5xTIQ/1MDvo2JE9A86m88f/qkU8p9DTfMQGfQzajWY1BslZl7LBuEOcQ92O1um2jNSwMSHRwjP38Mbm/2t9ltPqSMwfeSWHu6uma/CH6pl9dLtMG7C1Fi85qZDT54Naoj8dWC9bpTQz02Jakw/GLN+asR9Vtg5VYe4MOZWcJ+wLcobEv+ehG35s/7lP8SV78Vf/6rKgel4324z3lkxa0vnDMf3sKf2/dUPs5M7IkxKe481891U4z7yU7gM9QEHLQfYB5XVCKOoTKl1c+N4lUK3AfMNfwn9whYMK1E5+NY7mx6GoYhZfbytYE4/JRlO61itW74H33O05adTN8y/5//yAXTnls2Hx9uD+z47oyXnSMX4zfJIjfuh/jYfF+/wRspnvqY0uDa8Mbpq0AL1Muyw82H9QGte4X/Pp76uaWBXsr4AQRiWFFljVjUD8hDknHFA0rkI44V3VxV+1LalR947AWaldwk68VHG/gu3xoiPUQjFskqwVdzfxtzG+wQyN21x9jSebD2GNxNUH83HhhQ0xqKadx6ucSNj9Iz0inzktobd5rdM7vbI16LNEvju7D3VvQsxxg8sM+iGU0OkShq2+f8t4ekJJjSj1gPreFJ4mFPXwsf75FbsD80IFHccYSy0sb8an7aG9bobUflYk3w5zFEEhXu60kP1p7Odld5lMHNmTp+MH2LWoMmU5YhCIljjYLAqQapMrE+KPRbs2PgO/loAg/VGwDZ+rD6eVoB1vcTO+VBUBB2lFSwP5iP4NigYZRLJcHptJ5Q1XRrTputCaK43TPEXOoCl2NbB8XL38dHo6ngplGMIUCUt2Pds7C8Ob0nwnccK0V87EdDu1aowa9MH4ZK5idf0erOhOCcR4S6mMMzHPcfJQw9CjOZjnpOL6iEo9scY+x/MMxadnTNM3KdGETZbsO4F6wxfiUnxsZkSg/d2afKLZ3q1nmCgvi2PSqwfHYzOgwX4VB5UmH4mhx6S5cKW6Vo0YPUlSPNXe2Vrd6k8+A2aPQJvtclpfAUQqvVtwoGsH6rlqKohPD7mIzYI7WPS8REHz+llQPKH3mPWO68nFIZ5wjZiaix4zU2FZ2wTwhuSEQvRLgqVXbJa1JBPdtU/GZHh9W9/w4enWQ1L7hIJ/Op3vunNSZZnG7a75kQd4K8GLVNyBtInGHAUbbuKn3vJgZt+ocHc3/L15ZYFSLIMIFF46vFcmn4GbmVDSV2Fu2qutMH+Nx9OdnPwpyvmCyhd+Hn7fd9qTv6qFmp/45neFfLxF8kOCLyMsUcP+2OXr9fbksHge85oABSbzRA9bWiap+dRli/1dpdpdIYgxC32xZL68+2BSrDAt0b+0poY833uZoA7M6M68kfwSfp5/MUH4kDhsC7pJQLVOp/IsukZoX93vKwOzowtC9yqKdCLRjHYuabXP6etyC9+4Phy0V6tiort/7wA7ocrIlKQG0bbXUcIbuNjxu5gagZJyk8P2z8p3pD7mzGbrzMoF6VEt3g11n6Re/h2VpP66rY5Sm8dGXAOGci+Kmu2VPsrB5O4k/AvnsdGfdrwmX4N1JRsX5FWBCEk4GajqWwdwFwUtzCSOJ/aiXSspr+rxcE/4aRP+/GvGMae8U/wKNmFugPSc9H4tM3WElio/sZWzKc5QCA9kgtVU8seeDdty199pceLP+UrLef1X7zn8eQDcZqnXh4Xjcdqa/2BEaLEVPZ++6SJn5zyJT2ooUz2/IGaq6VVS1jtdJgVZk7NjyaAlZoOB5KZp1STOtPnyYwdaOrkRdXo2VX/6qXY9md8CBY3n4WLNMLXYx6x7nSPfOW1BsJtPT9SnmvvTzePyeBUp19sycbOX0vnUcA/NhrUC49sWHZvVYL1Ek7YG6UWTKUwJuCQl1eKeEP26Vm+ZhAlBwGtQIXDoj8DFQrWWaavtCY+hYoQQNhLHnZY2Phk9DsZbv4IKfXt4M/irT5D7qYVWJfGY7X8xr89eU/qULbzWa7dHMi1eY7Gold9Nlg7B8C1dpAwbruyxGo7yDO+Zfh4tAtjRcd5VRqOKf/02dikC6dsehit3+qcMwyX7KcvcVhazFijFkSQDgcRzdv7YETyELRetYX2m99azie3gCnblqx8Prkh/IWyLseZ8EeUvuLB2j5fqaxjE1PNu1uMherHhPtuxWjJqepPyzrYIEx9C7vDI2TL9OBL+Cn+HjQ4RZaxm0/LHZj6+ELibJ+3emDrcBd2B4rmI4jp799UKywc6d08jOrtsCrdh+hY63Iv/qdHsneX4Z/+2MbLg/v7NyV1X33ilZk4lAGOJiIq8JUv0T0xf8+j/qPa5XQ+7Z9Q1m8H+qsPbGd6EtgdUg9JXdfFM7/vPHhP3owaMOer2UtUpFyQe6NYaJlPbVz0IHaBRZri0uWdaC4ZvKqoxzjKCoN1H8ZBvvmY+Bh3j2FcH7ceAiV7EhlFvM8+3nKHYvlOfv7MZ/dH2wPdXo/YjnXE1oudeHCrf0Qor2o8oyiS4Kb3KYrja8xw/g6hWMArPXxmzV+qcTaVTU8TOS80f8a8eIbaEp/J7OwCIKKzSeAqqxO120ys5urwp4L8Irs/fVqtqiDMYOMLFLlxD4iKTkTZ6hHWN54yv11TlZ1w1PDVwpO/jsyCIPxAjYhPRWazFubl1nLWEJxP7iDGTQblUftz8cF65tWsHwH66X8COotV9FXSRt78FbbcsmPk/ZFVkAKkIS59m4PIFBD+83vq7puDJfv6GWxvzwJJ0WcGVHT9En5l0lO9OltgOp+0QolD1cTBmnjG9NqfeuV7DnfUxB3yxb1gJSDKxIwoQKT+eGSVqpiRnWEdqPdh7GeHh6mVxuhvuZnV6otvHuCdGP7zg1OF1EjRQ8PDBtRr1u4vfzqs7lmM1s3vzPvLTocvznpjz3mLxmx5lgRoKKvUr8WPz2ryluDukHnYOnz7eCV2F0Hbea+bH3L9VT7dJVkNUvmfP5hP3XtWtnpKtvnJ6B8DEAroK/7mc7yu72qGpZDkVOPYwpisKxKIlghhFZg9W0qhPkNzzTH13sURzK+mLcAa1zI29DHz1/sa19CZ04UejPNUfS12M+Fh4XyyGwY174U/u5H159PDVjmH/rI3xgwms0jRbnSVavjli1pHOt14yDAfzwzB7tm65JVmwS+fBDBbtAv1vx7vUytyOKj4wR8NUq4cFrFTtuPYtBW7XjX5qy92PAzDh4PfPPvEv/kONcOvSLnzHmxMvniWPbs6Y31QjXgmM/bkX7535FXP59/7E7vwtukjO++qcbbB6A42on8YA3HW2nb/HQGhhhTYBr+aygzpYInUORdhPhy11YYsvL/xvaVTzIDsNjJI4IBRKBwM/qOLKdjikeJu5+TLW64hsNzXgawbD/zxOmB1C9z40GEQPsTIwFVbOgTM+lU12E/vgH3LG/nbTXE1S+dqhF1yPmD3qV7y+fZqRGg/1QFN9e1rNP2y9sqERIo+mWAaNAlzFWpaXaPxKIgG/eWPzd8jFrgXsPIa4QB323jOos5+vbsG+s9vIr6/mb5wocsZ/tXbKY8yrCpyLazkpw+pK8njwAbrz4MX2bbpwT1nMTtxAZEDVf6SeuNtG09KwWkcO3zeeOfy4LIIyE5hYb+ybMA/O5WHz/kjUtdpJ0be5ltSAo+1aMRyMrDnk8Hf98d+9Uyqnz7bayH3IvPGu8gN3kVw/lpvasnGdfPvugdvgQPoNp/8UT56s9K8Dkcis+AKWCENDsin2qaaTOphQe1fC++jPmLX0pRhkf7mEWYhKaht5J+cLpeP/dNPRNz0L5XhNh8bR8XaiSuNhe4GAjb/iJFy+hqTkmYQDt35hI3b8T30G9+Ep486UjW7CQP9+RNFBpS69kTipVdPBHzS5EMNPe7z8XhmATA7L6I/P7eOo6zDpNIY3vh1PDnTwilahnPSnW9p9U9fo0peyGLKYs7Ut87D7PZ3R2DjARsfCeHJjkQiwekNVmg7CRS9otqeJ8WLN9YQ4ki5I3g9mjnlR8aBzuYCrHW9BBZZnk357cwmjl67hM3EqUy41d+Nj/gDKKTKUTr6NZDIJtNYCJtNpRi+R2rZVsZmN20LcHruJ+rbYZhPG5+E1q6WqOUuUj6PhImKDec3AmOpD8LjVT7h/nh8kH1y3rH5Qdw7oPkEsIc5E4hyN6/y5fE+I2XjpbOgnGfwgkVJr40bslnkixLeFq6nzu7FD8vPn+aID3HS29+4MY7BKA8SCcj+8f0MJHQkD8KHhah5h061nHJ9VsbdvMOXj/nKly99EjD4QUEPSfmN2SIKARykMaCe4zTxOvUnAg6s8tAIA2H41W8wxEJK1Q9YwCzHTyK/I0Mj3/OjAXQbL/iHXzHVkGPkLCvfEbSvcYsDKRHBqExHGXxzyNP71j9Yk/LTwk3vUyc7oZh/4ysHXihbMA463RjXx6mH8u35h7Fynof1x8NJOWNsztXqL0B/ZeBY8zaRus6NqU3Cp9KWVooU/6KBz/1g1/DOdzXe8lO88a5Gnqhb0wAGQrVGh8pTzCy9Uz+0czbtyzP6jS823Zcar42khnB73jZ/HlUJ69mDZVN/8MZTchaLwwyDzK2Q/Oix0YoyvP/jJbDvx2rtbskKST4m1PtQGHfXNkyVunotaN7ia4L7wYRbP4JqQcMY3TfkDM8ce5JFM6+VsPk5OW92xkZpLvFSjZINrWto0Lx6isMuEZ4rtJMzQazlxvhXX6FFOBV7fN3kfbY4IUSJJWz5Y2es0m7q9/X5INLj9QVzJn5BAvvkb8HG2LtgRFEmwX1pR2TflcuwWtOBh5r0dyKKG2r5bt+QBNz5oaaB8dcPzObHDManr0H2b/Hsr97e84DY45iEtCTDaLXCCJfJt8lbrqt89rm/GhR5mOLkelJy1rrjE2y8HGvewOfs6mcpbP2uxv/07vPJOPho5RgbD+EPMCp0Mth+Pz69aQDYGpvrj58gwU3bYe1uzxVw6ca7t3qyupXd/HgzWqUyiMWyOhEF8ceGWve/1R9fh5nA558uUpO0a0XAN7zDcTF48uirM5id932FL5vwGIcvFfB3USDwMTcn1G31eV7aJoAvlC70vPHFJZk2PsgPFj2cHzZbc57JP95EWB7p/q48yyMU53NE80e1i5fbCfPgldh06+f4gMkP2ZY33kvEQNL86fHq7/DsKDM2y90XsNF4iuAjGRckb/6D8SPg4MYzSRFA2RgbWTfld/jUqZX8WfmOZ1iC5KzE9Nc/6BOlE+FZCV4Y1cOf/9niC0Q9umBNro14aQIQQe98DvF9i99m1Rkn84cdorqTIbDcVbmFRa8j8o+fbP4d5M/Ax5b/cH/fB0I1yGSMs9cxb/9eNxWaUnGkDqKrsUaHwYPCsE70yHlcPPN/gg1hL3vUgZPG1meg85CY6o36H3xmJLZ0XkkfZohz7gtjqggOByv0uf7Lv+PtFsnK1r8j352QsWXzG4oyvHlCxius+l89f6xuiN3PuLLFEiJZ2fQytQTOZdN5vfWQDOYJR1u/lCVhrML8Irn0199h6Kk1kJj6jUjh6Q02XhrAhnE61rd+B3uLnii/b4Qjw1iWw8z0x/PHX9Gs1S//5zehN6QOWnj2yaeShil8vFFCQL+YOXu87yH86W3TCf7iBo1FDYoIJvi88esljjseCtNlRPLZiHKSKB0PNj+NveWwy1fnQyQYzq5EETGmeK1zaQZ/jBiE+3CFT/NChbIwXUcCN160+RMO/nh+V4HzwDz8u7joK1IbrEtMDHtelX/zu+gLf/Z24Vn58aTg2pyNRX4xCT4y70H+Sn9bPHQWHGgVlUq42ijABKCRwcuauvimwjleHyfjDrf+FQFbv5TFp0KFlrZ4WAuOtU8fMHwqW73DKkunfIjh3wioG+i/+Z+P7pN/Aj/OAFWrxQB8YaUp3MYXWx/zFbPGOW23AoYGxh4pq+58fdwBbu8XtOxOQjVu/VSg7M8ztXcwGtZZK/p9Eg8S6WXC+6ttVfOP11IVPLJhneZPC5lmN4R1x4yt6ByM4MolGf3xiKmrdefH4/Bt41fz1h+BQ7xLqdHvh2oisqlD6yA5NH4Pz4E9YHoH6FyK2NG5bz72l6CHkfz28CGNP9U413K9//Xny14sjfaXH0c18whPcAnYq/zWILrnN2rkwwLmXTjb//z87Np53FUs0P+nJQXKf19S8E5RRy2F48F0MV8cgEOgUgTOl3wWjsEI4zmyqXq5N/Es2icOuP7yprYdCwPdXY8pvBy+X+qqxZBPdDgn8Cx6Kj3mHaiYyBkedL7HHlX8X+rPtRA1kCZhQHFEEZhi6xxCCYGMqvugqGh5VLbcoKsU2fZ9GJyDv4LXiDfLRb8x60PyhEpQGmSlB2WYLB82EL36CRVHUA7tW3Fb8IpoSr2X/vVHLejQXqPRjJQ2VuLptc6cUjvlBavNO2JTnLbq7/sjoa4PFfOj9g4hP6Y4KWzBn+vLdnDLTdSxJhFkrIlU9/D6Bw18Nq2QsWXaDjE/jhART1IrsZL+bJix6IXW+OLl4kkLTfn4bl70mKN5aF3Q3qEmLQ7WT/8BAAD//6Rdy7ayPLB8IAZyk4QhN5F7EBBxJooIiFwTIE9/Fvv7h+eMztC19tpKkq6uqibdSRHzlueFUHoBHQUfc9TXUXGmf+uv/Q4joGEKE+nRL2fk9Z5ElxpdLKhelzvJc/ocyVTJIuxnzkJ6L5gxLfMFQ68rFqQcmnZvRqBksOZlnwTTLwCDdH43gOWSJ/rbv4VltSfsFLcODmUnjsSJzQnyH58L1oEzYnrKNwO2mfwlnnHpAX6SXIPp9+KjYNS/AMutokFI3RApV53N6fIoW1meDwNCDGtTrHGlBNn80AViJPzyJY/3xuow81FRXKk+N8OpAeOxkZHVXFt98pRlgnHAaMT2OM+dFq1JYDdtDrHmQgcrtZUKbkV9Jgpw2XjcpkWBjo09dEqGC51dbWCgYmZn9EA1zH8K44vwVen6noJmsOnglsLcrjWkp+oHLN9P10BElAPSX/JS419dlbBg7BLZvI10GvX6Bl2HOghF6RPQox5nMGXWhmj++qnXaHoo0MfJQKzfp6M0O4EBFqOzomA7JDUVX3cRHEdVJN570vVlbu4ibLnW379fpdxQAggFn38SY/AXSg6SOkGA2VcwAtiBzfh9E9AVBR8M8aeOl7sUJnCPB2T4v3Kkd09x5NEtMULZZIPtVEoNPCe/Bvn2Erkrta1KcC8qRuijDvVwVHsHhHorEO0effOBGjiEN4hRABvV0Mlh1oqD7yu/f+dnQRnfQtNcHsSNhoIu40n3ZK3L3sFvuKnx0nlb+BdPRMm6Pl4X4RbCcs4CEnbHjNJvu88evv96ZCjHGdDOqEtosmwfyD245SRM2QTCA8gD9hA2O94YE4wE54Z8KBeAvl5xCA9XuyNuYxo1lzB9AcUs35DOfM5gGVchAzC0Pij0z9+R3A8KDx58GaPn+eXV4/7/Zc63zuR6cHWw8Meogz/wPOOKDfN6iZo8hFzpCAiZ3NGdwkjn4SfeZ0mV2KppIMwtCA737t/5n2iuhLLzW3Kipq5GqSd+JNjfdomwSow+5WacALNfbWQW9sOlv+9zg0moqwQ5D6zT03VuoX26HJFhFBXFQn9yoMdvBjmfeaKvz895AZkZ/Ih2Zs2aCkKWQdsxOYREPdIpxF8NfpOBonM+xSN9ozeG0dMQgmP3e+cDMI8JjI/Li1iU78fhMGYBnKtUD64tnPMvbFgFxKJ/DW7xLQKUUWAFr5NdIN2fVH1xpcmBIN6YgFrSS1/OtVdJtJpScvUrRafXRw8l53Y8IJuvPvqivgsRdoftiPxz5umrLQQeXCtNJTaHDZdubV2C11g/iKp+Pvl2W48iWMviSE7OaunLchVNAItfFrBGodH5btsi7PT7Dfk7XncH7hLAH9+7ATedxphWD/iAYg8lYs/KmhNh1UWpOyzH4MhXH5d2TAr/8AyveXocp0a7i3A7cE5wYPIbmHzzZ8Hh1LHkPVU437jBLuDverMwVx6ielK9TyAzT/2It0tS5CQQ5ubv9+Lj+/wbV/GRD3//j6jmJLrTobtAuWXVE9L39dqkT2pCTT5LRHfOnrt8HIsBN5wBpDug15fwZLQQWKQgPqcuLkWvnwmV5zAQO25r+g/v//LpCbSYLowWVrDonydiF7FTCwyVPcAudRkcHFq69I1uE9DJ4YRcJ/7q3Y+KCjxZHCHmnr9mxTIZ+IcfotkcxqkhgQEr9Q2R/qlO49AKSQX+nseZzpSuLAcx8E5PFZm+MY97fESQS7s3rqLPHM/fNG9BL9xKvIhZXa/u81PAzmDeSLtHp3zpjvgJ9/3E1c/FtFesgAFiO+8FV2eN11UXE6iYjzPxIofm2yv/aPI9Y2cSfCRL3+6GmkHzhCKkXIp3Tp/CfYGcdXPxknV9vskRDMHh6nbkPJFfTs7A2sANPwDRUlOLl+ehK+F0KATigSLNFzcZJvg4BSEKeu0IZh6fOjhLcRSsh/eJ8tKnMCH92AGKHWC782eFHTQO1xsK6+VBaeoPE2Q254ic6RzTtZYPDfwmHUWuiRe3IfWrkYSS8/b8VO+NukwMNabXiOtFd30LLYeHN98U0d/+zXt8wzWyv//wlZBPnMAF1cUffrjk8/lZwBW5OzKuzivGTxhF8HUNBXSa52+8gXhpYFu9ZbLnX7pyV7eAKW0+xLwqMMYoZ1nYdryKWRmJ+Xo13hDenfqOucEK883yjBCkpypCVhxtOXkad0M6xUdEzIyp482c5Ap+sesES4Ju+bLHi/S4ME+kqO0HLDfOsmDIihI+XEsTfKfWc8Bx1MWAqY852OS7tUDmcfMxfEgHd+aqvfGy676QycyXmPyd92Y2PDyhe56vZbYVICmSBNkZ+YD5/Z4DmB8GFWlsCOotT0MWat3jvTdiJe7ayPcE3sVfh5erzsbUd2/DP7xWh+cWb9JjTOTn8HwiB3S3fJM+hQHrx9MMGB3z9cxjf4D5bR/8E982OuvHrwnKcNCJnilXuk4TL0IHRzoJygi7E9a7Di7yd0Z69PTo0qqvFjbdJcRDMkl5f1hCLLdc4yOnOVT65jSdBy+M1gU3r9F0Dp8iUT7EBQzWQf3leB0nDZQ5ZyLf8Ox87YKpkpTYiYnK2UeXLI+ulQ5K4RNr66V6ewwOC5nNOqIILde4/S39AvvA8IlLg9Rd9LVNQNEXJwwjJsy7+hlmf3yVuPL5QDeDnVoYdZxOHmUb6suBu3iwRlmLrPL21rv+/YOwty8Xcj7nhsvl+SWFfhy75AyePl0vimfC4ZsTLIFOiHclocEj41iBFn3mfM2BGcKz91dybjSXvaKJge95E0jQDjElj6+WQIFyABnF5Osrc3EUCH+Mh0z7ndXY8rxot9Sef/l25E9+y0oxeNv/8tsWVnYKv55wJiYSmLz3P+sAHN1r8IGLHvq69esGg9/zHsjlDY9kCPETKGyRYmnHs4XwfQqvXM8Tvwe3eFngbYP7+pPE/yk1u3bf7Y+fEIUM4bjd1lUCxPUmYg7PD11ivdLg50PUQMr2xtDnn6xBcSy1/a35CeCf/FHkmD18sHBQNbpKU21A7XF2ibUFpN5IiRLp4HtZAGak5asHFguO+PMimk2lcaESF8BLJNtEq3JdFxK2K+BwGlhipv6Yr8vlxUvFxryIPX3NeBKzzwP+zjpL0G/Tcrb93RT4MuUamVu2jPiVfxQ55dkric45O+KKKt1ffgu++o/Rlw8vO7DaujxYfyHJKQj2V1gu00h2vusKk65AaL1IRAJumerpPWye7OBQJxbjMDnB1t369/tsUfq5hP0ST7rFt2cADpZLF+fzYcAKqgx5eby62/RjMuBUh3dQ9fssbNv/G+yi7CU6l82XK2oYKan1hTjmg6l7D4gOdFoUB8zW9ON6in4J9IHJE6svIW1eWbVAZvmtyDyYeozru+bA/GjdAzCcsvwPn6U9X6JLKfb1eGsnCQKezuRkKGHOnd5KAiX0JQHP2dbYmf0hBJu6QGLTtdfX77M0//A1kIqe0ysdvFP4vUk/ZNt97y4u+x7g73q1MMdsK1hJ8TLhHq/IUTSRbr22RnKp0F/ADq0GFjRpCdjzY8C/096l3lh18vn+KEmwuUK9dsmqQGh2NnGZBIO1Px8XYKpyQXz/enanGt0t+LeeenlNx+33SjVYg8UOJPkbxct8iwZ4S8SGuFdlpPTWNiLUxiEOVp+vdHzdSxD3a3vcu4B0lD4y3QTnM5cFw4vL9Ck7c5K8673/9MtdZNM/vo0M5nmOccRmG3xVqk4CeQLxSpjShIZ6sQN+o/m4Wk1YwmvJ5EFdXvl6ToqiOP59f6U+FToj1jaAFE37rGt3v7VR3nkoVI+EnMh01Jf59higV8AMQyJH4wDMNYE47kxyTs4FIIKQPeBzi6xgYWlQL7aWR7ABlwNSmKWP2yXqeWnRaBzMYPsBCvGsAK7ORmRtARppL0yBxJ5DH53aOo+xdfAY0Oxdb/70ypysgwd3PkuMaBNyTGXwBBwIUmLEhzZfstzu4M/ll2Dh825cj2bfAXKvFGIp3h3wERtu8Hi8engtzpd6fsVDCIzeZDHfDy+6xlFcwXVGRrD08xWQdjpX0K0aHgOVaWKSM14FnCD/If1wbcDKqQIGK7N5mPLeT996JFbwt0/AFXpny5dXlIbSnm+Rm31LOhuHtf3TT/iAGB4QSzlEQCDOGwUIPfK1drIO7rd9iKsyTU5+2bX8h78+ff3cpf29NbgYaU7M32iDlQeeBNmfbhHrIyv6xJbMBOsSD0j1Asvdzm8+gnQ+3onyvn9coYA9A9mRN5Dxe4pgZnPegwIVADrd9RqsN17KoNEbLEHX0qRLakmB1KuJhvFjKfT13PAbPPhBhoLY/8TLR1YH+SSHWkA5etU3P5068J4XgTj5a/vj1wagQr4GW8EH+iw+9sEqxvWFzDNA9VbfHQveUXol/mi18SjcTg+Y6CEXeGp5ARv3cjwIVcHHUpQk8QJlJZRPN1vH6/l4djdbfHjgLDO3QAqvSi0cvEMhMYY5IJWrRn2JX2UJe+mXEGsaTEBtPwzhbeIoMqvzx6X12XmAyyd8kfCVXV0cABJA7b/PZwZWze0cjOWH1ARbFwsu3FAgpbFnd8nOsgQ+9vGK2WtN8ok/PjqY54ZDDNZ8jFROcAl2vAtq5vMDy4LGVrplTkbQFawA+2kzQIN1kj99FZdAxhVY/cJGwdW75svEZNnffqGq0C76thXTBv70mjOVXzoFpiLBr9oZ6N79Dvn4JsMET9fihnyxPemDHowWTO6fDHOfrKl/ghBmkJ/KO0mMQgPcrodAmx2+mO5+Bhs7yQLZek3++HhOvW/q/NMbtvMy3U50K+cP/4lykkG95+MFWt+SIWhgvjnd3ssCa7E/knOpJnVXOr8AhnyhBaJ4+I2rwD4cYI57SbpY53rJcrWDtfMdiLJpfI250IEwYyN+54/5uA4PUoBAvT6IW8jtXz4LYHaJzkG4+41UFXILjqXR4rXvrvFauiCQbsdnjpw5qSiRE1yBsU4f5Dyl13grFRyA0/7q7ag6vxwXQb+A7ncIyJ/+b3tuZQDDAAOLblqPNOlQAYdNuxGN8fl4ZS6aBteU+RAkPht9FX4PEdQ1LND9HEN92/0YYOpVSwJ172/yh/cd46/E/rz9umuuqIFE4nWioYWLifdNrT8/AHOX453u3/cEznMCxBPH7zhbxqmEySZ5gRR/6nw5vdgEpks6YxAhCpryZnmyb28U6VRpdv5aejBbVY3oCRsBOhHZgu509gM50+ad3ysLbE/MPt/Q+NS9LT/wn99CjLvVxGt4FErwhw8nntd14U0G/OcfIi+tT/GGiNVAFMtl8MvKkM4uuTnwBtwzXvzzt6ZP42KCbGscknmSV+/+UvTPL7YHv4xJ5uEM/MqswwsZlnrLLsrwh6dBcx5O9ViCeYDulR/wet0W0CV1wYCf7NCA0hy5AnfhPHi5bSfMx9wp3v0UBa7I4jCLWjYedv8WcEzhBM/ee9DlWonTn34mp2uBwZaYXSTtfgAyr5uS05UOG/wdpQOyD9FEiZJ5T8mjVYhO79wej9bFW6C0FQCZUZfmy3uQPChtT0DQVOGYbvcmhNJ5KMnJuFd5z6uXp3w4zm/iGLkD2Ne30uSHkicB5bLBXdiSwZJ4uuvoLz/R5xCVUA3lV8C8q8qdZMRrsNjgC+35HGzO+GD+4ZXDv8oaX1hBgypXJxgwCaY9I7gFDIsuRde/87PrbWAu6oxXY25yijk/hcJpnYjrxCedHy37CdN84dCzEE2XFvYnhBzzdIhZ2JK++x0QzmLbYl6tbbo/bwBXF6gBmPglp4vfp9ArmIxoEcziqQwphpyjClhKpkf+j7/DwzEn50+gj3T370A0PFzkJdU9X8Ssf+xzz1Xi73yfNpL7H98+p5ZDWSDjEszlAnb/ZXLnl39dALkxYlA0o+Ly1/sVwltmZcF4zVNAP6oUQNVnZrzE7zH+h1fAiVrk/2Cd07/4h6HzQeeo5vZG0pUBdaB8//kNeMcDeLMuEHOxaYHZz78W/GUtREG2DjFdksSAQwsF5GWlEi/sTw/+zisxm/fPXZX8MUH90m8ExZYC1shDCpBYbS9xUUUXXq88gqHJj+Q810a89eS7N4bHLQqMcwew/zxaf34zBqpzjpflWbHwe/QGLH8OVs2ly1eCxmMtyb/6BTMyBTDDcCN//jirfevHH79HfvGg9cYOv+mfXlNuRhmvTv30wPct8PhgaF28iSgYjvFxexGlXiRA5AfQoKL+XHQGeg6WW/6TgCAOQnBQ+FMuyD5Y4NXL6oCb51PO7f69fPlEL+KU7eL+4e/ReNBy73rluWtteA6wTpuOudfjVRPRMR0Y9PYJBWD+5ctqiSzc8x8yOMyOy2O+G9KfX+ATMXJX43BsoFZ/6yBKjnE8rrTa5PdjsdBp359BV2sRdA15oD/+Nr2iIjweJTEhifIHXGY/AFB+HHKiQ+nufG+Al9tyCsTfx6LrH15FQ+YGzMcc3Q3Sbwm1QjyTvLD7cfkG+yADPMm7/2qPgntIBnisjR5dB2vJ//nJy13lkS99RTBbhl+CyeheJO6FNt6u9xcDT1VQE68yev0fX26HaiYn3w7cfVEUKK5LS667H7rt9SPwl28tcPPzTYCZBHb/iqjM2NEJhFICrW7bEBKGA1g3G2/S7C8u8peLEQ/P5zkC7E+1kJPObbxoWeNAszNfRI90CdAj7BooNfYvWAuA6z4p0gIOr+KN8fGq1nPkIQ3oE7kE2+5XE+Zsa/B6/v6Q16iN26G9i+6fn73ni/HPn4G3w34FcXvfx/X5e4biVXpuyC1se1xZqHpy1eo0kBT+ChZSXxsIIp/f+c6F/uNnu94lwfX7ixcLmhiY+ZvD4s9K6cTTwAIpQ5tdH1c55b4KlHe9jrzZUel+Plp4yiZ391cDgJ0xYuQ//BRfh6O+85uHzLwtm2gduYHuFMqm9BfP6mdqa5K7Lg//6dVkesRDHnoptLSeItXrY3fKzrII6W3YX6/VaLykQJIg7/Uy8pl9sGmzRIZ84o/Mn16NR17gOzgonIiM6lK5w8fc8D88qj6/Vl+ti7FBsSVmwOV8Mq5mpBpwkX8zpoSX/vi7AoOHsGJ5mlC8hYHcSPv5QK+0MOhS6rAQH/mTEju6s3SBPFggdz3fAnnXl9vhcoAQh4+InNv7Ix8TnEPwF2+aMkDQjgHrwdc1EsiJC3p9XW5Vsg8Ox7v/IrkYKBMvWcrhTIws+cU7X3CgjbuJ2HkVjdS0FEOmX8Yhf/XA/XxD6CnjCc/NUo6rsW0JFLP7FsjSV6Ttn744e12CMqZe4m2fMg3GLJSQK5EjnU8ZYCFNcg2ptsG4Hz0eB3jkz1kwZBcSE51PWfiXvxgdp/V6eHkQ7PVBoqs3JWdbaVjgcyieyBrmkVJ2pJOMP9wRBbse6frD9m89kD34Sswd27SBjvnMMGTnYlzf3yOG28TnwfYJWHc693cFPn2BJUbs2vHWfH0TiJqLSKCAL12GL1tA5ne6k1MajXRmDGcBB6bMkZNMUjyZjpPC9qKk5L7PZ6ATr3ZQmH83YlCijGz15DuohocXQu03zvf6hQNzQr+YDqOeT6fG4sE0FRYWOPHkLro7ifBy9CdkONo4YtO3WoDpXSXp7j8siplMYNf3AXSCZtyoDP5fgw84lv3f3yk4aU5FTpy35dMFWQ+pnUWFFJCHOX1K6iR/C5kjRn481RvzHllQboNFrKnI8i3tVQVmXsUQbX0r41J+3qJ4th8aCYJiH3ZlR1jOSuYTSBH55uT3kjA8gMgNVg0exqWo7go8XdKFnJqIz/HLnTwoXDSZ2J/xQalljgx0hGuC9u6uFH88SYP3VSiQIwhhPfvmI4C/hjWQLutTvIyaJAJX9xHxDmGvYyx9Fehxfh588HTV6dxrrTxtFxWZdZ7qqxEcFxgJJykQq+pB6V0pFTnVRQ89Wpkd18dBech84DHoJB6udLs8Kg2eCuWJ3uLY63PQdQP8DIdXIB8lka72G28wzIYYczfBybn2e37AJlM3YlWVRAlnWh18FkkUMGt4jVkhuD3h+X6okHu0h3rJGBZLVNYagoqBzdeiU1lgtY6EtKvF1Zt7xgZs9Twj1gE74+qDFMJvKQnoHKQtncc6MMEhrlLkZs4tXk/8nILq/ThgpppIPR/sBwbI2+9Fj7RzV605eHD/HMwjV8eUM5UBVI494vVRfCmVu3EBTuF55MZZAMx1kRRAsF5X5JyZvfMza2E4zFuMAtsZ8339NBnp5yrgReu6X4ufHah6yApAf8zcKQ8rCRouZZDbfhs6rPcmA9sZn9D5Qy4x7cSrAU9JrxPVCBNK6U8NoVgoJnKNdQK0mn1PmkTww/xPauPu+7IaqI2YIsd8XUYsNDACdvu8oSshJ3dVq96DN+knY8rMV7BizS9AmDMtQsKNgkV7mxlkusJH1jv41cvd7Fggnp5v5EC7qRf3YmPorUcL6aifXTrrXw2ugR4Quyw/NQ2m1IORcJaCg3CjdPPXsgFxEaHAN28HSooCe3BzlYwgZzvWqx5ZIjTizURK9+Xr1TcfHnSvVkiu9hMCXIa2BTDvBUgJchssrx9jAflSOuRcns6Uzx7MBIhm2ChaO3GcioZo0LJuDMZBUcbk1X8y2bWjKzIyTQad9Dt2UF26EanVpc8HJooGeAhilbiCEo6bfV0yyIekDAi62GCZtqg6vC5QJ5ZkfHT6nMRSOoDQxRwhX52+76ohL5hT8BSX8TjjJ2EhK6cqXmOVp3Q1JBZ8l9OJOGKq6lSCcQCqFXyQdw7etOdu7wyKS9VhquhtThi5V6BKIRPI32nnZEK1z6ezamQ+ktdIUXs0Qb49M+Ll2znm3XNrQlRdFuT4+RLP4SNNoDl+TXQ1ilJfWjbmoa1pHHJ516XTQf+IspXCiWQaNsaZCQ4scE+MFhyPvqoL1RsqkOnVGSk+eenEOj724c3OM+B1i9RLYlUOCC4PStTk6rn4dL5k8ufCp+QE+0883dDVhNHBVINGqrSa8jPrwd/EQeSg0x3ggr43+IaXhqD5VOnrI/gN8NBqArIl7UQpP8MA9PurjAv/oZR+5LkCxaYHREEhrse//Tx20Qt50pqBbUFDCs9V7SCEiTuuzM8LIFrfTHASnYuLxc9sgarpEoSM/g3w5+F6QEWfnHi9lun48qiUvZ/mFbnO6QO2ei0K+I6tFzrFSNPx32dz/JkYX783vROXWQSH/uYQdeGIO71+vANPvXTDC/WVmo3avIPS0X4grdUuNX09Mw9G5TshCrCfLlEpYSQ2Eu7EPGyqKxxmawKH1xsRFU+cTo4eaMB7PqV4UZNLvJbNNsEyf20B3aLBJS9+a4GCEINJMbDxMh1GfFzTlif299rG/fnaTEB6xW/MadfW3YZeVMDhcFiC+zUk+r6eJRyXJgrkfJn0/jW3ELKf55kUp/INNk2DBfQEGJBzG3zq1fk9eMiN+EWsZZ/9x5FxAfMhcrB8s2rQ53UjwY3eMBb3/IcfU8PKqgyEgP+sU417W2jhMb09yZmMwTj7R4sBFngEQRk2NV1/Ey0Ao8YiCR7GOZ+Oo7LBe9Nc8EbeTI1fzIMBL2/CRG85oFM9vKeAh98Hlo9SRtnntqZwfDoE+Y3QgLnobFa6lb2Bzitr1es0SBZc4X3Ah3ziRhLWHwYKN1NHp99rjSfpt3aQ8ZoIRa7Y0KVjXpJEx3NNzEci1wu83VOIeYrxQXPWfMmaKP2LR7zow69eE1XdgOeJJ3w7IRwv948eQOXiKn/nx93qNX1Cd9z4QFqOkU5VZnSgI9ySYBvTtt7km7BA59R9iaPacKRIjSs5a8K9s3nMg+7pxwtUL8ULuWd4BpNyBhZ08DoRJxXlfD3PRwN2/sElbrWp8XSM2AwmQD2TUycVNVXd/bOAWeJWZlITLe6e8NZiJ5BUzo5xMmUWKHzNRe53UXRufjMMPGlWhWIK45E0TQjhlbsUKKlcof73PNHlYuKNIRd3/MPzqPbOwZFc6nHhKafBW0JtYi1WTRcywgjen1qPa2sM6jWevOIfHxB756S3+ZFXoLneATq/21uMBeciQT5dWnRzM8tdj4yzwPNKsoDjvCimJvzw4P5UeuSAIdEpLA8YZLr7JUq5UR1rucJDDfEiLrkJ6ctJ7BppUu0tYPvOrLeKWE+o1IZKckdqx+WmuSK4Z1OKHrx/djfF1FuY6JfoD69dIhFHgzpJaiwiO8zxySYPEMzRjPxmn8Wy6XG4a4wUIdbLwO8Jb1jiq+6DvFOT5uthbwv1x/eGFfNgYyTT+9sv5L+Mz/48PQ/eB+WGeZGtRno8DInEvj8ndLKfT7o8LJ6HV5A2SLsV455Pu+YvH5PgBuZ8fd/6Ev6UrMIHW04ozUQggeQaxMQ18zReTXfoZAGdAHL9O+eu1itbIP3RkKg12Gg70s2UlTZLSBYkY01pwEp/8RrID/CL10/yyEBamw9ynq9iTKJY7eSdryFlQpW+TB7LwMczNf/wbpyTfHJgvhUZUiXb0FlO8CxYbp21d2qXYnrdFCj79CsQ9fNsajI28wCbOPGRlxZbjp/q4AABSgLxH+CX9yedb+F7S0ace80Srw29T1C2YIWisJzjKX1kIdRfeUWMVxqBhb4XSWLe4jfg1P4er/qRfUKOjU7EZ0MSb2z5TuEpYANy3eYarAWSC4lttkfAw5+pb4ooJRCry0SC894ZUv7ED/hs7DM5KSw7znqkSHJ/7jSSGt8nnfmLFMHeOKJ/52U7wnMJu7SkWJQe15GqLnzAgrvuNXbjqJPI2jsRCqqAzJXXKX04gwFdJIFAXORunJLlheF95QpcXS1u3JYnLeGXd1yk2VUw0vRTdpCcsid5z5IJ/u3XpnaHQKgaXif7/wMWyAKEZqkFM5irJ2Sf3oaCTSoovefaA26NXRKrP9h0VTozheIneZBwz6/UCVsNaoyfkGBg6nysTvcOjJ0y7Hz9QbdwdFJwZgsXC6ZB3flSOQ+YfFeK6dddx6kglSc/EWl2vWHvGrupJJ9MOkmx+NUX4FgWgI/WDAjgG5eq64WBfXN+Ef8oiWATj2sF6XiqyVkHd301M8rDPv9wRD20q0utYknhjv8EaYfUpePK85BL3/s1aIUH68GOJmic7AwpZtfm1KsSS07bbCaX4vcC9GwDA+zrTXSXt2tW4hweukx8myFOZ3dl/WsC4PIAuL5uZ5c7W3EJleUWEPOalnQ11K6B7y0dceamE1jHUjTAnz5UVr+gf79PIjOjI+fJPug8v3lGOo9SjblsIvkSkrMIgWvmyMRelq/h91LKfPyMkcJ/KMBseUsAf24yksUMp1Oq1hh8iwMXVGn/c2n7sVno36wnudzKn7sWiHv+nS/kfcAnn9svesA//jSd92uhn+wMYZBfJ6QaIUuXLh1SqGohIu8ECy51FX8C93cCkVWKa7yfl0KC/FP9W299+TuPQflVkSWAszv49ySQx4x9Ypm59+6yKGsr61UnIOX7E8Bf/oR+cu/ROVSWehPPzgZFygKE0KUHNIrVASQXSSHBtrZguQ5LI8tCyhAXwkDn79d784//u0FwB6vHtCZ05scDy2fxEuPHO+7gctc8dL4m35FeDw9Hqj6JuvP7F+3xb1SA411cYqWQ0kU5Uwu4XtMFzEszdSoH9gO8/aNF1NaY6Mrd3g+QJq8JmfONjrPYnyo5+e5xJfMcXR/efQD1M7PRn97YXm4TQKs8s1imK0PXJt+v4e5/zzdhvvO7HwT1e3pi0RsqHX8eegC+c1vjkhWcnPDxhQV/fF1DYxevW9gUME5EnhjqyNZbE08M/B6fBdHZvHHX0D9Z0thpAzn/dDNf1WuoQaoyT6Ty76xeKuUdwf15kb/zuWHnsACekg2ZIF4ATfHKglY2A+Tbnjlui0Es6ZdBm3jHM4onc/4+4HmdM8wf+1+8KabbwEtfh8T9XAidj8vawkfpS4EkcSRf/aMCZW/q6T/9upKb9i/eiKt1ERAU/mBCfDIOxM7vHZ085ZPtY4PvxKBSFlN/sAKg8AcWv0ZOzzdhHwMpGUQMGOY2U/wMaApZCrs//eJSC98qkNajhJn2TXUqfRYejM10C9a/eD4dFgi1r+GjcI938qZjsduq9wAWFw4QeDTM/aryGzn772/L6GbBm4c+wTFuvzn93q8LjL1bELBNchnprM8aPISBTna/IF80LzOhsPgu0WBYgT1+EoiDIkOK8p7qCacHDW6Lnu9t1CzAi0nMQFXSDKSMy6Ve78bcQPcENaSl/dldOuYqwoAeE+KK+7FReMGEeO5a4vm3O50H5TBAbYEWipdVrGmbBgN0LCii3V+KicIfDHCZQh2dhKqrN2iFDRwdH//5R/V8F54p+POHjMoVRsyOjxLYS34hBhfM9dyp4gYPFgLBno/cLTGlBl5F7RKA76K4K/7VCjTl6j/+uDLBgQdkhjpBd/8Xr9XFDWF+cAxkr0ukb0Uchvtw9hvxvtgA/J4/we/dEmQa3yfAqxcHQPwdFGKK1hWQpskYAIIM7/6Ul9Nb+n3CpbITZAvG2d04v9cgEmojaFP3O44myTo4jqmMgXNSASdMz+GYXbYYL7XV57Pi1wxUrF9GvI3h4t4/Kgw8kCwkTtw4Li1r1wKyF3FIvz2XcWu7wQMX56qh8aIr9ZJcaQrXF3oi5+iewIZPXQR3foLUWQhjslgqIyz+vAY89rJ4+g73BUp32SPqrLn1wqKwAbwjjuR2/hqjkEJdgyLlAeabEOh/fAk80dzs8YTonn9MUGSiiXKBu8briO0Q8CTxieerp5gzmXsGm3QoiXWXtnr4fXMD/vlVx8/4AMtVtBfxbGdasLxYNt/5tiIx41ISzdUVna5D9gDGzbiTbJGtcVX8EUJ9+i5Ih7f3OPdr9oBxwZGAOZVvSsElrOQlvdwx2NeD2nnvwc+FTf0joirdlicowcK9f4H0ZB+A7nwNfPdGkpx10WvqZpEBf6mfIlOX2XyNjFCCad1LBJVJoU8PnGTwdWF04s5TPo5hGm7QviCd+J7zjZeL4XtAcAMLLzufXDPULdBMYIkurqTobODUT6ggnyE67phx9+M6CI6FgMXFqsF6F57Jn14hWivwMdHi8gnl8a0HVNHNeOcrCWCdeMWMv8XjFmmvAez5C9ntgYAN+NwEKscdg9+uNxajHhOZtcQ30VzR2NvK+Yb0h1cc1cV85iCEEITHEB+dtwe24KNEf/mcWFnYu8QflABO7+UdcNtc/8W3Ab685ZKzCN7xQuKfdDRPWxRwuz9D8xsIxUvryUH7Wb16vZw7DaITeyX6+faPvxb/8ELR7FT/tx+92kAMiO/ry/h6RaAMgi+Wr78opotlM/BZsuzOp6N8vV+YDbafIAnWKWXAb8dTKLieRbwdH9cMlYsc9ojig7Pdx1+N8gnWotAQZ8U87WTctBB5BQieX2xQ4cTKC/Ra1Q+O5Je5//BhGPUSKc8DGenxYWzw9dsEZJX6VNM/P+M0xj3SqO244nEuFhhYnIv8+T27f3odUllpiMLQX70F7TeDUFPexG6d0R3U+WDBkHmdiQqoPwr3Lm5ltIgFDmejBesniR7QYVU1AEcGxcsDfBv4eCYmCr1TPG7duW///OYg1S00LnouRP+ezzPDekf5yATQlTOCWPFUL1dR3eCViwvk7/7vVgrsBLfGLQPeeBqAT6bM+Xs+PFcao29eD0sIKvaCbqU0jWt5eBmguj5NDH4Lo9Os/JWAWj8NC6PHxN+v89WgKx2M4IDJOG5aF2lg9+uJhkYrX3f+AoVHlhK1NgN3E7bTE94KpyLmi+nd+SvnG3g1zwahAVru9nwaFeScX0B0r9hcilgnhE3PUILE0daF3b+HK3FexD2fa3fY/TKwuV8RGUKjgzXhzUoyWQsjzZptsHbIZiCA1MGsVGljLxxn/l8+5ULj527NuCYAv1URaWsn1mvPfBrRsq4MsZL2NVac/9Hk5GMEew0x0idS1MYfX0Wapcr6+ju/RLj7+YHsqGM+I/HMw/wmk4C6qgG2k/3L/vYPL7G4/9JzawD70TxRYB8Wfa2LZwHJJ7ztfKiNN+85Jn/6F6EIdeN8rTMPju+XRrzbQQfLH16nTrnhMB8fMRsHKAL7+QlaC1nxFjeNCT9XpycGWZVcVM7Ukdv3JUKaLHn/+e87HwqOpgLrff0SuJ4fHUERsmpOPmQN0NgoJ151ZNzNLKYB9jQekeNGaU7OazuA+/Who79425bBm2DtvC1c7XqZL2ZpgLf8Togxr8W4/Q5cAU5ta5Dznp97O3q1QDg2DVH29Vj1aYyA0j4S5On5M1+ZO1DA7k+jexd/3cVqVuefn34KlhUs6SMM/62P48APnXwOO3/5C5mmGeTLczumUGaVESkn+qnxKRka8MmekDjDIroYl1r353cRBz/0cSmDvgUxo8rBOmI+XiYPMjBrIjYgT7d11291zMDubxFXYeyY8mWtwHPaI2JfQ+Ku6XZ4/NP7RXTRAScfwhaK+NsGoDdovu18Bf4660ZiGJxrftePkCEmJcEacvFyHK0Nvudzig+Xhw6EPz13KV2BeJ0fx8v7skzQeE0HpIZVNxKTZMOfPiX2o2n0roAgg9Q9XgMhVJZxxY87D063Q4plYqc1sfM+gMexWTA7vMaYDI4ewm1RcwxexZRvwiHt4J5/icNlVUy39zUA8CXdMenz9C9/BnCOsxCPOLPibfcv4c1hEbrv/tj697wdvP2IlZ6Juynjx5L//FHFbk/6JsvXBBwb6CD0/vOfPiILUwYmyPgyub5JRaH8+S0ELfdrTKk6YinlWkA07fSuN4TvBbxspoiFa3Ia8R9+UNq7REluv3xpLD2R74LYIHOqMCXn5lX86Wl8YD0R4OVJK9kTmABz6MuP7c9ZsLz75Uh9sFLcv50w/dMnKLhnj5rWKMeQGbdyx2vXXZY8ZqDpPcR9ksDHxRHnZbA155EE5AzihVwuEixaO0aBdW3HTb4dFjicgiko9/NNT762v43vA6SWiwCmirED0G/YxcLuBywhQRLc6w948Fp3pOr91ALEeitRpQi6tJLSDHBseEImmW26vmKjlV7m2KHzVMY1DesPhN1b8ojF+HeXSnbzhFV/PQYZZoNxMfa5f7rBAWJIVVXTvT4JwmuqBHz0eegUuxcDqt1ZJ7bB6TEdm28H9/oUCb5DkNP+Mbag+sEfSWR11akTYg1ur+pIVFdS3FVUL1Be3wwi2qG50u0NXBYmXjfiPlrLccNzzMLxkxnIaX5MPNVzJ8E80Dh0OsUN/dN7Eoy+B+SOD7v+x0fYSv0hs28Wd+bOSyDXfZ8SbXLHEX/xOYHW6xdhxpMxGFhxnMA0dg/izrU+8vfbrwEqnntkDC83nxg+7GTxJ++TMT+B+88/voSHPgBmzsezes0UAKPfAbOXZQRbZlkPCFqnCdYvstwZvb5PGArsh6QrX9OtS6QF4Cb2ydmp9Zju5w1IJCjJXz6Yzty9AGrh2Mh9y49xJD4xQZm/N7Lv356PVAjT5D39q5dwVsWJkHyiG1LEfRJ6/ev2+le8BPNGKxdT2zCBVbE/8qd/ZsxCD/aDUyMd3LWaZiKVoP0SCfnzb6hKCQT5z5aR/3pwYD5befX/e6eA+z/6FHitSYIqytxpHKsQHE/Tj8TRPu24N8pS9jeJC9YH/tRLA/oONoruEeTlKN9GLYbAiBJKzrxwzxd+HD1Qdq1BAiu3Yw6Guiaj7cYFgIlsMCVj5wFu+oFAmiNtZDu3UqAfSRuxoSLGjXHzQxhsN0IU4SnGUzqWDxmNhYtOF8EZ6a09RtCRpAaZX/x2l/CeOzBEe034ZVe0XxeVAXT6kr1mMYLhowSR5KRiFYiV8NK32xaZciM2z+Dwzdd4FX1OhEDGAp5P9ktfT/nUQDb5sciP8iZfxFl0wCGNbsiUhSReDTAVwMbiC73yaAV4Y/sIwtVdA3izRUrPbO3I37L5BLyKobtUxwRDsNojsXKF5NMn/2RwLxPhxXwmOh+XJ01yi9sDIaNR60V2R0niOReRUy9MgAgpdKRwuB2DHikxXR7HGEI7uAXEayI/p4wJF1DFbx45TwXkxGbrFBbLPv1OimraAHkpID9Pd+Rt+SdelVkUpRd6Zcg0BJIvdf5p5Dh/lkS/41nfpvIcAvZqK8T5Rh+63O0YQmC7LdEw7t0ZzLwDztH1hFTnO7u4KoMU3kXtgrTT8zCuaY5NSLnJRuZVqem87wccu/3tTM7Oa5JtbxEYQ8KiIM2dGBfliYGr7GxID7CnL9kxXuDVBAU+4Iihqz1OEgC93SMk5rFLqa20sOi0CYuu4lPsh0YJ5Z6oyJ8jSodj9XJgfnsH6JztrcjUm2/AXFRemNW+r5Fm200SjRNtka/lGuDvWxTCArwrPPMRG69FqaRA/9I6WOfnK14UwWAgc51PyP3ZbL58+mcL3/q7IYGZd3RuF1uBj/HloCCI+HoFM+OA1+/9wHQTNH2dZ8hCVV2vRI2wQlnvHi3Q2EQNJbJg61RJhhIiLDIkXJ+Zu81Jx0Jptb8oCKObS+UWDsB3bg1uW+Wrb75/WIAr3Qqk6d/I/VsfuNytgZi1YtDx28wsvCcKQqH7ZOu5L+0QzOU3QB7Mq3o2QdMBqXdrguxGcxcOjBbUHklHjOz7HkmVbtHhZikaiX/CRydKUlVQvrgsHnmb13eJJ8oXfHQwfEfeuA1bvsCJs1JiebZa8/UWe3BgG4Z4FzurKcsDHppRekC+a8sxbqI4kRkcRQF9C0q+tntZ6niycyzPEQUk224i5H2cIjPGL3fV+lsLA+c6BIKpWLpwT6YN7HiErNhW63V8sRP4W/9HE2n6UglnBp5OdEKa/nzr9Ndui1zUrw95O3lA+9PrmIAn1Cr8/QiTvv5C1YKf+L0gU1c+dD6/1goOobqg06SUMQW2msLQARrxmYhzW2J8DDnKiweWzvbkDk3SmcDkJT/YMnyOaWo0TzjOToBMUTnrSzl+Ujmui4q4B5uvFwoGBgp3+4LMk6LFXKuoilRarYprFqN6sYUThk4l1US9PUGOj81HlCur8ZF7tWk+fccew8C5Dci84te4fdnSgXn9QsRwvkW+7PgNtxdWkVI+ebDjQQIPUnQnKngyMaG20sA/vFBuTy6e+D4tYLk0JvHFKKH0ZAwMDN5Pg5w7QYyxHoUpNIerQlCeL+5WVA8MbqFiBCKwTzH98JIFR84Kg5nJO/37fUEHLF9nJPq0XztJtciAg9ccdzx2AVfmPwWOyU8lf+dxc/1DC06mZATSpDzp1ByfIoiFogkOXVTU8ydUGmhh8Ya5XlF0IeIXFhahNu75pc87wRcNMRiLE7J8W43XWJZKmDDgieUi/+rrO7QyWBjagLQT/tazVGoLZK+TR+IEe/VczKCC1rwesFRFn3r9hEornxxRJ9dUGN2v7k5PKXsXMv4fks6t6TkYisI/qBdtKdkuU7xKlWjo6c6hJ4dSJMiv/0a/S5PhYmdb65mxrYyXFIVVRI8SjMWnZPBx1KRpvFWhTeVe9nlMs7me9zuypc2NH7tyaL8kMDu0Y6c/f7OXYzGYSmzB8k2v/O/FFLer0VvXjvsT+G2AH4g3kqqiui5Gri9KOR/z5OMDedz3/vtchkJenlfqHF12np+ninZTQQDlpnqT3Re3Rr68OTWkhf7i+p3t2sFr6AZ9+71NjB1zDRGs8g2cFsqbOE/HMVhr1gx96qLlwbm083X/3H5B+wYeMTMm3HHxdPeoGQqF+Fd6ESK0RqymxoOy/zxwb9IYtHWvE3slP9zJ6pcmYp6dMWXpuKE4nIdY2/mqT+w1nowxcMsCPTtd5vs3Ri0TNPpqstelfOfL63xI2ycAfOmOuK5Djak36w1860JjwmedO677dfHTOwYPR8m7uH1OMPOGjxi1QxFIQw1OvEk4yZJgzh2av4SZ5Zt4eVLmTNVPAdw2+EhiRPN8cJr4DfmmOpPtL1cDFbxDCxpQEq+dIRz8Wwygjm7JOuJcjVqXPRsO1qYldo0DxNc3PE+bYJ0Hj/RsiPXNZggdnZp4fWKJieo3BqmJ78SZ6zGOmRYAOE5HPJZUbfMc8B2tTx0lgZxekzGZo4mPJA25u6RN3i2ax0H9+evWLDvBUPG2QM9Ewj3DgVyQqJXg2uE92Uc4zgfefr+oOFRXlh/ZIRzG9rtCJ0u5c0Jp2v78HQg9TcS54NV8VMCGosH8pBx/0jMSGwl8sKWTR6yeLcW7iGoTzf3CxFt+tlOGvQ3aqlFJDi/qGZPryRW6hqlG8LmsW742eQB1vS195ek07mQNxgocVb0Tw2Ft3nd4W6hHcg+5c3Hm/87w/olCVbn4WpiYxtrplS/8+s3LkjJkZi9tYNbH//orfv6Qt5nGzZIJMd40ZEEgIWtePxnDzUlAe7vZ6r8+Ci6hFNYvd8e9lobhcLuQPWwXUcETCy/yXu9HCz1F1hNCCz0fssvuCez6oewZlnYo+9KQavLWDfzXg72NIWgSC4bi8/A3mvMnRlsbK03asjNxbbw0hr7JOmjr0vAhpV0+PgJ81Tx6qdjTK223jwOsA9PsJ9lPOHOnoqh1NOsXx9eyMTq3oR2a7+duTj+hqM/TCpZK75H4QnE+pj2KwF+mO37dOy+joE1IIcH6zS+E/BHTZvVaoTGzOXctZ8zHsFcrWEhBxK/lPEM49z9aKyxifUmF2y+xEcDbrjzuzddD4aQqMvSoZ2uHSYgTa/hqm7/uxaM1Wyc9GvYqyCeXcs9LDNRBv3mC6LsdwctUcYdWye5gq6cDcf+oKQba1hjYzb7/1o0ubut5Tt61iBnJf+2w9AZJ005syb0THdsx9wBDU+5Nov+VtB1WSW6CvO1SflOc1mX5FPow96vfAL4m7c/PkgO+8b+GKejb4t0BfEuVyXbeL+FIgwVRhRL+x1lsiJc07aE57nVuhmwUQ+ecvuDTS8f/VPwKK8eTr/BdVQt/o+FJ/PfjYFJ2TDskhcFaPVyAtO3OrMrZIu+fCcfwOmCVe4lzF/2xLb9QPYsP3xc4NUQgbb7oJjKLW09coMFrYhUCngb82DMjkb2o/f73C5vh0Zj22PR/fMCtJd65EgkODNVDJfz1TXYT1ke1BPP7xi0FW2g18xjEIjsw7eQs2kkUr0grr8WDU6ukyay/V1QVRcX9V+KGMqvQ+T/vHbaO7A6dk9XgSJsH9++J666rwdHV2Y+5eZLLcKwRr+F2eeg+rKiPxguq9ur5jko/MagZDkgbUmjqQv7PP8PtsrMR0/ZP/1vg1B3NXgngsFA5cRtnhWZ+LtCPT4xGfrXj1RMmpORB+Z/MVDHNfIi668diio9XrlAsuAKRFMzpmVWI+cOhUu9J9iCHmHYuu+oxheZo69ymzguNTfIZwLurE/npw9S9Ux3qopq4XTp5O51pjKHCVeHfHngdjpY2xkC+F8E0KfmEXSrvYti+o4J4Hh1EH/ZTpZn78+hXPXug2Q8WoGSs9qdffXWaLSD2FXXmh20utqtvBTZVL8QNnAkNi+biA0Vpxo2Ide0ENLvCwuPGf15fWbf4AOYUSUwb6MqtIdtUiLSpy3WplFAfZVMNFjsvyR/CW1f6PokFJ5RyliTUyqf9FADICnvyfUd1IW2xm6rFdesRsiu2OdOm0x3WDjtye3CKXEgFjxSrF4LoCfuEDMy3r72iymbLKBmMKdBvT6hwURBriT+GcKUNhUugm/7STfx8lTnp+bcfxBhlPRk3T72A60o/sJVgkRiM5riA21X32VKnidtVTmYqUaUkvkaTIvz5BWz16MW3c4iGeBQl/dXfRzP/MH0KDjCVzOCeS4eEGZ4kga6eW2KZWM/XS29xB6yMIYtXTtCObq9IYPkRkJ0hr9rpocerfwAAAP//pF1Lt6o8sPxBDkRQ0gwRkLcJgltxJqIICMgjAfLr78Lz3dmd3eFeex9PTDrVVZWkG7XNfiL+lOw74ad/lcmTsKBLRcLcanThlC9nAqWkFJ19GVXlh7/mn6pzHswvF/GTi/DUfQj6F/+//OxuwiKZwuTTo/U9uDDySAK0OaTTRXn3msLMRBpRXVfyCJsTjRY8jTw2GdUWGbOsYX6nPZpWgeejYbDvNJ8+YvLJBk5REO4MkhbJp5vkTJvRtX7syPEvKYvZmOM7yoOSEL9P3t4YfqMABRjtf/oeTZXqaMio5D1tz86xYBvHniH2noi43CHo33izKG2XfKN4vXk9PGD+Uo24fZijHz7Bd3IPuErU0mPaOaeQJq8bO+qJ1m12i4u3VZwbHr+Pa0KrcxOCp20rZudqkEg/vbDoVczbTxL1pnMPIGtKgypLfhgN527ANXpIGEVOyFlaTSJkXtrQNA3DhFZ58oRFb5Mf/tNbHl6UKtMT4qnqM5rLPAllcPotBki0QtpcEMh3ihS89aUk6m0nfEJAdwYxR7VKlv1awnrvKewYOSuP7cu8gdoov8RMVMMTL+rxDA9QcyymdJV8hUALYPFz6L/xU+dPBAhDk8qzM+ozyW8xvIXKI9qWthFb9PV/+oZJeyTGWhhA9ahKvL4nY9TsvC5D17Oqs/viPw3msHugrNG2eK4+f1EbzKccLfruX7wOWtdfIKa7CV8K1UBsFlGDVmJ4Zhr9iN6of28ruXlUI96AhLtx8cNgqUzELFNt9Gl/nDTIz3sNF/4nRvNXS2YUtH+7nz7uBOF7CWDz55ikR06CWFJNLYyp+yVOpYpJY1+PLWR9pRN1/en1fvZyQCdpucN/dWL0w19kmluXyr0KnFnz8y7nQnVivhm6nTB1rQjcr3u6edOd3k8oH9HTUFtmPdTWo1keyv/09RJ/OkdlTWHxMzBa/ATeXpAK++pS/Mt3MzmuAcLrM2E+CinqLkb/RIufg3fYqT2uG/kMKr4kdHx9HH3aqe5/evmH79wRuvNPXxHLUi006enORQteMlV/RIiR81K0s36oVKBSHfW3K7Hhr34OtFdDN5qEwA1hry3doc2kQdN3aS0jDvRG0ehs+PBSeAvM+FyIoX2UbswkMsq98HHZoueT2dLiEe5n7Y/hKfHR+E7ed1jfvBWdTo9EX/LlE6FnqDK8K7NivuahrUyOPZC0Scxos8Qj2n68mA4osZCw+Kkgf53ix08SbobPM/z45Dg9Yn3ggxKjLtuLRLdpxycvneSl8BSjU/g5oumn5+7X1Kbiwj94dh4uPz8Nn/afvhsb1KrK4hcxLaJV989PWeaPbnY0iWYqZFvlhncCFTLKk/mnf7Og1NlDTjRvxtrpAplQHbDsqzc+y+c3wJJfqOB+ntGUZXaGfO0vw9LayXT2V/ZnOe4eK+Y8naZgD3E3yuKOLq2xPtxjs8hbSEFrmCFKtj5/VUuThf6zoZn64JzRsip3Sakl7Mfv5i5MZGiaaiL2oJ6SmQqNDCdx5+Nt6RRo3h9XLVr0LKVOKHqDfpx8BXtPjanmp9ann3/nXuScHZPwxCeMPjGKG82jn4UvTj4afLi+nhKz7xIko3E9BGj9Zgu/dSb04zfoly9/em9qRsf//XuiidRBW6s+lvDuK4d4ujNF/FxNhvIqNU7llZpySuezjbYfWjLbU49objK8heX7Mm8XOsniT4bKj9/JoSp7S7y4UI/VQMWP+onmzflbIhI9XBKfpYc3hrfoAvm2DJiz8KchOM5nFHSPE4tDFfNxQu2MGqNibD88lISBCBWqoKrJfv4EvH9+HzGST05OjEgq0Rhc8R3myd0u+Rz94vehBDOyyII/3qLPZVk9TgTvqNPqfK5Qj75CtaVsVVZReXOSFWjV+YvBca6I6/NFhdXbkyks/HP46fnV25GZm4f7rm3K7P7LN8y5qGdEl/wH7ODmxAJph+g1v7sQSI+QPYiz9dh8szOAL0XMuEsHLjx3jwv6NvuOTogaCRdFQYPHQ3sR01PzbuGn7i7wnhgrY1J78zk4muBof5iZg2rq87SM1JO3LfHScLnDmtln5OXX9LffC1YZH0DtybZpH4ZdtPC5O9xj7fwPD6e3wgWQdn1G7NExik2KaI/Em+PROpOu3dQrMEN2VkVK26RD9JT5Aoyp/SWGRseOqpl3+Z1f0LfwmaJZNloN6Md+4Z2gXovZn0+28tt/rqvuknbhezBCndEpp3kyIdXdore3PCM/OVYkxLtk3i18hqj4U6O+2v0Z8s8fEwu66oS187oAUnqJ7DktuqFC7IF+fGmbq0HEtDAFMF3ZYdZN/XIelqWLtP2UsMOJSt1oWMcLnItHQ67gqPoQoc+MHqr6IsdLOCVjf0tL+PGdbhs6nUhVcof9e4qZsaJ/iD6ywwjmMHFGwjIv6uwim+g3vo0jfVG/6FuUC+WJ6F+Kuyk8zhmsB+aT49FJ0VxlmCKTbj0SCR/ofudV8G7UFSF5+NQXvnsB8ziNeCc5bTc+JasCo70IC15MERcrwUS6dhmofHcGxGJziuHUPa90dQpF/m89PVP+4HVXlsU8nDNRaSfbw93RCbt5yqwGFv3PcBvGnDrHdYzQRCVmyWrf9entEYItb2MSu5KMpjyzKfzGa3dOgaZ2EBrY55eSGVu6KeZaNUXotrrEDrOqFuJHNduf/8n2PlU74Xce81HLJwsX/j51wT6H8VGnBJfhtmN4vqwAvh6jyA4P+oJ/DSRSeiL6nrZoqpO6QnzqXWKkkumN1GsrkNOeEvuhBvr80kIB3jzlzN47arf5JHUsJ752o+/uQ/h0Q9UFNO1cE72mVGfM5E/o1fqApUq6Iu6JY6gs/JCcfclAc6rdW1jOW5h9VknCJYM9YC0HN/Z3k7ro5zdsf/wTvuERTVY6ZcoS/+S4+Mn8ryzPP33FyCaZf+c5pvzj774athGvlnf9i95b5ivrqDKnD7QZPIsObqJ3I6RjqVxHzSL+kt/pbz9pq0vLjodw9OrJUe9KHD0VzOGTRj1N8lzJvFeDOaEd74+SacLm1Ed0Z6sRn7daasLKDQJ29iTDo7qqt4DCQCWpkRTJJ06RCiXohFm22hTzJQw1YOrnimusNoh/DWoDfHtEdPkDqD9J5hO+B3dP/vlhdSpcALd/A/mdrw7KsLpA+lA/eFryNT/MFwz3TL0wJ3aaZO6MrAeLbk+UKzTQZ5IZLaoeZUkiScqLEV+xDzeKJKbF1EqG5fwP2N4tyM9/nen8sKE9uTbbbz6TPu6cyygfKtnCfJK0qDuZowD1uH8zw6CTPtDA6eFtq4h5WH0lPDNlF97da2KGK5XR7ByXOzSxfmQHh17++755l0pUHsK8o+7o+7DwL7ycj3nLeeqv9bdB55F+u7L0vi2sHG9LjttQ4NPB61tkX7YXkqbOK6LlOTOU5ff0TR73jqGLkCvE/RvZPn0gxHJTPsM7qBxmedIm4SdzK8jzqd+z+6J/+GF+YhSfNYc4jeOg8ShhA1bOYCz+eOfxYaeqoEyORI48POt8MFEASfI60p2sSmhcDVuKrGHakeMYnvXpOfAMnqBRdtSSnE85Ygb6xHrEtCM1I15d5KU6xefDvNH547UutDP6+blmJ4XJkr9ysPOrxxa911ErDHr48RuDSxYStkn3gMsKNUu8PNDYJ+3SqtfeETdU7/rCV+4Ih9stOVylFvWP3cP+8Zn/zpMjr3FRO+qcmQves8UPRbPxaQjxQ4i+iqqb/787BeL/facA7TWDbvCQoym3qCDXl4/CDP3PSaZI9ATIH9WJ7Qv5y/k6rwI4tp5O8/H59YYDdUqUti1QcY5Z8cnNc4x2qzhj5nRRCl5fDFcxtp8/QtaXZ8dUTca701Eu8ZxWcTehjQNQ7oKM+R+985hxIj0kXpmz8PECznph5cIZvW54NVuRN9bNiKFOrYBoTz9JeK4dQphs40En/Cm7oQ7mEvaeljF7+/xy2nvvGEQ7FKhdWXNU1oqhKQbPY8w7SdQnFJxaJEh0w2xZFDjHSQDK6aCbREvfFPEY7jKsFSsihqy73pS+zubOOjcXEsv9PvrUa72C1cb08eeNj3yK1n0O2rPe4knaS920biwR6leaMIvaeTTksXdGzaDtmeapOhed4NjAdww5cV1WJ586f2cI4dWLWX9N6vWONLewA+0PF0mZ8zZ6mj4UxcpjhsaqboxiaGUqRQdC+g1HNHpijKzkEZC9HxYR6/taRlFpZVQeQzGaotVyz/opHomNthWaje/xDGjfhRTkFdenqUkE9JrRg8pO0xVjfzv5ILrtmpG73HW9mp3u4F+2IV3fqKnz9TsRQfl4CeXm2UqEZTzw3ewdYl9Vo5iwbY3QqeJMvPjVe1Nc9QJaoa1JbuKY6LNRzzKYZI2J/VEvRR9hJ4M+1NfM2bw6PkZtV6L3Qw2JFSvjksPlHl3D0cCzs2v0MX0upcRzwSWv2/bWTcZzeege9yV5RJwlc3q/CoBIPeAyYNtummonRpXrmcQPzRHxVIljZH9XHZXYJuOT4/MGEvWyo9Jfk+rciL0cJlPbEq/XHG/GK4cCXDqVvjfup+ijlRQDvPInUU/0oo/9yV3JpSBMTK2igz6p1v4M5rHWsVL8QTRh0GwQpDsmRNHTaErlroe4aFt2FJKym1DP+188EzwPG9REb1dGop49mcl10Hnk7QBFLboTpyiLbspPVg7f1REzsj6d0Rib46jMrxmI3qQ3j4qrMIDhvRoJWUvXjtejc0bW9WozXbFOnMeX2Ib8dGmYgdwD4k6v3dfLejEnc6tieUTXwG41WHS7xLvoYO4rRTsfqCDbEZrQZg/gKOSB1+bU8bG/Fw3gbv9lpkdLNMY9yuHxxAdiPlZZMdXWbQvXyOjwnL4xmiP/GgCvXylesy/1JufZluDpYONNcXih0eg1TdmNjwMhN874iPXiAgLYJSGWcorG+Da7ch2fZfK6r/+iqVZ2Lpys5EQ8I1tzbhw0W3HkrGXnAL+KKVqXGSTqNyNONn6jRj04IzSVb5EgyINi7Ff7XN5tcEK824HyZb1cuWnkHSPDpedZvMofip/2PvO36iFheHd4QpTvgbYPdkt6J908ECKfgfjq1HXDJGuz8vhTVRY+fRTNNd3PynwJA2LU/VxwR9zkwCTJwK39ZnyK/boFR9hfmYHkhz6jUrUVz6ZPYu+Mvuuj78mF9MV2y3yqHc8dx4Rf+ytj37hoEg/88Zt/ukVh6fE4T3t0OuxN5rWvlHPM+hkJm+8J7zblXzfVBVqB/cF/xLSfKBoOdF8Bz9Q/4mvP1vtGt++I/L8UmMXWQkJFYVft6JwxLNuqyMfJkX0ouluEeULFqI2e2EfbvNqyAx40NEXCFIMW6Q3ztbXuibl66OH65xJm1CbjY/S92TLSY4KRdZb1Yfq7P6B+PDTi5KnFx56MGUzEV6gEx6e+4K8BiXreUQW/R72Pi1CE/JJ8iL13zWjqT6OhLPjDtGeR8V7F7QPSGlySisce0Ui99SAeSo2djtqtm6c2uQPjyR9l7Ev1Ud6wELRndGLGLp886rSaAOmwt+jFNQN9rt1Ohv0ldOlE/mTUT/sOgO7OX+KfMupRVTptoTvUNtsftVsxTWdVg2uycvCjlj4RjaLEBNFaHRkZToXHja/8hDAQGG25GRT8cJnM33owWy2LYspj/QLbT9TStXFTuZR7AyAtUAk5a06BWP5nNsD7I8e7jQ7FkBpLDRpRCml0k8pkqIXg+cufRHNLoaD131WTb8qdkkNRxXxS4zGAUaUFU5F1ima0jVYgXew92edHL5HWLeToes3uZMlH+oigMMHzkgCv4zwr5r7xnmDIl5AKSz7ixolQVJ+kmgrh46rPvb7c+bMrgkVvG0czGjIR5tRw2fHdpIhPt1OlpK1SMDft98WmTzcNeofiEW+jqk6+eGOekf22jthH33U3Rackg/6lfpg3CKeIHS47Ez2Rj/BOiMyIO0LQAJzklm5lr0no1EYxpKXzpVn9XelDahgP8ANWkeNmX0dTvKMYHbPmSoK/UutY9ORnqO/sgEFbF/qEOd9C/jdfMZSpHfVxcHoo9SW6EMfvo4gauluBwbOYPUJz5CO6ZBcwxPdE7POgR9P6WbvwlRjC89TiYkTv5AFkNoHot0sXzdhqH8hf7hT6qmej0bBOvdI5fcDMOWZdPzkz/vEhcsxbhgakBBjFrHgzzzw+oz6vZQr5HZtUQO6Ht2LfnZeK0QZVcnYrZuNVtuCf86XXxKQkLPc+8C8erD4biiHqYgp9GjVUWdZjwrm/AnNPfWLsNdvjfXAUUaLFKSHrk4B6fPQ1tOAfMUIl0Mf8PC29hPAVS4nXeLxX/Bji4qzjZnvLvNIpdwEYim4Q/bCN9XGarDti0sZgnlnqaJNblYC0QCPkkKM+mlD3DeG2foTE37pb3vdCI/zyASPGTUVi5Mgx5NHdZ4fN1iyEGiMN1mjPmHU3+ohP68dZ6RwaELUuz8nU/9UxzCfxzbxDPvGxPtwvcHHOFXv1G87n6ZWFEBXPkE6iZOjLfDUg2oGAIfTkYnaOzQjfuV3R90ZO+BRvoxmG/HRlP3yaosJ9wmuV9sQC+xwJODvG6NgXmG6w/+ULPw2U77hU+FS9hlPHkmK5/lvqGMSbAA1A8r85GdCqbeBxpTPz7kPRNej7pejxp6nMdOuvztFCz05qMJLrba11vF7abZab15oR0/vq1DBSDUlpmNNP8fhEP76JMJvWTO9jFo3RnZhAlK/PTst+HvrK28r9q+N4fjl61yBjd4e3tXOZm05d8lsfOKloRWE36GieVjUG0T3H7LWWpI72xlDBZKpbRvrR9XjfpQ+YHpmHp8355s3xRXmC3UYh3mTWrFMnjrYQmHmHd/iZdFyMkgAQiUxirbJX8q9XlBZ0KdPjsenG9A8HUB3Y9R/f5zGyH6i/vCizP9UuaqYhMBVHTHIsGRjrXfwahe15goGp+6zvpjjqHuj4iQfi+FOq91G30pBS5kdmV1YYTdgmMyp3tcUckhR8UrtdC/OllJiXRFXUyz0uUVrkCR7RIOhT3l9d2OboRT9SSxE/NI0GRUPfWDogvxvWzGvgLKgntj8+bT7ivzAAY5oSts/DP52jpq/QD/832HfQGG0uFC6+Hv9qVSIhfbgmulifLzN2tYw67JsyXG/yh1kKGb2Fj4sA52DDdOY7Hc8f2hMR4WVRrlgT4mlujyi/S2fMV/jYcfFpxspZFjyW3C0VidgWtnDePlXmusyKhGmITTDWTKTtS5P//T3wYTVSHhPSSesNa1D8oRjDyXjyyWm8ADx31OiobjJvnmxrhYz1IGKItjd9nmwC6NhtVfoR+rc+G7uvCHEz1Mzkry6ZI7axUXW4j3j16ibE+/kWAC+fBvnhUZ8Ok4bYql0xnQ150Yty5KLH3VTw+jylaFp7wwjPrTCyl3HLUC82vQ8Cj0yyPz4bRNNg7YLnzhpdOV3mzdFSq7k6mA7x1i3pekPcuMC/7z07+s7H4/0xAykqDxlezT5wKnt/d6gO8Ujw9B6jKd3dQtCb/QVvF/2YrrWDqeQpedGrpTXJ1FeeDKebjX983/uud6sZttn7jHeS70ZT3bsY0nrlEq9b6kj0quPCdhDfzJEuKZrTvDKR0rWU/fjfnAp/KtTx9020p2bxqdcqdVfHakQ0e+4TisKbD/MZ91hSNjPi4u6pbn/8blfobjH1kiyid/DQ2Mm/DjrHWuUj/N6U5ECiQ8GQLoQw+iGnIKfyf+ulJTuTOJu75o3rk/BULlakUSULDS7Wfy8NXXRHJst+LPgBfe+g3fAZI+PSR+M6+XOhKe2CkLhukwUffFj4OdMtQymG6dLLv/Wm3+N1zb81yWzIz/odw6cs9alnfQXXpR23990hfYydtP2tH7P3bhXR+nEX5e/qvVmc4usPv+8o8aqceHH5x8fY1jFowVlk3t13O344xgteBSOFyjXR6MjXDJ5f50o/2FK9zToCFZUKJcScV2E0Y1uQ4bff7Mp/6HOfxmc4ZrC8C65MTmXdstF5vbP/xdeQ56sHxO/dQNc9mTw23W7lLjDcjFnmmySiMS3twA36Yt7dyvgoyomNduPYM3t7U/UxHablud98wNLCn1l/CCkoWXLA1Mtnva+ttY+KMphJ6N733gZtnBVKP3JFFTJsijHaPHsEl/ON4Jf6ScY6ODxgf4w74p83y52JhW/4Z5HimyRdUGvs3iL44bMgS7zxPvcLAzCv3sR0Pldv6svpAenlLRBV3ajev/UopXfBzMl3vRmvHy4s+Zg5x+sLjfKaAKSXQsCUC6eOOeERw0tQVOamf+Dxjf96ouK9rZda6yfOxOrcKE22T4jrDH/JnCfp0qsI1swyH59iTvE9RDtpd6TiOMrou9ZfOaykx5XcU68p+rzKQuW8HWvivE95NMVR8UCeUV9obvtOscHFNZaX+GWY75Kkx1q8RcjYp5gftlu9dx6FBosfxbTJ+evateE38he8Fr+LjepJh6ZRIW5uKlHru4rmuCljgNSNaDUuN4kdZbpAObIv8xofiimdPBW+O/4i+yzz+Zj7nYGUuqiYpcjQzfVexyCspAuWXUyTHl3nGW7o6jJiPNuiUDXZRxcvdpnGr0dvWkeCBqtVeCK2dtL00ehdDZr3GJNfvh8OZSNvRfcSswM+Rd1ci7EGzvpTE+zVCRrzUV1BVKUd86ioRyMydQGJev5kjl9/uyF6bzWUGM893eEn+g/fH4/UJtk+yfmifyhaca0h5DylfOrP5xV8d48tOeaOiLoYqU8QDa/Hu+Xzeqd+2uj0WtnMu3WnguZFUaLv5jriMYJjJ8bnoFK2tVozX+3fiP3md9FDdHPsgl9+mhGvbZH85X/fYkTGdIdMxS2VvUCNNiKyA/BvYcr83eWZtFFNt1CpzZ3CX2Ikm15+9buFr//Ts2N+3p2Rqrc1ZoquREy0MxeWfEEnMrXeL9/ATUQJ8Zf8xfvgIKK1coiYHcyDRyfQLooW7RsqpvaS31fYgElvB5pt8TEZDCkPAcNc4dX4WiVTvKsw6qy2p9vt00E8LSIMxXdvE/vzOCApNr4+oMN8Z3tseF0es8b/8WlmBPjVjfXq8kRL/DDdqBs+12PVIuthPZf52vNFbwZQn48z+Vvy51i/hTuCV/ZkxuJXzbVMzvKib5h1CDKP59s+g85qesy/esIHJJ6X9bXfxNhmL33MqyaERU3gXaG3XS+vyQop0UHC75xjb8CHVkZ6fbf/+ZNjv05A2fZWyY4iZ12vxrr987so6qpbN67VYwYUxUf8zmmZzL3xKSFlSfjb//ogl58nmvZopP6ij8Y0PWfyeT6daVr0S++ooIrREl90zb5YX/TRGYy10VB5OtvJmP6ZIUTvO2V7X2FoynPxgTyzkdmfZPT6ZLhFj1ZINvF24X9zal2eSKHa7sdXijntzfmfXhtLVecMS0gD+3044ptkZd3HCHcrlCcOwpXHl0Oi+GH8+NuCz5neThszg87VJIY5xotfsbtDQGKHMlaW0WjYvQ39o7kzEu/rhV8WTzip4Uh0qhqesPg9kHjIwQNpOj4am5yCM10+xEx1N5HxvRPANB85OfqYogXfAqUoPzcqTlYWcexjGf37/H4TIRrv1K2SP+Qt8+KX74nTV10pWhjf2VG6zQmvq6yFodTOWIiejj462iCg+m/FiJVMLe/6+RSgR3TSmYNvJ0Txat/DKTyfWaDb+2gU/3IRjp/hzA4kXvxR09BAgJe31Jm19GU9Arhe8zuWkqlF3BCGCmjhKIvecHQxGuIALgfyJAbahMksBk6I1gLZ0Pk5r/Qxzu0YePYtsDjv7KWjlpJDfakVPL1N0kmiONngecaX2fLU6axfPQXY7RqX+X+JEQ35UkfnbSGXkb5To58+RZ6+sollDWfE8/EZ/tM/v/w/y95fDCVEOyolk8uFuPuayBC8auEXiTc4f3sZMtVvsSDbHNE8aLHsbO0XXvfd0rsil0PgmfbH9sciLHhsYRNoXffEsqzZ42lwE6CUMFD44dPEBQP9+J93qJPix+9h2tcOlRf9xKJJoEg0Cwmnecv4sr5bsFIhodJBzDmVxwOF7ZfdqOhttwntvW8M2zw4Ed1KdH2cQvWBEnw6Y9nRbC7hyljeEDQ6buroyod+dwwgMLOODqKte1Ps/fk//c+ORTB3AwbXlSeClZ+e4BzpEKIOPyti7Paxzn6fJ7rrih0kZ4M2KFcrxQo2m8UvfXFeP+/xLz6IpWxCNBjPdfbLP0w3b5P+87PkveZo7OgLUzf+9IT/5/0RzywLRFFUNIiOdknFedd03AAuKAs+MexKh05AV3kGK3jjnz5NeH+rMnk5X2G+/vnwvrYkHwUmNn75IZlxp15+f49XD+udzMZR6eXFXyPWFa2Sn75Fix4kx3ejoDF6a1ug48vD69XSamP6W89g3YaIuM9t7c21c3tC9B7+yFGSvYhHZ9UHkRiUHY4H6g3GI2zg+LkPFHbWXpf6tzBCXFx0YiWerW9w8bqDsd0B3bx3csLVpyPK3/XKY34gewkX9+UZlvzCjDL86yYR2SGc1PpKyMIfJ0e/rxCnpytdzf4DjdPTVCHurJlZK6DFP79s9MBnL6Z30Zg2pEX+LUixcNmaidBbeQgL32HmC2i0nDdl8j+/Tvj63TzdVjKCxGDMfa01NMW6CYrda4SurbBEiy/QwsnhD/LzJ8fp44g/f4AYZbgppl6jmqz39nOZD+wJv3yg0+xL5dHO+ZiOqQz533gliTV+o398xjq3F9opVxr1afi9w1ccTZJuzJPX58dN/vMvmTZ7VjdPcf+A/BUtdZCDWedonIV//sqCh8ksru4BQEzLf3j2869lOFX6P349p9+3/E8PW/FDKuZUUSiyrl/G7KtadsPyKA2sMPCw6dmaztLbnCkX/29NlvgrxulPmuFk3U7Mo2jQWSRrK+WHN3bgtxHFVv5UTNLUeJ1kNFr8hyfE7aPEsK0anafBSVQW/4KpW2Ymk1NtRXCgxOTHN/vo2vrwVMLXb/70qR7OLSpXqkiOuXH0mFq32b94cudsQNxY4RCdZdFbej2+vdHxzRwtfIg2tWNE83KeB46ct5gf7Dfi/dVpIWpwQ7lhMjROTAA0x2uNqKrs8EmEO0Xbz6klB8nwdR7frQdcPDot/oaZFOt3JMDC64lumATxVDyX//BAZ4NWbH7ng2khab/x6ot/acPPj/z5xWO67W1kfxuD+dXodPGir5Gqn1X2J67zaE6/XxmW81Omx+4HsXpKRuB5nNEfX+mQ72ZQits/sj82kMz5Cvnw3U0vusObvUej8yeHk6bk5FGu3tGYSjcqnzxJJdr0Mfg0jbmhLL+n2V+Zd/3hpraKUvtrptnSxZsOZbNFq7FNifrxv8kk4n0PfnLeM6KUYjLWwmaGzlUl4iP9gdrc2meKSExKvEPaeBzXl+yHH0Qbn1/9u5xfouowXOn4kTboxydhOY+jdRtuEEVDI6CvUqrsPtJDR9PbMQY/uK/p5h1JRe+MogBa8E2XN5lGwdA5mJG4dyOyx5+yoFPcP6FUesJuJDsW3URGGTodK0zvd3ayEQXjAZWufsjfUS0Tjlhzh68i18RAMuh0issnUrKhp+NVKjgzvvLil3kWObx39+iHT0jYzTfmb0fUjY675K9lfs1pKLxBtA7y/+9OgfR/3ymI2D1jx2dZeyO/6iWMYQvMn9q5+6awO8OqNztmhdU5mol+axBnT8bstJITpg+yAffL58201e3Tlbu+FuDZqw92cHcBH1fVvYI+0EvMe+fb8Vq9hdAqT42oE+zRBsFeRFOor6jk6H3S22O3hTjBd+ZLVteVUhiaEM2+QfRqXieDefrewTyBSDx7OKExS19LbbJjRplGM50fDnKA/uS4Yw7Vb9F8s+4P5J5LzPbf8C+a5vAiwjYxPeK4hRiNetM90OuQPLAA7KXPwnsUIAhjQl7GqUlGfvUqUM/uhph8zIsxefEcQj7F5Mj3+2QgTuvCnD1a4vrtoRh33+yimHi+4GJtFt6cbsUniLsNMD8vtWgStZctJ0s/4PX7qXHh/vfywXp7d7w962E02yMIaKz2O6ZXTEJcVXYz8tRxItY7M4vpL8JnuF39F7sRN/OmyeAqHL5OQKzpmHU90dUeuvNRIW6iP9BI76czPKRbQIhVXzjfiDWA+fnj5LDtIZlZIy0Q7ifMvBSNzsuTsHgeRs2sWDX1yU8OJdzaSWbHbel0S/1zCk9TuxPryPuiv3yeMgrQhBn23oXHP6kmQ+22PtHtOdWnVReH0L8eDtm/tHPC946toeGxbwhJVprOszfcYVOHCTlu37k+++9ahd/393vJ5eNrqQVykqaIOSRg3vAeihw+qDUZPu0LPs2nHuA24PdyxnmOWDfecmge4kSOkrLu5knFATBod0x/vCRvMqODC9F8z4n6JDWaap2I8lFQ0iWeJs71QfXh+B5XxDtmt4KtpW8Il4C3xJmHtmPW62KDVyknWmtjwedtOmE4CvMai15Fo6mMrBxN5fPDDDFSvfnRNiPY/LrGZ9csI14GMUDIK5ns53nD+a5oRuhf0oH5U93pw7QrZ9gZL48RA6uInfKPAbchXpODy/dcTF73CmU70SXuXa6SuW2/K1iZxpcdnv0NzXjHbCju4pV4i5lVn60XBs35S4jhmkYye9HpIotB+GKkOrVd5x1tQTbJdcTrzVXm5aoKq/XbFz26bSrUDf496qGrHiYxnJtX8NefcFYqLHyIee9X3TAZjg2y/mWEXK/baGr8OQDL+9v8i9/+t/8v1dQTUp1D7/nCXxUk31zuGJhB1LwStAV9WNXEMi5RMay3ggHVSazJ8aakCT/YlgwEqpaO8Tbl8wu/NcXyrhuyfF8+q3rwQHUqdCSp2r7re4OKUEmNR+7a3SjE8vJ9KMv42f0r112r13EL0Tw98US1v4KPUmOA/SgNYp/NHae5ejRk+ZtGuP3KVjGy6hb/ww8vtYxifD2GEeZUKpm1/r6iPiD2jHaGQagUfhH/ngpTky/Bxyf6uPty5t9UWXmttII522Dm0/f+NGF1kD3ibvR1xGPp+kSTJOW0lMyaj9Ha0cCLxpmZJq+KoTAmQdnUzx3BmYw41R5wgYLeZuKLqZz07zkOAX1eMT0V/afjN22gsqFDi+VVseaZaOlbEHdBzo7f0o54lgUNatE+IY7SlsnsZ174b33ts9ryydXXF7huPmdiO6OD2GTWFOZ0UzL7oE86vYdN89v/eCpmoeDi3j+Df/QmzC/rS8K38b1E7NJKbO++PP2j5C+KvEgJmO8aWcf/TijbHmmssjQ4m5Foxa6AlvyD6WkydKa9ZRXJ3+9ErFg/FmNWoxXst/BiWChpNErRRgArG5/MNEWs97tOWaHX4fYg6qyNnDmbOVOifr2jovf9Q/QeZg0s+ET2wcy74dPMqvI01Ts7T72Y9FntmnCJ7oyupzOPmJIlGtwvfM2OpcQ6/pjAQAt+sv12p0aCXk8VvIujy+whOie8Xzx1633dkr370DtmpXYOu6HrmZpD1nH7q5ZQ2CSkazZ1+qgluxxm/nWYd7y33djrugkL/vzwDM0jf4QIj1XFfPHaRfM2M0V5SCSXrpI70nlhVjmEmbKhvPou/RIdKiOhW2rRGzhD9C82VDi+y+yXf9GUwu6C/MIRyEHih2iWbLOH+zcxlvkK0JxVXxv6V1vTnZstPSfLOASQTnvmrrJt0t8sJ0fnDlvMTjMvmm7qTts1rDnT3jWyYiw8AcPV98/sKMmxNz5xbICVVSod1fihjyLyZvTAmJJDqRu6uA8ggJuhquwWtCqSgj/uKtk5yZne+5O+rIcBJvkbiSqyb0FTKex/+YvpPdl2s7jbAtTS/ogF1+lQlTWGDGoEV2aF34SzmWQh0PvjzNxT8UiYlcoxXII7Jd5FCYt5990FoL2hIDcpC6PpOH1XkGz9nqSlxIrh6f75YHFQSJjdiogmmXiBw8UhBO+uok7bVzQC+d49omWvOZmr8XiBp4m3VLiZn2Kyv+8ctNdfuvAdp6DiYTKVJf9jaZ3ZaDyllwd8D+2V6D2Ju5Z9xifoI3yJo4xRMls3WgI3Q4yFvP/zmvv5c0EL8tKdokb6fB19G9WZMLAFf4teihQRPZ43n2nLeMcrc85QJCSivKr20dCNdgnun9Ow47aevFm5TRVs9t0fIeO7Kzp3r46QZp/5N9/ddPx8ZbQbzTPxuixBdOTnEAisK7z7q9ZebxXTSgbPfBLNA5tz+uc16PPd74lxvvlopMnG+McfFvxD9OzdDVjFW5/88l8fw8eFEoQnc1tV7GbptHPRJah94hTjiNjlOTyBP56UmJ/iG/34DlL3xUgfdXrzRi+SA7js4gkP5aQWmzlwsNy4pGfH4FxFXKcdKPvgGhN8MrpkvEdOCa0iLOUEuas3vUEFufcfNnvcrG80PnVHRj8+eSh3UTLLm90FPW/+jpHp1HHuan2GDn9jxIyJpZyu+d8D8dvXIxp7RdEoAsthm6QW2Uu5qFP/dYtl91xhSld7K9o0vhorndrkzPFV0vWR0FO4vuoTncqH6fGz+TlDexYRZY4R6JPyijES4u7E3CV/0Xz1DVBWkwM5mq4QtZ8iiWH5mZGHdNMH7/gd0bK+RH+Le51eWRjCOjZHpg7hWHB7ubOErdhgKb0G3pCu/kyAk/Emhz9n4sPeyQD81ygyU/MBzcTwMnkZH7PW1ZWPZ7UUEL7fD0yzfLubZ+/xhKjnCdbfMHpzxaIHiMFDIQ7IhicJX98F/Q4Vc+ZW18UhkASwxEpjflS+9d4QSYDkSxoSe+EX9GY2FZzjxROjZ7vb3NRJAzHoEjw681DQ8vJ+wKaWNsxRWiOZ9Ua4w0cT3kxPyTXqr8y5oA+QjHaGetNpuhUfEITKF/dRGyw/r55oKr86LfTwEU0QBfb/6pdU5yO/3Cjit4D84ifp1PVfhvpN2xL31ZrFfGX3EC14sbyjGbth1bsu4PFuM3d1/0asMGkG+B4fiJ46TVJ00yaAbRJ+mT0cD5GYNeII0Q2r7CDthOh7rJIZXqtaYe54DDzJ2M0uiMcgZerTV6PNbd/KAJJZMN3amZ549kITLtV9ZF6uJsloYusJ26lrfn+fSJ+vICJv7w14xJ+/ZCojkkGaqhf29N66xw251OCH11UmjsVsxQKFw98csf0AVTdvl1qttlPpWKhvA+ILH4Qff7VR8aeP9/NwhsGWHMyTr9WxdFWpu0uET7judNpNj/lP/ccfrCqo0FQJKoZ3ofbL+ibdT38gKQ8qokak6sZdZ5jyuYs/RF87bTcsfAmhTyCz/cxoQrvtukFx8rkQi411ssTv48fPWLTpp25ab8EAfVx9icvS5c7V2ruDWHQPYhmB0U1r+SrACSsDnu/Qet/BVmf4rTd5P5e6ZNb9KS/8mo7g52gW0aMH9WxvGFm/++KfXmvm5kKsd4H1MeKzqHwPzRWLu6hFg6slFSz8E4tt9O3mJFtdwCznG/F1RdT5pGdYWa/MGW/VpRZ/OOzvsIplH681qnpScYAGPpfjk6niZlvMXX/s5dfBXxHnHozJFCHsot3dOFF5NwQFC66XLZSthshe+WbdLx9DhRuLxGfzxrt4g6icbBOX7YsN6HMk6CPC4zrHeXbTk+VMukJpVs+YPWhejE8dzXCSqg3R5UuOBnCvlRJ87gE5KJGpbwxkgFxn4kCO9LTX+UjrHP72H5MZziPSOfwZIhxU74i3k/Lp5n3gxtC4x565ghJEIxybCt2MGBiZzlE0LPGAzBIkosasjma0n57KOxcx3daDUYirz65FC/9gxz+j6uZXsGp2S/5kvtEynT3G4ALuee6Jc3f3EZfHO4VL9cHkuD8fvPmFvxokRHOZdiFTMiWfwkDdbqNTnvoM8Wqja0Au65KYJ5Ppc/IKK1h18pHZauAk9McndOodGLne13yIN/kop5ka09kKr934F/cANRcpUwuNLfxOzZRabE5UKQ0LbZ4eMcFZVR45ft8Zn2JhlEFaahH/8Hiq1RlD2S7vei6SXsy9lrvKst503m+eBV01JEQ/vYbNKUf88xUEELqngNdH6crn7bMz0DvQOlo2JE3mVVVk0CpNRhJ7mBBbDaIIkxTadLOthmTJD3d0pOWTGK7PkwHPkQCXIKbET5W44+AYI1h8fhEV/m5J/+OjTlw65Fic64RdXq8LLPHADjQq0fh33fvKJYoZOXz7xJvpvQ3huHHQP74vFv7Bhd//5xy46A1ZQXx4nNSQ4D+hKxhPsrNywnGE19V51hd+hWEMpTvm8UXtGqHwWngd8IqY/k2M+lFgJuS+ypi3qaukbyyo0OOERwxTqRfCo0PlPzw9bstvN8Nxt+Dv/UAOpr/V+XwyVLTfwJMlC3+ZvveLCZedH/34pyfdjmgLE37kFBqj8OiPD8IzUJiNU62bc3W1QnHiL/7GeNClUcoMZa2dfGZdg08xgRUbsOxPdnMLMeGX1OlBrAydeevjH2/+rtxArlKeGDnSd7T4Qzay0vlBvNAqkno1GCv5KFRvjE97HY1nz3HB3SsOcRRdLkrJ2syAx9hmJhdP3bie7y3ijzDAUuxAR69TvUV6cs2Zy4pVxyF6G/BX31tGwrfjUek0uaAPs4MlRzWQYFdWCbW3t0ntmJzT2RkpiLswJ0SWkmj86Z/uvH8Re1aPHj323hkhYt7wjhzrbjDkxIDXSi0ousie14b1TYAmI4x+A13y+HGSZbToP7p+lyc+H1ShhGhew6If4qSpobrAvrAReYXvrz615XyHdRcRui10/k+PwvN2uzKcnIyiWXM/W+qM3NnPL5qmQynLE/6qxDfquqM1SnIkrB4b5hRjwOd8Hdng7WaBYc2aullE5x7Oh3q/4MU76cNanmX5YlyYxh4dbyoatMrNuANVGvmqc/trl7Cdwp7ufJUV1DvrPsSTnxLfdUk3WtedDO+CuHS9rOd8s1cYacJsYr75tt4MgeXKDy/x2JLvivKpO1t58Wd+ejEZrdtfCyBF+394P7YvoQdTGu/sQIpcX3r1GUhxtiY5LfxxpPfbWfbUKqIotPRESldUReZpjBl5TK03wRltQYiDPzwRv+Aslpbeqct+9nrrsNxpusnI6UqXEXv11rNt2gQgHsOUfl9q8I/fA76XBTuYfuzxxr+dlU292fzw3ps2Ag9gc35s6Slgvjdt768AJN84kMjusccHZ/NASYhbZjGOeW9dbU2uysYlJnO2iH2+LsjBZ/KZtfhjdFq1TxSQslvyv1nMrD77SshLmaj1Rkr+7fcFP374HfXb591FYmDs2RlDVAheJIdgP8Yc86TK9DFfxWeUybdy4YNlNBKjfAJIX4Vp3/XM+Vp6h8rh+0fJQbltvI93fM9IPEoSFRBIHiduD3A6lZw5bqUg9kndrbzoY8oXv3bcMJ2CW4/DD9+5+DSMHlpZUJiuEwHNYaNTBMFWJ38/PNn/2SZ6F1pPbAiwPn4jbURT+fgQL3RdJF8ntv0f0q6kW1lY2f4gBiIiKYZ0AtJFwQZngkon0iZAfv1bnO++2Z3dset4JKT2rr0rqQIoJQN7c1WWSxtFg7ziLQ2/R70U9JacoNPUmKx6lpERpwaEzjMOxOLk9svFczkAX1SpsTN/aA7Ypv7DC6q+4RDx0fZdoa363q2t0hN3yXkPAH1bIejX/TMJZqig31s/EuGWZeUyBl0g9fVWo4Fbdf1iTw4H46L2+FiObUQCcXuC1X8J9qseY+dcvaH5HJpBvPpj7Li1m794wG4yLmj6PE82PFvFxv7pPrK//AM6DQvBgBWOjQczCQDcVsR6GMo9a+NHDHYqKwTVv68+/OmzPnofyDReY3e+d2kFdrrOjjkfb/3k99JTWvNbHHTnL1r1X4hWPUmvuNRctuWfF5iDk0GN5kiiSdpmMaz+MsXSPCTDGDxCmL7bBAe3vEqWrBGWvU8WoPrGW9z+dH9LaPUvybJfEsa0XHFkJL4ewd6pX2jRUieFuQotrH2WRzT7dTKhaPkq9HjNTnorxmonG/LRDaTupyRkDAoPLvGzwr7Df3tSxTvjnx9vUUFIxizv32hqQm3tjb5159F5xzBXJwurRNuW9BqOMXL3coiPu2yJpmfE3vAevsKqFya9ivhhgL/9ZRenvqwPap3++cUErXxZ/Pn5ff02g2S9c7WVM8Sh5+2XB7vNK4+m0qtNeDk/Sv/8fwGp+zdkktKQ/UeP9QmpTQa67epYm44VGo9CksKff+Rwd5Vtb+m0oNzjXfqxudxl7yOEf3ofv1P14JI/vVfaj4kg+/eXzwAPQ9G11DWUvctorhO4SuxHbYHxaM5KK4AJdxL1mTVFpA1zAWWKYBEounM0RRtJROj7isl+V+7RDBdHQ4/7U8Z2qbiI535GKq1+VjCv+oHR7MyjP/3htDtFXw4qecO46D325fucLIe1rw3CPcNGsc5eNfaSjQqXP2P7YMb9ki+598+P0+OH7ZJ9VzoQ0YoLCgtP+qzdnhKQaRcF/CXlEybeMwIHBIz6jpzqsxskDRRbfCab+/mYDKV/59B7CCSsPTdzP/njzfnz27DeP46usF3vjZ93zzt1pUzW1/wpAANgpJ5jNfqs5bkpx6vRUj3MQ7/LhxORPnGwoUq8FaLp9r2JYL/uEIAuC+5Yb3tOKrykD6SVf1uWqid5rc9hMz3uENEbeP7FR5Ct/sDw56+2652kv/rJZNe4QmbF7ag38HoirH4A3PbPORjlcxExnV4F9H4kd+z9+X+xfFdQ+1Av5A+vpmIDJuy25hHbqz6YFtctQIiMtS9gXSF2FIYY1noD2fhzwwa+dBuJ46SAHkXfjWaFew6w4tWqv+t+Xv0NqEO/pEG24yMimB2H/PypUXXcEH2a+J+JLGdJyFi+ZNbYtVWj4uMHdOWb1V+abXnlO3zZmRb7e1+y+uESqm9M3Z27SinklX+C5/d0ixZsyE9Id8oFW5vyFK31MQ7UgnthjT6qaGL37fsvvig+GieXkatcQKXzCU6kTHZpljsZqjb8h17l21iy9rG10VqfCzZT3vfTiGUFwDXe2L7oS8L+9A0zeydg1ubqlsUesnUiw51MEM5sfMllAJEp74iQKmrCBCV8w1CkLjbm4ZbMWt4ayD5WOpHFXHMbxehDYEs643d3/rLZryZFltrTloBRZTqthXpBbr2wYCridzJFTAE5zOo91aWHE7Hvu24gop6G/9abPuPTGg9PffV/+2guDyUBn0wQ7FI2ovl6mog88mlIz1Va61PpERO8bZXQy/FWuWyNLzB3nEi9y0vUqd0N//wE0q310rY6zSKM+ftMcX1/9MthEy+gz6618mfHljZseVD23ANrHj0xIlgpD0XxIGS6aEH5j++bpbsFubjPovFP/2O9+mEvkO9Rp7d1KHnesqXG3BK0fIu8+MufsbpLf/rqR9qyzCIzkMs7QTQkX/tPX+DjKDvR4g/uDS3ZyaN/emnuKukJDVPDP3+un8WYFYg/7Ahd61kJ+1ydFJast0nf378Jkz+5/c+vF/aRwxausUJQt5OC49806GRauicY7RTQi3N02URSAojqaUwfILv9DuxQhD9/da0HJMt9/klw3/4uhEq75E/vmn/8GYhB1rkjLW7Z334iC017NPbLLZDSsxbSQzsgd67CV4e2l9MTm+dJWef9tib6n84UiP/9TMGGbGkgqvLsMiZZnFSBdCDLmX6S2dZwhoTDPaGH8REk5IgfICVjZtNEPdKkLenRAJ+dbXoQ2x1qo5mbUJZvUtKb8rlkTSvaqBgKil1eOLmMvawnMr9TgM3ru0vmncLdUHc+M3osy0knYrT3wHxnBo2X6dSTPhRr2OXPlEyXMuiXjeC/wYK9S1Vud3bn+z6/wcF1L6S5Is6l7fahoO7aE+qWSRHNXyVMIU8PjHDVUqGhKy8aSuUnYCxs4oj1r6UAZGQ8Nbn2q0/VeM8gcMozVu9Z3FPn8jIBq3QbsM2rZvOdTSI8fpeJDGRt92gNmSTfUrEh8+OC9GWvnQs5J4aG7fppJ/QhBgRB38/U0+mubPRdEUrR2/hS3dWKcl2PGNhzO+KgSkqdvI47BQYbRBq0R7OffVwUiI0UEdDpvZyHvcDDQOiFOnunQXNVnnnpk4bfYEv9U9klvwMg9HtoWIm2Dlo+pj2AX3uAtcui9eN426XwVtsB63c69MwKkCZx3Vehh8ei69P5WhZ753kZqSVdh2R8btx41UQCEXdWmDAFyRJcP5KGHft+jOZH+nwCjweHulH0QMwHrpB+W9HEl5+r6ux7e9/gdug+2IrGCU1x9utA/LZuIO6sJVm8wXMgkeoL4cKPqA/N1jHgbCGf7Gue6fOj0HgIt/GVhoMalo2yKAH0LhdSc8mhHKVLbMN903fBHC5bneVpX0BhLhG2go2fCHZy9GBaz7EZzo30TPBbAeTb7YzNYZSS8Zg0NpTfdR58bjtMEANlkp1S44L5Ut/LWbVLU3qI67y011V3l2gfTxBHhkqPEBeMlSMIqNLbEdtPQ9G3LvewkaVeRpq8uJwNFW009DloKdk+EjVhj+V2gvOAC3zAFtIn7TKfkMO/DtRabl9GnOcigD3svjR4qW93vhcPDwLp0+Mj/1uLT+VOgjZubWxwz9mdtEF9gjfWZ/L6iDd3inIvBuvbatg2dmGyfJRTKOtn54hNLiyTJTzYBkhKeKCWrtSMgvri0WBzIqEHU3IHbITBBsPzEnyLzCynSLwUgGyRBqKgspLuovAkh0VhYas9Kz2zL32KmqeXBByvBdHOmpcnaq5CRnGvnBkJAjmA5EdMrH/394QVt4Ggvnt/seGfMJtVTWqg+J5qIsC2YKwqDhVApo7BrrykOhWtXpPUafQDOXIHfRI734ST3rzxDcWF3h6NkyZZh6HB4Zl+ovKQ5abcK5cA38PTKeKVxfZkNVaAvri8d5d9f7whu/l0a1eTji307RoQv48y2ZN0x4hiezbqgqSi+LRT2GxqLxG23OFM/U/OJ235amPYadKR+im31cnV6RwQFDnDBt0b5TtyxAyt+IV9aW9GxM36EKLrjVKNdlPJrj93AcUcVOykg6hPDI4Z7C63E2EL3pRTVhw0WNJEIbN26PWpP/OXv/+Hj01z7emJmzr5KlYRft9B7AlRnQKqz3mmx3mU0BLnvSTxzTMJpN2tjhb1axBwgqEhkix6CaHmApDuagkrzvTt/8VjjKYzNYZTXS63vfMEw74N2LAOfbloj9cblGjy6WGxzqybY2PtpflQsRbrh5J/byKQI9GTsaL2WTKcxE5EcupEa2/yrJyO31FA4U3U6PF7D3tmZc8B3id3Qy3esSMexXcNRjhp2A8PY0RQtwCK6kXArvFc75XJrzccG86jXlWeGH/8fnk0pXpH2v31Uy6l5GowbOU32TByTWZZKwy5sZfLuh5PtqBOArTQKMBGZr9dIvlLLBePJqfREXQ0HvrDsK/384dq8ztyxw9Hmr2IPj49rPG6rV12AccoeuqxNI4W3nx7SOrW+d53zWBsH+niP/yw72qKZvea33aHtv3Rg7DdJm0w9AZyO5wHbf06Ryt+CzD+7hvCbboFTeefG4D5LgzqhHvsMsHaPxF/gwu98qGgz/HmvEDm9yYRCmmOFrkCB5rRaAk7vY9IEF4fQOfBLzCutj6a7ot1gS8lIw3GneNuE3ZxIPO8DVlYuI3oXXwZcNy9P9gWVNZPy9Q0YPMHSm7ZfdGXb1EVEJ4NhSzp04qWp5FyKN8Tix6bM2Ojqi0NXL/DARt5AIyFJ0eDTFM16vbPBjUnx2mgZpsXda9WmrQvYyxQvfnl2OTag779nfsJ5FOG6WuNp3loPs4fPlDFq2x9epKHtndKhcPuYHv94smlADFazv/we3kmXwPy/WBRe2PGaCFx2CB5o+X02Ltr7+V5L4DB9i71H2OoExI/G5BM08LaVcyjxeKUCr7uMybP0w2zSa7tJ1z1UcDXdKiSoaKZAoUWx/hdcFoyLZYoIClyIuzfUuwulHYTGN7wwx5KONTIu8aEYsjour7XaGiV8t96kO2sMre733RNdr+7mnzX+CHO1YnBGHoVB2oyRHQTfyq0/dQctru5c8fcsSpouwMO3kd91ltHbAgcyt2XYjnnktF8EA1ZlN/QY9Nse8KUcZJG3/9R8w8/1++D0HOBdBzXu6RKwQAlEx7BAgT6qci5BkV2WGKtvNjJommHG/psHIaP1+kXzdd+x8H8ggg/n+K1Xw7+XQAvyAXqPbqjzn7cbpHG33UTCFbxiWY7ot5+2q7zjk9I7slLvJ9Ab4VHIAuF0TPhc8xQHOZ7HGd1rY+pM9zgLLctxWhEaI5mYUFHJDyxZfBtMvr10sm+GRZYqW+7aIqxBZDemwzrJYn0nyN7IvqUGcXet6XlkpVqCPhru/TODYG+kFa6yF4OPrboQUOz1Dcn6J3MpYenmCMacd0Jrd9P9qDm+hLnpQiV3o9E2lwH1B6+1xD92nEfkJfK6cuVPQAkQcupPubgDuERTuA9Bx0HTytl85dIBHR0yqh/oF992Za3CUpJTtfZECObqX8aZME9vkj1c3O39cXwBkq0+GR7jMQ1P1MGecWf4HjWdMYO+PhEXxLW9HiJTDYJkXsBObUjfNlee9RW/D6D7ElDittyjoZRui7w0asrDo76WR+95DyBKuSYBsGORRO+7iXoHL2l/lGx9Zl2j1DaDq2D8QPqtQ+Cb0ruYe+tnrfa7x5H8kbfbTFRDyVvNg33YULXz1WiiqkVOhP8XJD5TVNhP/5FyQTbew07/tQFQuj/Eia+kQPCtJeoNqhLuTTFzYbaW/ZkErZ5P1iXNINsx97YRerFHSbJeqIDlFvqNru2n2l0dAD71z3228srogc575DGb2CN/6AnYrDey/eqKz3yv1Rvm5fXoHj3vAU7etDYMpUsg90HLjjw+i1qYrfRAN6/L5mkVx0tQe3fEDeoFiEvJ3OHum0D8OXPIei5cOfOuzhIUfYcQ2yfLMTmN/MX9Jf/bn7xqJP8nNfgP5yJOpp30MlUogziRtTx+ThSRPXhdAHr22tUZ1cumm41SVF3bQlp5Had1eD+Bsl/ZT29PGrRnT4H4w0eLySk2+4PjJe2X0B//KM1Dx/xcTE56IJfJj2Cqupzy18WRPTMo2ErBMnS7Otwtyn9Hh9qez1Dw6upvBuVjL6Ln9I3ah1zkPBLSFVjM0SsU/YcWHebYtPTyogcpk8A5eLX2J6jyZ3TnE/hoGzu1OwKQe8+ZMrkaZMqOC1ir5/JW3yKxeddBuNjXFz2acIJ2ri3CfK0nd58TTFA6PxVAjgFhd5rncWDFHNX7DXS0g8iqhbAj8LE7iE7u0yJTBP9PT9wVpas8TSAAu8Xxu/u2K/50gRPtz9Q9+Yj9188dCzUSFF/13tBwqP7lx9rz9pA7GYYMfBHycYunZ3+e3ePBgpLLqCH+5brWb4fzL/9FDRPI3P77eNsorDILGo9scAGoYveSHW4aX3/CWLlwdfAV6UftvOhQtP3bV/Qqm8I6i6du2zPGxP0TZPgQ3wtyvl+2hewvm9sNa6KdsaiLH96Eav84Lvb+769/D1fMEsZjra0O4doQ3aUSK/lhuZL9jHhLWTHf/px/klJ9e/3ik8j03+B/XmDfCowVl3nFE0be//+Dz4JsVoKm2qcEKj52sesPOlUmrw39A/ljTWMgE2nPFzktjr7WButczK3bsXJN9hpgZQOsT671/YGZGN2+NgdBH255VKIvI0Sk6tlX0q2ie8Vum3rPWnfW6+f22JrwFSeeXqcbw+dpcU0gBXXAtkHdtEvr+NGQY+8IGTXuDmbveS8yH41bQMIZjXi8eho0EdBSo15tNzpeAkctHHKJw28/oqWghQOjOqvxIab+tHSh2IlCvNbw57qxQn77Je3/OCfQDWlZ/10SfwKJecrBCgE0V32034Bj+cT/Kj5SJ+VS3gDo+Y31OB0nDB1MhtIcslYPcavPn/JMsAcO2d8zJUJTe9G5+ElqD/qPJKty8zLzMtC208B0woOzZP1kPbyRXTwIR2qaLGupwXW58OHjfQsl/ZgeUCwc6JuvQ4D65SZk6/c84r1fagxYoqrfi2+H6zbHz3ZXTFqYD9sSQCPyIrmkz6ICI2+QY1TvqDFu/Daf/DT7a86MxZ7geakvKm6iF0/rv4E4l4Zj4PQFqIuK48nSZqbGhu3QWD96o/AWe5bfMxa6v48+yvA5/YuyS7Y+NFYlFkg+9WyJbzhdj1r4lMqjy7LguWSKIi/Li8Cg1HJWJFMoxduv2JArH4tOBCARqS6uw2k2W3Gaz7nsucVX+DoSkogG20dTc5D+McXpCHaqNcIwu4vv8S6LXz1RfyeJJlv+QKr3G7Wx9vh1IE3OA5pV/zbPtIw/vv/9HIbBPTPL/J+EyY7LyX6DJfjgnJj29GXT/p+ul3N6Z8+92xedudSyfi/56VGX2joL99Bl2nbEMksTTRFYlr8i8fsc+Cj2TtKBuBHZgaSe3Yi9j60K7+WmBrM+fVT9tu+0biYB+pxlhIt3gUUtBXPOECr/zR+uLqT5L33weldqPtx6RxJaiRnS4/pOrvSC94hkqp6bSe0LdBsa1YBvXxj/r45R6x/1lSRTqeho2YARrJw3VAh0x40evV8yZ33yg/AsaWaHjz/6c7b9yGE99fQiHhXAf3D0z//pzy9Wzb5zBYQny43fOi/LpveJ0SQiEWCdfdhRCufV7BvPizIrE9RkvvNVSBXPjTYvnTTnU5iIYJe1CfqOgHfL8vWEGA9rk0Nwg6MP15MG5zfc/+Pr0jZ9Dd4JXuMkzHo1xrwM9hHb/MbrPurXPNrHjTNvVANoxSx8xhzSJ/NMujIOden3OBMqSxphIMaH5IpK3wNCROSAnHVW81m9xjQ1r5tyTZ/Wojt/Sj9y++xEtLBXTK+4SDS3vmfv+XOH450ICGhpPrJsvWa54UUTLFJg0Uq44ilhTgASYM04Hd5m0zOg6ukkDguoUoslAsJuwDGy2vG7tWCqL0RO/3zm6i+eZlo3IU3DZZxZwVUiW/lUIdnQ3paZ4c6fSCzf37SW13PnH9PcTnbE13QU/3Y2N52M1ucpyRIx7l7Bfun1erdsvUEVA80opbHMFo/5//wn8jeuXeX9oA9NIyRj/UxT10SO9EC5FTF//yjac0nAAVkJvusxW61TFkHZfo5UvP6dhL2rH+KTMauxAdWLdH3aJwUmE3iUKW+3ZM1X7oAFpUH1vavR0/PzqMCtX3pVFv15PjithpqNC4MpFVvzBsoPWieQUJd47lE9JJHFwln0ykQy+M3ovxXucjH86DjmGi+O1dSzsl7vlPI5uvhcqlv2xAdXVGh1rQ/RLu0EAlIMVyJNTbaip97gOpWIrJVL0s0+UZWy7M5ONQwCi+a01O6wHDTjYCt+31Z/WqITD7F6glv0XxefBtmSGv6x+dj7p1M2Nx/dbBdbyLP4233/re/g0a32II03YaE4zDVRc9whWrDUmDP3Yh9c6uj3T03OBDfiYrdNFeTIS5EG5H21FBDxL67576JAWRjdNibinv0h0fy04ocepCVR7lIQucBks4n+qf/5mwMAPosbLBqph7640Oo6/0Z254QI9a+FUn+VmYbvEHl1+c7A/z5ceYwPpM5MZAIaMQGEZY87YfL9eqgVU8T+Zc9GXtJigCnHzD6sdpHwvrYMaTik5b4nRl5NDXSkkFa24wMp6Bw2euuprDd5DH1Myzqs/rUJoh6Z8Z/fPbn/6Lf98phh+Ncvb8tVYOO7l1cG+k/etIV1gKXcr0X/bgglw0SM0B4q33wl093TyMFaPL0S4R+c+vH1W9Daz5HV32FJjt4EXSB14Dts//sWYeOb/jetRc9pIOR/Ok9aHdu8s/vX65OYcPZ2vvBZZNhNj02IgFWWDtsL9NUlopKYmn144ks3iz9q9qlgZ5UftLj+fEt2dfgOpCcVMPBS+VcKvg5D6t/hW9LnpYzBI8LLOlDIRxXXVw6UleAZG/7//y0NV+x0ePyLrATbXw2fc0pACV27GC/4v08TSqBHR92f/oKzQ9nGeTdh7tgHM05m5mlZ+C6Y4CPHNL0Hd7bAQSJHFPd7BU0ylpnwJ9+V+EyM3q62Ty6hNdrIKXXW/TPrzTsy0CdPz1xWqQ3XNI8DOZNEK7+yCwAqz8LPR4aDu2aOH7DP7184xgjf/7K6s9gL62cZM692AD8ktRgMh86267xhXhBItQpMinptuVtAeEbbbEm80lCF/IzkLKEGTVK7ePOAjrwcLoVw59f30+LNQngXUSVRve4Q2xsoydSw0Ci9lq/aV3ubKOdJh7x0SSvcqZVJvzx2x9f9HN/qG3oIy/FB1cQXTZ4Tx6RQvlgU3znblc3F/jHV3tFQsmo7dY+n5Vv4OASSf3EPR8OqA5M+BXwTjQrl+cF9VVT/unDZDpz0Q0Oh3tIJmz9Irbringvvh8qxfHnW3aqDzWUrqqRfSiYOnXnaycZpvil9+V2YEy2zPWe/VxS9/QQEWtU5Qbq1rKxxeedOya3pEaFOUX4cfctJBSH5QK/8DP988uWw3tToPJYISLih6gvk9c/oT0sEtUqzXO3toYL9DkoKX1cOrsUrk5nw8P34jW/ebnLYzQWlG9v3j//vP3DH+OxMKzSn9VPjv2WIPtYfvBzGrdnXfj/+sn8nZk+v36VBEL4+FHnyB/R7qi7E2z3422Nj0O51GeDR6tfji25phFL3aaSNHlcyNOR7L5d8zX5j7+D1d9cNtW4wP7sd/QoJVwy/uGTMwaIgEveOtv7SYp2XPrDzubqocXPUhE6TjKxxZiZ/NNPLd2f6WGtb7G5NL2/+iT1F1dj27dz5dAPDTbVnuuZha1mcxA9SEe1bD66E6vmWK64i4c/XXvSWbV/EXCu3EIt83xkjb3zC5DuRUCNxbDZEou8Bmi7vwbcS33rE6v2T9S7EJI5DdJowlxOpGohNnXXVvnDKL2Wf354tHmZbPRxl0knR/pRH8aGUd4XvX/rvVPLOmF//CdLXY2PFg/J5CciQYFgTYEU7rE+169EA25/iP7inY3wbd+QVsNAda3gWPY11++LPkdSoWPgzsFQGpCc7xAMa32Q8cLaR/FYIXxKXrQcQ7lWQD9kBuHyPEfk9usI/OkngzlWL3hyz0OvLld6+M5tOXbkBXA6vjNsm5eFkZ8bKPtLeL8GSysE0Ryvd8jXeiUR13rYvPqR/+oH94sRsmV73pmw1suor6pqL1jX0/Tn79MXtT/l0N6R/YeHZP5tNLSs9RKoa3Qmwq1q1/yyk+DsnW1sCeOvZI/lfYL5xUX/+Ke/c372lw9gTxiThDqyJ/3pDXKJjNBlf/pm1aNB7Akxo9so6+T3Dk40pp+xn+d3ocCet0TsO6bJFoHsGrl96XrQu/1WH8/LwYa+Nrpgb1+yaOVHc++r4m/VY79kPnxfofS4ii02VSK7pCLJhN7ZYNF4zUcX/1ml8FefwRe7ZFPfeuk/f1OPTVIuRnTrYNXz2DXluVzGbV7Lq76gl+qsuGTobCJtnPxJk1a2E75vjbfErM0naJ9W6y6Ccn+C8uKcFY8O5dynXCh19rcg7FFSfaRoAuAG3aJ43e/L+YkJ0vb3HelltE3+6p+o+pn6qpfXO7yPXvjfzhTs//uZAnIQ7vSgz9tkluE8gS9tHWqaeyuZdn01gMR5PT38wrHsw58qwN2rRxqw1zFh3pDYkL9uCjVTeLpDee0WdMHHG+Fo3kXz4bBbYBD4XyAcTxt3EeJ2gfemKEnbax93cozFgbxG+d/f66sSimVn7HfU/T4MRgfRKUA/vW+BnFUoofa09ubL7Tz4usPFnaVNWMBDCixs2bep7z7maZ0nSD4Ui8B0xt9vPGjn+EvQj710GtU5geNVqzH+ene9RVwYwsEe86DgV09+e+MGmOGo42d9WvppmgMTBO3YY10/xOXU4fwE+d2qSCndPMTE6CuB7lwRPWZzqzN+mohcmMkjkD3+kzA2Z5J0arIv1a5hp9NM3SqgFs4cyGmdsLlp4gscq6UI5tCJ9eUaFDzwrfCmGo3lZNq3Q4Diq8sFRKYftq7nBGS9R6CO/NIzdT2J2HTfEntRwFCzridy/fMcEJZ1Lq241ESbcvYCqGVaDt1JjVG51XVsNnys0x3JbPCl+Ujdc9swRrYzh15TwVO3p6lb330nBSpvMmq0o9Yzg3kCCI2tE950WjazQ2pCu79iQp+ymvC/sNMkfTJPwb5pLXfE8qtG590tDJYBqn4iXlZAUpxPQXW5f1yWq4YANz8DbB6DdzmHEg8QWt6JOuQ4sXW9Q4j5ViC3Q7gph2u+FSCv93nAP8Rvwsx5SNH5/OOC/QX15fB4yyZc3nKE3evXQtvR+cbwUh0uaH3Vd6fz902Q31sBVr/SxaVszkQkxDcTH/rAK3mxS2O4D8EvuFRuqs9H7SZBYT4eWBtkA/H7dvCgyUSVYlEKywWkdyedf0OMjXYoouXuSU/prQSU4tG8lsuL/E5I0M4jkcJcYLP9Uk30wbcMW5vhyxYuVGzYTW1Ej7HYMbbxh6cUZteOHtPlmLBc4SeQ1zPzxrZUdOEaLBLI3/sXuwAcQOO/7c1w+QgmU769TmKAHuUv6pJjXsnCDhTsjqHuLuiidLKrFwF2Z6xFC7o0E8DQhdQh9tQvSyJVEG2uD2wG8zca31Px3NDLcKD2g4gRFSOZQ+dfcaWGczyW1KZrr/et4xHQ011Ep+dmgBvwM7U2/aEUMmOKQcwsh+I82JVLeEJP4MvHBrsHvu+X7eMM8DCSJdj3xqdktzIDOVKsmuwlIdVnDu0bqDUxJxNvH9hS6I0Jf5/L0+3+b3/CHQk59rVvW445OfMoCV8Rfm8uP7eyLIeAnIgmjpRO0YU+5w2ZXLsL1et6QssuVjvYipOP3d3vqU+RHHtwtrg02A9fU5987ZgC7wQVNd+VprN7MU1SIGky1XYnlAyqBzZk8mJRvejO67U0SQN9v2NBCw9dX9+vgbYiH2BTrHi3/bVKAeU1OVKP+3U6S8w6gFPzLAPJwErJ/ME1UFEfLmRnPM/l/J6k9x++En5SHyVzSNLAmw41VkMvLpvTJlsA4OZjP20gGf1Y1EDI2ZeaZ/ulU5rsAE5x8wumyf+55HNoKmnFp6DZXheX6O/3gs6/+obdb1yVDWFBDcFeQoHzji8903g5hA8+fcir01V9lx6+HDwkx6SHqArduRj2KWz1I8J6/Zv1xXrKIrjQ/rD7Yy+XCtfbBcjH56lFpTaiGr8Nkd/rPsl1TneF4DJcYEHP3fp7ZX0uRjVDzmuP6LHqrXLI7+UJDVY8YXdvZ+Xc/KZAFvL5S48Sn5Rs4o8Z6JOCqREc7HJ5WQ8NvmXa4RV/XfL3/cpCJGpxB04fbvl1QDdYJuzz51tJphcz/vYXfUgCuEN3erxBV4YnNZC4c4khiOs8ZXOilvIOy3GTfwoUCm+DasiTki47KG/pKpMNNR8KcttyaGNQooOCbbcokyaL9Rg5gSrTIJKmcswvP0nST3VMdt5lWudJ5gF8mh8E81sT3GUXHzto92VIVfP6ZJOvPQr0m9/Oiv+viPjXoYbng1fJbO3ztQZevqGqwl3Af2e93/rcFv7FlzaJZb8Ywukk10WRUPOhoX7ivq75936x/pyiiECUZfBvfV+Z2c/1yZygMPMkkN9eGbFWikwIhdok/BXMhL2M7QKj2VXUSM+vco2/f/gcbI5fOWJwupp/fETqYDq4U7tb70Wh40BEva4itgm8Ak5ikJFlkI21FWvDwzcaCI1l/+RO1TUkcrSJYmp8Jz1ij/wUw3h759gxTgobLoVgog1LTGqGpOoX8X5Ooaj1iOz59+qxikIIx6tSUyUuvKi/OdRDF670yPzUhYTOrI1BnZce+076i2iheNU/PtdWvp+w8tAgzXMDP7KpYaP3yLw/Plzxsogm3WENOMYzxQeOa3r2sEgKe9xrwa9Senf646NYgohMinCOyPp70GG3uVKnxksyVqEVQnN2Dtgxh31P7+VJlJ/MegXb8hpEU9DcUxBPvoeNl2Cg2U732n7lN2z7e6R375GuvQafW2oO005fyKcsoLhFdxqwz5HNCYtMuKdxRzZbhdfnaA8DdDGyCXuThdWnEIkAqXAljfWt3Ln5ZTbInufi2/OnIeaQqEEX0geBXJvqOs+uDaA89H6wDHLF+odVv2F6vWLq1TLul4cbauiePrt/75Opgl+h8fbMAu7XeO4YSd4E45Z7BPz8zfrJ1WcRXtNzwWa1jaPlOdEFPO+cU8epY3fJDqcMMlmw8XHKKjQ5RmHKdVGl/55/wvXGgHt6aYP3XZzcad/yJzg1VY1VndP17fdsabApmUf92lQZW/FHPtv2B/vh7YsW+kYX2B7je7Clrsvab5dJqH3sY3otb6Sc25+iwTm/S4RgeU4ayyp4YE+Ygn28c8q57GcPlr5BgT3HC/vNz3stmvf2hLGOv2wyLUmC4WcPOMDcXP7LN6dXcsd6V03RJAwGL4dWcKKqEz2jyTadNxB8FwIB8iiZi+jXwJ46ElW344TI3VtiWPGZHriNzYYzJ1aQvU8Yp0QY2fIi9ISGmmup/3Z1d9hUTIP9J1ewHzzqfryK6QVlQX35Tz63LPsAfmcI6WnyajZ4ujpIp+ZdBUjdDdHQb38ecirtRo3H/tDvZva4AVe1T+rpzxtbjvF4QzCQ6C9fRW3V544szG1JZu2OknmyLhWClL/iZPPa9bP53hcg9/yBiP5OKqewEirYb4w9VbyBMJJSKwbnhRA2xlbth0iOAxju3ki9yGPJkkxW9xdf6+d5ORGvKVDJI5X6tvBBvbLzBSD0sJDJ64N+fvJ6iK7vo7n2YWoQbaXeRsV3E2JXFYd++Dz6BeKkSAPUXspynGxjgcflPNE13+w7fRcXkpafSupPtx2az+hrQ708H9jdumokCHG+gLEJNaoMZ9tdVn0h+wk+Efntl+VoZGdRDvYA2OpRWzJ+yhqJSe+Guj7p9PmPP766OGPH7PYufeRZigwMPk2Ok9MLwuMoATkMV6r5D5cJSyLVyNxFDlVHtiRzE5Cn5Bjpi679W5Pl5j8LeHSXI70z3kI88cQaOjHXsPZybHcnhddK3oqDRxNV9MrB7e6AXqoGJA/dOKLhL+fQwxHDQIySvJ+eLxDg584C2bKjm2yPiTjBNmRbamRYdoczl2Wypw0qfqzxOfSCdQH6fjXBPiPrmaSd2MD+8+QCwdxb0bLZXSX4IXcgC4wKWoZ8UCAJP1GwF8S0n687CJAL/Q9rG2ePqMEMHp3PL6BY7TlEp+dugJXvcUDLDjEpfFXg+i6lTlDd+/E9OSdY9RABHPKIfEybgLz1S3xc+ZwGXTFIq/4LNl/3xoYOtyH6w08/eJj9bjspBajhjScbEYVoFpVORHp2uWDvflzKRYK7A7TKNHxPD0M0GtlDgt/8POI1n0nG4oIX4J1bHexSa0Dj4dMS0LNThJ/KVdO3MuylP72FlezhuFu1dGokKuX5L99Hi7wXMpA4u6O6bsZs6ypC8X8AAAD//6RdybayMBJ+IBYCAglLZB4TBAfcCSoCKjIkQJ6+D95/2b3q/T1exOSbKqmCxW4TEDXrIGDc2mXX/twipCbHVz8az6sLLwx0aFjYaJDf/lBBq1NTRz5bdKnkZc04mzQaN5rBX2/DBFMsV1iDRlO3IyMEBrXpEE5zeGPOhPwN7U+NsBfpUU6rDX9XL764x66Kp3q526UImwaJ2NfJ1Zgu91EHjq1adPcVknUQq3AHieNisrmv90KGICpBG0OdxmX2ZVOqxiHUn6hCjVCXwbDqceDxXUlDZejT5fNSbZjEdCI8ULb13/rL8uZG3VdzBNO2HwYguneXjFkH2Wjf5wo+pJuCfX1S6kW4LLbqs2GPnZV/O6u4JzCIPEpEqTms9zCcGPrmKcfOdnYCvsjhAaz6H+PL8ZIuyd64g9XvUE153sCK/5qqkGSg+HaQjTlngQZXvYpePRp6Ag7SOnuni//0/6Ip+xiKralTG81WLt5tSZLfQJbQMkl1PQfXLAPFvNfI9hAig5W6ZcJXXfZ091R5wCa23gv88V2vbwKiHL+60n/4LUb9O+i3HjV4qB7HHt036ZvNiwURAJH0JpO5TPk82/AO4rZocPLSbWN+HqgEPntlT3V6KsD0PLMDXAJVw/r+6AP6Vo0JUOLVaGPs3zlbljmE++39gH3i74OJexk2XPUsYslWCNb9KMILkzsaCOGuZ2/Yt7D/cDLaYLvu6b6tkIq/hwXNV/PU81h72lBBhKH+UjkB3URNpkobYONgJ4fg54fU++ZeEf62tYzZK7LVvz4+CCqdz/r5srnDEjUHfP+0w5qflJ264idKdhUy2JJtEDAfxMPoLMUGX51qDVLOeFId0mdOG+5gwo/uH/FPb9P8MekQvs8C9RcLg6VwvRBu2M1B6mG45UyNIw22174hJZcXadvjS6g0vMbwzgH6mmexGBbPXKfh2Uvq2d9xE3xGxP7tl3QxtnEJl76S6U/vz9Zj38JiDjdkq92TH76F4IhSl8ieMa75jFDC2FV6vPp78H3Qyof6bJdEzkQ/X8iDveHzvKvRKEVCP/JmrcA+8yE2L4oFlnzCHeD44/FvfzAO8QPcf9ozzY/vNmBU2Ivw6RxbtLmlGVhgGt+Bvnu3aJGYnm/DoQ+Blmob3Eejxyapa+5wFJQM6zfXqSd+FBKY5dkV+2byTLufP8+OHveXJw1aNBwgtClA97OA89HfcYuy8gFajrHX889zncDh4w/U4lQ35R3nOkGtEiE1v31lfOvBS/4+L7f4vp7WfAWUqFz1sjCvedd1Aj5bEurxD7Mn/ll1gfkYPOqb+6dBDaZqyi1WFOyJihr8rYeal3eof+ZWOg/B8Q1+/LSTvxi0A8ogbK/zG+++2zRffn4uKECPqpZ7BV/L2qz++Y6pGzyquu/kToJT9M0peswknabAdeHV+L6RWnlVTVSZq2BQ6zZS7adbL0DhFjjdnhesxV8UzE/iTTA56xHVL8gLRq2uCLSy+k6WW9DmbEs0HXaeF9JQnIZ0eB38KziOwo7a10/FJmG8ueC9HDJ8ESVYM/Eo3kHyFn0EPkwNZsEwKtjGnE5da1P0v/WnXnwlIZB7e2DKC9iANR9BnLtLavLs0RW0wa6jQb29B4t0kg+Ql4dizeD7fjyLqQhlDm6pOe3kfvoknqS+6kOL7YSY/fLsUaYU+i6kRrI9Bgx1ygStNr2iOV20gL1UAMFcfAPqbNmnHmVNX6DMKSKpBmCmNHtKJbRcVtEoXu5g/EbEBaVr8djKb3E+qO88gxfzsqx+2cgpzc8i1JZBoaFIB2MxbmIHybHYU/O51GyRT98ErpOAyDRFTjBNgeaqPhNTalTfuZ6e5xzBXGcZaVe/+X3QzoflPcEoM74vg9yc2YWjaOcYO9Ern1LVdX/5Bd0JfZySsWTiT++RLSB2PkS7+QqoKbkIrvp3OpdWBkqVd6knFQZg/PnOw1ynZ+w+WxEwFUMOHMftDmu88+r75POE8FY2AqmVQ5gDftYmNZlwi6bsOQSjvFlaNcuvV2o9csyGQXBMGPUeJoNzPgVLcILSXz7Et5bSs2XZ26pMQ0C6KmEBo/mGg2qhuVh/me+acWhowfr+8ZrX5aRt4NoaUDHpTr/kYAAfNsEz4GqqTcG7ng9yWAHbYQk1xMvYL6/PqwIZ0A9rfqMGbXNQGth2tyeRY9iDFmsuB+9aSOnuK7F6ETeP9fmyGj9uh0vQPTsSg/22OPzh7y8/A0Ea+/Sy82k6OE4yATHZfbEv6jRYvo3ZAdo0Bt19tywnQBGn3+9N3teXns/GM3HhL2/DTmTl8y8/SzGosDtfWDBe+SCBQD3c6MlnFljW31cVjABQm28FY5onUQM/PXbfXts1r5A52XLpE7uX4QyWtbUg3G+zFO8c+QnoqW6hciBzTHdX81Qv9xEpP3259oWJ8qnMWAPz5HnAD7jdsyWNjVAJe7UgMEWM/d4nxN4gUV/cEdB28aWAn35PkPC40p9eMaERdxckXrQ8IF1d3GElUIQ67Vit870PLZTKnYeYYUuMjVs9hq7wpgg8wMZYqu6OfvqG2lbyqAfTDwqo77ov4nXUgV9+rYKxeCAx8tW+Set7CP0aHrGWlT1jb8gITO2TTlRX3LBhzTtAMkUtxYFrBgq3n2x1zWOw1hzX2TvWdgLa0srYyfyoJ1q5zaAgkZAiddyks1pt1zz8nFF/ff65JF/ljz/y7evST+fyWPzpgUkT9gEz2UGCv3yT+3Rhvy2sowLNy7H/8zOTayst8A7ci6JUnvLRLJ+csqvcmfCHy6ZmHDYX4NiyiW20vPo1bzLhjw/8000As31/FtARYwUHubr5+b0JBLXv4rDW4ny+T9eTIrQSxu6rEcDPT0GWazOOp9AGw6HiTHCn04dMkm3lw/PcJ/DzXDC1gPFlo59rb2BJ1plsw5SyRZO/NjQ0cl2TzQpM9bFaAIj4Fz3cRJNNNJAOYH+Wcoy2V7df4jTgfnyIA1DLAZuuWwLqY+rgNZ8MFgU+fOWnf88xJmzerGdm6KE1aSRFQr08TRdB8/F2qH7zHCAaW62AydlE9Nzs+vSnl+FFSVys8d47mGN4PADyitE627dldOL3DUw0lcdaee3ytb7Cwf2Zv5J+jp6AwlhAP/zGu/vuyFgSUQ7AkDtTu2VbMB0q0fzjz9/3J1l4TX5+GNvSi09p1CcS+OXBOs9XNc1cQuD3+0oxtr73/JdnQdcOZarxnh0s0z0Pob4bOvKQlKVvL3fVVPxaOmBv9ZPzmqeCYJFMfMhSLpj93akF7fXb0OD2sFN+ELCtaJWkoovCg3rlAx+23bOiHrfkwVSdgA3nUEDUKeyhbrH2NNXsZUBsnau5Xl6f2x2eoquy1iteNTlH+l31rFNPmo1wyseLEFRQDeMQO4UzsKY+LiJ8Rq2F1rwjZVmVddDCrkavdncxhqQR31C1tiP2hsYCbHtEsZLxs0TDhzEb0xBJPFzyAWLnEJKAvWHdqoZMZxwGqRD88A6sfEaWp+0YDOyPp7/6KLuPSd280yqBREARkr5PIaDL5XyA+w/JsIkMNxh/9a2MZ9JfXjmQMC7gRYldnBltw6Y915Zw9YdE1RsvH5v+Yq99VhkOHjLXLzgdTLA+P42aUknpIcRvedWHaM1vemJsywZ27Wxj/3Rf+/CxZwbUfjDQd9Vri3zaI5X34xd9nLXKWMzbvYK/LRUI/jOYUjiZ6lrvpL96C/vxYbl9DfSnB+btDoTwPOgN1Qdg5stjIAvg5fcV8chs06nD8wE+o7dJJEstjKEXaAiTEwzJVgw29c8fqmv+hMQCKsF44UHx4zfCugqDue5lBO8PrqNeMzhA+H5cDTKl+uKgn2E9vNLloDaHEqBZvwA2jFE8/PJgMgSpYMyIeykgC9o7NhAQA7JPDAL6DKnYEK8RGOJNu/JXk9LTNIhGU2ZpAcuR8xHT+jJlnXwVQSd9DMKt9dulNKcrPKodh82x3aWTFhXJXz3xqh2ejGTB4v/qjfT4SSMgPnv7Cltlf8drPp4vmjz7wND4Ys3DzZqteRgwJpQgbnP85N93/FYUdH2Y9Ld+2TGgBbjH9vjL13PBss8KuHSZj70F3urmfh30/2/2gfLfzxQEOjapPRpyMHhpo4vUEkJq4izPp4P/hfC2iBsya5rPyNG3ThB/CKKhrlI2f5d7A89DlVPUoh6wSfEWqPpZQtqeFIzNawedV9EnRO1QlrOw2BP4nAhG80F3gvlyqiYQdwedHt9xB5bP+JRU6bz2Eju8Xv3HaEEp5ernhHhD0IOJM/ACogP3pZa3xP0yKtsOhlm4JeL5eAuWwXMlOAXihrpB+qlHxWQlUKNpPee5cfJF/ghXyF9qgATg2mB6mqcrcN6xRqB6toz2Jm9NCNSuxNHTl3vmq4oOj66kYARj16DDoeuUTFvO2G0uFRv32EQw9IlC1NOtNGaHIR9W8G2i6X6fa/oIXzqAx3jtKshrxnLxhwwIbO5wVB5ktoxzOchtpQ/oue12qXC+BSEUrLdF7e556VmBR7JOPblQ5GZJykwnD6EHjgeKvcoCYjB/NOj4WCTX+Vqny1RsbSBk84StPInSKS+0Qd76/YWoQaHWdHx1B/iJug3ebbtnvljNPoZefMzJUBhBMBCO1+F8RAu16zk36PtuTPD0LlsiGeM3/XJbpVGie9ghccqznAr7xwJ5/imQPexBPj/tL4KgLmt88SSR0c1DEGH8hgZ2UW8DERNygueHfieqF+j5QoLNFUQ9+WBf8p9snvbHA4yuYk/919s2qLtXChh8RY5qnYJ7QoLtFZCDdUBbKz2khPZaDA+67GB/a+tsLnofwco0Eb4yYvRLjkIXwCle52Ulbb+s7wtkV+WAcQmfKcX1JYSjMOZYk65DvdizHEIu0mx8vWWOMYvKIYT6PdjhYIfKftocpkFd6L1cP8+tp6CpByUTJIRsUT3XzKpyG8aXwqbWtRjrybNDE/CS6WJ92c315AjhAVbXXsIBBhfGgvdFApIcGOSLiFh3qRy9wXg+rp6sLPopjIIGPi6E4OD8zAwmo7MJcAljXEzgEyzDY7tAITwYeB24nA6hUGdqMhhnbIlmG8zPdT61wscEh1nfA1Ip3QQuh8Shu4Nks2U8bhvYKY8NUpdOzClBOtrUJGip7/N9SjiBv8JR+zQEHtOhp/GEJWj8esW+25KRPt2ZqozlHXXy78SmfVS1MHmCK0VRMRv086wryH92EtZg2/cMKKcOfNOpwdHMn3pmvxQeTqUJkPTCes+i79xCeqIuISD0DIaPc6z4rrBHYj0DgxkGuENIswwfb/wAuhL1COhUU3E6fF9sPOnBCc7ozrAFebvmZy89qFtkZDQq4LWfxGdSgYvgG1S/bY4pEx4thNUXWeu88SiY1/UNGmGdd/zc1fW8850E2nCUicAqt/82UTmoLWkHpE6cyBjRugQ+xVz94ZnBzp1dKd1lOaNz9GQp6b9bDvKS7dJLWSQ1ezSWC5Y9bIjU6Wo+7ndDrFSGrFCDqG9j2XGKDWO38al+8Y71nGwHDXxyH+KAAFYvGkhOsC+yAJ/TfGYkur07+B6YQX2s+/msVfF6T/yp00gIBdDp+kWBrnB8klHPDTZXz68NemUx0axsQN3FC7KhFlwKjHZrCer3/6N902Fv0Cc2Huq+gxep0umuZ49gutVuCHXnYiAIeivdrr+XGp9MB8ccDMB8DIMS9o/JpzE7RT2rnuYd9tvMopGhbXpmOikCJ6SM1HWstp7c3vQVJb0uVLu1e0Yddp1g/N0vKx7s2OLiTwdPsvQhwoZ718t7W5lQ2bYjdetaZ8upHSCIYFNj22lMsA3RPMH7B4rUDl93ML2TWwbVTenhNFDDfA53VghtdpPoXtnkNU0KXIHxbpWID/dlTpvItOGb1Tq1y04LOrdfz6iBF6RR5N5ylo4YQVaZR7oHkpZSDnEu9LbqEbta/c2HjZMtiv/4YIoWt8tZ0b3e8NJYjGzSoknZd6kRdA+3FzZdrchniYEF8iBlpNrRq8H0iHXQqaQdPX28a7osrkhAX1wDAm75iU3LiSVq62gLEeTCycV7YBRwcKIZ7+6LlZIffslg2lK/Vuy0e1v62hvJ94ninXzG/OlqrjXuCTvvD0q7caO1Mse9OurPm4cxPXxRhP32ahHuouN8dl5vBDfW8UuDq7xNRz6HbxDKkGJrFr8GaS76Hc5vmxA1BVrP6nMYQ6AkTxxoWckW+t4koJiiAGNHs1NmHYAL4bc80f2rMoBo4FlUS8bd0JSWvMH4rWfDa31uMQrfcz7A85yBdf9Tl3q7gH/4HA/YPrzQJPhm/bd6Pk3YcPsL3fXISIX72ROB/doAMkbuLe388nOA57x7YGs7OfUyNtr0W0844mK+ZoTpCYzxwcVJcjkHxPemAj5A8cb25nLsWYjk6cdHWH+e+f77ErVS7d+Vh13r0wbEe8aNenJdSrGjvdPO5SmBBAsZtYD7ZoMIr1cY7d8djppKYt/q4LnwEaIZ61V0SNnFJSFY1xfG+/EBhkYVFMDrs4rUBK+Z6op3jqYK1BfO93yxgJwpSudP1CCOnc7sBRfIGYtFvgViNZXYw4VWl1yQ0nUNGACcCxhFJ0Jtrj6CZXM/xNDCyQOHfLrWGAKvgt18TRBM5jHo08Q5Qen59PDuIzbGcH54VxCLM8Xhm33TkRf5O9yiXUZdakNjCdvYhCueYN/i+n54vMQBVggFGC1cF8z9/YTgQosSH7ZFyliynTpol0lEsbrZ5vOOxQfINs0e6+n23M9NW76ha6stDmylNL5ddCol6R54WJt4lA4UgwkelW7Bu3PoGPz6fPDVBZi64xXWPz5T9f1zhzVjOLHlc/ImWPvmjqLUnep+yb53+BFdke4901s9e68pl1hxqfap4nSZnpoJr9tPTY39tjem6nGKwSK/70i+mSyl24tWwVd92WOkkrYmPz2Z58Id7+Luw5bhVPKwEr4LRh8/ZKLSH111l9cRIldCGKWmrsGLdCTUNk4vwJ692cIXv4+okz1iMIrHwgWhzFHy+NzLmilJawKO+3TYOr5HNtyD1oTc2TfpbuGfPeWLXQhz9/YgXz2R+r7ZNCbUXwukweY11Uukvxd4PkhP+rjOXM1E59HA4MuvWU12NDryaSv45aYbdvt5B3h4nq9wl6QhDd0tqefWb3VgkHjBofS0UvbVAgS5jzBQ3VPlYLq57gnOjwPFOyf7ArLU4hsKyrNFFfRoOvfG6QDjN2egONFZP2zPyQFyN0nHmYxkQA/c5KsutB5o8/XLfNrccQuiK99j6xkOxojGcIF8nCr0p5cGOZYVsOzWebxmMgRDpngxoA/VoxrlSDr61VgCkHQfbPltnI9iBW3Yna4ZNfcmMEgdVJUSZKpOQ/Fj91OwBK28QO6G1P1ll0+72apAFXmAdHfRqbdJFw/yTy+6PSnA8uPzMDkINMz6AMzG2tp11fs4PHlhytb9A37+JbIzjjHZcn3YleUJyeH1lM/cdnmDQ5yb1HtkrF/X/wmaadbRMP0M7LefFOeYmfQcCKyfKuXkwh0yYgLSVF7n30EEBaVuKeqzAPDH11OEvEcwjbyJC/70GaymjD787FW39fFk/vCX8JGjGVvZ0ny1Kecb3dlVFyx9+dTVS+MwcvKhGQjnrvfBkLcaTVlgGSQMCYQdbi94N2y5oPcrxZcH5BtEvFug/143fgNT6Lk0MCoNLJ6dEbi+X2zHWm1QNThlsrc4Kd7JTWmwd98PUEhNHafwVgeLWcoVLI7RntqXHQRszPRM2ffgTaYXigMWJfsSqoczpEHJTkF/rLEGN9vNDdtaaIFJfF5LILzTEevF8wDaxOgK2PO6vR7CqfKaL7wQcNrVpnYrKMGibvg3rESiIwk/7X64U04BMT651EiPfU28VGqBKLMb3u3LT88sCnQ4HEZC1DxWWC/szwvknwef+mPY/PD4Co/bmGEsWRKb2Ytf/vDed4owEORtXkHn/pix90yWfLpTToK67ALqyMxngp5LIUwl5hGm96T/05MZ+ECkqNqunl97t4CfewX+8e3guQpMbwwjuJGbdN4kSwXvXqPS6yexal4PowLQznFwuJGbfK4Onv+nP+3rtEvFbXPrYHkqSuwltsCGUhM7ddUbOOx3bsoX673PzNczbKjSvWad0XFQtbcb1E5Lzhb8tDOgPgWZGujRg5+fgm9R3qEZ6GX90+u/5yPiKEtg+fLfK9jUtELLwRLZrOcTUnFapDSVrZotnkXv0Bq7jBqb5h5MP3xAt+JBzUco9at/r2Dwvm9w8Nod19kL9zf08OOOWKAOOXH0iVMd+dZTXTOu/RfUqQ9/esnNWNMz/vv1gf94YYxfy86Ygk39htL5EtAV/4Ll51+cne9RbB1stn0ZgQTW/YeRePLyYayhC3/6yNnu+3wqRi1Tf/7YCJywF6+ZeYA+Tx20aMa1Zh9qFPBavL5ITKoqJ9/Lt4S55ZRI8m8fQJ+3hqjVvgmou+Lf/LSf4T/9DUIvEPdtJEHj2S44MNYrCf3eV5RVD1MPaCRYjNtlgSu+/PxkT2/WqwTlV3ygmTtfwdQEN0nO9m1KtX6ieSddjwUMprdK2BF3+SBISgeYJKbYKda+Kvx2Z6tUUQ3C6Fqj6SXP/61XitfzWYMnDSbchNYHG7YxgglTn4P3Gy9RfQz2QEjHWvzDfwvyvxoX50IkFRcc+8Uxn8ZTEcLWv87UmkXPYMnWucIz8isaNIGQNr7Xi7AG/QvbwVIzloL4qubu44FktRrrKS/cAUROMdDIdIxabOddCwPXsQm/LRhjfqW4MPQHBdvKUQSfuXq2cCptQD21ivohfukTXM7im5SgGfppI08TVLyYR6qxN+rJnps3fIzwSzVBGoMp2etXCCy3o3ZxgQY7uI4L7ykBeCecdgYRS1UC6nMrk4kkCAxX1E7Kyr9Yrw0+YPvdJMFyeyhoIBv7dDHLuYTTMABsiLWZzxqVGnnlI7LptDKY8m/ZQedMGeIuEjYGxZYHeE/Xv9/vgnS2VXQAm3qs1nxJC4R7851gLaVv6okLDabmfVtALgoZxUfXDKZL4GmgcMYD1tZ5vT+/BKL20OKuQm9GgqvkgmzfpdhN5Beb9W/mw+dQpPhkSa+8889Z9qfXIju7M7Zk30JZ+QYtDWXgs137fMm3K0cNcDEDfgBFArs5S+gvfxGkd87D5lPnhNu1KevcmyTCMYoafMBZnk7o2WtAh6VChMinjG05t4FW7BdUe4oTWCZbC+HPT4aF3IHpzrkm/OUZRim0/eLyHwLy16b4579XPQPQy77iX145a3Rq4InXXnj12/2CpHcFrbHNqD1El/yHRzB23z71+nBiJD4jpMQB51EfHHZsGwcO/+d/o58eyL9tq2hWfSXKu7DYMqWlr7LDO8M77qyAzpWkAUbwXVMTlgmYG02bIDk4h5UvroDYm4sPveZ1omY05Gwa54MNYeDfqHv5Nulyoc0dDu3mi52dJaQ/PQx+ePS3no4cUoDkAUQE9xAHrPbWM/n0XiIxWGqw+ukQInt4Yvt1U9hfXnNfbB6Jq3+d4pc/KfDtn9HCxn2w8tMEBZcz6Xq1IZjuU+uqFQoDfD3ArzHw+qKAyyF2KD5fHjn9+Z/u5p4wfr9ysGRDSMCaf1D7nFXGjw+gc7yaaDgLAZsuz60Cqpy46/tYwNv5zNqf3kN42qe9ID54WGSfGEeVKBuD5r4IdLWoI/dRCdJFCtUS+KMTol+eukiz8IbubXzjyFSNlK38q4QMzUQ4TMRg26B8Q1udPOqYt0PPNqbKwa5rU2oo5Sal6TgV6pqPou3lOPWTmu9duN+zL7WRvAnIbegX8Mtr4MYw6yGrvj68YmcgLPqGBl319y/vJorcVjl7xz0Pq5do492ad7JF/ZbA2k4nfJd0z2D7Nx6UsX/dEPfxQwAOLnbhqqfwo5GLfJos1kAhtXWqvdBkTCfxW0Ie3B1qNNGHrfmDqTaKfKX+AX4DFrBZVFe/jHdTouc8smsf+urGxcEtX6cS8GEMf+8L7JDWz9up0IDx0mfCbjcv/+0fJdrA6qefjHljXd/g+W72NJE/FEy7enzDC8lMfH/ex3Qc/Rv/y79XvfDM17zRhijmH2seGKS80s8THExJx8nrxep19moI7GSK175QLF1ux6ADT/WA6e5mW2x8xw8Eh0ilSDSvDVhOWuSCE52+1OeGncGo6WsQKPFz5X8u+HzsuoXwmOQrnys92cgH/4e3v+/Lxjho7mrH6Qn96VE6+l0BZWO/o5d0EVKmPO4LuO0dBwcwn+rBuEU+dBzFwSse5/OeNxM1ns0dNr+HU8ryj8XD9nXtV/9Y1Ev4eYswO5dH/Mt/+HyrvaEW5AVG9rCs+fCMlOfmyyExfz+N5YX1BIYsnGlynMV8BHXuKsX9kWB85Azwyyv//JPlxHuDCUopbu2dcqBBTs8Bc1gyqermKFC9dVJjcuMwAXxcICSh3mbb9e/hmvfQCBDBmHxSS3LWLzHG2e2e97keTfBrJx/Scubln7+zZj0jnCS5TLwpBoGJLZeEPxRKurzLHQfuN1GibjUagXLxm6u6+k1snlyZTYlRFfBEly8OUY2Mnz8APNgziq+hzral3ojwOF9nGrXTmdE1DwPSwQhXPLyCiX0WCAR9t1BL7ex86x+vIVzxhXqeJILpG/AcrL6hRbOfnzLJ5a4cT9ctdY7Ovmfhbi/++JDMParTKVN2MfwMuoSNwBn6JbhOLjhN3RvvyFvvBXwcWohLBrFV6T2YsqMXAkKiPTYem7af346bADDrJbYMaQaL0t98YHJZjY+V1NfsWr/tP73G783cmJtc61TOmCx6eXN7MCaWqcPPXgGIt8/PeuJaR4RWWuUEeWgJlrvaF+BJ+YQ+vmpuzIkVarDKDh7Wbu0M2Fx9O4i3tYIjY2/00z1obbnk7CvefR8cIPTWHmD20hK65tmMZZZdgFUPUu14TRgbKv8NiYEzilTi9qIjZByU44mjiWYo9aD08iL3Fz1E1ap/mecoifJXP1r10LidDhpUN2cBAaMqwbLmbdAKpBLv7co3loG4HAyRLWNj8zGMrVWlNiSAIqrl9pL/+ffHZSDUfxcWYJvkJkkHkKnY2YGjMQsDTADuDBW1oLoGv/wTmJrWU3czycHK50gtt6eCCJUU1GRs3Ak+XZThn/8lnb67QpzuN1j7Fjj44Sf45T/u29JzcR/ZOuj1BFHv7S7GmndNsodvd+q4PatX/vIh370DjFJuyolWLwiq/jX5068k2EyhWvQqxvulvtVLeogqqGXgQnEdwXrsBPGkOtlirHj1Aqw+m4kKhqWhDjOGdFj1ofLghxZx4XtOf/kk2MJ8T80XPAcT12IRmle3xW6QOv2MHgMPM+JsqBVX1GCiq/Fg9bt01fNggR7P//QdNf1D0c8sK3hwAFeVcFPhs2mS8jcI6KgR+IgCYwqvdQV/+OEmxjsgU9r6IH+pBYL9tg0mXlckkF2lA/n5wSX/hjpoK23A+49oGuPGShqIDuGdCB/br1e+qn7rn2xOfN3PfSzGv/1DuENI64FrV/0jowa98/cuIO3stTBOah7x1vO55vG0k8sv//jlo/UCCFSgDalM/S9vGZNs7Dn1eYcnekr2XL4EM9WUFV/QBNugn739yIOulo5/62mLxksGe6uLVj9wTAmZNnf4bfUHXvl57fsuHOBlfk1oRHwBho2MS9h9kgPh+qxns6dEHXy5lzP2Jar2X5rfKjl5ylf0zUQ+X/X5svYVc6g3Q5zPH9XVYFwa868+mg8rP6qVz4dIWfnthZJQUsK8EXHYb1vjj++3+fOI0bGbgk4KhRL+8iAkSS37kkVtwfI61dSGWzGlh1qK4SdqN0Romj798Q1c9ddaTwXGspuvvmyj6vC33ueXcE6gr3w8alytzqCPTaSBwjwfaWBvQcAK/BrgvXlv0UYCWf/nF6qqcChO3mb984Ngra/+088X2hQQFtoF7Q/6x1jS/tXB43cRqanw7F99HNJrRoa1fjgmVvh/nikA/6NPwciH1JOefj8H/vME+9hqKO5HK59sOYuhLakqRafHjpHNK5rAg0eUhk75Nua2u8dw+wQm9bZgAUTH4htETLtSd/c1UlHH3BuA8n0i2xZ1wZTvWx8kuV4j7lLdjPZxTAjkPfdGk2w55fPb0nl1EJhHHfXk9CMcB0m+7/MNEho/BeSmRAvMBd2mLsNCPviJacPwduAxGkCTT4fX1MC3EL7obVx7q8vkG0P48EqkGB5v0K/gKtAL6g9GbvJl7H7mKpA1YEOA+vZYlT2vGgQSvWMUSs98ah/fE1RelzO2jc/G+FzxUYPv/TfD0X2d53FR8gUKkrveizV5NmtLJML5NidIXHQtXxuXI0iK9kZtqFpgCE5MV07NyHC09UND7NfeHy7fINLbvFuP55Q1wEdbQpi+a3N2P4slYOVBRepY9/USjS6EBa0GanIRn5Mleg9wKx1t7H2Gtv4aV58Hhq8aaLObbIONEisg5zsXso0eASPWEIfyXuotHKz3YKb9ksXw7BUUKc+bBsa9GPMgLCWdhifyycmNgwO8Sn1GrRx4eVu5TIfDPTiTnpT3dDjMqQKXYGsjuXGUnE6fQYSy8/5irUYpoIe2uIIgDws0O83SL/zrcoWCE+6RLOMt6PnJPsFPZXcInNpnOrlE1KASeya1s0OQdoSLJ/jdPj1qqxwCdDndEXhcBpcGB7MIlvTRKBAKdoixVDnpIvE0gbGEGdZa55PT4vbkldfWn+lOOjzB7DlbEaS0umDXS04B23/jCYTyzifgcN6yRfoGEB6a+oOA45gp3YalDkVB22Cs1lM+g0jL4PAkLwIjx2ZLcY8RHPe3B0a1d6vnsLdE6Bbc2suT64y5vllr5uvf0D6aO7YsYqsBze0e2AvgLhWK1wJhej91RJXmgQ2fk1FAhQ17asGmCeZ5lCpY8u0OCbtFZ1vzvSjgb/06wxJM+FFUkK97E/vnuK1pmumueqnuBfbJNcsHt/U6qCdejSP7ZQTTtsgVkN58QP06PAdL0D0KqEuvddbC1Uln7V1Vmy+9amiKsq8xffzWh9uim8jmFu3rybzOoVqXVU2C89dPmazeJ0ie0kx3OgcMxvCXB8KtTemZ1Ge2XDeyDal4/WBzmxCwFJdvDB4X4mIvk+WA6pE/QSSenkj+XEIw8q0Vwrr5OKS0b3XPjrMSA+9ZpKh+dzrjT4q8wKmOB3zfco90qayYhwU/a3iPQpiOItA4ePTiGmforbBZG0+SOtfGm2Juf+vZHWoK3MiOiKYKZAZzaZHBODgS1LqNC5biC0qQP5wrDVzxyuaWWghaZCgorvgkmPJwDlWvOboIJEerXmh61cH2tmZ6o13W0+YWdmApGwObh1gwiOg3Cnw9pTu9S96rnr9tJkI13L3w7vM59uNRMa5QrL5PakT4WzNBHhBsxPFBAymxjMmcNzw4iLKFncSq0znwvycYW42Js5uNGHGeAvdb/9TqqR5M7HEcYFLGW8K1rVvTc84PQH4HPIGfeEzpjl3fYLB1jG052+Ztfgvu0LqVI/LPsVsz1f8kcLftINZl92iwCA4iTMpkS6N81OqlfgkHOQ6fN6x/ks6YyqvXwuvVjLDWVBkbpIG4sHOJRD1QPvMX31oI+vsooubd3+fMV78h3Nh3h2pvVqVzZHI6ULxxR+1ecI0fvoFKfKZYz8yvwbwN6UD9eUDy+UQlm91Pnijn+6jT3XK10vHsxgkMymLCWBXDYKJBJkGzft6psReewXxZkhZyt+6N9cQf6i//jHm4qdwbvSXPuSed7b1h+zxF1LnTjdEdl7aD6/6kO/Xog0XtZhu+/Higbrg1+8VyLRG2t2VDsW7sGPtqQww5Ub1jM2qDnCTKPoOHWxPRpOjKfi4r2Yed/H0isOIl2zqyrexBrRDolHYgkJMlQnBHW2qDr8amiyxcwdnv7hS3hNRL/37bkOaSRvVEkv/xS9SMJZLGlgdzBZ8xXD8PMe/8yKcnkyfwic4jgaP/BVPx/p5AaTcR3sk6NcbN8SvB8f7+Yq8d94AttgHh4TWeKF75QuClxx0kzTFf+f+V0ys+6nDrvkPqRGEcjL7Q2vCH5/UsNcZk9sYdssD+EmaeTvnweZIJHrcCQUPRGoB6balDT7oMeHdLPmzZeHEI++qhUxSlC5j9nXFXV36mQQ7fxoJ0HcG7f39hJ33ewJeloQYewQVRq3jugm0070p4ix8nau4uz2DcHtb6zNM/UDsZu5olhgaVe94dKGrbtqZBBQeI7mQ9lp9/U8pP9gE4Ei7RLI47QzC7mw07oVFx4u0v6TiPUgnzSO6xp1asHrf9dgKW4D+wm4ZJzr7THqrp9lthHO3rYP0+CGbxNqfBx/+kn7JTEvh2DyVFKz4NHadd1cJPLtjPNptgjExOA2/K7bGvu4Exq2+phLQxPGyFY5sPNF9nz4pWTr6jNvadJqIreOamQXW+UuuhqWoXmLar09OtnYwhr7ci9G6yRe3kSticxjtNNev6TkBIrGBKUCRBbS40rI/hu2ebKFtk7wYs7N+kJKduLdvy96ZX5JNYRjrxLXtDl2UP7F1CHtCd5FVAz0OPBjqag/FIWhMAl2sIrWyTsZAhTtm/HAn767l2+iheBQzxbr1HoA6AJdyFA4H0kbDRbiY2y9aHg3LlxDQYTQOIv/2WjNkOX9yOgKF4KlcopDmHA/gq2XyjGQ+bSOYQzKZLP8fSPQbHfT6gac9pNa9giIDCyJ76/O5izIsuT6q333RI+TwSMI/w2EKu1C0Cqoay8advb8oGUtfpjymbIdHAun6pkRfPml6UdAKL358Jc2HEqOCJJcROFaM+JK9g/KCWQLR/vXDoVVk6pTW2YVo3HFq2Tz6dh3x2oSBuAhyZO5UxszKgCh09ox7Zneopmx6VIjhoT5b191intWlwCDctWb4HmA9Phfhg5Xsi1A00mPleJCD5Q4PPnHlgdJsWGSy9m06tk6Ll/eIvkrIpIUFS/656snlZE0Thcf/ju3oaztIbLu/jSGPXNNO5v3ENGMMowPoOVPngpNodck7YUN2tw0Co0g8Hd+FNpVGWI4Ody7qTOneQfnwQkIs9VnBTSB76siPI50eJO0WQfAX/9qdgq5kIU0dpqR0sL2Nu668EoWCG2K6+l4DAt+/C8qbjv/3QU8c9QU5IMhpshyjnN+ssg5W/EQTnHVgUdL5DKiCJGsZ0r+kzOIkweHYPGi1eHXRvvJkAjR+QyJ/LAOhX0CR4FaYa75KFMeo+fB86lRpR87LnDKKJ9hUW9We/4vcTvP2YHoDGHwRqJqgCky3HMbyXSksDdMvTZdXnclQ0Z+y70wFMeSgjQII7IZK8fRjL0JStOnuEoO0nKkFlfp4xTMvBo8eTUqaTW18JGAVtwLbz+ObTZv89gJNb2jQ+J1bOO+hSQVRvDLLcbWCwVW+CcH+50Kw9xAEPZbGB1vOVUO0WPsHiPqQKui/nRf09NIBA/K6CQlE02ALckM/Ia6DaCNqF7hfH6+drskHAd6Qj1av902DZ0T3B853qZNnaFZivoS7CV+Q9iQ5Ho+ezSybBRqQPannuhY0U7wu12EcMm0P3ygecykiRg29Ed8lZz6e9HLbgVvE8EpPRr/vgvL/CaXuMsdEOQkBlscsgfQMO41sZ5dNhaCDc3vgH3jE36WdOawn03G6h5q1ogqm8S29os3X+Oafde1ZU2QTdp7GjnmOQoAPFEAOV39rYCEDTDyxVrnCPvgIOMqwH9H7mSnDxxQ7j8T8AAAD//6RdybqqPLO+IAYiIimGIEgPQUDFmdggqCBNAsnVn4e1v+E/O/O1RJNKvU2FKrrp3+MwM+Tfcn/hX/tekn++gBoeXwj/dhVa+CLAsN2M0c/pIs6YxU7AJbbCenKuiukvv6rPN8P4dyvQ7OM4UTfP1wfv5mdVzGTPv6B4yoS1v3xkR4dKDRzrhe3w2SPeR1tLAVvLsSYaa8TINcrhyCyTRgW3aumFmIJ+NNeInPPUH4XA3MF23d6xd/f2xrRH9wH8x/6AA5FDP1hu9wVzLQN1VbsyZimxO0gOqkr9U6un63K7mf7pW904SHyI89aDz631qHv2drWUrLQTdNv+Fcmy0/Jh6tdX9RLSJ2F6a9WiUycEpMcX/viUwTc16VDmBxTv26lPZ9SqgIJS2RGlMV8pPceXHF1469Ndcm9TFpp2C0rwkchUhR4asmEARK/kEOWb9cCnUb5b4HmzR41thIxpyXd/eECa17csZl0SJ9S7nkdWzfVXDy+6kxA4gY0t+UzS+fibPfVRz3dsGJPQk7/92pOl/0kTaogVmZIhuZBT7DlHo9j00WzB6y7IOByqqiaLPlS0Mj7QKH+JPtG63oSdt7tSU3q/6unq7GJExAQTyWiePi8yH+BbbWyq3xMbzSorRLBfiU39rZYU4geKGLXBJ47ELD4a/NNMNxBkP8TG3ahSrtVaBlealZFgjkXBfrN2UldSqC/5dvjjqwr646dR8Nn3G0vrTdDuMqO+kG0MvpwnFL+SawSPs+IzffVOwH57gJ3TrPHxIOUiMj7PLrqOF1z0LzH30MtVMuyNQ+/TjK8GdH5ZLyLoXWkQ8XPJwaOVhb3Hd9XTW5UziILzgbDqoPtcsYBAWLZAg4uxLmgfzab6qxIJG+OnLdiW/SSQtymNPqNh+xvx3e/gthYo/tMHtMiZDErQSDgi5wca1M3WgXec3snK73YpH9tfhOQnbJb1z4zP9L52//bHrrKxproxKNC6QxHJyfZU8+Mu+CpjLamR2MwHLu7RcQDjqTdUDx/UIJZ+uKlvLnXYlnc7Pk/iIEPC2iN9stZDU/aRv0q4MYWIJIHlM5bcWxgdp6H+ove7ZA8T7D+9FCnOsS5m/2R28LMZJsN4/9Qs2YsT/PElvIl2KRNWSgyvzWGiXrHcEdhpyYD++JW3+drF/P72A1r4OZGaaijGd6FdkemjIRp8rnOunCNAZSGWRNoYv4L/AvxW1qJ1ikTp/eq5fRxi9JAcFEG/9K0amtsN8W0v/uGNzxxp46Cjt/rRKGk2PbfidQaKJQXUFFPZH2JKmFLyRxKtFnxjH9FzgDxfCX6z4ZzOKHSuUGwUhE1irTiFaWWixnvIeP/zgY9lNTv/9Cm+Pc2UsZ2fQ/yKrzgAoerJbzjkkMvPgGwXv3D9QW/lL/9SI4pZPedbWwPsv0WiOsrBp7cqZtBJ04Czu+ukbGemCbxf94Cav/2Jz5Uex6D5r+wf/jL5ZwAaxk4j600f93+/B13ugYN3ajGhaThPb7R6MoH0mQkGPWxrDe6ybUfbQ135bX0XA5SK04jdt30t2J10D7i8kpEIi5/HYdpYcGZJTAPov3w4KdsJfvz2Wfq6yfV0TT9vYGLbUFveVeif/j+/zBeN7FXIZ5x6EvzF2551Tc/QYfHjDiGnAZu94s8vUeL7GFCcJIHfv39rBeg2vRFx7Ek608y5IsKtkgapm/P59mECbC9g47TJJ2NaHV4nKMVOpzuJ2/7ahdsDbR2WU7+Rs56V1W5SMz+iZNO0rBj76lPC6SUJUXf/SP2wCdwOBtE0sFaVVs/Nygflj18v/lgxMWHrARFjTPVdPKIp2XVv9VLdbthuUGSw6L6a0E+5CBTbpofYVggdOJbKEYcqO6KFTwRIvGOd7ubnLmWvjSEAc4RDJM6C51PVa2LUls6D7kaFcyKW3QOeG/sdrcJD/ZfPcnXhH9itcgONcL92cHRMkdpfZe8P+a/30Dq9CNT1YZlVd8e7v/iPjKQmBf06R+0P7wjwAHGef65fOMi/fcRGJeXcPLUdqM8vC//4Gd8uNdfHk8hRP8yOv/nLT9vy6hE4kSYd0Ht9RTo5mf/83aFFJwU+iv7F5pizerCjSwnbah9H8aF/o1m8/WTg0rT6l1+ZivwTehwuK+xU17Re/KoEoSdSI8ZKv9jSHmtwdh8U751r0E/0JAaq6e42C381DHE9ViXIvNpT66xZxR9/gUVPEUF2P/382rCTGjjmC9v5OPp/fAQZ9+yF//TEb/GLwbOVI7aZ80375sBkha4DOXoU3OrnuA126EyVmZrv5zNlax0vd4TLmN5TLCA6jrEHf3j555cRL26yP33zD59GbrcE7rd8prol7dONcb9rYF9FE1/FTOS/n2ndQCeZid3aOhjjCQcdepPviQY+f6FZ3X29f37bnA9xwUhUm+A8fhWRE99Np/YdJwBcvtOAP8/LHcALgOVdGTV6we6nHVxN9OcHLHy8GHjKrurGzu/0Wkilz9BZzaB9ZSE9Vb+twYyHkcNpffWxqQZ+Oh5/Ww+9xCvCO/dwKaY/v+uPn7umeS5mK6w92AcngYhh26fTHVWVqovMxp7cTP28+B3oV68Aezb162nhx8i7Oy1ZvfjPoAu/A0uyHarZj6EeXHUngvPoK+yO5MpnehUnWPwUrFWhxwmTFj+ZeR71qoeLmHRdOSAnmzFKgbt9O7Q7EaLHQIls9+uUOX0hgeHyjGzvLEjZnVQ32L26AAeJQ/ngDtNbFYh0xFYVNXX3wLYGV5+n0fmhH7iUKIerupZUn8yLPzujdi0AE7tm8U90f6u9+Fe9R/vNPzzgtucAtG+8w6GdTkV/lF4BlIVUUoNtQ0MqCkJQ+KYl1RZ/9m99wJHSDLu53yOukm37j69rm93Qc3y6a/B5livCVWtfbOInU2CPMad7ebXuZ3J4KArckp4Gi1815mNNIIv270h0dO8v34roHt9PWC/6xp/24i+DzbP+YM/01II9ZCdT9FegRIM6ULT4iRpcwvH5z0+Zs174wm3Tr//804Ibhy2Bpmgb/KiKOB0k+0rQQXy/CBPch/9UydyB7FZralb30SehmkbA158Y+6Gu8fW8LSSUl5kZbfNH07OiIIMilNqenscq4qw/pSKww/4aKdt228+ds76CmZwpDhb/YvKr0wk8cbriuEK5z6chncB3JIGGaDJq6c/va8LjuNz5oOlsHAsF6odvUmcAB0D4v1MdfLH5HokyeCanuXA/1dwLeQkL/yMIrX7+/JN7E/3V0/zqjdHUeEtfyhBnONzcG8QeGO/+/AwcNZnRz2tdvUJbeg+sbaYt//PnFfJSZsLcw3bp23R9w0WqtUg28m09vJvEArlQ0oXvlTUvnLKDw2cv493id46PVW+BHjxVouorv5/L7YrBMXBzis195rNX37ZweaCITI5pFvPtowgoHJmFMawNgzJPkWFwtia236cnYvahJ8jzYfvn9xkz2aMvohTehO1OnLPfRiSwfY4z/eNfnHlMgUDyjjQQ+a1nQkFleNU4wNEIYzr6p6CDT3ErqLN1Zz5O76RT/+mjfvUuxvVcW+quiFyy4Jkxyz/lBCensrDVr1tjuqlUQHZp5jRO7WfBzOaXQDJedeyfT6Rv//iudWMxDROrNH6CVhIw5XnGRlh9ikk1biWos3D4V78hlfaT0d/53zz0mY9ZWSRoqcdGfKkHsLZCFSpuwQfvE6oUbbR/5/C0T12k5O+w5/tN6KC/53vOsU4nxYxlJZXXB3zJ/Z7zlp1zuG1+awK/T5HOq+NLgYM93PDeeG19ZgVLH+yiiqivlwZnz3bloEG0DGyxKexHb6/k//xM33HGmn1Wnxtw3/yRjbXZ+dNSX0LCOs5ppj5tg43aI4Gf15t0b4sZms/Pkwx79+Zib5P69R/+wefWeUQlBxkN5rN1AF7litoH1tSDed1GYG7MHu9YSGt+QrED2f0bEnLYeunc7XRNlbcHGrFwM/E2/9Weeizl45/fzKcL1zUUPKo66hb/cbiQxILVo8HUrzZ9z9svmGCV0hpHix4YOree1FvxcMhGPdn1RP1YQX/rEwjXu8GdejbBDO0iYu+UF7Phyl/0drwskpwy6amqZIDeIRKovimidMqncwmTw/bUqJhczxJyBFTW6m/xp72aZSKx0Mk+nfFSP0D8ERQR/JRCWPQkS8dv/HXg8HAe9NQ6pr9JoneMyFo9RtPOa9A/ftN765iI56qpyUWXvih1rXO0sTaVzz+8mJRiIyOiFPU7nWArfWH3rnWKU21bzDaxW2CP4L3wY6Xo5FFR/n93CuB/3yng9hki1oZ+TYP7mSH0HS80YHc7nXoCN2iu4Yv6yhr5FNdNAEdXNWh82HkpfyuiDEOMski4Nk/E9ehmQSh3OtUmq+Q8UzQHRuNcReq2rYuJ74MEsOd/Iniean/WGkVGYFoZ1dGzKkaInQDy13Sm+eKusVz5PqDUs57Ie0/06QompubfdUd33yoz3mFSCLAdTJda7UpCvfI9i7C9QUl3bdjXE+tOOZDzuSHSKROMptgaJTyMU421OLilQ4Hlh/JxZJHIR/ubcjOrK2WvPkvsNhEpiPBTT3B8b+7RDNWhnpu0zIDa3oT3n+/R4LI5Zai82wU1RTkwONaFCobwTaKuMVA/lEdh2L61vlyu6zzQULhPEVXt7YG9+Xiqp/EdO2r1y9ZkSpCdzsdyzkCOy5gGxu3Rz+07syArmIkNNj2NeRUcv+grKUDDEe/r8bjSvuAT/0ieJ/1bzMFxr6DvTdli4+GV6ZhcX0tv3u8cQXqJ+WwlPxMiaa1he2/r/npSegmdp6Ck+gaFaHxW3YB0T7KInN4izu7eV1QUywqoOyd1z9ImIEAeqCDtuH3xOSUbC/L0tce+o9Fi1q2lT0C5S3G0uw91F8GplB9X5fzf865Jdd2uX2Ibqfa97UklC1eI80DDj4A2/VwVpxYd4/ZFjduhTv+eD8Peq6nndvD39/nWPicDNR6els7JStyB/6EeDiUz4uwr7wTI9lZDENNmNF+xAyDnpklz8bLr14/f54uEzRrj/W3u0Tz75w4d7sDxfn3Ua9HZqyYc9VLGnpW8+XzGkG/jh9th51W+fdabPxlqM8TRWj+4fM6dbQV9+h6w2273XKJbyOSue2pkVaavlBBve0Lqe3yRJm30erQcqkGfPQ0cjNqaT9Xv14LuiRZ2r+u4nvyumJCZ5Q51P3bfszLMRPj0xx0OWB8uswFeEwh9YGPNCXVfembnQalNjPFu+i6eNXsGQO9iiLMU5cXYvjMTEScUsIW/577FqloilQmcBoeEGI/tZa2BPLpnws+7TUqzZ3Ja7dtrSIPp3aWz1jBFbVZejJ1d1PCpFDRN9UqRUHM3HlKqDNNNdV/6B+9CQUinTVWa0F68lGLlNNfdV3xV6hI/2Lt2KmJPeGngrhIJO8v5ltRNLKJL0E1R92EWYq5tWsocDAPebSZkkNRRbwj0D6fYbduat4r7gCb8XrCWILugrzKPQcSfGJ9OmeA3b+Fxgm1EIxzV7Z6L34foqK8NE6gra50/h5GvoZcV2tg7rsW6lX4dwKoUEPbC6ODP3RpL6KJsKOGvjKWjzN4nuIjyntrOU0bNdnNb5gM9Q2qnzauewbI8UN2Nje1vWRpT5SdXZZCGa8QzJPY/vZx2qll6W+q+jnNK4veDwKeSN0TSrY1BvfQrAz0lF5Ksf3I6UbydFPscD9iM3UfK++zrwOtlv7Cz5CeaFbICxBUdfPPedk+y/W0Hq1UUkKJQ9WJSqoeMxovTkjZqPjWdmCvAsr7YaDvdmIsxDtTba1VHUvgU0WScxwc8XXUk3+n4qVlfzZ46rEUDa4rYGPMnzBXQ1oZGDbXbpRSp7whspTkQtpkKg6cVn9SoMDE+rL/7tGuFaw7H5+TSIjQexbztl/eCS3lFfXcbFFwZ5BvU3/5OcXyiBnsHryuEsxWSH10fELscmKJMwvNK1iJaGeQd/K7wXZ1tMg+rF//3fYy74UX8PqloEl71A05DcMVY1z/+sMSfqmrlh2qrzcn/rRo/h0lCX/LVrY0/fOhsqlellenp7YX9LBVnAfoucSPhjFufDky9woSvJjVfc8O/vdJMYEriCdsvg9TkgGoTfe72RAMJ6/0PrZNM5fYRsOZlBuJFOl/h7b8DemimNervqwRQbha36FyuHcSOt/YKh8qfqGM/b/3wt/7y8s5RML29lBrF9wrrZFjRy1z+0tnNp0o5PplLzWD+1tOBXyK0lqs9dm4G61ki6x0SVoWB9/MqQURKP1+0OydnuhNk05eItkkQlYeGuu1B7ftjdM9BWOZ/hc/LyZhiSWmBfL5b6g/qjs/m7vyFdneTaCBIH78fNXtC1yd7UAOtPM6cXNeQbyRApGxd1+wrewKY0UfHmjy+ixmfkQxCVnbUvh4df9gZcYLWv/yGY1L80vl2S2MYY3Kn2vq87pn32irwWb0Ewta/PGW9QidEDK/HUdrznqNKypGiNiPZTLncz3/84G9/nLV8NyY6VzdksbNKo+40pNOtHCKkPruQ4l5v6sHIAg0SyV/j6NqsEIlJPsFHe/xwgMyOT/6XnSCR3DUuzGhtTPky6we3+QaffmuT8xUTCJrTq4ftd2P8xUcOMReWXuaJiaamSMj2bK98snk3tTHl/YHALWpVGl5PjTG7yjJLIHm8/uEfE/vPdZNkjRApMfvU83yQY8jyIojWvOsMerKvpfLNHiR6dKegeFyjyw0t54vi8LpD3F6XDN3V1y3a5pDWfCJlCQGmAZk+gVpP3cMZYJYGSsOpUYshuDyWXsqNTNSpuf+dxxsikJzw7ptFxRCKZgucCS5ZHXlZ81T3LcC+AVhTAgHRtEIMsTci0Vbt9ZSRodOAcV+jBpo//vg0iweKhKtIZhZLPal2cgnvHGdRy4jvz953J4Gxuud/+19wP94/QFPvPmnX8t2fLAg8OKJKwThg155rz8sOdtpXIbl9kDjvpYeIfl2/Ien47Aqii3eClvMTwQuX6XS00E5Z+CG1nse3wVw7MNXgnOpYD5FfTO+jHwO6Ci1ZuW3bM7voHjBLhFKvJakxKV4Zo0d+kbB7Ptx8Rn7OG+3bPKRYep/TKSfcW4pKFWFPcax/G2nPts3l6OFgXq/8MWonSX3y/QUb+Ug4BcWboCXhNxJGpeRM36wcyKiqkTFty5r57NOivsQi2R7Zq59H8Zb/4TktiuPWIHwZA9nuHhJ1N35ZL+t1AyUwJOxKx6RmoctMEAfBp+FBdQt+6edI2XjGj/C2exm/lKws9LnhC9Wq+JDOvjYRoFN8o7csuhbsKJ416GbvgfFeIgUJ+oophiNFRKjbPZLkJq8AJeWdZkptpGvTkSMwj8mT8IVPks4fGHxvWkWQux2KWWZDtnUv9wmbPBT72dw9v2BuyEh3mmUZfKVdE9BK0Yxk7ejxcetOE1zM4IOjM24NMrHtA60m603YfewQm3K/Q4aS77H9tdR+1vrbCcwDaki3nDdm/OYcyOe9Xfi/6H+K+uEof/nZqS8vo6uujQPHh7vCWMaEE+mlW+pjPc3UCUjbDybZiqjZfG80QMlUk/ngTLCrdYf6v0uUvp97D+B1PE0EqnJtML51FGivWkedcavzGa2vJ+gc5BJlR6ZiPHyiAHxUxjj4Jjhl9YxKEI6FTv29aRjr5uxOoP0STDbP/GzM7hgO6DkUiPrCBffSabw5iHOpJCvF8bm00nUGr/Z3pAmcBTQ9lk4L+oeUNBqTvJ/v0Yohb5kuiSWm+sMkiBN8nu8Dvleq1zNr0kS1ZJpPk/6spvR9+7TQOVuXTJOl8c1vGAXwL8IlksftC7EpqyJwCzhQp9VMtNZLWfvTc9Qcq3u6zFOf1G9FtD8+4LNm1kx0uqvOwnc0nyvTRQZpLY40VLXCGMfNWoLzFJXY2O1OxnBde2+43WRMBqBVMcGAGbqY0QeH3Kn6eUDnBH7buaSmZZT+EOf9FU6jNUerjutoFtBvgvbwftKb03s16x0jU6tS6XCY3z1/RmffQu/RM/Cumi6I3fJdhuTcMrFuh28+H6iWgPVEhFrV8+RLN+nyVf7+3zosNb1y3z3Q6hh4GJ/0b9p8v6cKSv3U46CnJeJRgh6g58cP1kvRRZPw2O0g3Jb5gj+qP51Z9oXtr2mxpxIxnZi4zKcdTRs/+fVTMFqMJkJX84CLx3bs2XFav//wnmzrbsun2p4AFv3173njn54IcXlc8OLlz5GtOerCJ7DuxOI/fgqn+/Ke4s93ara9nx7gFsLhD0/r6XN4iVCVchetDc9CU6m/KrgnvUFg4fPTOlI9OOknHevV+EXzb6Uraii3OsZif03Z6/2LwHZ8A0d5ck6ZmcMD0hfbEWbImjHVXyeAIlqL2CpzXjDht85AlAeglle39XvRB5AH6yb6aV7uczs8P5A9wjI7wjZq0SRbCVavTUKE9k5T5uTuDmojk2nwTWgxbl9NjpSXpJLtU17Vn/LwYeAbMUS04y++6CMGujbP0XZ3UDhZ8BQ28Whjzf/k/bT5uiU6y21P5Dv5IZ4z0QLBbWN8T6VvMXbz94qMdkZkpZzmfm7OOlOEwXoQ9np+DPq5BBFUxb6OVtL7XDQn+1ohD5oH3bvyWMzvWMmg9meDutKR9VOsZBack82HVNKh7Ad20iOoPXmg5vkZ8HnVGFdk7fI4WoH+89m9FSwojnUSiY+Qp/1v+Ajb101+Y/2+w734l58GEW+j6cafaGytQEJwvm6pdg93xVosXh58tt8M66fsZxB9s/Eg6QqTIL2M6jl5+Kc//4aQFrv1BIPNAL5lRcN7ufVnXBwzdJA3IXZWR9LPwkwHxWsqnwZ4fSuY/fQVeD4ZJ8i4+D3h8eattiVxyHvONv1Mxku19L594b2Inr6UnGJBvTanNGLUPfedGJ4csJlr4V1nOf2SLzMQH2RLg5P6Sf/h6yqhP7L1ZCFlxJuzbQxXwF6o+cWCD0x9fm8HbC36aF7wFpz9vce+XpJ69vMmQ1OAavrHx5bzeYPNxU+wnclSzUIrbyG8uXd6OXqXgvTmSwbhvgnItPCZwWBp/Kf3/viLMVhgOhCFNIuU5fxSJXpFUBk1jfh3rjk/TpapZPEmJ1O83Flf/ABAsQEUN3gs/vkBcdwG2JqO+5p/jhWD+GKe6d9+Tk1xJbDwUezcyY+PeDt8//Q3WVe32hixZHjgQ96QVcCUvl3yB9pc3IRGo1KiBT9j2JPzhrxn64CmD08q2N6lDdXMX9BPp1crwqbJ3/RU1D9OP8dqAkuUHkQNEuaz61AO6ijqO/xZH1813x7fFlDtnmJLz258vAm+8KfXsZf0VT+0tJH/8nEkDXWfThodY2iSfiTr+MtRuwpDc3u3lIQGoDr+uulPAGJ376id33xjPR+mGFaFK1JDQGeDqZtcQq231XGSx9t0MkPdA9URJrLoN84vBpWRlJQOdR+XvT9tD7UD1yZLsXWPXukcUk5Qhsb5j4/yAQZ7Qn9+kH0ZV3z888v63isjiY+qz+4eEdGego4fzbX0mfdJTzC0T+ePP/P+OLw7tQnfF5IcrSZlznYeIPhUKcXqUKaTdVI0ONwFHmk74WiMf79vHM9vGqE3T7njSjtY/BGszZ+imHtHEQEHnUV4UEl8eRnjoUxd/MDaJ7jX5Hf7EZjVa0BtdjjW07yZ/+MTeaHV6WQ3nwnSpLtgQyykmuuHdYVWEtMj+Q64b0maRjBScU+L7BL67E9fR5ZfRl1p036cbtkbaeaxxDjBgU/Wu1kCWdZnqiWjXhO52wKEL3hTXF1NvxPGx4RqnxuEpQVFnMA3Vt1VLGGvilg6W06jwelYqkTOn4I/f1ZqBukahEgsDo3Pb230RvZDKunOjs98HE97D1CsAw6FPikmD48AGaIzDQzpZfB2wlf489uCn1RzIrtu/N95pUe34J9N8fjTEwQ2pZTSPBtEFFWdSXFz58Yct7RDWOpcGujq2+cPNJew8OdoYPdmwdv4AdqBFFRffz8pN5nC/vHd3ev58efdSQW4vewAh9f3sPiBmqD85QfTOuwRs5+GAr/P9x2tuUwRmw8aU7tTbNJ7YA5pe/idHRCP+Zma2pf0RBePA7yVvoq2OQnR5klOGtqX0uXPL0Tzmfgt6ityJLVihUj58w+Em7DGUfB6IXZvJVMVj9fzwo+/Bn/fxn/6K+rk/lNw7oYB1B9uRdOUfXvms7GDP/0FyPQ4ez4uDAmbDca7KNc4+Z6SGC3xgXHdy5x04/GB7tHDoh62I39eR2GLJPX6ovvyWBYLvyhR5vkKdSxt53N1aBJ4XDUN59Q71fPxfZ1g7+vJoqeDYi4PnwkWfkQvdD3z6ZUcY5D1vMH363vggxaKX8Ce+8GmZWjGEr8lNO2DR+9VHtRktiOCrPO9/svfPdvKZgKGdRyXyvE15Ur0i/752WawGophfwcZmSHp6D8+ZOuDgwiXfLzEk0+ZfLnC4idT78MsvuglGTZB5VH9atXp9EruCXqYkRJNQxUs8cAY+vMTjUdu+UxVWAxDIWnUn+yMj29W76AWZUrgkETGiOZJAe8Sbwn8pBqN29bR4AeJjt32cK9ncTtd0coyX2RthieDHz0kgHPzHQJGJPMRpb8WZUFb4IJvCSe2WjjbTiYJkR5jwbmZ9SU6YSpFrzFs+gnfAhEuQTthzyq7er5vdBOcelDxnsuYS/H7NCjJbFX0Lz8Mzy9vgVbohY38+TPaxe8DdvHUaDKLLyJlmElgbLZv6ly9Y7r+099psEmof7mBMXP1IIF/qCKqy4Lqi+lDkcCxIcCL31wv+C+jRW9FWz/R+Py99gGgK7TR5kDMWlzWV5mFuKZZ9z3407Q7JUhbb8+RjGoxJXQrnkDVqg9ZaRdA7JiQDD7bd0b14bP6rz7wt99RpEExfz52iVqCv9RwJuiHP/545CsrUiotqDlDTEL9bbfBerHSCnF85w4seimCtz/0E3fGAS3+LD7do1dBN5332N6sgNEwv3fGMLjdCYpoI+LofB8RzxTHQ4vew7lU7guWla74xxepT25q0Wfq741YnnypU8oFn/uur/78IeqKHSqGbr05ARDrRLaN1vaTFsIb3s/ZoVH3Zgbj120Lt1V2p39+05zKWw8t/gyOJOr5s75rp3/+kUm8Tz//dn0Oo4dOdKefr5w+44jBwv+oVrpRzRSxk6DYqOVfvaNYl3StwcLXaXIOPYOD9MtAwVcSMc36+tPh6AKa2+edGm338in2pzfoPrn/6ZOCDweTIFu/fyMxkt1ipn4r/fl/RHIizeCxcNwp+T7l1NiLcbH5mqMIf/5WT81PTUIr7qD98CKafP5Ip8VfQsQjzyWf/1IWtvpJTZtxwNb91hg9d8MIvPZaUac7jgW522EOz75+R+vN7Z2SqyfvwPekCbu3sjWG72OZLTxgE7uLHzwrcIzg/Hvt6F+9bB6anQn39uHSMPKxMbNv+EBNe+PYK8qed7KrJ3CaD4S66uGBWKaztyqfngq2gNTpFB7XV9hlXKL+5m4U7DcJChy0z5ZM+l72SSK7HTzNnbGsn+7Pns2/oG/RjXyJnPJxaDwLnnmwWvSk5L+xqlZoIxpDJJnyXPygkcTtKhl/1Oqtbb3oV6Y8Tc3ATikjNJeHcYKNYOnk8Ptxf3QErwV3n4g4XPBm/NsPWhlepAtFVE9jM7/BYkf1Hz8ajeDQwSwk9ZI/7J4s/EX98y8j7eTy3l637K8+i5NQeKR//AM93dVIhPM95NNjI3/hFnUq9pb65LQz4li1a+NO/fXbKrj8/Wl/eIT3yTPmnFjlFRT1M9JgXj/9cTyFHsq7qIrUrMec6KVWqefZ3NC765TG1A7RA/7w29p6BLHQVUzoZueBscTuBhX39YQWfv+Hfz7/TvEbjA16UyPIDst6o+/f+cJ7C3Rjo/FvANYY//7qRfyff4BEocdux3ZL3149Up/cvpCyGSs+11kxod+bhBHYGjdaZ5d2UJyKH3XSG0Ez1b8T8sLSIfKSH6csXMvq+8kdHFztc8oPCn+jhe/+w/eWyGOGLpeDjI3bwSjEbjVf1afW+zjaN4++2XS7m7LwXbImaw1Nm5t9gyuRbbLx8iPnF8+p0BrnFwK2lhqzeKAmitbCD5tvtOWTaqkdUJk01DyPrJ6i2h4gtE2P5lhWCmZu/GGb/zIf+zKRi1mXvx1SXqIamVtU+PxiNMqfnxDdMqnqx+2L5vCgdkrWlsV98mp3HQhuF1NvB5I/Z/2xBbEynmRqp8Qnyin9/v/uFKj/+06Bqny86HXPR7+S0udNOVrcIrLg5j4PciWDc8Qs6pskrudaOb0hUB9far+3l4JuljXaT8qHBKc4LYg8yh34aiMS0WrklHk08wC/uE8mNo09K41UgSxqN0S2tr9iuuHLBOezUVNjICdEeKUHqrTZULoTnj9OPMedkHtNEuycl3nZ98itwDDX97/PL1r9dxfgqDUjER555ZPva4jBhpJRa/x59SyU1xzF3zjAWlhV9RB+JKZU92uAHVhlxRzsLx7KS0fE5qHQl/c+NhlUUttHg+DnPX/ZsgdiDXscajLj4+5otoqWmAY+rrzQmOLXnYH5ahDZWppkcBk/vlB/yoIGsq33Ekb+G11+YkAfarLvmeoEgFZ51tEgU8d6UlaXDJ6b8kH3efzj8/53CdD+Jt6pXlUT4r31e8AhaaZoNZotJ8nbbWHb1hY1mNP7k3mKPVRc2xl7q5H0VG4DDzWVEGO8aTXOT+e6Q9GvBey+0sCYL2hM0N1a22RFoqGnIlFbSMvJI1JaymkrzYcrnPIRYdcZ45Qdn0vvNzu5Us36nBFvihWDcS1tyVuJL33jyJcr6j5jh/3D6Ym4fOwjOCSfCe+qpOzHbWMoYN9NBe81cUb8NB0CAPMbYbcbtaJhsXYFKxMGbAts6RXXlCJYWnan/mFV8XEY0BfN1WGgdn7oDMKnrwbx5+AR9TqLKbmhtoLHKsc4Y4wYtBOdB+zPnbX0/rv7TDJZC4lU/eje6Smav008IWOyNOxLRufzbvfJkPws1mQduyidXruiBenRxNHDqs81W+3hhqZ+mc+8acqe5zCWqDsnYoTOrtWzs3BUIN5FeyK+G6fePPPPAzzp1lJfUtWUNcWzVVaJe6BO0uxTTuIxRscm0PA9cj/G7HUrGdqi+0bolQUFffC+hIe63lMjETb+DLM9IP68GzQIpKfB5oPM0Au3A74H4a3o5vL+hc1KVZf9HfxhxdJATcbYw0eShAW/eWOJrmPm48tRqPp5vxE05bWXLGr9LorRtL53A0LLA3Y3H82fdFp9V2b1Vqmj4jfn0sM5waphFQ7je8D5pZ+W0lVmUv3RJ4in1SFWM1M6RCueT+msTbsBlK9E6G51uRtTMBhXwIZ8x/vs4iPJVvRpa201jvcrL/TZqQdBobvmHCnR3PSjUCY5jDb4ODIt4pNpbe+UZDrG5NVpkLKqPU7o83J+uLD9qzGcZjeD+ue2OCPVvafVoOwAO9WADXIYjbk8fwJ1Vu2Mmu+m7ed93HcKZiyMFNnS0ynZKCKc2OqGfWh2BX+pNJN7WuwI4tYz5c2TK9A+Ux7FoJf+bPS/4e+8U2ewxZpe+ilCSvk7km6uXIOt8mO+1MKLaKtubc7uZfVQvfXzS40s92v+XG0k2J9bKxL2F84HigMZ7VxTx/pRWe60MFGBMfQqIuvPo8FHIYjh4Z8cbOvRuyZf5SCpGfM2y/etiplWoQCO2OvRKjv2PncsIUYGp2Ekl5e85whygiyCvUgy0KOgSM7e8OPRiK2I2j6526DAted6tB11x5hyMknqBX/7aOtfu5TBuhdgbp97GrW1jYZh75rofA+AkDt9Gnxj7GI1Mo0eWwYS0l+h5jKsT88d3bE5RIy0jMDYGzERysFF60tkxXBcPW9U+9FlPGbGd1BbZk336ylHfH0NAiUxtA7v9fCdTlt0jxQ7TTIigVnyiWJTAYl+E7rE4/L5ClGcSWPYv4QqmuOXKkNvOW8afaSwZtrUiXBqXf4vP/2i4+8Nu64Bau9XazSapykBcVrPpOVCkk4VWAKEX0+l5sNY7tWfLkzZRocP9g+rHSdWxBNYfXlJffW17sf7LQr+4h27jqrxdqOOBDXf5k6d8iL3s7X+VJAYu47u9sObk99almCzGV40Whd23SdYPoEnPVoyBdtnPXc0sKA5+x8aXja6IYpXOKH1YKYU48w1RJG/ZMS7ZIhYLg8F/5lrEU3e+MFuZ6rFsPIdEfxPllM3223RRLXWQvxy6EjzEN4+JTvnBn/52nG/Rj3UW+kGIuAX1YTHr56g8hhkFVlF7fVRF6R0ywrgEt2pUaxyvqz3gMToxImQCSPnf+dNyMQea8nwLZb5oDEoX5Hg3frhGENvH77QfWiH/Tz16sEuC0C2Id1oZD61fv30Y0X9rJpH9Jm3Cp/u7t4B4fdQMP6EHmKVblzBHIVxueMI/bSP/RIugA5UP3az0dsf+QYrKcypTnltzB/YBSCIcU2tPfmkNCudCUYxpTgq+oYP99CNQfNQQ/hj4Mbccy1SH5F6xEV8G2pWK9IAZRmtsa2tE2M4rb4O/LZXC1veU6p/3tppISKpHwlt3fAW198YzobwoM779zMm5aCc4MKtnmxHvTXGZrsloHvTBeNEN1Judocb9OV1jw2+e6QcHXYRyMcGY68TYj6vj7YIFYgmDrbXJh2iXVuBuDE8MuLUQdORXyT0SkZGHRq+jGlSiivEIt0RcFvTWHeG+ob8tLxX9KUlH4LBz6HJnYZGv9HvOc4OGdSikGIXBWPfHbXlzub2npLjXjjWfYUeEvQxhNg3yVSPo5ETtMRvdFnwZWq5CZAdRhVHFS4NFib7L2zCu4b965T5s9JrGry2p30kC67sT4fPQQH3Gif45lXndA7PzILb8Pn+4Y/PjPSWwO5O4r98b4zp67CDxhko1obb15jD70PZRo9NStzvHS+aQIvgLd8SstK2qTFNr1ECtsY1Ucg64hwdvEB950aOtefb8puX2mQQDPc3Ee4rXJPn/n2FBT/pzXxo6XyrEhGSUEyINMe5P83xVMHC76i78Dli/rYZnLzDnqyGXirm003eAQ78bQREwgb3rcNVXX4P/sPn+bL65UuvyjO18E9JOaprR1WsQiSKedcM3l6aZDuMpKNmlZaIHZ9lCwLGF6qvSZ7O/PUzkR32O6qfQzuVlnhES77Cxt7YGSwTryYgQQC67C/iX2UGdG53H6r7Tz8dF3sXrHf+pu6IinQ+n/orHB5Q0QKFI++wnseQIfVODTsujF/GZwFV9zwg693Z8aU4fH+R7mJMvbHvDWae8yvIfVBSXzI8n9/u0QNkSXOpLtkeLzenNINjqX/w/sJLf3T20g4ue7an7kle80/0tnLF8HdSJK8Gkg6fn+7Ar57WOJDtV80UxRSgUlKZKCI2io0wfgFNq4lE4674+ct5r8DKmy11j8Kun+bPS0BfZ62S9dd/8OE4hhGS41zG+s9y/U5Kzzew/CEk38PtlfZ7XFxhlfgHqnvBvl/OS45A7o5Lh6Q4nZFawl8+iIgFnc+3yseEexPr1DgmAp9OecHQ5kufZIMvns833a1F0WOd/ouPoU4G818+AHa/1byRfw90f1ktDQvd5JuX3pcgGi+fhrN4QQueTGi7LR16lh+8mN3ZrBS2I18aZKNqLHytQgM7KdRWdLeXwo578H4dNlTTDnFBkz19o2clY6oF22c/yfpLhlTZtVgv93bB11czUFGXjfQ+qgWaqrFzoMVrRHfb/brmul1aKtsNX6wPo9TPOy2NYGveVsQM/alnZHMuUWvpR2r77qWe0htMMHvv8xJ/lc8zO40g44OOg62eLX23lBbAaAIiwypLmXmOr+Bm5hZHZENTMr8vA0j0nWAsszearrLYIdx/Zqxbx6Znp3vuoQHckuJSvRbUNZca8uTpeNFHPXuRLofx9r7SZHu0jDmVdjf1619d7Me3oZ+HLFreS9gRvCtIWwzh+QLgud4OO43F6t74HjP4HIaZxsPN8jcVOknKGDpVdDrcXsV0qZ5vpblnAg3drdgP5lsUYDrIOr48VmbBe+v1UJf4jIKDRXvuPHsJoq0lEv4Ao59v1VUCfkm7iFJnxWfBbwUYLmaBcfwY/ekupi2Kr88X1ptB7KfHswvg9ZND6hsZGNzncg68fFj/1mfR2ydI7G6Lw9V+MOiSP5DPeYT9lm0Q2xwiAQn7nOPotvYR6a8Kg1aTBGqeApayIe9i9H13LbYGS0yHZnv5IsPXpFHMt0E9l+cxQu5v8PDJ2Y0GlfHpqy78izTdoBliuu4ytL51BdYeOuZ/fBAKxfpR09A6zhZ9j1Lfk8m7nLyeHbXvwh/CFzXdjNVjes9khOHNsbfVsp7mRBsQpIaJ8ePHFv/g8YUD01saYbXns3TXLPWc5qelb4iEGFHfDsjaSqNeGM0pMT7rCCVS+cOW+6nTyYjOCky8ABy5v3dKhaUPSazIBQ6xkRdsu8zVdBtfIHMryf3U24c3Kq+f+m/Wn/+7i5zBrZq1f3qAhqYjoxsLZBpIY+gP9rf8ql3SfuiOe2XaqY4JcAtdQgMiYX/ybbdEyvrwpn96ZkN22gP85b3HkE9VP5pBUyL/OVrU6K7Y78e+PyFjMrVoXVh7xI4kfADddGVEpZXKR+fRf5Uiu+d4P63sfpMfCwcljTlTHframDTzZv3pUaI6J6GY1bUvwWRbeSQczmXRVRdZAN1jl+i26y8pvdWFiYzgq2FrozLjFwx1CbeIyGS5R1UvfK5E64+i4GC4fPrJ8bvqT79Sb8o/BfMcnYE4sp6IjcmMcfruTPV6cqcoLkbHl+43ckLSZk3JJJ0LXxTph8Gi56JJeLg9v6Reh5C2D/GlkqqCn6ZLABeJymTe7TcGlVaRhcKji/7DR5nkDPJvFmLPvJfGoCrTSW0qiLFR1bMx/eGFtYqCaE2SMF1zrDlwtYlCbXHz4Z3P41h9Oh3B+gf3xiTyn4zUaXrTeEcufH7tOAP5Gj4I2l0dNBfvOvvj/5F8uL96cj4b5d95jmaTHQruLh3Flc9miKQwmPiEtXynXKfiQKQOppTtLq0MOM2ONFFaH01mYOdw2Sbmgv8rfzgE7xOKxXFH96L06dnLzneKtD+xqNoPb9Sfu+CL4v06wW7fpPV8GbUbMvQoxgG73/rJKxigv/j0v4/Y/9PbQH6ZHLE52vTjwocQGlWFlIeLtvRyF5zt5+X96F8+ZJcmFdB81TDWzFeJuPTQMlU+fjD+fEWdszW7dH98H9v5wTNm/SdY6H5oJ7zgNRqiXVmidnd1oungTsa0zugAFGJKw0Q5FZS5aILs8X+knUuTsrAShn+QC7lJwpKb3E0UEHEHigqIyC2B/PpTOF/V2ZzdWU5N1eiETvf7Ph06FiFaD/c+j1u9hIB3EnIwCWXMeVQc1GeaTj99vKB6KsHZmi18ps3ZWFz+ScGPl7G+Xhh9moMD7wf9SVxSnHpGAKC/54dNtzZ8VnevJyw6qmL3yqs9zbbu8ff/oY8i2ZWw97YeyMJnhfgAPPNlX9UDXLpcxv7W7MEifrknZNJYEs062xWN+DJRci2LyMo7DFF5ZS18feUDscv3XI382Rbgp0hU7GT7I5gvikLlG1t0spfukTEE0VkA20OlYRSeWL8Eo9HC6PqeVh7nG7PtoBJ8WTBihBUfLDdvn0FDxYg4n6QyfvkO3j45Jp4wDGypojqGWeJT7NdaU1HRkFN51ZfT8vre+2VKThQaz9Yh5/jag2F93nDinBei6Qf0g+uGKsyl6oGk+vv12b42BchccSForr89HZanBe1k90IzvzLpwo4pQGpaEONakl+8xwqGDZuip/WpFm0KY1Co5XMSPdzkLPisd6k5AcIqjUx/9ttPCs+deCDGGWhsJoKYQSVWdkSnsZlTWOr0x0+J/dm+GasVvYCdzUGM7xaMyNdUODiX0YA43uJZo7ppAVc9R5DHWr8zL8cUbAe4I3oflRHNIV3goycMlePl2i+OVThgx2IywY0vVT9eBU/Fppw4NDVguJaPBl4fakWCZ77zpy7ZtECECf3xiXxSyCUGuUKElR+nEVVkKQGFd7GmMxte1bCZLhak7ApXfnePiOUiCkio4Qk+Try/wMpQIVKzAsnZw+hF0fCO8Oe/D58vZ/SnUOWAYWWfKXa0AEi/ep8d5AgH3vJZee7rprTnx4GYMxYZ5TIuhj8+5O0vUc5KUHDQKlg48fbLB0LzobJysd89Nle+tYzhuYXyqNoYvYWxokFrhyB9+DO2vsvQD+pd62B9ErfTgsampxvbnCAG2pf88b3P7tSAk4Q1Yj8dx1/ceejkH5995FCKvv4iOX961TOUAiyOlTg70znfiGGyuaJ10qLdzTg7+MLMDSC5ZD7hXld57DxwXDE/FgIoHJ2cuFgT2QJnIgDllAxYE09TP++B7AE4nErsb7g8H5pGakG6+XwnObNOPm39pYays1HRgkarGvdV0PzWE8Fz8vRZLgUlFCsrJF5+FcAIXSUGSX60SQwYYfNSzTWczXSDdpzUGE224+Sfv8W+K3H5aL7PplhE7zfixtbLafg4hEAzPyp659aerfqhgPvGhIjbj3tf5KNtDepXJOL9fsNXTI+4DGi7zkVdZS+MUXRboGe9BWKLMY7+9gv+wBqfCDMMGh6fN7jm50naJ8yYhi3Xwld7NsgvHttk1mJl5S3YOxQam294J4ENfG2x2n0fxpKOzwYqgxeTPdrXxk9/QKHCz798wXaDelRe6c5H5ZN00cCP5yMse1EnQVrnhnh4Wx2EKOOI5sKzMc4P5bYjCLokX3kZf41DWQnKbrPypCBa+nhywDHQe+wHb1RRj3s+lXGfb5FUPfaGuPJ9sNyfiKz82p+E6FJAfXScf/H3472rPiDGhsr5YhxwC7/jO5/EXSv6y49/vVVCyCE4wJwKaS/sCk5/EP1JvGh+V7cO2NExJu7Rz9nA7iYHT1kSYc+Svz2b65mDvnY8Tfy1Ij29KPcORM/Fw97jGIP5frMC+D5NM5Lg/uWT1Z//9APWLodPzqZvKPzyKc5WXst+fsrwNO6PV/fGRSrh4TLZRP/czGhhpYuAsI8XJI+9b8z7ymzg4LYV3vNUAstJYibUcNYSffUnY8PzNXw0r9sEqpkHjI+2DdDD5IldrF3AvPGfG2jOGsMOunCAXiOZ/vzvmq/datl7ogfuQD6SH1+ZT1K2+dXbtb+l+1zs+PHu4bQTOT9tm1H7GUH4QvsSB9sJgbn+fkN559rox8d8huNrDKeIfLC6QVf/x0vByvvXORADmLK3X/z4PHHkUDaWQ8ecP95rn2sClqeRSzBP9PLnLyOKYSRALGY3rEP9GS2dcxLgL172HrL8Ia99BNsN6RH8pFW1ABEWcLs0PvGr+QwWc1PSX/xj4wxeoA9Fb/ovT/Jf7hw8YWedFiS4byMi/LKjoOfVmFiffRgtLt/Sn/4lfvFZDDqdryWgqrQlKgRRzvx4g8BP/3f5NQF/8Xf9CgE2xP6Vk1WvK40CrGmR/DKawlrrlNq4usQFwaGfXvZRV+oimCeozY0/jeG9BcWVbia68qjhx4eT6FX/+Cprt/fXApNtghAchz4ar3EmQUcIfFIUaWmwmSUd5NyhJnoVMMDuO+ooJOf5Xz+pGpZZCOHGbwK8D4AaMYWIBYSi7SN6KPV+qk+RAOvP/YgAI2U0+varBfdzpEz0dH32nbJrTRizScM/P9X9+mFdvzPwKeFiRi/KuQXVUQqQzUaNscMbdeD8NN6IqieaL8ZbCWB3Lw7rGWjJGJ2iqv94npnddDDZjPfAT/84r/VOjCI4ObByCZ2kNwvYX//rgTibPMissx/fU9Z+FvnTR+bJoPDXX3ujvelPmmFwYPW75NffWS4X/wlbLAIkfy5GTvHZLaCLb19sPT4W43/95kbZWVPaKcdq9ieoQhuWy1//lvm5Liirf0BtcX5F9aRLNSh2SCCo9c75SLlGAsUDXojVYiFnF30Jfv2lSTocZr/3x4oqAnZTfNj1FzaPqefItzjxVl5sM5ZOziC/SrfDbi+avuCIuxBekfbCe+nO/OH0PknQOTYy8XAvgzaTYAvjE1HQy4W8QZ/36wTLUr2Rg1Ly7Nd/hGu/Gf381fDwpAVyVJwJ6tVTRLXvGcLgmj2IWp/FfmnnlRy2S4Lx0/j41Dqs/ZK4uiL5zR387vN+ZsohkAsEVUQAG9Qb9+ff5rP86ic5eG9+/J2ot2LXz0kfc3DcX7d/+3GUxrT8v84U8Nz/PlMwyohNQ7Xenwd13YHtt6iItkmcXAgRcuA5vnUEXw9VRBOdqlBsXzmxt0GWM9PwniDil+cI0Ynm5RJKHdzv3WLaNqoW8azNdfgg850EUtdV3XdvyzB9f78kGDgxp/bD7OD1rAvEQqnrM/m6HeD2WFZEXS6hMT6u4QJGT2ywKtcPMNpt2sH4FC4ThyzDX9I0K6B63auTfDdv1SB/8xhqu8icvmHOKpJ18xMaEndGTDB0Y6qu8gbK3G2PD+wY5jSlOwuewItDYGlGNr83OxXKb0DQ9nqocjbmfgaFRrxPY02DivGG4oHmSBbsP4W9PxJBKWA9IYi23PMTUeVJSyV6gTeaxcIA4lsbMhD5RCIHkS/65ex3EMQSTCcehCETmHhugb8PARKm4259794o4PfW5cSx9iWY7ZTbQHuXvibZuzhslr7+EQrvS0VsWH4AfchcCsS2yrF1ageffLLcASgpPRQe2M5/Xrv5BvXM8bEFWBxRMzx78GzfCryvtghQZ3rGipOTcOJK1zTISM8DfFTtFev9zCqygfoTGl20JfZ5xv4QZe8SlmOgYS31bv5gioYH7bu4ReIvHtypzaCjWQ7ea6bbM6Z+J1BraEY0CL5gCavXDbZCQbD+te4+C2wUgHPADLy3tpUxkwBzwBxLe1pO5tOg7HrMAB50hrE5b0G/fdIG5ompEb+hcv+WNucGAh36uOg415hHHS5w9m86zrld4zPlcnuCTfMAa7xUPhvPPpX5Kdni/fEl52MjzSk8KsNM/PPmWc3bO3eEZG/9W49lzwQOnIU5x3YJ+56J9rUBVHzbE6it1uhsMQrh3amFaUdMk4nqU+zguT2dCSo2PKPvZziBSTKESXjd82i+5TwE42W9j6wKPhF7vktHqUw+JX7po3yMdj4H9ep0m2i0MgLAd5NcIV2aluWbGkv2epfwReIJn6I37sftDiHYPbgII3qp8/p0Cm+KKT8jnEp7uScvjhNguDQtdi9XPZ9FL5YBi72a7M2h90f4fN4U+g6TSQb6Zb2fMUy2pMDlJEl7uWLGrslgO54QtqbjNWLH6pQqKig09HGre75I0kGCoirtkXXs7tE84/oIjFrJSHB2Y8YuqZeBuxGesD1lai7otEohagWA5Dp+9HNav9Zz0LyD3rjG+Uzy6gm5N1dir5UxmPOgD2EZJPJ0KevRoA8ZZvDkDQoOd6VajbbSQagGJoeTNX9MRNYEuMeChPFyIH673Z4lZTiKmKBM8/35Qr86uAjxMM37/ZcRw/UceHT1LeKM984gZhoLsLaqBKWbNKyWzyn1IHhsEmIL26Gfa+8Tw9h9+8Rb8w2pSn7z+z6IyfrGmNV6ndO0W0xsqqCpKB/hBX44OpPDd7xEc/3UO2iE3Re7z+BZLftJRXAvnRMc3C9NNYPTen80cgBZ84uxwI1CYQkmGwfPbetPj4NRKPZpAti54Dyfjddjger2OEyb1l16sgPhEb7y0vjlw35+SZoH/MbTibO3Y2MIn6MHYLTfYtvczEb9y3/rfkCiW78iBqtoUZbOCZDYu7tovDJYwJNseiRxMznqSu95hNdF01G7Pd8jJpRrz+TWa4hqg8GWqy468L58EEHy6Qqo7noWsM2JTOlRsXN+E78CaIEKEft4ezP2rSYEjtIFIq546T3dxrsjOMQMYi1SJoO1cVRCezNa6P0tO2PmbLcAD/czEys6M0bQA26AkJ4vSN6NI6A7c4yhkXMuMdPma1BRu0pQ2lYbbPqsAyS8ZA5w1XxP9vxlFw3AcRe4N741cd6qkw96ccug9DJd8iByAtb9O8D3vdpNc9O/2fIBcJHb9Rwm6rivz54yvMFi12rrrLtL33f6rQNDFRzJwSgnMGvjRQdK20kk4PWv8csfEJdiNAnH/pW3WT0LcDpJGXEKxwC0Pjk6LMwNJtax1yIxy+8C6HTOIfaXOxpif5LiX/yiiN+znD36F4Uub4k4MJOEkcZXb8qmKX1iu5WSM37qFvjlEh0bh7fWf2f5KsHk0pXYz0Cft5+dewPp82KSA0VaJBSGlEFeizlsR0XCWKb6shzx9EmM79E0ltRwPLgcHHVaxuEQUQ1rE/yo5hYHVfj02bCfTUi8TEQbLD2q4fI56xBVZYLdwAEV4d5oArtysYkZ9iSnT+/oKfUnvePDzVcjvnhnKjjISrvWn6iiGnYHWY2WnCDki2A+bPIA+t7nSfadGEVLZV5aIG0bRH77iRlFfJPpoSHr7LijMW8ZqmFjNy/sSalZjcuUtb/4RPLh07PlTNMNdMRDjZMBHI2FqNrzpy+w3T4aME5QMSHhgYtoaBs5dQx5AAnXTjjoSsMYgSab8AHnL8E8TyvanaQQrt934ujJr5h+djOo0uWDvvIuNpb6e2hl93WAOMisRzWfiLSAHOI73r/ltiJxNtbQhPoBm17x6gl6cBsoPjJv6mur9Vsq7kvIIQ8QNNqviFmvjwwDUVCJc/V4gx6HOoX+kx0Q3Ch61VrnXQ2HeUqI04cwn3pniGG2M97Yid8tWPxJKsDF2j5QaQGu6jRYdhBoxQkHDrSNhX+0HtxeLvo0DwfFp46xDGDk+M36vFVjCSWwwCEvv9iDCgXLZe0hSojY2HM6zee28S4E1ylIcOwzj82nve/tylh/Ec+7OID7xTt9HxPETN2qKHPhBFuNKtg6RjrjnUAZwEXrZLKuT0+FWXB2eCsWqGqld7VoH5xApx0Lss/Mc3SDuucoBxoXiM33GbCghwEkW+uLNlfzGc3j2KW7ahl6cv+eU8as4FwDfdwIE3dpM3+pyP4oy1yxn+oFlsbylr4xHOqvPNGPOPjLc54L6NWFifWWlBXD5NgpcgoqtAOizgS/lTg4JIE5bYkssIW6ca2s+mii23Kqxh6tc5W41pka+1n3nfZJYxmnyCGH8h7nM4vUSWbFPBF/PpmVGDU1ByWWyjj0/Eu18MfgBjcvNyG//cxfXSSA8R58ph3kRkDw96TCaZLeE9Xid0SfXurBPE8bcjK8o0FHJpvgFAQiOdTpZJDH/EoBWtQbsfC45HTBMPnVX+Ls8g8bylKR5UizJuJSDYNpouMCV71AjFJ9+eQeAhXOaYEwfmUnn4FYs5SXInAEn5RnNKVFZkK5CFMEve/EBsPwbvDA9wbq6vhRUaIcPDDzRTZtOs71uTO7hSCszRItL0H2id5FAxg/4kJ0WXQBbcztAng6aYjx+yhaiOwKIL09U8TDzy0an1HuwCzkd+QAc2ys9SSEyFY44uabqeqXHHSg/mR3gqf3oZrfsZ+CS5DEqPWzwafWedeA4Ohk2LhnlDHCFg/UUwCxdpSv/jIK7xQaXYKJF9ZJNapobhXDdKppy99Dg9GwrcFl6vfEdQU74otHlsL3vXZJcCVvf75ZfSvndW2Tk8ZbYMl7rYGK6G2IXxdNNXO2VsDvJ2rI4bD3fD4khO6ESF+I42eBPxF8Q1ISnkay5rP+r56Gp/GFPY4aPlW3b6jM1v5AronB+4v1EWtYa8FMzCSijIpJjaDm7kREAr0BVM3VjbxbiIjY5SH6yzBmMWT7tiAI74xqXlIxhjUvVVgF8ugzqhwQ8MgeTYLtNMbyabobqAei/+nF4aoaHIxT+zSJkmzly07r1L96YlU0yv/qwzwcd9j4Hmufvlq+BOC7/xDtNV58mqR6Aoa6l9Guvxk5d59fMZyHcEcC5XPOp3x2g1+9RXN4bPLV/2Tgdfk6GIHPx1/u3K2F3Gn7QWBze/nLnEohSMJoJM5w7HMmKPztF/9o9tMXWIyuon/52+rVJF/15AYWn0jFZrF7GdM86Y1SXs8WCcBZ88Wk8HTYzs46K/Nm5MvmPiAYm2Ezzc643p/oews8x0U3iateXIztxgLhhgzYtRozFxXdC2BQKXti8U8YsVnc1zCarN20bUO+Z/w1LeDBFAJsbuY5+h6+qgyl/XqXwVh1Ob2eEwcW+HNFlP+c/WWrZyHcGs8LyXcCZfOMh1DeP3uKtsdPZMzgZC7gZMnhJE7ZM1q4PsnkfG4irHk61/fedMmURdmI0+4GdtVsUnaDWrV5YCxnN8Zk763DWNqkJEhnIWITNj3IC2qDtYwPqxlfPBV6X/oljq8fKrb+PRgIsYXN02T27Ms0CWoJjHByXGda1dqQwFsETBS2RK84q/dleFOtK/Gg2vhLcdUHqNiCRvTdLjeGVe/Lqx/GJo+SiM1Bu/n5bew9R93/4iGOwYHz3YlHuPHHxRhVcGTaBYnVTshn2FxM2Jt3AVucH/nTmr+B/N4RErjxuxrVXXKEd225EK24c8YUVt8C+uXJRq/LYfa/Z/g8AjYmJvHxPvXptdsV4NWpLjZf/jnnn8p2AdrpXRB9y3FVykVHCqdc68ih2fNscNvnBAsr300PQD2fHi+hpWR8IE/vYTkY7OXZCKz1EAf0lgLa50YCTN+3iP/O52h53grvFx/YNN5X/+cn//mVJ0tY/7ghC+aJpSE+Cijr3emZQtTFPA67mxdR9E03YPvtGdp4IGZUjl0V6n67xyhyrX7MlGOpvL7KDvVfIwS0Ie8MZnt+RJf79sm+9/MmhqeiaqeCzAyw3VNN4Hle51iZSQL4h+kU8DJ990QVzypg7yFU4abnKA6L5uL36AEhnJtNTPxls85udiVV/j7v9gSr8GnMvOYK0CM2QrvLVY+Y4miCsltGEfv3w6NavttTAEV7qLEXi4iJF52aUHFPPfHTI8em6NIFv/2HrTFCFc3kwAEnKndEm6SoYp8s8uDo8Q1WS1nL18/j4FChIz5kx6YflezCwSO6rHNyTiMY+9pKYKclaFr5DeOmtHXgPC5sEj4px+bB4VLIcUm7+oU2H192Lv3p1V9+p851r4NH8laIdT6OPeWmABZA6b9uAFdH79BT/0790Dq3ACTooWF0zmUwHsFHhzo9tdgO3cN692hWgh67R6LP8QTod/QCuFxmn/jQ/frzMoUdRBv3iZS0zAD7kHcBn6WSEGfxa/DnJ7NXhrGKud6nmyd5wgPnurguXmV1X9yhg9Mkv7EJXMIG8Tg0MndJbqvfQsZArW8I8q80YHUix36w8A5C59EciDl8O3+t/xSeHzZHjEbxgbgDYQglNNoTfNdcNGdK+oQc0fVpQ0nJaG48QlBunwtOnk5oTNlrLMEzjf1/fmMUxhTe+qYjtiKefLLMewiKlMqTiIVzzp4JKuTqgq5om8i+T5+P7gZWfzp9t486oqdmWOAt2pnTefT6norHoYb6UEBsmv63p1NRLHI5Io3g3Z5V052LO6WJm5GY+pEw+jLtJ2y/t4p42/YTjWf4CMGqp7EtyU1OcXWNpeZxtP/880ysE5Jd86hiz9VAv3S7aw0inzqkaF+zsXiPmIJB4TPsZYuTUz6yF1gK55A4RAoqqubOBkj3w4Go2lAxtvXvR/g6cl+crn6a/vS9k48hPpiPde7O24VQ1C+EWPzrGY3igwaKaE/1OlG26SlnKOaPx+KA2ThnqpBB+cfHCjptwLwYow4TdNewSzdyT21XTuBYVodppwRDTiVvgErYAW0igHbGdMwOKVBm4TpBN973bNPQQMnurwgjcbvv5zO8HKFRb7M/nknkzJnAur8n3r68qqXbnWoIqZOTYM4+1ULOkQAzHsloY/QzIw0Yhh9f/un9ntXLqYNbo7wQT72RfCilK4Lfk6IRbN+SaFzX+xfv+PByfGN5H9gg8VrCEU28PxhVu7yDKb5DrLq7uZ+GMUvgd9d+sF4Fdk6P99Pw5++cx/3gL+encgTvzVVd31nzI0rCyxNEWYiQIM1VxF4cFOBibJ7TVntB9n2Yzg3miTFPpFMGfy7kOoZxv4PYeLd6L5j4ysFBVAF2lSDIh21nNLB6njusX79BLv/0iMRJHDZJ/OyZ3uUDPI+dR9TBlI35ku8HuMvNJzmGhQKYcr85cNWHEwvLIOdOTb0oe+mSIPL9FGC5hiEHud33MA0Dd/nLl/KC3h3W2fb98w8DGLevlDiUF/tFjC4y3NWhRqytIeZDd/qEELeuRAx1MXrSn6QEiAfDxUEoqtWMDm8Iv6etNi3h1c0XPb+au6LYP9CEpW1FW+ZysBz9Gevqb1zcpjrCigve+MdP6ZPjKAzOxZYEyUM3BKePdaiQxwW7N3DtWdNkKfjxYXUitB92mdNC83gfJjl+HPN5J50hdF/HgJiScAFj3x2gnDUDh90+f+QL6SYPnq4HgyTJWwB/3+djgI74Z3Vm7JlYNzjuK21SNpNtrDzckwOnYNit/Vs/o7vWAX2Ewtpjnn06z3vpxwumab/eVbvmX2hppThxpr+2kdb7zrPBuGJ7F5psnoKUk708rKZdnIwR02iUKDrf3YlFNnvjjwftALjgQ8Ve1d/+Dm6nguhGFBnzWm9hsj1J5DAD159/9bVf33vVZfELFo/7mHDNbxibi8H+/O3e1a9ETzSPsSIAKZT7sMbagF4G3Qg6p0gq1onvsNqfsiAPwO/5ccf0EvFGsC8gdDfTJPCvZz6NwjsDH/f4IEcxhkBYealylrsEccqtNZZzxrfQ3S4nbMemnTfRpQyUCOz3SFyuMFoekW/Bx9uJSHxc706VHtsQ9n7yxvj4iXxmGvoT/OqVvkcDoNJTPSo/P++JGd/P/NxYEJ388+pf6n7tv5gAq2VJnER6Mroj4QauQ/lIsPKLtf+Syr/67/TRM591uAxQBTcNwfrz7dlpGSywvfUfJId10s8/XmNHiMe6I0zR2DZyCRdSzGg5sKs/L+k2gQuL7j++zP54ztpfmrZyrgJ6LjQI//Lh2v8ZunXuzk9PBY2sVbzXDxb84hZj/OODG2oE8BMWKjGl4ppTP/ly4Of38LpfWTADAS5utMd+Q7P+72e6uTaIaC8IlrjhJPDjjVGj+Ix8qymQxyZzCG47zqCuAnSIfXdY/Try+XdspGD7HQxyBWLJlvD+FUDmDi0+TJFdMe6RWqA9noyfvu3ZL9+yMTZx/jUWMOZiKgPD9P54BVg29xrBdt7Lk/hqiojd230MG2FX/Ht+B6+rYfze3xF3mupqcd+3FECmWBinvMn6tb8DHVv+YKtNKtYu8ncD9WwP8MozInZL5Q7anhET9Q7DfkjGWwsLbR8TVVD0aHlXlrpb4xP1YpVWa74PFD9iGv71G5kQpdyf3tQP7GrM7+95gO+uORP71WwiRtMHAs8r4//5h5XXg9sTHBE1YQNm6UprJXOnFmtWxozxlisbaMplNH0uVhrNCmHer1+CZtMGxrS0+ka5T7REValqfpunSwOHevCwYdwSg8JhWuAbWwZBlOhswc+DDq3zpVx5msPo81pycH3jleBOGYzFsRod2KcBTNvdnvVLfOpqeD9/dOxkj00+nngpk7net7Gjem40arqcwaV/C9iQxpgNUeciGB4kHm1ZmUbkcCyPEFIvR9EB3vyVH1LYN5yI/eop9iNXRhmQLlKL4/f8rpa39IrhWAwvbK38vjdc3YHP+HFE8rpe85vcY1hwUUCM4fkxVr1EoZgZZyQ/SOQvMDsuwOVNkejxoFVz8QhTcIXDjZixmrJFuLYl2KNks/q/sVr926RYVDYJfutLPx6+qiRHn2NGzHvFwEDC9gmZ7aTkoB/Wu30W9wlnP19QjPZbn523UfP7PojXTLcS13wHxousT4t5LIw5V/ATgul2Q9xmPuWEKnuk/OLNWHn4qI0PFdStfCGBZkXgx3fBeS4E4n2UGszt6RlA3t9uED3Ogj/aSgmVtf5gF7HF76+CROGeK3v8609Q4GgUVrdyM31XvrY0Q2fBtR4hrs6lfBEmmYOSm5VEhWJq0GbvUGiWwoiAcWwZk6/iBFc/PsGBE6NxTFMTfvrPEe3ebr/qOQn96g05JO3bmAY4qqC19yVRVz0wC+/f3K1gj889X/rL9TN6wO9vH4zHYx0tN9x0MN09a2ziPMj/9u+tzD0kROcIfBtkLOAgb9uV/97yRYxaCaa9Wqz6bdP3q//8/84U8P/7TEGUI0S8y6ACcSN+J4AyMSPWDXzz+W4fVaXrdzfiRnkbsdLMOViIdzIxdawidp8vKoR3MZk4Gtj9dOJdDohqwE+KAHnGHOG0KB+3ZtOupS9AjXdXQ9+G6VS67Jsv9qJ34PUqX8QvBN1fjq52VMynmpO8EHRjLD+CB9mZbLF9D17s+62/GzijyENvjgz9DNU5gTMnipNQcSe2dORN15prEDu2CWgib/cEnJFYE0c/Wc403hOgJcgC9rqhq2hzesjy4D1VYjQ1jei3ViC8m/INW80o96TUvRA2lW7jIBIeBrnBowfvw0fGeClzY1A6LoGbjUqx6ktxxAa3bmAS2fY0608NCIJz64CITZ1EWfz1O6fwjyBtjxeCHMc1eIUYN/gtFgN79/NgzP0GTuC+L3hi+2KbLydeE2CHkY3OYM5zwi0phHlzkgjSW9Pne81K4P1YbLF7+z4BUy1pAD1tv/gw3k4+0W9tDA/7ikfZrpqM2eudDqRteMHa+P7ktLJeqbI7YGlSMjEzlmF/vwHOd3dYQ/RrjCeRpGDwu4X4dRtV/WYHQhiw8DRxNRrAdGuHBewAnBHcoH3O77ffBB6KY4bt+nIxhsbrESjdwxarlUJ9Nk7SDd7cG8JW5jesq6ZEABx5aBin35axxzor6269P8SG0dC3mwRCcD9pKYKbr+SPbDoL4LEAZZKZXLLFKZv09/n45KgNGD9oSWBygmeccoT2rKJxCo+QbKe8UyqftdfSgceXe8f7gL/lUy6HDbRzeiF7u1Aq2kPRgVAXD+gDNdVg26pMYK+dL9je8Um/XBBIgP4W42nzupcRg4+2hNvo1iPI51vG9HfTwAftrhP3ogmbPc6SQWjddRSWWh/Nu71CgcYrX6ydnn01R1aXwugDqok2261PDHxuId6qB2yKKMnn8MYSWEnKeSpeTVvNe23ZQGNbJzjTnyOgkvRMlF4DdMrH8d2P0NAl5frIbxjtXwGYt/q3AVEeIJztMhtwKC5T+ULskWgPN6mGMntSZbsrNmjdr2B+iWG2XZTCJthuABustxaCwbeuSL5/pIqdlZAqkYr26Hk/jGDYfU0TfijZTdyOX6p5DEMOiNR8Ej8xbv14IF4BTifDQUNL92Ac2opC/c3H2BaRnPfd6CC5688Gtsgy9POFSCacTtkNO1GU+Gt8Zkq4T44IBn1nzI/HCSnTkTNwBGNYjdj2B7ip3ioOk0BgrXz9CHCy0hDnnWIYdFYvgxIUW4f49N7633V9gIsuHeKwfq3GQgQDvNjZOnq7FA0yuHUNgMZRjMH5WdFsvCLwfcg8sQX26fvzto7hOSntSfAeaTUH7qaWmSSdp7fLDtFw9RIZmC//8Jcflo6MCyztJ0c8dC4jFn16Dx6h22BdFZVqvtupDl9JecEqAR2j6xVCMG4sg5jUeEVzK71iJZ8KE5vdoPczSudS+UxFjN3sLuZDz6is7A4HCS1kvT/KpGEK0/vxgNi3eeQ0dG0Ipt1eJohKG0bcL7aALG5TRJvtw6fbPfYgt0uuCCa60797+dpAhPkjtoK+NMghbjJ46guJqGQxq8UyaPnLf+jb0hebb6VpwsmuzOnVbXpjEL7vFJYn+CaFwnn9LCyPTr7Ft3TiH8O2X/iLJMFoucQEk8ueDd9a2QD9fQTYUbiyX+Deua13A8h478KoopMcHHeF+CBo11KNMQPfO7lB04ZY6mhHnyI+ZbDZNF9srvl9Vlv3Bj+SvCeHr2dW7BQfTAhE0cC6+j754+/34V7+EvP0PQNCzdaDLFY5JCwlMVibgwk+AxYTw5bSfA4fgfS3fip6HCtWL+8NeB0OKTFj2weEL+EA/XidlVRxZ0CH0rCAPL4+xOyGsl9u3SYB3/19PwmN+6qoePJk6JYdI27QN/4c+YcStpGEsX9uXTaGaRr8fZ6nfzmDXS7vBrbe+0iMqtQiHsTSBNb4w+puvOVs+2YSdNG5w64qnKq5eftHeJle8VrPn4Cetd0GqmblYO+5R9Xcb7gBRmqwx7cmxGC+cHkAbpPkkOMNvKJ1/QvYca2OQjs4GDPKfRN0XKdPvd4+Deo2uye4FqIxzY/wxpiHIlWujau1MkSp/6vn6m6rrzcXHyu2rboEws80oYGbnhXpGCeDTjgfiHU3Sc+27aGApfNtJqjWX2NezIaD/efSIeEyHtnUalEHv9/1fNCrMXvul69mjheJXye2MYfZdwECP5vEMQLeIG7DP3/rQ+waUTY8zJ0DXVh6GJ1nzhiEkg5QqcYzkl7SaCxZyHvQac8XfLw/5HwSF6MD/CMe8AEVQ/89Z84NojdfY/3hlP1494EDq0G4Yr2VOWM8Z+oNvlMvJP55pgaFzRVB/HYE7KQMGCO45gK8PrY8Ao8sN6h6eKUwtLUcu3eTVa0aBiUIH1TFRYo9f5RbaiprvsemuD8anbtvF7g+n+lJE4VNdKo8ePRqSozvfWeMP71g3+8l8U6XUzTqys6E58BKpul11/NXNrcx/LgNIxav7v0ZvbYU8PvHGbsuMKohVCQLOAsiE0m/LRjLd91AamwJ1pfTeqbqHKlwOJwVxCuKCYZgTwoQCsDCNj3PjEz86MFNqt+x8zhRMFsjeEJBe0DUevs7mLnoS4Hkf3UcY//B5q3JnB3PIUR847zNF9qtZ2j6mGHMTXU1o8c65VNSeKxzpK2WCN/a3/4ixv0wg8WkWQpF3OUTTPS2Wv+fBVI9rFGlOYJBOgHdFNBMJ2xdRgoWpzCOULY2gFhqrRn81jYnsJclTE7FVLHloTb67hy0BNv7a9gvn0grgJjPF4LnTWlQFKYcHMHmhdhyrcHSx7sJRvr9S8xug422CeACycB9/+oJvyiLBULroROXW88YrPpEeeSoQLuvPkVjr1kxWPPnNO5t5FNt94JwPngp2Z/n1p9SGciAe3444lWwNZjIaQHcjlKOT4XYGe1WV2q45nsS2P7bn+UxQsAaHnv0BbtT3x2OlxAcvXVOwnIsK9bf+w2sdW4kv3r4pwe8qj9O7FI31aSlVwR2YDMT7XVWfdHyrghenEojFgELa/O8z0DU3iEJ1G0O2K6MMkUrhAo12T3KR2OKOdjU3g7/6utfvB7YcCZmf8yrpdjNR2XqhQDJz/1UTczhIZTIxsN+p1TGd+t/OPDLV0EkbP3ZjFoKlUt9xZZ9//Yk1B9H2aAeJYfLYII5OlwseA7MBNFdjhnlEjuWN2WBiD1GJSDt5Vgr+tYJsZm9tWrBjSXDPSjaaVtxCvsK31MGgCZQFJx3Zf7d5IEFFBRlaJOmNB87dFXlC9mP2MtuRrSolA1g2bohNgLOzDkOhy1c9SzxLpsxmjiapxAhb080enYZ/dpSDLdSEhANRnXFgHyrQVYTnfgbi/nziZkh1HG46ltN9bmtOujgGSBAAvc/AAAA//+kXcm2gjgQ/SAWAiIplsgog4mCA+7AERCRIQHy9X3w9bJ3vfS8dxBJDffeKqrQp5hMp0jhKIwCw0MVZZLt3B2Aqx8wLz2MwTA3W69mPMy8tLq1k0V1EeJs+OBVHBkBpbd7DS94Nmx3Lo12aT+bzarpHhLV0usnHrxv4IAqixUx4nfaDvvD2oGgh5aEes+yyTA2O1hbi5AqxmjEfCl6IaD17kx+fEOc8THKZdFhnnvr274/dIm6vJ4H2uAViju+XTsw4mVBpbJu2+Fq6qqa1PJAnFCj7eCe5RI+R+9E1ZWktn/8AuuXhrl7/An6ofavK1lGMi1nfjGtfEsB5dWe2OZVPdtRTO9XSAdJIL4lFGjSAskHpz3FWJM5aceXpIvaKf4+iWsgaPst70sUD43H8HB4I/66CieUcFnFarDsMi6HxYRifbjTohC3fPgo2unnj8SsermlAo8qzTqWDZvzRzC8700FvtBeqBxnVjYsbNeH2teXczzcc/514QT92dXx4mvI2Y//Anw2R6K7t3UrWvs2/PEnZlzsRTFewsMVzlFyoUv8adDAKktRP0O/woJAbjHfdaxEbxypBPcyQ6M5LQS1KjcrEoaaXHx39OVDr7kxs5OkjGf8eAB1n3TEZFNdMHg8n8hR1jVG5fbJR7nNBdSHX0JCKXsglkZfX2vHrUHV2Z5H4XarlVOX2sR+FKv4m47PE5w9O2W4lwkf5vtXw5UWEb8qrIwn86LB5J4uqFbwN6r3qTTBpd4Y9GA8bTTo228CZ6/lZBOm24LfOqTCYeIJ1VZpyyd38htwupuNi+liIf5s1gaK5FPPtqsiCqazv8PoImUDccvnLZ75xwRzfMfSOM/S9uznhDLP8Ge+kiH+ergKPNLapnAKKBoOiaGg8RIfiJ28/JaN0xTBI21s5tv5lfOC+iJMhX6e/WsfjGe5nKC69BsSznyTGe+qRJ2f68yb9Ysp3RUl5NR+YuG+CDOpKzcNlDdRZjoYoTl+4uP19/vwiD85H5mQpYDW0Rl/J/eZ/c4PZv6HVZm3LXslMUae1gDRzwspG9f7IYc2w5QuV2nB+antBJDE4UM2RzXKOF7WHcz5nqxLOy+oNaQpqDsxJk566M3+hkOKDjckk02kmPH0uQgb1L/ykWwEhwT11x0OwNnnRPCg3Hnf79aRNuM5rJSnwmTN2J7g599hXE4te6XdAEGfRFRGn1cw6z0GYv3FYOR0W2RTsnjoqFMFi4Vx1sVtlrEEUJ9FxKjHHnXVZl9r9u7+YCR55sW4OTelar67+b0yozPHlK/Uv/+3H5uqmCYrlUFy1pS4mXcvpl2QiqvXliS0Ge5gjvnLu8Lmg9/M1BeEdyfLfIKpxzZ9H8fa/OPLXsIz5t7CNe+DsxchXPoXPFJdDdg2eG40MQhWWBJZWEzB7QXg3k1EF3rm8OHGvDvEn1Xxx09ka0ksuNRdRuxjvebLghoiZAf9wCL3yLPOP5odPPSJko0x5tkgrdYNXKTL8LOHoD21HaBpW15xD/GhnZb9MwehZBMx69UzGCfjFv30L7L9xa9a+Z7gGY4HNuOftredkwXdNCpY69/LbBrTYoKZT2HR3m2ykRh1qVpHY88c92Bm0vHeVuhYbK9E/8V/J8wHWHjvmHzS97ut1aNFQbpPMdk8Nn7BvLIQFHN9WRJdFuNiwvxSgVnFCW5W+3U7JXIygKXeAxbYr3o+z0sNzvJGmOne7FYa6ML/4//yDy+4eDigs/flM7+fd6mQ+l/7PWy8ce7Z3RsQuR8RL/f2kw91XibQBfX0w+9B83ivlD+9q54/D/InlsHTrAJLAhkz5s5ziFZ5y6kRdtPMT2kKY+F3eMWeVjCKR3SA796syTaN18H0w0P8YIgsrIc3oq/9lGtrU06Zu+qGeFh9QwtkMgx44R5Y1guZ5YC6TBfEXAxmJpsbUUAf9naoJjdeTP3xdUCzPkkCVGvBKE/nGqgsn5gJgRyzSBMteFxXX7qcn/ckqG4EDz08/vieOZjdOVIx3tjsKN6eJrdkZMGhskxymfkApdnWQknzQiTUy28w+iJWkEDiJTN9a82Zhe4hfHcPQhf1amd+r7cnaNOCtZh/DxFq74dLorrrlc6C+6LOpk/s3eGIYD3rQR0akuPOgOSeLNgcL4Jhn3Shpq/SL/vhZfpKWKiqSy3BSi9/EP1cSQcz38JT7LuIz3gCdqcgZoGhdgXtu2meG7NMqba3az4OdOmjXms7rAXLXTw5/hvD3jEELI0L35wcvw8h718uVl6sQn3XSCeokvLEHujTBzM/VtTl2zlRzd4d4kFRRxVCExbEeuhzz8qcj3ZH/UUXcbaLxzNyVVDOXKDFjM87s9lSqC4+w3JqPFv2tZsJifREMFR6kU3i1AGsv3I/n9cpa2/MvqIZ38z8siyG5GpRTcvLAsNte+PTG+mhNts/rpGlB0vTn3KY9Qjyp5fvtkmiXrZ0j9Xe19uffoCUwPkS8rgEgXI4rg6wvu984qeUoFFa5AdthdKEmVPemhNvhwiUg7Bm7io1kTgVka75l+2DeafAR9I336VaO1g74hrPL5pc+T2ga8AmvNLlsZiMKxzQ9h6lZMaP7SgkUw7f/bqmq+nSoSGAlw/FMvL/+M/QPcYc+iC/UWnmG4NtOALC7zggYaWbMR9XFcAezD1WA+oEs55dqj8+sYV1bU7XeU4uTuP1rJ9CNnhsOYCZxRjDHP8nZombH7/dLme9fo73Fcx6MqaPTdTKB/H5/Olnf/p7g0ddB1x2Ey0H85XN+N6Cq3pvmeNWDJXHRX1ST4K9I4a0loIxHesT+HuwWWrngLqKOH/Pl90bUeciq+9XZD9Um3lTu4p75SL5Pz2F2F/znnHp2W7U7kyOeOWyNKDH59eH54ff2SZM+2LY9qEKdLnY4Km6CsFUfJoN4MUmp+r+PMYNM5pyZaSSj5VX9Swmetil2sw/mYXvesHX07hDMFYOcTM9iXnDLgOsRXHJzOlS8pFe3By51fSa+RTifVelIWQL40ZI2NJg3C8/czy0LsSF98Uc5mH4Gnn3hG2rNA/6Hz+6+saHSnO+5IOz6mBt7tYsCrso6C6b7QGRwfvVM3bxcv5+NYhSj6zti18M8VehP/2ObWe9V66+Ufq7PglsfozHKl91P/xEruy5Cbj0dnbafH0SopVUjNZRPcE5LgIW0P29nca0ncBY+BFxA2oE3PEv4U/vYobko2wgeqFrWuJP9B0WDHEpFynMejBbUz2dd4fdGhTMzA2/bkY8sNd3Wh3z1qRK+0pMdhsfhiok+o2Y39slGFh9usLxXK/YupFKNFhk34CWGz7ZHMcu+LPPzXUQyXo5z/k6fTwZ0rI3yHp/trNxv2QpbB9ZSBxd7ovpUolPeCFhz/z07bXD9NpcUUWWAxZfq5vJ1dC/wu7kxXNPzDYWN+u++dNzlLJm7RhvH45q5fsFC73plU2OY1iw2FxfzKlXZTBqLLgj+/XZEx/P+5gH6SyD2hefGT922V/9bNZ/WNr7z4La18z4+R/Tv0FdTCpLJpDTQWUkvKxbMaaxDNz3rsz2mo/Jf/jirKQd1SpJ5LO+cELKqQ3pq8Q16nQygcYj1fjTr6ZE5Sqa4z9xV90uHsZVI4BBJB0r5eMbjwsLbcDILgULdfnYylXbwl99TZ31yCnI5rmFZ/ImeLmlMUdKYMCYUISLQhNNSg9J+tMPfvpXQPeTEv3ld8NR9Xb6Xa8lTfCrL8ZcuuoG3HbXBYY5frH4fSlhrkcQvD+tYy7KYM1NqQ5zzgstZr94a50Ck171zODLwao36iToT7bp+3UrpzjV1Zl/49WM53kavTbalFQVCW/bG+rPiKhIckxK+bkP+eAfTapJlgr0tYl43JnF3tC6Z34gTmetMjbnB9XLa070r5HHXHoWvnYImogZmvbkfWs+VOiOT5+kwx0ChqTVFcpbdGNOeov/zV9WHi/wOaB5MGi7zQ7meiO5v255xrWdtUP86FUkeKRZ8BXj16CKpvrA/axf00ROJvh4eopn/JHN9YATOiJhTQwfQzDM+oG6tlJOvJlfTPT0En7xlmyk9c0c99JRhOVQr7A2X6+3F98DEsh+ScxCOwScb74A07a6MjK5dTx54e0KknTWSRB2gllfNvYBVs+U4KrI7XgMzbWCZj5HQV8g1G/Hq6G2I89++ob5O08N4+7O7q3TZ0Pa70NYeLo61/c2iCdmFcK27gL8mespQ5cHFrifVUzlWQ8eF94pgunCkj99le8P9r/6cwN+Ew8q3unaTw+trsjLKiWbqPbjQxu0dbJBWdP6x2+pegvf6MffIM6mD8MyeiF2q5Pph8+ItdF93vXes9RKLvlk1nOy4Ve/mNJ4JHbCz+bo92mIzsv5nd18jbI5PlJYps2brWV4I57Yi0HtUbJh6cGN0Yy3rijhuxdV7osynpTL10c79Nli9eDGnOrdrkQ2fFKsoG0VF/Jm08AnvgZsv3+2LU8WgYHm+Mf8vW0hOciS5Kd3kfvS2sz6Q17B7XEIiVFd7+awGzFFS+IY9LO3dT6+0TVERklzPD1SFrSCtPOhWBWUSlN6ReM3T1K0rWlANbiqqDe7IPp/PQXyf/cUlLf7iRmHuJj3Mycpch9bh4XKp2v5KLwH+DZuxtbK3ubDOtiEEN3pQKXtMeK89D2AO3geI/LT5jxldbRqio5RSE4iH2uMcxBy1WLrc7xAw+L1VNSPikL8NicXSY+VekBfe9KZG/u7lvtPQYFjSwTm2jePT9vg3amncpuTAIoxYI4jUrjlL5kqUuijIbraEWxO3wj7ZvYKOq52IWzOlcpsFwo+rchKhLNwfbNA0R8mW3a1ASdpUIkp+ajtdOHtq7K7BUxrQyr6MO4HMNZGQ/z9OQ/4q39SmJpEJgH1wBy0qFJVbxdVxH9YNaLVW6BgKTuR+Ob+bfKreTN+98PcNWZo/F4iHS3XD52Fek0CfrQPFTRS5DKrt5A53BZZAsHa2DInm2c3n2WkIGpkNgvAR8G4OOQyGGuImGeIcVu+rUHRvvZ9w4zB+WRT7Lob9DaPPjGDk8Lr11OtVRqfemLJuhlM26DvUBftMXGb7zXmpW0KKNzcE6zFc5/TuxcGOAvTja5csy/GYR8KKyGvQhYq8aEYzMxJYAzyBwsspW2b7R5hGGr2wcuk1oruWyUOTCqlWH5qSTCEhS+D1uQ7rIYrHHD61BwULEOFWGMsBdNFWh8A1cs1lr+rp9mtgw2GRdO4JIj2atxLaNcg8hnuLNTBDQb/gkW0VUrCnPO8BW5TnQUIJC1hJCU4+C4jrkD6KXVyNIstGtaeQkF41SVJ07OKhuGRPtHHhjXLvP26FdfWRAHfSE7Mu2ciXuhbASXlwsPNI875qDZnCw5Y/FDldn8HdVhvZPUVBSIel49VO6haU0M5jhPbrE4OH4IXP8GrPABVH54zz85qTuojX7zZ2lNHcxo9S4VFapwxxO68D545kfqQ0y0JzmYVD3GR70DsLJvZj4wUvX0C8Xd/VNzvz9l8XoCkXX9h7uvxKTi2pA08MKzJTZPmzUnkboAa5AbZHsowHu72E7RHsdoSw2ZROw3rjwqvODsQ3Lm85TzcndB8v8y21vn8fB0REDqsyVZc6OZo34zTYrtsPmzdHEvOA6aoELr5QCUUj3FfPHRLext9SsxLtedt1KYHQKvriNUyufBh+RgBjkJdMd26VZzjMPJh850M4r6ObTsSurxCsy8+xFleG0SVzUEED/dbgvNy0/J9/hbh7lSYbIdoCtgt9HKIbcnCnKwazldQYdicS5Vk0T6Np8fXHsA5rlqSbk3fbIXmedeeGq7J1i/6mFtDDZq1Cq/sHvocTR9RoerHSmdN76IUvbcqnjC+7IwQVz2bnHvjAZX+sWLeuKviMTubjep8TzHbNsIr4PTxLn/2zfTtuCy616PdoIN4KYhLdLFgcF4K6u5eruY5Hn7ATnjtaGrwNFjEiqM5vIp9AzyfGrK5XD7m5C8VAbLblRPXHl98+sWTh5xsmVeQTzwlQ3CALvo4WDKLnnefmFWQX50FMZxN3fKa6j6Il7fNzGCvonGOX8hYH3Lijccy+zq5fkBDbS+Za39szoPOT6HitzXR9yhuu7dxUWHt9piQky6arO6GRjMX7w3ZHOSjOSrnlQphb7cMC1WVtS86YPSzF93KLb7cGvcNLC7dgzhbeGaTYkvz+e1OLL5Ue/QNM3+CycIBlS0ZsqmNvle4o+WeBXBYmhzu9h0utLpSBJdj8IvHUF6xTEzyFPnv+cNSiTMqFtHJbCSWO7BwyYPpC2EIeiV7phA99Jrupvc6k1OblCB2js3szF0WdMSGAqqvRsQg20dGvV4EuPRCx6zj6pP1aBQtBNPmRsjIz5x/cmjAvSPMwsQAxDY7pUMn2ZrY+rsc+LDIlRT6TvTY9mI8s34j9k8oDlNLdCvZoEE+VHd4W9HEfvljsKu9igZDFJnL2TOecLKhIBWix9ZNaqDpeFr78CprkW0CazdjslMOp2XjMxJ2ZiwZ+sv/+QczL+clnz7ThcJRczEjoyKhvldXWH2rwZt4n/s6nvAlCYEoncOSOX4NN1Qqf/HXT9uIf4J+r8DpHfjEedJ7wFP23ME6fTosyyI9lk20MeCrhQEz1bVd/OIhEh48Zng3FZz7T1mFu32i9MwbIx7i+hnB5qxOdOFKl4Al18WAnK+eEVuWbjF39A8Gp6YFwV0WFHy1sEOkfaOBGewy7/cd73dYX5QTljP6NicT6TqIl49NRTdI43GnjXeQys2aJXO+F4MXOoDZ9wpbe1JsTtpUP1EXyxVefS5FXB9X2ixR70bmP7wK9euVZYFE5iG2D5iytjWtBLaK4uIhOniFrPhIhqupnUkGh7M5hc6ng7st3AlWTTHu31I8gOl1R4KDbtH2xlqpobqpNpnxCRqL68uCszDcmLMccj4q6U7VtK/yxIJxCzkrw6egdeX1RIicuaiVm7WO7DFKiDcGdUZ31SJFRbw0CSnXPGDSZfEEc3iOzDTCMmCX3osA05vBSFpUQUfMtEK1iGvmzfmaStPaAe3s1rQOcGcO6SPoQN7crsRG3jGm7+Lcwed7FumAmiSYaFfUoPpRTmx022ajOJUbyG4bRLBQOVl3ggOgu6M6xLAbsejzRK1QKAiIrgr/m03QBvnPnomP1nUxaKdbgvBtm5P1+3BHraKSEPrhJdHaadWAafX6CjccpiTdnK7mEDwOJ3Bvi4oekbXMhpYvInQTOwGP77vKu28xOlph7Fti3oaeD6/c2MBWic7M8Yom467fhrDV5ZD4yKmK0VusDKjzxYaFkfbmPOq+olYYn4J4XS1n066VEjgvrCN+vesTZ794ubEvEzuayzcfwvdLhGR59aj4UZ1gTEnVoHChFEzfdpdiwGplIHoot4zU5TsYnpdjA91+caLqNirN8b7MThBtgwSLhQnmwM7SE77t2sToxHAs5alhaUfNxoxIWswnVMoG/PAMXgmnjBu5cAXnWwcU5nhT4UTvgO/2DXPXSctnPCXC+/iMyF6v9Jh794cCME3ze4PqIxg3yzBXzXHzYpb7xdn4Ht87uNpPRldCuTRn/D7BOdPe7Ca2G3Oq6iNF8/Wp7B12WT3jBUgP42aeS1CisbltnmiT5Dlz11bMB/lAr2iO53TJn1U2LuL4pKWH246ujNXYTuv6/ITkrY5k61zGrLfT9gSYej5zvivdlMXvoYTSYzJdxoVT8H3ei+iS3TpiBvuU//AzMtanHGelFGRSc08M5ZfPN/5iMml51g1g/k1nZmh+zO9OW93hIU03OpTfZ0GlYSzhKAh3sk1ondVxuRpggp2D3yl/FJ26PPoAT0VjriLwmF0X1R3a9OUzlzd5xkbtFIGlKCUzL9EKjc19p4Pw8Aq86ookHrr1SwTVL9M/PjCqzcNChp6oDBufDZ+gi3Vtzld4tbe6ggWjniBjKdmMjF/EeRnsr0DXwZuKIz4HA0eIIqfuCpYt7TKYkjGVwVB8jbkznh48f7dBbbo0mG3WARJfue+jR972LAS5asfF2RPRK/JE5mT0HQzBs5D/fr9VmNdgWm0jUVvGhx27OYc4m+NviPgubqj0YJ9iiM5uBE3knbGwWiXZhE8rjKRcfeGVoPUBr5tLDZglDdN7bR9Pz3nW5E20MfnZ2yToZEKxM3V0yd9lNn8eZs5/xsKu8Djb3xenlT3Ak2EDT6ju0HUHRVwEZI2tPuC30HvCHF8o0ndZ238vqYH++AYdvLa7O8pVzW5TS5yJXRH37mflF6/ZWXk+sungazVI0W4kAfhZMDXb4g5oNXxJcGp22dTs/CscxD4j+hS2caevrRDcV+eyo7U2guXlXUYgp3VJvHsnZZyHyQGOQlPRsjgfTE623wbY9bQjeGBmMRn9LYdBLZdU3TyTYIg/yQRXZDf0QxU5m5r9RUDAHZuEsbvmS313ieB6mghGb8vOZDcZJmBXIyGWJLuBuHG+NVzPlsv0KbNj8Xfe34YFWDyu3GxpVqUANVcHgh305MNNCBR0EFk2x7NTNurDuYJ5xAexPoMfTF/H+XteP75oTsnUnFAVNu95159WdHfTE5DiiZytr4fK/PE7mO2L+D0x0eSmm0hTp8Od/cXTE7srqi4HMrFr8V5Mvmjc4W2uI6ZP71fMtTIS4IOeQMIki1BHrGaeS/TQ8VJpsnjojPEAy/VNp0uW1Rkdg1ZBJzltiPNtKnOyAxxBVw6YOd/GMUX5QO8Aj3XHfvmjv4+2jL4QFWxDYt9szp+7rHpS8cXC/UiLYTU9fFCyNCCWG6hx/55gAqTSPQtFK23//BUe55IKXRa0UoA/E5pqQn94x2RXGwz0knFIpe0D834tOhYkcTbO+c2L//SE2V6xNkRR0IXV6vDDD8xsP7t2RPJkwS60VxSVCzdb4k3RQO+xC2b1tzA74blPVZ1oPgbN1guu++aElEFzSeivb2js6AlrP3vi8/X65e6qorUgvYi+WE3BuIizA+hL+05RdFLi3+9F27VvESdTXgHfF9pJ/eU//PM3v3yniBy+FC/S39wGLl3har1dsm52FacHgmpYGc8HlrPvx6x3m6Sc5/phcuitLPjdD2zL1xKL423/8895988mZj88yy+9t4PraSDE3867Auf8qZ2WesrwrnaRvK4fOTp37yMxg0zm3cbTa9hbgUSCSfbNPjxZg3a1YsJcRTzH045eU1SN6IvhZeZ8LNvzhAZDFjHglPNmvh7Qw+44vwdmtl2npweUng5PglttOfOxoIYZLzEdZULAfvFqsKhFQn0KzPEhDAdkVHH/w5dmO+sPqr7PC6zKhdh2wVU7wIzPKDXyBlXTfpWqY3h1WXDd3DJ6PV4ceMjWkay9BTOHy7nqkHN6ZVg9bQXOj35Uwo9PXj6XIhtvTDigcYKWYOHcZaOxHmpElAQzy90p2Yhk1YJQ+Jq4tSgpWFJsI5Vdmw1xldUxpkbnGCDsOiAuOzXZ8Ik/FWjf3UDMjuicpTQZgO/eObM+ahXM/Pm+wv28H3tCdcDH1Wf66R0sxLslGpbF8w7UoBqltXFsx7PaJPDTA74GOxbj4ZFQcE7FHE/uacwnxxfRLTz7Mz5vC1oehyd421tPlfbo8uGVQQ0fyxqZfqrX7fQ1P1fY6vlhnou1DeTP6GN4RWPJttVpfk9ffl3/8FVIF0XBA/pNYWWIZ5IcxrM5vofb/Lak8iLWxpjfe2xvAE/B37EZ76HpI+shxOfkSlfGe/WnXyB1uGHm3px90eyat4oK413QR/ixY7kJMwFeZSPihfx8oz+8RA/Rkfj3hY+GGU9CuKhahrvTth13Cr9rwqspf3pnMWUuLaG8be7M7PSKjyzEglrddkdibUK9nc+fwlIvEvzN5X08Vup+gFOxagipv2YgfouVBW2XpswY1l42FfElR/ZtyahkTh/UxeVqAvu2XTB8X5+KUSCljN5H2Wde4X/jyd58Ioie5ZocjqtPzNn3W0G4iDhWyM0JxBn/osMu0VmkfaNg+OXTOV/TlcDHoD7O673x9T399Ie2kyP3/stXP76GhuHZGDDV23k3yD1FHHvch9heWmxTLTkahCxLNNWvUjrO/Jaiys7Vj33as7Axs5a3/ivRhrr/0M/N2beTExW7H99jP32xnMEDGMbOp6txHWbDnG/VmX9j2bvQuJvxBjI9501m/B7343V31fSleydO1D/Mfr/YCHDuc41ZY3w06bT7qmj7fjwY+UwKH+9KI0Mk7juyFV9dwLB72MCMb+iYIcaHs7M30MfWL8xyyyHmqr+btNu2avDCrRZmv18/9R9fIqROv8FU0TaEGBZnFjbnuBiQUVPIU8KoKV2ktk+3bgNtOzWYSxep6C6JECJ9/yzwZDdiO+715An7I9sS90XnHsFXrABCpzVWH4nO+dHQqj8+5CzPIUJXXdbhFn4NYgzrb8ZfdAi1mS8wezHasTjrR/D5HkX2439fY7EvtS+CFi9kY0RcJ+tJW0bOgKWUL9oRDWWJ3Of0wAtJ43zQzqUC9Wsu3sKmy4ZSkkWY8RgzLy+O+LJ7Gghe8pu5DU/i6Rg3PrIqdmXmbmsGoyhHDZzI7kTimxRwejytZ32x9pgb21PRZMHRUWf+ykzyPPBxh6Lr7+/k5hfbrN8MS/2XP4j+LbOYS6/DE9BndZnx3Ld4D3ErgNhOW2KuirEde4mH0OTc/fHT7MeXVx+re7EZb7STNKxK2J+Enm0HMwm46o4DJKXmYXnmf+OdlzI00s5lcefnaBDNZPjha2a5qRj/6gcoeJsDXaS1ZXZzvkML582IYYu7dsyzfQVX9aHSdsbf3LH7UMV9MfcYmWPMHrcHBrNnypzfP9lwX6t3VXjcsh8e5UN6gxAplAu04puID66ycCBY61vmUk2Mh7jydlDdFJvss+7Ipx09JD/9glbvLDR5639TdMkecw14HwdTX2sbsCesE/e6PLczfkigezsOXtWHezz1TdjAwp17TBbu12R6NOy0+OyUP77Nx8PzGWqNKBDmp9eEN4LuDrD53n0WJmHCpey6bkBLjhsWvjY6F+d4hmzmEmYGroDEsIxOWlNQhueaSsxwmG5gqN0lMXfRa86v+1prOytn66W2LcRu/ZUhNZDC/HBFg2F41wacF51N0lreIu5/iwSsFb7+9F80Vui102a9lCKayMF08KUGJdXzxW6Ovcqmqo8pUOUzsGDp5wHzv23y03MozPYzhkkxAB6MjNLdvUXD2Zx0tGP5Cy/CzzsbuoUxwIyPaD2UKhqwSnVwaof//LN4pzvZB+e0LYj7+hZFn932vqZ4T0R2C2EweWtlCjr3skS7l5mjwbweVYhRv2RkfCw4vR7WJRykr0n8Wd+XnaiNUD8UEr3PeujPPxE8PzYFvFtyppURwKvoQ7LOEEEDV7YY7jCtyGaO57P9Y+jKCRP7seftHH86mPEAs2T7ZU6r+HkCdj3sWAB3bvLJQicI8NLCml8H2XKzGzoog48z+29hjmgEC9QxlTHgo4S655Ft0Gl5iKj6iHPU3VCnALzEN9m/iwRNc75EyfLu/dUf2E8PjhMjxMKu/vDpevBKkMg4sDA5HZAYXbc7UBYXSnPx+IpHD4wcllFS40krD8GYXb0G8iw4Y82xV3G/SC4nmO0Tj0s+tt+O3jGiB9Vm5m3xQX2WZHP81hOKft8/Py8U6N2RuMyIsu6nn+TdvPvSSmpEs41swUsOQ2b/9BotqhQ1uncDw8JgxDKda6ZS8dwz/2t/fvzdgBkPU7VGAeKN3ifwNlg64w2rnfRUOYG35W8qCOcuZub7dgeYrkc6VYc8o1UDFKT90aN8rm987cQ6oaMz7wI2VmMxRKk2AQvok62V8IPoRU5k2Hw3Edkvtb6t3YVVAjl+Tsw6ZnE84NU9R7UoJ9T/2i6a9c4rrIz8Qf78J7puo1/9ifJdtA54dZMbkBf7JZ3OizZuf/q41jx3dDfH11/+Qp6IVnic8T1zg6mDCZ3uxPCvejFur2kEP733ZMkQT3tplfz0RKoF61fMk+tyAk96fYk982HRemWzPq5ELLlcXLMrVVFEWrLeEX3ae9lfvc59bhh+RvpYjPbxffjhQ+Y/sMX/+LK0YxfmzPxi7PgBa+72LM/nk2dDWnod0EO1xUUr++0oSuYGHYqRz5XwZzCKylhrJ6I4zP5uD+0f/zhTvyczvjWnFc7n3R1ww8qtKMxRlIINXE/385zPvWA6f06ydnR2HAu73ubTRd7J8BQG/c9eurdQHNAVuQ0L9akNfvrK3/PaOK+7OXaT1Wk3frvjEccf82tnkwh1rm2IX3d7PhT8Ia68XXWnzeYtB1zf1xOa+S9bN+sQTVJvWvCxa4+l/WHNW1anFoiJdiRbf/mOB1XLm199F6tm+DErbapz5O3UE1lfL1YwXNK5BzJwtyygiWy+xWWzQXVuPplhr3ArO7twB+wq6MS4JWrGLuV1Qh+4lhSa7bLoF5daRl0UY6w5/jmbkn6u7Q1aSQdzEbWDbmQUuS/qMu/o+a303fVPNOupuD01u5g/buf/Oadg+d89Beu362ItXqjZpCzsHPKjXM99lFY7Rda7g3M95Uy/NF5A3f12B9H72jDHD61g/O6uA2hDcGa6YXpxA++9APL6KdHlR5aLoZaCHDxBvjMcV2Er78u3gCYHV3h8Ki809Yk+oPAYuczo+zzgvjI+tUOg9oyQeV9wvn5dIVfZk9a0VQJ2WX0cIKnvMT+naTDJdiyozi6zMN8Pi6BbGtcBEX8TsewIq2Jw0mYHgvC+s01xC8zxIjMVPa29QuyNUAeDKd52c00qYA4O13z63nc7LQwoJRuHmEgaTs8TdN/zEdddtOBcfNId6iP1TeyMo6yfGlPWrrX2xOpEpWLK/IFqWbJAuK7bSzZtRzMCmV7m2RPyM+BueB+Q1kZHFnggmOMBFgn0jfpkuvCQeTfv74Ay7xTmf5+foq6xdkVXy6ppWb6v5vDBgj43nu0ZUbIyGK4SuaOmuwLxNtGJT+rDomiK3YI4r7QrvqcihNXnvn6RbTWacSfRVYiKfSBTmacO4ucVq+HYKh4LvjDxsZO/nfq0YoU5UmpzvknUBKivnNnD3lrF2zyCCndpOWBY+n7cZegmA4TiibkCqYIpUcgEluaYJFz6TdxkZV7B57J5klBMVDTF5TuBZyIQEtCjbw7X7FYB1F5PHCN04qF6PXUYnVDB2mMhIWaHjwPUX99mer8PzNaIaASWp0XMPOV92/G6AJDCxsaylL5Rx+tWANnVYnJ21zXinx4niOaKj9ECtsHgUxuDFDg1MQ7OKxticReC8dIm4uuRxeVSMUVw+z2lWjUW2bRqa3Xl1mlPy2xwM/kzggKWmYvMdt57PvnLKAS/YJisw8eY9SutbyDMPYutU+Vt/s4DYvv6wtomEU1+jGoLPue3Sfzv0y2G62cVQupiMtu/YU6LhbkDvHubuMzOQzAm3zREU2wXzHYEzxRXxgHDkWxl4s9v6EzCw6zA4nlOnJh/48ET4xJaH50wGotL9nceWemMZKNZXzSmIHXqrXM2bCskRTBSf7uDMqVAUUiDtnbSPFpAKJ8YvlVe1lt5ksPsL8xRasmk+T16aq+bLJDQOa7N7zikIeRHsSYEjKboq+v4hIp8Lsy9yKo52xv+fcaj8Ti0POc3RU3cEPCyIy1nyUMLYbC+PR0//aXoEry5wuVWL7Bkno129ucJpcfmSwESpRiVAk2Qa2JKrgHUBd9M5Q7eeVeR6OCsY1Zeiru2PtU9sRPBLCQmP0tt9QDCDt/hhXj5GHdQez6m4+KwinvNnBLofeVLyH6rm+wwPQ/Q++qX6eVD4NMUtFd0fI4B84ZWb3m/eh603NoHDHuLT0z3DZpU3PgZsdDZQl2+/l7VFRMc+g1Wj6zZjKEAT3FfsTReOYV08S6AHk+4kQDTrhjLU7lDB31kmN9RXkyrRSjAovYp863IKOT8HuXIqJqIDn1jxGMCQgSjEDZkD49XS3dWFcHjuPyw9enRo+ngqwCLnc8JoZkbD/pH9+FC8BtPO6co6EOxczg9hxXZjDe7mMjev8MXbpgub+uXOe0aOEEqNU9cWt67GB0JDFSyj8acFzfRkK2LTu0MpBPrPZQmD6Nc0b6kTAnZZDEa1ofTr8fgwB7jVy7Yu8eCqsuNTHl/vqPxZXoHiLT7m7nrtW8uP5d5DshJD5nz4CX65JdOX31TpBKDHEQ+fuVcRHF/jZkDdTT3RBxPqFkdVz97DNjBse5wSg8pHutHnQ1yftTBGhc28w7RlPV0l1kq6uQHWT/6DA0jVmuIuTKxyHEqRM/+KCK8+bhYPJ7382zgpoL6ZAZsu0nEoDOeq0FddcuQHoT3wRwz0HzYCPLA1s+H3zJ6eVrahsorfFk85aBL3ckCIQk8NscTNLhPxQFA0Yd5QmRzkR7XFYTJp6VS/X63Y924GMau3VKZ8WdcB4d0tm85ZfhbWXxa2Bdf1eSPROEBay4+3LmnIVLfVNnLtVmvrthCW9cE4nx43tLvPdnB9Co0Os72MefzJ3RwJWwz5y82VlIIz3M6EVJl33a8fPc1hH6wp8rqVsRje8oNdNaHgYXDKGajoBUClIu3yEIbPD7kKKugaBjG4vYcF0ysRAtwXQlzp4TBe6kQFXQfBIb5yTvFf3gidUNCbv7YxUPmjk+QyOLLnLy+Iq70+qSZkpNShGlYiKqRNWj1EQK6cIxbMe2saofCyNuy8FIEaKkrogLma/FkJh8OfESmKkDIuxcx9n1gjlBMDew35Yau1reX+UXNWodLad9JKBUGmtKy3cDrJgrkEJzFgtsLz4BQ3SzIOVhXxXTY6wNUX3/62TPvaixdUeAHBZ7Oh6idaNCVsHmmZ2LZ5yMalpu8QlXUHZj1Ond8qpQgAq8SC2LnwjPoi6vawC8fh29/F3RnvNa1o8Idsr0slkFNj16JwrZ7k/X0sNDIhnT4sz+D5llAV+/MAXSQS+ZnKyt7e97ZgDl/M3crC+1LLTiGoKVLzKWBc75bLDo0+xem3+22GMa6fIKvBh0VWGW2NBWOOiDFWxCSinY2XRslQXO8wgLbdhkb+D75+Q/x7/Qa//CGeiLbkm3vCc067WrBzx/wVOVaPH52x8NK7BqMBbfaB7RO/OvcUxNSOa+B93cv2YG7nfdRDmFnTvC+CKB++yUVgu2yHYh4OcB22nyZcc8XRd9ch1S7Ri/jd158sNNG/ItPw6X5BtOj/F5hoyQRLXJv5NPW10LV2yU2i6r8Fg8ndH5qwp62ZO0oARLN5xgCt2rKAs99B/VLsic4ToeanZE8D7Y/7wEy9UVm/x+zPpDUA+hHO2fBgXoxVdrvHd1Ca8+sWoiz6WC9fej2x5S5i9spHqVdIqLxPBzxz7+Gu+QoP/xA7CokseRK/KrdzpeRee+VlH0Xy1uFTrdWoNN4qFsu9+uDNoVfiwAUQOu/bS6yzUcqv3yl2m+WZBuOQcyJgzfI1eI3IbfvLWbffivCWseEmWJutlypVEGd7RdPbW+avFisngCJJzNLFbaFbC6vd2TixmKX9+oYc/FZRUi9iiqd2kPLu5IKorqw1xoLFtAHQ3c0fFSvNzGV0ndrcnnrNUj3JoOqyG1anoZJBUZcJFj9POv2Z+9ILhyPzPgkYPKzpz/7YsbtQOIZfwxoz/Qbc5ksxiOWxvBnH8TdyveWhQ6J0FMBhwX1cdZMlMn55TPibMLC7D3YUEg204XZwVnPBpGuJgjM3ma+QqN4UhNBgd3HEDFkfpz17SnXAcR59417PvGhkXwB7sfliqK5Jjn174eBXssUM0s6VwHbVVsZ5vjJtuZCQJNsZwBpZ889rrSJR9tIIvQ6yiqeHPRAg/0cGjDX2pcFxnFZzPhf1NJj/SVuVxfmNNq3Bv38V0/MVzFq5/sddZNCaWHl864a/tDVXV3uWZbS+ofvMMBrfg9JWwRcSq/aVb0/spSu9pYZSDmoCtpUooQXdVYXLHlIGKTP4so8JfoE0/IdN/BQhISQ7dbIRn5jNQzeYcvOYq3z6eoPGzUfvQXzW5eZI91lDjJ6ayDG8TC2UzCaMjopg0jI+D218u1+DeGA1IyO06Pkf/ny579mkztoiLG/Qafo8GAeWd0CtkrvAxK94kasmZ+Mi+WxAumjXam04IPJDAUOsN19jsRW3q+A2QtPBxXkkWybxOMjNJs72kk3zIzigE0+xx90S/OW+Nvnrh1o3dfgBaxnvrsKgh9e1xzzOWdNv217aPSrcrWcmtYva0JD4qo1LFfPkODzwuRcrngO8fGeMFMaOJrjQ66e6yGnY+dQNBSSHcKOoxGjNxwDfl31AnLuy4pW7XrkzXp5M+B6a3TyDwAAAP//JJ3JuqowEIQfiIXIlHbJrIxRccAdoCJwEBmSAE9/P7h7FijdXVV/QrDA/3bj6Ze9QN1aj3AXuHq3Va+cDqV5lrFVzg9DGLpeAIyNCFuJP6NRw7RFh2eUhd9IM9NtXjoVor/bjQxCbEXiGJ0O6PutFLzW3zzIzQ2UihdwgDb9TCavzNB7K76w5px0b5reuABdaBxqZM5skNRlPVIyQaH7nUBmtlc+HITUyEIe3c2ZQCzcACuuSiRktjO996fkf761UCKh/m9rtjsZRTXZLHrH/NCPUZFFNtZMGyJiiakCwV4DijO+isbLL71BvP0F2FZw1rFtca3A9gqPBn18mJlLAh8uQ6bRfd8YnnC8H4+Av5od8ks/TlnLkp0fnL2VHxiMA7OFo/XOqUbee4/pIZ7Q911xZB7vWTfL9ZQgol2EkOtqaxb5KNbhrF9lvK9w6I1DuVneMSi+q350vxiEI7zvqRluINXQdmitYu1XjF0dRf35CzW8Nukp3LI/I2LdVo/hUlwN6hXkb55166iKtdvHWH8MDWIN2fWAMr4J5S7PUF+iSFVUh+lkI/8uqdDH2gUYFwLhbjxC1DwPRNqM/T5s1/nk3h8At91vG3JafU7799a+7Ra9w8ahGL2BtX6sAAgm1tT3djlnYYpB/OQnuieNafAtihmMG7bH7jUn6cgbWx+tedNK5zSlG5u90OfKK9gq/g5zv8xvEErTwSqTxq53+Uj9n+/mGzIRKbnEB3ZnX2yJCfL6VOsIJO5nDr9XIUtHhw42cLe/nrrbvPTWeoCfWAfYt8qpm+7tZO9Iobgh253qbj5vxANK9c8TB9EmiSap+2Uw1j7F0dJvg8CO+a5PFBR2JQjGePlFN1j0BK/6tOqNkrX5DuuKs4mGHNBr1WfyIe+90V36cw53/RLgfYv9mX+n2UtxQ+FKjVfRpcQTHw0Im4216GWXNkrz6ZX9TTzS4LO5oPllO+aqXzio4s4bR6FRIVLux7Aa7006pKV3RvfkciBTgh7eqBaPFjSueeODJfgltaTZhx5eGGu87Zfz3xACAu8sU/PLCrTUcwzp0J7Dqbt4qOWk7UuZ+FakB8dEaFrvjwpBhA3iBCn725oN3HbdlhRnhCLa15wCSz7CXnylaPxjtwO892mwPL9TWdWEO6PnN22IeMNzNxagKCjcGy1VBYml8/fNXPi6xCaz5LTe3AWWDnkVUdIufnH8yyYTDoSXcUXvTjShv6SARW9xQq5cNKawPUAtu7/l/oaIkmH5dkSJ3viwf/LGO/GP1a69VyY2XOSk1IlHYfXnVKODmE6i95sgSA4C9djVMcS2FrP/+uvfwTSGslRfu/KPD3Dinj/RsM57Hu8QtlQ/ncc3gArIjl361NyvN4bO84L60z0hKL5iNGniVVc0rn2H4kNQPNalxxyBNsQ0vPFo/p+flnlGpmbZI2+rLIGNRh4hJ9aflI2HXoDUNznqo/LTjT4tuZ1FthK1Gj+MVr64+/RRHMrqWTYmsM5HuZ6It8zTcJnH+Q3+pv4ZjvuTYczpstV89WPujXDdvOY//tJENEnzwZu0Z+cCdS5vajwYzLX9/L3AP3sBda/yXzm27PJCMfUJDa5uHs03/0FWPoLxeHxHY1oaZ0AXvqKqJOF0K7dajWKwusXvlUtexD4qcOxg52HmiAb9hUEUSQjvHe2L8jD0BKSF7UjNI5d4wwX/MuQnzoGUdjEZ5Dw6NWxLO6UW+yvTSfJ+/m7DDi31PuUTkbcUFGjxr9R1z1rKsu/o74TONum+aax0ILdGgrEOKV39DvFPRg2X68sOpcCUu9Xfo1s87Ui1uxtoPDoXBrLI6SEyr7eS/Ea4APtcVPzM4yHt1zxb9ecHddqzXzKfP78g56Oaer8SlZO1+5H/9WK8Ci+dvq+Yh06+fwkLTrdo3qq1Ds41ssnWu+cRXfng5k/jcTDX95nR4n5Ez++jwYenufXGAHc9TLfwSfFFj40pdSUCaD5y/3ny3D4+PrS4OlD9PXzLUj/Xx7X/6aq/41foYtjIvYezbEQeMe9ZiH7wDrFvXouIcVehBnjQKOwWP6usPPnDny44LOvDqlc9VJpX0SV/RYLiNQ0oprChXnzF81izawW1+PVD6YAL1Pt7rgaJFxMi6lhJR8kAG1lxmoTy3fzMkxSLGXw/boZdlGtoBrVk8LpuZRoueY/xGZ7Q8Llt6D7VCmO+bIRa/MuOe/o+Bao32qAJUGZHHkeNQ8oRGROs/JY6VWcZYwfMBit/3EKmZ2rJn4keQzblMn7QXCmnpiM5qpIe8FJP0Rhcl28Nb82EOmX+9khe5coO1YmG1YP09kYTkwK9jiARCT9PaO4HsweDPRTsy2Ve9kqRSmjlR5F3yTtyNatK5nLHIq2xz7r//mbhF9QXxshj7OqogBxKqOk7ZTRi3Lmo7I8dkfaCF5HN21AheTYDdtCeQ+RdfTIgimRh83mn3qJPxf9+cKZOK9k+Z/Zu/b9/x65DzLmkN7TkCxwc4xF1S/5CchhP2B/KP4NgMS5Au7UDaTf7ZuGPXaakQZtil7s+5vErlDHIt4RgbARWxyJ+OXGX+3stPOeDRj0zjnDf/t5k522ycuHFPUx+Z4ZglMu5MfdYgPdOfIQVzxH0VZKXD7KQ/K28K1rnJSz+LeTsWEXEMymA/mpv9LB56osfrQSoQw2offTVWQhG7ywfI1lZ+SYSvXP52o1f5i98r5yZpk42LLwDh6c6QPPJDiq4DC9t7f9o62bqsieLFNSlyx7zl1D7kFmthb2CWGj2YvmMKtm7hf1Q/nnztX8AvM+5sehhipizFwm4KT1T88UJ3fQwuwx9+zei7lMul3x0V0HSigP5Lfxm0g2pB0sGQu1uWUN0ns0FQqO38TNwi25a8/nCp0JZzKV03tqIh5OoP/D+hU/pcN4yE/bh9oIN7WJ6rNB+r//PP21IUY5Wph/gf96e4n05nJ0sBDZbHDU6djdmw79LK68I85ehRuLhrYZQ9udu5ZFoqkZBhUQpP9QRZdwteblBMwntleel7Jku75iqSY618/vosedeAuRb5yM2God0U33a+cix+Z4u9TWzbyjoaP39m4ovjHnNx/sTh0M2nDxPUE+4kEEeXPpQzw9j3qpEReN9uoZblMRocu5Jjtb1LizowfJt64ABAG/ip+VWaAyucgGX5L7HoZLKabfqz+Prx4vf6cs+11p9rW/SRjlNx0IYTBBFjhJl4ZlEP9kcDKfrAftXsNKFV02w4b5+uJPiKp1LuSNQ7vgDXvkpW/ikOJf7Aw3C+IxmLm+l/9frtl3P899GAgQydUNY1ofoyQ5qZZn/odSf34iNTZ8rut2kVMvtOVrWT2yl4181ESfsltvolyqQJJ+WjJc39aY21hRo9tVIcaOf0knx8manzeVnqc8/xKQsbEF65AZNtHxrEHpSEnATb0u45ybvxpXXLfOT7Pyxi3pT6Wy0XI/VShKMecoJr3CSp65+xyMXV+FgkG8Ktr9Jl9LPvJyjIc12KC5+lb2+UgsrL2vVczW3D1c+gvKj4vC3rD/OZowKxSt7IORZ/9Lxw95neFidGfLp/WgMgfNU4KXnL2y7fmUMBUwSiI/iGs6H4uTNoo2OiOGpw4E+knLIDEMHynfCmifnKa3aChKrmbAVcvX/fIYWPh1CWR5SMZFJDsp8OtLbnNgzi4nag82JT2xvNM9jQsgApGz7pYHm7o3t6JqHNU8TaequM50H9wXvI1dTc9kQO3a3VofHJoz+8yn+TNx45TnLOxelMfc1J8nL+lK45FHEdodc2i15jho1ytPp7soCaGXZ4jDdfEqmq3IOThOra/8b7PLl1V08/E7hbdZwN8KuKnbV5fjCWv3+pX3EH0OkcHEY0vEndJQF3g0t9bbc/9drRe/H4LHxI/w4dMSgK39b1lsIx/Mn1Kx82nzaPlEiuS5ptpkZZFZj0X8AAAD//6RdSduyPLP8QSxEpoQlM8iQKCjiDhwQUJEhAfLrz4X3c3bv7luLIiTprqpOunZej4JlxU+g1LgjDrBrsmnc6rxqPtWS2lYo92MpvNqfPvhX/54HPxIgWrwz2Xy/GXsHcyDAyBwyfAYCZlR/7WNVMK2Y3rlCNEky7zTFT/kDPe6mKNimUODh++st2HhXajH96n/HJVUI50Yyq5JmzADdTDxRijIKxpW//OFF/+IeQTe+zobiFeOGuuMNBqxiJwXyiSOs+MJg0/mzKOB/2lMg/feegu3tPlBse3ovBKv/KFN2Z4qN09wPtXUKodlFKg1v/WhS3L6usOrM43r9sx8dZdHgsz2nFFnfpKa2S1IwH+QXtS/ZZC4PATiQ35gReW2KCrCMlgRWkffCgQmaYN5ezncods8HdZPgApanui/V9urvqQ0MgX2F4cJBIVsUxLVx1Q9nyhy4LceQBmo7mF+y+he/N2GPA8g3Rd+e+Raqwjmmxu2xJMuS8RDuZb6juxeTzeHu+zlER/GM5vsmTKZcyCrY9IuHOFYSc+ElOYOYq65Y3wcxYAci3WGz+mFsLeiw2dItD+4eVx/Nof81mU1wDI8pl1C8P5/N5SaUnfoMcg0prtEEa19NAnUVz0TOm7oez3UEwXuDeiSv/2cG72GCWHM4BJL6VbNOlC1wCfcS3YV1a47+6rpjGZFNpGC/mNN20zfwKNpP+vf+bqoxwQyGB2xf3wV7Pfd8B+Gcb7HxcLJgOZ4AB9gt1LEpIzOh1+v8Buv4Ym9M7GDeb7MQuu7pTbWZRIzRoIKw4HyF6up1LkgXnEIobmKXOpdHARrtc06hfDyEGD1WP5/LVYhh5lcJtpLDUoyaa07ypWIi2oRplLB8ihqQFJ2No/a99MvFPO8V05FE7J7U0nwZ2kzg/v7tsH7c5HXn8d0RgrehoUmCa8sOiWiwUFSD2sWSgCE3NQcyw/0Stp/Dfo5ImSqxoX+w/WBqTZ7ig4MJpwbYGAHoh8leOQgyYmq9H0+w1P7AQWzGAg7no1R8Qi99/+Yrdj8bO9nC3B3gbVdTtLXgmy2v27zuW5wTrAXdHLAynSEwVKTRML89i9FvfQU4YrzBaJTbZHJb/AbbKLOpp7dGvey3eQOsYBqp1Se7enn6ngXJlZnY0vFoMheZy3oO9U3tWtv0gzzwV2hG8YcoaE/B9Dp3HlSqrYyNwkaJIMhprDxtbY/t7LUEjK1+1qy8P7GL15pVUFw0eHg5B+x/bDuY+LDwoXFC8jo/ACDX1b94nx0Usg3Srm6fojbBfZ0nZPvVDj1dHka6ufDph4ynyU6W+dXcoawbI4GZ5SZTqC+aGgrIxNry7NmS1/peLZ3Kx8EGteZsfDwEj0pyoeb41tn0Olc+tKauwbjeZMX86eQrnEenwcFlo5pDUBw09c4OVyJfZrvvWl86AluaZLKF6BnMihbw8lf8DGTuL4bJx9s2ht/z9Y6Pjghrpoby3/zAR3pMigkZdwUqczjj+/kuMKayA1RbWdvQ+OX4wdf4eCFoH6lHVMqv+9RmMMHbsxKRcD1UwfgUbw34iq+Bhsjsa7phnKDUpz2glnzC5rxxkQfMbZpS84s2PcGG4cNn/0TYb8cjm4V44SCoeI/aTDOTmW2KCh7IUNLH6lc1v88CB7ODGSMhPkzBKCZRBsZ+N5C2ceZkrhv9Dc9Xh0c1jT71PL7SATb95OF7/2iScVd4HJSPSYh3lpoHSxfcEFQ3ikJ9YXz3Q36VS1Bczj0S/E5KmB6NHLCUMFx7gW57WqYzpwR0viIa7YJieR/8HMp+C7EjnHI2by+PO3wGmYatVCwTdty2KWzOekmD5ysIuvfBzxSn0UrsiJ7EZn3ceDBtTAdr0q6oV4cDHnBH4lNffZbFoueFA5kSnKm7FBDMe4g9+OxrRLW9aJvbPvNTWN9ln5r8Vkymm6plUAlXjPa4m0zASO5g5MTd2rs4NRedKY7ijG+P7khE2KiOPgLhIefJ1LlpsBxatYR+x2/IZoOLZGz8qoEKn38xakeu6K7TrYVKeFTohY9K0F9qs4XSxDloXlqxJpUfV5AhMK3/98omG5kDNILmS9HHkQqaT/YbxumE6WODi4Iu/cyrR6wvSFRx2s+3qdgDzelVAm6NXiytL6UQta5AhKfDfuvfgY8Q9NTeTaifUrj31VqQYmpJz08yXerUUNbxo9HwuSZ/8cHX/R3VQ9U1RXFTd794SeqgyfpZlAsFCK+PgQSe3sFyv+1aeLmeH+s5URsItapmQHj4HdoQ7Wgu7YHuoZ1sOuxPSQVYF5wb2BnEppaaZmxyedGB2NwLiG3bbUE3GsmB7rQh2oxRak6fM3zDvSx0OLDoYLIN43iQWX6NNR5QNiKyTHDNXzii/D3oRil5wwt//ODIh33N8vTowfD5KGhUcQaYHff5VtMz4qjtVBWbSf8dAHHSAeM1f0zTw4jB+2gORCLP1R90s7OgMnIHiuzrXBN7XO6gRnxNbfOkgVFL2B7K+VgTGqmJOSbXuwWRy7X4l5+HeQhDEBe9gGTKOjb1Mc4B92xkfPL8uJ64cn9Uralt8OEYXus5F8Yj+OUbWaeoYO1ctDDs7Q699e0bzC7xS6DXn4oA+n7XC3TqVv7cWp8awW1gtD3DDiqX6Iv1x+In4xC89jDb5Du8c+rUnAV5dwXn5cNwsE9rRoL2MSiX2fEohsaln8I25kBppjH1OZoHC+kbC/pWqpNebHOTDf1RA21c6YRt2o85VWIRwjTPBcI/hgMbklaaYMke5eq2h1bn04cEfvnE7PRbT/vVz53qrYIt7YrNbn41V5hFy4J3sR8BdqSfBV6+wYfMxeWeDI316QCgLUbqEJb14n0UAf7wo4OFKqF5evXgLK9+vIfODCgbrD00zTbDmf0NE3a+EqQww/4iLhA3wXKERwmw8vpEc3HhVq1h3RQlbkP0PC1STe/C9goB0iRqkvzbT70dXWWzfBHs7TrBZMGRddBvHphGY54nc5/5R7VXNi1GWvsFy46HE3yeHJEafkcAaTlvgerQFjRXd/d/eG971k7YV+HVXOd7Bhwc7anOY7UeHL5pgVl+CMq9rx9Mh+q1KMVjLMim8N9sjbcVCAvTxNhJi2Rq7k6rMPWMcXjpzET0geGpZ3pOqBnVGlsuq7/wGh8QxF+3Z9Mm4iHE7EbN+bOej+ISBG+98yDC4dYm40P9tPCa+gbWHOFbjJkhrfndOhCg5Foxn9P0roT6McKGtw8CNgVqBt6v91pzRl09S85N+cOLt41es+k9F28IKsHDrr7ja7IrghR+PLmiOvyyYum4AsGiUwqyOuPURHtLnrLTA4XwHDwCkn1fC4wvnIsN4fjpl3lJOJgsgYXDUpbAQu7wDUN3auiu3ByK2nB3d5DfzRtixUYymaPrvEqFavrl/2DYKPr0e/4fvg3mH57XSG9hH1vnfp7ikw+pZ3TU3LSfYNJyyiudMdi//FoMrdU2oFRdiiSj0OrRiL4hKEfTQ9PbGZLWON4WcAqEHelbTWKTlAQGrKeqopFLv/VAAjWFe1WrqK/uuIANUlDCawV9aqSHdz1pZZtLYfNNsOlMezAfjBxBDI4N1fPA6uddoUHVXdbedo/H2ZzL22UAWpG/6E7mnVr0n70n2xvvi3/4kzynrwai66ivLcKdXrDcS6VcbOG5tuazmAgvbQnW9Ujjdb4uuN13UL85NfUEwPfLFJTNj09Q9LAasMjMQr/5ja1WfoH15OJRPU+SRePIisFsfUYHQL4ZIw5f64Rdv18H3utwiy35RINFcCIB/t5ffhI//VI3JoSa5zk0xF+3HvZVcYSG7cU4zWMZTJ1kXsHvc1MoWEE7q2xBNSYMcQ/LYtPp+vZ/fAu7Ay8GY2ZMGgCC8/mHV45Vf1WeJ0vE3jrebLg3FbSpY9Bgnc9TIXRQidLzAcFUUoOxtToI/Rvc0zy6HcAC5G8Lb+lZRN+VPxEwLD6kwWGHPe5Z1cM6P0B3gg3WHsl1xV9JBcXlqtE9SNViOePv2njr9cLodm8BkzacowQG72KDua+a7Z57Am3XAjj0ri8w/vCc8UpKpGBx2y/BcY6hmoYWNaZRB9uHSjt4yroDRsfD1lzu39lXQ1Fe0DsRh4CJl5MP3kvWYHM/D6uGaGTwbao2euHzMeHBpb3++Myaj3zAFzeTg1L8QjgUSiN5tYdGARCYFv7hpwFXngJ9RX7jYAwrMPzyl6o/rjQQW8VkevTiQKXYAMmy3tZk7Ne+WEl7ofphJmx5CMxRV7yJnU1F+ulkur7q2B+dyIw/1hOuPAms+RiH29FKJkUWcnnl16S7WN96iU7B8MMD2E+7Vz18Lab9+PmPLyZLej1kkL0ViWzhF4JxCMZYWvEn8sbkZTL30y3w9ixFussbs+ZhFOQwu20v1IbfK2DVOeWBo1xFii+ND9ian375D/v3QQ7Gc3q/w9xfOLx7aUXAWi7wYeHYIQ2jfdQztDVKWLMhp2jj4V5oD589tIJlxFZX9j3x9IMCasXx0XYjcP3wUqdW3cDNSG1P3deze6xL+IYGQyzx3/WgjEj6W2+OcFLArI3DAJPT/kR9BzuB2IjFHjycGiAe3fx6GoNOAs/i+sEGU8x6jechPCqHC/VXPYBM3GyosVecUaJ7erHuJULghw9/8Y9pDF6h/mY5Nbnt15zFB1QULUMjmppyXwif+30BQWq9sRWKqJ/2p54HqTZoFPn7S7LQ+Fwp03M6Y+90iNgaP9ofHyIdK62+hRdFApZoHLEzlt9imB5+DFv/U5INz5pgXoKpUx/Fvqaetm362XG/Dfytb17HYzBfrkxRD1tfItPecgM+aaUF7E5KRUR0jk2qyIMGOx1DrBeXezHXk2zBzaX9UKQ+v2x+irc3DA8Zj5F9PdRTdfsusHz3GV75hTkVt4CDd/1zJ+eiWfuqHUEHXky5Y3zwTyafm54DXxN5U72/VCYh0lsDu+Eo4+j+EthyMK5vhU7WhcbT6dGzRkz2AKbRFrvb9VzudvVzvX6zJ+JvMTHp0ssCOBv3Fw0+4cRGme0E2LqXFq96WM1CIpaQ7yeCLbxv63lHaAY3eyOjrpYKPVPZBQI8DyckLMc5GJfl0EDl6fk06qKsmI7XgoA04R7YeMltQL7zJQZuVb1pmEq3oJMu8QLF1f9XrYIGLMC5IIiEzMWZfMpqdu9sDhq2H5P6ufGDSXR2FuwVtaVnefWGUR3OATqoDGp5ggUE0g+WfJ/chpy0OgfzrvAgXLjtDr/bQa/Z4XS4w15HAdafl33yvan+AgdD2eFwh2tG1u/Dy0ulSGQoZyT7jhNU7I1P+JVfj/zC3eXvwXBptN5X5ONXDFZ9j+pJdqzFVR+BxutQUmdbXdnMvx0OAlhy+Mor74TV3SGFKx/HTi/XyZxNWAK9lZn0VGc6mCrLn4CiLBdCThYzh9/722KXR+J+TgMGL2UFxKjZITn2R7Z8DldeqcrbQHffyyeorFIq4ZUZM9bJJ2LD21c6qL7jnmqT4gQL9y4d9auqV6oXs9azn/4jW+hFd1xLiu5wdTQwtb6LlLSz62EPlBR0uAp/+SmZFtnxYKvrEkb4ahbCc12gP/1TV5Bds/RaLPApSw5GzXCsx3fzvishPyp0d5lf9ZQK5zeYUW9TN9g5ibj0s/DLt/iRnz1ATvS19uZWZLRNJq0QLWVIQRR2OQ0z0S5mCyELXpThTMPjXS4m/qX48u5i5Xjlk/WaX+/QNLuMzKHqBuyELzy4gcBBqlV9GJleuQFOy4VSN4BNsYxS0ag3LuUQ93GypP1awAB3/XUns0l3xTD186Rq9/eNbPPNCQw7z3KUYyAq1GNjy9i0pOkPLxGFuln/p284mVjSXZS+A5J4i6Y8yehgBEnP5p++5hjFDrskT4KlFKMKuu75TQRsWsny059dehypjs8dm1yddGAfFAEO3peFET3qG+XGsxQ988Cqeew9FbC58g/0ZbpQ/+WH95I35DlEnTnvyCeDjfTer/neA0JURS0sYhX8+HmylDdSgfD4HsjWPJWAPaf+T38gIMvEZHiK2gI+jVPRVQ8pmPPJjmCIuQkHp2BbMMPV75DbfWYkyK4ezI1fvWH7OHpYezthIW3fYQMX8D3gkBFojupohCr9dvqqx5zqJSKqD9haQzCj4N6zn75OD+MT27fLBUzSUBnq/O4ivOpRffe4HR0Y+vCK7nrxYQSO4fuPz4VCWRVsuA+V8t5veereNqyf5IG/gz89v95ISf/TD+ILdGlSXkgwX759DvNqcvChDctkxe8N7Jv6QKBQVskPD4ELfXHUW/H19nSSG/hup+N6vZawpzqmAE3GGYcL4ILrdoEWPL/mHhtf5QCW4FkusBoPDBvHTgPi0su8bFPLwFblnNhoRM8QnLavD7X8qwbmMRCHP73+IBdrb2z7rAD3ETtoknagnwA7KGphgOOqR/XBqDrfPdCnoqP4ni01u5p5Azo9gmSYnnmyXHdwgAlgCTYO9rVfwidAytZHEYJXiQZDtD0q4PBULuSZc1XN1voFDMJritHzsfTj5dtnylKUJi4enG3OahkPkOXGjiynu1cvR5pzMMAtwugkzmYvO7oH4unmYDOcDCaC5FaB8SxHOMysT0J89I7htgYWWSJxAoMicxlsly/G6ykIUxAv2hFyhyrGURU0jPmuTGB38a5U+x6l4PUwy73a0pxi52yfwbApuwkCWHEIpvbah/kdtnD7cSDFO7hLhB8/Nx1FpJ5lvOs5/24FqFSiTHd8pAHQH6q32iRiS8At3JiL/TQgXPVfjDYg6tmR0gkm0qeg+BUYtSiGYwftXvF/fBYsn8ORB7NAeOzsu66Ybvu3BNb6yerdKQWL7fYQHrjZJZtTrQfb2s98ODUQ0yKd5+IPv6x6PMVqu+2/nMMGCIbrGTs3+8vYIn2PoKMNQ2CfrufJRusN9YvSY4enHFjEcM/D4EG2SIRXqWeGu7v+ff9Xz2Ix9SXAnSWD7g5nDBZcfH0YCqGJz/tZMMmh3ZZw70UJxo9g6mfNDSZFeokjEWUUsr/60Rq/ySIcP/WMvIsAD6BqqZNYJJipXYRwDIw7xfKnZ+zpXyVQvr/Z3/15EE4QrPUQ7FDnlXzBu5nA86BssC61u35Wy3wAzfgQqb91u/q5tWUDfva8iej8Nkzhvo99iC80IltRj4JtdNKPcC+0C90bNzVZkuqiyQRzAG2arOlnWHp7yEvfG5JKye6X6OfNJO1ivK7fXjx/TwTGrOXQ5rvpkhe1CwSvLvPxD//8xe9ToUxkzX+9sNEOzV+8Mh+vd0CiU0DgbmEH9L5JLvjpxeAPv631q3e53xhQ1W9XNKcvoZ/jFnhyf4gXGoJjFzD50Xrwp6fbTKuTQR+rI1Tlp4+6le//Pgd29IyxLfJ9wJhdp/CYwoQaeTwlTLj4A/zVA5bt81svpu5UsHjGIXUU8gbke15ikPpHTA+1JgRsuzmE6q8+5d+HiznC9wbBvdAt1EvFL1g+vROD27H1UFOWFzDvnqICf/q+9khgQjbRzgF6Shh2ZPcZkJ+eLW+lmmKADv3KBwj86U276bOAYQeuJUStLZBlrddMxjOKgVpbDGMx+gD6UadBPU+KhdSY2wSsOt95MN/pgN7g2bBVPyAQQf6OdbDtk+nZXWJIuCzHP7w1d4GXwaY7bChK+wzMa9tu5WhEPRI/G7tYoAwd8MPXx3os6kl0dOvHR8m7fkT986dnQkNNUYsPBZjw6ZLBIzaX3/qryW+90jaQsAE8mpByLxo//YkM0X6s50Mxh1C2whfFdn0riCDfYzh7yYmiNR8xFucCvCXBhqIhCX96ngTJ/E5WfeVuzvzCXcFa70XzyFPA2OM6QfF80Ohfvvvh+199zFnxqphVc6jG2YND5GQl5rhJ1PavXmgKRZK8f3xbMqoPdrGKTJLTaQHcWTHw7nCmbBSGCwTr89Dgup4RPlb1FQiBFODE3gV/+qnKzX1Jvm56DH75R0b6WyLy/TUmSyacYrjW83D0Wbp+ER5iDG+7J8W2tWsB2coBDzdT8KYrvw1+80FxlLtI5OL8rJdfPYR/5RxFo+wl88M/I+XLnyJsmMLWZGs9Vv3Vj3d4+jK6SM/jH58957MLtt5xC+G3id/Y9uuhXyq140AvWDpd+a/JFjuTQDuEIvZioVwb7NQt+NUTfFZa9fTj54056/RPb/E+agjWeiFR3vHHJHm92/9vfQrk/95TYKu6R9eKUzAt+H4H0nsBVFfGKBiVhE1w1EhMtWPxqYcF369AP669u7qQr0fu4E+w1pIPkaPOY/PxtusAUxePbL9WUy9DtvNhE1MTB0bEF5Nk3jiYP5UtGcrVf26McgPqwcMmr832FkxQGyC8sfORasNN61kX53foheIGSW1qBJN0Le5Q/foLteP3s58D8PUBeXkyaQytZmPARB5qpzKnBb58kylwM08unYNI7fa1SWgXx3coL9wGdXhT9i/xwhvQTeUjDS9pmdCpsSQ4YdPClmkf+1kS3xzkuimnZje9GOmf+w5mvLtDLGG3mmBCczhOlxd13t7VJJeHqsCyi8443BmbgN274g6qZ7725mVxMPo74gP6VSLSaWed8Tddb9RZ+GTYY7PJxFnfKOB6bXjqjtfBnO7xaQHOc7kRbvMZ6ulAJh6+vJ7QXfwtwXTTdw1sro6LtUi6FHT7LBQYpNcQH/RzlAxXVdlD46kh6qTLK1mSjweBVQwRdg9RGpDb5iLBcjyZSNUTZC6x3gwwsFdOAg9msaBbESogFH1q5LcbIE9efEPrm59QNreUTVdViSHdORccukESLA/50AHbRzuSNUAzlzZXPADKpcdBbOyLOeKkDMyQn8iS+61J5XulQKUFHdZ5yynY8f7dw1FoVbw+H2O3wwnCmXotkvbHXTBN4e9crwGphjq+GMKsOSrkeLbxrvR6NjcEVxD5YU3ml24nbKi8K8w8IlM/jIV+3nReDKWT6mK3Y69gOBBJAM2Y3HFQo1cyq3m8V+yzckBL1eVsmU+ZD+R4FyBeBHq/3ftWBq3EUyniTKEegT/EAG0bhg27nk3iHKUYrr9HNZBYiXCsiALqJnKRrLxJPZ2atIRM6a4YfxolWT7bGy8JTRdSJB+Ketl0k6XGxLpT603DfpvphQdL9r4iZZ0v4jEVOWWbLxp2u+MDTBexWOB3evjYvKcBGKZEKmHXixds9N+FUSx6FdTljY53wfFcDyBNEGxOAl3Xj94PD1HRYLYPvoR7lxUY1Et13yiO8sCuHesJS0+HRQ07Z0MEy1CS5bY5SCoaIoLDFPFmtzkoDRA24Qd7oTuYdMwkDt4gyagRuK65/NbLi9c5jDfvpBhPZSZBdZP7GKuw6QfjkkkQHacNNQ5qEEzXuSjhuh7Qp9O7YG6IWwGym740LGPVZOBU5PBQ9AbWmfg12/fnfIUFsSR8NuAU9Mf7M1bd52PCxkHtzelubzSYw8eeBnYrFKMasQr6MEkQ601Qs2NslMq6XtGX0/f9tCXKHcRadqZOqvkFtc8oBkpmC3S32ovNinvSYKlzPN1JfgNYJhQQ3E7fEIcGJ5h0POAWIFMNqJtzX5PyZsmpSbev6CX2QU+iTYmgHPzl+G3QlmC3BzY9awiYs5+I5JgqMIJVQRjbZzU9yiGED6InONgHTT3Tw8EBv/H1tEcUkNIfFejWuU1D/30ypyJp36A+2AVRQzCak5yYHIyroiKT6k8FrVADIYtOItUCvCQfO94Lang5BHRnGDs2rN+HnXT0sbeuXxY33wrWahPQGH9k0DneoQKlMHgYHdyJzU62lSBffjxs9mZRL3jl8MdC8alFSdOzzfkswBhuVGpWdQsmARxCSDb0SC3r67NtSfMUXk++TXccC2r2LR8ZLKf7hLGnO0yYIyLAdhBS6jCZmvPuccyAiasdkbuQ75u7LRqgC/QXjQ6KHdB1PNXlsGmRtJtz9t36jgbPYbXFmHF8QaWiaOEsvDKalJsYzBuiEgD54o4IP7dg4YG7wJOKbbr71FHN7DPawzx7TtTHJUj6zFAWcJhmhWoe8/qlgH4LlcFMCZA3XDB+ovotb66ZQW/XaRf0uWMY8DzvfaLc62sy5wQ6sOcr9MsngOVxuagPT7piVygscxIXnUC4f3AUFYFcMzkOfZAN3YUw7eaa2468FnBRdyV2vxgHiwMWokjA5dA7gHqxRJsyVMOq3VPP32vB9p0yC/KxrKHpc/eSRdI8D8oBWLD1kL1+Ui/dFWbfciSTczsn383tWQLIkIut/WHHZhv4EvAbvqHh7Zuayy++7fmPgNIFawnZ1GgCO2vUMEodD5D5lHlwIfeM8I1UMkLWPSHvwvURF3Nw9eN7d8AvHg+izt2JtVfjs8BXuw/ob70u8Lzw0PpmJ3xgNjIpt2rif/+X4k3B+tN3gFubbshRXsae7Z95LLf63SXwdL2Ys6wIoYwDPkBQuHXBHz5RWrnDv3g06348gOcrtDAmOZfMmV74v3yKd66uA9pNdqb+4us+kuRkCNy9B3ZfUURfdDUZCeriChe3CJEyPId+MRrNAFEdnElrmLXJ0vfIgWchbNCTiTuTrf8fuCpXYpzHYU0967OHd928Yhseq75v1ubH2Z07YGzsWT1GoutAv7g9qNbu636o5nmCK37B3iV5Bq/X8DyCQwQVbEtyWS+F973CtB917KUBz0hpS1f4Vc830q7Xl5+XvIcM70NqtUkFZsW9afCUOWjNlwEgTMhTsK5vAuguN2fxHU+wIxsbr/E2WB6DosAIRwJRvtKrnvPdWQB3LtUQeEPVnLZVQWDpJCJa8QtY9CWEMI/U4y+fFkS+AQv24TfCF+mm9J0/VBxov0OHneRcF8zbyItyucc6DT6FUUwHLbKUZ32gOJLFmLFS0e/Q2ICBSOvzTMenGwPd0lKM64NVi5XhIBA4IqW69lqSUSnzUhXHocaxNafB15cuEky3jkNRaJQBi793DrybK6balpJVE8sGcIg4hbADnFmHhf2gXKfyRN3NODP2bbUBSrL0wb6iiQWpJYcH4+M1ISpTtyaKZwngG3U+3rFgqJfN/ZKC1QVmxbvHhD8q4QSFioqIP5gWmErSVWCdj0hxtRXG+Y8GZkr6pPrzvXKe23yHz0UKqS3JWi1aRXkU9mXMcBSCKFh8WR9g/KoR6S0BFG2v1hxQDfeNphWfU3L1EEDmJiBLSh2TP7C1r1MxRDQbviKjXf3u4IZv39gIcvibL3do7vYzDYi1KwQaewqMSrOnZqblYBQv0FDMZ32i6ElcMF8XM4WVnwLs+FlQiC9oKyBt9jHe2z0splrm7nC2NhP1xPDFFmHKHaXPTycc6QkxlzAP1vB25/Aa7/vyh1eq3qMUXSkF8yHtfbjpkye2vhnrZ73eIyhs0Ic656YsWD2cJfiLv0GN7GLW1dUfkrd35GXWWr0sodbCp75vkKiV72Swg08Kt/a4odqRqAmzbcUBu1fFU7PcLGyqBIrg1euPROx0P5h+eMhL3IyoW1tkFLw/DQAvl5BuTNz6tvINWHy2JSqvrVWzhn486C5Jgw3rriXfh+21cKe/jjQIwjDZJpblwWo7BnTN3z2xdiIBsLQKWqAPKnizGy3lWgkR9dN0kyx8OTjg+tntaSoHajDf0d6HpDIjikWn7BfekH0gXcMH1av+GLDnNEMYvjfJL//2C/fYlND2Ep46xDCLH14G7j6+YH/3pfW0FNvVa8zyCV+4UT9RcgzB+n4JOOy3BRszCcIv/Z5oeNrVxeA/AQ81dVJxxilqP9D9cw/bL+lQT4QmYTtTt+B+DBxseyarP8Z+jefDB2HvrU1gCDnt/Xf/dT6A5W58EYB688BY4aX1HM8r/sUjqkvna7BYUn2HxswbGLv8rq9rXg/h/U5r6sPvvWAw61oY8t8Ch525NxkxDfLLB2ihAmYzUtKjosdgizjXdNnSAT79wzv45e17wcynCuLIrNDMbBQMHh8LYB+eY8J1KK9Herg48jp+ZB5RVRDL9mN43px5wpkA9MuxeivwOo8D1fXzWLAKDRy0j8sLmV+u+8c/QlNnSFz5BXPzUwWkK3pgrN4eBds8dA9M6lOjAd0pJkN3U4M/frQD2a4Xpc+SQ5Mz7JWf2MESbyNJ+cVPl2lVwHjR95TP7rWeC+2NYH6p2wpyo+TQ7MkYm7WkCwEfAw1xp+MISDs4qTycjgbNu66smaiWnbquH2xnXdcv45V7w+3reKVOP8Tm5J9uDni/+jfWhklIWJq7CHT33QHBYunMRb4BRzZz54Xx/in3I4k3e8A+5USRcxjYZGhFBvyInTHarN6JsowawLOBX727ynq68d0C9/Hai9zdGmzbbCVB2uo5RNTT34AhiRDl3jotaSix+rkj4wQ46t4Qt+Khtz+s/q/tVSVEy5/B8BAXA8KBI0iSzQOY0dfwwOF78gkxWxuIsy7+4VPSVTezX7Jt4wPufvjicLg8k+Yl7fdqYLcZLfaBVbPx4LbwFLxu2HSdiDEjUI4wInxCY49jwdK/kQW1rHPI/DqCYIJ0T4D4uQWI85QE0Pci5BCn+eePzw+73kzlH76fq543x12sdnDTH55om+p1v9y/fQeegR5g2xSE4pePoBC9N1TT3n09vHq5+uVf6liGUrCh0u6QF4SSTJcyK8a9b+WwSMob9ZsjrUd0rXMIauWMgwczE/YwDwYkx5NNtRXfUS/MGpjRyV7Xow1++AXWTrmhu2M5gEW+MUe9Nxwk829+P5skVI8oNPBvvk8CuCC4jgdRXXgEPBHrAW7f9W++2wENp06Dx4u6xdpBe/XTwB+vcON4HXV5m5lTvHgOBBgK2NMblZEh0314X3rrp5eY45mHKeS/XkbOObcz5xHteLjqDzgKzgJjnywmf/hyzOrBHIuQWuAp1y4Sj61kTr1vLD8+RuMc1gErnXIP8fnFkXZdL4u79CHcYHBA8u3RsCU/SBB8lWhGm5WP0xabCG4u+5Sid2kw4SEfWljGU4tXPcxkaY5D+GrjgBrvxgj4FZ+B9Xmp1T/dftEDvwKfh3CnWiweCpYUsQGvMx2QStmODUL4usNkL99p6NFdMb+GZwqEpg0xjqS4Zy+vIT++gZ0qbwqC9nD1Ukt7NP/47uWEFkUxJ0ZvX98Mlt/7azz/QwNVtgs+f44VOHPejajLdQ/Y9ROG0JGjEH+WJ2SE2pUPQeLUGHeD00+yMyLwaOIBBwHnJsuxy0KlqStx9fM1zbHaaEdV3ax9BAyxMV9qnu9h+/AR9VyPgaWWHAFU9y9H3QC05pZHrQW549Ogvn6N/+l/fGoM6x7Vol4yw+cgGjDBO+mm1PREt1c41IZPFnAngGC3gbAicUH9l9PVs3PU7vAWWBMq+UBKhu4xa3DLjAb/9DZmCpYGW04fKeaDuSfaBd/BfLg/sRWBrF9C3bnDp/x0abAd2mKmKargJr+N1Iv6yqQFXK6gEbcKYXQr1OQrvRy4WEmJPk8jNkeBfwxAMzJC/TX/LzvjsJfVe5PiQDrRYt6Q7QA2XBHRQHW7ZH6VxvtvfYj0pZlsf2QVjIiQ0JCX+WAoGn6BdlCU1Ny+v2yG/BbC8Z5d8B3vLTaUQN8rhnl0qOGcwoAJzhTC2VInUp15AZA5IjwE3H0hPDfbK79+CH96nmcNvjml6tWAN3Y60sCq7Z6Vyu4KNXVRkbxPMKNTPBF4edwyMoHEKqZD2PPqp2wTbMxjAcjJM9GP72FH7oxixUd/fB2Je0VLGv/JeFh8xPI33+tpvEgLPCn2BVvX8N4Pmho6wDH3T5rOt1ey9tA2YCRn9B+fNPujBG3vwJNkUSswbU+Qg2h5uET89BIgx0NOwCckC0UrXyTOZSRAkDYYe369/RcvRPPZr/nZSLbafPNh+Chram21uCdbefWO0PkrWczBNpdhY77howMfbPaVBsSVbwFRijdIpTpi/ZoP4S1wJrozXaVfJgp4WPU+pdbBbBhd+QVsb1imulBOAVP6XQe5UXGwHnhasX0N3xR+1dMNr/pdTyp2yNXk2uTYeGphoMDgav30Huw99YyN1FqO6g9/yAbfMBIx/Q7m1VvN/JxMxpCWWZDf1QAdfvcTsjCHfvjWsJ59goSB9+cNc5dCokzkWw+tGN1Bsa1bBJS7WYir/gUD6XH+0895I1x8yDm8QtHnxWpyPstI6bboTlHqtIDuR9n4w6/2gX/XP/4Fh1NqULQUYk3HbIIwtKBHfWIbtbDyE0X3zhdspjsEqL56D636LZLx89gPb6pNasiuFtmgbqypL88l2FbhRNhzjoCQfDQO6DR/4cgue3Me6skCp+2SUuOSjSYdwxj98A+1SzvsCbU7D5xoqeKA68tiUqQSqWDsOOqaJDAn8+6kMH8ZT7rbJ5RN3PPj/fAd/emxk5MhC8L9jcNeqmIwXqSgAY/Q8HAQbZNiubv3Dqz5mlqHVKkXfPy50N2eRCmUU8HYYZTAqu9jR6jSgKzjqUh6a629ys1VsN8pcJ8JJpL8fRnQ9HSYoOCeP6se27P5Gdkp7D5lSrjzdK6X2574yosOCnXk4BbMcVS08I55C5+Ot7Fm8TeFsLlaLo6HNjCZ5vUWWPUBipKbzki2bTw1ekIN32DUBMNLjQbwfSkEqblbmZ+d0O2h+vUWpHb8zJZDLROoViCnCOS0nn56ix82Gr2lgxZI9zusoGzdTLJWH0xWjhWB3yKNEf8KhJ6u8VVln2pa+7Y45vQdVQ6u84367mL263xs4GvLJXj9/X5YxwOc67dBmKfKYLrHtwlu3fZIvd2cg0UPjAqueIIe1U3XL+grc4rBDSeayqpkEuF8bX54nbCHojPGuj4DD6WyiBx/NTB+eGIoyHVEpNYXCuZ3Chwg+I8EKQySYm7F7R6u+QjrsaUG7U8flwWnR+zhvcGc9M4bxlHc/fRL8EnfLwjq63RGsJyNYkL87EDxeHpQs8l5Rn/6g1au53pX/tJlhsFBmi5PGqx6H1tyNYOrXkTtyAjqqXnE04+fIBCEYSFekUMAJ/cykpfL3C9d1/rQvfkDtm+0KIYh/f4/Xwv8d8E+WU6gaF81qr2HMWG5v7mD+bR6C9UXDLb+jnjQYnCmxaovzOKynqv+5ifSRdahn8PL1fuLV25x4BhRC9+C3vhl2PiWHGB0PObKD5+Zw2cGrN8ZHBzU9wv7V3epJyx56foeefTmnbAQPo3eqvfznqfuXimLYdVfoPE0ELVVbi5YMhAEbqMNEL/V4rpHd9NQcZp98G++Llo5LT9+RLVNqRczbB8h0PBBpz5MvXo5TNlV2VpVi6and07GflY1aCbbCE3nb1iw6BNXQNCGgYhSvDfn2/VmgW/FDML0SmRT7u4EmLLdTE3FudbzBhzvv/hPH+ER9hNIk1Bd9RS86rn9RPqQgx8uzdd8/ulJ+tQGyAf3PeEfctvT9XmUS/CU0Jx9+qQ9hL0AN1tRxaGIXwFltutDHOkVRXH/BpPr7/wfXkHCWRSC1k6yFlKJDWTLby7JPPhLA3B7WX56V9KpqD9C+kzVH57o53LHWcAbe4ao9bbYeHKT/FffWuMpX08z5yPYOaRCWSi7JiX4e4W23slkc91l/bL1tzxUn4O5xrtDsOzL7g7N3HrhfSF8k6V/Zi20/XBHegpOZse+oFGirAHU+OHj9+bmwdK2ShqhR23+1QvXegnWTH6fLNYQDgDacoWt0nmxYcUL8KrsIQFnGQZ//KQpLwE16p1m8gHJ37DlE2fVt23AxNUbedVnqfvpJTZvbt8Smop0wZGIAjDtT+wI/SeRSGUoq1d07iJ4nHUDGx7HTLYdl1YdvO0BQWZ45oR42YL4tk0x3vWnnuVjeP/xAzRIupb81Sf48VYgxRP5ukbS6vVylg40JUZdvH114wHHySPsiMeDuZw8M1T17y7CNhqUYt6A61VZ9SLEQtsxhTZXfEileSAMJz74qx9ekTRgZAgdmNKdwkOPu31olDQMzD8+1nWdgeAl1RJ+aQso+2fvipE8aYxcHlvpVx9f94QBc7lILFcrsi+oKxSN+afvyRHv0iQF3396rbLNCryuZzDn1Sn94VlUH+ABzPH74MPInV1sahME3arHK33ZEMJx20O91BISQEVvyx9/nM3cG+Bab0TVQQ3MVY8s/7c9Bcp/7ymIT58deRqVAJbmMTuwaYcvfczvsWAZEwboDE1Fvbjpe4q+0R2gg4GoGyn7mkbbUoKy+W4ojm9SMqBUFpRsMxgUyQ0xpzgaEdSXQsfoaLbBLPezosLPaSHw7m+KJc2ePmQNtGhgjq9+iu1prxZxfqa6UaVs6KGkwOcpbLF3Ot+K+XmRCKxi+U7touID6lZUAO3OZUjM34960tZ9P4/8t2945YSO1nnwtB0dal28mk3j1XbgYfYC7Ku8l0ybuLjDpst6qvdRwRjPc0eQc7cFh8U5qvvu2giwbHJAZrut6iHXxBjcUVqhZ0c8c0k/CMHrdqNRf94/2HTbthwUaBj9Pe+yD5IcKroWITF4L/VwSPYlUHfbJxnNz2IyyhkQbqOG4V15EhIW7L934AnGhkxRl/aD8vVSkN6hSpYNms15Or5C+Dw9ttRvmgnM+9vGUEKaMRy54aFflueJQJVeXXzN4WgSVxEWIDyDG1Ky87YetppigUNTYYwf12exPv8V7qf0Tj5Da5ssvkNDqfdnl1qvy5L8roeC22Y0gWQsWiaKCtTi25c63vxkjzKrCVy+6IbNA+2KXpxPxt/7RXqFGJNxk8HdWxjwOp5guqBzCa2TfcIGZXXf3MkkwI8qDQhOe8lso8HVIHq8Mhzxj6WeQH3T4GCEBcbg0fXELqoWHC7vE0XnQekH89IK8LSlDra4746x9Fi91WcqdZG6uHqyaOx6hPvFKAl/nYV+fqz+eDAfhbVXrR1MwfHDw8KeCuxU9lBPJYoM5dN0W+zZkLLFHdMKMm1KqNcmYjAf8AXC04B0ik9hCobDU22UxuAFstb56rlffARbVTvTmxvONVO5agFReSPo4AlHtqipPMFGPPDYi3e9OZmxNAB4dl7UV/k2YWmkXIHbqznZPMA2YA3K93BEEUJb5QjYclCZo8BKe+Cd33HBMhOVg+v4ABVA6r9ie2xDRhzvYcFN937jUMa6STTFukNFT3K0DKhJmN9/OSCWiUcN7Zb036ut8PBVoIzacv7ppy2K083u5Xdovz/pbLFXw74MKSeKnf5WT1oaa2pBkwcO6hMpxoDvJai0W4xiKqZsTmdeUs5LnFMbKVkydGf5DrdZNWKnKqOATV+lUc6Mu2LzI6fB/Lu/p791shGVIJg+Wr6HYepDknSb1Rtlju/w84xnGnD3OpmocszhM9vK2D1nUTIv8tACYy4HvIf+C4yW8iSq0UgTvsNkqFld0ys8L/WHaqz6ginRLA4O7HDC63ia04vWHlSfvo8dxxHqYetWCL50+ERq+tmYoz5/3tCmnkyt6q313ebT8rBwaUdtA32LOXnaApylfML+NIfmDLeSAAqpPhN4d8Jg2TZNpbaVdafH2j4WrJpdAlqPf6Ot0H/NprrzFtS+ywHb/0falWwpC2PhB2IhoJLLEplkTBAUdScOCIqMCZCn70P9vexdL+vUqRJJ8k1J7nV8xZiCn9+CNJ5G5lwerjG/1u0IfdVdiRs5yGBkf5QBv1KfaLx6+JN+v93g9dUNFozRxZjF9WgCO9E7XePTZEwv/VpA2xUKZW8xLofVvh8hYDfObDcosqHrnwocY+fB7Pqh8ubiHj1AWSrQabnZ3OiffQrhln0ZxvjBuWVkFCXHXiRW+DVK2XkJEby+h4hY2Z6XjISOg35Xipi5131/zlBgo1j1BLZbRPfY+akGzfuVsuA8Y0O+TqEHn7X2Y+Hsi+XcuEEAz13/I8G2fZe8GugNHFlbMe3s8GT2VGdE+8eNsN2brYz+p91ipIbkS7eltst4e+9FOB3eJyxgrHIK31QERVfvBDdzko3+fv+Bu/E4sLO2PmbTbmIVCnvxTtx+f/D59SJjKOLlOn/Pu3KyYwfgxpQfhZ9bJy3SXhek1JX+h/eoJyCYcJg8H68jTEu2Jf1FuaE9ZZq3K1F/tdsPalhuEz955cmMtNcN3idcM91LIzT3ie9BZ9gjRYUS8vF1VD2kNeOB3Z/eKpl/zaiBke1GOs69w6XBfd+hRt+C7LoQIdbIeQG/0F7RX1NsMzrHmxr46/Rghi8HSJSWWnZf8Rnh7NsEyZzgNgAVTIPEm9dSu+21NaHZCwdGxDFIikrQbuiAUU3IQTBLevY1BYyxPjM35bbBf4e3DQyt71gWHIkvfIShsWNC7I/YGcNwSC8wxYVKhVLSy7H49hhi76KTYJ0apZROooIcMVUxu8R6NykXmgJa6sOae70zmOxHM9Ke4plEkXgq2TgWFBzjHREzoYrPT81qVL474c3cq/r1p4PTiIo2XAumJ9fQGNuDe0SC12A8JNcAjQs+o614ORAve+x8elC5CYxCQvT7ujXGw1uq4O/7OhYQPlrr0VG7GkryEk8+n7dvP4B8dRSJ8fbWaDARzWG3S/d4lk4cTe/3UCv4kGS414u0nN041UFVRwuvHwePTz+pLEDetxdivbWDX+vDcs7Xiiqiz6pejnoeAVTh6kjIUiK7fzZWjo75UDObrBI0rivhiC6f0cUyHZyM+y87B7/sQjxfY6+c1bPw+Ydf+qIP+M4aA5ifcYkn/WmUf/wCvem2zPO7Kpv0e3xRt7KZkIMYXbIB1GFEhZ0U9Ketj8nYwbhRtO6ekIM5v7vpED1HlF9fu3+ft+B3hdTlHl50LjnnTnhr4au9e+ZWXp5RmNcmfNaJSFOxstAynx3o7scfeV3iohwPQX5B6jHHxDlumm5+p7IAbLsJCf4ZRzQ1xQuQO+8WD2xayexnFwcya86YYRXEl0j3ilGt6uelNrVviNak6WjBq2W+93yst62pund/RdyqEf3BaXJHLQ3mM2eKNV/i32MMchqWzFMolJPyPNRg50TEnLyW3gur9g6oijdYef5yY7xfnk+0I7VJm/uh9HlguPhPn+BN9vvx/u5OF+V5r3OCjwXik3JucrTwA0b1+lnK+ecVwJg4FtPnovD/8Bn98b9bau+M2cyPgD+6jJkrs83GrVxX8Lc+4FeDwe+ZE8Df+7AyI0/Ga3jrYdHHmB+OLudidYjh2N2OGM2H2qBY+UTAq21CJce/GWO8WuqihPeQPYg4/NPnyO7XjApwfvFx7/Y2nMztlZbrKMpEL+l02MYuY+7mGCy1I59YqQLdYjb73bsFbyP0utku0SOCM9ljeYHq4tQRty8O3eSm9wq2T94yfDQcY9x4Ww2JnyMQnB/lcmK1+oGLoGnk+BVnTl/CbQNyrkTMv/usm81xtfTS8joSUlXPJPFgKFAHrzVVMj3v5lHffcB0FcyMA3903Hu6/Z8eJA4iY9nvz+YRmt7T8XgWxIQuzwf9h3rMT0pe/sN3Z7fGTLuuJz4SkG1Y/MI/P8KFmRyh2p2vWNzbz2TM7YuJcBtZbL+RtOxX9U0FebC2qHoaPD6mEn+isPNuxJU1nAzvXwTwxUudiPvBMGTnJcfoMGUXvBJwYwzpuDFhenkbpskHJ1u/etHcHrvLEW++1odPmskxsOJ4Yfd31PlcfDUeUo8FZtg3n4gLq18FtJIEpu2nrc/WTW7CISuXMw0698fbVo/U+f55s6v0HRDzPlsZNjLUhKT6mv/Dp9CKfoScyo8/KRWulg22mlZi9UUcruURtHb3ZNo2+y2Z1sFRBdVRSTyrRTcr4bqGadOoxN8012Tm1uWGGvMTEpx3Bp+c8RJD9L18SNAm+6zpPg0ggcorzI/qvRtN+xRDxvSYWDteI+bONxsaVtjMr8wAcUU3PYTt85uOkoJ89jaTI9h2z1iGmIn6Q3LJYcO6Ff61l1syRY+1DrsH6H9+reu3atTDbBxbEqjJMemX8YHNXlSZZe5tJAbbXwzhdviSsBh/BrMlfoPhtvYoc6V7yQJPdpRZkq/LeNKkj+ovheu5tPDu+e7RtJ1bHeri3NHp9By7OTj1MjxHOSa29dM5b8u7ALtW8gl5WaI/duagoOWcLpYN+s3mah3FaNj9EgqDbvF1ITBA2lM+k93JWPYsdNOD78P9kfCCVKNjggew6Md//nd8JZv0T99hMWkrxJlfxrDoC3bzOzsRo1++gfCwKYl91cesTqGroH0qAsMha405zZ82xIFpktBOx25KrpGi3iVVw5thyLshlwQd5OITk5cQ35Px4QkYzVaypYN04uX8GpUWbcXuiZWFT0dJm02lle/iHx8bvFl/jzCvpxorsXEum2Ocj2j47HXiSt+BL/pMRmFSfVlYEoWPndHY0Le7BxUlP/SnMTulaOFnuk0v3248dmKB1HJ/pZ8gd4zZPRyw+tWiF7GN+dKN0ZJZrhx7jdd8NhC/vzdH+EjHL7N2FyeTFVvvoTs0CH9WpeA3hmvL6KztNiTY9VLH9JWmqYYAR/ao43MyDdHhA8N81VhweEbZPOruB5J3OjJnGLROTLQAwA+nK7MLFHbrnTVieFWrGIvGo+uGtDNn4FOlUZQstYvvYiKg+SV8KX97a97rdajAvdvZRJPkPeLjOpbR63ZKiV6Jt25538GfnmIODY4Jr01HBlcTtrR13vtOPh+2mvJKe4uEd+tuDMGAZjA+SY2Vde4lc4ZMG34FcOIQKfRZ4i11req5puh6P/jDn9/i5vVD3MrTskVPzcqr/GG23w1Sxrn+bMH3rqcFbwTU9+/xoiaD0NF4H0yIL/kPmO/hQKVsn3Rr/2UXcG4ODAu3s8WH3cQ+8LzBkzzx1/f51K4vf/kNM2tn5PNv6gXwVhiTP76edQ9VkPhPIASZnjFGciiA7H5/dBu96oTeyDFHdyMwybXM3nzaW0OB9l0fYrS6nEseP0UN0PRYEePx/hq86psPyuLLmT2Kk91NzvQw0T3ahxiajY3mT65uQN0rMQm/5YXTPsg0JF3ygeHfrTC4rG6ecJiuF7b/4SyZtt/dCL5zt0kwPKpkiFLdRPxxW84EuxqSTFTloCq3HUVuVfrjczmD6H3iE3Peq63/YfwTgzvNFbEla9v1f/lQwtqBrk6O0c2eqs2QF3RLp8IOsvGjGrdtfD74ZJ8rajcI+K5sb1vvhVHyyrPpKhk9FMPHYxd36d1iJGqOPo+ZMdy6WrdWrRsod+N1YLa++WTj8XmPwNlJmOTnV/7PTyFaBgPxjP0DMcduC7ToRbLvQ7Pkm7ZX0MkgZwwD3Hxap5+7WkRA/uVBXSEjDYXb54VhoKEv+/XmgriZfejt8Cm59CLTCIAthZnzHZf96upXwKvWJuFf3jU/Xh5S5v2e7FTyTnh6P+fAvLlg/sazOj5jxQTlgU64VUjNJ8PRdRTK5pHtFj06Yy46kCMYl/nSGuOslhgMnIn/8skh+BktbLtrRXbHmnTjW/vMMO2/Bp61jeizQmAC0JVcs2AAxa8vN0VAnbVbUdGAVzJWx7ZF8enrYvRtgmxcv9zLxk5+Gzy7KEpGugsqdLk4f/me44vN99DDeawubL/Du/JfPtnjpXekr3Vlf2bGEZXWNaTSoUk5v8EogyZSn/muX5T8/h5T2FolJ9ahkTkzOvGOns27YUSIIZvT1zVCsuLtmfPqkN93sjaq38kOhmHxy5/wE9vQWcYKT8oqLUeliLC6+GfmpOEzG9qNcgT/rfpYTpOJU3E16OigjjZVBT5mY9B5gVqND5Ph0T5krXw2Y9gfdm8Ku7rI2FebNfXm6SKdb8GTd/dmiNG3ur6Yg1e9QffclVH/6T2CH+8PH8uLIYAivXy2X/iZN2y8qVr3TBZ+i/xcW+rQzLu6JiG7p/7w6foKeq24MqN7njqqHzqKvvhzZ7cpWvF/48fyOiXmPZV9yp54gxonfFLx6hhciocmhvVB9fBcibdyzqfVcysJtxwDXDWfOUd9hrJLNKLP+123XvQMHIdzide5Cd1QhKcYpkhG//hi9lidwzGRX8x008bg9IVadLlZd6aFVZmN1upr/40fcZNm78txMX+Q7zxtYiuK0f3j18WvE/vbBv72sNv24NYTwlJmaMlk4NlRl3wB9weDcC7FjqJgvY8Yee1yRLu8u6AFP5lHoi+a0Sou1CUfJH/5F0c/v4LXhAKaL/qWr8cLRnS0ZOKcktYfvzXSwQieX2YbyQdxC7oC+YBMZrXPkM+v1avfhnsiM4O8Vt2A7ZeMosaQiHut1nwcCjX4Nx7hdRKMgbTxHeB3nmmzc6gxq5FbQ/vcCOQ0yiufkipRYJ00ATGUG8m+Kw1q4FkfMHPeUWPIxSmAWlArOggXguRfK4rw5UaGM8+S0bD9uiPK5Mr509No2tjzExqFhcw25k3ZjvquQks+Tzzn/fvzozMqY8NlYXGquiG5XhRwfmz3h3+lXLhpD5p8C5mZLr0tWHoA9VKae3LLNu+O/uVHw5xphLzFueNaEj2RnJKSlsdtk0x66RXQbA0fD5e1i0Z/TypksnlHdu/OR398hq6ntUGHOl4nk3AKdVDa8kC0IX4lw/Nrw7/3aRdWUIq3rtD//AWepYNWtnHTUpB9/Y43nVj6i/8y4bXbv5Z8LzM4vtUXmDadSrRoLJJJEwwd3gLrmZYoO2PRaxvVuNpvEn5f3260JkeDWFhrlI8Qd//0SrOHA9s9IUzW+krTYSCtwbz1Ry3H78gEtOg/ltYPFYl8vVL+5UflcObGrCSFAM7z5VK65GVcDXwT9KsgU+Vlcz59toEMjzYTmB+MhT+vQNZg2Z/4yz/9yRdLBcYDi6haN2a3Dmunhje9v5gt+t9sum/ifHtE3ZuZQV77vLasGvXT0WYn/Fpzelh7APvX+UmlsyqWvJHrHC3ziQ52GnWdGhIF4baMiTWeu+zf/k27P7tUJWK48KPfQ7aJPaIx1cv6vvket8+5OOJP0tpoPlXuDeYDkkggr+RsyetuSPXjFAvNzLNCFGoMj/VOYeZ9SstZsXUK33nETGNqm/Ch6mZ0vt+q/+YJ6m1zBChVynAbcj5OvpGDNTzXw+aiO51orUfvz6+S/YI3833oRLTnsUHsxW/90wvvJK/YK0mu2XT+3Ns/P0fXUcOM8eQZCrzKdMfCa+xl6188bEA4/RyG8bdb9PA1gO6e/rAqvuJuSrtgRGlXbZkVfsuuE9ZKDZy/CdGi0xtNza3U/uUtiz/1l/Xcwv51epIAHjyZb+Seo99qjbC0ve076dHOkRrE84aRS3pCf/sHEAx0oit6p1lfPMGGP3+/r9ivnJwm99Rtl1XkL28f1OZ0g17jFQs1fUZcXznaPzxQLudTOcRSGsBvVVE8mfOupO97G4H22n+Ipx/uiAeHKvqnN4JB//JxdTU+IAdqx3zETL6ufXWGxiFPKpM8N+brZHnQHAKX3Sd76//lp//Wy642VKN9VIiCEBOT+ZL865b9SwWsE9KpvOQbs1WeK7S3rd+//bLh+cUCum/P5qKXVD7k1LVhe5czZuHs082fWzjD5SoTonk7A83HvWLC7f1pGXHT+i+fiZB45391egZ/3FrhX50TDxdsLSPuR+87XD6zi6V+9tH8iS8yJEr1o/OqOZTTGGxiUC/ui+2UlVy2Z/Mygp8fXFwwbnTTJVrqgF7NN7E7oUHjQ30oEDptR/x9bBnz51dpsPgLqhq/2C97RXT+3j9eBa7STc1x1UNjv+/Moc7On9GkRNA99Ybo1aniNNuJEWLuecDtwsfzWkcbWPJJCu1yx8REVQEPye7YTn+W5TgcLx7cTcVmgV7IXRvujne1NAafWX5fGVMw8BH+9sO2cobReLg5NWQRPVHZSEw04LVCwZlbROwg3SXSrplr9SkGKbFJnvtt5vQX9Pf8cz9c/GW/VwazvCZsd3pG5TAm+Q3yt74mf3wwqbfxiDiPdHaWv1I33rpWQ5s+QVg5zrJPb3dxVI/RPcPwfPfdgucaOvjRmfl//qLNah0NKw1RGm0bn1+e7wLEbG/+5fkZtyV+gex4qph7u28Qx+9LAXpVzXRld2o59Y9JRAt/MqLyuhys6nCEvQgWidOyN8bm+a7UZf+A7bW1mMz+OBy32yjI2f19FLLp5dl3tOwPEAznFerlvqnRJb37hAi48eeLMFzQ2nlai78O0eQ5kKJZEq/MPWO7HMfK1NFT077MDUXVn58+D2B0sP83/8u+X1vV9v86U4D+95mCp6EXzIo3v46f1LwH6Ug7ZsvUz7gPAYDzESqmjxXuxrn8iCibyZYFKTtln97taqX3Fsz1x0s2XV+GAljmmMpXsTZGsXA80J3ng8rz3vJny5U9CHaVjoX36YymMUYxYiunYM8jrso+bZocGushsP1+j4xKjtoCROfpE5K5Qja8004AJr50Kr40YkzVw9PBYbVN9No2SvYhnoZq/FYZ3i/970IqjSCdfZPO6r4w5vgRpSpsPJHg4PTm4ziKOqrT8wWPq11bztJ0F1Hw7K5Yut7NjkdrvVVlapnEmJMrGhC/FeC/VyHBDbEMURzypT8doSx0D2o58q2jQHoLz0R3SdNNsaVTkHEx4S1TD8Ycz0UEPz3V8NZ5TcacK3sR1P67JdbT8Pj6KcwpnHc/i2bxM/TnMHQokuvxS8hXK5Jxl9gb+NZbk92+s5ZxinY1ZAV1sAylkAxFr2nIzFqVaPFRSub4cUnhbV08PGnCO6ObyzdGpp0AlsBX0FRnSQD0y37L800+e4hCjaTptsF2mIjl/Fu5AVoaWDEfbQ1E3eiI4dtxjx5J+PBHsdA8kIJtRPZw+viTUPmpoq+/BgnXya2sv99RhqKTENG2pujPrzGNYXxSicqfg4t4YDu9cinmLSFTHiYfNz3cQRyOKla/n1s3Xqc+VprH4YJnS/X9SZcugaK9XpgivpJLbmzNQrmf3ZCEt+s5GV7b0IbN/Tbj6XPfdWNlwgWRg6EzQ0Z1Nx4DvUdPkGviZeiezXNzM1FUtEv/63YyONls70ACjxC9O2+TYa1fKkDB4YUnx7n7czP9FGhOec7Ow0ZPmCRGSy3F1iFWnQel1JjxE52Sw5lCGdV8ZD/vDurNzZlmRENGnQw+kMbPF3GO9dvg5vBxwDbrgJmafjP67mTqgOmKY9AfOZruk3dELWicuNN2lUzu1dCA1OKdnI/k5M/btaIAerIN2aXDOxsDV49U/Lrr5Dh3j4w/RKFFw8eriaZ9paw/P11HoUmCKey7IeHldtjAfcp2dGuFcTfdJz1d9eKbUyWadlwG9xeDEGBKV7jhyTib76PaGLsvIfM+KUfnzXpo5mBgtnVjfHgHygWlW94yz6hf2Rjrex3kebUmTpVuuunSfiIYrq/9v+/fOaIXbCb/quPPMp8mpakFCKNoOUcnNB1z2ksN85aOzNq5+1J89i8Z7Ol4Jaed+ytHjLiGdgdzJBdsmj7XzV6AVNNscrXLgs/FpnTUz5YB27WrE5r4TdAQi58pXpVGV442Nj8QgSSS3XdqsnlcMmJrXcQDj+XCGIF8Cjh8YpNpN6x3M/N5BH383jNHXJAj+5xsYF6N6IB/A5/sgxMrm4/fsZ0y79EsIfum7tCxZBFT9W5Q79cZOtcZiJ6YkHFWyiOc5k1Af19BMvhDeweKcS/O+FQeztk0H4I7bNVPRa4Lfoz3C1A43J8N2UW6m82POivAX4qiv63vr6PH7J2r0211wuLt6vBRCFWqNJK5nFmaqd82k6LBi0pHuo5jIZsSNlL1LCQHOrWrE+eD3drw+R0ttr/IWTIdjUwBIiGR6ZfkUE7dsC+UKcEPnDO8Kfn+CB8Ia/tErO1P5eNc9iKkVvplnqHvuvHUXVJ4WnfEsEAyv+unEOByaleMKLucT6c1egKhDmJh5rwTFip1BFKfWxj1VEOcmiiGIxUPbN9+UTLbySSCdlwu3Bj8vPSqyG/oUV4HZqrrxh/Xxw1Ae5g0vFrm5+wiPVC16YEoa351x8439Q5xnn/Y+bIueWPdnwWy1q+RJtE8JiUZDjYomqExTe0LPhS7m4aKa1bglWPJXStNd1n57esXeymsyJaM566irYaZb9wsY6rtXQx/8991xQsa1euS9q4fT1zLrldy3fwIcH72AksVrUGcnCUd7geRsr2w4iUvregpN5LN2f7JD3z+BPi4nX+hhOkg+4lU7QcBCe/9Gysi0Rc+swPlcqpXJESoSco/vn4Y6xtzT5rZSQ2ZZfD7eiBG9Y6SoTq8cmiDTUjuq/KLxojURyAolqh8Ct98vO61m2rit7Hg4cGfPbacjgl7nfkJF/nk92MMJL0YxFCfD2Nk2VmA4notsLSMB19DFv3xLc67U4J4ur+lYOjRh5iVPydcMZ+msorihsreqPkzTudYVV/5G/dSRRKe/9gTCUfN/ff/mSPqAdw/yZ6KGY066ezXyz36zZYdw80p6T/T3gQxnFtmvjRmTAJ6RKAb+zszzAPw3nlvRXiUT4JF0yi6+XlHDrBCb6gkaetydmJfh+fsOuTe8EdCH/uzCQL/3MlLus7GLCQFoOfsO4TsisJv040QwHvlUzw1xh5J3iaqkacWe7Ynuzpj5a29gfoq3nR6bD7l9BH1GaybaBF7pWoJP9ZmjbbGmBMPi74xFolyQ31c7hf+WidtEUoOaNtBZ/q1vias6nMRfcdGpatTGGW91E09Qvd0R3mWDsY0qU389/l09WsnzrOeb+BP/+jFGid0mT9/+oMKr6vbTUMabQBOzZbg22wks9nOFQj2evjD25J6JpfRjeKcWO9Tk7ErLXqw1o+R+KvZKf/4EcmzuiZ/67f/lWsFZEM6sH0+1h1/8StAl/1sPD02ZjfOZpMCKR8ZOf+O34QqfVxAaVuMrurNs5s+7nGGMr9ZRFOu2bJ7xXq0GzsD9+AFCX85Jfw9H121MGZT9sOtciApw6pNXWPydC8GHbYFMzzME/Y1mlrd4qeGR6LLqBeHPFcDIcIs/ohff/yVKwXeR4SYfXmu+bg6swhVkv/BymOT+DU7VBcA23GYI1obTveP7gK2cB2xUkpux6Wa6nA9inuyW/C2o2jXQnvgGgk9bamNmMgfaCK8w2BpUsL5io6g/eKGGc+66yoxPhxR0h5bsjucJ6NtJrb5N39tbycbTF1HAqS/04GYx/uccISvI9zvr55o5/bbseT4zpdz30u/2WzLP+dlT/V8vb1YWK/f5bwz2gAdd53MjEdScrZftRUYTX1gf3zSF0J9g9Xp5xAMCk+oMFdPhIOl+H3qHbt1SNUZjUfjtLRgvmX0IF5tsM02oNvVWPqcsiaG30oLmEWqxp+3oalA8xO2xGNaj6anORQQu55M5c/Kz4aL+BBRKGFCXK0KknGop0iVPrFA3NVoGJTknQyLHv+n7yTdK5Z+lt8aQ6Do3TqdnRSEXYnZzgtCNJyKdw6fcMeo+MtvPp+K2AS7yQU8fq9fTmue/9VTdwjWnyp/4ESuoLqhkfJHYvBJ/PwqkHE+sWMidZz6+HsDOVJ9Ol2jE+LKVXHA344/5t3LLuG77ytCyUdtiCbNUtnchGsBmyndU5YWF78/ednm3/vYF1aU8OoczMqqNt5sP7mbZF7GV9ntigdVM/Yrh8PdvyOVAGaHEfu+lHyiI/rzN/5Wio3pVDQFihE2mSXtcn+y7nkN9tn+0gmo7E/lUfWU+cjvix+jHdN+lwBI1hfkcBLWC59vemSQy4MlqMBo3j/KG9JkEViIjoax/vMzCx8RJ+7ajDa1dkc/ebIWfex00rSPle17ts/M+Vl6KWmyuFEvttkTK3XVjj+P5hGxQmuI9r1+UX3dOzd4vRNK2fP+Tabp/pHRwmfEodEXtQv/IrrBBdH5we6mq7C/gLXOY7LbfV7+fNZ/MqprPjEr197dtGLiRhGX2vfmwUvQOAh+ALtnnbKkekdL5v8WQY9ISldTPiR9RnwPpm8rk13xahFVztoHpa9SJmTB73/6ZbLtkoXDc4/WV0Nc6nysjQWP82QZ/wv684fI+zrJ7GRiBXXg2CRmwqqbCun3hIGKDlv8ZScPxljAgED/4/v/6m/lLN7oaIWmMYUi0iH332+qzHGXzdYrxoA/R4ngCGq/v0Y/EcysVplF77dSLkLV2wZv58RIdWr9Zb7F8PrgFMvSJTN6lr0AMsNKiC/BkNXh/XuDLgKH7TR1gxjesPQPv5h9tZ7GFLTrI/hiVtEqLdxycoulF4m82zNi8s3iN4n89z6xwM01Gj/TAatd9rXpmMLHGMhDieFyWz3/8JizQVnlSI8bxrw59pPpWxcXWD1kwpz9S+j6oWaesuAVFWun8buqr0XQQk0iPl+lHR3CswAERRIxV0tt1U4v281PP2rMNVYWXx/VtPo3vst6yQa7umEEtuew5e/LKT3vPOhn60bc+9bNvpHNbjDl6Zns2gvp2O/tPEELdQm/v/orm6L4sAFveHzZ4uf8iWeOszRi8FmortdlTx8XBT01S8HK9kHLn28JHzAO8pr5xfrOeXU2Rxg30OCmouDTwAg14IHvMj3hdiYRJz+quVqxf35Y2mivVnmkx9OSB3z9/nm+aEAkSCkSf1YpItiliLjhj8q6HKMxPzUYfcdOpdchvvpzG6kflBtzQwIn5rzLf9sPksCQmb2MP78HbgXacoB2pyeNP4pDnaObpF6JjeD8L7+A1enrUJGaZ6PPW+7Bgjd4q1qd3/jyW0S/pvGJ0wr7jG+/txzUfun3bKMq451zUeBi2z0dlZuZicWj+6fnKD+alLepmY/q8jNx8lvb0UX//v2eGeRTdmIQcxnebQx4daxag0+BoIFZz+sF30tjpHtRhEVfsz9/PqrXHKvhSgqZbtZl8tEfXgXLeifB4V3zLpO/T1j8BQka0eLzN9V1iNX6gack07m4Xt3FPz1OhSh8Gv/8GM0z5y8vKPu/fCRyLoyd1zbltb7ftKhzvYGF6kbzR3YYcwiEGBNbNHhCb1JBlT8/4NDIQnyrfJ6gibcSKy/4LKUmzjEqmqeJRytA5RCz6gNnG2wWrXZtN62sgwb7/LkidhuuOd3RS4Ce7XlgGpd/2ZwcBhn1X10nVupV/pRf4hnwe3Nn+FDSbHKvvg5TKGXM72mO6vdyz/G8+1qEKNomGWzUO0pxTz0KL8HLxsW/g/P6fdi+zPJyrn9yilxOd0y31M6fo9X2DposA+b2iZbdix9A+T6biFRq7CT8ovgmKniXEuu3eSx4TG5/+RHR9mve0RNZ6yiJ3xFef/S9Me1vWxHOR1Oj/W9NjJ5fzDvYQjb+w7+1eNIV2ObPpTdiHxjiFO0o2B/8Yu4N4rKRDCneBPbmTZLTVS558yI5WvwesVdYTti8O9UwXQqga2GVlH/fD90SGIhJwocx9m1tw5JPEj269by3mKsjOT20xFwnvcHy3/SBvPNS5mTbFI1Heezhy6svMW7aHc2R29ngdpuKmV6V8pk/JgorrU+ZsVnLnPZGdYFS+aWMUIz5dKQ7BbJw5vRTbBM+KE0qgsNamxmna1pOhoMuYBrrcllPv2wuyr35xzdMV+1tOTf33IYg4wnekokltUVlBexOPf/5j3I8am2KmjaL2X5zRCVfrZIeim6NiDZ+GmNa8k1lMKsT5flni0YyxjX6y/tsLTCycXWeLup133RsdxLOGVfwvt1excsN9+rr6Nfs5z2h/2o6nfMgzfpY32vIaH4MT3/4aPBXhDzpoLHw5LdoUqeuV2tcqnRi1d2Y5ajNUVjvOFYurV1ObBWZahhOK+Ii55jQ0zexQS6fNgtoFizPWwp/6xWLj+6X/K0HtH6Qlu0/TZiM4T55wujKBiGi6SV/eQ18j1q86JVzNv3lqe5z7Nmf3mXefriBQYWRaXX3SXiysm5w4FzCnI1WMqZH64nKZKkTst4EfL39xgWEp++NjlwSELttjjG840eBx0+L+MD48PnnX4JYHju+yVIR5LHS6OzKhA+6dMGIC8F50VepP44j6Nsln6JKlb/5kvdtIPZ/hE7Fy0OUtI+Lss+qgOxWV+rPl/Uh/9N3RD/tuM9gbYvIrd5frJ58DykfGY4Q1gbHMm5MNG+M5KiGUYwY7t9GKabNu/j7vngd9lo3e99NBNebV9EZeX42uun1CbH/JUTj0hPR9bahcLLdB97mMzbG3zYD5fQdY2KoL6ubNidE4U//4W4rdvNBPNgoLfSZuVvel+OGi3flaH6ezLtVYldH1/0M1PaPRN+lH84FqXWgVL7pP36bFv5QeC2l/8ZT/MD0AesRPcmSX3AWfk0M30QdyT7sLv5vKm4m2s/oQv/0RVuUBwynS33B08JffN/aBbRyN+NRuSI0sEbUQZlNjJ8ROP6IwD3CZXhemW/WB/5v/+AZUp3Wi16dxM9E//wrM3W7Q/PvaY5/64ft3l5pcMc9Bv/y/1C3lWS0cfBBav/bkt2fH10fR4CWHCssXO/cb19jGsHL/L5JOFvUYFnPlX/7ExdTYv48vdILkvrCIhpivTHtrcesDPdTuOSRv3J+ZUEKu13+wKIkmNlk3Z852mVztOTvp0Sqlt5wC17j7aJ3xiUvQkbzZZRfOsngBbr3aNFTBH9BMIaNvPGQBPYFbysKxrjoB0BB8mLWxRYTuuR3aJjigvjh2kZzqd9H2HzcjhjB1u84Gh4RMs5uylwjyrg4mS+M/vIyjFdTwrsZRvSXx91WV+ikFpu6+prSiLhr+cTHyTxjgBXqsXiai7Jhx8IExetzZrwVz1hfr7hF//ByydNm1d3e0MkvnsREypxNm85qQSKnhk6yt/VH2VMjuDhvC8tXS/Dn6CnpCtaTHwuLxOzWT0mb//Q789DSK3V6PS9o2T9hpntgxj/+nFcGIbtX2GdjxYrLX15FTIK/3Vg8SkHZuHAlfjt5fn+UNz2yZv+AhaPUo/H38XQotvoZC1n+QaOXGzr86bVruzOMOWVBjXDTHRnOtcjnggcOqjN6/dOPBlv0EfLFu8N05HXJqIlGipRi17O/PH3it+VMxbK+jG9Ql/N62/QgbBSEVaHadZL4YR/Unr0d8bSz2/3hxZ++ILtobFHvehXAsv/EyLzcyRLyCKvOdn2hahjbxiSXngLL/GPEugnZbAuPHhTr/GIuJ6QczzwzoZaEEIv2EBt96dw0QNU7Yfo+ntE/fqP51SF29OX+yIfnDdUHfUvX+z3yWT+FAujKwyWWQPq//KICKUAR/iznuMd2l29U4e0ZzNE3l6yJQJpBOrsmc9NTn70TtqGggZtRGrZuOX7sDsPgbkRiuL/QGMbncg9ry3RGUFp389wQgKK5m2TXQ99RJJsmUE2USODWpj/1az8A/HrqRO8HF/3j2xzfXXbooS/nteU58JqO0aI/vsZowAXDvturVD3LBa9JplH0ut8Qs7Sb2nHuH45qU7S38PYCk68/F1T9298MKSfd9Lyunn/zm4SV0iK+U3gKhre7k1BsOqNT1xEgb3h96XvBj7mptaeqMePN3NA+Z2PJHR32dugTs4iHjm6LGsAAs6UoeMvlnJNOWOqgGMTjP+5PhJuBSqStSOWHXXX/9By+WTvmu5FWTgd7KuDYbRs61OulV1UapfByoSD2M8NJuy1ygMf4cfHxDmrGtF+EYX26z8Ryjh4f89PZhr/18B8AAAD//6Rdy5qyPLO9IAciIimGnOVkgiAeZqKIoKgcEkiufj/0+w3/2R72oLtJUlVr1aqkKt65nhgVATe06ZyOntrGElQZlhhNS/VHL3vahDM/suHyRA8263td/5ouEXr17Yt4OrTpUFzWNxApvNicL6QCK+yAeP+Smf94GbkgylTAb8nTWf/zaplWYMLPuzYscN5yyEJHfv3jT8HQva0xPdU2jKINdkqs81wkh8cZmuHa0fXjqljfvtAa8IKeE2Nz1y3Zj28RVOJ3JPr9oXTioB1f8N3rG/p6v6Lw1yrc1PZiWtFJ2RJBL90U/OmDxB0eckrvqf9C2mFtUK3UpJxv1lyFP/1yx/tDOu0CR9fW3FsSvPkeBF3upWCjtomg6CX9q29RJNBhT/tz34fiRXcVKCc3xevFPrH6i7uI1ZvMSmaKfVN/bpH/go0bbdixPL8trpPghfbT6Tbr+ZOYpkke4RMtFsTNfSL+6ePCKENmle8qnVIMMZrxneUnR+S8dNTzP37uN+zVjavjvUVjFN+YKddvixfbZwST+vwSI0eDoPpZ8iDKp5RYQ5/WHIdbDuW5y5nBmtus5z9l6PRNg//2u53tGf2/7hTA/75TMJDqx3YFLToeP+5nFP1+GcPn+R37fucr8FzVS7patFXIjYt9hu8qIuyyqubWsbmpI/VRfvF4CWnYp5Flo2x53GB2uLyEqL0Fhf5ZXTAT+2MnfuvgCkmk/71DbUP29FcVpDz9MSfYmYjf9r0EhcIJ09HLCKdy+VUhHFpBtujWhqK/RAkc7Y9O28E6Cm587BbSo3ElwfKlp723l3rYP6uc6WONxFAuvwpMv8+Jjr/H2ZrW3kIGu9e/xJk2as0ee6kAWB1trEh7KoR2Kg5QPeSE4Mb7hkIfryakm3TayUv0sfghK2efHXbEpjpPx3p1o+jzCktmtKNmTdX4k4GrrYv7Hy+76RdTF83rZbv+9EnZ4yy94LO72FQyHmvBw/Q6gl9lb+J9ni+L57T31MNestg2sHA3rVW5grVXvImu9qXF889LByYOR3ZaxZ+6XbqXBEXrrsED3/r58DkPOtpEbE3M8einfJnvW6ja4wMzR0EWTU7HG8ITFgSP/RgKeGQxEH+hYe2VV/U8HiFACYsXjNx/nSUa7N1gGj8lM3pD7ybiu/O7zsRihhN7IcflfMfgrDjEjxwt5K/f5gg8cVaEtJt9OpKbvgBhtIRYXnDqBL5WFTwn2ST6vvORiO36CN+WmkSPxVcMsPNHCKOgYOQ2BZZ4BNIBsskGKj6Wm9Lj7umBeo0r5qx/t3rsx6eK3s7ZIPh8M9KJvIkLG0j2dGUbZT4YQr6pW0+O2K6znE52CqyovZMExPsNjaCl2nBUrM0d8QWf6mk/9x7bq8mbWHTZWfTybWVk5veUuDmfkJCUs4qWh23NdENe1IxaO1cdjKQn3nMyLekxXjEybHgzw/zaYkKtYUMdyhLVVp9dPbWC9vBdLjziB9lViM/SOGiqywvm1Y7ViaknpirdLxbB30OLxOUwqio1nwc6ut0zHafz21YVn+2IdSVlN5n35TzLYXkjxpRVIZ8UI9aWv9OPeDs7Q5NhLMaNaTIf84G6lhhW0ah+RbFj7hJtrSmX7hL89kVBlc/TDqdsnSRL88MqXGfXu+DmylYhoPO9/CS9iXGEV6kdte0dq0n4EpODvS9kSFphCfUbq3897qUaclVlUbSn9U9qpAXcY3YmYaHvET9VvxICGuxIENbPTvzGIIaT+vVY1O6XOa0PI6Au1Sjz8PmUc1zeInXNmcP8IFPFtHvsOFB9SsiffXJ/t7/BoBhbciyuq/Anv+UAdnBzSX7xYjF90fAFXnxGZm2Waf0vHlhrkxD73nupSJu3B5PnmCSi7bPjPwAXgvRrMLs8dDVXfbcAYV33zKdq3E2xIAc4Z0FGl9f3J2eXg6KCLfSJeLG3qUcq1xEiPmjMV5pTN3a7Z6LlGlxZ/jikqbCSVAXDu/1IkFpvxONHdkbaID+JIz01Iezy5v3ZE+3027PrSW3Ymmi+X3Llp3M6Pll6BbktDkSX0zsSOGoTKFZJiLmr7bqpnMqv9lavV/y2DT0d3+hoqtTeH4nR358WB7IdgWVHh77sLQqnZ/4stL5OcrrUvYvFT79fC8rvUdKFuRZiOIWpCo9zVTGvzwJrnEk6olRUeMoPB2sKtFCB/lleyParVOkUfqIe/s7fW1929fdk7Y6QROaHIvz6omZqDV1D9zRiHn/2tTDl/AjJRoSMuOMt/P7a8qXqdRFTOSy2SBSlqP7iCd73d8MS90TEcEjFgrli+8xHPrwLYCv3TFfEsdCgvJYHFFGU41fx8lOO3hhAEDWin4t1Cidb18/aZffl7IKonPZbkBLYn3nMZvtGvPNXDTRzHwezyFDKn3NOcMq3lI6GKPNpmwcuHD/rE9O10UICpOwLy/HEcbeanuI3aeoCbuPSYdGmDcLRWm84sLSxWCQHbzG68x2JrXp4smNYfNCUZHEB7uiabLvqPWv94ssCLcPTmen401jca89c/bMXfRHZ6So3j4GqdLuK/K2fNl+1hJWDnsSDXVr/YGeMsOAfzPAuR2h8ynkFv8OiIm6yiKxer8dIuwX4R4LD6dPxVBSAVnhzpsI6TjU9Oy3+wyOqSsu8o9r27MJn8E/MvscfIaLd00Yn22moeDJbrPzIMqEkiUb8SFuELH28TURXU4f5/rnqqGLtgv/i+5SDGO/LfQxbcGtmble0bn8gudrqcnkzkvzM+g/v0G65CIjZ4Kegb2ejwByvMTi/MJd9Za9DUeoOOzH7hQZp0GyEb/hCka5UlsivPILD1BxZJBa11czrg2dlIfyhUY3++Aksx4xjqCZkjZG3WMD2dojJNQyWed8qX+kfnzg69C3EnvbuPz4QLjU7H67N/QW1+6IUpUqbj+1UUgiuX59ZX+HVLLa7I9hytaKjdqhT7ruX45+94mme/8z0316BXei3JBztwuJ/ePaH79FpSjpRe3KPJHLmVLXa3JqW1zBCzbH90fUpldCP+O4LxtT+Uf7Y3dJpTNUITZ9Vhg/ZaNWrbRVEoIQPQoXjpmJ6sU6HZDf+GHntac7pfe3Bdtl88NSXj1S4zb1A50F9MBvFSs3iS9ev6UlciX5mu2683eIvYid3S7ZICepRs+D69/+YdxxvtQiyrwlSiTwq9f0oKBLbCLLWFsQLRykUKLipKOlGleQhON1Qp22lNk9PZrtVOISjWyIOT9HYxNcKpZv6aTxC7TaUcn0KrYlWmxgecikY/tx+3fgRJxe6RWKQaEpsIVm/TQVCubZU2dmZmAZXGTWbVT2ekhLnYvEuXgCrg80OtTKLjGV0hedo6yxL/G299r3TUS3q0seb2X4HdeN5IGcRZjb5LC3qKxcd1Kaa6PeeGd0QXuwCbMIvFMSiDvvNeqLo6GYmcSZjU0/jlR/+/A9vqEnqlZ9anjZ/HzPusM4pOrk9+vGFwPA7liHfNLsRNk/uMCPUW4s55wyDUYFMtvs6EeLF1wUS1+uFGJvhk7JVte+BeBgxfDlU+QCu38Jejd9sZ8lRPZ3CXEW/ZUHZNur2Yhqv6hH+4t3tdywttk6TL+CGNkT3U7sb38Odo8BaqcyulQBJfqO5sPitLaqsfILErvoVkOz4789e8smd/ATOR/XEgi6Vul6NVA/9ukVLjOD160ZuvlVIV9PAZnzN+Xcl4A/f8AGzwpqS7HzbzHhI9rP9zXyPoz+8iW6+EgocVQnc9hGnQLERyln7LUBZMcb8BVdDFl9qCraSrCn3/TH/OZk3ot1Ed+QPT6gS7BI04xWGNEusoVr/FnBLQMLzekS3RZmMLocWMa/61RY/Hn4Jwm3UMsIvWdev3VHScHA70do67uupvlYtnNaBTUJ1Z+ZU5MZC8+NPTRfL/pz3mgVnCCOvICSaZ5G43rYHyySMbV/WoxZ6tedwKTcB3gwNsX5ssRkhkJUzy8jTzlelUnKEb9GFbGlUC3G3kfmX37D5ZzRee5Kge7HMWGRnP8Qvz5bCxE8VC3Zpjbo5n0Ln3ruTfJU9c6HIeQxadIhY3ORSTk1wTLh9sUpHRTeEnJyKAqajk9L2lkY5jb5pAKpWbfDmj79z129QYiSUudjtLM42668280NiPZZmJ33EyVZXN/TDy132tIbn70nBr05v+ibPV8pdj1B1tl/cL6+99cq35xhZq3hHdtp2L+jz9XnBoFhb8sfHBTTZFb59p7G/+CpirQtQifYPRlLHmuPHQYHm+P2xs7THaEraWNLKckqxvHw09cgutQoSuhyIpWOOWHOb3/2s6iUJjYNZy1+KZNinVUDV6zLoVrf4eEVt94iJIf+sbubjFOVvHGM03FQxoMyjf3hBdtBN+XhunAXs+/jArOlDc55N3wb8TTbQkXVqx41LdAWbjBeixycvlfgwFLDDHcXcGxgaWVi3UOZ1hNej9Am5YjkeLLqPw8J6TMVa0fIzmvkG5lrAQmFpeQE+rCeqkmVl9VVys0FZDWze/6r7jp8+gDi+98TvrlHOOs2isF/pD3bkXSl4Z65u//htkOedRVcsrMBATGehd3bT1WIRtLCDwiW7ofuikbLOhUROt7gydl09nVh+RH/nbWTevqZ9oQFCjXH6l6/3sWuM0MhXYB7b/PJ+91rfgOmpwrZ2GnW93CoxyBI8ib8/lqlI4HWEP/+XmpJaIlp+Odx9RmiHnrUQyjc34So2EuUkS9D0qMuzkpCqw3/8b5jzG6S+OCP6dlmJP38FpSMVIdngpt0l35jgXz5XrPZhhsQ9QTE6KapLpeLl51KoLlrVt7MDXvY/UYtPqy+gDlxOp8ybajpu9bNmY/PEtvuaizG7RCV67ownseF1zQf9pAFcL5cP2+Gr1AmRxbEGp2fPdlrNc/5JZg3yxtC/+Dg82m8Jva7bWKp1X6xU3TugS9VFVL6qMeJ52anwl6+PZZfkolYX1805ugZEP6dDONHDRofiOW5nPWZRU9XHBWjt8c4M1/ND6TEmGHzznZDgse5qcSSfAGJ7dyfhrv+IWZ+5wrRY3zH6xIpFF23cw+J4XOLFlh2QMFkaQa2dfOIOchFO28rE6P57VAyba4FmPYIDD50es6PviuErDSVcs02N0bmP8/HzLmQw8sVANxvzHK7N53WBlr/shxX+jGpuriIFAqYSsvNa3jFRxyVsYgLMf5gfi23jIoGSWfE//tHHil/AYWHvyV2rk5Qvl3tXW2arN563xJrxnMM5OgdkByQW8nTTR5j5J7OH1yToo6Axui135j977y8xHv/yZ3atLJx+N+upRxG/lMzcXnDIl4d9qWnRMcJjsz6IUflNBYJ3rVFF3eznPmwHGST3ivB0VdJ6St3LGd0eN0bwLs9RL6mNAle9uzOSb7z/9CoQjUlszBZh9954Ohj24s1mfeGPrzXoPmvO5l47hmzOZ1BBY5OF6Fkjerm2DbypFzIy62MzPwvglDjrv/xd3P/4j+9uj3T107I/+1GAZQeHHfLy3dH+tJJRvLgDndaaE662O19C3SI2iGNvnnm/CKBEx/ztkUZsn+mEbrqsXs7BkmyNzs8pkC0HP89uxP7GY0rzS8c3k+S8iGUd992gHXwFaXLT0+n2zQRjkgNwOV41ZtxLGQmpjVuwj7yi8rs4i9WucRT4NfTFonXxyTu7PASwdQ4eSQ8VCB461xLtWmrT7ghzH9N18J0fbS1ZEG6f1p++AYeFuycRq8xaqPRwhPZw/9NLVNSbrqJspkO2n/XAIOyPNFLUTGvWf/oAGub1w+g1N2KEehBOU4gSeLCqJZZZjDUddT3RsuVhg6c7nFLKl8YZJn9tswAeDyH0dRL8469uFlDBwmn2ZycJWPi0s/obT8Zhfg+skr/1CXE7nzczH5z1vW06PdqygqO3tenJ3PpiCi/2Tf0g/0ulvHRqYaQJhc+lS9mfPc96og2/KDqR4x+efe8PFa354DB7jFYhvz/eNnrBis35s4fGmt5esM+SiM35ERK/ytRhPRQL/EifVs3bBlRw4+eXbYexzmnc3Ev1zx8d+66j0XtIgC5GsKbrKr3n02ffK5p+7R0Wdv25G+Z4tUGm0Knkr+9he7lWL+3+1gril0dPjN4DFuqsLzLdy636Xz482x9+SO9zOh5kS0bKjuyZie97IZbkdIXyuHfJ9lajtF95nwgyLi9IdDc24VRF1RXm/cEvAyk5m/MRuL92NxacUCP4J0FHqH8rB690e1H/kiy+qWwp7Vkwx4fVyU45SOtNzNwswEKs8ksDdShJsz6iid48bDx4+Z8z3sz8kRPrpsDhY/t0naylnF3Xm0rNv/SAS7UvQ16Yw4gGm48smvmLmFQSoxtnW3zJKxMNt+L4hav+u5Mg6PRubaRXiv70t+1wqBALbmWA7vFw/su3Q1Xbnm24GN4aL9JQQ28Bkqe5cf39w5NaHA2qoOfpSYk/vwqY/vAjD6hFf2PLkSDfimt7Np5J2JxPFh2IrP7pK5hHu4MlNL9wVWUxNMRZ4GfXR568gOVue2XOrNeLsC5jMPXllunk8bGm7c88orGTBTOF6nWjpDYqWO2ok/2h31tdUaISbl2/oLDBfscL/62o/uY0UA26fSrLWjjCOoQfKT5KG7ZO7LZIvekvvMyNLRpXR3ZTZz2Nyg59o1F+MYqqzL7M8bEIxUfxMaBqrnme35t/fBqxvWwwMjwPf/mdDfKwmGusl1X9Q61vI6MpVDyapERT/a1U2C0hYLFyq/JvUMgeyqObw07y62cJK0z5n3/RzzYPU94L+YDmfPOf/shuX17AKDUL4nwy3k1V1J43z9HVcX1NFoKeF60Ji3EV0UUpud204esXrEkx4IUGcsqu66mEGS/w1H0X1qhU01Er82f0rz7x/DTvGLWHh0ccPzPE6i/+u9zS8Hj54Fqc7p8r8rwjp3yF21QYUfIC/dsfidF9C4tfw65E24d0wN9h11lCXiQYtEF6sly6lzmNrlcFvEpakjCXWPj3+1qzUwqigzJPiXUvB8iahjH3vjjU67leoh7aZsc8aWDp61eXN/g1/YtdZr6/zlPuatI9t0jox9tUSNOZg79dnYl+tUjYlQ/oYffBOl0Ep7O14hSpf/UPdlwvzXydXzkGmcCW2LP/jlTrjuBf3tc/faAb5/wQju7JxOM8tXCkcofhxoctswvPQ+vc2UjooyOf4ctoCo5OuEeGSz/4aX5fgi+U8wK1i+WB7LZzX8+fBTHyvluH4Edpo5Wtz3eab+Y8b3xn/ul/RyQZwQqv5CnvxO3Jj3CWlC9xTptfN42MUxBOkBLijhAO18f9pv7xezemOB/j1o/UP77l6HZRT9JeapAWNAFePPtP3RutckR/+pN/bA0krY6fG/x9v/V5uGJ9v6AzaOxVDx/6tXOZbZcLhKdIzPWYX87J6tYg8VIb4jbHC+JF3OjouFjPNV3tlQ57fdbbdrlN1YPwAA5A8b+sf/Wueb3M3pINGteuIoGJSMMcNpyEuC42LVLRuJ71dKMb3VCc4X4nKTPeOrJmvlH+6aPERPKQj/HSaMC7uhK1wuQ4z1p8cAiN65s412cvpsxJGrSM3w/anybe8dc8z36u59Fm+XBrgZ02QDrgK9OJ5db8z1+KmCywaLeBNcSCHEGc29OcD+vdFH5s+rceFrS56Ga9DQCh9E4BqVvRPo+f41/+gBW9H2sWKuVXIzldzvp+GIqOhTe4yGHMbHEQYsqHrIdgFRyZuXcya5LjFf/Djxm/lK68ZedKfd+uPot27zjkUmrpf/o78cVxskSc1I1GKuaxiLZGN+PhApID51T91byjq2sYoORYSVgNt0bIS4+56lx/Io4/VflX5mwBMx6wLbNtNFrjpoX39gQE2+Gqo4v6/Pqn3/iX5G3xs1NF8DiXFfFu97KbtNE8a1XmXjCX3S4XS/I4owMcCV59sqQb7UjF6DVmEn7d+28qyvnG7ayP4KVXFvm0vFrRZrYXKviD5SPJPEnVJLnF4yfN8v5PL5j5Ibn9uF6LazV5sNyuDpTaYVZz2Q4XaI7ftHAsufumqRXBXC9g8/eGw8rXWnWJ1zfiuoGb8j89bzGctpSriz7lTr/1/uoHWHNNllPtFhdguP2H7YOXX8thmnDQt5HBilJqupkf2PDIzIIiuDjWyMLuC6f3G2EYrxZaFyuhaLO/MmPtvEIeD/cW+pMZEeuWW+lqTHmkKXzXEe9cLhBtZHWEmZ/SccZ3hs5ZoBG7X1NlmSX59xJj/i/eO7/nKmXGNfm3f8wNzW2+mvUiyCYXiI68su7LZ+pph68ckt2b2ZYIbqW3SYYKcLt8lanwvccRRbvcJY5uL7oJZTrV5Km40425Otbdbv2UYI7vjBj6NRRr53oG/vFMdrLZYP35EywCd/xX357en5cNSWqOxBxoY/V46819r74XunliH7FOthpAi+nJHvdd0Emv4O5BPs1vkN/7JhcH9K5gE+sWiZ6ba8hcKevV5uoNmCsJtcS8Xsj2hx9dPOxX+i/+7aPKYHg+j/E8uLY6x2dic0WkdMT6/3P2gfa/7xQ4uQDm0/QXdruwu6F9h0tma0MUis9ypwMYp4zhHIWoT+n+BauieLOwvdOaFhnR4dJpCsMPOITTXtArWjPwiOd/BjHe71ELmV7odBGD3/Eq2hWqXAUG0XHTh/xj3RfIIy4wR++adNqrsa19z7LPrP6RW0y7+hiU3jgQ43GR82GbNSpUld5gZfcr0vfUn00Qwtpg5WYGVv/KVzqwPcNMP1l1PtCX4sEc75hfKeuar/QFnTlJhyVD1lFLTfeIhjUAIfb0Spl9G8+wNk8vrH4+OhKfz0eGkT0zEj7utWDFNz+gdjyYpPC1rSWMJtLRhlHGDKJBzY0pbrWouWhUdq1lOBXe9QhgJBIz9yOkLE7DA3xy3SD63l/Wkx/5EVz2Y0fcNj+JiWeRgo7fp8yM/jDkfJh0CmmrbYkTb3Vrcntuou3p1DFS7pdW21brYGPvNikhpny2xC7sCuScqppYNz1Nh70au9Dc4yux4FSLMb+VJZgeVsjuZutI3rOsBIUbLfOV2BED4WMEfeumFN77ToyNqtrQe4nMdod23bX0ojXgV+hKQd0Foku6IwVtBJW4alp2omTPABlKcMLSgF8p14qrC9FCj5jPD1M+6a6lo4tGJfyxxBvRw5oUiF74hejZG9djEdURKPlCsGBtV0jo7w2g96VZ0pFWGRLM3kSQ1zGmHxb+UrE6WCZY+jYi1ur8TGmKk1brbnFItk7a5b17efdQqwZipOu8UH53twbtp0gm3s0MQh6t+QJ2rbkm5j0cBNfbQALP0SeyzRMlH26/DAMjaCRBRrSOZ02+QF1/6Jmpvl4WD9dfBeWnh0uCAAf1CuVZsMk3cc28d73uuDxmEaDLs8IQHV71KCsygATNh0R76Sd4VN5H2DtRONvnqaPFQQK1ZvKAZf9WWr8n4RitW/3APKR1Ke+TrIfESE8Es4sciuc2LrTnaG9J/l1eEHuvlxEYFa6J0a1XiNHBV9X5PIjz8LgY7mMMcHDRnkW2ilK+1dsSulsSUmRt806cjSRZOmGrYvmCPmK6j50Jmr/7Yr4Vj1p876OtHcfAxUhZVx3VillD6WNKwb2cUz5t7B4+z3n2Q7K1w6lbLBN0zW4uSfbjLRfuvXmBRlxETOa1+WDuzhK6D+ETTwM3wz5uNj0K5GFNpfsRddSaJA6tVxGKHndLyPHpgDX1VFUk2MZjOr5En6ihephI1ls/0R+L5ggGT22Cn7dNPWQp+ULQvFYsRobW/cTgRnBjF5WYKd5bfF9UOmiySsnO/706cfOPCZgH94kXz3WZ9rm9SQCR44FhjRtoXH4eAPVP3RD/KT1TpqqqiU6ulxMsVm9rvC5Iiaz18kEfepblnOt6pR1Hz2VXi3wtblx+V3Rq9nf8Dd0Wtb8q1ZEUfwv6xl9TrKNwf4VHIm54NVWu4La/8GCb2glJdWcv+GKntBDIbE3C37WseYqvLTR1RBhukNxN+4orsBX7FTGPYR2K9yekqI3YFrM2Ci0unXMFOEsBa9wa0KSpeqCdmRwSLK5FWvc4khE7NU88rSRetx9eXeG1FhVzDHpIh8y8ebDD9kB0ebmzpvxneZozlAqxJ9LXI3l0CmyXes6ywT0hnsy9seb4R0crvHbMvgc3aLbHhjn4Wwl+7z0bcZ+4eFV+lbxPFkhH7FTqzGQ+r7vntq1gvNQ6Xfw2o+Du9+kBySqHOTvfQVxdmirca3NFdmbX5tx5vs9wPu8Ai/JW5d1DN79aX+B2jrePjp/v+kE7/xYK04O3hfpLdqVwF+GaKtrt2w3Ln8IhiH8Gsxb3h5iCWinU8w8UFuT+M5+ICBLY796I2QO203695D1UH7gSZ6G7eR/pNw5r7HXML9Ys71efzRUcUQx0Vfu5NV03fQN/eBuULQvneLCAUr9VdLZ/a6XADpD+uubMaWs7nT6yiFFTxyPbykEo1vllSVGlE58YR3hY3yesFRR/aodEZ9Hnw+q2kIBpL5kZ0vTqhHj1BSzh7ZNI3bVocN5yDKF6nEhQ/ho0dc7TRF0V6X94k446l1tYj2ZLh6svdcLMqga+Z8mnVYoni98OsYwWiaxgTbZliyvrzkTj+/rD0yTafLqdnz2YB/uJtZXxDentXVxhTLuBROPg1OvWXeootRec6ZfmiEZ5WbbaYjEZzObJtZ7ao3nbKB/5Rhy7px0lX9KjrKlkvPlKUSiX9vKLtiJdMSt+beqerFPv7+/TjavJllDD4YXKYO7lm8ZbNApFH7UU+AtDqKzS3/KnjHBq0jteLr3Wmh4TCUB7hDfiyuqy7uTDx4P36t2SxJqIJWfZt1A3d02QP/8apNtrBCO474lRZGU4HczARkafUObQV98NXGMtumXR8IdfQhyD9QI2yymmCNdZ2l+0+gyLanMhxn6t15xetBeqjruCuC9Q0ZDWJ1PxJbqmq+2vTKc4mF5g9VsZP7t1hvjjZo5A2HdipAkrMcX2VgVdvY7MKI7flBf91YPB1e8sUphsDbfzr4fXc0WZ2fYon5LaBvATeUPCuogsUW2hUT9+1rBAqUtLKLm0QN9oURKfZ5eOh6XVA56WPfG9W5pPhCuRmsryiO/z+dO/+JaLPP6H/8N04BKQ+2aFO45oOG1SLVGv1vdHsq5J0plPuBCfihcz8pODxiLqIjVcPH9YOidOzkOvqeA1vA5Y6aurJVB7fkF3PJyYz07LnM+DCVAykJIqaV1ZEy1wAc6prBkp+zfqX6FfaueltiPmmcrd9JFRDFrm7Nkf/+kXn50K6r4jbJcG3OL+mLubg9ScsMIKqxOBtSnR+D7/mLFIEotKev+d7yBssWa2piU+R+kI5jlT6UYImvba0TuC/jrnxH3kgzVdNtcSlvIvw80wv5Oe+6dr963dMWO1UlF/vxdUvTgbc7Zv3E24kwr1OOIPXawOVcr11pQBNm5Df+HlbfVMVw4wQCj9299f5zx1yOKPyfyr/LHEplJ6tITyS6ezXP+LL+rewSEzt2JZixcJrpD6Ycv02PFTHpXZqKpGtSNBG946JlanBXAUvpmzeZ3y1ZkfOXrSLGBuPLfBaq4oAD+RNizAMQrH/imwFjvsS2FgYc4P6+0NNuh1/m+/j2aDodk/JRbun6x+c/tyht1o7MjWSCxrGlb7F9wlKSF39EI5vdz7Aux05f3hcSjRn68jl9UK5ceoy0dRXiqUpGbKgjqcRHf1vjYawJfodNlM4c90PwH6bp0dcQ+3VrSWn5hg7SUPL3SDi55uoFRfp29JZd/Y5GwcqK4OIexZHhltyq2nkUCpXw2Gf5sR0TXxYjinUJOg+/4sOm1sqmZlV2M1Zedwyn9hgOCU+njdMjWljRUq//iFVVVFynC4KtFlzzvmiUcoxtzexGiOT3g176+wnSFWl3Yvs6QeFCSkl1yiU2LalEL6EtNKupnQF/uQ4fv1F47FylkgrZF3lA3BO6dZky7AV5sAr500zGm73zSo9pwbIU1oIqm9pgc4W4rJHu1O5OOS+i081CJiemE6YiVL1IU/fsVJVHbcup5eG6e+RnQton0nS2zjwhDvOhbwrxC8uQpPk3h1I07sffNpbi0P4Rg5zNn+9Jx5uxOGlXrAbGsJR6xH535EYfIpsYQPZT51i3UMHGQdK+sn5O32iyJQn2wkeuMU3egpZ4qO0txLudZfFl9is0e7w9ai+sHdd+JL6xeEI3bY/f2mOcXLqwQ7CwxyiOSu69A8gPbTuRWWTrIc8oOsnaF+9wa5aMxE4+ozXeGNCo35grvhSqvaxUY+JmeydSfdmv33sCla7Ue29bhG/fL4KiCpXYm4wyUJBUbGQps23psY1Sme73y5LdwXyn3Of3HHvd/j+C//0U+WlcpZVhaakPoDFnmdo+lRGg08i7mP6fHx7lg+z3bqFJyxv3jBl4WMobbUF109PI6G/h7HSMKbJ/11GUZjE869KeP+Tk6aT/OJ2/sz+iYLGffJei1y/vKOUAWnFTMOV8maJFsr4XflXzxd1E36+qZOBfed+fjnP//xx+a1IuZWPDrmru4yBEHb0Q07LVMekSpBnX6uifHOWsGyKnQRbPEXsz2xxPSM7UT9sxfNnGsWv8IM0COaXDbje/fuqMXVWQ8gTuXuwjnecNCIjbAIrU4INuQLQOiwpNR4fGo+GJCAO8UrFjWs7Hi2CPHm5awsvBDXRT7+rn4C63N6xuIH25q31TJQBR0f1HosAzEhrs41J+2K4RnXHf1Yd4D5+zHfuCwfd+fCRd+v2pItlhTBa3RR0DRkd/yK1kLwsAx7QFni47F9DrXIL+seouZ0oytkSfn0I7iH7Fhk+Ht6Bfn6EOSSuknX29k//VBafk4LaLaJw2Z7rYf2GBSb9+VXYumVFVb/QZEH7uMsU635Qv6l+wsHqfkKvC5iXjfb/dGExjhzUojVOxTbneNBUycjI2hriOnb7Oe+bNGB6fqPdbM/JZDawIm+ep5T2id3ik7x6UdFvCzTsbsuC7S4aS8S7cWzrn7CreC6+nhYNk0ZTaUSKLA1TkfiNldSd0PjBqjrjz0j25Tl/PaOjrDkxZ2Ohen86SMH+MvnZ7yb5xXvjrAshycLG+PRrY6T2sLPliWchvbBGtH8zsw3+ZkQ+qvS7nIxSu2PH0UXWU2/5SF04Zwuaoqo6ojJeuuuNvOb/+yNJFOiDXvFJUaCjkLYt/EKpRIfqFq2xJJLwXX445vtcUjS0aj+y68JwXu/HrXFXgdZ8Y4sL7XfPPtkKoA++h0h23RW2jGV0MbiDV6tzchicVuWAHXA8bxeMcfnRGFGE+FFv+6s6fMoXKSKW0/MYJxq+od34jwGbM43Ed3q8U3Lglc/5x9B2qmqqv/pX+xCrkMqiqVSQV4nGC/vNJz5xVQB8u8G8V9nLRy35bOAjJ8f+DfzK/5K0wS9d9OaGbbGw++f/Ve9n+CNUWzCSmPOC27dzmS70vHD94+4PeKdYzNHef5ycQhyWXmF45q4/dEOhdR9I1Tavyt50X2SjvF6iJDYWpjYMvVr3hlxABBeSrLdeE347fyNimZ8odr75YY8Xy0ltOxvW2apt1PXebtHBE34LKjIa4RGhe0TaMRpjxWyTS0+7wdqNvjFQo5wOL10vECBLc7EWCefdHSnA6A5/mPjLFuWvNgpX/gmSsbywC0scXj+HwAAAP//pF1J16I6EP1BLGRQEpZMImOCgIg7cEBAVIYEyK9/B7+3fLu37NOnbQiVW/feSqp2KkQSKMlOu02AiLZf/fQCmqI3Xyz7nd7K1dWc//jGAB4xB2FsHakv4bAfxxufwcPXemNdJ5rHtFNYgd59YjS9tE/BnoeqUrAxO0R5fHdsul7lBsa53K75m4tJgGEie3q5QYs7zT0z968IIE9MkKARvvgkVgRhuIs0fKCeU0hWk0Vg9Qupe+nMeLm+0gykTcKtfFr9y0eydkXBT4+wOZI7GzTKR6BpL/Ns8lUigh5eAnw+zh1jfLyF/+pj3E9//pj8CsaUbITg7i3G0wnhqmfoYUDnnm3yMZHP7jkmO/sax8s+3Mlg3Y9/+XnVuyl0w7bEh3sY1WSdzQfQe7kjdq5YP/PXfFDMDTuiZyYa3uCGIgLXp5VSe+K+Bvm4lwEGnSqhrXhrjcGnXx+G+7U9TeE84299XmcvmD38w9P5FB8+4AhOFXXMojemKO1SWMsGQC+vs9cz670N1/XAPz48g+LmQr3xdLKpg08/vbusg0B4DNRMzzuDnjXbh/VFzLBW7grGmoey/T0/mU1OjufvaZvvot3eoZ6scDUVi0yE3j1/k21qCT2R3yP5vQ8R8SYu+G6eSgWcQocegqnqh1B6IZmyqienzr71oyLbLtw9Pog6L/HIxOvrnsHlZFGKozg3Bv2bQViGT4NMkioUcxz1Fdy/vy+M7McSD9bsboH1yEWsecD3dsjoJ3gFx/pP3w12qKrK8fJoyOh0A5uL48iBR/ahaNs8ngW7b6ZSWYwTo64a33tWS7GlhHUaYNOXGHgtQ2eBJ7n02MUEs1n0bxlsjmTA6sI1YMiUSwoL7TqTedVXTFyNQ0OSOWoUXFWzNg0RDBK9osZJC8G8+pvgwY0vvPoF9dJ/PzykxXwhy+aTF7MfMxfeEyWhKFGOjP/5qUoOG5xoYgmmEz0sQB6vKWH7BrHp5q+zJTSNI+S1/fTsecju8BZxCXprUe0tFZ/a8PBVLYrtxa9XP1uFD37t1S6tvcNpOa+zy5o9va/5f+h0zgZuN484WP1EPnvx7l98+FY2eYyOMQfW70fNveQYggSADLQ0kdGw+ptMLEIeqlm1IJgfnwY19o4Nxid842Mko374+S8eSizsCTs7njCacqX79Ee0fL9jMaluvAW+ejqQ99S1/chGhMBv/1u77Y51nk0qIJHjiERR3vRjnyYlFIdoxI7Ei/X0AXd/Z7uyiVX+VhnTdX/K4c6YWupNF8MQw3MbQnpunr/6RkzmnT+A6ZSsfZo4aMwPaRKVn9/vdi5fjMYrt+HjXupYw8qq36DzgWWap7/6Q0+bh7CFZzW2EX/nw/gvP5dmnxNYCle2kDlfdvtdotLHkzIgxUt0V1gkS0g6MRCzY292YAxxjxG+mt5SN9YEZ61I1vyPYv6H92LlVzQnrVEIW7jn4HcSHtiQdo23eFIpS9s9d6f2WxuK336FfmQZVJNDrRdXPIP3loR01Vfekt3yHLLrRqf4Q8T4s643nOLvSBTsfBl1Bh1BJ1tGbB7jCszPcrNsl/5g4rX+4dE9vyN//oTqm5onte/TAraWvkHSyueXtb4DN8P9gHFKv94026EPp9fNxVq5jet1NFEO9Vw/UXMZtV9+acCVFjINis9cz1QQCCyvqYvWnlTGRL+FBdJ78ln19LeYBtfgYGrnPFWTw4UN5kVroGEZKtmgaAYsdTccuJ7QiJj1hoDyDVeC1yk/YH8ktcdOlWcCFm0leoT8LV6O91+Nfrr+1seYNetmwe1gJNR58lohaQoI4ep/ETnwGzb99O2qN4i4OadgPl12CWjHBNAUCj1blhCq0Bj2Ija70PWEWbm1kOl8ip13YvUTOvAdPIenLw7k5/irp6iAXKYLxmZ664V+3A0wyQhB49swjFXv3wEB3RntbtkSD3uNu/+tr71vX/XqdxC45hNsVZdDMV2UOodmDL7UI/ILTN8OTnDavEXC76WvMf/8gf0ufyIhPKhe18luCIWov+PDqkeXH/7eJ3CnPpy4+M//Wf1P6p7QKZ65SKsgyfYcEVWu7Icf/pyH4EjNs5h6015baVYXhWSk+7ieuPdehoVyK8i2et2KoSoyGcpaQ6gj8Wm96ltux2WDt+pXtVjGy+UKWuWhoE0zImM1Yy3lULvs5yeBuaWbCgpZOWN1p7xj+qtPrfFA2KpP2NZzrj98QputO3mz5NMrVOCkoeaWFv0yanwIT8O1w5rJycWvPgd++BC8GstYVG1xoZ6rJ6K4Yw7mIAkQUPnnDfHrfmBKfC7hJq1ibNyfqfGrFwDx6vs4bMt9PB0xaYCUmCWSHuQds2vJ7vB8dSd098GzmJeTuYXmq3tRz1YrY7o30R1OOI+xcVLtmq14CXPhZVNUZusdqUzZAhsuOuE+BfRaPd9XYK1nrfzmzX7+MKwGL/rVOwu66ndl9h4PAjaXsZ6UFvDwJbw71OBM7Of6nJvwvbcC7L+ZCAZ1V6bKqifxDWwqYwoOXQNRsRXIBMGzZ0RRMhh6DcAWn/F9u/plCgGfMzlfFwXQY+9/gBe9Smws+cEYsyWdgFbZOo0/9wUst6SSQQ5KiH/1O3qAl0bhS7LBq//cD1hyTBmDKl/9vsr4y0dbS91g5yyZPb87RJ1C372OeHSy62VXPrYgnjY3emjJ4lEATBPaD8ytfHSq/+q/xnPj0l/9tvPs6x0k0SJjdN+13vDLN9dXjKhTpkNNplncgjqAlBbH8lDw50DmYff5HvHPv2A//VK65Yi429qV8rr2yS3dalxnJ8CYRvnFBuv+I8Co9HjBZP6rP1D9l8/5azQACVku/uXfadx19/91pkDk//tMAeyKjuymg+BNF2vhoWfVIsWw4Xt2y0NTMW1jQ7VsKgErT90VbmJXpBY4uPH0rvUtfFTyhvquWnsLMz8J5MlaU5G4S8wGIVtg1fsZNR34Kqb2taLKGyK0QY+79zl79gCPL3Ck+j22jVl7fkyYKKJIETvVHqV0PXf4oD1a5v7qLe3rQmB5fPYUj1rrDe86X6BeLAfEEs012EQaF3B8GNGTQV4Gi4XBh3qRnKj2iWk8ZLaLoDCcXthLjA8jd0VCUOh3DE0dsdloJ+kA2+kVYr1V534QuT6FPHY9bNQjY/SeXSwoDOcXIhttNKb+eo/AxTgO1HIOc83IEkUw2hsj6vuM8+bH+dgB5zuE1M1PFmODmIVwfHAdmTgbsKm/ogx+v+iBtevXjKWNAycQhNaHlN3SAgZRXsH66+TYAu6HzfdsuwX+OhI9rj9iPDoRbQDHpyH2CqWv6dyPH2AdyYiDw/cdD8JGJqDLtD0SjKkxhv5qZTvPijlsBtLam11zTdg+M5HqI5WNqS8sGU5vOaTq+nwznXUIx03KUbwdQ4+4fedC47Or6d6gZj05VL3DLZMuaCJdBxbVurdg3Gg2afcB6hdtfzbBY8EnspOADJbbxmrAnb8H+PB1n4w90i8HC8Ar2BaLxRiGy6aUo733JZOYR4DKkfqBpfZ9Y0vCbUxunDhA933LqNpua0ar47UBZ2GbUYulOpifEZNh+dQAXt/H64BAJzBluUq9MDAAn5uMB5vY2mJ1edJifsZ1CY8HfcTqcp/Y4pBtCdH99MDIlyVGBO0I4ZvuN7/vDxbeKEV4iST5bz3GuR8HILXXPdm4rVxPhR74YJt0G2qrtyyezu4HwmvHHmS5h049k6Xz4dXrDew9aFQz9qYfyN/5E5G23yUeLofuLpJxnpAEKwHQiZgZlNrIQ6Jjz8aEK4sD8wuE+MAvI1hkEVfwEecUe49l9ug8BBl803iHfVfT+3kQ7SuoL6ONbfIeDAaR/oGbSlCpXu2xsUgAfkAR3B1qhIeDN72byt240qFBFNVXg22cvQs7+y5R7H4vxjTkGxVyTWvjw6xabJGldu29VRuoftCFkXctXyEIrjZNbmcJjE3QVjAZuQW7lUHB5A4XHmyTt4YdabMFdO6VEkKvtkhzKQTQFsa1lFs9yahKvl5My1PeAuebXv/ikaUzusNTgF28P3tiPe4vfgoM1wY4mr+KMQ5CSZQEhzY+KY9XPdOp9pUfvgSH8VXM+4ufQDKOC0bO4RjPj7RTYeUtFnauX9Ob75eyggl2fWoFqmCMEOUtHOldpth9y97QF+QDofcykchtSPyL5+36/tjSIt+Ym6AtoaWnF8I74AWWi2W4SiWXhIZLRdgoR587BEPTYOdzDozJ7RcTltpcI/aYZ8aecdzCcRPoVE+fT4+83uGgBGFS4js7V8Ycwm0H3g/wwqarV/HgkKlVKrkZqBeiupgE7buFvPLQEAH+u6f8+yBDIcAO3XsPv2Z0dreQjBJBG/dVeLMdPxDU5XbENvl63pTZTw6CIHMx/vplP2SORiCUDzzdey+np0d518j7hdtj01FMJmGl9BV/1l2M9k4YT33BlfAsiDlVlwoxClGXQ+vpK9SSkhqMVeSHcH5JETUvVyFm6ZSKMMF6SIOcu4IZHB1f3u7NGTufE/EGd9TuChl7njAf18Yanza88zmm2GKJQc28rmD4Hs5YK592IWZr76/6G2QUjwfDYCs+wCj57vBh4g5gen3CUFnxiu69xvWWO5QIrIo0QUMg2h5bujSCx7RSfusZL9/y6oPvhfeolRDO+L68cwffqlZR9ysJbBzE0lesI//FmF+CehE55sKjJc/UkUAORidaZwfw14BsJuAYrDy5BPqzadNLcxk8diYPEVjPvUatfTga7Jl4vpzt044G+QbGA2pOInS+4R0fdIgZzxuOC4XgeMBWQu7GuLFvDbCm1xHb5gnGQ743Brg96YwiKXh77DRzFkSoviDFmGrGli/5/OWzH/6zM5Ea+eo9HMI/ccGWttlxsJLzhXybq1t3siB1sD2Sgbwn+cuWT+Wl0Nn5JbY22hhPuLqLwJ9DHWdyLHqku998WGr0RV7K9W3Qo3wRoWtHHMaT8jGm78OUwTZ5ab984zGzWGRlFm53qr+U2Fg0k97lH17svXLwxsf58oHWUzMo0hIXSGeCIXzUOqBqC/Ri8d+8ChNl2iJOOw7xis88/H6vZ3o9fUlPvqWZKJUciaTwjxqYp7EZQLIOtzGfCMa//KVYz6uAH6gBNXm9swG6ovJZ512phnBaTjLs7G7Gmq494uGHf3onvrB/pH0/sX2og4AODG3cLquH7j66sAiIRrXm2rF55I8pFIAgEAL2vdH5b6jCO58ccYCvwfr3swn1jntiNy21YnGIuoVwt5MJfzufAa3RiwPtJNlEUG5WT63zPgRb9n1QK+QLYxHULgHHlxBTMxBsxoel1Mocf/URXJ9vDsHOhuXxQskOCApY+dcHvpathVMfSPV4lF19dxamKw0K88KILNIQEOXEYYtlT8DmYbSBsxUHrFZcCZgchzq09PuJWHt3Mqaz97lDqU0dNLWgKtgzAjwQQA8I/zzKgJ2WPQRjqH7xbY0/4nX5AoXB65EYLtCjR/kowilLdYzYyfAks/AiWAxdjaaOfuLxkJ4GKAwGJbtJ23pztO0mcFBvJ+xWJl3xA3HQfdOQapO2jcnZy0ol2u97fNgOE5jO7sQr1vOgUSMMTI9n+0yH+6U50qxSNEOqjtcWrPGNA4Pp8VcvwwGSu9cQpTB3bAjaYYB3Pj0i4exI9VfxQQrJPaioudmWxnyUL1uwMdoPdq5UM/jPk5VKoMoILelTM3heP5ZKJVeEqqTrGDuciA7ej90LO4C/F8ttw/kwwalFphbo8az4cQt5pTBQufJRFkve9Y8vHOAzjVksND4sgo9Bk81WNVi5uh2b5eFTw4+fBpv710c2to+Z2t1i1QLmVFWe271LU+3yqQkzwyu0JuYh+R5+4/GRXWyw4gu9CV+1EFHN6UD3ZIPud7XRT6mfWdDSzSdVO2YV8z176spjcc5Ivkd2IYSKWsJRFTHWdJ0D7BmDtXdgKFH/chWMmdKYh/dm2GO8pXjd/8kE13jGbqse497MQQ6/36SgiOVqLw1i6cL3Y1OjLfn23vKuu/ZPH5ivw4ONnHe1YHEzT3TNfwVBzauDYPhU+Dwpn3gcxK0J1u9LBO/Z14ND7TU+/YDiafP2aLTtCJTa0qAnXJB6bgK0/PgV1cfp0k9D/gihk7s61V+byOvcQdvC8GN5aNvyr57Og6JDqbUxdj4JqZdP1Zvw/XhTNAT815iu2n7tZWxeaboPSL3sdkjfIQQCVHbjN+5kUbLhfDA7Gnb8Hkgj/3VhKF0f2Ermaz3byZ2AjNE7UXa1UfCC5rpgxUciHN52zyB2XbgxuCs13s22ICv/gMa2YFgrSxssWxCo8Pv1H/Qxbd1+xRMZnoKThQ/bcYqX1M90KPjKkXrJ/g36x/l5B64IOjIPXlwIc3/iQXemeOXLNWPzaG6VlT9ge7mH/RS8TslPTyH+GaxuyeftQgG8FLTcfa+eEya4sOrVO0ZSbHrsnl3MXz7ByN9la7yTBCbEIniPs8mjZlHYoDyeZxoopQmGiyWL4Ci8C5S1otlPbetk8OqdAnqXcOuNE7km8N60DraA7bA52ho6XPcXNs4bF8xynJmgKjoXa4PDF9/75VNJr1rXqVdwnsev/HnH8Xcfm6d6Zu2qT+DRmgRsFMBnc5n0OmynnYUtVqhrfktFmDF2RWRj+N788qQcxpurTm0zLQDbOIMM2+N67wh4n/jvzyBI/VXfaEA6Au0ODdffUcvReW8211lzB/VYEFBIqBbdYVeCYqjepHl6NzD572sKq4LY2HS1Cox2YvG/+Mcr/6oX9aDwP31HRJaXbAjLMw/I+F7PoDvJykdRAy4Rg2iz6vf7irdg/T2q6abC5sNJ4aD1tDc4uCu3Yir0hlPI/XxHcp7t4+XzLAjMGi/EVrhAo7yqLwhHbuOSh/sCxvBu8giCoDXpXikO/TwPggkFf3MkWxllPVkNRsDfsxrtmszvv8ZVvsP6ckqQGG53xmzc3BTWl0tEneunqdkzulpwuw97ehgPRrHI4juEqz5FfSGRfuVrEbT0/EyeAzqyGXO2Duvv/or1PNvX07uJIuX4mk8E3s5ST0f2XfUN0wkMeMeTsLI14SmIbbTh1xrxPJocWPMBEgP1ZAw2LX3lEbsSYe+XtOpdF8JSG18USYnRM8K0rVIejwzxl5IV82l5TdBwdgbVx/niSVXkox9eEGXXVGDyP7EIxg3WVz2Y12zj3FQ5uYsp2k2Hkzcfd4urBKHbojdsePCLT7CpOIj1yiL9XJ6qEhKlgCRPnypjZ3q4w82i5WgnKTuwbHdCB62pjpGiXOyYoEaoYJTcNlib9DMYrfMNAb2DTyQo99ag6ZwmsDxigSyV6/dT0Pp/eh5r5csq5l8+2zaPPdWuQwXYIEyV8vu+dkfsng3ix4bueeei5bVZPMretIPG9rby200GxMshr+DxNZ7JbnBZTc2cZYqx/fbYNhPIqHGLbKUIqgO1pHDPGAi17o/vaJOWxeRT9RZ8xNYO//yeTjMfLezsBGBbxpmxfJ6GCDcGX/7xa/HsOjYUru/byh+uxvR5etvdys/R7vox6yloTQ4Eod/Qm1I2bPA/oAFzeuWwylkQfGNhCGHVcSWZ2q3BWDpxjSwMGv3bT7Nx10S45j/ykSOxZs+4aOQgRA22pOMrHidqQBglb0DtVnh5M0R5A8vjbUQi8OxiYvtMhVIbejS/ex54s4+kysVw/SKRU2gxDJfHBIzt+CVbGW+9sfHf+s9PIorwVeNFFjfuz6+h5rEP/sU3cLMSNLW7uhh446hC2D0+1JLi9V4j0CoYmQqltnrJiz+9Y3yEF/Y3UlnQn7/SnXcObhN6qyd3eBJoHdsZB7vaiFkiJCm8evXhz18ibeukQC9KjJ3m5nokeCkqOAvkTpa8MA265gO4idOJ7AYv9virNt5hAf2ZzJ8wZNJpbpFsHcUv1ZpsAIQ3Mg5m+6TDZ4um8WLT0v7xCzQWuszmZzSo4BJRbs3vGzawvW3DY9rtSGajB6AgPJZg5V/Y/Ypisax4KZNRIMRWL3LcPyMmgjUf0P3uo3ks2uoc3CbiDuutMRlN0PocfMTXkZovexP3cvTJofs+3sncXIZ4/PkxAEaEqh35sNlKhbu88gPsplejmJixXX7+FvV8rLPlxqUQwHyTYfM4d2B9HxeQ+7H844NL8BJ0yPF6Tg0/KfuxihIXtrpZkh2YN4zeL1kLA7XNqL3UxGDGdcnhWfiU+Laux7AFexOEWbinl3V9l+5+QnBYJ0ooh76N+2hbDQq4uRGq0mvdT8HbvAIoxwRtSdfVy8XqZBioS4Ruh7ddLFv5lm/X74/ktFJj+jh/1/nNL/0v/hb/U0yKK+46rF1HvRhPM+fK1lF+Uy9R3ZhsQbJVgk2uEDptu37yvkUi//Kx22oTG4aLVAKOjyKsle1+jdd8C3kcHsi3uQwG5d9YBt9vWvz5PePIvgOMzN2MbTk89xNvlLLCNY1NDxbPAMn3XgfdzNOpk01qLW2ckwr2y+KhpbJIPVrnIJGPFkfR1PF7JjrjTod//iIQboyNvJNDaxIcrH+3Qj/0hVjCo7UISK4ssvY+5j4//Y1IoPKArrAIV35GOC1xf3jlQn9O1D8/cAbhsZGP7d77fV9vlqNtAh/LI8C+ZWg9z/aqC9tjO2FLSgw2CaocAdM+KFivPN8DZMlDSO7GJ/j5mYtmbhK47v8f361FWTyUwDp+KBH3Hq67Hz9a9QF1X9xSTK/PpCvtcRiwxc5VMR53VfS3fzjHmtmS2fME6q92x+bpFYJ5ELMUnoKzRT0/1Iv5x4fBcP3Qx9fTjOmqWj40Lr1HVbU8e3MIMxl61hli9x59Vr+tWv27u02N0H318yF9tdDJLZM6ZWPVknV+qXAWLiW+A8fxiP8eXNC98QNJ+nZmdBC36s//oqteKeaRfyKY8fsIq3IsFqw8RS2ARYyIGLKin1/eowOunct0jy+4Z5HU+4CMdCEbWJ1qmvDDICN0KzDWIV395Jb74T+1wuXqLf21NUGgiiFF2tGP+bZ1csAj7kj19FEZRNCePHQuC8LOJ8YeG/lLBDo7BfjAz6hgx51sgVUvocTV9fiP/42bo4rmT0yLmSwVklf/Du+Nua7ZUf4O0Pl+Iqq2UGOCHVPrF2/0F/9DZkcmfC2yhU3LKmO2+l/gm6t7/NtPU/g83OHKdwnVpcWgNb610vQWI8Q5RhxTsnQuGDee+ZffpUGcdOhsuc+qp07GdDl0V+h88xwHZ1dkNITbBury8KU/v24mi3sFm9jcoubUHGPx9bZ5AIJBpSlLKzaD44cDpyvLVv6y8/j+ivK/+okQJ5Exr/UP0OpqteoRWH8ckvG/74n44+St66vlv/1N01CQ+798MqflGj9eD356SibjbiAgsd7FtJWDBqL75UbdtDCAqB4sBP7880n5eMy4zfIf/iLgfL2xTHMbDBPnUSsUc4PcOGyBVQ/jIE5mMODn24ffy9bBV1c1PP5ykFOYJYTDwX37WKvzOoQ//o+3hPbT5eCuemqTorFQAWDPxEBQaq0jxujO1Wu86qCAukT4YPsuZs7rud22ue0phi3rP5njEPiII4a9xxQZc41PHdSLj7fmW3nlg+MCvtvtlxbhwWIibzgm3DZB8Of/zhB/OUBum+6nV8Dk9p2/G0P7hX+/P/D6sfrlT3o9zl29SIqvw/YIGyKv+DpdrMIC5K596N4ge094+WcbBnSa6Yo/tXBi+xJ41neh3joLcN5frj5IsBrSx9dXa8Z5bPrje6qYL4CRRdbBxhgabGlnp2d0KiK4iVUZNZb5jH9+NUyISaieX/ae+KkKH460EQm30QKDguNHBtD76mh3/TYe3edFB/eL6JBQzCPG7tkkgilDFg68xgHkt19//sf+8Pl4U1/cJ3gW+JyI2sWuxya4f2QeJ3sk55eGkVW/yLPwyn94CpYbh004hn5N/dOHGj98k2H3aqiRmHY9Rrs8h9n+2lJ9ft890r40Hh7U/ZPqd9x58z43eKUYmhf2LUs1hEfmRPASzZDa7dbo2Zls2l/8rf53780v/+HCo3CuyWutL9BBKDu4Wc4hgo5sGUx7hq7ivr8R9W/ncz+D4yQqp8DzsV1BrV/9KAiTe1Ui5idqLa1+L3irzh07zbXrp+5+C+ExxQd62E5krb8dOVC7Okc4x4zAyl+h7GZ7kyJ/c4qZcctduE0+G/rzeyeH2Jyc3JcM8c6mBis+N/LfeuOcMLa/NDqcpKzEKafgmIWwHBSeJC9s1H3CFlk8Z3AMrTfaAXYHk6DlKlz1zbrf5LWeKlcgzHINO4OTGFNYvgdYHgtKBkvXDUZpPAEnVy2kxPGy3tHgK/i9TAG9APG26s/7/c//ebjfnUch1m0FdueBOgOeV79SbxTn2yaIogfnDbgiA1zxj4B3KRskN686fNNCwE7z+BrzxlaSP3/3DetTsb4/hMEm1kiVX17e97QgHZL75Up9hzPX+hgh8lm0IoxH1VrvkMtIFoLTnlq+IvaLLGFVWv0XjFhRGiydLKgkSE6waRkaI5pJrwDAkNDD19Pi5V1XDXQuWxfjUd/3cwjLRVnzJ9p9jqHx46+yZ715apuZDMaj/J1gcUNH6ubntc/tbrEgQXVG8bY79iPEuQVdSWtxsKtqNqCas6De8S/qNA/HmJ8xywGvDDt6tqhY/OoB8LV0CIkStoppuxMIbJ93nsiViYtFltLV8qlWvokNY8n3IAKP6nsg23ZXeyM4OghKwvZMr8HiehLn8iEcw/BJvp8w7H/1w93/OlMg/PeZgkyLNHqwOKuflGmXAgefHXq4+B8wvQLJhwPHDVR/BAdvRntyhbezadOTOWWA8mtr2Y+yNanp2bDvVOczAJ+0IxKGza2ecn1e4NN7FOjVLJy3CBu3gzqbboTxe8y+KtmEoP08KeHjE/Sos8sTKKimRO/O1Y1ppaUWdK7qHQfWUoMJfs4VtI+SRHbhg3n0UN44eGyHHPviRyy+wjWr4JY9TOprVDOE8etsYbDnZTRvX5Yx4Y2gAqF/DIjtBbuY0lTfwvV5qT4ihy2LE5SQJtoXq/RU98v7PHFK9D1fyaJs83iyvxRBobu3ZJA2n3jeprkFZ7tRKUoLvWZCb7jQm8wTNtnO7hcqFDowDZOn2vPleaOeHLdwEh81AtcLYEw4RqFS4ug9igdqMfHcaCrYPTc3AsTzEA+ZQUKgKwkiHCRXYwkO8RUWiZTS4BXs68X87pLd8B5KfDjNujdL/CEB5Myvgx8/tjdkmycP97Z0ITXS34zU0icCbOwgDoR3088ucEMAy8JA3OaqGmLZiy1szMeOWnkg9zQdxQluTdhTa592PfUvvQ6b0rapoXyfMR3Z1oU8VGJsnI9zz3xWyPBw6g283+/LnvXTJ4SSL5dEPkVNQfucTbAmpYdYu5MA6eA6z6f8yBhNohkvJ7lSAYyGD1rGO4iXZT0nlSLdRtO2CXrauUcEtMM00z2Tnx4zaDeAQ4gB4Q7xI6a/9bfOdkeN+7AtCAPLBOsjL2FzL6pAPJ8rHvKOtuDDdD0VU3PeV0B5Xw84SFhbs4cR2nAS7je0uUhPNpf3CUJ77iiSb48aTKd9mcJSzzx6bnhqjBNrVXCTZAvx3X5fLw+k8CAYTJXGMMLxUIlqAqb1LB0rQ9eYDic1VJ6q3GC8azYFeQ+PLdyX+5YMpVuxOT9pCZxrKNL9/DTB3Nb3D5i3hwcSFKc3lqmoXFmp1A12N6fBY/kUuco5Xghifn9iQ3fwQ/j1Xy8cnIQJLPmxySDiOQdbN+VrTEEFQ3gFxY5M0sL3Y1unHcyd74eAjBj9NKZLujnNCU9xfohjNrwvHDSqUKSW2sxszDfXCd4UTcAu9bh6Gkr7A8f5RbGTXTVDEAdgws3TRjRrDARY514QHJ5RhHaipPdzaO4guI70jkQN1IAU5nFQblySULyN6no+groB2/L8JHMUiPFSFokO28M408C9QYMtxcmCcUQsbOi5Vs+DvvDgMcUE46yk4MtG2sLNbjVF6r5hzAzpFnp1oVLtqJiAb85BCcvrRsemJ59iNhxfV7ilaU7Gx6UqWPE2eHDbAp863XqmpsCbHM6mw1FcjrhY8ciEYNlNhF3kTT0xa7ag/LhTrFYtBAPeKCqYtBKu93yLgsS3byjn3aOlWCrdmh2tiyzT8ZVTP7oca/r7/9y37+NTs9yNud44LThvxxP54dXIY3m9GHgvsGNKA2PHoeSg82pCvK+cyVsgCxYIW+FIzVaeivlw7BNgg3UeOpOfxhp/qeLvnBe1hEDo3xpUMrhLYh1xZl4a/X5ZWqWU0oXAa54U0/PmcTBeghc1LvKjn3VuTEBU9Bo19sIn7lb8BpeP0GF/x7xakBywhce4lfDB+t7Z1J8JDzkn9qhWooux8PZFhwKvZ3T/alIwB+6UKc+X5FF1gO+YibftHcw1J1J71t/esL2xHCAeOthJ49Rg1iZclHX/0r/f3+8jHwb8Oab6Vgy9GWx2qrz/fI5U63geLKN4KKFjLhE9lHoaz6VjXuG6H/EptmpvqmR/gMku/NLQ2XDFIpCPBd9oEchm2pve1KpNBc2g7ymaxCaeq6XOgXZMa6S0mIIJOUYO385ppKbeezV16hev3B92hA8kU3um2GMEQdfdqHmW6pgU5oUAzBkXojwuVcxYZC1QjUSXGp05ekP+VUW4kysbW+T8MSbAmTrc4rqiwbcT69mQSw7qSoqwdU33tcSQm0Pl8wiwlmm7uq95L4H3jJgYv+iuHz8tKUH85SKqn9VDvxi32IV2s8nJwAJaT5Gw+JAs/gvb+Dp50yvYILD/fs9o+Jz1YiSWPoBEcFV6uL5xzzavVofW/cVRQyZKPTy/nQslWGxQXzcTW1wbQ5Aw4Yn3XUr7oVDoJF/19IvmKWvrWQO3Owyi9RpZc1Bqlp1vEwANwtS/4Ic3e4eyUrhUaYnMxhdbhI3ewSCDN/zwt07PTGhvIYwpIbJo6YXw0i/l3/PsxzktaL/H0W7xsI51eEwZk0isQ3ixRWruxZK9x7v3gfN1+CIl1II1/5UhuEpxiBG8dzVLR26B/NU54ez8pfX0uXy24O6rFJ9ndojFV/K04EkXizW/VkbnHO8hlEfPxdr7u+mXxJhyGNz2FlWLCcfzI1p7B+9ogerlONTLFm0XuEQ3jFUvDYvf94HhMu1wAG+RMfuf8QOWLTlhHWqvmBwDhsCslG+023/39RTtxBbUp02J3ix3wTdOPirwpOcXDZFTGos5CgPcZO8KLfRtGYJRbk244fgP9jpqeS9lTDKoBNb5F8/FEq69t/xz8sSp5wb1BOYXDzavUKK/eJrd12na+fNwpDp9W95kbhkH0tjZYhMZarxI1h2C2KA+4g83M+avltaBxtlphLO0uqdmSGU5dAkhFzti/Tx3jwHwzaDh07C59URvv3c4U97HXt2EYHLEfQ6HNymxl8plMReLa0H1reyo/dpfvD5SjBKa/udFYOlWgDbqs4F2QAOMwkhirFDhAh/hgqnvq0L8WfORMr0XHWtx8yn++OovH98/XxOI3VGuIA9gQMOPS2qmWsYC5zQs8MXtKSOhdlPBwbM8uteHxmD0GZfQvXU5dplyjp9QrAh038ingfEm9TCFTJbX+F0PqNT1/N5/M0gW9CJn8okMUTCwCZPhlVBjU4rxN90qOvg9nzefdE/0vTMPpYnXadwlXE00M53ATrUv6HV9cfWQwguEX//9wtbCX4xl2Jx4yD6Yp/o7b/sJOV4Op6R7oLTKZWO5PvOrLB0Nl+rTd6rZp5R9ELtOTu++NBsjFKsBalRXCHxxe0CP0yv9fR8aMhWAWTaUO5wbBdKgP+bGfOXKCJKoGMmyhLzxHb+aDMdvcv29T8Gq98sFF9sYsO5lWiH88q8d8jP2BW1hjB6qDnxupoWamxXECwPy8sfnVYf6YCnI6MJ+hw5ooiejly41g2Dl79hod2cwT7V3hyhxPWr2g+Oxrbzzd5fgyhOByZrBbL0cYPM6Shh3zyX+47uzUr1xcNCFot+AqFJQ3lzW/e7Wy4ffEQCM7EiPMORi2h4EEZ5k+UV177OAQeGVAbLa2hOwW5ixWKODAC0JRwbZuHmfR5tHMH1FJ+zeqBAvwdiVUK5fl7/8N2dbtYR6auo0nRfCJq8odXkoDI9MIym9+YfP5gHfaLCxNmBJskcC1t8jMxU3xmS/KhHuj9meHld8mY8+8sG6PtR+iNijP/zvCgCpf/bcgtqxEUFxwj52i9XD4wLZhhoYIvo4yjGb3EEy4a6vEdZ5U4qX/h4SCLbJlrDz8dizNf9DaZZsMj6+MRC/9D398iF1dSrH7GC9TKVGNF75zRVMUpDxcKMmIfUf2RfMEo9TgDsgounWRKvHKFlwAIJDVr7MumFz48E4vykSHQZ6qj7gB2o2k7CqVWMxqkSK5EqvShpkaCy+xeKaoMijO3YPR60ez32XwHDra/R6wRuP7vR9CdumsMhPX656J4WH+nTHhnHtwXL/tATyX2EivZ009WxLcg6btE3pT49JQ/A1gaHdt9h+7Xfe1+ciG678ATWveADUiqUFgHMpI8XjiUEK8rLldb3Rbji2bGwjaMGmdG3CPbqhYELvuaCm9RHjVS8sx/tpgU77TnHgBm4vSDxOZD87v9G0vu/0Fb8fCJRFRc88PzF+5UtA74MZKTAo+8WagxYueyaT5SkKBtnE6RUCZVL/+BabkSjDathirBm5DMhu313hoD1yGuTvb72MHjShFx5vZLa5oZ82eZZCuE62RGNPjUnN+hTK/tnH2LYmMOsLdmH4su4YZfjFpsG9ujDmTPCXj2jQOgicLTP+2//z4VinMJplm6qy4oBljmIeyieZI5sRXozJyTL7p2dwwO6XfmbjuwWXsMnI9M6EejrYnQUpljd0f31x/TcQDBG+nouJTVjvigU1iQ/3tnDBBop2xVTESQpxtxOx5jsam0ZFy4AU6iZavOxZtDJMLMVSQUOUne4VUws/JnxfbyHRtHoPpKRrZSA19ohdCDGYZZbz4JFst+SnJ4l7mUwlfhZvenAvY8yU+2WC7qFI0HaNj+lzG0O46mu0g/0LLMGhuEIHnxzqtiTo+cwgEdC+LwFb3xeOl+szWmfFcC1SNtaDLZkb2nB34xliev7sWYduLby3+QPrmi55rDq77U8/Ynv/CTx+1PY8GP3+gCYvDVd8qSo46laI6JmIYDkrOxke1VuCDzkb4uFE2QJdK0N43wIbrOuHwFSYIw567VOPu2qKID5NB4ycq1vMXOkM0L19cnyLctebCyzl0O8fLtWP19RbnlFA/taPVYeHtxi3woYXWxuoK1pVMelCYylXSDICYvcIRLo75/DgmR7e96PWT7d0vcNxPtjYnvWDNzpm9oGxMfrUkauczdqtRJBElxHjWyUbNOfvFYj0Q4h//gs7+XOndEbXoa0etAX5Frb44+NIDvYm4y/yeQsL79gQZqKGkfd5y4EUqTaa0vUOyXEaUxl/5Yn+1pPtCjGDr3bHiPR4vby5fy2qUglORa0Vn9mUBQjUdQ/IIhTfonG8mQPiBu1JIz+aelkHhfz0EOKG5Gasfkwkg2i/0D0P+544b3cC2YFgtCgfm82KwkFQL51Af/qPFek3BMi+QWwsR79f3Bt/h8C8nAnHHpExHDdqpUSfNEVyX1rF8nB3V7in1gMBB9je/OmnKyi/3ZkaKX7HvXIACUD2vz9O0CSPL93PvuLN0qPMwFjvEqpGvgKW8i0jmcnpek8wlz22fdoJ7CNFw59aa+LV6azkIhZD7CBLrEl+bPK/72E/uyim9RYP4OenqbvUKj4CChJ47lWZ+pxwYmN5oaq85hOyPYasmEidVRA9xZbaQ4hiEVIng34ox/TQFlE9uXrfQSy9PJwpg1Szxnxx0HUrCQnuzqh5r/ioUHB7Qveb6hCzbEYfuGljhchMkeKRs0Je/vkX3nWdv45tLgE/vofzA4tp2GD3z28xhOsTDNpLK+H0YTZ2wM4HC+szBKVxuFMvfDZGNw8mUd60ZdQ7LDdjPjvnD+TWu26COW3ZdPFVE+6s5o33kxsBWvNeCreovJL5AHVjqY8XBJCmf9By+Qo9++mvH1/SRP/bt82SppAc8zd1MVl6+suvzMom6jtQ7cefX5i+whMNGLINcipnGxbAumKrde16BvLbkpmcHAl/GAXAULmJZD3iHtR/v74xFaVnoqzPg+qt9Ok/ytm+Au8j2tjozMBgDyNzwXfIb1Q9Qr9gU2LzEH+3E8aQ8v0oG8IV7kruTDbwUXuzIDqZkmyIhGRHxv3I7eRGpox/0sOokX6MbI1XDvqzpHvfe/RjR9W1Zl1E1Be0iI35yUl3y6Cp+LC91MXwMA8N5Gm0Ra87+RafSJAR6NIpwE6In/Wiq1H2w9eVT0sFvYedCK0nrdZ72ZTR1R+B9HKdqfHTT5H6qWTqz1fCHYwAsJO0t0Btx3v0LgRx9V92a9+z3KC2f89rhsR+gVVlbNCt4h2PbZ7P9Uz6WOFDkk/e2JRogqsfS5RcKrxJeHPoj+9YhzUqgs1iio16DsmxOhtMADI1QTXuTnT1zzymWt4EeFsffn5lIZXNLYLgCnWcXW4RWxpy5EBQ+h0+vha336ZqmsFraJhkGrm5/8qXJ1ReKmet/l7Dltu4/UCn9Gy0MN0H87fqbBj21UD6pgXFFGbzXRkfU4fxCHe/vn8i3Mycjy3XNmJeeIs+CG/iEWsdn4CZ//YIrPqUusFJjOnc1BnMeS2jR9F3ajpxSQjbwN3RveecvNniqwp6Uv3F+93l2jfZ5stDTYxduu9S3NOYTjxQL2FGD/uzYUhB6/iwAOYVP6Syq+fXVV/7oNkJds3tPp5/73foZYea7tbzpqn95H9+uHXxwmL5oK774Q09+EHYL2ZoX2FH9Atd/30xVn6SAlkcINUM14mnsz35P/zG5lKl/dTEmgv5Y3On91C3YnJ9pSKQoWuuftPOmMu9aoHzLXmg3XIq4pUPWAA0Psbua1jPLMLEgru7tMN7NT6A5XzuxJ9+RMPAs2I8RSMHOqo9qHPubO/37+E5ngjWaDvW44+flk2ACbheCjYdyOwqWnK1iHTjnj219c/w49MIhE/T4AU+ycF8jp/Y79XJYICXF/jKUITAN0sMIlkphG2dqVTvhCCe8b0T5RVPsJbnApv8yYJQbTlGA5Ur2fx2XhO85i+Aza1lx8vDna/KI5wwen6KrF8YvbZAjYWQ4uVexrwUhDyw7m+Oet+MN+asuurgdf+U9PIRVW/HuSekDBtlQfKpOrH5Yvc2uIRthu1UH7yhu06T8qu3cK2g1fzUljkUzieD3ivDBtKu4HJY7GYFmyteTaXIi/DZiHuk9JpdE7mfy59ep2hzVT2heWUEWupu7WMDXz0b78YHZEMnUkeOvsUYJ+VfPkCSUoz1MmxuIuiz3MH4dMrrwXs0ObgZ3AujULcKYa9sRbg/8DH2tc3ST5I0hPLqFyPp4ttg/PH/R3G2EGzeDCyCgS342y92IAw9UV7MgiufxObK/5fVf4E/P+THp1d9vwX/kHYtS8vCSPSBWIjc0iy5iQiYqKDiDhQRFJFLAuTpp/j+Wc5ullZZBSTdp0+f7nTERmqpMLlnPn0ZSHDcaHf66O0o4N84NsBtD3v2GNKNLfHVykfqqpPxXDYDmqvzo0Zp0pQkT55yNqNQoEgKjy3ZvkUSTCLRLohU95I9nNu3GrKAW7CaIGQEWFyN8M48bThME/PPJyeTvoJhQWb0AzPwa1PNf2cuF72XytL62E1jZefAb2XEfKR9Il7TUEF27oXkvr9us7FySwGtjMthwZNbMHfzqtVGV3AwZ8rBbm7aVVOXfITt982UcfbKCljwG/coZQHtvHeIjuMpxJMTRrz5yy+o76VkiX8VN9Y/H7zjWibkqHHEJC8QkL9GAzPSm56xb3w3YDz/Pv/qR1yOWx/96e/y1dbRr79XvbbaKSY5ayPupkF938HbD3v6pyf+5dOgFnDFr/jyisbvcetClyQ7Fpy8bdWO5nSC09H1//AgYJ96bPSdGE1kD/ui4pqwcyHLsy0z9n7UzeqmzPV47Rl4dWzLbNzO6xKcr3Um4TVos+EebU+opcbtnz47p/vC0g/XxGbezua8//Lbv/om2Ym5G43Bs09R48oGFlcvzMe4Or/h4uRXsjU+bda7ZQrwbKyM+fm06mZ+7ihaDi79vV/H58l8Q5ILGdUnWbLHhW/CopdTl0Adsc1tR//0WaxU5nuZS5sU8JbTmJjDqrX7d7TzIQui93L2QF302e1Sv2oYMd9jEY3OM3CQ09gZfr+UOuDXw66AdNc1zDNqi0/TeZzR9F4B2VRFabNbdEygOusFCU+3qZo/8cuBL5w8ZnxeRccrhdA/fGeX07nkYxmtW3gkG8zicadl09Y0Rj2YthkzFr1tNOY41PM6ebIA66eM59KkwGeZv4Wt4znot7NeguAdNvhP35GlF4jQpprEMFCwa5qcDn/55lIPHKo/PUrfR9UZf/Ynw57qpnijsopzZu3IpRouz9BHm6Y9Mnwd8qh73FQfYZRcyeX3YdHcHudC77B4XfTO2v4s+AfkEK+YMxR99Fv0J3XxJwxT3QfT61y2gLPvk7iLfjorahiCuT44LEXaJpsFiytgbANEm4WPjELHUnQ5+TPVY+52Y+V/L9qfXuCwLePDn972T6/78eUMpH5rUBqRlHn1PQjWyrj0uLfdA4thT7OpvEsayJf8RLzZOWa8qooZ7MD6MT8ZOptn30CEukoNhkkhcPa7VhqEM7uyTVVYgfRXn2za8YUl6f3txmCdaOj/6imQ/ndPQVifgNmbrO1Gcjy9wb79ArZPrkXAEcljtGpzhxlsqY72fTPCeQUndreFDR+LSc2RnF0DrNbGwNlb1zywt3BmYbjRKt4V0Kp34VrgUgvNQDoRasFuHa5Y+AyeWR/Llg+itpwufjiXjj/b73uZPdqycyce7OEobV04nUoLC4qMO+7vbxJEejvRwd3VQX+IKgoyPn6ILW2v2Rh0pQDbI26YtS15NKssNEAT/ZDK53Vpj4eoo1pJkEcwLDlekv1CZNHVwEIUfqpRf+kiGpBmYCEXf8F0/xSz3uSrhqqeoARUOJWl/orKNR6Pa62aQvWA9ST5alS3WGOPnbQ7QcgvJbHDtdfRKUoEmNp8TbUHHjo678YcWTYTaHpKj5U0RQfQhVUYUzTlti07NhtRq88P+jmd73xS8DSiS+7fcbOOX/ZMyq8B44pfmSPTT0RXO8sCMr9/ZOekdUDDYlJAKD1G9lvzaPf3k37Q+tvjSfWtOdmleHZdSD3XxCu+r4LREzqAsBwPzI24G/F6txWRMkkd26zHlz1Jl52HTlVbUyEXdwGLBuYDzSaDuXDBvJcIOWidxmxifTyUcZtONSTuZSbWIyK8mOJXifjKzsneYl7A/XILiKbtHSv7s4/YqUYz9OJAMBd1O/pd9xxgsw8PxC4fRcSjzPfgUD5+xGm0X/dehcu8O6RNzPJ5z5mxeuVosx9LshvFH6dB35UQyvrMwtfOyKZm7AD90qml6+RuZTLSGg/uOC+I66z8bnqvLAp3Ac1Y+D2NSkTvEsCd85B4/v7M+889iJG8c2zKp+qTzfvrLUWq5hksluUd77z4FcJ5lRj0bWtVNaqdFiOpuwfsqX1f9nQ9bFx4nq4K/hTeLhu3YT3CvCNHggcNBzQZrzHo94kzHLKI83M0j3AuLxlW87hG81OoGgiMK6OBqJj2+nzSQjQYzZGEwavJxt8JS6BELsFrS8fob78hQHZInCUHmj/DdYT+u72S0DkQm39mr4BCnG9UyMvC/rmpYqGts7Mos8sPmoP2lK42WZpS0UA84jOvMOAUPiyYxtAePXpw9L7Mt3j6OEXFpXh86yTIZKpdeq3i27IT0LXpNYZpeA3G63vnQ/7SavpaP/L/7v/f+4pB/Kq6TOwduICmYP3outXIxq+BSjy+GbkEQzQn4/OChCqK2EbS1vb8GZ4zPHX7jCHcpBUPzAKDig5vkl7Wq4A1r0OrG+tGJEen6TmPj69GnxR3YKEtfNA4P2oD4l/OyfKbT2KXHaB5yA7WH47U8T38FG04zmu2DUzXnq+/TgBN2fvMNT9hR4fZfsPrRVe02aGeT9ZOqNH6S0QSRpeID8fpLcE8pjbZL4emhlP7yEGUY5HFY33o+mH9OcF7XLlUQCs7ou32PKqDiSsSvrJfxDX3JiGrjR/MuRwtez5c9AReVnokLkIve5wf1ELCebvDHIoNEp1H3sKwWXO2F14qmiZjuINde08Stt6TT+vnrwWHvRPmOGHIZ9nJQzgquofhI0mIZv500Y+3JmVh8PKi8Tz8WkBvM2ShPG+7Mf0IB02ZdcKcm/juPu7D9MFrmxcztqZQ8V/1G2FggoD1b1xEk3yHAqLXMDLHydd8FCLkgnj/XdhWcM2sH4vMg2hwn2xrfz178g+oBPU4dMwJ6raqF39AcjqqGIJlNqAXFa2Om/rBzEB1bfnbFAacxW/1h3/ZVDo7Ay33GNK4fGXBdAlaER5SIzHvfXvycfEHpLxON4LRqsqm+1dVYB1DzzLI7G6WJ9WHvLwrzB22m6jHDwfDtecKC7qrvowmYb7WbncCHo/9JRhLFsbqjeAb82Z7W03X1eTpjzcYbFvMZddvjoMF1r3/sMOhc7u5FEij5efshNHiv/KkBxQ50XbDyCrgAfspTw1NMOhYHqO1/S+ehduiYFdXMStpq6gect9ijHkCuj0NXiKiZT3I/vt4I+7+eAyhvJqxfF5bwfgj6x72ZtkzbBZtxsNQlxDx1x9irG9VNOchvUOcXAjxJq0KxvTKC/DyYE+zbKi7cbpoLWqflsn2c/VDUxA57b/1wRu757TxLQ3Uw2dLiPY1bZnARgOvwxyvpaYP+n2HBXV7aC50KruTPTzjUYOqFjQSvnZFNO2NoEHyV3wyHMleR6k0SCA36YQPx16yp9SkMaqUbU48wb8Hs/2hNdqukgnLvRkG65uUNPA+tgn728/+1RwAhs3xRfadcvrDi1h7ImVim3M8RD16twDkqgb4Lz5PK9Y5kLlBQAhrjWq2XuEF/KdyJ49WLjmnB2cE3+wjcvvIu0gs29ZFdk2nf/F8Wj8Ohb49hg0JnlunWz/uxgnOuzOnakiOHX2YiQTpN2VUTkul4pNJLXjuvTOulhuX2LA7JrpkzJTYeqty9oyaGP72M1Aj3LXTRweUeo7JdtHVjaYh1UVUXN4Er94HC7H+evc0a/VaYcNl54q7dDG+a96SoMOqPeKHEyL/GfvE3m+ninZqCmAFb5PdlvebF3sCOZ1Vsi/srT2p0d3S6ncRsP2cfqL5TFsMxRtvqebezW787d81WikNJjvlt47Yr3EMmJ3axCukqdV42DQCLPhFxbJddUNwrZU/vMbinwanXj69WruxSY5t8eiarX9uQUwMl/nFcxsM2XRKoRu6B3HKFwrGrWZSVPurIwuOjzvqLOW0tJWIHcNT3AejSoM70hO/IoGFeTQ+rs8SFn7G9lt/XdHl+/TusQlwT+CMxs9tDvV/3z+s1WyuQ8VC69fdYOety6PJ7WwN8volEdtUPHvWi+GAavn8YRt3Y3PZ2PcHFN9XT2JGkROMolmU+ra8hrS8mTXvr1LtwyoUQ+JWFuPcXu3viMTJE6v16cLFz00LYeE/lOs8z4ZDO+VQv8uAON4ooKnyqgPsIdyx8+ukR8N1pXqoPJoDnbXzpxov4tn4x5+Mzee18M0kBIyfR+aMbB1MXpPPkG2sLz0t9yHzS1r70AoXxsKxPXE+rWIJ2qJX2H01Xrt5vj9y9Pc896lpqH9JGUVNfrswgykrND7RUdB3zdCx8JI3qAMzqqHpTczsBB7BzE8AqP9ulgIXegWTFoYtegnhidwqU89mUjILXh/SYaXWy4orp+COBM+usHKonWj29CiF4ks5Lr/C16Z/+YBvHT4M1z+xm8/9zdHgcCuo6q15x9t7mgJ7Nw2z/9bvS08iUN/xmTlMV3s0s18BlkFOePwGv2ji6sWA78ptiOlMx2jK7FUOoKZbspkvlT3yfeojPfEqlkmxYFN+qCQ4VU7MgrsnZkwQaAKoyjUqiNS3pcjdlKjiOaYgz9+q66rNDK0QM+J9SVdxpXBDSGbmYmGxz8FaGwn4cTVQ9ENFNcvT5P3ZO25AtrtZbV8j9OflBK+0lbNJ25YJcKsLKI13E5+wdZ+RrxcxS/1PHUwwJ6HmdXzDzGeadKM2fyjaM69icaPtKqq2vxky1jskNhDP6OvrJfCtgi+zFvvpW/eMkbxzbWLs0729dsQ+BedUcCqIn0/HXweOgUTinpGz6mTrMo4V6H7WngXe1+RyV4iNftrkd7Lt1WswOtm+1GQcffCyHt1sf2WqeaD+sFC5J3v0vx6FrvUnrAaizYfR3wAa7czBdek7vAtc6/4Xr+gtTC4B51+1RmIbYbYl9N5NTfkLtZKoHvGsF+V9fTj2ABa5sM05aNCUONEd8u2UUr7g57w/GydI0/OO2MrVzGYe7mqQ90NE7OorRqOHZQ36WCRs+3mqAZc+4R2IO3/JbhAeiI7VW4TdRjn+43ezUfv13/r+4WMwNjvrAkt+g/nzHGSTtfZScFtTwjofHmjU5mHpaXYcEkhxbv/jo4/rxSN7q7Y76VbY+R9eEm/zq9C0yIUwGQgwO2kRl9a7+x2G8XUkeyFZZ/N97+f/7E+JDSsags1OgTITfWLEYmBPXr1v0bK/5I9PzeRgGf/4eabeuT0WLmuASN2XHsOHkk39JauBDg+JmfVmtDlRxRlUrT+ReKzHbnxffy68x1Qkm/PjyGc7Mmt9pbSYhCIgzi5hlYIfvwbKD6Su5k86z6gKozszFzyf8lFK4GK6Mp0ieuxYw9cNmLPpkZ3Ts6BV29cMwqt+4I//W/P5sn7UYG+FM/NAriq2+bZYW/g51mZpk/3FX9SEPqb6vnoH4xzsLM0LtA39JLSL5pBfNCguNcHIhDaj2ZPlEEvlDUvPScp6Md4Uf/GAMjSdA5HRswbmVgXM69pB41VZHdAfP3OQV2W83JhvXZNbhVkfL4vGh/VL0K8KDWIk+BeMT3QD+MarB9uFiRSMq5TeYTx+MPPwU0DzSx1SrWm1Fo++weyRP2Ufss1bxav7YERSP/wuSJeUFe1oIwecxcxCgP0r7uiFBnz01gmyqD4QvOTXkswaA7ZnWcF53r2r8RjeL9rnyV5UiLNl7k+kzWBafUq8fehGHHgyA5mNK7HjF+mmPXpdoKOEYd3d1TYz3ViBP3/lT7vMijm7KyAmdUIs+9Bm/NHZNSz6ADOkHqH5+jGpfjvEAi613A8oznijO9OR0Gqxfx64Vq5zPW6Yb8dhtx78nwDr0jrRqhoT3vVn24AIxzaJ1Nc54vmrciB63r8s/EgXPsqjUqMlX8TK+4CiIbDGGXT5eSR4CrYV/7aTr++u3y1udb5B1I52NbzHRKSf5ONysZN2BzgMJ5e5sPejqXRMA/XlfUscmW4iPgRtif70qWsQ/c2PPp+0Vh8fDCfvZza71rHXx0Pe4lXTHSJO96hBi/7AgmyoK5rLygGZhfImC//gc+6FISgf9cf++cMrTEBTy0jHpc+Xnrjn944eVy3F2um4t0dOqgOMiN5YYOEoG305fsMFzfHCL5pg/tOD7G1iU/5VH1Gfhaamj4d7S4JdM0VLfniAYy4D7jbPHs0HJ0mQLsXDEu9ku17dHgpa8k+2OYVJNo5lf4CbkwFdt9zo1u24FYC8YSLWV9gGMykeCtLkRiHV1P9Q/zCSkxbAbiQbIebB/EJSCXH7uZItzt72fCfRG27oPZAl/vNB6AwRuPAMqbL5VbzbBUaPJFbtmGeXQja9TvYMvXdBzPodn1y+YrEAhxkuu792RkSzBFyoE0Mmy+TbaKr2mxJE8h3JXtW/fAy6FtD9+XWY2Y/f6t96w/OAcAH8FU2XrbH04FQSXl0sj//5KxSecGXbx+tnD9fD3tUWPYKZh/qOBnnRnF2p8gkZr9dsPKZXF37ZGZibq100fOyPpSf8mDAzL/fV+GoSgMSNZ6oOwoOP0fbigif3W+Y3AQ7Gvi9meEXFesEHFNHX10hhyQfJNvDbbjo1Tqwv70PltHss+p95gq99+DJHKF/ZWK1lCngnmv/4yuQvc/ueunmmWjEdgvYbdQn4n82K7GpjQP2FzTPwfrwwgi8vNLbxE5D481rmPPRd8NN3z+Ivf2eeWvvBtBI3F8SFR0g2lo75XIejBWR7Udlmfm47/goPAGYkCcS97t8Z+9MXFvxc+G2FprxoC31bqjmWjQky9pmNAr0O1o5Kv3eJhvfK6vUF/5nTB5VNFSlK//yXGQne2WO0cQQojUdGvOTUZc3RD7DWkWfEAmtDOdM1xweWsJo4yi6yeTbuRKTMK0LIoj8u+kYKtBFrZv4uv45qnJ6glpHMAvqcq3/7B5j+qO6/eddf5kBD9s1V6Sw7ob3msqPBwj/ZZktk3ufBR4NouVtjQm87mxB+jOCFfzWdCbK/eA3VTY3xNi2VjrqxQOH12XdUub/FrL++TR+FZy9hzvWtVXOsWD1AH7+YRbCWTalZX6AOqopYx9zJJLjbFoxHC4jxjfdoDAbRBRVJEgkjx0fqPN4KoPu3RIxFL24cf2p0NDkz5dOaRqMdpx48JOdN8MYOEW+vigfqMbjh5vjlaNk/QcdZKeNZ3h+6LkpUC9j2YxHiuIo9i9dniP7yic1z5XSioq5dpLg1YvujcOzmzJ9i+K6chj3mY8FH/lx5aNMJPSO3qMw4i78W8ENk/8tHh7uyH6HdBgJzlJNcDZt3UsBh9cKMOG5ijyRUYig8uJJ8PqNqWr9tBa1tcbm++ILR+Fv9RngaP2vR91fZT2pqHy5wqelHC2g379ih1ZO4BFp15pz1q/vqrUUCPzP3unei6XIb3ui6S0K2v/GH/b42VYrQ+5MTQq7HqLcv1Qm5rS0xy2+brPnzr07GV+Zch6c9FVl/QNaqWv3Tz6l1UO5o4SfEXPgJZ5ZvoemmVWSfFO9uLESrhuT1LvHY3i0+y6J1giU/Zx6+pNnQdp9eg+cJEasjRcWeTZ5rb3YiWJOPMx9bPvr6Ndta9P1uiq6XR+UNq1AK6fCtd5G41EvQbpfqJOiuj2rqjuoF3qBsiQv7NmLLfqI9jBkjdvnh7ONKPcjqctdyVc72fCvspWHFHZi15Hfj7ekrsOjR5Pp47ey+cPIC2tfRJ97t/swGbdsmiMhEZXv+vkWi//V6ZLo8Yd7Zv0Szlo8+6j11z67v0OhU/rN8/S9/3ZnZuqJNeDfQcDpvib+t190vDPQDlNq7Xr7fqNbzXLbAtsbIouvPydbK0df+1Vfock/uNItoRux2/K/ezXa34A77aF+y7Xbsu1m8XjF6hrXNtjhzAun19VL0uMYeu/XdJvtn/4t+T9z8a0XT9ze+1XMZZyQIxzrrzey15Pt6Q+zOPGXyx5UoLPkCFrzARLPfmAeI+mKPS/b6VTNqNzNEuXbGghfX2RxQaMHIXg2xZ+mBJpHphZbMvojFRT+c78eeoj/89qTzofrjC/Bk2QOr0bWOFv+YAaz9hfg+bStmkHUCQTM6S77m2mIwgIMEb+kxvdurbtaxcULfQ7wn197sA34c4xNamY8H8U+VFPTrUPDRki8za+FbA69VC2h/PjFS7vSom1Z3CdkpZ/S7rJfsZmOtdSg6sx16vuxZWiEFNV0OWPuOxlJ/Ud9IEBoLq6WicNqJSg/uNryTdB4MNDfpZdSm7nvDkro5Z3Pmqxfo69fm3/4v+rUIF3Y02P6gW4HMYmaAG0QpXfTHgP7xhbNoH/H3HRbVgl8+SF0e4BZVGZ/++OCCn+RPT2Wbz81BcoYezHAVbak3jIb+nqqETqvhy+dVkPmoCpcxnt73hb6XtPZAXt+v5Oz/1qgvWHFBi97G/Caeq0lqag8+/bRl3hz29iQOfYr++N1WEMKo32o7CukNfxj+PYuuT6PjQf/Lz7L7UeHzHx8x1m7JvEmzgzniRa4HP6WhsMpxNx1fiQCPdleSjR5V3bB+HErIrhHDq+b2jQapfliAd5JJ+U5Kgv66nDE4v8YdeZxJZ/eE7O6ouc3uwjdXUU+/ZQF36/Uk3v7cIvowD6JeJ5bMXNfQgum6Un30p0/KSJKz7vHwRHRNi5GRTyrxfrfc7bbgBfur/8xhoSrIAjPCi76O2LooQyia44Z46/gVfMztkIMXKBuSm3MUzcMcvNFT/3z/4l9EnWAOEdnGKp4X/JzNe+tAyDWREfnZL3PIphrFstOR51J/Gb9O48BZNI+Lvayj+QeGi5rH2mHGobSCyWuZBu8KFYzIzaGaZZdd0KKfsuwYK9lIP7cErlfDYTl43lK/mkO9zCSf/uHHfPS0BkAVbsza3jBniTHN+tZ+j1h+h0YlkVPmwTHFPc3Vndz16LcJwU73D/w5x/usuT0tTWcbLcQfVd1U847PCqweMNL1XSacX4/7Fr0+XGd/8Xj6CjVF/me7IqFz49V4OIuivrFufOmpcrvxYSSHv3oc/scHtiGd0VaQnhgdH4C4DXBBIspmsinSUzakq7MHG70rGa4SFMxPoWuAP/2c7YU2j8aeTtpfvYSOz2cZjStvlyO/B4uc7qciGvJRSOFvv/2EF/bM0iKGYerWbNEvsmkMnw6gk9ZgYf/N0bjvXOEPb7GoZBB8ouuYowUPaBsYvOL956LAXTuUbJlLwn+6NOew4AdzvDFHU7aGBj0+xYkFuVDYs3sl4v/XUyD/756CTfBQmHdQ+myUlTxHqLwabCtdhmASNnkCcrHSmH/xJET3WB211WVrsoAThvps/oRgpGxLG+FeVnMuGT3cQ3zDUub9qtHyvzVar6HF6loXgoldOgzZEO6Y4e9fwRSG4QFdZ61kpshxN89sseHfeGbP8uhk8/dSFhAe3yMhCjK72TCvKdyn8UCn06vLuP/a3TWzvvQkvO1uwZSpR4qyq5exW5YJnHfr0IE6imYsv867anneCTpJsgmuxCZiphMqqJpDkW1i3vG+PpICDpt4Ips8/mbcaz8+OPvVAYs+/fG+Ww0zQrbYMPv9dlBfCrILj9t+xza100VTcAhOgIO+J86L3tBoBLsUgvMqoAp0nd1vstNJq2XhzML1e8+lylk4pcxeWHZ5G415X1PN6d5nLBFBjNpJdg5qaOsdVYyNXg3jqL7hS5DL7CzaBFOWhbHKH9KeOLjuUD96aYGukXKiHlT7oGmqiaLx6fnEKnISTVZXLvdr+4yEZ7vMBpqTBMBLKPPYKNhjetI8BAQcZrX7Z0VDsYqhqZ4Ptn/WIi9aMGq9dy8Bc4vJjjiPPQyaGBfM0b6rjLfnmwXGj13xJHZjR3+nrtTWl+W+8V1UIT6w/RsZLSGY6w8/4+le9/+tV8iRGHwEcwpR674QRftoVXFkbDCkr/eH+bTbVbO8OffgimHL8IfHiCNjj9GN3n5kFwxWMJbCykWl92YMY/5G/N1oGFknwSQbyxy78Sd4DpgPxSLnVLsEfOtrDlRdt8cv/NtF4loaR6j4d4XhWqwyNj27FMmSd8bKPREzfl51FFEpuzFviF5B//teFLSNsMY8QuaK7+WDqI2yAyz5qIz3K+Q0aKrokfJwd7Dne5UXKOjLidgvP6o6AOxBaq8K+obDzR5b83NB9/lX0fbW1nbjb1UHyqd3pk+6fdp8V3kCujqpT6xU5938ohbVVzzEVG9eL9Tf4qnRL89LQLy952VjdduXqpptJULU2yka26fWw3p7P9ExDPfVUD5nA3oucmY/7V/ApdDCKztBJxbczxdOI/VoQEn9D9v37FJNxMEHOM94RX/rb5CNh+zrwT2jL8rpxojWD/LzgGmrJwueq4rzUD1cwLDmCwaO4qDfBaMDLd4cid9oc0AVXb1DdwoKut5kJh/4xizBlownc7LVLprvq3cKr1/9ZP7YSjZvo2MJi/8QO1I5H9REruHBRkaurVDZPDCghrWRiCTzBSOShfjhgHXna7bjS4719z1O+N6QS7/bR+wnfEe4ifqB7EXzhwb5dkvUbnXoGYnIYM/Hl+UjFx085gs27wara+/AylKikPA6murZSsHdfs/L+s5R8ZnuKVrwkCz+FLQqmgQ9LVcjc8Lnq2K5vWoRZVeN3q7nxubyIM5AjBMnm3UsR5NU6DVyDXPFyDuhvFO/wgE6ebgQf+s+q1nqticwkz0jtrFK0TwnggbO21ox59HYgfQbR0VvbMcipPzKwYCtpoZw/Bhsc7yl3T9/P53LO/G1YOpo38ya3rHxzdz5cO3mz/1lgfrqHpjxMen4u50oPKTLhfmvRkDUvtYj4P1Wxq/PJEez8nw7epLcE2KmR5Y12tbs9U/OOmYbv8bmwz6ywNJSDWvMhIw285iA83gmzISNyaVJDk/I/qolM6loBZzfeg3FYn+l5c3Jl/uknilsu6DDa8fQbX4ImhGeKV+xYMiViDo4cNBX1DdYDsxVMPHtzoC1kYp0ZZxjmxuukyD7Wm7J9sXTjKfTN/z3fCu/Oohdz8iH88S2dJr7d9BzIy6hf0sV2yskr/qnmdxRkl4zOh7X34Dt5URE+0tL2W6JL/0fnnSvrsHctzZdvykEQMsRbBbTyenma7RpkEn5GdcNA3t6Z9wCE7QTHSOYsp+arN6ItW5IvOG15r+btc7Vq3gc2FY536pJKtY1zAUzMW+ryZ5Wq6mFPJYove8nEoyjdypAmt6EGeMns3nPwzc8mv3tX/zmwuVeQy3DmWCprir2itsYKDtr+FF572AuwsRDkf9OWbidrY6vaHdHgfu0qZzal2yc2o0L/UaMWBiNKBq++HABHNAeo3gY+eisnAsYyiUkriE+s/mbtAZ01i9he3U2ozHqbxI8/fRNtq30sfnmcj6gX90mzNsk72xKHBDg68kNLZBMbQ7S764qsK1JINw+wcSU86x98qGjcitUwXRKHw2cf/OZ2Q4T0PvquIBajdbEfV6EaPS7zgOUppjZxkrjv+oxF7qpTx+6WvyJ/33/Yr/EmVdqRMODeoIf25jkvEhe47P59mAOiU8e6vyKxsTYgnafTgnZXZcZO+h1cHT19NsT2zvSYPrDq82hjXGZD3JXPs9cgrUnP+j8W7V8wnXaQjrWa+Lu5TYYJjo7+sZsHbzO42/Eg6cpQB2cDbLM87enk1IZALtJXfjTrpuW/0OPkh3ZbKa44h//LaHZwj+2ufSvaHb6JFftpzBiNVgb9hpbRQ25pt2xuoO26u3XYYTo585swUvEf9dk6SmzfsSce8fmpuNo6NkowBb/iP75q67pMc26tdB9k4g3kHNJwM3eaCO2lw+SZqnIoou9V2IlnzTQ9KOJV/nLyHhebiz00h4zrt2tG8jBu26gGzuF+DXaVH09PFJY9pcqNvO7aXcxZ9j8XJ1+pvs6Y8m6xmCSaUPCKG26zpFaD0KrLtjOP+nZiPxagfiDCbHP5b6SVFXL4eKNH3bwq4g38qgd9K1NZ7KnTR+MZgt3iPN2mRWsHoN5+z7lqFP2mJ2WWeJi3lMKh0lwiWWvN928g99y4S//UdhPzB6D79uDXaQ9iLk5BGjaInSBczpu/vGjuQyEC/TD8Z/9R6O7Lho9WrUJFuzXsVrvncLRdacI2EZ3UERd33HB/EgisR+nqeNakTrgnC3GduTztvnleZHgNhg5WfC6+mfv3evXkM3kltXU578QNocmZrmPSt7UQStBm/UX5nTXKOIHlkp/eMYMP1vzaRzVGr5DEbD8VymoEUvioE+lbPF627b2MAj3E3oI8+pf/B/97eTqfb70GLunV/XPP1zDXtF514sBzcUdhsPjWJKd1coZpSv/gO79FrDoS180hqZWw0bZ7IntJ8q/+PCP30izd+v6q4MFpMdqTZxfrqNu+DUaiPNRZsS659lo+azWBNmd6PdTCRk3ytMJ7uXJY1YsbLM++HUtUh4fzMhP9aN/8Vw/ZznmhWjwcZ10yXJ3UUH2WWLYc7/xJMi2TfTvN1fLWw0fMSqZIZ5XNjvu3Rz1bhwwQy+2aN5Z2EGlad6IrX68SBL3GUWfvZjQv/jFVrS6a01mcSxUoheJ1TpKoLo3OiFHz+Lj6KcGWvyFkfxVRGPGDAuJ7XWDkfl4o/Evv5iTkbDbwp+kT7mh2pL/0HlglI+tOcRIDC5r5sUjzqQH+qSwB/zG6++65MOf/f3xq/3j2neTdswSFKDKJIGo/Do+PzoFtPwwsbtziKrOyqMTKGfvQxzFtyLp+PJ9WNf3ku3oWQnG+rgt4fRRZba70w1aX3x0B2E0I2alX4NLwrC+6x+eEuKOJstmI/He8PZ3Hzylu2PEw+LbalHqlGSvl5toUKfmhDZWdSWEPH/B0FlZDDdsYLJd9nPGP88D6qUqMSkY9pBPGUUPdpKZGRcy4nKdvOG402QsZXWa0a7VEiBCdGIb9qkRe+auAUdLvuG//KBT3kcX1nVekj88HCyOW7QeCoMs8SUafy8NA8+Hgu2v0oh4H8shWnGMiTmivhv0T3VApfQhuJQPbUYNNLd/+EvIMV9XLef7E5gX6U18sUyC2Zl0H7pmcJnPzHs27jfXGUDKMFYm+2NzAOzDEm9IsL1PAb/vJB+KNeqpenwfurFU0wSoWFzY7hFeKrHZViLo9zvQmibnbjpelBzoAIzg16ewP3nkxnDx5s/SA/fiA1MeIyrE8kXc3coLJkkPclR6jswelt5F/O7c7hCIj4qYoXJE/d/3B9xJ2EVPe87sND5BpY4+OayVF/pbP90K03Q5x3nnk2hblu7ilhMrH67V4r8uFNtbTBWzKKNZrioX5KPest2w+mSTdowS6CTRpkhgV8Sz1rbAPl4Bj2qz4cNENVe7RtqJbTPo+Ghu/RSQotUMx+U6GmCjYCil7ZX2V7/vqCc0IqocGpLgl5iddGgHCcHasvElO3z/4SHi7sgI6Q0RUfwzfJ3qdxlP0tsNpgsdCvgORkR8BLtArKJCAlXZ21QztzyiTn+4/4s/M0x1wNrz0dBXn8+OBMOhqsY/PUNdzTeK0l4PJu8xAEy5rdPV0SsR/wlshL2w+bLlCvdASl+KhM5lL7O/9VtGMVtoWAkEc/dkVnJklzPo3cqh4+3TBZOarGowhehBfFwcEHdOowN/+7nkD9l0NLYnLdndPUbOF7kaaFJSOPWrMxUlGWU87a0SlHczYN3Lv/Y0j0uPdaMBVYfVJuNxdZbgeUtFrD6cpGKQRu8/vYRZ182xG8NdPiLXxT7503vm2+9sAf9EW2baTzGY68LFYH7Jiqo1eWWjJKoHwMrFpH/6DftsDF9f1oe5zW2Xrdk8uYCieGR7g1Y2ta90BPUXcvJE/g99xbU2gr5RL3jVmk009aWboj8+iMlOruiI7BNsgqfybz/70TuVukfjmviefI2mla750B3G82JPH77g93sZ2yYuPXr6n55y0IKH9SPk3vi81wvpBD/hs2PHQ3NGy/qMyL1uHuRPr5FYdgj19h5iYrHmnfXZYW61l/acsSCu++D7zF1LvjzjgGXCV+Wzoqs5su7Tmuys+F3xT39N0eNwaJjvjiEa5fk/AAAA//+kXcmasrwSviAWKiAplsg8mSg44A4UUVCRIQFy9efB/pb/7ix70QJJVb1DZRgHgBwOxCrVgldNeZZBkG/AiG63LYc0qwBl/EK8n/91fnkiPFfYpOLicTamB1HnffBvgTgf+xHwPbEAZZ9SpMNWfQWDfV2A9Ml1gz6b7b3tD6dTrRjnwmHEtOSARmhXgC/oF7bpL2o2+jSpFVhpBtEe2zGYUqsBpct3QIqn4JYzf1JgMj5LssWO1tIBBREioDhEm/VIZ6mhiK7RpBGftt/yu9r4BdRPM8K79WAgvjq+ZDTmG5Uuyw/JJIl8UrRy8ojpuokNafYzlCGxO7Zd3tN2QG+YID+RNdGPh9QYTtpjAtxQIP5NVviofpoBjI9GWFo+Zr/reOng41xvzLKyB+9mPo4eg2uTYK4v46Nca2i7Cmw67tJHwFJ3l6PwYcoU9P1nvl/7WaPjOrqRjajMZ+2nDYbDkToU9a7VTvmZn9SZHzMsnD4lXW/yTq5DrWS/7x1n/AKZNypG0dvOZjzXwdCPHW6OU2V0onIUQI+uHl4lbY/GdZzK0LQ4Z/ZavpU//ob0LG3YZlevECexCeBZY0GF3qoNTkRJh/Na0CiAuDFG0xrkP3xMTt+S//GjDcgR0z9ykQ1jIM03SBQn5siOibp7zbofH8UvRd2heTwH6TGWe9rX0rKkxEURBPllybQF2wX8pl8AtFo0sbSJKJrxtkMshAXDiWm2y8BaV+rDRIAlS5/QYBWi8OfvDKaSZjR9DEtVBuvNAue6N+p5PpVdm9zp+qd/b/7SR5b+OJNNJAkGbR33gAZaR4wkQ82nxVfM4UKyy7ynJW55uE4OcF7GPb03mzqbIrR7qm9fcplrUSmY8W2Cwysk7JIIGy5aveAqc3zhoVKPwY9vK+PLuWLJrXRD6toiVZ2sLfH3Kpaou9uqD2FdY2Je5j1Rl3twQCgSZTzO/vJ4O26XoJDdAysfo2y5yCBCallkLBe6NKsvp9FVZjzCwuumG7/no/P21DIclS5aeQc9Ql6cvEg647/k4vsODZe7RDaJ/jFY7Dk5RM7lToJQDZH8/eQyzJt3aOtUxODnI3fVMC33tKy6J+fuy71Ckh6zXzwEQ21VB5j1ITNTm6NBVG4CxHKl/PG174zPP71AfFv2+cqnuwbum6tBbm+5DkY3o1dlHl/mnuY1jMXWWaJQrwoWq7cmHl9n0NFWcD7Mpvrzx4fmPRQHRA47YpX0oxwqGD7zGawP/VjSuX6g8upZjBy1ivOTqGkqGlcuuZCXafDzearBO+5rovnZEfHi9FiqTLl/mKtZt/LPv5vrEwkX1jebLlvio2FXnrAS6UUwCmU7/PQMVbuLgcZjdG+QPuYXurgKt/J7wEoOH5rNesj4oE48lQqs/bBk1zh12yrrteLHH5hze1mlVF92OszxTNvNzeTj172IaPb/CT6Ez5ZWefGExc2/EzNbfLNJZQBI5UjEYJ9vfHDja4SmtdfQ8a7UaO5/pPL3XSfkpPcH1NnneAd9JBl0mRwhHj8r9obHZHg0+3w89KsXipb2DnEsfeKjH/kT4q6nEHMZFX/j/6c37bgo2xG+zx0IF7ViOFRITOuUdAhofiXBQ9jFovuMBNCiXc6yza3iw/SsZUiEp03wJnUyHtw9gP1HM5n+ne9vjz/XJQzix2RB2t2MlXyMEnDFOKHKYdOVTVVZWLnrEmbuptay9a8fQnPhTjZ3peYzHu9AqM0HsV6wzVrM90vVijZ34mujVkr20DYold2ARavz4c9fB/N2S0jwYQ7iw4e80bHZbQn2/DYbL7p6/fHzWV+80FCdsaa8eoaYv1i2wfjZq8W6vmYCI6vHLpv5aqgIQu0w/EAT54+UaGj9xZwiue5bWk9ygno/vZAgOPCA2+H6DcWyeJBQS8Z2rl8Ae7EIydZ8v/7pvTSyb3jcpZtA3Ky5D3M9IdiKvGySFjKgz+naM9fbvbMxk1L887NmfmvF47F1TyhZoD1+vDKzlJSXOIGhwYPpFeZZzy3vKc/xzNwxMIwljVcdbFT+onvipAEvhzwFpRITYteXb8bvyfeESjM8EK/Kv4jzgxaiGV/ZffYrp9mPBcs3e2buXkn883fR8+4fKRIuViB9CgiRYp80RuLXgs/+bIdmvkPstay21MtjAan4uGBeIjz4OERVCDP//vMP5/7VoDRgjXQUngLq7x9Zh3SoVliWfBJP+mrpy7O/iFHi6MHy9t0U6oxXDF+jSzZ6EpzQFuiVWGllxM2vHxeAvmbaVn0Zf/HwlcqWEFRcW9akKwrl1HW/esRpAE7xixdmX86RMUZi+VTK6sPwse1NPvfLErg23Ugyb1vz+2HT7mC8uQ3bOJsy/ulPNKKvznQtkMvh8xoxFPl1YrN/iia3yHI0zz+zzzTJhh9eznqbnFaNy6VZ74Od+4jZ2c4puVe/GrVrlQ3bRlspm/uPNtySfk/cJfoYr8NuBNgLsCJ//YiL88zVx9r+MCv2I4Ob4tMHInCfmLPfyy9U11B34yadLqZgdHLUyWh96VqyUaYU8aCi9a/fxfxI14KVmCWKYlfdk2ABey1fchSh4e77LOyXHvr1M6Esw4p5o/SJp3f6LZT+m36Jbw8d6pz1dqnMfvZfPtQ/P7ZwUEiChBQGix+yC43lDsRuirjtrq2nwezvzH/zdkIrdP3TX9PxoBj9ymYhamWCya8f+uOXKlPUO7HSKTHGtqg75YyOAV67AQ8mI/Ltv/G/k/vX4KuYJuvoqFXsLOZtwG9adFV7X9kzzw7f5ZAoZajqjTLhb7W8toMj4QOkmS6wTUASo31GjQiznprXzI/GIMmnK/gbRcVCb7lGJ1wiU11s6/P8/SHvg27v//UjNfPqtdNxPuNmGRxWVBrOGu8Mw0gBtfGDkbf3zn5+Kcrc8j37A2Y8fLzyoC665kOc5WtVdjPfgse3ujNCVgh9DebUkFtiToU8oIhndiLAsCltEvLXI5uS/qBB5bc39uu/Dmv8Utb+J+dUakOJj4YjpzDra9z1S4+PZ5cLCMuHDUnLYFMOxmM3qcYHPZl/aWxjrKmRyoao3//6OdJcz3/8AperVfWrpzngDC+xnO891GvHzESzPpj70RUfy5vyRI9skTI8+4907uegWX8w/WIKwfTwd81fPbZItAva3JBq+L/WFMj/vaZg/XQZ22Reg6apOHRo6Dc2217TJhvDbrdTJSKqzHI3r3aIg2SAHAs35tCy5OPppsioWb5DPNVrKx71d1XAxzRtYozClY/br5Ajcb3ZUIW8h2wczMiH6KufsHw0unakqXBAx0TQmLlUUtR1H2cH+cRFZuN537p6FShal0aFB9O0g5HvwhPK76sIy9QqWw6uhkEcDztibt+GQRe71wQd1SOm9a1QDvzhLkHKzy2dAteK5+e7624pEgz8o5Xfy/dlg26MZ4a1+Sw45QxX6OChEXMaH8HULZkPiyW8mYbaALH2olGIFmSFpzEt+PR9XRpQDvjGcEoaztuLS+EQnyPMHP2QDfp1HwER6QuL63Yds4MiH4BFDqWLp+xwUf+OrtobBxWPH5mXEx5oglby9cVInd0565ZJDm9rfyDknn9b5rrbAjWX09wDqu2gVRbrHUKi+CFb6/bmzN8dEjD0yiMueFJARVXAaGspNnEiB5dD/UixItqLmFhITNqBP7T5bLP7xAzNFI3RX1x8FGpxwvzSO5aTIIgJGF5qzfNRZr2tPSfVfh8Dtmmjkff3ZCWAKowZcVdHpZ2W3vBElAU+sTbZKe4qlRfA+9WLmMImCaba38ggBM87lfHmiaZWcN5Izo0Iv6cva/uM7mo4mMuKkHdkGyuBKAJSfcEgZL9jRltc1QSQuPwwa6F/2+Fj+zn4t++WbGl+K6mopAp8yIbjsS3uAS+1gwnEQRyLQWkFy6w1td98kc2nsbNpuq4TED6tTe/y6VJO+avUIGzqAzkV2dEY4clFqONghyValmg8r/0GGexTMUOUOtSxZ5RAuR7vzHDPVTzOJwWgKHYIC08mDr5ZSgp4kmvJbKHyYj66lwoy7WkTe5KA02S9uoJ09GrmqcK5nLKVW/3Gjxn51o/5rphcsPm8r3/Z9eUYMvRGbBlcMfebV8Cvi1hUy+F1Ja6A/XZqtMdVvefGh5hVabeTTPoKVZm0Ja6rvMrhTRoZZRenY/ontI0p8rsaTqjyqXR8dIjWdLIXEf5emClewnLapT6G1NefVLH3L84v832l0jGo6dpW4/g13L8yBKRD+EZztZy6MVjCOq43LFkdlZK2x6UNp17YE3NReGiSLlhD8jo28Sk6P8pukU4HtWf3ki7Wqzbu6TnT4PKqehZ4/FXSAfcpfAW7Zl7yCmNeXFIbSktwsPg9vIxJj0wKvIOB7FvTLCf1Wuu/55PYl6d4ejmDqy503WD29/AKpr5yTaicS0Iuv9+7rfMOpGu1Ifsh0INBHfNC4eXQ46mcPpxpzvYExNEFOrxWLzTH2xXaT8Hwgm8w5+3mEMHWHhDxqHHjXA3KJ7BcHLESa7Sl7eWewq36PJi2DYyYD/tJhyAnXzrez3LwufBvAwQzRgzlnsTTJvFE8GXdZ557fcV9p7sJbD7NQPzlJQ3YXfAjKC1wiDv2LBjSy5WCVyqUedRQUXf1JBfoy46ItdQ0Y5DeqgKGcRUwZEGbNVmxuEL01U54sYQsG4MHe//ygzb1Lg6Gm3aiEMtOwUIN18HwOtYa+kaixHQ87DiDIesQwqsRz51GPk6XbgC/jW1ijTrEXbT+JjBMAmYalp/xeHrkGDq6dpj35jYfIKkrmJYLxKyL1JZTR0QB6f4rZj5JjICfdoGG2pVbk5DSXTnd2sJXD9H1hp97ePAxLcIadOrG7EjXejnupu0B7RYVIW6nDcFAdlYN8WNf0ZVLIj4iJlWAD4sdcXP/i+gvPltjwZhns3fAMfFFENT3ljmj+jS6si4U0CvYsVSNGmNEpjsoi0f2plGhrbJmQt0VlbYIdCR4b4xBWsNv/jAIXz+rri9bAUGttuzcelZL/a0zKLgudnP8dvF06dYUjp+cUnGorkbXfUikNEH3+NUTzpG4E+HyevfzvhQpHpo9NPCQ688838RYtoH0RNqy25IbzW/tlBXSFfYP40GFPSUx6+Kggsh8PxhxvT0aVdnOgQXxSHfrpDUm/bt2QQvEJ7GqmLdjev0eEHlGA5a+ZhQMifNKkYLjIxaUh4wGA4UnWNjeEnP3NbbNYpyaH34Tr8mmeNJg0qFojw7RzIhnTZhLJkyD6DMin9YlBRO9oX53O7KVPC1e9qs4Usj1XDPtsN0GXE+gAUfrXIZVdDYm2Ox2cD+Tlnhv/kZ9kJs7mPrYo8LR7dvR16EAId7u2byEIZiqfVIBVvbKD6+N4XFav5V7vvnM+PgOuoyyA8SBsKbqXtDnNWPZFbI7qknYHqKYX9HwVM+fbiSRdOyNQZe+GmztCRESMY2v4H12EclyTuzo/Gi7yRpN1UWGQSySGe1y8g4pala3DV7cxqYcW+neoDo8xvSbFnI5VHctB+VoRZSPTz2b8a4CR8k/ZKOFTvmHB2HTzGeXbfOY5mbuosmVDnS5sT5l/zx4NnJO2oRFL9+3Q0YgQgkwnTkZbvmwLe0CdvUQE/dodOUwRrBE36XywkPf5uWwZuEAz5t9ZfigaJk4FdcOri6PyabY1TFPo+uEfvXI7OW9wafycYKzusnwY03XqA1fTEc6fDdkK71SNNVUsWWWrBv2e94I77sP5ttxMU95GPx9749fLVTybcfa2AO6doeYHDaWU/7Ff+9FJvPcJmrpXYpO0KE6IHuJbzMuSc28b9ON8Si9tOAvvt/Fw2bB4iihYfNaU9Su/JoEu49uLO8R1sH3tglL3yXndLE6gjqc6ZXgZFgHU2axDn71n/jYypYLY6tAQsMDi6zsHU/lujMVZZFjEk4u5UM6ei4cgrrA4mcVG3yblDtIO3NHpdf13bKz/XwD9dmRLtJzFw9ZG+ooFvQPFgf3UU6iksqw2YlLjNXe48txuenUSL6sGTHSGrGLZAow5M8AGUDmvwSv+PEWDNqkXpXYNiaGH9+vMQ2Bb8PbTO9/+NcT9BrQoniOJHTEOKOXbt1BbZVnNv8+GtbtI4c69nZ4DPvSmLbHUwMrOX8x+7aZ94W+VQXZXDVZ4mzf8Zdtp7cy4x2zkR/MfMxToLiKF+Zty2c7tUoVqTM/wd5J3hoTBVGHg9VfmP51onIwIlmELAklvF7cvtl4Xd13yNW9CzHrYArGq1fn0O5fNRVRIsdD+CoOIMeQMq9fDSULn0G3XmFqkc07WJaVfr1EEKe3DwsQWrc82h/eYOwXHRbZTWhHR/IjeNjv9e/9yv7H17vaCph7dguDPtNRQ7980qXj1hjFKDeR8mQBbfYxK1m9euow48v8e3k59lU+oG6XpGy/KrpyvLznNS08rZnR7W+8iw5jqIbaPsGrNQrjVec5Olo1Ykfb7dZA/ShcBXRdQ8gsXakNvr3aFXxDTSHGG2JjjLKHC1043zX2pi8+ZcUiR1OXHOb7qttgwoEQwvLEdmwzfKAd7hHWFPE2EmaO5tMYxODtQ60+Q0a+ytiOcE8KdHPeFiNGLQbsenZPf/+P95RlDXZTRSG27xFbb47BOI37UBXMrmSRdvAMphiHBs716010/DTKZbi/Y3TNaUoB3S7ZxOMdQIBFm06837RLZ95nfm+Gls75Ww6tewjVJQos4vt3HvB69dTgeizOeJhOj4ztp0cOVg4TcVbnIh71coNB97r8V88yjtRzrjg7q2Ve+Vkheox4AYk33YkdNs+WX/jjj08y18l4W2v+Q4A2SF0y16Ogd5VXBck5SVikb1yjT0sGcAjLI1WWQcenRvvmkAU3TozNuAoGJ+mVH75jVCXLkj3bTQr38V2zsIhcJCrZeVDqKMqI13/KmL+iIEWf+PYl9pOu0IvIeg5Bvv0STxWksp/3xSPh4iZ4WQeRUVOW+6AMZxO39/05GNWrSH/4S+xnUZdcHvvoD79wnNFsJMVJR9PGL6myXY/ZrK9cYK+G4u/MP1de/11CmT96svm+IsT14WsjnfoxXYuwRawj9Q7CQ78lWFxvs7EloatcIPkS0h8Yp/2nTJR+ByI7434X//ASxfG3Jfrr7gR8rt+w+Bx6tottVo4BLE6wcub7aKXVFo0Ht4jUWW8SZxc+4yHsqADJC9m/eDUG4SOaaOZDeOHoy3jcHFQMMN8PaSneuu1aU5Zhjj/aD8EVjZG2TxHU8pFgJhklo7OHt3tKIRVe++W8WNvPIbxpGTNvrDFo/2lTAPGJsXK7ntoRscUbEdwzPF6uLRquL6ygwONLSu/gcb5Vsxy2V6pTQWyLYOpbTCFddx5eHwMcTG2UDHAKlJIKXSxk4+vOd7BJNYlYw/vBO1nuQ4TSTiP2210GNBUemkrfK6CzPjSmejomYCS8posAVdmMjwNsD+kSD/b5jUavf8zzVfZM80YrWJpeksLzpu4x3fBj2eXZO0ez3qXjdMhKPpXfA8z5M+sniw9f7j0hP30J2cbtJhui9SP91UtibiynXQ5q48KMB3RZXxZxvWuPKbQpb/tKtgMkdaSIVFJ6L0LSc5jRRIx8OFx2F3rvDwwx0+ITsnhSk9mv4EzJqwT2knSjSFNWbbfeXTooj8eG+Pb+hWa9JipnWvSM3HOvHYP1Vf+NF/OIWGaTijITyPHR4cnK3tmU7B+CanrCg+HlO2yXSAP/h2dMp9qz7DKy3KniRCyiH0+FMT5u3wKE97AnuIuFuMtFEUP2Eoff+8d//NufHOPPLxjOK1FXwTof53ybjJbfKqxelk5GSLuwjOVFCGUE6slnnqU7Rndb7zTwT9IeC4PwMGa956/XtuayxHMjRHX8Tf78BLvdVAHPmbCD+zHfYAo4Ceg1RlR5s3pHp5DovF+pRgrD/bKl3e7MDD6IzxB0tlZpEwgm4p7Q64pkTfOawneVjaNwALD7wKG1q1jlEG6RghbhYmBuKsi8V4+yibIESyToWh0Nz8k7gSJ5GvEN68BH9vVP4DfJnni2GmfDoQlEaOusojDn57At8RMJq90CQ09yNJTG0Cm6WorM1yWn5bcVT6BNx/ZP/834gtEHuwLz2EHPlr78DVHCLI+0334RfC2K0p+/RxzvzQOK8EGHJfIsoolhavTX1TmC7SFZ/vyCtu8XtID3eEFUDe+7slGy+wDPhe/TunUWiK8cV4dHi0pmi/vMWKmyfQXd/8QsDNUd4g72m58eI/vhQuLJI9/3Onxc92Tm/8Yf3mzAfLE7J2CMtolNcN7o8+eXDPO18sqMV/P7xsG0fGk76GonYKHwbeLeGy0fVqRSmNk3BuK76pjD+ukzYh8X26C7R7YOr4XwZdvuWAW//FCVbI2ZGcdPY+orzVR+eg2Hm108JnxbKHLbBlhdRUowev1XhN3365KtsrgEHBIWodehk4m2vKNgSJfVFfL+FrDQEXn8Gw/Ezr6G6U+vDPeHDCzRV3S1dZ98sNfT9NO/+Lst9baZ8QicnpWz3rHR43muUsiU6MUcKeraAZn3HL0W8GXOYGe8vT+nQr14uY3HNV3zfhsYKaov9hkr/UstBw7JG/jZ+DKLH9WAprqZwF27MOK/j++SJapuwrLZ7WZ+ywN+weur2oqbGx29RxSMn1BJ5H0qbthPf40bZ7yqP3/YkKdLNm7fsb9WmgyYwW+07dn+qKDHtdDIjz8xwaIJgkjFFLWVFU9dXz9hWqqI6GNaILqsywre4nVLApYKQT/7w1AzJZ714qWdLu7mqXaf8MTyO3z5mPiTBo6brrG4WhUl1V7bN0p21ZUF/ny31qzfAB/MjP7GY5DlF4bZD8UKj64tX7ZDCD+9bPA2Q9MryK5w+vhHfFeJ13KhEH30wIrDbNWS2i70dxVM7upA8Iw3y/tXyVF5uK7mff/PbKirVYGm4zshpHo5wTLccgXqgnvEkaKwHA9uHUE+6iHR13qYKa1AKpAXOKCLxXAuu5hXO3Xm83RRZws+IVbL6Od/ffuPkU3Nc7GE5a0M6fNXX6K7mauB9hqJ1WhROyF81WGuv8RM9MBY8Y88IKzECpn9YjRdXO+J5MHZ/PQG77CiACTM8Rjup8HoXaV/y1EUpiyrfCfrXpfgpPS0omQ3SKwc3rEdQixbBQv1R80nn15rZZG+vsxs1aqtf3pGMx4HctyedsbgBo2Pqu3hToLo8DCoqESyuglTgfkb3/3nz//zGyw7W0XZw1dYoq2YRrp99qe35vhl25k/8F98CkFxZ5vv+VXSy3DU4ZyqPXFeDedNdeAyMrzEYukkPoN6a8Y5KGIUMNf/mOXyBuikdPrwIL7YKfy+OB875bsHnVy7rV5OjWlOKC/TmGyi9BmMPPzq6KZNHnHxRuc/fxxu951IxftBal+//sUDyw6JlX0bjP0tcUG1NGCz/i9Xqoz//BXsf5mJpg9SlzBs+BFPUqnEgy8/QrhuFmdig9TEs5+eQtkFb6zMflf35V6BsovVMasPy5LZ07SEU71eEKfLh5iL5htDVVd7dtmWerlaPJodpJMy88G2COhluGngunbBsHup0OQ34wG5d75n/jIIubj0hgLRtwRU9awpHm+apiN5EQbszJtNoGSXQVR/elU5pR3qRFdf/vx+rI7XR9wp24UMd1ybzOAt4qN6lG2U8euXHe+V30o/PTxt3BKrsz/wEW6RCL24LyjM/svYJFX14xvM6Tq1HdbtN4d7M7VsMx1QO5XrylaGzt/P+u/SdgYyD/CuxQOZ8y0elRV0irT+3P7xs/G78iHZ3/e/fk+wOh/S/OcHExxvN8Hs/2qQvj2P+JW45ONmCIW/eiQG45RNen/Igd9PErHN8yH7Lg33DbvhZjE8pqjloX/fKegbUqYVsOJdKjsDvLYKokjESslffebDR1rnTHt+l4hrRqMj1dKBhTWv4oGEzUE564lDTPFzQUO0/qbwbOjxN//Zr98CWnreEdv0PsFfPKABFcwqWteYNiIoaN+QiqK3FZdDgy8nGJXTe+6PKWjq+qJAmf8WGDaiTzzO+bw+rhZXYlviOxhRPQDM+oFtZ7xmi/OtA94Jw6yPjsHkxaaMem9nkh8eTvIn1UETuIXX25Hw4ZdP4W0+m3/mF0uhSgf46cWZz7Z/4xfvlQ0xQ2eM53pAQY6FlC4SMyg7/Q5vWFZnj+Dy5Bp0wK8UCWF2+PMrpvF9WcJPP5PxqRrdxuyWaPE59VS12oPxm2/wr0NCokI7xox4VgfP7rZg2/woltz4aA3aWrLNyG0h8fEML1AU2VgxUtorgyqHvf+rv8xIeRcMtJ2WavwJW3LTjbocHK42cHNzhf38YnbbG1jdtnjAo/D5oqEoIh10j+bEO8m9wUKbC2jmg3hBSsanbjRE9cfvginZ8MGqCh82qS79xRsLn0YHi5j3WJzmu1TDb1CjuR+JxZ2pIbE6IBleByrT1W6gGQ+MpEEzPlO+mve5z/xI6embMmxtOafSoOQgHyRChSbZ86m9nBPIkbomJjs/Obs/leKvvuV8v+HDsWjTHx8mxl35xqzK2iXS99kOS+FUBf0y3x1+fiVxr20SjKskC8HvPMRmPzQbm+GiI3G9Fgkm/Mn7646ZgAa9pWj228RjhApAKdXwmg9XNN6PaQMtPbQsjTVcUpm83j+9zKJXv8x+/UN15k+UO7s3H/F16tR3hLa0tT/LdjR37gGew3pFF5GKf/0ZG1CUTBhel7cxBFNnwnl7XBJdUZN2oAc7+fPbR5QlnCJWKCrlL42RR+CiSnludARZdP3jQ/WnmRqQFs+KhRZyAmkdqja6n04i0dqnySfoHVN9tOsSj9babsc40joovP1l7oeegr45ehGi5/xCQWdiMOE+sGG3hzPZv9RPTGc+gRhjb2ZV1jub7M6XYe5XMPKUP5zL0YQh17cp89nV4OPFXCow9xOIt5SU+Fs0fQSOU5gUEOmMiXy2AqrD+W7nVhfQ5G/JgHAqn+lKZCgbuo8TQdnuRoqw8kTj8RMfkP86LphzXm5LLt1XAD+8Npz8EMz9hwnxXnqxEN3W2ahesgTN/gcVlEfC2198/19rCtb/vaZgE7/XmHu1iiaHlBo6u4cLO+/GF5rKZ+iCx2jE3KG5o/GcNx2cHreBbZ3Th/OSeR0Y+rUmlrF+xdPz+zVRs5YwZrhQ+YiX0RPKb1HTUc2klmdPoiMz9k/MEkiPxi9OashDoWU6r8OM014vQKi0jh1oraDGtsYQHB5vsFBBkg2rSHrC/hIxvCo/m0Aij/EEo+R7xFs0bdZaviQqWv7JWXDiTTnlynEJgntIWKDXzJiuG0VUlMS/Eb/QnuVw4KsG2sdWZNrL/HJ2UZQO9vr9RGzjds14u0xzqJt0z5xnbbTDWt4pQKynTcLbpGf0JIgKyNLlzki4PcRDsb3YYD72DsF9FbdcnOIIauvq0K4ivOyqVivQ4qLZzBFRXoorLT/AbdwlzLD7hE8rsbsqoVGEzByO+5hKryeFUD3v8JIslIB1pdGBs2I55WPyaOtpd2xQqAgGMS9kQC8R0wP60NcNg49p8FkZTxNum0DG3Wdjck7LpANZyu7EQ99z1jnPMIS1kzNmi4MWi028jlCbjwkLC3wv+d6zasje9MisybLjVjqnFLQO75nX877kDYltKLqspuLjvkLD2UEnxMO547YVJcROt2QHp7HUiJsan2AAZRoglZ8HOhVmkvVyoylQ8euWmOaNBlO26ZdoqB6AlVHS4qXnJA3i+09HfDUt2t7VlSsysNWyQJjXibtr9w13My2JHfaxMa26qQH0tHXMVuMFsdyJryC3fYDXPd+20mY57WC/llRion0TDNTcANrrtxMzi+DLeTJqMlRNeCJWLZZ8UL+VDmgISgyDrKMJCtag93K6MPO2M9E0LfUKus3hxIL21cf8vk/ns1PKiplo7weTMfICwrHbkkB95XzaXpMO8aNQE+v9tANW6a8EvuSUMbIaL3xMrYWG8ocssuAtvI0BTlqCghW64HRz3vBVfVZzFPd2jdVO2bZc7RUM4y4u8NTZRTatXG2nWvHSJAdap2jOlwL01tTIVZvXZQ3nqYJDtvuyLY4K/g1Psgl3e6Uxveudss9XOl58ySFj20xH5SDG5hOS7+fIgnO6R297eUugbpI9ZakhBIzY8oBQLQbEhncTT1WrAojpmTEjjTbGKFneE7h8PRL95vFsOF10G4LV+kKcK+ozOhR7UEnZSFhyvabsbFusoa03hJm6t4un+5fYsLkuGduomVR+9S5V4C6QD/02+0c8xq9Xo6BIm8hlcyiNwVl9RBgSqSbuPmv5ZNSbTp3fj/mFprfDPnwkINy2Ecml9JZ1uzEb4AYoI85wf7QDKMoATrkdMTKh42MKlg8TtA9moGXe9t/5JISHRRneq9m5HKxkmyon33HxcN4GfJSszVMxsi4npnZVDDayLoXhhivmaSuUsU15eqJ9xkKsbB9ePBnFeYIXY5RszUos+UVRqHKUmpZt6afkY7vrC/D1UCOXUDIyzg+DCGtLj/AY9E3G5UY4wTVaSCwMlCEbJJqasCVLdfuOUi/ufvVSMqjNnHPnl4MyIAB6Lq8YfddBMJyFTa720Xw/7cN3srFRPREUpfEp6rY1mr4vV0cLVxDZxrCIUa9vuwM8HnmMpeq2LkdLphUUR3NPTBC0lpv986AeDvcd21L3akyd3jzheUpvzG2w3jZi1sogF6bL9qMsxSO/1RjS+O2z8LeO1ll9lmjdpWsSXCgrp4aOojos6B53Tvw1/urR9sBkZt3ms6luF6iRu79MxLJolnG8cgDuheuwoLnn8bCNqwPYhS+S7fh00XTdTEvwz6bC0kXfBPP7v6HffiT63vKn0Z1LV4Fp1PMZ7xa8w/qxkgP8HP/ytx8q2YcVhAKG9eYU8/fYVmAP2Ca6tqqyb/oIK1Tq7YLZo+EHkz6+n+gCrKDLiygbbPE+RsC6t/2Lh5hpZFLgm+lsXserxLX73GM48pjN7y/EQ3/Xn7BYfw7EaA3CRYe0mnJd3SuiNZEc0+42mDDnO95uvmNLXSJrMEw+Y/gQeO3I6FWA+Uy8GT/leLzZFw2E/ZsQR4+1dtxn7yUKl25Dkf01gmFsc4xY037wKPNrNhjmYYJp4Qi0OG9b1G4f1Qkko7OJYfcyH1ubUzissxQvVv5Udu+yfa+tzelMBQtfy4kWpgCLHmlYtuS25OWtF5Q1x/EP37IhDxc2eO35RKWzVc5n/VcHuIWRStzbK46bIBM7uFnPJT1+b23AF9KoqUbxudBF8JJRu6yvV6RJyosQrVkaAxo1gFvZvqgAuoyYWmmJmpjfgNbPMC2n5pabEF3gRuLv6VIOFk8FSIaEkWtihcbU6McCHMvRiOfUWrl8nH0Z7YMvkCC+qHMP5yGrr30lEKsxp2xQ7xOGefzwxLS9QSt1TyHeJ0eGW+lmTNrayGHpCzrREuUZj3N8wEeSDsTr+bac8mN5RXqgD8RdaFY8UGVnIkU1P5T7zqvsyOcg/PgH8bE7tJNR3Ce0urA9c46LQzxung8TBGNxxfxesJKfdJ+i33xIJrvxOX+W8FZhwbbbcI/GIuq6v3zQK6uLJykbFJj5Ei1fq008Vu/mgKZzf8aLvdK0gwXSBGvD4sSRUjub7AtZolXxbPES7RuD18VVhMi5Dsx4bG2jv6ebGiKNfvBqzs9pk+sKGtfVm+S7EXgPjpygOR6ZaZnH7C//qd48ycy/5otGEh3u30PPvMjao84XN0v4roOCckAPNF4flwrsddqRUFu05cAe9xTcsYjYsfUfcT2lzlVtildC9Ox6ReM+o0vYa/qaeWLmItFphrcKiiEx87DR49VSWTXQZ7gh5ksujMHkW0FJWXTDq0PrxhOqwwqtgndBPFU9BhQHGwHu8w5Q3fE2nEeLeoKa1y7JaaOXElldAbp44lhRtJhLYrEooEoDm/nPODSGJ3kJcDUlG49eqqGRkNqFZxafWbC3l1lDixBQbnsRc0xXLPvN3jpAdvpaxJH1Bx+mlFwhigOTuXn7jPshvqZQlanKZvwquacY+h/fNR9SaAzdMK9ptZ42O9rLJusPfm/KRUl0vByzImMPb3WC/pA/2Fa1vGBcmp+nOsc78/jmavDh9Xr/6h0jolTzbmxPGPJ75lKwt0owucsmgQ/WCbHgKbUD1m9v8Id0g1/7PSrnLAxhxsee/fiNqRnv9XyBMF7o6q0dF7KYQ7d4nphelFqwKjeNsN5GcUbFdulkUksKW4VAEtkm+pbx0G5qG9pVo1OqbPX5vsDMRNb95hD/Yn7LSTG2GC0qmhJT2onBJ5ioDavv8MAPpYjKOX5FdDPMM9sLj3c58vl+77x/rJlTwSOryYgH+OFvyMb5nCwBCdCVokFHvKmDXsgeGnoebgJVHtubMdf3AimlOJIQMsMYbzt9iaby0jLr0Nbx9Hws3PVr/xawsBuvaNy5Rgjjob4yH5CMBuVIE8XdZxNd86LkfP5e0DxaMfLV2uCH9+iga5yFV1sLBv1+O4Flb/czP7SDKchEiriFEmKnJfwPAAD//6Rdy7aCOBD8IBYiAglL5C2PRAFRd4KIoMgzAfL1c/DOcnaz9Nx7JIZ0dVV1kgZUWKKjUhTTh55B7ABy21xl8NM72nHjsV2TiBoUw+cZNXmvpfylUkWQ5QYku9tt72310z2G/bbR6P7u0Wp5Ga9BKc7WCftP9QhYkRoGhLvvHe2u8i1lPnyLYOW7CMjdDVC8zThZPKoiWvVeRYOLXEABygMReWPoWd8VjTLWMofdDnzTSZNLEciva0zTj3jx5lvTlus9QBfsr3ppvDVtAf262lFrbh/R8ONv9c4XqBpcSp29VL0EmlNH+MC9s3RBtVuCbnedsevW72h5TpIGCw6cqUUc09tmeCuI2fbxxqoQF6u+C3N5ov0eLahH3kQvn/qP70srv5x2oicDJXu9sfrc2jppVLVTrKB3iESfGFB0fLxBEFwLbOCNrE9r/oP1lD6wG7zalDGpQqA4jmfsNK8hnaeH5f/0F5Lf3wPbZUr2hvdsmRBXkbZnUeTnMGKyhgCYGlYv+OpDup5z80K/ir5bvTMAKViEf3px5I1vIT0+b4Mm5cf40w/SIA4KKq6yljIPPmW4a5ojPT0svpoVNc2hOvgnfHEObj+O21lWDNEosH1Xm2hyyVP+xQtGWfzQJ06xO6jOpo8mCZvRH5/vz1VJNd0JwHTYkOaHr2jZeH4/rPxTTpd7i/0CbXoCF+8Op31xIsu1HPRlwUek2J58o/5puqefR3+8wy3XpmjJhbYnj4dzB5LaJ+gRFTRd9OYwgEN/Tgi7fjq2oP3RVX74Md/eTToFRJKh/7bviDNU5E3QGBqYGqghuP0u6aQj6/3Tf1jbwk5nX9MO4RR4MRGT9p6ys3jklepzGIgwZSWjuK8cWEH1TPhVPy1OZTUwctwcCZ198liHUwP++N0vH+5+/kAdHgfEzt2HUWRVC8yvzYZIKopXfCAF+NCRoPoMt/2UlECGm7h3ERgCB0xnfAyh89T+1pe3NdXrG1o1xDhwTz5jXrDyKw/fCLyagzd19T2HcQ0VtF39lh5W4A40Cc2k9q0esIu/L8Hx2p2wr4dbbyzrRwyndwXJ/ZiRlDpnr4G89bUw2t2VlCR9FMIqpJiiAK87iV77Tvnpa9yNr5SlrQgh3PoBtnaXbz+74JHDT8fzf3poFzDHgpXWbqhHbakiKCYTLB3WYVxsLjo7i1ceeq63RZ9l3RPfsaMGk9dzQtEGeWnnZzqBClrP2d62L32R83BR1NceYqfmt4zuliJUmF56P75abVe9AYzh7q/P56ouupR/fAOrx9DW52OlLzAo13PFdUuqscyqAkIAE6SQrw52k8p8ZXy0Nj2cVQF8jINyBbdzIiHuOW6rEXUFgddgN1MvLl769B27Kzjgz4LdDzrpdHcJCWgfT58s89qvEt9OEHriRUAhaNV0JncpBlbhCFT/bF/p0n5U9ecX/H4PGKPd4Q7lTWUgNnIxW4rzlCsv4RKQR1dTMHVZ08Hlu3yp5ygqWPlDKWf2qaJo1atsq3cWPDSyRJ3rxWCzZhcFFHLSU1OXzHQXWMkC9BvbkA0cOMCiw70BQnfd4KKcfH2AxtCJ6/xjg0/MaA66dAB2HgtYD9oZDJKmLfAckhdWO+nZzz8/acmsiEyTWgLiqYIDPj7Ryebp7j1+ueNcNg7ikyY9b0e7n9/zy1+uEdZgIvLV+vElfLObopriq2IA7cS72JjOc7SEl3MD89Oupj+8eYdzMwEQagv1sGj2s34KE7DmE2yM9yHtrGKefnqT2sHlpk+VdXDl5Ry7OPhc9+nuUcYa8E2uxVYhon7ezkcBzkUyUTw2VrpoPu8q1zR7k3n3CaqFFy6Z/CxcmzBq6GyhpnGHbrrh0U4ib29WlbaDsaYxile9QTMlq8HjUxvBzkSffvqGGS8nqlxS/+A89ZmdhRCs80f18LjuQVjj02/yhGw+NRe1Lbp2cPXHCCe+1KoPSaBCQbAj7HO2mTYXm8U/PkEUV+Q95kiCBhdV4qjWLmU1WRbXwNGZgr/xDPgxuTCs1nOvKQDVIrqd+/M/KD5nCZjFzhHhddn62OMMq180H7pAOwkuEVjC+rm7upliAi8linCYvJlupgG+7aGlHlqSfomXyVfW+aUO30eAgfv+Ddt61KkzHuyKrPoW4s3ZxRgOORgdSX1D2c8Of3xt7vra2Cp0f8K2fO6jzgtvIlzzPdZTrkqZMXYJ7FTNpf6wQ2DetUCGtYYz6tifF5vIeuLl93udeUKM8tLkQ0KSLRmix1QtxyARoI8PmP78lvGXnz6ybGDzHOJ+kXJzggt5qzg4BSYb3usZiPXvK99tvdWvjCXbrh5kp0VFz27t2t/+IVG0E+JLtD1ypwTweB6oHiWOJ5xk1ZW3uRHgh/gIgNCJVSPv/fmJg2/fseHNLwlEMMTYTSYPyGaXv2HdWibZ+dMMxhUvlNUPo2ZsvPSpdnpVep1SnZxvUgKGzjNEuGXqle5jZb/y4ZJTuH25IQsOt2nzy8dyxF7YR9ttNAsGLMCKB9iJkwmw7Fr6cItUhd4UZas3JoresCu+V2paga6veMXB8zE0qLHmt9mODwjMtt7iPQwOOomCif/pMepbwd37/vz10M4nuvoL1bTqMQUCLsHaYBXRcjjtZACsOMc//5LxTZwpoVz19HC9V/3qhxXSm+UBXv0UMO1IaMEmm3Oq85IEhkHWDUjF8E7VWCLpcBfmAr7nFyHK6zKmY5ypPPjlx6Ay9GryxYTAPosBjWh30Reu4Bu4uWnWH19lpXotQDz5PMrWO2bpKz0ZYHY4B1sHrwZDWweZtOZjbNwE0Vvxw5HL+MmhjXVxozl7nWpQ8u+cOkNZpIv83dXAl6GOL2u8D8B4NnC29y2RRFpXrBJBCTc7d4fMA8XpYnfT+8/fgyDesDkU+CvcMu2KvULfR1vx+nEhPIY6dvR3AH7/D0N1+P75RfOq5+R1PrDqHDc6E1+3AkzJzaOx5RqRsPZghHvxpeNgr3VR/+Mjq39ITWHcV+NgO+TPz/a76qRv63PzlvUYmHTvjW60NOkBgZX/0Xzg1FS8nRZXWZ+PEV/4FUH1ei9N81zQwd/p0XLbHEVl9ctJFb8FxuxY6OAMdZ3aynFKl+Is5r96DbbOZ5QuU3HiQE6zK7YDoQAD/0ZHqE9dSxjguX6BgaHBMVQN+jDeQj9xCm7k09RfqBXtp3685OUALkJ5x2s9KPrjz+ItJGSGQet1Rwk4QFc17zefqeCFNxmWIP6iDa4HMG2UrIEfJX4hVhAumi+BxcEf3/elvZAul+3dgjj6fP9dT7tMSOD9GQRU23hDv1z6IoReh01qb6obm/L8zv/0Kdqs/tK8iMWiiMH7Tg2hJWD5CvsF7jdJtvKFvc5zCu7kWgsyvK/PO68ZZM+Cqn208VU01V7gT6MFVn8B25N6A6zvmg5+d9uYZucZRfNbNjn4Ruu5e9FUqz/9/tPz6+d+e0prAVwWL6f73Nf74fh9QaCrqoc95NGU3dljkbdF0VPror37hlkTDztribD19Qevf57uIRzo08Le50RBfzoEHVjyckLduYOMijA04KICjrDNdukZ3DgQnqStsvqT97RVbVSA+xMHGEteXfVD5RHIdYL5q3fov/hRdjWdsbaUj2jlmx24fa4HepktB0wVP8bw4C4O9TijrmgUGdlf/Fpp2zMqV+QK1wbWeM1vjIL74Q1X/kfNg9PocxG+B4DUZ0YPjkCjZWLbWpIV60s1dWtEjNs/RPnHD70cch6d6PMK87GS1nreKqxusIZp0ps/fhY1K54ozd72Vr8i7f/iucQfHe8XzkpbL6ksUAZOjVX2urNl6rwFPlX9SzZlf4vYyJ1COBfx9OfvjfqGK4CrIZUALH4qZk8Gkt4oXzAyx3e6tNFwhHpK8rX+ogJBfWxlSGWyw7ZXVt7iOYUFg9YxqIkzs1oy0eGAvD8bGK3+2aLpWgxXvobkYVIiAvTQh8OmSPCz7G9/9U+48k98M3CjT1w7q3D1BxB3f351YixOKSNDuOKDI+B0CsR++POT1veV9tbu5UCje47YXetN0zPZij//iXBZrOjL+G1FwLtQQxN7yWB8WDcN/vRnqORJNF0dJ4GOcjjTI3vdwRyGmqqIB5yTJc0gI2X7MpST10OiZFPtzS2EPNS9HtFDveN7giifwNcri9ZN13rEb1jJw/PZ4fAaj4A9ykyF4+Rs6WEP3Gi6C3Op/NaPGnBtSiLLkuW1PonR5V3qP/8DCn6IqHmTBDBHKgihcC7XXhFzyWZHWzLlsT+I2Lkqojeksa3CL1IxRSs+/vTXT2+jDLBvv2TTUwMFCnf45980FirewHxo3epHaN72EiD454dviy1lTHEWART2M0fly/1GKz5C6JwXgl3bX+9pY0oNbXK31vguqkWOGwjd9v2l+3wRwHLpmyN0mmOK0Wnn/fRoB/mnANHiGjVg0bvxwY9PGKfRWPXVVYUBp3L4QJ+YtdWEXbCnkU/XzyuTsSaQFe+OzCTx9K92m4f/d0+B/N97CrRX+aD7I1I9AUXaERiC2NKcwTRd8sS6QjqeIcVHLolYtDWOUB3vM9VpobKhGDYG3KLXhzovc5O23oEQ+cR1NtnkYsfmROxKqGbuES1E81N2OM8JzK19TpQmGbwZV9EAzd3+Sw2t+XosSM0YqionUttcd9i9ujkB534w0Yaos0c3TtpBTzxRtC3bpp+FbLBgUX90jDVXjEZOWPu9VppH3Sx6RYt27FSoVIpIZAUabGbZ3YWnFADsD/M7YtcIXGU5fgnU/aAwmlQdFNBJbi7Gp8/TY1n8DGFe9XfEn6YgHew4RKA1uQCb3PBkbyR6CYhkVaHmE7fVcoX4Dqd4gwmPlJ23fA0xgVaGEurnO9rXqXY04KvoJKTYcqjzg9MU8PRSfTK9+y9bSDXHIDVvd+oHVaaP4tWUZcNRfYy+Xy9i2uI48HKrcopc6Qpm63eOdjs+MY5cvVpM3+PBjYAOcYdrzXrPbji5fG0kpExdHLHH7l6DsWYEW2epSNmJGwoo0fpIdvabRez93nLQ6rWY5FL5ZYvFH3yA6ueRamVseqx29BDymVqhOUhbNhKl0kBQxyE1yYWCv/nNv6cN1sx66T9byhWgxrqAzv3u7k38etdp48kXbNDNiU1wL+fQ/hgu3jMjSMknk2VA8FcjcCeWFVtUKQGnLQgRhCwCZHCTEA4XfqG2vovA/ER6AvOqvWP1cWpYx11TF9Kqw3hPOaEfDvHgAPBIW/TeWVM6NcXJlSNZU/CBdxtvOXxEHsSGFqPKM776ZMo7C2JAcnTyyow1zleoITrVLg6iRkrny3FnwfqOMdV3fOs1/r5q4NeWOhy88FgtH2lTCs2R5dTGn9TrZZYMsCPyk/BeJeosfewKmH6eErbugVMtbieLsFruBfWf8xWM3G1KQPwJt2hsj9to2E+tCo7popCOORbjt8CUIdogE6OYBf2UlwuneFy9x4fhUKRUW1RHgdr7hs/5WU3Zqb6qoDpzNda2BxcQ/k0dcJTuEnXf8UFvrmHtw8p2Gmw+9CxtirisN4wFmOLrJtfnGpBG5qXuSY11/EMcarGSx9uMUPgiFWlN9wjbwebRb/3SwzttoM+RDXVDy/eGRjkvwCqjJ9bRXPdLwO9U6FX3Fptp6er00UxH5fe+1vnSWZAGMeBvtUqDDJgR+6a0A+F7ptS0Xhf9t36hyVINq+fjS2cgCQ1YNbcDPh3sfTXdNhGRN7r/WD0qVM3EN6/KGRkHmu1ErV/jMYbeIQ2xzoFvRZ4agDAbbQ/v0Zl5w/O71eQzhDXda6quzxPvLlAZyEi12J70MdpPooLOPiUf4XqpRij0KojGtkTKxjtVE5WvFiApfGC92FTVLGacBo9umdHAVh3QSoeqBqCdDawd71M1S+CAgPhQvthllFbsPNUW+O6FktqJObEhgCCDSms52KpLsSJ1PVpwczUrbF7QC/x9fyLlG4pi/w3I3XZ82O+miJrnVomGskqEH55RrKQXNgy8nUGtSFLsH5XUW2v1FsSL0iJo4gjMdm3n0DtyFoLz5gymXR75IBrXfkFhdGFdaOq8LOweItoxu69++ADJiDi0ST0vGrSvOinVA090/01qbyhjvoTHUc+JfCs8r5dI1oCO3zTUy54zW7zaXQBwyop6CvJ15j+3Ofyt170LeH1yMdSg7KsuNYLso7NmchroJvKRqiom+jp+A4znV4D45CJ4S3C4GrBThgdFh6vFmJQ4Dnx8vT3WRWfuJ3d/GiDeXHRqfDnXY9tW7WD+jTZkdxVtnbWSLMDdMQroGl/VUlJwBZuCv+G9eS898unP6Ic36/w+orl/BiJ0vGDG6BlV+mg6kwxcfMmoW6aZRzeSdAT0e+TxIS8HfTYyPZatpwCoswxRuqA+X8Az6Cai9JlW0cM76mCmm1t6uG+Hatr3ogz2wvGDNuYR64KptDlQq4e84tEtmp89hnIYZCZe49MbCle8wtvpRKmRcBwYfvj1DF87tFm+Ehv52oihP4QZtrVkDxiNZh4abkap/Sou1RQ7x5X5zwF1gmRKJ39fdbDSSx0p2lBUTB+PmrLmJ6w3Y8cWR9KPEBV3B4nymHojyk8dwGDISc8553TMX48F8u6iofn4Uith3n0b6GmuQ7bKIvQzo0MN65Az6d/vCea3AevPvcGqRfWKFc8WwhKFPPWHXAe7H75xXer8m9+NI4NAuG0h2gQngU0bT3jDOoQmTT6AAlo8X1CR+MeFbNb2lH3/cBzYRu8DTqJxYYsfToni6w8H3zXOZD+8AJVe6PhejaouCKklS9lH2ONDDDegfy7wCsfRUrE7tZI3JWF2BEE+59QnYRIxuR1KuLupGsV9ILO5qQYLrvwCW6k9s7cufxwYHOQrDnpa6cvO5jPIxbGKz4f9AIZT0hRQZO4FvYPs4w3p9+aA87EcsRnT2CP1ocjAJAQTPYCdnXaLrxI4fHKCRnT/MnZzUwcUwUyo7nHHaHh72REW0r6mSBEmb9pv9BjwUvPECVs12FHqMinMQp1IM3ev2LV8DGAwrxg7J52y4eqsd2UGhYLNe1OAKSA3B/7yObi81Yo3Bm3dG9neyXbF57E8jA6kMX/COqRyOvVFb8li/60wqtSyWtpHssBncWDUq4caTNZDzn/jxQfzdfNGovTajw9iWwi0iHkMizD6vu9UL4ttP8/FFMPoW9/R0mNBZ3PsLXCkZUXVnW96nyt1j0prTB4+fNqu/xvva5MLFN3jZ8/4vRfCyHMKmtMm0ufE9kVZ5l4+NrO1+QU4tRAUC5ej9nXWogm/RfHHN7AN0oiNzWLdQdkNhJrGaFRLNEvJb3xY35RTNJ0v/hX6VfVFPK/eGO9iXlXYOz1R61AojEznhoPtpOnYKbsKLDLPRLhTJOcv3gfNCDLweaWAyCO+64ztTqqizF8e72+HWWcnXo5h5gkdNXbWMaWGOdRw5UcEKvesYvFLEkBzK9ZzXzzVp7AICTTIgdEnkM2eadgXQHWGNfYv06yT8nWzYJSle6pOFunZDXshlPNspLgdHDA9vr0FSeA+KT68L9G3Sr0FrvFHJPIG/XxqHhMsxaTD1hpv0ykpSmVvXx3qxpIWsdt1m0HzlvZoUjHS/9b3it/YvXxzj9RXd4E1094Uf0zV40/psfvhP9px2xAsy/uMoLKTLXp4wd6bkVC7kOQ3laLf+3MjxMmycnaxv73xrLUPriCj4upg9/UKWUuYKMBPxDZIgovYN9mQIiB89DNdn68vLv8xgJ2EPjUsiNP5DbIB/vL5lt99qskuYQFmfTuQ7xCf++nEPi6UNTMi087/6LMR3hxokUbCVugXbOW3AwC+51D3zPpqGsOQyJeLBciYpLhn0umqQuj0L/oPAAAA//8sXcnSqjoQfiAWMggJS0aZEwF/xR0gKiAyJgxPfwvPXVtFmer0N0HS/ls+Zfz5zbxAAIIEHfzbVK08oyFonKvjvl7PY/f6gbu96lQzDh1YzHeQgkNiVWTxyhys65+0Z7qGgjNpv3u2gJdW9jTbpn+5E3vruKoEtvcyRks/mzorXiQGkkhtME4OjLduobZCS7sxaA2/acZdj/0Lnht4pVmyRvFsjBoryzq449OkoWwGR8UHJNIb4l4nFrS9TEfwTHgH+zenzdpieUQgZW0RMTL+Zts41y+46y+c5lLvzaGGX7B/GSVWXoydzfONjEAG5UADUVZ0+u5yV1qCtUIHp75l2zTABOYfVqVJVpnZYtLvCJVj7RJGZb5bL4SkB613vGE1IO4PbwyYaNcNO1762SaqTS6s3C2gZgrUTNj5C26TfcL7xVoVnbimhkEHBRSuy7iNK0LFr78Q2C63eIyIrMEubhzqdwzxOqvBBSy/hkPAUarA1jIlA68tKhATjFRfHk0gQTbXKoxvy5gtz8OLgU0+rKT6SOywJtNkwE9esmSJtKhiscrVv/1AogqhbL4dnBVmhYuxp7t83B+cIwtfwbZnEBHy1g9KGsks3Te2p0IFAxPs88w7K6bWn/etVjBkLeDW135PDjcOnXbktX/9q8Q3VidGSlx4TG8aNuN3mS22ERHZvN8HHCjBus1d711hgkiAtYkOYLzPYgJOIh+h2erG7YfnUDBNdtc30KNPtZilx2IniNq6GdOP7iDw0yMnz9TiSXDCXnLxX45W+95u82YQBP/Ei0rDC9du8/eYESiU00yDIheyKaFaJJ1J8CIfeb0O87vIVylE4QGt4iPW5yFSVgjt7o2VtIgGcvfmq6wW04JNGNbDGvHvHCYiNBFz8Q3A96BjQDJeHexwRhj3PlIQKJ/vP4xe7F+8+d23hS/XcagxNum2ovdYgyVLn4QZ1D6j9+9+LntyQoqne5ttKJwMWPXCSMQ2VwDXVKkN/t4Lwj74lN7I849V2vMJkjLVVG1PYSzhnl9gk09uw3o1KYF3z2/QfA4fw3YebBcw2cfFWsUJ3vbJ/kaIeosje15QLXElNNC76QgVD8IMc31nGvAXHc5Y3wIlI4YW9vCnT139s8+D9UIXwj8NYiRcpYxe4y6Hg+KoWLG02hu/J96AVdWU2OmurtcqOiihM/QJNb7GCyypzJf/8F91rPcwS+3t8o/P4O6ftkxZJVm6tyf61NwkY3//hwbxg5Sc0+8ntFVfVjvgYt/E8faGrT3C4+eVUTurPvFaiA6BbuGlaDBlv9ry6ZVC/5EX2JxmS1+m55OH380pEXd6C/r3LwkbKMsywvon9jZBhDwD2pT8USe5FtvuT3ugGJ8H6vUj1vvcimx4Sa2cemQiw8Du56b6k+kh5vsdslk8nVt5nFsLo/PTzCjF6gjDA+8g4XqQdDK17wL+/KbFcOu2nKLBAPP70mNb9Dt9vadRC1Izyn/+KluyvjZgH08WRh9b3vOG2gZ54pv0sfLvYa2a2IWWf+aQPNDKGwpX0EDQMQJavro5rMr5fJJ/eKVITe1N5ZLUQP3m33/7bb4fslHan08V1bll2zCU//iUqsKhyNr245zB7ufojndgk7ZiBI/FTQgMqtxbsdMrEvvsbNyMtqlv5tQx8DoIOnZiQvTx8a1OYFTCAzZXg2avb7eksNv6FvvF+QSWqOBeUE36Dh3V1vEo0t355z/Ia3uag7DnS3C8oIDiq6DrvHYulZ8+oMGQa8NqySAFZnyp8J/LHWJii14ETkZXEagAr+KOiXmEoHGfNPC+SzUu3HL84TtqWtJ480dlNRippwGB8+IO2+yGNVyy5ImNIDf1Xe83cGbghyr2mQP02EX1z79id9fzzVx7EWAc90vxefgDG48PJVS5U0X1Thmy6VCVL8j27Juag5Dqs2rLjfTLJ5wrqnY+zXuodKtPPcbm4qmpIhty4vYgcvM4eLMSPVjA8e7xH/7OZVWwUqin5z3/GD3Kri8Jrqf+Rrb+/YjXFiQavBOx/9Uv3hrxtb9DHv9wvOcRUwncFfiYLempYJdsrW8zC4W7plFdqZdqlLxolA/u87v7mQy0v/7sjNVDUq68tlmXPu4/fb3nKx5tbP3808eI2fPC1UiJLVmDF5FV278Z9zzvKLdycCNt2CfD9tFVBJyFvomgXd9gq69ZC5eDWWHHb4WBfkOukN6TFlO98Kd4ZL/vEkopb//4A7Tj52PD51gFRPSmU7zwTREBkjEPrDqWOlDh9DwDzgUKVh+zCOailBg4aJ+aogdhqm5fP3wta07tE59Wc3yVcmDanou2136e6s51L0nwkhPe9enGWiVbwkFYY+rcQRUv1HpEsNeKBvvZYx6GvX6i5sgdEtnlDGZ1fiuy6ARPNMXtPdsUJanBnteR5XB/ZLMAbjz4bl6JNqUOK4GDsQGjgjTUbpjRW0xKCXg2uYlvUbJks1h8XHg57vlqZH3jxecvvnQz2gQ/M8/LQCrYLSyf1R+x/fy7540zK+9+mFrKIserHT55YPRvhJSdD2gXWQm8JCAlh+n0BQuf1ye5+mKLNLc0ypYSaCuUUtbGyjmUq/XIdhCIif7Ap4fUer/9BR7sKlMk5Yv37eeohsVUh/TpzXVFX8+OATQpeBqEbANm51K7cMdz/McPib4+/caG1na0qV3IdbaFwUmC1f3jUf/dm5vQ218bMu6lw0VgnrJfvgD+iN3u9X1X845H8BApGbXE7zvuf+v7Uwn9+cVBiEQ2gSctUGgQkbM333KUA0E6V9RF4+Ttz6th1WYOtX95AlQekRSt2YAx+2rAVtajBvWnL9DzX6UO62VSEaBL5FEv8ZyK3fNYkIUzR/XpEg+rbjkrqPj9PAx9vcBic8cLOA3KBdvmXztsT/W6SvsXSOinl3qRLjwUz2uM5qvbZ+uL0Wfw85OhkHDVpin9C37Nh0V1SNN4OfwpSHZOzw7N7+NStS3ZCiCSFGE7O9fbyvppC0PxLWAv8bpq2cTrCrNL8L//H41H+4K0MVbqufVfNjw7F0HpcR6wPyWTvvurFVwiNqKXK1Nsu16w4TNoZ4w/iVK1qTTUkL9ldyJ+3XwgnNW/QJiEV+p0crTxSls3P79MHSX+VquWXpDEuNeOatoGM+H++DTydmg6xJ75Wid373iBiIsRDk53RZ/JQfFldOsiUodzEAu9TV3g0gxQ24FhNu98IfcOnf/lu9sm3DXwy/NRFAtgFW2UwOC4cvS0cUbGdlmn/epB0QZBtuyX6oNDFUHqx7kNyIu+CxhaGodOnPyMf3oDno++gODn9skmm5svUhGl4m/9A5tLXAl3v4PVnU/ZSZ8Tea8nVt02rpbqe7wCJbhEGNs98ZY/zeVhuEYTVgov0mdfHXrgU1Hd84OPN1tuq4gAqB/qM4e3Pj752/Ufvu39q68ohwUsWBFQzw1ZMJ+PjwjMPJ6pZ8/ltsguzqX6atUIciOXTbJrFZC5MR+Mf/1cOE4ED5GW4YA/v4bdP7rgOb4Dei3e8zYFlbqC9X6SqMUgV188pyFA7gybejv/cXu+cQSPe/frz3jvzyN8cZm6+y0r226ugyBRFpO61aR487cTEyh46X6PrHvyaKQ3PXRyPsW+cCx3WyJe4TDWElYWRQCjddeugBmFgRybm57xZ0M8QlMzNMR659vw00/w874DbCTnyiNtkhPQdGpAoKJq8Rh+XB7qSir9+327PBwCa0PQqTWhAqxKqp3lvb+otb7Krdv7B1h3aUHsd59tXb7vBpyY63ufDVnrpBQ/NVSP1KYGHZd4YZSvD+b14+2zAWm8Gfi6AvZeK/THL+usYgieXKTTYOdngnI2l2WN3rDzdC7b/s0JguwL9IQ71qY+9X8xkY/X8fHD04EGWXCFst8irCBHq9ohstd9Fsoda7t/GZ5qscLQUjiqQqb0iJbmCNILH/7yrYHMaWhAu+UmavD+V1+Gp3kEYhcz6PA5dDueoiMUS4VF/wEAAP//pF3L0rIwEn0gFiIiaZbITe5BUNQdKCKo3BMgTz/F989ydrOnKlXk9DmdTnfObgw4NGd8HqG49zb4777k336gplYJ+g0mm/foEECeTzE21nx4fG0aAD5Ia0J1Oein0ky9/fYjXbHyFk/9iO9tgbLrOjOrXsxqFjf7M6z1y+BdywEjP7vJ0WArPDas9OOy58HjobteB+qJXq9NZ61QgBXLsMbvFXVzuPaYRYcftQ4HJRaMYzzAtbk+gs7zX9kyLOv+MlrQ4Jceqh2s7w7dG76kiRfz2ooHHmg7XqkjbM14OXrPCS5dqQXf0+XizhmfhP/qWfa3dfpVP4O/8wLWL8+BzYYlihCok0cq/XRyF5/fKLCeB6k9c1L/O9mMk9+jElOte8vZ+KkUDy2zhLExPs2KpWha/vSVBgeuRuwP/3/1Gg8YY01pRp5cH1EXyGzqGD3cRv0v/yWzsRpdn255iKKNfCRCRqR+SqX+B6VvLti3AqknxT5e39m6jtQK7V9P2fk5II2oW2q/L2U8kY0VwFViGyLacIqnw9SqsOvzL3ZETXT7hus4kF/mTD0UHaqlF2Ye3jNKqfdyQndHbi2AEvn3QNhfuYzeb3KONlUIdI1nra2EqJGOr82esNgIGNu2VgMif75T95jn1TBLnYpG/NDp1ZgUJPSxUPx9H+zuL8xmfX/k/r+eAvS/ewq0PjSx/kpUtH27IsC5qoAe5DdBo1hxIUxP/Uj2m8yJp6oOBzg9LYkeY8lB463gFfjm5oUqb36fjblkE5DSvgrkqJ4Z+3BzIA/6z8fqQ96jadzWCrBl+QVA5oPLH6p7itKQIKp/by/2mTnnA+TUJdR8WabGCuHSIfWG7/iIUkeb6k2bwO7iJdiUp28/K7d+9bNMfgHi7qo2zZz6gcWpSyIqkaN1g6RYqC+HL1naLkSN+H6rQLaCiAPvJFRDqJ9VVC5ZTFVj0zAqeaMI6kVazyxbJdt+P/YPHtyww8qBa6puuxsSlN2yB/Y3zr2fngfLAazMF+po4buawCYLqK3rB19LfLlTdAkchONrQdDbeaA55tIG3N4UqGmco1h4CdIHScd0G2zyqKjmcE8S9DxXMz2+DzVi8WP/2btXwSKseuXa9BklC4qKMOpYY+jystyIyC5+e2xydM+IwtnqXnb9Hju1JKNxPJcSjLaiUGWZxrhH8fGMvJLdAtDqOGMsmkA+bZSS2u3pq82O1hDp6xYOxUkwxCyKGhH5V9+lJ92ss/GpPVNou2rFxpNopLoMBNluXgafUdijZYpCQc6S2cDORTlki57cCQzNRLFmDYI7md7DQym5KTj9vSvWierigGWkNxyQ8zGmYU4IyhJmBHN5Ltii6F2BHv57wccuHrMWzVwA5Io5Ilicwr6nsSgg4TZjsPG/bd//Ek+AO7eLsGp8NXcqn5aC7MctIeRZTxkzvLcFtVd9cBBK+2wcAvsBF9UScOBqhjZvpNMCcit8qVafL9lcvi4R7Hm+w8rTFfolfQ4iGjknobbq9tV0Q8kgJdAxIv1QWy2/zjSlm7FZ/8ry0xbfABdA6L8pI2Tnyog9iDTGu/NaE00fI44e8p5NtSUrkEs7j3rP7eh+7gZ9oOUePLDJfU7uPHyuAHn9y2nwYDrjv4axQJfqGJ8D/tzPJ97m4OzpfbC/UYGNVTsCLNePgZOLoPRLzrRE0gbxiS8Xd8qWCrsRSgvlRp/1oiKW34pGdntdIHNywBVDWhRttLFWyOZlDtr00JZEni8vL2jP5lljA40K2Z6LkfCJ2KDJSgYRDpWhUazHH21Sa6uBYyn41DAFVWObZlxQddlH2PNjDs209ULoNsgKuFY69FOXDh583dLB+ijc2ZC/6RlFpx8JZl2K2OzVGwdpaRL9w+M0KSDAg2YpDhbZcUcnrD6wHWUT5wy4eEwJ4iCwTYbVorbiSR1LXab3847ePlaK6GshN6BWppEWeWM8Y6aL//D58EgY0+rQ57C1pw+2rgeZDe5MCZL7HIgolw0j5GwAIHqu6fGdjRUxpmsOgXd9B6wyxHjaPecFpYV6C+TKVjQhh5wD/1c29HAXTES+oXVGb0kN8JGMTGPC7pii7KeXgWDYdrVcDqMK8bUR6etlei4hp2wCPbw9sW7Mg9vqu6cA8sgEfGz3x37qr5IKzpYr6EE5hdr8BCTC7Vuk9CCZz4wedk4jmePjSwC1Clv869cC/EoDrEfYdOfpNXWynFYW4WQNxTRzCiIrdrkn+7Z32IxK2wGrxycaiEqE2EEedDSLsouPC4Qav32sTq7lsQmAv98y6nubAlbTXpr3cdYvl8NXkfL6k1PvF9fuML7CQub4Y0SNvOGqlX84SF96RX3j4mWsnPYhHEvexzGrf9VSF0uOsKIv2F3jiXy8uw7q8fSlnnK4ZyMndAWYwbYnlWgoSOBadYDE3l6pvy/Lau7TYwj/9GeThtkSScFjL5xeJj1M/BVNobPNYVZ+R6q4mcBYFBWSXO0miWo7QesXrlUJcsz7QvWvf3XplRQLmp5LR7VcQFmLh/4B09ZH2JzEL+tkQnXkm/GVmjqtEIurWJHSl1kRknscG8UEpZC33pbq/rbI2JwdS4BzzgWX+zdxR/ccCYCc4ETdKFznUnm3lO5DfKQOr5qVsFv9FquD6hPZdqqKlccjD//4Yn7y8Xvu7DMUQsRRM31p2fyOohvSBT8hUbGctOm+8QHwidrYTfYlmiq59sBKEo+q5mcXz5NwdGDXGVmwvDgjo/wLCUiqO/O/63/K+gfVOUIEXWOrH7t9oaJ9gieCpE+HlmjUPn98GVQ+5Xoqp6MAsS0v2I3xeZ2DZxNk9bCn/sPie0Y1xsmD3PJB9bu8tcURLB4MOBVY66slps31IMJzya1V7yaXCXV0lqFaMortxKvYar+HWn1o6CE54J6k51MIB1xrVFEX3iURGxX46Vst2NQ0QKs+TzDvzjy+drEf83GUcbBNhxuO6c3um9PhzUOKmYlxs1wrKtTpGR35/IPN5bRhFPvwgap+t0TSRRExrDcARbRsqKW/j9p0JZkA/uXHU33jsWo6HVphnUvKsOOVdTzWfaGDKFsW9q+dFDf15p2gTdUo+HXif/1yRm4Bamv72Ofcb0alTcmh1mr32OgQZixwjATC7prTv/idxE8WoCBrOLILX/eK3b2nAN/t+0fNRjHd4ToHCkByvFBzwJXW197egyZonvh+c6yYPnJfQfLDflGXY0c0lzfGw7AnFVZVZ67YKZgb6UPeNSGE+BqNk5sF4b5BK58UjC1WEcLpLnnUWa/5yc4YziDwGyNYirrJmHbeDSDajY1fV3XHZuHxWpAr9wd62Go8WvSfuaBv3HPBxgITra22pXy39C/WzUSqpvc9nGDlF6rZJkJzOKXDHx7I3kmbij37owQGxAX9yx8W1bMVeR82FjZWvZuR+GrgbuYB9XNJ06YYtwuc5JtLQ2HTxaOAzyIYd3oJlvcPVv/qtWa84sGVnK+2WL1oQdLpDcaDqsS/8aiZQBRSEj7Cv9XPulvA6Hp7xRdh8yXidQjuZx1bJS2q7XgSB3nJ3gkR9m+rGopLW4K1uTPs70u135a48cAatg1VRB+xDj15gOKwdelRvTcx2y+FLrfmeYOzalYrYeUvWPWCuoVr9axf/ZmFb9v84V1rjbqYEPfoDtSsZ4tNoSyVUJ1DRC+moLpErx4fdKtEDZvb4RSz5lmdYXS6KzUPxjab2CUJQDKWnOKeadrs3RwTbvrlQm1zs9NopT87+OO3oHuF7rZ8XUJ4t3r6Fy/9mL5nU+6XtQY+/TKNvVn1AJtt60CSXzzr9AezoIq6Dz78ZK2avoa/wEZLKQ3wcEQ7dk9TFDbKZ8X7OrfpvxModuhC/Vlv+ukrOgLym21JjXfbxcMN5QQ1vmpiv1X4uDE39xBUHXq8Gnhry8ukBGn5qaL2n9772XwGN7VV6jDWxn/5pZSSVKFmEv6yBTJnQd9ykwVy9Gi1yUCdIhb/AQAA//+kXbmaszyzvCACFmMkQnZjFgkD3jLAGIONMYsE6OrPw7xf+GcnnGBmhHqrqpZaaX5BQvzzATNto4eDJqn0CDOOTa8aF5ALL2/s6PY5mR3+HkPhMAwUUXdlK0KnCh4+xwO1UIbAytW/CJT2KFGvjh0gdcvYgs+TjNS8d54pyYbiweU9/yjOTymQ2mbsge8oKbXWJxzIxRcJOHR3kexe+gHs9i7XQRwIJs71Y5OvcVu7qmBYJr2e3SLvSj8SYDEUR+oNntPs6l1G4H3al6jGEgQsVL0MzC81RMt+vA5itrQuxNLuSbVDyzdTGRIL9GOXYft82fsTpJYGN3xOVpIkDSu78wgvw8hjN74Bs9s99jM4TqmHNUV4DSydH/LffmB9CKqhX4tfBauWf+F/+TkVagt2kk0o/npaMp9b9aJ86YES7lUcBgm/VOEPv9PS383Dv/q/b2SJuvEt99cTFedNNtARfPXvfEn8xxuKnKJgM7i8G+q+jBo28vNBg3s7++tRZgZ8ri9CbTjgYX1xdwsCIZyQfN9pbBJdUIIVrF9sf+RDMhV0MdQ//hQ88kPO8gReYKm4PyKrrunv7rAiqnOMTNLMgZgwBcoryMIywH71ITkTnkyCqxt3WLuS7S2pAw9hrHUK+SaVbYoxwivo8FVD1ecXDatIIgJr6r6RMJ38/Ke8QQq3YxpYow4H1ungOxBMJEIyd7jm/R/+/IhNS5EjdOa2vhSoe88g4l988IelB8fnzyJAJwv4/QxGoA3eKrZrM/LXR7f26g88zoTc3l+2yobi/mfvDb8v6Nm10KmmlB6nyjDFDR8AsrdbrN+Ll8+MgyDATjoQtHpMSKh6BT3QP7lKmoPc53MR2hz0vd0HvSxlZcxy9wrgf7gjTDNZQvKbW4Pz+f6mgftkOaktpVWuYfslM34OPjU8aoDKtjcNaBcnDB3y7U5A1WB/GQeTjiLggNtXBIe6kgGGvDBVUpR/0E7njWF3OicWBMVaECggPJD6JJYwzW/uH74ylxxIAvybm2Sa+NswTbtcQNVoEXY64TSwzNkX8Dvrb3p8faVh+eOLe3kB1L61OhA+hx0Hf6ZzIuq1z/J1rkMFhNag/eND7G56CFo112GcF4+hEwKjVTd+gI+OZoB5nqJim6ugYLM+BWDJP9UFPoTFoEa1LuZytvcIstPnhUgC3mBtHz4CfeZg7GUobkZLdFu47R825+CczwvntUCQpfkv//nU9N8W5C+/Bz6a3pONTpAGcC9IPdatKvQZtipOvXTliTB/eg3LLGEPFoWIqS6Ubb58Hp0LG32c6QF2YKAcqgxVg+mZPsM5zsX7YI3wBc8uWjSpbGimRZoKctfGd7/bg5aXwje434071cPm3DBphzNlt89kIjwvNfvnzwQ7HjY3/PftHsMF8meo0EMv52w5BsIF5r9rhN3hZiZSqqpEMYshQI0h6oy+4M6CeVr4iAP5dtHcrSI16bFJQ3EacjqNVQrurvPBbq0c8394GVcXEx9j2Wi6849WsIsiEYfaS2N/+w02fDNxmz40b/kTILVusS2EYjP3qTfDW8xhelRuOljI56zBTL+XKK94wfw1xeCA6YFqinbB11841YR/+Q7J+8QH8+rbFZwDScJHsABAGmzG8HwqEmwGrzBZbln2Br3aIrL+6WVqwhdKQCSHbnzRH/HubsEt/qgG0CFfdBy5/+qDBo3Eny3RfcOJcy8Y16DJaXEd3nDs7w7uvk1gkg1fg/7o5RgrSWaurFUQyM36is3HQ0+mg9gR0Gn8DeunWwAW4SDdoFr4TzQVrtAMn/jxBl2oOdTwkA2EExrJv3j6s6+QJncN0q5PqR0k0bCC9yWDXMkBfLitPVun8F1Dxh5HJBxbMxFy511BkX4fBLyFIfnpRaLBw0m5E1DMV3/9cbQEE5H2aOYf73yLjxT84Uv1IhG2mG1D4MavqPbQQrDVK0d56GqLPVhVw/qUlBYosPEJf+JpTsV54v7tnx3VYTPfV9NS3zfDJ6KFYbKe0VcGH2ocCVmbd86qX7zCdOIS6h0PZ0aSWZEAtxYAe+ozBWvZauV++f0I9Yb3mBCX1CkY2p9E3QXvBiK8tzl/v7CjlrY9FnuehhGcU6rTP/w/ydEJwldx2GFPPjUN4X4egaPblAT42jWfkVnCbe5nTv3bQcgnRB8dNMw0/dM38vHV5h3oQ3tEAxLRxle9EXyq/kX96zb3Z3eUK/gOfjwOhpecz3d5rCFbXEyPxZv4m6isqVmTOH96QsN8apTAKX0X7fHj5M+Pa9n92Q8tW/1mywnIChd9E+p2ATbpL1s8GFn1BwmbfkziyX8DmBYcNaTrl61KtFqw+SCK1F+mmH96BLTlFP/hv2E9y/cLxO8kpU6cY5/8ZGSAerbudMuHbD5eXxxo9+oda6mLfOr2Fxfebs2OcLt2ZKt+mm5giNwMdd31yv70S3h8DhbGyLv5c5fYI+xqUcMWyghgwsiNQJuT7z+9duXHBYLnaJyobeo9mDo+yGB4fgvkeKMXtho5Z8Hem1cCKl7wl4NYjZCtc4vPmOhAOH6fGmz19xkj/+GxxaC7C1TsucTe8A5yJXCABvdR72I8SwNgSIkClewPLbUsVWvEV5xlYFsvxft9ms+xr1TQ+pxq9ANt4s+tkbTqA3cDdsc2BTM+oADcC75H6mpCNmfimoItH+I/vWJWHaGF+5g3NrxYDOOye3lQOKcLLc/HS7LA8SQoCCiYunNk5uumTynGfTdjI965zZSPxxnq83wk+zXd7izltgItoeUJeRWHRrw2bQCzGQa4yLJ86Dc9TPFM30IKVJxExK2nQW3IXv/w/hqERQn+8BqqdclnE9NnOD32NnaaegDLlNYyTC7cmfD2ATesFyQZ/uH1P/19Mih/AZzARByO4jAwnF4MWOluR3PxVeczd7IjmAbOQH39aCZCZ966v/yOIv7xTsbb8OuVLR9tfGfJF/doO3txCUUEz9fEp+Wt6+GQ3N1/8fDe+BlIrMwjzB0v/gz3Swfb1K1wLgLXZJEbBeD6RBzh7bE0l9TQOXVJvJh6lnwDq/OYA9goBwHj7HFMFkgDDWIRu4R7SWGy8c9ZyV49Jbu0mcDcHVcLcHHYYw33CWDOfTT+8eEdfZXNqCa7Eh7YqlNDVGtzvQXrrL6OrxHJ564BpPYLDf7614tMcfHz2bc5jOCPPyJ2xWwHjowAPh4D0p27hs1/9b9uDhIRNj4hbv0BdWDdHQev3krmkK7tP38u07PH1vymVerOlvfUe8i6KYmC4kGijTXd9LmB7V2uh+3NXtAy/6i/3K7dDbxMzsLHVof5P733MuY1kXJZzRlfWxe49Tsofh8FsOUfA/zxe1uWbvnU/D4cnJe4p7pgVc3q72UHvFT1iT4bXt30sgoIjp5i6yK7YKmu0gpVmM0Y2y/xXz1Uwfq9YNOKo5y62cuBrvtzMG6U6/CnF8Gtv4GTrd7tipPnAQqAQUDcf8DMcr7fF/MV08D8smSeRGoAuZB3eNOrmpVYkfKnT5BWcnb+lh8coE6LRLd66m/+gZTQuDh/eqy/Ol9fguaoPLAbcmK+nMydA7lXcyDgsjfALjQb5d9+Fm1yMP/+PszCIqBla29v+wTwAjf8i7LY4/J5sUZHuX3qjB5++2/DMmcp4Fav/uEHxue9DFx3cAgLzzfA9sY5gH/+dbgvT5/ttln9pSIG+DgpX0CzY9PDbq4dJKsQNYtnViMkuwfe9CLTl7T0+YZz4Cab3uIOxEAAga2fgHr51Axz8iwlsOwuApqa5gPW+9Uv4aPkXOw/4ZB/Te7lwd2hieifvdYxKkeYFI1Kvhs+n0pFH//0VawVrWvSG5/JsM/HFoG1ujQdWQUBpuFkUOc5pQ37Fm0EeCnwqTusP5NZsV1DU5VOVJN4L+8ekYiA78gp+n76flid96lT62qF+OAXMxiPJ7eGX2pTGmDFatZuMD01CGCJiPEZfEqkxVBb+WxQa+tnDfHdSOGGp9ESqnnCfHFQYOqVKfXKBx7+8D58k+aLg+iob2fWiggMIp9Qp+OVhPG3eYSPONiheeuPLvfyKMAjmiLsfpvAn8fhcgHPan/Fjhj7w9qPLoLB+04xgpgysgvCFQjWTcXa7i2zqeVwCqXXeMWme/gOK7FuMsiQR7Gr1h1YUB2v4JDiBIfK68I2f+7Axhcpcgs+meBHvin+I59xKI38QN+IpLC8dD3VirYz//KdYlYixcHWn13VW/RWNr2YIoOPGLuSboaJM1lkKC5LTsVKVmCzWxVqzzcuWS6RrqhjfvjRI/rZA+uuRxlGhoLwxrebdf29b8AwLynhgPgD60MUK7DpJ/Svn7G6pL/A35W/YH/aMTafXD+Cp1UVEITjsdn6iSO805eILZHaydg3O0nd+qVo0U6zTxrDzcCV1Pk/vkvtszCDNcB76jtLlv/1x5RcOVk4kLtzQo7r6a2+XUKQ3BCBff76BXtMEpJZZWJOCRd3EOSejaTNPsuqfnp4H9o3+fX90//XH//Dc5rOucO6k38Z/KyxTG3qjeAtv34GfETvikzcBZnb99Z/9Qrbf/1h7z1K8EQsQhN/0ps1y1YC6cU60lt8A/7cp8YMnwURkHCNyTAzJKx/+gE1MwOzdbmtMShd9Y2Djd+u30lM4a1RTLzp48P61/+WgrdGU/va5iuTvhFULiTe7HdKFnuL6P/XmQL4v88U0OOUEf5HO3+JgqWEqple6Pl1oYB6xnxTJeNcUDxJvbns1UclfzhlJuvrwDXj28YV+Jbnkpqfxx0QgcgKjIpwwAcKbyYjbyBB1ykJRiLZelKXvQC9RXmiV+yvYCm5Ywm/3NJS87C7Nd3zda8gt49iWnYgTua5nS/AJ98Y+5OkmGQIjjV87KIjDtccDZTdny3cKR+PcNqpzT+fp3uDUHNTim7uCSzfexwr0i53kZqEezY93lYLc9LG2C4Wloz1W6nlO+Jt6qupnYyfZ3CD8/BU0E6K+nw+KGCF4z4rsPdDWkOb9qmBUoopDj7cklNHoSuokHVGlZes/hjqqgRl507IPnszf/YPAwfS6Xuj3tAGgFbW6a3+nllI5piPmh0gtwi+6z3ByD8v5pq7eQA6M/fp0d9Vw3LcTv+7oM4I5GTGyBQqGizP0pdazar7UuicM/DeZxD7XWawMV4WDu41h8f48bL8dQoVA6SPY0Td+/zYzsXuOwgCeEKgSjQgoqqM4Dk6J1QTDruE+RG1QHPoChr+aGQu/Ic5gOdmh8bpPhvIG8wX9bsvT9Th3MQfM+VdQpYUGrXuJfXnh/321NoqM2zQfG6Ws35G8PXVRRzK3jtfuhPrQKcf7jhMr4k5TPGjhYsVg+37Tya7ZX4NUhNdCf/xhmZaElyBQI4bxC83OlAriyUYsU0TVhunWR3JCgCm9Q47x6gxpyTKSshWrcT3xfnl6ymxK3jqECG7/Lv6C8FtBV9SauF8pzFzOubWDEN3HLAzzpI5PhCIQJlUImr0W58Q/qxfAJd2BB/PvDSs1yASQCBHDQ19Z8fWL3+/ADfKO7TX7dScb/QtgSrKXIx5jmdLb0gZ/PueRbjMzdr61zd8wG+JHfM1Jcw+ThbcHUeF4sPby5daMQX4vJAdDq3vb1jcergBE/k91fQva5j7AIJcdu4dp/rXHCT9O7RQLyMBm7Ng+vNpH71VKxme2Hew7VPz1qdK14gJvoCfNQgjfdSggaNLY/+im/OomalKu0QmJboX/tQEtcdLU4moPdh2stw7A6l/+6ULYDJZGMqaehBcSHZVMoNFkAMNPozgQU0a4EQshiEAynHGtBB2mjnPF6OFhpyFaGkrGfzZC/atDrCfVJU/nfPYAmIgfrF/koNhHqK99RdvaHfmy4aJgypB4T3fCJzjpmGtYZWq4Q7bLPvbbiD97UCU3xAsOAn1E1s7t6rVHbe2+FAsfjJdpzlV1VMx0lJafmCs32ulfqJLQqSHNjbTUdQ79TPPOY7xwzTX+pc58Jh8e/K79XrCiPhq4WomLyKypQHTofc0uMT3E6otJzPntev+rQ9xIokZdZTvDF4PC6DGVls2PwTuAm9nqtJAkzywtiNwAA0VCa3aW2jW1XiswAukFU2QVmzZX7MSZkMWUUTsIRnT2IGQiLaED/swSVZ8Yz2cGlZi7/17+9M1SCXI83seScDqTGLe2hROCxDQy1YJ+9Wpu+5DUH7Q2kEjEffqowbYjAJ8bKLTwNzdTNT79l7U3j3y5nSIQg82dtqj8cBY04chNIDvVCZNK4tvKHjUtZLa9RE7807++34BBljPcKAku5xWbJgh011Es19VAgZIFMNinxdU+70cMNdvpYI9yRhFDL+T5fkRHej+UEde7/awrZ+kkMcmxfq3wWx9fX9vwBrFRUxjE+twmjrgLl3eZFEN6s/rlVnQbLkBqZfHy+8tsKbwRiqVWupJy8dKfqawo4OEXb/75iv7/GZ4BoVNL2KRDvRNiQeXryZSj7prwo7P8QI993eheKeZ/nwRM05Rm63HNp3CYfnyjwsYznNMLfN1zunu1bmQEy0Jh/dX4C+wji2YlF5PHeH+GKajdzWUrk9f2JQf3kC+n6KEf/nTNCZ+YLlJe5g3oMOYpO9mru6rAh51/6FBxt7JOMWvN4h/DkePSdWZzNw5M8x96YaDtE2T5TgoFcjh2OGnqI7+FGjHFPrFqaJ+Qyx/NfAVgWMZp1g357IhmnxKwYM8XWy/wJiv1+AmwHB3OlJTBh9zvrwnpFTS8YOtlvb+3NWfDJigxdT+ipzJAgYcED/ijDrjfDHXnFxiKOvOndrmTLZ70AkCBw8wdKvq3pw0+XGBoUsGtJ7h0jDxUm2a6r6gSElovrh1k6mF2spknbUpWYJjVEC+0AKsBZWRr1/SvMGblz0aHhdj2G2/r7JXe6FmN73MBf2mDHzf0kTm38thKw+sG/wcRQv1wVPZ7kAON4g0x8PHr0hMMqlWAI/V+4CdgxmznVZGpfoStBg/lxtuut/7IYOG0gEty/3QzHfDd6GbOzHGDh8CFlG1AFMfjdiTud5fmJRUsOy8O9U66CVbfpbgc1UbsqUuttmnhmFuPLD+uvCMVrWkwQX0d+z9Ko7R66t2Zf3AWmzSgOZbPFjQmaGCtUdigOXTfDlotFaOQ8Gs80k+vzio7htA9fMkJ7QtjhcY5tqDaie4byi7X9u/fEGWF4D5b9tP9ROlCd3ym88krrAAlK577DllmzDwqCu44Reqv0CRjwF91sC4cjY2zfnSjL8czbCRAgUbk2klyyu+xcrXfevk5+DQnEWvvfzld/KxzkMy1b/SgpFTIBycLMRIYI0yMMz0hYsL+rJl99Daf/t1VKI6n8OxKoFvXL7YSfd9s9Wji6rtziXahbrO2K3fR+DM7JAezLkd5kl+d3AUsUb4opxMNqxuC8GU3QlXFw2bNbaf1ZTfe9i7nlowB8eigOeK5fRYBC2ba7GLYZr0T+qfs9icTdd9Q9frPOph7w3IzVICZcNriJqPLhlpGlvwqJ9kbNSeOLz317IE2Nsn1D2YHmOA3GLoxLcC/9lfcj6XQsmYfqPGojzNXffYC+pfPGH9qiTDFu+gakRGPsfnO2df5TPDe9L2NOzXrz/F18WC+EJ39PAQ6m2/o0gVxvsTP4NNkwZpfoNRgQfqaVIMGN/HPexG5FPvq8/JWB7SDiaQumR5FhOjiWXFcLEiQNOHJjTjPFxlGAbKgez2IUvIVo/gOf7ZNKBuny/al7bgQJsrdZ7qebuHE17+iz/NCM1xLy+cOsvllR5elwOQmhcoYGnfntt+O2AmuUxg/LM4arwOZbNcH94bdnKxQzybAaD0cQ5gYNc/bDTrz++9pPfgaKXzhh+xv8MkgMqGnzHCReKzpn0aYBzvPA2DaPHZXp4gyLRTibgCM7YEmn5RuvvWg3h1kv/T5EcK5STzsdVLgbmM9F6DfIwrasXZ21z91r2BAJsZ1UdMmvWxfyigr8aWhjvN91dS3WKwDY/Fx8X5JbOa8QUIA/mAw62+rNJerqGdayo93vpXPov6M4DOgS5k36fFMO07LYD36+rQPzzKpvw9Kh85rwlvPtx8HI9xCY8+rBHP/bxBBHcDwqPy0qj9ulDGKuvewg3PUE0K7Vx4vk41rJodo0E81jn9xCsCtoFVoiT0la9yFlaQPIwWO44GGHVDZIFveS0pStsxn47DWgPD4zvCwVVl7K/enauNudjHl78KsmbA0/M+0fCZP4C0H5sVsN2ZUTM/N2ztDeUG32JYIQWAFTCjciHoxsCnZtrfczb2PwhFddpRzQhmk4GP7sFCcA6IzULjM6YwC1pKK2Jr2JvmmkinCkakefzH38JwNuB3X5yIZMCIzR3LPfDjpTORzdcn3352gb5olD7AYfL/6iH85x9wVcFg3uoUHn2uRpLleD6r7kSGKv3qOLigL5hqb+nBD3E2tcm3B0vy0hA0dxnDds01+SrdHsZffsH41Tnm1EoIyRt0xwdjwsNqq7WkcjfBo17fnMEafmdFbZTsQsD8ssBuOcoZ3NfSHlvC4ZBI/X5A0K9Xim1jug6/3zDXcHyvMvaaZw+Y7liWqlfvL5GCtWuWPfLTP/xMwMPcD9TrQAEOrdbiw1ueErrhbTjeYIqvu0TPpdf3t92TUH0khOJhGOOr6MDNv+ghtUfGmN/JsKM/CXvyPWxG64kyEH20kSjl+QS2Qx4G+Nsv7tqc/eWjviX1b78V79Mlq/iNo307PRECfSo0TLC8GN7St4WqOBPMRXAXCZppt8cmkCewaEfThf5dJRgL51uzTHLXA9FMJYo+3C9f9+q9Ahs+xZ6w68yFLIYBof34kdbRcsYgdDjYjJGGZKdE+cL4vgfyLuHIVtrz0aLQA/UOpVhvqxtbWQoN8OVYS5aaSxIWjmkJsPoLyeoO0sBGtrcU1ykIPd4gP/zFK1BgfcSGl3j+1J1AD//sJ7wOl2a2qODC+rIGVKvELqHn7y0G0W3V0M4tPjmzmxeE1MpsIrXU2E6VW2/YfoQDAhS6vmh39xpelGKg3g9VzfQZd5ZSZoZJXd6vzSm+7h3I916NzZob8mEa41L9jk8Bzdf3ZLb9vglAbl89rH0yC4i3ElgK13IVkmQuM5c+GT04ctNCVIMXwcL7XABcUGXYzZiQvI9P+QLl/XdGa5yN5lg85Bps+QcfPeE40E1/AS34vpGc7uthrPqug7qIfGwtytXf6kusntOaEiF36mHNrlGpbvmVmoMd5gv7TDO83wBP5rGk4M+foEG/AfXeP8uXqGvKgMZ1jlYkt0M3X7w3DGmn4zuFs99Z7aRBhecFap6nOWG5+e2BeO46iqsPNdeLV13Un3XKt/hr/fF4eSH1BYY7eRVP21yvpk7glVZXJBgll7DECiKgOQ9EQ0gr0FZUC+AgoQxRftQbiUsiQfXMVKd5EO39sexkD56ja4Lxln+ZMfEd4GaQIbUoz+YyBGEFeaxT6hflw2Ssty8geD5r1HybL1sAjzSw6WH4tOGttZW8ACqv3ZP6N7gb6BN4N6AUlk7YyWVgvO7MEj6HS/6f/evfxQJh/PuQ9Q9/OZKLwEpuCb5KkZcvqCpjGF+WAOv52WfrOmkZ3PgV/csX63TVXQVelxyt4CcMC8GkAn3IDTQI62NOpP1cgbUaHfqYGfBne29Gf/8P++Ag+izpDyk0jfMBk01fWU7NLoLvIW7xXz1nRct6+GFOiMMRcc0w8LtYOtjvEoel4w5//P6PL1I79mv2UzNQwOgI9gRkb9+XLrenAdukPtOgwICtitONUBjzJ9Vq7zH8hsCu4W9/PWC7yzJGbr0YAxBwJ7QzZ6eRft5dg2thvbbv+SXTyc4EuPbBjuLww+WseRwU+K4+kOyFjoDJhV0EvUesYM0+7s0lGs4KvN10+i/e//n/ho+w3k0/fyKLt70l+fOphh++/8dv4DjEDvUvj5+5ckZjqX96oOdpA2PAnDoQGuEDJakNwRLKdQ+D42jTY/71zJ86/BCUn4hgi+bdsOUvqLDptieyov/MiVRpBPvioFOL92O/l3sWKcrpfv3nXytaXA2iGWb0nNopWx/ZvoC3O7hj+44nthInyeC7+kIkjzPx1yp8j0pSz5h6y9kYGFOABfAjtDHmD7bJ9MsiwFuBfTQjmQx99jm4sHitZyLecQjW7yct/vwbb/XZX5Tq1cLLeXcgkt/RfDHecqXyStuj9qmKycjzgFP2/r5Gi9JUw+oHfgWfmZxgSx4bsKJF02DuCzca91LqE8AbBqwO3wP602dHpfq0QPD5K6Kb/jUHmYf+6WkSuf0GEoaCBv/0Dnlws3ztb5iAlsEHDfEg5M1qnGZIpi1/28HFZBu/Vu6CsWLTVh3WZB/fU9B59yV7CmdzQYulQf5IMqpP8adZquPRg+OlrxG4v1J/dQqcypuegwTtHQzSFi8w8HYcdSdmm8v9WpSA8eNALS+p/fk066VqX8QXtoyyTJb+fZfhxp/p5h9gVT193K+vHY/9y+Poi1/+fAFRTRTsKvrP7x1nNSA24wA70tMfwDu7CbD9SAds/Zjor+ITdJCK8Znqv1kzd2cbrrCXrxOBxGb5hnc1SLXgh+DylcHGD1ZVT1cTyWIxDnOQGQHMrELBRijSZozsUgBrRRysH7QPoDSgJcTYolSPmmfOEsuK/vArLYOnlyyhvkgwl3BG5Ox8B7Mh1jFEtWThP/4wsc9nhs0dIqoP/QKYOIgSLMCEqHWGx2b39OcAwrh0ML6mDIxvqrggvfECUdvQa3Z/eghKGhGJiojYetbvCAbK+0xNZLlA4KbzCOI3qJEIH/Uw/fFnwVev1DjDU/OHj+AZ6dU/fkaHVyzAvdOG+Fg6t2EuYMHB/NBDam/8aZHPP/in71LzMh8S8bKXKshfpZnwlRY3s8vOnmLItxDb1nnIV25RI/C1sg/21/zSMM+YM/VP7z4D+cPmQyoTqJgnndB8P+f0pqEOjBxdEOSBB37Pj2oBt6YZGjf70FosYuhoVo+EJrSGXX94QLDxcXyWojXptv3545fkvuk3U3t9rfDqfvUNb6tgWotLBxft8MT2Vyx91hyUVilXO8E6DXbJ9I18DwLnYVIrM/2G/S55AKu7sqd//IZt9eevv0KP9xf06bBqb9iGpoPAbPbJIj75XpE0vUdS2VXmAn4zgVrAFVSL+XmQKqoh9U+PCL56l7BD+iawO7y/uIjHOiFpabuq+jhhaj8ELxGaR6LAzO0u9PbQ3gM7mBIHyys5IXXTZ8YE6M4fP8DOGeqDoNq9C13jFNM/PXpenncC7dxQKd70/Jk+fgi+ftfvxr8tMPFSJYFZ8j4E4KFImBs6Dgz3b0DUb6Q3v65+3WAWfyJ88IRlGG8nN/tnzxAcQl9qHVmDj2oFhA32lI/f3jLg/MQI6yc3B+v7FBIIQE1xqNSbHl/Yl3/9Jz1q+LxTjKMHPsioaND5r2Y98PkF2KcqoIGnNYw9ZmNV8WXa4SC/bbPr5dMF2sPD/uNvYNbHxFWO3FhQV3o2w/KwOw/CnNthnF4HfxXIrMB6bH7o42DVX9T9VYajGGo085VH808v5T+8Q3Ekfoba6/gSnn9e8uff+e56mGJQSf7nXz3Z7NuBapYitPsAK2FD9LGgHShf6n/F1mf8skTqH/70n8fvwDC3EoiSl4iDvgnZmuO9BDlN97DP/bJm1vMpU37e/KOHD3jnYiw9KvgNwQVJwl0dxkPvGH96A0Y7oWLj8jwR+GntGYfZu/F/dneqVc64QKRkLMhJt1OIQnb3jlo0d4f1+Vksdaa/C/WU5JkwrYwKeODVJzYyMxnme+cEMI6/M+KVumvIeL51cH2JPNVXUrB5UTkXnIujhISDqbB/+sCmX9NjDIbmQ80uBTvhAMl6O74A46PHDAMp22Ob57/gH76az+ODHkL9xUaeZ5xKfkmM2l6yfMZdYQZdd66w/+ouJtn4Lyh1bOLwBnGzXPZcDe1THWz83tzmjH5j+P0ZR2zvwzwnLIUapIUZbG8/j2z9NA1UgqTnycLzVzDfzl8I9z6o8V8/rhvpuYJyrsf40PE4X3PeMmCplP4/vMQ+x8aBFtYV7FdJBZYo2BfKgzkT4kKBH1ZKHAhLO3tu+tw7X2XwMyAi/Rdv+TGZ1P1VATvl61HMj6/mD09CNF7Ef+tlmz4FN/2EGls/YiFVEf/5E3Z2dd0M309UwObOIWo1obX1n5gAebviCJ+sJJ+Qr8F//v44yVYjdbuVqI8rr2z6e5Wvh/stghu+wObQH8G4qFsX5Lq3Eb/hfVZzww1u+Ynqy87wl98g13Djczhrnj1b9+qpgm76tTCi/MPc+FsHhLhoEcjegzkhJfHUbT+RIt/DYfHeiQKeX5dHwlXK80WMNU5xcyumD/eIzWn7GV6HFGBrVZG5ztonUg89MvBx5A/58kFZB62xfGJc3krGxjsMwAAaioSyc32pCkcC+9YEhNmqA9grrEZ1tC4ztS3l+4e3yn96EgrrV8KSVDH+9OZ/+XNZJ+sGPg3jkKjfjGQ1X2oJB3X3opoPPs1Cb2oPPpw807wN40H45c4Mvxo+4mNSuf5KCeLA1t9GYrEkCXX8cwtKPTSx8zqQZr31agSxOoTY8z5u3m79MCDdhJ6GAfGHf/rX2SU+Dvv1YK5I/Lb/vzkF6v8+U6DchI66hSX5ZFnIDPf3eKDhBZ39pbM+HTzFzydFJgxNIpdFAC7xjdFU2nUNYx2XQg5HNgIrrcDvNz4CIFWui7NxWpq5a24xBLMXkB168/mM1KiFX1Gg+GivyJdqabzAKz8X1DnuR7DUPJ1hW0QuvZuSkJCx4VcguzaHD6li++xqNAQWnvugNnWuPntekxE+XoWOTaN+J2z3dVz4cTqbPndT1ayVi2Zw3ZMLDePwZ9InfVtwf48G6l1jq5mac29AuZlu1BX3hK3fzxfCB6MW1qhKTTowawQxnW8Yx1nVLNI36PbuWd3OrXkIrK2lZbBShhTt3nc5mdlBqeH4kiOK5M8XLMg5t1APLgU1ePtoru2ngEokFyK1UWiajBxPULUlFmJdeYPkl6ZBCysYWdgH5Dgsb2Jn8HC5K9Szyx2jYyakSvm8PGhwMyd/frZzD3XBZdgPiwos4JMW+8ziHtiwnw/A0MQ66CajgNFFzpsRkKcMPJl/EyDNAaBYjQXo2vsDxdEzMRfjVV2ARWSH6kcmmIRFnwBSOCY04iW0XRzYcVCTix/29Xc4dNlRLSE07hjjspCHpUI/A4i3fYq9eh5Yf/W/Hiz9osen7Gf5Imd9FIASZGMDpTqb7O53gf4t03HIqp+5aJmSghtbZuoP8WeYCtmd4Z9/Bmm7gFHi0xiehfpC0eC3bH1eMwi6abCRnJq9P8/LFEP+eH5Sd1Qcnx1kT4N3YDQUtaHnC+UPSSB07RIflnXyZ50VECzFWcOHUZiTtUbCDGNedHFwaupmhGF5ATwcn9v6jj590Z0F78cowWH5m0wGk+q9D9VuoT7STsOyPOVtlrpl0aQ/E0aK+8WDv4cXo6XsZ3ORJ6WDQsYdcJgeDSZ6qJrhBG4OdvdKxha3Mj2QfLKCvKLJG6TiXrrgp4YGRrtvz+avaPdQOGkIn+0b7y/n9NrCPJquODi63rBgoXLVx7c64MPROLE5kOoW6rfmjnU/PQ9LB37ZfrXXA938YaCfYE1hObwywn0Y5y/Pa4z4V5EKGPtV77NFAyuU0m9JYtCFbH4hFqnT9L7jzJOqprXvngzpF89E/pgcWyvpfgGKfjCo7afyQMjxjuAsZw+sT594oO/zUMHb9o48MvJhWCd2gXC+jCrpn8k8LImv3VRFtw0cPkMVjPeXIkEzYRVBJpzM2eiHFbp8GuJYLxe2BNJwAVohYlxKP2KyM1B7uGfJGXG3yGqkJFlTdQwukJo7YjZvn89ncCidmchTKbHVjqkMwl07YOOQDfmqN7sY2tISoo/6cAFLfV2B94fn0MMlbwcyNrsZ0m84I35BW4/ve+2hMfBHtOfr0qSF7MXALtYGsa/4znt+vCDVG+cvPYFa9rs3CXplywdoPr0/zaL7xAUK4Uv0Gn439obqzoEyH+vU24WArdndd+GvSY7Y79OOrZcMXKBWTSbOBfGZb/ngAl/z6Ub1r935bO8ELezb/ogPl9wZxka9SdCRrh7iMlqDicmpBqdB/WG/l/fDQyrdEp7l7IhU5jzM5VT0K8yQcsEaL5FkjYROgcLBSWnw4J2GCvR9gXPU7bB/5O1GVISqU/uPecce2gXDupuqm7oTBUAvzx2XvAO+XWE7ByPiHuiVbPGewpb7AmqT2kmkFAjK9tZAR32k1jnJNWWGszJU2Kq1oFkPT1mBt0NtEl44LQN9l98RmHl5oSFOuYagaVXg9cA52N8z6C/fotFU36oQEZ9fk62ROllgLO4jtu56A9jN4EZ4FYWGXuj8GBav3XuwcOIesXMZgzUePQJpiB1qeY6ezCIVLbATJUCdafAT8ohGCKp3XVKLk9NhoUuiQbvqruRmBiFYlGDvgC58n+ldv178NSxzAi3RUFH73JUJU0HkqYXx/JK1S/iB9WNJ4PqRduj+5z/WTe5hSHcW9WA7s1me9gqsbryAvkNsNKKIfvE22FfCbtQSsN5vswf508HBFjqEyWa/Ga6+ENJjQeAw/uWLU4QKIgFL84f5Hrjwt2xnIC5I9Oe5RhawXWXGtnGmbH5ddyUcxijA+vOrgcU+inBfnj4vGlqR2cx9M8SQiuYDh4KVmXOcyBIoNPTGlu2+B/YVoAz3+Ytg+3wq8wU5jxZoWp/81SPGorMUwQzOjBbwXuQLv84lmL1aoyjeZv1mSzxDM+x/WDN+pr9EnxwC5YplAlEvb/nc0KDdvyMa6ovtr1Fxq0ES9iLiuXAwl665a8B8THcywNEZZq2PZigVUYqvQ1w30xjrHXyN+Rvt+e195d0XeUC+Vjm+aubPbJNESWH9EQZcHs+GuYuEVw/01DHxIakLk8nSlMLiJVv4+rn8zO5ReT1U2VRQ/UakZq3LhIMRKX20PrD1z95gFcGXMKO28mHDK8oXKCL2Xetm/qZjVMJT+R2QgnbBhgk/FXyN9zc9SqqeM/g5cwp0EoNqL1MG016SJOWlhCfs53cnGdVCreDH1s9k0liXrJiEipKPkUaaWbwna7Yk1R+eoUhtrEH8hqXwr/66hXXxV2O/FPCdJDaRXviQDIG9txQhgwecAasxp7/19avoYOtSf/IpaaIVfrgip76tu0wKbPkCwRjfMHqgV/4PLx4FeCKS5DQ5M18/AZy+nIEfaJ4YsZckBsdPI5BedH8D8655AW4+f8dHU0q3WeH6ClNwwNh8ZkGy3PpxBVs+IO8BtmanFmIFY2TJ2JRCwxTk7d4/S2hK7b1ZsKXo4FudtfcBR5pnAXEvcQKkh6NGXc+x8nnMQwegZ3qipfRD5no4dBVMpumD+PVvrgjoO+jAe4T24xew5U3CGzDFh0Y12301TODmGjYmdQnvV735rz5c9+MFo9nDTBhjV4ZQnDGRxT1iwo6nETxFQYH17VUfdnjue4BlRUbL/vEB8149WWqBPox6t+jVLPdjg/6+B81BANmcR1EBpm+V4Fuff5vp0kgzDDR0I3tMDgPJlesI1KYfsUv4bY64ADP4V98PX/GbrLmmrPAPn+Tb/E+2nwQXpOvq0GBUjuZa6PYMrvxaoMvoHYHUfgoO4lJBf/W4+ZysLIP7BH2I5BSngXIJa9VdkAukK0rDl6yX4EDL/0r48NhPYC0PYIXWmwtpUDe7ZL0dbxBW2ftNTQ4h87PVi796il1Ovv4fAAAA//+kXUmbsjAS/kEcRAQSjmyymyAg6g0QEXAFkkB+/Tz0N8e5zbG7aQWS1LtUUjUsN3rJ4OMXPOgezSmQrskpgHoCcqJeYmPYDeEtALhdTIqddkrH+GBKUPYJoXbb39KVPwsw2QKM7dLJwx8mexmGzQyQeP4WfPFo7MBjcrvTQxruOf+kPFfLJHepd9t03bIB2wLunktIo+4hrntk8wg6zk5Du11WdCR4KSpY5zdiJ0P/45sCNJJbSh5QfVjLZ+t6sPkUR+x+z9twUqs4hm0pz9Schk9K11LEEEYnj6InFyxqhu8f7IxqTzPpBgfOP1IGVr5B3S320l3d2Kp6taIDPQobXjIj8S7Q5R+b7qNkO0xnU0MwfvETDZ95FFIzCT7w2Dt47YXllwuw9Y8WSnFNbz83SwnQphfYkX32F++txTB/BLzMDNNoqhVO0nTJ4RpfiBBI3fDHLwD7vRjZvcsyXTrH6iEk+gdnkJsln0qcgU0tmdSJuZWu+GeCA14ykm4o7niWOQ783ssTDuJrUS4mrytwu5ICO00iDSw+BBJolizEN4c+APHkKoF5UnB6GC1ijZ5x15XeME0C2+5czubjk4GaHw36d/2iF9zWxIct4L2PXyk1f6UJPX9R8b7AIPy0k/JR4CxXCDb1M5yfVaxDPLghAUOyH7Yp+Abw/BAY0lY8+zabioHPlSfofS9o+j2KPPjHJ/TsnXEqvppA0zwj+Yf3jFguAeWn0rBTptOw3OmQQxyaJQ7HuO0W5dSZWmTeSzL6Y1kuaFJV+NkWI+HH2wvMvkwa8MX5k1o9f6SsnZQfOCM9wuFV7sHs0zb/w2tqHtQT+OOn8HN4nTA6J+/1XIz7gsXJOKD3yu+W6fF9wWxKW4pRp6TLOQk8+BZCmbTB7jWs60GFrG9/1HnNGSAX/yLAwwaIpNMtx5rreIc0mNw2hBNl0/3Dy+v96uNQ+1nleFFDBMnpwuh1Nt4rvz/mYG7vOzI51ABbqfYqOOexSn1BOKTsxIMIlib4IRaiO6fX5KQC8eAVNEI/2eK2ukcQP4092nTFKV3UZ4D+8Jla7PgZ6FN8yFDB2UzNOlf4dF97QdTH9wN9HmbCx02YBmADyR07PxRb9JrcVKXmqbHyg0vIy2sog6fYtoimwAy3QneNoauQ4J/+nX9db0LN/5mImd/OIs7nZ8PFULOVP3vW0ku7HNz24hspz04feP7zYni9eQ4NqSSVTO+2DArlzVz1vQtEMykLeD9EKtJ07pVzdT0VEIMQIOkZ83Lh9PL60ztEqtkH0PgkJdCV9wWCF+sQLr+i6ZWUZiciKf4ysDycPvBvfa21ttOF6cAEq55H0hqf+dU/Ei3wRBtnm0Qflh/YBlAdSYnNeRTTAZ26GB72Uok2iS520yedJXjd3BWyKa9+umh2+gFBLajoI8jn7idJ15fqh4+AHtw06dj+07y0jqMT6S0GhmknDSI0n4pF/RwtId90xQJpJkwkk3besPsV31WPUOuPvwxsKFT7H3+6Zb4JOBBbTxtrvcLe1Vj3fBYfCdp+zrGrv6+cK6duAfd2QRj7TzgQ6vdIS5+XCptj4PD19416lz4GzhkpOvGOPjHYzKGEpO14Lln7rj/wD4/iEUTWws8eAh9/bOnxNUCLRu/9B+4yv8T7+2EHprYuI5gtzKH+bbyW8/alfOAxyj4U3ZbFeu71mQFGqg493x/Mx07ain96CDHfX3tZuLCBOSwrameWa7GV/6kCzbZEg/ck5Ku/BFZ8pgazj9Z8fjQ9zD/dF4HVn3lNpoDARhZHas7e2o749E0gN6ojTtU5Aezmqglc758s8itY38+w/FefvT9bsGybc6FGIh7oAZNg+Pf9wws5SH2HFp/FTWDCt+DLdL/6A5Pi1DZ8jgzgRto9u9/rmQnwj49HuyJNfyLtXjC/1Ar2K1J1zEj0Ao56xCjW4iLlhjlU8F3vPaq7Bw4e7PMVoQPLmGinn12K4dsq4Ptjmeihi2EqrfivIot/yDq/LRKenwTWkxfgSpLajoXMfYFVDxFofhpriau4gdfNTaFe2eytqY43SEnLuiVi22splc5EUE3PfGHdGF7lWh4MKcd+PYZuGvduPkxqoKz+z+rv/MKF6o0Ote+44PgYXIcJPt81EI8moqbWu8M8mG39F++wHkUVZ+U1+4AIyA/8xw/W57/AOGsTpNrntmTBeYzAn/7X74/Q4opjv8Bhbp94nyAaLtQfI3g0C0r132ZJp+b8RJB06Eaj2HxYy3ZjLjCSdUK91R9h+u+ygJVf0j+/i0yJeQFrfMFX+q057SeuwtX/QWo/PgeWdrEOb9PrQBELKOB699ShXG5mIt2WMWRad2lgYIQIo9HvAFvigcAOdDU15zErx9x8rPz+uKc2qeKOTSYkoDbaeeWbxiBdZ6/RVv2BDz83K5dskQm8hfJEV38OrP4rgzs62qvfYZZ/8QrEWZPQipS/jnF3af/p292qT6dvqH+0Vb+gJrNsa9s6pgRzNbgioTnGA3s/X5W2jfsQZ1b047PQXRPoEr+hq18IGJ2TGKbfGNNEdceUq5H6gj2+HrGhi2G5xGIjQ6Z+G2zTq5Fy76NJQDtJm1UPvVJezTSB1RkGaPvwj93sfmCm+FP0w9FWmcHix7sRJK1RYSc/xWA2fuuezb6psS1efulwc78tpOlJ+/e+W/GcRurp96rIkoljueznMoZ7Rl0kbMdbuerBHKz+CA5z4zYsUBQLaE/HHOu8CEp1M9YRXLbKG/vDnoSTtGe2di/19z+8nodiEWGyVfAaf5fh58yvWLPfhxjvMemHMVjrwsC30CLR+b7CyVRkAjVMPIr9jddtz/wmqL9kybHz52dYqkXgmNkd/fODl3X8VLmjF/rnj7MqHmrQjNs3NVJ6GJbHeRLUqg9dbERJ0v0aDy0rZ3yiBW+7ct6r+Qjdi/kjGXKndNHDVIb9Dn9w1D2ycHbmad3jdFxwqB48a+6fRgQaUxKo6za2xZ/EUeFXuW7+/IJwdmSvgZV5e//DS1Zc/Q80Lo8rPqg6Hxg3zg2ou+iI4H6g5bD6/UDzrATjCuzW3mdCBkKY9fTaPDv+uqo2ge1TGqjxeW/57NxZAE/yxcfGbUzT5VgNLeDplGHj11r/nkeur8kZO+3BDue9rwnqipfUw/bDWi6Pbw47JVmzg6oZSqu/DKdh80W8qOgwT49G1CrZVNE/voSeOtIS5MgUr6dbv5/uaP7516u/fAi/Pm0zGGODYDO4Fd0Mqy5RDh2RiQbAI1x+3biAsL0MGP3mgo9/fH/V56TP3js+SdJF+lu/2GFE7Whf0xGU5GHhYPkO4TSVexH+jv4L68gNyuWXHXqw3h/Zrv7aNpQuOXSaKKNG/YvD381tFqjN1ZXemlAFohsPCJ4NVSeb7cItJp++DbiX5ht7Sh6EC6xGHW7OfoTxyh9E55pdAF1YQc/9VS4X/PRHWCQswMHr4IbkZXuXP/+DrvwZrHxYh0HoujSIr2pJ3Tip4P2W/ugfHi/R25ZV65tYa3wdQlo3tgx9pXyjla93s6mwEezHXUq036MpmfsBPfi8Xxv0WfNV3EyCH1z5CjYTORlmfIIMnmsHYuux9l49THOhoXt+xNYrM4H0OkQv6E/oh83vsSpJrD1tqF6kD8bT7IazwU8j/NMPLX8/+Pg4byoIpCgh/VYZ+Nqhq4b1NT4j8WpYnGaZY6sAE0Dsv+t6oLiW+o5f1X0F//wFfKgsIMbPFIGW/y44UH/ncBugz/KnH7HzDnWw3SExhlVmn2nRZbAbH1IraQH7ldS6KQEXma8RyN32TMPL2tskOdwzqIY6oPdfFvKxdQIbak9ACTsGysCK9YyXD8wz9TIrCMeLakVaPXQFUlSdDbzZWAn8ptEVO2jnD2z/+bxgrZxcjGGidXPROq+/+EC07u0DEY7GqOVmbtGQnDK+tFKfQ/NKnD89DJgSyTmkR0dFs6T/hnHlA4C4Tws7NIrA6q95IESVS83L8T0s6PRrILnnX2w91ZwvaSU1MA++ERF/Zd/987srwdWxK6DZWhI79SDMbIoUS8pS5jenAj4vioc2KTAt+pef+Itv0e1ZdM+LHyMY2U5IrfO1KZd2+niQveYJm/E1K7/r37U1P0HmQ0xTFr7DArq1zYi6zk9SGYcFysMFYUdX+/CrPI1au2yLBkeXt8bpysfAQB6YWqYn/+ntn1Z+ag2H1bkrR/F8HQFM7hvy1W4DHxwdxGDSvj4+WMlrYPgEddide0DEsmlD3tXZun6WYPXPx4FtqeaArSf22N0bez49xaaAOps5NXG5K/lur/RgFPYR1p83G9DZ30F4eypn9OnvKBwK/dP+yw/d13wlG/mtgky+rHUyfP63nghsQ9FAcLMdSmL8ihiePpuRiKC8pu+urkZwl4GNA/DhYHyJ6gdWmXNGrNlDi7/TJoOhlNRIW+PH/EDQhEXppqSVI4HP2hjU8P0xTJpLPzHkHr2IsPZ3Kon33mP4W09qFHhHqqvycZjPphap9ww+COzvx7ARQi8AkW2H+BYnoJuS0YBaGfQNUa7DlPKB2wT8+TPwtnkNVJKSXGN981vP2B3BMikKBK32OqLt/rKxyG76FHDVFzR87Q4D/9MDXEne2D/wwqLweYLa24UJ2u035iB9F1mA0zbXcaT7Bhc946z/5YOwSbASzrPsm/C+NY7/8JM89uwF04k+KXK1azjv6rSC8u31+OO34Si+mAzdxcoI2XpjN+rmA2nW433A+63J+GjwSoBVbcb0b/0t2Xga1f7gIZqvEnrmcqWrn+m7x1Z18UvRTkihKmElUEO57cFWdkIHrOND3e/8CGktn2Kwrnfq19/AWlY/DRzH64VGuv8Ac3E1C7Dyc/RNwxaMina1/689BTvxf+8pSJ7Fjx529hMsKGURYLvb6kk+B8De/TDCTWtuqClfLGtxu/YC4QQxrdrvmy/m4WhrNmoE6j7dOh0Jhi91z+hau3YH0sVUulzba8YF26JoDtImahxoxuZzLVVDSn5f0gSey2FDAA9QuajzkWmSQ0zq6d5poBa2CMgxbPC+G7KSVVf8AzekdNSY5aTkongQgbT5OfhQHD4d0QtZV78wimn9nm98NpxvA6ejNFLP2/YpGe8vCKhtJP+ed+wGLqv2hyTUeS4/a75Xiaep3DNxEblZOYPNY4Q1jDD2ef/r5gHcJHBzjpC89fAK5pub/OD1oDpkl/At54JSBnBB8UDxZO4AN4aygJd3saFuL5pgeQ+i889jUu7TuVvU9qFrVIieOEDyLWXJDSLwrXOGQJ4eQxJ6fQPdB7nR0GFHzrPNQ4TYf/f0AC9rP5TZr1VVQC/sUuEF2Cw/FtgfZBffBPQLRzmOIBAgd7DX336gf06HEfwelY8kqW/CeToVGRyibUC2x3Nkrft8Crh5CQXFckM5qasFgoTiDbW6GYJxlr8LjHb2g4baZJWUzT8ExZhTNPd9Vi7nm1jAzbU8k6yNXikNNscaxmpf4XyEqBRdBTTAE74BNvnmzWdL3L/gCTlnHLmwL38olREQBPNEcbCDKRWfJxs8FgoJe7blsPx08IO/Z3Ci9pUPJV2+XgSjfLGxPmVuOYu4FOBeiN/Ye14mwL/1VgDn68GkzhSbofjcswJ+b/sH3tsWCpmZKRW4DG6Iw5OtpvMQOD81jq8+0c1KC6fpVORwyhcXCck4lovr6DJY75d69fbC5/by1iG4vj9IPtv7lCqdL0Hd5+Laz52Uo2q+TLigZCDAHUTOdxW3QfCcI4y3ZcJZ1fkNPLWugYrzUU5ZdXV/ckAunLr1cQKLbu4LuLsLHXrGlW9JpvBJgCHUMg4FXQDLaYsD+M2FC7YPBSvp2gwJRhviYQu/UcnFSG5hKrcmxuFyL9favwXsD6pLvRr5A7+4QQXfb0TRI3Tew4RRUm+u/Wmif+t1Xs5bAX4gtwn/BLJFnuXcaMilJQ7h0pRTm8oeTBBoSa+JI58DuBGAJxkdtVrpyp+sfDhaKnxD7Bu6WJJz5vVQQk5BaLCr0tdI7iN06qdN/973+PMq/W98Ma5d3WLn49uBV/1soy1sj5y3cmvCHUsNbNzj3FrrE7ZAfjYKztyQWmyjFwuUiddgVO7dVEK62WjD917+PW+3cCwyaA8hJuSpZ3y+yQ8JFneGcV7oQvkcMr0B8Snv15Y7DV/U91mFy0+F1H9CGYw2eYsQuVNJQ4S+gPZMNzVpp9+RDMbcIvMY1SDO3BPW1ew48AwVP1hUtkXLX2Bb5FefPNXT5wFpCWUdQ2Xcg9znEhJ2H8Znp1IlmDv7H9VfN6FbzMoQYb5FV+yd7WfKOlQUsBv2ET4n0WsgZxz+oCkLX2px2A18kJcLfO8HC1vCklnLxh0CwLb62qD33nH28zIdxMffBUfQFTvalnqrKa7zJJs03qXjqTcFcDMuJtr48JpyzwXtWhLyQnVr4GDKvcqBpy6LsS02iL9OamRDt/cLpCpVypfTxtC19fvoZY03D/HqLlAVohc90KQI58wNYrjGV3qsQiVl3cBV+O7ajnp65Zfzpb00UG8SiJE/mpb0q08BjBjYoY0OscWNw6zCrGoH+jffRx/sc9AyRcHWclVCtp770tqjNNADGX6cbedrD7789cVGbWzSX5WPEWwX36Onzt6HM3NBAbG+0YjwwsPA5JOvwi1WbxT3+SNdzq2SAThSnYCTXZRkRj8IWSFJ5Hb51SFtzZsMu24UcRC5Yvm9K/wHdQxrWqHwOfAb6kxYZ3eFKEb2sVjznAKYu5lCzZPCwWzsGIHgpFQYG7vEGk9G3wCjqDERxN0bjD/xlcBFp180bW46F20+LlBHFGNH6vVwPbTaQIltt6THcZ4yOw9j6LNHRg3Q9OE8jE8Hprx/Y/3cvgCzjygDDPgpEt27CeYBhy+wA6cnWvLDu+PHcn5BQc186mVqOCwIHFpYOfKRuuJP6yZmSjWgsgVwKGRLx+CrTlTF71qkzudxWNRbb8PsIt0J59DqlhoFCB6ns4T//p9Pnmbu4HCf136Oh2HRT9wBr/ga0lC74m473VEAVB6Y2HgRZDHktiqQggJRY+HbcmaRnMFT+FaIbCa4XEJvbOG4jUoaAPWRLtvSq8FnJg3eb0ejXPmJA1+Ze8bYK1xrhOwSwNfdB9huzLFjJNj9ID9ebHw9QzvkDIcMZhfxjsszEi22d4sGksb8Ylvw9G5Q9GH1HPcnbLv3FiyN3iXgm+gaNQEr01kL3gXoXXojinK/WMysnwnEe3DB/mn5ldRxHiMkVnHB2HN4SuZLvUDl8znifXGWUtrKPx22StcQpn72KQWnnwzrXDhT/biB6dfrjB5ywczQ+JF9a9zcYAwemmTgP7xkpqMT6Ol8IBvwHDtyhe8RJEQ/0uhBbCDp34bBMd+POPzoQcmVWe1BweyJbIVx6EjNPh9wSO4dDjedn8649QIoiP6d6ol6L/luc2wg/MUW3icJtqTue6nhH575jD8GXv7UEdZya9G9ePt1n+tZE9XkefnhGxzu3XI1RgLLzM3JdrTpMOObFcFWeTR/8QPMCzID7Su3NjZC590xeXrVwO3DAm3W8ePe86bDdX2gueI6l9QLDaDhajM1sWWlkwHfveacNjdscNcPt7vTb+2FMkvU9ycrnMV9E8Cbmjn0vn4eG29pC9frEWjHMVzc3cWG/T5uEMhuobUkeSpCBsKU+kbmWcRd0gAOXZZQbMQtn289DP6up+7qqYlv8xADU7QQDmbrwrceTmWtlN0Nkqf5w8d4o0tgxzcHAg+7GbD6G8eaEQ4a0bqH080ieCH4upoLgXbH+aLHUgByx/1h37/i8pGRcw97Txipruo3MN/uGwTejpyQ+a3ZYD7ksIbeLl7QIts0ZQk4EbiT5Q9NFna0pmnHGNAd94MUK0DW4LmgAVQ/OTTA0THcitlFhcR/PNB2u6k4+4uv0BvP1Hl/4nDOvg3RPuCxJdO+XIYFjdkCc+/lYf09nkp++X5UOKYfSvebN+n4K5Uz+B69gAZ5fkpZpXf2H95hx2+rcM4rn0FJCz9kLOIIiE+d1/DqCQPGtNmXy8p34DPWNtTpO54uG5MguPJRsgA/spZZ1RBYx58oQHsOk3LwRti89Rv2K4iGn+oLBVjeiP3dv7W4wW5RhZN9pHk4bjnZt5cXFE80IItRHgeWBE6rVkF/w8GtuQ5N1+oO7H/thSxDoliT8nwmkMGiReLHTTkvD8dIG5OyQcz0H91suTyD15cYIpao95SEL0eH5yV0SXObP9bze5gZfB0/BU3kzVLyi7lvwKtIDHoQ1cja5dm3AGFo2XSfvEwgJjcYwd54ZRRbzgcs7i52tFXvUPTC4fDH98E9+Ur4D59nRax1OP9ikyZ6Q4ZPk4sXaOwbEc3v72zx6aAI0PoeHerzOOfLHv1k4CLlQZaTkoKtsZNHKDmjSd3jseuoGLFGI9blgusn2PHPFQU6PH1vV6LU4dofXa0qNfReLnaNgnVLbFQ59Oz7DjtSHJWs2jc6lPxgg/2z8QgZF+QGrvMVF19F7LrF+S4wae5rLWaIOvY7xAIkrxXYYD0OfIFUBH/3c9ttPDCLgESwKESRoiA9pi+fjwK819oXW5/gEs7K7xeBqztV5L2jatrDIY3AmRc5NU+JPewO+08C4Xt+IgWcamtU+TaCz0LcIhXJt5I6Rr/A7y7ZYttd6vI1xgICg6tQHPwOn3KRFb5AbSNdyG5H1XJxIYJKYkkCxurv27Gtv/Zm+26Ff/FndynkQO2sy3l93xKgxmHtTypeZxpGF4uLxLAk+CpvFIH9loAFOtc1YzlqhJksBrMY3HUYxe/i3+ctunkoAJbHlHr3W5P+i1/szo60Knq9W/VBDIWZtBgdb9thWuM30EPLonaTN+X8cgcTGJESYcOCVsqgJy5aheIvUd73Ll3ik/lPr2BHMO6cgu/lBS2jP9Jj/XU4F8tvAoV0Z6LsysOSmY43QuHcoT++Yc29c4z+6aFNGp9LLp0lT/Fr7U3tlZ8v63gBs9z7hFayn26NU5JoX95/sUu8ho+/wwWqq/6lKH3jlNV9masfNXcRyPxdyoOKm3DFVxx8k7W/bh39gFr9VOobYFd+nbMm//Eh9JjlpZyXzTUDbohPiCn7gnNrXI+2qHCDfXafwCestx8YMWVHMXmaKZ/YpQC7cwax85oO4ZydgA7/9H456+KwbOQlg9eD7Kx82xqkbj2Xeh/bEQFetyH3TKmHibdc8X5ST8PKt3LQ9dCibuVmIfNvgwTw4ciwG2sUMJIprZo8SI1U3NhgK+AxA/Dxq6gPtGe36kXnb35gN3X9gb1jwYTgzhJsf82cj+NGgcCzbzskrvyEXSuVATOD+qo/5oF+nWsBzN1UICkN1nPQlS+Dm/lmaCcLx/RXubyWrx4c0Obt/kruxLcWrnyMbGjzLGfsnxp4OF8EsljH3bBsGkyg58ATNrOfFs4GpC/54WYqtk4S7malVCr4uPQ+rlY9v+ix4MHi7H0wClvPWvazn8N7ebxhz3vE3TK/cQsNpbthR3SWbuhfTqBF8bNAvNnHfFZy2AC8u9t49YO63Y59Fnguvxtqu3eTL0+xtuFjY1EiimLbLfMlX9S0+LQ0+x2nP373AQUIj6jfWNbAzkdqw9WP+ufPDBmbHdAbfUbNM1X41wMvD24/UkvdJ31yVtXRS131MUbi7s3ZJtMrTUG1RgMzcsDKFxc4lpZLWCU9Qy4cdBkeqvxK/WjRLfZcgh9o3uYNQbSI4Gs9KxEsa6p8R2gccjEfc7h5wQJnj2NXzgsKAngKihAHHwsN30w+VopYfJ4ICs82XIgyFGDZr7XSX9G7XDZlLEE+jw/U3iw5pP3h8YLn7Tal+O0G6a+pbQbdr73FdHQzMG5vnQrl5l1j9JJUPhnxKQOrH4BdPbxyOrgDUj5R9ca4z41yqV8vBhXXftJDKrjl780UHa74SPfjxSq3AXERFLYXQg/C9ppu/8b/z//55tOUTn/6zy/TEuOYt9aqJxrwPhgl1l9BZy3v186DX8l40VD4OGlTBbUKXKLHNIogAWPjhT9wcsGE3kYRD7M4Lxe4+iPY6bs05YDbl7/5Rtf7Bx+ugJfKId/jADc9J+S5JfDPL/TMhJZjk4uFRiXpgH7zoKdiffr1kAzuAb2mTutmsTM+cNsOMtJWvbrM6haBioonakVI4+O+1BE0wq+GD4/zCJa3f/vAr6oZNC8+TzCLnf8DNUSYeq9339FvfEDQL48l9dSZW2MjnlTQxu+KOlt46VZ9+lL76CPjQj3nfPnVNw8EzW4m0u5uhVKjdzE8VwARmaZlyJ57+QLPOdvTP3xaNj+jh+rxlaOdzh8lO8W3BIaPNqKmom5LuuI9mM7aFgkxqjk9ZFcTSlseU3wk+1CaZ/+iobB8k4m+Jj544mEBK35RQz1O5Xq9DnXzWiEahixcVF+6wL4ZWmoOatP9xWd4PjXSqve6bsIXJ4Yfj5Volst3OgX3vAa5ea2R5L2v4bgBNwbtsaixZ5zH8k9PQueMRhptj304H7urAD97B1ODmWPKRSVYoJmSGe8TRSjHLQIepO5UI0Ut1sbFZ1uF9UYt0e7Ybyw2f2dTK2SSofuNR+mcydcavk75CwfZWjcpGAYGbttiwE4wL3y0CZVA9Y4ItoUShuM570244iMR+uuzG26j3cLegyP1KyMceIDMWHOdo/rnp4ClmZcarv4Amj3jxwlKGQLYPETY9+qoVOPp1UOePJc1Xv/h/yxr/kWskWg7Scr/9CCobIfejV0SjjGLbW2X/hii929Sci/vE231DxDTX+eQ9+dTAXOuBdiUB6Fjz+AdQ8lgb5xm7wsYz+VHANf+PBHtMejdHHwvGfQ26pUa7Au6Zby/BFjH80T3tnAMJ8ffB/B+fh5xdYjbbuqNLFH357nBPvgewdisvcLW+YvE1d9j9ant//xnHMI6GmYvu4hw9bv++FT4eeq8+ufPRu0pC9d460AVamcc7h8gnP780nU+ELivc/DT+0GEQuxJ//xK9uyuqtrrpz0NVz5EtvJXUL/Fr8cHUR3D5Xp3EHyVd0o939sAevOJDdLEBPRwTZ4dM7s2gluyGVD8utXdYvsTBHb7+GD9Lz4fj7tRtT7WDjvreh25KP1ApDxqGswC4IvfQwTRN3UJo8GhXK8nUNEBQNL29C1n445smG7UAvURN6ytMwwvGA7nBwLOmvljmT7C1V/H+70ihk9LCRqg+afj6mc21j9+a42bhEgjJCUF93pU5RfziJDqjTULXaJDJmzv2JXPrTXfD98Cgspx0DZ5tbx/TvsRStE2xKb1HNJPVds97AnqsXPUs5D3a++Ik8F6+udXbIU9a+Gf/3UoqcrpMRd/sDzzlkbbfjNIVcQK7SzUKvpVyi/94ydqmugA/9MP+ux7MHxGFySkwLK2/ckX/vws6t4jBtjYXirYv8QIm8hrytnbf2x4c7uQLLpopjMYoA4VXQEUh8um/Kdvjc3o0j//ku9QkKu2/+yoa/W/crIiFsP3dxjRliC//KH5OILVPyXp97rmiDbHCgjbgqC873i5bKKPA2t1o+No9dsW/zt7GkE1XP3Aa8hf81WC2SlY99CRa8ki5+hoyd45YDclF8DFvM/+8jU42h7tcHb8QwCuJOrILjYjPrfz8aPt46uHRKGE1gyYLMDkMdY02hElnYwdG+GH3Y/UYjuHs99Ta4C3nM/kl4lWuL2Veq5tSL7gwHK/gBvsksP21Oxwua6Hf/H7j0+erhVP5/Y2CJCnO4Na38nsdksfJvCztzF13oYOtrlX2fCeDBLdOweXM6iGEMblbcJ//sbqj8rQekn+P3/iN29U759fayimNPADIDn40z9yOmQDU/OUQNd8E7RJvp4l1az5Qd3NdjhsJCeU6s3xovUvKaIWz6BFwipBcH+DATW/zAFs/5UF+FEcGc3nEPHZ2d4LeM6XPRLedVvO+OIkkAQLo65B7FKaZ+MC1bu7W/1Gt1vq7bmBPD8KaJfwE5i9fWNr7andYYt/KOfOqaiAv60otYtCXeMXEdQ6TUJsa2LEF+gccy2kxkQPbULBjyhdAV1ixtTjwBymPz5i+Fhf40cUUmNIC23Nl/35WSk7GX0Lh3ZvUW+aP2AabjCHn932iw2W69YS15oE4/I+YVOPVL6EorQAYwn3dH/Z2qFodj8Etli+YedZS+U7G0QPnDejT3VeP0LOWqUGThW42PHeSkieB4/BOjEhauWhHpbYOSYwZ4mAEe2+A5vzMIcD/e0Jt/28mwMDCiA6Sl+0YMEpt46/9yDfFhOSyTiA2Rm6Hp6FSsXR8F0sUkVyAeavznGQ59t0xacKtAwoSFz11/zd6AI0dnaDzfplDqO+UWT4PVEfvc3vOx3X/JMaCbWCDfVphPwvvt4EPSHaeNBSruw/2b/8WngaH2C+kbcAXY9dkNiYUTcvZ00Ar3sI/vkV/IYGHaZyYxL5zkowOAuAUPdnEYlb+hxIvb03//IdzpofZKSecvX6PXprvi1Kp7KeLnAHzk/0fuUna57i0+XPPyfaRThy+kpZrhn6+4pg1//AOJd6ImswiP7xi8/ZlPI/P42anwMsZ2EvNwA9XwDbu2c4jPLJkDVtOqlIlbf9wG+3cvl7P2g3PqWU/fHRUryudQ2r28DOilmDlW8iqciScLn2lgdXvkyLyBXTkVu0AuETXcg0sTdftvddDtb8MKIrXx+rWU3gYggyxn986up8f3CniRbN9iffYis/hPHxc6G31LJL8c9/wsCPsXdnAMxeFkv//B2rqx8ln7ZuDJsnR0QY6xH81FROgHLAhOLk+7Fm9qxU4KFsomkGxmH5ZY8cije3RZqrNBaBzjH7//YUbP/3ngLWXGKK3+Z3mE8n5gHt5LyorlSsXK6j48Hdee3PeWOnjjcPZ4Tap3WoJfRPzgNV06HqYUiDeGdYjOuoAN/EErFVh1O3fl6gAbXYYxReJMDq7oOgGtYV1l1zAnw8XHLwqaO1luzPAkvqzh6ktn1f+8NanD22lxE8kjtDm1h8DktesUAb1OpEfSznJW9+KlJP0vA77ML2mNLepgvQ1Cyn8ek2Wjy/pR7EGdrQYLwa6aSIiQqLqujR7hgbA8/2hw8QBK0mG7M6p3wfhzoMn+c9todfFM6n5PsB2klFiI2tV44V+iJohk5Dg0w9hjO3QhV2SmogqcazxfSXJcC6vNX/nmfLXlyCSZMY1N2aIWBfOU605640kaJtRc7251KHh5OTo61yzf69T5UsMabBQLuQ3X9KBA1pd6H66Inp3FlfBvNNp1KsaSWYpfJaqLeXlGP31pUDl1r9AnPvrmJvdMaSTWiXA356HfHeedbpvIBFVOqNK6CzcqeAaecLhEFYR/SgvHM+f4ZDAuugligKLzmfL8PgwSgsbnR/+xUDbx6IwGaOPZqu4z/iXnXAtaeQ9Nm2CHneyQH8qq1NWJ3ZIU/dJoB/82H/vgTDbtm+RQCkk4b9Vm27cVO5NUzl7IvRcC7D6YRTDw7ydo+EGz9Zy3c5JOApox+B4iYuufwSVIDY60697btNp2z//sBUCY6rYr+VY7uREXxnbYnAkO6GuW70UXYoCmhEgRDS8RBncK/fWmzG9204ue2tAU+7D3D5ktJuFuoLhOPNPmBz3rsle6/7qK3d80idIefhrOy+F9jp75na16S2qMH6SgX9Y6JGNkvdfMJpAD+3YqDmS01D/pWvCUgqUyYZm0nKI6zbMFReB4w1DYDPKTc8yCpIEe/Mfccuy9VTv6ckQw9v7R+MH10Pr1abkW7MDb69PHYfWF2BRhK8zcF2Fr8S/LBDj33P1Dt+i/AI7VCfsaWob8D2sWTCfoYJ1qPODvnueyzUqDZPZBaG/m89RhC/pB3ZKmsPo3k2881ePgU0ZMWVL/nZ9ZRmTjwahuCRzlEi9zCbkYqNer8M9MhvNjim588EM75Y0/NUJCC4JRUN6GayWOaVAUyC6INe79QKqTylMugs8YiWo2OFy+veMO1xIjFZrlfNIsZEIDympw9267PVsSM7vCCXZgV1LDrzsVB+AXyafoJUt7MB1V+2AHfWp8MX1rF0LvQWaTfrIhFK6bmT6HfOtK+8j6gnZCyl+7zR4f6dtXjvRlG6SJdJBnqQvfFpKNWORPhoA8MWPWy4xS/lUq2ocN4NMY2GWg2JbRId1Dc1R3Lcjxb1noIJB6s4oZ2Qv8HXyWijutkHkG2c1wN7bGOireuNhoW/Hybbr0yVVEjC4RUO3Tw43wzsTWfBa7zguyNDvbpUQCfab1N38+ctLKqVCjMO39ahY/ssamFB9Qpn2VYN50NcO3B4SzdqidIWsNtVH7WMPA0k1EVnLRk2PXiwEgfJYXrnDN0eNpRoVBDZkUrOHsOEYBZ4ylrLe8un1AY/8Hg3DbVP39aadxdJBhemVuR7ukYDL3URQWP31bFjNjn45M3n8zefCT8dnx3PO+ZpeuhhmgzzYFVr/IF7azSJcoqWgWmZWUF5cx6ofb3L1hIanQPF0DLW9+eCORXyHvJ+80WqeV8453u5gMm088i7fR86Ph0TEcSCu6Nm+IwAGV07h28ZdlgfBhZyUqoZLKYyotH22pf0hCdP1W+Li1Fkniyuir0M/+an2+qbYSbXgwRK86fRQ9sWw7/xvj/hhhDh6qbskBo9fMrRD1nCOeTzTCIRBr4Isbc9oHS0/UmH8+mn4/07ZMPUwpjAvPE6GofJDoxaFtTKJfwMNGDfIeWnKP/BzWvrUl8UKv6N9sJLoS9yxrpTbsBoAUFQ+4o8qBdlZkhMkAnqQc0dHM7I4FIffBfVkOsPtq7E73hkOo4aFXyL+lB+8CU1Kg++Al2l7rjuqeIwkiCsrieism9YLol27eGyoTKBbVCHvPL2CKz4seK/3y0X8vnB8+mS4oDhc/kOhV0L3yngZFbeCyfyyGTILWbg2zo/2Ve+JCCr2IyNwjSHOfIPDpCrhpNhNlwuxZ/kBbcK/OHy2u46Emifdt1N+qEoTjYhFepWgOHJ22NX2QPOTsnyU+ubnBO5vVQWC4yjA8YpPdDoNqkhf2Ys1r67tCfCiNLy67a3Fvx8UCHWnjNrzm9+AAeznzCun/tuOeStra54gl2t3YDxbz6ueIqR4oF0ifDVATvTSrH/PjsDl44bWfVPhYijNZ7NliBW8BV+AlxT8R5y6Nwq6NuXCNfOQwAkMs8OlOvAopam7TjTX6EADCuSySdMN5xwU1Vh5j2+2A4Hl/P6FkWwIuEe69trk7LMEAL4mr4F6m5C2vHPNDOtuZkbpFx5M/Tn2vFgKe8n6ozFPp1trJgAlu+JwPC+5eNRanswbsAem+OnS5lHmwbCWjwQlVVzOpmCV8M8ak1qx0sQijBSKkiN7xu7GuTg0x8/C1j5Cdqy8cXZ+ZF9gDh9FHzSvgKgY+BLcGObmCL39ALst90ycFCaGrs3tu0Wcr9KMN5MLracUSt5qcMIStNzxQ/xAOaZ2JJ6tGCM43b+WHwbEBWkaaoQDf/kkm2PgQrucr/De+VFOCFtk2vVxp9wUJdvi/zFL3TzBLRxFFCO41orHD8Pb4xO6cPiJzwF8Py6AHqPD+dhfoYvpq3Pj8/iZweYncYNVKkNKYpHHs67J1NhwPYneomDi/WHb3AyWwEbSiGD6aoc1+8TXtg1t1Y5nx/WB2KsSTQM3Ws5HeLcAelpnGkgHOZ0PiqNo0XFvEXSkKfW9kjhCyTT1kMSu53SnWk8dO1sshL7MUUdn+dnrmRBoKDX2/FDXrrXCObBPiAMUwA+r+u0gHeqcCS4bcNnn1ktNGzJI217oxZp+lcEy7c80QNrMkBDYdMC5YRs8lODdU/NeVahSBOffLYHki4K4wXcmvKP3lhaAFYorffHTxFnrxAs0ulegNe4W6jxxwcCIWjhw7Ivfz9zXnkHBPa7R4u2UUqGWTwMBTwa3QU9//hg5HU2TOb4i726dayRVlMOXzT+IR4deLcAX4fQrGRGNOWdg/EPv5bKvWD/Y9iApxrsAYqCHJHW2oRLwDUTDNlFw1hpznwODej84RUSFOqnu9P18oPDW7xR96bhjny36QKXUL3gwKEQTPJrlOEYDCccRb5ojbv7qEJfFjNqD7fEWqT2egHGu9YpGgTfYnL3LuCUnRHa4QWk0zyn+d/1GAlXt2T6t6jhz3dF9D1dx47ekp7A0k4O2Kz1MGSm0ejaoPtbbLyvaHgeDm4P7dCcieKute20w6b6+zyyiYt5IPHwsME56wd67Py+G1d+BA7PY073Q1l08+s+LzBM6ZYixSvLWSqPBVj5HdVXPOGnBPzg45N5+DBcl+5j7mAFztbLQruQhuWut98MtnN0pWdF6fjoPtQGGkoSk+3Kb+ZWCRA0F+gTKKRjOgF4lmFVZVvsR0kwbH+bOAHrfEQ7JdlyRk5VBld+/9/1Rl9XEW5O4h1H5sbg8+jecrB9r55Z/XlYjHZmDi0FPbAZLg4fd/deBcfP5YLD60kbltP1+4Ee9co1Hr7BKP+iQkFz4VL/WlUdY78yAzUdX9hifA/4l0wMoA2TaPYuzJDdH/sRfF8xJCDe+t3Kd4jWWdIR8dF3ATtKvx6s+IetoVW6byFJH/hppIjiMN+UjE1fCZSv9Ia27zDuyA/IDAJzXVsUHoYZ15EDz+lsUd+9mOXnt9UYOOzcF/bDct3D7qsqXMeb/uH1AtOmgqtexnbU6tZOy6waXjZpiG1h/1v1iiSDV/VZqBemG8Aun+nzD38F9+RwyXu5JmRBtsN74dcA1m4Y0mbjLaNFW07pwk1VhluLJNhR5mPJpEuqQuTTmkgDc61t3KIeEPbb0EMM+o4ZO6+Cye3n4X1to4EoU6+CKmifVH8bSchHh+fwtxHENS/QDCtfC7SCRCL94xNzFRoEcjOYsT7SNh13LS9AcUMR4c6opeP9sV93QykII1NuAbkMhQf/9Fh00seQemOqg8s82hizFwXc+0YtwDtjRw9UkjpeKEMAc5qrZNs+lm6ZxVj6t34OVtCXI3e6C0gmq6F2vOmtsc5JpM6ZzvDh7XvdzgSWAJ8mVMkmfofD3GkRAaEBntR16nv5ztDsQZUc17oH1xmwdf6DvQILjLMf6MiEbhkoyhfEh9Fif/G1gca70nGkWm3KGVNy6J91GxsxeQ1LoV8j2PoPRgNP90NWN8cRgpfwRNCt9mDrnAXzD2/pgU0I8Jnkonp9w2rFLzekidS9VHpyXfT9GD2gzcMh8L6bMXbf9jww9o4kFZbPCeOXvBkY9FsBmKHqodHZ7jjLEAvgur5xJC5SyZT5VIBm89n9W28U7L815MbJx9idupLZEW/BWhURSUL4LGllS0RN7dHHnnnd8cVt7QacjTDEFt/chun8/vzAYPA9gWZ4BezyvAcwJ48ESUq/K6cn0mJ4twIX75VIBct4eORaMXBI+G1WhllnSQVXvkrYIP+HpDPZcgiIwvADWSQEVZaGCELQxmRHOi0hog01qKfvU/oFalPn/sN3ijtazMXPRtO9144zR6MlRaG5MKbZNQRz1zK2nDUJ4reM8TYv4t0BIRzP+Bhxf00p5zNaiHZhFL6snYWlur2COjlo0UlERnoYTVkCRQ0qbJMkYYNyUK+g+g4CfCHqwOi6MwrYe5cEZ1iVrDXRvjqYd2KFDbF7gaULjVgrHkWC+fn+8jMOIaBK3OD4Np6sxWOJDq/BPcX5EL0Y5fOlvnZvN5TboLNYF6bJPy+xVOcJaPkZBrUcTB9HwdmZSKvPMeR9GGn51W2JkAl3gLxOiI6aHNcrvh8yZWjMLuxj2fbpMNkJXB9NHJUnOa2XRxoi6Bm7LFQUvwBkyYYM0s8jDoWpE33qEf8FtQ96YGO2ZsCOXm+CLX960+U+rQYR77D/vleICseC4dZiBH6ZuR6987Jp8daf9jj2oiQvFmsJPPsIBXot//sFrSRphE/1fA3Fl/OYmDvXOuT6jaMpYW3n4qEBCfkxMNd/sM/83/E//5oT9S3ppuguuK/XMCRkTepVKEcBEF9wwtX3r2wV+L/+eT6KTvNlSumpPvJdeDDA5o19+TMhJAPdfX5yP4At3ngS7wuIYmmdVr4BAn69Pfk/r9KyQiMwF5tgw/l0NVoFUkBStYfIfeSz9e8P2PyJkEokO52HhayaQKsSHb41vPEaF7b95IW7+FK2bBQlArn+olevMp8yb5DBSMg3tsTYA2joyli58e+e64+1TOu101woo9za+B1Y3EFtIEISwoZYDgA5D4nv9iE+dv0lZWT+uknQzptky5NpfxOVAZqPRo/iwT6mq2W7DXz5cMDm52n4B8bfEHB+s91v+9tQGmiOKU0o53yB3lboqnwew8ppO0DLLjnDWkY5NuJnMHG+aAIZwzSyOD8icq+pMA5OH54vQE2o7GWa8tEzbMeFMGG2SzPgWEOKz+7F8uk2D/19XEPqH1C96sS7w8gKShx8q3trNpgiAP+d25FxE912hd5eAEvuSpHj/Bgp+TQmgXJlg01/J+a8TX3zr2jzI3p61CbESsH3d1/8mrlzasKb4dxx4EQTo/tMvwJF3ndRlS0HH31GPYZ1Impo/yhii5ZVP259ABHz/cuYdv4R4KWXe6zzPI21cynAk1eu4W/e9xN9imCG484PQtU6NWy9xJeT+iure/QHAAD//6SdydaCOBCFH4iFMqZYMokMShAEZSeICorKkAB5+j7497J3vfSgR6bcqvsVVPXb4oVIggUHdrtgQx2D+WxMdkkL4Xgf6XbXmN16Xl2OoA2rLdbWqz4fw/lu/bZjOzyczO5CxRYWPcBYVnwkH/rGAtUMU+ztTNkflusFTRkucxvXAxsPsmwrVO/eix7ezd4Th/uPJ1GH2wo5O3e6p56Uj4ktX9LZ66Lm7V9+6mTl2uz36dmC4XUS8GZ59nnsPEeQl3yc3pLDt54rzQvhQwNE3aWX/Niktwj98uHQ731GLZdoyCLfA0754xDPp6frAOcO5I8f9wnuHZR9RgsHB/ttTjm3/fzxgdsSb9iDPxDpm4RHalSiaQ6VbOyg2s0htf0Lxwh3kcsfn8Va1jb+rEzvM9gFi37xv+vt81YDJKp7rFVPstxvFw20PMFUU+Vj3i36hVS9s7FxsOtlNsWmgSYXPbp5v57dr16AlOJmUdPx6nr8+Vs1vqXBXTYgpp2KR6RQG/Dunbc+25YvA7ASnnAqP0/5bC3vfC1+i7oGsWKhW6EILfw8uL0Nt5va1TlSJqmQArnvDETMjXZXF/0NaLZd1ezArjYI+aj8xS/y3EuhIk3zE2+7Y14T7jIVcNKBBVJZNeYoNbzy4w//xofjZvdBeSptfjW6uncH20Dm+3zAevh7Z8MuSiV5h1FAFv896Gyx9zvLxnG4fnQtWl3PUExNQ43OU32SpLkDI23e1JVfHluX96wH03RdapavR9dbcViBle8nMlSV0gnZXHtqQNwm0N5Bb/70H/3y9794/CX5CL5Z8ThQX6uYiY2nwMJn6MJb8wk/H9YvH8YeXe3NT2ydP8DelwfdfzSN/dVTFr2nO5sX0Vhv9UiVdR8W//X1xyR1PfQpg5iafp3kv2ngSHH2EKiG2uadr18sJZFChTqy2Oejv8mfCotXOrbwQ13yZSkAXjpdsGOwDjH7uLnDWhVlbCWFY07T+y0sbQckbMqxjD7XRAl+PPJXr/InBDcFLff7Lz7ka1hmf8emJZN7NTmmuOST6knW2JLPYiam8buFTXSYsfm+fes5wZz388c0eG8nf+HTDjBF0OnGACMX9tnYqNUUZNjO/Js/PT1lhq/cF/hsZOLC270j4lxK6Ca7jDX73MX5d/zU2V6/rH8VWgQH/XGm+4thd6J9lQ1l8Rf/bt+noaVuZaXDgWFdEEtj+lFawu1+55u1P17dpdoe//ZH3GOwfn6RNEfEmz1tzgKIsYmIGH7jepIHVUGzL52pmVh+J6LNo1AnxXJo+P5o5sSdGAetN1gB8tEjp2BfS7h47Ei+jTrX83CcU/U+FneihOLDb7VvX6BwrEa64a424n/re9m+8E9gM3eqQH3mkhxwmFfQLI/oDEu9D7vZN63H7WO+w0zvEt368Ion99vcUTRbB2xUV2yOuqiVqjPUPuErZHcjMjLuj49oPTVifkjMo5qn1hWnZeGbw2afVqpp+i4NjDJgZO2ZCmjZsKJ2knz9WUEXBZJYmPGGSlxNcEltqNNymW2QrRm7aE4AWy1j1E4q0xeW36PFT2P3KoTdjz8gj0pHIvJ4w1jG3z+onCoxkBY9n7XmCrDkf+RiRBKapXp/ASrIJ2zIyZT/5QdZ6u2w1h3AXPhdgbLjHQIpK4/+Uv901MWPYas/evkwtt4RCd4Y4fQd1+bwrtcRkGInYE3GaTxOa0VA7uu9Juuqbs1xXl2Wns2hiINSw/78ldoQpLnZUYe/fOIel4mFfsdrybyWz7VljfCyGo+6fflhU4JzB2Qh68lcibX/pwdeaVnUS44b/+evAVZrnibhOHdjJec7uKz2BTYXv0Ca4hJC730TouzMzF94oAT5e7sJQMZKzpKItUCP8S3oK48zf/quRvdQD37rc3430wja/aKR3GiThR8aimqTc4Xd/hAwau2cO0Q9lrBfZbhja/OqgHKNeupy2EGiGgIg0RAQ9nlLZN3iz9WFD2ArfI3+4I2rCv30sPEvJZtq1SLwTlIzmHfY92kFFQGssVswmd49nzs5DeEqF0s48J38jydKIwDVlnxkkr7o8tN/ImbDpmYI8QpaJYaIN8lJ63hpPF/gx9+cbUjZUBZzAHuJCNS8cuzPD4IpnWWsZaLmr4OYb6BYrRKCKlZ380HQnnB7N5janI7ihrtMJdjcu6JLvc/88T601MfogX6l7sej0M5ZvQgzvkNMg1j4f7MPROG/nykoT9KDrPz26o9hUxnQrAaPaliu/Xfjrp4wRP2T3hSvq5mTvQGO5balRnaM63lpng2ifumpFxobNKkbiYPN3ZgDxsCPx9TuBQizjMeOfTN88fSeL1DwyYDx3G86vrUzG9pTU9Cd3xy7seJvPRjHo0lLU8/QtDENG7CeuwG3rz7dGGcQgY7tVYDaTKuXeWuasjGDIFBPkVbP7H50wGmfEc3rRI9FrtB38PrKd4oFnsZs1NAFjrnyCVZKnOQjueZHeGyRQsQV/63nuQpBTap5i7WPOtRD88xK8IznCrsKWbPBjLwITsKjDqQsVhBtvz2Br+adiKi/Hmzu98UM0X4rBqDYpr/+2jsCe/9u0dARlK5/3XgBSBdcCVeHd3P6nLoetquLG0B01mLxTiwDkT7pKL4/3/k0fpoQRReFp5aRNGx65zOAUlSMGt3z5ff2EM9gZX4ccMfmjcaj8/hAmLY7vF3xbjfLLK7gSZkfTFIbmqzZRD106tkmKlqPaDyLzyfcLLqhAR/6+eC+3BYddCGhThfheAxp6cD+ey5ouvM4n1jHhw0dpBHVz24azwK+eeD0wYCDI526r/dtKlCzQ4p3lkMYGQdXQbdIE7D9bPVcDD5GAcKLpnjnX1tETrdtBWkXadi6hdt43Lk4VcIzv/TePUvxWPGnHr2+6E7a8JjlY5ELLZSfq0NN5w4xa7gRwHuYHA5C8ck+TJoC0KXPgPfjXs9F4WxoqJ4vOsVsyZEfqhCAtRa+2OiEczdeAxaidLgaOKgrVs/+d5ZQemtaijVz382HTVNCsPlkGHPGOWd2ZRfQ5+KG+kXNs+l2QjNa7ke8NSrZnBV+4NBeSj80cNmr/gRUq8A4pia26sMVfZRU3MFpnT6wc+DKek5LWVGW60PWUzjXvWEp9996Cti4SXJWvVegBC/KSLf8H7uuXA32koyDWbC9fB0OPoExvCPsofETk6eBJHBZy7CtdXonXqKwAkk8jNiy02vO8kCPgDq6Tp1D3/nTWp9G8G4SpX4Lkz/eLCNd5Wh/pubL/cadAoUBvPLYB+JJ+LL5xY+F+qUu4F3UMjago+zA8pms0iNfz4V04VAcCQ7Fz9eVDbaU2XA4LO95rT6JP6rS1wFtmjA5nQbNZ8KlKOCqRiuyvmWTP7+bMYSJF89EIu+uHh9isTAUnwTX0CbxNN3xDEbClRh3nybvO3FXokWvcKp1j5rK1tyo2cXzsUFkPRa11bRTs691olFxb3ziztlZwcoFB+Lu/DSZZ9mWIglehber3Fj0a+SUZX+Juol7cxRvjg2kCA/UMFc7f7rvvbWCGhfRTcHx+StceuHg0ovw/lU7jD0eWqtwUSIG0tNW/W/GRa16cvsVdea9hdj2lFTAGeE1YJq8q2fzLB2h2TwF7MbabI5oF0SoGoYn1V4bjY3PlowoE4Bi/PFFk/zWGwngjg/H9cWf0v1Fgd/3987nk0+ZKAHc9wGHneJzMolRfyO040Yl6BXbNOlNWnPocEgcciNq1bXJtxUAlPWJbnmTMz/PPORUXe4fdJ/HojneUTfDa9/VhJWb1p/VWCNw5kqejOJI68m47T/IFksR6xV6sHl/vofweC29OTdx7w+C6MwwrXsvKOvsiyba5GtIdTZQb4yqenyddPLTc/Lw9BNjfclGaBNOx9rpW9Sje5Ilxc4DhZqf8lVP/GqtgPYPAAAA//+kXcm2sjyzviAH0qcY0ksnUUDEmdgCItIkQK7+LPb7Df/ZGe613DakUk9TSVW2k6mxxj+1GteBu3rY0sjPhGCINo8U5ovBUe9dnpO5FoVSji/xFeOX/6pm5ucHeNvukd5EU0nG4KE26FGMG2rsUjeZ9hAoYNuqSN1dAEVHta8GnsNhwtD1mMwF26awx+c3Neodz4ZhSF7qcA07bDVkX7Dn5AqQnL4zxaZiVsupVw9K0Tl+JPzsR7XmjwfUNKppyIwKUXF/cWCxWB0tu3tszj16WSC4ykL3tkHNcWqbGFLJ/5CJSQYTZ6gdpXU0A+ujOLIRb7oBrqUrrR62bs6W10+QzMcdDXhJDZaGoQ5NL50Q4aq5iLkXCnC4FHzEf9t9v2CvteAcnK//8tWI4RDDe97wEbPadV4jzXxkHixG9efJrabbpY7QRdhQ0vzsTbXgg75AhjUT+89cKmas8RHEfHmOOG7LV+Q7CwJ8peGIT1HiJEsD30Ux+8mlcWD2xToDtgNA+Qbb5iJW6/54gVZdOrLcXo45f+ZUQPX2uKH7c+EX/HTJb7BL3D31f3PChvhhlhDtYo7q6fFXse2jaBEvb5oIVad3MvMo11Dwq0Rsk8pcZ7uwBaISfLxvHDmZDk1nQPi++/hg785Vc0kfNVqoFOPs3pTmPMjVAeQ4f+J9MuyKURSzHPJ3YGMvgJh1tYEUJPmbC9WrL5gLAcMBK6+HqD3yKVv0RXSA2wrHaMtwZi6nynNBPiwW/sMvIhrFAvgxyNhoD9u+X/M9KHj+kSlTjYJF73YCff+o6a47FIyEX8GBZutX2CredbLEQl7/8YEVn6RkdqSjBVK4+xKpUhOTvDMz/be/L1Z2QTO2wxvio+UeLS/sBfPjRSUEj+ZKhOuVVlNzCiVl5UNYH4kVLBcvNyC09/uoTqm0nt7YvxDNtnsymNuaTX/8Y793n9TJ+qFfsi/RQOWrhMiC0Aasv71TwIPW4dMrOVaE95UY4vB9ILyge4H4/nGT+IeHBv0Uf/zNhwN7TJHQlsRcrPRnoaPOnWgkCXU10q63IAgsCRvyYFai8Nr4EO3EgvrnV1CNQebdVM/vBxwBmYvZ2l1SQFnv0sh5eAW7RZkCrM1Dek+GbzLvg7xUliTwMBbqpZiMfdOC0t+2BFPlgprsbaXw04YN1ZK2MQc8XzeoVzcjmQvRqBajesdq8dgWWHMFpWLU9luEDzJga+96Jqd7+qSq9dXG3gV9q+U+dhoyjYQn3EPQeg5380H9w9v9tmLoN6jLS1H2zZfIdWqaQvo95PDtUIIxw1nQHntHghuj8YonNWLUmCLoamlPLelDUDfxggGx6C9016BttWwtrYQ0qkUa78QcsdQUDGV53RRqKJgzh294WES+N640KpCJuGiTZfC6bFzquxunGoNb5cNkeBk1ltZKvuUzEODSrhPIXr+2n2ya12jgJQ1njxiKgVSqAaCaF8K/krlilzfJlI/QdkQ6FcTsbjp2kaKoC8b3PEX0ZpcLcoJhR01cWUhw7FaB143OONzkQj+QBj/++A7VC7GsxhJNPvRxkpMl3vnVbwc8AIuQtG+uxw/qQ/R9QdwV7ToP99BPT5dG8Pf+IQ5HxsqvCMBCH1NzmORg/IXKglhhFYTzQOiJ0hx8eO/OSTQ7Xm8u3nK8gn10mujyLsWiXvON6mtQ46jcVgHjb8eDiuF7JD/W8VXLT/EAH97AdP9RacXuevGCMVlyqll8HRD9O5VoTKacHpuuRovo8g/ldHpkVPceu4TbQyChms4BPXJLVUy3g+SgcWdGBN08GkyZOnVybt/p3/r0Q08OKfzg+Z+eWsKvYIHaaC9afPckINypD2E3ax9sipxkzm/jqPzxL2wIr6NJuDPfomrZtOQb5nWwhOQ8gakMacRTfE/m5dJY8FLMErvfq9GPRnYs0Z/eYlz0DMjzewLQ3lFLIEYTm+eiU9B0KFG0MXUZDckFDlAo3YxtE6+n7kiegmh+CA7yY1lMwpeL4GpL6C+e2USfn0XJX/aRiF547Cd6CS2gDPvUoURb8//hBpTjPzRaLIkN5i7cgNN5Dt49lF9AhsBP0V3lG/wPD3ax1CG9T4Ha9902mEihSYBOxhgNVJgLFohGC04xvzFWEr7oq7zzFdVbKrybWg3N+S4SIDp5Ibbmw9LPufHegHruEIE6D3r+1iBQzsHpiner/psEclfAN70GB8dsQHNv6ALctdsN/+m1Of3gEDovFKkTSH4iXPacAtEpCKOY3mZEpE34gNvSWP/4YEcs4QB6L1d4Z7hxsaz7G636MRKLm2lOu59Vwp2gK9WdAVXL6VPU0LndAWv2e5PU4lUSlNqyBSL5bY9Gl3s+IBufBvaypi/+4k89f7/niP8+KzY8LT+TLz/njIObt87+u/1SdHwlKTVei1xN3jEPUfFQC4xbYyzYJVdC0IftmbCEzxOabI8W5If6gcP43QXTtbmAUu2mJ1EOHyGZm6ZXwBLuFvay0Kq49fNgOb4I1udmYkNE3Rd82sSmoYJDtnjCqwXlKuXYUd5lxXbFsCAX0RfZ7pZDMV/Zj8CjiR2KhcLtWbuNaiWjuzsRatYHk0NJiKTvouKwPUgFPW0JQbkqRdF7JJa5eDo9IKxsBGrNb1qxzU2P/vhztOrzgFlt/IKPuD9SbfC0QNy81vjL1H00H5jZC07oN5DEnBvNs6kVc8WOLXSX+RFdapFVv95KY/hcryP5jonVi+LaN2kvDPtoPOA8mLXHpIHxeR4jaHekn4VFfsnnrzZR63k5mstdyHxIi1QnLOB0JHqmdEN6n0HEVUeVzW8XNfAJdTeCt0mL+i2mLxQEjvTPj/jTE7A4ly02H3Znrnz49af3selGLfrnh6z+DOG18NHPIuliOJ37PHoXYtkvRzPV1I+IjxSv/tBoxU8FZEtTIrk1nYAn7BkhEYw9+W3ETTVutzUHz/J7x1rSOn/8s4XNcT5QfdHO1ZfRTQax6K73dn8G4/jpSmB6SE+cpqclGJAZ+6ptnW/YEWnGFmWQORjtnEV8ZHgJF3q7FAXt9kAdy9v11OTvivLHv7XQGM2lABNA7L+AMgTbDCN6yU4kIY9+DNGKZ2RTgVJQyWhdMKoDJvLVmgvaf04P8Gpfo/tz/KrGop0WUO72leqeRMx5RPzw59dgo09ak03mnoMMtjw1jmOF2F++YNH5GImH93qG8rWbYPaddl2vN2Li/mhB9/0JGEejjRbRWk/uvx4KafnyHczKmyv/8BsXJxsjdkyRAbc6emLn3pTBZNNDDSw6HQn0G6vnji83g2ROdiu+P/ulATqhxWhKahP1hyZ6sRzge+2KbTmzi5mF3QBYv3i4M0KF9YY8+ko50hr7W9vqp/R4Wv7l4zBj92ph51aDOX/siarXv2DMdxEH+94QKY6Dnv0qmaUQ+2lEn+pzh7jUfXeACR6o5fWXSvzzY+Lu0tI1vthySbMG/Le+wSbSuurPb0C65DjYOjTUnL5hPkFONgb12O4T/PlB4p+/4K/5ghm8FqNVj2HHjefiJ7VuDSoHA3mT6yNZRu14hcrlEqqh51Kteq5GWpIecMwCjo1H6dHBIWtDeh3Pe3P9/pn6xyfs79Nks3Jxc7g/828k5XJqLufn7gWFbGTRcE/DYn67rIbZe+nU005m0erHteay6oP8Zjf9zBxdU4dQkiP1IR+KiT7HRTlu8ZNGxCyL0bgKV1D9s09mct0kU2DkGvrzAy+Xt8Zo+TQ5eIQ4wP7EM3PiiHtA3mLkEVv5yWzumQZrM6o//Et+ZLamPz5CpjUfTbR4lMqf/rZPv0vATtuGgHiQn4S9uTFgdTamENW7PBI2F1r8buOpQ15NvtTbBFYhJtuLpT4abqR7+3ZCP9u+vZQfyp6Ez4c3Gv/0rpBfPtRd43U681cXeZ5+JMgZ0mSqGk+BRQ3NP/xDi4QUTZ5gEslS707oH9+XBOrh8CQ4Re8m0QFMXAbY+xyV4l983FFXUy8W3YLGvu+gP72ic4uZrPwxRa1jGHhvGzhgdRpLf3qUdMWyNf/8A+X92fdk2d0X8+95QLgVCPUyygfkw08PuA8kj1Y/qWdfABfyOJSJWHwGNnfHZwcec8JInI1dPz38WkNxsPnR/Vg/k+ViuxNwTlzTnddIBQs4KQQ53jrYf+5QwbpvHANyj6seQ0Hwz58uH+GMI2cfFuihyBM0ryjHhpLf2bTmL/VOMkaDtP+tetG34E5SRub0+OtXP9WFeG+LRNDPCA0MmZ06vUxCetKn5vDHZ4W8+ETyZEE1W/FTQikOHtgqOhLM7UXwoU0hokfZytjAtrEEsZ9FVPs8v9XwPfAtIjdBorYvZGjZ520Mm2e9xxd8xCYzWXCDi5C75LPm28nfuwC9sXyIbGUyY0+0y0HYHc64MLhdRRKuWNBwnY/RXFlBv8aD9OcvR2LuqtXQoYLAqi+xC7QLZjJbC5qQfyPsDlrxz39Y1wvrzlD0kxJILRwWyYuqR6v0Q6c2vuKdlgLj+Oai9fllsO4Pqu/3XUE3NZ/B0/If1MRqXzHfPWVo7a0awTu8mEtYHUOYHsoTa+/J6nmliDlA7D5gfHHW2YKMfyESbV70n562Cn+B+6sSyF+9YfnOAgd/fNC43+8FPaZMQ8enb0ds5dPsZh4y1bl2q/8evoN+V9QTUq5KjvdT1puLMmcDepyVdyQHZWhOpOINOHtkG/Vp75kDz21r+LRHG7u1o5rDtTkC8Dcr+uefMxB2G1j9fyIdN5v+JxNRgirzLbw7j5o59tbt8I/fG2rh9LP2kDQ4f64nuh/9vBKrvHRlwc0C6im3dzK1phLDSxRe1C+WbfDHR9RrGr9IN2OZsdOUK4AfRMbB17KSceUnag7CNRIb/ElmpXY2oCWSSC+t2QRzmBcS+oaPFEfVQQvYmaQWsBYYEbRr3bOAm0J1jc+IRttLwR6KvCBey2V6/3llsOzft1wpBpHR/XVq+gl5jEO3HZTYn2KjEs+dJcA17mxyXvXAUpgmwOpf4rDGOuK3anxF26+R4FXv9uyrmzcgY/GMOClogyldZ3l6/m/AltfL/YjtlV/7QY2tcRn6Po6FEJo41XD4Uj795OPkiswxrwgvyzz7+zxlf7N6urNFPpl4btsADI+FrC0NEV1oOyArgyOh753Ihj99/pUPEnVa4NCk4/4Bap3buIBDGcycP0poc2SH1d+E/t/fr+5FaXxTQjZv5cBH+9/WpK7fBn/+7wJGFeNIDpgX8HvM53/fnwZ8WKLJOx5CdaO1Br6sbSKH1lwOsFsCRv74aP/gcgt+T6vEZujw/WRu8umvfkGEunsX698LfC6ZHP2Sq8TmT8dcOKrGnWoocxHnjMmk0g+6UEM4f5MhfgSlssYb+WHXTsip52MQOAdF0iI/zfm+nqFY60d/fL+Y/vhKWz91GnX3X7A8vloKV1tBhP30zJyEwbz96R9syPxYMPv+riG9v038VEYIhr3x6dDudMaEs7vKnFSTTmjlr2SThropnr/KFW6nQ4J35cKjP/8dTnVervkgqIb5MNZ//Bn/xRtZ/Wv1uqsyuvts2qRf8wUAUj+EPylZMNlzb0A4FVm03eVeP50RE+Avfl/J2TP/xa964VW6R9cuWHCwlJApYYhvO/JFJPs2BkxDdCDCI74VzdLwnLzWSyPlUejBdHxpqVpx2g1rn3Yu2KYsJTjV6jprbi8XpNqZvqT3qIqmbcT3g3vTfUisW0Wj/OSjSfj8JvjjT27kHNF0T4wXvFolxdaYf9AoyEUET+Nl4vskFxWZWF/LK35FcgALasVq2CDlx9VY59AY/OM7mnW1yGISGvzivjjAb9go2F3krTne6t8LrfkmWusz5rD68Sg3iEOQH4/9Yj1pBz45pH/x/p/fabW7J9W3QlnMtbh5wconIn4ZBrbWd4lyOIfsX/1qMoyX9eePUc/KZDRb8Vn5l693z7tczWkJEzx8zcPuys9oeZtzKDVZx9rvnBaLQq1Y3SDBx9bh/kmWROFvf3w0Ut/cBxGfGD6s/Jzu3UjvucA4aAilNwffqHBM2CVfQlUS3BLrcPgVi6v6qeLTosRrPbpi/vbtQ+CXR3IdnSlY/eUOPuGXkpk/JWiyIIE/P4riaCsXLWwN7q9+EanbijGmQGqgvUD2ZGjffDKMz4P/pz/xP/1AvIsC9wen0ZNfVwnb9E9D5ubbSK9IjgPBE14dWv1/7B9SuZimlONQUxbX6AFkTvr8fRggCPpn9LxtSEDVn1XD9kJKutZjq1FAY4dWPU93dloj5jxBU1jxMyKVs4k5VY2u/P/OFIj/+0xBYz5OhM/2WzTN1HWA/e4q3ZktxwZHUwBOp+RK97v4VU1n8agBI2FN7819nbESBzdYFn6gvssIGqGVCVgo29Pd7nmt5uMQR2hEeoKj3FSDGeS4AfejmNiTAhIwfxtvAPFxR8PkfimW2b7n0BbPM7X8MO4XzbwKsIvZN9rKVOlHVy4amH/LDofiUCWjyaSXcvOBYN+X3oyw0tbg+CwKai+1ZM4mm17gd+mLnFHCM7ZEjw36nnKK9dtzh/pzL0mgp1JD3TITzOmXNy5o6tBjm4xLQfqtEsPDjXVstnA05zjIH4BLUuKd1dfV0tHoCp/D9Ue2vv2ppumgK+qGoQ1R4mYspqqqNhBVzKLhvncQa/GtQVfZSOletCmb+DN6QZy1Dt11PW/O2lmTIDzrVyLJ3CcYcrvK4XfhQ7p31j4IvOweQPneHjR0hk3S90r2QuM2PEb5ib6LidvtOrRNNmQ9J3zt5+V7WoAT+QWbHGegkRL9gerL+CVKZ07F1Ln2Ac5ddqDm5ruOCJG+B+CkR0Dd9fN/72m9F78xrtREPwuRs2pfoR5TIFIdU7PeW/gBqXnWsH28T2ja/qYM0GevYNcMvtUUSmarcPl2nYJ3dIPl2Ag3tDuXEd7Tc52M0St4QHtWFqyh/JWwffBbUFpyO9I0OUtIkHgWjOEQ0ei+5dE8/4YMBtjxhL+cyoptg9ME5b7O8L16xtUsxN2C5otHsPUkbi9uiGwBj78n6mxnHDC3rDLobmeMnX6tIb/ZJVR0PdOj53jUTG7etgBOWiwEzg+7YNd0yNCRPgK8I4MesInTODhWzZW6at+tNf4mhq8u+DhMz4Qx467FUGnWlbq+zMxlSRSCLMuusOtummJQNBmgKc8mNnaXsaLD9+uAgXc3Iu2MfcE2+7UXk/X6EuHRfdHa0zRHj8p4YyOKKJutyOmEA2xcHOKG9cwxPz6kDZxwFD4CtHz8yVW35yrB2lNvg7kspQyU3jRxeH58ivn2cwxwDuKegCPU/bQ/ewpypjSlAR9wxUK9pdyGu49JnU+GGdvVsgJQfejffjWnvfPW1OtIAoz1YCrIQC85+FfFI47MCwkjn75Ewu+YUP95bhOiHycfuL0dR9v19TMXPydkZ6YaKYHyKebMeISo4U9bcnDvUT9vEzbAmBvnCF1lGpCfrkrK9I0tIiBdM0WUHgz1oUwWLlSzCYb2yg3QCvMLP7grXxBxHxvq5ZllWDuctESU7WVQD550o+enY6J5kxkxTMJQUGsLTrVsEtcCxyMGNvyzHyybd5xDFqCe8NtTYrJ2emcglbecGoq+DfpPQgb05DaIOhLsTfYcBAHSEhO8i08to59Mi+FDue3+5o9dMrxb3VHTUthRDwzGBsEOHag2xYOgofgklKTi2tNAqOhe1lvGHP66oN1mcKlj4bail28xIV893bA+bEgyX8feh7/nv8tC0s9314ohLfckWvR7ipgo3tP/4kXRn8F4VOoSPK2rIrTsRdZVhWMgdYctvA6PRFNw2T/gvr/N1NDqvlrG228DmB8fESw/xharGDN4acJIDSWwi6WR3A6CdjgRJWkntiiX16Su+QsnSXUy5+vzwMFt/mh0v1ehoh5mCtSxxlHbmV0kSrwzQdIaIt1Fj8qce67zQUmSF+k3m4WNT/62yMXgaHi/FXw2VZa0gDuae6rvF8bmuzwr0HdeQe1a9/vJOkkbwNfLiUz2czFpqKgc1Bf6JZupohV7BbyFzPv9iP1A+SSjFTktCHvVp8nAMsaU8rlOb1866t0EOSEt60ugrvikGvl+Cnb2axdOvqZjkyr7hEXnz2ud/eLTeKuKjIBVTmp/9p9RH/hiP6pN7yPnpAU0lXdWxYw+btAxzJ/Ybc6luZz0soHaqO80hU1XLAb+NUBd/kn/8Iy95X2NdPuG6RPGszktl62DPjfOpOHfevzmFFCZ0nd0yXQxoOmzc6GoFg4bn1LqqWwrAyQJL1OrqXzEVadjC+335OGgWKRisE4TqLRedOwk3KUi0nAIVUiDnAavYY9Gv6l9qH/TmVqf7t2Tu+07IA+/iHpj+0qGx1BEqLXSPeHc3baaNedugPl2vkQt5l2wHH+5gargvERM13Y9OzS+AOb40vHdyINkNiqrhYq5Do3RvkXLFemC6qSXJRI6LJvzSbjmSH7tOezw9rcYUlT5SHzKNXUHX0N8NNUpakNTo9oWO+Zw3s2AlNzYUVOuZ0aLzyEELc4rvB8OIyPt5xjC+n2wJh1/iITPUEBr/o343JPY9BaKKwizJuJs/Xx6LnIN1Ad88XXNX3PIezfUnqUFh6j6BeMjl1xIcTRHm/hq9YsjpRskUkipvx8kc7a2EKMrl4wRnRwjWTzOF0Cbk2NUT3uaLHfbsOA3FnMkWr1Vzez7WuBaixkOrjIOBs77hYCTQ4AdI8EVLeL7hAK7+5HNZs9YnYmOAerKgbV+Mc1FjXkLkd9mxkbVPKuZOTftDw/obpvqqOV31xYcbzDoc1n76Tno6Ssrn4vku9yiufVeIbokj0+EzsYvWaZ13vO8Fz/Y0m9V30efrYDs8uXSnX8XzdFBZxeS7XTFoXSL//aXA2Fy4yMSX+t+1niwQJBTM1qCAyvml6MNkHvhBsfXrY9mMh0M0AdzImg4bte7cYcYDcPv8fd51bi4XYOuviUQdfREcz6d7BaVr09CXXfjJGX3Ague4/6Mg/KrVMvRDWLYDAuj+3t1YSw2lJcq288U+6f6h8aPesnhLC9f6nT4EizoU5dwNa4m3ZfNL1lu5/mFEo1TcfCYOMQOp/cGXTbYWvmuVond/qKhc2xakXhXrua3PvExUopmWPHskJAH9/bVwpIc/OySqpoeylii104VMe4Ss+LX56vypoewO5v+f/zNjDSFyE4ho+W8JymseEhYHRrm9Ha4FN1Iba750TT59HwLlW3Qv7Ffniw2XrS4BU9rK3rfxVo/HapDB74QxUQRR64flFF8QHbec9TTft9k2Wh2B1JTN/R46uyeNdr2IF2W0+rBcDQhi+lwcDp6IXXeTz8QLkG5gBG8RBrkmzJZkHVeYOs6QKNTrpvEKj7ZHz8nmy+Kevbh2E3pz+4TP07RFf17/Sggm0a7OkuWY3aqIT9AGS37U1NN5HWewJ43T4JuvBssQaI7kCSiTMNJ1Auh3y4x7HWmRHAsw37FE0HNvtye2tzrGCz8S38gNBObMDzghJz3TQq10dyJgBQvGRF6u7DiJz7XstHPWdVtgA4PjgYn4VnN4pYdQI3fe7pvL27AgDQOgjbLCDftaTH13+CBFrflCdqKYC77TWAg2Wvjv/xekYanDpieNJAmJzj49ceIg7tunolmdJjN+eIeoAkCl/odyBXj/ZD74/N0x53kqtXb+xV1h+eDus3ZCNbfe4C9cU3oPhaPTOCnMv3b/zQuJC5gkqvHgK4vn0YG9y3mPz5+vVR7GuqMD+Zxc87+8e+gaZuKDpd0grvYtxRfeoM100k4QEW2OwKaXlZTinof5BoKHHDeAY1xMWfIWAKPbD2zDBb9KLlw2dWMugt/q5iB0A32j4OFE3sSeiIpZQkz9xTJe9iQYrGC8PaXz8gdJFLNPic8YMWTSCwtrZhy3r9BFsg9ts5Cxpj/iCJ0zxclmmquQfOQtFcIN4tKuNd3CcZmkErEU+cWCVpeonlrv3M1nvOGprns9IK2zBJw7aWg/j3mi9KLBQcMITljr3vdK/Ks3QMKIFbIu/MGc3GZKMA2+L3/4aHoxsYNfhJVIsWXdMTpAh3QSL03jqxJK0Y52Froj1+u+y/gT6d9B7+YrDWN/dj/4RuIdJNSHxGt5/HW62C+BCSSyftXrc/j8S8/7u+jFkxDzSnA3aofNvDuEsyo1w7quj5EdQPfFC5qfkUk6troVBxowSSxzeARCA126nvTUxb9QNHrVI3U6rn07fS4RWi3cGeMQ+WLBlNYCCim6NGV/zN+3DxTVKbjG9vlRmHkfio36PB6bqJJOv4Y7WB0oGNvH2NXLhDriypTD3bAR2/UZeYiXU4LeMwWsH74CgHJh7pE5OFs/+EbOxcHDdb1wYbs8miuXr8JaO210btKPTb96dWVH1K7E4Z+liK7BR/XGvaOx3Zdj60As2HUETqoQrIsy6jIH+0kR7zGH8yluLoWOhaCQE1LHJPhc+BeaC/Xe2xFZp7M5H5qYOatA7Y8nwb0t2Ed9E0jRE1gdf2ke12I9keuI9NTmYulJO5N+acvC78s2OWbLMDijBF1o+r9nFy6CcGhXvFjfJmz2lQ+IA/NUbf9OMX8O/WANnvJpqdm6yDRLfsUbbXc+8Offs0XN0R4ropkWu3NJS2HFK3xTrhivFXs3EsKBOHMqBecaDB/ugegI70F0WIVx2Iqrc+ENrylUWe0imIp77cGjX0DhCdjnEzhJX+Azb8tijNB64XtQX6heUwH7PpyYrL+x3fgocKIhNMUr30fuAdgnj4iqcLbZCzufgyB3f5IxzUPc2g2tgbOyQiw1VQdWvEghtPlltNgivtgCDJBgSa7H8lCT2JACokd1E9u32ikt/eeDI+pVIvv6UK239MuEDdqcIWnGu+w7mrvpG3oMsBHrCscrPhOz/nmBmnQhdTOzo25pOnVALp9TtGC9i2bJRpf0Ut8bHCQBH+zVorrnz7Akb1UjLhM5EBwDmfqc83mX/yg61G4UnMWnGJyyVoD6yMX667crX2AlBhl9K3RnJtP/fK5GA+I34Aj3qOfYmJdt0Hm9NqQmRtkNkjJ+wpr/NFd8Hsxwi2SAp/WD//pJeaakguNeTtFim5XySIAsf7yFbXl6tVP98C5Kb48idiR+SyhK74i7/ZKafB9U7SM6OQrKz7jYLOJ0dS7hxj9/Jyn7pHwRZ+L0IHJ9eG//Th7u88Ghp8jYy1atV+e8ASt+pE0Fm776U7eC3zvu5Li7+kbTN+xdiFB3xvVKXr0bDlI5T9/DRcN7VmTyANE4cfD3/S49jHL2gY9j+cGu7DoPTttXpn65ADh/WF5sEnznuGfH0eEV/NiLL/oNzU6LC71H8Gm6p9R0KLD9CL0PnpiMD0V6YV2T7zW3H+7hBe36ABtstQ01JSeMTf2H7DthyM+aNQ0BahOG7Dywxs7qfhL2H0uAJmfkF/9h7SYys/yQmlhVeu9fyWZL9GwQeK3d7ErbEs2HQ5ZCLcsFgmdnDJZ2PRMkaI8r2Q5AUqo+rBDoLmE8dGx2oKdlSD68/Po7YVffeXNWqdeSgXIxTvcgiGO4hZs454TdcOKhNiFlEK/21GCzFsYELnzWjC5X0g+cqVViwiyA1bVdNiuFYYmYR2/jfhDR91LswvmIDPj//y03ybt5wNpl7/1JO2gKdWke2UIGXMz+iT+r+hAyHPgG3bAUXSRqn98w866jMhdZyLx3E8S+sNz3TZqNv5NKf/Ty93XTtjc1/oBLclms/LLLhhizc2g3w0ujshX6CfL2LzgJkvh+v551fKyFsMFHxtqD+22mGdRaFU1QmKE+vxUMdecXFj9Q7L6K+bP0LcSsOyu0+DJ6oLEX++Bwj7MqY5Fh833fPThT49y5nkq5sM+1eCXxV9qJtUpGLtqE8NWu3o4qKukmly4T2CYgoUjNe36ZbhlGzC6y4fqCRn+/DALDT9Lpg452CZjT0NAbuQ/I/haZdUa7esKTUTH6OcUMmPq9gjKqp8jVbQxY5L4ytR1P5Ht5BjFYhdTCkfCL3gX/DTEJbcBoBfMPVHrtQ/e5vtYgANjih7L41bMfjO4qA+4jJ4bDiczZ+1vcOd2Jl3jtZi2PylVamAJ1gfbDsRzcTBUzr4+8a6mt2ISk8cVaaetG4kXPwjQX/77y0+7rV9Us7XlDmqXdjdqRl3PFn2qUmhNyhExvEzB5O294Y+vRGiKg2Be+Zm6iHUSbZYHFIOqOBH0O5tireYctgj3RYILmdY7VLukn1QlitZZgR+6Oxx4RD6+5KM/v1Kjv5ZR9jQ4UEzeo2FUTwF7qiWBIzNmrH+cW8Vk/jipg1Qd6H7nXgtG0m2L/vxQddVDHEA6wfh9EOxFSV8t7udTwi0mMfaGm9D/rR8krSZi7GpLNbw/tIT9SAq8FzdyQLJtsQHhXb+wverv+qg2A6QO+kRc4nwRZePJBXSBdzTUTlMMLj7EMHN3EfurviGOdNtAj6+IbO7bE5r8H8mkn3/lqQvLu5qHt0KQissDkZ/cqZod9HSV2j8esBsgoZ9+/asG91JIBIaxCNguvWho26gdDc6Glyzv59pHaanWWZjaG7GzP7jwPV0pDvqcr/o//hAWix51eA5M8pfP9u9Ej5SwS/sFWc8J3RzhhY3X4lWcs7waoNv79A+v56wqNyjgmh1hPmuCkbfyGwT6q8CG93ixeqaapZLAMaOx329MVu7OG5DF7ZlIcrdhXRj18KevcCiWd3N+x+ENyGlmWDe3p3Wed/OCzo5ssi0aXPGcZT/AHEud+oMUV9P0SCN4FLFKdys/l+J1NutaH/j3/kOhX+I//o/3VlonZXTXD+pZPYXY2ZmPivVKVoL/1M702oRdP7u9HkPhPnpsnp4koN4rXRBXH/eRuhV8xAvzHeAd4wdRE/lUsHAvZfKds016g0QqJtv0yj9+R6/zjP7hH6J3446N9sWb0/6TRnAr3R/Ga76cufg8wfv941d/hPbLn/4j/r3DmnCa0FyE7xwk+VMSt45xwF6B6oD10mx8GdtXsfpnG7geuStO779TtbyOBw4w3oXREkWY/d7sGMHwvjo0nKeuWvNjB+5HMunf+kzoKfmwFbUr3S9h0/8Wt6tBH1pv5SNNQo+LUwNefJksw1sPuOp0aZU//Euc5Rqs/NKF+Br12Di7n4B9j5ULYh7N//ZnpW4vG5jvyomG4a9Kxsx4RP/8WNJoOuJ6cUjBdNIdPVXuO1jz1wR/+KiNNY8GtKlSsMIrXesjRk+Xg/T6F4/a8gj+9K4FwsezsXWQrv10MW8CCIZ9wX7rVtUyjD6HdG1s//kBfNyZrWpQPySbn7ir2h/oDxiG/hFtyDerJro9bYB9UB5NuPAZtcRHBoHkD4T24YDm2BUUWChHqTFf/WLlf9pf/EXbPhzYkiuC8Me3sCPK92LZ04mgy/VL8Z9eY+NXcdBvbqboJF+uyby7nnJYkCtFzGeOyT+zXwNiP2fYvdVVv7xH/gGW6GG6O3rboNPMKwe/D9nglX8GlKTbDsI+yul+9M4B+TqFAfGvNyJWeXExkXLO/vHp8qLuiqnnTxPKrFAi/ZqP2TWtM2Xd/9TyfByseLYAitocX5zigv74N9I9g6PmMw4rNnypg753u4xGWXfRHB1nV139wn9+Lfn7fsVgaVg39mXFslAhsLEbOVJz1iFq+LYArhET0tu5bdKrc9Xg4Ck3spGTx4qfD0DGpqmiNV8xMjedDy+kV/gs3qagVbQZwDfdJlpWv7rHlmApQux6kbj6g4IIsgW30v/RoFjyoiPtOMDhFH2wqztcNVvzD+SVT2NsWHK1+t0L7IruRg3nVReMnvwOSq/IKV50bApPbdhAyS1Han+YGjDzKg+w4Hm7nkn/Vez7VG9oA9iPmPe9FZN372qguj/8W6/hUv+av/2FD86br+bv1bOg6+fmr/4aMO91m/7pzz3afgIKhDjgndn4Lx4Xc3DCf3ojKqWnObBb3qKVf9HAP0bFv/he9QC+fHm9+vP31XW/43CULTQlt2GjyKeXhY+8VFVs5Yvoz9943YAPWLq5Z7ATcqBudbH7uSyn9A+PqWEVc9G2/alG6+//L75Xf19589x6J+9er/qy9yXdfmAcbq8Rm0prXNBlOSd0X8w7kz8G9g3E78+lRdM6vaDrVoxWPo0xt+37+Zz4jiJ1XhAJfqAnf/ke+fO9xzZE0FPy6V9AEQrI9NTdoB3YLkQ/9fam0TD80NwM0ktRs74gopx75twE/aL8v84USP/7TEHppV2EGvtbTCMGB7JFrchyNo2kwVdOUs9ddaR2sW0ZSWRzQfHG3NIo9T/VB5AxqPhRHmhI2aufJAINyIc2o87XL5KlDBcDSMUIIdv53i9Hnj5QPKgGjlLf7qfsiAwAJXtRS+Z/aLE5/aAaWh7T461X0VLqXQdbkZywy2ylIPgKCqTe4Ucxf6sZAe6YKlojvUmQ9pI5nnafFGJkHKn5fovJfB6/B9gl9R67lytCrx/eakh7PDYR3QejSbXkOaGCnVvq4Rqb4zYyDvAUsiuOLvWrH8rdNUO3Ts6waxrPaozu8QOq2S6xLzePYqrHNIZb9NHIsPVOCds+5kz9NfgZMXswguVWVA1sOelJD99OMLu8IC/UOGsvt1uvsukSFRP4NvlFMuMdNmeP0ELTierU8HwHLYUdcmhnlxtSfVvMZnF/aEHqpTuNS3eHxGzt9zSCtsN4yw09i6w2Q1ZyLXGAxyBg3VQ8kFLsF2x70s0kZZVP8NvZSaR2kVkI1Pm48OWclOoexxfdiR9K5XbrMA11XzdnjZIQzs9Eonpy0/vF3WkCtGPN6O677xLy83EGXJJsow23H4KZCG6EzrfYx/bD2/atRKBGv/km4ahLp2JeXg8Dxd1676eHKJgecd2hk9lG2I8UrRLEy2+AWf7aEZKAsonq9g0tb5+jwfiTg8k57mLlxNfrPYX3wVzq2ymEvTv4+EadKvjd1V0Jx/LzwNHhNyNGLvME3PscUY0GHhK1B/WR1dkB3jWvAc03K3ABhuQYHQ7OlDDrx2rg/K6mPlG/Qb1N114sfvzEZixpAXd41TWUG6cka3wytsN8jWQ7V7EThUrCHIKvaKu5X3r7ppopXvaGA4EoctHsvxfGvnFYA3v7NvbJ4VcxFqMD6jZtTANUctXAnmkmR5L5pFrgmgXHnmkKw5O8cORMgjk/HioB9Wj6GGeCWMyHC4rg1GUi9htDSobENyRV6AcTx1wcI9ZFYwaPTxxGm570xSjfmADHB+koljWhH5FIchSl7kD17TEIlqwsna269zOqLcbGbKm+fwDryxwH4bVljDtjC5TmHmDc7xREL3vfgmfZP8n81b7VUm/MDMyfZNA8MRgjYYNDVIeZgv3lLaHFGC4uwMPw8d6PFNbBXalhtsQ9YYWHixG/yQHI7p5HLR+yYIyYHMGzt3W62/kVm5INe6jf6zzg49DHActT3kWW63k4q5pf9Uujl6L+xbtft2qylEISqta7/1FrzH7FoPEvB8Tm+CLV9vo15yqQUjQJtYNDfb81B5LuFCQXxi/a6pdu7WNQxWi5xxoNXajX10+pSvvzjcy/3SuZg1OZQYeEG3ZeyS5ZnHE/oB/iA8Id6yUg635RF7nOaDwQ3ZxupvcA4AgXSW43BGPGdRw6nv091aFvkplVSgbtyTvS0MVOxTxe0+THOVJxgMq0mqvKaSBJXzMuouRgTt08+gCHtdeW/h0Yhc5sEZEv16iJ5DOafhbtgO5uPxrYpyrpj2H+gBPfHKKNv9kVLCJ6qVbh6Ued7Nr3v0e3d+CtL4D12GiqOTTPV3iV3USDrekWy/FxCcH8KQaOSKlXnKD2IfRNqONrJb37TttFAyhceSWqNeuoVRVPQ2PvGdQBF/plfrUh/MbaooXV2own3cTBRcdh9J0ubjUrr4Or7m0pxY5zFZNZeCUOTLvfQsbHc5Ow9ffJzf16ocG9cVDH+4IBykNvsS7dT+aY4/sNhKuwoXv9EJmD0cg3IHJxxbjxiEmF2XeBkTSiJyPtEtIusgGtN2hUy/Zrr0rp7oCTNEAtpfwWczDoFsR0kagtGbQi1i6YlHuwFNT8JUrSBVLsqq8w2EQd7m7BFH1bF51T9KHhW7EDJmmfKxzSk4M1sfOTudevDeh1whERpF/AaLxZe1FnKQ25eV8tV23WgJ2Uge6G4JxMji0qCP0OMbWkn2YKwXUrQBhlH8K2128wu3UOkEvzD+/y7zFZ/DfKofd3FcWZJ6Op/y0Wmrb4RTLXqNBYhV8O3MkesP0JduYwWvWAJv/eYpuPLgnbqqYP2v6q46B/GgV594EAKt6EZDui9d5cIpWoni1Gw6NyYFNkL4ay7LoU66IpI+bLBQcqhjASu/kW3NJeNuBwrA4YT3SXLL0tNTDMbUWLHWqD6Y33V9hoXob17aatlt8pG4DvyYIdImsJcZGcI/OiqdS3PgJiD4XzFdaSkuLASgtq/VgDpTCqdH++5mzZXosM2a5/jaanlAS0pD8OtS0X4kuyvIplFzEJvctOx2FKdibfVxqBk8blOK63YA5B+mpVbXjtcUZCA43v5sNBN857HCz1Di1xOWqoP2UQ8XwkF6O2d2s0CnlBdxH+JdP9eh6QxKVapKYcF/zoPiuhEmgUbVd8/maK/wKsdjfst97RXKjz8WGGK8JGydsJjcrFheAYBNF2fV5zxOYIWiQqZKnxqx9uomIowZBXRPlVgzm8r+mkLAw66r2JYs7P8Zej/OViGsEDJb/fQjg03Y8Patg/FsyHqOdA+SV6xNG7jubwsy8Rd79dsXb7TGyG47sEp37o2JGPbsFSd45QLrEfETvrUZGVn6FfnA2REqmPaqH1BtC6ntiVr3WxrPsD9vTKxs35vkPLQ//U8Mef8nzcJPT20hs15evtX7z34vnrWiiVrjy2N8KnWojoKZDc7Ahr52/FJk2nGgrU+4saKfwQ2YJ+Q4N1d7GX2CUTq7WPR6LxAqlfYssY+XiuuljCAzuX6I0Wkk8WTHkp/vv/ecU/ZC9UpF7Fx9WEdHARjQdj9TAoWu+JaYDyYk9k3+dMZgfvSRG5lBLGnXS07g8Xtm9cEzSLfrJcEvSAn3W8YzxGrGKjZNaQdP4dmx8jMHl+U0uqa78w1q/vnTmdavWmdDurJqP9vhdL2uipqhU/l+L0EPdt+Jw0mF6bKw2SI7CpldpBuTiChG1x1szXaQo52H+0F/3D95EaOx/8AxjkrJtBweiOCOgSO8e//Mt44WQSWPGRHuecVgM+3UNk7xcHm0vkmWP3rHN4342URu/M7MW4IgTdz3ggjGhnRtXy0Pz7f80vbMRu6RKpf/Ev8fKhZ8/vTOAkfTcYm/Fc0LvwylQnuy7U9j9yNVvG5/9IO5N1BXEgCj8QCxWRFEtkEpmCgIo7cEBQRIYkkKfvD28ve9cvAEoqlXP+SioM5UOhByM9iKi5sL0EeRR1WAPjiLgmtQGYjhAGkrbYdmtN37SgOq/5HBseeLd01UDpPHSh/jp7xlxa3UDOWTX5yDzqs96az03V1pk07c6vyLWWAShxI7zb6l1OiHY5gfS1PnTLH40+6/EXhJK6nb/vlU87/VXAANqOSPiuueOgoFB+L80pqG+PUR8f7qzPqlSm5l4Cd0CXaw3BhaXBW7k61agJB0lJkkEO5Oe41ydpmYR/46cvj1u+vmynHmQzC6iXv3N30D7chkgRd9TyH4C4XNMTilzJpDk/mPHSWwch/PL94ZdPf9+3CJQldU9m7I6jIiWbQ3I6U7fx5nPTdZ+i8RZS7M/xNKzTQlXCnjX0KIhmVXOUMbQzC4FsrslC5x9r5UF7PHZYPclWPL5Cz5GtBToQvdvr3dra3BmsGhmo5TRN19OWNOC7VMLuRwi6fjB6gg50/JAndFY+NQdNAnHtJgFon0znT+11AkzfPp7jqWIL8ctgf/X2OH86acfWK2bD+taY+Ib33455aytEKxHcQEpbNZ+W35340xO/9QWNbYsYLJ3mRe+R7qHxlccFasbbJ5AraVv94vG3fuLdN6ncwdMfKVDfOlJVOSac/fze9LSXFKt93411XFzR7Beotdst0fShVyKL2uWKreT5iimNRA+drM7HO7HYupONxkwxW2Pe09lN7iR9PRmKh7ghjm21HfPltp7h6Au7T0eqmJa3FpRMvmCNJiZaykoT/fIP3jlk1Y1Ko4aQtmVJXtuXwtk29SfZBDmiejh+Om7bTglBmfOA+YtzRaTbqoDrMHjYyPE1H8HKHMhb4mMzj7r41cb5CVZL+0jze2zEsz5YIvvV5oGwf3kx8/23gYSDlpMNJLuKH0USwLrbeNi/P4Sc789vomSPWxWczsu6YtHNP8Et25Y4WIy3irvAHBDDe0e9ftFWE/GbHlQd11g/3E13LOMqhabIWro9qzz/Cs4AqNkTldDZX/Cnj4jMb7c9IX3+nfckSARWMFJsKte24oOea7C35xv1ZKl2+/be9gBpdidckzrOb10ogLpIdBzU+lZf7pKqhocirbF1e4zuuLV8DdSX0dGgAjsf12mjwtcjC7w7WErHipMK0D4GAev11XJbWV8UsjDtUsLZMnBpzj0V3md+pap8V6sVWJGDqu3iFIz+8at/laskwZzvyEbiHDFdSb31jz/4Y2yj5Y2JV6T0YUmD2nq4X/Nwucqz/6L4MVrzfOhP8sxTqDsXkX7rLXzqrRmsNYg6fv6oBhylt4DNr2R0a7e+pL/xCuqN8Eb9mX8dFK2yN6HfdotGtK4zJC6PdzznD95/69sEG9vjgQgr2aWjnlrohR4W6bs3jtkba3foQRXxtslKztPCKNDK1PbYy2zN5dtSv0NAP0BYaLGc78aOwPZ1WJIxvj47vpGmUHlb5EGtkS07lqFDpPzeH9xLPxeHTi7RrNfprt0W1fe1GRJQ14s71vbrVz7EvdxDlwkNkaP7lA9rP21/PGHWT5d4vEAmgNwba3zqTSe+FYYaKLMfxvhTffXx/GxSRI2GY0Mud7GYjGEPi6f/orO/y4elfDHQt/YfOKiww9mcr1A3sDs9hr6lT+99xAC7fUbN0K9d7rVvD5S6EcnLrt/573sCOZYfcpK7KiaHeO4r0kof6ojU0UX/2xXwFMwDtmAl68R6CgnElO1pgvALjeTxvf/0bbA4ied8KFeXAnkH+0rWJKJocjM1gd3UX/BW3XfutL2973CcpoyMdibnND/cZNgtpBLb772K2M+f3h/tAzvLZuxofzre4SEmGQ0Gu+7G+Nkl8hLqmtra4tlx+/6MYEjPHvWopbtcxhcDFTddJ0j5DjnriS/B/br84mFS65jLWXMHZZQwvth6XrGNmWcwx1cwHb+7+Oc3gXWnISjS86MjRS2psNxMjCykeKN3anxmaFGvQ4r7p+iyMbfLH1+Y+dCzEu9V3CsfS9pQ36dBxb7GpwW+W99w4K/yavoKC0leLMIJe600ciYnwkt+lusNUYJrr5PNomrgdbusyWbKOz7S9C0h4+Sl+FKtoq63PamAH7/xswC7fXANGcTWraTe0Nv60CY3TW6FNsJ7x1m6Y1UFNVykSab2dp/GZBQmTfkenZIGpHxW00fuDeQc9jLp/e+2Gql/L0CoVwtSIqv508fyuHmbwSqw/Jh52o1At/Epxt/2icZxKgBO2+2TYn0RIL5Vbyf0eN+O9Me/BhZOIvz8krEmo86sA45QwB4aNefnjXL/0OT+0Rc4HOa+fZvPvvzpUapr7tx3PM0kqJrrjh4egVGxj5ov4SralKw+Bsm5EPrN5puxAKeVZrt//HUnRyIpJ2nd/fwqDA/0Jc1Z0bpJpSxTcD+e6X6FNXclH22mlFvmYyOHDRrCt/aSCxcsasf0kH9eBfcUzZnegVDrT/c7816IXNmkWrQ66GO5OpTySfrgYB1Bjfg6khKY/ST1lkaoD26xIeiX3/afUx2zw0uVlD4qzthB10/HDgxPMIZWTTWcKHl3pz1DfLe6UcM0x+rrW7yHZRgdsMkrwnuf5h7snuuErHbEjMXv8URQGz1XJNtURTzK+032ex5Zaoc8n3mOBDPPCsrOWnajcFQSOOmrc8CT4yWmr2MnwuzXsL9cy930MVEht14f0hur3ZgJ3L/CvZz7SDHvjaZSzD3AZW5gT5YsdxmYsgbVuCtx0MjHmFulXcLePRvBlGAvl7X+YCvnh6X+/G3XOOYSFP9eEepIezNezXoOXs03pPP86N6PMlPhSIUqEH/+i7y3jrIiRUPNu3hzubW5Tz+/QaSj2OqTrC/KTaK3yuwnlJxMui+j+I4MGtQcquE5KgG6DeRG//zVL3/qPn/R4HCi+dRcowiCE5Q4IewVU/zxAcTNwiGHd+1VkxtIIJ+u0WbOh63O9+ehB/OUP7E2x1cjCFcRzo+DFEwXf+M2K/OUgPfe4uA3Pjwg+xJs+bHAf/WB2NHkHz8KBMM5xNOzc5cgAldJUXDN5W/tmcppW5RU3W8dxE7NgSFbiVfYKIVtPlUy1eDJkP3zR4iezAug2HqUdEfvm+rPT0vy/oXts1JWfHM2HKRoTMcH//h1+exP4IjyJVnO83G42ScB2U/xTU13kVTjuXzIgL+LJ6mU+a6326g2yqx3McbjAdHEHj1Q0vfnjzfNeojAtAg0smD0k0/qzupBW9kOTo5TFY/RYmXDqT3ZQTjz3F5/KDLySv/yi++Oj5LdQD6UejDE4k4frxLvUT5QFIBwXXP2zi7iTy8Qvm4Mt7tfLBWMeY/MXvYD9JFrmsCst3Agcobm/BJCWa4dshxO+3jVbaMaJRPfE+m496qpqCUNbfVgTa1LsEVShB4ORHsD//hozPb05EDxWG6w8z5m6JtcWKiMXSUSRZn2MT/4OwF83bjTu8hDNGnP/YROB7nGbhCHLle/QomKzPfJ6i4q7niDUFV2rtPOemL7V/+Rdz4UNEbeChFZtzUI3GFPf3rhp89/9ZpfPSLmbfA+wXtfHLGaJtuOXS6dDcMumrfUSrU7nVQkILLYWjhgfZqPb/tigLFKXn/zefzxF9HWbew8ja4bLecmw9lq7jgr73VHH59Nj/bMUgI+51uyWpAavZv2GaD8QXTeolKULftYEcb2Imej8ZyU/G08qVpdajTA4VkguhUVqmrfks964IrSraYT4VPI7m89Vw6ti+Z6ktqt2QIR5K3X5h+fYCTBkvzza+lx31c9idMMIinIqVPe62rKw2sAoR7u6e7IkTv+xmPmE9Tlh3dMfn5W1uoUG5qQInZjwh1l6LWluM1u+TSvxzD/nx9Py8XbfKO9/rE8vC/zczcFp6/1xwN3Z/+ks03YTlCdP9qsL7aduMv0UPFiiOjxdnnNvfX1BtlmifHuar/17y+/z/mRTJvw0fGwbSPYfuZz+bE05L/4AO+tY+quhZITlX0kWPR3CIpbFMTjh8QaurBzincms388w0Zz/sWX3emGqNcOASqbu0jN9VjoTBXPNdLyVfnjs/E0CCDA7B+pP9ezOIfkDg9evIg46md3/OlPhxkBvs7rOxfxVQPn4MrULJQjaujjEcHb6h8By+6pO93sp6Ok11tMGvq0q9tXEQLkUGwHYhF/4nH4XEsg4vtF943+mvd0CBb0jrXEbm3uYlLJH+33+4LPztH5NOtJlOyjb1DUStqxhzO+lHfTPP/8HL+/juncH3G+28xgeu8VnxJ+8TOJFzceb/ZdQNrzhmkgWjynXmJd//xjK+3fOVvligHXZlcE08wvm6i5EvjV1zLaGlW7cZAhu6+lRWd9jBrRlluE5CPG5m77QVyNilARN4pDvaJodfKLF2asIHhG1NCJqz9f0Htyi4PvZ0Lfx1lrgHROPOvhbObdhaOUyUunpy7tf/UKTfnpU99YLhDLF4Px46d0f4SzzgQhWYK+E9R/+WWGDqGyun0run+8qvznnxHX8DjX2wqdbTdIgiQpNOp9kkLnNRoYzPk6kGI65kPZao7y2Ngh9tPjB/Vb0peoLryQ7vzSRcNUnDR4ntOGZndlQv1QZyK6XBqCc0srUL+SLUl5o/v5x8/zmU840ETHHONdUVbj6ipMiMeWGKyPPHfZF681+PFIHC90lx+2W0PJuP2g+9v22jGvoAViu24KlnZtxqsfX535E+GC2uss1KIJXUWHznzL5z9/pnzR2qXqQ+L6aDlHGeF7EdK7c/giXh1CFW5nvyfiej24U1h7kWyunkMAXBSqrpr72IeHZ0g2y/LVTVfl0qOuzjdkeZz0eLAWwV2u3s2BZpAlHRP2ffTHB0TjyXTSCHb2//oUbP57T0GbSavg6zUUsXRVNyiloUVvXftwJybcJaDQ6/Q04nM1HnaXBK3yB6Pa9eIj+tbTJRxdSybolrUd/VS1A6abEbLRtlE8bqlYK64pxEQW1NblkpRM0E8wUDOqhZzfOikAdP0o5C09pG5I5jV8d+A76vly6bJj2J+A3wuKDXew3AmMXIY1Ep6E7ckzn74sPSF1AMAue1Vdw4dwKSsC8+n5rPp86pZRAB+IjlTbn6WudtfpCblBkBGp4euuXcdijdrYUaiBV3s+5ebBgGZxfeKcHWg3tdMhAqPNwgDKMuHsvXjfAfhyj00KV8Sb9mrBMKQlDbKLzXtrsS6BkYAFy9QcO9YffQc9RzJS66LIvJ+8NJWL484n8nppxMsKVS/IDeWOTcV/xdO+W6UgSruE7tjJ694kq5byubKnYC6vVXzINimSX2VDtWRv5eu4/3ogO+8t9laXC5qWe2uCaHt8YW3wQsRETG0wh/pKzdNmiqkuBgATzzeBYhkbd6KFU8DSFt5Ub9QDn+wvXOWKFTo9k6ithtGIPUh9I6V3PVPd0SxiGRLVEal9hKgaE//qQF2IGpmUNXMnb/mK4BablMDVfej8yTnAFakXrLYbOu/rH+8gki/goJDKjreRVvyNL463hj59vWoJR5GoRFzXQzxtpf1JdrLVFbvG9tGNdiBFYCaiRa30sXX5MJ2XwKkmYKNAW306SU0EG9blQRd037g5S1kP28ftS431ZKJVvsCBHB8HdT5HWCAmq3Mv6CTdYP+0Bn1Mr3PveFK+yOrdxBVDxuYub6RNiY3XDRDTN9AjrzIsMmpuH7PqvDDQBrdANke3ixmV8RU5enii6eou8tGLsIbIeZlSm9628dI/PjxYKXuM3Q/hfGKlewWDOx/qRzSNJ3198kCnV5faL+GDRjXubFi2rYGN0QZ9OnEegbO6Gjjc50M+HaNJBOluz30XAk1fzu8H5IcCNp3TiU/fZh0B84MIawt0QGP+aSa4p7ZH0x6hnPYbSULICnYYh9PkFhJo5eKQGgI2rEUWj89oEOAwqW9qTvHECW+nRDkfbjHeys055/KLeUBOnU1e+68RM1IUFsxdheh5eQ9jdim2Dmy+dYXNW+q5rDuyUNmhfsC7DiUdey+GK6z6Tg3WJHKq4d6VjSLV2TlYGFmNWHa7WfD7nlbqDfrYJU9NeYuZ94tv3uLF1ZDFUb3hy/T88nHcUgekRF8Hn3TzqDh+jqmiOa+C7rbyCZG8vhTAF5WPvTNax9OXhScwE9fE5sE2Ku4ltxLFQWsH0XY36hSrTID0LVK6E5Qvn7pw6KG6dTFZhI+7PojBWQayO+2xlmlr9H0eMxUlS02ngSplLikziYD8KhqaG9tHNQ6bLkGdeeqwURwvLuPta9q4QrUm63SzqH75DJbyI6J6sNJj5nBbgl3n3fFNw994UqxERLf+aeF/AAAA//+kXcvWsjASfCAWICBplgjI3QTBC+4EFUURuSRAnn4O3z/L2c3a4yGETnVVJeneXIJjuHi3JzhNzZb5Ear4vOI/rOlW6FHxJHPEHEOWYXke/m40mQ/TJ23g73n77/2e/nrlddV/o0hwxpN9OD2WO1L++RcT8oWAj7PbXdFOP/osbtpbNx3J0QYkTN0f3lfTkftvWA1STILs+g776amr8IGUU6GepGV834NWnd4Fu/OvVQ1UFmPgSuowm5+xpazS5A6rQY6xZAVBNakXTYJnJlwJ0UrEOdW1Ge6PnUWlzq0ruiJSD3bzFKn2231DFkiep/qP9ZlKf/lh+4ga8J92w6xn36ST4/gZeNtgS8LHvc+7dyYf4JPvj+wsk3s4HSavhQofDlgcVkXHr+Jhhsv6GbCooVrXLgeENGeXt8xb/dyw/8Nz8mI2nXdt3/Hd6V4A2392LBy0SzcXTVKgY5CvmXnaeWGb4lEAPVgbLFzwiE7GWYP4fvIxXXWfbqyuVQC1o+ZU7VGezo9pc9CoE6yZF1sba7YNNUYX9ahhZJwNSzmvLwKAf01xbBG3G32vLmBNGsDTUy35Tz3jEbLb+8u8WtuiEb6ajMJ7/2NW8GJpj4qHik5s/yY+7qduJve01QDVG2IM8aeaJGq+YOOqFdl6ydGa45zVyFd/lAXidOacCLYMT+8eUr2P3bRXLpsAXsHNJVZemt2sKJ0Nv7PV4NWCF724b5c9jHtCcHZ0rRV7XmaUR8OJbZ3ndzmDpsSooUKCxUdfpZMi7Q5oe7N35HY+Gjm1lHukOW5pEcs+/RBPwnKEiewwlfbrEI0CbWZkLOeoX+Vz6oZBkk/gPOaAeeHxuHB+0iN16bVjn+dbusTTiC7nc0Gs6nayVtsy19ADhTVxDraf8+NY2XrqZBtyvj2+VafX2ETIiVwSTMcWde62kqD7vi5k+/DXaPrWUbsmr8FmDmy26XQkN+cfn3CDxuymXf4zUSe6D9x3cdnxtXbswbjdB2ISipe+RakK6XEjEoyULmyX/I9wST28VgdSzdtq3SARMkKM8MGs7sE0Gxn91DP/JK3SQW/615qAl7Ptzij5XH+fBewzR2Db/rpJ+Xm9BzhcnYLK1xgjfinSTN+leUUMdnBzDu+t/Q8vlYUvjdbtF8NYPPfEpiDn/fbZBSA9KVBpXfGlM/j1DoGVnLDyFZ4WD0LaagG8EHG2R88aXX//1vFYnTCKFRYO5NGqsG8+O3KslE/Ft6/2Ch/9ZjHX8P1QFmkYacd+m2F0QjFvApproB6JSyzDWnE2e69We64FlbneZez+8gAJQPa/M7r1lUN5orvWqow/JlymvcV80f6k84GtMz3uHyoxyiEIu349qpBUVcKMIknyybzuHTQUaspSb3pW0+wUAWrqPsTrjhXh9OvnN/BT3JBdNXTVtDsQQHh8nqj6c7qO37fnBg12G2GxTUs+rx+XF7In/YxHtuHpOMjbN9w+d0KsfIcrRT6mmX7IUESVxvlYjXa9C0hQnyYxlS7I6d2hKtiJ5zN78opwapPSQbi0XLbBlVLN7fCOQbh/c+Kt7ifeZyvawHn/SKlMfvt0XOYLyc18JPYvbKrf/i6Omvj2POKEz6Gak2g09R01AraPZp/ztXbrkdOUz4VPidWQ+NcY7bWkZ0s85tLeK2t9Oj9OtGfbMaX2c6TAt+OFWWbyRfNYj3dd/n63VLb2TijLhyddv6vIIEXKebfwn6W/Yn9ldtquq4Uf22uloldCepvysULdG4W1MJGA7T00Dtpcg6g9BWZvcN/NPv3dIb9fV2RjhlHeD5c5+OMHzHDPYc6/5qcH9MUfPPr5buEXfgC+d9rj3H5YvN/WmQdGrW2JFaW3tKP6PIN6VD3mMGvi87yNVK05HDsW+Lt7NadYFVA+2kcWTUWdj7d2FJBS9Vc6rsrBGjMtbdGFbA90gv6SdtJ4MWFI9RAja40WfrHO4LZKbxjtg8qaeasdUCyevow8x086i9050NYqemGhhnc+FnUoaE8D28wor3I4Tb6B0aJ/WNTLQsr7laXBx47u7HhazzmvnwNGg7nvmatvOkSF3x3DA/k12zIANN+ZkWkO+2TE20sU8YClnl459o5d0U8KhyV+NcJJOqzyQ2CtmnZqYFn/GOHOz5f1qWn+PLvMf9gFkh+JL4Fk0Dvzc7IL2xb3I/zh48L3Uq6qxaj9XPqjIy9Ci1N9HiGRNk8SCsu9bCEuX7D26i2eHs+A/zbH3v7TH4s+s7rJ9YLlDGehkocTHrrp1+JS6414ZKEqdWEzN5WMxgO/YDE6aznbnU4F/GbvwYo926PpSIs3wo9SWfjau+u86DLDgudYj2QH/Te+TsWLSuVxHfa+V9/RNcc/5j/OMVKStkzAq72KBYpk54Oc2tpf/mLRKfCrkebIQWX4WxF7Rd/W+C7eDmBiNAR3thf2936tAUMlJ756Rd0okF8Cyeb8Ji7+yNac1ucruqyrgLiP6pfPYVrJ8On4m/h769vN9O7XKKRWQ39/eiGgqQZGBHf6vT3cbjX5HgbNKgOyCbwHmqTgboB1jxHBSpHmY7jyZfANJ8B68IhRe4giDU1x9mDZoi9Wmyzz/vQGwe7LQnwsJQzVNo+Ye3u41SSnkQantRYR/1ZbobxRNyf9okUhC+dyU61m5xBAFA812S18c9opUCCs7jHbSGzLeSB5ARz20pHsvi+UD7DtPFTd5Yrhzm7CUYxWGO3XbrF8/xaNF4XV6O7cBxZekprPHVvckHor03nN+nS2BTtYsrhIS1E65VzV/REdrnaBtVd+SXsTyhlMU25IuPCfVeE9E51VSU9Rbh26cZXkGILu3DH3p8y8P6Zxphv25oRXx7jJ5+uje8OLswHXS34fjvTwRhfPvJEwfiOr1z94hOOqHFlhpXal/GK/RtrKVPBKkGlKfforYE8kmYXWGnXj90VVbRkfw2HrdhLW1R49Ml1lwWdb5UNcyDLaPOUANyzY5fQQRSq4ZuFRdcAsbQJuaLp73WBi1+ILcXKLrhoqPjrxG3PM549d2voDSV8Wbc91Nd8dutT2xyfiz88fGtt9mIBzUkw8Km/6Lz+CCFeCp0QOu8XviMCT25lsqtO1mhf+pH75cccC7qjVkEmPK1ryEXE/7ztnfabeYXJ0l23lukZT7Y6J3vbvw7/3G9mmfOuXp2DjCCwLKWvtRuHE0jdWFz4sSWw/QvEaE7xa/Jufh8dY32TXmTgpbPNJokEJ0XzZsnDxU6h58WUwpeOR7DTlXXX4Md511p4rEmW4q+bLWljWm9lQRZgvFf3jv4s+WPgSTcc5ijOwnw8P617OQvZaSSosjVeIrXdK1b+fF1sT1MpkBuqTqr/ebjYU7i/Hs2WxkMfVfNBnyy6w3I431C75Bq1Pg0RCJ95XQxg7DnqSymR+NXuV9MraCLh6P5GNgLq0ZzfJgIKgF3OUdJ1P6tmZoYwOMovcvEk5BktFQr2qmPPqnOVeV6qhJBdCPBLNQWOU3hPt3KotVUU9TntaNg5MhGD80pU4pIPuOwDT7Ye3+Ua2vkKDBVC6IqGrhS/3iubX2q5CM9s+eYW4XT7va167MiNypoaDgK+Gpu4agwX3+teNRN++IaO2TFr3W3J+ZooA8THfEMMEXvWr6Uo129c2xGeKiIYtsBOaB9PESPuoaMid5gDiRrhSTZwU9P6+ahXdzE/JXDw6uSK5yguq8WXR1S2LrFX6pQ2YsPhb9/RYjX/64HSmd4LLD60WffnWcvbeYq3RuLXo1QhUWavxx/v41vynz3/lw8BN2PgW313MEqa53pFQDA0kHXtxXHvH9vAXLx07H4dCy+tWZ65aS2F/Ub41bG/OjpCz/0WjZqov+KTPG9vNRYSml5pe9fspRWyzFH6bdgdXQLb7fNKX2Nz4lHyGHnT55RCPfz7hb26NFkZbCAkW+yvvjvuuhvYtF8RgG57Pmv5R//LdH39K6WSFgBhQi+1UVFeDrdGrZimbhOGPUec/331E6z9+5CfipxrZ62lAh0eTHB/syefCTUxk6HtECyt9d/MrfTSIpNkWa+Z6uffPmxL+8OkZa0PHR7scgXnhCnP5gKzmbcTtH34zc6eX3bBvLiO8Qs+jK+l8QMMh2QT6O/tmVJffY8df2k/VF3wkG/v1yrt6e5n/+OlSa/lr/UaRekAuaY85blOrX9YDerTdmeFNiC1+3z4aLaoch5CP+rOGy32tQj0d9ixN9O8/Pw7tH/6K7SK55mPyIgAnBh8qiP0VzYsfCxcNh8y5Vy/UK9qmRubKPDFnIkrHLnouawu+EXJrntV0SHwPRvFq4PXZ9VOOs/MV0bOc0bUGm4oSsXDQaa1GzHN3Uz4s/gQSW4tRMWppPkHd1ehwHoBhsdcQbWr5BAqCJ7Gn2silRa8icQNXZmfZpxqFTuphHUs7ii23D0c+ZBLEgn8mufpUwplc6vbP7ybOW+nT4YzUO/iZXC56LgzXyHpF+iDpP2Id5AyN4GgZkK6NWPiYjHSkObdh93HNZbfIRXTRL/BuEwX/+anT3HotWGJ6wT+Pl4uedSl0u/eMYWPP1XRY7lHiKToTu3PrjnOaOZrm5xPb0ntlsXq7H5HzcH1mzrpQ0VE4qXCrPgIzF/+Czv6k/fm7JI3SW86IoQIU7Stgm/H7smZcJD0Ip+OB7eR3XI36rjmA0fOeWF91QL0JzQxmelJINO1PFv9cxfifHiPDUucqYHmAyGXf00E93rsxOpkHeFfYwOq2sLrpMcdvPb/tPov/qaYsCGmDtDA22XUwT2js5rD/85NJsInDsFvNF+HP/2Tn4DbnrZQ0o0ab05e5Xm9XkszzBqmHjcIWf82atNevh9WnXnpvKMeuj+bjDEO/S8hOt4KUf65KjP7mi7RGxJd4buFmzSNtv5tNPr9FbiCf5B4xRLHuxuyS4nUTfg6EDCuo+N94nrGVUK2ubuHwpx8PZwZkA+JuKTLTx3BxlB3t/UebMnQ7B7CTk4RFiflBnK53I1r4AfE39J5y+ZhnkAQjIsbHe3Iu7qQ7nOfbxP5+H7wgjGGJT7pWr3k1RFpZQrb66bRa9NmwFstYt87YJt71HKSKwEoT/vJRsCvniityLsGC92zx15AihPyl20ng/5u/ad/sZ1CeZw2DZYzVkL/4CB/Lwrhf+NFqk8WBvvhFf/ERchuWVrCn3ZWEh15AnN1RjN7Oek1lRKeQLv42StKNhcddNYVjbpk1POMFDxc+PYIzX7VGtgJGBE44f2fCAbH2WLHgu9mkcxDpKgpxdCWOKSThzOAIsHdrRoyNceyGt+ifoPCkjq6S+p5PV92JAd34joQnNCI2/yoHFr1PLHr+dnMUi/Ofv0p2n2nXcVrMB7A19YHFx4Wlix+uwYXMR2a1pOLDbbuK0BKvxLvapz+/34Frep9YaJzLcIoLWYLv28DsHp7TisN756CfltXEnA5SN8/17gStP3zIsj+EZFxcKbRXIi14U+b//JrfqBN2jn+ZRW/2IMA3ObG//TJr2jeX+e/7Mue+FbqpeEtLb/DSZUm2D6w/fof+/KrQsPuQa/kpgkPcbf/2E/KBPjIJFjzF8n7g+WTMbYuwMz//4dFcHswZRGMKiJ+I22qp6o3R6nbasG1qm90qf6ERTuN9xcLnWbCW+T7A5XwsMKzFJ+/jF3dg/TwUVA6lZ9cm7/v9T7/gGZVXi07N+grv+SUy86gdrFE+FB6QSjuwjU3woj9fKvQ+dYmjzzz8fV7mCGhbOWSr0bZroyyTUBCcd8x1jrTixBgBLfnqH7/oTsrFhN1nttjOsdfW8Lc/9Dd+p/i+ES8xLv/5k046rSz2da8UciWMGE78Z8qf5/Kli+/AY/j1i/N5W01LXYrHC1cxPVr0a0lLXaXNSLwyBmts3kyGxc+mgl9v//E5+D3bmPg/AaczqtIrVLdfihe/qJpuwSv6m3+yGf0bGh8EHUDVxRuVwmsS8k26fQO9I0LMN/zyyY/XGMiG1szqvWPFn+fmBZkdxpgfZJW/cl0RUNIXV7L9ILfiSUUiWPCLOOQ35RM85RqKJLbIncxdOrHnfoTFD6Dy3/7tn96tjiinen6zQy65YglBcNwx91nk1sD0IdIuPxMRz9T0vH/QWdKMT78iVrT+pOPSXwtdK9GgBcvsnC98AfA5HpmpK6M1b80J65Wct8wapkfHf/HmrQ9LP5K1eajTOcufvb61Gpn5/dHOh9UYFnA7gMHI+HA6Pjk/ClwtTsQRtl9rHA29AC/CwMywbit2XMW2vr7YB7bFvwBNHh4TfeGHmC76cwr5/EZ/35cEdZSP8tnDsPgvzD7EGzQ9kw8gu6lEvL7CJZyL6lPo/et+J/arp4hl6Koi/R3WWOKtaSl67Rjast/8j++Nf/r/fBmuOGH5C7E///9vfBuNf7spujSOdvZ3IdtGQ8//8qEanxyTWPuNb03V6SvDc1Y3JFG6NqeVPjv6ov9YtCEvPks9SlAcNS27Ks+lrjcJDahEZUOn713IpzB2bPS3P+ivjaobPefzUhe8/Oev97WdvEDK0jc2LYtY9HUdKdSlv2FXK/JDHp39958fhsvFv/nT6//fmQLtf58peMdeTD/OE+fy4RFnwLdNy1J7d84HpvoHsCUjZAkKA87L+iODuEUWI0qvWtRTHgb8PqeE8iAXqsESrDsyxdMNi28/5rMZKaa+ojeP2OnnHY5pbFBwLtqDDsdLgBQ15DWUFRlp1UfP6qdsYkmfTaayIDLeVe/4yR3mh38l5nVdIj6nLga13hos6D+vfML43qLafDzofFqf0PQ+SADGhnds11uhNQ2XC2jmMZmYo1563jx2Rxvm+NBiTd5FFi/ASMDyIsQ8w66qOR+SGB5jWhPX1L5oHDb2G53zaUV291wJm5pmGG7nh4v1rVzlczK0GI6YtHTEZzVnJqgOlMQWCDGCseNm+bij9TW6sOKmXKzpt3se0GXfzphedI8rg4wKOPXXkez2YpOOpv4b0YceBkaE0g2nO9tIsBariQrW2rGmx6ctEEmHBj9/SYQUsfFHEPZzssyPgXrT3WC4neKSeIPwzAdVWWcw/MBgvoHCdOoPHwNi4dyQqK1RN8nk1UByDVTa7zy5mpEnRxCarcjINL2rXpnbEbowqtlBHMScusSc9achvZibjJU1Tmv5ioIiZHScT2o32eu9CXv/C1T5uazi4vTzQL00W+Kd6Lqbx1I5wf2CWzwHwSEfH/nzCt239YndknfKo1PbgCuVJXM2t1fF7cTwNHmRxRLUI5re4bGG0mxsFuWnLxou9k9Cpy7yyWOJt5+zJRiKw0sn0Ww0If+bn9t58QwDjYRS/ZYPaCxWFfH4+oBmdA5KJetPE56269Yau0wfgceagJXq8anmzq5a+MgbIKZ0rsPZXs892pLkThxX4NXEeyeGnRbLJEKmlH83ahhoxvrxZN73VlvT6Vw7UGSOidWr51irG4cYJuXxxlJ2AD4e+KuEiBaYmYPcomHHnj1sznaKkR+cQr6OyxKW+KM3szC4tE3WMiqNBBMrOzn5yriyALzccrFw1AU+r1s8wpUphPi3UrQ4alsBLvtmJoePJeaDHOi9lq7AY1c1T6vpsZNHUMbJIOEuKMMhRslJLKvdSMfZwnwKzdqEOMAKRaZ1S+cYz5Levs5PEibzA3HrNx10wYQ1lW1la82r/nWHyS5Nls7uMfwI2ezA73NIiPk1ERr0bpT08npMiBlnH9ShZ/gGqR8+xDkaQUjVzVzqzvf1w8335oSKqjMMz+/Sgexb8cUVMmbdmWedmFGGUOcFSgneLdPJKZcwqod77cDxchOI2TVVOrnbTa/vTsGWmUOlhD9VWV+RoGxbEoW8TGdqugDNaCYLPtnW+FvlGvKl2xrT5vsI3+6dAXIq8c2ibi6r6R3e3rDR3xrbtiXu2O3xCuBQFAyjXWCEyyVjQftoY8wMSUnR4G59CvLJE1kcVjydXOMwo/xZc+Lc0bfjZJWYcH4cNOa1SlONEfNMsMLZYM4+TflYOQ4ANAeVXK69Zg1M3ZzgJR0NEl6jKB+W9abbU3ukPPxWVW+6PkaPpj7Tr7MxulFPuwK5snr6w8t0/qqzgIpPH+G1bb6t2clYC92s3XD7mdJ8LOinBUrSDE9lbFQ8u92vWiJFH1acYZsOftOVYEeHA/N+wjmdqJNH8GmnBg/0DdbTq4Q3ZF34olL9wuGUXyYJVRI6MLfYVjnX7aGA4aXIzDzPnrW6s42s1ebtgdfS6PCxDyqAs1G9lsoF21S+RT6Fj0JCqrSGwefK2HiQx/mbTryUQkYfQYyoUTRk9/7dq/nU4RLQtPoxbK1ra5J6bwTW0JmERNBQO/HxDWmu5izOnSuazXdL4ZJIG8qzU51P67fWgpx8NOZZE+nGzPY8pB7QxJwcTymL9isK0eH6Itu00jqOilMDy/dkRnJ+5VPVN40mKG7Lou986ka3lxJISaHiZsoszmklUbhfohZztRnz2fKiGtAqo7Q5b3bpJI080q7+qWFuJgTVvB8YRcfJX+HMUb0lPzxnUOdXtcSvkXOTxz3cj78P1bG6jHfFR908uC8sSp+lP2N4vgKddxXBcNPSXrpdR22Mrz8ShMPYTb+z10OWFgdmHaDi4+W1MtH2cgjJ5nQ00XinpQfl9ZxQPj3P1XAzjRaK9EiX71XzSVqVgVYSR8BjkZThB6fWG61c4Uk2O8PkveZqMsCbczx+DlEqLfGN6rSlzOXmEA7+kBVII+WFuY+ZpfODVS9NiVpMvCAJEI2DrboWh3pNZbU3OnlbcwB1LqullpnY/bqXLMO9XK+p4LhDR0PL7YFenz37y3/zo7YDdH2aD7JNZZrOh31ka3NCS7Lbxlu+cjKvQOpV7omzq2/dfC6ghw70JzHPUVtN5Tlu1+RkLx7jWkI9y10D+ZvyTA7Zd+xGHcsvcHAbMkfTdM7kae2g103OmKncDxXvjUSD1241Emu+NqjbaocM3E19ItvIV1MWeacD3N+FQFzzECx3lVce4HF0mC8Fj3y42E8Jkklif3yi6rO+yNCxkwq2Hz5lxeJXmqDl/1RJrZ7/w7OgFT3mPJ5ba7o2YQOn+1gznPprRJXYPuhU+l4IHr++Nb0vTxV9dcfF+osG/I9vaLL3WpFtqb7RAFrQIrUaAqxk2S4c1qf6hH5CxChd1tf41LIZVi8TkzCwvillXLAhAifDk3dF6e9oZm8woywl+9e0r+bDcTJ1Kn0ubLOiqJsyEWSknJd7egv/epv6bwb8FAay+6ysiibK5g19g28sUo5COE9cfaNHHT2p6t63fAWvuwBhvPepenn98c+w0D+WOxOHZGX4le+KBM63/DH/MDkddbJvg47x22dxKH+tvqZxhOrS2dPVt/914+QFI5wT1SDGPtRTNqDmivw13rHwi18dD361Cis/9PBK8l7V2Gdqsr7tMpNY9/eukrSR2Gj/upmEdLLDJciOqm5sDyMW6j7Mx13hJ2jjJRpGpRtYQxq3GZzMo83wxT53k7KJZWRN9oblyfzg8+N5jgBWokkCcl1QJvQBrmsN6PjZqBXldk7h9am+ePqpQTqGbPuC2suuJBoGKeXv+X6HLYnvLN8FpTU7S23tq37f4P5AWEqxNJ6g2r4II7QN0b/5FB8CY1jJBzTc1WcE5tsJmN9s3vnoTU+s68Xjh6vOgHx2STCCou80ElyOdjdt3r4JD+/DmP371XzKj7YKt9CMiHN+Iot24tqDjys5xHj0r3yK7fWsDfVyFzW5iOGYE3XWlvVE7CMPO26VewGko3H+w380Zf4hBjE51Wzb8lfKbRHLWv0qXLYz/V04leesgZ+nMeIj5Zj2H3iZf/hLzO+RVLxZH1r0+q5vbGefpYr7m2ur0bszMT++z2jB5x65pzWlalQm6Xi53Fp0OD0lZmQf/4/vnODmyzpWftcq7ZWflUHmYQOfl7o3HHuZhPahcGUkH5587OFcq02Sl2RHphLx4+lKUeP6EQt11USrpHp6aMEjFp6zbzruzocTsqfmyBJaNPn4x+dfP6dnwRGZ4YLHgb7wF+Y8CxXN69YZtcQTf7gvhQnx+jhL+gxjxOIZjFD++94ObkKKWtOtJOsj2Nq52WUk2iTbfP62dQNaqB/YJkGnXBmGwga3a03mofS58IuLAf1H/hLjVbrpTI+bCN55jqgmro6o3ii/AlXNY1r4qmyNfTYmEN7WCf6c4xH9ksEroXtvbVw+v3I4Urg62ouYItnU9y8aLcnMIMODyMIxZhaDZD2idM4trC74P0vTQYUpBp2d5nCb89YXx3VafVribG5mxeZW0/74PoV41aN24Qd6fjo96Ma7onzeB0YGcqB1bPdcrTu+2bQ1TGrD2eantvmUHA8yNEf4MKzQTUX11aRqBbLeWFn0De3lywxeH52W9dqGs75aazCbg0rna70LR6hfGMjzcCXFTVlb48qAFp3k+w3DPm/zUT1FLfwEzIg/wQaVl5duanG41FYVj4017a9ujMp547PAS2k+c5FS5HaNiVHd5Mvz96Pu/pII0wW/xw8PWthf6jfWt/EHUcZlB9ZS7LCj5JmVgoUpg2qItn/4HvZ/fPJyMBsq5q6dju8AabAPppDY6lrrpjvzZVAmgWC+uczpVF2+V/CUoiV2dig4LyUtAOmc7ai16PvWFj6BtgpOZ+LMk4m4EtcGtB+tXvyALBwURdb+8Q1ydq/52MOj1sxnf2Ckkgu+5KMWjp/1k/ksdyol2ZgUnCI+Mufjs3DyH1GAlnxJv8f30pukuAToTIOUhM7P5spqEmrI+sPEnE9hopHOMwXsO4RFKeQ5E5BR6gu+ETzs6m48JucC9vgQE1yEYzplfhGrh0ZLiGEUV863FpJAeYpfFrbNxxpzUArUvo5PzJ9Z0k1BtbZhJOTCttvmFs6hRagWv+M3c5gddavHTphR7tEjM0jsVxMuWgHFYqkQ6/Abrc9f/jsqzkhh4bOdIOf1n39BfLryw2aLI03rvd2KYMuQED88NBu68+/5j792kKxnWPIV7vHGRdPm+mwhKuUtwd/E47wRNrUOOTpSob4oXb++rt8oSsyeLK0Hq/kW+T3a9HmHa7Hcpr2U8gw13V4nOzEVuv4PT4zbRlj0h9dNfizKsCplkQKLqrB/O5tCb69NgsUpdEPpvSleUEqZSNx15eUrtdzR9R9fNVa3fU431LT1V4wJ2cHDQgNfDQ18dM9h/ubp8aE/DCZYQT394xv8cos1/SS5IvHK3zPl8dfAujCYHypEZpeO31NfAiX7jLjK0eDS+G5USPKTy5Z8iCjadR74lrajq53pVzz/ERNt/XPFFnzhTNW/ERxJtibWM5u7MSrwCBIqBbLRNiyft2N6QjvHv2F54UtMRvEdlWG1ZpsUt9b4Jo0EkiKuycavy3QaP+b7j7+zy/Sj4dRNVgA9v08Uurns6M4KIqRj5YHPYK+r5g8flvVC1WEbh//0cXR/1FjbPvycL11+4TB+n5g/gtBif/nuvTYGKvn2L+S5kp8A1i8Xlx/th/qVITXwNvyGuZ/rJeeH375Af3h/Be+HhuNH1FD/7jK2zBeana5RQTkNKSlf5Tf97adZQImn/4i/P9vWfFpfpeVMSrL4G47Fy3qQ4dm8Mqx/XgRNI32CPt2/Dv3Tt//ix28ziXgXckCKWZ7v8NO6lk6nJqrk2/FpQ3hDCRWl5Mj7xKEyOm1Vn9wOfJdO82mc//TZn59mDX/6ccV+jI6SknJaTdIIrEgJ1e/5OZw+6mlEx19RExKnx+5Pz8P28FWIaf3WITUg1xB9xAbb2XoSTlPeYQ1xQyWmeyI519jxCq0oJMyfTtd8VsO9pteO+f7nB07aHqkIs1qm5U0TOWWmWUD5BZt4Hi/CkYiVA/YnmmltdSJn7k1O4KdvSox+jKNp9fplMG+ee+b6eWWN6qAekN7f9yzImBty4/A7oSR6UaofLwHnQg8YLfmPuQt/mILje4T+I31JJrh1OmXYj5D97AY8L37FOL4bTVP8rc92D+2DJu3USKBUgYz5VTmn34CmElz3loJX0+bHB32VYdgePsrf+6H+J/AYzMC4ETLdYzQKxpvq3a4umBV+rU7Sb4Gkb16HL3My10Rzc/5qaLjoGYtoukfzRRY9ME93gzirz5fT4uEVEGnIX/jLi0+f2HyBG/6uZAtKbo0Cngwwn/TA/vyXP/8TUPGKqRA1HmKf6xCD7JUr5t2WfvXl80Lhz58x1P0pn567aTnzl+YMP1RI62CYPYh1f0Mii8vp0PdZD0vpdCzx/VhNB9cyAffWRLVGjaxRQCJFz0svUnR9lNa/9fqnB/2rOKB5uKAGSo4zhsv7O5x3ki5pm32YYRif63z076879FJj0Er0u3S6haUB/bVOmbes30ncooM2/ZQrsbaO10nYD0rkSq+SLPyZT6UfnSAaEpFsxzzK1eV3eA/jBf/p13E55gyPcV//+RfW8POk6x8/Zn/4P9QbtYfmGa3p03l8u+mgdzXcju4ey/ROwvmPj/wSXSLB4l+Pu0/ToI8rOySMlCjn5/EWrG+npFzylW4NU5l5oEQNZvk5c9NxZUitFnClplIUbtD0bW1AufaIiXHne2sW+msJxylc4Y9ES2u6Vvceefc6Yjt1HqrRfoYNfPdKRGwvPKNp2t1V1AT9HsOiN2ZPORvANiZQoT+s0v6pxTOUZ7HAiz/VjXYiHv75ayCwtmrmlQW6/9t9mHc+PMP+ThsPBb13Zklw88IRWUYG9JEYxPyiXTifGLqDqCo7tqlslDcsJ8YfP2DhduTVwl8yQK13ZeY9rdLxwNsStlUeY8U8tDldxoee13VNtoM2hUNylyKo7teeGbNFOb/9Ni/98dkkxP5A3E2m+1KBHwqLeBGvw3/7A7N7j7DejYrF2zq7gnd/R4RE69RivDbu4K1sieSmpacjksCA7zb/Ud0+HzrOi6cDT0N+MXfR09O9XJVoIGpKNidkpBz8swqtCAkxhIdecXmaHH3x/5lDQ5T301rIQNyHZ4pSwebdez4VoH5jwtzmOYc/IdNsMA6BTza9aFmrPD4L8OfPSq+Vwvm4jnq05o7CSJyuutVHvc9gYxowL0hazh/uCOjPD8acKl2t3ONGx+PsYOo/R2t6nO8BXGnbMO+ySvIlP8rw5xcdQUHh3EheCff3XWCWwaX/5p93UjoLnp3DmYVPGdYYtmynPi6IH/fDjJb9CLY1UteaXzZ/a0V1OjFf2BZ8JGJnI/Qd3//wnjfu04TAQAWxC+2dttUEMxjb00hXRaLno+ZqEvjraEeK4DB1T7ZpZnQxVxdiXg3W0a/kmKBIhy25HtgtnOnRj+B7ICbbfvtfxa7B1UOP28la/F6jmi4oyNDMApP88fWx7eAFx6UO0Nd7TYgXc6PC/ply5i9+2C9a+w4qf15HnMx9IR7tdQo+TxM8bpDfyfttfof6dXeJudvvwqXd/Rv+9G8hSUP4SY5L3Y8NnRjZPcZqZNRIUB7aIUtOaxlNoJkN6BtyYvjYrsLn+AneEJfDg+oHvlvO3Ev2Pz0fBpabjwfdVyG+GPGCp0W++BcadJk0EnOqnuEYOFMCk/0yibV6brpZiaMTZJiJWLw1x04ZpccIX0+gLJIwq1gVBBFCjRhifcnf48JfkSVqE34t+nrU3FnW8bYKMIjLHZNswjLQQguYfSk3fDqocvO3X0EF/xmHwyfMbNiG7IL7exDx+eqPBST5wSWXZ/n74xtXbcEj5u/tMW2XfIRC9LLpc/G/5l/7C/709x//TJvCuVxBOl93zE2XunaWORb6H9/DtyWtRtIh0F5mvWVbunvzJV+Z+uL/syW+rGY8Heq//Umyg2gM2z++Vi11JuOP9uOTXT9myGj/JdtTm+bT8aNoEKnPlPzj/0jQHfSn1zR++Vr8sc8O6PV5fsmuG8/hb+EbkJnplmy8gf3Fs4Ge5JeQTSZL4VjAWoDksNOZnTirlNmJEcC50G3iplaPGikb5DVxtndiFpLUDVMSSjA040TSq7Lc8ZTME1S/n4Gn8fKpWGW8ZLgOj8s//3RgP91EU2f86DcTgm7YZjuA9/6kMCeYs2p6X34qGu/mjMVKLlD/W6UqdM8BYxWlm1SarKO01KUusFqNBHFV/2KYZWXPbP3xsuYWW6b+h3fiqKY5bc5M/cMXYo5Lb0hctAC2ZIZ4FtRn2NEKevh6QJm7f9/Df3z4q5452WVlVY2z0B0g7PuO/fMruZa8dTfsrrhXn1bOn3V50n+eyrB6opduSkO9QEu+ZcEmWnXDtxxqpExAWLzwi3/7acrhfMOjfHp13Mo/hh6xdkXCtNuH89W42LDEB8G+ZHHp9fo4EP0GDU/rfELj6zU4UO8TFQvF0vsbeUIET9IlzKtuEC75QkPL/jguSfyrxkxrqCYcAo84NMzTv98B7Mgljyl0rVl48UA3XFqzTSYfrOnSC85//ai31nX8CtsRVi8Dk00Zl924OPSonxxEwuM66/hp38SIlGGI144sICZOv+BvvxJPOv10v8gsXyAzq1j0TBDO1ilWYRquDyzb+281ada3/v/OFKD/fabgK9wqtr3FVd4TYadCru4idi/YnI9iHgLc1gcTrx9BV83MjQ3krt4Rw8WtzsevnklwXu2fzBKTtvucfy8BKr2b8OH+WqUjOeYBbLX4R9+PW4dm4tIEzgJaUVbwBnEmKhEgff9iwb23UMPugQp8fb0zT/9tuCTOSo2OIl6T4IFNa2TGJkLhHESU68G+m7/OGoM/vxU6io9HOjLl94abelizbXHs+Uw+mxKQqvrMh+SWtyI7nuCyumBi6g+ej18lGLWbtHVJUJh9NZM7KoBPt4T4wvWUT+Jzvuo3qDviPO5RNYqnUtB3sq2RLcQ56s9lZ4LCkx3ZigLpRuYTDPnoXUhwD7bdJJbuCW3GK2L4roTp9Ig7G1XoqWIkOiidHlZZ6rpSHFmo3x0uf6++BEe9y9hOHJ1u9UCeBpaElzoATh4yt6hK2EyZzY4wX8P5GxYREld3H18ewooP52d4Xf+4HFH6uPhd/xiPGup0v8BPXTpa0/k+qUs/wYY4eoYRZ2/XACTmOV3pt3s6E9FpwJptn8W3Fal6pcgiFOqHDbvf6TafH+fLC23kuabC/bizJvG8OenH6cSJL3Daje4H3WHLVYH4N/0XctFyrpBChrD8UGykiIakofNUlMwX6ccavt7rBD/9XpLdXdtYKzFGMRrWhcfsx63jnCRij8K1Q+j0ILgbWbcrEIE6wZKQvCt2pmUMun4hhMBn4gMxWw10abapdmu+afO9vR3EpubHzJso5/NZHQG61W+DZyG9dfPDuV5RqHZ3EsKqSDnpTxmc509MsBCDNbiTrcITJW9cPNoDmtx43UMuDl/mi1+VM/EuvJWvoB2Yp8d+xcXwA0Ckn8NyQV+lnOSPWO3QB5Gd7rB0Wt4PVrxXCSlakytkk3h6jk6YGDfh2DWk1RM0rK0zrcRQyEdRBg8YinUWQF1b8/lmzGDpuk4IKDr6W3/rn1hfcKbPXz4xn70hF98GOUBx7mZSPAWwZDUlpsBNS3ls3R7O2rajO3jvw0mMshhWK3kif+uZi+T1Etdi4DJbGE5dQ9JNC6G48THV+3c4ipshhlxpJKrrE+9+5DLaIGpSxzzxWqSjuP1J/9avL2zu4azofQA/KXsTQz/23eQeDz0wxVr6vUivbiLuVgWO3Jqyx26HZlHDGaQoDomlF7euJ8JWg71ys5lXgJnOovN6o1SvOrLRpVU4s2vTwI2XjBSPJ+UzcetE/051jdUimHj/mL+Z/lW3KrMFvUETW6l3pMDBx/r96XHOPrMNvqh+KH/EJG8UozFAUVuGtUdJw45cdjPai9eYMv1s5nR5PhDJpgs+Pfnw7WdHD8XvE6+KqOY9W2rRK9rc4AnGrOOivb7DXlZ7doB0qjjZrgL0Wz0PxCiIxOk5frdwhuZIIl0n6cQG8YR2EgRsKxZTSkV7b+ud5Jb4UyhhOInmtoVqHCVi6NtrvpSQDYCpPqKijrT8Q2qtQfvZftH+kS34+tEcOAsjZoaoKhU7OznAedUn+A8/26/RBaAI3x9WxJ3IhzObTJ3P95zKwmdKOXEbjJRV5rA9YC2fxfsda+dpw0ggrAU+EaGOwVqhAMuCcsspOaWqvluVLxLey8aamZuZKOQxMO+2bfLh0acx4lJYsY24nANk+beATh0tlohHI+/dqBjRQ1c8ykWdcvrAk6ATvv0QDz6fdFKqwdEWvMGXm+6H7HFyZPAV8UKRvsXd7PL4oH95SjEUUZqOLk0N2EsjJ6F+1rqByLiHlZIl7CzaazSIToDBQv2NiqJXoAWfHej0sGCmAE24vH+E9JlcWaAD7SgJXzI8FA2zSFydQu6Wpa1v+akmDtyylJ3ftxZC+fmhWjGMnImns/kvn27FfqkF3eAXdEr0YraorUPG9A9F1awOFPTwztlDO71RNZ+OVBHtNZ9FtL6jcKw7shMssWq+ddiCL0s/FjzOXjgqRRxBpb8CLOgfhf/NP1K4/GEWTJd8PuM8gEpoNRLo1zHt2d47IFcO3sQp0LPibG32sJ5FHw83+2Dxb+XPYK1OM52FvcWlP/z8Kd2OYXGIEWXCmGlHwfHpaYmP6aEnV3gq5kwcMOu8IaUdwU8CYOHDdNKfqLc12s4jJhuh3lZc3J5VULSjwvzHiiFO6OauI/WRYeke/9Lxi2MTrXhQEgsICkdRDzDa6d8jRgBNN4mXRIKnpK5ZcF/5fHLNyAa0tkZMb88Xn7+TXmhMeNZkyadoJsPPBpE/FOKKh8gaxMa4w1bSXPKH3/PDPMr6xJdasDdz7jqWswKdlfxKNvrLDwfR3LV/+DashafZDaz7SChE2COeoAohZdemReHcvxkWc5tL5+MkQM5zE2si2lQjy9dXtJrDM10LVznvxd/6DSvxsSXm7f1OJ+LuNFTxx5b498c3n8ULj1A+xwnzhFtkTcrGuIKrNyJVxOGds+9ji9EXzi1WIGv4rKw3HrhKv6VjMXGLnx9zA2yl5rgQq8Di4mFbgi8FGfPEZ9PxJb5gkoovSW7iKR/PoadqivieMdLXGZ9J2ErrhX8Q/IirblC0OYb1+iAxX7RKNCn5rkSKaF5JWBDfGs+/4K0hPX0t+WtV/c5Fmek6JA8WCn4Yykq0l2BZ7yS6labVKh/1BWTVErwCd4Um9l6fVHFGD0LuRpf/4TNYsNphrZBlzh/3+gru/AiYf9N9az5v0YK/DiVEbDapdNZ8Cg9R3LDobpbp9Ahuhr6Ml+Ti7tvxc3ONQIHbSOk9ckNOPKcFXf1s2b4Itulw3uYYrLXPyeae2/ko4k22fkrampngt5yLmnFANyXySaBv1LB3s1GDHN1WWNGP63BQMsmED3J3xL31p/+Qdu1qy/JK9IIowjmTUgFFQBMVX9FOEFRUVDAJ5Or/B792d7v00QInc1hrTZjxhwYWAYQSv6lW8kcqxPS2I2O8idkZN7VAG92D1Hr2jGnfj3pXqLUh6stQLMooUFJ8S8BCq59Uac0z7cN7vHNSW1zZTJsvVM8C/QAJqV4iRtss+VrN9QVHVKRiSfR3Kiv3dYO3OuaCIlQo1cwWgbuyAl+s4XrLVVPNlvA1/+b0WUyS5JPtrkswhigTMVQOlhVKbtDqb1t4xE5aKYQ3ajAnQnu0eau3EJ8TbIgp6KPwL1g1rnEAZrCSrRBd5AZ6LUroMfL+5SMl6N2GN941bKGtjnis9y7MzIZxVKiFUlVveWDZQcZt4G0+4lmKWzLuKtOEnfQjvsDI2cQsgAdpP9YaTPyGcyZo1f61AzpiaoVk3rCg+NC2R3/7NeQoYswrsqvqkS85ZCp6iTmc7VxaejLGbyZGfP2sO2bwPf5CfOSFxvK8Q5LPXeEkAbfO452FKgq2eGbHkmua86x5eNtQ0iLjKwLSXNIB9ZMDqd3jgs3REbcC9S8JG9hQcSYHnA5oM84FMrU9d8EekqFKCw03ZK/E7Dzpk94iyQBOv52KBL2cumewG6Ay5J/wyKrJFXpHFBwzSMShOAX+6I97YtkrTURo5rZDhuMCYzzxWHEeaCLYJ7DJkexOYkfkPH+J0rMJ0U4HKon1UT2LqhMOYVaKmVZNE7Ox/RvObXXn3xHPDaJeLMHX/94iRN97ykUxLCBTzyObF1GfyGYRadD2pBErdNHTvnL+TMcipUNdMj0kfXW9UfyQ9pUxxKKE//LTyA/ZvJgk/o9f4hrXNqPnzbodWL0vAWvbViTaZJYMTeR1wPrTmSst0xOFTukTn9EWBNXeei6zcnOB0BCK79H6r/6GXhDg8aoSW1T2rFWZ7AdsGac5Vehb1F0ouwsmfetRMuJdI4zrF0aOdaOWNqzUt6HyQH7x1pAS+byy7hxSh3/YvDj66ZgfXcBus6HuGG8qm9oaMIiu1EBLlHQhmXwgIe5x9PdM/eO7kbneMIb6JpciHraw6cMjY9V5khiNmixIakcRH8h+lVosz9Y4GyY2ldq6TmS40/fQAyQsrHTh95beLX/+LBia18m3ed4nMMXegS21fdiqRi53TqbuR5Gi+77uwm56w7WzPvDLeTrLBTPfE4icmysm6DxrZZNv75CY9YNFVe1jwZDwfvyCm4S9FM+u7QCpUdrMR4mW9lVexDjv00hMYLP2B4u2ewjt7ZlboFzVWmdnB2N+FEy7B0qFt/75w1MUymSe99YbL3BjogULz9NeycySlPw5ZiYCeJxrxRb0A5VOdfpCB681rasCqNQ8EHPirhLZ1G6MCegWo6N9BzHrNPiOs11n5Kyl32qR3CDBywWLCLrnbfXOyt/31CHPLuEoe3duZh9qNtVEW/fVvo9BkIM52uPRfivd1aGFSSfmlRUoq2pmGtRmtOc7Tb9h2SymADkSjWDFad1KdD4XkLmXQizLb9Aa4V/BATnGjVqE92nfqEn88x/qwHDFfWPV8e98WVhUqn1n++2eYDOrfvjjH/7EU/31HT8fcF8t+cX2NTIXcZkmdZ+h1RwMY3sUcRk/WiXq13PczfhlUeEs6/cvn04lSqleoU/SjfqE25LnitFCbFMueNXhyDpOuVlM2mQQ63KCQ8vqKDovp0nPouwErUVvwiPiUXdMFSYgFJw5Rn1VDxVxJYzPz83z84FV5WkUvio4j/nn1FoVO+1BgFnS55gfvshIJjCzvAmbVNsgHQTPOlwbT42S6i9NOvH8lKDwLRMROc99WX1CExDAnW01I1dSbBZ7UJZOuAXMU32FxR6/rcAQM+3qqg7tXwCh1guKy5ApadVBB8JOMDWL2zuV1vskceOy/p9+NIRPWOK39V6J6Hce4ot2sMGdyYJiIfMug3QJR/u2FjONcfVqeEvdK9EMOpDgmg7MT9bww3vBiE8V2q0uYFntk1uEb3LJeK/DDB+P3CD3uO0rxSS+gj4TPjn5uBfFRmLLej/ZXDP81szOE4mVdF3+he3M5+F7xbEBUqd2SYSvBD9+sDLijj+1os0V+yxtS5ilEj//luGyGLCPgIkErcY5EurhQUW2kl/OcZJ/WIQG56FHMRvxRqtGfYR8ySZin5GvcYuvA2hN1f/0k5ZXYrVwQ1WmbAbZIvlUn88CjnLSsQSJGZYsfy9hZc5dQRGp/W+1rgP42XNX3v5yk2kXCoa+WYukdCapLm7jdAPg/U8PrEe8+YQKugPbkjn2B3YyXVybyZ53JO/9QWyjAFLr3gv/fHi1PWOP4sfnqQ2lk3zRWq1xDoXGXY26rapSssOGE56oi/KzL4X6eriVuiWiQs5bhcIYoCLGguWwuecCDSHFIx/82S+V4qU0EhG648PZlKmqTv4BDG33R+3RXwyUCYlzUob8Wz0euazAnYDvTJZsplVXX2bPfo4xTt7URCFr+0YtFi4j8Yc7yL8oLurnx2VoW4uwpLtcNXbrQu+aW441naWSWccTTskh4C4BXstRb3B7uzsyH32hls1UuRhpt9moF7b5iMcueIxPlsB0m/TCngIZ9T36KFGQyFDeb1iZafFPX1OZMeIHYizEFNV/qreu+R2/DZixrCzntahmIYcE8JoreKlcVo9OJ7/4dc7fPf4287UOUxJvxGTEi/2vPv7wxZQc/URWj7sJb+RNOdKSZduhioO7Io8/Nh3xtKrc8g5v/XQXP36gBDoM0PbmhE3Ki1IcTYoL5MYF/8vXH+uKNTAs+IiwLEd89bEHfDaCtRj5ny+R/vnAWL9FdM5jrNhe3+LHMN3wojwPqWSLwxNX5u4rFuX2g79in4w9vOeEDyg7JX31iSQI61GzUZ9ru6oxd1D3f0uuim+QS7YpnzDmSzHXeJb3zeKzh0TXzyOfmKQWowWH3vQW3Bnx1le0X9O1HFWxSKshHypHo/jrPm32T1/K/IjjUZ9lfmGO4wp7POId7c0NzVWJFCKewNmSVzH/5atm2QHkrnPmriYPSjWJfgenN4+coJmXW9VKbKG3F1MK4/MM2XBz8VgfqTovzLRvVrM9fljmnfZa0OS90A4TCFXjcrvM5bg7awXuqMcLVk6SXIrTfAcP+wDCO3tz/xvOJ58fH2OLajVNOavLAvtW0fIn3INWWa/bCUZ+LGgRUL/PYORfpkQsA3XCw4iH/9WvmCzuqbCstYdHfEINxM/pUBk5xSPfYiutsHAvktMH9+b9Ql/ow1vRTJMbHvGOGPWvXFTvqoAxPthEw03+zuqdix0HLzmHalr3iF4HMPpJIzLyaHOO+qcOlV0+RQSTPu1D5F7AMecJWxHXqe9WKj/w0GTDPLgXWKKKazDmE0aLgPscXaZrsHre/bN/j/p5CS2e1mJJEg1LFt/mkDrxOAfnffKHjOQAfT/sxYJEJOWZLTVC7GYmJgB6Ln56Sq0FN/bT78c5gTtojGPDYrKJ00GEWjnu8ntxUh48bKHSvP/8m7FiE9cyvK4LqGDTsPAMi9TMho+NW40TEZ1135fC0C5wHdSEeWX/VN9sf9qB4b6wYJCO+fo7l/DjQ9FZr329WvXLf/pjemZe27ONqeHMMJwffsp15NockiFVXC8+tDbDPyOAsV9BMcQHv23CzZ0I+9mJsGoj36xWc9sdfy/iczW+s/E6fKAxEGLTqprgwZpeBmzp5I9fq+qCRbN/vMAHa0V1ctETWe3XA9T2hgkPZW7SC23cHTXqBb//o5D9t8aMCE9MQdr1t/F2azd1Uof55aNNFAr6Ajbq5bM1qlCuRBy57krXYsZA+yR99drzn15LnXI/TTthXZ8/PYLR4rlMu1+8z9A7YT+8J5lzc3/481ffEsVq04Q3dhHXSUZ9wfx61HcWS2qUYqOG6mXNIbR1g3lkjhOZedcdfN3JRawKzP1/ekOD+60IoHvjwbqvyp8+yaIqTlqjGq57p9KXOqOaM2+t5pGvQcB4JxgZ71qGB9uFGh82YgrN9tdv80Cgm+AGIR7WWXfZ4wztnoKO/ZhvpUIJle0bVEG1Sr8hvYzn7XaCavSW9mF3tSHVz4KtzskkN8Tm1f343U9/ylVTYA5/uh9wOA/UV+wk9X/8dEomMTbYe7mARjZn4cM+TBW7PvYQIfdBUdmydhCmtYbGncecwE5Tkr3qASo34WwBPEk5E+4T8iF3xLRIk3SoqANgySj59cPygbXmBCotv3CnfH3T8Xk6POrhYqYddqqtkj8JzFiVHJPMrUW1qU0wLO0jVtWf8sf8pkGvlw19wm6bNki5W0jlh9NLtb2nInS/SxjxIFsR9pcO4dH5QGSRowgLMVOymWIXhO5sxQwtK1+JtXmCr7beil/88Ax7JYSW0f3wW22Ex80Wxnoq5uRzwv/+71czP2xS6V79DvOPBAs9B7GEcqLMhq0lHvuPbFaiezLyw8UPr7C4kpdcZfy1xlML70VUzoXP2cQZsDHcF2P9cv1OwPKOlW3Oxaz6vFJZbXcUsDw9qAVuk/RIZQCYGC7ztFOEv9asPeHGyBvmVYaf6tX+IKEy8Uwk53RWj/jyBbk2qZhfJPOkb0i/JFE/3YtVebjhV+ZGHVyH5UtMztNH2rJuf/qnv76gqXxVOXYMtd4YI59I/M56nwbIHAjEcez/dVVVDtAPzlwkVbLM+/CZ6796LBLyd1G99VgvSAXxhA9abLV91mwKaPDSZdPyHqffME0ohNCaFBXAlUKn/A6ZdBfUQs9DoqrgvYbUTT2qARNpW6nbnHxJGnE14u2f/g0rbTLn3/K6wBLtiIs3Wh5yVZyHRLL8usRH4g4sIBn3WxR6QHr0KSgiR0i6qrR34PTrKaPahad987k8IUO2xjzNwL96qrmtNbhspdVBolvuxoaNkSXCq7Ro1Ou8HdR6QXlbvrk/ILWx8Xe4zcS80I20tT7KdqdoHbPd2L/kqAg4PPrC+dmvFo0MxrlJ2UTMwVy3Y79lCa2NP/yODi4erHki3dBBD9qdj4ZqmG6AG8rBE6Me7X8t+yWxMvmK9oXxbnuW3jwweq8RY78Gj3r6Eo6qm4uYdEUu0Kyynf/rTgH87zsF3XB6iPCyu+dD8QIJfpD4Iny/xv1FM2KDXJi+iC/FMN4bC7grt9OXmFr3vFWD4QSAcUOoMz9C/U37YA9gzp5cq4O36mtdDuR7zCJ630UFlk2+3hJb9xFFjq4nItQWa7z6PHMRDQb2Bf7EBRxO7CAW+eeueukyDf9tbi4LxXub9vxmcdzfsj+uH58E9811sie38xtY1OAD/gaVY4P/WmcimnxU3aPnfQHTdjkV05bMcqk99nOgE00yX3+yXAmemVhNYMvlkZFa6bE8kFcQP9gs8i/58P2sKfFi5VKteh2VvJ6iElRmm8zzSoLfB9OIQd8eKrbA+30qneq7BTTZd2x1RZdEWcFXs5/d3he++2en19XqsIboddM5kpT51slarGES7wNunI6olsX++gKRXZGg9H5rpT39ePCzH1rrj1pdbfTC+owJsfwMdS7Peue6FCYvNq1Xdso7N6RwYtIRvoioP/ztrA4/y8bnln3zaynY++XmW2xRvP/b5v2HXWx8UZOE49i6JLwZZgdYYJmIPUvrhKtE7fAb6r3w9aTO1X4/G8DU+VuE9s1v38t9sYXlpfVZgnwb99ebd8NlE/yx+dwoE1XGWQy3N1+yVUan2CgeZ45nujxzbe/t8APU9QmLhcrYAlduKq2l5bk7ggxO2mLqW43RFfD4Y5jy1QThrmxfLhTytOMqsRdtfztfbrD400K2RNF8PO8uhj1Nb9y9PPZY4S4v8dHRDHo2qzCXz3uxxc+hO9Dd6I99cH7ZGPkJUAAjQNy/zZkOaf8391+AvGnB6Lee+AO1tLs78/4cbu5kkOtDOF9CtSrevO7jKv2S2LEhMTxXePWD+jIMJie8Wdy4WCEVpMMfXXIYWn7mOB/SdCgDEeDKOnhsdjZEre7eG6C4vXe8ZiJoVTCsPGyHmz2XIq7b3to2AWzRUojprAVfVdDPYTVzLea9Gj+3OmRtYTWzLQ6GEdWic4I1Scrgjx2Ncd+Ls75SeA2NxmgdRGr42yGOdeuVUrc0v23XTOZ3mCdxT/k+sVX3p3k31PD9RbDkskjVYMeBK1YyFrPTEbWt514KsrQejfBOJyN5X+brNbCN+RUeOQ71wOfezdW3p0qs7HdRv/vPQYMLrMQYv0M+HMo3wEY9G67rxjRRh3F/dLVDJe0i3fIFflwK8lkHOXXvcYzlZnxbegg9R6zMXqRcHuwBLve4ZUvz6PwHAAD//yRdybaqMBD8IBcyScKSWQZJUBBxJ4IIisiQQPL173jfmgMJ6a6qTkO6RxZ0CwPC92zh84l9k9V08wH2ielg56N7LQeDedey+4tRZDRR+/HP+QscBU/GuuWvFv+tF5T8YUFVj61wyS6jAJ8SzZFgfc8JCzplAdYCJqJsbVLMz16soaCglkaSmhR9TgRXW8RuQgqnujVz7x6rBpskHNmlBaZo3yNofaY9vdA/jfrwDNYvb8T6nCpgDrfWBsj3qETb2+/cq0N9F4ae8KT45pntVMWPA3w0HsJOX/qAj0/BhF1ZtVjfcgTICioTOgIrEbsdV2uWds4CP/Shoym53UO2lDcGMnRsyC7x/ZFtp/QAzvFmQNKxVJI7+giV1o+Ojw9b3Wy5d7c6TRKmL/XKUbIYcOUJNOUIqZejc7jI3lmHdnr/48/fuXLZ12FdIhfJ3iBadTWvipa484vuB2tOZqFMGvBFfUTNmzeH/HsQFviOqEv1y2VJ1t7Z9MC9VgY1ynOY0Jusx9AUkxbtptG16FieTO0cBm/EiHpPuKn2d+jpnkWNC+2scflqAti+uxrBAeyLxYbUhqeNjanlJQJnD0HR//OPV8AJTEmnxhC9+5ReP/UEiP3+buBpu2ypvnxswObpiyBZZ0DNNunC1aB6Bhp2flLLLX79H4/ABD89INp20Asug6/y35747iec9lNdwasinWnA7QPvpfVAoBRbDkXXc825UmEEz/HthtRXQsD6yHC8QxkTqP9UP2B+HwxXvQ5Phx5sh1h/+gmzHRixx2lt8YNrBtDL8Z4I6JaM/GEU3h8eqN3ZJv97P3B15CdZUfENuYBvN2g4mwgbkKac8VOXwsjJPlhHVpLQ7XHR4ane1aj7PM2E/nwJpnm4Ei2OKqvXv/np736KTLccuVk6DG52mwtSqPKyuGymGzDXR4L/5vvz9wPgsLvR/XkKwnUftxV0lceAdvqQtFzWmAIfaYEoejxEQO5jxKCanie0zSbWLqk5deonvEzYuFA3nNUapLBn7w3VE3YvWJR4Kaz1z4co+7ff8rwbdSBfNyXda1u75ZK7gUA9DRAN87kFXQVGHb4PXYfD0+eWcLYRbbje4hjH99hoJbFmndae0zPON98mIZ1Q5aBxOgXtWJtY65AGKvj5GzbxhQCK8iXXDs+1RbFqvwGTDKSA+WL7NKpExVpkrzSBWN4vqBeXYzJ/lbwDW6HSyWKXJCFtcFHge7S22NP9K6eM1zY0GJFwuOknwCYVo53zsUokqNvMWue9U8GzOCD0onzkS7kEKvw/3lyyhLFZMWFBmwyBgvGE3+PvC4K7bpMpivfW+lWfL3i3WUgPVVoVzJ/bBe50G+PcLzPAqt3JhEGEciL61SFhE78joMpZjaPx/bamydnegCohne43bdqu21704Du8uzifgkOyoEqpYG6dBGw03z6ZdJbGEJ9yjawqsUbZlzUBJImaYvw2X3yiR3WAD9fZEOWwNGBxqOGq0h7q2PYEMi75GrkgrIY3DoJHkMy19z2pcVSJ1PM7FZDMHyZ42Q8jURnwuNiClkEpNhxa8a1mUSsfF63/wi9GikIK3k/9HX4xmwnDjgtWBUU2SJLMpvc/vht6akIRmR8yQ2ca5+G4KhCAt0ad8ta2XDiOORzMc4EDnqVgsS+KBLPIN7FbRU4yScORaOUeeBjLvOEcL14PQ54F+PDLqbOHbOjaujvuqOmsPh/x7jCAaAxGJPb0yNe3v9iQOcqV7gv9E45biZxUW+lsIn0GN1lNfB+AfKtnnOfO0VrvNZ9g/T6GFC9OGPZ728vVW9Vfsffcdxb7ms0EgpRG1HzIkrXqip3B/GortAyWO381G3mCSAs9bHiibS0t1Qm8F4SiaYLKuJASDzAZJIXibGLjX7wN5zohZDGJY00t9Qg0g1Ul0x76gF03mwM80KbBf/ORGwoG6IjZjMB+zi3+sF4BOMZvjv08bcD00cTflzpxQqusjyPZPy4NaM/KmxpxIhXklO880H/zK7lw5Bbi5+mlKil2Eg3j9JlMZ7Br1DjVBrLNxGxcT5fW/m8PI/S0cD7Fi60twv1AlCmJk/V4d1x4lhZC1vhdFWxL3gisTyRSU+ZzsgCWNPC6gyLaVVYI2B/+4ya4kc2j33F2DgEByvQMMN6NS8hT69HA9HUwaJkAEcxDVihQOG0oES7vaZx6Vtda9enf9NjjuV1eka3D4+NxIou07gC/yfpJdU/fjhq964+rYz4QrHXjQo21DVrxjy/jVg6oSbKpWNQ0P/3F//SHHzATsNw0PWm/VDffRijh6fsC/PrpsNm+ScizRFi0a/J60qvk7a1pb+u5VnfXkfof9OLrzR8r2ALypR6IWPE/PjxsbiZJ3JM1yneOBPD3fJ+13Jq8Juz/8IPd+qKOvPzsJEjsq4nDRWd8rQMWg/fh1WG0C6Rk2gfgBpRBuGGLENNawGLWgMjQxa62ME46XHuw8KcTLsSSg4VXWQWC5h7Rat5M1iCriQQRERW0HdQjWG5Gc1N1BUfU9t1sZOI9f8HxIFvkLz7jL5ttIL+kHY4azw5ng3op+BBloTjW/HYx9kkH0QWk1FUMH4h/fJJF8+k/v6zeIk9ALmwNDflGHwcvNRvQDKc7RlmYg3X3lTOY7DwPB64qFYQYfQPSd/ZEm/MuBpzn1Q3e3iYhxGjmlr1LFEAPKiOiP3uRc8gJDPeTgTNAnyOfttsYGvfsSaTaObXSbc0PUJqZ/atojItFdg8mDPfEwK5ANE5lPYTQnBmh5q7J2ulZjXdQ+J6J94IwjqPY8x+f7jcUm59Lwi61CgEbgwh7BffALJRFAxNHF+gpbbyQK9X+AHPTS/GDPBzAPFw32k+v0QpTj4vOrggg+bodNkbBSAThMlZgXx0JkfcR5xON8gEqDDwQFzqcvBNZTuG9LB6IpdeXRaB+IPC3v8Ph49ff9KqBGMBJMej+gL8W066/2q4krakVKl67rkTdQO/yy4GfZGOUkLzpgDEigzr4URZL0rEYqsfmjvUdePKJmS8E5ebNsN7csnaE1sgA0m/1//0jfcCdDdUw2GN9lOVx0M6/9aNlha0bG/g8fYMAFnEvU9dtM2veNoEHF3/TUrRvNy03PLcGy2P5YEfLtXBVqyGFrRe+aXQetiFf2kCAHJoBNftdWAgf3e3gGF0T9PQm3ZIb4dyru3dmkemnt9/X2bHhcEQArU68hFPqPzpgXuCAryf5OTLroE8wzf0VLe/ZHLkbyRnYu0ylB+l6bXldRjf4PFkCYfLzXfCv6zMVvW0bR9Fag+Eqqgh+8ub+y7/cx+XmlTkw488Wm0c3D2n5riV4FJMLUkAmJd8B9yog8sb91a1qil88XcE/PYyMBIBp/Aiu9nn6K/ZTiviYVM+DpvVNgERsr8UfH8Kt5qRI3R+qQgpt6EIRnGtsX0jcktaaFPhV4wwHQdYlK1zzTq0+wxtHCVs5Pxh9AIdHE9AgeAzJsn4DFR6uHsJZ9YgSMdvGHUzS6kWk+qK2U9dYMfSIESJxCg0ujecYQhgfG7IJpKFlX/MXD3DZJmtrCwk97nMItF+vvHM5hSNJds4NYHMb/fRyDPkxVCHk3cElt2SwEhpi14OVER/JJg72YM6FKVDXwzOmvv6k7Xq8QhuqCb9jnE2ndtkVYQxTfdCoP41uuIyEusA9JEe0lbkJ1jmkdxCV15GG3aYcF3dabBDxaMHhMIkjUxsjh798C0Whd2rnw20T74itndCcfGcwD/lLAfkH5v/1bDneZBNQfFepqZs1YG3wUEFqRBE13yYuFoePLrhkTUikY5kXay6JHsjzusd2mZ4B81m0wGZdj5iS/svJD+/ApcIZB0FkFjypngh4WXPB+Hd9an69kXaXj4WDav6Oc0dI+ocfikfrzOcf3oHw+0ex4tsyFCvF2sDf+DTcnw6WGKpf+Ov3UFPDerqcZ8HCtGuiH/Ht4OBWXId4A7vXNidzHG0sYp74BCmMWnrYwy9gEDQ9bD3/TfHd53wKhJ0Kf/kGouo7p5BcI43Bb7+GA4nZ/wAAAP//pF3J1rJAsnwgFioClSyZZIZSQMQdqB+DKHMB9fT34N/nrnrXa4/KUJkZETlRsukngsDOZx8sEW32dXtDMWkqvqiJgtpND0DGc3wRL8xbOqe6m8L7G6+/OUzqbP0JDUi2EGHvHfDhophtg8Zbd/fZ9d30tP+rJBjJ+MSSxqXhQPnchkSZ3j57ifbZmBrpS9h9RomYUf506ifDALqfDgXR948rWkYNXnA7VPtpFe9BtQg5jVH5KB7+8Vrp6ky8cwOUZB3+6Ttzw2e58L3rA1FJFjsLZ/U6AuLI2+cPdSrr4i3OFlREW+6Ls1x1p0OtsP9g764TZ+PPAZxLMyUa6b7oyzw9CWkxmbFH3Sybxi7xYTDiYTp27pL99FvxOR2Hqa6yqBp+eIU18/PUe/Y9671PnEDHvgiWyktQ1abFvZD84BbiLYoekivNXxCnnOL3Q8bQ4d7Imigvkk5Cwd2HC5KNDh3eouszNmtXK282JvTF1tPEyRYd9g/vBZjNL34538Sq6+8rA2+5nIjt3m4bv6skZMxTOC1+UDu0XLUOymznTt92qTc97atDzd+w/9P7+h+eD8NIIwYWc9qIVs+iRP5o/jrfnj29jS8JYo8EfnsNX6imuhMADNss+IIDRHYXTgH9/pDxpheH+xFQDHrOsOQkJk+HHj5dB4dycHEWvNhs0f4WAZoH5bF3T27q/PlbA1BuTId1XDuOcKgfb7BmtfV5TtpnS/EZchjFx5OoV7WgBM9Sh5B/iIi56Uck/PUIROvJh/itOayujgFIzuvtd9mF778YPbsf3sSa2XfVYlrcA3V/266kk+E68+Hw2fa1f79+T2u9n+608IH4XEesoSzVlq+vER8w3d90FNm8am35qvzsF3ubPQ4n2mtQ+Yw09cE3zab83MV8c7qciLZnavXnv8RKeFv4ir1DRu4iDZBuf4qNPyTbOF05RcXxwE1iIvbqnH+/Lxheh3xCnVn3m94swKGuHtN6ak503PRXeKXPg8+PeqCSn56il0bs7zb8NGx6OoJb52E7pN9wLSj+wLdwFuLyVVHNJ87TfniEuAat6bxqoou+N8bFblIfwnf+JQ9huz6s+Snt586aWdGuPiO2vu1Mp8Z6TmjTQybGfysV+cVbP573GB/hg+Y3fkqIiewQ43MvV7Oh3xMwHtJEZI0xVVrEQSquQzASSeO2XV0FJKCVq4R9RReryafRGzjdZLG+suequ56fE7pecoF43iKh44Y3wNr9Jf7ydI1ww/tnKOx8h412OYXHvWelyC5fHlHuu1YdVsY2AR+bhZiSdED9XZsipKfKxedyRlGbsI/OcDHg5S+TkVZ7r/MeiEH6kZiHr5ctQWhpkMzyk/z0YwFE2omaEOx95v7S6LrwniScXomJ7VdW9OMZzbMo2VxELr4lq+wL9Ypw54ITwbv07qyOFevgegaD3YJfs+ZPWXykH1Hqr6elRbP1bBsg12A3bfmhnh4a1MFjTiLsJX3l0LeUADJvzZH88Nu46d3I6ydEzMEesk6rW0BSEbQb/zo7a1m3H2HtTQ//OXmTzavh+6iNLcVH56jIVsZPANDjHU2Mc2H7ccsfwQ/fr9E5d8b7GtrwjN0E66lwDzf9SEG/fEfSZZWz3r41A+37FUzgdAWdd6mswT38FFOz8Wu6wqBDKl1tf9YIm63Z5Z3D+tw9id72t7792Tc+agWR0m2O6MVqGdjiJXbee7Pfr4xtw4tReKyvmdaz3sONIJKxR9Q0V+haJ4MNDA83sunHtLUKcwLBmW7//DldZN9EYpPbJEjTqzrbe54DH7PY5zc9c83MJgf07u8TlzOlOrNDOYB5BQPj2jER+yyteZvW4mH1qspoiYYyBnFx/nxmPDTqkuvn4Ifnpq+r187yvr20H94mqh5UFZmc9YN0+1343KYfkbvkRgCs8fERx6t0y2cwgBVx4x/g0knez+m//ICF39eK6hqNQEypPaEDt6Okas0GUSlV/GP+NMM+gvdDeFTeG+svrcioxhIFBcrLIAbJ/XA9by0sxzleCebPb3Xj6ylEPrg+ZzxOPd2xnzNUcOaJN/NlSOWd/YCNz2K/RDWl43oPIGEE2M4vr5K9J6fihr/JaeuhXRr50cFgCODzw75T+1OfKsgleYlt93as1jfwLPz0A6tYqh/ee/34M1bO/eB0QgMJ+uF16GMazps9wEm58f5y6sFZr+fnIJi37ohV88Gh5Sq3DfpQliNb115Fnp3NgmkuN/zz18syFAwIznD7xR91JLdy+uHniW8TwRmbE9vAQKuTv9O0pJ9ApA2I2S3d8PhcbfrrA8Xv05dYYTBWY8LrJnz+xmrqu0vbE+t6fovXI/InwXCZrKrOBsCZ733/mL1v6tpqdMtfmR6xx9eXzoZmpmi5DxLB8SGuaATDxh+4iESB6VTEHnJW9DrJIRaqTeeXzxSd/asjBnMZqjUeDIAlDc4+wz+YbJGXS/R7P/7BujYZSY9mgDb+4R9zMoer8feXg6znT/KzF3obY0kM7gyaBDv+ZOPjcZnEKUOsf1C574Yn0cT+/IWyxfsFWzEL+YtjiVozV2d2g4P7j6/In1zLNn0zAf5Xs36/Sohu5xmdsVVjqRyYai7y/QPovf78+BBapAOKERyqGDsfRuxne79wIHTOTP75+33LvoXjzr8QVWy08FjEaYI03ox++YNqOlVnBv6C4YXDxd6FU7TvU1jypiZ/87pTB9nXP6iKXwdifXN36xkW859e7G/jYPt5f9+/hB9/odNUqvNZKCfI2BeaWByq6vTBjQl2ZIpYEY2uInm63+KZ/ybOVdAzutJGg8v5S/1Om4vslw8U/qeaAvG/1xQ81cUmPnLnjFZ2J8EScTGJPkGJVoHXGhA85kTU9nui66mYOXi2H4to5nF0lvEQMMihDcKSPepb32oQoyMf2X6NaLbN/pE/YmgfFZ/ekwbN3TwEwIjP2t/P3yabxcuVQedG/hDfZBNElecxBy4JJuKkz1z9fR/Yzj9gvUxtZ9m75kugz0iapjpa0RKuQgevQPjDti62/eDyfQNWJThE6xijOvaeMKPxI118UoLT0w9BMRTrXsKZwIaU3NRSATBMSuTptlcX8hI0cJ3zHUfKZe7nv/QZw1GaOYyPRy9cXdSVkH73Fr7bgdsvzDCW0HmDT041GVU6Hi+s2N/XI/a/KXJo760rzKutErWmcUVVs3FhjJfIZx3WqI7L951Af5+PUxRZW85x3D9A6tiMyMZ73y9n929FGbZ8bEjjtVprJWng8OIxkW5m1K/Crfsg/5Ain5lEGjbOWfuAvhde5GQ0Qbjk1WWFOg6O0zqxeTiigyyBcNcErJtUrUb7om0FlmeOWMvJVZeH7DZo8POUnIe93BOz7Wd0WtwbuX1F6AfxmU+oVss3sexgqKbbhS8haDSC/epPzg7ebfdCn+X9nBi3M50letxXoPqzxlJ47/tZltcOvBfk2DSYiZbbJlxgpFuBVfloV4c98A8Qg8d9olkghXtGECVoSTn6S1MqdJJC8wWvz/0wze/8lS14xR+0V+sOG9PNDBdOyldxCGLb77tMd8YZ/AQ5zqkhpn3YZpPfVg2d6sXCclYK/VzOtwEuaByxHp3elL63OmZ+LTnsyV1d0Wd+Y0Hklcw/6H3c00vzmWEhgTHRsfyrJknlc7hfjHja/w162JumNQnFN12JxAW0GslkKbCuDPbHW1mpNDXuZwTKW8aSZnTVbEVpBC74HlFvpFGHaKxfyDy7GrEzrs9msnsMwIh/2/5gQJQe3/IEsViyWDdO0C/oYCmwnTfiyd2pH07ryRTZzj3g5LZpWF3gp+iCyIilrVp7bdiZg+699VEF/F9G0YGJ0ddhfH+M62848WKQ7h7w0qbluxyr7vWIfBiCyCaBieJ+bE/SQ+Six464RRtmy3eEBzodFJ0YJNLUY4kyCeKDfSXaoy1DumPbFGrHVqZRL5GzdGerAU21Xz4ThGZPzv6rAeOsbv+c3+nS3LI3nIxv4wvb/S9f0UmEqZ0SIllz73yt0OY4yyrvWFe8r7M4IjkjmJ8WjjrvUdH30QugYd1tn6zHOb0xEIAn9m/EWTyaEZqnD9T2E+P3TA2UUhne/K2SnxgzbdqvbeSd4TsNBTH0r6euwofPUay5BVGc1aKLdGLOiMjqiyhqcEWNM5UvURxrb4ITaCGdqLtpTFfHB23X9GTKOQYyfR5JJk9EJd5H1kEbc4yNUBHopBP2jHa3w20aC12sZv/w5FCurQaR9W9CBysKIlGmp6vPPqdTtmeP7wDuu4DFGmFFZzyqAwOfMAFiDXcjpLsTlyAjPCp+g8cbWj+MzXKntImwXDhZ+LmTEyu8+Ffh79dxrkih1Io4BmKNfe+r0rVgiljM7oU0kb6Zw3l3DxghlyAhkSMsDjFv5waUvWxhj7kq1Z6tLyYkletj4yDk/cDq9CzW8zYX5H1+qwvSEglt/tzfq76bzUz/0eD7iSTyh202pO076wRfnTQil3ypLgT3Nsq/eYqt71iGiygpgfiMq6eP9vAIlxcvNOhqCw7BPlNXY7I+TMQ3lu4fZi2oNn8dAaM554llOE1lz97NhXoUrlhzpjxsbfmgwWVXPYjDj9+MvhyzhLN1Uoh2k4p+SAKWhS45qsTMH63T+dRQUMwxWymQp1Xz5dbrSG3WgShzv6Cl/HMl4LddGrafF2hA6qaJ2geFuOeLhdZbYb5ASbb9YTJRM8qyDxZCqLYapcuhX4/akAiVXhrE5e2lX5ThYqOjmcTk9D1cw7lY2gCENyZY3vzfXC/2ihTdlrFHceCsfMZFoB05mbzKcpt19Di5sCpKNi2sLjpL6XICnPvDFXvcUKp01Js9Uvaq5R9y3a26B+E44D3lQjDcioq+0FKCduUW4odnLVxGY7JRstorUeY/2Zn7sdHQuXrtsXeGD6WOwzGgoOaLdfkB6kjLIoK6GE4Et1NC52mflWAf34Ev4NYPZ+fsvlFsKmfiD0fHGbTbQRHta63gE/p21biGaYp2y0vH8u0roeXy5R8wP64q1oJ87BdJWTXIFIaZXuNeRwvTFhHwDDGJqdk71BjjMYHl1N79cUheiArfGVB2JRf/KI2H6mdPoOQ4xRL9TNX8Zyq+qH8mEZvHJ1X7T/5OfteL5QsvqFRIOklwX9KATbAS9a30l0HMuG13DQNjvzbflvnhIZ85e1K4jp3RwWmyOh85N9yvH0bZQ/aMic+nRds35ZjlYA+Whk05Wat5vd5McDg8YnvYvZwR1auGPuUt95lWzehS18cHH69GOy1aMVfDfdQZ8LWnQU6n0lbnvX/y//lLln4UeiAFewYt/av8dV1SdeZ27VnYrdgiZllewqZYivMPr+BzWD+y5XQpS7A9sSLudHCdxbUEXVgqVsCWOpyd5SFrHQT66Y8YyV+H5jw2PuiJdynWDn9POut/ggJHVzSxe4J3NtSLPYOADt50DBUBLcxQ5xBL6Yodpn7Q9e/7TKE47+etzp7N5na/KnBq35xPj9Cr7d19x/AItBCHaXENF2RELup0fauwy6p+Ee4kgpWOAfZ53VTZ6wN3KIKhI3fXeKmTFLuNuMVXn0Puw2kPNrvN3k8aYi5NgRaPvcag6suDhNlrUcn3EXcgJbqJZc+7ZusfO0TImESWWA/bDv/hLdJ1LpYRefbrLFgNUpoaYTmLWzQs9pOBH/744anD734zP3WwW36IOvX9xRXFm+oQSZdL5xu9zh1/OdoIG1npo+HatWcgmm5Py/MsV+uj+phIF8877K8DhKQ9HVYA9arhy64aKHkURQK4QwXxM2jV1Vag5Eql+E5dMQJd+vHKoKhtGWJJB6C09CYfoI4icmGPjToo4rCHXRjUPseopCLowETwNN48tg1LyKiMV1sc8csnrtd74bikQwyXZIufs6bTZXaeKez1bqt5PNY9/YutAcbF0X1+3an9vmpPK5xitsYy5CadY25q0JJMJ6x2b7laIk/ZI4ttXhPzXNJqMJNch/O0+a/Pxe/pklxfqDyG9sTi+tzTVlk+/Hv+4wheTlJGdRx2UDumQlx05ul7swfkXhsHm1IWI0qZORLjv+sV+5fYpU3pHzrk6CU7IevyDUflaW+77+QX0Y3To5rzMoiRzCLNXyPviEb74ipC0BzXiY0dT6V6cGNBeLYDltuehGQ63QJQrlpN5AufqgvL9QM8roIyUaY0+kFozQTMU8GTy40u21yWOQH1zprErP5GZxXSaUXX/e5NvFWv+wVxng+HNH4S6fIXqWwlZG8hu9h/xLIsyVlMFrEgMY1N3Krq0HKi2ke8mW1PsDpo2fERpA8koz8Wn3J96NfjR3+I3e5+IvF129XjODOAf/PSiXnfjurM9JOOLJlDE+BaQ0cFngmazzadUI1Whz6KIgVfHTRy/t6Wam6NkwvZBZVY37+SflW5+yyc/jwde+1nqWbx8mTQFi+wVSh/dHqz3h51u+w0CY1hVnOyPAZIrO+fX43lrh9NFu3RLmt1nLUdcua/292E6S/6kPDLM7QL5V2JwqNoTCWjoow88789yk+VTXx7nrN5d5z34oNrrgR75xdd506YYDuv0zHqs368HM0E4mXbjWGnu4pYKmWg39st+eFl2gZmjnL2wWDFJDWdxs5ooDy9Q2Lxda7+82fRc9ZxcrjZ9F88D3bZfrrlSuUsKK5sCJVX8Q8v9ucBStjwqP/NFVXd56GTokZQDOx1lZfRP11YQaGBjnV3ErOFf4oa5Od2t/HNSGUD1dJRlJLU3/hEv9QlDeCWDTcsvXMmnLyE5SBST0Bc68iovQMFgHDXBWxGnqv++BdCur8j3hqw4SznSY4aQTKwrtxvtNk1BYe0OaiIXrR/akNnbo9c49VhF+TaWZ7T8hI3vPDjE9Uq++sEf7dGmd75G9QpPrYxmkOmnHjT1cK+94T1x9+xtfFf+smHZOv7//PZx2JVG75g4VFIR2Lp1TbrmE05fsOz/s7JxpAeI2EFzMaE/IsHD8IJaF8oJnZeCY8WpJ0V2LEKR6wz1zrrjf2bkY0SGRvcMKLpobg6yOjJ/vPvvcdFPjAtYL9CfeSQJyMOv+fnC8gMehrEWQPz2aQ+1dojHRhBVH6/R1LaSdW0u7katHm4TMuNXqp9F+gJ+pK/99S/17pfyd+Sw2Yf5FRZc788ymn48VNyRpaO2LVqVtitnuUfwx1bUa/1zoLyGFRi007ql5ifdO71d1j92jsp4Vp6cwyD0e+wXlVxvwqfpYTf+5CGfdFTWep9tA6p6zdbvF7qeveCJxbTCXj70i9EerhIXw4r/j3flcPjR4BxOBDj2tz+8Vv4+QPzcOu2+FKcUXApx6npTm0/iDt7hm7oVuytQZzNGH80hBoxIHIBerhKofQSlYSLiKo9DZVoHG5g0DkgCi1P/8GT8esd+HC3/ra5NH8rpFbTYNsf1mqs+MgUN/7sEzvI6cwP2hvtsl7/8ZfwwC33FQzGpcSWbl5IPv4lEAHaO1bHeKLz1sEJucQk2PPMW0WtOlZ+/sifkfWhv+sFd6bSdMBOVw3cHERgJQ9xqgLmqbYbXkL2081JptVKNZ5mKYGcOf4Rf8OLe65wEqgPOJsE9uGh1bX5HEorUSbxuodsdO+yBLqx3okEDBeusc5FYCT3PTZIvqejzXB7CJRwnvgvT52Z0oPEV/s7Jj6bO9VUyPUHCQ+unTallE7jqUihop2L/x8/vWFdAf/wKiU//r2T8oAYF97PllfXTyg2pTOWXa1BPz1O8IphT2xR6TL6CIIXKLopT8Lx3lZtfhg4dHghPNXNJ+9XIf2swlCcJ2yk9zJbK3ea4cBfZPxFVaHSZBe5gBPLx2bjBA7dJWoOpzH5Yk8vkTouLTqjctf2G98o0cp+Ewl2WiQTc6sTWy5Jl6OPOI8kYNQsY199Zf/jH+k4W+rWbQLAC/x/nt+I/+D18yf4/wAAAP//pF3LtrI8sHwgBwIqCUMggMglQUDEmbAVARXlkoQ8/Vn4/Wd2Zmfo2mvpJulUV1WH7mzhR1J/u7igP14z4p6yvP/04wnCn77f39y+mK9vsF36ajwoju+7hK5dqVWvtrQj+qhhX0qiowfLVnoRPS6JmNHHU+Av/h1rLRXzo/JLOGXQJtlFzfwJKPoNTt+/gh5uUdzw4DA72g9PSXERybz3cx1Wym1FQkNREkH0YwTdCFtT9cJPn0VavIV1Nbp4rU46oIqSKvCcWrvxs74eCy6ttU79OhsxDbj7+L2B3lfQ469JvVzeF9ykfxlkZ3ZcahiL/3IIHOA7lYJZ+Wwbcdp27F+84w8CQpyupvqLRxodk6bg3Tlpgf7mlKBtx/xRvoYSTG/NAb+fG6kQ92f0BcHzPGM5nmrRW9nzBS3k3qbjdE59dnzNJjjtN3eChrAu5td9WMHmdOunW76z/c1UbaF2udw3WNByg6amtzqwCbBNzXxVA3EZD9bvfBF3re19vvBp1dn9RfRwswww/vThtQp6qosX7sdsN1nwEGYuRd33i+jWuDng5zf++PT4uo3LLM/pPEGfy81AK0WBtXewqdUUNFn0vAeOJ7+nITEpEnWpeVAwJ8U3x/J7wXebGi75cpLllYeEV18U2FziayjeuxXo+yH/wuetzydtyFdL/vtsd7/30I/Z9+mL+PltYVc+P2TR96h/UZHBvVpYVKcbu+fkLpVgjuAatzcAEvGNVitwn7BF3RUiPbPSrbTbqeBC/GSD+s12dZHU1cutyJ9Aj2TZH0Ut4DEh7lr3i+3ovAa4nbsKS+EyKdU4Gq12f71ekwYL31/wu1WbbbCiXlwsfa5yvwLV3BOsfa46kEfrs/rxEer25jN51yAxtb+YTnjnNE3Dhu0nAj+9YXnc6ll/O3owfNYNXfRIz01QWXB23iG1PO2UcMv5ZFD65D9/xvI3ZTu+QEnQC8t2/V38pBaq4E/5I+ZNpGiyW9mB2lVSp9bT5GR6pg3TDmoZkjNoDH85f5K6e+eI4D+uNoKt7Ag2p7Kn/lFnyT//++f/ejaK//EN6D/v1yma1AMQ55hB+PO79urLLsad/4Hwp+cWfGhm99l5sGB7RBwxL/Pq59n7pxfu3NYT0a96Bu8121Dno9UJK2QE1Ys6WMSvVlnC+Nabwc8/cG+iK2YlNyzggatB8OuIm89H3pVwf4/ItNQnxBIDCvyK9Zb4f2QsZvux3aqLvib+/WAJKY8VCcKt86bGafwk82a+YNjH/oWSMqNJ90//RsOFeN3e7ad0BSLwfu8RDYs/CIbsbL1AHnz9aduvDV/RyN6CLvXexFFyhtgWbyOY0+sN8+EPNrPdag74+btofW8S3vh0GT5+CcnhxFbNaJ22EZgvp2raGnnc0L+/pFPXvPzxzb9EfumkA8v30b1Aoc8OzSOGq5dXUf3t60DdzEesbc6ZOol0sJDiPisXlsR44coMY8DabTnAT9R61Bd7T0iOUXq7w6Z40MNTeOB3PtXl+QjaDwWgl/HgqPL5yPFa/1TFfPMMS7ud/46TUEzRs/eHKdpZP3rT6t7Hvmjb2QXj7vGmoaFkxdS+lK3KVlkytV/DBzMrGgYfp0tNDrFx6pf9d0FO8xtJtfUR/PzDX3xPXVUefGEQ1YUDskOClDVNRuVsfLVw3Fk/Pl0M9ZjUgGirEIPDX46+7PZewdfrQKhtPaeCWycWw9NHofRgv96C/T1orC75alKqam7YDhQ1bJ8nhLn2Z/Xzqdx3wDqpnPpp0zWDRoEE83knT1Au3P6zeRITLn46wdtDUCju3ovhtRV/i383+2y4+jlo2d+WmtL1KmYafV9Q3UQFdfjQF1MsVAcmm/WeWsFL8fmD311wPcZ7aj9QVwzL/oB+ufPuP+mj4FVqSnBflBVFC9+d1mfL+vmNmL8kAFgUfLZgZ+eCmL159JcL2Vuw330NovNhg2iO+wA4futS53sQvlj0IWQzcCj2xwDNxiOUAM8He+rqTG/mbxXpMDlebPwRvpSwAFIFDk/n7z8+l8crBea2YDRc/O3xBlcSWPCCuo61KfrmwiDcKMlt6hY+0lHcD8A7mhExQsPqWX2zWnVXPTqK8rcmxoXfwfJT5NTt1w/0b7287nyaWJTt+9k+TS7QjXCkugYkf/zVk+7Tek8W/z9hQX54wXvzUKl/qayEmxW+wnkN6qk+eUnPxOOjwluR6Bhm/iMRjubeQGQnCdGPCUrk/cqeoZaEJTX3ztP/Blf39stPBNe13c8EVwzOOOgnuZ15wje1p6i5K5UEx/dLMYdOz2B8ykpiT+ThsynmJdyWckX307krBr6/zCp8VE8M4F1qBt1a8uMA8kl+f9pm6ImHf/GFd++xLha9qsOR5WjB44dP3a06gf6YZ2Txgxv2vj62P35HA/6+FOw9yDq81/MGXz61ACxWdKgtfgduT/EV9I+HuQX3QNuQ8CTBZFr41XbR75MaF6AZrU2cqT++99Ojr5s6O9pb6226b6e9EF59VDQhVEQd3KWAfbLU1Ub4SiYg9l8xO3+9C39+jPSKTTDuJ0WC/SmwSbCcl1/9DtLg1hNseSkSs+OlUJYGQq2qLf3RPtaV9txnCV7wyq9vnuFo23JTTZ9bFPeMwbyC9ymwMLyo32ImuJthFXod3QPKwT8/Y7pnL4KibQoW/tRpqpO+iZUhG3Q7UFRQIRv047+Cu/nfCtQGa4ldvPLlPM4OXPCPHO7hVIj21AdAyyKX3t7Xwv/pe/UkaS11GCXNxr2Wix9ysakrN0UzI/C3XJtNX6Q8Yfs/vWwoO4tmf9Mz+eEtAIMwKGqMQ7Hgqwvuk7Yn/s9PdjciUi1pc8I8NNpmOMjSFZTP5wdLp1gVY/GCJXj06xbzINr1tB+iDmCmHJa+nvPSlwLlcLVfrafL/bL2py5PzP/X7IOt9H/fKTi5RknRQdeBfPf2LUyzR0pTDQrAixRDeKznHbW5WyZcZ+YLJnMSUeRHVc+zq+PCKKjfSzHsUnAz87Y7XJopsa/uNuEpCBUYa9wm9l6S/bH0iAdTbMTErvQdGB8VWYHwynyK7kFbjPrslZCUdUXtqD03TLF1FUYS48Qqcoxa+eZ+IXH0G24/EgNMsfQVTD9NtvRK//Sj7wTpFjPzSm1VXyHGPdcF5Dg/sGDdfrm3YpswyGKDWP7Qo/E8YQwjVHcU+a2BJElzS3i2Hpwk2DV6CdiHGeB3nWM0b9/F8y/bx/D0NB7EDlgGBiVwVYiP+vL71Sfh4S14wSidv8QSEu8Z0A9feLoYd4pOUi1GP7FyGP9Va5xm3diwDdQhTLdJgZ8ntkX8tHV0iJWqpNZpO/rcA5YDwlV9JFZT0aTTiKfDDBqU2rou9cP2dAhAlNVfgqrKajpwOnxhfNDhJD/yXT+i0luBE2uek9hUbsHgdFBAcks8rJjRSoyPaQ8hOdQ3aoXBkIzkaZsAq1FBk5178Ple+AOIEHvT9ByM/iBC/QrT+nimFoJfxCt9P0O8rgpiE0spuDdbGGQ9GqhNK9A897Lfqkc/FlhcAtTL58jJQLwWFrFgJRXDzj5kMLObF7ETSREcBciC+KNfiC0YTPjBD3SYmA+XWG1KwXg3SfcvXmxNv/UcM4vB8xdtsPRX4b6Sn/pXw6YZL++ZrMB42KDtb/3xMhTL53hjMZg4xz2x7hHuGbQOEszvaI1FXBlCfkwEQjzUF2IZ+Udwp/BvkIxVs5yPCjC1NVot4oxSNA6O4OiKLBih+U1sWhUNR7ZvATxVOU0fOUUdKIxBPRJ9ngQpjUbej+gLz6xRsSD6oxljNSx/8UtRU7WCn3MngmRkNbGNSAIc+8EWpmqyzKurboKjk7cCx8hUsHhvnz63LORpx6e+oY6e3wu2vpm5dvSX+TonvW5awA9feIximaBn90x4/nVKGH8QmqTDUrO3934OiBnfp+e6WzXDejCv69PZqKZ0SHk/BnlQgxQfj8usW6dhO2SUWpBGJrFWuRCjU6ASngxUUrSXdCR7ehCBzGg6iqbqjRg4GV/tXDYSlh4S9fll5VTw6NczsY/6ueGG7w0wvFYBQXP+bnjWYRdixGJqzzosBjU61BBXdU7tS5Qn3LmiCmSZ0RM0lE7Tio+bg0QyIpK6rV+MxsWbYFwjRCxX9xePytS1CEdverrlO3/YIeMGkzPycWtE34Q7zL8BLJsFQUerLri/DmIQIwYpIpZRMGgeICSFeaf2ptKKQdTuVSWsfk3iVdkFj1u7hgGP9hRR3QEfs/W2ANf6BUvhMPjDLjauMMqqL01bRkW1bQ4YEmC+sJSnExpDPRjAsaxkLIlhRjxzsAOWd+EnmVewGVTXaLW0N87EKuDY84eyV2F01HssTRbvP8v+w3TbXKm9T08J30+ohfnVWGFxkmrwCe5BBXAfnYl11Ed/NO8eU8NBD4ktbf+KAVJj1tIqybFkpMt75dB/wTRHp6n55E4ioxXSIfFZSdN9+hWfZX/AuUACSwkbGm5Y3rAjG/YkqO9eiG3Ggw6D2rSwPLkF+JApUNXwaYaT5LpLvBl+Bk6vpqZWno+Cx1FY7gidH9S6dBNioDksHkltEduGcsPvA/nC8BFhLEq3LT7Hu53D4KNbNLm4SDCB3QzirD5h6V3SZkTcXIFE8OMkO1s5YVx2LXgmBif2ieXLvh4YiCtkUXR0a59fYvyFuKgyag0SL8YK72dIyvhBUaGjhCmhK6l5glaTaNNn0W2XXs7kG9cUXdum4HrrlTA5iP3yvECMYR98QYTNjlqpPvYDRAcV/uLPvuUXxHEVqPDIajCJj+74kkzcCYbm7FI0da9+ie8akkdVT1IfsGa8KEtTrw26EPSpnoLfX/vXv/i3/M4vhtXKdDXyqGtqw25VDIK7KYxXyJok7A4+k7k+a8mjCYg9daAZNsKwQLDMJ0T7vFr+7jJ4so5/1PYkuRk24GCCGFXaJBt5Woy2izIYP4U5ybd8h4Y5d101kCN7klfs1jAJujU8aqY6iTB9JGO0DV2YqQajllv5DYNvQ9GyEfWT1C53VDbI0EF0j78USbBDHD8sRQtepokVVN0RdzM0w6NZC2L96Vj8h++NsSF2Cs+AXzNHgtm7GTDyI70fozrE4OwanNpn9wzGkxpuYYpRjE9HuCk4UUMdxClbE8upvg1TfB3C+F6tiJWWYzOsz94VpuJ4JdapXObbFXoOEwURYon0KOSlxyDE7/iChQMrv+MX3dIwjK9Y4M4opOUzyLPHilpG6qHx5IbLvNpZmxpJ75JhVx1yGGNdI9Yh95thPrgBxDiOif3S1YYbgdfBBS9IkjGzb5WVrsBg1E0szm4NeNXuB3hUdBU3N6n1B1l1vxDHc0Yti3kN1xuvhhjrCf7hBQ/LYFgm3+6xGLs3Gst878JAmvdYIrAHI7nZJog/jUGQJ1U923jG0otfkElyqm8/Hj07Bz/+gk4p8rtlVjIMw3pPEZBcwP8ckoPgzUxiXa0JMXnQv9qCR9PzpV+bQbFcCPFfdSIW1Y8FzwLHhQu+kTQoe8EfHVFhtK0YRXXU9mztmRk8nR83gvxAB9zbBRgGrY5IWuW0YcA2GDh1qKHIiqqC/+Irzg39v/U7rNBynmaVWu0QoW5VeK6W6whiiWwH/7ce8GhFglpTywt+xY6qYi9KaeIPVcP12nxB0s4NQZtuD7h+Mit4vFYKlrI0RGzLDwGMFMYI6oOXzy3PD+ApfBQEvSw7YSvLiyEO4oSgYosSWV97FcRqfcWS2/bJv/yTyCKiiLvvZNBuxgqcH8Z2Qkq6F90qNT31uNZ3xDLdbzKeXecKca/nFN2HdnlvYK/AhW+Q1I96NNpflENyru/U9qNTw2Ni1yDzHu+pWW0/iBdXooNwPx8IUoIu4cErqGHGG0qRNejFWAREV4lf/2ExsLc/XibcAXKqKyyW/MekXH9p5+tDxu07J2J5XgzjadE4bvXwR/9kxTCJkTcJWXJ9+d95tJdZDXK5B9J2a2B4Pj4ULG56I5hY6+kueNcIS7gNEL+7+wHmwQMQdO+sgocnawDRXe9pAvSuH7POccFJMp5YtiK5GLPA8dSENgFFXqqLQXbdCZIubhb8WTXDKvAwOIXGH0GXoSmY/HUZTCzjgCXmxsUY9aEFctvQcFNtrWUeIsIwcuvPJG0lgYa5X97rS9mXWL/8F5hWC8irbvCzjnYNm28uhsdLJBH7lV/FeMVYhdnwGCkiW6ORl/z1w3MsLm4DxkuFO3B2EafWa8sQkyq3guSp1wTtgg784y/JNwmW3o6rgv/pJIPktcxnd/S14O7sM/W3/g2AbjJ6xMIwMlhH7c4tfJ587ZeGn/WF/vI5tzyEQcCZTU7qduX/+J1GZPaiyRI/o3kwJUjwfMPNa2s38uEd6DBoTYSbQ6X30nzXPZBOjzO1rtXkc/PP24LTo3lQ9GztfgznoIPpJDKCPFYBJhK9hFmAOoI+0ivhtoqWvj9zTqzUChNuXXwPpPB4mYTVVc2wungRPFsNn4S07ZLR8MwZLnyDICvSCwlCQ4Lhgbk0GVOn53mNK5CK5jKJtrMBNxKzg4HCHJpsh4PPHR+1Wk4ajVo//oE634Hx84EoEsO+/0T6gg/8YWPx1p/oU3wd9Ref1EaV1LNVYAYQj+Z5kqvtDgxKqEsgno6Iorq1ESejtYKxMWsERYOJeJKGHYhEzCZx2FaAo7UJ1aNrzhRFQ+0PP70Vucv+HN0z4vqfdwMny7gRtE/1QjY23guSE7sv+vBQsI1qOOoxrDlFnesgWd96NYgDc0UQqR4Fjwobg7CMAiw0/dBwj1gBxKK+/rff2AlmEE3xNLWXaBTj40pUcKKPB0V2qyfS9nsIYHioDpOURWMxrBzT3SU2P0ySHXgNjw/2TY0VYRP0V7X+JynCLyT+XGLhRQaSNPWwUhc8J/amK8Hod8EVkMZsKEqYiZh80mcYuqZLUFwZgJO7BdVwuaBhc70Uo+F7EwgVPcLNwj/ZfNADGL8f5j885PbXv8LwFAcUkcpI5ExxPIiVuiT2a6v2g5K6Csyu6DM1z+5Z8P2IOhiuTYKlpiIJNyNPgceEyZOkRHM/8M41YcjmiC58sR+P9zCHydyQRd/eAA+HoIVBwXRi4aAHH2ftX0H0qQdqW4Hc/PQkPLWPhqJLhBJJ3usMxl+OsPzRC5+fVHsLkyYJqPUuac9zHZfwvG8EtbNu6/NL57xgLAmHIuh+GrY+eNdffEynLNqIAaSHASz6dEqDPPC5baBUjf8SndhHa1Pwm7Wvf/qVoCioi9FzAwzwx7xQ+8cnf/wvVg2HWL98Rm6hDo7yDAgqWyvh6Tncqgu+TWLJn2zZb3giqCR2G117pppGDcMdI9Sx2Lr5ZA62YHY1PsTyWF8s+5uD7PkYsXzb5oLNOz3WlvWi6KO//AHohw7mNtKmBc8BdwtfhQlLjpM45A9fJsI2IXma9ST7kdw87R1Ktchb9HCjXxGbhR6A4DIbBCXSQzDp7i53dBqbWIfSLz6nLTZhcn4ciCWns2CLXtLio7HslxUk3OW+pCb+0SUo6uqEn10nh+Fqjqiz7O+wfpo5jGOhY+k7MDHMqothcjZ8mvTdy+e3Kylh9GTjP37MlIe+1X54JHXlEX1u076Cmf14YQFKt2EgPAwwbgSiyBse6Md34LlrFII2rYvYLjikkEj6C0tm9AHcJWgGYVsRiqbWAa30clsQQZNRlFYm4Hbvp7uoNics7mkDODFsC2JeF9S+uDn48W/1eDFlLFnDFwzC0a8aPugxQf6g99LWPbi7o15L1JLzuefh15pgNJrDJE662YzROvRAIsQRP4ccAK5/vBacwqTEcrW9ALb2vBQeI10hrQO9ZjmPGB79SCx8d/TZwk/BohcIcmCFPuWNBGA5j1i882fBiy3ewsiOOixBmCYc7c0VJK+4pXZTXYDs10Gm/vxA+9ldE2nbHAJ4dKJ5Etr203O99Gp4LEyJILfVhWwhhEG8TRyCigohBkdjCyNZZxTx9l2MaRXOarx+2MS+d5eEhzwYQPSJRoLk1C1k6+DH6rFlW2LfowsazdGbQRjqB4qwZQD5cnVakF0ePbGiKOg5thb9SeeAIlB2DYMXQ9FOitFS1LRtw22BInjSjJbYAysRPxk2VBe+Oz3bTgU8izEGyanxsPxmav9xbFTDOKvWk/jmT8C4p7sgWi9+UKA/Era+m5ma6wakqOxan9tPFMPQqt1J5i5Mxv3d/8IzMNRJKF2XLPk7gFEaD8QOJKXhx6XaFUVsoGg3uM1Pn4LoPQ+TlESD6ORMH7TTYDyIY0VrwFa16UK80a+T7JRyMfCj68GwXPC10FGx8LEAHs+V9Pv+5c6/rmgLP6Lo6qJCNoHHtPPZkBe/pUw+C98Dx12l/vyqnsmuPmixF60IiuEDLHymBsdbJVGrDmjS8UA3YaIYZBJ/ZVsMonFTmO2NN7X25bcYjYf5hXH8MIj1dJn/4w8auemPSTh6VfzjV0FRG9Mzz7fFII3u//rLf1srYZuz4WjLeZwSke4LNvduDKJj/J0k0/USpii6qh03TCWIDe9igMeDCrEwS2rv8xNi0DuoILUfR2ojuOT/xAtgoMwOsXZu0oyoQKaa1cZIrX5gBU/WYQuW/cLSaps03LetHJ42jydFvfsqGOBGB5f9Jslt6VuqNaYFFz5HLDv49oM6Gy+YPh85lg5bv9glD3uA+F6nxB5Z0T9PuqNr8dSYWOQM9YNi6RBk1WOYxK1sAHceqPrHP4Xr6kACwWGGi1+CG7p1AIOWoWjH2JTH1mN9wj0jCNSoYF+CBNsXbLcxYpgFzevf/nJb9SM1KRuPoq3UNWOKQgWQtm7p7//lboMkSPzoRpBrPdDnhB39Hz7Yy+Anbo0IQ+xVCUV/sPU/+GFJWgjZkZxeuQrGZGV3P/ydJLv1xH9+goJais4WQr/1AiFlAUGxZBYSD1xTzdPHehI//+Xndy/4TKxNFxdsZZsBiCqTUlvO/9AAzcMKHne1uuRHM/nxF5gaTUJts5Oa0SWIQbJa7m8rQ7foNQPDhT/+8//GH17+86d5BftxD1AH0ux4whKxesADJchhpDFGf3iyxPukYYUVJFG6ruD5F5cgbpFJbHW7QtxUTQmeb4ZMrTvDiXzU7Bgk5+YwPedtWXTqfGhhENfmJHu53IxBZZXgmNQKdezu3vNLgF9g0dtY/jLg80onDCSnxCc27pSEo9DXYfiKyfSy2L3hCQu/MPZmSC0hHRtuWb4LT2Zyw+LY1mgMrKCEhMQlljic0SCubgmDKrKINUjHRAK1McFz22wnxYjuBZuFi2Fs13Cpr2x6+aziDB77eYtTJY0THpjBC5yvjYzll672A2iMTgtEbVP76aoNW6veFSz+BE2jdqkHOHoOj49qQ9JUD3uedY4HYjJrU4a294IbG7PVYoXbBGVB47PNyzC1xEHuJGDwKTgOAgkkTrJf+NOhHw+dvwJJ1wRTexlCMAZakP+LH/vq5gUvgr0OjxddJqef/6/33g3iuDoTlOrIZ6vOC2B2ABZA6b9AL2KPUQGYpLk3GKiVTRe/oB/RyVzB8DUvdw66LmGbp+HA423x04lu9LL58mZ4PJvKkt92YjxMgQ4Ss3Fxqwxzw6NNiH98bGrqyOq5+WduQbCtHJpYQ5Xw1LS3P/+eoh9fOmphDOPpYRI0LrOsLx1+wV98pY+B9vxw9Vcq3usJTQqIEL+/yAue52Y3iUvXNDyYrBsIIz2gJ6XTCp45jgWDd2xRi26PBUfM18F5MBQsHtETjc7Vr8B599hRS4ninh+oD2F6P6aT6KpXwcuKOCC8xf6CF+9i8dMUEPPEIdZrG6FB2PrtH/9+Ln45g3djqwXvCtH0T5/E6OMgBidb3CbxTp8NL7q9DoOU6dR+s2s/Gon3hUkt8L/8NObYucFQnw/UjqIzGk1hSuDIKoBPdXRpmHzWO0hA3eKntr313HesFIZSFJFkkF6C759ogPgT59QKmS/YrLoB/NUrLVryhG1yw9SIE/9RlAxmwQ1kMjV5GgFFH/gEwyY6WID0rCGpstwpPKDA+dX3JllEZcMXvxgeWQRxEzKjGNbQjOHpfLzjJskfgl9vzgx++JoMutPI5ByaMN7HkC544P97vixHX2KLCDbjIQ50EEpxhKU4HwS/to4Ew7YmxKLV0WezoUcaebGapFVJC8Y11wThxfQX/14u+N3cf8FZMXb4meSZ4FFrO//wRTqUfcLdGTGQjE1IENk+em5czQ6e9UYQBEq3Zyvfi+FZM3bEWjPRsJ1ySGHAdJtm+3zdjwvfBWcD8WXaXA+YCNwSHr/mllpJGjT8aIcRDHuGSarnXsF/+nTRP1hYg57wrHICgIM6nqS4DHq+v/kTxNnSF4xAJfk4ml/DUIvJf/zlLpH2X31NeukMDZvR0DWc6CfcXtsRDDvrkMOo1qfFz+6Lpd5ngvR9zAn6062EaVvPAunEs0nKU+xzQzE7beHDi5/gJmxbG7GWhMkei7SqAb/VJP/h43TauEv+kA6qeuqaB7WzdNMzOXI7GAwzIuik1z33T1akJbY4YPHDn+RjdzDfGxBLXxY1XE+9FpzLh7T4HzqQncCvYVYZE0HK4Prcyyz8w0uKHF0veLXdM5AWIsVS3zLB7Ral8HiLZWrlw5TwS+V0MEyqgCRZVAu27Q0PRlU00WSdfvxBfPQcnHTxR605n31u9p6q4jQ6E9TAFvz8PBAcdYNYRxiAsWAOhMmeu796p+jmTI8BSerHf/rjYe0hOBeG+Om/nlsKslQcs4zahzxDn3zrlP+/OwXy/32nAOz+TOqahtIL9X1KoVy7IU0V0ftzcVBTuF89/qirbvWGXzfuAHFGS+qUj68vZInq4HVtYxqksO2Z50UdXGaIEP303AjupX83eJi/BTEOc1UMKzdRodWpK+J/3gQwFyaduj/XKXWsgRQz8u4BNClENHXdHPGDNajwKacOtd/fO5jRyvfg90o9rKztSzGd8D1WSTQDDD5+1c8HcFEAJ4pLPTTXyWyuFQZvXSpP6wo9muECN56aS6sDCfnuhsSnvNzgeyw206pQacPzBrRw9WInclsNvODHRzpBm9xDEtbVXrBk235hvRMMb7bHNuEiLR3YBTWioZzpyQbCmwMBXn3wyrY2xRzXXwcm5fpDkRRgMD58JIEh6ADe7EwpYRtQtvD5Iiru93fScPr0UqDNhTZp6sns5WX9QHmrOGbDqknmp3IdAA3alJ4uQ1Fw+tJWQFt66ZDnTfiTsJkKzxCPeNbjHRpX1sWBgq8v09rFLzGGwzzDZJRm4sP5488Bp/lujlROD396JVhlqh2o9l1F/7pngWZzq0JYpPeEug16Ambu4AypcFu8KnczavRuUlRI2zMhc7/v5RfyMph4pwbDy8tBc5nhTOVEcvHcX0AhLislBaEbq0RfAw/N8vCnwPUdfolxu++a0ah2AURcHyauP3shlDW5gkNjnyaVpVn/+6zq3E6oc8giIK6HjAHmXhkx7HbyR3dkN03vrwGx7td7P3epG8H4ZoXU7rezz176IYWapbRYttMazF507cD1WkhT2yRHtLk98w4epEuOdR8mgn3u9Q2GmhMQ6xbqxeauQAlWHq2oewoI4H/ZR91AObmRAEobxDKfSzA/bTRqPlcfwduOZ/B7/nrTq1Q8wTfzoQU92lVkP1EshOYoFVwLVaL+Pf0mwzY65fB+Kz0SAMvqFXk4SZBnckyQOb8EL5xd9jsfpNBKr9+46iqGhweP6X6f9L0gOmfaIMtHgjQ5btj5rVwhjIx4mTc1+u/8o7VwhY4O1cGx65lPOglO9lOhTtgixPJqfq2fBDNc3qJ3w+Kyc+DOH+RJpV9JjMnXKLXhfjRIONyCftK/Kx32CFQ0GB0dbW5DWsJStg1aVidVDL/fP5SWT/ZPp/eZM90GuDrWB+K25lJzwx8G2d4ayX7uqkKYGm1h+RdMxDIuqGCDf//CwHcLGkQxQtIURzNEM/+QkP9NYjDX1gqkq92VZFTwnm4OVIFdm2ckixs72bRsgnCJh2WQ29LjinSK2m3Mkux3ZprM8XuOoPetR2IPm7Tn6khT9dutQrze90nD4g466iqWAhqQRG+GKAEpaEH0ptb83IKuI7utytyckTAN656avGjV4ymb8UrQbzIFz+QKXyPOqdtIsnidIx1r33xvEVQNqZhTKHRweokR8/RxQgJrJw/uKLaobaem4MO+lODulgESHJFA46BfTBieFZ2QnQ16etoyDA+Hm02tbfPXCKxcUnjuonb69qcUiZ2jt/B+u3l4Phs1mIbVgcEmuCjErgkueJTBDOrnG5q2l2uNWnEsHLjpzD3eLnivzCAql16RN4qf/ClY9pfpgJ8ehBwue5qIqSgYJNJoEWxbm2R49m4F4eN8oqR8rRPafnpvF7JDiBUrqnyxsr0tvNDbg5rx+ZGIfXtQYd+yz/TRFbuYk93tBp5HZUOs8d4hpmngBq2utChyC0/MO1K0i+eX0vDcVODzw7Nlv4jpRVpD1dPOhfAWpxR9T3kjahIH0DyOBgbzvWnE4BQ6FJcuoFGzH32e7lQT8mW+tLVxe7GszwxLwVY0UGgDOoW6L6DcxyfdH18cTWTbVdC7rt806LYjmOThT4Kf+6kj+u2v76lNDBfERx9T73GmTfeXdFuQuK8XXj32ViIK87qCQct7zN5f3ZfddfmF0Ve60MIfH6JX1iQHn4DWNFTLI+KnaLrBfRYcSSj3D8QflqurBWYBcZv81dM3TitQh+t0UqedBYQh9gE85peZWlHmFZI5b1dQuz6+xOoqW0z+m+hgu2ED0bn27Lm0zOLxGJGop8YAMTs8rOBF9rtJ8s9vQN2d1y01opT6G+E0s9MtNcDVXE+tI0mCN1XwgtudQzHX1aBnX1rokJ8agt+ZmvqffZM78O8chxgqtBHzRjbbH55S76maDZ1Xx5umXxtEw5GUzZxfuxYMJTaITSalGWgjrcAVeg49OEcFzFJ0jOCpmUYM/PEBaHcLHRA32ZUelAEW0y5tGCyQH1H3ZqF+mvKYwah6VMSFSZzMA7rq6mqXFyRQKBLs/F5dYWv78bK+BhKfUetgdKkzYnehQNx4HXKwfB+W9ZPes7olOXRKd8aaff767OBAB1i5IVPzRS+CK8PuCstZN6Zajo4N63fgCk+7QmD1+XyIeX1zSvj4Ih9LXfUU7C+ptj9+QNDDODXiqnkD/LO++2ldwL9+zjymQ9/cqNN2kxIhPs1fBA7N/kTDNOX/8Bpeiiqf3Pe4TzbiFG6BdCq7ibO2RmxrHXKwrO+0s/2X318PtxnslvHXOl9W2oVFp+Yx04i7nP8eK5cMvG7aidyfJvrFE4bWju1p4NtTMWDp6kLzEe+xWgE9GR82+IJpk7kEV3PTz2zpw7A1Pmf6y79sinMGs8K1SeR0TMyP/cGE6eeDMevXFeAvZGbwhpqGePG1a2hvrm7QWX8NYmqibWZzO0P4tW8ragXGoRdljCoomUo9VUrsJLIr3C+g+HykQfRGYqz0vtQCKeV4x/NdIcIZMuhmBZvUR/TwZ26mGfjmtkXvCz4NJ2gEcLLfyj8+8H2X60l17uE8je/jWcwa0iooXL68JzM0/sR2tIKb/XuLtXzTovkd9UuXu8eLWGRwG0VRlAAUuhNhyJnRbJIviGDdPlpqqKuTGMv8VMP1cexwP3k1ECvb3MLwCvTph0/UzqwVWJ5/YlszF9w0sQm0YVDI9anWDXO5iGAt5yNNbx/S0/c+n6A2TMok3a/rZpideYDVFNDp9i3eCRfFXYX6So/p3dLTnukv2oHU7GyKv8W76PjGtOBJSQUl1T0CSpleJ/CaqoLa1tpE/LZRvpCbuwM9/J0ePXtn2gTt3fr147+FCLr0ClSrPJK/H19Fenz9x98PB/ndzGOo5mC+v8bpulN6MIZCaf/lHyyjsJ/9cvoCx8Uf6mvbC+DH0qqgPv0FRN/kG3/Bcw9Yb9egSWzhnsmvQgHD0VhTpFlmv+BjCZpDppBAsetiPuFzBDefzCOHzsqK2dXsG9wegz/qXqtYiDr9XoFSnwaKjtcQzflLauFcY+m3/j0LqQGhat2O086uFr4Vah5c+DYJa3/vD4kob/CsVYwe1i1b8FjXtYaTww9PgNC7lwTVya6oycZbwzZSxIDELgBzJU0LXrgDBDjpSlpOyboQszfW8KbfGjxcgLO8xt0o8LGN8bSbzSvgUVCswPI8FM3bvue/+JHypqP2wv/Zuahz9dZlMglOuQCjUfFA4yfrRKPbHBRCYNNSi2dW0oW/JtIqbC34mm9PzPy38EU7iRQYXd3TwKxBwSqtzkEgZZx6+HH2vwqdc01z3DfRlfhViMfRVgC6eBeC+0fuU8C1AbpPqBCPNk7y/OVjO5yi6UOeF0Hfpl5pQiQlnnX/20/9dAwA07BJ0PZB+vmgfx2QsTymnrT59F+nhjV4tqVGlvzn873y3kKpsyZ6LkgKuNpgCPHnXE/jnyaBL14PGTyP6y+uTs8z4Pfl0th0ciFxXvepn1IozH/81D1pazAf410FATqNExtWqJgv9JOBFbwX06r8q8V4JNsaurE5YgWfEiSKZOMBW+dH4oLwUcwDeZng5aNgUl993PcQZg68hMcTsQ0nanh3d1R1eOxccugTx5fVkWaw22b3ScvrpuBq6btgtJyU2us8QPLLc1xY7KInntl46wWojjXMbp818dHrhuZhZTBINidv0Y8TYKY0vGDFFGWa2ZEm38EOv+BT4Znag2M1ykUZXVjEQzbx2/3SsIdrKjAFypX6m9tT8C6eVQi27pqQc1z6syFnV23hO8Tw9gaSiI9fwAfPE3H6Q4TYrbncVAs0FhZS8pcwrE8B0A8fFW+etVoMhSe58POoZawZt23Tltdh2n6hmuH4/BcjAWFmQRIofBKxNTXiQDYO/Luew+npXUXD8v66Uqdt508MvA7FZ9AvOijlvYHX5tMUfBdcX3CJX2LmXE5YdJpWEIYXn3iHzamfibad/q1PsA8gEOD5GWAtX0e8FnxbzP6pVsCtv8gk9Ay/oUjVUxC5n5Ca/QUk3a25lDC8tBp1U6Y30qIPQZqffGJKIAJs3LNcmxVPo66Pe38+tn8D7KIynFaDvwPiZAcxnO/tSJ2/WEUjhn0G2PiFU/bNdcSkh/9Vx1ljlBxXO188d8UE+3Ze9Mtu5Qu1tl1gZdF20csvn2tOMP30zJR9JZLMevX3hZ8y7v75JcK73kv1LqYzMaIgTbh03n7heMmqSbp9SNMdK5Ltzl/1S1zYCZ9KeX0D8kZOKNra1RLvjxSuw6wl9p869tRVVxHIbsSelEPPm0m68q9W1+yNl9F5xdRveasd36vtBDJ+LsRPX70O4wHv1m3kb3Zx+dq5CV/6dNl7wcIPZ9o5pzfigk/Uj8qwy6EEzc0E15Pjd94xvUHr7RkYaPuPmO+7wITeqlTI/iQ1Rbf4Q9qznnTi/fTLVJ9fcJAeGMuqdUAbyDwLXi8rlTrMnXt21RMGl/xA7FsGwRdPrgeqHDb0iv4e/czZ1vrFzyTEB/TzU4kHjQQSn7b706XnK+tiweU8Y1Gg6J/eB5I6SNPD+d6E+G4zHQx+tiXIrS/FoLRVAOcd0aad+hzBXG3yKzhM05HoPhRgSiEwwcI/Jk3lXHyOZVCr/ccfwilvj4VgLK1//tEkvR+omLMjkEBW7swFX4xiqKwphrtbCiZeI69gV+BX4PYcKOZ13vvssDSNa4JCoegQXMGcnS1TXfQedT/uxZ/Z3AzQf6pkAos/IG12FdR+fs8T3K8NLxyeAn0uMgyPKPFnbu1X0JR7j4QLnxnex2cNzcawpuctK8EwG98KXrwPIYFybdCw6GG4z/ARi2U9ZP8mK6Cu5zc9XMoISeVBr+BnlrYTdIpBDM30niE3S0KuKwgbId1fMRy/XUNcQ+0QWxmRtRPj67T0lUl6tjJyC6psfC99IW7ix3eA2SCL7D9s6GfiWbPqv86H6XGxOp8+7TeDc6JxikPY+wxpxxQu/Is42rrr56thv6B/Qs4yOwiJYdyzq/b69Upf/IRpaicGd6x2sUw5alh3Mi0IjJYRveFTzzqyU0H4vTkT7LajEMiwMFz8MSwn785nu4RDeOBpjucB/flfL7p+QfpWj9j/+HojnBuf1KeuTfSQ/o1CNG28AtNLt6khN1Yh3qZbwccL+uR8vNeN6HkcwLtXG3j15PY/PgTCy0uj6LM7JN0OP5jG+NvB0GFjP2uQd3De3HXiXmgtmDNlE/zapjVl1DR6ebp+IFz4LAbiYPvUu95vcLM2ImouCyOUsQ+0Ffwr8NbHyztWz3cAnL+bPGlLfh1XfrmFbqyPWMVBllBj8K8gDom1+CmdGEVxVuFxKxl4tctxQffstP3h4aQ+hqjo6nZ/hXLthQQzy0/ECUWdtuhRDEpb7afb1HzBN8v21LNDyZ8qWL3g537uKEYrJxl+fsSixyb5NT8KjvQ4B8Hf/Jh2uiaEYO3vTvtnRcLh0AtROePtX/x1ypqguX3V7s//m9ZLvhNT5rdwZOcv3oLwkdC85jOEonpMPH3IPrWLkwcPd9+fZJ0TMR3zwwBP+FZN0ltpfS7XS36adYPkTe70m+aFWyBHkkdu1YyaMXUcB4BYFcTthgNQpegSwcyL4eLPJojL01PXYiJ71HdvMxJRVGfq9ZxJk7I4mTQx6ADzTUuItSFqMWO19GCJ1/0keaNT8J+/ubGqLbFGb59sanINwIzjL34jqooxoZcvpO3uQd3gU4JpsO0O1hv/Sx2pfzZCuDsVequbQkmFHj8+Wanf9TojBGWxeHrhpYN2lJ3xMVVOgHPn7EF9PBzo7zyKJV/A1xjkJPL9BnC5PuoqAOGamOXp5dNi37tgageTen/iBgY7jj2A4+zyL1/wJT9CciTy9Fzngz95vldCIzvdiWeVls+bWwShZUGZOt9c9+deHbG65AviL3gm9q2hQp0KQu0kfifjXy1vYb+dZmqBHRC8h/AKfv6+cbFcfz7tkxvchsud7wl7vtDUuvzFE95+jG8//V2+KtSHiVAkPqAZkrd7g6+1ciOLn1+wY0VSGJXPjKD7qxFsdl+pmlVyQL2DYzfKTaa3f/rYPM+xGBb/A3weGiW/72PTuYNQrNSc2lG+TSq/kBSACnbHSXahxcIvXWASRyX7u+skgoQhg9vd4zOtkuEvmWmHMig3t2jxu3QgPudD9IsHEsozacZKb0pNuzoMzxZU+8mQb7l6RmZOyTb1G+WYG4OafnCK4T6AYsnHVzVcbQ7Tjx9tFr0PaWhg8qtPzHJlKOCYmhSX/pX6XzDBAY6F/bfocavZlLdzDdEsPosf9OqnyD168D7nKYmMFSkm+XnVYR97DbUbfVXMTsEGzQAen2ZLHnyRf+TXT/9R88/J/BnU/0PatWwtC+vQB2IgoNAw5A4CtgiIOgPvIKJAC/Tpz+L7z/DMzti1KNhkZ2enTR4Uwk8XsWh+7rv5e2tb9Zba3z+8r36Nzn1o93NMtU4M0Pit5xbc51ohpv3oyvlzWVPYG6cvscxrE46T4Gxgye8IVre3ku7rA4U/PrHo2+Ga3TY5FIOlElu+BemEOtSjhU//1R+6MSq2EVrVR0rHuhxTPhzX0b/8Pbob62pqAhzAad0QLLZwCIdFv0P3p71nl9vbT1lYr8TNosfSlX+Qyll5rOe//ORffBdfNSng4287YlRbFE5i0l6Qn2Yji83iVo0TFAnMOP4t+u+LzzvwZvh0P5Ut+lQoBo5/AdR+FBak4abrD+63hXP5OtHnKvJD/pAMDD/nIjB3NOrwXbdKBkjlDvE2A+94uvYS9WhnJZWC1AkXPSmBRe8nXv5O09FgWYGSl35kzji6oRT4xkVLpxnY7hrZfN7YCAM/5VtKu+fGmnlouIC/hxdd+Fk4+SIkcHkGGxJ6Ylw2S74EUrTRmR13YciXfBCdrN2a6PcK0rbwjjVSJjHEc5lb3bg1ug3kwxiSwxFaxK7taqPG5T5l0U39WtP31d3QzmnFRT82Urmqdg1a8JPptUs6dm3XKsJN8qIKFr98qNKx1grtsiWZeRetaVItVxvGw48Zrn5N56VepjlSU2GZmc9ubtBPhbYucryic27NYnxO0OI/xFj44Hyj3Q+E9y1h3i9CnL6uWvGnBxPPa/ty2GAXI4qGkBnSild80YPVxv1tSajgU8m9b2JrVfcwyX5UTLTu5F8BYV1HVGhct5vefE/hLunFXz2iqh92k0A1zoSufn7WUVhmN8iD0BLdbWM0n94+qMq+BOJDZKHRSYoA7tI9I9tXVvEuyscI4hNOWTiLdTkz5gXQxrcd0ePALaUw+YogiWPKspswptNSn/zbL3IKcWhNrwIKlKzZFUvnvkwH9g5yFSl3E8NUPtAoM73RdG+jsZsyMGtc6jPaJnk8/tWP+aQYMczGofvjp1aHJqmH7cUNd2Irud0UZIcLpCXu8e1E4q7HOsVIPZ0KkmrSXE237tf+1Z/wRv7RlBai8oChExpmadLc0e8PfsD5/kLwKKFycJczKIddcGX27fW0+tl4PYCfsi1bunaVs3M/wr/62SU6T1Wvvm8+sHtUEB36IuWXY9qDu2oNQvKoS/tSaG30Wm9/xMQ3huYz0nI4vXKL7D5IKV8yU09o8MKMkRK0bjqeywgU/vaxyjee9ecvqNPlB5UOpsJHMe8S9LfeflRefBqOuwIW+2fpQVv6JL5MCoe9/WFxXY7lCGq+gXso2//0+nmJN3/1bVxpjz3iarnN1HYnuhSMqUsHr4pt5K9jZeETMedD2GFVPRUFw3bqlesl3sCk5k9my7df2vzh4/91pkD+32cK2O13ZcSvx46P6X5pFix/me95DM368aPD4TdsmZlMTTUfLVwod3onjJjo0o0P0zlBLW9ejJyHR8nnqwWoOH4IXp2uT2s6ClCAcAg3VHm8aTibG8NFl6dxIPZW1EIaWPULqUufGrcMdc7rvSfCVrEDljD3vtwjUBOQDAAqbHZfNKbxDYMlexxvqs83nCfhbUKi7fHSe29XjsFvENUx+u2Yfv0V1rQPNFBbgTyoaDQ+Z5/hWyCfVTssxM037L/RKYP95uQz1yjbdJTP/Qb6fVSRE/OcUNYluEGpf0ystbt7Sq1Pk6PMSRT8dH4sZclaLECRT2e6qkueTkfHaLTlezA33KKcPFZiiG5lxYzyt+Vs/Q1GVEiWhIWV5lXrXRDaYHetihVXOqTz1zMeS43NYZEVWKUUkbOKCBECrDylIR3PjReBeRu3LLluaDg/dvscfiHxCSlCuepDe5bh0htHuil1vRyCYiUg5VlcqNDsWEjrNDSRYCcf4hTdXI5pnEcQbl4Htrve+3R82YmOjrdYZ7F3Ca1p2xU9gC1emFlPz5Lf2Ui1yrgkeNMdP9ZHaNANVvuYUKWleie+wnUDjZdJFPL73eLcWc5l24lLMMm/3Sy+egylWK+pcNTmsnvywwx3pEjEvO1f1exc/Bgu21pkZCrHappeyQwHkdn0cb446HfonjewemfD3H7+hJO7e1B4qcgkvhs7IdNVtwD757V42hVDOZbF14f9U1b+2fc4z34LepEZ5FgpVUfxNdfBWO7pCC7TuVjr+wckiljhatOE1dzX6AXXfX0nziVzS5nSdw/Hhn7pVBS/7sdEVYT1TeqJW3/FauZq/UC3k7lmW9vJUL/zjyoipXRjhl2M1nw7rU/Q7bsncSNkp7OmfkUIytfA3NtW4vPHBhVFu1dC+eeKul5a3Tdofy5irLz6jcUlHheQNqlB9Lralevfvm3gsm5q+tRamQ/hJ4m085WGxH+s225ER8WEup0QwR/7zPsdfuvwZpuM4U5+oVEgGx0t/kblcTtWtDSS18qh7YftlJxZjCnR/Lc+C8kvsfhPe/TaTn/oZHfLj+GoWdcRnsrlw6KoXVuTv31E6Jz0W5Y9mgcfVUvBYO+/Ohbv4rqbuoxkQH9tS9zAnCx62pYP+Aj5kfiH8WnxlpQAN17bePWzvXDC9zOGp36TqGTvnhXn63iDcC6ciOFVjjU+L0kGdt5q5Jr7Jp/zElNQ2SkksXfpLH7zJlsL6atguzf5lTwdmhmaYHrg1adu0zlyFB+KwP9iuZj7lDXp5YJ+8c4lfqk/0jHWcxXpyfhjxvwkaXvMyWaJ+XfmOqGbjt30UeHjZG9ivZlrTTwoLnC60xKv3snN6k+C94KpWq2Zzi6PdNyQYwI8cH1C8M5Ox3cpb8B4j0eyk1bvatLeUvBfeyU2s/pAGFrIf0lInHX9sAblEd7g7FNMwoNlh/M62ryW3kkXZoWrXTlFv3UMRRB8MbLTFg2nwYhAPK22dNbYyIcuIzlSTzIQzHZROTwTpYFvT2I8bzZNOCPhl8Pnnt0pD/1XNUXkvEHV5/Bgdl9za6jwZIOvV/l/92sZQKjp17EnZMH7ThCpD9GmvLFwW/kWV5/GjD7WlDL3jIxuzVbnDTRj3rJtTh0uve3qAt6uarF6SXk39IAFtGtKTMjattPxE8ey9r7wESsPwazWjfMdwT/ab+aZs1HNCx6DtcIXYsj7XTm9xN6GIHpJzLPiI5/z3UUHcio48a7ntzW/fe0E/b2LmX1sqpK/VqOpueeKY/WuCpwVaMbAA9tn+Nq45WQaTxX6wZOZ/osMa94Phwytgn5FP1d97PqqiR5wG0yREJa56XexbzSd3IqFml9atcXNGB1viU5Xt7qzFnx4wbPXDeLl3rUcr3H5QnV8SHHzNrfW6BX0gbAq7JiF3XU1HRMx+cMHOtbBic8dIBmxoppoovtSt8TDCJnabGBtn595wy93G8pDs2IBcQwkmvfghpJabsh2LXmcJT+j/8MrDMGzR5ykUgwZj7/MWue9NWv4SRXJEIAqxjsP6VXbC2Bv8ZFZm6ar6BChCMnXck+VcpmvaMTbG5S+fyZ6dPE7HslhBERd5zSsg7CazOqy9NKWROIJ3lyNe7fWIevZmelqkJYzelxUGAJ8+NuPdPSK5oE+02SRrXBwq5EXegZSJAjMSH59N3N96mGZmYTXttIhZpkthliTLLZLCevam7vbIHkj3Bi25F03PHLVRdv1a0O8SrGqaR3bPnRjdyb4PsRpp8wgwPOFTsSS70Y63dp3DIOAA2K+297iUFMRZd+EEu/9OZfDQTIjbd67OW7K8IH4vRxVqK7HN3PlWO3YoUSNus1XlApf95X2tX5+QXvNCV43+o6PoqnrWvOdTiQM99eKKzMA4kzLiZPVfjrqhzgGZ+3FuN+cgnQyhp+JXqUSsOjy/FTTkJcC2qFz+BfPqnn7VATYniodz2k7paNjbVsY923InGftVPwzPE+Q3NKcWbH/CCdHeYibrutKEoqqi/h16G01M0SM5awzy/5LAxmSNt0TJ8jCjmbH5w8K6t+o/Da/IRMbIVBu+f2Nn7qBFnvgy72QZd6hsfuEjEif8Y+vMaygezluyD1GkiRMxHmJNZ93n+4HL+v2YtF7VYajcDw0QOUnEKxcv9Zy+zbQ3kzNiFH+vpzf2aYHL2wJIxk6lqNmHUZontlIJz7ham3PuwKEMNSW56Gwc6LipBXEb/D0fs4hX8vaBQCSZab6J+XMFRMT5qf2YamsHau/9dHf++plgMqhFvIY3g3vqOSJEZ+oUNbQSd+cYN7oaDzmREXVWVWJvbanarEPGRZ7IN57W1ljrv4uMOduSizDVdNx8X9tu35sWOBYSvfNc5ihrIw3RkN7D5f4rAOq9wlzNDPl86boIhRUWk7vxCbhMhxWh8yJFXL4+/9OHdaRuR0jdlr4OX0drRd8Vx3CK29wutFPfQDHizxmydp66bYaCZAJccdSEFfou2fxC0nrl4WlY+bz2YiNC1yZZTMjfa7L2fb9GzipU7Iw25cWD/STClt1VVFhvHao3ZB7AmqTvvB6o7fd7KyHH/KVyifbYwTh9JuzGQ7ukFG5mr/VXG0EHa2+dI1jg6/LLsxOFH2UrCBBEW3Tp6c5KrzHqWF6ZGXhLN+qHjpn3hHPGeWqa7euiIRtUrNd2toWu5cbFUb8bLB8TUKLPd+VrcY3KWTbEUROD933AuFxFZIguYRlL6/nDNQxvdJ3jYjFLPOB4bQOgP3xzakYmwSpepEx5yx+uknerk2kXUSXeJt1moqNHMrwx2esO/mknV0XFPBDSP/xcX7A/gb419aJddRW1dO/PnQw5K5lToKydHLLskAL32C69ryguZpONxS3a5dF5b4N57T8BUB/v5YZZupwMXlsQBW05MyMQMXddPabH1yj5sl25sZHvFdaDJopR8y1z1o5ltnFRE9T94iJWrdb/87Yh3SMgWXnYddNWSHFgB7ih+Fvval4YR1ltDtBSzf4di5HeT3n6HU/SlTuz0knHUwRYJCcJ7MVreZs8zZjjbW/E9l+bkY4sKS8oKh/BcRDH86HVDF7ICspJQEFuxrtcivA2oQzRu/ix9v7oxCh96IWf8/Y7sZIHQIknR4hKeTerN6dm/1ARGVPN49bFg7O+6nDsHf6BU+8cIp+q/iPX7GD0v3K5f1FQCvxxhY+ntKkIvRf/Ne9SxfOvvfWofWzhHLnjtG03e1iJFTJndmTOJcTsx8j1LL6wtPwq6u+D0FFhzeLcNo0MZ9uxdxAzzuXBFD9+CSDnUB0O1fEeZklGudZ/2lu7vm4201QslyjLviJ25JIbPt0flphr/Qebsk26rVuzo7fHyjOmmB18f8paz+APG6PLOT7hIufOm7hyW49la7hFE71WDXgeNjDqlicUma2aQTalr0wXdVpyFeGftP0kcQYJcHI56QiPWoz0jA9Ac8SzZOUwfOo28T/SFraf27hC1jvWFQ8NlY6v0XpBeZ2jgh5oqzjfLJmLRHEBzElv7Wm3rwEyGxHm5hXo0rnfPVNoLXyA+UTMa2peKFGJWdwSPAqtI7Rtw2Iy6+GbdfSB/XvbJ/DlrmEGVFALbZtrA1qXqrJdj6bLI5nk2rT4xmxKJu+1dyMkgnv88Gh8RDI1vctj1RlbXsiodxeSkZSLQH+fH3/5VeT5WABTtL7R1W5f3U8t1ACTZMPzPayWzld9vpJgzcbSGBWKppu8h3QIUmeJFiDgfqp4w90HN4rZkgGDmmePn1NqSWPuZBU1vgj0gl2lzLFKnGeiIc4rKEybgkzw01azvmzFJFe5MaSDxvl2nZ3CTzMq8Ms/2Ra80f49PDCl5r5H+maTuv8HCODRxqzENO79aA5CYS7VUyW9cI5vE4XUJ1ijzU/h24Kt9GMeGZbjDztL+e6uugt53tCPLpd9JVt5KNqo84EN01VLfrKSY10EJh9zhTrRT++rzr89yaOirYVO0uDrS58lvhpbJYcu0H9Z//E746fcNqtzy8AP/VovXdt/loleIZOiwa2u7TPqsavXoRPQ2SqvngSsrQxsCZTqIgX62kp3qNUV+eHjQk5ZyFil3CqtZdzRCS88Fc4g0kuf/6Nu0uxq2YQMwr3zT3ArSJtLLa194W28Fuiz/zLW/do3LR+7UzEmsjLGi57vYDYODVYWb0dvl6+X53OK2DBGp5oEufEVpd4iaWXaPPpbGxdCB+lyJxvVnW8YocY6pnLtKBQd5y5qwcco54yT3h4yxkPcvmnVwkf+4x6Y22O4BdVzIzUMixp8L8xBOrjTbYx/qR0vMwPBO9hYNZKExHXBD4ClSvA0jezuhlFB1vN+21N+a59lt3D2tSKlINC3O716fhMFk0Yyi2l3/pUfXt6ScALfwSv3W1o8W1jqfCQLyr99Moz5MYLu6i6qWtmN8MyO0FMWvhM3GJ+LGysdy3kCZqfqw/uFj4xP2P5BIfljLdpP4NQ/MsfQ1mzyEcQrun0+CkbhD5MwyDdj9a0icJWXeIP8Y3bxZoubx2D5Jw/zO+OXjgz813DNrQLshNWL86aJwnQ9VEf2U7YndFav33NP3unyJ5W1lynoQ412tzp5/1RUjpFxxmwft6SY/TdLiVs/Ye+7fgmtq/N6VhjO4IgdR1mHvbv9LPpPyKgUvyyqNik1XihD4Aslt0lX9LK+dS5OjoE4Yqq06VKWfduT+qpezP6PmY+mjbCaQPv29EkfjRWiG/v8qiKyiulyvEdVwsfS7T2mhFWEMfgtHZOGSCrMOgpFNRqwccHiuzzl4TUSLvpgw8/UOy9tvjnpZpgr+Vw+zZbst07Sy9Zd7ThL76Ey/f3TgwZsn7RnfnW6JbzsOE59NkXM3/3odVPsm+zurOEDk/tBlUUmp8OedoDufo5VDMqyKj+VlijI4m+4UQMa4TyUK/YdkfbqletKdLEk7YlYbZH4XTZ+6d/+o6DZjFt3Rp89dz3FvGt44RGYbm2lfmsxrPbiuFgD7gBlRUhhe3PDCXVD30tBTHGtZjtw+HveZ86uzLPVkL+z5+l4eUTvbM6/hs6v1UX/ZVZTTPy5inFAlTWsaN2ntvWnz4D9hwFVAhXD2uunThTHfr7EH3FvfB7VXRdK3sfk1Capu4ffw2RprOwrh4hXQVPDN13NNlx4dO/22lVgNKmM0VyC+lifz6aOztm3utbp+P1hjHCxdkiliL/UP/H17xjVWH1BEHI//he9pYtqg1yGvKCqDa0nyxgeC0erPm2P8uw8GHmZsmAbvoW8n/re4Kgld9dIgPE76JkjjG8EDvNug51eTwQd4i1cjwkLxkWPkWy7+5bUQkmH3UtHgmWtaBEf/pI7sY5iX5TbQ3bLuk1oU0uTD/yPZ935w386c/4c/pcwvEelTqk2cDItqJWuM5l/aVtrcrC7FZ3IZ9zQYZbvsySRYZgTZ/sNUKAXe9PL1ny6Uz9wxMKJ5+Hz63inEDEK8y87Pzho2FrL1g1ScRC2MclPy59IsLN40AO9Uut+gLjDcxHrceTYHRlv/7cG1Cb/Yu59TerRruFFqbZvpH95nTsZn452uqSbxF/PNbVFBRrAf28+cqcT8cqvjtKyx2gr0+ibNou+oCFEY1/lMLi3+xhjbVmpqOHJzN9o2nCCcBhxVw6pWr4p08kSHyWM3HluOhmee7+5TvMC3WJ//D1pkO+ZQYjbIZqdOdGBlldr/FKEM10tNl2hreWq0R/RhWajtOWovP3fWckKU8dr6RXAZbscLZtsMFnY0ICSCpQYgSWhZbfT3D06ERMQoD3d7p7qEv8WvRdkY8bo29gwRcs3rQe9WuuiCAToVvu2DHOJWPpKwBxyezFv9iY7mdo4xnRDRcY4ioVL3AcPivavBXOp+rSjfB63Qo8fnozFXvBDEB6gMi2q2hKJ4RPMayPQk5cPiLOliYn2sJ3yZ8+Oz7zXfTf/drNzOKX9dRDVAMnwZmLvN3hQUe5HN6Zof4MpKTdyfynN6DrflMOL7G20UO+qVir/IfV+w/eAtfOgHl5/6b/+Fo344791Rt+/dGXoe+iKzmDBeU//p54Jx1zEO9obkZNh/H0fC56vReK+uGUQH6jArOUa16OjIn/8Jy5zTKYrRyKFlEfO3h1q8NwynMYUSk2a7yayribXvQGysKP/vyt40RiM4pqgROnfF3DeSflGQwc+xhc/1Qy2TslQKhgkmArmZ1EI5yDg70rMWxeVyzz0Iheb+RgdXvB4TTLRaPmfsioQPJtNf75wyjalEXSfW394Ym2KQSLCk1jdX3dn3+Q+mLJTuvDOe14dbbRH94g8pvD6bA1XfjDP2u8KiGPaYD/4gnxtaOBxHe2z+Cu6hd2/IvPQ+3+kEuqDV0v+qZs1NsEyl2QM71e+E4t3GI084fCTo0wV3MaeidY9EYSxadDyG+eYqs1uRhMJ9HX6v74HieuQwL1ondSM4/4D9/x+np2Qv6wNg0MQhSQ7SVSqqGFXwHByTZZsfBn7hQ7GxqU/+hmlFQ+EFVuAH+kL3Fn0025CaWJQvJ6Eb/xPNRvfZTDQ1HeZMfcJG3/8HF/K3bMDA2/m9sT9PBXH1O3F2rVBJRR7QdHXrqDoHCwvs8HvPXNlZSi2iBOpM+M3o5asO03kjkXw3hGt5c5M3f4Tnzh18lfPYAqC17O2T57gXrZfxj5hBz92oadQDFPNcnDZFz0vSGB+eFiZsVNnk7Sc51rT/0iYXqQ/XQQPEZB2A87EpiOXVFKB4qWetAyu+Vc/atnzqSyWDi0K6snMM0QQCkQj68P6GtevRi838/7h7fzerNpYYsrhzjnkof0rq9s0N4JI86E+oUfoBzOU28QG2wWstPsm6iSLh4ziiLoeOKwAM77YI3frNx1s/p7vVQrjt4k2m3kss/FQ/YPD3z5hiu6xDMUoYdJbuM15Bxy8GEr2jsWBvxTzr4yJ7BWC4WEn1TvpAkXAEqxjpiOiqTi71VWI2sVXYhzMIXu92iFXl30A/x8q03FJX46KYt+zDDNje5fPtwVY8Cyn52lE1GFBraP1Zc5NWLh/BFYD3fVvDCfHsDq3ZmKQBOsMx/rVTjRCGfgxe2OhWrQhDSpPApT6jbEnZW9xRf+8VefYU7f7cIlXzhpv6Uv3XZH/W4koMwgr8sIS9vrAy36gq8ad+L902dHfZR+f3jMjOFnd2LUzxdoV+NMrMfdRX96stY02UAcpfulQ6UqEXT32aPCo0Zpz750g/7wNVri6TD2jwIaM98QQype3S+QphH+8GsXbtxwXtkXGxZ8pagMqDWuptcLHOxcCXbZg8/04wfwly8dbaXjv4/AKKQZYwsePznfV9D805v2y/7/8WukXkWF2Hfx2M2Snc/IYz+bzsWzrr7iXNiIUi9d8qlTOCVvcwM/l4QsHIIWDcbw0mGUWp3dj7tnNz02fYMWfQqjyGoQTQ7X/3P2wfp/nyk4rlwVry7KpeNfsGYV6jBkhuk13UilsgZ6V3Wmn03Of0kRYJVWvGHe4VSUY3qQAYwiujBTuPXpICdzAQibLoa3PfLpKIpLb0ps4/VmJXfDN3YK6M7bikTyV+gGdZ+ZkF8tzMLV6so/tS6cYAhOETvUqAxpLHUYXuFLxW8juyH+FHsMOUgllqzvseTRzhdhlvsD1rr2iKb4Xuto138GZt6fRsor3GxgytovCWL5mc7VVRLBV3ZPvGmMqJp+xbdXyz4gzEfnbTUpdtJrunoi5OC2z3JcZ7EMRBZcOodi13XHgcuwiy0ZD4OLq9FwAhNUIq3o+B1XFfe8uwv9adKIM+cimi/LPcLdG8XMjMtHSTPhGyDt6ngkKr85518IR7jamzPZymtWDU9UX+DbXD5k17VrNNXZWkCrjTvSVn7baX+49zZyujBnIbef5eRO/gXZbfIh5vp1D2frFBWoeU9HEmwKnY/NQ6VgC3yPUfg78PGwHjfokNMjVu66g6ZHnmdIen8qZok3xPnFQr562zPEbF8yUd+4/gacyZyYJz+2aNSSMIFSdkxCioLxXnWUACrVvxH/GtuhtL5zCo/z1yDhsWjT8XHqBHRrwKFTIs3lKGqvDISLuyfmexuFs6gICVJP2Z2Y1xw4h8zfwAXOCtseLbMSkZ8H4CrCQMXSNhCfS8OE8WAS5guvT9epr0f97//269wpP3NcUzBnaAiGfVBK/FnY0Krui0UrtS75I1JsIE+3JzpuKjRu3DYDUdK2JAKkVvy3dXzwWULpfwAAAP//pF1Js7I8t/1BDEQEshnSSU+igIozUGxARcAEyK//ivO8wzu7w1PHKpLsbq2VZOdRzIeaO7daBksPKZ6E84TGecojuCdCw9yoMCweFsoRpejgkahodb4p7WcGdac92N98xleqFEjR4zdxJzNNf7uDO8DXaQti7i9SWT0kRQT7clpR3jTLe2fmNgKP7Shz43IT/ou/DT4MxDoejtaUfM8ByEOmk9t9CNF6vZ0czWq7mCrVUeyZO/wi4HrvEVPttfD3wx8Tbs6ckGi7q9HwkXcZBBq9sZgIAhrNxPo3f7pZ7DtprVmtIqf6Mr/cfPgoPf0jnG5Io8L4OPE5tk3QpFesEa9b7xF39zzXFvuwUAjMerOvPQc9fxCxNFTeFk+btQqzVsy4em9dtBaI1oJAnmdibvLe6ob5OEBOfxkWp51d9jF5ibD4J41TFxBNRDDhSk2PQhtTPu+vVYHmutKJMbXf8jdcTncVTq+U7NxOqml46wX4XdsHqW485KI0VyL8joLNXDKSfll/ipZ8Rfzzk6Tz9fCxYXXoK+K4dM+HY6fnqLVzRLDOm3SuZdaidgecyqv62o8v2kdQaP6WxV4fWzxPAxM+mrojOloHNV8eP0dfK99S6du9ed/oQgFVLB7Y9RG1VrdZqyp0zk5c/P3ChzGadqokFuqff/P1WfhiYOdrTFcX1tbDfroBmNbqQsKifpfD9RN2wK1dTEj7JeH0Gg5v9Bq3I7OI2YRMc/Icual9JWTnieHvJ5wrdG5yIMQf7HAS/XiH8u3nRZxv90azNQsYftK8x+IJLfcsoU9QMtQTztAgWhOHUEbx2onZFrnXlBqTVyjJa52R6Ne/0ulEfgDiatcTU5YefAyNygbgR495hfsOmfps30pTowrPuiz0o3zURKDHd8WCQdesMdt+K+guHqbK4zbXA0rmSq02nwPBH0fjtGcKhb1ep5QnoWltwt1BV9+l2DAvCZ6o/06fCqzL74WnpV61PCxkuCmiyPT3Na45vjAPCbfsTVyXRyk3H8EOoZ+YsptVtOGouVSAcbtJ6NwmXThtBVkAJadbpl/WdTjsHkqLEsdyqVB5dj2piuvB8jczvoaI2JH2OhxvXUrC9KNYr023M5H0UwmzdptVzYDOA3w2GwsPX/lo8ak/Pv/si6eVVYejnsxPMOyTyUgXPNPpLEYy2hS7jFXL98bwPWAgrgCYCcZg8WJzF2CDTwO+Zxj3Py3OW8hiIabFbauXfZ6aOny8jcL8Mpb6ef+ZKXpH/QfLBQpL3tUSANhHAcvREJXjZPxG2O9Od7rqBLeevNAKwHiPGbF0/grHSKfqv/iJKyuwZrk1c3B315wZaMf5NGf5DE1ccBLdd33PN/y1g/Hxdql6/nwRe2nPAPTibZIgPfz4zN23iDrldGT+pf+VbPCuAuTmaUdX1/rHpypr7+gdfT8kmKq0pslql6FWkmJm9x6Uk5h+G7gn0LClXvZM0YpcbcbbkcXYr/th/TrcofjKI/M0+VhyNmwpnIuLT67DRUvpuJ10WPIlcT4HbPEsa5c+LrJESnGIrFFdzhhl17kg8T551PO89UUIxEIjBjbicNqenyIQY3fDKjQZGv++90rkluGPc+XUqz9HoCdCqRBu7xZtdtsjZPh1JZFxzWoek58Igh52+MRPPZ/eylGFlAY68Wzlak3T09+Btw58qqpbb+k9h2b0ta0DHe67vp6WfA+l5Jp0g4R7Or8iJQDlwq8YPmc/lfTzcwQa9BKdi1jg9G/8Tnqx2HVIvuX0E/YVmjx7IkEfnXp+ThIJXrEVY+Gx7LFC6QfwUsqEBPHPSnn0UTs04E1AeaZf+07uPjnIx+pN0evr1txojhV4u+1MjN3xhabEDnXgqXJlMRE7NH6TVIdbrS0tiFFRDyS4mAA4HbHwca5o1kLLhP3qeSGOH3k11QVZhUm8SMRc/yy++U7sgrSPodLR9+JyNDfnC/qUFwEfXq8o3eiZHAAumw3T3e5Y8yFRd1rjDEf8LOIKLfUr+/MHEiubTciPtDfVQMw1dni9hvQbPqY3fE/7jnhycUNTfvnsIEf7CCuv5MG5Mu4dECPs43GqMRqk00tHT+PtYdE9DdacP3eCVqm4IFbhvVJe87UOW9P6kNDLPun8/BqZdpoGHUvR4V1PwemQoON932BljqtysPeX5Zz0vWBWe2r6rrYiHeXN+GRO+SrrWROMTo3b+4Hkk/vjEw0TETZaJrGCPKu+xc9Wgo0uzHQlGEM4uS8ANGTDi1l+86u5uA67v3zB8KY79GPrSgMIbeszvNTz6eW6FyAuAPOfvoU2KnuoyKeKhzfl/WmNeXmncHPGZDkDVKdsdS9NSOTqTIzLbijn7zt6qwt+JJH9nns+ljIGeM87ZojTJ/1nrzsZMAvizSkdx0jZoUK6tFQ+pDpqvSJxwG53H7bgr34+hN0TUUs7k2DfvXv6uuJO0dLgwJzzeE+HXlKWe8rdHdePclMOPyvyUJMmGN+jfV8yfXYAsNFuyUlcm/18lXMMwhobFB2YEfLD4zuo9Vv1WbQIfKzIVpK6xB/bQqmH6+lp7BAJ3gYz4tjla6HYC9DaBcK7XblKe0e9UrAf74DKcrHiDDJd1kQlrohb3k1rOMubOwyamLGynbe1tOuxjKpYOtCLs1f4N5hdG06RnrPbeRT6Sfm2iwZaucwsaWKJi3+BhNzT0mfFL/kfnv1Uv5SFG9npZ5U4BaRbfc+St8jLYY9gh+iKxsSF+YXYoyMyFI6IWbnEZ2fldg7t6btjzoX8rHnFvgIqXVfG69+T9LN+cee/fMGcfbpCM97bO/jjf3GhDta07/RMI9vThgQHsehHZl4ALfibWLqmhINwixo4feM78SxU1+PhNjhQ+oNGV2we+PCHv4xqL2I1zIN+tKVnAj/BFf7wFpr0dqKwPSkGszJdqz9/8cZ9oSMkCkc0LvhI48VHZSEK5Z7FRbC8fdJF9KUkZvi+f8en9h3PBcFuskN0wWvQ1EpFp9P31PNUCyj64WvDvMXfpOsPyWjVSCUVNJj6KalECbQZnsT41ILVBheioumBHyT840uZ51TwWJs7YlrxKRzrIEr+4fvtbnPv52ZdVnC0nAuxwu2dT7CeBXjVD3nxX6eXPlPuACnJHq/Gd1LO4s2+AOesW/i1U2/Q6Wqjf/yZlR80B5txRrs6CzF/lKeUPc5qDgQZFd0oXxfN+UwrmK4QkqBWtvVo2YkEY1Qz5tdiaIlLfMF8FxEWfrnC+wWPgzR5L4bXK5yy+UpNoNcdwvP9VqCptWxHq5vUJsGgX63xu3kEyHzndMm/NR/DcNGf9ogxzH5zytrFATwkvbGVhGY4r/cpqPpk/0g41Xh52ynFYIvSjVKibNNJSuYchAt70CnAGp+/b/sN01UISXhfP9Pp7l9NNFSmS9HCH7h5fAH6ZccVhTh2rbkVzgUYp9eJOHXe8empagkU9w/GAiFZOFWNYAL9ipy+uP4Ox33me9B2yYGQj2GXm8/T90AuHgLZbsS+/HXmRUUPf1+y8L6Sym7FvgBILUKmo3VX/9MHyF5hRA+vL/RP3+gfncUC7quIx0UQqI0yygu+dcL172wd/8az6Bcaan+SOcPplvxYZKR6vc4/4RuFjXFi/qYXF74VHtH7HN+Ijy/U+o5sGtGCd+lo3c1eWktPB9hqtaEryfb4dMbSDNlDH4lRvWy0ts04UmVY7Yh+X52sKU7P6h+fZPH2yaxmiTeUlneEFb9t0UDX5RuRhz0QjxgNGm7v7ALcSmLibx53NC98SbG9qqCjck9C5veSCVEcOvgeXv/TB7TtCRlsK/lNOBD2DLRwx81lPcNyc97unzCiu4KfhdVxesx7EU5+mZLwxcueq+wha5NRZJS/lZjPEKoRKuXBpfKQevVc/QAbQOS/bApPk+REj/ZhOrsP86hF1qbB4OzPnDu3Xt2cVfTGw1lg9Xx4Zxn86U+L/oD4Bt8We+8OJFJmqOkRkzta7RuHZZ3glT+LaAO6Ut2jyJHGnhqhukNdSx3mHKdjyYGqgxrWuUuCpIf6I71rAPNjCXTRl9JlfWXllagtcelP7Rmzkwax8y1mblMKaNxBXSHzLEnEY99NeL8QqiM1HD8sNM2w/O1sFasRa3LiVt97OGnXdwBOEdyZ8aBPNJ+ze4UWvEeCBS8PmYcrCLpLgOkUfsP5zJIEvJ07U9m1jX6jOXmB/upDHN+Scu6ecoHkq2+xbWsrVjtzDaPnPj8QZyX5oXTk1xZe59eWPP7ymy11OzRusUnCZ3etJ3V/0VE0LPeuePkJqZv5+h9/J/p52Frzr6ER7JUbwepl/PBhq5AEHdQP0NWMAiRl59REgu53zM/lytpkQWQDv18PzF3wKaeJ5YBiij3JKOrreZvJGK3zvMTS2WHWOHyNC8q05sOIii9ogtLw1INGjD+9gk9i+mjQ3/phF54hD9e9h5S1ErO/8Y/+p8zRRmrPTDfCLhxvYdehTHt/SHQIunIqRpmCoZpf5g6YWgs+EuABJ43CUo9/vyn31GR4THitan46Hjf+AF202mMYgyT8HdZ1gha9CI/SSbQGMb9geJhvAUuNZPTr974f//ArC9RtG/79HxGtrVnYztt+XJVjDmf8eFC+Klo+uYI/o/Hsfpj78CI0nq1UhkySA7L3zs+aa8eXqjzgoFG+f4xong+nDCWvyGb7QGbh0EA5wM0OY7pG7rVc6nUCH+FxJ+Q8VvWwe0wdlKuiwehq8pA/xCYC4FpOIstDiEXm8ITjgEOGv3iLpLXU2Zqcrh9Yu+QmHxWaXuAjvil9IVcr+9VBGMDo1gMhSz4ax7PaqFieVsxLsiP/hwcXvEv75G1Z/DnlOmBB91nwV+8XvIY2hdIQ0gmffhC1LoN8f4/xFOArGv/0w1c7msxySlb/VsvtelvwDHbaNQdrLlNlp2YxxPTj8qjkalCOqDW8N13nwVzPj4tuQnJOL2QbU7Net0tv6+Ldlcws4oovMp6OgqwZ8SNL/XCiYSGq8m328GbAOPzll08CkRVlLPqc/XLaD78junqracnXGWfjvpSRbZYxc1qf1x16Dzpa+NaifxIkDl+/gvNvqMh1Wb8vd+47tS6yPRYULypldTt5WvkUfyRuDu+wHclxp3Xnh7+MT+BTya8DOr0Cj1kv/O65efwB7LqvjCcH9Wg8dnqhqevHh3IardCsX8gMEnZMEi36OvelJIPdtRrx/S9/53friHyDGgw/9mY/5PsoV3GmFrS/Dk3Ku/RbQdsQj4W3x63+PtMgAJykB+Iv+suCD3QwGd0xt76+Sno9fBz406dmoYrKd/+65jAk7p345oDq7vPmM8xavvC/+3npu5rn8DhgiwXrvcnn73hX4awmRxL5xQbV7eomwJ8+qDezU06/s5WB0/GR2H/67vpTerDUG7rKt6eSH6B8qvHajsnBmdflsOAROJfumbl77KR//giJfDmzm1yv6/Ea7SV4Hm6///CYURoYxtf3RojzK8KpmlYZejNbYVthh8opUd7dX31lZpw809ErCgckWt8wX3txOL2lSdZOw3VNgl5qUS8L/huKwq6ZTQS9Fg+2msAwKT9m1OcgnJtu48Gi/5FyI7/rSbnZd3gIK5Nqa2vPZ7yPdmjbXBSG846Gs+dp93/1SeV+wTlNQhs+rS4xTM3e4ntNUcEFHDGDawZf9kt00CS8Ie4ev8t/+FqJgpiYxpOh30Z93WGnywrDhIjWyD61g7xofaHzos8t/i+ho+QJbFt9V+E6yOSd/AL9xJxgw/hXuUVP8LzRJnH90Osh0qkM7UnXiXN2iPWnb4K7u+XMnKykH0/fPYZPZVvLfaumH4pCeSIuHRnuutDoxa3Vt//0Gi9dd+G/fOwnpz2zXFh6lS96z2yYlPmecOp5LCJBPau7I/EvBljMRraMlt9jKa2acvwcPhHY/RNIoCd+/4cP/uZD/vTyn94qA1r4D/FUJpf96ykfUZZVMolGsS55ttwL9tsNItbm+uqH7it3aFlfEi/6yC+AugBnc2qp7Nc4nd5KJatEPBlMPzWaNT+loIP73R+okJp1+TvsrgG6yNmDVU67qukf37sV5oeq9LDu+f3Tqaq+T+7E366VfjxuDArvUmrwxvtMaJpZ0PzNl53nWEh//mrzBnqT9QWv03Ra3zv1H39dG5mAZp6EHuyCqGRJ3R/KOT9BC29RyAhRZRoO3XDt0IzLlq53G73/hY+p0eg1QcQsrA5NchJG4LdrREL91IRzr7vJn/7+p9/wefVsO/hg5LAw9qJeir97W8unY4Ffsb0vf6WmmjBL9ECCMpmsKY/OM2Ls+CH+sp8034frE+ajvJxhXQchz1iCQfZVyoxRyK3vfmO0aOET+Odu3Jqagk9RXiEXv+7uGo1rneQoPIqEpOz+LEdvHapqBMGOBYLyS/npPj9BrvXqn776t18JFnleKZwF1s+HUe4gMLSejuIQoTlUr+Mf3yL4WvGUyy+YYRXSnjmLHjM8Al5pd8lw8GvJLyP79M4/f8df/OKsWXrNu+9sJkQ7FXw82aED8/X9YsanrqyBdpsEgQMWyRd99c9eqDpxj1nHlZtOIZ1lwF72JHa2zcPBHDTvT48hDjItJL2iKYC8v6ywbLz7kEbDL4FFH6Lr8K32tMszB54bdYUv6ZDWgzQfJfRnT2cuSflP317wx58+2NOL95sBYd0hhbptLYr3UYI+Qn3Hwu4XoFm8RRVU+x8i2GlX/dhuzwOkeGUxvUe2xVsWXP74NTG1zrXm64HZyqJ3/MNj4z4zPMj3z5jSX35GrAkTqkW3MWTHrhqsccEfWlDuYxZfnhLi0rlrQX3uE+Yt+5dtNxxasGVbZM7AbTRVrMjgW2+ezOgGCAe48RnqX/MmpRPd0n966Eq2R7yOqdn/229IsWYxcrMfIctVLQDlVjz/xhtOmZWKSP9JJ6pJzTbk/b2bVbxlVxa/xbn/N7/12ejJ7XiN6p/9STMtFdueYCirdKK6cFehwDnWhuSbTqvoWyHjV034+dTpwndLAW5MNf7t9y32EMGWHZE5HMx+45ftHST6uGGt2rB0WpnbAIwmJHiz7BdKi56lLs8gkVIQPnx6yrtEs9ixY0aW+pakG1cBCfLlyPIn1sqxVddH8ImDiLfsP00Ln1BOkZnjP329s8LQQUfXF6macbufL443QrZfcxY5qLfGreLukNCrFcMnyes3Xfq9gI9uOl0t/Ji7e1T8/84UyP/3mQL/cxyxMuxMNDI4PqEz04LyvNiGXHA2EdxW9ol5ahCnPzl8SmD4kLPsEENJj5EwqFJyjrFQDV4//97oDY9X57Hg1ryseVbOA8qT+YZXSvbr57JrOmiCj0VsQFE4S1mYITsvO+YFfliP8vkBWmLddXZwRGx9P+7Siyg5AUZr3S1HUZCPcD6gNe0eVzel15ORw2q+KMwtn145tqi+wz5bT0wvhG/NP06VoUw9+0RfZy9r1ounjr7CLiPO9uyGYxK6Olz8+4r49jO15jCiO9CvnU2i7CiG32vYPEGUhJYFjeXxPlZyE4wsq4j59Cpryoa7oGXjGLBwOzR8jB3NAS9UQ+Lod6mcfuWRQhXVA9OzvC3b/ePdIetZnajWR1k9JcdehuqozBgKOJR07zUj3PpHhoFsdulo9MurgfLwYEaxe/AhPhg7QEfiMqNpPz3V14KH3lz0yPZj9f1vNfkd1C9JJsbsXlL+2dMAeDBrBO8zMZ1Q6O3g2mcN1qrHrR/bp3sHRTw/GZYPDe/WewdQhp0184yuDeezfxth5XgvFn8Ujhalp4Ln6X0k20O+TdnHqY5w/fAHCdtDUi7tNyQUpveS2MlH5fyRDybMfTfgTXsn/Vi2RQ6ud5uwUr/inirrHMOsGhsscMmwRHXoWliLpsnMLzf45tSeVJXEjsy2ef+2ulZbz3BGZ4f5OnlY/JUbFxCu66VXtXW1+O52rkAgVUgl03HKzfMtR6BshBfDLtzQFLumB/vg2i/vM97R3MA9gmr9NvD8dcx6rdkDIMs9hVj7zUdrvKDSBnDsitjI/CIe30AHtUkU/Pp+f9ZgZqMIEfgmMfzXwNn25puqt7mdsXCKpXRStuQJ6v0nET3QzX5Od9cWeXWVET82jjX1q30Ox8OGYnHUjumfPyIOLMTCc6X2o/RbzhjUl4w4XXvgnPu1hzK19Il7eSpoovbKAXH8tEQf1o9+eL3eF7DiISTJ/ujVjG7PGDYlqolZPJeat35R1XnXNYsWf5ufErsgtHvFdLOWLbSZpWexamVLY4HVnmt+yRJHO46CipW9+knnci1eNO/enoj7O9/LqexuDXihHBKnP6yt+bmznvL3oDnMUi0jnIpX78DWrREdiWL30uf220EVPQayDVK9lPSlN72zSb6U1YHV8yJ6RP/F3wFsqw9yK0Cr0+FHwvDlcHHPVAlgHTFyFBStbrf7s4wiAVYkPYh1PT9qOsNvl3QkCIqoXntiDxD63oElc/JK56JojwrxH2s8eu/GGu/HaAC9NQMSl0gI2xb1d1gfDhxvyNhYQ1DLOhqzk4SF68ov2Wo83aHJnxGmxlGo6SMmgVqfECPb49aupyu6e/B01jsqxIZZTrAaC63z2oJdJFnnPOpDCaR8jOl6gB/nQZ0ICK98xtxpSNJ1t77uEH0cfOaeQS65vw0uKmkjm+Q0/1q//jGbEIN5pptvjNH4PYOD7hVuqQxwL+f67oqQxMGKDvlzW/Pbtj7C1Go5Ianys9riVekqmd8B8cPldK2ty0+Ipllj7lel1qyTBMNzPH2oFkofPvXyvkP5L2jo5lp2/fQyXAqXScR0RlVrzX51zsEC6UKwYB7SGZ/KOxQYfMrDukrnprYxpPmrYU6UqP0c3yig9MU/zBdrkU/KFx0BdlXD7E/1SJm6fbSgNSedBFpspHysvwMCsCYqzLu9JVFpo0JMhi0r1pSEc7o7dHAMby09cjGvR1mPAYrtFOEhPT6Xe/HJHSzWnQletdv0n31SN7+w/f1yDKdCXyXIqdmb6ZLRlNNWDlS0rVqDVd9pORe6zRqY2XdiTmYLqP9bzzu8ODNapPR0eUkAxHJ9oY8oxOVrhLqBoMkDVr7YyPurpi7PDk4EqzO5oL98iZRtuscr+OCS31nYwd7qvnQYeJzO2XdqUX5oLuy8y07p9PwmFex1aWCk2s985tSXATvFDW+cxkgn20pGKK9RT+J7+ijn9vlt0asmPf2mnw3i9wNrEYuqDMtL/9w5Il0LBV56AypvXFNVjQbYjs2OLfXQmh+xG4Cp+h6VgtcXzUV0CeBot2+23VC97+W5lcF6Xk7MNLeJNZ1HVYXrtSxJ9L0P/ZRt5Fm99seGOVoUhzOjQ4Vs/pSI9bl9Oau3+gjbWEas+FpFyMXzp/qXT6X1T+Xzn32dSiuIuW2acmRQ3ZFzOJbE57VVbvaeIv7lBxYY+IvG1Si+kS8sF6rw+LFmKPctfLbWjorBWupZ6xcUPEw9YpknVLOTNNgoBv2MFXT41DOVVir85Y991u35bHqSDHI4qyRc7Dc6jyNGw2dVEi9icThK+8nW7BJ+dB7OdTmJutYgZGITdzMBPl9+XxM2Z/eNl+/Xv8szCqBaNwZJnp5gfbXKA/B+bkrIdW/0s6t7KjRaciJEb498mK/9Bap5tNl2LPWQMdU/orpKGPOb182in+x6QZ8NbTBXRz3dfAVTggu6xcTW2j6dHivVhollOTPH4ZCO5hgB9KK4Zdm424TzY1IF9XdWvsRbHXfhHNmFBNradhj+hIPFPUnCQJjl0FUW3VK6/B7lU9jhv/in8lyKENPtjgRSSdPx+wpVaCTlRP7i4188HC8Rpb8FL8zBVDjqX72tVu3rfwAAAP//JJ3JtqowEEU/iIE0SsKQXtoERRFngIqAXDoTIF//Fr4hMwiVqn0OoSofDlGTAWWYVNJ2wMqXd3Ja4VWxHxghLa5J9pkdqAZ7DqO5LmtWW+r6ywfUmMaAMT9gF7i73b6ExUCLhV1wFaHGCkrxk1uN1fo6jnIvIgEjoT6BJT1mDUBh+CY17PVxUbvegxMoN8YOxZjeupcMtvjG5riwfM1xWsIjEheKgzaomcf92ZCQ2qfuXj9uveJ7G07RPSbr3v+rCcxPg2IqvoCD82MB393tO4DuFU3Y1fuZbfc/K4dXn2DvePTZN0bp1lH49iZ86atg8rxChay62lTbH3A819K9gfonU8j0uQCDHdtlD+taBdiViwRMMfJTEOqlQe97/Wh8+XlB8IU5G9vseNh4XJzkY7318taGzliHSKyg59R7qnZ95C+K2XCwaAafjD0yjMXf3QPZynkTm9UnGgUHOSrMH2gkbAdrv0vHQwIq5jbUHW7luLx6QYXKHcrYcr5z/t3qq7xvZZuIjc7/6jeC8WmtfvwVs0OhnaHWXWusORM0pssTE8Cb8QUpZn3M5+NdX+FDxXcyj8YOzB8mD7C8CR0SHlIHyF7tTMA+skuE+FX7K6tkGzh3G1FcPZp44rOgBNt+Rd02u2O+dTyEBz6vMLb4Q015Lj4r5hFV1LtZ2kjKuCogo2+HBsJ5Zr/8L9PdZ9jmsxYjU3SdwJATE3RzPZ3xlf4uoOzvBjSDbTaJETgJfGFo49N6hPlcP5QGBsusIDFegnEt9nservb+TV8EHpkYq/cLDCOAqGMpmUHXMWtAxh8eVN3/fcAsx3YHnLuJ6CO6+rVkx0sA/lAQ0iy1mD89GvAEL5u5VPea67hMC5cAobUPRJgwGpf9aq9AedcGVt3YiGdWvTh5q4fUi15qvExJFcCLKjMafi2RrRzJkl8+RMLbc0fyaZ0Wvt77K3XlQgRrgKsBapfkSXXwdAzpwx4NPGodxQ/NFPypxUgE348ukFm4WD5z8sGEkyN4ZDcYksFWm6zgmiZnfCzJGC9YJTyY3t4d6zfsjexdAx5Mgv/ExvN4HZf0y1UwOyuY/O0Wi80AEg5eKknDhiDhcRYQnODfcm2oOStJvoTf1oT9dWcTLrX/4m1/t9Bg4wu79Ses59FOeXgsVB5bbobr5e27EOQ4rsh+XI8jb9MhBd+DJiPppxe1h3n+6S+iwCTMKZW1y+/58PGCj4CmY3GG5qntcKCu25k512n/51Oz3Ku+sPGR8vYqiMDftWSLikMPHrWBouE+1j47RMtTWVt9xcjGNJ+HfdBAlQgBDSxLqZfg0a/Sj3+88yHy1+JViPDvOic0DFzZ/8/z5U3qkHR68KwLdLVVpHPU/OpHvXLknMB3V1j0dWoVxnguj2AprAve9BNYo1eQAbIHJ2pSxWSLkJ1aGGa2j7rRcvJVM70M1pr5RbyTt2yGuzqBHXq32CubpF6neofAhTVHGmBv8T9Vfy5go3LmxptqzhbW6oC76Re0m/q0Jm02zzCP1B47YRHkqxx3M0xNKUHA3YlsBomvw62e4PChlvUSAjmCf2kb4yDDok83vwHw7P7Z3rcY08soirAcsxFJmdAb7FC4Z+jW7Ev6173wCdSUAS4XHCIFbN8Q+U+fAUsOMfXtu+nzfloG0FLWM+ITFuTLQfA9wHVhQchNvo7L3h94KKZrSGAutMYSnu8cKCtM0O/9islSlXBnJB3VzZGNM4AthE21P1MkFvoobrwNRl60iGJFbU02fQEcoBfUrtxzPF+95gnBffaozi0dWMODDuFPH4LpXYNlWsQE6uxiI7Fy13zu5pj8+IOsuyXz552XDmDECSPCQ3IAv+VjGAVbmzH7nTKWi24F3YIb0MGo3iOZnNEGouSmaNd4V39Oy3cFz58nIpJhUWPOMhTAPz+LsM7vbSAsuLlABQCH6g8nACt5lh4UrjeGKp2rQJdldqC4f5eZovivHr9/5+isbM0kcJigcJRCoiLFW9oQW/GrNqjHURtAR86x7+yskcnyaYbLgTwJuCvTeIv1ZwVsKeqpx8kLW1j11aHaqR7OXBUZq2KuunLpkbbpoTVej35EYJsSiNjOWON5N8MG9OU1IOJDVHP+7G9NS0H1RHJxMkcK0+qiAJya9BlcamMZ37IOOONxIpP0KX32mo5ncOQvBnWm9WD05XRIwZTMMXU1uIzMI9UK9kWlUrxUbrx8PqAEZDUx4lYlir8n5cjDKODwb/+Oq/s8ZdBg/QuxKv4z6DudVOi/lBviPp/CWO/ubQa246U4KJ00/8Z900JwXz0anvQBLN1crvC7y2Qyb50Z6U9fWF8twB4TAvDfrxHqMyTwrbn+MvlZBufdS6PGxn9Lm9UE3MzdjmrPmrHvlAzop8+wNoLOZ/da5RVycW08EsDqfumdC9TIVOMrjpeR5qJWArRODFv38RaTzxKl8BFxL/RWw7Rmt8hx4P3+3FO9CxcwHZusAVt9pT4XeD7/biIZqHbNURPqeSw8Ev4C/q/PKBfxOr488uOJX7zUa6zeExDow0SUT7zW4yWqJjAFWUiNK1+Pi8PXEHI39YK4v/0YM5taF3DqUh6H3Woy9tUvPMx1sSXC5wHqdSjsC1SJFND/PN0Hug7l5DZjJ+HVUVCeDgeKLLJoNldB/N+fI4/EIJP+KoyZXVMVFA9TR199+BjrU+3nwxbvWE3HLJ6u3lRAs3fmn76KGSu9Fd7awkdSbJhAmFsfwoyzMyI46smg6t9OBT9/zjfsOqfN1bLhTerjjWfVmo9OVQL84fagIU1bfxmMvoS369fCNn239WoKeXvoi8QmQs7Zo1RSo5NTqRxo8Mz/xlX4axvwtfYN1XeLbHwF48BB9kxU/MtXtL/fdFAafI14vTLHn38lg5YLSZ4N22y/WkJw308GNsKr6outaO4VTshfSNiVDVtqkwxg8/uw8W6PYCVRDuFFCe3tTMeLLa1pmrLAb/PUS79kP95TjmdJIuXrlNf057f9eObUgXvNsKZykNtzFdY50x1/8SO3taUThYwtWK0n4yA14htqonA01lyAxYGqr4y6l7IDn2N7m+EOLw02SlUCKyOaDKv8L0e0lnQmgvR6ls/0GOLNX42XIpY4YKWxRv35KNbjczvCPHyzDxK/SMrJU32vP55GfDc08WQ0ggcvYmZS9ZhpPv++uyaM7D9Mne51NObmWjk/v4nm9r0xvgqGq6yLnoFDK7JHPt8/CZReRYu3+gu+r+cXyYn8dyBwYmEu//SSRSUXsWH98Q/jFQ6sL8LomrO1jIenbLWBR81uaPL5i7QJPnehSr1+PmyzZtRWeQQoJkJnPHwmFKMISVba+K5izV/+jmoBw/dwQbKfPcByEAwPOkl0og/xdK+pl/reHgjXFNVr+ojnY3NuwSL6OTW26yXolhaSx8XAN9er2PTzT35+mX19PvLVq0P5sK0XxbVn1PPx7s3w+YhWUu9gbcy1dGoOENMHuTUXzhj+tl7XU4wjkgjfjLHh5Lc/HtrykeMPoYuT/35NfEO6T79hM0CAMxOrp9XezhSADpqnpsMqhdG4VnmeyEGGeOxynROzzQ+GUhL3RMoE1/i6U1TC96dzaOGPT/btwL6F9Yffk6GZO2M9t8oZaoTUWPvTpZwcchiAfbu3iVjTKp/lGA3gBaOM5vmgGCs98GdIbTFDyvVaAGYE6kVpF9UniiT19feaaInSY8/AmlEejJkBwMm3wraoaTmtv1Q5imDGgwfW43kfL9f3yYN/RyHc/HgYf5Nd3/3Xl6aT22A1boYJvX2O8cZ7xsLPhwCec9v5z/OSLu8IeAjTQDXFKhkRTgiC5jNhfP0z/Prn78CN77DuSJbPLqPIb93KH9Tsb0YtfbhPCpqzG6B244vuBLxO/u3Xnz8pn/3eAZt+RT+enseJX6GDJgfbN/Mbj2T7DRDEdw8dFNAbs5R8Wmia6YeqnlqN6+spR6Ci3hNr91off34o/MUrLARpZPlwmOCWj+g2T/kfAAAA//+knUvze0wThj+QRSQO05aCiPMIIrIj8XPKETOYT/+U/Lfv7l0qVRaq5+67r+7q6edYt76/emrlQ6M7l1uDRxy+uTS7qXpLKZkrWJ7qgh1m+e08Qfv88YFAcoqtO6/8RF79JbW9/aHYiWplwC2PDjgQ7Bqxu7Lk8LklJlVX3syEJMvB/lojDik+FQx72QKjpMs//8Nm3jvkED5oRbg6+rp9vVjav/4KtvJCZwO9mej+mmu658c7m0+j26DjiIFwXtK6y7x/ePDYn+5Ufeqkfcc8TdDDKXOKd8Rzd798J+zbknSOJRRzGVQy/G3MC8YG/y6mrJeSX/6gphA7aFl6v4HVj6z11EVflj9lvXVnr5CnG9nu7se36FtvqH49dsVkOrsONpsvwj/9YpUcl/DzT4F4NtB0ojIPW8Pqcbb/Wu5czw8RfLO2Amn1z4sd2084JcL843ftlHZW+evPULM/n11+f/dCpB3vPPbHZad/CqyXkGQlCsSHZ8bbNR9Ij7/ggb2v3LuTlkw75ecfhJVfD5r90WD1x9TAe0tn6ktQ//Eir95/9MHN3gF6tH6P/dsRo/lmTiqAqA7Y/nz3BV+8oxyassioS4Iknkp+M/3j0Wc7py1j09FE6Seb6THUdwVppXYHVD9dVj+h91PdZSIUtT9jf9vJxbhEFVHeYy/Q41feFAN3TCL41dfuQzv1Mw6YCn954hGy+r3FH5kj+TfRwmU5WC1D692Iv36Sncpiv/IPDvjj7oKP+oG69CQ/OhA+/3htxObgkb8hOraHQM44Ha31Lfz8B/7xFPYXMgut8YpX/Y/Hc2qnv/gj4noeRpSGJqz8nzqrvx3E6wfQr/9hD4qmD5ZQhCBZu4Qa5JIguvJAZZ2ix9fCdPQliSMNYMkXMml1WNDw+4nAIXsbBzap+8kIzhVob0799ddcdrLmHVJhOQebK6eyubL8DiFX2BOxirft0jxbCw7ZaU/E29iwLwkLDs5yWNG0ozGbomscKPJ8A2rrzb7fHuKLAUUq9AFvF6JLrPDg/epVMr/RtZ8/LgDsG/r5V0+N1ufmwGRvJox/9Q2rnAn4p99gv1FPbNpsrAks62zhX3yu9WMET+V+xKr4OjA675cQLqWs/fgKG6bHToYfH7YFO9UHr3/LUnecTfznjN94MlMzU375J3CKik3qXrSQR3wJB/RL27V/aqHVXxJF0Yee3ZLcBDDNEu//bl07rP0UMGXzSYT0I/TsdXpaUhvFWyJu0kln9Hxv4Of/8a3T4m2dXickH5w3tlQj0+f7w2pg/d/kDTput5x0NmQrogHF2y0q/vGotPL5QHkvBppHfhlQ3xkb7EuTy0hrMAIK7nisctURjfG1CpU8bSIyqUe13V4vqYwu+0Gl7kbKe+JLDof+Lg0OuPil95OArv/nTIH0v2cKrKe2Iztxb7mCKzxT+G5PM7Uf1rNYTs40KR/CFzTXzk67JIsYgKTVPd2/xSimEk8r4OPoTKRafBUDFe0IHv7nhfGreLRM0CSC8udk0cN7Y7h8dLzIaH9Zd2/ovtpvdfLNUZ6FDi350miXyNIm5ezBjaab6o+9/J6Y8lSGMgmjYtXk5VaiK0wh9vA+dedEcEW5i4iHsd9bbFANrkLsGt2pXVdPtnqEDJSDvMfmZ9D0rSiGOepqzyGTGud6xyp1Ar5eYqoq7dQyJZsmpezXvbNfWUPLPPIOkPsJY6vTX2j0mB+gXfuscJDoJzTcNmkEh2ArYZxNlJFPewoUI2rLQGTOn8t2pruDvdNuqHPY5C3dOE6DOMkLiTwfGZsvj9cburghATpd//T50DQW+I1tYnwapWLJypFD6BQs1GmWEdGnnFlg1FsuYNuzgZjG6Btx9yHFfs6QTjpj0OB1V4Ng8zqc+9l/eRx0deAEVM/ieHlKmEdpUwbBHMdjwYbAzxCfYIm67cDH0x6pBnzgLdF76e37RcnLG5iLfqT4pT/0703flCAy36XaX+jEk2UpAdRZ7eJD3Y0u44sylQbPaahfenXLgr89QX+LnGH/YVTuco32HRiHvFp3D9F2PllVoBS6ZGK//nz0hSpmBXWW2VQrCi3e7eVDgII+LahVvUM0j2bkQOuqItWmLY4JTiUVrmBM2HofxJiSzcWEfBuZ2Dgrqrs9eekNeuXbUe9KoGf4tuGREg/r3Opzj5ijJhUKVQXjQLNg1ZQhgws6HoKXZD7XHpkuorS5BdhzL6Y7uXIgokMwCDQQzU5fbqrtQahuMHZK5cHmoEsBJYfYpr94WDT25uBKTR4HfydVn2PF0GDTbT3s1/xeZ5YrfhHPTQFVaeC0s/9ZAJIIHhRn7auYBSMb0KJID3wwujmeBM1ykKRgDTtoE7lCOnALmIloY9/4+PH3iCtP+YRJiePv8FfQ9Jk3IF+zGy7H4NEys3hZMqqykBqq5hYLlSCD2r6MhDuQHs0ybaLNhziI2kbf6sPOsiLwk+SNra54x/PGYpWCz/czPlheiAif/k1QcM872U3zR587q+hQQ8iNmmPt6PNNEZ9gtvkxkCzr2y/fvDWQdspnbCa2zxZ9vhggDKJAXV9+6cThXBHskAQB93maLkHv9xNAyHSsLruvPhN9cEC/GgaOLkxj84DVEOh5PuCwn1t9qku9UTRl9HBwEaV2FlFTKWs8UIs5f/rnsbFDlEzHllBJddp554Q8WuOdoG1esRfqZnXdS2YH0nvZxfQ9mCqwXXSl+HXfuaPlowmyh6EQcZeX7mheQQPuFiRYJxGJWV1mICmNdydSyta9JDtSQsF1d3o7cn8tO4VCJ+8zvwg2N+0vZtdkF65X8ibUlfCbzedZnyS3Vq8Uf0Xf7fvL3xvJvJhi84OQO7bug8jPpC/WeL0hZnTnCF6qe6aG8tWK7aqHwNdTHPDuX9QvwyncAR+HZxp43Bd9q0f+BdqWNca6j+Lxd/4e36rGOMtwPF8e9C3fBP9M5GI0GT9t4wgNwvtGk2t+7Jnxorm86BLBAd+POrtUXAXttdphI7qc3NG2LhPg89+ZYtLc9YlPrAqcbfUXMP+t9VvufBFhPLyA+txujJedWUdQjfsTDTRziBm+2h1MJeQ4Ub5rDr7bHCSbWA34uyG0C39GX/SSXY8Gk7jth9c0lWClJMW/7w3TtgihdTWRat40tCTHm0HkD08Jm3xx1af1vWxssgst+ersLoVdlGgaHznZvnfQk2T3LOEYiCo9la7L6N/YJhCOvEW2RqOi6S7KGnQb7UUNtgfWPzgzg5eqCGTO26EYCyORkVBmEj2a9YNNcn/cgXAfr2QJH3z/WfOPAt7exVjjmmLa2BkHJx64gOPjof/YR/YFeyQ2tfABYhqGRQnXP5QSwbEPMT9/Yg3aN0kwTpQsZs254ZU0mRZCSWzo76CDDMbmIVLtMO5cNn+9JyimrmNbCPV2DpPqBt/rd4tVNZZ1gm+zBWPNUro3nkedXRMuQo3uteQt+9t+kscrAUGlJVnG7IhWUnFDlTysu4aHQl/g7pVo+kNcsOOLqzvGm0X7PZOFvxM2bty6UWw421hVT5924U5egC5y2NI/557Hw6W9mBDRg4AP5fHQ8vW6qznfhmbwuJh//dJfQgAmGIhI+X0qJnaPJgjR90lmRlR9Ga0vgWdrX6napUPMqLjw4OT2K9gON7dn6HF3EM9JIVZvksFmwQgHpOnjGeuvHLNPUHs70LhswMmyGeL+vOQT/PTDPV1IO5/5uwib1POwV3FFP5dUS5TW3eZY7Vy++PbnowlXck0oPpVqLNzXm2xtuNiEd++NztKP1YChyyU+tpPcEm2HDCgqswqWRAN3KCddlIn4PWJ/qF89rRrsgdiNPtnoGStW/etAGGSB7mvWF2N21SOwFbsngn56st95BL6KTtifXKGdSlaqSDmI+1V/v+6Y+y8LlCa4U/9iuy4Tlfsbgv5+x/gVjv1QF+cGlMlVgulajmyqOveL3kuj4v8AAAD//6RdybaqPJR+IAciINkM6XsTFNsZoKIgIk0C5Olrce5fs5rV0HVakuyvS9jRP1mL+mc/zVA2mkB/Z64lNFczD+RPOmDpFANf9IQIv2ejEq/rvuH4++THP31AEb202dQMHw2UjX4l5yc+ljNdwxsgLX38uq/KbN4kdovacL+ljVtbydjHvgheHcp4taZlMjc/NUe3oZpZCE+Xc3cvj3DaZgpuFz0qWLUqgks2FQuv6cecdKVt1GH0DmSvX6/dDE8lB9pCR5Pdcmv8d3YC4OFXX/RAXs5sG8foB+2WYNmxQvHv+7Ni1pgblOdkOAl3BS2/H1MhibrReRC6/WSRjrl5Gsxx6nVDPagPTjw1s0zBN2L408/L/aRvPt6SplIFy5GIWc5j0pJ860HUiBSrtrnK+D5eV2Bn0ob2LqvLXj3tI5Xf4jvzk3TLR/yAWNmNnUUINv1kCrf2EYTxlrDjSS3Cfv6tA6DbT8dIuTl34+XZiLA+vXtanESajF5YYhBPpGKWYrw5dWPrCKftTaGzcXiaYxl9Y7jcD1+6NlZGtilDvUbHQ2AyTfy9SlZGQNFlm+ssPtQkm54f2YHnScmx6iX3bIwPoEEqWg0xhFbK+lXintGLyyaz3LYtx181YtD9OsP6WVWTgZqaBvdptyOeFg7d6B7cBxRL7320YyycLq/tFTRKSqyuxF0yaaawgmYuNDye9ToZIbudQTxZb7JLXmHJhUthwTuOnsQLsyirz21gwZ8+N+JrZDKPUOVPH9KV4eW8L/EUKAVREqwc7W85WZ/Yg9p93xc8Q8teXkPR4OxzEt1d05QOlnRG0Cg2825U59PiV8DtNwXe9lc743T9tOBZXVMK7HHLenm7cpRodxb+6s/kazcv4DqjjILis+SXmfKMlOtmtfgBpZudq/IA5y39GI4mIxGF66uBKAsPDNsvM5menRwp64oGzGLvCvV/eHxRViZez14fTt8x0xTPw1diFa3Tja/sVIDnRVd2f+h+Oex+8wog2gyUw9wn83ZjrcCWpQnDgmfj9db0SiOEFm4OSYCkP7+SZyaiW0vJzT+9C9tBfpNUOL0z5q/HIxoS70y8YnPLPsL5ZoHylZfe2I+Ib76idPjT21g4zU3YirtdAaMer//4KvvjY4Cf9CPBRSHZdOTb+c/f4Orw/plDvdUDsPPX8t4ce/L+9QiLP33KdE6LcLZfRQXFo0yYVUjEpNer36Pk++iImQf7kEbs3sADWw5VkzI36a42r2DsS07Vlzh1o11sKFiFnJLACOaOvhPxCvtP+yD6xamWTP59RadolZPdqttkP56rZ9D6+rncVfbM+CtrV7BqpSPDP067eb/0AXvklbX4k5GP4rLnlxWjRrSbvEKzSxoMs2lHRFOSqZs30esK9B7smM6RV24WPQfXc71mekqrjDp5VMP5OM/0Q4TR7N19d4QLefh44ZNwtIvbPz1M78t4zyT9HmAc8iu77G9WIrgHksNjW2l0HcR7NEd0Wt47w1emN4OSDDy/YbhoGcX0Tb8dlVdP/KcXMKI3hQ+pLyvQ/4IHMQz7XI4nyjE0lVixQA7aZOqu6RvZv5QQ++GLYa/pVaos48n81dCZk/2EAHWHZMAja1A3TVSlSnfYD8wfteXMfXtN4Vg0OjEuG55Muhq3sL74I9E/+J185rea//kb2g7HPONMVkRFCc1i8euKOT7mrQJ4u84w3J5lOSXaA0N16CPmS40VzmXgaaB/ZIn4yA47IV+f4z99ScJym/NezdQHfHbdF2N7WyL2V7/LZxYd8sEcd9V1ea+jEIjdiHk355oewUmaRWZzycjEwccienHFZHjhA2HBZ3n5TDfS8cd/OnJmdNPjC1Ut4ZOM+xgbSh/tKxYgVe96fXXA6CR/riTilpcNoues4PbcLmfiv2a3eaXZChZ9isPN74amEz3NKB7UYMHrdcgyYz9C7Qgq+dP7dP6CAYJlSWTxC+ZcxloA38GPSVTd5nLIdaqAOtKMePfwl9B9II/gaqlJDP+9CuejSHO0exsWVVePCE1Ne5BRmV6uVHLGFZrLQNPUz+79YWQaw44fZcn40w94VKnXbc7f7Ruu3vgirulgvuQNAMEtMsnDSI6IeX7QwFav3KXPmZ7wYDtiQAf9SP74Zdrj5gyLvyBXtVXNPt0VD/X62T7JX14y5boxQiLaHUZLPjEPy104EnpJzH6xT8iscuvB/tq+GdmJGueoCT0URcWB3T7BmU+309b74z/MZdXKpFUkF4DbSaUFNw/d1D5WszIFnzOeozEqG6ve07/1yZJ9bJhCNEIDGB+f5CY1ljmVe71XDYMkDD/3Rbj4pRa595dG//Q7D6X6CLPqmrS4PXZonPohQM4R/4h5lF8d3xwsB/30UKPdcf50DJ53A37x+UHfv7HJpqLIHXQ8rD6EHNEXzcL5MqMhCc4szK1NOOaoMeCTayXbjeGl5PYrDGB4NUeG/ZAn3Ud9H8CZog8xg2vZ8ab7ybCNdy4ZIkdA73BzmpGz9GW4fx57sz2NAYZhDA4kyIaaT3beGmhFoivR03OJ2LlfjaBpmcN8a+Bl+brGArz39EVX6zLMBPVaniHYdC9mCHfMN5/1cP3zl7Rf8pJZV3b4X36A//j3KO9yZZe8HaJ1q7Ac39fwCnW5Rsz2Lg1iOewrtHY1Skd326BO9CYBYRLqdHeGd8eH8HIFy369/+npWbjZo6J8lZSK/p4lP+FWYogRb4iflHrWU8uvwTlJA3Mu8Amn7Syk6oJv+Jdcf8mIvrcKdsdniwUWWMmiL2cUrrQjMfzEDqXHqD7QRQGTkHbYhE0owgz5zsqI88zUcMH7K2zwbmR6MqySHy5n8Z9ffsJ9/uOrGibhi+koPn7lONcfA9ow2TIXPo+yPYp1Dq9adklqj3q5KUrDQuXtJ1MJPo9u2ntNhMSZFFRWm6gcQ/HagEv6N9n1pRyyIXym6JTlKTHGDcu6XeevYBlfOt73drasnxEY/5bE102zW36+hXJDY+YIN68T5O0N1GX+F70rJv2K3CxFvzo3+pcfTLwgORzXqwJLJW3DweyEK5hp7eDNeSuZ7FKk6R+fUPEZWeaU67WMFr/INHGvm5wXynnpZmEQvX+8sklXrw3glqtMRxrpZpNGKzi1dkp86Zl3PIdbhdDBPDLduz/L4TEfH4i5nk0sVp2yuXJXgZKKToNfViOVU1EGDkS7u0jcfXbkIzy6B/jDJmShI40dHXxHVObC9rD0DaeOldG1gqi9zwuedeXiZ4J/+DDi6ZtxzTYB+kgwmK+bZTnzpy3DrI4lO6qvlPeS0cegHkudeDNyQkmh4QEWvCePaHpn/5vHrCUcd6uw257ofYRYES08it1sdr5zbNStujPoyHXD/PMnqLOehEWNPocj+qo9WsaXhc6yBxjv54eKc+FOVWRuEFv8Jbx83BFnnPyQ3fa9h/7w1BCaGvFX9gakC+mG2dZb48PrTi10/Yx35u74KZmaVjLAznrO/vTbuPbjFTrl2QpvmnX1L2/6Xz59Qjd91v4BZK50bNFL5Uiu4MGy3qhY7zuzPyo8h2rsevxphN4c3aWXu0tMgzn2j/GlT+FBDW7YXPy/v/j56wpySdlg4faNwyndhRr48SYmXieTbiIXpYLXtQxxd4rO5TD4XgDSvbqQi5lI2ZD6o6JahzRn9ud2Mmf7bfVoyT9ZtsmnZPzzq4+t/ibW4aSVUxn6NTpJo4gnq/6GkzLiFNXOek2bYrPNhnQXGoh2fMdsBX7Jkv+mkFlDg7eNijMpQYMGvl6MxJl8v+uFtBqR5xsKXfJ3LlqfswBLfoZ5+ZWzPz5Q2o26J6ajRiVfO3IK3/t6ppt+n3T/+GJmhw/7y2+nzMplZL2kFUaONJbz63a4ghGzPV4tebHU9NgA6c5uzA3OAx8GR4xBqa9X8udfp8v7XkC3P/pLPm+bjZqpOTzy2iLGko9uLs/wipZ8ieGjrmedfZ8McLXSZsFwhExMSVb/+T88KslUzpfKX8HiP5d8+hVyeIyyWr21nmh/6/UhfAyoS2HLLpuOdaOOPAe6ddIs+c2n681eXf35aQxuRbuF7yPVzq8J85v1Ay14W0MZ9ld2Sxsv+8vfoS61Czsq+wxNB1uJ0JL/k5C+3//5vSDYuMQ/cy37ywMgyowYi37+zaYHC87QXMTmX74oaFZ6RS/BtIkvtULX89RrIfhKJtGqKyCaGHSGYqAT0bl6M0dl7AT0dF8FhZNUhXwZ73/5ibuve77o9RQO++BKJRrL5Xw7ZRQi6U6Z/Tg/upFaA0VT8D2zP/8x9NEhViB9+SwSj99s4asUlnok/nkzounIpxE9z/p/fmN8X7/v7brqAxbPslL2H+1rQGcIIdtxfuZ8ZEtVp9sXi7qvhoRzgyx0LLhJofsWfFj2B/7WHzOMw/MPL3JoN8nEwvIZ8gf6RT3s3qFD/CjIQr7rfIBFHxF9dAo0m0Mjwo+KGR7vyYZTQ+QO2Nlms/B90omvZ1pALwL8+dtkjmNZUf72H4w60fjGkIQWZYfMwu/3MCHWFrsZenEFeKyuOZp/dXcGZ5Jt9rBfZjbs6kaAJHI5RrC9Lnk3U5B8VhgxjqHZSZLGBES7Nlz4jGS0ckUP2uC85MlJZU6ftR7DfbJC9qcfpP1ueKCFP/7xO/9o8VFJbs2OkQDr2djvJIBl/ZFLWzflvIobB+LnOWBu7gScX9PDAR32SUrlE2qzKZR/GD7tryTGX37ZtJKGxJPzJu6Sd41/68lFUU63XtGF/NneMFTWJf7nL6isNACsgpJSY18ldDs/AH3vwkjITp4yxu9FpC78Q6zqUIeT7z1HREpxz2z98EJ8K3zfsOTvDA/3R8e30ymFKx9UOhavKqHF59DAvP8ExL0WGZo3ya790+8knGY9a6ugDyAQLzoxfqhIuOcbDfhD77M//p+awVNg0ZN48nDdTV7wa5Z3vE4szMku7Jn8uUL/2xeEwOZQsufQHWE3FgY5IfeV8O7MC7BGrNDU3/1CfikOqfqnrxZ/bs7qJTrDpnNatnvlWjdvDq9C/ePvv/3eGdWPHniKXlQlVAhHL+wieOTMYaG5K7qZwTuFcCWIJN1pRbnka9qf3l389zoZNJf882u0OOt11scHwVBfgbnD6+/hEc5//mbJU3B/2h67JS+egW7zHzvbP4ZmarTV9nrJXsR+TZuS3gVNVpVbmpNdfyZds48dTfFjgxLrHG3NcSuWoCRpzljU/aZsef43wG/zIz4ZfTQfjKABJdQLZo9WGC75eYx8wC4hQeZzafo1Dzg7qyOVNsWlXPKF9F/+gdfUTHgoGRg+OLLZs+SOOTd990D1KG6Wel6Hs3tQjsrf/P7lWyyHDYU8dS5Y6rRbOR5l+wHQyDZmSx5E//J4uapCpi16c9l/BLTmp4BF7mrdTenSV2Wpb2Jpachnk1rw/ztToPzfZwpO+K7gGZiczbW7FUFaCQF7pI8nGjESC1BP14md4GugaXsvA3U39Xsq0OZh1o9t0gP9oATPUXAp2ar+HCDWLZME7wsrpw8vBejf+xnPdMfRKG8UB9RXaBBfTWrEt9fYQseD1bCbkaXZcNyuG1ijxmDJZfLMWsheGnyNQ0CI3pVoLkkngk21LZU3/TnkJXUVqEUhJe6Ii45qcRejfmc92SGQ3pwPr1iGw+dcE/KVx3Lijm6AqGWAy+XkDctPGVXg/SiYq0m9Od3apFHL+fUjEcs3qOeXr4fythmJS4umHG0nPSLxcG3JPlRwOKIEMOxr+BDvld/4lMdxq+Jd/iJGceq6OV3zFt46uTAbvgaf9cpZ7mPrdUYOzzEZZS/0YLezZ+I8r0/OwvJ9BfrUOXNgNpGkLl0Adx7RmbXTPmZ7fW0r+JzeHl0FXMoYKzcajMfGJOGVxSWbpWYFevOwCDmd+2yy1sZBfU7Sh/L7Ly7Hn5DJoH6pRqI43nRUv42Rmm6PD0Zib7nc6mEKcB+jmd2D5pxNrygXwHnte+YaWhwytq8McL5iyzxl7/MRgjFQ52Dj0M1pY4SSg6sUyp/zpZub0iZ9tF3O1SPRJObBHLPpwi8UGUfpgsXncg59j6I3XL/qir5YZyQiCXAFj7B5MbN3ej4jpz6g7qM8mV+e5pIdLlBvX/71yKI4PpX8trzX57Jfj1dtFZbjpEgOHDVXIVplTWjK378G5ieTmP3cPdA8+66nVBL3CbmhIuRKhzx4fbwPLtMhSsbVtIqR/Xv8CP4236xvruoKrX+/I7PM6RRO7t26wuao/eg27c7leG3OPQy/JfOGIzXpdZM3yA3ylKWH/muOrPYB3QRnRaINOZv963AY0ZScPyRStwdzil3vgaRLEyzzXXKO3FuAiNEbDOvFG02mOkZwv2kTHbPTkPSrb+HBYdO5JHzcvUz8Vj8RHNkP6dC7RkfTNWpAU64Vue7FW8eD7PuGn8cp0a1Va07FPRshygPCosG2u/lwVwq4HDKV6e5JyUbbOZzX5qNzGf6sJd4HwS1FtZffKAp2vTn5R+2o7rydjuUXfLKGySmAbJl3yqONZW76RJMhOzmMkZVSlPSzFhUotzePuNmqCvlLFUbANzwTb7zp3eiWwRGym1pgVH9lRPX95gjS3o7I3/ria9p4CN+5gdX6aCRzN/UruDM5Jof5kIdsG5+wcuJXhWSOV/LpJU9U/R62ERaIpHGpaPe92mirnu3M7w/NVbxRkPU8X/AqTN58jpPsLR+3H5+Yk1CVc2HO4x+eMQtJu7/58NDtrD+Ymz3ksk3XvIFHGZoYiYPV9SZCBxRqekwsd1fx6ZcqMszr2WZBGF+yWYvLg1peR4ddjm+hbAGuDrRYx7gdrrk5tfQEYG42HrO22sGcPoU2w26ie7p+YqFkJXVlxT3jjq4cSszJk99ntNQ/sd3rB43HLKnReRoRs8fXJRydTXaEbPJfRP+pbcdt+/IAzX0keJzzTzkfi0eLxmNrkqg4v7L5W71Etd8+Zzoi51XOZ9Vp0bwlLmV6Z3KBXOsayHd7ZOZl8sI5W87JGmT1IcH16SabTFAaKM/8ijeSWnf0m9cA3GokOiEFmaO4dyPwPHHpNRsW2YR24gHtd1xk7nSxyg1u4yss9cb0Rz6XfDyI1r/5vWJlk0x77/AGvJUELO/FbTndYjIqTVnnzBXbmzntRf+BbiRc4Tl9d0lnsjhS97tJZP400wVv8RFddmVIrBVeZRWemiu8Rllk+5ym6HdFhxrONvWZpksVmvxvl4L8fEbMkD9fNFVnLoBrywHzVM/m3LObMyz1y+zzygmHWHs2IG60lIS9UpXswe8zFJJrM2M+QPhr1kdZWcafbmI3SMYcjFb9w48OCgtx9ZNgWBdRwvAyv6MgXAKk8seecvsYmbMo3wwQPqpPjDwuE24a6AxJWzuUpo81Zwk/FKoh3d0/PDPbz3olQ++8XsxuqYhY+rjM0JkHRpyzVpqTzvcRCJ+1j2dj5/Dpvm97+G5wxpwFjwdLIqmyOegI/2SeZT2VPAVMd2qYk/jfkMXfVw6bo/GjsrL/8SmRhxqeeXsgwaQy1N3Pw4i2SB4YOe6ahFuRd4Ck0j3idcxOxs1F1pD68g12t08vNOu3EavSd9WRYPtw+eZjgwLfkgx43d+tcjSUVwRfIw6Y5/e/cMGjK/rjB8ctazR/83oFWnSx8Ijrnzn3s6RBWzRrEvqWFy74EUA8BAJxX1OVDcNX1FD3kZ9/fJTMb+ehwG+OV2T/SnDZGVt6hEt3CIi92gZ83h+HCrXjuiA7sgvCIbWnRt1Ve07s5b5abj/LM7x2q4rtipeRbIp7NsPy/Vj19rU5iw87gDtTYmKuyoaPvh7lIG63IQmMGiUNudIaZdaMidbTgffvQe6V6q1csax6NvpdFK0AjUs13ay2Leran6HAU5MNpiGmmONFj2t1arFFAqlzy6GCrwyeFYcYnSFOfoYjHGHawInpzRGF02D4AM/GMrCKh0c3848U/M0vicL6lkyn06mFuDmY5E9v/Ba+Bl0/WPSdx2bGcbDNkQARQO6/LK9yLNYCK6dgHM/qot+IseDxPK9GgFsuqyywVQMx8TFqcDD1C3l+XkUyRk/nDdJKDP7Dk7/1veAhwa7EzYE9phUsfIgn7SYm4zDwFfoadceMURPM/uQHFcx374TXOPVMAaPVG7hmfdku9F58XqVppCJWYHJonnk4D00jw++5pni7bqVw1lYHDMrkYRZPoJgsLNtUsVgrUzZ0IxpPVVOgZfxZtGF6yZ1GPmxDqZwonT5y2K9RiLfhMGOsAiIm621lBSmR8MJnr3J8fVRhe2M4wt6mP5vzszmO6trwOIk+vw3vjGSOQddji3iZ9gqnat6P//BKW9ZvH467HPZzemImvavmLD0vEZxgg4h5s3I+HLdSA/3OeTLzLQGnb8EWQSZBx4LACMNxXazPCLE3ZuHXrZKJMllWcOEcmAdNmrSPaCWA4CsXKmUPufvTtxA9honO8sdFwl7d5//qN/QqKPlFO9G/8WbZMcjR7DS7BR/vEZ4Mw0abT+GNEOdiQl/a9oX4lUYtmKfIweojWXFeLr3Ap7JzqHw7+Nm0iRsDcNW+ibHlQsjN5ptCbSo+MzMkdzPA1YLj79Aws9GrclBq2UHCY/IYmWOrFFjtr4Ch+5FO19/cMcHwNFSq6yvx2vqVULHWNHDFzUBCanodc9/kAcKnXXreVayknbkyENV6HW+W+h4fQtwAHlNOlWX85tXhct4KyU/B623U8DFT5EpZ8JNZ41k0fyuO8B/+4ulYtcnwXRkC7GPbwaB9hpCJD9lAaCgL5ksaMvnViyt1qRfm2/ML9Zat/Z3ZstlVjPSOg/d3eoKZzMt+23KuN80Itfe40epG7rxf7fJYMaxCZMEhysqxr5gBofSaWAhFhaaN9/Hgtr9jQjTjmM3T8lqd5XkXlv1WRTIFo3xWnumvYoZgQ8IvldQjXDVvil5HK6FdOMp/eEcF9fNBU010EYZD+2JesFw+cl6HFZxK60biP34U3MxCrnrtsBwPp3IwYz+G+7WPib4pWz6Fc5Aikocm1Q3jg6pDLFTgEq0lwaJ3ft74zeGMCBArye/dIBt2hG4siljg3VBHr+7Qo7neypjvHnlJD+GvAPl87lmQilI3XRRv+XzsmRtdLXPQ7faARiUUidGdJU73eZGr/mXzoFkuyLzav3gBA09KOi34N5J5fsDHc1vcj/oPDaGV5TC+1yLejVGLGHhdpARCvCaOviHmrFwGDJNbHYn9+8xo7FaKAkhexwyfwi6b7LQ4qGHoPegtE9JyVm9eAL9gzomF5k83PpwfhUPkS8SIWjMUPUvNkXJRn8wtPIHzz2EWkenPZ7rt1rRkl36uVZXne8zXfcTrAE1H4OeVQ7AShGik/h7kMZw2VLVPLz6Wx5WM4v21Yonb5ckEZuGh4ng//dPbgzRcDSi6s8DsAp3RkPKi3g7ZpJPwV6rh4ErxQV2hfUJf19+hHPFveIMlvq8kUL4hn84jqpFUphnTd01tjsl6U//xA57mr9PNxa8WoO3mHa1Owank9Zet0GNVzXjeJaibr6SpIfp89sxzV5PJF78N/+b7+0Gct+dp8QeZR+zNojz3Rr7cxn6P8GZ8SWHvbJIjiIbjs1Bv5GQOXsMDrGsu//mVZLj7TIQWMkKV7eOLpvPjXcHLKDa4GQwlXM4HxrBHmzPmsdIn7MtaEXbpO2b+QVe6KXa1XDWy9MSMKJDKMVPG6o8v6Si+doiBmHpgZ6z987PZ/EveilIfo5Y5F0wyafZnA5Qb7Igupw7nv68sIhmVK/pWZUgYVLonn48m0M0c1N1wOt1blCT0SwLmJIt+z2p0F7hBIgZ6trH76QChU2M6whGHHT65NTq0uwsj9hiFU+dzAL7yHBIWoZa8cBy90dlkGUbptQhbk37OKGk+V6LJxEbTk6YU7DDzMVr4YDxVRaFGklIQ80VlxMU5s5D8mnOis+6dtbtSSwGPV840T95n0zfOZNgl6oFKN9fL5uXrKpe+HpbOoRWKV1LU0IJDCUayWc6s22nwXB8M4uzObjhsqtCCXZVwXCOrQ4ORXlLokk+MxVNxKf/+HyiOz9NSXwfO9pi18FcP7W1IFvx2H1vpo6pYHWKnFJyXHIORXU90e7oa4Zw8rQq2P7RmOh+Djo5Op4EB5oU5YUPM6TF4DbyMzZmEmX7txlD2jn/+jM4bGiLur6QcbVD0Y3Y5tNl8OmtvGIv0yHZodzH/w1Ozdokzp4RPz9zvwX5/A0Y+ryLjC7+grNhozDRrIRwf/X0Es71dma3pj47TlSf/+Scs7DQ7XPjMQr/MUVlo7r9oIuvdG8rs0lBUxU03Rl89RVSjOpYr2e/+8hV4i96ZRWmph4IgPAO0+HlmToJV8i3MDszn74XOzdot+eOpUJTF7ydzmve3m1aOFcNN/mHCNm7R9YW/E5EuRCeSHNfHbmbqw4DL76ti9HscEQsrIQdxdc+IT+xzMu2cdQVP+3HA5empmT2ZlRzp6u/M7O986ITVJB6UQ0suzNGiZymQy7GAuP6KdHOd6oxrUoAhWFNK9KzAyXS7Gi2sN65Fwly48lkYZg1oTQQWZOcynCMnTmHBX5wszzcdPkGhLHqWmFbYhMPi11D5s77EYt6vnApWzegvjwrgVCKu3N4B+HlGCenUKxpZuHKQE7gdi7bHRzZIQ2yoZrG6UDithmQU1d6Cd5vahJRUMydzszkqUxtZZAeIhJMyYYwuhp0T53hJyla/yRg22x0ipjB6iLtvNwcmbi1mGc0+XPLLFsXr5a6xk9Zmw17UH2B8vRq3v4Tz8emiGW22BDEneHbhMP1iAOmzVglJGiGZrc8rRvLxtGJ/fD6al30Mhm87DFdigoaxiDTYVKeA+DJH2RDZwxsdivlMAqaHHU/srobKEmXMb1WTjVTSZOi395nY5RBkczKdangnRU3VlZWEEr4Hufo7vwf82g84+YXnPkeDdjnQjS+sut7u8RVecPzQe+jpaMlTFbjtn5jSoSD8z38rXvcIcXXmttkP+sVB7aYc6ahLFedNdFDgoxq/P3+RcfmVe3DSHj8qvfYyot4FP+ByuKlU/QgiHxZ/j9a+dmCnzMTJTD7VG/3lLRe437KZH47WPzwePXlKOH23KzhPM6JFfHyZY2Cc35Ba2ZPyMdyYbe57jRJZQMg//DyZUfMf/2Rn0xxMdcTq8zRy5gs0Cefu4ctgH5Y+Kh8cln/6B23YvGVLftzN0s6JYJk/4sb3KBNn3w0AG9pM0rxi3ZJ3i/DbBncs68YulOXyZ/3hEZ4X/zRybluq0w8ZrZe8d+TPVgNUOU+G020ZzlYQHpc90pBOclqjeXprKzXdnh903iVZN84TMmDJF3G/IaLJW5TIsPAD3u7gkI2DfrHQIQol5u2mKRm+ogtQP9sbXenFm8+yITvwk3zGtEO3z3rzsj+g+R6ciJ7b74xpfhaDZyR3Kj6vT8Qv6a8Gdt1UzHU+JR+nk6nB4WTY//zsQMpvBQsIUClbWaZ4H/GItrvNjrk/dOSjGhlY1dqlN/7NAjS7J0ihnVcYZ/FHC7mf3nP0yyyVObvzN5z+1vefP9hVdVsOi34FLe8+xHAuUsYExXZg4VOmL/nNbHrbGPaqYLH8Rx/m9MeHt6jKyZ+erLHYPeD70FISfZGK5jhJ3tAM5p2qSx44OIn0QPcBvdnuWDz4xG+V8y/PwaozhrNylWJgx/2RaBrVEDt5LkV++WX0pyYOFw9jWPz7/22vnrPpKxJAp2/7I9j+dObwzH0KcS4kSx4oZXxjpg56fYLPgkerbPJGloMbPFLi+OvlnaPT9QFC0in0YmixKV16pUZqun+zv/xnwrFVQBgGDxKZuceXfC//8+9YArVCsxWernButxnx2/2ZCwaOjqi/vgkx88xKxlYtRNge+4GZbgeZ8PpsRHhilOBa8L58rBUugGo7Mf5ZS18DbQwiWPQm8a7+J/nLf5U9GSt2X/KD8eQHNZJlyEluwD2Zcu8+A2RfjW4yk2ZT9Jyu6l4VLWaCss1mO4kPf3qJZUse2GNzmytkb26YWzRa1sN96a2+ueb0L+9jaZ22UH3zhpGLVYV/eQUCLdxjUd+wkO8b/gaJU/iXd04sakBRqLgiWqRuu6mCrwIPGu9J2kKZ8fTxnCE+JycSVPa35GMqr9DN7lVirF8dms/XqkWX30dlzj5jyc/fPd9o2R/Cow07U/oE6xV80nSL48/wyvjpndXb/n7TWPis++wHp62H/I2yYgS8XTgj/AtgPHQn4hX8lU339a1Bi74j1pnb4eb9lBT0MqQzMx5fXs7y0st96O03noqgLafheFiBxjc1Hc/jthvfw9gjdMdr+jLjgzkpW91SXVEaKBG+p3BUxyoCYu8rFtFkzz8zgAZJWznk/hH+5YEjFGprEqt+DN3PyZTzn97CQme+khl78IbEvDrsgtkxE5zXGKvf2yOg3IvH7F9+Xcz4iNXtuuXtsn8E+BbNWKWPA5rVbh+osmOExDvt9HCefRIApm7JcPpYo9bHwRU+nt0SYghfzsU5sZQl/1/4LMt4SYmieLfnnThkuCQsH7cNHDVbYcb99k36WkEiEqLnlpa7B5SLvj+gp5ocKXSXoRut5Yxjwh4S7rPeDif5eI7AOAs2eWDimlPTTSIol/WTmaEbmbO2SjGk554y0rKom4avaECN0pZEcvfhMwnwv3ydBDzMTS6/jgHS163FzHW/dFha9rfWqDUINucWjeavjQEJN40Zy/7j/K1+wp9+oPCjq3BYk32krl2zIkHPym40sHVEezJXy37ab7mqdV4BrXcC+5fP//Hjkk8xfOyefFTkcwSvXrNI0r1kRJ/HiSrT/iJRudaHbpzPJweqi+eS07N5m1NNfAFptEn+4c1gqnKEfNqrtPuttEzoq6/2h3fL8/cdq79f+NvPIrvt85k1VgtHmJ+DRKwljxjB2MRAnybHrX2XEiropwCuibv7yzc4RfgVqB/cNuxPT/VKvYtg4a8l//1kf3kYJGbq4KRp1ZD7q3UOq2dpsJCLXtf3mm1Al3qYHK7bjI9Jn77RkncQA9oxbDZw0NRFL1F5eH/KX3XmonobyAP3/PUw2eInlXe5ccnOKWnYI73EYLq8oZ+P9gzHKNq8IX17D3J83z7Jkj9dVef0yoj7VppsRNSz4PubO2I97y9z3udNDktewpztWQj5X57+Tx9uUikcWFQAnD4d+tuf7HqabzSoek0muwcPEnGVpnjr5FeFKvuyNEftJJ5hJ34MQj76EVHn+D6Dv6nvTNMv2+QfXhyv4LLsDGM2pjae0UUyMuIbmZL1TYdXiKXCgZiPWejYSpswLF3F6HlOGWeeOqRIlbUXc5L5ueyXuDMyT9ihUIqnToq/rwcs6w0rPARzUFsao//XmQL0f58pIPlLZv7W9UOhGm0M73v2pC//8Ohmq+hyYDd5YNZ6DEtuBXIKchwB3SSrnlfsOHrqW/0GVC4iPxtTx8NA8lKm6/12Mkflzik811rKNFnSOincB0dlIktvazS+uplpzhkU+0fYAeVSwsqiAPU9PdZMn15WNr1/AUXeMxqw2JhZ1wd3YQXGo/dY2CYVmgf12II1rg0SCAh19HIPChhLM2D+HTZ8Rq7aoN3F/eANEV/mlFWcAruPL7IbeYt6w9EEUL8HjbmG9+Hj0y8K9b0dzsSW3yib8sslVap3wbDSNL9kPg0rA46oiMkptYfuV7eNA/ta77DknpWk7tGeqreLvcdzc1yHnDjPFl3rVGJmkFfh5J3nHJ4oqOl6S1o+id+qB2ChjoXu3SbT5vMbYb+tMypW0yscZ7mM0N/4BU3jJyMUwxEJ0zpm3jO5h/x0NQCu3Jyp7GysZDzaawc5NFDpa/Mbl7+nPKCWvYFo/mPZo9pvG2R2/Y35kmmafOWcr3ANbI0FHnmV41A2FOH1FbMH0Qo0KYFZqb1wYMxBIUfVfZu+4SYdgO3updONrv8KVHorL3jjbH7Z+MYnB4Sh6pnPVnY2kMzPUfVYrzAq8TccX921Qbl20Ej00Wk52WXjQFG5V9o+n5+SD6kdo0jMQiwP92vJk2aVw23RdSYyh/DXF5UDWWGdiFYPn7/nyyGA6kiCYkiTGdkKBbFLLsTKT69wrlPiIcwPJsPh7t6NR1ty4CdiSkxZD7LpqNcRBGPu4805WJUznL0GztM9wdPtKoRDGbnethdihrdYUDMur0YP1GDlsyiSHwnHn7MHd7qnxOeeYA5yk6Tofj/EzFNqMP+N/3F5D4PcnbQckVrIaKOuDOLMxphwAz5n2B5zh5HBqhJqrn8gO6+3iZGQfjrO/P2IHg5ZLpyibTmujdMbqULWEjNqNmji9cpAt3reEbdr9+bMnpEA4XTE5LFpTuEIe+yAnF9c4q9OasdWydyjvBIxIy1ZhfOF1BFou8fAQqJ9eG5782MN6fxgVpu/ynHaSg94329PpotM5mNc6Jp65fqMx8un7z6H+DyClzhv5nBtSMbh6OfIh2FgoVr6Jq+qWoRvpSbEveQM8WEbzgqz3wGudMMI6bIeYbp8r7TgYtM1Mv1GUGdHl9hLvVL52B2QKdwLeqmKdzmmjobhXUBM9s1V49MephokadySp9O7JY9N7aEyMaqILvMHn4u3Fql8+ijMDCqCRs29O+gp8RctZ7nuaL43KyhrfUe0qFF4b6OzA9QOBEaksOKTmRwCEEO3pzwuLTQp8usIxPNPdHXdx0lfk/kBBhtqEsFt1bHhGhzht28KpkufNqRN+KhB/cYae6hlZY7XM6doIicNbwW9SKbr9DvCfVu7LLoJH3NZ/wdwVr+eOa166Kbp+PFQnssKHZDsJe9W6TSlcoYv8Vz+yngKFQVz/PZ0isjYTRurOcKHb0sSgHbLBvN0t9CU3SPi3rOK8/okHiDp7iu8dtuqYy6pVuoqFDEzAlUxKRKTFFlx3DCnml7m/PmWD2A3ZWBeorVopndfQa4R3YltS1EiXnZdDN36vSFefyGc3lh2BedVLHsk4ZRM9tETALpkR8XZiLNZv08CaPr5zUy+Ysmcz7amZH1UMGu3a8q54G2KkgOViT7Um2TU7DSA8ZwSullf9ETyWeqh8zZCVEQh5yyFnqKdtI/pO9sWaL4LLsDJnBum8ZWQcGlfNzAa0pMseGl2DW8KaGkzsux+eYRMfAYrZG8djbkuph0zsk6BZr8P6PYjWZyfETkiKF8fZrXVkE11Wzhg5uadWZr1MX9SHefqZd+sqOV4ARps61dDh4WMJUHFeO/klxqqh7rCCTIHk+Xo+gAjFY5Uef+OWf9mjzfyuk3DnPDt8mHBW+SRcqLTurFQM9bpGcLX74DFj+TzDTXyA0S6qDIi7lw+/aI4Vh39eCW7IDGSxpLiSM2994X+tu4v5NsXVMgKZYtk7zgw52QgR/SKrRBLIJJuUvNjrqzjymO6NJz4+L4LR/St8op4jjqGbWijFWRH/of3dVlaET/Kuep86LybtWTahhcRdPHgEDe/u2j4RfEBfrerR1flecd7M3AoxFtik8ipCs6GX/UGqo17diH7X8bFXTGry3wSXTdcU2gKLYVvVMaEePIto8c8EYCM3ytdf/Rfxy/+4Qq7tSEzIvjvcJQyw4H85B+YO39NcxNmTENtnd6wmFMn4SsryZe37RfP4vdmz4NdDjWfAxJtXMsUtDqp4TxCRU7VMTX/6lt90J9FvIMx8DkU80bxydYlprx2Mx7N4QjF5XGnSrivsomfMhHtzpXI7Nzn5Rg+JQWI29aUpUrDe3k3jGjIsUFczSpMlg/ggfLKL8TLwn0y/PEPsZIX0fTkU/b6dR3Lea4oeJ3JHz7fR3kGZSMoJJA2c9c6r4MHZlhQ5rI55+P8C1cwPTeMmF7RmpPS7QwUbiKDhdP1XfZvdi5gbOeZGTGwcLz5lytUDvtifppuGcefh6dkXqhj+ZmoJtu9rgckQzETN30cUGsV5T/9wPD66yMmqOn8rx7RjcwJZ9fJgJ0RJcTanYRsvDUnGcyv+GGBMltlP7qJAKzNcmIXllHOaZwrsNQ3C9lt6EZTrh7g7NYHKjhei36ypLQglemZkKtYmrPOjpqifkdGlR89mLycTe/veamgtAaX/OnkwDePIhbakpHMd+1qqWj1+BLji8/h/DrXgqKWacRM3GfdLB+aM8rv2Y/5fu1xIftFNfpW64R2Cx5wztzxHx5Yba53XENiA79DSPARxGPJ0qw8oHD3nal89WnJl/WsOqn7IE7aFkljfIMYtKG5EvzMVnyKfrOmvqOrTshN0MxZNA6psnOcpW9PE6JxReUjKL/F096dtGuIcR7RwaZfRjLZ5ptR9zSo2vhCzshszOnTCUcQbuWO6azNzIn0XaOU6qqgm9L5ZDy91xGy997AAiOOSunoFDPgZ1SypNnu+fy3fp74rBFyYEY2m0Q/IBwuQoMaYbZ5X5o32L/MoqoRf8tJvgoBkK+4Z+5q/nVU5r8Z/vTZ7yzJIXefVgS5an2II+ufbM7fw4x+AUH4d9oic0w9M4DqYGjMbq/P//hn0YvEvAxJNsasOQD3Oo/51dZFUlkUK2jTeEf+1ms/f30DikzSMP2dDM7ubO0oG+O5xsr0001BgvCt/NPzn1pP5o9k9GDF/EKFx83hw1XXWjUQxJ7tbs2l5Nvn1MJ7i79UXr26sBvDY4/mC1DmK3YdTvan1NB9H9j/+HCenvyN/MhMKFzUDNH58MQQDzeVCkKHzZ6eoytEykSJ0RzX5ijdbQ1k0kcs5UPN+Wc/XtFGcTDzT1sUfgo3rVF/efhLPZKQG4PjwDd2dGYkqz0XhOs1/8MX5n+kCo3J/voA3oicuZqlhd/TNVj94SkLcJaE3MhKGT0NWpHFH2RMnadIXcXsxSwcfsrZ46UGgRY/6NRcCz6S/UpDpx63xKi9XTaaPzsC/rJDrH5qPRN338qCRv1qLNI7gY9dBQCB5R3I4e5uujEVGwWUSPYIFus5ZB9j7wERnhHelsaqHHmwe6BlPdN5e92XvemZIyx+hWgj7MvpvAcPiBeeiOl+VTRE3lj/8ztcu5OMu2Odwo6+fRJxj5i/96Uo1NO1UyjCRoPGVCxk9dv3iBneVkhY3m0jpK+KO/G9pkPDGvzmTz9i9ZJ/+PwWbha6vP2BRfL+gDYLX0L01prlbpIzGt32XSHqGw0hUmghfsdqq2zsQiPYXv/C/lfhw9/4Ew1XAvrzc+DOqceiQJAzPoZHCq5j7Yl31A0uXkiN//wBiT7rrpt20SpHO3YBEhVbA4nWbDcwBh+XuaKklPPjdSuU+bKixMi2Bf+d90KgLvWJ//zzrONDBe6BRYQop6SbKBkrgMPbxcrMfnx89r2C9tsqY4/hkyb8T9/7hcOx8HtUZZ0VrQiOsveZ37p5Nq2yxZ9b+xfRCjEPZzdRRRj/h7QzWVeWV6LwBTEQ6VIOkUZaEwFFnImigh1dAuTq/wf3NzyzM3SgAklVrfVWSPAFMX2AseJf/i1hI7Qdsa2xqngw6CJkGxLO9Qb4tMbnN4wyN3Ejycu2d96n7s+P61zYJ4PaZjpcaxRgpTsyNC3kYQL/ktVs85JrPqwmp4TdRcUME13nXc37EiXI1Yj/HQ7Bn96OfdunoBKCupknqMo83disx4fPJEiQLo8OnUzlktcJXRsrtT5mdIq0LujvzvkJ10P5xZNyFlvu7fIvfG1foFOu6miypm0DaNpfWNg4cj5M0n23iqlfzzzB4mKbnAfkAeuxJmi7vNtGZA/0OvtRS/Xzqa51Ce4L5YY/19xCS2YdQ7RfnC0qHzI/YGhdS1CeqpbOftf8y6+PjtkYKc01mMziO59FoMVU1V+j2X5tf0Cb+CAR3TjhXFRhCkEYzlc8LK1V0s3+TV08NjIduCDm02pTZ6hpJsDDsc+SAaj3RYBXKcF779nST6ZpiiVKEnHl/aMdy+O9/M1XvPoO816cqnYBp0i/JFhVdTBabzmGETUyHTT0zv/4yKwPmVnLFI3HZGHBwRy+bJ1fVET5sC5W3t3idEIXOR+5qTZA15H+02sJx9alg2IrNMRqy3kNRu2KcJN3E53gYFZTo1U6yl6KS/xHe0wGYhQTOlRCQra7c2Vy+bHVIL2oFhbr9y6f3PjxhBPe+5i/e92U9r761ZbT/s2COR90d4FYMOdrmuTLhdl/ts87jOC9WXA09Wok296FZKFTMvvZlmuVfIfTpJ2w4vB1Uqf6SdDuybMmAdFtNKSv5796NMc7n/p+mUHSfANi7eNN/ssn8PjKETMS6R38/Jsq6oNDNkHDWzb7E2CprjL90xqBaLtaoZ3vW0r88LjNx8C3JLRQlyv6JBFNKBOCFOKXEpMf3xga25mAbQ4r+uMvfPHUG5j1A7NAEtthWI5P9NNX5gBhO9agCGCkcGfGLUB5v9hWGojLpUW222sUDFFpAno/bUx6XJ34V82VCWjEGVmvOh/9+XPHwFfijeF8Ng/Ge3A/N5sQp3lWdPt6uKutND2YYSqXpEWJZWjX9/rILCvczfls++/6rvPvL4e4CUEU7JytHzlFnGWqAVXUNGT9yDEf4106gfu52sQ63TXODa3M4H0sEkaeZtfShbOzYNZTVCq1I//xN6TX0/Onb4PRru4WqDpKsWrddVN8D0hBt/zaYPGRe4h9bWOCN+gPspv5BGffeSelvsmY0zy/ef8Rtvinb5izuxXmkMr48vf8PWq0CfOEMYOTX6R0megM1RvZxmAf9Adt7i/asrcI02++Ec9ht3Y0lh8RLMu/YHXWT3/xcyyDnuHT8RTwK5M3QKORMdJtPgm/PTZ3tBsEyryr2ATl8ba9aIuteSSb41IzJ3PxELTZv2PNxF4riWXvI61/l0w/jUXeRWv/Dg+3fWOVu/uf/yyAP4UF2YY3MWDButrAUgrPv/qYz/rhAvWh3BN7Dau8f9b/7o9tRSS14wvlz9V061Ji2f6WP5m90+Y3O3SK5ngYW6pnq3S8JfTYdGJAF15uqFJcRszxA70a2vXwBtEzCvaXT1yv8LW34vdsOzGLi3JuWLDebPJ5vM+cGrvr/cff6H2AqGUyqf54HSMXPUJsgs766RNmPsd30N20dfjjQ1iqF8u2BzXToXMjYE7+zKsxN6dYe6E6wN/Y6BGtjtfyl3/o57h/muXuLBRqHTV3YubLWzAMKbJQsjAohg96VYOjraVVthVEKkF0QXM9VX7+goUXPUWU6Zs9QpplsbTUZNTN3//5V5Lt1yUan/V4XmkauRJrJY7Vy1kOAjgVQVjatUGrzDwMttr3QKz8skfN8rFTVvfkXTNPXOuJDAcMaNZDLAjsFE3EOe1/8c8Ma26A0UkUVks6LmlzrYK2/xJW/PGqjflReBcW1fdXn/GqEZdoukTmG6Y7WzLy8pZJT4IyRIoY58wPj30yGksmgSH7ASMnCNC4+fQCkpXkSwKpCPLPL/4P+qliQR50eSdQJYWsNPbM1XUhGTrp5v54OtmmxZcPjzB2/+qdkpt2JTqaJ8KLo4oFsb+v2p1tnldKLmXzPokLxN+vawlzPqTAdxrqFW+vwE+/mV7xCbobhC7IwzqaedyZd14+6cDrY0nMoOzQyG14Q/Q2W+bHVYH42vc6WArFyLBQh3wKDglGgjLvazFUZdLH7BDDdyyW5FfPhmqrixCNqYVFHNgtV3Xkolt+a9icv6spUr4UEr+4M9sazVa05CwEj71NMv/f/LzbBoX912L2zAuGqw/zu+7Jgy4ffpvP/Y4OXvJ4JJbcD5wXV72BX/2Gm9IgvvjcRDTXC2bcLaflgggulFGyx8NpFJKfH0SC0oh0uHbbZLgLzgZQ3N7pHalm0hGjGGCfbPDsN27mFBwLF7Zac6D9zOMnTlwdhCOcsZimoSnK81nVdewRquh6kQy59h7AI+eMeRld58qzqIzVowtTPDaXdzVS/ZT+eAGxSIST+fq/q3m8KRIeb3MEdadrUeSeWPZJj4h7uniG7cZyyPH+SqrhkatndDovbGKXrptLt9ctA0NeCPRphQMajWnXAHG+b5bM4/Hzg+iihiOLqqOL+tP+NcBO3+2JHVkHTtdXVYKwHnbMeuQ16gQ9fsJRfUeYm7cpGOSgEdX+Yc9raJ+onXnJgEhQnuc1ELSdcP0xwGgPJrmSR4rG9JYVMPgfh5j1Qqso7WpfxUHN2fqUiSbrz9sYMurfqDr5R/PPf836ESv1dm3KnqCe4SAuRmY7/J3zg2plaP9Z3H/8Pv/5cXXEYsQ2y/AWDBreF1BQ90DCyZ+CLtfogKRFrRErO8fBdNxWMXzdmQx5lFSjpj1jKE8GUOk21OY4lYr/1y8qJWwguTnsutV2oSssRMmyYqH51kHGooNHseXBH9+b8z3zP6Wej4p30dC3tyIS5yZrZx5UQlwaBQl3fJtPce0V8Msv4v2lVBzMbkJzPWTR9b5AfHm/hfCt8RWPChdQbz4hhcTAHrFmf8GrstXQzFvw4qy5iK7UrQE//azOfn72ez4U1D+wP/72FrIQrGFlEKIepbaZ9TSK3/kaP6sba2c9cFbnekfcd6bx9PWpLnBbGGfmbpbPhO947aPZvzHzxUxzGeWKD+oTlsTfn93gr58iQPmlq03Gk/7HT2ZeQAJLtfN6ccMbeOw2ATPdu29O99LFsKV3j+nfsQ2mUdAM6Bbz2eXDJk3mfsWA4HM6zeP/MKfj1ShBHsyI2SwK0F9/5HY7FGS7AppP2H09IR8dTqeH8azG5zn2NVTsgNi7jcK7N9EukB6CCwnEs11901e3Qx3oR7b1DnZe+0rzhuMpe+NFHw5Bf0wWmz/9juAVmkM9Nk+Y/QQxHN7mQ7bUwj99+eNpcz9TQvvEwuQy+ZP54ytagW8nvGq6xuRTb0lwe08mRnC9579+DRwqSOgiXcOcbzX9L56zCocmE9vhCZfTekNwhQ1T1O3Yhc93nxGX5suqiU8NhgbfbIbbk1t1bD/4KxlLzh9PGRqbDHD4SA5GWXRIBtudLqvb0XHooSN1wK/FRQHN9u/M5/0GDWoYlbCMfUQwv1TJj9/98veff2olYX1ZbVFgYVU2zWBYROK0+nQUYa6hR970/eqMVuDFeCmeSdsFly+FU0KujHhSmk/+vKbpWbgByWzZSX5+4VePCV61DNHHst8jS+ka4kEk87EKiQujs6mZNX2+wTTrnz+/9PnxsMu01cGoNh0L7uEzaRrf2P/qJXGFR2CKt6YW0P6zujPrXMjoEx9Oc7+v2BCXJjNPvUTpKvSdPTMirTN5IfibP/3hjPUmEDV8uaATTn2ydnDW0v0lF9V4LXI6bfqyGmMBSvjFy48nTYts2v31335+sF8I1hPqlZAy893rgVzQRkS327HA4j5+J6NW+9b/t6YA/veaAm2oU+bFjYlkQT8A3PSuZNb+pbT981WKgG4PkfmhfzGnLZNjpOfTk3m8FRANs9hdSXe7Y0Qe3Iq7W3tCZtrqVHSgSviQ4AJkkazw8LSf7eSGoQR3r/bIWn+uW9kxKEbbh58xXXhdc/o96O7qteR75sZTlvdWlg+o7YwQGyem5ywoQw1umT/S5lmrAa0n1dJu7KUTL5sk3h1G/ETuxvHoSG2DS6fHU4SOvu54kruI81S7YnT3Wo+szzsrmD7LowXlod6w9cX5mqO6DjPYPtyMXLzy1o5qPwkwaHuReddgY9I2XzdwKFFI+SK2g7o/lA180m+IpQ0REy6lD2EVO589LvESo+VHewirNVOWzPScVzusc0VDfXiad2U9LKoRx9xd8U06Yt5eN4kU2u4AJyUK2ZraJRoe8/Eqp1u0YNuYOtVwxPITNiGzWRjVaTspkQ9oIT8onio5CaZrr/kgp1qO68fSyvk4LM7a81GblImrWSPclhegh2OLJzpa1aD5lQ6X5figVDp/q6lf4RSOlqyz7ZJuUF971z00o2CxjTHl7cDrovzdLyNDMpjsm3obiKR7hoe9ZgVLR+9S7XSbdKrUXOf8gSNRW2QtIbb+tfNOSS4Sci5rnRhnnSXDgl4LdD+oDI/K+2VOvM8usONXkwqeLyXD7nIaoH19VabHaF43+zElOHptSsejpeVD9/jE6J7jDXEqbiTD9DImOEtlgKvroLWDjR8GbLv9mplwa9CYXTIfic7SI/iRPfOpC0MdvbN8S5f7q2UuFVCekG0OGR4fQsC5orwbeK+aBbE/Xytfqk4Wamy6eZRr3zfvD+ttCL1ieGTzDnxzwMJ9gs5XWtw/VNfsNSUuYXpYCzw634YPvE7v4N3MgaxT3s45jZ8Rcp0XHXx9qvoVhwuilYeZfc3GnJcvCQDjm0qXn6+ViL/7TZ2NQcJzNz/v87pcZWz/JNfDwwjeGidfYFmuE0PuIjQ6/VmD0HYkQmwpMxlK1C8i9xNlAb5M7eS+SgOJI4opEu8o72KrTBfVMSgoVJ8x75Iyj2GnRCcqHcUbn6QTDNBE9y8x1tqjZa4Ke9CiSabLUnibw+XVFco83sxlzbOawuzso6B7N7RDl10wDsddhj51bNNK+74RPSz1O2j1dkNR2ejVoF3FDORUyee9ae7V1CnaG27F3WJ27hYmvzdXA8R3/yUe2bYmK1+CgHAe3kly7kZz+IRaAeHV2BCz2elc3oVmuDrxi8Syj3hpJziGBTr4mY7l8yDyLkyzHeS3dUqcfHWe51s0wDwfmakak8ltx4rhkzYh8w6HwqTXXnNBedYnZk5TwTvOyhTM5eOGxWIZVPyj7Cw0xwN9XvJ7O8pX8oZbTXrmx+sbeh+MjY9iITOJoVYHPq0enQ4xx2cqLoQ351BEGLkoRfN8fJrjoecD2L34JhtBd/m43xdv+OxilQT7lYi+8/OGMRottv2uUTC+0j6ELZ8iYvMPMuvk5l6Qb4t3greV3Y6B+sWgDW36y3/mcB/HaTV18ZdqtwMk7OmhCXh0z2nNW4GPY/704XqCI9NLrFfUH7wnnJ8rzPSbIfFBSS4idKIgEhKtmDlIY2aBJFdojjcf9clNLyCKDyX9FirL57MzvsAtLjL9nCkVl7eDD9IrM1moGi+TrjvlDEm8UQnxyScZnY3iA790FiOSz/n4jYmL8k5SWXhORESb1bxGSfvIVFDlR9K/zFyEK1vWbN0uSTXZ/s2CTuU+Cc5iVn2FVbKBtXyw2TlrjGRE8I4RK4aELoVH17J0+/7L5+y6PMj/PvdjI1H+2PKZrKQNHCJpx8JNIQX9DS8BtOBUEUdL8pxP1SgCWPzDTJdKOQ3EQwpZU2Kq8rbg49HQBHDIcCahatjBcg/jGSK0p8yW+JPzlyZZSAndLQu0480c6Uk6AyWX+Xzc8GSO1ZpukHMGi+FW3SSj6Lv33/zCkBo258Gy2EFj7+bzpOip5e/sswFDNB1CWB21/JrXHSx9rSCeex7QpHHnCx/cI+bL4imnYuAVMHW7L1Ve56jtBtAw9Gf8nufvgvdWTAQ05y+qOkOcDGZEDATSoM+7jGNEmwpd0MJ5J1RUpmsySYfagJS95h5hN3Eem6cMNo7GmAcL1E7yXX+vGs3kFLxyUY1xtzGkZ1ZLVIleE+/69W4PWfwR6Hh420g2iWAh1O1yZuRbkdfRZ4rh5X8Jw/KHmkO0vfhq7T51puPTGg04mkKgeSeQULirVR+o9xDmbRCIt6k6PpwqiULsvPakOETbhPN1KYIxCQHBuTv+BwAA//+kXUmbsrCy/kEsGhBIWCIgMiYIDrgDBwRFxgSSX38f/M69q7O767btTqjUO1SosuaHeJnB/ZV/ke4NWjBchssbig1tEXOCeJiNYFep96twIVMmazXzrcKEOwFU1I5iw5JoqMiwrNrzev4+9WypL1EfLMvAXtLXfOyKD4PC6ashtZ8PwyzoqQ1zX92R+lyY1m/94OGKMg5mPBZjXE6VxpQXoub3OPB5C9fZGnZSYbeQdnzF++yXP9AodhKfLqYG4Q70Ho3Of+dhcWBWwlgyDKL3tVPwxDpk8IMfH6Tr1jNdtKAW4JIet9hPz7t61O5iDtH37uAfX2nGMDTB8eQjGhlzyJchN9ZZx9NI1OJzCOZI3Ib6d6wfRHH7z/BbL3wcRAvncPO1SMcWR99EAK2v8j/B/IF7EwxCu8MB6S7F8v3GjZ6eASbdwcYWU09nApiV3oiyexSAa7LbQvM7vxDkf5d00cvBAVlIBuo/XJmzj+EZOn4HLg4paYvlH56D9b3C0XwFi/s4xfAdwYieAl2v54+ZaPC1CAccGRd9WJrZzEDoZxE1yjYAJH6kLSx0IKHh/XoP3DnUolaMokq3yJusUba7ChaRkGNzkZC1gHNQQkmEX7zDuZzOH7q96b/1uTqOU3Y6XUogkU9KhD/yCTi5jCUUCj2ie+g/C3Ii4gidBSrU9vg3XYTDdIPI62q8d5lmfbSP58LRsU/09st/yVVqfvkOIXXzKqZ2UfwfntLAlXXOu7Lt4f0xT/RqpFdO5z/dADfts8HrfoGpTfY+WDr8n/+HFXeHQU/IYxqlILKW81oD9E6FjRQtaADvuGbCUlAA0ht/E/D+DXNwDpQM+9/g/eMrAjRO18Oar1PO4o0iAz4tBtmMfwKnvI0aLRmYj833a6n7reHJEHE6Un+QzEEetu+1d9twxV5Xj9b7Ahof0u4OqR0cAJ+QetKgGrUfArSZpLO6RAxU39Ci++HVB+2FlG/9h5e2sLzStu2HHEqXwEa/eJ+TJdOAtWtsuvNqVrNfPK/Pl0jXfVUsvL88wHoecBDhyBJd3xcA/ow7etm022AefdPXq9G8YvMy3wLeB5cQRv1iU/MMP3yR0DEGh9nbUc/x9ZoddXYG/XzdU3QFwTDbZAOBuvbB+LfeQ/XNQD/xiDyieleL6sgM+IbiSHf58QsGQx58+LDNknracVsshTSYcHScEw1tewgYyTdn7UGcFlviYgU83v1lUJhKnx7z262gkwpK+Hr7BP192MS5eqtvMBjfPTZ252OxHGNfVk1FulN/Gp1BPvYtBEqWc2oe1Cyd//Zs1J+BEuDbCFDQ+dRtwZOFGsbb8MrH+6DE8Cr0z398njhxr0GXOickfLo0nd/vToGvvtpit41Ca7LXOijjREH6pDz4GAQzgYb63tOtlBcFgxf7BqPr6OJ0BEUwf1q9hduteaFOYXQDrz4ChHoGFPJp0ke9fP5cAxBvv8MWJadihI4N4Yk4ErlejpU1wuv5CO96F5KVz4PNSxQb+LnHLnUWdQGzLNxb8PnTtvjHn8iGXyFY45EAbjoD828z0o+Pdb79h1yC5Z1cH9DR3RcNS3ETzG5d+vrw6VVsbGKbi53kC2A9n/inp+UwS3z46OIE+/74LbhzGGTwOV0UsunAKZVOE5hh9UUW3qb0BWa7fyN95YNIbZ5mvdwv3xm2BjlhdH4k4Mf/wHr+MBbff9YYe24OjvpwpcZITS5Pny6EffJ5o9dfj4plw64m7K49JLP1jFMOtFsOP9qnx2afSQU16gPTaXY10CYKvFT+6Ul4wzJ2HHxMF9Mrb9o7G2Qa9aKULk6qEyA+DxnSVj7LDtB+w/3NMuhuUHnKQkFUgKgkH2ysdw7m7qU24M/ZnumKX+lsBFEFF4bKNX4DSxLesgx3nKpIRPfPsDw22axWz5QR0aqPAR9oKoDrXprxyresZc1XsAbnI+FAClNWu5oMl57FNAjN/cD+dq0IEx7m2KOeAX7nC87EQWjYpFI9jctH/uEfNrpaDSg/whCi2+FG939nl0vt8D7D+c/zkfrjRwiXRz0+DSXdRfAF5v6vKsHKn6j5bOxgI7TzDGO7eRMQmt+aGaoE4ZgcAf7pB/pUk14TUNAT8WYuBd9O6hnmeCqwnZDjmg/+IDgzvEfqyoe4SqEIkmH2qVORpZiEi5qAVZ9jdxeNgG34AcKHVCo4+vv0w2hsRFu7+f0N/dmZNUh1ESRA38uQlMfXESzzIXwDon3vCFSHQ8o8fe9Cy89zvDf7b8C7vfWAU7lTiZZ+j8PqNwgQlwUh0opf4w/Pd0jYE3KtYMEOp06GYzsi0nvPLdgIrcJgtNn2CLrES1d9ZkA6GCp+pLlX/PSL/sNbI7VKi0W3jwYVOTwTEKdyvVyjvIJpMX1whOwunZ9HQ9YDRYoJ1FPRmlACXHixZhubN+7xzUbMFWh/IKA/vjYq6t8bNA9WYp+UN86Xa56ALBwHmiCJgC98HEKYb5MrWRZvLJgEgxmwKPPwngkmn+/DnEB7s90gYH8IIDiFDoAStqhhjLLFrsA0/uV735bq+h9/IGetpZFVfwMud/z8O7+El8YElp9f5dCjgD2prwO+p8cZOo/YxFZiMrA4qUTgzy/bkw+v+92zreD7ufWw6/a7YfW/fGjRPsS2eSbDL59qh25ZqDlitWAHGDagq1qPnrlzKbgRuzns9NNCHZZsgw2xCx9+Chqgpbh3w3L4shhs/c7C/ZMM9VQyRqDbcQFHymub/ssncM4n7CrCthj1MJ4hiV8nHGVyXo/PbxLq+ewqP34+0P4tZpC9nL9/5209X7lG92ebhoXq1ZJ1dA2t49OO4kV9c6oopIf3zUHFbo4P1pKwgwwfp/0Nm6fzYi3q8T7D/kYO1IjjD2hXPQ5KKcHoidTPML2T6w3OaCLY5hsK+CN8O9ANbzfszOOYLvyCHE1JtiU5Ec8Zlms5KEDPVAX72SENFsKLBiRCblF03lQBu+cl09/N80q06+bLeSoWI3y4skzUR5fX7GNsTVDGxp2u+YPPXTExkP5pBSHAbvj843uO7r9+eArYt72WMAXrPHXalLzlJp/hprJ3NFuf5/Q5TwgMSsyob6xvK79eA4K6ZTR0r6UgnX/8Zv08Tksj4vOS1wgq3ZOixjMR2Ejx2QV7zHLqr37ndGb7En6JUyAQdFmw5pMjTF7DHdsH98k/54PSAOnsuDRc/cvV7wzB66K5//yQxX13DpwbTyDLdtkHm24f3PRfPhWPH6Vud1IwK2n3cqmZJN+BvusY6jd8Y9QMi5pT5XOKVcl+BdR/nm7p4p2GB1zzO3k9iTIwL4lbmN7j6qcn08VrRRGG2qXF+79zC8j1NYrAbKI3DobwMfCgzQi8kcsB7atoqkf9WfmwgY1Fd21ScX7KsgqaY7NZ80v3D8+0oIku2M5vMF3IVcjVc3psiTY+X9bP3/vxD/J6vLg1JnZ/hsfs+iXs54eBdfZSoA/Nz+8o6IMjGQ4NlX76MaCK0rQ/P496yPjU/OU6BriHvki9shSGeXNDLTDjc4K3buIVUn4gCaR3fMa+EXzSsdUhg5RKGO+tTTgode4fYT27A1ECO67pJOAY/g0Hl/rqoKfsoRwIfN3Ig9puswXT5o7fUG28BZt3WwGzcTicdR/fQwJ3h3jgmmz0ujrWNnY/XlVzKT772p1uun94Jymxb2i3e3yiFyzU9dxeEgNWzwOjHn7kFq8zNYdnPZ+p6d+eA9FdR4a3nejgx1BeLL5ck1gvdFVCy7q+mQWfBoLHTaGWJLj15jPNJQzS7wMbghDWDBv9+PPPqFud26AXN4oJLrHR020evy32hNMDXvlDxs7fQy/YK8q0n/+G0dHe83V9R/0jjhl21nhfsr0zglVPkSpqu2L5+SPH0Nti9GS4mG9J6kBr97Zpat/3BX889Rv4px+ieebsnrfsnx9Skxfm7Nz4GiwUo8ZB6sRgWf1ssBmXCRu2RwBxeteGD6lSqPtQ6ar/exmWmv2h5odsAiYbz0Zd/R/sepvBIrVJDehS+0TWeka9FLdIhr/zhVF5TsdrPB2BMFU+Uj6eWW+mpnfBHxR3SFbyY8BSnjBYO3ZFlNfaR6UQexseHBv+zqMl7R3FhZf54WBLcUDN8bbu1z5rI8XNH09b8twmQCPW7bcf6W89UNsYHVEWV02ns5IedatSG+r8Pe6phC2p0l6g0amXHI71ylddeDy5iAZI2gLQdslDv2fXnDBR3dQLHrMjlNpxiy87Ete83pWGXlnbiEZvfamXZ5v6UCj+IvpP/4ihn4G9KtY4W/U+W+s34Kc38h5HgN0n5uq0e0KitmdnmMFWDUHiuQea5W1ZsI1TZ4DLc0Tvx08wMNN/ZYCGfo4kf1as+X5e77wJvYrKfPmCn74Bgq8d0Iw3crHIGZB/9Q8crXp0Hl80Btu0jxF0NruCZRbQNDnMZYwssy5mbIoN1Hpm4bA+mym7inII03tS0cAP6mEMz3Gi//yNUFBbzmP2+cfnyGetD4igLQTtzZHxzx/gjpBnWgY+//wFi32ReARofqQU2WUWMNU9+PpIviXenTcrB17/vuSdXtgNgTgwYiUhWPk4ffydTqDLaFcCV64+dOc4KudGbOQAfFR37TO3LTYrX/3ntz2DW8jng+aPUAuKGq34NbBwZ8yAg6am+ylDAQVGm/zLt9H0paC1Z8XQXvclp1h8P4NF3WcIAkE7rgnrXi/H47mBc5yM/+KfJ7lQwlA7tYhRk9cENKb9T//9/NVx1ddAFZwt2jjgbDE4v3r9eBXe2LrP+TBvqZ/ABr4txKTEAazf2CK8jCkmMA4qi0bOdvzpVbwD9zpY4ns+woivd7bWfEJTMSUQp3ZIfVN+ptzCgqOt8UH3qiPxf37brJ1FAjfBK1iil8LgZM4X6l83X0CO77v7T59a9VdIiZfEvW51sUp3zrOzeDsRBMfZf6z1u2PB2vGTQChFFt7SxC2Wl39RwHXaVT99xld+L8Df88f6N6zJp6mZpuyYhn/41W3u++a3nxT7eJ/Obt262sfbJdhTyPr+xx1m8PHnvfFW5f6wdtbL4DzWB1Su8UTlcyfAUr8IhPOABEv/RQls9PYPW/FNCKZabG/wV5+Ro3EK+GdSSvjeRl+8655tOihDZ2u/+kC06uu53Fkh/OmLafX3WGKu77QpmztSHP4aZilKj796CeGfxqyXlb/BlV/idHu41+ML9zNY64lEPAdTyq6vUQYbtToSZhxHPoZd18NOqQvqXY6mJYU6EGCl70/URS8vpZ9jetR/fvQWbsSAZPeDDb3950WEJ6MF2+8XW//VF80yrgYutPN6rbDOMArPhiXqz8qFcxyPeI+FeiALlW+6RXaYxFI/W10h1ab++3/kl3urZzhSAoqndUayyUA9vt+dBt9QHml4vC0BvxidDX54ZO/yzFoOx1bR91V+xKGeisGH/7UKXOtjaCBZm1J+FEPQbiwLkSejaR9vZhnivlr7GkTRMP/86TYodLr/9E269F8nhkdFsnCIGavZ1IkCvFjMJgIEPp9DyE2gzOofNpNkP9Ar9IXf+aJ2Jnw5s8BAwDnQMtKdQQI2cKkaaI9HhG3W98UcBPOoeb87kEhl9XxVXR8qhvBGgoE7i8inlwn5jdirf7Tn3L+rPgQvh1E/UEcw+6x4wNyu2fQmxmh1wuD3/7/ZB/p/v1PQn44FdeWvBSQgxSO4Gi+dmk/G0nYcnCPs/1SDOpropfPwwCJ42oNHhFclBvNWpTbMnNeJ2lc9A5MgP3sgVWxHXtumr5fiE57hKWw4UtmnBNyXQA6PEaGETcqzIPZHFaAtIoV6DSkLOshLph/J/KGFbObWVA8Fgskz7xD+Xs16KvPoDGH4zpEW8wDwt/4y4Q5+B7y9B2Mwn1w7A69w3NMbMzbWPOSLAe1p+uJds5n4iGmWwE8RydjbNHJAwOlPURSjjCgKgq7mzjEOdf73rvClSxcwzw1p4Ob5OBPtvmreLyUOBNa1RGUvWRbbwaaCwXTHdN+lC5/33TbXy9y4Y/MlWoPc2JYMnxL5QwROykBy6eGCt6cc1sHCssUzKWn1h+ApiDnYtKSL7onwZvxRNM5mW/CZXVuwwKtB9/0+4HzHgQKdqlp761SyNQZ2lMHgwhzsPawdWKTwRMB9QE+0mc9ZwdFd14DvKiZGCZqt8RXnM+ALumDDa6N6VPiRAJQeb9TEvZjO9bHyYaaJnB6iexDw/DkZkLvWjWJplwzsneYIerf7k26PjlhPYwEfEEO+IzAMvUJynmcEPbDO/3m523SpDmekVmp+xbutABhA579VBvOtuDKtUUaMzd02sFrbl0yYE+OE/eoJ6sUm4xvGJ7pB72AzcC4omQv9lywSIttr//SZvrV64RGZ+6IJli9XIRhFckH88KqDuXnGDJLbK0RLtHGDjWw3JTTub5sGy/YNFqB8K7B+H0azrATse3m9oROsGPE4Bpb0NrEI3Qy66KALds2908WHQY+/SLq122G5WJ0LD1+pRvywb6zFX+f1WO37tu7nVE+3v+0ZlkN/oPjpfqwZZG6ubQQlww7ee3z2/iT4iyfsdi5OyT0KjuDTNDW1vN6sl9ZQKk2/Owk1Jfc78NeYunASiED6rfrm859aNxobNia2Pt022FSM5bqt2kfslQkrRrOsWj1J+gTb7/hbk7szOnDtWYutfbsU42fRIXx/yZPa474NmCHiGaTX64H6h8gFfGewx991b0UUJ1Y0rH1AfJhq9z0Noo/J5dIHNxj4/IOD6fIc2sTSDXi/wA31povHxUPT+TCnrUdP87mqGfRUAX5vy5uoh2wo5nFAR3CwGCIm/HMDCqIohqdaXZAq5nG65osjJLVxR9p3Suo5vWsm3IB2psbhiax599bW2Rt5jiOGDwMb2KfU/r5vhm/3x81iO+/jQD6eNSS2mz8+t3Xp6uv+0eBkOoVsM+WhjeJ4wRY6aJw0/dqrbUlFjC3PGeZlikRQDMmHBjtiptJ3SkbAtsmdegjeg0WQLy1splNFt9W1tlhxuxLok2+AZhy/aoqF3AV3bOzWeTVuzdtkN4PhHT7p8aor/HvZ/2kQOxuOKO9Li1kZv8F5/+0JvB5KPvt8NkBwrB5E73zNYnd1KqHt5D32kyUfyNmBD7g1pxhH0ScbpthSK4CTsCTyH3IKfnXnG3Qlt8LGvoHFpLVJCMm7P6BDZKGA8WtGNHdOHWx2h6/VeRvrrBfYCdBgOKRYnPFGYFpYO8LYqKbsJe2YJklRQ/dKpIAu9rP5X75xtPVO0LL3FUh5ecJW9u7q2eeKAZFhi8jTbq+Ut6M5gzUe6T7neyA9KnjTeJp71NvvbjWHWmsAT3+dqHHZmwGzxyuCWy05Y/Oy33CispDB42roy1bspQtythlMa9+nW3n/tsYmyRMw7z893gVJmM7KKN0AuPsZdeXI4XOTqSXUFFnDO+ly4YvzPIew/Ronermbx4I8vu5R5d0+QfoQDgGJ6isB2+kgUX+r2oBvlLKCi3MndA+uj4HvL9QEf8/7RCOhpEH//oMZzB7tFcmmPKbT5CBZPYzkj3pVv96BcVsHhvCUEnBsu3Q616EMp0X4YgPHr4HB+IogZ3JADVfk9fzYvX1YbaWUbnXfH9pXPVf6gYcxkjGo+fLprPMPPxGwEtHqrmIywrBpfeymwQtMwRdCuCfeFSmvAwEsJu4ZHoyqwaFq3WsGqKjAQ5ToODjdrEJUo+sMo20408DQ3JR/d/sYbu5yhf78cAqmJhQeEJTZlnrN0Ur59LJmrTmbH7pXt2yd51w18GTfKRrmyAcz9fIZBo3+Rw4VLy3+yvQcXu/lfc13NGUkViH0bs8nxYduHph4oxUMzm5CjXPqWuztrBpCyFVs+jc9JdmmMUHRXD2KtakZFk/v3xA7Eqdmd9gHPYwPCL6Eb48WeW8HU+BeY3i1lg+pXrkz8In4MVSn8IEd265rToOHCzkTAxyCHamX7xUKQFNEDecrvk8auof/ztu++G75hgiXBizX6Yz3LxkVy7UUIUz8V4Qe1ZkEMzh0PpRO/E0yX7OLMb+/eiDKl4q6tpKms5jFs/YOqh32GmKkJOpmqPvK2UaQiYvFZ0XRgMk6H1t1lAASfztb+eH3HA/HgGSBJQL53bVoDJsm5YaStjC1RpdudeFd8+3ai/tWFguS2t3OkrOeluAG2P3f94+oVQ244i/S46IGTP0LYlBncoENdPsOS8TqBtqlHhPwKp/WLJ9dDYpP840jp2JB/04TBNXQbWlovdDA7/qSw+12f0MwbJx00V6aAK6F0mHfrVCxWK/Ghrvl6ZLF/z4B5+pGhNvbzcXxfZ1fWvrgAVWcxdQV/zAg5D4/4K73fbxLvRHMarqYuu9qJlp++bUy7SPUykkm33R+FUwvmxL+EcfEyFnGta/Q/IDXOvrS8Gh1nChFFuqVJ1ywVz+UgGzbrQhXfKQ7/8EKBs/KDfzizx5fH4vN27qB3xt/Iz36Ow3reiBI6vsftb1dbXUPqN6gVusPIhhuXXDfu4ZKMEgFDXx6qZfi8XH0lS/j3aQd0zU/GDB9VWdsF38el+9p9dbFJI4oDotrPbO87CHFoYz2yxsXC3wONoA0tulhjV9WV+1bk5NwT8MpvFuzogIIur4ecbTiwfjj427HJbolm4LTVyAr8FZeF2xBIxjmmybdft9PlKiOuExiVYDxadrQZ2sU1rjvthm8p/sCqbGA0jX+IbjKd0zxZ0HD8umCMwBMqoj87rWUcvVPhlv7ZFOU7+ZhrLXJgc7Nmsjf91oNS71oN0279SUO1c1mYAUu0C8fUHwZXvVS7+IEPiLNo1vH+NZjNz1CGG1cE4eNdx5GvpyQ2okr3r4mA4hmbuVQBKGAw6bmA73VYq4yUznQACq7gkm6xdZBf5DAw7cYqBjde+2nD0SaTmB81XMJr1m3xd6n9FJKs1sPM9fzqKv3/jqf8xLCLMgXuv+7l3zxDkYOzZBu0KMN9GG2ps4FUdkz0vwhJ900JO8hnSyb7sC1BfOUbDXdekg1EnRA6zEbZ0Nf9wOdxFrnS+eTt+Z8s5yeVzxgw9/bgBcaXrDt4AuY8771lahWchpGuVFIyqZs4I8P6UKJLTGRhRv4wqghulMlAY+isoEdaxcCVes+rHrLgR4AL+oM5a6Qgi0zgXTdhtjCKgHL5mIf9ci+ZfTmv0/BmDXZDFW/FLHtdCJnwnc3QzoUMYEw/QAeTmECf5/fL0JYiCDwFKi8GoviLNGsQRIPrv5d9ha2RP0TLI9uRbIyy7GZX4xgTPxjDFOLuNhjn5Iz5zw0MAFfi4j55cRnUmwgPPLeRNO5j4NZzLIZwKmNcTFHPfjFA3h72oHIsfssRi4Uo+Ypg4pxcu+HUaocEX6b8k6fgfENVv77hspIGsIzwam5WmkaXDQeogUNVbB4fufCOPt7Irkfh6LPNsQEYXG4093K3+Xvu3RgPXtXunc1uVi2tSRojNo99nb7iLP2KysAnRsb2/doa81HEMmQnS4M/f0RANpHGOSw3MgDYWT3Cub0kjD9+7iunvhT4iw1Pw6MHCfE1gfbgfhR7gicvt71X35bbru2BdF09Yj23mMuSU1CgCsMBwSMcijm/N718Pr0D9j2nqXFL8W9BfEN75Eebx0w5hc/03yDCdR3YZAu4t/F1WxtdGkyKX/pcp3ADRxOuUnICx4C5vTeGW6VtvrhpcU6pD1gZT332M9bEEyxtVS6Ot/2+Kfv5evj1UCwIQI2Q3upx1I+EWiFuUnxfn7wxflIDwjUIyNLIJ0BV8xHC3hPHbLB53fKfazcYBE9LtgsQzpwSZtzkJ6Djszo9q3//b73F3jkL8htS9zKWQLRBLY4/D+9qyb1849wdMgBezsFASXTMSLVPFjsehgc6HQGQlKoGcOk3IdmvXSNqKOGUsHfc1XqEi1vOMjvysDcr3qD+strsUFlpZhWfQyV5I8gKRNuxcQr66gDqyipv33uubQ7tS48b4YDEuL4VcxShUT4Gn2PBis/Xtfbg4Mo29ROylMhv6Ro1rKDYlLPX9vv18hXQB3dCd5v7wlf9MY8wjveMCKjKQTiJQEGOHAUY+OctsECd8QGKIgu2Fn5u7jHdg49pVORQL5Dzb4H/wz2xinE4eELhvm2hwYwu7UG8ygizuaTd9auRq0jxX6ci1nGXQ9+fGNnbQlo1TxLwIxsDX0jMqe1fri1kJXkia1ipgWfBy2HJvRU6nvz5z9+TBETgwZHNBaN+0pCmEXmh/rq3QabZxEl8FluanRXlCKQr0PrAJp5Lf75M2MagxK60afASbN9gNn70yGs8wdGs0p766fHgMtLgp3Y/Uv7wQnOsDQOH4wvjydfTJ0J+uRfS3TJ+Zdz8+bMkE0PGbu7MUqlLLqE0Hz+PQm3TTTMuqsZcPKLkoxgh+o5G2cT1pIh0fND8gE1FjGDOdsN5G/Vd4xcriE0w2lDQziZfHnfQllb/Qr0iMTUmk5/hxEeO9WjwU11OD9v+hLqmlJivz9Da/zxZeNxXWhEGzdgUtw12qfAMqLNxx14JuW99uMb3nTpAD8a1xEuxcknWn++BfMlTGdwIEdODd/0a8YUMYd7OXnglU8M89V69xDSxMamVqtgMTcF+eEDRbf9C7BkmB/wGDqAWvZtGPiszJruYozRPOAyWNx4L4NGun3Jiw8SmAN/bEG3fQM8rfmDMvll/vIxDlYTf56yzv/xAxyZ7imYb6iIwV6tHGzt0THl//I/xA11oRyndOXP6i4rzzSq6X6Qf3oULX5PeFn4lrz6W9DZw4zoDsTBmFi6Ca/gOOAnj2uLYyFxgW15Jg6SJrOWYKsZ8Kbnh5VvWcEytgxC/Hm4NGw/b77yiRCw7JNjY1G8YekOkajs4iJBbRqss1/2Q6v59aMlwleoAjaoNgM2Onzwnp4qwKpT5fz0Mg30xEyJdDFk/YC0hagse1rT2GoQ5ldXJdpdqdP5h79RFTd4d7y8LZYDKYcrHyTf4vvi85CrJpSjY0+j0fgUXHizDF62mU9Px8s7mL20YEAOiEwtR9wUbOXPYAs0n0zZuC3azVMW4ATuZ2q/e7v++K8TgX8nKODk4T/SJRD5DRJnC3/5MZDW/Aw/5mFHtNN3B/ilOLVw6qQKo9VPnFLX1QCc+viHv4C6wcuGPRwy9PesqoBvmBdD9C0WvO17Y/jnnxp1ipB0Q/Yg6Y1/1C3PzWnQHK/WYm7SEWx204O0zy4fZp1ACC3Pz8nne/ABK31+g4kebuju0cTpMjmO/ItfIvGqLWZLdDMwfMSUmhLc1kvyio7gctmlGKW3fcBSGM0wljwVLZ051v3BFgWg+pVIQ3VzqefgYGnwt19/U0uDyZYsEc56BSk63m/DUmSRqI0XKqPnoYvr5eK7OZyldkt3n+7MeX2eKng8WROS/AdLyaVU//lVCJxko2DlW7lBUOZbtEnnbTEWkyDAnvsdNQ67g0XvdjyC9FWe6ba7dfXYH68z6DInoAZLmmE57VQDItl08K59msGmU70Ebuxdj02Lp5wd6+0RiMKjwSFvg0CTvw8X7jdagjbRMU35MCeuLp2WN9GoMFvzuLOynz6jJhvVYs0fLdyj6YKxSb1BNCNb07uXqSO9pt+B4ddW1tfz8s+/nfP7q4WB1Bzxil9gofz1/vmVq3+fpBPcNTY88takMZWVtHP+tMcPD+nKd8By1RYBCKeng/enz8zp/j2VsLn0VyQ3CSmWfukd8A7KHcWbDUgXIb6NUIQiw+fDnKZtBM6h9u6O6bq/ZUrKQz7C14yfK3/MrfmH71tlnWWw6iseV1Hy029INzQhIP2HGj99hXefTubd8XMcoe6GMvXTjzjMn106A3M4hxgH4ivgILfYj//R3Yrf/F2PBnxChOm+f7V80Y7iA8b5N8XeqI98UOW4hVTyPaQABK2Pe3fO0Hps6hV/ngWfXgGDmWAXNE7vN84EMUzAKJ8DJF+yfTE3n9mAdfQkGIO9Vc+fgBsgJ+aJTOeYW+vz9CGVXA99XMepx3GZ3lBa/gSk/35OhOcb/HWoQUBPqoI4/fYMl+Lio6qRsrUvRSiCqGzZT3/VG6a7MSSPwED6xgpq+Xj2ZRhl9USR1DOLMrkzfnoAmyLx6zn++7yh5uUKDreqNpDNnt30X/4zwYVz9rSPCHrv5k13VjHwJcqaN/SLS01D1dIHObqxh16PYCbTH3GCTh4XAc7PkazxXVnsboQiVDsok7+fn72nZQ8fa3aNqn06sCOuG7jqRfxY89GMClZCVgt7ah5PNOD3Te7+/B4kHYAEFsPpffg9DFvqvg6IT9v+hLRAeh9p7KF44M8iisHP3zPU02QtT282weoHIbFCcjGbzqeF8zx/8GX1I9mMekc9Tv6C188HPJzsGPSnc4HY0DFA2ezNoPybGuwz41Ww0DsSkAjygMPVb+3Pqq6A2ZcSursyuXj4isPgRilcsvrHYKp3WawBtqmIpH0IZz8/fa3X0B13h2Iu5dMIyTV9U0v0BmveLXP10ytEvF2/AQtY6ej6u4hx8IVTwM9LkMDMqU/Y+Z0v86KYgA2SSU/t7mNRbKsPWO1sQMRx31q/eIS2RlwabYkS8ELtDVgM8YfeotxI2fHsi3Czow/0d3n8ASpOiwb4gZ1o6L8la6AHKYMr/8MGd8qBJQ9VgEK5HX98qpiN7sDgtdC6f3z/n//qNSijgZWIwSKryu3fz20JXtL5s+gCeBb+FZWP96deKvtJwE0G6zsoH3F4/Z25AA3/fMN4xa+5tQINns+fArX6WhNd8Roqpr/FgXsZwNjGfg62G4MgIQi6YRYPaglXfoFPF70BM0Ir3135qYWfBy6tfAFoJZURMBySLmNVEHh6igWRM66C5YeX6/rRX6mLA+vAsYW8nxzs2SnnY721cwjubkbt2oxTZkrGWZ+lfouWWY3WWRrvSv35GYFsatYEn7UD1U6QsSHuZYu/bfcME9vSqde/HgMB3b2HxzLP8Vo/HN5xamXg/CBPajTbzlp++KXZrxt2V37O1OF//fw1nwybQq0MTXTUklRSZQ90N9369Q7+CYkbH6VU9/Ucmn/XF7aB0BbtblEqrTlmC96iwyfgTjT/81OxLVV5SkzJPcMTKx18WP2W+f0qW+jbRkNR2EBr0oqUwDV/Yefda8V8FJv3P3xd9b217JLLCE/2k671Bq0mG/HWa5V7rLHTj0O6dI/wDF7PoCWCbOOgco8FgXV+wzT/TqyeYBidf/UzGmu1Haz8WoTNNY6ItjTv4scf/9V3APnIAw9SHEN/89KJfAy3A/uub7pstfiMjc83tH5+wQ/PSNXeo+Cdx7Wr/+oF+I8UnP7yd7MNPLTw4cT7R74V//ERUfge+ESu7wbkV1+lW2WOhrn1ahfs/qQUh94MLLoVmKLH1Zj949/TX38YoZ0ZDxzFRc2ZKL/X2YnvAkeLJNZtYO9yKBtNisPIqFMqKLGr32x8ocZ97eOP7pICT7OSYFPTz3yJY8WE6nIQyT2WSk7788n/1Y+weU7vfFb4jcDIFN/0+LFfNU2bY6sZLmlpkDRKwA4HcJPTRzJhY3mMAxlTTwYygg9sG+KnJlroyfD9HZ/051ezzi1C+EqKA93T6mGxyzcm8Hlb72ztZy8Q7y/VgEZ9QOjPquthjR/h/3WnQBX/+52CKRIaun/774Irit5oaoMAgelRKpi4YZlu6nlHA1qAlPDdfYaRxVKi3z/XgcuyIkLuJIw612cezAWOe7B7mBa2wnzgi/FyNJje/ZgicH0CHr26DEDySFB/XPacvnbaA4Lp80eDP6xZdPJvIvycv3/Ug8Vs0TI9zeqbVl9UifYxWF4E9FBu/D1pU3tf8OJ8dmCooz3e/ZXPgv8dTz7sgxnRa/tdUvb6pCIIWCbiKOwXazy/rUzTK1/CwYdlA5OezQ1Cg59pBNJLTV7pK9Pl+qljd2S7QUxpJ8D9dUOJWougZrL650P6gjK12q9mkaUiDN6L05n6FayHofWQCdf1EeVysoBofl69VnwMG/Eb6gfCrskboqz8rvOujVT0ny9DJ/fwRVpB3HC+CdkNqt94Qu1iVdaUb18jvKlzRr38aKYk9+AR5unuj6JN5aXT6+6F8LiTDYweuy+YEHv0anyCA8bHQwz4xbrJoN/GLana14EPLBh6wDebGTF1OoP5NF3ecHFFQk3ONymXSN6A29buaJ7n/TDyHotwMKqaolPCCkLZ7QFlU1iILhCHz+FrYrAPZQM70JjAbEZ3AqXhyKnllGNKNfrKoalAE1uj2RUsEfwbyN1diO2wFIMhVVQGnxnP0Tzej+nSlkcGsoZOUU2XsF7C+arAG5+u1EbbGhB7ZCNAs/uhbjb1BWl3fgmFVzZjdJu2A4kg6OG+uO2R4vltML96xYXQEU/UHgUBzNYfO2qHGV9xMEVfsMhPZoP9fAUYXWvExbLpjPXxpXTXWDqnTFV9gM9kRsDxi2DWmsMb1D2eqCe/4nqKO/8BPAHMaHO605TeN0YCxl8X9SH/8sWv3xXMlM2BvB9wLIjbaRmQYP7B/mPYBzPhXQtNRTCpP05qTQPLa4AVvw0i1HcSjMVnrQk/4pRupZ1U82iHzlrPNg22UPtXzEE9+3qRCgk2PX/mVLqVrv53bBy8Gy91wdDWl+FwNiDegc4F5K45b1gdDEbWVrDBuFkUF+yLxx797c9tQNyO5X+7h2GRvyjeD8Qf/nyYPIQ9Dcz3y1o0MoawOpgM797waLHa4iP0RTQgsX+ierOpRBNMEWzoXbj3xXioxAZoT+FGOLCSYrlERgx9ZUgIvXEPTC9bj+H86TIa7OE+5VSQQyjhGNEoFa2aebblw8CjNlFtskm52V4EOG8YxH6PunQcFTIC9eR5+LKZmnQ2QY301/2M1+nnJefwyUe9aUubXiy/LJg9aiO0w72A1I165jxWKdHy8MVxoDynYUCfuYSCxxj1jFBI5zRFGvQz16EPxa6GrtpcFbgkCyWV6X1rXqYnBvSJRNjeT4+UbfIuA48XsUh9KY6AHVRwBruLbtNbEg0DgVPfA8jhiHj0kmoWOHsFukuCsBsVds32+EXgUTQ8GvXdUHPla7nQBRgh3Q8Mzr7JJEM7ImfsKqc94BXKCKRQb6m7VaqCzeEnhGVSQbzlE7VaKY3Pazu6mZqI83qCG/8GTtgEpB2zZ71Eft9Dp2IZUvNjlY7KdUSwfLcldbI952N+AxDEqrulz0cQB1wQ0grQIO+RXR4ZX46N6eqPa/1EWjCdaq5d7jfIkm1PozlBA7kcAgZOeXOkOIiEYVGbCML+K3Nq/j0t65cfQYCCgQiihjmzCzeBhzm6Yoeft/XGZZEJQ1f4I1KStTXfX8QzMJfNgfprfprdd+OAi+RT0qR/5TDDc61AQQYe3WfRzWJC6JdQ3NoOTotxKcbO3h2hl0ghvZ66J+D625fhJSgiIndpBhZxmyRqBB8mkZjhBLPKRQ2k3JOpfXndLZrdPxV05flL9+aspZ1/YLZ+pscWb+XNFnD+EY9QXlvfuxuOar55jBp089Ek4J0nKS+3wxnaaTgT3rgd4M7n2cNofXEe9rWVDvRihupV8APq5uDO6UVaHrA63a/UDD+GJW3BpYF2Nnl431V+vdTSvoSvw7xBG6NqwCiyxoaK6rzpDgZVwOX8zsCFNDU2vgAEHRNHEd6CbYeYmduBGD8+D2A+p5FGf9Jcs6OBYyDY63tdtToX/dOBJkimE6V2WB6tpT/KCJ6iPw9tQnBOVzx0gVAeBewexm3A7hp6wxOPbcL3SlIvBr494PIGKd79nt/fPIca6IKMLEj4ghn0JdEP1t4k6sWnNUOtLINeXWvCB9aloyRLIZjMApEh4DpYyIeNsNJ3Z7rXvzvOT6m/zuKxcqJ/0S2dG33J4E6z2997rZz4bh7Dr7eNcei//jh9iLoCg11yx+a9bOu5eZ3P8LgTDXwv4LlmJ1Yr0F23IVf6LZejYRuCjaYU5O9oiAWVjJ0NtePVxiipPgNbe8trczFe6G7vVGACDJxBNyOZKMdbxHm9/0PA7YMbEuMlHmZEChcuS/nA9ne993xL1qmZ7UfCOxiY1jDkfgVeJNvSiAd2zdxD8wDHCl5oQI5LTZZGV8DlXi1Ec040ZWu+hhO5MzKPZObMz20CHfVY40gZhKD94V+Lzj5RpbwBk3P1Kq35czB2DDOru8d942tZlTrUAXSxuN5eBa1aagGBdb/H9xIav3yOjt78LfpMR5rmen38L7+w4JHKsBHMO2kf58nqmtm8QXg+UBqsv09Jwm1o5jjFu9ZxOMm+0Xmdp5ugv+WPAP6L77+rOSFgMJGPos8c3TyxESm8YhY1lKgFcV4kSEoyd1igCyF8OcxGghqM6aJoJvvlC7rdj6Y137ruqI89j7F/TQ3AChTcoO44MV35Ydox53lWpWiQqbvfPy02fr4OjN0DwSaFJWAmyhWYu/uQCNX5XUx/FBgwuiYjSvLdtVjW5wud/CPSyJmXmg3BI4cefZwxnh9/1rq+I/wavol3cQNTBtID1Fd+Q0DxvdXzvlEe8ID6HNvSciyWII+P+smrKur/eQe+lAZxtdpGLjUih6+94rIWrE3AsNu+Oou7qHWh1CghTVqGin988hdfUhXuf31RMvDpYo+wd3xKxc0XVzDaey7NVj47Xb8ZhEjdcqT27tZaNvcvAaacKr/9C+TA2WuwDxgio5uG6fztxAZGVN6gmZ77Yhmu0RlG4fAif91dAlw5bBs4Lqcb3s1IBZwKAoKK8NYJ+3pDuuyqE1EdffHxDu1Hq63aaQaPcj8ggPS4ZksMz3BdH92+DjJgqBVksPJHnI3Z39DJT+boW5XsiWqEQkHVFB21pnrukHSr3/XyR4EJQNr/EVmNX9aSb7sR/vKx99R3Fj+Wkwzdbt8TPppdOj2VvQz5If1Q727jH59BMP9ENd3tjvLAjJ3YwrdkbdFiFbta4kh/q8T4rndWWRKwJRbPMB6eNt5Nj8latt3kwnd4OmBLGkZrXs5ZD7bquKfnM42K9pqNokbP1zu1N8k7YGMKWwDV545uh0AO5mB/d+CdrdeoqyRLxUUIe7DiAUXV2S4ketA1VambgCgr3x294qDp50ci0zCUdoUoOAICP/7ifi7nYi42dgtbc2a0ENw4pfj5NCC7+gU245tcc8afLVh6mKzPuwqWKpdl2G+Tlu6FvzDY2HWuwOmifqmfkAdnK9/Wm1EYsLEVo2E+Tc83KB/2kUjuwyu4Rl8ZfA10gySX7jifUC2A5P14Ya8oQmsBjB/X3tYJRo6sgrHAWQurzVvHiRTcOdkuGwZPLExweH8eCq5rYQa2f2GJ7U1t1Iz8bWZ4M92Cnr7vaaAGPM5w1Zek//MOgIf7mID0sjuQv6+YAO5s2Qyt4c2QMnhmPdfC9wxqFLgEbhMrkA5WgUCXOk8ckA8Klqc5l9rj5ChIGF//w9O5LCurA1H4gRwICiQMuQgiYKKCCjNBRS4KBBIgT/8X7DpnTJWUbSdrfUtIZ8lYFE8bEE87YCdMe95WeZDDKkJ37B4s6PWGqSqQ7QIZiaf5mc3kTi5QSuIfNsSq4GOdpRM4wXyDj1ff9cSNedcUN9/v8azfnqA+uLbUBymp2RcD2w4D3IjVp99ohkQoCOIVfJ6jG9oawyNgVUsdMPtNNKCXvPDYBpqj5VNJUfWAz3q2+Dmm64rIZz6u4XZ9N6gkp2NRwhuRQPr5iVSWiRn0ij0g9f7MRuxmYetNsl1+VVfwCdN/pmmKUn0K5fZye+BdH5V8OILVS/Gmh0DVJte5ODxCF2JZsWe/UiT8yANBmfWGOedLYjY9Hh2w+Ddv3K2SAcDAAfP6orza9sH4OiUb2H0Ug+FQE4LhXj9y+Kv2ImK1hcmAWl8D0qhybCrHypu6zvlC677eYaSmNZ+cM30B+9x9mfPEZsLVS/SA5wp92Q5OKhknoRRgKeo6W/zxFvAhg0FBU6RenzaZpBArQFFUjKoSCn/7EZyeP4MdovmQqYrwcOE52ugrl4hmdoLQw8cnHWb/1B3BJoUVHfK/+29sObOVhU+Nma95qDoKSNN9gkDs+PP+JoRLv1MSOx3hfmy6ajyVHNtK/UsG9eCU8LqlBL0rX06mH7p1MHQvP8SHwOITZ6G78ATWA7xLhLvir8B7iCNEXc0n9dxP8P1WPOxdVzIgTTPMgVP5wh5LkoBDcZ43G40PbNQTCtjzBcPl87Fpjw4YlahtoXe7YbbbRR9v2DSxAn8Py6DnSNonf3orDuKRmYnazwfFkBX8asqeaVsmg4FH1wig/F1jdxrypFv89/Y57fApHtZJR05KB6OVcmJ7lH7NPz/zexUN1tTJ4F3cvi9Q/kwh1prVzpsyfLmoq5BX87xCWhTHzyf6yzf2l1I2hyyPJZAcHzZzy8ou+oD3KVBeUostWWcBzTxz7k/JZvFgZIQ3jeQra6Ui2CsJ4uPCb03TtpRt65G0iJ1CcHR8BXu/cgeI9WuNpb5sX8i/Yp7xGi48g+3KszhdeCKLzCvl4wOT8UqzB7RWBUZqIBSkuRbbAa73ELBD81yRac6T4GX9DLBOrw4Yj3aQgRW4DswUyjz4yil14TVSIUb1qQBDUj18aJxvFkpGpnFuHuPbH89YT9CCybyNDtibQUnXd9cGfPaL0LgOHTs2ZysRezznFZ++QCsQr8FUEtaBouxD3GvnD+kqMXBhd71sEfgvz5sAlQMbO8szg4t+pJ7ZoJmH+NgoVQrBccfZjm0FTrq8npST+q3Z8n2ElWhS2Dz19x+/i6trG8I1KyW2F60ONIxGK5jnuxInAerNQdyICB7b2+uP74Ql/9irusWc9/MGeD6qJVSTsmH7hu/N0S26HDxlI8CW/tQ8QXuaEawr6CBxrVTBMOdzIN/FP6afbjRotZdWLn4Cu4Mz11saXNiDncoO46FN6rPPDXXR/72l9CbdJdpJddOyZ0556oqxXEuuUlSjjRQLVUXfruAXSOOa0+2Om8HUjFYLZ39JW2M3geHhHTL4uE4HtvhH/jiuNyByicP2tf4ATGvzG/TuD525p4wkDO7ZBDLm2syvx605RdeHAq/RGmI3z5/F8IsMB4anDUfbk3XwNrZc7wBfrT5zP+4JvTp9tlzHTiwI3viTagrm/QWtTYsQpljFvB9IHp3g9+hN/knK4LTuvlj/Nk+vVUd5kpMAXpg268mUeZ6jfqxDN/NkW/T6XaHgpjcd6qRK5L13m88pabQNXYnDc5l5HIK4UmumH78f0vzvv7Gjv9Jk6lSuQctfnRnqPlnQSyc/AkA5ulgXsJPMvFvDl2tbWHvnhLAxtiEoApLPecsr4FtfSZXcfX3R2ioBZ0teOfM5YrImebR0XOFvfYDg3RRL/y/9zo4HpQyo9JJyOPsrCsLtyezWvzpa/BGzhPftz6+oy+9x8KQD5yECDygemw3D2/pM/nhME+IjWg/S/E5QiX0w8xM7hPnG+8sTTq+tjN2ujwnXpGMLjDfrsD2KI6CdCjQA/ZDiW/f0iGQA4kNbvhVImvOWQfY1Sd1RnLNjURvBpvJjCIStRZj9zg0wTWasQTPTHxRMm5aMaTI91DzJIip/rl7R4TSjkEmFjs02/gbjc2PuoDLZOrZjOfOmH3p1oL2ED3YehNgbt554gt/8abGr/tRM1jQSgnTF3+xQ30IwdMR8QBXuRex9QO7N+XENU91umMZ/NmgPO8+FqbJxqRrTYulXCZ52kozfTyUohkGkkaw08hOj0HOKqSS/Dsq4ZcwEIeJj8AEGvNvwi/1E+3jj6A8bGG/1B95Hv9ybEmSmsMs2J/Sa3MIcHX75yxfZvrvcE4YO11TeBpcX9n/xQIbWCV/Qfxgj02/iKqjxlJ8AULDLlnrw1zk2oNNYLUZpAIp+z7wdCH/RCuv59CXMzd83MOslUq9+600hTSeYlW3G7O5JCjbJowvj3o4pmPV0ikiaKjWTHbwbnHMxdNeDoOicOFTSXzDgG6e4wU8uNLTzS4fzQ9l00IzfCNv3zdacso9PldVjM89uOeBkOpIDgvAsOmgz0NobbkgXFFB2I/PBi/DRFW8QCAc1RPP/L8GAp/YCe18S/vwAH991Cr+VqCBQGITzvX2Q4FqXIT52+uTVzXU9wLcirZgtn3Rz67dqqQT+7sXiTur52DEkAff6hsz4GjqR5nxQ7SLSIXUtnoopqDb5kudi+0BAMNfDUfFvyLEO7RXnsz7C16cz2f0b3Tm9r+ML2P8DAAD//6RdydKyvBK+IBYqCmmWzKMmTILuQHlVHJAhAXL1f+G3PbuzpipFqrrTz5B0vyuZLHpFt62d1R4NNzugXiwlwT8+TeLQ+5c/Y/mKMWhNc2TRgmdmOyie8OMzzl+OO/7XfXt0uA4J06vsyL8yfWK53a9VsujxiNHljr9zLF2iPctvxzmRR5Q+hJzYJBUCHqSggrcWRizXBzX4fO4RyDFHiLhG2HS804Q3pGvdI06aWd0PL8iL3v2Lt6T/4dF1qdlMbfY5YveBVmh27S8ed2pWz9Ll7cNfJZ6p8nbibpaVU4bSbvNi+0W/G2l57NHPbzCgX/wzXseINOuUFOnkoO0DhxSehYqJdvZqNN3Uty+f8jBheRDz8nqWjAIdQ5NS2cJWPR9vUwVlwClT154abMbMUsHBIvz4Ml/qzVpO+ldLt8t+pl1zSpF3TWdm5qg2qLUJhd/5QsxbGqOFL8jgpHlGPCMbUb/ge7jJrsSsVOvqkWQO/uU7wy97CvjGvOyhCpuI+KsCJ2yNFBnFQ86opwlt9/7xI/94BWJmBU++C/6A+p79YTG4OvVynldwyds1Ux/xrpym8dr/+CYhwces+9pSd5DbwhtXi9+x8B/4+QPEu5pLX4dsefxT5hLlQqXVm2NsZdKS/1gOb0HC31dfBMpSa8EbezQ+nlX703vo7YdP07xSAbntnvjRZ2P86ht8SnfN9v79j//8KSU7kS1e15VV/vA2mKsoJXZ/DRZ9sErln79lFK/Fo3cOLRBtnzNH3IvdUKOvDmoia0Ttr+tk8D+ogQr6DVMDuuejFJ5UEDA5E/fbzJwWDzVUfnxq9dqfy1HpXxVgfi9+fKjsya9Xv1VdiI1YZIy2fy1g0Z8JXqEdopGEUkTi2MOv97VGg37x1j/8Seyb7CWsq84taIMJJJaG7MdHdiCi9ob54qfRwCYyos0hJYt/WG5faf+Edfb+Y95Pf/3baA+Q7yohxasfEyaKOxGNWCuIlclavak35CHH+3XNLG+ZnYtvPQbDgA3L6fJmK/GfMejZumJH7PTB/GmnUZEmQul20cv7U4ifsOB15trqcfGn9DUkyvdCjLxco8WfqEC8oAlLOJcN7rm4gZ1abNiiXxudL3chPEWTM5+9STcjURDBpIcHXRN3qFvi3c1f/aNjlDPU1JYqg6UVErOuLS756vQMkWNET6Lltxvvn5OpKuahz7Bg5h7nJW1VSIQBs4PxFjhb6W0PzvsiE8tXpIRxQY2VhY8TbX5bCbeTYQ8JD0T28+P65nIO4d1Dxxa9g09jdtDRgu+x+ApeaLhzfYbv4WmRnAWHssE08ZVFD2eHP9tLxoYaPTz3ecQOkmUG2189eas7h6iznQczE7u3bO0houx+fPAxPp5jmNv9gTlBzfiixz3h5z+ayCvqllvHGf3WNzT3HcwLngTrq4t401K1FE/nh/5/zT6QNv/7TsFxL5iM7G+bbja9qEF/Q0yZ1Sc9mr+NulZ6QfHYwekIn8qE7MDqR5+5Q3IrR2x2OxiizYVu3YuZcMFVVZT36xZ335NqbKxX14I+PK8kOCy9Budw0yLFn5d5q5+ym99ZrcNHrE7LvN6h7EEuGugjCNh5X1vJ8KnqFpq9tMFcalI0rU5eDIe/IsZ9/nig3liZM5SV1ZMgdayks4SDj8Km79mlWN35PBx2JsTlM6GXXakmQyzWImyNUSV7pbc4V8v7DN/yYTBz4g8++a8bKB5eeyRCwxDM7d/pDTv0kXD7VfRkSPkuRpEjMebc3WvQRCX1QXmwJwv2rZ3MritQcNwoYb7qReW8Dm0dvCaQ6BQ2WTfJyA8ljoeWyopu8K0m3ExlfDt/OEdpV0+7G2C07WhDJxo9g7kZJxvS96nG0/I/rWFcAG6GGC7zZ/uyv26qp5yHpUgMQXW6sf1efTQraY15mRg1U3QjA089RIycjk7Jjix0pRPTDeL0ehmM7BtfQCHbiG6vnWCM2l8RSkxwRXbeSfd6FrSkhyf/XBiZIEGD2O9iKJJ4ZsQKX5zndWrDxXbPTE1TO1hb/iAA7MOJ4SEMO+4LegXZ8Y0IZqsWcSbxFKR5+yWO+HaMUR2oALerAJheG2yw/Sl8wp72JtPkWUqmvxGLiH1eR4JvvpR0Nttd0Gc66Wzf4xLNj8ujQN/UexHNdO7lxDYdhuiDRRIgv0CjcbEvQL9OQFfz1umW4RcpxG6vkeQx6p2Y0eaBpu0VEcPWXS4+4bKDULw1zM32Ch9oq9uw2QQzVUatLzmcbw+wUvXF1MN4Rsw9kguSP8Sm69PuzCcqJBekJLc7C2O3r0e5aHxw0t6lYqKO9ZDolo7U29snZiQg1AXvVwjoW/wx8sUkYeaxLZCRqxHxk1JDs1387dE7D1UKPUZ83mQ6BXatGhJsaqPbeEEhQ1g3GdFGzhJqvJNQsXaRQGzKs47ibs7Auq/vxHqdKeqLeeilLt24DJvavZujNWnQ0jWK6fdtGHQDjfEqutoew3F2TaZy/M6AZt9i+BO9k/EgMBd4mz8wV6c66XzBv8B6+sQYTqFTr8nnsQexSPcsimo/4bbpyaD/jXf6UFoxaHaWcIPJvwDRAnniw3i6PxVWbRizP/UbDWOFVeD3XiPu+QtosDGu4Dw8DnRQ8WSMyQYw2l+xhPu1MdTDqo8bcN4WIafiGdb8FAgyDGDuSR75Lt9O52EH9udjMZ8YJOilBtZg7RKB4Evu1vOQXG7olIUViU1u1tNbdNfAG6HE4ovdkjkqIhGtP9WLHYoxKl+1cz8pW9Wc6Cr56PW4lY8Z/B1WH3LQPJNPLO53aAB7j6evFJUs2BQYKCc7ZqqPmQ+PoYzRO3lPxFnyfTwIHx8VTe6SQPic+WRf0AlRG0vMVEor2YhVkEJwIE+8tXmwhK8Ug7LGjATGE6PZqp0KbkuF0tjj21G/Nkd4o/qMZW/2Ot6tZIpKaXgyknkHPqcP5qJJG3KCjS+tB3G+UHAeNxN//0KOuEs6Hai9l4jD/86cEtUYoZVIyHTPE8vBVFwRYNO//sXbDPe7q2Q0uxE9e60SFsbnPRyydqA8ZHk9zyv3hLLw9mKOCDs0PuLrE6K6/jAvVJ/Lna+4lXNT1pm+xMdXiM0nUn29IfbFbozpnJUUbuOGYEGy9GTc4vcIGbgXdhBOXsAP/VcAqS8CYluyVLJV8nXBfb7OzHPCqh7n3khR5xh7QhC6oq+iIBdY33VM+0pTyaemEMH4+850O+wedZf1+wzuL9zjnVQZfPZUu5LtLkyZmrZbvuR7hfYnt8Zb2bCDsXxGqoJWW8AKHe1uEjWvR32u35mjPexkCnAwwyv7o3SGc9iN5iPwQV4JHZ19sw34YcYFcHFcejlSLeHPF8uQW1Q90yy6q4em/BN/5zcx/SAwtqdA2CEpJxNZ8rFkyVE3AQ7fHd3Rp4Xo2FYj+p2ffzV5Bfz8Pc2QgzYQ9wFGMv3b/1P1f+t382B+nnC4TQVtp0JL1qeP+YQVY1u69KotqVAdM9TQ8/JuzbGS8XHXH//yO3ghzVi/5iaDY25O5HCBFo2NrDSQrblA16vXtf63//olE4JXn0My2dJGB7XfyUxnYhFMOAixIu9oxJzzbkjGQZYFVD+ISgJyvtWTnloiSvbhndnlqS458tEToDAHRk6dZNDCakUQ5l764Y3guZteJpxMnmDJDea6mfsgBVFfUYxe6G4wns0pVF+KiVprac2NqmjB5/aOqHYi82GY5RT08TISEk3IGGl9HcFflQ0J6Gpb9sZBGuFN0J3467gq+cmOK7gPEDEfu2U5aHnUQpdcNEYOpZeMf7Vog6x+X2T5nsznq6oq3LmGtFH1MZmE91WQg+mjEz0jh45PwyoEFt9WzD/9ncohW0UndPg+VhStHoeamt2q32Uf22ZWnA7JON0eGLbGrOIPFkiypvVxBqH3crydjvd6TMw7huu1cAl286ScJ+c/AAAA//80ncuysjoQhR/IgYhI2iEXQQRMVFRwBupGkGsgAfL0p/CvM7QKqiike31rBdJKB7fQnt/rP+YBp9low/7KHG5z1ibsvI1cOEQgE6eR9YS+8nOMbp/jm/vvacrZt/ZSVO0XmOzPbi1GBwoVblZV4rK1Lp5YflYSHNq3zo3KWdGumY4RxJ0RkmNCC3NyX/Udvt/4gYe67b1xfQts2LxLQvyrcPLRkk7ldhMeR7xN+Twv9SNJoNnhgwHb5clYf+srFAP7Y+OCKIE4md8LlJ+45/tj34iefx7Stt/pKTHi7eSNi5WrQNm6F+6xpqAj/zxkKFbDit8Xycbk91cYofZ8qYmeZFLQmZv6CgcsH4hfpaE5fgffgcJpJoKz/IMmEckXlK18ne8ZloLJLJPLjw+Ju/TBHIcD1LAa9k88fj6LfIguwt8a5dXk92EHgZj+2hJuOPSIq7Sj179Ozyv8xfGT79skp+xPFg4s4unEVkOzyGc9iFHLdzlJKr7PB6lepzB+tDf/M5epOUlvdd6b3/G59Tfcg+GNggu6celOtOG1FUMzHWMgrZ/xG16z5Kd3MPM+E8/vIRhh3hXg1nl7/o8n3t+ewU6Jen5oqgEx+HxcCIvyxHeR8kCD/l2w3/Vhdf4URHydokMRvUvkGKQ6lWce28b1zWFKemzM3/Eb6rKE7C8JTsatnzqwZPeBWFc5ylnmPIwfj/PzRSJooGmnIEe7a0TLaIZEZakuJFowcp2Eg2hgLb/h4ZsGW7fjLRiKXMQb9f2X4jQwtWDIo8sJskd5IJZDbx5PcW+Ddzx+Ocabd0BptrHBOt3u3FRCHjQ/fhqagXFyVepk8prDE5y/j4FXm8fXFKz4LIBEfUhsd3X0hqjyS1j4cCUHUyzzcW+9fTg9gzVTpcs7YKHzjtV+Z6Yc3wQEXL+MGbpXO5trsXz2BvO4mVC3UQX3NppBJe9EGHzVtcykub9LnUlPaOYVJmuy6cnyMX6io0sUJp3cVdI9F1iGLF6eOIk/Gl2vDayhpkMu8dut7I0BpOl2eUpX/P7Tw1u5r3/9ne8kuhRTQMMY4Ui2+TGhlrdOwuGCsnr0OXmvL8kqre5fCPbY42RlfsyfP9heyVonXqKuEK/WlqMqJ9smZhrGZk82YQT5YABx/esV1e7j5MPn83mxvMxFwmJ5JUGvRFviq4VCxV9pnICevQ3x1mFr9rQ6YzCaDeZ2dtGTkR6WV+R8qwex5/psf+fHd9D5XfclRA33cILHEKWcSO8/byq8g/p7XvBmXsHs20F/Aldf1czXiRjTYzqh6FKRf3wk+DKcNh+h1eRYFrlHh6WiIc9auliVnUL05rxGNymXIx5K5yPm+c4YURgHYuyVE53kRf+GQk8ivOYHx2MHujVgU5g9IcsIBDuUpy8YewPIrr2bSN77bqpGZ98huKoUb9LIWQM7vVLWDB8spIWFZPRaXUeu15aLpvghYfjd35nXBTumDx+2n/uLLc9j4o2ZPs+OHAbOVufHIx9zBSIUGpXK97agQlhK3YGvSCOxyJSZo1NfMzjl7Z2NuiaZtWLJGXL+cmPmw4aK5GDet6MVlcQ2XnEwfoedC5cQ7TC6Ra34d/60oVfiPS+1GGd+BRdJr3/+i0cxlWCBw4St5/ruPzslA7T2E4LDxkTTrc4ldNoKgxP7Q4MhUdoYHteh5hoKk3zW8xJm/mXIuQQ5v7K1gvZQD8QJ2kvONO1rz3sfT3gdC91c1d/0Ps9CIkwu3HcyFFN6h3j6W+H1+6R5q+nrdpDP76wpKj8k8rhXmNrYYYNHTz0L1rVjB/R82OBF6m4SdilUgM/yFs36dsmnF401NS8UQiyja9Hg6UiDsJNbDOd7Q8W5bL+wKfSeW9Of7ckzv257TkNuNm2as7YvLurMG2wcBAl+fI7azfHE1rvdSKfuuZsgDKcrOX5ansz878Bymwvi5g951itDQVOwF3j8eJ0YXzqPoc/vFbFXoYHWfPk3qDrfBeT4Pg4BR3Lm/PIFLJHniY4XK5I2t6X5IJpqy14hlahExdD9Ee9t86A+BEkKpr5eE+P7SJIOlYcLVIfbjduL5OHRn3+C5CVxjDWPTsHL7QBiu+feZO/ozw9tC007s4V4HtAa52MHppXbbN2kRNTeiXTw09+nZB7pQP0khUP71NkibHIxvfEpAi/RU+LNeibqenhvZz9A9Jt2SMTMI9uLSIHsrFeZC/+1MsCTm4j4c36z3u75gIIVu3FraBa0Wa3qDMl6WTFpSajoOmlxgW77NfjjKLnoH98+G43i5WIfJqOc8wHw1vrr5TOnXv/ze0mbfbD0vEVinPb6DuZJlHP/083vIXOeqEm/MQn5oTaHsD1FaPZf8ywHLZFbiDFU+dcmhnfjlMp15KDsZFZMGe3R68I2ipCJzi2TqVagqV+aNmqW45MfVLfymM96FeS/OCNm51PRP92/Gn0nfJv1iSRj8Ge3EL9xwjVzJFT8nRVF/f22avkoxvvyHKsLf3Hl1tGsfmtgnTrnc3hiRkDlUNoBFBVsSHPPSFDcjqWL9HFRYimQzGSwT22rnrXmRuyFVSX/8gJZ/1bEOTp7OuczgPbk07OxCm1zeK3eJfz0FuylT1fv+8OAIlNzTh6lL9b+gdZQs0Rj9dWw8vbXz1ZVKBOipJop373MByaOCjHKyRTrQj0BXFRx5/gZ1lScwlUN+m6V43LYPQMmqtzfvHZ1To79akLirAqAdPOVuFdofdCtcTnBX+AYXHcbP5mY+71s5ryGuDZ9JtM7ayaIVq8P1//UyuPS8mZvF/XXZ6ll3IL29lgoMFnnNfnV7xhAnaqj+wa83e5NOokqx+DDA/jBfPWi7i4nvK2+2yPZv+jbG8TIh82nDQxu40vnseYRqPAevI4fAuuUjP5zYDD7Y45PmYzaHV0ydc4r+K7cfIU4KNYAsDkP5NRrb9G6GEWqsgwc9s28dK6HzQ4hQ16wehfnHjvHZ2k7XLsIy8MO/tfLmZds46Um9euiZEgEisUmvQsT4atyC82x2+MG9y86OK3CADXR3+y/d8laljtpO+cBbHnDsTd8/NFB1GotvPKdq/nLC7fvy20g5uMFntA+2FcDAM6PGj6bg6JdbNgZ7QGDU1veqNNcg19/sr9SlzO5fe4QWV4UPMXGOxFCoH/PIyvsP0Rp7m0yUK93iZv6fuX150pWwdGuGrcOZS3Yojcu4IqdwtTvtfUGy+3nffgkiUnfnuaDMvb2z4/h78m9BWPoquWPL3BPg30+EjEB+vkT1VAoZQVzfLiza4rXM29PfXDNoL+llO9nPR/0r8zAiLI9HphcBuM9aCW0X39jfrhViI5OpuxARlpMkrOmeOM5mAPjdmeQR9ZfUFfya4puQZKRvXtykapUdQo4Ph6Jm5vfQKRqUG8HJ8i5zqqbENG6eKLZb3OrGXUqjOgF0Liawg8H205k2JEL+KZ95KY7HJMRbPpGP76wqfYvf92hbMwmgkstReLqP2SY64Wfp50kGrMOfUCuFfGrRP9Ei5LvG96lsfzlS4loNgsDFdO+JEZaunSiogEw+xfj+uYToIE38RuyWvhMctQiF93aeG7n/4OEUJwT5q3fjuqeqx6js6aY3U1/RWDZuOE7xVmg+pnUE1yz/kp84g6eWDiOAYOtPAk5Js3sB2oHjn6qcXO1+poDqHGLcNkabJmTwpz7Z/wv3zzP9TvenokNq5Py4NdOIR5ND04NVHIJP+QLJZi+cFVRtBsD4p6LOKgF0Rm8hYyIe+2qnNcGu6N+dHJypEFFpz/4K+G1MTS+h2IMBiS9FjDnwSxbUw+NzyB10aurPLJbFltKexb7KPfo+6d/Qrocz2+Y+RizVZ0nze6PzV+1qX8En3zLlOleRLDFT5f81hcm/9xdQKqeBdlfqwpN70CSAN/cNV7sdD0fi8Voq62Pz3gj97U5Gdvh/ctbGfQHko+PwqlBCe8plhfJwxxWcSv983Nzvkz5rD9A1zzmhyzUTWlMMx8tDoHFpP3uhXpp8R8AAAD//6Rdy7qqvBJ8IAYiAglDbiLXRAEVZ4CKgsg1AfL058O1h//szJcuABtA5L8J3dVV1Z3kOMH0ZRHq72yp3/rvu/uLL+zuzY9Bfvnw82uzoJQMsuK1YnbVTPiffvj1N7zv40x93hj7KQhyG6x8GKON8vRmBEv/l49ksb6eNx7z+wTPy9BSsxq9nu9E14K/eqXfn/dsOmW1LW+8x4NIhyPXk03L5UB3iUd2/dB6K9/ggdFkyYpPslc/4bWCqx+OH2u9WD/vQpbZT6zuZNjP8eWRQCJXF2wtx3O5KMkk//w07FJ0ANvlfF/++JTG4SQau8nJodC+MHbhYfImvzv/+XUIHuQimmJ33/z8nx+/NIQheAqQSmaBDV9jBn3dQx2aeuPQ9CKqTOCOdifja3wkkOe0TFj1IMwPZYFVXQBgKrSjDpnoPLCJXjlghyQLwbbX9jRJq+mn79/w7By31DsBD4ynd/iA20zQqaN8LU9ANlSB6mWUuiTijX/1e8Nl6LL650t01wcwwV4lg8qiaO6T4Qj9D/fEB+91zJg8fR7w4m/P+DClwbrH0l/gsHQ3bAtaxZZNK+Twreze5Jqijcd+/SmIoUrq+HSJFkC3wq9ek1IKDe87j7sQrv0qJFt9Hk3p8iEwMxQV35bzNhppzYWA3yspdcqm7hdyu/nwlcw7vPp/xtxmogkBe/mE0dMO9LsRVnBYmhv+8btu7XdIv/5KverBBfXyBf74vPIVmpJ9U+8NzHza0oOdV9nyOjmh/NNnDQQ6WLiFDPCz7OvVn8kNVvF5CMEOZdTl1ssZV/9IOdKNhTa8PWZE27FFEe+zggMh+JTM2sYydB6Gjy1VMAyhfFsCNI+PPdWvBfMGNIU56N+9iZ3cOzBSs6qBnlkbFGE+9IhnebaEXZBh/3RxehosKIFHdAeoX/n0VvQ7AfaQTUS650H293yDgz6I32CPMTfzXThLi0F+ft5A2/AhxUn1JcvsqIAcLTuHVlhQfD/0FJBCjy+wS9UAP7fGy3uXm2L46Sfq3DYkGwVNG2Rhy5kYk2cMtt12FOHaL6R4k+RsmYOzDdBdzPETAIURK30iUOkAoWFn38rl81zjlQwx2lycEZD8Kcpw7D4avY6iXk6aZ8t//tSp4z/e/OTABLeGeSc3YbSNCUVHXqnkrUAUzTHB/HqQGFYFdRF/Y2P/Xv0JeTwQih14UUuhbWz+5/f+9TPoa4d5KAV7k0ijScEEai1UhNF/kOnd66yjxwICrhIVHFz0ASz1gTPltd9DTf9q9lsSqA+gJ8UBh9a394h8UVVl7edifXZUVp+UxIbn/aema7+SEW6pBzmVhAj9+EdX6PkFyrebizgn/Hp9egIVXPkgPT/Tqmcct8th7C496WW+Ndbnu4BrvN/T4BEcI4YzLZczJWU4uEZLVtXtZCnxKw5ozvq0HH7+rXrDPfXnXeyxy1WGcJ1mI8CDWj+1qpzCeDd3GPPrHiYlEUXw0i8pmRczZuwdtxPw2ZIRiR0dg336QQdXQbnS/DlaGR9KqgpPan8mcvIUs/mENOv/mykQ/num4GvFMrYyMQbTop18+XW0Bfpo68KbUVGoCs0Ci8BJU0vBCVQRMv4yUPNp+Iwc15wTIp0nu5I7ZiT93N6gKW6AqmhUIra1w06BQGHYCtQmY9ZGfMifS6CicPsc+nlDjyJoF6Oi+xd+er2xaRq4HNU9jXaJyxa5/nSwen0lJLzvAWBvXybwtJ4PVmxHCobqtavh3dQWrEYCZbTuDF1+794idf3qxeb78IZwEOMTYSOsehZfpQsc7GOMbcct2FgfTyJYFL2mzmMjRNPtHdrKzTu2+FSc634euEGAOme4qCqeLBrPooNA+m7Wud70AubMyQiUerohE7l/oznczakitZpG5gz22bzlixReEuNKkdeJHumK9awqRFqy/ZytaPuIrwnUAnBEwmLNETvxnQ5kbnelPoBJxsaqHEBr6wXhqG5lw+lc8VCJ6hvV9wYDo//Z23DZ0ApbZa1mc+e+F2DAT4IPuviNvj24P+DR5Geqide9MR3rZwPgJUgxmh4+mPDwqODD7iQa1BU1psvbjUEftQH11/e9ZaeTDW1p01BXiVA2HRS2QDmtR2oSTWVzmIoyNMS0J7syUgFvptUbZtvJJOJmxNGMlOYNtfCRYbXVNG/7PVuCzEazxOoyAaPTykyHbrhNsaOgxWAv9aNLNvdeqK/sPWP7FMUGbHyvw1jn7n2bpugNkAd0IuqfAxv5JiSw1O4brC3ba0T2oahDLcwzjJ+WkdEb2zXwt34ki0BP33Ktwm2A7tgbkAhmvHtVUO4ZRDwZpmgRjUuy3gXPkZ1zV6PpejEfMBOfOvZUsPSMBDOEr9I/UUyoBRq1P7zBQRxyAopAKpkC+Rg8zcKhWZeuMyR7WZTbSThTT8SJsdwiU5Rd0CPss1KJZq/3Tdm36Uj382VfLtg6TPKpzlNsDLbez2dOtSXZuHwIeK6cPr5KMbgI8h7J3/0J8N9r9Ibmyy+wqwpCNL4cFiuHqztho1hC1jfTbQEte0VY1x8p6DhJN+H1nYpEmI3aaGt2iiEzj5Q6OUv6ob6Hjw1S84Ceye3I2Pp5+HVlk8jPrRPNYTqJipbfXjiQ3G9Gg/uxgVkprZqxkCIW7YcBLu3Go14kWdkiZ+s5FBVuyZVucL9slJ0KLe2SYoNsMKDGpmiUu2ksSIrFop8e3uQrX5nTsDPkuUHfVHZhqG0CwrFzakwZyxfgJe2Edg09RGyMJhG65tnBR+kcG3Nv9gIknF9hw4hHtvTK21Y6oeupM39QufhTYkNfsIY1Hl/GdBkEH4iiYuKcAslL3qpuQ/PhmdhLrbJki+0KoI/6gPAOVxok2AYmFBFUf+vJuiYNZWiQ/QGbNzmNSB37LuiLnpK6E2w2qT1+wyKOamoNCsfWVtkbvvisQPzptYlmN9YLYDpfGYlN/mXj7nKXQVE1Bn0ElVYup0dpKzp8ZTi4iWo2T8QRYGrMHNaNb5AxubvKcL1phu5NeQB90JgFtCNVxXstbPpP5kQDxOVpj9hg6+UEno4NlUGbsJ2wKqKRPC3K8fCiZHMPtWw6pPwFCq9yj6Zl75W1cb3bgBOyE7rB/bNnkl6+YWlcPBwEu5exdOiuwk3aAiLltmOwS8M4AC84pUE1BcbYstYF1bVZ6LqePSstMMn+FXNUCyiJfvUFaFZrI/n4lNin5vY+uNEywg7cb8phzS94BvoWCe1ZLsezqPnQk4Ocmllm950T2DIsDPO6/v2zHLkjV8Fr5lICdrAylno9+3k7SAr28/AM6C8+Be5V073Tl/1kFP0DAuX2oXis44gJE9YhmLmJcK3EQLNoNwSMC7+hdvqts2ECegKefG0hQevEfni1aqHwqMFYrU0/oyt+Q7+4RNTdHI7RcMzKZT37s6a+dK/ZoM+PENppaNPgXlTlUF0N8ldflIfHG2PL3XXwAcqNBhl6RtPSBjUYnkWODeukl8KaTz98wU9T/BrDe1Ry6ASagYbZ9NgY7qQEtNrmS91G4r0lqMLw93xoFyRJxDhhm0CvHz2sfRW3JE/tKQL2qEPq0HmI5uCJ/F88EkDL1hsg1Dr4q+cIkLMxfUgQAkbnF9pM3hjRJ7/uM+uKCTvHRcpYfJ1jyLv7PVW9/c2YzaDklGvePbCWQS/6xTNc8Y+i20cF8655v5UVL9DmMtrRAjGToYkbhvVv5xnLsXupIGvhTD20N7OlrFUI39XzTjZtVPRNfOYbWWt8HpnodGF0Fxcx/AYfndqjSIwm/R5MOM/eFbEv/UZEDxtfbtvKxxe825ZMst8PBb71ER+cexERbz1LvgtTDe8hWqJp05krhy0QTvcbm42UVycFOkjEeLuhGQPCp/6rh3pa3KL5MAH0lw9ki41y8Jb9ejZYFWFt1NZ9B2bnw3MsbbBquC+DsY8Xy0NBB+wJ9tvrjTFXYU8fT7Jw5c4gt/64Hr+vP1Gz4kNvmvcGRPWJp26d6hE75LMur/iItttWitjp2r6h8W5C6nJ5wSbabBf4zvU9meXyDRZR7HK43WwS7IZq45HLln9D++CP1L8iz1ukl0igKu/WC0FpnBHe2b9Bf+QwWYfds+n7xinYPUQDZ4L9NubnWUKwcC9PjDM1N0prI+ZQqE1MnYa/gvG6znRc34mIH0vXldMgyzWcuTyhFnc49vMJ9eivPi+dk7MVz2Vlu+fO+DCzmQ1IzHN488KW2nlm9+zoZTyUx86m2BQPxu7isYfyuqYcRYermX3hR54UAfANxkL3AEuYDD7M9aWmgSa8wPJJPQvm2/JFcdc+y2HkQSdHZ+uD99LpXpIwEC8ADP4FiUJbseV563NYllqP7YGCvlUfFgdhfoyo2ZZ3tnCSa0GkPgJsn/YiW07+o4CaP2hoR2PVEHQ5rhRpXOe03y6KZvkyErC72D4+3G/XflCLqIFh+Zao5i63csr2bQ6vNdQprlyy4ingQCqJPE7mYonG7SY/giO1YxrpXhZN/alK4aXkOzKcU8eYrWoswL7HJRGPqRMt5QQFuOUmh969DwBLsN2bcE+XEXFCiBjTvvsjuO7TC8Xxy+1355OcQvK8CoQhXy4rVqIOogRU1B5M31ue2lOGzn4BVE2NwGN8fCzgdfuIUFFTAKbemt4KQfYXm7t9H83cOpN2eOUx9lOBRuMxftuQ674cAhvfL2nOHx6QtH1K1XMoZKM2ZRU8G8P0hw9Lb18s8MiGmK7x5rUrfwSrXqEBOyps5XcdMJ6VQJGgPLLh3DhHuH3cBryPPb7vyI7pUIFpQJ161ADtopcFuFtCqbl5WBF/l/o3PA9FRVc+yIagPgggOTsM27ZGIhbsAwvqzrTeh3ldInov8w7UO6FFUChCg638R8EavREIoJjRRBIqSUDPljpzsLAFPaIYXizBptYQ0mxZ4G4BTqd9qDde+2yBe3Xlv7uUWuY3iIRl8WQw0ACidqfxgNWdp4NGemO6j8spI5I5IQUBuKGO857A9Dn5EzAtEWL7q2rZTtL7Ap6gz2gmYtEYXoxPoE7fEnXUhxUJTqel0E4ySPi3qvW7oesaAMfnmwD3rnpb7sjVoE/QlXr14c0WxVn3KYvjETvncvK+/dTWcPeQDSRHfGeMO69T4ePquNhb6y0T9GyQ1eFckbIVlGyRlGcCdlVzx66XUW+uRr2Ca33CbsS73qDhhoejfkrW+0lrg7VbNAD79D4h4SvF3lgs0gB7aTJoUpA8W9Aji2FQuy3ZjDWfEbU9cbDVlC+1XIP1s32APHRHd51hsIVomBKXA1slTCkqta+35FE8wI/6+KLZjmxj7r9lKIcuNclcnK3+rz7zz+0Do5h3DaZd0ges3O6IPY89vT98imhq41+9GZGdP+DKR4nU8Dsw/vi8OfTnFU+UfgpqLAB3Jjb1zFIArD4Ylawv9ZnuN6Ve7lb8hy+t+eA1//v5931KUQMSifycjQhFCUTjg2Bv1RPM47gQFttdiBRw+RgTXfchUpwxamx3eTn/+FG8Rc+fnvKI4b9C2Dz9fuUfFhjuea+DOOoY9qdh8majOhNF5zSXPI1cLfnbJu3gFoOMVFJ1N2avOCLIrhcX70fyihjTDRkiwG3I53INs5U/5RA9uDuZxK4qm+JbE6jsLfuHh2DSnVaUV31Oda68GtNV8mSYn447as3Zi01SsqSQP8sJgtnmxcZimQeI44mnmh01HikN7Q3dRzfgv/Uy8xZB7/B4UWMz73/fL8OB6COR0uHdT0eu92HD7heMgLHvdxP9JvCA5S/2TmNTNt4SEEDUbU0D3JcenROlgfXGmtE0xjybv27IQW/3fmDsXZN+8sZkgkw1dez1wAS8973xULuRkmym0vH4ww4KUHeWgizSYQKtQNoc5qdwR12wOwBmbNazgu1GQuB8HgB5CiUEg7sJsbfZQW867zUeqm1XY8vwLLCVj/UCD59Ww8Z2B8vp6iU1/MpQw1o+6tkOCGMl3x6xiW18upSjcXvxEEbvHM3D5QPIwZJtsPJf7ExvI5tPt6sJGGUvpAjBUk49GUSIsZrii8g9vCm9xCEMy0Iiyhdz/dCXs64EjnugaC8I3lgon0reo0Cj5pVVGXttJeunPyhqpQgIl97uwKtfr5i+4Y4NVXuMlW02EHxbyMvr7sF5guh72+JDKn/YzB+xC27nOiBbixA2TUBPlfFhddi9Had+oJqWKn/PT+Iimj+Xo6D8+K6LEoPtTpuzCMkJGRSv/LN7HUgHPtFbp4jrHTAPryEGa/5R1NbqX72S5DpVV/0oe/NwnAvl54c45RQYpKxtCLngk2PVWj4ROVWdCWAw6fSIxns0z40u/vHlg3a9GSyRuAocd9+Bau08gOlxqSzoiKVAivKwK0dBOsdyfNgWFMtTbYzXGzcAS7YRunjVC/z0ETQ0s0azSAswCElXQ8u1Ttiwpzgb5K0sgi23OFTbLoPHAJJ8QLVQpabDld7Uva8I1vM8Uf/wOZTT3pkJ3HGfktr2oICxGORFTqz2jQ+cYvTb4SgVsAt4AXeFrUQ0kE8uWPX+ytdvWVcEYw3obbxiE6dtVj03SwjlSjxhNWRVP9OTcwH7pvjgX70dWb7X5fRz7ujPP+Kx+UZK+76YRMhbj/E/f8pr9QAty3vH+hkoFvyo+RfHWyiyJdbkHKx6FDuj0kV//Ox9xzE1tWDIKJxIA1d8JUxRStBHzeACyzQSBOsd6RccNAVsL8VMbX/ZG2x/7C+w4Tf7lb/23povFWCjVf6t5xS+lgKUiKlUvfdzRFY/UVn1P9mueDIN8lIp6+/FdjwqBnvSLgZ5pGyx9RmFjMnz1MF5h44k3RymjCahi+ClLhuU6/wE2DVxXPmXL6u+B8MPL+IduFNNI9ibXw64gJ8eWvm28eMPYiKMT+oOryRiaenzcL/wDr4wOYomBlL/57fQH3+l163TwNX/Ip1Aztli+K+joi/VGevQ/JR3hKIUount4jX+2ezOhg6xpD1QWRzK7I8/9kVLye6qnDx6lsgCrSff/eKn3yE+9ZUyfqVklvcbQKcKFICdohMCurk3Gsd0q189RABNEVievWjC5gpLetg0kTfezqcavkp0wmYaCl6/FfYQpgbj0LyriTHTF29DcHMBoqtftoCzzIPVb0DCBiz9ANqtDgfGDtQQnRfrjTHW5btsNzR4eLExfN84kfegUrG+vK/se7wXOfzxPY95YzSteAV/fLde12/NHxlW5ue6+ouZR5XuO4DVP0HC9iKBlnmpD7Wzc1vr9ZUtibVDoH97jz88n26jpUPzhQpSr/EsuAcNyiDmEA2uNfAm5b5xga4XCT4+dyvn+cjTTy9j077zoDuUSwOY995hV+pdT7ZaqYI77lvilS8b06pXFfs8cNTejDgjTRqKcqeWW7JJz34/FV8ywIsg7v/07va+vGTluPsM1L5bojeBj2opDAVb8jnVoGRJ6PpgFMQnPnV5nk0dXwrw81Yjmpfyjf38Rmi1bKbOq8L/9MCC23WgiztmrL4dkbzqCZxmZliy6C4ef3oCoz7Vvdl4PBZoH9BIf/x3ttd9r796dPlKvEdH+qxBWVxGfECSVU67+7UAZPsYqU/BzWB5m9U/fxnrGvPW+vWp4ONxCyk28qKf5DuNYfNEPT20emZQLGFbHsIgI5vTSTcI0lIBfqcrh+2CwGw8JN8OJgJ90kOwN/spHEgCjYuwWf2m0VjKiL8AC259ar77k9Go692tv/xGWZT1i+4dcvCJCh1704b2o4u8Gn4M70OW8KNlK94i2NQ5j/3wHmesElQZrP4KVsvDrv/y802Fyt60qbedrEiY+q0L73MykzrMSdlzg1OA6Vx/EVzX/+cv/uPb6CSAPpGEGkq8EGNks3VmcQkGaErtDsGWL6Nl6rf2Tni99tjaHA2DX/UXiKZPQq1jM5RTuN7llGoHFUnO+wjmfVfl8PRtW6RkaJNRnUO8vOoHap8FXO4e21coI/l+xIZ5V/vPznur8Hy7Oz8/rd/Sk3ZRkOF4aNUv0cBXRf7np+vhR1v9GCDCJ3pi/PPrmGtuQ7D6i/SxudyyOYjDC1zrHT6UkcqmfDwLf36yeXptsuH3fFtBDanb6VYv6HJeQ83qbbp/rDMy23c2SWO5NanHBAhGJ9Vy2VP9GzbZ/estlj9bIPzoDdXPJvPIr14QdVdjnSt33iKZIoIX6WtgtP6eZXvOfCj7Zo5EKOjeLG4qC34X5GKLySxbXk/Z322kd0sEYdcYTDP3PIjpY49++SfkUU7A8Sv66HMe3mwqv1wBL9LHoG7y0Qx+eZyIYj2FDim0ufVdk6YiSGdXWe9qiI1fPwWseo90zJq9Kc0zBE1Lhli7JzNYtoZVw22HNljTb1y/rPoFzBJAFHUnXE4rP4eX3lyovfoPkxJ5IaxkElAvnZnHru+t/uMr1JRHWk6b55GTB/Fywi6PDcDQ9UTg+aFHiACyNUh0kBLoHfIXNrenNpvVKLN+/h3+4y/mMlnwfBxDImC/Nmb1gSBY/amV3/hA+K2nDi4+1WUQsvlzSQSABxVi/bVfoleMmA6H4c1huz1co/msKy5UouqGnys/I9ePQ2CQXi80OISNR35+yjf46gSGdz5ir1Bq4BJSAzHzXvREUHAF8+a9wYcafIyZSfsC/vpBOHEQW4QhXoCIOJVsz+jJ6Oo3/vE/T6d8P1bxTgXa2buh6bh5l2zFE1gW8YhjTcwYC0lvwXy0HIpFWBnt2p9TKL4xsvlqIPqqm6OgxH7a4V99YRlNC3n1cxFY9cOinVAKI6E7UfUVnXv25tcN4W68x0e7/vY0PHUV1NMNpcE0DxFzv5CA/fZ1wHqsHcBkGcukuPzNwvZ03YBll724Xz8B3duXASa1yDq4+l9Ism9cRkyru/zwjmzdC/OqtrnYYLLrPXbL+9j/6T07xhgHlnPuZytaCOA+vo5z87iLBjQ2FcwU3aea2ZeMcIag/vQA/vkr24fTF7C+l3uyEDkqF6dzUlDxfYw18foxls54uXDlzzSIom807w+jKh8PJUVSr257ql3ChzJdzQtNKt7omdw9ZZiE+ZbeYlHtd0HjF9DZT+DPnxgGVar+6vXsHjpvmt4cD8dNd0Hz4n7B9NOfpfbcYNe2ODZNWy8Hjv2U0BYfWvDj40rioQElqx8/eaLfwecuMgncz/t+OVWdBXhypvjAvhGY41st/vVTImNo+0UZ+BRqIMSrH4V/fmYC5z5RsFvY9+zn3wHL1BK8X/XJENU0B/zdLYj0iGswnZetC3VJuCMJLF4/qUtzBH5w3NHbCfRg7U8W0LAvhBppcGNzFe90OOkvn+T7W8vW3y/Dly2PiLXCPWO5n1nwVy8xisdo2TDPBfCxOVG3qotsudiOD80st7CbfF7eL/9gU2SASHGqlM3SBpWcj6aD3Vfbl8Nwl004uEqIFo150YTc15/fRk3uHK34cBtgD58amrhZzkgxjer/N1Ow+++ZgvKYnKn1+QzZFBstDx5HvqDP9yhms18LPjTtIqAmcHvG8gTHYPPqP9SxnVc/2u0xBDVoFercUsMopl33kNtce1KNTG4knHdhp1TNUmF9p3f90k1bHW4Dc0c++tyAxWtKCHyfJlR74rysmh41ULCaC83eZgjG3BhqeLDsGEllffHIdLsLcBrdPZnAxe7J5VIssJWfEcbesSwnIZQJkK5VTa5k8y5JcCdH8LipHPruZ96jXx7VcBgUio2aqoZQv041JMqKxP6hZJPz7QrI3rDH8a1MswXIrg7f/QVhT27v/XI6S0RCPegxiueonzenUwevJX/G+muXREtwJyGsEG/jQ6t32RS1dgfNGmr0NI1vNljo40tatpvRDi4hWzpuX0Haz3vs2eYjWvD1XsDvXFzonU1tNrKLHwJRB3eyiBvDYGPsTdLhu99QazBZNtiBlgLOEEJsf6ezQV814kBI58Pf95EjSN4wbosrdb+XA5sMP42hict8/f8LWN4bsYK3JJLpvqvGctJH05c1u2yoP2ZauXyBTIBwWjR6eGVjRlM9c6G24Xyqc+23nPa8qcvpdAqoCfmpX+q8WjHxdEG7qf1GTG6XEPKlm2MnXjHMvqYTrD9Gv+5rx1k/JBOBtPsIWD+RgX0S7TTAFDCemsrBjHbgcoSwTkmIvQJCMEYsVGGGRfwXf5NiVxbE0eWILenMs6Y3fR2ah5jD6uFg9nMKVBGKfJsieHrw/aJrXxVy7u6F1YLf9/ym3PvAyVKPsDofolmNEx5o1JOR9J4Zm/Za3kHrZCGsyuu+vJdo5nBBpxep7xzO2NeVTFC86g0Slalli/p4Izg/ZJ2a3v2SkW8gHuWb2ySkzw9yOTeyD4Gx33DYRHg2Jvn9sCXvG56pd9ga2XSi674D9e3gYDtqgF/mG5FvWt+QnYY/5XQY2RFmrdAj0AhBz8u0JqCwnjGR1HfV094rbMV7Phh2SKiV9LGVahiD/oTg8cKVndrLC0gPhUqPp+jK5lBHOQys4456ztNez0ZZ0k1j8k962r/BOj5nhVAivkjqsKuNObk/Gvj7vC7xn2zoL04BL2nPiFCnqBT2z9sRrvFIUVYibyiZ9IBBDhzEj/Wln6mU+H/v2zz6Tr9o/COBh1jZY2Nvo579fn8Bh5bo7yEtya2bXaV4HLdUnZcoWraPWQCXqKmwlndWOfiki8HLiCFO369POU+RlMJXZt/xPfi20XLehY3SeDtCzeJ8NqhmOwN8nuUam3nTsPm2203Q9aCEH+9zwxa1lycAQHjCeB95ETmdZwK+zyWhwUbiQX+BGxN2BWnRxmitfhAKI4QP2h/XeD9Ec3K/dOv96FuMv++0nM+jFirHjDypmfZTtHhrDw9E2xG7rbre7VFzPkC8nKOqOG+NWVE3HCiKbKL7XVSUs/sIK2WNT4zDndqz+KvL0G4bhDVNDbKlem9TaLuGR9G9qHsKH7CC/k0NsbGIfdneJwNBrBx7aq9WwWLnGx+Ud2udu94gb46fE1HeUTEiN4q8kr0SLoWbzAiRdEzy7Pf/wCzyD4q569y/z5+zC8RhJ5K6O6SMATPL4YZXCNbSVI5I4vUmpJrQUQcLYzlqOczl9fuI9ClJv8SdawGSfWN6iDfEIB/l8oZBNfRUP0puuewi3oa0CB94ja+IeaYsgytxRrTM+yUiONdz2KfhgRqdk5SUgO0DkqM14hUPSvrLz1qyLYqPsh01Mq0HGN/xHbuN50Zt/pYbKHwsl/rlzvfmR/8IYXm9VeRC4N2YLDQieF/SgZpBSthg3DoR5PhEqMUcrWR+ZUMpF0iE8Vofx62iQPhqNwjvT5s3o6fCs+CK19SzUqnv7hvtDT+3c0hmVL1Lil9EhsmmGKnNW5+IKZNswasqOdSujNbr8lnkwBwinwbgWkdzwjsWbMgio413NEr+HsELcF3W4cDdon4K90EDd86VQ3N1KkvSv9UO0u4rUHX5bnvm3DVXQa86wu64RWyqnA8BrsdJ2HCXyCt6ASQwbt9Xamy0nbFYB0+Vac/2ZDNUr36OA4agwzsJDVQjNmbTcFMA1LIiy/eVs2XRDjV8HwKG3RqdwGy3xyMcwuZKPdrYXmezV6cw8UbWfOqjtmMQyS/jAqm1CQNvarFGFCPKD1TDt4oxL/Qesn6+HfEhr3ujD8eogxf1kmFNHW89bYrxCDLbJEiWT8Tr5StcwHuGL0LI3Bjj/n18gMSJEnQIktmjcrsc4SDuU2zaohrNyCwKGF3UO36oZBdNC/cOFWIwhnhR3oDx+P0coa4fDtg+nKSS2r1SQOZfEmzeSjkb25jY8FunPfZ9WHvD9xw+oLIrE2okRsyYcrQRNMJQ/Hvfs1HCEHIfxcfGRrsa833yfHjmtRfWvy/IBtuOc8gZfIhPDlWjRX42IgQ5f8fofbbB4h1kSy4OXYmmjRGzRXyZAxSf/oWmRKnYdFuyCxjNJMb2oQqixSb8IG+ku4V2yZBmLSrG9axoC6EPbxseX9uaCN0uHfHvfXfiZ+4gd3UzbHlG6zF0n5CiG+EF62NiebM3JRYowgmtfK7LSKcvlUi4osAGMZxobvukhtJ0ZgR0bA9+9RMG8O1Toz+hfnxP8hGu7wfn3YUZk/lGb6jZr4baguODGYp5CLohOCLxcTOjJX1dQ2jLXwnx39TIugLSHC5wPKOZh/d+KhpzgMpj8ojcqkM5UeshQ20DfXos+H3JrsQdFNloITb8fAcmv1USmGEZU/94efRsOQbyD9+oNqXUmKeXxkGrSq/YfBZhOaatkcBQlhcEPJyxyVoaH4ZVWGDrYj5KxlnkIrrbd0K2h+gaTaNeIMWNpgybrCRs6RMywYqJmHqkWIxZoFqlNInbUD0JGBskya7h8yzWSFz3IoyKuoPwOQ4HmveP1hiF5GrDLQ1mqvbRELGpiW1wqnGLLbEIy+nIBRP8KrpCf/ylP7IhBRkXGxRlgsYGVFYN2J0bkXDSci/pkIgEHstCo4nAYW+SJLuCkqCmBJjdns18mfOydTIRdYP24AnX2ZF//JiIuZNE84cFLhR22KTO5cz34+w+17OWb0dq16qWsX5IVfi46dxav87eVMguglJLCwRnZTIm2p3EXzwQlhg8G7b7tw0HWC/YkaKrMabAluEmRy/qJePbaLivbANhF5hIMsa3t2j8JYV3QTTp9Tk35XCP+Au8PB2PammaRg0qhw60GjlQd3xn3vIGXiOT6x6iKZF5QEaGZXCrap5ipGDwJe0GSuzZvai14v2iJ7eHtPIRusa/MYLeIOBsPBg28HcbsZ9eaLwtwevzRvSq2iH8+mvL+ei35VB2zwqqzPxgXzndMvbk7r68s7Qt1axuZmzhVRHYu9NEqrSfsr942p27deb5NXuzOZsC1K3q+Q/vF5uRH7/FwXMcvXX9ZLikdUbtSvSisTCzDuqPVKXOpiy9+VpPBWxZbmKv7SlYhh3PK5yvTvRExSJbFsZBKNdfm6pKpBn8dJlqeN3ZD8SlmejNn51sQrn+2DT4xp3HvtrTB2v9pW5wYRHrAg/++D6SLme+LIt7f4HwfvOwqu8VNjzUbOXT2xdip2pkk1B4IWCOijF21Gs/fz6wAmVSMYz2pdSzC9yZoInaIz6hEwGL/apsePtMBv2t93iDwyDd++lGvezjAYYOwfTjMzR8D2k/9hQf4TaWb0Qkb8xGczsvP3wh2++qZ+Rhzv/0ANZfx5KQKiqARJMDDfefVzaNj9EGwwcWeB8sj4hMkx1CLLII8VTQyzkOG/cPf2SbNxnRJO/yF99gci/gp//gy3ulSLTyazbpm9Uza30Du9PXKZfr00/kt+xusHFFSzblXkKgv8stQjLhBWZu8Qr4iXcygff9qRQyQnnokVOFHdd3vFYjMweNiQyIRPBkMHnn8lC8lRRN37VHCvWRwJP0WrCWbStjvsZMh1uKZ+pfiVpuJSNVxXu/3LBryrE3bzEogHhIt/QgHqtoFpKnCxpJ/mDNe8begq/nt7LqLZIqhs22B/Yk8KA1EBtTsykn8bDVYa4+OMRH168xf+fXBfL520ECgXev2W1uMYxucU0PZvvw6AvOKTQvDsV78M6yYTPdJ0n/qBF2V36+ICTJEJ79ceWjczRXFnlDgd7e2KTCe8V3fwA10TOK2jb0FlURQxmcVYi4gajl7rZ1//6eLGs8/PgDrJqpImt89lMt+DFIeNXCTt2b/U4QogkOh2LAyYvlbAZ06qBXQp9ajCvZcOqGHG7tz5NAs7DYIuXPBaz6C3GAngFBHcfDoyFyqFnxepnFUgSuQgR6uBxMT4gtbEH9JjekPSb5L38HWA87n+6/z6fRcZojg2HYUMRpQrDiZajDu+9cMO7zPlt+/oOoNC4OaRb0u4t7ICADyrqPcUOMUfBQDX7fL/R4AtMdH1JAnEeKjVQNjG4zNoVcz/EHtd3+7k0//0Vzhh1SUqP56fEGtE18w0bZzSUraMPDuCi/f/k5ZYNeQ5RClR46V82ESOQe8EIWRFHeV9myPj94nm4ISXd46ueE1yzF98dk1TPHTDDMyYVrvFG1sRFjyrSYimObOk62ws2bLreHCrfsEpDXGq/T8owR3NjimhUHg7FYUlMlxxHBxrfSM5qReVGsYDKR4m5JOa/+B+RJb6w28i6alOCmQva4h9T3wldGbAIHICqdu/o5hUeQiJMfH6LXVxas55ZxIlCZ9SHvz+x42+mlQSXRjw76mFmw8vFahM9c2mJdec3l4LfbBDaUc6jOXRib7aqPwefl8tiE/LEfjt4jARvpadHgwskeq5XmAbnTk0fgGYre6PNoAuVSYnpwayEbzv7+AcI9P9B97gneaNGXDkG0G5Gwxh8V+4cFP/D4QIrXHRndAptAWlZfakYmy5bTOjOWiW1OnYIM2crP9T889yqtz0gqamQ9N2pH+MiMstk09BSWJXmgrdaGYKedwyM4sETCJTGcrP/yVg2Pz/Wclvb07lnxPoZwTtPuzy8ZV/0MtqDosdnDGcx6dmzgMX0dqZrqLhtfp/V0vC2xULXmq/CsQQifzncgu9sLlqtf0sBbVfFYXfFqEioRwZbjeqxJzttY5j6KgZXXW1I7gBnL6TwP8NF0GjUVWPek9y4+NA5OQJGwP2Wv9nBeZ6rjgHoo7rK1Hldg1jKZ8Ctfm7rr5wI+OlXJkhSHfpd/niKAzVvAuu1e+zmstQdMnFPy0yPG8nxbF+VY8y42L47GJkcqVAXK7YTVaN1CsPpDsvNY9+FVV8Vjr0RIofg6n6gBnSBbJDUUYErsEK/+V790ulyBPY2Pazxq2Wy3yRFWXPClphjq3vielhBuT/WRGsHuVc6qK0B5xUeKg+2NTXeME+h2ybjy48grOek+/PlnSnQaAbMVoAP1Zjv0cShmNvz80ZX/YqPO/YiEepJKVxU4SNRpb0xCuBDYueYFtTIpAN3sZhHieTKx8bQN42NX/QV+I+tNluF49PhSc01FtGuTBr2Q9LP8LiwoCXqKVv7Yzz99q9IlQ+fTRgdTb08QtAEiNFjzkxzqkwWF/fNAXtL8ZMO6nvArvj4E7s/tj1/l0PCaD8YPzwGLcrd4iC/NjToLP3kL++j1T39TN7aJ1/ruHP74NsWuHfTDXRMEkF/3R+yq+xMbNtN5+vMzsfloDSbimw3inSeRzcNrGTnarQvrC5LRwN1oRk8oqIEuxjnhUOiXsyM0PLzmOkNikg/Gd7AYAqt+pYe89rzlcFPfUNf3B7Q9uWq5rbrXGwSNyqMXC0Uwt7fI/NVvrO43qBecDi+StSk0fL3urmBoNMkF3zrpsfH5up7kPtIKTt/7A9tHdVj3D355BWgDI6CAOagv5XyR97Ff00PQV4B8pgBCy2QxdVa/e8tVC6dYagTJZzb4fvaUpoO7aSqxxkOlZPxuUwHz/WixdkSHbAoyRwebTAupdhY9NtVGDEF5TM/0x087U/UQHJRFo2qTvXsi4oMPVj2J//yPyvkMELoHHQGcq9mS1j6CHokq6rO9Zaz8wYZ+XMj4xtm3bF7aT/3LN5Rpn2s0X2OgwsK6xxQd2L5csvAtQ6yXHN4ry6HfiUpUgx3WPz++7zHNyCfY835JGp32HgmnUADxBaG1HwDLag6NDnaCN2DUwg8gHxxb0OG9hGp5V5dEIvcjFMCQk1nhzGgbsVAHS3vz0bargp58wULgbvOJ8H6+NNnUCyyRH8smRWyj7TzyQqMOu0pfCH/0nfJXj6CQzEckcp91hlqcFnh99xb2+M3NY4X34aF6hTJFyoCinRt9QyjeXhT/DwAA//+kXcvWqjywfCAGIghphshNBEwU8DYTRARE5JIAefqz+PY/PGd0hnutb8utu7qqOukQ4z12/+5fEw+E4PQ2lqN72N9gbg4as4rP1qzP+xv+638Q6/3s/PEWHY5Qzss+eeSM0Tzw3QbEADk0yWHZvvzcXxAN5pLZyYWXU6mcN3BbFQPZgoQTvkZ6r+2Ne8LMxpmWsysKAGlmPZWC4cAl8fQ7Iq7U2r/+xGD7tQGL/3eQhJWSSOfo1f7Ta+zaG5yeo1cDi/+06M256+pa0CE6mD3mjTOZ//juQDaIBacsXvB1n6HjukEEk0dR8uGdXtCMozfu9/K1G1+vt6UxJzaYGbCu40t/AtDZAOYZWtKNc9+P6M8ftY3JRUPiLntSb16Dv8ueueFabwp0dB+Xf/kxSc/AgpXanMkpWVc+59t7AZLhCYuf2nc9ytUYDpAHJFveP136FxBM/EUO4V5GUz/fHhAdz9J//ZosXo9oZ4j+H3/v1ovfhvRt3DDMI2nhv5oOS/1k9oIHkpdED215fvo5eXk3IX/d/F2fBVZe83klM1BxFu6ZDVcN8aW/oS39JeL9Ij0Rx3ldwATul3jPl4D4y/SwOtkoZPv4k/MRl1ULxC8o82o88fl+Qy1Atc3Y4fDdJxL5JQYin5fHzOZucQniLkCL/4plnwbJgoce6laD96e3UZ3d2x7c5zkmO8P6It4sZ08s/QsSVD3uJsHaOtrGUJ7kUAei+Rd/aE/s09Jf2XbSzsisf/0/XBhnc64WtbDUe+Je5m/EqwlRlJrTDo/bZ27OSni8aLwdAxLNG7+cmQAt2jyowIjQfpJx/f5acLupCf7rt4zMuWzgT4/s667q6LwlFWzLLlr8ujyaZ1vMwdOzcPFzm6QNjuce5b9H/s8/Hk83KqDjxdxQZeG/3MtXIvqd9SPmix83Wetp1P78qsvCNyamHLFWn4aCma2gclaGQwu/17WhomhrHd1wA2vPY8uwuBtbcyz5lAFeERGr93kuOd+eCu1g7xpGfsErmde98UCLP0GeKjkm01PcuPDXzzGKXi1HJy96dKb1c+nXDN1In9tYGwrJJfr0WnX8dXzMf3410UP6Ln/l8yaAe4ltFsxHE7FYjDK4r2hGx+Xv28f7dVSDaXr96T9/wdcNXNkFiNdtLgmP7mr8zy8iSz3knyy8weJnMDN6136vPd4V+vP3rO+jTKbf7llBl07Cn58TTU/DHdG0vatkp0Y+n7zg7EBKNxPRkzkrB8Q2LZo97bb0l94dXe2HAhZ9xxKS5slQ3XoD1JNrs9fT5Gh6pb8NpEWAiG2XZjfWZgro/R6XKUAP2s1/eCP8ojNt+StK2O0sZnBM+hc5LtebctnUQQ4vjJjhffT7v/5leU0qXEz2nDDOEgF04RvQ/lK3Hf3EWx2+fqQT/D7MqM/7qQHpNG7Z/XiD5K/fASiVnuRff87l70Z7UC8keNF7Y4uaGE6xxchu7Z8RG/hJhMpwQ7I/dqPPH/Gt/fPHsBS2jv+vv7zoGZZpK8PnNP3e4Do9ZebvClaOj2w24PT6XihvhQfnC79Tz0kYY3G8naKhan8F7HJrZH/8bKLfB0VC5rfMUZ8emv76oXy9+2CRHxOfUVqpkEmnEqv+ykiW7/tASz1e/LpNMnx78QZlsoGln0bLfqn/sD5VR3YXJ7db9HMO7fP2Ynh0FZ/+9Wv/X2sKNv/HnIKDecAj7gxfPDa7HK3tZGbWt2pRp+yDGJI2t1hYPK/lXFsmBeFkntiOvGg0WWHiQRQf9jgR35+lxh0BLM/cUMGdpGiin62hvWOnJhZJUt702+8DycO8Jthfr/y5vuk93Lx4zYhunMqZZVtde9cVZufpaJXjQJsW2vqaYTlgRtlIYiPA278qdKW3fsfPm7cKdnzuyb4YTJN98c9Cn1HuKe8nP5rktyECO4pv5n+gSWiqdwawEkxCTp0cTfTWqrDToGSW2X7M6bB/9pDvvQ0hp/cGDXZ99LSpuNTEP7yeSf+aZ0DPuSuJQTZqN3ulJSCiqhu8+TxQVG8cW4KTYXvEUp8VGmf/NMPY5g92JwExp8Fwjurjxm5YTkU5mjcPTwTrvNmR8BAekm66Nw3Y52/OCJQ5am/1vQDm2iKdINH9b9meHFgNwcw8+3BJaBtnLdoKnkaskBQmUx8/isQtaCRIXhGfOMwSrNrBYy7qkDmaiTqC8N0Qsk0U3ZefjV3Bg9UXZk/VthQHmjfgrr01c463E58+YVGhM1QB8+Xd3NHbeDS0TXU9sL0olOZo2JmHBr9e0eJUt8l4bHYFAqtIie1JUjnN60RALHTOhKA99UfflCvYNNaPSsbnEDXN96xCJ+x/ZBd8KnOwruENJslaZhdCYs78urogc4c14qJr5s/Rzz5C+MpfTJ9PLWer7f0Cj/sqIHqgzd2Q9MSB39tAZHu2E39+hu5NPQweofB86926tTcxSjITEd0fhGSSr0GMPJI2ZJ8ekEn3J1ah5vyMFsyfI24UxQwZYgVWbVNGfEr1IyjCT8fS99OUjEjZTakDR8fTZTubvGTHGJqhtqn8TKek74+Dhz7juscbR23M2VPeFWhHxyJEv9BynOS0R0+55XS1TrKu3k7bBkS7vxM8TFM3d+I0g5b0A73FQ19yMboA6Ot+g38zXBLpNmwecDtkV7zZIJawY3wCTdxVO3LuG68cPtefhG7YORG714/lINs1QK+efbZd8Q+fqu0hgJcpndnhsyU+F5Y1BXNhrth+zlQ+4e8dQ3SFD34nbFvOn/VhA++4z5kR5Mt5bA5tUDV5ETt8/KHk/l/R2FeUeffcQONJ6VVobvWa6NM5QtPebjYAZ+9CjPHxKCdUrRrgcJ7Jnj8mRL0mCOAp3VaMnFdxNM2NJkFSRTpFm1XO2V++H4SHSXbBzu2GSwKe2iJoSLQyfHP25L0AW9SdycEw82icD9NNS3+fkjnfj1sy4+PdoFIVTJwoTM1Rpa8jGKaLyelntWWDbiNAOqYF2XNHRH3gSiLafQ4yM0Lrg1jZj72WBa2J+yGVeP1+iBmcNeyQ4CErvEdBKIJopR+yF1vHnHEQY22DsM/MR95F426yBBi22CPe/WJF42tAFD1yyWfbJh3LOVr91L94Y5aocE73+RDDppbWxKj4NlnTIBjV7x51xHY3ZsJ9aBzw/F3InJof/SGUKxd2KEX0Egovf5QGw4GPcduxg2HqkSxAqKvWwX9goe/AXJ6HapuGllhUpzfqd/RzgY+pL2dPcMOf7fO9RcHzcKJf/0zQIHv10kvNHPpL12ufitq9h4EIZ2KtD0c+34bNDcbat9ih/EL0/rwWj+xpW8zHOzkZcu0Wo/UOPRjZujtzevlXCcBUC2aRBPjArfsI3cb1SCIemmjOHTn7i38SJOd1NCVBcQSdrhW2XWlWNJP8jqET/B8xgpYnjdlucvCTxmMLvpm881Y6cnm0I+bjEvC5HR4bSJrmQmE1XLpZqXNBA39ieNWGOWfrCi6wd24/RhCqO3Z/hEewwvnDdgErStYRIQRqbW2szPMVfa45uoFhji7Z7xvBp/ZBnaFd9cvzJmI0HKIYg7sqW1y6w85ku/NYaPPK27KlfpTsq/ktWKdiolo1zObMkvcNxe/2xcz9tjJpyg41RNlHIE6n2KV0y9QWmV78IndcrX1+N9cNjC+0wuDNH3PB0w3SUuHNPNAlf5J1RkGKXgbZi6JVcsXpqTr1Q0LcbbAph3ytpJDf55k5F+cdTZ/HPkXle9mmXkglmtKkMaBdOR4j6uFqzu9qFlS7kyoM9i0sZWFOin/4097zAk2/Nn0gep3fzLxvTtGw138twFW3qO17UTmnoiWhI7xWVPqQlT9c5Zvx933Znh95NE7i2kHpmBUkWN2Vsn+tHxWyzuGBVt/NF82bs1kreJIULH1Pfte+qZKi3WQ5xFEwLWn7EXU1KLML8+XTyR+nbbSc2B598GaHP+Z4cluqCk9EsWp3E58QFTxY8o8cymiVMMdKXNCedbLMxs5NXtdMB/9WNIS0rpHw784ItKU+kctWi5J+uAWGqgAP2f69D03mbFGBpma1wuJpH5STvm4NmGWTYNkr5Wj6TfwI6yAciZ9bakRTJbBAf2sp2Yv5rmxry+/hqeRvrNJV61N8ijJ4R1mPNf08oh/oybKv7NqwHbOv5mwfwweMp724nM+8NcfT4SegP/61T983fwxcSVKt41H7i7dulAiuoKwuMtHzzCkbKe8EEKJcwVyoWDc29j2DM4KQRP2TJtPhwR047ZwHcRSp6b6G6HoQs3GkwjCdyjlS2xbCPTrjYnyoHX9mOwscdrpTJCudOVx2sgulnN7J5bsbzCmZ8AUez76hytp9d/P2V8zoMrZAkXR+mPMf36lWx4oqL+WJ+DEZRW3JJyrg1wdN1+FeIPnGPxRFJo14tt2qWjeXOnPjOynn9wv1mj5/L3hKdrtutoZXBVthlNmODyd/LL1KgvdxZbHDulpF8y2bWyTU+nvhQ7k/7y+1CAv/xRu9Eso+SLkI/i1vML9XYvQXX/CNC4ctfMbkz/tOQplCVHocyySSR+YAhNmxY9tk9y0nXJxAaxvZwc/1Jo16VXsa6Fe5T+ZHhx51x8tUwWWV7JiRv6qEPt39Bui2fGIVZlou/HaDnOrYkqt3v/Gx6Z8u/OrGZonEzx1T9tYFOZ8iY7q7RSW7ibIISe1Rhp94G43D7/cAZ6M7LH73KR/2UymihW/9q6fjaixG9Id3Htu7nfQPb072lzn1Wez6F0wZqPMwMruff36/8D1QeHtiwdP8+LPm3mN4kWUkf+1f/FnHWAXh5Rc0egQ4GidTXeaAbQ5kfxzzZAq3RQ8/5gfkcDJeHRMSSYX4hmZmxs0zGULLi5E7dwcseL6L6JtOmbrgASPf+VbyIjjXkDRGSlG0dtBXmb8NpCs8UIQ/M5o4qCJa9AM9Lu/jBwbHSH9fC9ps29jku+ioqpr5RVQ6Z9+IPwdLQp/tfGBG8b2Y7fI8qHbjCkvm4RtNV/loaJ5ulcS97pNknCARQH50EU7kDzbH1xjFyI6vPY1c2S75KA0iWvgMc89np+xPEOSwlRWFbL/Gc8HT3EC/dNuynWcniBvttvmnD2xbfZXcaVYYrRo5pZsu/CUj2iP87/cnQcZo+iFlhg2SbEbaMEfT4aXGyAq9jtjaWUlmZgcjpJOVslPj8m5sdoqFFr7BAg/MUvrTJ7/HJC1zCu5oClemDlas35lTa7iTxdslUAdsff/FL3tmxIKFL2MuOLE/0P3Hg0poWrLbTxmfl/qPpLPQ4uEkSCUXhjSEizJpVFIkt+N3F1S0andHrLZrv1sPmx2FfIcsoo/yJplv400H+VouZ6VFF5MT6XJTF/7LdjTKSqae2xT2nmuzMPd3Cc8Oua7dye/23/XbJmoBHS4eMdbiwZ81bwNAlM4iZpIWyXw1L6Mq2vTO/JrmaHwYgfqHHyS4Jb4/yR4N0LAVLXII09BkZ7QtYBIljIW03iWUFKOkPTm64s2yI3v6saSFv/gAao2IMm2Q4GVTE4tVYJuz7SceIrKfEoy5gQZzOa90EkXMgufV8PndT3MoLsp7kEJhZY4nx7dAqMYBg+f55sw8y0C6BD1xznOVUG/2epg19UB2gfL2J5l8MjjZUk3MV53zCRd3AXyzvLFDie7R8nsOOmuSToxT7SXsa7X1nx5nh8+rLfmiL9XavVRkN2qfZE5RSbWdetjRLlQI5/GRqf/4q56NEp82Qy7ABZkT1j78W47DdzsjuRgdulK7uesbCrNaSvjDyOXJUDcqdop+xZHR6vRtfL6WTr2aJ3q9bIU8mZN1Vw24x82PHWJvyyXl/aPoe5xb4ufFmvdTK9TqTvke/t6nv5ZtKqDwOMZYLGKJj8Eyl+JlO3u2X/jnZy91DkThMhh30Rv/+N0OnDW+Lfx1Dbs5haouN8Qxrx8+5L/kgtbOr6bid/Pljasboxb9gjtd2+qqHPJxDsApm5FYpliWLH4NDSz6ghlBICPuyCLAOlDbf3xbHs3A+Ocv7PHxZk7heDgiLIl7XBRPuaReY2G0W+Er7o77yucCQypiWbzB30DZmuwY8GWWs34g6cpOO/nLDx4K/f0er/3sWE7hXKmw3xc+Mw7hkPzprw1m5yP9PBXmz5oSFajo1ImYu4khWvtt9Q8PjLXQlcMeFbHy9/3G6cz5eOC3FDDTPGJaZBnlvLML2LvhFVen576bvcHMNOlx0enUtTJa+H8DROYXPJ3vN3+au2cGABlA5r/V5EaMoCjoxJPQe7DgFXPRVTAnOTUr7U66Gy1K+1ROn5fea5qzK3E5DEU0padfATJrSsofgsP5ms+ONq/cLbl1rsd53Juzxu7nBk+/264UT753Aet8PBB7hF0p3dJER9LdClj8pb+ELXoYFaw9YK5lD3O6GCt1I12qioX5y4oGK703f/iCtXW1WvDmqP/xiX98d1jqMyz8nzqq/jUHuTYsOLTNl9kutfia7g455LvII9tdHZV8rW0qIGulYZ795sm88H31vFlW2CS/MOFdGt9Q28WU+bk08+k6H2d1B9aa/tLu0o1m9nhAymuLGMv7oaK1aSHuzRiv9LYrKYu9AvS1JbD9+zt0JelfG7UZKhtvFHtAXHysJWi7ZR9Uq2hm3zt1oy56jR02/bajnrwVwH/cLsw5xw2a9opH0d3YbwlTD7LP1JtnoTxpc6wU5Fv2u6qWgN71M8lel8icr57WIkq24oI3W19Kp08AqxEIix4G4d36x2uQCy8g1gl9/DVcRqz511DEKZV+0RxZ7wCic6YRnLodZyK+UtjLV4kc1huIqGY+HHVXvzq8ufPCHCeBV+BOyZ3hlzD4E1w2Afo9Txk7SG2MZmu41suqNJfKf/Xgz/94JKKKN9tWNL+K0/cIzu6F7YLk0y38MUepBgo5ne8bvw+uYg233SFi3u+kdtSeL5KWO9sLCWwsmqPZHDfagod4dR1MPp7MLkNZ0JjEfIhuIunYUf/xKV+81mhohdPj737IdnVuk1lrzyOy+yxjbm2co1l5eX/7+BGzX8/c52ft7YHSJEBtp7iXE5DT5U+vseDn3vlkIiGFLUSEGNJo+QOulAoOzaxgwdt6yVSZvaSedjT+4xPdvDkGMVSwNyhP0iIaH7jUwdm0OjG1TDWHaxOGsPgVtEX4GQ05DWvYjVmA14ufyh0ADI58C9h29dslYlCrsRaeHpjtxcvPp+/pbiH5ctLox1Zf3STHVQ9S3Et0zMIkmfZTJ8IjE1Jmu5Xzn75d/FZciac7H8+fZFQ7uThiqTGraGym9IYWv5HZk1P7ozncXOVkBz2dbN1JZj3Cnpo/c8yMQ+qjWRxRDbULGQtl621On7MRgH9pVSqpzduclZ9eIfakAtY2km7KXogztNw/Ff74boMeKqy9xMDKaPR+L7Ffj4r4rpDFT0H9y7rdQPjcvsv7V/itoTAincoKCygmyeKvCXCWK6DsO2/KUaXXI3rZ1p7OBeL+glcWFIP7Ift8FXVr7kw3ddWBQILb59dN3LrPIDT5nua57vvK4teg/c4oyW7amWh+mkajHRp3heXs1kTtn78J24dKlcB1krkTxqO2+KPMux0xEoN6vmjS6RNTpbg7/j9+/mOTQ6zj0lNDybGC2hMDks1k8Bd/OYSdUD3ZbcmvWVRnC076+sJMgVKfPkkz//2bKqJg+nTzMMR/fvDl7HnR3Lb8iLSEDhiJbzuavcHPYPFvGbnaPz4+9t0I47n0yPayDf1xR4fLBvdyQye70SNJM0MLDt/SptL2J0Xf9fTI0ML3sDDbuBNf6kn881eW+rvjzcPqc5i615dq+vmIRnPpgd19BHQTy/7ip94ucMdJRcxH7ifjOXgV0Cu7KzN33ylh628CsPiVi17UOL8pKwddhOnAtnb25gueO6Clly+eyebRTXsWYCR8Hl/iARz8ie/vOsoft56ZO0SjsVR2D9Bzm5KFn3O2+OPK4jfh+rs7+NOpqR/oHrc/5i5+/7zgCajrdUj+rveTyZChlxkkxFjid5SVJoD8WWD8eyOvbB7aoUY7db0lrrC10FzwTQ+pJijksPCreXO04j98J0QPjub693l6it3hlrkfuom44pcAZf5NsLTo8f5Pz9sDDf/8Ir8PqgdFm/w70Tk/21wuv0qGFC1Z9FarlAOq5BakmErM+zHJl3f41Gr62hHwmM9lybcrBsh/PC7EUiMn4WfbtSBt5SsdM3Ud8czXH7DUc4ZdJKLxnDxDZMXGnRAgJp/cvqrBOqs7trXjMpmd19HV3meImbV+D4iv0U0AfSM+2HOb1Ev+Oy768wu3cNqWrXa4VbCaqj07xLGeTOHcq2hGjw/lu/0a9S9n1EHCr4kY+dZFc+23NeQ7xSKOobQJXz+fKdoKrkYO174256fptbDgA9EPrPO58Fk/4NAd33g+LGsgt/s6R9+90v3Tv+vNnAdoWmcuvVK0KZf6U0EpZ3f6WBVqxIXyOcPEJA3zuNGSRf+LEF2FD9NzKEyuRob4539i9vWEbjKlFQaySY7kr/5Mya7UYfn9f37DFDpvARVtqzHXcEk55Zu7A0dhmTOqbSxTPM6OAdItC5np3j1/Lb8NCc4qzZgvro1ora/yHNm3nYvHPKu7UeVZrkbRhzDnQ17mBJcx0Ba/CXOL+J20cT/Zf/622NbmEI6HEC39LZxPv5FPVjkWkP6+5cKvz74Uad4R/Iup06lJj+VolqcWnlPCiPf7yOX0Ol4dMLbHnGobKTf52cgzbfFPiDkMRjTBaSNANykO88tR8+n7pwZgutlE15NTm0s+BqBlIiHR4s9yQX6M//SH2R1Uv3uWTgwLP2RpylyTL/4TWjXrlB0+v585Ld8L5s3JZO4GkYQb30JXqWXaWFmHujkG3VRpf/wmTVlj8uI5CzDGypEZpez5zeOyVTXRiSPmGKxDbGWOgnYZtwYhly+NJrn2HIjL/MC8e2DzcZj0UFv9XhdmjI5WNqezLm7Wh6IilrrfoTEpGh12k+OwxS8rZ01CKnrKhkJRLs1onOZnCnKu3gjuV4r/Tw890lT817+ikfXDILz2BbOzQ+CPq/Abgh3Zm3/5xP2sqgF5uCFbJXqi0cxVHcZfWBMjxFUySvM2RmUVy2R532aTPJsRueuRMdvBaTcsegkt+EH2xb32F78vhb3z+DEdd4X5x4/QJv9MZM83h4jaJhzhUEcnKm3Uqeyl2BaR0ioV+eePd97KQIu/zcyBOIjfq9sMuRGpzBQ2QTcXfOz/+j202Yphyb77nwjdKnli6q9fPp/ueaOZaXBgbmyHHS9OsQRF22gkXvTe7DyOG/AOlUr8/HZNqOaNoHFtmYaXnNcJM9ptqz2uz4qZrmx3XK2aACbJMYh+SLDZevIeUNuQgOnzZ4fkvnt48H7ZZ2Lpbv6vX6Od5RqIu/gty/faQNqcGfnzE5d+3gU2inDF5f689ddu39fQiQ+KN5u9hGgn32/g6f2TPbRq5//5IZCn4eMfnslq5Elg92mGleOYR0t8GH/+OAlYVkajq3XOcjZHzg4opHyqzEpCi5/FMPcrf6oUelRPTpoT233sON1umgJkemPEdqs6oeQ2x3AI32u2+B/mLG7CFNU7aySHCLflODzKBnxDyZi54Oe8fE901BinP3IZyt/vtjL+f3MKlP99TcGt2z0p6AcJzff4kKLXuFszp2i1hM1l20A4CjbbTu93OW+kT45ENe6Zb2q5T0Pct2qrzw6eT2EejeXhOKKO7VRa+N9XOXlffAEju/3IthVf/jQ/PyqE6y5bzv/Lu3F6vSl8KqFgxnv00CiOzxT2ZxYx97AOo95qxxbW0ulBrBQO/iiO5wyERyhT+USPyfi6dRRAnEuyly0PDeklrRCaugvbpdU3mhMPYvQTNwc8RnfUsXcQYOTHE8Z5dEflOL1+VLkBCpn5SKeIH/ArhnfTvMnZe+uIz6LvAJCriSdvK3S//hU/IAvQjMehqNHgm5sLOrasxbOltdEkW2RZZ+aHeG4vaTcF60oA9Aox09vKLWelti01tKsfMW3B4XLsnjba4zqe6HFO31GvrnY3eE6mypyH5XciOlAHdlip2V4y9ibP0O2GcPdjbG+st93cJWaGMoF4xNbdb9LHq0sPxxinmA/e259O1kWA0eFXOqDhXc78Grnwmi434tbG2x/F26eH/bd0mePuDFM+y9MD7V/8wgx+lM1BaS86CBdvZM6nSbq+Ne4eaLfbgZ17WJu89s4Uxuzt0smV3GTt9W4Bp8vOwWJP3lEvPxEG8/YuiKH8RjSu5X6G2GorvNmN76RX+c+DOH2cySFpHiY/oF8P+KQ/2OHca3zUKYTqTo0MEiAZJSz6hTN6eL81M42yiwrRmSlolXzDIlWkrn9/vQu65PuW2KS/+nzIM0C4mX1mA/klI5FFC36nsCTeu8u7yWilFv2SuCaBV4/R1Aqui1r/nhDXe0icSsPWga4+Ppgd6LovFpffBoZPfCaekG3Nv3wAYdVfCJ7PVTlGsXKDJR6YcU5iPrG1FyuXfZOQnTnV5didcY8up8eBuOWM+HSafjHCJ+PBDD0fzOly5DNkiWhiWceVP0sbFqPnfHwy5zhEfOytOkQxxR6x7a+TSA9uFWAHwo75P07Q8D0WqeYUWUr2ZvnoppALGXh5HZLtIbKXuROTDtO3DtlWKzBi7lerIN8dY/Z67cOExbf5spL9IGXXzKyjef1RZpR5OmaO4X9KLu4nS7Nvko7bbCgSypLLCMqgbtlfPIst2o8gn1jHtqfR4NPWl2uITzuG5Y+n+CP+nVPQ4LsnW0ftUJsdt6LWccEleHXjZe9VBMDf+hWdF89yiB+BClfyC5ipHkaTJh5ckHxez3SqO69j65P+QLC/78i5MdRyzla/C5zc5IaFJMujGV+LVLs+Lyoj/JuimW30Hj7r9zLbLNub8+6nPJSj9C2JYW4PfJgPhxSFF3+Z5X9B0RChw6geOzgw1yZ5ma8e3gb0Ge7E70LM/+HPQ93fiLM0eKfKT0F5n3WZ7O77jlPtvBJATf0tw+2z40P8sFSwfVYRXHy4ORhsFEH5Cjazb9tDxLvtS0U7j7/YDiVdNG4+Xg7n1tuQvaVv/B/uEwl9nngkRL68F87BazRw3WSuqrloTAJnA0H/Ef/yL5mdJ9ugjzReyd6KdT6u2vKC9uchIuZ8lqNhX01YS8voiuuk9Lr5kyoCeOGmYn/xORT3JoTMskLmGqskYYrOj9Doz4bg11fkM191MaCvrjO7h7P/mYvGgofq35jLiyFiFll27YVqxeyvYiMeBF4ASvFNWBBmP3MkeRCrBjhXZiboGLVfXDd/eEWcD1TRNF2yGv7yeRusUj6zjdv/4StzukrmgzkfBJX4+5A4wJtyDD8nUXt5tsmC3/kQ8fb7ALjE0USCVXjhE07QDb7UyZm+jz00GunDALM9X3EWVh/OEslQ4WdWa7ZPW8uvt6/sgfY82bJD3KbmNMqvDD0dtMViCoPJ4rGwgJ2fK+Iz1vtUZJ4KCQ8KZkR8a07hscmgSNdPLOm9033F/eRojquuqbaePglTx8eM4srb4bX9daIpfOsqJN/4x1zhZkWjfc4MKMieEeMgV3zSXqYD1Xc6/cWb359oC3Ax+xexgewjOpzmGD5368eu31XRjShsQujm4UP2ZDOW07vVe3B5HBA3mpa5IBc1h/OktsxcjyGfs9X7ouTXdU3fBT4ko+yYGQTres8OJhNNKovHB9Iis8Rr4+eak7zfSyCfhg7/Pc+klE6Pwmf8oC/0OpdT0T8l2BXlCfNho5rL/VvQ052+7PvpO3YwJkeLakGiK5rW5VQm2g0d2LClVzjX5iSFD4D6tXvgrbw/+5xlZxfZmgFUfeIy6ZP0ewH/hs60eX9KxC60CZHs45RWXvfoJjogA90euU92ZOb8c7pPFbyP6ki2lffjs7+FAsIB9cRPpNocdjXSYW+7WxLclaqcPndeofT8/ZGgFM4Jv9D8qLlPtScLHvl9TKUQyvecM0eVe3Ngu2XZzoIfWvMYSlZESQH5p4wxJDezlEFZBbAK7Yx45j3nHMmFBbvifcLV5oi73hS3I/zMek2n5rvzq1XbXZT5+TWputSrJqZCiJZ4YE4YzJyrYzj/PT+e5UGMptKyG9gftDcWB6pHXMjtBn3aTcb0omdozrG7PJ+3xfMVzt1oWEWIpqHABG/nsON4yB7/8O1xm2qfuyxQwekioKK1/SQtwacLGLMek4MS6HyidiHBuXU39B3L646ubpsY1pEaMXzdlv5oRcusTGrl5G6Wajk7ReugaXUx2W4XGP68xCu6j0ZO9FNQlm2w6S7wmuIbcRJniNjWG3RYj9eMWQPVk1ESRAsup9uB6OFV4ZPSZgYoobFnh692NHmooEBb8o2mUv/xp2PYHiGXr3uq3A4OGj19EgDEsWRh8FajUXd6By38BEMBvKR3eLbId2OTKo5wMWf3fgPQmtULrwLv6w+PtRuDMH8RXbGsiaa7cM/Avok6OXp8z9dPasUgHLGIYRxdvp4PdqoteE+1WKj4YN/iB/hzClhY8J9129cGprhU2VYXWNnUTjyC6hCbWYl+LGdJ++Xqw+vWZP/yLT7J1q6B5f7Y8T6fo1GnYgi8bg/4Aq8V6qzVQ0eX4L1i3jcSTVpX+/Bffc+UVI76x/uXw5jHAh5XrzGi/r06Qvp+FszeOXYiEelXAI8+a4Zdv4/6cK2G0D9eF8qJWvqT2FuFVhjYZYfLs0QzzpQRFjwj/s4KkTxouqo1rYkx7JrZHIfyE6OE4wJ7m6Lig7aLYrj5X5Xsy/ieDK3geqBvNmd2vfhDx+HyDuAoSw6tvmenG8/lUYfXQAfmiz+HT6nQz/Amlsp2OIo5zVa/GPWX8zL8L3BRbxt5ipb4w7Ln6ck47RQB2TvDZ/pWYVGHNUFUBS5lzGj2VTny0+WhLvz3X74Oze4e/+UfllK9Mefbr3FA+MKH/qx4mWrqUAc+L+NDtVCvy7F/HwMNR4pA9qFE+dCwdw7B5jkwh6549Pf8ME+Y0rnrdz7Hw+UBf/XQgC/z53wrFXDOjivKrdeXz1kh31B0P7kYyHJeae+vK7T8f7Yznxqi/r0PQRuHExWiUEBL/o+QHCaDWG5WdDyL9EATLu7IzuJ1LGl6DwGSe4OoXKW6KfZWfYSC+Iwi9VP6I33EAXQcXEb8Y5DISJhuqkbuG0bO86Ocws3YaMXNs0hQJTPiQbaakXzbeFhb+Dnr10oFL/EABOOdW87C6W1Aev78aKkbbce0dXOE8+1q0hVDn240+jkDC7khSfz30Z9r9s0BnbHP7OJRcz6XRQO745BibbPZ+L3q3wBW2zxgF2ud+NPeJUe4ki6gK/5N+WCdbAeO741H3NSp0DTbkgtXpDckwNsOMZrqOiipEzC7i7fJGpo0QNJ51rDWyx5qISqkP/1Ie2GXl5y3kwBDVOTEg1VhTu7lUUN6kGWsQndPxsg6Cpp8dc5Ysvclao9Nhv/4DFaPyhCNx5X5UCVTc8mhzGc0XZquAGH+IIKVUffXBUhHVFRfQqcQKf/yAyrl47DdqI8+77K9BKtSifB64bPMOWx6ELF2JP4byT6jV1sCfHbftN61VTnO8/WI5mu3W/I1iKbH81ajzSYriLsb39GiByl0dfhgdi1XJhfk9Q3tlYuGxS5L/HEaDU973CuHKqqvlWP+4gY86OlFdgv/57u8Dv/Vlyq/ul01nkznnz7W4T0n07ENddBIsqEr4RnxMUX1A1z6FNi2c7+Il57xgBfLC4aD5ldyHhlYI2q7xoKmiOUsKAqG3z6fyP4kDv5onI0e8s87xt819AnTbsIFcRde+F/8lreVAYp1Sdg2RIrfHs9NC9lt6pj7feu+NKpPEQopsbC0+Bfj5Wz1YPzMFfHXXVPOq0jy4Jm1M/MtJ0Y87tgG9M+xY4u/YI4ah1QBtX8tfPvms2d6jwHvw+bf78vIu/Yg8axj9seCZJzlU6ZFNUj0j5+Nvrs9omDVBMyL5C75DUKSos+6FGkVfK/++CaPGh2PS/z4du6PSYBV5CpHl/iX6zInxvsZyJNyTEwXPub0PmQzWvQUXa1gRvTpzgUKPDyQ/fOm+d2F5iFS9lsR80/oJvRSf3toYjuk2rO6dF1hcAt1guHjWcLnaHJ2CMA2VIvYPlEQr1+bC6LfYEXB2XOT/WT+0IIpNZivkU35+TaPADXTpDPn/dr5Y2M9BNDXa42ixf+R6uBUgFOkKRUS71pO8cPaaMv1iEnU0hwUdgw0OnjLOgvEOHWBCpAu+9Idw7dLTsSBwltNLyQaNg+ThYWZaYufQXvTFzk3fr2z7HM/kiAoAr4WeyuHpZ4s+rJAc5CjCj2l259eSRCl8GrRbTIfzJe9XTm2aDuCmZ9ivJoVE63D5hho5qvfsgDJyXKWyjT+8y8gsVRELzXrkTHyifkndZk7yCQRtpfaJPhofsze0yf4q+/MQC5D82d43JCDpQnHK9x3v4VvoCbzz1Srs8mkL2fJ38d6j8H0YzS/mKvC17kwOuPYMOflfmGW3ZbYatQjVomMAhYba+FT5248S3aN9ofVm9axyxJ+cz+B+v3BnZ10gXT0+yIOUvouoyoy7XLU0oCq1Vs+0zxItI4P+bIHYfvbkjwaqogdDMVSFz5N9kiwI7r3Dy0KO90lR4ztaHzLxQwl9taUp7cBTadYvkET70I8HJzeZDR1DbR+11ssWixL1kYrtID2cchwFGZcvPmoArP3Awq7JvT74nfNYPBHSrLMXS/+BQ2R4L4Mst0mARoOh3RE3NRL9jrPj44DPQIS8G3ZN2dszSn3tw1Ky9OV+OI58+frrAQoTWeXqkN/4MzDloHk9fm88BETra+vxw2W97HgU5hMm0ZX1csQ2nh9N4mfPt7vQjNy/MKr136OJgG3DRxDTSHOp0El67KtBFtrxou+Uvxq2k0A+/cnoAokBWfVb5+B+hQkjC7Xrz8q/V1El1d9ZXo0WNHf/amLnmAemrJu/qsvK78mzHzKAe8bKxRA+AofZpepW04ij8R//Pg0WFU0xcbZhQy7Z7o6fqtknMn2CNHhTpi/MvRkZmTMtfVdIlh0itqnh2PiqaYp7YnrybE5BnNdgxaHDgk2zbbjLSkDddGrlLbPDrV1tQ01f3PbMF3QT8ma+A/QeLZJiNvvZr9/f40Yyvk6Y/Gldn4/GasR/t4XF08RWhJy/Idvt7wslj0ZVECLXiY+EYaob9tfDGBHOp37+s1n4XccQdFxjNXqfPG7qiJHSNPRpcLXOCZT1A4X+PM/pcU/YZp7Vv/4IdWcYY7+9LFq7kebWV73KDtHcjegb7stnfJlFrufFi3EZyLhIrku+6itNoQMe2eyZZ+P3xtpuPiX7kh29e/mswxjHW7XF6erhEr8Z6CXA6tr6i7+BlrOIhg92OT9xNzSMrjsTE6PFr1IVxfHTGTn06QQPpezO/2njWTkvaha+bFDrs/65/O/eDwwtsUiDD5SLkc0/tUzQj5Fb9ItXoP2d30pKdtyus0E1PUTLmxLyzLhovbNIQy34qKHzE4qMz5rlqkKdJcehY67X60GfRokKtuDaYqO+LT+xe8hsLzkjx8hLbvsmVOpRcmf6SnW7Gd5p8v98DncnS9/9ZluYtz7Y/mcAnDquiT+PHjRTN1fAOGg9PS4VUjyD6+SLhuZsQ54Oar87WqpBxGJ3/c2ar+vnQOlGyjE/lhpxJEwPZA3vBUWyLTm/aJfIV3vguV72L5Y0FMLpdbc2F71n2X9V68cNThgvqGTP22OJxcWv4XW3iQnVKj+BwAA//+kXcuasjASfSAWcpOEJfe7CQoq7gAVARW5JECefj76n+XsZt1224TKqVPnJFWXD8gvDcGa6GXD9DSVC6wOUUzzM/uy7iXVs2od25EGpaI0syz03F+9h5QDoOaw4RVMuxhh83AzCvE7ZB8QP+Inaoe1AUsH3BXuti7qmz9hkkhuLnAktoYP6vmc/O73QYbb/sah8jZNer3ZHcQ1sKinrWYi7HdyD4WhszCSeHOY/uozdtjuUAa7Jhm1R8LD8nt7UIO69bDhTQ9om8dEHFppOwM9QnD5pj42/vyDXCMdYMP5g2aq20wSXhUPi2W3o7rcpQlT73IFxxp7SHkN2rBKrqPBiYQCUauaB2OTSRpwhiMkkneVm9k2uhIEv2LFf/7KmtpJBR5PGNBLFIuD0O8PHOyP5wy774cOJt/DJ6UupTvh/coq1vIUdvDGB198eJpCw+L2cIJ+MWAanT1uWGZ46/c5rQz8XPKWkd/djhW3/KaEbfrIWiFNU99wTKhjSxAsr94jUNo/S+rdxOewVPWSAyYdnn/8whyrJ9NgoDuU8KlxGtanM49g/4X2n95fLIe3Vf3p8bjIkmaYw/n2T4/DuCAiYGJyrmAV7iZE9nMVzmHyrf/yF9bWUi+k8X0MVLrN4vRNqUkWTlR4cA91D8mNZQAhF7QUKqBrKT7+PuaMvbKFJ1HRyX6rv0WufXxg1KwpecldWsxcUxrKa84T6qv3tmH5o/BgnAcZkTe9dN30BFjceoCNX/gp2L28Xf7pkb4Sqpv+tlYgcLWBlvnlxdb4XPVq7KUNETe9fdH8/gE96ZFQv0m3M+NVxoHvKer+9LNmTktv69uY+tiW+QOY42/SQUm4nsnDPyCTkeuB//MTsLnlc1aoOQJG9phwaDk86GpHf0A3Mgxsh43RCE0h5LBh7Zmet3zJf1OQwVdN3tT9fS/JPPjVAwZhsGJnkLWBXS5z9adPov0Nd8PcCBWnVmZwwPYhvBSbPslBXd4F1DLsDpBxBRGMJv76D+9n9LuXALwsCwf71mloaf1aqPYsxdajiMy5hXMM5QzuqCWxxVzE3iDg9b1xZIavNVnLWw7BhofU7KMaMHnfKH/+FBL3QpCsX0Q6ePzKAF+DoErW+to+IPQL97/686Zvqi+uveMwLgI2HM0oh9KuyBDf8m82r5+9Abk8lrB9q8Zk/fGqAbf9SvO//Vfecg5WV+mz+XkfsLxOGQeemqnRv3rgD8+V99rFf3pCuMbdI4I2vaLND3IGURBPCOahkhHWTSYjf3xBamcTB1orFeTP31nx/ky96bOEXbG/naC+3e/b/KeQ3XapBjf9Hv89//K67xAge4PHZmxe2ZK9vhWMjvC5xUvU/PNfqSVPWHv1JFwC6TP/8SWqr+OVbfoZAmqYLFhruyhZLVh0oD3vSgTF0Tb5u6GuYPMjUQff5UAQzRH07vJIN/9lGIRXJapKIzN6NO5omBMrgzAClU2K+1oPZONHf/yJbDePi6WQ7iV85ZD9+R0F+aJPDwMyl/gGuPe2P1ceAipUSBWRMazTr7ZUJyc99cHLM//V153buVi78NdwvbVvBZa2ccV6eTqG6+9+OIHQ2N2IuBf6YpWun/JPP8N24z3Bn96qZukHYyP87gZybvMWrCFD2Cui3hzbtLLgvlo+5H2rxmKmr6GGy3nrL2UvU/FTbsJHkey4ouem7IY1vZuxSkmZUGP86EwsbycOXr4XH/35Sev14p6g3K881tWaMFJfxwfUFipS/TNss2FD4QMRjlp6BJ+1+NsfewvPItbYwzQ7/7WK8NX1L7JMllUQZSozYE2PFil3ZCaMipGsaCt3Qy27JGy5PvMc9Lip//yLkHcsof37fvSW+QOb//SB/+tMgfK/zxQUB21PhpviA/Gq+RlUtaijN8+/A2pwFg/lTF6o6TdFshyrKAUKViLqvP23OUWhw8P8rnnYoFrL3kc7jwCIWUZkW30lSxCGKxSu40SkaB3CVd5feyiZvxti66kdplZNCMjL4Em1fa0XqwiBBz9ZCehp3H8Z6e/xCpewvGJLvVyK9Y2zHMaiGFOX4wiYpSVXYMOQjg+p0Q1MBSEEap89aYDyplm9eU3hCL8OWW9brx5vT8U9f6gtBGyjS9axUnIljR8KPQB91yyQVp0a0VeAC8Gl4Qx3xQmegsuFergTw96bihW2rVPgIHppbPlOXqpoYxWR3fHEmbPU31dYVBXGpqndi3lrjAMCjCt66K9ZQXacPivC7vjDxm1ETKLpK1PvAvPJz7tmJnvZeQYp3L9ocL8ZBb/9PnRMkaeaYbBm2tFmhO6aF9SD1xAsu3T/gTKDJ/wMhaYgyyGsFZ1LNNLvhWKbL/O9QL4HClqd55mttxcbIT3RHju61Q9LIX9qZXn3eHu/IJm7xzuFNzsUqKkvfrJIeeNBzTckihMBD3OSfR5QfdkG1YWt99nuuc1XvGseRQ1nhlJ5009w6uqYLJ16S+g07BVoes8fDhhZQ7r9XBXkt0smMJCC7uc6gIol3LGHbrX5rukjA8mBL3GkQC2RprvUw7DcMPB8d0A3BeIDfgdVp6hwJkCv2hSBt9S+cLjrI0YOxu0Cw9P0xdpZX4v5rN8h0PldQ8OXIobsMV9l+Pd+g4HYYM7D3ao4YbbDmvdemvkXyBfgJScB/8XD6MbXHmzrQSrNn8GquHcN9I3UEWmtSdgvQxpB3FwCHBw4ak5HHXTgXnyP1LACbuh1cVBg/71E5PddpWQ+PqsKHOPgiQ/aDZgzCj4W1ILVp8FFtBLJT+wSZB/lQgNWXcHqqF8PGLFpoenx/iTLkTsbsIQPHx/MTA95bfA+UPN8RPWUOsMQU9NTE3O4YLvhjGL+/XwDEr4M0Y24wPzdXxcNDHptUcR3wcCcSwfhO2o0Gkqlk2we12UnX8MnDaW+avrvaTXgPv+9qeOTd8MW+mihQsIBzaFnmqQPJQiT3edJo/FmNMJ92I/7Yc0e9MiZgvldMtOAvxO8U9+7yuG6+C2EaabbOMx016SiVXpQHCKG3drRzaX9aJ7KHyqLqP4zaMa1OdUQFsIPKXLAzPUG3yLQL8RCPSOncPX4WAbrjpfwxSd2w/uPlIMH8LSxhXnd5D+1xqsfYH2pi93t3loiZsAxeR7rF7Fp5qfRfkDpnPfYOh8B67g7tRRr34VUe+8ZmxP9JMMYLBU9nI/lMBhP6MEnkAHRD/WNrbvzPYfyJRERk2/IXAJUp/CQGBURl7fNVmebf3Vz15kax9Fo5vwEFQiya4NRtVND6oM9/w/PzFA+NQvW5RbY8fVJI6UK2aozO4X3S69jg3gAUB9/FJj1qoqdRzaCNbxrOcjsIKHm9zUWo50AD2aD8KFYUoJwKpyOhyDJErSegNhM9X51YBdJBfqeS8dcZrv+qAH/8Kh5kd7hvHJWD3/wNFA7cTS2CL1YQbHpOrK/3xO2XJJTC3/Pp4zdy5Cb6/VaQqhpb5O6i/xM1hAcLfV9yH/UPpWryWJRO4EXva30EGZTMaX9YEE9dX0a5dLJZOteOQGFyipFdqsOtINBBLb1xw9etNjS7tUA+oGwYB3yL3Oe0F2Dn+wBaMBglDCavnLw+rV7HPwE01yKLrPgWIwj9VQ+N9fixc3wIz9HjHp7bNiDiSVM5tKnsWEkA/tE9x7Or7gie2W5mHPyqUYgtvWR6r+QDZQGBwJkUN+pnZdcMb7i13amyBwJOxXzMOw/TgmLg7FHCwzW5GcWRwNu92+oIZV2szJB4cCwhz/SZZZkju7jqPytNw7rSzAsuOwJuKcyxVbD3wbi8bECPzk6UF0iSzJC+RJAokERYzo2zZR6jFfuvC6hfdJazSTEUQa9XNIQjOsNj8u8ggfcAOrey7VYD5LwgcbjuGBkrxKbobHf7g1jiKzK4EP2F3/pbb1SL4OVuX2+BT2dNbKgvAYzz7kEeLmgbc//KH7MwI4yKhKPlKv0MOfzZ1ih0qUrYnuxLGb7ehyVmhOPJP6uYkOnwwupVEQ79OC7vlkbL4tg9wl7qtciBWN2iXP1CcwTmR+uzvjnV8kU92ZF2G7qiRE6HD3Imsthi59DscqPdwW9s+ZSPE73YW1U/gESaAOKnF4Ds69FMTBH8Uuj7+sQsjJ0NUU5JEe0cKYQPr4fqinHs0ux7uwKxkApI1irsMNH0fTAvMefEarV4YaaUxE363gTYlC6uN7yzwcs9bDj4fFsU+wYNAnXnTJEoCqXM6lbHLH5fk96eNBub4qn92cY7228qoPvYHx4vJ1Emroihb9bv8OWbv5Mphp+AOiuLkn9ufhs5vVPCo+x9/zLl+YoXboVjmC6I/GT3czByHYa+Msn0jp3yRJJtxVezN2CqnX5mfN+l0Vw5NKMYjfkG8KudaxI34AQ9cqTkD10eYZ8sPexV39TwMJd8oAKVVQc3SJ/YPsPekA/nHKcb/xhuQi+CNPbfKXmOzqbyxBeI+AfHiOSc6EGo//OHYAe1oIP+3YpRhf2LcyzAaDu8NqH67IeU8il7RWX/i5uVlMdHVjzv5AGV4kL6SIWBBST3uNIvhEwEcPjYH5rWrT3sW7Or1Qr4ZkEDg0ukTDQ6S51cD0P2z3czdNXHtEKVfQ804ic3gXd1ldVbV8mHZ3agp3EMIWKqfJk/1yHkD0Y91Be1bGkiYmuzQIdPt4/t75IoTPN7LfxPxi4wxkJ1a5MmBMd4r/9jfHENMDPz1mGt8Xakd0peyULM1wHknrcY1t8RY0Ur68RasbljF3Ni02BLXOr5uknRSrAe/bb+Bbs362C9cG6FOsylBt/SAOabfuv4+1IBn/vW9VuRdiLtW/sq33r4ayCYzKjrEsh6zVK89X8NcO1Th8Q8KcJB6mqD4u9H+c//KSGlclseCjgAx2L3KnjV0NClLHn4dO7fRDc8HcZpd6D3YFaNOAmaxDNT1bD7fsoPgWu+Y3XF4FbPifyQT0M1OnvHIxc503UjW/PGS5i8FEQhze8G6QO705w2w84yn9XNmt3lCrZ1MrYWjwMus+jj+G237F711QwGn6aw9hCLY1aDmydQ+QWfp7+He0+wXNYv73dwmpX6NRpQcDI95J9YPWovzTs9l7DPoJhgA1Pya4F4dBmi1H98RWkGuSUrLvZrYDLThb1A8VvluCkKfBtuRE9+FPLtnzhgDPZeg8a8QSW8XZ7gJH3T+T4u01s3t8rTtVe9zva72vDXCsqBXB5dxjrUWKzf3xFAMjABj/c2CRc/eoPL2h4U36M5W/OAhtfoBv+gkWQ5xm4x0qn18uQh+y0/ylw0Y9HMuufp7mwbyor5zc5oXTxKGDIX2O4BC2hYd22oD9I6gcOe+5H3V30C+dfbSqg2t10xNW2VkiP+SnD/CQY9PqTk7Df6VUG0cNZCLB4ZIp/+FtYX5u8XuG3WITYygCFukzk/IYK/twHKXSXaqXOH3/Ri2VWle/T/8u/4Xz2EudvP2G97s7NQqR3BLki3mOEnVezkEZGf/iFlDRZ2Tg/ZRlqLdQx6vLWbJNPRUC8iy2ceLU+zMb37SjOwTvS6CS92VSYRgzL+bVgN7pchsXewvsvHuN1+YWz+5pLtfTskEZ+U5o0vLcIguNPxxFVD2CVtZSHtV2Z1Oajc8H4ou3gEqUaLW4xCDepgwdDNURo5e+7hrBCEyHIzg11ki/fdGsmivBB7St2vrFhshN1IiAolxvaxWZgsvcXr/CkyzXVpVPJaHnuCaRcz5CS2lnDENUs2O17tNUzRigIeeWopGtWtPt8tnx7/wVAUNIb4ecRJMvGz4Alr/U/frxoh4JAM7RaHN1yk7W5HIzgwPQjDa1sP0w/pBB4UN4lDQft3cxnHEeQN55n6pPzOVkCJnvgml0rpPh1Poxb/oYHmBLq7+vaZD7PE+UZKgECk2uAxd63qyos8ptqcz+a6xcXD6i1nI7NOXSb+aPdPrBw0k0D/HoFwW3YAd5MuT8+NbD9FLbAyEqZhjv5ay7Fnc//4pnqqX0F8zy7F9C5Ski9gzo1/55viwe0pHQ7Yz3WHXj84geCNHmGS/BLS3DPaUdUhqdh9h8l95fvkBAvv2bJdt0HZuTxIkyphnCSZCDuT1oYU0xjGrJuV81q268qdo27WwhmcdOg1loZdq9nj812AgLw2w8z1e5/HWy9JFYviqNT00u/CTsN3w5cnM+InU+2D8kDWTwY459Kbad8g9W7eBE0nmFOozH0CqESswc8ntUMSc/l16w6/cx//AbRr+E16/WRWyCLxgfZ2dUYrvju1DA9RRG+Tc6rWLL7PgXD90zQfN+7gxQaigPB9a5gTVmEZG6FdQXN3Z0JY/TERq01H3/1EMZ5kCTsVU6c5FecgU19+SXTsa80+MvrDrv6myvG81QpiiXpMZHVz5P9q99uDnCxtvHfRZKZCDhuRfQQ8i9Gmsa4qFNXxdTUGxpOSteVUKKfGnGcisw3fLgi1LwQIfmQPICoF/sZXK93CYf9OiSU19ZK9W1DxmHdbrNDsiKCT7U7YFOxLs3sd3OvkpcQU/0q3ZNZkjMDrgkg2D+NRTNL25mTSMtM/KcvrdheOXjhwg5xTq8xXuOEFlYyedJggFX497zgPLzCbZZMBcbstPBwWy9q3nMznIex74B8QpiAbGsXe+m32VXDTqcGWYNhqcSsBNWVt9FYJM6wHqpag35l3ejxFX4Txu+FFC6mEmHHUKeEnlTvAQoXaTQq7LFYJHjKQdE5OZpn2UmWihYXEJ7ol9RW8Ghm6MQl5KdaIOoZDMWMjgNSfkyUNvyAjObulMN8FRh2+9QdhikI+r96HkGlGgAz9KYEQWwH1H/v+WFp618LCMYN1Tz/bs7J2d3OIEfLv/w57ZgRw3P/qxHzG1Cwc/r0YCJ5A578yWIM8Oa6nyqr/Fcvrab1i8Ft5Y+4VIhjMj5zHLi7mxMBQtMMLP+VHdScApJmi7/t8qsBvhNJyDrek0I82ZwBr8eeI3tQtEzw3spWz/IxRUj+JvTVNA70jk2DdeHLJ+tyMGuw1QMYRbt22PSw9R//CKXN4xzclAcbPyTgpviMOfzSKdZV8bA7/8Jizi/JA1RzPNDALI7mKr/rHtRsqelh0N1QgOZ5hPpltPC997lwO+u8gvGsBVvv/Moc5/MdQd9WXtQQmpqxmIbe3/phfIQjW4rXiYP1Cvb4YMBoWARytkA/+Ta1Fo8yhrZ50Qf9iLAZp8nwT7/BTnOlPjgEw6z5xxTexX6lnpvjYRvKkwP/27VU0/lb0h7VPYLj8fWheMsniyDLM5RBdccnwSUJK6UbhIPzTNExSt6MMDhbMHrFd2otbVvQKTA69aY7CKXaNx0WUjIL1lafY+fzYUmNvzWCTwFtdx6097Bseg+Mg71DYF7ch0WL15N6c/QH1Z7tHC4/pIzqsNQCdmTPZD/pGrWAdckdzS0KEyqGx5PCqfL73/O2Gf+z4PwbU8Jdyqe5yK/qBK+FaKHlFbrJ+vaKGCQGm6h9kp1mjlyr/Pf/oC76sR807+Pf56l7lz9gOXJ3A/zpvboqKGzI62f9Vw/T8DCaCX3pQISf26Wl5jc5mT8v9EZwUNGV+sdBZ+II2hq+eVdF6+TW5hqG9AP/8NCDTCuWP/zf6j20nxw9+X1dZeOHw5seAvJoOu3bG3AUDEBUBWnhpg/lMEy+MY2IFZrLRe4yCOlWfwK8B+tbf3jwPJ3u2Koe3iB1r9iBh0SrcGpmWjEnKn8CQPAueHu/oWwPaIRifw7wofc5k9xcvVUj1M8EVPjQ9Ie7WQKZWT/qmLcXWE82p4GxICMOrWBXrI+zzqns1QLCHgUES4pnTh20vkCvDT/Waw4qYD/vAj4sXjysB+OWgsJ+EKrtnZEt98NLU/V79qHmVu/MkN99/tXTqEn5gjZLlynnH9vjw6B/zcVUtVitI/RGgr1eQ2p5Qw9V3TlSzcdaIj5cPMLbjC84bN5cQ8QUrX/6CEY/6ZSQHvweYK4DnyLUH0zS7zQDbnoADpTjHC5zlRL49I+YOuXUJksBDxY8MPOIFvhxwDI3IP7HB9GtsJN+ex/gVWsEX/YsStaqDAI43nY5xUdyahhdV0t1xuS28ZMumWfO/0Bami4hsLuwSZDlTa+3in/xILSZrcBVPo2oatFQrOmAFPD396xqrBktQ9eA1VW0//jZptdvd6ScU4q9EcpNbyqHCsCSnugh3PTIb8gr8Ke8bn/+SLG+w4WH1RkHOFKsazIbfprBiDYBNR8/KRzyt+go9vMpECBpC1juTiNDcDtEqM5w1Sy7LPPgPZ86IrZPMVnG86ooN78y6PklvZP5r/4kv1uB8TipzRjRmVdftXzFG940c7s/pgClLEWDle2bNZzVDPRTaP/XjxgClkFdLl16XeRdwSdNEECM3Hrji8pA0Z3Gyi5z7mSXHeOGqAHXgZNfTlj7tjAhxYtb4RaPFL0O1+K98THljw9mB5oUpNETB9pFjlC/1et/9Y5qfgKb2vHOBKKjfgO4aLeOavrnGX7/+OM9VSjFn2DXTISrU+jKOKV6+oqKdad3OfjTE0A3oGJla5mBpz5Z+OJXQ8GmwOgh7pIcu1cXDctcih6sFi8lYjm1xSqbIP+HP8Hv6wGxcKMe3nbnESOradiCuRsHyBBMSBaNLlzrjHTgz+/S9vUr6dOEpWpG04DIzdFsxLe6q6ElmTEZDqNZLJev+1EgKVtaoEkNfwMSZuh/+xapZUz/9I8LVLvfATunrBrWEKMAnvuhxuFhbIp5Yj0PIieCNB9gZc6fWhNVXv+ORNj003nTC//0HaoFIxlW+d33ABwHnaLIBc26ey6Wun0//tN/p1rNOjgcQpG0B1NIVm9WUmjdJx1H2SyEa6PCxx+/xpox1gXthIPzh/fYHiPflPJf2cOnV3zo4edZhWTZBwvuSeBT99o05qxVrQyuOVdsetGvWczrWipP96Ui5u8wYL1pPNSHl1kYJ99zsWz5F/5O3J0iVJ4AbaK8hZsehtajkbBld0y0v/1P7pvewXLUV39+Gw46VQl7VdI/YBTXA/U3/2R9iEsEhbO90kgWmmQZkLCCU1sjqrsHMWR/eFwa8Qlb/fsIZnubH38y5hAXGx/l//hSVYCR+t/2bjJ0/55UePZdlJqBE35Y4YnwNFo3rKPcYHO7lghGP3LEwaXrTXKF/frnp9DLKdMaFt5HBMddpOMnNVIwT+5VgewXOlQfqp4xSpMKogeXI2mrx2dueKUqlbgj/vP3xD6UOPhZe0bm4JEm45Hda+Aea506QPkl/S4DHNzqEQQkNJodyqoL/L7jJ9aMhxdu/l2l2LceYlwIAJB0jQyoIE/B+iWnJnl/Ggitq+xR99ngYpnt/gM3vfRf/K0PyltQL34pRaoVJkstFrUSw8HH9q1om/X9aTi45RO0SJVkzhGVebjhDXWokZrjpu/s/+rHcqtXGZ8hB+JvsWz6/hqOdi7H0EtigWzxwQip1BIWZIbUJy4IZyEyNPXD6vJPnxnWt34JIE22WTWJUzHWOy/tj29QZDUmWGDXVKq8Yo2GfbuY46wMBrw5exfbop2FhAkrBz/yfSTjSbLBhM/vDxwQ8Kizf6/hfG+zGXLJSHC4Q1lB3tPP+ssH2HM4EFLUthlcd6KEtTvO2Lr4I5SW/v38y98hfd3cHM5VJuFHtLOaJWIMKcIu+dHAPFwAa6JTq/7pPfh91Uw+orII//ylPz1//sAVglhwOGydn6I5bPxKpck3oVHs5OZsJLPzLz6NlyIUbPs+cNPQG298P2ROEuSgs48x9aRND1PZoO2tUsiwHzyE8J9/tV7zEw4uOWXz038RKI7bMZZd5IdiePvxACR5gkQ2GmAlxrj+f2cKwP8+U2BJ1Yt6Fo8KiVzPFrRheaBH9/hs6DqYPJwk9COLoLrNvBtfMYQBHKg9OYvZoXeTwn5Schy+3GT4/UTVA7E4JvhgPxs2CxeLg7vbx0CSF/WAcdr+ApGSHLB1fx/A/LR0BTKSuGR3PeGQ7WUvgmEMd/TooYbNiSd8wKPvTOyc5LlYzY8gQvpVNk/7x4EZvYcLHM/Iwdp5r4UiJ7gWXG7ymzqD+WnGa5RrUOMyjeqZF4H591x5KDLyRFJh98kMsrWGOm1Kouw0veHv+XOEr9bT8O2LlnApC+bAkh9qouTtI1yH8tZDpkQ19rto49RzQ2BTzgLiutowxUGfa5X5/oTxsesH8lyuPXxKTUSDh+wwyg3julfkNccoS+NEGt2lU5/B44y4F9gno771ZrcelxfFei6D1cVLAI3feqSHK/XM+RveI9DazKWu2+BiVqcsgG3oYOzum6oZRYWXYXsca2yrqcGm47vioN6KbwTyp27O9eHFQ05uDjhUv7BYd9RsQdsrLyJeKiMRr3s6gza0ML1KcTW8z4ksQ9RBk97K0yVcm8DrIWc4P7JaNTdM4pJ/YPrpeaJCXwlZ9xAvkB21hmrrrWNECZdcfZwYwtF30/iFH3FgIyU7JH30dzN22rWG5UhsHKTvrzk1e32Gox8PiFNWJxFyKXRAFwgGdej4Aus9+hL4Ou3vFHW1EbLil1iQCLWJPlnwNefB3z1gtnt/sCW4HZjZhfHwMGUWPeV2XSxcIkA4/aCFve/JKuawDPM9H80Yhw+eNasoBx/l2e6eOCjrsKF3WaxBnmgFNcKXEC7SJ1WA+fnlCPBaUjDxVswQymaN1PNtZPR8KZCy+o1P7bc/Np/ECU+wftwL9GjiMJldL+2A7pzvOOIar+Gv5ZjCh139aBD0gjnzsXwB0uPQ0UC5foqlW7oK1vaxRNTTX83y2s89LOw8x7b3M8H2vlYgRuaVmierH8anpcvqldc7HHyDOxit1EdQ2qtnpBw4rhhkL/+ACJ8yipzyBtheTXkIA26gllCChJrGmu9c/3qhZqUGyVKG1QpJzV2oayi8OetCOUJvHgykJDBs+i/RR+i0GNIwONJk6XRFASIbnzSFphUugnRxYH2VfOpr7g6suDY8mKfnN3YG02km87zTIF0cg6jPcWzo9wc1GF8UfdtPdUh+00mElNQpWq3DaK5/z7t/TAlZAHwMk9fUMTh1o4izFvqmBOqtt7p1SbGR20YihdZiqQQGZyLt8RUsxWhnkHgNIzUSHglJBFkGg9+72MhzHtzqR9cBHE8rNaJgbhY/a1vYLHJMg+1QDzOTaITB4k046oZTwozmacCbCjQ045OUjLvxFyvx7OiovDkFm+Pd/QMaJ2go1m64mSMN5PC4Iy2292MM5vM9iWDx8lxqBebKqCXxHZTY1aQ2KUxzWz8LxsJ9xvjyyYrViTsN/EBdYHQ+34Z/eFh/0iNF1yEFK47UDk5ze6WHLDOb38l+zLIDnQUfoJ+bfXA7OvCaHi5ElLiMkSbQetU7+QqNxqQtaO91NTTXzzaid34nozplHiyHZ012x65vFp8zM6i49I3t5vllM2RFB7f1pcHo1uYcfU6RKrj28C+emV84Cux+aUDN4Q2H/sbGGDqX3ZVaDT4l7I5CS3m1gUZtoNdgSamngAGbIj5kk2iO7AJEuFPLPXYQFsz5W9AKokt+ofZQRsmGzxYwL5KH0UmPE1bevBmKgvkjPPNBsh7qRVNTpRlwSI13Msdp74GKRglNb2oBZt+dVmiy/Y7Qp4zAGusSBKPR3Si6/YxkpubBAb+7mVD7BM2GXc9tCq/7y0xmJ/UbGrWEV1LlNWBv/zwkzFmWAP5axaf2aH8ZPZ64FSRTV9Mw/OjJ0o3kApe4lhF7ccmwmlFKwEwCGYkG5xYMd4oHvja4ULcys2Jyb8UDZmfnjvZHvUumaUci5ZxyCGv4U4WEE7AFkwMfYz+adsOXLFwEzyBbafL+2IOQIo7AZ8ie2C3sIJkTeYhg7y0a/g8AAAD//zRd2dZzzBK+oBxEBF0ODTHTLZFBziIjkhB0N331e3m/f1+BZamqZ1ADrjUe8fcp4HC7rV+MXOu3EOLp+nDeMxOrTfyIxjE7WOgbLBEFVI/i9w62HN4b90UwkzubE/Jd/NUvgud8ndbDRkPPa/Ohq5+nZTSvDVkfD7IxzE62ENQLOdyFZLOHOrSIxgvTgv2nkZg5t0lJYtzP57o5kGBT+N2wc44cbg93wyItE9GQ9NkeAhIG/+JlUr5mDtvvet7bM9pIvI7go9LEa+Y0twPi4+lHlcf6FVN0kB1EdTZdUfm7yMR1tt+MhaH0gXWs3MmhenjzEpcN1TQ3L4gJ6bcSzrc8IrivSxLorES8by8ctkFqEGt34wU7k6cEA7VanOPilI3m6Flgnj7Gv/imOwQXCN9kR6IZf9ftYtvo5+hlzvg8LwZT3y7M+IOnu/URYpSDJxz39UTCt2TNPUdbF9Z9z0lSL6qi/7p+jV5xFlJlGWzF5P92O3gzOSGGu28rfrTsGLqk7xl5h041bY7VEz6BlbBN9kNoinCRQ1+JFQASQO2/SchUdXw/DE9N1o7jf3zlTflHf6rDjRT6LkBsAKShD7rELFmEluBX7aX88S+6fL5+WRsMowv5ObLwqiirolfPbQ78+/xQrfesSG49MMB0jIzc1ZuUsZ/IFvBSjPWMj3HHVMXHwPHxQ4xtWqPpLOodLF4KwvygPu3xkCkaau3VnlldSxAfRFtDeQu38/sGFf8W3xLSy+LDPF3JojH3473e04uD5S5XI+Z8f3swcxTSCeJ9werVs4aN45fspFZGJbpED1EUznu36uIqJqUkMXKepcBdw97z7S2Wg+Q9PBLGjdXJaP6ntCGrM3NW9qribrY7gtKf9sTKJiuTnykytKNKYzwYsl/J8penemuv97gO7QmNt+5Ygu8vNbz0BqWb6HOdz/duv+yBjbwbDNj08LMfClbtKYn49FJLdPvaL+K1ByqGkk4A0p71zNr69//i93PcTcQolJPNtjuZo3T14HT5fT4FPWPnDt7xjRg+GJ49xl6VQwCJgaHPNhnP7tYGjo9ty+z44kbS4stcuKjXJTNeYYK4c88teOYfk66/3S+ij4JTuL+PiIrY1YvhVfehqi5eb2KRwIskw7jc4ZSGI4bu5wshCJIQ3FclwdnRykbjVdVw5McHhjCBiK1IvEBO3unMZMcF4s9GlcAbjTv5w6OxMw4+REUns0h0RjVqjnlB72OD2TH4nMVbOjV71bgdIlz2uygTyqDmMLSLDfFUchLTIsx+sBYHmyrreMho5zkh9Oj3Y7H8qe1xmvgRWLH44jt9qdFQ22kDh2OWU/WLR3uqHuwD1jR7AEvj1XWl28qgmneGtZkfjo8UPyG9bjkxzV3T9dUtSZHxjk12mmAtWMCLHJ2lV8YM9Sd3g2QVkhZe7d2/+i76Ib3rZ1Uq8PL8ZvZY30YOGccpPvVtHnFeNvlffFG52aT2QLr+DoGNGQtu8275qYskxFb+l3lRZBYC37s9+HhrsVMUvbIR2nEP2/JuMOwUabXWt3YDXR1sqQZHveO7TKQATlsxZ2P43UqyMgkk7+YxY/s+ZaJC9Ua31pZMNo1cdBz/1gtNOgAhoTWklRBvf69J/HHGvUNwJqKDfQFZ248kuZ+0anipSoMWy+hBacitir1eqvxPz6W2YWR3HrYfWBoXm6rmdSumhWamEChhQRxzaLrhY7Uc2qIP2Pb0GIvRfdwBlFdzY/FqO9ms7I0fCk+LAYvQc6MJN0kDqe2MbPOpio4f1tIe3tuTy7DrfWf9qMuAl/WBbFzWVmNyciXkU2fPjHEjo759TDIIDZd4KTsnMXx3Tox4dTex6jqJPerqdULoxXsWu/W8B2OKZAh/zwuxbelj8+rmpOqM14R4+Scas2WGdf9nMBLsD2PHzbBNkX/lIR1r2lfTp/WeMCbLkIXD7fYX/3OPw3zr9BwSm6pXu4dKkAsjVaxEzao732HvSiXzvl1oj3n5vqJniyJGwp5lotjjGnUNkbFyNxI0mWXqwpyfLNmOlz/9ydGljy/MJbVnD4+lFOrXS5izgIZ9NvN7Cu1vq5AgX8RiGBUkz5P7P0Z0M4smWX/ESBfvF5n1fzS9Vj9AwpMrWipKZ/ND4mtQT6sFM4/hoxDS8nUFe7MtmKMbmj19cx2DbHU//L6ojT33xBlo1ovE5T+CxF89kC6GxOy5voyKo+z+Pc9zS9cWCIYF+L6u0T+8YQwSS/N3kcaSwh6LyR7FU9fF90Xcy0pC43sHG9i/Tj2eVqqUjedeSsF4Y5ORAoXFyPa2ovc0d9jG5pMYYd9LmqmwKwnrRxqJWBV7ZHVewYJf4iH+5ydwSUQsYpZTrMISXf75G1GSfuxRJNvnf/Vnzj9+KL8S2i1PPkXTkXb8ce8szb2mD5KuT3LX31VkaDN/Jw5uNDSdpCyE0HAU2hdeXY1mp13W70oTlHN7qOb6PsGsD0myXltCNPfFETV0UMnmN9+eq/nngma9S9yaf8QQ7VpXC9LHHt+7hIlBfc67OvE0EKe79kUbJlRDSql/WdLCON+bLakuYe9Ml58II+GcUkNf5ocH8c48L2iinBbAxo1F7PvyilZvZafBtzM4sc/Gez4nuuzhJRY7guUgstky8n0Ix3AgkQ+3jLrO7wh+iG8sMn6frN/Q8gikqb9k+918xbRD0kXftpsd/noVy4QsJA1W6bYj9tY2M2l6qU/knPaChaolFRQ3TgOfYzoxctw6aIoXpvGn79hcf7r+kBgK3M/nJ0bl1enkouw2f/4D1b6hjtgaH11YnducRcXzV4i2TXzEylpj2Y88hbjpSg9v+f6c/RWjo+U7bVD0C+f5geoXiT6PFqgtaIDR/D78HHU+0j9HwG08PKrxG/MaWAFfljS7vuOOMvrIbasNC+CSIub0iwVsdoVHbH/aRzQ11wuwd1NFvKetFFP/ed4hwQpQ/ni2EV915yv64/fn9dUSUw/eBZm7VGHx4faMhldd+8CbFcfK7G9IWsVjfTv4a/KZ9bbIuXOFXawHJE7iHWKGurugBC3F/H2V7NfsVArt1lGZHXqfSBj3MdUfi+CO//whMV3GEvrjK2XOR2wjebn/3aGfUp05/qGw1+zVKX/1h67rXnR0M8Y/WN9JQ2b+bo88cOduCfQmyXbUxHAz5p6DWX+a17GJ+AepPZr9AWafDUdMIrClf/Fkvz/vjt7WPkUoy2rcvPZru1db0QPd3DBLfJFEUmyIHH6r9Zok984uJuu0u8Dsl+HlHx8+kg5DcGMKXS0OvS3Wi6gHzXQyYqyt2v7Td6jKCp8QXmSFUPxdrQZjGTCzGyp7Gjrdhf/ng1JMHlF9uHBvx7zp+87aaZB9aNpjyEjQfaJp15UulE52pUvojYpv1Z0L+tk9MdNNjxmrV00NmJ4mEjuEZqJoiw3YT9vHD2/IqwYtznsgKZuooj6SQgQFVuCymDwqnXWEeHVSGlhI14YQNp3QP78Sr18Tmf0KJHS5vAJ5wYGW53PUTWefy7qxuMxzlNIqGjery17Xwy8hNl9nRS99Tima/VCsuIFRiFD7xciNTJj5+Ubw+9JrAG5lzoK6qrJx8/YthLcOxuvKooLN9R7dzhMwy1AtMV13OYevox6Je5aiaujDDiBL5JTF71MQ8a9r/ONXlM98g8K7aqC5XRjz2gNG/H0yJ5hWO5nZTHWKyfr2dJ46u1K5nNRsapS8hH1ylfDaqBXxDx9ujuYQP74a2TQUP47g6boUPA3sfnO+SSgmac6CMq2KP7xF29FkFA25gYatYYUw+5XM98KgEtBnDQw7h7AN7mk0NcnyCfrl/CL++bTrpD9/2zzVBimqG0bcVhsL2puZkdh+Bx0an7oB8qV8EDdNyopOhOyBX1Jz9k88wdTdK//je8zhl8s//f/PHyOys0acsCnU//LRmfFuuvajpp8FDojF0aealLhJIdi8VLI5LTYdz3uPo+koKB21Tymmb76K9dWhFsPKbysx/uGVdYpr9j8AAAD//6Rdy9qyPJC8IBYiAglL5CTnIKAv7gAVARE5JIFc/Tz4/YtZzG4uQMWkU11VHbodfuUY9rM6hCTSA2TmwTlZf3qF1/Manbqr6OG/26opUqqV5PjKm+Sf/7KXngPyt/niwy6tS+Ag29n0x0F/79g5hsoR1Vhwgcem1Z812CvBEel+3nmU754xyLSaEv0xbO/ll18INzwN6V0wRqFSqwluevSXj8GGZy68akcTZTGpdNLzmgBf06nc8P7NlqjCFH7OwvK//cr9g6tCLvobWet3eQjHb3n78dWRHtFeho/Muoayo9Jx9rfZBfBVRMQ6fi8J/Ts9BZAF6BNyTeQVzNrmd9du14b7C9KbD4AzBJLvdeToN0JCuc/HgmVSWyQEJxGs1ZjaoOS/NXIFkibUK/UMbvyIHD/GByxf/4ghHKhCrOrkjXQ0BgEwx5vxCg7H7Z1GE8IOzlcMbi7R2RLVGCbzUJOf/zW3d4mCze8IOc4iIwGHW/rDl1Dmja5Zs60PbMOC/IfP+l59jS2Ia6tFdv11vI3/8mCXbe8sNTcwHrRAtGDlGhJylZGMPzyTx7nmQvJlKqBaSi34yvw3MnltKt6v9CZAZK8XzEymJLjJc05eGuONLphexs3/C6FwCf6IPkaDt/jrg4eLNB02/si85dvVAozKhBKbiYZOA/pV/9U7fnyT3QaHA/t9YZItvscVe9Hj5w9hsvvDxfoyletP/6GSE4FHW3/l4McLHyh8fCKPtrD65w+E8qbXaC3eY6iQ6RuSdQnHvbHPr7BbtSeyLadK2KbPZHPZK0hP/371mucAxKdBiDUd+YbIJfWVaK4TLP2lti64ht/BxR9UZK/Nqr89Ja0A57OKaOnp4lXD+1TCbX1DIQhHQG+F8pDN9p0hM5fs7b1ptVY2//Cf38E+O7uCFy17kczcHxocd0TeZo1dMcfz0n/+GmfwBolnSDa/8k3BVm8jp01fLn7tV9Br90K47UfR1buFwuZw3mEZZKRhm9+h/OLR6A5tsflNBtCNpED+ewJj/3te7iUDZLC7oR9uchnD4uWefvUqIMRnFSqldm6Iw3jKyPOzT2HeSfG2fmrCD3LCQfO+M0Nq7A4jHg6vQbl9Yoy8zW/b/Ib8n38M3aD0qEbOPtzd+w8KX13Hlu/5cZXIF/n4gpQJLN2JyyAY3Rvy5zQYN7wW5F/9ILROp+Rw6eYK0E/dES2lUULfvmFB+dnlJOxDqWAl+8pyXiUqXu7rUpRqzloYCmGPfLVLdP7nZ+yUh0TUtMX6OtQXV9kd5222QagVy02zBYj3lU70XsaMWGe89fHYqegYv5rmTVJP/vELskGQjuvId6G2wjPK4fU+LkDWB1how45sfkGz/Opn1lX5Q96JQ8WUd34E09dl+ucn8f2l1eDGB4PFQbM+HNchB95gc+Q07FhC3pdrDp13h8P1dY30pUkGDtr0qyFdfL6LFVe7XD6Z8YKOTrtrRqkGGE5wx+Pn95npa/k5TDDz5DvxgsjyWOZ2A0yOshBWohp7bPf+RqAT+4W4fl8363eOefh44P5XPykmd7rjHx9DtnP/NlRZWworMU/wgZfN5BfPECiTRZJND8xbfUq5WE+LoP6B/+Pjt3Q+4myWBTY9vv0E+c/5Rn78dhmBWiqb30rcQop0snu/Yni/718IhekxoV/zPEGwO0ZEW9+jx2bIRKV4tLfNvzF0am9904fye0B2WPwVxLBPGrj71d+//DVDYnJwLh4/PrL1sWCWCi/W3ULHN9mD90+v7U+nEWllpv38mFLe8Alt9bRmEUrLANY6G0h1ErWgYT4P4DKBAfnhy2BrHy/4nx+jSpfWW45FZSia2sXktAve+lJ0dIV3MTaQc9kJOjv/iRz4+aFnrDbe3CQ1p/zyjyvOLzYA+r1CVbJEohn1Y2TTSRqAOgoJ0rtPCNaVgxzY6ifhK3/Y+hoEUw2284nrnTcwUqRhBz6OAtBxSadk83tzcCJMJrrmHsc9AtwKhraew91C3wV9Go78/7tTAP/vOwW17jNirw8LHEr3D4IHUA1y5dp3Qu5DlcKlen+I+33iZjJwEQO4yCnRdzZj0y148mC9GBbSw5sJ5rEtVVAsykrCz/3arOenm8McvxMsczelWD9KYMGdkvso9MrjyPil1wBJr3/hV1Mpm4W+pLCQowvJ9YPVzKhdBLiq1oz7Qm09VkwjB3c2mDGda6WgpBqusG03TV0IE2Bk5it4laCP97P3blYhX1vQgGuAq3j/BuvWQQiCkbxDejhzzWxt91T9Nn0RBIeKLUdpN8Hk+5CRxV5WwTes7aAfZAU5GX+ht2a7XoOioS+hFBZpw+QTV8sLvbgY5gvPFr6qNWXPz3y4hEY10uDyleFL0x/EqC6iN4HmFYMXfgrhUsu2fsgA7ysZR0sMTi9TX/StNz/S8yMxoxcD6yUUrzBsZEAcuzXYKrt9BXGWi8TOMsdbooZqcFtvZFntM5mV+8LDr6wXIdT0AszpKXHhBTefcPc+cIx41J6glxRfhDJbGdeHb9tQCBWdBCBgzfp3+cZA3botakK408f0YIkQ68Vzmw94ALNtPjRItbkkPvKasf0EtysYZJiQ464/evsWCxzcZd+IHAdz35CueF+VcRpqpA5JP07EGzjY1vGm4c6PBh+w6MIelTkK+znQl+JDKXx1a453r/RX+yhVELLhEbYkRePKETOHrvl6kFN9M8alf7QiXLCrIm+9u81S5pML5/McIbRT4LhepzaCnmi/SUJqbRRIdLUhf91/kU8+ZcHc0nMB5y4m/mujtGE2f4LQXxIe6ec2SRjG3FW2IXAwl4BpXI70mIKc7d0QRE9QzOttMZTV7W4I1dM5oSIkIliX+kls20zAwnvDADVnLlFwMp8607vOgPd4CJCbfj/6UhYzBC83PZJSia8NUw5TJhtirBHNOPnFeq+dFOpP0UVuQ2d9xadvJ3/jrkTOLfcLoUBmB9tP7RBf0ws2/KkvUWnOlwKZpRgVzFZzAf7iTQwug05yibbgs8MH4j5KMuJnIotwOCOOuDvrmDDNXt3d2xs54t/uh2R+6C8XyqpoE/OLJraAahfBncflKJjcFMx/jVfKjij0RAuEoOELN8/gaJYqKYWTo683Ox1g1M8ePhw8A+wP5zOF+1n9Qya9JjrtxyCCl4Y9wr13vicLC3AED6p7C4XUWwtyCLIc6vCjhgfjD+vTZ0KWnDyDATnt3StYUPOWGJXqBd3+PnpzQLsuhJL7gMgzbI7R+SZlsHq4JnEflQDo862KUO0OYggeuxNbrHjowX1nvNEv3ufv6SXCxhELEsD7oK/4PlAgPhKVHFH5LmbbvKoAx+IbaXb3l6y5ddaU6vBaEKKJkTB2+kYw7s9vhGYSJf/W//rc3Qg6Fp2Op4uowdekRiiaXHGcd++2Be1dK4nup3d9KWIpA7/zZnd6o8/uK0zB8+lJyA/zrKD0e5Xh533vkcYjFTBs7DppfIk34vD8CdBnxhlQe0x7DGX9yBbbfKhAwdcJHQ/8lWGXazH8q+Q4ZPL72LA2WTtlw2NMG1YAeoRfDM8aV/zD76V92y3oBVcP6WntGIPGYsD5uJuRJVCgL1caGUon8BaW+lurs8BfRYXJRUROzVzrTJDiFdo5dyenbzUAKqNmgnOHv8Q3PojRz4QMMO3jAxZSLy4W4AoG3AcMI00AjT5ZrjfA9PCpwwPffBkTwtyHG74Sw/VWMCO0PmBv4DNyTPhtWHj5lDC7GwHx62+X0OG0K6H9GROk8UL+X3wBV7+SUwevgAKxGpRzXuQYGJLrLX+iywP9kj+Ir8TXkdDqI8NPqPX/8gOub7UKrjy+htJXVUYi7RwRdK8uQqfHfQST+ZfFUJ7TilhVjUE3200O7chPSZg+nvr67OUYElBJyP4zxoL+FV0MjWObY9m4nhnxCucKX2XjkuDJRH1eb5IF3WXOQyoMb31J1wSDqHlewuouttv+H1pYENojS0qR/uVfIw+lZ3khjzNyC0Fteg6e+TxAKA+sZBVyuYWp5dAfnnir5A0pdJp2JSa4S/pE968JCnvJIfZi1R4zs78BWMmfgmGj6IBoTJ4gGq5WSOvioC/QgTHs2R/DffFRxsmqDB5Gx8Uinm38NcuwVIMC4++ILLo39P23/EYw0ao9+Rt4u2DlpeegcrJd4lxqmTHj3Ubgat5nZAvKAvAPr6NrpRG3ONceS+eogq6gRFvN2gHLiMoeCA1Wib+Tl5GWTtbBxzq/iC940X/fDz+jgQXTz5uZnHYusKMwRWZTGvrqxfUVnr9ihc5VPHtUGVNN3ltWjGzl9WZrFUsGCKwkQPapfhWr5NWpMh+VGQU9qLz+O+gPeZfccixyez1ZbKMMf+eFHC8Ie1McaJ3yq9EYu4/BBDGYIdx/6Aud/q5mszg45iChlGLe7NWG/eLph6+n2CLJEl9eLViqzwcDl94Y9vqmBkM1G+QIpj4hu+qbQ7XN4i1/zjo7jUkGpRunYQFAV2ehJxlAFa4cUZ2Z8+hLXSI4jfoHOUbve+yGFuG3Pkjf39ZxlmfNUlppjlF+86ViMEvvAerM94n9Z8fNvO2ffDIYwYTTzHHZRe9QJg4/IN/c8SP+GjsRdKf3nThNwINFf8kiuKQ6+Leei6PHOSyqo0WOB14A5Pz55vDy1VPkCOQBPqszydDqL1dkBlLWsL1ctqANIomctvP/vUSnCQ4VMdDJBS/GHDvo4NHr+K03njyOc+dQ5bxzr2FgPd4jm3ozgwVPNWK3xByXwyeG8LB0HrGhc9QZxsIVPr/fDg8mvjYrZxg8lExkYQlHCaPOG0BoMM1H2v5jjrw/jgbk00wnBklJQzM8aDA6Rz7Kio/SrIt4jmHv32ZkJH9HJvjwZSguqSIUBn8i60VbXuExS4aQZYbqsfXRRrCWbZE8/g7vZKo0XoR/1lcLySv1xyV4qCLQn7KL/BX9NWnDphaGXPYhyZGrPVKOtQsDr9GRaa1xQc9ySAFHqiOxVdlKVmnr1TbGtkCMThrBFOyqXuEXQwoPF05lC5K2XnSKpRM7EMtin97LKzwjaSbH0FCb5XA+r3CKXgDjQosBldvRggczRyGkhxgsfDWooL7cIDJnzxyF3eysUHH+kpA6ltGsPvwaYNpmfxzmUm/WiySK//DYFpQzoIcH4KCAS4eYRS+BdYe9FlbRe0K6fu3AcvvyGQyuGiWqso+b5WjaK3Sf64x5tVya6ce3oO1w4WO89N6M1a3ZnheO//IZoVephvDu/GFe0hd9AH1Zyjzo3phT4V5f0nt6BQ5LL8g6qwYjvmnb0ozWBjP527MlYGqsmAJoMY2CAeDtPMD1L0HhTtOeDf2tJ6yLMJT07NKsUWX4MIDcnoRg2mqC9JjC2HpfMd3OH54uVIMX1hzJcW+n4zJfzQ4u15OMBVN5sxXGRQTOzzEK1vy8FGzY5yq43/MrCSVVSyZFLR7wZmgJ0T5wLFaeU3P5FFgx3oF8KP7lx1iJOJKiwtGXBhwpMNupIFqlxkxYr0Ekg9sqYXapfG9VsycEVK0Soo/D2eMdmaXwalc5sUR1aRjW91T55DuAjvFnBdTTOhs0tDPQ8XOXkz4qzuqP7yN3Z72S9dObGOJA8pAuifdmUUuPyjOqLbw+X59x3qExBy23s5E3vCVvPkoHDN0nnYmbt5w+S0ZgA08ZRGQSC44EUFDC+5+okwc5q4AXJrVV1DaPCdopZTPNAe5A0AcS2vQRWA9YtKE3gwuWwr+gWNJTYv/LLzeRViP77a85FYdw0Y+vhiU4voLFuRnktPHT6cDYFWL99kTmsS49YrbDA/xZo4b04Hj05m/3HGCx155YwGfqkebChZBy4A+pIDgk//C8HPEJedoZA9YtuIZvJ8xQWF7puFxlq4Sb3iXuyxjYSt6XCqaV3ZBAWT7jhv8yVMCxxsPRa5M1458qUGiy9S7eOeC9EDmGh793hrRybybMmu4+EIC7I6EMpISaf1EEF5kXkOc6arFO/HuF4ZFDxAkLvpmNSjJkalKHOLcHaya0ppqy6eUtXo2G3/QcfL+HBTmrPzV9sd963W939NWTEOrdbj5S6Kf7AiFN241rYN4nELL+QfzMuTGmPdgVum+tJdYkjQXd2VYI7nwnYWY6pFm0hqt/+h5DwaMJDdShBpteQKe5bMZ148dgnaKeOLG8G5eN/4CeygHSyCljtD9kFjyu0R2vxsCNc8/aWA6PEJF4l2NvDW9JpOTs4CL7+HoCxuzG+OErssPvqVneGt/CNmiuxOsHzaPa+WUrgE47Yl6WQV+3/CzmU+4iXzh9vdWijiqFeDSIntqfYi1FrfrlH2LHb7U4PJdzrOiR3WOuCmt9MTxpgv5JtDf98WC0PQ0+eIfTGBYulcB0yypeCkUxRdkvH12s2xUYTfzF7fsdFvzcfFYoLYUWgvun0Vmi31aA1M+CYRPtAM7YPQTeOazQ8Ti3HrF3GQfG2BXCw90Jk2+LOSifg/KEdDQ3xe/75R8fNl9/IJk2Pgzo3y5G6AM/I6aovIJN+RAvnOJm+jRxrbSfytn8oO0NseeeQjF83UNo7tLx5//Axsht5IRFOvKx6NlAFd4FsspBScjRYVBx/GFC7k1pm34/b+9I+Ib1T99h/ZLXEKnvhQR38eVNXHrT4K0qJ/TTi3jT9wpcxBShB80apq+iDBODcOHOInpzOARZBnu/mAkSV1IsMf+XwiI0bsT5qvdm2PANWKIlEfQ+PMBUaVAEo/TZh6IYbLMZD6iC40u+EU//spHk+NMBYbyVxH4gEUztOlCY5YlCgqPb65setuGm78Pl1AO9R6eilDc/ioTQI2ChiyKCs+2fUXBVSUOvy6eErObOmATCl/34l8QvlvSL9+Kf/pcPQkC8+0fXcSGHLlz2HxV5acF78zyFKwSVUiKvxd9/eg9s/hsWNz7+j+9ufJE8huPQzHu3F8AFvz4kxG0JaMjuPDD2zzUk/VP2FiQDFe4aW0Hkx//N0ithyyk2OqLSTBZLaUIoe/0ZZc/mmkykqq/QRLsHBtCfvPnUVb5y8wgJuQMdGUFcm4PKFlGYyn/heFgfbQzTqFCxsM+uyf6BvxPY9B9u84ftUVmeYvhYyQuFp5bqyyVCGITI4bb4OzWLpYwh6NEjJ86hrAFdkvsEhLEoNz1p6Gt7uEBwzy9f5Pr7EqyS37qgLIMjcsVHl6y0TSaY/NUh8aWrAuill0VwemoccvVDN67rZD3gdzZspC55yBjWlfXHL8gPr9f2cIeQZWUbcg9ubNbkDVJ523+krbuhwN0XVYAH7ZuYqvuXrE1WhYo8Xytkc/umoF4jppCAWiKBtA/Biu81hT/+H9DvE9CzZHDy7MYRMUeAPNzolQDsC96ubj7LZnp02gRImv6hgk/lhtGKiPA1aRFBx+ecEOl+2PBEtslPryysnntIbUQwcLK9x9AO+8B5vDMUMj7xVnx6deBy5FdkrUEPmHM3IDwLexb+/M/lUkRYuUzWcePz60iz29ArSaC9kKmCusGFbNlQ3CkoXMkpA0ytBAh9qftDvnS9s2FbHxjUc0cswXk1lLovG0wPKw2/gm0m46KKV7nprjzRs/HW/Iv3xtpjdAztD8MTP1OIs0wkp8P6KFhMUhf2YLiSky/cdOpp2AXivFrE2PgLNstttusYv7CkpzghY2Kp8K7JA+Y3fn1YWTNA+/1wseKfcbJGQpDD7LvoSHunUTFGfePDTKo7TJ/RdxzF0UgheKqEePrbL6bt9yD6NAJWBpkrcNnoLsy5q0B0WGVsLZDZwuCAd/hAP4vHRj7yFdE4Lihcq8vI91dThnrepyh+BK63FkWU/fA0/PtWLpDmOsqUjb8hU5Yttjb4lSkzwFrYZIaqL6OUZBDWt5AgQ38VbPCSCLrw2YSY8cyjcttYiiUaEhaz7Ost7VvtlEM+mBt/uunLD8/85cwjH3n6uKKXpQJZPjNyOuk0Ye+YUuVmBWUID89g87vqQSlfYUH0O0BgYt25lMdPPiFn89+XUSoy+OPz6jFMvLWH3jb7SIL40ImoWU8N58P9GodIr5pRn554F4PjhTdCOGUnxtj6EgDm92fi82wcp/3s5rA7fe7IvtAA0NM2KxFd0pmYcCbN/HFJCoVxlP7peWrbqgq380AMSV+86YkPERCbKEfJm72K3mZ2J+ueF277I4LmDCuq/PDfU5Vzwk5jkUOr3uvIJExt6GzIGtyJ9hXZz2brC6edMLyc/sxQ+Yzf8fvAXwyTJxqId466Zjl1fQh1V15C4f73KqbJBDw0Hq8ppJMrNr0ypiokD14nsTE8GvbTX9JU9DitLplHn29blDd+gYIuaRl+7/MU3miIyOlufjxG/9gVGmKkEdO5dgVbVJrK7dbxVbge+Ia9P6INe8HWidulR/3Hx+ThFhtEj3zcLOGb9b94DQ9txDcTfVaV8hADHvMku7L1o5gWWD/quuVHlAhJxKA83CIDXUX1PBK063zZhcgiQVKCcb97Tx38ZhZBmna4gI2fVaAs0TEEt3Eo5h1qMti2zzLk28BpGPrO2u//Es0dK/1rVIv1wyNkPPIKLLKuX+H4yaZ/9QvmPEL6j39u/nIhFEWW//Qvce/26rVPfIjlYbwH5DSNWULRmqry5qeR4x3fvJ9fAOJrKoXzMUQF0yGJQKj5E7qIe86biDDWwBV2EXKn0xesyZulcBZK/189iud2tw4+uWGHgu18ry43Yag4H7rx+Ze+pvgjgvwsP0IWixGgryMwpK49ClsfZNkbHTtoofr6e+OffhWULhIU5fF20PZ8Ovn5oX/Nn0iCumAJziOUAUOhF6JrbzAux1x1wW0tMqTRP1KsD191ldJ/PpCtxZ63T9dkgpt/Tc6ndjs+j222nZ+pxCPStWF/DzVWoit9kmKrN7Bcoh3czv+W7yFbXk4Wwfr+0ELBLSnY9FArf/QKkp8ftPjxToR4zs8ofHDjuFifWgM7qzyhNNaNZG1fKYVdfHKRI1K12TvZeVWKnCHi9t7ZE7Kh6pXNzyCOI9bJ5pelkGXkiDa/rVk2P03+8BAjI69RgoWCz5WIheK/+srmZ+eyKqTcVj8Mx+VSxhWcJx8i146HhoonCsGmzza9UhWsOI4Z3B8qA8W8ICf9z6//5VMvSGdGidBUkFseGMsnjdeXtdlco0bTiL4uh4KKd9mVZ0SbkAvHa0EWfi7hb71/z3fgy36AnX9IyM8vpc9sa50RJibmjnNVsK9/tyDbfa2Q86qebXwew4u4HpAJZ9Sw4AAe0E8PBTHUchn7p6zGShtXFP1h+vJWL5m2O8G696v36etO19WfH4+2+gxgwWuNlJ2FW2QpvjoepNS5wp8/Mu6nXTJ/+M4A53YYyA/fpwdwLfiM/U+YLXPR4KPYX6H6uryR8fpeNn4TluAb7J/ITBzMemtvhL94QFZ3ezS0Xfpt1KdQYqUHlU72bZFDH7AqVMTXuaB0/53gVr8gYRk7CTsXj1Y23af3rz7F+tsLw23/kON4j2TzGzIYldoFj5VwYLN7ONXg9FQ5clYasRg2fqYEPZKItdVv1r7TDCgm9QHvK/pi32TXp7ATBAtLmYXBqkq1rfz88p+/QUV7XWFz/ZyRPYe0IaGw9OAbtyVBedAV1L82kzIU80D02+6gvzf+CDeQRaaZz+OvHgB0swfhWrwxmARXyKEdjzLRdnno0aMyVvBoWS9k4qeuM3avS2Xzn1CE0SvBcbxrgR65PfLf52Pz8xPAVg8M25s7jHOxEBdsfjSKGr9O6JYfwM9/VA9cPdKa7zK4vigkxubnHkTVW+HzhGV05ICiL/DBBvEXj87tkTTYsrRYuZrPmfjHUksWiQQYzlMIiT5c2bj9vgu2eER6ZlTev3riOr1MpOryJZnVxXPBSUudENTuPhnVP7sF23oiffOvWBaBQX6EvE1iIdx5S2qnHGzOf0XY8McALK6Wdf+/OwXK/32nIBfsLzmdQ9MTcDJdga2WHInVExqJY3A+3CENEpNFVTP9ze8enPm1J6c0OxbT+f6J4Lm51LgJDF1fW/8Vy5FYqSRo1kOznPOgg1L1HDB/WEUwj7tCg/ci9NFR6JtxPX+lEIgx3ubpfBOwHuyKVwLQH0kZHTp93k90hYlYmFisgeuxnJeucMQfH69DxwN2aVcO7mYvCvm7v1WZujsHSl34I9bXfTVM1usWFm+shz2yTfZd8ejKO669Ig2E5viV3DcEqsEhopEL0Vf9wdvKy0gZyoO+B+t0BB3sPOeElUPAdIJ6R4YiuSKk7WPBm+w6XwF9p0a4nyeJLXN7dpXj+6sjzXgcvf3r74th4T9eBNXnJiG5XdYy8dQ30t5HgVHOqCYlc+IhlPu3kywXgxowMFdCzFZ5jrSdeFv+5pCQAFuRjhWvNKAIoErOnNuPlPgUwupVuOjkTKpOGmoKkNH0Dx3PhDVf3z2FMB7IH96pbsdWG68VPJz7Gp24Qzcyy4op3F2ue3IyTpp+uH01CrP68yWnKiY6y5prBk95FZIbnnYjAcJfDqfFmYnlGVDHp0bn4Pk6LyGWBFywaqlzIN4lh/gerRktlVZTLq5sI/t1nTw6fOcQpFz8h90sdT12eLQPOK92gDRLznV6lSmFNXX3Ybc7CjpD/R+G8tTzSHsJTcFO0qkDaX+ERN/dhW0e7GcCv/9rneQdG3zmXmEMAzlcuSMtlnSsKljB+o+4jzMF6x6uPsTXr4BsyYmK5bk2HfgQe0bBcWjY0n7jEtjS9ETGfHcSiloaAm2sL+H7Iu1HpmkaBA93r+N9q+ya+WKaIpgN84q010FuVl6gKnwuB0q0T3Es2NUwMMTRhcMgEGqdfgV6PXyIOyPtU7wSphfxA5hvzST6UL4TZsfHVGGF6KLQ2+uAxd07hc03u6JAVhXGDmYJQYdgiRBXRoUgs68F/wJNw22XBFtfQ35SXqUXbvfyLEbD9ezC1aguSKPyXJBp9Gugf1aFmOz8B+hIzq1iUy0jp8f1mYzcac13TeIB4qRWxNhz5DTIB8cWHb2i0Mn4VG1lNzsR8qF19zAymP3bLyzMtZsIdWqr0OgFmeh7585W3i1CSNrohHfi8zvStOBFOJ0EjE767cEmJX6WsHzqR7zeTo6+HLhvBf9uJAqXyL00DPbcA+bHRcbyRx31b0boFUaGd0b2zjp4ZDvfwPECDSXAnJO1YTcMhvr6Rhs+JQfudRQVxTZn/H70BLDUa0p4518eMlhOdRLxVgQNOVLRdXw3ydo9YhUa6JOFot5VgER5D4Hd5B9yUpU3eI/mJYKFX76QIwRzwpzMq6FW3Wx09PKGkeTmZ8CL4g55PaubVco/ObQ670ns5eMVRHUONfQLdbsT8Rfp7NggTRr6WSbesPWbjZtigIM58SS1m1qfUm3OoMDqEOnJ8QsoYAGGx4PlINML0oIsL5aD6XB/k5NhS8Wkqk0Pv6+4Rx7OquZNyjUDeUsa5L9sM8HBc6/C1+VwRc4j/3qYPmNZ6b5JQdxXMXt0PUghFPeDTVxCy2bSs0cLAkAeWAkXi41Z88hB4LZGSG95xNi5amzY1bIVgt/zq4kIoerFJ2LHsaZTKMoWLF/cSEz6mAu2l7oU/gWnJznau1qnraVPwGiPb3Ks2L0hsj50YDpWAnqSzEoWzRZrKHTiHb8egtAsxVGAMLc+iJiBWxTY1OVY1vITCpdZ+iYkOhU99CWbI6rGHxmrW6eEqixzIRPjmpEqy0U4HZ5v4qtdB9Y6VTXlxcSAoOaJ2Oz95VeYrZVPtvM84vmkrOBlXBnRWfsc68HJU5hbbxSyzkzA8NTeBhw47hLCpjl5S386DfBR/nXEVl43Dy9inUNw2bGQnvyhoa+TYEGj1d+hZPu6vuT9rQXh0i4I7S9BQXzdEwA6vCrivvQ2GbUe5BA7XI/U5qomghsakfx3WE/IyR63cckITX/5FHd+r3uL70gZ7GrR2uJH8/YH7lvD25XLUNiqW02ts10w3q1vyO7X27hKOclgQXL3F99sCHfhBEqd/9vyXeItyE4FOaA1j/edm7J1fz1SaOP3mYTR+9IsYTG4UBurC9ry7UgXM/a3ufQdUcW/JcH6enwoEQcuSHtMJ13IkpSDB1NbSPhHziNdVl+ARomcf/u/vAupAsnTssIlbCt9uu2uGZQL+4y7C+m82QrUVGbN1KGTaCYJuQ57Fwg6xxOnXhdG1s++hd+cI5i/jDD51IM+ADcTKQqvNUzY3z31f/GAbH82dDxerhhKCS3RuQlsb6GCI4KrKojIUsnUsHgHeXild4JQVFjeCqQmUp7CaCLreNoX+IIfvPQoYwfTxMoSeugZhq/Pn4RZcvwy+nDyASqP4h1S1gts8eiXh1h6P5H+kKtkMbCfgdg6e6E4aUExPZy8B/dG65GnuxVbpmW14HZ+8fpXu2y1v5YLlCPOyNFRpWTuXgDD9KIKyK+vZ7Zq2cLBXHC/ITDoNWGvQ9vCj6A4uFmvzFvGXaHC296akP3wEViw0g8yyiVCrKrkRiL9BXibz2ej5193K6gS/5Xydl5xs3fuYOoXnYNBfFewuPJqgy/Y0SAEd4hMUY2L5eZcJrhzgw8xnrt0ZNatMmBUiAglZrNPGHDaFaYf+CSn19NIlsM71qCAjCMyP3+uznQ7cOEvvoPE2TRcWaRgp0uE2JVzBeSwLBSSv/5KbHfhEzZ6sgDxdRTwTdxVjPSVXCmPeXuP+Onvt/j+ZFCxtYgcgepv8znHTt5FpU4u+kiSRXIz9xdfxHcuR70vDy8eHorrNxSekw/e8wFG0CkHG+mlHXgs3A+CtPGj8HCYh2Tp85KDbnraegF2anLoO36CypHtQ1mzdHbQoDopO3Z30KnwRraqUh+Cw3nehRQ4RkOEXTzBHkoiCd3oDb4vLrehaSkhUWvH06kAr8K/+M3BN9FX0Nk2XI3PSpwhvYLf+YJhq6jhVQy9kUW5QKFcuGfiPU7H5MeXoKtcIXGuUlHQjH14OES8hvRiKRI81C8eZi/Twhwo/GJP6L2G+Y6nxNzWZ3qvfQ3t8+6FlyZ8FvjxvdcQyNcaiyofjNTNee3H70Na+kYh2NodgzJ3UchJAv7vvEkndwxF4Q+y+TznIgwrI0RWp5oFtb5LrVxmEBLznjcFNQ9xCV8R1yJb+CvBt+TvUP7lT8NuNJ05mV7DbPITYm/fN6kJhVAhwojnOriNPWY7H+zfQhXCBiBAtEsWQ1CeRxI0i1ow5Sj6cO93HPGQgZuN37fA9eNdCDHqi69HDz24Na2D9PZwSoRB8Ll/8Yr+3pq3FEeOg1eBfULpUNzYMsRVplxBC8lpoc34rakUAqPhbII+wiuhu7vow4HtbeK6wqVY+abGUCH8SPSq2gN62z1yMApXj1gbfzoIcWXAa7ZNqQBf5q1DfeghOolf4rxbM5lfHOGgSUNK3IjBYo2vjQiHUp2QJjzHgop2UAJ5hTOJH9NHnyfv2MPVeK+YDyub8caSxdJ6Dhq8GD0d2WI3MnhfzntyNPcmEML3N5elsTuQo9FHzZqCHYWnOh2QFagjm9hZpeBttx90LMZGn5/r2MKdiz7I9+g2f/hWWfB5UkPknY/7kbxcCQLd6b+Y7R0FsPIT5bA91QM6Rq+Px+qIt3/6EkNomoxqfh5K7fNiolNcLuMs+G4Fs7X2ifaYHwWVXiWEfGavmx6i+nxtjyvc6YCgoxGdAK1fQSuX3aoitJ+v+rr4QQu0SyITg37e43Kr3z6cHm636bOXx2Df98DrRoClS2J5rHXuObwKk4vMVfeShevNGKrn8Y5OV9Z46+fwqhVHpiWxzEfHfvwDat2shoCfabKW946DB4e3UNkPQ7EgXhq2PiKXUBJ3FaDJRZ5+eEfUYr82VLTNElo6EvCwyiKYu72j/fAghJYPdZyCL/z9f3RkAvUm6VVyEKXvAzFf66QvwipzgPpGTU5PoCSMat/pl3/Rpr9HEiduCE/iUBNb5eeRckaPwY/f0u6VgOX198L/+PE+cEHCfudlw9tQ/lPEZO2jZdMXqobscpc39O2bMnw+hO+MmfwY2acI7X98kFNTIcE//ZMfp/u/32fz384Hj3mdQnEc2mTVzHaAqqD5uH2DNqF/KtMgcBd70zd3Rl6HqQN8crkTfzuPuH2LK3zl/YgsqagYC/e1oNBsoVjO0sGb3h61oHbZrlJVcL+t7zopP74TrPfjyI/k1kJoNsGmh5Nx3t+aB1COy54EenTTp+py9JWNv5KQSZ+E5lnmAko0D2nfrC/WyN2n8EO/53AR38NI+3vFQ+Aym7ia1YBVZi9LyZNAJVp5fierz9wUBr7xIUEWrWwmztsAVwG7eFdeErB+2tSHB0ew0Ka3fvHRg1tfAoRU1wJ7abnm0OMyCSvHsdBZuiaivPkLm59xHPknRCXwC20IK/faAezPtguXwH2G4I/1YPmkOQW9UDd4n0cfb72euhyOTVaj7Xwz1hBRhWVQP5A6PWRApLNegTKoHqGYfc5glX06KG4mUxxV7ez1mH0z6K52TIKgPY/0M/5tfk4WkGDjh3uTiSu8T5gQKwxe+nRN1VSh2ZSg/KUbyWIFDxuezSBE7qSs+pLuvEFW4KPE3H0Sm4kzKqx8wyuHHPR3Leb63shKGtlG+IvH+U3SAVLf2YUwmB12SB+UQrvJPuS5nwUPBz6Zfn5PCEdz8ua3PYXgOngCcZS/7zjTmm/Btr8ITV3iLSWv2ooxDwiztLM9dmb0AZq/XYTFXlw8jIPBhpqiicSLvj6jvhxMcGwlEwVjYiYLvoo+3PjshkdcscztzQaD7KjIP/JJseV3HwYmJeF47ZKGvj3RArWH+/AA79CbzfxggS1/b3yaB0TH+w4WGs1R8gB/I/VOmQx9PvJDirXXuHDHlJd+/09GIbfhJXQhJaeeaOe3off9XRj+41M37jpO1ZHJcCexY7h86wNYzKopYTOIEqrXk9bgd/YeQCD74Pd/CroelhB+7oOLfnpp46cCaLxIQ+q2/+tOAQZEyiELBUcgzfTTh+8ePfCuPjfFfukrDnri6YiFtI6YcK0UUTbmHoXjjRIwGUtnQUn7uyLfW2R9lfJbC9ccDCGn4YrRpxDE8mf/6IgjBEGxlncMwcaX/+HRtHNrEQizfwmFvYGKZYdPpbzxbyy8vglbj10uy798DJdbO7JRnB8SpEmMTk9wL375GryLz4yZclDZli9lJejZHsMO5w37JudWeSakDPdmNDf0gBVR/sUbx5+jYkWZWsLKdnosasea0VsXyv/h0Ul+gvWCHRVaz0NHTqLJCvLnhiL09GFPwqvLxhG7jxgs3fOBp3cVenN42VOZT2KVnHaIFGQnnzNY2V6PDPP2ZgutYQtv5ismnnn6sFkP1wmev2NOrPvZ05dvdUyVJYUABV3reWx8u1cIdkGK7LbqC7o73Gvwfe5fyHAWPNI/FahQudUslAePGyeFgzH8rbd/5xyPf1DPUB7x90m81nyOn76DWBb9vEPqOzklWDo+RRjETyXc8acK0PugilCkAvs9j8c85dhB78bNmHJJxXr+T4PQact24zNDQg+XbYMOVEOIKu34z39BT2JgtrtfvTUcm06+7PuAXKR3lHwPsY9BvBfexBzqezM9nHiAnbxwRJMGjhF6NXi4H+Y4lC6pktD9PXChe9CNkLrXjtHka2vQkfcSOvHgT5/ge6IA7o0POq7n2Bu4s11Ch3xD4jZCyOjHIC4M/s7x5me/kr7q2yv0ui8gdvZZGO3OawzNe2Jhri5WwI5oFKFshz3y1CwYD821r8Hmd6P8NL42P1rm5M/pRsJNrwE58G8iFIda3vT9XEwCan2lqGS8zZzYZttdugxynzOHFWnXjUtvbbMwZbUJV7FcCybsYqykkWts/vfgrd9y/1CsVzwjh241cCOFIhx6Iv/zc/7pv4JkLrlu55WO+4RCOeVvRE2srMBJGcVK+Twe/+EHw65a/vu8d1TGhlpK2cNRLaWwx3ek90/BjOH2e2SLr4QerUhVcPTHodPr2RabP0/le9gWKPB2LFlT8IJwyyfkvuXXZXdyQti/NRUZtIeAvk59BP5gL4Vc/1ePVM9sCjnHCn56tfjxaViN5pmc5lvsbXquhi+2G5AuzG0zm3zYAU1RRfJnNYU3m4xS5cffFvY4JT8/BybrKcAfZ6q8eVpkC7apXaDA8W2wUsvLYX+T143v28UCbdbB9KIJxErYNVmVxzf/+UPhLio6vZNPRgQ2PEf6xl/7ja/LHzqeNz9ot/UxPGrw1j8AZnN3bJjqfP+dV3Syny5bz9/Fh4PsqcRdJr+gY2nEsI7VF7LMhwWWRHLK3/djSdypTJB9sYdJAiXkWRc+Yc84w9DS3RsJ+teqMxJpA9j0Kjpx4h3g0niWkBLVCzd/H3Tl37QC862aCO2+ZiOMKK0hfRcv5HHDn74eXuIVWvbRw/DWba0lcGUpr89FQmZMpAS/47EEcqQbyNobpMDyyY/gj0+H+8e7WeUgfMhD39/JhUXVuBbcxQfPkxYiY/WbBtNnLkPumZkoOI7AY5aVU7jlW+JCtQULlw623AjqiVxhxxf4eVkzWMfai6gkwl67ZEoK3h0GWNzvUm/p9kcNHs5kh5X7noK+eMQp5JTqhhLW9MUacqIoPeT8jrb6zabPax7yJXcKgTsrHnOMKlcS+zAiFJVKsT4vcv6rZyB/uRn/1bM2vyX8vJ5Gsf98Kgty2nrBO3JTxvHdE+Pnl+JX+P5L+Mzf5RA9ZyMUe/HsscOyrDJ62R65HwedrcrqV2C7ArD5OXNBz3cSi+1ND/7t12oOA4b+DBN0DUOxWDSbVjB+qA75u7JG3/hKB/N2bshWH9GX8LLNDpBOOjHewCgOvCVV4OXYNsmU102nB82LYPL0mhB2s56MSyGF4IRuKhZqwdHZ63E3oOVLCgprffCorEYyvHrQRG4jYLCyO5fKx9atEOJPKuO5JblC35hWcidjuPmHuxSSPR02P++c0C2fgx1SYcglfzZjRWiLchk9bBRs+DXkYqIpZdS8kd/NerFEMhPgXSoUzGufuBhtDkAJoFHG9UzP+mLmBwMG+6uDE0e2wDhsfZ/1sCmQBlDJlnRrlPDzx+3koOr8z1+GeMVYSvCHMbGNBJB7eUtcUbDHg3xHMnxYOsYO35NiftxK45/ffwn/aLM817GDQm3a5MdHNn70UM7fb07MyWqbUZiC/B8//uUv9lWNWN6fJh+dTjRKlsk7DpAP9JZ4e9kcF/Rqr1Bp+yOKIdPB8rZbHzBZfZCrXh90duG0EuqctUe+c3l5613gSvh2Ty5SSRR6e+chWVA+rBo+nChNxoD0AwyF3CK6mMge2fIJXJVDgqvvSL3ZHZSNJ9pXFO/jq47Nv3sGfvoQxUdQTPNRy+FPv5jZ6Gy/75ZgywehwpHM2/y0K2wE7YScRQCAzZSKcJ8WOZb0uz0y2AsP4FhphLL9LtXp6qW5vK0/cq/EY+w+xy2QtoIEP4qex7LG7n71RhJNe7/oD1iR4fsFOuLg6TnSzN9lMM9Oa6iUPWh6fYsdck4fZKuXAJoxwsONb5JQt77j9D+kXcm2qzyvfKAMQghgMaQPrU1CGjIDQhrS0NqAn/4u9vmG/+yOwzp7HSSVqspG+n5OGfz5n4Rdb9V4ZD5Gf/3cVkFHM5/MWnXgdmF/emGaDHyGJ1ciEl0kD/HLrQjRztu5xPFE0k3JB3x0vx0ddlnORxZ/4KvI6i7DIlN7s2+qSlP7z9ogkeorQQ+f9whboamJSx60al6LytpWgY2VMF92xX2YCF3wdsh+OW8Y2oMYwiAVNjss/stQCMtcNiRe/50/z4dzp0AhHSq82Xtvky/86t/72zovEw3Od2jBS8yS+aeXWI3v696A5G457Pq+jMF07MQjcu04WfzFR8K6u+uDu5csrCznM7WSgKZoTjETPPez2SQfcAEJWkvHck35nO/bL0rv7xe7no5qzj2rztCRez7xqvUvWPw5/P+6U6AI//tOwdXEIcO7Vu3GoY9TiK/FjZX999mN0GqgysWHMcdSDsksqEUK98qPGfEfvKLB04sh60qP2g1s0ND+khWg/bQn5otxk0f52gB78HtiXuIjGpmQGDAcvzYet9nUjRfp7aAnzUPmWvtXzq1WluD9egHz1FhKen3rGnAmTkE01J7RrPHTCvTdPcbvy0TR/JEJRmu7NEkA0Qax5qS4yh47X2a6G93ko72PoXqu33T7MR/dcIgFA87P3Y4Y72pj9v47EJDqrGYKAv4kfJjHWp263YrsYqXtRut9bWF13IvEOjs+ajZX9wty8MmImRG3m+KbPQO8waXCzLqEv765AUl2kahdDoDYm95ahKfwwaLnNkP8Ht1ExJ5lyHx6OJpiXCguJFZ8Y/7B/JocWZsa9j8uMuPiDfmcb8kLFWGu45aUb06P/KjB+hAxRja/bzBeZlIobtkC2b0bGtRK3vQwdfaK2O25TmjEHg9kPuIvFZo85yMNjBm1guUTfAASQO2/KrdoxvwpqP242jPnsr7xKa/wiNhcPinoe83c8ossoneUqOzv/bY2uA7Y+6hkxqn0ctZeeQmIeBNdV5XTCWZyd+DkRC398NjOWXhRKSq+zCHRL2jz+TLVIboM1w3x/MHuBlcIDlDUx5j4z5eVsHemH9AHMhMrJ1nivKwdEdjO35Fo/f500zuUZuTsiomFbXxDv0LfS8CfSkuwOMXmcFTCA0Rj59K0v+omHeSHBHe1POLVrr11XJpPGgz+QSPe6vjq2F5SX4iQz4nYm1wwx914eqO/fH5V8s1sZbM7IHIUj4vn/kNjeilLdGY3YOGuoIsznKxQSwqNuHdRSmbTFt8g/dQvwyj/8Zl95xe4P+iZ7tzVZOL+8wjZ/FSIXe8nPo3hzQVxa1CmK06WD6suPwI+dDOW0QkjPj6MGMpYpfQzfZ7JdJHiQmrnu0asYi93Y06wASfNJXSrDEM+lMajVrsxk0lAOQ1YehMpKqtfRPS1b3UsHy8xun4FjaWXc4QmpbEFeF8FnemHFJuTb7y+62HzzlggXSpzsqRDpnqZ2lG5mD7mnLuGqwK0Ax21W9+xg5k/4Kj9QlweZLEaG6EWgM/KmrmNlvE59dQV/FanmATVexNM+kcW4GL16F/91fOzr+GtvQ5kFyERUWt6uUgicbfUi4KGEswVxI64Yq7qjXyutg1GfiKWxNS/dUCFV5dCvVdtcn4c9GQ+LPeKzkoqkj3vnGRytJOlOundYa74JtW/95sGq4oY9okv33ndJXnUtz0xpuGStB95h+Fz8WwSHO2LOd5WiqKAa7yZ+7ubaMJcLQCgHujaaDU+ZvvmDA/ucLwu3txc6muEZ3N2iNvZ+2S24uIFTnPPmZ2+cDLxz+EM2Ix/VGg2OBm/edX+y++g9cRkumvRGa5ucmC+dZ+SRpzKGLJUbIkh9V3Qw+p0hvKDL1h9ITsYL2uXwh8+k02UVPNmp6RwbrInnqfhkg9m+BWhvDQrprWtznmhbEKoeumG1+hFEn7a6lT9i1e09pNg7G6Tr3rB+8H8yxsQO/bV+A+PrOirJf0EtxZOO1HA63uiJ5u9c7bgbHkVCROQg/7YP1zVkh4VK7+1EvSTMZ9hs55szNezE8xAWAgB8bdMbycvGddP6aXMwtrBH83jZre5Q6nw+94nJj5f+BT5Q4jcON4RN7woOcO6Y6BWmTPmeP6l4+ZX+iqGoh/wgm+Ik4P2lfuPaVCV5aSapLX6AEftLZLYYpRTpVZCEH5Pl/nvnd3x+KwrKjh5RmdxelazI/czPOqRsgCpY8524kaE27teM0fat+ak308hspLkQ8fkJZkt4rGrvo71g7gI//LeexgvULKqZnZS74N5uzFX4M7xxHYv+q4m/snOUDxrDR/OTEHD7NQGtLWP8CpzWTU4vbbsm0Uei5JQr8aP85tB00hNP+mLJuOw8woUVmeLuPPRX+YItS5IZSNi2a2Z+W3tuf+HN/k0PxFvWvyC1Vc+LfX/riZ/YgBm8z4R0wq8nMUChLCFLqTS7QlV38VbBSE+IeY8VTuZ4/PtpaSqGlHR36Bqms7cQskU6kTbsKjqj1/zBQ5YCl7PeI3GLAh7FKGvzgxv3ZlMXoaCLf11ye9zMhvuXkFZI67pdLo80Zy/uK/qKq3w7ZBCNftoPiDlW25J6E1tNUWnwEebixPQVQdNx+VSq1XDzj26eiRlMj6VbkY7fqyIcbhvqvesXTQwflfONPo4dsOClxCo1ki0Riw4fQWbGoAMHjn3dVnNT/1OQTE2Jimz18usSFABuN/Li1hRGPGeuayUJuFKSfDGkclra/2Gm39WMMuVPJjaXwKQ6a7NzHWaVLOLH1Rd6o8Fx3tTTYMML/jrz7ohMz7fj9hCy3pXshuqzhwPgLByNcOQnJ/VjNhWkI5wDF42MX6HKhktiWoocMsfsT/9WM3FsHfgy3Ljv/qJRjIqD7Ma6bOH1JyUJhIUKwo95i79j7/s5Tv9qOTMMusUzRreaQDCJSGW+p74cFrZb1hN0T+8D+a945fIf4ucRMdB6nq+v35leA4CMcr0m/fWTdWUw7ILya9uQzWHH2PZWFD3xGPFyqSarLxhbpuln8xaJ6i/T71cRG+Jj8SaT2lMMbBIuDDiK06wxLOFpb8QbbJPnMP4xIDynUZcan3Mhd+FSDDRkdlfxwwEZM0a3DbNkQTValdtqi2IEOOqYtbvcUjmYrhaatuMNtmlo5qPzmddw7M5Osxf5X7wV7/yQYaUpe5uY4773/YMF3H4EG3pZ91+nbkQnS8msXrhZY6KNvbwSswz2bXvbd7L+2CWP49yw7zL7ZRMKvpmoM+8JYaZeZy/My8GpbZ04hZxYG5oZQlqJYYRvR1mYk7kapWw4+eKOXlqBaP38B/K7nXGLNgmUteksB+V7rfz6PeyVnmvaeID8DEGcr4OmrnV1TqG3dUo//EFjoLsAAd+cBdNWpvTFgnhP/7Dy3uEhkzdzmBXgsouDJOAX975EVbyQ8DCWo6qyWiQCwqbv0w3EyPfll7xArP5npieHzqzdxX+AjFJFcy008ekamb74MaHHdPf4iPgb2GO1aX/E8dS5px1ZjDDITIEtsvta3Cfo1yC9vQsiKe5764dWy4os/iNCSbmQs/rw0q1v2XBgsNbCwQ2rFLoRfNCtOf5kM+O/J4RB0yZkfNPMFfbJ4Z8vHPcR79b0nNfWEH9fr/Zws/5nLCsh+tX1MiulnnCIjVsUa0qCbPpd6hosDnV4P5WPYv09FeNVQWW/OovNsNIP+WjWCmuElfzC69O5ZbPR1lq/+X37irsOs5O/fkvPykNV0PSw430oMjWeeHTFz6I4e4MnR98cDo23+SPL6HPdPfpZsnfbUWqsyLXrxVzjHWN5v0vddB1g0UWiMbPnIglOfAJtxqzLe4jYbpVZ2jDqGdBpLj5FFP3/IcnzHPrxUP7FqCs86okJD1GaNT6l6UGmzRg+3bZr47vjQXgtybzlcDi4q/flHAZ8g3+SL7RCQ3ZS6B9yi/bLfkhGEg/QhuXZ+Y1T4H3f/GIfpeUTo+wzhf+JsL4c1o85YcgGMzfRYA1G3ek+Fkv3sPqdlbcwZwxulMjn+ttnsJ7s+wyUDs57yNV1xQvW3dE11bfbo6L2YXn+vpkf/kwXSYkovwySozck+d/erC/nQvmE+uQj92leIB5OvXMmqzdHx8u0bsVzrS8eAhRodE0sFeBTiL396j6pvUVKN0DZ2TP+m5800wDz1PPJMw/744v8QD7VO6ofNn+OPXbLUX7XXb++/+ZQ1OsDPhaVsOsFfa6OTk29E/fMlsXLsHf31cPH8Yw+glKMv/xR725KSQwbR2Jc/R7wf5h77Gw4O8fnoPElQ3zT3LKNwJua4guq4gEm/rY8XfybmHpD7jR3Hc11+qoqYv+whumPQIeZHsDsmU65frHA/6vPy7vk4UJXE0ab4ggg1+bJHyzncnN6/qMkgn/9ePAnNlpu4LfcEb/8H16nnSszhVMzPOTxJz32VlEib8aSDCugNMye1HYruIzC4rFY5J95iPL2MfkD09nnkYFYo07Me/TGeboGyKGX3H+0vY3HHgdC9IXqeiL6Eq/M5MbxaGFru4ThoVCyFtZxd8//YfXonTpRtVFR9R/25BpOi0D2kfqEbnKN8BiJdGKL3oL4L1yyU5K992QbjY+GPbVw9uVOnf/+E1+zQxieB+pmzbDEZBrnSWsZnptci+QR0UJ3ZkZ+fVQzQsewXPSehaeUcjnY79OFeUW7DAYs8iHwyVtUXP5VBT2WtXx0b7GsPQXdoYdLPtTvRIeUiBT7j8+QX9Zuz1qQ9Iv8ZBNdrGfBrzo6o3nedcgLtpBCS5r9n985K8fG2hS2Y1Ytiqgya8kDHbhXyg87joX3MLDoJzKF1bNwcwFGvgjktJvTnxdic25RNIZhCgyiftQXmi43fYtilVrTyLYXPJ5ZxnjX33jx/M8J1N30STI7eBKfHg80JiavgNVrrhUCi9ZPt0kv4WfVeu4PnUe4vKepCAcUYPV73PuvvQ1YZWe1gojR8vtNohXI4puesLCBY+bpjrUaoi0hpjopaHWPy+7WJZ+Ed1+p4oX31pUFj6LhQea8lZF2Qz4gQOCheKYjOO1NeDPf6isoEnm1xAcIKyvPuaLHhBXtjQCWpRsyI5uMImHDv75HV5WNAHdqdRC5/NksFi5fvLpK+oGMu+HmNa3J3SLHgWQL4+GmZf2l9PoxWK06AM6e+su6LRjagA5Ckfa+plSLfUcQrfilJAnbhE7cjdVePMjTAOq54JnXx8g/dZfLK7EwJzNB3svt6gq5hZxF0wMSwX6nnsXJx+LBfy5qyk6HFmGaR8yk/7Vo/WRLULmek660zg4aIkX3UwfPRfSy7lAPlQpi45D2o1//e5eyl+GHc/hk6K4mXLCT4vhdTcEPFPTF7pXbkysljzQPHArBskGIHV20qvxz0/Tlu/Y7fuO5Hy3/yooD7YNccfGycdOan343Is7hrXZdaMsZj2qX+uMzruWmPz1TQzUFdyis27jQKxVyYDFP6KrzCWVIErOA7RqUzBrX/CgksXzGfS+x//4i5hZrgje8PGXM2aaTCsnTNH7KurMw2qL/vw42EF9oCvLivMpx0qmHErTw+KHp8G0f+4sdE7TkOHmN6BhAl9TpLO6Z9Fo/7qZbCsfyXKVkEglDRpP1kZB5eEr0a4u56T/ffWveu2QwwzlJyQjbVQLkHt7UuUzN9U0a2b2Lx8XPocmTXHwX/zpVjWafHhy9IKLc7SJw3a7brp/ihjEgB5Z8BOyfDSFdw9o1QssyvQ6oOLkt//wc/E3k+meiUfkJKnGDO+TdsP+1/XQPouO3O6vks/5C/lobjudIi8eu0nLEwUh3+mY/gjdZPKuh1h94LKhW206dsPviFLwyU/Ajd2gfOnXGRIa/4BX2+DV/fUD+MOLv3yc003zAk3YTCxIT5BzPreCaqZvjeDl+f5xGV2gsSTgdUNPyRQ8jxL8NvqT7CYe59PO5xo4m7RlyUPwUPPnp55erkxwkjRBJ1/eGvyGI2JYdsKgFm+nBzoch4xoWH8m4ztpNCiPocH0i/FBY5BIM0jP5MzsvRqZc4ze5R+fYot/ZdLblGXIs5QYb0gaoCbc6wI8wu0d91LpVxtahQIKheMVT4u+nSMTVrD0M2IwVwyGtW/3MOqbnnjV2Qm4ed0e4Wvc7kyjys8cD6WmwI7tZKZVHQ3639f7/uEN0Z6jxfnFbjRQakenq339CRZ94YBcYpngNHLyjXtKATYrDxF3qS/+UH0KSjnvib19+J38POkh9FUu4TGbpoAvfqX6Ty+6m6c5OvMoIYdPD9xvhUM3ri/ZGxSrjKjbZEM+T7Ehqp+AiJTmnP/HV7auaRIMUPKxpVaI/HE0yO0t0m7umbGCrkwx2b1J3tFyk1NEnTdj18VPZFSUV6iQzx9mZcsuKke++nAKkUJCdqyDn3aMNTXonZz98e/f2vREoCAajPx4x+dxigtVSTYpuSqoSIaFP0AUtS6xeWwnc0nXFrJMJaNrQ/NMru+BQnndu4x8LLX787cVMbN9pjOddrz4PgTwNxsXb/aV0v3E4OFAfzsWzE/rX94u/EIRXoVBisXvpXPEHkoXjIzdP5JRTfr9FoKzH0WmW4KcTEs9KMVcnxY/8czn+0drYROODt1+lHs30KYpEbuRFx3t3XvZpbXLQJ5Eyuyd63T1onfRKN43+PUYjJxLklz/5QfxFz4zbK7aG0zrdGHuZ5lj47dvR5VP8p3pq/FgMkN/1rA6JiJxyJ0nA3NzAQxhFf7xeT7du1H586OJcz5e0QBV3EOxyjssXREzG03BIfrz903zuU/m1frowGv6WuzPn170vwXkKmf4cdg7HX/ZUQr7NO2IbV3TpD9ZqoLYuLkwPD99Lor2xYLVCWn0HYUDp9vztf33O8GjhETMn6L6agdE/IS2Zr0KhRrhk+IQy4VlhZBQ1rD4D3/xqbg03wwlg6Jk+3hog7GHrgQh+MmYLfyNb653UbF3iGLxatY5PxVxr8bCvKWieH50fS5KB3iJnU83NMyDmWw7H6Tzes8CQ99WbEueqbzwJeat1041KYqWwqDGa7LDJy+fq0IKQTdSf/HzhnzIPi/nn38Q2TjLZ0PfxH/5Svx1n3e9ID5eEAvjloQ/64X4K3gZwO+JT8JvFpgc2vCLbpW+oWJVFsEoiPULVjjM2OKvV2NpCDECpFdUbLdGIux/6zMcDXwmi9/TTT5EEgpec8/8z+x141zrMfhdZWJ5zvdouj4fs2pd1c0fPnTCn1+8+FVUXn+EYFxD8wCp7ESGH0PMx3sfvpCM/BvzzOM9aVCqzCCCLTBzN4ndLLZfDR2YWTLzY5GASZLcIvYsQnIrzpb5+esvcNVkOigPlPdH5S79+fvEAIjz2T93Z7hcjhlxy4+D5nXdZ3/+Fe7q8pBMC54hIfjIzI+4hrYXifXwkDyZYV3Wuyn7tJYykItDDKGwOe3itEabVYAwFyUv4A3SHbWznTvxnnqbUPqS8T//22zXaTJrx6qGD6Qmc1+BkPz5S7Bb5k56j9+Fj7OD6j//gHh/76+26iNa4sUsq6+SGcgPg46DBzPDjnOu7coZPc/0x1y1qvJx0a9IvosmiXbVORjlyyNV//zO81P9JOO4klZwva+3zMBkzL+fssRwq8wNljfZpxv63MAqa/wJH7511zWZdSz/vb/dm6Bqel2NlzodcouZGam7UepghkB1RmJ88TWY/urZsbc/tlz2qKbXUCpod+8p3gpun/NvvcwZv4aYlNvA6Dbe9XCAxU8jJLr/8od42H7/6gOrzcNJ6jlKD+Cv3BchKdUSfntHD8UfZ2PpT2/Um8ndQpO3OxLTdw7V0B8/X9isuU12XjdVc3/cr5BZ6ECnxvkkDcNjAUbb7gghfpcv56saXBTALF3OR/gSb9R0QkjMdi0l7CIxqix8nlm9YATTszm9IeCTzvAjWSW0HsUZZjV+sMLezZxPXvaFxe9i51nN/p33QXaJHng914dksqQsU66ActzSwzGYIjEe1Vk7qlRKl91pqrDyUV7zaOHDh4Rrr90Invy4EsM9/oLmJvk1mOlXY0Gy2Xc0ZZaiBrnjYME6jHy4JPrr7zwNs99Vzpm836XLXPs1M129CGa5PB7QP/9p194q9pffXHh5eHzYGuK8xyFybTCI22RR/s8/tQPfoJMnmZ1wn58+dKuJUqW6RV2f3pAF+/BesMAVy2CSzZWElvz582dMXuhXBVzrKNE5c5/m6OopRsv5Orks59GjkjcU5BO6s7D0bT4W12qFFr7wnx/35/d9bpsT8c6hiWb10czgSqqOu8P7YfJO+ozAH8njH5//wxNE+oeM1f2uC96D9hYR2QgNOy2/L/W9QldPKfC6WH2WubMrDf2/7hRs/vedgqgydBZs2K+bXkkpIWfVcabFUoWmbhWD6m53Ad18xjwZN9OQgoDqmJ32klH1SOhquNPvm9gx9zumlK8DPIZVQOzld7E5dyt4bcozHo2dEUxb5IqoMqI1LizNROLhZmE4V4DZzVrv8v4hpxLoeWiw6+8sBIP7jGdAUvEl3oXUQWdYpxf01U3Dv+T8Dibz9XNgProOwSdtxdk7QC666w+XOYmbJrz6GA90a4uBYV9g3bCeYwVsUbSIyQ606xsQJYgofTC/HRWT1tH9CP6dUGKsvDeaJ+maAb18t3RL6SWfzZeqIFfPKfFXnYZm7eq9oAk/mJGAc3OsvTFTr/VrQ4UW7dA03DQMzXzomQmR1s2356aQc2slM8fU+4RbwqGHa+KGJHhdedK3wuaFGrZ+Mj+Q+pzvV9UMzyOdmeakQjLIoViDdwxqKttklU+Xn6qh4kNvxEs/h6qJyTEEFKQeOTfls6OVqFMIokfIdn54N3klpg9knZ0HBpU+glF3n65q57JMpde34iOR2xFdvcJgZH1ZJ9P9hwvZuFwOTL9XMZoeY+5A+XkJzJCThzlcG/cA5rmXaUUjsRuDdnVGT8m26UZ43gK+J7IId/p+k5Kdf4jnx8qCQXllRFt/u6C7HCQHrX9aQDQ7KZLfjH0BqZO6wzRmfTXdf04JD++yxSjQHwEfS/sL1jAnLJj8UzAwLdRgNV+3xBRcXvX0OBqqnQkjsRMccrqs5AS5GyjeznhCY5t/XWjCHyaWIW+C4er0sdJbaUQC8XFP+DvgLprO44ZZjcj4cDC/Bgpl3WRalDb5ROrqC+Nnmd2WnK2gzwP1gBLFl6mKSpRwdZNaaJP2AwuL/pXMdXQ5wyWjAub7sUumaueukHi/J8RhcsX5eJU1cEI8MP/cUJPd+CGGYryPuKNs7ibnET2Upb6YhX1Ipi3dpeDqV0qIFHzy+U21s5rupj3bMU5yrgAO4VL3JSmb/pbPT0EsAKbXhYQcjx2NFTeD6vXizMlXakB/W+hhyR8qovyW1MrPKNelgm6MpOttMqXq5auWSdTiWcC1OXYrw1XTKFCo8r3/0JjcZAGcbSwQT9g7puAY2Yhuxd1kkX+aOppiKOHQ9XfmfR5WvpHc1kII32uMaKnlLL7wEPBv3mPV2VyCIbhuXZSGzkTvt7fHx0/8faD21K4pH2vZ5J9lduJGoDoxD5sqGd9mdER5fQrJrY+OCX+cSwcteEKu8m9MZqc+9eom3g3M2R/cjhucFLCzDyXxd4nM2V+8To/9jtyEg55M3/XvAOvbUWeRe9f5+HqfLXS+6AMV/QPv+u1y5+iLzzf8TgSHT7wvMlCD8EFIZrFkltE6Q7tmUAjZvR6c2/3+rKr1QWVBsrXQ5OD149+/x7X3LuHJ8/eG+RJ9/vCo4mn/w0BlSWdxbh34GG9UACIRHW/MncbH9ew7EN50hrft7RN0caNj9JPmgLlTvUW9dG1iuH/Wb7xOqW3O+Md8tOthT1y4XqspkugRuamREvMOSj6MkvFVkbohDC/1xvRrfFZ3x8ueSpfNKxjfn+YoYRbELPRzJ+DrzVaEMtpozNB9PRHTh1+Al95crMYxrYaoCkaIpLRl93atm/THa1/6e34X7oqA3s8khiX/mcvnHadWb7zQ6+WYdFsnJ/Ojm1sFycKRYd6AlWy42qZ/eIwF27QTLqxcDW0L4c2Ic3PRgscSkpJfgMd+03STUR4ef/VDpchZV4Nq5D2sqotFSKN4wbRrMhcVWGvYEn/E6oj68Ja/0b94C1VxpLD3AbEoj5d9vdzN/j3vUjDNOXS3AEf59aC7tVdVQ3pHNeDd/UaCNHrnjD3nTFndIGMX3XaDnviSCD/TohRRdqhY7AwYYE8qOu69szl6t5sP0zx7JIjdbd44U/4CrPoKC3K3NymNT2+YOZYZtlctn+JJCkG6SB051ppmzvzitkp1cz2y5Bcf79mzh29x3LF7YmX5COp4AFV574ipn9ZmY9qBC5os2iSMz1XAVoZ8hDBffSlao3M1C+9GQGVCWjxd5nfAC5S3Sri/xLhiB1zx5X2Atg4p8X72E71z5Rei72Zn0e2YvoKxGl49LJdh2Y7Sbf4br5OhLv2CRMMhTAbHb1fIvwiM4d1xE4z7tfFVYwd3JHRQUIkr4/VSRi9/Y3F/qLvCwtoKCrfV6LMuX2jaFPtlFptfUvXQjahbPU4xWvCQviEtk+n9kVzZrsWMheM7D2YZbTOUP1YRsf76McK6BFFwjEjubkdzVO66o8pFi4izaj8Vxfk+hEA4cBLtFGLyddNICmhuRkc5cDmTbncN6hv5YdWLrx2HPij+4svCtdUm86UOxH/93hNeUsJvVn0G/vo+SCD5rTne2r5ALj5iclKCXcXL7VdU7kcpJ8lf/4rfP4BmjnvMV2accNqgGR0sbfHEPr+ECoYtAjuvSmYueDjkiqgBaaMLppv9m//lA0pPI2L2Lk1MJp9uNZAT2jKr/NQd/16LI7hJL5GzwGrOHpJigRXd71iKlE/e0Pk1Q9C+G+J2Q8bpyllbEoviI7HJ7RGweHN3FXsrR+wP77cmFA4yFTtkmP+UYDiYVEOyzFI6xtYq4F5cpwBXoSJ3zfhW02YSljMS2rNdk0bBzLaODzyTemLD1zen4pRS2GmrFZXqmZu02yQuZBpuWOTF8jILrMRIEtYufVmImlMYPbHaUCll6aNIOG+xnKrG0yywfPbHYFLzzgJDbgtmLM8PvfH5Qr8ZfVaWvsm3n5j0f/VKLEjL/GPr5RF533K59ysayZSRUQJz7iOiC4IRjBw3LVhvx/9Xn7zNyRmSm1MQq/C/Cf88bz3gfFQZlo19tXHw9qG25mVDqVm5ydRurDNYWaYtfGwdDO3GOqJ9fPmwwCmiavI+nzOqK+HAQpF25iiFv//6a7LU77S6iDGslaxk5OjNXX9ivy/ci33GIi07cl5L5gNpVZTj+WeYaL7UpghKob1YGp9+aC5utQRjz7f4FPO2mppu2yuZuCZU1Byr24orNsNgiSojUFyqibp2Bp/xLOAN6ySz528Lw/ds7Jk9nV5o8hGR4A8fpq+p5WM8PTN1vosftguX3RShh0f4/BjHqKydap4jMNB4PtrEPQV9xd433VdZdDhSFSvvgAel/laNZDmT/pVBPt1afkDTepnNx3+KOUxeXIO5mXpmHoOBz4/xqcDcvBid072R9Nd6KkBzS5f4bXyshu36lKLT7uGzvZKXFcXSxgU31VJWmPnenJIjGMo60LZs9+ZKxfjhvjz/8oluOna1MVj9AAd9j8T5shJNxS2z0FQEJRV/wpkPKR5qcO4fDW+J6FW0+ckrtD82NrFo/krGrxV/4TeXJxYEhznnKNsUCMkVY2b2HYMpkr5nlKIyZdru1ic8P3aWcsqk2xL/INiEXeQqv0cQUGFX/qph/MIXqpvvMf026MHnoT9dmA73E8HXzz6fBXUK1aUfsNs2asz2QLMQ/IGkf/VmCka4oSg+JSVl25OWb9RetiBYqwcqBpegE5P1I4Q+mEJmf99Pk1/01gLh3gKz5N7rpvSOWkibAGP9tuIJf62ui17DBgk+csTn4ZNmSG7bDxZ1EJJu2F1GSA53h2i+6vB+/skarEVnRXQq2wFHHivQ4UY3VK7EazXtxXBGtYByfA6HczCH7hoQOnsFIwdeB+wyFhrcLB5T2S2dalLzykJeMdbEv99nRFMsFJAfVhVxUK4m/eXeC4gm+wvTjcMdjUp3MdBvb6VE31+eaNnvSWHS0xArxfLdp7ByDfiqvYXX8xiheTUVJfS9pWG+viodO71mEWz+GWhNYbmD9Ym+EDYQY9GFZuHL9zdqdvhDNOiqnJddrIA0djVePzdFMGbiMvhKrhjmz69tbnePzoUwhy9x5cFCE+7TDLSDf8CCejsnvHNGTc2zy4t48Pvk/GPKM6SNh5mx8iwuBqcpg8ogaxbK2Z1PzsN+gFLRMyHPTWG28aXP0B+fNQbMzf6CSxFhaZsR27oF+bz0E3V5f8yyzU8y7gfhCy/Yngj2SjvhQYi+8EJzSOlJK/mIqlONdPNBSHgxLt0kXSULBhEr1ImjuPpZ+1WPJncKSGSeiq4Tn6a4nNFSrN5AMvnLyc9oxcyKjrk18/buyWc4c1PHazsdeRM/2hBVZqGx1IoVROEwHGSz0Uw89WxjTs29mSG8mQxv09Az+/UDHNiabk5McnLRlGxTDa3Vm0qi1Wqz6NXEQptk+c7/y0o+Q4UOyFDYhyIph4TKaJuiNVlmLf/yIWGg7gvlfXvLJHi5z2AIrOMb1Gp9w41RNR3n1ScFN6ESM0/xB/3To0fXr/7xE1rreoZ8b2uzQMohp4s+gx+eIhJG6NEteuYFvrexsYD9Ip8te7+C64zXJKiPYz4PirJC+lsKGUksJeFwAAfB9LgwO1vL3ZQd7RJiqZmIb998809fISdRnsQZGEdfMvJZ7n/zg24Cb43ooCiAZl0EPG46msxZQGp50RfkqqZq8Mc/wPWXO+0HV+5G8PEBFv+HgtTUwczcIoRrVgV4++ZKx3Yr4sBQoZF5HXK6zc54fiHd+hLTxXbP+8FsteUrVER0rRgXfT9aqrumAbNq7WHyLCiLZVb6melge/nzy69nsN3qS6yuX1ftzaUO/NV7qGuUL/yqhG0rYOK8ZWIKw5zDnx5knlF51djm1P2LBwlKWeL9+/M8wvrQd+z2mgH1gvP4p+cIDuRdJ6yUoEC31RxRql/TfFr8FLT4QXgL66Si98qlcLxVId2Gu8IcKarfcOjonezORopYEkYaasRvyKzhV3Szuf9JyM6RjBE/fszJD28rtNQf8xzzHUynLBeRpU8aM43sEkx47Feo3okrYp2Jl4z9W5nh1KlfPE7Ksxv8ZSt3KAwVs67MROKx/aRwS72KmVDOaOyV0xmksanZot+SmuOmRlRWdGZPmzpnj1/vKPeXYlN58ct673Zz5dV0pKT1+TGZ3JXQK9Zjwwl2iBqwKoEH+sOf0qzcnM/YF2Gl6hGG/U5B8zHSC3gWu4k28LMTHjufEMSNPy1+1DEXzT1TQCrCgJG7t0tEkfw0uGobg0UMdDSOWzRD5YvrP72ZzPOYGnBDlUh2paRWE++PKZpy58QM81NVnVK+Ysjmhi34fctn2OgHmObRo3d5fKE5/7zif3pNjw8en0frl6LmhAmLXs+2W/y6FMGuuv75Sfn0nh0H9mN9peujN1fDixhn9dh/1swfg301HZc7yvb7oTAr00STXw6jA5n18ogxv2/5gieGEgH16dgqYTdb9nUF/NOtMZrJEIxOUo+g90nANOtldWzhn3CqlR3bHXtadQfxlYF1nxuGV2nOZ3nbCkgxry+2M3zNXPzBUP3TIydfiiqGqyaDoypqzD54Ahojb/gi/yu/GP7ky3eBl7CG9rdadte0bfdPfx7cY4hHX/2icafszyDh8MksPoXVP/wqvz8Vc3bA3VhN28MfnlGWSFqwGZTeVe27G//1g2T+8YcPq1/9xlmt+PlUnOIeLrvzE8sLXgwFrS3QtURi/sP6VINpBz5YriNiIf/wbnguswFedNstevrJpy4XAHyjdBZ+vOze0AcXGlAMvC/q5s+/tWDSs5BpZ/7o6Hm0l10O84oqikOTj8EeL1hZ8Z78HwAAAP//pF3LurIwEnwgFiIiCUvucjNBQcQdoCIgIpcEyNPPh+dfzqxmf45ASFdXVYfun95pzofvOvshyrB5MiBj6LOFcJgfHXqBQqjYw4YSRJfnAXHOw8xmW2ptKCRWhM1nPXgMnnkDSvOg0DCZij9/Cx4DsqOqc47AwlkbCzyuLxf9/APayVUEd52A1tm0737urm36i3eML6jrJ95qA3g9mzz+6Z8uzS8dXP1P7PlXtwfj4TkBZQA12rDtGwwH6RTJq/9NfeiU1c9fhyyVBup9Hn02uaS3f/4JWUbEvEmHiySv/gfZ86fGmzRfJmDVE9i5u2/9t56AbIIOPyV1+8NrBPxev1FlutTewHmnAjQlkyjCN02fZt7iYP0JderC18Tmp9OVoLGVD87M66VawKcw5O1TqShe98ckwbcGe5mVRF7auFpSbm7hCQcZXv2FcAl1yIOk3hLsK8U37O3kOwGh3H6oMkuv1S9QUnndj2g5nY7ZVtn0wV/+l6Ot6u3Uey3Cn1796e+eHxYNrvyRmlaY6STcFAiW2zzGAfcKvVmK9TMs3QTT5LBps/Gn75QLnulhS4ZwUl5iAV1kvwm/8u/xkzocXNeDTDek6+PuNT+gXmQ6VQu76ud+dDkoNfOW2q+F81Z94P7hmbYPFU8wp6sFZak54FXveUNcnVrIq32IuCNe9JW/PiC1IU/NKHx79FXtAvjZ7yKMcoUxRhsE4fMt1xQPzZ3Nr/ZG4O2x9lW7w8QboCwG0gBshlXtvGHv29cO4NalOrndAGRUf4iuJAdvl6qNroS7zfclQpn2kAifqq4G0qU1fGj264+vDy/5/QC05mzq3/wDE8wzsMG6f7FTCfueftUAQfb0/bWeA7Lt66oT2YZPHjsOP4HhMD4lcL5lF3ysmrKi0eXUyt9ApGgnEjXc3Y0igqs/Q+2yqcAcFCWCaz5F+9w86kTe3wUYzOcFidpFBgu7rt+AsKihzjT3/bwL+gfIN0lD/ZVfTJuCt6Bi5zbNNbNh0+pfgmeGTlT/wjobT0krgNV/RGIO9+FwuMoR6B8Dxaibt9mYvbMHnONli91xot5X3X1FKM+bA1Zrzg6ZpTJOErVSwz+8XFa/UV79Baxz+hQuD5gY4MXmN1VI+vFmtQkl2D/WvkuF7obbr3wcQNxfjvRXX1puc/CQN/JTxjh/ngDrty8OHoQuo+v9hN3C1/XP70H7Y9Rng3NTGhlbO+NXX8jmhb8voKu6L9nAfNcz/Vja8C1pMlX1644RsYl4eFmaE8V+YrJZSp8CzIRYIHt9z8DkHdME3K9WSu2rmodjdMI+uHDnCR+P20Eff/q0OH6vVE30uB81WhQypEcfqxvl5H3bT+9CVQq2WL9a234BaO2DMdYdCkh60IU1/uGvHpTShgNTdJly+WpG3h/fWvlnDkH+PONfvmarf/rDHzI4MfG6DpWNTJzPERtq5TKinmwXks25o7YlTVlfWlkEDw/ug371humUpBrweVph2zSUnv3ih0W1gNE8u+G81gPgiVwQ1eLDok9e81rg5YQiqoP2yOaWDiX48HlPj23++Vd/CrnHDa36Asxy+BrkNf/j80VLdSY9uvNfPSxku5c+/Py/VT+h7eW79mVkWik/tc+J1D/99TWHBTi7F8C+TAp9UjbRQ+Yu15Sa1ZbLpqhE6b/1DNKXt7xvZvGHZwGd5j//7pevCGO7l7eYclLA+9sysFEXZr/7xaNs7RWMx1Sv/uqJaM4zampaCyiKKQePYtohaUgNtvInBcqlFGF/9S+6DSe3P32Kr7966JqfID133FoPfbApk6gP8lwJKf7VU9ZjCpBp4YCtQu8yZpjtBH/13+MdJvro3isOrnwS//xmkgli8NPfRJoDp2efsoXwLSkyEqddof/pLT8IDjTd5EnFkjbtYPnJBxp7175nB8+uYR3J+zV/3/Raj90IZAU80tVfy4TbdlTgCZ8ztFcfp4qtePfzT7EvPXdsbOO7DZ/a+0S61Gn7yTdvyo/vUOdiil5HXlUjr/47EsTiUrHdAT6AzuYYewse9T49OCKgqS5TN0IemHZB3kFhsxzIdttsdVrEDwMWzmWHf3ydWirg9s09C5BYNjpYnpU9wELlRCS2rwIMnKQ//vELGh/YEqxnnrhbJ1FzmKasN51tBG9C+Vz5+pkNuM2Xv3oNeOmOPkUsSqBekwp79m7ypsHrU7hpDxH1G3EOabjIDSTXekdt4dhlLOYVHlTYfmL0cHXwx2/qvq7IWu+opkGwFxBRPsa39f4XoZAVsNYnsDd2UjXlt/ghrfVX+ri6hH13rzkXw2ZpUPWFRjZvlkT8/84UCP+jT8GqkfxPxvpZtPIBPs5mRnOIv/20m0cIzfP7QrV96eoLqA4J/HB2TrP04ulT/J0KeSNe30jgP4G+6OFhAVJ/oGjZ5Xt9ut5bFyp3dEZXKY49drW/D1DKUYDIFouAhU8HAe2cdzRod+d+Vjujhd7FtukpuI1hrxBdkOwTLbCq8Rc2jw6vgUzlJrQMpgCWq2W5cHyfLWxdQ1cfOqoFsH1+feqV41Uns61BGJbll1rStgbd7+93jypFO83Q19nUvAbmxxKRrr6waiHBLYLbcbfHPmWbfuY+TQk1FaZkzO5cRrbVaYH1qbbxY73/b/tIFykj0hcxtjjVUi55+vt/NJmXK5hbblfC7Cg5VK/DKlvEm5sAQXd3iMHzni0uCxSg+/Ed2xJE1VTlDi+OweZLD1vT6Of5rQlQeyQ6VT6NwqY8iyYob5QP1dRI7pcx/w7AjL8AKxdF0QcxdH3o7TwbbWpb8Ij0NFOglKcbdnNu1qcrekbApbGE+FBWwXYv6gFcNkeOMGU/VDQ4wAT0GT1R1YJ7Nm5RZUDz/LlQs+0uHjt5XAq5jHtRx7hpOttwUynzlj4gvhglb7LOay+ob3tGkxGRrDNjBcHskdzwyXfe2fy8vAa4/j223orZs+oWl5BrEw/7usLCb/s4T5DfLSGBk/jRZ979GsCKBB9t2Z5lS5PBDnj+bJDpNKv97J0TCGn57bD2pnc2acLiyqeAb7FFbkBvL+lnkBxbk0n4iTdg+oK0A5DuBOyerlY/HXiyAHvjfKki5Q5bOLdpYe1gA0mnq1VNY9SWkB6tkPrjt+3ZI/uK4Jo8XkR+gyzsPnIgQLdam0i7YxPOyRsrEhGZQPaP2AwZsHAJPGXbY4y8c8XM+8cCEF0tbDyqkg2M7SN4u7kaRdtDxIiubdN91kch1oV97bFm6iPgBKlKnZYvQ8ZK2ILwrNyw6R7VXujqyZIXu7MJY8v39zzT33pfE9UCYyqlPLBVHCAhTeuKke05hV+W8iQvXc0bpznzobZJKzTmnQOW5FPGm1roEdVqQQzZI3tJ8vbVHsiO7HC1lKWmyBoQjtSJNyWYP5JcwPX+0OxoLtvquBShivGZYpNZ/XxwLiXMF1dF2z3SAB/0fg47JSLYtd0so3fRb+F1L5+w8YFiRiTEtP3hes3JvnqeAdXf2weI5L2PPodjAFpzGhaYxa8GH5GMQiYk7zNQ7v55PcU+hpQ3AgnuNpWEzcvQel+UX6D8qExAj0dogPmw9wyoXusYxxbNM3Jq5AAkU0DxXS2APlqHvATiNyMEIMGoJjHUEBjunE09qagyiuqnDROVN6nhTkJF+ABxcCvNDCux+q2m5Pm1wTEVKcbR7dB/cy4SZPaEJg2/dQTYJdoLwNUyFYGir/XhDkUI+621RUIFOJ3V0jLAXvx61JWdb7jUV6n9wzc3IY5OjiDSYOI+X0jSF+yRyVA4WKF4IkBqP9m66gkMdnKErc4J9WE3vzlYvu937L1qp2L08OZ/8YfEFjmADOD4+MUzEY/+Rh/HFKVwpgtPzcy890uuTAhSExfULQ9cP7jg6wP74Th0jd9qmXdiAdOtImBzu6lDssmmXH5nnEf9p37oK4cHEjgZCUde0euULWBJfHhor5CiRUnDadyhAKTFQ6G+vhcZMcU3BHJp/Ft/frvnYyAK1xZNXmZXZO9LGnjtNEaP26bqaUiz+oefSLbeWsYs2Q0AuZ4sag241qfIyqJffGPTtNNsuRRU3Luiv57LHKx+vMVyB0udG4ls0Fs1Z35zhnV3rJH8dW+MpsGYA/EVlPSQnxBrJ/9s/+G5Oe+KsL1VvQ3d6Zrho/XWwsUQag7KqoFoolevjB2nTwnNuAdE2HBLOMfzM4VtqwTUYyeDsUfPn2G9cx7Y9sAxI1/mPIBp9hnFDnCrubhVA6yPp476XYl0/pffdumDxzjOpH68T3oO1/ogVcrXrZoEWYgA2E8BjV/zx2Ob5z2GH64bsDU9B4869bcATX+7YCdFajh/PAzFKHp913hfx7znYgASekbY5dwFkIw2MaSddkQbpJPq+0V2CrSSk7B7kJg+DcwIAPwMHbbVMekpK/kWFoP7pMp3Er3RebxiuQ2cOzaS+1lnxelcAGCrX2rb+tzT5zEo5e6LVHzwSyXkN7XTQaGwZmwKBztbbreEA0LtXIl8IBQs6/1BWYIqYaJ7YYt/2wjAStISO8RkjLVNBqFXWhq1sF7qbB0JBz8nVGHzKjy9afdMa3iHhYHjWnxVc/TNUrjGI8aceQuXuCpimHyyDHu+uGNkO1c2DB3PxAoVWtAmyhHCPexNbIitm7Hcelh7jW1S6tJ6ZlMMPQl2r+2DcA/nwxY2vlyZHT4a1pdZ8eZPmkzwRXqKneOyq8aVX+z996HEXlEpHpu+rgJ1AZ0IhboVjjOLEHzqvEbqNV8s9WXuIJYPCrU8Xq+YwsU+PI3BCUmmqOjr9UWQ1mVDvXv+rhb0mANZU7mU+ppIM4bO3gTDj/nE65CdioyPboAzCgzs7W4tGBPte4ai/+Sxod94b+TdlwHvdX8iyfzZhOR7+QTge5IM6mdw1CfeRQssZaEg8/fy0Xv1KT1AMdhP+luvSbtd4Y/P4RP0Jn1eProAT+89of6FJBlrI6WB9F5XZBsxrWLc2BAgO8eULJ+xq+a9fR/WmYVvekj1PWBzPncwLh0DCV/bqRZDGDhIicHoLRTbcPLnGy//8q3Vu7Cf4bwV4fMdLyueydV4cO4llB7e2usdBCGfKCYHXBpJ2MGtko31si+BGmkKxvkcVsvcUiLdn42LoJxcvUkJcw4ujXX+e975XReuLCpnDVu+0bMp1G4RFO0MkYF0Z12g9XuQ7144kupKtyFh48uGixq+Eacf7jrRpi8HlNN5T4+t6mfNUb4r0knyvZVv2NXyFL8T3IdhiZV3y+tz1OcJVD13oNb9W3kzS6QH7C43fkX+plrm5B6DjSMC0j5mISSX4FLC98D11OrdvJ/u9/sEC55BtM9wxxaglR1c4xnJ9wpnu28bcbLO7UaKy10dTsfKfsCeb95EXOqyYjuoPaAwaC61L0UNphrPuVz1k/S33oMd65p8gLaDmG33Ost4t4XLu9HQZv09plX8Ax6114A22M/X/GVzMEhfLtWBanvLixsmeLsP67xdnPXTcZsJ4NpyM9W5wKrG+e0KINrzDTU+PB9O+4vnS3dr2FG/SV19CHJggawT9BW/zmyBRt+Bzr5LVM3avqKZcTeAP+QmvRvroc43B4mUTlyA2op7VeP9uTegU0gnNG80LdyZQD3D3+8pPanBOOzaBtpmKJBvrD2r77kKErnfGlsUh57lLSt/AS+VCqgxxm9IxzlIoHz5GlTroOMtpdbwoA8bk1pf2+l3bZ1ywAYHnWLkLdXE2+bye3/0qBbAW+r2qIFVWVErTY2KOKWFfvuLqv019ab3ScrBqr+wvTHO/WLwFZQv12CisS3PYf/Dv+U+Ino49UfGo10u7ANXk9AXpLonXIJLAf2XAgnHRYrH13ifQ7urGT2mOc/mT9fbcM0HpLptm7VGsy/hJV4KJF/CQzgt54sNj6lE8UE3fTaD+7cAk68fEZjOpKflm4hAbvoaH92tm82peOPBfeu98NHhC0CNw4lAYgUN1bh+19OFmhrsw9qkqqj7HgnTWoS5HzPq+xcNMP0t52B7QXc0B7djOBfOKZKs703DB83QM7JVtw3YHUsJ22EaMhbSrAE9Pn2oER3X3sEXegbzNZuxBQSUTZK1F6B8GzsEYlP35ly5SL/rETjPQ8+KtQbD5ARTL4ujfpnbD4ErH0S7/ETADJRDDI/w9qS2wa/f+TfyGaDuusdOrD37GaU5JzZxjDFSjKKv0VvN5XyxVbTtX4eQN5WdD7vTFaH5KYb9nBjdGaZhaWHtrNCwQ1Rv5S8DxsoPxmw526cSXp43iI8XTw/5CpIapBMM6DPO0opF7F5D1JxCfGieVT/NJS3hYaIKxewDs3bV46BMXhU2kgvx2Lrecr3zHuhTJV99xYcFrnoL+7vNK2QH1YihP1c+ibSkq9iCigAKstYRFC/vbNVbNlz1AmK0fPXLqdkG4NFxBB+kh6S/T7qMQBwfO8SunzmciB3YIB2+CzXkfcbmDGbCj2+R7eemZ6w/MgRFefDo+f68sO+1QhqgFzqhJQ124QK0roOh872gLfeMslG9zmfoLc0Z6/B8A8sGXvyf/sc/fGLXBAjgaSci9pSgYvOZdZP0xx+r2fAG/tNCcM2rA5HKA1cRRL0ObL9ziH73s4jurMBVLxNu2Pns84ZsgIvd2jRA3cETsmfIgZ8foFm3mi1rfII//cSii874c3eGjw4SIrbxkY3fIlxgGFsbMgX8I2P6pbJg37oAm6oiZOwr0mg/5nuNuj8/4im+FqB0rk9VlQ3ZfFJ5BF/g80VsqPqsLfiukfILOqAtnXE29+aiwaEsNhh13x2oj/oYgF88//yD5fd8V07fYe1RPLPJKsMEnLjzTPaJPfXMLotSTvef4S/fsXRSWvliBQH+4dGg8rMrg2hT0cOxcsC2Wz6uxIpHTK1yCarpY5aGHOVpjh3uq/bTxc4jOIWiSmaVDeFiWLt0v+r1Fb8kncjCGclbe2HYLCO4zqLAKexOq4e8y2/69DgdUxgzr0ZCPmzYPEdTDld8pWYCmopFc15DP9ByfNhhUC1bVa7BzskjeipsANpuVIOfviUsbg5g1z+ONTRC26PWrmnCWpd4G8qNE2GnKPJqMRMHQWO23nTlQ4wJKQmgcyhHbL6rtGLcUYXrd/Q36mSHBixTHEXwzDcY7SevZsuBxDU0waOl2uJ9+pnZrQVLPb/Tn59EXJYoP38Fq77zDocqVwW4XdoP2r/fFesiTrPAuF1iUl8Q62fibRV4yS4xERtbBJMfbrr96j9QBC7fir6Plgt+ftn5edf6pbnLLcBZE5BmDI79fGbr0YpClPHwCWlP9zMwwD6zL/i4a4V+6fdGLiXVzsRYNjDouE4VQLjJS2wpbzMTttVpgmAfKFQvTZIVJ2rl+59e2rgw8ra29yjB2pqNWmlpV7tCVWxo77Q7YU9rB+jq90FpWc94jclczUqrd5BUZMLHr7tnf+tXc6VKsTUMeivIXATGMTujuuwbMEz+2YUsd0TEx/juLWu++ulrqjDzE5KHDREYA/lLtWDzBmzzesTApBqHj+FRyIZvtnmA0dApEQZseHTll/KqNwmYw0Rfdjtiw8/Jrygyj0SfP9K2BM1D7rHWDC9vRmkEwfbLQrLf53E2nZUkhrgtXYwG2oJZvUkBZE/OpFqoJuC96in4wxN4EfKMsZLv4B6Rnh6syMv66vYowTOKzxTBxy6cgYIjiO7ZBqvpp9SnsV5EiLrLntBbt/eW7nCXQNh9t9Q+sG9GgnMr/vjnz58DA/56OVjzAWIvv2XDdg9j2A4fi8wN8qs5oO0ELyjLCXg+kn7x95kG00iL6fHs+0AI3bSQg4bjUSkvZ33ZVrcFSE2xp/7BvmY9/TgKzPOtjr1O3ugt+rg5SOdH8acvuh8e03tTkVbvzZCFmzf8x09+/Kl49hKoN9oJO05J+1rmqgQOID2jBS9SNs/buw9rZogUL80ZMKl6EfiNHxI9oGEXzliWXAjyyCKzrb6y8W0aEO6fPqBuZahM+MV7rLo1me6Brc+pXZ/h6fWbNaXUHnlczTUe85YMDmqzWeolEQboUKwTJN/sL3+vz0/45II89ryXEnzPr3KtWWZsqqfYh8ed8EX8e1GzeTgADW5M/oJD4PjerrrFBVz9PmziB9O746h1MNy96aoHPCDeXqUN60tHELjnZkUKtPHhVvBl6kU4DYeiTnzIzS+RondiZYumwAQS2OikClrgzUSuGlnk/Iy6B/XYD+dSsMCK99jBUx3+8An89D1+O5t+WtcXrPuH4pPreAvX2gK8fJhCde/wCoeLncfQsIbXj78zBi5JDH767776H2zXT4YsnTidHlsnyIZ0y5XSQNYzr6g76My4jQbU75GMr/I76pdgi9r94/EysBLp61RW9WrAOywNsgdppXe4WM5wxRO0Wyzk7Yhe8fAjsD21a8sEPPR5HoIgGYlcLCMb+Rw+wPfzTOnqb1S9tfHOoEyqCh9yp2PkCHINfMqjThNXqsA/v/sYRtQg7hhOQhbU8uovIfnes2y4omsMO+50IFvxtOmH0EhjcHlmkLDjDfZjtVFF8DxILcW2pOrkkHsISixn1CjG1Fv9EQ6s+har5BFV3TmpRDjTiSfibsvrM/FkDW7OEyZ8YDY6VSaDh+iEjnjVt+EiunsFrn4U2hMzZONPL2Y02WP7e91l5H1jLTyEZwEfyA73y5AWA/jpOWsMxopFLxdJ8YWmFClyo8+JUQbweshV6u7Vd0j5qA/WWXYc1T6jW5FWPYuQnp2UeubrEvI1ufi//Y1NOW7A4Ie7DirNdUOmT6MAKQ/1Rj67Q4Zjcsv08dVvLLDqhdU/z7wh1E6R/IqVkMDvTal4ld/bkjNLMz32dtPPTxE/wLpf8fHFdgAUQOu/WSMLKfr5lXStZ/R/+zmd84LirFABQ+o+hR/j/KUO4fbZoPJ7F3pCJ/7qM2z54CEA1lYYqC8e3v0IKZSk6ZBfMWKCrrPL2/elwMwNnOtKuPJPyYWvS6njVd+A+Xn5DvB2szUcLeklnI1N8vjlc/zj/8za6GfZ3FQIq4+dq0/BaOb7FruQOsF+8X75HxiFZVJDf4n6tO07+OOTRLp8SLXQ8zmWGwDe2IE9Dya8vwjwe04iejqlAiMSAgrAsqlQdbz3a/wpgtyLvYedyavBEuZvCdZcoWLjuNl6y0XxbGgp+pMayX3R6eonSVv/6lA9KK76qLReB/3kKxKH+77WL/OxBsbgeaPK7kJD1ud+DcRgOWNn9knWsb6wIdOL/Oe3sxYOgSKHTn8hrLkIWds6gwWv+euA3tw1yJatzjXwNE4vJC9XU+c/120Od2nOExnJJFv9X1/m8nymlsNJrDsnvQi/6avARtk3jJ3vtg82VvwmnGIoFW2U7SLP7nOH1VMag7nWPQ6OCZ9TP6zVtT7kKPBeGBlVZvyo5mkOEbgt8wYr4kP2iNlmNQQ48Vc+v2eka/YGnM88oM7t9NAZbwQifC3ckWqHcgnZILcTOGp6TnZrfXGSlSEHaV002IrPSv9d/VH5vU8uOD4d9+Gff/Pzk5KVj8/GJnjIq99F4PkjM3LIdSSbu1RDV1SzcCyuJYHr7yN+P18ZG9VSkBdyfFCbvQdv4rT3A8KYuNjFt1u/xMbRBjdl2tBHHm705bM5CXCaY4963tpXPJZcEYzvwML+3saeoJdBA91qPxOpMPtq8NXhLMmmzZPNs32z0e5mIivcqFH8oEW40CiL4OhJJca1snjkdksgXOuP2A/uDVgkBDRYhKGPD4naMCZnWSQVBbYI8Kjr1YfmkgBdOu8QsFvM2hNFOXy3kkmRha79O9zVC9gu3Qc7y3EHBnSg57215Qd6cLI36AZg5vCoVQORXKXW2cfYLXBg1ZOqO1axRXoeU7j69/S00bRsFgouh/KlN1Ar8G61fOSEh8KzLtBOjCpv6Z2H+OMnq35Uq0Gs8gba5HvDrja/q+XLnBz6h2+C/ebceIu+dBAGyCxWvoa8jkyCJZ9b940myg1sIHbigrjsI3yw/E+49Hv/AWITu3StB+kjkfsG2uoxoOqQvyp6/4IAruuBndlwM7afmQFj5tQY4UwDw3N51XD1l9Hmks7en347X7sL2vllkTGyTRNYPP03TX/vX+LaGt6+3Zn6pVv+6jkElvP+QHbP4K2TeN4P8OcH28PjBKYyVQSZ7/gb9VY+Oq7xAFc+s9ararA8uyQFsdJF2NyjktEE3jS46kNsf3EYzhAHLhSwFWDD/Dj66C3bQVr9RaxNx5SRp7tFYNWL1EZOmbE9lSzItWJG1rMXq99Qnv+/2Qe7/36mQE+PW4o1wfCEOEQFOAhnQpXRXXq2eGML76AoacpZcjW8008MkKUo9JkHa43A7Vq4q89H9Noirv86IZ1AeUy22KiyLGTKVtPk+P4tsfpRnh7jHLGQ2DMr0WQJr2xSZcPaO6L2pQhfT1mHXGDDe3NeKL5zFmMb0CZw1LoWW2FoePNj9ZzmsrmT8asX2dR4Xg1cSQ/Rx9JmfeSfrwjesEuoBb9WxvTWbGG08ddeLm6UsW2KHvAbayb2k+8hXL4fKIAmvl+pj1SsL5cxUeBL8D84q64BmPa8KMHXbWmxaaVVP/ifqpXU6KxjvZjSjFkfdwCxfVuwzmVWyO5QnfaXQvxi9f7hM6aSSoCnp3KhkbbJ+1a9yRpI1AukKu8pTPg4YgAXC3XYuFVffal2mAfTlzwJf2937Ksm3xL6e37CRqeH/fQp3BrUnKgS4VQU/bRvdw94iICE7enyrJa3cVGkTO4rbK+LQ0YgSqDjc4LEPMqrqZDfLdxX+owVS1Azob8NE5QaI6KupUfVIpPQgKmtDNSWi5e+gHYnSKWIT1RLBpINPDxrAOn6l2zD27aiXPNNAdp3R6pm/NTPfTMTqMXBSIrd0lXT/nWsgUI/EKP5MGTzi2gG4OPrem7QT73xCVMXRsfKxaawMzMWb10DyKtJiQA1MrLXnRTYXvGgnvu6ZYwmnQbS8X2l6P6e2EJkv5bqmuZYO71Rv5w9T4Lxd2pw5PGzx6IPD6UMUJNMn/nQ8yf/6kM2Pg1spy8R0FloauhYsYRgTgR9bM5yCxP1CtFOIRd9VosshY8jA6Rl1ymbT/qJhztnGqiZFpdwyk72Gb4+vIuPe6MKF7pNB/gdUYiK3CuqxTjrJWzHp4a2zksPd11yO0sd9WVsNPchXOAtMqBZeZu//czMszeAOUsQ2qbFNptyt7Rg6T2u9HBsxXAZmllc5+EY2Hegkm19V+JgELsJ9i82AURY5z/pTbzHvnnowfj4ZC6Q4+qDDSpcPVa7IAXKAjARE7INmdbsIfSjwCRbPVmqDp5KtGkP4pWqwTjri+GeOtnS6gv6BN6LLSfB4GX89EWs98mSLdjIISzxNSTgvLPC3aOoG3DRSp8iafOoKNF7DT5u0gZtLu0NsCZRCtiN5yc2Y4l49HSLbDgdz8UaX3o/PfnWgOiOENY5aQTL6+adwdNpA3q8vGrWD2Nwhk9tkbEHSMHmrKh96Gz8HT6/D64+x+0xhjAqZWxb2UdfTuQM5aKxM5q1E2Bj7+Ul2NhhiSR0U6uv2T4UyOo+xM4hCcPp9kxieH9aFZkk48KWnjsUux+eaJp46Em3dSB8bJ4d6Wao6Gy41Rx0Cj4j5HwrwyGg5CztX2ZI3UvxyhY6FoJ8iyOZ3v1hCr/5yX5A177U2JTufkXV08LBvrHvqDhcbCacnAnJaxtnqj4vjj4XBYQQL4WHL0SbGG3aDQeigL/jaP5KjPSuqsmVFTDqJVQEBCdKAEm2K9A7D/feyH8yBH73Y+o7SSfd69EC68qb2HAFzVta/WzJ73pu167WQG8L4kgwWJor9jYM99P2dLIgV/cXqkn5Vx/a1+MsKcnaC/5olGyax9mXeZ4+0bLbPyu6PAMo93LU00Te2P0k+lYD43OTIFG4vbLla4yTtMY7ddCT6VMKHQSTrHgRZnsvfYlDq4CReG2wfoiHcMVjTRS1rkP86Qh1QgyuBJ56LKl6pSoQPs3LBTx9Eow4lfZU+GQ1DJ1Go/q5TMG4I64NhAcMcKK0VT+/ncmAD+pS6r1dvl8m97TInfxJCVj3B9HAtMCHt71TT+Iyj2lPxYDw3Dyp87m41XQPPx0c+fhKatW/6Qs7KQPky9wic1zwPUVNUMBmx3s02bqRPhvhVYNRNN5IIj0mncaveIFBbCcUbX3gLczEZwgEu6Co3A+M/fbDqT5b1N1cOvaLR2h63ZZ8HKPU2fF0K+EYEBcr9eWhT5tmruHd2HNU3ZyVjLifMIBUe5j0sH9VYKEvmgI/rh7YIhIJaa4VmlTKtoXvnVCxr0J39h+e+aW26NN427rwsbl3iOf9OpvJ2LbgYDQb0n65d7W4z28KN1GyzqPuvZB9PcOFH6zdqLni2+T7KAf1EZ0pcvVL2M7pUYIwGz16HG2qL0h3AnCSkwUB+VX3086VJKineIuWry8yhj8DAp38TqmdkEtGqexPgGbNTL27aQL+HtIW1udcx9rJ+uik4fcIHqzXHcGTXuhMLLYJnLxYo/qidD2Rm68PBqqk2PMj2Wu7Zi6gcFg0xPaHLpyiZv+AT/HS4thxw34QE1sBphzX2HHTOhz2L7OG0a1DaFzvv/foMYJv1cuw32c5mKg3WqBSLxx1GqHyBufmCvCdxQpVCiqwpXi+HnATXwysDH2vLxxoEXzXrMVaIx2rRSRavN/Sl4TxR9jrXewqEA5ncEVzP9Wss55BJ3FZ2aKeVM/wL99L1UH+y8/tej2wRZKBHg9DzIYffurKhKjJtlE43HRgw5OzvKlm+BVY9k2Qw0u5O2BfbcJw/ugnEdgfeCfsYtbZhxV1K737FuD09g68ueCLM0zjzMEOATObHoYuwegrO1Q9Z2/GzrIgweEq+NTs8m/PmqeUAAffGyLs7SNYbPnig6Pr9diZMNKXbqtycubJPDWFw7OfrG0HATDyGWu6IPTUGfcdXKLAR70pV3pXyo0Cv3VSoj3ipJ7VTdKAIpB6NCfLhrEeQg0Oc8hTd8k+1cKP+1omjWZhZbe4/dw0LYTVxp3ocfgeqmWT3FygRoFOT/1ksO3+uVjwrAwmKjbJDOb9czGAbASIutfFDxknHG3QPyBaf6+rRr8JbDjclo7aLU3CaXu6Wb/4QLMAw3C7I5oNoZcGRDLro75VQiuQw0ZRyV4P64ouH5cHl3J7oIdl7/XkndjRL99R26O6TpkOJqDueYLA1rtWzEmtCBpjkOBov/mwKfY/ECL14JF52RnVqNCNDd7j+0adTZaHi3POA8AfuDc1v7K24quKZG6/N+ljzcfD61wP0FD4FCtZ3LPpZLxj+Bj9E0UPI8m2KFEsOeDLLTVFT63W9wX3e6OPiMliH7CSLzqZlkwhoLmpYLts+wDSclawE5xjNiTuLYagkCbqDq2hz5FwT8D7eH6gl0iv3uKbVxEcVW2DD/3igQnqtwX6e2Gi7vELwNLwsy/ruv4hApFIxrTQakEW2ynVzXatOT8TDvba1iN9O2Vs+ZBMA4IiUTKu+atHxE1AArY5Pi65p3fF85Xvu81LpM6T6tn9extqoNyjimYJTdhCDK7YX+ZjjZbSvHnUCEQFqgo3o0kytmxR9Y78+BaSO+vhzZ1wf4CBP3uodyo3nGMgtiA+xh+K992TLVn4DACpVEqPjuXozDnZE7xrcoEPy77v5zYJRBha7556yvfjLZfTwkP71ihU3750jx30FfM9qlPlUrXZvJZ8YN4/YtTT8O0tUDA4qNgWo9aOn/v2epMNcJYfHP79/TQlkg8pOwBq36svWLafMIFCe1u/qzaNcEfopoPc/WmRnbt7//LfBNk0XakzkEvPr/kYHG18JOBumoztYFrDp3htsVMWsdeteArV9imRUvya1dw0BQSvOVzQPow+Fbu3jwekxwqjpR3njAaJnUPxvHljXJ1LsBTP70M6HYQDNupg8pbKZT7cgTyjAQh1b5l10PzeJ/Uvnzhjj2KowbNVRnqBwRRSQdhE0Hu+OYyUzq2YEUzaH77aYu/3k2jkA6xw9sSmq7hg6U+LCLEHGrIb37ifnZAuIM6oge26c3r+lCQt3AsXHR/444GxmyF08Gn1ewSq6wRmF54tGW6UO/bEY9svuuw//uJfa6SxX0S5sSB3tD3Urfp4Oq2zj4pOvWLr9ar66a5NCGJHttGUHrieNsbdB87xZVNLWfuO1O2mhhq93bB77x5gqmBH4EtrUsTJulKxWWsNeDJ2E9biVPd2N7DXwIq3WF3zwxS6SiMfn1lGcSO6+mxCNYJY/lyw6wmiNw5AJFA44Y66YpjqU/mpCLxmjwtW5s3Bm/oijOUI31tU2F9TXwTDiIBn3ybs/N7nrT0O4BnwT2wsN6Ua3iRtQVPWGdZt7+VNPDwr8D2JA1VHQ9XZy/Af0mq9oPkhvPpxb0QiOI65TJWzRtmicDiF/DKrSFvz/arfG6jseAMrmuqDmaemAVp6K6gmfs1+R1pzgb1DHtgF/DlkP/4UWp9+5e+vfjSeq2ccGy4+HsJ3xviTIso7ZxlQt84jnT+0KUBSLGdsO6XFpg2pHnBz9K/4UOUcY1b4TGBBOB8NloTD5dy8LOB+hwTjxKvC0Xl+/bVx0EjxuPmCv3xCbs2BanhxAb8R7jH4etsnNTFD4WTKkQCtXIWIX/n5ctbPGkis80yq1+bQT7IxPmAwxg3aqt2dDbXMpeBwHHvsrvl2uzUMG1ZMHVe/gg9nmH4aGGkPhdpx3nnMHFsROEaSEy6WxZ6sehBco7f281uy5SMYkgS8yMBe5JUVAe2G/+k/JF8ZZuzbvCJJl6sDVvZvklFjmy5w3d+/9+cJ70SJ5cfy0FDxNXUwXcCUy2s8Iskx3z0rtGn56QVqXJVNv7geZ4C3ZQUr3+BDMnvvXO4fHMIHx9C85WBiG7LmPVNl8vVqvibfBq6/jx1/5sIl2joSVN3D/Y+PrHqdg0657FF3/ALGus9W+T0/kXqGQ/72cX04eo8b1feHLmOHZ8JD57s5EBlst2xy+EKDk2hAGmjqAOb1/YHj0dYQLfVLP1OB+NAtxA/Vw7PSr/EwQDvqvbXvXhjOD7c7g/6wKFTZWxbj5SSZJLRvjziZ64GxmDusvbCNJ1VWvGIRKAJoGnOJpv0bZSx9fQrYjP0bjeuny5NiCAqkojLRw/2bZVPfHhFElqZgmwk79tOL0ASJhdUt4iqytHEMf9dXr/QFGEyUGoij7dKj7CzePCavFjSAHkiV+7VOUXo1gBx9HOrSm9DPSojWM/ZxRfaXZgHkYB5smIHRxEXetTo7n8oznKzsiP22c8OlueXa3/WvCj72f3rs5uI94ry58+jPHwDZOvvNn1Iw5KnJA7fcmVjnzxewjcHUyWLnMOo/J4vx0unLQ/Lda2QjfkrvT+8MAbfH7rq+0/amQVh91+/y9EtfEYXDCfi2pwc97isXsN3zNUC2BzoRu/u4tv5kC/R34pnMx+aUTYs2rXOgDB//+QsFPabgxzfU5+XrLf7pFksFgT6+HiYTjPnJzoE8jlvqO37az094duWl/hyoPh0P+m4M0QRh0KoE+JGss0QvOViDfYc9ITXA1nm+EET8mFCTxQMbYv/DwVPA8esnImU/mScFwTbBZ6q+j6Afv7e6hnttECjqyStbouSmwcvxE1O0bF/6snfZGaZ13tPrJvqs+mPOYVVMEU7pLa6GC91pMJO/FVpAmngzJTCSjtgo6Jqf/vipzAtfmcC7XGVE+gw2vC0LJNyt0HQmNUEHr8vmiepd/sjmHz9b9TK2Hs+lp60zPeRT49c/fuL98rv8e19yz58BXcJnsXfvnwjBrdl4y+umB6Dl+xMpvP3GW/24BJ74j0rRFhZs1Q8S/Mh0Rrv9S2fj/Zy7QBxdl+pKlFWT7clEwgqf02MW2RkjXi5CfUQ+El0VZa8+RCnYcKJFtc1kenO4VQk8LgOhl69c6tNGuMRw0Oocu5wl90N9C1sQnI4Vto4bW9/N7omD7Gg79DBarb7kOihhWcovrIdzq698I5eOz1uGf372DGSuhUdsFT99zFrctAQ0WeLTYMXD5XaTH1AuyBE7+zZhDBr3ADKZbYj48w8i4ZLCjzyu/qmV9Tvrow3wcZwB9sQh0OfmLHdQf9rr/tn7GbAIX8Py3DUoolfaTxUsB1ndCwR9/O4bskG4Cz++R5aPmPczEPwJ3gBo0fZ06HomyxsNCrH9JPCnN19NoEH7Pu/QeH4y8LUFgf/jZ0fhdQNLUoQd3Nb5hESl1fufHgblR4xpMG8+P7+ggT1Ij0QMvk1PO9DGsKmLPb4IOzNcqt2Bh8kOFiR8vwkY0qLW4MtLvZ+/EG5v7qmAVDDO+LojhTfabunD7iFpZPO5ztUSJScFbk/e40//LP1tWKDk1Qwfx0/c7xpYBTBVvRtpwMX1ZkXvCqgdpIAADZy9efOKC/jThx6n+N5YNgmClaAYGFtgYfR5zkvo3FqfnrzI8ubDOTLgO4sU+ofP4FNHcAjg/pcf/sWX1ToKiR470xuT18eVhNpXkfR+GdlU8aIABb6E9M/PepO0g2t+wyrLJDD++LrZ2DHW6rbsx59fUuBKQIVjDxUtYVrC66yqaNnao0ey8HqG3B6Y+EATppOw0ETY9mWNpHvHsdH4uBHQUu9LuLTagB41Qfnzy/FZv2JvgPpp+cPr44caurA/v114oNaTrn4um7rQ8iFTdYvMwn8AAAD//6RdydayMBJ9IBcyScISCCJzmETdgQMCikxJgKfvw/f3sne9hnOAIjXce5OqxwDo97VcldV3bOo2g49G1dipf/wexWtyXDnXkRd5qX4d1mLZT9a3K2SHv/t1dKEuLygfWcGqcA/mbH9Hq6BLnGwLhotfrXBzGfiWnCKHXEOkyAqQML5UFViFeKNW1PLDkrSQyb+HdcKX3hDdCUS9Djc8QIRl/3CXotUbJVgWmZQgqd23GVk5pLdfQi/R7vNf+1cdx9E4Ozj18oZ5CkV6vlBVTa6IoVcYw0MhVvikfONhSSjpwVbPY3Q0tGKuvYDAIZQn7J1boVg9w7tC8efa2JdSpR5AO6YgKfgCW3S23X98vtstDfZzvlzp+XoL4Omt7uhpe5+Ze3UZBFygU6y12fqXL+R3dThj02Pyum75Bq5peiWipugFt9X3gJ/iN/W8wB1YiKIfLJWsC2CgYXfd9BHYL2WIVV95u2yr9+B+WRE+2u96m81kjPDpig+KebOryZ9+seFRijwqJuz8OzoweDkjdQFRgfDS2Rdcqr75w4uIMxAw5cc3XAIlyD8usZ3+Cvvb3icyvu8LSkNmKSBdx0AiVQFWj/t9oWY5+2De/Hm+X+UMjnPE4eCbf5KN766gtvRlwOL3peCqbTaPoPM+DZqR1cTlyhxu+Rqr+2u0rs/IEqBlth2RsruDaH+NYsWJKwdbLq3dNbalHD65vKSnIWmKzZ6WQrt9EAhpWybLUo53UHdAxV6w37lTx9sMSsrriFU1kVyC3m0Io5+r062+Tz6J8SlBPDmIBn4zrWvG6yZsfC8OIPSO62pHKgOGcDsG4pYPiMXXqZK08IXv/Lbnx86DDG58Bj3hbRZ4ZEwZNJLjuvFp254Hvt/Bg93YRJmVup7qdpCBfsUuNo/HrfWPs+yUB6gq6rBpAXPcwi9Qp+6J7SG/FXP+Cku4vC4ZYWdDBZ3f1py04ZNA8pLb8MeHwThCKv77n3z5IxwIcl/EnnzT3Z+HLBkSt/zg45b/KD9tfem2eLzfE21gFAEPqICqQVdpZGBRy13B8rhK+CUffLQcW6eCCHy7je98oFWdrg44hMuV/uGdaQSMwE2fwRt/B+bTNIdQn55g038btPagTKFqOmdswu6bvAf3XkIFX66B2ETrMD6SdtMPtZl6C+LRWCipDL8H1tH0E7zQiui+gjZ+fekfvqZb/arcwOH3539ojr6lBPxtS+WsNMPAQtctYfo1fSLE9bMgf/xyL9w8nA5xuS67lpPgVMwpPj2cZF1MqJWKPdsZ1SH2wHwjXKy8dKZQ3YuWYQK25IDeoNsZ7SdDc4VsS35wA/5XX84/7/IE/IGU2AaZX7Pfrbkqf3z68WNN9UCo+INHkJvYfO5k9PvDt5cZaQRUUles423cwQ2/Y2Of1Ou/9bnpd9TYGcIwJbw9wjIWbXqMTk7Nqddt1kl6kLH3MWq0RnAIgNuxBofuYY9GXpkI1MDqEUWN0oEAbo4P4jsRKLJczeV9eiaH2KcT1kzVcedP1O3gg96e2DXvTs1cZ2FQa5pdUB+Nd7FSxVv++E18Glt1mPfRssDMT1tq80Y1LA3SMoDdw5e0l1grRvoK8/+vT4H0v/cUdIVAgvGGqmH+fkQVFsanoOfRCgvWRlMJBbN/UDWPnuuYQsOD+1+rU4fk95XZZAcBm5ss4JKIuVNwOqWQvwsj1h42SVZwgTIkTBKwPmVRMS8YmlDgZhrMrO8Klr7SO3Ski0n1VN+Oj1BqweEBCDWNyUEkZa8MhigJsSckMVgYLB1F6Z6I+nQxwNrs0gX4e/mMUf7eFdSelQYouVjToxlUK6vhtYFlPZfUOTvesHLjtYeveDtX7NoeWnfV3ZI9L+SobrhNsq7LwYDMaBWsdYbrrr5//8LTuPU+uezRMH12ty9EgpgH006+DJXZjzuQjdGR7MV2RrMc9yYUspsQyFR6FEzfIROS7yLRUz6NiGpNBOWX1fGBQlIjEefDrYRiW9SBxOvjSt6vRv/7Xqq+ve8wg6jtYXKSn0FvlXggcJsdEJ/jntp5VA+LWwECTlbVYkd1I8S0d5KCXssbjGU7HBJ+yAK4WP6T6kLOEKFD+QTBfZqwc2UOYM8FjzA4mTG1P6uEmMVfclC+3g3VEsbW5eJJDHBSM9OLdovdGXSnBdqXr0qIw6fJ0nJVBb+68qHIsEZ3/d3AAjJHcSnO9Kpok6owYZDxA0bWox9mfl6fUL4wIeD1Jl9H6yHGcP98GNh8K3myplmtA1o2HTVUjkOr5s0CXJQ1Cfb4lA/T7m5K8m90ANUrJwVrxNVfqMbPNdhnk7RSAT7kP/tgOz3ChJxOKYP3GamBaO1ZMX9RF8Kd/7hgu1BrQOK0VwET8Ryswb5bF2aFMSy0Lsf+5IF1el+cBjDnsaee6T9R17zfHHgFb5Gi7PNzyeG8SoDHy0SPn2hJ5tPqejCXXw9qZ21Rsw/PHAgFDpOqYwliH/XDwWB/fm8ayqee6+LCYLnkKhEPrKjX9/1xBav4MTDy33bBKv87gnmXneixP0eIjNI7A5/LkmL30DpAnN+HHE6jcsIaLpaCxg/3DnXu6WN//hguO4SdCez2csNuNxKXHjmVg/lJ7Kj6DT8JrQwlhJz0ncnuXrOE4KX67mGicNRO8mMtjOMcK23hBtRIohDNsO4YfCE9Dw5foA6LJpWhMoxlQO0z/KB5HWsO2ig90qtjqMNc6J4JITnNwd7boUFUT70Hq9A/Yqu4pWi0TrcGBqkT/Xu/CZiyCn5rKuHAvyQreWDegZcTUaiZzY913h27AH78PiO3z3pFzH/vDFBjScSXsfih0Y0YB/n9s8TqIuuJmL/mu6KfXhw18wt059qQDajQ9IjzV9yjdbsOg/3ljTVg7dbpp6hM9h4NwYY4f+uhE+oKYlVCVA/vB5cO1x5CXcwDjM7CCUyxeq2gaQkctlY81ctN/nlyMytS0CxTC0i/RkRpbTGl+rm8ACaYtgDF9lYH+/yiriyFngegFucYBWFXs7nvBZhyKaIPeL0W5HesQqU/oT32nictWfWu+8Kav0/YRYs6zDTyZFC+6obIUiUPhPVEhe5PPVBXC7VkFPfvDKanb0SaedfWv8YPU+XP/urtaxXMq1ilBMPxS1E/HwYCRhRAvz8e/uInYB+tDOH82gXU/VxoTfLK7+XUiQasF4mwrrZ9ZjDrzkYgciMEFD68Em7+RPE50d3lMTYydLNxT8r6/Khn8vuoELfilVr6U0+Eh+Gbsqg+A3rUHAMtwr4pIVjkN7ZD6ZvMvfDL4OsSnwNe1UFNiuzRHBokfKk63zUwqkbdALN3CPY2DpsFi8JgF5GZ8I+BQ5ROIgd9Naixrn5Md00OwIOo13WqQe8BZuWhZQrTpJo6XbZzBzEITeU67j6Ez478Sg8mH4Dj/JOo9fCSZC4jGQL5YDJy6X+/dTo59RUeQnDCgdtwda/tzBhoXVZRfwnzYU6PPwfuIadsY4hv6198g6hqX0Rwd90wPmwqA6mxz9g60gqxauuVPI37E1mKRAAkPz5k4PKGRDXwbtGiGeH1AIv8gj2LPmoqaVMD9CkMg9Xsh2T4pqMFesru9Ow4B5dOsV5B2wXvQAnsMWF7dvYgLyEl4O79NIzFMR6hRhSFnN3foe639Srr/lkIVu5wKX4NJSb4y1ffp2YgpoZJDwlQVxzwloMWdQ17WDUvNZBvr23OoTXc4Xxue2q22g1NsKIZDD5Pd/PvALFT/2bwSuUv9Wacuiuv73Iogu5JhCczkvV0CO/gGzVHfMJvOtCLIqvwuWNPGpQSAayV/RS+VONGZmnTWPfNZIH46g34tDiPZH7xyAJiOtr/zVdSIzdgqycCWIDDOkxmfIco5kyc1VyN5tlpnspfPCgWzatp/FtLmKikwvicVGiZP5YOP5LYYt/K/ISVyvuqpJNjYv1cimD2REeVhco407/ns9qyCMyzp01PVdInLCynGIbv4T8AAAD//yydybayOhCFH4iBCEqKIQLSSxAUdSaINOKhTYA8/V343yGjAKtS9e0dqLJ9SXpoES8PigKfQKqxlregDV455Wj9rBvbhVis85t3DUzd/UGV6vrqR5ryAJFUhr5kjEE0+UGjQpstlDpZ1bJJaG4fVCDZxoYqdWxRsaHCI5cupNL0UWMZCu6y91l6qgbbQyJOf++7tI+Zjf3l6/T0bRg6tAlPyLRIajJ5gfBEeO+GWDWXBM3P+hJCfZsu2ChCDS2nNAog0hIgy7TyTqcGGUrEEybEa6KqZ7PQgGQ/ZbKoRHbnvt3yKNDOAb7uljFayg/qgHXFkR6DOK+IDnIGvW9dse72Z7R8tiiGSBlKbI4GVw0/Plx5jFqtObm9Fh5SGFJvnZcej9Hy48PHTg/ozdeoNu7gOchqrF989tBkxFqhzwEp4Uhd+WS7Uz966e5QpTmNky1U81d+W1LXnyXsa1wcDZEAH/RAyhmb+wlVA+LuOZgPocD2q9SSdgivBF11MyX7X/3x9rEP0GCKrUjfVstRPVmQcUtG4m12jQTII0s2iZ4SsWsa1G1LfoFPsKsJ7IxQmx/WJ0dlkW+o4XJ2xQom5/BXnz0Cn/qmLaNd6LCkrwe+W7DTJkF6DAD3LKYnmJVq7u6cg/ws8Klqc1XEtnn+gY1+Nal3LM2+CwVxASGveGpb1R+ao3PgwSeqN/5+6ARtirf9BFnubshuGv1EmNFI4HKX3DX/q2yxPnoJ2sdSyCx6Vj8fWlhg8YhCzaAm/XwXhwneIWNYY28lES7quZTX90Fm5xZVrCpGBfXXS4jVP5mh0TdxjPLM0tf6zlgbnQNfnv8cl6r5wCfLRWjvkHR2QF2Rd3s2400gQbPOF61VPRrr75zBp3ZyagSY69tqb3NI6NoZ+4dUdDviTwOcHWeD/U3wV317DscSfo1P6rgzdqe3ZqbSj+es9MW0n36RnnFqUy9BD1bftXQHjJsVMp36vpoO1ypElhrf8brf0JxmSAD7lamEc7Z8NGP6Z8ExxsrKN1XPHuL5C9+lv1M1jAo2+c4V4FNbOdWapuxnoU8UiecyRj1b/LqMzUIHvSxYVN+lclQ2xzKEc5/t/YXwM2Lp46zCM/+a1ExSLyLL/VX+9AX11L83Kv29q+5q5XvHvjLGa71uAniEeUJf5eOvp9dA/aJ9sDep+dnaTHx531K65R5PTQiRy3pv2aEfv3sJ2qPlt353/+ZU+/HwKU0CiBz+7e+8r+JOyb78nz+Mri80xms7Hp449LCqS5+Kip/tguCextgYMiWZ1CVRYIq8F/bb0yn58Tg6mqKJnWJ6I3r9KweQn9uKHh/xtRqhKhaw7PxCHUFJXPbLT0/v4tLseQjQvPI/bMyzRU9Cq/703Rfmo3DGbuxG2khTAHhvGx+nOyN0WQKF/y8fr/ouWfhXbaGXKFGsEv6MSM/hC7rUnEO1PzdJxsyrYogpNvxJCUlSTX+3JxwY3pNFon7PXh4pQbnHW3o8H27u5AXcE+6HnBAeqd+I6beHgfLM0bF63SsuX/itA+bOfxImTIrLt5sUYGD2jdoPO9G23+Rwl8XXucaOIs0Ji4clBu04mRh3PkP9whWWnNuSjRUpz/uVVzPQ3pJOtl9lqcY1XqWHdX/RSL0ObCrfjYB4VC7YGCFnJEZ7FfKK5fRw9s/Vv/oE2eWO75G+7X/6Se4O9w8+MZJoS1S3RDrqyMDKflai6XGrfPC8kPeZ7XWIsiTgoJWdhojPcXCpqOYKEoIlIYzuS60ZsbZDuJBjIk+m1pPnLVAh4xPJbynaVkt1SkpQJmGgB1W9amPzjr8gzkWBDeG0rf7pMfzZ33784BLMPTtUqfyecOt+ZsP2SeCZmh8iskZGhGpKJ7eS/0d2zy5Cy/cmTYBqvsTOoZ3XM5zgA73wqLFCN89q8tNAh93NjMkkcgeNsfU/XBzVL8INzK3INXp4P32Lj0dDSkZ61ndQzFuP6svl3c/1ZXMB/i8U6UmVKZq6ICVwPbiJLwQ46+m7mgK4fQ2BYhqGVX/m+y9K263mF+b24k5euSshav07Xnm6Z45fP2G2phD//A923Ox2kkyPGTUPj0WbGvIKgby/iMzZH0FzPdwy9DzLf1g9f4pqyBaToJ9/IArVsZ9y+5EjyOI7obkRJ0P2/PvA6ShyflXMn4p50VYBXaY2dryt7y7kmS9w4q68v89OD7QY3YeTN0mhUbsQD4gZHJfCeWkEf8PHc0/qsHLkweQMeqQPjITvbe3df7/dqO0mb42u9Ue+mtoLn/bCjpEAP+/Ad/6OfE9qUzH1NZfwygkjW+zfGOvvHQelYZprfCv9YBOOg94KI+rJTsCWk44csAP35Us9mJqQJrUHHoI/arA+1mgCrQdtI42+MJ6UajzBuQFXfevUPXpiRRUk6f/4XQ25XcKI1F1AnhqFnub64zIcfjwICDX9umfnaubIQYXXOM3UP87bikVEc0CeOgVbfUujkShHbx+zt0odjhyQ+BKUCdR6O2LlebX6yUAijwDTHVVurNXIg0wWxN+HRuZ9lyXsmkgdHKQmJXt9v2F0aMsOekky//EPNbHgw+pnUZ2lljsdYQlRfjYMIgxZniyOtPbt0SegNr+59OTacjtUQdNSXYoMl4ofeZLUh3IljX4+9PO1uKaoCIoQj2/R0iZ2f15Q2+zWM5iH1HcPI4jR5ZK02LKveTIGYasC1PmV2sHOSLZnGkwg2N/M5ya9T7rMTgd0IcWXmo36RluEbAluCbcj+59fcJO47+/5yV8k+C6rRT6GJafXX/1niw7bDBb1q/3T58v+yiSkS7NFDVmP+iktnRTqKXTJZs1/Y5k+fdQP0Z8v/+mZu3QjblBwqR3C/lyUDCBOBjpfQpmePp6B+L5I79Lqp2Cc7vNkIRbppFUvUE9TLJfqbqH+4pPazLtG//yvQY4uBJ0FvmLHJlhgPFQBVvGsJuIU7AmyX6mKvcrNNbpe/4tHVo9PtNA+TyHDRk+tB4qqtp3iANClbOjho3gJC6pKgpr5Hj2pPq2W6+FmwBT5r5+/0v/4E4ROumO7s+Jq4YQy3f947SRxh2Q2RvYBcs04sgnnsh/l1+Eir/WFarv3tm8PYdqgB/sjZGO1tUZewyDBR8ieZBOPdzZudDKhhxtn2Hi/9X7m5b4E8UJsahnPXT+Zqg3y+XRUsOd8jWRdP4OJL2/+4/RnVGMiRABewXc/PeT+9g+KCralRyWpGH17gQNW1IWrnuiq5Tw4Dlr1CtmX39IlnBp+0R5iDnubIXDX+OVhk711v71ker/8ePMP3hbV+P0tGgy0EdBNvE80XHlicpTZgWn+xvgUgRtN9v0cwIK7w0+PMNHiGgPNLon8PH8ZkUikLoZvccsIabKTu9zbPIcpW2dRHjQDzdtncgHLy670cK0CbeUfCWb3Nfx4Ag0FEA4EL39jpas1JuDrwoMkWBQbjX1AwqSufaJIFGKrKGY0a7chgK+6qbERzzKjZTDG//xizfYctPMby4LPOIK/FMmlZ01d8XL5vKrYFKpjNYvvDtB+E258Wbxr2lIjB6AkH5lqwpS7c/vYfcES2y89WlOZTNOJGdBORodN5IPGSKX6km17Jn6SzOgXzlc7CfXkQ53tVa8mhsocDqHzpcevElZzWH5DSN2Xs/bN/WhD3tMQ3WevwJmEWo2UlruD0j5Y1P48ioTwZ1mXXo9coL7kNWzawCkA2VdcHNnI1arH4+++35wTA1tEwtqyeasXkI26oafJrCoSJE4Gl4T3sPINjgl/sJEHWJE0erqfO3dR/poPrDxMoJLyhG1V4blHzVRR7/z6JH9c/DFgpMjCB1SY7tx1Uyi9xB2l0bPIEuKPT/jVR6qN0V6bvq913ve4Q/ToV0U0+6YZI4XmM5FWfmfJtHfQK81EetpKZb9sOukuoVvaUkcUK8TSwyQB/xeIVFXJy53r4Z1Kv/OC9X1Ei0uqCR7X05aq5X6rLQgnGRjusiX1rRKi/uDteVjzFV7vP5qe/BNAs8h/AAAA//+kXUnXqrCy/UEMRARSDOlE+iDY4EwQEVCRJgHy6+/iO+/N7uwOz1oe4Euq2XtXUmVTJ7x8GBW320IKtkv6Lz5Ne7tKwb4dR2xrF4m173QPEPrcichxOxpzLFspCvvDh9qy1dds1Xvg7R+2oWzkU/9Pb4Zkw5NNZmnejOhNQCBNUYhuecyE/HuO4NT2TQjP94vN53Ffod6YZ3rQ7SXbqb8NB0b6eGHziUZvcLea+ofHseM/OW/8lkdVeV1uJ6yjImR8sZ5xXPEufVDD7HmMxw8qb78Ku038zNjKL+BUWjZZmDj1jOFSVD5mZVEjTQ/Zqp9xoMldTkPlVqzxsy1Aens6VZsb1MNbHXnkS/qHBr/NGw1iflzP8Ecq3XvtradLKQA01vTFlzEo++XSpDKkc/jC4etLPXY/OSkIPKPhZsU/33tHLUQmWQjlCfKM+VOzgCDFxz/9nM2EP1sQW+IcDttm6ee8q2U0Usmm//Q4pBQm2uJppJZb/owluUkdhOXmF8p7LvLYlP8W2PMfiWpT90t+pXyf/vSb/69XPcU7xAZM+IHGVz8RIxPAtdfZGedhyf7xmVW/o/kj1YyhCaIL/MXz6iypBh1jtwL+YUs0dPRztsiZV6FVf6Km189swN/9AI9OmLC9cbtkTI6pL/fPAhMxOAo1IfdyUjjjfMfm+Pt59J2ZDXouJMC6LdzR/Md3/uKpyfLWWOZkL/7tD5kvcZRtW3sSlT/8q658mDqfoETf6uxhlyMvNF20TEarXkNeyumTjXJxd0F465c/fYyNtSlbMKO7RTV9PifTFCATcKar4a6eXTTObpOjNX/iVZ9gc/SzBihvfYXN+y7Mxvs7jyAe8g/9hyeTw6ZCp2IJqLXPu2Ru53V2w1lm1HyiwJte4ctGt2dzC+cf6zOKrvAvnuHYFmS2nJNjqHRHT6F4bSVPB00XlIPevsNpNqSeWnv7AzLhFvIazh0bdq+Ni+yxbjFe9Xp+1dOV2ucE6gYNycZeK3SI1CvGwXNne4uzNX1Y8QI9V3RhrDvUsYy/2xQfhqz1poO/a8DDtY59g9rZbuI2FfqduoW0UXXJ2hd8OPRWLg4RVjzEdmFqwaTJNeFKJ6zZ7fa9y4cb/8KXQjO9cbqcSjgBeuK/+sLIEUeHqaAydrh0Zmy07jmaz+9urU/FybS3u7uETmWLjeW6Q0tc3s2/+uNfPvC6v/yx4n/8h6fYbcYV6gYhI7vGcmr2iMUG8nmdS2aYgcEqU4nRqgfQx/xujH/8+G+/zrNPvbG0dFGR/J9HlDN166XPpEY20ueLlBndZCsfLEEAP8Zu2x/q2X8fZADTz3Ci7vz1zo4kwqq3h2TVd2YR4kE5IDuj5ulMPRLh+K6setzq70I27LxjASeN4D97Qt2Kp8C9bYL/03/ieeDQN9nE4R8eXuTMKJXikTd4rafW5L4/i3CSwz1WH8hidNVPYaoUIZxeO8VjV6dz4T5dyzCKVdf4h68m5cCo/g1ZvySHTYne0XWm+1XvHB6cHP7pt2Q77Kb6H15c4zN+lluhZ/fua8FWJ/QvHieTjX7FX72EGtpn6Jl6qHzYGSkOSV5PGeXvlwq8TbglcDP0mnIur8L2wnV4f9mf0WBgXZDXeg9e67EGfbFtBSfVI9T8GB1i/jRM6Pm6J6RZ4z19dNHwv/UpkP77mQIoqEw987HPJskcRRQ46omeQn30WDMrJ6hj/0Pt/c31WCXgUC4lr6UG2l0Ntr/bOfTF5UcUX5qMwVuenJyKd4tIwkwYi2t3gXpUJWxokukJ3vlOEDAhxvtzl2cdzNUADv5O1JDcJRubs21Ctb2s81GCNmk/bmdB+L0kOOjXe/LGYY7hE2dN+HWjJxp1pcyR5QYWtkPG0KC4hY2SZlkIj9JdTd03FyGItw7Fr9O+p5zUVRAcmYYdbejZkCGfQ3kR9NTOQDDGLNmocHxudRxE7XovZQAOqPZJw2l3i435WvQdGi9pgdXBYzUbql8FBfMyatFPw5ZnqwlKIyVHIgTvL2LDPbPgSJaGLBO2jbnxpVY2vcLHXpjajA9uzxNqnz8Tm7n57N9jGrtwqg4t4Y68nA0K/S2y8+UDbKPZNljHkgHwZ5jo+VSaiLzXeWkn+WRiXYCBfcRezpHYsAO59pJVt8X+4IK8jpjidttrNqbUrqB+2TYuireVLeRAWrg2ckateDPXJBmTEoEhfUnFf4tkQZkdwaPlOuqYctdT6pSycmhf+1DYjawen5wsozgt71hfV2Ti4uGDuuLGYb9GWf8jH+IC7DdhuPs1qTd9tyyW5b07Yjuw9X7IUjeE6SlfsGk+n4yVz2aRmyG7EPRtb2z2VLlBTIhcbJ42TbZs0MBDfd/E4XIcZ+/TXkYX/GX3xG414n7Aj0wGGPscW61UemM08zrwWBcIP4GcLfDa8/CJZA87TL9ks6otKRx0scC+fQFj4naTj15fdQjrelbqQYTnXRbp+47985PLunh+30GO9ZYeyr715ss6/JVvl4HwV2WqZ2xVAhwn3qe35nPzWHN1VDgP/IcoOb0mHczdABGsvZKVg1KP7vRoYZiCH5mVy+R1QuB8EB5vW0LURGOT9rNPCD3PDyKt9sqWpNdlp+pe2BmEPpu0tVqmBncXq8h2+/ewIRO0lphifKqlfoi/FxW0gg9xfD/faqYofIoYMUaqBe7DYL1GJ3jj3KL7CipjQHZVbC6SyVFVzPZs9qHsYCP5QMPZjuvla99skAcBhduMGMn82w7rucxYCBdrurGlzH4lmOqhp9Z4FLI2UguCxPmnYz89f9BMd54K7HfH2EAXJes27JJC8drzhOtJW4877MmIwQaHgzp9veXabS9wuiYnUrfaZMy3qgxBijsP21uzTuathy8IWc2Mn2F7ZkR+XwdY1w8nv7WXVtsnohLt25hGc3AwRgYogp1dUlxczidjmqTgBIH0wDh4zS5iMtgEmHV+hrO/9va/GS2B4F6PhGYRl5H8PEdKfi0/2NsEt3oheGvB8ns2OOQvczKhfvRl9R7tcTbdLGOMGSXQ4DqjBv9L+4V39jpQwX6R/Fm/k27euAKoM5xwJFs7Y3I0zQf1bd2o+uTjjKbNy1aeF9/D57/1NlqJwHKWG2yu9kxgrghspiKizkbTvK02eg142+qHsfU6eNM3Wo+ie7UQNlyoGowOfQtoCFKsV+8eLV/76Cqf+NaQjSi9s+ZQHu5ojbdkUk5ntOwT/gTD0LUUJw7+Z6/IFGhGhIhZ9e41aa2yfRUmdmtaG+O4aorMuj4pfs6i13/nVoeZC8+hArDphy2+VyhM8J66pXRnyym6nGCbHUOyQZ/OW67VRwT5/W3DWZCXmuY3voIHvDrsx/faYJxUlSC24plGpfAxyN57y3/+FMr3h5JNsZlEYE7qhVrB+8vI+ae1kBZthIMLz/7igwj5z9iQ8dPJaOij+wV2ydUgqERnj/bad4HnS39S9/vZ1EN1vRJZFX83AudWQ8v7V/pwGiRE9wotezqufUF+VrzFfneVvF+RvIjcR+mRxvvPOothfyPy6r9hqW9bNoOd8ch2qpD60YdkSxsWg9yJDo/988E2pmWfpigRzwsNX+xtjK/z4w5cbB+pJYZBzTMDV6hiiYk9ZnVofp3PKSi3XKJ2zjnoY232JegvNlCtFNVs11wdHenTGGJdSbtkkdczEOQnO3hfsaJnF+U3SZ9bu6OH9vgwFqxfW1SdrhWR5uvem8BMP2DrEQphytSE7LJHI//ZV/DpZDYHz7oAu45NbErjJxvV+ZHDaJ521OqaY9KMu1sHEUQ6jto8MyZUF4u8OVaEWnfSeYsQaB9FvAGj//yZeDMPHhU1HLmZgrrDVRSRy5tv7Lu9228Pn6yEZdPdqLvUF7aY+/KkGNvkGn7fvsZ2oi8DMt++Th/r9y1RpoNyPFiXUNifz/UU+78BXPto4+BdGgn7RSkHWj84OOWKwJjUtM7RUk1PfO6qnTFJPn+BuTVK7Ho2ZUtgyym4v/iIHdv+ZSz75MJufJ9Uasj+nhFMpUEmwmT+y49TBf0FVrwUbsjjy37zItngsYce8nWm1aM3eBNC5svFDm+6BnlobglNWb5xoEHKJhGuKUyvbArljbdJhm/07aTA0U/0z7+Hv3y74JGEbIakZqrvTPLstD4BxWgZnXjZhIx/CtT4bU20rY5GhU4DQnjfXAZjsQ3Xhf1v8qg2ljYiulYvwB/mmgz+7oxGdT7n8MKXB9ZcbkZMuGURiib0CgnJgnoSX70FDy3OQ+4ijOynK22OzoFkhgqH5X7WDhsO5UJu4/vGeybzsCELBKgUqM1tPmhU+uID8TN44sDi/GScRYHAH57w9lOZkfvOPoEiFzrFc//pp8fGKdEf/kPjoBn8ak+gepeaWhtlzxbtci+V691aNfqz7W2L5DVAuLhfqj6TtKb8ksngh8l57aXX1/P5Ti0kv98t1qYgYPOKJ2EjhRBuRGmfTC5++BDeixSbzXatcZfeBYKzjKlrQsPofiAX0ITqgbW22CbziT544Nu17weVrYQnVSUqf99nS/mtH9LQtkC5ZjF2L/uvN9RJwMutJac0WOyeLSnzFrBE0yVV6oT1IpxTFYzuaeB17o03Rr93A5+MFFTVty0ijWBX0PuJTramU7Ppd2pCKJNao+Er9hL2/R0/4MdpQ4/K7ofoqZhk1JTVmzC02xmT19oVnNd7Es5pOiI+yMpQcWyxp/qEbW+WX3kBE0xHshVeGnqfbSeEF/RJ+JcvSBdnEaz+tuK3DVoKED9wjeYg7MJLWM/0uElRQ3IF/+UD8vk+L2jHX/wQ5frem38pLUC53mKyPHSunx4CM1FoJjURjY3qbevbjYNviFVqnPIp605RcZHTW9FQd30+E/hDA2s+CTcLp9Vsf901gLH+wkEeKvUY/cZGXvNjuLPfYc+GXRSjzc47UzPJBTY7XWpJSlaWVH20h2w5LKMP+6oSw8fTfLOh5ZwBZb++Cje73dzTX5SCLH9/mGJ22bF1fRske7uFbJqqSZZmXM8sxvhDTe3e1PPiJC06RQ2mzkNtvGndb2iHckMvwfuABNq2d/nyOL7ovmJcTTeapANf6iq1+drpd8ItiQGReEO1iRz65akLIUyXb073rtD2yy45uH/+RKTapx5zntOgjJw50FMhf9G8ic8chHgv0H1oHhJe/2wK8B7CnSiL3aMpst/uX7yhvqhtM7a+X55fp4yat6tcMxwtvuLwjoy1SDr3U9PPNojYfYZTmyNjVNKJwFFqxHAqBctgLzGyIEtdB5tma2SL8/FFBI08YW8cXh49b7PT3//Hbq666Bdmtw9Un5tDnbfEe1Pawv0vPpFZJ5u+LdZ7zpGaf2gi+280holnw8efAGtqder7QkUy3FtcYPNlMW9IyzcHdRx+sMtbzTpb6dbBp3l61IqLHZov7J5Kjtan2KOib0xkU5rwJNyOfF7uoR53i9X98SGsGpeqXxySXeC8/SZkWvPRtC8yAq7WGKGYgeDNK16FHXEuhEnuksxt/JNBcNwY+/Tm9zwXNw3avA+EbNB+yogvPnK4DRxe1/e+Dg81Upn+og/GJfPQ/Dxod6iyZhuSSoH+15i9D7PT+aHU569sBjvhkWEKOd6Hb834WMLOguHyZNTlLTMR3q/bgq4bQrC1F2jWX8rhA5ZW3P/4dTJvxd8dqsPziwNySzLmehqnrPkUq9EOJYs/HXQ4jYWDvS2jiF72YgyGvmwJN1gbYyj22EUbs2PUUqKXx9y3EMt/+To4O1VGJfXeipoSVNhf8e0f/hEZ79fUti1qsCrxC1j5LzXi6G30ghAViv3eIbLd82djFB9PGV3n5UL1r/Xu51vVhrArfQ57StUmNPC3LcoL3Iec4x/Rip8I/O53I1z5EWIwPkso1E4Kwe27fgpu1wsI7+cmlJ1TZkw9e5j/8oH93qf9YLcPHrhOVKgvXwzG2EEfIHe7Hu9lSfSm161slL5WjuGK5705S3Yq6m+2Qv30bKEdmbYVbBflQaRjxbxuaJUBeYffmx4QDRhbMqn40yvI1o+W/rc4WQdGm+Vh+3R5NHUb5Y56o7rgFS9l9O22A/rL17jHjjEbABxA47+z7cLNUyzSwN3L+Pgkuug9cz9sFvKXURivFciH8PTHn3rCZJGDszS8sD0ku2T4+Y8J7ZboTf/8Y/zDT97pVWI97dpsxHWpg/3eIrqfOL5f5tsuBD4TZ2pNz7M3b+IH/OF3vOJDb7LbhwC97FrUCF9+L2Rdu97DlkwapNeXMW2vJShrvMJaPHYZ+ePbl51xJcfneWHzfnNygTTkEe6Cb2WQ26cvICtlAQd799oPWjnLyso/QwhSWv99nzJcVY2uekG9VaIqRvFwuBPUnTlUzLedD69YKnCAqnP9u20tE41pvqfHe16hYeXH4soHwjlwH940FJ/THz4O4bJIWadIs4u82+hTYzrqyQRm9EFV9tmSWdVkttwcEqHPOO1x4PqeMUXv6gSnTygQZSDV3z3yBlZ7xQYhPBtM5hao+CQl9e9qavzxdeTaiY2xyt0Q4+aTBUX4PlLHycxsajmH/K0fPrz9Fxrbb9qBDu/Nyr/fiImib6PW5GdsjIbR0yc+iHK5FDXVvu+9N9/uxwlujvSkXjw9PQbbEdBV4PTwN5yP/SK/nwOyH/sQv72QY0TdiKpcnJYDNrIuZOx+3oEc4PGG/cU61uzzMlwo1FYi4sDPxrfN13ts7v7xjx/14tlJYfQalx5Kl2RLFnQ80m/qhgjj8ZKwYZdGqNCHkmySzlnx8UkAcuUrHPebbT1NxU2HKiQykT+5bfAsaVKA8ZfTYCC6MStsVFHGPwTCr/Y+io+rjKyf22JHD/b9bmtzKZr2phEyf7wiepgqETiJf5LN3Fs14aKsE3XfM8MVD6HpG08VuLz1Jru9+KtHVVvuihc/JGpZV8dYovqWwuF1XKgh9YMxHz5JBcTlvtjh3wbavrOgQ0lg1aEo5VLf0fIIULX5tOYfvp8EXfaBS3cXevjsEoO9viyE6KhsqLOlWTZHM6/Kzf1M1/f9DNYVDQfCRQ3oWZZSg2xvLxHIeUL4MZDKWCQ5zBHnbTJqZoPjzbFdlEj8CIQoX+9Ud15gRooSkYC6nPZFSyOo5Z+egB3ifJJBvJ06qJffi2ppSzxyc0iMXnd3xqqJY8QcnAnoj1/flM3Yr/lLVBwX4j/8knXxRbLAP+UeGW+vtO+yoOIV3nD3ODyoVj/d8pOFIno/UEcqGGvJ/VSAVVxOIYcaypiUhSA/CvcSdsQr6znTbi5I2X0X8s227wf9s8uBwu4TilwRePPp9KsgEl2euuhUIQZuvvzxTRp6KbB5jVfoVvfnEA4Pj42rnijtq1IMJ1LqhvBVdQKOUvA4HKynwST7Z8GuDLnwUcVNP2quyoNebxNq1LPSL7fiocKOzVwIqMyyxeucHKEBp1SL/aiexg8sQMXQDpW7viTTij/Q33r/4S0W+eUFrfYTkrdmIJ5e3I+siYaAtR1YxoK20Mhyybk4uNe+hx77YIJrEPqhtOoz7LxNTsqtE9uwRs+SMSJ5gORYbeneOhPU8pzSgGPLPT2I0QEtL6yFimoeIoJ8Q06IdDUG+MNTAc0sthUfTxEdj3K36umQkc9JKv74FLmkN9STa/WR4XdPDZpNt48xB19Jhi3EV2rWmdazeSpDeWc9bJwHKa6Xz/d5Qs+X+qTObdknbEtcHc5EDGj41mo2RWoxwG07AD7tlztr5+GtwrX/lv/0MCqD/U/fJLzZ1hk77qQKdsdjjrVdNmRrPj6BHkUJ2fTY8SY/uU3glI1MzTwwvOUaaSoc2PlGsZ93bGye1wqO05Fb84/iMU9IXHgq4o2et88wm0OXH/7wFnXvDyVh7OAS1PnyO2QnxTWWo5WH6MEWDtuTjtnCrXciVnyFvW97QzTf2C7Uh3uMrfSGahJLSIBBqupwhu0lY1V2F5H9Uxxsr3xkut7LVDad9E3dlc9Ov/l1V/7itzoWpB/7vFH/6fmObTvJlm/NEjpX4FY8qde7Npdi8CAgq97TGj/+KZggDzwikvfF2ezj8IMWXrDIdB2NernzmwIO3WegB9vk0adaPAC3Url/+jZ9BLkPc+a8qRMbA+uYLAJ8o7il2vVzT3b4prYgyZcb4Vpc1UuZZBb4r4tFvYcP/e7WEfIvf+nlTWW/NR4gTyZnrF0/ctKiupj+9GO6+n8t0PLIIb7jE5pIve/xf/xBJnKFLfku9jPmTie5+mQOWba26E3clp7+7IOal27bL2q1CLJ2/SCqres7E08S0IuylGpEq+qpj+4n+VLnV6I4/TFhSXjSEQp4k+q1aCF6R0YD5wCZ2F++Xka2L/EC//QMV7D73e4n2jC1PwPbsbbUJBd5HXL7bWI7y/Js/l7YAocT7PFdKUPvb/9gq1cVNfxxhxZL2Kx38ISAHnKgNaFtmcJaHyMrXkgWJWccUGM/ExjNwptXvQ+k2zWi6qovs9uhB1j/nvCYHvjsH94p2usB6/yXy+iESY766+ESbo/xx5sT029lvfB7+jzoJWMd6lx0d3iXGKc8SkZhcCz488e/72PX2cnlu3euqXa+04yKommjfZH9sFaKZTZ/2MTBa96p1FL5jA1//jbXqb7yi551YB0raPArC0VTjDJmH4I7/OnDK982BHYeT2jVc0NlILq37fNBhScSllBpAztZ/c9GtCjiNd5uDHI5xTKkRkLJptHceq2HCBDR9IAT5ykZfWTeZCgxqDSXLwb6028gWCaX7j+uyuZ7MOdAmuFBjb4UjEHk2giU2bPx4ap56AXvmwp/eqF7NFi9rPwf3SLrTDXxoRrMKO4XUKONR/X9vu2n5cpFiAiLSe3b5HnLnNsmyGh5YLxsOWOxH1yBLNt5/tM7accSotTv+UPV61j3y5+essY7bIexbPy6UhHl/NcE+Hrwmnr2+ThUVn5EVat5ZcN3i2Kg/r3H2kS+Pfuzv74PG+q9lXZdj1JAa30DW44ZeqteyIPVh2tbXY55i4E3y7/4bTRszlqvtUuoHl1ONf3iZL2rowoexsUIe3pdEvIGy0RBSWpssKn90x959Dhtc6zekZ7MeyyZstqzAqtr/GA7uKiwnMWG7E6DkvxWPPIPb+ir3kI8U+HhG5/wqleYNfmrd3CXmWK9L9bZYbsP/OPHmx7/jDnLgxwx+2aFm2K9Bx/NoEN49Iq1fvxOGPfbdyj58Df67AjO5utn7at0YDWZ5uBrzMkvXWettzdCmrLzlptRDsrK30Neu5v9tNZjwQZ9wurtENRz87yWaPk9mnCkmYVWfN4o6JjtCREqSN63+3FR1vhCmLqnGVOpWcnJVdxRRw/edXsEf0L24xDSYP7G3vQ6xi6cDWvGgZ1esvETvk9KcBYxPv0u72S2b8wHO9O+1BbjyhiMTTehS11cSS5fasS4X9CBgHfXUAxZgugfnlv5NFUt49DPobAXoRM9nuIsKpK5HYsQpMPxR9AB+qx5JNPlnx567OLOW5QccaAq2/0//jSzm1jJ06GX6crvvZ093HRp1e9IJpY8otN1tWZH/xHx8TRqdj9vAIW8H1K9LXE9v0WdR/7D31ET7l7CHvv9AtwADS28FNAo30IVrc8PC5IF/Vgu98//1qdA/u9nCrTHsSSb80NGNLhgAINsXzQ6DX4/H+ahAdI0F7q/piVjuqaZ6KCLT3oanI61vHH1QawuPJmbk+GN4xDbECz7I3bt9FfP3TePoQvRHu9zwIglq2ZGbN4J+d1+RJOfBiV4Qnahzvdy7pmDyQTGLhaoec3CbNwL7AP7Uifh7vVI+6nyUgF645mHp653PJrbmgXVuRvCiXtoxqSeXzZcnCiiscdVCbEyaULK3tLCXQhc3R7VXAfucHBwGJxGxs7TvMC3032ycQzBIK2CW5D7Z4m1b0+z+feeOCW5zb9wqltcD2CVHXT4KGPncqhYL7b+AlKtHKiu2X7NuEWtlE55n0NeyOWMBcJRhv01bKg/o483m72XSr5SyWQq3NDY2XoSyValCdiWbp96GLvmAzv81KmuzaVHxzn9gPCJTMIFp4Ath98+gl9dExqc+wVNWeHnKBT6L3Za/ppMN5kJYBj7M7Y/zlqDztw7aJI2kk11f7Ph3HYFyiODhErjD4gUz6cPJ4jehL8fzWSbvjUdjhxcyRazzpgMK4gRK8uKxkV/QdP2vvvA7gQnaoafcu1Dsf8AkYucmv39h6YyT3Uot4TDuP3aCSmreVG+35wL5SC49gsBrkS1Jbtr6zsuo7+TfEFScVBxMJVmwszJ4WF6nAIatLFsMHnztsH9ZT3Wlc+2p8q9tUHIjq9Q3CGTUXG5dWDJTxe7wjmtyfdNY8DxjcfBr3kZQ50OJzhBfyeTgAU0/45PH4WHT4WdrU3QdNvbE1wOh12obLk94+09uKjShx92rSOfTPf4FMvXhIzE7l+qN70tjQdZj6swO7quMf3SxP/7fdjeiy+bs+eio3FiHQ3fiZNRJzRyUPpxJsuKIWf02JwQh+IOa2Zn1POdbXiwskmm+KHPPV33CwWXq4kduaw9li8GAB+727XVnG5seXzsYH/93vBhe7HQpMsPHXLX+VIcqy9v3kYAILycFh/MH/ZmHh9bgD1SsH4LtknL9XmJNkqyUM8NP2woH+gEF/F8pod9rPfsd1ouG9lnEUGpNSazGr5ttMNmQKO6pfWk+psGRKNt6P547BGppn305z+h4hyJMY3qbwDSfC40uBpfj+yMsEPb3M+xXfZuNt1tnMKdXs6k8s4hmg/f5wC98chD6DY6Yn/7G9Yniu0bPXiTjb4hGJJgrv4v1vPO1TtUMmcK+dX+5r3AGngVrwOOP66azHJU85DsBoxPxXWu58tYtJB4oNPLIX8b090+pADyvsDqs6qSGTZNA52ZXnFxI0tNTJJHyCqIgu15j41B2solyvQ+JPzEiaztFWyCnLptKNiyhaiXaJc//8Ym/9Czqb46KorUEWPTilvWxpUWK/03tql7MtbeOlxjge9cb+FmE9JkIQ+1gv0CM3Y2XFNP+WYeQOkvQMMdbxgT95t9pencKRRy99WT5+bngiTtAuzpv8kb0rG8AO+MJTUkbk4m24x40CRjJFygvLJxLxaidAo+53CeyJc10u7Bg3egFtbMg5JRXdMsxbk9FLLJiqqfrh6zYLVfMt/bqzd4rqzCY7P+0pceaEqltJRPSZ6H0qy/anYy8hOoRiCFyDzMjLw9OwJlXwjUt9nemI+BNKFc4RLq34IfGg+TFqM4TqK/57FlW8QDuonfD5FrckyYS8UBsF+P4fW88PXS+3EBrM7f2LxmJJnLZBrAkS8fuh83tjGZX7lC7k0X8IGdOcTKsItgScodVdNFYov/jXi4Hr0n+RremA3b+mdDZPQxPZyNBC36JisgZiWhLn9Re3b5DDKIjaiTHcSdMQ0/J5LFbbwjMCPLWCb1aMOvfhEaSnHD1ka2kZJP8hW7hWQkUzqWJzjvLUqNKMjRshjXCdGNupAllvc1M9/AwSFJTtSV9lrSX+DHwXlv0lDK+rkelELTlSa810TUtI4x2y9dwGN6oRrcPLalX89Gm6G08U1ScvS7LadK1icvJkt3uaO2mfwBJDuUqZEtLJvPZyGS/+JByGnvehKQU6FMECjZXn6lQT5hKKMiWWyqvq1jMo3CaQFkJl3IK6he9zuqgNcWlXCzea+He5zHMrJ4EVvC3NazF7oyBPDdhPLtRT0al94AxX5XEe7k1mwaflqsaO75gQ3neKuZrjkmkjxboap7fKJpf450RQoGj7gCNxiTup7jlZm8xb69nql4O/cB6QN/w6aCDDQtfHkC/vn+0LBs2n4uptL8ez9R+KFgs+PsVaifQ0Jv/BMlfevoNmyt0yVk575IJsGaJ7h6SYo1vSbJjE+DBcfiQHDAwoc3fZ9BiSJenrBVSnqy2yjiqvEnr1DhGEO/Wsbi3/v/8nU/3aYPh9KDHNLgKZ6NZRPbMZD8JRDxsCvrZagXAf7yu/6Jxno517kK7EDSUIyjRz2/lapA0YsbsXliOhsU2wOQiueW0Kgd2LCzH5a0Pi+ci0NZz/ph4SFartU/PLY20CTSR5wIDosHS2ZmvAoY15pkUBHPYH4hlZCV3O8f/pjSW9ig+Tt1+DruHtm45ntlzZfU4W/Eo8tn+cBfvLbUIe/nkCOAQuH3JXIh1dns6fdBpPNHw37pjMbsGYIOVnixsYeHNqF3k5SwJGgIea5r+nnvTwMqzWf5Lx7SXAEX7rccU6v3j2g+d5GuVC/V/Oc/M3BODEi0LuushSGj7rvmoRQjnwYH6daPSxnxcLFGnep6qbJtN79cpTZPQIO9V7LRebqmEptCgTVzmta+B4YN/Tey6XkTyqhPXw8Z8km80udmV7H5ok0Fmp0Hxtr+ZiZz1+4ayLLnNZze28VYxJs3APe+N9jWpr7vdfFawOsnPrG1K3/JHHzDDxhFMWActT4ToD+bf/iUSNnbTLbA+FTZ3+0vVY/CpWZLpt8hyx5XvOfjKxodZ68jYWcQGsgmM4ai1k+gcbZDpLJ8rmcc3iJQvjTx2VZOyfIiL4DNNxuouf9tk557fBZwSXmgxsP9snkvoAbdu0CiFvoINT3fgUCg5hy9LPoXTZWwU8G+bjuqSvuBTbzGRHT9am+q3rIg2+FsL8BRjWwCjTiuHIYKoAjkRO06ObNxKVMBYnz2KZaEzJuO2uYEaz7G3qPQ+p2uD3d4HZ9e+A6zM/vnz7arGxifH3c2MykvZf84EYzzG2cQcowuivcIrzTghwLNVfgb4P2Kz/TgHqb+3/cSx+do6i9g0AiQBa+iPpB55p7GwPWnEiIrLAljdpax0+2YwotIQIRA5Y3+LeY6WogYUqvZ0Hp2OzmGP/zj+GrA+LJVffheTYf0rnLoF30bNjCW6ZZa/fadsF/ZVWBVhhAKhSP1w1OuBhhaOQsGL5vq6Tk9eAjIkobL7pYYv89ZF//wB81vyc5ge7SokJrgkaURbxk7v50G0Uv4oyoaxWzxv6kA4aNoqWV7H4MRrjFlK1tkMqL8kG0/JbLk/nauQhjqeb2mvfuAP7p7qj9PXTaJRWzDOy28sEk3j2wxySlSgsvZpPknqrzl99ME8OXNQF5n5hiCpkwuYK1zqSOXhrcDszah8E6MOvqu9Vg06yIsofam9hq/phX/gAT3DJtP+kaUW+zqD2/+w9dMYjz8rQfeT35Xj8avtRB4t5CG6nHb/8v/R9BP2Lqd+n7KCjMHJp16rDnPY0/7dTbLJNQ+1X6Ggdi6v+gvnzCmh94UosKEvFcj+uBYguYiD09/8QCrSdihoWlOFehhyYXyYAsZS9Z7w8a+q7HxdJ6MGc3KD3KPUj88fnoWnwUeCa48hFWQm8ZMv56LbE1pCO8Ju5rszeNdmUxRwnb/Ko3xK0yuotzX9rPvPaAlkqpQQZUfhULw+9b9H376w5Pa9tH27R9ebSZ9hw/C/tszYks6MOnS//GlbHpoZxPqw3pG5Occjd1XuYmwO5+dcGYXlk2no2v94x9r/slmfGpMYOfXhuxWfC6k9oFDuNva1I6l2ZgOTchLlpX8qH/dbpPJjhwVuaQ6hEvy+yQDreUYMrioNNx5tF7mq1RB0bgKtvrtPluyVNAVa1cfyLDmW7YzIQR1fp1w4KqEjZU4fODz5BqMHeNiLJuZi+UsrU+EySbXD+nNahAf21vqFpeHx9zvwQUNfdA//6bZvW/Q5WlfiDDfTskiwSmGaHhm1HwnJ7YMtSzA2Ek1tpPKrKcV//zx2T//9ei8319gxV/hd3ux2MzG5gJ05gTyl1/YOEcfZeWn2A+qN1oET/ThPMpiyEem7vGfR+fDdVNIITdgv5770zwB9ywf4a5Nwn5QCkf94wdkmbdNQvKovSOJX2ffOcXDY8EQqOBujnMo9q/SWwomAjSnqKOaqUXetvSwC2ndZeSNmevNyayf4M/+LZHzvO8SbSuY7tOGyCdj7PtEm1XUkqZa80OTTe+1b9khyAIc7unOY2JrLkh4CDT8y/9TUesX2CjHhWr48+kXb19/0DYPc+xfrVP/xydlXgaObJLNzVtmXzuh7WLW+Ig/Vt2rDzGH6PI+h5tH/zbGYvFSuC66jfVEjREbvwaBvH3qFH/Fbzb+xcemmFO6r40Gzemdt+Ea4oxUaXHqJ/9ShcrKx1Y9YY8EtxZi6L4jpgd2LtgyX+dSWeMtTu/FAS13ryvhsS1GHM6mXC+hby7oneYeDrpEY6x4+QtsNSxj3HN8T+00uijwmT7UMbOd8fvTj8ataFGT68x699RlE9SX/STNjrySzhwmDsYxn0m3ri8Tl1uLNsf6Q+2kanqyOaAUsO+KIeJ5pxeu+W/4y6/YDJQBzT4VbfhxZfSP75FKjl30Qxudejz/q+f0ranIcQ52uPIhg0UHW0Xv7B4S5mt6xj+tO/eHj0JZOIv98JzOgnQ/XRm13q1hTKp3iuEP/+5rw0TTrzHuf/ZEfS+LVn+cK8Xl7yG2Fv3A5mZeYlj/Tc3rC/WTNmoVUrM+ILtN7XjT8XK0AIlPj3rT3kbzKLondPHDJISVX9FEUBfotPxEw6dlIfYWTyrUtebjJlB8NlrN0UTIuVur/hGyr52mF1j5CdaSIWEdmxRf/ujaJpS5WkfCUMu89JKPJ7KBT81oDhEvK6Pshm99OiLhl/gL2PdUJO9NKDOm/doW/dn7FEy/bOGmOwdMSFuc34IfW5xLtQCeTnfsFhfFWMzmkILS05mGQh6iOf00J3C89oLDeMEZ/cvnwRC42PlGdra9LXklrfiJKGY1JsvjIAh/fIUI732OppGX8j99CGu5JSLyFj6F/PJ8vPIDjo03ziTKGo/oPj1obOVjAFrtfcNZ/2X1su1cGY4/84jj+r7rWW47JuptGEk7XMLkx4xfAS+710Kh376z6ajtTih7XQu68v+E3UOUgvG6T9R6ZmrP0qf8kXbnq0MDebTqSYBG+NNzqJENlvHv94th6/h+hDSZ9OYKsPIh6mVXP/vLN8jgaUvmVO17MtJaVfYaTehB9ng0Xs2NJa/2iu0O34zJU98u7BduDnn/LfaDEd1tdLM2SfhZ9YN1UPzq9ZuEmsn55TFdAFspPoNHtezY9fSrHGU41dsjPbhanS2HXxBBIRsGYc7x1v/xazkr9Dd1wvaWTM4jr5DCe1aQGGNXTz+SRvBsaRIqHz5N+s32YKN2lw7h/FuafpatC8B2+B5D9mv8fmk2kQ6i0TVkW50aY9gt1/Xe9GbtOKu/+p94LVy02gd55VbKpgnFHegntl4lvWhrO4dt+E/v2Y8Xvh5doSvgkn9t4pbXvTf46b5CK17FVhkR1u6WK8DxUxvkGimfuuGNp492HX+nJ8STet5+ZB0NQW2QqYhQwqKPoP7Dm2wrmh5/UXUZvt8dW/lP4PGNfGxgxc8Ya8UmoX4xV+h1NC9YS1Wvl6aW5ACbD8XO97Kth9tEACbh5ZOvOzXePJ/aDlmydSbLjI79UPtgw1BugYbXr5JNrOeWP32Tevk6u8PCuwssv3nBh1+vs62VliL4347HxoFdEeNdLwRhv85COh7LhGafZPnTy2iQv1q2pEWgg/TLU5rvFepN+ZMuyB5PCCfRVBtsLfkh6u6OodhhyXtEuvZRfkG8UEv90GSqr5qqNJO6wxkvC4gSFedo9S/sWwYkbMN6HraLVVM7yPAf/yOwN+MXVo+C0E/hvlZhvJeE6nvl3s8S4co//YzQHMysy6dLCuUyIeoZsVEvaPvjIBiwi0MnVHtyvh1cNJ6NB/Wv1Dba/wAAAP//pF3J0rK8Er4gF6IiaZbIJGOigNNOFBEQmUwgufq/eL/t2Z01UKSKdPczhG58TAO4NXhiYVvtDOl5iRy0Yt5rzv9mP90Tdw28varEHqo6bU/dVVPyhyxh5RPE/m/GE4qWHq7M2z3qmFqWRGHw1BXZBadvP67YMfnTF4hti+kvP8goac8FVmb9ZtXeHQ5m1GCaZ1sqft5wqsBsioRmdjafOZ7xnZYFKTMO60M8slDF6EEig+wDbKHxD39wqmAsL5xv/Pv7nju5kZkB0jeefkUYofhx3jB8eY8Gd4OnDPINveiq+QoxrNgtAfSgC7ya+eS43XVcmb8f07sljje38Gr+4V2CZe2JqBId7+CI74Yq2Vn1V2teYHXmg+RvfT/53Wvw0/d3jJTIN4Y//H17iQe9I3E3pnjyzqDflPM/vsCL0YqgX1nsbz+i0RQd/ccvHGstIz7cfvBPn5HUq9qLP/682FsuczaB6Y/ya5UB/Ra3Wd/qxQB206BzZN5x+V6ukEjvfa0cnbAh5vx8c5bunSLtRo2kX+fZTzH/dWAu7neiZ5+257svMgGXZ4blyWJ+xyLUgXmqj1gEuyIVct1m0L/5hvita5Xi2ncjXJaPLTPmer5uVNKhWR/Ca60m8aT6iQSV8v7Qbqo34h/fP+WPPfvTX6njKTX6cunM4sr2jXGcrBHm+vIPz02XMO/UqBsqcnVPRTrO6wcnPyyJTZpXz5OzUyif9+HEjufCFfwPTzmXTUe3c74QT39PASNuUCnx2FxPowUoi1vJHD9RYnoofw7y4veH7Irwh6hnOhFAuHiw2Z9CM39x1CA4PkgA6rr/HY1BQa/Ja4jB+nfPn3Za/OG32Z9jQkzkHsDBaCO8Ol22Pt8qI0ASVidm0HnWDSyHCjUWvxGjaNq0mmC1ADaYjO2aXO2HKUI2PIemnPUlNWUsv90hg+rIHlnvp7x6YROOWuSwnRK48Z8fiPC+Kpg+RZkxPTb3K9xUqhOyvr3j8ZQ9q+1Bue6YW7z3Jb9mlo5+l2XO9ue0MSaSyaCcTq9qrocJGl/jSfrD01Q99REaidAeauo4L/Laf6R4Ykdsw5BvgPnwCsuZX9nqk1U12x3SBAkpOdiqd212zN1uSMmtg1tD8y5qYvy6rRClt6hh/P10FmJGyn/4+fAwa7JzPxkavaU7QrO5D8wb9NbgBVplUPmPnBB9LfrOJ+NDnfM3RtU8W2n1+HmgWo81Cz0Nozm+EtR6Z0YHx6ziodgZC9iTRYrl5GiV7ayfA18eDbxC09sXhZseYA2OR+aeJ2goiymA4LOviWGYF0O4N9SgP39JY3HcM8V/XlGfrQWZ/z7zRb+lAbSoDvFquaExrbEto8FbrshekZz4Hx4b73ePoju9ij/9AhKIPjhbjHZKDd+nYNTyjsX6ohUj1UMdKqX8sNBri1TM+quapCnQCauxQR+mHIAZeoDVlH/RqBjYhClb5Hh8FXo6ahczg2Kx6Yhdvn+Cz/q08uc/hZby7sVL56Y68zO6aW4IMfKJqPpOtBv74zMc+qepHFiaYekDTjyU+PJAOJ/ebP9oup5nT6T8+akki9MCse1zOetrhUmMczIhdn0/Zbgu3os//bNkVY66f/Vtr0jNn7+jw+wnE2fWb6tDl8norz4SKnUlOy6yK8o/ictOz08Zi+/xwgF9nBiL5YMLPkqNAusW74kvHit/yuoUw9DIKTuTZtlTr1wftvHK3zFn3T7R2GiKhG7u9kz03eaXDmt74pBfbiVVfG3ls2vfcSUypQxv9GKLumafVCh/PXRiyiUph2b9UZB6vW7ZTey2vcAhT2CZmBJWgmyNxj2N6f/XpwD97zMFk18dMD+1Rd+iAF3h1CgJO/nfIxKeOpnqQvocmL1mN8GnhXJH/das2Ss0cmMSBYoQssMQr95nWbTmTQUUv8N5XiaSDdFe2wKWKTkQ51JqYkI3S0d2AkCIO4b+JF+3A+y2Z5lpV7bvxT3zADyX3VhwSKd4cgncQXKfe2IWTZUKzLceYLl/UiR5C4PxJlHQqnypGBD0xrA7iQe6uNmJBdG2Mriqf3OEnaphmlK/U/7zRg4Lk++IHUe3WATuhUKR5RnzJS8zuG07B2hpVZFrP7z96fg+YnV5Ouv4ktRCdI51wsDKpTz32s990U4Bh2pIcqaHb1YO/BXYkJG0pcubGabc3tgceVrus8vX/aWNMaYPcD6bK16lg1xOmuZqUC4Ti5i/fVWOy8tP3trZes/MvbMpabzodKB33DD7JFlIbKIdhV1rRQx3l9of1BECxezm+SBl9BbTfcQY3qYVEReHSIxpoXsqVYwN3bS5UrJ2MjmYCy1nNn5uUyrV3QPWVXai7K3aYhOeGUWX0huZgacxHrvds0PvLDDYowjNVDBtUMDf0IDtw3tdcv15W0N8UN9snx1i9O9+oV8QwakUxOOhUSM4N6pLPLEu0PA8WZlS7nqKq0Tp0PjhQgEwXpiYN9aJMWzeAHwlDSz8acvy15jbAk2ot4hjEg3x16wRdQ33if8K1LKVp8cCnmC1uLZzq5xI7K2BTa4593X4CnasFQnmpoP0k394ytOmc+AWuh/i3faARKQ9ctitc5NOTriKuVjszyj6Gvk8XuZcjlsEDno2osW336T7NLBrGdi9NCj/UDeejvLaht9hp9NVGMol/6JDA9MqP7Lj64ORCBfmFQx1sLBsklxws88DqKKQEcvmRyGWsOPItZOKkbUeltNnt7ijKP7lxN4e7XRz0tgalcmS4nmatRCRpK/BvXUVpZE3pONxbUXwLJoVM+lH9ukG33M49cwh2FoskdDjrYayetcR7WUnpXBBGSCLfh2zTrePMf5aq1NMyT9Rae9sej5AcV56or+zfR/Wgq+++fpvv7OZNhkTHSQJ7k9WU/SmnT849VGGPOx0Zv7k3uCwej2gJ3ef7XOep1yquwwUXboS+zlt++F3KK7qV40n/M6MN+JxmQFEMcuxJO5XX2SbpYyMX/Yi5HHJ416sBhn9va/1kl0p9XqiK08H7sS+nCMxGd+tBuePzMhzU3/i1jvwEXRRvMj+HGvGWPC8UqODMjDrji3jN+WLHNaSsSBB6GTxRJNbBX/7df9VYsEWRePA67XsiG3nVj9NThqhXGmezLUPjf/rZeRAZuOUhDn2EcdO2UGf9hLZKe4K8VqJDlC8pRfRBvk7jwI5ZGrkFUdmzfHOpHV5QIXjmCQs3q+Y49E5g6tij8qa/52tjn0C3i9aMk2QBLGXtQcQpxbN+fTq900JHD2HQiOkW+fxz8LdgPAyw8x9vsGYlK9jwuPkY9wceWr0yR0K1OuhRsLXzS/p20xlaGldEdcsERqae7+AZ6BLbEe3xBhfFx0DxuxBZa8O0WQ3QQJy2pyZcelcxO9EyxFZ8pYEX9EJ8be+xhtK5qPnQYhjzSWY45WZ58dFTE+xS4Deg4ZKVt2VQvnlJrRHXzD9FeultLIlByqobabhRBPiKIIHWPfphFX9Mv2rN3A4XztcmSvT4GbfBNtg4abMuO8uhhhXt0rJ2nFH7G+67cfN++FAYJKUrsZua0yr07qCuDq+yb/8TNZjAuz+Nli4q/t0SpJHAc3RXlC+fB58IXXHDtTqsKJV7h1LLhbkjNaXoztfH31adsT5i08WXjfLuLtcXxqgYRNSpEoL4+fihY6ott9Q0etGOcefjrz8csdjbO3TzrXTGm7e3mdecJvPZa+9MyjsE5DglnRizFwFQ5nyF9NW0y4W3/PAoUQfihcssI2N+bpUyPs6Prm2ywTxq9Q80C6oDfqp/Xmy1v1rQtvnHovybZsKh3UUfcOsIDrgtRA+7DuENPNGvNpxY07cQkOEr0ymocteTJJDK4Uaa0xs/RH4NERpDXmiP+kiqCw0hrvwgHKxGTCk30Us3Pe3g09d7Ik1djd/PEWFCf5mCJhmpd94uqr63Nfme8Fv+T8AAAD//yydydKqMBCFH8iFoEiaJTMokiAo4k5QURyQIQnk6W/hf9eWViX28J1Tqe6PL/pMMxUo9/qF+c7Qox5PjL+Lnju8mn1YIo5m91wxj1gYha+vaA33rsPXVjbEiU2lZVF42sLJgiNecRly3n6VDrbG2sDIWkaWMG7bCOLw2bLc7qJc2C6kiApkYW1zewrx5qsrmITFxJjNZMFiff/QLCGpWHmIT9VnhzdWp3jF2ssKhOzmaof66mBSdbovOm7NQsuNh5jy20Oysi1dODXvIx7648MasgPFaHQclZmr5bfiul9doT1U+lQvWjHOrgqAnAJljhHZgheVX8JwMBzi3YxzzrdC28LbioHujBFXInx9N2DbbkkVpN+TcajYHjkovjMrJFXCV6x5IO280ImN3s9qdC69r6rss2Ue2+nJ+FwefRDFtWPB4XFphzVemOjUPI/kmPt6IJSmm8G9YTEzRWEi8UCrM0z1juCb4qChyu0O+jKqsZDvFRrqLz2vaF/WJPykt4SP7YHCiDWHkOP1XdEwmSnAW8/Gi/S1zflbqDF0lf4hNxV51lDlW/r7nM7foyv4M9QbjVWawsLl20lEttzFEHyKN3EOh7Yd8yIrgdsXm+mwnfajNuMW4KNLxHKUhRh3PGm0d7jxGMGv0KpXrCm1Sz18qXJupbZXxa4DcvK/LJVnSc7zg/L4O++2v7TWELVvG9zg4eEzrouKM2taOXcnKyz2Oa/GtbpWkPvwfULyR2m93XinwmP/TeisObrWwFGAVTwvMNkryU7IJNlIcNKUI9tcAISoDomt3aqkpdogz6tm9zRNdCrZlti3wy6hRXh0oX3xN8tdfEmG8VBFv/qLtQNr2341ewKMLVNJeOluiZj1IgPXZikLvu1FjOn77MLrtEdsY8+gGl7fxIYuW8nMv7sop35ZxzCbdQa79Pqt5VmsZUjqzZ5t3v43Ec90V/zygRn70x0t0FJXtdwoBZ6r6BMwzyMNjPI0q9wP5ZylcvGAHx9u+8u0Gyz9dLAfhE/WtzlG8uPspkB8ZBHiz91KKIlu/3iX6MQIETvmREJzxy1IUK8jRL8rhn/xPfWXr+hsrS2AWhJmBePXVlT3Z4ecIU+Zd5RDS2yz0wb6Mq7pcp5+LPZiyIY4fLcsuNNNMM7tLkJe4fpYTt3R6o9gPxB5vK4TT+jJWLlZA4fRq9i26+xqeXGQDoPBHNwsVC3oJR5EQKAjTI8+UsWiU7OAbttsiR1ox/aXj4jZ/pdKz/kwxcurg4rZN2Kk3SEfncvLh58+2hXpoZr6SQ3FIz3TBc86NJyPD0DXxS6iY7fmwdAsYUT6PNjRxbBO8i7ABoB5mylEtxsdLT3Pq2GXNC1eTvpjUAPZhOCcnJlvnct2cD4hKHxPG+I9W7UdM6kstEsRnVmB7WfQaI2N/84z7d8U8kjdB6rv+yfbzE0ejEHvbJGxiK9MP6qffFz3PELpasvocqOcLW5syq1mQB4Tv+F5wrT7fQTVn2/xSzFelWheQ4ms6rUnYbEZk58eg8QbY6ZzMPLFxDeoX3xN8heP0ii5qCMXHT/FWQnYaJWmKlw3Zga/HdBQfdJUnfQPlc+boB0u8zPA4pJrbOL9lu6OPNOqMSvpSlv4P75IYaEuGJ2t2ncuWL1+/viU2Pj2tIbDvXtAKeSOWfWTI1HGR4DLfKGT6T4Qr7JEgSK2JQzedRb0p8cCa4fRqf7iibrxSYXdabjh/lo7gfyUaApejDU8C5hT8W/epBBe6w8z7oHc9tiWrjDOLZV4YqO2wxyHLtTJamTWe7axuLTqbLgcbl9cB8d9IptvtQbDvMW47uMPGrRPcgbX7lOq5EUe8Mj2MxBrv8NaHczbob7sRzgc9pSmB+k17RMtStS775AF72pj8VWVKaC04ZxYc2jyLlUuKWys94vZt8OQ1LuvaFD07Roy8T0aLXId//q74uhe8tPHWlXvKC2TdYnom/oNSFaaEGO3PORi1d0p1DRes3Xg1IEg+hqDFs1kvDzlAg0a5j7qt8wgZqemVX3ymo36eboVsy77xhrKj2WCXS4PzML6V7ABixgerdVP/cOtuMpLFbHlTmHuduOI/shU9U9PN432TbgbDCrsN6s7m/RBzu21vNEOfvDA6utool7NcA1h7RR//WspNacatth+U0U74oqbR2U77e5QaWu537a+Pi4FHOqGUsU6l9XIXhGH9ynnmN/cfctFaRY/nmfrU31H/KqVpfYiqstInfUt3xI/hW+uzyjX6MHqZLUp0GsbMDoLD13yq5/ooeAVHdT1AdGRT2/KJ/+BqMu+FdV6fQX8Ol7oe8FWiKPHS4Lx8ejoatLv4/duzVC2Wr6Yt5yrLT+V4RklEu+JceYY8ZzmHLL3/UVHHn6rfsnTJxpHHpPsU3sVnwf7CJqaB/gx6dlhU2Adpt8jP/9gfE2vWc936/NX/7umVlMYdrOW0nYlgkETLx0c73agq/kecm4Pu4WmRSBTMxsW+bDk1zdM/YxZ0XFpDdcXjiBePjriFHcF0RmZlytunBsSdOEmka8vNwZn39zxbtT8ir9GpMJjtB2STPk4VJ9rCpVzdpjZVOuEI42rWlHfML3Jh7IaLcvxoUADJj8/5K9+RZrZMOOE74jdvW0HH/WqsXBze6Ln4DQF6CQ1qSzRsR2NaC3BO/Q9OsrmtxVr/rXhd19Tfa/47FXP0Om8H376IBFzFGQop7sPCRY1F8M02hHyloRUdZmZy7fwnsEmWQR0TtKkpf6OSqtYusbMk5Beyadgl8JNTU3a42weUDljZzhkuc/ssQ8srmvRRtOWR0IcP1Oq7q1bM3hiRClshiEYk42YJiE8XeYp0nnaTaFt0CpTj8zxKiVnkz8HkeU2eNmGLqJ+WUZo6mf00amL6jX4SYym+CSfw1HN6eRvrbZ2mJNN8DTzn98BZ7TJiBGah4QaRX5F5+NzxMNV8vOl94g7JBXCo6vZhyTjpsOSupCMGb5dVmG+0M1hoRFn8aVq8DSTpdxGJozZSSVetVDzMUJv9cdv5BZaurWMs/m4Ctz5mQTNx6pYtjzFqMr5jW2/p6H9402FztL/+XeBhw/oVIVY1j5dMPTe+onUrhyZcZX8ZKp36q8eU6l0lWD4xuvyr55YHxa1g3OGPfIM7ciMty5XPXPThzbiuUOlbPZMaNmoWxjnhvrrHwmXHHkE0hVfclTvXiA9B7kESDrpz//4+ouYws7KHVw9y2M+3MZrhPqTErL08T5V9Tdv9tCOicy86ft8ed/76HM31wxjdxTUkGYUlneaMjM9f61BqoZau58vHQlKrarGYJVKfzxoyub6L1+RyQuHYL/s8rFfj5l2tuOR+eGqRN19Ez6ABNqFkIvvCu5s0AMiJl//8+XEzyt+n978L+pITPwxg3DHTOY8+1f+ywdNthqK55OfILL6uIBFyWZYKzZxzneXRodJLzD/Et6D0bt91dUv/sxZt67E9VY0kHZGhen2+RLcO60VkNI6IW4Gp7Y7uFHxq7/MPX9fiNdv+Yli9VDi5VEOA0EGj4L3KCrm97EnaDJmZ5h46I8Hv4LZKpwq8aaLvXeqeIDXM4jVY0nzFaqEwNWSgmfMj3jBs63g9nBaQJV1DlbVkFvtHj8UiNWPSwKcRgk9ZkdT7bb1lqz34o7o9TN30Y8/p/NZo3WNtujnb2JXdSqJdzoHe7ARI04nWuHei/3qfTpxEqRXK5dmw/iEU3R7k/XTewR8PiozNPldNIKtHyAHfXWwtvOEhNXlFfSrWQcw3TcxtjuKxuX56QP70Glup8JRe7+xP/6j9/3JQJJ39mP46T2f5CHix1K5gt10Jdlu9E21XF6TPczr2iTF/tYg3n45heh0s5lTKY4l8shT0F2SbGY5Siomvou103GaU+Aed8GfP5OJbiBH11ItOrefMZyiyxsvjNapxh8/Sl9IWF74VvXzB35+OblEa8cauuu7UKUYwe88YhSn+P//fbJo3o7tnsRol/YO2Sz+AQAA//+kXcm2srwSfSAGAgIJQzqRzgQBuxmgIqAgTQLk6e/C8w3/2R2epWchSdWuXbsqFUX9F0/geUZUl680mxQ3COD2kZ7I91S3MRk9aQK37e6DWNVfzCU8L4b6VBIDp11QsgGbngHMi7WjR+K0/apvDDC5nmOKaV/ESzRHGowP34Lu1nrEuPlePajDW/TTQ9nnbnoI+JeDRujMJX6LRSmB20bwqC4kJ7DGy+inX2J9CUp/8eKqhl0vvrG2u4xs2r+zAuSc0BIR1DJbxPc2lTrD8//0Xwqd9a4LmiqkX/Ozv3h8WAJEnfwI4uEOOweuejK2/ODo//Qw8NFQiZh1dtmyNRxFmfqdRQ37ZMRi6LVXAFSLUY/qBhOkt5nA6diGdK/d457IB5r/9gs7ItyD6VllItjnlkPD1twzcZvWHnjHwR7fVr1keKfXDvzwxfyetpmYYq1UX+O6sI/dVNF710jwdPokaF71zJE72AN8HeCd8EZ8qZbTOyYQZUpLXT1rfZbfLxIgFwdhtDkOgLx66QN7A2t0V397MDlNGMLSDx7UTZgOpk7wOSBvygvVEX313d46ixAekhu9FTz1h9Zwhh9/I76/MX0+2podXG+5Qt/lY/iTwwke0N6cifWHqYOtOaYd5F7HEGuSg/oZHuYJ0vUuC63lSUyPfrPAm6pcCIDR7E/1LY0AdmQTH9xqY3aPZmOBYfcWqNagfb+N9VT5w1P0egTV/BErC1Slo5B5egps+ShpBEv9EqOiNfeAGvFsgLkMjvTxlN7sT799fMwO22Sxff54Lw016bsYB2v9ZAS3gwFuYzdjP5c9sx+CKlDuzzNPpC9C8WJ8qwdkdBnQVv2mjOn214A//V/x6zJjL/K6wvxp3GjgaV1F0mWjAdjtEP7pGW9h1jvARzKk3gtTQOXhNahhnITYNjnZH1Z8VI7aucdOaei+eLoZNkwIWc+0uHU83/2hkztB59f984E4Ehoq012WCFnx8M+/v5bi4V89jWwZTsEGcAbaTnZRDeCcI8h5PcZ6Kelg3DUHDvBTQmgoySd/djrdUvkvFyO28v+5H16lAgtFw86z4KvlKzcB3J/iC7pmeWaOcfzwFKMK5TWeNubc5Of0Vy+g+m73qqZP07bAtc81DdLdMZu2J69UBHFW6c7eWWzB5Cz91Vuub49nLDGOEWxjsFA35l7V1PBTp9rc90x/60PuaWPDLFUb1I3h3Zxt/s5BuA1T/Fz1KjFrO+8vfmthk1Qst2AL9sJU4SBrHtms1ar0i49ETbidKezz2YbcIxDIYjIBjOvnsIlFFTXIP6w9PZoB/UnO/vBh3KQPAtZ8FZ02ruyPYf+x4W1sZ7yreL8iAlsev/wQ7/xmBgSGXQ2P2+CIQ+Wjx4TbJoHy4wv3+7D5y+fgKPYG4clbMofIvCdg9SdsFd7czzmX1z97IvOqV9BBO37gmg9gTStH9senf/qGmZEqnuAlreGKR0joNQm07zTsVLqNJYoiELElufoEDrtGoL6/qfzvL99Y6xdk04laNndbflK0qDUJp7sbMGdzsOLrZ4PEOJKzNg7f5199Df/qsSw+1CU0L/aOSDd3329nxEJ11f8IbAwr/tMXWXCwqf9eqn5a6y0QVjDFeOZ4k5jdS4SqNmKqXdnLX6alWNR1/TEyxMGktjNbqvJ9XPH+3RQZu3R6qH62toOdtX6yaM2H/PQytOr5PS+QUFShkvA4gFrNur108H71THrg9MD/8UF4cMIDvYr+K/7Dw/X5azwxzK2TPDsYz0O85sdiv9iPqoQfxSupawSkmrPrNwHwzBCZVn15lILCgmWWW7/6KauAItnQ1ltIbT63M6aerh7YXNP8xzfNNf4PQLrIG5Kfl0dMTXmIwKpvr/XbOpvWfFcxu3T3j69gHLf/X08B/O+eAvkTqqTlsOfPoiFrsN2oKj2O5QlMkr0toHl7H2hwTnFMUJGKCtKpRK2P9I3Hdu3rp3q4xZ5tOIykj0sO9KpPENyezJjHxcypZAwvOJCK2Z/o+2JD/ZD6eB/XWi+ehSuEiUkdqp12Chh5WXPUanwq9FBuLub0yEEKWalb2B9s6o/S846geVoiwtrdst4HNkcwPRk6Nq7tJqM2s21lfLoS1cTlwthz0Qpg7L+MkKOigPE25crv/bDVCFdzOVs1gfM+mCgC+WKyI/ZbKNRr37DHz2ChkSJCweQeiPWv1hztQhZhHw4I61yw+IS6UgQ2E9sQIEtPxs5PIMLxUhh/ny83f7Dh52y+Kf7qZUUzFUUKO/ou2uY3g209csths4Ub7Mc3uZqV+IsACM2FiK/NlLVLFSvgIUyI+pflYRLn1UzgWnQp9bJt1M9gGIkyAbPHO9I75hQ18xmeYbQg8XDizUWcWAkdXx7QqQpu8ZCZTgduUn9FAoxYtiiCnqvnaxRTb6IjY0z6auD3t9O5V3OWz2kLVK1+0Eu+7LMpD+QHGNLjgzqK3sck3UgG7Csno8hUen8W8TqrNe1q7AvrOVEsSSXw8AdidHCOYHp+7y34JPcYDW7gMKIRA8HvKElYq28VG7O6kGAItjyq+26Jl+WTP0D2jFuMgrMDmNOkloI23ULmdhrA2FHRgHLs3HCgAwlQQlwO3suwxIfT4ZMtP/sSs+OObDeNBKZG34VQUe4a1vcm7dlBuPJQcUaPgLNAY6YHsvVvfUrcVbNozAaM7gwh2KZPfxQfHwiF2jOIBC6PfvDcqYV75ZQi2bCsWKTPkw2MY43p6aTXPnM7eYJdUHjUQUBnM1HuFki+Rxl7Ez2wpT1wLTTN847MWfkx59KvA7gE6o6o+j7JxuagDdA7nGPEckOuWNNvECjDycZ4xHrGR8R4QLaZUjJ96zkeJ+sAYdvkAT5J95tPpnNUgstha2FD+tTVfI6lAUwXMyDnZOP0I1X5CWpj0FCc2pw/MsNYNvuLfFj3XzKXTeCJABUnjzoCNuLv6a3yUFY2DAmL/AE0PAoWJOX3Tc3VP+atHQ6qIgUXepLEez+X/oAgLjmAWLsF/bhnYwDxEtXYr7pj1gmQFnD/bmvqnYedT6/pFcLmsrfIm92P5qJeOBEeP51PpPE9MroxMQe640HH7uyNbDpL3xLsNkOH7+k1Zstycab1nPEJ78e8qtit1if1zrw7RcR8M/I4aDU0T1OEH1H8jKcLt7RQSMQbxtepY+QItxrYPp8OScqjbS7Evn7g+LUTNL2UnBGSqVfodpKNUe+nWXtewhSCmxWts5dvJrtUcQEXP2VEUZzUnL93o1PdUO0pLljF5jqIcmB/BILx+x2wZbu11hr2R8V7TD9xu7tQEdAky6gFXdcfZPIKVLXSehwA0qxT0c4pdDvFxk4iSf0Qa4ICrX3h0HwD7b/3haPMYSSLpywebDSGiqyoDOObS2PK+0kOV3tAggtkRruqVNRnQEdUxYdL9kU7nwBH5hvqfmUVkFfRBeBu9iHFobuvejHwCLBUW8brCES2BOdOg/kBVYg7vs7xbH3yAXK7XKKa0kTmUixNAs/5DhHFC5uqP7XcFVxe25pqX1VgMzO8CbgeKemhNNp46RNRA3KzxXgfKrw5HSegwOmir7Ny+YiNcl5N8EOhRg2bCfF8jHKk2DH1EOlQX43HKA+gW75U+sNDWghtAPOH9cBOaON+GDZTCP1jeaEr3vaLQqazena4DkXj/gRGud88fv5OnRwceyJvFwVmoQDQUvTXmLLkYsAPs9+EF8wHGK/3bwFNeZoRZMXXJLvkGYEnd68o0oYkXjy7tQD+MJFsmZ/FC4dgBM/TjlAN+DDryvu0QKVVCCnEG4uJ86KLsisyg5reJzHn/i4pUI69G7b7K6zmNd5C+Vjv8U0kGzBEzZyAIY0fqJThFrD4CnO4OfEajaSD5ot3rBiwqflsjY/PeJrPcwfrG19R7Niomt1mDmCpP+70AHdHczK85xn88BFfL5+YyrFnw5NkUWydm2PF+lW1mr1LgrVRa0x6upUDqHZdgdSNY/jL+vsBgbWGSOhXJjtwcaqOoHwR8MyjahqjaoCK2O6oG7aPjO2KiKiQc0JqoVqqlt3OrEG1awvsiuTJFomPA9jEXEHm9uJky+CDHCL16iLZvreAIEoK5asGL8K7C676iTMleLl7I7UfVVoRofEGMA/shSAfRfE8dLEDBYmXcGp8YnPSer1TKXIi/PP36XUJC4XHlokPvTGZEzQ8RVHj0cBGQ9z4xyfUKoEu9przK2P7Ke9AG/QC4dmv6XAYH2B2ZoOIeKOtPVDfBf6+b/LnLp5d4iXwjE5btCCRxLPcbwAjQNy/cvCwYx2bkl9XdNoukyrpwYbw7s0350JnKdT69oTRfUHmggfBhs0nHalZvop4IcGL/PabSOJbqGYjryRw1R4idV5uGM+gMHN43vE2NaRD4Q8yr5wV/AgtnM4DrMZPnqQwRvz4w3ufcZ2fgmd/3mCDO8F4UA6cAkYZYsQ/8h7M7Hh+gDJK1vvllYrNp3Pn/eIPxqHb9LTyQfKzF+pGpOhn87bk8I5CA2f6rTOZgKAHk6QxSWAkatYVCz1DXmvPJI74CAzzk0fwdLvfsZXd0opSPrN+eEvtPWz6mWOjBZ/faaQerTVTgAsnwr7yMqrVixOvfI1X0UGB5HS+XLLpw3fwh0/UlCgCc/uENlzfh8YfpWYzlDEEKlM+2PQOePWvIpUzJ3Gx0zKLLZBTQljQykCN9oUZna27pazxi2y1VWlrb4oNRVm64IyVVrUthCJQfWG9f3S3k9hkLrqmTvuxovvw/AXDjz8hz9axW8HGn18bXQE7YS/R4NTa8XIcqwTO5MRQl22janGycwtX/MAuv3HMwQ/dCb7iV0n319qp5pckLXAvMYdstDw1p2fqQpjuVZ26cxXFw6taFtjdrzt6AoXns9sYJMAvRI30kfmJl8sRQTBkwkQ1P3YBv+43PPs4RoJWHnryriUPLp22o4mrfSoaGt8UHi9JSX3qFv40xUeoTluwx0Zfmf2WrWs/79FExM2uM4f+KDyUlR/i/VUdfbqB4gTnHmNsNvE3m+mcllA6AYEalUx99iAt/2c/hgwvgPWF/ADZTcroNS8PJrO+9wgGktcQebhabLgklwKe7LNM+EhD2ZyOVb72MB/QZtG7jI6yAJXXc/gQ1sRuzKxYekC0sAvVnxctFtKxz6HHPy9EDK+7jB2d9Vy+fHuRkm10c7nneQSr8a5ge9c/K8q4xYPFkD5okL0hm7v0GKjPprCwFisHv8vdQoKvjeTR3Eju8RKTYw2LlA8QvIlvf9kllxDgEgJq6efFX/eL++UXhFOe5orPcgdeQnwlxf6B+2nld8DzJ52u/K2ffvF+0xUi1Sf2BtPhk/Bwco8CxkkZ+MI5ngZ1OwZPelr3b642kgPBFx7o7hi4jC9f7hm+F9Mm2/2r6Zf96VCAjgs1vPu01F9GnDng51/oKzTmDBeOh4nw4Ah4PCswHELJgJfHsME75/2pmM+XNZjqqcI4ngw2pYGJ4MHVSgLR5ZzNcSAnYNu3B2zR59CzmUwBPA8bFzsjF2VLVLcT9JMOUC97EJ/a8hMpXviQsCefj/6MoWtBKw84GuuHPWBBX2iq9tIrutbRzfbCKd3v/dB0dxiYki0LYWOkCDv12zbnylkWmN2UjHpxdvInrZ4K6D5vV0R81TKZW7ctfJ12PA2a9sTmt/syVFkbAmx+FIvNWmkvcKc+dLS5cK9+3kyggwo5AjTeebcnW/W0wBuYIfl0m6vZes/7Q2YccrBPXc3fms/hAcG+0DDesMyfPT7Of3wTLZf7sRKPDOYgn8qBVLkh93Nz6zjwuGVvNIul2o9569Sw5bIe9YAz/MUrzwb8HmiCDbZ5mYvq5x/5ieINPbjkUpFwyiflhbwE1YfmC+jv+b3NFhrAUx//2VOtGHuMPyX44fND1VLbxPv9a19t38H3A2ellNBylpusXfkCeG3WuXLxBzDCf6EHBkmZyObC6RWNgiiA423qscHPXkzibe4BZ4N5JLeQ+vPuy6dg5bdkmoRXzJq8L+FdTxu64oE5DY8LgfpJVskkC67Prh8QgG/olmjL6g2j0+HSQZczOhSd5Sae7p5jwCBxHHr4hHt/6RPOgCt+ocXGvj8fpO8VNmBXYXQ6T/2ChE0Ll2CzQwravdg8WTsOxPruglQpFAFJnaVVhfeQUNOeb2x5fnYWfFEDY3TXdj6zL1cHOuO3pLqKq4xJedD+8muqf0fQT88qKGGxztKfxFsc9wOrefi4OJDqeYLjxfaTAaCsi4kkBkd/Kb7DAn56hS7rdT+/8eL86Seu4gn9DC6aArltQKj9+cQVK7hygTthJ1HXaFE/dyL2lL3T1Nj1rcEc6Nm8As0NnL/421+qrABz0KjY2vlBNvH3WYOmM0ZElb5ZTNpFa1Wl9y8Y7R73jF3TKwfhHArYH00V0GsacuouuJY0uN21XpS3iwQTLAVEIFHVL+968tZZcm96eG/Lnv94exHa0+JRLdgxkxmxEagO3PjYH56sHx/7cwh3+jxh/HG35nKVpk5d8ZRsiTaCL4auDW9iSrFB5zIet3ZI1J8+0K38YmJF94D9klvYsLFvittGgqANvsIvvmVse60hIPMGke3Vt3wW7Ff/cKUbjS/G3I+3lxvAXJBlspiXTT/Nn0MCi/CQks31YmcTz+78H3/RL8k+Hlb8VV7HUKbr+sR/eNKe1/tJh/gYM9qH5Y//U1srFn826SVUkkoZCCce64q4pnMFuW4+qYad2pwlV7oCZRi/iLvf3H52iXGGhqICArenKhv3jcfB1d6JbN8dRsXskcIRFC/qd+CVTW91LMDqnwQHyZixdBoMcN1wxqoW3qv59BZ4cIQgJle5tQFd9QawrhfVC/fbM/Vy1aBGJhl/uVkC3+gh5sBszjXek9uq+mwTAxqx98J+dQzAfOv8BXbaycYW/+T72S5kHnJmgLGj6H7MAskIwU05dGRjSrgXBx88YHsjAlHvvFtto+ytgCc6bhB3X4jP2hJ2cM/DA34ozyqeN/XtCmN/cDEW7oXJ3vY1h60jKtRtIfbZ95Mnyrp/5HQMvoBtGB8oQjZLOGDF15+85z0HsslPf+vLfnzkxiKf8OXR9oVvlU0Q3dEbG0UvZbQ2pAmKWbyjjmWeq3Hl0yo6SJBsX+raidlqCQRcbyJx2RmxkDbReR3q6GO0Tr1l1w9DcK9cUjIcuCNYcLWU8HGqOzQlr6mf/bnUQGlvO/qzj7lyVjXOfnypHttOT6Juln7fp9YTJWyxjcj7y/emuxOz5VAFIZyDt4pxHmgVW/ZwAqw0LRpYrM4GvjYc4O8bQJYs8kFHbyZUUZB0FCdgqvoQXgNFwu2A5ueliH/5FJQOV5Pq++YG5scsX+EhEO5oe3tdMoKETQdFdYwo6n0lY4vet+rRbf7pK9+hyxzgbA482XD3PasvnNLCXow2SIz2d38xBbf+49v7fGniMW3SM/ygwENpnJ1MJjiVpuz3ZoT6le+T21EIwPkaxmjx9cRfXkUZwNu74LGTTRVo5PK0QPcu2NTkFb7vt7hL4bD3FIreeVnR+vEh0N9dInKrvY9Jpdzq4G4OVeo/niab+LtswMhrO6LIVKimgpIF+uasYevzrAERYFPIH8ppSC03W5+U7F7D7V0RCa/dqpiQEhVgtrg9NVd+MX1BeYZgZA4R13ybedtEgxPQ1wkqrtMLcr99AHf0KP7xZRFfwhDyH/DA+MK9qnXCsQI64VAgeZjdTDbyXoJt8wh++WM20PfTgiteoLkYYzat+aFsPyVELQA6f36lGwlW19kiG0G0eh4tGxvqOt5Tv7Ebfzbj7xnkUzFgO7zuYr6RjBaOOcB4jf89e9thrqx6Eb2fPt0v3kH4fVF+zYeVarpCF8HMqxfq1IHe//wZNrxj4UvRvCpyttYeXvyysTcPsG9mYeWLtJYoFkSrmla9U00qacDxqvcNq54Pyuh8xZ50K2Nmy5cA6gunUn/NL/pCaBG8pIq16gdzP1n+oQbosWyp6fK+Px27coJlrHQr/rWM4Ms1hNw5YfTnD2v+ZKirnoaNuliq0em6DjyM3KaXmwLY9zTYEP70PQ2/2mr57ecllSxUu5pd0Yd3Fn/7g2QzvfR0lFWoFAcWkFRV+WwYHEUCx8G8EoBQYC6u6aRQ7D4EuzMUwfi9Gy28xk2Kg4Numgt32l1hKhsF3W2jPmaXKithGUsd+mj7Q/W9VksLty8zI21ejuZPz4K1Ex6R8Lq/+oGLLFG5PpcH1nWp9Nnp4OSwtIUO7x7pFK968QLVV3771UcqUbFOASz55U3Rnr7jadu7BTQdGhE5sXh/DKx7Dp+TLlJNMAv/x49hzp8aal6MY8XXneLIz1w///Qan54oLsApsUOKYbABvJqIkfoKPgYOdmvP5Vb7XOEtuoZ4d5h4f/jp9UkzNkR+73nGuvttgU0KNlSPpblngR4o0Ju6HOt8W5hk1dPgRuaf2Km5rmdilPE/PRtrTiiByXueHvA4vjvqJNK1XyzpG4Hy7MfUgLyZMbVSQoU7nxlRWYjA5LheChyQyvTHZ+bdfZ2D7R99fKxL5M/XYT1NerMibFvyuWfN+2P9/BX/3p9dRXu9+2NJVv2P9gv69BzkRbxH8mX/9unG3EPAt8+JiC9D77d1vREVUVYuqJKHe99tzQ/85btEvux35naXuh+w1q9I33ZyNmjK/QzW/aYHMAzxcprlEO6l2UHbzo/7+So/H7BKL2eMcVn77KknEVz1QRygi5gt6nEk4HluXRr1sDXpt/AR9AhC9IcnLGteDwj64knt23Vc8+0bB8bATKilU7Ea5TdJwG6obXxphSKbdpeGB1JpK4RquWKShrQQvsvxjvXYbvt59RfAzNuCgJyc+ll6nhDMH/YDDehyjudt8OIVcufIqkd8svkhGcUfv1uf11N7gBCc2tnGeyXvY3K7ojOgTbUhFa8k1Tx5TxvuiHfFjj2a/vAmtz//o0bWh9l027TSX31tRyKzGs34mwBfvsxrvuICpr1xAtPWeyNVUaqYgnyRoLiJa6pz73M1acrpDH7+t3cGIWZ92p6Baedf6s1D3k/v1hlAab116rzGtGIT50u/+gS+quK7WujN52B3MiE1221WzQGIxB++EDXhdTBfK6WDryf54DX+xsxVdg9oG1uMd6DozFUv4f70JL+x9+agSKkBhDja459eP2Wm1sFd9fqsv1eslpO+M8CKT2hzc3E2hWxMoDaiBqMHhWDZIz6F4+aUU7ffFH/1QlBt0zM5Lq7sU89uFlhJsF3t5RwP+raXlBQcXezZ2Zh9o/e+hiFLTHzyEi7rKvlDfnoQXvW1mGnvfQLvTU+J4IIbaO/PWgSeMb7wWkbtp+AQJupLV8OfXp0R7oGhsvIZbAVCwUbxeudB5pxdIqz4NM3DOYf64erTQ8K/wHpFeKqeFVL89ImqfZzLSD0rQ0GvxWWfMfOt1pBpMULzE3Q91UwtVH/1rO/3xPqpv6Ia2q/Ha62PGv18vb9KWPVyi/etoMXCqNol1MNiwt55ePuMcYujrvkXmS3tUZFaVCPo707RqodqGX9DsJNXvQJtkjIwWWEx7ld/pN50djNxKcwzZJslxY4jbHqadqkEt313wNZKtGh0yieoG/MN2zlfMiqdWPFXb9iLzexPentFcMUn7KsuBfS5OCVY8Z3e7hYAROezBG58UP/Vxxdihx84OsGN7vevplrueRLBsjERdg3LyhhpJPEPT62dP8SLad3PwFLEkCJoCv2kotFR0Ix35L2RST9stU8K13oHea32MUa4nADcDCVd9eOe4PvrCn76rnbapWzGx5EDaa8WNPJTqV8UjyTgMLkfrBX1txq+xz36/3oK1P/uKdikVYuaIDcyfsKvCboX60FvZ+vUL2agGEDwzzLFT6XsR9F3EDwsW4PuwVevxCe4ckoYGAXWcZGzGaOyBG5cxRg9us5c1NhZIKc5DgFmqmWDtLxtKKyHtv1M7/pJfRYR5Ml1j1FTHxkhN3ntu8tsimfLNWdjcUUA4DjhACtpPGbC+wGPNt8RMZFSnwExTsGy3yKsQZb27OXyIWyp6FJNuWts60OzUC4zdydqWHzB8kxOEewHmpH5cdjEnbSkD+BE0KAHdu+qpbrmkqJcSw2Hd2v2mQ/9Eu4iC1KzK3x/Otz8EmYDtTH+PN9stEMpARVrVbq7UL+auB0i0MuQgg9LvQUTv09K0MqHiVpMKtm0PPwB2BjG2D+dcSyaTcGr5WOdrfIEe8aWOLRhMZQL3Z/wE7CPeftA7lYRQndbt2K5yfNA1pIc4912nfUzmQkwv6KJ3c1ogrZLrA5KckvQbH9O5vKITg9oskOHZCv8mOwtBDx4jH6FzTcpewat1gG1d+6o7sKeLaVKNGXurk8ahfYQL/LSDJBXNw9qbfc4m7/yxYbeUWoR50VBRm3jE8EH2x6JGgkoW67vnQE495GixU0fbPGdIYVgByl+fHQBzNopRvDIE4Pq1y+Jv3mYJNB4Rxy2JauuJqH0E6WDjkf3rsSbLOrjBRqb3QGjcEurzxsrKYzxviR8CAx/YvE3hVfjkVJU9k/zZ3+QGMKAEePDbA6Ne6eYX96kV6wI/jSUpIbNW9PW9XP7WYg3nKL0bUl3uBnimdR0AEPDIaRQ3jd57+QrsGm9EhvN8MrIXT46avj0DaTc9w4j4pS28H59edizmp4x492dAdbRek5x34IpeXkLHJ2HT/V7JjJmcuSjHGu0W+19ZnNBvQnadqtjXwhMUzB5vYPxVV7WWcKkZ0z5avCKAEKXpNb7sTlKklLsTg6246QFpPp8P/Brv31sbeUtowof1ypg2QOb8w5lU5oKCTAH7o39bapmVDvdRaBuOo/w2z2Nv7RNLejs6oZsdNrFi8xH0caq2wPduZ5TLfY9W+BOdCwaPevSnPfR5CirvaBua2775Sl/UrDuH7Wgvo2nZwEnKJx8l6IcgYzB+5DC2Z40uksD2s/YcFJgh48jkvaLwMaqVgfw1IOBSEIux92JRhZoKe9irf/y5vAFzhm2cALYGhMe0LucPpT0cZmRYpj3njXboJWD+9DjPA6P5tLsQuu33kQxTLVaXuf1/tRtuqd2Iin+EEv7AF68ZUEbehsrGhdyDmd70TB+KkY/b+sgh/o2+yBhwC0YZE0W5ayIImqJCPb0uC1a+Ky3PmHczFWdv94/eIUnldrH71gtzjOuoeJ7byLc0r0/X4OcwOo0v2lwfJ/YpJ8aD07lIGGTpQtovSqsYf0qTtQ8O2M8C6euBOXi2us10zro7Hs8wddNfeGgaQmYaHtdYGBKOfZyJPrNvv8uEF8ki16erlWNscwsOC7TFTsP8gLL7/85TB+ITzxUzWzv1NC+LRU+nC2F9dX1gWDOBSr6PrehT75F7sHkkG9pcPVkcznR1FJeZ35DDcwNjJ5KOYSiOyDsR5pUsbG+W6DCZUGdpv1W0/4ZQjX+8lcaQsViw3e35eDtEFVEulx7cyx9+QHn7eVIPV814sm4HQswYetKrx1XxENw8QkIA63Ad5Hp8eQ5r0W9D9YJzZ/cYZOctS2sD8+AeneNq2hsGy04tROHSKlpbFbEcFKP9/JC3e27rpai2F6hHrM93u0MNxvtL/8Bq3/Q/evT9iveGdBBkozN1rf7aT5+axBdgER/9jarx1xShHdvE04Syqq9XNsInjFssbFfWUBmThLYvrUTdjcfuR8WaR13tV4usD/hDZiTl2VDKXpaBB6HwiTv9ptCI3sQwpXLNxsv543xex7hOqWtxrgnV3g/pS21o0z0ybLzbGgs3Q3vBufRD2u8BEndlojdLjcwCeT9+B8AAAD//6Rdy9KyPLO9IAYiKAlDznJMUBBxJsiDIIgcEiBX/xe+33DP9tCiLGPSvXr1StMN9BE2KCmT2VsPgRPDVW1d6oamCvjB6RP4ejxcjMyyZvNHvEKQD1ZG+IbjPHJYHznUIzeh3mTUjFmCb4HboXcxluPTsJofwTjWtOHR/auo9QSyHZKGVifberh6UR2UgCV8h9RM5Fqn6+Hlw99nvSFaPX9PfQW9Ov1D0nbevK70Jfzh7RWmT2+Z7gcX7o/oTINy7iLmuWEIL2ny2vbzXk+hYfvwx0/Kp3Ac6O19NCTAhBMSd30yTIFitwB3D5ViOf4MJKkDH4ggutMA6Q1YWlHTwLXpcqLIYxDNzeMTw7YsAN72h7Gz4QrgCb0v9vmlzIgVHju4xS+MGjxFDPlNDOkZq9hcJMNjPTBCWYLuH0bX78EjXh35P/5Bqk8j6nT0Qh5eTsIb0UylbH2E9uMXj8gR/vk1/3KDNwR5n2Nf7zM2LR1NwB8oDxSd9nbGonLJYcryGKv2ORzo8XMsYD1XGVkOf5W3Iu52gX3WB1s8ptG/eMOESMQbX2Cz9QUX4HL7+4Z3D31uw0CBYL5Aakl3xxPyi+LDnqwUK9oxHSb7kFT/7FNKqmZYVVdCIFdmjFMl/4sGkL1b6RNkI3lv+FeexQVCfql6irXXBbDv6Y7AhodoyoQyWxADHWS43CN4uRXZCp+DAT8KPODHb7/Zn4Tg7nS3qB2FAyCnryzB8aZ3JL1OmE2Lqaxg6qBN1ildQHe4lzykp3Shqnx2h/lFkxFqLlyIdCyzeum3vgNyV/PUcdu/gY2yb8jvXvhgTw4O3lS56ACpvm+pseS893HssIBr439pYl1UJvbOWYHrxTjRQJHieiqOkwVayybUonzD1mLyQ8jzg4/g+H15s+YZArC+exHr4XP1mh3RS4nXhwv21+Ci73d/Ar+9L3Kjbsvu+uJEQQoPZnWZ6mvyBstRYS7cnTKLMO5ggxk8uxyKcZnSzA44jzR4fcBclxb0iy/jR3xCcBDMGuvC/K3XWSgNeDoXHoo9iYJh7+ga/BPliVrY3EWtZ79TmD/eBdk/uINXnb57CRTiVse8lQQtf1XZw9tS8z/8YCsfvZXjdT/N2Hh8LhlfTGovb+ulbn4ts46LogdceJ+SZcT1QLTVs+HT8yjZi8XVm40PKKQvX9TY7sXE219puMrF5NTYbnyJTRJPEDBN18XB3m71iR9bCIup9TG+DUdvxp+mgClcW+pMa+/N/nyCP/wiaxQcsy71swfkyt6k6iG9/edPwxx+6GmU46jXvVMOor/PH2ryL6vZsUUHyXlsfXnK2Y5WnlwEcH6WN7KkX5SRpwkSWO6GmPoFOelLoNhv+MsvrHhnRPP5qduQkndGTUnTI35qQ06+fegbAbSMv/N8gOVlBNizg0JnufjofvZNN3vQW635amCLN9TW0JstA+FnmF5bSL18bL3Rtr4cTFvjuNUuG3VXWOb2HsRLwob5HHXmJVIKX/Wy/PhGPZbJIweZHzhUC60xI1otFHLsgJEc7dTMKtFTS2gERYWKanWyvTiTNzztjZ7evb81m2rmptA9DZTaPrN10fp+uR8eUmexFbCYgpODak/OqHOeS/bjvxJXBjn9M3wSMWGOIDSr93GL9+kwzoGI4BY/sFPFvM6CdEXwhw/Txif6tuN6eNRzjqwbX14Cvxrha3F8ijR4HVavzhDI+cOAscEJYOVLy4av++5FneFqef/xG15K0GeiOWCfvi8l6dDE9AraOJvXfuJhMr8kqsPaiITry3wAP07v2PbHJ2AD2aWwFK4aDb797I38Ea/AsnqVar3TZIyPpkQSwaih1Y2WgdoXaf7xOapt+E3IKhNoXnGB7dO6B8OWH0FdmPc4iD4CI+/dxINHFmAyj30b0UXXW7jli4RdkzdbdlLTSVJxPmFNvTtgeS1aK1uh2mHz/vh49Gcv6/A3ke+Nhozl/VzKqiVcyb4OXgPTlTOCyrGQUPsZrWHe/B8qvuZR7GWPYbIlx4JITE8UN1tN3C//WV5WQO2xWuqFtI8QGJ+VYsNTn95mnz389kFPra6g0byT3jE0YWYjZgRsmKOhsX74gUTr+6lZ7UELPmN5h925ZWzqT7UAJzv3kLDlGz++AX3+b8LmOo7DLMDVlnfv64GeOKupl6IsBeg2ukvgGqzePDliC/tdOKLSHlm0nNFu/X2f4tuqR8us2xxwbStFhxTCjJkIuPDnr0yrUm89G04FJFvRsaPfIv0jaWUiP2F7oap+64ZVUmABnpfQov5TH8ASKMpb7o7dHWtudK5pAvYlvAdhjZWxhvqyd5SHFOW5jDWdkGws7WCG8rrV0HTFnc2tqIwy89MIO/TZZEyRCARcfeOoq+nyMEXTxm/xqaIOS4Dekd0VweqKYnTY13r9Wx+4i++ZcBGXD/OQGDl8FOuDDM8CbX1F+Blqa3fHd8MBjCSuDSEGZY3986h4YrTVUJk0T5D8J+6zFggXCwSNFFKziskvfvrHv52lY+82RGC9+fYM+Ue8o5h8Gq/XPZwfxcw3cVg+TmA9feWDtPkHApOhs0W5Zj60v9hCaeM/wPw9XmcwOAbc8MoAa53G0o9v0xN7VZv/9iOkr5EjbcsYYF3x7MFaVIAqZpIP+2ggDzgCYybLs3rpm35hyFs8RBtfHoag2WajtXGKTWsyav5pzkTe7Ika0FYHsnv1BPrx447R8ePprOl6AmPnOGI7dbe+LEI6AxgdM+zLg62LBu+H8AmdLzXD+9X7Vq51AO/+zmHnfJn0ZZz5N4AT7bd5wyr7l49u/oZWzzcyUYHn6t9+4kylgN6WyP/3+64nV1l7WC85bH0+o/em79lmLylE5fjAPz7A8m8AwXEGEzluesuGNw+we8AzfbRSHW35agxvpy6kbo4SfUlZ+ID3aOOvypv3WGxrBZQIM+gvf1idCI3gfSMm2X8HqZ4vl1KQVfHebvGry2jaoERaL9YJzeLxMiyvan8A4+vyoq5NB52dvxkH+LM2IXHTi1bxVvcgkXmFBuMp9uavuYOwGp4pbuiz1MdwL9mwGiQVo92ljUZ7AMbvPLFzDBWPNrnSyr4u5QQW5OTt1VumQLXPeYqDXcfolUYPuBYloNZ6doA4VNcLbNZPTVGDg0jYEV+Q4pd5w75wXbLRtl4c6Dym4p/+tfn/DC4n/o1Pib0On2eYwH/45Ljtrqbnb8QdN36HPWnmPZrlNQ99/Y8htuvP0bifQwWuBhkR60tPp9XuLEHUKyN1mr4Hi7je7R+/QHIRGdFUeUsBtTWYqeW8SDS8AybJAXRiJFfxMSJvNc1//AgHRjhEY/roDPBKhB229/k9m5XZJpJWuTnhcdjWv/2Gm56EsftdPWZbaSc9UmOiVwP86cO3shXIOfmDiGkj1FPAPSEwOJ2RX/7KEHtpoG+KJ9UV7qMvhrLN9hJuGtabzyFagXAxYDeGHHY3/WkpCi4E75NvI7D3a29RXnIMuXr+YF37VtlybI0LfI7WFSvnNtPnwH+lUoQrj7C0OWcrUtQDlAAVCBOri77sT1dB3uIt4o33MfvFC/nn/0rjhxnzl5cP1v1ZRvWr1aO1uDwLYGEuwur7tPWJXbgc7DXlg71yyvTl/vg+IM60FvFBM2QkSWoDOlxo002PZFPK0gcEdexS//24DWu6UBuMT3pF//Bx45fHzX+pKZ8xW/WtL+buA/SfPQzUtsJeLvSLQtF11rL9+5E9wPb/EMhHS9/yWQ4OrUqwafJnNnPW8QLnv/aKcbCz2RD4qQGCtNpTtP0e20tcCKV0E2tn+V4/t/WBBv1Z1HoefY/8+Nt2HtTsjqvOFBuMwFjaHbXnfgZzth9tOB31HNvJX5rxt0Z7QPHWSTjEjujN16QrfvkKVlrRG8CbBQr46Teq4+oZ++lzf5kGNn0P1Wy8SRz4dHYVtOL+AWa/CVMoDX218WXL2yeUaDC+RSey7iJvmNVttm5XcSO2XXxnc+kcYliE/op1pBBvVWcvhlNBMTWg1Otro04jnNNDR51EKHQaoskGQXMIqXMMS72fhc6Af+JuwoiA50AlRV7B3aEpWvfl2VsfofIAKJHc//Jz5aZsfTI4D+3c70Wfm/x+kFAU77Cv5mq9/p2YC0zBNaj/aE9g2r1eKcQfOcWuBsOM3WQ5Bm10KsnOjoN6xj7XQZ8/JES0qme2duNL+acn4DAfwci9Sks2D6KMTZg+9bXZexUQLE+ngdg4bF0EOYa6FCv08pIAGCQ+a+H8fTQUiy+fsa4XV3jmRw2Bj1uA9awlHLC1wqTmxrfWYe46cIs/GrWxtNdnwckToP99tnxFQsPy02MPpvnFm39Eq8qlCkjwa0d/9sWmnSeB3f5SoOokTAPloyb+p6+p/h2z+cffj3rB/e5Lhnlydi1QrtmK9vDvlIla08dwe44NF8f1vOkjIPBanYz6YukiF7kGnNGXUrWIvzV16TeFo7K+ES8eRbBY4RzLdB869DRc0o2fNjwk/vuDA6vBjD+LRyg9PYdiZUVitlCeRz+9fovfcNgPBK5w3n2//+Lr6MGchxs/QsurV7JVUvj8X359ip9ixMo4af/plbjTRa+7Jl0OvyFv4PAp1xufUTi4O+OEsONO8JadNHVQaAcFyYk8DR1S8hLMGgLUY6/PMF+M3JYqY7zRhPImWGY1eYDzJ/mQs6q9vcmHiQvXnXZA/Hnqh7neDT748U8ngEI29gQU8LorBuy2ajisd2S/4XX9ILL2ThNNJKgvEPnDmZDDXhv4nx4ZQC9G/NMr6/lW/wnAyo8m9eInHMY/qhYwvp1PdNNHapb6miFv+i5qfvcDAgQF3KdjTHZv3h2WyrUkqIYBpDb3HKJpB0Nf1n19R6B12gG65VswFhcDO58dzeZpBRZch0OCsw3PGZO2PpwRbOnf5g/LQ10fcoFHnqL8atbi3b/FILT/rhRB+QXmPN+74FK5y3Yet4jJvVXCUZnf6PDjc5yJRhixrqOK8o51JnouD22z/eCf/rNa2gjBv/ivnh/ZZKBDCQXRlTFq1T378T/Ye3ZI81awMqGsXlDGhWfTkzAjwIbqGYLOxgI2f3yirPg33O3DAvvMejM23lZO/sXrozs5jFxfwQPkT6pQxZP6YR7A8w1a/76SpX/KrKsSOgKiX67YkfjFW0C282H591awdhBOYD1+DjaEIqypkxjXegUaDMFX/JjU0JXOa6VsuMCmYxH6pGPJqCIRDnxDwaB+ufWB9eydIgVobPB9PIoR0+42gj9+tP2/6Lv5t9yozXfzL2dY3q1c/e7HkPA8+vq46T1QXewKxw3H6UN0ea/w2q0c9X3VYPM6pg/wL38nu1BffM4mv/yNbutn2/3RAaghhhgJ5zhjbWGn8Pw8EdTPbQT2r3dXQMVrKupzz/l3n9GDiio1OXYnAghPLvxPHyDd8OUGIv/1EqA3iaB50zM72hIf1vTD/7vPW957F0mXg1BgS9xLbN5JYwxIPV/odt8Epjubenh6cTbWN/24t/+yN3zp5Em1d9HrowIrHsYTx2PnRkPQ709/rqSGXUO1XTQMI2cdQ7jhPUWbP62XL5WgvD9iqmV5BcYS1K0MuS6kWcYibxHmewzfJ2RjJb/Y9frRpxLamppTfEb7aKgfyiyXRymg5jr6w4bvpaT2BY/W4NtFrHfuCqhO/BEr5rMFDCm6L3+MSqdmbd2i6QvUHo634owVgL/ZNmu4BPeIO2NT0ursuyPepg++eOrrPQBr2798oDuJhS0UJYz9nfhcNgL1iJX9m3jzdwQdpC/CYbd+j/XMn/LqF/+QlOVTNklCusJYAi22i49Yj56908D4Cl/0qjVmNtJttuF2P0P2R3DU16KsXPgZzgbZLcJSM0nrEgD5e4pVxVmihaiOC1ni19Sfsu82G3nXAvnPDchRHW+AcedbBff0oVKXalU9YeXJS4/UmrBxO4OBDLI2w0+jKWTnBEq23NJXC+fZiND62kpG4eEswWSGNX3EgertMapK6EjbbO/jUIFpcIb+/1VTAPj/u6ZgPZGc+sU2f3k53N2jEJaURouaDwv8gzOI3xOkVhtOA4vR2YUXLH+oIYk1W1+L4cMrLQNsx1VUL4yhGQjuY8DG2aNsVmalkLUIU3Klt8pjhynrgCJNL+w68uTNtdCvUnBWL9RTk89AnP0nheoXavT2jblh4JHhA+RHEvb9/bWm1YFYcF+dR8JLYg0Woj8kcDbHJ/Y+xw9rM6ynMHmsAg3UxovEfmfPwKUToT5L94AcfNOCZHBDtNyWu0f612zB41K71L/Pr3o+fh45nPmYx0+k2JlopW4F13N0RpX9ojoJYkGCb947YcMUk4FdK5ZDP/MTir32E83HIUzkW/T2ca6pQ8aaL6mkV6B11E8dwsbcJz5E+BLjIPwGukjtVy7/Hb4VtkoyMvoNjzO4KDuL2oJeefNyc1v4e46Tx7le/9qbAc+9qCEpsBQgmNX9DZ5AodjoelJPv3l98z65YIzw6E2MoRXs5X2OLct6RCRI4Sy1dhng7K9wwVzZ2QxOTDzS0zg5bNn1rwO4pMaH/omDXS/vRz/DR/73oeowW2CNOFCAfAkgNbNDHY3RsAgghJ8dNYkYeSs0nRCczyEiu4N80WcnhAIgAlExetcHj3knoYBq8TiTsKmr6Ms3GZGS921Ai/V+sd9z6SCELyInmRkt090hIMHYxD/7mJ7azYXH7G5RNJPnsJ4VWwP0xfX0xBIS0dvuXkFFoi8cBOU9Y0OTW5Ltw4Q+7uc2m3fq3xt8cNIiObqcazJK6QWIu/yE7W/X6PPxrxjh2fEQ2eOAsPnmOQnEo79grL5vw1e8FCHsmRJTP/v+1SwrXhpcWqXD7skI2QqSFcGiOUvUNYYarG+wJHAp34AslnFhol0cZ/hHrQlbMpa33tQsB4qrekRMT6dIvHx3IfA+r5Z0OgzB6l7MEsznoUJ9JrmMnca3ADmi+EieoyWbNeXNwZ9/HTIv1dcuU3i5bMAJ44DKHhV8kUBZezU4+Bxib0V6wIGpju/UGfNiGB+BNMK7az7Rkbvn0WKf1ssODzhCt+9b0Kene5HglZQUiUUZZ3QavRhuXR+x6QzEW+417oHhbfggUz8ScP06yHu1SWh4/F63+UKeAMv79UDNFprevKsVTe6bvw8S+U5kkzcLB/h+bvOckVEPxG8pD87u1mIxNnxvXG5aC7uOvxAQugujSp5zW8c6FSOttIY1SjtfOv2NC446QdQnnLo2ULNMRLuAPvXldG1iebg5Gb3YL+qR+fqSJPPv9Ebrbd/ppMy/B9g1+wMBL8VjzGWxAScXAyKOshqtXbThhakE9K6eajDDPJ3hk2/e6G8odY/NT2+FJ8NTqfe5p2zNh28OuMP7j5o2/2Jrmb8k2JQZogheSMSuhdyCj5KYWIXJtx579/CGcutfqa64qs7P0ljAfDdbNOz8k74u+vZezofnMTamIVu7KLBgOT8f2BU0En1t7+DCn//h6XsAH2rUbxBDHmDteVo2shF1sDvZBYEvcNJXO3oo4HmV3C3njmumum9NJkWjEsb5ireOUniBRFfPFB+mRz3P0ruA0VBg6u54a1h3gtpB7fTlsM75ii4o6QFC0LYttd+Wka1Vdk3h7i201DxdFDa52keCL0JyBCPuq095akLpPrAz1WujqNcyfWuwXxVh68Vn1vPvvIOvff7hE1vKq6LJD9mTEVRfeTQHsxHCv9LwafIRlaytTfIGrOlvaK2ODps1uxzlDd/o1QFmPc/c1ovyRQlGf6rojVdYXMCXdgONLNYM7B4xCa5RGCC+Tk2PZUlzgQysDxoYxWdYFLFPwDeAIjZiY9Tp8xlXEJtmiN2jp+lrf4cJ4LxYwj7rgozOPceD5BObNEyEJ2AwfGnQO/GEzNrcR/P/AAAA//8kXdnSqjAMfiAuZG+5REFks0VwwTvgRwREFGgLffozeO51hiHJt2RCwoT6qhstvpPvgNpgmRUlBn9ndaT7j7RN+P4ltXC7cd50j48IrD2tEs6G6+ETW1Q++85rgcn5TDBiBxfM3FaYfuGfCw7Hxx3M0S45w6k+A4q3rTLwrUN86MPIwGEieBYnZRTD2xjUSMrdAjC5GkKI1cWkltMQi3XN6wrZ6VNj1xMqMMflnEFaGSE2H88lWaIjd+DzFDC8bfZLwnqSFQDLs006qXX4wv0KgbIgDT2q5ZWzis8Z3FtPETvGQ+QMlfkZ1APc0vsDH4I5O5UE0m10plf1GDQs72IdpkgUsU0bv2FS6KoQniRMtDDYD9TnhQ2el/cGzZNWDBNc54qZs5/p3j0vnATmuYUwkQPqLjrJx6O4c+H2b90b4h/thnmp2sK637yxJ2hBPoTCFkGlVjX8iPp78k6nvoWvq3jHx9fjYPFfPJ9pe8fh8WIP4715VsbDE1y8uwt/fEyn66ibT38iwihcLDYn9gipGcvo1RWyNVennQ/97e6CFHVrWdK1z0yIo2GLd2IXJSy8jQ6wQ5oheFX2+WxX1NSL0o7xcXtJwHSrrjGcmusdPfdHZ2ATUIVf/Og2Uv8sVtsXHb7C2Fn5HzXz4e9pw/ju7Gmo+STh+0k7w0/V+3SHLArY7WAVcLj7Nxxu+MKnuNQy0H67mEBhxNbLoZkJXKH38aXQpYTAbZCBjeUuqIufSjLOuVnCV536dGtMNhiTNxAgEoyQ2q95yfmMI6JbfZvQfcPnnGd9GULlfrbxRfRgMy2RlkE7kSH1RjgNxNoaPWjtEiPtUEV8sq+zDHLJSPD23pyaBWnpCPt9UBOGAAVzIEIG7xM7os152zbsALMSthuiULui1bAURpYar2c24uPd/gZMLtaZEHy6ETk+bfhIajuCb9gGtNwsG4stxkWGJhg3SMpTMZ8S5d5q2avdU3drnQEptKKCYHFvGGtimTOLcKiv/EU0830G851uYxi9dge00Y5eI89AcqE4FYg6lWAnyi+fUiSLRBXQe2BF1DpAdz4UDVMw53R9P2C4BgZ1y3bdAWx0nSKMVkRD+flp2AknDMpB5mGv3OCGn9HdhdvO6Gl4r/xgro52/KtX6ofdiS8haTogB6lHpMryrCVPvBhWb9Wi8Wv3aFhElAWqyRtj8+ZcEk6uRa2y5FtiTzokgaJ+LotRlE6MzGjqk1WvIvDJKocGlwJYk3I9u0DroEL9MkmD+VFKIbBjqVzxRwPzpmt3huBfCuw9UwiG+VAIYDi2HTXvm1Oz3OXBhUn/J2Fkf2DOfHAUtBXPqL+to0Dpu6qFK56v+t4C42M71tCtHUjdw75t+MYYalhAPpLN9etZy1PaOT99Qgx5FJIZRygFtS1XSD3H0CKtAkrw4w8VvGo+Kr6YwexRrNcOjFsyn9j3DO2AQrTR/rbBfG0LF67+hdrxDlpszXej6/GeaO8sHMb3ZYlh/PwU2AokJZna9f5xkyKXkF3VrbsYGwTA4t9+/NFwnm8icI/RH7X+gmog71be/Y+nub/jgGf9FcH0JVzJ3fekhm22txbene9Ig4qd88WPjzU4JjtEMasvwXJSbWQIV30gyqXcDfOgTgSc5BXf8gyAZfmGITy5AaNmywHvDJ5G8PwmV3rg3Z5LSosRWEZlSyR6+A5LWrsi8LGVIq5zEcyu7EXQEx/OOldvNwyAdUb0FTtIvdwfgHWPdwkzSz3hLfHOFkunctSPC3VweGhGiySyQv7rZ9mRTUBOIjrDyfwciHBs+3xux5zobmNnaz7TYZmVTQR0ykJ6jU8PMNibbwx/fmAz79qAkRJlgN7SG02d16WZ2rLv4aqP6e4muZboPGAGhJvqISO4WcN8q8oI4tP3QYByfFrz9skrKI4Fo7u/dzXMnzZIwb74njAezHPAVM1K4Y24JREVwqx+xo4MR9kW8eFS1k3tSe9Mp5nkrr8XrbEpBAfmoiFRu/cfw9wppgyzja8hMQJqwjN2EnRWIkZ4N21zkgi8hA25BqhVhPfAzNFvoR4fK9Qn1bNZXp1fwacWUSTcN/tc7nNXhtteaNGzeT0TOgY0hbp22yI2QJzz69H+QvP8KpEk5BaXSvWjwx/f2kuIk1l8XkSImrzAtnNAwUwfqgCb6TpRC+6FhL8+XQXPzyTAdu9vhjlsAhla63eKTphuuWJbVaiv/om03emZf64LRvpOv0VkbvZxTvPrFANaQxebSlUF/LsxmSHd6DrDllDOBJEJsOfp6///ly7KCTDs+klGeX5aS6EVNWxLy6LBM2oSXhOmw+3bcNb7pwJYzIO77oFiMmJEGpqvwlvxV094VyiZtcTfk2/88rGXknyg/GH4oOTynmyu2Tz8/B2sv7DBR3ksc45VWYSeVLTYDBZocTfjOmhl38J+yd8BfSMzNYS4KGhQH2jDPc+HcCscPGTcz8+BrPpSP7DcpTukw2B9XtW4zmpKT2LQBvMgvmUoy/2C1ufn49dnLeQzcmm4fRb5bMcAwsE4lWRjGzv+v97zMS3xQ8nn4JOaegRC82vjnz+SiSPrIGX1h9p/jvHz4zqgZiRTM8NeMH7O06I/bx1Y6y0M5sYxC9hK7os6eRj85zet3T0SvI+dIeC7JkQ/fkGbSI34tIS8gk548zDStG2w0CEl+uYTS2juFR8shXT9Gs3lSKi5qxbANuutqWUSH3idoA+YF8qC7mrhH927dp7LhVR+4dtXb9Q77k6/+ENjp18i7C7ZIyHqS2NwHKonUUo2cCYX0xVexC8n9atGzVI3dx9mpqas+fhoJtX9OPAzfSjeg53azAayZKBtxRg7q76Uv3fxDMHGg9RPnw9ONL2w/8fXoQtJRtLtXJhXMqGuWVTWrD+9CEIVMiIuIc4VBaAR2keiUouoDlj9hQkdvQtxwOzjMF5TMQNzVig0gvVisUy1RNhZdoVNdgsb/utH3Q+9Ty9rv4NNCrD18dO8/uPtiOp7CLv+uCdaeg2sxeBRDN6eqiHm1jvA+DDq4AyUP+pgNR7GR3IpoVHuL4huZGQRnzLH6IrPGXtq5PD5dn3asKhxhuSt7Q4cr9/z37QRr/xUWO3X0Ueg/WU7up3jN1hcfPaBfUsm0ptFFXD3KpjwCv5C3OT33po+vRfBcaif+Ne/oGc/j+Dc7XpsR0DNyfepOvBVZ/5/PFUKWzwbMwiOZDb+pmRoN5cr1AQnpVu2qIDHM9/Bk5RfKL5b12SF5FR36seRiM6BBJ+ACTooTe+CnV5bkvFgpinkuE5IfeRq3u+1jw1vU2Cu/SQr+fzwdD2YQpZ+2OUSsEoCmGtPhKa8BEvjtQWI669O9LFa9yh1uxp+l51MlPGoA7azvyLwr75OiGK2nCsHNwOKhbaErfU/QWnooJ6sl+TKJUkWniYxvJ3eEdLtweKfXFIrKJ70Eqke0vNZk1UH7txPgdQ8UK2pzb4L/JO79f7v/AEszD+Chg92SE+rn59XfgK5ImCilueBT8z3fRhtujs9PozOovKZl/AwxDXFzb6zfnoSFn+2iHd79Zsso5yloJgxJJsX+YK+N4MSLGq6UP9z08BIo/wMVepu8FGSlmB+1NzWP2njY+fiF9Zii7sa/sltRYNU6vIRlckZ7Iv+RHRpkTn1vJ1gnN/jlXqAKQO7LB/byAQvJ+sat4a6GVch+Xs3qF+yTf6Nv3cXYHbRsPe15vy/Xmq8wSACO/ScP/1172wPW3z033/BktrXGNJc7qi595Rm+sWvf8siEv+6EHyg9izgRepPCMrzM6A/f7z2j+nP35LzbGZQJd6TOh5G1jDcPju44iNRwZ4D/t24Czg6xYZsEB6tSYCxDFU5fhJ+Ut4Jk0JTN3jmdHjlu5xs5LVeTq+I8PzuBkq7uZyNVa9SW7pYwdwfpiu4MlWnwWVcBhK40fmHz/TXH5HQSwqhZf6d6X+9esL5qsdTD8e6ewpEc/Q7Tf2ODN/ACeb9/TF8IYU1xO55CQLNGQoXWI7+QJBc7YD9AwAA//+kncm6srwShS+IAYJIwhBBGkESlEacgQ0bEOkkIbn6/8FvembnBhiEVNVabyWV+WlnWjuc9jikn4O5/dAHBWbXRjODiwT4E/d3WD1vMUZpm/vbPlwYXP0Z4lBqwLK9PC+wNSxj9dMxX6oIVGD1h3hvx16xxYqw+cUXCRKQRtRfMgq9+CgQZN0MPgd3NoC4jL4z28gOmPn97GoERTus35UvmEGuHCCTCxkdnfBW9CZ7wd0j2qE1n+rm1sfs9PO/SLyZcvQXJCGFK1+dy/v+r+ZjVLvgVy/1ban702CzCQ6fZ419SbaAvOm2E7xe2pm46bEtvodmWt+SldwfTx2nhwAOsHnpf8R3yKYe2vjcQkF+19g+51HNL1/NBe9jNBE/Pe1r4mP1BFMcWOTIniiaPusdhTWeZ7ZpacSprDxh/ce0WcKPtuDoMjbgA9rvPz1FBQps0GhfQIyboHF6jm7DT7/i/UhbwM3k7AGxi65Yv6YTIG4OFFCsc8rQnxpFxDy+qnWO3hnr9NP4y6ulEN417mErFp2Ir/lSvU7HivjBWaoJ/ygq7MvBm7fcTsGPX8JffKGmzta3R4sUai1KEJDaOeLpEVEw935MPPlicX7ptyG81F1G3GL8+EwJDah5p8YiuVIUI5ezJdY23yfC+rs2oq06OR682d2EvSlMffZngwN4zQ4meKBw3Goq87Smbzd4f+NHk7Zjf4AAPdqA1ce/Yj7NYwM/6d0lr7dgRJIrHy/wx68UTaA+Exx1AA/pbeDn6681h1/8jkHbzr/8yI4SyaCSND7SGncEy230MyAo7evXPwLUWr4xCPjcEIs43sgf7zCEe8E6Ygs/7IhtOnECL0c7EXvlfWxD+R3E+ybC6fH1HqldyBXEtj1jX8zacWFVFcNPch+w6Sb2yB9/eQbH9Khh4/HRR6mh5xb+xa43V/ncRPSn561i4MRsHz1YztP0BJeyF1Z/q5j9bOYKBHcjwma9scytf/vksNvk5qxO1PKl/Hcobs4fM1v16dJ0jw1UxgkR25ZLQKL7AcHVv6x+Wyqmh8BtmGp3F8cl0Ufpir4pCIUGkOwZ+3w5ffazJiQgINZCScRPwhHB8h5fVn8kgh+fA9uc7+bdUyQ1fWlzA6eXQP/xYV4NQIcg31+xdUmr8Ttc8vtPv8yLAV7+Ms1KBe53J8VHp6Rg5QH0x6cRUzvdlL6JKcOrvc5ZuraHYtOxMNbwhBaCXmc00lzxZXBSAcJHXAj8W3whhZRfU7z35dFc9W+reVcvw/o78gB/jLgFR/lp/NbT/85OSNXJyp4r7zAj/tqx5sevEV3Xh3mjegIrT0eLFiTg65w/d7jvBYO407nnNBp3G7itlSsJbvF+5V29DX+814twWnT5cSMDzajf88pzTflefye48gf8MkZQDFLt5j/9S6zp2Zq8Tg5Ii8vzl7jH5wK689trdtbZ/sPWEVgj58U2BFreNTg11zsEePQZdNM/nziZ8ymmjoXpj7dic5M7fOit3Pjx5vm9lFvOnU3XQo5KCf/6LVwTqA5vIf7D3t/dB9tvZz1Vz28+iBweEfj1V8G+FTu0edgamF742kDTeIb4Vw/JS4ITqEzJwCtvi8gx0De//LbqgYtPL9rA4CdIBnxaef/mspsU+IW7YJbyM63b5FrMsH0OIdbdyxgRkD9PUHzLB4LunefPRjQ34Hayb/hgX9/j+KEJg5q4HAlqOKkpypM7tIP4M2u3g+f//B1Mm2Qk+pr/GflcZC1+k5w4a/+WHAN38+Ov2FC70lz3QwOlJuzQbtW3c7u+PV2F+ZkEQbkr5vlCKzVt4w+2SrM3aTKPaLdrhS12Xnodld9jc9CyrOh//TQwe6OKoMp3MTbz3c2ftVvdwvqKBuxM3x6QGHYelEQ5I/b+0I28cW4uFGbj9O97Ez5VmbYVnj2SNXIqWF7CGBJQP7HzKcqIFdH+ArKldEiwTzhY6z+DC1Yb7P+FZjTzrLioanQSyCP1v4AupUh3B1V4IGXAO77Go/Gr/8T/00fOfvVs5RHYXPlAT6JtCj+790KcYkvq5cd7B27ExJMqsWC+m6Vw1W8Y7zfYp3Wz24ATHt7YtM2XOYn7awsGmwWzuPZriaQkKRgzb4eEcRprogmKAdZ8SK74BPxlSLMYRt1Lwo5z/prTYED5/ztTIP3vMwXv6+s9S+LHApsJdRMkXUPIUz3PYGHr/F+kxwjJ+jv1WSHfc+ALhT8Lf+hZ08kdJtUyMwu7tp2Z7Pw6XODmcNoggivRZKgNkebCuMM2/ciAxs6QQpqmFCliqAMpyLUTEL6WMO/09uh39TYstSq5GeSM3T+fN2jbAHl/SpFi4cyc+7AbYAcPLjkkUlOwSyuHwE2eHfYTP4rm9i9vYK9djsRILixiZ9xd1nuMeJbw++2zqrlXwO+NERv6vjKZVDYyFMX0Ne8Gs68Z0DcQSlMo4WcZonEjv6kMI0OO0AaTk0995eSBACVA2r/ANAMkUoUAPk/BDOLDIyauqnR8OrihrUX9FOE8fxjFBn1yBB8jeZCT+r7zOQ5RDMRrIWLP2uWmHG3mEHZD02Fr7yQm0/ISwixJMxIMyntcbrc+B5NpnzAOh09Enw29w+VgL4jlf0NBb/Ehg6UYldik25FPf4VSwaqTDOxbnWkyolSTao7cRKWOSnPxqqMLnRQ7ONDHxGfGm+rA0iaLhC9bj+RCsHNAxDshN6m9cU72HwqHUffIyxtfPlOOUAWKcVDICY+N/1VHoIJ1/chJvEPAgCqogIhPgrZUcjh53z8trMTQwFhsXoCn/TkGQn8SsDU8rJHHwS5W+ZhHGKvChxPFxyrYHNCGeK3OalYIKANIqBE28KPy2Si1Awy0a0AO3q3xuXQpZPjp8w829HIw+y18y/Aau1d8z2VYUBrkDDTGtiFH7B99SegWCOHwhQjku6hg/tZwoR5zfd5Zzc5kuhfqsBrSaqZDpdcbLg8MzjBFWJcQBfTFyjv4xiSY1fxRRawM2xIGV/jFToidiLO/M4OSgBOC6e0DFt1bdKj0NwVRCYWc96+6g92eudhOujYi+/OfDt9ibs1KooYRc23dhZmRZEgisVWTxgkaSDVE552OFnN5ge8T3rsW4iCRkoI74GrD0jR1NKjjwOn9GN41Y3ANfBPfe7As94TB7YFv57Oan8EEHSiATeZsyCGfDkW3RBmFt1HZoZ0Y78BQwEsuimYloj8vW9b9M0zq+r9muQza9bSg6MKFXi9osf4Wn3vNx4WL8T6TIA++ERu52kFmphdils04zpdWvsBj4h9nKM13sLzA+wlsLW9XkqXyng0Bhdb1bBH8kl7FXDX3EvRT0GOn7K/1wlYU0GdLj9hwv9QjDUYGmeBckIrLwZy8rnNBuT+UOLs7Sj2b4KLDuM822PJmy2TpMsVQza7qyuT0gvkkc8FDFx7YkfiVs3onlJBqPcW6+nA5u1VzBmsB1hh5qWDO3ek5gOOeHImOL51PBoI7uN0n25neD2HNH9fbE37ot0OfydpyKvx1giqZIJllK2nNyYSxAev9WBODqhUnXPkwaCXpG2PMP+b372GW62zEJ3bfWK/lxmIt3CfVnqA/JNTUSt0DpAOmSMsnqZhEEgowGvwIu6TORmZ8BwMqMFeI5aVfk+T9NoPjXvGx43VXk57TLgRLr58RIxGruZUFtrruN4xJ5dRz6KcXTTJuEvZCUhVj7IAUDrHrkddLekV8Cr+TuhjemRzK/FAPx0fqQtl8y0h71UnEvkk2wcrcVQiu+WCs904Dz+P6YqOuGGb/eJ6fkF3xBT1wKPmTUK89pisZiSeaFecNEtf8PqbEEnHASWiaIewn3GNdajtOgRKqWhmLJaKeGpr82Up3sMYrcXKwLaaDcTnAsG9CjN4Oqtm4o52mwk1OQnqlfGLVhsJkqhMEj1rjc4qva5+kAiRQVQ0sRns2IN8fIuyXoj9S3b8YcJvIV3Kg/wEAAP//pF1Ll7IwEv1BLAAfpFjyFgETWgR1B6gogvJKgPz6OfjNcnaz7NPdRyGpW/feSqoGCw2ikMFGatwT28vak491UdSQt05Odu0yy0GPYgPkdorxys4Tk66Vywo9xFpkThzSbPy7p0cYL38hc8nwNXmw9IZGnZkxyyskn/8VjyNU7baiy/szp9/7SoU6/e3XaDp2zRGWfEN0OX/y0QqN5R5heiNW9ffuuPPWLVjinfleHflcqdkGuubgs6Az+o6z2aeAmicinhy/OPfayoWsnzJiPgY/GzdE26jX5HVlmh0sDpeazqiODzUx03OZDaa0N4CbN05+6zMr3VFRdMPSyV3eJpwrb7RBFhQWwWN755Pr3jxliUdaK9jhk57GBjzM6UEc7V6bU826NwqT5Ry0GPdoduq7A9/O/DKfBVHXgksFJDSdgCUls/jM1eMIeqs8qThuCJqrEr9BOB/vFGIxz3o8XLAijJbI9uArfr+bvs52wQvmpq2W0R8+fxr5Q6fx0HCarfILrMfPhbjF2i0nttzLqCyzIlh+3hHr8dRDFm8z4pLBNbnXDi76x28ezyLjD6XM1V++dSrL6X7/r3gCbXEdXnE051aQo41wvrCd3X5M7s0PD5r43FAp3FnRerSnUQ26PiDeZKWc28nVQfOoc7wNn38Rl047CaihYXIo5kM5rlG62m7F55UEjiX5zBUbB/WmFbCb/JY5W9X7lbLugjUhyiByVkX7GkE35uzHF3h8Pp/AO69aipb9LS94i8Q2FYnmmKHZF1r4gmfb6sQaJWm5fVgZsPA7sh/3Tz5+l9k+1ni1GQZHNNvf832E047t2WbbNU6vOmiVvFfE1GTfby/28YJ22urDsDKuUHM5DBdIunlFSHr5RG+kBArMZPPHjm386kZT+Rrw43+gEcsc8aPAaqyP8b/9tvDFExhE0pkdz0M2XaPuAt5Zahmu7XvJxXUmgE0EiznLVONhiLe96uieQ9wxvaCxHYwvXFX5yrz+kHLqtIWlWPHXYvljyCN+wecL+pr9l5he6Ztc6B6wzNeOMXhlbvaiAAB5+8yxWEmfro/j9ARtYrXEIO/ZpA/ZuUPV5hWJp33MV7i+BLDp5Q2zlNeJc8AmqLw9c7pe8IpOmTSj0NyHLLAPkt8XWCtASbL03/7lu21noZeJXpQLaslZ4NgY3qr/xrziZdn9XaoQ1pfDmunk0/j07xEcYbj4Bzyzzut6pFgbZGn9m+ksacqB8gOF9/lksZt8s/kUWvYR0S6iBAeWEHHtcNYg6GhA6+LgdHLKzFTdtPmF+eztl//yCxozoGvyOPv9vW/vIJjSnVni9YRmUaxhq8NFJ4E4vNEkbmJBvbbZlUqPVoq6QyRjkOO1jKn4Sfg0OnyEAjYaCeP1UmN2ojc0OmqoIuczGusxeG9XrbYinjemPjvtWQKrs7lipkxKPl6CYwrpmaZ4SoN9xFO6T9Erzgz8XH4eXSy5SNU/Kh7JNPrcOu4caEe5I55WHv1Fz8xwT8w7Fb03MceL9b2AYQ4G8ePSz8bT4XsCIw5ezJj0mc+7TeiobwFbeBVOdTb88KJJ0j1lnr3z+1dTFCrRVUIH2R74bPJCg0fbPZjn/c3meBI3y724WGH7hV9+X+XrBU6XO0RP389sOi2d/J6Cpf/wh/MiPLyQ1WlvdgvrWzbpRWbAsn+Ym05hxvXnwYDXafFYcs3t5tttzOGlzi/aek3rz6v6JakvvTBYHv7l2fQX7kMYu2PIgq1o8fVuWzpoVr9H5j6eWibbt6sFsaDJi/6Q/VkUKaBtfLgyLD8F9FKTO0ChPws62dvGp2jrKWiXHHbESPdzVn+tvlUOZ2EgO005m9wYdAPi9i2zvXhoEENaJCjNhTcY2DboxiWeFFMNS3J4oEPG97HpwgGUA/NDnmX8mu9SwIKD8WyvZr+yH7YFrqm67F4JtBtXn14C1NYZ8xb+PfbhqYfJek4kWPg+x48pUJf9SbyHomRdUu1OSnj6jswc1z6a7XvvgLQ0Fd4wNHZcM7cauje3OxYYFzr2V5yPsGmyDd5Wwb7jz3z/QmVrmlipDKPj7i7zwNQNkxnE9syZqDRAc3yciZZbY8m/tvhFpXozcWmfuD8a9WwANkJKfGXfobEuvm8Ymu/AHPm+4vPh+ApA0g8SLUir+av3rq4VR73UeOM4G5NtyHUD+6+3//H16Ke/4CK2F7LzNbbk07KGTvh0zEkfdTQq71bZUhMoObBV3M1f79XCRogvzCXSxpzkKF7B3DZH4i3Ps/5afgtDaw9kwWs+Ku1Xgfl8OBK3rb4dk6xyBa5ZuMQUEUdsN20d+Bvdmfz4V0fWJIDxlIaM2JJocjR3CkxCOtFBCwZ/2m22DnxaZUepPdbmfLgUWJWbP5kt74NPxvdgoCVe8DO8N9m447mjPLVJJ0YbGx2P4zL5xQM5VF5Vzid8TNRpjI8Mh+iejQv/Q28NWVSo7Xs3Jy/3BO9IsYgvHzs0FftbAaXRm8TTDcWc10q4gvEkh4Ska5LNmAkBRGYUUdZ2n3LKreoOlaVXBKdKHU3y05Zgax63bCf3HzQmjXZSF/xiN28a/Hk4BxTsZGUTvx26kk5lvcx+SjBF4wuhfjwcR5Ca6oS3j/s+G3tc9LDwWRKk4TsbVh9fgigJI6y2H7Vb9GELd60VsGLP3n/X68dHbWUdo7k55l80CeuJeNWzLbvtTVdAgveJbqhadJQp915RhFEhZpX53XgSx+M/vb5ju0/JP5vdGxRdU4guNg3ihUdeSNUrFYOiSohyEc9QNHeNOWxcdTw8fsJfvqVPufxDs9dhD/4i5Y8KBUu61TXyUlj0GvNjq4wmLag0ddF7y72tdzkk79vpx4/plpRPc2w/QQu7eN5R4VEIEZWC1QqgZUCI1z3MWb9ohspilxFSlWI5j64zQ3v6eLgpBr2U9KuhoUPyODBtD4X5tc+SBco4ZFRVFJUPljlYKFDbnjnyCvPpXvs5SMlyL5Hd+27UzGV2ymfU2H7xm8ZtvtnAq+UvPLWPfTkLbwzKsl7s7tHEnJ/3pIAOAp/swmQdDZ1ybdFgzAOziqfUcSAiIKYWhLniOUSfn/4ShUik8niM+fi23Tc66/szOejebfFbNgY4guKwffppIu6vGg9Cg4ZUkt9v/v3pnQV/SRD+Qdafl3nfZeKZePP4jhmnNemV5qQ0//TT8A6ubzT33szs0bf5PKXaCKXelMvzU8Q1u9KgMa970rbruaOh2YcoNnuZ/PgB3c1HB2VfJSPao3Kj8Zff8bnBGCoudXNuhLlaq5XD9vZtv/h5l0CRWx5T0BLJ53p0M+BuVHdGSEbMtfedXGXhm8Ry9MCkbH5T0C5EIwc7q8zpe1S/8Or/DKa3wlT+9Ckop7vCDjIMiPa7gqIF36gQIiHjcfY8AdediFlyd0I0rTcXyNVXTtV2U5XL+inoF594+fu51189+Frnk0OcDNFg7TsHTVY5USW8K1FfEHjBXdzcmZteN9HwvPkvZKrH8h+/pn/kG8JWfW/x6GWu/+PnIMepzLBmOMsZQDOFuH/GZK/Vjc+/lrn4HacjS3961ntxDz0FR8fPWJqiRc8e4fW9GAx7H8enx849Qq+uA6YHzhTNl51zAdSUCKvVX1xypf5sYH0e11TRjdRkP321TqIz80jh+WP9Td9gisTEQyvG3bSi6gp5MHvEZqeqnNh07ZWFj+NR7AvEwbkCeohvEautbpc/fFEXPxGPaTJmk/DdgvqxbjvmsnLTNVP6HEEe9ytiPnCZtY9tmP/ihWB5m6DpvNw7vIz2lWH7cf+tZwtirD0IlucaTc+z/YLATHpmh7kdsc+G1CgT54zs7Onsz9erdlF/67MXD3s03u7KHRnq22B5leUdo71NoULw84PEaNgpg/MvfodgJ2cUaQDbNilbCsU7L6f4tE2gN5/B4j/m//QUPI3jkxweeZWxcL8/KkkjJUyrOq2Te8PsVb256syslKjj1+MzBacRaioWzq7jm32moG1Ct9SXr4iPmfy6QGXWFRXGEiPZ6WULmkbak+td1DNppuMMuXgHoo8L37G8m4PSBCvEC89ephS690JBHAXEbR2tnExZ1lQMb4pR2HfRvNNX3s9vWvywFHEmoh7qL67xxJJ9J98u2R3knsm0HB8RGvUoMKBCgo2VGLf/8PaHnxhVatbx3kU97FurYReWf0susAbgdDJObMfwumTB0mcKBB+okplK9I22cwh9mwVE19rJ/0SKH4IkqBJW7Vfs//gEukBwYY6mUpM1z8f352cSn9lmt+DziG7NrNJxD5q5jtA6BJTYiP349jeT21RZ/D2yYzXr5s1e2qCVAAnTtME1Z6/MXdh27ZXhakfL/vqULrA9zVembYWCt5HSHwFpYUbieD5EHJw/AHpOKbMzN46mCB1C4JcsYhZhvVnj4ojBVwWfijIjvL0P+R3FohoTp52dcsQswCg/2znD4lKPeCjHu/JuhjfzRMXgq1++WfxB/LS3e3+SH38SDKJ5+PEfTuX7RgJRrx9sX8T7sr8ew1SVm0he/PbSn9bKVoIwqUJyGOuKz796BGt0xnRvbHx2sbYpbMZoS7ce//PHwFcCsPVNhaHXgC98YwXXWNvit1dISz50NbTv6j2zRRov+dkZgTcbzjwZKaiLz48TZPE9Y27bb7op2l5D6ISqw6tUwNGabVWKFr+bWGEdZHNzD79qHZOabr1e9zfX1Fj03v2y9OZ/+F/7pliw+CF0M6YXPtefyxuq861iHujcXPxpT70LF4EZVXXs+L1H983i9xOv+iod7f9wjz7G64PFX71g8bPVJf/QSS4ntOCbAtvW2zIcB3XGxHUGyvL5zLDPntkv/htaXZ4JFv/CR0ajzeYIi5/KzF7r0MJnQiB9RMjCN7Lps45rUEG4kV++m3ea4Sq5mAPZjbDmfVIaCdwB3Yl1Eqxs9eNrxtk3iGsXhV/Jz8MK2e3Rpn8yatC88Dfwkthjy37pprOgn376F09aqZvrZBYTaL6nhrnh+5txp0MO+vl5P3+QrsGSQI9VnWka1vzZPSgeXPrusvCxrmt2M3dgNqKZmOGfn037xPZANrcxy+I2y+jtNt7VTb/e/Oo/5VyPqxrm/jMzV1xt0ORNg4e8JvEWfiHzMUPFBcaPFOKOyL4/W3vDAs2QCkI0VfRZ/S3fUMZ2Sfz0mWXzeoUltOALObSfW9njIcSgJNeU+E8Hla03BR4K9HXASLITM258fA1WgpAwnwDy+9tZy8E3vI7sU3qNOrLeBVB9RZvW8opyXuC/l8pUkZCDo9/MOludLujnV3iy5KGJiTpFr2Tzouv2fO6GubVHWFptYyWO0+yn/4GbD058Jcz4UKX7N+jn/MlcEo8mVfMcUKBfAvoZ5Q8fjYdrAD+pEa1tiZpDfNqelOX3xCtar5yX/Qi0iTE5Kz7j7HBFGBL9vmKG+HjxUX7MK1UywhPT/rRvNNi3Pwcw1JQs+s6fc8/Lf34W0RQYOa2uRa06wsZhKSNe9/MXNos/gTfh241mghQM1/Z6ZbhNnHLVmQlFsfiKSUA6y+cPqcpBTEAkehrsM+khne7QN0JAf/qCR/Pf8af3KI8/POoyNF2gieOGeIVvlHMV39+oFLOSSi2Rum6KmhHcBFxytx+CT6+plCKhwcK/+t+a6WxUtORYsF89ZXAq3wHnVDv/9ON8SPMANuPflqrVeOsm+RpJsNQ7SFBxqZz+HkOI6HeDma75jTlHEj2ilflZ0VVxSrpfvQ9sldosSFd5NOtPakChxhp7hEcWtbSn/a9eQpx0R6N/+sltZReL8Z5lLFuzC+yaZscstrK6n55FUytMWFD+KOelmBXKHe53svh93fiM50K1kp1F3+zelx1trxS689ARUlSkG45Vd9z2arqsv/8qWzb3FJIkTZglBz368UMUNnWIR/v99edCNwr1n37fChqi/T7vlT8h+CMX71yYs1IWG+jOYUc/sbPL2DUn6a/+TIL2mJf/6s3I7DN2DY0mmx8yzuF7dr8E+wfBXPharRz77Mjw8jzzPho9qAzbJrv4sM7Yj6/USeiwq1g9+eA6jQe+cPWZwbq2G33B82Cl3ldUKdq2TMGtQSmTj0kcO1/53CUHdxvHXUwHLVLN4fWWX8qvPs1kxniLuKUg3Xjq7LS839XGMDZAvmtC3KX+Xi98W/2/zhSs/veZgu98SDEdWtOXfIHnUIsnjV3H5pGN1+kSwDtjb+ZLYRU1rrbJl/kvOR4bZxONdxwBTC9fwRs/PEfzMQxTIORwwShW5WjaRaWhpjHz6N0awR8l1T+CGu1czI0Id9L7MjjoK6Qt5aaBeN/WNwmkk/Zi58+C8cdo1FAcdzMeg1uE5or5M2Jma7JdN3QZrfM/jGBVj8RMMyviXZ1bsL7uHeaLddOxK4F0m0gOZi5+tn5fG8s9yH2ImX0Q62jY7K8prFNTY9i3Xpz7f+8TTGb9Idbq8shGsXukqMB3j2Bp3vv0rzQE5GItI57uatlyAOGFvEua089VoFGfzu8WDsahJbr1nrvRSHcvQONrxawbDkx+j/9yeJGK4VUwY3N9kFIJ8Oku42mbCt0zyv8A1mfHZ3rnHbspu7xrMOIow9mnP0a8fRYaLGPTSPA4SyY9P7/zoml7vDo8s2iKk48H125VkEPR69ms7goAa3gXdHZWXTRLd22j/r5/cn92/kheQg6nLNdZhh3DlGb8vEP2gZiFb+6aY1ZPJwhe440Fran6/Vc6JeAPdc4Ot3XXNYMivhGpqca8Y6Zl68h7nNBtu1Pw2v6m5nzwUKIoN6FcPAIzWwsyFAiptUYFixyyuRueNRQtvIirrQXUV/ZcIGX1DViMaVRO7mmdo2X/4VDN+26ad5mAcFkj5p76d9brT2eGbn0WiD3oZkfRgB24+Oc98U20Q+uP8eeiHz7dJzXKZLW+WWgQ7gYx6lPV8YM5SGi3918Ywq6LuCbcc2iC7wrLHszmENr3GVYJQsQfFQ1N2WddoMosI7yt8k/JVEAjEqokoi/vG/CZ5ub99/lst/Jl3sQ3miJLF0yy/869yd05vkDrPAuyC/SZTyRINIjLrbDcA6y7YWeFFozyKcODO7c+++4OwfYm//mMhGJYTuvLOwHhc8V4K0ReJ2fRcoZkhW/E1ZLR5PfLZKl/6S0i5rNss6Gaty34ji0TX6z3HTXfswJoYmumqXlfDod6J0Gr3k64eI7R0lvpeBflb/Klahp9Sy6WewHawT0w40+vlvUQc/A8L6TcXk/dBEN+Qv4jCankD0PEHZd9odLqO/NLJUS8/uudZf5vhDfNZCNe1k8J2XUVkiA7vqI+DPoQPF/zmC3+sWwY2jBQvc/rtfSWRdHw3o6Kip2gYYfzfebUTiCFTyZdMIiuUI6yvk6Rsi4ccnpGN87pSRWguUg7vIo+ZjllYbhRT18pYn95/836v33QIm38YnLrpGUefDdd1P0puxGSSY7JZcuV4KhYI7E65cRZV+cOVMfmyiy33WY0X3rr3z6bLa6FY1zOd8mu4SmGX7qqsrmcxj9FUmrne8Hiw2tLRk+yABulOLNk+T4STEaAuuCTYkSlTTRcpj0oziPcEGvTO9FqX4+J2hY7k5Fq0rlU7VMXoutTJUFr3vxpHWwNFO/9lPibUi7bp++uwEj8mFkBhmz63vgGxuA7E881dmhupUJSIv9vYjYagmj1TMBVpghRKu7CKHpIRPJUeX2n/+KFD5dbDY9dkTD92pxMfiVSCqvxcWfWZpk/vvmrHEUsrgLeXESp5I70fcMV9h9CTsYbTZPH34B3Tsks+uzNr+lJNbibWaS96N67ead6BajWCpj3/F7MGW9cim6HW86IECyzX27zF1jhZiTTNpwv+CWo+varYin115w7IIWg1eWG+f5fEM2ZXc5ort3/AAAA//+kXUnTgroS/UEsRKaEpQwykzA44A4cEBSRIQHy61/hd9/u7u7Sogow6eGc06FbxntbVtfe2F4Lhel2pw4gWjHcbo0ELU0fcZBpFJC3sjHBJvEXik6x0rO9ARpY3ueYeub9BZrkUZ8gGwL2u3+xvB+TAB/ewydswCxdWg9Y8ELmIzbrbe2TMnEsyAn1AcFvhYqZtuEODpg8qNaJVco++sWDYNMB0gKipctbES0QNO+AhlB2gPhb79RPZyR5tK3n8vmNwPqbzI6zrQfXzXNwfUwGjjhfZrNhUAsc1nPCnlzhdBajqIXROi/MMl6Pfnm8lBYq4AuJImu7no+CIYEwtzLsx5JRz1XaLSA9vR0ks8+znkq+MyGDtULdyZn6rxP0C5gGe4NEnOwLMY50B45LsiCxH/2UHriag+bYlFhznGM92mmvA0ZiQoZIdgG7mK6pcG3qoHG/c2rCOWoOxzmXkDQLYk3e/csDuBl2NBVaH8z0eiFQ9mlGgwMm6ZTo+xzcjfqMFnFrGqNikAaQ0Tiil1axYpKeKIK4yL/UGY8to/Vy9KAmDA7arPZDvnZxBV5+O2PjOTtgjuU+g8g2a1KLb7GegxfIoMmxJ95/b2U9grZNINUnF0dLtffJaZ2H1dWahEQblmyJm+4FXh9li1S5NotfvvizT1ehdr3alwKP56JBtaq9auY0nQXsdXDpvCRSzdwPV8FhtGYki/6rnrOxO8DNzdPwTjhY9Shzyx04/ciTja7W/jq4GUIwlQL2425v8PF+1EFNpD16fn4da9RLpJia6dJi51r1is8QtCShQNkmeaUs3KEAZO+lQUzFtTGn7T5S4tnUKHIOG3/d/wkWPTPxfsSVMQv9adXQvC3W7O3bZ3anEVjI/gk7oKzAL37JUp/FWCsjv1j0XvGAW9c1UrdzxZYK8wq8ffQN2X/OmfHizlkG/fv1RJ0sstNln1930OgeBd57hZFOTnTpfniG6kDZgiX5iDrQPo2OzWeqsoGrfQKVh/vCXjtxBn31NwlWNxFQv9cFMO/vrgSFkwyIbAU9m+bnVYdMyk3qbMw9o1znBuql45pffimWSY9b+JfPVntkm+bZQDc5VDSrs9Dg5xvMlIuecOR2eto+g7jJoPA8Z8Q6+1bfKnqbQcPXEQH26BbMR8GgpC/xQFiwEXtqxIoJ/LJOcBDaTio+UB5ATdlyNGjfer08vs2gvkeO0nD/PBfTELx0mKGYI/DAgZ5qdRYAm1OOFF0OBJAStVd4rAaV4rAI69mVZQ+8zSJES3jTa4pkJEGdE1SKj+UmJe9+8CA6nigRT3mfTpf9OVJW/EZAtvRrzTHR4eLTK/Ul3WJz9bhbwNnyHgGJn7L5pic5FJsgRvznYvk8pUmlKmMxEYm/EbYU8dn67Te5No/cn/fPZ6Vub0ZMnniQCgZOYwtLOSB4z58dn3lu1Kk7zyipex679Jcvweh+XHRq7xaYjhfnBQ1ekbC94vvf/4PdYR6obiRtMSl6mcNh1+TYtx8eGxjeKvCgHQe6y4Ugnby4seBWaHgE/KUwxjunEDAN+w226XLzWTcWBwU8swnvd7oHpuninOAvPimX2WT0sEgdeD6VM/VO4ZMxTj44cMoEY8U3+3rQMmDC+4N8qPfCNJ2/qOVgx50Ruq14d4zlOpPWfIC9myD0I4A0grfrp/rhg3Q4tEUJdzZ801BI5noJ4uUFk2G4kzM2G0Cua++8s3k5Uqu4nwATuRsHEoXrEC9kj5SRUCBwA+iBen2pAfY0wOmPf4Wq/SkmVb4pMJSEM/7lz+nAIwGs64f3iKQ9G9Jnqa7+Sm/ycQ+2z7zbAR8ILVHg26h5YPC83CZTSIPRmgsW8gkPyys5oa1XGIVwEhdO/NkPMnGYTq9sNCERrwtib3ss2LGNF6Ah5YKdTWKms9DfJWWZ7xHKZuFcL7O4EKjSKCOy97j6JNqqFVj3j2y7YATsAIIDRHTycTI/b8V0uxEJdPow0x9+LwPj00D3GJ/xbn8M2dQ/7i8gvyNAV75ifNN+kKBxxRit/lMTvVccoEnMwKFiMn/OH/0/fApylub3XlY3sOqARXeEq3ym3AYFBmxzx67LhcWUdxFUvUt0Qvz8KtOhoKEO1vfHtoPnlNjBrYLhd4gxSoIWLHmkd2qiGm/yTKMipcNZc4D97hVshU+Qzmx3JUohWgXahMXYj0J/V8Az7XzEJ1XtL3HtQWBcopxUwG9rNreXEr5Ha0u4jYLAdJFrCfBTqWB/G84GvRSfAUZgZ+Gw8gow1LXBwTUfYn1EozF9bMTBbAoMeihfUU1empDBanuosfvdefX0sK+DIpC8InNCh3pqh10L1vsRIVcdfzI2LoK7zZRiLCa7VLR2BQfvUVNh7cTfC3oUBwIYSQmJSz1grDn6BJb4YGJ9VPNiErpoUG+dSKiz4sElD2od/vg8v/DXgnnlJgF9HTgUi0mZsld/U6AfXwLqmYORTuHb7YBKk4xq18EpZk1POng8XxrsOZFVCMZrkeCKX7Ff+0bNP+F2gRfFGqhdvt/9OApGBcrd08L2hSPFnMnHFm4SdyFiehb9OZNvLTz144B9aeaNv3j38zdF91QwOI/hBY1riOmucK/1vOJxsPIL7EyyD+aqUgdg7TxGdfHz7lm1tycYRU1H7XwE/TrPdYG740HEjoSndPnhcVA/ejTRERczgJ8I8vvphMN7I7EenN4d6JcTwt65v6bLTp5aKNvKF2u3YtuzDVEj0Bqt/cNrv/yAQGN1GXW+85vR85cg8OPT+836zYwxogZ8OvNFuOz9rBcx3ASg0o4vrH8lp2f2+DxA+Ll2JJX70v/FB/DD+/v6fernQe49sFzU9o9frPmyU7/b04NaOf32rL/vMrj3LAktHrj5Mw7uOmjNUkPdGp+ENFvnv25wQIP3NDC2IdtIPdwqiL19MdUjeO9aNdqnKYmGrkh//Auu+YUGXpLUE+HGOwT7KcGx+UrqZaw9Al2Ol7Fus7Mxtfz1BCT4TkiW3fdMONp7CCvt/KJaqQeA4cVu4abPQ7RwamewVMgSuA+NkQZrfBica8CBPlv633V/CW6j9LMfMptGzdoUWCb86RHZQanYvDlwHDCtDaOIfAibF1C+1DjLMxy+CcdIXHucUlyIS0N8efrTcytU4Ep0TMBVvLLFpcFOmdVHRN5x7aaT7xEerPwQfaiBwdSndaJmH/GJbZlKrBdUt4INf57J3WeT0Xfbjw6nm8jQxy8NsFSm28ASXT20hbsrYJz2kcBmfDjUR1ZlLEGsvMDij1dqVQ0ExDJdAWbCfqQu+2i9kFyNASrKFeDXjjU+sVWvUiL9dMfmjSqMcmMp/PFLLynKVa/rdciF257Mv/xe2jmEbykLiJqoL/8DDWAB+3hiZBlR6G/heD3B4FDG9NoZqrGU1ecKjkQJ0Vcc0nQ+3pocMMQ/8fnVndO/+H9+zh+6k7veWG7iGEASNg41X6fEX5/HgedTv1HDLfieKbH8kke7WvU7Ximap/0NIA6imrCT+EwH3dpV8PjcGkS8x1zP9pIT/PjPH/7r2YnlcNVnqH9JZUDrTrur0xm61DeRlK56xh1sNKFHysr/+hdRS3hohZQak8aDpYgfFjCK4xHxaNL6hcZDAz+FkGEkiQpYNoI3gSpb+6L59y1b8eULSn0eU08YLz070FiHDyeLqH69Fmxx9qcIRETYUkNofSY8XksLtc9Lx7uhK4q/+635lLBXtvN/fBxc0B3Rnz/P33USJLf2OnM6Etfshz/3r+pIBM8X2IonILAeiUTtQEvAVND9Dm59IcL2BT+NIbInpK7xAV1Duy2YHw8HlUXgRnfa7IE5J9wkC7Ee031tfsDs7ofy5y8rP3V6VizdX/6l9in30z9/vfGmh+3LhMFPnwGLs3yoTQ3Mlja3dNjXyEFzGfUF/XgDD7dKUaOXpJhg3i4nDwiwI1TTdrifuuYowKbZv6l+tM7pYrRJ+dMT0NbO8Gov7wBUsp8QYifPdOa36qIYEv2s72szmlUNB13LjbEnTyEYD9lygLXqxdR7B4U/h/mhVMN7rtDwTe5gMvRWUj6D+/j/+laUAydRM/D+4O1q8QtJBB5OHpHt5yz509QWEVj1UlyQDBR/9hpjH2J3OFH/C9be+4firmGTUK8Hnhu1cNVz/vjs62EfBrU2Goo4cplSNlTwDtd4SvXaWMAUrb2/L9D/kCf23V785cs1v1EsWZt+HDROgaECEuwnPmPEf+5L+O68HV7xdsFyVZsgjSVMi2nQ00lJ7QnG/jmkxqrXkbE/5X/6ejjYYr/GnxKGPQswmq9mvWjLnIF6EwZoC4AHPl7WN2DFO1TPXL8ehVSKYIGTARtheDIWEkwVzAJskDJvR8Z21C+hsQMymghXGVPJVxacKTbxTpbcXoR2QuDmGtnUn7/E71qUDDA+V3caniM+7frtNoLBmyY0cOt3+tM/IPzc1/neCBbfaH+a5B+e23fByL4vWZLgo1FragULMWaftw5g1R8Je9thOlFxPb2hH+54fZ5BkWwpcNVTSLe0H7Bg+ej9Pd+x/X299dtUV9d8Tf2yeACyPbst7LOpx+HapO+HV396AZrn+cuW084i8Kcv6l6OiimR5U5e7RfbP/3bFc8D9ALsI0CyonhVTd/AMLoJ1H5afEH2vmvChPYp4na3/h//xcO7w/uM29SztJ8XYEYIU8f46P0iBN0E3bIhNKTZWvNc9UhpiHxaJD4Dg9iPDtzI7QXx5tk1BL45vODxcJ2psTYW6rP0oANlJ1+oEdVKz+OKu0PT3HGE334XY965Fwl+rkNCf/h7Do/lVXW6klHM5Va6PeqtB0lnldRMjRnMhvGxQJ52GO/hDoL24fEnZWqCI5FW/WDx+iGD9xJ8CavMiz/VqawDrc9nGqqt4E/WPXKA0ax92Va8u5Cs5iHTvzHeW2KZDm72PkFTs1yqLYnUt4EIA7i9AR/bmK2zfZ7PRT1o5wHjjZv2RBMuu199CM27R8nmYu0T4FyjD874GwGzcPU5iOJqt+qJZ8ZKT2nAqqevevUEmHEbc+Ab/u6vHrDs84MuoeOBYs2/OMY2THYC5O1tjLb1W+gnBaUEfht0Qbw0NOn4aZMJVJ1sUXSxonR6H8M7VGHXrXpUC5i4VN1f/HhEm6lfOFXXlf2rPNJTO+zTpQtwBXf1x6A/fWqy+7MCRU9RqPchu2I7owIB3E6Auqv+MTtqtEBfgYT01xPxp/3sDVBKtYlqeJDSbmi6A1zY01/7OPT+lI9SA6dcM7HeWB9jHFR9gdNty7BHhCYl7zq6QoEm19WfkL8NLjtTvRNhpChjpd++riaBJ95E+HDbhfVSBbcErPtNzYWH6TzFi6AOUubgwl+A38aHDQRFK2CKPo8WrHyLgyc/e6PtozTZfDbgC/bb2EDf8BAzqhwvAfS+nxv21O2jp/jutFCHk06v34qk5MoNV+Wn58379MGW1I29X3xB0DMPPl39R1Hkt0bX9WbzZ2qugFdf5u99DPJqJguKDYrXWYpPY4KzjtTPnYUUW6ndj+lDbqBcHSx8e+lvQPi7o0BJE35nXOt0xqZ3gs1BeVFPtZbiF7/B733RZ7n4w/30af/0BGuYRWPRuBcB5CZjjEw8FuOv3vPDG3P3NYBwlu0crPgFr/HLn0zwbP7yI/+5ND59kW0p3/zsicOet31GdT9XzCjAf/Gehsabh7N6i/DDFbu+Gx+1BXu+cLG/1l+XaHzy0Pa0K1mA79RTUV8I1J/XAcmRa/fTsJOGHx+nv/rsF9tf+MsX2DorjM3YfkL44yOrf9VMULUKmIZrUkSUh0/ipmtgpNoa3bnt3Ziv8XiCv+uF/fDAjNA3+OlnGFdwMBbwTCbo1s+aMPeb+j/+Dtd6ELUab/1g1rbuANhiiDU5v9fzY2cH8Md3goLNPjVRclWXNuSpS7elMfz0kK1yqbF2cfbFtOpFYK2XrfrEq2jvMWigJ4rfPz1fYGPK/+qPSOL7sZikaxKo3V3S8KOCgT8fbyQDlRRn+FfvqFZ+pby+6oTEl+v0Q3zYcHCZXieMUXZJO9VuIUz0WKcF+kzgh/8h74w+3llmYcyDJkhAQcJt5ceHeuTlWwbq0raxXxYbRraP2wlWQnCjyeHc+W26KJmy8n9qr89b6z/er76NvtkuB+Na31XW/UViej77y+cZRmDFP0TpWWIsfiYLyla8EmxNNqiHnDtzMFG1NxHiPVf8+C/Yz8oHAfSZ2Ljyv//Wp0D89zMFxeM7YpQtJWBz3mbwRbdPmvOZzOjzOUWqaPQxRSZyDGZFCgTZ2T1Re272bOp4pYX1yWmoh/TGYMftc4Ea+RhonqZ7PavaoMNPe98TZXkaPdteLg1kodxh/dbpxdYTJgI9Yy9Qr9lURq1xu6t6CIqCupmD/AmoHx4uL2WPzWyqixkZeQ5jpFAiP+LBn+6JjOCrzV3sNSfks2ThM+gdvxZ17Lyu2cHII+g8xRO5vFKjHw98YcJpsHY4bDQLkL7nT2AfLg717SFMl48WXOFen274YSlWPwttS8AlFo+Eoar2idyWHXwImydGjZ+l7XuzJeCr8jq1uEBkfbWdKzXO5Ax7+68Otn1eVhC75UJNzqrq8cC1JrSej5G8uDGtBVNav3pQ9JgATvDqOVhgCc7bj0s1v6NgLrmHBW+3JkFvpNnpUgW4BFz9uKJnewbFSC/xADfxu8Lha9YAuRZoAdzW+OLAxiNg98NWUtb1p6F41dZeSMEOxNLuiXXX+vZj+A5MqIhCRz2c+IZw5osdcJ3SoMlNI+nyeeQDLIfep7ZzPxRLvn5x7m6sF4Ha6cDYMzwl4FMoARF0vSlmV7l6yvSobLSQawtaSzkg+JSVHOsA0WJ69/wVjLEcEUm8bOo++ToeKJ4hQPJD2Rm8a20VePHSicjPWUhZvBvWeYnbEONZRmmLcs2C20+xpxpfTWCMUgmBXXzXsNvn97qfc7uDr0h4Yy1OpWK5Px+N8uKhTgtgSsVcls8XPJrtCdt5VQFWuYoA5mf/QHxKfLYY+ScCLNs9ECdsnmwJzK8H1Pi0x54z3f1JnK0A3vPxSMBao2VRdXpBufXOhP98o3p+BOUBWt3au0QvzX6eH1UFXvf4gB1YiMYSxfoEs9AbsTE6n5qN8jAAuV17K2/7XT1t2vME1dPhQrazOIHJ5I0MivzhQ135PqZzjHkdiJtTgvWbRop55BoBPmjpYFMbdulCXtcB1oWj4OvmO/ktJt4JRrxkY3PQD8Z8MicO6Pawpaa3N/qp1XsHnjntRTU7DvoZGUm+eeRFS63D7ZjSfTvlarpkjCwy16VfjtuVKskdDxtLNvQTsKEEEV/dqTe1Xs3DKXMgC0G37k8EpvF4a+BxwgGCtsCBueiHFrpDfcCWzA41O2MgQZsjgGSTfKx/8QXu+usXSWx3TVka6wTWcLTJ3NuCQVpWcNBNqgHvr0ZqzAcOH0AnlRq+eFaVsiBwCDyMaos2ybU1Jnc9Fzc0h5xexlQEMwqtFt5v0Rv70mlXT/dkDqCvnRxs6d9zyszd0YFfVdCpoz29frKyroLAzGsa9MRPZ5v3DzAUU0z4zMYFAwfUAC6QFOwGzVAvctu20Nw/EXUu6FlPqFZP8Gh2J7oXpy+YE1GoAHx/Dexs/JhNZ6MKoBPyJvW58FRPt/LbwbZ2THrOKx3Mv/XmCiASKXuH/by8wQEIop1hXbXbnmUil4Pr976laFS7nu20Hv78HwlnwfSXfGC5Esf3Hfn4Ym2MM+snIBxrH+vUkBkZltCDm4O3IPBZ7HqUpHGBKBOv1OOzC5sGbC7w5GGeBqf6WX81w2shoJsMye1gMXHRKwiX4XijYWh6gDw2Iw9lV0N0324v9XJf+7Q+8zlGvME+xkyuqvc/AAAA//+kncvSsrwShS/IgZwkYYicBUxAUHEGvshJRA4JkKv/C7/pnu05RRWm073W0zENUqFzaOLWR8avijQDNZdm6t61NFqC5U0grXkLp6FnRPyhV25wGweAz5XU1SyMWwdu+51q+t9RH5vK8WFbzRlRTsCvGRBCVdHiC6FHpek8IqnnBDqjeMSq+kYe8x6LAwb5m1CkvyOwHqwcQWeXIVQNUT908+xszNmTqDMWa7a8lVKD0C9Dapz9HVvroqzgqPkK9iL+xcjJd1ZQ/PUIu85aetOqSCsc5CGhx9c7Huhx5+SwRDihx0CPojl/vnMo6t+QLNrxM8y678jw76oPqPl853ryuk8B0Gf3psdjwurhvkyt3ElOghRptOrV4lMLjPF8pifGG2zZ030sF5mxw36SimCaHCZB7RU8qL0/qpnQCmIK34o1Y03Pdl5jybH/q3dI7gQpGsNd4SjS6Qao7Ym6LrzbNQY5E230LZdbRp3BVMHrsgvIWD6xvjIRO/KWH9Av/89Hc7YA4oqcMHZUhzHoLQe66ZCSr3DF3qINZxeCPPOw7nx7fZWb8QnlY3Civ3os7nsFwdf1Ef+rj0u86yy4t5sD1nflXv/cTrUhy2iUCH/qDI/L0oSDW7wTaSzWqD2OkQxHDSnUZHernokicdD7SF/qgvIOZuHkEdnTmY91RxX0qZJZB1l1dPCvXrMAXW+wPEgpjs9+zqbXNjviRu4hVpPDzet++1H7Rhpa9SzX6X63ncGT6xJJB+CDtSIhhH/UedGjHzW/fHSD5vkLifg9a7UYjHULsYwcAvTI1cVbJBkw/0QIW0YV/PSABahzCTBKvzdAJWXuANoXJ+rvv4E+H837DbI/lWFnq5ebXonl7DtXVB2aa80U6+bCFvUKPpO01+el3CPgfs4RGn3pFq19+Ymh72sWVa3c9jj/NATwGLcZdsWlq4nRcAGc8H1Pav9xyCjZ8xXc9Az+MzRWD9Fb3wGluGoYm305NIUgFkBqDgvZS17PqHi9pnAffiqywpyr6bNqY5ij05OqdxUClneiK3vL4YJz7YrYv3wa+vcXxYkZDOv+8U1hVzQcPr1rp55/9QoYSY344/mPMUMoBFhWN4H6J8f2qOPvZhgbvIikF/HqxTQlDaZzv1D7e65q9lIejlI2soV1Kryy1TbvPvwaJKQ2ncZhuVUkB0np7amuyERfDjuhgZV4/MN6VInZ9JLQRRYh08j6TORodOnDga04U2yl+yqbl8SFoC92f6g3VcTWS1m00NYdC4f1vWXr+nh08DtNAjWaA8/Y4cA9lU0fUZOQdaC8sW8P38f4RvsusDyCV/gEaP9QqPc+kHqxfJVT7vafThZfvuprO3kO+MXj6bhdzju+hyf85Qfvanf68ge1HILrbqbe/i8b5sq+prCxppl6XIOiNXj7GrCcp00vK+97c3E0mp9eQN/5edMX52lKMHy/QnSwjH220mK5KJWVRxSf0oDN5FW1EEdlRi3e14c5FugKHzxcqTu0zGOnCDdQC6eczFt+FUu90pQU9E+KiliLWLzdq4OT7TCEcKXeeMssCZr3dcEnd2LZeApdGfa+sKeONNiA/1uU/HAFSEQ/vzAbu+SfniffxCH6tJ8D6xcf9HhYrxtTGFxwT9UIW8HU6uvycQ2YECJjZ5rvGR2+lgz9o5ZRNPwV2cKMYwe+7SWnKqT7euWUF5Q3vUY4LVqiwZ/WBKJ9dSKDrR+ixd4lN9iiTkH3v2/uUSCEmpzvhBWfJ9fUF/3vOYIeJ/jf9xKkNhBWWf6hzq5RmSCnkg/7RypR3X4Y4B38NTkQJoNSTeMmbxn92VJSrKQUeTtRX840NH56hDSRKYLxexsT+Y4POfXj3hmmnQ0FCLFREqHoejDvxgzC1jYf+CSbu2w8f5YCDlrR0/j0pAMtSymA7TRb1K3PmPHKlxQQn6qVyJCp3vZ9MTwJ/YlAgvhhFUvRAhJ8XakeDmW0LpHKweNTZ0iR6+fA5DO/woP12qGD3/r10tI7Bx/f9IBt6w10eotet3/+wbelkhF/tg1Iv8IfdnvrL2NmXifw9ogVbLzEPFv22c4ADRVLcl+FnnX8jXNBYM1Hqkv91yObngXhScpoGsfadq8ZKqC5u1/IcnsX0ertggB61/sDq8R4AbYWi6+gd3ZFbPu9lxP6e/78I7UgXAGr/6AFJvN+J/t+Djz2CrdZd+HeR8r9ZuufguIdgA/bxWYkF9FiPpYLDPetSc+Ncwbfnx9z7sJET0fD8wjktQu0QFsSqNKazTWdexg9wiM+dWMLFkZpC1+OmGEXsm1WgBcmSmCtR3LQlEZnjyIclb0S1Js/K7NFP2U59PdOQc97vqkH0SsdCPfDgH0/fGdrpWUXaKa3I1JulqbP5tPcgcm83ulxeaz1rB+BBISgEpH4iU/ZAh/fHDDa6NS+BjKgcxcIME/pFTvTycqWz5m48GuMIda+vs5m47tLDk0SKljny54xpwxW2NdZSfjqXXjT3Tuu8L2aJlZ9Gw/zbBxHKP6tJiLZATD2Ci9PML2e3qa3iMcmOucKj8IIG5u+WbqBSyEXnNDmHzk2R8ZBA3v/fcb28Sp4q/Lnc+CbkwNyd/rbW6IiFOBTk2OinA2XCUiYe8VmU0BEP7AGOt2BBp9PGZKqqylY5imFcOMHSMxB6y0p7Th4k3ILO3ne1kROZwTkE2nw6drpgMmJNisPfreSi6kMEZPCBYJXqZz/xedc2X8J9D7yl6qnzztjZ0V8Qgfs3C3fgmHtlG4HNY2USP7xj4em52D31HRqHPUxW3T+4sLxjkPE2LEYNn8yytd1fiK4recvv4G68DDe/FY2F2JyARL8uyL+OX48sppJCvfESwlzvq43/vzCT8+cBwmC8ff8+136+Ch87wM7Kp9RzqTl9dPT2ep+hQAaF9Om6neA9RJiqMJD0DCsF8rqLUEk+aAIzIjAW7kbxtdD0xTAKRPV7skb/POjVf/XUBwyzmNzlwgwii8T9XEXevwvfuRoOlOzQ049TQ6QoP9pITY3XkFQ3Pqw9o8Loh+1YDPN2hR2kpvQ01lY6tVo4AW8EeyxLxWrPrRcRZSAWwD1JGWp2ZGBXJa8ZY9/vEn0j2yEZSNZ9ILbaFgAiBzoeBeOQEH9sOn5x/mQ9zhMX/riRF9cdh0ohC9H2mHpwPLzP/I7TLHD1Ge2NK90/uVTxIs2Dybt7klgXOWIKBsv4ZD5MX75Eeu7WtP/+dW0rSH1eI5ljHFrDt5ZVVOT2NusjKIsIFwRJPta1AY6w9SA2ed8oe4t+2a/fA+NV6dRd9MP4yQWGlwbycROrzr6onxJ9fNbZEHbrAmwcxr4jSZEJDvVB7Fr5YucOehKNTMWo7E4Gi2kCk+oOby5qKnY04J3+6UTrj/JgF2+jgPH+arjaqs3w3fSDRhwDGCHfedsctpUAn+X5oP/Ak7W+/M49ODFFX9EXM83sP7y99L4FLvqPQXjt3/3QG+rkP7yGc/Oigy/tnelPkHXmq8rwYfXeogItcLLMGaBJ2xnBkJ0MP9QxKZDQ4AyxBPWtv32r7789NjG/7wJ73MXHB8tJXPblNnMpVIM3MS/YQttK9OU9AnKnUSoV3y/m7/mbzDcNybNksDKeMt3BLDxLuxdycEbGaw0sF5inmqe0EQkoKGmqIbsUM+5HmvBOmUJHF5GRcT7o6l//gYkiqCj2UVCNuWBvoJVXTsiPPGnXsXEFSB6P65I/BtKb10fYQ82HkHRu/lkX0Y/DeT/kid9slyu6VvLEBSCQiT7UzqzRSRLBS+n7e73Yjez6ZKeVNm42xm2wDjVq1u4GhAXdqfWpYH6JyGaAw3BbyiS6aI3CX8Y4bVEGBsSJw9Uaz1VFhJrO7Mrfb2JjxEBW34ndK2qbFlefQFDJFG8xUdGzLsuKA3MUjJ/vEsmKCevUSIpdRG36QXyQG8XipZfIvmuyRFhUypB8YjOZHCu5bA8wrT58Vd6Suh+m8NcrHCXHUSMwm81LP7XCeRNv2z5ItZ/vBYkEq3xT//OSyn6kFW6g25rL2QTL4QumEbN+Pmnf/nl0N1ab/MrH51pl9MK1PDOE8XzwoGx/p2DIrAjNPeKUfO3qs2h5EkeUZqlZGykdwK5z7hiDebxMO47qTg8oWbS0zJm3vI8yRDiwoyp2wlJtKpJ2v/4EzXfZp/NsahWYGxv6cavd/Use4sBk5hcCNvVmsfdMiTBmdUPrNHxDIT7rtNA32U8tuvq7s3zWdnBPk4awkehn0knS5HBpk+QvMU3S2reUUJJK5GgX4ZozUsphnvs/BFRJW9vfbdy/NOb2Ci32RTRyCpl458UhV9tmDNysZTNP6F39S70ZYocCeRLomP9ms3DrNVTA/gqWejfxkv+5R946y3q2fojYv3RSGFfP0pUR9U9Yzw2Gmhq6x92g2rOxs6/J9BWG4GsdZlk35PxRQfJY3tE/658zeruZB22/bnVfzoQSXgYULpKHD2SgxOJvBnEAHSFSs+T+9bZn8r18HXNYuzDi5Hx8aVM5HujQbQjTTbMdXbrwGAXO/rj5SsSpF52kVniTQ97I1EkAW7P4xOHnIgxTs7BoXZ0Gr+Cc8Yq/lDA9zGjm9+6svmXD78iN9DztNz0Rf7zZcgniYPk7fuYFaw7eFVWm56N4TOM7ttw4efIEgAdQOK/ilF/ZUtd7RC8PvoeJf3n4M1KZUEQ3p4xVouhy6bgszyVIaw/RJkjPeI46S38eAChZpcP41V5xGDzmxj7NdY3npTA+LS7U8v0moH9iWoMM90/kn1pf8A//fdQIwd7ak0jlhDNherzWuCfn+CYlcfA1W2BGv1K2FpAN4GH/FghuHsM+sRmNVZykx5/9QTMnXQz4LtSIN70KhNLvVcBln0HI7C/eYse2SMY2t6mvi8JGX/0dzLkm90R29KLRWU9eT7wDk8BvXD0ZSQ2CYTOeZLQQdjpujgHWQoLy+i3/3ym2XzLLBloNuGx2Txv0bJvPUsuPr2IlndQeOtHDBxl04tk/Omdbz91h5sbq/S+9RPmP2dEYBaML00XCdfs8AZIvs5nn7pZ9lcz3hBbqLb5FS3k0GXzyVIkUFnPCKenx8Vb/fYiwJO6e2FbcT7Z9AgvzY+/I14OYm/pBpjIGw/Dr36evXVcTRda95eBT/Az1NOvHv/yy3pxCjB7ZUGgv3ze1N3p5nYmX2oPHyPuqBmFfiS8W/n260+gBca1ty4fzYLw1llEtN6ZvpiPQwCZ+gRU/XBWtigv+QJ/+iZPVhXwXs4ucC9PEbZbw8hECL8cGPOZp7H/ntj4q9+8yjUU3/x7tNp/zx4SMN6pt/UvfvVc5vTPlarCq9UZ2WbVgQza2LylfU36c2tARZRbahi+OyxeDi7y45UE2BeDEczhrnPl1Ck0asoHx5vNGfugLc4etrI2iuageMjwY7GRnoI9BgLwqfovfnEML9G4lHsf6HMlY7O90mzk0jmGnPP+koMWB/obl8VG9HYHMm39KGbmQ/rT30QxL1I9lq+UO2BLqagPDir48TSwUD+lWCvrjDaB18Gudg3s59EMmh/f5T0BUx1vs/berrb+42POzayjeSd0O0iF9EYWW1aH2fgKKWQf/UmW5XGp2e99IIBP/NKXLpqT8kWgdX5m1DGOMVvwEMtKhC/Jdu+34c3ter7As+Hw2MafS7Qid4E/nopzTkj08S0cc9isybrpj9OwKlHSQu11eeBjesU1O0V2A0vK3hTXiNSzGhUVtC8nHTtuXYI52b8h/PEwa+o1T+AzcgFkmz208fdhDp04h4ox+1S9znewxW8K5lYpCI86KRrzmZDDph/xdVu/lRaHAPp/bYT1zx/0hmfV3n79WJyvyo6xUG2kf/zDDb0mou6nbH88ELudIGXLkHYFvLaoJiDcndjsxG38rz7sa7GqGXPYCqKMC/Gx3t3Zr58Ab/Ht+6//RUmlasrOeL7oxYzv0Rqb7U758fzn9DEGWlAMIddv9x7htfNG4yskcJe/bAL7vI1GN907MG6LgLpyeAFT4z0qKHhFhcOtfzwLJ308bH4Lb/5lIJf9zVD2N6KhpTJz0G/851//1wrju/dbX7CktoxRlX316XNn7q8e/1svfj8nFnw2zxLjJzHqafneZiUeigZjrdSzNQjdGQ4Mqfh4hX40KS85AD//ZDlxBRhcnwLQXR7j4xM5bJKjoIPjE7+pceZX0G3++cffCH/41jqTR0MFQ1h+0NLdQcSUpkmgIJoJ2Qn7I1hvnrhCnexGeqzMHZvPy7TK3zBwafr6Uwdh6y/I5XJn5JAslbeI6b2Ce/9zRsu5/noE5QCBY/1J0J7/KsM0pEUB03u1x+f69ahHW5BWCLMupQ/ZPmacNskNdCt/j/1qjPVqi7//70yB9L/PFOSfkZLlT8Yeu1zpKl8n/04j7vX0Fm94GVDIuS89T0ZbL9sxHpBtjNe43c8ZLSatA04WLFSVSpFRKchu8CsvIgIa3uurm7gWvKhdTzXH64bxcho0WVDNA/YOtQo49Q/HIKmakL68udY/MVFjZXkPd4rnXq3nZb2n4CzufIxSnA/rvJIKiIp/IU9XrAH7rG0i88/PjBSndSM2JWEA4CGRqNNndcTerw4Ch008ttvUZKsyDjIYDv0V2w4qGOHcRILKteyoJ6y4Xq+B4SgFqTNsWYx4zEbCDkh5qCAl6m763OPcBa+i7/C5XWk0ta9QUOrP54go51nDNqVtVf7U8YWNkk8zZrrFBdrUPVJjUuxhFRBtwU5sFeq1E4iWP/nPB+xiJtgdqKXzbTAYkIC4otv7M8aBSwXy4npH76cug/F6rwsY35BNbdViw0JXwYCPD/eHT8vtVVOvLS8K11pX7N0xychnOmiwL5WR2opp6guCJweiyoupI0ZmNouveVZgdivQbjfJjB1XRZLVxthR61q20eSgjwCkzyOlqFNuYFqcyYXulbmEi896zQ6HnQbqw9XEbrjXPJ4fnz2ojMsfNqBvsuV1IDuoNMEDnxZtAAsDhx4o17oj+8tK9dHE7x6+zzcNW863idjDPabw73S1CDwdz2w9vsIZckfAkbVeqnqmr3AHEkk7Ejasqr7GJ0+GX3FucNBeDgNVwi6F9F322L5cl2EwweEJz7lAqeWRk7eeV3uG2uPUYqdGi7dwnO5AesA3BNrHp55P130Pfuu5esGUUbDiQm4F445xnmmZ+OXKEa49qAnXPo810eTzCGftxtClKcV6NQ+vp6wbR5sedXIC84cPUqjaIU9tB6lsvevBCL7pPsPG6eVFq4A+Dfw+iE+4Si0G0rykAo7q/Yp4fRqG9Tp9O9D9GR+K/I/N+DOGMiBT4OLXHc0e2ydFD/1HU9PjMPn6OvOBoVB40HDymjxv/msPFryrFcQGeOfRkm60Pqr0lkgcUutpwFYDHWCfqTXCNFt5rUr3FheUNKlRqK+dXliKfagm9DU+XT3vk9JQ8ue3p87yR7PVa3AA7cdRom4uGjpf6AkH6bvuqdpeHvWMuB7BQBwXbOxueJhTEKnKth4YNVrG+ugpNnD8PheKFKX1RvQGT9gr2ky8bMDRVNmfCk5ag7ADaBuxfMA3GfUMYBTqHSPbfoVnfRnwn28HEZmu4gWOhn5EbN4JOis5TVJeKufT8PXesS5/uQ2I11hEq4rKmrV3+Ql6LjnhdBHu+jw7cARP73nBvhU863kKwxwWp9UgivssotVtJQ4+C1mnjtp6+lxOugUPb/jB58mwasaN9QyNQb+T3UA+bO5g0CuPXf2kdvLp2Iz0UD2IlpYjOdxr+gLVD4IVyENC514dKCXqRQ7/3JKaOeeBNUvCp5JTy6anm9AO7JmcZJBEYoHRLP+Bec1rAvcIXulZqtgwjmy7K/E5/WELxZw38olUAOHma/jZXu5sVm7TDJiXJthtOU9nsXyu4FGVbST4rhtNo3vqYXzzbYp65rPlPwAAAP//pF1Jt7IwEv1BLkREUiyZZIYgKOIOUBEckCEB8uv74PuW3atevuN5iEnVrXtvZaiciwF7t/TovXa37rTgE8KrWSCj2bKYRunlCKN6ZFix3r02KqmTguEbPVXOzZlNu7PYg/F6jFQW/KfL3vW6Qfknnqj9vF3r+T5EHnjXENP9vlYYe4aih1b5zcf2By89NlQl4tkUjli9n5R6K3EOjzhlxwU7UshsxPgWoKZmn2DWW7WehfulgfGizNSq4kRj35cIELQTwuZ1pbMhdcoKlnpCcdjsY7I5XBwYL71LtSrXtcm/dS0oI6kpVi8fd7iFXog05CGqyxaOp2a+R+i7nZ9U40+RO3qbsJD6an8Jpvv4conF+lAMde9Li01xcL98Wq5AOKxbwuDzjUfuMEbSI9KeVBWLB2rcs7gCsJ8F9loiMIJ29wQpqptQrXwFGovSSwJK1bjBCKrExmPYRag09BTbl2Lq3tR2uZ1hX+SAuwhx/MzV/Ahlwc5EcAaE2HUQROSdxO2Cr3o8RWruwXl1oeTj78K6XyOtBItLA5qwoYtHC2ktPFefQ9Dq3svte8YEVG3HF9XtexdPlfkpoa7RieyWejMnZy/71U+sgnlAS70EOJ4eBKuWa9WzP+MZLBkPWEVdWI/6+ejArUtzepNbGfHDk6i/+AnEvVlq85btE+DLN8G/+j0U4VxBuCUTYUGC0Zz3vgUW2vtUDqtTPX3OdQJoy6d0wXNtOipPgN3+PpP3Z3zGQxasA0S3KxPr3DquWYCvI+pOVw5bRfOOR0C7GXr/qOAkNQ/xKB8cCx7IlbFxUb2Ynea7jPSw6bEumTIjAR6Ov3jFdiltu/5rXUVk3VZXahe+yvjWKRPp9/z9Tj5o8+MgqCh8wUDVjGTxnKltAYcu2GGftYeY6Vojo7A6KDgOIUN91O8LsKXECFSGcT3fznWA+PJJsLKDNm5+859t7ycyvedJG4XUieDD1i62o+xVM4lTeWh97xjw3/wYj+RjFVCsVhlVT5rTEdBsDzJt7WP1UOk1MR3lCffXp6b7E9hoPtiiI+bhcw4g1Has36RjhfTPqQuEh27G8+7cWfAuVmIwhWakESXsVNgG3Z7AzBsa0TGMYH7mL/XKT+POm5fOw1jQGzZ5NrBeeh0rVEqhR69nG9yh5FoVTqWgUznYvuoJtHD+1cdgY9keGi6c5iEUZQ31Qu2C5jYZSsT7xoual0pjW8ZFEch6WFFnniJt7g7NU5rVosSqrKG4DQ9lA+QkzlRTBZVN8mldwef7vFPzkCX1xKfLXVNj+8V+vqxZta7JG74mWERQHob2Ks96CcP+9cC/+ZvI1TTQL14Cm0+WdfReBQ/3+PzVY43hm16CJYsG9cP6EI8tV1nSyz+qATfd/HqO2JFDxw+4wfqyVvJZ/lgh2hSvke79smHjKxQbGDccogaZw7i/KS8dNrt0h+/b0I2XHXYhSAHfUP31eNfz/lXPcB1LRG1SlKyvD6UIZNvwSz0X48lXAgew+dLpifoMTXn6kNHt0p6pYmKKBjs9NHC5jHvs28ndZbRLCHTF1qN6Ka7jnpPPK/A+DaKXJb5JxAoekpCUVFv3gftX/59RUQU7GUE+nYYpkIh8V8ngFHJOrsS6oeotP8g24LpucIncgNndTtgOn7hb8uEGnlu51HKGHDHpVeiAyrscTLrTueN3R3X0eYmM6p3Hx5NunTjoTneOQIFyRm9WL4rHOdlS7aI3Wl8ta/4eg97go3tScpY9pQS8DY3p/hP2f/EEeYH21KlSR+NSy6jA8oMLxfhga+xoQYKW9yHIjcyY060hg9eumIl4/wis6RkToc2jnoiDUcW91RcCPGVyo+YtEmqy5D+cTfFIrXjUta0ybwSwu6dK7eN+0zH26kpwIvNG7fJbo0m7IQPsFn2p3b8dtr0qzwaC10amTnNH7o8vA4zjIRBKu49JhY0bbE7iRPdmcOj+8GSZH6w2vobmz90J4XyCnkZLvI7HeyQDUNmj5slQ2RbhwYAf/54bSajfNwsKWPQNNRpv322f7NgiOr4pVXSn0xgtPgB1Fw3YqmLepdOtjkDaETvY2dq3ZiV+WT/+H8xa/P5XH/HpW2B7X9XdqHNTC3v5auEl37qffoR32X6w+x7yfBY3cou2R4MP4LTDbBruQosWPYrlq6GhUdutnqCHbU9tn93yaTe/G3CQJ1L9jnE+fs96C/TtaQFKxVVOP6ELMIelgHXabOPZ4LISoZ7FNFgNGZqOSg+o0sMrEVJvH0+NEuhoNQSHYGSnB5rHejtDAluMTXX7rImVBDMIvOViL9R2iPnWtfp7H4UPV796H6GFf5JiiUe2Mc8z5Bd8wU4d711m378qvNUnxjI7KYg77+494Ll4Uc/Zaow77849JJezSbjHRsyHR48quG2YSZA5KflE34IgqmZe4T1PdogNH1mVXA9WgVTCJWZxWHHox7cW/lfPDbd4moNVYC1U7miiqerAU6MTWYfNKx9Nzs12uREYWH++3ZogkEUpslSVrGv3/NMPhiRWbw9rx8bU+FG5JouHnBLx1kuMHOzZgatM7thb5ovwdttAt4HvTw/nw3SOBWjC+YgNqbS6eWWexZ8eCNp5mrV51tIGOVh3qGcrA5tsuxVhG+ZOgMYy7UZvfguA59uLquHH7sb6+jbgdlp1ZD77x3jbWKcbhHrwJcJrrebPB9rx0I/u5PNa1Ljz6SYKkN3VwxI/NRrN17GBFYq+ZKtu9W7yLK6Fnbd1sJ6xZV+hCB7ssw2jykEdtEkMvQAULsPYQ5Hpdsbr6P3x/93rInQsfiYVOG52C7gl/rb7W77gY4vIdJAsjW3YU/7lK7173jN/YvlzA4gl6+c3oLnvjxV0wcgFq9NKQ5ynXAnCbjjiSJI+aI47kqCX5NwIqoRH/RVv4go070v+9Nkks5MMnB172Bz9WhvTRIogjqWA7le8qb1It+FFpisy9s9HNZ+v9wMB63uysb4Rg7oPuMqDJd6xu8QXt9R3eM9ZF2RN+4hpe9NvUEqRR/1V+u1GcJonHHc9DtBlc8ln3m5bWAerU9A6M0ab+/CdQRvtLdX3q33MUi47gnTYAPY+foRmX2ssSKv3gaC7t4nJlcg3+MhXjXqTPGp//EAPhA+2ttZaa51UNaRtZQdY6wMl3rw+VoLqUFSDab83NI7YLYjZYHzJHPdBPkX3kYDiBxmZWBu7rHXCET2ehUJTRI186h2lAeniH3/j2U3xct81f74fAv568/OZqNoTZHRLiLj1Y3dOdm8eaYNTU50253ieuS8HebHbY00VKkbFt3NEC1+n8UuhLtt2UoVW8BCouw7Cbs7tthd/fphvP175cBVPHpDL+0a+FRu68XjPZLTEF+Ev0icnxkEw4KwHDbbJyHX9L94Pu/jw05fuplEMHe7a9h4g59znUzOfI3jtoSVJfaxjKot9BsIzNckW4QAxej9UQFanDXZYP7hz5SglJJeTiV/2ukJDpOYBqiV5wuEvP5xQJDB9zxo2wneXk9PwaEFNnDjYknPP6P4WA3xeAsMWnzrxfEkSa9kTUVIczcsd6WmzgpWtjdSxGkPj4FaEwL1yIFLpPbupuD8iqd58L9hTKV+P9HkTxa2azNieD2K9jDcHaFWfqZbag0t2XcLBLZVW1JZREQ8/v1F+Gitsf/dPxKLTZ/7pd3LBXy4eNSgduLMvotp5cNGYWkG1I/Xawd47OqNZB1sW+Rv/Xfw0HE+3UI+klDuegvxwEWKm7VYW+PJ+jfE27OL5FHoOwqtRoPvRou4XuMdKLMO7HjD+FGmE3bw3SOV7wM7mLLls3Fgl8FyYUVv/NF1/KOUQBWEeUosLypoF3HfecYTAwpeINj6cshGP5j2hQZbp6E8v27smwyfL7tmYbGwVxbtsRbW2X6HpGOY9vNU3pkEwTfXTcMpeMnZ+gf1bQvL39X7o4UDEF/ZLuOS9xLkRWvCNxAv+z9ZTKn/6JHjx5IKalqsckNeOSnESn9wNTR1LWvCSql3U1AOyruSPD6o+L8QdJXIoSbx8xf6wfnQTsfNU0AnVqB8cMrdXxCcPwSjssR4+znm/UmcdQaWVZCrLTBuzdHzCZ9tuf/5TPqVo16Of/hQWPtFvxZ6AJxkdVRc/ZkYgL3c/zBX1JtRpdHwfZvGpDVPwMdK2I2UCIP7prZ8fNfT7DHYoOxNuug3d1yVWC7vxFP/xwUY+OA7gZ+YHO9rhjvz4ts7rBdUfGzGeNoelh7j4D8qi3+fnfSxBr7KRyt/VnnH5ssb8Kz9HagSynPONNchoeR5WnPGE+LRH2a4hfIf9Urnls6j4Iki73sb+6eblwgZFAL98U87NFo3nISolY3xvgl6Qtu5w7UiBihVk1HIbHjH+Ph7/+T28oKDNL17vss3I4SA17mSpP/yFE1ZPq33N2U+Sor7kHJzYl4u7jJ8IlIty6pJNU5Pf74nM85eahRWw6ZevW3J9UHeXit3iD1Ww+J14b69V1F7vlx4KFBIiEcrHw005VXDSDbTkO9V+/rv4Xd1rjB+Kn1Om2TrwGnsFwzrW6832/vDE/eqEqGvwRrz4pUTC5kcPhG9p5RurlB2k+Ucz2DXOFzH7+QKoUHEgu/KrMYp7FCFX2YkYa0dV61Mum0Hi1SvW14e26yVzrYqP7f1IFz8wn9cHuwf14r6pJrhNzDBqVcSwrtN9gwpGQ4YqEJBpYK3tb4hVh7KAciNyQXObQ42M9XpGRm7rf3py4l7HDCLtK5GvJA6I5VeDQ6K6P2OM+j7vIHkdYfXid2QbuibbzPiVwW1XMKpmO7kbW5xYiMuVEO/RSdG4NXJLtLPtG9V95OUzkz86wrx1oK7lq92EuaiRvmXuBdEgxPWUvB2CfnzTBHHFxhs0xu/7qQ3rmY11X3AgX0hEXtPqpTGn2BYgFUimznO1cftR9EX0ySuTupJusC2vZhxa6m+wdl+AyP3WFaL/DEuq2BsRbZ+saGHclR/s1wc7nurS0mF9VYd/+FyELUAcr4Ng4pdzoPn7mPz8ThqrQoUYh7IKfL3QscmiDxtXh4YHeW2ppH9pX3eczl3xx/92C35P2vyegd/GA7XnQ9ZNw31sQCu5kIbi2Uc/vxEN6jsg07dWYzrvzgHct+dPwIH3QpRpio7GoDOC5k3P7vRKL29Qxr7GNi880AwJJwA+SCM2rdWmpqvr8BR/+FrAt87nHmkRbLrkgR0jCdikbsIj0NxZEc6Xp5wt+gi9qG5Qj02KtrWfwwpZsj9gm3a45ijz2z/906iFoo3V6/hE2TeVqC/flp0AkB5B75Qz3SvbTbfoVwM8Ksf4ckJutznLKyL224eNgytq0U/PIK/qZfrnz8vh/ARzs1H+9PVwOZSzZF40Ichyd4vYD4+1PL3Tn989LPj993v9xZ8ezvKqR3/6MbR7d+gOowXPshKxteQfI2E1i7fZzMkHYYJG8pFv4GDDoXoly/WPj4s/PzBb9AuXpcITbY86T7arkWPTbpMGSJiL+5//PnXynUNlQNZkioRaI3U6RpJRVVdsdtOD/eFvzBUaDRXuuvhpZxkWPz7YfpysZpGIRhFt3TXZSvuXO27FvofzWrfwxfXjeDQPJcCRl2uqLvmx5I+Bfvxi0UfxBrgHgHA5qdhNxVs+Sslr/vEV8k7NQ95a7BnC+/SpcPAoRrb0ByPp+nYwDcznOqdnKzAgHscz4dsE5+N5dyewJvP0x6/ZHk0FDIHwoL6drDW6fQtvUPYbleJeu+Rdi74r9NNL1m0e3ccZvwo4qmVOz7LB6rEOtgmqVfuA5V0RIepuQllq87DHzqaq82Hpj6ElfwlZ+ADByfAGSriWTFt35/a//oPkWkDlezjU9JG80uWuuzDYXK4Usa0d64AP6/HHj915+5EtZGzBx8nt0sRTnKoeWnm0+P1/N6wPh/DXz8QufUn5r18F5tOQlvk9sj8+LMJqi5XbxtGW/kKP9mv5+It396+/AeeGI++xMbqxT24ZOLd8+vMXppVaVZJiV4Q6O+2bjz9/JCD3D7aE1ebH13vJj6qCwFL/fv1a6bqzK7K6yhTN6U1vQRvdLXZ2q+fSr1oHUKvuAQfD5YyIdq5DaXp9z1j5xZt1UHipiNwoGIe7i8b4I5eIe+snrJTeO2eO7c6/fi91H5LR8at0DKT3M4mxB9/FX1a1Uep2zQlfamJ1s/bOZMiP4e3XX2HjPEQFWvxEIvCps/TH2gzerseTaXwFecehrATHJDPFy8WzNDRpiJ4iev3pZXY617q49LOJhD5CvIzvG7Lt9UTYuicu3SRGBUqMMioXbsOmlsueKEKlQ7OD/nHHx61Y7oqvXlg1qZn/9WNSdV/ghe8yVtvTCrpg5oIpuXy1TySyEQbeSALRggsjy+8F93g80zhU1mgmoXiEUC6lAPaliaY0efW7/2tNwe6/rymQ1r1EdQN93PkqhwVoYB1olM8fNHt7bMFdyRUayNaJMaOVRwh4JlPZNaucbVeIgyZrbGoo7Yja1okcMVmhmGyI/o7npmCRdL0daqzImOWsVP0b0r/lB3vPU+GOflT06GxHA8VbXXS7chYBpFZQaWEkJ9TH+ieD9ashWIk31653nSyAdyiJ2H2eKWKJblZo2AsN3if3K5ubEioUBhWlekC8mDn3ygLrMTrYdJ46+0ZWqUpjPU7Ys6CPiRYpAnxFzSRbaVY1Tjyro/RstQ3Go/jo5lF+G9Be/AIr79stnmdcqiiuFYb1p2/VX0eQRUjKIcbGg9YxOyWhIxWPXUUk4TR2Y39vAzjHrUlV2pzz5u5QDgW7V0zVt2DFW/3sP2EbJiTgRtln7Pztln3ztkntT8R1s6FVKipi+sBBuK1Yb/f+CKbLX6gJ9qkbk7ekoopEG6xHh+W+Ul4hcE3aE/bjMmBME5oWfb8qw5Z7zxgb5A0ATb2MJI91k09hmz/Bumsrsi01ReP87aTCN+NnavnWpx7wOzsi83gH6p817E5Zc6hg+X1UC0ZZo8/++oZRePVEfBhWzllPN4LZ6v1gfZgF9PQfHwesJtexuS7GbqT7nQX65PJYve81bYJ9b/yNn7OuiEs7AaXomhVAvQtGNTs9Hon4HJ8Ntr9Cpw06fSZwkb2Z2k+86gZJjHjUnHcr7J36PB7E+pahUBQnrG1fj44FJ60EuS9sqqZ0QgyG5T5htmDcqZk65q5MGRS3vQVH/q1rXGXKLRDargN8W+3r+cINDvzi19gi3eXTx6GAcHr0VG3227w9lusUSaZdB7vTW2JjlAgquu4bhQZqUGnz6lQWkBkrn1qqampbJsoybMRMwkr/2WjzixYphPdao3t8kfJ20/IeHIrdhXq7Y+DOK84/ovUoW9gpeC3eKq7NI+lRSXh5nrulu2EFdde5RCrvD3dIxbmR3sH6gM0xGeP3sRMMKO7CDluWUHUz4doI9bUoUzuLym5ONF8HR7UL6m7lMSf+PYrWosw/qPy55mz+NN4NHZ5FGWwD86VNaVd6kpP2ATb6Tc3IJlzWhV7QjnBqp2qbcmNyMGdkQ93SbNlYZ0UCfud9sXWzlqMIdVxChY0Sywxq1kh1UMIhie5k0qJv3Jm73FvuF/aw6vWfmrb4yoOPOUR1YSwYiznnhrpJKrEbTvuYoKd1hHt9+eLTIcJa/wAsgjl3EnZrR2Zbtj+E0nYoM3oWeDFv6tdQ7fTSrrAyPW9sPkf3EmlXCHG6GXRtOhuuiMR6c8WqY0zaqE7jG4YGPamJp7iezIdXwNwNNtU/Uh0PayNpQey9ALtHXa5Hs1RlEDJxDKS4JGxwx3EljcKnp4oXSfX4hu8KbmM6YENwv/GcPBsHKrafgqhY8wt+cRVc/RjTQL2ZGtOq2wjuxxBwoLkum/XxPUNpOQX2FS515+bQGvCssg/F53yfD5phjPD4PDLCUU1jYyjUb1So1A82ubCPF/wtUCU0OBA7qGv6i5/DJ2RkE4HUDRucOkBO8Zs8pueKLfibojprt9Rs/V03fY+lCKYtG9js3g9tYlAIMLo4wfrFbLR+rWQA7GveqY5YhObVqSmQassc2epIyOfCfTTSRxEMGrpnM+aPRjyDcS/O5I2Nqi7VzcRBu82veN93K/ZtOi0CG4ND9VHadu9xip+Ql+RFVXO8141UGxV6r20RG2+Y3X4dvlIYx9WNrN9Ty2in6w1kXFJjfZR9xIyYFyDnao8qx0fZTdX5WkERDw+qFfIlnkVbCuAy5jn1PGzWs7I2WmSG3xNe8jMmq8u3R7Xd1oSfo3PdXz70CfS2OWK1fvnu1w66BKH3eKCpqn5cssm7GelOEtE9mtbamHdhIu34q7nM78dd5neGdWB+yO7bvN3e4J8Z2NKxpPtqtWeM7S8RHO85RyTZsWv+/dSCH/5gK1aRRvJo94SdGc7klh2Tek77tgFvxX8o7la7bpkfUdR95xVwG7+ov8/NV4C2Ws42tlShHswTC2ETbbfUV8w4Ho3CmuGlvIF8onPrzso6aFGPHgH1b/wxnvVEcyCW1S0RPscmHr3razm46BniJb478izkHuDC/GALl6wer9vCgKXekq25IvEsFMkRFW0UU1y6XDfVU9lK8YjLoODJuZ7Vy4VD8j0qsLXOCjZRgz3h6h8wtTfdmM850AbCvC+o/wWO9eVzXkHcZc9g2KzXbqsGVoPs0eKoe9/uO7bhd0foL+UbK8eH3BHnKwhw0q0Gx2P0rufB1Qn4TZrgxNje6zmQ1hYyQVOx0+z8ekpmwYLjcRXjYGsMrMWfYoSeW9a4LPV8dC/PFpZTW6h1Efh6HG0xA710q+BL51s9Jjy+QXk62hif81fe04N6hP1J+OK9N7+0Cc1hAjeDX2FLFCNGb7zdQC/bDzJtzLv7zPegovPEWQGamFLPfn6QAaxxR63mcY5/fAdgPjb4h0fz6UJvKG6ehwDOe5VNx7CqoL9Ub2pbbxv1SV5z8Ksn54D7svYlDm8k8OGN6tWRR/PC3+D4ZQE2lvEYLx/6BmOvr7DW3B85LT+PGU5TuVrq1TWehtWkQgPNhPXDso5XMsMC8s/5TlarXexO+4sNoPbaiA15MDUGQnJD6g5fiUR2t27+PjczUPa2sBaHrTY9hrUIqyZKsWY5Nlvy0YNKNjZk5oMBTZWl6VCtY5uc7vm+3tp5IwJWnIwu7xePVXThJMbHHrZPbwlNbHAKeHPkQuXkaiLit90NxJXH0yKwkTZTc6Wiw+bGYb+8K+4Pn0BZd4SsheHNplU9FjCOcMMKPsX1PG0KTox37xd5kOERTw9d4aX4uJmxpxdVPPttVyBBfpyxfQas8ThVj1Ldf+/Ub9adNt/PQ4Yc1S2C3dW+uX98+jC1PpX3tw1r8i49oofSu4HUrF2N8ackBJ9qIVbfrlYzEG4FSKZbU1k+mO6UXs5vuM6yRmX50btD/aYrZCT7iPB7/6CN3nUQ4ZcPl7h4uVNfPhuwDysWCKXix9TcxR50K0eg1mZ4upNCphmQqtxogINEG/nHNwN3ukUUrz5iPFTC+JY+Dz2nupfm7oJP4V/87tvH2yULXsABTELEV+LHs3JKn2jIaE02B7XVhlK2nrvPw8ixeTcvLhNY1cIpsUNqTrHoTvX7Azsq+iqWa59H5LHZjT++Rg1d6rXu6xZvqKWOBY3oBxqbPh6PSuSm5BMqAiJ5ND3/8sGbb3NN0sfhBl+bv9E/fWBvHANFavughlX28fSu5RnEUuWpRr47Ri+bzxM166uOzeRDtT88tJdzSPyzRrXB1z0CgZOtiGCCWC98Q4DmWhTYfIWYzSfnKqObwa2o30fveOTWcQ/PkyeSqVVu3XQb9gnCUpnTe/XYIy55b1RYa41Bo2llsY1eXkR0998X6jeqkvPDGt3Af2ye1J7TjTutt7oDl+zp0txayS53qtCIbLbOsWOeP+4YvdVCekkg0dP7oLhjcTF7tOAlQSRUYl5/nd4/vA8+7GLk3GeTyeDcTxappoPucu5T4uDH/0xprrSx4/UnsGP0xKYesI5tVOeJ+Mm5YNk/5NqCd+mPv2FlxxTWv4SGLHfltFg9eYduyh/2Ey63bMZWMCdLvBxCWOojzti9Rh3flQ5Y8dte1gwINTslqQMHS79hXd9kaFTOQwGPUihpoRojovf0w4EaZ0Ew6tPkDjTyZqgTLsTKAbVL/O5GOF/3R+xeH1w8n+iUgPdoEVVP3tSx8GqoyE2FLQ7ukubOXVQ04jCHbdCdCNbYwahbkMXWwbqbT1pjb28r+PgnFGyKFHc/PSI5imuRE/8c83EjuDOotsphBdp1PDXiiUAQ4Bf292ch/+k32L8FiZqB+XKZsbkAyLGpU3l717XNWj2l8K77Pbbs12e5Lz2KQP9WH7w/qI72Fg57C+QgsrAWiimaT8ipICwfaTDXr0FrP37DI4itmOaBGzDG7KxEa/H+DajqkfgaK6kBkpYA1c8BH7fY2zloOYEfW7Ve53PUmIm0T3tYni+wiW4fBpTv4xW7h1urzZx3SQBWpUw4L0XaJIvOCkbXTxY8/7hk0TcSLRSFar2q1Ize1SPKo+pJUCdSRnDqHNHz7QcY+xFhTHzYFSz6+ae33a8ofSsQroNGzdXdQLNblQCusPeo9TxEOS3neYUO9c3D8l1E9cInbxDdeT/YrMywm87lp4IsXW2Cqn4N7ny3MoCyrhwc4IB356Veo5GCjbVefXTEiT8qeggPQm0jFPIm5Ja7iA68ST0j2TBaP2MDiXpnBSKKvu5Qw44D50sq8ln4LmmdzBF+emfldqdlNZjD/+L7Dw/bu2T3f88zrZtQjws/Fe91/iV8kN3RyPfzG6SCKDhI9EM3Ct9agHJYd9hIlnMNjS3h0cDvDxSfXTnm75JCwNvcq2ClBpU7GuKrgVypQozzrs3pTVRF8O5NhJWr0tbUresMPqqYYe/d+fkcpSCgCZUl9gc8ap/9lPZwvF84vHeKuJtatp8hmQdE3V2ioFlt+uin1+gvn0bSDQDX7hoGQwElGs3jyEtfU3XJVg/ibsvqlSMeOjMjn6buXLrMv2Sbrwv2fUeqSTmNpfS6zQ0R2o9Ws6E6yGh9bDLss807Hh9B+obpuSZLPdi5g5juA0m7rkKseW3MRslqRbToA+wXILPtwaib3/jRPSUcmvST3IO8KqY/f6bdnYIMVU80Uj+Pjy7bBsYR/M1bC0ZL7/P545eclK6Da/BZF2P9HVF1hCV+g690O9VzqbiqeL+9B+ps1wNja5wBTKHDMP7caE13VzkSZ82l1BzGHWJk0/c/vA6EfiryOfa7Hnll+6FqZw2//Dr+4ZMvVfecRuu8+X2O/aB+ae2x3GZQtbcA703+6o46+QqopWNAf37J3KPZg9/f2ChYzvDqa4A8xXuqCpweT98aJSDe1UfQ6seDy0K1SpEAKA026jfIN4daa0DdpDz+pt4xHq+H374oeGJjVqN63NchkdKYH/GPz/WtcuJRyVW3YDoE+3y6fnUdFj+F7CJaxrRUl91hdA6otT+p+aYvn+2f/zPaRGRj+xYtwLejsfgzt25eB2kFv/w73NBKGwWBT358NOC5xtb4YnPugbfeq6XePfJRa5sGorjZUGfhD+UOWxF6TAKH7Vql3bzrwgiF8bkj2/NTYFNf9q14frY52V03JWJbx9dRARHC6vHeox//Qd9UvdOFj7mTZL8SScMjJq+fvoqjTwrBa+yxkuWcxuz3bIhv4SFjbVy7+ZjbmwgcxbaItPC33jHCFXSD8/zLL34tGE+IiBxQK8wrNiTzaIGaKRZ1Ki1yJ1uLLLQ5PVWarV7PuFc3Ew/z4TwSoEKhDXs2PH/6GxdrUY+3Af1YyP+kKhkSY5/zl8QKIfVjibrsOrrDbBILFjxdrikm+fgljg7T+mRiLTNe9XRKXypMCRuIJHYPxBa+hJ6HLA74OPl0k7hrIlRuk4la28+2m+ygO0qCflpRmSsCt8fZOUDHMVHIrqbH/I9PLP5FgIpn240fuQ5/epravhGj4ccXFz0XNCWJ3F7gNjqku++a6kZQxX/8deG3iz+qxdPpsy5gH+nqojcSxvqhDdB+qLcUt7rhTlmEW1QQQ6S+cBrrWaSXUtyYqUK45HHoBuOqefAc3w3Fd4Tj8ecvLu+Lf/yBatokSnGWhjioy/rnN7TAHsUBO7dyQovfAWAZWUE2xi6OZyPiCjCNA6ImtZWYNAULYQotRrTNfRMP3Essf3yb/PJpqj3vKC78FrtGanfc+7xv4NQTFZtYD9iPPyxXuWg/vwbt2g88wexUsvhvasfeTiVLKVP2FB8qxiZUGAUq7uJu8ZdY3ZaKK8MrhxPF3qt1WRS8HUma6wNZd6tLN3myexN5fT4H62e+qxkETSqK0dbGcv+10PSWnukff3Sab1MP9dQ06PvyPHrmwagnLmmMPz7ktSha9PSnhQg8jI8stliP5DKVDpZxC3i3VnPm1l0GdKV9iaiZlTbFXWDBZ98POBwSv+6WeoOC/BKRcUiGX70rf/4mXfSUxi65u4LsbVXYy08ftPDH9y5cDSlVFO/qsr3ceVC/1EPw+ZZHNKTO3gKxlHnyXurhJHjKDYhpvrDzSoZ8yJ01QXpTxjRH4Sluqx2SIYXMobYhSdr84/vz9WFhjJvSbfm9nSG3jg7YIPScjwd48tCtLOFPf00Tl2XomM4i1TLmxKManipY+DR534rGHX/z++P3i9/ifg6nlY42p7ca7NydzvhRJgbYcPSwNernjvz8YTNTM4yHzztmn6ALwUOyjI1lPKmS5CqEojAF46NucjbGk/Xn/0lsY+TjdmQc7KqmJGPt82wUTSGBTkwOFCt3u2a9tRcgMc674BXBtevr11D+/Auy8NOaqJcDB89W2VAN9i7bUnKckQmKip1Emuo/vxJHDvnzzzfWN1jBhs0aVhf9Mdt68USoyLbYF05hPZtmF/78+qC+JW3N0ioW4fW1VHoXhjf6w8eKmdNf/6O7tcINJa5wxvLXsLrxfB90gNiJg3VG5G6bvNo3TLObU81yvmg2K0MAnlvL1FYHwaWF1fJoiUcyufug6xf/Ff3q9+qY1e6EiqAQT5f19k8fsvEsZsB/WIy93ZG44w5b4S+/sfJxFI3LbSmCPDm72DuqHhq7vFxJ31t3wZYR9dr848Obb/qlVj9BPp4VKxBnQeCp7ZRSzMJroIru3ggJw4PNNmv1mkEyCOsAX047d1j6Fzvr+b7S/XRWuplVjKDDPnKpkk77bqZDlsD26J7wviIy4i7p1YFCKI7453/98d3KoJQGl3PPptI9zMBMY7s871HP/VZYQZO1NkkX/NhkEW52y3xQHzVuPTojllF5Smz8+/6Rey5n+6vWQOV4e8jH9b7wYPk8QLz2/vNb0CbabLETXc16lM5SAkUgvLCx+Jnj8On73/xTZaUZaDuHbfHzQ4KhUR///Ka8rgQckLfG/vSlf5OBzGodssEx40wyhSD/+XdoWvxvkJCYUPnF/Hxceb0FiiCX1EVSpjGrGnkg8q0jKP+U3TuvdPmnN/AhaAI2zV/bA+31ulMlfqU1c+6tg371ZeFfjF029I2m9dmk9q3ad5P6eXBo0a9k7Z32Lst34VH6+fthnk01izn1Jv36g07uJ91ckQcvLf0bHFjNHU0LvsDzjYNASFHPyNxqLViP2cGy6mb1nz/101NL/y5nr8O0rCitCVa05e5bfcWPKBPXV2pdc55NV+4aCUv/LxD75e48hYIHQeC/An5Mn+7oBfkNvvnGWPzT668eJ+CIPY+NMJ7qYX+xV+LPb6V+RFAffi8WmkldBK/34eEy3nA58bF0J/R1wrQ+tR2CelQHWDa5jzbHalb++nHUy5ra7d1TnYp//bHM2HdjqAH3G3/qr4WwZr/+lLnJLOzmH/nnfzooPX/PVL2fGq1xSu4J2/VDDaC2fLd/XDsVTtzpQNPi5mt//YifnjtjPUAjN9ohaOH4JHPVaHn/44fgfUoyK++P+9cPLFD0obgQLjld+BcE8ajjfCuPMdOEskX2zXExPu05bZ5vcyEt/JvA6lGgARXGTVr6p0v/s+/YZx2OaPGTsBbLe3da+eQtHqXPhvqX777bHPeXI1LWX4IDWvv1uE1CT0r9g4SdbNnt2xV1Ki7+CfZYDjld/Ijt4g8G70W/TaMD/K9fgYPVLtYG9fPlYD9FZ2pfNzIaxF0Twp2+FGoZ65HNrqS/f/4nkQooWY/eVw9JuDzidNTPdVNqZxHS1zalur/smTaPAi8u/WdqoS10E1JaTvz4Z4R9b9kT9NPzS/8Je5WrxfOvf1Ks9wG2I03qvsteLjEiaoD9xQ8frpddI56i45eeNUXv+E/jFUje7PtAkMpv3p/O7Rv9X2sKxP9x94HcFDRYP/aIfzZvXTTFE09V66LnY7GZdRDnaqI6BAYauMDhQDEzkWrXoxpP/MClwDnUDkjQS9rNyfIUreIkDYzc6rS544kB0drKsDHVh258b+8Z5Aa/IXProY5G9XkG0XmfqbybdHey7WsK3nt/ou6+1GJqMzMAQZw4rHKymk8rflWhbsVm8qTzu35lcceL0Xq08fL/GjvzpwbYh3Y06J6SxiIuL0E97wrqr7KUzROJb+BIcost+TTU45yeElAO3oOsb/2SUlbeQOVnK7xfPdVutO3cQe3leAo2n7Ucs6q43ERaPYUAymdds2k5oXydaTERuOoTT7mQR/BOrDX2d3el27ytU4H0SrVoMA33fPS3j2rXMZUS9HCEepIQpBA/SgdjlDXadDrKLTLVy5U8jdu7Y+ohrsDuSwtbFLqYraenBSwaR6pzw82d7+tThXBjZdiWlFdM8oPpQJKbCVbDdelOpnS+oe35wGEsDYY2n68PDvb1bOHAnvbsm1dWA8NrJ1OHZmlMDEnuIVmRmqzPLnK/vfodQS1Gkzrrvqi/5VOdwew+RzIiOWKMPvkZNoQXsKw823xy4duiOnhgbKZZqk15MKxQcw09fJyUUzfHNE+BOu0Ne7fDvibqpxbB2d5k7FE45mzNuTo8Y/EaiJzMxbPvWiM61XMfzOmjR5R8rgRZHwtRp/Dq/A1nMxCL9WHE8nB6aqN+7VpI8n1CFcmLXfKwoAT5pLlUjaeNO3Lut0XLNn78i4/Bzg4WJCudI2i/WbHZq8UjHBSeC/j0sWHz6dCtkLBu7lgFtOvmRBCPwLfpfdlnoXVDT7EqHpKJYmOGQpsDQxXQSEafaqJq1Pw0zikUCW1ILarvuneI+gTjVFnYekgvbU5e9wZxzQaoiXLRJVG5eoq7lDtTP2IimsVir8N5vbzPL5+cLE6Re3oyvOcOOtoO6juCXXyWsJE+TmiOp/kIIoCBMzXk3MeVXTOYvMMBW97kd2NwmXXghv4T7BwtywevHnWpy25valyo3DFem9/rVuoewZPfP+vpsjdVKLNywIqjNfGYoGEE7Rp9sfu5JjGzjQfAxohGsvXVz7LPew7gzcUzEfU60qZ43/GAThX+i8fRWHMWrIemxPqM5ZzhIS7hvOY4Ms8Qu5Q9LYD6Gk+BWKpmN468NwO+rSqy8uO5Zul0H3f3S1rg/TfA8bztzj3A66Li3PdcRDZ3mZeAc5/YU6Fj08q5hDCUsKehUO9yor68lXh4clEAe2yju5xcUiSMy75jxapd9rD4WZw8JAfhrWjjnh8PBqRdllPr9Ni7bBq5FhH9W1EHRhe9+r1FYFs4d7xfZW9GchFuMNaDTZ3L7pWPWqm+pQyXDr3lkcC6x23MpFs1TcH2rVdsmNcDiHPLJdgmkRlvfvnj98aBiBUHdRtQwYODF9r4vuTvqAngQPEcXez2PnHZ9yNW8L2OhMrkGSGWSdcGyMgLRFKiD5vUYDlrE7dpQOxpj+oE5SVsXyuD7s33thvOy31q57J40qC/hfVUPp1ZLOXBDFD9iTRmCXsDnZgjLflzckm4equwswuD+voqjKegyEMI4gywFQemNhHkCShaOxm1D9knHwv7xUPayw7dp+C68zOKC/DH/EZ1o1HjzcvPExiJdSOzTtaMbpW8Afd5OmGvHV717K4dHprIt6gvHHjWosHiUB3NHrW5g49mPlNXwAWwJwck6e6E21GXFnwjnegd4wmG8xPEhjqBKG+/3dfafBt4HPwvzZvHvpuvelxAfz4j0tJMyOmlt0S01AOqbi49eurmRQZPme1g+GqPeo6tvYwYdivqLvjd+A8qgHAmRrBV1ofurx74Z/ymwfWVoNF7v2ZY5jNYTwdDY0QcM8lY6SG9xWPvssfcG6DsHJEapX+Lx9v6oML1vN1R3z0E2nwl1gx6febJhCRd26JkLMDG+2MgHmyfsUkRbuiz3qRkhTqlm77o0YP7XOvUa7dKzq250xGEXosWfAKtn/RHIyGmxdg7dF/Ur8pHA5d0d6fOcR25Y+TfM7DOcxtsJYGxLsE4Em0kXqh5fMZs6qmpomPV5sHmjhvG4vyxAtjJGMu4DuuGILUBQWQc6Rc8p9mae4PTTARrWsq0Xun5CAnFVwmep7Mck213J2Dp7pWspa3C2M4/lOAciwq7VarFIxXqHnhjirCzzM80Xq8Fqt5vnlpNWGvPIYm95ey5MthpoqDRx01I4eqDGkhPm8TkMT84iXy0Q7B6Qs0GTeBTtMwXxmTVaExnvQqKwoX4RB++NsNhPErv8H3C5ufqx2T4zik8q3aN9Viv8jlcERmCoJCDqUJNPq1qlQcj12esTRHVyHQ996hPVJ/KJbXiyXfvFVDIbtgS1yUbbWYVwLfZHXsXn6/noT8k4u6WK9heMzFu/MdHQJI444D7eA4aRBfr4jJ/QW+hOe5LMbYg4NMM244mxiOv6xyIczkteFrGY3P5AFTreSBb5+XnrfqpBZCVfEUaCDCaEqyOsPA7LJtbSxsflqCCfC/KH9+pWTddbuKukjG+L/V/voeXBKoyu1Jz34ka+fGnW1A8qbU9Qjwe2+UsWaFJqXkbNmgSGr6E3WDXwcLv6mFITgUs9RDfFr5BrcdcQJS8o+Bi+Lw7+hvnDY8dmwL6DsaOEVHIoJ0rP1jfKksbLVfUUWnEE3ku499UM5/AjpecZc1gz+aHxVUwrPs3zRe8Gve510ulkvDYCpzUncXC1+EyWDndH14rd/zsIQIcoxv1Ph6w6f0wVdilQRNArB8Xvok91LlEJ3wSnP/F+7YrR8Il4rvrz47awk1XMNmtpUQbHnddhCGKGTZRnmkzRdgSS+MwYS3IrZorrlYJl+voBP1h86qH0+HRg37LxGCjxDv0PewGAUqpcinu/bM7nZkYAK94DeGDvtOYTB3Yle7o4rQxPjndPfYeeMmgU1/WJZcyECv4nA8hVZOAMKqb9xGlaSZR+fnyanbsV+RXH2lStVvWbZW4Afe7W2PdQnI+Q6OuIMOVQ+3zsHe3j42rwkHhOKo+clkjssrd4Ou4j2A9ank+ndo4RDlTXazeVktPeg8RSs8swBZOKzRygfWGOzmdqVUnuJ5968GjX71FucLHY5rfU2Sq+fVXb7XpelVHtNQ/qsXtNh+fJ0OE/Hne/Ye0M9lWVgei8AMxEBBJMUR6ARMFRZ2JDZ2I0iSQp/8Xnumd3TlrSROy9/5KqvDkHqVgQr0nw+m066hh7IqATsfKh3GXYWrJtlV2X/lTr/Bb3+DJKvWAf4Str97NrMerBb/G1OKVAQffimi4XaxjiTHFh1YYJ/rTW9ZRa0JhVrS4ekoa6vcQihDt+/egHXeHkpH+xdCm6AqyqTZ2POVP4kNlZSFdbynjAw19gHSn98SSUMOH2+ZyAI4SZd7PhZgtF87MACcf0/tBizsePx/K0JMvXTtbK5B/fu35WDjDmA5Lkz/ayoH5eujpibKWZfmnhnOEK2qwo4Z4H38NYEuw6dM1o5Yd6FtB6JgREp+CLJhMWe806bPDNLLh2/ZmUTJYaMaIF9OXldxZfFToXtcHzoK+S7kCxwGOWhURo73WKbXcE4PlvvepAehSTm2W3qC5NXdyHO5CMJ5T74u+z2Ig5H1fpNVVoyqyp+JLQj24cjqu2UMN3QOf13/T0jj9AMj0eCX+rL/83bEr9NLsR9+GEoyr3BugbMGkD3YQUTcZxgC+3yBiPy9Wy0LVu8G1sWK6W42V+f0c7hXEp6EkwXi78TH2jAkWj4iQcIVUVC2PXoVkutgQgl+LmCNbHH76/NPTQAwWpwQFw/Ql+lM6IH5nuQCcbIpBfNzimJuyIcD2flmQIF0n6SSIugzPvm+I3UpWK5JT6sPTHgm1iaunorZKMTSRvCSuaeqlbFtCDX65tbDMDgWaokyugdqcYwTPKeUKUW5gdmZAg03ilrKQ1T76xMfL3/skPz++Cv70PmI0fd/lkD9dD+rPFM7549IyF18MEGX1icd9uoqHy7kUYL4eSlqv5NzdzX2ci1rBUm/xtlZWUPz8OyUKn/jYJGoEJ1dJiecfOGLKzhi0RuU7HB/5pWT50/8i9FmmxIjRjv/ly3m9ke1u/eLclH1QpenhYFS1ecque7+B9Yp9aGhMzOSpKnQqWpF5/vaDtHR03QTt9KEcqqFK+SSE6gNRe+SU2FkXT1RiEXgn9iXhd5mn437rNcgN5YnaH0xTvvDvE2IOtol7aQrOan/yNW1fnYmtuJuAwVe+wuasoqHLtSHoL4nB0LMMTeqqBmnllT9/V4dCh/iu/467RdpOyuuoD4Os3is07rd6o+lVeqPmetGU/TnVG4jacju0O0WMABBA77+bRdoyWIsrgf7yLfeUrQXooGbU0u7HlmvNFqPnKLwGay8vS0px5SHrLO8GabgLJn13yhmctYKo/V7oKfuGEIFwXhl4Yd3u6QcOtYF+POLn16TmkB6QIskraqhxZtL+A1/01MPXkB1iL5V63ZABCdaJGCuyN7m7kztkvesJL59IL0eZxclPjzBUV5eP/Ufx0ZyvqG6tLfOzbO83CL+CTjbfWxlMv/z9fagL/M3TKJiy7XTV6qfwGpR3yBEtD2KjfbVPjos5/7JiEhIQi085fIQqaOXX9liDEA0fnF1rxxxXud5pYe0eia4ni3YoD9MZFrZ1pqZroZIrdeBA5Tsy8TPDLcfuDFdUT4JFgiOUcfemea1t4sPcZwI/Zz4iXuGCFI3Ypb01l0ptOnBaEJs6SKZp//P37+zuYdU9mOYyKXKA1XjO6LG0+4A3eufBwzLJoDhNkE6nTGfabc36QZz50Vgwr1F7Kd4PCm9izp91jf/2F8u+nkq27uQdtMn2S9zdQNv+K7ciuFTe0e3HzNuxXB9vP7+N+bAYg76z9Q4uNRg/P5+yJMxreLz1nqxPysSpdb9cwXfSxezX83JKlWOBfvnN32+2aPJP8ADNu2ZYkr4kprknM/A/6Z1u0zJKp/YuZsgQu5weknk25+wfkGgVjAY3226l3FMjmPVlSL6B3oo/v8nzPCIv4mYxc1V5p1o+7zGMetmOr6X3hUvRO8TJ00/QZru4guUpFjHnKyv+y1OKJK6oQXd+2wshw8DvoU0P4Wi1S3sYfDS8W51uve+Zy63viWj3fFpUT9ia96CryS9vEhI5jTnlQfyAboEt4gNr+V9+3++JTY18b/3uVwXt9VbTAO3KeNpF3gTOavvCY1qlKT908oBeOp9wVIjfklVE0QEWuKHGWDbt66i/ACIpEWf+lrfs5PtfcJPvZRBON7EcdAMecJznz9ZjObZUW3mA5v2dhtd0HY9Fnw+r2c/ghbkd4r7/KB50Qj3PiyZ6TGvPE1AajIxs28WUstpX/dUkHQG/Zv8sbrj+gNOqSfHqoZfB2zmK9erZ02bmSw/ODwa7QqrUEnW2sV5KuqGGQM5sQ46PYIUo3w0RKrDR40+Nrin32/0VAsFD1E3XfdpPrbqDirTZIA7DqR1U73KFRh13sz5VZd/0oQrHo+FTXXaeLX3WQ4j6uqADG6qIs85+3v74UvgOb2g0Xn6njSsrmfVbRcPncK9VExcuXv/yNHMNUVvzejewjDbp67JgzvwddEhxfRxiXlym4o/XFLN+0UNSOaDqG4MetPuxnP3eFY3V8orH9UYyv/h2zCA5Fh1ebsICDd2gRJBXsoz5KXnyT1gqDhLebTXzgtZkxkt/QPg97Mk6+ljBuHhYAIenuaXGbqGb8nNxL9DMezBlJop73VAxeFGoD71wPaO/PPiwvgLZSF8l5To1ALaqyInPDi3q1cdnQr1Z7qn/VoKWH4z5+LfRU49OpO20VYzRZVPi2Q9nwVS2WwMJ4zMg1ufpIVGaFOPPT+tifwxYY94T0E6BgS95F7TqLy9el7eKbCTxYE5mUeua1f8mQ+s8nkY2XaE5jRPmojDzGHnvwWl7t/GntOWAiVivtdW7Wv3lu7nPywSqHhgYze97/ziHKjpLoYHZxlkGrEsvjrpsC0bXr7MRSNa9V9Xo5gP13iHnw/4FDxjQbkuvi+7WjuNVKEB5OydiR3Of68K5V/DeO0sarss8HlsxVNCBNEDtTl3yyTmqB4i25ys5Otve5NdPDkCboMAJ893gnXsCA8OAfFgSEcxWkAsd3sknJ3/1hbsVP+B1fZ+HSH0seD/zI3Wf6i11cz3mnT0+D3CPYvJb7zH96es61WfKG5bpVK6fAzpcHiX9y1upcszA8MqZ7yLG2ez/4BInEp5SrzCnXt9a0HT6QFy9fgdTJO53yA3FiejkIqLpkOQidIm+pX6gtyXnn6eMulA+Yr3wIjQ25syPSj/7u/+dVuoVOtjkPUhaCGZfOGkCkj44GBXYLYdxSB8IW0ZLZr2Pxc3dkUHSO4e4zPzEHD+EAdU0kbGQbF9oJBc4qGsRCT8ew5l60yst2Bkbsl7wJh43170Psx7SWyq8y1kfKy2g5wvZr7Jvyw2ki9r8/mPxEZ1ayj8nWaUN31Ozv/l8uWw9Ad63pUrNRx/yXn3kE5r5Og2sSGmXpfARfnl9yAov4qzOrQlmP4SF7R3HPTndz4AtvcXTnC/HN21lcLObTpOVLaS9EpUKTO08a6aN1ZZGD09F8/qg9pwXeP5gZ+297+rZL2fpdL/bBmxIb9J0Pp5b49ZRd8f2QTdPske0T+aSY20fyTrv7yVTpzRE78X2M/v7KxrJV7Hg9TmqxDvEasolT3mgQjqeSXBpWk7967GB83vzJMRyc86uH8AQVKcj5pE7msWcR0GFw4k4+lIvxzplPvrja52K0fROpyvaGsqVho/9q5wEP82QPsjjIB479NOrQVGHWKRhf3wG/GypGZDGv9LtLshLJt3kMzyD02oQkq2N5CASKhRLUvKr36Ss6f0vVL1zIIFe74IpeZ0aUEsvo9GcX7ufv2pXW4/q2j0s//IZ8fv6r/4my1cDoN9CTQ9P6c77w+WUwa8esJGVMhiF1fEGdrASqFm+s6AzM6NCP30P76aKuDn3mWBLwcZyIfLyY416raHdp8LFRV3GU5OImYrvYUF913dTWZj7qg2Flfzx7s5VhQiu2hpTE556SoXSTWD208QwnDoeaGgImpwamASnIAq6ty3u0FwfoDMfC/54AO/qhHpiZwZT7QuNemnmWdfelyJ61Kab9tM/TQu+wfBdbXX04wlGtpXiEQ61DtHNA2ov+D6eaOgLcI/2hIYTieJO7icfzhuj+6unTEe032kzryRzPchki7ScNKqTDTWHxT4Ydfp8oJlvDMWiGND0Wn1kdH+pt7/732fbWf8XoUVcn36Cojc6AxayfKZhULjtZOBp5lGn9Fd/CsZL4jOUG3d3aPlKjifU6yLyvPOFGNHZb3mjV55WtoKJ8+A2oTHPWxmdTyMexIzuUxaq+u3PvyszX+OuWhnz7JoM16kXBPWGDToo94hRUlsHNDqfkqHlYglY1N7jnOfvA3gq88hNkLA5HTq4Ae+qBC/huYn5aaNcVbXpfeJs46zt9ItfwcaOh9mfpy2r4L6DXpUQ2RwdMu9HXq1Sfbuh7in4mH/5tVBDkxptVZj98/gS4G6oAv3j/7UPV/SJTxeKZx49lQf1DA9/21DHKjcm7xMd0M8vLOfnw9aHsIP5/Ie46uJ0kk0l+fl7gk/1LpY6I2da3LUP4tGJllRP9me42l1F1+uNFMz1tFq711mAtZqZ5WhbYgLnd/DErNlL5pBPH/kvT2KzMVuR3dPwl9/IepV9ywl0sdIadF4Qd6cE6cg2+YReJd/98nrMpWfgANP7luA8RQELd6kPB/KFYSG537TfSqEIyXr1/OMBUnlgnrbov9l2MfuRcTJCAd0XgzHvx1/ejdangZlfEztMaDwF0KrQnY6I4s344hNX9wcEiT7SaF6PTO5VD7527xEro2PKz+7lgU4iZ4McFSQevOd+B74uHYl71B7x6OJ4B6eblOCXFt7M/lTID0RIvae/8+c/P7SIZfVX7+dMtkLx/80+QP/9nwJZJNogZ3GNRvtgdLDm7YI6471tx2taVwhXVkhj7YrbKVtJZ/Uq2AuKYX1KO/JAtdol2ZG4uncsx9TpbrC6gY75+nA32X4zPrTFJ6+x8MRR223T6oH2ueYQ6/vugum6YCLEsH5Qop5XLdXheQY335h0EyPNbH0yhXB6PRuytY11OaYPbYBzpRL8nQoRcSaSB1quBoVssyWL6X67VdBTFV16etyeJs/lbaX6G/2BO3PU2i8YZO4teQypsb6X5lgVSEfF4uUS69ZhU348jjqy2SIjwbjs53k9JgZL3inEyedxgvbsOY/c9oh+7JySDmHlw3rXOSRNC4kP6+ISgfK4rrF4ylHL7BP1kYTFnp6DZd3yfNVYkDtJPjCHR6U8DyeBmLrmIFpObfbqSkxgO7x2g/g+v9KpSUIDtSd7GK7vpY/4N199wX2T0yA5NxXxV3WtV2rzuBLnvCxLfqdqh4bnhDDLTrtWkhgGcM7tmeBDkcbs7eUFvPIroWEYJIijKbPA+hzu9HxfrGP+CFIPTrdzRfetF3CudBsRrfsmo2mlVqgTkIm152rxpAa/hunwbZQK9pR5w3LtBOlI2FZBwl6tyNae+pQGKjPQzTr3JMlsQNwwNw4M8Tcm29X9HE8bNx2AaV1Lzptzi7jHljuEdn48iMu1bbKcJg2KC0ip3o2blj2sDkO3PLiYj0IQ87AlIUru4otcNUEJxgpZEYzMN4ihOiUabFG9Acl5Se0MG0hMX9CAZbUH4t/RM22MShdhfj5Ywp9l3Cb1uYM8jmAQT3la0hwnKphs1Ig7yErAGEM6aEbGSVCpFWdqKESqdxYR0dXOLaXx3jPkdBnFbzaVvJt/D73HAojuzd9N+f5XRKfXvSGmE02cSQ/4rqRPFVDzHefx+Lw1PqTdIA5y3I3BtERijcy7aA5jVJhcPDbHSq0eoBD8dZ1WElJuwB5J6G/9c672HXi3LiJ76/1C0yLUIyi3V58YacWC8WvViTpa9TRMAdrF31es7zT+yvd4EuIsHWgy4cVm2OsYVarFWaydBph6s8aL9FAFUxTsda0UNg4xN/mqbFNLVBAuSTVEh+OnZHJUJ4CYfaebw4qbNKl3A9q+si15sJcYcKrfRXSbfHVY+YLIO0ltrrC7HkziraEp26jTmSacBIXgDMSYb9XuC8VB+tKw3LsBu911GXwvkIltkEfM9mPjgSjoiFwc/DG5v8xUzW8WDf66lhOLkpqdtbVYvKl+9zZoiuvxDOq+OhBi4ZjTzU3PANqmI+bFX8VDEX4NCN75e2B0Z8WdFVT4HwAAAP//JF3L2qowDHwgFioKDUtuIvcioMIOEBUUkUsL9OnPx3/WdNVmMjMtSVCSQe3XpUm1EY2NjFRJPlP35JNouv+cCbFLc6L6w2nRUHGgI08nOXaXoUDzvutC8JayJXP7m50u0L8ZKvV3gL3Pt9B+PLvqgKvWwaeys7TpeUsm4SRfzvTkvJO6jVLtifLn2yVsjY/FtW8lNAsnYWfZVWhK9t8Oft+JUS1NtJxFB21Axf0xYbXDmbbwh7FAylrRDvf62C9b79tBdPR97A+N0g8PNF2l77t5+Xe7Sv/WlwCBgLGeQ6WNxi3loUbmjRatT/tFKblJHMYsx3ZXq9FW0jb6Oi/6RrYjHzK2GQ4yqtpRofd7tumJjY5XEM9N7IuB7+RsH7wK8Nc7qdtLoGzRrG0nXj2V+dBuWjTdoqhA8+acYqXAB22yJDkE2Q8oNeMtdhaWSoDuV16j8rUI87kzZf4vP63xfkT8bqie0sXJMTVAIGi8SHYiHnaBia/1JUDDPVieUIDxoVZRy/k8/UCH4fFJsHM5H52xvHAVOnA3h7ym4zrvbWcQmCdTpVf6erD2GugxDL9apwbv7SOa3tMnLJo9U2c8Kfn0iJUOjKbM6d/+9tWxNuDHtQI2T53tLDWebcmNjD3Z3ba/nqbpRgV3P8lYttU0X6xTRMAQHja1ZwWzSRZUDvrDYpLtRt7Xk0TNAPQiU7E1gYPGZdR8sehDRrY12tYDHzYx9OeDSi8hz9Dc2GWC3snhjd0pH5xR6K4HuDyCZq3n7NHSknuItDuvkdm+nCL2Ep4Gire1hR3vu2dUycMYvuJng3FHU/bzofBR+E4Kwr3Tj7Z0n1KH1/rm4Pv6iFZ+HlBc0xv1vI21vkEsBG58lOGj8NG1/SkREqTJikJd2svOMh7sDvQqfWGvOL3rBXXW++88qKoPP8auTTDA4hnFyidevmifZyIVyJOo/TXO9WTwnYqE0Bp9Ke6V6H88+J399CXhnuRz/Opk6A+TiQPzFedD901l2NH2gY8/x9H4ZfcjkNjmjMsnxPnUsRzQUcMR1nX+zCYy9iISbeLh001GiHyrLAZ8EkcsD/Wm76f9C6Ag54q8eY3mo7U0W+hLtcOn+8AiJvZcCdO+vWGlSWRtW/NmAEGQJT7U2l1jp9nuENuUgP39VqzH6wQ6esmBR0hB94hY0bWFzvnEhJf2es8YJ/vwmhXLl+7tr56tZe3VexVOWNHTHC1PKxRhaaSQyrYq5EOuPAs4fb0b1T/7Z76QHq6oNVMVB3r1YsTJzAD2j62KvSGK+jHJZ0C5It1wsOUah6mbpoLDK5v/9AYb+u+xg0Q37mQ3oitbvuWGR25zbEgzBtSZP9f3AGoVbLHbPEdEPpEZgF97b5wohKunsyWUEIFoUJmyqJ88/KpQpWsHMpHQ73kzqlTp4eIQmy+Zcz6t8vDFTL4wf17xPX+uwwDrd7LMvRQtntJ3kD7ePL2zSdemlW+l6br9UGXz2uesrN8JdMdapm7UnqLpqE6ZpJibG1UH58j2tLDegHD89JfrVs8XG3kx5Mnu/qffajLqXoculxj59Td65VTr3glUhF2IMI5Hbb5IdgayftP/42P38FQifLWFYuurjDWrhXiQOEe9+wcqzKgzH29OSP1Z9yXN2LGhOd9jcHmUkEUjEaLJrlqAPCaEzctbRMQIwgPYA7/BtkjnaDpcpALZ/NRjtVKlnowPIYPNmEj4dPoYzqfxDgcQb11LjZulMPYzzqEkbw4RLeMKRfNuMgBenJxSy+ZitlTbYBDmTZT6wFtev9OHiJO+Hsmo5gRtv55fiLRIm8j+5n8Qu15RCBEcDOplaYWY8EBP8RtQG9vXsdF+eZX44vZm76i34pFP4DcIf/j2f9bE5nOuLXAMHLL2CZscsvIxYgqZfKGfhXxi+adC9uPwpqrh+ei/3s9DZpEdb0YR25JHhii1B2wJVhuRzftcASt/9v98Op9V8QnJjij4+CNiPkpvskWl3gQU39UPW4pv4SOnTzgqlz+fLV2am0iI1Isv3tEjGr9K14AFuoYzKW8Rcb0Z/viVPH/rZGbB//lwNbgHMS+Lzqi6IU80XowYWztRqVc8bP/v1yG8bDVWnxsVNfT0oUc3aXp6v/1KcNXoSJ1jhvLh3TwKtMYHQYpXrmVL8YKy/hRQ9StH+XyT0wY+Lj1SN06ifCnDzICP0c1UC6QCLZ/vRkbdfq2bjDIpny0/a+FcnghVK/Xez9TPBzTmZvs/Xyx/+uaPz51V31HspSEy812HreLC5/OxfprwDJ8yTRMzZcvtpcR/fhArnLzk04bLYkD+/YCdnRGx//qSqNuXv0yJmk8e/lXiL91M2Ja4RJsz7R6Dme87rJdepE3m2PEirz0UrHhv4szlJwe0rqfOF3w0sS/aooyDL00asPr5GNsDXJwU0zRyzvmql1v4fr8Bxo+I7+mrszv0p5+iQd2g32afJxA8LxXWpUdYM64xErQ3j/H/fMiyZ9uidX/IbN3mnvVWm8AjMDpSiTyt+/5Sx2IrWBxW2t/Z2fbd05Y043TxuaxsEHts3AWSt/KlXi6eEF9tAyJt5vDiz4PxYsvEtSJa85EPpqtHg/ycCez4qiFrvnemtPo84WjbmCyk4Gu287IY8edQp3ZzPaL97fo9oLArJmo7ayFjHmcxELFKsaEHxFmytdfpaSdnPsDuo02P2OpALfOC6un9lLP7JrHBbU6NzxV0z4ZU5BZ0//ELQc61Yexa8T5a+XPtK7FDNEYhLx0zTiF8G6bRdD+8XInGOSbCK3K10Vbdqygs0oNUU1LlbJs+O9CTZ4+xVn4RC9smgPCdFdQRt7vot00UAzoWeVg3I7WfuJPvIv38odQYA6rNV8vLQHsPNpbtoI7oj2cL+JO1+R+vy05HPGxMuqWOuR+c7huCiLylaLFCbmE9t7pAEJ/dTv70ixPEgnks0fsltVgj9N3Puj6GSD9/KZFWPUvFni9BVe4q+Rm+pdH1/GHr5jciVsLFmaPusoXVX+IT97ih9iQINjQ8H+OjtDz7SfCsFkSMBAKbPXamJxoArsZpT7hTcs276s1C2KuaTM7sYkbLXz5ObHsm8FYibTobVwA4bR2s8yx3Ov1zV2HFI8Z7a0HTb3J5eEScgtUq+NaNaz8K1EyLTPVSKtmcaC1Bjrfifeb6fOV/V6x05fCnX6Np9TcQPusjdSaTc1b8d+L5ovZEPF72+WyffxOKnKAi+/NTj+ag3r+RGxgm/tMDM12+IixPkSOsNKkzFySypdhaO1Z/do02vJbZlN4Ly3x3hrOz535PUerU6uwfxuzm7BpvEiHjuC+1aeQ7Y14FLljrP8GaE5g1fU/PA3DQKdT/5lSbtZ/LQ6c+z1Rd+Xv+cHkG2z18/apkVzR97nUnve7+1+edx7ZeLzEWSEYpxJ43b9j054ecNsHUFvwhH2RBBeB3+gf77/So7YiaLLD6ZRoaHkFL+g5K6CT3QG078pwfz0oddsmS0qO//sOS9a78H8/KqvdHYZwzIO7iYgcmRVsCUzkAc7ocW674rBktlDfcVW4gk14paPbiT/Wn38mf/595bB2QzS89Eeo3oMkxNyISu/5Ghl36Qsvqr2G49CO2LnuTzd4T8RBnXfRf74yRYXV/9z/YyJK2n4pdqMM0vzWK5c3oMEMKAE7uXaCqIWX1MkW3QTQTHq34u+SsZBYPz7JtVz645/PlPZuio40Gbs83Lup765mIxJ1cHCjHdbbh1VXhnBxUbJtLq02Om2Wwxps//vRhrbuCGHbhcKSRRev1vmuwhdn77aiumZOzHIuXL+XK5kbNfthF0+zmBeh1aFF/v81qNgj7CsJboeBjWjnRZF98F1Hn6mAz0S6M7YNfAVGOB6o09nXFS8mh6CrL1Booztm56K9w9GwO4+h0qkf9mcpwRnuEj7N9r1n0WEq0+hPq60Lef1b/JkpD3mLd2n776TvsBlj9KnV/NO6nzhlDuHoyw9q7gf5/fCe3o4v1h2OirlOsA8qPW4Llg5T07GM2238AAAD//6Sdy9KCOBCFH4iFIELCkrsImCgo4A4UEbwglySQp5/Cf5azm7WUJS3pPudrkoYk4j1deF9Pi1OegJtrHrEzZdv+F1+4rBfq3zsSL/5UgI1V3snosyYYNbxxYfa0PtQ48BNvncLogPBUYoq9gsV/+SUD7IwvW0oCiqbNGty9MyBK/jn1v/wA8jwuibCZWT+5tLchYsGK1CYTrMHw2iuUIuIs9QFZU2eTkwrucUf39x1q2G2ZHSdJXwFbp3zfTLOCFl5JXLS088BY6WKmnVXdpttULwDVV9MGFnIZEU06ADBOD+8A45UqEU3W9IZ9TkP583+0gHVq8VF/IO0ZwB3S3q8j/+UXeCxh8uMhy1nT8xXO4V5Eg9xFTeeBw6Ap2NewsXWrnhq8eavb3iXoWWoCH7PsXsKLRxi10qvcTHyQ1wAwwUFaPAbF9JqzEpxA6VDcaQ2ni78ESz5E09tPAh5fU+Hnx3/1tZ8WXgN/n0tKmgeiW2YMeoFaEZLiKngLJ9GFjWRbFHM1DH73A43LtFv46Bq0LyfP/vKD//YKMN9MsYPxOciwfbl9ipnVkge/j+GOo3HoOP2awgwXPvTzlwGI7/NVA7soRGp8OBeDsqMe3MQfQviqX8Vz6xsuSGJVpUGJxoI5n/AJ3YJoGN3Gsef3AM/wsKuO2B7OI5jfvevDw5jMaOPliTXvqJ/BVXOLML4/lnNHj80GLHwB0Zv5AsPtazHwkbIYW54uNtMWEBPmBiroTvjeeXddK92//LoPpJ48C2iDp0ISsvLVPuiDeHeC5bHukSyu9Fi67fjzpy8wLpuO0037SUCaPfZ4/+NH9P7WwXafPFA9KZ94SPsngeLDfmD9BMaCCbUCQbB938iU0KrgkiaK8IVHEX3TbA8oTMQTDLbPG7VXyyyMVIne8MzcCzan/laws/7egEX/0APWafBtpWsI4X5zp7b7qgA9vlIPvi/2lnoH24q5L7cbaOmWgdzw1vWU19cryDdqjFEjCMX4HaocPh+rllp7qFtiIgMT7nXZJoLU7MCw07wI5Ke9T40VNQpJSqXhFy/qjCAB41Vjby2+uifykGubT8Y3C2FvuIefn4npPdgycLm+t+SgARQzz4E+fMiCQ10ZusX0sK16s+h77LOjbQ1iNA1wcyoTjGKzaVi0Iy70+PtCUded+S++cPGPeNkUCKbMqgYtWEVnolybquCLH4EquO+osehRaYWf5I8f8ZWyK3jqP+Hf82yFQldIOxR1mvQaRLTZZT1nG23woaMqATajzwewZn4xjWfvNWJXdcXZtosHcPlWNT3e9uPihx4hGJorw3fq6/Git66/fE+ddn+Of/4LLvyN4o4qgDRY8dSl30Tdzc4KpOcWR7BzHjq9SeWLc0mD4q++YbdyIOe/fLjkJySkWA+m3/W9NDT/1keN6pG2yasOn8tIDuZvjeBfP8G92ZXFj4cq10pQVD++yMdMDBCslNz948uzphQtFHszRHDhY5O16SJITxdMzVB5x9xysxCyq6r89GyzbrJBgNr9tsdof6qt6devWZ4nGiRzF4xNfH7C4fwdiTzVtP/LR3w72XgH8kvAhnXj/vTH4i+mgGfv/QkGSmjQy/3VLc83UWH3TR9//JcH8q2Gi3/Hpim0wfzVZgJaJRD+4stUcYDwvH1skPjjzz899ONrXviJeg7fRwaVi/vFmPpVMYaj70O7Lh6ocnnUz0YE1uBD6hDvpQPg097r3nAwOwF1WbEFkoaZrZG4jalbOVfQ1zcxgT89s+LqEIzkPQjQDLKROlfjXdD350sgig85zj/u1I9LP1D91feF9zT8g7MrFGVnRfdfcdOP21kNYeyECO9K+1Us9cmDrJqPi17o4/HYfUP1vewKM+B9H8tfcz3/8UKjup4aBnrFh5+0c6l5XM7eT3ZOBh1rH//WczDU6T6D21vcY+MNaMEkea/CQEq6Pz31t75+PCT/+dVNGQtQeVs2EtjrZM2PcRlKUTUftFriR2dSz5BV7PjjKQW/r+wZdHFi4TC86GCSVs8MLPyNaGbjNn/8sDw1OQ5z9wS4lltXuMItQ59gNhua5n4OwksQIMGXPsH03rMNWPwAUsfn3frrB72jIFj0DeiHBy1baCRzTn/6ZaplzYOuMUXY5PlQzCt2LaGN3iu821JkyS/vvQbRtR/J5xqQmIrknoGF9/z1X/nw8tgfjwjnAQLCjScBX3nUllnGm5jg4XGFQqDfiACNNGZ+1g7K5tZckGIaYT9HaSHAi3o60csQVtbPP8CzElyp1UcxYEN5XENzxgLGqRzHc2HpOnwqQ4LNo1sDdiFABCv59CXaaN0X/uYkEBy8GJ9wvbP+6muiqwEOwdaKJadyOrADuKBOGaUBM7yq1ORWcdFm6R919ll+wke3M5f/Gxd/z8PrmQtL/68GbJ3oa7g9oRaHXyr2XG7nQZNSZcK6fNPB0l+5wsb8yNh6PaN4rsVsAEt9ItALn8W46g8lZGwsqH0+dIAv+Q5097KnVvEVAza43hOySEPkGRlPa94EuQuTz3wklRLU/Te/G7a6XI/1q3rnc4wqX1vWC00XftcmhzBRf3ryLvAqYMfaH4DCxS0+H15WIH4GjUDD09IfP7eYWx6Ypqmop94xLeNRGZUc9hJpkNy+PgV9OukAyzafyOzuCR+11kh+/ho91xxYv9///94pgP/9TsHoqQ71wqYN5kC1PHi6gojiVI/AnK04U2OJyBShvd/P6VNmqn9tK4qdJrJ4G34SaJtnHe+/nw0nkuWLkDvjC9XK7WHNLjeIVnqdhmTL6fo5V/MI5DQJsC8X64LJfurD5BwoZHO8VAHjpL3CwcZfqifysMTo4oIsHhycfsVlV/1YIU3d1DcypctZMr2hMWB93A1Sp2jXjPS4CUFRWIQ6ZVg3HIjnHFY6eBKQLmeDrDvYQWgMy9kU7GGxw0efwcH4XLChfLaNjIeDqB5aLuJdCwXr5cmEQOuQbpCM5XU8+NHjBHez+1oGJZ4t2nhJBy/KqsF2JEfWdDnsfHhzw5yaSHEKtm2Pb2AFa0YR3dUFPXwrFyb74xFNyehw0a83Nrzl4zJ1KhssQoxaBYJYN6RmGg2mzOw9tUzhRBE7isXHfr18sEvEG93LGPZTkhUZWIWFj7eNvo0nTQ4OcHiHE3aH+Qgk43F8an/3RzzWMLc3E0hPdUhdRNpgmoRNC7VdKlPz43sWK8nHhl6CRxoAaPMJ5Jc3iM2nR1P0NHo+YjPR7rdZpDpojYDRrVHBk2P2SLn6czEAXKuwvj46NCrTk5Ouyzuw21ZffJ8Pas/79coEvvjwsN2UKh+a+JbAVa/POJr4J+BnaQtBtY5CJF56MRiyrszgBPKcOoGy6+fj1eug59guEYXji893pDBo3cMDvrw0JZj7z1eFGySoSCuHKpjT54pB3OUaRWf52fN6HXkAXNMMO0Wm94x+TwO8JV8Jrc4bI5i9yg/hTTreSNN6cTPvP0EH1xJPkXoOv2CyhOAA1onp4a0YvWLedicbSMd0QMp86y1eAdCCt5XcSFM8/H5aRs+ACMhbbL91y5J4ULTgfkYGxjLsGr41yw04nZI7tecZcfZN3ybsUuyTCTCxmGvto4JVQQTybreQT8X9KoLzWJvYY0zol/U5w13NJmzDfOZTcKQDHNv+hHUubAPeNFEHjTVRsE8nWEyr6TuDteLL1G+ktqeoVEWIi+2OTM392A8fL0pW7vH0oZaLB87R8bSGhzU0CL91aT8mrynTto0rYDMOVtZgxrMHSd5diaRc/Vie3nkNNuapICw2cczN5FLC+t0G+E52DZjFpj1BTef2shuENoOmqG/w+z7bD2/BZPJShxMt3b/4sm17ecOD83WIvUy1IP2yT8wQfAeHbdk1nH2DA0z49MD5HNsN+wcAAP//pJ1Ll7I8s4Z/EAMBlYQhJ5FjguABZ4CogIgckkB+/bfo5x3u2R72Wnb3MlTqvu6qhEKKFqt7axEwylwhYa1vWmo7wwMtm8trYFo795CG3EejbKNkCa1dAf0FbAjrzmH+jbuPARPfA6Qymmu+DK7qKVPjhdTetrwmTzQzKB8lQP1K8sy/eAHOGL+pVkjXZBngzVK6RIvwcWMfzZ5fvStMBSGg9lK++Xqx24AWShJs3waZT+/ZrwDXf3v0dg+VuWT4+AJRkR7IXgeHoRLmOoCiIUjYVo8vzksEEHz5JMKOhvY+Sy9vBCdnd6Dh+QL8qRC20d/+/vf9x9/xGYEwv19p8JufCXkJlQDd4dKQr6+XSb8hS6nK0269NuaN9fJYNEN93foGbX7JwCdWwx527danRvN4+ESOOhlGo/QiSybtzfmT9i+IRsNGz/jy4Mt4rlJ4k6wHLV8vc2BvrsiQUpagBmYx4P73YME4YBa9j089kTTxbgPvsn9hK5k8ny989wIuoRa2iqdsst+NGH/xQXW1sGp2P2QlaM3zem/aFId5CJoS1j+bYFdT+oGh3/xS3+OSr0wD8kmW6jNUjviNLcpdQDSTRFAayoAambT3CQsiB16OT0SkXkD5fFXaFp72aUOgbKN8gnvRgH/xE696tu6nDtBaXuefPUw+u+u9JzfbudSTjvbQCzg1QCOgD3XkggwLPuUp6Eh8Q4Q43/wzk7eiCuWDUPO3aYcZHmNbBQn74HAqJDC6R9GGZk1T6gZNUy+GEBCoKj0nKmQ/zh9WKCiI7wjGKp3r0eTnBvytt3WWCpN2AT1De1cbNDgbFpC2n3MDyxrtcSDbJJ/OQ7aDYZ5f//Rg4BtUpuB29HWqubiryYWnMizSWEAiUU98eQMlAFca33HAHGuYTDbFANzkE0n9Xcx5zX/rGZ2zgd3org/Tp9Ve0PFOd7qOKKxZ94UMXOargA/XqqtZevkFSnaun2T/PCt+16Y/G6bK7kXmwR1qzmxmQX6gH6IO5cDZ1ns6Cnz0Z+z1v37VuyRVtyf9Sf3PLzDnsDgLwHldEXrad8/k+72ggM/OvhCeDXFNc3EJwLrfsfXxBnMCcGSAikmOD45icZkDO4YkCSN8NfHJnxu1LZULGX7YPoTAXMCPECVUsxKbEsjyOcfIgvUJHbGzy9J19sWnh3rgqQQ85Y9P3c5x4JedIbbvt6/JO6WXIfy8ILa7Y8HnTaJqYLrfXuS15ou5tIGorHqPQxJPgD5oOkLvftKovvmckh85v+AfX6DW2/s++x2fMVBm/kDvZG/yxX1vFGDeuIUUVpyGJV0uDN799dzrftET7t72Kbzv1Zp6d70F/HIoGXiywsVR82T5mF7eAfx4zh471/cJcDXoCLiRS4EjI2+H0fteKzj28YPsxOQNOnrUKxhMT4UG/feWsAt4BeCOYo2AVHdy3kvuGUahdUJc/YgJGW6JA6TTZcTnn/Qyl0N6IHDzHWKK07H258BLX0p7kxrsfB1lmB2uxar8jiNsKYXDR+2edPCOIo3avXgEYrD5MbjfnPfUUvNp1bsvgcYUOvQ6dy7ns1++1JU/MAreyjAfpb0GT/MmpTgKTiZ5zYEA0w4H1EO1x6VgrEfIKrRFr3Fj5L/tojTQbb3TyneSuTzOeQR0s/FIfTw0oJcvx1jRel8ia+ufk7GZPTVpcxMfG+GUbJm9s0BvvWVsX1PD3L7c06ji5fQhvzJ5+vP1M2fQG4QzkpdS52u8Ff/yq2nZmjl1S11C0T5fsFdtomFy44rByjFqxMRDaU6XPHAA32pv7PokSFZiX4DqoAiHo/s2RwwkCC+V7lHcnlvOgs17Uc2+SGkuRyLny9VkMKnW9wiAo1mz1vdt5SWIG4yOzTBwjBpbPfivmjrxKK5TxX4LWHL3RwTRnvOlCgUCqXjKqXd9lgNLs2MPzrRp8f305smU+KyEUTeLZKehvcn+9Gcn6Crhz+u3ntE2EiCMtx1G36eTL2oTBkrMozNd872/yMv65vn9riTyW3/7/DQ8FvAoDzp2tnE7dBfwQmAPkvU9Fn0A+F5KS5hZtkX/nvd0lTVHxT6/YEs4fcCkz91ZOS/CkSyLWJkrH0R//ECgAtuEFm+FgPwi5kgpNB/0v0Ls4fdEz9gxDqM5rvoFQseU0aY924Cd7CGGYU89JDwllC8CjgyohYuNKiuya1KIjMGlfzyooTCJL+nyYKCt+hO1gn2XTzETM3jqbUbdMtmY4x//v8DziSZhf635LP9i4C7Whyax9hiYb8Qt3C9jRkvt04I5Rm8E3av8oOHuIAKeG2kMsy3ieN0PgGO2iSB71hU91to3Z7y8E2A6j4gG07mql6icM3XipY7OenZKaPTrLACvoYP//IpM57MFq6LuKbp5+4QpcdLB/a2I8akYKODHR7yDG1O8YVu3rYSJeScolC7JOp/8wceVX8FHb2x8v1yjZJaT1IHh8lmwHlhHc3qeTzK83sMPDtz7ByzmJAmK9v4a1H1J3/xv/yq2922pdwnWM6Cu6/zLN45unfzF5u4It4eDjzXIuE/czdj/+UX8l09WXvxP7xw8Uc7TUSXgAcmP/ukfE9nVgf61ishX+ij+v59l1lgUOVjj858+/PG5kY5Bvv3jtZtkP5C6xcXANVQIMHR0mR7PN2eQ/vwhsIoZe/hu8O1QuSIQ7O+RQGGu8zl5fXq4+l/SCpk0cNEMItgo2wM1uA34fEyteD9a4Y+o3dnyxdPZjYCfOIx65+uJ//mhv/yNDXEZffZOBRFoIbPxul4JL4s7gqueUH97omAci/0C//RZlVWDcy61CH724XpP0cnqPz8PFNi6SKklZ+D+RevVVQ+ofVRac77sdjsoAfBd52GPfJal4ar8xScr323OCWkWgLhCsG6QAqz5YIRH4XagwbqfJin7XoEeOCo2QBty/rZfEB5xZBBoEcZXv5rBS2vLSFz5jk/Puw1jZ0zJln8jf7GuqQF3L2jS6HNx8llw8QLcYII4bLuEL8lOucJOQQNiO3D11/wcg+FcZmhTCAWYZ4H14FtUGtV+xdNn7/Ysw29XnLH9cW5gvnS9AyzpSclyr6x1llOkqYnqmQjwYgHdb1nP3FwoQvJPwOBffPz55bVe4HOsIwtKGzWh6KKPw9JnpgJva0+ESfBkzkr/OoO7fwNomfnRZKIqOuDSf9T//CW83wTYH8GVfDpJH6QsjDJVTcoU+2gofeJlrxG0z4jR9cxFzd2xbQDYGCPV/FTKOaJ6A13LddE+GkBCbpL9UkZsXKit3rNhkasp/sebgr4Dw7LDEwOK99EpcqtLvfwmPwWTXu6xPUgV4NTtZIg2ko4e3PmA2TXOhkpmcUePYzfkXbNsGESTPyH2KzY+N8Ajgyu/IZB5F38rMWvNpI1LT1OcDt1n6Bq424n9X3zwdV538G/9Qlmt+Cissx1X3qV+UM0JQ4oTQ8VY39X5GD7+yNpaULte2WL/FLYJu9LNbu/p2R3rZiPyRTsFkVK1vU+18m0ndOVX2Jh9j+bB9ettk/gKvOyYR4tD0wHWn6UYrPmfurZR5Pyeai/1lRsWDZx6Aiw+RS/4qpSR6rANhtXP2zCYHgr6Hfc0mTvNfcG9npdo2Mw6566XpHDfffZEOV9nMP7l11W/1ny23vvZZR344xVt5acFNfEOHsqdie3C//lsX1UZXOMPcc9y+exsWwI/92LC3vQIhsU//hDsb6GHsYe+/nwYTAaPODaIZNgV4LfBMZQ3cjhZwlBKpki+7ECagpQer8MuZ8W4z+C1PtvUWMTK52yfaQAUlxSv/Gj+PopE4IX8fhjRvDAJI8MV0oe1we72U3B2FlLh7/mtPPIySeLqjrrqGz1w8DAnMd33ICwXmdpvXffFbJ2+O6Qvm7rLwzdny/+dYRt8CvrHx/MILz3kF/OOg0PjcE6hweDqRzEG83d9XyYo4DGZPYrNT2cSYaMj4Cal+u95TTyvMpjlwoB9Fvt+p47nBipTfMEoNo418zFroXbpCXUfmpcv8gVH4G+9n98vGMZr2Iz/4uF2Sc2B1xfYw1/nHCn6dFJCa6fsYJqQA9aUr+3PPO8zuNfvJcbfyxuwjYvO4Fp8D1TD4ZK0Gr+VQNi1GDv88RuWz3fb/dW/qL2PTb481vnf/hEVaG/R47AIG3c9Pawr1Hw/xZqs/AhbdZdSX3Jqc9kpuxXw2w6jPumTf/6l8lMT8fzdD1xWKwLicz+SJR9O/jYSLhF8WYm15q8m55htI9iprY+d7Io49b8HG74f5Ze6mrXU1Gi7QHkelBBj4fOrqe6PCN5jGyK2xidf6jdT/3jR2UesHpU478CoTDv0GUQ7Z/fvp4MGa35UH0/qQN5gQTBn6Y3eTrVdz+q9rKCzCySsge5tsrQvM2U0LYMa+uld/+OFo4+uOMDVUk+W/z6rhV4L2PPIBMiRRYIiFU5KvSPt+BSdPQJLHc/UHX4/k6NykWEdii0S7UObz0b5kmHuKkeqc1Gr5x4/AkCOMcT+r/z57C9/S49kQ0Ry3IP5se0sOFniHR/za5jLtpm+4OFWbichlX/1hNxHuX+evAs9tlKTz3UZaED7aYi6uaEljEdghO/scESbk/HzWdpfsz9/jv/Wg18OVwbziRpYN4raX/MdguqtslDnEN/fO9X8UnF+cIn8CBqfzgCP0FcuPj06u1O9vU67BcSutKHhzWh9BuFwhqd91mBnmu8Dn/TxCq3fO8dOPJ4B1/0xUFBAYgL2eM/XfAmhTsQTDo67dGD3Q1xAez7IZBPcRJ9CfC8hkVBKWpCzevnzP+v6U210+5yIdXeFz+utw2btW8P8nv0XzLYBR2P70gamem4KP/YxRDKf1zOQLBihec4bbF+q3iTPp1bt32+Vrv415ByIj1Q5xYGLNcnem//8404wVVS3njvMV9nxwLV732lw3O2Gmdl4B6IiO5A2lkrA+UHVYORqH+periyfDuFT2//xNd9+vXztPyxgFHhDcf36m6o2NDA3CkARzaFJ2+rWKIdMvOGjY+xrkmH8+uNh1LIvAePJHqI9h6GIHblAAxdG3wEZd4/UaHwzkd6IXeF552bUy4w3GO3BO4N1/cmgm0q+7LNcg/uXblOTqizpHkXVqy1pGmzAovX7QxqO0IAviA+d9K5Zed/v4NqPQML32SXLVGkZxDf6I8sR+zmf5ssL5G+7xibjTj0XwiYCKy9iRF0jEYc4qOAWfDPyfndlvZz8/Q6qltNg96Pe/XmPxzOEoszQc7Mr83n7KRoY755f6qqwMsWyd3poNP2FwI2pmmP01Rh83bqGqHFAfPmvP3O9uHt8vPRqwl/uncCXtm+wYWYon/WEN+pa7yAsn6xEnPVOg9XtfKPp6scWvyhTgN+ih0/fM6mbP14q9XCm9tz9wJjoOlPX+KM2tD9gLvePBaz9FBq6mZGLYFNYe62BFY2lzjJZq8AIir0b4QOMxuRfPyq4fBPUPi8MsFt6F+ALPJ44QO9bPcZtSP7yEb6tPM//6l9QFBk+9OuszfBr9upffVi/Th/OkosgQKMbdXxV70q99msc+GmIhNiz0vP5KM0G3Hl7RN1V/xf3cSr+4h/rfzx8j3RP3S8kQ3LSaD49aD8E3GP1Q0nxK4Y5ZjBTRLY7USMMpXz2NgOCwen9RcJfPeKSBx7o8bXCB0zsQWy0hwh/p/xIvSWxBmaxQf7z+xRvdmWy+qEKSvwsEtFCPGfTeqdnX6ctfdTizBn9FSPcCGmMJA5Uc1r7A1DlgBNhLG7JhLYRhL/GzjEqhramVoo9eGyLcq2fe8NMZNEBLLti7F8vqclgsHiwcrSarv0sf3ujpICrfyJNMvUmu0t+D5NJxP/0ZWxKr4VeNIZ0rW8BPgNMILYbA2ey8x6W59N5gUOd+//6cdOikRSSrCuowx9uTTDVHNV7GTpe9dD/q/cBSWEajrX8V5OdwiqoNUJFD8/nNmFUXv36/nclC9ofEr44nwXelBOjbtc3CUFNrIC/fo/TiB5YKjeN/vp32P4JFHCzeygwVAyB+uT89vkWUwQHF8VUX/cXf3eiBw+RPmB985mTaXsJReX9kh3SgaM59K/ZEv76idTeRNPA8nPrwbSId/gorXcyLx9FBKGtYGpl78CcK5IxZfWb2NYOv5ydiRdAoyM6Uq5hs3oOtwBsfg3Y29nDsFBBscFfP6V2QplPyevTAfvV59Td4CtYggB3cGdcc6pXv/2wvIQewkKJbRwa7Sv/x2/DyVawEQRKwnc7FwEwDAHqbKabs+j0O7jWV3D8fCF/CYJjB8ekflBcvLW1HsEseB12e2zC5p5PzvcGoemLDAel3Nbz0N8RoI36Je/m4gKaqkEJZaPvqHWrvuZ8HjIFgtq+U9OzfmDs6RzBantssRdWGEw75opwitiEAy97AVaMcwoFpCX/6ntMYU4GF1K7+K/+vfbDNCUMjhW2LMSTP/+t3K9eh1j/UPxx7a+q1L5s0Hbttyzm3flX/yRGJt39yX8LBXgt6EXtVX/5yfVaaB3IC+NfMoDp4yRMDcQAYLRhg79gU8oUcf+0sBenXz4vWpvBKD3f6d/zXaaWyH/xSV3SIX+eRrQD4TUwae4133w5SEsBd61/RfWjv9X97mEuQP1unkS20XXtn7zkv37Dv/xGMdvGUG6fNfVVBXH+O6QeOFLzRA0OOZjv52+jHP3givN1f/BwXq7wFWy3aPbSK+ib1oWweLktdbcfCLrgLRkAl+WPSIQPCdmU9fjXj6Wes1XAKCJDgGgbIwRPyODSYfdj/7/ZB+r/fabgMSVb6g+HIN9+OjUC6WjeqPZ+ngbuCpRBdjpeqMdzvZ7DqmsVHVg91aMv41xHYwEtdFnI7lBlYIquEwLHtr/i4JnyeiaKKKjZ/d0hlbgQLFLR9HBpFxMffc/1ZXf/IureHyk1EvQx6YXRBjxVSad+7Ln5splOsqK4vYWdRw2GyVIfNlRprRMgCyBfNtuXAGxD8BB4biEnHMQGbHfZnTrVqNXL+buVAaleE9X5tzSZ1ZdoPTPxQepj45jT0041ZVdnNj0+a63edpImqtw+bzCeC2Z2gEUtuN3vFdmNDqnHaH/z4NctGdZ3xxZweAsMhfXgTkjplwmD4WmBd43uCKsNlnNe3yAoTsylpuW5Jr2GjgHjjIhoA95KwuwlPcOPmLjYNKO2XpDl2BD8xiM1N/7Nn3fNSYGiLdrYNo82X96jtoP7z4FRvGwQYMnWc+Chn0eM5W/qr99XBFZbRYgt788wG+2pB+5tYWhbajrn+uOgwZ0Qv7F5rrXh9b2HZ3h4gojsrC6t2QiLM8ikK0aDIB1zHtcgggkTOPUX6+5zyXJluLVhQO+EVnzZlPsYzt7ZxcH5/vXnOPpWUHJqRvbld/ZrJ0E28P0C4lu4i3yxe1wZACmHSBmpCqbtSysVs9VdHGpexem32jawlI8dadHtnk/nzazAq1pQjME7ywl+uwh+ZBEQYY4LMIXubgddTmskDDLhP9esDTjWwgHxwv+BZVBLEbrjI6Ledjzm4mseZdAeQYzdKbB8GQ/RGQYnAhCg18X/KNWngxWrFBq8gzRh8mcfw23oHIns2Xzgwq5s4GExN6iPlV1CXMe9gsFUDIoEczD55vJcgN4bCcWP8WKy1N/18P0AFrasj2HKzuCs98DeFfYNeOesUjABdrAg1FbHc7Lws85gd5YTAqez55OpdEZQZp5E2k+55SxHFxnUi51iz5GQLzbZvoXbk9ih7Y7+ajLKLFXDODBwUZZzTlQBZyCa0Mqs0tEcrnnX7uXsiOiBEJrP7Vdh0Ah8nUjw/jJJxeLrhsOjTIrOrXzqX4wK4nPGqZndDubYPUoGU/VIcID3ZU4moIvgmi6YHpsNqZf0OXnKk14Lii6/hc+RKpVQ07yAqPLvkC91X3TwPqMNWurfc6BgqCIV6O8ewQs88OH3qhpVtT2dwDH7cjIl+xa+o3JLWD0EnOFQWu/Rv6/4eM3yoTPFzxWmt/MWn3asThZ/C0vYyDcR7Q8jMVl4iBv18NxHRMQNGabtMVqgQU4UW969rZfAvliw3aV3bLepYo6fX+aA20MfkKw+02G57c4yxMNwoA67iwmVhsz6t1/21W5lVaQo8EDuErVFdTK5EUs7eDlpMnZf+YUPvv0T4EMIDPoAfsRZ+XMFqKt9ge3U6E0W9XIDSSgHGJ3S0OROYttg3DaIPpfDWLM9bhmcT02Bb9AOzbljlx5KoPlhsxGAOS7EF6BmLheKPk5njvNvecF3FgHqWUk1zO2iKxBFSY3ad7iYbP4plRIPs08GUmA+f+r3VQ1/xZnqn7Un77aFAGWMFiK/Gqleuo1pK/eKZNTW+gOYWm/uYYaGgHSne8uXeJJeUE0jio3zPUz4t9o0EIfOi2bVPRxodigt8PN/b+obxnbgh6dbQL6hG7rmf3ObVzcEFinqyPyUXv6QJUIHjn30xCXqbZP36kAgOPiczL0fJVR6exA8rVIny+3Zg5l3iQfEsVERY5ZVT06oOPBgHwK0Ix88zM8za1T1ZDwwfmXQ7H+FFcE25oQ6wbMZ5t2ilHA7TiaR2sAE9GQrHiwq+YW60NHN5WeeG/CbOpMafldyqoqhpxhOtUPSXMjJT6mmDio0BQRqGq4pUAwZnBt/RwPX3w6jt0cCiLNRpFi+LgkxJCrDy/72RKLtaEB++k9LGcLRRtI5mobxWSoyEJDZUu2bXE3OrkP/lw8R5A6p5ziiFRR+cojd6KSb75OBIJirnlNzLut6ubxPqer7JaR6KwZg1dMWtgsq8aonZs9e0w6YGylE80CoTyz1DeF0HyGRya4apoNOWhgp3Yy92uh9kjuzoub5waYa3EqcWOpPUMisx1hXwZDM6+eBy6caO/71mS8BPCjgtfNCBBbrbi570CPoPSsXo/D4TTh6yzLMpU1FUf7Y5lNYvVpVzeQ3PmivpZ519mLw9P0BjE+8NefHh3jAlZMLkfbWZqC33W+ELfYbIh3RPWdr/gPz9pJQ/4w5Z8YbnEFSihb1vgkF0/38ypRfvAATQOy/F/ExGc8D3VxuDK7fH59U3TXn9yMp4cyph81UbPP5CBwLpo9qwU6c/MxFT8kI1njHHjB7QPJhN8IDySV8JHmRj1DsDdgfhIlaUqSZUqv1LyCI5Ec18dIntAgjBGe1Rvhw8SgYv/fDGUbx1cF+c/vU3KRbA7xlTJCa+mZN/GgMINxJG7Q9XK2aQ8oJ3H01/O/vz+OS2WDVWzIrzZEv+K0juPIbYuqcmvSxnokTSzulRxk0fP39ESy6m6689fN5Fb5Sde8T+i//kCpMXuBZRgccvGLZ77fqBoHiBi2cZLeP38ewtOFxXGtWCxpzHhkdgf3mNlFnTuR63nSggmhwBWwBqxn4UbZ2MC6vKpGEsBnooEsBtPQNxNquZeaiCscM4mjpiXjXimHGcc5A+70a2IVTkRNpOCC45gvs2IVq/uMB624ZaB8MClhWPYStIviErvq67cJdC+VDRqiTprwmr0d3VuOB+zh8TdRnGRgYTMQG0lCf3sO48T8VfFz1D409Amu2a0IDPCwVYa29czDvMo/BwJbX2RQNNafoJZ5h91F6qv9OxJ/+8ql5uv7o4VS1NVv3N3SkzsA3WTdq6QkdEWquEGHNShwuZd4pUjm2R5IbcM9Zqv9eYBHRCUmd0gNKXwqDQEi/VNOM2l/Mffraa6p/Wedh7mvGhIhBD30EbOtNZ87h2dGg7n1qBBA/cJo2ZqmUOL6j7ZEf6jE6bhZl9zUw9qta47JMyx5ebsFM83F/MpezlUbw0iUOWnmdsz54B8pwukZ/eg1m4j5a6H6QQP2qfoFBkfYZ1FE44vAgHPOfkMWC6mpViRrVpT7zjrRVpg6/sf2Q0UA258pTbzs5JlImiMl8rx34T48VeTmYK/934Nm29B8vcj+aLfAdviV1w4/qz/uyQCC77J9k+e6qnD+3hx6MILhhZ5EvCX9iNYM+gCbWntnRnOej08I1nqkxn1n+G4jTQUk837ATMS9ftPMlhpf95bnyV2X+fV/w3ktbiu6n4r/1uKolJTPio09Pu9MLnAr+JO/LknKWF3IGjX5o0cjnweS352JAp98v6PYtaN1lc9EBX2LOX37gNIAZg6V86CjutCpZYlhacB6LLYIH8ewPxvtaAjXMEopoGOdj/4nW94owk1413U22DVEEcPKpQ4PKVobZEBUEMlB5NOhcwxfXz6uNfBHJqneD7H2MQtm/H19E+X72l5XHVPfsfGlpe49hucQ7cd9kuU7o5ywki1SM/d9+wtrrQ/NBRCkER29LybN+7QcGW7eAe2NjEMaEls9m4b1gTPMzNjwChzFMuAPfwyXGwapHE5c5ASrcYGx+PTlhtrYTYMIgx+GdGEmH28mBlw+9IvZht1xOYRtB8XMdsI+nzl/9YwnqXZxQQzRu+cLi8AoEfWCIG1crZ2XDXiBbJyGHsuaAWa+0APzt//m8u65+SbPV+6kz8R/PjrNRRWrmPE7YWf3a0u8PKdymRk39TFWGRTvAEXzEk4v/6b/OXsuf3hKVuAXg8ZLL8PYwB0QPg5hMf/ntMZ222AqZ5/PAAxkUWmRRDaXcn6W2VaBXOwl+8v1sLvn73ap+5D6wFYRDvlwU11a0rpSQbIFh4DKtX1CqI42ez3aWsJuaGvBx/5F19s0d/PGaan+sHQ5PaM9J+2AvFezQSDh2pYF3xcmDaZcjtP0WuBb/ePKPt5JqH9XLo7fKf/EgbaOMj7F+ukKcGpCGwGec2tBoweezNDg0Iy0XlZEqEH1rCUHTDs3tn96s/owIp3QyF374IaiNlrD66Ve9nH6jBfpF3ZK9nnc5W+NBNW76gx7tvZmzcKxkQEIxoJ551/zVP0XgmVoe9Xbtj8/P6RXDlW/xMT+rnO0xWeDF9rI/vhm6ZGt4YNo8OZnND6ypgt4e3Bjeljwn0eZbk24MeFV2Kg3ZOj/9L/837rUncB/efd6ebxq8q62EcbEsYCHt0MC5E8n6/HqTMSFdQP3WdGy4Ypbwa6hpalk9ntS+nNf3FhqbF7A9VBAwezIfxfE2wvBXnsm8lTUwd0lRAfshf+ghLhwgNzsVAT+ZW/KN2q3ZNq/DC0x4t8X+H/8corMBVt4j28ftkzNNvrfwPr5KHHw1CFhj6Ao8RzXFzsfVgWiwZAfP671ZM1dqvup1BmfLQTj85hJY9C+OFeFy2uPDrz4m7BnFMZxPbUEEsL579fWtGvin51e6WICrP8FQspnY5IT4aHJ7BgVM3d0P2/gEBvr3vFe9olpXlvly/fQyXP0YYdv8CMSj/GNwO3Qj2az1htnsBxuW3ZARpe2TXDLWM5soli7Uf2uVyZ/dx1KrWLtgba0/jHGma6p2QjUC1/HM56PbEdiN1gc7ifzl//zy6jexsaC4proECbyYbYcD6yQl4wtwCMwq17CDDDMRV/38q1/Qv3rJGOv3M8Ts0iJWOchkbhHK8OT6VxoUepSwN1pvnuSvlnr3beUvH59GkDqnhhoi3A/zAN8B5PZ1gzZXawD82U026GRVp6eq/ppsfg4pdJLfCx/bakr+/b+TDiwaAjHM2bkadhCb1+LPv4L5WKUpvJ96kwhKroP5c9HYH89hf/Zk8MdngDdSs9YnXEB//Z7ALi0LJNyCeeBPvZDByXWv9CBfd8OC41cP2elwoQZpfzlb/NCD0fG7I+IMNsM4nwwRJKVsERDu67q1bWutmVcD2TbXxSRUshwYfC4WHi+Jm3d/67P69X96PWtYEMDz8kqx2VgpWE67oIdFW/ywVsN4YM4m6OBaDyKCMB6HqbgdWmhVuyMNToPmb0nxu8KPcAipnQ52vQ0Ws4OmXYQr72K+zAHuwSne5NgTL82q11oDl7l7YmT/DwAA//+kXcuysjASfiAWIiAJS+R+TRRQYQeKCIrIJQHy9FOcf5azm+Upqw6adPd3Sej2lGYtn0oC50zUEJBstZkR8HN4ujsB9Z8iBMRTZE/e6jPGd1coaBdK2wFUWSOpHquBjLjy4IRlkUg6EXzy4Is3VJK+xYYkucW/eLvM35Xiye8LsrOOrdKFb5XajuE36x4ZBoSSuENCOc+MwlfhSIvhoU2v2MVy+zw4WMQ8T31u/y3oKnIBsA5LihG4GP7ePLZvsOkL6inLGcziE7xhJqYyNe5tDZaBOD1Y+eBMzYPxbCi8GRpku2lHDqDmdarwpgOxBT/4LMe1vmRJl4Kv8JCpPb1kfz0Xfi2/T+/tjKT6FGOc+An8i0/9YY7+kqeLAJ9lZGLUw6AZey2y/vwNsjRBMyxO6p7gzd8l//T1kizZFepjaFB1+erFXk5CQ9n0LtkJX8nv//RANWUKUviH57NtPeCb2i9E+nj2p9F3BenYCCnhvcwa1kWhGjRvfoOEZzbFq/8rJGAwrqR//H3R71otX5JuR4R7jBmxU06CI0A3NG18fL2H/hXMiGsp2vgK++m/EtiK1G16m2OTXH96KCd1hQ4zPxVzmmcBvFW/PfYS8tBXfvFk+MLpE3t7qWbr0UMeHFptJvWAP2xslDkH6qEJkGBEVH+PzdjByek/aBnMtSFG3njwKzxlMsp2USxZo0LoWmO2+d9Ls+m3AHZhq1LttQc+W0UhkIfCS7A7NvYgZNm3lLimi7D2KY7F+pUPPZi7yxeH2/rJun1w4LVFD8Lcy1kft3oEO/nrEfHZVM2suX4PvKp9UcOPO/ZZM/kNvctoUtdfpIKlb7+EPuB0IrzCSO/3LZshBcmDmskpbOb1cj+B9uXZiI3vY8FvfBXkWdNRq3pfmoVTshWQup6on+tS/I/fW+eSkl1W4ILInsZDGJsOTnrtNCwH0Zegoaw1Us4oY5RGUQC4Hx9SdZyO+oZXkvLjxhwXn7MNlubDXUHlnzEO0O6uz0qlz/B5ljDNPu2DLZ9pLqFUCQlWP7NYrCTVNbDhMTWf0nX400OQ3LozGpcPBcS7/iT4jx8vEWQdcJ0EQk1bMHLnBtBfVbfgKJYv6jnvLia8K3dw87ep2f1MnWeqoMKNn2CXqV1DplIdgSg0DvYu3bNgauORf/hn9o/fwASnOAEhBjH1e9/TxeGoIGiJuKXWK4z8SS1vFdzyFyfcOAFWbu/6xVyhIiJJui54yuopQ51+8TGeSExdjq6HlHxcrCl3TV8zH0mgyQ4yEtzgHM/FnctBd0Ye2fxJnz6xkoKxgSbe/GK/v3+YCr/ufcabX9b8858/rqIQJVASfT1Mbg9YUMnoq6i0GP/w51ghTPjoiMH8/jgjcIIsxEFZLvHSzY8OqN19T+BX3unE+3h3efMbtngHhWAeWakIj+mG3VoS2F89Bl2hITTbfeCTLZ9h0O1CJF7zolkWeMjhwfUUqmvXd7Hk3ygHGx7gkwo/xfzH315Wt2LsPyWw5aMDxyWNqfnEsr9OZqbBfROp1AuC8zArfS5BtEYmPWpDHk+XfT3D5QBMcnhxSfP1ft0M7090JfwWn7/zx5xB5ccYreehjceqCSI4pG2NXaudi/VrOjxcRT7H8cMM9LlkZ0vxOI1g+9UN/vRrrRredmqIddMY/uoJAtb5vvVBtScwe/a3hV4hq0Te9BxTVV8CcVN/sGvq50YEkbzhn2xT7D9TMK1vl8DyMC1bPQ786dlkjrwoL0T25UUE02BJOdxpjoiDq+D84UUL+wfa/emjgi+Py3i4Nt1AcxxhnUGnKeH+7h6obwt3fQ1gKMM/fYy6eSnYXXcNqN30B3XOmbX1IT10MN95MXay6AJYY/cj9IejhPj9qdLJ4It3eDZfIfad3auYVexeYcu1yTZrQ9U3P43A8vbViTRp88bH2xUESTRRWw13wzz86kR5gO5E1YfoxCxoGgtK6SCQWrnX+ubX9jDkr/M/vkI3/1r5niYdLflY+O8/f2yrt/RPbyyS3wewPU43GhL3zti1dx3YP4IdDm7P90Dna9NBPjklONr0IOuDIAHPmmupyYXvhmXCvgSX+bMSYhtPtk7AFeAZBph6lm37s8B1HHzymkK4KMIFkcTTrNC9U+MiPOhNH36/PewUD1KbXcphqO8qp5jxK8fH78ONl31LZHiQ6AG7d2/WR5QGLdzqzaYnIra+CbHgnx71Zk4d9idFKQE6nRsclgevYJJkpfCQ42TTL/dmOnRNAn/fu4OtXfzw14+COrh76BFaJnYYqH86GGDKCMShe/HAfDS2CRzPAaK9Lu7Z9BJ8D/zxg6Asz5uf8ThBH9vmn94u+r/zJPFnyLh438xh3bdgBvcqItiy6Kxv/ooF/+qBMdqFT7/1rgXq56DjwDMPrN/fxw5+1/3y53/oNMv4RP6Ld39icbHxLwe4ifel4SkRm1XbfwWp7+wC2Y3vgvXG+zk85GHyz39bPlaFlI1P0uzunfzv5j8qWT3m2DL3E6NXbZbgkL5rNLzU2qdVgnho7hKVPoTfp2DwFXuymOQ5VlX4iReUZneYaLqHde1qxFT1iq2v2GJSfHevxd/5GfTa+U4WOa59euXTrb3S9YSDwp4YWZSvBj9lfd74k1mIKpBzmNwPHxyKjT2MaX4OlJ+jp9v6AH/9xr8UyHrpYsuzWDMf42iFpyZ/Eo68L2D+/CIPIv+jUfdKap99uv0JvvPsSC+3q++zX6Sp0OatN1ok22Li83jn5U2P0sC+ReAvn8Hf+dmGb4DxaWUpb92jVNWzNp6j3NWgMY4+TTnu689l/krh6cOdsXVAEVjJLj7Jmx+O2Lb/dNML/55vvKqPz+5hiv6dNzlsFodx0y8gnIwHLXJdKlh/LUpwW1oVqz5YWP33ff6fOwWQ/993CjQZXaibiMdBOGyN5rPHO6f3K3yBBX3lE6xasaUa8sp4ZZcKgjm7iUhUVp2J9q9L4YULJRpyodwQcWmvEE+XI9qduy9b4raplTm7iGiOusVfIl0k8GsNJlppHADeDCQPVg7+UpeoKpjf432G1a5q6DPCYdF3jpICl+efGD8ie6Dt/SvATz+bVOXKvlgzRj0QanuLtHdJ1Kft+4I63YU0WF9tM/fOVYW2IiKi6JnasPhVC3Dm7w5+TIbXMEnACcjeck71Hx5iFtTKDA/3K8aa/ajBnMwhAqr7WHFwTlN/1q4TAbdA4DGan1mxrPmSyKTkJazli1bM3/jMQTcRawSqJAaLUrsauPbZi1qq+Y1Zd286WT/WF8ThwtDFy95NIcANwnrFtfpC7JID8oVB6o9Jo/9+zkSAG68eVhOmNnOUnh24e2kFmit7BjO18UmO/esHvcc+979vNDmwB1yHdv3y1afp7hjwce9jJDpkjlftg2dYOeEXa/zrW6xnwblDTRJv1JXru75eBzWBn9UwqX6yAn3uQs4A7mC5BFbFa6Dr6b6Cl8U3NMO/r76AQWjhg8GYsPdx8ZdSfLcAzdYRza5bsdW8CAk8JnGOQ783gdjPWgBb3X+Q/bjYjCi7rjvEFwuQnXurm2U8JAE8F7+E2juVgOnG9xro4oOOdrlQ69QI7h1wg9IjS6G+9bUeeQcmiA9xQu8IrJ9HT2D/3e7dx7E4MGk58JCTOot60MmLPd9BDWzPw1oC62EeX+kdprA2sUvRAJZK7FK47RdGqayzNfBWTenrIMZ+2vN/8TvCr4EoRTnl47ndgQS8R99FH2smMdtutQJ0P1PqXfAnZqI311Dgox6jEemx0Ed1C99RziP4k89s+YzdCWLRvFHzJLBh+kU3AxZZeUMCzm4F5YzjCLd4o+boaTG/KlkHLusxxDgxwkKY33IOaxyI+HhZf2wNF5Yo3zlN8ck7wmIgm6Y/+TsV++xYFquMZAfC43CgHkmNYW1ipYLGeuJQOT8PRS+j1dv1xm+kBp9kbMl/xAJOr4noXOpYH5M25hVkXQmZ864qRg8mBnROUU12Uzg2LJolA55Sf6SecfPj6c6KCKahZGEDWGRYL7fXDBeEHjhoRYvR+QJ5+O39GX3vGga0RR2EP9UaKcpebrzuwiZXvsc5I7tzZ4PVOwYCbF/LHZs+5zQzT5wA3s5jie/Z71GMFnm0cPR7iJipn9lyHvW34lxcRM0XCZu+D9EIaHR9Yb0N1HhRW6+DrVxmGA1fVCw/4xRAW30j0hvcCXylzilh9tmtVD0+jzrp7wWEl7J6UfPWdTF917YMyT2t0fN+WZvxG58h9NCb3+qF5Hfy99HC+lqJtJTcTF+uL7+U97WnYm1xAjbdn3MNQ7jNh+VOdrytnwXVx0mnOW1pww7Y5QGqqxu+CkchHqz8eQVJtQPbPNydT6iGWlhG74g+VNUq5jIPIDBvzhftld8RCL993kI/dvc0rLs9W+8nmQMmu57I4UGDeOle76uSi7qBj22SFKsdOCvsxIxQVSxO+liVZQS83c+lrq9FcfsdplTus+ZC3orUNCx/Tym0wq1vy1aPfodEq5SDZXfU7KENFs7VcvheNIZeJNEHhurDG166SKT4fNTi/XLkJMDs3qB2zRvNcnKfM9jqJz4eRYMt+/WFlL/4FHZ4bgZV3uY79ZNEvepg+nMXCoY8Xcs3Vu1EZUK38yHM6WQQ0D51f3788gAe+eiGj7JQgoVJxxMs9p1Kk+n8HObeUGvl0FWAGmZxaX4XWbMAfzQXaqaCBtjx8ywBfHUCNVIHNyzMghySHQhJJYQf/cck9wQTaCMC11c7rN7We5naOKQ+FMKB3SWfg/f5PiCmLHu2kuplKde5d6l6E4ZibY23IRc37YjVOlL19S38ruAT3y368AFg8werPXy+R4jmGAsNHfm4Bp15OuL0wSF/+rpzBN9nXaDh+DD19VS/JCW/QEoR0RmY7XwVFP5lEeyRXe9P6VlWoUlfHAInfRePl+hgwDbLDYrWvhvWMfRq6LechQ7G6TGs2seeAXziGq2P8At+RHdLiBY3wzauPvoaYLuGq6s7iNfSfpirsjwBzX9fsXspvzqxn0MN1/lq4kDvtJg1wkGDeeQWhL0+Q1MjM+Ng7s46evunfbxW5aGEE7iGOHCqsJgKrWrhpIYKNcLCAHvZ2J8gdYeGmueg0VdYpwRYuAIYF7a04QF0DiC0JMRJMzfMYlc5kJabpyTcPmyJdr132ElJjm9n2G/1Qw0AfIY1/su33+M0nOBT9PA2n24YaIJUA/xu+TZPayUDZUx9K1EHIhwoaCnmrO846L00h/DZNW/mXHtY4As/Og1e8UNffI/UsJagh+P0thSkNUZDOnPGFx/v+7c+2/7Uyv5peiLBeo3DzENsQI3aR1TVh09DeHW33Q14uNR4vlxG7MCZ//CDOo+b0yyz8rtC7jCV2KB3xFZ/qlVov60DWapn0iyZ4/SyOWonat100V9c6xFAEz1/2LtURTxvbzoBvxBWBEO79tl3F/dwPY4WThOXFGM1DfVfvcN6ya5N5WdvC17dW0B9703Y/BTvMuSC8oENMCU6PX81CYawTQl5+Blb4Xx7gwZYPDam865Zk1fsyAkSQnoUPh1gQxihf/hdFHeHrRs+Kjcce9gCn0pnqzWkMOADg2IkrIDZiu5B+yuHaM+2eZ7yTCPYmdGROve50Zf9+gsUpTwI2HGnbJiPh8cIZb4ARMJnvWARx3EwJvsTLeSB0+cl/wiw+swI+/zHiSdJWDc8jDhs9ZbasCHMESCPh0xN7vQtSIBxDU5yu9taLRvNH1+TW9As+DjPrr5/5PcOjiM9kx0pxGZix3VUGn2RqOlgDozDcOSlczEkiD3dVqe/sEzBOdQiqr3KB1isC+nATXjbVN32f+5vwwnWEudh82V3OtMcP/nbb+qJJ1yM+uFcK8eRuyEqFC2jXzc05I3PUKN/v/XpBFIBitK+p+V7nzULrbIcPI/oTHFDArYUwZkDvHLOqD5G12KucnVV9u9t3mEyM7Z4GVsPtq69sb/mEhgF/4QU1YQGtpnCD3MnFyfw3enZ9nkKeq2SI7jxte35hs44OT3Jf/i/8fGBiclPgq9Te8CmGzDA8ONB4KNNfxRFzm74q1fw4Lw4fJRxtuFxGgAz0GMy/uIxJrtwyOHzvb0LkT3hQNKDrkFS6G9ySF6rvzpMM+B1FEWsCnzfEN0GPVSG1MFB9nvE7PX9cn/8mRrXGDfUuCJVFqt7TANJFfVu41fyzYYONp0PiVeE/StMCu1A5uPz6G/TXlu4u0UmPm75Rc9x5ShwPks0ePLjMD3eSIXNblcRioM6np13p8LjWTRwiBMhbhHWE7DVC2qqn50///EF/UFVsjdrPeb/9APrxow+h3TczpCH/t/frrhXB+E3/BDc5Yyht/z8+fPGL8BW37DV34ThTx8oz2Nwpsnr+gNrLUyVvMvGAnteMOhMNO89xHaq/nf9I46D8lk+x2SHmQ2EDmUn8JPBFZ2E0NSpNF4gJMczxih7/YrVL5MZLO1nT8rIeQ5EvYUW4FUtI6/dgzXrrWAWRAW6IQi/PmDHW/oG3VO7bnxbG0T9uUuB0dUdYug8+gs5bHe6dcjRR+Z+msksvErWP7qKDpE5DiT7KSu4GveKXt6VNrCpSCS4/b5tPa8xM7QmgpGyAhxm7mdgwtRVEPfS8G+///ShXIvfgOK6OgKxERYNENNocPzDQ7HIe8rJfNhqf/g6TOUEEGTT18SISXHD0upuQTY4FG/xMix/fDaOug9a0zb2l2PVznD7PVidfyBeapzUcNNjGNssHRg0Qvkffrjk2xYskl93aDyyhFr1vWKrWnEl+IunQPatghJOHWVV82ZsXOW9TjyPCyBPuht25ks6LI886eFOy+/YtdMXmy/RYkG9OPX02Jx/cX+L3FE23VbZ+N+Lzaf0coUnVFwpJoU4/DZ9Bn/N54a1r2YPs9spNWxK4KPWeo3NSu2+hFt+k70+NfHYYEOAt8Th8THKaDF+6iEH3kfmSdtb1cDI9t5MHFOFCIkaxCw0fz2I1qFDjZm9CtrWPgEql6T0uOk1Zl1dAUqp8CVrtMQ669qHBlvwWqj17H3APssJgp0SWlSzHxpYcnqEUFLGEzoYbajzggmv0NbVN5K1oADMeztXeKORjeqwkcA/fRNSjSDBlL8+OxlPC6BvpuNAG6aYbesLRCFL/umTJT2vqrLlD5HFE43pjXGCTJ+yRw4U+YDsdFmFUz2cCB+LvU+79qH+8Rt6eZFw4HlxaWGmCya1i0Jm9GCmpbz9f9QJ1ZetUpIjsPFNIkjML5b0c1+hdrmOSBjA4i9p0eQw7/kUF73LhvVPn5jyLyIr79/YIi3XHoZqPqN+1fY+VfmRAOu4iwjd/JBZMiUPql81o9ZduvnUOf1mcFDSNzbLoW5+I6156DhcjXrfrfz1yi8jED08YJwLtU9dsbHgqeJ7avinS9wfRiuCh353Jmv3kvxVEL0AbvyK/HZPtWDnuPIULp4fRLHu/sDfAy2CsyCXVFe8OWb39ytQwlrQsVcMfUOFMj4p7Jzm1F30gY294dTQ8Y4yKuuM15nzDmr4C/sLtq7rSydc22uwnngBH5N9wsa6jCz4vB85bH2ePhMkr+IVV4z2//wach2cBOAVDX98MV5bdClhtLxPNL6AgS2VWKVwW098bM7upm/UWdnwgAA57/zJOVlvOFL/S3Zz+9Wp+WTo8C6/T+oem1pfxdJ/QzjHEvYXxuKZ2vYJ7qRrToPRPMbThbu9oacEjBy2/O60KA3AZfcWMFbzsljty+rAlyhJCI7XW7Gg7xrBdSkeeMNHf20XN4KvJA03PdsNG19q5eG5dZTbmRjMfXiQwWXXCkiQHgAsjn+wYPa9ztQ9htEwwte+guC6RzRAl8lfY8NHoPrFkJR7a5stM7EAPrxQxe9wzBkNXdGDnv58/cNzEpZpK8sJeSPhlrUNuwZKDTf9hg6J+BpW+yI74HPI/gMAAP//pJ1L07IwEoV/EAtQLmmW3EXBRAEVd6K8CIgIkgD59VP4zXJ2s6TKBWU13ec8BzobZsH87b/B9ev99ALZu9jo5TBvI0jMQ82Cv0HgU3ORd+hzNgcqe1GHqPMKGi1M9huSkmMVz/mt9SELtIG49mDHq5RhHxIZl8wj18vSP++llj5vM/O84BFM4yaaYfbqmfKGu2jIwiOgzX1W8XqpBy5KUooSoaqp1lYOGle5BojImwueG3fu/9V3k9oes8/llPXSzRT0H6/h3WO9nEUphP/6QTDxOBv6KFLAhkTEyPG3/UjP9xJepJdo992fsjlM+hQWf0js4mL0K4weBnwo7VjwUGg8+16tQJnqe+YR38zWbFPmWrx5HplbglJ91ckDlNHEYGZV/sUjs9QRSoJlYp32acUPI0RatJF0Zm3VNlv8rQdvc76yvVB1Ab1y5gOi2z3xrquvTf/MZwmL/sJzk1m2VOTnA1rqmW2Voe/f+sM4QzQ1B6pLdJeN+8HqAJnii4VBZAXrs6R+dTMOrX/zcarWDwmIOCfM/qwPaLxbqQL31+WCpe/VCWYirg1o7mhm9lSM/VeeryX8XV8twddZjOnPL+6DhdQ50sGe5SFdw866bem6Vrx4VNzR//d7t2vSjB8fx0Jb5jU7VEUfTHaXCRoPi5E9vHtfjauTWYPTFi19wq1Fw08fr0Ac8FIPfLWdtRSh5KbQFWlVu90czRzmMXFJKOnfoPfCNEeLnqPS15Z6tiexob+GMGO+Avu4DdrpDFryrenqI86I7tGXIpEILln0mT2X61cBiRyWdMptEnwV8iy0xU/89Ee2VldyC/LWj4m78Ba21Bf07e5INkfY9cqD2zXgd2bjevn/xuVaD/46j5CjWcY//wqLPsOfzUfmX9Gfv3Ak93bhuVowv1Or05d5xOzaPAazBF0EP32knC7XeDQuygHc+BITw/x7Bvy96iJNi0/Nwk8xGt1w9GHhRSyw4m01mQWdIdfED13N8qMfr10BoDbOi5y6kxWPOHEMlF0Mk+3/XjvOxxOs4epFGTOKzYFzM6MOPE9/L0IIfyO+HooS9qfDlfgPU7XHjG9GAPOjMuf5FhEbjn2hRY75Ib5MZzRtPi7++R26Xo1G3Je7TIJ/90t2p36qt9IdYfNusXjfef2sbyMH0mrlE5zEzJ64OVM4PYKKhdz/2k2Rq3e49HfOvCO+xOuzNFG0+F06LX5sNuwuUSv9uSN++bL4sB7cBH5+34fmgf7x/4W/sZ0oO/bKrbkG3U355wcC9vMrGj9XxBJrM1uNm2jUF75JB1+Z/vF6MFzBwY+DUizP8zTCbfZTQhT5G1Mo0y+0Q58uewwe9vTwVA0KQ3kxq8msYBAiPkP9KDbEVNuYvw1p2ZB5lC9UDzqXS9M5PcOzu2AWLH6VDYUy//gPI8I3DPpndbvDoOqEbalyj4fTeKBAOq3Hq+vDj6XFz8E9e5uUa7TjE+qFBvGwHFkQzCpaSadjpF80d4XlqBrtkR/GA8wm9QgR46kaThINgbZvjAtaLXtjj9scrtPG+5fXyOtpbaEhsTCx2kMZdMdtf/jxKCoIaECPoXjUCGxDZuHf/h1QW9hhYG1csrD+yv2kTHmL9ogse513Qvzt/NxAatURvL5ir+LuHw+h3J2X3efXKZuPorpGTuNFBLtNnc0905Y9igdEzHabZPOT1CFoCiH//Lv0ivMdqHN8JPaPv4Q7zQLj1WdUlK1vNiLj4GhC2m+ZI9k2Wt1eaQORPiKstZLGx9l84x8fIdv2LttzIrAIIks4UqG72pm8RyOGlEJGiCu09j9et/gL5panOJjliZ5hKLBGvIB5SPLqL0ZvJ2TkoWwcJJ2iyYEgch7sltNVNV6pkIMsjxE7ZopYMaU18l9+wPDCs2bj4jqg5vOLbcVxnb1O2s5DLdcMPN1XTsC921+CFp7G3EX/s6EYx1+/I6Qsnmiab+oZ0pRJxPtysF+W+sFgVTrFP/0z2UW3ZM6fjHmLXpV/z2f8EWqG17Ztz/C1PMDpbBKrOMycH4xtA5FkNcwTzFc1msLU/OYr8ZTQRTNZhx2K3Nub7Y0jZOyq1wbs7++MysYjCIarb7Q6c0YZq1SBrHX1TtKUVHqTO4a5f2XnIIHupsWMCG5TTSQdLLTkDczed0019/bp/I8f2PtEtjtdC2fUtvOX2cWlqGjShwWs3bYnd8/Z8NdPDy9+HrOKfvmk7o67f3lJyNixH53zs9R//mtzFx30dY/7DqKVKxBX1y6cp0Xi6QuvY6H0hn66CNkNLbwJF62IesZeOwfeonllpsgre+4bcwfXz+RhHmAzWHjK+I/XExJamfyJtANa+AVGeyPJ1jdrjGBX5TmetLWw8D5jhviACdZtewoG/yrCP/3uLryAT58shVtcXMmxKsWMPswX/cfjXCl7VyOkzg4uqvH4+eNqEkf7i5y/VYelp6Flb7X81uB7Zfjjv1Xr14WhD4mBSVZ0VUb3+aHWH3/OB4v1yeRy1xwkMCx/pNP2WfecWnkELk8O7MxREfO2OVlw0Tar//Zzt0YKmLvKIaHnvDm7hmqC/NUuoPPsPhE1CuEOGzfXmFV99sF4s04etHJGf/65GnV8G3/+hezayuEcr+8JNOziUp6XRT+/HiXV1WMIv/zRHmLNO8Crlx9k/0dQzAq4eiDqxFvyLBWNRbvpIDiwPzxba2zPQlMaemFoL2KMqZuNVfmuoRfvBxL417+qCyql++U5bKt2Rr8Wbc0CqaocDNocoOnHe/rx+WGXy85B62QsUj2OB50Ky7yaU0u6I/2xzhle8jUqdHIBK6SdCEaKxbl/eM46nQ4hO5H2ak/CdpfCol+Z5Ua8n7/FEKnkuDsTty7K6qfftWISNOKfLteMKagK0c5VZfabH/OYbQ3k2J2I1dh6VvwdLWf/FbnBAs1R+tGIkhsM2eWw5E3veEDlHv9fZx/A6n+/U7DrEaPjM0uC6StpGtp66Yvl0fecDc7FTgDfbYvtkFrGIyH6rH08jbPttgRUKdtbDZ/jPLCt2DT9kGd9Azf1zenk+zLnp31dQmRGd+Yk2XJ+IPfP4CSvLUYXGmbyoe8E9B2vOgv+iMhbxbhJkJVCyfBBaRAPIkeAnWM7tJ0Vvx/NUzrDztsC5al/CcbdQTlDnKlfYr2X71Q276BFbzFf07gw+5hf7kYInXyU2Sax6r7flXGtVZ/3SAxufoPXc9sZyFGww9zIGG1e9/sabC7eSSBLj+y7UjsM+6K609tNLXtWlaUHduiMBD/qQzCVK7MBwYz2FNzbqqIscDUYcmViZndTA06Q2sDDjVJm/pVivGT8I4hY6/H9aFl89c7uCqyresm8v5eKHooogereCMxeKbtsHiTcwXF19qjc6WJF6cUa0YPFiH7eUh5wP5YVcKL7kYT4FcSDdNoW2kmbXiRo5H0wCcm81lIVMyz7t0s8BYfQARt1JgnX9dgPVx2N8Ge+ZhYe4y2XmvFTIk4ynzk8NCoekcsdRLFImdslTTV41CqhPio2yx/1aE/FdezAifIjc+XjGo3jpfhCPDOgvGHbihfZVECraiYxvyerXxk18qGyZR0L7yNHw/ti79BHaYD2+9HsRz3f1fCM7yqxb7YRT/02S9REPArETMwwmNJVGqFQkCO2cdSKf6RrHKFBW22w2h1P1ehHfQTvSxMQgmkQ8Co/JPqY1Brx+wPKePxRLDCK0CN7LRUR7UM/h/3zrWB6aV72GL92BrTbKCH4uB34oPV4B6tNPhPLPuh94yMVkHiTTVrd7KWHGlcN8ObS41GOuD266Ru0zWi7bINPRj/mhwig+4QfYpAV4vOOrRzgDUmxXNA9n8xUOKASC3/Myqwm+FzVzkDFVnPotK6l+LPV8xrWVeMx6x0+47kEP4f2cimxiu9Bv56afA13VtQEB/cPn/Mok/4DAAD//6RdSbeyPLP9QQ6kTxjSS5uggM1MUBEQkSYB8uvv4jzv8Jvd4VkeFUNl1967igrUvU1z/kTEiIFJBbf4xqYyvJKpc7gKFr4YoYdkVDm53HILukmvYUd6vofVjU/3/UzuF4oEb6oXrWE+HGjjURf7fTK/T8usTgDUaDfuLmAiwdajAPYuxsLukqwiJSH8huORxvW3SRi2Hj4EiF0RaFsn4PsHIODIpw42pjxJhteouep2v7b4ObOp212h8r1RE52MRzeMXfo0ILu6Po7eVZ6s2rc7wfn0NPDhQbtkyQ43CdZVuuKM33oE3nZ8UlEzW1jbKVrCz0PKqZHbzzRo2zZYd4djCn1dCnHy5u9gFdkegv6VB3jbfwM9z2UDfwrliMzLBhhCXTiDDW+ouU8PJj1zSgpxda8Jn8WwpvchPcEudRF27mFpTnvo9vDUWQNZ+13O2FPrWjh1I6YX15sTBkE1wjczfGzhGLI5+eUrbHBWY/1oOPUqyZIPpweX0XR7fVVLs4Dsnhg4DMQRrPQnIUiWsMNBvmdJT/Glh+V7nalvfMbgt/1eWNagQzwfajlJ0faca7Funif3ZCz6WT70nQCSSTKMnEhGQlQROk+0/Z6B/rhiB8Eu/dHoMZdsSH6zAd+dH1OH3Aq28uIthQ/ZvmHra3yS5fK8WdDmuRrr+VHKR0FlUEXNalG9DA75PO78Hmolcige6WcY1SpNocmb0r/1XFqqxuCydWwaBsH1LFtjAxQSDBjthSWZSeYp8BePRyLcHwezuxoLB38n0aNGvwNs5PnrE6zsybbzymtzHbWgAdv/U20ffPNxdNoQvt1mjy3tUOQjNzglPFtfk6Ig2J4jaV8IjEH1QrPd+kH3l18uDAzUbJ9VPZ+MaAcEY3dDdvmtGLOhe4K1Gg4bnr/yZdufignJA+O75ORz/ZMgvEp+Qs2xmIbp3U4K1K7vkjrhIa9ZBzVH/QmFRS0UamC9euET4HMRUfsvnq5XIgCtSndUN3LGmHh7h8oBnQHWUdqZ64O+CHCKfsXRPMBg4HdXBE+PcMF4pPbQs0K7qsln8qmRmhrglHxYIQSqi729ONXTR+zusMimA/ZsDbHJ3h1dtc7OGjWl1mVToh4U0BwMj+rh7Qkaz2mvEL5tTL1HaudTE2oCoKHzxgb2joyEDjyDzj/POBgN01wdOXeho5EHDi3pWzPKuwK89YqE5McnzKdQPEpwTsonfd4//jB/tBmp4+XJUxvuFEaPeZrCc5Ra+PAtRnNp0iYF19O1JAp6ljm7D2kMOdhKhFkbHp7EWwXdQL3jKE0bc7YKPYW9WQgotfUhWI+xOUL2TTgirV+9Xj5aAMFL/67YeOpDzWzt5EBwbQScDEexJt+nr4FXnmNS2uLRHMuhVqCWnUNszPcrWKD846Cu8Gdsw4mBBXhzBY+v9kT19JSY82ikTwiqa0r9u2zU89GTHRiT3Qe76/ddT9ovlKAwqhBv+aFmNSjQX/yjBj2+4O/+KufGTalnnOKEpQ/gwy8SPeoIpyXoMaeMIH9LDj31xQSot1YIRunXQRdLNtl8xV8L3CzrR9FQKYzp9FUq9nR4U2c78la4SeoMtyNecfQlQ02Gx6GAaVjf0P7b4GGeJs4APL08sC40ab7txxZOZ2/G+oNgsJ4nVoDsKDyn3Y8MyUxH3VFeuJBpNHvInAXDnkHTeox6X90zZ3P+jXDV1x47wWdK5otEBTgeTwmN3Bxv6ydVsMjoAWtzw4Gfv/WNn/S4wLbbsGQOHp8Gdn46b33uMqCMwhJqtw/EtrznE9bQ1z/+R5F5QvX6471QFYt3hE13m8NT3qQODkph0rCcjsNAImBATQ1FejN5iS1ivlpwQLDArhvY5kgtEMP0nIpkFdpfMB3fOwh63t2Tq3k8B6sL5J3yG/sWa2MyMaJfbh3IG22HM3xa6vUm8dus6MMT/YR8ZvMoz5J63msRzfLABnQk1xOsDolCzo8pqYnPORzUWXulGO1PwTfUhRSOouZQ+znekiV/PCuQXl8UKXbi1/MfnmFTJlTXZZutsjM9oVTvfXJ1JxZ80Xa+fbtKHMUXWWNzlCs9hKrZUNv+RGy2Y6uAkfHcahCplUzS4UaAz3ULUQNZHwTxVJ1V+6dE1G5uajJJqbMDeHeWEFOGfU7CwHHUj9V3iO2FLBD6suRU0ZhmHETze1iU51WBYehM1HdPsznP3NiCLX6RNKv7fPjGXQmUlTf/8Y35XqUV7M5Hh7rb66sdsRZevvsMb3gAyPtxdsHvOE8EPh62OUkpgkByDY7Iz8N9aw4xS/lvf233f5j7IQthfSkkjJ/uCsY/vfH3/cJjYsN09aQRYBMQqj8IZavsiwjEiRFT43k61axKnes/vua84sJcljN8wntXXzYPdJvNGL+fcNt/2JErtaarZoZquONP2BF032TiQ4GwFxMR7Y1tTsUfn+NlH5C90WCwvt9fCdBKWShaZT3gMuiFStC9VpIdn4YpXN67VimF54Hsba7I12jNFfCgR4DeQVYNy32afCjH74js7TrLt/gRQHU4Kth4H68Bu7P9/Hf99CbkMVggf3WUxnU+G9+c2CIFQwGORxqQXSw5QABeGANVLChS0sDKl/lrWvD5WGckne4C+FRyksLmqJgY/+btbDqQ+XDDF/yXH2b5W/awhP0P49yLcta9vxX8foYbUnLfq1fjEBjKdZ8fEeGlbdw67zV/r2MNNymY9Pi0gkmXNJpnFQxIzWVn5X5aGhyyz2BSKt8bMOQqotn6fIOVa2pF+dMjwWjU5upzSIB2D3/4chTSYNnWG3Jn0Z7EDV+X1ZkE8Id/mhQaAZ9vc0QuGffAB5mX8/kldjPUgpIgtQ1qk2gSPSmbHiAf17CTyfnNKyTSo8U4v6f5sILlruoHLaN/emYczhwHk3WC2E4fh1r8DfLzv/wakChYljP3hFdy5jEapxmsBSgaQOGIsJ7xoGYeuRZKm2sudfn2EAh//PT9iM/Yiec6YQnxZkDWo4Wjkjo5++MHsfZYsH5MpnpWq/QMd/wBUWw0mK3ffh8rt0uikmo3W8mcPc4K3PQIYff0m5A//iyJrY1N9+EmUyUnZ7WDmowdZ9jVC4kDBdyLj451ZL6Dfr9KCmj1cKAYx3JAD/lgwFKdbPLhwzKfg/c+/dOTNNhPS71GD1aC77X/oj88GRfTPcPrfVKovn/W5myqzx0cIkmjafkh5nJelyfgJedF5qx6gTVF8Qrm8h1TPw2afN5FDIIhUjTyESuVLWJpCqr/lNQ/vWRueFL95SfEH59GIGz4BMX2PGDr/q3NcdNzSgcNGTt3Qsx1hzkBRt4U0j++sD5PCQdznLVETJOhXnhLUZTPs7ApqucyZ9EvdGHeBgJ1bRIN//RsH786ir5aCIRCNAQVXo4L1pmQsSW/WSss0m4g/FfEwXKPf7GCxP0VsR/B5vxGpaFuehLtv/y53u7vCo1XNWFTEjGge3/Hwe+lCfA//snzcfGnPwjH9nxNtvhRNnzBfilOw5ZvNv1wqamGkwjMMchSkPr3N2KSSNlkiF2rRLTY08AWp3ydKJQATJ3H1uMn5hMFdaFcD2VLlOZwD9ZdUDuqcfy11DTrWz7vTvYIV40gxBxtBv0IllX1B5n+y1ccXPsd+NuP1qTNCcGyVahvb8ixF+xTk3kCg2r39jSyt/Vv8pNF04AWfRlI3M9GPXufmMA/fY+FaU76d1wq6vtQ1kjqSZSsSub5f/GNvnktMiZW4QgvJblQ3ZyyZMweZwnInOvil80VySKlaAecvDnTOH94wYxMrYSn1+WHTsf2lzOsmdc/PkwELHA5OzkAKp+hECkq9UO9NpdbAfTMrqkNi5G9PfXcQKI1AHuS1CXL/eN1UDpJhDpZfc1XkqeVnKOjT839BwXzx0tGoGBD/8tnSS/tPAl+d9c7NlIhAzN4qRXMCI+x8/XiZD7x1x7CzJX/8yO+T8OAB1UK8d1ujsNaWY0Bu523oC0+h7nJro2yjzhMH5t+Wy4tbEFkFIhaaJ+BX13+ECgC+Uc1OzMDgXFK+cd38Hc/G8P6MqJQuZKUx+Yv1M1eqOYdzDJzRcuYVfVyGdBZoTvewQfUfodNb8dgsdzgH59lFeZ65XWLL/SaC8kgFKvsgGGhBrXRbNZcU0UcQEfPo5u+z5e31xuQjO8YP2OpZUu82q3y+mYfbG58e3tdgzsh6KnlanE9+xNEf/wVQZRaOc9levnP32GRbAd/9185CteKmtNeMOc1qDkg2PYRKY/vO5ilx3MEYJ/bOFIOV9CM/n4H40nxKO5r3mRKeVzVDZ+JuMXTdFPZqpx/8R3xRtvlHdV+pTLnooREoxjzCRr2HY77rNz0dWjS7k0rkN88Czut5OUbXp+BKn++dNMDbB7QNgdAXWVqCt4xX1mh3WG6wxVZv/tzwu6UGErbaQrhn/6QMBTf//1+rEkPz1y08n0H570RUWP2FrDeuNEAJw1p1KVyHazgvbtCcprYtn6XujugYwUzefIQqL9lvUZrIgFr+QLqG6ltTp/rzoKbn4TISVXz8XoIWug8KCLsensG6zvuJHXjW2TJ+HxYvtzBgLZzPFE9EOdhdp6lq+qn3fCHb2CEa7Xht6JRPWh/9XDaxXfI+QrFNh+WyVgFTgeerGwoeiSeuX578QQ3/vunvxMiomsDz8cvj0QkonoUp+kM7+31RYTxEyUrquwY7PH+QHX0oeZ8qGTpTw9hLMklW76n5QrF7lWTP3wjFL96ECsKoGYQOPWsSLSHAtdXOCx31398WRFL30NiIHnB2q7VVd3yL/VxBfPxIlFO6UqnIbOiHQdyyfQUnIyzhBRGDya/4TcUtXbrCRJHsOVfTt7yD77WTw2IvdSO8BYbe2z/jM/WP9etymlRPDKMiR/IyXzq/vwf7MVybfZbvlGFQS6xmwtJzT7nTwj1YnWplh2vYKrLXwgjkGdIuGz8+CRXdzW9PihZZD0Ay9urDHXzC5H8PCjJmjmfDp4KP8O6kSdg4d67VdyvdKLGY7aGFcthAVljlTRkaWN2zQM6cPOPqT3x9+CfHx+gAuEsDcv6F/8qB6pjyyO1312DqfmFBLQfxaDh0ajYugsGC649XbBN5zpfV+++k7f9j/F3q2HwRq9Bl7bZ5v9fAPWrpP3nxx7mGxwYiE0fim/0IV+o/8DyC1AMd51VUL331mC9PBoBPA1JpE/hng5Em4MVgKXeYQ/eckbMtWrhXacu9U6727Bwj0mDcjYkm9/0Tf7iFczg5lHtpmg16y83By6WH+CoDUyTaUO0wmxaGVpa+TNs66nBT3/PqSVMnDn3wwNBzX+e/vAfjAr3UMDNTwIctvKbDfHQQ2hJoUWUcdYZd+aeDpzJ9UKkN/esF3MYRvDsWYWEDd/X8pdoAKinCPu9USfsNyxPeJ1fhOxF/Mz/6ZVk+ZUb/3rWSzJqyp8/SNre5dnCPT4GcN3ZoYl5OiWr1X5GaByHFtHU7wLiU9WCHCgL+tz2N/VvkgW12xei7nq4MzH5zRpU5e+Xmr+Ha668eEyhVp13RH1XIBc3vajGiRb/Wy/OZlqp/ul1oy8iQJYHS+G+6V/0IDdrMmfWuELhIZyoJtb3DY+EO9j4ILb3/mAy3Zt96J3OAM2ucK7bkPguvJ9YQz5uMuYLOvUKWGLn/YfHwT+9BMK+pH46rclczHMINjze/AcuWX5raimP2D9RC96vwdqdIhckdXvCxm5u8mXjr6CMDldsZt4y/NO3BazP2P62rrmk+XqC8us5Y81xJbM7DNvZTex2RHzjnnMSZbEBog7pCDhumvMZVq8K3YkOkaRPOFTn32+EW74hnDVbJm9yGMHr8WxRdE/rYY6fxycMcNVjfJzmeslMzYXfa/fFzv7hAHq43E7/9OSVz7SAE+NfATZ/HGeuYec8dloDDM0Y03g0nP/iqWfGgVpGEtbrcFUJRDfF/+cXiq3zbJVm4q7UsBTNpDfx5oOL5vR40+v5+hhsCI1bGiBgi1E+28wt4eYfkHrjb0uQPgRYgiZCgiVSc9x5FYJ/+VXgZzOYrwezgbs+Ssmffyy2H01SPZqNf/l9mK2mEcBN1We85Zdg/Rx84Y/fo92Cn2y17NhRWW1YGD9vN/CXr8GzGFN6uc8G4B+zCeGWX0k97/Jh2UO3g5v/Ss3TqJjTlb/GcAzKF77d25a1m78C198vo5awAyaTbFcAiptLZP8QA/bn98PwqpvU2Z53pObvxMEw8jyq3591Mj9DPVQfx5Dg10Uu2foYoh0IbmeXRqebUo+bf6VytHXIFv/DusWDuuE3DjB/NRncc0+I6+ce69+c1ezMrWcIE02nVym1hxXP3Q7yomHiv/fPe96b/+GrIaeHWqyr3lHoK+GRdDeaYLlvPQCG9OCxLtcy+NOroKioTHjnkIO1yQcE1Vdr4g1vwfQiR+PPL8OHx1NPxks+QAjmV4Ut9vjWgxSNKaS1GuH027Ck7yJwh/L7+/vnny/sc3WhBW5XHP6kb8KUwtWUhefSbU7dDfx7v0ubjGZpqNXrLHwK6Nmph5/wcB26cNRj6DwmhN190rN5DQYBuGc+xd7vqdU0OIU7OFYppWdd+m38jUPq2k/Lxr9/wbTxN3XcX0rCWH5i5GPIFvzwcUZRSz9gOt6SQpWOwonMmAeATJzTw/VB9uRd7oqE8fgVg7f3y/Hh+JnMLX45OKWaRATnLtaro44KHFrRRWonv+vxJ54ssIj7EClG+jGXWhcUYMx+TjXTW4c/v1U5x+8bxnKOwGxyrFBLFHBIaEbZJKxwr+AsZh0O8yqvN35mwOC79eRPRzbQO7re4fPbIjI/g29N1UpqoHZ5WPR4f5o506oqVoP8oZHfFOeb/9W0UFnmL93wKll2j3MK//zVYHBTkz0t5Qz/8tWt10jdbfVD8OfPbf53sPztl9hDK3aOep//xT+8yx9G9vCe5swZ5A4aVs/RwJAOjDwGewfH22fCh/FrmMxb+xB8q6dNfUNIAqElcQf3HwL+1d9WEV3b/19PgfC/ewpaWB1o9O6LnIXj5QTm4mJQq0UtYC/bIXLxes7UzZ0yIb1nCPB5v5jUq/VoYIsgNZAtIqbOuaYJOVewBeh8Hsj+c1nNpTuSO6wKiVG9foj5LO3PLUwb/UAP2LUDIfguBWh/7h2Vj+AE5vsLcXCZEpuGV8cZup2JOMV77SGapW+bLF9TrmAAF0Dov+uqFbV8EgXMPwaNck2wj70BUHN8TEcXXn7Ge1JPR4EthY808DqeRepNjch+iIsQqFVBQJC+Akbe5tSCdBZO1Ll/s3pugryEIbpyOKlVJd8+z4fwsfQ48F9V/SvX6gmJvs1iJS8brMfT14d2FDAkFfRnLsYwnOCH//JkR/cEsMhJ7tCO32/qvCVSk/18b4DsvkU0WkRO2I0bXPiK9h65jgAwgrfnXO0aIOp74hOwbIEVnB6/BVsn4Vav79jngDhxBdUiTcpniPpKqmcYYJ8bRUAC1Emw5/s7tlq8D9iz50oIv3cNB07B1WS+XWP4jbdTZM7PczCPvbf1/RBIQ+dkJrz8SxGQfEmj1/xwrUcDWyU0fwagplCvA30+Lydoz+RGnWyuTMZO1hls60NN7Vrlc1QbPnzgfYXuDzwGvdCrqaJ/262GvPbB/OWQBn4NueCgX71hUY/zqDTHp4oW2gTDwm5ohqdX2JDqfmtqFiVoBEw/P5CwU/thGqdPC9VdF9JkdvmA1NbRAe/bgUc7Gur1zMGbAvZnf8XWixrb/dn6urUoQz2alGBRzOsZ3p92gQ/Ye+RTsfUxycEvQEre1gkbmHuFCM8uDuGDAWpz/gqfjnpGy/f9GJZyn81wu37C+x/OXB/abge/sY8wLt8CW0bF54DulxUNv7ldz5MohICHvUbI12P1XJ7NURHObYxm9Smz5QDmEd6tvKURb3j1HAeQKF+sZiR9X4dhaX/8FT6/PqKH7PszmdUOO4AjxyZyf3IG/mhMPdT7FWDb046MJiqJ4WnlBkQ1REGX27sT5Pguwi6KxGCCg779PRF6+GloYAesFer2eTi60mognVLd950idmR0J91cdvKewGniftRSbnpCupRr1JDILVIq5zX08SCOsGI9woc35evl9Ms0mC3fB3WMK8eWGS5P9XRVIdoL2Q1s8SsAq/ZNbIdRU4/jY7RgnUhfFOkJNmeV/0JYTV6I7bwy65UXqPO3H6k12PdkOY9BD8yVrNjI6t/f3x0cWi/ED1VqGBujewvP1t7Hh33b1jO4p7GaKpVL7bKw83Xlagi/D0NG6Um4DUsrnDp4HkiDoxo5yWz8nh3Y4puw7B7nLJIFSzHdyiMDMY1h/uUdhOf1eKBemGf1egjWE2g4oUdLetCCUe8ySxkLpUVqPKb1Csq5V7PBUKjPTGoumphpECRfA7uGJDJG9I5TNvzAvij7SW+rRwEk8tbXdnJVtqhSZ8Fr24gYN40FZoiqCmrnrfPOFa9suTiZAB1iZNTSsJcvqlRaCr5jH+vZaCTsgN2nIlf3Fs2u/zD/8Aoo+Onh4D7wCXXuK1J3ATuSl/OLEpY2DwJnITmhbDo7YAmujgGHm3ag2bZ+yx1MrZJT84X2YzeY43HvpRA/8j3al+8zGMOsTlVXDnRqAzkG8+VX7mBRyXvyPk73gR26mwYvrvijPv8cGavftgLdTuoI9ykW9j6/2qtiFYOOI8Nutnivd1ArmwQtobjPJ/IGHHwU80TNZRKTRlzeBCbsK6CZvycDwX1ngXAn2ER1PD8hezWSgDCXJTa+iROspzKCIPDLjJ6nKALzM3VbJcp+OhoP9jyMC8EtNFLJpJed3iSd3CINGCjXSVcymsy6PhEgu7WIqK6rAb2spQEfDgowio5+znjn1Cge7gyKr4+4Hk08GyDXOwNV23D1NXsDA17gFWGtt7l8NaoUwfeexzRMQoutBpGfUDNLSsMC6kx483MPVVBK+BBO33rGF/IEpcQXOKw+fb4+tE4BxyBvsXNAc0CCr1zAV6R6NIpyMCzX8qbAJv2tGH3KwVybQXtCzxAk1B+VEKxToxV/eEe1uS5N6hoDkltX0al+r3lADzmbYf95VDSq8a5ubtLlDoJBP2B3VMx6ObijBYmOLtiKoqO5VPekgE8uSRA4LoytN1VBUOj1J0a1WCVLg34bXnSI3i81n9NFRD18C8GNanE0mCskUwmFuSqRAGaRLfh7VP7yPTbvcTAs+vHmQmgZCXUd2x+mKtoheNbXDIdbPp3qPNNkdHuXWMvMNh9fme/++/3mMz2y+eWOEjzwpwqb4vnF1u5NJRCdihC/no4ctAUzDEDROmLTbKfgy43uFUSB6uNQmBtA59gL4RFVCnbzgzTMu8I7Q5/TU7IX5Zqx4R4pQHafZyIexNGkW/5XJVI6+HWa3zURrAjC50RmjMh9rNeiHVfguh3GRmFMyfT0lwpk4JigXXT0k+16Fdl/oCs10GlO/vI32LPwTJN7PNTjQwkL5S/f9rY2JESSChecu09MDzsD1otdAgeYRqghQz788nVa1BQa6b7BoX/+1ZMs4BKW+upi48DGfD5IVQVFsUzwc+b7vFmUUQC2I/ZIXrqnuewTJoD8c/mRv+tblD6bgfiQVYoMogVEfBoaJI3wIDISmMmWx86CG//CkfAd2Gz1vg8nU7nTQNMvwUpXQVH+9o9jaXa+BnmB4NXJ9wiui2qy8vQp4fumpfSw444DmwuuhOc1OaB1MWuTfefjCsdz+6CmlxTmajderPKvpsDRvDNzMe/kK5wew0KdaW+AKbgiA+5HmlK9CJyEL29fCKrelFDHsncw1pd5VsHDeCEWnX1zOWT6GarS2aQoreqc9Z99B0jDPWjwcBJzpCegAF/0O4yvj7leyXWcQfDY18iJJs5cjvwaqzowU+qYqmiOuewr8JdrJSF0myUdXJEGm05/UfvVemDBd9jBoXhlBE4uV/fv2ODgaKIZidnXM9lcwBKGYFwoqu0pp7ysnuC3JTP2KqQl4zfSGhCL8Irdi7nmk1e/iRr7XU6v0bmu1wdnNlCWVJfq/sU0WfkyVhg37YDAXvdzTm6RAXFJQorFA2Hse9nO40s+Blr7j5izCaW++nHRhZrJchjERUQd1P2qwodFmYNJ+N4cGD8NlxrWR6851Jjkjy+infIuGXtZUg/er/MDext/mW0rPcPzPliJiN1PsL7NqVHm373FeLqXwXa9Layc85Eekp2WLF+xCBWD9wvy2NFrMg9FXwKJVA4OD+JnWO1Lo0HnO4aIiec9G1fQ3hUGapvsI/eYLIfMS4E5+phq3HY+aVrKhSLbF4OA4fcIyHXOr2ApXwBbLXLY7I3zCv2zhKkTKw5YivNwgsrvpaDlkvls/SZMU1/N2CD+tpPrMdMlDRqr6SIgzkvCKsW9g6PeYSSa7ANYpWh3iLD4o+6u13JetfMCerg3aJA//IQpVGrhh//w9HA1WrCih3eCdRNopO3XOVgVh2sh9nYL2V++WTCrxeUOqK5WOPxZJF+mw3tUNzyg5q4th8mrfyMEvWWSfu6WmtTW1we/ixySHr9owPy+cEEahQHWrzs2bHgdQstL0i1/zUOvKXUI5ZMf4WCv+wm1mBfCjjs6eNNTYNODHGS5lmCnwG3AYGCdofTMEDa8IguonMESvo13gvi8qocxADcX/sg1wjlXtTV9WXMPN75CXUO6gDmCJwJZcOAQ5G5TTUP7yME/vfNoLB0s316AcPXTH8UbnlK92SnQWV4N1u91BtZ8dYt/+UIrr596/sMvT6AXeuAPBhC+CdDAQe8LAuKdM/Dd0+zkRJh8bL4cB0yKSa6AsxFEe6bAYLJBhODrMGhon9QIkL/8fRL0Eu1ASoL1oQk75aZQirX0eEyEo3yugJS7N2y+380wf7XhDIYTe2G/cvbDoghAg8MvLskEHgeTT0X+DqX3CNH+uBsH5uj7EcifT05WNaD1/AkfFmQXZf+XX4PFcsodZCnxMY6UNlnt5nKGzV25U6/C13o9U6qAzwB2ZNN3JluPxgozkCR0w4d8EKbtrASz75DiiU+2DK+ZqKjoOLKqqlVzdiy34G7dWuzb2pATM+sUKB71E7Xn7hosPPMFKPHWj2RmmgdLrI8WFJxhofZ5dBMG1KkAX8V60D+90ehd5oANnwmr1XvChES+Qy5nT3ooYZesQlwjUMAPv+HFe1g/r2aFSnu0abiTlpyOGr89R3jNcfh8WyafZ/sVAjP9EXmfpsP0usZn2In3O4IxHw08t+8suOEB+qjvd060w7lV9BTdsMXc7bm9qtyB4dX8yPK6LSYJjW1W+6Zvo+d1MNd7cHMAHYQYm1JQB4wKkQUvdsdR88JHgAXbWSmjk1r08e5hziT3QWCoVx725+5YsyO1Fbh1125zYLycdO4lhR9qntCuPWnmcpH7J0zPioFNHWdsw38D6A8Fb2chhcF8GKMYNv4eIG7DH/ZxSwEy8LZpsOcuA8t2xxmWuvj7x2dn6Xr0wd/13KPtNmz8GRZGHhHmnUywXuvSgY2vArJ9f8Dd+r6EPOV4jGYzy0eOwl7ZDdDD7vtj5evjtjzVbX9TPzwVw7IbfQ6OZZzioMvXpJkdrVXv74dPLdu2BtG5ryEY9uJWc/oaw5h+maQOsI+w+0Uh+I2Kwamz8QupzRYrX482EP7yFeKY2yWTDWwEld/1hjW919hym2aiPvtPQW79yannV+b78MifMnywfnrC6dya/q33xheDgFzOXgxdBK/4EawrY1SwHVCetDe9/85lvlTtPMKGxAeMN76+7ms1/ePHBN4Gl7X7mk/B+r1Gf36J+dv4rFLg8EL2x104/OOP3q89oVWZF/aLu7yAN86L6N/nfbslT4E2FTuKoO8Nq7NL7hD3j5ps/CQYMwNZSi7RMxmvcgKYGd4EKH6/HLaLm5jM+BLfVf4XJ9iJpjRYPrg+wT8/50peHzAf19EBqpQ3qDwKybCGfHyC9nn26E0exmDrxqrg+5U+aISFW7Cw4KjAj64gqn3wLeAiH3fgD99+ylPOSZKcOtB/7joObpwO6DVUEAwBWZDE7X5sXVh/Bz/r/cL2Ixjz5c1GDX72yUDkmhn1kknCDmzxRJ3V9AK+zh8a/OMX51DQasGEcaxWYX+nmke+wULPvgMt4XPExU+ok1VJjtzf52FrsCqTJWobQ8FjNvWKNjbny6/bASu8d+QLvjvQyzYwwBKuCfnDY+L4MwGb/0DM9FubzC22Wd0TqZGy9+u88nXDAvirZWhXi0ZSMsIceI0PAnoXgZOvSXLq1T8/JBh+qjk8e1iCqn6cyZq4Qz0Lc+mqF6MukXQx16STrjdfaXZVSTXUGAnlnXsL5iIzsBG9zED88wfeRp1Q3V1LxpDcGcBjJ2/zQ3HebX4k+HpDSG2dSmD6Sdmq4Ef6xMGeE+tR2p8bsH81GF+6SE9oH34tcG/aJ5LNNwPz7RmdgH8/WDTa0Wu+dH0n/eE9AjdOZ+wR91fwxx/+ff/+1hCwtGNNj6/b0Vz+7s/9eSgIP51b0IvHcYX5J3apfalzsKAbsFQ3EC3qirdvvlxOwIE5X703vtMCchzenVqC3Yzmuo2T6a29rkCI4wNN3m9rWC/n1xly2Ssj6nZ95F10liLeC0r9fZDXS29zPdQe4QdHc0jyLV9LisG7BbZ78DPX5x0YygZcqI4b3hwvj4Aoj59w3Pg1MxkmYQqU2ltwBFMFUCHFhVIJvLn5tXy9+YtnsOkVet31ZTKV+8cKt/XDxv3WDD/wqJ5KrZUK4rNDGzDxTWLY29HWYxJFOWuAtwPctf1Rj5xDMK/TUv7Ln3shfdfr1f80oCrjN9n4JFi1w7NRvN/A8B/+CIdgjaGRoxDb0+UVTL+hesLbvLvSIHSDXDaGOoauXQKsj2eNTWGYxuqGD+hfPqwPfAo2PUqdh8FyEplR+McvsLFYeb5e4dyr34cmUwe9vGD9vMb1Lz9gayqv5gIHL4aHvSlj90CSgDn6u4PwHVwpjrMmmJeD4UI2xCONDmSs6SPu7+Dv/nq212yz1M0GuPTl40C96owdM/4MkeOciDC/9mbvLJ0FZmMIyR6yT73aM2yg/pAwvrdQAcN2P/78MhzFI1fPUsAk1Y7rradtNydDOis72JlzivUDtHOh6tMdOFjikerPtgbrEsEGnp+DRgiNbmCptzkuBrrp9PnSv8FU1FoFtXAXYuMVS2Z7lJ8VeI+vatNzFfvHR8sMn+mhevc1Wx+lAVatZ0gOmjeb9w9DgbHf51hv+95c0DanzBzxjJiOM7D2meCCzS+g+IbtWqT4Qf74AGHs+E5G+rq5AH6vGr5dRpSMn6uSQlU/x2ivaxbjNn0OizEriGB/vvWS9FoJZWnvYis7XhKGEwXJduScsJvLUz3JvwLB4ud/SfdSGaDfmquUzZ/GuvSMkiXWG0fZ+D2qDz3beiSudxge54rGrq+a9Lduc7oa0qBVa2+A7bXC/ff6acMvUjBDg2f+BREX32smfMs4hiXqGdWm0zdoLPO0/vmJFG9+h6Bm6U69N82TOhZb6+WacB38rDcNoy/oBuJ8fA4WwnGknr+GTDxW9/bP36duQX/B8se/PHWL1+hVmxTuqKEUGF1wML+kerKcDv75zeib7KVh0SW3BMrvfqMWlB/DXAK5BB9dQvQkPsv6T98BJ+IfWJtrzRRk+UGk8ONjGhm2FRDclw5ker5DbKtHLL7KBDj1NMN+1wz5WjBfgzskfbCrPe7JyLKqglLu37B2k9/DIhmjAK3XmiFZed7yzY9wwVWGDdlpFxeIVpTfYS/xmHw2fKIDexYwKVYFfaTBMXl2QyvUd35HWHuVggk+Rw0cu4dP9Y/9ZYuZFLESS7pMBIudBoaVXwvHyd9jrSkGwI6ZegbuCy3YM+gOrFVfQKX/XHWa5EZZz5u/Bs/Pn0ZR2VPG9ICcYZ8vA1EOF2MQOQmMYKsHUWs9s2SUb6cRPrCi48OxrsBsiyWE7NgKBHy8dzCzrC9hQ04Hom58df5xS6WWAM7U/PqTSY4n6gPlrI00CJUy2fy/UL4fKgXt+rOTi0guNfWcFwENb4P7h38taIXkhZ23hIbhysQefvbHgSJOnmuyP2tPtTcOPLa9dTulUwUc+Dq1RO3s4AS8XAgQAOWmUm/3PiSkNBoN+lOxEIXxljnJvFxAr2AHbFkJHd5//rci1E8a4LOw1QfoDmx+ETW2eF8KCgQIp11FrRetAMnINQbnSiPUuWRWMg8C7CB2+Ae+sbALhnUoFPgsQUsdcVwG2n/2PawYpQRcbpY5lkCu/vAdiVs9gzzv7D8/cKtXmrN38Hd/ePtPH0/68ebD29T2WBdMOiwzlJ9ApsmRuqo0JGuflQ4I/CrDjl+AYLlN0giuv2Xc9HYyMPqjHFA/pkiYlxTBn1+r9Dkb0Gr4NRgwsc7wdPoxHP6ErWa9wwUs95aF8Z07ANZ/xA7KOWfiTDT5gf7tz43PbfGvJExfChcg4WMhOYr6eo2lYgc8Fnv/6pfsIcShqnZeQK/sfEso4YMSnIpDjJ1dwA/N/te5IClmBaNdu0/++fmbH4OtpW6DZUwfBuQ63qDn1fyZ7GHZPpwONqbxc+YDMpzfnZo/mYMEvX0x9qFt/KdnkVhIVbCq7rtTt3oX1X8Q5DOaReOvvobarZ4856ek/Ld/DUNdzHl9FzHc6sHkr346Ju16Vjf+ES37+Zn80I1ZsvthKZG/NmPUNWr0Vw+ilsSLOXP4MAXOpU4RdyiNbX9UpbrjVQVv9c2aHE9HB6ZRMiJBTg1zq7/dYYuRj+Sijbd6s9nCbhprjKD/G6itlRZU9TSmTy9qgkXq7h3M7vObeptfOu+E/AkpXx3+vj8ZLq2/grbVHVzwO8zm/a/01Wf/LShCljiM8lqfQC+JeDsbUwZMKBsCrufz88//3/Td9QzZrrtRPRa+JgmLbIaCmgf//DwSoN3uHx7o8/0QELovfCV6bfXvjd8I1TaR9ptkJpJUKUiW7DkK/7+zD8T/3VMgeEShSBCqgFGqd9B3wpbGeWMGfHG5SWC+Vya1Q1czv5IdusonNt7UyC7awJJ01OTTd9dii/v45vLO+RhGsvLBUfuc2cpZ810t7mJBJPpQEiId1g6KkVLhaP2KwyJ4mgbNXwtoOKhuQrLtqYK02M4j/t1Ec0TfMIbvX0KxsawpW8FyIvAVXT/UN052LniG20PpZV6xIQMwjMnLC6F9XE1qjskjmfPPLpYsc+VoUBRdwuaaOoBxKKHBIfHqpiotCebawaN6Ts7Jcop4CYpPa8D3sTEG/niLC+AeCoaxV32D9UEEByY5tLGnhCUgj7S+w7dQ3dGiubuEDG7sqPvCzLBJn3rA3tU2u1efntRhOwrIyX9yIK6EI+JN1zX51JgbVbeslIycWuasVJo7vFlXlz4/BhgYdIUdVPvUQklhncxZaJcZNFn3Qu/DzRnY4qsV+Pm2gfXB/dTk5J85yOKvgw/Gdx2mlIccuGM3x9Zv79VjHlkjDO7NhZQDQ/mcJaSDEoxN1McHOWE7VW6BL+x9inZ7l4k+cyA8zIpLD/jb5zO3OBV0h9ijp5PiMLJHdFRqXwqIcrMImKencwaqyqvo4eZ7s7f8gMDyOF/wSd/6fAf718IbqBHWlBsCzNf8EazjZ/OQj63ZYXQfFe38KymSKpwsWYxbuSlMndT9Nw4ozAwHpoJSEXmvQ7a6+tWCLnieML6k12GyucVX58vjiA2zFAd6Um4xzJMqotqTCQO1kjJV2T2scVibWTBnBxcBS6tlIl6b0qTTVJbwL54Do5Dq8RddBJilukzU1/8BAAD//yxdSdaqOhBekAMRkBRDepEmQUHUmQiKICJNAmT17/jftwFIU19TdaAKLT09qnIC9MIK5my63FyukdxssapYxMVQVrz2j4D8c/VmRut8OBcNpQBhtWrIfntZTKZ3LoZ++74Sz18t8ZAtMwCxui3+HpqJT2AzeZs09IqlPrKQ9CVigsZiH1PpaP1qatVugd1NXxMjf+6yzfroTGA+/Q+WWqPgrAT7CTf2HEk2zRd/Xh/xhJA8tsQVziOv3/vRUHxhiZiZrcZs7FaeAJZUe0TfXZ1qKeCVrlnkGux2CXPefyOqQJZ+BVxp2blfTtrSqs7wSpl9OThoOuatpcT6KqWztSbZkLdkhcp7UpKQ1ptsEM7DDU6f3iGacp/92ZU8Ad5TDcS8yxqannKooF1+VPBoVs9+ut8mUMP7VyHmNloQnT7YQ/qtW/+P5znpPDiuqgPxrhbm02v7MdAo701y1/xdLOTtbgXKTjsTr9GtWHAG21JRCQLzAvmNmN5pgbqqZYKXKRiycf/Yi7Az84R4WVbxiQjyS1lvI43hY5xko5u3A8i6bJB9qT3N1tCFO+g7grCalyieJ1H+9RZcQipdPkY8b14vF/AcboixNFU/vJzXom4NgTFXqla8nakgwJpYO3L+3dfoHvIa1HSrsfAYmLH4fR4cOO4uPgtr2Y25umdP5IDS0nG25uxbLLkL7I4cspsnDS3oLDdQxFrNov2oxI3zXj/B1Z0D0feilk3iuk+2/TaLSOD1pj951aGAtS8FRDuXGpragB3hMN4yKvayH0+bd9Spxin08CF0U3PefdMGjIc2sdhnL3/xc6EA/lQvbLfhprkZmr0AaS9SOmd9Yk4tDy1wtv3I7HN+Rrw4vgvgQhBTcdKXbDyZpQuegm2mT9LJH7XqZkH4dNbMB2WFpmM0XJCBuwJLffiqll2QX5T5ZGGit5Rmn7x/aEgvHJPhLPz0yyU/G3BPopnsDtEmZig5PNV0cw/oSrFPFYtP9xrcsh3+4ZPKykqGkL9MtteeSf/jqwT5ESgkfOrn+Lsjwh0ZrXBmj/sBZ/z9fneoeKxnZpl84vND29/hYOKKONtxHTNJOovK4aqemWV1L39ale4NqOFyllyA9LOv2I6Sgib96YFJQ3lNQZ3kiZn16p3N64dXgF1CQI66QvzFno+OahTih+EqxTFP4LVC35ESqpRenLHe/taKO4sbYhL9jBZp51kwW7JNLGRU1fsl7gCMfr1imoue/SR9ugQV18whmiy21dLv3Ra2o/Yhf3hY9obWQpPcjnj+2FW22HV6AaMVz2SfaG1MYfEjFOiswKqbrf3vh27ukDmPnhjqSuVLaPNi2yWbFG9o8PD5djg+QfncvnS7vRzN+Wz/Zi+soCF+9pbMxRWSBGGhmJgVTE0/nnIkwl+8vbTEqUQ0Hwf02bADnvlhiPn9EKQwdHuB6IUf+TwjPVamTjkxVz3oJp344Qjx4GHiBZZkfkMoFhRklUUVd9GzaczzBWlXOcPcQTxefvoLXVFw4pvh25yHq+MCTG5Akixt0Ejq0wTq+OiJtbZtLuxLOYUmUjHBRFT6UQRBgMa7vMhhQx1/ioxdA5uv9yAhGXYZfzyvFNxZ2BBn/tz4rIpHBZK7vBB3JX2ryfx6AlSHQiIm2TQVOzgEw+5mrvEm8o1syjdmp+St2NOo6j7Voj+rBl5PGmMFFzib+nZKQNBPHRVWB8lk2TdMQO1Si+ybYTTZrU0WsEYY/tZbLYkvrf74lQXXxEabnx5AkJUWKaoUZ+wdmE94jGsNv4a9588n8X2D4ssvRPPKrz+1/ooioRwBy7qfx3N3Ho2/9zM/5O+Kq2mF4ZmgFV3ug9zPRJVkGHd1y3Z9VCN6PXxd8JpZJ+ejmPNpYeMFHnlDmRlmLJuz9JtC5VGD6CHUaClY00IbHIBh97PL6EqPBvjpC3PPtpstm4dvKZ91Qun2vicmL45jAXZR7Zj+818sXQWWeu3PNvnD66BYzgRKqe1YuqqjeHDHBsNP/1lBLI0LS2oekexGNTOJLiF2qraXP36jW+IIfLbC1wTy0jXM8LS4X57ndwfzOnLYZUr6imZDfVO+qnIh3lBqsRidthdw9eONjl3JzTlkcqIWj7nFq2MsxMvteBiUIRUsdiLJ7HfiNp/Ae94ezFvCMZt398mFQx4ciXmtU3Pu34cI7oVzJs69gJjrufUEz1j3bMfTb8a59lxUd/XeEmL1ojmMvaFBeWQW01/4mFFfKhol4tqNxb/4n+eDaf3TUzyvZ/+9f+wF+IDNSYDnXb/hz6hQv1FPf+dx5j9/b2zPk3Em+/q4QfMsPRXA0ff2jz8X6TkE8O60iJzRfURTjt8iJOrB+uNzPmlanEBkvxtixtbNp5xsKPoK+W8WAPtWlM6yh4RDyYm+5Hk/V1YtQMziDR2Wp9OLj1S10NVbcWbA5RRP95t2Aet2erCdbQWxEBeX37xdn9L2k/B+6vQSUMGbNTG0xOlHvTZamP3owxz8dWNB/3wpXFGJmVFW3+rbxAuGoEcpXq7521zgUrqKdqVH4iglNqly1jT4rFNKabwFNKzB7xCvDe/Pb1bcv+UXiLYfm0rNlSPmnjMXqN/ssPjD/+ClpwVKbqdUnD8K6uaPSKFJ8B6zV2/3i/OWXpD7V4k51eLwGXumA3pyzOm0xF623JWogxquMQvtwO+n16g16qHzn/hVBUI8/O0/azYqwU+Q/vA6wGpjXdjpeRv70QqUQHHR/ddr0Z/5shLuKxSSV4U3jaP0g3bd3KEgnwc+aDD6kxIdZJTw74d508fivHSjAWzKIuJCvmTt2S1TAPFFiY32QrUoXpCinIUhM0fry8fD9VLAqZN18sP/z09NT3CM14dY9h2hLrnWAez9LiOkmT2fkd5U4Jc/sD1iv96oTF6hn/9jnnfZo5lmDxHJr3vOznEXVH/3oQ6hkf/FT8/au35XmtsikF21PXNuPZ0JKfnbINb+sTIXzYlkZYqUhvjowNGEm3hAxWjERN8bc8+rOngitKl18ls/WuRXmIKo2fk//ySkO3mBMLUJvhqK/5evUGCm/fzpveGLq5siwmczHog+9xWfnOMLUNdGNyy8+gLxXn6LUNvHEEvnkaJZUCoXPCKYxH3az3hW+KWDedN9sf/a6pyZw1WBorqJzJJmZE6BH91VsRo6ynn97iftaikItaeU7UtNMwUJaxjst/37qTIr46lSzjVU582VEOdQVLPFIw3Nl3Dzy3/dmC7EdpWf/yC7j6fFf/kLfNrJpEqj1zGXzMpA1cay8OZyaPiS0/CFfnr2P/85i9ECassHIb/4ldIzjcAJXIslRXuvfs+rEfYsSmd63vosbBcM12S5sSA4T/Ei75ROiTGqqPxJ4r52xyaAbdPadB6EI5qn6PiCX72AhV3JfR7ZaQeCVb+x2Mt9zBVnPMJLlb4jmyqE6vS0W6B0UU7II19nc4zpHf3qA3T2H70//fw3rO2opKu3kVU8JJGluqvPFm+JUlUvkkSRml0VRlfl9EbLsy5TFSGoyO4DN38ePx3AQcIG3rLmmfG0LkHlsahTYS09+mmB0lGxOQT0at8+fNIat0GapC8ME+uJpr/91X7LSKD5n2w017YC+euo/Tu/iQ29ixrL0EhYfh7oy76BhXbq5kRXjzgw5+1acuD2dX12cQwcL0WlYbQdxIJ+4i7oOZyUFiE03Zhr40c//+Urz7b0mZ7cn2j5+U2k1GcJD3sl7Wdvm7wAXfYhZvFBzPgjLjTk8IPPLCfq+sV4WVSt1y2mp7YSsun+OV/gkq6Tf/59Ns7rF9qpfYDXSHIyQWzm5V+9gBCcmPNDUzR4aamOf18emvTHp1AYYob/8nXqXNoXKGUQ0Wb+3NBo4ywFdcx78qv3+K9rQZo/PmPOKWgqzhcoYIjfe1zLbRBvvuotQm7ZDWx3iqVq+OEDartISaiGsslpmV+Umt1tFjd1yEeqq3T78yd4y79GL4bDIVJ96dcrdMnzatx1xIWf/mBBeO0Qj+yi2zrbR42l7i7639tJC9RkdBBe5f8BAAD//6RdybaqvBJ+IAY0AglDOpE2UUDFGdgCItIkQJ7+Ltxn+M/u0LUb0VTqayqpGq2+Xfk07Ow+InAezmB43hiCK75TP4s0NtarJ3nqBfLLz0UPj6YNtmTcU/RVwp71D4tATU+P+Cpoz2Q+9U9H65lJsNV1cTFno4HgbPQ+4lP307PNTSRQIHVKnddxLGbjjKAa8mlODT5n1tw4XKmu/IyaorixukUsOWitfXe2823XT676VQHK9xvcbwJakFlYMnBQqwWb+qEuWHbZcJDzyQlpu6Zka3xzWrfsffR0irpndS068LnjJoox/6zGd2K0CujrAz2WQg2YO4nxX7ydH5JYzTsMr1Cm0Yvie2slU7ukJXxddg3e7e5Vtexyr4W0eiwYR23QrydHBrjqPbqLJY3ROAHXv3zlu2LVs6ukNLDdghzrwmQHPz8R3lC3UN1/eQGVvlmsrv4M4i9zXIxfLd5DkVYGxou6B8zcWiVc+QOqHxcvID1IT9rSYBt7r0Vh7cYIn1DmLx36rOvdX7vmCjaC+MRIuzwLds5OApgODkUfZSuzAYVzA6NL6uOz2QmAGlaZaW3lbykKmFzQ4rtNYXXHgGz4Mi6mmsYx1Dunpl70DAsi2HIGrcec0u1h7hhbstek/fjTcaVdLGpVBO9VJiHxKIwB5bnOha4cnWm09pJne3lyNXH7ikkZO7JFisSM4SaSS+wi3gKEE1IO5soppYFGxmoOnh0HqsJOSTtu5rVP0YFonx505KKGOmCfIpO1VV9QbPenYEA6uQPv2AZYj6Zrz7Lo8IRRmLRkPIvIIjz6DL/9TN2MJAUB56nRHLY1qSOIhsV83Rzg+KozegiuLZu4l55BvRG/RH283GKhzbGB3TtqsSODdzXtxa8NqHbIaNSCrh+Ub3AHZKGIuvuWsKnl9whYl3UWBjluA1ZCzgFtlSIa9t6lmlug+OAxZ1tqok3dEy7ifdjsjhP+8dtZfCk1IO9Jp9Hlfgk2G4nuAXkvOvV++Xxz0waA7/cHESw2gT++M3SBQDj3s0um8hmqYF8KB2pK3y2QVn6iXv2bj5MnsILN6oeDS+FD7CXaG8ylFRBYrAmgrq5BAXKktrAcb2fsZU649hEwdM1/Zg9qZQZlf/6ft7CSure3nbDY4SdY9fENO3c56YejGt5h9BgGGsibdT3CJ6c1wHOwH7/2fb/pXAGu/AinV34GLPhcbGBNx4masdqw8cG4WK3jS03xkeyt2X8sGUzg6UzNweusZU/WURj+XcI4cHE1acnVhX74dsnPzx48EF+1Ifl4hONgUy1hN7mwk+8VNq7vT9/JqiT/8xe8MU9GW3BruCXKBXubwWYjd7+okN9eO2zTNi2WrwIQfLZVgNhzlxbMuIl//g9RH3cnmLLpGcPqHgHy9W6dNXFqV6omX5jYSy2/Wuo2dSF6birqfuexWOr26gIliQzq2c3FIns38lW5FXiM9PuzYoEOYqiOWoqduZarUXkP+Q8vsTX7qJgp/nLALD7DenuCJdNX1yWtDgSZ/vQvy9c+mKv+IernM4BJRvIE1ZFPaei0TzZBxcuBw5KAhtw3KhjjZRcKCJkYtUltse5euOCNpTOS+/MRkJS/XAEocnfFH60fFPPd/fzX3+uKkCBP//KRSsc5WbZz7oBgro6E19fyxXsyBfgpxheS1BcJlp/f99Pb3tux+6kaZx92pIU4iuK9JfVlN8FX6GdIbKysmC+jMoGfv/tY+dJm1XfwVz/wUqurZjEVVfjzs/1Q3jJS6rcQ0uq20N19H1lS72Y29Pd6RB/joQkW+n6byg9PHN3pEna+7DIwaLWM1PnCVVTu5kzbneQMPRuoFfNXi2OY3Y4SDfbJ66d/nqA5BGfqUDBWa77cw6WJbOxb9iNoazeQwZxdOCS84S5hWXQpISZdS4y5ffUr31v7PvA2jmb7UCxnM1nAQoUXgcvTqZb0Mqx3WnYh9i15BPMjv/rwVSoR2mgusAgM1nvZgVTTbePk/Y//wfdef1FzVyls2vbp81cfwujNWovZyfP0y594O+bvZMzLM/p7vo/ZCWyQGiPUiHsMkYyg0c+4Pi4Qy12Gd4r0LqZv9BCAqJxa7ObnezBzh3sINbWMqE/8IGie57GDZ+ljUjPWvtb801Or30Xkq3AG888vtarwQosm2PTj0KgZ/Nbr7IeVD4whICFY8xf1h7rs24J1TxhtFYfqoS9YfYT3jtbobPunxxlbhDtAL2sg4rz2Wets/Q5f8WhT48DvAuHnVzWv85Pi+exXy6OSFxj7I8C6xXWMbeyiAevMY7q1hWMxf9JugfB6EnH04FJGZLdCsI+7KzWPeQkWi7oZvNp2+6dvmPW4hz8/mwzfhhV0Pish6M17QuYjUiu64hOMFPlNvUTbss2yWCpc+QzZeP6eTZ8A+fAIbJ8cNinqSSNNHFzzGZmlJw9aHhT2T1/h1a8O3vlRR5qkJkfqXF9c1R0/+7vWbpWchoI3V3Rz2/rw2htvvC2Fms3LgE7geI4Fwq7yk7HXS5VgUZHTn58mgP7mw6Cud1hHdV9MpdMtUEYbTA1vmzB24kIHrH4JXuMJTCTOrsAel4okmUFXvfE9Qbs+YlKufGxS9xcVpOHzSYNHe0kW19g72g9PmM8d+7FxpCe82PUBibvAL9j1YKcw+3g3/NPLAzgAE24+aoy3nRZUwjEhHfj5XSbMxGRY613wsuxUxD2SIfird3pXfaReOGj99/JqWog4J8K7VW8vDy1Wf34pEXdoWOurBoIXUuvYw04KppfMXcG0lxt6eYnQWipjO6nyw8jopaO4YMeTOMDCufU4utJXxc7v+AmVBBsEOI8csNDoBQgOU0/d6eAl/Ve6+rA+dg8cZJfGavsCttBxgYd9dEcJS4Cawc158GhqRm0xR6XQadmk2eS7vj8hNbzCm7vfY9MXymLaYyuG17t9/undYq0Hx+BTvDJsKHNbMN2chb964G3lV+QO5kW1TGGHs0tpWpIWoVp17/gzknb/ApSe9g483FCMg2c5gCXvmQSDXZBQjzcgoHwWpnCI9BsSv6nO/vxghX0Swtb6FT0HUwaZWotrPFwABSPrNLU+blY/TejH7Ue7w+j6mGl4QEax+nUOtBOo/enDWeaOHFxOJqDbo84V42/9HnO+pd7qV7a7JCmhrb8UvOJ7MLRs60DBbt40GB9lwbLGcn75Bbs0X0f49Gr9/50pkP/7TEFb8xpFzYuCxf3YNgTZ5NI0tLh+eXanTNkJmy8NlHzFtHvUANnpPWrV2yFgzXNM4fGgmzjcLZXFImqlULS6GeO1Weh0ZZcOppBiVO7fSTUXn20OHtXTxRdjXIJlxocB4vP1TW/ifQ8m/6zK0DQ3T2p9OZ2x+5DKkGidjo0cHypmnzd3uI4PofZ+nVdmD+cSLijZ48hyERsPPK/D3QfNBFaHwpp5uHeB4HuMLCpNGFHcfQ5b01cRh7U7m94wn+DVKDw00e0nWYIuvEL72m9xcJGUgPHavYExAv8+36DmM6cUYVvgCHZtRWZ8IPCrv2RshDchGZWk4KCrBSZpjmEbDC+44UC3nDCN+sAOukzaQigC6FPTiR0mBPNFgIfjsEcszS9snh/WU91PkUr102gXgqN7AjBhesOBrTVsuPS9DvAopNhDj20vqoOqqpVpF3hLrmJF0y2qwfd+VRE9bz6rZtg4oIQyxkmh+AmZ/eoKEfMYUr9OErCNh0KYZCIgE830ZNPJa02JfRoaPeNttQFPfg8+1mOmxm6yismOLBWGSfylGC0gGS+FgmDsXE+IZpsZMOfrN3Ce2gu5L3mWLJzS5sBt5gSnssPAomkRBzO+TrHxMd7BCGXsAMlwT9jnzq9guSxtBrlocyPSY50H7ZHOUTg5Eui2OB8LMi7qCWx0IiPtzpfV/HAL/W+9LBdlxZCYjQTf3XBFkCc667+jidT1NU0sQS8kaZuZQKu7Hus++gJyh84Atyn3oJbRLtXoXpQMbo6KhT0w5YA11lPSQJxdqJOHB8DMw+UJS6hiam24NJkeUq6DJNsAjB5H2WIz93DBp4U76o7myZqU+6NU5M06bokHClsG4PjQPXxcHKru2yLzbF+hd64uFF9uFRhekOfgpWU78p19sVj83DShKkl36viNmQjHROGAqqEIR/tULaYP3Q8AXkqEwDRWAdWkqdWUYjDwNXwIwbhHngR6zDs4KlgHlu5QT7DGB4HU17RkE7e57GFiiykJB4swcubLO/+hVk+3OGBsnLWMQPH8zeiuY3015FtT13xDP1Ozk4JioS9fB7s2O6LplAfJdJy4uzommUbxebNj4/F6z6F0jlRs8f4Q/K0Xb/MJmsokAcMTKzrMC/lId+wJky7KUhdKDzhjW2ITGLi1V9PEfIGGb39vMWWhDajLi4V3Ad6vmrNwAfDFLS6szmIbeXOUYLvnT0jdFxtrOR5iQdviKaG3xTbBco02NvSxtBC/j59s5C/pAM8TCHH0ll/JzGLjCqtaudOdgz/W2PHVBEZtTqhbXvfFhO3rANGhTNG9QRKb5YIu4PnZHqjO9RIYsy0vgFaMXWzrNxzMozkgeF08TO23wSrS3okAtqih2HFzoWoPS50C3CQGEuZItIaba+bwzasf6mTJzVpkMufwXt422Gw1qR9R/cxhXU8BPl4qq5hR3eZwU0kO3Un8GEwvo9nDHe1v2G5UN1ne3EuFjYwM8jriD5vOD8eHORkzjHlRLQapBh0sDsIHMXqoqgUkQwMvSQOpr8pTMt2+mg+PDYpo0BxZv4hRLwFVuJ2w/74Mv+fLNCWaOGy+pVc1c819goaUhfSeULf65V+oLYcKWUmOwXi8njJo3XhIw85X2Mgh/QlP+7qmun0UA8J7nQrU+DUQ8VJZyRzN5R3SRmJ4awR6MceXuw7MmvlUn3ormXbpOg6EpA32yygtpv1n72pdFbXUPezfFh3660k+FLOAHXP3ASxPKwH0uzKn3rS5FnNRnl2YiO8cQdQbYCymlwpvbsnRMN5SMGt9ZAISOw6NYvay2NdHE0g/L5siKSyt8Xqfa+hsOow2g0N6Iu9rBOajfadHau76gQI+B48dFyHS6Xo1fcJbDIfXLUFSNG6KcR/LDrSP2wXroH4x1h/EHL6K3KIGf2ktNupbG674izYv8rAmpOhX8I6gRu3QuvdsbnQZioDziaLAllGY9Vd4e+9v9BaoZiE+wV7Vciu4Y3y/RX2XGvsM1nO09pnAQbAg6XtSJGbrNPQb3iJ3iAg4QfeOjW19rNqhUEuAWMAQUHY5ILdtv1evA2/h8Oo3yVId3ScsR9Yi1YRxzzr5nitmZq0c8dWwZUxHHz6+nwHJMMeJmMfpADme7Shq0AmwY1UssAxdD9vHwrak9t4I4KqqDg76460gmiHEsN1rJ+petCNYENq0QGhATETxmCa0P1UdrMvCwla5eBazOvkKH9/3gD0vNMESJ+4AT4+Mx8GU+9ZiXm82FAThiHfqBax9lFIf5u3xix/HPg/G9fuCb/3k4DBcxuA9tU8deufXBRsPMUpmAMUUxtyjxo41Vv30oRmBL6GRCINTa423PRHAk1YakpRbUs31WY5/+IJ1u11PV6/4YennLZrAoWWzE/sLDNHaizjGYVEzEIdwTHKN1FRdLJLXtw5MXQHJ0nt10elpc4Vdzz2ozS4lW/a1Yv74BVJ2TQMoJVcCjBcy6I8vTP3OE1Tbbe90t8c5YFG4k2HzbAm+fHyjmqe21eHpjgskDZxilXjvntTg6jL82CnXftLsJId6lA7Un2Wnoqj0YmDEu5xwCW17ErCWA89wUAkfcl5BhrvRAl4cL0gTgzMjCPHtOtEgwdm3da3NK84WgMLUpQ+tkIqlyVwV3JTERvUaz+MQ6kRb8ZSIb1qz+ew3jrrGM2IPnS/G9GCG8CjqXyJIEccYF7xyOAabLzXPc29N99c31R7SOcDGbqqSfjN4LdTFI6D4PjkVu51rpDX5nqOHV+ElGzHnnuqaH8h73a9TN5YCbBvvRabvUleLxe+fcFLJbs1Px2DRNy8VsOTkEZAdn9YMH9N670Ffe89FRiJ2N0WHWbfl8G4TO2tLYWZrzI7KdT+71l88SA9upnqWPJPxk8stWL5iQIQ5OgZDs6mf4MeXhddnW5HL8sy0yNYp9p2iSv7ime4fNjW0KC+YvLlJUHhTgtZuBoC0zr4BV08UaehtnYDZ/Gs9dTr09Ci2YzLRuyr/4a3fstyaXHK4wvIz2HiXEbGYL8WMNDUDBXX6XrKWl6XlwD4dTjjUxCFYsvlB4KM81XRXuJdiVodFhnN/jXAMjxjQmHs2sGzWPiOv7b6a7NMz/+EjOpg3vRo14VVC6e1r2HqFY0E7+ZTDuaQndLkeqoAJZrtXFUmbybDmX+YK90V1H5inURSts3ZSv4H3cjERL8CCTdbxQcCklBXpD1ejkPL62MKs23HYa/2++h6v9wykD22ifpEeq1mjLIb9S51p+LFqNgOjaqF3OorUvNgkGO5X4MCp/zwxaoSWjU+QqfAThi11qrCo6OaT5HCXhP66/ro17WZeh103AcJtvcoaj7brwhRUPVpv0VQL75UqCGQ5xvpzzIKJu9gOfL/4N3W/wAimQuJD4JrTQJ0kYRZ90WMML1to0zxOg5Wv8I5y8ow9Kka0FMtP72yTCVC7Kjb9cmqCUpHu82/WVR0sS21m2o9/XgWxTNjh7XXq+/uUsa05t2p2YnOB49O9EihMj57xJ7GGSsz72GkPbrFxhfsED5szpQhd32xSnPUe3F408a76JIDVx4MLP9TocXRXH4zxbzcFkuGfiFSFoOqlCN5/+QyxRyIXHVcUIeSfFcKGedN7Fh6HDGSlJGFn4C4BO7FTqFpnNaNG8g0Ae+Z1A3rlatPdTjQBM+5FDS5TWtBMQZt+uU7LE0y60ZAf32Xhsc4haZwRh+c+qIZJc22le0Q6NsvzxJags69QBF+ezMdSBwK3Oexhs1m5WbJnP/6UQcjkN5mFaN8v4sdfwE/vuc8K9BPLTssP37He6CoYHlJsQq167MjmGTmBBGZlAfyLLKteUNn0vT0zcN6RC/bjtAdzfLdjeB7U+o8PrnxcAL/nsyTfTKQulErgXO2U+uRyBAtZpwmt8fTHF2c6AQE6r/iJjfX56jW/gSYBGA0Zhyqx8F0VrJ+PBpG2rxZJ/07gy3oHbVZ8WwR6aqAYIJv++ODwvbU5vPeIINmUxYpqY+prw9dsyKxFecL4Z+4AQZCOaOYHw6J9cVChkT08Gqru1pqn7dCAVc+gt2gWxRQaafq3P84rPxku7qeBTXgGBM5fv5/pxKSf3qG7S/pJpmP2RFqc7hCZDvmrGm/HmwN9xXqTWrtI/SLvdgReM+5KvYPC+mdxUQnYxXqDI2CHlaQZMIYC7Ty8jc4GmAZtjMEnykMy2e06P551e7ifsIqkW1/2o+rxdziK6QfvCldJZta3GcxqM0djOXyrVW9BCMAnIHNr0GDl5xLcV0uDXZC/i1loFlcrDtKHdJztBqwIdilM7cGgV61MgpUPLvD6SANq7RBJlniKQvCBHCHc4ygHJJMiCGVlOq98el/MyaZHcOhCn2h7dSi+obQn0GO7FFtLf+iX3CxlOIqnD6HHPrd+/AzEMejoNu7sisn6kkN49hxsaiDox8J3ZZB/7nu6vWpzMczdzob4Tkc00wICMkhnGfiK8SYy2A0Fy9NeACwxOGxtOKFYSHg5waAsKzK/iFkIVY87qPCkJSsfCEgzPVx4Pb1T7DTcthDRY/E1+yZ8qSuDey8N0lkF/sIZBBy8NnkrSQHh0CEfSZ7e9HQ/3q7w5COBqH2sgyGQdEeLDv0H8dU0Jf3DiDr4i+dN79TVTBTcQUejDI3i/GWz73oO+MWrhBIvEWXr8gTNtXOolyxuQjvnFf7yN9Zv+rz6PZmv/PjK/UZhMipoHMDSfj9/eodlr1GGw1dv6NYPumA5qzCE5YfYRNrt5p7SzYzgd9guZLLMOJjNZGq1bed32Ks5xtiZfCC0epkn3KOdA3Lmu7uKLpq++iFFQRSrc4FnHhF2drnfsyS5nIBLS59wh6PdT6ueBWt8/vK19Y3vYQwP+PREUMZTMZTFFv35XX78qcHyjHUXoGZ4kM3MVwXzBx+q5Z0PCf+0vtV0JVUON4p+oFtZeFskfFJOPS/22le0OvSTPHQxYE/NwCs+Jj88BSkcMT4jYlQLXM1mS6k2KBakh7VcvoEKEVA7BGytAawqixBsp2dOiwcd2eAG67zrb6pQ66TovXTzLyXkrtCmB96h1rwXOgHSzDxTP0pLq30AN4b9N1BwdFRP1ux/gQB3Wv3Ed+QNbHo9wBX2E42oWdpnxrYX14f911P++M3SGt0JSG9Xw5jCGYzPWzCo31ro6I7nJbbqUQGYHzdGlZ87wYA7bQCXdt799E71/nZsnW320H5+B5iwnRKNtWWKA5o/rUU466kGPk1N5pWfiGlYcOov/qYUaT0lqbhAxqkWWaB5Yq2QzggO0bXH+eZeFjPPawO88L5Ed7JcWiu/eYLcPprUO2Z1MXhPZ1DzeL+l2fRqwPgaHRc6mxZT/3kxk81jC2Ro1+EF3xvBZf2FBw5cnwdHa36YcLO7Q6G1JfrT/8vmGF81dH7L5BcvIx2iBoADErFxti6ASOW1hMYeSHQ381WyhO6BqNE3VCnqhbganng2taAiO1KfoBaQvbbba5oiSNT3yixhwUOX4avpGYGquw1GE/sZ/O4lCwnBaazabX+wIbNxSZ1lM7KfXoRwrm6Ev/tpP9y+mgu0t4Dp44NXvTz6CNxAF6LptFsKchDYFR42R4pNnbet5QsFHfTy/okWGRhsmg+TBE9LiWh0ZQJbgNSa0Ik9hUayZvTL061acLtRjyjHzE6EN8wXNY38kcjxfA/mrI5MKATnM9469ypYbFzocIl2A3lUt3OxVEGtw67CLZkpEQH5oCFT92MuEXnfsYCRexyDUSoDvOP5E2NhHnfq8XInRAL1vZ9zMXN//iZOhWELhOY4T8CfGgWtP69WP9NW77hj6H06Bz244yyDylONsHEsn6wNP1oK823Z/OlFyjnAVS/bXqHu7er0jH/GNjhaDo9RaBpA2Fo0h9XcaYjXCC6m3bwxIXfMZ+yAmqu+gRULcJvCBzY3ZggGXcwnqGxPMY2GWQ8WJjP7j+8bczqz6c69Jbg5Ox9qdx+ajN8OOGA+7U180CI1GbSyrdWDMmyQYFo+mCRLl6H66hIaZhmsmKuBPdRtWcfp3n0lo3e0XGX1h7C7HDO22HM0qf45d5CkWu/q2o2lBAAUQOu/A9cPcQCVumcytB3gve9Xap/gbZ2lFYfa6rcS6Df8iqKaDpbvJqBuf1Wtr9ZvTfgddgvi4/pt0Xo5dnDlVzRY+TCx/WGCTnm3qUHJkTG9MqSfn4eg+XgmrHkXjdo2wQsbV7epRqFZfOgF9hYbo1qBhTvVEKL9aaLucpTZkhr7XMMHR0KScPsCuqhzDY/nbYON3c0v5uDV6vDBOyZZfn6XoV46eDzvGiL26yzDrRS24PHydOxepbRi/icdwOrfYqTpXDD0gezA1nRV8ltPduW2SI2KxiS/+sMUnSIdjIH4JfzeNyxRfy7kTy8402Syef2+oQFvE4nhkQIGLHWCkRa9qI6FdzVAz2vhfHv5SMkel2SjfyZb1eYdj4ZzH/RT9Hg9wc8PPYQ+KMQtE0stKw4l9tPoyViLNBMw8pGRNgy3Yrk/zBDuj2JF13pDJervFgIlfOcUc6lRMA073J//llVmmZAya2y47hd0FaZHNW5IO8GDXm6JKAvvYOVHCGpyH1MHfI2C5YtigkfBCRSdpFs12xWw1UpXN2u9hrHRFPscsM1pQuDgucWf3wc0Llnx0QbTWStOULdVHet7gfbL8eTZ8Oe/KLIlBCtfPsHVn8Dm56z2K576Gn8jPjqz5zX5Gud7CJTWO1KsLzuwYc5W+ltPTb3nFdPGqwu3yQKQdFosttmPt/vPb0Js04NiSNUYQvPA7QinNHuLdU/dhY42MhxI+has+imGD54vcNTyUsGErxerTBseOCPtDOYo8K7wIQ8JTdZ6Gj04wh02xb2krn2fq6l9RRxUtTCi2+nY9bP9sAX4soSJJuXytaZj1obwcCR7jD8+V1Cbf7na0vYfimhSFZPiGHvYfIBElsEjBeWfsaNhAdkE/Op5X1HqwLzlN2STETGZv40tgY94KWjwpBuw1u9auPp9dHdPZ4u6V/0JhfdIcPR9u8kcDQL6y88OSr4JLV0YwzZgPjbl1mUzt85u8hdo0MP2cO2XlY/CbX9C1Fff5+Snn8EGHSkOhYnv6aP2bLjWEzDaVZ+AWTtRh6tfTvXvI6g2Q5+eIGVNTNGqt6fLdIlh0PGYhj883LztPZzL8UTYmBFAJvUJtbAYj/gcu7TqvqfC/PPPHP7UJtPtjVT4PCjOqr9EQF9CUP78VHR/vRqL3PzLE3CLu6fmUZaK1gFFCb9jcqKuf25Wv0RBcNKthizvyu2H1e+AK35QvdFzNoqXyQZrvXDN700/X7dxCxPudMC7d0TBtFjEAZkSvqm5fyf9HFixBPKQESQawTOZo+pBIBZCm2IBFmD+5FOrrc9HTUHiA5Jemhau/g4ujOAWDCXndpBX9lt8jtwtk26fuw6G69pXeZx2xfQAevzjuzg81nrPkNulkOPnHY32arjqsxapq/7GJ0fIqnn6nE/A3l1VGsSamszIqDkg40ynu3eEwVh+nw2c7wOh52fUrLOfM/9XD6a/eky3+rdgSb86djPPAvPzNcMf3yUfOZ6C5aC8Bi1w3RDbVI0Dlg7yqu9aD//8lmmj1OkfvnnC17EkOzX2MKiGHd2nr1M/dcvB0ST17FI9RbeKHatkASJFPUbjuOtn7xj48MFrBVnW/T8Js0jgpXDx6v8WwYwei6u9zD7EKKVLxYTHsIBVP2C7IussrrMqq6+tmWKTSceAbS+6qzZR9UBqSKZgXv0+Zf1/NJWiOxvT7uVqaz4i8kl6sjk9+EgmpLoQzjgrCRW+Rgy2J9fCN25fF4M870vt5/ec56ErpqFY1tlorUIPK1/obFyY0MilA8bE0gKK1HMJ+dvg09372QL2q9d23QKoufKn2WpfJ3j1fR2H4MsFfdQdbbA5Aot6r/oNmJhz5drX18Wof10qonJA+P9mHyj/faZg2XkJDS4vFszlvE3BPv7eqJ1bes8+olVDB+stTV5mk0zH3AjBXPUGNQ09KxZxSlNIa3+HPdA2bHjLmQyipxtSVz631ZKKsIHKZgHYKYQimA7njQ2Q7V+wo4h9z2yuR0Dl2ZE6g/YJpkz1BRjAT0zxSftabNIyB06H9onWKwx9W9wtFR42YUjdDW4KdspYDe6SinGUg5FNrxANMOL9I43UXqvG6hJN6jPOIHXPkpSQ8DU7Gqneb+wWjcwW61zL8PxdFCRvcJMsfPi1YRh8rkjrrFP1dVq6QLFfO7Mq1A0Wc1fb8Fu9Uuyzy7Nojcvkw+jd+kikdhuQ68klkOa+jn372fdzonImvHwPjEYskCvigFEGLPlKNLh/RWsJIlmGR2Wy0Vdqq2p5ub4MPK92aCDlRsGqo8eBD3s+sJWZljWHtSrAjUA1tKCXXghbrBDYnxsXe/ousEZdfsegGu53HH36pF/U8lSChjwE7LyPVjHEoe6AmQQm4j/vfTAN9VWHrEE2Re/hkCxbbazhaNYqdR61Vk1LexqAh22bHjK36b/yqzWhZFOXyN3jWc2N5iww6tqI6suZ9Uxcz2WbDlyo+2xgMqu756Li+uvh4vKdwbRj6gD6po7xqRSN6g3P3wa+5KLDWLxlwVTcAxn2LyelzvrzWa/fNvxy1pEIpn/slze0Cczcg0vYGo/LHXqZOsg1w7ccjIDsInKHQ9o0SNuxdzCBpZMhWd6UmuZeCaZN87rD3/eDXbFiXYDlWr0+Nhbd9mHDJnOcUg3i1MDbPnRYq947AgfmiNiXD++A3XKuVoQ7uRBOCi89u9SaqXqtfcR5neXWnD6lSb0SMaKOqHUJ65OoVoWWPJG2xiMTbpcF5MdThEPSXRKGB/mu7N7WmRqX7FMsgltwahVdU/RZpDdgfvaW4PqaSIoYVGJ9RjaQ1eWG10YFgH234R3s9q/1lgjse2qZZatFqh9jI9HrYvG3lKgvUlQ4PPgjWJY6V+UbOE7Um/Qqmb/GvoVWpiWE+a8cTI645PwgN4w6pfZMFtt46+B6PJpIOqZKNX2uB6hxmWii8uTZAVM31xQuzXpOrs5Ua3bazwJQ6Y402rFtwG4mb8Jm+6jRoPr3YlS0hwDGaZvgnTlOAeOTewvut9zC5vPw7Zl7HUMQByRFAggwmEcvJpomphOZj8/GmuH4vcP79rjBZqpUydKg7R6qxezi6zfP+rHTLgiS5UOxdSyNZPN+m5OW71N/bcx3ribntSCondIGzejxqEbYfyfoXZwAzbIuBuMD2zrMpPmM1OhJ2PSSnSvkn+eSSN1tW/TG8p2g4cGU2nKF+3rDfU3woeaJqNX+DBZzHnxQP64i4ZPIqUaVPUutVO47io2Bq9iJsDu860cB+6GLk+FkGt06miTBBtPnaiFOxsHTZ8qI9NGqala0swCXPnhiq+06a7gNkQmN5PrEGbfpgjl/GKVWMs6jfujSYnZzxQZR160atrUZaxQTqvTSbanrczNjuv/KISSnAKMbRGBR1LsDpRRHaONtmcWE3UGFSRIKiG+ONKHlxTvBNIgQdQoBBNRBtQN7yT7TrXpFCa0Tc6+dj/GMlMtnnQ8rqSE0Bd6h0dtKis9S7SWobCZAvfcO9AuxL3to8o8d3RbWPWHJcznBRnoaBLrxN2FBR1L1/jhrSNzAoWLyoWiB+BwA9bY7klDxEufA3RgyxcexLYbPcpGgczcX7LtZyBY0z7LmZfWerJ8naE+m1ymFdJKxI7x9sHgzvYIHk0d6H0OpIO8mFECdQoH+7UeR5jGM+HZPk870+jmrdBlqoZDT9e+ZeL2Yd1i4p5queAOGUsA2uA+yS3d38RosecQ/wb4MSuoiKVnj9XWF5P5+4eDySiz2EYMGbt6UkXn7uBaTID9K+CHPgtr2Ilmz404NVMZJWOOLVgtcHinw7jYioPNUi3ZnG8JvWvnYasu+oMvmoP/wEdvf4FvQMCYTbM/lQN27o/aTs1kcNYsTjA0gSxbj+FMGXc+qsXfgY8a080mH4m7oaKgVZkK0/LzAWCEtmS/ZrpiRy2TQzKZFwH1mrFlQYoJDF0Ak7e2MLRMXuyDadztqeJhjn5u5MYF4GgTCGYLJFkchCL5SJSPC7dfXorpAeIqn9cTF8wIW0bnGcAm/B7rrHSsRmXJ0IchYQ5TrLkvGGIoEWh/+Rt6xBYJ5UC4CvMfZjrrWCVlT6ngmFPCAcaDGZjWnIVf/9h82hfnAaB5qV6jvoY31cRczhrJpr+WBZOBgN3tsKlzbhHV6VfBtKpRqmPJbA/QC6thu+k9P0E6RZNZ+FYz9yCrW3vQZNI8cxN6clWAyrLVGPNKMKBk+W6SwXQSMBBY4soDF2D6dVA3eJQcbHr4z+gZ+C5zkOWNd/pzZ/OX3Kjhy0w7H+/2DjZEAWsgr4kh3PTKtr98uIRQeYUp9d4+CkbB8Ahth1KiFZ1ANrZ3nCi+IHZoderP+1t+pTIkiN3yzyQw+Mky7KKPeRq4Ldj9tQrDbVxjv/CNjJNzIUF3jGdt5yQdjGkoNrETY4SQzq4B9t/YdNvIDkCfmrYS9Zl1VUiF6IIKGTzIR9+jAhtwEujtHWbGczxqEpsFRJMQLrMbdIrfQV20JP9QxY/MlMkz4wiCldtYbgYSt5QrLa7HBWyBEYCqfjgqlFudIEsZv//f33TpUQHgEZi/GsdiBR521CCqVYUm7qLlDYRsiWrSKkiyva2BrYkhG7NEz35Onb9ZwxUsiSkPA2O5ZNzB/CIgGzNOSeeavCPSubdHtFzrWUO/3Jbif1S2RVv4hFS9+AAfHo2h//uyCr5aUCJgBFKmHHwdryMMgh0sT3LBFzZAJnV6Y8kbeG9Q6qTrbkI1Ta6GwW/69fwZhA9Z8Sxrh3QGauuoE4SKlFG0HOxizSlfhvHUXuvucnmwE9OVC8RBK2Hos22Lxbp891AXuQLe4uhR0xAjBcfogBKTcSJgj177aNa+eRjQ5F+PtaDnaL57OwZgkI6eVMfx8ywx7zfmaTBfZ8qGpaB5FhmACMQpBDBV/X1Kjz0ZGJDtt4AEO/sqnb/08f9MTzM4sQtLr/QRzVq21JWnthSoqZvD1OdWBQooycjwngA13PYrBj19I13XeKDy/agDTdIuvO9MtmO5+CcBcj6nJe0LPkPSZ1NM8PWjUVwKYNvFrD7YnM6NOGG56tvkmCKYdzoicn7Lg+/f+bqZTy/bkYJqyowx/+OeRHQdoIWgC0AzhTnUH3dh0qU0OKmn8pbaz1ggSwb3Dp6ggugOSZ614Ivz0BU7dUq6WZ2jGUGiHJ7We6qciebQp4WEeENVrjJJFf1UpRJ+2p8iHNvuG9SLA2BkO2PjxlfNBz8Gh8yD2d3u/Z91oSzCtab7mPwXM2rez4UaODQSuXlIxd3k70DMsntoKoFa/8kOIsu5FVG52eolT2yccp11CvfNOAMRgvQSQ1d1x1CRpMNVxFkJQspHq3uMFfvtd3Z2MiLzyqWGzNN9zWLhpjRTFfRdT6roD+DLrglEifAtWf30XLu++RFOytit/f1ENpSV64TD3D8HS1JEL1puOaEr5Zs2v4lVt/MeHfCe3tJYpjf/4Ado0b67/vgK7BbviFWB0HvyeDWDLqfPyDbCzhaxYgHQf1AMNeGr98s2TuTWYL52KRNsSevp5BMOPn1DLNi7F3+d7vgqHcMU1smgiqCXsLUfHoaBq/Zi93RoKX1Rg5NXvZODX2TINfnREyc4iYN+L3cKVryFmG0oxX0e/hdCWdLwTUctYuqgSaKPyjREbNoBNFEuQ25wPWHeQBmZw+cbw/lJDsua3fjqceQd8SbVHwDM6NnkXdofGCF+k4jsGmNVVJpy/Lo82a36cMug/gb7nbLrjUGhtknDxoXm6bjAO3iWY9yaUwO117PAuO6rV0HWJDVc+jq3IuPYTvd5iYFn8Hm9RIlfTzQw50Fu2TvPztLB5Pl5d5RqkAPtW5hUL2s0S1N5S/6dvlqfkn+DKRzEK7Z018U29aAFqOMT7UZWs/KUEvHHOcDB8CzbFyWaAw6X5IvISpqAPuOYJmddTlL2lWzBtI1UHq16mYeuf2VIQPZZrH440NFSnYIuSDSDmhp765ylmP/2mfY76nuyaN1dNia/nGmefVCLHJC1aHVATFHHaU3uToH4+TZsa9KA5YnMdZjOWuygGv/dXO7n45YsFrnqNgKvH+gmS6gmPQuwQwPkW2HxpWIJ388hX/K4S5pRDDG7nc0XEC9P6cU9gDZ/nnKeRWdVFL4OEwPZmdoi3NbOfmwPW4VHYO/T8OelAit9ggrmbaHR7TgCYj4LEQZp2JuHn8Vgt8ZtN6kc3I1I9lm2yJC+YgSQeFBolQV/QR7yRYHDfWthS/KUgP30efN4Yu6dG7CdcSFfALWdEjcStrBnnQg5fPjgQ5h3UYKysSAVZfMB4t0hbNp1OngRSJSrJxD5pMt816656i33FQefl1ti8MQKh877gQLjci7k2nBA+z7KKf3xgweel0z7bZ4DRKe2D1T8h8BAEC5kzfQcYHqartuo1JAW2WEzbaDE1VT2cKR7FtBDX/wcibyvSXd0YYNrAV6otfN9iQ5Jj0LZ2nGkNKG2K6vTABo4bTrCVTICYtNCEnjLQwLK+2vgQ8Dc2uQXwobCQD6mfSc0WuJxTyCYUID642daGeYcGBvPnRHd8E/QDEVIBMrsfUP1NWmvaeWr3xydvW6sJZhYdc7jyUTTrGPRLrvB7aCs8hxrrOvcD8kSoUtK55MdnWSGIEoxO7ha72uebLKGo7CG3OR7QY7s1EqGdchcOfvOgzutWBpNBJxOu+mqk1YgA2fPMVJzsKZCpeLjFYjyqVrn6Gx3xRqQH8zQWBO5h0OIQLT5jwxs5P33/L7+ezyIHa423kZLhTTDbA3VVMLIvmWz8CqZza6Zgx1s3ajj0Fiyvu7+A7JPEdB1ZXyzmts4BU4eQ7ga07Td8cu9ANsx7/Jr2S7X4mmwCsGET9jeeyf7yl+CHB6yf8Kf6+Tdg9WPI1etctgRv+Qo3BR2obcZp0anonoLkM0AaGOsZNHVzPcEf/qZZb1gi/+4G+MNrl37MagBTheD42no4qZeWzeJt7cDa0iP2+s/a5/HAyWBv9Qn96Tf680O4bGMS+CzTYAmiSYU//LQfQVn9/BugVHtG3a1EGXveXKKu+YDAnf8JFusy1OpPD6Wv6r3euzOQKlyGEw3oRQUUzsdYy2maUOcZvRKm3781PLTIJOpiPNmQQbOExwErqHSfWjGfJr4GkbWDRMGP2aK1Zqbg678sjOLa7cX5m6Zw5d9Epp+ympSwRFATJHHFQzOYD6l2AkPVTD9/rJoN6d2AlZ9SkzdENnHpsIe/fG7c2zboHKVZ7+iEJ2xOytRPvDpAsOoVGoCuXP2S04pf+gktvTIGY3vZI5BJhys2Al4D/W89Xqz4EPXjKsF41nT3T/9sqe2u+u+ew+jphzRUKiP4+Z2aO1oz1aNzZQ06+Ogg2OxStNlGM1j5ag0x/W6pMcq4ovg0rWfoS+6PD81Muflwct10ff8bWPT1zFR5LgSqZ/SbMOZdGjhOb4R/ftIk7781TLfjHgeqwoNhA78nuL/1F9R3nhqM7WsngMhwTZrc/K21eT70HD6Hi4mkemtW7NDMOZTfS04jODzZ8im3V3WNDyRtjh745UNo57yAVPlisQ5IpwFqz3TEEZ8agdQKEYRuaYgUoeFT0J+/EO63b7obiQXEcr2nCkkaEPhSk2q5pYYO7co0/umnJco4iOvew44uzMVk9tOfXsMet98VzfDMEBRssnasVcJA3irKBGUxfuB1P1aseVmZtlOtnCzCPLMV3xp4DU6A/NZzHoM4A921qpH4hCaQkhfMoUk1EzHby4KpzeP9z7/AweebJZOOP/sfP8S7bXQAUzp5Nmiqh0zkZWcXm1+8WDf+RF2CLWsZYsyBsrlwNHzkB8AkI5bg/SWHuMCvIZlE83mFDb51VBc2YkF30nAFuXLKaaCYBtucUyGEXmXH+F6HLPhUvGmCz/eZYbzqO+KKRID09IZ41QsVNUmXQ2S7l5/+BuKeCDXAx5anjiIG/fw97gUtmbGLuFMaBHOnXcI/f+DGArkfVj8SBpttisNM3RcMlbT58/edqD7/+30ctDL1iza1FrW8P9W3+YgoBtqlYhXv65Bstye87jdAlOYow7hAFyLO1yAYiHuz1ZU/UN0i0JrocvNhzgkZtiUrAtOzRvuffsROnkJAV39SdTQdYp1uDqybugv386Oxlz6Evnev7xBYkvY/0s5kXVkYCcMX5EJAJGHJDDIFRRF3oIigiAxJSK6+H87fy971HiSYSlV9byXUFwXNS0r/8es/PhmAwQhG6roVrCbFwyoP8hafD4IArwH7IIfZP3MhZRmClVcjq0z1VLgUevxvvVk38ALkZR886Mz1Duk9nUeG6U2D9O6/Vn2j8vn69RJgh8aRGM+Dm+5QJnfwfEEXnMmPKXj31qkA2/rSkFt6ZeVu1Yuq15hi/Nt7drpDGp0gf4U6Qk81XO09gaqWVQauLaSb4l7sYxDqdklids5LOpzLcL/qAXSQ6jf4YX6iys3m/9UrXBpPsvoqygy/V388PaEtwdcNlERztnVAN6f3W1E/wkguBuct1XffHvSm8Y4FFkwt/Vev8D0ReWY1gYUd7wzYrhGjYK0nsM27HmDkDFosuMX63SXRS+D6e3+8j9O35W5gLqX3eKi8C1jGz22AyffwWesNsjlVG7v5x+9Q9ZnA8p7tDTw7UUCsX+qZwuY0vWFRSAHetuLc8nEbZdBijYO39JIFa/y24N0XNQwHReK9IyqFInfJhURNu4w0RKoBWq86onDfvoJld8sk0GwqH4XFifyrh8CVD5E//jHcjhsFagP0iUn8sWVP2Tcgkfu11dmojvSUbjGQjcQj+Z54Jns2hvenZ9Ah+ablYnjYg5V2FfASa6+AQ/cRwvZVNTFf801qHfcFVMKjiXmkw3biydOHdq090SH4Ek7PTKPK7X2kmAq7Syn5RzmBZqMW5LCte/Nnn0kHmq7coGgGV85mISkgvXoVsn/CN13A7XVSC02wkbHGT+LIkw9W3kisld+wZFSEP35P9E2+41SsnxBIavT4xzdm8ZBp0CpUAbkzbsHSk9wBQosfxNldfpzvo3MCjsGBEVt5z+Yfb1dG9ALEyBdrpDAfe+Cl65nI791KZ1DWUF1uvYIK9fUB05cdJdU2jGD1/246hQCyf/U5f/97jxhIFQZPkr+x+BPcknSRGSvk7bm4llwpmOVXbajOzSAkcseuXJAjxHCnzx1aedz4lfRCAH88yrUvtJ2itbedEqZmvDfIWNLE3MiwPhUQOZPqBlJ1Opzh/Sf68V/+vurbGN6Li40sZBQm/RkFhrbeJHghCTHv46msYfGU/nh8uer9JIT1VBrr9Yo558jDsHndADLFAvG/9Qn/+Kw3Er1k9vEjAOkwBygWoAxYxPfvP/9MnvRx5uSPByff4IN0de2e6b5wr6SHcI7bdujapXT1DXhMl46g88UDCyA/H8ojTUm1/p90PKUNsN5bQMx2cNq/eo3yRpDGS5JbwbLGd0XOaIJQdyEl7/Y+hFP7pjG02XdcPGsfQ7usM3Rb8oazpSve0Ng+XGR9SofvoH2p4R+P/ujlOeB21w4qOX72WBa+XfBb+TKYcDeh1V4ATkZF2sc7n5J/+dSan4GV/yDt843AHPn8rabexJARv/7lJx28aWm7xvdjysrCc+AtSJ9xs7uxgF4sPYPJ4XCMv92nGhc1HWJwLkhKgrt+Bmw0kAc/9Pla9ZiQrvxVAdWSH2Pma6BlQxFPIAe8QO4YN+bC2/WM4dP5/uMfvTHKPYDq+UKe1ScE0vtsZdAIK4q0JxoAzlVpgNtBbDHYNmZJxamvYXVSDEzPW4dTDXwN5TqchFj+ddtxXuu1wDTV5I93lqw6HTKouKmG6f07tKxLQvj/7SlQ/veegnug0HjrbvuAuvnvBNlbqgiSSr1k8jaXAf9AgxRD5piz3ZwFECXwTJ4hCACfOc9gnN9pvBV0Mk7nQQ5hR8IU6fl7CzDcN5W6dnlCsRl1wXQIToW6HbsQS+8fMAdWhAPsPFkh7vHZBez8O1kwO15Goj0a22QbqT6pv0f1i8Ei+oCK+6mB1/clw9Lbf43DoO/PUOqcZyzt+LfFZ/snw+9MJxKPpWRO6c204Pan6yQ+KB6fi3Dnw31PXWRFUtMu9/AV7zf75U1M+lP5kjrJBmr71wvlBfkBQuVbB+z72yc+FlxA6dnIILrqB3RQ6/XbOeTBYCJIW6RFyRQwY+kVaNPzDVli+QTUgd8CPJexJVGpzXyJXtYAj4fkSLT0GXLhPYcanFXoxlu1+/DZ0nMZDr4PMAt+4/hTy0sNbxvxgQKdm+3uEpYJlFN0JAEo9ICf0KMCm1fzQWH/PvNZ1jwN2roDUfA9PAF7XakAA+5VCPnxzyQuGwUw2L2PzHQxA6F+RWeAhPxJ0Gt0Wv5usxy6ry0k8evqpOx6lGr4ggImz+fdHrnGoQGzAjLiTx83WK8voFhXPjKbRRq7ov5VcK/0MbEdYU5nwPYOjCfFQKi4HAO2ndI3PN2mJd7Mw86cRtw7cNylM4ovWDOlOT/10L3EAUGxKZu0Rn4CUQ8SDFq1HVmd5DlAxmdHgkfyCmYXNIXiV8mIbM31+fI+LZVaaPOHRNKpSPkDgwS+RMaI/yiVcgk0b1I+zXe1x2k7zpttNCnbOJbw2IyVScX6oEF5o5covqoa525/9aBEjCaWjCEAHEQDhTPIIeZn9DH5k5MKvEfXijvQS+3y976aaFDiEyiYdHt8bWC7V3TM6CYp+Vbch9ADq8YzsrFdmn0rwS/wDJJ9gDayQ7k9g0g3ObLJmASiaPohnKyfGY8++Zrc6D4eLECVoIhOU8mDScz3dnPcInM5JS3PG+ENj/k3+jd+hi+4UOJnPaHyZdOAqWmsgaJpImJ5Tpky/yAk0F3kR8yD8y1gD9Jk2yKMOb7/Irflizhn4G89mNeOmZ2/Wzx1+2gZinR2LJed9tiAg6V4mF7PJefqvR0g0oYj1pLuNS6P3V6COwh2mJPJKGlD1y6bnJkxb5ZsZEp8k5QzwW6s9rIYcHr+5fC8vBFxU/scsOtxU+/hc1OTwKu7lKJq38DZjO7ImOq4pW3oWcrUvXy02me72rukCq14RRZVNyZ7Lfcz9O74iwFTd8FwG0MHNLaNSbDxwJ+/ikGSezMyytMRjHz0J1ilu5no5utsTqnrGdBdlMff/eaEjBeFYMgCcjhoLJjmcCspH3fJkB8OLsDysGugXBwjhL7KNx20pjbUvIYHcnneriYdtDZW3/OA8FxlZrrsUSUA0fco7qAjt8uLBQU8vLoCRXOW8RGZmgC5Y75Q2NQWJ3KxH2BwWTzkjNukpK9swDB45og4HmrKOfk0CuxZ/yRxNbTt1DWvAk5crlH4i9yRoQAn8LzVTRQ6n8/IuxwwSLp1X2tgXMxd9OwayJJbiHxLou0iXqITHLpdRLyIdyXXuGBAQ+0pCfaBlkrPpryDSS6PsaLrrxHPsQ3hNrE2MVnjyb/rhcOUkCPutGAs8huEF3frEi+/yCb136oCRXuukGsb0MQfkb3/xo+iXhZNlgR5Bg/H357osxqVU3FVFGB6d0B0J84AI4HJ4OVe3DDQedsu1ztLVGcnibHawiVlr6/bw6KyFOQJ+yHgwaTm4Gltj8Te477k3/jmKfqLGDGbajyy32d7B7vad4l2PQPAjPVcZiX2F5LMv8hczsPBg9XuC4jV68VIPXOBcJZ3S7xv4njk23FqQLLLffIormXAcreUYdZn3mrvUjtbu9CHYtUZJDqW17Ez32TzNz5iXZVTyv3PfQNcGd7IM9uW7eLf8zucGu1Gbg86gTUzEsCtrz7/4hFXfqyBfVoaxGb5CUzZ45XBR3hNZu252EC0CpiDBMgAec8oGJnX00QtX06HwuHCwWJ9dAvWjLt4Z2xCk+FINmCWKhKyTP/acqGv7n/zjaU62Jfkbz5pPaOY3iwzpfcOUKBN1oTV3G3GpVDrBJ5qdyCHwfiA5W7cG5j7PUFPkeGWSKSG6jRs7vHGcJaRCix0lOqZAeLwy4dPF5b38MxbEU8mSoIu0c0B4pye0O0cSCOTSmmAbuXHWPikdbBcT3O393ypxrK9JSbXnyHer/aF1zOjYDlt5EppMlVEaPUPFPfLAPHz4CNnzT84wqSAsdP9kK/rr5YlRKvVASRP9IQqN6n0uDOIzo8NcoZbs/Yz0yZ1CqYtFunhFDDbMxKY32uJWOf2U/KpiUOAezeOOWIFJ9f5GsPs4IyxUCYux8bDraH87VtkCHxbDnMcbZTnrWiR/wz0lgy6n4B7hsEa3/RgecVpCJt+B2OwWeJyGee9Bt9uJuE83wycCnEpw8DfqMgryI+z2LIFGEfDh+hi2nC63xhU/aSnD9FPYw24SCRF2b+mAKHDRyrJ4SHUSvHrDvHuUD/4spmNAZwPBUb/1vvj3XVwmTOd+L85TRnda8Pf/BPU54eUqxLy9h/WGCTSdJaS2e5rqKGiwP37QFIiBZSq87XH6LGNVd5PN0rhX/xGyt4MBNdCCqB+KcZ/9lNX7paCn1V3yGptieN1fYOAflMSvokNOLqYMoh0ncetSFlKqnc+QAdeO+Jtu6llhy7UVMgngpzjsE2n8MUnWMh7m/i0yAJ2KHcZlI6/iMRFqIMJXPNcAZRYBClJUrKhPAuQXnkQ7/JhaBlghgFx+34gvWE9WPjzq0DrVLfIde8zIF/LquDuFvwwCUHApeObS7DKChkdwH006SRptRqZ701MGdVHGvFaAIlJSixenS7FHao8eHsMBfGWVmhxYx4a4PCzFYNKIiYf3qyCxfvBkamuvZTKy2f6y3fJ4fUpAXNGVoHz1jRRSO59yrLzwJSZ3fdE1+nF5CdxUVQCnD0JXtgAuy26M3hplhMGG69sGX1/T6DpRYi8w8Uad3E0VlAYQEr8074fp0AaDcApjchpq/fl0lMegvQz1OveuO+4iBc7AZM1msjsszlYLt+7Aj+sNuL9g4ZcVJCmgAPiSyy6D82ULO0lwNpxRIR+m2vJUg4xCLhfkbCYonEWL/YJ5EezR1rbCQBH9aUD5ed7xWK7y8HqnzQYXLhH0N6zzDlwt448pu0TyzO222lUNzIEX64h+2DikpzGOYbstLniF+40U+TJzQJa6//wZ7ANk//Iw1LiwC0wU9puJPiXTPCg1A8UrfGDBwU7w3Q4HFGUu0bLhawsYEYKK2YdkM2v/rQmKEWRgoyQauW8mY0e+mb1It6d7/lyu8kWXPUOsdI7belD7hW4yH6IVnsdOQYlVVZ7jdXHTFs+egP+i2fE32e3cXlZcQPX/IDoaX8PWKKbPVSPjk2c/XquHXzXftKRdkDIdoWWbNRvB92vcyJOJCYlveqrfhmBg8wkuXNqzV0NtomzibdfxU0X5tEe+qDXycEe4NiPqqTA5Shw4udq3i5GABqg2TyNsViteyic/ATnXy0ip5T78teY8vvvfYhTosvINt5YwORTm0i/RWwktluGf/l5LPTDXE7YPlTwmVQ1MqlvlYt28wv4Bb5BzM4NAzqekkx9CiFe7bUBrM/qHirMG0nmaHpJK1HogZWDMm6rVOA8KJQM5sIi4b0Y+eWfPwK72nPRrZuSlB1oguF+8wAICYNRijQtE5Cm9IauYb6MTOBFDHX+OeB8xvb4L7+v+tMWA979ACuzMwXxhh2I4+ES/D0fHizZi7vZ+QTzqueU+NlMyHGXOqXL/JFgJOAGuT00R3H5aGu/9OeEYjCjgD/HxVJP6n2L7DGKUzbOBwihQseYmhEHi9EHCYxFySH+9eqni6xpmqqqNEPWvvACHFuR9BfvkVajLyDsdumUS8NPJLy99VS6GGIPP/ewRzqsvuWqvywgezeHBEo6tSSjQQXvnbnDLzE1gPS1QAPX++M+BqeWRXHRQLW+6cjZcbel1kf2QO1YIoreRZqyF/hpMAKsQmbUGOXaWyJR0XgvyYE6F8AOYV9D2xxcZGbaO+C//Yuqq16KYWW0Ju2aXwH1rXWNxfDW8vmx2wvwHIEnCv1CGLF3zhTY6zUgxdap+Uj98wTc8OSiaKRey4RQZPD8WnuzfOUgmLFVFOBvPVgv1R9377bK9zkKauK9FFxS/6QIAKBaQ9rreg4m82xq4Jnt8lWP0XTY7eQ7LOmtwfsmxiN+kCEDt6yrkHXT13NSOHrDlY+QUFWNUtSt1FJN2t9JUEX38o+XgNwfCLIl6dyyOT8NAPd2jEUX3tr5NgIP9OnNwMI6Pn7ORAUeIinA3XO+llzt5DN8d++U+EfvMPKN+n3Do7hpkX5w/HE+JbyDP/kkYPoLxpJJNNfg0p1szDPNMpdhCy2wJbc9CSujDRZf7mOw+YJHzIvK5pM8XYY/3vFf/vDHF7I2YkhrtA5w7TqdIDrVOfFMGgfLyekU9UHdJ5Y8DADWL19LfY6nAW+kThmX/wAAAP//pJ3JurK8EoUviIFIlzCkE6WRICDCDGyQRmkTIFf/P7i/4ZmdS5Aqq2q9K6ks/leDbXOxiM08PIcTTTEDhzlOPWI1cTjLF16A13uSoqeX2NX86+fcw843vvKg65EGkpy8DPXfvBLeagYWY+Yh24qCcMlo/oFxxqx47mEfkpR9j5C32IlY+duhy427rsDOp4IcS1SAxucbCLEpOcQ4EazT1F8KeC7ZnOT4tc/x/bF3pdfSVcQJzyewiMfiDncSOHnSps+x+W5WwHzFhyc6mU6X/sK7YMcltz/9Rj+VchdDpq4I2t1qOstCFEGRnHY//eIs/d0RwB7cKDlcr9/wVUoiI13ZISX6Nv/RyFg58NNf1pRS509v1YGlenSrx/QIhRKe9LVGxvKZ6TRUYwwvgXsllupmgJbz5EMG71IP7pnMmWd+LeAyRSpJRU3MV+R8fAiukki8M+HBqj1QCbTDwyeWBktntXnxBEMz1dFb/oTVLF92Atg93itCCdEd9pcfv/4RF04ajgXSfMha2CcatFhAEis1Jb3hLsSTGo2u6Nsa4JUmFfH56Q74RzCU8HENo18+6PymF8BdC7t/9Su6fleYlCLZeOBryz9fkt1YGr21owOdmR2coS2anMfcIs8ht/x+AvtvaaJTQ+RwvZ61GAbyc+fxtQxCmvYPBYLkbqDHY5qH9enjGGg1noiRJGyOddGKgeQWV2SlgeMsjqKMQMDji5y1vNbXfnpJ0IzML1609Au6bxfMMAuaEZm37FN1XTTcIfPqHx5vRuo/PQgPdkyUqZv0Xz2U+N1LQ265Y/LaZZwnMDW3wCQuNH12RyWB02hueybEthovO/n542dYNEMUzqfCwhBfcEwOwxlvPGMp4K/emKbyzjGXcy2YPrveY9hYc9YZUwi7x73DHVvfNv7GKj8+SI7V7ezMv3668VVvQXYWjlknMzBENxNv+e2MsSgaMK7QimF/pfSnj+AhkPWNZw2AFuAoyPK03+Nu4SOK+ejkw16YIu/df290VN6pAM+dcCOWOLj6XPMJhqqWmCRcgP7ve0cPVkFn53asFhZ0GBo9LYnF1rdqlfruA41lVba9AG6OF+6eQBNeP3gObkpFr89nDHJ1b3nc9vu7cTDmX38hx+KVVhQKNAM26FV0eFBLx5aWc2DTU8Tb6UZF2aI1AHyz7V/+0UdQFfAXr42/Utr0HAc9s+4wJ6Z7MI8DZYF8e8q4fLbHcNEfbQ9/fMYWvHO+zacc+MS+TwJL2DzNS9kDL3nOGOZXJWeBxmtwlec3uh6hONBgmFxw5wGDzKlhBsIzuxUmF7VF9v5tDwI+qHfZm6cZbfpi4xGohYvxenjVATv63GFGA+13OzVZsgenrcO2+Ok7otpjMszkc87Aaivbma4PyafLzszA2X2rSENPqaL+R9SAbB9/fOu27SVbMbS0SCZqo3aAhvTcCzfC1ng3csPGN1UF1HsREUvU0nCN7acJA2XGKOnPL50uu1WR3Z0zkMMY6dseW7cAv3kBXKWhWnelJ0CGZiPSbsAY1nNfBpCUNoeXfViCuSKzL/vM00THSWRovxvzDzyLKPTGo/FytifMAvDc91dkKYY3ENOjLRzJ44xsmc3D9SPnCrgPpzOxki7J56vDuuDeNppHJH8OO8YKnkB8+ALRv0jIB3NwMqnccSmxiwXRRS1KFnrMbJHw12/SvT9D9vyWvW6wV2cUGW2VmtBvyBFAjg5NXijy+GhMYvQi1un1GceQYuFADOAcnXmSWwaQ8sT98baf/oep5rje4ksqWEoHM7C0XQNLcxbr+Ol/Nj/CeKGsPR7Cffbe9txdkpAcafdxtnk9Bi0+u96nCc5gNvs6Ah50GXQ7DB6dw9Qx4Hj0vL/+SG5Ny0kbr8ETLKqKqCC6y+ZD6VHULW+AXdhE0OJ3gbc7PXpn430JlLubgfeuIIezacITFMSyJ6Y71Q5Zj1kJj65/JJpZ8g5rqQcMQ6gm5PS+5NUq9LsSHoNBQRu/dqZhWhQ5U0jj7T/Erfh3Z3BgEvbLdu/arYam59g/XqSwu3IYN30Bt/qLqe26gBKBFPD7GWeE8scjxLvML2B5OGJi30NPb5S1kQC/e2gk+vHo2H4av3kcnbje0mf3TTEg9ahieeNldD1mBRzO9gdZAzUAh8+zAt4980XH8MA6K1/dDFDanoGME/Gc5XhuSjmqXREp8V4LyZ4wglT6tbzxTX9Ym7TkgIKSzBNQfchH/tTcIaABIu6Wr/i93GNQJYcU6SPr0RFFIwdleY0xc5MVMHeYU+BcBRmxt3jTqB0UGHzNo7eCYQUrH50CIDIvgE4WyzirEdQS5KNWQMfeQGDx4l6Bah2cyVFoLMCnZs398W80co6++S8l3OoHUSOTcX7fB/z8EX16qNWyxQcusJW3+TmqNr7syts8TQ5UPVT0Rb/3Xz9Hxk1a8+VwWiLomE+XHPb+Z5jfq/T88S+iCdGB8rqQBRCLuyvmlvoDWPOisLK47QX48W76WW8B/CxGTryx7Ok4yJwANj6LoRHXgKRsh+G8fmM8cl8X0G0+kFTrrpH8a+3oGK6fGs6gSrHPxoROicy5EN+/Ow+Se5vj+T4LssR1d2T12gGs6gvMIJeUjuSXu0UpEb4FwH3/p4+r7f8Twyr8tJhwuRruvVVcIWylmrgvWjorlzMtDMM1Rdqm1yefnxi4Dw2WhG5+Bn2SxtsaFua7+V2fEKtnYQSidsf4T6+sF+UEp71ioJftWfqcjKUHNl6EJ8/ot70QEha3+CGTKfoQ+0QpYV2rJyxwfafPhbGv4cZP0DYvUVzZHQT98Tt7vcAXziJUwnZHG0vEmW6dviplq8GrLzp4Abe1opaz3KFyCUpy8GwNjPnZ9yE7PZ9ICx/l5i+SBILTu/KAw9N8AetiyuWQH5GJ+Voff34lYCyBaJYwDouzpxC+K2FAaHaLgR6LdobsZefj7gL3Vd9JPitHyn3Aj2XbUwDaOoMqfLtoi7++6VUG3JTvyWOtpABUPbw9+dd/443f0va6fOStf2PpiA2nZaZlhHF8V5HFrEW1+XcZQAdLQ+cUYUAlU4sA4eqTV3DN/OM3Erzybo1SxcAV/RruHY6WwyIraE5hr3hmC7b88nYdw4cdetpPeFFiD99gJoCpe84ncMvTgOhb/ZmlQxVsb99REtnFpM/y5+LDKIhXZG48e+xEe5Rfsr2g04SbatTcvgbXo3z0Nt4dUvRKPhIYw8X7482dVmTyuZNunmiGJF8a/+zCzQ8jyl0M8r3RWCZIGzHD0qK3dLacLIOBe82J2c1k8/sGVpQ694uCKHuGcyxud9xtIuBeZkFIM2jbUA+hTbKyxGDlq5cBZzvdY3bzk6l3Hu5SAYiNTu64APKS2RNMzUFGzoy5cJZtqwCKyyMPlAPjfAN0fUKGJqPHcsY6jL96PxheRRy50/TpuQuC/+/tA/C/zxScOyUh3rKdwxyOSQxPUWYTw0nWqojcvIWZOxrE/+qOTv3SP8EA0YpYmj6EmNi9D3RHPRALth6YK/cRAPx+2OiA1YLik60GMsXb0ubUxcPir74ka7cXh0mlzKB9pKSE5u37wpNeIkApex0hyZqYWPpdGpqdVZVyqj87zNXKNMyxKNtwX+Spxyn1FGJ6H2uAOq3x5DH/OquEsgjERquTvL0F1bIqnQ0mtXbJsdffwxCGXwMSA9jI3J9iOp4k/wkTeb0T4yCTakHg0kJH2V/RxXguw/yZGUUqObHf3sLs8m5qLBPqwynC9JJ+9FG7KE+ZZ5wUH9z97ExGhT34bLgBGV+ryCm+KjHkD/oZM4Vdh/2AEgze7FwQO0i0iu3awJXX7u14Sfc66Pwivg3o7+uVHNTbLhzXK1tDlr+4xBiVoprB+DnBrhYqksSxCihKrgUUJcZAjvzKwXgoJw7c8kJHsfIfAAAA//+kXUu3sjAS/EEuREDSLHkJyCsKirgDfAEizwTIr5/D/WY7q1lyrnJj6FRXVYdONWbMk8MEqlN4DYidOdn00CMCzyxryN7en3sBufiy14zjgdqNUei0rSsJqvJnUqvmU3d5HMkE1UPaU2PX3d35fdRj+cq9Oexu39d+lN5TKjvH7QUfazFFjMkshUSecqy3t105tefPU+4v0hQ0z1/vTkKmTBBJVhV8j/fInbP3KZCNMXpiz7u3JTvT0kPIoSzYWrURcYrlc3DxqgD7ZsK78xxzGwi8Z0Kd6+IiEhxHG5nqPsLGcqKM9Y/BgTjyN1Q/XJ/99Dt7q8dlSNRJNJQtHtqZiKd4xk77+bL37fQFCW3OGlZ1PYh43KIKNjv3RKZ2f47GFxI9sEONEhkr7356p20CEff+UY/reH1Wdz8Cm/N4wk7ShDoLXC0Ha1MTat+OUjS/lrAAp1f3Qd/PqB+C+yhCdDZ+2PVuNFriyO2QX3cyDajQReMmPwIoR7oL6q1rZLwVaQqIQrLDuMt9tkyfSAGxMg3sSC12d0j4OBCjhMP34XpG47N5iSB0fBMI5u+TtV6lb8D+EYQPVrJ32RnnE2q0zqGK2hiIKDFfo4d00wM+vagu9ywLZ0ut8Eu4ha/7RWn3G5B9r8OHBykZexXnSf42Vo8xTztG231zgnyceDJKY6dPydmR4GD3ArWJ1LizEto8LObBJWiNz/G3JQmI8WV96rc8m+hvYyJaNBuqx1zrLnELCXSCOmJr873o74/tANr8spxwKx7NXHB25H46H/FxtzQlE/etJL2WRMS3+GL170aaOjnekQb/zedMGj4H+9VH1GM4RJTuDRslRnMiyC0Kxtz604HaLAO2CtVH7Pp5GWhx5xv15E+szxrvdbDodKLBvozRROdoQVNbbNY9JV4263Fmo6bvLWyWruqOouJr8F0KEnxvh1c0RiXlAUeXOw2P10RfzkJfQ1j6FdXtwtTZkxM9iMdWwcfpdih3MUpzyaMLBLvLedTbXVZ5ELzYER+ysWWzMboS3CTsY106tdnE6bEDxnh+UnN9fnOynAfUT9Ex2FrKWC6n98JL4+2UYP3WXrP5KslvkPStRjZ21kU0mmwHbIF3qPs80Gg2yjqAb7VIpJUfSJ8PY8Oj31IgagojK0vkWjHY6v5N9Xu3fn50xb/vE0lgNmPELRo4K7JLzdOZ9fMTZSEYQXWhkfR6IipfjwCBsFGorryXaN6FQQHaotmBpHRFOYUXIUdnN9xgd3NYyml77iXQe+dCGLwTtqi3qBCP9vym3rEsMyp4dgpN31o0eG9P5bBfezltY39Hj3LwLeewTWzg7mWCHaUr+r/x7g9+MtJT7AjZ/AwNA90k38d6ejJdbhiGNzoP15KAOLRobpbpBCVwF/r8fH/R+GqAQ1bkxTTvNm0/La/wJPvP75UepvOUkXLtP4c6ONPXOTyxyd/fUvjDMxQxT1+ir++ApHTn9fnX7iKqRSxzJWRYr4o2mp773Qa8rejS0/Y3Z8PaX389H/xFXRj0aNGDcAJvzD4EumRB/XRPO2kyzU0gmKrTT/pv78H5EkEgENFHnMb9YolJXBBMcuNmixdMb5kDRcMXd3PMhAZzNjokzKRubenuaJ0rAlPGHLLxT3E5Z4ICMqhfjjrHT9HT76Wo0RJ7KXXFDpfzaUlEeDyho5bsVWieeJLDXqxa8klYkY3pGMSgPpIIP7Tju5y0ja9AP2xu1Hq5v3KkYdeg9w4sGtP+xSb3uT/tk+u3DrZsX5WTOs0A21KLsD1d3WxHw6JDOSo68hPoiGZ7awYwXiSZcP5W/+96vzw+FZn+8O0WvSt4/LQQe1f+HS2RaBeQXH81uXzlhU0Vf0yh2mg2PthKieY//Ax7F7B5EpxIcB/6BhaHVwPJuWQuu1w8BdRDPASzkBTZfNtiDq3P49/8LdVB8tDY+AQfwlOkT6/frYBdsXDYDPhTtsZDAjQsacCfh7gcLl7UgVqpPD5sqcKW0NgMKC2vP4pfFUPNmp+gQUtMpBXvafnoL8AFzjZg41bRheHSJ/Cipom9YVuWk1JvL1LFhiu1rrakD25PE7BV9Cbiw2vcbnvjAf3CbCD86+hny1sYPZSkl5y6ERv0BepGg3O91Gu+uLuTZhULxJbwpX69OelDxaspfC7tGeMqu+jMDgQNRBf5ZNcoP30cv6ohr/iKcfOw0JSkTQVPRT3hR5C2iDSqO6EfJ8ZYf/WtO1+NLIROOQE+6Ee9ZAeGJHj9tBcpUe9Fcx0aEvzUZ0ytG3X+5qsBS7esQLp6V51kaEOQzMcCNc2vpc9kyW1Z23YDPnzke9YcNwfuj+9Qs+a2iMbqWCG1vp8DkVzmiKiCr0jB9xFTPT8r7jTZXgWSkGkBx9qtzqJJsZGy8x9UjeI+Y6F5UQByhQ92vPhmk6/JDty57u89lo++4okpcaBpWF/Hz+eHfQI4SxSsqE2FJv0ic+hzPIkB5ENdfoVlFuWV/1LXQGG03FXNAXPZimRDBSfiI9Lx6L5EGj7EYc3Gwr82QItuQ4OjqrrTsnWXfddPJXZ2gafPwot/I7XS+UBoHw7bQfbVZDl5cdSuBKmfO+UdS7omPzF+fH1WjLB4aOXXQf8eFHd3j681HHRTInzpftx5qCoHnuXjRL1hq/eCRj81PJvADMbiqCNu558WOCtb9x9+Ci6eJFl7lY+/z5fcozwEMOzfFTZOu7Zk0tTasD9lDGP5e9ZnMVLSPz5IzfGx6o+Vv2GzRH/30+fq/NtAu3Q36l15Jdt5uvyGq5v+qPmilV7VJ1oh474ZyYLjmf3hM1zjWfmLX32y9qiAYX7KAZeGSiRsPDUA65AXFOMzz+bvzKdwJBXCKr+4/fxRnApdoxxjnNJfucb/BF1JIFj8m8uWk+OYUH38HnvoXJejuvsNcGL+DVv0aZTjtr0qaMWXf/l0qjShgqaNBnq4CCVj50R6AsftZ4rFyUDCr0grOBlvnxpCHzJeFL0adG37pOZ5iHvSfNJAQt/wEPQzd8wmt6cpyoCcqdcuuTsh3uX3emSO2CLiiFYilu9Z2CfUt+8nd+HMZELujKR/62WpDosHi/IO/vig3vbSFqTLJH/p0XoG2Sy+oye8Ey8iYq5IJSFsn4NeZ0+sC23S09z52f/wzfaiSzbtyqH60x+Ev41TNF2K3xNkts2DKXaEaPzOfILW/IDN8WFErHz08V98Y/s6ue68OQY1XGOmBK/jSXYnb9dpcAo4hWoXP9RHLjjbaMVLqghfuSfKOz+BlxrTX75h04O3a1BU9gh2c7ftf3Lx0KSHXoX45WqfrP/2WQxWXVqEk0K93w2ZmcO6HrDmzVeXurB7gj8bCv6nX0+/qwiNElLSUiqhidOftuRnYUW411hmi0sKDVxFuAYgmswdScM/4dc9Imyd9kbJ9qeUwHsUX9ic9momLNM7/sunWEvwl41iO9uyuyE3MvzpHdjcbRSiyA32t7nP2NAJAZzk5o4Pk/BzxxXP/vgyDn616rKT2G8g9YgRNLmS9pPxnHLYvXKNXn5HJdpZKOH+8IFsL2REzRofYi/vR8JaechGmiuxLJq++i/+dkH1lmRlABFA7r/bvKjtiGedrfwY9lenxQdrg9n8NPYK2ia/E0G1VeosqotcSnf8GWvst8kGqREn5OVPl/wW6dMP/ZVNCNsoxprceS73N58PNRCobWi9Pm/y4wYN+6IKZHtrst3TmBXkt1qC1dB5MHbEGaCVn9D08wr1dn6HHVy5gsPBT3Eidj5sTRDbXqWuWxRoup2+G5Q8Wp/ilhdctvGOHlr5NJl2t8Kdsl3foPX/Bztk8dl0m7jkL38F+RuBTtZ352CH2Ey4MBDZtPJHhKziHOwVbe7/4elYdDP1N0fL5f3v5yTr9f1JpltcoSaeXjmix07Bh5BvEbVctYGFQYAtWzPK5brsbKS/uQ/ZPYiO/tavdHeLU7BYl43L9uZOgRvUDdnvvJlVm8q5gKC1C1W3bV+2np8FsOr5gMVBmO28Sgc0OMQlxfEquq0vccOfvidIO3j62PnxE5K9XmNbcOdoUZ31fFxqRoTtu6Wc9N/syas+xfq4fevVsiMmWvkw2WruJyP9tyrkKPhBQIWr2g+0UgbZOApPUvi3Hi3Vwi9/8Ui9faj0O/lw99A01zU+kFMcLXHexpKzywE/UKSg+Xf0HPTn7wiHjLGpfCUduPHng9Xsx5XTn/+zjicAb6tEzAX5CfNVq4Pd3p6iMVnuA7yWVCTbP7yOdD6GvL9n1BLoyIjMmAlicGqobeoGm/dKC2BN4NCzKwXZKN3CAaxGKsj0FR79n/5ARFuU9fv+eroesYXG30f0EJ6YvpxVNUbbcG9gZV/f1ucn2yjuz1+CwPTKuRsHEfQ3/yGyH0A2X8buCYEACn2KNmOU72cRMr0+UBMdp3L8vDgDfYC38IHmOprk8a0h78dXFK/8lhWmVP+ND+viWV/1Q0/A3i4FNsIgYeOfv7Dsu5R8V/0+2qHagKr8+H9+xoRPo42Mry9QS/v6vSAn2xjW/EVdfwmzmaA9B9K9DXCrtZo+/dLCA2N3M8k8zTNa8cdB6ds+4AhvCkbdhw7wzceQOsPN01mzdy9wrz4Bxeq3K+lBPlfwx4fOFA7ZP34cWGNBFku6sF3u7yd08vIv9Z/WpLMEP2p4XD7Nmg9uq35JF+gOWxurW/3CliyQbCCxORNedQz9N93D5i//B/NpJuV8PqoEBmK7pJRObTTrcWSDI3C3FX+e2conF4QXvaRuIaF+MJ7iExzrt8eHh+27y+VbmFCmt47aTphGc55SCaJ6YtSJ3Ez/lT9VkVc+T2RDjv74rAJ/+mO234doDuPLBKNae9RpENZZOzkVmtazAC2ltvolNPgBaqJcafAoo/7j+6KDHOu7p5pqEMbQr0mBSsOXgNRjxFLzwkO2RJj6ue3ou3jmJqSC9cDm6mcuhyWuYNr6zt/6dNmvF0OpLO4hVretW87JUXuDvZ0KrHwaWyeodg30GoaeSKs+W3RjZ8LX6HuyX/MX9RgMsMwVw95tZ0bLPpBTKH+OTV1hV7pz8oov8uoH4eNtdiOmfgkgufnpgXAlE1t+zieHPH0e/vzIbKy/9ronL9forX10bNTjyEGjt7tio2F7t3F3voF2U9FQ79KFjPht3AGuW4dsndzp2f1+8uQtifIAzsGOfZ92naDVHybiYd0TcKOWiUqd2GRc88OSQ9SB1YgFNqVyzyiz7g6y9INFhuxcRvMiuKm0D1lAlru2iQhVvQod3jyhOHc61Ds51aRjHzrBPv3N/eT8JAWu+VXGemnVemcpQQfy6ZNTB4wlmzvBqdE6f/RvvtmVS3MULa5HD3/5wzxZKboODw/fzJ+a8cQ5xHDdrj3gV7914d8bCQLcSvjAh44r3p8PgHy2GqxNzNMns9QmefXjgu2ritis2v3qT9desPUeVT93/jOHVV8H7pUz3XV9OzCKsRx0g1wwaic5+Ys/rHafIprYMMZoDlsXK2f0WfcgHRepTi5H+tpdLCQIWF72XCYx6qejiabdJHQQFbpMDZzWUf9yWw3CMAywusb75F2jSr59vBM1PH/rjvY28JD1eB8J57Erm8ZRzYGPYx27kb+LqPqtN0BqT8H+kitooGmvQIstK2jzpi+bVZ+AYKVNIOnPC1o49rigz6R32Jgwr9OLnHkQs5sfMLKI5RK/Y4LanEPUne5mNvSv+xOZSH0RKfrDq/6xoJXvkdsf390sC0F/4738ju9o0YhxgnsbGtTQrWM0GdotgZOw8bFny0NJ+Is9weN+emKteO3cjjOTBQiSPBqsfsdSBNIGLmGYkSa8BO407LeVFMpNjb3cpGx5q84GGZfwg//qBcz8PJ4QKXKCrcc21Zn/aEQwjZBgzZe1kv85n+d+xWtCRDtCj/hcx5K0fbZkrzR2Nh03Podajw7Y9wOIlkJ0bGTFdxFravctR9M4dxC5SUq4XXfX+8ycJznjmg5fShDZ+CCKB+v6webDsbIp2Vg59JYNZG6RWwrFKQkl5IyMqv51Lpc/PTEb6EY9ynbrqWX2EzZC0ZPOuSCd5fK0kX1lV2B3f6qzYfCYIvPRpiFQFl7J36KmhrXese7R22VrPA5wYVcFeyNHEQs6Bkh4mBw1LLj2y5D3E9y6w4Yso/xFU/i82qC+xwPNsZ+hGTdxCCcqfmkGptcvMkMGpLOVESabuFz4Lq+k1d8k5eofznTZG7DiB3aNK+qnw6C/4W7OKV79C5d9+yiWtrgKqfbZP7Pps7MK+ElVQSRHmhHl+nyDXk8QsG3lF33884uGQIOAL75ONHWDVf/lZ/KHT/R+Tzx0uztNgE533Z1DRdmsAxPI5hp20dgbjwHAjDvqFeM7WvWyDZ44S9iO6Nnlo2B/kW6f4IS1lNN6/k4CAmu96s+v6ZmGMxuZSH9RtX6RfomCOYbp9FZJgdpFn94/eEJ3Sl3q8u2uX+qoCKD6woema71hpkcDYM0fwSYe/Wyo9TmX97e3QW9QBy7RqrqC380pgu0fPzY75KDaqa9ky5HZnfZbowYXYgh2HbePmHDPnoC6zZl6FyN3d4vgJvDQ63DtDhii6a9eNvXSnQb7yydjAt4t0FwBrfEvuYSLAgkyc/4ReeqgHKLrJYU/v1Z/v6/9UnzNCWSreGLXk2t9refZKPxW23/6q+ns9yA/qkbA/+5PxF8A/qFO6LGTSLk8jvWChtis8GH1X971xGuArPeZMNVs9UnftBvoj8WNKj9RyFggYgX8zVBhrey1fq3vdfLqh9PTLa7YaPhpguZ8swmmT2O7/+p/+4d3ws7qZ8+lcJzQHPYu/vNPxkdVFDAfGx8Hn6+VUd1ME5S/nXAt4gIbD2PDoW2pRKQuvl3WSm8xgeTR+1g93w7RInTzW66T+Egxf7y48+kqcJK0Xx70WOhB/7s8PgTMQiuwv/9AOQ28E4Cky9qI1vrRWJ1/8OdfkZLn3+6w5hMI06Am80O7odkb2+4fHsed+ouqerQboGp9p87hFaD17GQJoabig0nWLqu/EHr/6r0BKnK09DgZYDe9Gxzn1dS3ucSve6zUCWt9fNVZUVcGFNfdgf7l++V0ezgA5qWjJ+H7KGcZoScSUnqn//ju+wc5yAdXJ3XNvdj8iZ+JtPJDHGyrUz+s9T10K441Eadrn9Felmq4myzF+tdWdO54Vk9yq+blv/hY6z0i8L/zPWDocC0pcbsOiujVEWGKzvqUbdUYVr+ccNkhQWzld7DHeU6vH3kf0ZJtbbTW10iVhu+IqI6dy6t/R9XmbfdT0dwT0OdZwMrRUJng0CJBjD8k/+pt7EaxCVpQWSQV/NBdCcwJBK1f1nqX7fJKvKmkfD40hHdUQ2ediVJ4/ZTXqt+WaLlF7xpOxUnFcShW+riBUyrvJTCwtUhqyXfJOZek/fSgl9eoZ0IgWgrAL8Nk9SNddpDPNew6PiOA2VKO2TsJxK/R9gGq0LWcqEUb+NOrttF82OS5soSk25lRU3accsUPT1r0cQq45Gz25BV90v9vTwH8j7MP7oIY8KaUZZNk7zvoP8KVHo18g9r8tMlhpw+UZuGFZ+N51yqQpR+JYtIKjIAQiCipE4Faj3l2mx3HJaik1Q+b280vGtKLFEBW1HNQBZeLu8i3NIYQ+Qo2TQllzZ2rF5Aj9x7IXqi7s1s4HFy2NKKm2A4RTTR/gY30e5H9Op5BPhMe9LW1pSDUfE+GjWoiZesuwai3KZqGcUhQG/5EaunQRxNJHAX9GrIhUlegfpDsfYP2+7nAWr1Ry0VIhDd85I9FNZ1F+vIoUxGC3+OEz903zZYfJ5uQheQT1MXxw8jwiAlQn5FAOmlzRjLqmBAd+DRgJyUs23f6ecrss7YGSiO5n2a17SBhpKJeFvCMVk1vo4N896jmW4rOddXJkyvju8FK8niz+V5vOfTauNLf/SPSrOdVB9Yw0WOS1PrM//wc6XxQU0Uu27J/H2FCzCts7KanJxsd4RvAI3912BMoQXO/u3GQa9cz1lvhoi8lvzdRUvIXrNqch3bwbU4IWLqnbv9m5eTtK0Ch+B5p2hVZv/5+A2IrcqjRWA80DXdFk+mX7Ijwm4pyurpWANrnpuPDVqHrvp+lhjz0P2SCtffvMWQORN1uIvP5/uiXlLYGJMdA8qXme8hmb3hof/GGjYrblLP2HTQk0t4m0jc0dc7fHwBy30ipL8t5z5bAqUFI2x31mvePNbt3osBHdwOs5JnB5ufU8aBnA3ho/qgZl7bPCvyd41Md39p+sT5vE+KzVGFt8W00pU6jSS/0veGgnw4Rd5ifANa8fxO2PXiMLNn+DcfNcMR2zD7uVJ3PGmwpF1JL/jYR6+AYA97sY+xdN2o0cYrRofM5uNG/+J+C+zmFzTe/Y2vfKtHk0v0Em47iYH5q35JxYuNA0mxTaopK2VcOrhPY6YQGcrPu670R5QKy3GrUQW5ZTsavnOBxiyscqOENcUbYpGBtL4DP9tHWF8w+J3lOn02wPbltOdbjuwO9jmOsn5Swn/lQM9aKYkxN+bR3u/YoXhCf1GEwve8NmnZdEWy/NQuoPnycfnIOlwCOG3IMWPUtSvazpkrWEOQ4GG5h1L0SbQB9o27poXoede6s7TW4K9KHBhvE9WMZZCEony1Plv5LMoan/g0LvbhYj65jP2t046FH/ujw4cMt/Tqfl/Uw4AH7Bf/NutQ4vKWdquXUHNOvvgyPJwEl5ynWdkWlT9X5rqDnJ9/g529Zz4uMQkd+ztcA++TglTvh3Bsw8lgkAl1775rP4gJr/JNJqG5s6PWAQ/ozemGX7ALEbv4VJOO6NalhqRybt/fQRNtqe6eKjn+o+8MLlRfuwbzdYZ2qvE3EHSoOWNNeh77beus7BKZ5IJyunxDbHPsU9Lt9p9nlavQjHzomXJ3ng+Iy4crp/uoTab9nBUEWEaMlylsJ8i68BXP3TSO26FMC2myVGP/ipFzeWhMDF/x6rB4f17KCRQygsO0PPmw2LBv3oDTo+nt3OIh4SR++32eKbm2eYvWpHUr2vowAp/t7IhCFAVvIMknycFwyethcu3IJf5kh4fnXkUVnTJ/l/beR9laNqX86/Vyii3aOzJ3BqK7MfbS8/fsb5IMwkM9UeS77HK8LGsv5QA1uUdFyl8IQYrpqvvGl9bNgJSIM9Sah1nXX6rMzZhpsZQ0HG347lMPuuOWQImkD9p5lqM/XBnHoMBZAjxWS2JIc9DeKb8eUOiuej1XyzRHS90CDKuuimQ8dA26gyVStf3HEWmguULWbD8a3t9HPw/uSg2QdMH0h2eg54p94SCWWBkJP6n4eO6uD7PCuguuDJz1775ILyIGj0YMy+Gy+tiEHX0shVNl4YbbcJ8WQm8bfkDk1Pv1o7j8BvOr8TG/+/uMO1tlN9zMen9R4u1fGDq1UwKUob2QXtGU23sPsCfIoFtQoC48xUeETdI5vD3owupnRwt4s6C8/Ga+qYYtIxOFvPZKpiS5snrYOh9gFL6RDbtnPWUYb5IqviJTS8+2yYlO90ZEvywBKZ4OIVDZvqPdmgF3ima7gnWMb5FJvqcXLPmObSK6QdtHjQLg6RsaW8gBgfHcx1fJLH1GaJstefj9MagXFkRFpXAaoBPuJA6pXPdv3GYDdDjzVH2GZTSjfauDuxAlHrUejJYgeIsSXSghitfsiiiWZIKc1dPq0gOjTNzOCfZWaZyLfvoU+DGXqodzYc2v8i/0snEsTrtXGInvzU2Vrvk8B6oNHcTKl0VRXQgJfvn+S/afJ1ud3ukB9dm18tNiVLRHa5oh97pSq8BT1+XGoQzgFc40189GWY3Z+5CCBF+L8IfoRt/k1GjqWsoLt763sF/flG5Bk/RhIJc6z2S0+HLqds4rq963hzmYwdFISvCbCF0tXEveySFAezA1WHiMfter08GBdX4H8FNWICuo1Rdxse1h/1ifGfNMHFM+tESB+jtGiBI2IFEkZsNN8v1Fbi2cO5q+hYTwMarmLuF5BzHvb+FLsK53hqXxDJowCNU9BExGkvWwQhN1CrYfpZTxvSDZysiUmSa6ma+9LSGDSpIUsrsFHy4yICfgzplj7/ZyMHdc9Ec7z2VLdNrpyPIpGgBxxExFJcT4Rm9Y9a5ficyOyJ/8YVdS/bqnZhQgi3pb9Pj5V8uO+t/B5u6PukOz8BYlpoRHu2PcZ224kB96mN2NT/+U6m+/pAhYmHvUO13tEJI13kIilhvyGK+vJg3gGouKxITzX29lwiV8pOmj7kq75nPFWL51k5JkFNo3txyV7sRfRUJ0O9HHomn7xtkmOzIc7ECF8+4yQ5SxCuNs41LhA0C97/WrD+fnWqbnbXtl8FA1vP9/EA/XNTewuUc0ZyHrVORGZ/GGzo26fsKy9FP1Fn8rJOeQefPMjh/GJC6Odx1MPoCxarH9OVja1hsGBPN1igpwkQNNtu4G1N2VH1dNh0ofm/vPQX75z2lOnT9Ij1oDrWYMNwk46K9qPDaSRbGrtf1XGkkK0JW1TbIN+zV/V9ndU0O4kDev4VLZzB06Ty+1ToKaxVd0d95hPwLDZY8w1bTkah9MT1PxKyZ4XTxn/8sUCVKMzyS79sIyepCdBjR40NLCiQ8Yv00NCKx8L5tcWoUl4hRoc/CXHeLx22Yym81N2Nv6RuvL9HO2m6BeCYZo8dpOoKReLN57i37V3h282fvAUQn/eHig2A4amQ3hMAd5g4mvmJfpSCIkJXLZPqC49FZcfQ/MNvG5tqatPXDR0pEjh9om4gFvjf2QLNHAst2sv/ERA9H2EBU4e1gkbHRaxT6c4MMlhTw8YcWycN+t5zObYElm7tRmVrnMF3ilJyU4ZRjZpTTuhcEQRQQmco/Feb/m/8WKvKko0vdixlo78pyTifKblmCOkoLHVEbWuThUtt1M0wIOXL/R4nvpyUYs6hH6ontg9zMXaZ2wC+PXnD1U9y9N3c9s8gQQhodbmNK5+bCDBJ1KfBLEc9SSE+Anf4+9MjWJfuSwW57d00PUo2O7Flz5n2a9BN0JPVDk7as/OaWeDv7P9oFjxe8LJkoBeX+Jgu0V2OeanWw73PnHoc9q83Pl5sE6gciFPLTV46IuaXAxI4vcP36h6QIvmFyJ4188b27ZfoCG4nxP5zB/kP35dzjOTOnD9bUu250em/+NbMHExEcxaRcs2Xntlm0KFbShCtChlFcIS2jjYdlrvLkrwlmQQe0qkEkNUXeJXgmjyFumJbH/6mk8U0AzXDIRt8SzZHLQ14Mt9DOAuHbMp/igJoGDZYXd+HaK13QpB76StKE6Zjnbi2TChsV9P7G17HjH5ktd/einYKYOPlsscnNDfNT1xa42hrzpY45l86h+fTV2VBH98n0ipqqHJRu+NHBReimMZyYyYfPn8x9eUNBXcSWs+C9he12L/ErjuEi7eCW6b7ztgyLLZgoSvCG922mD7Mt36WUslHqjoNkGd25eshwuq/vQOdi2d9ezAeQROx+aNDx+3ZUP13SXguplJvfqx0WejIgp0njyvfz+iWZrEJ5xi8KmCjxEjE/gmHD11H2z9l+Au7XGK5bCPJzLjZ6kvN5SEyLOvJfbtrc64zFEV9G1vM3mblf7HvwckFHyO3cXpXKa6hg0/XuuJOKyELKTmG/3szROrO59DE1PKBvI0taheVBxbltoloHjwCnj9Bzo7ZaqN1njHpl+dEevTLaCyEp7Bb9++s2EDRgr1tG+wy/KsZMhVUllT65Ku/NalcvvawGey+mBWRAPxdh+d4OXCj/pi77rL3zXDRo8xUbA7F+WuQ7iVFMKP6UHvUvox4JpeRmqMr6KcsdvlSL0Z+4DNtpCten8AyUiBagRXaB5fuxxcM1SCjSSf+j89BNvtUODgwTCjm+3dkVa8DBb2SqNBuDQc+lZeTzbnfbmehSG+UR0MF2z83hOaHyhXQHDm/wAAAP//pF3J1qowEn4gFiIiKZbMs4mC4w4UEVCRIQHy9H34by9710uPR0Wo1DekUvVmrrA9oTG0ztEf3hEPbX+o3+Z3A8r2e8S3GilovldbGXZpW+HZFjXOO1uskVO2GnMTESWdtGkD+PM3vNKyssGx4hzMUOzJLoDU5BejHyEuHhti20nascRqZoTFbofHV5dmw/Mdt6oT9Ftm9FGWzbIpeuq36QW2M7U5HMfzYMBPC23ak2OApJ1fUlA7TAihvwv//enLSK3P//yT8UNAAxM97mzRnxU/Wv4M+m2K8GTtNHPdbDIJBkt7kwVfkrHdJh+19OIDlY3NFjFGVQ/6X4nwEl98lreGAs0g6uxUF7bZLX7AX/ww7WJnfJKdSUHXSjyyu3jdcNaCfkaBc+NUXmE7ZMWqLOAxSZjt9qjjXA2MFO3SpiLeH54fhRwjGWDNdo31NHlcP47Ka38JcfIpr3zMVWX887MoOn2lcIxf3w/o0ePJFn3WTUOgOMoSP8zlTVz1XbWNQB6cN+aW43R9dTcwWPt+z/70Mw88XYCnn1qE6N+vuegfCX5KKVBE1xQNwZAYQHRQWPCOP+HYb6QaTsH9wa5yTRHn5QdQePb2LIFb2o3p00qBHDYB0zmqwj+9BMbrZJKvS4KKsa17Rhw8eVl/95DJnSIoTnv5EX/h0595PMno/Sqv9PuYDuZ8I6ce7jsc/PPThr2kLfPca5+l5SfpJIlEZ7T4GUv8ZcnGXBs9eGKuMQ/tXybPXsnSl+3sEefKbybPuvcZ0ub4JdbjtUpY5NTwz38jSz5q//Bl4V94s9vqJl/0NWSng4XXk/74x49B92Ug9o3oiKd9d0Yk6k12WZV5t+jlVH1b95Bcy2EXjkPJI5Q/tYBdLdmtmoO5N9RoHh5UGE9S0stHXVST4mzh6Zd4fIbL9ghX/BgJKR0znMgJGsU/lDtG/Bc35y29UcCrwmE7qX1ko/N5j+h7jkMKv/mWDaN4aFHYhR/2pyfG5sYwWvxSChvHMXsBohT+/ISoWxt8LSaepTyl44uEolhU/FE8PJSE9p64vJm7kV0qAy3+Ef0q8c9kqD0ByoW5xVPKnKTR1XcA5xtTcaNXS99K2FJkYJkQvWm1cNzmdw1e5ZZi4bbu+KJXJFj0M30rF6cT1/5GVG9FpxO3yL4V302vAv7ivfGfx2xWBqVHUpiemH8xHiFb/AP0M1jD/vjc74/f/QIZ4zZvSDcJdRuj+t6KzD5XLJm/4tlSyl12wZPw0rs5DJoedk90w1X9LjtqRztZYfLhyvTk/jXZo2XHf/5mZJkun46/rQhppinEslmVtI+bR9Ffvkc+c8w5v/4oOrX2jv35a/OSj5B5vjtst+iRRU+ncDTGDTG59O6m7vzbQ2VbAnPu3jEZtYR8gOsdYZpTm+Hih8aKXdgFc70XJP3BvGqw6CUWVp9vN6lvP4bI/u3J036H4XoveQbQ/TomNzPyw3lV0BKUA/0Rg8q7TjZU7MG9l5Z+XVtuUolYR1XqgjVG35JVk6g6Eiz+Bm2foIZsP1qFqjDtRHxercNpC1qrvv33Ac/19h7+41duae5JQLI6mU78rSkLH8MCo79s3BwLCTT4EhYkNy+brBuIEDgZpxsSzt1w85Z5zk3sMPwzLuZ8p50DXn/zySEf2mQiYXlXT+4cLHq2DudvayrbP7/Hwsej+c8PyeanTsJC3iZ9oLQCVINm4Rm4m0y5Tfaw+MPMkkebz+81csDe7/ZEP9zUbnpfnRzaGb8X/jejfmm8oy58gATP5JhMl0fXwGo+OMy+YDGkffwu0LLeCEFq3U1Ju5cgxO6NKuLzkPGzaY6Ao43EfDcYzOkonCPknM4Jw99Zz/rYiDXlqHojFqz3Juy3SSvCb1e/iLsqhYpdSzlA9m68s0TzymrM/NaAeaOvCV7wfSKFI6L2+w7J7hoRc/7TR3/4GRZkrOaNlQXAqiAmTum/UP9IHhEU1ZWSQzSPnL8fW4CoXO9YMGwkzlaiBorl/W6MeHKQzcIZHf/8dxKtTaimyRMsRHGaE39W+mQksitAGy81PXaidJ1ozFd18R8Ilg95xkjWeOB9veQPP0L2y1QA7ZnFNLEYS6akvUpwvdkBCVZuV82LnobX0GyYRfkY/tN7+dMIaG+ZX76s/1KVwmWePa6bqlquV63vjcjC0282Z1f704PHK0sMW0ZMyN0RHtLquMTDLRvT31JpmVgys9+z1M1GSfbg+cIZt5BtM/pdkT1axcWH3Zb9HPZuogBELj5Zfosq81dWaoM+NBfpHDpxQqEXe+WChRH/4dt8ryb5T/8ScpylbNrc73uUVMaFkLu97kYtcWtkr1RGpUXvNjpPBbipwkCW/B3yfowD+KnkQIilfBJant8ULfsDdEyvKBw8ucNocyoZlXOnSKZ9aOZy+DEK/OeH0pS9HPV8CVOKYPQ6ujrfj5DKeMNMb+DJ8BxDETbfVUkHqVWzMXp7H/CneFj86L6b1f5EoWzfy4G0zbMbn1yv4Ym+l3/Pl7f79wxcUgw6T7VmTvS56D3XoMy9uEr373V78q7s8Dxzk/OSAqTN+YsBWUHIpU3oKUniuezw+Z4zqg+XOxyHfUGcls7dlDl1DAiPa0Lkz9BxI3gHoDDjhNeTueXzPn4qsPGIsdScfNBm8c9UluwNhoNPXbVXAhRWTIpZsPg/vf7TZnjZw0Rw8XCy/rjRZ/VxOdb/8hPj5UcAlrkZhc8jD6fnO22AZnVGTtypksnfuQ2QYzYQ53u7ZKM6L7NMmOmQXeFdwvmaOsrf/gXTU0uvxNVXN4CGNCT6Je3MxX8uwcwoUPW+3vC+rfdYFc9NyXbPVxuOTgY17LfJnvh1PIcj7wqs2vZXYov/kPB755zR3bgc6NZcH9D0p4fFTzFjacGH6ZzIdySfTEa000STvrEqCXqiH/75z73nxNG/52sdvjxhg9Kf0U4zAzoeAr0afZtH4NasIuZFOCejMCnRnz4hlji/0LzkN3jJV53pYjmaA1cHCertoBP9LQxLXykqoW09Rn/7HSG1Nq8c3Vm1w5sxuXQsqaQjvGvcEUsZ7uFo3ZUPeIRE5I9fTOtJamFdPQmzpsenaq+2WcLxKXC8WfZr5716v8P0nU8sQL773/XlH6OCPD6in8zX5UgDlcfr8n0ln8+OX4BaPB26uo5pNqZBYahH+5SyzDWTap5GUADWqzuFt3jK+DV6Aix+HwavPVajCtUVFn6w7Le9s8m2pjv6h7ff0eiouvMCKOcmJM/NqqjGZNOMcDTmDTEosdCMhfSOzhJSsOwEN5OpQZBCUYgh08e6N+f5Yy5Ti6Cm8uJvLv6Fs+36HrMbBS+ZqWpakKRqsehJ1NHwqMjqDcUpMdqDhuhxcvYgt9eY/PNv7rRyUGKLKYnkM+Jt21AF/vyE4KUGaH7I+f4f/74naNNNyjjm4Dz8nhizdKhG1T22oEXCk5hPcquG9uLF8EHji9xqlPJRmGasLvu9dFt1trkWG/OuWGv2YY7d+EiMd2YEryyysFpKdiY+uf6B8/Os4fSHcTg15TWHopBCLO5PLz5+UyeCmwoDFbtc5HzZP0dWtgOsrq8hH4aTFaPnL6hxk05vsz9J5az8XzUF6v+uKdib1xfbpXaDRvjJLRLwuGcZy96IXy65Bc8GIUbganejrq5HRO/WwAxjECou+YIGGrETXASlx4ddQkAplta6jpUa1eRt41Yl7sojJBWmjI7VBCCehC8d1oaebapOCgCl2pWYN1tBwwMLAO9sc2DWQKnZq6+Tg7xgo+BqTtpsfhTmjIiPf/SJhBYNe//mwMDLAo+tcuCTvL00sMaliMsvV7JJaN4zWp12b5pFfdWxId+lSBhkmTj+OjFHQSUxqlUI2MXcrSt6PoV3KKexwFOkDYiHc5GrazKeyPU3SdlYrJMRbFZ98VY33HBNM4+C5JAWy5dy7KYnMhWQD75I3NmDrr80swK3+Hpn5wNaJxMKE2NLXNXDq/1OrcYbu5XKRZgF4n99GbHIvzdATeXHsPDxshEpToCIH/0Ibsy2+j3E9x751/mE19YFZ5PSlhSmdB+Sx09dm9Nr87kCKgQg9ttkHcVB6Cn4+1lhwW+0ZO1t4wZmUYxIOqh6uKmU8aiqhnuhUhT1FT+udxGcV/sdu72LOBl3PSvgJj++LKKSX426OwmqJ3Y/pu9pUc1HXEtg/ZyEkeyjo02YXGfUnnFKXBR8q2n7CwIIj4JGdFfpsrncTUcQqddRGN9xx5v8N8OJS2tChhfJ5tVWqcE2ZIPFitDw2ZrtEkmjfqMr5zpn42O413C3FU4Lpokhk5FvALYGkWhx05lvvT5Hynro7kT3TxBO2B0LaOZaZdp28sL1lnoRdMOWkPP1OoVcrcYSXrt5S1w9OFYtxF0PDuAXFvyjF86t2EmA982dmEEJ/GOrbYQOMGj4bapJNdGD9QElr1dY2lpxwk+ndQEHA8VspzwOvJmbL4YqSQNiD4/WnEymyCiX/R/xwtZK1vL22SK71FrmtTbt6OQ3R7QnP5W4a9fpOJhaDK7ynBiprKRa9lGOMCnNkUSqTTLxsfSi056POx1CHFeDh+ke1DTJSOgPt27WidijPelUgpfnz/I+LmHMpZlh53dOeGaHDQTB6OGtlp6r4XaahNUQQMwSO7M6/lvFhmoonOGNLX+TcfziBmSzkciuPeyyDXEvPcLz3sH8OUbJOn/eehBCfWC+dHQzuna7FLSzuaHr9+WL+M/ae6Cmh4x43/TOWXfvRTgA04gXTYBo9BA82N/ciq662cmmkT9S6A9BzbCgaNXkCVcKu5Ux0fUprJLpEjxiJM1FRk5b9YN65HspiJfII9Y6evLJ7k9Xld6dgen+6W52YGp7tarGhARdzDLuZsyCQD9WJEbxy2x26NfDu+RrZhuNnbECd1dlXXhPummSqfqlqIihzLdHsjueC3PqfmoLtI5n3O6ERzdrW69UUhDuxCqUW8illsawjsyZGRmiZu8eDj1oq80bT8xsklG/ujlyU7ehsKwviYkkh4mpO2aHTK2ml17WILmPkGgWL8y/eEVH3RmJd+Bf3h+2/QzPBG+psto/0LS67vew/F+6OsssnITqS6HcexJzP/sxGQdrLSnXZ+jiDbfe2ecdiqnatx8fT/qmzfgjbGO4zsu58P7uhVw79RKUrjAxrRRJNZzrz1KHmhpMp2xvjp3w9CAM4i0V+cTCsdGOHhwy98zC4Gck/65HKXDLsLGJklrJE+Hf/dhllCTrJwplpNhLjcAx2ybj1Ro8yG+mTkzbjZK//AefTcvp6/z4JfM6+t0h6LwDwY6Ku1G/kjsit89Mwq8e/vs9tdGljk45SbKRhfc7CKE5EE85JOEkSucCTr18YFgVNmjkW12A1zOtcBManNPYc/BffmSngLrdzET3DsvzYcG7cqrpOHslzK+VjhWPHDkvHVeEYP8ICdF+v47eHkGDFjxgdhxtkyYcdwaSYi/GooYvaMypGoDAghsLt/Kr45tT2iv+SZ+xyB9nPsb1IYLbIUDMtLO6mp1q/wFqyj9i9+tt1a/67YxWsjMSzS4efD6UF0mZM+3BvGkjV70bZY1CctTh2t29uiG97z+wz+o3OS35Z04GsYRn69/x1rWbcHyS4Q4f7ewy8jgFvCeqEaMAbwpiuTu9WxvEaFBS0C9zGHHNYVlPyD1r+yX/sITzvsPQKKmMqa8xxN9DTtGSn/B47PqMuRlzwKePC7E3ynvpm7Hao9LHMX5FRyfcXK9SC/VtnTN7qvpkZqa+1CiZJl7NsOKdYBUSou8yIf7TPHdcWJU9HCyPL9fbIrrzyg/U93NBNMOjyXgW8B1NhuWSaNhV4RSjTQpU7S/E3uqCSS3wG3SKSUjV2dwkY3BMJXDrkRGNaUezr2Jao1XIV3i1Rj5fv1dDDUwlHi7nvRSOW3mokWWtvng+1SIalHfdgvLbO+w+HtJk9DaeAdGq0Kiwlk/VVH6vCsSXcY9hhhC19JEd0cdRXsTqVm9zTJB9BG7WHbnY+zOaTFEGeIpihT8rViEmWRuAWZQi2h14hnjURrKys4nJwq/eJZx6Wwmuh+WcUTX9st+xsa6oU80NnR1NQ5Piz3cYfDoxvRIgnHZXrCHNn1NiiMjlLHBFC37XZEXjx1lAXTi0KYg06Mjufi+z2V862B02V5dZby1L5t2uaJWlpx3l+9W14vrLX+bPKgemHzIhY6cU1ch6NgMLus+3Gm1NAAgOfU+Og/OoxrDDgP7W/7K+s8m9lldUcJcTc7+Sq/HsBS2YzVFn+uZRIr7GYMF1f/1hNEpSx8twJyt6OO+Ys7XmZDzvPAqgX+x/577m1Nhq6mltncl+Qx3OP4ltQdD8CC4f55yP8p2nkJlIY+Tgf5K5XmsRBLO1xtM4T9lQN9tc4eHMsLTtS86LATmytJcngseHbXLt2Qj/8OEPj6dj5Zzhfike5KnpN1Na8AvJQm+zp6sZXLorp6sKJTDiUkPJBm+bNjC9Ika89vbh43XFNOifyGBee3P4HHwOPYib+sDOFFHO5R5LaF++fOLk7pa3S/zCM4pP7F9+9OXmA+dI2zI9JzwZg6UP0XcYBKJn8o3P4ks1IBetA7sMupUx4j57pP9+R+Ko8zuk0nCjsHu/I2ahzSGTiG07sDNXJXM+u7u58DcP/fTLnc7GkHe8uVVU/dzfFd0aphpO+f5ZQPCTR2L/JiPpb22Sw2Xa68TCF2RO1um3VyqFSlhxoqQaUqnEMExmTrzj5hnym9k5yC64z0L9u0nKlEsjyEBMGufxt/vJ3k2B469RmSnZYjLxZ3tFpaADs63uU02iFvcg7ZWJ8lf4CKf+WFqQXMvyj18g3ruHvbrgM93K5j6ZEvUiKAVtDiz/9ZPZEznCyK72IYZdueFjoRykLZFZij+XNjeXeLijx6BOJDrBnM2hEQpwx9aGhLeoyIYmahVFj+nEIr3tOhbTT40SuqsZvjy6hLvtK4b172ORXY377Kf/7nv0KHKRmbJ36qZfc7LgpSYt/asNGM3V+Qy54eTMU95dNu1b/wzFOd/RzZIfFr7WgvJ+VSS0Yt+cjCCq0UeWj8QxLq+MK8P3CnCrfEay2O82f/w4M7onRXd5mTceZa1iazeNGOqpzOi+2OxBcds7nRa+PH4EXsDVi2qmnye9Glf9dgS1/dXErZbevr/xKaJpe+UU3feXalS1XkRXIWH01KUNn8vd9gwx+YS4e8VGx3sjw0ilqUsF/9iEXJ4iBdml0RIbjlrWX/0OI7P+5owsem7+xpkBH+3oMvMVPsx/+Sk8gsZOm88umabcF2Ez8g6jmFkd16WHgxb+jn/D59iNJt7XapSQPd5Kx2/WHS5zrtBKPzBttfTBer9cAf74k158ejT5aSAoq/WXEn88fLI/vo92T9knbsbFbvjjd8om3P2Lp9lVIgqL/mIBRA4fjoORA30XCUludspHpOAA5fiikODh9yGbw1lANroTguuD1m3S3+2KMkEgdGOBUI05jmRw7dYlgSPW4ZwakwaBd3DoeuEPvdLsLbUxrYg4T9Po1k9pJynnXZwS/0WbZJaPRQtClGAWnEyfz16qanDfKB/yh6cDk2YFgSm5TN9GIR9ohAsUik5DnKioEb0URQA3iAKscGubDNklLtXuYx/JzuaGKWpwwnALogsVC+Vmzrm0Uf7h4R++iH4879XscX4zu7yqqJPENv23/iK+r0NezNsABnfHiJ3GWfWPf6TWlTB3104J59MvhqFZ35ib507yO9PKgKGedWbAMCH+ak8fQNd5g8cvDsz15vv7wJiLM7ssn//96X8uHlUSnesSjQHt7/B95SXb9c0HcTvFBYrxsSVhnPXJ0ESlAgWOPfKHZ3xnbzx4CVWIkbDa8uFPzy3xSjxRKqvhj78u+Y35H89Am+7TCH/XR8eps5G0HWMJXIqPxPm8xGReMeGOUuWRUvnZxHwKs6qA+KgPxFDOcjJk8T1H0rNbRg+JbdfB1rLAel9GQs61hEZ2utZ/epvYHdXNfid1LUS1qNAJkR6N0iHvkfN6ZSyool34pzegmg4HZgpPjOZn19wVeA2YhMEpCOdXjiXUdM2NPKu+XvqUnEYA4/Mh0XhQsrl7XmM4HfsdMy/naeEfo6Cq5aNgtnbozbeb9Ec4HvIt5odkRN3uuD3D3gg1PAWHGs36TRZRzODIbgfcVSMXNE19OwEhvtwVfH41Bqjr1cFh4YFnnO6doYVEO+YUfm7B+ZduYlDeVUX+1hOrz+0H9je7wi9Z5tV82t4itL5ASnTppZjzOnrdYeFnzJLDHxpEdPwArfczIyfSVNwS7jHYWqax8Gf1VT8nWQtybazwb+FHYy5Pe9CSSKObs9Wh4fpx72gXvABzUn95U6sxKPSQfZk5f43q73kqcphPGN22ucndd/ePL7DLNbOz8X3bRWg6vxpG0vYWDvaU5ej2ellLfKFkPIaNB6f2RhjWlKGj14gpgD+X/E8vVL321Vt10WfE6rqI0/eLCHD+Wj7bbx8M8e5TCOjq322SHL6/8B9/2uVNw/bsGGXDwu+Q/Cl0dsRdknFJLFOQBWoz89IGZm+TZfYBe9jkG6ImmevOsuBirfZ4+7xQTkPDBPQW6J2YB/TKxurVzNBi44TV9jBk80XZzsoAYDPXIxqfuR6NqE2GKwlj9xiu/TQABT+vCrt1BJm8SF53tTjfdwyTTk9G7zKeYa9GhPzxidldBSMs/Bcbybrj7RXio+pjFzOtUZOQRzilQIOniTc41tF6b2UGsFUfED3fmIhdH9DDp1/1BMuV+4///eO7q+HFsgntDw60WDuR+MuVZGjcWoLzbp+ywyHLMxo9pECV4iDG9eCo1Wi1wYi0s77BouR53RzHwRllztXAal1a3eaPDzdXjul09g9mLd9RitZkPhHyp68XvwUVtD2QiIR50ojLvPnFb2NB5gRoPqd+gRa+vuCvZ05OHI7b5f+wx2n1qab7lVvQN7ZLwuYO4dh5yRmmbcoZPjhzyM/aD5BcaysWJJrXzddzr0F0ovG//Dzbarl0Tt8///QSYm0WxfA74u/yvAo0d6ejB3g1mSRCZyeR8C+V0BtISlHsikud1mZUw2C/pU17c9A0rNPjHx7SItoa2WYk+7taPn6cRT9XQ9LOa2vQvHLLjDXRTGb/PAoxPrdUyrPZpKWHYvBZLzOXGmkyaeYgoGD/DJk7j0M4ZKq3NH1Nc6Zf5ks30HPQwp0+NGJ+y3M2uTMYyoKX7OhBUM3iB1nwWs09WfIvZ3YdtGh9el7pOsN1wixvf4cXMdIF331zxoEZKK/cN6g2dW80/PGtX6w6lE45CifzLY2w4C8zdnOAqJOnJZTTXODtuj+j9f0xBYC/9eofn918EtsB8367UYF0r2wMFT+A78AEgoc5ySRf+mL4FHRP8K8/hJNO0zMc7ufN4neGmSLk3hXsm/gm0Wd0sxGCAtQlHzPzt2V8+rwzAc789GEByhM0ulHSqNV301G+rEe+Sfez+lIPLduFOO6abzrMiNnynfzlu7lL4wgpj1OO10w0sxn/Ygkt/hbLl/87PKWdCOdzr7FrPxYJt8z4CsUJ97h+lH43IecuKPX1qxI7mho+7cogQJCOLR5/b3MZrKbC9rsJaxa0wsbka2qOUKw/a7IzvTFjQ+OXEJ8OGP99vj/1+6t6xO+BRMXgJHV8ehpwPt2feFwVe7RW2pb+8wPIfvfo/vT0n96n1dhWaF671RU2+1vJgtPFCBc8y+GIvwMWLlO1XM9aACeTrsxg23vXhXNxh5hS/k8PScoh9CBRgogZxanhf/sF//xGQzlfszn6Kvvtgvd/681sX4NuwJ+f7ZxVLdmctZegfkxfoGN1L0yaqrOCFj+KJqy5dtwA3sPmt3bJTpnaP30T/8UT0YUvZIP9fR7R27j1xDbVpOMi10Xkr29ouNg1M/vHZk/Rrj51jPhmbTYlUq5oc/RsktXnGx+ztezBpXZlYuTxt5rBW2aZVRWmvA6+Yf8+LsUYLkzE7pyxGtk+LQDZqGc7m5fhoLRlrx6pKv3x+4Sr+ZzDwQo4CY/BOqHB/fSBMM4Fhlvtl2169eTAaN92//i+ROydgxZ/hY5//rqyqQq1i5I3Fbuu5//89L/fC+vzFk3n+iPD6kTeZNe+7W56+68RFn6Pa6E0w7Xm1ZoadMEBq6pXdcPleEv/+A8LrfgX/vn7EP6yF1vW09JXSWq2x/H9YtrU2fwv320Xf/gfvrLfKjWQP3+sP78vG9k+LuFINpgETsS7P/6D+LRBeALhxOfS4zEKgtkjCx5lG/Z8C5CpPf13f9n6KmOoof+xWzGvupnOnwWfTzkz42Zl/q1HeH1OLuV3q+bzOSRnyMytxv74/eSAHPzjr2YdfE0eNv0RcsPKSTiWeTb6cvFRN2KB8daZGGJFoxroOG2MRZ9v0VzSXw3b+zdietOzsAtccNDeagxmJ15p/ujZaFXldQ9pG1+XWUuJXsANcMBsRxP5KLbuCN33vKbczuqOn+xCU+V3XPzDK877KlKNtzMQM9WrbvyevhQ+1yIkT/WGOvbHv5FWc7q9NR9zrscggLeaIxah8ycTf6EsgnJ3l5M/+oFPs6gKoJpnmTh5Fpv8/NnHUHJD/xfP84k9HPjzB2+u7Znz4+1LoLZdzTBCUjefxMyDvMy/WFntVb74yyLsFbajM4pf4Rx7TgS/090jh83D4P2fP1m/R4eZ7atI5h9eF+hPL6/WyTaZb48FD5b9Od+9admvztdnmPVaZuTN7IxaoDcAmlsT/13MGT+/UvzHd5iW0l3Wv3MzhkTxor/1Yw7YHUtoqvxEjHkvmXNfyKKSHPkKj6ypq5GyEqu/oYn+6Yspfr1HUPLPitibz5DR553uoY0fG2aYurTkn3CE7Sq/EB+xDWKjdo6R0GUSnigbl/gZA3T5ShnlC3+nP7wugdpBgF9XseRjcNvL8JttSrS7n4fc8vY5VB4ziTXabjflz0MPptNfSPY9md2mDG0F+cvsCOezjiqubKoSFr+YBZofV1Ob+CWEQ2DhrUBfaK6CRATO7TuL9ju/m8dqK6DzEQtYWPzc/i8f/dbi4c8PrjYSq4/wOes+jussDMfmFV3RxlFh2S95JxxMLwb7Ji03H9fZ2HRaoRpt9ln2K1zOtbRV0HUcZ2KdH4+MR6KvQXuOUso3VEHzaXvAAMVjINkqmc2+292usD73W/K3fzCgMNEg6ts1C2w5S8bHVTfUZb8V1/xxRpycDwrkL+KQP70//enfn18VdOsVMuLaqZaAvviIx4VvDuPua6kuRxcSIQOH096/WX94QxZ9wfv1qvgAOidrLL6PvFvyUwuTtJ2Y/tO+2SRtNpbyi7SS3fBmDud+cs7osXs3xJK8puLkkEhQnKKeme1uWQ+ZTSG91wm5zHeRL/pf+be/Yh7QMrvDUHJoN6LFjPLqo42zEkXQ9ztGiKuViN6u1udP75Hd6XIO//ZD0W5cqq8WPTWT9/qo9J/Nh/lC+qt+pCp7YNk3J7u5+6K//WIFW0yk20NZLb9vKf9XnwJV/N81BYJ5vDOf0bqblQmnaOu6PXOPmzLj1uCmoDinO0uqQOH9E8wc0vfaZkE4TOE4Tj8Kqb0nhOxXnjkO6z6C81kxye618cL5ofYBfAS4Ev1q7cORiw8JOSQIial0TcbdRiyV7wrNdDUZabe8LyqbMzQsSJb56O26bEFx/IAK2yeYQ/aoMNh7raHv7adE/bBOJOQNgo8rN4j4VD5WFkw/YaSJab8TykRTRhepqVhgfj4V99rzDAGM7pLTWMUP9RCgjTOf8YHBxMdaOR6Ve33tiHuHH5pTfeWg68V0yW7q6nB86G6hpNLuRwL315ksez1jSDwlI66IpGzYkA5DdC++xJWrIpvmQ3oG2ocpc0+HLOuEEBkovq183HizxOdYux2hoeqeROfUquazOhnoQxQFj2MSdOMHHAE9KvoitvFQszqxcYG853ugoDhGJ703cwn7cHcgBnl3yThOHsDmSzSC149tSC9C6cGk7DyS/1qho/XGvwJVWoNy0/Uy6abbAA2+pszzplMyRS0B5OeoYvaPN8m47bU7SO6nZ3Ycp2hYvGFQuWWRqD3+Ov4+ezJaWX5L14auZ5xUWYx6iBrynIy0mhs+aqjS7jp5nizWTcZ3fwZ0WteEyOPQDWIiOOBRLyNHXAUZZ4efB9fL7sastuC8l2cb4Ohv1ixSljr04qql6PdQSrzx7V8yx3pwR1qsLec0b34y9qIvoN+utgjevlYh9W2lhl3YhGy/78WQb3elB+7KUfF0NIaQ+VXjoXY418ykW5bwTSwUQPvDh+zeQKqpOc0OcjW9IHi6jGHXHvWr2u4Mh8rWwBJ6V8MUsvXrScjNv5hT+ciP6HaON8w8Cw3qRbp1oH6CR07no4r6VZeKSrOy74Q8QsXk14diwNm7nOh6OXfYJ0KDYf8TDjTXQe2m/LY/gyTvGiqLvpmIrtvt4a39QopS8dXxOJc1WF9fmODT1eyau0ZHuDoKIl5z22Wz7xgAsV8+SYQHHo6+T/dovsoGwe+dbm7iz2VEnrD/Mn9VGaF4Ws3OSo9XJRXPzQENxregkJ7olgTsRkKuNZOmvlczJeSgh2Gve3sFdbndE5/zyGxE2lAk24JG3J1PMmmQVyVSj7FA3PsKZ5zjwgNHW0t4Ws0j77f9XlJ9tbhQGZJ4iV/FgmNTMmLR0Mim9nI/w8n3Oyr5623Cdo2jwMahe6JvvlqyGZfe6R3IM8m3dmVy/NrH6odSjVr5tEo43Y+aej7LJkurVuloLU0abJ1VQefnzU1mL7wcgSiwJYaLhGQ41jbAiMychV8tqfoc6QDvg8nwpPm/iqJ2LMET7lvivj2EOufLNdiergbR9t3c8Sp7xCh87DdUUq8bNLLNF6uKEwZUlne/rK+VmkJu2TbRmSCiVu3jEZoVafDUbdpkTnT0Qb56P5Bg4xQVz+9VCxgxn9g31U8mHoc5mLO7zAZQ1XBmYqjA9Xt6U1E5z4jf8sqD9379IEQcfJMfX9kM5rj3iHmGN+fPfKco8/bcL+egu3A+WY4AN8d6sygtdtWSDwRYbwKDKmS6hFQPMwnkT9rSNd7xf/karms5YcbmPPL5sgpkWF8rjNvkppuS1MsaCHx1Zdr1aoXT6e3m8Kj6F3NO3zmjT1ku4CYhzpxHYiQi0b0SlvWLxfz4QjPjqEDtUEp4ZpHOqWcVFF6xM2D6/sjV8HieJPiRk8jsXBsQy9J9rPaPrCTacUJVZ391WR262CGhIq+r0fPuV2RMTk7CxKHdqI65iD7jV2V4a5vmrPbpCNXkL3glfToaOB1Fp8tnx+xPmGdzoqcicJ/tmXP67Pm6PI+WqpldT6XprWb0oGmAcGbtmDtuxmw+GsezWhULp3ozI5sLJbiCwxpEltfJUJ5HR5XPQUz7c+aEw8rffkCUjRwf7qFSjS9hU0MbLb1UVaeu+C3nBYC1KLx+75jzRbiNf+uHOfYsovm6SmLYSq5Fovy9Dtm+qhrYZ5cH01HvImlFpRKqQumwpJ6SbMaWef+HF3/4xoUoG4FlWKazu0VZ4bpdjC4S/REAGkDlv+d96xK+2j328N5vK+ZvpLGbsYkcsPajjDe2UfO53wwN+MxkeA6fRjas/B9Gp1uyodLraPJWDxMJSmOzJqbQ+1xMhewIzvP4YObGFDJqup4A3kM2MaSPnzlS6XGE9fVmEHuSl97LBaNKkJMb0bxPF07rnfxB9WHYMg8OLBvM5iDCSdY2RLtea3M2ds4dHqfdloSJPYT9TdXvUO37G8nCNO/Gjm9rWPCcVp/Z4iKiZg6nS70j58nXk6mPix4JSVoS7/jqsn7bTx/YnnKPWDQoEI08SpXbOvLJY83akH0u6axE9/KL1YdodrRRaIsy57ImpJjLajSDTIE3W2rKTkrNZ2zGRzB0QSEh0b/meDF2JWjzzyIGT6JkPqzGQl3FYs1MgfZolvjKULp8JzNLOcdoztDLQ4ZhalQ6FF/OXzd/OVWXzSRSbH2ZqTX06C9eIqN+V6M0goXAkoDttmseTpt9CCjnXkUS020SVly9KwS7lY7XhmklQ1g2GDJrqRPuV8usof20xKOgMef3FJPRtpsYnkmXMN+6oYTH75WGftQS6YEoBaLKhK8w//YfomlKFr6/xyYCS7un5OCRuOL67zBCAHBjZsm0bPNb6qCzdZYQbFdOOH6lFkNDV3sMwm4Ih+vLEpCQXEvKTcfhvTQmR6UH687MVnQ5J2Ub/OVDZqttw0fD2zbqSbZUosHrWTXNJjvCU3RVFnyTj1lX21SChm4D/LO0inOjBQ2tN3vM/vBqrGTFgtNXeuPhJfuVlAtDC+vml9JuZk3YX4ylNzouP3TTUINPSrg/o2e1moh3rAkXHUdfNM+4IgYLtWSdPWJRHVCRE21MgqqrM0mDfucHzM/WL7Pv+F5U/eFsL3j0zdj1oWignG8l0a48r+hNu4tISGqRaMezHo6n1WzBxe1CKjwK1g0Cyc+w3uoCMcgnQrNnNT00+F6w4HuoQu422VJz9t6xaxEbfLTCpeqjCDK8Eodf2G97LYe1jJYOosGxExf8BqPsgNk39ZeM6q/ByJisnI7N7tVNsKsoNEw/s1Cal/l8PydHiSdn5PGSf93s2yXe/vH3UFpacv59fzG1JvEsupzbua9KFKnmBQv6swgpsWoM6an8MjMzKOJF/mnQbzeecZuVtOPaz0+Vsa1FZn6jB6e+PdfgrDY7FuV1Uo1P6CNEWvqi8lg/EE+fdQMBCDdi0fqGqmsej3CRygtz1pHNJYmvNER7+8jw+n6phu3hg8Ejjxcxn9bER52QEnhztEh86dfotyFGjv7ur0XrLWfiPp0hOwo/gn9tXtGn5gpytW8SLO22q6z5e56pZF7wZuft+Nps2uX+adcFDAQ+L3xdpb2fMhIpRdf/5OgO5qHy6PRdf5PuczFSoEpjsGOQG2j6pJYAZ+/5YkZ2emXjFa5HpDiXO5XeS5c0cR/PgO98QyxHunJ+qNclyt5EZ5awnPs46/2MRE9WMErsnTmtfC+HP/46PNZLnbrW7ZGPyxXmbtCjf/FGwyV/fIhhit/1ZMGHjg55FnPZseJ6HWHRH1hxO2qy/C4aaGw/4sKfSTabOxZtPRpkBC+eMHX8tQX3o+bSaTXuOH+fikDNj6cH0cYzCzk9aKmSW+FyzkC7hrxNihb5+G0vz5d383ujFIuGJiyjrdZJqZ4foX3EOdlt+WgyOJAUvXThRYyVaWTzc8U8uDorHf9WVWmOa6bn4FGNkCfMYzfh9/2owEnH9HU1aTd90qFHAfQ60YlS8GFISox2mfTA8rEmaL2NsQCPqj4xfcXnjJepmcLVUXU6gmWE4mMrW5Bs2Q8v8cfnhssGuHm9I87h5WdUC9IzwDtM8T769h1/XX8eSO41Zc56902m77GIIML6iq63bz0TPe+YwrH5rJmVH3XO+hNogE5TTrzl+4fu+pCUXfixCdF3zOy33M3/8RNfO62T8SvNH/SwVi+63ci8otOaBsr0g5F2xGiq6ZbJnz++SQ8WPoTTro4lddEHTPNqz+R+7cnoJ5wiEs7jr5q0XnVgDr49s6Q4QlwNphLpxuaM3ws/Grt5tFB3zz2G7bKuqO11EfB2OXehXa7/9O928QPwZIVRNb42BVZj5cZpvk7FakZtE4AscYyno9aGvYbpDH96/eGD3k3fjEUoyMMEc7Jfc8rHuQRrLwoM60rajX/6aq/gH4uEoOlGor/2sOAvwwcmh/1/AAAA//+kXUu3sjAS/EEsREQSlrzfJgiouANUBETkkQD59XO43yxnN8t7zvVFOtVV1Ul3qGmanO6lGEnAs/74eQj86XtBybZflqC3ITxn9I6439n2BThqGaxUdMan0671/+kn50WP2+AdedOv5Sjr732LVtz8WCfM+RV+X1eIhH3wYWsrDr10gq87Vbr+pS/r2eWkYZxbHGhVVVOA9xW83Y41RvssqYluzQ3woBhjQ4hG8A8Pot6+kPV1a+KGziUCtXY+ULMyLzmd43wFuDgdiZQ3S/09BGkIj4JpUBt+rXgVJiWDMDlqWKO4zeecgxbgD3yAkfujOhkOgQin4hv8w0eCTYODkdjpG7+dAfOady+/VfhG3A9p9fo5nGd5e75kMU54OKi/tZI1zbRosPkP/J8/YYTjSlXFG3wKXVGBKPgN2DpXPVumWGrgCK2Cor/34xdekzf+jqQ63O6dDV4hbQ1M0eJEN39SpxbBcul0MidLXs/IvqbSIt0SJFw+OD7EZRaBV/w9UdMy7XjZhS8BINDIWIv7iAk1vMzQ474yPXk36C/GL07Aw5DfZDbg059tWyuhfn5pSMIs85fPfQz+8JNu+l4vsapUEIFWxq5juIx5jaTAR11iIrug1Fl1Bwr8cp5Gsep5w7indx5KiWBQ8zfrYMkKyZI6lGVIbK4dm3dDjSD4yDNh3OhufNvP4M6IBYwbwRk+/W0kcPPb0J/e/063kwR30fzEum5+clIezyEcB8nb9pcxLEF9vgJZ50pqLiDJ6S9OQ7DTmoAW0SoN5Gzt2uPTOJ2pOogD+El+SaCmqQoepepZL5KfJkfRXgTs5e+TP2uup8Gyjr/kfOjebHWMxYLRnZepv/GBRp4PDeB/H0ifP1TV4566Bdj4PD0d+WWYf6Lcwvxj7OmD6JI+K8hSYFtePtQ2dSueM87jIAI/HbtQ2bFVYNcIUl9pcQqjkK1w9FJQLbs7taZayieSQAtQj08oUuFjYPqwr6C0jwhGU9TVdPMjwQSSAP/5kbPr7B2w/KSemn/89YBZKzmv74TRDzf+8MdPFb0uqV47B8C+aRLJF9GS0Q6yyGePvHJk/veYkdhcvvHPGnaW1M4fmYD8dNT7Vhw6uMUP3TwofaGXoAC4wEes1Y9TvuyTQwO1mYvoaeP/n1fmPgEK6heB18Ie1hvXe6DlhIAq6d2sWVaaqfQ0bJOcv4LDhLsyBX/6GhsrasE/vzD0fR+7CUpB/9urEjTxiqljTDRnNFJF+Kr3H2pYgshIrEYCuN3YDZ8ik/oDOacrHKC0kv5W+vUIqWBJ9rOPqRrLn3iZry2Bn7cLNr/XGNZV+HZyHfYxEZOGgjnh5gb8yEkhe88jYNS9WIQ74ywQ4dJMgMSaDqVAxr+//FyTRkgj+OWQQxWolzVtb14G1Xfh0eulndlyr54CUGssofNt5+RbfpGk90p/GJ3GuF7Jeg7//K0Nr6x8FNcTB0ATWjTfnj8rcjX7+704sD5f/08vgczMcopNNNer4XhPcLe8gfBtcQLreSdWcM6Kjp40ROouMi4pLGs3x8qcBP7e/fpPiXpSho42Vw7U7kZHSq2ZUm3Tv+vMywrYO15PTc/x2apbXQC9kwT++CdY6tvSQpIfNfw8TXt/bvfpFaJgGPAf35q0b0fg6j1KqgLiAfGmyg58r98HRvfHoP/zP156BhB3zzt9Dc3HFbYcl1I/P7/0aZ88+X9+TbDt5zVTr1e471iLpG/UDMs36RD8kdhCwlRn8dBn3w6qGguxWtj8QJAODJgevjI6zOIC5g1fYSaYD2pY+1s88bFgwEq1TKqIj+NA/vz5fnrOGN+tqF5IokGQ7193jO/OvqZ9cp/hkxkP6ozlgc1YmR3wYPMXu45msX/1gdnzPAT8jBt+1eMEoRIZCMe5RtjmdwqwQ9cE//mLh6h9zX/rT6rbdIvnq2oosJcnh278C8yW9Z7//GB6dQ9FPL65XSvlCfxRN3TP+V9+B/Fx+lF1N5/Asu03KO296p8fSjL1mkjH20mk2vA5xitltQMLvpExDqC+6ZO1gQ7Oc7SDazj81OnCw7nvJeqBwK33G17K6rvb8hU2/EWKviOM3PJFstd2ZpUeUHH821/HXPwM48a35E2fEE62LX0dBL78wwMEvF2jLyCQWri4pYUN71mxX1x/kATZiqjDu3VOk3e8SmV01PE5hjpbP6ImwnMvL2gp/KxetxPQIEmjG9Wv0ATT564Xf/oZXx9RCRan7Uc4gW0W8A4Fw9f/ZCuoy61GVdEy5s96LEqLW1kItqgciGGfr1AQGoPmFRh9oTy+e0jBp0CrLghs9Z0TB5TIQtjUtAr8+SHy39/ocjd1AQ6/DlwPzyP987uJZxsF3EVjisOgP+vsnS6VhPvxTT32Sv35cZwNWbq+CUX34jdMuOUa8F4/D/oyceQv++QpwFmSU5pL4n4YuvsphX98xZx4F4wD+yF4t6wPtdXiAf74rXw9FEckn7hmYHbXeMf1F7Voqw/5ayN0HaTDKyTHehfqVAzKXl6PyYhkbbtTJKAfgd9XAnEgbX0qPsWhAsuPbygOd53PAJ48uKu4merR8R3/4eOf/0Ykeqf6cisbBNdjyWE1UTydFVnXQXunHP6rdwJNKeBH+Zqkc/g72LeZAcFLTwE277sgp5zPNFhr/oAV460Pcy2uhswxEFH9Ktv5fNlJFuynYjvRcZvruRIVTi4jXsa2mklgVXy/ADYhd+o463XTU3Mpb/48MT9EYatvTwH8q2f4T9EelupxTeDO8HuMVX/cnkfXQ/tZ2Sja8hdJd1CDT2Y90Kvc27rAr0EGdlEfkZUGbyAE6mzIf88fyY49LDOerb/6EtoF8mfzry4SbOaMbfhyyP/8BLlHi4Cd4neLpyEVGvh7wI5eWp/Lh3d6LOHjYk9kPx1IvB6mYwnPXkTJuGbRMGJVKeUXb8o4yB4/f3XNO/+nP2nq8Ee2Hogrgs0/xE7armxG1r6H//QOnb/1Em5nesZRu5LDFi/M+U0dPAoat9VH6oHR87GCH5oYNN/8t4bOcwsBn0X0z69i1hcoUCt5i8hPBAcaPWcN6uchQeLffv2mRQTqt3bY8L0HTNrucKzHj4E1/SDmU1Cfkz99TE3L9uL5Ay4CyBPhgW1ZfeWzp3cbvm19ee+ZNcxnXS/B0ZJL6pTn9+bFGhAmDjpjJ6lJTM7WU4DVm6p08x/Aj8PXBC739UmdcZslw2apBPv0k2Avzht//fFLJf/V/za9Gs+6F0vSUBQOGZ6CMSxT7D4l+Dm32HrEVc7aq6TANZtEBCXnUy9e97hK4jVIt/qlEt+blFnQwa83+lSWwOafGDz//CnqHg6Rv/ltPdj8d6qBNN78jfsKgfkJqL5yAmC7AFbwdyIhdju7yOdkd7+CaTw0SCwjDQix5kOw1asQFUk/TKdGe8LFPws4fplxvDSpCmUsCRNWupNa77VvegVb/Zbe3saeUXLe7pC6ZoA3f9z/XT74KT2TmqJduf/6oziIFtgf9W1WaNsPf/wXZpdmwpFf1mxOdr9R3vxPrATfYPir78LNb8RZjRV9P0bdCNL9bG99f1T/oA9y9VefoFu9KF92bijIm/9Ijlv9fPnLfzutDVCf16H+x3+BzO95YqJgYdMYpVdQrfoL267xZeuOviK48R2M3Uio6fb+UmamOU28xztfTYc1sNudOqyv8j6fYxNV4FmJPnXG1zaLybqn8BX/YooujNMZu3w9+FrLFz4RXfIHeLYzaO0mFSvhdBnWl1h6cv7R6L/6LjPbnwP/rzMF+/99pqBcqUXt9NrnK38oNXg5iCtN9fYC5sR1EWjNsabZJen8heiLeOg+4xd7T/MaT7dg4OF9rmLyYSnK15BqW2+h9wXrmF/zZl+8Kiiwj4j1oLEZc4cBwZh/RFh5vRyfv2qPApjD4U0OeLrWq9M9eZhPskPR8OL0VdelFJ6jkZDtHfxFmL6StBPHEt/hFeWCDsUrLPlHS5o63ebv9lYJ9SVVKRLKMZ5ZoYawEZoFK6tpx/tTPLVg+3xqMUn12fVw0OCY2TIRK5PFZPT2GcA3JcV3pQmB8NG8ES6e8sYY1hpYIbilkJ2eKnbpqA4/MuwQ0JVvjBZgAH9N8YxkuusbbMW66y9AU0dw4w4R9eT57I9Jb1TgHgQNVuL2x9ascw2olB+MkZ/m+TK+hg7muDdocD+5+XrAIoRZIqgISBlXd/e4SWDUJXvq9qWRj/t3JMCdXFywOTs1W37vwgCNp52w/1EgmIsGBHCCJwNnHCTxoqddB+dX8CDzkFr5wtl5CP3W0eiZgVVf1/gswF3URTR5KGe2WoUfgn3/nKkhkBKMxSxWMFijF5LNUx+P++JWwexyGxGnMy9nz3OfQvg9Emw6Tc/mwjuKErR5D0fjw/QPoX0J4cXfH3EgwXO8KsEoQAn3PFYzOc2nRQgMqMPeRztlMeODUQQz2J4PtYNj4rNPnBvHkVxtbEd7q6YlPkLoGRrAunpoGYsP3Qrn2yvG5rLNlx/NKpEZWTNqPrhxmLv+pEBnOfJofYtPMAcoq6BzkJ7UDR5UZ8ZbMWB9xy9EAmdm66mROQnn84nqOuD92eCpA0yhURGUjHc+eVPYy8MruGy9ejDoWK1H8HS5pDQQHQLoDq9EMntTxfqvzmpqoZsGHS5lWM/PXT0b/NcBSnShVLPMX76OOsigaWsO4oWMDUQ9lx78RbFPrZXobM/4vINlkmpUH7E2CNVvWWHoJAsSYnDX2QFtsz7S2wXrKJh0tsMS2Xq3mRi9q2hgc5wncD3iA6lPxY3RYT/zsNr1ISGnWfCZ0WnW7objO2GJKwIWD/Xz+C7LF9bf3G9Yoh4p8G4XFCNdv/hz8L4LUlRaCsYrOYNRsO8VdCtSUQ1leGB7fe+BvskiAuJWAr+jLjnSTr0/sOcM/LDtdwEcQwuSuny+fOqefyL8hlZJOC3eMfqxL6t8vH7OVOmaLb6ncwaj3rygfXH9xuvtLIhQPQYDfrlcPoxi2mUwqr8Kks5KxuahSxr5nbKEutcsq9n8Sjt47Z8K6vtIBYti32fwGpIn9XryY8vLzkrgZKZJVRssOtk1JZSRn7dEcCtzIFs8AKvoMLaKZmRzUnsVXG/HJ9as95LPxSyWoKbIJaATK38iHpOgeih8avR7rRbCwi8h5bMMW99pXy8v7Ybger672H0fZsZKvHBwp7sy2inqrM/nh8jBu8JlOMjPwkDXtBHhu9dcbLi9nBOfe2tyfSt21BjOfT21hi1KJUQzRrxzBht+ZpAkKsOBrUf6cnsNHuT5rCJPBFk++B7nwcUJVWqbyp6tjp1XcLH1AElccNTp9bDToKnqT8InWB8Wpt1GSPk0QwzzUXxIO62R84pwFOFQGRZ+unfwMeQcERF9sv7Rpj0YDqqBeO3N58S82RCASwSpGqd2zAygptA0l5gGnwoPMzjzHYzvP4QeKV7qOdAuCCxovmJfvJ7z0W6kEfLwd6OeatX1xCtnDb5f8Q9xY62AmbkuhBs+oJWYXsysrEhgY6g1Rnf5PYyy6wVwfuw6avlS6X94O1fgMbbO+GTd7XqLrxRWh6NFn9v7MbWaK+hFUY5+v+Srz/ZDHGFdIB7tZKro68cNCOBIUtN8NdN8ljUHQev6+9Bn7d0AO2gGAfE5uyMq01KfTE6u4EUYZPKBauWP2Ows+PiKHFach+qzoJpXGfZAp059nutFy74JEN3TDgctGcHU9lYF9WMnYKd8bD3Ajh8CmmNjIbKt5zdufgVck+xJA+vb+yNRPiWIISqwH0udznL7UQLpQ3Wsn4oDm5ZCm0EcO0eqvxEfs7MSh9D/ihV2xusYs/YVZlA97ATqMX32t3jd+rTEEAlZJ+nzuysSWIdcj4TPJdfZFR8JrPxrhZ7X/TL8Xt1DgPJlsrGrzkgXYJAasLx6FVXi1gV/+ACNYqLUePFJTPMg5WFl8Cf0/rYDo4eLoUieeP0hyG5KPNavnwiet+eBup7J5yQMEToWl+WA5nN/i2chS3kQaKTFQdhs8/CQG8L2tEvJVAUPfW7WdwD5RPhh3D2O+qRkdwv2P8fGafUGMQkvbgXim0SwjmAVr18li6A9xiNFtTT5C/aAI4nKzsPqGgfg3/uBnJ3J7yaZenM+g14KpHdCg/RY+BPRjxJUDUlGUiIq+uGj5DPc8gfONnxa4yy2/vbj1guN5BPonASS5xphu/1ueqNhEMZFV1MlysZhpTUKIVLcAolaJtaLU7gzGFhlYNNVIkAmuCQwoecLdd6/ISbVg3/CP/x0ZY4Ni4LyGQ77sMGF6BA2BtolgKqAr9gd0iSf89dBgkVY3bBXqD+fSccsAJ5dA6osi6TPxuvnQV0VHOqUqqXz7oIi0NLzQgMSy4BNrlWA6xiU6Bg8sD8doWgBXeUd/PKflk8nLXiKP9lGNGgjA/zhC9jyB5G879dfGJ/3ULWGBxJYG4PlF4cWnHBf/vE1fdbe5wau804ja+w1oDuvAgeLfH7TfMNbUl2lQj4nD4QjOuF6ddrUgeHJaAl4sTZeiAckUDxqlRqyzdeTln2vMPTMM5oy3/DpdNFXeHjeAWmqgOpbPqjgtCeUHMyk9mesjCv8cVedej546cTSVA7uPyPABsRGLfzxuS8cdHLkVUfft+EpgI2nnHAhNlc2zwegSDczNKhxaGcwHfXVkY9fwSIMwSpfm9Aaj24v3+gp6JV6PDcShA/aOThIj1CfcAOfklI3DcXyQWLjUzYsuNhqQHUtJmx2t97tG58iYnVXhoWz4wiWunuiV49UbF2n2IH8rh8RYJM8EH7oCexr/0G9syKB9dTsOch0eKNXOTcYQ512BcEavigKxNYfvcKJoMCsEzXkww/Q+FDO0LtpIdrD4+qvryNB8FVaCTaLqx0Ln8JQQCntAJnno6cfHumYQes6fLBlb5MRf4WrQdHFO0Q2vPjDE5DF3+C//Iq9i0Ta8g9F2nfSl4sShvLtVB2JeE9Mfc9dbhGUtN6jDqJPsDS/OZQD42UhkUqGzibkzpB1ofkvfvZV+s7glr9pivVRn+9BlUhhc7z84YE/ypqCZEE2KyLM6zmf62mSgOg9+Y1/6GyNLq8Z6idr84Decbwo79wCnmw9yWFSBDDaJmdAkVsrAkXR0A/orVylWDitiIw7h00cH0vQ4YFLzWV2/dk+SArc8gN5tEYVs/1+seQsvajUUB5fn7mvSYKxgFdqmSjN2dxmPTBl40rt4+Xhs8eREiDMhvhPz9A/fgebjNCTtafDJBwnBC7O9Ygd3ZvY6nRXAbjNS0PgoxRgSS7XEDan94ka+0of/vGjy+x31Pc/KuPr6SOC4/V7xt5rAsOsdXELqfVR8WnrlT9VXKf97QdsRu9rzCoB8eDysAhaxOYDJo/POijYekK66p3nK7SLGTi2OWOT8dd8TWdQAVj1iBoJruuVP3QKlCVtTw25hsOiTGEq2S5iNDgnvs/c81uUc+np/Okxtj6mrJP8d3bCWg5if4kMO4X06GCqrvHIiDNFHuQFXyOL/XJ9XownA3j7S4L2blL6c1A8S1i84jfiDuF7WPu0dqAYnBIcjHge5vfloUHlLRhYO3LOsLzj1vrbX9Sy24ht+lHZjnm86QlIo87Six7Bb/wpsRPg3zC6ixUC/vp1EafmFNA5jhPok/RAZPO3xgt3eYWQZMoDySj6gH/6eCeSkgbz7sMW7VhDWdThC79cQQEHkVd6mNuSRHi/pYzt9scrtLt5pK/KMONZda/wL7+S/aLEoOfPvwwglAEaHOdEn4DmEtiNCGI/9la2bvpC3vQhNV/twsjx4pWwsTURLWs8giky7AwW3CGjNj6TgTzasIffe+Nt+zcCy5j+OohssaXZYsv1aglGC4eUKFSRuc9ArIsbwfic3qkabn0tnlSx5DkdHeyz89bHZ4ufcbiu6Lf/TfkcaA8E3V9woFFG94AN+1mAjbNsdxI+D0Dd10eCd7mUsXuxtHo9AtWDDc+fqfuw84HFXunI5Z7kaG2hmv/zC9Sit7HpdaLO9o5YQOuZUfTq1MWfTq9ehCQ6x3TjU/ooF2oJ/bG70dN73npPz9IMRXPcUYWdm4GltR1CQbYrcpD232G+ZaEFraLHCG74vmaa9/xbb2o4muhv+SWBO4FT0FFVRPZNgSv9228IwXibX51Ukup2KwqfdAVMOkaBfEyEhZ7MXxQPfnMoYGMrIuEvNqvH4Z01f3iJ/SzOwXKLJwFsl+9pETonNhV1EIL6NfEYX/2v34n2d4WRs8LNb+n0NX3wAVzehxCBR+4zdm7vEgxLvyRMGdx6lA0kwfpCXtT/jk3NRF7p5NCzz4TxjQP246vu//IxWbf9IJxmFsF1Tw7Un5cyf2tBncDN7yCQfH3/n14cuBURyc1/bDbX7gmNaMywg76Gvi80BcJhFx8Jtz0P5nuCJ4ck3VGc4KRm5yBtpGSYL9im6RLPd7NL/vgr+b0PMxjvr19/hD+vRsu0e9XrsQhKuGYSo/rlcvWp+HavwKzbkchirw6Ck2UCcJjzI6vhXgHb8Bk8SB5T62xf6+liZxHY8jPG3WLFK5XtFtR9kZBjXzbxeD6DDgpxlVDla9x11q0T/PNT6F24V8Pq2HH15yeh/dwMbLkPwtYF9kGIGOBfPZ3WHklbvOLT+BD8786ZiWxWlwNWx1uWr0rberC1Xzq5LAoDC6+cFWjdxIxufDT/NdeZg+FX7GlcZeeBGpr/BDgK6+3ztWEfCX4ioXHaYdMJ5YFu3w8g/uHh78Yn15J7V/Ap15sfYHkDK5sdB7Z8h2C2R/V8biQOljPXkt0lX8AfXzzGMoT0JR8yQPrtzke+zR49nk5NvuCH9ITkEnY0US83XRCarc/o/dfTgOrMn/cg8WCuuyZFAxty+jAnC7g/dMDK/ND08ZzKHfRUvaXYFRQ2dk97BIKz8IQ/VVr9UaY0g8aDa8h4Tnx9TkIfgQ3/sGV7PVt+cWrAi3lrqD6Ai7+OB0EDGz/A2OVATR7vRyL98bvlfmE6De1L9M+vSfgVxbO4vkeZTfWHcLV3Y6OUCh1kvfLBf34BmbBI4E2pMLUn5cr+8vNx84PIvCyS/48fcO3njtEpIfrGnyAUWZVSpPkff72YQwJO7+1etZSF9fy8mU9AFWOkwTEJ9P2mp+C1IgJGt48F1sqTHZjl1+sW7+f8H/+9lvCKwLmahhXayQyfawg2faLF81V7PEHey+yfXlhe3UUAS/2dyW74OIzNxzsEOIpqRDe+uPzAJZPLwxOg/JH7gEjIKeXPq0uog2IBkPG8S8HmJ9F/+Y51zwQaSSGhlU506Cd4vErh7+eR94bn7HO8E/jLtl79wt6rWa0ZCNQ0cGlqWmVN+nUsAC+4GjULLdN7etEiqKLsi/abX7mtzxXKL7RgTV0Kfy2bDkGmczeqnsWCkQhcM2mb+UMOo9OC+Sd4ieSB/Y8iAfIxOV60EiJKE6oP/g6MBk89mDevJ9aOlVIvON05sPuQLzYLTfLXA1wamM3+jHhnnfK1HKoAbH4kVTf/djq9qu3MxidBO+3u1exjX2bAvQ8Ntb/64LNehxKsDOGE9RFXw2EOzld58wP+/Il4iQpNk5lDAsJw6uVH7x0nEKnZGeuVcK9ZDyX+D79PB7OQGbPae//n/1DlUV+GkYU+hOYiBPh0srph1eF8lf/iAzPvCNb1mD5h471F7PUZrGfyqhxIf4OEzW6YBuYeaQA2vkm915TXdONVsP2EBVW/Xg2mRXOf4Clp5uYv/3ImBecGjOeDg/15UeJfERoQ/vm9eu1ZjP35CcEudolcNjfG7y+PEooBTtB+Dbauq0oRSRtfItIVnuK1534zVA+y8OdHDZMdBk+IZs5D4DOv/hp2Dv/HHwlfOipbxrWHcNvvGB8k7K8hUBywm3dXasXg6NMaeA6I3nyJveddH9YvuIow4JUdfeSvwp87A2XAeFFjy99IZ6mmQznp65Ka0IVsEYZfAIU0chH4jsbQzd6awqQKB+y8f37M5uCegEMvAXKg6TkWvlnegstZaJDID+swS+sOStNKM0KHTwfqv+cBaSf+W69JMKsW/vFP/c259bjXrgEs2CekuFPP/oQf6xNmD0tAjaOl/tw+lid0R3ogzTCtdWeuZQEah6VYXWxa/4Thh+BF/xrY2vQXyTrXgqHKFzTd9D7deoEDPrZc/KfH+7U9OzKv7hO61Q/i8X15KMDDZxPr5fOl75eb/ZS0rDao8Vcf8exM++cnXM+HAQhTNSvAS9eZakg4/Iv3rW/0goMpnwCpGq6A0rQTEYcgi9c/fsjnCUfvehrnv/AqPsEpTSb83J2zmqk6EyF+VBNVdp7GZlnweNjhPsV4vh7yZdtfwNwqLQvg55yl1Gjl/jes1E2uU7yGF7eE7Scq8Cnoy3rzM65w86PxyVi0fBam1IOP4c5RZXZ5sNUvIkh1S6Xm5WflAr+OI2g1ipC05B5buXXkoD67AVZjnuZs448AVh2ijz13HOgnOBvwe232NEgXNWeP45dAgUtu2Ipfi06UtnVAkWkqNR7FHbAuoFf4Ww4Gte5KAth13muAq407jQLtoi9MexHAr52GrbvCgz89DPTZD9B+hVY8269DBq/N64q1fZ/n86/WFbDtD2qUzpstHHhIUDpJCVkyWYz/+WlbvqaBZKg5v/kHMNizFxGcaxcvwnEKIEjDM3U75wfmq/sq/vxS6hz0k/+7mW9evtlKQ43Nf6WxV3oyRQcBmx02B17gIwdeBC+iSL9p8aHcz6288d9/3++QT4UD7a8WYO8yz3r/px/LTLr9rUfMP6ljQb8BJ4qT3Q+sKleu8rD11T1hafCX29ZnBIelTh/0Y4L5PM8hlBhX02Dz84RHm3Z/rycNxMbw/diPGVJJpP/NJwZwUygDdqFqc1XjPWfHIVyl50j95/enL1pGr1JXwpXMnizEf3rxn/465Xrir7umg9L3cETY3Z/M/LA+OgSXdjuznj4SnaoHoYIIBgmZnYeqz/kgB3DLz9i2+TReIs0hRyB8L4T25jNefna2Qq627tT7cckw3vlvD+8n2SDvKOj9f/WE8Cv15Odedvo4c7IC2Cea8Sm4snw9cYcQNsfW2voWM79PdUkErKwAEaSYB7N7CzjQ1dBGy4drayafBwfIEV2JxJVtPjFw6YBgqwk5qjPxVy4giXT9YR+9z3Plz0MWtvKixbd/r59n82DAP/1vjw0Bi/KOLcnY2mQhZciGRQjGBixKdaCGs07x2B6k7Ux3+8B4cEvG3HVCoC4CnvAPZWGzkIU82PwmrB94lq/91mCHl8WAZlBU/YV7Jy14Fmik3lZfWdPfUsI/P9Y5gIfOSk/owE+83fGml/31zw92S6iRdTxOPqsES4DlDpk4LG5pTONz70CB56dNT7v1CLZZMq1Jano6VeEwBiiq4DfhL+hASjX+JagIQVh7e/TY8EKgrsHB9Xg6UMV7k3w0t77zknq/YL9pEsY+75shryutkHA++GC1qNb800tWc2T6iqDYguhULlgpBnMQnDb0YMVnFlk/s+HzgXDjoamqT+xQyfCX42+e5dNzr2GHeoQxuLZPuNSWua2fFc+eoLZwPxXm5meX8XxF0SpPIvmHJ2wmylSBSSoaqt3rdGD1W+Hh/bQz8EmfXsOq/44abMwwRb2Dx2Hd8B9koRWQ1+Zns89UZNCZ/QRveMWYfPit4EX2T6r85rf+80DSgRDtLbLxyXr5Xa7z/3emQPjfZwpGmfbUanJt2POagkB2Hj36PORuvqZ1FsGhhZSmo+0AQb2cIgk8xg/1xW9YL5O2d+B8LkKMD5cnWHg/tiS3wREqb/Ocj/JL82TKn2/Ylo+aPt9bzwP86QkQ+3lGLsyi2ILgHAjUPRwPgKrtMsuv8dRQTZb8eP8+qAm8EK5AfXQLBtaSJIPRwh2xog8yWOjv1APtMuvUzSSJkcv1GMDPiXtRtd618RLveBH26UtCPzl0Y0HXvh78/BKZyCf/U9Pje7qC0s0e1DbSKV5EgV0h7dISJ2CVwErvSwqnqrthd1af+fx++iV87HcaxtO9rsfu9VpBeXbOWL36GKz1FxL493ehvLx8lpYugswpLzRTBph/reUeSj+7f5B31u31xYmdFHj+c8TBGHQDvR62moJ1VulpCDaNnYkKnIGSYmf/FOspcjEPDh9Bpk5Ulz7j9HWFB+tyxdrurrG1lDJegjvewFnZdcNc13kIy9O7xJfHYOiLcfNLeHwAnuxz+vWXDI8BJO/hRVXRuNVzeV0DwHPrgSLscjq9vBMF5kiC1LgnNiO/c/4E5zsAhIBY92l4hRWQntMNu9akDyuJSgPSa+tje1dy8fKM1gxiRaE4UU7GsGfJB0Jtd/Wxpzq13t2WZwsL/VDjU+9VA83yJ4R59zIRMU8aEzzfNGBz1xnZS6csX/kmlMDhw8uI281dvJyaJYDgGxJ8kU5ZvDKB62EDPQ/7t/lYk6qsU3nii5G+HkEP2OsjFJB8Wxnj1rrk4665SxB7ZkjVNu3qRWouATzGhxilH9LWy7XxJfDUuwR7iXjxF5q+C1hg8kL9kfqAreXdgmdzFbGTwipewDbfHjaPN+FArOsM4wEB4Ish9r6qV889fGRQ4gIOKzuH1tv6ZwAft163ezXO2a2tVxiS+kEOWhHmo0AyQxq6xaAq5PR6/y1LQ1aM35VaYyyBFU9ZAY7yPccazBmb0OiV8PmzY3za4nuNzr8njD+2h43BKcBMqa0AwEOFNI2HYxZHxxSOyzWnXoatfH+glbYDJreSY43vgGrNjCS392as9dHTZxkLeIi/kYsD42b466fown/PW61KBPrxlF5hfC5K6pemCIjWH1tAIlfE6JlYel+gtYGFvq+xV9mKvz/QXoMV6U/Y3weFT4vFD+FKYICkX8V8QqTVk7fvS329rmLCzDOBXFA+sRFvHCIKzyWUfGPCj73i6ePnvc075NAdO/ZejlfNX1N5wyf6ek2xToL7d4QXt76RY29qbB2+dgpHFLg0eO1oTWlTBECvigfFWH7ra+qPKZxCXqNqao+AWmLVwCaRZiS786K3Gx7CYu++sPX6FcP63PsWQGIIyG6618Mqa5UguwYdyHISZrZiU8m2PikdNm3zpzN5/yIgKMkDHcenqe8jcWgAmIIAzYfwwlbrNa6wXcQEpw8hYMuzL6Pt3iXAzikggH24mZNf1zCgJte/BoKETwJR05+x0VqBztqHiMAehU/8CMiTrfuhQrDIv1ckJ206LGybb5oxzaInHUrxcou/V/i5kBirw+FZ046NHlzaTECdlDYDOa8VOv7ys03drvVjHrkLL7tANrf8UdW/aQ1FMB9PMvWasoo/71f+BFRCe7LHWeevFnYaGDxFm95g1tfz+RD3f/+PVH67B1Ds4QhVvrDRKnxlfSqeFg8GobgiYZzfNfWAOMPYJSNV9OHB6CV1PSiqpxz7af8BxMJKI0fGamFVfS9svWvnEo5scNFqxtow18B1IP6GLs2/8hoPVdYrMK/eX4zcvtMJQnEIk+vdonkgRTm76+/i+LwUP+pPic4OFyUP4dkxW2q2Su2TxmIcTI3gRC+eXIG1e8+anDvyk8Y3lQxryA8zUNt5jxZPrPXlVmlXmYWRu81btXz6+foWTH9DQPi4POtLRFMCfStZ6PM7XNgMu4sC5dtnpTYHIrYwQ51hjTkX23/n6G+67sEJohdi8OKBjlfEEArS80Xd+PUFizh1T/EPj61O/LKxkr0R1hi6+Abkjz8ecwDh7nRVqWWWXT3zihgBVfd8rC4o1Gdjehdw/aI7taPfz2fJUZVA2zslmnpPqw+N44t/8USWDZ/WWZxbWGGvJfK12vA1GDWoZFaO0f5mxQcu7zqYS+eMOuVtn5MjmTOYvY6EBv3+prM5dxNYcvuCLPvhEo9peOGPtRaKWJGNcZj1NnTgUdM4qrwb22c8YSPord9nq//W8WI+CwHsVqZi84DHenLftQZstHsj4XeZ9LmbpBnMd1IgyD2aeD75IIP4Nlf4nl1ozCK/NGBSXBuslCau5+v9Z0nzN+/I7lwc8vVECwUULlOxFwuNv4RRbEBYeQwRbxTBOKofBNdLaiDh6lk12ZoawfpXRdi60lWfI+LMsDPK4N9+XjO3Ev7hqal1OuhfTC1lRMYVe9JS1P/y20q4gNrM3+U0q7oOtll3xO5gx/UsvzwHKqXKY4Wn09BVJ8JJjijw9MRt81n3n46HyW6HqB63mb/0yIXgESUpLnijyn8b3sDD7r5NU6itfHkrSQSFiow4OBMG5rYbFJC9AKGnpBVrRqG3nVtmBjXQU4l5gWTWMb3xB6qVVw0IPIchGEbxhE+CJrGvNCtX6QHEEt83fsBMaXRgd9z5NPDiEsyu6HAwSrMZXcB4BkxP4h72oD2jWUCmvxR7nsCOVyeqGrDNO7z6kmQ/Hw7Fj8D793rwAX5ErdTS6/Vku1Cm1UPDj+37krb4ihAb7kqdoddjRnhxhXrZOUg0IiNeZzcRwPPy/BHpwBBY5m9gAE1JOCSggxjPTeZkUE/FZPu8Hqz1rt80wWpS73LJ4iFYPxVkS2tiPeiCWtgPfQD3ocGjQTM8JqgjcKArswyr30Opz9s1TvjeN0+sPbMPG5W3ksou2JnU8jLmr35vhDAPpwjNtznMv+yOUzicspYQ7D71NXuHI/zCNaUItwaYb25QQTKVOdWeuyVeFcFS4HrJDOroaerPZ+y2MP39AlqktrDlPzoC05J6rEaxoI+p7XGQII2n+HrV8/2pWRAUT9aN+uTK1+S4Kxpp2XEcDXhDiyn+3i3g3EqR3AjJ/PXBPaAk2FeE1braDSwG/hOqCSyxKfWqzid534E0NLd5yDFmwvWTC6D+0gPe4oVNz0jK4JI0b2r09TmfTV5agfCyVLRTTicwf9xBAIukl9QWd4JOurUIoGIMV4qiZq3Za3Ic8IcHWJrjfH7hToT301nA6Lyzdcbp0gypbTT0NNcGOxzPrgfx/kX+9oO+Og2spOmlt9jIrmJND7z/hJ+DgmlQZ43PJk7voOsNLmLeSOstf6ew3t9denpmWB+bvmmhnz14xJtjNiwNvBuwCjmIYF558SG88hVkR/5MDfbI2Xp0vhWsTMuk3tFT8iUWKkW+/vg3VmLx+he/HORkIaPWOL+HP/4lg1clUUszE38pxrcAooN0oy4rooFIgksgZ30VsnSJWa+Qdxx4jSxCld+x9Wm4BwRM5R5it3FbfT4f8h7+4jpBIkzew6RJJx74HyGlrmuZYJ5+h0i6Gnnxpwdr3uBOHVCc0MKPNnLAKqpXBDnro5D4bJ7Z6jR8BSLEf7HVQo9NtdlowDaOCnrcdRkQ6Znz0HRPKcW/twvmi/QWoOHke/Td8h9LrzaCGz5T8xa9Gdv5gQG1H7Co9iiPYFnIJf3j61SNT5XPHOGtyB1qJ2zm9Kuzs7zNFuo6D7+eg5aPyTav8fwoh42fNvrAvlUGuTS//OHxILQFFSWu9F2MnWoEc2hv+VJNZzI5pMx/xk2vYNh9dhinkZLz9nl+yiQfLaqSsMrZOVm5P/5G1TPxBgaJlYKNb1D7FB3YfH5Nq2RYpo2O4vURj2mnE3AvU/THL3z6OdAQBk/JJks0g5iVkz1D7bLqaE1ams/OXV3h/EM6Rd2n0sllp4d//BWnG/9aolslwPfVOBBS7FE9xTaK4K2AK31cSqMW6ltagT992XSa6zNwTSXQR4pLX4vgsHmsJg6eF/eK7exdsSVBr/bv91IjqOp6edbPBsqf2EC/9B7V7NCLLRSk4kUtufqAiuf3BuDF/R0bIn4DpsPPCKuLvaPumr3Z3PRjC5LGSv/4GZj36TRLXH/qibjluzl80yss8PjChtG7jL/Ls/aXHynu62xgWf7k4KouCU1LXhqYZ/ojwMxXsBqv00DOQypBTuYzsnKw0CdNMgXwu3kGtXq+GVg54RnuG3wgi/B55yQsZAk0Uatt+gLqy5/+jMJeRsLnEedMbkAJg3J80NPy2Q9jG8oeSH2oILo7icNiF3kILfqSqFL0wF+sD3Hg/L139NQNgz+3SghhVbEzeuyEc7w+HxcEy8s5oRoHob6O+2rrNR1v9+ynd9xsvx+kw04iB0IkndShxYO/138/tz5fwUb33oeMUY0ZNaN6Enfw/MsrUh7CPRsXg6VANtkDu1O5B1O84yV4LVxM754j1Kx5LasE06bH6t76gamNTAuW/Aqw4bk7Rkv+XsCkOssEhqPus5H+NHgKTxw6e3mRL534aGH/3b1poHJvxoRxdeTNnyAsKa1ccMfT1svhdkI7107zw1OItT8/hDrdmGz3ThkC/jJhNDTV018+eZjIsngkFHP+l42qKEuwdtAV8U8mMzaiLgRfxTwiXiMBm2v/k8k79WESRus23mYNFRDcmI1xX0v1Ur4fGnjeQo4GTz0CsxlLCsC0vGBfsjp98W3WyE6dU2oY/Q/MaeePIL0JB7LTyNX/W08gle+JzBs+TpvfI74OjUPPZ9LXo2wnEdyuleI/fbHmRxSIv1oDpK1en3pVjZ8BT7FAqLP5YfR05HhY8d+WKrtPAljHGk86vssP9mp3ZisThB7eQ/FL/XAd9SkS6xYuSfvGnvw1h3/6xfTVCbvC4esvRy7oIf41B+zl54O/vFPNgWHUf6kRqfeBgVe9wstvy3cbH/klMkv+/Ca68dd8uQZXBR5AqJH+3R/znrXZdnNC9fBUgFs9fw+nXvrzz7Sr2YLF1QYBuErTYStemvhPr0Lj0xJqf+Ovv7o6mIFsLg+aNF9+6JsPcIDwMlTqeEj1BcmaOPinz++THtYHtT3OMJ/RkQa5+fEX1eufoFiUgtpowTG7uK33p5+w2sqJPmdTXsDxu0bU/Y47fxzvuXG8p11Gjh//CsZv+3tC8L6FCAgDq+e5eEdgef60P7+sZpm3zjBd7gq1qV+COeJGCD6PwsKPvHjnExhIKf35byjoLozVnvmUWw1YGN1AzcZ18EVolk+2xZsV9+544qWXNhSI7+slHu4wNP7ilZ6425HRq9004JUab+y08yFfgnZdAQb3AFtU2McLrykB1Gq5o5r0uoJZiabseLyvCzKd5hWzWzus0oTrHeE2P0S4knaE8R3F2IjLxV/er7wA5DJ3f8/Hn8dF4f7wiuz+8pGV6wm4cIW+4eGpnpXok0n19LtgT53QMG3rCTe/hYxj4AyLBHULZrv8Qna+vteZJVatvMUb9cIcs8lb7UD+028QrwKgHphnCC7FHb03Pf579mUo6+a5IdU4vNkoRT8D3ObPg9o+U2s23oD3x0/R7nKEdb9NCvrHd/INb8caqA7w1MxHLkiCmFaDhf75C8b7Z4Gfot89iKq9gJ2HMAL2kpsr/Iuv0NRo3G9+j9SiWSN7vyI52/xRaRfHGZGFl1oLS5coEsuSnjqrbg6MGw0B2qOXYTxx2J911IfQxJ6Ajc1/5PWtJuA8nldsl5Lpz7tpnI+rtNepfi1qfzmd9P9wdi1bz+lg+IIMiiIxdK6ioqj6ZtWq0oNDm0Ry9f/S7ivYQ8tIlvc5ZiU5oCYciHHZmBxXqhfBibYKcQA7AepEDdZ17b1FZXM8VJIYVh7s8s0OLX6gIjHtBN0Umv7nT5Tk9sphL9oftLlBic+R0PR6Y9crvAqWPYGNuK/hPsRFrPFimKhEqx6mp0+NHK6106w+awbFKtihwO/kkH/9hv+yrsierXNHy9V8/+LRkkfb06yKKgX+0rmgY5mHjB8kTX1V5zPZLvM5x7ZSw7vtVcTR6BjSL991c+ohc3PB3Xzrnzn85hOmedvzWaBCAlvkP4mnuyt78f8KCMFMUfQoTPvL10ARyoxsTg4MiXjcifBK5ByvDy8ZYPw+BtC7JQWWs1yfZrI/MuhGok92u9DtaFD/NVB8wxZXsbycF//IxR+epJLRAHZ8PwIg2uUJGUSyAHb2lg8XfUkKpf8D7FKEGjiO49LJ+Hn1MIPxDJVaeZPTyxw7NgxmDrcv0UKxeDlVfJlfaNp+iN9xdq0GiooIJo5+IOYo7biUx8fn11+Tzec9ZO9Nm/dwp59kPC56nSl/kQPfEzhgbrJHyDDv5S9/IkMflBCz69YHe7Bb41eUbGwOhFaA+MB6TJB+C/mhfxRwWxZV3FeXcXq/tUyE7nI3p3XTryGuJdsDwlqDKO79KuPhPdDgt285vP8eGVMxLeHsAfTrC6a9d4VQ1/AWd4u/x0HoerCcKwOvE7/hstU1KTTZ8CaIKWqHDdmzfnq8FM8vII/lnQGxVUyC1sztpAUvwaJ30X7Ru/TkmqXumYygbYdUTt2Lo2ljam0JKslj+rRk1QO5fb9RKdVlxw7FHMGqGClZ8v3l/9OVL38h9zzsAVfVKlYXffXjEy4fohQmzupA0DX5cOoIbg+/em+XbdrsMx6qFHR7dl30zgGwbTUsd321NVb1ZKjmPz/V4HnfSAT95XPIiGU3Pz5FJXG7eYxNQV/yKyzoqAmp7BkWFPI0Jd++ivl5mcNXVZ+xkJlH8BFWfykcsltOjP0xrtizU59ARHzA2vPuZqS7gQLSjbIhuUZH+8Vfbfnto8jOkL2O57PyBLbp35C7Nb1QekywBRkag/htG2nXsynUfvjkL/6LH2NdgWVhtAQlJ6/D2HE9eLy/n8S2lnMKtk3lwaSYR+KOF78Sd92QQOklvwiKVqnNoyA761rTfTDsTo79qQq9+c4biY4jnch6pHfdMNosVuZnDVjZpSnUjy+Gn0t/QGexZmB5TwIjXttUHIICDofDEKvH421aw6fkQLCybvHcnCdw/+Yhh+3tGMPPZNjrAFCmj35tkJ0Gn4DR+anpETo1yPJlABY9K8ABlQk5L98/433pQzVyr8TID9CmG81q4Ho9pJgv+cmnADPVhVVP8Cquh44k9U4E6Vo5kstVfXb87KsRXKuXF3Eb55nRt/mJwMLnWNlFmNOLjc7qV88ZI5AB1k/J+4t3yAvVYBJXnzeDpylNiVNzHfz02M1JWizW/AKIiUIFznfHR7GwT8B8cB2sra5BseAtnEa3zGpIu/RB4uL8rliXePI3j0HRpd5UrFu1d7A5FW7M0/uQ8WQVP7Wt13po8Ufgl/8t+hRTw3cAdT7DGcqJcozBZROG/A+WyznNuyrWN2Jus0mQUrieWEXM4/iqBrlPMFj6Enxb8jC6624pjN8nBxk09as1zdbjjw++8zNfx5cCN7F+Q64abicW/jUeOFV0Qva1+Ez8L4I5AHbvELudLZuHdhBoeXLpUZw0qGOtsk+h3goFbofkk1FdVixNkf0N8ux7OLE4rlJ4dOMV8Va11f3w+JvvLnoJECiVjtY7bYQ83b3aiz8/aYX0KZEtwX76fe8XD0xgPadZrNYp/K7X4X4LO5YNBYRFUGjIXZ45R2IDM8bOWCV3BXxgW/WaZok3tOR7Ff009xMIzDJEtniZQz5rfguEEY1ki6x2otfG9eAgSgnayE++6Hsv0he+wJRIFsfRit4h2RkWui79Lr2uNQGqmZTFD22nVfN1Vp/agE4JFvO1NUnWcOvVv2XBwSe3ARe9W69vnhHE4rEMOJv7swUrR6yQ4Ru6TeRQPYFGfiTIZeyVsWtuFfqi/8jGBi/OtjanGlWR/p+/Ge+vBpioO6HAffQVSVbeE5Z79e+XD9JXzO/QIuIdxc3HzxgE+xr2fSCjaHWVFv85nuCmyepYfglVR6ziEP/wP76lnPOUa772P/YU/AMAAP//bJ3JsrKwFoUfiIFIlzCkB2kSBAAVQOq/VJwBehBskCYB8vS38L9Vd3LnxyMW2Wt/awWy//dMgfj/nynIH38DDcPOKve1vBAYjYeIZqqSAqa+9h702cGiF9t5BavjewnED3pByqFKzXUwV0t14yEkXX/7sonxvgJinvDY+rhGMIYkuauytwqIC96QLWfhM8r39S1h85s6pZjwog8f7nEi++Pl2S530ErQjM9/NDDvLWPLmYRgdMsZzfdDMiz0SQXQe2cHmzc6grl0eQSMUbkjsV0nRsa0imFYSDnVr/HJnB6HFEL9zy6xY2RaOgv2uYEnzhmRxH/idu0Ew4AoWzqKk6PEVo4zkZKje4kxaNeSXfurD59/Yoo9/loO7MPHnbooxMOBHLBhaWxhBPD0bfH2ebD6EhHg/crdsGt8tGGvj/AMdycvpBfif9s5uY8eMBA64cP3ZrbiYh95eBz/FCQlRlzOl22PogzDiuq3w1jSuTDvQCieCfYH009ZKZwtOC+dii533g7Gydy94alHB+z+yVumgI4rPGbJER9Q+xqW5k/qIA2iP3yl0GUrgVIO+U4ZEYtUrmTdCcfw8DAA9Z/PtzlXBehA0YyEls+yKr8XXq2henBbaoESp222nU0sKipDsj6+2sUYfF8RkZbQIOG7ktnW0kO/dxzstz4zVz/ezyCL4gIfF9kc+LFy7pA7K2/s3B8WI/2svOG3cGqMyMcNCH0+avVy4nXsckrNVn7yLeC+kwtZXy4By4GUMYDH8w3ri2y2onTLnvAWmxwO/7iuneqX5qjfyaX4wI8lWNSrOkJF5w2afDUnEBLdyyBu3gPWkSSXT+t7T8D7HC/UzU81W5KxgiC7oJGIE+TbqRayO2wPhYUPaxmWtKv0Gd7FJcHOPaWAFBpEQJXQbVvvjTmvXMcp7rGpSf2kbbmEWRHC1HZaxNDVS7d68mGRzxV29rPWrn3lQRlglFLtGnzBa0dqpAr+4UHcsE1KCobtvR9fWWmkSloqvny+hufLs6Su1YOAfYeBAyHtMQ57j6bTRUpmCIRdgZ2d4posraMGqCY44AhenuDbTJ8Z0OeEqLYOPJuXtOhA3M8NRUdOGmb2TpwdO68ttc6HE1jb6XGH/l9Skw6fBEb2eVypRu5/ECe1Epi9+64AyzEssEZWdTty5m5s88CuRDk/umD6Q0MBs8HF2H4ed8GCo/ytHPPPZRuBlwbro+gNMKi3O9IOezsdcqO25D2QDhSB+zafam8mKtX4gR4yoKfLyyjOMHkX2zxwzKXrUvI8vP7RGFtFbJjrH986cOCyFe3I/ZbOY+ttEelo07y2STpVCZ7BRA8WmUMnY98d6UIIcJhu8xlzNvLytfmnf4ZT2ow16SNUQ4lGNLiFVrDCUYWw6hIRa8qqm8vzEnDwYbgpyl5/RTkvnRXDxzHaUf+kjcOcq48C+qczpuEpz03WyJ8QeIfjG+vu92HOnrRkkNKGES4pjHavj3ym6BhSGnAHmC7ppT1DVMYuvoO7G8zL8GhgSp5HHElxPtBGDe/Q5LFBHS7ZpdMtVQTAszHBZsFzJcnipoGx4Xn4PInfdJ3DpFf6qKlxIO72LeO52FdVa73Rn7787g8ca/mPcLCag3Hkb2dYc4hSzKQ5+LqsIcpNbke0e3xuqWCL3gwnbnzQw1qOaac13Qyf9jYf/IJIQI5EE+D7aF2I2M1nwPjnPQSVXxk06R96KzimPcNYBoh8hltsUpDsx996x97D37HpEcoIDr55R8oSHYMRS68QlhfDoEhIDimT58yAJK2uOJxJHbBdPY2QG/obWc47u6VJ5Fhwqw/ynr582WXWYMFPi2q6ndvx62cxTA/lF9tFa5RMk8AMJiZBmhtjAJZL+/CVU9Bo1CYibRe4/wryptekzZanuXxFUMDZLC/Umc8RYOZdGWVd+vg0zNL3wKZH5MDjPWz+3a9u1lKkeimW6E+fxxjrHLy3ZomAoFjmwpXdClTYtvSnf8uxWudfvyJLXD/SdewiBRzqwwdHAX237Du0HNyuD4ElgSWNKOChGbw/RE3cpvwoOwEB+Z7reFuf6eizh6Ks6eLgq+KQdkp0p4NXf3dFc/KSzeUen97KbrrssbbVB+Of5xDy7fFB7bLgAKnAOCqW574QLFaf8fLkVdCTihp5X1MMpvkr+SCf/CeNPF4qCafXjdpQ6YStVtszNq9FBo9QGajp1EuwvvkzBP3sRoSRv6c57Xb8E8an4EJEdv6UZDwvNbQSXUQX5q3lWBxIDuHbyajmK2e2kKE/A+uzZYwz0UwxWIim/PgjbLAULJMpx2BVEx7x/ui1q/8pKhgt65Xsy4JjrIy394CqeY/vPq3T+RrXEnxZfofNrKXmOodFD4wERjR/P9eNPz48lJPJw1demQFbub8EbPWFXt27TqlePxWY7ZU9yqh4YvTZBgXkCSxw+PDf7SJ/ZP73e7DVpbU5a39BA7GpNNiVSWuSvOoyqKq5iM3VLMxBaEYN/B1TnaxO+QLL+3Sdf/eb8MFSmHMTRGel29Ebdd3XtySJrp2haKKJDLteZO93OCngpOKcoinTBl4qdO3XD/HpMDbpGiQdD3nCbRlcIACGP9gHadZrOHrpEKxpt+QQVp5BHQILxqq7i+CjUiSKYBWba2PPBTwfbUgRiJNg1koSK+bLOaP9/lana6HxCNQT4/Bh2JftepLKt+ye9m+qne9xufTurQep1LRYv10e5WTs2KpGedJjv9/v0+nTXUOlUg1CMS/IwWDO2IKwLwvU37h9SYnHhcB9XU2qWeXaTmV/7tRjmqs4c9iSLu06WxDuDkciGFmdruGrTuBffZ1IEr/Cdnpxew1u/EJggJZyQJcnB6fYuBLxkX7b5XFIOXB+U5eadO2HOUreZ1j5d4NMdmykc7QdKtJomYyDXX9hexzFT1gXWUgNI5PbxfWyXN3WA9aXAbWv9+m6KrEe82R/Nd5s7J/Ag10pKGTEWlXOTCSVcpXDHTWCT9suiY46iNHoEtH4aC07GR8EvUP6pvp+k+Ef/0WpFdPAQyJbfvXcPKMKR4lrpGOUkDMoeV6k53Zq2rlBzROst+mCsbh80nFHSPPTV/LVR3sQxVoW4KcNa3rN/8R0DZWrBC5aKBC+MKJg9cavAq+vrKK+G7QD06Kpkrf+jD1F2oFlt4NvqPOxRQ+v55guJ8Xa+qOd0lC9DCaJx9MMjri+4qt4PQXkezg0sKxtbVsPc0nvFvIVW/cW7BF9B6aMeAZMHqFGTYe8zTV7CApgLnYouvjC1h+HM9x4nEYfIgRsJqoFh7/uu/F7kpLewBr8G503eY/Phi3OIvZw7RqV2ofRSHnfS9+yrgkW1lvBbpcLkAwoDqJLnWP/BOs9VDSw1SP6SqwzmQav2q8fU+/Il+l4fagJFNTPg8xPapbT7ZJbULBUF+vHi8rW+8uTgN9bDtr0Legi/ciBje+ovnJ7cwn0YoZ9VNeIt+se0ATIPYw+gkte2/og19NL+OdP9CdPho4duztMyidPAzRV5gJKqgDpjHyimgIuF+bB52890QOvxIANJ81XecnM8cFYRHO16qcD+4+Bsbb3r+UqyFgD1RodqLX3tWAJX+83xKaOEPhuZz0P6wAVnwUWtkZ7COZLUjqgPb4IkvDpzJjpDALowezgQ+KWLVnXawO4s5mgZePzsQ2lHM5rfSTyzhLLVY7kJ+Sc237rV1U5+l76BLu0fFJr3nNs9C0hg8bMDBqdhrycC+kKwdXpU+pXAwJz2KshlF25+aefS3n1EwDGgMcbr4HF4vSn6iq+QqSBs9P1cJESuLy4I5IdySzFEy8ZMNn9XbDHvp9hzeKmVnX/9MS/eh1d0Ukg5YY/JCqv3bBO35lTuaG7Ye1oqQPTn74PJ6ZAehA/fbB+UM7BWjZOZOHzzmRk/sSKfVI6BIGam/OnuzRwOlsuNsZ1Ceaj51bwehch6eIHz5bFJzNEGevIVB2/wfymhQE4oTI3P6Ix8ZHPnerO4RffFgkCZl/bRKGaMGDrAayUNl0i/HiUOgr5pj8/CtX7SPDmD8zND6zwNH0BDcp1MX/6ArrH3cHe6ziaa6HeFdi795WAlYmAuD3HA/47a1gPr6eA1r1tAOTUMY1I9gZrFkUxSNt5xEHU+cPcrkIOf/qoXZYzY2vGG9D8u/lEHfZGOX+KOocx5SDZuYbWrspqFzBUwQeJm99aB60SoDvcF+rrOxuw71k5w5MkJfRudFnAb/8f2DVBOFQkp+32D6MHoCMG1R7g1g7+gefgha99eujnPhiL5a+CjWTvyK6eNUD2eV4BiZSMTNcnbZfxvOOBlTdnMmrCiS00TSsYUwipV6dmueR1IAGSvGy0F2YH7FNDHqGi3CtqcJ8rWC+USOCmr2+iFqIQzPuH34NQlT9E+c4mW3bmUQHo1EFqm86xXd5a7cHNr6Jh02cK9e8ZJqfdFy0b/w9mebrD4FPl2N9dxGFRxEqDd0HmqOFEMeuEyX1Cy7NfSKkGxMhT6zhFym4NtrXPNu++2CcQpDCgyf1xN/9dj8eQg39+7nW4CG/oOkTBYZY6LXO+dvXv700ZHktytY531fiMFpLcPhtI94gL2L2WkHpbPrKc48eo8lqSoHbn4WA/vwsF6urypDoL/WAP/LT56d+PZ9s1VewZ7uMvw5jcbyXJHbNTNXeWEFRftbm4wdKrQ9tGiE8lJ+WndfDhJLtn9LH60pyyXVaoiEwy9aOTnwrMvmqwmJoUBwt5p4tXbrO0JHdHw+6TAuq1nAaumTzQUH1ppiA+bzmUTplAC1Hp0/HYHAqwn3FMxP3nDNjFSmLYptmZRtXxEPzyq396bF1ar13/lkj45RUUn3PbHOsXKkBgjI9NH67tP33Z/DDVXC9gU9TyOTSW7kzzLN0BFl7/POCexDcSYeQO04tTDWW7fupY7MmoIR7eUFBfDxy+z8+SfO0xgb4Kfw8IF8G8D4+Gil7hFQmX6S9YHoeSA7V6Kqm9eH/Bpt8WBJPpEe6SB+V8VOIYfhJGqd695WH+GzUJNtawI0zfEopSODu//ovJ5peWKOm0f3nJVt/mJE6HGFysByQLC3tz1Tm/gGHG91Qv6bVcyusGv49LR6OmydNJinYS2PSS+oDpw/6WroLaD5cTxdl8S9dufc7w9Fe0SACsACtBoQDCdncm39Z2AVFu6apU9+yFbZsN5jpQLVdPHKdRj2CeDaFnrFC91hn19ooYzNJwK6DmgCcCWntquyVNOlin4oSNFsyM3IRTDP/qcqIGt0dA6ARfU358i3XBABvfGdssk2jze6vZ/fLIr7R+8VbPbD7UfQVFsdYximU3WFMlmn+/H3uvPz0QAmy+wRJ8ELKn58FcN55W2lvyIX+PfVKuv/78W79qdfyaTFwRAq7iKVQj623Y+q8H3UDOiHpJa3Oczfn+r39EaZgy8U6rCtbfu4S9n99sbG4E5ybXsbGGJljt+6L88jcEnwQO8/g3jFDFb4N8tlPRO7EEobLxNzacaAYE2KHy05d/fnVCwVSDayBMOPB6nYl/d81Rdyc/JGKm7VrS5+2onm/dgfDLsQP/8kbpdBaIoi8xIJZ3CwH+MBupMwvKRTv/9Uq9c0xqW/WznWVd8SFUhICcD8s0DMtcezA7X3LqWlJsznPeWMATHyENmvwBtv6YgNXqC/zrb7/8Cv70TNv4iclln4PMYYBq3K0tp6YqC3CLdY582nUCg1w2BSzap0F25uGbLnD/2PJWeKNmoLRgmkHYwPegddj/NgRMP/3e/A0ShtwC+41n4AeBACmOSoZ/+dEtlhO65UeBeMBWDi+65f/j1fWGRqRseSo9MLKC1TgeFJiy8wEb8Ssc+C1PVsamd7E5z+kwFm19/unpP32UcsXyoKJBgoT748lmDP0KalVDt2cABjbfTyOCXtt9cfT1vsFyGw8jvOnzG2vy0W5HqEj3f7yiR+wDpnW9CFDSnjucmPCRLpcorBRzZ3zw7/vapkt4+Cx6mdpCs4BuCMcYjuM7p9rhM6d91d4EmH84n6gbX63ADiXg3ZUF2+RbtOyhfWeAZC6mbnDYlXTC8wj72Y4ofnzUdOblaw1D+flA0uqNwSSn2jaLQbhQ9/6eTTbKKYQL/VvIfo+DkoiK4sCwUPJfXjsI/ie5QzlSY6RY8Skl8r7voCh0Ew5T12vHYPzkMH/cBrrxXbDwrp8ro9D0ZN41PGC2nhXgIu4g/Zf3MM3I4eY3Nx4H6WrCOIQenu3tnDWD7ZuJrkAGp4YIO+UTzHuPrQCg8w5dxes+GFeugyAag4hGlZmZ4lc79fA0DYAIL241py42MiUuIxt9Nh4ct3xe1W65SbUw+4JlDY8C/FjNBUedkgVrdOC392odHevd+zrMFTMamJzUL1KUKwHz6CsWuFXPgG7zRsEiwbaCJvkI2N3yryXcdY2y8Qwub6FlrvxkOHDzszTdeTSgmdCHSlJV3j/eXdtT8lRtKsjUUhXGOvncznC24gE7gBVMHIDjw52/ERq+1+0ab7NEzkL8pPnGv8Ir7XKQL1KFHr0WpuIvL7o5O+0fXwxivfDq73oxuav/9YMovjfUFuY3oDyXe2AfdS2+iQne/NOsqcfxplDk07r8Hj3dU0dFnLGT0HP5yztlRakqest8CBY+v68w8yyNxtfgyxYpEiW4JvKK7UuXsi2PW+HW33F0Xa1hWfd7BxoP/ELTxpdC7gQ9FB+SQLJdpJTztLae/J1sir28e5gki6IEbv0Nu3F1GATLOyFYJcNIf/kKW7+vHnrqW6ERveYlq6SDDxuq6/TgqjwYvag1IHV0m1qc57Hf/tf2Ztl1O/qYBUuVuCskycemNld+g+8favN/ec9W32BB2FhhaKcRdvFdG8hTqzm1SFIVh8KOlgsTOw/mXj5RvL6+ba8OwQoV+8hTTSdXk01heocqfLTUZWe3FJ3L4ijQzQN0J9fVXOBqPaE4jiV1bccO5pSg7Fdv//ZzqI7jWhUvdowE71KwactboNOUb/R11Qys0QH6QG/3Kd2uJ52rgvVqgQQfPc6718D/6tFK5ADNG29T6Sqege5fntiS4PCPN2G6vdDiXE9uQM+T2sB5Wq/4cLh8wHxs9FyZEYI0xFqVUtuSt3rvJyQs5S5d/VidIZ6KmNDHfi1pUB87tVNaE0kn8Gnnx1uu4Je9MTV03JnzOYtiUIBloHrRf9jyy1NeZpqhLb9J//krCzxeVDP8NljGWZ6hXXJnbMiiE4j4mhvw+jpXZNeVbUD83eOsKnxOqD/qLB0eR8GDWz6PpOu0tvROs7tyOOMTgmL0TBlpZh92FUHUHAauJKjOBfi4kDu2AcHD2p6KJ9z4m/CvPyWd6TxDeBA6B1sCXgbWguS/+212qh6H0UmUChhmPhNOanPw8+fgQhSOrGlisyl8vZ/g2x7uKEUBK8f8VdTgnq0mevPYDnhF2b2VkM9dfE3ccpjnkyWo8r3QsbvtX7GX4PMgta0W7aaPxl6uVxVANp8V1nQiB788CWyfp1Xv4XSSjjcPgCZqMa4zgXUMBSHAYtbgzf+xf/z8mvozOo/PBsxScdDEf7xB7edA/2wZAbTze+o+0u8wGrdj9vO3GMdckvbSe5u1GfXbucEiBUsvHMJ/fK9zczus2YNTQF2cQ3zb777B1PurBMf99/yPh4kkVvw//oHeQwq69h6uv/1BbH8Ko6RE/K6/vAe7184t150yceCLE4VGWX5kU169e5j8yQoOuJeTduQm1+pFQwJSopNfMrO8VfIppT2OpHvUMtuSe1ClrYamTX94zi/Iv7zTygRasqg0ENzyl82/vgDzoyKEn/USYvuP1ub8VX0DvvVGIeL9HZuzki1vMBXXCFtRMJlr7Tbv334n/SufDaMFemlAl+93HD7hcdgPFBEgaL3+2w8Bo2XmCQxc80M4PH0DdnxlEOZw1OnlngOT/RX9dm79+kb8elbStWpPwn8AAAD//6RdydaqPLO+IAYiIglD+t4EARFngIqiSJsAufp/8e5veGZnrmthSJ6uYhUsH+kXu1v+sWCWNmDjS/JF9QO09tkJ/399CsT/+05Bd9gh1Nim4q9JExvQJHxM7/KgFjO8H9/g9mQvauuaA5bvSdJgcg8xDa/QGebG/QZg/KQhtpXdl80L+s1wuKwpDpr6GH+l/biC2BLfWJfYyWchDRqYyJcJK93b8A/ZPhdA+UtyNFejHo/X7h1ACKUL9fhfWczB8ddC76t8cMBj4A8y+Gkw0dwDEXZoX0yF+OKg7J6uNNjJjk/5aP7IWCo1ip4Rr0/k1T6k++MQUVUJtzsQ/ZmD38srJxy+d/oi3DwBqKzaIXa96PXSufXWO+r7wyayXwN7eW8Jwps44Bt6RsPkBVUGj9Orwyd5sev1MVx6OHTAJ3LcNPUa/2APzwn3xV5om4NwBiaSr/shI8Lx+gDTr4gCqILJx+inqDF/PK+ibDatTX0tUPTFSPclAM/DDsny8hvm9wlqkBzbEF91rWVjCm4BDO+8SaRSS8G/9dxa6pODsjPBmnyWCs71nOOCw9RfET7ksHBfEb7k2somg68tSVWOhPT9PilWeJUdsI9eITX7pmLr5+V84OmeIFpsz7OfPnUDfw9xocGJY6D/xlwESqVbMZqM0v98igSB6DckRD7Kib82s5ZCy7Y5JJ/orM8LUCOY2pqCcYEhu1/DawTed0zRXrqYA8s1YMFcYwG28VrHtPmoo4x7vqDOrTgxVi6GAicsPelJP7wAu6Z6K2WG1BBu96zq0ZKrD7zsggBHnAr0brRkDuyRppJa7HWw6AcSwO9nbmmxPPlhTcx3ArEvN2ip29R/SF7JgV0UpDSRPl28oE5L5L/96eor8AlMiwaaRNjmXc4XsHx3yACWRb+I/TxUL21fcMDBY401U/yytbKcQNr2K3V8GujThYYf6D95leIkjNjo9KEGtObdoXX7/PIyhDfc3gc9CWI9EG8BPMjKRKGqdsLgEOdRCUVBW8jeO9lMEPN3Br3XtCPCSU+G9ZXWb2jMVxHjufNB5XdBAhunNoi2Wi6bb1eAQMAdVozeZ64YZEA1sNs3N7L7HRedUDPPwDW3HTSmPD8sl3n1dhwRIopTu4uJ4cYRbMq4wubz2MVjLZMKIoVE2Hmf0TCOyjLKwq2jGA+TMYxCixpgveM98se7XSxLlayQJoKN7YvA+WtAxBGGS/PG1v33HsbzS8rAKN7NiTPXnU93+3YGeAh4rMev2e/0I14heD4bIp/rup57dntA99EL+MRbcr1+3m9H6qXPE5f9NWBL/XxpspGwFsH64TChQ6You7ks0phJrj7+rQcL5ZGAfez49NKVAdTdKsZBKHM6UcuBh7VyymlgaiNjRfzIgGf5lMj8Xqn787HuocKjmBr0cGZrP4AK7F/zA5++wdtnajgE264TqVYlb382XuUbVs+rS4OmvsXLZw5SqPBBjNU56uv1R6oVBm/gIegISrwcusYDc3tucbA3PjErwzgEkz3GuPh+6ngpbvkK88bH2L8Lgr/k3k2DzjPxqNkt14H1j3MKrSk/YeSOIug6R23BeDE1RMDC4vH3ywUJB5cdNjLEBvbMxRTE/m2menn22AEprD+aQ03I/nl0CxJ3DwTf4ftCPb2Th+nY1BpUAfVJ/jpO8XINryH8LCuHDWMA8SK2xgc6kpjTZOIJmHHztKDEn2cklhVX9L/TrMA477feZS8U8zbSObmrhRtVD9ecjV7WKVBVACGCfh5rQpzLGx61K6OuX7Xxyj+OCHpzwxPAuS37VUHwgM3KudjU816fWDEbMjU/R8SY+QTDkStDsJrjlSyuMg2rMK0czHZEp1kwsGKgWQsheRjbveimGdYp6zngOLFLffM8D/PMBRlMbt8zOnK/OWZKFMzwOV6fVNn4b62/UygpIR9S21Jjf8HWrMnwu0+oJh7tge3atITxQhS0X6dHPd7fYSTvlmOxzcL4DMsznd4wiqsnPWkwivfm9xDAPz5I14yvmZMeH8Aekwp7ZsXHtHsLCnSX9oU1T4p9FsriA3KEjzA2a1Cs7iurjuXOO1FLRe6wN7+7ADw81cV+YJDiawhGC4vvEyCmr0Pc9742QyBzGlpsrtJJ8XxqsDihkMzKLRz6Stzz0LVxSf1D6vtLql7eUmR0PeHx56nPcyFZYFpFD2O+/g7Dac5CeDlkN2rKCQbTaTw9JLUGGfba0df571Hl5XMCv9Q6cR9/Ndr+Abf9SJbtPMyPyOMhsdqGYlC6xdS1UiZx687BSBEyfZrndwCftDfIsecWtkT1GULuupyp55+3eWGf+gPj6LGSxvLCYWbg6UndJ1hx+hvu/mpfbiLkgJ8g9nbUmJd0rAFj/BY4ubi1vpQHJwNznavYWa3t6owwvsHHC03som/GyIF7hOB4Kn2cFY8ZTCRJHel1WxHi+V8wTLI6PKTh6N2wode/eoVp3MDTYg1YY0iOZ2tOQ3hJtBSfeqfT56sXa/B4Yyds0edcM8/0yn98p5bd6LNX+Zth7jU7snU88ufefOQg7FZCVnv/rud4WhT5D/+199X0FzVzHbjvuJ6e7o+ErUYfKNKa4y9FL90Y+AtcZ1C4YMB/+DVpP08E/SGWSA8v3TDq4RGBOCpXnI2c5fPauwpgwSczeT2als1t1kB4NlOO0I3PCdO+DrS04ErxUw8LohVaKP/x4+4Lk5iFM3GAa+11XMbU8GflF0gg2406dT6OWexHaw/hgrgQG63ODYtLJALTPtexmougpiyJHGiuzUwRP+r68isiJO21Y4c1tPUR8u86gdPwoBTlXlXPfeKF8puPFqxE5qo3XjS2gLuyM0V+dxkY3Xq1enc049PKdWyxnyIEAr9vkKioT385ftUSXr3niwwX5RIf4gJq0BhPGtU6TwP7IucT+PJeCjbyczqwJ+gseAgLAevr7lgz9Bpz8FYkgsThtK/naZcZUOE/4x9fDfS0LAJc97cSrV3o6utRDBV5fQ0K9Z8sAqPQWh9o2kuEfT2/scnZKQ4kbySgan+/FL3Nvyxp0w9E3PMWWA6CWP7hA+Glh+4T5dQbwFNDh5p39a434PYgsNLzF1VcvMSD018l6e98tJMRFMuFZg2sn48fgSyOgXDbHSX48rzfPz24gDh/wDtnVeSA17pg6PXJARCqlswv6e6Tu6RWAA+Ix6phNANlFzCCcuec6Ik7Fvrq41cF+9o1sV6ee/aPz8Z5iMhR+7yK/tnxFryeJUjx8RkM7MiVEeB3bkC113vr7c1F6b/9udx6FazOJ26hraxnatT2teg/es79+QdsJcsLzEUDIUTJwcYGfmRsLo2+hwGurX/vZzyeJQmIzc2j9pDG+qLc3iNcI/VG3ZG+49E/zAiS5WFgc/1l8bJyXgZesnOmG7/rc28dOLh7HGdstOtr6PTvKwV9yuvYNoy0mGqGS0DneSaieDzEi5TeP2B0VoVk5da363p/NfLj4XPUY8PFn3+O30rM1HU0knMz9O+4zSV4qyIaxopa859yP4t3ebRppsxvf1UfZg76YurpCa+xP++62YPHTinwo9v5Nb0TRYTt6/eiWtbwYDwYOQGFqRgEOupVZ9rLekPhe9pRPzBQwcSqacHSvys0WbPJeoTuAoDa/UyWi4Diwx/f2dnHwKV31GOamlVyNDLr9KdfBvKNuRA0ZXekDljqgdUi449ZmSrYE1+CPt0bCQJ4kwbqcdlYT2k1Eugn1xAr1doNLOn3K+yUMqXxcrD8ZX2wAPTXoKSu1tvD/JWGDF5a16eJ+LKKg/ZCFSQ5K7B6Zb5O05/Uw/AFAQ4TDft/elC2FlCi+csLjNBG9yBfKFfssS8CvH8QEQyjaSL8BbsFvwA3hG+R7QhJbnO87mfBgMo56LDStV7By6QUACAj/0+vsjw5cDDaWYRio7DB4WtIFchOxopeQ9nVbNo9ORg81gQN9RQMy82XGhDRQ4UOJ1oV68VQZjnAL4uqK7ZjYXteGNiptN1BW8DGTxLIzqcWnbfzNG1+EM5O4OFUdepi0Q9NcMwCckMDK88FMexlhJ0i0D98r/no/OGgXIW3abX3Wr3Uz06TDgIxqeeVRbxeZ9GDR7PPyL4ZbX3tfW2V9Yf6ojgodzFplkGCwimdsHKoxGIkaOvjZj+2mgQ+F7Q+RCE8n14eWg7nZGDswkaojuYH7TKjiTf/24Jroy9U4WLBbw91J4LvWQvI3k5qtn4uTwFyz90dnV1lqpeKLzx45HcGkr5TBVheDwJ8gp1FneRWDexOHBHYynzGfqQO/hD5GYH49xKwpnKjPsz9JADyeNw2vbdjxDGN8u9906uo2AO7o4XA5T1O2D20lj5LtK3+/Ad1jkSpp3THJHgJGkBVbvdiFO9yTfo0AUHp8BXAcm7uBuySn0/14G35h2c+J/If/spd/AR/fAwHlAC0ropeM/sGP0CMWkLNCgiMipPIgY3fqBuUeGCdZkZQ54lHfe90GAbzJHNgOL5XbH+unT99cPyRnWTrXS2+Up0lvTyDn2S11IaQDKsw3nK4+TnCgYUVXS6jFkgZreiWj+jErzEHzkkTYG04fUFv9IYmnV6HO+LSkhXktEsUKIHJw/70lcB3/DUE4vimks92vhacQQlu+QnWJNjXa3KlAayHIsR//H7Ynl+Gr9RCw2umYH7JYS97auQgyb6f/RE8YwN67iNBu6B8xrPzoCE0r/mR1E47xuS20gY664ioLSq/LS/hW+nNpAzr9mjqbJDb6sjH6EN9Dm/9xaO5h0b2aLB7vcTx/jJL//wRdd+aBxjNtTe8R+8z1lLK6Wu63kb4rJQHveuaOEzhNU5g7Bcz+iztu5gemW3AomoSUs0vVCy/IkeS8dEEGiTLeZg3vQfbSy9idQ4+Mbt0SQCRMkYbHyps/wtIAiUjiGjx/ejF/mhsfYPs5xWJ4u4+zPtUHeHxHLRU2d/38STkYw6FOc2wziTXH+/xJ4fWF6nU5nbLQI1CieTNb2M/8JJ6ykpFk2+0cLD+QL+h7XiggNiS3vQvj5qqdflA/G4xvYhZC2ZuuI0gM6oTvdxVWSdJE1uQHdoEcdlJB7PO9AoeZTfEJPxCtq6rOsOzmLT4pq+FPlH2TeFXzb+IEX2tCb97QfjOEgfb0XKqqQRuDuSuuUg1HbTs9/J6EQxH50bvxY/zNz7uoeZxN2rZZqWvzVKLcCfZPwLrR8vI5qegVGomPnFHoK+oaD0gNkuN1Q0vl30XhlDMBYkaD9Pz59zFKSjU6UkOgt4PY+YcS7D5TRy8u+fAPOujgVLntv9Jpledsb0mQpH8UmryD+qv9fcb/ul/vOFrseVpD1hAcKE4PdFh4hRVkndytmW+R7dg23wpiGaF+/f72jy9tXDb34THD5HRT9pVf/uHwP46smX8ESL9y4P0bgLsT0/lN+FEN7/NRuU7pPAhKwytZd4WrTErOYwRuSD1tezqf/qhdUdMT1n5+8/v2A6848SsPjWVAVXAn/8ez+PLX4/jL4SeuCgUfwXiz4ZORPi+nyhFRxLGM5SVEcjZ44sVs7gz+othBIs2s6kWLC5b8vIugQlXFrV2DtXXg9+24iI8XfJdnh+wrp9DKUuufUSrJBgxE1G3gtRWFGp3cegv0sFKoPU+76klBa2/ytubPRysB7XLDrDR3HkePFdHhLW9yetjH1Uj+POzJd73xbTsag6knPdEXJqedHrxTgpghz7BrtizoeUC7Q1vzP8ioc2ruHYObyQtfVXR4tW79f6HsATd/mThQLKWYfaylwIq8rmSNFaW+B8fP86GT6QG5PX4Kfcr5LmZIQCD0Z/UQ5bA05380G7aZp+gadLAtt6oyjjB775B9oDJxdpmmZ0/w+LsHAfa9+dATfNcse1/kgjEectRU3nLgL2lewasC8ewDaSXv3ARWgG9KzH2SPdj4/NNvD9/RxWQ+EDUmV/BLX/AuV5fY6pht4XWUutkr+eevqfnWIPtsUjQ98l0f1EPYQLbb/TEwU5ufRbOjQf9Gh6o3eSBP8fq8w0LnrrYwJ+dPp9VtwUvlSsw/kK+6B5Gtc0SCR0ED/avmN27OcLsphZEkP0o3vSAAs1151L3FoXFPO1CCz6zn46VL5+CyX7l7z+/h5pSfNY08rMRyhCrRDJzoq9LJH3g57HE/+Hjq1staLD2jo04i4YlFN4VjDldReIKNLaIdiGA5gkf2GnMt8/+8oFNn5K5UG8+WecqgFWzftD6uPvxqF3uIhTOtkedDU/Xyd1ZYKs3YPet9WCWwlsC/vyMq6+Fz9Kf1ILia7+psbTveCK1p4HH8bKn6lC69aZ/R7jEpoX184cVY4xeAmzv5UDxgUB/oqs/w3M5b33f7q7O/53PLR+m5od6xfKH9xu+bXg4bfl/m4N8n9/R/g+PO0ftIf/mfTL7ER//+T2w5ZXY4eYTY+fRfcAaaAckLKH6X14zluKeWpHk++tf3pjcfmds7q4RW0dJDqXo8Dfb5Kmxw6aHwCu1QwJl6euTBt8+cCeZP+yVjuyvv5OowAZ4F2pPpw5MTtS0f/hBlRAVNR/WBQcO4DuievM/U3lwckjndabo4+x94XO5ClCToY517qfUwk7XFbj5BWyg9FuwQr1VcC64BvttPdXzrhOdP31Js+jtgn98u+U9OP4ZTkGifjdLBhA6ipR5AfPjg0coZzxHkffSfLZ/SSmoG1Gjt07d+//W5y8vRdavjVeYFh8I5Yjgk35Q2Z//Bq1LMGF5nvizqQwrVD47E0nhyQf8WCkSpPdsxMrxSv0lqm8Q+qI5IqAncb38bnMvb/kpVYdUL2b+WkdwwyOsfVMa93jUH3/1HMLOj5O/6a0VREMSUZXzsnpGW69QPzjuiUiCHSP78JSAPFJybF/mAyNEyD5wPUk13fLUenHxUEE19CDhktjzD+k2q0nkkIy9sfmANeoPK4QpnjASqOWz1FZFWeGbkaqWWhfzoEMB5q9Wpf5rpmx27ycC3dQ6I7nb7iw2wpYP4J9JdR4Kdcctdwh3+0DBKjAdfQmkYwI9c0kpDtOj/o+/xtPww6ekTfy/+txRda4OmUEygGFfFxK8k/L47/csLnKhuOkPVBX2szi8hqL9yyMRy66LTzQANPCXt/gXZV+MYsJpIHjMCVVux+/A6kMUyS+eM8lWDwRkrh0Fmk1v02DDo+Wt3Hj4esQlAeNV1dfsHYSwWaFLnWf0iXsrZaWsNV6I9Tzn/YVGfAOB/ub+8kd9PyZKCDa/QV30FRnrn6sEgiP0t7ywi+froM9gqzdQPHcDmF0JJLD9iBY+C+7Ln7f6i1xusx0T/MjA6r5XS97OBzVyf443vyNC7WkjagfSwa82PSL5oj0ifuP7cdNbMDEfJdUneSxIR4QekjQ6IbDcUEE3PQJowtv0nj+9eiG1pgF5/Ob4lJX2sIDvM4FCW322epYK9uV1CYD1/eRUN3iRrZf01Et5pOVYvcyO/3msoAGL5Nlb/vECg0ZCAfz6Q775CVr/1CWGcEURRPC82sU0NicPbvk3jr/2UM/Br58B4JIC/eU9czp+U7jfg5isUVsV7K6c+OPdt4R//DY9jLb9w2PsofSiN4Z9JAAStSLLmIVszlqll60jxQR8P3UxOeeTBRvHG+hpRz7xAmt5hfL4y6lXWHQYZOeYg80Pk1J0E0Bnp3iD72L2qHugQzG3GeHA9TRbaIl312HylEMPt/rNX31i61PwCODalQxrVaLp+/V+bqF3/7kkb9dzvGg/TfrbHxjV1q9e/r6/1bewrXjlsPnVCG55J1XRwfAF5ysjsOE1Lmw0FU2mFpVsfBQBb+sPxs2vHOvnXiFt8ZjZ6tc2B7e8g2qzboGDOM2cfKMaJYOC64I9uBFBjgYDVbhbWczfo8v/+RUiXdyVvXqrsmDch180c7Ggz6Xx7qUt/8Q5G/Y6wX5OYIiCx5b3Bvr6PwAAAP//pF3JtqrAkv0gBiICGQyRvk8URZwJKoIi0mQC+fW1OPfVrGr0hneddRXJaPbeERlxXegbrfyEukG1RdNjPqrw9o4mVq3Y9iexUlOkVdt+1TdSNMNhEmGj3ALq9DZNBpvwBEW97BDOe1X64OZv7w8PYbMZvv/+P7y26YO650yoKWOv03/XUyD93z0Fx3GsInEbeT0BIgTwjQeTHltJ9ad4V75BuHkyNQDb/hwNqYwy2v5oERIuJ+7+UoAaFjp29l+BUfvaBujv39Zd1GvCs72MJCSvu5J4KZ9iT0/h9jllWGs8LxfSRlrQ5JqUyGfjnlDuuY1BOdI3xXRQ8ul0jCZJVIcPdtLq3TPyCGRYdhyQN7607EeHp4ykq2ZTQ5etfAq+YQzt5fIly/PH6uGwnQbQabenkRnxNb1eREE+jsmb/BJ5Sph7it+AP+8Ndv2grieiqTIyper+7/nYrys0MG/ZFRddSPxx48kTKD8NR9tXXevz9+HIQG/bL/V1aupT701HpYUlXTcHiGhanNND4dSaRO3y5BHJeIMHXztaWONTrRYKowyUt0Z4wknzaZ3l2TmosqGgYc1EtGR8IADJhAnjU3/1RzmTJrCc7kUN/HDyeZy/FeheeMR2eqp71jA9A+onHxxW09gv5to3irUhwPcreiXssLlpqObAIMs3PPcs65ISXlU9ksWPP8m4WxIA6zJ9aJqGmi4Io3xExvba0iiN92zkkX9CJ/csYD1FDus+BzuFYL1nvz/vUT8kCdeB+dwb2CBelPCLUzxQfZI7rD+nrT6MZtmBvb9p0bgVD/1kKKyDX73bYePi/tgYBC9HMW/CJeJ+2WedBYJP8hgsD+rXny1i728bQZJKexIr0q5e9CMXoJ+5XoBf39e443UBfN98EPh5FRpSuchAIJcvVY+jjvixa1T45eoDmxI55nMvUg159VulsX4pGYv3e1CQEdyxxYkbvdNOjQUtpBkOxg31592Sc3KsGhm19kc+IdxFlxHs379IfJsKYyJ9e3KXCS3ZPLQ3I1v1rELy+muEk1U2hySakB5baiQ5GOvz9uPIyOW+EXWSdf4eSvcgj/K7pe7zccz5c5zKaBt2HRlNm+mLS/gB3vcgoIYg5n7LrKGBt31+4qCqhn6IpbhQ9OsljXZz1NZD6ttHWN9PJPiyl4/LKB5BmfOOhp9nnYzuOasQSk4v7I+b0Z++3yXarM9HtR/4CVPj4AbRqTBwGtOUkfB9L6AcUgdr49ZHo3eYJqX3ts8IJWarszZfZyNDc6GOWV6S4cm1DUit52O7a5Z8PtWZCvFiY7x+fj7n7xzgfYwFbI/Ft2dydyph4qwSq7It1NQwRw86RHMyp02TrP63/NknvnPjnS2c8Qsgr4Y3zt7BPZnHmVbg/9g7Er5TrvPka8VKuNmf6NlRGBrtzaeC1yjtqR4nCyP5rWsBT1WK9UPK6UMXxSrsKu1Jo2ai9dIXiQZX8CSKXXunD/o+KeCWRidqBK+EMdh936gdo1O0Ua9dMoCrihC+a6DOa2P7i3KrO1B0t6Ihi/NkvhRZhc4lu0fyXIfrvu6jJgu4f5FpLH/JGk8faFSVALtCtnLQJz6hr4hrvF86QV8WN7jByjyxO13VfBvZ1wqt8Y3QF/9Bs6peK4giN8P4M1r5NNhZBTfbiqNvNO375dt2jtyO7REHYmmiWe5PD0jy10BxqK7+dIhSELy3iLFrX3QWhAdLWaL5Tq2bVfVFK2w9QEZ0x+7zsSRLdeUG2Cxyj511V8KU25km93wBtDiUm7wV5fMNNvcniobwyyFSInFBVcy2NLq5WrKbtUVQ8n4jUweWoacPV+JB682IbD316X+C4OfJbnd7UYvmRb3UOhzh0A99xH/Omt+98qaB9f1j3XnNiC6kDJSjOa2atHDL54AKLdwVTYnk8IrQ+/uVA9QfPJ/Gnch8gpEYQ3n+PiOh4mk+hcdlkCfnN9OrkO3y+db46z1ueNNAvDbJxPg9DzepNqk3zoPPLnenAGW+dgT5t6Zf7dWRmlAPqZcPLCd7s3eAzV5OdlvV7Ufqejd4ftmZmlb08JevVHAQBu8nNSWyJIuaf97ILyGgxX1UE37POymY1czj4D6WyfwDa0J/9mrwvemzJfl0qFsKE/sD0dCuHdGE8uIqUjUwQ7RzulyFdvuhONCVRh/MrxTA+vnYNo9pMu3APKKR/g5EiGmKBqeciVI/eXXdFWD502v3MxAuuRPVFX9i9HY6GEiKjInux2/HJn1UBbDCQxCJxQsh8m3kGH6x6VD7JZo9478lgfD9AmyVpsRmcRoMONVbTKPP85NPY5o/0OT0M+Eut6FmRXh4K+181ShWjx1qnfldItkvIEItvBgxw+YN6GvHhOuqqZ7W+Ib8sopo+Du8k1GJvRsK++Mn4utpp3d2faigvtoXrNe/cz2+d7Uh+79zE21PtzRZGhQISLXGGz58rZM+M3zmkE7bPX4i98nm/J0A/E7JFlv74ylZhjEU0JMzVBxffrRfzLBpkBJVAsZYCHpa8BEvX6rjI0LO+1DPhO46WK/VYMdxxpp957yST8/2Fc083uszO5gC/OEFJzSuCUMIn9AvfxQUP7Q3miezakGCVCTjtLVyunWjG5qLU0u2ls3VbFe+AmWN51hdirM/y31RgMEr3Z/9J8vX3w1AD82BemdDyRmcbgbEZLljM3d9tGz2boE49UUIcvqDPhrWaKGhGg18T7USTctt48jO+EiiN744bBLiiwjWZfmQpnvGjHXt4KDEPm2i7Wib+vc+UQP246hhZ2v3Ovu81QJeopDhwzdk/aTYVw10ls3UqJohn68XR4R7K8TY3to/f46/+AhzvDlFnCSympwHN4N8OTbUCgQhbxX7oIEBziGSv/E2YeXFkOX2cv7+4SXG5K4olXVvNdbdpfBHlXu9gaadTKNgSftFOrYRnFSjxG4ix8n0FT8q+stfSvWL/EXGagEfvzjRqPnFOj/BHEHg7AfCRghzAYVZg5RrEWLb2+39SS5RBNiSJewRlK5jODae7B8yD0d5MK72iWPoNHMTMVPK+9nuj4D2t9uByEZP/cG9H0Ap1h7C28Ev0PJ4nzl4tmFCNmv8nUNPiv/ySSREVVmzSx6/kRs4V6r6mpYzGXYBlBa6EumWf/VfMDclfH/mk+KEhjp79pcHnKfLkyxCl+lLzdwMrfiKakO/92fn4tyAVeqFuvlwyPkkWWc13x+M9OLRYDPjagvE69pKmDZGPvNt2cLF0NJItINXTxXsPRCd4gu+Opj6pHUugObSzqhDRsbYpriXSDkeGmq9une9eMqmRf7v0hCwdEBjefpYEHbCl6qynfbsbH46+JoToV6mKIj84bshghM1+tPV/5fPzOddI7xUzsmwJXIEyXy7YVd4Coyg5Q6QbL/2Gg8rNg3DXQb8uh3X+HNlC0nqDva4kKlXts+ElE/rBOt50fDO79FiIp+X1M+1xEGTj/o0uE6G1CndUcdOXvpieZGAfrJXEZ54JCGVXahIr3lK5NiZeyrwaJK/m8yjVs3d9MmUcxEm16aklO20nj91VsHha6j0yKdaP7vnrEQrPwjBWZZ68DMvRbaljvTEvz/1UvFSLB/FTvrDD/k/+/3zB5PvbZ0m4rFCK37ARp9n/WJ99hmyr6ygtpp6dXMQ2g4ZrwjRP/w9NxaxIHsfztSa15rrUBel/He+uzVeT8JmVBFHQ0ZK292znRqvPXU0qrEmdKI/uiJRkf/xpGixH++8R9LlIa98gyj4tdaE7scCyDUm2P1sfjrDxmtA1v4uk93asz56guABWUQf33r3jOaTF6boOrEP9Rb+ks/xEYjstVEfKTXLEBM1S/zzH5rz13e+2M4DoOAPd2wVwTUfpdurU1rdkfGz2c0+Q9KzAC+kx0gx1aSn/C9rING9I11Hbvq8vQ2OqNpjFk1IVnM+aBUHTCypFBfprWbV5lbCr97ucGRlm3ySo6yCIq4I9jLhkU9FN1bI6usTxb+nnfN53jXg8wPCe+NGksUxdhG8FpNGs7iv/Kni3RS+lHewN3xf+ah7AQ+RCz11b7mtb93GP6EcmVw09h8JMa9OKjjyWoRDblQQ/V2kFB02z9sab14+u7Z9B3P/GPD+4OQ+2zFfRFb54aiTtShh+nVHoLpUD+wszxOij+JUwTB2N6o9K/5/85u4L8h2C3NCA/8VKVEbsQj26qEfY20vK0mzN7EF719P2SCmMH3ZloapWyaNW9xUMP3jOZo3spZPo7lqUGUl/NnHP/tCtvfLqG5KqKbPftUHDgGLWknt63l8BgIAikys/9R9LaAwbpTr9WiRbsVLdPuZBBTd6Y0IWSIi9vzRBpmS9Yy2yaNLyN6sPTh/Kwvb5nWLyFc6gfyXjzWhzvrF9IUB6G33pWZh7tDEG0BQciQnbP9qW/+Ln0DYySVIF4x+CZOqk9bvp1YaVvrMAEUQP4Oc6vnu1E+V9TaApb1G//SArd3f4I9vEe6mVWh+5EMDnE3OOIBjg+i1rVtwNECReJz0nuzaqgOskYAaynVGFGsSjwQ+ONMwcy79eKhphbTmUWP83hf+DEnlKK8R7ckglh+2yHwooPgZ5dS8xH0+O7/aguOVY9HHUZJ/8Q2pd82k+I9f/ukzpSVdsUOnjT5O9q1C553h4H2Y3nwSVeMbGWnyxqodv1a8K6/4zOSwQfQILa+cNLAZvhui5GagL56ya6HmKgtrVebm21Jfjgon+14ET1nI2cNxOfjJToVdbBr64BFjgt/psMXqfHXRtPt1b/jc3hmOoPyxeSNmGnjfZSRi1ubJJJ4zDf1i2/nH9/78GdJbJtFo1r/J6H5ZBLrZfCNe7kBf/Z+TNsn0pXqV9fn025oxzL3c4cg6bNg/vCoNk0ALSy8Qq6N7JZcl8FhVXz36i3fgdvyTqpLh50tx8WQUOPpA+D4X+/Yi8B2EQfPEJqRtvTjL6fGnb1HjMfpMkF+9AyeX8RT7SuAzwU4rOJTnS0QTGvqzJwgOcLE5UTNuz/mkXNe748ZrwE7xytmw4gnEP28VNV7Fq2fLJtGU8h4ZOLhxXs+S4ONBFc9bHN75F2J7NE/QptJv7Tnk0Zjdyg64VLhSeyzsfiJf64hE5t/+9LKELnuPg6drYzJvrz1a/L4AeLomxl1BObaEm0yTf8sGYds2VZ15x5bA1R0MfFL3jT58xVFFmzr9kZEnDSPcj6z3pUhPA1uw6mUO3s6ffdDopmmIL5EqwB/+8k97Xp/++DOdhjO1Q2OXjJ7AeZAXuYj1T1TW88m5P9C/+FV5bTKZ4E9wzm4ajeD7y8d5jjU4PvySbJOHl7DQnVN431uPTHk+1XNR8pG4DduOrvabsE1xLuF+HQJ6UxfST1+5EOFnujPG+3rrs8m6NX/+Tq9z7fvj7XzQlGfWHyLZT0x92l/NCaR7xBN4ZS828csV/vJddBdLG7EkGB10vFZb0mXCOhdRdm8w5mKFXZCIv8aPFiSNFkT8iN9+tBWlA+VhiVGrvv3617zaTt59TQeHo24m/HBlEXSDf13f10mfr7/+/c/+9Xk7sumeHgH5ImrJd9XzpqOBBnhHhkMxyRN/ysxNC144Hqnfx5dk2TQWL81II9j/40c9UQjcnvshEqOdrpNa52OkRKXwp0foTBr5I8prryLoe0nRyh9bxfb6LHqpbZjMZVpw//DAJhpebHQuTgbX1+9Flvk7oKWwMgvuO+5E9/pnz9ht1zRQ3gMDF00e+q30vgFU664Yc5Isv019fEQ3LLWrXtT/xSfxT4/Azju452TTWALcfht9ZK2k+cObSAPCr+xIDwk36Us9HyrYhEiKhlVvnufT5w2K6CXkhB9twlD77v70i2j23Zqx8nzWwOXcGOOIvXK6eYQZ+uMT4k4p/XkfvhsYiJVR/aK1ObvkWQNkx/F/+M5fplgXgXb57w+PJKtepYGif8voVXyUfnnsnQJiRXz903eZzX3eiOwqYY1/b7/drNWd6lI+/vSzXD6afQvta6eus5jffo/PRQmyfcSkX3gpWXq/jOQ/frfEwZyPw/tUQL/h41WPCwAZQOa//ZUPplCm+p1QNxJ6JvBoge/5NK3xXNb/4fH1eSOJ9/fJPD4NHonmOSaNtE3W/PRu5D88vx/upf+rQR5gF3wp9eYu6DthXI5Ip4GOT99K1MfL/szBS99+6f7ImzmpMosHtp0tuuedV02INvGKh14Fxre4ZlS7Px/osU1LjLO77FNJvaiw6rVE9DitXgyubsBbiBGt8T6fDlcrhhduJcK9eB39y8cLmzDelw/Obw0FtVDyY/1PX6GHAyzIxEiNlurwQ+zZPwt5eVye1E2nTz9R7megNR9SzXlhxkbscmj1F0JPb6luP5t3CZudmf37/LEXvxq4T+QQ9jqX/lx3mQpQHil1I86oBXca3tIj8PdEyG5iPtjvQ6Hsf9UZR77g9cTPliOs8THirMMTjdy6z7v7wkD/8M+PBJ2HhBH9sH0L3/pkV68GnQ9hjnGRynUTe+gIf3q6LUqez1JdmeB+JQF2tpFXT3d9OsLrd0xXPTtjwurPSAu2FvU2yrrrsshKgPMli6Tj7uOv+guv0Ol4oeotM/Pl21YO+JMVU6zMqS68xKsGs7VXcPgdpGQJ3/cHVFQSqZ/LfM6rWzECalsiNvqTpLNs0DOw4xVfbV6lP83h20DO67fH+1V/nf2qfv+rz6ggBPk8z5n6xy+xc/y99eHSuALiuWqd3a8if25vL0exN51L7eXAEGk9e8V/gUkvatr1y8tjC9zUy5ca+OIguuqpoHOLGcGab7bofNP++Fs0OhLvz5rPEzQ8yhTbq565uyLrhGS+y//hDaYeIAbrsIdIOOZ7feVzAlxHdUt1zb71q14cwWZnZzh4PV/JZP5+BsqXuIlkcyuxsTtfK/jkahoxdwF9GFvBAUF59tFWfH9rYvockaNh+4g26tFjy4kbDFjxJdUP93vNUOoCipc6JN9b+PYXaasQFJq5iP/s+fPStBuUYavhyxrfF+mjicr0gIK68mGH1nh9VB75qFMnNKRkjjVXhsnYW6QTDR0Jt4eXoe/e0Wmx8tP+7SkTTMId/fGTVW8v38Aq7RItt/HLxnb0eVj1Ahz/4b24aDRwHidMxJUPLVE1NrATwmDF75m+rHgamSebEInzsnz3Zw/I2TrUuNd7fdA3fYWm77yl3qNq+xbyugGRfTJCyOnQM+ouqfIhs4l96l7QEpxvJbz03ZfEIAz55HfjWn95FGTNv/4Ya64I+ysk5JX/5v4rPuaTcvRuM3alaOiX4VZ78EhX/nJEFhPCw7LA7bOk1NcFo+ZfUsz9J5/ypc7mP/1PEZ2Expy686fKyQFGjp1xcCif+aTuSku5X+OIprP99efvQ5UVu7TWXQki04dznIpI7nyNBkpxqFf9uAPtMt1xELyTep5P41t6Jdcftb67Wz/am7ECexP4eP+On/6i6ShGf3wz/KtPKBmbwPxBHonC4bz2RKmZIsFJxNb6/UsqFQXq37JM2ExIsuIXGcpisSIBM+9Pz6oQ1YoQe9i0/DHqvuqfHknNRZ/QcHEv2Z/eFikTfBgprNhSVnvBmR3s69lt9BOq5C1e8dglZ2pFLfTd3LxIkLZsnW0rRyhT4U3jtHnnq/4Ww7NuWjJv5Cqndr7OXcS4Jof6xHTiPKUFeivgqbNp9/3i7p8P+BEW/qt/8nFBNCD1YlPdeR3QBK4jyptdnZLNLt7kH79Eg9x8y4aGXU792U3KDixB/FG8i5856z/GWm9a73R8Cr3mt8mmhXP46PE+HT+MudIZ/tVjV35WsylTjhAojxzbl8/IZu+dPABrxwiHpprUPx7pKeADH9PCb789DYtCg+6un7FbWU496aPDK9VmD9g0DZaPjOsttOJvGo2exYTRaAmYkvGktrMPfKHi56MyKV2FvfL1RBNnvhwZJcuT7ueyz+m+3AUw5nIVCdz8rJemO2owLUkUgViaTIDROqHycFuwa7zHflz5Giw7AGqvPbmTe78C/J69S9WI1/NtutwAGelY4VU/60eD19K/+hS2xqipe/26GWSvblS61nPY1Ch8+8eXiPArzJ72p0OD/uLXX76Y06k3UPlxX9QWPD7ple2OoP+qp0D+f+YUXN4RvZj7vp+1UlaR1nM/ag3z26fv5BaAe4YXfT7FrF8egyqDWD4yAorQsUWQhBhKS78QOWAqmyStscDrBEQAby86zfGrUuLBKCKFaTYj3XsQ0eTXLJJE59LP3i8CdHiKJvVmP9CXwJYdSBniaDSSop4s5ZCB20kR4X9B68/GXq4k+x7fqZ9/JZ+F+W+BrHxyUa05T0ROKj3BpmmSqHfup37xfv4ivz0iEjbDz2eOo3rAdVUVoSYq62np5hNc8UmiekC/CSumHyCDN3xqEXeHPjsiavCmto69b7z0y2XoYxQXHYe1biRoET/yEQXYYzj8xDuffU10Q/bBuVHnnLb9EjXlQ3F1/KNea7oJy1V3Qmb2SMkgecDmHZlUJTsO30iE75AsKfiqXGpUof4wXPJpGwei/OAfF4xf1QctpqXd5JcbP8hNfFxzcn+ZN1CTrYOj04+rGVJ4ACweGY7MdZ9d8nZO8IrYiM2B29Tzd1OU8Hl+jxFXX0nOuNs1QNTNDtTr7U5fTMvLIJ0Hl6ba98uWze2UAb5ed5GUT4E/5mmcKtXYpDRaauYPiqpNqNsmRyKSLcqntE0buSikCw4NqifC6V4Q9HpgH+vZrtfprnUDaPHtSsTj6duPJLpy8PioEt6rhtN/7fISwH04Vut+7zIZ6TxUSGutkVqtKfgMvewGKV2zjRZafRJywVsZpmgX4sBrfLYoUiLD/Iiyf+cx51IlguJTiZr3W+Pv0qE1kPIoZuyOzM3naVSPgH6WQ7F+MdAsTxMoDYw83hcfyLsoCCP4jfYdh6q+zamu3CfU7IJPJMrKU5+36gvkUaAD6Z4OYQvrvgMsPSqIIpWPnp65KwAVPhb57jddzSq+5pH2nhOsFYjTB/+hEgjz4E21kVI0W5P6BmFb99jPv1d/eeKklI3HXqTBJE01uz33MeIs50KtDXJ64aGZMljbt4itU/fR2dhUrTL5L4ZDlJz84W68WgiceoPdgTuiP39F2lP4UEs05mT8ebEB6mBibH+DIaHv5BhtluecUdvRg57N7mDByYwKvPpHPnY85mH7rkOynLoDYqw93lDnc1ei3JYymTzFCcD/PiNqmJd1f3efVRBYqUeSyU36udrvZEBeGERiMuQJub/CTE4b74v9YzaiTpI+BujP5YjVPZr1+WyqgsL0j4Zdf57YiF6HCLHdrcdOlzc1e3zusVxgR8W3KT33zOlvBHiPmNisfnPClKI+KZvBrKj9uaZs3qo/gLTvBYyh/yD23Eylwlu8i/V60nMWRIUDBsg8eeVpjGa3ei3Q5D89Et8XgzERgYpUVI5UQ6+yXtDt84b7EFc0tOydv3hBmkF1eCRYqzZPNFWfWFaCTa8RGFojYQ8cpyg9bkPsn2+EzbsdPSHZmGLsZp+KNaz7EtSySI+myRyThR3jDrn9c8L73cnOF8MpSuQfqxfen92mH/bL14Le0TyKw4Gt++gyGW0icfyzL3/WjaCV6+Y0YieITbb11x7a1d6wLX+VnC72gVNGdYhwpO9rfUz9RoNzE8iR0p9ENjTjTgMphi+9vKpNMg4gBWhuihIb/XVJ2EPTBuXwwFzk5LcuJ88NGiBY4E7Pl2fQz+N4fQBvCS4RnsrR7/Jlc0TdZ8fTyD/SZEYH6YEEJmbY2ZdnNnpC8YbsmQfEoy+O/b0/0M+HCgduO7BldmmM4oxpZHdWG8SWbqjQIRsovpoj1Zd9rYIifKcTtdt8x4b7FwK53k4+tvY/BxHv508gnk4ner3We7S9EXr7l4+mKoFkHPX0AQ/LV+i+u4w+G+H7Bsv7iDS8SF/GJp+L4IbjJlpEg9PX3xOj3YhjwjU5zVln8yl0BtOptcbP4Ws50Z9/RFCaDzTFc5Uqt+N7v8Y3NWd1JXFgBLcP1bh6X2/H+zzA+c4tVAuun75l3OCg5n0fCXfCP0SqR2fIG/RSsf5SQtaFZqnJN2bE2Je/U7+0VHrD9fvdY+PwVNAin5wbjAV/wNfdrteHZtyoaNK8lnDeacp77aZHsN0dTepxjpWw6eoLUNRVgP3Y13uhmD4OhIvo0QN/bHr68Z4tSmfiYv8SGgkfzKwEjcY64Z6VwEgiewba3dkSkcvBq+fyJ3FA8/0be8j6JKO/jx0lin8vGuDtzqfOw7RgOOY8xVlR65NbvQG8Y8MT8VIvaJIwI9CyQP+Lb/70ut0zcNkoEvnhUcb6nDrIz/YTjqZQTXYbYqgAwhxgtUogZ8TuHWR29i+S9T1l06Hy3vDNmykSnsqiz8/13nq4tTfYcuWt/7uR7w2Nc3Anyg8++tw9PBEl5vbwl798Qs1TAMKY1NjIVS2f3r+akze3B6ZaPiz18nigWP7qpx9O1/g62Tq3TgZX39i+3vJ63m/mCjaDXWGv2jQJjWjxlj+qv8VhsenYx99nHuzKqv87j5xsvpUK9eGmkl2v62i2v5YqH171la7+m7DxoolIFtBCZCNG+RKapaocztczjS4Hr1/Ya8rge1KAesgyc9557yzpbjTKmp/rZNmfWYp0Nd1Gjfb9oqUVHovkCdwGG2V589kgaBnETy7Dgf320Pxw5gqSkj9gLaJiMhe7bAHQNnW0nj8i3eUZI/1N1WjDSJ/8xUe07iPB8Xoe5EVcAXm6n1KLMQMt+i3K0PDTWrx3N3vGiHx/wG2zbIk0qQlil8+uBe11l6gupAprzn7Hw/F80aJGPuT1uD9zFRhnjKlpnFt9UtGvVcq3mOBjkals8YRrBvVY6VQXbxs281tyg8KPDXpX9XPCuNBv0Hvd3fQXD0fvZwHcmBXTIBmieu6DgwbEcr3V/1zUqd6OR343tdSRPn1C+uq4oD+8YMd+nPA5c0SIz8+WBvzk6EvqxoPyaSIb6xIWcqLfrAxuj8EgyGju+vS7lCLQQ3ulTjNe6qX+4BjFg1WQ6bGz6snA+glO6Zbi6OHpOqEnBkAluaS2xu99UtZRCjJnOjS8Kj82HbfbDMRfso82Ik+SZcuuFhRiIdGjd67r5ej+ZHgMEcb283FPlmWOPcVpVD7a1DT2eUEdPTjbF44Gb3mbLNltzqRWSvhImrsSVSuehoZw9yjLb14+z2ws4DBobvQXj8nbshfwBXGIsqE96LNx2RWye+xtIqpO5U8/L4nhmhfKilcf/cxrvAV/eCb58J+cJpoQo2NQZmQa9SFn79/TkXf3eSHswB1rOuixpYSXU0v3JDJq/i//7bJjTSaUyfm03OsBBs8dsP98xPUfnpfN5TzjqMlpMk7Q/id/p69AqVmzOCU8XvQZofwr6eO5zW/g6uGP2g9U6rSc4glVtd1QY76f8iV5NjxU4zslr+gq9KQXnwQdFEumjnkJE+J7QQzcsnRY+/JCMqoPyYBbZscRiroHmym93QDH6kDxr/v1s83nLZq2cCCiFehs2bKDBWqyc6gj3/aM6LfoBu+jolK150vEBFtdYDheeexG7IAWA1kCOo5f9y++9IsgcUeUn/x1LtbH73fc9PBAFqQFh3rE1cMlHQgcz2eN0PLdoOmWjR2qInojw7yj63mA9fd82P+zz8qpS+UXqAMOlsHy59wSG1TO2iVS+EOSz4wrOXC9bENdvXzX7Ep+GvAqPkelrDb9fM+uR/RSDJsafDogEot7D9q8vGOzu5T5DJ93DE2wzlGhr8XvbgeBhwva73Gw8sfFNaUArfiCGt0bIfJ5xKKyNy4X7Jt5Uk/muhsprY499tvc92f7G6mAE7mNvtcD86evuFTgW7c7jRzb8v/le4c7Imz/4ihn7iYs4XtcbOzsXm4ycFMFsObnf3h3uUiTrPjE0HD+KOeepc/b4y9+U0Nwq6T781cIHwm2zb1fT5+LbIGsiidsF8lJn6fjR0O5oypU+4lZPu923xN4HY+osRw9NkzXuFX2T1lc86OZzI8HV4B1CEZs/US/Hv195kBnzDp2H0voCzl+E7SxxwsOuSCoZ2f/SiHZLhxVFe1bs8W+Ami7ysfhrijq6aj7Flo0TaP2JTzoTHRdgiJaFtQQhmc9pdshQptH6pOyRE79d54Kv0szrPFtmxD5pN7+4hM2Vv7dyZa8oKwDEnEjgZ5dsDyAuL2af+8zWcJWbiRxsftoiaiYt1YlONBYQ0qErRYnU0t3HCDrHNPVnnRhsc8erPkvkswR6x2xm/Sfv/zUh452yk/kkNYaI45WfLFgOYnhjPwv3X+cPVuk9FbBzti40VTgW89GV4nlfp+n1Dll7oo/Dw8U68J5xbe6LnwesQw54huChOmqD8qiGNAGxoZqdqL183eJRLTiMULyNV794RGciC01cJ4jloXtG9xwuFI/6tZRAaeRQys/IxthGpK56V8DPGZPIRdHH/oBnl4M+2nTRYuwXWp6+ew6SX+PajRrh4WN11aL/vgSdrd44zO2LVVg3pJh9au4yYo/ZFB97UH99V7k8IcnNLt5ECmfBn+6aeWAvlanU6csw3yJ19m9n3T6Ye/hYcQAdQJqvOb4Z0/9graqAGn/E7DHG+9+5WsRRKgrySYrap+pmXZU6uS7JTTYFf1w1H0Dnt19i/FGwD4fblwPVrxMFnnw/N2ykz00DCeN3mZ/0MfJfGbQxciO+AKHaKJ5NSl6q96IFHIoWfUODTB9uNQgOfvjZ+mf3oMdP6d+410HDdqN3FL15mf1bCVJBDyvcqRUNLvebd2biPhAktceydCfc/yVgUQKo+ESzgk7zUYKnQ9Xejw/nWTlu0fgHrcH2UbxPmePh2jAol4QmWIYc9bqv1gKsVFSvRdtv62t6w0OE7ejgbRJkvkPj0+SEOJ9dwl1vkymQNmqvvYfPaeTmxaQ7EnUD06Dv+SFfILi+lEIZ91FtlRYO/3x0XUuWMDmzaE9wqOVt9jPCoxGLlluym3cKxGeak1ne0kjypcJ4igk2yhn3dnlwK2MTyS9x6Yn6+ehOxpUHAWvGxprHJZwVNQvvf7sPJ8u7tOQwzx641AVfbQznEMK5HiIcH89WMlyJ4kKtcd87KbWRv/B1tBAJn0XvSzHS6aE9UfkckGLLbq+nyt5aej7zm/U4VPVZ+7PeUNxsghVfcHLt/WvXaANrA0NmneV9I7YnsCUajvavOBWD8rn+4BD64Q4exR+MskTOCAE0RKJ5+mekz+8Wkc/mxqH5x0x9Tw5oGcN0GBojXy38aSHPLrlDvt775vMQkpEpBp5h20J/2oWRxoHwnlfRKljP/sltktQbFNN8WPFoxTLsQE2d47ofVcU/fz3vr9Wq9PrX77Sfh2APu2MiBdcLV/mlBdh5Tfk/Tysdd9GfwDIVkPNaO1hYNtWg8l8aNj/Nnw+vW7nDMzO/EVOM+7q2T64BiS3maOrfuHPw9qTGmEtJLLKf+rxDz9vcm3+h2fnJJUHVD+sDza1g6UPP8VsgJ/om7on4ucEXxwCgfaIqL3Njv58/0oq4GI8YNXhf/WkolcHxhRgbDeXLRsONI6U+pCpdJ/aZv/3PMjx7seIKy5jvXwXn6BBfFhkqKtX/oePFTsUNkRcz3eBz8tCn3T50T0N6n4Kq2RCpbRVaXQ/D/1037o8/Nm/3gpNwhyxTOHebpxodz0kfqcu7YB+NTlS/3pokmU6/gSAPOzoX75alME6QoGWJKqmOUY0V/cLCED3EbfqlcuVvAMQxeFJCwM4tuylUP57fmyoyief0Ze7IdvUUjJduEhfdGNfwGl81DTyXQvNaePG6Fu+HjjQxAItL+LycvfZ8kQ6dr98/nmZAZw9d6v//hLa7MsUmi+zKW7VomfTdo5ki8tfkeTPMdv+4TPRkIV/8Xb5HPQjaPpQ4ejTZGhrH1xLziF3sCfcdnkr3fcpVJq2xXu4ebmEmXRE/XA7R3N8F/up7jkDwmK7I3PxWXdbstYCo1xmci4L26eaML2V/vq74xXf9tuDedSU8WNcqXpi73UXRVGiSygE2Fq4KJn+4vMab7GZtGd/qjI/RoenbFKfe7T+MhyRCpzEqVS/hHe2wLoP3PiCTe0kvfZzG1QByPOtxlilGRv2+FT9w78rP82n8/HaotNe0uj5sVzZ3DxOBqz67sgNaYvmRWWObIz3dMUbUC/OOQNopQOPVZ00dS8NxVFe9bpIWvGqsK8dAEwLFwfzjtbdH55b7Z0od36fj9/FEqFeipnqW1b2C69NMoiBFax4oEbTvug8mO3Pm+L8UaP5G8Hpn97inocuWY5QRGiUdStaVrw1mWsNtDwX22i07Is/r/weyOx46z3Vn740keTANru6NPQgrIUmkry/86P+od7lA1efT+h8v8UEJK9AA2ZQoODxPmBPF5p8UTW1Urhyv/yrB8zTcVTlNZ8TJPK5v2y+lfYPfwQW5fPVPwPo54tOLc5h+vjHfz5ZDhj7z7aeukdkIYzeIb797nd9l9WfSrZDfkOLunolJLZbAKvs/Ijru1s9vQPujRzveaQqjYW+c8W+RGs+w1pwNWuBVu4bcVqc4/CUFGx6B0ID4dbc0PX7+l31CSzY1cJ67z976jsW7hz4w2/w7H+IHNpfBmu9Yo3Xyp+e0SLJEGqqPT69T8k7rsB0VRE/DmHLSBhdVj1ziVf+0fezz2uF8uGKiIZ69OhnbbpOaKktRsPAl/xp9DRLulwhpgk2ZZ2qBAfwUDuC3VhTkmG6Zh3c8luHDT4NEHMeoYVyHCTU0wIpZ9VyIPJsf9/Y3O12aFnrISit4p7+s0e0dQQkneJ9xGn625/+8MsNnjk2y+KrDxJGBJreeNHT0Cron/7Fr7su99tOTiZZzUF2nvkmkk3zwOaql2VYbkeXbK1qyRe5M0+ydaps6lzqhX2i48TDa3MAjNPljFirv45wGFQX71c9mR3hqqFSLR18ikHtx7C3RcB1alFvzQ+DZ24akMJf8GffbFGXteevE3MafRoRrfWnI9r434ScrGCq/+k7TyUYaRjvvv7iCYdM+TJepJed/63b09svIUSE/cNvi/rJLZg3B/dP/8npZS1/iCJ5Uq3vQ8ZkFXsgeZcleu/ROxfc/izLR23fYnz5Dgl5oLaDVY/EeHy9fNImRoROv/eX7hEp9Jlyi6csKJVxKJ/P/kwrY0LvVAAyR9e0n+L3aYBVf6LWoX3rdNpKASj+KEVKsfHYMumaoQzyD2F7SQ/+0F6RCt1QtGQ32h+2vKutB2PGnel+js16+xwMA/1G846D4uf+R0/Rx/pHw9al9ZBuh+AP7+OzXR7yaXe6cLD9Cl/qUSjrgUuU5t9535SEsimkr0y6IH0fcXF2TOhaT/nLL9G2FHI2d7wtAHuOJrUug4n+8qd8ts8ctslTqsdqvxFhuH49ap5OdcI+X1NF00hc8qJNli9j8+HR6xH6q347ovlXnlVY8/H6ez79XEtqBXSciqh7RzMjwunwBiqJ5arn3llr60IH//Lf9rT2UJ8rB5JzTPE9RS2ifU495OwNG7vFZtcPTrSs+q3srf4P6K+eBn94I7jUjc+0XwX/+Kz10c/6+vtv6PwrTzisxdpv+ee7haKMFmz2lNeng2iXyBpPU0Q+9ylnH11+gOGaPvWhP9bTqndDnp8uNB+OWk/KcJ/BXaX7f3x8xTdvOEhzGb1VhyCmSNkAz/aoUrtIeH9Z7Q3aLNRxMWpXfdH5XwuvQ9VgK4BUZ9ZVVsHlopawgmj1cvBBgw/bPMg0yTob1voHrHoBVm++WI9d1Ht/+J+6qfX055vrkT/8HYFxfdXD9egUil8mIg7Sz9efyuJbwsNylT/71idf/zwAt9sz9uor8tnHu3QQooHhFd/kDCnAofunJ9Tm67yfR/1RQNhMFr7uhV09Zd2lglNzCLHHMiEZ8+F+RJlXPNee4X3CquVK/vBUVKJMTqbNyw/gj0/pmpLm/FRhTg4E4bqe56WfdtyNQysfwK4gDT7bSshCf/qJnRttPfkPdYB7eG3wv3x/J4mG/n6f+4MDmvuNfoLqN9yoMbR3Nj4e3OO/m1OA/u+egtb0yki6SlrPm3Dy5Hi/jsrO5U/eG5bNw/wQe3rclGXP2oCUsjELIY64z8gWRLwBamIZNMScxegm5CtEDt2MHcGw+umAS08pdM4ghZbf0eJ2VYcQoVXEG1e5n3d2koJ6Xfuqwt0tZx/l68CZyoTinzTUk3HiS8BneiKiN9lorgotlkr3W1IcVDSfT09HRj6nadQlJ62fcRaLYNZCS93YzJIhTTMHjtkkUXM6ffTf5as16LGYQrTbHEx9ymw/ks9q6FFt6pdkZlR9Q5BDSD1VmHvae74HS5Ol+JEcqN4iIQlknY/uWL2cZZ813qqpS8Me+/T0ytnc7hc45/wDW/khQUuVZCmIkjZQs91WCRPcr4iaXTlRp+m6eio5EsAwJQHeX69q3xloH/97/mD0qE/lR+7BNQnPEV8fJZ+KzzcPSJ2z6F1ShmbVUGXQjPcRX7ls7ffUhDe6z/wWR4SinG0f7SIVXr/O6n+weunyIEPFS8T4rmtuz2eRw8NyTC0alF2b0C/cC+ii7kPDeOPr1Kq9DO5NWFL1ObhofsIsK5/7gKmlHaxk5rYdBy9ZManmHge0HC5tB9Eh06PfkB9qNqmdg65XdYNNOR195v/kDEWGfoqEaA71uXxfG6iMtY/3+lqSSUujALalf6faVtN0NoAtQNDQDTU5dOsX6/QZYPwJPeG6xkgEqU0XJF4+I45Kx0TTrh0bdLyVCT5r1uxP7omIKMi5kGpH8ZHvvsnbQdWt67CbbsL8/TKOEWSvSMZeaZX+svwEA7aFGWBXRFkyvMHj0e5qWNhDvwWx/Hyw0PN1V/E+L2kyPTY7GQoem2RXSDqaLs++RF7Q3inuzrXf7ZV3B/dkndNwAoPtwrYdYH89ZJFoC0u92IvEoa5hFgE+RPmYRd0RKrHZYu3J5/36PiKUuLpMvdecJcu0hNnf36m57Lx8F8XqDYbM6yMgX7dnP//Eg3tb1wgbzM/pOjQQyVzxws/43vaTXSNefpf9muMdVI89CgDGKvkSctxm9fitluPmcVXONNx/qM+26qmSYcd9MX5xLJndbh8oH9TdIl72L4hFyVeAEwYn2k1FyuZ6SOJ/79tuFd5n+flqQXnvJzJl6SOh20vtoFTv3tjILxs0coHUIlwbegRWWPpDafYixIRb9/86AvoMv+qolOdoS0CdzHrmW49DyllesE63dTKf21MMMh8H+LE/hWyWxSiF64mjGGfNpmY/pE+K6Q82Ddxzog/VqQ5A4iWNYocz0Xzn/Ddwv1OAQ9c4oOWgHlVwZO5ONlLi9MvJSQZY+BZoxKp9T3cbbUKX/fEUSR0noF+gJSDT+jRj7x50aDgtFxHcMEmipdxu0Oz4/P+QdCXZqsJQcEEMxAZyGSK9gAQEFGegqHSKwQTI6v/h/S2kmlvnJLklKKZHbRaEtOfDGS/vmj/PZyBcNrd6NkX9A8VZGgMhjrA+1ETawP5VSFThvOJj+pZFVIVlip2FL8MopzJyMKnxvlrN+pw/Egp7ZX+kjRrqZEuk2UKXww8zd3p/Ee+vmYWcu3oK4BSNMY9syQBBM2vs9kNUU+O21mDBg7LdqSGf522ukPAoI2wc/Sdn+UNw5T/++epokuGqHjt50qNLwJHE6znsvQT6XB4pEWXuTeOXJiA8bhGLGnVTEG8cNeicQ8eM+nTVp0pZC4BO/oXFpnWKtytrs0P4UlKmbjEgBqYsQhlVOXbL3oyn/Bh2cH1HbcCsp61TXD8ypBpgs2MjJIQLieygoC1jbP35SSZEvmLjrFp2o0o1LVNO0SR0IXbzU0rGBR9ELf3G8OEje1zXZQs2xe2MbbkUeC//+hP0582T6V4zosnLIYSk9ClLcdlwvq9DDVa//k6RsgnjeR0aFphDVGPXTkZvurY7GfGg2lCJp109GoPngvckCa1faup9zXSVQ2V1ObMDqIpZOBYWjNlGpUQsoR7//IiH6x+zzSao5/tNOqMvPbvMzFaMf9TLQ0bVtJ+ww90p/o3O/IVVG1T4YJZaPcn4riHfcmtmKvKS4WO7Q2f90+Dwkso6RWvnjN6GDoue42JyTnOHENYVuv0oov6TrP0HeVVOsTfNT292wExgi32PPaT4Q37fLxLQpH4tvG/UTTwtTeBwc7SETjB33m/RJ1xRumZ+ZWucnYPegkcvIey8rb2+Ls4E/vyPOXgiaEJd/f3vP+sI6no6734h2sTSiWlzUxf8Us4WYsf1C9vdY12MZms+IXxfE+b0Tl/8/MO1A1e7OfiS5nt9fXx+fIiTHmP1/da97XZ3dJDXlQK2nbLmo9tsd5BGnwM7Qtzzhb9n6OPLgFWfGvX/+e908hEbXsxqLtt+hVDgWhi3FaDfLP0+UIW3FJ/WWuWNGYMKLfgx7/W86PPxwFWE6K/CrhYP+vTHp4uOlr1Bxipe8tET6LsssC+pe8JPLBsg3yQJPk5yxFkQM1GWNPnNXNFc7kQkfkLKflMF48o9eyM/pCd0B91l+q1415w7RJRpy/Z09U11fZAD1Ml/eWtFS9nrhXUFUE36RFH3Qh4XNq0Idfg742OmbWOS3Z8Z/OnDmrveox0SVVAuHx/fya4n47sofFhvh1fwW85rMOHmwtbubaa+Dka9kVe/HJiZd1RuyJHMSjCMUtDeYqb6tKnn9U7JQH2HCi6IkNa/rR0nqMP0S8vIVYu1bhogWyuqYLx87xjMdVkB3Ss+8/g9K8jZJjcUf0uJGdFEi2oe0QD7HSjMLARCWLLfVsAbpNDVqbnEo3O6Okrk72ocwjtEsz1PAM2tJUx9e0P9EfwsgDghmO2/shdP/qzJu3gIYoY36wPi9OkYAEN6YoGsqjEfds8ccn8WmamEWsy7wb8BpQdgTvLri99BPvkQRu0X/80XkT/JDh61n7OT71f6bBMxUQ7kWOKgIsQbj9eDA/OtKgKp1u91TWXBgd/HjFiwtYjHHLcyIOlFnak5aTmthEuO7lea4EP4Cjjrr5kBOpCMriax5VwRMwvETnsxfXW/61zcHgz0h/cud3XOiTQb6KbeQ5YY17wezfxzg+QUrrAthC/9m252Auz92WdWNZ7JursHZzDbRmOZ3Iv65Lp1KLfvxsUmyd5k7JESgOm3AlWMh1GszZYCQnivYJ9Ed7TsxnXBb0WHeeHSZ4qcRy4t84CS4+tI/vKSfKnfLj6ebm3NTp/CAmkYX8xsNPD4hekG7B+2FijP61unfSRpqCOowAfHfejjNSw7KDZtyqwvYXx+dAZFcofu+MBWMhpHOd1BaX8fdJ3kWjzdH9ulq4IawV1aezp/KOIIS35nzqRX9Xhn3Q506DMWSA6PaTSXA6p3202ws3PQf88mauDVegVVNtGLDC9x6duUz5jOAXvHg43cErVq+qLz/ecjaqarDKSnODNbU1v9vx6OF7GmwpKvFr1uIH6GDd2Mv0z/asNeQLifGiq8eKmPq+3jBI9La2LbbCj57oudgLqVQv6fJ28ryQKzFj9UPB0NNIWfXobz+rPCAXt/4sWfvqgXZ/LH32IL21UFC7/phKYX59pAclkrb37wqce04G5jlSj+sAcNvahH03lV7ZC4kgva+o+DzsPT2YGjcOzxIVMnMh1qvZFDHHI6vc97PtnaqwErsXtm2NkmHnb0WoHDi2vwBVVD07bHGnJY6gT3TNsWLH6lJdqH4h3vzw+vYLwbLVjmGTPmIfXmmsvJPwAAAP//JJ1JtoIwEEUXxEBEJGFIo0ibIJ04ExsERRBMAln9P/AX4FFJeHXfK6iAnhneUk/MPn8eJPDTB4+ehqdat5u7XUJsXu7YGzOnZsbNE+Git7tsmopRvncQuu7WxO5zlIvxCUofClvQIuksngveXlcVzA/JCsdzPR7LFW6Bb+xiHNvaoZ4aY0vg9lFMaH7clLNFj9Lj1yE1XZvFWk/OylLvqD7Xu0nOgwnsYnl+76jYz34FS1DsRQ/7Yf4oGHEqBczrT001IwXvJ3iFu0GrsLlJ5ln86daHO7km6PnWL/EAg06GTcwAqdHdMmf/bKvL9dd2vC8mb3ewoOobG2yfQtKTqn5mwDLLgJ7qkxEzJ2lk6LrAxPpP1Orl/oeB4pwJNDZJPG1S2YBl6q+xDfZu3SbhgGBvqBuqUWsPxvu7j6BiOi12bnpaMxh0Cnx1wgVjIfHr7+OBLdCVQ4H37dooNgXD9uI3SO29QjBnuAl0Th4iRaqxYp7bAoH2231m3n/wKc0HAq1k31FvnDRzo/lOvvhpMpWfyqStod9h5u8fJMq+Wr+xn/IAnm+nwMb2Q+tp8XtH1p5pEqOWE2E+r/KahQrV13FdsGxEPihvHaM2eD491iijC+2bEWFv34gxN97vCfrJ2cHes9yYlG2HK2zOzXveH9viVQfvF/i2VYmDp/TsWRIOPoyzS0e9SGg9nltntugFWU8FB0xkUAE5sEQywFdvsobzCtZD9sXoMaZ8OBiaDY/79IEDQcIeT0tvgjMfYgT6vB5Tq3wp2s/6YFO5bj0mO4cWclZH2HlBBLroE6Ilf5h5yQPT+qQPsPb7PYpfmQYkZywj+NmMI7Z7nHu/t7/OoBsSQranogZUItsJll28R1u7Wfct2tY2PE+KQtgj5EUfPHsLzPyDhi1aFTRoS6IeUhRQRxG7gsnkWKozjyM6im/AoDVEYN5PWPc0uxfb4AThLf3uqJ/Hck12XxaqrSu4OHCffjzK9ydUZz2mjmsykzWDqihXt3ujKJKFeCxfx+bfH+8D5xaTXJi+6q3B5Zy1kPifh06PaosDtF9zLjfVVcnp7UGNzftTTN/K1ZRFf/SvIcScnI0r2J+FHzV2QPWeUIJf4Bp3G/Eprrx5/2uwgPmKGgVG3pjJ7wgcnEamuL1GJhlAcwG6wD5k9RTimF82PvvnZf0mEHNcZ2Womox21Mw+qvfLMIBwMwk6DYwm9tgt4D6kW7fAxrdzTaY0LlJebrimKA+G/tu54AJCcTLxYTNV8awHd/jQxwLvQzOqp/n+glOyOhF5NI2ep0JoQL32Ymw/A+aNC9+eNt2FLnkEuz5SGU6d+aF75835sLp2CFxQhagXPH/9hGIrhx0+FviV4MAc69Rv4Zx/YT8UU87izi/hqLXWfz5AF7/eh1lDft1K7tmlpC/A3iefCEe3LAbjl4hLPaXGN4h76XoKLnAVrGS6exDa/2p00OAmjq7UDwYDTMy5WvCxjzCef09NeS6KQNXFCifAfIFyyeeIU4XU0PnXG3+aLMARihI2VqXWS7s9uQC00xPSkaSqJ5dLGjzaYowzS+LgWwZDDtL89EXMyWXA9b05wZmH5/VC3uee3Wxl41ye1Ltsn8W/notfa54+hdt4NDLawofOCyKU08Vc/L96TiCd6/feWx9HNYIe2W7RdHfqxT9bEO0ngjHNDt4UGGoO7OOupl5fPUx2S2RpyZ/ocZrPtrs2ogCv060nIL02fCrungGV5PWZ/eSO85NkDzDDrxhfbq1eTNmpMODs38g2n+fGvGNFgMNGCtE73UnznKuLDM6TrGDstBeT+rq+AzO/Yc+0056IFiPqwn9LHsMXXhQOICB9JLQmu/7ONjgerC0JffLqJ6z3g1phPUXjda96s74Q2EnVfvb77356DeIADXg5oW2nRoBGbbyD68dLo9HdMePxlkYRHLLzkc4HoHjjrj4juKL5BqlUg/UYR48MxEZyRhAcWMHz1XUHH+mmR3Kd3MGQ2VdZSUFpYk01PwXTYMfgwjvH9mSZUhXnCYx2pMOH1XHvdR3Mvv96VU/PB+evqNypS32d8yQ+4HCUwMJPwc0ERUfl7gWu9996np2/7fl9ha5wUq4N9V9vvf+hDjTgamsJRZd5VntcWcrCVzRYbbjJ6pv0giwXNVoYw8obN8z/KnV0Z//6J92uYwYutQdwgKtw9tNKA9kxgjg43ZwenO7KDso1NtBoPt/gXw9n3ieScWxiPl2sCpJibSFgQ80cjVcl/+erh+DxAeMG5QKMv9d5ThU3wNQ7zwGKvtv85x0cOwaDEQMXjKK13E/XEDMQNAeH6sf7pyDKbTtAj4AtnetZzU7S5G6d4BgT+Rkwc+jAGi08i+e8vBgKgc9zgraIopW+i4loyQRsnPxJMX8I5lTFYQY1IunYddG+4PdbxKAV6meK5AOO2ZKvoVUWYOQOek8mbBuw6bcFXvyc9LnYCeSolMhxlfYxq027hH6p3Ylya59zHhLvIHn/9H8eYZ8iRgvfoHWtn8Do7FYZSJP4Qk10bzz+rkYLKKbX0sXPTPMYS3Dy7h0iXrYG/e2VX0CzDV2KyknxBg12k5LjUcH267CPWVWU83nTdE1n/8n/+RB1VU027juqJ3s+C2D5voPXSP28/i18i/sMo6Orxfx5v0sLD855PweDfHJlgG9hju0wO/ccbjal8lCthFByv5iDF6cImjaoqXedn71Zh74FLwLHM18NdZsQ+QpnPcMH+RSaa2CfLpDoK5/Qmb/YLWGimubpF6lOacdTGbxyWGe1Rq37+lbMfkCG40f38W7tcs5/89kxs/8j8p6anAV8heA2gxsaQu9SiEhrJagoqx+qgo0ScxL5EthMUMfxUi9nPwTnPAEJhIJ/vlQOBSBUf98Y4K3flNCzS45vp61mSs3tw6B21k7U6g9NMUJkJmrsl4S63TDWPYl8EVh9+6NXK9C8dSb/IvjoAKD4oOr1mNKjrOYf7YXq7vQCP+WWR/B0Wq2JQL0R/FC1FmAzUgupQaH30pLvLf0Df+aXkRwdQRnbqSEs/eqAUVlz1Tk/xO6r//XEn4Zs6ZcQ8dcfTbb8/9lf090U3nsWRGYFrW4bU3wBB3OiW88AgR8gIlzYkTPYngR4OqlrbK5uqjflwtQqUvodqJusC3P+fAn7yNIwstJxzoveX/icKhcJhd8W0wBIDvKP8UKS3I7FuLZ/2uJX6azfNRk/ZaZ+3ldALRyYtTRuxkxdpZWKvny3L8TatCuYQHd+QqfZmrO/0uDWSyvqHR7vgqu/yxWGPyRQOx7e5mDFlaiez8YKu8kaeAw7IoLdtXXxsv9oww0L3FfXF9r4H4X/8ymw3gYR3ajvNym7Mtj7UUq1b/zoiUi/BvylU4Fde/xyeuDxBR5DKFI/p3i+nqW0+Dm8c6TU40+zZKDh95Jib5/0zNnKDHj35EYPX2lvssZzfRh+ioSwOS/iuJzfAdn5Lvbd7GTSGpxzeCZiRyRN7Hl33TsRDJ2bg74GNeqJahqBs//Gs97FhCvYArN/+F8/7vOAwXbjArys77T3LglAjiTQgyp+69/3ywW45OXW5hOYv/R5/wKjwwL6uarBeX5rL/DgZREC/i42WSgf70u/inQYPj02ugQqs1/FVsWkmiZ4YlDeh5tFf2NuFjaB3aeA6PnLv97wvr4UWNzvIlldHqwfw5Vc/ve3lvo9NQAasCdvjx4Swa0ZqpISntLshSA+FeaQU7GC0bBx8FK/RFJuS1BdLzu89FcHphcNTEbhhVY0+3h31h/Y0o+kO3UfmOOnUsKtun6d8E75kIK9yOEFl/zd1CsbMNd1JGDa2xr7/U8shl9Ylmp4q8/zOxpkngPkXYH8glesHw3GydzvA0t+ZhwDy+zV3+UOewWV9L+fsvQ3wjjd/evtyKndgM6YQnzoy20xIfuZQC8bz4TPPM3v2c39AwAA//+kXcnWqrwSfSAGKCAphnTSSoKAqDNBREFFugB5+n/xnemd3QcgZCWpXX1tWJzCJ6t/kOXZXXUU04kGEqz3MfFrhLPnnvMaP5EMqh60m1K863bkYzVgy+CEurLqAxJYXt7NE5EiWOCg0psn7ap+UV1JFCn7YvnsrfHy4Rcqa36Y6PehR4uC6wlkr++JObmUTSScNyA9vJloZ9ijrb5hElrz4WNpnhM0rfsD05x3VEWfvlvE06TCIclcYq37m9l5x6FBkRAx8syuhkXtEiTEKCIat0tY/4dPqz8/VspistXe+ECiSPGIcuR229iWQ7iw50T+7OuZXC4y8PMwrvpl183/7O3V/ziAs6lmbg86RFZurO95MP7Fm/7iq+aaL+56sDcI8NXGPTuIRiOFQfj/zSmA/11T8NWEFz0YTegv7bnxoG5ln/qV+IzHGO0wSjAJqamWF6MvPl8J/IOKaXJ2Wn8xs6iHuTbCEfTQjqf5S3P5IbcR1b7nXUyvX2uB5xvJeH6l52wu6X2B8LRheDNLApr3uZNC5UkPzP3MKhuuQ7jWtbgF1ebjyi0Ql61iq/uYGl/TQiwGS4ZpON/GjevFMTXGsgErGpKRnx9N/KOycoFcvu2pcy2KarpRLYH5dBCo/ryyarkeZYx0ur0SE79yY6rqRge7uOhUm09TvLT6M4I+6ywS3LOr0anvwAM/XUpCTplqMNu96CgOP3fixNonnoWHGinwiPiRo5uETbqhcQp67jTcPYmXTR+fs0BnzUD1A2dW82yGnMTF6Qa3lrNnG7N9ACR5qVJPLOtqDgPGwbEzg3HO5Wc2RfKbQydyexGHuojNL2kXwnUje9Soc8LmZ/yT0eSqd0Iu/pEx2f590AGqmujbvvGXi/7WYZvJBvEkaegW57gFJD3bDd5drmom4ue5htq2JOp2LDB6ddld4ON7PXWslZtGevEbdJw+M/UHtfBpM3cWyPZVIsFUPLLlEyEdTiMGoquJmy3D2of04wcBrxVjFWvsdwq7oT6T7P6Z/aX/Tg0Em9+WOCb/ynpFoR7Ib/5OrNPbjRfwThtQMlyNffut/VZ4nADKBHPUjcVH1mhsM0JU3WMaVL0bszAbZLk9f1fuh9hm1BHOI9TlhY73ovtms2+rB8VpxZBqTaj524pwGzm3l7UP59J37UfZWPCheDN2BXdly0UfVNhdZ5PsjYfF5lScCpkNyUKSPi8RO6dciNbzxIKunA3WHh0BdXGkEW2np2yp7rEJz11+oVYSlNXSK8sGrPk54qmX/Wz4yUIDjZjOBJe3xpj1T3ND37xm1Om0ZzbnwZxDWfAEzz4x0GbJnAn6enSoE+/jisFle4Fxo0kYlqTt5nW9nfVUTfIo8pfRDJmnwlkwTbzgqDQW0WgtIOalJ3qUDtnM+FcJE4586uWbfTZ1W7mGl3l/4IW0DhrDObrxgqknI6LB0/iJNFxgvX+iGcoxm8qbdlAieCWEyPW5mgXPvcDRwAuemfKNp/pIF6T785HaSPMz5k0fHfCx9IjOMrGb2s/7hu5J8CFeJIwZM2PJRML1JY7ipXl3S6DTl0zlYcC8XIvd2J5LD57caI1iYaJqDl+yAGbcXEnALCFm632j+/WekDAIXMQIfRZK6btAzP1TNiZrmRxl9A5neirrY8b2PBQoPUxPas0Dx/rOm0uI7WdGiOoLqOPxKQFlMxOqw575jazdIrRvtxLRiqg1WveFc3nDG+PIsauK/v3/cEUi8R6lW82lmffShMOV62FM0QRQCYpiZyENmJXGzFe5D1wvxhbDL3aqZT1v1Ik1N95a4Rez3KYCvC+RR6yw2VTDjv+FoB/jLcF0+lZL8lVaQJevR/ZVuO1+4+mjgypbpxEo36O5LpwePOruiB1/q3jKLEtGf/JKVnxcNm+7geLWfIj1InW3eNbtg9xndBwl7Sb89bW+IE73Kgm6K2XDY4wKtLR5SK3hbcbDodiP8F3n7ame1BtzWoEEfbB/Et9HrFoKvZqAu2zPlPh3159dpW+BIflMjZfPZwNn3U2APe9SyyNutcGmt4C9P2nEb8NDPKbWxUT5/TmR4NTu40Uj0geiRZfGuf7abLykzQcacj9RjGnbzVsZPJCcRBnZcvtUP/BURxmXpMFyCTz7iU9LktXoTkdeKL1s1vqbCUvwRX/6oZszrj5AHBjcKK/yMO9trQALdz49mO+33wvoN4HgRjr1gxiq6cBkjNKtv3Kp/B5oGXeHNUen1+RQ/oZspjXCMJM+oukef7s2t28e2iXRc9x2QlV1q/6AT0sQ9U08ZOv3xTob8ELVIHDZnCVjvkum2qVZlHDV5PGnGsTy8aLabSiMaTe7PfLfyZ6qz7rr+qu748BJmUMw8pKu9+u3CpHEC2M1zkG2SbtzKT9bmWEWDXuffQ5ZD4eB54nhZ1G3vHAgwdnpV4dz1I2p+HxlKJVyQ//wfda/XQ8jCCa1zaPBFsTCCPJ7NWGYVWIsRf98wXx6dOPOLTbd9zRVJWzl8Y5n/XdCzKAVJ/Y0v5KrGNyM+SXNoVJwfEWtqlL9+e/9DlEKVE3xSs98eOTIvjoJVgqadDS13ousv22H+P3b80Vtc0vRa3IwLYyrx6i8tA3aBt+YWsDP8fTN8UcuHlJCvUjA2Z89AsS89cSPkqJayGuP4ZuLzcjfDzGb/Pqtg3jrXXJ/8C+2fl8jsVZVcrSwxgTELhHo3IUjfsHt0FBvdAneax0/J90qf9lhR4ZlCn5YWeWbloeck//w39NIkTXeyh991aM73ppIMdo0v4WoCn8S8affOZ7CJA5lcfNsyXr+/mLuLyXo75NCA4teO1qlbALu69lUH3itmzbq5QA/3zGJqZaS8U/eM0tEWOaDzmDXj59DxhVPGiTznTF9e2+gYvpEDdke/KWM+Q/Sb5aG5frZIfqHdwZoCwmo7hqs7rccdD/jSpzr7Zgx7EUW8Jw50/2NsO7X+eQgr+FMal/haUwCvE044kAaR3bHPntmL0dhLzHFSK5UNO3rTwhVfffJaSfZbFLWmlEUCNIopvEXre9N+luPuOY96ibn6smgW+FIjWh4GzP7lSmYRNxTQxTybpa7YUSfJK+ImmKfsf55TGF6fV264mHFRrs3FfE0hOSw4iF7Hz0T6kP6oW7+vKHFSvsUwl9r0cBVPYOe+WkExfayFT8PiL7XgI9dNCI1NN1mG/luOajYYR9vxYORMX6X3uCzb11yOMVB9bszR4CA+kdyuKobgw1SsUGrPYG3B1ePl9QKTUXh174Jq+uzhbonHe0EGWNxUX/ZuGXHUrmGgk6xrr2MGl/dFsLMfOJGpD82GTc7B4dJETGHjVvRo7pNIH+eTeq3YZ/Rn8ZambaFhOuvEFULLWIZLW/8omQRj8bSx4oF++MxoNfAKLu+6bIFvfpUJn/2XOdNo44Spx+If5CcTuBbQUBx3b6pO8+m8adPARX2gIeUKxGbv9oCbf7xiY0/z2yRyQEjZVPeyGVnL2iaPrUHdix/qJ9H22o2GqoiTuxmrFj0Wk3cE4VgRcWDHKThVLUrfqBemkJ6vqljNvXCVobtdqhHXtzsETvR5oBO1vk5Lt3CZdQYmwY5XFv9w0OmFRcHzvkUEDURKmOavSn8w1c8pdHVGLfOpfjTp5jHwY1Nyc1YmUl1ZRzH/GAseX5c8ceyxx0tWTccNkRCnvexid6Ns/GnL+Rk+rjEHInSDYnSehA9rmum6OmzYZUHMJehwfOkJYiu9iGs90tt8bIY02fSHbBPX2Fc7v1gLM1uP4LBf0JqxhXnT5dC2oAaPSg59IYcTzfTiUB/1DXNT2cZ9ff0fJE178tTb3gNiG21nYPKRj3SNN2ZqEdD2sK8JCo5/pofo9nUhhDK/kSdZTn5rLFeOrxd/oYh+v6MabBxAb+9lBK8H51unawXyvdG32GAdES/6+X4Ain3QqrJ6RIvXnbNYSSjjGeF9ztalmGJftIkYfEdqWj5DwAA//+kXUm3qjAS/kEsBEQSlkwymyAg6g4QERSRIQHy6/twXy9718t37ruDSVV9QyWV5Ct08FxrAXV+0wfMRzRa4Ho/UazfqBSPW/0Fy3Nno/11mAea+ZEM5yhNkFSNDRg3PN16EjfqnKeeUYMOHJjrPUekmyWAyQsOEnQfhUKL5/mdb/osVPD+jP7xk396aau/WDt3CMzndzMD4ZSW/+rZ+tqrKfjjqyrDDtjTdIngY2U+mgmywLwrtDds7oWJMRQ6g37OngXuL3OPreW3DCO53NK/9aXH7rwHs8HFNWyO/UIAEkDtv2bzC8Dydl3xj39h38U0njPqpvA8vxd0uFbSQI8XkcBLUwzY+5XVwJbYCqDRNpiwxfIN4e2dHPmS5T/EwVoZ2HzbyfIfvjnUzcHcaNcQPlS/RNfSzAdi7FELQ9mdEbgrV8Dkte/hKJxWapNYZ6IRHKs//obWs7UziLs/JSC2mxyJl88vZn96vLx4BuE4Wg2LEzWtcr1jiqrcr5r5IzARHtwaY1cWWTxi7q7D2xO8SXXff4x1klxPvj0Pb+xpmMvnwTtU0Kms3R/exSvYLgrn2e2OZvQ65kxR3AJmi9Vg8/gY2UqdM1E2volm9anFAj2sFhQKTyLrtzfYfJReItyphNFTf0zyZT0mETifFAMj496zwTVfvTK5Z5n627yCt2pLKbRe4YGq7UvN+VMJEnCoRYsebUf1hYC3ZZg4ZMJOmbOciNvo4PnL76lfoC6fXlwP4UOKCRm3+v1P39q/3EUDPZN8PB4mBy6KeaYX7uACYeOLyrcQOrT2mTDM+Jd5YKtXOLDHR7wk99KS++H2ofo1ro2JO55XubDnG1kvu3aY9XvgwVtTGmg3+yPoq4gPYSp7FdpzvTnMf/ot/skxmZ3gC6Yv9yPgFVh39I2/Ri788W8lLCIkim0br0+DmvI6uhX1jP0lZnXxKcHYo4EwP1+baTAzBJPvAtFgRtmwPpxHAXNf5LF/iothEUIuA240jlR7Dxef8XYtKvwRIRqUt4L9nrcwVPi32m31XssX3I01vI9HBTtPisA+8zMZzkDaYStVlZh4S97Jf/osER41Y5s/o4RqEtIU7s7xerSvHjyf5ys5nAy1EewpccBcMgF7Buv86XPP0j/+gV49POZUYBQBQVYiJM3WzFiRNxl4AD6gxca32f2LZvBZRBF7+nNsFk1PUhkvW6URg5/PLsG1hDbmH9hV7AasHyjN0CPARLnQ3/POWiUH7JLaos7D6JvZf0//4h3/48Pt0TUBT+YDDVrOY7z3y2+w5EZCNZOLB7b/OhXszMmkPh/NDUVeZoIEJBnVD3fUsPPuwIErCjq81Tcwyg/Lg4fn+YuD8gbZWF8iEb4HX0Xy+qwHYoh+BB8JbpGy+U/TmuXeYf0ENdayXwg2P22GJyIV9Hr46QNPPx0P/+mR83nvk83vAfO11anuK3outts95c0vwRPVfwarxGwEG/5gtQpnfzJfsg6uSrzHtnTnY6KQnwS39fznBy6i4BXw8Z1NGgy65I9z+INwz4cCvT0Mb9iPr3sKNj1KHXAzDHHDk0Pl+5Ca4uG21WfAgUPNWziy1e097tVfIUayg92TUTVrME4hOLDrTA4jT/OJJb8CpOn1hOYa8jH7w4s/vqz+Ls/4j++C8Q2Vze9z4uWQVAEcBbxuc06/Pis1zoFXo7ziI5VnMEsiyCBpmLHx59fQyQ/kwUJwroS9b/owuXErwXv+jumxCZy8d4MghPA+F9QSIo8twkcJ4YYfNJB+Trxv1OUNkxPMsa48AGBwgiGYogRS3b0M//T9v/qIreLrd2vurPCXD4TwcVMa8xn9WnlYrZz6828fs2t/4CH6xjXaCc6rWctr3cM4tVXUdh0dFrbrKxjc0Jeakd35S6yHbyh2lzN12/yd/+7TLQP1Y7lge8PX8c4DHfbonJNZ23v++q3VQKkfdYXY12zZLJ5HHTBjtakDt3v3pdYVyqZ30RgDs2HGkQSS9Xh+iHw63AdmP6NAEb7ujjpeLuXLYXlm4G5XPn20RW7M4S5JoX33EsR37Dusbo1KcB7Zg2obX5ieAi5hNEGKA+e35n3yVTpYVvcdNrPFyOmi+BxM6viOwHQ4Nj/nWxfw1hQGLS+O0MyH9aSDMLU7pLQFMLrnc5XlP79ZjkQUz/D75mQu/vzI6v0sttzviQhR0YSIV6ub3//p2/2lzDH+rRoQ/GZ/+/t9ZD5122zqjKRg+Gl3IgG291n3oJX8x78urrT1ENtXBx2rjlH2dfWN346OjCPujPEVwU3fkHCvBNvcWu9ngYX1Qw/uIa9T9da4g/x4FAncsbTCrry2BoNk/1aUarKp8y2EeKWP8A2Ih67YE7+K0UdDN8LLqoeIVSwdWFrQ/66P1DoHNi6eFAGlAAyBAnXx398LVLHZYwM8BdZreG7/6XWkLjEQKYtmeLEuL0T9x8+YSRp3QB3qmWqn3aWZRMEroaz11Z8fGy++41eg5HG01edqWG1ZusHnaE3UkNjSzPIQqjDOvw22zlLNqHhl6X/9Ra0zwZ6sHwdaS0PQgX8JbFqtawudIh7wUYxzMLPViuC5NgK0Z8mbUWFcA9loowwpB7Xa+gnZ+Kd36A0XWb5w1sUEybgKRBwSxvJRvAUgPWkpNZ7XKv/zh4B4X0aqfg8/Y7YcOZPlj/KgmoVejN2AngAhtvfY3/jSaloxD+ibu/zjKw8QCg7szN2BKI/8YLRpkUXwkt1/ZLmM0Oj/+K3axjpaX/d4mOanWwHzJtvY/+5yNmjuOVKuynlPrd0gNL8/v26LX3zbU5eJm94ESlhGSLYr1LB+hGRvDLVD5LWhgLnZwP/zz40sG5r1t4ajohQHhr1Nzy/pSSbQr6wrdSGCOf3T89YjmPEffjEk5A68ItQh4O+tfOHVjyQ/X2nxxx8Z3+CXB//0QwCjV8Nqa4j++Co9XmUBiF9ul8FPrBdoTkTD2P/FU0NPBXYhKvL5cgx46CnlD+PzajHxV1486C6NRbUefvLZ/CVbPvseNkXBH6ZOmlWY0gxtTrzm738a6OCmN5Ecer0/PysOgdSuGD1vfvzeNX8dEHbQp3dtqtjS0qKC236RjOermG7xDzzVGshXWRR/tbRPAXrR2xPludOBWDfbW0vSKmFr89tY+4re8IMfCrVW5eSvzXrmlB19BdgK33bONIBTMPrZGQeuMoHenO9vAFZXRLMMcT7Sa7rh26unQd4NxpwmmXr483vnmZMGgk8ohYXgXdEebSzLEI3wn544bH//+pL8DkSSImKbDsPAnmcjAe4VZji+6zVge0UfZZMMT+zTk+aL6XJ2lD+/1E9eGqCv+ulBbRx1Mm98fLGNMoOzMVN6PL18f384xSH80/fGznwxusQoAPiZr1s8YcC8magw6iaNmi/rZUyWE8zQy+0Fb343WKS5sMB6zjE1sHP3qe4VLbQl3CCJcxK2GN1XB1unnBwwfQMhPAEIR7VXqbfgJCbfxq9habUlklZis9/GL8EWX6ite2kYEvGClD8/S6vTfTwEslb9rQ81/j4/TZcQXidDR5KXS/EkD58RzkveoJeqlYx9T08VAie94L/8JqMi86A4W/gv3mKmfo4O7I2XR81SCJvFfc0rDPaahhr/+WTsNf90CFWa/8MrZr2dN2Td5bDV18emt2dR+dPfG/7m0/Fh9JCY8Eet+y9txp3tEfDHX/T6pzGmRGr2z+8w69IFa6//IoiR5FCc7UV/AUBE8C7fJnwOQ8vf/JgOnh16ofrr0sbj3pdTsPkF2P3YHZhqBCp48E/Pab/5HVt8QviI4UKPf3iTZXoB6ge7oH3bu82mT1t4nvctKRH1hmXiukLe6g226v42LN9fzcPDM/5if1EiNr7m7RZceuxwusX7ivemCRGwBPLe+FgfjJ8IQuktos9t74GNH+qHTV9S84PyoWvwz4Hg1QfY7Z9LQ6OPm4ENv5Bi775steU5++OzqH1EFFAk5B7c8oN64H1mLACmCPFevdNn83j7P3sqHHDw8ZNwt0lr5lqNISi1dEb9R/jm8xy+IGilekDLLv76kxsT+c8/xtv6Gh9VO6vKKtMjdh3LB72vVjKwsfjARk5sYx0VWYRaHbRYPVZNPN3vhQgdq4qxcZrDf3oDyDu1pIVgFvnq+CqEew0o//ybceuvKYHpPZG04d/0x6eQMylYyybOIHa49jDzfvW2fw7Y+ocigI0Vo3fkX/JO3E72vj6/I9UOugjmMx4leBaPCVl21yQn2ZfPIH95GGjzlxom6rD467dg48dLzTyHPw7+pMqg+kxZvNhGeoOf11uj+XcHwD+//juDBfWlU4FFeC8Q+D3f0cA+u/m//tDI6nrrn/5iNnRWAnHzAHTTU8byil8yBKsvonlQxHzlOglBhWeY2p7iGMtgRujwf50pUP73mYJ8vcpUDfh907tveYXf912hDllrn6XNHMKPrGJqxe4HUO6nQMBNC6XO/aL4/XckN4iVNKCaLeUNbQacglS+qeQaHrAxa/x5VfL1IiO2619gnQ63EIjYPVIVRT0gS9IXhy+uRGqdh3UYzuINQuXziwg3365svXYqB4o2WDFyeJQv+a9S4fm9hkQ8YOhPsEhkeL14CWEn9dCQb3q7waXFR2rWNIl7bK8jPOCLTWAfqM0sYZkHmjp0SLo62J/Tyw1BKXnz+DRbukHKn9nD2qu+uFhOZi7cxnsnz4XvYzX0ZOM9ukw/RGXQ4fwiPtgcTk4LxeKFidwAYsxlqfWK9BV9dNCvB7BQ9E2hf/YEip7qBLrfGSZwP5YpDiqcxqJ/8Uf4EQqFzL9IjfeFVlUwORNAHdeywbyTq1I5QH2PPdSY8XJXrhC2TdnRYLyTYcUD8qRA8Tw0n9w0Xnvt3sNU24n49Ajf7DuEnwQ89FjbZu/ZYGShdYNTVRfYwqU5CNWuL+CTrRwRgrDLifh5oAPo9BM150IxxmlNHakrHZ2e1VM2LI+7xMFtfzGab3sw/81JGPjGwuovqvKRpzcOnmaaon3+YYzenjsRHgw5w7pr1MPqf0MRkm/KYf0eXdn4ONAE/OqUYv1VhMbc3pUOkLKyyBqaVs7c1COgnb4ZPY15BZbDkndQmB8aDRidGSuXQwbTy+mEuGM5sPVd3gnsWk7GSEmPYIZKZMIwUM/0ArvvsKKTl8k7qi+Ic5UakOJVSiCsTzFG4J7HC2CHER4o7LDqwS5ec6fnAa8GFn60TPAXrpQheN/ckShHMDfzM+5DeAzXBXFXn49ZqEoZ1E+XKxINzmWL8ssS8EoHSvYdMmImVxKEdXx9YuRFWsN/3g8V/sJ7TG36PjZzTJ4i4KyQIS7Sd4CJxIVwmHQXsTCFxmKJSQGvRiDhW2D7w3J9JgheDg6HY48Nw3zmkAS9uUmwNylCM+m5l8r7x3rGVvXCYHhXlDvIt6NFg2vaxLMjTw680WCbxS8+wHJ/rdHuFd086nqvyF+e0yOFvzSsMNaznUGac7H1uOUeNfdfx5bmk6hQ5b93tOsNg63dtyTgl3Af6ktDANjc0lkuuTDFl53H+/NNPRfAeW/nED9G4M+h0yZyIy81Vcf47TOt3M64pMKC2rW5GqNpiwHsWihTA0d1M8/wx8EP7+vYB6d7PAu9FsHlxgMcy+JoTHsrK2G4+xZYD00rnve6cFPc9pmR9ThVxrSWHg+ln2cR4e4Cg2p3W4JmYmsIXJOzz76zUcLuqJXUDJBoEGunITjuZBk1J/U+rHoQhYq2253QPsFL832plgfn6+eAkqcZG0utq2+45QvW9gD69AyqXvm6w4/6o8hi5ms+B1vtFeBjW3wZMRNVhS/p49MjeK5snvtEBDdFiuip5EAzpT/2hvVYGthzM8zW+amJ8PSVSuzX/MDG+OaKMOQdSu2GBv7iByUE3z720C7em/7yNq4iJPL7gj2aO2Dto61+CJlJve3htYkrZQ4iQlWsyr1nrOD0FiGoXRXx9NY0qzVus6l31KfaHhTGDOylgnkbD9t79GojsiIMlDM8B1jHYRjPEaMV5A9dSTOxGIf5mIAeAnt7nEDTbH+NUvsGZs760uP0GAbyK/Yp5DL+SJHGvGF+cPvtHtF6/4t/Rm5+UUK+vdtomUNgrDs15sFOISIRtnFBFB30FtrzNULMY/4gzNMiQbZUGra3/aHX/hlAni1ntOfXff4Xf7CvkozeimE3zK/UScH+CkwSpoVhrOom3eqvvFAnhyabs7ne7rl+KmorZ5IzNJ48OHuYUvUqAH9EfV0pgXuOcOBNiU+r40OUvSyJ6CXJqoHJ+StSZrPHNFhOZrwkh7qHwoVM1P5mUzzlO06HnNDe6XFyRrY+jss2yLV9b3h8bWa94KHc6nubBuDgGqL4uSA4h2OJNR+V/r/6i95vhJOVWP40HPtEvq51SXbr4zkwMG73jOA8IlHydUZfKnLAR9YxxhGhw1rN8g12njzQ4IG2uSmh3ULxbNYY+akMpitUCQSWtdCTLgds/VmvFPTophDZMqeYvWQuA49aqnEwbh7qfVRCqIE7oP5BHQYiP3IZlrQ9Yx/UkrG2++MMvPK7p67KvQAL4rsFD46/o54MjIaaqhrCQl5NjOzhPsxvcOBhUNQ/rFMm+rO5dB5Y/HKhphCu4DeV6Q1Ov2tM7XejG3zZnBMY3rOcBrN0bGYxiwKlJeCCfU6Sm0kefSjnh0Yney7TmRiFewJNP3RxcnnVbPzJ23vcd/WKz0kwxnNfLjMkrWZgHO/f/rKtL5y9E8Wqy2LAzDQNYdVYb2ps9WdVX2cdhmq8J/M+sZt+zI4EHpcsQvyBuuy7qvXGR642xvg2Gd3cJzy8VImNz6V09iezliz4Vy83vsA6xnc9vJ1Fk+xPaAKk3y7pa/c1oPblZhmslWsRukX6pfhOWbwmsxfC19nCZE4XDazjmPHQ7vgLNelU5ysSPhXc6hH2PMnw57kvRPCUoTWJ3G1uqN4e0798xVv8g/Vz11WY2TCgxvsyMSrvESdP13yPprUjzfw9OAgma1LgkxhTMCH3k8DFc0QEskvCxpOgybDjLyYuw98XUPyaVmgdKkp9mCJ/OwPPwTJCDjYOtxuYOifnYEsOF8ShUYknDQWy/ImbF8Xq2OV//BEGRfXDBhO6ePzDA/s1nMgOvvV4PhzzQnkfAx0/Wcv765hwKjwiIaHH7IviqamCFBZ+UdKn0cTNWqb76nCGcUCtRxUYe2oUKZDH/kad0o0Au31wBYsb31G96LJ8lS6tB3kVWdgYn60xv/KbLoMxXrfZ3TBmlAve8PFGD7R2a9Ss7ukBITOqlLDR++ZrBj4pgOeixahglT+X/LODw2evUVt63AYi2OcS3kV9/vt3w9ZT58C4i2ocwJua02t/DeSPKRTUgp9yIMole8vOG3kb/0hi0jSv29//p7owVw17XXsO7gcnp/c0HZq1O6sEGjzLsXuuL2D5RiCRYz7Zzoz6kb/f9hfs+seT4tdhaNhld+Hg6SuXWCPG5I+Ha9fC71VjWP+Br7+GH66UgThG1CqTF5i5FCHIisuJyLUDDfLHb41HVGJzsuSGnZzDCPWz1ONzMTT54pdvC0ZKjWhg6ytg6+8kwvVb2mje/9qcsKtTg2taYHpPpFu8nvOnBe41u1PbySRjHcdIhM10v6H9oZ38KSxvFVD5z52qlhM1LE6SFULTLMihrAzWfd4XFfyth9vte2M5IUX/46+EO3Vvf97JXQFX0QsQR3yXrc5VSGD//u4wnu5tvuiOssV7WtBgf4xj2so9D22/9AknXnRjFexzAeOYhlQTzJnNyz4KwduQbWqjax0vT8+VYNhZFUWn+JMz7Y5lwKS8+Kdf2CxBGWRvNaf+gX/l//ijJ95e1BifltGHktHCyB1S6pPfJ2cpz73lV/qjGOX9kK/R9A4UrCQBvYFU9Ffh8S1hr3MhRVI9GyueHyLk7pVHGsWQDeqGTIdpkF2oeaAu2JsTs2DHX01q4K8WCyTeqRD28QM7rvUF6+tlJDDTrR1q1jEG/XQIIwh2L5eaK7GMubTeIhRtRcHmgf4ADcR3BQpN2+HggaKBRfd3AVVNR9iZtnOrz2+mw6d9RFSfzu7AksKrgVd+9mh6t998qy8BfCP1QMtIfwLKt0mg8D13xxYQDbZ+x/YG7skxwd5hpf5EpXME7cwJqT61Tr5c6pMo+6fDg+rzN/AF84BMIDyFJzbd0Y3XIry9YXQuVQRJW+RThF4lNO8cwo5+NP3Z1NsabnwDtcEeAoYOXgu2fKZai9jALufGU7b6jq0V3eKeRkH2Tx+5Y+3nM7eTPGgdaoo4aY/AQJxRhbjUW+q6N6WZ13GVwEFJVyT81j5fEk5OgSAmiFp3wQNjMBUOXAEdsfEp65i23YXAyza3BT0vwZafDw5+7hmhLphsQ/BSMYEzZ37xH/4tpp9H8KC3T/rH79gU+xmE+vyi7vl0NQhf7zwI5v2RnlRDa8Rv3pkytfo39jGHBirvLe5fvQ7A4WcwJ88y2fuOBfV+7hOsae7XMroiE+2i+8wWonQQVE4aIia/ppxx0LfkYEAEG4UvNOuS1CXkAk+lLgpYvFZDT+Dztd/uWfFpzgqtq2EgvSVqvYPFn68kiGAtRAB7P3cHSE2cFdiTLSMuSX4GO8CyB58HpxJOvVxzopnvCl6uuKYnebWA+Ie/rUMSNO7w0Pxko+PljV9j72XWYAlsHILJMyZyuI/EJ94yB5CbGN1+3j6fu2ug/sUDioZkZ/yuJ2zCW3v8kfVgGf4ejN83IFjczsRyb5+iVilkE3wVRKJrOYz2REcQ75YSm2fx1awhrkolrvMLaoHYsA1fdVh79RebdNJz8XphvBLf3w+yS83IJz/rl8jc+OSJxI3SsOw1fYUCOBCMsUHykT9+Vbj3apkUxnUZxs/zmP7hCdqr4ZMtqRaWMH/vZkQCbwZzL+AZCB000TfSjWGmtpsBzaoFqimNDVa2G3rIIpRT+/MFMfExVLc5vi+s2RIY2FGWasgtmk1NT3N84elpMjwoyYp1BJZmtorXTRGj2wOHBjCH5fUgIWRoZ1B7lTtjvsyKDHPOTLa5PdRYaWRuPY3mhebHo2WLbZw5pU3NEnvXRWDjb0c9YF4yiFHl6o3gtFMmbnwH7dpJi4U/P8B7HlZ0eIltvKiaXcCD/n5ubxtpw3S83UbAQrna1mMH5nNYmGBckEj2G97+4zdnO7NQlS4aYwbzVgh0IcPulL6MRXcEBCT9d8OWXokNuz13PBxu5Z4e725uLDd7f4MKLsN//sQ86McI8j280zR9djE551cL8o83xubGL1c8X/g/vkbWVzEbIzc1OnhuZel9PK35+hR1C/7lv/fYZrPik6jDk8/jv88/LGFTBUoS5irFnUzztb/SHmz+FLWgrOQr31k8SBzJwMh54mbNnZqH99ejxH0RTsZcMDWDF1e4YbOorYbdV5OD+fXbYpdJp2bZ9CYoi1RGy4ZfhP5+ART3cUP232zK+3qbM2Y/6Uy9YbYHUT+/INz8Per73o2xc8k70FXDOw06MsVdZ4ryn57D+pYv4xE3nLzO4Y46bTwYa+tmEBYtWrd4y+PlbTxFWRKrkG75yQaPt0pIv+ERI7GvwJ8fCLenRv/pb5a4wg1mz6dDnee39emkiiG4fMAX+61HcubxVgEk7fJAsgyMoZvMIYWbPsLHyivZos6aqXyvBiNieHrGy+HO8cBVozv23tknnnaDdIOYcjo19n7PWJwUq5xqiohV7/sbyOfu6WBsxJHqQ/I05pN8f0PvtcdICoEWz6+F6HDjl6je9PHmD7T/9OMfXorfNMxgqH3XbXb8O2Yv1XLgNS0x6f2TBlblkrWg12GIeJuWgGnl8w02vUskZ/n5a1AcCnAP3lesF52c/4jScSC0fJP6Z7uJp7pvCLy8PyORb3I//CbHucHoQz+IG7zWX5vuYP7Dr2A5veP1mLUcLLkoJS9tmMCPW1RT2fQQdcijyTf/gZeL11DRTZ81pEV1Dy+fw5c6decyxkHDhNHtklMsHTRjmU43C2z6m1p7Hfmja/cdRE0Y4zxnjr+wj9TCcSfJqBq7GqzD0tfw+R0pdSW9NRbvZ5TwdVRVIjjyB2zxLP77vNq6r7e3CHUTmI6+Uidp9WZtzkkEMyhEZNjicd38aaCHb0r44mQDsf9tJ6DmwUD7ZWHDeP7OkvwXf86lzxkpwrCFD+MNNz86ahbqXnt5ut731FDtFowqd3D+9A4JM9vM93/xWWjG7p/fOg9JdgPGABu84fMgeYof/PErtH5/D0CXo3yDqW9l5NIle2ON5V/3pw8ovmfJpvchhDtlFLHz/Fq+MDbEgneeCFgjN5+xpNBr+KJzjKAqHP32fHRNeeMv//BnkZCDoLc73bY5XerAD1Cp4V1udbJYT2PohPehBUOZmPTMgtcwnZCgQ1/BBkan7m0wyF8SsMUHkV7bXMArMSOIi3GgGgtezezOpxlOqQ2x+nIcY5oEEEB3bX5olnvPH72kM+HtvRBsuS85pwUMV2Wrx9h9G3y+Ds9LBhf+4CGRjcO2X0UENj+bAOVZD+NRKWd5wwd6aW3XGFNlO6FFjyb2+UAAc5ixEtqA7ajZ6a+cIi4Kwebf02xd/JifdnELqwmnaLlfKsb+9menwwYxJjj5+it2CbBfvxM+xm3fLLfll0Kg7zPCOv7NFtt59QqdTQVJG39mXc/+6QckfIUdY+QERrgzo5I6l102zE+KOfgaTho14/ctX83EUaEWyzuMNe1rkFi4QzChdkca++EarF9/FfQvo03EDf+7g+rPUH1YBTY9rTNYII4VEN2zhLViaOK141j9r76pGz6JIIIVHHxrwnobHsFgTsCEzipjsovuIaMLeVTwtVKOrNfMafbmBCwo2aj/w4d4ek/aCjHXbcXkDnJeWVeicAknEQ6elm3On67CG3sy7Gz+2DMp9ArybW5T77BiY3/Q2kw+CWFHHxcrGFYTSekfH8ZPD9+GxSO5A4KH+KaI+C7ghffhDfefGNHTXdZzYfEFAo1DOlF9r5B82RPhDf70ibH516T/8TMkhzDDf/pnLiZpBAm1TewhdByYrtQOeLnxh1TDk/jrPdYDsIJpxPa7qf2V80AA3/tHhO1fVAxzWPnev3zj78Hb3+qRCQLve8J/+nC52bsbwBTq9Hq5tQa7wTEFvwR+qM1l9eZnTKn856/pr4WAMVY/Otz8M7rxnWE5wS//ly/0KHwbthRPp4OTWZwIbictFx/b220JejTYz3o2/PWDgNBYezS/nM5n0yeslNdD3NPt6w2d+g7BYSAIG8EgM8Zm0ML9WKS02PxyoXG+Ffjj34UqfIy18w/qX/2krqUDf8CWasLDOXzT2+ZfsnYnV3Dp1ys+foXdP74OuPDeosPnZQ///HQpKzUkZPBkrKX6q+EPPl+kvkdXIH7ungqPn8QgUJ6Thvz5o6NV1P/02vSe3FXWuuKMbTRqxhw97jVk7lHEOh+d8qk9KvJh7Vad2vx6zZdgPgTQE6yWAMyhZt0dhxps/gPWQYebBeBn8eeH/ekZfxHDAw/++mfmLz/ECyS1Cvftx938LD1mb8lc4cZn6bGxjjGfhmoFq3m7d7/1u0S10BKlet+eiB+XnI34E4mKK2UidVMt+JtLKW5vOymkNnKRTRZ4e9DiLI2qY1cz5hjK+6/fiZGp3polvbblPz/YVI7j5l+MFmSDESGeB7wxPJ5j+FcfCRzCO5vPnCVDzzbBP76wUOkcKjdPy+hptmp/PT65XkZ6v52J7NItn5kJNz+Hmlq9GNNWz8EzSz9I1j5pzqC/BmCrF2R3rT/5fLhWb+XgPmQaTHXjk1O03QHSYYPjqg+aVT//ILxVlUvWbT9Yk7k6DNQyJxXa3t471fwMN77915/I++JVymDzQ1C34eF6uv5mYPuFTy07GePloScOfGFvxcad+25Cw1vhkXgytcWwb5Y/fy0DzZUiZXgP7Pbc85AD/gFxp/gTL++M7+CmDwiQ3cpf6hhJf/0trOqPc/6nL6HL9m/sC5c+XqxYU//yAykTLwHy4xMHbnoN68KsDp3kDR6MW/jF2jGlxli4aQm/HyqRZsufZesHAW4xbOpRq/fX8hd04LIXDOwMtgroN5BU5c9P9B3F9+dNTwEgZFck66RnGx/l5dI9NkgMas5nZLE9+I7eAVbTojGm4n1LIL75d2r3+dlgf/3bdvpkNBAgx8jRDDk4R+qd+iqL2OpvLOevPr/uF5X96wf115NAvf3nZcyCek3+/E/qbfxPvHx6Ce7yJSOLLeXDsvgKAVcaW9vbnGk8h2sY/vMTNz+dzdNaOnBOzxz1T0VtsADwCHrJ87j1z/Thj89ApeAzekRrAtZQiaP/Z06ByPP/+0zBSNyC+utNy/eS30XwcZAQ4enxxcg3f2xOiPWhJzV7DExfMl3+FCOh56kTDBYaex5ocAyx/j0cAH1fbg7whOxMdrg9xjO0K09JRTNBwtuUwXj8+Ag+Ye4gUOHSn5F1LuGJswLEeOT5y3lvqPB2cRcC3lkRs+yDdIiC24FiBerDSpSlhN0l67ETohNY7Ns7A8mCEJkzwR7IMj9NeOQXjx6N88SWgFdVKL/zJ1lsIsesTTwLPo6zhP2EDsb0Sr4W+JD5juox4xnrzxMHCJ9ftq/7/nq4ZTVcif8i48ibwxILEILAYAJG97xtyMvYIVDC9Eztsmyanvu+REX8KXd8XKw5Xy30I5CCCFN0vqjN7PJZDetQIehQD1yzcOPpBiXsq2jeT0HDzoFVAf5bPgkPUmv7+6glPwt1xsGRy+I5Ct0O+l8vp/Zu3+TLTdpx4KB9TIxMJ2DMN8YMPE+jgUP0NuKp/nkWcDKtw0aU4HjSL68M9I7MYbceyoHtQnOGhbhGVCud2qDXyQ2hG6KeOjfaNeR9ZwSgh7VStwSCT8ehspSdpavY+3Rw6xktPTADgcNaa/wA9exah1zdNuR+Vad4wQQmh7/4uFT9BOYa/irYZ+GMjaMNGkLVl6U0R9vEvq0V8dTvMhX6BuHIysWvhtmWU8GobUokWmgA6wouKYC72d7e+6rYGj0/HBwU28fo5OmxGCZfAtPnd0Fr4OiAydyRh9Yen/7Wf+C9zgoAEzOEj112zReNS1fgN/cH1VSXxuwoZR1cltpBPD1qbE8rIQIFOijYT94jWHbKzMNlvF+x68l2vLrRukLwfeX4xNKpWepCWOEF7TXEtHrOXybiETyIWUyt52iwtbpXIYhk7oL9R1vHrMGLDofZO9O//ZjHwExAHcYC2gzjfDn34girk61hZylwvM8+1pYfQk+k5bz469N7Z/AsVRHOg9/RZ8o546HohTLiSFMbCyedCfw2XYXvXy33Zy14OrImKRG1so9otLi/zaDyDIi4wEiGxSpqfRclD4auny4zyNGKdXBSshhjK7nHs3xYQ8XulCvWdqnRLP4SFn/5iW16fMdTHgQcMLjXmTq/8QOWLf6gJUcRAo+2ztkDeDX428/157f+sv92EuiPwgEbuW8Ns2LUFUBzFaIejPYwKOdIBGi0b2SdUjNm1wpysFfICTsfdWSLe94HoG60O36gWz0sdq15So6rHU726q+ZkbomSriJVPerAWO6c0/zkOvtkcwlToZZP3MhHGh5xY4l5sM6W04AfyDy6Mn85Iy074WD65PnidzL3TB9ptiBpfSJiRRLiz+hdeGg2sk5PtFFz9doOWdwfYo8Vd1on48vPhKV6OKP23vAX2O1fNmDDlwCRMd7FLPQ2PF/9ZXk5NQYy8XoeQDtk4x231pmy5fwHey5m4Ufr+5pjD+uLKGOLB0pfXIzpp6dCBRv3y8BtjIA9raKEND+nWKPqaSh51smQmKOIkY/68rY+hUkOL3TEsnuqwOsBhcOivIvwjrnNPFy1xCB1WmVkfAWAmOWp4kDTzBharO8Yp37STsQhnFLZhosbP1l2IGpFh/x8RVWjH3vvwBOUcToFg/53GvIgtZnn1OPtq9hKePjWx6nZ0OPQWw0fN1zFlz9u0K4QoibtV/O49/6IaYuO2NlXCBDFnELNV8TZeOWvyLWZJ3apgmN31eRakhsU8fHn+8MC8s1R0n3pfWvvrAu4lW4rT9ZZ0CH0YevAIZM82i+4d3yVeYKGGpl4dN+7H2i9vsUPq5OT8M0GcG0A24INectYx9LcTN3or3CvcIQtdqh8Nkv90aolPOEtc90ymdgzm8oawOgznqqhrlh5gobqxC3ezi1QSRjV4EsozNFvf7N53LKEDSFLKD2p5ONuRH4BPpmtqdWpavNApa7BVK921NdKLyYnVDdwQ+xKsSaUctpnDwQ/F3FCQdDLeXMgcMITvIVkbV4H3OxRLUKnczosP2oeX9CwlZ/fWjgc4Av+Xrlkxv0tAhQ7fzStlm1gQc4vkeIC3Zvf359Sni4Xla24b/SDE3UtRCNxxv5dc7PIO37AMFBjxTUMomy5dxzo1ze24kcZkSNvn+2ERy1ysC+6PSMaaQuFN1WJBrMb+TPu90owq8BNXofy+PQkfBxg80PZYivIDeQpgkL+BDdELuFbvhCWdQJ5GOto7oxVj6zjRuUt3q/xQdmwh+eUgl7ZBGfQU4M+2UqH7Lescl9Eva7GL0oW26goVX3lGb9DXILi33h49wpLbbhSwI7wXaxm49WLFLj1oNjWzzIznKBv54zxMPt+3FQNWrOf1FVwGNbPgiMfWLMevMbZRZ3PXWf+3fDTqjvYXaaBQIX72UwJfFuEO/ACdtu6hjLoRlCkC1BjG8f3/d7a/eZYYE/ItlVRPPXb382IVF3EmHu4+aPxceowNEgBzQEvBEvWz2DiIopkT9d0axhM7xhf8UD9eX45/9UadfB7zpYSKx0dVg6tfK2EXcuPk6vozEvZ04GzsOatrdGzJh2TzUFV+ERYWzJQc4k3ajgJJCQHvGVsen5PujgfRF4tLvufw2rHCmDbcE+9Cg7H8CMqbjB99A98OnFlHwKlRnJVVkwfLG/fb6qRqjDan179HhQvgNpkqSFvaInOCj0z8Ci6lXDlxEZONDv1O+8aUrlw2fMqMEm6m94PcO++zzwaciPjKnNG0HzzNF/+cLXhwNUUmZgfPweYD6d974KJcaFVFsT5NNbm5iynK4DNc8W9tfh0GVQJ0WG4HynbAS6q8JU4zh6enraQNXrVQa7i95Sx9YOYOX689bfECHW1GQaiKTZHKg8KuBg8TRDlHPPhElmrEiqBNLM2fUxQt6eVWrEx2qYnDznwLZeSEjQkE9Uf5iQV3cKVWfnNayguc3gZrAd9VLn16x/P28e0+0eK4jBWp7Pb3ihpzt1N35FdpPKwfCTpdQmSWzMye2WyquONHo6f5f4h8dghYS/X2hU0KYhST8iCACMcAgeqT8lXqgrd27FaAmyeNgXwpBBuztvZ+rmqFnEi1KCf78vfznGxh88uTiOGlp2Lw2I1SmG8ORCER/1C5evYuKWkE/XFoGb7MYs7c+jPB8FjtTGqBr7yplvyu5Dnth3ypZN9U+3wGdXRPTx6nb+EktjDblgORDud079ZbIiAl0NmfSo1CuY1/YswZGFJ1r6Umos4GPOkKRWhw75y/EXer5BKMfaRG2Qds3knndIvn23ezffNYjZy1xXKNgeR7F97BsWIc485Od2QDNd32D24QsBZTpmhDyWxliK82iC7jyMaDYX2EyreyFwUg8atU+jOWx4XBykl/Qh8FlE+dzuHzxkZm9Su4yPMU/uqwercanIvow/8foydgFouX1IlLNyAvv9/hRAXjjG2NV5LRZ2alXCA7v+BwAA//+kXcnWqjyzviAG0icM6UWaBMFXcQaICIhIFyBXfxbub/jPztAJS0KqnqaSKkSOgaDT7oePSsnfiWpCGWw7X4bwYCKS3cM3WMll74WZkgGrqXnNNjHIQ8iahk6cV6YNm/TXMz8+g1oVPunafKAOnbl4Iv7UJWDpROEKxTq6kYB6JBv33+B9KCLimikw1u/UNntrOA+HQUdpx35oCnJ+ifCxvQ/ZWjzPMtQPbowESx0G8j5HFbxSDWNjdBpjSi6qD6/V7Tozj7X2tnlWWsBUTU2MFAveSn0rgr0lSCRIi25Y1KQu4FwbNSLjwcq2n557MsuFhPv709ukhYotBPt8ag5TrixpCgHsPGxQMcgmb5Au4Ol2DOoelmVQo2946IllMLMhWMDGo/4K65tLsO+FbbZInc3C+6FwsK4dnvGqMcUCjt3hhr3XWg405aXih/9IGm63YZPsjwn355PgLnLDxltBC3Z+iaSoXyjxT14FGyk+z5+XuAzkh5dKkADsmY6bbRrsF3gf54Z4c2AYgnp7inDXT4gXm5MneMHJhY2iYwTzRPd2/ewoj/fjhlXthod/fFo/HkREap+Jxz0/wu0ll0RXFMtg93wDZNl3sJPINliuwbuCfMpQRFWoxP/4FJzG/Kc/MioH2qZkVdTM4qzrMf/Ts9yRF3a94wPiTIQHx+Fao036OPViPkcTJH9CPyvXuM+Wv0s0wqV7VySwXkNMWU00YaGo7iy/HkXcM/09+ZdvcPft6HLHWId4gzE5nnNk8Bnjt/JPX68PxQCb7KO9owa+kWCwTtl6D/UGqFbBYKcxH9l6lrZWUW1HwPZioH3WBqtDAJiInDzLGiiwL82//ew5hQ24c3d04ONarHj3L+rf+/77P7/vvwlHzoHrvNXEFa6esXpzKcLLY1kQvfYD2KgKS/jHXlySN/EXrEWl5cq2BAHZ/QNvc5O7CGf1fNjzyxjPYmiwsLFOAB00ytQvsJ5NaAvAJlhqW6NXjUSHlyL/Iu5hVfWWq6wPV5LnGDVAGraYF0sYnWSTmIXT1F3NwYu8nFo4j0q2975dHgiURUGxG5yjbHz0VQd5JgmJbUV5vBw8CUFcRSk+Wt6XUk6MI9iWZYP929XPVvpYRiWBFx+b980xRlKpvIJfzYsE1T3MZimJKoX95E+itm4eLxDEi9KfWuGnb4ed//AwntJkfu01BX7jeASr1i6Ia137mkIPjFDUkY31vLF+eg3CdnoWJLCukzEuSWMrEmsckSSeeLrhzxfB2Zx5VD1pTGm5PGe4LZI9r0A9Gts7HyIQ8jbG5uHVxGvT1y2A05z/w6Pppl82wP4lLPZCFMYb8/myEN1vLNGlTzes6hG08j3fm86EYM422bf9H16iBTaN99HygyrD/NoTm1Q0Xvb1gPH3m2IjYCK648UCzfrympU3A+r11Ualki2fM3GhbmZrmeXhz28g9ljU3qgmdQ7vuToQyx5kuqndcYPfr//E/vPMGuP5KDNwzy8zfb4MY50PUwF3vU0QY3DeOqqg/ekhdHD7P7BdgdZCRaHxvJWnsP4U6msE0Z/wJhpQj54QhqYDHc/QyS+/COlHaQFSni66OWkyLJp/c2B1/n5wW4Ctpt9k16/WiceOPjz22RZQB3v84aOWqfH2rtwEdu2Wz9kja7z3XUPjf3qHvbtg+uGrVWcJsXZ/go1PeQ6EYulI6oA/yq/U7sA717n5p0/Hw6HhYc0LCOOdz/aviNqwkc5nbEBiUnq5sxe467UfXtVbV9ey5Dx2/iAXx3gzxLcLPcm3d74V1Cv8sFe4fy9sDNsnXs6ioMtHJUX7rc8Z7HoVwmsYD2hp/+Thn97a/RbidUD456fBl4oYbFsRzH78GPBMGs4Hi4F0tvW/BIoLjhAbjLpBXxzDy8XxpRNVEF26GkkIoaRDnpzYZhjWg1rm4MdPnPxC6TL6/kVOPtIfPn18KZ6EPiwgGu5P4i93TLenZUXwe3NZ4u6lMTZ/GxVcSZHjn74m/WMLf3p3fj5zFlBn+vBwVY7hvPRlAlaGqxwoLPxl5kYQeVO9hhusLuOIvUT+xoQDLg8zAm4zmAPD23IsmrCzU3MeP7fUWPYzcCAsAJ2ZP8v15ipJfcWO12VmaVgaY0ifMhCLfVbhcYZgbMwlVH5+MJSsDvzWA9S890dsUX7Xi/2y2h+/nAWoa2DXKzb8rPGFBDs+zHXZybB6p+/ZmYTGIMiyRGAU/IYdzxc9Sg9qARXm6WM967hhPt9u0T+/wPt9/5+/NotujANzSb3l9gwZcGbpBTFfW6BrBHsHdrVWEFv/qvVUDWsP394FYvchxsa6gA8L49NZx8aul4UfPuz+LarT9C9byoqk4O52Evk9f/eX858eIDa5cca22KoP/T/vQ7zmnQ5rajARWOxawDrWLoB3gqz/+SVYvxj9sF2meIM5JQFi3qMLRK7vIUw+OMdGBRavEysywtYl8nw4Wm69BXnFwNd6cP7l5+XrVixUO1QhsOML1fKDvvdhCrB7dU71WuT9FQZpT7CdXT/x5p6uKkRz3mDP/7699eeHvJWjvevHl0fXqljAczYzooXLYgyhIfDyzn/Ivj7e5t9B+ot3/PueW/2QruCiPDCSzTTzFrVSfbj70cTHrU45eh4TuMcLdrX2ZVDo0RG+VFHALgktj2qDLEIcIoLVz9n11pb7skBHpo4f1ngaOOP0t+sjbcNaCFC8dbdnAwaS37Cmyuqw0UBlle3wikkhs2227l0BZPm4WdiZ9SrbmlZVf3qXGM9X7U0fZanAnk+ILZJPvIQ8zkHxwa9ZijhiEOUcsfDZ/z0wahaQLfdSzn/1gXnc9d788/uiYykSLbgaBsV5UsDasvZ4fkbeXk+w5Z3P7flSiek8nRq5MB8KqtZRpZtxfNnKczCu6Oe3rMt1MaHdiSXGt9GLhRsR2Z+/hjjJ52MShr4DvsLL32dLongdjuXy46c4sXlQr/UaLnB0yQEpwZmly8cTZbgWZk/uO15ORuaUcKPQw8/xvu14hnwoWRedaH5K6+nO3Ex4erU5OeGsMoTLMy7geKgR0ebGrKm2z3rc+Q3J0ZPzeFXw+p8fOCdlv8S7H8PC0LxaWF/HEqzxscwV8hUfxNn5IceWZQTd4AVnhaxVtvPpC5S27x++F4Az5v45hzKfvD/o4QAxo+uT+LD/gAZNu54e7ZfVwDm69URX/Bhwu58KmjQcyE3tifHjO2D3y7GlVNHPLypAygg2Ns828db58C5++mY+v49yRg1ecv7xX1V3VMCnnCLCmucQOcHLnzennCLD+S8he34oh51PtuArt2eME70zZlS5JrjP9pXgtSy99SttIrRlxiNa4DV0ugeZDm4f9z1z4Vf1fn4AdBv1SbImzbOVZicH0rjviWUIKhX2eADPQxHgk24s3pr+fWcwokL5Fx/bwGoRuAe6hXES2BklRHJgftFnYp68Y9wBc2kV+/L4EidkVSpkMGyV71dOyO7/Zxz1rVAurq+OGGJjD9OP3/7ixXpY+rDBVr0oeah8Z3EL1OGf/7D7rTjQYOmtDj52oLkFLdH89xms4uWTQv14Pux8yanHtfAQTJXHBR3yugL8wIsszPUezt/b9USXKIhsOKuKSAIUmPE2z1wLMe187CK9rlenMCrlsvoIa2X7HNYEkAq4zZyQ//gt60A4utMBo73eMJ/sNodem1c/vyb+3oNMhbJUYUTb4T5s6yFioKR9THIUPDf+57cK0/GPHP8+Y/xPj6SjVRGz2Pu0/fjF4XKZSOZNf9l2KAITjocXwt53v5NCA4f/8dO9XmcMy89fChjTn9lZNgbanIx91rvdE/MdZQb5np4hiANdxbj2mYwsX4+BaWBDJNx9YRh/fvAnYj5Yeyg1nfg4EH/4PrPfTqj3+t8IVP6F8Q8/iFqPPvQFHM11zwtg/dW7prd+m6HS1vVwIyIPE5szyel2/dJFej9DYK5fhJq9HrhNXLUA//KY0cblbkaBnTfww80ePoKXDdYDOEVQlkqMnxplhs+vfnaaX9d5SORTtn6AyoC9fovV6IQGqj3b5ue3EvN0fQ+zUukjhC4jIvbv86X0qH4ToB94Hwk9+dD1rtnzz49D0h5fy1MMC8XpyesXX/XGNHIEf/WWoGDfBhHgeAHOUnqIc3nJWIZTvoGZW497PUIA2ymSl189lGiqXA70e3pG0NjCEN+Csalpe107RY6ndu/jSDPqLM8EyPzTxUFhxHSDeb37h+oFcUzceCSTXjocA2r++IKx/tlpCir8AUTrUeet32luAX2dC2wlxDaWp5jkivVeGuypiQpokuIF7HoKu9U9oJvrB+0P31BJb6EnfJPMhdpwKbCvrC+wLbBOoeJPOnE1dfYoc/+WMORNjPXxTY2lEw9XcA9Ui/i2/KXb8GEZmLR1jSiUa2PNknOkvBXLRu+GGw1Ktm6EKl/jXU+5A1eeDyXgQHTZv28LfvtB3vPHPB3yeJj65eqAV91n2LqgIZ77ZxsCMazoLFldFtOC/bvC0buLiOtSIft2gncFrcpbxCr7gP7Dm//XmQLuf58pWC82JsfPNmT0VEUIZuJ5IzansvE0374uEMh231uYfrzvcP0yILXSkahBr8bsxY59iKl+RutZcOoJvhIT+nUX41CXgNdrmZzCYzON2FIVf6AMO/TQkyKMj6ZpDcJF7xj4jk4eCVrD8pbnM2Aho9fmLEpHkS6ThTYAC2Ukeuv32RqNYwRe47fHGETzsEqw5/faww1xJcMMva+yDox8VSLHILvTzWqfDey/f9osv86dsT723ig9UlVsAzxmW81rHSBt8plbdnJiTlyyBYi988BPa/hklHs/dWDfYgEH8Uiz8bFKC1x6GWBtes/DSL50nx8dZmjtXm02ps65Vbrwesd65kje0uFnAV+XJEOr87cY0+SlJvTvpY6f+rDRhbkQEebbl8dHKciHlX/eR9iY05UYQRCCFawRA+r0FmH/esmy6XwIfRjBcMSnPDaGxWeqFq5reMaW+3wbm9CHKuQaccGPOxo9cta+C6x108AX7bX3tjyfLvBi8Bu2WZx4ay5hFkQmkxJ/C971ampLCr/TEpC4oLZBpy9XgrPMnkhWeASMuJw3WJPIJPv3rKlkhwU03puP+HWiYLKpkMKnAOr5UHarsUyWvQGTeWk4Na02W75ZW8J6ygzsr4SLq/yQudC6dM0suO136DtfgVD/vo7ocCS7p/laecgWdTqDu1gDaiaHBRwk15/Fl2sMdH2OPADN+zvTbO/NdYd6AbmJDfH9OEkDzf6+CXQYdyOORb7D9i1fJqxuxowa02jA0nRdBJ95UxFkYJtu7Ddh4VG/+vOhB29KM36+7p7HPl9+7x2tjzCHscCVOLgfupgiNs6BA6GO1brWhjFSDjJAKDyRo8NpdBEltQHK/W8hWjFqNRf8iaqcFGs9K5q91ZTPRR/+ia00s0hk6Rv8abqcUftCjI+AMsreMQSyDmIkWfBM+d/6HIX1gdblbXhsu/cSi/UUYxyeu5hKGbrAhyz7M5+xW0zrP06GZWFYWOvYKJvPulzJzHV9ExSaqrdq0sOEHDH228jnAEzKFrmHpF+4mSn8Zdi0bEthli3aPitJyCb+pnSQnJ/cnB1fkbe1gsoC4dQL+KSK33rJLl0PT5+LTZL+0HlbJpeuor4IRnweVYAyyX2Gn/V8JVqGcrAKQ7nAOo7ovJyfubdJ+c2EqZWM8wv/mfEWZ2GvWGpqzBK8cEMrPVVX2XsLofX++DPWtLM2WMchxQU8IUC5kdrK/v7YOj6X+vd85XR/UqJH1cvYumVgQHNtbugwPXqP4hcp4dWQZHyEg5bNv/0xfUpMotZ34+0CHw0IwSsm+supvJUtolI5pu8MceHlRDcNHq4wtG0dq9K5AN+nNjhAtVNEsFMKA116OENqH/6IBsQ6pkTPZvAWownJOi/Vm3RrbPiOPG8G7yKM12A7MftEhSvxoIOMTe5mB+z/H2vvQ+VNBZfr4PR+Wtgltl8vq8zocD3cMXHB4y9bfvvvLmUp9iaseety9iMw/LU2Pi4fs6bs/chAbYLxHv/iPssF2jD6+gC7uQ5qclDlDUK/9bF1+XB0+VhSDuB1fJBj6FTZV01CB/aWXWLVuHnxRj5RrgiS3M9MePON+V65KuwHXycPzY6GrWVvGywFdMen43QfpuVshuA4DT7xX4lfc43xrcBduqdY1dp6SDXRvwBjtQKs9slKl/zdz7CqDZXg4ByDzq+SDk7OwyfWO5/BHJLjFSb8dsTeFn/jr9WfE8U0HYbouBrrVSoTEdZS8jdv7rpkU5M8E9AmZUli7dPEZFjSBOz7H8nFmQ60MgH/wy9yjZe/ejNyqYHB6P3NlVOJ8fZ8Pa/ASst4hmR4ZaP0evXg5UbuTB3ZBMvfDBF470dG7vSZZ8vD/szwscKRqK1l0WnHKxDcj80MKTNly6FkIGAAF0Dov6yGIxdiesYSuUdVPmfUJhqTfuolcKV5PzOjzlK8XuNx6tgFeq1fYHuPJ2II2wZdf73NI2MX3iYST4W35l7iY60RbzuDawoSPzHw437osqditq3EQHBEYvcwPQqAU8JbesbEzAs33v4appd5+cPu79OATTuUKZRvHkssaI/1fG7LEiLYARzkSK2Fsxx0e49aY25yVTYW4f1XwF55V8QTzPfQ6+WUQsMmJ+xd04Ox6Z2WK5YzRMTsqqM3XoERwQ4Md2KCjNJliR7qL59jfGku8dK8fCTd76cPVjWHZqv91EoQLHeB4KhUs/nhVZGCZXMhtmGrlN3xRRbJDcwN9Jds1b+RD51Gr+YQMEdjHv7O/o+PoMN7vMe0UvZZOYr4xcnLret+6I8mCF+ZgV1/YOLF4DcdXPwlQvfXbQC/fK5sz0Gfy9flNKyTF9mQ9R5fYqwj9fpOdHR4nnmBBPlrrKcfnv7w3hScI13kaRkVS15snHXrQrujQy9wLCxnPleHqSZTULdwFS8LdpaXChZovHmoviZMdKdK4vmppgmQX8yVmO7boZt0G03oneMRrcToY6LxtAF/4+dDjgqTgOli6Tk8P7ojNnQZgC2RSgjngn3hGyuH9WZIXgn/7i/+H18ZD12mQxrBD74b6TQsAyhn6F6lbu4yV67ngS9cwC3BShwjeMfj7Ril8HA0klmpXyVYH3ubg4qVtfn9Oul01aQ/E8LiMGItsP14H3KIoDeFyiwx4Wugb26x4eswZf/yA+XCl6tIcm9gj+WmmpZ73yDr0ZrE4B8kW0kt+lAuxAb7YXisqSRrF3A73wgJdjydzvDjKDpCNtYUeMtoeB47+Pjw2T4/9gk6yGyL/B7jjARnMNSkEN4VPDRBOm/T0wWLL9h7L+O/IwlqYxnGZ/uVwcdZYnIBGQWb7yQ+GBXXw8H6XeuGF7UE3tIYz98ARzF3vfrlP35Bj4NorHWm5sqO59jWXBYs5O1AsFz7FFVlv4IfnsCKN1diRh6XrderWYG8vh6JUTd6vEn504S3Jdn2/K8bG9iHF+58lxiO3NDV1MQUSOO6EC1y2Xor8uYCVxtDJGfnp0GfBtuDl3M/kZtWafFoNbYNrtfDgI8jHwMamEUKs4h/zQLZ+05BY+LhE6flLOnwEdPvjQ1l8+YTRMPgnVGGrft/fMhFMp9RI+tY6JqlM2/HgoANKWoEwPklznz9ro2FVE9RVjfpgLipHOpZy+TkHx90uiX0xpg721BxVY0cpQAOy7VYr5CHBYc1UzeNzUtiU/57vxwklJtgzIf3WkGiuzbRnoe7sZ6SpgeXx0HHJncrjenHZ+TbiUUH47RrNjZnwbOdKVLql0p3/lkBmVOPJLbkJR6zZWvk1vjMiC/YFoxOMF/lne8QF46VMevlO4WfxW6Jw78vw6ZYhyvEeBznRmdFb/qbhmLvMyCi1aFqxqVHh4X795gVkkpxp9ssA2irJth1kih7vPT+Cr7nDRLVkshAL7eChXZ9PmE3HqKaDgktYM6WAlJqI6zXdlEqeFvSbaZ1o2ez74RICW/RRgzGyMB6cMUraFGKcVC/VCCEXNpBDtGAmH2b7r0usw0ejlqCj8d2PwPORT0cJP4zc8cNDpsXl/u9QtUjqNO4bPUuIi+ZHn4QBE+Irq4WjGB8OTIuNHUGo8/0DQy9uJxnJmnpZD+1Cr7masCBhAtv8i4Lr5QvU0D7/snW70tiIayMgnhLpQ1CHNU8eK3tYwb3NB62kOALsA9hSv4EvTG2MhFL2SQPhmi4C7NNjCQT2tD/kjwMPwPh3k8VrvfzhK2df3EhPbnwNNYNtutjBJYfPzA2iAhyWhB/G+NVgbt95BFv3H3AwVdoK0HKvDE+N/vsIuFxgebrpmJNOB6NRQ3uLIz6bECUHT8D3fCXgQdkCdiA0cXbmpvdwZJ1O6K92Qeg9/sfkj93ZT8DpTDGmriwB4wxsdhi/wCYJTVwQUEzjL03LIdtTH0fdOB7J6cQ25RN4lcBqk4kKOyTM1ibJyh++ZkY5zIHC2ucL4r7Gl0cXp7hsO7/H14rRpnB3/FT09uoubA6qGcSdO9vvGK3c+Dly1wQJ+iNt1yqyYXWvLEE4ZbUo9zmPXjMoozt91cwup1fwFhP8M5P3nRx1ssFhty3wZrkAWNGZx5BbVWtWeg/2UAF6x7BIBZtHB77W0alzL7AiEMBccM93u7yOv/2Izlx2p+3oJu6yOPzLBK97M90/WtxCs3QDbG584UtWKT9TOXnNbNXeK6nAGUMlN7kPMsOrw/c9q0S2CZViU+F6WWTcQYRXHgxIE7mysN3FFpRTq/vnPhWbw/L1gPn93ziX7dhoJ/adAEhlyPGmZ3E1BePEVRZqiLpdfMoydM8lV8HkhG9kr50RbEN4fIdPSTonAh++xEiP3NIoAtptvLP8wjPar73/n3L3sI5/hUo6/VCnC1y6m2OP1fQWgVBhb7y9SiYYalcXjpLkLUO3nSx3ALC74bwyfq+Kd0cSwTxX67+06tbc0Md9M1POGd/x2O9mMbJAWjIPWy0djusM6XmT3/h0zqz+3ziawv/1iqdwaB2dKbhNsPTmt8wIpe/eqkvnAvzIrug1Tgff3x8gbPOhb/1qyePUzb4OWv1HGZbCH7vA7NAmokGUrrn17GDEZ8oSAgdPWM/zOMKJy2dyKmXzIy93v4iuMcXUYWg398nEOFAxiuyymGrJ8ScVaX4RgzKyfCK182CKdyupMIOYDWDf1pBIu76Hm273hqe5T7bg/s25HhXWrrxG8MCSQ1VnL1XGC/iX9pA3cjexBJ009vkGjigufcOUixhpotWxCIsWacjOS0f3ib7Fx/2T3/BtrSGw9a/Lyb85X//XD+9xloeDlCL74P4+OkZ68fsRniW+RP54U8V4VMDv2rrz+DlNfF8tM+sonPlfdeHfdYTzynhOW2uJN/597rrG4iSNEVSn7HGeni2CO56YBakwafrcUhaaBAxx+jPcbJp+/YpdAQzJghxNPu3PtHtT8Y/frtJILVhGDgvgntggfX66BqZqTaBnJhwz6fecZHT6ycnbl56gH9aViL99NqeH8Huj7DQ3e+4tPmxqJdpSVg4LOCIT4z1yLY8m1xp1+c4OD9AnO/8AJ5X+YuRIl+HbaGvUoHfBc1Crsm0L6c5BYHofAjekJ0JztVzof5MeBI7+aXmdryFIH0miC3w5m0zI6W//YJP9Amz6ceX33fco3zKTzEd324Jp0teEJRnDqVZ/wyl3DybxG+Sl7f03tBD+eDeZoZNCm9MnXv785ewvwVWvcLWM8FpTt/E5G6qx+1+ERgNKO76gY2Jcw5daB2U5vd8sH4Zb4Oycr5i/QhL4/MFfQijysmxmj0bulTjxVSqYinQozXe3rx19w4UiY3mz7uOY6oZ7gj+tPCDWNiXw8bc+xwe8zwnQcmK9XQwLiEsnwFH9D/zHa9uQ2ew+ztk99uMhQo6giL3KAh6b4qxXzxnQMt0Or7mR6aefvtvz1fEpNwno8U+649+Amefh/4dltfBUcHYmynWmYsBvvebMQOEohNW93zcsckRwZ8fJgbUjrfaPbRgZqGJ7eOY0KX6fG34nbZgft3BO9u0Q5cohtO4+Lf/Rhpf/L0vw/Nf/tweJAyh488YbU4lZv/8wuIaBMRt9Sbu0m9R/fxBfLrG6UBF149AwUUhCZiiryceDD1gzs2RWMVpjtvz0yygDdF3Xpd37W0gGSKorbo183mkA97t/hjhIYs+ycF+J8ws3Iu87x/0yI08W8XLiYUfZ4uxTmadctFnjfYzDNdZFAyT0mVLNjg+Y3HXm0+PfG8wgl6KfeyzZ2mgf2hRFbmQm53fh8Mn6vUFxM1KSJA9TG/Z+SAo+ueMvl0/xjTk0h5ceyMn2lnohkX5xCw0cP/F/+ItzpL+3/Od+z2inVD2BfQQlpFwllxPsm9TDlm2VxC3lKUxSHaYK9vzq8+ScXzVS+JbKfzx2wN9PcCSKVoH9W99xFpn8N7qK2deoYvzRZI7zcakJqGr/Pzg33qPYsCUcO7ghpO7UHvkKtx1EJ+KmZykbY3H4z47ifWeXxKMIheP6fdaysZ9k4nn7P75rpfkzbzoOGfJl+7fO4L3IyPMb0DLbA02DcIuCD8EudUx5t9xxELpTg74eJZcgz4/VQ8286oTBzezsUVDVsLX/S2RU59dvDVXawheTnbCwXbUgODX5wS8PoVPNGL02Ueq+gTuegyJ7DUfumrMTRif8pnkVt8ONJ2cKywq9MRqyUvZGoXp5T8+/me3YPPizga7/p93/79ez+Vj7wvBpcTrioZ2D2QscN//xOoIznb/tpDjuD3MbOT9xVt+iB1Y6WtATk8uNuhJWl1l1dRiPrBLX8/hKqZg3y/Yh9Su6bO0G3hVjgEO3M7zvn8npYChkl7w7mcYFOVsCVOuf2LkxDjeEnQVIWdxE/r5RQusOh6O1a1H3O5f0eRS+SAb4YotHL5iqnR5C/M+bbF5SzXK+cqdhzlHPuR0qTYwVp+X+fNX8HG6mB7PfkNW4avrm5jh8VWv06dRIRZFlZjONaTCe77o8KKoFonK/gxm4qmVEinPnFh8QwF7HL9XCHvIIOapiPFyUuoEVn88g10JKdl8brsS/vwU0KhsvaiczMqmFzyIYSfqsFVfuYHFN2TwOUM5XU17SMFSsznir4trrLo1+pBSP0XgyBYeXXp2/O0fYt15PeOLvLlCBHvwLx9O8Z91BYn70jHyOIbu9YZFPmSMi3VBq7Nt6+493PkyRtKnHzbl+75C+3YW0AQK3qNvTjRhbsYmEorZ8Mj0VSrAHecZMVHbeFsVlB0s+sdMkHSSs+0qfjd5/gMasc+HCdBV8Db4vgf9LOJzZUw7n4WtX6O56VuZTtOn0X/rQUzB+YClw7cc/kXPG0G3WxlvacupcNgWh3h56njr5KX/+Do2dj2xoTPjg/EJT/hyh7bH29vcwZAbmn/fb8/HKXRcARG01HrMUW4tIBsmOUn61w1wUOnVHx8hQRYdKFV8t4PreCtmcUJlRq23zQOVXdU9/s/ZjBQnhGxw7bHlhIHHa6J5/dUPsKvz9+Hn1wOW7RTiSO+vMV8vdFN2fonori850Z8WCHT/hIQgu//8DwTR9+0SLzB6ur3jlIe3JisR54SBsXI2bRUq7rOxBc/1NglEJjw0OP2Xb2grDyZ8bymDFq016pXUi//LN4hnTDhMZqFflI+9Fwh3fbbuehrs/JTY9l2Luekz6vJy41zisbdHvLzfBwTQs5DmhcpuzHVSuMBX9EpJcAGlMd+txVTUDRywX1ijt30cl/mH17/4WB3/0f7je1aX19mQ60our3YAsbH7A125iQy4XpUB+4ZTxfSsvTbIGISdU8E9xbODDzy4CM4VP9iv7a3V4F1gcm8tHOQGjLfiJl1++I89A9kel4FFVIZ24RGEep8t0VdX4fcjFsRgUOltqTvYcL5ZK/E/H7Mmc1S0IDHyel4tOgCSt3UOX/ePhOiCbhl5lqj55Ycdb/r/6nnHtpnwj3/M22R2cNcfSMrjup6aJy3+1S89J0LD4gTtBQar6RD3LLugK4dc/OW33S8p6Tzq7xB2t0TE9l5P2rjZ4GXSpp+ZuUqLt76dvILfDPjEkmzRmyUQ2f+ed97rFRtzr3IlwwuZb36v1AQ3SQNfczlgL087b9331z98dTf75VF1c1ros5yBU3IXh3FOJBH2MNnwkZXDYXqPbvnPf/vFC73ssxZ2fx9tknWLZw9qJhSrbMLHP98d5lOOZLjrfXLMwiJbm+SWAkVMKQ4Cl8SL1wu5cpAvcBYjO8pIzS4i4BZZx65ptTF1pt6G+3rOvN6Fw86feZg+S4hI/vf2/vlvgcr+ERzpobf4VdgpHNAj7FvKVi8D6/dAEI3vLDqNRHuhD3XI+N8LNu/FH13q/IwUuT7Zux45GGSvX/38GqJJXubxR/vOg867t9gcOepN76Yt5F/9EfVhkK0JffTg6nU9MTL9L6bN486AjRmtf/WK1dd9EdyXhzxL/HMB7U/P73wbe7v/TJMAuf+/MwX8/z5TIAJFmZVG4b3tJOcVHOvPhihyEVi+eViBQ7c4BPmcZ3z78e1CtfY8Yn1LreYitwohOXUiEv17N6z54Lfg4PfXuZday6Bxltlw6zUNG0T9ZAt18ha4N9PBp+v1snPWQwXXFy3mThAO8Qj+5BF60n4OW7NMY3swDYRVwkfE7dl3toT60IJGOZfYuHYJoJ8hQPBeape5fvR/2XY8cTmMw5NAnGuJje1BvRBu6jogfihBTM7PKIIP9f7ACPsoo3f8V8JT76XzVkV3unDHl6PIGwYYmzOTremF7eHNxDfs8J0Kpm4Zr6BhO4wLdiq9VY49F5r2nZDT+6/OhnuhM8rfBy04+FykbLstWQqLzxAQx7879SZ/Cgj82IZIslK15kYhS6A5bj22a/0cr9UEc6ge2b9ZZJLGWz7nPoJvyc9QwypxTbNO8uELzuUM47AdqNojXlq/jo8d6zYaY6JdQvh5Dhhxa2hSyv1VKcyb84BRUJ/popxpCbs/NcHpK7OGvZN0CRZNzokXRTDe5vs3FGqRXIiDi63ukk9gguuwQWKvtputVZVuUCgO13m6EIc2gifIQFr/bGwGVjHMPONuQCkMYd5UNabLdQ51mL/tD/a/23cg6vG7wfZxKJCQpiNdAy6YoXjNGMSvdh9v3oeIEPN/JZLbDx/TaCtyuZbKkJzLqPQ2w0CJbH2siWDuQL0OgLqEBUYbVqPkVVPC3VrICaTF1vKHPSHzrhf4yQ4isboEAvrlaAGZsHpjO97ZsPbKR7BWTYoO3/VNt/tfyCqTkYIZ3F8furTd1ANZiVTspXge1uU0+qCRMwtr57KMt+x87+AJ8Q12UX6lK4q6HijnCc/i39bFs/hkC2h+jzES39aBbs9THIIp6E2MHoYYb8dt04Gunjaiq3NaL5wIevB4KzmxRcemow9gDnxuKYkJpytl8ycagRJVHhrd9zQs4E+eoenuzcwtvvamfDAbWMNkwEcoVQZ9XM0WMvcTj29fmcaztriOlPu9T+wwPFNSN1cHvpj1gD3KZ8N6FXT34BAtI+gmHLNN7vsZcH8sQ/wtpMN3u0S5gsSb/VsvQO9iZCpdUbyxvz2qelGf5yt0MbkTD1gfbyzEPoWp9Y6xvST18Ps/MrhRGbEs9sF2noYSajpzQXS6uXT5CJkJ9/2Mfus3osgvIFrXCzZu9Tz0fHJmlHsfPvD5zvTZ6KKXCx6l3+KIl98GWY1zr/w11z/sye76335a3HoiZn6ojWHgVB187vKdHCvxCja5r0ZlNs8LttawAVNVRQuUoqtEtCpn4ylaYhP+ffwFic3t7q1izDTwr+z2e47RUnfKqPdQylt97sf54U2b7IWy2SJxVhpMstWbBgS/7XgihSmKdLN4CcHHWCPsO6iP6bCyIYxW2JKTlZb1fGz8FuCQvghSvN6g5jv3wfWNXUR5vQZr8B11IKdtjk+BW4PpuP3xsGLSM/GMMh/WNs1TUGB/I3oVSWCKDmoFjFc3ktMjWY0vr24JwA/Jwohh7Xq1pHJTvprrYkcJD/GQod6G5bK22O0euiFM13WGxeuYEbzQva8GEVhoaa8ZLRSqlA27S6KUWdDi49cf61k8H1XIACElOmfe6+9lzGQQMTEiXuh03iZnSiT/8ORcRqrBOipxQeFfbsSLnl68rH62AM1PXxg3zjfe6o2k0NZclbjyMaeLrgg+bNlLitX0m9cby3eRnJ6iHrFHr6Wdv0SLUqelQYLP5Z4R89ouMLVTjFa6tRmpP18RtILPkUjRhn3/1RXAiYNnevx7ZRsvH3TZ6FBBPO3qZP3tNUFZ0+EF40tXASo1JP3h0yyv/AuMwL2rUL7NGuJVvak/WOkaCUNpv+f5F8bbdu5lKF31EPGbVnrk298X0NymF9ZUd85Wvq19uFvHpLidyno7KWUEiv7VEX9j0ngLNK+H3iVu5+rdUGNRhOb6L16EF04zco9eIdj3H/Z1zs3W0jmYULwheWY4JIAR/YU+3NcDF/BhxGuqSD58lKjFxjtNBnqrXAe+rrf33PhNS5eIaa7wxTszeq2Z4fHnaahg4ucySQpG8qaj5l0BBxJlXl5iZ2xv5a+H7qGsSKA43JA+LywDZq8vSMAwL2PNrWyD58NTREKchLEQ+VMHRT44kvgTmh5rw+QKs48dkFO7hnSh1TAC084Ikt7OJZ76cXLAh1c9rN0ZN1sDzhrh5jh3EhyeIljP0/EK3Zm0RKtvvUHVYnJk92Y7M3//nocf3sL31n+x09zuxlSqLwemA4PQYWzjeMVXIf3xF/xXHjUq2CM/Qv+AJoy/q0V5yCUQDsa4IFG4foYt/o4XCKWInaX3nxF3ETNewYUszixkTlx/g8K9gETHK0HocIgHznVmWAp/ySzLxxwsdJ+fF5zlCFvbuGVEf0ijxIWmg43WeWZfjbwhUIQYzeVp6oblQN8uPHmngNiusILRd18QQMh4xETqJV7Ce8tAJizfs8MkptefLCaErBZuxJVay1u42GV/+Wae+Njx+L8DjEC7DAb2MteMu9JrO8gGnxTbUsNm0wGFFZTyRse/fNWeYcJIiaFOv/gDmwZqFshKqBJDGNSY+sxFB7knhERzuGO2Hv1J/eUPBI367I17k2Pww0f1NHX1us2vVlEyJvnh3TCldWVD+aL2+OEfrGE63eJICZmPgYbQ6Qwa5qgEPntoZkUg3LAQbSqhd4MKRo/1aWxYMVP4NJYDMR5CE9N79A2Vm9dYOK90O9v5pwmYO9ywe/x8s073mxFWUVju+dU1luuzb2FWVhmxv9ejQV93IoK5sSWi7fmJuPdrB85LxBH386d4UxNJ4g9fkbBATMdvnpTAPtEz1mLBqNn0NvowfSc54mybr+djoPnKAZcrWkvr7K2W1G2w9yMHiZB8hmUaHiW8zsON2K+2BtQZjRCWCnCJEeSdsfMDVTGPaMABDA5gftZVAs1gexBV03G9nl/vDiSn5knQJTlk5H1RQiCda2VW+NgxWGKuERSAaJLYGhu6QS5hoPW6Clg7x2u2KLJoA3pIT7/8m7FvIrbQhf2RmCz2KSWmZUMDbwY5sUfDo49XG0Fxyc/Y7ULq0Ze1RGCPf4xup3KgLr9WwD2dPmiylK/3bR+lC4HyJ83yAz7iVTH6EP5NS4Wdv7eUTdvw4CFY+YBoqaR6QoYqGzrd44s1VfwzluqtX6E6pZcZpjQFmzbyKbD9YZyX88OjG1/THg7jycWqcY/AZnXGAisWmkic9MgYr9I6gqdqddiAwpot/wcAAP//pF3L1qK8En0gBiIgCUNuInJJUBBxBooIiMglAfL0Z+HXw392hr1WdyMktWvvXUmVaHw5eKmqGzUoQQZ12DhJltP49CAWpTs576EERl0dkHjSRmNOlRn98Jti7vFwh/flm//yEZL++LFZqGCb0BsR1vgcJeIP8PplMcUrn5zi3jyDa60WCLzMu8HU0M1l+s21dX5zD2Yt6ZrdLpF7EnTxYszKY05g+hr31JWvajbY3578/X2UDzz4dhaMod55Jn3kAs3mxm04oHfIRNyY8z3TjbJWyh3g6F6vyrCR7J0Fj5f0SgqmuYaonHAsr3wTUaLE/cSgvM4/tO/0vjz0XtTPiQpqtg0pvhYPxi7XTILt6aLh2xMa4eCkDg/PIGUItOGnH5Si5QD5ihRJ1llj04+vreuFlKY59+yrXbyfnqG2eEz6Kd6ts8VAjckCw7c7lyOf/9MfCXu5hNxeZ7Dpuwq9XVi6bCvh+y/f09OcVS57W5iH7PX44uPnea0WbBNb9heF+9NbDC6vRMFhD6kNS6kftePWgdUCc+qsekfoDkkJpSh+ko1UvXtGDwGvrHwFCfKzM2YN4BbYqoExMq+aS/j7zYGrPsb2023dubSNDjSBKFP8fAQueyearohxtEfbXqzZVN3aDnrPW41tnJ9/8V2CVB+klW81/bjY0gTo965R1xj7ajYK34S8klbkMhsXwMYn7iD1XuG6f9Ya4h2ocCfPITaivO7ZLz74q1CTWWsAW8JBsqCwbN/UECanEr1P0Cpz7/dISEAHJifeWJCqqCfjNlnCOa06C77Ch4MPmc2qwUl1Qdnb0p0eCTEMcf1+v+djHG8aY86znsDM5wV6AEYcLuEW6RIvFzbet+8erPHXQhDtntRK60MoPJW5gHGjW9Rziyoj3SEoQTGxhjzeUs+W3qVnqJwLlzC8Nys+ON10SGuFUDWbtYx+szqGIAJPqhbKktFH7DUgsy0VO98drehbbixoabaKncosDUbzO4KW9x0oopHqLk0q1YCML4vYpCf9FJxOqmJ/z29skq/CFhJfSni3rBTtHu/CnZOECUClD0Z1V58MNs42D31ONZDwukVgjvv2DuWTg+lBx2sfqkEwgfHqBqK8nb0r4GvWACU5aWj+5gGbkqVZZP17s7HzuTyMJbt9anieuYYsfKUxxtm7FE5E97FV9MQgOMKC/HC6BuM+1TORq+wCPsbIIXDiLWOc6EWFVXi8YJPYlsszsk+BXnVn7B75c8ZM/tgBnKkdtRv1Uk0/fdgPnIU1mS8Z4co6/uEJYndNAuRmPFuYFUWGGBfmYEgWskB5cu5Uf1hf9/f/QbNf7w2FYlUNkTJJCtOfdzSB58Vl1uTkMLEGkx43ouWKOvbO8OZfKRG16FrNON4k8KgIM95fGsUdu8trUsJd5pMfnvYzAjEkJNaxx9x1/ufWVkGQMxntLPsTLlw5xLBRpg/1MjJV875jEQwk7YStV2Mwwd29LNl/ZBx1u64D75UfyqtfQcCqf4bq1rZ//pTOdW1GyOZsguxwMtHW8x/ZLFy3CyCo2GGMotFd1yMB0+ifUDlGQtgqhmWC5/v7oV7ybaqfHoGa7iZoamWzmhWjDJRaLDp649C3nzfvUIJyDPb0iF8Hd7nEmwH8+AcSl85Yll7W4dP3PTIxWLAlu9HmT+8Y+8Fky0/PiuBgk94Y3X7mYpLDFn4FsmuMzp0JuyNoFOKEBlkVwMDIPvn791EUdS67hhEBXoBe9LcfvuQeCHDH4xeazsmrX/lNDX3he8Efw6lWP8Br/vyr8CDcDKId9o0cSLyPb+QVGQtfUwvMRu1j1NwldyyfWIVBbH+pYaVu9cq1ewPW/IePHAwyPkps68fv6YGFoSGOZZj88BVNtukZ7OGU8k8PYsR9rv00PpkA5HsPEJ9nU9/5268EB6QtFNXnirHRDfQ/vbMN0iFjgXDp5N3ppWDVFe9g7l5GDquFy/Hhl5/P9S4BhEQ6dnIxdOefXl8HV2H88cNsbr4aD/jpvKG+cYt7djOYoHASt0HTEprZm9Rkguz1/KLqWqGKzelDheINFUgaoj6jYaeWyqon6A8/ZsmOJCDeTUD9YbyFwyjrEPpCfyEr3+vHVX+BMtFi6lRLy2ZBlRPw41Nu/y4qVt1VBFc9Q1UnwyGPjKsOyd4c8OVV0XB5RccStPLa29+V54y8SNAp+NQ8kHD+XNy/9QTKdYe2K/62rOwJSEpdxsfHuzCmr66l4Jfvp8XahvQ2SAk8bR4Sat9nxBZ/+5Xh3TLTP/0xdy/3rjwV9UL+9lPWzkheRpIQdhB27iJVqqfsnvcHdpNmcVlvi0S+dNKBOtcDZhPtSgvsO2aS5RK/wbq/avDjV/vVf5xSW1ig1r0X6ke0Bb98AJNSlbGa1efsFw/wpvEG3jvhu5+AdF3++I0+vvYhq7h38PPPSLvm8+Xx+dbQVjWM98tOC8UPCaBcbYUd+uLXwSAHgDnoptuE8FwchnNSX0p47Zoz9gfZzib6tBMoTtsNRXQrgim9DgjKk33/0/ddC0sEh+q9kDrPpoqteAWyQ2hSjJVvv/LDAup0na3qrbMPfvhnvYHx5yd/3Xy7wCg7bRHoOgcAMyYTrCcXot1naKqR3PYmvNheRXjkVyHT+a0JtBf3omiLrmD4fmQPKnOZYOfW6xnvxW4HBdkLse0faEaadGqUd9jdsT+22Pi2L0GCqx7ETlFQMImPnQXX/U19vuurQcTu6k8aLUWrnlv93/LnL5Jp4aHLvgslcsklJxwh38jIK9guMODeBpE2/Klf3vYmBY18CKjZuCHbDg8vgB9JbrCN9L0xjeQVQLiMOtW6m1Ut8lNT4ZqfCEias7v6qwT2JVGw/0g1IPh4Z8LPXElkbJqlmt50qhXTqCJs08bMJn37DaD9/iCqK/Tcz+eNXYJ0/wmRUEZdv1TdLZeD2Pmu75OAqXwJ9Z///uMHjEp9BDbXzdr3+HYIl+68ILgT9xAttf3u5/qrBEBMbjX+/V42u58awPNuR9WAvo154pwcGvbtQuTVz2P0vBTQE8UNPsZVVc2pPN5hcZpvaGc+O/Y9zl0Kb84jwvt5vldtJwsJvI75iLhLYRrs9h1aKKf1HYnFi/XD7p01IAdRjcD5DDMm6sr08xMJN0wjY96yxODpYw/r71k3eCtXcthG/p26bXioltW/hW2E72g27oeMfbvTpPzwSN2tsx7W94eHavdATHlLxkQ/eQypH2H686fHSeYI0J107UA1SUC06naBDhkbeny8VUOQ7NlUrBIP2AX7g8tWv+qHH3T1i6r190W7d7Boq7+Js7mYWSv/+GA2cWq/+lcBOGbcETV9AbIhMVsV3knBUxxlDEzKCZTg2tVnetuIjcueZz+Reyq8qGPtyn70pVsOGiHbkemb3bOh0aEApE0fYevM1+5M/CqFh/HSIWXwXv0MscuBX/4U1Aqu8+k/CaynI8S2eJR6gu3Ggc0l8sm2Q23G9HOgw/L0rPExkg9G/xzuJVj5OvWv1mB8N+9QhrPR+HStp7gjn0FOHuqUkO1a71qe1LTg6sdSjb2vGX/WJBvuztGOJhbb9T019yZc/RvsXx60H6NLUCppexaxL/AbMJ/rOYUyfJrY0vLFnXZxY8ObOeQ/P8z46Wno555MjTtEldg35wbePolOc744uaJ9gja0hnxLrUS9GMtTHidoU+FKuIeRZMux8BOw4gu1Tu6hWutTNvSnQ4XtK9qCwZZOjlIrYUHmbz6BgT7VFOxRf0ZCWHZ/elpxZxRRV21f/fYE4ATX74t4Woc9+b1/DdY+n9p3Cqd0BjHckzxDjLAk65/Gk4PRJG6xegMXwHrPyMGaT6hXeDKYV38MliL/JNzn6rPR3/oD6PrzBbtt+KmGbV4XcNV/2LhrCZjrPKyBRS8BNZ9xEy5LEUTwF6+mv+eqSc9SBxTJ5eeH8eGcUBFBBPBrrR/WBvlunwFkLvhitVDO2TRftznMZ/lKjWv87Kc5OyL40/tlskvd+YCnSS4y3KCfnz2n1J3kajmWa/3yEC4HcOBgotpnqkMrNub6uz3DW2H8i3/2/SAVjn5rUj+322reP28tcC9Wia1pl2WrXvFg+UxM7JN4C5hyOkTQW6Q91Vyv68cfnhz6wKVhPZzAkGyXEmbN6UQRyj89G8ORk2/V0GN/j/WMQW+qleVjN6jbB5Yxx3olwdemBhg9gk84dlSS4Ce4exjfdw8wrvUD+NxIE0aXonbZs1h4mJ9lBwmdOYIRx2ICVf/tYrUdt1Wb52Hwq/f9/PNwXc873D5DF/EIdC5Tx7SBhbJzKNo3z4o86ougXMZlnY3xemfD9jUFSilqFeJ3jl4tq58OyGcJCBvuF3dukDz8rdfv/RbphHXQl4OCbyPzM5q1swftcmBIquvWHYciUJW+SSN8aE8CY+8lcf74JHBoawyr3oNKdryjbZvc2Vqvaf7yg23tF/DnX636GbvM5hlb6wPK+RlqaMcfKndsXMLJDR+niBdf+394fDjMPenXfM4+JOHgSUlu6xnlKvvtB/CKL29q9UWW0Sx1J+jB+IyPeyCF7DpWAvwW9jqr6XgEg65sEERPqcfHwQkYW/0Y2LdPRiY33hvM3PQxkFg80KOnRIDPvzwHj90xxUfE1Gye6EWHa3159fdagwZ7w4FVLAxk1l+nnl1KpQGJl8sUwYAPlwEx/Ref1C2qOpu5uMmBuI3O2AH6UrGKbvj/b/aB+N9nCgg5IWqKgtpvuygloHNKCS1QXQxqmK233nu/0Zy7bAyChEQHUJc06n7KyZjPr6CAbXDboq2reGx5mlIN/Vcnoum9vYZEd6UYplu0I6+dX2XTfeoQcMTjEWsSJ6/3StZ79qfzifDbx6YfS7+PIO4hpvfpea2mzWDxUNYck8jRfXEpJ+wsoOWPHGs79HbJJd44UKPNBfF90YOxpEUNb0ZlUPe99u4MXy2E/V29UdM1vWq+H8wUPKQ0wEb9jPv5qlkRTAyvoAetq9kiiGUAD55d4b2reGDZvOwADMb8wodaPVeDKjn8yikO2Hqhd788S3CGrnS/UMyOQtV77pQrZ19IMWa3Aky6BB148/QrPRyJy2h0ngIooWtM+Oe9ZstZLD1ll6Qh+gqHxmAf1eShfbEnxItC0dN77EPANCWnnrR8XHIcEIQ8tFtqfp6dy5D3XcB7k5rYgxVXsfmgQBBethw+GlnV0/crmSA6cwbpN6AzltZTeWUzTgkOJ/7bTzUTJbCtYUGNJt5U0/FV8PD0RhJFxntbDe9U9WD11t/U3UCXkYvEp4p9/2b0UB7ea2+/+Qy/WitTnbM/7vLt6kR+VUGLpIR33PH0si1wRw6HnSBFfROl3wB8ZnTENrOCaqrFJVfIe5YRPSuvar6U3QDHkX9Quzf6kOy7OoJddf6u92+TbHnXwgJvAxooiveGwS5zyAMxbjB2+2pmZPCBDIN6OuDzIdXcbXAfWhDbuwNV4dXOxOnbLXDvJA1GVw73bDcbOcyE2sP5cZ7ZVIudCj/SwBPWtWM4hN8bB4ZISvBeaDp3/gYHAsJNESB+O37Z8u1CDlhhyrDKR5VBJ1cqobQhX2qZ9aan07dclHV90NxtjH5SRTkF9eVi47006UzM2GcC9FmEFI/Yzpb0vvVkPYktqpH5Dibo66lc70ONdNIuNIQz+7SwIV+RfGGoZ9tOKFJl95Q5VITNBTBlaUxwkbYq9pXRAdMr6nUoB+EXG8G17edbvY93d7LeCw+FwqDynEnA9iqfTILng6kWS33TbCZCjTjYuvT9ChbFsaYnNpBP2VBE51rhM26dhdCifnJV7w791DRx2nSnSjxa/QAmqf7Q+/LxeiJcRh3u5a9OD8Qj/TCpEQfu+77Dv/1L83THw1dKPaSwZ2+QSOohfFxdF/FrvC5jzzVwG/FnqvLhKxwOd55Tjk3t4CtMSTgFte/Jm71JcXB4jS4t71GujD7B2JgqpVoo2raK/3VL6vbVCZDT5V7K533mI3g/bDLCL1wCz/urhRSsO+4SxntBpty4oXjNOdPOlTxgb697ajlK0RPTO3lKOxcDgkGo92xsXyo0ptuMD7XGZzPajc3u+73KaFuiGTD6fi5ARCqj2e2yhFMl3mqwth+mllpCgxVKmwBZ2pzRNlCXcE6qIYefp2JgrVRUQ7zfJhPOpzjB+rVwK9ZXNQE7quwxBm7qfm7CTofYODdU26G9K0RSWMrsfBiwN+RbMFXsqQLnowNqx90cDk2adDDptjcyd5uqYoZZICUd+gfaVMZgsEQIHLjxPik+hDvLWNZ4AuP7eqS6dnLCZQrtFsqSciZL9ebDqb7Uk/JGzoZIm1RjhEypCsW4xvRUbF2DRWfpDL6vLf5b/4VOsgzA7VBQN8wMJmxFLYX02aT0mNVhRi/hzQaulF8QJ4egmsaNQyBO2YmAVyJWjPedAR7ffYtedkazufLZAp39LGBzs9uDpdCsu1J5N52i9ND0NBGKBqq5xWPrex6qlt/LNmy1IKBXmKJs7hfhDL3p2qPPW1Ky9vgqBPDeJCZ9KpczmGLvpkJU6Q4RU7OoRpaBFJqpaVC7mTKwGJ46QajLGqGZupr8XbRqZluniV6tZ1xslMIJ8wI2q0dTzeGDE2TMXjo2JvYB7L2pJHCZwjdha3yRx4PjIA7jkarkaFcsoMUC7e1lT9Fw/bJ2nzEEJqn5YK3Yuu4kWkAGt4om6/7t3Br6egK/6zzPzsGROyv7JQC7pyBi9Sl/DOa8D2egpNsHNm1ll7F1fymiVdjkdslgReJMt2HpqQlVr6IGhKc5NRBWVkyNPIIGeZqtA783f/hbjzlSvRqIVmlTJFdv8KBpsIBOZhH1mrIC30nqZWhqRYt11nOMtWYbwG0t3+iKl27bZkcOvq3ap0EoqIZ4mUMBHpv2RFiUOCEx7bwF8eleUVfzzYzX4lwH9tsTUQGvbTYpNLGgtOlKIuVECqfdm0rA4d4jPn5ZBKZJvUN49nYSVk/jMeS1OFbh0dtw2LdIwmihFCm8C1DA16fiG8wo0zvMJcKwv8sUYzKzbpHn4EKpU8xvdxYefg0jKjAk9OmrGjg6cdCw2y89XMGxGr7KVMIVr+nBffNscc6SA6enrJANyOps1AY6wEi6x/je3peQvC3ehKFFbugSnQuXVfKnhuBo3AgIHRGMr9534HF/86jTfDGYsum2/PADLdxhH1J1k6XwMscXlMxoz6byYkhQTgaBurfLklEJKRPc+LWBJPPB+hlzp7uYjq2FL3XiVMtuPXOjfQ4aPuR7fZ0/XhJpzReoCN+RO6toVMHLcFKSjJ4e/n4PSOFYo8E6WKEY9I8FdoYZkUoYomyJs7SWX+l3jzUzHavBr9w7vN6uErbYfW9M9sbpYBhLhGxSmoK5Wy6J3Bmqj6+d47qT4p8FZe3uiv3KSdzB36sTnArNw44ame7czIYHDfV4QSJ33hkkz68CXL4hT4+fXRMuXvi9K461PNfnvV0ixXsJbj2PknnnG+E299RBYfKI6P6Ht+dNhqC4fyaoNvSjOx+Y1cnxzq2o1qvvcPpmpfDH1yTvKbqT2M4OJEhfiDSjN5va3cOSy/6okK+kRZW4pS0vZ952WeO3rQa0P3nKxqtCbNzvp4xJU9eAx2FvIjm9cD1ZAsyv8+C2aI4/fUafOw+ClS/TPbIqxgI/NAE6gRDjSEDZRDZ9DQ8179MLKStj5Y8IxOqNkcq77A0mh98WaDhRSR+6u4pdl70Dl++Jp5fupYXdcUCcPISAYq2jt3ACdl7Cz+QX9DjyQj/tOVWGMC1keiNrb24mJJZ8FEhCHRRcwKSlay/GFF2wX601sDz9pmB8ZwHhCj0G84lbYtAbiUgdNaoNlkuDKW/vsUKUAMRsvlZuDXz1uSMfLU37KTqMDrSqXCa7xaqzCdhxCdK31WN/vgrGALpsAStek9eaD2m/X+6AB+6GVOY6G2tsgwYec5VQA0pBT+U5lH75BG2lp8Am6M0c8L/Hkqz5umL79W7cnVxCqkXPOBss2Yrh5h2aaGvIn/7Ht+C5KUzq3ZM+ZLOnctDqIaJJVHHuCLWYB/UAZHQ4kp5N4vugQuN09pBs+UG/WL5ewEh8jKQ4jd/VE+8cGFrDDUndssm6lJPvYLvVP1QXoQO24aZvQVCxnIy9Byp2aFULYoc6K97sXf4t6RJEzEmQKGAGCFsepbw+n+qCWbjsmaUEHjnfQIAzNVfINroE6/czpkZw4DLyVAUdMnm+UOsdfA3m2/kk84OeUmQIr355PDgIutDJqH5wYiDijpfA0p0fZJPPeTiXNLCV++bu4PuBw9kgtO0Ayup7XvXRAFi/X3IgeN+CiI9tYiyGZy/QSrfXH366o47jCEjcd4eAKJlgUbhbC5nOHfBvvZbBr+5g1jwH78/2J5vvX60FowJ7bAdLU1HW1aUc5tfzin8UDM8ZJlBshgfOsdxWbRPHFryetj62Nq8RTLDjW7jub1Teujob3rHfyVlT7qlxz2i/RGkgKG4SH7CreWXPlKhPoPn1W+zY12O2rHxwt9leXGzk0d1d/5xCJrMLgp4u9FPPvQR4M94OtWffdJdAPMbgTFSK9wfYG3MzyQu8eWaO/e3t1hPDtjwQwEwl8v0pZvP5lRTwbXVrDdQcw+XgVwnM5wBjFVr3jNJvGkMeOi3ZfRnPKmyLLUxN7oF1TeUyZqhjB93r6YqNtpDC6asUltImok73XDtWrHnNrbKFr/PK5zx3TuvHAj+zdyS8KKjVBNcaQYS7HGv3MqtmULkdbGXzgKrgwIXz9q44YMUXfDnbn3AWN9kZCnuT0ONtdMK56IYAUDHM0NTstX776n0bHjyvo/ZHOzAx8KsCyMmkoOmxLO4svoIabvYWJYC+L+FEN1D/5TOyLSzIpsBa4wX1W6KAMsjmxze1YKuePtQ1zDFbdFeKIN9rMzYPhsOYNDEd/PKng14vRvf7Wwmj6ymh2nb1mDdWVf/0M/VNEQOx4koblFV/xqg25XBq0q8FUam9MP6YPutM7+ZBpsMDPRzWM5tfpTBhId8nbEiC7wpMCEz40w9akEdV6+bXGnRV8KX71PV6Qb7iFvIZDElx7N+MyfhjQauqNLzvTldjXvc/lK6Gir7ELNjU3+tG0bgvwz8+N7RZmoLEcG4Y/fAT7G0Ib9lhu56Z2hjkLMotjNeakpM3XT89w90AleqponnraT2ruKWBjRimBKx4P4wvW4eqzzVINi0lo0VW2TBJRxejeF+58+P9LOD4WGKMVVoaS7lfYsVQ3Qs9fmTbnVIfdPAVei/qeXpcNVGcB/Dor72c85nLJqxRC/Sp8iWCNUQ96/anBjq0wNSdKXKXonIHuD9tbn/65cdvFVEQevJK5rUvVrhYP3zG+jEc2dKsfaQq2Od/8UZEUSbw8TndCP36JphByTy44gPaosO+2t72iwcOBo0pfrlaNnWcDSGQgxy7/skNR0tooz++GD0iDJYbV+pg5YdYVyQI5kSjHjDVakNkxVXB1KQvEx6FIaEeaRywsOVSQO2qytTXlVe4SFJWwzV/IF6VeWMUN2GgUPSsqFHnPGhpjpF835Qn6n77z4oHWgQfYvZBPz4/t+E3Bb2Rrk738cvG8LVLwdmXXmhjThXr9vamhCy0LthijwYsMAMlEMlRoyYQy4yQ4ZnDe8y32H+HeI3nywQknFr0pzen8RXcoScJG2puSd8vM244eHx/f3j2zWZ8v3vwjvw9Hj9ZbUygCyew7nf0YIXHvhdzvSnzzgKs9hvMRixbOQiMPkBSr3/78dXBAaq5yRPJKyQwNDEp5dX/Q22lWi6/rfdnSOL2QqOxMythJw0qfDy7J9WreunHZnYR3CWRhx+bOgRssHQZWpl8wE4cZsYyrL2f+3TzpYaqMUbc0K5hs+G3FBG0gKG/Dw2Yp4dCLbSp3WGQxQG0u0NOVr+P/fg/YGm5Q8IYkmx5t7sY7p68uPatWdxOP7xjGLWxTX1QLe5f/JVGrqw2WlfNi1J4iv9qRSR7SW+wJKoiiHVfwOvzDDofthz8ra+zkKSaH+9rCdoEHBGznK5f/a8A5NIi//g+GOaSmdCXvTONTHBhCy8UBWi1c0DN/jX+Zlkh0L7yNzWthWNTfVEQWPkV1hRssSnusgFckqZGolGdMhaHi66oSB8J98vXqsWrMMeK/tOT/XSfSg+ufA+rp8fTaPhFSGFx2iJScRMI38vu4YGff3Dsuwegvh0vPzylv3ib9op0V17yNkXMDLWqR95rAZB5NYHTVPVLrl5sKG2GLz0MkQH41W+BlSlfqf4RinC87RcE5umpkMd8jd3lks4EmHL8pIcnR8Dg7+0JTEl+I+3f/pHCCK78HMlxmLlMWYgFn6fkgdVjV7tz6fcxXN+f4jlwDOEiwQR0hhUhednU/eSVXQOSTrwhsdbWOx+vpJQfV3wmAs2McJFiX4ZDrSn4YJS0YiV3I2Ddv9g1TD8THq+5ULbmYNKnWez6eRCPZ7iuJ/loXQ1asZ1tmZL3jN3qRUIGgwMH+sH+0OeKfwwKiQdB513xBVkGEMv7PYfy6XzGe/4RZsvjtSthGPMfFPWFC3a7UpOgbys+toO5ZkN7PSQwCYMPVY2iD6dSkAhkC5apaSu3kLizG0BffeywGWzuYNodlA5uFOFJpIi16/MDpCSy8kFfeC56Uln6BCn5zFg9ZqBnL0XiQcDLFwJ2S5gxUnMS/PFFDV2UasBVHcMgcwFZsteYLc+SnX/5Eh/FTcBm4bGvwc/PttTy7g7OQyBwsmOX1OI7qvjNgATwbvgv1sCeuJ2DlBpqtL5Q04ZiNes4j8CEBQEVWlv0sxF+Y+gmZxV7+l4HW18pbJht3xX28qIIR/FB7jATGg/hmKuy1S82f3xl9Q+HfpnCmym3sq5iE1uBS491k8Jy8EZqmPq2qt3ybIPKy3SqHl6jsRwHC/72N5qLemOMhbfoAGgFIdHTS6vFDdUaXk7rmai+U9iPT+6sTnlT/ZbKxrzlXpxij9MZ7SrJ7Nl3f3TAzfg4aNGCtpp0qRrgyp/RYthhNpTi0YGjP2B8I2YBJl+zPOjQEuNffuicqUvgxS4f2Jj4b9XuDiMCpcudqCOqVjbfLL2FR0/h0O7w+BiM93UC10Na2CtfuiH8+Cfqyi0158F22WEvp2Dlw2THub6xqO0ugJ60s6j782PETT/AQ8geBBzxgW3nnbfAk7KEKJn92ph2X1mGihH09FTUG1cM/MyCfue4JN61Wih8vsyE9d6TcbSRauNrRZWp9DwxCMjyr7H6hR7wd6eJOopbgPV7QfDj309wt4wfHsJsfzmgWpmoMaEqk+Cde7yo+uODg3gbYHzKK+r39z3gT23RKQ3pReoNj8ilAQ1isPHeKWKCombTT/+h9L42SimKfjldohLKdkfxqr/AfN3fYiBPNxFJ6004/o62CTy/q4xsemsOx9KvYngL+xP2Ayj1C5m6HPoyOuP9/fLO5mtl1GD9Pmv+PvzTl70rudQuN3X4px+pdDaxlsym8a16IYec53zJxl4Omdjv5TugIo6onQ4R+0It54G5uwroE34zsHjz4MCrE6R/fht5vHYF2Ny/L2yF6h4IIOtNuDVoRr29kIYdGa45qEJli/jvTaqWZMc5ML1XmGqtFGRCVft3kM9nTH/+rMgtQvGLB8JXKDfG42UbwPv+2/3pKRqHi6qsfAQfcss02M/P/32/1f8CPz8CHmrBJ8WxM41tpHoN1FB2pb98sT1xcgSN+f7C7m5Zh1PZnzO8Muv8p89WP+8Mr2n8Qkw/tmxWp5MA/FP5XfUMzNb4teDWXFzqcT3rl6FvbDgnEySLcdwaU4buBXxc/TO2bfrKxvwrQ9jaC8DOQqR+YFUGwW8/f4jrsSW4mOafn+yk75b9rd/TFjX68/fYIw0gBI6u06Nx34c06C8TnG2yRVtSGu6ChTb/wzN4lBTW7twJwdXfovv25oWziUUkq8KSY+9+eIarf2FBcukH7O+6dzX3C3cGsmabdP29f34KWBzLxs49v/RkoMUAD0OyIeBgBWzOrL6UM3+KsLkelRms+331czYpGtmzd2c/S3OwX46E7CQt6qfAckqoOOudhJgzwk6W+BwarcARrg51wA6Ww4OrXCuE37Q7MGY114J0+MRYs0p9rZeu+Cxw4h8fWFrvFMDoik/Yi/2AsftFKSG97i3sArnNfvkfPk/pg4hS4rCJ88Hw8zPwgV9n6/h4E8HBXJw/vcJK2SKwfgh30lNBy2bx0eTwfHlG1PfkrUEOfp8CYe9sKTqIRiYmy6OGNafPZBnnqRpWfgNXfwg7vHTKZi/eqHCoDYUej3H4q19ZcDm1AJ+iZxxOJ6tKYPaQSpRPSV+RgKEJFkz31p4XV2OG1d2Cu/ae0sP+nrsjULcQrvVM7HLmy52Fl+385b+1Xu0y121VQHJXxcf3PIeT/dgniu29I6LoXOUutdW3YPPoHGok6ciYElUpFJHOEJ+td+yuWa9DIggdPlxY1C8ociL41KKY3vxEzH74pyiZ7GP1sZyNeUp3HQyqOcf+IziC5UCLTqGbhWIN1Y2xvr/+q29QHy0bNgh144DV70cA34pMULhTB8DuArGuBW3PYIA5uK0UEVu9cw0H6QAeQOG/m+rw5qlXsnsvzFic9aggq1BF7UI6/X0f4KDrCdVjV/cMLj6CFnvbf/VKNtR+8/+dKZD++0xB1vUxeiyi5m7Hz7Fee2e8qaMKOqNOpRerZj7Qpzwid9TllAO3cJqoa2+kivbFOMH93s2IeKu3Bm3loQBcPwTYcyyejd5rLpX+qY3orapXMHOzK8C1BRd2gGUB0e+UDm6xYBFe8cZqyarEhs7mptDDXS6q3rnOMhx2b4HuleaTjc7mbkE6UwebX8Fe2fIHwaElOyLDYnBJg84FTP3QoLq69lF4FL0N3y9Fo0fhuzFY5HxNMC/WE+8Lhquu8FsCAdm+qebPncGSc+TB0bRTfHuGcjbr+6qDl63jklkRk57uSiiDwilbbAn3JmMsXnJoB+aOHl6fyljm7awrF3TX8LPeKIAlvGXBTfH0yfJQRka8FVONyNSwGwpTxcrdMiic02XYliQUzlDybbjNTEr3BaP9dEpcBGBhhUg00sagjXDxoBnrjJrLwXKXbbS/gw/zQ3z8xHY4901ugWvKQYzkkM/oLU9i8NoqBLsytwnpRsYQvLYbgnHjsn74aH4CbtRIqHo8vowlCSUED3yfUHu0zGyqm/sELs+Io7kcRmHPsN/BvpnWMxX+N2Rk2hMohlJFdoeAuUM+sQY65KVS53G4hfMtkXSA+luAvTY8AZZ+Cw6qG2HAzt48GxNc+1iIPJdg/eIr4YQ9bMLLEmsU29p65sJpLHiPjh1FXKxn87ikHtxwrw09xIadTdnXvsNFdc/YE0UvZHmIdEg5aYPz510HW0EMI6jZoUuNg1aC+cWJJYDPXYrtkVlg4I6aDUz+nKM69K1q22lqAi35fEBlJjTGfGnkdmeG6Iu2tvEG6/c14UmRMcZlZ7GtMrY6TA5hiupLhMJ5oQWCB/FZ/uIHLO7pZUHRvZtUj4qUsbK65XIL5Rxt9ylkLD9sE+geuRdVN/HVYGs8AfWTIsJ/6MsY3FFu4aMHLQJ45Xzj4VpA4d1JZCh0vp8FSkro4npLJMlde+OMU6Cw4koR2299Yz51iQMxSs74WZ9BOO4vRv373tTcLHbG9mklQa6VLHxIT9e+NXjd2Uiba0t25fcNliM1Wmhy3RGJ9/UeJPJoDSezirB1c9ZzqPXOhnr7aPFhr8tVp+Y7GfTInmj23Y+MKPoYA1Ydd2hSHhzr+UksgSA912l0bRnO8ZaacH8uj/jwldSQVXsjgaPXSPiYN1ewuPeZKO7U9hiL3iucpemsK90i29htOMvYRnt1gaC5HfBDbhS3+9x6B46tfsN7R6Rs2mhRpOSjfaEBNHZsQE+vkENhMOgRh5oxmLerBD/dxBOBG41+mB9ZACugXKkdHuJ+fBp2DfUtH1Mselo2/n6venQqIqX9nI2KJHXQ58fDHx6MtE8kINf3C5Hvacy6uhhyaOVCQ92Ga4yJHwACUitcMRovUTVbySeBrzL4ULvKNMbW7wMr9SVSJ9l1BrummqqwlKZYTyobzHNAOhgv14a86KkOxye6IYhFqSHSVfwYi7HrcgjHwMbuPnfBxEuGIJvO4pBNMaOeWEc9h6ZfR9grqOj+1gOKi4OwO33bajkPVw4aNP4Sd6ONIcu/nwB21/xDvQdywsktOxXy21OFuKpbfninKiQnJWLB8M6aT80mxWk2T2q8QZkN0vdCoFR5BtU20wRGOVdNObr0jGpy3LMJNXMkt6ecQ58lysG3LtU7XPEI//LL3JXLWTmBjU5EYtGKtfutB/fvOCSPnZcYQ56eI7iRQI8tQx3CQYShrVw9+Yg2ZdewqZ7fCQjjykXbrzmwnlhUB3ofLhQ3kuAy7TwtQN3wA3bUY5H97ddgr9yotmLG8PyiCXCGKZP5e+Hcfot3DpRRb9Oj9H5XXTQaOTx+FxNtzjGoaBpX5e7OxyXFfNNUVFh7yZrzPSIjIg82t3kJ5XYYGzRp7yZbPicuAm15BXTfKXtDzEZzAk/rOZOF7fyMHnKAYFK3NpFuHGJM6r4EyOhrE+nxzPqBiGcdfKJNS5a+DVyW8xsJqkaJ6RGyCCz1JRNAku5rfEg52aDX9KjKMpQYWsZ9lS0jRDwsZfWNfWujsaV6qN06/zMgm0fwAnPzEHP4PpkmvaTfG6DnO9DhJ1JaJL+dT8i2TZoALlRE6r70J1sPMNTQFYIN4qZeNeY2TGP48h4pPew6J9wOMxlg9Eg9arpfF8zNuRFg5exKeumUtzH670sEwRefkFgRpxq3gz7AqrkaqNEOvDsJOOjADaYW9p7822UH5XiGx2u/oXg9Z764rRP98Jfw5lYDoq2ONric3SN28hAb0/aNUmAp5gmf+3YymORlHcQWP+P4yUyDyWRW13uMIsYcktlffpso5KnWtqAfe+JIsNAtB4nmJXFn9arUgM+4Axq+ahQuBMoxzCTVpI/NtmDzYmklLLLsTTaHU+Su+6NQxC7jsd7d5Yx+73EO/Ph5R1ulOYSDheQJnLX3FR/29PHrGxWAUtbfBD6Qk1F6EtvddC1i6t7Cik12fiZgxUfSfr6zMb/f9Rn4SFfo0U9tQH/7wU2MiGwfm3227ZvYArmUcHhvhBeXcYUj/cWbfpE3jLDmmsJR6Uasv19tv1jdOs/ZrCICHGlifUk6C6bF2SIz7spwjZ9JXr8nNZ6z189HMAUyjU9frIfvFoyz7EfgFi4T9k73IpyImOpwCZ2I6v0RguG0UywQhlTD+5O27yk9bToYW5qNj3uBGEyJlgDuxk9I1e4gu4N+TgI4WrBGTOG+FeX6rIQnPad0f8E8G76aJCkrPmA1PhRg4T+6BAl6ddgqNNYTY1fe//Aovx/fPb05nxQOu49ANpoz9It+nRpgX9uUHhPOqEbFPEbAu0b8v3ixBBPCzTlJcTJ9ZoPaV5TIdltdsQ3yo7ENzUsA8w33xEZY0HAJ486DWnb2keSPc0/FyM5/+I6PB2XbT8oMI9iA1qP6lSUGGQw2wHk/aTQgYlctmsRBaB44FWs9SMA4ZhKE4mIjejptduFw9Yd0R8PHkyxzuFRt0Nsd9N311kB+/VSTo0oObD+HM92/irM73abjAq6YhBi95x0YBi6LobEVAbpccAQEs3nr0DxAlQbX1x406/7b3U/XgpprPC22f1rAOWpu2FU+diam/Nys+e1/AAAA//+kXcmWqrwWfiAGAiLZDOlBmkTFBmeCiqCIgAmQp78L6wz/2R3WOlUeJDtft9PUJMYGyqbdQaao84uc2cFVtiitty7o7v6MYbNpq7G4Og1cKntD8Cl0uukuZyqwQozZJmNSOOs7jD5gucS/RbfwU37WE/JGCTNc3/JstPPhAljuVlR1Kifh+8NI1fR92xFXrHD4fVlqCtfM7HBaSJ7FNmlHlxmJJWI50jf81oOowrknmEXVYcs/gOsbDIhcMaqaS8f98m6q6FAEzD5Snsx+JPh7vpiKPPzOehaE26FkTv9aVZy9midc+CLG43axykbHdH1YHvsv0yVa8unhIAWVernD8nr5rKig+AGs76Rg9uYdIlnM1N1v/HHxTma90nJz9cenduaH/DrmLprxgsp78umGcUgpWG/uM/+87bPhdXsLsLYE5e/5h/NgDJokFxuWf3Qx+cjm0wTrqIRYYqGYDAs5bCCZ7+JxZj07EOk1Ie045Gz71r1QTM9FAW75oPM+LdMa3FeuQ32QdHLmkoiaOGt64Pd8JHYS1x2X6l0KO+l6JB6JBuu7i4L58HhtQyz/s8yG/q3aSF30GosTzejGTXir0d5cfnAv0Gc35EtQEA2/BcNSalbD4LolGs9XH8seuoVjVx9t2Ha289OTaFoaqICbVIv4Y5kVH6+BoQLN1JRYnmGibz/WPVjr6sosO2vCx89/nI9PlY5sa2eiqIQyHF3Lx8uLcAnHHhZ78JvHiRApWVu02g7m3/x0P7e6+hIoXXjua0rFzbtDg4S/AXrNPU3raQYWp+f+hsI1PJizvra8DZvgCNJVXc13D/nhZ6evbkDKzY4YqHxUdKJRBHM9MGO7k/mozFsj5/GhPN3oobi8xS7Mn49LdXC6oZxXGEybfUD2LqkRb9S+XOHr/oqRd3pavJCqC9SmJLBAX+uJOA6bXlPzL8KT9mT//HZ8W6nMzQuXT6VATHhzkuBpdSwq+tjapXZ+35d0d8kNSwquZQR44zdET24n1DjK9gbNreFUWNVb/mkN/4LerAzJenFm3bRwxQbCaOhYvFpdqlnPHZGQVSktHbXuGpwgBc3ru5mv7ngyeuedqpXZpOJ3ZfiW+EkvAXKu7xUtcWih1+aWm7AorvHMDzmalrHtQ9Ozmtjd5stpub5TcBdqRpezX6G/+bkz3idmYsXNRiN92FovlA5tZrwdL+y8ASNG9398XmV9C6Xr18S/3lHFPtOyB8wlxtbtUprPSd4UsO/yBTMUYmfLZC09wd8hi7lRh9F068INWBZaM4vs5vt3w28JZ7/0yFxv1jTZ3xK9KhVjeOSr6nvISh31m13GdF2xOEdTLkPYRBHJpKeasNvt2CIynBysfHmNhs190LUOBwOen7/i38d5g3xTd4neivCbbxdIxEnGcjYcQ5507Ibettsx77Jddl87V1J19hMkXvPI4tzSdHRbb47EtLbXbkzpa4B9EZ2I71WIT4rqtmAN8ZsWRAutnz6GGrURW8/za+g0JsJX9iKCY2MTcmzcBPCqISPe7AeHp90qSBEdnWrJvCfgISwKmP0VmesbPdPn6GvX3TMm4Tx/vzt9vGm3aWpJPP/+lNdIgMl/DUT/8Z04ZSWstCmkdWMb1SQovg+yMa2weC61iqNpL0LoBSdGCrsPhwv/PlF/UBnu7ZtesVTENsr3Ycvs4nxAr/b0aaB9VRe8/ChFNsqx2MDyyQsKUQxV86nKAZWLdoWfy0cYjqNz08FyvwkzXHXkc14B0F/zDcHmp7NGfcVy+PHDds6DZj5rkR87Mvu9j35w3QJWnmuSSNqO1WRVRqS23pbh5fccW0OcFb36KaYbi9/aBf359wO+GYS8X2k3WVl+gaMUDnhRh7yiK/YoNaPqexKbkPD+IsgRWp6LJTs4F0AjnJc2zPWBP6/rEE74vMeAL0VCZn+Fxu1jKcLRl3bkj196bvbw0uIPsSevDnttFPc/PCR4U+aoOzzMI8ilSLHkfopu+Pl7xZEOdPL2XdW7w7OF4mGpWIv3KZIuT72B1X2+S07bepY4BQcR4twbmO64POzNa6FqSlD3BN/mo0hYt1HR/DMe1mvDGu5X2UcKPG7MmubdTH25ntTx7uQsnvXzI60OAdLyy0C13/vKBIeixb0m5I9faabf4NMFa+YN6hnxX15oUg/wy7nkqFlCFqDbendkMX9a3V/9DlvFJOZTrC1qKDL86aXVrT5xtnO3g0Y/ixAr+bQKv+rNd8G/bij78UEf2QlA1bkXNvsltJQyY4JW6nfMOPaIf2e8RYt8cn58gB49LI5obQSU4e6rhz/8QY3q7lm8dteVdItfFF6Vgslp9rfjHW8jeJfHI/Oy6zfrR1c1Ab8GoIqTi9ngjxtfm58Xqw8RIfrzW6vdsZv13JlT0yYtEm6nki7SYkzYrpnzm2AI5jzNRt0w3zWDr8cr098JQ6OHg4123kBN8JbcM862iwbN+QFz+90GTZ+PZUN7tRH5+xljqwZBKC7MVAen4pJdlPMaxg4vMo47vmVDDt35fJ79UlYxX/8GoGtm+YdXo165ERwf+YcEr+CdTdc7CUA+PZ1ZP3/CQX+2GKCwk5/+5FJ0bFQ0HhuBkP7wybhiWDpokukRo8PHRDRy7YKyKOvogKQ2GcvrKoDKvNtYcr17Mh3rIIDtZRUTvC6qbLSbtQ6rEyyYedVi3uN6dQQpeWBmxPa7G9FiJaDrx7sR57ubN4tsOQVS7nZ/+dC0e3h7+Pm33/OPq+aLYX+pTeIb+GV9B/lTzmsLHcwdP+hWg6FGQNXAwrWH57slK9oDkeyc8k/OrB7f7RK0d3fG4sxv3ZW0ERQ3wsh6yhgabtboQvN2duSXd05zXq3dt+YBw5x3ii+QdZjzhvnfm4zP7xsZ1kNkxAiiahDmntGcrzOTyfeMD8OIUZx8dszjhdjN/kJAB2MX/b5v+Jr9C7KeIGB5Hm9a900NVl/cmZlWDR+67UbUunN2ntf0vUKu3M/2H99D/njz8bINI/WXF3gk2oT8mSxFVI+bB7GUp92Jmbi1tUIZEhK1URBOU4meELW+QFxBf4R9v+51YD6WmaG7bzQpVDDRhj4ZFqS07KZ7pGG1FwqHnTOns7p0l2P4yJeJee3L5EvlvnXhGH5yOmjXG+fGzUjV5qzfyYy3/HXaFz2gT7wlLnY471++28M5O26Z78qrhHk3jrU/PZluinBSt1kOc3+E2J22ScaOmgq47Fsx7wTzmo5mu4OAVjpekcQIh/Glu2CtH1eix6dNMgovFMH6ZX6ptpB0NJziPl09m63E7PutQvyTH3N0WAoHjMTlif/5jaB/cxKhdGVNX+9egqiiJfO+5681ab2tw5a0T7z00zrkZaqL2jyf6UAD3xoPiRTBbjsRKs/8udxUcIS03eTMl23bev/ye2nD7B9ezbcYmjJUh5vLLPEhV8Ocj4J2ruvf/x/SUiA6COPxxbDsvCxuKysBJeGmZN6c143H9piDrukl2Y3JrhvK0skhy+uKVi9kZox/sx6Urn3QBZcPaHxwqqjKiu1Z9NH32UTHD4WBd8Cs4/5cjRNrMGLgSniY9ecYW12O2knx6fLe5R2PNeRCtvcdPM78NlVXv1Wb5S7AS+W275ZuXehakCo9cX/6aL9IL0Dyq0Nb/3VDk+SLMgQZlUnwEBH/XoO1gpSuedDyEGvZU1gbAeRxm/76DclQ0XUNcSUGeBi2jE+/fGTd1/ivHzW2p0cLxuegs+ND7fjY6HsFrA89kIBgr5v9xREmeZmRiBQrNJWCZ0Jh2gFZz3w9essGVHNjBCwJQazY9TLJ0HcPi83zpRK5WJjaygw5W19SvxPTc1OAc32tmHteanxiSdaAAO+YCu/whoYXCDoiKh3wW/caRIEPorZQVh2dxslBf3xL1g3C6VnAaKDLna7Oz0/5cb+qppPu7eD1KUumb8JLt1ykRxtubh7RtywX4ec9FheY8/25n3T/85Oro4WFuRNforlfNMHM54QYSxZOwAcZ/vg3jMdwNN+HAh7R/YKVxDtWfM4jgX60kBgK1Oj7q6dtcuqJPfdTqG8aPsz5MH3eFsN8kFFCATi/sPi1eiTcl/IcWX15Zzh8t3zGb4B73XzYRVO3Fqcu04F1SCPunc/nFlzV21/9r7m/S6bHcy3ANhIvP79pTe69o+gkX66zXikSHmxiF1bmmhO9sYpfHiP86cdi1qt9GOmTtkzUikTP6WXNeXD+52dAMErrNx/UP/2sXCAcZz+gMbMu8TAIu3mPq30BbZ1RKu8hCvnhERxRPmWHuZ9oWWPOixoEWVhRir6rv34Deq/7BfH9jdDRvOYAt2loZ/zOw3bOr+Ga6R0xcnlb1YKi+xq/30ai94MVck1IBWDFbw3J2rB442gRbC8oxuP58OTT2ukB2XG9J165f1XfIOgHVAiXN4lKWajGZ+nfFNN7diS6XPRQZh9RhV+/eD/z17fRcxWOnbxneP8K+IynkWYv3YatH2Al0uvVb6BWRPOnP63vhc13eVquShfGklmvyV2Xv34MuRFJDbuGZQqI/dJm8/iFg5+YtpYdBYLReAytASdIhca6hFgzIUGjEac5eAvDIl77KtHQvnGNXsyXmbVIcTfO+QRKnBb/8tdkHIwp0s7v65Ks16cLGoc0uaFu2dn487Q6a5Tmcyl/elf+9hL66U3tpx/1FHXhdNLJDv301fVorzORRJ4N73YS5/xR5/y1vlD0Ee8vgnEmWdPS4OUPv8jlkx6r8X5+yFp9WOoUnk5ZjddllKI/flm1QSbdLb2GnbYSCRajHk3qNrlBlLshFpb3NhzcoW8Qu0oB83Fkcx7QLEDnycyYsV2ck4E98xrFfvph+uUwhH96aPM2MLFnP9X73nj7/+4+WP33mgIe2zazlUnJ+IYt94hp/ZZZmWTzSaxkAJcuNdrJ0ZR9pffGhsWiXbL1A7nJeH7desiL9kyCZ21k/ck/i4hvjy9CRofwgeQD1RZa8ca82y3CL41WJizTcEN0/TqFU6PaO2SLzZ74znK0WHJKU9AupcTWXnLm0xf5R6jiD2YRsZru2yysC0CQiHjiTpNx4bMR4EthgRdbyUtYengAKBpdUaXadMmwdKYNPK8KYTrdHqvpFMYu8qzRJfi8CLopmvYXuBbRxPzPR6vGc7/t4d7qiGR97WZSm9Y3aFeiRsyqAqu/NuyCUnM6ENv5fLppu2wEkAtjYLG5uCZDkt4nMHe0JX7SeKH4yFeAqrAQWNyHrjV9F6mIvNSoSXBeIms0bq0C6sYN8UC3cvdtprMCTmbYzHXwJxv33bVBdErPBAfuM3uvPX+ABxJebK2+p27cQWOr+fqtkzBSR858JGEwUdzS6XYXw2bzaSPUPssDsfopyerYUHLkpVZN7Or5RpPufwY06VbOnOzyrIY1CQO0XOCGEVV+Ic7u+gaCnT2yU6T1GQ32haqJYX3AH+9W8f5auBcE8uZAyEL9IuaWl2iFz0+b+UtYVtM4KCoc3TDBC98es8HYFSbsy/2F7DZzJhZ+7AnEoIxJyHhhca8ue5BcdT77Sq2roT1fXRA8EIjhN0Yo3m1RAHIQHGbkDy+TESj6ii3CFXH8/bNipIpldF6lLtnrstUtY6UZ0Bk0gQXnwgjlNnnv1YtqvokhqY+Of1yCkXMN91jy93YlSWxlwz0VOJXqwuZD+gAZ6q9hEPsTiOEUXE4pDK27o9MN6ZaMd9MNQN4dMH9kozWwo9+iAXBJB2fKw7ESvCPs3lLDTKrekinzlBb4He9JQG4N53mCCrgPZsR+zz+ab0uBdvu9UtUJMep7qX1Cdj8RPA4wVlw57VTYkgkT0mGjk4e+uGiPZOkQgynr7DeesJeKCWvm9ZxMEbVUOGSlSUyNQdX18jpCexYYtAjubTh2WQogD31K9Eu6SfgnNvFCKwqXVnEZoKliBkZff8HwaNY+msqBRWDu+pY4NTGR6EuFDfejXGFDzV/V6IvjTXX7fcw2a80NeWauSnCoalNRfz26sRoPIkoFO8Y8e5qzBogauFtNSH7zo0cLtAF1++Asjg2p6mVxwNqgKy2ltwfuuDCuBLAiuNClifYWr0/bFr7TOiWpY3ch9b6eDPa1RiS+Oi/O3ZvRa9Hd2zHiH5Jk0gMyIYnvCFYPthT2svEZQFVZRvyVfkdj1LY64I7umdU/xqzdavcb+jTBHvPxdc5onacDXF7TfJbhSrH6rQAUHKrYbA2xwBu6VQKQncudiueS8L6r3fm+puxONfmZWl9pvLsov0oF8ffaNhlooPkqim4h86vHNxn2bzSBRscD0y8enfFL3YDjyT3xJ4V1X2O7uoDR3FYYefKn+h4ULwBJ/C6ZnYBVTXDMbLS/3c9YrKQ14o+z767GpMso76ckGZLjakI97zxiHZci79xyh8GZ3CuJXEepvv3Q3cDCekliVbpYY11qqiqtM4E5R0XvhiK+AmwOSKDfxda1ZFmPCthfz1u27h5T9v74Y6+dXC6y8DE24ajHhYp+798JpyLjh75VULh5m0zfvNXf99uBvd5nVMs/ZzTC/oShgDQiV3OhJcO1HFRtCxWjXDacZHg6Kx0g2IrM/vSpRZdbt4RFeyTEdPQH5x/7EWnBqvpQ0VG7anra2QDT1nkSlz+3iH/VM4WT9c6Z9dCkcBiVqIXnVSUYXe1L+OBJVyPJVTA7jdsc9e3BfkJZR0fmr/QFp3RzUdTHZ/1llvntu9G2tjcUM8aJfeZb/sNzldqwYbuqyuezdb8Y1HdlYU29FdbAskWApLV+o1yt1pk4eU0PB8kLWXRZN5zfOqWAPvRd5t8W62RKj2kNQ2vvMMpL2fqWX+cIJXYlvDwu7GzgaUlh+JgB1eLroxueFi7Qfch6uvIkDfWXMZXhLbCWkMc17LpGcgIY0lNJ9LMcZcPMD5BEw8D8S1Ql/LnY13C32hCv+nvZcRk5R1i4V8L0ADfW9PT7HWBP2uOxe78T/uPrmR+xoBWS1V+kz17t72nNHHt9qT4nr8Lwuuw2ZF0aQjLG/vUJn1WUs91zE2R9cOoDuK7XZ3ZWFbFqK2ZEoBLdJH/Pg2CdwqhfLYaDCLLxdbQvoGj9irm346ObBoovMO3EPUsPOEmokq4LOB0vexY4wh799Ax0t8EhN6dNE37rhhKBL0bk8MN3WVQw6IfeJxddjdA3Rk8d7ErrSbDUrERmj1xBA0QlnfarJpwaCQ0wvi4hs6e2Cac2YXt0GFVOx4e8TeaNVhPiz1JjJq2eybQVhRuID81lbjK9knfXaj3sS6YSm0e9NcJujEAsVIE4prjJhgs6iejkHCNimAcXcXV1U1Q7zDsSBBedT96XyOqMz2xHd2Yy7Z9DCWJlYToeh9Hir6DwYYpRyMxD0FodHPocditNwa/4Q7v5+0agg60QX/vGqDk67z2sjkQl4UJrskZ87TFafhSdXD7tOpse2Z7C0gaFkRy9q+8UBrWq5Z2DBeepJ3K+bwPwnNWRmUuFZj88Q6+RrSlo5zF7wWndA71sFJIqnxefttrpBvppPdDlrCcYP6/36u2cXojuBEX4bNCj1Mj3opEYnW7WuA4iHT32q5gZfvMI+dP6+vBA8CJxXj049/geQ6UsPGaNlpQxvldEbWuQJVnnvZhNmVX42hSvZn7JfavXiu0e1Oe+Y1umfJKh/67rv+cPxNei6zatL67qDla0UsUwG/W4UcBhyZOqK6PruPE4+khp+IjHbb+2pvBqKGDGqUF85xBbyyKGJ/jamxASn7OEH90YQHbzNx4u6SabPKYeUVIOBnPyW4QGZ3d/gngXJdpsgi75XktzAw9c5Gx3G47WuO8ODRKG+4KEpnLuqMSCHNiJGfNZwTYfHD+tAWdGz6xYd/lowfEC+a30WVx3I+cbtjiC6x41Fu5IxsevnZqo6L5P8tO7DYp6Ge0fmx3DYtiFw49v/WNwYvonptW3LBIZ4Or2zDsuntn3RtEE7NiuiOlwD0m3ttpBJAcd1TKZd9P5famBfFMNi5+6sH56Aa1NpNARka4afGFtA+mPErEWSpKNYb0t1WuBJ+Ye0rEbMvOiImEM3iTS2iQZSNpgSOf7QG+3aVOxFx5aePHlmUVayxM21wOa+YK+vaYMudeiCOZ6ofAh63B43E4A83ykwsG4dP2bKibc52VzF3Lz+TTzF6KunlKjc6xMtI1DDedD5eKGOp9q0u3tDnb4s2DmvqmtZl9VO1i9xAuVHfxJvsblksL34WyIlSUF53fDsrVL9LyxeCTUGkbFbmC3Wih44XFmfZdbLUCXpXpiOi/8TlogJUJ9cL3R7jH6lmwLl51qJMGWvurlDQ2WAiUSBvfOjL5j3aCKbIJnLnps93mJ2TDrb1De+zXxaufZjeLz+4Sfn0vPyMh+fILcb3ogJH46iZRv53PXihujSEKbbIy4Nevx44U5KmLhGNyPBcTj7cliT4uT4SuETxCG64IEgpN0n82zsgEtJ5t42cNP+mVgDgDV9UrW/ra1RllHAfin9wJr24XTjUPbF5CEfcNcclxlk1gJAvpAKhK/mlg2BftGQfsgWjH3+7VQ+8MHtJ1EYi7ffTYcFG1QJZEtWaDcvW4yrrCBpJwM/O1uS87Dopugv35kQo5NnH3fH0UBtc4RVZ7ysmP+8klR+Qows7xi6v78yKVev3FxU8VsaoT98POzdLH4hJwv8ajAIUMlCb2LVvHH8Vr/9CYWk87o+hfembAx9y67esE7Y9ag+qpy3BnEOQppNR0+hgkaN2TM/VuJHu/upkI9JiUWn81gNXmSK9DnEWb4aZR8OgpZ8eM7RnrDQxIOfReIHR/I2ktWiJ7C2IbbiLLZL2bhD38hK32f2AlU1djurwIU+13P3AriarlpdVH7vO2IzPoh46O4m8CKhAtzv8KLT0Wwo6Cg+kPMVZx2VGCyq61qpSSBiJ1KruvThO6dZ2H1PFZW//Nrqel8Z31gJWNE1fkckcnDqJaGcFj1ePj5Vxboas+HC7rL6Op7W7rM5anrYsMQwXqeE/qWvg3nsVJM2qLjS5rFYcKXWl3f4OUHOv7MeM34pjmCbyYnOjiZGXJ+PMrgnVqX2Jvbm09KapSa5AlHEs567bvTlRat9k7LrNmvcOV0UeBuPi06fNiuazLB3EMe8ZQ4fnereKPVAXiCLpNwd3HQCLtVBOZrZbJIDBbJwNO2h3h9sPBql5Qh39DzHm7ny4XFuWgh/nu/q11jsov+aRHPSacj+cI8YitTmgzh2/fh5T8KpivShL6zf4eVvtqxGJ0E6/P+KOrPbxNXDx4JowlManR3diSWxinkyRUrahTIE53rh7NIxRNK7gufys69y775rt4gfZFsSPggz5CHT3EHNDvpVP34r6zWLtVTnfMVLJniJvlGy6RAUZl0WNsdF92H5IENx6naY95F77A/iK8dpHC6YvG7NC3+HsRWWzhnj0XP3LJmfVFor+yYYuXzuXY8EtOd+vMTCl9vu6X4aPfo7/0M39aaygZHEIkZIl5qRdWgHGHzh1fuNIZ89D5fAYSFeSTrXoaK2qoxwcH7mPi64IE1qZJkal8eF1TqzIbP46mibqMcyTnPpoSX1/Spzj+zdPZr7LQ95yAut5QY5rLltJH4gDaHlcCcOO27Nj0JNarK+oSnYMnQ+MOvU9cDHWiuV9OotSn6+S3r5Mt8zndSmPULw06rJHy7yPYgSrJLIg1JyTgiWgAR7g7zP7uqG27dVoU5f2Hz1tWwTYv7E1H3rBAiX1Z8tNXhAqSNXngEc8u/ydEKfn6ZIvN9qqa6eGzQ0rV0DJt0hwb3WrlaY7WcmJrqVuwU3G7qy7umJL6GV166lS/COnkW7GRFx3Dmr3JVKseahb+8asZbxDedRkc1d7pxEs46OLkTka6v3WRShaMOl2a7JFjMvyEbAU1oEI4T8cBF1neUBl3N4mhB7CD8dqMFtxSGjx4w//mSqi9a2I1aGPae+crnhZZwFgWgnl2wvXZ3kyU57vfw87M///21vY8AKj5dCKk3224cUV2g+qKOtLktPsnkvc970PKPw5w0Djh9ooki8OWI4bVUZuMPD1m3eNDnbXygfvbXqGmtivzqbeRJ91TdsZVxxRbfcBAadb+yg7QiYcYI4r1sRGrtO/PZ5u9L0mu5LmurWi0Jppc9nx5Z3v/yB7w8XvVkeNNB1xan6oQX3SvrxtXbayHYuSMz9eeBs7WnD2jWk7SqBxSOb75Q0Tcb3mydNVHItsgUoTDcPbPknZeMaa5RRBZVzIgKGu8qGdUQ+bRkpJ6kiquro4pevq+T8+kUWL3wDUTFUN9rZkmDlQ13SFQ4HdM5o2+Lju6vUgHvQUJY84ekG7pm5apNo2XEnlBgjfFCLKFd0i9zOtNHFG8IIF/4nOiqXdDkrdX0Blv1fMcvaemF0s5Z+9pFFgnx5Pkuyl9+MOcTNP+McTjnmQOc393x5/fDwdg1ptqHgTvz+Tl5eEMjAASQz/Vad8xHWoSumbD9zSdEqbdSYWMeXbK+YiWjJ3J4wqRuI+KeVakbM2Pe6rLzznTRe3fEzfu8BrYPObP8p/qP38fD2JEY6c+Qxc5l7ukLPtFXrsiHoVR9NM9/5njvYzL0UltDu7s4ZL3YF9UQKUEA70W6o+2yN7JlsrmmkOqtQ1WtYt1HYqMLTzHRcfvB12zSA28Ccg6uWFiqDR+qKbqhGZ8omvPvadTKFK7ifTfzr9VJWRDvYMbrWX/Z1aS9ry46nlSLhac4RKq87HLYbXOFPuLgFU5tPIjad92cWOwF72RSktEEgR4oixelH8564wmBYhvkvF3KIRcYuYFi3dcYqtsOTQWusGZLNCe6k5XWGC2zAroNocTovveM36RlgZ7Syf/peet72kTRX17v3smieoRXpQSNWzItNm81m/BOzVEQTT6JzsINsVOsC6q5eV5I8GnXSeHs7jVynZ1EuTRYyRJiK9dWb6El0U9fT2u3h3U9KfSnb2jFzz385pvRr8Nq4FvWo3WDfBKQ2EXyjM8w1reEarlYIXqjsQ+q8grxnKeGw+ar9nDwOpOZzgmhnuQKRYI91Fjr8ybksbEWUZzdE+Zf5j1S/ASuujh/3sx/7nk1NIvJRLOfI2R36jKKg20OqdHHxDLzthtwvO9hSmIRa17gJd80/UbobvcJI+bNsdicf2p9WNXEPaTbblwblY4cXxVJuBvvfOD7XQSeLWGqnJGRDHclvED9tQwy/304xDbvIS7S/C+/YOSY7+FtuxfKHjSu+C+fztlzw+LdxuvkNlZE9X5Sujn/1i25Tv0dBMr9MfdTHsnPH2lfr/QYFsyzNbx2bQGFGeSEzHn6uJ73eetvOWU6zYuOn3bLHB5v6rC1r/uWyLeMojmPo0vvmoZ/9WYpH870D5s66fy6UXi394AidVVks98T4VsYPrEJOcx6eVA0iZ5cFvEGWbNeV2HbbAmb56P1JcXuCW/h25L0tvhkvXu+PP/yXNJ7C/SlflFoc95CB61R0BDDrlHrgVyY1V3Xodgst7O+nA7MuFph1s71DdvP4UR0wbY5d+/vHn56J/b6MBucQ+DCPz8f1uE01w/CX/lJG95JHX9tbg1s0AoTd2W74RAWTgBioQjEyMTVfFfZskFRIVt/efm4NY8tmvsTLM5eYzfnHT1c+Tlg636fVmMvIlC3EJA5v9Ot5eOsu5oz2Vd2O0R2J+eR4cP1ap6ZfRsfnJePjw1zfkgwZzc0FW6AoazfMnEN657N/hT/+I2sH62dyddXH/zqm519jq2RlWEJ04baDFeDXsnGFXa/+mXb+f1IwbnQ4ZykMvM1gfBx9VF92EvlRIz0eM0m7OoAdTo8iH4P5Wx493EBuais2IxPnTTnMeqz9Ac8BYcQjVNoPgE7X5sudu4nGX/+vqvMms16Ay1XTzuFaUVsnMSuwOnPz0ssw1hr9NzieWrr8DFsYNFZqRG1xmLSqB80xFMLjKbr6xmA3pkDM6KVFU7I0J/wKj4GMRAJq2ZH5AF0a5HS4le/4vUswi9PNSTV6MYZr1bUzRQ6en7Ph0wI9vAWjgEzqyq3/vqDMz6xdTeJyfD7vNu0qJh+WAvJ17a2OVjKJiGXuxuHLTL0WqswO7J1rh2T8RQi+pcPmp/9Lhki6dSos38gxsiWs/8/b378Sw6xF1SUnAIBTm0r0klj0NGjkP3lb8TqIm/uX/ANmn+fLszn1RrTXOrR/P3w2IrGv7x3wouE2Pw6H1x+13eqxqQrXi1e5U8flTDj8U9f8b6jrFY5fvTEOA7bcGi4X8IpLZ7ErS7rbmp36z1Um9wjOZ7cbsoc10dz3vfz69WM56DpjVLMd6fZ4bDcddPPjxDDQzvUf/zMhne6Vxmm6x0fumZ04ZYVLYuCd171PFxhSKrwQWWlLK3x/RnUlSU/KoI3WOwmrYpq6IucsexR36yxLDIZZj/ESOo/qo/UFU8tClWVglKHyeAvmA00O+jE8NoBUZMKGzBfyGTeGNpozttUYFb+ICnvDtWopIOv3VsTESs/fcI/P2W80xEvZn09fUJ8/MsnnM5sEO/KfQ/GYffAwqyXXnUpqaiK3i4zxfXQ/fQ1euayhxd+fUi4s00jbc4DyXrcNR2b9QfS1rcv+b3/cZQUE4rDUZzxdpsNI1yD3/iT0E+/nOEY7dE8Huxu6etQVDJ7AGsTcDz2l7gatNyX0axH6Mq7WfwrdUWNFlr5JlZHO2uc8yCg43f89U+SIcjEFn74kvleiOR9+zbB69Qaa/JTCYfyy0Etl7sbHefxG7w2f67m/A/Lz5hw9uvXzn4Ed9nty3/8jCw5sJgz2o+QI38SfvxHjP4Sd1Sc95D+X2sK1P9eU/Acdwu2vkZFNq4GNCA5OkYsvL/K7mO0dg/LN1TMaPVNxTfqPkX5+/BmqSabydCczjn62q5HoknzreGzFKgK+ctnwf6ErO/tFNyAS98jVsLLqerDy9oF9R5viOcW927I3wGG3N2XzPmMAeLrg/cErMoBC3Vio/a0wUdkifKCqrZShfTYv3fwqTcTccIy4N97tDURH9ueciFSOzp5WqF+NQGYuah34ceViIvCrVfgd62hqlWJXQK9rE7EiAQz4bZybREP5YLFdgvJeMC3GpXKcUHWr3zb8f1zVcL9oigEb1a06l+6PoFB4UkifEkr5pXqBM3gnenqvsqscd/nFyi79Enym7Psxo99EsC9l3d6LNcna1hmywa0C5KpzOozlz7ette0ZyDh5e195H2bXSe1tZ4Z05tsh/hGzS8gR/uIeS8YraEuAwWxMzxY9B3krh+/R4wur5VD3PfRrzpjox7B6wobj6ryCIc4OijIbrsAq7uDgz55cdLBW8QFbvtUQPys4yc6DGhHPbevq2mUHUC54lpsvSAr68skbs89/5w5zsXM+FVTTJA3k0OXNF0nw3s6lHBRjxqxK9kPe9D8AMzHSaNy7pmW+DBPO/i9T3KkWjcsWaSjeqHbVF6tN1kdH5wWDvujg9X1Kq6m4VD0WmRFZL4HbLK6oEkAaa40f3/52g2rUqPgDtWL2RGYFV/XS/vv88OiL/ggrbQbBI58oi/nYiZjh6w9SHGzYVm6mTPcYnKhoGaPFzo6hkzKVy0s7NhmwbnVLflkbJ6avd4ssbr8Kpzd51t6Y8R14lwzN1zKxM1R5G1WzPtsu2SI42lAoQ8hSZAgJPy9TGQQlrsPXgxm3U1sMlroz7lEpXzfWNzYTEeY65P4B8uoRqc+79VjFx5YEBnHbBy8sgH+8dfMjrVvOO2q9QC5oba0vJjpfAgRV+DkOwOxbx+5m3qvr2H38E2y3cefsLnwTQE1n88a1cmTD4tnVaCVb05kDXnLv001NXC9qpgOcdhkbVMY0SoGHzM7sbtwOFi73WJjdPPZUTW15vfrQoltRDZ1fKwmUSgUbR4/zIXU6KaduNqAZp73zAg7zRp+9VjoJ5lZqeh1g5NmO3h/dj6xXVpnfCi+OspW+oqYwsvrxvZsRGoDOiXR6zKiMc4GGfVOGtLzItOtpbcNd8C/tUHL8jYk/DY+qOYmBIgp3PfWlAWyiz7CuCcJOdkdt5rQhOfYxnPPnlrjYbvZa/N8YKft5t31N6rvAJ3lEoNrJ2hQFrcGCah/4GFTmJ3kXUId7M5Mmft5PjlHdHLBfxk9c0vSVl8+lCJchPlsS51XqM9fryN8FkFJLFlLOH8rClXVxjOYniQDrz+mddG+pMHsttP7ajjWqx3C9rYiwXrxsAbBfFxArT5r5liRaw1yvFbB4Jcr1ZCeJKO7HlJotfuGOCehsqaIhzfAerRiZNM3VT8uHIqGR4kpO/s6kuX9foLDfu8w7OVd1feVQle/+RRd4JmwGb/hdfwCMS3zhvgVsgCWYjVQUWJW0ocXw9WUa1bQQmeD9SZuO8EaoP7hedjc5jUVYpLG+PmNT9VvPMH/XJ/ENRTTGm/vgw3edRmzeT6ib7Z97LReFxLmvjeHcDpeVwW8w/eWmaaxT8YkNyYtewLBWuVYIe0kyUQbPgTkVKC6mhq8pXC8PX22vurnhG+URYFCIfPZXM+obw5QA9ZrD0/NVIQ8ZUiB843WVLme64TPz4/UC09pX2eQfcG3CzCWV48duK+G312zscGUiy0VVlOJfu8T7ghpzEf5Iuyb/amHy1bMmB6HTTKsxC9GCa8uTP82djZp78meM6Qd3dSxPN/ftjgq/fkmMT0fOBoS0tQI282IuaE++FAtXxN8XujJvEpssi/WVAHSEHRmd6GZyG8Ub1CiHAvmefxZsW3AXKRV45s5Zb6pxhW7KWjGJ6o9JiGkXv3EgK6VgBVnR0JO0stmziwxHb65lg1VMGEYldON2NdS6fpnD3swo01MNv2jzobwYtha5LUei+IztsaP6OxAap8dMZVT13XmJOYAwvFDf/w0lHt3gnejqHQ4NqE1ZdFOgMxraqL7dpAMi9pPYZ6PLJj5Ztp8OQbI4UhsMReSIUz7CObxZtcWywn99s0NTr4YsdNmva6mxG1E2G8k649v+bKQAMKXWmP1/Iw6+XyyU/R65ylzYJzPnv4iDL269NmP/5bkqKUg4pfL1oduYfWo2zRA2YGQQK5VPqSt9lSXoenjYXNh1uAidYOKMn+RbTRl2ajgVQOZl6TEgW6ohrlThEI7dIhx2L8tpj31Rqv965U4ccu7iYQrFwmXI2ZOjsXq61T3GhlHV8RjlrOKC64pa4fmwrD06U7J+KWa/uMDcg6TlzVKr/ECb694Ez2JtezLh1ZEz+aMWTDeAdHDZTGgia4/LN5nmI9jZzQw9F+Pxbuktvg2eNvIknBMIXkH1oierxw2pv5h+Wt/Swabn/aQaseE+ZpcZhO5Fk9Ai/ZL1tGeoGElviJQFiXBrWr4FbvvPBO+K2VHku2rQMOwXmI4tdGdRYNdJ3M9P9X78arPeGIn3w4aDLtAaLD6xEY4WM/PE0ncw1QmZJvQzRdFcKk3CTnu+33SKqEewfYQXGd8CrvxIFgqoPLk0Ho/353AP4sW/PyxJnYEZTUN5v74h2dXVV0gug4bH0jRHom1fRW8333IhGJDDVm8i6dqHLt1o23L3CWeNO8r4p9FA7LW39lZip/W2K1ojrbn54Fholh8KYjJBnoBTcwIl7bVt1Exr2GIXLxYhqtqANRtoPbFjtYy2ofLHcUumvUpIbKdVTxiOxMOoeeSuFyBxdP7YwMXW9WJ53231ozHA8BL9hje4wZx4jgq0k7R5W++8ycZCm3tBdmsXy9VZ46nGgYy9Uz/5tdk+h8AAAD//6RdydqyPLC8IBYiU5olMokMCYoD7sRXEVAZEyBXfx78/rM7u3MFhCRdXVVJuhc80PbFwyXOYExl722yHCkt2zHXXOVB1x+jGUA4NgRvMClpyt/nHx/Er1DBnF/AxHqErjNz5c2349UrN2AXmyFF133yX/zsj5xg/tn72bprEgn2r6HF4sIH6rOy9NssrhVzVq2DuF9nAsy0kIn/3ZBMjKJ5hsLcfUhg7KZsTs7oAW7v9MRrpWbhu6saFQfNxKNFnWT+tHOrPS6ZRLbxruk4Gk4hpLHRsatozN30OA0fhD5Xhtnr8e7GZ2w+IAXdYcaf/s7mz+UTo1ciKcxCwrK/RQi1J+wDqvfFx+p/+927l7uI4UefDMdWLpb+eQ4GL7yXQwaygG7vl8z+5Ss85EdgdBNQRZeKhOXvLEUTdm60TqBMZiceUxAPzcRIts66Re88wGuxQVdePCa9c5ZS6GAXEssYxuT91F53RM/igHV56ssxz/9s6LU/DX8e2pjM+ueEkfe2egrvo5CN5+XOaz0+vtR/adO/+AJxPNfMvW/NgCeJaaLDZXknbRs+4tZRasFc8zWzBae2KLlbVLOS7YPY5XjsWEWU/F+8pFU9BBxiMdZ++mflxXHC9cprQdpqR2IyxIO5GRMJ3CQCRh675T5UEStwILecbRK35fP5b8p1Ul1+eqtFQ+KtU5RfPyKG1Cq60dskOfrpIfdQBeWcN7b0v3hfO1nfqNlHW+IDD+9tmvH8nd1QfxUtPHbHY7es5wHOq2jFLE6HgDM9EpCZyjeqO9Mt454tAhA1d1k62E62dl2hBvn7PWEdNoI1RenKhWPTc3IzK57RY10A8HREBCtdxWnnbinMVHOWOlAo498tzdEhka64aQonkDRBFcGRkheejtt119mqlsPNE1qCzVPUTXpXFtB8aoOub26H5m29czWbbU22M6drNhrodZaYHPtku4+XuiDORYJvbPl46ra4HNrrBuudS8mS/x7Z5Nu1B5tQXtPTzQ34ok/OKK2cEyPe2UKSFr9u8MsXkug5fH5Ko6H2gjoTMu2qblLQgKGt3jkhBpKCro13DwgtTJgX0W0izvE6BjXWSmIWjzib+nDWoE48gXnQjHw6Ef6AH7+Tt1+9rNl3bepWcu+JPd8aa5bVtEbutxOxtlttrDHslA/YEWVYCu+WNWm2F4L2/DzoKyusYDyOkQi5cZKYwVs1qZRD6QJCH4s4YbOz6rS/3X//i7niv8v5p9/PibGhskSxJTpn6QZy162wcPROSX/x4zPI/SZi4Tt3sjV71w9NM1ubBI90bw1p/TJ1pK2/eIDNw6LLeDU929tUkNNVN3P09eDvej9TubZVNKPJrbUpxz7Z5uxZzlgmI1rvKaKrqzn8p0d+4zfV9GxxXOUfSPVjwja309SNB20Vw/2Whcxzn0a3FvTE0Nkpb1hwNsNMvoRHBQJhPJOj8zryaRivmlZ3XY5rd3mX/uMfP39jY9+ljr4daYbotnku+iBGvTwwD+3gm5Jg9xEDlr+TFLSy2zEPWJWM+9vBQDYPBsqHfApmMTpTtDkNH+L7mhIMMd8U8AW9Yo6fhXxqtnsKyt9MCamHPuGntAu1R558qV46ZTCaG7+CeRMRYteHvOPmDA+tnL8WsfXVsePzJX3oC59bKt6du/5Pvoug3p2lH/SaB//05sK/8fq4ipAExzeF4x7v2bb2h2S+OkcF7mWsk2T4VCUl/j2EBS+oXMcGp56SUQhUPSa7m2BbawyPpQ7IsSJ2+qJB/9mPB11x4pD5K+9T8sfjdIbn+WngT1PZXKzuTQ+EHJY7yTdiFbyfUr2tBPqbP4v/QeKDVt8Je253c8DfZnREwetOcYfyA5o3iavAYPUqczgeyv6U9Ao6ryDDU++pWf3izQMOovygmq8p1tiGtQFTd7WIp7co4RLBdxAQfTGXPjPUn5V8BnVCNfNtxbLYqmnEH5/Ds7n9ct707Q0dqdcR/PwjC97nMyzjoeKS/8f6QzBaDfZyx+prZvMl8Vz4eFJHNupkWeNnr8Sg7HqbmBeNJVW5+zuizllxtoter+yfvrmpK8ai0PED/qm2D9jcip5F81gE85/wpVp8dhJSrqFJeuEABvK8+5M4zdSicdGHP71EAiKOQWe6ngLSUWTMNnI/40AuKVzHh0dFK0nLxklsATTQtgwvekneFvMM4mp1Zb/4FG/jY0RYuwPzErCyoUPB+R8/cBe/i/l1Ivz0N7HjYJd8PI+miJqzxWytvSVjlqzFf/ma57sNn3BLP8iOekatOGVZF7e7Eanx60Tsvzq0Jn0w0h+/wt3CZ6bF79NA1aZfPurGKrMl2Ev5SOG0dpM+XHrF/PiLwSUjGW3PqHVsVFvm2FHMx9koaogezwsWhOGKpmto2Do/niy2UafSGtsdPaAqcN4UbR9B9lsfLXr8XegUCmY2lFtvRIu/SSEI9nzBmxndH2ubCp+5Kaf77Baw5FNGTPNorclT9/59b30RLGuMnm2MLF/Y4R2cL9mwacMenVffiK7Omt1xWfSPINDR/flVAfeVT4UwWbc/Pp5NRc4EqIjSYdnNn2W7rXc2UpuNzDavtkN98U18iNyzxcxvt0Hc+btW+m99rJSKVn//+iFa9D1zaWfyn77VTanYY6n6+6DFnxxRtFECdg2ifTn7Q3sAh/ohVsoXRkyKu7PmCXHLjm4987m/yPjnB+Li971B2ipwWp98YmvSK5uVwAvRIRGvDNt/UsbiutK0X35EBrG5WLyFAzB0FjFy/3I0yI2+PNh82cw/kDnhxsqcYdGD5OfH9avSbSFyjxbx994xmdPyRkGdY+k/f2l/Cnqw2T0mm3uzSVgmqQLc/m4F849lseDro0du4H6xFm6kZDZMiNH++jmxH97yUvBAU5s5IebqMwfj7fE9oAOxDsTc3c3gn5/i+uxKp1cbIO1WIwXyq2CSIF7f0PDdjLm+fI/y86dLfvwFGXnc4FFxJ/QPnxe/j3hOmHXcOgotmK+T/osf9Gkrp9AXv45ky/zMb0ca0VY0v8Qw1lY3oi6t/wAZQOa/+cULXmWLn6SAd1cuzJjLLBsy4S6Ben+0S36xs/npvCVQvdQgB7/MrWV/5hCoq6W3awnZpP6xFF2a9Z55Z7u3RrW6VZDWWoaVTt8GC5+s4RKWNVbeLLC4k0EPctesFr/PzQZDFDxN7m8ZFpEcILFpDIAszi+Lv5qiSe4OFTR/G85MUvnd8AlfoDODlSwM9k42ymOuQMHVLfEex7+E4aUXUbJrK+YcVS1pl3yu7bJPsuB5VI79YYdRhCaD2TxLOsr10NAWfUzM6/YVjE6axOjvrzRocY/FjDHdAejKumXkxD/lfEkMV8839gGrzxXtaB2CiIaXWRDfXOpe6qMqaWN/UemYO9Ra+LKma8/qQSy6nBNpaplDciYTwWQek3lFFR96x9QJfnVBycWrrAG+ug1eF/e4GzvaevDTq6d5A9ZU7DWMbL4bcIqKuaTnnh3Awt2buS9sWLOm3wFearJe+OnQDXVxGmHBR2ajSckG15VqWN3Zh9naGHEp7h9ncJr+yMxV75Tcc/cS/PIFvj+0QN6dyGepm4HpiA+fZGwaD9DiD+Jum8qoNTbPFDbhes3IaLqlVI6mBov/y3xp3iCuBZkN89k4kb1cumhcHWNF0zL/w8xdjAJ+XIceFPi+I5slv/Z//iv+tz/v+XWbicrq0aJwW2/Zs/vQoF70NvrhkZFcq2RWB/+o3d1zgVcLP555r6aoy7ztv/GPVxjsXz4l5pM0HU/2bw8i+eQxg489GkOwMJTDBFi+fvqM+6g+/857yHaHomyAXZMizaWUTk5TBzOauwItfJ7hy9bv2FdRehjVpiDRMaN8yu9d+8MztvmrlGya1FUKJN97tM15kgyioeewp0aEVyfudutGdGL4xSfetV/ETmmJgRVPmzh/p7mbQmU/ou0hcVn0Uvbd1IjRAaKH9Kba7S1bPL2zAv7hz+IHjSfrdkCHNe5ZJCpLrfrD0gsn339JsOu33fia7eqfXjbtUxUs/iLAcp6DJdqZSLbOSQHv79Zn3pj0AWVjP8NbTDnx2/gcDOfcdeFxmexfPHXSC64hNHa5p/qpzhO+j2rpn7+7me81Z6w7P6CSbGeZP8/qE2xR/WH1N7Kv1LmbeXcsfnqTrk788+OXd7jZxYzFU5jwpg8eBlIbS8Zowcf6Gq5GcJ+7Pfnxb3qnfy4cW3tpWXU1EnFX/tWw8Bk8L3i1nIdpKJdK8u+8ak7cXET7VFYZZh7OZvS8eP/8yceynuN8OPi68kn2bLv+xhYHo2kBafKXjvGNBG10ilqEXrpMFn2XjNvn/gw2LxCJihXpuL70Fvrhhb1mVjZ9aeX+/HMSmfX3p18BDiTNCcnWqBy9TVag7aqi5JdfuGAP8PMTyDZfJ8FsZS8RwLY/7CGnz7JbzjvQL3+RZ7xL6jFUANVPN8ErDgdEx6MlgmGuDLqGbux6vKnucPuzjpRzMe8mlZ012O7GkhwXvdkogaxAwpUa52thZ82br+JDdLsNeOxfbsLp7niER+of2DIei3qqUiF3ijfkLJqHZNTZUfinz6ZgGhd/Npeg9YwE65Vxy+YXXDGstA1hBzmOEnFY51h/5O2aeetba403nuagZd5n0Ze7gNV+HutVPd4x/6Z1Nu69Nv/FJ22Pf7irOwFmKKVuINHc0pInK72CZyT8EXd1CZNp8VdAN8eCbCr1UI6u9neDxU/550ex6KDaP3+RBB96Qjy4Ry1KDrstO5tq2L1Pq3pEq/vwIeTzLssxczxbzzIWY3HhK0x/YUUr5XRH7n/2YI3U0TQwDepi8XT4ZuMYjoJ+yEeRWLK1zebLvsNIdiOTPfXrGo3Z6dbDFXUbCtqhSH7xq91vlkD383md8HCzq9SFf5HFj0jGQQzOMPYnlWoVflkLPh1RCl+Zkfyy7eRBIhqCu3AmG6cUOx4rcqFZl9eZ+CuTW8Mw7jXt6kgSHn9+4a1NRwg8IcDjgp+Tc2wkJF5Eh2bPJwmGe34x4b369hgCR8i6zGty7f91pwD933cKCiF+ssvnIXTjjr4lpJZGwSwhuyaTWjoYjEtmMeLfT13Pvemh6Wp9YicjuJbz2nGOsHtGFVW250c5nczbGW15YzPzuSuSYS9kCsr3/ZWQqbstT1P+KHzZMyKG0BudKKXSGU4H58ocZV2gkXSGB2d4HRg2ZoV/BoW6MPVgMO8ofzLGLl4BAr3qOJP+yozOa+MGJ7R74snWi6w5r+Ja/wrHDzE0oU1mZHl3tL3pPrM6v7L4SvJ9OL8gJeafIHdsyJ0biOW5xmhz2nFRVfqD1isRJoF0MRbNgiXY3PYtRkFPu3b/RhiVn0+I1zPgoF35xgO+7nKG4lSvrpVboQAgVU3cURERT/XoDI8r0qgqHJfayaVaaC/9oFLlNUkld99shN/8R6N/yNo/Q8pB31CJ2d4RB2NFGhPYrB3JZkZXa3yJf3dkjE+fyoL9ymZ2FwokP/0jXa0jP5s362+LguKUkm3Qqd38gKMB3WP3IoYDx6AJFbFHpmqaJPJQlHyklW/AUekcFnZ6w2ctdI7g4thkF8HeJOtlPuG9MV1mXYyID/ehpXAInwHWvXUb9HUWPCBG8oxXIb918yf6oyje3i+R3NCqnM7GVMDhnPSEWKofzIg/j7C5ljEeragIJqv/K+AzXAysee+/rLe1ONfnzdAwd2u8LFa2/Ai3jaESV5D7jsNlbUJ49WPm2dkn4dtnVUA2XDheR0LLh5zvNFitrDN19nOV1e+VrIDrXyZmWImTiUa51IoUzh86G/ecD10RU51OxYsRBGDxtaF4oPSkIeQ2z8l84xxDVV0RZm6hIHa+3D2kCSuC0WZXJv0FNjOkd8Om8hj0nJ8vdx844ieqxvGmGzfPyET+6WBh4bmNkhGLjgHEdSvi8XSTzGoeS/C+D18qZG+9G8PgEGqDe4xofq60bipuGcCq7E1m27lYjtrr6avC0JSErB4dmgOtnSGJRIGE1Um2JgUhD4hz9LFYRpLVc0+9Q/dnasQa+MwHLmUCOja8Z9Z0MrtxN0QGyk33g+9dZwSyXJv+St7wkaJ6PCV8QrEG0Ye8iTEE16A2z4ang5x7eLXefoOZbAoRMns/4Od6+7Wmb8BqNOQ5YibrnG54/f194CpJAVVDOqFxapb9shot4p8PXTYNbuOh5KM6zPeiMRubc2Nq7zv7Yrn8M/noNLiFDEkrWuzjiI/PpRYRP1zMZX0OiWjZwgGt9LwgJ3Xbd5M3Zhqkn88Kq9Nnz8c8KGp9qruCmd1UL70rkA9AYE1XFv+gOQ1fof4aGpe4lLjB9HkiD91a+cq82kwT1mtHH87F+c1Mf9VbrDkHI/DXEt9W+F3uBU89UjS6JmZG3uV0cjIBaW+fsY22L5I+s9sWAk+1WfDZfkq+mQ53LSxZgFcuXSWjomMKanHw6LQhvcXJUBWALbgwj1VbLmvb0UPhVWnJbQiSso4TZAK2Kh/Pe9/vhtdDusHxGU5UgP0l42z7fCCtMj1irsecc+iNHGT1YhKTfgRr1r+xBOmFfejB+oOMmjM1wTmfS7yuJoZYc6MYZrXzqJLlImcSjW7IM7WWbTe31OICHj2oanql60qXEj4XC9w5/YXY6UiD5q00Ntrv8IUZ42ru5ssFa8CqzKN95DvBbOBTDYaHZGbcmzWf9sBd3T/FFgn4RuJUMlpFG++9SKKy6MqZv59n+LKtwaxcNctx81dhbabUwO9qImjcHw5LrxZrjzU5puWYy08b1lm8xRI6AZ+0vx1AJPYTW/A84HHj22rF90d2nT4T7z37EMIhlFOMimQI6ud+0EBWcMbMo2LwUV0XNZSRciB2c9gnUp5XDxgzuC0H4i3iXmrctcN75+Cbl/CO7/eigLaGYbG/8Q7BPKOgRh9ZRWzreDiZyFJXAGP1wbznkWbzU0pnGNczYnZzmJJZ2xYKOsr5gyWDeram12jEaDgttc/v5mTN/U4x4BFJAQnWj5XVkFtQALr3Gzp6z1U3IU+4wyFcp1TcTEU3Fv10A/npHcn9lW84z+78DOpOyIgr6Az134djw+GNnsycTb8c18NOgjRM92SzIaE1WrYQg3ZuSkYixQxGW0sLGLNPRJZ4TeYTE0W4zkijr9PTKSVtZ/Wo4smRma/8m9StjkwwPvEdo/7wtiaRH456vVo8jzXq0Tysqztcyj5lz3UydO14iEUYVqZLyNHKy2m1vxxQ/Ooc4oebHVpf+kFAbvoYsaI2ZTBnLJ3h9ixsZoTbuZyKlHtAYb1modglnL6uXgr1il6xegnUpQqVK6IXmh1imZJcjt85/aBpOEbkycwODVvXi1E44wtxbsuZ5bLf4JW4Idmt3rtyEL5WBVVwEsn2Gm6Sqd+7Ehyd5Y7crgzLyaPIRXenyTFSDcpnpeIHfRkPntfS0q/u3tjQmXeDJGetLflKbgXUzFgkDvPEstsfhQqMKDyxzbO1OF9p/UeTZLxm0fUSZbxDIsCtdVcUdmLG+0jGNXzjqCbGubqVPY8SBcRrvmVnQQ7Lqe2FFLQT2jHcGGbAD4HaQzOH4j/+xeEm1OCf2piEC/6vV/vnAaFp+0c8/qi6BS89+DvHKjF2qVEy0btjVPHuxcKbn3ZzH04thH5ns60kooxOGwxAaBozUslDycoBAA683S91Y6yyd/8MH+5Ol7PAthHqLSORUGYnAy5gU3RT9z6cYTNHPta/Z8eatV3Qw+4hX1g0DG0wBpXhQRNcETE7nSR9p003mDXrxJwZqDU+3mqq7/0FX+vn8m6DjLZ+imFmv/w4n+t0RvFWqlho7eNkvl+ru/Z1l2oHVqlZ3XE0bZC+OsFrddMks/5WTBD9ljJy3FlIPChWCqY4VMTZDo3VXyuoYZ9KPtn2/wMAAP//LJ1H1rI6AIYXxECKkDCkSTehKPLNBCsWpCSBrP4e+O8GxJPylueQ0Kicpx+/hmP6e6KJGXfOStXwdUu6CWQz9ee+ay1mAKvqL6SthiqfzAgxUEpuRFf/mZ/B6QBrQj8kH79Dzr2620JZFlsc9Ms7Nz3mCfjNb5OGOznKO9jzTH/sxi/RsuvE6Ua1GeR3EWE3JyFn0csP1/xJvbF9LPdIyAV09KxGAGpRv+jXVd+/lXKZ/3ukXOAv+zc/rjiQfHQ6kWjLeiEyqYZ+JNINaUe16zE+OXXE+dW/a4u/ElZkbPlenFHod+vKCbixx8Kw5A+0L9UFKVrR2zPL1RaUn02MnRIe+tmVhxJ8MubSo+rFPd+oEVMlkVTY2uZDNXQGJMC+8I6w2Jt7FsfcgPSvNmi1+ml6kD+wt9EZyXbsNWys/Rja9kunVnVs+WTTWwh0S7pgW3QODf9OoADu3z5czmF8OA91tV3zKQI3+bXo4d6BOOlvSJFFkA/UPidw2BVf5HUGqci/9XCQaurwC+3JLPkljHzgIKnSrX5yPucELv6HWHFVcn5reAEXP6NLHm/oKS01SBrzSKNUZxW75miA/ZDc8b4hmT2oil1DX+IpdRb95pdNp8F7/1TpvhBNwJZ+AjOeOdQx9SAa7mEggkl5Aoyy3MgndB0h3IIbpk7jzWC6Tw8HXoqfS/hdfTZTrF2WvHzkOJKbTz8pxrEFu+LQ4OgFAacmnTqgNtaTgOPNsKV2N5RQ1THGVriJI67JJAa4u23Qzz3FYO5RtvSfykOfixpU07MSZ00xfgEORkEAoxm8BdieziPd/zUcTJ9HLoCjF6Z07SNTWOx8yKQzoUgVccSrKrvD7je72DSPuGJJzg09uOEXDYhuR1JzKAd4TtoBvYq91Yh/L9iBj5Np2MPvolr+Tw1vxsBxpGbbhrFuyICxR0fCLVnpZ7s1Cv1ZHA2kN2SO5uU2XLjZ6QnaGmNi80Est9qiv9gQtl6kiC44g7dpuDgId3bE1ud9dfhHQ/+tVyzFyQsu44Ft8HFs5YS3LrjuxWjRY60n8Uu4wtVvTO5t+kl4dwx2prsn0quPG0X06xi+XhVAwkGOgJhuvldwbQ2VaKUkc/redxCS4G3iRV/z9nxJPnpWFS9s4oNnj4peCTAK0pTi/rPJ2TV3B7DkcbKx1S6a8qupwVGjLan3Rd8wY2E8786JMU6+h4jxMMt0B94t7FfnqeH+3yOD7Wb4wzvv+wY/9Pi+1PD+LdFDjc+gnRoDgfSZXXFYn9x+6Ts+NNHLp5exuufTgHboX/6JnvuAs+ljijBHOMLGRzvl89KXAX98WgIFeMyll/AqwEzFL473iZ//67trHzVlSQL89q5D5RcAD6MnNSr+2FmhPt0wItoy/m/Pezigr9uR2sEe9nPcHFu47542dU/PV8W9azRogZNdcKgUKZ+keofWvIEjb04BG2+BCOSL5VH/aMeAJLpfgFJyIqLkpgXYFiUt1LsZUkfZPfspvwbblQfQkH3v0UQZZGB0yRnbcfPmU/6w70AUUkpdcgzyhyKIDO5FMtG9gPcVq82HBdPG2iLgOIDzRQ+AO4UddkY3BOOzggzOCZKof4WPaoC77we+2iKmrviJIqUZoQD2b6nEl/HRNIPI9y64TtKZ4i0wmrExPxb8+5M4gqfHj7+Bd2mBZTrN2j96rrSWD6TTUUab66cHg1wKBbS6u4xtNzbAvH+Isr4XixfdUSvN54NnGTqd7x62LSZWS34gUNnGFVG09gCkt+JnsMqYSi+NKOXT6D58HWJBItulPxEhsQfdqiuFsPtpiEjwd7D0jLcpdj70zWchfT3hbmPU1MvNJ6d3TGWoq4lP4wmanBelKIBy/9wiJn7fDYO77ws4DmQ02xPBHjAxGRR2J2Xx3z/OAjLK2kydPb10u1NEVj/tratB97pu9+Jy5G3N49jxLaeaR2m4aqKQUxpi8Kn+7afisZyIHsfQnr3ZhPoHyDF1L+OTT2/FSHTKkwfNFn40jX4A4c5zdWqdNpue7hb1XfyTbM7bYzPP8g/BJQ+TzznidhfalEDbEhscFCqLhqQQOzhuDJc6Zdfx6fOEM9QTWOPws9x5dTq5W9A+3hVd/CFicrWBYM1XS38BU3NU79DOrgUNv4YUzWX8Q7AIsiv1t69q7V9bDd9UBzeF+M2nnxlA2MUT+dfn5xI/ZbjRNYq9FIJ87H6Qgf4aPdBgXwrAkckcvRaOfzT8XS75iE/mFkjxoteNGUZKVZ3vQOLQpCV0o1xyXtN15YVoe4Vmxe1jpy13+vbYnZwqH904esLOIAZGvBlzHtgihP3F0AjLf097ftq1A0qpLpGaJI+eqUpUg6NmbJf8O+Z8H4oQnJoiwsY5HpupktAMtOMTUj89Fj0/pckWLnqPI6j1/aTouQCb08DJI9WPfL69kQZJ8DURu19o1W7xVMOzeniTj/jp7UGuFAg3Qh8gQY5h1OrmzgfThZzJ/JhTez5Olw7GszAh+LibQIJmVsLrvP+SeV9MNnP0s68ZsexjgyRGM7phR+CmIdbKNznr1fKz8h6KjV3CpRQCRzsJaYbU76NoZud4aTWvOp0IvMxRz6ti68LigD9k6Ibq/7609EciTw7Ix3X/rfrofoVXNfyKh6VvvauJhJK1zRR0ZQuTbBpouGOtvcy/ANPG2KJnIjj2/PXOta6nxQ9bXpT1EzSzs6IGH0RNqE0R9f9+yT/etv/7KfYvf74KeL7dHXpWntt8pAzO8JxkN+Qt/LgnVSdsSbBB1N2f3KhZeMTKN7DZvIxmVqBRrnqFxPeriiY6ZAf4dw3Tf3lvPFR+AgljHj2GyaHhQpII4D6kOfa0VgQMTVEJnpvKJSCdfny65pUA/B4yGm+sspmFJCIAyaKAg/7IIsKyRIYzrc84W/tFpN98ODifPdoko5IvfUWAO+8S0kQpThXDJGAr31t+b9tM0d5INM8oE6Q0v6BiRvO9wo8d5ti1XadSGJwIXHgaDjFwK/EedR1c+jv2wzmKtu7dZLBk1X3x6689D4AOkPtbgs1WFmz2wg9Lh21HkfT0zUg8wYDBC1NE8k4HM5Kfwa2A2zR7IqUzSD7r31KGOMkz7N6fpc2rP3XYXjZjjKN0CsD4uAoluP1mlTqm8gaTJ8qHNY9S76f10XDNXbLySGp/6xFM1bwL4UNPVBzdmNmIYf+KQahVWyK9bbVnd8+I4aAeJWo+33W++GcMCxjsSLoLWlC7F9/X7pq1w3jDpH5sDsmgm3+PBNvn1uDstzv5YOXxYUnzXgbOI/unx/G5uEX84XYCWPv/Lhlr3h5ul4VfOAI9K8UE5qA4n6EKrxLezS8zmoy6bOHmiGTq5iKKht/RQPCoWVvqh0LaTCtf36YdpYb4eOZLnr6u44nk4IcBOTj+GSpGH1C88D+a5hcGo/yyoYa9t2xpzQfTIBjUvMGxp4ZyGcBHAQC79/rAyRAwY+1HaHgFSbOsp3DN4xgT+Z2vfVZb++PTIGEj7xKAQOvNGl7YdzOAWhxAV9sHIuq1109TZr8g62MDX+LmnrPh896q2RmecHiPDFta8rpyRa83PevLV2Q/6nJPbl188e56J9EsBV8GheyAaf5HN3xoKnoHdVhE1KFS3UjWLnoCwdknFMdca8hxlq/Ql/4cWj3/WKWkKRSgGrwQRgc54uIy33qv4JZsjOhg04U/6itfH87FxuZx89TWfIVN3ThUC+9woCQeEE6P75bzQcnucHOoa6T5ed5PwR9i8OmOe+x93KmnxSG7r/2T2peU9vPr+7pqc8cpdVTtxBn4Ay4YtbHFiNIcDEveXXnCygP7db9qc3qsl/X51/yk81Bqdc5uaHjZ+4rlzWYL3pY/Uou+rfy7k6cOfnfdSL2bRAH7SGcEl/6NpOt8Asx25ASs+RmVrO3nRi9ncLihiQbn7yfnx8utBL0l79GYZ5k9FfT7AdEDTdQ3vjHgeqoyeL/8aUgr/gMAAP//pF1HtqswEl0QA2OSxJBsTJBswIEZYJvgQJQArb4P7/ewZ70BgoDSDcUt580WO/59lc4bKiJnlenvtcdSgPcqH7At68d87jV+hNv3iS3DHPN5e17wxd94+rcfjhV/eYLNH6A6wq9mOe14Aql/02lwsI+A3/AaOJXSgOSrfDKXkt+Y2un7IbM6FfkyHfsZqkpG6Z8+Mm34HX7H7xeHxrv9468akCIDUsTOzTBn3rTxS9nBtnwYm/YPr992qUyPgXLPBS75unCic0lDpRJNsukNgBvlI9W/h8BcjoP8hK4h9Zs+17FlCt6Zuvkh+LX5hWzTE/7pn5ufkk8//9cqUDrVqA8OoU+O8X2GYbCc0ZpXOJ+f79NbRWN/wrZf1c039bUM/uG51z7s43WIoATE53ygVzPq2T+8v9UDBN4wZ3/rCeSkuVJzyW22li+/hcx1ExynjZxv+C2C9mF/o/oYec0/f+/A62e0+OstnrlOhIp6QgY+/PkPy7szFKms3T9+nc9oHRG4f/gPRa9U9En++hE4iGH7X/z8VEAAi8s5Jn/H20/BeIc9f9ORyl3mgZG8hn/1E7uaLAyzBZbkT5+nwWrY/iIp2VVZrOiw+T3JsNrh8gZdWiqI9fY2+wO/7oAD9wsNpPgL2ANohbr5QzivX2yYxXMUQVNZDbzxaXNJgxxC7Zaa2MjzwFyS3I3gxr8RQCZrpn4U7lD/tfjPv2yW5rKUKldxBj4uJWkWIelcaO+MApubfjDXFBjQn4sbPe4+3TD5555A4bfD1AGXgq3YsaPNg79Se/fmm2nzg2CMfnfEfkXIVrIYGhTw+YKtSfsN88GFLVSH45FI0hsM05+eWjs0xHZy7OKVf4ATPHTWEZsuiMAaiJULR7Iqm79WNYv8/hpwKmUXe5HwBGxqsAH0X4+x1wRgmOJXT2Da2Sn1xPqez+xwb2Gaigybym/HWIl/vLrh3T+9s/nTc5Wzqm58vtSYwD9ABB/B804kbx38RZ0c4c/fw/ZWP1hWC98//k59Gqo5O3WGpVaxFeCwcHbxnx8FUnySkBA4d5PxbhLACpYvfCofOGY1fazQ465HpMxTEy+JfwvAT+VSiirhlQtWDPl/fq1j7685O7zGErz9G4/trf4NSJ8d0PMUoXp1JzbDq1wo00HU/+F7UtZ2BDa8gLr3uOUYb/z6z/+Rs6lrNn/x/8wpgP+7p8AEh5xikwaDUEdqDVp/ncizUsp4ls5vTj6JbUIvryrNGdS5RF6J6VOLNG0898vpBPmbc0IzSr14VSQxAJeLB0gbh1NMoc5dQRRSioBSV2D6dOEVDq9hwcFCHwMTncCAuMwt1Fe3Il8XcSlgqeYxIryes+WMT5HKl5+UqGr2bqaxzBVYP/0RvWFp+TSdPU75DkaCIJ+F5gI7o1QXST8TdRlZM5vf7A1VSn1qlY9PPJsUENg4jYyE6vTwSZq8iCKf2wN1+Thk4pZmCh/xR8C+Dw228u6Og6cPXxJ53mFAwBQEiq12LdZGdAXMue8F8G6LAzXP/GFYvSbroZLzB3zsZ9sX9/cZqbYBPCIii8Tj+Hw7YAlPK7ZI48YiixUe6lGVIBb41UCO0neG1VmDaL889/7g2OALYseGOLzuVTbGoVBCIikL2idjn896cHTgrxZM7AY15w+PN9GATr8Ndj5T5jOkSAEMFIzw8Uqezah+XB70C9dsx3uApbGjEZ5LraK37N4AYqRHHhr08KXaadkix6uulQ/D60x9QDww5gZAf9eLPeDP8dS5SQTvLvdErMu6nH0F5ADHTb4E6uq+mQ0bS/IySzl+LubHXxITJNByvQFVJxI1Y7gvV5VhYYc49HzGq6gADT6vg0ad6vQw2VdwLPjs9OjveQA+uYQr/La9QYSk02I+si4ZzG0yop0VdGwG3fiFbpZcsHEa3GEOH7tAfjU4puiiOTkff0oHvn47Ee0Pl9inMrutsPPPMw27O2fO6OMU0AJbH/LFtRtxKMYIzF7YYi+rQ3/xOCeAlVc02AkAjgm/3/fweJVabFF6jlfO9hUYXY2cCM/Iyedjl3hwn19EcnlVcry2F9GC79T4YCf/CWw01vALiopUaKleH3+1LX8GyjNIqUusxl8iZkgwiQULH5yrGrNiryXQ9bY4nFIuh/mliRk0tUTFppV0JlOP9hv2wnTAfg1Lk6EGtQovSRa+G0UGFkqUDAArSOh92En+BO6ZC8+XW0OmZdyyi9+rsetVUSUc15gDe3JiDWS4M3GoK0PTvmrPgqGlBNi99X2+PNpLCwyucREgaIyXof6sSpfRCNkfbzeMl+JhwPurFCg+aNpAwuopQK7MLHRdf8nWZx8QmV/TkAjAOpsTN59ncCzCnuyux09OhWF9qiC/eBiNX9dcqqo1YM5ZElpq+9jwd3T3lAdITHxyBjmf2/5owOToO1grYN8s30eUqPYLpvSl6iyftvuHQto+qBvUT3+xlqZUsabW2JCOuc+OvySBNd2V1HlG35gOx1qDWaNIVBuRAEb3PswQ1t+csHQofca/GwTf/K3G4cWcY2Jb/gpOivGlXmigYTblrS98d7kQGJHWZLtTIYA5HTyyXy25WRNsnRTx/AwICNLSXMGpFSA9iwXZS1+9EU3xoYHRNTlsX3+7uHT32IMX/v3AOq67uFPtiYOpKqlUE6+Nz3IvqeFrdAr0I4fJXL9rkMl1mrtIGlLWzJLrC8A2ZA/tOgkN4wG6V7hX/QHt0kPhd/lSEhUDRyeVb4/xbMb3KxzNc0add3U2ly5/luB5CJ8UXQMc7y+SdoIRp9o4ULacGHE5KyD/QoOmnzMH2CjjHobHdiaKdEsHVv7OJURXbFJH+8mMRT5H4CV7qGinXc7xHFmPu4LTKMTeV6gbZnqvKxSdBdGbx7J4ffbhE0j1YpJ171s5C3Y5By3O/VAMtp4OW1pnVVCFBomFd26YcBY1WKTpHq03UxnyT9qPwAltj94/ut6sIchOQM6PGB8eV6XpdrqHIISHhrrylebjIx7eUPfvD2ygr9r8W4/X2u4JkBI8bHlwT7h9L0jQ9H2+NPcEAu237mnoqZM/6z2XgP4NYtJ+r5HJ4umYgRvZ5h+7n2WYjfb9hNHkn6lmTnXDlN97hqg5xfRVvWWT9PEUyLufriLImcxc5GzU4N14/PCBxoJJXU/ioOzTiQg3TwZM11oXatWZQ+LtgMFcaFUCczB+8W0oHs3k248S0LFOsbfUXr7e87sEpfhW0aNtafHqNVEPjhIp0F6zdvEUlW4Lr879TH2W7eP6bc093CE7wtblIrH1lhxbqKBZpMZgVyZrrXcPFk8pafARR0D2vdf/va9o8e0gnoVpPakuizWqH+UmZ+NpiSBrWU/Db/bLqRzGJ+i14Qs7IzZMpn/HFoyuzmFtjfVBCBfZA+RnqWTPcWyg1bz28LdHF2p2WRev56wKlHpAkMy53ILuRMISiqlfYuPHh/5y0bsCbnMB0f60X9hcaN0VdKxTcXzmDw3rJPkNons2Yf/a9s3iCsK2vtOEvQ4lgPn6JEH8NBYcbPsblZQTB8NnmpDYGGq27XcK2N536gxBGS8+gFf40e8r4X18adYPOs+wlrb5lb/7wqi19z1ANbPF1tcZ4lEJ9UCV9GZCu0tTgiW5ql8gDX1A0Wt/yednpvDKtQ1sBIPuEdO4KU8qLNERH4pZMEmyhYqABTRUN9Udo8g631XbjgtqW1WRr3yancBrtAo0UyNsyCLKBYyUoMKZw0ywJ4t1As+zVOBIQTZY/Nf2G1gGFKT+vnPclUfhCfX3zaXG3n/nc/F6foFQGJR6O8MFyz2tLLVOHAftMnoEbDG9Am7nw0XQqXGfktwFtlZLZB9waT5bUyeAN3+psXcd+IHx4vQEuetw2Pa+B3PsQzZCM+S2P/NDY5tdNCFwJOZzm1/psfWVLAl0b9Ckr4n+zHnDN2rYORHWnRbn7P7K3lBYfy5qxYP1V/948NPf/wEAAP//pF3JurIwEn0gFjJJwpJJRKYg4LQDRAREZEgCefr+uH8ve9d772WqnDrnVKUyk8N2/W29rfCBnzkKyNMBC/GePKDdlGHeXuWGDZeLAcWj+COGVinj4nJhCITAdpEWi8d8y5caHPfrGZ3kWWOip7YOHClwQraXy4YVjtGrf9eXt3xJDHqgsLqKIFSmV8/G7HqsILDCFCsoqgD1roRTuvneEVShvmHG+V5Bx9AHdEwiKZn/8MW+rQ6xlPzhLcXbzmAX3W7EMQqF4XY+atAUUwmPy0tLFqHcY6j49w+5HuVgXPvLzv7L98i/eR+P7dS4Vo0bpEiPcDwKA9tmDR+gTlJy8tkSmN4g8/VuDKXnVRmJKnqxEoxFixx05cE6jZOofO/eIaRxZADxj/8ks3giWmpEDQHK14APcT2Gsux2yRpeRh4eOzyjv/WOn9WUAulc+OR1thvAYpnPYGlJPjqIb7Ehg8cUmMaHBX/Nuz2K3eWngZXmJXGR+EkoERsMLUzMcIXd3cPd6t+h+4p4oglSwaixHtq/9YCca6kn7GNXhbIaGBFNSR+M9WVv/eMjik7rnGKjXPcFkie8c34do3O8WPDVBAk6oWRg00GbXBjpQ7bdTzeS1/XnwrlQIO5eJcrZdIwc9Z6tMdHGZd8sv7OQAS8XjiR86lxDuOEeQ3bueWIv+egxrecq6K7Kc1vPaoL/8M3rqsMf/nvNrnnZUFBPI3E70Rh5+I0xPMpbD2wsL8mQHhoXiv43QNqOVd7Ufp8V3J2umDhbQ+hyf/ysP/wKIVMJYzbMMsjV9Iqcj/4e19xpMVBcIyGBFauMpMmBg/zZkzCVaz9Zjcm3oDz2PjqX4dmjSnDyQbQQEO6dPh/7DDQKxOBsYiG3YDL98etH3OkhP8p39l012u73HzEgrvfo8+VwuYage4QVCe5KD5hmKJqCDUUi5l4ux2V/NmS4dOgZdheO/stfapZxAfGc+juurUV7lT/2OFzZpLLlFp95hfs4fajum8lbofhJ/+4/VJ5MN5dzndWwaG2G900vj4usxbX6afwOBWf/BpZQ21P4LuIbOt5mPmGK3kfQ+nYB8h+NlC/6Y1RA8LNi5IBWb7BMNAN24p7M4ucojOwy30qQDvcCHZZSMJfANAcoSrcp5G/N6C0vg4RwSR+/UGWpngs3uUwhkR9bj4lgNgLd1VSV0HBD2h9/bdMkVoIyT/GwYpZMXIl6OC8HE50eu3hcCF4zKCmZGC7z7QLmSoQu3N1pRIzzeTbpbhdfwRbvobTpOTpUKgcEVBbhKp+AyVosivAr+BeU1bvBY57+UdSiF24htzs5Jo8zLYWvdRCQvX5585OpyQRyhHiMWcuNPydai7/1/A8/VhoEPQxt9ibeRxHZevQSDZi7UNt60KNxvSu2Ay9TsiC3UF4J1ay9CDf9HIJNX4tQs2swaCTAZ72wk+WbOyXMb3VF3O3+1j88266P7PRX5UN4GUUIOsPB3NEcRhx1aQiNG0eJpdrOuJSn/g5n7/CHj3tv+38FtDj3g+zKSk0SbvtYs0aW0YmPTEARlDVoO9eOGIsSJb+skq+KOnBf5F8/1bg+qzaFwzarOJMUmLM9u1Eoq4VGbO5y+KcXlEu8/pCWJ1bC+HMFYf14OHj2mnNDND9xYDEGP2K2ty9gN/9+hb9sjv+bL6AW/uNjoSjE23nvTdjDNs+kjY9V+QLCxYC8OvR4Oo32KHQdKEEVWzeUNnkOZm6vKKD/PeFfPjDZo3uLcGHxjHetEJjsR6IS3h1Y4r1Q+ID2bHDgYzqciDleuGTCs9Gp72abZXtP23zZH9+raly6kpimNLJ1eNqp6qkDwG3JlWA5ku3UlMByiV4fTqPEFUgEHDdScuLFPmFjF9xhsbgmpvRAksnXE15dnCrESrr/mqN9YJ3KhS1Cf/GysFtdQu2SNfgvn7NjYIiql05n4ifp1JD8eaUw36fpf9eX2RsZdD9CQB7yXLFpAscSCMw+IEMJD2zZc1oH0LF4kMvmj8wpXbQ//Uy04tp5K1+zDNK4TlHwqOa8/zh9DLTLvSF3h6sZs++qCA9aJW9+0mxu/g+EsSQigvJL+KdvqRopWkc2ZjZSMaOaaiFpR06P3TrSPYwoVO31/cfHt/wTdHB6SCs2uUXLV/2sdDBqihCLmn5JtnyVgY9gZKHKaT9zDUAc/+MLVbjDjHyj2wDFz3ubJtDc8nXNWweUMxPJacYA0Gs0aLCRGCLHje9L4rgWSpKcfLL5Bfl8dm4WLC3BR22TA8Zq+SRDb4x+W/xVYPu+V/CpxBR5VMvMhXvtCnBvkxwr5PnK//i0eoivEzl1SW+S41bUtzM3I8YuC4HovbUVbnyJFEnqN6KWWoUy2s5vw1eJbXqjhjcn6ZCu1iZbwD12VelxqsKXY9bJIoS3u7x9PyytrWtSDUQ9vN/vGrKjdTsHUPxcoW4e1vCb7p/NP/2sTe8H8q3+YArNGt3/+BY5XkAH6Psl+/Dahwdk2as8Dq8v6EAWHy2C1os3Tq/atbeziwKsXA+RSb+Pew+Y8i1D7q1U+XK665NKgt8FM/P8zbtvIccA3DkZ81e1a9hj39rQSEI/HNtPl7M0CSDY9H0o/77dH/8Ulcf3+gmbnfrL8eU+Z+AM9oC4MQ9NavN7G+jdnBFf8xxTClTXhu75d0RHPC/jnC89Bnz1feC9aJwTdnqCEJ7Gn0/0khdG5juqA1zrI4X8vfMZfazbpJEjKtGBJydz44s1FCz2CuNNjy2nsG+h0OdHrALAmYweiivUU9CFYDbMhFmC56j39pyjjU/lU2xd7qAQ5C857ndPQO8DqGB15QHR1E8AaD/oBriE3TZ3JXuai7AwDtpY5jA3+9O4cuHHgJ+JYOL/8Cdn2uuZwdlAOwyNJjNZ9ZTvcDh1V2RHvpkz9RR0YPOPkYOH77jspJ+xf9GoIXe/Ls1Z1rIavIXAQMHOjz0al5EIXqocIe0S7pvljO4R2PAdq8m5bsjzQNe/9RbGgtcmWM8TDDubD1Eqm19veXPeHW74QwxLvTWj4p0ySFO5I68K9SPb+MpfvBI/PI/mGrxLHjSfTCVhDEA+XFdOgf6wTOjEmD2KpReF8PJtgpC1qp9LEqxFODuTiBxpPnnyTewqqISrtOnPedP/+l2N8lONbCE2G6ng3qXKBFEJd598GZcj+U6QKwSI+evN8ERJAQb8OqQJGUVys9IKKYATuQJpcVSzZec2Kajnb4j+3jflu9EAaXxcMPOXziNKOlQwuwo9OTVG6q3Pm+cr+9xDWJK3PTyVYF3h+2xAZGItYKwRZA0+wdXE7InyfD2fHQsuxZQSa3nvzPUL5gr+6QGeaYdkdXeiBo5veMLiQ/jlczXn2j9+cLKjXzL/+UXBzIvINgTfE6QL7sE9ozEyfe/dbP7hANR7d8FcfpcTfKezBr2QScTLXqYnWMAa4G6ZAHKq1hoXs3xHcOOfRJ+WJZ9aV3HhZTovxMykn0mjm94p9fwJiTfcGCNH8zeBTf+G677Xc+oIRwckfFaTILPPbF3zyYHT0mqk+DkaE0pwU+B3OVBysNS3R78Cr8H7z9whA3ayOTink6vstOcHqw5R2EQHitXZCHbImlUT0ErwU/A9Gyjsl55L1q4fY9BehwT5RpN5443HE8hX4UmMLA3Hf++7ud/mf/7TfMtXCJdG8NApOMgNhc+lA1dyBWTzo0d6hE4KzddaIm/Dn394WfUD+Ve/YNP+2MPNL8J8ekJMkJNiBa9K0smhXoMEd5efAfdWK5GUkCUXmvEWwsd0PIXyM4kaqbwzTTVftET6xSMj1ayFV8PdaQ6rxyg2iwf4K/Sqz7SNgsQjU74ThbbwuiHEBUWyem+HwvbaJ6GUtxNYC7j0anc5AHTkrzcwdfJBhiA6EmLqpuDRm4jrf350vuERlfPQVn6fLEIHYteMlm3CQfMU2gi9fHvzIyLuL3+HIFT2IzVeZgpebtSHQtEYQMquqAJ96OxI8IozNu2EfQivi0OJcZaWke2iVITd6nmhsPnTmBfUXilVdMcsO7fjoqlOAe7G64tVTjtt8XTqFPR9K8SjmmL2B8nllN0Er0Rbk/e41OdggjY7HIh+29kJ/nt+kk0f4je+mm9+3x1EywyQ4RlGzsZiikB+cUJktNkCmDedJ3VBo0X+1seiN4EBtvdF7Cyf2eYncjDdeRo5BuUJ8Jfd0sGtnkKOmx9Kv/V+VTY9Qw7QLcAqy29HJYN7JPZRnseW06cIXkrNQo9iqL0/fQr//GnE3um4RO2U/fmbeJVPuYn1PMdgQT+L6Jr4BvydL3p4fIzPcG9Hp2R6o6esRNPuGu766dMs2UNy4Tik5B+fW7O6ctVAUex//ss6ZrCEV5ICEirTaJJLxFvgznF3LIGv19D1blV//Aq51wP1pu7j9f/0Zng+zYCerg8FFKy6kCjcYTCcs58PG51diH3hKGOBalh/eI1jz6iT9fasV/DP/9quT3fT3YIn9aUhx+EMIMaurcCtnkDC34X3xreSr3/6Iuxl6jLsPpZqv+nTkI0XLh99QeFB+apPyJOkOJ/hVYshNa01rPe9njCJ6Rga2c1Ah1EIARYj5MPZwSKWb4Ob8HdVoPBNyzIcHtfWW5r1fv/D2/C3ejKgbupo8PwoHeJXo8nYJbuEINgNAx52fbCdXZHJQI1/EO83PJh3uuHDjlAZ77igyBfwBhEsd98B/fFLweVCH8zsdQlpwA5sPXyrVD3E6YT8RFm8HiHlumf9MiDziUA+Dcr+Dnbx+UF8vNiMDspyV/P9NQ1XJxwbah/Z/R9eG2123s62GxVIHz/3X3yvQVh0cGkkj+jhtUro6XpWYJ1aNnkV98js/57PmtIFncK52+J1WYEajzAUDs1nXCxg9fBZlDviuO4IaKzwIfwlbYEy5eMxGsb+NkdVjJGtfR9gq7f40KWV98ffEzZqjgKfo/xGhwgFOdn8I3BK6yvaamlgZWjv/vmtxIbHFUzYuG76rdSQ8yjkPz/+rgop0kP2XUxzqIjBg7/6ynF+982WL0N4i9qYHGXGAypKSQbP5pts8bDmFH4zDBtpQXiv7reen00PTDGGoZjra0KD3Un5lw+YbJ+3s2v0O3iYzguVliAnW33yv/6AaE9Ws+TgxCtF9zqQQM3aUUhNcAWjnh3QcVda3lbf0gAW6xcKLr+UzX16jOHveWzxulYp++MH+w3PsczV94TJDzuGVJsq5B1fB4Bn7mvD2Nl5WGrLr0nRIyn/v54C9X/3FOBa+hL7527nszuGBWWzj8mzvUQmXsnVge86+uAlsC4ebRI3ho0j+Vgse8Vk173eqxbQKQmUV5owa1BSsF/uDF0Q5BLMyrsIH82FIMNTDuZi3tqregqNI/JeMMrFVo9teFTsHtcvJHr0EToWfHOniOiazzeMX84Z9MIHxTuJnZvptkQl7MneDJXDWxt5xzdt+Cx+B+Rq9zRZHNLLEIi3IFyMLeYEoMpwTso9liu3M2mw0zNIv70WdopReyyUPRdeRcZhsLd2jJZmkYJRTESEPmibJXfVSni+7waEWltl056csXKCu3sovNUx70Xen/a5aJXIdCYvZ2k2xbCbjQTZ+WmbVfG6xdAm9wlLh2ObrN8hh9Aaihg9TpXJhMI1WpWrFS4EWuXka1PkPJTHx494o76ObGidDhbcOUbxMU4SUr2LCKzNVUJ2lcvj8iTOCpU84PEY7M1kQV0NoZc5Obo9P/ooRmalQVU3T0j3s8ak8XuoYL9mHjLry8WcajEe9k3QcETn3oO5uj+hg6IMryTiO4nh+6uKQX+1DeKC5eUR/zGv8HlRfsR4UdpMhOc1+Ko1FVkjmQDLz90VODxt8W40+oT59trD/RQ1KEJLmrNf5jtQv6/bvt+c9+Zhrl3YWE6G7LX4JKTZLb0q9tXWJ1ditnrQGZTA/+CtRwCP0+M+tVDM2oaErpgly8dYS7hGAg1ZTz8JWyUlFB8R/iJtuv48csguFjztTIPYwwV76+tap8BxqwM57BVsjjA4Y3UahZpYHxg2bDhhGRyjR49MkE5sOVeuC8Wsa9DROZB8OcZLuu3Dy5Dp3uNknWhQgi986OiYOUXCFG9UIPtdtbC6+lYzHI5FBYWb/SaeeQOM6d/rBPvXs8PvYvmZFHXPCgam7xK9fFKPuOu5h4plApzkUQzoef3yUNl/vsTNdM6ccfgsIBScJ/J92fOkGwUGaOo6CPdaqJmicGghROG2R/aYHZN1JVcXnsrPB2maoSU0U4cVDB1wtvcRekSF8A7viarjqpeaZjCB4e4+wl0N92aHvYXLOA5ogoCR3wbFdn74U4bknic4dcTdSObej5U9nDTk03xoJjtbaxhkd5Okb0HK59PLHFQvc3OsrvvbSDMHXeHir4i4YfwDS7I7drCXbJUcDeblNFNr+u956pk92ZrZfKaqWTQRTYKHkVFH6qBUaIAcBsw3K7TUAUiaE6GoRQtYxPpowyZPExR27GnSsdgVUMhZQixsfsC8FM8O5Fhp8VJFeFylY0bhcv2c0ZH04ThMNCj2v1udEfv6qsdl7/YcDBvtQtJvL4zz/Lv5MNY+ekj57saWUJ9WGGPIkBH4PxOnbRLvrwOIiTmhATClfBkwhuBEfNxP5pLdVwM4Ih+iE9VxsmDbFmFViUHYDWLfYOYfVvh4QJdoO/3LFubdI7itB3T1P7O5IO/twzM/XbAYTVZC5UxeoVYYE1al9ymf1y4zYNQ8uFClhmXO9/UA4RtsfZZidTaXz5f2sB6eD4Tm6ztZhMOrBsSvv8gWPwVbX9YrBi3jPsgL9k2y5s3IwQceIAlcK01+zIsi2HdjFSrxQzcluz1XUDcHExn7amF9votaVSfQI+WwnVcsBKyD3ClQUTDbj4TFd64A+phnxNYrl4kcV1CgnPko/H7ft5wJP4NCstop8tOdkUijtvVkPfLmL7/klH+NFLqC5mM6vy/jmkeyCJWOeyHv5n1Neog4Czo0YOT0vKJkkR7RXZ2+DsXA5t8enSi9wvvvEJFCG2AzP6CRKeNnuqPQjNTxH35XHK3J5df05hKjVoaEGkMo8EfCaPcqOgAMycPk7axsmvbE+IsPzOVWD9hayCWcnFUl6NqO3pILvw6+MskkIX7sGS5kX4GXdHWIZyf2uCQ71AE90L/EIag3qZ+ZISwXwyB+aN6aZdrDUpG8b4kBc05sUbljClyw9uhocjfwY/vAhYnDBCzdCyFf84jy6iUKbshvmh9gbzuuYVqu3EbaYUP8kfKQP0p8qI5JxkjGixN8ilebhBC8k+EndvFffITC8/JopkI6QXjt/IocdvOUY5XRCNxwnqLj4WglIg+0u+r89D0K5YQ0f3gNg9XLQ6V2hIS4VdjBx1euUKJ/fyZt8khW98anIUbnVWANnEQDL76yyCm7W8k6LyCC5DxIyC++r2S5yt0KFaedwr2a/XL6+Y4+aDsNkVN3lJvpk1Jb3WV1Gjbya98suKoqKJtDTJB5X0YW5HmrUGNcQ5CdYpN5UHRgT4CJTmp2SiiX6eW/+7uuxSeng/RwYH+1DJS9eJjMzvMpQqsRpFC9xgZYUTqnm+fAI/uMXmZPOVrAYDY9DI20Sdil7fHfeia+NhQN5nv1CvaVesVsuz/2XammCk9RRUb5ab2f7UBF0Qx2wkILxGQSrNqAp69wIv7llybLMA8OMFcREuf7G/OVlXcegkMak+P5xkx6kfYRxEZ82g4vSJOfdD6tYEH5jThqLCRz/ZArKNg/i4TUl3M6g4KHa2/+0N/6YIZfQHg6PiZk6t+ft8VvAXiF3tEW/94/vOVuRhxWeHgz6uwlDqpH9iF2NFn5P77wsFRIHDQ543J9fjT4au0vMVgHzWmIYwh3snxEabIOJi6/3x7Gt1XB68yegEV7mYP3rnSQBQoNCC4AIaSnKECPSkgZ++3c9C+/E4MPsbd0SrMqfBd8kZdM74aNyXgF6d2oycFjNmPvSNLU38FMkBHKkbd0QQnhF5cj5iFu2VSf0xKSnqek7JhqzrvYiaG9DzByBaiN23ptYfnjnVDy/a4h5Vew//Cd2P5n9mh9Lgow75iOwtvHzFdb3IWgSIszboWf0UjqW+nhXR10EuzTIxMM07yr6V2rUXCNa0C1JPfhpZ5KZHKxBKh3f2aguhxqpEWPLl/5q+vDPOIQniELku04MB+++Nr6x2dXL2Qi/MvPI9SGhlW/QYFJ9fDJ9vfJYmtdBKvpnIcsO3T5j++JDErt5JDn7YmSBYKlhMzlAmT5iQXW+KAq8MDsNqRLPwFqZ0oN8aM0iCYc12SdjKiDN/ZuN76z5iy2vVR57sgQqp+qGNla0AKCoXwT1Ki2J/3xad/zrlh0V9xQ8X3uYCOcLljJ9NJj36rlttl7Zkh3+hEMPHAyqCnZi+grmHOW1MqmWaURmbCLQK+qDxG072eJTvE5MFl5OXF/8Y1Xo38n//K97UZPVDCFMIItIMP3TBjmkzNp2OrOmeJbmYKBYx+8H68onKKWuxKLJ/vbrGUpQzhx6Y+cBjLk5CnHV3kMqxLXZxF4g7EEGGiFNhEkHt1xFQ4TB++OdSF/fGqSnA+GB2a1KNdHHlDrYU0QzrAJpbh+NezNeSKwilHF7NF629wS9/oX7+TAHwmg7KvcoZwiio6+bzfTIRJt+N6XZagKgpH3btUa6liU/BZ/gcfyM77C22Oqif1uLbCY1uLDLuwrFFf3ely4KC7g8ft9E03KPY99vgcKSS9SdHgXFHzrxrXBs2+WUL7Fh1z6fAMKNvxHgfrc5RMMXyF07RCSPz5LBZin4I8/Rub7M9LbK7iDZ4hJCGxeN+lBgDHIe9dBbvkjYHkf5xL2e+eLWfsLPXIybxoU+ceHHGvpky/7T43h0EolVpcgGlcQWBHYe5JNdPfbjp1wmKAySW0Q/o7zJ59P/r1WUtVZyHmhGsMrKR24Fo6KzLfrNFKRpM42+/iLzvfTLV/iG6ugUF0PeBnF0aQlfTtw2GcIUz3wAe+ylwujahXRHx9c0nM2Qe+ybWyIFp+tFyxREOyqGFkkjPMlxPsOmvvvHVnJ6pps2WaH78xrTsx9/wHTbDYVLOEr2vTLIeGVr2eDaAkT5N5M5i31g1YAG0DkvzCzowRdHmLq0UcFfHh5lAo5CnWbrNJ0hyALDBIq8HH++30N68vFDXkmtt58U9JW/Xp3G93l3sznIIuGv3jDHConc97LFxF2Fz4jtruGzVp8HhR+KPa2+Knz0axUBbh65ZIk2HqS091QKjvSN3iXHD7NtOSVDYkeZMQ2RilhhmWn8DxXOTr+UgFgGkUYDvZzRGbEjJHf9D/YieITHcAhG2eJ43qo1DkmGz5sfDYUFWMIB3JsBxOs5X7FsKmrgJjy69HQMF8MWA+vB64+WZks49NXgMyPAYbCjPM5z48K3D+Wgmj5zgBSt7g+uL6MDrlg2XlkldZQXe4DwL/003nEQ6cYHB8/j/j51sOZzpAHqtgKxK8zdZyF1z4EddnOyGi1XcP66IiVg4EGrDYzZ06a53eyEalH8rqRW7NE12ACy/pUw5d7Lca/7wNLaS2JKQnffAkLXMGPciTET3d1vkCwL6E8vxK89v2Sj+dluMKODwPip+URLHfrbKl/69U77uZxdkilqJB+J3TMz30zFSfBgWaQIHRqoe/RVx9X6t1nR0zD7gumkwlLcNnLt1BsohFQ7ihmcFlfKjpySTCuarjaICpsk9hF/DanKxkG8OzfSzik4Y5hvylW0NCyQT4+LuMcZPde3k9xQ3RgWJu/8sjgdznyoSq9fwk+vc72n37d+KtnsvVDHDjU4TWcu58DBMco7D8+QNBhckfxuw4d7GRlR2zfips143Vf/ePPJ4H3GxbbZqrOc6IE0sYBF6PXOzV4WQLSoWCaIr+YEAzPX0uCLV7ZDvscjJcv/Hf9VT5pHbzYKkP6lv/oNa1kaBHPIm7tXJLVF5EMLnvlhtDzNye0OKkuMF/0Sp66qnp9nmV3+Mefd3Wyy3+7lt3h8CIhrqU5SUj2gNw//nnJdlXSp47YA2AIHgm0NWroXqpS1WokCdNdXSdLuZQ9pErikJM70pwc6nGCL3N0CfrQdlwn494CPQ3e5CjOEaPqPR8gjcpjqKThCxCdzFeYvFSMjuJM2fx58ls3WXMK5bcYeKzijxl88lGBbJRpycr8YIVUDkq8S+XW+8MnBfWtTrLmrI/S0Grt/pLXLUFaw+VLb3MukANdJPbJ/o4Uhi8faLvDGQ2Pm2/Sj/8r4A40CDkftc0XaTIrOORagcL3NkGEPAoRNvk1QW50cPLlEaotvJLSDIWNX01/+sSHRkR86HKAqfy8gterEYgZXJ+JuE9mSwlzPsdCZ9Uj2xcnFzZgvyD79K3N6al3NcxovWLuYEKT3gGE0FCGIzk+ra/JPt9gBdmz9MN3LCX5kvCjDTymPsnGD9ngbmepmq3SoSO4GI30XWUNuoLhY/V+0HPhEQrd/p++3b7HeKIND4C2vEko7K4NfXYThn961/1me3Pe9Ph+d1AbdLS6E5tE3prUg8SuocTxjkd+x7MGd3q0kHCI6oQddd1RNr8gFL70Ny7wfaMQuX5I7C68spU2Hg/4lz4To5GOjN2DYQBdslJystuHt5TLdYAJ2uZ4mfvJZGYlKMoWz5u/Ak3sR+8exontEOOSaLmg07sPSxu0BFmaOYoOLe97WmYFcl3WJuRsPWtl8/82v0M1CZmOHByXj4Wl/ZizzV+qlTX0v8SpxqqheZZl4MaaFn+iNsrZHLiVOoZ1idwfXj3SmUKmeJEiYy6l0Z8/6kDtEkXhwPotnnqqgNo/dsR+LV0+cGfEKYEZukhfqAbYxn9Bps818WX9m9BW1kpoFFGKFRMbHsNwDkHU5ByuW203Enjjwn/6ir3kdqSZkLrAjPPXpn/4hBrKN4YWOVnE/JZ6gs/X3AXSJ34hrzWPbF3irgWn6BeR465UvP5sbWcJrlce6YNreTRMhgzaJJs2/2Px2KI5Mpz5J0/cfLQAbbBlwM1/Jfpuuo7sj0/cKqXADHbRn54wYBTzFfnzl9aXdYsAFz0kpBPVyEV39UPQDdwP2Q+u9+gX+i4cWqFEh6t88mRnL0H456dseObh2Vct6B1/KQrQVTaXZ6e48PHg3BDcvK83V4PKwz+8Pu52/Eh37cxBcQ7GUP6obbKsuB+g9NudkU/YvaHL6aLBQV/3yEFe6K0eUzTATe6bOKGmNyux0wiWVfchvv1U2HSJmQWSa+cS3zq+AXXSM4ZdOFTIXdKQEbw6E8h5g8fVevrm6286Ucj0aSAHfb8kCyvNO7xY1/Gf385u5RfuScFZRDtqnikkU1HAo/GMiVdHvwR3yt6H2uJAZEFsAUH53remu/H6l3/GNdCsO+Sb7hVyfQca/I5OFfz86jMJC+mbr754VKDpbWb8Fp/zm1ci6B3HlOgZ547MPVg83PjoP3yQsMVk+ASGTAz9dfHoklcWxMIVEy14ggYHmpXBTw3EkCksTja9U0ELmBTTjc9LiYAN0OvvM0GPWvSmFzgM//jJVi8wF3N4FSBSPlKoME1g+Pk0XfXzq86bX+wzWp/TAv7xFQ3OyJy79eICFAINd10oghUoDxtq+MeHS9Rk4+I3xxSIwNCQtfvck3WPOxE+GPPx/vCYmlXxyhJ0q9sQjybXkXZWzMOdowch1LYhddPl4cCO9wNSbP4DRtuG/w1vMPDpzZR0XS7g7KILOdzdwKPGQjvYMvghlzVdcjFt8whMlu2FMpfrjQCvLIKZHSfIWv1nPie7Y/tvvfhi2LNFzrsYfpXLjXhVa+RL/zj5kDZHhILn7WOu2mnpYRveZWJdPn0z/PnF4W9dkBYpFcDJcZygnIke0Yla51Tx9av6g8OPhNHvDkgaXwZwi8odcumpTtZgPoeg4tYamZueXf74rt4OXLiabAYMpesK5TH/IQQUB/DWw8JAV7caoxDDZJr7H/7zG0JuubTj6v7UFnyj+kr+4pH/CeMVHJ4wJaf4PHvMGzwDrsfCI8ajuAGsd78Q2rqmoNNxPiR003sgySNIDN8swJbfe/DHn8PHXWeCyqEUhlUTkvB8HsZujzseFuPgoj9/n16Niwhovr8gSzuIOc1bTgY4ILdtfZ0T8pcvNUHCWzxXjBaF5sOjbHAE3W+nkWeXb7ovy8MT71dRb6j1zv/FD7GGVsuFw9ms4fvpXEi8S6hHYrY1lD6yEWnS1sO+5QvwbPhduG71pF90DTAo4wGF04bXhIp+BpOv1+MmhZknRXsK1a+X2cT/Dm+PUo6WMPaUkNjT72hSfLdK6IBGw+vGp5ZgNld1W28ovBY3b91pbg/XY+kRz/BJTsJPZChiIx7xN5CDkRIk8H9+OF7lyycZHrdzr/Z794vP9Ms3BMOPD70wp3jtPI1teiCE0Aj2xHoLt4QK1mDArT4RKuh5TYT6/JaBo8c18aDmNh38AR6KRR+g8xMKI21dNkD8vd+J+WjHv3wtQmXGAIuqNpvDBe9WZdNjmHVqB5hO5hT8xZebtHMzyfHg7E2ne4akKbxmBZdYgcYu3SNv1OORWcyBkF6cPdHl4JzwB86VAfKla6j2xTdf62lvwaM3CSEv/OpxzbjPBC81Lv/523/1DKjUD4yF3ezn5D3eJ5isSoLhWzL+/FqsLD/rjnt2343jDlsQ3kF3Q+GWr5cgNjTlDSonZBsesdpx0r/8ghmxy4TG6Fb+Ww9fKRzzafNT4fR1Kebzuw0W9+dYEO29F35i9BnJx/c1RTmLEXJ/gdQwR15L+Pf9BDn8eowZ5QrnAhfEAL4M/uqjsE6SajvLMPLY8bTjYf96dVghb5rPwyev4F/9FNJ8GJfb5ZrBeT4r//QiFUfRhr/+KCNfmMMEwx/j4VXNHshWtcAc+F64ggNM//j0jpG+zlb4nmeG9OQeMLo7tSFQ0M1BGt9JYG1OPf6r3+Kfv/vl1LLPLXjOVo38sF1Nmtg9VXHp8lhyFWOk+O4XoKBrhjxdN5i010kJBOuTEefenja800NV3OEVmVt80D+974C3FvZ/fooHOQdufDOU0ktprn/1czjKe8y8hmM/e2Y2+ONrW/4ev39+1wmqd/KnzyZNq2woz88E89IuH4XwBLJ9SOEYwkS8gPX6VAr4KDwhFAacjvRX0xCcPuz1588njLzHEtRTY4bc7dMkWz3EViBqKTG8hzsSRGAFlWtjIC0+BMkSSlqo/j89BQL/v3sK1l2dk5OoKICan7JTfmoCiLc7D0mbtX0M++8jIqfr/PYYI5MC9Yt9Ifa5LprlqjR39dIvKkEPxUzWt320QLOzfFQQuWNzElJF/TVOjU7g+DGHPIs4NUwUBTn33vFE1Koh2HE3DdPAEvMpj+4F/KlnQI7veGDMlH6y8nueL8SHhzZZbrETwt/xISKrf1u5EPFHB94u1wVvE1aSac6QDJ2B6si2LJAs/ta37Jy4lZhiwTesEoGiyFzNcH137WbKZTBA++daWOYFOWGuInBg/3ue0K1r5Jw+odYqcW2dicHsNl+Enrow83mGtufNaXKiPWTWN8btsl6bpc+5EjqWgpAW1ta4daleodAhAb/8ovamQ/pI4ZwXNrrql1fCcLrrYSqvCzrgbmz6+qtWwCHimbjVGpvd/jG5ULyZ22zxY8HYdrQ6CDh9m9W49z3xfnNFKH55DYu7TE7IrE2REn0aF5nmtq/Tb2kBtTSuEIoKm81feiyg9a2zUHgNcY6vYzzAjs5XEib90sxxoyvQSeWaJGuBGJUaVoB75/nk1CmNR8NMucKnlYrEe3RGQpuvJMOAMzNcmV0KllgqbBAXgYX8FLbJknU3B3LPKkaF8l28xZgrHx75Y4L04QAa8ha5eK8pboysWBzybyUCGZ4+00D8lHBsiXjkKMZlq+GkZQ0mV7Nj+NntKxJ8w9bbrmcBGhwQCi4NY8vkwhXmR1YgLbxk+Tp97y18jSYkh1EaAHuK9Lr/u3/LU15Jr6BWhLDavTCLjUvSzwcBg1wd3+Hu5h0TBkSvhpdfm4TfG//LWa8mk0qkgCJvYQGjnpkZMExkhaDL/DCXLz2W8BJIXyw3tzln17uUAkU5t8S7Sl3CuP15UJKbN4egupimcDy4EFrnAfz9Pvlkv6qCy53n8XzTa49+dk8ehnf1GRIurZvJhKsDp6w/h28cu6PgF58BwvywQ4iKnTkn0iUC2M4IOrwGyWSdGrmqeOb4cAc+doOFmWZQfpKWnPi7NdLmu5OhqHPvUKlNhRGprI3dREgWitv7pnn7LmDutAcM87Hy6P2dp5A6xoT56MhyuvuiCrDdWwlFKcOAyCvX/T0POUlHLSegJBx09ipHvNHq8+Vz7Ccw8usacl7f5HPWvRxFxnVAjHKCbGRkkrdZuWrInW3NW4V56dRMYieM1SpomEBIDKfXxCPf1dKGVd4xBX/4kkkYsdV/f20Y8viE9JYPTXa+U1/95uNIjpz6S6bbSexALHnH7Xk0j999jxUMQ95E6fnzbrq+PUVgzkubOLv2ObJr4WBY2euFuFfTb9b2+b1DxXq8iPt9x81fPKk52zzYrpGTSf8UoSL3v5ScWu+bYy0/XSH73ENSor431xG8O5AcTxnSm6ZKlmtzFMHh+NaQ7Z+Jud5ueg/dA2mwcHyOzZokawpHbv9Bt/NhHqdUqFa4pp0d7ivPaHBpm9swJZ1gvk0V8xdJZ6zIZudtNTQ7WRtBp2DDP6Qn18YkeCruQKfGiE6dYnq/PLZdePg2e6w+qMGE3Y1bwVrOfig7+cAWXZdtmOngRvwWQg87rnWHD6hLIb1r72Q92FIB7b17CykfXPMpKQ1e9fz7mVx4qxn//b3lLRhZnw9nYrhYJezEFpF0NC9MTOB1AjsunZGuZYNHA+I6yrV9I6Sdz1oj1fUnVl2vK4ght7o3+1TiITXgCbNj4nm9UHU1EIujgpC9vNg6gYHCpaFtuCZq3Gzx76jrfkQ4vWz7SiypjSEU+ZE8D03FvllhD/Dt/7RwcogHmKuoHFSoU5Lcd94mFWUvgn3xrIh9JoYpbb8HYSia4RCbjbcS0F0h4uceOZOAwRxJ9xqcLIBJEPKJx856XsKTsjDiKImXD9IMODh9upSYKOFHmq6lr+D8+SGu6k/NjLx3C9iuUQhKi3GcOG60wYbH4biwk0lt7VTvq2XitlnlN7DEzUmBtyriQ2F25HG5KVMLn+nlhBC5h97CmWMGNOIjlEvniuFTcHcBoDCZweNxN9evnMUy8OyAmP5ierOuU1s9DUuA9O5wZbOlQx4S1fqh8GK3rH9Bg4PdYZ3DfTa7DX3IS6TazdlD9gf2bKn0wwAfZ8Xb4t/3Jt9MQviOqwDd+NAypet9l0Ltd7tijPrem38vw1f0i3Uhqf1bGEnnAEJBdx/IL2DcsPNlHsB1uDvI8XMyLnN9ruDpJTzJwXx2bAiC0oa30Y+I7ZzdRAovvQJacjgQ+00eYP3KZ+vf+9k/Ch2QVrHu4Jn5BioNd2wWc35nMJ0lHR0Tvh3nT77KMKqKFGXFGiQzf84zyKm1HCo4SnL2/XAQtrwHkXawHHNOpWupVB4vh/x+NyTLzpw6CEVxJMGh0cCU2CRW/NnfodOveDSzrG1n+7TdAzmtoDVCS10MVB+7yLxVTkICzrKg89gdQvDpaEPuhWlDnQQYc3XbebS/cj4UJ6XB1OvKhEkr9KGwnD4hTAkHiMfpGC7xDhDteWbNIp4vqyJ8DQ/LbZ971Nh/W4iU9o0uaxclrD/PEKykdtBJNyKw8Of8rtwu6YKKvMzG1W9pqY6lssOSQl/myq5xAWgMC3KrG9b0nfEboHuYG6Ifxtu4/gcAAP//LF3J0qo6EH4gFyICaZbMoyYMiroDfhwAQRkC5Olv4bkPQBVFOt9EOj3GzgSW6Fyou0hhNhHrc4I5nkJyU7UJ/fQixPZGp14RPOJBU8UILt/bOoty8LLZuAWp7NsnlYSxK6z8bztSfx+5UZ76B2u2z20Aab+7kYPUhCve3Ub0XF6MGnVd6NM4V6286idiGLaS/epFHvMAj5tlLuMpOx4lJMRVQZNteo0nJVT4n57AX90eS5r77hVF+WGm/vAu2Lzp7QU2baFRyzCybNkPDGB6ASV+dT50v+elF0tagod4iqfR5AVwDXEkx41nMZ5UuwOAL2hEc/GQseNnltAjWVri4sfiz5m8M9BLK61xcfHiv9Gt6eH2ltWxXaw8nuRoAeDeh4QQgzCdzVmQIMxENjYxV5Xzn7wvII/L068+9Lky8o10Fqs3/tt4L/+7zfcaqLXR0rw4JuXsTXKBvuXmQnRL07JJIj0PihEcca1u/+HHGywWFlR3KoFNZmiDKHnRdWz0ponHv3myYFSePLEsdvHZW756qNqaHfWuS9v1BnAvELR5hxkdiM76/sqL8QUSLEW6rk8C+RZgbbBEjphj/vKptAKKTvFoVr932Vyc/wpg0tr38pTC8sf/oJqGRpWHQrqhzfgc+eE9o84SP9my5dI3oEQLyLG6D/5Im/MJ/qQDwlV12sXz32cIUNosPH7X4DBmS0uK3hNNxs3T2rM5Ln0D9OdXw3ApduxjT9MIQvwu8CMMH+XX2aEETPsZr2cK4rLb2YYFur8QqkSvT9wp/lSt7/9HUpfn9HYvHFsoaj8cpXwZ4hn7jyusfgPDP/8iVW94HtqBOmaPUX9x11knt4tONNyb+qx+8wLuu22Pe75pupkTtwvMDvekp/ZZretV8dA2WYA795CiqU14jDDXu+Rc7p/ZJEcSwEe7vKmn8jVa/+We4CB4lFiS67Hl8ff9Qv9t9wTLj6Gb3QkZYOTVhR7iYvYZ/iALecnrvq7/lc0jX0ngJetdfbdwRD+8Bhe9XaKGwon1an06oPhPEQk2xKabP3cPw8CnObEBR1k/mPCAdX9Qc3kH2cQdMg8N/DUninWe0Kx84wiJ21NLwyWi2c8vwh+JIqKemgktUSw6KCCfC4182YhpqGY59Lt3M/LbRiu5lQ/hT8KI6Mo6jzcuDwHswFSp2/u7crn/tQFkQrUZ20cbdrvkHWL5GJsmlsRD6c/Kps7BPlkDOc6yW7JD9OchP79W1K/fQclS9sVw7RWT+Ov3HvlhWSCoX3tqMH2bjakGByB4/yJK+loY22VJtPqzlGi552fsOv1F6Ms2MnHytkcL3UyC7EP2R+11P82srq5AbbwfS33te5Iv3BXpwd7CLJhttNzGxyRPgl4T7/78+NPlqHo/f4N5I1TYUu/MBFZ8I2Z6q9jsThBIM2Me5rfpNZuU0OFBoZhQG/ASDx3/8ODo+OeRP9OuHNtDPUIbJSk1Ul4oGT63AmzZrSIHMXGyHlDiQFdueSz+8oHYFb4w8hkih6aL/SWGol/7QtE6q6tmUypIOTKHdKHaOTMRy+4h/vlnPEx9XTKJ9xIYlZIfJzhuGcvvUQo6PwrjnjTnbuZk1ZMTtzlQd+WL6bu2ta31SYz+6fp0UKpInhzthuWI26MeGh1Q/eUuOHYqAbFS8hQ44zag9jIFiD15Pvrp6VUfXUtezfxR0lfWyDXlnfWocSu01jO1HeHG2Ki8W/iIikpNwTj6bEebAB1ecUmJOTyzJYAbQPAoGmro0g5RxRcq8edHvftpgz7G7ZruA++93kMCl3XW1qaFj53x43wUupjebBaB7m1Fcti5t3hISsIJVnseiWqkI5rsbspluR+nNW8wsnlDQweMy8umpPTTbEKN+4atfr2SNOTlbhbbjSXVuyWlhvUJEQvU6F8+QJzME7u+Sw8JVIavE/OKkm7eyd4JMS/3cXTECeuvRy2BV1T2+Om7NJ4m1+dh5G9o3C/TxIYswg5wWRATywjNbudOzIJitzlSq+/cbqds6gJ+ete8fB02FaBO8upPx0XFJet1YCc54Z6vsbmZF33afiNLfh2LFzECm8X/+IoeYhsv637pxj7DsNVqSj3+r9HZO/ym4D/vI/HewYctsvPKBUNtW3r+OIx9NFUMIL5sEnJ83NsV7+sI/CW40Pzjdv4gX9ABRvV0IHbc3P05eYeHXz2P7WhFaGwqx0Krn6Vq0DQxRcdH8uNPqgmXrJw/7HQFKQ06quCzFM/vDAyoOKhpdnK8bpIb0wH16/vUVoQgW1ohy8VczCxq38y9/w3X+eqARIyzx1n31zziDYer42J+gCj7FrMYQaEYDlGb0vSHVF5GuU+/IdG8e+I3zcc5IVdibNy02mtd3zRAgsZ29Njfk24uJ/UBuOAS6oofHs1P45YipQrYLz9DM/E/Fcx/4oV8xUPDvn/p6QF1Jc/EBCNE0560BtI8SH/+0B+O+ZuHqoKI2Jb7h5bqIQJYGKsjazcsHgyV43/4T4+Pu97tztL3gKATEP1r7yHjbEUbYUwybRTJnPjMlkQML7sGcvyb7K7fl0sAIpcdxokwp9wrzqhAtRVUuuqjeHy6YStNg+ATozpJ/opHEmT2nBOv0BO/ye43DJf6YpCDHhJ9FmRiSc+Q7tfvffHnVV+j+YgMLN4IZG3ZuZG08hP98evyNwsWrPqBkMzv9f6Yrveere+75fgvekPOcnnlzzEB4c26y3Sy4O+Lz7i8P5JyGs2NJH11PxufeZNmK35dgU1JSI+fKS3Zz1/DPDnUC2qOjY5nVui0iALVseajXoNpI7+O+e7HhzHTH/iEvq5yIvnqP/u/IOIgtaeArnzU8TT2Hekgk4gax+t+1dPPE2JpXtBjh1vW/4HzlqqteSXHRi3K5eFeC3ixtS9UIA99OcdcL5XObaYKD205HJzTF5529Ud/+u2nF+Tuxud4fnBuNjWdjf/5hY2diX7/iFsApYrY+Apx1s1H58zDHw19etAU36/T99375a1YOGUy62+7RkCvMjlT/+pw+mJa2wJJ9MwR9Sj42VikfyPqSf/EQz3t2Jhe8BVp3208cqte321o6IEbtDbN4MVi9pFzCX561aDBw2f+Ru2BHkKbaL780RmXxQLq67dKj1qTlv/q5d6pQAzz+vHpr16iAy6Iq8W3btfzzxMs9OH8y3eGa6RVQLbdeoLw4iAWfPgWVr9JC3yp9JnV3QEltNhQJVc8xG+423Xd7wUxi5vbcUNqS3BHfP1/fuF04hfu/KRRtStdhLx3OcGkbVyC9Yx2dNFlAFuEO1FTU2c8f3u8QXSLEkurH5o4wREgfkkW0cJM9flrd9bgdNSXcesOb324SMMCTdI4xDqFQsms8pTDQXAoyQLHRGzJwheKkrMwSpfTOZ6sdhBg7KMnNdVtzObsfB0BMqmlju+piKFjm0D7Sgbi429UTq9OsX56kByU19WfxZY3gFNOFeYtttenhVsPASmbNzE3rGWjf4wewOr0iec1b1vu1qGHYCqkkW+Le0bd96uCadlqRHlTP9sHg6LIohSYFBuiXf7wDByinvFykffxMItIgXjQD9Tmp3O3xNuHhVBNJMw5tukzycurf34gnn3b7zTunkiMvEZqKQZfLo0QRbDme9SuI9KxukYp2muLvh52Vlf96h0kiZzQuA/NY8kKX5+k/JYe13td9Hiv7R8jbKI3j5eveM5m01QquM3CTNxn7seTWMochF32wuPT2qNxjJVF/ul/59TqWY/Qeo+ck+yInZZ1vPKdgeq71GBx+OhsVDN9hAHl23H+Rk+/57j9C5o8V0loCs8ffy6wdXL0Tx+s+P5ClyDANDnTrmv1OqkAdQYjAWFtNwEqHLANI6UnFrjddLy8K4B5cbA8yzjmR1T/rx+Of1PTLbexnaTXJrjQ9LEs/m5XvxeAhDMJqSU+nk6FocBnY4QkXOu3e756Ay68p4z7pFRK7vrMX6D7E6GHIn2gBeWiATs/vJPQSONy+g8AAP//pJ3N+nuwFoUvqIOqlmxDn6Vooqi2M1S1VKtIkKs/j9//DM/s3ICHkLWz3iU7EjpdIRfiipDueojmwzFwlD+ecjjqD2/sp9aEfRTuGBnFvbeNrnMDk66c2Y1MKR8O+Xf3xzOJ3x72EU3pE9BSTehvXMfe+AT8giagd1xj0erEzy4NULpXPgTrbvePZyM6na9kf2NBNMm9+lMe5/Uex1c7R9xfubKkv+U7Ha9q4029K8yQVS+Huer7iSY378J/37PM6LOaAq8CeDPpSMuGdVGTrKuv7JadxAxXtz0hO1o70EujZuqmkKOpf11j+Ks3f3o9vO2yh3E5T09f7y/ZJLzfDbjo/SU427yzcbCEUn54msHuGyUy5jhCr0Wf3YVPqnz7i+UdqiSiMvV2wmg79KkKb7aTmbumUvQtg0sN3Zpiur2Fz4y3rdvvpu/W/sdjJi5trsC0S0c0chAWvzMU6AbCceEJ0ZLn1TJIcmgt/gdH0+Na6jCt+mbpj5V1wlJvFGzIH2YVt7abnxP8d324tsqML3wdw7TbpHhg+Nj98QjlCuqVuK/g7f3xcrTJ9xkjZV503bb46WiWWkLUd6F3s7FHO1jyRirs2wnRe5qXoDx5TIg1aNl0WfZ1m5fSZninyxU3PSVB18RtGM42arV9iDL9p6eOrmBDWPJKeVBfF2Ze44/x5///rRfIeZC86a9e8fjzZnjhJXO98V04pKPMjiv3ZbDmLdTL+j7GtXU9ePwhyj36zheVqMmLGkPvohrMqRVwV5/7bmgywYQVTy3iCa8WTV/7ncOSHy7+/xgJJkCJIFhJxF/vVt30yZQAjbpXUnRr9GymZJ3uNHllM3t4GJkoT+4eqUK0p7ulPrFjWMTweK9vS97zRku+NaLF3y78KPRmszgJgFciEPWq7j3uN58EuhV6Y3nhWeNXr1WkADMoFGnJ++l++VcPMVruv7fjfAep8tMXf3HuGshRDn/+Siax7Q2+k/+QXmo1MT15HY3p8k9Bk319upHOJ2/cx+FLGZr0wJwlP2V/fmvJP5laq0LWu8ZVgKEreqpIyoVPwUN0YKuPCcGBlHajFd8ShKxjzFzzmmcL/11BnaqE/PH34Rq69R+fIQ6rLd6hggGcb7XKDtkqiujh+UrgLz/UvAPJBvoK6R9PIsm3WEdN0t0KWPOs/vPbGS8ed0Bt5BBiZwI2hKSwa8XL0y3ZL3552pzi+i+vxfPCG8TDMXDBg9udaLddkQ1PDYuw5CPElseHNz17aBa9wH/zP+ONcosBY20g+v5xinh9+urwCRhgVrYO4r943v3jI2qpso7VuPjBwvMZNjIhmsv7M4eAtQoej+ap26reroGz0QvE8mnh8be89N3MzJKuP9e6m6xhsejylbJjEDbRCOE0Q248NeIXR7H60zv5L59XCXe60bv0PsJUbIm5mVHUT4ej/n/1Kdhs/vc/BXiTmcxN7W03zcY2AcKuFtH74yPq9aFdQdK9t4Q4K7+bgvIrosm9n9g1R6Qa3Uc7goZUgR0idO76LbUp+Psgwijv82pkj9sKnnPYYUV8vLLZOrxCQHF4x3IPuNu2G/KD8qZQ5gquU43TZu0AMq8JI1fXySYIA1GxhaHDelq+vDE1DiL4pqgSp/RsPrlSJ6Lo8S7wdFO76itnigo2P13pVi+qijbu5MCjaznusg81eOJvGrjETsM8/jgbXLJjF5hYGngUTyyaxiE1dw8hzki65Ua3uYTlD8bf2yVYNzXv027IFz13xpao3VRwro9HEYTQnZj29e2IW1WdKD/n8sariyF0o/VUC4Xw957haW91bEV3X9DbmBFSPjDfeonXw3cbKOSoHt98LES1ByRJIzM23bYalPbcQCxPGu2+JxRRmH0Tqnt+ZBESnxnHhx+WIv2zwig/bxHlsvwDHgEjN/ep8hlvbgGaddnG40b+dawR8YiUlykQX9YzNJ1g7aOdVLxxkfSMj3HuC0DXVcksoavRqyxcQDwsc5YcT5tsCCZI4cpbnex1A2X98SoVcGsiEQsR/UafRtzPgM2lheO9vRlbIYYZSU18JKEzSh1NZp6DKWs9UV3xw+d16mCwh9Ij1tlfGFneB5BcNy6zsfGKZuNJXdQM04OO0tPu5uqS/iAxXyd22LyrahxSNQEXKoO4x/uvmvLTYQXfGUxyWw5bo/OmVeHv/vXKH7Ix+dg/1K/oDwsdcat5o5oJuO33TvQmtyrWX9Ia2HEdY+UFT87ydSzD9ZFrhFw2Wjf38TmAe/MyGd7fPtWMkZ7LIlNscljGW3DhQcGqVUonXCKPrenJlM9o0zKzHnJjdvRphaR0XhOXasDn9C1foVPHjGWX0O74TCoH4Kn6xPaeUbeVj8cY3n2/JRY+e1WfZO8A4kNdEt2/iB0vDVYADr8XEscp50zSfgAHr4mx8HtqhmgdfiFk5nlN9Ax33bzanil8khhTIZ6uVcvWRx+8C1zZIbmbEUuFcL++WHTGreSr3Wwbtxc4qD+SYJvcuy8Yk6McHuiIYdB+HltLKId7e/0RVXJffLD2/Qp16/2Z6aH09ngE7R7Cn2lSfuNBNyrlxwT1FL2xqK6O3sgeJwA1e12ZN09dRWd/ENB5yVD22fTuOHOlPdyeoODZucWcD17wU141epD9jAxjW8HWBA3uNkmplqPZMqQ9qPmqI4fC1KLl+QPIvN5n90/UVGPinnr5e152bIcfIWJm7e3gvC3HxeNJnLUsKcCIR5M9Dr1otGLqhPDYEg33fVRWY/N1SkinT8j0Jn93Uw3jCqTW5+T4k41qXk8+yDaFgqK1GfFxc4+o8mOFyixdr6Ip9XYJWKbzoeJkPTgfTgdRLpIgZPZ0MCLuXFwB9clhAcDBAVG7tHMobLEg/o7UXmeF1xnCNbuQ40r4chpLPkbTQV0RvapCr82864huq9Udv9JtwzkKkxXw8JUv41UZ86rjMUxXySJkR9OqDqqcgub3EvOFkx4Jp1PbyDg2f4x8ri9jFL1vA9lEPswyiiSaUnopUDQiCc8N/0V0RNIIaSdaDDeKxEcqrgKonh1me7J5eawZ7w2cxf2d4Vm6R73V/wSkkc9jmY/HSFgZp0bxHPNEEbon6EejTQ/iHafLfHtWM+rlAvrn4DI3D7VqbJ8BBvIKe7pS9IPB6eucgoPokZY0OlbzbpBq4N8DI3hlb6PpVB4CsHQa4/7kadm2LfQdmJdgveinllHpUwoouaRbCi83RuP2NSTw47PMzKMvcZqs7sLf9ZghhUI1LPURmdchZBfZ59l0SgMT4ZNvUumnmkuv4d0PwFQ7tuxC80b5c0lBee0FdniUQsRuar5HHyUTmJ5uGzTdc39GZ+HrMhuobkzlOc6houOHnax9E7Hse3XQHaKAOTli1bQTiy8MgWYRx+wrNKgPtkLw1H1i04Chsaa3AD4NPuM1Cu1M6IyHiNJ7esIzE9NsPqKfCsMaeYtelWiqUlwC0lcG88/lh8+t6YiQF0ebudpzYbpoC6it3Td9+oMRCWvFmVE2dzLdWdNsjO64iQFZQksOEdpU07QTCnnRd6Ym5hP9tKRLUPBwI2IuerScY1XDSA4b5t83OPrtBqmBQlLXLGs2jjFZfuGgtfYJiGo3rOKSnTuIOdjBogMYbV3P2cFWi15UGNtHNbhSJUKdfQkLFeXDedlIBXKMw4NZ6Wnpf5VuRAhBmIgxxSGaylIUpFC73Qnp54shrt+/BlJtaxI1yfbV7/Hzd3/vj6RHgUVcexvqLsSlSLRru0fz+4u/oJTfJzsGBUM8l6oeTmg+YBEiiY+u2LyA4mRNEXvyaJxbBaONEkdEjV6RMewepx38IpkTTROp0dtNaqKD62rEvuznbLhbjgqDodV01ZAgm2ym1jBxXaUKmetovilJD8v6A6+gM6M/vQFvYDVW8jSKpjKzvmDfvyY72xz4T/NUUNqP4TG7uskdXU11CVEWvol7/A8AAAD//6Rdy7aqPLN9IBoiKCma3EXARAURe+AFAREEEiBPfwZrf82/d5oO93JDUpk156ykIrJs9qB1QX3FDoUhwWi2skeq6MlxR57Obdf1ByYFkH9yYN6Cr314MjSIgpdD5+iShKOxtSLUxz7Qk+orqBfUPFLn5p0S27i55rgyZg2u7ichT3EwuqnecQm9Q0mmAtasbtz15lEhq2PADpa/61jo+gWgs+TR47vVSvGllx7cO9yw4CL3HS0fpggePri0fKdDOa9eU4qk9y2jK9554YQqE1SbK2tyeF0qRNPpPoLU/TBzeNt3vKmyH+yORUc78fDk756OI6ivyGH+8SaGvW7jCNbavaelepTCkf3EGFa0Gpl/2qloklLtiCbHS4hl7VvE8774If8nCXg6ZAGXmJR76N5EBrEKxTJFT6I5sOMa4fP3zdEcb/ofZKmnEX2qwe+PVLb+xp9p5T0JWd/UHkzK4UX2QZTwv/EBuh0jYr/dKuRq4ARQzYNEZaCGP9bbuwOevmNYPNqHbLg+TQMWvoTVKlmbdNQ7A7qydJnVn1M0enClsKquKtF+Fx919cvTgF8ygwrTw8vklWickVSsKVVfFwuxxzbwlP7NPBY4UfCPz8BaGGvivBKjk/tTmyoZKANz4Cd0/Lj3fhDPUkCVsfS7GWT1rPy97069dyWfLW2E355vlvXA/RmzxoI9igvmNjnNFj6KoR/SI3HkY9uN7TvBysJfWdCmgz/Hm6oBMKqEbtoPlO1Oi/6NB8FXMyp56PrL/ZRxRg6VfgzH1EUGbBLPJ3p0NswfDp6OQt/2sOida8lLkB0U7L0t3bCxDv/0i6LR0MbK/fwuuX9Mc6SvLgNxRu1UTsfexH/4QNdPMqKBbe8aUDKdiSvag1k3FwTwHqWEIhJ9OGfH3xFB2wrMfry/IQ+NNIZbXvyY/XatTLS+twAqvbxgOdYtU55zgSoLn2V//G/cTcspeEfL2eWpKtlggP6T9/2GsmA9XML+fvtqELSmRvSm7M32WKca1P01YObefyMeo1aAB5yOWCyUypyY9/2BW722FC5y0PGr00uIBaVO+3aa0Fwfi/hvPeA345U59bZaAW5uJR7kaiz/5cPYyk/EWBmxz6/ISNHs2TXZD0Jd0qMvFfDa3TnxNaf3f55xTtDec3W2f84en+1L0ABu1xLepuLep330OEP0OnC2i/XK79QABzDPzYWOw8fyx+Ojy+F76GrmJK7XST7olXpNHi+28LusbzZiDolUNmTPp2fGV6J3hEC+i0xf9CC/nncYDCk60sl++L6o030Ba/NyJgF1Nhnvm9r9+30M1NmE/ZWUMTjhDFg5Wd9uFNQ8Vh3yNJgOTt+NrYA99D6nFQuGhKIpOesWfK/zmyJ3lsOZGUYN7dW3aKGqO8SnbHCgaeQ9wY9Ay6a9/9IAYnSi6n3amPNN/uQA9ZQQ3XacbF2a+xmcsjOpMipjNk+HQ4IyhgLiumGOxlLJMKDmG+P36Ya7eZc+zyB+kcqC85GUa39rHdGxvERYPeDron+3LnQk2hGXjU4or6MHBuFRLEUIboZ8F2iGeprKmIr0ZXDpjx8o0c/Fqw1NO7Z8D4P1kPHqFIbmBA+OwUKvFTG0LPR5FDoRpI/kxO7m/AinTisBvkqJaX/y39n8GC8NyIHQ4JV2fod8wQsomHcmhyVfiTUvlD/9x55FE2a/tOtqwJJ8ZYZal+YYedsz6gxMCRG2VTYN9ITVaOlrY+605RxZXEYgoeLC9lkxd7NsPwDa7KEyTDhkc3uJUijqy0wHTn7mzKTcRb/NjmPUnLKwKbRKQ3983t7ZYbboAQVdizrFTNd+iF811KCPYJ6W+LR8Kf3MibpW4xBPObY7acN/I9SuFxBf0Us09JqVIPhcbeZ/y1M5R99NA7W8SRm5rJ4ZvfW+B3/8WYgvnd/o21KBnbQXyD7oHh3H6XqE6hBkdErvz7IX9t6M3kfhxPY83XajsDdmUFlwwNt6DDpuP5CHPj2VMT/sy5JzYtYwz78LsXZZ7vd9fnNgGS8K63jsZv1+z5GxDSRin6DpmJW0BSSvp84OvMZLfnhR0DN3YO6lkzPWlfcckP9d4zW+dN0oN88CipVxo/Nz3XSz7BMP7cZkZtaiP3udKz0SnFAk1vXyybgXl0c1w/XMHE0YfFbfjpJ6f3UpCdrpxPnhUrmIBpue+LafhlN6TSnEVZLg2e86c/SXvgLPXn8S656sSy6H6x+qjFWDZUW5c37T7hZcb9uZLPhQ9ltrcwTxu1VZOp0u/jje9ABWh3P8z88a5s19A84KH7EqiC7n5UeJ//Hfw15Yhe0kfBq00lyVGMiKQlFkjgiH0DDoKnkP5ty84wh25ttjp9S+ockK1j3YEs+Y9lpnIf+Maw+dhB9j+PYpwym3XOVvPInH128+CmoTo6ScEVWSzupmzpIzbNyj9S+fDoNopKqjKTE5nErBHOTJ1uCkBndCLs22o/cu0OATiCO7DYLTid5tU/1b//Y5PGSSTbInEi/mla6+rEbTdU2WnTkfjwxW0YfTYVNRiF6EE/9+kXnbnl8OLPFN7LXRlsxcrzS06FOyX0OTTaePcof7trkzHcsvztbmvoFuLFpm6gfNX6/zm4Yum5XJjEA7cdGvUIIO6eGNRdnHPhUDfIb79nfHSG00xBA6u7AzLJkQHn3KIU62CRJX3onZYYLK4Q8//sZ7XhmxufgBEpKF/R7PC95Mq+VmyoK5Z5I22DZl4XSVgLDUZtYr/PpM//ga+B7IVEok0Z+ng50o93y1xvOit9oipc5/fH/4VP64vhY5ePcGmLfwFXa6CQ081euGsvyFUZfRfQSJexhYkNM3n118j9Hro3wxW/BoXPL3ZkvVFfOP49an3gFGxVDaPd00OQ35g6cCjOlgMnz6vsvpg4NaOb63OlWwL5qTHlIN/S4Xh3hxnpbj/DxLcO7yK9vhyUcjkCyHphsYnRD7dn1YXCp4b3SZiu76Ys5/+BdfhAoLD2XPxyNdOaibBGAH5VH5/bSWXbTgE81fu4nTw7mW4HyWR6b95dfTNR3VHx+VxX/LeV/a60ZhRxnRZ5Zk5mxYY6C+HTnGwqP8+Eu+9NDx5YYsuieXPz36A+EpZJRVjo8moREM4KUoscdeWGUstQcK7iE5E/cSnbshvaY98uPCJrvtmnZjrpsVWGdwaL3CXcYQSj0YTLNiO9/DnJ9fTEIfHJrEx+rbH9rz1UH70+XN/vyzcU7eDTqvhiuzVSqigTXaE7a9fSMmFD1va8P7bYaZz8RtZO5P6Hke4edePvQtuj/eQtmnAPZdYH/4OwmNpMGdlW+235afcD4yLUfXt7djf/l3bi1N/OcvadJqgyY8ZwL0YRgv+YxnU/yzBPgQFmNF3/hoc90rLtyYE5OgD7Vy7Q/vjdpYzR7Lgrc2p/q2S+CExj3mVfj2uX7Lf0gP6BbLMTv8hw/9aW3i+WcW3ezrigS+LL7I3/r7488oNcMrMdzxVn4O35unYGNczgA+qowfiCIgZbN22W7By2nx+9DWeTrMM8jYMXb8nVEafSayDw+B+ccH/vIh3f6ubTf+8csoeDjE+POTBPEtwv5nuHhjm+5ylxoHZYlvvLKpmPX6ttugChUxFjK2Qsxcywb86ds//3S9E7czop7hkP3wfaMZs9xC7YVOzOpU0e/0W9OAte45O7PXupuu7Fmjxe8mu1uj++s8FyS0dg4btjd/flf7UpL+8SeGiyYMp7ShR2QEF8weDxf4oBvnOzyD/ZWYH93rmGT8LBDUlNBV4jXh8Fvvc0TKfkXlOGn4+GbHVBXK03JeWc05q25jogZijYnXfFrO8jkU4Xo1A3qP8Sn7V4+4I4v95xez71dDZY7Roj/GcETZ44nCm3gmu/KWlpP2YoB2TjZSYd4+subjkyN6bo0VMZ02NFu0vubK9e3uiC8MzPzHj9PoOzEDzQ/EHIZ7sPWjTo7tt8h4SvON+lcPsF7hzp+FDkV/fgRzuqg2xT9/XomdjI5W9zSZ5GZLPMkmHeyv0kmqSp/Aa3bHqASxnFZXQ/nDX+LaZtPN5cMXoW60cMGfXSmHB6CA7Z/EnG9sZYvea+CQkjfRR6/1+WN4jxDJm4wcyGxl0uq1TVB95CvabEyM+mHpU5ZHQcGS46r/84ctNBJ/zewpC8rpHnMXFj+TStFmDjv9dZOUozh96TdOGjR3KdWUZT2ww/Vq+uvZlCO0+E+Lf/Dt5qNziJBo9irRXs+4ozf5UwDy9gWWvfsnm2d0xvBh3wdxUd8i3pZggWofAmLqqO36xd9FC19i+FHa/uQ1yRk9Je9Gq06NfBZ8X2flcVhdmO/Hlr9+ZUMAdDtHdL304RlfuyiCv/nXCs3OZNBKEZ1R+qT0JDhhx7zJgUwzHWIsfsA4VkuVRaMv5mhHs5wQq2NgEBJ6+bxac9a/ggI+28t0mxXnToy87RF5r3fBgsdz33Ubw8vhF083pp2d3KfhKgI4RPcLC59vxfzlyWmESbyHJB2DGk32+hRvFz+YHWR0yabOeXhAPc0ht9+1LYe5VwrkxG2BBWV/6eS/ekib6j9mOKreTbw/C7D3q4hFZXMoR/92M6BxnPuij6eO9Q9zVkF3bfIkd7mbhNKS0J8/bI4q9af1VFXwOKgXKlWzXNKjUihKZd0Q/vVAO3ZluaYenUdPzOr3QfP36M0IjDphTmVRc3xIzRGg7QTaBp1azmu6oRDd7t8/fmlOuP+N6PEVrstdYHU2XdshgeHhPUmwknLExUhcns+zmb2+4ZBmr/a3WeoT7PLzo3C8u+EdRvUxLvUSv8tvKfW2wiN3ScTQBf3pB6jvS2/6Kln70+bWUCWk+pks8VdS25wsdU2MhI6xpXN53m/hX71yqY+g6XH8JbDUAzCyi5c/XEI3AP3+0dh+t5rN/s2OCfrzz/RaVzO6zJ/CZCFm3rbOOp6KqYMurQN0tfCT8bBmCTAZYoYfQZ5Ny/wBkk2P7KtgxXtBbSLw1FVMZfoVy+V9G2WsjyeKomvsM/2WN7D4ccynd9ucN42WbA4Jx1gux1XIiNpgJB13OvHurROKYcwx3MZkotJnDxkTbPUJEZCI2Q/PKMWnpFGV72URt+dX0Q01nBLVW93av3jnk0f3d0Ry8cZs9Tr68+pTVIBmesJsc72g6WnlT7UfkiM5nYyWjzg5bdR4FgPiOq+sZFlzdOGPH+s3ze8mtL4W8McPAl+7ZvR91jW01IuZtqtJ2ee6XyvBtxrYTdbjbp4d8aesfNEk4SF3w2nH3Epd6i8kEFcdYvnmoCHMhYlOtsj4n78IU1QFzMXOppuPvlBAaHwEYjB3RPzPP3NLs6bUmH/dWDiXAAV7d4tncm7MPneWPUuKtvvj5+Efn/7nJ/3Ve4ZXNmD48xd8f3A5P6lugwRiRey81Cun2VxFSF597sRlt3fHraTNN398ctFL2TDQUwCWP0zEK+5Pc1DbRwXLesHC6auXLDyIvbLoExrfnSAbdRvH/+q1wqK3e8G81f+/PQXS/95ToEnimiov3qFp19xT1Brpla6O7YU3bE1nNJjQMgdfom7MzCpA/iscmDcXEx/p8xNA5mFOeXsJw2Gb3p9K055qep/SKBwKNinw7puaOOXrkPHpfj7DVbUjohsk6cRjGxQQz4qLqyRLss4eDkf4+30in3NEZTPwwG1aTqfqKnfjudexutN/mHht9vHntzgVEJmbBnOx2HZUCI+N2sa7FXO5tvS+UR0RhKPiMOtUdiV1VyRAvRAQphvbrmuuoveD6x527Gj4Qzk/PokGg30kJH1XPuKf7TdXzsa9J+7FGrPJfOpHuF5jRLxjbXPqOCyGJnwfmP6bvYx/E8CwjBfxjysvm1YPUkDO3xIzc1yX/VlzXCR9J4HsPtEm5L95vqs3vd8QwxMZ57n4GxGxxpkdSLfl4wX9KErLgeBV8dDL5X1zuDzKG/MBxz7/BYcZjQktMGy+Stf4ambAE5kK8eKr3c1ia4sQJdcMc1vN+fTKkwS2Hj3SrXek3aRMsQYeeDnezHYR8rDeVnDT6Ya5SapmzM/4E6mHymVPGjwy+hRx8e/v1/XuHk7bNHqi68ZyWLAb191vZS4e2dWpiPe9+KV4PVcRPALhQgItbdDAr+8UJdx44nt2eYc0OW8lgOiVEG+VX1FrhX0OB+RpzHgJTTnVtevBt6Yi3djxA82XDS9gqoSc4RDJ5ZTLJ4Co0L4kkZf7T8RSfkJn5AMx01PIe6asXVC6m85w/VO7sZ0RRbWjmfgW9iJv7ukwI/def/DmpRd8bNXjHXBlfvHKne9d99ntDfT8xmdi7J4Fmq70U8AXb1sqMnEyJ8nuKxSHz3KZP8InqT+dIVKSgL2itdvNedJWiD4+KdtB9St//s0ukPkRLwvmK3z+JC9AatS4LMrPU9erLk2Qp94dYoCGM/El9hps5bwl1s32Q0nXixptT/ORGN+8ySZfVhV4+dzGY/gczPF67iNYOZZF7NEi5hiangTpetaI9VXlpWauzugqzTnzzF0Y8kY55+C/4xdVXs85o8HdwKvLNfgwlzR71K9FzVHd7rwixq28cC772l39DnpD+b75Zvy3cUXQwxYTbfn/++pTbmB/GivmDPfc54/XrMAT6Qqxy6wIR2+9A8Xf9hZJ5Vbo2L55byD3GoKReAXOLNgkYF8OOQmotcvG18qdweSHPVb2lmOO1m3/g9hgCcG26Zty+/umyBibK7kG4rmbpP52hj5gW8y/FQ+n8aXfVa9OduxBuhsaJO2Jt4/0usfTtDqWPV7PAJu+OjFb0N9dee2ECB0ftsqcOBh4O6NTCp8enfG72ZR8lF5OBVFwPrDdR/Czr6RSQBfp55FDKAcdfV2qDWzz5495D3NVsvdxntX7bryyx5Ntw+lTmk84nPXjXzyWtHSqGQS3yKncrquSHmIkIW1dEirRnpd9qEIC++NTIMF1T8vxGzILLc/zb33Nl7MjQTc2Pa3IY/YHC8ceOKvvnWjKkHA2RjuMRi1WsYR/1JybmwfgTXuGJXUMfTad1oVa/aKcrmnITFb9tgaMj2HE/LOqw3Gl4xiMc56wh7N1yunavlz0ms8/vD4abde5eSxCV69yPI/cNedRO1lqv+s7lshS4X/Xrj/Deqgn5p8rOet16zTCRWo8drZoXIrfkDlwNp49lXWw0WAlygb+5jO4EdcU+7Obwu38NKlykrbh2HVhAw/ZL3AhbfVsxNdbDJso6LF45itzqK23qMrDsCP7PbqYs/ZrAOID3WMmytQAFEDrv5/i86OCSLBFlgrHKivuD0v4+30WyPnQ9VX+KACrdGb+PRi7NvefGzggV2MP+vBR354eKShkg9nxVNXdHF/MAnbqXmPGm7ndrDujAMEaDBYeXlo3KqAXyD9+I2bsScFn7ZPWIBxKytxlfHi/Bwc+dfUkTinWfDyWgosY2uzZNeo6PjuRNionJ6DkkNEPny6jHICAuoH2+/e6Wz5jEHMdk+CUUNSbcQCwW80B3gyV5POT8axQNvYJ8SolQb14CFMUyZNGvLv76abb93CHfertSTCwgQ+ztxMQ1jYp8Xf9r6RJb1vAtcZkjjqG5rgVMrx5XpWBbtbOhdNnrjfw4vURz0/L8Cd0hgS1r8ljzsF+m0O/ixQggioQN10fzXUu3wClyoSZ3RQszJmy9mDBY3a7RdhcxqdCYJuc7C3vkv06fTWicyqeSDDZCpoOV6P6y79089INPr7EyoDl+D07uBovOUaug07+ARix76wbvfp237LD7BFPL5yQvrEl/s0/WdZ7KV3MY6xSvpyjOS19eh7Fz4LdMWrIRfLckGffswAL/uMc+DmbBOcAkPNSwpM8HrO//ITATTyCza9VMnuwz7CFt4xztu7NCfW7BuXS3qAbflkjGl/8Au1WY0DC58Mp+yo4/pB1bijRpjrw5yaECsjZr+kY7nnZWsm8+YsH4ho/k3PltYngc5Rs8jd+U+XwHPi1N4jxtAp/QIdaA2cOWnbk/s2cQ/unweF9XzPyWO6AabPNBkLNOBIj+LClGqFX6qm9oIXj064xYwsgCo4Hcv7m7tKnKbDQgveMXLzCHLqgPIM1jgMJmvBbTsVaOyIxq1PiErXMhn5334B/2ihEt35dOXnZB5DbHVckGarYH4twQ7fruJiZlUPVcYmOT+Xv+XdFWKF5t68MoN9jTXb2eeZz9N4KoHZ0x4ii7rL585kStOtva1x/jkPIJUNN0TP+7ug6dg3OQ0W6q3eSTMRN0kfG2983gR+6D2yXxHM2VPrgQV25xhLvBz6ahmshOGQJ09KOZ3ze/AKoj1PHXLuTw3EmHweeVOiJxta9P34y4qHbBt/Jjo5CNzy3XQM1wjrBPey5bM9hA9a1A4pWWwinrOKjWhyLFeZ5mftzoHQS2LO+JcabNV3rzFsX1F/6Zla8OvFpHsUfvD9awPTgXXGGlt6J8udSEJ22SysHI+3hvHsoVAHPNyf5XntovW1Xy/uqIbXlcVbDZVu+/vCm8I/vgDrPO+YffyNnh+fGA/wMD3j2POAN4e0ZuvHX0+3lESGJVbqjbpvl/ujhQjP2eCmbP37PzG6s/QltWwdFShoQm7NLJt5sVUHuQ/GJ/1bHjJ/o7Qfitr/Rd3Y7haOrC3clF9f3JV935iyra4oUCz0IHk5mJp9KcQNnl+ds2fqZjd6aCMgYf1fiuJWIuC7JBnx27nLOsGtNtvkmCRgM+RjFo+cPq733UwK6MYgpFtuSSYaaIPyqOdGulzr82XH6BGlT7jFcqnc5VM1NRL/zVWUBvWmo59fRg+rYXpgeFhuflV8xgp3wrKlkujTkf/nteQnfWPyqVzSp/j1CAj1vqZj5VTm1Q1yBO8crsnPVbTb0Dcdo8E4P4m3ZxuQnI67+5bNDX36yj2h8FbiAIFDpQQ+ddH8EgHjx+uG3q23KqessBRUDmpmfOld/WnuKAOE6wCzYfNNyuvWhBAb9fqhyhbnsDs/RRfPm/CB61Z/8+dh1PSjR1WDByhiyyV570j/9pWfWlQ+Hq1eji3JZzpH3924KInujbBPbIvv7L/PH5+N3R+j21sihPH7KcXdqq798Ru4P57304lY3ShpHGfMTqSy/7s6swQ63CjEawHzS87MAD12t6Mrexf4s3V8pUo3vlSpbtvF/X7mqYP/NVeJWjzajKB2p2j/nHyNUybLZDB8jrLfdiq5d/xiOTdyNUISuzyJ3Z2eywE6iavPrCytieOLN2x9+6A+vsyX+ft4z3IBwxQqdxSctB7TcQDXZBcJyOtm+VD3qGI66NhKskDabbXkzws85L1selYhzX7k48MWo/RfPc+b4KSwbvclB40M26o/BULw7Rcy5yFE2TupWWixNmxwuTV/yzJ1i+Lf+jGr2B3YPZrjQc0VwrE8+/w299RfvdLgebiU38/wJl8dyP3g+fRH36yRAximYif1TDX99uZYAr8jriLPebhFf10OKDg9DJxr3tyarBFWBk/ktmL/Z7M21tr8lsI+nmSzz083z9dwo0vvhMbO98HACMaUQXuaWmc9HXXJROhZqiN4Gs3FtmmL9NEV0awuDSqXHOT+1/hk1M8x/6ymjcXragLbCKbEfv6KbLoXWQ0E4Z+QQNnxQL5ODLvcDJ95XO/ujpj8cJZK5xg7Oti7/6eFYyQv8w2uby+mLbNCSz5jWCTNqBccWQDx+W2bvVmo44BNg1G2NE3H6efD771sr1FeHf1Qe/KlkGwlvlEI6Jewv/vmtrRroajWn29936Cbe1eetNTshXq2Db0n3hi/848PCeJbQHx9Fix5h91i8mPzN7inKdBljZM+WLxb4Fyue/QPmrhIdrW99KKq3sTaIg1ZLn5X1WYHDvvuRIHw2Js/c7cKXi4R+pfMznE51b0GSqwPbZf3LbIfn8wlX1ufkD1/nlXB14E9fucWVIf7baKIqzfjCjAYo7zPhMqN/49fCqht/t+YJvpr1dJVJCPUX8v3BUS4i5t+mRzm1t1u/metDT9xfaZRjXZ6xKm0ltvSW3aFpq+sY2PaoEn0rtYhWDxor6ZCmzFi+/4svuGheveCN0rHCeWr/8htRTQ2Jq0FPVXP7VokhOLtOfiWp+MdfmOYZDh9PXrEBMTfxst4+/jx0b1f947u6tvqYjLYaVddr4Ur0SHiW7JKaHnrzviZno1HN4SLZNUR6eMcyq6uQ912awDTENlbz9ZnPUi16AK/7nuir82jy7C4EiiwnIUnj66djHfGeiBSbiaW70PHnrXRpIMlIiAUaPMJxc6U5UoNjwZzom3P+px9NJxmJXToNGp5nQUC8ePworOudKefbyYW/9W0+Z82UA/U2wkredux0aqZuFly0UVyvFJkWuFr4N/7bH4whTtYZC+c36zygH1UjFnE3JSdnnUJ/958Y8jvN5uZmCP/mY/eJkqy/TRsB/vL54clu2U/4PgoI1xgv4/3t2nWFA2R/oGNnWUTZoifv8DweQ/awVpr/Ty/1V++IJTXbduP53T+VwWhN0iWSWYqm4TowJ+KGxILdd0yXVgag/KuRQH3k4b/8/XkVTyoet0nH29PdQ5/oPVDlNsxlnsdGAjL5uCxIX6jjibhPwVEqzJKzIPF/ftL6vq7pWBRB2dfJ+vmHD8T/0tGcDzEX0eFsHvFm+zXMWfSqAE5p92aW4Z3LsQ8UDT5PvKHXw/NTUpoJGvrMXU9VNHbhcHfOLjSWxMnh4QXh1EZ+DL9dfaGznuzL2coaES36nOw+QpdNzbOx4FhPezp/1280NTKP1R0+SWx/vr+zP36CysP1SudFT85Xj47wqesnlmy8Q3/+Jkp3P/3P/yy5wG4SKH3/JVipDCQ+i1GCcade2X4SOe+nV4KhKqjDcHS3zPmKRgyLvmB2fb9wehH0DShpK7H9tcSmpE7zEe5UiokvCEbGN5KjwLnevphz3+flP/260xtMnKMjdnx7HY7o/PlsmT2/3qjv1mMCUmTF//yAyX3IP9gYe8SceVNnQ4DlHAzt8cXQbsSSL+sZLZ//4S3fjXtQ48JTCbGn1u8ndZL+9AGd+tIL2z98b2N7RRd97TfbrSWhN1g+eyz8gD7z/Q923+SL+XPO/V5f+TGKwujALsdr6f/uiNbwuvlbjFpxXy74kmwVxc7IAWdONkZV60Hn7XfEiHasGwXnTmGWBJkdTJyb46JXYWhud7JLl17TcrsRYTVvHswb1Wrxz66wnfV5S9uboPtzp8sj3C++f5ADce7YEzwJEkOmWHK3OPv79yhbDzXT8t2WD9lrSOE+FCMWT2XXzTemz3B4P9d0e959+fRI7Aj4WtKZ/5JjNG9RpUF6ENYEl+3Pny0RHMDMSIh5TtNufE4shoOnHrFsSkGG3PwpwmP2IoLhUvDR+IyW6oxbkzjJ+RvyPLTuoFDtgOvyNWTjyY5yuMfPic4jb3xmz+EPyu4V0/66p9208BnYx3zGrKtoyJ+SeIclXxO/FduOq6G+gXyY7uywsW1fRulb+G++16d54RvNHYpjvmIBOa+zPz8QCkYSGndxXc6cFzXMRWExs9VuaGZqFIHMtIEWQqab0n3vOgr/OBKe00ODZrgUMSz6Ea9v+zib7ro/gv09n3D1lDpzkM3zBo1ozSgzO9JJxmPOYZOHCh7n5e7UP/9saleUHT76p5yN0lW2f/69U3oh4r/AHpGA1xH+SbfOn0RaCPDnT746EqHhT4+0t2fMfKFt+Og2pQvFL/DYK8qJPyTSWCNp896TXSDOJS197sL+eBeIow2o6/7pieY40c2inzh7loK68HtmDcqvbJCEXNjhUCI75Fr+WAXJD/mv00D2v7Poz07kzrDoHyq9QqXrH2BZ6E+vHbJbH864+RpwJ+lEtBW2zWllimfUigeBOd7q29GDmufgKZJCvIAF5cjq8Qhy3LlY9s1zOe2G3wzs9OLMeSt5NmiP5xHMfr8nf3qd3kyn//ueqst66uOr0v/xAYo2JSmlP36R+fmNOYufyJJDRP/8eOZZG57J60PqAU3qgH4Wv1jU942H6ofzTx+jURuOrjpkRvOHj6Ho6tITjp9XycznnJt0wXPo3nAm9ltj3bTPIYL3xwgw28lGNh1Jkf/D8yGUg5KJNnGUhW//01u81pUGuWXzYcdZepVTZG9GiHP5SkhaN2Fbr7IUHeU8Yvol3Pgs7d8xlIE+UShk3V+PaumgvYgmCu6p8LkVmz2UT6ugMnItk7ZKe0aaSFp6CQeG5p31WO6iSWRyspWXPz6LjQi3TXAn3mo9hT0teQXru1yzRe+b43dtp1Din/qPz7CtcAN0uvxCpvNK7ebfT3BhC6VM17RpyunK+QbcdnUjRGkGNK9YXiHpYMTkIFebro9e5xGCq2QS3OVmJj1FJ4fFT2N+bu7Rkq8ceOLDmzn1Wgn7j84V9WyOZ/LnR/I2GxX0Nc46s+Dx4BN7h+5f/PzVu7L+tZ0T9fhie+YFrC+n8bW/o2W+iJX5VTeqLk3/6lP4D1+mjWA9YRWNT+I/zy3n36dRw3vONOadpFsm34Uoh4ypATFegts13X4do61u2ixAvRbON7afQcF1Qw6qVPHm5BWKuvgZZP/ONSTpl+8T/vh1xj77bPit2wagzvckKOS32UebWvvjG3gbxK45Xl1SwfZ525DdvbB9Gl/M/E9vUCqZUjk2yzGYOohkpl+px9dbznr0F58dKU0uIom7SIbszezbXsrGz844qslBehFLDcvlrr3XGaQ085hx25CQq188o1cX/Fg0oqc5E5KNSJqDC7HgofJuCDYzWvgC8axNGNLFv0GdUQzMPDPRbKxnYvzFOx0jJSz7ukyDPz+Hblf3gMv7pt1Aml3bv/phODiOYP35N+zw8PpsOrvGXeV01pn//JZht5GwgiY7RxRGT+OLHpBgaJnBMH1LqP/A5wmrh2cyVynAZKS7A7D7vSJ760XR5DiS8+cfksNh4uHsNHYDch5FeN0cLnzx7z2oit6hM+5afypPxyNcrvjD/vhDfyTb4x+e/M0n+qHD9QgLHhOcPa6LnqkcsL/HE3EjFqNpe8HO33wx7ZBwPgazcIakE54LP9ERu1GuqYve+8tP5Xgg+Ajq1kEYvcNHVltZLoL+iG54KysHn/7hKfodfRK1VOb02JU9lG60p6N31TLqNWMD+Hk6kL33aXx2nSwKUjGPRM9up2w+0TyFRZ9h+c+f+9O7Z33vsPtSn5yF8PiDbTw9iaOktTndQrdST2n7JgG61uhPLynDPcZ4tGqtlO2bm6Kr8x2pYu54xi/8mYLUuRcSOPkf3vg9ss4/yuysan0+ndQcvaOTTvTIrMpp9nawdJZgxPOiWzcH484BbKOGOMOuLpmz7Bna7Y8NCxa9MYVtMyMlBswuZWZk8qRuKvi69XrxkxJ/Nh5K8aevmU7kUzfruYUBJYcUV0u8/v7qw11zcohX7je8d34god1uZdCFL2QToZb3V88gJ7aVzZ56Tfz/21Mg/+89BalxH5ghVN+Of4xjheTdJ2bkdYrKSY8sF7D07Zk5HE7lcPQuBqybcKBiR3Uui90KoK/KAG97OmeN5l76Tc2nOwmej9AcptTwVHl/BSr4volm5+TNUK4Mi+DisMm4sj25kHOzp7VHPmaNVO8I6d49UtVUbnzebJzz1riLHH9P+5n32vB9Ius9ArGeQhMOLzX4Ib2xvsyMciujb/sGqHY+Dl1ZXcv7S2h4qCY6wXUfp+Ekti0Fq7MTEjw+mvnb+IqHIFvu23YVGvLi5KbIiJIfCbeszsa1LKUwl0VMvBUw3pC7CrCpzg7eeus3mmdlRVGTNogqz1OVDYdbIMGmaT8UHtxCUh7LCuTCL2B20nOzz8LtBnx1+jHPmqZw3LNZU72L/1ned4soWbV3iLPKYPi90zp+eBseaOT+Jk4UZtmYHZMeiqyb8Phxft14Sa0COut6JIfM/vAxGes7bJruQw585v4YvI0AFSl/kqAtQj6Xut2jfSMXxP2IVkcFuAZQm3BgYQQD5yF2HJg7K2BXSRSyvr6HI0zkxJirfYqu3/MMg+juJiwu4z/XXfiEpHF0+n10u05sm7OLiuvxzIKd7JqjUKBl31zrkQM4ZTYm4q6BdycWdMZK6I+LwILw9WmJayhtSdcr3qt69+HMGw/6ch9UdkYlbq/U+8S2z639eAeFJwKWhr1myp/vL0IP+/Ukuqt9ynGNrjWEr29LvLH9dZP+ZD2IpP0yS+y1TAwOzwTdT98Pli5CZA7hWcFgilWNB80VOC/UKIcishFND4yV00eaDfCROxFDiA201rubCxRvZXKoPadci7vJU0+yLGOEdrTkoVdtwAjzK+V7efBpFW1z2BvRyDANzaWXex2DpsVrDOFy/+jtXfcgam/Edj/Z68ZqHy7nDO0NC36T6fPXLxwhD4otlZQpKOUj3rrIR97E7PTqI/ko0CdIJ0HGffPTOJtw1sCevW2ipds7p+2lPYOihx3B7gnxYZdcHFBIaTGnj5Ws62a1gauhumTvn/ys1NXZWLniqsWwa81M1EpfUbCteASX92/Xaz98hGe5EfEWfag/ZjR3QPgoe7xJpDpsuz0ZlaSVvsw6zZ+s33v5WaWbj86sjupoRLFaw4be1ySQzkPWBIc4QXT7iEjw6ouQi94ugcjzHbyBJgqnW/gW1HU1vomPdrSjrXySYJKDkASn4VaOiZVGwK8JIcfR78KeoEMMxelhEOLMvTkGjVWpy/swP8o2Zd96xgin/YSZuxJsNGfFVAEqLgrxvc/Xn5rjOgB5OueUF+4RTZ3Qu8pjbkX293z9etm3vXymkhvvurpnVQqqZ/eEPLw56xRPdqH9iTLDijF3vBGCM5ypsmP6lUVhc+YvRZmLn0nsequVoiO0Iqy7p0U/JCdoUkh3RtGuOLC9C1YolqFUoUhY9jGXHwvN5LFRYPLnkmi68OOcytMPjLvEKUWvuhvN6G6haJcfCN5b77JxgvqHfg/xQZyts7QSTLQ7CG12IW4Qncr6op3OkMtCSw510oVMfN9TSN7pk+zfchzOf+PdU4aYGzg9ZwcnBFilzYXsHg+Dr4u9b0FrRTYzi/jSTeGQJ+pJWlXsoHO5m9TaxnB154TpvZYsvc01F+Ik65jjPfZ8fS/3BZqHwWbWqcq70TzOCrBWWk7FxFoooq+GVZUogN9eOWWM7q8N+LxGeC1chZIGfUOhnrySaLePFs7aMdOAGg6h0/VNSpo81FrZi0+TTpFgIv45XiJw9jllD9Nw0CS/xTOk2/VMNK462Tg/0BmsbxWweBslHfe8JoDI+ByZNlsNHy+bTIHb8ZIyo0rrkAa8dABuqUd0b5WiuT5YFtrT30zH20fL5rakBgxx88LI+3zN9jW3DqTzCfD0BsOXTMJgOxeNyVLwRN7PD35Ek73TmJZugf/WjuRBZx9KYq/Ec9lXea5Bp4kWCcQb4YN+2M+wqbWeeOBFaBJ3k6tSmVIsP3cnnxfzRkCXt1aTJGne5USxPyvn4hYRW335HZfrJAFNi9bMvqEinJ2oBDQpwwv3slqb9LnNcqQXpysVF/ykWX2e4X5+bMg+Ii2fnyD2aJoyE4/EO3D6l19Qux3ZARwznLXtQYDOvKvEODxWJv9U+lJ763x2IHOe/cufjhacmVdrYTiJ4uEIqyxvmDZJlcnUdaAgR02/mL+fRdlURtJAKuMtzVN9jyb1ZUjqlxEfM9mhfProlwZW9wRh2bFmf37nmqvOnRMQexLeGbsNdgCyZXl4rZ5qPp6x40FnVD9yQx9q1sn0ToAU+p0cJt0oZfplBrxiY8es51h2IxuDI1y+dE9wHi3zvf8paHhZDdv7g8jH5OUWiv1cndjhsC34uLk2Dbrum4546vpQzrMi9/CXf3eOdTannVqLCHMrJ88+dfzBEm4KWoXCjMWXlIUUZaceCC0I28lrF3HZLwJoLLmjyop25r98oxzGJ7MJ3LKh25MZ1cst2M0tF0umq7MG4+mwY/b38vPni6nc0WMt+mSPrm3IrasawFwlLUnviYPkxnZ6UI1SIvuo49n43qIEKeNo01v0oOVAd/sUHtvrlY6pvueTZUcxyBzdmL+PZd5Sr6jgcHk/6GbcfrLelIIGTCLeyPHbSiFTf+3St+IwMQ3D3p/kde6AP4JBjqvnsaSXXfhTsTM//vGBuYqmZU8mWjF75VUZb8rYgkin6l8+KGkCgYCGZ3BhfnmOQnq+VY0qrlydPMvNyeeveq6guc0NHlfHjtPLScYQnmed4fK+6xi9Fed/fNCJg4T35+dxhNzEjyWf5nzsjUeMNjm5My/by9ks/LZHiDaE0XkSqT+8VKsBVbnfiO93Ap8v/DuCl48Os+fAMefMryr19YpLOt8mZg6fuy+hxmYC/agnh49tQnKwfsSmnI2PbCxDoQL+FGxmj+9DOB3kewBJ9zkQS94qIbunEKCrFhPmu0fNHAmeMEzCvGeHWdFMke1OEWyGuqAg0Rh9u245JbFqDZaOMgune6kXKJ1DIM7bjBA/VGWsHtJ7SqXNhvhiUrwpJP0rZ/pAdqXUH5CkNMnmwrD/HTLemVqstuPPZX5pkU6s9pmGlvgj3hyZmaTRXwrjVbviz5x6fE7FawELP6IfY5SyJqONBX/zk/mdgKh5P6XqIc5GpistyeZZjnNlFa1t4rVLjUb2vmfAmqWw/fbpo9kU9gKo+8ONea2bh8NdTwRQAa8I3oPYzaYdJEC+Ys+M4ycwp+Zw1wBuiYc3WH5kdPa99C+e6Ib/Lnys7ElEuf+riXUsY38qJsmAE78neH7dv3yed22gXOUhwuvD+uqP2s85w2Oa3swQ5j57T/tVjhY8IXr+oj79VidL1d83CwvFYRPOwtW+I+nkVBh2suuzP37dftDf+3RoRNSrAG9nE4sP+8fHPQ8xwH0bM/ujmebcJ68UjMtRZdZuT/15fXVnkDU9pzOQvPvHvz+vQCOPSTc6+eBkAOX0E5jurRQ0WK5aAPXTjpZ9WYbjJfRckIM8xGrw4x0vTloKtxMZWHBcOx0/XlABjJKcOcO14kM47SvQv0FEbqXzKXumMBHJGuKUOdUu40X0rsCqsjUW7V4x27/xe/6W3rmvvsimzyk/quzXR2xPvwSNl2GMINocGN2kqttNB0VN0YInLLjHR8TUqevB0fCZSuxYZFORJxaUSB6YduO2OR3Gk6jG9+cFr37uWE4L3im/h/Qg2F+ffR6HngUn52xgafjsu6kxxjvEx/WaeWHqZrLSMwp4Za4pPB/cn44OEiGOjIAYu+9Q9lVn1ojkZ2npDZiYk3w9UrXcxG9ird094i+3xOgPPw7VqfX7tf87K1cRu3jrv0Zz3qDFQyODvuAT7qZwhWPYRrsLwej0RrMWTCKcSP1kRv12S/GC/o+0c9lalgey8AUxUOSQYshJVA4JgvLqDBBRFFEgAXL1veD7e9aznusSk8rOrqdCSrThAKpPn0D0dnhsIqyuSfvBr/A8Zsy4lOGyPknxqFyPu9i4gLWPKhakdhbTgxkJINRDzg6u+OBddPyc/suv5b8rmoqiP6HH8+ksfrSaBP+hgmO/R+I6+B2Pbx5utOEyaAw/M82aDmYKEBd9gtcbPUdDpmNHnfUFK71mtH3evx3QjLbCg77tM666q/2i7+we+muLG5cmBJ0nGZ6i8IX47IeVJKtNmrhGGU/daeOjrFStZT5iybChgMrbe8xwq2M26Jcy0TAHTnb2Vckm6z7V6FVNR7Kf1y8LTULhfbpzXM/53xh22xp2H8H+t/+Nu/s9h7WSjCyw1CsamCXvF33F8BstS3wfy2jJp6k6xhfUa4qiL/snVaeh493juM8Bou5DlT+88oau7DqIC5YwRz1X3j9/oaGkY8Y57TM+51/Ifn4J3jysE++KfRWief/qN6dt0vb2Nj/B7kt/dFSlkzUVYVNDjV0gFp37Pyf9EEG7GlZEn6KgZcmtb8Au5S+zI931eNjrJaDe2dFhZX68iRxJju6JnJLwJb8RD24NqIufPijmM578o/pUdVI86PF58aox+Z5chNeSg+VL82g5fW3XoEQnRhY96eNyI0Cq6QfmWifNerFz4UDqqhuGlfpgTfUJ57Dwkc/v+0Zj4vkTXNpPgGFer5tz906Rh9eznw7baupOgg+pa1aEfItnNokr1P1bf3v/mcR8PK432qtNdsR8l4I1ielXgE3MbrTyBrcd/NvD1IzyOTJ/+3xYTZauI3DWtkdu+r7gg7g+Y7gdyj07a32Yje5n/ZPHXa+Q4CJUix4MqBVfIYtP9Gu9HLRv4J7FClb1VeKNu2PagcanDR4Cy2v/xW9XNQrTjcGxxhGpFPw+spnVVVY8CeJpDddj0FNpsxbiwToMpeZ+fcJiTyDZsPgb9qk0hjvfyMTw8dTRo+tEcnhkPp8exjDB+1LemL/2WosW09VF9aQcCO7S2uJrcY8XP0hlIn84ZbJRa/e/qSfkNxVo+E4ihdJ2BqqO25M3FdN1/+/39p/e9NaTuA9B/GQp268Gw1vLf2UD1VQdqWR/BG/yeWvD0ThvSVuVisVj/XD6x5PC18/wWjsrLui26Qpy+NPTuKKS8oO//XAhxv7HEQ+veQejWewY2ekD6hPPH+B+aXWqve4BEuPrfOJkK7vsttrK1SAmwUYtg8yn4sV8IWYr7wkO2nQn9u8YIOoE3xrN/4/WXaLGUxegNSy8R38/T9acb2G0ip07cdTRbweLuRFq/fE610w+Lf04Bwpe4OyJew2vfHCQ3gBqDi7b46/czvNLkXpga4zQmPOxRSaAWXyujBylDrFc/KUw+43FL1TTGWQdjJeh4WiVpxWb/aIGca1SeRzlrL8WwRPtE0XHHxHaeEC3lYAujXDCQpfWHne7y4SyV0boKnpkFlf1uAZrl4bMnvWT33sQEL9vLsycedfUdRZG8/OzrR78Kn6t3Y2K1V9Cgmtz5F1RTz8oukSjw2VKWyqk9LfwB5oagYr6eP0cgAqXI9nd2k81CX9Bocx+naqBdoq5kRuFtvbCPdOD4xAPj9OjUd+hfWJb3xXihddoi16t17tVTOX+12nBubphOftseHexowSydjW/h9lPLbWqbIBa2jjML4xvy687ngP6RBJzP7dd1i0857a9FZTujwj11z/LRZK8SfB70BLe309HCrVSdxTu6s4bMvGZA2K9Tvw26Nq+zXkNHih/M89RWmZP1UXJWntixyoUKpZPBwzFr/4jhiqdvF7rdy+kYTchTn8orfGenWxozXrhqceMq1/8REt8by/mi89+9bTwWLzwWKl1viVY1l9N5fGM0XSgHwdevdMzcxvV7fS6pB2szv2F8lNpx2JMjiZ87WTLlvya341yA+dyHxM/rv88SX36LlryRc8j52xAcZ4u65HWrPOQ0rTtBVTo09lvxdX4rtkFjnuzoeLw6OPZnxTaaXM/YKG311kv6V4Hdb+TsXD623lSs8UUzlV7x9VD9b3mctefkISSSAJzbVpSDKUNpW0PJD67UUWj6BcqXbc1WXDxbmjmq5clX2ZbbGW8c8qoAP8bpOxQOe92vOu9qqYeP+CxtF4ta9mpgGqbIDqWfYRGqRHmk1b4zAx5GPmcL5yg5MqKGP3Nj/vramOD/Niyf/nK9M2rRlsP+pmYt/O2bdBeXsMyX8F48z3RCA4D7G5kg9e/Y49+n9fVBl3IbnjI1E/2b79c/ED2TI2Mxw9FhYpfXxgK41B9bVXu0LdlLtMHUWmpLnaD+q8+IdtBJe42XY7GVZMTQ1k9LNY2qQOPdvOkGxnrvMmKW4G0/dkhfiO/q3HHrQi9c+PLvH33rfg4+Bi0yQyJO+8XnUPvPjo/VAVvDvqZU1nGIbSe4hBzyQ8epe5q8/zShX9w+yDnwH70hD+SuOdstAZ74UdkX6uQ3VzzqYKKpB3bg/9Di54jasKT3ASJ84kcdwWkrrwhluoxzoOH60LlyyO7JtO5ZYm5yuGIqYfHWZ+nIvP3ALllLbzc40Fjl6CvfUp2RZVWUg6vCaT9/cvwHF+/SZUonIhtseg6Mm8tXMJUm/kyHvc5sTYE9iGSyyAne3/IvCkj20ErJSdh5mtD+OZ1DBNkZlAyO/8aS6/qDlJvPJDQkpp4lN63HOnmNmNWxQ9td7nrpVaunndCnOTZTsIntLXoJ92YOw0+EttKFEAJXwf2F/aHmKsWDOjVr3RibuczaIft2oXW2W1w/SeNbffdFCqs5aLAV3r1PMluv6aqTWpFLPrbtlIj2OHCy7DCLCWbyCNyYPG3B1c0kPgsQwd2ZYqZHeVxO32r2gTS0BWOGt9oNyURnyDUU85MaF1r1qsCxLra0V6QYt7P8QJBPEkzn31l01I/Mhrnw0g8uLH4zq01zB0ziI7h6w1zvQq+QfPAUv7TvN/hZT1h4etChU0kLf7upLkd29fdXzUt+emlfHpsO/MBKRmPxeJfFp7ZSs1FLdWheAXEKcXBGp/bhwyn4aswfbiG//HrhSeeBxZ5kzX3/p31mmpWMWSTRT4ClMHVx1KOedv5bT+hxyvq2Fb4K6pBrMNCo4F3xGt7/fFErScv1fixEkMEDWfNZXrC4k/ca6hw5t7ZSZn9BbOSq8GHOo8nrd5STpbnGYT65oLQVCZzh+yNeJ6ufbSNZUJlzdbQvH+8ID//yOwXbD7rsQ33v2HxW8XCBztUea7HHHV1nO+Be2O0xOM8vhadOlUAyRZuLLgIVrWe81u05Need1Ot7qDeXqBc9YjkN/5Cgx8kKTRDnDHHbXHF427WA3fX0XWsfKrWNf4EpG27APeZJqPfzC/UeTzJ9U+f+Ut4md+ZOI3MOTuG9c+PtlKyweIVPTMeW78SLG9kWDMNiCfZm/YQxmFOdF90kLTwL2nac2Y3lyEb/PY9wOGg1sxh6tCOrbm9qJWvjhSpNz3msz/7V1+Y+anXZSlEaCjqgJhb+4H6d4V9uEmvkaT2+YO6xS+Tp5WTPaSsZdL6tofUOut0/Ns6FtUP4Q+CyDyS/YunHpei1wuOSH2w/TQ9OR93x+ifP7Ub15vzxa+K1J2DyNYadS7F0NioOZ7uRM86s137t68JS/24OPGwms6DU8OffiIs+lyzajhs1nM9QHsR83PN2q7UtTUs+Zx73D6yMRCSF1JV50E38u+X8YY3FL6KfST59vnwxnj9GyB7TAnZ10XE22dNShDfzXqu922r9cLr0bs8sp1jT9ZvqbcuPNNzeYsmef12wMycgAW4Gj1q9atEsTtRoNDI24rPfkAL03VEnPPpzWmn7gRktB9OTG0XV52P5HSp32DZuInt5EwoAWqtRWL6fEDDlKYO/MLb38w3GKJfletQ8eyFlT9eWvxNO4pKd4jJbptaaEJ6+0SpvPOxnF0ji2t7eVrqjcw6X/5iWo7UVs2osZlXldf/eFxzme+N8Z1u/n71BOqWF6yNxvN/+cnIH2ybvsNquOiKC80q21Ft5oGS9FVqUMfmQsxVrrbd13Un9W8Vu7M+XmMeYsX9/50pkP/vMwXXV7uig3kavTEbSYlCYVJwGtzzmHvqL0Gvb/Zh2yi02+GIDxsg5v3DLJVwPvoHD2B1RSZVjS2rmJOLkcoOMaYrW8ti2pNPsXweP+E0ouHOLxPkpD4Qp78ZaOMaCYZdULpYiQWOukF4A4TjtmXeOvlUvD0JNQyxdaRdnR8sfv3aKYSBGBIXpV78lkxLQI7+VClvr9dsijpfhhpQh9kk/+KpBXJC8tFMmXkr7Jhf72MCZ9A2xKy7VzUFZrhHfnLY4+LjcM6xNBUQHMuJhNtSa3ui6YKGbcckximmFvvzj5FaGl1MCiQ8vfat8gic5negyu71saZUCmtNLHBEldRTM97IXgrHMutpah/BYqaoOSh5SDJWc/cV82qgIbjpEOGV6e0r2idbGW6HxGdE+WkeFeQOlCGfdljcN+5812950ZikOswyk3c72M9TCoJ0nshh99p53aZubJDBe5FANrpssmwjgRCKPfHCRkCtk+5/KDbn986JWbXjtjj7sPmDMzuuJhb31jiUgNLtj+1+ws/qb9MhR/mr8Jj3be/VrzxmKuxBuhCs/8p4PN+eFC4rm+OV3EoeXyEbo2zur7rXoLcG8Qw/9AFCicf2H2/ys7xT9cTYYGTjyKO/1ehqQo4/xCyssOL34VEu480IeaF4Yso9R2kcSlS5+qdsXItutPw+nR7fDR+NYVMjrf8wYv1SHo+xtqXQCn/SMr/t0BjHvXZpPh7TveeYDXr7pJC0L0qs9nqNKX5/KaTieoe5pUp8lHMzBy6nDRXJesPHJb72f6s/Yl6ypOWbSl6DEGww2a39XzWN6jUFcxAMPKTTuxpx/tLhJqA/ql4Pv6x3WZCiplYxhuZLKq6oQYk2zfeOBbmi1fQyPq56JVxjONzuPC4fJBuNH3Kim2fQt32v/nTYFrJDMDEVa16PJ6ha02Q2fSI0zc+P0CEtyaExMRqM7TeE88GMyPZy86zp/D2bsP2ediQ6iUPGpk2KobP3CQs6v0XMSfczlNo7xGVvF/Htd3JXYeA6WGnMuT/8SnypFd/kxO+IyHt0H3XNf+KB6F8+tYNixSH8m+/k5rWdSAof1XF6mOM/zfgHZylI4F4Yrsq+Zdpj2yEsWzUxsLNrx5RGMnRf84+498GNB/tqnGAVuCFFI/vEfWUqFCxLA2J9cM17dkM/6HJgBLtSXY15Kr3AES+IFK5Ut0xU99O/9e3djhPn8mFlw/PsX1gWbDqLDV2A1Zj7DdPrj+NNX/LsgMOfTgJxdclmvXkhWhYiC+Ss9hrsxhEKds5I1TVvM1pH0Qsc7rjMjuQUTQoeMGzqhBJXdw7ttOjZ+nxIWfB3+CFqKOtI66+CzpyL/okHFJSRdvSqNvi0F4uL93NmwyChiNl6nsb0/jcl8IvllpF8U1WT7YgCilSPEfethWj0V8NGg76uCMmuGWcg3X7IEOs/LDnlsx0/Qzj3Uz1WzFT225gf0cNc4hEjX3Ks6cV0gC4mCjloiuWNYjElsKuT1zzeu3hd1pkKf3o+EFLbFe/S3HVBkP4mOv4YrqbqbBbwqN8lc4rPLpa04mpDxdoXBqRUFdtZcgcJxDLzg2uT8evXTyEcdy3b+vzm0c2xcVT7LGHmNq+jtXk3zydchi7Dm3sdZGOTr0GdVBoQh5rUYlJQqtqY85gZmXKyKCsjGV7f6wej56msJnheIvjinY5PZPe0uu35XoImGwPRj693PFW4M1H4ZBFdb+qq7du/MAezuAwsCc73rMtXMVXCQAqxtgrkil5Lh8LqDD92BjS1Q/wDgNOALDqIN70SF4Y0jx9zRmvvjcbfZMIzfo2EfH8/j7VmOPeXFRq2JeTX9uXKcsDTzwXVfu4fH0SQ9WU/pSO/mO1GNXgCJo8mtvXxwIfjqQnBHMBg2R8R5rtGY1WFffek4kl68XGJl6Z9DHj9PqGW/vGfCe+GfYl9pM+Mb5WqASugE5Wyqsqm6uzmKAobn+jlO4qHvyaw4SFQRmwrerTDQWl1SMzpzCxbe6Pv+c8OkTJGWzbradaZhpTDDjY+21n3pmX95e2irqgTrLS3ZzzFpHgq37m/HlF+N6tp0luHmPdescPBf2ST3SsJYNs2yf6ldPFo2UmnlQ3aMiLe3XbCYuYrQSxWbLuOioonLYRwPo82FupdgLpXegFklaFFtne79SYs0BAFe3phVvGO0Ogl+gZGC1TmNY+PNe6jKIT4bg24yE+PbJLXSgNVq5vkboyYU9vRQKVlLmKx7N7x+D8AAAD//6Rdy7aqPLN9IBoiIimaCIjcTFBQsQeoCIjIJQHy9Gew9tf8e6e5x1I3JFWzZs1KqtqhSeDc8Svx4r4uR+YVMrxjciD2/Scbk/x5FCC/hwrnynGV0mshVODY2z+8kNMhqnYuWvCYlq9l/vx5s5VQXEQ626dPk8/fC8FwdjcDVoqbWw7++aaB2sCRXIvjUH6dvBPRmvMnMRMoukEULhHMu9+FHDZz0M1vZCzRvLjQ9dQJaYPLm4hqwAUez86pHMsxl9XqqdaY69d9Ob9GQUaXt9QzOwvicKyHSVPzpOjpplMDbwqNHqOnK6xoNzs77zMKcQXKmvyIdpu6bsylY4IeXqsS4zT16eiG7wq6oR1oMvud0dQb0wSh6JdGTsQIp8O0Pivdwdszd6VNHe+pakLrmSdy6NTRm8vnIwd5mDxyDeGV9nhn+3C6rHpanYcmHS+oiZVPrL+ILh28kP3xKSV+big4vDDG9NJRZapzlz0EI/f4+KEj0utCI6QlUsiumTsrc2yrzDdHMeRLPFP/4ouvO6I3rONUhopvGvw+9Uc04p2NAVXvjvJtcETjH77Zufml7Sc2y4kOHxuODLlUaHvF4K8t1IhM1ot5n3zwxuP2O6JpFDyimdePN5HrsUY3zlxyvDkuX0/v1kd/8VZrj33IOz3I1DCjKyyCAN1gp58rHJruglUfqrKJdaNR//iuSQ6FN9uDYCIzDwn79310HBpY7AOPZ/pAQ/oVM9AsIfzzN6/S7YsC+Y6GzJwcMLqTl9Tob32n1dEw2EX3z2BcRJ09sluX9pqozuhdf3NiGTfNGFxBUNCP9F869qLfrYU6wtCsVxOzb/qGT9tLpUPf3Wzm+GrizaftbkYLHpFDFxtoc/NPASz4SvxghbsNaWwBonsfMHf1eXDafOYW3pn3wkK+Vwz6549VcjWJf6tp1/O504F14pNdmCl4S/ygoG67G41BPXjd4ejNQGsm/PHPP/4lKd3pazHvuq/DP/uH81lQyU6uS693w18FmSB7dCueHGMMGy0CZ62cMF/4A5c3sYICr3jR39KL9Kef0godw02JNxVcU5aXVQug3C7kcD9cOO+8coknxoilu/viU6jcLTjBK2KuyL1wqPpfj6bMdIijvn4pDWwUQbXy94zsJsp5Q+UICu/1ZsbJ1wxenbwzXLybwTwEx24TxpkPBg8F3O+qA18PxtqFNFidl/wJha0rexb8apSwXRp90WwlT00p3qrL8FHWuvHpNDNyedWTq3ZYeXQ9eSawkBG28KOOnubuComV74nWkzycz8VWBC8xI8rH7JDOxjFKQA4vHjMiNeYsf1gYPpV1YPbl+SnHtip6iIT6RCypK4xfOh0KtJr2a7oeD7235HMjrITJoBvnoP/nX+/8eiNan5zRtH4q0R/+0UZ439N2Ox2kP/xhZnQpulmx7zNc4sOa6ankGsNpe7MBwvVA1T8+1sheDL+xObGohXU3Z6UawP3Umngwhzbk/Tos0D05CsR4albZJWcxg+aHV7R7DXlYVY9jjUxWmZQT1/fWJsUU3sXPplF1WXfTdfPzYck/8OBtpXJU3/YVHW6CR0xy0D2eFIMAMRknKm48grhSrivUXvIzMwzlhqbj9pzAirx2WFr4CveU4gpJF1uMSM+x/Oz3Qauez6CSXQaFNzt7TVMX/kDnujfLzR+ft8HFVKrIrpPGkuTIYXFDnPD+7eZjJARAdxuV7Adl3/FXLuswC+2HIhGFiOrhLMEfPuFVZYcSdF0EwFBEHNZEaAqkNkd18ejx+rwe+YwpzFBx90m0k+uVfMFb1X3sDeYKO68Ut/zdw7OTG+L5m3rB23pEopkFzEdboxy3iu1Ckz2PxGjFwRtf0IlwXhdHZjptUs7D9SjDX77oHg5lOmmbiwYadfbEvGwjzv1huWdT3Qw8yKlliOKndrePqyUwbK5nTkOQr7BTyJZunJ54syD3wnbhX+RQgZR2nPFZbXin4cbFp7SJTmMC2uXaM08oB/RvvV6ZeGJ2i3Jv6pO9CdQJdPLciTKf7O4pIcZGia5ack1nxT6NUErOkeEhTMKx2d1tVJzOGpWssu94dFqPsHyenVfsk44vHoxqar1PTJulPOWbnGjoZCnOX7wz/vwfsY1sMfN1uBiTXDSyssRv9i9eWPbxDF+rLQnpT23ITaupQMGahC/XnRr21eNYgXl7rvF2ZaTdrCQrGanfa02l5/eQrr3l3rc/fh1iapmSNrW1btERCTPT283NmCKJnZVf9rrTJR8ou7usKqiqxj2eTPmbjvTsRGC1oNDyfJU7JobHBLD+TOkcrceQCbuCqr31OjAr/oQlF8Nj/MfPiR2kN8TL24+CzoOZipGCkVhYsoLoVRcp54+3MeUrb+EHNCB7+jqhUSymXA2y44/Z4nLvOouMWf2erIqy7T7gIg4milbxKWUHf3AM9oePmRZGmGWSUS7xdkZNLWMS+s45nEzx44Kh6uKyvmtvmBq7QXNRCX/4b0x9oGggs3hm19du563fr9yE6XuMiKncspQPzbNBwm78LvNMLW8quu+I/vjL8VtuysFdZiGsdhPHwoopfJZp6kNYSYRpIK7K8ZiXvmrp9pu9TjVL5+1Elj42qcaOrbtBbJbO/j++BtdvU86DP0sgm8JMLHWDS+rurj7artH3D9/C4Xo4z9DJFqW1IkUdjQejVs+n25XsrbTylnwaK9fL3vrTK1LOtrqJqvWDsPRm+ulaU1H2p1+w0FhmU6R+0ECl+2vmF5KONivk+//ev9WsXzneiJ3DJ4UNuSqS2A3F3WmR+zgYxJu3L86+0VZUvPXxxdx5uqVTqU+9KtURpfPGOoV90qEGrFZQFnwLOjF/aBKcJN9j0YnqoYQ/bwrq63ilq6/h8N6zegq3rLgt+fGv+5lpU8OQqYiYb7oO6eM4REpUrVN2PCK345v8oKOzWVfE+e1E3rWdVfzlp0TfDqdyxOUyyy0QLOLdu77kyExqtMQ3Zm6PBto0yxl9Y1SPxBrNwuvlQgi23pq8mLnkS0OTaFcVLo+IOHdfTH/BSq2QxPc5W/hs+qd/wqkbXeZUkp5+8Gdl/uk/dLV+teVUFFEPf/Y+Lv4/dk/zDHS3Vpm7EfcenYy+QIAEYJp9UPnwU08KLPk6s171MRz3+jZGVFgfmeXSlzFdD+cR9mZmLXzRT6ktZoUyHJUYK5fS9HizuxZIGkdGxe7Kwk7eBDK8STJQlc0T51k/C4js5gfeiNMV9YG0Ws6MPc5YPVDTGzV6iyDiR5Edb/RmzMGqwX/8Fn8vyEn/nkd9htN98Yfa+BArM5XvpvLZ3tHNcDzeYhtgqEq8dvQqnYoio2g+UmAL3yvnN/IUYJbwIEdXGbt//DwoNJul+eOVsgV/IEt0l+zH9x5Ny3r/09/sDbO6qeSajRyWNOSP/37MirdwkaOInUz5G3JeNxTalbEm1qsewh428VlxTlpAcH0Y+CxqYgM1bHvm/sqb92fP//gl5koScndni6DXuUb+8vHJ2tXiP39Tl/Vgr9awYNHnmO5oBM1aYAZI5OOZ3calT0qdxgHayFhb9B4FzeVtZSFUlR2xD8dbusnLvkXX91omjvXZeZv9GNeg2gNl+4vkIuTuNPGffmxph5cxOr8pV3cvi9K162d8IuRro+fp2fzpW2jKd6tRWfgp5pEao/H6CZ5QdTu84AftGo4kC0wvPRKHYbTsZ+6DY1WEvNavtht9shrRKxjbJZ8WuulhskZZ+BpzFPln1JF0kuHXbma6VV9OOoXKyYLnQfvieWt/0u9tP0tg8SnCG2NbpMP+JoxgNY3D9CU+TKd6q8HUiIjsm8fT4NdMH9F2Jxj0T0+caieToeoMTMx2Khf9plEgrs8JwUEbphKVChFV5rsm+j5xytkeJPOPrxM/Ty4pV5c+jH984/H7eN381X8W3Cy2xdK7eae8UDsb2W+KmZbMn452vx/+p4dqbSzwObyIgB4UH5lTawrvhnhwkX0IjsQuNnI66baWo7b6rtkxg03XJ0VTods6mpjzXtvhGNut9afn4agYUFrAx5eBZqFK3PAdGLwQYxNw6HyIeYnsks4Sq//4K13iBaoOhGuoytr1nz4QzrF0XewxMglZ6iHTk74aeal/MPtqTP/pr4ci9kkE9zFkzUGEf3i55Efl+HjJFDys98zaC3k4bn0aQXYUiuX3UDpNU9oDV9idjgvf5t9oEkE1TZ+Yj7Lg4tPJZ/Snf+KtrfD2oCjC3//H0vrFPbG21BY27z7+l/9Kzq22obE6RiyjmLuxSgJQteMxI0730MMN3y59UUN/YLvcxt0420iDc2f65L6sdx9OaYzMMH8wPc3GdL75tIFFbyUuG9W0K4ZtA/5tZOzcbm7eOk5mCTaez1ji0LKc123VQKFYdywk/cEY1bd2Rf/wLmHT0lfgc0Ux9ly6dnQzXW90A2DIzhOVWmnXbaRHEkPV9A+2v6Ybb5oarVUXf8bbsdORyPbmE+jkrIhBWBw2PtnM27/6lVgMaTp9rCaASb+FjOxva68f12cZjmzrMt+dbW9cw6gDhSKjcpf36XR5tD1EdxowvOgF86A6AciHU0m8u6Wl67tZyH/5zD/+Px1nJKClXkL8INFTqVj6MHXhdsMwNrjRd0//DJ23fzBjYxxCCfeaq17ka0QnqSLehtc5RRbGNp72553HPNGT4aS4JfvTi0ZJulfwfU+UYS87o8GsePOHd8Ru9jH60y9g9hKPaUu+P53v4EKz+cSYnyY/HKuy0mGpN9FVQsp07X6UCDa31ZuK1eXSNTq7n0FoVnc6D89b2C98A+FMSWlVueW/eKVa6wQR6+6+0Kw5HwlqW7DperJmbzg0ha8clzPwix6eDpf8FiHhWcb4W7hlObXWoIE4BD/yT9+DYmj+9RHYH7Qx/YnCI4JvV1SMlI+yHLd+Hf3DZ3e+PcpJOqnZdhxeJ6atH1o3+53lw6ARlxwILdCMUCbBHz8/Les3s+3tCZ4AF2bFqyEdaidSlE9lHpgJQtbRczFJ8Msed4Lnccd7faXPyFbyL3PoD/Nh0R9V+aQlJA2aJ+/RsQlg0evZPm7UctxsLV8hk/ki7iPKEF+Zt+jPP5mz1Adnzdr6sNRbaO2PocE1J87Qwh+xuJyBXvQXDS36BxVu3TJBSYgVuP1Ch/zpMUO2W/yPKzUxLVNMF31TgAXfiBHNdcrFQpD/8nssLvyMJgfXRtu1/6Bi+qZoie+uovIYs+S4vXqD3V1FMJq1usyuInzBZwuW/JAc14lvjJlkt1CDX+C53Ww8Xh1kDJcLN5ndKbUxv82XDp9R3LKr65z5v/qM2ghHurmgXzhevDugpZ6FN+dL6Y27mMRKNovVkq9p3nT85Yq6H4LXv3jW5rsiVvUvcYn/eRjevJ0OItCwN5aj1T8+eQ0VEHi7cNHXsnLefmGG7Q4MrO76MezlIHbB025P5t07v+NeK4sANi3oZrG3MZblXFVI+8BVdNFLtrwPKgAJQPa/L6Qiu9WxNObv5YDB94YDff9GuxPvc2IhzirMSC9dO/7d21dAl8xm3voydLwXaIU2l2Ykiz6UDotehNThw4j1xt9ywqX7hD+9Ym/t3HC+GcsZVKU3KAhWayx6eQTRKkwZTvqDJ/3p3Us9GavJZZOOLFoL6OFEPtv1NxvNllvlYHEeYepJfUdfy52oZX2ZOcRlOP9eGYbv4HrkDw9HMdR0wDw2mVWJA/qKhaCg/9eZgu3/PlOQbgqBGfNLRHzbXAQIT+uA2MenbozrMbyCrt+edExaHQ3RUbNR8BnPLDASMIb1ysph3d5qdnCVCE27DU7QWhp/ZNe1WTjVz2cLD78YKG2ecTrWrZzAbXVd4blLGBqVVV+AQsQdM670mv5ilsiwDxZO3KZxOSbJW1LXGX1SaUd8PrWfu7KcM6vJHuyDMY9b2Yfyyl5Y+uA3YuVbbUB8XAu6sb82n1tyNuFWbFX8db8PPuqLWh08pppu+tDi0+eUCIq/zBN3vPeulC7NSkelPF5IHPZDNys79IRbvJlxkXTvjp28bYzawTiRY/wxywnSQAErq840mHZVOaBfRdW0NL/M7NddN0aRQOGYv4+MTKXtTaiSANpSemPB0QK+/kZyBb+nNFF1hDSczvmuh+39KlL+IHeDvpI4U07zdGX63qac4fQRwfFNfwy3z9KbB5NmypfvODFN/Yt6U13mY4V9Ry6t3HkfcXhYaGd/LlhJ3rXHT53UIE5snRwTeezGixc0IKpazpJhuhnTTa17uO3rDcPv9tmxaHeclQiymR3j89D1a6+5gm4UCtk/SoqYKJ4oOO/3ijgIBvT7+AMG8kxbnJU/t5Tcz69GcmpH5Kx/fW863aQI+A8vmtRJCIev97BgP117Ypa8NobSIRV0dN4zLCqfpbfOHMCRdDNd1gtx/lAKSJwmJ7u72ISTckMBUoWNTMhPV8rRxkYLVDJb8qwmEvLn5pXB8XvNmFFv/HQWM09DtmZVBLdeb0zirEugVhPF2xM7hmO+zLOmebZhhJcPY45SfoXAVGRiJ/k35YW48qF5hnc8nwwacjNcekeJW0x0e73hXH0TAb7c4BhWyc9oJrqX0MEegOFYfxscX781+iTHkeiv1xiOGy6D8r5UFnt+zDrlO2EZgO0pK/ozws7jF7gBpM+GkEO1H8M21382OMWQMj2vpZS/DbuAm59YxBXPdz6uu08FUiCKZCeuYj5nWtrCuMKU7A6CkE6Xy9UCIy5+2ERVVTIfGhu2Yp3iVuCQUv84n1fpI+MYbZjk9QdIbPQVCSGm3ric739TpNrN6kzsceMYo240PvD0S7FgzXtjKsCQILthYMbnQbrxFTs1pFFgMMM8Rykblhjy619bjPyflXIfchc0Rms8Fmcv5MvfUTyftrh8go/4kT4V9NzvE+LWDi0nwj4tTFTpiduVXTh695UPF92sSWC9ezSOM6/hvs89kr1gV27+9v8Ne2DR8vxTb4OI9EbqmCmOnjHW0d0H5b19462H3a7/qBMg5FQuu2O9Chvf6xJkdFOF+Tqk3ZD8LhrETFOZrkW5N9lhMIO9mt/kePO+XVNHdwxx1U60SOK2nH5h/lSNjld0JakVn24qpbDiZY3Vz/fHp4fQm3B41zqzNefDp+d9MuGQxzXe5MKr5NFuP2/9o3wht21TenTxJ8jtT0dMQbh2cyvuLQQ92ZFDari85VyJkHrKOdP1r29IwpHpSBeeTzxaosHHpxXYUJPyvczXNYyx4daCJ/0Po+HtlmK/DiVoruc9FfDhWs4flFpgDkXMMD5I5YhOTx1dd1lBLLzRDHFP0hEi+/rA8mcd83Gie/FvPdhOvufduOARrCq2zAsq8nRGcdKg+xo77PB8AJ93bWsBGZ9vLFutnc7vuxZB1Ogp0SXHMWZ/WBVwIKVHlQeSjYaKXq9wKmrMeJCtwZtVYKlHbUPo9m4++XymsMSP1xnz5uSE43cDJqIiwngc6bGbxczQABfBjj1jfWc0hifZ8NPvjEIfbz0KrW8p1FF/7CBkJ8TDWDWBSa3O3H21C+fHkOio0Zozu4nis2OfTxogs3Ny4tt96k2Oo56RPBDOHF+/d/OZty0ob/TGjxFQOC72BWbn5cznc95xdLBrtFKiNTOe0HPab9oeemrvWLzpim4IpUaGsnQLRqq3zueTVQUQdMke8+fvwvtzX+tIqJyW7BXaenyQdROqXmnx/B0sJDqn9xm+0ftEfP3JwqEAT4QIhVeCd/spnbf3dgS14pQ5zlvif/uFPpOSMP90bMpBuIQamC+0xRKufsb09Jio/D0fWex51KSvBmm3RxR5xXIPcdNS5FH/xvyUet68HXcCXHSrJkfR6I25+0yBOq58yvZ23Ro86UoF5bwMmH7ZPIypNw+WUvySO8FGJ4ZttNEChcivNVbjj9lJ0e1YofP9XDKn7s/eUG/LGtod79hu9l4Gr5GSIXXcXXAc9seOR+4vAFexdOI47ytiey2ogaxCE7d19inncB+5iqV5ATFxEIaj/VqbsOwviV/fwZjTn5jAXJ9Ugp9l2U2vGkZYb4T9P/uYSyh9CGlwxvOA5nKexqxHCz5T0ZXe4dgHjQQWnANihEpWTpvvzUe28N3/4UXZT/QooduYZ+Sy3Ulpk93v/Z/9L7N4Vt4/e/nULSfaOetTpn07EWHxkhNvvFTheHPtHESrDGlx2agGTTK5Ry/Ri9jCT7o/PFEXPsSca5l5tD6aNbSvxCEGsQY0bK2dCFWFVuRosaQb95FTwADXN/Hmyzbt95GTg4Y3Pl27moXa+GmLKJPNK/G7zc7gnivqIJwtj+m8qVPm1RqoW3w4YsFa7m0vn4fXdjqQcPRtNK52swmZ2jv0WU0snRxc6mCliUQ3ubDqBlpsW3i3+gNvtaExJjl6tApbZzU79BpDf++LtgrGxOXPlv+6c/CPTzBT6FYli6ffqJo3+UOiOmr48LVYBPmAMraPnbPH2wLp8FKEko5z+k57ed8+Uek9ZDqJK5n33n3jI95oEzs8NmYpSa+mBcO0zmwXDXondk1sy2cqX4lOflM6n+MHRfuz6B7Fju5LKYl1+OPDxDA8HIrKqs/hIOwGvPhH+pWnbYa28GFEb0QfDbsNjuEWiE+2e7Mv4vK1L/7wg96WeM/Xu0sGKGwvRF/29+eid7KVDefH9Dh+obnHjgDdUe6Y6TjHbpylu6+wLkmZZr173m9C4QyrVAxZOl/u6Viu6xqKX3wn92sJXhttlnsp9E7oSlubaLP/TVflZT6uzKwjm/PqQRR0uLhLr1TelR9jdZ+ReIYrOYR2t/ApQ4cxZm+MFnuZyuP6CmBcQ7b/eZuUnqw+QM9+NohDv1P5L177n09DjBcp0ciWezg7FVnMJa8LWvhLDSC3JvGYKJX0cd5b4H8hZ5Er7dKNrZwbWO8ymRlx2oZ/+YTC3hohRzvDZec+1Aq1pfgmuphdwin+rGIlEH4aOWwbw5Au9jRD2vQJlcIO83EviwWiwkHAXVR9UF/XegvBdnfEsxYt58xd66rIwWwT/yD3xvxnD3HgJ8w4fceub3Aaod+l3RHvNPbGD9JYhufR2jNf0fqQ//xQBENXJGb92L0cQ+N4Bv7ptgxvjqd0c6RPGQJjyIiBND3c2OPKRUJyeDFNC9/p2I/UgvP5FTH/WVRozPQ5B6dgKTsIrFl6mWcW6g+tSKxNW6J+XW9EWOXnjhn51UFzluY1UG3ekr/4Mnlnu0W7x65ne1er0cDuVxfQL7AZ1uYk5f47xXAX9YE5pSyHY026DB2SeSauwLM/f9Xk1da50/zsXFL+waIJa+2UEd/0ynCcsFbDuX8/iX687tPet9QGVkm7wbDkA1NC9RGO90Gl82K/vGNLfiSqFd5yegup0CCAcKYt25Ok7EYZLBkM0zyzJ/vYSHLkcunF+jowb525Bm+U4oqKleYz/fzwPK7uxwyJtuwx64PfnCeWrIAiROXy/JBO+0KkoM1qQezmirr5uh5tVdL1gDih4xqc7o8SOou5S3Yf547GrFjNUAqJTef7qULTcLIxMs/nmR2HtZau//juu9jNzDHCzhjN4nL9sx+6yrRL2v99Pyri5h++Ui0eG5WfEwGP7HsopZvOZXVKnhdcNpWWSs+V91TqUxVTesLfdNoCDZCtpj9y7HZ1N9725xkWPsq019R0vOzuLkz+WmJ4trxyPfEElFV8WmEpjDd8WOI1HEK1pPWSP2/W2XJPF4Dg1RScvLEKeK1e20vAnOxplevdxorBvvQ3YqLK7P7h7er0PBBvEN8lj3vQUc4smWAvzNBiLz4wzV0zJ3TaJR8ffVWxfgojIG+78dF5NnjjaYP5sI+N+RxfKBzCVYmFsnVCyT/n2l+8Y6R3vHCsrYMA28NJYIZ3r9Cs7PgTrVIpJHgXNylPdc+FS/61//AfTcl5Lf3jm5oW7lLR/gWV+krPH2aYsp5Kc/yJFbjcZ3KouzBk8fSeocmjgOmg6ohjFGgwXiONXR+hHs7JrhwhFa5HKtCVgqaz0+boOtk5exxLMR03fAQV67VB34bLuvn08DL4w58/PBwdKQrgKkzff/xmwg/R/4uvdLV9HrrJzgQJinKusbyJu+4rT1P2F4/wSb7n5XDt1gEs+8+MzXYqW/kZ5OCs3AfmhkdTvn4HLtT3b4+Fk/gqsyR5i9vV/ZEyKxvEcOS2SxXn9hCJt/D5JX8UoPS7CIvi6HnjZH5MlCL1gjdB0YQ/woYWFKR2zJInB7Hr75nA+u1K7C8/nKmUVHDRkIt5velT7nzvFghn02PaJbA86fuUdHSthgeenogaPIwOV0Su8ZXc/cvYDUKijWrT9hk7iLgOJ2lUKERqi4nN3bUxKmZyVZZ8mHmylHm9UA8WPIPbjs5xJ/E+vYAld316xOJ50viyHwUcbAa0AuFd9kW5tv/ydXLQLBTSvS/KEKWfmIW33TFdb4Ge0VczFeKe67qbknnMYXlecpyhNlqtuFJ4haHC9uf3s1z0iStU1XZF/vBF1J+rHv7y9wNqZGM2V5OtLnyY6YLZdMPDuMuw4OGf/3uj29jPf/zLOsUFnyCNFUh1csRbrJvhUNxiSRHXuzXT+/cF/aLm1kIq3QqsXp4hH0sluqp0E1gk6yrXmHKZ+tut4mOqFjzwxobjCO3UrcXOexsjsfomI9R5Asxi2TGVvByJyA8LhxDJfKH5aUwBCJ+LRUpTLsKpOwdXRX+OOQnZXv9PDxPfs0IcB794+30KGgLd3dBp+lhoalMhhpg/LsyK5ogPx0DOQTa8H93+8g7NrN9YcFmlHTse9FO5JuzTgKvf7396TMdeq1YCx5F6uspqI+XyND3VhQ+Rv9/rN3wUoLDzFfMOu5n/TtwI0Fu0GqyQuf/Tu67/9IyjUNGuu8xb5Z9+chSvhrERIFLg8Ptcmbk2Cm/ci/hfPkOj7SZAo7qtW8R21xMjWeiHfdG0CvDPb4uFUHTTSR/yCP3lV4ue4fE//bAovi4VMokhOumWD/M8aMyeN0/jT19CxTulWJitrht/6U2DPGnezHqERTrNv80TbQJ/ZFaFXD57m1CHsGlfbPd1qnJ0y2TJj/CN+WLNyulvPf/0CmdtiylrKs9F4xh7BJ/EVzf/4eN9Xp/Y0nORD8brZiIh2b/wPsDnko/Huw8bZem2mRWKwVR2x7DEE2aZhtUNCk0yyMP1mWmS3YbMvRMJ9qeWMr87cY/d70qmNqp6o6vjpjV6XfEblPyuTwrlr/2Pr5Wbeku/24vvTV/vYqHK3YjsKFS4nLfRWge3PHMM/PXr+BHfW9By2WAnaWV0U/C+S1DcbiXm+U9D4+QkIiz4SSxc/bx5GxwCZO8CDf/U35tTffOZYfc9bP74UjcElq9AlM0i0bkeh1PpHGooItDxVr22fGblXYOOjnt2FE63bvS2WwXC78sgHv6l4fjL/RF5NekJkVQTiacqNv/0ILo+vExjpLE0gzeGG+Ye/R/i1U6OYX2zOmbh09mY+b4T0bk5HBY+7aN/8UkY64H4q8TxxEUfAnMSRmL92Lab99c4QRfJR3SJb6n8UbcAtr2XyTHPK2NUqlcFB402FA3vtpzhc73+ywf2MdO80X6pFkqz8EbPoBaI049doD9/2cNyJ8vLuQRP6ywRPN+Lcnh2bY60xOLkcMiXM50MB2ivvDO66p0unaP5XPzpAUw/GTjsDnZdIMfEW3bQrDSd6+aeK5W/C4gz7nDHTHlvw6KnUjVo994czUmOyPPe0mV/y0XfCOBpIAFvBGbzWekiH+o8BkLE2xtNnv2xYf3ar4j3nKf0Z7xuFnz8usECPkgdF8V7r1wulzcxIvoOp+LcWdu//FmyjLQc0dUb4XiW9yyzvDiduXuqUVGONd02FvPGN6qeaNEz2f4V6N2oOLYF+e+1Z5ZloJJzdTNCIfsqC9j3WzaJqTeK1FvJ8j4fb/oGrggHRhymeehXdu7Wzf/ps8eh+IVjrH10uOQfm+xyPfJ+4vAw/+kH2muyy9kuDADp3eO/+NpNFkHuH7/H0hhk6XR7/DKEnvqbOApRjPn03mL0F/+7nTIYs775jOhVFz4zDyzoSpO/4u0fP73YIfdq9LATtNkennir/nYLf/tK8DnjjPmlkXWPyzoeoXi682IvucfjXtTUjak6RJN/R28k+08Ot3g949VPT0pRu/5mSKOzwTRERoPdjfQMqiRVzDUFnm4Gnl3hzdqA7Lm1KzfX3zVBay3MiDWpoze+r1Omtvfx+pefl2NwlBV4DMmB+fXDTKfNY7KBdXFK7r6+7eY3qUR4E+FMN0t+ssycjOH+/bZYuQ1+Sm991CIyZm/2+jV2t1nsG+ZtTthp0fNbpO7bbSbJCnGuUmhMX+sboWounrhc+CA/ND+MLhJGbFdLQzeaemzCJsAjluMcuhla34T7HQpitNVl4TefFha9gK4/T5pOapPVylK/wn98nt+umajU5P3G6PRYG8wOtjIiF6zQT35rusnsA7xd7ANL6faTzmc5SBDcxpZpXjN33LNwAP7JOVGhX334RNy5gV9rxcQ/He1OQmEl/+kj5I8vcVyNEvCDcyMOjBn69/2fmyTMrBTf6CxJ1UGxOoXK33VZzthvXUjsl8mOpXXw1kv+rUymWND10Jt83M75Pz2Ghff1wRs0OmbIm1vG9AOdUHcXhuxPbyZ2A7/un77VrqwD7tTbb5kPf9bVclNtiR2uqm5Y8hs43eUvcS9Jnq5HMpoqvSY9HRf7osmum9FSL6BLZ3y+1N+wAqsHEL87hd7sPK5Y/bNPB0ZA87DMttnvjx1zfrxAo++V8dI7/738vpaypV6CFv0Hj5eg9kahS8R/+tqid3jDj64E5Wi9dLbolWG9vwaxejECnXiLP0300FPkc//wp28ZUy3cr8pSv2OP4Ea9pf5QAYbII1iONunsqIHyV09kO9+/eP/44CkePIad8IAGIbFHNBmdRfvy53Z0yc/Q85Q/yLV8H9Gin7tw83DLDpZVe1M5yDo8PeVHdLfwuqVeGqnofXqw3e6R8slQKg1Gz7oTY4iZxyWaitDjzGCu5prdaFetCDKruz8+yOdxrS933sac/OOPzkfHCtYrg/IXMdDffsFnyHRiF2mNJsKG5k8foKOHnI6PxxNWl3+TI1ZPHu/frQwDcvbMCoUPmov3M1Au7l7Byltv0GhXhYiisDLZNUvUsDustFi2y9uL6Pv0w+fL0M+w+Csdlnl5M5XONToZ+5iZ/Lf3NsLtrcCrzn2WhblYToQ0yd96MFNDG6M/OYaNcgu7xMk8UnITVwmCt7im1fRTUv6nd/zpu/l9eiAO8uoM3cn5kmX/DHp6GJl6dV4S+dNL+LZ5ABzRyJd6VIuGtQFXZWXhnNin1Z1P0VFz4aenjJaL/taOdzVHSz2OGZ1wNtholxm8hUwk58+QGWN5+UWq+5RSuuqzIqyPiQpo0WvxZFZ+yT8YLDREnYz/JkGMfnByVT2Ko6V+kSF+sOscoaf2xhuSFumM/cKFLXwZhr4bvZ5kfq8sfAlPal6H/WnFarTkp3j7p7eXK9f605sZeWqax8bhmgF9NyG78YOWio0zVMi+0BtWmnZKxzGLEkTfbciI1B75GNyugLI4jsl+ug+cxk9NBP055+yvvjl2TeyiaPfG5Pi483TA+vcMVfwMmRMFgTfzfSn+/84UKP/7TAGkO8TM4Kqkk7yfXZBP0QevQX+H87S6KwCGzdlxvN1LmtCthda34MnC9XMfTkfjmwO+rxTmxb6AehrET2XWl5rvbgj56E+KAJ3wQnjUqyydYTYkiLrCIvtzbnfip+/OoD+EkG43RRQOr0sZgVCqmHbCKIU9RlSAqPmt6CbvvXK+XpwEvCFMiRNqbccuUMdgVAnB8+m583j23pnqUZQLgjPFMWbleLSRvwtubB++pnL8oe0T7h8zw4r68zm/nPMEbG2+0PbXqcb8MgIL6p2dkDDbfrrRMPor3PV0wJPsrcrh9zzO6HU6zER/WEuHGagTeH/jHkvnxjE4l+ZW/V7PDhXZd0DcbnEBPn3WTJ8uK4+917kGh7Le40Cr3XBdP1EAFy+izFOnIRyc6quhtschwzwPEItvRgP+21yx48XdlX2ujrl6C/aUYe4d0biJFUWh75WFpSQIvPHbrWdIEk8kx/zx6eb3OZKQExoqbnPmeuMtmht0coocb4RATKd51hpk903MrsLjyukxu/tA2OHHDrQzwlk5QKIkqydiB2+2u0nfeVeAy+QRXXs3KYVvcYUdjzNifhrJ6z/fpIB2yF/kOFM3XFt7WQfu9Zxc76eDN7+M2ISV/mqJ3fKS9099pcDrutyDgpfJJ8uzR3DUj8iO5V4t5/fRNEGhforT2bFSLojYAvcsAxX1RA6nYe57dP/2IknvxChF8Tm5oNT7igQXnHvsc58Cdf84uczdXCbU07bCEFH3SfbeZukzII4J3MsxwA/i/Ur+xW0AaNh0lL98paTN+J3hGt9qLAkPCbHwoGawlbcRMdCkLP5xUoBElUPcdL82xnDfP2F/j2pygO8+nSOld1EZnBoqwavi0ypKRNTzb4cfe3/i887xROXjxGd2oeMn5W+3M8Hf+4hKpVKhKZUKEfrLnhByNe1yQnuzgbb3Q+bAUUvXNRfO6PV83bEY3iajv70yG3XT1cDX++lrjNuz2AK3MoM8t+4eiWPEKZhaEDIXO4Xxq+9tDsnIbSzd0XHpranj1fJ5LJ/Lr0EZ2fYIIH6SpNRXxvDI50iNP+RBDuvonY7P59K7dxXucGeeXT5u8D1B999OY3tXfnfTPTu2oCpDwUwRCx4DR2jQczq5xM5fjkePvfdULt6V4t/ByMvvM08rZGhphJXE8j2O8RuDvNpoeBPcYz6l3qDAg/KZ6MamMMaNYzfgtT+DPH24p7yNn2dUrFxOrNUBOHefqxwiy1+xM4qufAgchyq7K/aZ/zvF3pgfWxHCYCsT0xkg7YPxJmy7uSHsuXU/fJBylKBSkhEzX7+n1/unWw7O9hcwX/680SRKnYKaMNwRjKO3NzyusQSxxXa0GdLMmPtUo+pvNz2o6rsz77EfYxDekUTcQ14ZM9tuepClu8r8vTmF82nPfeVjWxb+6Mc1p9ajmFH6CsulTwpCDc1dCk+lPxInXundWDSaDkcJU4KX5/26io7RLcYfRp7Xdcn7h/wE+3A5EYKzdznu43GE7Gt0xHyuZG9YUVopj0/1pKK3N4212hpX2NTzgMcoF9Kv/2uf8Jpchx3+1t9ciwGoU45xPu0FY+yQAaC/ghc+ceKH07BRM6Ak37OsaBJveqS/GlqiG+wQs3dHl/eD/ZVi5gbZJpyvl12iwqym5Ehyv5vJyfX/4YOVfLgxMD1/qocaP9jeULRy0qDRlAVfmb+tWj6TayLAQL2CriI94fSktRmkE4Rk9wjbctzywALmKB+ca7X7hx8memLRYZfePJXjNj7GqKbRj47zbPMxt88WHMjHYWZ8yz2+HeMI3sOqoVvV//3bH/iO4o5dw+/Z4+9KkJDtndaYe99fNzP2xIq11Y7sspNnNA2b9ROB2rfsKA96yC+3rQ3d6dSzo7mhaH7NtQR1m+yZprCZ//OnuF/ueaiHQzofb1oGkVF/6SZMSDlzoY/hQacZi9+LtvT+/0kQsWdLtJske5yefxlw2HxxLk8aEpd4jBY8x5C3jTFIaduAmigKWaR5xGO/taHfmi6LzsbHmCRPTtD2sQuYgQ5RyEExI1jiDdHmx57Pf3io5KK4rIcTjhm2ZKBv1aLbQX6VnB7jftvuvxoz6tezm02qF3A5qhbRDKiMaYbCVlN48AUfduV8kjQFkBGKbKeZJp+tjZTD+uXUZL++l2ETpJEAx9cnIeaj8z2J09mGi3HcsF1N1G64dysFxSU6MYO5bTix76NHviEzpru55k1qpVRw8l2Z+CTuvW5z4e5ffMR0fn/5VP+iGepNKZDjgv/tNTnbsA1Wa3Lc9l04vfZbUym0Nl78JfbG209t4I//+PnK88bgI2WQrDKEFfz8GOMmnmXlrU13YhrmM6RXMraqdb08iRGVGR/9wu4h6DSTxKppc75PnRnJSM5IqAkemiX+iIHX545geV2g6fhUfNB25oPodLD4OLNYUWbra9I6hIsxPbSnDN/ZPdJBuU4he1/MCtZx1bLseH2GvWGrJozxck8w8KV0uBaGgrxPHJJDL8QdW1+bBu4HxSe659Zej1TfAkDmmSQn65FOupWZ8GvikeHb5+bR922ogJbhGU+z8lvma59dxPVwZPbd/3gzsfJeZevxh9XCijq20UZb7a/3lCTBIUrHcTU2SAykkorPy+zN8qNX0Li+b5nZo8RjIPIahn5zxVtLQ3wmadcjJ84zdmBtn04vzxH/2fue7e2Q1n6ugXwnA8M/XzJobP4ala9eK3LYnMOUrbuuAWrOEjuoaEqb0FXxP3s6/sxLN6nJ3VR+/SVih3LQwxENdxHmwb9hGCswpkdtWMhsJZftNWIgcW1vMDopv4g4+dfppmgjJvAUmol4rbTc4wAvRmfV7kg6iUYoaj9iwvL+NKS5mc613+jI7N0rcbqPm1Z0fexhd8tjdlBPXcoF1zYV8hO3bJcJ33I6q0oDZ9XtiPs2B2MoVvOIHGWVUdmsSDrVv2yGXtUpcxudesNZVVq040lGP06+5d/+SM4gn9uJOfm57sb9c1cAd5Mv+eOTdLoPFG00J2FmeDt5m5M8tjBUAmb77+OdVht8SgCrsGbhbSuV9A/fuikyiH/Rd95ag0ZHx/nsYsH/SunU8cRHv9LVmCZPOZ+abZDBi89vcoBzEXJX3GZ/9ki07fhD06BaGMZHb7O76v9S/omaAvZceZJDmLCSleJcwH7tt+y+clE6zZtTDAufZfbq9uDzzuAmGF/tS45dWqf9Yb5pCKJsRQ6eXZTcFz5PMOlMif87ycYkpW2LrFiVmHZ7Xzxav0sNynXN8Dpwboj7oidAl/SMOG39Duf0eZC3kplRgk2tDvl6FBOQakSZ9psTo9/LjwD9qNqTnTvo3fDoUhEkwy7Ycdq9yvHudA2o0iwwT83acDgus2BmTbfZIYmDbn1gggZxuT2R3fMrlRNSOgu97vjHTC/5ev3MAkVNAiFn+nM/ed2lF204C9mG2Q5epzxUQxlJA70Tb3bqsLlHexuEotOZrd47NInWEyvoGzCM7ttfOUv8kgAa1h1twuPRmxY+BKX62DByvANqpWcSI01c/5hVF6rB7f09gGarRIR8d7t03Mq5CE720uhXCtuUX4qkAYH2D7LTb3c+6NJvhhVZn4jdPjU0mGsI4PpyTwz/4e2qOpqoLXhAAd8Nbwhw8oTP4D2pFH93//gIuqgTZcRnEprE3o1h3kURez13526NlNJUFzxn+x32+fg9tTq6Iu1CfGxqHjPqeET1oD+oenlVJb8cDgJ0tnXD6481duNefpwh8MMtVZXr0rcs8k24lAEm+1eWlnMrOQJKX6cSD9Pu1U3Ro2nBdx8d9sTp+X+kncu2qjAShh/IgYBIiiECcjdRQcQZ4A1QUSAJ5Ol7sU8Pe9bTc9ZyKyRV//9VUtVNbag9NFWIF4uKZRnyaWl5KFhXBM/51xK5U2uwntIMd+19rGm6JDlsihKIt4/SovstzFJXOmdD20fgWFLXHXo9ouWbWUzixfin56dNmpDZb3f8G9Yc+rt0I6XYEzS6TDHB6uMz7S7NuxNEXy3ACoOaGVd5b8nXd2ijz3GrkF16G7r2JEct8PF+wpI/QMyl2zqAOd6SwL4PRR9BctPV6Xph3mG9seRpdclATlqHGKe6Dnm5DiUtvSpbsgnNVy1+NMOo1u8rslWyqJhGH5UwVXePklt6qrlxKSW4F/KGhWKS5xo8bmH/lkdCti4RIq69AJq99yG4XcWWFOefEryfaTDP1b7WOLQhBmR0JXOLvuxEP4kSGeiXkLCSy268pntFlxLhkl3q/zq+T22M2JrtGD4dzVC+G49EHz7vNzPngo945tcU5Th1ictO33jcCR2jP94RnXo3FAvJcQCnVsrM2R8I0koA1HFNPN4+Sscvft2CX3gSi4PW6BSvZw8oyi6kKpt6NOq/MIHTB094urFzyC+Xq6aZH79lZuq5llgEho3am7lnRNXnvlFTMMFONCkxeKGGvdRsVHjtUgWfXlypqRpbGfDksP3zt8WP3TtA5ZMjtn1v139630CnJ5jkMGl+PIf9BcrYomcRth/WeNmsNTDc7kJs31Livj+dJ+jTosDVbXsIp1QaVDS06oRXR6fuuEWfR/1Zlx4JFu0JDcdds9CXX0dnjvy0hHitrxzWq5f3bz2Js+n9gPb9if35B8Hd/IZcvNeprGR9LPqhoki+rnLiPvqwm2wR7/W2pDbzl0ERi5biCeR7+CbB88ItoW2LHFW69GEmM300JFP3g26lLakcBEv0Wia5gkB+CbKF3o3FZnN0YPmZRmbL7xfq+VfpQTpf7sT4SB/BP8p5D6vN9c1up882VBIe/LQfMSwSX+d56W2oVdq83qgc7pruO5UOhb3fPef8G8Z//hecO38Sk2aWWD3zawK+cBK2GZARr2Z+o58nfmUnloeFsPi0h4vzNqjMGC5EXlBN6w5xz7ZDdp391tzblKQhiaKzXLQSrTPIFwFjnoMeYW/41RusDXtg5MbPmvV6stDbsrdJXvOHoBvfmvVO+cN87dRIbBT1gd7BibJs9s+rEpUSzH78j5d0o7qPf2jo5ZSqF6ULx6U/JmD99JBU/Wb+tn5PtTmfkpP35IKOvriBHblLslub25gO3OrXf7xNlcsNmmZ9pVfe88E25bep6Q/lPbRL32Z2wDehQuTVDTIGPdtz52TJ4VqUsHwFF+KwKkQTwJBCoT4J26HfteAf16h0LD0ngqPPP74H64NkZ2zmG93oNx8Tbe6XBwn25TkevplsQn12YozctqlH95VUKOmVIwkvZO7jpzYmxCc7ZE7TdCF3LW8PBy9K5j4eTjGqoan9rUcqh6vgLz8rIJybRcJO7gpGP30Jf/lu9reI8dXD05Whv1DtRzdoTHeGCr6ml8xbZIng33R7hM1tm+D1Jdl2Y/HmDZTMq5hbmOk//4d+70GiieFa8YDkY4puevpixnR9CSHSO0ZiZy7ZNvdYPT1LJfnze8SSRRv362vq/eVbys9KFk5t0XAkdsbyTw9Ysx5Q4cyDLdsyhmMeHe4P9P32QPwvvtTD9eA5YM+nOfxat4p/fm/mD8x4eYk1/PETz3SezNsrUAxSmXm6WF7nCXT7EvWf0nqsX7/aYd7l2VqTuptaSMfPEXNRYsRPD/+HPrfwwHY4etQ0l3wFzrmkkz++OV11WUHHOxQs9b6HmOrR/QdsVLbEOu4/3dDkmQFa955r/qjtxNi7PdwP24ng9E3D+f9NpE9SzhIJL6x265E3HBYflfiHeCne+fr4hh2IHxVXldaC6EtAy6B5MkKKoBPjAS1g7s9EAqXrBMfRPgJja22Ic4ydUNqHvx7SE8NUik1sjbtkT6Hexy3DpB1CTpefCL3N25t5ut2KKUsKFY3lJmLOYVGHHI/bG7qZEyV+ried0r6dIyS9dCTXmbeO7HOisL6dSkaMq480gW89TExhJHw+eU3fz25ueJIsqCI/ayFmvoLcXlxw8vnVaPrlq70m8yrA2thXSPTmawLRwJ341avoptySAkh57BDb3Mpxvx0QR4dnaZB41g89an1nXXURwat4G3X8Uq9yULzLkTkz3+v9SDr+xQeGu9pBLC/e2hp2qknCLnzFTOaQaU62VLAnjzN/dE4e6OkixTKc7XhKlqDCrK/pzNutsfmZe5jjM1791WDdR8j/6YvNxtqJ3323fgOtD0diG6NfyO7vdUQF/7kkWBlY/Gwd+FoLnz0JqzCt53xSAqy5w66p4N2svzWY1xOxyqbqRLlVcrSb9gHD3+clnPrCoxDO94o3p66uJ2e1eKDm+sDslF+nul17hQdMnr54olmNJqdCDygy+mE4+qTFd9bfWjWOEYscK495h8IFhI3jYsCX2mLyO1fBajJCrpNtx5wnqEe66gYYHoYZ8lU7BKBRXNBefW3EqxiPNtqpK4dstGofr6wQO+gV9Dey2RkrMV1FkiKrti1C2qWo+0+qTUi6RQHJl58bEtZWTjU5+Tlk182zI2GzCACmZTHz+LroP89yD8+fZf/zG1y6jZ6utQPQa1Wcu3+8YPbrZFc5SS0Zy40JtmTdqY6fdd2X1iuHDsk183JZCiVrUVQwBXWLV/qhi8ddY4L2l5/dZzp2nC5ZBOfTe0elm0Es+bjrF7AT75Q5M5/u/3jGX75KVs0ZiQ+u9qCffgFerKUOTc5OfcAhkPp/vInK+OHBM4hKNuudTkTrksIfj7vUeh0P7qk6IindxsS4+6U1JsNRQ3N+pOKK246ffnUAM+9n7oX+OhHYNYd2Gdr0padDITL3koGjJRcy+/mCG2t+1PtD0FFePpuQOrF/RFpY91iSDyYakzbw0J/eqvxrETPwlRal+9uNbWNJ6obH69po9diGlJWZ9VcPStDzt7H/+ekxPf8ycFb9hgrvQMSIflyC4rCGWY+4SNk9v4CezZQQy9cWiAVJaqDt4rIg0fM7hvzzHgzwhkXDdkl5F/1Fat8w0apmu62yEuzPD9uUUxbZDBeykQoFPhJ/0fHUWTW/rNcJfKAbmDHrg36f2hFImoOZQUgbsp9V7P/4PAmfiuj+6dVey1IWPqpPNy7tx1vPetMj5rkUIROK1mps7utBEjNHUnW+SRBoSsEwXrhhJxtviv70+lbfBLGoX94Rjhefk/AZzfe0zdekV/LAidt/5U5sNrkDBzlv6BLts2JMomWJbianmCNaiOaUcxWt+s2VTn13Ced6TKYn7jOc9ZndjWbYKLDV7jnDXNKtoTsuOHC94pSbDcTCWS4NFKiRRfXU/9WTOpw9WDXeiZ2acTfrZc+AsrnEJNj6ohg773oEQbrz7EddNBSbKEeG1cvMmHMHPYQWgDrdL1iZ4/1vzs/r7aJYkO0G96jH6br/e5/M33/XaJQQ/P6eN9mUC7fjsjffcdwtHWZ570nw5tzuYVkrO9yvyQeJRfJtoDggoB84msXM89S//EaXU/KKx/upS7TE1gSWQvYLP9jfl9D5Wc2cGORwOFpWCSfjdSfWvB/Ej+4jfdYvdDXzvFFBJICR6Zxs6L4uxmkzAbw+6nyGsG0R4+amh5sRpHiuUhXTlYYNMqTVl5mBbFnT8jBKf7yfeNV8ILVZ7o5/6+8vHtSTrcOEjmJomf/F605sT6MJ64LZzMk+T2vyelaBtRkeLHR1txYb8I/IHyeP7Orttf6Lb7BJVIOY2lLMs1wv7Z9/w52ru934+NEULr9TRG7pIbRGqdx7+lx/JHbz3YVT8vp68MaPDTnMerRZq63yz39PJ2GHw3tx59o4nDO62tsn8atX8QNhtd+yo/bjqC8aT0I5aWOyN9AQj9eDZ+t/9Yt19Spqcfp0GYpLPSaeTfpY5MrYoNdHoxjluO/Eb74j8MnUJ36kKxb+vU+0ZN81VRXngybitD1CL6hJGK019Fe/QJXYzvz4dPz3fP7xXgdmv1IN2QSz3pz1hidGNq4iABJhdp397ZiY18U6q15bvPwmSscfuvpAsDQUtlWyvmC3cN/AX3yxqe6KHpmJCu4v3FDV3dcW3/P7AvG7kZBd6Zn1lK/zN2gtAyrH97Eb/KA4/n9nCtD/PlOwA+xR6cOf4XiOrg4U+1vLNiO+iyHamCUcT07DAlcSiC60KEDWIXTZpjCeYuq9e4u2R0aY9TLL7nFwbQeYZfSEbKWjGPbd3tELWbuTnfrdFGLsHxMslySj8qNnxZQ+dyYsrEtJxyUU8W/POwAk0xOLzvXDGrkj/VBreQcW5Y8folqp2uhQSyYefTUOuXdoVeBW+8a8W3xD/npPhn7AecD8s/uN+dn1IzDRQCgvd1k83uOFhDanc4DFQcFFHyyrI6RtJDG7Ak3w4bai6CPKFzlYxlDwJD+YKDwPiFiJWIf9Kog5wDbbkGQxbYvpUhqm7i+9M/Eflyrm7faew3axexErPiuh4INmgp/6goW6HXe0X2QlWvS5gRfh8hLLuTvX2GNm4un7UWJ21yBau1mQsa2BvWLs4rUDzrdosUj2z5pt3pDAUfnmzE0efcijoaOIX7KRuCh+WsP7cLghw2sO5HouMyGYRyukysOINf5c1F3QoQaJZxeTTdIJxG/3bA9Ovzgx83I9o3ETqRU6LH89w9XtbfXLh5eg187dsWgFpiUMIn46DJuUeWFld+J07Ux4f8kNT1K+CukHqQoEvzQnkR4bloLeSwy2Hp9J9PU33cqKmwd6W+OHWNLXqlv/k6VAP9WJmHJsxlJRRwYE/VPFv2PFakF5WaEuZA6LmlNRTHe5TaEM05QZ4aOyppR/HTh99m9yLFY/IZahl4MmcZfc208b8g88S5jHYrLcmOxitcIrA9Io94krKm61xfSw4XM7bUg4Nw1nK7w04GCsdUL6yrKmF/EoPLdjSxXJ/YX8kLYeFNPmRtVo8amnu/xI4D04d0KWQrF6++0vUNX7A0XR+WuxbNpE2i+fVKoV6yEensbHgBruMYmaE4q5Xv0kFL/ojZmdt7B+q6fuaBQ/OQue+64Qx6xVtY4rPyx3jST+va+3JT5YOrhBJx3SRwCn81sjflb3xXRdlzY8ktrB38U1tX71Vw7A4ORDfNlRC/7YHXqYEi2nw2V0Qz5mz1If3/cFHc5lhgZ2fi6WLOMrurIPXt2dbvOlRG27INsM3WKRPHYPYM2nIl71HQSzaqPR7VNrYr3X5Xisdu0bKjuy2eElqm5C7xWGan+2iJErWsFvreOB/3qGxOuQ040s3ffwt9+2RyvrxCinLWx7w6XTNR4Eda0FRUctcskm2m1i8bbYEbTVYU123XsVT/brkMJJgSO5EZkVNG90DXojMsnZ4UYtucfJ019VNLKjIb8RXd/zN0rSX89cYLY18TxOdNg8DWKVXxL++/uHYHVlZsBKi8EK5chNDud5f23CySJPFfnBySO795Z0vN2eM5RMvoUXmZ+FIn8EP+idt0ylQ0TqSbKfpl6USKMckTKeLnKHwanPPga+ceNxLZ4qrB9IYvj5OAm+bBUMihR+8SLDujUW7VmFobZysmvvlaCxxRdw/54tYuG11U0rvw7ANOodbsTS7satmTbgrhmm44iXok929xsyGrsl7mhlIQ9PlwklqW7Mk7CsmDffpIKQ0wfZPnoST5tne0NnRp6Yn/JzPS6h1GD/uryZqZ4ma5J3N037dkyiy76q574bm70u7TOL6koSW+Mw3TJ4D/adJcfhXEwTHSv9anYZXXwPbzRm9XXSrnrtsO3nexG8aE5H9LmZA14n7aEQtV5IoI27nOz8T1uPNEMYiKlWZCPbshBORltkNE5LRbBo6/6ZKCkcFOtBT1dm1yKrFxlsqwztpN7Hgp8ffQa/0I0wU5560f/lA3qWviw7nU/hRC71EfLx0hCf4mNNdf9xhBFXCTOl/BzyF25t2Gjjhjmx6MUcD1MkXo+EFY/np+PaKlSR/bwNxJTRAg2TZajQNsxl1uM+11gv3R692niP9ZMSWSJ3OYVACbfMK0mOODE4hfPVtJgtlnYtXY8pBVEglwXp9dcNe6ty4LWwCmb4m8Aaf6AmaLcTPWab9RkJ5LUTyGdmY8nVlJo5rdnDSv01dKF+luH8PnLkSfsvIcrzGo9LSFRt/JndvP/enTgUYQaP/PNi/qFz6v5rgoZM+cfx/PzQNGxlDyLn1mH9vSX1WO0ejXb2xQ9LxXJvKbd9KSFdME6ZkfGwg/02g0G9H7CY99MY/jYUtFfO8Ir41JqCrFTBer8XDNMJd5QELkbLtbdmh6JdFMOnzT10Nb8ZwUdSdRM0ZQ/Ly/ikYlttkSxyv0HrhMss0uNHyFu0j1AVvFcsPIhQTEm+bkHrrpi55frSdZ924rpYDRNxtRMX/57X91ul9Ht6P+sxNONe+96RTzY02odf972XYL+b9sTCRhaPTZ0ZUO1NRiJjiTuFdUarL1TcUYATQ+xe/faohEZlUbXO4uk0aimw5lXh9+sWx/P7P0Kda1fyp0eY5EsqXMXnTcydT2J+PaY9YsfMJjfkrMKWjGUD9qeOyC5qRMEfkVeinCgDFiuuhn361FskVpcbcwdPtyg3N5l63qVn+hvzrxjCQlEBpd2BbZUjr0e01vfgaV3JnFPwQ3M72wBW/udBAvXIumF/3c7r392T7XfRWrRpaw0MwROS36W2mBqTBBrV9485/6Liq9wtCg+h3XAL223cbVVu6s5lvudhMhP9iz/v7+5GH7mixXxzlA002o1EisDUBFtGlx8s7U3Kdt1zKkbJT47g792EGMvtseCqOx71jSY2xInpRwipwop6yGufmcXqh/hVFSU8L8YGS7YwrfGkDG94XzPBiIfflkicX6IP8ZmSsNXkcOouEYBuXjEzT1X5lz+PGt+9HRYd2UXwl3Hdoyl8PZkRr1n9lUbzCFbO4zkf36yuzbYl8Es+Mt9RX2js4tHWfvmtIcGY+0LIzMgh3CojCWV8rVcV3mC0vzTon/4Vymqxh+PJbrAknHUxbU/yHjnfS4uVE2Hod1XnezPrAbNQM2vx+H0PP6Cfx4k5+qUSfFW9KFpMXkRKW7a70eV30OrzmbPgRXVBx+dqAVcHb2n3uR1D5umaB+Gn+FBFeVfWtDlGOWxOp4BlxzwoRgvCAF1+Q0Ds+F11wzU6Yvh4xwoj3jmh0p0Fha3z3rOAvGwxpc+tCcnVutN1IAwxGdWawjJ3ZeIuR9HxS6m2mnuLVsSZuk84NoCwVk7LHqtX721xi/h7mJ8vpmhpxmOxEqAfZBaR+fcika8HBX3OgFnaFotwrPCoADaPLdmgm4eEY5T9avq1L1Z81Vc8HvJqgkOtmMxpi4XVz3ofrllRY/cXTsU3C0NJWwonJ4bqfcSQykkKh6/6JP4n7YWA+/MG+LY9si3Lf+JrnmgO2d7nhIzGqRMxezZafbZKLHox1O9YfjuAetfD6066F4IPkwmtjzkz3elQ9PT6LoFIoY31lXZH3N6pBhSOXDDy85iY94+H/ODsMdM5+PXqFYcpil6SxQ7R0SnkW2gAfL/YpM26cOtV+872SNwnj+38qu6mZn8BTRcDZ3+/j7nnU46kjdkxt329On6RzTck182d+Cm+hfzyXnK4jpnHzv7QFaPirCf4/bw9s/ObF69MqCedWWZPVxfAYvzb/xqBFfGorhRTdqsqKDdDwMhvJ4nJ+iAJnB5OpLxeT9042rkHzjkKCIn6rBs1/5Khz8/v8XnwrpbQ0CeY+5wcia9VyKLDUHvrWV+w4OU8C/FePxw4bjOVBDqdiqGp96beZmpJlx2Fju6uZ1Mr8szDa61C870yL0ItbT/sGnr7QtzCZ6MfH4hQhUfEmkafmsjQfJdsWPAopqbtNG3Wn8SD7avow9OFw9U823jaL1+F0G97DFGnVYSI+9DxREAEhxzLxEAEYmqqX+/fera57SPetOERgp/hkE2gWMVqIWcaek9Kx6y754ZjM9wDeEpKT9xZL/PjzZ5gd7ZfJMqWVtjP/gw8P9fY5vBtQiqVE+j1m3nMivKuniAKOLokiyXlfVkgUcqTDRoKNPy5Z2M3WMnVA3HnHonv3idk1wVboM50Nbx+8YfFTiuMAeteyo74t/rb7xncpFrCn0P9jMeLlpbaUIKGX/trJ6j3DTAc1u8d1X9GUA976+cAQlxi5BNurZUqmdWf/8HaojfriQmlQoiBT9UbncTP2/MjPMngkd3RUMKpPnQRKg9ORXYVWdccROZBITch8yfb61YV9qP1rK8pUtxWiIO5vv3pCfqnJ6SJVZ7WG9hkkZpL6Cty/w1qXcUspAWgMc68IxDV2JJYCcKC18dYgXi+uWFn+qMbfsBT2I48ZlvlLHeTdvMToOJksDA6f8PJXkCFful6RQIHf8LWqA4ORA5fMutuVWHXXd0GVrvyScxwiOLxeDlUMAbLDxZTIhfil1x62B4HwtwNaIUwcJXp2ssuGN4VUPDNUTeA6WpOAm381MPi/brBw6MFcTylKigE6wriYzjSSUY3McWWukBy+N7SF/au9dgM5wA2dJFiaXeQummrd3tgupYzu1qdxCgFrwrsVaQyxzbLcPpap0r7p2eIj61R3e0C1GfXJfP0984afkNyhNYKDiTqw0PMefjRkHRcy8TTvlUhrvqt/+fHtsr51I2TpJjwPpvGXz6Of+1xfOtEIzUzIthao6cfHnphTEDCRC66v3iy3vjVnS7C5bqY7DOutKc0n4nzoroWoSkl8KenvOsuDIeteWtg4mxL1xGpxT++9MdLgtY7WCuzOUhQ/xp/bl9XxWJef7pWjBWV/Zcz62WVwuI4SQQvYLDGxS7Y//EYttv2Q91Xmi8BPNSM+ZO/q/kYpC14zfrACt695/xvL9D9+sjInC9CMV4jqpI2vbAtfd7r2b++YdubLjN9LMX9dM4wVHNfpO38fvg2HVSY4/Efr4pHKeOJrt1/NYvqlVeLJ8lLtDuYDpWPltqJQ8gSbZ5sgzvDMmrlL1960vGLVcd5Im4vXwFqTyfG3NTJBGVF/0YzzyDbLePhOAj2g8HFDKOvMIphIfEj/B4RJ9vBWKGRnb8ArzRzWKybY8hzsU7g4fUFix/3bcixuYF/+sran5zub73Cn57+zft5rD4hB0/7zvN22xJ9h++jguXEHXI5u3483ZT1G5nGc0estZvOvOPh6fWj/RJn5V/qHps+QKLWCsPfg4Pkv/1nF/2Tnd7eZHHXutloLXk7sqGHUzhtno+bfgnP873a+ImY2RwUWLraGa/SZWOx92GyYQz0D/PjiMaM304L1N4A4VVs+5ag/mqCOT7QJbV+YmzQF1B3SmJiG3pv/eMDs95klrZ9/+Ml0J9gR3KxfiIO+vmIOAtg1svXkCb5+NNn/01IcvXrqee79m+/0Deyk3qKy0CF2c8SM2w/Bf12VgWKt3wzPyz0mHW2/kN3mzxIOPu/PskPsz8w2NznxS1obKkA6VPaYC2PH93og3cEgY73fzxjbD+e+o/f4VvdWaNBCgMM730ghIT7uidj0vz5P6rPfSfm/IfB7rIds+9aFw7HSZpnUMPyXzxij3UFqG3fHhZ3y5zzbReA5msZC2c9N5qndwbv3eAyL2iSor+U6g+WO1CYk/JV98efdOvdLPA6PsTxX35An2a7o9Jdm/vM3Y8NhEUDbLcZj9340rIeHLe6MXJdRzH/40+wqY1BOy+OMb8+vhWowZP+xY+Qa+SqgZkHF9zP/ok+FmkEq/u5I1HcvkKxUgYTPW7zfpPGFo3pNcjRdIooO4h2EhxJ3/xvvZDt8ouL+vqKOOKGu6baTVEtXj4nDtP2abINSWTRR4lX/csXdrWSxRSya4OO4QAdQOK//YyVWERISUTYgG1uT4RsUiP+46sIrucfiy6fZcfaz7dCU/N22N/6mq6Htw3whhXbVeTScXGTJOidRsZrRw+QQjaXFDaL1iTHRDNm/7I+ovZ0ZrTU1hFC8kNvwPstObHisrDEc2WU+vz76Xq9EfG4eRc9YibN2I6rvGDL6NDqlnL84Wd9k4rxOAGFzctQiFOVdccMZZ/rzXNfE39+X/y2qiL48yN2KB864VxWGnALNNpY5fxP0g40Hx1S5jcrSZQNWad/fIl5jREivudhos2847/x9eRsenhw64qnx0nvOBYrG836mk4z/+mf9caDX5JvSRQcPkW/PSUtXH6Zwjw1CIpJUlIPknRpkGghuYiHLl6Aa+Y7QlIrLSTVDx7aK+JrsiuOVIhcLRvY+4jQ9XVJwt7VWg+Wy102x693J7bfeIFSk+v//by/7x/ArmF/+k70Zuxp4VYaWdnulVicthcHLsmvw79lcrcEd2wDjrxBf/yyGK9N78G2bBnzHsFJiHUY7tGcn5jLPrIlWDqmevJOsn/5e7Lfvwaqy4LQzRLQPNtMB/jj939+eKDG86gbt5bTFcFxOJWeGsH9+z2TII+Nmp2utQkkawesLZNl2MBrl2h9enziaY4vDD2mHmSFe+RgPOViKD/4h9Zb1ye43uh/+eUGoCSEOZftS8z8O4H32TDI0Vql8bhtUQLbyfnMfBGKf3rx6acnzNj3XM+84gdzPiVzfIy/C0k9wk21n+w8WmqoaEox865HwkxlzaxJuFaFjFtakiDwzZAnu3uJjs9d/RffYuWPP5798ceMafzOelWz0ZwP5vx6C3mwOBiQHm9fFsDuN/cF1QCkdD7TX8d9x8/qIkVZUDQMF2+jWGWTH2naK2Psnly/Ha2SbQ8daVxymPWyKPbvBunzvHg3XTbhZH63zj+9sE0yB62WczePAOZe5U+976bjNohAae46Rt4zDsdsbN+wkWhFgkt+Kthh02JtxawzmXlm2FiGUqI/v53YwgzbKDEeWselHzM8byH6O64A5nzE8BuyeiKjjoEOb4kZvsPCqTFdD+b6C9tkbyz4XC8Brk4+VfSbi6Rnc8zQ8txY5LJMN4WcuMd/fv3f+x8L5dcDOTaYXU7vTSc2b0iB6scH2YDWiTGIN6YePZcmi5w0KiSlVgD+4hUeoo3geRQm4H4Um/jrjSim+qt70JjkTvX77isGPznuIXyePDzHy1A81j/QZv1Ep5k/0UvpmfCq8Ei/czwR9cvX0LObZx89w3exusc4+vMf//gyr+LBAdmzMrqMN04tHyeJwsfEFrFP5rbuZn+l88C6EAOsCs381IEUI0TpzOfnel4LE/HwrF+pxb3DQ0VHDbtUKd1TN6mqzuF0qAq87g4fxNSCN6B79cAivvnE43O1tgGl3wPzO2kZi7DAe+2PT/spXliDN8gletsuYvZ72iMOYeXpl1sTkjDjaTep3kWDxrEf7NBo56L/JOgGGy4/mT3zpD+9irZ9UhDz93jW/OxuMMy8lZB6H4Ti/HJ/YMotZxvFfIfcqA42urvTjvin97ObznfEoZDfIV6YLarFWeS3tXex38Qbj3an7ModB9deL9mfP+SxlSX/Ps/7PkXHjsHN0Ra7BBi+uG0xhK16Az1ycsr3q0c480uOFiVNiN+3LzTXJw29M7ca+ePJ9E9vdc9gQbBbPtEYVySDr23fCT4cpmIaL4ED76k6k3Dz3cUjenYJXLB6Z660EGE/uZIHfzzbGUgTs88mmpAE0UCsVl/Vgp9aR/vZ9DLzYYrm+HCDRH0qLHTcpejf5+sCouPnx1zqDAUvgskG7+5vWSS8QtBd91RQ+lQ2//TTmNx7FcXo9v1Xf5re6SuFX5JtSZq/dzXvz4UNFCAi96bfWdN45hLMeoeYQzXGwrksNdAL7pAwKmn41BX/AfBobOKrQGPRm0WAvGw6MpwOcjiRUY7QrJf/8Ujut99G75S1P/PHqRA7LlOk4pwRw9/8rOlbfG7gWaaLpzytQ85+DxNWV2/H5k6sxfh48AzJ55yzyNjcCr4KCg65P2Haz/t1nIqjAk0hdXhR3RxLsbP7hOZ6BDGeX2T9iyeHdbNj2wwtYr6afP7nt1mcUSmc9Dos0R+fW+yKspj8TYlBrR8xFvZX64Y/Xp2tby35e77C1HUDbm4Qs91gavGjmFrnr95MVed7KXiFYudP/9NpvEZxX6vqG/6vMwXwv88U2Po5pctprXYc1JGCO9YT5gv0rIXZRQpy4b5kG5lswykypxTeJx6z/VJfiDGXCw3pqMVs85Ccbkwnv1w3XcsZ3uKf1WrL5w22m+aBpaWLUB813RtoHGlkGxyuSPBrf4O03ttUu1dx3LVNmaDPofboWNlqzXZOWMHK2ykMG2FV0Kk53aBYrgoS7cpN8Xl8mIHGKtth9En0cHA+oMJCPaY7JT2+xYh3xgO2i1Cnsoxli9+aGkO2S4CYfVbUwo9rY71gps22aGEKRRolBXZEvZBcXz3R6MnlEe6r25nKd11F7TVe79HzxRjxdpsPGshVu8F77fmMjG1pTVbzdPTrid+JrdlSyLNoZUJKtB1dF6eg5pvn5Qja+KB4/R42sfxbtiX48/zEEW/run1SbiDL2kkUuQy6csgfPxiWskWCoxbUUxd3LRhLeclMUt0K7uffHA37bsDSvULxsHhGBvKcT0OCVbII2YWmqiai65bYTL+gyTGnG9BrLJEw5J9QHOVLBmbapiw1pEfX7Je/BMyfIjO7ee8EV53DHuWL8Dn/vUXRyf4VAxS/PXFeZSt6YUoYxC7NMPhFisZJVd/I58yl+irR5t5Fux+qc8knpfz9dWNKmz2IXZKRzfx7p9eyfMNGTY/Eu+JDzX2qPuC7DrbMlTdtLDxztIF+Lhcqn1bfghtNp8BDsu8sepYPwW/qlILkEY3gUyHEdO8yDPexPhKrzPKOB8tfCdqn8Jk9/IxQ3uenozZd5nlU/SspfoOfUhi6X0PX2y+r+f6zMODE6QovP0ypp93ZL9EuUD7E0w4q6sersGFh0A3ZwPsQj+wcOKA4NWC9dvcxz52DBvLXDenwbJfW77Q/vCEd0sX8PHJrSke9RO3qFhLbHFox2aoaodNrWM7zlAH1S1MA0OzYU/1bSKiPnk4GhrVTKY8Xv3g8Xef5RuiXMvN47Au+7MgbLabzgTj2u0O09L89qJdFTtyCR9Z0dexKs+RxQ1Iv7BFnYFcIN4uA4e5kdWIPvqeJ6L7FdSbZofA/U7DMv1uGR3OIEO3OhoQ+Mj+Qs8Wjenr6NwAL4444xYl2fXG2JLBp9CXb6j5Z7fjc75GzlFd08Uku4WQ1Xwf44QHM98IWDWh5vaFNbmJi0EcdckVdS6iKdwExHWSEHEXKHrprrGINnbyud3eBCRVcC7wibiamQ15ocIHrh/iFKwvxot+jNkTXHTnkQ1+MD3nuhXJBKrEW/SLm2W7T6tev2829lIaY/rptCivUpizwlayYdt2+0W9ebBIvCZYFa/zHPO97YizUDpJg6odW2vx5VLodvwXTU6kE61zqLDTCdzGE3WWB7m1skPBSrESf0OEHFuodNq9HRPdP66f/PW+b6WsxlXJegaO0e3rc/qxasVUewaXeGyy3X4UYqZMFaHU8Fcx5hH08dvu8RLLAnODb/T3XEMe3niz8L5WZqwm6fJo/yKPHgXnOUBejApahTZe1inXTWtQM5OyB1ERr8XdXvuJ+87zsUZ9oKl6FdVUIyImJfGufEiLcIRbhM8hBSCrFuuB1NxhdjtH2xJdsS6o8Zu/OdiCSJ/kvHgoe+00DS6fmWN3iozXv/wZFXpwzZ13oqD+rTJl7IyZs14YVEob/WGipv/QYcTTbUvSPlkOzS3oSRNmhow8wPZAvixshHX9a3HSOuR6vbh9mzOt/MsypgWwp36nqG3rcL8+hAxoOVnT9YYt62Dt7rj/3X51EL+Mcj1nMTQCnlug0ftWw/fu+2+gxsEQs7EJ84ipH3c0PidGESTwUzk4DdcsOzFMGs5CH61qCldI0uDO1b82zpk5B6u8W86o7DrlF1RZ9urbHYrvqi96VH3vwfsrAtnFtI46dY7Ce98t8xkOrexQt9ghLzop5ea8Wo5SXFVJtecGMXTnGfOf3PaRE3bHSzpjFXvTWovNXd5h9O9wE/w8AAAD//yydW9dyQBTHP5CLJMx2KVRERki6c0hFyWkG8+nfpee9t7J2sw//3zYze7teZijclTsh388jraJV68Ltdkx/+bSbdsnDhLRrgYiJPNjzWiM8yr6BgdWR5XrjkT4GFOpnvPeLs7346xeSZmEWdpiCnn5NTR61BFPcvfp0HqyoR/s4dKgl90JKdrkUgctwRaahrfTJm7cVENc6UDvPXsHsgvaSIaru1Fpu2h5Sq9xDu1of8JbbvUr29Hah4lkrjxo3vO3Gqir3cPfjmvpkt+0GPZ974LHq41MVn+xertcmiLvhjFWeP3SbSXtXqNaSlHAHGnesD4oW9ZWBabBSZMYq6+vADYsWPeij08289XR+78PbS2uUU/J0xp9/kjxjvc5eYM5wCCHEYdNcSmaSRgTNo2dsS1uNCfdIuMOO5yJ8HFzSDeE6UwFfs4HE+0FPpzqfAL3vVkDWx7PC5sh6CvBpDgVBQtEs+15rH/rLbBNBSnP2nqomA9OjFtbN27ukmRcb0n21ueJDxni7TDonBPboMT7al6Ybs3o9wiPhT9SuQ0Vf4nk5ZycM7rzOToxdauqBbOKZ9P45DKZEnAw4GeBQD2zGqFeFvJIkwoUagv9F86HzCBiW8sCH2tQY7RJfhfO+jrG7VsN0ChxludtO/mD9JbNuEsUxg1klZ7qFGMrmFW16FGyyGmt5W+qTuE49VBB3R4/p+LWnQiQh9KEoYudX79ls8vDG6gffjJjZZE2uX2RL5uCiPqbdKK+a+189ceTeT5mS3FrwXfeKdbApm90aJSgwOIPq76xHk+AdKrB0P1rmrwJrOW9v/K2/fsqGYAz3iaq0TnHGx9vWQIO5zjyQ+G1ADwbju6rb70W05GdsovFoD613EOCGVYEagVkHxI+EHmb7e6duGPc6i2CrwaV/XX96JGVB4r/g7BEFq/r06BirJx9p/OGAnU9hlptn8HogEfNr7CCFsNl76l9l+X38p5/5daKhR3OoSUaMpqvFmjwAJC507blnaEjz2UE2Dy4Nh6wLxliUMxDaaYfV0nRStrYuDpR3haOGdzPsycrnDzSiN1OnVnAwqIH4AuC3mOKQNeXQBIMGfL6cm4xvWjfda0igl8wtLiLjY/ftOpT//M1O+jDlz14YwWF6ztTYutdypMEog8DrV2ov3R2SOrwHud3KLnNsD63lbh+Cmid7jNszRSyrsg/UvMhRdb3BwXh63jRZxtpxWa+MTePqESpVVHHYXuKDdEHZwpk3GA0Ds06ZGBTJ7/1YLw4Kqzqr38OPP9xy1Do+JeNRXuKT2sdlvrG+7Ote4h1rvu+kLNjbMejWUXJvB3M5eqChCgmHG8a7L//U2dnKOXS6mR092oeQUerIL8QZa8HdlOUTEd5q3J8/YLd8DWwm+cCjAvICq0r71qeDI2i/fLDMevH/9DC6zclANqfNBy3xM4KhXKIlX3Ns3gRljJ7Z40DD6jOw+Wfvo9nV1Fhvl3nYwfLNymvef/EobIPqBdEmK6mKTJtNzuq5Vz6XOaCOlQpovItyhNqWXSgOxmc3FeIn+ul3HJ6byKZfsctgcIoT1cm5QONx9bpD63WT++btIRit5JnA++uLpJfl2p5qqxWAbO461WyuZgs/aH/68OTLn5J9HxsTuPsqwWpa2sGErpaweXqd4oKvrzqWkOcDfHlak3VrMPv7TB4yqHEYYlO1j+kENZrlK290dHfZWOm806ggRgaoNNdfGDEg0REEicvo3mpY+X2tngCGgQhBa3ewJ4P0X+g22YFm3biz12owPpT+yAIi8UclGBd9iJBKdviEDhjNrncw0LdOn6Qceb2ck5odf/zw8yc0Blb/AbPlB7wtxvCvPsJst3eXhzj+/7wbLefELCFMpzmv96AG3suVFx5kfj7s5a6+5fQ4bat00a8CSs1g77YLv051LnHw7FqeKI/PE/V8l9zh/qbMHfMNReQU9B4Mp+hBT34/sansXB4enHVzuSEN0jWsHntwJbNxpXyjo/m8d0YA5y7hE/8WEJnF/gPHkPPcF/dQ7R//gbR/ilQbb3tduOYjJ5YqeWMrZOeOtRPrEeNlgk8fCZXs0TkuFPVtwPYu09j0eBqtwufnnmKkHNnG7ByCzl6vYKyoMxpEcbwj0he2m3ykopw+4iigrs8x3u8235SZmmRAQjWewG7zCNjVQSq017tFd4l8tllHGhP0PNawr2zdxd7zXVnsJ6Njh4x/kCFGu8u8os5RNpdoVjQw7S6iJ1LUNmX15KHmMmLsJb6LptkqOIDoc3fXFlY75pJmRpIEMb2cth1a8lsMF93f01N0V2z2qGsVXq/rBltKVgXzmix3zbdTQ035HCMm7LUvYDOIqL1RxpTyD06UDsXWJetbE3ZL/fbAcZ2Ceuat6cbVVTeUkyG96MkS+HR+r8IKPip54tN2+0w7Ia9ClPBGTRQnPpXTJZ8j6Ks9puYsOx2r8p786rW7OW32bKxXVwfO0gG54cLn/aInYRseLDIFpp2OC/+h0SkstxUMxxYWXkaFUBt4f9m2wTd+uiYaD7crdbV+ZOPoCK9fvGDbYVQfzVnfIzz2q/96aainWHlI5tlFt/TKBk2cPooma47LXZpvN/igz8qZigEN0rIOprw7V8rabpO/9f79/2hc8Sv33V1wt6GO/JCSRtEWvZ+zX/2VvW8QYufVz6y9OHysOP2rpPh1T2wiWfc7/OqBe2nMkif1OoE0e2D645sy8jxXCS9zR+bV6Ov9d/UUYGutqv/+Gojkg378exI/z7R/rRpADVUfRP71R9Z7R4UsNN7U21wEe0RVwf31p9zF/jn1bpkcd51K2JIPiOWdBcQPUfTjEzZ9RFGARY/j493oSxYneITKa6T/vHLXJlDu6zGnN/riU9oHxReahiNU9YubPV9n04Dne6B/+Wcz5tUd2kef4p9+I24VuegZvTWqzobUDb/8LZxfPJH4eLbJDa1aOE1l665OrtmNTAMXFj1ONt5NtceFr0FKvyHNn9+VPSq5zIO2raqFHxGa/Oqa/fI34eeC2SxZpRnEvOTjJn4DY59V6qAzZw/Yrt4S6ierBKTEXowTfTTL4SGKAD3VMrpNORONsThnCm/tTsvsOj/tP+TtwbY5IoonwUMbvZ59+PHBOeVMtpGClwZOHBpEvDRjR4nYRXDdVubir8fgS7+qpiz6FOvvzEGt9NRG5D8rlx6cT5s2tDu7sPTX3Dode7369esWfnPfu6xlS//kLv/6Rb/+01hMK5BaXpaJYrw3aD4EfQx6fonxobwM9nexD+T+jqiabzCaXtGKwBxuc2y9MwO1py6u0MKjpJO2GqLcyu8VNb8se9xeTtC2keCgbbGNqOUXJ51xnV0hzpK+f/V/6p9Ggnb795fawYEF/W198SAgzgUfxc8uINnaf0FU+gbV4tu+XNhUhfoUfanKyiMT+LWvotdUuu7AvwX2Ntehh95D2BJ0PK9Rq4vvDzKpXLjVoveGa3frIW92nSscZU+ffW120a9f6W5PRTlfHD4BKX23BG1o2i08p0IZSgY1SK8EBCWpBpyFvu6kc0261KdMMbD8Ju1cdDrxI66X69XaplZhqkGfBeQLNm8gbKDync5Phz+ig4HapZ/20PusSzg4QL7CGtk9u/GWsw+4Lf+maZ690pbm411xVhtK5M1rRn3ppQBV9OGwoY9jN5NlIt27z6/YWG/7dJxytof368qouaFFyQrSJLDvXx0278MypUrsQ8kjzg0b8BkCdkFCDEbIxQSwgtnkzdYHCixvMd7LlT6VqxzQdwg/GKeHAY3i/uaB1E5bMnJo25H3VeWgrLYT3TUCl04PceSQ4ycr6kaSXI6f/a2V9ZFiaqKxteejKO7hUWwu+DAX2OYvZPTBpfIVG0PWpfOnuhDoRZ+4m3xrIpmrcgc202u5h0He6eyU+F+ltNuZWqJds5F1WED36/2GLbmP0tmE4xdczprw6fkt7PnQxQTWN7i7m5WpBfM/AAAA//+kncnSsrAShi+IBYNK2iUyiYIJggPsBFEG+ZAhAXL1p/A/y7M7S6rAMpUm3e/zkg49fG+w8FiyR+UuHN1w0/xXv3V7iuZK3yhoqb/Yoj/QPByyXr01ocecyP0iPneugoSLcaJjO5wSmlTvGtL4eCfeJrnyCf74CGdmaFjdX0R3tuyTpr4u9nL2tmuFsr7eVDBNb/VfPdFFcuwjP3b+8Hhqa3dS/tAajgcxIkv92DGY+A2Weo9ci1fgytmfFEE6P77EdEs7nPSTNoLrFR8sTg0YDaqKaiueLg67QyR1kxeuA/CnssZyV1bJJNonB7ne+/N7H92RVa0Cj4d0ZYfnYnkZj/yNzpvjh+1fxT38LvW4usQDLsjIXT7RW7TsRffYdbtrOd13Uf9bL5i2bS1jPvixAu6tOdI3clzEYEKXHx8mVpy8+Hg6HdZoc36PxE4jpRs6/5FBukoT/PH43f3xaRQZgU4WvVJKziMb0Z/3uuLmq6jhPz5kXvYW5kKfJX0mXx3IVckl9wHPJR3kfYFKpjfEHb69sRxxH0Cv9TGLms+WD3p+8sHxii/RVrd3xyWPjXAwTj07Ps4KajN9A0CD+x9dh+WbS89wCpY+IjEtdFUuhwrcB4QmmCxeeI5ExZzCp7hyZu6IbsiTt3XAVXVtybcFmv4mIYVDdHGIl6cal53cOoK5vmC8Pp5jxD+Ph/PTy+S8w0nXqOHYoOHd34nl8ZU7k/VwgWYqbSy7IzHm+m9egyjtXJZ4nLgr/rcJgLlN8ctf/Ht8PCPUV7vP731xx11+DpDwNUVCfv7Ust4gyx9OzFzy22weWg+GWz3jxxUTVw6r1oTONM9st5Zql36WPa2LXsYwKRJa/IgG7S5CSgzci2FPxFePXgcALKjnEdEeDmv1eFQ6ZiWOhX58SD103wvbLeMbRrG5oSV+mWettETJc9eHkp8ctvRDMmZSNRJc+CklhrhV0eg8biMK6r8b2bvXU7eMx0c/vmE10s5VfutDvTkemI6EGrHn4UkhjI/lwou2fORiJsDjOpfMLV5HV8n9+IbocMlwOtY651hf2oYwlTDz2r6XPWVIgp/e9MLR6iba4Qrye3Yli57v+CZsNRQfRJNp4jZD/KGvKbg+syha8t8g3w8CCJf1mx1Xl8yVD4cuBV3VPGKc8bocfn6fcn5LPx4eDt/wo/9+H4/vSOj6pd766amFV/TJ/AnLGd6XjYOnV/FK+IDkNZRuM2N50aNse4MUJdhziX1UR6MJ7X0EhnOu8WhKTTcK805QZ+rufjwy/CLxmYK4ezds37gtn4htO+i69FHYQ/0Nl/WyV7vIH1m8d95oDsULwCDPB7K/pn9ozqsmA2kqlMWfPBqLvgjAxt4f8/7Yo6RX/1yB8bxHFL67HPVU/FJEp0IgRlqTkHU3SULvr6DSFR1KNBp37/aPn2TY3Jdz3PmXrfoMK+aQQgnn8pEUqPxaJXHKse2GTHwv+Xvf0W25H5NxlfvO1sjrgtZm7XKOxYQiL7qZdLP4Gz/9A5NDBCp7/G5MxqGrkBxvJHKwVmYylmtWAd/HIXE3WpRwbYIaxN1LIMQ8Kgm/0G8D4cWefvwR8RQ0FfVuW9O7Vx+T6X1yHGAx1Ew7Yyir2o4byLp2jZVFX0z1ydFhGi6Pn3/IeR62BYwtP/2rL2f2SAJ4bpwr08w65FNj+8F2o0cGy8KraczWc7pA8zwDOd63c8i3+nBBgTwPeIOHHI1pFwAs/J3pnx1JFv9NB1btcnJe/LX5S1/rf/6gJRab5Fffwp+kCgTrGRh8RRsV/fR1V5udQV9i2v/4Ijnx0ShnvcpSVIkrwpyu1BKeTRxAInpArMT58DER7+n2ybQR02W9mZ5dXKHFr1j6sj2N6dzFCuTn0sfjQOxOWvwGxCrbZY5fN+jHM1AQRCsqLf7i6sePwUs3xGzVwJ1r367B7t8dMXoeG1z21Af0L9kiuvqSy8WfzCDCHiEndK3Kebv0JT5vLMRsVSWu8uMZ5pQrmOP+lXCQ/QLMh3aksljE4UeiZQPiPjZ+40EsOrxTWPQ8Fo09DenzOSpgbiONmBvlFba/emKp36iAilM4se7s/X99Crb/+5uC1HEezCNYSmb5bipgeo+Wbt28LelrAwHKC0vBRdl93RGdXQHtvANlcdMMJVVOXqTuX/6G4XE7hx2JcxutWrxdvq71wql47Zzf/cTM57CbdxHNgAkZwrMkDGhOP39L72P5QGuuunykbelB84pztj+lK14FM3mAM4kWRteUhzSwsQ37+IbJTrjfSrrDBx/yqK+ZGbYR4q+MR1snK97M8KRHOZ/X4QjieHhTPpiML9czPI7Zk8o4q8LxmocVXGWDUPSOTUNuzE0Lp+YykniDZndMei8Aq+NPDIK/MeggfCVUHNMLic/ptRz4/SSABRWlfN4axsoupmDLo/2eHCxNdcdtYQQgVKcz00Tah90lN3uQqNnSeSPfuNwOXbMwyD3WduCGU6EgBY0JSIxcPhZi8/NxQ3EvVBTdUGZwuNRrQOerzozOTZNxCNYFtB4ExPk7bxC19mqLSs/TSUSVPqQb8N+oldqemFzFLnf4WEHpYR1Lp8vH5Sj7u8Drj50ZQVFptPkHReh8wxM7tPsoHAyzpuB9+MTsRL+gQWTSA+gm+JLT9JrdoXp9VLhAXhFzqwkdJXoawK4qTkQrOzeUnbRX4ZOWAXFPj3cy3u6ho/4JL5Po65tncKvfUDAKfCS7/SiGsx1tAGpinynLwhXvZfp+Q3eZ1swLYiFpfvFwvnkTO9XWm4+t09doqv46YpWHvcEG63L8zQd5FW/PHc9em0J/bAgLzQ9PpjsEGJXfnUIs83M2pk8xA/hn7UVcvS35SMox2lbzZcbCNh748DxGutpPeUT2EpGTWWWGBlV0PNOpi2Y+ru5BDckt6omWH2/hrPjnbBtkNKGqLrKwU2Y3Q/zzp1HJbT6c3rrzCL/50IOoKiex/7tA9PBjlhRW6TLPSnuI/JPFrHnsu0nS3xdoHflL9ughGmzdGBp83tzBEsXEnabOVmBfK3ti3IYB8YNwHeH7lFd40j7Xkicb1kJu+TpJS526s32t1mhMR4vhP6K5c6roKdxNX2E2H1Yd4+vAFq0gwsTOP1ujWS1suUDRRO5X5R3O3zhzQJmLitgz7tGQZNEahut0Yk5KJz59akdHS/zT9YFhtw/0QofT19kRY0IRml77vx658arAtbR/J2MdOD4Sh8Kj63E5jyhsMKh6tN/Sak7KhCtUidaPUB7o0kMtnDZzjEEs0zV5wsKY5JP1Vp3nQMijy1zUk3L9gIRxRA4dX4VTKIbjVi79LXuc960xGD0XwPoYOTsu8zMnje9t61FjxF5P8r//qybp/c7MVvH5+NlpsIZY6XFQXbMlnooU0o25Ysf4NiXzI1dsiDdf7188dbeDMCPpHBnswKMD6uS1oICobFJmDZuyHG0T3aA+ig1uhnteTtR7+igS3pidRm0fjlO+LyDovQux3+Fi1VtlpbLwdSQ7UtQGNa/acTuSwMNT99m7kzRbFC5YfWFBllBC75npq150XtNVo1FjfCk+Rmv5juicHy/uFM3xCJ9b9UdO963tzquH0Gx80Hy8Uh2nXOmfWQEztgKiE80Ol/MMatjrdcDs/PM0eJJLAkzVpyOHqW/5PJStCWaslsRz1u/y33W6WTss7CK/HLt6emxl/famq/z5WXYY+A7sciyzf8+XiSpAieUrXp/2XsKX/KHSnKVEe2V3YwgAU+BmW7KDKFmhNARjAYmzXpiD+i35Rt4GgB9mxmy7qpMeMsGDY+EeMDo9tFBRKtFW/bCbKRq1b8c+u5sEb2+8s+u3Z8kg6c0NRYeXQ1eT2YUDk0mAlvEw3G0kxK1v38Ac9jazwuuQ0OfSG9f0opbddd3uxl0vm9AowtJ6cVvyXjXiHn3NrGG2+R8AAAD//6RdybqyPJC+IBYCIimWyCQyBUFRd+AIiMiQBHL1/XC+f9m96vVBD0Kl3qGSKvNQzI02Nar8SAhBwadLJ6H0XKRt8JPaqtshXpafCAyXGfT6uVcVhzdcYIlHmoa/uGLUZQ70DykgMGhiNUikfcEjKVdEscsNYv52w1TzuPR6LEO1GMMbu8B8bSdssJ2FJEPdP1Cq3zzsWubSS0jd36CGi4Oz9zwVg1vprnbKRULT+71Lp31SPyDZBhXdgtKjn1WiEqHETYk0s6Di8uzf0CGOHdL3+1c6O9rs/lvPr7E58HEQOgH9Pleb4ilBPYOHHMEahz52h9M5nZb70/bVwKnfQWBygtIO+uWcZcbVntMgKQN4ruIH3s6aXUx3egkQ2nORiAO1CvFEfhYomaFTX1zPPW2sSln2TDTUZ/qvYodvF4Av2Gfq6j1DZHshNxDXT/Xv+aRDcJtKcD/JnUjDepMyGEwCDbYO+NiWsTngrFNg0wcJTl+tmI5+1c8ovlMHmzvHLZjyCUSQVH1DXWTzfrAbckOGfesi6X1vzWm9CRq0M+okAlfRq+kbzQ6Kz6zA0U58cY6DogZzNRj48pmxyc5zrqLrFjg+ufOnmM79qkW1kt7xtpjGgn1u7gByp2VYt5JnygWvecBtyDHhoVzz8XMab8CSYSJCE0p8rHc8QLOhSnS3I3Y1RC5rteeusamJxMCfNFPLkIjqChsTr9Dcq0xH//iUfDIrZq+3BqCaN9hK/MifHkctQtbT1MiCh4gmSx+K4reOI3K0i3TOVqsc6aekIdMh+hQ0icMLcDk/YHtYbwp+sNsAPFNa4Tg1ip4Xm28HOQQ+Newd9+dTnj9QTF7nSGqOB3/G39sDrGE598CoYcoBumdo81VVolwz3vNsLzMov0KIvWt2SH+n1pbRGhlLr79OS6dvpFraH9/QW9qisQiFI7wvpKFGKNz8Rhi2D5hWjxgbwvDk9GL6F7TwQ4qvtwjR9bIHC3/CG92yn1Wtl9+76ct0ItLOcXy5GZ86MkqhwuFFxAXxVKWBBU+xY5wTUzqQ4009sjbCJ5+pfCpkv4bX9bEiCdadYsqchMB7u79ic2YRYp4wtPA17ylZC/PSG/j2eQCaD08apEVb8VUxMlSvzMUzds49e/6MAZ7jD6jf7TKfe9tShe3XfxHpIBs9XYdm8pe/qREMdj8+uWdAvz0f6d7Wc5922zKDrJk1HGS84eRZbmtAh7NBVucKFRO+nzzUvQOXGmc8VoPdNA8wSqjotd+XSz7f5JtyOt0jYaUaSDpKaaYyer3gnWdde17zuoQneYZEWgWt2azKrQ6H3++Ew8SaOVdbyuAvXy38vOfPwVXVs6zXNF/yF1/XmgAIjhzvq6kuZmYU5I8v0xP03GfPyINNEiKPRvZLN9mYsNemXc86jmrSmzQlSQDd1+M4kLcTnxFICWTrJsJ+W5xNnlPjhvL3qaF/1/9WR7GDp2wU5Nu9K38yDmIEZd1KRNOFsloKmqB+c4yjzfNccC46Vo44WZuRIQwrRNX2O6OmfMnYiZpr+r1RGgC7zTY1la1erc1ivsChIh0N1/7BZJv2qv7FDzUdS1j0gR/Dsp2F/OkliYjlC51inlNr4T/j+n1VYXO8ZfTW5EExf3bqMjusLGhAH7+erw5ujebmdP233qikCCKQkyFSr3aWuYNSqoI8v+oIBR8vnezGbaDe5qdoc926/nzphRLJnuz94/9/94/GvfOh4aL/eEScAa479Fj4u57yLL9m6PKdkwi0pi5Y+5xfgG0rjgR64OYPmXED5ooYOFqpJR9O+1aB94x2hIu/Mn1LUj6jF+9fkS9ZDeLg7QnYn+2buvM2K2b/pFzAT5U19e6V3Yuw819wbl89zXMJ/Ol2jG/absu3dHvvXpxORt6AcbE1bPaXuJ/Vt/RCnTlgGmoorGYv6TOQnvIlkhk1/PXP72aodyc9Wt9NrZiVWAhgM0qfaJ26GZ/Tty2jJb6i+UiUnj4+ZIY9fmhkXr0lNIP3raGcznfqxolczI/i+0A93xkESVbDGVVODxjuaRmV6nrr94VnJCAg9iBdGeZpK0PCtPg8FzSY5S/nzU4ByGd3TZbGnD4LbpsSXut5H21Ovx/i92Jbw/VCKPbkqC3G1GhV4H7+JLBKqmJ6W/scvqvkRG3ttTfX92Jfq0qxz7GxIp3/kx+WCPt9mUTsUDHOBY884GhJ/jLVe2tO9oU72m3jrMnK5StzFobtDbLOOZFy9T4hnu0Fph5ZF5FSvl8qHlbvF9rEpxH/4S/btAcFbKo4dDmUytlU32pIK4WQWQslf3rrcFw8jiupf+fGnMeqdLTws71gb/R8U6LSLlZjHUfUTMuKj0epyOCsrx5U37VdQT471VH7z3ePo3PhFGw5+4aSnR9hdzy/e9as9Rs6J7VOw7PW+PNg32Ng/r6iRm/uivU1ljp0uL72eOu7WtXzPmiQadqU7p9nhP74MjTMoHTPwpc5PSkIar2xSKQp67gYLnoYofGHJ2oFiYrmwT7FWlMdd1HzWdm9tOgPKH5STN6+e+9nnrUWer7nJmLNdpWSGbUJmpdZHYZg+D5v3TuB4HZ5R5TzuPrJ+WpW4/Q3R5Nmv3zmjHqzObAiIS0IX3NaaXsVbetXSGN7JxWz+9skf/k04sr21VNvWyqwKvsvkafrMrthSmewVJNiq/lBxQVZn2E62zMR2c6oqD1sBnC+9Qvv+eWHKHhbouHrcZlHzsx/12v1nM00YO6j4iud6NCmpY/Nayz7fKU3xh8/jp57aV+sEd2qgC8vkXowxdVsPz+ZsugRbC7xTCb7xbSdmOl/+FSN1H6rWtl9Xv/yJZumzkH1xT0Qno0jH4PsseTrOiKrP/0fvaoMHJLdovfi90xqeNX/6eMwXAt934535S9eI9S2ftFmNBTBpqpDj35rI5Eb74f6SstjBEVH0ZR+346yxAPFga8V38M9VwHi5ke9tfotiD9WDizvA1sDtVKpZ8oAsxOF1MfVivO//HoXQ4niwh3ROPjKCzQqYzL5rtYTR1PdjXwMc7rwxXSS+ySDjD8/ePe+25y9f/Sx1pLsTIOwlIqR18Xjj29gI/LjgndNWWpFpX7wXz6eeJ0+EL5mNnWdM0aLXgJkloFHzyXEvbhVjRpeGhHpduFfQ/5Ilq6c2xjbdv71J7nPj5Ds9hHuFv7LvGYDaCN08n96ci9mD1jwDHu7wKyG8rQX//gb4RUXfEr3NmhTERUEkquQdu520CEzKpcGqqIizo1Vpv7OKKCGHnumdGpDGSWf24XwwPugYQlOOBafHf5vfd9f3b94kBE8OK1OT4IWvCCiJonVp/1tRLX7Cla01l4Nnz/r5wNCSfxh9+eFKX+E4KCHvXVIN4lPPtvqaKk/8LfUfTnMn/KzwEBA8wP709D2016dCHym+kq9F6oQocHNg40hidi5Vp05ztMLVDPcmzSEW8mX93XULtlqSyR6iVL2uaAWxV5S0p37IXzID1YJf/FrC6sU0T+8/JGfS/dbKTb/6bkFz3CgNVY6yHXrQPr6ZIuf6lViVredmq7PycLHB/NfPJ/UlRrJefjgf3oRRftDGA2+LPtcOyNAdGJHegq8qieLXkd35figzrLep9+6tmAi3Qrb2zDh860wCORnIaNGP4JPF771p/+jdsFX+uPM0Ay52JHMpqwYLd8Vte3ZOP5bj3/+1D+/Sspe56Jt8ROgxB9CvkdR9ifvNL3gYMwhDcTya85m1BgwvYVLJKhb3M9CK+ZIsCybXqfBQ5NfVTMMD4uT/m1eEFn4M2zegPGp1VnBeWyJ8D5vTtSWkNxPpcxlWPwIeubLnt4B3xo4GCz8+zwnSda2KDn2O6KS34mzeXU8osWPjOBdmSk7wE4Gaah0HHRfvZIu73UAygGdcVQZPpL5247heirOEdWsMm037UFdBn8fqNHSpiLfy3SBzz2rqJtwP51UkC8ozOVl85SSI347iy94MHGPi2jj+/Ll6Mt/8YH3mMkFexVahEJyKBb88gpl9dEsIO4xwI+FD42+P1kahyMQ9jX31T/9JeuzHKH15duPnjvof3403o/PrGefC+8AWW2Orcd334+ry9L375V/cBCYXbXo/1n5fqmLg9N06+e31ljI+Hxl8hp2X587zyFCSWhvyHS9B/2kOLKK6t1Zp5i1Dho6dDZQ9JILjJFP+CibtoWko8ajwZgVNHOSs7/1jL1JXHF2Oa8UUJtTjP3ffZtSe5gGiKX4iI1QAJ+rR8+F4XAJsPU7Oz4ZxrKEhe/94b0v4Ri36AH0iUPOE84yKDKEzun4jx+MuR5YEJlZST2v3iLmZeccmcUjxKFGrsWUt4cjPFfJg4Ybq+7ZinsNeC2yqd29P8tshryDQktFuviNnIcKdtHI5tW/+gM7PaIXqIFLqW1dgP/IajfAHx+wfwNOp60MOYgqTzA+M9xzdWMctXt6uGCHj+eentJVgD7JXYjW1/7pTyttq2rw5Gca0kbox8xJBsQKQVz0+iplrqqKqIikRySq9yydl/gFqUq0CCoj8v/iC3Zq3ON7ORr9/NS2GSqq3TES36sv53/4tPhL1HeM0vzzzzTBoRccLtdPRyk9aoebf4uYlTyLuY0YgLIqMNVX6FXJfJ80kNrf+h8f+9mN3kB5doHqv6vWi5IZRdCNCqXuNeMVv9FvgKjyirF3rz79nIMmwl++iXpL4KwwVwbqn92d2sKKI+J1mQ5GNIz48Nz3PYuUTFdz73bH4VsJ+nX1UWNY8JCg6XlM22KwYlQfxQ09x962kN+RTqCYLg8af819P2mDUQO7/G44Guc2ZWl8i4FOy+wAdiP+tOg1dKbJl1q6yfuZrpz6Ty/jRS/3vDqdB5C3zQ7bp0hH0+c0PmDxV7G5nPnla+lSokLt3jgc2r05jVvFQks+p3sFc5OHr+Njc7adXXQpjKRf+FaMzuSeLfWh2p8Ozi5SreEtU2zEMuJ5r13AG4I7DSpcpnNCiiP8fZ7vlyGs4hwOaqEdRLyNXgiRensW1rl+3WMXF6M/V5YbA9k2McUaWfuD4oUOyJfMpNHRRul0mQ+zRnYlombg2Uh6c8LQcD+U1HnkqTmnYNeQ9FczEt7V21/m1St/eE/3p99+2c99OcKUFx42l/rH33pQNn2UEDHiFM106QNzThod76LDiKgnno6bJf9FwlWI+vWhe120eBIgKrmtpkP1/BpwpvGXesfkaP7LL4vexBF/fIvpXYiOtviB+M8/nAZ0V2GplxHxPfOelDoKoBi9NlJfqOLU5B8HffeFEGnri12wG70ewQ9OP6Icjq9+KmSzgS7O19SQ70pF4KxZ0K+mH3VMGTjXir2h9hfl/YffS0NBPf/zQ+hu0XdcmNEAhzhxIvGxzKYd3DLTwphXVLeP+54v9TUI7Paz1JN09FefAl9Q2mjT7ZSCniB4SGHkYnwTy52/5MMZdaNKaRDSX89wepdBFJczp/0j8ueivQTQ2IZGI60xzNmyxnqz5H+q317bXvzexhtE5rGkPvd5QWUiXMC4RU0k/Qaaciy2Mvoek5qo57vGhxafAVmv9kUWfoBI350eaJ+gMmLRxUHMuREdkvwzU2PXuv7UnZigLc8TR6fdp5/4OYS/+kzU5f634ILszmpDwzt2DQ/1g6CZOix8jEZhmfpztlpfIOkLE4caGqtpyn4RknevefGLHD7sXDdHi59P9zJrfcbDqINxOUO2/VmJOTMjJdqf/xQ63bafv5cpBwzsh3eXa1txJZfKP/8t6k+/bz95bIoBvtmHfBc/nb+pSkDJdB2nzftbzaf9SoEFL/H++F1VPbzFC/ji+rjUV3Nz/qs/1w8lxMv9m7zV2A2EafSouXn1KSl0T0AjNmMaXRLczxj/GCiyH2BPqSH902va2UrkqM9fcUW3HrJU1Qks7L+utcmyo+OA/IgJkVo9LuabGRvaUo8jgtaU/lKvjtArDoCG0SD2c1NOMiz6EO/Z+ohGVPiJutSDsDVdNyY3CzWHds107F7eWsXvxb4B/a1FRDk+u4pJfbHsmSjYv+9jpOsjFEvJEW/BlBD7nWYHxLieiRCYbtodXm8LlviIVi5/+jPufi94evhCdTYVfM7fgvVX/4g+z6nl1F+XOfhH4lL8SM+Irakd/7/2FMji/7GnQEoC6oTepidvKgswbeyeSHHep4O2yXWUH0VKpjp79PNn0x/V9VqcaTZikrLizAN0TNmLBl3i9VMMb6K213HG4X7p/fqelnnk/rbDgW0Y5lykrgDHm/qI2Hhk/fxShBltzLtBoyo8meP0PVmAT4eR+vFpb/KpX2UQOIoSTWofF6y6ujnUmIx4W3g551QThI1A5S01c/QuqCm9dc0i/EH3jvismHS7WKDcbnLEvOxbTftQlIHvTyuSePu0YnQ5d9qEUkT4T7JTOSxVT/WSXY+tnoo942TIIQ9hxMbVsBAHV6mXeZwK3m/w1WRo4zhwH+IzNeM2MefLWo80vaANDh6x668ded/BON0I3T4MSIn65jV82b2LCtO7mOJ1nlstECcb20J8qmh2HEt0XqEzETv93bffnexAtAt8wlyrNWdqXXX41B+Hhpo2VMv3NZBW4xs7e6LwoZH2DuCN2OAbPsuorncuU8ftlWIf050584gwdIvOPt43yrvnLZws6KSHTm1zbjhbmbsArkb2oHvW1tV4upoO4HPVUSff/KpiVW8SKI/bJ7YrJUq7/sQMkGY5jmD7Pfp8vq4JyHAYCdsym4u7pvKQQMUtvt+8c8+PHrvATcg9HJXGO53lSCXgSALH5s02KjF5HlwtNN5uBBIL0aRk2QA7c5DptvBUNErqPkHcf010/6Y8nXGVMIRP6Yj9QC1MfjluHnCoziY2pFEoRu31ZOg9gEtvYWuiNYzxDSTWP6J5jjtOq/moo1q8AQ6uztec12/awrdWrlG3FVuTr/aHSEWXyxW7D1cu5sOIFbTdtDN21NXBZBMxZ1gzYcI7oSEmP3jDA3BcP7BltveUsquXL/21WhrRqEZUWykEgRgKeHcM6opLudkit32ZNNZARJyJa/cvXgmL+1s/TcvIYk/u6mjaIsMU51vgwjWDMpLO6aqgQjIS8MvzChtvO/dnnfsA175ulni48OnorEr0LekX61b7LdiW/IgqRluD7qs7r2rNuCpoHDYiDftW7dlveKurbtcKBOraKxhfDxHYXnDF2bpiKd2P5U2zot8Rm9J6h7i9ylzYVOU2Eir2rmaGRlEd0seZ7j/eu5jBET3QVpOBQzH8cTrvDKau6jrGTrLe+awutZd6f5RHIrSZ2bMqvsdqszYCspKWc/ecSSWUbX1Z9oP/0knJPAPez8DGV/owU2lZNksj7gc+I28s5tMKHGgQLfC2n1cmd+Rtq332tk6TLmrT+WNUETSilFNPEsSKnFZgwXPrsujt4rrga9fS0aq/Hejhsd1X3BmzF0x9cifrfrwhlv2IAgfPUYnwaF49k3RmwNafP9iq17wYtfNTUD3tw2hovljPjM9b1aRZjOmRkjdnT+cWLROG16RkZVfxAe8z9HmutpG9sd98OokrWbWHXx/B46Dy0VSLeMOci43vy3qnqTLM8B63KQ7+/m6rSIVqNSnY3DPWE+k8l3A1rr+l9/ybszrWG/DrD9CA3h8p7bmkgIdOPPrdPsm/94ukfb3DNpRSOtNWUeGxY8s8YllKBzm9JLCMJaHhSSqr6SXHgsreqo/3rWFwMVbHGEblqmJvfr9NlrQXgMEejvTseqXfxidGtCXf0N1dy/1ZjHIL7OpRUrctbC7Xfm/AIMCN+k0fViSK1ZdqdQ7G1s5c5tmvxgecRnembtJxc4oiwUF6qFV0351OJtdWjGjJ7aXT3S3amcS/HgbtQoXs3/qenT7MN4Lzs6I2c1JOhjBQYMivFX26t97nTxNZ6uoJPg3cR4m6JT5QcOwQ3aWGWfBVPcXa7fs9ktM5XaWjfkpmOGe1Ra++FqIJd/sbqhR5iFabveXPu7eigF+XE9VzwUezq10EyJwcRQenzKrpJK5lhBnn1Id76s/pgc/LKJma7rzbtlp/7SP84Qu13HD4dz2c+8iNNgveTCGcGByG5zbqb2e/593bFZA25ujveRXzHm9i2HgnE1soXCN2tWmLvvWqxoZV8OLDNq4O0et2xLnrdgU/0OAImJGWBo384zw9WuofvhDtuCsL9h32CVryH93utbqaYvgN6L6WWmp4e15N+imf1UbTLniHm7Linv68qf4ci9SUlLyfPutGVT3n+4nWTO7TqZKXcw4+fpB1zCpO79kuh8qDJ316vmDSr30DlD53t0gV6qzoD9Q6wlsd/MhaT2uf9YfyhojmaDSoP5pJ3s3ag7u6+1AjvpmmiJgTQxgHOg3WD+IPCz+B6cnO2Iv9VTWqz+4GRbl2iMDgkzLNuKoQR7cOn6X7Cr3MtIvhaeYj3jl3MWXGrXQAZe4t6uPTz+e/Tmfa/NKHiFflCU2Pgb2QcdM35Albu2LZnBso9fKQCAu+TcJcHQGaOyLoXT7TufZ7HSy7ynAAVmzye4ZzBE7c4JttGD5PUyVAvWdZyzn9zp+y2IzBo9JI2NHp+r5EqYhUW0txBHlbsSgYAHo1iKLfX3wkbxnAHpoXXZ6X2Q+dYAFdfSMC82mF+M/W6s1RDmesJ7BPp4jvYzhvQcf3EL84vdynGJpkmc0jsRHNxc1liOCAESlY3dPRj05LL0QcE3XJn/PhUHjACn0fUYfei9mXohsMQJ7YqLIGzdN8PcLUn1p8wH3NO5nnDSJcWEWVcP/1k/LcyjDs4BBx2yOIbejYgR6uKhxuZ5Yu60lFlkBSisfdtheb+Beow0444P25OPi0xw9dRZl3o7jX9FRafr+2R4tH6h0+xXjemTcgcgDUWPLtUImSp1JlDLHt7QrObjZv0PpUyUR0XgL6saMoQn9GCfWd5sKnW1XP6F2JXjRKF63nXtHJ6GdoCDv+6tNPb3eKwRPzLzYe4aWSfmkCf/EToVoL03lU2UuT9r+ErCSS+f/yrUP3gJ35itNp8l9H7WcojHrOqkCzp20auBRZQgNnOpmz52xu8EhPBJto26J5CC0F9pOS0Z1FRXMITKuEfXYvqP9+BxUrSzcC4vgaAfN0TMdtiwksfJQufLair6zIoLqQcuHjpU80DRK4/KwTEefGLNb+2lP//f9wL858gGZiYHcFofjdTf543Q0OmrH6xvu6MXx54btofO4nHM29UjC1uXqQ5IlJJrOTfPL2jRyqOuWR+rVYxaqrftFS73nBIZt+/vw1fVm1z8KN7qX5009tSjskaI2FLel5rsjn4Sfo5M09DURj7Pn3pRmqqZoxDV0nqToFuIFUW1nmgddZQWtLPEKxrzXsF5FmUmd8vNTn0EoY317MpGqlGH/xRYNkrjlrhXcJ69NbxhGKv8UUwp2pbqp51IQA+FSupgt84+QUTYF8QeR1NCLgd0WJ5Eem+UNXlY56HcWKbOIKo3/rKfhuDWqNNyMVpVts/a1XaqwF3+SXU+Si3lvI+Pvi+usfd2swh0NImvMDVdP3kzSw4A3FyxRw9jvsZXA1nNDAVF6I7xPjgpDXZdQT9LPPyP4sIPSMc7zvjmVB2/PrpXmJ8aJLPPYsVIMO4u/AsfGxdilf+CiowfpIVvCp0SSZW285N+xQtxk/6adJ5iMyXp1AZiLd+Pzcvv/jk5mXXHy63z8TRLejgbeKxvzhpd2OyOLXKkILfjNF+Tzgk63NiC/5f3548g3mJP6R10ns0MznCeAzn/eEP86lz7v3vYPp/v1Qv5dIz+3V/gZZoa+oHnc/xLbeXoSFn9Ak/IjFbHWxpS2fAA5A8b+PRMiadDIeKIISFznW33KYkul3eAHT7gW55VJusn58RlD5Zhf9JK4U//QByDnDfpwhxPGnV2CQ5AcOa3ZNuZnrApRyVmBbwAbi83VFQEQbTHGRLef+ss8Rrkbxo8F7RD1b+BGaLmoWbSSupKzuX5228IeoD++7aomfHNbniUfy+YH6IbcTAAfkf/hYzVlyu8C31mpyeN+7gt++aga101DCrxFHS74RUZNcXJyM3c9nzXASAESPE4WmX394cKSCEk0CDUOscyl5dzE0x9bGyUE3itlzpht8+zkn68Kyufi5agQOZ1Eja8GI+JQ4RqTd92pMQDTGipmK54IsPJ44khYPzepiB0WFiMkyMilttx+5hnWVbkjprzma/Fk6wilLJhqwJuCS97pbCPKVFG3y9QHR4HMGkOLbPtpI86eaLJPP2vk5GDioBDeVrYgZsK/DB9WVmfNeXV0c+J1LkW6LfevPBgwXlLw9G7uWygom3WJHC8J5gxf+0ZPV7jijBR+pebPLvq2u7gX2nupR/FxqrnXs1ool1SccfreNOfno9YBpo79w8HF//SAEOx3u63VLzfl25Sw6DQyZj8oj52v26ef+pOiAPPqm3njWfbGKT7G2+APRnBCjF43PW4FrvB9wdFFexfB8QwyPNKki7VHU6VQcghdy3hmlzom2/ZCYk6N9ntqW2uf0mTJJsWQwmbzDhr9O0bQJjQAWfKXhhSx7BDxTRIMg3OgW7+xeNBXDg5vwPBGF3duCrbdxB7KUvamugcinGOQcVnv/FK3beF+tM/9D4HmxgbqZvfUnvmlbuL1aF+9hp1a/bZAI2veM32S9V4zin14pw/2dejF9/OkREbrXZoejR6P3UrctMtic1nvyrugeydQ6GLDwHWrB+Wqy5PkR0cXhV7z8vuKPD8Le007UXPQIfUzJrOWisMG78GiaU3tLGEo/Sort6ojN/o/PP95GE12Xpziv7VmBs4uCaLCN0pz5vAEk/+SCWjHGJglL1YXV1fHwbk2GnhzGnQIqaA9adDtSLPnngTznlWNPqKp+qPtXC9JgXiNx/srmuAmNCMoDL6m5Sd2eBp+ngI55+/7Ds5Rt020Ll7DGhL9FqeLqqmaaaqsu3dGh81mqbgK43hGhDtGifhqaQkSpWQbku/gB7N3rhpZuTznG8Kn5ND/uCfrLz44jL7PhXlcC7Oi52IA69OfX3TA0NR2zRd/lfF53yQweZSXdLv4b5fFa+eOj9AkfC607u1XASfs1td5F0q9DvcrBZJsE75V+g2arqxmogXTEdadvK9nVYoD+LO5wMoudPyrPvYx6b4+xjqw0nbTzE9SB9wMhq3WBfvK0vWlN8XJodDtx3lXH1Qusr5wselIoFjzK/+FphOJdKr3kTwvHd1kRVER3c2Qb14A//ymyJOL3f/k3reh74Qcnk6hvVCP9677pv/y7xLu66B8y9+D2w8LPQHPZenlfmcm38asEkzsWdpd8xJ9tDmijPkOqP/Kh5yUqRPjTz5OwO/jspd0ylfctosbtYVc0V6MORGkbYTz2Lz5mYuWqNwgvyx5NkpIivbfw3j5MMnuuzudcly7wp+9Kf53y2XICRQ731z2RcdEUPH8cVHDagNFov6ImfyGsolprVDK1J59zf22osMQrkcIKKp7cLQK7S6Yu9xtU4qKP0eysCQ7Hk5uy/MUNFB2FiJCKbXtK8FuAahJ6Uh70spgeg/ICad/syKZeZlvpYM6oN9No8Xd26XzWbzPsMkuj2y0yfGZ8fgp63C5vjPdfgdP+svfgUlzv0adhlP+EuT9q5F0ri3+kmr99+PIQcZyZhsj2/YEV/Quep/UqEkpjW6w/CG5owXcane5zOk/h5gG1TDYRLPxklMy9B9/N604PDI09HS+/GcwhMKJ5W02ovUYJg89+p2P3lss+X+IV3V5jGjFk6r14tK4EqqxiVG89XHG3yBR1N31MHCriI6VTX3YwPp0m0mq2SVlu5wKSb84lEpRVXv3jm0dHv+Nwc+44s5XVA8VXgeFd1e369bEZ3X9+D9vPbtq52qdTezW9UtNqcD/gLzvCQRcgGiF+mvPRRYAe791E9XOloaHe6Qz+8d3dLuzFHOiM5mLh/6zs+vmRysm/5x/8iF9sFv8G0CW//vHdZQ/PwdX06/O36MNtyiRdMVD6NA7//Ob/+OGpP0XrY1D3XFuHDSz4HM30Cv7Ypt8O2l/3xf6iJxc//KLq33DA7qM30LxzPi80dr81xeubXPzD5+2GamRtkW1BCRY61O6S1z9/g9LSi0CQBxNv15zwLs5zWDpap0TKybj4hcJFXfg19YcV5jLJLi0s/Bgv9YLqF/xeMtr39pMszZp6sn7nAH0sONh8nA2TB8S3/vgujpwqWoYgd7c//2Lxq+JqelbKgI6B9iPSu4kQOyHy+vMn6IGdo4KmN8VAj6/yxYbyeaJ53x8ydK2HDz02tb7oxVgAbMjFn99WzdQah7/1QJ1Hdje5edi6cK6zHfalz6Gf97vIhT3Sj9inB5q2Cz8Aty1Nagnth88ypwm8t1UUzfm0RmP4+umAKuWJPW+ZdfduUf3HT6J5Ptz72bJZpJ2Wce9KJZlo8DeDoXa7TsBmk69TtvrmFzQfyyYSvkGZMiKXABsljGnQbu/o/Vk3Cmwf4Rob9as151x/EXBsJJLOy398DnNsQEmrmu6+TpvSUO8vi0S54cW/7Nn+azIt3tU/6sbo5Q+4tXWYnuuSOrho0vVcrko4eJZKw3g4Fo0vbmaQf2JBk9NXRuKtKx6w6N9Ik5BnrtVK0YHJL4wxqyV/2v+Oinak8YfaKjfMtbqKLWivdKbR+D4X9LRVathvWYCv1/2hZwX/ApI+Vkh38vbpL/f/r16B3du1KrqzfmRQy8OGxpss9WXRzmN14SP0mbDQr5WbMqDFL8X7fD3x2X7HCch2dMZe1VLEr+xa/vllRDjd54Jf/U0L4q9yiWZ1B8T2fjVAVUdtNFKrWOpFev6PX3r1PPmTOaUPuH1fexzsf1lPWDbFkE7PmqDHr//jE54qsd+DXJf6yG/dZhks+EH6WhsLQn9hoy7rdfFDjV6ajddLSwd2pFg4nvkcVJEIoVG5OAgtq5dehd2o1ks44D//f/TntkVhz2NsoLxHzDl6CgAtCbXZ8+U3NrBMQ88kX/iFZ4q5nQiadC5O//BdNFMZ/vI/Da3uwOfar3SEP1FJYBNE/b//f9s9PWpdpBhN0/Hlar9PssY7O9H7RQ88IIqcgIjJm/SszR8ZRN/jCdu3W8gndgQZ9CPLI215fmITvwPo4LjFW7WPU5ZY9rz06XxS8zS90tGftQzi7yRgrzCISbUiljXHFn94z37r4k+fwvOhzHQLV4amwHYBblfpQN3HrqqoV3ftutGNbTQv9RqyF6/un99PrfA89jxc9yV6wWZPzeKpV6SfLhYcZe9Lw6WLD8PPMEKlEx2o8zh16cyek/OPj1mC5fTSS45BQ+69JuOfHx8x5ml//uRS3+qpW2QqoGkcybJ7H9Hns3BR0uoONa/h2yT3m+CgUku/2EaXo8/d4qGi/fN7pbum/Pnz4meBpmy2eNt8+2IotVes/fGDGSdvzvWrpMNfvchOhg7N/YnpGp9LjYgXiSG23o5HuA+nkkYM7JR/f6IMsVCLBJ2nXzWvypeH6iLi4XrxCwhDBw99jGBFg/h98Zl0G9ifPqIWZE2x+KsNLPUuXJhjXRFf3DDAbOJkw37ngs0fX1An300jcdicEP/aevyn9+hfvZLnj6sCo9oMeNeUe1P+mqas3gMvxNvw+ilINsIDbfW7RP/WI5PTQUDbj0GoqbCbudRzSvD7fKaLzcIn/N62sMrkEBugj3wuUl0Axa4lHF6IjNhQewOsH82PsOaGfdatPA/gqP9wWpUnzjbeZGke7i4Lf4x8hr/KER7wlbEpKWpFj37ooCa5p9HReQ4mPRphjB5E4jicn/t0MFNBUM01T6kR1ttePLZTDcbN2GBr4f9MvV+P2vMzi5G43XRpN4XT7c9finjxfFXzNhr+q+8u+hqt/+J78TOwztihWPRBt6kTR1r03Kr4q1+hV14Z0XRafc1pYkcVLf4nQXGGFv/zm8DKP+6wEd8lvqx/FXRxRSOhny1/1M5ngODlb+kfXq0X/IN1FRH8pz/ld7Py0GGt7chwBptzrY47eAispd783vpjxLcxcL+cqEuPGz5t2i5Gbj7r2C/CLh2bdR5BGEc6WbMk8Pl4ebP/1+wDWfrf9xQ8AAKKy2fus6jTSzgLzRXvuSr6lZ/+AnQThILuXq+jz3B+TOAKtUfP/rhK59LPA1h/xQf1UvtUsON0AKBO1uLo+/6Zc3uec6Dlg5PyKXY9u5quALdSPuBdLRtIXJ2iDs7JVY/EpJCL8cCyFprdaSCfNWz4wLOLAcH0Gck4q5M/HtDegWF87rEhdDFnb1be0PL9kZbPTjooyVoHIegwtSs/4EyNPBfGY8EjoQs1k3fVM4H1x19Hsn3WTEKPPIZ0b8hELmaLyzO6JIhHZxnr2m/yf/dV9IA+v5ywvdvmfScnewuefvfC+kuGnoxPU4aKvG/Uy92e09363Wni1FywKx42PWvHPoN8GQNvXR8BGppdG8EKKXcanG8rk20uyaCR9cfG0YytikWd+wLzF9ywy9QCzYLnesCR4tPdMnF1NFDVQtN4D7J2xzr9pf1vVjO/2EWzfjLSeTNrDxV7BWD3kK96EkRcVY+6QaNptUpTugN2QepWyDH+hVI/ioN9QzcWu/R0mYNqPnzqFtId9aif2CGa3VnM4LPtX3S7Pe3RtMIs0/avyo3m405Ip2t7J9AlzhS9U/uL+BF0BW0u+YVGmdOYzClPEdCkqLH7fF76gTsVg1MVbbGV7bA5lUUugF1YBjbPu6yar8v8njerEd3VcsnnfqN3cKVuGqnuJUQ8MEUB/Od0ovbFlasJSKcjSaljbBp9XfF0681wKKwjPlNc+bx/nG6o6MqBeufC8uXxqjlIfN9VvKMRLWr4fWc1y3cFKcbNlE7OuQ+gItUtgmHz4/ycnGWkOYIZrWH1LubLPWN/8Y/3B3vLxc923cDpNHtYp/WZc9sBB8bLxYkEJZHToY8GglA6ltF4F38mQ+amUZ/ZbYW39/2YzvSkB+gS6DE1bePeT6/XToRnU0YUP0TJJ+PvdwRa3jgR/cuKs+ymiPANtwrd+eOq4MJGzeEzvMO/+KxIuFctmO4cyMY5N+m81hwD5MQ2cZzNZ59n31xGir790C22jv70t94069gTNKkffwp+ibeaxrVPxLPz8iefpMKy7zjCOdkonA7V5Gp1mEXYMPvBn26RyiC9Wja2lvubHqKkqDsvi6k7qa9+OIdBAxserGlQvvYpfelOBvrFarF+vo3+dNrtHmjzkTH2fWNd9G7ZtJCYxy4iJIrRVPqEQHBx1EhJ8jqdDqxv4PBZ19EsrHw+V9ttB8+rdcaXyJL6Cas0AhZmL7zD1OHywDeL53eZ6NUebtXo8XI51z8a1Mt2F5/vLw8LHsY2xlFC22JK31YMratb9AzCWI2qMteKom6SSLSz0ufDNW3hY2U7akngFONyf5u2XsYLP/m2by2wLXQRk4ZG34D401M9NBov+Eijbp2aZLJbFSJ3MHE01iqfqY11tMK9SOQZCVUXSxcVaHKtySYues4/2cpS12eOI7FXdEQ4U2e4lKiP1n1YVIPeKQbKvlUSycKxQm2zawMkG1sxggcHTh7iL0f+k58idHWtdEDCSUSaaayijdGPVSvPRoOEvdZi6+UfqzmIiAB9dj9Ez8K9pdPevcigPvOYGoOa8FZ4PgOUfoI42vzKXbXueHzTNvWrwkGryCZ5dL4CibL60q0i1D3rH7EA7+ODUWuT1v5sn7cMibX3pvaF66lYkFyG2c8O1O0qg89mc3QBlXcb+92aVOyBfx5cPFLT6Ho3+ZQFvfc/AAAA//+kXUm3srCy/UEMDo2QMKQT6YOAijNAREBEmgTIr78Lvzt8b3SHZ+niYFLN3ruSKslE95jY/t12iRMXEaxCIyQaG7UxlRnWkwuzF5CVrI94tTTOgk5mpUH9ZJ1x25aZBcFfP5EouH/GWXV1DbhMd8JbzYnjZPkfB1qHaCNmmJ/y1b9v7M+eAlnsp2Yr2VcK31PjE+XF+eP6HOYruOblNeBb4Z5Tz7AlIHDhhTwbp6FT0K6bvMfTgD3Il5gm0DrA8W58gzovAViIFJZwiNMH2UdlxBsokwTONzMjZnKq9PVYvDW4rzfyj2rSrNz6tWB4ySwMoqynm03tCFYD90ROxdFxoea4wLR3cizF2ZIvdqyxcJWlDDnGxOnfunpN8K7cauT0teKymjsVUFJhRuxw6ej8jY/mv3jkvyoV0CisTcghJSBBYQuUANvgoXddA3Ic6qH55TcAjmpAjuyZ0xfI+iFQ/flN1Koa3cFJhRrOf+cqmDfprG9ssRfBC/NCvNqRxjlaDjX8064F0WZRB+uZ2xKIA10PHtub10kgriGU+HhEVsN98nXU3xsojheXOH1duUs/N9dfPieISrK+6vyXhUrEHYgnwMpdSscvYLaAAp0eNh/jPR4A+lwUovSHVifK8OlgVNoWyjyja7Za+SzwddJEZE+tE7Ov0dygJAUkaOQ/I2cBMyzQxdWBmCV7Gr9vwa8BGnkTrx+hb7bLKkiwDrSVONf9vJnY3xhox05FVNwuMV4U34OGmjfIk3pWn2TiFuCRmx3a13PEKocrUD7vQsCsbzxSfkMGcNL1Qdyr+WomLaQBSO/7PHKYFHsvwfv0ez5e4F+u/+wb6t+gIEj/08btoq6W/FufoGLVUdCuZgmsjE4BA+NBx9bBNWB7pRvyztkrp8b53MK5ca9I6zwhp7eHE0q7vyDdvyvu+vWZK+grGwaQhyCf7PTeQdG62cT9Hh4jDdihggx7eCOlb77uGqBHAsuK1dDZSqt4NV4dDzdHe2NZ7L1xKwxlg4ql3xGamue4frZ0AIkkFch88068JSZWRPaSMuTopId8o2OrgYd30ZG2453l8Nhnh0ggIup1VcaNO388mY9Tgm4rEFziBlEBP7jQEALQaLbGTFMY380jQZIcj7NwWyMw8X8wWEgrgDkeXwtYOi4mCn2PzfqNfRO09g1gge8UwC7vSwF++S65mYo7j7o0gWyLbgFTOW7D//CglOdysDm4HrvnE6dQuS4Q86Ya65twajqocn8g+OvciC4332shibcnsamUuPRL3VpibvmT2JLsNOxa9S18cOCI/LfbAfzxEQTvsIyI8XLe49QW9vXnD/hLwYcurPpiwMW4Iwwn0abbxts1uB2VlNzEiKVzX7cZ3PEgstIH/1+877i3LmBm8QLYpGPLX34h9tP+uMO2vHn4DnOdGJCx3TWVUwyELPsEh9TKXe6XvzNTxcixZgtwmmkHv/cljig3Lt7xh7TH+0AMs1RfqCtV0Fs/M7LDxQRr1sQSfIuA2+P5191WJXMk7jHVyCcNjWfNtD3JiLaS2DIjjuuSLRk01HtDAjcdRhpdDqwUlUcRob+4zmnbjQm0ZcgQ71t7OiXGVoOk3M4BCPDibrcPjEAuMA3Rkq3Xv1lMevB0+wrLfd2Om3m61LBztBh/b6e/ZoFiz4A9/wTi+xXT9XJCJZSn1xp02vjVZ41H8N/+S3KiAKH3lVSuJAkTcxIVygofSfkXr8y6qvL58wEOPHrXJ1HHRs0FsU9T4Nlph+y3d6DraKsFtE/KhZj51tK5uIeRnF4eLDnxXQWmeuwH6KuTS+Lb6TrSR5tjUErxG3klhQA/n/v8ZAt/iBfozfiZA8aB3wcOA0m9CPGCLscK9pd0IuqO19fQ6UvYvDyDxO/XQKeidSLp8uJMcgzwR6eoZUJ4Y9o7ipi/EdC/t5dIuUukgNrzKV91sLTSSIGFKQ99uqxVv2vgZEQ/+yRdpHmwLg2FKF42jH2krAnsPqWDG6k3x9XBJ+2XX4lCpK6ZjVfHwr+RC3b/c0c69hKEnjNFOx7zRz5cNEuOsHfDh89L0YXL5yjBs6sekRotE1imxErBvHx8vGjXt76x3RAc3KNmBpV2Pbr8bbtvsO6FEDPV0xz5kmQ9PNlai5uSbfQtfN8mQJ+bgrSmavIlOyxXOb6WcyD8/cF8qcdqgPvziNF6fb4o728IDvMzDyZJRvpKsmsN245Tf3yneXzqWwnznNpBe3/c3YWDuQW5LzsTvXYVysHWq2B6zw74H79YnBpDYMHoX/5azUKE8FW9JuT65M+lpipFoD/eHsQXe6+Z+k0yISFCRo6urum80y+TzAnogo7d6wqWy5RaQKu9llgf76izb6/WgNX7DTKn9ki391pH8kG9nDGdWjXmfaNMIbtJBnJeDm6Go/dMQFSexKBONktfZpHvJCnQL4FE2npcrreHBR2WEYi2gK5Z/afdwnk9iLjvhMFdpkDsIXdfSwxLWtB1CNwImpoyoVOcuZSVLJBJsXOtA6HikI43Xq2hcbx+iKsMA+iFegwBV6Q88uj7MeLHl2HgyAUs8rVLNb7v/QVD7svPxD1EK1jjLlegDyKP6G0tgtU+TBX0leyJFP4TxFTYCk0695VLTvt6//Ai7BLaEDfKLLq8uNX7975Mx//li/Xok3/7cbsWwSjcdb+A3fWIiGrpx5yl7lYBrAwF8imaXHwswgrq3YsLVlXBgNTgnMKHPxBiNdWUT5h0GsSDGwT4bvV0Y2zqQYeFAgaH6Awo+Rsn+Hpx6Y6Pq/z7qooFrOCs4fscKDnrs2dD0t35itShKcYdr0PwkuWaIN+46VRmSwyy+PEOvrfT81/8gi7TngKW++yzFNrb4ff3T59xp/p3BoaNErzp17NLnTiJ5JHzWGKbkxrvekn4w/+YxsvhZ0//4gmy+Q8A258hZj/+S/yd3+74bIHPugHI5zsbUMPTWFnn4hRv59yJp2sUZP/4c87CD12b690Cpr7Pr35VYJztw7ODkPtYmI2PXrzFLrtAOls9MjNK6fazR/fsnH/x2/2H76PI9INDgN1ms2epgjnqGVIwiUdJmL0nGCkkCri/ZMypANcKOkKHkNp6DVglRr1KqpL6JE1WOa9ey6OWts5ZArbinEZQuEiRf/FYua29vkSmZcg2HCPizUELNtnGIRS+lkPufXMdV259WYDUlYYl7642/I9/z5cNI3QmCqXMEDjAoR9I7ORkNFtiSgwE19RGfmYtOYlVbZPV3C7Q8Rsw45SsdwbONyMLtp0vzOBrJmB0+43E2tUe+d5PDvBpqxbxrdnP+TzuTSi2zwQ/AWxHuucX+EHfEL2L8hhzpygpYBi6KfI9vGvmX54Rk4BoyBgPCl36TTJgWAUffKicepz9p9rKrKVdiekbdjM3ZyeFkX4diJFZGmD3eAANuXdJ8X6lMX9+i/u9ydevz/XTnf02vcIvjf+QQiRzpNfp28Enlfjg++JyfS7/8lQK5+YPHxRliZekuDIgWOAdF0m+5AN+hpsUm/dy7/NnxZu2tBgKXHTZZxEZlFUvsvKzH6Ia2jquQ9ov8FykCtr5k0vEPkwhHmub+FKkjYsnZhI8XU7Vf/fj6VwPkCe16AvwT423qfV7+Nzezs5vnAZHeWGAnx5gbOHcLKKFd7yj4+APRPsZuJOtQNi7Z7w1rhWv3eZiYHHfDNOsZOPJ1Q87vjc64vn3uVlS/14Df/TkXZ8xY9Z6xNkvHiD1enKaCUt6DT7ZkwTvhtPo/HqPNbxFuYL/9Ms0bva81SCtxREFaxg3q2W5EuAr9scfnGbxxEiCS3pasPi0TzoWqZPCUO4f6JfPt7Sea5i2/g2vBbvlc9YPvdwvYUYcddjiFzoaC7Bnkfz4H+3r/V6Z4kwKljJrBCv4BldJhh8Fr0NTNMtPn12C3kP6cYpHel0PV2BbiUquMsPpU6d5NQxaPkDH09TG+CQwFizDjQa0dhWwuEyBgaRHJkJvXgAzkj4BvL2shjxKu9XXalE1uDhfEZlvj82XWWRaQC6mizn209Dl8EgquH3KgjgF+wTvx5+5z3pajwF7f4j67N3fEtTtI4P235cvYwwKeMxNjVizOIFZ9CssJ+VyJmqQMe5sTF4C2uu6EedOF7rq418GMms0CQIfe1z5T9hBAx92/Wq13H/44/iWXigwrpbLPpKrBn96rt/79iilvf1PH/+Hv6bZeBnyrkchnYhCvFWVFcEDDJhAeLCVO9FrqMCrhymyJ/GdT6fPQYLizZiItyBKcdqrgSyNDw8pwrmN52qxFfgZagYFs8iBufyLM/h0EpYghvnkNDoKPWyie0SO30PS0Oiy8HBOM5OgxmnAgll2g6MHS7TjiXG+3JQBEqaTMbPrYVu4OJZUYEHGf+lpbpYI1BVsdMzgT5RLlOjVcoA/vfd4OZ1G+rzYyS9/I8VOP3R0bReDJdv7KAS6PnKPP7OATGaY6Dw2aryKMkzBzj+Dv7ToR+qTgIWsOeZE9zLibitwr+AjgA6TwTPHdY9HkOsblfz4EGVIIcF5lcSgefFvui0Sk4lUDCmxivJL28fTKkDW8tWOzyvwxYOzAY59ywGnDCpdguyUQG9jeqIcb6yOrQ1eYcyMFP8J5wwsOc5YsD8faUtYUHrYKvgvH6l3S2y+UWea8E+Mj0GvKEs+DPo5hNcWSAHLRUu8FK0TwtFWswAogwO2qlIi+MMfjnoR8mWtqg7s+Hjnqzd958tX4PTshJw4W+LleXQHiMdSIqiwXjnhT44FLUV7oNNRdcd/9Y1K6+/ohAzZxWw3eLD1tDq4OGkaC49vXcp2+BB/+dntLy9pgOP1eSb67cSPPM4cDV6SosTcOQ8o+3SyFOZl9kK7PuKu11OSyl3Lb7gJzRMV5nvVwktjbSRQ/oZ88+7nVN7jJbpVFetORatFIH8YHN75nvvdwI2FP/2cvj0ESLJeC4gEeCYRGxk5f/t8ruDh6jey47tme7BJCdTRGwN5jz90vlcdzPl3/68etUqMfYW5AJtgO5sk3/VbU5L480j8vT5EH3j1oNi4fdBfVs3d+eAV3p70g394ahWiRwdYO9HQ8emILi6YFcJfPQCBz/cf/pDqYkuIWdoPsNdzerjjo1+9xiWmUGBwD0uF6Dv/4SZmPMB6cCBmFOUeL8BWErnRvwQ5kNncXz6ATl4a6Jeft3Yy258+h3RbX/PltTwqSGenJyfPqHUq1hBDpQan4Cr17g/PY3nHWyRwb1fAhYoGocacnxgg3dVXCtoFwo57YzAIwbgqocdC9DAaopeO71K7USr5p/e5xlUfV8ZBGBDCZcQfD0G+LUgsoRMoPjlBxm+WXU/497zFM3LAs+MBQuNVq8g/jk6ztK/QBMu3GANJlHV3uh/GVNrxIjLWTmjwBsJI1vfZXMEfg8H6y1/c6Nz/6Yn8mxcVyNBW/Fc/2Rr+ZoEyzlwUHCI+H3c+D//0wUJIH07jWtzTnV/VAznu+XD1vpkF9/oEUVFW0y0+uxVQp+pGLFfb6PLz9ygyfJKmFnDnMUg96GROijxtYPIlo69O5slzwMylWPSZ+7iDpHSsi7TAmJpRyy8eePg92euFD33ewJMF38cUouQgczkJKzX9hy+N+0N0yV4fgoiLh9/6NtsrWyt5t6d/fExY/g49lKuSD3Y8OHJPTmN/+DjgTqo0rhSsk7xZ47B/v9bnm+xuv/oYObXeROebICvSNzcOxDC0q05h0Few7QQ12JKVzae4IxXsI5ogN924EZeDLoHuekJI2/Eifj5BAtklmoI/3xBcfDoNBfitr3otjuNiTtsE93oO3pYQUhznXwVa/oVD2tK5DVuUoAK/9VP2WQGbPtYSTA5ng+x4HPzzxyDZ/nZ95t5QaJ83eWA8QBJL/9J/+uuu5yLlVUUNKdt+AKZClKBnO3Zcj2ulyL/6puIb+x1NWJmyNbAARcqljkkUDgZ82rqF/Ftujdvf39DCcY0XPO/4gC5EKOEtKlHAywznjgNWJ7gcggD5oyCN016fA75wFolva32+DYxWQNFhXsg7qRXdBqtX5DGf1KB5sGW83A9NBv2Zv+x6qBrT8MmWsLtlAAO2E901dKpSZvotQ9Yf8wYUkQrDr/9V8T/959HmEzy2rw7puTXseotfg5++4nAQxSv4mlfQxJv/0xfilckUCcYXWw2YDbXNIGGrhX9AehB3lY4uv/F29dNXkC7KEKyAjjyYAtJhfo9P1GcvHTwcztI//rs3rgvhTx88xdlI1wkLAyyiVUPeVzi5K190DiRrcMXiV9Ca7ejdrv9bnwL+/z5TwPPHiqBeF9xR5+8D/OjS3mvBsxuSTXiT7CTGxC1PH3e5GiuGNRRGovFQo+zKFAVEmfRChppaMd1wEgKWby4BddmELlAyB3i9DMeA2wo/30KrxPAWx12wpc43X0wcJzASUREEPt+P6zWOengQspqcIm9rSMn1A/S+xwMW9emY09PWSPD2fajI5ION9qfM6aRXzSXE92jlbqlJUih4ISDeX9bo28uZQvgKUoLnEOs6fxKMEr5EjQR8rygU5zytYWDHYyCOlavziXOxQPJeTHQ9yPu5uKrHcGiGKOgZOxjJZRRa6JiVh3Lkxvm4FoMGUdAMWHSu75hqTejI+TPLkA16A3Bs4w1QYd9/RDOfhwarYRRCpUt4DMZKp7zonRfZFefq3+9bi4+bwNOb3bDs/5ku4UZugUfoBMQ3mUu+fi6VJ8N3/sXysAEXm9unhsoaDciKu5GSliQZvA0HA92Wuhw35nWfYOZYOXoYLy/epIMCIVAeJXLPzV9DwDQxojgxF4JMBusUPYApdQemIgF7H+PvUN0UODwKntz/PMEdTnAZ5Kq+zb/9BYSySgmlzbsg68gz+TxUTw0mfyEfMG2vxUt3GXlwG3aNyr3PgJZW7UG5yJ4ByNV7Tr+3hwSXG6YIEeZOV1C3rTyl4ZfoOoMpDYS9N9iVWMFy2YycRnnSgcf3cCdKsc/HXPMyk/bvowdHR0rX798VZu2So8Tha5feae1BLmpTkueqmK+nfqxEao5XZDjPNZ+Ti+iAl/CeUKApWsN6ha1AwzRZ4pDvK6a+Z7FSngIX81lI3dVKskXKqNoizQ64ZgWoMWHgYIxU4ajES1qkDpTdc0i0d2Pq7UysCQRLVOMKXk4uifKiA/3cCsh3xDTelvrMQlktJnJSUTOu8uuSwEVtUmJkH9el2fNegDQV7sEMHyOl7bWbwDCSP8zUWBq3IXg58tu788h2rsd80u55Ct+YsTDk4DdeyL3HMMgyCe37636e+B3ALL235DR0irtlpc9CNvxiomzQ0fEsrPyf1V3vxBjSxF1ec30Fu7/v61M3E/z4FoyUa4Ls6NznlCv7AqoixwRNdr/RLT4MPBBOVUPuKejjCX6ODmT4TMCk8Fd3rq5WCJBNI3yIsiNY04OZgubu1QhxRQxW1ikh1DN9xTIjJWBOIz2DJ4M0AU+A3iz85DgQTHWFXOlo0kVRIQM5QYEoobxPyUzvETxNmo80fQENPVJgwRq3NbmTHOuzmkg8tCqHwfIScnof93wIsZ6GBMVuC7aCa/eLHG+DZL/9z8xmAXHDFXiLD5ecnrV99kh3ORLl5RXjioKghmdTsdAxJkszW+o9hGbOZsRdKXVXbJMNesmlInb8CGK8vpwOeqZ5Q6bAm42QTXgBp+HtEHOPR9tb/DrwTdMZ/w1CSBfVPEvwqbkSMoL17a7TeSvhU7OlYB1nBswPP8hAPChCwEn45c7RzUrBw1A2YpQ11rHzakvonRWXmI4l5t+gfoaHBwrvSPGrpZneX7aDfiA/yekeVfH6+BMV8F1zNmCP8Rhv0pZssJdjHfMC3zXTKM8hdMO6xbIbfnXqcGsr68BWiH4tWfAV4pCV7zcgE03uajqwbt3BQz04RDfnEdAHYQuY/eGA6NnSN8tTLh0Y5dEJBYL/dvEjiBTIhiNGdpXJzdp0TQQnq32QY6b9UXxm/YO07y/RBuLpW48OGYTv+zcQo3MfE1gqqax52AjEr17rW27LJnBCTUZ+nxF3Hr0gBH19Ccnd/ktGYhmlB2LDDoMlPhTj5nZ2BhWhOJLE4bX9npxdQNtU3kS9tF9Q/fyBOcOYFNOpBFv05CzoiqQKgEVP+fI3RCx0Y0EkOueu4wpBFkF5EYzgTeYwni31HIGrUfNYWGpmpJ+9dzwPW0LSMhzp4txaE1rX3icPRmLpLH0rDU5XrkOezSO6Re9XAqv+ZeE9vuZEzCQMEGLmQCpDY9xqPi+gq7ApcrLLa1xVZPYwPFYvdDk6Pl1hkPPgYw0Tckc7dtf7tUpko8Is8fx1o4sIZ0dirU4huvg4xqS+yYy0xxcsv8dI3/ilvALubF9w9z43dPEzcYPeMt0wRPeu2Q4nloVQ+Tv+8AHYbPDNDs9efSHzbvi6UF6ECl6AciQpVhO6Op2vQRorPonnMGi2xyuvJIVXNaROedVsDWd4/+KN8uVUl4MgCkGrHUdi3g4mWM7FIYA17mpyjJqhoYx8gnCNS41o7a1ye6qtBQSfzULGQRZ07LBvCNPFMZDLKF+6mYd8kgpsOyiv+FYngl6E8IGHFSl/tkI5FJg1VI8kCKJgnfLlmS+G3GFlQkfma+hz338x8P82KRCnDxt/fLMYwFhPPLGqP4vSLc82qdH1UyC9WZ4unVYnP/tAXpzYzbqK4ACO3w9EbgFUvW9HnQdHs8sD7mXN45Y3kgK3U7vh2kuafGuKsgKE/7SBtMen5WqIEzDfNzegL12g9Nenho3MlSiP3om/sE8XSHyc7/iBy5eIrBN8WKuDTtI+f+27Ziy8WbcNndCDGwc2FSSxbL03uu94hDshmZeaiMQk+BzdnEq0T0U3X1ziqxuKF38GEehazyL/ntePXQ/v2aYj89A93WXWtBAy4StESfYZ9aFA3+iHf4h6PD7zJTBfivTVyyfSh9fajO/cHeB56S30aHUmXizlOIB9P4j5uCqAzXLrAJ2/PEHq+WvSzfOMAjrHo03QcbP0SVXekzwxVohi9fUGtL5xEDrcoUVqosb6+sv3WX9ckOuGYT6fx7sDvtOYE43ZLLqcTrYhXYnFBaAW/uKlz5QF9icS4tcfl46cE7s1WBlTRSZjc+AXj8D+e/HcZ0hn29RJJJ+5CchFtbHPs15C6ARvEYPd3jCb/klgu4UMsoKnRre0mhKIXO9CXLZeXDqpnAQLK27wWAvPeH0Od0Xa7QlFYAJ6vq8/9EzjRpJ7/tandZ9ni8/fO1FfGaGzEKcs4M7uBUuOfwIkZdcSPjLPJ8VhNGOimMdK3KK6Q4ovvHJc+s4G9UxdiRZNKBd+eC678x+y4/GGBM7a/fAt0UOzp1ikkwKej+OMjqlqjPxkXktY9Y2Fl8mf862ohw0SrWSxZAyrTqw1GWB86WJkDY+6+fEDCHzLQo/pErlr378mcH0WX1LueGbBwNzgDz8raiwCEj/XGobASMgRsfO4/uLhzgeIF1aETnHPhIAVmBS5NDfB0mfWAjVj3ZA1cZhS31NYaNwCHbNi8qG/58n3+00hihrf6T+8VcToFrAdqwLhM8kS4NebRSx5e9D1pFU17Ir3N/hkpRn3gQJZYHuBQtRA+oLRqJUD5NfLPi+aeca93yMDqqLAYLyUfbyyjdeDKa7OxOxM0SVhnSqA94MbUV0WuutNvPSQVeQ64E93GFMuhRGUotomJ+EM8vc3SRk4T8f3v/y50NDcwC//eUYsusu494Lf7TegJ/EMFseoW/nINgvxwLNyV4xyBvqhSZClcxrlqjAx4GsaD8Hr/O0A5crqv/nYPjyyfFvqOytxb3Emx/nSxtu8+T3c+QZSh8N3HL9rxMKb/s4QCm+uu5rfbYFntGugKkh02gx/hbimQYa8+yelNM78BK7X9UZUQeLG5fS5HeBFfGtYxMhy1yZ+bXL6hT1mH1fLXQzmZMGH2L3x7n85cTixhSz1FHLtHjZYoBT0MPzKR2RItqwv4aow8o6v0c//8c4HQH+7F/hd3sNmbaOshqjNI3KChMt3PqHJu31gIWa7fMGzWMA/yadID5oz3ZzTp4KFdW6Qe3uc9O1Jjxskq+BhnrQbWHd888Mn5IhfTr7copMClNDOg68v3ZrtUA31flttQ579/NOJajARXBsnwEvjqu4iwrcFz6ZmEfsZs/F2gksvU49dMRf0n3GJ856BB2kW0InOX3dd4uUg8/mzQhqTH9z1KrUHCAo+IT+89I2FZwCXxyEggQg1nZPZHYX94uk7s8aNbdMQTIwTEsV++w334m+mlC6WgZTFWuL53nCDnD1cGHCyOcdbLzg9nO29T87zLdOvxHNXUOtMg+f1YNGdr/DS6c1vyGzwBDbFwQa8VGb0D48J94yt4AZIHfC1y7sbZ3wsGAViiNQq+FJ6vWEeItKLKLDiM2XhJF7h+/E6Eq0UO31+thMP8YdnAzzt87vPLy8Fnd1ZwR9XUDB9j4sm1+Xhik6LiPLlrYvdfgeZJT40c3e9N3IPmTMTEw1MwKVnMieAD5GIi5c4NVu/lgVYYc9gNvuM7vYKw+KX70nwEo/xlrSZAXd7RNaTaiN3+TQpFN7Pw843jVyY59mA+hUXBF0kFQg7HwDLGbUB3HjQTFaMLFAkffaPL1HE9wvkuzzB0sSdRrro8Ap724p/eF2n2u1vAyckO0jpCM1xfKh5KcLnniC/D/SVle0WOPdmxgd3OYL1WhF4mOL6jNRGOABSlI4n/d7P0FocL+5yXsA52yo88n+iPj98M4NgDcUgIjznbpNoG7B/HMaA1okE8I9vqOi1/dbfbdcxYmTDETwsxqbczP43mmS76t9IUYdhXJTTywFRqFTIzVPHFbxszoDtbDJmo4sQrxmaDj++gfKDqIBNs0sWVvVlxtvrHMUbquNBvgZqh9Q07uj653JXyPvejdj69I631+O9yfxrgMR6iLm+lexFgW5Ytbs/fvT1EW0tPBJ62+Njnu/8IIRi+HkG/I5HP5t1D+GZyg+SebClg0hbTTJXrCG/id9gO3eHFibfY06MuXyBPX4uoKTSSrSLkY+7PhMB+eobwdKROKZiJk1Q9bwH+fERetrGA8zEmhKj5eT8x8/AT6/S31k/bs/3oQStXuFg2/Wx7SzuZ374dxuIzO1Fx/baYahlfz7x7XmLsVYbNZQAOQZ099dV6KKr3EejgfTvxR0Xvz+ZUD9DA59fazUuVnxypL9TZZKYzMLPnhJp3w9y3WIEOK5fePjc/i6YHYgBOCmUEhg87Qg1vX1s2G3QJ7BoTI70yegbzLBxAIyz1qOguuJmqs3UALteFTBGisG6/lWGfGMzjlhS4I6jsGQTjKvqREydc1wB/OES5M80I7eYNWPum6QQ2jyrID9Pazo/JI+HavjVkKmmL3dz2JmBn/kUYllBaTP/4tXl4pRkx/tj7xGtggdoScig/AzwX+WUkDzSD1E72WwW5na/gh//PzIRjbcvBzJRU4vHzq9xviXrJwXnN07wj/9N2j3OYHAZamIeuj99KibgwCcTQHS8ln6Dd74B/86agNmWe8RbgV6hnGpfJtjtOf+8THcCu3/h5Y/h9V/+/eEBXDffMp+e4W2CIZ4fGD4d0uDrC3Tg1e732pJv5+JHTq7gE9kP4qZtGG8acjW48z28HeOt2Vp/ZcD6kTrkup+X/uPDQHuL6q4nHvNlYGANPnAtkIHjm7u072cP+kM9YvYYu/EmvMQFpMfaQKYF47iX+iL7+V8Q7va7YhRDcLMuWyDx8Sufdnwl//QsYegql7rskMjLZN+IctBpvOrd2wCDvwwEvccBjLv+BDd/84maLQQsD+adin1inIhC17940o/O8NN/8Tq8DoAYpAykxCb67/Mc//kKI//0B0XsHHeVeC6BO75Cp6Njjssp0zrJNrU3JuUguVQ5HBw49OlAcnXjG/rO3V66Jfj7i/fxHHYwkHh3TYgTj2rDc4+Cl/7AwOO2Oh7d766H7HKkEwjVyjXr7U9l4ToigBwoqzm363/AxeuEm93f6JTtd1Se9YHYOandldl7tVuteCVuEhXNcvo8JbDHaxJucHC37tkGYF8vpD+sBLC1MkqQfSQp8ja1y+dy7CO4LQ9AtGD1cnEUvQmi9h5h0K4nnYbFyEIR9i/knqUwpj983KlfnhgNTtzVifUK7HgDodfyAXRiq1qeZY9FlvXO83US5BJG7XJAvtJ94yUwvxrY0klF2a1rmwUrVIMeVxBiZKGUk/jksuCa+BrR+kh311jWM3gMjx5xM69113KsIphqIxOI9V3TN6VtFBDFNw6D6PxyKT05GngGfItX58+kfLKSFH7LNEJW7jDud+m2DOz7g/9q6IPlpz9e/pYHhjs+JXB8TIBTnzbymuM2Lv3nakIb7HfuHiLQMROknhSxT+MXL8FSpPVeo/677O9nuKutaAp8BmyL/vF9r1A1eFPCI8kifQZzoCkFMBzOI/okypSys6+BLao64u3+OG9Myko7fkD+6dK5P30L5vKFBNuuD4ytfU/h+ppd8g+f+J7Fw6IWG+RKUuFubbWfQXETitQcXugPH8MPrmLMP+kXTEcydDCvcxhwZF5yciB6AR+GtiF0ac76FnIPC+74I+iU4dmsPWgCKP7JPF5/+P+SvA4//QohvMV0drqjBm7xuUPoi2R9/n6iUg7D8kKOd99p1vLNGvIffyhRnrbhP/4se6w6IYN/D2Dh79YAOru1dn/KdMG/lw4MFMkhSnU75e0wAu2HB0hS/Ak5u92cAEK+PgSCbJq6wJVVCRPSDpgnoBm3T5lA+ce33HcHY7rrx5JxWRXiFXM3/lufXd9E95/+5mXvFO75BDNH8B6Xt762cvGUVHR86+G4HEKZAawAU3IdvwgIG04iKBXXmbiQbShNNqCAj1iekC3MKpigFAygk/EhWBr35f7b3x9/P9YJHbfyVHaS8X545LiI/Eivj1yBk59wAe06PK5Hxq2BokoRUcWHNy59UrTST48WSi0dd33YAYnMUaQd9MndWHdoAfX4Fe/5uBmzqVugUvBHdEQPCL4//amQuStxlmUY53sILbjU/WfXe2N3Sk6pB/nUcVHg89YoNINQQiZswmC8PT4udTHvQF15qehXT6P3qppk275JP3+Np59eHw1MTJzmKNLN6F4l7Cz7SGLVubjCYlc1DI1TSWxGWfV17FwPqrV5RMbtJedvFG8TLIQREPcZz3p/eAcTTFgVIZd1//J/+nEnTwfkfZRLQ4Qlw/D+rHL8F7GJvpB7hWFlW3tfF1i5PH2CKzjTvweuJn+O1wyO172By3nP34fmn75ZngQcwOYYjXiwWEYGvH4O6CTKgPTl+Sr/9ECnOd7B9qyMUNjrEwR5haVvc7sk8usmVpi9HbCLT2W5QJL2iFgoObhzXZtXWB+O8a5HvuMZKaL3L18L9HqIl+mb1D97I34NOX15Xl0J7vUR8tMP5u8nK6D2Bioydn7Ju36OoUHihaiPp0e347PToMpXX6KEyB8nr1AVuDZWEDRX7tj89DRp17fR/RTeGkxQmMArdz3jA07fzdQnRQelU3dBWvNl8j3/prBgkw4p7POl05N773/xFc+ni+ly2CYLsJz4ij9/DXHpiNkELp/sD8tKZ8fjW3swYJ5Ob7xudGq2+By2kOpXlRj3/O0Szw8N6MaciAxVFUZq14shCytPAiEfpnw6fvkMslaroDBxwnGYaHH48Zsdb0QjrahmwZPpdAGeyZhTdWWnXz2EmK1Ed3vSPei9tyZgXjXb7J9jeDhXADkcXJqlHJIeknRAePBXyd35efer35Cr6fMx3e1TvkrGlziO/6GLHt0gZGelRUgwTg3meaeCgX0ekW3mWs4hZfVgJUKX2FdvzPErTEvIZX8i+uX3YV9v+e8TRMhWXhmle70Ejur7g04WPtDtJHgl5FVmwflXnvXvD0/u+kFA63Ec9/pSBuu4J+Tu4fNIJ7av4FHldXQ6K16zLvHhIAPfsVCAwTmm3zXiYUP5Gmk8rOny09cK0vrkqG2vcZ3OUgnnQ1Gg9HNjAQ11xgLGcleI1ZeMu82CyMI/Ev8FwDSGeFFpeoV6l/bIv0i2/i/ePyCQkDedGEp//ve6Jw3Z9Xh9WwPVgODo80SJ9VPO/viusNwnpLybOV8exnmAilAekeqyhbv86ms/PeH4svxmu9r+AWzqqQl4C9J41wsk8Hg7KvrVF7FVUwzuRtdj6VQO9F89/386UyD8P7MPHE3D3BxO+uN5+Nvg526G+FBWVMfHYDHgO64zoigGyPE7ul9BDcya2Ownizf/2B3gXUozpJ/QqyGhZUVS8WoXpH7PHqXp/V5DPGsr8vmj7E4xi2qYc4cnUj2pd9fek3oohV4T8FvTjMsQdD2MUWThQ6db8fayfV76uywMciL4yie91gP4QIuB/Kdhj4tzsQe49Tsn0Xg+p9w1ZOXTiWEJQpe1We73ewK/c9YG74O7xLTvnhhwvPhCBkO6mDyCqYYEvHWkMS81FvzkbEJZtiQUdwMEqzTcNHA3hhTP/P0yUlWEIVhh4aNS567uQOBfBI3LwyUn8ufHU1yUAzQiTUUBKxzyxTVPERic6w2ztfF1sf+4LfDzVEpyKhuPsjr5Y6EqdjYWvxOvzxc7nqD0WUNi5Zbhbp/HmsF5a3W8CCBysYPxBL/IR8T/bF9AOGxPIoH8Gx0Lq9VXQWkdeEC3FO37k68VeCXQLKIGKdN0aZYgCSXIfbM33lTouAR+mR4UUvZH/AIldJmLJZJa/8QQc0OjPk/94QDNt0FJ0jTeuHbJ8SpbueTiLdDuMT3c2AE2C//GQtxbI92kqIZM6zzx1E98PlVPrQJjKn0DWYYOoJ8lh+CjRCpe/spTvkRdJMFc+rjIPmxVQ1VmS+VYfa5YMg6EbtWwQQjixyuARYTHtRByCH/2CvrTU18QyjZJ+Co+Ok9fQNe/P62TD9kwIU9kmfw5elkIL0U2Ec+v4Lis9JABVzdf6Kg/upEY2WECPnvtg+Uyajpbdg8PSl9lI9bZ2JoFR6wC9/UJoHdZx1WY1wTWdRQjzeUu8XapYAYjynDIRFWhL+KNLeF9b5HP3q8Wpd+gY+FJnnjicec2ngpfqaFiSgky7c9Ct3ul99DKDy6xnn/8SBwTFYCtcxVz95i421cwDWiolz6gOTk0i3uIWjgLEcH8PeTy7RgsplxdT1xQ6hzvEq12UzhvnY48TxX16eM7LPBOHxWp2aDqG5MKEgwkcyC+F93AytX3EF68Pw5/y3UF0+1dO39pVXNYSIfXuLD1t4QHlX8gezGqeFsGo5KZwZyDv79KdTfmEBZg1Js2YO5/N31b3kEG7nrKEw+Uvb7Er2KDrmQecfN17/lGY6GEfYrGQIp6C+BPLDug/fB2sEnX3F2kiE/gvp/keDNd/e3j/V7HLQuR8za1mNVr1wONftiQxV5Bgw0xxiBnexk9LZaLcZqMHaxRekb3w/7/jTSAkOkFlyD414IJ3yQHvt7iFzNfyOpf28hDeIu9I3LmanA36ZUmsFy9lBSnz6oPm2sx4DnkLZb39aKF7hXgXUcH4p9CBkxGajIwPD89ZFfMheIXnytAPB7zADjuJ98MMcdQfICBGLSymzlPXA0K6YVFQXVTY0EKvxCaonclqr9KzXYW7BIc3ENAXBkf6SbX0AJ+NNkolZR3vlwyzYShOEXB4fGtxvEyVCXUhTNPHL8LXZynCwMuJ/2D/9iz0Sy9FGrQP5cfzJ4pHbF9qCG8dEWJXEYMwZy/hAHSi3nGPE7lGAuxiWHODjKyo7FuVtg7BTjJmCfW62LpK2ZTCF+P452oYSTomySqnsxPY4Pl66Du8f5cyTYNZ+KeBgfQYrkPUFbLgXhgU0ahtLsUJn+lSNC+X5T5DCYE9ztBSMnmEZv2ygCG8UKkDtZfTGtgMfAIhSlI9vVbX81SwFF/tcQsO3Mc6rWQIDE+z+Agp2z89XFgwTLNrODv7WYAGkDlv/ri4esVZOKLQ8HzYuVLagELKMp5JqH7WfL+Vk0KOFvlgin/uYPtXBANqoCuROOZye2Fc1ZBL7yfiQNPHOjC+FBD0iGGHO+f07ju/+8XP5CveP24HpXjATKnYCK+vYJ8edpdAB9plyBDrUt3PLMIgza9R8Tvv3CkfynB0i+eJ5cn0CduvDGQg2FHSu75jQl1lgV+nboJeBO96HKj1wVGdmUiS3haYL1ptvazn4BRHp+c9t1tguWxPiG1vPbjenP+KvBN2guKpGuuY3fKLPi1YxUdZf/rVnFcWfI9wDZRxVqLOS0/G4fobLAkUGxMR29VDLhuaYF0Jz64fZn2rRT+DRVuUUca+hqGDVRcPQWC1In6Ese9BZEolcQxWiHGSI+u8FH3Jkrey9KsChIVqLXagfjZ1Y4nX5cwtE5bT05bZdO1b5sKCvF3n31zNuLl6p4wEBR6Qq4wsO5y8/fe/NqXw1tVRWDrv/cSVmknktPn/W7WYnuwsOK3ff4z47mLVRQJ/NbHMxZNM2n27xdQVW960PRKENNkkjUglbKCLm0QxwRiuMD7W78g85OYVBDIXMOVEzosFzumS1YJQm1t2ODPjFOwonHtwAOUF0zFIqDr35VWoAgmTPb10rEvSB7QisJBiLNu+kqvovfzT2R7jhkv6nV0xO0SPtBli1q6Lv4bwz8r1JDrGRvY5M+uCle4CCBfkJyKcwjhVA5jwAR+Fa85Mg7Qab4DUYlz0JeEFw3IJHNP3GYWdExUuYD7+xGkmBeXtubLgArlT8g/HRDA7p9xgCh7fpB5sK7jEjH6zumIhtCEUc4dFV8C67fzyFGBTj5NpxwCR1TI/vtSfWvMNYJSGDR7L3cVLE8be0BqryYKTi95XD8IeWDfT5Sv9o1u4uUQSts3U/Amuou7JMa8wZ99Jknfj71XfTG0Du4b6b2C42VreQ3OzhWSYKUq4HU9VQDYpBQZTO7TwdxsBT6CuiZIR9rPXiZZbpMR3VbVzPf4YkBwz0kA6nrSlz2/gXfqm8G6VPY410iAoOFeZ+LJf+04pwdjgocElz//bCbXPIWA1AtLbKKdcm5IowkowvmM0GYo42rfTAUMAPJo/zzmUGJNUmmEb3SsLydKb7rswW0SHMyDs043iXVNST1cP8jj9/nth/lrwfHzPRHlmE3jKpGHBSxyuxD/0InNQnzuAHd7QheVFmD64ZFVOFm//EPnHY+B5b6k5Ljj90+8AguSJd7jGYhyepHjAI4lK5D4/Vzp+l7YK2Q/pzlYlkbPV9h4V2ht6BZIfODknFTUGdQpPxHlr/zE2xSYEVBbZBBlE8Wc3OFQAOt7PyHLn/SRHXkOQ0+TLnj1V2mkZavw8qG3e2Klnw/t6V9aQutgv5GvVK/d/ldP5s0kReX5TfLvRqsADjchJkiuS7BUrTXAz2ODyKufUb4M8d7bT/3K+Mp8N0CV79UEjn8tiXlvZ/oFUWeB3AgVVNjsxf0PaVeyrSzPrC/IgUiXMKSXzgRBEWegiICINAmQqz+L/X7Df3bm7L0kVNXTVJKaM618wPNwWciBuUK8Pt70ATa+RVZ+FxiLpu56+HV/dwIq3qwXoQMBBL3tkCtzhZwFowbBX/54WuDEfJZbpVx9pif2JfUz9LK2n+XHu52pwWpjmzL9hEDaNL6b33XAvnIYKO+b7298fTXWWP81wGR9iZJRP+bDrH1CiEpdokGfqP5hx/pS7mvviw4NYvF8bNMWcq9qT3EwGAZDQq/D3SfVNj7wAWy5uS1QGXeknlHt8lW6zhHohcjDJi+mw3LK41QR0htHtesF/3se7ne6iTEcxvhPv8C6Mo/YdKcmn2mdIbDxa6qTcAA0eiQ8dI/tg3pD3Boj9Ift3rJ8j/XO6HxGurCE+xdP0ft1Av4dhvcG/Okn+7UsNY3c0ZR/p/2EhHeqsYV+igaSaq8ivn5K/qbXOqjkVU5RmJn50jVDBbd8IL93hPKuLtsL7C+ZS5RjWICl/lxCmEu3H9XzNYon/9sEiv4oPKyBZs+Ynw8rDCUSobllnr+tlypv8YHkPXv6E41qHl6OJ0b1p2MAri7bBLaGdKMGZz8HNqnaAzjr6YbNi3qrWf/TQnhtiwJrgmaxHz/gWabm54Wqs3T0Bfjb9XJzuG175vp4WN+uxcODXTb4eH9zxqZfe2gRC2Hk1MlAN70JifyeyHgEv2EtY8/847/U+ygcY6+XN8K9mktob3+XnMUvNYVSU0XYB+83WO8CLOH7ebxjfXfqwBJdmxKav5ZQzZsaY3KYokPSJRY93k+gZkMQhRCuY4AdaRzZKG099TtbGDWn2GL81HUExAnPE6YSKx8a+20r13USyfKHHwsTU6jr6X3j+2o8O49LAn5L6eDjGNsGK8Ay/vFzfP++Vp/VdWqCMMQ9NU1Drlf3IwZwdRUX46pXhrWh6gUmyPCx39HZmH/Pny7vj2pJHeCHMX/p5x5aoqtSa+5yYxS5oYCTa2WE3/Jlvt/PF3lQ1AD7p5rPGYKdB+/v1sf272DEU3Z3PXBK/Jiiu9MMs+O+G1m+AEyP2bj3WXKSHtDLDhm217quZ98/ZTLouJZah92YjzzYOdAhR0axscK4GV8BByK3spG02gpYzmtcwo3/Uy+CWi7w52hUnjvwouZFFYbVPJs9GL8FIDtsRoBmwpiA/dmMsFbWQb2K4DkDTbXe1Cddnm+DgXsoT7RAC2xFtlR3iGDkhA3WtH0NZn67WzoI8+1uWM6vWcISuM0D7Qg47oyc32vbrIad9MLq5gesv3PZwPCYZ9QvNcrm9aalcPWDAeP1m9Xz9WrsoJQTnQa9fhzWk/dR4dU5u1hLXRMsYy2vsPG2bXSOfgcsa5ZWcfruR41JPxrTlS9F5S9eOv3Zgtn9wgwK90+C5K4454d3LT7k14GIBObhoWZ2m84Q66KMs1m8+4wdLuk/fTmc8JMxZR/tlOuNqNiIvA9bD9Kyg+dzrJLlDEu2Wm25U7plvFB9nzI2/tX/jR9i11qhscV/BR7740BV2Ul8stewCrZ8RnCdv+xnPqAIlUL50ETxcD6ST7vK+XmGGDWGA+baOTygPE0F4Qblkq9G4s1wKooXPcKwNqh87WyIUHrHmNam8S8/Xeq75NBUA/vnL12fHaKB8/P8mU/CDiRu8qKniHH+8krDTL63kYBKjVj+nBqKDn2Rr0npPax8RNu5uCQRcor6xjKYjsMetvpwIHTTp3OMKl3JB37CmlmW+fLMxh08R1VFaBYewKRiSQdBs80GCSPBZ8095oGUjzqNhMNuWDqhiMBWL9F3D738cEFnTnnfXB+/t3omJJ/+Ak7nxxdn8QvE45/ebk7WDuOPL/u0f1kqhAF0sXouc7A4InDg5n9RjcSf+rtP6Qjyss42/D0BQa/8TPbKoKRR9j3Gh9+RKyHxnJkAV0BsGlBRAFUs2Z8+BkvAggjOr7Glx3IO2XrMQgdy93ahXtR1bJQslwBwREfskKUbpnexXv70OvXEHOULb1URvO1OkChq0NXsQ0QH2h+bEeWBObAQ3eqgXR/OaP9+RfUaXy8J0IIuoerf9xCCRwaFwMywGmppPD6ygwO/L70g0Pl5RiukAfePH60/xIxJ7m8q2K/jQv/wbTkcTB1i4Kh008+s/9pqCZuxPBBa9Uo9fWaYgGJBKdn/9O/2vmYorq8Ebe87s/5eGj3c+AT6/Bqz5v70qUB2OdbnpYvH1GEe/AlFQt6wTcESZVUP5S8L0VduJZ+0hz7843tEGYpzvByesQeo5lyxa4JfTe9a2SuljFPSbX4SyY1LD6Q6mgnY+MNvPKu60vN6R/YUDwPJ5x+nJEZ6xtb3VtaLSb89cE/buVC1O4P10s+d0s4Hj8iPVPfXb/sVwRs3z03f3fLPjvUVrDv9StX2tdQ9HMXsT0/TP74wdNacKEsRicgw7Us8fQq3AYYtShh/Rz4n/pJG8t3sUqzpfJKv5jnoAazPVxqG15ktO+2GwPKqMvzH7xfFzx9yZ85vvNX7el3kagRskksiJsoTjKGVlGCakELYmZ/iWXyLI8TaL8UGUHxf4FSuAsmcmNR5a3SYborH//OHnMPh5U+1YjlwBZ+OuhquDMalnwzuliH/9zz740ezd3ujeZXu+SEeVB7EB90nXzcshtU2Gf/nr6K9Dlwg3XRXhXEpdggqQ2BMih8/4Lbef36NsZYfyEP+h+5kOSF1m93hQFAb8oqPvcINK/El8g+/nNxp/DH3kp38GEWDtIOK4vkbqTvwHssQ38fTWv/jz2PRDUR+1pPPzKku/vxnavarm49STxHY/DiKBcUH89lRbahD4YgUnH8MMn72juzfkEmPhNPzrZ6EYPv+NBCvMluda6TCy4nLsH9M1pwCv+bgG4QE24BTwFTonKk0Y3VA/H5vGlPoBQ/4OL0CbF4us88y7+aA0wUsSJ5Kz5hO5b0Cm9+LmOtMPpGuc6jsvIGnp7H08o2vd5J3S0P655/MXPUuoOF/Phs/7/I2O4UyfHGvhHrP+mQc9Pxug8F9roS/GUtefhs2guaNK6KMZZ8vyV0S//wo8ha0D/vlb6EDJutKqskWjNfUown02bPAyE6iv+/NwaMROhjdVmb8w3NR455E2vgPGdVzD5/NgWBn61dQWjxCWHy9FtuY4+pZsrQRnoYyJWuqPGtWOUoviHUBCdutqs/99Segml+wFxyDetn8OLD1M9BuXFxjw5deqW9XSDd9wViw40al6L8zVsf06TNrp3WKXaZHkrsCAVUYzyWcXqOGrTrIYh6VWqL84cPt/uZ80lA1UTpvpDTmvxLg7+sug3X0C9FsZUF9eBfyBWz+CZKD/OOvPbeUShIsv39+3wxFkQP3vWXTjX/l09AeL/DSdj2+jbHtz/SkiHLSRhENvgdjmLnDJVD+6pvl+F9//dpO9cdP6WPH33w+cY0SXG+jSnOp3tdjfWINNBVNxLaz3zOy6TfJLrMjgh8Vsa5SngmgvHjDpyASwPo7dy2YYX8nK815sLJUaeBrP/+IUGEuZzG/RPCBCCGHbF2H+VY2OixnXv2LP39+gaWC3v0jbnriBaYK7yHgX86XHlFLGS3cNoPa9dFiPbUHfwmx18iDamfU6ZoGrKBHHIxuhk59aEKD7j1gAg4+VrS7rbHPq3JQQO4iWtjlz42/2NcegQ3PEDvi9zC7o1zC+7P40qNE26EbeIUAU7B6am5+4HwfAxvKxzSmN7m9+3x76CPx++UJ1ecnZcsUuCLUaHkj8vEe+MNxETk4XTJCvVlrB1oXZ6h8jclH0qZPhTxTEvDq7w02sKJt+e/Y8MU9E3Jw/KPBxodY/K0P2ZW3dy5AjTbgkt+Sv3rG/vGZTQ/Qv/ia3f0ngowfZyRw08SGo/telXd+ENBfPV6ubk62q9lGunU9/cWktAf4swIi67c4H5/z/QGLNHWwrUrz8KfnYWVdSuq5cjcsO1ZVsGp3ewLYLqiXQocmXGBxot4jrYyVS346XKziR13+bBq8VsUtjA+qT6O/eLgirQMlPyO86aNhmQrYQ68Bwcb3H/FiZ10CysQ6UO/7EHMihasDs50ob9/Drv/5mR9gHfH1xQ3xuPm5Ms9PV+rFjLHu4XgZTOaLifP96ZdPv4M2Kmn7NKhqnLqa9ecwhaXL56g+81O+WvT2gH/4vPqHQ87ulzyFI7cXSOPefTYnfReCnffjicJbT2NN8VTILfSe1CjCgzH26qrC73OGWOOnU86ay3P8V3+9Ejz++kU2jKJLgm9prw1bPy9UtGvRUv2S1cM0FbADf/4n737n//jdn376679t613CszGb2Gnuu3rhzsz+y28iJ6rAFgF8IPw6uYD4zY9ZvviI4PFh3mj01bDBElbsYLBrPzTQsikez45qKiPkVVRdz8l//uRiEx9BThkAA/ZnBMAXGRnE8eSviWllf/0SbBW/Mh9pHQXKDZtv7DujwRb7WgXK9WzdsWmUanxoTkMGpVVD1PC+YT39+d1VGryxpby1YbkfxO3MIiVUVThlWOfbfYa2LRVYF1XLWOxu2zOli1eM71YPBpuzMtlwnBxnrtzVTIp2pXyOyopwWO787ffb0DlzGY6EQzEsxq5S//w5+oeHLHoUnJy+5xvGvlLVC7d3QjB/4wvpN7ynz7jq4KbHMeZXlR0c+8vDtXMKai78i/2Lx62fQE8gR/nBW7oCFk+bw54wTWC5oDMP+e9OQEunXPL5YK0FrO6FQTgWnI1Nr1/gJFMJwW39FxjeW8iCUMM2t82W2Pp5f3qdcBdVqP/h6f9rT4H4v/cUpCKnUs3r23zOljWCDykqqKqpPiDRJKvg+Dqo1C5/dT49fj8bMttOqT5riE1vs+nkq+Su2LAmyMYlvyFgHh9vHAytGJfY93ewrtMKPzrS+bOaaK1yAqGHFk1wcv7mKC2wDaskw96ohzVLbhd4m1edmocsiWf3/NShjKQrRpkj5VNwZQlMFrygNe+fYEzTPAShZ2nUkqQ0n2lbBUozFCX1LwOLWVvZF5g1xZ5IDzAzNpE6g3dbC7HxvKT18jJUT3EFLsX6U7ENzjJcHf6wyeOitGefxrZSACsaUxxgyAZa3WcIG7DtIz+3b5+M11JXtpl/k3CrXGPd9Y4Ob1JM8fGljMPCCaIKhsaWyW80S4M8L2UKydq1ZA0umsGfc1+EE35fyOGndvEKxLYA+a/+EaE4PP2pHAQO3KQzReIbj6x8f/oGlnAMqfscPmBMg0KHj6aF2KgEv97WL4GnQlqwXqW/YT2e9AvELXCxdX0c6h6Y27nrtJvQnpG3PyyZ2IBYTgBVgQtrKj/0DjTDo6TXInoM8+1cZcDZz3cawss1Xx7Pmle+cf+gPj4Exszduwgm4mhgXxIHf9kHfQV6eHqhwy+t2PwYPyKAuvrFWjt+hpmOHQdN83Ui0ePAD3S/HCs4NXn+9/fG2syFA8eHJxIQnFq2nJGowmZ2DJRap9PA8vvdgfMRcKipUGEwWE8r8A0T4yu46/H6RO9VeXF9hEDw0fLF458dsO2tR7b7QH8p5vMOTEjrMb6NGluKPr+AcHVVsvcKNeaYvToKuS0Ckhgl8RLqTik/V/5I3tz0ydctH+BZwD2in+ldr7Ky8rA8CxU+5a4WT/JrsMHTfer0mGRSXS+XBUKp1zASGzmPGf29dDAfJQ5jY+bqvuzUGeJrAKg2HH8+xSURgUNMH+NGCQbuHbcjHOgHYF0Yn8b8vn8usHWyD+EoJ/vLtfZ6eLBTicgXaOfzVVQa+PnoLrZ2FwA+VOQIlA+xje0ruNUzOIUtmE/ygx7R5TtMh/Gjwqm5/81jzvLFyiNvr3J3gR4FWIE1/1kFdMkg4ODQYGOVBA0qYE7uaPs+YB2FloNauePI3Ez3esH10wbz7txQcz1WcVmkKq8UWq2hBbJbvsZqhwA/X3vsiAUyxtGOkn/5WVk7CsjjKIqwPB8qqimgZaPXuyucboH/F881Myy/BSc7M//l73qypQigomtxXmtmTIe31iu+1n6wvsscxiTjKcLWAF+qMfnrL52ZIfh9/hj1ikqPm9pyQvhcLk8kJYrss8WBI1wuw5X6mnCtye+XcSC2HgeKjHM0zMaZFsBvi4EeT000zFFEbXB1Whu788sYljPkbFD79ZGsV6/z57QJK2VUBJueVrUzxu15uMUnNh3hXdNH6W29uoDD3jDXbCndRYeScjpiu5aI0TGVlTDfjwd8XZEL5lfKbLhLeBspo5UN81+9OmgSoC4nH40+mlYd5ET9YiMwiNF/BKyDMF8wKZNRAmR0+xm2u/mKj6V6Bat/vRF4DgX5JKCxMtj6/hVQmoMHtklfsbkSwxE86mNE1UF91yuttRkqz+hJnfIlMCblYapElXnHOjvfa0p/LxVmuBGpQa+pz1pitNC5SAM5FBEc2NSNM/DRd5v1MUHGSvW+g3UjB6hbSyGedMA9YP7kDWwmlmEcDH3KYCmNkMiaKhn0L99PppzRo1aow7LlG9Toy8UuvfRs2e1lCEkJU+ykSxmvB4/j5QtWn/iIxsofFn1ny/2oApp57dUfZA/NIN+TA+H0d5gvUjHz0K9fN3pa02poJLlPYcJhi9xK9cCWIW14EJDyRxN0Un0moE4Ei7XLsa/U94GZZ2bCg5udqJriyV8etw+C72UGWEMTjd/c61DBgYsLau0ffn4gO9f++7301jDGFurNPVTeUKXZpfHZonLnBFq7u4J2VlDGhBPtDibcycI42x9Yg7wzgZnkvDHqXMmfF3YfYTeIO2wB7QgOdyWWgWcZHTbs5wKeoa6WMH9c7vimeE09K0gx4UOXCdWt3XYPwptbwZ7NPvX3hlFTQOYZegnlEY9OqjF7vTbLWz0msl4aBj/fdiuAWIuoqqV2zKmhB+W//Aqc8yevbPniwYtaOdj1XlPN3loQwGtfiATE4tVYiqKw4fQBFlX57aoer3dnSF6hi41UuhrzhnfyVeln7FiKPghxulzgoAKdMN4wwHrOfRl+xECjwbem8bLnKIThcfME/XcF1sYJR6i9wg/isrKt56q9cDDPeIr4g5KwuRtdHX7Cyxefb37O+kQPRngJybjVS6FeFf/RwxQ/AMXOjs/Xb1c2SqG9NSJBZfY3fJMhNMozdjZ8Jls9B/PbvFJfEn2DTl0zwymaTthGp9JYy8QU4eoYCzZmh4/X81uv4OsxCzguuKpeSgUQ4IE8RQdn9/MXsvoctB6UIql3o3yintiD/SnNkPgwuXhWzdMIr1l0QSzkR4Nx4Y2DNy87U62npJ6oN3eK2Ow+NPDfoc9q53sBOa3O2A87L54fYu2BC9afWG/ZyZh2+xXC73Ng2Jc71eeq9sJD/aev9BgfrXp+FQsBx/NloHYU/oxFHspECSz/Qw577gPmSkxHyC30hm05lXP6+WYjjPbnDodoV8XzkyUz+FT6gSzrehuWpvEiaHDRD3ut8gHrvlB0WF3dG3bIE8XLS9EeMPOPMjXOyB4O7G72IAbc519+k/a6PsCbfHVqRe67Ht06FZW1Ekt8F7IHmIW3n8J+DRzEXa/EIGx5zpL2ij5orMWSLZ+Gq4Au4YSIMZr8Rf3zkFr1RA2/8+LlbmSNDKOTT//yiRPyYJb907FFLJUO/pQnK4T2jenYnqo4Ppy69wMK6cnE1t7c7k5FfQeDob6i3sofA+XBOsIuC2as+2+drVmXB7AEqKX+3eYBaV0FgbAsVqq9pW/NkjY3/+HbVXV0fyEtagDsshs1ndfX2PBbh7ZrOgTg57lmp4+rS26g/Ojp/rvlW74hGF9/d/qQ6bGeM0GUAR8oJySl5SlegitI4GBlKj6u2iFfmXEn8BdYFcW/ua/XV34OAaxySq2ND1Lu8TRBugopmvswGA7RtZNBqj9CvP0efx3dfoXfq2NTTXI68IPrGcnfyFvR3J6Mem1gnsLnyh1xtn1vEqtdAN+lOdGUPEnOSu7Rw8qEDM0n+wlmeNEe8HSIKyIXVZUznioFULLYpTriErDs/Hm7expE2JtRuPHLkvvDAyThyK/Z3jAeUFmdBtsna67ntLjLsLVlQGpH3fb9p+fyH186FY9DvrBBLaGs3tV/+cChMLzAv/dtPw8tZ055tMH3kPREcZ03oyDc9+AJrtyGlzpYySMUldbKz394V29udwez93PA3jNbGRkFwsunj72jGjdZ+cFOTjPob7c7ytpTyNags3j4cps9NQv/aqz0FlQw2scd9Y7x219eS4D++CPVxJnka66pOpxMNcaRhTKw9NZuhMeHMFJje78lMiYdgvRXYfWdfeoFP4sHvE9ij4MmbobV3HcVKM7Th5ojdMGyzQCCRz5YUE2vqTEV8x3Cjb9hozryw6yggwmzz+6H/bfEgbGWdCgdSS0TMOmN30vDNi9aQhaSl0Q15j/+ssU7Et6OlR/yx9KCurwjevzUzjb/NMlALNy+ZCdEjr9Ki3+B8CdrSHonl3yOiuYCbzrYU9M063r8rYuo1KjK0foZlHpd+lGGMr/O6HiC03/6asNjctr40Y+0qAXpa3ghKRWPgJtOPoJ7eBZRa2WVP0sVlWV65Qrq30BhrGR3G8HAnQtsk6jLyVWLHiBfUEm6WdUGTsjNFYpa49LwvZb+1PSOCIL8suCTbMvGakpvGUK12tap/gz0FFueEhSJhWQg7QB1SmzC9/Al1OWqsV7BbjKBFbx97H2eACzzrXOAna0J1h+HZFhz4F5g+vq9sHd7wC3/7QYA+TqjPQGGvz6dwYN4yI7UeQYGE7apmMonP3QYGb+TwU4vL/t7nqpv3Te4gTUe+OPr4GpMbOTuZaSM8PZA61NpjfnqLSW8Z2RFNY5TNknFzIm8q0ioJEPot/yvC+D2PNa//nHg5kt7AQver9SayZ7N9WSNgLsLEF1X9ANT5hkP+NNNH7uH6F3/8TXggHNO2uCa13yZBCLQb5eG/C7PJv5db6cMyuWnoR6QCjAL23zp7MUeSBCCE2ALAgk8iSGPT+Pz4G/6aQXnWEAUZSLJV+10mYF1CXSaqNgdOBbMM/zTexpkt3i+rjsIzuFBpn/xS42zyimPbxvSQKbf+o8/ggnXF3LougmsS0E72UnuV/piiT3wL/eaKsrex1Qt+3mYn9IzBa50+Q9/2OVeN4D+9ATj3vn4U/shM3gV0ZuejqeLvzSppcMTvwTYuJFH3jvHww5avvFG+9/cD0v9vGfAg0Cnup148fomUg/1yzWk9kHhwXLkFgf+PsUXDYdD5U9bPPzTb8HeGwz250+43MFEK4ZtTLQ4z8DGdygqagiILMAAvl6rj9VNz8/9/pfBsn7PZON7w7IPqkrJeP+E+utFZevJXkJFe8RnAkO6gPk+uBnccVhG88e6+IdSUEzwEZFGT+WtNpYtH2B3VEUc8kTyCfGuKkTu3iT8ho+rc+JaZcapjc1TZBkssg0E72OuEshfGmNV9q8Ebn4D9ruvWlPT5x5w46PYySRQz8uUm4CND4cmv5eXf/AhhXDTO4TLxLfB3rFjgqK+Mxp+LM6fkicfQnZsdGzIxTefi8Bv4NCYMqLn5RJPTv0t4cYnaPh5ovrPr5Fv++iG2nEt8q5huwYKdsmTRRO6+F/93Pg22eVdnTO0zJUEP7lB3XJ3ByxQb6oc+s2AcSTVgPzx0+IyShj/0tCf8VlvoQJdQF1PcIzVWBcdiqr5InL65cBcRDpSrIik+E8/bfhXwPKAd4R9e3eYTf5cQPJcX9QWnio4SBFr4NU8OjSoVJiv/G1MgK6QC+EyJ/C5Ld7h2797mHTu3fhXv5179sPBtcKASe6lgmJdANTYMGYfMfCIvOkPIrbZJ67546wq8y5uqFaddYMwN73ACiQ1xUlwA0Ikn2RZSm8aNTc/RogCjYPmd7DQWzjlBjtb6Q6G3lHD/gc+AW05D8Hno5exf1bNTe9KKvzzG05RUseT8kWBZPbdHfvaKzfW3y/jwaM1W4pJ7dTrSQY7wGwzJSIPMrZcHucZvorwTe36zYYtnlO46RF8WrpTvcZqGci6PuhUp2geyKBLMsxvhxzrlYr9TguVAJjNsJDha55iJszfERpVk2NLPkeMxKQJoR9HjOzX3WiMvdSvgL/05p+/mBMUlzNU8plh1xpxvega8yAKdimpcOODuWv1FCy3/kd2+vtZL9dnoMPPVPNE2vQ638/+CBB66PjE58MwtZ92hQ8W8wQa/HtgxVSvf/qL7CejGNisGzzIdyefUCv+snl3/UBAqkLHOHq78XJrqAf1lEMYJ02Usx7lJbAvjEzK/SfEIzied0qwoyciezs8rLdMeiibv0qNb/+rezdrTNiAn0m9XXD0GRbfqbL5A+TQfBrWbH4UAE+vpP/8l7JzVviH5/pWb37RtZShXH4b6qziAmpn9XbQAXGO9o/q969egTjvNaxXc7P5hVUp/+HZ/M4+w9pDB8rTR7Loo833jPXORQb+ZX1ip80++RjfX1Cm33Ik4wG69WJvExS08Xn480dBNwbhDqbeXiHi5ifQ22RAOK9zjfWdjvKDsI8d0Ofc7b/3/1wdBIWEZhRNY+AzK/pc4GEXxki+336MFdJbh8B/RDQb/e8wr5y/A6DoPHzs+AfgzDnjQBUPE5pcRwO8HaQ2XM9BRE8AuYPYWGsJ78dKJsLHR/HS39ZGGa39iIDclQbb8geSxYFY+zS8T07q2sPvekvw0djx+fKo+wL+fV9zPeoxIY9QBttxLtKZz7SeGbcLwEmMeGx1IYvnVfZa8AsXi2qg2w1/eu/v76khF8f4z6+G9ZlcKJ6M3fCn/8GP899IEBonXna+GELuXTGqnT4vMN9fgQN+YveiJ944G5s+HSFTjzNa2svg//78msYxTcI4/5XP4HiGyp/+pmDpjdF5lKqimJaC3fno+gKkgypvvw8fm1yKpybAM7DHR0P24E4HEl33JczQEVFVDXk20nEbMWylKnU3Psjc9YAgXww56USb1fRxCVZwaL9P6immULMxP0QwjTqOLO/3ZKxliELIgK8jdv/1/ggOhQo3/Y4xDE5g1TMzhL94vVMV7fSYUx8qUs7CqcdYLV3A1m9pKmH9sPHxJtc1c0XAgb94cJVrX0+d+JBhuHcH7Ot4Nrrd1D3gzUvPOJg1aCz185yBew8SdNhdcrYet3nimx6gp8KUwerEAMkMdiMO+3CsZ768O9JNWSccnAUt5mjbI7j1U2jmE7OeqzUylXJQdXx+S8dhlRWZg+JbOaPPL9UB283X8F88ypfgHB9+NyeBd69ENLH078AC9aXDk5HO9FL4B58HIing5g9SM5C9+nBKplZurucLEm5yPSzHjonKxv+oZdZWLQTBIwLnhKvoEeoHf1T0PQf+/KesqPScuabkAOnODTSoxRLMn6hSlc5TA6w/P/4wb+sLg+Ji0ShdT4MQqzwny2KY0fPp82Lrxk9AZTxdbA53vv7jHxClww6t2/OL/TAzaPnaG6OH8fWX3uJHsMULEaJbOMzDNJUwX0cP7U1fzGmvJxGUuvpDFh3rYL6d++wPf9H8EyN/Ds8c/8dPqT7srIEcktX+iw8abHznK8xfAksRR4gr/IPRJ7o5gvBkX6kdXPNhTXicQilPrn9+V7w++W8AN3+BLNVZ9wVV+K1wq09kFvjur35zALi7DluDmA6rON9N2JlGQx2U402PfGX4x19s9Wsah/du2sHrACt68W+3nFf2t0Ta6gc98lwcjxv/hLfRfGFbsOx49mY1VZ73X0t9pZYGOnzVUBn07Xj3n16XX7UNtvXe6q01rFl1aeHsSQ6Sx1rf9hTfCTQeOSKt8CwB/+bEELZyfCPr5u8u3S6v/sWPf+cHxqJIfYCtf4aysa6MLqxnoizw4mOtOlf+1j+p4POopGi9eo7P8uMzAp9c6JDAc3Hek0cqws96uqP9WXvlNCkvD/jM3RDr3CPKV6SNokwC84wWqaxjlpSPB0xC/kfA3U4Y+3wzAo23uVANMiFmgX3t4cMSdZq+v998fn+qBmz9Evzn567ml+gQ/kSNRtv7sAP1A7mnOqbq54mG8bH7zX96Ge26dzwQ4yKIsN8HDJ9ZFdS/+hatkI2FQ0+Crw7zbuoK2D0DEyfyzIHx+wkd5a8+vblrz8j8VFKpUTxC+KMsgDlqegiXW/fD2u/78v/4KtzwmfBfKPiTXRkqsLisRR/VqYzFTqwZHEC4p/gP70N/F8i/kFlInNX3sL1vB/jQt7E+33/5DJHOQ9a+SuxWthuvu15VlRfzOlLCyyGfiuYywkuVythKmo+/fsPWhHb7gvQUGHlMnOMBQm6ZbtiT7j+D7RdcAWXuZLR7bWcS+N+OA7hLGWKzOOR//Tf4x8dvn9ph7HIf2j8/jKo385JPj9sUQOee/rAXuk68aJoqws1/RPvb+AbM3O8dIDhq+U/vLXTHElgdbgCjTiLG74xmVeFKzd30ozYQ56jAP/6NdqY5M7bHKlFOmmRTnf04vyK71wimSyBgww8xo21n7uDDTFMafyPqzz6/hDA6hGfsqtK5Xs1vqyobn0RKtrSAvLk5ggb92hu+Qzbvvm8eKnsXY9397fIZeXcCk6dwwcHzs50p2/pdW3+PcKZpDHzM9bL8frc3rA/tYCy+gkrwYGeeAG5a6x9+Jg9YmNUVH3/tmQnw12SQ/tSE/qv3G36A5wmq9KU6OOf11q2gMvcy/vN/mFxpEci+RYz1zVKYtvoM2zlUEZOSG1um13UEvyeb0X7rL84TOEZQFe4+1iU85wt7+SHY/Gjqbf6MEAfQlP9fewqk/72ngJ6ziVzcshhm1fBCwL/WgvBT8c5pWdecSBZxpGq9FvnCyZADzKkxqZqEY3MejzPk+1Qm3Itb8k+6F1sgOccOn2ItNZbXR+gh0uc9du+1MMwP+E4U4Ydi7FJO9bmf/VoBsIBBeodJPl12tgr9fWlQH2VCPT2UKw8/KvxSpK4aYEwuoXx09xnibbfPR745RjD8CGfCpCkG66v+iRBVrx/6lJZgsLIpUtgZl2142l01uJB5BIzSr8COVi3D9GyzAspa/USHRHIYpyVdK4kVv2C3IO3A+lRqYQ8eC/XsAMa0aLZ5i59Ox9bR7fJ5PRsr/N22cyDBEcRf9jlEcMRvDdvouPcX7pO0sHIvFrZzD8UsizMexsY1Qcpv29e/M9dAmWIGiBBds5y2jjXDm/SU6ZG7T2B9AtUGTyTxWCXo7A/nIwyhee7PVBsUnHMujjNoBvsLDq6BFY/f48eDXuDl2Ldczp+zn6+DJGs+ONv1gsHoPk6h8AtiXHCOwEhYGNtdjalDn/dnz2b3MyLwcOGVFi/TzelBth0YzmZOI3laADEvYwWtt/FB3Wq9GRv0boV440h+Xi7+6pxvCLwWWyRwdRhjjZt7oE8+AXaFscxX+nM6mK4SpRrcsXp6B9oKX4Ekb+tD4hm7eQP32lhh76vz8epKPwT3b1Rji7zdgWk3LYDnLBAoTvnIX/AhaMEoRQHiV9ow9ohOBTzYlx6nbnYGszIDJEvfXCXvZ7EOzO7MGf54scJOH/P+uLN2o0xG/olxOTgGd/w2DsRt1yJ25K/1HFsxgYZAnminHkaj+4ufOy8a+PSOSja74WkH7OuHI3UWPn0qcT8HFFF7IOt9qXOGXa2HwLZGahsfgZF91kbyTTqfscpNyGA3narSt9ElsgbkYlChDENoU06hpvjVcmruewjTFVAEhhgwNqklB4MmguQLVC8X1vOYwePPdLHZKdd4MuNZVXZPLyLL+uLr9a7dCGiAmOJki8c+8Nft4P6W09ftnPShVi7//v8+CXyDQXv19vk1tal16qx8EnluB28MTFhlVcFY1kkmoGdkYhMNp0HwT1oFXvYuR3/5PT7atASpGMcUT4s20C4fbdgpkUm1TpUA9bdzXPeTI2LHtE2DwuM4QmuICPa2+JxeiAth/WRf6rYjyMmQXnhlrx851AbDeZgkt1zhfSxCQvZyHa+GmvewSz8Ovrytq7HmiqpCtv5GjDW0xOsvxxd4gS+OWozqYJn33wh67fNN3YRvczZH0gyfq+xjVzjs/e8lOwUQPxCjRq8qQ2NF5QjtUvtSvVeWv3oTwk/+1cmMSOhTQYh7uINdjPUmVONhmA4qbGXLoio3EX9RrE7+PwAAAP//LJ3b2nM8EIYPyEZVkdi0qlomiqru0YXiLbWKyNH/l37/CSAy88z9DNcEcrCPiZ58n8MCrdt2vlQuYls2hHrllp0F4PE0z0ouzAa18eIqNOG4eYeSnrGCI6Z0d68tRlzjFmzSjxyUYPSHaPXdepj5EcHzqymIvUPHYVHNNoPRTQ2Jtt7H+EuSQgUYVB72lP5mzOY32/5gu2nYfB2KYe6NWw7PuYqIeTuV8ZTqgwvXr4HQMu4nRj+UqtBYE4moaDgypo87H/Zp6xNrer7j1fdkHy6lb838QjSPUSW+K6ekFYi1T7VhddE4w68gV2gJompYHudGgCOuNWLdnzBe5iF5wjtvrrPU7vp/+Qj2g4+x7Vzbmp7vTgT/NCdERVGeDTpdjyXkaXQnJ7qeDXLb8XegmMcFY5S4jHXFaML2Cft5/6Rfg7LzcYR8q0XYa2p1WPM4k6H/ancEo3M5LGiv9//0RRvkP29ctlla+OT+EfNFT8ZqdfsMGsEuQkoLT/V+q0fglPwJxI66waOVMDxhZF4S7IYd9hh2P6uE2r4h6E3lYbU6V4Aab/skaHdnsH7zZAX+SzVx5i4u4M+25cNyMWWSnCM3Xu2/rWdnOu62Puotqkkyua2FEHtAjQxK4u4OX2MQ4eAbDPHwy//sIGvz73rsAVwVzoe7ROxzFBnd52HkwEZXFaPwz6+n9tRa0ouaIvb4+479i+ej9zGRaPpZTZQ8fMpawvNYDSJ9oObl4YLkvb+RQJTfw/I15R408KihHaeQmtbezAHIdRhx84E36KuJSuj6V5NoZm7G/+pne2MEUT9qarabvwnsxJNDcMhRMOnXhwUdWqkE6edbvf49ehMqmXLBPmxDxv4Yz0ONT/cYP0/7gY66bkJJtx3icOcz67T5WYHPHy5niR4NtoxTksFUfogkWJ8zYNIzS/7Fu+GWsN6+uasQyF+AT3xa16Ns357/9uPafIP4K3lHEfz0fiL8iR1QefjA2+F8mZlzkgpqh9UIr4yYSKh2TVy+8Cj+6gvitnrKDsLXgp5nP0jBbMrINCgW8LyrRY7l8Wp06eSKcGVhhh8GmmIqvqQPzFOWYvutrzUrg1iF+TlwsLNrXcCuGv8E8Lb0aOcYbbH+vTACM5VHYvomNTpsf1X4y+9jiCuDwlWxwKXsVxLczbZek9wIgWQfO+KWl2MhKMeeh+ih2vhkgJWRSSsyqJHog0+VvgzMlWr7Fw/YumcncCjrWgDFpSHE+9vN3uo2OgddazkQIzvc2JhO+ycsQ1oRI4q64l/8KvXNJrYu9sMoBNwdttyQ4FPcfY1Vv1AZWqRPyO9+4xrekCzsohf2xqfnzcOkVsrLBzI6ACOpWeA5za++EO3v9vBGibdLOKhvFdvaH2DjGp4REKvOJglpoUdC/iIqWKMavtvWAFhU5A30jk2IHy1sa3I/RyIwqR0Re/XSmGTD8IGHmidI0oAAZrPXF/mS6in68RhLp7qEJ6exibHcLI/vFySDwLm6aD+/v8PImecGzkF9xAYevJr3KjrCfi82s3x6eR5Lsx0Pa7tcEP2Lu5pUftADItwBgiP/MZgrig18v1g9SynMwcaHPDxwX0Y0sMgGnVV+BpDrMfaajwuWQV9HuMU7MduRDt/WcjiYZZlKUrk9Gvz2voHYoQtqzlEfT6Lg5mASnwfiOGyb1uN+FvDZ3b+IPLW390+fyIgpkq++VvCq2ebQ4oFPDM0xaxYf+RTq2JOIISbhQIvI+YC6ujfYzkuvEASR44GmeiKa7uZpEODqP+HGB8TA84Wt0/X0hPtweWAXX4d4jsm7BGbgKdj5fCywYPurA//blSQ1qmDY8lOH/VvfYUTfwJh8vxfgm5Mjgh3jVNB3fXQBs9MPUdNvPixOQzswEjxgX1K+bCoirVEWLymJsdzDeLGBe//V41nMH5rHOFNGMBM3Dx1xAVtUg+fBTogotq8wA8v6qVQYZ2pEnPDyjOl1OuRSe2utebf/aoAaPcvhphfEnXndGCmUecBdlxm7DxqB9dbfQ3hunhoJ3tklXpRF7eEFWA3GnHyMJ8k7yrB9XSDx4r/PQBdOt+GY5C0+6X/SNhs+miF8pQe0x+YKfn4KxtXzSPzhm4JVeqmcwvujP+/V13uYY/KtYF8KKUZX/2v0+5plypAvDjlH0ttoPveQhz+9t6uLFu+v108Dr5LVbbzJe4s2pyVYyjabFWdyi+mWONWPP2curPSYjoPkwxWNNn7q3tFbo+OawSnjBKzL0xkw7EAf1NUQoNWUOKOB9yqFW71B6+j1bNj4UtqB/kJwV9vFwQugBdxPJCIwFiroKJQF2QtVYwYbn9Dg4JcweOoWDvy8GBavkka4S5eFXJvvFM+h87pDY4p6tMaRFQvTwFx4T2iO9fcYMOahuQOKGE7Etx3BmwyN44Gx2iFxhDsAtHY1QSm9sid+H3wL6jSaqhzLLp55rfqyVWY3HkQ3PURrUvfGwmNDAK+BVze+6AE9duwptzUfkuvR8Qs6Xcr/+ftVUljT0WgRGJnY4V/8rWZMOWW8Ld7G038FXSG/QPl07MlRuPPGOl36jb+JNf9lrj8csvSYAOMwPrDBgcmbWosvFeLXJ6y/v/VArfjhA9f6ILRsfpZdNUeGje4hYhy2s9uCki4KV6E31kr9z6PXMY/kSCzPxPyEpnEY5rb58SZGOsLFFFN/hvFhhmhRwCkW6lelg9/+mlrlgMFqcx8Ku5eNlPOfO6wvSR7BT0/9h3msR7KbEgjk6EuQlFKD6eqSAyhZOgIbbwlmr6RgngIy/3HXZ03/bE1W9LgLsEnauyGUyOvl25Um2LwFCdv8T6So6trMNNrth9VqwxB6g7ZgtR4d8KGtOite3z9RNdpqPUxanEP+lHbEIXIysL2MbFi3gk3s9ku85ZK/bHijEsVWfzDrQ54cc2jPRo/4W7gzhizpENj6EyR4Ryrb83/PRjKv7YKUami85XyXRGipqfLjX8D48KVCvsWAGNLCeaxEQQMqJz3in16T8Hk04TgLt1ns5JV9BZEXYXrRM+JIhjiMd6WQ4aV8OlgVHFAzL3AqIBruCdv6Xi1o7X0gLMrAI9rmz2Z67u9ALV9o/uxvAxi3fAZefzhhd9PrpbXkD6gfH4789ouBe5gDYfelxNz6OYPV7ZIfz8zC/jawjf99MMihO6dKIsRjl2eyfCJaN6/eIyy+S1fLCj+igHjF48OWe6t0sH2u2jzd6ldBpzTn5OTqKxifxMzbj9MzBZMYIlI8TaMWpvFvVK6JnuPjk4/j9ULQCLO1fJCTrGz/pEp6pezSzwn7sPnUS38zKmgEy3eL36qm7T1aFSJ8m3msh8qY/x69BeTPTcfxwfAZ68xuBPx5KUh+gRDMLmpGGBmcPu+sW1kw7QpW+ce/92YXGvRCzAVIuuts+uh4vPNJF8BVhYvqk/QCSzrpIrzR8kWSM1Y91lmBIN2xxBPTWgyDehXo4LcKPvN6L/qYHjtbhEMZ9MRUOKlghzILf/6Z6LpTDZQHJAObn8fOYeUZU6dch8HTJ9i3jfdAJrUToFRp91kKL1w8Ps6jAK748iC+bXng5yeV1yCoWOWXrFhXyI3S73nlv08HaP3qLJAL5kyiJuUB87a5ntENSeT4F4cFb+7cFJ531p14wIDF+mgt+PP7uI0uebzpVaZM6G38480hG1Mbco93g83ZNotZFPwUoodPsV1l3sBng1LCn37ZN3f91S8RvN1qJCe6Lwphj/EIfn4zFVW75tezkALBncNZeFDPmPOE08GmP9jZ+GYpa88HTauyrR94rVmUlyp8BpJIjvWuimf/nT3hL5/s19wMa0tlDlA8WwTvvxr7t/6t/4ENumf1ItTJDDXywKg//e0G1thlA5YLB7HfxwojaXaM5OaUOCRRADFmR3ojZb+8TthavLUeX2hNZSMSRGw9+H0xlWKdKS0X6djcJVFB3+9SB3vL1WZp2086DhRBA3kA8Z08eOsD2CbgP72K7fzxNnryVXtw4AZGvP3YFKtSOOZ/AAAA//+kXcnSqjy7vSAG0knCkF6kSVAQfWegiIKKBBIgV/8X7m94ZmdIlZUSqCero7KgFyyM2YL6BJN9KhGk5wnj/Te2G4n2RNTCvqtwmOOR0MwZLYABuLH4r9mUdNIPNcRvBdNEB59y9o59D3bM7uj20I32+Ps/TvS2cFRu83Rto3nrVzEt6VIGXsMsQy3AgrQZTeAsAlJkGwGyHGrYhOBbLn8brdb79WQFeUJX3tKT3QELLR8WvKEJRuPSX+HCvz39ZPAcMr2U3tpPHxv8npEpY3oBg8GkaCY6K7/ese/AI6gHhi6F1fA6qqufHkTCOn/cEaYLxCY3kf6cVcLWeQXJdBvx7kqfgFuGegHoI8XseL3U9iSpRgHhPVNwSZKZ8GSZJhj15oL0DM/N/C3dC3z0xsjw9NBtZufvAqJbWax+WclZduk8KE1JhX1L2ITcTfcZ/FOcgYV665Alv0gahPemZsF9R8BcbacJwO2R0HF2w0Z5hqUHJynJcDBW+1BUZOMKtKmPMDLUvJTUR04hdF2K9/spAnM3kR7eqPVa+UMQbhdoRTBMooEFY/W1yZTlKnwI6hGJnS6lfBaQBeVw96SwIVY4Szie4FdxQxyMD16u+r+Aze1yYrEp9eEt2akFvEfPDvuRSdf56Qz4feI3NvnilmMrVR7wRNqwaBC9cC674gJ7eRczdMa8pJmtVdp+UGwqq/YC5nU9cOajg6NVj8zprByB7AY23mNzKrmd0wK8N0eDLt+HzfnfxlSh9fcacMyUYzj3tBlgdZwr5nSKAeblNV/0+2B9qcTZk49Ttxay332EL8FoELGVMh/GnRQysxBJwwhlLQwiv8TR85Ku+EchnGrkMaw/rFC5bwMPqnrS4H3rCv/t98H7/qBSpdwaBj3NB48e5wwNQWPPAXpOYMUP/HvefeaeWyh5vklhyU0wvPYvD75fcb36xQ54XfWTCN38tVAQco1PSAr6Hx9H0+q3cxFtNXBDdYsj/jjbi7tBEaw+XxuHV1KnhL8CCo/CfcK7DCr2+HUCA67+CI7EwUuXpNIHqF/eNpJ7xSFLkYUVRE/njDaVE5bLQx0zELX3Fw5O22MzRvHtAqYwr7FLW86/g2V5+pgWX+ZPCw/JkM8dTDQqY3cXLeQ3L3A/0y+Ll7IlU9ElV92VQIA0eXim8pdxCyxfrDBsosM/vgDltneY/ywlILnCH4WPgJ2ocBAwVzRfc2BNDELlKTySodIeF50vx4KZtcvS+bAUHrxxT6RzTD5g9b/hDx9w6d1HeyCWNoAivzhICGy35J7eGPqaV+Cgi13CfW2qf/kJK4DuAnE0tAmc6m5hoabvOJ8/Vg89JutItSQjpZu/fQClyK2x/XTT8DPk2x6GL++AI9JY5eRmrgjW/AqpRU3Kf/5ndbxEGHt/RikfuPeG4evWMFs9a4C//Xj6+Xf0p3e5iIcKzj2W6Jr/ADF+Vhp0axmyMOOGLW6oQUFn54d/fIhH8tT/8y/X/T6cPzdFhfeIHVjgj04jW+TiwzlbThjXdCmXZxRS+BcHKnacaALkh//B4QWxW1sD4PZpn0C4JfrPj1z93DjSpHBAzKUfwZ6njmjQvvy57GK+SiCyzSsDnuFnK7/I+JybavvLu376uuTDpZpAzjrOnGkJS/632auwN/MTNkqFg0kNDhcoeY907aox+SyrUIMb2fPRlj7mdNmGWAbiW/4yK6wLIh5uwxUk2vb+z8+h6xngcHvVY8rPtdnwRoIL4H72xrGqh3yaUpvqb/cpY6PV4xW/jQK21llh7q0qysnOug4g329+eVzIt+LD13/7m9e4KhjLr1JDenxlOPD2i/1KZyX56dsfHnHyy2+uorcwd/V36ZziNwSaY7DCH9v/8Ga8TDFDGz1uOOvZoK16GB8kLy0XlvYFFA8bh1naOPMls5d//hX6FEGy8jtwhSeJGb/5t8n1QwbNvkRXfFn5z3y6mP/uB4G0SwB19a8H5Jed46jkD0634U6EXn+c0FvKzUbeFO8E/vRlcy+HcGFZJkAiuRjHs/Uol96R1/uNLPzDU34sj2/4dvMYETEn5fgtCvE372jmEm6oXu49UHt7jxngUJfDhoIEPtrvHpchLwCNpUf+z78L05dHpmH4inDNgxi+8B1YLJL4//R72H5PdtdKVx/6afRmkWZk9rLyjV9+S5VsG/HJ2Yjaz4/CQX1hzfTmGQKx/txhDzkZWMTtXw+pckzYbz2+6jHdOUcVOxKjJEOksgE6R7NB+uyf+HI5JSI0TuKCMToYRNGL5AqfX4MhJZOfhJ3svQzt1H4gIfBYw/QyNODC7yZSgAAeQOG/0Zerfhf1nx+2e7oaX6S4f8Pscd0xw8BpyZGoDmDVL9jZ37KS13FpwdBdvxk3UEjEH9935uCIDW/tEn778kVf8Rfje9GmEx2wBd5JeMRxFu3S5c8YA7CFXwWbqx6df3lxvdES7OnosXb7ejkgovZmWM35f3g7ZPMWB7iQGq75mvfPr/zh0ZyW7yuojrzCDmtnvuIJAmDTx+jh8l3DtzI6QqB5BnNkwyEy3RwquJFvBf7xwaWR/AQsXxPhXz62UMNxwERivr4/0R6be+3Bp65mGH9Wv51mWwr89KViR1dbMB+uXIYzVhnabtq64deuOv7/zinQ/u9vChQPtVTuuBcuVAkTeKrple1PukPm9kZbIN6DHQLa7gBYIKgJMNKrw27CbUnHxGYtfBHZY+EYiA11nCcCz6F84Dhmvs3LbU0h+YMJ3j+VkZNTaXn6cHpXOIiJF8qxoVdgiqoI42ZDOd0+PxlsoeGy66D26Vw8jRzKRSyzAPxt7f4GjzJkWd+g2Xv6ZN6ehwBubymjW2F+Ev5c+2w+ipMzV9+MfJqE+QpDroVUaLNHw6JbJsJhbD2MvoeATB4YvK1j6j3bf2fdXkzpKMLOUhtchISAZdjFTzj+mZzydijBOH2FAA6HssBuEi5gqPl1UXD/94fAPufNJI1FDg+5oWLjROWS23X2hiy7pVSKEW7443Po4cnQSgStnWcrvsAjGO9qk4X3BNnjoS0dOOj4zRwlywAX6zEA0aeemKkkCx+2RLvC7eEqsiQRH+USzySA7VmZkIqx8mtnEWDc5AhjUb4Q9m2vIqjVTY93Wvm0p+5gP4H8LhrsfXkT8sFJKtgHOWK+edRLptx1BBXBiNmtHJ5pdzpPhlaZTGCxWg8liwUj13cP20DNn1Q3C1HrCO5qaUJCeLPJdPLyCbSKYiLxcjuk/EAggjMZKfZzjIDokkEGszKG2JNGln4tHyMge3/HVXQ/m0Vp50QXznNGl7Xrj4PqlMNyuWsYZxYFgx7uPbjTrSsd5eZtD3TzuEAivWJszskFTF9zv/7+G+Di3EXhDD5dBdUvCdhepzOZA7n3IRCb67/1pjgw3oANV0CpEPq2EgphAmFWjwzb/hz251gU4D7qKwRb0Idcw5MDr6h/s30tbvisveUCrPOCjSdJm4lVGtQubKmZmd5fYHHTXQW9+YKpoIfEnmMpjsBndzzh8J246fCadyowbU+iKt8bDXvuEgTv8/lA9euXkGVvnTI9SoeI4c167IH/folQWt4UzUIshxPeHnJ4CyoHu73/SIe7uJ9+75MKxi1qJty9PNhZWoOGRZpSJm+EDghMiLBzu9GSGm+/he3VEBm+bcT1XIBZ2Hw0TWP7UgsajochgKeLZuN9pKfp4vIFQvJYvhQKS0LkJlgS6JpCxLy73DWzp1rWtsRWy1xh04OJC/sn5CBf+3AMOVw+HRUBXkoLiZtsbw+Hs65CK6eEKlX7SKdSxB2ozC1iliSEDYvo3oPPyxJT2EtXe/meNz20+vMGJX3HOdNjGsBjTA7Yf3lVOplrszu/59J6LaRTlakJNEByZWdSBWSUuuoIWNIxjEVoEMaO8bTdxtcNRkZdN+P/AAAA//+knc3WsjyzhA+IgYhAmiECAgImCMitM0BFQUV+EiBH/y183uke7blrqSHpuqqaJL/5wcKWMWe4WXyOdKNG9vWyZ7o7XcxRLkoMWRWc6bDr73x0VfDgqlprYr95x/uj/D1DNN0dXDnyhOh5QDcY3dhlVnrd+MzSYw/6b24QvzvQeEylogRJyHy2b0TRnLPiHqLZ71fM15y9ucyfQs7UTUnsi/LsqGG9PKQWaCL2crL0aLcrCVb+RWEee5Z8MJtDD+2wemL18opyrrCpRBMf/rBsnHA+7+N9DW3mCcTzOx9N6aze4KPKKtt/Ny+zLxKMIfSylmEzQ/nQ+n9PeHWtxPCApa5fa8caNjcdiOd1mG/GWQnBaPs72/ZpxRvjYIbaQ4QzS5Rjbo7antmq9XR9FrzQx5/veX1WHvIMTF9e1pmTVVarayH/4sl5vrrpsFNKKF9pShzv0/P5Xhwz8C3bo1f5Ksdz3ZojbCvLZrfgT+b0+7dqwAP7QQKyJfH8m4+z80DMcquRzyuj0UGKzoxgwW9MRs3mqQa8PLBb9vfxeZU+b3Afyh5r0VczucNKAZAub9gtybY+T7t9gvJc3xIj8WrOKf8GYEapwsxm2UR1/NNU9WhjlwSGNZuDbK9UZF/zPQtMp/K5cTRSDcLTl3iXxo6HcWG64PMcyc4+BrnY68czyo31nrnG2Yjne9e1aPk800v6QOz+KWrV1rIM3xC2+HixBBl9hWSi6qJP9JGJN9Djm4VXLziZg3UeS7AP7wue/cMnn0qiRFAFtUH0vqHmd59WLWwE40DcM/n6480KdDhv5j1uQpJwrhHdRZA8B6xIE84lb6K2QqL5yPzd5VPNkx01iDV3hxjbcBuL+a4BECrY0nnaGhXv4qEBUYKSuWeyN+fiuk1hHX2uJBDW9VLfrRCSq/Vif96n/6efoFdOzfDuuu/GZKMUEKq4I4d3pVW9i74umDdfpGHfGb7E19UZugvX2aIf+aA05wzGMJpoov6V5ny+QgCGoTrMTpRXN+OQUGS0pxUxvpYRc2os+2axSon3eL2r+bPPzuj9KRISBV7YNcv3ISqKT+J5jcon77WW0Tn+iGwX43236Evy4w86He4d4r3ZFUgwhZE5Xqvz2YrFG+ybOGd+GgKnsxRmGmuuDtkXqsOnNphKbY1HmeRGWsTzRhxL1KoeIcR3XzEPiweAXkUiOWxKYvLGSlMYN4rCHDglOTtocaKSdNyx6/M9Va14eghKIRQfXFdZEo+HffyGj6TYbDfvttXUFvKIso0B9GMsmQ4friHUfH0g+reR+PA69GdUeJJBxX018KEi2wTlxmZP/ObQdZwMR08TLE/H4rV85v0GHi0QgWhYMiHm8/dv08KLdBcqH6MdEuM/FZBXOjsKvdzm8wn3Mqi73YX8kfrEpzubKbiiaLP4xk4djcK9iLwiKsnh8U6qKThxqnm1pZCtflerSZW0Bo3Frmfuyi75SOnaBWy6hLjn4OTP+NEIqNQ8ypwuTyu+x7tS6048IP7sTd34q1e6X+REn5rO7+12IwF+QsgiJLyqEZ9fIhp2hOCpKMycrYRQhr8N/+DHJrbRWM9fGcYxMpiZzuuc541YwEY1LsSE91hx90Z6mP4Uj2CK40o0rl4JXyGd8Ob84Eu9GkfkbyjDq3LV+1OFixTifXyn+Ha8+2/jFTaatV21dKyo1TXbwxjCcFwyyN1y983wN41wyP0TCc7bkvOD4CaQnNGDWc77U01+2lDwOxZRVSjqmNfvRw+mkJzIto7ziqurcYZYcxLmeJ+Aj7noNLBOxwdF3Mk6Om70BHmyNeCyb7AvrWuCwRpWNjPb/sT5zTVtaOYqYVv3jhEP6NbW0qbcEaL7Ri5dB70GfRWFP35Ao+xzAZb6gAXkj/wfz+R/+oHsJmPsWBg8e6ClSEkcrkk+Qmc8oX8RgUrDyHx+2T+Fn98gh0Of+EO5UgQkqQeHZeXzVI0oHyN4JNOGYXp0umnocgvS5rkj+lY8oX/1GcbSI2a9HIrbBlaJvup+IM71VuR8ux1tdOHZH8PN8VAtvNDDi7Utwe8jzydr8ycA6pmJkZFCPF87+kbCZnyxIBTW1TRfkKCE77NDhd31W9UHz63B57JP8nf4igfhPZbabT2YbGs/m4pzQ2+QEdENbpv7+jceAUjtcs6Ecsx9/qfQGlkPQJR5rhuLVIAMmd5fiE/1Ls7/8YBgwsiOC98OkXVstQ9Vrox4rpuPKgqouugphliQc1r6z0DbUmXL/tTTct+hIEcol0SM+xdyTCksFR3249Fi1umq+vP4Tmw4VAlmLom6ii68gdLw78B86+JVYy5Cg878tSO/+trdnJultoJrEvKCkz85Z70GEo1HLFDMq37hUe2xdSvi7NqK/+Yjkrw6xZ118TqxfrYtWnia7DDuu8HdZDbsDsIf8/3Lo1v0xwMhnkqsfESJM48GBoKmfLDjN+27n75pqUst3D8R4aN0OKuw9rhFvOPr5vNpe6uhn7KO4PiPIb4ZvwX8eGPZAYioYQ2essnwGXMLmT4/aHny+z62c/Fc9cem9ZDAICAXSXzGk+EChtA+S8zvDjifP0psQ/YJguUs2TDm+sMqgd/9F1bpnfHZMtcB6J+oIWbbr9EYZMaslbvTjt6fcEUD228ahB3XZMFNMPl33dxCWHV1xvDin9b699nCUj+JeyOV37I0EcGrwz0J+4b64yRYN4iPtzOd8L3h0/l4N2AsnJ6RaOdWGyO8JgDuIyQ2HWSfPlubqote0rkR1Hje1EoE+dx5v/ppjsWpxNoc9w3Dn2MYr09VGcBG1S+MHI2/avT3txJ98nDPjMSz0LBrvBlumW0Ts/sKiEqJqgNHe4OWPx4/QnNDJK3X9LOvc8TP3/6MXLGVmI3a9aJ35lO7r8sTMZ21xqfd3+2JlsNOqJo1VT562Y6CNnoB28qx5W9YNM/wqwfmUdbjzb3ZvrU8Eydim6sPol8ldFH2t+3Yofo+u2V9W5pnFe4/veaFa+twPyz+gt4efKlfFoz17sRcxbbRFCVnGQYtcNn2VASmBDxsYPG3lH4w5Hwv4ABQ/+DMNGQRLTyTaAsvMQMEA4lbzQd4JheF+IOXVJyPLEGsb3xi7LxLzh9/2RmkKGPMPQdrkx5HOYLVilCi51Mdj/gSibD4IRJYjp5vduWxAbS1Haxo066a1LeQoQbLlPmP0M3n4TPpkOzDLXEeD6ubTlUToONaVJj72s85K53YRfaUEaxmLxJzdSXP8G3LA30fJTUfPlrr/uYb8eTCiyfvpcnIeWz1Zf1tOz5t07c2dzRkznAGVJG+dgH1aoxVdFH8WamSFInptMLj6rW8o3hcByg3jQsd42k0+VLftfuebn68g8btQQ5hH7Yx2Srhwf/Ha1WRzVg79U08ZY84hbowRBxam4c5txvJ0/6tf627VuNZOr7hmeQKCUzHNCX9Fdeqfi8Iu31wkU/f5ZgSr472dB3iN3pXmVJCNLRPhsujkjd7DxUoTyWNBHtrn29+z3/3fSV0kuPan+JIkNXtzN7MTSODT6e4BE2e7hUjf7tdtaEGKsFaC4zY8BGqvjJ698eXCw8Z+azU+xRkQzdYcrqq5ne+IEDB51TS93o04839k7x/fpyYYm/low0XG+b4cWaWXaVdD+31ia5rNBEcZxX63vSHoP3ysqTIrjENS8VAsbZLSJChvOtPf6au6k7xYXdFOnVjZfQeZDlmbDeuoON0FjGoV2fLsIwNf9MbyzuGJ/FN3kRJfD5FnghamPr//FWjX+cbOvs8J+bwVUyaDfITUEll/MV6nbNxDkJYxaPB/OqQmcP7FraQmQeHkVmJcgnmqkXy1HCWNc89lzzuWlA+/IgO+ZfG/C/LPNBGNyC7zF26Zfu0hHa98vEkxXvOwuILUIXZhxm58+HNj8/OfDyRbZvuq0mQvHk5V2wiWHP/fHbMiaC+VteMGKa3MnlX1SqIT6Gnw7vSujkoJRlZNzclhbL+dHTxL5BT8fUfD6fzfNO2T1Ui7myziv/ynqMRJGTvmFtzc/I98Zc34am4kHx+KTdDtU9vgx1YmfHxWs8F+qs0k7hV0PtMJlz/l4eUdTcg6s6pjj55tGdb+VCYY/1sG4RNjzAjctJq7j5IgCJqcmalZWdOWqqE8Hv+3r3R42m+2PDzd3gd+hHqq6g6A7hVyP7VE2GoG0j20ZZts+Lrc+8WzOgZfEo8bl6T33/L64wIra/MrYhuzimtMrTwLBXtSur+5ZeKsgO6WnHU8U/9N2r8Xu6Isz4fzX66yQa4wTpguisO5tAV5vhP35ZLrLvxFZUFcKe84or3jjl8YQ4QFbuIivF1hYbV+jRC9sEBO2znD38t6wst40fMdP3N57qVRziJNMQrspvyca86LnzM3ZEFm/mSj72wSn/zkzn3hxeLP3/oE7Rb/EDWTd8C96jWzTOWT4HGB/3btr/fRy+52naDc3bfP7+ItQNz/XldOxi+UfmiErRRR504KKH/viOq9W/dHy9p6AJ2PJP5a0dEjXVwU5gs+03b5veOofGS4Wv/yWxXG/d8DkpBhmfy2pMAb6N8zffTDNt5eBPM8dj1FvoYKFg9z2zPRN9HP7745Xd63R34fB54AVWd5Ziv+0c8pU8bI6SrG7Z77Ap/kp1eBlGFhBSzXOejft3dtNemjfFLNpZ62v9RrdRcSrz3k1WjeHMtMJZTIvCiV/3Cs8hWSMpIsyrj/pb4Idy/p4bp282X91UcZhpNNkdmN8NtuXtYLMDv5Cdxyltc9c3RLGGp58QxhnLJc28zcnfGDsd9P5r8mBNApeKqxNr8NYj7h+tbWZH5QNXkdYr5woeghR76/R+TO/dvD993eSFZ1pj5+rCzSvjp/S+vH+O/GbQtcfSF91I0/vz+9RY1i/95Ib7oPcTKriQ/PZ9G9ZkhTIWcPiPPq9hvfGs3CJlFSs45uhspUo+RTYJZruNBacIMXn9SRIw/a9VRbbsWYCwiIFv5AD5VzUiF8upff3lXzMOgpdC/coyLwCo7/t25GagywsR+SE9E243kgrrdvfDjmwbVKF1DT1v0kAStHJrzkN7H3/gTnPwN/nPhaXCupo9F9pd0rHR1Tzue1g3z4CLl40peiahyD5RYt2sXD61/L5UlXyREUb4VX/JCTRLMju00UPiQGsqsLOv5X/9hCpNchIWvGWbHupv7DQpgIuhBX9IqraRf/rXkB798NefWitroIw0S2R6KDZLe31yCb5toWNOu63h8PocambdnQg46S3nrR8fml/exf/VRfyhPCD5/JVU0eux+/hbah/ZHLrHWxt+hcEXQ2KqlSr1x/bm+3Etwys2Imekv+6L3WYZ++d3ZOrmdGG3IWd1KLGPeoh+TdNlaMBUWZnYm+dXmKvszumt/xT99HNPN/gkLX+FzvV/nPPs+CiDRZSJ63z1N9vN/S166+Ceez8DPLSx5C/bBOvuzlTxukDbJmnjPV7Xwom/Dr75bpHLQRiOuB/cvddkh+W7y9tePOkirJxXFZDZ54SIDrs/oyuyFp2aXyzpa/A5L6uxYTUOvWxpfJTZlhiv6v/GGw8rNSMHkgzlyYftE5z/BJbrYGLko+whQrx3e7L7kP3Nx3adouJicArGqeHw/ZqpVzZmwZPs+dJtro5RotcqE//pB3+02Ae+8K4jedh80vfDlrPzyhfVjB/648AK4vXglVp9oiF8b5QmzUyE60fhUzSujNODZz1uCR1/ho+MJGZzCB2K7ENtobTtFAi9+J0t/xugG6bK3QFKJQ1eRIXZUmBBFzzFP8Tr1e95HDqdamjyP5CBVts/bJPuXNzIXzNafzk85BHufn0jQrsGk2VUJ4X2/dczerZ7+nMN/+kGCYLlbcvwKLoqmeIP56s3jMWg9HT5m9CDYvJJ4cv7y97/+WWJXaTV9+x0gLL1qRgb4xjS+F7ZKL/qJnGpjFQ9L/qn9eO2yNR1TDC7XGYy5d5k3FpI52O4+Veu/9UjcPPjjcxGcbGRG5Z6EbRPzJS+SYMUzTsX5z0f85so2RNo9IvaDU96MglLAkgdTFKUW/+cHTn3/Ibo9CYi7lANcn86BHKKv5o/iIZeAjY1OPPqs0LT8PoT04UN++e+8XjcFIvM7wpP+enbzDQ3SL89mpoUqc/Ffxr9+noeKg/9d+OZfPnYHqedsyX+US0UkqjXVBjUM2z0kLxsTtyKl+Rtf2EpDRpufni79EbWqiU+TY2WYvH5/KVRW7lFY+Hv8ToaOXrF0w/Jsoo5J5RNr0evaMvM+v5f+Z5RqPlF2LOP3gI8tedegbp0X5nPf+v2ExxHu2qkg+1+/ViZIR83c12TL4rlql+cF13d4/PF6PDvxVGryuvn8q68TTm4jWMoUU+WxGTnf6OWsIZ198AoUHU3PlaEj+0golstgn0t/2nrJK/MDMwpn54vNUX6iJR+kaneXu+G58nRNlRVMDCokMfWNKEMzf36xqByRyU6+IcEzmEc8yWFo/qsfia4oxEkfF3OedsPyvNiHmee12a2nrAHI0+9AcPB35vz+Kd7Qa2eJCkt/iQPb1jCGt+3Ct99qmtsSa788yHyzPZ/XIi+gSQeHkYWPpsT8UmgFz8RrtIq7tfAen/Dubi7+9aMX/ndRst3t//V/5nu2OYMWJj7B43HLxUf0TlC8v7F//brp069luMQXm5jo+4lZLZWC9v96pwD9H3cfqMqDEe3S5/N0I7N6fNs2s1axGrPKVHqUIClh7j5GHd2llQhGkXlsfwCdrzNxOW9jnkfiPoTepEOmYgXi6E30lhXmJE8qhek+OnjOL04+GVeNglk/FWKrxPJF9X7x0Oouq4xM5JP3O+nSwO31fjHr7bJqGKYHhs5feVRM87ib8nf3htf9+iT7o3vMucenp7ba4BBripR0I/J9HVyAPXN9KGO+uesjaJGV0lW3yfh83B88NOzrluB4e8+5uty3AcfCwKpOdrFoDFEBQidWJDzUUz53/smGs73xqCaFQT7p8mOGQu9GYuSXTz42SV6il5z9Ubm7fKsWKYcUwKZfovPQ6aTGOKlw/xPPTC8264opmnGGvMhi4tatEW8+8rPXvuL2gZV2iDnNC7kAMr1LZm/2qc+ZlAlIiBDDWlZA1xor14L1223p2uClP9bnM4aLZO+JMQqtOefLfTi/8TexbXbzu06w4pafiJhtNlSzOVsBHN+WTSKDpmjsw5uEVjcrZX+x+K5mU249pHfJh8X8/DTHl1caqK8dhW1N0crn1xxkcMs2Af7M4hsNSjGGIDWvJ9vda+5PN8EJUb0bTnQcvQufoRhbWF+NkeymauhGfH6UaNhPDH/HnR7zevyTYEWPObG1LXBqbx9nIO/WYN5+EM3xdqhtMFptJATVEprfVymCjxQAM+pNmjNVqm9ok21O+JJQpapFGySIT6VHTidSdaP6rjJQzrc129/2G388D+sCmnul4tOtffi8v3dvhMUzIYd2L1ezvf2e4SIWLa1Amsw5lToVJlVpsZRHJ58qudnDPtrs8CQXcsUx05+oDYQT1qThFE/H80NG9nMclrOVUD4pXTJD5LlX5qT2y+R58gL1BEVD8KmtY94aaQj31WNDWz1Ku/Yx/hXA75eQHVrbiWlO9FCD482gSHy25oxl1KLhib60P7ZmJ265nIF3F0Nirdd+NQn+qoePeD4TonHLnOUGyeparHxiYyrHXTl4EboFRcdMrwo6/nj3CZxbWhB7Ux0Qm1eRtxKOjk+VRyTlg32xKKylEyP7ZXxpVns96OGH4CkNl32sYvFE3l0KqYB4VfHNO9bhho+EHZ+bExr5o1S1dPd+Mrce4m4uff8N5vVQ4XXjhubY6rszuKdGJEGpfXjvnJwG2vo2ssN+Tauvl8RU05xUw/JD6H06Tt83lOeiJ2T4HwAAAP//pF3J2rI8kL0gFzInLJkEBCQIiLgDnAARGZJArr4f3u/vXe967aNCUsM5pyqViSasH7EAz2U6oxJFYzKdtllwIDsXyKRETda6eE3qn/9Fc7mWk5dpEeR/7Yysz2iPyynTevUmSjNyce0CKnNlC9+vPCOVsmflT7Q1BTre2cGtfQ6buV4DDQqn0cKGOLzMNXlyNSwM3sfyMDNAaKG0irDUV+If9V05ulkbQt9UemI79RcM/BNi0CgqRMf0TBsqtJ4LuzPJyCHPa7bmtm7DvbW7Exd0T7a8yqoHdvs9I/+hfstl4XYrSK4pRpYQpw2zUjGGxudlEZ2fzz5rf6dWiW6WgtD7A8f5o78DRX/mu5CT3jpbjXSnAOWVP5F/kPbmRPI3Vuda/iFDFwUfM4MU8KczjHc/TWbrkukBaHCoENf2YPK93jIIr3YohIKeKIyZ/c2CxrCnuNPYa9z2W1I3/yOZzAcl/ZyVGKbH9o18EL58ZvZnG/ztrwlvvbnGSt+BxeYTEtaj57eY2+VyvAs4dKowMOmfP//WUMUrSORmXr92C6/QWbByikb/VfW5JxcsKtDBEJatLxy1ML2qBgnKg27SqyKnMF54FemfTi17o4M12ItBRC4G0/x1eTgr5B98ivSLQE38kR8DZCN1yRM3i09CAgUQFfIDHVZNaGhh0g72/Y/DVKi2Atp4qeGCvR6dIm9XzqKtSVD2rJREX7v+s69B7XljCvv8KAB85yoXcGbUoNMNGiX3JUACzZRn5BaNfbI4ahv95R/iusI6Tu4+F2DmBDoqY1YnDFt+AK5S9QvB/rwkZOpUATpu1aCjHw0jfdg3Dvoi3BMbvutxZTqwISWNigxFoA1WpJsBUGEfcDXkh3KFldTDjq0WVrfn/zZqOQEVD3G45HVXrsk3pGCqrYgYePKbdT8bNrTbzxkFekMYE79OCh/X25GgMprY6vd1ACb6WMixLEgzP/u8hl+tsUOwPf9Snd+uuj/4NTGZVJXr43nGkONfGXk8P5WPL6rgwtjz7siPb0PDUvcWwFC4SSFIkmqkpaCl8JLCkBjndvWneypk8N7CMzlwU8Co0cEXzA9Gh6VjUo4M+/cKrPPxjgx/GpMlryQL/qpMR0HEarbAWcdQ+80uuv5ux4R85acGriQlyGbqoeFu32cNQPoQMOu4Q8nqHLqwGFULgx3XJ4Ni8y0g8s8gXjb2DRM4M5TaOIkJsq6vhpYCHODbiSvim3aXrG4eUbVNHQFpQ5yYa5OKNjSqD0KBNSGTXX1MZeKEHjIHjQejbso1rLPzOeTV4b3hj98Kr/PLJ1q2x4wtB+pC2bNT5Mb4Zi6vQHIBncmN6CR/J4veJj30H4NGbIXsys1+W0XOhjPSKs5K1s+wuvAar9tAnfJS0ojkEjzaiYuOozOO1I+yXtzwFLKmAvtz6OYVgJeDRyxeqtiiOXYGGyLciL9G4z//h25qXvCbSGCcd+biqkJlfv7wSLM+z78a2n4c4/37AxuM0ypSWlNZNv+8J2SLD6oKQoQcMn4bGuiKB+bM+xKniwafCeBeQeMRYOQuY2+SsB9a+ZmFMjnBw5uRJelTVc7EDPnbxKVl2t9yIO9VFArzmTR0b8ca/Ej5ldzl2zj23igaMKG/Odw96wHg8t5SoIprQKye2+6W4pIcvt5th5VTAstVT40OXt61j0xttH0WWL4GI87MkZ7vUcLlvDPBc7AL8O4yWMk0jvsAPkLL2yYOaWCZJfaAXhKleE0jN1l4cq4gG9wfcRLxCtbRMjiYeOtCNNkNN3z05IBQCi90cuyvid99JP3hYRKu5bWcKlIX0CpCsuHzsqEgvsfybT6moWgzjdG/9/MPL4ekrtoCMnKdAcc9V6FjW15Glj2hAg19WJG1j46+kCdLrD4aqpPnIXwnk+s8H//Ww4ZvY6Rx6a0A8agP6Wl39Lmm03Jg1/s1lFDtjgLZn1e1EKZ7WLtHrunF7LaDt2qHQibsvIQdXaiBQje+yGi5gy9y2bGDpjZ+iZ9jpaS3HGiAQ9wTecehZv/s5RZ9cxLWuCyX7Sg3CISVEOcINZPS20NTsth9IisfNPBvvctHCfHDnRBjVupBGBXgEe7H4gyW6BsW4CYkIdnyabLcfTOAq5BckcW6R7ns4ksPlctoE72fxoTx0XX3Fy+wek3UZBZtV4GB9E1CWZd2ybeoHy54X+9v4sD4AtabFHGqsVo6OcTNKWEtGV9gfjuH7f56sZweeyCANhoZhvO7HdnsvV1QFisXqtdoMpdazmLwgm8TWdArk2XNBxs+2+JCDJDcRnpcXoP652/hc5+ASczOO7ib9P5fvGBtf4tgK+5dctKKs8+k29VV/vBqD5qw4UrBTeH2f8QsBq3kjM4NQdVdOhJ+rq+Sjg0d4PO1i0nY2182lTtb+vs9pN1xVuJMaBRY3dGEwnocTLzhOWAw6YP+4vkQ1EEMd8+oQ952rg2nt2ybE1I7xN3Fgr9WiGuh2KgoHA95C+hBbSRYOwol9muOGT11Zwwr7UdDJboN5fiVr9ucJLkgmdg9fXqmp+Affp+b4mxyxcb5leAdIL/lsUl+d6H/41ckmHensZ+iTAB/fMKNxy9Yf3NZwC3/hGLC2SPdlVX1xyfCyJm8Zs1PSQrfHn6i4Bz5bFrpoYB//EsIcZ4sCTnHYJ39OzEZ7/urqO5ScNJfLjp1am9u/NMA3DdTQtmPvIadIMXqc9+IWL0f3iPjdVZBf0Ydpvd01yzMSqBahb2NjK9q+bxQmhk0+PmIDsbNLZdn8UpV7ywqyOXPUbna+ruAth/FyG1n1vzxN2h9jifyx7//4gUc88ZB2zz0cqkHeQXb+xBt1pWGwbTzlG4YPOTn4cunXPox4AVbDjJ/qtVwKhla8AoOHI6imY6Td49ff/wY6etbG4UINTYUSu6FdLsZAbWLJVLJJGkYIn3XbHi+gLP600PmNdO4Cp4SgXn//OBG8Qq26sWrVo9n7R12Yrc3iUmfA0jTeo9JOFETt3vYwb2scXj/uE3+crfmCAydjVDQHvO/eCj88cPw98qtcrqnuwxwYrPHss7P/jKPfgQ3GZ6Y17du4pjbQejLS4NOU35g4n28Z6C6dS1y5G4//na+n0Mt+iBiC9Nsrjcp5+Dve2/RaSqv/hI0EgedfOyJUbsYrMkTvmA7BjaJZr0Yl72ghuCPv/p9KZRzOesvuD+TZ/j3+bztL6RKkhFzuD8YZpwhKL/vs0Xaq5ga1gjHCsqfk4gOsd2WC76XFnx554j4n1j056scUKD3RA0ft+QO5kRoXkBpzS8y1UTxp/gUt4q0zwBxV3fxZ+YtirKI9y+y+DIBLMuHAazC+YpFCVnNdJQUCTrv7h7uD+d4JH/8OyyjSwjDlh/nSyIp6u2xbs1ZattMcTpxkN3bCYOneCupMccPmKqDFIpbvOPuZRqDYe0DUi4CY8xerVbd9B7kaehQTqUat6rjWUa46xvKWH1+K+rHeh/QP34zj2YMZz88YvWryVvy0R+qbogGbi+7YfMfCcPNPv7wdbL6ZLsb7dsIJEiF1MTbfik1CQ7ER5FfrsfzyimakBw2PBowdq8kDp6GXkf2/W2U/CwTCsZsasjRcsZxjUEqyecABsRjNy8hfqf2QBVpQKpiPCar1ucT3PgW0YQqNxdTf2tq6pcHsvETf8n2wwTmtnGJgZBRzvr4kaCF4jM6vG9uI9wVxYaPa3kMCWgz0Ktk6KCaHvbEHYW4YV8HxaCe2454TnnZ9AROUH/6gpEnn88+uw8/4w//IsvG15HKPFKUje+SxOEOJg2MroLHubuTU6e6Phef4g626UEgh/L9BuypR5V6vs0hmpR6SDDH7V3YD0mCwlZ1G5plNwrO9WCiU3EbE3wt/RoKlf4JVfnmj6J0jlpV3rkj8qbBNPFnUDygGSHGy7o7jpzlV66yRp83uQ/HvBGYDiyJ4w4wfKoCX/YqzRSYZpcG/cX/6Q+/b/gai02bMHbhfA3mU6MRK2jmDQ8bK2C6QUMhtS0gpHkdw6jhEhLcRZn9iw/PWgXo6M9Jw8R5jsHD653tfXUgdPddBEr+dUIbPkpo9QsqYDXZj3hMSJLpL15W99OEwst8GSmN/VXZ8vHG/yJzdiwjUq92IIT7tBXAxjc7uOEdvL/Dxlye9GmDqry5WMnwDdC246Y/vQBzCTJN+of/ekPdkTDR98kst14N5hq35FSFGluPZ0UAclMmWEnqYyKCMrABSVZnm5WrNsSk10F5Eapv9iaZmL9lK3AuxitcMakAPS59D19vNuLdRyxGPBFugPLOG5Gt5k2yVDeCAX8/8QSJ70OzfG+WBNkz8LE6lVdzeuyZoKbHpcPvPmYjXrJjoG56CN7n3tMnCk9d2VwsgWhy3fkkV71QsY89Q2jUFH/G7ScF1QoaPImsZrNxPxYQupmLnG5O/MU76RX4Gu6H6B/VZNPpaxvQrcMl5Hdvw/9nr8LyuqIgrWA5OSfdUloshljyoVauxbIqIM3cB8k57puwH4o9eKC1gpx60IEYvvMM8GUQoJME64ba/a+CWBlOBLXj0FDS3RRonYY1XJrzPNbNaRIgILcE79tQH/ny+5SgnespsZJp8icdGAN8J8KNHFN8a2a3fwvwcTP6cGbOyRRe1qdXOjF0iOmIQrlu+QT85ctr43hAlPJBgLkC3ugY3o5glajtQU3LPWRJjudLwtBb8JUNLpaMnb/dpYMoLJ6BEYpOAkx22GsP9fOM7ug08RjQ6YE0cEfPJ9Lk2vZ5TlV3cGoPMnGq3ByXY7EManU3vsgUS5asWc8m6FzQB9mDG5VU7fNMaZQ9JDof9eZcGIEGXZANxP20ablm9LRTWplNeE4GE/BCIlt/9oXCZYfLeZbAAzyzQP7D32C9luYLNPb0+sNPjB0cZMHt+xv+/5k/TXpTaBTrSMxX7ZifYHlrqjcVJ8w/neE/vXQV7BhZ9miXIn88bPdY9qd//BEbp6mHhTHY4e6n3cBySecAMt5xSPA4n8e1ObUCfF6FHFnmPjLJ4/5xNwXHIS5Q7WTe8BiEyqL98xfW2QVUoD39kLFI0OwxSDMQSEWIuZtzBOtnxA+gQFiGKntbbO2B3wLjUTJy4OKLuX7Rbf3jXyecs2Zc6tXS/uIHMq/tmvS8bLUwzbwH5rb6SLvVL+CzpgLS4Hkep8TWUmBVeoLQEufNpp9r6sYv8MXFkklgsggQe8GO6KRcR2rmkQHsffZDwRW+GX3KFwVay+xt+K9PyNF42KAsKEeOurQrp+pnVbBn5Sncj1dt5Mw80lTZS27kGFbAn4X63kLHfTTI1D+5yc/rvQY/WtxIIN58n4Lbt4aTaswbf2BAQKP/gFEx3dChjo6JoEhnTRVDK0Ge56nmBE1KVaVGJnF41Tb5hJ46cNjhCwk3vYb+/f98VX30fAi8STY9CEQ0j9DfepIu3VdQbm7bHNf7bvzWvg+hVZkJ8Rp0KDmvoQ+wHkaTHN/oYDIroPhPL0Xugw8YuUx0hVs+3/D0MG76mQetjk7oXPl7MCVSZAPJj9rtEtHv+A+v7Z+KQgJd/Y7M/B0KeN/uOqnVPQJCk3oUVN9Vw8KXvUa8U5QYFrr2JUiZBZ8q3VhA53L6kJOpOmyzBwpr2wowfISvZNXfygr5O+Lx/qLvASXdWQK32U/Jn364PN9KCy9ewOM0QabPDnv3AeWsP6Nzp/E+y7pCgBseQlevUspF20MNijdtIcmr/pq0sCYFlkjIiHlCBhMvnGlAOwsoKTd8w3MqD2UnOIzE7/ODuS7jHgI/+g3oACTVp5qrSPCOoiIUi2NWbnqvBHeOesb7DX8sh85twdG2TGSy3PDXnRG0yrnM5nA/qD2js5vHkH+IKdEK/1nyS1dEcNOH/8MT2Re5AJAy+dOHmvG7d3v4ieUuZH/x6KLqgrpIio4cCVkj3Z/aCFh7abt7U3qW1MvcCMyn04rnzf82vhtBNXqI+CXvib8snFf9i2d6LfIAK/smgnZaBOS48akFGZgDnP6zNj6ZmXjftR687xVMzG+6b9bKCHLQmtJCXLRfmvltFwHY+CLSpUoa5z+96qulOnnE74/J5ttpgJqotH/5tNny9QsIp5/1V5802RCFldJ3vY8uHGrYKlhpBkFmX/AOCCkjP1R4ytjEL2Q6xSkh/RpQsHvG3Z9/NmJkt/HfeuMlnilYYh8bQoRU7Z8+xVPjqwGgtoT8ve/aBFINdQHc8IvN0X/1wu5xjpGe13bye6U7DJREqHGnllwzRSSSVP5Lj6jIRndcElVdQXfwb8hUnGNDjbmo/uIv5jny8KdNT4NSve6RI02n8ZOWpgvBcb5v8aM08fl4cOEWL5Ex8wNb6/obw2qVm3BSzwvD1/f7AYW+uIdlo0kjO5xm4w9/kMPBRWy5Lmut3vM8/dObGNnqEf/sXdM1btNzzwHMZhuGO3dCgBk7tPHVzCDe1T0384b/4ecZ35HX8aeGzbdDD6/CcEDbIOqR/eHRXwG+4WvjT3RRjzG8o7gIZY/p48L37KXoLDqjizvaYDXXIIRfIYRkqy8CJnD7F2hj+4QczRnYYmRNpW71LnQA/MiIKp0LsHP2Z3SKnJPJUh3Ef/VvdJxvg79mPcBQG7Mvsur6W87UIAZ4fRAmJ9YKPksN0sLAvr7C/V99SuxK4y8eY0Ehj2TV6DMGbfTAyA+cIFmdudxa17eecWMKmwWP+055FHyw8c0QiMvJK2AjwQQrHT+P7HehFnw14QEF5zkFS/l9KkCVGU9Of/qRGR1qIC8Lh0Jp5tnac58BbnwL/+n5bEleqbTpMcjd9KB1hLT+//UUwP+7p8Dy0iO5Wj0Ey87MDDh97CMxFnJMGDKETOm0u0aSiYPlckGjB6zf9UhOixYyzuSOijA/Djtke6bH2O+TFCAngRzySfhqptfj84DKKbsjLdKWEd9UXoH11yuRI6o2EI3bvFPoueCwAHNzZPcUQTh7zoV4Vzg2VOY9D+YkzJF/0gd/UZ3CgMo93SYt33t/2e0vAjzTtkBaqH189lNjS6WoICQwul9CqlcQyJ1bka3vqmZEELb7vp7pm+i7ImwWld0yqL4GYZuQMDE6PqVCcYSBQ1b1c0b2+5QFFG9mF+7eF7NcLmJbwDwPPHS2D8eRCcPQAt+HBE+OvY7zHlxX6Kg/A0XJKyqXnZ/FUOCNinjXamjoWb5Z4HkVpnBRvcDk5LOuqbN9wEj3PjGYs+8MlV+xmkSXlU9CdH5aofK9cMilcdXgj3+MoMoGiMxvq4GV0aSGynS5Iy3QdJOhQrShIBqv7fOjibn+koHfZwUobA8/c3HqoofWO5XRdVUtwO+uVQuduvdJPO/1ZrmYNYWuN+5III2rueYfYCvPO3clgTyOYG4ktQZq05eYbfYwzVtNVegNnejHDwXL5TkOoISvFp3myDFFjX8NUMX9gvI+NsF6PdMCPgcxCZUCnhn7vcsY6qHxQu5Ye8mSiV0Fzvv2ilmbGg2dCa9BUTNTDNC5K1kV+RherpJCrOrYNXS6KiG02myPDmk4mqzSDjG8ZIqETJLK/przoAV6borE/a02EHj67GUryjJkQ7fxF1U8P2BJXwHRwugwDtfPoqmTail/9smEwCIeVJ7ZGx0/IhsnM9B6hXUTCbvEvCdsuFw1qKpjhLb1YUvKXh5gHzyH6fP3KefmtRMASyYXobtHGqbxfQ8tJzWRd6+eCT0vhQQ4j8hY7kR+7CcAUvgk4h3vX8p+pA/l5cGuuuf4ddXEZlGfBQVO1yd/++kve/BcIT0VI3J2J2iScActODX2AenOJTCZfhsVhealgQyOiGCK5XugWI9sJQHwQ0ajd55C0dKr8Hkv8nIhg2HsL65SkuP9WzerHzQx/LVLgbQz3WqG1mzBZy8irJKoBqxqgxTopjGG+9IbE3qYThTSuBCIrboff73x6gA77fEMh6q6l9v+PqCVZBVy2QpKfD1JsVIP3hvLr6tbMskmPShZHeO3dfiMrdX7HdR144vlSnz7pORcDGlaluhk+vtk/e6RJjttj1B5foMRX99UgVXVdOFKUZewigYTdOZeI8nQonKhhd+By1eG2/ot5STf9Eh1g98bT1z59pe6Wlv1vLQqCZTxBOi2XqDKmgKrPJVGUlrHCP6qtcer4e1G8lNTF4ZFXOFfK57HOSNdCGl6K8lpfS2M9IcoU8WTeSKOmS+MRcO+A9Z4OaFDsZPYdHDDSbHI9YL5NGQJK91jAWh+M8ixuYYJfaxvCMNfDJDBIwkQCXcCnA+OjwK/KwETlJ8BL0hySeV0bJulbGFoPdMEOYc889nvVGH43IkQk6I4Mvrw+gkIUDsiwxzkclbZOVOtdyYjd1m3mof3wrDm/CsWuRNiS+q/dnASbYy56vdtmBD/OEUTtZiYmJPM1ZemHuavoETWXR5MUnIehX62nXOduKqkY0ljVddMm+g2XwNWaroHVWX0iDsbPGM/vlSAPul7YnBPcTv3N1jKL6EZOu8K3Ky3j+rB32tdyCHB74aCC8rk+uNdie5espG+sk/4l6+QwfYnJnjai1OpX9h4fx9ow35yqkG90MEWX1cwU8PgoCP1EonOr6CkVmQp8HKX7bDb8s9kUZOTu9+TER0qCVjUa/ECP7ycsHAwtYZ7duMAq6KpcT6ts9+DE7LA7DpnfLk85pGdatkDAtNycl8iVH4WI9yBiymdicviIlk7tt3VsrNKkmzxid0DB8PzpzUxPUVmI+RHLoKXh/IldtBICYlWUYCx0e2RbZv1SITHEEBXG4eQXIaX+VPLeABhFLvhyiEBML7rc/Ds+Ik4h14Ymeg1A3yagrnFr6RZmZbaQImyFoXvi5mw4fB4wVr1XRKofuLPS40goFZ+Q2Zr1T4z3l0Abx5a8K7mu3K+PJsBnqVuCOWPyJqVWWkA6HD74r/89nOHdKc878KVaNHLS/BtVgvIxklG5jfVEg6zfQCtOgMkrD8HsBDFqCG9FJCELe81a2eeXCWn6I7Jwzs3xJAxBOp1MEKVRAbgJlH2lJr3JGIoBIDxd0on6IcwJbrHJwlVDt4EVX7UcPNJrZFGt9xW6OV2R45wGpvVm+oQ/EbmhP0Y683ynmQDOFxPUaULDltUVuaQyLmBDvFOMwXOfRTAf6gZ0oHnACrLWqCW3CtFj/ZybMYyPyrKJZdguK8Ggc1umLmgMx8f5MinwlxUVMRwWqw6lPrYZML1Ql8grJMQOZp0MfHtDhVAT7mHdKmoSxr9olYVZKPFteEJ5SSrbgY2vEFQPnTl8o4kDzj0d9zsHycEbTNYu/OzQXbQ5Ak9n24UblPMSJRoKFlqDVB4FtuehPXlUy7QjywoUCNGYX8pzMVRzhnUj4aI3LnGDSmj4wAZnh7oL39hP/pUMHzELbL3/ZsxYahbeBbajpy46M6YpvYKVOwUEWd/evjstMo9VIpMQl5eTaCfEdRgl9y/qCgqyuZsj6e/fEis+7Ef1w/zavhRqhjdh0gDk8IHIaTTbUTW83Yy14DrWsX6XHUsrndzO/H8g3/vG0IwIkbjS2VDGhS/zd6zZvX7yVWt+lKhgPNf45yary3+DxoJ28uZUUszUvCTl5ag0jNNfP0tHgzTKCL2kXkJnQiVJCXJBqKHn9Jc/XzsQY5DMYQA0HIhW02ZfaclvBShWE4TkaRN85qQw6lHk2/7vQWeP/GMxeWkJwJrE1fN6+CJzF87lwsktwDmc8Bj1nJmszhhrMHzpzPJIQ5tQKN3lEHnNThYrq9TQqc9q8DTFU7IS+FnpPLl6P7hUcyfd10yYVNcofXMOKLLQ8u+p3UZoH/eQSzscqeh8uIZUFC0jhTZ9DN/9WvdNBv4RIE6VsmyrGEBLw/gomPjnAC/+bf69LgzsT1zANPkL5zyWR7a5q8fwEJjDf7wBv4UDxGw3ykeQGXWDJld6/ic8t7yda6LeJ8V72be/Au61ngO6YVumlPRujDnkR1CBeByDayvB9mOvIgfnPuRiY8pglacFSFI3mKJPa6uABPmhQQ7Xy1JqMgKvJxlRA5FKCbLET89sOWn0+IfEsDCHbRB7H/OWBVp1RDhUYfQE3YWsg/Nu2HCWguwph7efo83+8euj+DzIDhIh8P/xg/R0x1iCGhtFujnNvz9mLmt53ckKN4J4FesbfjeF1Ezk1D3oLDN9Tq7H9EkVXqS4BZvyLH78iaN54qDAtVidOy+F5NUXCBA8WCoyA4ZN7L+lLfwWXAr0uVt9t7Tazm4M8cdCRv+5Y+/S6zAyqgXomUvYVwc4zbAnDt9iFXdHJPG/MXe8IiDnI2/rR7sexhr34pYnQzHlZPuHBAtbTt38miSZUcuGewuTw+n9S0pWf++BeDP370cZubA0XsH/EIN8aoXHGPl1qAd374YBaD8+mtXmgJ02IiQbvO+yYS1X4Hr/hQM9e6bLFn56WBzPL7/Pd/4O8crDMWzjMH1vR9XlhaDUh1qkRy/juAvdaQEQJC1lpydwzhueDIDT4PTQ/YXv2P+YsFKfxFy3vgFVS5moFInf258ymt4e4gERSUDQ2afDmD1+pemxs+PEoqLWrP+4IYY/MTlhXdv3ipZ2IEMMka8DT8+S6rc/BQ67IeIOXK/humfNobsNTXI3vW9v3qvnwA0YBShEDA6EqEbHvDPHrf1ZiR8ABuE6rlF7hwLCZUvugfjw6dDOij6ZG4qOMAcoBin3a0cqQldC1rvS0GOjUiSdc2jSf2py/TP3ldOy1wgAK1HKPPe/tqBgIMbPkV+uMwjfYS9AJ+NeEAGIHe2wCYXIO3KJ168y5qsuS5Dhb1wg/S9ciyXdyutUEx0gJV0OpjcIT95oMrf+7C4BoO/XNAcwtj86EjfF7SZpv2SK1Ntm8i7QcSWXfKoAUV5SKzncRpxYH1doL6HK4ZaZgERFXsL/n2uH/ijKQQpGYCv7W6bP1PA7hC5QFCMLlyCzzNZqGJ16jMTBhK2h3NCzVRTwOWqKFvP3rchqBYzeLlJO6JlGj/Sbf+ULrnbSDcuOhhuqqrAj/QICXort5I+uncLGse/h5u/jwv1Di7Us+2cl5nV4+KulwAIi5Yi6yGbW/7qX2DqbRS2b7lo8PVANfUXrymxLaaZszMUEqgOLxGdCG0ALvg9lhUnPZP0fZPHhT7MSa2yd0HMb/sCLHwwG274PVwVVDAq84YLL76iIYc/Hccuf68Q/N6UYWhls/lLSW2Bi61cQ1HruXHoSp8DZ7Xl0ImLVLDY9RYPGv5AwoHPGBO8dwf/9AD0KFZ/WQoHA/UzPEO5EnV/blpO+vNfcqzFU7Lsmmonn/muRVZ1tJulpWIGrSIbQnWlccL035TDm3dakDsZCSDhbjXgbDlHzBW/psS3u7BT1XywyJ8+s34aQ1N/hKENjzxGGi/VDtaruxLf1w+At+N863kSexKoIyynQxRC+EvXPBQC85rMEEWB+nS5EzkNmpZw8vtYb3jADgE642aGfmSDZ8YNoRA3MKFPZQjhZi9YXSKS/PkzCMv4gbn70W3EjT8DK0878vh9uISgh+opT0mkofz5JubG10JF5cc3cZd4N852HbVQv+ppuIQf4NOH0rtQv+k5+eNPw21RX0CdhxBvrSfJ7IapDUtQ6yTQOycRT4OcQ+ue0rA8L4xtfLaHP8Zkcqy/E/jLVyBXUUYM/KxHghRBA3N1UEIIyu35o3em1OBoocNtt/fnVhOVf+s96cKXzSQ7bnO2ihXTTb+ZSa2vql6YIJwn2vmk16MQ5n0wIvNnTeVChO1MCnyZpPrTY1L2clVPgBZJRm4Bi7MmHvzwD5cY83YX3Z+e9psXH01a1rIl3b9e6qTaCgp/l8pn0SB28q9dZeRf389mXYM8g+LTXLFwSN7+yqXV9IdfCSoLsyG/X1LDMIlDousfreReXqdAP4Y7cjWlmPGpOKRKpTcR0v/0sXF+rmAC9v8AAAD//6RdybqysLJ9IAciAglDOhEBExTbGSAbAZE2CcnT3w//c2dndsbbTZNUqtZaVVTJONQDENOk9kJNbCjCJt5Be7rgzoHa4XalNpUSey5D7oLMKha+l7+DmS41/Zp/uZPXlsGKna6JAbZ3s8Ro2DwEtd4Egeb1lxDtEUoDD6Ih0R4TumD8SljQ6fvMBR8lQzRKjT8x5vn7putjH5L5F6/bU0R+/Bbv7vlpGBf/rGaX9xZJ36c+sF2BM5DCsv6nhyz42YWOt8w6WfU0YLlb1CAIV9GCf1e2MM1PCD/bPCQ6YyQeC43cAPqLdtR1RW2LY6Oe4c/fWOTPqrabpDD0vz8J4r3xkOxlP32o01bg3RVN9qzvM0frHqygoZoGKTs/8wg84tDAh+IeVdOFli7McBXgIysmQWW/a2BzzFSKup2IP7dqkuC+6o9ktj5lzHbZ8Qwz/A4wLrU0ZTnpJF3v+u9yfrOUCyVlcMG/ZN592oFLRu6BU1sfML5qxrC1nh8ISwAGQPm/4nXUiBkTi57pAplbN6SPRj0selsDs0O5pqjYGYCB17GEZmpnZHMhUtx/8b7WHHZVsXGNpICEl+8/vZA6yaFMeVCPhvbDdydFs+PJbR5ESUFZkq2lRGD2+mwFGU4QeXHGYx4Uw9JnpT3goyiE6C5pl8Pt1VyTVbMhFc0KJ9RK6XCnh+LrAWlK5Ux39jeb/vSn8Q+NKzCu3JT++LWQ8zKEe23p52y0UsXUyVTgOf1yak/1ZuA/fIREPONQCU6BFH0eOZRCqmMT+jwVLwlp0CkvgGj3zB+UseI1vB41B5u73Xdg0yApOrskGnYDQWJ26pbveGMTLHrMM+Ub5a4A53R5YD/NzmA57wncmsaGhpb8HuiCt/VrB/6wpeC1PZ52zwKWk+8uemUDRFJ4DsyCyqZeb33TJX7Uuq53EQ3hkKQCcTBqBjQypPTnLxBHMpdglN0RHzfsUfGHKkbYPVlJj4JdUrbwdSAgzX76gL1Fq6UvkTRNaLtvtWr86eWnudEJdGUetH+r/gK17n5f7FEOxrN6RerZ+dpk1e+u6Tbzggww63HFh+xrVFL8vhWwS3lDw01gDfzx1iDw0PChodHsYvLcyQguegy2x0saz3TlNeDvIRPq9bwYyMLnIRpPJoHu7WTz+4F54JGGEc2b61TNK3HNARKnGW3ivEtFf7yxH74g0Lp5orvaPQOZU93okbLQ3ix8WD+xBiz2PAKx4HmQ3d4Au7Gtp+PfqrzAxs8EdfW2CYSxeyP408Nlr/qChofRDQZHeMaH1/5dMRsajlpuPUj9dBTpRLl1hqdVLdO9OqVBv+ip4GppGFtWIgvut6ULgwMc0HY7NfG8+sskMDZuQA/DPRfzSryyJT6V2BvPl5QVJW1hKoozTZEZBmwMVBmIiehk1VyPlfTHawuagQEoqj99QKRHJoOfPb0WPXP740fVMeiIMpwPYmudKPvlN1Aan25gYk0AodZdFbo3lM0yS6j2AVUTiwbhuwuYdg1C+KjQGx/6rQ6oeR04TOcS0d151aYLP3fg+fkh1Kmem7hf+PS/fMNt0dvk5TzBH/7Pi12xzI78GKADokVqs5fsUTOt//BJ4L0LwH2pSOAjCRF+/fSg0+scqQsewH4a8h++v8DHA/nUDeKdTbd81IC/WVlLXxslFcez0msL38Z7y6Mx7czsX/6HemM5DuQxgxyUzCN0d82nip13af3Dk2hrPC42f55gCZvkdaFuXK1S9jvfAV7dyKz7o91Oa72A+jw8CWk2ZJgu8Rv9/CE+ytFzYMOgcKCZlx1Oj6d+4I+XJsHrRZFotnd5RY25KPXf+TUio4v5p/Ktn/5CrQkbwVaWWw1mRjnR0JbtahxiZvz8D5mmYj/wn/4py1ZO4Dq421N50S7wGmoVDu7mahhzt22gdry8sOl83GG+bNszWM4zdt7dSbCRaiuInueE7l3vD2xWdm7Anz67OyEHMJsdOFz86ZJvyGzRd69GE59xQmr2LaofntBlxSqx/wezgEvF3df2yye8TRB/ArFpigecjH2JFnxeiZ9+V749/MuHpAv/iuA1AQbGaTKIzrOuDI6aK5FRSU8V044W/JdvCvCpicl3vTdAV4kHWpU7B7R2axaa9r1L1L+Gjd3+kUEBW2yfcAgBH+aK6RHQpX5FvfE82t1KvHLYrWdGf+sx6XYKtQc/Gv/0MdpOz0bTpxbhu6FcA/K8ygT+0c2LHj77s92qqhXBk9w02L+NXdBzdsqBkOlMFj252sB40XNWnUO++1Ybxj959GD2eOfYMvtruqkecg1Nw3SJGC5Lh2Kv8uH1rTIiOieMuXDOPlyZnUbA4VTG/DnrJRAl9f7F54mhIISj4jKM6g9Pyf2lcLiXeoYNxJpqyWc+Fr4aLfkCAEZV9c/QcS/mojc46VwVkIEghBE14qINmO0ZhR4Ua4j3O+8l2MlMs+0Sv0jbW/t4vu2/BtyP7R91d6IMWJHQBD6qcMHb5U3Me/mE9CUeUONqpGCi3AvhXvQEh05zrEQ6GjnowNxi9P2wYPJu2QUufJPuN8duYDvDzX96PH7ZwV/MVN24wFNdmziDgZq2hU8U+PeUGYJqOsTstDuVunfoUtInIYu7y7aI1GoXaNgy/Wzo9uezDwMLvigadoueZLQSSNflARs341rx+0thOgsTDz3EOUmp1ZHs//XxTR0L49nJcCwdm+K0X/oSm3EOHxqOkHyszvaYy4UFuohH1OLrAMhBNjDQ+LlAfy8fV1vz8MnByNyC7iJiC9lX2gIGGG6X9dXFP334sT4m1NpQVfDFfuAZfe/U7i8IbI/9nED0PW9/6zeI1DHPUAtuT/zj20w7hArchmaA2MV4ivmC3w7UkouCLb62q1kPEh+evvWebOKVFWwXfLLwcw3vXW9bUcX99v/b7AP9v9cUXDUlxIev+gwEWRsZTHvq0F3Im6U32QqCP4+ZNCorYVOyNnJonqozDQ5FVLFHkrZQhs1MDcv/BF2a5DcNHIKSjO9gqGjZKj6M3VdMqLsvBu42fwjydaQRpQfDQFFVadA41C+6U87Z0ptBduAKd4zu3ymO+V+Qc3g1zwfqfAclHv+Ong+HIqjwXjOImKtdNwJFxwXRorgAc393FRhhA6CZSkdb7Ccka75eSPRwGjohUGZx+Eo9hsN2ndhTt48y2E39GxUmKAUTSoPgYEoc3wvSDnP7EjJEp+eAXU8aUiofwkYzDs0LW4Vlx0R3thqESrfDh2ck2/MRsF6/W1sTsVB4qbRbDSt4fwec9H9BYzMpTyLwjdid7tXYszc3mWd6eJp21D/mo00v0kWBr6Me0MNJG4Ox92QfYspNss5Hw2bnZTo8TROHWurum865Qz0NFOMJI4g2wZAfVAeAd5vgdCRiiXmPDH7qZX7LdevaIj+oLlw93Rm7n6cPxG5bX2ASkyfde99pGPnY3oC6vqV0lxPbJhEAF3DcNzX18+ldkV1yuunu+izh3fHvWM1+Njdw9PoE2y+DAUYPyghu99tA5I/fVrNmOi3w2HbCbi6UlK82mxpKoxagZ/8XDMLHqxLuBxrjIClsId7sGcHX43al++LPjaXPuxsB5nOB9NdwGRg5dpHm1GdIA8F7e76vMQPckrLfflXcXPscOqx8YC/AdcrWATJgkAlCvWtiB3I3OjVIPjNB0jeT7f/Y54k1ZGWkXAit6AuoX/c1yjc3Ws23VdyAwZQ5DtV3C6a/PvXgHRQAm+Ve2KKnQQ/fEnCxE62dSuDLuwXfuOE0jOFVkCDzXFUurjcki+venvXh9dDGdWZhI7zaghmp54MoQwX1bScIZs3ZhL/3J83JzVNmlO8I7sPsiba0mQTb15GhL/tBVqanDvNNHDTwZfZpuf/y3RvyGeym9o0DcflUhOWqC1lR5PischSITF7LIM6hT/dXuQrY4y0xYBcnim2l+6bjQEp/vWqiG+Hy30VM8pOFMN4/M7w76OeARRfD0w2XWTi67kA69iqQoHbMDmRbR479OdonCd7kzwepNp3SWXK3FrSq9kiDUByA2KTrh7Zq/RZt6T0YpvJSQWirI8WG4gBBj5x4cO2+nkRaVydb1De1hNLleUHrqyWLZT8tCC75hmiKpQhxWmkJyCbm4biW/lLuGWoDVbd/L/be2PyCC6b3VWHSp5Fd0uY7RA+was436qDnOSBJcWIQJrcLtvn6BXgO2gjS8HakoX52h0ly1xYYk4lSJ3oXNpGuewZsrVVQtvWVqt9ogMOxsS18rOoimMFG06DiVA1SDe0BWBvwUq/CrUZkabcS0+Zz0KDnHTiKVuFhmacII2iVo0OT7fltM/W4l7SDWn2pfdENW5qKiwOrTbXBR65rgNZ50sONfxZoTXYJ4Pi2v4HgsTeRdjT2A7/vlo6JLvPIDCVjmF6z54D+Hn2w5bSLrSoqhB92GzDurlVKakdB8LX9YlRet04l9ebVgqtUDcno3Q+CHMyJQ92GD/T8e9igKYmbQNG4Fd0xyKvZibsRbutbhdh29xb1aumj0j7zE93HUTRwheVnCAJboh6nSTBZmxsDFKE/aiaOFUv6K+zhc7Bysln8PztVcvM7P/ioyE01G0rs660EvzQ4rK72x1hLESy30Ce8vdxiJpW+DNktuBBOH0d7fr6DCD522g7JNWjSyS9KHzi3ACHlfAsDtnK7CJoTm+ifK31TLh2b/t9+6c4TpWx3ymWIy/pFT8DfBsz6IgN+bCWkh47XYj6IywpoYWHQO9xUw+jSNwEpDgk+DnJs086UCy2OpBc9bZ9qyvvnif2eh9yJug/aJN3LQLYgoYfirgOhK0YOwDVZUYQ2ohJaNkOY5n8t3W3jsiKWUB0YV1tABnMsg/Hv8ZTgMxcW2cKN/TvvHF4H+bqcnxTMaZJf4DGWDWrkpyLgxNvftEG/77GpIWSPQX6PID4EGT6g7xmI7WAYOnvnX+o86kiIRB+52oSNS03evcG8Pj4USC51RnH0Nge+u7Uczon3pn7a9RVPav8GyLx2yDpaNzZtuWfAlXId0D5vtIFst9sEDn/GDVue31dcYbdIpyrZ0ONrkKreeN441DVm0Mu1UEX3fJ1HaEnz0nsx0lOyTrtei/OVT/LznQZiQhaHUz5CxHfXDfh33uDRp0RJnlDwYvYZnL8Xlxp+9giYkRqevuvQGaOzFwq+7n81VmaDeHgE8fwBoQ87M7TxaTkvYxDUGZwG7Y13q8SPN4S/EsgtOcNuYhtgwS8h9C4pQj/8MkflQ1OTM4uQFs2fWJy3zzM81cGVrDLnEIuWG9YvvhIVHVA8ktNTgod7dsaX4vAKmsV/AChzgd3tN7FpoKYOTJivEHG+H6tpzprw50+pwaJjLN7rtIAcZn/UBYdN1R5uJtSrd4NQtdfDip2PKVJI3MfUkYZA8LhxPD1oECU8fzyBsA6DATpaCOw356Pg/JLWsCNNj81IeQ3z+tDeIKB8j73NNRxooNst/DsQn2yuMVw46gABDMMG8WD8CCbfPzc1yGZCw0UbIkaxVZYBix1Sp0uRimdIHbhmuxeOqkgVFD3OIczLQ4bYSGYwYzjKIDnz6N/9RSZvZTi8PAdJzWquhKxrEhDZUFI0le9AeHlYw7927eBje9mKia+6Hhaj5dFjfBLVfARKq8umm+GdH17S6XpZG/Ao2TbRlW+dTvRh5tBdRxK1Q+O1fEmbELgP8yeB93yOe/XJFViO/Zaof3Ib//AczB0m0d1KIYB76iMBqQwLbCZOmfJL/LzBj15iJB/eZ1uyqmsGx0YPsN999rYUryJFB2Ki2DvvD2AG5MnBYXiq1OvBUNH8dA711zPKqUk/PpgRvo8QB+st3ddRbXO4MR9wsS8iXkYkhI/lAk7RF1Oj5JuUQ9iXEF8ySmYNXITQrg/5F2+xRbI6IMgqbvrUG5g+9lMLxJE3PiSzAbCzpdYg7njItc86eSP47qJAnvvVChh7ElDrdu1sQSzV/Xe/g5S2Adu3XgMUY7aIxpCfSj/8Upy/Hl7wbLB5/+k9zGHx+YcfZQo3DWyy+YCSfDIH0VO7heX5RPBxw3E1Pa9zAw+34kDjHk4Bq+xchnfsZPh4c9u0dWlHwGlV5PSa/xVgwYuFeif3G7XNuxbzjuoeXK8PMT6ctDCgTCrhLz5gy9me4lnZz7V27g0JwRqXFZ+g+VCb1smoV5zbiibmNYGyZXyQMaWPgWw0wSHbGR4+9OQoeFcPGfAt4w8HOnF//59AuCWQWsVpV9FElUJoLZo9S6gzsKFXa7hB9p3AqIOCgeJgAC36a6kVHtOYpd7VgttgM9Bd2oeB9D6Nys//IU4Pvti6b28FF3xK3jU2beZufRl+ieJQVN3LlOvOVgHFaHik/vOrgFvbroftRmH4GVRAkKRYaoqW++FmtfQN03creM+9GMnuC9hirBtPS/3SRN/U+QvG67jUPPFzTl0T7gAfkXSGm2Cp60/eu1jAc5bBo5+ssWECa/nud9B++48xWeb7UfVowM7yQwTrvBbky9USnsBoI3DPQsC2Di9+/o6+lv0UO2YjWOjBhXpB7g6LvRMozUtPQHfKRacEpQer2xmQzTFa5oPWjQdrgik1t89nKhxr5cCOloKsr1SvOLLa2z88s99xRZCnrPugTiIPe0r7EXPsqT5MPoKQTaLvUknTLitIZSWhbj06gXxSfAbp8NkT7XGbq/Ebp71619Mj3m3LGgxb+UlgFW40NI/nGZCff/jWdEW05nwEAqJKgy9zYkT9qs8f3uRQa40btQL0Tpnvs7NOj+cbdrraCUZh4Adk992L7tJwX8nZc5SgyqIPRty+pfIl4Rn0QVtSU0MkEFJoQD0dvzfs6is/pvre4vDIor9/f//hdUiabiYsPR7sTfiaGBxrn2HrN4tOKCQEu5e2RlL0NuxtYYc+lIaVhQPBfZtuLvkZQnICNOSJaUvIRCtgj5WPWsyewxzfQaKFo4vogj8FeezWOTjOYYvYXcNA0P1VgjA9vyiSOg9Me14wvQbPC/ntf+/mKweK/C0tmlde8dphCN7p0puV5cjePlTDgLmeEWqcqrUYvVbi8MeHjfISAXGmiq+Vqpzhf/jxsjMaPcy1Do01Lof2NCz2M8mXBa+YYPNHghG+mtymTm+1w8KXb5pI6RMb7fC25/Loy2BnVzLRlUcZzE1dMK02xYn6iqUAYoIEaWX0zNBm6tR0PnF8gTIOD/S+4Jk521eF3h7DDfWSZwbop6Hwxw9wADaJYOWSczleyZmii24O/87TPigi6pmfNJijqWzgoJUjPvASphNWpAiq+6Yn3yiFATUL9wHPrVciWmlZwORybYAhd48YbwsTbG2tIOCR0hV2hRiGFm10pEi7+2vxt5U9h68Ph68EfdF7OU8i7VUIeAR9jJSkGdhLX2dwgI8VqaWsG9rUGXNobT8SmjacDjTZ7Va6tf1K1A1vjZgzm0MdSx3Hx+TwDLhRbDV4VVc2UqFxSbcLfwdri2wWfEPieX5sWpjrOcG7nWamXH1qyj/7QkZ/tfkSX6BCdxyJrAzjzRDoCF41LaT+7MfpfKBjAmO2u9NDo0c2K0V7g7/1DV1DrchpVF1w/KjXBd8pwSjmnQND/Zj821/WegcIYf++03hP+pS/zjaBa7tdYaOs4oCPdl/D7WO/JzxAZjraZvuAPsl06vxtOzE/tk0PF76PNo0z2TPg1kX/h8/5+VHJdXi66PXLrWgIpXLhe1yBMk1DamfOF/D0wVrY+klCNk1MY5Zteh8u+Ay7erEDRPWVFlB13BClrtNqGnvPhcUIT8T4I3nMAvyyYEbICe+AtAUzq/cXWNtdhfpjPgZM40CCP7yQsFc4bHYPlMHrIF3p36KvCe3URtpPP5AT9h1YPYoH3Pezj7ueTGJ2Ly8FyOhs4CB0q2B6bEmreZQU2IrprWLv6yvXLt+NR/fv8BhwgK8PGGnvEzVHm1bdZwXHf/7aHgKc/vwJiJILoucAmfG2TnoXWJuppIfqYA4/fv7jD/ioXoaA9kPswk37qfExtuaYfCLZgdIeU0QWfN+bFnhoh+Q8LTnzFyB770ygrPIb2qT9aLNlv8CQO0dsevc25rI4txov9ze0+O+Bn6QkhAZ7uNhnr7Dif/CSwY87fmms+1k1u7u0h9KoBBiz4Rj3ntN78NLOJ2op8sceVxYb9VViaPRItD5Iiu7dwvdmi0nS3WrBZumwzHa5m2jW7VKQzaq+gHhed2Ra9IbRDjUHELG5Uee6WsX0HmcWpFup+ulnP71GAct+UDx/5Zh9OksCXXnFZMvDIh0O+w5puS0PyzVI0H4+SQQvflbgcBefxYhJ5vzi+89/2SyEpQ/121omKsS3gb3dFMHCwyvErLarup997syhpsFdm+NZwWeiJ8xTqO8n14C/P6qjP6rzhD7HKEjnVWETyMoHo9ZXFGJaPfoaporMiX5tK8Dv5ploPzx5ht8S9DyFBL6e5xwj7FzB2EGGwP0V+jQL1I/dB98TX3oMHgn4PA7pP73x6aQqUhZ/zo/1KwE/PfIf3/xr+gbaprWhZoc0MXWBael/qfjD+9RZcujDHwHHZpujoDJVm3u6AeFLHtylTywLxoVfw0WfwcgIWSUqSTZ+/AuHdV4D1kEWwmfnhdjpRJOO9i5awQPSk4VvW4NsQ/cBi2iUCUycSnBPjRIw/MFltiOTU0GRvIKDPTl4l6YHsNHC/AYgtk2MqruVslhrb/B2zZ40VFkQKEVBPbgXkYXTeigrsSWs1v9ew0zk9xbHSzwMoeotNblwfASsi/4i+DtPrm6Zqfz+zK7ODqqC0S35A/ysyCt4+uzy/+jNB0124EH55ti7JlVA0Z+4ACVzL4RAAABvgSsBW+sVajnbOaVbojTAaNY7ijLnkHIRahm4SG79w3eAMsYfcPNI3hgpQZ2Kfogd2KtX7ac3x3yjAQYBUy/4YNNjSrKWOmDBu+gvWjeBaCKnhr7KInycVm+bdVBBP/yO1EU/2mxangHnvrtju4eT3T22TQtN1TUQ34ZpVezBt4Y7LE50N3XPlF/ywQK//WX+8Qr4Sr8R8GXmacEr74Dwv+kMuPs1aFBWUsU4eyhwKA4VtfjxLagUly5UP2qK98+vAeQVuWRgeT+6W+/n4PM7j8KvjzTEfSmYkSvkpwejH76jP77pm84N2/u/1uZBZjiwl6s/tPprnGpu2ucNRtN9RPxj6vb0JlsF3rGb/fs9W/AMeJmUIbHZB4IveqwGsWlSfKWvQVjWQYEhs2UcjBER9Md339c+xId5s6lY/r24kJUJo+Ft9geeryNJN1dAXfCinIqv+vb09lF4BIhdlc7b/AJhGiYxihY9TtI4kEF2MDfYru5Lzp6w5pcPoHe6YcHmJSk9dD7HHZH/TlCIi3LMQAc4xl4PgsV/84f+Oq4DtDqlrr0B6pDDdOMgeniSZJib8aBpt6re4/PNbcAUzbEPjpIeUle4NRDXxIA6Qo+Q6GH2F4yrteHoZ2PBF+4LBPPRfsrwIjk1TccIic5kmgEWvQw7j5oBurncztBWCUXqkg8RiWz3sJFDn5pRoi74aGvAn/654IlUDNlD+uVbkBSI9TBP5h+BGe0T8lnfRMoWffOn/2LcUAbIYs+afjmk2Omub8DOh76F7+4rfv4PzNcd5NoJtiE9ngUOBHG7Hjpl0lNzu32B+VwdHdAnewO9TfKxeX9SWiidKwsb6XActmwNWyBb1mfRbxPAXvJtsZfriH07nlL20rcZvHB0pn661CA/ayDDtzAkoi56I7tuhxXcf1eUHh4VTreduSrBoF/3dM/DIhY/vcjlu4iizWcGnG6yDC77TT3y2gfj7RUZ+m8/9zw0Uum80xxgjnL9wzPDwu9yuJdQgDbXOLP5U9Y9LTlc8aJX52D7wY8HbNKNQU0XJ/HY3B4WzIq6JpB3VcyFriz8Y5jJLG7tMNlltdJriyYYfZM4mPXhmsAl/0PWf88GsKsQDyhPpYZgFDzScVlvEDJTRn9smGIhxb3zw39Esey/gbPUK376OukbO6g4a5IQrk9spD975sGf0msIX67UVgJLSL0+PjR+UmKaBLfcnpSg9+Czd674r6ERYH8RI7par880sJ6eWPwZ19L81VLnCKahu8k8Byo7f/7FX/6l3goc0K8mQSptfmLvHsIx7Qiznt/0n374WBcefnbcEVw9n5gOlWFH8aM+x9uDrbQQkQ/GB+5sAT8ckAK+6/2eiIteBOwbp+0P75F+y3bVUM3H7OfffvYo5qg5ZKBUlJj6DJyC0RXns9Y3twyjU1gBlobHGqL4pOMf3mq76H6GEV47eNG3hjk5mwb82S/+6bPinvTghxd/+JUd3nEL98ekpMaSj2DqEctgTvw30Rb9ak7fC99rJ4bDJZ7P7iFE8JdPOKADSXn2uj7AExzf1JkfvBLWTsuhDsYDzbRRssld9iCcX2C34DtsM1h/GERbd494XFxSEWzKAoL9KSKrZ34Dc+2jHPLIMPFLb3J7+oDQ++lf+KfX08KVRtCVd4w98wNsMV0rDea2NFB8Ql7MiqVyMHsXEzVx/46FdXJ86L/jJ/XEMR94+lBaKILyhmauOPbPX+jLeUerbI4CQazZAX9SdMf50+AxU1fHEt7fB47UuRFLPq47wzDikHD4MIZt/gA3IBf3G1ntyQBm1TkY8GQ5xi9/MSz23Wsje4TY+Hx7e1z5J1n/6b0OKIx4M/aGC71JRmhV3ct40RMU2G6FRZ3T6xBst/JpBHm1/xB4cKJh4csW1B3tvehH//xhC5f8HbXI4MZM0zII+0dIqHNCjRD9MgtNdJv9El+Q6Mrs6Gi//FG3t9xKBMssx/+lpmAr/feagujKz/R4zeqAJ9aBg82VR0RXD57git9YENk1oV5lXQQHdyUBl2+t0vvwNYbxoqwUmOarK3X4Y8lRB2tJQ5HHMTbgX8VwDhA07JOBPYpugdBOkQ+V85RhVK1JKqzocIbL7ymibzhM32RVA3INTbTerf8Ev0UhgqulJmC3b94VI3NXQmtrP3EYFK+Byn/nGqqAK4S1kxwQDa5CmIZPCa3uzdsevZ0fajZ+pkR9GpHg67hZQXIyDHys5yae//6mB7Blxabme6NXol2DBnqfiOAk19+A3+DBhcf9/oq+4EDEZPdqCepk3WAvuOziuXMLGaA9p2S6dpHN7du71NdrY4X4Z7DT7fbUy5DmN4/ahToMo1JeIdyt1gLVtXuwZWtjXnS4dWpsPIO9mFe2LUFsTl8aTONU1erYGvD2tB6EX+NCcHk/jbA6vDJqlaWV/vYD2neRI1FjZSDO91TDj2pLeG8GImC4dEPgGKBBSnD5xOQurW9gd34uNRXaBswnCBL1cflLqBs/H3Gn6bYH99Br6P32PAh2dTML4J3aUvMc03TsEibrXzStsZM6Iqbf1Mhhst4wxJh6TxmQ3Rucz7qOVljaCtHVhIOkNzDO7n8czOojMmB2WOp6j3YVkObIbnpuEYp3N1ABYinZBVZqMpNNcZ8rcfuqDly/8gMB8i4B07z9avBP8hAJdJQK8aV2AcFFuuIr5pbYOCupgRc/3OGkjAmg21Mp6W67A9RWjlXAVocVB+QkM2w8H7FgQXZs4EYurmgjb6SKNXsvg+2ZDdRnj1rM0AhKYIuSY7TqzoCvuMtgCcEDqQhogjN8keGn3ghss1QV89dHJZA0A2JklrI9KuULgk/2Yuj8GonNWKUygLajQ2Ra1Tb7XBiCSK8+FJ+lLuWbUisgqEyVLEV1gF+X+Sx/ko9wUH231dzIwQM+r+uayK+cpPw+1zeIH/kByVmKbMLCgwT3tvGHVvv2VrHh7fjA+bYefnyVLmCfi4Lg7H81Iu7bK+BnP6jBFWYX7JcxAtybzmhNbps3dhPPTLnsnImmtukX41VRxTNvPp6+7AdiOikAg/emgMlSHLSsrz197aKEKPI54fDQDOxw1c6wixyJOi//Enzzyopgy4mBhPxe6sIU/ADlvEuw/Xa3QzMotQOX9cG+3fXxCC9pCQKJpRiP6F3NUZqeIbfccvEfKF7ez4M37XPEJ25cgvmphA1I7i+C3X6iQtCvOeo//3Ly9TIeXcvUwPb6jKkLPQ7oQesv0DHUBruTAQfa39YGaLRqRc1LWAfjmT4aLezImwavS2B/zd02hIc339O9lf6l/LCyzrAJmitGNxYCHjivHuKdoxCgDpbg66Ox0getTah3TFx7NjbtCvq9gtDqewUxD1hS/OydHvb8KRhOCwTmXABCmL+zmfx3bYGaPxz83NTSMGaZZsGcRhy79Renc0yDHkD6PuFd8zoH7PNpz7ApD5CGu+Nsz7vqy+HsLvNeoWQL3r7bEbLO3mH3GN8BO52CXPOcsiPzF6xsJrMjgXrcttgxnksOzgoJ1Eejp4EGqE2SXca1ua8wkRW+ExuT3EPYXaINDnbiWy3Xy+D0rB50B4YWiOR16OFv/Vx76wfzhKUMnMfVlxrtJNszlgtXd7U2w+4m1EXbtkUN5BgccPApwliU40uDT3OuqH3vO/E5p0YNj+vHSI+lcqqWftU5TNAZIPHdFPFcfYgBwRTesX14tPby/wrY8NsFlcbOD2btCM7a+yA9afS4imp8hlkLCK835DzMthDFYyqhZDg7+vQ2STqTYixgRGeJuls4x6J8JBJQzjSjnu3Vgciko6VtPesPyX1RAQFc8dBmDyb04Z8+AXsqzwKUl+qG1pkd2By1K0fTUnKk6N6YgXS1TQueQ1TS3c//vMwpBN1fZNOTtZrsx4ttXGAP6z801Ssej8ppUuAA/nxU2ef9otFAAsF1qWlDQAO/+AE2cnlF69oqUraumaLFjUvx7u9yWvTVVQFFuiLYjA/LPDmrDqH5WAfUXFuHimXn7wpa5eZBg0EogKw4YvD2Cp9Idy9HMHcHIcPrvkTU3EvvmHW+x2D2eZ2IFJQfe8o1vlzPTykieZayDZoaYPxtbcTRfRD8Ft9D3XSET8At6O2uaZuL+sEupP5dKsScbVUFcjeqsL/anofpKak1sCapwYe4tgNp5VYMfJwdoXvZJQMPrzsCQdLJ1PwrmRDO12kh07FLxJ88BGO6GiV4jaiJbXlfptOVBytABwLJHFdpxSF1c2jb3xc+Cru1//mje0WvGD3VSXBFLjWY4N2Ad5iXgN03zxAqJ2VE8xK/5pPaPmB4u0bUXuyPnd+i0CijBMmGc4vFE7xz3XUrF6MuzezZAV0NfOpg/KckFmjXEK1AO3gTvhN9Gmh7fIxQTZCNUbR9pPwoTxLYHB9HJD0ua9GD1H7Atz8ciDp9/pZ5teZFr7/vnijvtVRRabIucDCLmF7B4IGphfkIw9s9IhtzOgY8vhctiBBaI/mzTSuKc8WD/YevsanAQ0BAnifwXzw+WTQVqg0cWLJzT1SC9hVv3uABj6OdIrhLXgHX5AcC4adcZjXRT8rWbaDAT23a2Im8fGD26/3Q4e3yh690jAc+9fAC7pZXIBYdeDoPh7cHd15yROslvhD1Ebgwi/ICiczexlx/30boBJpE/Ys5BeL2nR34qbcCh8/HfhjdRZMBZLuluyZqbK6rj0JHqWfga3E/DcKqnQvEH0mn5uD82ZyFpgz1r9ShFf4OYL7Fow8Wf0HNwEcxrfeRA4H5cggAHrB5k7cPYGyTG7VXsT1sGH4zmP7NO2zPuRZMu/BEIF6bFO+6596WxhmGYL8PCxwuX8bLsqzX8MnfLbamrTMw3nAHXADTMJa+SLSHK490T80pDerICLa89y2wvaYx9f7Gr/jF55//xFYPcDWqRuXB/V9d0j1+SYCeeVHqxZzdacDLtxiVP38FInhXkHrTInvUedHrEH8hXeJpOm+2VgncdXf8d55Y8goJ/FNumOheggb5cwpuv3hOjQ0NqvlKlBVsHusD3euWPfz8O/h7JBoS8t5KN2OxDeF96zZ439RGuvkmqwZMoV9TF90e9jzFOAP2oP/97mfPDHcMLngS20/mD+zzCBA8XEObZqcmT1lkkwSs87OK1GtvCzE+tzf42T4uNNcbPoiiu9bgGUCTXnYy/PGLECSn9ogRq1/2hP0hBLvVwcaG6HrBL6rH1NpYOTi8XL+xeKyk/F88snJK4qlzWwmgPVvG132+oD3+7bSlfqvERrRuqrkpl1kBPrtQtMpcwfVj2i+a85neFP4Rv/0Hi30habF3cT0MEDa7r4I6I5vsGavAgfAeYOqfZ6MSxTUp4U3lL2qu8XWQ9tvJgce/1x1740muOMhvCdxDv6Ho0ZkV/9ppA++WHtGDdGlTEdeMQZT6xrK+SsCsKLyBJ69a7Hjr19DqH7uGQik5NTQ+gNlwTy483c8ZOS/+d25kO4FFpzo0uD1uwdzCG4H34yqnSI4+w9R84hucnu8HxduaxL/1huPDRvhgnt9p398DqETg7ZGk/2MBr3zFgHlyNjHap/3Q27euhJ5xa7G7xEN+dHwIycx3NLyPK0HyTkdAbZ9fapCmH/hRJDJc4ht1avcQsOE1+9CSUUfRquOAx/e2hfGhGOhl10XD9psamQ7xBxIJWbqYL+9Y+10f+3N7skXcBgwgJ83Rej69hdigvoTHr9FjwxOflHnS2YXTpfwi/shMsDHCtQOzF1ghRYoCwU4nOwfL+iOpiqSBP3Y0B0DlKdqcLJyK+uF5wKyXWQKgLQKRn88IKuv4j4x5+hW86PoSRtvrnuARmRVPe6xBt90DxFaeAsYpMh/6oay31E0Ds5IVnxiwDC4VtVNDBks85eCTyBE2yTYORH2UHfgnwRXOzG0diJez8cGPX/WP7Tvtk92FQ185WdS3Gt+Wp293gfXz5uIgOm8GGtnDBT6kB0XzgidmzW/PcHqMLWKKpaTk6FgrPT4phKxjcxMLsnvX0EikM97v87+Btxe7hZe/UMbWo5sEHw9ZqIHrsFvs9TYIP0gy2JjplkifwyFmT+VULH2rCDXJVgT8Fv+FkOf9Bx/gdK2YcXQsSKbGJvJuf6vkH1/V1L1J1sHgxdz5Phs47MiFohySYM680gLahzKk/KkxoLCNSz1ZmwbGar/URax2Dhie2pX66tdNN+aLerB+LbM2Mtqms7XGZ6Ba/YyPX7ITQrWFC132tyL6l3wAVx3PAqu2sOntF6/TVcfAtuU14tfYAHI59hJc4jU99eYKzNf129Dj4zhSx+OnQfSWgOBu+cW/eDhqn1sEcfkaCVAVJIjzfdbasw8+1GbpE7DdfOKwducPPnxCbo/BuGnhgmfQ2m9bm0SX9gJ/+DFQFQLo/fA8//wZDXeJHnCQBg8wv7wUJ98bDUZnvcznXfj7XghTcFneNLAd/AnbVhbbpNDODZClDqHVxXimM+psA5aX943I1ZyAUfvkZ+gwGaDVR6mCMSt2ln6/3d70MAXfmIX6NMJy3ido/XKHVNyUzofrFUKLHmMOG7yPEPxTvTV2qQ5t9sfKB5Q2MsCBB9uB3TenUE9bXSHvBZ/NjZoncHf7znh/8L1YzrfnMywiciZqcXuB7nQcSmgPPiXaEu+7eUs1cFl7Abbg7VyxwkxK4Mc3SH32YWJ04rAFbqxq2Fs3SiV0Najhjl93NG+AnUqdb3CYZeccu8HxHsy3uPaACr8t+uFlsuA77bBZedR8t6dKzF6nwYUf4mNwR/a8P08GVF5jT4P8HsSS0Dae/nevfXrj4yeYF/wKIutpUo/ftwH/GHEE6ViN1Hp0R8Fqx/B1eTwFOHR8JrrD9XOB9y240X0zj+m4r3oLqkloY3e9O8f8AmOuz691gM3kjw3kL7g+4HPjHLAxsVs6zyY3IB1GSO/O3gukY+BLkMY3jZpUEymrHc8D5V4/k9y89oEg4C8D5ueN8ddCccwfa/MBmxg+8GuNu/R53Jca3IjAwc7n0MVEUXUFPNti99P7AEtmzCAcrhF1pfUsxs+njSA77Bn1qOkHG7x/IJhv2w29SHlQyb/rx6t8JtWapWDxFwgev5uErA0aD3PyHDmU8bTHP77LM20Lwc2R74SPUh1PpKhL4Pv+AS98D7RbvedAWZ/+kBYOhT13RyRrONl1/+F3gLMI1poC6KHBPBUG6RzIrp2Esfqq7Ml8UR/0+u1E/UUP6uTlG/SFP+LDbXICnm/PETSN74Ei+TVXBKvEg0XnXiiOt4eBL/FMs8AxoeYTOzFzrKzR4HGVoZd3LKvPcj1tQ9YWkaPsAfoJjAl4bI5/9LC5e9VsrfdnqIf7K7XtvzgWTjX3kFhDQVZ/B80W3TtmMK38O/ZPxEjnYf1ngKseO0gs7z/3hKwA/3tdyee+9BbuDkIChpVHZMNKz+bAT2/g8EwcjOfTG0zk9Sxh5bXj8m32NR2HKHMgfp5VeoxvdkyBK5IfXqOBK38BiWwl0jtXMf/pcdO7nAj48bHgMz3if3oYO70EUg8DGtjjpibQmYeB/vzLvCsuHC7vj4+70zSwRQ8GpHtYNNOBUS3+xtJ//shd73g8kF1Xw+X5sV+6JeDbbicB/Mo1jJ1yP8ySd7xolfqY6V+3KypqvGZLX+I5dpNSjT8/f7O5fQ0k7TpWzaSoC61apSVRjl8ekNfz6EO3yVNsoXsgRHxPiXp6n9b40FhuKv3w81DtPTS92l3Mj/vrCjBWP2gKg3Tga2ulgT/lgmnA4VP8ex/Fvz6p0z83A/dLPQdd5Ep49z7uwKYwdw300cXHlx/+U8pEg70T+vSoHjygrqgx6rdPk2F3bJxKmNYYwsxTjxT3XiHE/LddgT8c7rGt9mkq0Cl1wOvFW1JWnAzzrqIc1tW1w6gNMJjjQekhxb6CfXqtY/47rzQQX2xMlZ/OrRoQcClrDy38OpjR47yC56N9XvZTSaf3SW/B4/JKfnwoGBf/BN/nMMNoWNnV7Ast++nvS3zcAbaGLoSLfvkvHpBJeT7gIZSMhb/7NrseqAGqHr+RFUXFsDxfC62t+cQ+LaOYDHVnAWy4e7S9PQ9gc4ueHpgd/sRmaJQ/PR5CzfEANqAyVtNIsgjKsfOklz48DLxzYw0u5xcbTN2mYw+jFdjO+p06fdgNvf6+kV98IvIoWDU3n/gCl+enpzJfSknDrAQCEoHm3UkFoo9OBuxriOm53uDg5y+1ZvdRqP/nT0J4weRD1JYSYfdzbE/W4fSAamR/cHhq8likpiTBrsp2+PAX6ynNqmy1fN/2RU2vpWD63oda20dpjHfF/VRJt7rzwfRWU+xGOBRsiswEruqLhZ6IIEEC02/BMR6eeImnFe02N/kfXg2TNgadmWT+MivLo241a6IldZjBXr+c8CMumoFlZwphyqplyoQepfwWqiGU132G5sszsrf0duqh9Mj3CAxPAyznpfzn74xTyAdpDd0VlDZGgN2s1f7pjfBzz9fYqd2lD0EZRHBD/DO2jJ1vb6f6kMBV5JuLHrDMFtjVBUQpZDhSrEc8JR4cYUS8y4J3VMBUY/DgAF4+tucTCjhb1SNc+D89XZ5RsHGnWYaWHHb09AWrYNoVGfvhb4yyMKn4PuAu7COOyHsvvdN/ekNyzIJ/+uyif7Zwd04ZKQ7GKf2HV0CJDwRMf+9BOP9H2pVsLQsr2wdiIAKSYkivAiYotjNARUBEmgTI05+F33/XnZzZGX8NkFTt2rUrqWqeDbjPXvnVd1qm5AdFrfqF+sd/GUvlGlW5D1jcTGPxvX2O2S9+MWN3T/yf/vDTg+d6xgVNhjl686whh22vvJzxayfCa/EmFKm0sIZQT65wG9QN0ddaiCR6t0t4ZpNG/Ou+QeOtNPI/PozXtdQOn8uQabOex5zLhvFuxZAJzb4SmKeUlcUHeTWB41k9w18c+n/+wy9TP/OVseh/+ffn2xTMmuPtGHb+EYZpp7Cf3kt/+sPXnWcR1I3hS0nxUn74SVEn3ZLRuBiepl6ygGzr/GlRn/c5upiLEBef4OrLL3VXA1D6ojDj+dQuby4qjUlkutuXbTP7J5rjO/7mq3cyPPky1qT2kZDdtONoBN3K//bXXr3aef1WG8RJ3OCFfMmTptAOqrrv1xptmyJoR9chACuzHun0VkhCyy704O7EFfPBTwpeeeFVs/v7l20OzRRxNCkhBDttx6x8K/PhdLH/8jlm2LKB+LpaAVi4aomvYYSm7dwf2xIvOfvlp20/3wlhx22D0ePSRp/v8iEpseeqtCpFlFCoswdaNtwgPg5ERGN50SDh7U1UdKS0HRVPFWDWWwhxFk/U1ruw0376p1m8zULcPR3l9z0E79VrO+L3oGsWLluc9UWTjD+8091mTxe/O3GnyQIIbxARYy0a0ZjKowqkavu5XrNE/dxfAeqp08lmXHtofKbxFcrFqqNCfUXoV5+EayenxPnpbac7AkTP+sjWaIs5Oy4zEfZteqfoUcoJ05ZKpc7+z/Y6XrWtXl50mPNzMuN5wR/V/QC6fD0zs6FFMdYri0IebCPm0YPty6xnVDVvzZuZvVwW0wKuEtgBKxkWpAf/1X/UeN/siF73Z2vIjEOGLLnjxIzizh+7+IYRUU2BjumkJdRuugrm9yU347lLPnN9T0v8t00es75A5ZM5gPQ5xMS5GXbBL0EXqnl4OlF+EE9FPeeXaK5fYoXhszVFVKLonT4HZs32PBhgBOCcuPGn7wyw32TaXJ/CaOY7I73fMnTMqw2xbppU8HetBGjWa+j4ZIAm9Z15mhxecyrs+66dVsnDVd8rQ6Ry378S7iDSoVOaLYjr677VrK6WDVT+VFjueyMa20D0wJuPwdhWwfhAvMGD1cAbijSMeLMVvBD6Y/Zhj7OmoIE8eAAywJsuafpJZr53XJHq2//VgzvPP831ty8jeK53f+l9n8Gwf3Iqr/dRMWj1o0LRNM+u8paiT7WwamDWZhnGZduO+jIT/rczBcv/fqZgNOsT2wUWQuPnLk5QWNs78/epU0wHvnURepnTfA4o4NN2dDz1rG9e7BncUusrNt8UHjfvzZxXFXE2GFYFR3llENMwLasTP+IZPvt4xNrcLma8KTsPlk2ZEhvP81bgoTWgHj9HuqCfBtEhCGv03SgX5uujWQw7+66CZmoOC/SMRvRRWgcQrOpFrDbbtlS29gCq4RPMhNFAg/h8HbVHNnyJEeVvPp59qNHtPlyZXxrfYhreUQ7+STAJOX8PFsc98tCSTjFeFt4i4uf0UoGMBonctWvu98GwnKAQyJt+F1+Dj83oxUhtvA+xlekVtacSHuj0JQrtus+5GKb9aGrsDAOuz7ex5f0RmWADN3EnnbOWHZ5fHVUPWlJhmHRrebGeA2zOGOjYrLd8OuufEk7795Lp28L2+UEpVMg9nNNsW9gWnwQLoLnEb2Z9PDEZT/0xhgWy18T0oECcu09dDU5+S377OfSXYaOhYp1ThJsE0W47qfB+OBtijls/GU/u86iWmRAyJ44efv9g4REiAVwW6x61RqtYbdSi+uTMivIQ9UNOY7CpGpKdRXtUE3LNQVAfLdbovmn5YPgVat2mw5nqK9HwTvbzvaX6Qa5EsFuR1MkVdHPwiXNlh5bucmSC1QU22T7ENepP7uUI0b0a2frItILz4z6AlDOGhe18LqvYvTA07+jCnMnNrOklhyoUgUoJaY+/exCKBOln1ZO1m1E0xKp2hADciPnHm+tL6yIVUVa6+15QwqDofvbXhqe5N2q7KcRvZYbwVbwH1tZGUfDskeQrUV/UWEOPl/+9vmSAdZQNhKzzuJhiyzmD6ikZHbAdWsN9qduqd8tKFjgry+qPgn2A6F6ObL1SOz6K6Sf8ez/DWMTWWMMRkBYu5fl77y2X9+sBqNx9sXaRtWQa+ioDa79+YP6IuDX1xlkHf7kq6fIbL9sBOeoEEWtfBJNP2PbDfq4Z3q4mMaIein4YsgqdUfAlF9tWW66WpxjudbFlmKuyPwlqMlfCPwTLUpol0zU9uItwp2yxNu/v+1zKGTqOTUSsh/j0e+0cBhr+ijXZbjlreeZca3V9cy0qSooejS8noSiBZckc45u3w3isKBw7d0FX1tVs5wsEAvKXqMSjKZuoSzfvDs7ujdAxuz5Rn2mbGqrqWGNhGXVWDY9lA++iSXEr+lkxtW3cACqcnOjIMixZXDIX3amdktvlNfnspC3OiMavA/F2ylCMqX8QNWNbn9ipXG2LqRpvE/LP3ztd2HHRMp3pteY3Tk4sPVm1vdppRzSazYltzeyGGLUtD3UX0jDd9ljEGqO/ovNteaTSPn8n49eYzlBa04oEr1MdFZL+mmAp9MCMkzu2dRQbB43Zio7bEWdWp0WFi5CACtq6rRVJyeudwfM2GeyHR+NK67FcnuQvM1W9K/h9MgHUQ1aScGeELQ+PNIbOsj3i+z1K+u3p5IHWtQr+HJo3p/XCc0FT7iqV2vep4DQOzyjdfCuyZU+Pj8NQl/DW8YXYkeug8R4OHjw/Dcds0jKLZ07YaDwSGY6C99BWP7wdbg0wU30pBVt16gGJqY3ZZmH2Eb/udzrqvzihzMzyolSa2IbsQGFevxXibI8eEEQuojzbiVZbeJ2N7tRNmUN5E43HtxFr9+a9Im6sHoovJg9TfZ6jB/nz/6tiuhoSVgXbEKEsurd4vELkbTq2W5kd70fhqqqlsDTwMohtLpugAJjB8UXWX/Ll47u61aAaW0LzQLIRT7u+QVrQndmdKCWieKVjIFnHyTr+PiKK6/CsrY1UZ4fquvXHV3cdIEL3glkjkophT9xGTWV8YO5JH9Egpd8JvU63DTF2HCFqhnsbLnK9ZvvHQ0Dz79eIv7HNsC7hlnXSYYDikJrMwK3dLoe8itEPb2+FtOBjquYKHIRjw/Z6QgtKLlkKDZle9DJ9LtYgfJXw5y+YKuO17Sz5hiE1rwoJlERJJvFiXGG2N4aJa7fTgDKKSs/6ENylDer5296gkzPy3/q238P2oSBxyU1mOKIVTYaHJnDOd4n5OzdMvofYHeCNNJWOz/On/UYYMDygavAgvPqCM1QFIH36EzM+3jcaUtYM6NudU7Y7sioZt21zhhkPqCCzLBrpUbK1p4ZdulqvcHH3V4cG2rfC2X1tWAXNq68O4kcNyVrUO7+LeLBBym7j4/FaCv54fG9jdHvHKRb4rfV5bt5cWD7vS7bdDKE1HSc5AEeLH8w5TQerlLVFDQfh3BDDUvOoryEVUHJ/34m9YEYhHScZQ+4FOXmqSdAOI78OsLjUJolumsb5emFLv/Un2+LEUXcQzh2US2fAC3m+N0YzfwPnoNUoF5y+GPqL4v34DlUkv7NGXc4qrTDsHkseYUUp4lUKy896RchYtlEfxmEDrMsssj99tLYGvBvAuLzWxJE+nd/nBVdAOxlL5gbbsK0HyU1hV3xXzKnuJ6vUk6HU4nMfEdtM8lmjKgaolOTKrD72imF9GBUNp989800p9vm6MgB4m05Y2rSlVWdhPcA6ygdi2GOBhp1R47/4fNUeLzQ8ouwI8YK2eGO3xBrm58GgOQYzp/6MRqm5VKoytQYjkf9u+bUhCjBacTpG+RuNeRTosNN3IokdgyXUlu0DlJ9AoNpsH7z8Bgf1/LAOWEwf0ayZ4wa06uaRX/xcymdVh+2hidmuVk5otM3bFY7Clv34V0KV8iMCIm3KvGgaozHc1oMmcnognmtTNPGGAkToWVBtr0HRj4bbQMS+L+aCk/tdc+9jdPYhJ87GZgVrM6dELUpdshE/WTHVC9MFq2YvZiXnqeXKuXdXt1sVE0vat3xssjhDM96SXXXf8OXHHhVwHTMnG47beZbUq9bGs/sblKDxVpxW15XN3i2dOn626EsOFa1bCUfmO1xtu+x1rSEs4gVz/bqM/uL/LUgssrPtIpqUaAG/+MG8ZxX5w3y+XOvExKBLcnlb7VDrjdpfZJc4yqv32+kjTEC3vvZbn4Svq62AnBVCGA54QIxt6weUz0rFwwHtE8mBVwXH4wPYej/drUErDwJ8rYvN1vv96DdXPw/QcdOoVLqkri+yd53C9r52KZrny0tNoD5A8FcLRq7mx+LefE/BCmOLOPfwUYzBRVXA2jsP4o+3M6KrZuchmyohu8z+PixeSfyP3z/EhdVfjuvml0+ws1+XyVhmcEZaKMvMeCWLiO9jqwNb3jGy/bRbq+dL0GHQ1gatUZnx0R6/DxRvpBexnEPMOXk/QmQdK4Pt0MOwpoDniqKOQ0v8OKrQOPVfHd2bz4rsjMOt4JaY2ihdvAaCoXrx8bK/CfA90htzDs806p9ycYRO8A50gWbNa0IP8Y+f6z/+2xk5wOScX8y/vO7WdBqMHPjqVLLdyz760g5pChi1muLwEDuRiDM9hudK37Cd5HRRPe8vtFfdYE7hPZOx57UHdzrKzAO4JcPGu5vqqHV3cjjjgzX0Ww0AZ+sLW6fFIhlu6WkD8jLfUPEz1nyOHwdQrrAjG2NnFk3hGAdAn33GAhj7dkyWuwr93s9G6jUaP7tAgU0733MZrbboF+JwRbs+8chWPHfJqKZOCvW3Dpm1F5ykGYRzDMnt9gATQOy/JMbM5/74QXBtMPvt98j4+QDlLvcYjq8TGuqsFOBozvMyQ5wWffQsbTS89jrZekfU8g/clL94GQOskikkfgm2oypsS13JGt5FmQPfmD3Zft+ez970W6LNU9jh0j4VfMRC5QLsa0zTzm3+5WNFmU3E3wyJz0NLyiBt45D2y1KPxlNa5soPrzarTdCO+gKVqntxDhik1yXppGVXo6jwHOanuw8apgYpaH/FNyysOeXDzYoPqCPvigTC6eYP2yzH2sxXCMlWm2TcwiHQ9EcVMGfmK0vludPhmJ8oVhNn7YsFjAfk0yijF+X8SvqdlNhwOtlXckk6DbGkjBsQzxkirkdI24fB+c9/qWKO2JKMURHBGk5vLG4kgmhr3yu0ss3znO9O1iDq8gGczccmepCV7dcC0dTC/ZnQ8bDdW2JX1ybq28jH4y2t0NhRUwR9a66oahQ5n5SX6kESeSPZ3pPIH/eoykBeUZcR3aZJz7EEUC7XA0WBNaBOfH6PQFf8RoxcPFojfhcBOi0NlcpF9iykMZXqVX9bSVRRnJ01nJVLBfVdwnPDu1c7yGgroJAIKxKg67Xo7kvd1bZw2eFFWnC/3+/5oL6q6c62Tb1tl7bXXX/2yvyTNrYsNeeyixgBWd+T2hqk9DUBjO+BrKfPxe9ZnMTyjN/MszMreqev2kTiOUd4eQ+FlkfCNgBkbXS2l/Y6kn72J4IxsKBzvfbb82wD+g7LxC3X22jyhWUKC3ZwGJ7Oftsd3pEEqJmsn3234y/+WB22yXoh9kU3vh8l8pfBFkuN4flU0sQSqLa44EHGFzTCK59gxrt5f0Z/eHuvBt7e1yLRPeQFezLrCoY0YqYXziZqrMXX+/EtvKzuS7++fBhdvb3WovzZfdDPniHvmw8GUWtRPxJd0ub1o5CvOGInTT5rinH0WCqrnTUZHh80cSAMT8L5hcbr9JEAnfDAdu94mywltH78/I2ONqjF4Ir7Gr7VuCWbmT+MPzx+Pb0bPj6TqJiGnuYwxz8y6xuWfPE/FPxCEn/5AmevYpC0HZ4vwWpX0+JpMusvh9QkTj80fJQ3CxGd7onEjGv5sNi3cDbghGRDTBr838/PD+PArguzT0bb3MfosR5DqpmemcjjkNRot7ireIiEgdOQWCU4K5wxYtQ3Pvb3gwBbyX4y//y4F1Q6GqImfPSKyoclFOPlSGoQN/WWRbt68Od2lg9YuIeekbr3/OHpWynsXp8t2zqHohjEPfPg5nonHDsGSQZhsg6QLw/t3/c27L7JYdwgC6+mtI3q56Tn2jM0ByzaJwtN7K5n4ODNBeduRduBrrAON01/ssOUZ/60y5EOs7/+5VtT3Jgxar7PE1VWX6XlNDhvIM5fJ/LND8doNJwrwFtfTcQrYJMMO94LaPfxUkJ8hXF28lcVCpT3QAVjRf3h1LAQPpVg06VvED4tlWcIeL0WmBcu9/5ycltAFUkWTO8lr1h6nlepP34sloeTPyjpU4XkZRR4KBfbZIqOF/PP/u3ba+Jc+RwBzrLeEitEDufvxf4B0TfmZDPrRYOm3SU05+dss14X0XDM04PKQVqT7XmjRfz3vj9/Tb2hTHiQeSLAY9sQW5AV9Ny96w1y1eLCdvF3bY3RcjxoRfXOyaY/Nqjbxa0NrD47LEgXkTVofmhrSqtrjEiOHNFBeMRo1jfxYpuigl6e6wmi0ZQxvyiV3+2DKyCKWUhHRyxmPspENP8/ihrhyxst4SZQnrcMn1U34osufKD1uqOMZMaimJq3dkanUI0J3utOS9feTUCdn9RUGfZtMs18Cm02Z48KiyL3K2wkIejm5OPVY/Eo+O7SC4i/TBeLu8DxmZXsMShKcCTEeybWyNNxA9/84zMsyZdifFf7Russ12ObcSnx11j7nWYbnUpIiN/JUB3EOR9TOVtXh2/SVKbRwbEqOnpzJeaX29XbhSmFku3Bf/30oRzuXn0hu1kvnabt3oZr3oXsYayo1T2i7Kwle9sg+nSRik56XlK4koP381fEQ1SkMOefM7/w24kowlH95c/HuvYitmzSHPo3U2Z+9/WnC1s0qydPl3j6SstiMsZBQqf9Z0lHfxXzAWebGPLV40s22mLH+bI55lB+I4rpmmPE9Y1VwrxfWLjJLuqmBqnIP4HJLgFCaGju7xjyvVQxfWcMBb/484STSGRUroMmmehQuWiQpIj46BsgebxcJ9CO55hsdK+Y+fhGAHu9qGlDe69V7EUXgGct9uQP39z1a9DKfdtSYSVerYnPHbRo6FZ0fDweaFyvOxGWU5DhKnw6SHITQ9Kc1QoR322L5NtetAbN+0+wfsoLfvLHEkkrtyHGTTugwa5e51/+xvDptW/n+BCjJ38sZ3u+JNx0Al2d8wW226Vhy4xHOMGrt3xibUgSjTP/gh/ed4/rB42m+NLhoilLZuI4jMYweKQw62nESPQp6f74bVnWdNA2VzSU3fYKoq7Vf3yD8s8qRE1SFZhvbLuVQDsMaBNfVeJEymhR4iol3G5lTILr42NNS9xlcNqGZ3b76YvVfUXBGPKMYG29Q+NTLs5/8d2xdtRvrMXLg6OMDOaPWLfkYOV0cD8/bn/v2yfdVIErhl/iv8gTjfLnq6pCLtVsZ7Y4aR6JEgKqKofN+S8fb/gQw6s3fGYeBqcdWI9S4H2REz8/PKPpmsb2L7/DnXBaWUy6dQ3sza9Ldvfq03ZjPs9WHqeWmMfGLeSjm4bom799QjaIFUPE7Q2a9VNGtmnSjuNw7oC/A5uc2PEcjYchAvRePO7kp7fNel0Fs/+w0+Tq/ry/R+0jihK5mN6t5RNGCtx4hJlnFCb605fn96NqeT8WUrJpGhU9wMCK5AdWl7J8gn2pJyxt+mUrVaZB4ZRcXAq2ZBV/+UjxWDx+elgyDe8kg/SDeszRZmdJc7zTkIA3eOxtLxmEm34F61ga5Oq9Cac9uQYwRDGm9Rx/ub0ar9pPzwikl5x068NK+dMPZz7Q8o7cKdLk4cluOtCkIyvrgHAZnYhpOmZBFb8U4JePk1x4Ii7p3wG5af1m+v7yRiOEkwKV9Rbw6xXWLc1GVMJurZ7wzbnHybS4oscvn6UKKjM0Xl+yANpEAoKF9pawCXMFuYPdMu86n2G+nMUJ/fSvbSEt0Px8gF++q+0nh0/GqEhQiSRmwZw/j+SOj6gQdm9G7HcccaQ2JURX64HlTUzQctvmZxjeqUDs9MGT0RS/JnDuSsRdRUrCZ/uAmbEzb6630MMbq+hoOR8WyGpgzfwTQxuJFruAvEuW78UxV3963XpZXopx30g1bI3IoaOe0HbiTQVwX/si88r7sWXTRxrAbpOemDgeEv7Tr2f9nQWxObUsjZoJnrfBIFZtLDkrVrBBelhrf/WIJUHDVduPqx3T001tMTHtAoTU/k3RrGcPrOcPaMNLhtXrpuLfXDVcrZYLk/zyz+9bNnJYzk38tv4F+T99BmWuqtLjlPs+64T3AHoVhDOedqhTP4fsF38xf8qPdsjlSICZ/zNvd7GLud4x/NWnZr2p+ON7v/zaUKeOc9rqAXTkU7G1sVZ9GjfzTL/Nc/FP75aU2wTURITpd//zpy+D99rUJDDBbKmgRsEP33GefCrU69XQwU+P9m7dFNXhUMVQPLQHsyv6TYaiKl24uZsTOSW+y3/x609/vaovI5Ie/uYKcDh9sfLOvj5319/hT18zdjxBc74YojSeZ5NctDdiaZRPIPVhPePNIupPaZeplhCKVAy377YvM/EIT9zGeD7ohOZ8vQR4j5Q42zrxpx1aqrCccEYMf6Wi/mR961+9A8Ncf6ytMPVUf3Vd42LWB//wnIne+s9+59k7IQytvifB47rm9IevZX/vsJiJdTFU360ER2v9oZ/k9fG5OI0xXGm2Z6ehb6NxeVtVsGwjmQV9I1n1+bLtfviKs0P8juZzkMqfvch6Rf1JvGyv8BGqNV35QZmMYn/xIE3XLQl8XnBu7DJFC8o0JNdh7yfz9yno7jg2cUyPFn/PP+y3R6xqoukPPL/oUHvXLT4O7pkPS8HIwU/x8GfPEyP4iEw5boitaIo1ap+NrRUj3RJ/ri+xXX2S0Jx//NUfpqO+esD+GtyI9Yi4P9XXnQlveQTiqr7hL6mNMcJrR2AW2vT+MNz9EgoaWsRYbHKr6evIRnO+hIVDubem0/75QLut5pDIa1nx/+uFl7zxi7EuDja0rLZZch+jRI6xk6Ip2s1T3hbrZDkzfDTXS3CWfUWrX/ryFWY9HbfVPKtpDJIO1hIsmactFNTJ/qiqq+985mwzDD790gOG9nFglM3xhyqvyfvfzhRI//1MQbWqPGZoXyORmy1OVcaFiG31O7OmW224SNgnd4YDg1g8aQsKQtp+mE8eusXJ6hZAG2azOHkfrI7jKINKzz9ET+yV1WYskOBSrl7E3sk16pOTftBi8fkgll1+0MRLSYCHZgt0dZJDNGVEeagr+V5QbpcfPkbxvtKwaFhsE27WfEhGPEEeNAiLX8Fv+ePLQziiM6bi47VMOsWbao0p3QZ/q9c9mnxLrVGTgcRIel9ZLLIgBvPizMXwNLNGcSow+o5XDQvGIFmTlfoHePrHB7mE5yb52iOZ0COZ3jQxb2XRDvIrh+ftmxP9PapWb+5FBb3ac45lfftAbNjnqqYKQ0XWeQ3+5K6THGTt1dNhkpYFTaLbEY229KZykxmRNAm5rq1iZUHwOsyKvpR8Ea3yxqN8ffWSyZOXIURatqTLJthbk39eAczfQ4V1t2knih852AG2CZEvTtK4+j5Dq149kiCmHZqS6lrD4p6eCD7lh5YbaTAhuX9sydrqpXbaTC1Fa+X4Zulq50Vj1tYd7Lo6YQ/XtqJJL5edujzsn8wi+7plW5hczWlvMXFWWIlqcc0mhF8WxcijDRpfHm+AXk8vSne7Lhrl7zDBTbMlcr5/N4lc9McrPBrTITt9QgmbvnzSGjs+kLUy8ah+2/gKuryQ2DY49xEHS7vCzlgBnkzp0tLR6Vzg3N7ueIGW1nR4ljUSNCUlN2iPBV/LdQ6u8fwSv33naNg9X1dNqw8nRthj7UvCXcOrD+sBK7uht8Y1ShvY9vmbipG9sKYCbWpQ7qaJxzimxaC9EhetNTcm5sK++6N0RynE4v1BvLI9FUMlmWeIKy/GVWoU1jCEvoCad9cSbyg56hkzXdQsohVVVsfKGranYwbH06nEgmgM1piYFwxAGoUK61BvpR5vQrht+IZyuR/bCT3fNQjfzYe4QbgoRnxWUiC+POJ3zFTEv8tB+tkXll47PRpugphB0Q49sbans9Uf1ocQap7p5DC//xTH0RmNYvxgBtauyfh9tjV6JMObeM1n44vH18FdXDtcYplUIuqs5+L657+esAwKOkR7UTuM1xvZhJsPGu/9fgP9+k7Y2pOexVSih4pum3HDPA/6ZHitWgxL/lYYGZMJsZXzltDCYT7tLlXK+2CveWrSvwxaKPe1z0Rpffz7nsVxc0C9KaMcwKwxCVwII6rJ9QHcG+bEja4sGt/MECGcOkr2l8OjncYVpegmlS+yE1u14IP8yrTFM1iyvaMHvH7bbgxXUuvMpPFQ1Jneh9DroBJsZn4y2I5kw+NeOAx/j8Rnp4KEqrteCGxLb3lB99X1Clw4R5hfpyCZ3tG+giklAbHHIm3709Q8IG0TgQqfS5G0ZcDOsHPLHXNPx9yahugmQd8Xd/x2NSGa9tHehvKzmnshyjEfbvKUQz4xj8J+940Ga8pSyNDwJceAWG2fXRcNbKRdTtY7gbSDNdUPmNbPC5YyM/XH+zrO4aCqFiOLri14K+ox5L12JLq2xsWoNGsdsGhZxK+cazK4PqnRNO0TqpVjEf39/WVnT8S/6SmfUEDPyJIfZL4n/LV4kzoDMpYjYbgsdC4N0U2E4rC3MMz7WV+mDGB5iJ7M3BVKO8nMl+ApXk1GmsMWjeFpoyPVEgpmb9e8GH/x4DDGN+KoklZ0e3unIHP30UhwHF8Rz9f3CQKHP9k6mKaI9dWhhgRNL7ootjqfFPSMAaNphwtLnKKRatiGfbAHrOYHg48ktDvwB3DJdp7nN4bmhq7sj75hh9V6X/C0XAiq5d/OhLw0q+2+8bWCq+ud2aaXCZr6elvC91ytmPdyy2JQ9tCgSTZCZjX12R9fgnQAIn2XGN2PjT84g6ID7JQrS8hD98XZH1G4pBZFc/yYuJzpMOM/s6VoRMMrKqufv7PtU4RoWuZDCN/j3EdBnOqEwRdMJNf0SBfYX1vMWp90CFRnR/z3N0z46C08kLdeQs/9Wm6HKvS7H16S3S7BaPjiJETOeHXI/tbcInbMVzrs22lP9Pn/D7eSB7Cy/CXz5cfL7/f1qYL9c79ndroKrZ9/a6fVzsdf21j747d6N/C+PC16lK2PNRBvVcM2CAK2tfZjwS/4kkGTCRILEk9E/Sc+uOAu+QXXH9W2JPOyBg2bXcOcjyhFzYwnoApTxcy0rHgfpqY+96U5YbHPi3Za9dEVGTlXsXrauYmU6LGJrKmL2Q+P+VNyJQi/O4tt1KyIhtfzpUBSWhfMineN2OcuBDAcogvBd1lBzUVyXIRTfMT8lhuFWFwlDxYRtCQKVtjquzsPwP9iRDawkq1RD9ozEoLSIv5w3icDr1MRpvX9Qnz5YVi879NmhaQtZnpWFvMslmZC5VHaY+XsRBHnm+GhiXltEuMuVMUcDwco/XNFsGiE1rBcFRR+eHXxlm7BE6HVYbtOL8wy0guaLsVuQFbXMzposoXG9JVI6sxfqDrHn4mgxxWcbBtieeYrczwdINstQrY1HTHqfvHv4FYntnnn33Z8Oo2rHAwxI5tt+uSMb4YU3Jw+yM6lPWLBa3OG8ijuSdptKBrsVux+eEhXmH742zorAVpfnHk2lX5Gg/VcxIj0872nR/ZJuJ/u9J+/UnbOdsnoMsPWuHCMyOV9LP1p8yyvIPfplublqvfH/DwIqJVKDYuWt0b8bokN6MntQNZlSTmXXpcSwl6Y7xksni3d67cBPXX3SH78oLi89BKO/nBi4XuMrUldXTstuOhHckHeDvH39AZIhSSiQvJ4W0PuZBX6St6E1fOtaKcuDQ4oj5UE7zIDW2MsWSWyP+aGTsl1G0m41iXoVfPOrK7cIBm+oon4qnoQ8wFGNFxWufDjCyRofMuSBFnI0KW9SWTTRDKfSjFVIFCOPfGr5a4dzVYKwKTSRKWBrIs+EzJd++HhrthfW74uvwEK9/GJuUb+LobjK7ZhmqKEeKLysqbpWlwR8Zcjs97yB/F4xShg2bzO/HC0GhRUR0Vy3zusFJXEaQBDpTVNmrFj7uySsbl+GxgfCceL2T/Gi4di+LD6in/7JZ3JgGG2V/aUL040PfaZCnuvSJk3BSufbp5djDieYmKcvnoiLXMlRO4damL6voYmp35IyM9pxdz5HvJoyihTD/7RI94U3CyenfwMjs7ce7k2Wp89JSyhRNUN9qjLG+Jz/Fe1U6QT43IQij4QtAm2LHJYcLi5rUTwfVI+aWsx11J1ayk8uw368c1VcN4lnb3nVzC6fTnvR2GNUXwr0csztwQ3IEaTGsUu8vzll0rltI/4W2hDFL/iN/FDgttxN58Rvt52hJgrueKTU5/FH1+mGfIRKpc9jSF7YodtJVojugvnPmD1UGO1W+RovMc3EWa8ZSR2hIifWVBCt9ox5mlfFnFS3VS4CDefkYEs59lfY6rBm60x344Piy+YU6mKZ/YMP58Pa1hE/RlAS/fMpSxF03afXdGS50cK9eKNhnx6YZjzHfI4npfJtxvUDBwh/nteMpZFkCPVgoJtnKTiUy18J+geSYsVvd23vfAsPfCiSmQO749tt5EuEiQnGrHgsKTFlMHKhsnscxKERud/O2ulqKWqPMlGOz39ybDUK+AtXmDtHGh+l6b6BPkxdglxpAyNz2d7/YsvW3O5bbl67T3VE2KZWatvmXA7OpyBrlqVrdd73HIxdU30mfoDw3W5QoOwvg2wyCPGHLy0WrlY7Tttjid0Wq3HYijvqwf6xRflkJnJSAt7+OPv2usbRYOG0hheev6k7YzfXHo9K/jle3/rV3rqBvJBaIhP40cxkHIS4BbmEZbZnrXT4qvmCCa8pt3MPzvVdhV1xiOqtM+TP8XisVGBBeM/e3mW0gOyUKjwuy599MsfoLZgTRUncdGQhlaq1U73YbgKFtb8ftff86lA3hXi77YF9b7ABllHau7X3vqagWE8XwSz8NVOxnc0gV8vX7yF9thSN7pKKGP7L7P2XyuS7tPcd0gZSmKFj6c/nSxVUU+N1hIiLjw+46EAXaO0ZHt5nv3B6N+e9i7AIt7nqVjTbmsHP/shO9V/+z//RS8nPBJcb/Z8tscjmvGdeObn4w81e5Rw95SI2fbl8S9/tMRU/eMTU6utS/jYaEU28jWKRoTuKprxgHnJW+cSiyMJrfa3E14ax8ziC+SpUHbNgjmuJiSjJMOE9J2LyXqH42T88d+1GV7w2znd/OkhvDIkXUST/fjP5N8RgI2WL+a4LylhqVfHKDlxmRjbIbdGy1NVKG+ly3DlV/5oClqGXOP+ZR71M6ub7QEp6OT+4rsvl8HnCDkEIru2SPOnrfDVoRYGj/If/7NHMqBzn6+IK31yv+3Ec41GfCTM8K/riElrXYejP53Y+vEp/OGTbk3w7vaD7OZL6tO0/17heLqUeLFiusV9CR/hTprNzKf2LX877yO6JcOdbaZa8IdR8ip0sd4bkljvF6+F9X5CUQYHlppBYg3pdvuApy1tyfpASz55ghyufvxBPRpfv1NKBOBdj1/mbpMC9StmnrVkyC7E/cytMt9xVGnNgZ3/4g8PsKFrckqOmM7rxV/ixgMf9iKzSB+2Mo7iCqY47Zj9+jqRfEqdcJ4FOBLP0VVEp/3rqrG7auNe/fTWQO8j1Qxv4ZPt6zj39XnmHjzeJ5HK3rIq+sImKtyDmuM819SosWu9hDlfp8M5avhkbS1BtYPAZkn7zvlgrppUXRfV8McHRsORS+jwcc2OSqi1VK1uVyTI8ZoqPz7v4FMO8YpE+Bffm5U4zyJ8JC37vQ+PnzQGdzn+BwAA//+knUnWsrwWhQdEQ0AhoYmEQgoTBFTeHqigKFImAUb/L/y6t3cnICySnLP3s2Nypa8k/KvGG76V8G57D6ZvChf9qz9jvP7PdfE+P76QgUCQDKZ/psznwhim0Ai/MbMG97Ysp1PnwZvwFxO9fCPAeYVCNXqDP7ZnZu5T99Rk0Oksi9iKLi0zks1aK1ncEqskn4qCgCZg5WP/+MqiWKMIwOVzZuer5wJJkYMEjmDWmJt9bV8S5v4GzPm8pXDtl8uMpAPE7HQkVWJs0eDhqPw3PgE5Xfohvx4fAB7VlByq+rL86jlY+wk7vqSwnx/vMtD66tMwyz/1fWO91QEmdIuZFc4k30qNf4G1Xn5ZdN4JC78Wzw6+WlJggYX7fpr1k6F1m+DMyHY55osXEgpXP42VFxziyegFDE73cmLmAq5o2RWhqjZjdcbcsOqc30L/AdZ+QrVWUKrVH0VgjAVC7ObSxrN+klNoHZInQyzt8+WOYAM70t3Iz6+Nh+zvAvS9aLL1Tu5l/Okft3uGxFg8axl/egwkovRbX6hJi80ODm4dseNNEXzqpl0KjONHo5tzEqIp1sMISuki0n560X62x+wAMOBHqs1xATom3j31E0JKb4Xa+c123gggP24OzBwudcy/rkv/+T/DqYNFohq2la9y/BJHoNbyXPs3MBzDxB3cdz7rsTsDeM0QpuKe+7332nHQx6XJiPclaFA76wXOp+xOTCV/LsyTdjactecHg08brhmoz+Ezs0Z2uGMYj2VfUk1Nacr2i8jjHuGrrsXaS6LOYf/2565VDbAXdcbW/oDYbk4D+AjLnKGqOPolr/wI5lIYsBQqVzR/rUqGO/2JqJWxDKz9oFafmTMy7/JXVWWbhbW26ktihUbmj0Q7JvB6qe/keAnu/jiJcQf5YRmIHl7TnEe3QwlqUTyzW/310UKCsNZe+2wiupcNfXs9SRnEWjkSglSKprTdGb/xwdJZGKruD+gZdHVokMPeUaoxHkMVOlRWidduZ8BDvgvhyoPW7+uhWXs3AridRM5SMJQ9T5rEBiRNJoYorGJOBDGE1htYzDooJ59J2DMgPW0Dslefp3xrNJ4NT2XpkHsrKP1avy+/+UV3GHo5WMcL7q8PnyAjOKK1fr8h7/QnQYVfLHNU0w6u5wYQ+7av/Lnjog53zXXCoXhZ9TVUaqg9Z50clsWIZxGBDhzt+kj0w/yNZ6dOD+D01W/k5PKXPxNwyUDPzYY4xvMv56Yg6nBSvJgdHbX3mVmfGtDHL5P9nrecXUuAbWi/V54pVbPyvJiw6WeJ1j5yfT5Yjfjjk8zX8mCZtJoeoNQZLYbm+7z8eNJu5K8Fz22X5zy7K8E/fwFc+1PVqWHc4CkKvzhrcw9sX8/CVPfmTSb72+UZzylDJgi7TYXle9vE7PbeQKg5qGT7w9sEUieUEaju1RFP0ZPnv/dXz1d1Zk5ETcDP4reDR8g2VF75KFc7q4S/9f7A0tS3pDIN6AfdFW/bs+ZPiE8lBJfvmREtOfksvmsD6JJCZt5t3sbTn2bVP/1CvwK1wGC95wGycdMQw85INc/vZgADa0osGdDK+TkLbW3Vt3he9d9QjuMO9A+OiQGQiWR9KxnAz7R8Hb9XPJVCaYCVr2C41t/lr0gPkE/bcNVjMqKKk3CwDTceMWOzQJPNXBte0ffArNBQ/X8841maKUmameZ8m8oNbFTjzBxPsvuZifcD+PFiV6aHRXbirw21+FXS5bN1lqnq7Bd0AbdYMX+5L/71GobO5xySg8QxEuldGWD7V2MSrPVrjoIxgdbdV/HWeP7FkqZ/Xz+ezOxvHYPZib8mdKiokrBRPDR1QhPC+rnVKbzWEMzzuxw0q+1UcrztLJ/qW0mHhbq7svjg7sCUuZ4An/V7ZHEvxvla/3e/frvq1w2ig2sKEC7wS+zRufbcd+isrv6YDrKl5sul8d5QLSuHLl/08X/fEzCJLnSKnmE+bYRy1lb/zVDZe/3s1KEHK4JdLFSLn/NKgBzk7PQkjidv+n5zDkKwibDPrGf+Aj0NTgk0nWqh1azBnManplN/fu5wSix/qkyy+/VTen7E0TKll90Ay/OQk71gubmk1fUBRtVBIf6dR/6kuIhC7TF3JHhuJbDy2VRL1aphdqosfhvePANG9vvMfByDZcnmD4WGo5ssAkXgy7b+9wLGpAwMad095tJIUxBCnDKrKEJ/enE1hJdmMZmtcR/Nl4saQDmRR6IPj9z/8X5o1e2Hbld+PH2MPdZW3kF+PGEcW/6CYxH8MZx2r377SYcG+t9bToU2IWj0rfYNnqNlYK3+O/T0XgwqsLAoU1lLKn/1D1hb9RgWq1PXTylSMhjBpsKv26cArXJ2DcCbaE/lvzPw2REUqlobsYMFt03yZdRvOvzlJS9z7vK58CQP/pkoZsHmYy6TpR3Nf3wMF0hGs2m4ELxlr8MAFCqa92hOYXQ0O3Z9vzHgz6B7Q1raw8qzIZgR82ro1e3I7NvdR2OXPjsYmMYGL00I+pHI6PLjUURPh0c/HbnCwRdiSPxVf9ENUfC/95sKD4HpIGYdHN9oIT99yKZ7GWi0rS9sv6SHWJqetwTupYXgDSfnfnrE1IS3/pLh58qzeB+8RCgR/GHBJx/BmhckoK++DVb99ByP/UnbAf90n/7xr398Xf4qNTGLce6nIhhMWFefEgsFuvhTfX7MQN/uImLeXBVQZcxToN/9mTZ3DPPx1fIQ+s7uRYLcS5bPh+3l3ZrHMReAArGT0HEYVZ5CgrLf/eodhcG9bFnQbD4Lb8WTCm6i0jKXSl4v+k49AzvbxEx/u8kyP4TNDHrNiZi/jgfTK8xB8QUGcbceX6abGK+n2Yd8zXN4zk8akoEnpFv2y09+fB7+HUuNhG9XXIbYLW5wp7xrEm1B4s/V2dAhuu4uePvLm8TLLPzyOMwMGoJZ5GL0jy8dPva+4pNs1L/1y/75G4nsIOSd8STWrR+rBWxbru3vQom/V5AjuuaxkMi9tOY5sOKxWzzAOD7vzN8R1nPdCSMtiKICn3pk+PJvfr7btmOWZ9GcJ8/IhFqmS+THg+ff+si6HVnr13blYcsLlCGsSWK9XtXSSjsZrnwKx/vbdhk2ev3PX7LEyKJ++7HGi7rqD7z72M9+9RMHsNYfKpqXT8zuXAuBmi4Qqz0KEQ/GTwrW+Uzh6gfnm0IDZfUDeDqdY398hxaGgalvqBrsdNQAdpD/vz0F2/+9p+AEa0iXMtXyKROJChy/r2nv5R1avryQQSRVCcP29pzzQ/CIQMLYzAL3plVLOLkNqKzQwZpaxRUrnRECtjMDZsgXdRmma7fez/1SaPkJarCwQsPwkckPYhOd58sJ5So8D8GXKl02+eziPFN4B+hI5YecVrxhlaEJNrww8iUAfK5XV4WIyyWt95UFlk/BO+WbFAadHtHFnzeqm0DFlO9U2NOhmt0zSMHJv0h0eo1o4c5mkyofGTrEsud4WZJmd1HeV35mzjvx0NbLWgG+5kNGIi6b/eKK0UvLLk1IbE2kqBveoQGSfN12+NFLNBjuMsONM41MP48DmndahLWL8TDIIUhu+fwwuwxekLrD/dGXYprV7wg65c0nTnN8IC50XNRiusvX39PRkPO/FGDLjuhwnVk83JrFAG31sPAm9QlaWOaKEKsqZMfRbv2pDa4YRm5YEvyI33E3hJEMUzIfiQdiCNh4djPw/p4/5FhHWt/rQV4rPsoiYiOI8ll+395gUQ4jO8uyHTeVr7whkF935n/ORdyHr42s6imwWPBtrj1FShNB67KeLSZfVNCtdxeAKs6exIrYwZ+OohABKU0KvAVnH4nX9+cFY8/ZEp+8IzCL/kUATb0JsbAhbsUPWWlrIIwRwafjN16e+JRqL+PqUiCsGT1+aRBQ/u7pfEhW5n5uX7CC1ZeCx1CiufOj7D8AAAD//yxd29KyOgx9IC8EBBouOakI2CIgyh14BEWQQ2n79Hv8/n3NdAayVpKVTkjgx1eyfs9dMlP3zpEUKQviLVhYsvxpDHBX1JoesxYCtgpbHf34gaVVogVtZ/0mFLnvhFrtUq5/z1XQPs+Cmt6HOuKUiwaO1ZeR3RreJZdPxgz1Ot4Sopx2znyBGRv9zjWJHzDXUZJO9oH5TTENg2wi7hGyQMdllk4/zMrB23xVBOFTIZulawtZ3j5u6PC6ArWHMhOT2e5MdEoX0WQ8+Lb8h3dCtj5+yDnU4tlaAK1/GKj7dkXJL/1rQq+vapNkOLJ+CryuhfnLdsTOndZh7lhmsLgsKdnPLe3nzYdJ+qyieuJXuS7pQnUvYAilm5gqX5Ew3jxeZvbFpp62ZM6kqIcZ+HXTErutbDHHxdACTypOXCk0e77+9byIK1piuGaNw2COM9Q+DYM64uGXIhtVDk8ppNS7iwxxbae5aG8ON0K6wxAMDjwBIFibxEkNGzGqSBuUxKFKg40JJV1nlxuU1XAku4MZl615KHzYHTaC7PJUcmbDfV5gt30AiTeSHTB6DSpYvu4H4p9XVrIaC2k2AqnNadrdn04rYFOA2J0uk/bDczyY3/APb+Iq0Pf8Zz/EUu9A491rn4zHV9Lq1jXWsFHiqGf+SY1AvF4+tRPPQbxOb1/0uDWCOIt9h8ZdkN/A8K/P33+KK0T94rkwjjK/UdI8H0L0SpQZ0rQ8YaQ1csLb88sDBIuGhv4QJ/OtfMbQ6q4xAVt0tdiWqQpTe//+8zf680cwyE2aRktiYrj89tVZ56TBi7u+6UWwj0LwtHNFfWb1CTOpFqFTec5JeE+PYvYeyQUVK/1EcH0Zg/F6P3FkrQMNq/sXc3gFuQ3aUI2TQt+tMy8u1EZMkfG08PNSzGt6xv/4o90z11mJU6/CMr+8SLDR6nruC65CN10YzSgcew7poMNoryi10mnZ02FiC6jRhlF3y8xE/uOn4d+feA5OejCxtE1RbcYSCV9qWM9FzRtDzsWRkjj6Cg4mHZDYHS/T3IjOmc3en6C95vnUs1jUo5iq2fhIUUK2sbg7og3MB1zxnE/zKcUlzXOvhblSfXr4KEMvhklboFOWb4gZvepyyJpzBST+7Km1GiT0D+8Zr980jLumFvMm/Oqr0/ZJvaWXI75y1S+a4tuBmBGa0cANdkYv/RpT68+fEi/N4F5lJjZOg+8Io3+34M7EouZ3MAIhR/sHytanidrGMxHsst+/4EzmPT1gUSZMpDpGDk8y/OjfbsKK9unBlvxm4+dqVnePpafALqwI2V9Oec+KKX2gg5ntJpbvxpJB9pxBuhdb4j8DJxjflZ7Ckr97sh5QVQoWqi5o8WJFg+N95YzT9xrrhXba033oO4iOKOLqYynp1Buqph7mu1mA/NstY/ZwEHyICgnhzdP7P18nyGsRu05buhvh1PPn7qtAjsoKS1XaOjxPY9e4Sh+X7ir1W7fr56YAjFuPnml86EWemy2U33dK8PTQg4miqgVXm1fExcWy5zXu4z/8qUlv55Lbo3UDzZWu9F5tEofJ2/YC5mByatt2g3jct96fvYl5HEOH48JUkZIHylT3YVsz/dBlgJs0J8WOSs7oWtEL/HOTEj9db5xVGwkd3vGuJo6/uJXzPV9EAHDaYjRpMmpMHN3AlJsO6/YLOfO99TYaGXYO9WGtJuO5SzewK77dpCLyFq8sLlP44UnCEycJi6Qg09aN0xPbeAoxrOk5hHrK91PtR3Up1JKd4YfHpJeLXAxl9lCAqpuQbN5f15nPa+tl8CBnk/AjJ2HXfDgjDbYGNe9t5HDe8IehUMWkm/V6KLmI5QykMC5IiLR9T2+gu+AlO48Uf3ohz70vqpPzkyTIntGfPf/4RN2qP/bzfDfPgG5SiI1PxZMRsieHEuKABvtALlmmjBK8NPuCu69T9zxVSoDJZAUpnKtd0r/v6fb4O8EWPsG/eFMkW4HZ7hv3M776DeQor4j3gLsQqBmxSlTlQ73vrkVzLB2xvh8Li/js/Nufbl50FAS/HpgkLMRc+L5pzK+jSYhdVP0kBTcAqtX2pD3uY9D5u+byl48xdYVZsh17KBBI3/xfvJ7a2+mBXkOqUrNb2I7SnxhGRfaNKNavUyn++FAsRUZ852on9Bt5C8j6j0cIntxk9dK68C9+Ert58JrbG92FY+7qmBkfLfjEir9BG7ndky1sN/04RcMAfuUFWB8VXg7KJ4sQ3ceYOntzqtl2aM+AEzyQ3dpZBGMtry6aOdicBofGCb5YeykQ8salhAFKRvIZHvrtIavUJckGURjPX/D7waIHIUwkMjH4MFutQ9LTQgmmP32aelaFlUOOg5UdPL6AjnFGf3xPmGEPjW6O95Z6T3kbzO1Rv+jBsl8T2+l2gcKmSAdYHSViJXgXyNZ2oaPyFQTTL547nbfgDVQOW5LN+pILUTAcgjzbM7Gz77f8Z+9EvcQ0by9W2Vh6iSHchUDM3/nvUx4b+Oltat1iJZjjlMXoFQub7u7Zy+Hd21/oP32JjU/gIuGb2hm2sjnhLupcwT2nC2FxWDp4qUxZzbPODhG7DlvqascuGfLfvq6f/sXt4x0no8rnGIasQRj5fFVPbTzP8NjcBdbxkyT88IIJ+m+2pRtLF8non+YYlq5uYR4T6KeVO7dGlaGBeg9YihlXMsAAypF6/e+Oh5jn7M/fqGs2215JOsMDjgFjlXZLZ/bfiYrQMcqoeV8a9VRszczIG2VJvVKvELvs1w3oL5vQTRi9y8koz7+eVvIgdnlZ97P/LlU43muHrg/eG33NEQp4dtgmLqyoYLpzr9BDSVy8nIoU8cuy08GIm4q6H+mW0J+/oTYuRuqZmiWkONUi1KrtlhyB+T31rFeGnOK9JuYpncp5DpwQaJK00yRiORmseshguRUj2a1WqO+Ovx7GMzOP1B9IFIiY6JOOtcvmVy+FAaPMm0Dw6UXJyd44vHjMKlz84k0tehYBj+LvA9rt2aQXflwFwn4fQoPE7z31Tvejw9MobGC1EAzr3v1ejrKoQ7iFk0vdz3VGY3/vbqBHaoWlX/5gsnZrgCHpSXw1fJVcO94l+OjTBaNabgVLgpuJvGdSEbwanYD9nf/lW8zSEw+E4n08OFh8SZ21fOznMmsVcOJhgzWjjBP+tvIKXZPUmHhg+IgujKUCIN28qSZz3s+HKjChso87ur9+poS7gf6AcDtviH3BViDTaqH/5U/MHmlTsnP9GIxjUc9Ybh9ST+vRL0DvEf7TX8F8s9QJrGuk/Xprd0JJf3OorMXTJMGMmkBEp3yDxrRqsBwgqHlG8i/kcXwhhMt2L+5ouzG6KD3/9gDvaykis4RsKrb/9OQcrBoXfazTEc/Pr5nwxOAp2lTVg/zq/54NDLV/9cFkzEvDYasmv0B4yTrqbbsBMXdMUpSQtU/+9A039riCP7253NZBInfmfEPa8ltQC68fyfzVbwr403ukbpV6ASebYNCX9G4QT1Lakq9XRgws9Q+Y5Q8d0Zf2xPB7X4qnR/Grh+8h1F2u05Dcxl4kl/wBPz1Pym3EHBYvVj4InFJKtvoZcbHfARqts0bX52+YzAe8lxBaLROMRFr3IqqWEgo7c0/va39EorvGg2E9ig8+oWMfcLO1TLjeTr+5iG+l75Rc/+pvYsnTpXXeNQcdIjSRrKZbxqR+PB9vOuAmy7GOkouY2elrotN32eGLYSt129LehDNY1rRKf//53/nXhIvS59Oqv9tIWXNLh5QVX4K1fd53Pz2o//Q8DXrTEivF8DLEvceaWMFBEvNJrSaY4WZi9T2Vwd99CCzKhzYtb6+hHm/9ooFI3XuT3vR5KWouc2M3qy6NtrfG4Z9wn8JPXxBbPfcBW8gxB+UZrchGs2OknD4nDFFmWHQdoEvN/Xb9gudvVvlOLD79+Pnw2fjxm25Z8fnzb93401tO994k8jCYMbDoLVETXnI9VXCwjebVsX/1eQdZNyPROCbxPY8JmnOG4TVkKg33q74cR3et/gcAAP//pF3LtrK8EnwgB3JPGHIHARMVRZwBKgIKckmAPP2/cH/DMzvDvZaDnaRTXVUduiE1SYKUla8tRRUlPz5HH5nXZwxGhQOGi2//8L+fQivcgEYZcgIPh11ApUxOgfRt6IqvBpsMXighLzxkNK7xzHK8PfzpFWcTgIql9vomiFoHmr7kRzAPg3aA/tO4U3ROtGziv/pBedBMJ8LKz7jp6aWQt9GCvf3erOZxk+YgvhpvGviZH0z7ut3I2nhvCVz12eBGXKeufHHlE3U0dolg/Pgxoa1+zab4FMXKL14fqx8nZLe0+OEt9fQGgpkbxLXv1NRQJ3f2/aJ/Hho8mPwZvzj4ZcvZP4bQ8BwRW9eNYH53x5AD0QlJWAu0sBr33OYAyOWiUi0VzmAODkdJPTWpQrYNBuxrjdkZnspbQ/39Me2FOvMdwF7mSM30fjP57NxvwOfivNBcZQ/WjylcoCUvItapbveLV+19CCBc++aFQ0a47eQBGSXRXz78ip/bA1jR+uY+2L/6sfCbDq78AHsH2pm//A+5TFxn2TTUnPzePYCVX9IwAVL20w/qCQ9fvN9eCPguCE1KYvQKxUZq9DTdJgY0m9MXicmVBzS3kgJ21hBSMxDtnk2O1ar3HXMISI+nbLyzM4TKfuHWmuU7WvZN2oFHIUqEq0CXzVf1eIBrfJGpSPuKPnfJRrHe6IxsJ3Oi6SzfO9DydvdPv+IFPZSIPbbUdROrEq+aaQACmisSOf8UjSHMWxAMr4TubGhHk7sVE5BcWIPeHlcHg3a1C5ic15q3vECTdhcu/uWjHx5X9Ex6Att3kVJj4c4RJa8ihM+s58l0PD2i5XncIagqh4XMv/OoyjZXI98W0ZaYbrTkb/kMUlG6Un/VM92y9i5f/RskAWwDtlFFAWTSSGhY0apiHpAUyD+WFonaPgBTdaw3Sn9vK3pd73ttTIEPj/q0RUowW8Gs8UMLy/Sxw04952DW4cGBt4S8sR8qYzD/9OcPnw9c/6p++heelLLBxrxfgtF5c+vsWK/H2GJaxIWJ78n3o+RS93s/MXrVAgNedaHCTscGNgPf34Cf3+kPeArmD715UGTMJtN0iMAo234J1XuDqNV+boD9/IFVb1Jz1YfLPfQmUKo7h+67sc/mnep+ILYeDHtleO45kewIjD0lwNq74rJJrfcpoIoqEZY/d5kidC6E9rf2sGUnJZt3R4tTz7fhRt0q0M3hFx/gy8nY/TrvbKpFeP7FMw42ehXMmQJi0FvWiO2rdGDj64oe/+7vvQzZdJYvLUx0bGH8qMN+3mYlUrapnCJweYrBJDnuGY70daKrHxI05jwZsD0lIzWVvsqWj8wcmBhfBVs4+rBpkzcaEB7BDvH9YdvPq16Cj5R7UMPhDJM7AFDD8CIV2DrYZTQwPzmA+i1RtBWu32Dpd00CHamS0coHgvFXTzBMt8a7Te8GYmoHOXhLqYrEYXuLmLZ0ELxi64ItY/sOxlB4HdRrnDnUavGQzXd23sDSZFsEnmkWsLLoa5DMxoUabVmC2XFuxl8+D1a+vuZTQ1lnE9C8FPJozF/GAr/5rCDxlM/9kn6GA+jvXbXyY5tNLpe00MjCmlqj7lbMsvwT1DnVx9bMSkC6IE2gW11EjHBwNdmj0gsY33OCXeOzy2bw0Hx11W+EbeprRrSbGII1H/zwh00jmwpwOKoEyejgmn9+nx3nGbVgUWZTcz9w8PVy1z4daWNSRSkT+OIQxYbqf6JZkvrux++p3raeuUAkF5B3+hY7WjQH7CYNNTx0DkGfb+j3DJ0OHWCZEaFl3p9M4a4KCjyLHKO41a/R8pU1Xw0LsKc+etFMbKarAA0SHwnrQ6/ikj6BcNVX2P+ce8BGZ1tDCY45kvQGMvYO2AP88D/krk1G4q8fwiLxOpzmt4YNvaMOYBcWGLGzWoL5fIUcXFr7grX1Po/8PuLgTppNerudz4FwyasUFmbt0tvu0bMx39u1IqibFPti2rJm1auK9zqWGPfdt//hDwyGKiH8xAnZvHXfGmylziWi99r3vNzfJBhPu4Goa72DgRB2ULroIbZ5bAVCO3xjwI3lC0nOTTIJXlCuBDsuQ2N52/XLTfnmcBHWmh3uzhmpyiIHn1AtqJOdT8Gi7p1S5B9TSz1v4QEruXaCP38iHHiNcU0Vhn9+myXZXL942IXw+UQn/POjiLFAQXnl5QMbGWPBVC8e/NPb9lqfeJsfqkDnmS7kcKjNiP/dd4yfT6oZgw+EKzgnwFDlF0k+jRGt9aUEZoFh0bDTL9k0jHtLGbIaUVS/46Dl8TpLc3aP2FrXs37hEQIJnD4EkLL96R/hF19o6U8j+PbvswBf231GunJ5Z7yYuC1c14+2qoyrUdB856fXyLLiAXs/pQ6+pUTF+rPsAHFFI1Z7vxAw3rtlsFRtJsC1PkH1yjr+3Q9oNIqHxHuxqUrvfpwg2AcXtFx1kfVokyXwlRePlS9V/YyjJpZW/4Ta11eVkfty8NT74/Kl9l4d2I8PKKaSxFRz0BzNTrH7AO0uJfTQXWi/ONbZg1JUx9h/aF3w44OqmvsJRT99oz5OBuDn+wdx3+crGMiyLxSp9WXEZ+k1Gn563Lw0y1pf2mXkmk0PeOKcBxEo5PvRXbIFPlwy//zFgP388NEVDepLoRVxqx4HG+8W/uW71T8YfniL2Iq/U2kjD654SPh215hzcLhJ4McvHfaA5tApDw4458ShiE6E9Wt+B9Loh9jTmxz89Cr88R2UeUE2e526ziYp9vgCtjhYRIFMUKk1jHdigYKf/gJjCinWf/oS5hcPyNs2pfh+Ftn3mvOHn7+A946qVNPNjD/w8HR0vHuOc8X2g46gyGabrHw74IdgOMHULCsaNsfOXFyoEhha+EuDz/sctFDlITyKzffnj1SsqWUL3AVTQXKts35yI9jKa/4k8nM89swv7v/82OP7ToNaaB7rm76ax87xRgIWGQWEg/d4YaS2TbQcn3oMK512SISPc/A9nWD6w3ccXtc3luLF3vzhe7JZZ4093NqCHyFu0bLi63LxPqG6rh/rY1pF73ska+C9/2xxsEmmarlLQQk/InsgsbH4YMK7fQrxzYzRFtszYLH7TaEi1Qu1i0brhcnTC1gNm+vvvjNSF3wOimHcY+suK9H8qw/Ro7BgDe5bc571ZgOHHbiSSzhK5uwcxQm4L6DT3eqHCcrk5coud59oUI24X/V7C67fkhFx1ZNDIBILbJemR5vVr1he/Lv+8wPw+dtWczcApLyur2D1e8e+eY1qDJ5kLomAryqjb0dzwP/1pkD6328KBngvqX0HezDD5dpBVqY36qgjrEhrtYaSpnZAYM4J/VR+E195a/qGHqICmYt0OdWQv+1Usi3LJGibqpLA82oUpHWTqFoCVocK/yUa1vUbXxUHAhC8X5mDOMs3etGMog/Y+psbKUEGKzqPUg3l+4Ko5bSBOfAsctRSyyK0qXQ7WAp8T+E3/OjYaJZ9NWgPrYXNbqdQLJz0tTeynqiHuuqorXeLyeTXeYBA9UyqbZOTOWUDhyCciYH6QekZ6+e8BUJhnZEyShYTYS9/oL7kOX5Y8wCWpDI+qpF+LWzHcRiNezk5AN3yYnzb6ZbZKk5IoMbDnoYlL7P5CQqk8nwVYT3zdcCJ9i6Glv2O117SfETfsWRBFxcBkW2AKvGynwoVXzYETVezZeOxlw3wNY4i9V7tYJKUkxZQvLgrETOVY8y2JggfytenWESnqK/t6gNPdr5Bi2u8wYg8IYbefjNgbf/sAP0md19JlyOHkd6LETnsG18+wLeIA39X9Gw4jgUY8HamroDP5rK9fQtwHxxEff7uRHNbvAgM4RDT/PvoAuqN8QN6yuOOzSd5BkNTVQq4nw0dgQkufbcPqwXyz2OKHXsOTGE+mh28E2ODzccyAiJdTh/w4j4axr1fM8oRsIHh4apjF+eGyafbEcLnOwywcaNV3+3Smij5Mzeo29jHYCxre4Ho9QooYu4tWrqQIwBF1wIb0sMzybQVHUgvVMGWVN0ydqz8CQK/4Okp7Tkwqc9RUVKSRtjBHG9STV7OMKefO9a6fc8Y7OdavchViA6f7mgyxz6tvc67HrtyZADRvU851JEmodkAA5s3+arhTrqO7dme2KKQk6MmoMSEXLIiG17TNwf80Z3IdLPCbKz2kg8mZRNjw38X1az7UQstnTvSw3QQglGf1QkejPxJ9xcWZRMtvgVUFd3Gxm2nVmx39Ti4+ZQCIkPjBzOsshhK+faCdzYg/dTA3QAXOvtYb8Ysmo9RhuCYNyo246kJCO/zBKzxQK2tb/TtdEtCcE43B2peEAVTZp+cLTnuIOJOOMq+3oUp4OlxPI4v63dGjwWt87DSCIfMaIOFiGUCNx6ayPaUV2xWOgPC7Ss80fAle/3UqXsHdOCYYF0G+4Bd+LT94Qfeu16eMXejH2Chfr9kVpJTxhLhYYC+1iwa3KYWUPRdErC4dfn7/9jkzeoHynTY4Jw3g4q9Bv8M3mUx44veLcGw64YTVN9UxftaFSLWPj+5KhylL01npa/6m1t+YMp1IdVjm7KpnmsObrTTBrGCHTOmLy8NTmkkUfxt99V0ikVHCSQ/QUICUMBw+bVgRuaaBkdSBpO9Ozhw2owZ1m9t19O7nrfKHMoO1c+V1A+3DBlwIo1Grel1qha+ykr4pNZIuAOazIX5uQaSl9sRIbpiNhtZ68Ojp+4R08xdNe8ISMDbP3v4vq5nOMVbB9raYUHUOz3ZJ0pCA16VMcaed38zElrTAndE0bDfXTpzyve2pXTs8qH69m5lU3fpILzo5xp7LdF7pnkbAswnNtBSRXrFGXuxhNZNeuBw1C3GbvFHgULhnKmxKDs2ze1m1UyegI319/wAEUDuv3XcTtBoBYrDUY3N6SLLEzRfAaOeJlkRG4wXUp8v/UGDQ9iBWfezFqx4Tk35tURT/EUbqH3fFyJetCJjxwU7IH8lDNuns12x4+m5gWhcbOqYk1sJ6/qAhOaOaseNwKbdCT2gU28DMmf+i7XyQ+NUrCRHpH40veK6S7lRzuijkM3z0WVjWe8n2LstocmMz9mcHZYStIn3oJp/u0SEy9oSfLzlS1FVHIM5iqAE5SwTyPzFJ9ZV7aYGy1tqaVRyXE/Ven10+DRe2DwRLZp6HkxAfn4quk8lO2NJcyQQWLcEcdfzO1oGx3bA291OFH0tms2358UHMMt3NC6ND/uLr107VfQpRXU12/wuhvKxOiPe/KJqCTIngZNVm1TnBBDMulF00GyiA9bwo8mWp3DnQMyhFqO7pgNx+95tQI7kLd65cGb0VA05TORAxPvO8DLWHQMOWiPbUC0qiMnemxTBZ9goZMobN2CCy4rfeRHl2OzMeX97eXD69Agd9ussDeFJHGX9PQJ8tqlG/mklQDI2CcX8AIKpU20HboY2wn4xD+bceWMNw7rb0QAFbsRg0C4Q3XKVZuYWZqNw+E7AbI4H7C8CBMS5fWPlzKmI7k8HqZ/722LBoXy8KXZZ1K/5PATNuzqsni5vzuDkcFAJ13itjzdA8Twm8Cm7PdZ3GYwGPpAgaMzcpoa7EU3mvHfLL16x6VQSG0/hToJ4LxX4zj6faDlOng+Tr55j72y42TTdDqHKzxMi3/OuyFj1TgelcbG/zu86sImtvbgMrXXJTNjEvttxCuFk7HvSl0dQ0ZjnzvDSX1/YVmkdLTLfp0Awhw1+NGYAZl7sEGiiT7HmwzKYLt7GA5YU1tjSmoYtnSqdwfbmW+t+huZCpdCCy7OlRFrmvhrsXWJBznrW1N/qVjQ+QRGqp2wQqHdS+YCprP6A2FZKHHSyl03ym3HQc0WMLUxNtgzrFwZuQzgcIvruF7+fEXCzy4O8U17KugxWEwQEJlQXeLFansJFgObNfhPuk7/6GS9FC0+AP+IgxRyYRgTOgF1Vhq9IgAE9X3YCNIxapFYpf8B0ZYYPGbzFqF/5yLRJ8g+821yMHzwxmCDyOoHj1pkIr+422dKGmQYMsgmxmUYvQPmm7EBCfZm6rqhV3Cx/NdUIn7dfvIOvA+EZppuSUPue64ycnpcYrPuDw5K/sUERtRjCy3mge/I6ZzPNrh5At4dKdxd7rpiolSHwx/MLlf5b6zlvVmvwdR419sZBrsY1v/7wAuPSDE3+WRkJlFXli40CM5Pl8jqf/L4YRIaAgKEj3gKLy1PH3jv4gK61Ck397adbfuxgOeypD47zTqA/PJ9urOdgXTsHbDynD5hrnkH4noacohMnsD6YtBhOeXv45SNz2tdxDNP47FB8uLsRMVC3wGwQOOpspgbU6pQQ+Cg/Kta0uI/GdDtuQEZYTZTipAX89WMtf3hr6Cpj5GrICzhsIKaR/tbYdAt1At7po0Ji3Xg9N5AuB+kh/GKcGy2Y4rVvjv0pO6JWN8ls+WCCsANRgrj6/jbnA/PPML/Fb2zf5GadF/+ogVHSEw2FdwnY6dz6ULf8GO/Zx8kW0GgLvIAnpLvz590v0fbjK6jPRmoLvsFmGqacovGbHvH2fmDj+T5Z8Kim09/+j5mUdwDqeo2d/mOxhflnA6It4an93WbRPEbGAzaykCBxIxZg6UJIlOfLfKDNRQmjJa+bFsrZTaCG+eyDdhQuubwRvkcCxpsIWva9KooU8xI2YEEAHU84hGF5nKmViprJV6p9gPsPT+le9utqcfSgVPaDGq5/W70w7ZIWfiEnou3m7DL+0xxj+Ci6PdVS7V4N2ht00PkAQHdJG2YzG6kGtF2uUL9lC2BcHPuQa2UXu/y0vum9vTzVqXyB7or9CMaKT08wbG8IbWYnNqf5NiuwsrbHPeTNvqdPZdiAFc+pX2Fu/Uiel+D5M1c0WPGcaa9zAes7d8V33b2ZM9bfBsxfKUNC/6nBVErnHEwcJ2N9uHgZIWKXQvvxyPFue7tGozAlEvz49IZmRXxkExasApzM7oskR2766f64faBXoze1lS8Ck2xXGpTFOaRr/u/59XzhhPI3zZ7zELBLTTlow6UkPNf21bjsHwhe5ibFmPVi32ft3QJHTdao3W+ujAD31kHoBjqaJMkAAmi8BepK8f3x/2CK5IOlyubli/g4HqJFtBxLkWJRQvL2Jmak8sYFqvcvJTD4TgHzHqkHYwqeNLyOas841PvgnMID1vqdas6f5hbDTZHdUDtjLhpE0CxwgM8SNXJksCkbYAgrcK0pEgLPZP7WauGwNNp6/g34u7+FWRyxFc1dPz+6aIAdu37WmkLVk2GTGpBh+U2NFY/G+HFb/vSl/xxktuIxB4+uccdOCo/ZT88ot1mqqHWJSnNh5SyoXyMSCTknF5Mycjqp5w0/EWH0TZMvqsECPf4UpM9ORbAcrlon8/e4Q8LubLO5V3xJ8cf4hRZdZYAtaJdDsyoDquGHG4kTjMKfXsT6xJ2zBY/xAW4tDlKzTRY2HbHlqMGlf6MtC4OK719vByguaKg1Zqr5vX7C5U8PXSo4ByMTvVLez6cLDt95la18OIUKMi3sm9kmoK8wQ6Bcx9nY9HXql/o1HmAJgUm1q+kB4WIkFrhaFxNrumRUK958FM661wQiavfsYl01iMvYopq4zmP2m84Bh2S4kvtPf933nwVs/KD46fdsabPrWfWeIEfbspSCObmW3u+8kIIslE3pkBbgosc1WpplrOh957ZA9PFAd3gj9XTVN/DafQAZ32lWdcdrFwMpFBT06ax9vxzFYw6tzVmnOnfF5hy4Cvzpx5+/AGb2KAksoWz+9q9nq34FURpcqXHujtW0PQYnoAoHDV+Pd7sSmqiOYekUE9UcIe0bb4xzqLtyhnd6XlaUOZOvDtJwpz/+OHjlfFKbfdys671Ey/z95tB3nS+2+lTu5239IAC0AkD8t8CZsL19S/goa5U6Y9NGf/xzGYV05RMVmPsdPsBG5hK6XypgDv8BAAD//6RdSdeCOBD8QR5kk4QjssuSoCDoTRAVEJElAfLr5+E3x7nN0fc0D0l3dVV1FtCcS6XWrwu2uupazfimCXDWtRptf35AX4aJcvKajKz5F5H4G5Zw1W/4x9dIHC4DxLnlURQmKFoK0nFwMhodmzf+ktGF72u4jk+vtqr2AkDdRkY6NtH32TFvdj+lBb4cWNcYnF5ev/pP0DEsd60nJRhDpiXgvHv5+KAKsJpAsB0A64qGBp9sw356VZFzRCnCYuktO+MzwSQQYqrS+QuIkmzb3YurVarxt100gQ1IoC+nG/zzV+afnlZeUKLm+v5WfVqAoDI67KvVbe3Jxpqy8llsQCvWl+UgJ6CVgy/1luLLiNWOLSjjIaNhAENPVNhQA1sRjtQ/dKxnQ+cloPErguC4r8GCiyuEV8ZHmPAOZGw7rC2MXeVjvOqLQainAo75W8HBhmjVtB+bFrabS0LxNXtkbco0R5FeYUH9WlCi9lsHNayOyeeHN2Dq0bUFR/ZENEGSzjjfMEt4/tQ59fJQykj18ho4Z9a8zl/qEY8NCEYkf1ALzn1EjgXrABwvO2qksRmxlc+A3ZvLyXb1t+bUundw9XcQF81dNYH0iKBxlQuyHMpztFyzOYShkWGqfZMeTFtpvEAblx72ed3rmWlIG3kcHZVa6KSAz029nmAcc+wPT+ng5j6oEM+o3gkgGoO9Hisr/yZsW/IVPZ/7Eqx6ndpvi6uoU5xcOJ7GDHFW23tDV9NQzml9pzaYvWgaSFfAdT4QfxguP7yU4fX9bamabmV9TjdlI8exwOh+vU6UT1MnB724q1f/wK0m6/uUwJ67+tRUyRNMWnOPd2/u8aIHTXyAmXizA439Ot9WXejTiFgMTaE3sU6ugj6cd7sFnsVBpKZCjYx5Iovl+eDs0bpbG3xDOevgnhwiIsnJ6A1+LMWKzroG20sQRIyduQKQqIxpcKBv9p19+ITETL5IXvXY1PEnC7hpYNBD9GLRbNVJ+dOr2NjUeTWkp10spxtJpzft4YOlD5Ib1HeLvvLjQW9ao1WhecIlNoEjg6kjzrRzcielLqrkbJaeeAELVE16NQGplp+f1+z2D5LjXgBjaRQt+Pr1Hh/mJIgmP57iHRlfR7SjC9aZerogoCx2hF2/FHXWHXUOrH4zxnAJe64M5RgWw/2BNacxvHnlDztOJQ+qTmGi/+nL+XvKEQP6oWJo9ghY6+UaH1k2l+dDDqTXqcC6YgSeyKHKhUFlddhW48ab1noPCmcP13w9AMmtbhCGp0bG9kPvoiF7731ljT8C9q+IjYY+qOC8bb947+WPfjrRWII7L8owGj6dxy6fK4Fyd7uhaY720RKHC4HnT5NjyznK1QTFUoWIPQDWgf7tGS80cCfHTrn6e2U/efmhk+E9LAhf3U2vD7UZAkU4qVQzn6T6+ctQE9UbDpYq0+fW0SV51b+Eh8HoLc4XxwBoHx1FwRdF4l32QvgOmz22z3DuByVdJAj8+xurAZy8mQAUwt/3WTpcMjpV/OXPnzVCFHrizhEkePCvwa9+61RqiSqzGBGi7L5T/w72Xgz3MNn81VvS+dwAotshxRr6fLLlaXcXeBr7hh7s+xss/RsiGF5IStd6w9hVEAlMMDOop29htPqtDmB1esAHW332ZJnzHBIvt7C7fYYRRce4hlN4TahVahZbPjelg3HDKmys/YkpqIsYqop0xwflJrNq1YPwHqt7BLpdm83FUZH/+L136ljU/PohDGbJWt921VLLugVYYYZIHpKgmpPiOEFhQpT8+hnzI5sNaI36BQcrH6BG/bRg5KAP2k3iK1pO4VFTwrB16e0xXNn02PoGzARxwaolyP1w3s2T0hhvSBb54WXT6RnWIDhtMN2vfhgfGVIDq73vr35Rpo/9qV1ge3ELato9n3H6w9fgrQ0F6qoKX7FimSHc+4aD3avf9ex5UzjYzRfh52dFIpr1Aa76iKJ05wD2iDQOnrw6w3F9N73ZqCAHvpv5g3YkFMESmLf855eiH3+ujqcU/von9HK4pp64fe834IcXRaUIWfupeglcj4uD9+9B0pfLYklQhqn751///H44HxH+q3fTImvDj78RfmWQzIz4EIrD8MAeaod+XvspMGwkDV0jg3jzo9JuYPV7V/+rjcbvNbwAslt8ak+9oLPt+wABf9iXqNFQmM2xXzXwGVwYmq7GkLH9endAw59uf/0m/ufXC8H7SV1LW8/S/1wHuPrF+FdvVv8A7dyj+fnTQ9Rg9eWPrxgNGPuJB5bx41cUZQD3o23QG/z5Zy4oDhX34wP2ezJovOgHIP74m26u5+RV5FUtGmE1PJ6Rg8rYe/fT6+K1kP8OKt1LVx4M9mE3wVjYbbC1icp+CcftBhiyult/v+9Fmrs3OLrfAHvZSdX//PfVz0T8WCaeyAlBCIXrRkDX+PCM2FynFuT78kykslYikgdT8je+e3iX2XLLTxtl9QewM0xt9uOL0PAII9Kr9b1FS+4TXOsR9qXGytqm49dzL+srgtJhry+igQxgCl+T1I7/zZZkHhF4ZnXx8/sqdnQHCI/vpKJBygnVLM8KBGt/kR4290afNV1LYEdzk2YVW8D8mx9ooiMR3XTypuo7Cwo63qb1/ZzBbCNH/ukpMpXe2+u776uFYSNraGNFKzgHZwFEsHVxSPDSD/fxLP/0HFV7WnmL7WzW+rdUODjGdsZuz86A9uFG/vJtdlBZQ9ENBmyPDsim5fSslV3azWT3mZxsjsBD/fEZBHy31qcGtBrwrsLp7/fLgWklUPR2QQ0IAm9W59wCYvPRyOa1uQLCLykH80ehUbTv02zCZ0Dgd4FnfF757NoPCeHmcvbILlQf/cyHqgX//JrWSrLZzKsn/OWfk+huP42fowNWPowPycdhfI2unNz5ygnbZ/UZUcfkEpCDbCKCPn36n18PT9VsUJ3fiNUMdK1UugMKKAp5OaMXIVHBHG9jJLLDppp2byAA9c2FWM0/H28xkm0O9jbIiLThrx5RjU8DpRg4K//OK8ar6lMZtMTF2JFM8PMPfvUQBymXVD/+B2JN0qmRn5Tql8+wfsw2dg7XVB/NvCrhyvepqqQEMOu9n+BNUzfYe527aBlEZ1Dm7TPG6k1VKjpoXx982ABw0MCFsbwVFpienoTuXSXqmT+VmmK86Yy2XV2AJX6IGvT2i0nXflPGNuDR7H79C6MrnGisiLMBxmLa2CJWHM3M8uVfPqAvCUX2i294/+xeaMIKiyb+poSQqqpJo35dUzCFrw14dYcbDuIj9OaHOzRgn9gW4VWisk41aA1CiVvo/pDlGYu46a9/Sh/WEUbzBp44EE1ZiLbyHOjTKJwLWHuPLek/SdDPqz/9/9YU7P57TUE4fjTqS0HQT47JGugc+T09zPVLb2ZPN2AE9RcqjtU5Y2WuEqjFh4Ce5FNcEbdPocyVmwGlhVV5tD5uNWD6pxjjCJ/05fB5q6A48zNaOn+KCFPQDdoNfyFEEHJvWT6VDDB/JETMtwaYkXkw4HBaZuqep0M1nrrDCeamjREwnXc/P70ggcsJuVhr2kNFxuxag+vcXan9QlNF3lLlK+/wxKg1e7SaI/duAPtbDaTl7Emftb6U4bmaLhglu0c0X9pks/PyLkeis1Mr4foILLCPaY+DIST9PMX5Bg6yOCJgJ5o+NXuBA8faXbD/7lS2fO99AV/pfKN2vaTRtG02BSRy/8ReXBlA9MOkhGnVeNSU+8Yb9sdzC1qrPdM9dIuKe5uar7wCKFG7qeWKvN0TB8KjEVB3370zctXqEwwuaoLdk18yRtSLA0/SBhK+amWvzz7lAuMRtVi7dgsgLtq6wHtGTxxgn2XTF+wgJKl2x+ZGnlm/30wOIA8JYyds/L6dv9caHm9JSP3tzOkzlIYYvDC5UyNmKluE/SLD98F506SybhmFSSdDYScN+FA3XUSrs3uDAhsRdhPxAwYf9glU7kAkfP4c2KyfeFWOqs0bG30SREOYyDEc79MV20sW6Sx9eDdIT5qFGK+U0VxPwRNqul9gpx5C0Dkn9wn3fktosKlx1oHqM4DK6gpqobmLRreTDbm9Jl9s3I9S9tk2TgM1N+6xlko4Y3q5kUDTPd704Ei7bGpnh4DNpnxiL5lf0XxLnzLsGBiRnIgfttTHo6PIztnDerz7RIuwlyV47Z4edrVZ7/mdvPFBbcQZxtB9s7npVAJvbMHYeMF7NNnRhJTjqyjI9nhHbJ4BVUGpWpS89O8bfMyTKkC32Dyw2/spm+lmucHaSDJqelHnTeKu4GBR0Iqiow29xRe19T47I8NqxE8V8zdEAmu8oHkdr31dvQ7ehe6Dzfw5gPlBhhyCLJsQPBr3aImvswW9ml4xHox9P+za5yJWsbyjOvwK/RCyzAG5j3Pq97nh8TQste3zGPS/eOyH+HEk0BvfHj4/o2028PqzVhhxXmii1b6fy9c3hsFt6CgWRcYmQ4kd0Fm5Q33v8YmGxE0WGCzzB9uP4BWN0TG6gEWOLMQud+LNJQtlGNvvFsF5f/MmJ+0dWfaZgTqJZ2zQ131Il4unoPDsyWz6FGkHE/ua4eJ2ekYTpq0Ptnufx7G0/WbL2GiC0uTYxThMpmo6X6KLssY7vXXmtaLu+1rA6VvW1FqZ4tIgc4K0Fz7ouX/hf/EnBOKdIkZQtdhXlYMfKzSodnDOWSvY0ROqlrGlv3if68ksgXoPfOx6GOjr+Dnoye5MD9ebAFh8KzZrT96j5nLhovFkdS5UdkNC+t1tiRbnpJWAWTPEbvz1IqrFJwJlcRrx7/kmga+kHeCLDu/jG47mL8IFJE9h+5vfjI2uLcPyfE/RtsjMisx8W8IfHjMYKFltCncBNFV6odp3Sr3l3YAWQrF5IsEL9J7ZS17Lh0epkFooVcaFLHPhM2g+2DFvV322taaEmt2l1DXsgP3N98P4rUkAsJqWLIfwpJ8hNpSORL29xDXsnx2gwf0ZR2N6ggVU7juRapeK65ckeQ9wenYL9c7oy1iwfd4UGT8uRETY7efWjUsoEfeC991JYDOoDgLc7FlEA6lSI64blUSM3SP8i6/x+9hqsG6CHWFKDCqCL6GqjEnrk9dz3Os8R3oZvLywxvb+yFjbROQCglYxad7ah2xSH7cQrHhDnRbk/fDlQAfKIj1Q7z3ZGWFoo0L/Fl9Jxx9HnSVZWIDiFnV/8cAs8m2hf5afGPu2AaZdsvMBhSyhRqVn/dIrWwSEWZWJSPxPNNma2sEZ84B6mLv2y1vqEdzyRkijy55j80VG5Xp9b0sf99iO+AVdXLgkrU7di5TqM3fSDbjmJwHJ/MoWwR9cAJYlwQeeDYC5fl9DyakuGGsj17OHzC7wqWkvbEhxnY3VcKthIU13HHFC7bEdf6//xi+ONtSn4jBuQErdI+Fq9PRGawOeYGY0JUc17vWFIUGTJfbaI5DmTbTi6bArcmWDQBtQxlIw+PJDKG4UD7TpGStuGvTOT4w97vmqlqObXaBc3kyqDt1TH0J5PdfD5ABNzee2GjbbOoZ19Xqv+GtHQ/y4EkCyIiEbbA1gtsrTeusaP1KUR7ifE+Uqw3hzSKlpKqouivothIfeNIg4mwedcV8vhLedK2L9nhZsuG+4Fjo3wtCI26Fa4tOywH3PSzgXN6++L6XvEwZPO8Kas0/1SX6VBeSkc4yNb+16EyJkgME50ZBMxRxMphMUoDhmEoqSvqvG9Covf/nESdtDNBXiJgZcPRyxkTcsmjXHm+DlPexxsX1/fnxCgOJmEPDZi1xvGnatBcrgdkPyWxgB0zmSA/ssfwmAUexNwcmU5Pkr86RRtFaf6Ua+wKIYK7zyC33Zvs4chBsyEnHJIm+U9rCGllleKFrfH9O5JofOYTGwufKHTxpkHGQfLcYmLnnWuUh0wRXkMsZCnGeTLPobsOIN2SbptqJcmhEg1E+Dmtuk16f7BnaQq8mRFArTwbJ93TkYNjmPfVLP/XLPgQ/fNzPGqX+3sxluy1Y+d/J7xQcuY5JtIrj+P1Q7sM1YfRQ1OCVciK/c/ltNYSInQJ7aJ7XQ+ejxdlxY8hsnOvZ4r6nqq+PLID9U69my+2Wtj42kvF3JxemSMa9dRv8Ji0MMqP9Fn4qs9R301+eI9UR9V8vOvYWy/TYZAd47YOQVVSq0NMGgh8+jZ0s/4A4M95tDZq20e2HMjjU8vQSKqkQ1qyn3dzFc+SYCybyPOLNuQmDr6IxdoIfRlIy8tN7lCIi0nP1+5HZnF1A4J9iUdiUbzNNmgIdv+qDW9VX3rL7wMSjkp0Yvtp9H8ylocyiKzRf/8GTaNkIOt8/rlh56IlYjHJkFK89I0fZzTqL5Yd9u8NyiI+FA8AZNsZwJJKl6pxfX3OhkbwgEfk/1iHUjPYCmk40TxKM/EzlZ72M86mcLQr8RaRCW92pxSBXvVn5BfRuo/aeumgYucHtDW67ceQu4bAogzlcPVe+sBjOzrwIMmnCm6Lnhqn7qzw7ghf0Ra514jlY+DWFegAlradBlRJi8EJwm26WmugDAxm3SAJklHNYs1QYE8I8TkCZh/OF/xlNzmmRDV4/0yKW+vpyQlcAd34mISTeXLZfxMOxs37KxWxI1mmnYaXB55m+Mj3fCRmC9NHgbuj31/eslWvjhksjtK2tIMT8Xb6krh/z0CA6+zl7n68l8QiP5xus6fjujYO/coDxCDy12cmSVn9kT8L7eCbtc43hzr1xjOLSHKz2ciFZx175WZeYFPNWWh/Yvft8epkKtz7zNptpXn/B7HWSqJmSJZpevEjm2Py31xGulU39DZBm1tw/VbucU9N2hjcHLEnqq7c8a4LmTbkEP8A0CsnIAg/9ROUX4oAu1Sav280W2Smi/bUYAPd91lvd3IqPeAkTu/RSwbXxU5bt08ek5N1g/2NNRhW7KnahfaJw+eyffh24BH/jOON4bV74L1udHm4tRgf4jazUElu6QXUyPoH3BboEbezNjTbctb8xG7wIvA4ewrsSgX04IJbKSzB1SIlHKFvUEEpi2mkFtCF/9NCYqhPGrKxErZCFj/SRfYH2O3F/+9j/+CwX4VunhNbbVopdHTYkbK8PeN0YeK6VvKa/Pj1GhmNFQNGj5w/uZDRbgvQoskOO/KhLIaQSTCpjx05dEOsOkosb2MYBo4FJ8eB9p1Kz1Fbr9/YwUf5MAltvCug/gc6fWrdWAyIXnC+jIy/jDz+XswQKa90DHh56k/deF3w6u+pc0u2KfLW3/NJQjJRJ1PofrWl+6HB5HrUbSyj8WPfwW4GkMPNq44subt/3L/+EDPhjfoJ/0u3ODUQXfSEHmWae3fC4V87FLV71oRgLoGhVmW9JgjFUrW/rB7mQ3MUZ6eGl6JewZtmBxSAACjfiu5uQ5W4qThDKRDMrpk+hZOTzy5gsb6VBm71++iPvtl0y8I1ZkPHQqnKVDiOo+GbOl5qQQ5reHSM386TNR0yoH7L7OHqs3pfDG2/eS/+YLSapB9RnmXgnTmWvQ6dqdGC85iwzd6HLF2u6De+I+GwLbYTusfsTYz/MD+WDVh9hf+Rr1ZLCBK//D+w+PshnhJQFzaMUEpLmVzV6u5GCIy4RafhUAHkpDIv/qSxlOmr5s2tyVyusuxHodN/2il1cVdm3aUF2Js2rVEwgsz+KNupI8s99nuezELdWOoppx71elKg0BBdK3peRNhzHowBr/SKzywBvnr5jD41tKsekIL8aqufeBe0cyPWi+6U3ykK16ccLUN8dan0GnutB4vCxCxqOVTfn35spgk+RUT+2KsfiWbMBsRDwN7KsKxLobZLBu5EYi6iuwCJMeQsMuXKoK+MyWZq5l6C0Kh3ZCMbPpx5+69CZSpLAKLJukruFJDFJsFgqvt6NxvCkX/y3QYEwHRn75FPpXQJH0DwAAAP//pF3Juqq8En0gB9JJiiHSSZso2OBMbBAQUSAB8vT3w32G/+zOzz5CUlm11qpQtc7LPzwRiwvG4zYwW2Flr79wHYUbm/lRIOdcdGC971tmtVNdcrY6D6iqyYqEibZALDlWOlya0J3xO89o7xWGJtbSZuYfF7PHXear331XkvCKRER3fnLRXrG2Yf5orJMJwaECdqtDKhxflTnKXayDSB5Ptrk7pjnKl+8VVBPFxDaqh/k5ndUBrqexZHG6yTL+uMcVtKQLaLP3ecZ5WFwhTvWIBN8sTMZ77sZoJ8kO09HrgcYaKTEUSmoS/XQ+JX/+yXwemP5Yz31xpN1eI4MoMvPardCY9EIIv3x9P64eGQ8Kx4JZH7Pwco8Sqt+6GuLr3SHWrK8m43kqwDDxnXmfHJndWhAmYLcqnPm5lU1aPH41oYCOmGc3MVlrFAaa/R0Wjms1aJYHRwELVyf2iKsoEFttd1TdRsMsOHzNQITl9wsrhxywti20drKNToBltj6Sxl0s+fBxyu1P//zxuzm/H8H5BBlW199XMutVQImw2uNfvuhJ8tpq9mWebfrJUfAdxTzXBLHV//BPWi1zgK3AtsxfQWzKYUYG9OBzX4rigBFz6OcLc/wRo7QMzti7wJr5jiY870/CM8ts4KLVAxXdS1PyY73uYLEeE4Y7MTL7tzAuwH6vX1jq3w3ne01y4DDpnG12bpeMuEtccFLcMfdrqGjY3oYGlpl5pI1v34Ohz1WMDP/Ysh//bq73RoWa0P3shzxLamWXDj1V6jBLHbty+qz9BmRfzLD0WIR8sHJ+VIfFKmRER7tkcG7vBfz4txze3tmPv6GZPzFdWZ+TIcyNP78Pjxf5VE7NWSlgM3xUFvmxUcplvVpA0kmnOd+tS8Gy4gIup+VA1ubH5tPSEg1wmyXGAo6njBtG64OHa8wcSjeBHC2bFI742eB2dYmTQcQ7AV2VxZdscGty/rArCrFQmlQiV5Z8HHtUQHReDA/CLZ77tmp3qE/jDr/dVd62s17SzsKxJ/j+7IKuXi8kBHKVs3Vi2UFzveeKdj3xkpaeQdG03Z0pUvtFwNarXjJHIlsXsDE0xGaoRRRhGwNX2xNziOK2k1UHC6hrs8OwX7+Cnqy1Dt2jSSDr00JE3NhfOjSN2R5rUy+hCaXSHbqPumDu3k+S4UwCrF426zVeHrmCutVxxHAW9j1VpbT982+hdqsNMWT/bQ4j8ly1eZ7reT3nXs2Ps4+25fQkEbqukfTb3xmviHe+HNEfP/r5sceF0Cb9krgprIfcx/A9vPhwRWsK3da6sdu5fyJ+GqbFyr4Rk6xVYZ+JihxsQc7vV2Ll4jIYKjVVoc+vlGHt5LdIecz8QruUxNhMrdnb4RBqYwoOCR2hSGif7WrwqlVNl3Kmtj2HPIdFePkSP0nW8/yd1QRRVYa0m/3mH56DFi5dDNpy4Lw0YwmoFL1JUMuvtrvvHyHaL1X44XE7qTWyIDf0J4Yzd5PJFT+Nmq7Ngdmqvg66+tJRtJLTK24pXnCaE8VCpHYqZqWndzuEh3OsEjGhVN3oJJE9d2i0H9+HsVsGrH34AqyHwsfCrE/4dbOofn4JMV7PIBmWCtVVK9tExM7ETStUN8UCr24DElFj5FN03wtgXihgcdavrfnRQsA9J3/5ooniSFG93bYkxjuhbXfWsgpNn/2JXTcob8fy0hrwwyNzkZ352Ix1DYWVNywUbd3kAheKn//182ezv/xsmcaOeP4Xylw0m+rvfM58oBy+vXiENotjEj68OOOeqzRQR4Y+t4bcJ7yNsu3P/6PLRVok/cy/tUypzlitLL/sPw9ZB7aNn8T3K8mc/Jx2qLVcmwTvhcl5HEzDz5+lkwDflmuXgwD1881JMPspk9UbMWhZVBIcFI4pxqW/gGUcVEzf7nxz1qMNJFOkk3T278eW6KDJ/bCh0/pQoPHtPGtY3E7n2e8+J4J42Ppae5TOLPydP2db+vCO0h072aAg+aWTO8RlvcfiuJPMkZ+9FDZF9sDyglaId84etNoRChaJ/jIZZz8B2e3tzmwsD6gL/EYHDimQw/OitQ2tel+1LwXDwFqGRhvpldaQYvPHn8e1lQro7ULKLt0CZbPfBOjPf5r14quUTUE9sOOduAVxEzF/176qiHFNoqZ7I55ZQaO6x1id/eYEjaw4V7BY5DnlvhcFw7QQLPj58wYwLejoGhsIWbuSmcsiDSa3VJ2fH0Ks5tby75T3Fdo8eh+PMorL4bDsrypZsTceTudTNvHzOwY3vKfEWW6rkm2weEfBRZVZ1KwLNKljtwebehOurxcn+/z8HXNf3mly40rAd1KK4eL1B0KGRZxxfPW2KDXGA3HruxCMjdIpQLWDwPzz8pDxDIMKQWHaDDf1OpFf9CEBahuX3bB9CKQofG2huL4rZnnvPpk+LDFQtDj1WL6PTTDr5S0sbofzzE/OiNdVbmn6unWIHj/qdhr1nQQiuT2ZK0xiMH2f9wvM600FSog5+l/Vge9y7svnTjGS9m3eQOHCkwRsPCbTVlAkkOXq88v3QZ6/3RjyQDTIuoIQDbNfr7n2MSD6eLCDYRR8CeR9q1GNGjs0860t7P0E6DJ2Obqvj3SLjpssw4syHANGaZPDLz42pZ6gYdqWFClFHc9+PC2nBYuvYOpqxoIQpSa3Y1dQbfNSMH9nV+X4zYcCjEXosPgyjsF4P69BO3+LgODUMpEw+69ade5NhqO9V07hwjMgv/IRw2qwzc8xX1moYIlC0exX9gItVTTrJ5KcJhdNh1tloJvBw1++z5rnF2HYbL6YmJuuavvt/Z7D0VgWFGa8Hj/wEJD9QCesRutFO9TrxeyP3UVaNbcAcb5ehfCK6juz7HRdjtuQLtQbSDbDN+lt8nczf8kqVx/KrpFn/vj4n98DjmBkfUtcQHFZ7ZnbLYt2OntFDbNeIVF+lkwakKHRPtn1QYUZ/7r0PTpQSo5OIpjCgB+9RgFJ8TZM3yRJQD8s03/1BeIshCCRs3cxqEMPN2IcsnfQt1V5Vd9rKaCoLfx2Wu22tVaOzYadxoGag3xdGNA1wZnZfc8Smi/0K6xGvCCb4kA5/emT9dmriM9kQENP/AaWe1mhPHicgmHW6+hqXBBxtWdujs7pedWKkk2EDEmffOL03IEVChPBt0vP53gLVx6uMLNgI6HPkXg5+hySNdYuwvzl9m5b/+Nbs14aZZ7uoQkcTCIvqJIRpWml6Wbakl++mHY1YOSm+oPM9cJkVF4JhR//cxO0yabcHSdt5pNEL7tPMOlrc/rVV5kfhwaSGleHX/1lrg/afN4/Hf34/Dxtpiwzy/zCWb/FJKBfxRz66TOBvj9dsFQWSTnGpQ8QyFk/1/+ugbC1jQk2er4mxkuzWunHv5zjbUOCzbEw2ZC3KvQv8ciItrPM1lldFPTL7/qwCrjIz+sLyCTZY7VJjllXhW4Bx+9xQ1ctlVtm6+ft/3enQP3vOwV27fbMB3wOJmHxraHyY4+ZjyZr+4DIFmq6xZn5AXGyUU73Dnqnm5hFj+ZY8nV3VNC1PgzEcS9Tydj7AojUfoP5ZJCy22L6BcUpDOKb3hcNYHQxrN+1S7XeabMRR7ctGu5iS8dz0WZj/f7q4C01j1mSdkw4e8cLuLf1C6/QPD96f9jUMNlWh8e0DoNKVrGC7ovjiW2GndEOVBq22gXrAduZc3eZ7yi54L+ulL68k5+MspRQQLU1Ed2ySdLvtpkBavcosKr5SsKv7HtH2/PWJZlf7LJh+2Su+kzXIiGTpGUs7aoOnFrxSNyK7Twjt7hrydveUU3YbkrutMkCnEOxJevDlaFB74QL9Es9ZO4zP829+6wt2Cvly6y1YZXi5D9CkDYZxtpTSsrxWUYXdL8tPtHgZn3Z3z5MRXtXUBhZGvvsqzwaHba9blPxEJkBc2KkovH8cIjxWMYJ76+ZBNIl0ImeZUU22ZwIKhi0JNGbTmZTx5qP1mmV0FW3PHNaujsdVHxTmE5IkPB9RVI0XXDB8ODxts9vLwHJrvtle92xs2GRGAutzqMvHZ+Nw8f7642hQYAJsdfvYHIlu0YxurVYeeYy71+16aK3fBWJH7N8zjmXFNBKYrhdSwJvqZcdYWmggQS7q8+Hi6A32sUY9sx7PpYJPYvLK3JVW2bEHa3so5RZCOJylbA1tfRyKhcKRWWTF2S36+JyRGzEWkkaStalvwkG45FdoXidDWZvZQuJODrE0B5bmQTWN+ZD5jYW8kL5Q1/pem0K0oJUUDZFgbu1t+ST5D0HaD74SsxumIJpnMIKOU6RYVl453y4fJvL3/qvTQPxAo/eAvlxB8xbN6XJeT5cIZJNgRb5YYve9/fHQsUy0Yntjl4yGA5P4Sz6KVsTgSPenOQQrDt6UmFebyk9yQLSP3igTaag+ZqguYfgAxs8xOd3O4ob7QLbQx6Q9bOpUXtqIwFG67Ql4Tkg5Rz//txkZTnfGyRlk5bPBdzKE2Gb1/rLW3sxm/xoYTH37SbthL3CWQbXfcA278c3G/T3VQLnHEdkU9ltOWUgKtqovxPc37tTNoWLr4JGWgFu5vgeWmO6oPXzumGbIgr50I8pheUOvfDvfHc6FiawHe6TILhv21EbUwfeEGpk09+qdlA8PKBr8eYUnm8vG3prF6NCGuYco9hc1odTjVSQt8RabOJy1LdPH527bUWSVRjw8ahvY204nUayjhfz/EM25trvefaLzdSy5iTjed7xiwWZ5ZTDqfdDgFWtYy6lERoWhT/A/iT1DPMyTvqdPCno/FFypl8eZtCVzsNV5ZnDuIr+zsaDNxQrdRe1xDiPYvtK8rEDPyBrLEveMxjrd2FobvHWmNWZN3Niz14F0sUfvFwueDmNa+sKy0v2xdNxnSaTkH8XgKXRJvYyBvMPf6dVZZNYLIu2W6TfAoHRlbirS7cd6D3FYFuZwwK7joOB9qmB+qURMt2yWdJHi8MFXTXxy9aGA/MEoc6ClbRc4DGzgnZYT9kCUvOT03p3jZLfeVLP52IiwdPQ+eREjqC+86XDwuzDzF66XgeElzuf+T+8dM/TXkvoK/h73s9Hy7datRssFu4fPOikiNyRs5vmOwG6hcR5P37rw8j4RcnwTq8U5KW+Idb0VkzqnSvh33mb91M8eEoByL+FzOvR2Ry0Orij+2b+TpOgAvVj95g9GdUnm+wzlu98nVvaoRTWJCS31Bz6dPjC1vJj4lRT3jJve7EAH9Z3tiUvr2Te+rJFFOtrFnqvc8vDq+JAszjGLMxMHAxmdhng/ZUtZh89I+kPSTrB1lUu7JqUvKwq43iF9u6NxG2sJBisaCWAr4Q5s+OzHXCjOWLwF8cnhv0jMbm2oUdQnNxgD9NzMxmA+dBD47LtLXma4148O3APq4Ht7vdvOegIMIoWT4rF/dsIqvl8QDNZW+Jpcp80Zq4e4baEJRXaza2dnttL+ssvZDOdTSTx0KyQ15MTcS5312TvTFagslyXxPxgl6PmDaHWiz5m4XkcyvH2eavq2rAq5kebl8l8Pm7B9p8b/MsXkygae/Wip1u89+j8vNGIwZ+cBx29WjZHKdoDyLc4Z7hj+zk+txjutXQjWMxGc5zOJx1KK5XZ5voaTXYTfQOCUnDYlpA2GY6joUBrIHXulXJIqtfiQNHv7zeyrWfCISo72E/Wha2byQwGOJlfGDPRZzN+lKPsXbdA9NaiU0oOGTst+xAeXkUIUbujOT0flxCsZUKo1t5Jwvd8g+FMm4acrevT/AT6cgumMM/TajdaOdjWuYZL4hokHHmeTaPfdbC+d3viPC6bbHBISlFLPMCrdpOZv/WEt1ZLdFOXrdm/y88eOXfjMO9HyYfl+7tHeszWf+vxF89loIzk1IpuyfXl6QLS8B3o9NG6dnzVgQt63K9JeJO7gFv5XoBm1xVkfaF9wofzpIOFypjK7ufKOc+VK2x3E2bOa2G0/DsuXJBF32NrXVXbfh3mV9i39exZHdZ8fJhUQcvgLBLnSL+8W9qFDtJi25KbFhuZaMS6Mc826lhwi8u2m/EGla4v0Gl3QHyEVimgWR8FPPHDq6Vk/wmhPPkfsvndBsFkPc8aeX3I7i2Z5WBU3IAbEINCeJbbkbyvGCpsOCSaFh7iC6GfYFht0r/n4Y+pwegt30W2PqYkkMJdOfclKWwS7d1rwh9lfkHLw6dgYWV75iTfPVfryCol+01eBcP55QrgpfaTmENOkinQrL94I3q8dMtxvJ261XrnnJm1Cng2SbqXg368LphVJQ8+7s58i+57p6XqwpHbySsjC0nSMFLV1hre7G71FS2dT0/M8YpLKczL7cpaBRiPnn40eWqHAuhB5FAx1fKkheBtoO05dkmw37qcZyu/gyA6Hpn5gX0wJt/zApGlkTFrbFPOkc4UtU/SNzkcWZmNiK1C+K2HfYhKk3vrOIZGwTusfGDXsik8W0AMXWOBropts2edAafLecGOR+rzYe9aPvI/YUuwnJBykBiZ4HzyKd7Z0goNl6ypYSl8Tkx3s6gcVrZjIegW5BdPJTsunD0Ux3NENi/ND4QuWuUrSzzviFOrazR8K5XCmX4b9tu/+fxhVHp5T374PXU9AyB8qEgi0S6gPg1DVT65D3Yxorbl9/fHAX2gLZaCOw+GsjndV8jduJTh5TPgh9yhkG7ON7aZWBF0suqoaLDeS2LJpZyxhdAPqOP6ijgbd//HJ394TEWT0WTc2pkKnn1iVLrFjsmd69VX5/yC82W8aMeyqrYQsecKr76z5G/vYgO3UH5g2PQXNJCYHVHwvBoMo0/Ep3AVHFEjShHRNV/L+rWy1jXpWlpU6BEq5/wcoscx1IlNXu+Akn69Bdg7V+YuBDuQqmioYGLHlE5H7VT+vd8tk/fzvPdV0p21RgX/dafMfW0Pc1+klY+e5a5nZDN7REJegPrjn8F823lIwdC1m3W6MK9KtGxMsosP8MExCaPDkXNE3h3cvqJH7Khv2mHWZyhIa8wMZV1k3HRuKpopE14qWCp7kl5T8PT3++/f88lQBFjmq8v8HUmOvvKU58hvK4bBGbNysNjkQ5BbHgkS9Zt8CBZccIiek2iB161wehcNFNHzzMLXqW55v7j6YFtnh7lvKrTjK/EbGCVHpmNwP7RjsjoP0OTdie09VzebBgtXDS74Rgx+eJW85TcDYr4cMTp93y0l0jMH+aPs5oYKNhqOXmug94Fhiu6CicSChgWUtXunz+i4z6ZBirbqcDqMJCA44nw8jEfU1EJKIi0uEnZrnxPYtJmooHdOJgVfs4C+iy9/epmf0uiIpr31JEQuVnxIwlACqVc1rMHRDAZbHWNtILJEf/p1lNp9BfsPrtmGLis+BUbZQOKwEk/C7hUM30fiwn1yDuS3H9N4rnK4D92VWOvGbuXl8LJAtZecVhvJyCa+a3246JctM8tU4QMKwxyNmezj4WRXJvecUUBnRT0we3XRSr6x4wXMz8vCKwo57xSh1soifVJIyqQcE0O1VntJKEgYv/cJyy+uDxiQg9XVBZk0RyqAKp6OP74XjLttoqOIlSvmXmCeP6lZANsq10kkf+tscm37Cmp3K4jxWvfJOHdXAVytEzrFu8wULrF+BPQVVLaurhWnWPckeLZ8ouJWrtB0ruVmVWWNQWz73QeTctHnPihuT8zJYGXtvqMJzXqOOeeiQVPBVxVa9sGV4emdBLL+fAyoe350govsak4TNRUFO+aHTkl0yaawNgRt5mfMa8xLycKrYq0SiDZ0cW/viNtHqFRzQAqzgu06k3hmptrMN3/nH4nPvV0hcdql+OuODuf7A6lR4fErMQE+Jj/kuEOpxHUqcH4JRul6nWDOHxhasTZHlV6OEJWJjNUdf7aTorjOX761vdM3Gfp29GHrFEcW5M66FRJeUVQvoztV8cdOPpqnhLCeJJ3p/qo3+X309ujd3HQaK6e8HN9kvYC97aA/Pst6dt3/8gdZ13szG7F6pYBygDlfHFoankxD0yWhY7/17vpx22lvQ7tSOYlkND2k7AJ93yREj/ogkDZX56uKGW/o0mSfZDiIQQW9PbTk9mikdiRPaMASsx2VnzIuh5NU3LXzyaXk5+8MbRbf4SznVxr2N8Pkt8T7ex686wo96S6C20C1Uez591qTj9vd9OMPLFrgZ9nX6jcHf7IeVJvShndUUrbQXs4C29pv1vZfwdVR92x13PFD3tKo/aYwyteBLr3ebKeiWg2g5lHO8CrA2V++lPdDRgiKT+Y03F4h+HtLxMqsv3lzWoYQdzeJ2WuZoVGtJgtQ1a2YpT3Hds43X7SUzC3WOj8MeHvXvvDTbwSbT/QeD6vjP30w56PuSy8L0D0xYpunTNsJk/VX8zc3i3jKiyB+az8TOH6c4tYvxoyNj12NHhsczPtJg1F+Z6q6jq8xO80V+ukpTzE8jljHccG3mQwB0+F2vm1Jd9Smcroat2KVKA+feDPfZe9sqaK9Wj2I+dqe2j5hqxzdESQsSKowmFhMLXju5759k3TL2OCrIZzHSzb7Q0krBbyc4OEvXGaIpVGK7/t6gNOwohh5sE0oD836L94cZ5La6v2EBTQY2Myn9YQvn68tgCtVzFNejFP27BW1aEsTV6uAJ13TgaVex1fDfny6o7biqr5aV1RYG1U5NoG3he3j4jGsO3nGvcdOAbn298SlMeGdceAhSNI0soirXjCxoZ/v7LMLvkmuY06Vle5hsF5LZqhibs5+XQozH8Sr9+nGaZmvLBDt3Yo5UTeYY7UrJ7hfcEc1+evM+Fv6yD4MS2Z4r3tJc1+VkH3OgVlLc0QM4O3DjKfz+mnJcEwLCaJyJ7PN6x1wUa0mB8jOmMg6d5ySPcC9w/5ai1TdRXk7+ysqeCvRpfztHgMesKGC9HiO6XJp7JPh936pNOr/+PBNNAzN2Q0JsaPNu2VNLetwboo3XT0fj2Tyzp0Et+lgUbBWWtBXq6DRqFNs8Ge5pGVnGlMH25NKZj1ltSM67Vyt0i8B01OtQH98UO8XCvNXl8wcn6V9+fm7TH+MetuHlwVWQZRM5n6LuHwFZOkAsk4BRefCySb8/nRoxjPyw6Mpar8X1SndkNhu1gZTZW33YOd6xx7RTefCQvev6KcPzPa+T8Z8oEcUbMIDFexFyYc+2Vkw+rcd8Z3S42Pz0ZXVvVvcaZyKx2TYdfUWyEp9Ed9ZuYFYj/4WzX4XlX9+E30rd7jly4B5pl9mgxa1KczvS/u62Jq8WS0LVO7mO/62VmfcReoXQBRMYq93GEkPKUtRSb4Uo3NRZ3yqVj5Mu+5GNt+VlynL3lOgOKz3FEIm8vY8hVu4iqcX/uH3FKlfDHX36Oh8XrI/fT46bE/MOpTQ5M+znchFGYjzNMqkkRabuTvU+0Nv3dCbvGfXI5rxlRjXV1KOeytdwO3x3lHppmwCYbW3FWQOK4WFtnjNmB/uLkD1i8PMCyyD7qgbE8RcG8nm028S/v4uO/TT5+EcH7/4RT47dswTM14OpXNyoSUB4AXjYtA/4rqD/dA9ySaJTmjc17uttkZ7G//it9sONUAnTRLx7bffyh9Loujnxxju55FMJHABvYv9Ek+n1RFRV4oquJ0fW7Y5ageT+k33XSH9jalsrR7t+DBrFcRw5H/57JUYkwNvTBKmn1rblMS2cGCbDyYL7oLJB0dSKlge2gIvTa/J2KKNcpB3xp0Yc/4f+eG+Vz8b7DAyjxaWHEZ8SL4iJkHURe14U1j3009UrjKPj1s7UcCq1ilVA3Ez87lrDZPRNVhTwAq69ZQBuu20I/nxmfHQDgKa8Q1/AGFzCrTQQOOh/+GVnskznqKAdBeyp7LKZzyM1XG+kxoddZVP5Wrna+Nq7jOH45055WgCTTdZSHw/eZvMyq8C3F/3ijbLixO83fJSoYntUzbHXyLeN6z++RlsfYubll2clsLh3vnsovlKJm/S7A43zy5YYC6Opuz6U4789cHE469+cfTKWU8cLoygWDZn/aSgxnZGqsYs52ykuxSI1hTkQpDBx6BfdGiU7wNFe+mDxq2017UlBDv6Po88mPUHBXSyNJbOfrPQujuA81I/srtCmNnH2uUKNbo9ibkcaj6+988cprCqSTj7nfzR61+Eamea9ZiKJvcdDWhbKxazhIeEptzOtmDjxMLTU94Fo6iIBdJh0dPx+123Mz86gnU6v+d6xSYYvjReQLHc6cRfGkf+ZTF10PakECzYC5MP6FBN8MZRMte34pJGov9F+ubmsfU57IOxCdZb7cc3PCorCfPDc4qei2eFpzn/Csnh5cDBvCcUbfO2HdXwYqjY4zXtyzRBPAuD7R/erpupDMaHwAzA3lizdYE3XFTD2NDwLnnO+mjfSi910JEkXHq2PkzUHMxc3cMn2m9o3wp9285+ndYNX5GZq7BFnWMPVw3RSsYLTfaRQPW0hp+//prrR3x8nGv4+U9z/Wa+ieYdoX21HQZrdQsk99bn6L0SVrP/XZrjE/V38LxNN+N5nfzVt4Jj6BNDfax53fVsAXKgvsmv3jIkh96BWf8zX7hnaIxp/IW9bSFCOmPZfki6T3/1DKLvbk3C9tUmhbl+wza2eP/pWQP9+GlYrxw+bn10hVL0E7polqdkum1EBxJCGrpUjzIftSKNUfO6Pti1XjlIWO0jBfrk8iYmVXg2+qN8gW6dxCw4F04yRhuNqjf6cpgLR7ttEi0ENHahgvVzafKJxbWF9ts9J4kWvzNq55sjTKLkMoLPesBpjGqYPvhEwtLz2s4IY9CkXtHw4ERDSd23PaFr8eIkcMIk+OkPWAzegkWD1LSjFF0BrDq74soNdfSVpE+IrlQUabvN23Lkzr1A9w9+MncyInN8nntfdfxtSvytXGTDQi0EmM/X7/fa6fd8b/pak7QO91m/3uiKlhjLmi6XzSH76TuULnf2399zr1Hdnx/CHA9i/v3jxx1W/vT7HF9HpEtSR9YfWiRjrfsuUMs1yXrXTW0fvcQj6NHbZ+H78QATQOy/5gOVlBia4/3LMIv25nDWGgWu4uFFNueRmwyCtw6TEoYEPx+AOFty/eeHU5Q7z5Z3F2EBDdvfSPJ2JbPX0kHXRM+U8OAnnUlF0Z/9pyzCyqM5m1xfPi7QF5frr35V9keytWD2Y0lIl0ZC5/osrEn3i4cajZIJHZDabciPD7ZfXdK19nP+0J/f0fJcuaPZvyVYOg1zfGmW2t+bOx4CsctGtFv94SnRzXPc/vQ5svrVkfl8WgbD2hcsZdYHJDTXi2T2h7vfeaCJFm+ScX8631VxUV5I9NEJlzPe+vDzU6WiKstBlV8WrN+Vyy4mC5D8q3dXh3w954cLGrRri1G8I0ucPppz0KnbKFT1zcPD/DbczK7NVR3N9UYsuZaQjHAdKEjmZ0fc23Bpx1fUOsgLxQ+LPkc6r98p/f/uFKD/vlOw7LM7VQq8DmS05Rd4tWVAhwtEybRZfb/IFxcSWzvtvR34O8DI99iKBdVSTYYRqS66Sl+RJrDvOL1YtYDOB4ho4++XJvPSRAIpDXc0dzIHTRFvJeBpcCJ+kH6C6ZNdCyjv8hVPKGGIDlgOoWkrm5nGA3H6SgxV69FGppJnftv5/5cgkwqVjnFD2gE7kYtuTZrSKfGtli/RttG231tGJWHK+DSFig472SRU+abXctQOIUZ3t58/43z05SDsXGnVz5163rttkgh3R7kD5vaJXF79FHTaefK1Ur/ZdGUGsyccO5KKJnIjVj/FZe8e6jvQ7blgeBlE5YjLQtKwp1CCo/6NuFtXMfjxu8Vqdtlw6hzNGmrjfscKlF9z5MqjAalqfKJv9k35cb6HFJSrjumS7zw+BM9Lrd5Mi1KhE0yzr3oUQn64LBhBR3nmWIcFjKtjRPzm4Lb8Wj4WqJJlj5BbPt/O3hoh8j5ng5hro2p7UxtU0NlTISQtNsGQn9ig8qX1Yfdcsji1q6sO33jhs3DUXLN7HK9HlCmPM7OO1Rs1Qx4Z4F5FTOwbfwasv1WDKgqiQwyfn9vxelzd0d6LKuKEn20pxeJxAQNO1yRNPud2/J7Lxcr8WiGGDvOyU9hVAn77aMS43Sgf0eqhg+yKS6br0bfkVXXaqzBcVlTMvnE2yc4Kg7zrR8pdPJQjs7wY+LRsyOZzevCpemZH2PJTRHR/HaJR2IcCTBQoO41kvsdvN/vf+xL3m17bvjU/FYp3ck6lkwjJqEXxFlx8l+h4PvB5HqVgwFlor8Q4Dt92iPa3Cpge1sS0N3EyDMaWag9//OBF4i9NfmBiDDVWj9SRrkU73HFxgfrpzfeOkh59yM3aw+v9jYiJrCXnk2tY0IVxTxeKReYRdaaCWnmnUmGz3qI+xNcQ4FA3+Fl8cSKEw+KKqpCumfd0WMbPEr/DTnQG4pcPsWX5NepA1C46ceb4H57IkUCXHgFZR988GEv/6qNwmZxpex9vnInE3UKLNzu66s08m+jeiJfrOiZ0vL/ysr+5Hx1uzSUl3oaJnO4N1IFQTB3Bm0Uy17ANHXpky/j9VptkNO1CnXvpLJlXdYeMk0AqgNTjmZHRzbKxf+sN3Py5qdz1OgUsNlMBToP4ILp8sVC30HYYevpZMLt58aC7HOALRe5i4pbh0PZzfEHxeU7E1q8bPiWP+bt4ngI5PaxDO83DFSDf5TrJysLg0joaQYNNuGXxUAe8L7bTF3wRJBaURYFYeMot7eveh/n8NO1ALu4e6ChglsA+RCx8mws0vy/VkjMJJn2fXmGxoISKiusHE6z0C6ye2psE/lZO6LlPF2Dxd0fHRvHR1DUj1oI+XDIHtrbJ8QUvYJCrLxaV98iHdutdYY4fpivpvpyaJTui/po2VOVPIRlHdtki7fN+EuxvnmggzynW3v3lQ5HyXpqsirwCWY4AWCqnKGFmV1pI6jaEwqrJ+HBx0kE1nLeDtVh9JxMQQ0DF6ysQZ7GRsqropIvK6ycjkdu15rSoznfIn5JMl7dcKse7MX93cVxjqgapZ07HeyOohbAO//CZH2UWgj7VEV6FztPkcmo38HXyHcva6DjXNN0Y3kZ9Zq6iVcGkl8IRXJHpzIw025SbQ+bDJxYIWadSGIwPrurIv9OOkL44JKMSTrU27MmDGVSWzWl391xUfMqJSsdbzLm3/ahQa+8Xfh/z3GyDvrhqbVq3eEw2p2Q8E75FrdOEdDqnz6DLVzyFJp2BI3Nv2UBk+CKp+vpkQ10L8fxqU0iwc2UeOn6zgVknBaxh/aLaKnwmo1IIi9+/Z2766Nou2t9q9Isfe1SjlquPQEILyTsw/Khl9IcfBA0hiY7rVznvV46qz31kVrxYI+FyEBoYNrxmNvoY5uDbryuMq33Ejp+Na05j5t4Rvd8M9ov3Qb30CvrEEiGW/XlnDLqmgJ4AI06H62yKT0UDytXAdKD2NxuSoUiRtdjYRH/6HqfzeQBxd0Nzn4lXxjcCdOB1S4/Z27tTMt4+fTghY830ZFhnPH5GvvqW4oyeezNPptQbVTguRuvvffji0eZoFAeHPtmy4fw5uAoabHnDNjuWBXP8xtCkz3HOB0M5Vj0PtZ171NmMn1mnwljA4zFc2ZmuCRr3t0qH0XAszJFooT4/7VyYvNYinjM6mRR6NEZb0voU5XncDvWr83+/z9IouyVDcbvkPzxhZja+syk4SR1s0wKIoR7yhJ8XfYryTwL0zRwh4QDW5S//xqrQmP1SP2zBobpFDvN6CJH0xH/4EmhpFUzXs3YF6eIPeHqae/QVliqgKrPOWEn8kY/3x0JaTXRBme+v1snklnkMmG9OVH3hb9IrttvAl6UGyTQ54GPG4yO6XXSdnLaxiZretK5ACiUjnnf/tvP+XyH/7OCP73Tf+04FozxIxMVhkbDFaaw0HE85Rd3NLMeLdx1QUgNm6dWOyzn/pNp6l1xnftK340t8+WC/ToT45eKWsfvH6EAMmhs5ap6Dvs3Fc5BnbVKyWXzabDh9ti60cqJS+ZjnwSRsusUqwdaVjslGTqiwVBcInQ8ts57HMxqFbDFAAmOLNRn22fBR1QH6lZeSo+s3iB3yc6rekuxFpWv4bsfLupBgV7o74hwWQTCx2+YLTVvbxAWrSKZp/wF0tOsrWw+WhH7xg9DicyDGZ7Upx/tDkhBhx4QF9/hoDtfyvNeqNtsSE7jQfszoKsATv2q8uHh6OxVh2KmQfD1c1MmzndJdKaEsOu5Y9PGLljaDef3FL+W6Z3ApH065+oo/F2aVjyYbUeHh1VgnK0KWvVHSqYokZO5wRjYnxSvlPf0IIO/YSLC5eiXjzC9g2O6feJEgy3y3a/mLwuO5wfzpFCZ9Xm4uZLfWpcPzs/vjC8ifWyD6+77k/K7UFXxaqs/7EWTfjFYpktVXwdavsSs/C/yi0L38Bwst203G9B506mpxfjDzhu+ckWBRoG6sUnbd1xT1NP/6EFnbiNxMSQmoj1dHULqDjfMt3QXCNksmVO1vCxYVUJsTi9rpl0+YFzprs5Ht0xZNG/qaz7/dylkCDrpG15Bs7q8ICTv7fIGrseBUXWp90DHroaIBX9bEOdufZGRPrQLTmgpi3QaO+sL4hohiN2Dnkr7afoF7CoeVXxJfb19mLy1vEjxc2Wfu59IHw0VxY1Ur/Csz7GORTA9mOardKx5d3XLvH14vrWePNSGDhN0/fgd67e5JFKubhC/PtgE+M0ta7F0hoUx+7mFdbwl9vG6blsdP21f14GjiaX1/mOyF96DKN2nCKkjEHB5uoMJdKRLmXhf75BsThSKGtw4JerEP2EnMde0TyRmLLi9kjtDiCnnhN2b66fhOJnNlLOCu5AmzLh+x5ZRc9yAsw+rHx005eCk5stW9wbyzaia8f90pPBy1ZXrsXNrRG5MaboKwY569ebRsq9UGpNPbIPbu5Gb8F3+HTaYzDKWc9UaCjrAy4xRL5l7kw3WVUPjpE9u+nDKuet4dZKU1me8RtX3rD3xBym3Rs0BH8MfHUVeGOol73UaDdp7c3+8TTx6qbPokRQWkYQpefcAwx1saqn98f6s1z+zHZwFfohez/PcRDdtPh9HzCRPTD1GKuEjcP77Molt3Tj5o885RtzC2LGgjqf3leyjEZcssj/TZWKhDqE1HS2PkoG5L/ozEGHx9fyBr8txl04+fho4zss2tC4Pxk/t3UEh9wKPTLtpJ5bcvDPvoQey9NfdG1dsrkG63xE/ynOdxTpu92rCHSaLzu227V2d8AT99hYrlVsmGsKA62ohvm/njtwwGhe0lSC75YY63azKuJMVHm0lf0Co8tm0j7HRJO9j3J5Xy3SHryS3c/36f6QxQOecvF2ZdRDbvTG+FT/r2QRFUnSKhGDOewLTVhuDQE0s/qy09m9kFpiKXmH6uTNR/0rSAmMchXb5um1JIdGePLrdnRHRDnGd5lPiqttjeYb6zzET8SKH0iyfi2599O1xa2dBSW4ppsYmSUsr9MUatphyIn067dhDSaUDCBjIShfEYtGmoqaqU4h0hUFut3E5ZB6esFKhyTmnCx+Mlh0MVDEyfZ5Rwkeixegh2i58+LKewXangvLMPVohtmfJCfKmgPFDIXCvVTb7VqAG70t+xUAmslp+S6wV1b2dBIlRcstEI1xct0K9bPOAlZLQPt3tkqInLyFe9Iy7ctp0WjPaCmS4e2uFcRRa8BMsh9/WOmb/3BVY8gHLx3bTDsH26YC1smxH77JsTOjz3v/jD4CdWO/J4TGF32T7YaTu27XA76Ir2WKc21o7rVzvu+40Cu2XtEX3oc862j5HCei+WVEkfXcnFTqjQ5kk37Ke3+YzH8OjwAZdafE0Gg7ZfFBbyEw+LjRdM4vjNoVasJV5ug2swdI/XHl6S/mJG9VERn9cLaZhvSbTwt6gXwouKgN7PbO1NwCfQp4sai2GLxRtfm2ID5RG0Q1cS3189s1G7Llzo/D2mMioik838DnZbW6PD5Wa3o1+avkY35cCsUEySYfddNqDmnkms2M4DjozvAnmGu/r7faHnTQHNeC7nXrqvklfTe4AZv0jClAR9/WO51cTl8YGr5/HMf/le+/EpvTmKnN/kxIc9L4yZD04JzdLC0JTmvsHywjfLsZe6XBWD742sm3Npdss9cxAV0wM776yhfW6uIaxW3+KJl6FDk273lRsgvv5hj8i6Ib7cZdYvX/7WOxvUy2v+rmd7IUQgq5bl+2xSjWd2mvnFkY8bx6ghe7zeLHIjM5HQLdvCTZoGti6Cuhxn/a798lFkKE07krmPUL4rdOaCZWT8s/E79InEjCJ1iEpRzgIDPs7lSCLbeZm9GNV71B8Vg6VF76JhLfquWriKhaHdlpw9vkdfQzu1Jmvr8CrpdM1UVBvXO9soGQm4eO9cdb91ZXYQ86SVikRqYIgTfdbXKOOjvnUBP12FraOvHkxbtdC1fr0i5OuvnslgJ8cQlO5kz/miyeru0gzo7Zt3ojeiVrLdOQnhdXM5C4OwzsbvW0i133pHl1dmUv3qp5An9web9VkmpgJ2fv4JM+vynAjB0lHR7LdhdVe/WmqQaO6tfPeI7w4xmuPPhx++uC6I7WeOBzQaljWvd5n1WhTHcB9XCkZfsgmmQzfGoJppgsUvfZaDsmsKpKPlSGy6f5eTLzwqtF2/vswuTlL7F68vwXH++BI3uFehZsxK5qiG23brekV/5x/n5aQHPHybAG5Laio7mheM/FLuNcV2gPY5l9sPHbCOZn3PjEg98Vn/Ssh97xuKLt0QjOvLTvjLb94pDlF32lgFmvUKrsmu5p3JZAe21UKk01luOEdGsUALKTgw3StsUzirmzs6BaGGxVn/jephCSuqOy2zEhgTViaNjjaXSaDDtTWC8UCyChzDXtJxjTfZO3fM41/+IJGl8bdU3x04t/xL69fTMKfH4g1o+31kFNa3Hef5NaIAqhKz6Bbt2uF7Pyva7N/Q3BBz3r1PSYcyh0lUvji1Sc+xvIXZT8RoSQ7Z7McdUbNzOuZ9oDDHU7f3AQ5Vg1XbD9FQqYkDu2XlseS2LFGRSfcjrDbekarKaTP7P24Di8CIiG/t2mBY2gFGh2084ckhVfCLD8T32zOLtwVNJpUfvpCIx5oET+Ua1GRbXWHmD+TnP0wFTffqjH+UA9+XgxkbE9zN8EOcMnmV/Bi7C5RcigMJ1N0Lza0OOrD9YoE/+XvTcu7dCuDFd2ROvWpbHklvAQ5oYzB3v6rLH14g2TycWWBabTaerkoMVeacyY/PSLByL1DhJiczX0JDUy9rddaftFkPXosWp1UFzQpuJJj9tvH5MC1NZ6VCkRe/OTvKb4xO2VMg3inu5kusHxcNm7Em4apBaLiuI4okM7rjQY/8cjSjqwT1h76J+XQMc/rtz+w3EYPKp2Da3dcu0G1W4NE6vNrxsNq5sHWxzYiUNgH9raehHD9U1YR7yw+2TGF3pClZt/nT5FX1OKKZn2PZL1kwsqdYwQkgZ4b10pLh49870JLBIlY6VQm159knc7xhzZTSYHAkbQtkn5vEa2KUMeGWdujn9zv8YGVCe0Ipmv08+j/SzqVrWRaMwj+ogWYqOPRUmgcoLbOZWllaj3lC4de/C5t+s2+uLpfAzd7XBlH3OOM8AASy8KfKqD/qLmDPDRW1zxCNJHwkur/oEcjKPsJcb+fc74lwdc3eZDd3t44aO9eE2SRfSViyTTXF+i4BKI13BG0Eo+ovMjSBR4wKCZS+fLpBlQv49yG7Hu3i+VK/gh+v3DVNGU/Pc/OBF7gq8bY6pHEzsKaEc5SBn36Z1enagCwMEsz9R04ze5SgQ83VGA2PsBonZ3uAq7N0xyaICWMzKmv4FykHVMhtELP6xAp4SEtIws2t7zi/PkCev2Ajv5tx34qnA1zqPz7nDZu6jy9BsYkjYoG1vdQfEV5NoOAfn4rRfYKWKVkYMVR0bG8eCyjkdwE17i1kYiwXCawq8UC8mrwq+hoPibbwGe+hkE7MceItehDN78hm0s4BLtS+7yev1xRQt8sCCAKF4r0niRY7kvMHboPHbRRIV4FetbsSHpL6hk/utK0GztuW+Rxp1mXifuwhwyxECUZKcbXY7eyU0EWFRGIqRL6oQuUFZFHWycOMfDYOr2wES/7iSfsWEM1aZeBQmQm2Hpdh8Xcq5LyTBPX+DRjFog64Ph5Pn8+uW7sb1YbGaVONserffcb9zMLDUHzyjW79ZxkqHBHf1XS61HGjPIMUcJ5F9NPp4lPgpPKvftlOmVbD5xglysLDUKpH/sSvlxd/7Nsm8Gk/VS48sHNI3DDX4mkf+BAOqfjEXhp/Aa22nwBGGOgYfyHJm+vpGwD9ERrYjb9KN6NcluHmwY4EZXu9GhZ9bjwSiN7iy7Y27axHWmXmNdEF3QN8vm+BnQ3qyCIzYvPd9MrF/xArAmI3lt58+PFrqzhr/qAK6xI+t4GJo/qbgd98J1w+xqgF0dGfYHlotdvWChHnvV17898mDPTaHzVpW/ni0r6q2hSov4ud1XikMxdeOW50ErC5PaomWNp3yZ9q26KJNlNC0Xpt+FyPpyN8bzT79z7fiEYQZp9M4H7xZb2iN7OhKaUe5nlBPH5GWYfW8xnh7fPq+DRPWxOI4c0g9kBp109lqEPwWO3GebIlRk0nvwPul4hzkb/V3H0dUT1viyeJP5WS079VLEOqFO6Pl844LO+a5NOU6Oqz8idzhV/q0p//TtI1Hm5pIKuHGq6xpxy+fj9JOFV5+yz8shvXeenBUCvWSObtNwwj/cA+67Z4r6x0Rq4SKOCaqn/c7zvxZgfyQAXqdMHW0a5yejALHXIeg62lf0qfuw3dCWW8/9xi2jcKUt3osh6n9yjEvXzNCgjec02ckrVxV2y7FjTDq8Z6PWEwJK5mw0tZNhj1zr2j9TeMIGsdCRuxc8nZcOsnaCaKxvXutWOvp3yHHrgVOPzLBzAqxuiCpb/w+ytyJPy/YPda47xUj9e95ptwjlKAkazNMTOZ8YGlK2xHYTQ0n569oYU5PkwEhai0+HhX4dE96eSS7XZWX9OvCxuT78HKLJnNm/jK9/A20Rg/pLVPFePjglAEYFzX5TafuL6HcXlheGfc6q4b3vceLrzPcgc553lxCVQrizG+RKrFDCPbgaMsjEiV9h7ro42uwud09pZ8g581v1N/4znrJL2jp1SyIaTnFHO/yOg6b1zNku81Wq9LVg3Np4Tqkh/i9+2vmiwi7KAkagY2NcD18LVbwXGW0Ehb+s3pFl1bmF+pR7ZsXgGe/4rQil0Vb/n4Ze8EqeCh1gPei7iPp1l0EWxOLcO7KH1bP975Ad8dtk+GEDOqzDUcDICJzv3Y+ijPd3h9XObxs65KwPXsRy3CezDKnN9zvTNBTTIy9AyU3J/NGJx+9Wz30b+M0cdDVYuVoyJCqenPYbtPIALt8ZcfjdnDfan/a00B/O81BW+NnweR0CSfk6Rbwcb2eoL841CNnd3JSk0xHmFCBp9hsJXVU3ptSC6XdjW9newEGnjfjKKQpv4wtqgBx6yOUHODKJ5ZmtngsVd87IQ7PZ7qXJGgsqq/2M81ACZBqO7Aa67y2Di9UBHbsUXYf6OC6GL8rpp7G3ma9bIyRJXwBYZInlbapWnf2L9MLSBKcW7gPtkaxJjXGujmeS401aFH4ucvxqZeqCCUK4uNWlY/4ok/D57OeoPE554fwBSkAUjeRTQyT3cqiWWqCa/aqcPxadt27B8AAAD//6Rdy5aqsLb9IBsir4QmAgICJiiI2ANEBFTkkQTy9XdQ+9ze6Z3mHruq1GWy5ous4OmlaqeXv67Z9zGa1RPSwfOVRjiDuM1J+8g38OAWKUXWhnMe8Zet7er+hc0A6oMUXtIMdueW0cNvGZvpYb1l2K5u8rDbRs3ulRMBGrJO0DzvNE6Pg1sCcfWA9WDXmwQWXQ9C6folX70aGyb4fQrGHkJ6ukI7n5SwWaBUelsES7jxye368aD3NmTs4foK+ELyEXztvYI9ZH74ZAYFUYX2RXCwHW8De+L1HFe2Fajp5biZdwtj0P7ZlPr0fG74xapVyLz4QZ8V+AzETu8feCr7Iw7YbIF+t0sJmJ+nELuNUJm9UNoXmCbKhA3aOFzIZnEDCR0MfLq83/l01IQYSMPbxJ4CvWg+x14NobDeRxOJWsS7cbJgMU0a2tL8nNNNubUU/rrlhJWmCOj5KWTQdHcLNbebE+dhb3nA0LY9PqRbB7SRubOhBvEF++Hd8+cYngI4PiqZZulGActgrbNsmiTFB7zx+azcHgx8vsuM99Ll2yzfD5O12wj2SEr3PBrb31VQ1/WNnV7Vwe4jswLW6jZA8KKtsxjf/gW+U1FFYOmWZtYw22jn08qZ3+1pYFv7UQHJDGV6bC21+ca/ewyCbn1OVjz/+L96dxv/Rs0YqMNkPsoCgmHuqKvg0p+X+idA1WFnfHhe9o30TLoCgvLakvamwmE8e/IHqvOi4SNImc/Ez9GC+36+Ycu8Is6MUL5AlAAN40w0h3mcDRccrmpBj4L0jFp/+shAvaIrdYU78ZcHvRjbEwRnJDZOBKilZwKYu1TGocEckyVxoEO/FX3sH8PK52+kuuDNqUFEzEtzkZNXAS4D+hFoL2nOh3XW0vW33/57/SXlfatGYKdje/lVA0veJ6ZKP7Uhr338ytkObXoAktGl+D0nwzRuPp7y/Dw5WS4ejeZRgh48F+GCz/3Z5+y7LAykIZxx+iJSTh/HaYGPvXDAD0mT+LIsb6ZttSqlKWAIvCchyWBVqzbFVP9FrI/9Cp47PcFWNPnDsos2FZjJTaC2LvvRYq5JGHiLI6mO5c8fW0+24MYcM+rVp3GYiV+p8LEXDxg99SEfjoNeKCRmgDrWZTeMvCk9mC2nJ3XEMOfL+dAROOv2RDaSN5vrcAIX8KOJiTIfxIg6rbRAlth7tFHkyOTOLV/U273a42Jwjpz1L1pDfWe66Nvdmf9Fm6GHu2vwwHtXjqKJ7s8e/B36J0ZL/DKX/kMzWcQnl2J5f8j55pxbsInOKT7ej87Aio3SARboGrbHRuJzWGYXqKdFhVGOjGjpgK3Cu5YMVA8C35yZdIyB9ux6fEoWMVr20yDDMvYg1r/AbRiJ0hGyxNrTszUYEXnGeq31v0Ek6v7BfW56fQsklX6puxm/fDHuQQaHLH6T8C6+wUyfGxXEUeJiPEMj4n5SbbRzcVmoOSu+uUtaDJX94xpRm1tds6BoW8Nf8myIZnSsGef+3Gnb9H1CXNhZpjhcsKxGtj0Tudc8n6c0rSBj8EifVD/my/lRFEq8VSlhds3McXpUJZyexkDNBz3kzIyDChrPsab69Db/4SGQZSGjt9dAfJr8sAD2xjPA5qItJh1oqoPzbp397ykIsJf6sqH3oSmCbG75XNZ1os4hmKn3fPYDn7ePEkSqW9E8dwbOisdtnT1cZDT2TMa5pXQLNJBuoKjDYbR0QizDx+F0+MM3MP+t5+u73671WufSjLMFnVLcYCtsAFjc/C0CL9ME7CuJMAzd82jB63Y0/oNf5dsL4Z0EDi3kq8iXD0gz6O4DRBFDcj5+TNgC4k0SUSX9HLGgmFzwbOeIlJJ3Nnnv/VoQbkcPO6a0PoMYc+Hf53d3suazj+bVcK0Xtpq+iljrMUvLhZb864dUdUQPitIrphfEUc5m41DAJ6skHCT05PPElC11/owp1YkIBr6A9RzFcocrngYDf7ZWCX4xN+npkCwNK/vMhWHxeFL367/8yXI3EAayVGPs05JTwLxYlS55QQTy5uv66jZwxX+cuf7VnDQsQ6hNFsHFw/iac3ZVPHjF+wifmnTFE2MbQgKyDxmecQHm6OTo4Kq5NlGMMuTzUr9E+Iw2mCz5vTYJ+Mgp2N2WOxLPoWuybBYhFNqGYASF0eTFya/Vdvu74Pi13Q50NImtyhueYOSJ74HdoT0CF4I7UrvKbpb+qWXqI4Q/bIjjerv6PZDh7eyXRD4sbsOcShuBvf921HiXB3PgM4XwXSUG1XetNrBbSC7qN/N0vEfs4C8fVyig5Q4HbM2vIFqe2VKrQXFR8Unb/cD8DseLemyaAwrpU20m4/sJoOr7ZzL/upGzW/i5wB2z3gT+8QkTpiN8lOmI94MDAEsXvYAT3VH8eH72PgMvuYbXd7elZulN+fw6P22w1gNtclTnyzsKEIQCa3DstnsuuLLrga9IOgLqQQOLcclSsNYXH1iFhtGfiAqyBT/pIfQ1cz6yNNYchdoYKY/BJxMLYthWNaX4tZ2aAfLkA943L8PWoXP5b2eqH/Vm0oxoqhKCOSK/ANjL5UZ9JyUmb6enqmx3xx3Zii3ImSgZAsQbdMPOzTdNrvLOUsmhv+Eg3PuRWEMz+Ks39t7t1CwbxF3I9HNGlEciD8P1efzA92LUqyf4iX7RCetwzMWUsOltDrPHx1Zd67se5Ks4Ey5FCge2OWNn9O/+fAlbBo3o0FD/d3/yNse8hIHkG0SA+1u0RK6wgS/leSczKQve5+iYwIuz3VDv0wlD78dHA7rxF2Gcj1Gz8o0SZK8sJ6ydZTCrpENwe0AnGtzSwORZdzXAPWQWzQc1bFjzOX5USTEdNH+eBtiVammBuC5GtF1ufT5rrb2B6Cw8KDq3TjPev/II/vjE9g9vFecuwPvxAvFBKr75okqLC/ePW0Sx47zBPPu3DO5/toT3xBQAEedlA6njejRv3S/gW8hr8Bn8mfrwcmpmy91sADhVFV4jgWbqk6YAf/zEdCzUTO0pNOAokgobl7cUjZUlq8AwLk9qa9u8WcoyvEAw8A6d06zyORYiWf379+66zuHazzsIb+aUUftwKKKhCkICd/1ZI9vOYsPPfW5VQMaL8Y8fMhKFo5b3r54esnDL+TOpCnjVJ4G6ix2bs9PjXnWcq0StjaP7O6aBGB6nj0smtXS5GH+UDEiXe0GPl/wwDPOslHAGXKa2W2j5ZCZjAYIiVKmz4g8/X9seisUvwDY8WAMrm8rVzEO5UPcBUT5nxeBBudlzImV1a877wdz86Q+0Q2oLxgeIVGBUzZfq8yIM7cPdQjArJ0iN2NhHu5K3FsySKsI5skNzkXupBM0U50j9msXA1p9Xwzkd8H6Tz8P0x8+mkAbYH57u2s8+Fty0rxIxBtthkXYYqboxKOjlPoZ82a1bBkW1Rp0TZDkx92EHWw0u9Pgs9rnU3o8yRFZ6pw8mEH/+48enzXumh+/z0ixeV9VaxuotPlpzD6aEPEcAsoNLTxhZ0XQx3QXGTttiVL7NXEi3Ywl/TrzFetV+AX/2mwIOwvWMpO7OzLVeLmAP+kCza5j5hPWHCHuh2ZDvLhvA8oeXK5+hWLtoOc+yWVe2iTxhrxlBM28OPwTX+qMtRGJE3HNiw19kN4Q+2kMztwtl0H6aAz0Fz6Jh06Mr4CeMeqRthjtgb+eSQKkonmv9uoG5yRtC5aIbOFzxbwibzIMvXj0ochkE3b4bjT89S4/kqEXLTXJj+PPfObZkjHL+mBUIsncnkbros4i9z7WtDWl/QIqi7M1F/8yqNh0kiwzBd2/u/FwWwM//5qSRv+szPPMGqsG0zZDwLX7RKNxRpgqbdsbYSjf+jEVbh8aT1NRweivaIe/dwhUP8VGsdZ8Pp50A7X7GRH5AEnFyuyzaZ4d2aEnxJRLt9PwBh1xK6aFyZ1519GFAkvqAmp7uDIvzNFt1d0UPbNPJGRjbKB70PG99BhiQYXppewPM2UYg8k5++MvWGlK4uYgbqn+k/SCKg775hxf+rh2ayX1KKgDlrUXl89fn0ynexbC57mK6f84VX/lhDVZ/4iSu+2nVKx9gKBRRdN7SgauO6Gq/Q/fETtwvOUNo2wGT9HfSrO93/mXHAIxyrqPhY2z46ETnUZWvX/pP35H7HvUQVywmMHuJ5lQ7TgLEzxii+T6kPt+PHwuQyM7JDKHRsGs31Gp+Hz/0SUUl/6fH3dG+oiWVz/miJs/N3/dD9aaqGlYVYw8Ob1PH1h9+/q2ns+Sq1N9t+UA3+j2Gz8bm2Cz5GK18uddauzLX39eH0YQh0W56klGvGdcraUk+wmuzeWL7ElOf57f8snKoBxqzV+KLqz8Bc5ZcqJELvcmw5AvgJHc7fLKANyzxZ041ukgJkU4vNxo9EGfanz9wmoy3OW8xLQETbkck93VtTvM4f7SVv61+zLehhKIa5Klu432aVeaIn6EF/d2AqYFREs2k6DsIWi/A3t7wTVpPvxT+jvsnvVyhnHPwC2OAt7JEfq2lDvyrZh9wnhwR7TKl5PT8hBlwD2VPzdu+yWkDDhmwg8rBWC6miMfMjGGPZkKt007hy9qftJWPUSz0bT6/8o8Ag33G6Wl/3A/z81fEwEbBlwZhwSP+2D420A2TBR+a6djM/eNawpAffOrI8wimaBchcD1at1U/XHw2DVapbb/TjPF+/zAX3pUGsCrvRPdppvvkA8IUplJb0LUf+9JjniFEkLT/vt8/vQD+8Eu5b28Dn+WhgPx1zfHbtlWTq5eTDB6X4Ygt8KFmH2K5BL/5OmA9O584fxzfDFKo3sl2v3/4o1Q3sXb40IrMv1PLqQgCGdo9x/TgBqYvnT8kBV+UFvQuaq4p7F+LAbeVdaX+aXD9JZ6GDO7FGmCkwsz/FOb80X4N+BKwOzYNL0mB1DihLlmWZ8Xn2XpnYNvGM1FWfTC2v4cI84fzQduw+fEZVguBufAhRJ5Cy5wFza3g6g9R3D3lYb4FRQBrW3lga7bbfI4Hv1QtoMcUO/UEpvXvw9XvwIdbrYHJitAIbnr8p1ce/hCpkaWdDUwJGCy94ZeLrcJg0jIalNHWJPR8tWFclyPaqbzLCRCKTIXnl0zd2y+OWM3uCYwPsoX/9s+8H/zNH3+jQSiBiN1JTUD27iV6/Hhm9Fc/dfW71tlqS0POh24Ef/rZlkkzcKMuE/DnzwWu/MoXm51iMGHVoYdAKMxlKJ4dqFLJwAjeLXO+yt8S0puGqP69/IbP0UExEKzW/tO/5rjdDiVc+y1q3e0PjFKuxNrzlUXYeH642bv5JIK/9f6np+hu03dwQz4vJFQVG3g9/TKw8h9qmVfC+by9ltAYz97q9305mUWzAsmQI2oS9vLZ1GYlzL7XG8ZOfQLkHVkBXPXvf/DDVSsLeEsBSfT8wXw5BxcChXm7/PNnlkjiHhxEcELCOcjAZH94CmdfCLHdzYiz99O25QCPF7Rzg8bkBnKTPz2BDeswNtw9BQY4Vtsjtq9D6EtTV1SwozrH5m4Q/LGP/RoIAa6prT/MaFZ3WQDiKHaJPPBs1RNhApqttKVuhd18saxRBlJRPrHvUewLNBk3YHP2Smx2mOV8FD0DyPbDp6d9exzk3+0XwjzPbWznzR4M5bcOtJe0KOT1Fhv+ex/VCxBcoca4zq7D/Me3vt/WwvEpm8EyMSuBRqd6aJ6zK//Da6gNGcKBbonNclTqEO5y/46N3zo1BMayoLoT29GTaaYDL+B+VP1b6lDH+Yk5RYfrCJrtbktP/Ss2R5q06xzgzsT+My44b8AhVbHndWRY/QIm5XMM/VbwCUvUgAt//t8fvzippg54fovCPz8CKQ3q8/mf3j65Cd5H/uSPpIIjMEBOsN4mIRAL5cX+rYf9Jj83s3noR3ACaCbL5X2L/q230+Y70+BhOP7ix3sdyJMlrv7wI1/0jyJDPWE6Te+vT7768QZEiaJR+2OOnL3Unw3fWZPRoxbWJhlHZoEwqRt82OpKPi6S1kF5yJI/fzmis+1UsLauL2rjNDF5+wQqPEW0x3/+Oj+Y1IKUFlfsbKd38yvrOoay/fTR+Vp+fX529V4rp7ihB+3lRcPNsWLIAkPDVn7WmpUvF8Ac7QfafXRz9e/r9A+/iLf60SOf3jJc8RuvXm8zaaQkIO+bHgnrGDu28i14CuOeRsO9Mtm4HSBc8etvv/ojE17pv/48fsY9mG3hmaolVZ80+F4rLiTvwwJXv4Z6/Mfy4aZnCQQJcalb3sRcnOm9hp8HnQhAL9lcvrPbwSQ1EFq64OszPk0yHNVDReSoMCPhfK5b6OnORI+jfMgX1eUQdooM8F3f7gEtdygAzgVvkeCZDPDdoRhhwJmBhmxswA95UwtuXfemSXq/+II+7hdQKpZDLx/68Al5eq06Cl6L7cbhnL31LoZ8w0tsi/prmGulucCNmhyoo1fjwNq6EeD0SHzEDqPui8FRCeFnOM5IPClf/69fwUZdnkg28u+wHB2UADJtaqzbjmuyPtMqkAeXmq76gS852sdAuA8ftO2scFjzow00SXdHaj69hrlCnqiwpf/RwxPow+4Pb3JJI9Q+KV9zCbFcwOWpN9ixJm340wuq+CEhXvkDaGt2j+FPGRF2j+088O8vFeA2USd60nZHwE6XR/bXL6iXuke+kzNea/4SYnrF1wBIa14F1/zmb3+v/Cwa//oF8WS5yTm5ZQyaVaKSDeehzxk8BlCwLx9s8ycbmP+BKhDqHaInXzLzVX8m0D9CE9sWHqPJKYZeTTrpgqbgWQziQX1YsJySBgGHJyYvK4b+8gj6x7cYyTzyr/85Me5zZtzqi+ZjdYsdOWnB8p31XpNdfyAwRjCfdkrP4Flv8F+elpOyDENYceohbZJ3Zo+ibQVWvUvev1s7LNlbs0F8UC1qwK3P2VZWCrj6tdQduGousLl08AiMgB6m49TMrtrZIH2GIU2mdc7La1tBLUl1RHijazm73l6LlqWIU0/0XvlEL5kKh9/jSMQuscE47uIArnkE6rYO5iM9uhsQhM0Nu7m+y4k/CAvUTOBQo64Df36ZwIa7e6n8+UE+z16DDv/8I+t1xA1vJdqBBw5dbBs3NeezjSs47/mJCO72CNgn3sQw7LCJYBk9Tb7mF8DoPz31NBJFTLjbKdh58ZUo3xzkf3pdXfNa1M1DYH7CzA0gB2lJ9VN48f/4Dhz8YI9v4WOfz8aXBNAw4ZZsxv03Z5DG9b/+beT32h9F6yND+JNz+i8fWn8e8AjcVv/MN8UdNAj4ZPGEDxq8RBMWkQHWfkXUvTH4i9xvS/iXB1tVxRqmnc6G9sfP9XU/rvir/+XDqDQMlf/pfSCzh4T/+T0GXgqoTTYhQnRphumHlRIah+G51iuLOA/CQMuizQ2fjJM7zABaAaS1cVnzvi/nhwGE4M0nY81XAO//1sOuve6x3rkKp3Z3rf/8nz888JeprmI4jQXFh4gJnL81OdYm7cxxMNQznyahTMFNSI/rHETGZ0HTa7ipzgbFy3LJ55O2r7XVT179oQ/4p0cV+1LSo6LsffF9qBCY+mU9s3WOhhZbVAVr/osPRnw2Z9cNPNhuhwsSwgZwFuZqAg8BEZC63p3I96ImwEcxBvSs/txBciiu1ea53qUX+po/h8PmAk7TMiHRESyfr3kg6H8/kTpLeVlvyUPjH36s+ZnYrHm9qk77tkNzfx74dAtiBMn7uyUZdk7gnz76n54p0P77MwUWLQL6tOLan5VKvcC6ZhdqsaobplkJLfjODY1Ig38HTErBAlAfNzRsfi3oSsdgcHuMD9QTqdGM5smoYYS9Bes4f3AWJnEJvJMjIPUkCuZv288X7fDGLtpE1hHwNFx6kPcoI4pzSgfWquII8VZlFE8THEZ5v1MhSzYlgR+zAPP3OdUwmJYttged8q45Cx3MXktJgyBshymy60ArYaVQpIisYYqguLCrjBL9Ao1E/Fy2GfzF3gEfjj4z58/pFwNjK/pI+US2KX5fSg+OQ1HhNOkYYEYLLhB50xaB1rBz9oiKjyr9FgkfLuDQzJ9hm8DAVFSqh2bNSXNBNgwDIcJ35yQPbF5nvSuqVJJNHGRgvI5TCO6fi0Ug3AWRoNUqg5YobsnGNkJzrmQzhjvbxGQnvrb+Z5B3sTqx1w47H/NozvIUWPBBriVFilL4S3AmGSDZu8O+K+7BZI3KAufn18X7ThFyvtRDB69SXqLbdRGb3qGbD0h28xcfharIx064hTCPjIT6p83SLG4zLmB9v9Q/n/xocub5Aod3MNLH97uA6Wh6PTQgLLCpb8phHORBhZva3WM7o4+covuoQhJ6d+pbyhTx9/1OVKuYfRywF8n7GHUjzIUSogiOrsnKy4/AvoECPl54xpmls1Hje9kn2u/xbJYU1qFmvJeUaPb7BbpH6XZwfs4ixbbc51TndQ+PjutjvbrpfL2f14bKMZPx6SGcwVI6cQDvWi/S484fh/X+SQtod3XBKFreDcsN8wITZw3QinwxZ3XzSKEXKDbRnuEvYkgZXfApbAepV2OfSz9IkVq/uz32+cD5sn9LH7g15yv2lfzXLMFXySC8bhUyhyjgxG1aBv1rMxP5Fu1NvvsOrrKud2xVODHnWUltaDrBhnonN825J3kB1O95Ta3NtBl4TD0B2sE9QL8LV/lS7b8dWD8vtfgSDPNpDhCs3/0er/XOeQ9gDP23e8X78bBv1vWUQG82CHbe11M07t/EBYLijDQ4rM8RjqLDANt4NXWuizhwMNfeVgO3lJqPhvqkFmoV3oMgxOEeffmE06rV6Ha5o+Xrf3xC3Q7C5bE9E6FSPxH/Dg9V+cZkoV54m82Rft41DM/XG3b0xAG8fTeV+hKyI5L2ljnM8nhGsDnfjkQGbQ9Ivv8J6jrvgUjv6xR1nr6p1bPSvrFTCyxiGbra8OwHBb7GZtLwv+//+9qZOEbiMkx6N3mQxdED7w2rNhmJX7HmqkFH031Q+6Or3tc5CGq1XjAo8mkzjC7c2kWCUtXfABKbRwZfp29Fcf55RLz8hO2/78euf5+o63OdQWqFOnVAMeZLwMMEyvW9/tcPWL2VU3X72LkUtY8pnzfVCUHyffnrOcsq+qFWzeD1upGR8twJDW9nowBPdYzxnmazOUZ5BIEjnim2DuTF58ujs0D/iji2pq3fkHW/Q/XVO2gnBThn/u9AYLxhnIytXA30/AtLKP0+RySwyh1+Oj8jGA5fmWzKfvTnckkhPIkBxMf6rvlT+DyJ6lnY7wgf813DYux58JFsRuyXWsVnbbwZoNhur9Rvblc+R7QNIREKgnGgg2j5FQcLvjZSijb1t2qGo7Sz4PfVXynqI4XTvPY3sC12NRHLcQbzWm+w3Zknapytr8kuGlu0W8E0xKRf4Y/Z/ejBa2WM+BhcNib/7qsN3EV+RRHMFJMJZRUD6b59owlPl2Y2rP4Dz0/6JI92fYZG7rcQRqqkonl/n/lMHWeE5TXeYV2Ox4ZKZvWBx7LS6FN2jYGPTTqCbnIJUer7wydNd7Zh3gcZvRjrLay+4AeQPC4/oma7OuI3wYjVynAcarCT7jO+ly0ov+0GO7UdD8vffr/o25Qef+8+n8/RRwWba1CijWDShoOPiaCSxDl18vdtmNnZVeGwDZ80n5yhWQ4Cu0C6T8/07hVzxOshtOFrrjICJWbzWZ4sC37uQUoteEzyecVT+G1rC+NBomD5fUcd6kV0xshmA1gW6ZECzp4G3m8Hc93fvQubl5vjy/r+l5v2cOH3JZn08BClZm4/1gY84mhAn2NEBtpFkwtQO3M0xEVrsmI3Z3CneiJhaz3nXfHuwOsRWIhdocrZkwUCgOhr0yBtjWH9PjbQ8EmLjdKu+GKecvj3fqlONYOzzqsT6G9TkRZNveUEWb8RWN/9hI3wLoLf5VHZQH0eOdLaKwGzvYwu+LaVRS1p/84XjQwerLdqTY/6j0Vz7xzlf/1IXvcbHWhfwZtBPXxK/NYc5V6C0IcvB5vtvmrmyuwTkBBk4+cQbJspAn4A9484x+fd6RLN25hcwMt0z/h0fbj5EvoIwiBJT9jchmG+APAVQRiIEVJPbhrR8y8twdMkG7JkwY3PsRrGK0f0MBr2u2bBdSD87Ue8T5adudavh00cyLgsJ2kYNobeg7Ng7tDGfEX+nNVTCm7ZAaLfmjUvi9jXoISJjzpv2/jj3glduM+KEQl7IeVMU1gHRQv1f/gD6LHaBrBWjxYBYQ38JYV9CKWi+6yemwxGM30V8KCrHBtf3/ZnVetrkAHxjF0ajmCxxNIAf+sxgLsxoq783YC/fmh+I6vhjQsu0Cq4T7bLdZ+zpMoLmD5EByODS/lsa2EADyar8aXqj/m4g2YB7vZQUcsE1cBplyL4vbUvbOFXDUjJygv8vfkdI0WB5qwcYQqKpb9RJ4JHIMH7nMLqrN7XRMFoaGW6MrhX9YfuFe/DZ3URC+0Pr26/yx5wvfNHiGwd0cNBGcCP2oWg8r3qE7ErnGbu309ZVYLLl/D7Jxu6QxkJ8Bl2L2ocypYvO+doqEoQfqltVqdcyPdhCquf9UCDK+45d+UvhIflekfbz96MdqfZCsB8aK44aOonZ99EcCGvfow6zluPpusN1ODqjwnGz+bM+QXiCrqht6MBrruBN/MuhiIIdJqfgWPOrlxW4C6BFP/xYWpVSgqLNxHocROe+YyN6weqP/wlddUfo3lfRAmMRPdInauVgc8xPYng9hsrmgw65ly0ohIGUV3iwEryZgTnVwnjb7qnxwtXAQu6iwgPknqkB3heNZdpj+C2wQ01z+orGp44IyBKXm+0NHDK2fVKM3X2rQM1Dx8zXw59gCDqk4Ys58UACzlGImjH0sZ6IPTmMpqvQsOauceHS7jLf7Ike8ADT40ejJ77/KngHqz8B5uTsB+mRPcWUPFkS5az9fV5sREQ6I0K0VD6QXO8SucETsXpiY+HuGrIUj0rpS8+e3x8nMeI/v09CU8mPihTkA/zbfsBa72JIn5bk6z4BS69+EBs4yk+u2gyU1vju0fyL9Mj6dY1mdIJrxfhSmYCvs8VFWr30aKH65P4RDJwrLaHkmErl8d8+b6UDpokN6i3yQFfdLco1A/LHkj4sAvnQpfo8DXXGbWuseULSGldmB/UAw12v63Jbs+qhSy2KbW/882c+HaXgPGYRPTwxE0z3B5BARb786Q4CtxcQm26ATaLbXz8JPNA8udWgKs+oW65VXO6fl7Vv15Nwlb+xhNfD4FuqU+i5VEMWIYeNlj5Nn38Hs9hzl9qBYY3GokS4qXh9qK1f+sdh/RyGdjVYAmw3NDFR9+bfPrOrFZhgdwjMFu6yft2U8IbX2Js5lMd9SVLQkjf4wdpunXwJXnsOwAOsKCnKlXz+efABZKNohFAyTYnfPBbqCSvI7b2ggz40wQMBvYHUM8iTc4AKFNY7Gqb2s2tNpcVr7X+IzbYOeYnfybd3KmGes4JyC6smbhfJPBUXEXCtxEATHc1FV4j54i4dbrlvI4vAayvIiVda21BG1mJBRm4cGz8KGoWEi8LXJboS2K+jMPsxxGEy8QaWrgbPZee+ELAU2tNxD+dEPGX9FPXe8Ud7N6PJ05pFyLtNB5dIgvXS75cZpZq8Us6U/ejNBGvn7OrbWi5RVrit/7CPoENHnchx/udXA8zTrsWznXo4cuW1/7viY8XiKSLTbTX/InoYYszeDUjaeV3gSlu/KiAA/0BfHpIj5xW404Ef/9fN2fNZOKd9P/6rfebXD7v86rU/vT+uh+jRe1kBt/fTYWdq6Xy9skCERRvUKMeqCXnmgEqOF/jLz46cgfm/GYXsJPykGIrNkxpeTEGI0OvUcuXsfnuwncIL0u+QXINCV/+9Oe6v4j2kB7Rrs0+Bqye+g8fw+DrE7EdPTg5pKB2++Q++0yqDkAYbPAf3+LwrmTQnnYLDv78gP79VNWohBb1Lf88zDxxU1hYF0RNYZ1F+dKH5G89oPmaPJrFCl4WfASyjHEwDAN7H3rhjz9SryBZs/LnAobDW0YbPWiG+QI2Nni/oyf10MvKRft3jjXdwCXh0rce1notQNhIHil2v+2fvggg6MMZ4yTfm3w+uBVY9TjVH67r8/KTfuD0OxrUTTrGZ/+pGzA5X1q0mZ+OTxrODCinvr7iRRXNz6xDYOM+f9Rozpq/JM9Fh5/jW8AmS3t/PngxBH/9w8/1IOKmdfQgtJI3UhrrFDGqDRnIYgFQ9EwdsOKZDpf0xDFWog2gKsfqn99A9atCI7Ks57h20tmh+sxxw6tXKcON7/UIuK7tC87FM8AZljHZDsFzEFKYimDl99RniRXtjlLTwU9hOfhsWIa/ZPdLC+EyEsJuV5vP0MIi3MC0xo6qC5z+6U9rdl5oe3huot+KX5oIkE6D6hRGi0v98e/10LDqEfakd/jnP9AQha+GpqHaQdN6adh+bES/A+dfATVwTWmBhACMFMrVXz/646sD+y1zBQ/Xu0jel9OPTwev2Mjq6CTUKu+/nG+fzQLfua4h5YF0Pk4VcGEkekeKSTrymdFShmFrpNRCrggWxz526h9e7vtLlS8NZzoUX+6J6rO7zQf/iMo//oEEib78fjl1JfReuKDHZvmZ7Lxpeih4tEFqtjPyZTH2tdacr0d8/O73YNWvCRy2lyd1hFMECHUrqOLIh9S6cMeX3mjq1T8+YBPNysWSJRco7psfgq1ngd1rHFNYV4czfp0myvnpbQqyou5KbPoFBePtWX3g5H18pP0e22bandEIpB+TCNChzNtUM0ftqp7Xc5hVZXaXAglQwV7yj98L7kEO4HH/zamv5MdGqp+KC8DkVYT/Agim05qxB9rnjN2m7xsCz7qh/flxwH/sGnasqwKO4WSTnf39NvyNpg7MSomoGyXjMFHHIcABwpO6gRObfBtbIrxlDiQilkS+OLZQwYiHGTXixM/FjmsCoN3nSng+Gflsfw/rfcfgQxYibfN+kLUEFGVNsXljJ85f1aiDU8wSum8ExPlN8GKYH+QD9u5FEjGz1TPYXeQTNfJ3wxelT2p4uwNElPu283+oXVJI89Ki1lG3TWamvwKErZ5iI3+bnG3Wo7jZ81BQr+qahr9GbwOj9e6bkyQfIuFPv6/+ELYq1Y7++XmrXiLbZzMDdgweJTSHV7TqRWlgf/6DjUOAtqte6f74w/GcTn/+ysr/5R4KehgTPgmvZqSLtc45sx9IanvNJJeZZZrb5wmCcNHBcrxlUIv4JcOO0w2A5snbAN4AGkDlv6wT6m64OTBpnfO1rgfqnNLXsAxWkaitMVO68p2Iw6y9/PEVAkp88Ff+VYPveGipv4Wf/J9/+uyBgTbRchgmvO9H0IU4wM7gK2Cxdo0LZppl6L4JZ8A1qajBg9xKalaLw/nhCCp10NUbPuRXdSDvsErgJ7js0C767SMpf91tUPp2hHY+ldd+YRJgHd4ORnrQNPP7zj2YxSLA/+rXqpsRUDRhjILqNSxCnxJ4vTKPxmMj+D/F+4awvys6DrJH1szj/ppAPw0WGu5hM7BddMwAeuQ6tskl9oVPc4B//gH2gLoB//yssapSIkDbA2DxJwbu9/iFTfNg572XVJbW9Y8JSSu+jrq7zjEZaolo4lPJ6bGSAnhvsit2GMDDbgyEy58fgl472Wj++fPPbh+hetUnDB18D6z+BDYn+8DpD9JASd9IpeYkvAZqL94Iy7fnkJ2ZIs5WPw6kyNjRo++d/PnRPRfwp1/GSXvzxWjPwj9/1eddl7Ogy0QAzHNODy8emDtPZEz7GHpMnXq2wKx3bxcqSZIjYdr6w9I8Jh0q2E3Qn18z+U9Xh3/6+VLaOhDZJ7AA/9zRP33H1MgJ4B9/9T8fMnRv1Reg03Y5zVa+N12D4gP0p6+jsdjcBjZMkqDKi27Ta/Tb5/xzWhbIDVuhRzl7R8s9O5Ww8CVCNOHzitZ+JQLP6N/Y2Qxvn/zx0b/9MAdbwZ8Gerdgp9/Vdf8Tzp6qrMLSzS/YVf0SsKt0juH+Ng/YS05aw3u7KrTRnJvV37oD+pJeqmZUuEPScnP88RYfO1D4O4L9tX8y3d3J8DKRAC2rPmM76Bf/+E+9FaeBMUw7sBfqCp+27aZhj5LXMIu7Ez5cn8jcdTu5hn/8JrzCjLPLR5Wh9exUfH5KWb5U6VTBJJ84PQVp43MlnmVQ558T/etfoh7ptTaJ54ie3Jz8rQcCr6g90PzzU31B3vsG3FE5xgFcdL6ztTSAyKNbJFzj1uev0YDaA7Mv1Z8ji3g+Mh2s/YWejpLtL93mJ0PvduzwXR8B6HbRPpWbI0ywte6npSkWV9NwHyLx3r78lQ/V4KDLnEb1sAU8Ul8MWj9QUHt+BWBuM6KDlX9h86yNnDXdUgFb5Ves15t4WFL3eAHCa1TpqaxPwxy3h/gvryLyqfGHtf91cKDPExJT8Z3Pu++Z/Pkn9BiqNeC93ZVwzV+w8cjZQNPi/AFrvoLW/Rf96y+6otvYfdh1Pjmhk/zpI7zmYc0P72sCVz1HVz/Jn+2Nb0F1PCRU/9OjeMpi+Nz5LVrxCfzxeXixaxfvH5s6X/FLAK3yueHD22gBO4W9BbcPyaWrnzHwWfnV//jo/tdazQ4bjw9M5KKjxXS5DqIDrhXcafqbPqTTzpxF5SrDmzF5SD41Q0M3g9bCzhXv1NhdGVjMVNe1/kcu+Ki4L58pwuxB13b2hAVC7y/Kb+j/9Rd+DQ7N6jdlsLI24j99JPz5IWka3cgInbBZ9qzpYSUaOnUEz4349XaxITvfCRIz+oiI0Z5FbWwyBx9H2/nTwz08oL1JzcCp8pXvdDDt7B+B6tkEpD3nwXqMKf33egwdTBd6AbBRZT2qYbwdHx9AhJLQw7aRV7/EqSCbjQs9QUxNbo1pAtPct6nfGp//xyPnptIT4bovhbs61HITW/j4559Vt6XXVv73l3c0bHPLRcDi8wOvfGzlmq8CglAPqVsjbk5W8mEgfLk/HK95C8PTJQYXaUOoIbe/hoa7/gKnp4OwwZ+WT98t67TH64QIWP2h1V/11EN+jJF0841BquSCQTTThJDI+gGWxEIFVzygax4X8V1hIXCdPEix9LiY83irEvgPXzJ5Ar/awy1IrNseyUVqD8vjp+iqxDaQLEC5+zP5tTXs+WJjX1THoU+GEGr8E1Q0mC67YVr9FnhE04B9md1z+pcv/e1HND+/5rJI1xSeRASxNSMrEt9hFSudK9xxYFSI88vl0kL87jHaUqHNeX0k3p/fToNctBth9RMgeNwQ9T8f1HCe3AX4zA8MWxLdm/zdyr1ab+Ua299Z8mcndOK/fIAeUvIB3D7qPbQjvsU+Jc+IW2MYa2s/wk77nQfyfc2dtuYziJk70CzlRb/A9pJG1KZD5U/bmITAafv8X/48CmWX/OmD1b+b8sV+LCkco88O46Qcm/lzd0Pt7KMCH39vL5rf74sFfovSE8X3pj8/5vPnX9FDKDwAkWiItHKkXxyYyBv++aNk/mypOea7gT3pGYLpYObYH++UT26mVzAIpQfa2Mzn9Gi8EMwO+9+fn9dwYfMz4O6yWRC/sYnTZPsLgWndMLVfYZYLlmh9oHTX3mteeRiE7FSjf/69I5w4oH/97OT0h3/9bVzzD0Ck5EFN1/O59JcffDSaE7npvaY+H38ICu3n94/ff/dhtvmf5hTIwn9/poAezAd56yoEy3FJlzUTsqnd/97573c7BsDZ3Hy6F3k3LNJXriGSsxv13exhMvweXLi5NAy5Z9VrfmVzjtVQzzgOnCGO+M5jH03BR4yDx9XM+dENCExHgyAwD9Ow6NYVwrKN9uRmPr4NtYhcwfu159Qb3pthsF9tCu/RNiPb4tz5JBxDBGPW9dgL+DTMW2md9dCRHTVe3xnwSaugpl/Bj5rL487nCxIDSA/7B2IkjhseG70HwslhSOln1Czvyqzh6xib2BC4Fs3DLUUg/lpXnO4dKxfQvCFgA48CxuNP9uck/zIgVO2C86T8+MtOrXuNnmFL5DuwmznBBYKaKwGs14QA9t5+CfyUPifwGA3RUm5VBm/h70UWL/Oi3ZXKBUy0WsJ4n6XDL0Q0UO3Xp6TWKT7m83Y+MHgwrS+1s0DyqUFeFWRhOtCTYW/zqRblEsxh7WM7OI0RU7JRhb/X+4RtIK2z0i+1DkdQ7zHeVVXDL0buqZng9diUK8dk+Th4QDpVlJp98eCM6ssClXe3TlX1Op9NwTaGBzgO9KbYbj6HhZFoSpZpZPeiud+3POih6E8i4c2Z5Mv3q9twe7QAmjd3Ek25cbPB+eRXSMm9EczRzinVQ+PdiHLWxogenA+B3++uw/vfezRn/7uV4fuDXWpdBy1abF+uYIjoncjJGINJ1EYZZhJuyC7ZvgDvjuUHNJ9wj4vxRTjdaY8MTnc5xUXsGkBKDMWFsaO/yTLuuc/aKjCUHrUmftTg0UwV5TKwxq+P5HIKufSBAEIbij7d/7wrX9B4ROA3iipScPv1OUs+LjSl6Y6OxqxzgUZABb2wS7DFnGSoEyVlqmLUBpnIZ9+sJ0MEcH+8CAK21Eb00RxFMMpHjHUNiBGPrk0IJYxc6syVMbCchyPgkWitQ4c/PhP47gPejjATdXhvmvl57Dt4zhedKPa0GeayuSeQY2OPA5DY/hzgkGmbsxsiLldf828/gFJlBX5KymFg68QiQDe/F3XKnvrEsEYImyd7U/2t6cPMHwva/r0eGycFkMf9VcNCKhoy63Tm3CKs0urNvqABHlk+v5MmgNXeeRIt9LqGhy8qgLzP4do/DtFip5YNJ2XjIrUT94M0hrUHr09TX9drEPH7756pydOt0FJyMaezdE6hNLVPol1vR38J/McGnK4ewvplTPgifVkN357SY9MzroB+WZVBb2ZvnD6VXbQEw4KgwGmOzcOw56z9zK3GwmygpvcI/KFLFAJzrzsQNgAczbXICi1MZIRYTFuz28WdDIfKE6jhctr8DlTXwW84vigyGQDTZJYV+AWzR5SaXQb23W4IrIpbQObrxstnqUwDeNxqA/a6fMjnhYEEzmcw0ECjfvRj5lRDn0dvJF+uOhcPwyGAppIt1IWR1vCAjBuwo7qMPu89anhT0xCoOdDWz7sD8ze0evjaB1tsQEGJqL96zEeelNR8/KRh6opvAO3cMahttPecGfN4ge+x49TWdiGYPz8Qg4xxGYlrPyFrPbUqGzgKJzc0WeZLKthehhD7iVCa7K8ez22HaHZCJufmXhnhXmIXaty6D1+2KrHggfKWVDG1/C7btqHmmj6ixzY9NhNt9wv4+HuPcCgBf8GWlIKEfWeqNyqPmJ8qH7i7li2S9ZH443tLRyBeWwufH1s7ksLukUH8U27Un4epmTE1CwiMx5EGhTqZFIOyUtf64tPEruYM1zkMF2W7QVI4WNF8plkBbu7yxsf/Y+k61lbVoegDORARyWbID0gVQrHgjKIoqEhJIHn6++G5wwzTVklZ24Epf3mgNlA9HExP3+nizbuOMfDbeEuoVe57rj3MbKnPV1Pfdg79fPq6EryGjlN8LYeedH6Vyafy9KHWff/KJ+oHR5Sxe4R9o9HQ/Bf4028+COr2FuLGyRHh/vijATKLwBteZnmG3b5Bgci6v3wzuoYJcmMwemmTp87X7pLVl6QBLfXLUx/eH/sNq738XPBb7Yfz2gxB9K8Y6/LthL678tIBKvSSzEHa9LPzdCVYj7KCzVVoeZwrZgaCX9j49m6tfFTtkKGz5mfYfphnnezGsQJfPR8I3/cPzi/PQkCfPsjIvF373lxRLqOXUFOyCtzSo3vNHtBRi5NAySeicy1vM5Qq9xVpvIElPClSATaxxah/fEBPUiYHEFfXDi98lUwPNTpLxSgH1M2YlAwfOSVgFiynqhFvOI8KR0BntL0Fc9mE/+OtZ4dqcJF65k2K/5nAg82OSAs/z/xy6OB69y2Kse4l//r/sZZ3zpgevSlbDyEMelIG27Wx1SfG3w34vHoRKUwwn3F7kmHVDQ1O18or76xVeQQDyz7WvUBOmPIpV+inhxxtrtC0U1cH6I7zGzv9oUGj9eASWt0LkQbfYglGapwQXQRDJyzCf3zSXuGAVCZXWPvgtp57RzHgZdzXWF3NTz6/xEBClcYkbEg2qwdRll3QiWNgvdAKxCsNGlnpXgb2AknNBbAYgwzHW2o+WIG6fjRMgElRqbPUr50Oa03417a/Vuy1Alca8M2aEMk8Noh9q28F0YhDvLeRxFs8pAQ+fH/Gvn55esPlamgQ5ZOKC0H584S7qp0hc58vIs21kc8VvnTIDs0TEUQ089lcUqJ/esk6SQaat/P1CO/o+caB/Wn6qRuNBvZipOL0YvXe2NU1g8bJOuqF+dWbyp0/SK3znrGGPx2fI1HVFObVFKsn1Nb8XocCkrXLl3pRtOQ2DIUNaqCO2ImJXA8PtnJRZdyWNyRPOyHisU0VZT9rOLp7HWLzOBuARfGGA7JGyUDeiob6i7KmthptOTVaF1AcrK70oOllz/A6OkLfIJMGVqajmShSgb7BraaGWOU9s6NXBfA1jGBlf5p6rDdbGfnJbYMtG8f6RnBnU07k/Q0bZ6h0mkJWwa4wzvTPvLQ19fBfDIyzYyCv1ByVe2qrMPNOINJa2ee8c14NbP0npY7M3z39do4glxupw/m6S3MuXTobPp9tS3ETN/psaE7wwxdqreW6ptKcChDpnwPZmpGuc/PRZKDOvkVvOyHm7HC7GBBWRY0Xvcxp/q0yZYqX7GHi9TkXZ0cE23yqdP9052Q+Yj9Ay36geqOnnNvEBPTuDRmbBTZyUTheU7CL8UmdONX6eXPJO7D0P0Kd/KXrbEpQhhqB2ME2Harkx++K9S5CnF86tx8x9W6oscaIRtK87TkJZ/enF7AhunXPL8+jCFt8sLHpXyc++gRuEKsXmUx7W8vZlPAM1QxhrDGj8qboxWywbkkeoFCkyVjV1RE2FYmp8TlOOnmbhQjrwW+InBzien7X+wnUzfr644tczJcrsMP7vqKOOa5qrqS2C8fnWSfbxPjmJNoHmRyIw4r6GniIHp7XFJ30OcH+6/rwZsGdDaU/v+90D++u5tojSFGHoj980G6cj7vy0gJ+agXFtOT5dDucZCgvz4QenhLirBrtFnWeH1E7Mm5eWyXxDbzE3xBJjS5oWpFcg+bD/0h7tz8eX01iCNdQemA1t7/e9OXM/o0vTdBRy6fsmmjwxzUVm8nfp2bxa9eClCUl2UXWGk1mQ1208BH1RCnwNuuGBWjBz2DTeX5Out29Bb5Jjhj/GVXPR6UFgLj5BlMxVToZ1GOMVnOgBnXUonqaM+kGvo2tQE6vPK8xOlfgj7pDYNHjgix0DXQHqSO82wre8s0mQ2OhRNTss6Qf7L4e4OAVV2ydtDRnDgsnmG/iTL1QxPnXI2MBhVsO2DqVQc3WG9v85x8OcdWj70mbWyjc+0B23K/QZN3/3J//oL77nHv+mqJMKbUhCma9HvXvvo0LpFOxxHtVLjhXj72A9te3hvcbteHcCeQYWlUryVQ7e29rE3MFO63SaDiMV/76O/IzQp/ECyB7fPiir4Pf/llyvL71cFfdM7wS4059hY3exD65Cl3qptRtcy/h+FmlSniWAwLb4aY3P3x6KDvAv/U1MWI30KPsgfV6aHqekm0KebhtiXhYZTVTjXIFxq6KqffFKGGb0arAi8QTdv11rE9ESN0f/1BDqm0+JfdkObmRlYDhg1Cz2/32hMUPkd98zoLhPdHib7Ae32xvuu+OBNThamDP3iT5aKNdgyLZvuAwscaf32Dww09nfHU6e6qhADx2+6CpUO8t5wUV4DF0Fn6aEl6Xi15F+D8AAAD//6SdybqCOBCFH4iFgECKJQKiMkUBp504ICgyJkCevr9we9m7fgMlqTrn/AXJNZSMXVjI3N9DtDB3ZIqMwetyH2nQWKdTyPUFjcaq8OG1fLvYBIvft929HFSTLMa+uBGL3iKjAVyP6PaaDWk/5yPLTxFRNtkunbavbQVr9ajiQD/LbHpdlRwORhZje6/G3ig19wEM4jxIyfNz/xkOChzXz45c+f3W49kyKogescH7WeFxfTJ0U40jun09Fx5TzvkWvdSwIIvD0mHD7rV3kf6VJ7xxq6XVs/3LnvsTUYlhpMPx1ZQoPyQvbC/OtiXq/CxS2JkJ13tAs56it6lcKDfVvH93NyRRU6H4JY/tlLRlg7i/4us7edNpan00jBKi4U9sGTXDgDO1aYmDBtSinfcr70fhlf/+zhy7PVRe5GLrruzScbLEHOJvfKfGEW2LKTNWsp6k4o+c+keGaAYhQLBTMuoKBkKD5eXm7OdCqKOHJ6rv2xN1qlxR2zuANZTX713HNTrjANEX6p/VMgF7KfMTXVdFPFAtcMHvUB2Wq4vIGHPrEi7WUgt1V/+xSYsFGdDrhsmwUodikn7vDIzFu8dh+GXxdGd7H0xKdOo+PL3tLo6rwHtTNdSwMi+tFDH9/Olhmim/eOyaLIG6EzUiH6XCG45T0YHgnwKKf/czv9tLFoHJ0FNXqn9o5k8Ie4VBV+v33eqe19FEw07FOFysWMz5VQf+PrpTX3Df7YDCLEGKdg6IbPtDyh73JAKjS20cVEXSjkMtT2D4x4Tsef+gQruP/vyue0rtmGB7cUOGf07C8eBnHpv1+PW5vf/qjeWWV8KunnZh5z8EVFF2LtH03Yl0nQkdGvIrfqJKVDA9k+7nDcdXXsIwLlEo96bbSl+sV7C7SybOzMRh01WhPrq9jRW+Wd+BsTsMGeL9nHrX6M3PofRt5OS6EBbBYdNKy+fe1xsPHygu1kVKkinxkbeNDGq07tsTqTENqNj8Ruo8jKmYMjXx4ftT3oSxuEwpshUThiouMT5Lx3ZAN85LLtsLQYtGiVkvswuQ6vSi7nPVeOPZ2jagnP1PuGTPMR153la2dVPT4K6HaCiv/R19hOjOv2z2C3bYGR0Mwz0NX37jpNLPGm2UPHIDb7jfGLQffqJ8QSS6dRpAXah0EbjtYYctXx7jQbw5CsC6zQmzpWM8LJIugaToizAfw7hl8tPolFXtTQSdno7FSkACLD+mFwiXzzOdftHypq1xLxLVPDVFjz6JD+ql/9A5HzBfinJoDX5mkijzbyWwTWCHguu/+Xf4+aZGv5sA4091t0Z1rJKZL9BQwztvOPnvp774jmp4eTsnb/wMBw2WeTJhq1zXqBJIaqD8/vHx7rB5sXa1yom+LrZnIlbvAbVkP261xPho2Hu+coveoM5hFW4DjJu29ob9ohJ1zyl/ZH+LoKDPvdHBqbmFnJd03tCVxAC5vy94f6ja4d1ftqBgi5JB2nXWtO8uIUjbgp9LdQ0ZUwq906TJy0PC/T8NEiH6W0+F56sxkHIDUjFysYPPi5bMvNDqHm043VYd/+7Td5AwfTN6Zs8xHpzPbwuPlang2e8SLZZltIF2CkfV79n42uUNEsATw1mPWbNPXcT3K2Hz+p6nqQPz5NbYeRhRK9PMAY37ezKO3ojGAvo7svwr+vf/Gt9dB8broZMibrpiEh0h0jjfpib2k5b9huwCYiu+sFc3h1ZyV2UDh6IBIpsfNaVc31C+6CTOf7wUubl7AbMRWj7zfrfTje18yK/BDa8nf5dSa6USOBVCQc3bqrNankfgSTOCDZ9sPXHn4SdkuVhhvGF62zWZagLXj1BupZrVhWtU0KLLG7+w1cYD/J5PyF/tmkjcv3fL0ExgxQyDPqTTDU2nV+Og2a/7LbXT8Qi+gWTqXnCQDqHF3iebgLBW8nDO10O/OZxgFQl7uirHoZj1UGf95UJq5bZqWbfPt9CAcCP6xfsUc3/Wvd4xaaAaJhrE1WWA4ev3+DJuQ09cX/wPkkJ9i3n+s/74PNiRSSZ4vtPpsMgS/bLYnen2utY8yucFSM1jNdSK2kCM7FUX6tPxRY37YHh1PrgK8ga/oxiLajF6sC0huvkbHL7Md0vs795Hv9a/kfF0zdrqeJEMkKUjwuYieKbjci85iJStQ+01sQrRmdwIDjL7Yv/dndPJ9uoMpP74CodA84sh8r07BGE1/c0biHb73IDYSJ/9sMfKHf6oqzPJ8TwPIc7hmYG+lRC1zKUTTzyfIs5naWC+pXaMK6Qh3JYDdu1pLEZTPJszD/xbD9EQhpv+WjQh3b0Xn5jR4S5CechKbNz6CNGo6i7glQ2fx9hf6zc9mg6uzVMKoYO1JQ+3TND9Nt9RL3w0Hs/Djk4e9kgdMdA8UU+OJ/idLheiJqdDIUur/R5+FDrC9OiQTqVzF2f+Tt1ovMeT1cghEiQhIm1ue6zf390T0vLrFZ+a+htPuna2//arsd7m6YBuTNG5PhD068xWXkiGA911UOg+3gTesqY/EZxVTuhW1S4xScptNet/qEmLBWp/9SQCgk0w+1lvuDuVhmb/8KcPiv3OUakYq1C43ho0eUowAOfPYa0xh9drdYPOqTBeL681Gub6Sayahd/XSULdmLgabFI/p9iu3bRbnUkJ5QYOofrTmTVWjXma65N8M6FjtJU/N/A7tSYa9x98XjaAQjdcv+5ZSu87ewu7xaIlNSuUPz+n3+jpR1Se50cv/ZzgPe4538iidCh/xgcdH+cf3a1dx+p6o5ig9jYj3fD8vpz1JhPsI30ujXMqG/ZRQO/F78iflxIPuY8UkOLRC6ePceb5V9uC/T4/abj1w5QFeL/X0fc7Eel9tf7yC/ruchdvIX601ds4JDDqwRZ71bO3yFNdh3/zlWWaPlLpbfk24jyBeuJrZw0jv2JLW3cp0V19w6TeOuXodXUZgeSpsU6tDFNfHq8tdoU08ibpV+dQLRdbyvXNG++FmWhH/XrGq8dnsN5BFSp/z0s1RwONYcoSqH3mhsOtn1C/vi1PsBmML93dz33RGYJygcwcFLqyhCLm9ZmDdsse4Sizqhiss1Siz0tb0zXPr3/6VQgu4HmexnkTmfkWTa1qKoa32hIoxkCmRh4rLamCwwVG16ShutkmbAi8/o42LxDxkyxSPq9pI6Rm2jVsF0kWE10cnbn++F1eXzTzBj06SceQr3fRzflp9vtuzsSUrfsFaGU3xdS6vT7e6IFRorVws/Fm5gu69rLnvEqWC/tsjY380VB6jmP+vlNrdZqYl9C+5QD7iXrwuL/IQGR9ijfBskIE9SKfZ56sub96/SXvEvjVxYpE56pEbC32OdIr1OLddE5iJp79LfRf16F//E22oww1ir/FK0G024b9ogxNVV6GkzGxYkxhNHS8W/5CwfmcUyIGrahxvkiD9bCJef1NwP0Qnf1JO+fbef5kx5FiVefX+AGcG/cQpFjl55a+71D82ndYha2C2m7fuCrvD/hwFNyYxL4LgHfSDzud/7SY1kx7ffZnTbCYrLE+r0J99qPYb8q0+3X6B3gex4a067z6KzsalGKLqbdqLLR87rcdqMUiwpbUtQUl1snQi09ZYbevPESStqzQc5k22Hvth5gFCGeoWMhHgibHQpyfNMD5Lr7ftcAbLaIasBLTjHrO8pNOjN+g/PEcC5taKlosogcAXm9hK75qiwXbpkP5eMN40z6keDpdIAemNA41Vuq+GJbGz0drezJo0B8FNLDkqoE5LX94i9/fdBJS84bK19IPheevTYe7H2qocxpM3eyG4xpT744efS+FyqhCPGynQwS7Z56S8TkkLe/PDtRyikNZrPYx488b/tc7BdJ/v1NQZWuDCE+MvOGxXMhaWt7P2BHeacxgY5v/AAAA//+kXcu2qjyzfSAaIreEJneRS4KgiD1BREBFLgmQp/8Ha3/N0zvNPdYeawGpmjXnrCQFPcGE1HW6/TCb+2AFWV7c6TVbjGRv8nkGv4urkyp+s+FFj0kEWZGVRCreZrI2yZfAnc40xCsP5pOnQWNYzY2INbXcgWVeQAl/xSck+1G5mb8pOvMwat2MOplTNsxVOAIdqnH0qHPffDxdCgJfZ+uD+N369senXlSKOaoVdd1I9+eb+GjhV1IUoqRCbzLZzyxI80ynWjWQZCm1wVXkykRoPtpDwzQvKyHTKoO6jWA2YhhNNXgO7RU/Jx8Py160DDX5iQFpb9cuIYalRTBG9x0+gp0DRlVRCLhoZUlNf36zWdRjR709yQvbbjOBxeTzOxzY2aRO/Enz7vrMW3BtowsRuBdIViTqrVqlOUN7emq2c4XbPvvPmdFjXmV5HT1fAkzy95tA7aczdg/9CiYCQNQ87cJhPpaHGJILvGBNuBgNe/WpA4X4kGC90DWTmMahhEVQiljXl5s/CUHWKh0KDFwOeeXPwqNyoVHBisbGWW7G6GW18PFgGnVfT2k7Z5xpQJBajd4aa/Wp5PxWiNzDHaNF1U0y4qaExfrIcDCKms9K0nvQO3s78tO5QyKsW5u++n4zfMz2/bCK5aqAtpgybBygBdbDMRJU9sJ3fGQOMKn+aF01da+A8EXXsVUBQwB+vx6TRRa8fO1+ZQnSW1ORfc/1zbqzaw8s7bfDyEh3JitLn4MX68Dj4y765rOihhBOgD/R5HHQfQF2ywrd55qgfW2X4MtGq4MXQiyKvxkxl2sTVbD2owFJ8fpiy2taehBG4IIdlGs5a2LuDNVdcsLaW3qYbGEIwX4cF1QF6Wiym/tA4JCGFpJNZT+QkiY1HFhqomZ4cQ3ZpdoZIte+Y9N62s3+qk4zaKIxo0fm5P6QtU0EXy+3o+5B/Q7kqvczvDvSF4c/wWFie207mF23MfZ2I+YsBtUM1pcjYO+R+f5clwEPH7Pno0W9t+Z6nvsYnrE44kCwEGDW+wCV17Dfbn63h2YszjaEj+whERXwpb8u7xjt9sXvQwMV6GDO57MG7ds3xlpZOMNILrCC4tDXOHjRYFjnKBzBbOsSAqXaJtPNn1coDPpCTQUOOTFYb0DvfW6pVmQXf1EeN0PR5fWO0R7pwxLhvQZOV6QgOU2OA03uYwZe78gnu29GfJrreQ9PyeGKZOf4SJbnkxB4G9cGG8/628zN1YxBZY85Psu5klNNVtAf3uC/fN7zSeyqF60o6fnqVs10rvYlfKTagTr4sgcTn9zdf+sRwsN1mEd1LWAbaBrNvzlrRlG/W2CmR0Cci5iCcVSVAh7osaaGK9yHFVCWwp2tNNifgyIZx6mIFetWEvL9+jtA0+AVqyYrET1kS53M12fyUUnl3BBvVLYpOPQBIbbXkOohsBMmlMcaInJQUOdGL5Nh2R4hbpov1sGaDTMRZkWVpd2Iti3zbKKSaoD6dQqwfrhZ+eicVA/kvku2PQVhwvzOjsFeWHqscezE1v0bFuLSvjtsfzLJ70A9E0V5Xa5Yg2LTLKkkln/5i57f4ZvMHHJKyPfrjxCdGmy2iY9Apx51pIb9suFnVKgDehPU6uWYDFEhdrC8R4jGzb4CM48fCAr39EYP6V3MpxyRGCzoe6BGs9eYeMluHuTXV4NxO1X5erl5lWK4mo7TD8ia+Su9FLX/rYw65LkmM7nAGrRHyyC7QpgSVuUSgYv3bJF4n6Jm7i3eUq1bQTbND5K5kOdekc5aiH5p8hvGy4WDoDjNGr05x0fO4k8RK9c2vmAjup/zNZhaCI7ha6L2Q+nAXIZWBjX1FFBTVuKG+ccjAcSVEvrIVtsc+0scw/ecjdg05RVMVjfU4JUFR2oO/BXMz5NC4GKQAQEfl8myWxCnSA7nb/gu5Ru+dMr97SJ6y+olWX35zAOR/+rb+k0Jibj3Hb50WqCXYcXJYlpyBx7rGyJOeho+5fUbgjCSD1i7H6d8hoKVQfStPkRWgz1YvDoIwNuUS2xt8U8u27kaHRUL9u73Bqxr71bwfQs+9O6MDzZPRiXA5nwhVFvo7E/saWjgsrsVFH/SfUK9puSAWocRWXmvSVajfNTgCnVEcdaczdWM3x3UnMOBvF4IgfWjCTGc3KQmcm3IyWycYkktbrX87/uszkUjcG8pEz2kB86nRbrVI1niEFsKM6HwEBggFuYeH6ublYvkAx3Qm3NCxvDe58sjSAy4Zu6VFr/kk6xxIGUwi01Kdk+ez1mp4go85zzBlnm/D51UXXqAj7eGgN2ZNjPLQwcUhNdxaaRPc/xepwrgsHG2TV+nZIPV9A8f0BoeE7AcPC/44xPYLd5mPhbnEAJCJIY1AXJsBc+HB+f9djfe8f1pFk/MCIz0BVFnJ4Q5yarPGf6M0sPO0UE5Oc91DJY9C7F1hKCh7+IOod61e+xV0AIL7VIexvlDp0E1MfYN1NMMmVDXCJw801zE2SvgQDSFyBxCzaQJnw723vVLbXoywY97sEg9PhWROl91yZe1XxRIU0vGSMmjfO75Cw8hi044ezZ90hG7TMFHb084687Mn3XopHDpqI/EfcsA3VnSCoxRgERCz27otG7tt57HTG07DvONr42w0lsJ253WDMtW3+B5F0n4ei1m//d+qAQclnoik+OIgKZDK4CPe3xj+6Q/zD4N7z2Ml0eNGh29zeXmz7Myp/hBg2XZD+x0yEaw15iHkTV5JlOLrIazd9Woe+jRH35WanO+Eny8tJ6/xl+7g0++FhD7Sb+GPPo3Us67WCLs/ijA8tFpD7DEU+r2mTWMPCdAeHL0y9+/G2HjG3LqXsB/eOC5VQpDvrDwza5f/rjxL1CIa4UPIXRNvs2XFujPLsWnNZ6b5fQ+Vn/xgrZrdNlM7DSF+r4TsZnxX0CLd1jB+37/od6FX3L6W49EmZ+dS++r9mmY5SkjfDwWDdva7myOSmlkkFTWjeb5aIKptzwCfu31QDd+Z9Jj9Soh2BlHqpESNzQG3Qo3PksL4x35v7WXFfhx/TcOQ9UDq3XNOfhYvxBt/NsXNn4OwDpU1Lsem2S2iYmgMJgLDd3LbiBbfCuouZlY62o9F+pXdP+H3wft6ACRoy1SrMvFp6Y49ICU94MB3825xxqzanNpbDDCYYee/+J7deiFgyjManpxmxAw+XLw4Ptbhji4He/mOBaCA1dEB+qcWnVYT6taAYEvH9Tf+Aa7ZCcXJCY/YotHw7Dk6BNB5V0o6FsYBmNNLJwhW+87tIA1a8h7zQR4fSxfGmry0WTGOndQ+X0epGq5w7Cs95yALd7I79P5bG4FR4B6+4g3Pl2Za/hSHXj3XirFiekzBprYAXP7tNBsvs18Dike4WqImDpd1DM2k6sEuW3/emiKszmFLOj/4oO6d1UEDCC7hc97tpJVdPtkMZs9AisrNbJOnZHMc/KLocn5NvVOr8xngM0xdFFLKNKpAVYlOJYQmqKN3Zrv2egqjzN8u6ZOA+33YuOnpA60dk+EjS6ZE2a9MQR1lk5InbMvYNc59/74F/X2p4M5xsdRALgcB4qe7WSu3ufoAvWRnXG2+8Lt3O1xBMxQGdbGO+fPSjgG8E8/CtiAzXRVpxW63ybElqtN+chzHASf4ORSvQCXYZb2vQfj39hRtKjb3chGJwDnaJT/6g196nsFlCEKNj3WDAyXUgGd0NVpZn8gmIcMz9C4NjwRC6Nms+uBD1w4I8Fef0yGtfNiCX6CxKVI9DDrK0nyIJxUF70eKsnnXFtj9bqcr9gSg3WY2XxqVTfMj4j7XUmziBhZ4OFCG4dXTx4oXxUrlFUbb/kl+2u4JhGkXWHSexu+c/KGBwUqnn9Cy5gayexWrgNHS883PggTKo5E+dMLaHAuLqPWj4v+8Jfqn0ZjexdJFRRtf0967SHkM6glAmhXmthQ+yGf81NUqFs9Q6Iiv8EyXNM7PByPBtUOs5wPoLk78OblNyLxvmPuGe0C+Do7H3yYr29/joo0Uubu80U7nv6S2av3H8iKe4lDcqx8Nj2upWrsAocG0eAxobqCFUhnIyTQkY75+tG4SDFd903dTQ+N5aNuwaZncZo53PBPD/3plQCcHg2TFZmHf/XGU3w4TG2uBZD1vY3Wr/NKFrjPDUh7mcdhHFnm/vu9p6CSuZo04XhOVgplDubvaKXHb98O66VVMsDjp4Z19W75f3pP7bs3Qkr184d1pwEBvPSpoBv/zucV6oXavF8Jte63l88uB2W7Ni4vsNcXI1t3qZbCjQ/Qo1ekw5yU8hle+vZFreZD2VzIUgeKfixJZfODP+d214KCu/L0sLMAYO24uGpxWjXqfg+tv+xi8w5v1U3Z+EmbdBvfAxnKMgQS55TMqp9BsKuMLzU+VjfQp64q8LRWDdZSaWSLJ0YjPITRm8gRd20I/0IuTPLve4tvA8wK6VroR124fV91WKwD9cAsrwEO7n4MVjrmq5Il+EwNVL7ZfJ5SAtC9aLHzfBrmX/0CWuIfsX3/dTmzfkIEL8PqkNOxC8xtT/cHXh2DEMWzXwOtqXVXt3yizoBOjDnm4qroW39wuNyrYeEe21GxfR+hOfcdX2DFVYCLIyAaPvWxWYf0rQEhkgnWrsp7eL+51VLbwNDIKyefZtanilMrzrL/+RP7JRIduLs6LuEui89YlGgfdeMX6I8vUvReNaA59gF7xuvA2JY/oDVXhRrG+TbMNvfKQM7qbbbUWDGCPkMGe6Ml9F6/b2B54+wM7NnSMCZht82XvRYgAdpChK2e0FdfOorFPit1Z8Vu5jCyPFi/M4pDxxHZ0ir+DIduWqleBYK5YPiK1Jn6gNoED/4fHoHTaO6pBrDkD3/1pm+fA1k2PSf+fd/8Ha/4WDi+OesQpQo6xjsaZqvtE9PAJUgmSHGg9HpOul9aqtWoVDiYXa1ZBeBy8I9v17xn5is0Dw6olbCn1zVJcv5j3fg/PkHDz9vJxfmp1Mrd1zxqZKdDzkIhClTlGia4Ha/SP3yDU51/sHHRPuwXkvQMRZpI2D9c9WY2208LAmE5bfFkg+n1SApV9rTpL36b0amTM0TpVaf4EGSAv2V3AxgXy6QX2bIT8f06xkD9pAxN7uU5fPPTIqicxL+w+ZN+w9qLvztcKi5Ge34ZfXLU0hLsbi+ZHhJJyMlrcmM49d249dRGn7RZaQAjkUqMLsvAmHHiY/iHz9cQduYatZkHPJyaVBefu3w1peisgqwpkIAvF7Du9qYEJpEQGl692/DHr+DPOVRITi51PijlMMNbwv+rr+bP5eJIxfe3S4OZQjBOq9cCzNOA7KPDt1mWj9/+8VU0DyH1l/djP0LTUTUantCQjK/dEYFr4sxE5fyjT2/uBcGCdSp1HvncTH/4nfbUpuHlZTVCf+II8N8PFzv05Zts5BIBbPyZ+t1sM0aHPgNBNC9o3fyGudh7ZyjanUF25Zo39HTICNifOIqNsJjMP/8B/gRyQrtttAQ5V5YFVweuFO33DzbCN0F/+o9I4jH0l/B8tNTkop0wgn1mbnjKg81PJEIX9eC3i/0MavtqOwf48v1NL9ZASAOB6pP9YkzPVAGOoq2ieai6fGG0Q5sKDmhSzoJJ3o8ghV+d7NESgnc+Gqe7BKuXYWEfpt3A9GwvgCp8nrEuvH9g1ZXmI/zp0ZJ+UnNeP5CDyygQbAmynPzGwhrhHlorDuKvbK52/+2UhnssVGffuvk189eDyut6RfzV1Zr5qkUG5K35iG/iOA108PwZxiZxCfe2Lvk07bgPPLUx3OIvzbc9qRJ8Dp8rDTXv16xP/iiAXet5FIfkBuarlm1fiEPYvETI53O7+0CRf+v4kNNfvvzhWbdEb2ow8Qikv/qy+THY78ezuVbdCarJAWIk/vaWuSwHzYC3RNjwEOyHf37bhoc46E7TsDT7SwnUi4+Qkpk3k1X5TFSPSwx8GK1huw9qksDmD2Br7E9gPVfWtkdjV6EB7yMwd0XOg4XTEqqdeZAT/uV4cD8HKT1e2t6ffYfWYPM/sZ7ezs2cJc0IFO942vj8B6xaXmkwOMGUOklHNz89stRsKQB2+6xt+nDNI5DUTkIY4Cx/1oO2hdES3LGrE82fwOnnKQ9ofDGu7gefnyehgn/5HGresWG8fgtAu1IZcc829Jk7ns7qxt83PH4Pf/EGJzJj7N+6OP/Pj2RTSpHzk/LJmXEKx93FRFLgqmyOXtYHOnx6oKHwxcmaumMKtKf+xoeNP8395R4Budx31OqsZ7KSWnT/8Xm757xm/pxnQ+V/X+ufv9XVIelgVfYydrXxkMytgHiw6R0kGydtYLcM3CEX8zr10+sCxg2PwQAsiNHUf9kyfPmP8lrPIRJ+cdOMZRhk4JZ/uO3M2MXf/AIX6NdbhP3rrW/owIsBvFbbPc8d7sx54+N/708vw9Sb00f/dlBRZgNf61OfM/WDW/h71j5avN4C69duP0pwEGIkPRsv2RvRr4bacp9R4882W6UVfSBfNAb1pmnKBR1LHuxa1KBq04v7i9MF8DsIEnauoMtXM546uPmDZN30w1pTdVX++O+f/pslvCvgTYUufmrqktN48Lbn0TkCt37Awo5qBfP1zGNNOp3M6Wi6HXQe+xstzpzl78lNLoAidE8ac2NrrsX1VP/5ydiTWy1hnbp8tokOCGP/ufqzhMUS5sE5oQiFq89SaGqwu3ov8tJcyxcfP8DDyFYWkpLnut2bR3u41UsiP9kybP/fgMd8OWMt9z/mdBF0DkaecSZqHLX+fBJuFvw9TY6Ab540W/+AA8tzHYk8eQEYRxSNMPyJjKiF+R4WoBubX/PZU/SnHwIOVtB0vTd2fdT5qx3dM6XQPjnGN8nxl7EIRpAAY8Ge2WjD/q65Egzgpudv3ZoP6gd/wLYepMdxlIhApSk08uFKnRc5AhHfDQ/4v89AgF9fm3lGCoT7oxZRFLN2WCPunf35VdSODt9h3Pjnn3+EA7b/+v/i/Q//pKOc+uzc6oa69ReQeC5/5rREO0uuf3VMDW5sffHwbTQYFL+QVChWEnLKuhje9tQg/EeMkkUYzh6c8/qNuov+G9Zn0/Tq33q75vXir4Q90j/+T7GFTmBxTuYMzU8WYFOSZEA4GBZAPrsL1qkemfTcHjWYsl+L2A5bwx9fBZsfQl4b/xq7UdHgr2hDmixFk8yb3v3LR/IX75s/2st/fPn6rnsw3z5iBvnXhcPoOt39zV+u//GXY+EM5uQiqQaj+PGIYs14IE9e58H1JPto0VzLnBXV5sDmt2M0g+4fPwNNRDK0DqdrwqJi1//pc6wdbX/459fdOWukhw3f981ntmDBXXhsnnbTsFzLOlDpvrKxrXIKmP/eZ/OvySo4p2a9H50WoPSiU5x+381CbksBff9iUQR7yaQzeUoK0isHm+9Y9Efhew1g2MRPtEz2CwybP6AuiRJt8fbxZ3jVeFXB5Q2jr+uAZRx7BVyvQYLttW6TPjyVkiLFfEeto+H4k3X4ujDz4j22GvlnLptfr7Czn2EzXwmb95nMA1eWrki6nQ3AJyj3oKjXTxrGUWtu/cyPusU/DfsZJpP6G1x4fDkPIhZQSmbh0Xngwl4atrf+23JV3zMY6222wFJ2gBmQEvjo9wZ+hkQG3/EZRapf1D80/+mxNpdbmD93v63eLeyPTwOAPyri9TLI1z/9en9pA3aqcfEHe+etMLUljyb5itgUYVUD7zTqsAG3PSV26PDq3/qE/PAyf25GWyDMqYLD5vxmS3oDCtzqBcaNzQO2P48K3G7ixcGzasF6ORfor16j4deD/M/fhojYCj4c7gdz/Zm3FNiXB8W2/+LZCjt5BYqKGbbz4WXO6TarYvO/sO9jLpm53UuDGbpnNGgGBbA7nOI/PohRXA05g52WgaGjK+o/EvPX2b9m0KzjHxFVNxyW7zc+Q3MPdkR1nCtbLb91AMheBfbv/eCPt494/+enGBVNm+UO7tX/a/aBJPzfewqAlItk1VQyLB/mplDIIcC+YpzY3NTtHToKelH7pNX5UjiSBC6X15Fe2fpp1hdnZXLNLJ/Ux1UfBiipERCUAyLM/HZsum7nqBXCSgS5Jh6G4aLWkH7vX6yH++1gzut2hwnuPTSl/M4cJf/uwvUmSdRQYd8MEyoJjBnLyNKNhj9HpWzA4dxaGKNT2NBLH84Ay/xE3bV4+Ux6VpX6/XF36h2b2VxySCwohfpEdqzZm2vVFAIQbU5H++lE2LxKzzvw6O9E8WL4jbgGkwBsM0jxyV/7fP0dq1RtTqhEwrHOc1I1BQ9SK4c4YKLsk9uh8KD+5p7UGahuCjcr9tTX87DDyH1ww/K0Swd+2+W1vY83dHm3WlB9eDUSvP2x4S3rFaj87aAi0HNdMiarPsNzcvVIAxKhGctEKqHMmzLaB80zYfHQtVC27h8akgkME1JMAYp0UNDeq2ZG+Ns2L46wEmOHdoyUCXKA6r2F7Xlv5iLL6ijjCd8x/tR3f+mBFIHs4080gMbPpGFOJWCbKKU2cy8m++11Be6jQqDxAwGfjP6hhk7BE3zUQph/CpqV4HeaHCTLQZY/2fdxhzXWSox3xGLihFIC82HnYf1dhzlbg4kH7tdz8MH3jGRB4lGAqI8B9uVeZ6IvKhGUXnuFwJwrmmUx7RKEcyKgwgtfw1pJ7h2+3eBH3SEOEvZ5yR7kyo+OTbYsbA16L4ZZGCT4qugPf/2Jwgh9A5Y08n/yMD/TtVTa909FcCdUgMpqbEHTrk74cL8ztlwSr4V7NhvYBb/WXHowx1BukhvW1Fj2V+/GKiDkHEDrW/yY7NsC7+/3I+byo7mKP96DWttoZAn3GVir6i6A21S9Cfn5xB+PycUFjVe32FXPRiOC3B+BG/oa1bZ54lMw7iw4HIITPYgcGlh3zc5QSPUau+/cMYXfsTvD++MoUV/HDzCrZ8+BQP3MWGNyCBZUlxHMF6Ul3C5szSU/3Qh8PhUFH3o1GdZ6fn2gQ66EiBOo8qkSWQBn5eoQLlL0Yd1JsbEjg/SiKPkm/nLpZxck0/zA9/ajJ2z3UTu45RfWv7o5sHJweVApCUPqcC3Z8pGDFFznt06dPHjlc96tDjQu35Ukj6sPRn7XucCIiI1dLA4++VsfTzwM6D6PnE+nxohBc4IcDRbvMCynWtvmvwQdki3hmyzyaUghd8td7NxtYK7+Nt94+3v4LhkKoC3q7rDXvjK259xsBKGZXfUhRDVNIq9jayN/P9ApHESNabkz0rChhTIORxw+T7U/g7KWIDCcgXrODSS0vh0DMBVninYOiMCMx5yHHqgtiq9ONSwwdGq4UHnFQR075kwPD0fZRatO/aq8+iQtHitsl3qmbn1aktWGTw4+/BoipYxFxmakdbDxTxY9yPuLyXLVLWGzjz0SZ8JgzskjDeAO7XhsD0jL15PEIfgSWxubdkkTKoijByR1HLF2UhuzumVNCme/SLD22U7X2/LggeZ3u5L5pJrmuD0/MK/6CSntekxGYiUO2KuWi7WzABk7xiIHi7E/It6Er2bt+0SBY33pKdakulkOpe8pOuwyjO6HtlnWtWpVpSUSgtIYJEyc7TOM5XGhl8oaABXE1lODnE8pKpNgWMSb5wLWNCeK520P14zcHh7rLiDKqzsP3a7NeDBb6x2HlNcZu0x4hRl7VTR8ngxTgJ0Zg+gaVNu5yofJrnxWw6s/80Q50sxkeXeW1ANdQmz0OWeyw3HhlPwgl9QuCDWHZVgD6FZFSFPhWw8Mhp0CkNgR9PU9I2d8Kn1ACO4u9W/uPV8v3OjCap851C7Dd0LKKHCAZARfWnxK5M+fErdA3nk+9h1yNkcjcDVYcPKPhjsryVd1JwnwVAkyeghmlswI1RF8LIcfDZehyxcrfyIl4YsrPavPPWMLgQG0v5FBnzvSsolJ4wd+DzeCwLdomtn3hTOMBDuh3tl8DUs6rR787AIeH3t3uxcnt1v4tx5yUmvDvrg/RxCRTsYHcB4S2tmfGYKPd8WHYNvzsYtpBBNSq1SLypGtU5zF0OCEKzW3fGWjeyeyG4KKrMnvwCasYUlZnn5MJOvyaVitJ70STcqNzGp8M5ditSPwerQ7qr30ccOb3we+1jxAfdwOJkucKFCDi/egOnYP/uxXPwW+HNmhsdONgKqma4HmOFvYZO8joLcMuWAIFY+oymjm++fD7ECAQ5PsVR4N63FnKsrfepQG6sy1x+MZArWdabiIUc4e0tBB/k0jrFemaJIN/4DB8VeKqMEnM4tsA6a4Qjg+rnrDjrubBW/jbOOzCfVGbM/tHbZJ9sC699z2Wa9hBE/n8EPAoqeAXLjWBd5vkhDkqzaZ5c+RwHhMOeq/lney4U2rXLP7gRpVRkF2NKQz7KAi4wAaR3MxJ20FXsv7+HHMeX+8+1oFnRRctvpa/Is/UH8KiSj63kzW/nuTgBW8VWyHvb3lZy7BKDa/qE53VrP6QTbCYw5jGh3sV7MQq4pU8fDUyY4PtJw/Dh4B6d4COCi+B7DcLAvCT1cD7F/tgREU7hTw24kZNrnHkM/qriyBCJOQwK3+ktdF0WS4MzBpNffI5jKZS6hpjzPFO9KCabj9JLj9HCPXRsOKnq8CUm6v4dvrkAA6n60eksHV6d/7zT44lX/1EomQ6WAlGiHQXacJHzBRknV+vwwoWHVNw+CmAfH3OJ/hq+dWjBPos6mEkQFux1Kmwdt/spW7d4VqUe+HrTqCAyXmXoLredpR3TmMZnetPBeoV3xE3EPj8s5WtPTv/WmY8k9/JvrNUmK2ZFSjk832WMOKfOsuI7Vehp4L7ekSgKMd3fCDXPyBndorD47aocKYXkNTeFNnBRdLO+Ik1M7mxkcieAq0kfz6swCmbnnX8LezJHzIZc9867dZU6c4OlLPCFlO68OzB1u+0eCrtskqWsMM+Zut4uBiN/5ixLcAPsc6pKF8u5jTqXaRwlM9peg4j4DYSP9AITVrsgZDnhArH+9QUERCvVcRDLSMbjHMpPGGr/L+4lO1y0pY+bmG+OPRAuJf/ZTN3qF4j1gznuTtbuQOGrRY92/2dtuDC5+ypGHP9jVfvO9FAn5ePKI56nmwdkQi8AuedyKBX+sveHwZwGsFH9veKLHZ0YIMvpL6hoPbI/FX5bzW8KqPiGYrf/IXrB22+cXXFIdpd/Xn9OF6MD+Akmrb72d8Orew7FNELajtmmnuLvyfPsH+bor85SMYZ/g95ATNTZ2a01mKIbAOJMLGA+X+SAuth3vTNilatZc5BPFLgf0SSUjc+OKGFz1wv65DA0nik0X5Rf+eB3FPrmfEUKQV4jo7k/3L2fljfrIq8KBth9by9cvZ+6C3alzHGbV5xhr2pgmE+/wEqZlX72RJXJEHi3p600M8Hnwh7m4ZtGBdoNq+cM2i7dy7ctI5hx4KO04mAWQ1tM80pe5D1vO/egt2HbpTZ6tfq3bhStCV6wc7dprkiwAqQNW/3yyW6jR1Rx3kO/mi7bS7usCXjf1f0pvrc9714LAfv/ioDGhYkOLz8sZvqcmdzJxs+C/xjzqlZivPzRIdog72c5XhxO6vyRqnXwFko+1gx/aGv/wtYP/APmJ5ZSfromU9vCCLbvj28yuQd//lj7Zvx3x2rjIHJuVh0OPZyQDjlrSE2f3jUNM/TsOUffLznz6jB67UfPGvXqlFZtAkl/b5eiCqC8lbdan1Rr+Eacmxh3RKNWzU0ykn++KbwaCuo62+fE1yfx4JfHY2j5bcAGAVYvSBof/4/ekFMIc301JPZ/xB31ii5qzu0kI5pssNe9+nAqZ4cBC0uTGnIbzqYB/o9fjHZ+lRvJzAegp/AlzU5E3O0fPVLOr1FsOHX0F8fEZhwt6H4wdu35Mw/7Jv/vjXn16j7p2ODeMquYPJ1WrRn/6e02nkYHBxH9g+pIW/1LamqYPBJBx+mAPW9uet0LjPA3Wb+dsMIPcJxNg+UDQ1nLnsfTWDgrInOLDqJl+Vs1IrW70hTPq8TdbZZIXvMbogwQi4YVLO71SdFg+SRWzNZA9fiqXU3G8hS6m5w9rdQxd4wtVHMzEOzfJh2lm54XuMtWrfDvOGp3D/ueON77BkOZSmCyflaSBVTD/DwqI4gHwZCRRtemQ+781Vha/+gc1SMEyBeksJmJ9eqbVXT+Yc78YPfE7xRE3jrAxDlJ94CM3Kw9fUaMAy6DCFO/OOkLLx/alY7Rj6ychR3ASPnC1X1MGPogNqPUZrEO9ec4a9va7/9AB7rw8OBHUVUT3tB0DR6WDB6XoUqGWzzlzE1HWBbB8dHDzdJV9euOIhuV339BjN0GeefXHVMHMg4WenB2zuZgRi9xRj2/TOfh+ZTwvsPxnGxsdE5po4pgE2v4Lm9qiBdYqjWP0cO5fMWSA39PL1Z3DWBY8snKL5s+VNAeSqg0GYo9oN+8JuBJueo/ZkO0D4y79NX6BR1EOwqrtZgFZWztR33/dmFX/QA79v/8TBkOimsAyTplx944zmLLgNbNthA//h4caPJ2W8K/+9/2NsB3r3mlSd7VqhXpw15tK33ggfnUKxkfvjwMI5KWE1hyHGp9zIRVnJHPgSPzYNndMzYVjtkEIGT8f++2D4S+q+ZvVzEg3yeyU5W43GRKoC/RPGHCYNK+6KA81asbAXTC1b8FUt4X1+2mT2f7eGdvc4VTY/ABtbPVvfDswAf/io1LP9yhzxdteppa8iEvZukI95p1gQT+GdphbX5EsJIw2Or69H3s65A8v0mzsofQ2GuhNZhj99Au9+J1F35RfzB+GvlwQ5JWgJ9xJb/vL9Sh2NOgrrm3/4npffK0Xn4pMvY9FIcBiNx7/6+xM+IwS9P/qIk2ub8bd8SuGgvh4b//aT+Ru1W/6uAz1SFvpzDPsPgB4y8UH+hf4yPt+Kev8ZA7bUw5vN+QAd+JyiiTqXyTenlHEuKMMR0KeUublQfpcOSlWqUN/SjUH4q6fJ1WlR9UyJPym0kOA7ujX4JwdSMmeaOkNJJSPWk3Fn0tfvY8gzOHywP/4+jHq8FAEkKIjwvXwYmD6zQF0c7oa4KgXm9MDCdo9kCqmbhAcgcI+6AHe9jWmZLgcmsja/gy8MFVJejyLo65wzIEjeA0aGUfkrWEcH8g7/+NPX+aT8MgWEZN7T4/B9myMoawUoIFuQ2gmXnLjfNIVGHdro88CUMfFyWSGX9R0OvFBvZltxU+Aoqr49zxesnfFsoVh6CgLUi/IFvhQH7KJZp/56tv1tlrOjao2hYTu5mH9+QQZ75xXTcNR6vw/i86iKBNxJ7RQW688BNuTi+4ioefMbRqMy50Ho0SMav2qbL3bEZWDLD2qYZWb+09OzNd9RLdxtxhJSf6CetSMNN39kvs2RohyE54Fu623ywe+rAL5FEfbg8GZ//hF4Mu5LgCz8wLTDSgH4XjpSs7Aew1zxowb5Q6tSvdS65p9eOot3AaPv+dAw81fcYVOYLRGWFQ/TeZ/Bv+9J5GexT6YfT2s4nD8WkUlVgnn3vfPqyCspkkTtZm7+QgAylylE8PWlmWT0O0P7JmGEX1ztz40nCAr9dAfylLIuWdvTA0GR/hT0yi59TuTTXP35aTTnfX8gh+O4Qn+QRdT6pZMv+LQUsD17KvbIXhyWu9BbyteWCMbxTx3WYo1LGB/NlWJgy4zVh2sPE768YsvezT7xbqACpTjqGDtgZotiuZVyoMa04eW7IXp1RHBw6QnjSRLYEq1vA2x6DAd0WHyWHO8B/OdPxVeUM+ccr5BfPia1wVL5k0O+EJr7Y7v5n3tz2fg5aB3m0UC2ivzPPwXuaxfiQ7/4g0jZzYB2GEG88eWBldEpBn2c2dS+BF4uuVHuwsulOWJz/KrJZF6SQD3Hnx7F8HFOxvoABXDzwhu2l18JGARiBO8PX8KWcrz5c7xrP/ARI4G81PzHFm5vCOrhZp/xwbjQZJ2jfQEPcZ7jDa/9FYWiAtMUdjRID+l/fusffzoqz88wnyV7hRaVj9Q/t0Y+a2knQF4fWqS8Or6ZCmrGCmbyGePTt8+XHV4LwFW2QXi/dBLxfTi28LXeAnywn60/utK7gh0yHEK05gdmi+5bmJVTguTt703TxbbA7fsN8B/e8fzEteDJ0OHv/cz5udQaPOLz7s8/ytn+ybVw07d086/BHx6CVtsvSInbwV9GMSmgCOqJeqt/zrd8MGBAbIHqgj2Z8ypd79AEjkqDTY8zK5db5YIciu039czuj39hdP5Ss0GrOfmBX8EshIw64u/C6Po63dV/fuAizgm5y0ukfpP49bc+rNvyBbwqJUAiV1b+6ivUge4rmKiuA8unvrhGyp/fblv79c8f6cCn/tYk6cx3QodMrJXhmXuktZnrs1aGMzCnycOuJO6aSdTPH/A5OTX+q2/sijVP/UWBQ5NUx+Y/vY+tSMfZEI/5KquWpBJdLhA4Si54b3wRrirXUmvz74SLThCcEu2HOv16Az18H2MYyMGRYncV83/x+/nOOeEMQzP3/HCcYc0NC1qp9fPXu1e60HoLDYFiuGfrWhoBPA2/HXUSwRrm896foXubExxpycNffPEpASD+rkgevrY/W9YvgGK/hohPNN9cG+Hd/vPz/vxgYePzwAq+Kg223z+e2r0Gpvb1w9rhdGxWQ5lnOPktxm79uOX//OtPVwH6x89Y5fMl+LbsheRDI4H5LqcS/D6uByKw0xswufvUsNfeMvrcbeDPkvCplZvmMeyG9bGZN79Ftt6O+e/vk2O61KDKjITsh3uXjDd2lwBKvgbhjq0FmOc+3T/+RTd+5fMF4SwoGbsDtS/ZmrAXd2uhISncPzxbRKtslZ3EKVv8T/7Uc2sE/vohRqRL/qr7jw5ufPJfvPdCI3lQWc4+/eOPwmCbtVq+NJdmZ8nJxdE/jxCJPaHh0WzNlWifEV7uxEDk9dDzJXkMGQy7fUHEo3j2xyq4dX/9EhxGywxYC4VZEfIgp641CcOK6qGE3x+8E9nYVYzmXaGAP39RG+kt30tF4ELRGV9IfVdZM/6knwOV68Umo3L1mvnV+wiWAZdj1xAi/48fqlPHGRjN0woWO4R3iAzLoFiQT4AlxziAsEtTpBZQa2aOVzulPGd77O9erv+R39czPCVPB+3ych7Wzc8Af/kdSOOYTJ+ymKGqNRE1WLSYTO5IBdSr+qP4V33YfDPFFXx+SU6976Hf8GOS/vwdJGz9CCbg06pqk+hss50TNjYeJ/zpcQIUYwFvYnURmJxbikS2Og3bffbb4B4/w5aaTIDgi9b/5R/98/u75tnf4cGnL2ytDOYDd7QsaOnalaJU3WZNxskMf/Lx+dev8NmmZ1RqpoBAP4dgtUqSQTl3nkTE5J6wzmhXON5BRNZ0t937cu0lsPFxRBIGfNL4NwQkV6nIcvEvA5EO0wzJ2uYUjZcaLHP3EOCGN1s/7QXYF1ajekzZDQm1Qvy//hjg7n6H4I/vQfcI6Khs/c+tH6Tlqwt1Cd4ikGA0XgzGA2efgjxZT3j7nmw8Jg9XbvaRR9EwisOCz6CE23pTc8M3RjSmqFFaaNSsXtWwPW8As3M/oRO/cmyWWFvD7fkR2/gMm9SFh5j/8ZvfruT09yhS+POiEZ/rqGjY9AkiGEvwhP/8xfU9WjNUoXnBx0UAzZLpHgfG3VQg9eW6zfIIeAnWzPGxHrH3MGSXwPvnnzh3O/fXuRs08PdzE66huYBSstR5jitsFTchf29+uvJX3wzkLQ2jL1pCWQ5WJP/pv82fg0be+Kgn++uw9L1DoLyTBmpfZQC2+JrhAfQatrP6YH5t4eeBEGQuxor5adhfP/Sv/m39Y3PmJ+4DK+XEsKY6i7m67fkMC36bRbz1e0Tnel5BWT5yHHLSkC+n/deAQ3UcNjyU8+mPT/UPdSCcquwB/R8AAAD//6RdydayMBJ9IBeCCCmWzDKZoDjADhRQUEGGBPL0ffz+Xvau1+GQOlC5dVOnqq6sZtbfeaQ+qy7mX34E/e7bWAzWn2C0fCWDd3fIsXpFr3ySn/eT/H/VFEj/u6bADkH76Q9++ilNzhmcQy+lvuT99PkOuYAuC1sRorU0n/1Qv6AghZGe6XWMh4fab6HC2Yx5xt1+rOnqvT30xkKCja3E4+PcW+idbK74kWynvH19Vk/A3aYhjnLWAgEd0EkJh3eFQbYcROOXeoLb0sT0LGqobo9xXUDV6QZWv0OYs8RsJ7BdpSUmugX9EpjjDZ2fSkiDbE5jCr8cepT7v1kYH7HmeyS7sL7cQtzW9dpkt5EfobL1A8H7flcv6txYMLwkC8/yY45ZdhcwjFK4I6cwn/LZOXQYpCc7Eftr9PGMg6ZAa9IvZP8YooDX/pBBdXcyqnEycW739ALxE+1I2GVOLkxqcIH0dajp/p405nQ285PCXU/Gh+aJuRQ9NKZaU3SlRi6A2fd+O8AiXAwabk3Gp1rtjqhnTU2s0TrE/bKutv/db0uCnJcKmiAWvy7RxEiP+f0rfMEMARH38H4FM7m0Ffiz3BBbvTomPwVxAu3GEMi+/+nNDeS6hetloVTfPHexlEcPH9ywV6mpLiaanK46IcoSTu+FLvLv2YwvsPE3Cdn7phcPv++JkvTmTav03JrdWmgdqJdjhtfqu4vnc6RgtIn8B54fW7/n5fcdQiUNPXGWr81Zqn7eEIuti+UQf8z5ivIQhtP7NG0v6GMuiqFZSEp8kxq80vMhxkdNuTyemLrQOPXUqlaCBDcKCQ7ONB/nkv304BuLlPCK8/lp3xuYqkqnGfZWiMcv8QTfzyUi+m6Pcnp4mws0mOhY/eiLyZWV2sB8yxy8nEKtZ+8kadH1nmOs+qaXi9PZr2DZIG/6e56hp7uBZf8ixBOld7zQG/iwQ+meanKzz5fdigkQe689tfejEFPnphdwaf2R+PtqNGcDSTeYf+Mtd+jjmEs3bLag2T6m2u1t9Uv9vA6gPa/v6XNYOVwUfZ+hzJn2kxSoQv5dz/cvRK/lgAE7r3xJsAvwDL7i1KzHvF4cXCwIz6NAfqmwmIfvtkVuspTUmHkeLOe7GqFkWUy6L/Qzmi4rfbP2nsYybVZdGCxKeKqQlLgmySUnyofHEW5wxtsMr/1O7wV02zF4FTuO35/uarJybDboUzhbisu+CoZhDI/wKA41RufbNZ97/7ZF2eohYqk8koDnzLFg5D7F7KJIaPDjj6vYAu+wcSkVsz86UQabtNKnJrEx//UtLmAdvQ0po5VmLjrmX4jmQSbx1cU5ncrvAkNY+8ROJtOUsCaE6mvgN7qPTbtmhapc4LR/XKld6anJXqbrwvJ46VhUr07AhBuywHXMguKku/L526wEVMSjOM1H7Jvsuc1u8MwuxaRsC9wvYjhnUNfvGW8G7cGpSr0IEjl7UrsZu5ylPPbRx6IJ9cYq54s9yQz568sNf7KVaUp//sBqZ4+pSAr0ObyDBTZH2k7qW7uZzD5ZGmTv75uQ4jMFIyWyA2m5zqZOl9ua+tXGgNBtKNWHvWfO6tpfgaeqKfG98Kdi1asL+lxvKcWPTggoCbYRTOGTkHCcjnnn6fYR5UrDiHESl5iFXniEKugYId8DrnkmXp/glKlM3anZcxYV+AS31VMhQXn3ainoFQvilTRhpS8DxN5J1KoiuJQePptVPOhpr4D1ua8mxQv1YF7J8hMNKAipr3JWs9UuKtT7RxDwMfOFfKbf2IDfOnHpy+TC3/o12+yoE/d+LVIiW1APcCB4DSs+epvtAvzwyIh/8671oMzTANtzLGDB2hmxeHSsBtyElYQI7zHg9lwlEMiyQ++HS5lzZ9Nn4PKEUXNfavnAlraAEwsXmp9+nGQ6vQe4qIU4IaPU+CyQE0Yn4ej/4uOQ00QcAYHTnMm1Qfd4+JVCytXq6v/0oeqAO5qkQGL5+iT7ssVnA60LNJauiqXdr28MhGxCQhu+aFLgu8nSRA7R7//+vT+e38qAYQk0l9joW9aL1x0UYMTJ/+JJwFHpY0SguBKDV4+cfY0++juPJHyyZ8DilgMMVy8nLlPeJvOn7STNXm8T3cN7xArXEeDQZDF1lVowufsIC9AO1mZaP49tvrxa/4TmZbWehIcdmDPOZVAKnA7E/dm7hLViKJ50UjBy+MD5sXcYIg9hRzNNvNSvKmodWF0Fn3hnXMfsZWqu+odvxmdTof7E5kzBkg40frm7gN+j7NeH4lNipF4Rt8rnGAGFc0Y9smeIk4s1oJ991DZoE/Dt6fb+w2uKdz89e/+RCnAUYpvuDasO+uJ8Hn59FhG5purenIzGcuFuSiYxSGiZ//DR4K+cnMsxRKM+tNpPj7EiWhjFnEprywDTOd2IL5dWzx61DmotSA8sPeLHHz5PaELugVprq+MLuka/mtlCpHs3fdTjPXK2IGy2mAblves//ctvoULMJKm6GWr+yuoCypJRco9Nu2dsqQp0EDuTkGhVBQx3iYB2EVPp/sd/Hp/Kj5AtzB01i8LgjLiiAKl+WIjeP5Kah8HVgl3m3ym2T3dzOe8pg1dQDdP83TpIsJtDBX71FQhR316+ZHEAMFVPnWDp9ObNapfckMBskThnLUSMH9YGOn23HQ12t1U9+dNpi8iZviblW4icoQO6/OHFRIsPDqZq4S3I+okSXK+HYC5YfEOlkxJyRt+y/64/HobzFp+oloKWL7qQftHapAGGZroE4/uMMfz4JSnKXjMl1esjVGmqTM2W67mgW3ECF81uyN4f8uAVHKwLWonmk1p4fsfcy7mmmgM6EWxeuoCFHA3//Mfc3h+cfQx5UOZMFid0XWg8azvDUERD2FB/X+0D9jgKNyUaEkbDiHU1U+b3hI63PaL7twYBF4RLAofz8CW6FMjmOCltBTcqHqbZruNahG65wSMfbiT15YZ3b39msK675s++fPhI6huFwp0RHP76YATj4KqG1HKqI6nL2x9+of15m9EybxtzmQcegl4kFUljWQ+4Kp+HP/5Bzdec8MXpqgs0N+U7CY8J+C++f0FfkiPdp2PHR3M4vGHYNjYtf3jOlrv+BNf/zTVq3Tvvu3PwhsxoRar94u987e0JCqO0aXiZ1JjV6v2mOBt3oBdN9+NJ+MQX2D9E459/COOyi+Dul89JuM5Gz93BfQI9UB8vZXnJaRmFkYIlE7ASlVIw/fEZFl1D4nKZILaSjC2glJjUO0tisFi1OKHGrH3ipU8S8/XavaCDljxpwbuhn7uSb6Am7zXdh7oaL8MYOeD0VU4M2SN1d39dM0VWCcWK/XAQHUVvgri6aMQ+plZNN9a9Qn/8Vt9WKKaDkvsoW9XiNGt47udOuS/Id7Sa+Ip7iZevsbvBynga1Plor3zsmH4Be+V5dPeN1jG1HQaQTr1JbG7s+vn+KhNQlWJLdZ+YfPP9vG5IWg1oWjTJ5m3I+YRGVXhT60kXxJRwe5KRUvIJsZ1TC3nyXdCkjgl1eHztv19pWaGDxwx60u0UtWL4eoNpHCxKrLjrOWteC2zkIsOvvWX08z3CW9gn5YNa3q2JJzGUMwjrvUaNsaTmnDmagn74MAnfKQ1Ym/gh0mwX03jI1WDJC1dDeO0PFLsXu5bQyXFhyENOYphHPm9oy1DQNCvcnDKh56n2tOBjuAdiHW9az06rsIAw/O6Ik/SfoLue1RB4966xgGcnF9erH/qp052QFN3R330JSUpX07BOOaIfZauhAi0rvGWKE4hNlQygquaaap/I7VnNPQ0MfJGnan59TH6uakUdZY6JvRraoGv9/gQwenuqa/jQs80xweClakstJZF7vgv4SvUMK6X/4uUfn90unUPJ8HE4x/nFBcV4bImmH+uaPdzKUA9weBJSRiWipcIHJB6qkh5njoJ5K78ZCoWS4ecvnmy2w+4f3/nNIWsC+jiTI6B0b1I/F4OcBnnTABfrgJqv/wAAAP//pF1J14I4EPxBHkQE0hzZRDYTBRe8gSIKIrIkQH79PPzmOLc5+p76QtJdXVWdEGdrrj97p4T8FRd0FdGqnfHLkH/4Z2+1oz/ZXBjgIHcpOYTY89l2vC5AO8cL5j3yd9GVUmBAJeqMYf4NinXxxkdId7uMYGe5Tnn9vtrKpnjJLPgmVTToXzmB0Eksqp4NVkzW9Rmqc70mm0/HzVH4ig6IoD9xOfOn0bjoFuq5wxh+ncq0rzx5QjP+4rVdTylNd0oOgqhgRqTDNlqDEFI062v6jCUcNfL2mkMZr0Jmn7SO85OtL1RJ7DKq5KstF6rwUYH+GXSi7cHyKTMSDL66yJjLdi9/1LaeoWTjZkvwVi8itj1LBlTlsCT6R8xS7ojHBTxOlkR75/psp+byAEiy943pp53gj5/NfD+uEjOy7cMPH3QrTdCP33qCZ7R89gt+/IrZ16PEedKaFjyuzh4vzm2BOFtuO1itXnv244/Djr72ahDUW7YdVMNfz/MLumq5dDEsKKe//Gm53+C0vNv+IF2iAD6T3bAgTMaISZ7mqXr6fZBffg5juMngp3dUOyb+yL1DoFwO2YdKwluLJuLqNQSrhc7wI0JoxtPwp/+IB26NfusHm2ChsYAyJxpFSz4j/7lSiZevPnw6FrhD6CN1f3gxSiw8gkJgIEa18vi0OEj0h+csuKeayYOcVSC/jzmL2OSb/Jn7Rzidx4YY+2eVTs5Rj398h2zgvPdXcqMpqF/14h8/506n5fBto9OPv6NxO2IH4lMyYnWle2h63AtPPTbKd+aDZjTcnPsehXQBWH12e7NfC8WkSjd7x/z+bkSTIy0n5cf3N7ER8vF49mtwo4vL8KnZoUENvhL8+K97333b7uCwGPSi+7I4qZ4pXy8tDSFcTVhwb1a6Ws8scuY/WHqXh5Zbun1GUXDGTF/t3ikvT/kNXe5XzLSFTKJxe+4CaEhkU+Wcf6MR67EGl+tFZObGWSF+X0l0fb3HEUuemdx261tXo93wamlvXt/mQDtVhJ++2h3jLR9DO6gALUfErDm/Jo1+NPTSYEHMU2a3Y3gObbX+nHziv4ZHMZjfZgFNaDhs53XIZPs92qN7KwUsjvYBWr02pwru3v3FduuLgdYH/ylCXQ4WXklG6Q+ftVqC+LweSNHaCeeOeFugWx96eO0fjbZRn+dSMUo0YTTP9xDVaIFuUxURbam800neHnI1NdcL/NyXRvQ3v7uTkjA8Li20EoQpQL94yU7Njovf8AZK0S0OTHtXOeL7PQp/epa4abD2O+FDXr98oIe5PvL90xng9zzbHskFXXRhrdCDGDOb1ff0O7zdCtSUEypIm9zkg+eLoD7ED17SeQ8N3baN8tXV259ftToPFweUrL7S1aeLfAZWHcKgdncWAHv6/J7XGCozJ+QcaEPR9Zf+iMbvJ6PDrSqL6cBftTrzEdom4zVllo7P8FtfIsLG7w64zqDiWU0BmO5P43pb//wmpsvPMZ39vTOyRa+jq9l/GKrwUsFen3JmJUNXjFSpX/CJrjozCm8o+AJXIbooU06CwzWNBmm7o0owKl8Ka1a242EAA7HbVafyPH/86i1ytFhcDSpkqc25Y79e8EE3j2wyc+O3u7Zt0CfRczrEyItG/RbmoCo3iZYz/+y31UhVSjbzHoLS82d/M1Czy7gj/pFv2hawQCG/TCFl28/V7x/5BiDbBPbsl6XpcI1HjNzyI1PxvWTRSHJhAe9sw4k9+x9dvFs5cHVsnzmGcvO5vnbC+a6+B9k48ZT2P/3urQCI85TX6eSVWoba+nnFaHtbtNNSLzAoWXNl2quUooFDlcEtebrE+65Kf0TMlMB4vL/EKLx9MSWGmM3nuvd0rVSDOXjyzkMOTwZiyjYvppBeMcz+D57uK9qOjp114HwyBy+3H9nvDjEoyqyXmXngQfpV3F5CeydeEmthcj6tdaqg4LOP2cmyqnR67+oYvttDOfP3Q7s+2e5CcQ37Oj9fmA7uNcegG4flrx638j31AJRi8cLr7HD12Wdj5apK8z0hF/XLP0c/TdDO5RJVLbpN//BabmFJrHsyIH7wvyKwQ+/Rz1hxzuTHvlGXVz0inhZYXJzrDdy3Skq0+u2hX71Bn7p32TZZFD5dn5cx5MnlShXbi4ufP6aM8ZmyXXvK/GHYGRkY+CjP9bc0h1a9TpC/koLC1Vq1Q7utwj89ofmwLQQEr0F1WTTgfKek7Vi8Gwcey97BiiLY7egcwkGViuUdM37wOF9YBwFeSrgm/mu7Q8Ksv/78pd37MsenLpXgR2eMqXGKzO7RdwIcLX/95x+O7rCkiI7TSMi9knza3A8azOvD7m3/SicSnW24rdyEBSKlxXTafSZQd5uKIlMw+MyvzxBPg0nSx91tu1P9zmE6w/Crn7w/bUQHDq02MULfSsFOK0gQr9Yv4m6x1/75RX35sOne/rwLlqweOVzPHwU/Z//4E7eHl3p+5piZoWCk49mvB8gjqhDz7Xz8Gt3IgEQwn/g71ztePapsnUVsRVXe1S1/Ku894DcPiI9dPRrv7T5TIwMomfVgxJPWt2GPrCvLssYz+0rpAshWzoPchv6WjstrlsOM3/Slrd9out/lCl1f3Y3pr+ctWqFMTEC3Lxe63IcETevzOgGDRiGz64Wcrt+NtABMcMSCoYeI86N8A/8knwih76Sd7Kzcq5qSMCrG7dZcucO6Qy6KQ+bsFQEN90nc/+XjBcMi7fhlsNFikRoYsfTsc8nT5rvYNhuc78sl/4TotkeTcDTY4bMLWuFVB4CauPkwX00x56KiG+BiUyOYf7tiFB/RHg4P2yO/ejPd+kemzH4326y0tP3zvy6Bl2G5lzRfvDlfC9p+9SQWSSR/3I62hyYFnngZfFYtr98HG7z03BLjJDrpsLzlAOoVO2xXn4WI+l8zg6v3DTGf8eDnXyurw+tBO2c0ozE6OA2KGyoz8laNVpz7D9CEmjN/fhWDX69raCNywHz3yNNRWV4ToBcvJzivM398It1CqwCfiWl6Olrn79sAyCsStpEMy6RFHU9Q8nvB3KTYRIKLOw+ujuWzY8uIv/rlG6yCy5/fNMqPQEDqkmvEcNeG3y9kOUezH0ynJn/7PZB9rophXxO/v7/SsVkFZ9CNaEmfn13XDlenpdCkhNJxtdukzT5LPCjPoU/hTOe7D+b+3euG3hgGqyl4+QAF9eXdxurmcjV59aA3NEjxiWx21qudQB8bddbfZOOzPP3huSqoeT/7c0Vazv0+mL+PB/LRUZtsegtsTfJnf73xGWChQ9LpIOBF0Iwt70jRocp8kR+f4Jz4wx5mvGU/fjvmCeRoexROLF7hyeRWYMRIfW5j5m/cjT/ku/Gm1mc7JbNfhtbqdZhUedFpLNyKpJjxlsLxWbh04X2XJrs3Qg2hLXMqsvoejZHGPdgam+PsR+XmqOtDBe12//3jE7/+l3o7uF9i82jddvVUOnBxNjZxi0L/Nx70YCni8Rfv3z7pQCfdGvOLQ9NheIXwhz/anB/UW7wSpJxCmRmPxznicRpoil7QL5a+xEdjiAYbRjg/iFF7vd+PFi2h9Y86+9XvcbSqCiZl8SRG+ZjQy8nuAmjrluJrUTzbcVvJFKDKKZn7fSnvmk0N8/9TtYq1aHzv/UDRA1XECNiimPoptZQ6jQsy8yvehXQXo7k/TKwrE9vhEuEKLs7WZvpJLqPhFJ0Mde5HMnKOXj6b8x36FRNxu7rVxaiUREDmSdv8/Ox2/A7uEUlgVGxrHO3oM/NpMI1oPlN2f0fskR+Gv/i1dUOLxsuGdWAoRMF8t72Zg49PFCrqPJh9+mbtYFCIAXdpSxf7k4+GT//14H71feb9/KfpctwjviknsmtPC3PWP506d2LJ5hDTgvHjmP38WhLM8T7G+2ICR+okZs56qL+gCKtfoREJrpdOO31fr+zXH2AYjmYqFOrpBqInxMQA51qMBRP/XQ/v9WAFezfDQhV21ZFYPrvzsU4GUf2tr4bwyZxe60UNi/VUzH780Rf8etkop740qVoadcp3bdFAP6SUmGSSUZdQncJ72r6ZEeddy2Tie/Lv95ryNiPhPSkVmvkvsWFpRdw4v0O473BBtAnHvHvcL+f/954C6b/3FNjbTKFoi/J02m6FDJa3xYZhfdqk4+RNOVRv68M80dTRmDH8Qt1perLtzZTMkc7XIRXXi4p5VznRZCZUVDylSkiwC3VzuCe6re6v44UYg4fbSfeZATLg73wf6rynIKQWeDtDo/L38EWT8EYDTIJ9YR7bTahJ7uebckAbike/vvrDaz1V8FwNFdEfV4zYIaMKGrYvZx5P7E/+7qZBWadHNvcNok6OvCOc9vRCxYDso2lnokGBjYbm+423xYiyVQMCSlv62XqGufqMegPVSt+Qc9gzxIvbxoK1nK2JtujDtFndnjW4afkmx/ng05jkr4WK48qiffnMo/FkyBl4lXgnAbfVlne49KBbVipVJbEye8/LSqje9gcPEzMjIXRve1D3e07I6jRyNqH7TRnu5Yfhu5ug7stHCYp+q9Bh4b5SHp5uAzLXZkNZ+ih9ai+kBL3e7Yv4AC8+iuPCg8P2GhF3aGvEt54sIdH+FsRYln00RXHqKWau+mR33epRJ6ziAeFkZTFbW43RcJ+eHiTFcGKhuzBari3LEiTzKLJwv5RRN11MQ7Xw26a8xlez20XxBJpX68TQNm3Lg7pIgPHBp8L0GlMaxt9Qaa3Mw/I8nkErzw74+3dM+X335C3riglInGbEqQ+5OX3TvaTCxkDMcdyomK7HvASlbyxG8rRoWw0rJdCsPlK0/qTteLDvEmpOESP2cjDNOX4mWN5gQ069lbb8cmgCcBLc0aXJbLSq5WWubM7mg1jJdDQ7+RWHSlwcCuJF91UxZVdFA3eT23OX41LM4/UUOiUhIXKv+6tP/Czhrvja/PyyOZyWfIE61jwIsUexpZ9ydJTvhZ2oGuHGZL1oaXBytzGV5MDm4ztdK0h2XphsxKtRjLItC/BWq45trc5oByabx99nmn9OVrquP/UNnWwhpvzrD3yQlOEIVGhDWn56BQ3fni1AuAY7LC2cyq/T4nsE4fKlxOyqOhoRNSuArroQo9hrJh+7e/OLF6avyK2dPCvWQHKvJ2Z4r7DokPuylxZ9lsxmSYnGc3M9Q7BsKEaeOpjjoiyOarzbv5kL3zUa+OIlQTHICZbd19vk/DomKJ5r9n5iRURZ3pzhob+veDmMTzQeT9sKzu0Ck+D9sVG3a1+dch92ORbUWEsncFMNjnqrUWF8XwuqDpMC7f7tEn+XMs4/z65BskUZwfr13r7fSjTB4lB3JHvnYzE8x8UEqp0IxFgYvclpN0qq4lxq5h9XGPXL9IDh6XgNlfAnMtn9jGo4mZpMjFV7Tjv3rAZAtcWabe1dE3Vh/AoUsgSFmUUot914OTiQ7sqRaV9e+vSdrc4/fCTaeVn53W6HBfjQ9RPzpSGiMT60Hlz645adN5NrjnrmZlCUQ0qsZ22aoikbHezMpKNctC/F3/fF2Mnx8lxYnLsvtUPz+InJvvv5nN/1hqJmU2BIdh/+NTdRCB3iGTOdxzEdxsVoIMHPGbPs2wl1+9bO4LFtJSqOjxsa08teALxzK7KNnNHvvNtoqEiPDSxkIypYfvuelf5RpH/41Rq4vMGpmkRmJuck4ux4FeA8GRSrd7vmPFSNQTXc8ki2jWyjUVXNWCVnL2NuxRu/P/Eig8PGi6h8vreIY1vGUt68KHNfglGIorqsAPHngng8SNLx0pgB1KoiEX1Nj8U636UJ7J/xmXnB8mz+jZ9CuMd9MHjFeDLG7Dce4n+ajdl1RltDIVAZTx27+KxSrE7eu6JMNl3ut+MxMEsY9YPJYnTIWla2lgLV5er+4Uv3BVUBvd5emMu9HHWtrw7wPTQi2wrjph3TSyzCfSA5MytX9ydVFiXYXR8+sQXlmI7ywx8guojFPF9KSv3bdwEzfuBJbu78L1+Lu3tj7vnuI3HGb3ibw54dUTYUw7OeJsgKhJg7tA6fNmyoIGobg+iSbfmTaLkl5FIQEF9+tilrPxaG9+e1w0i3rj4fUVvCS0dvstEvH8RVEM7wZJ1N7tftM/3Fp7KFAhOd4k1K7fyWgyUvDCqhw6L41U9U+XuP6cgN/F++o+wyAR6N7spp5nWW0jb3LVUJD4shPUYJXJafLV3/+ACU8g1tJcZYIBmq3xemYEPUI4MY7sIoxD6XbqAanxMLpNTiA8vbEEI7D9hRSutiDB75EfbjUSD6c43bfgO6BThHJVY0i6WjGlxjqI/WjTmn+8v8hEE8wSpcOhSktOTD5nCqYf+QY7bTrhGakPt14JmkDZ78RxNNuI1qcPXuQ5zPKS+GWg0M8LVaIcliqfsTFh413EvrSe4KiNF0nxIbiU5gsM2nDPxxrh8w4zcWR8lqp937IiLJPIv4czNjc1DDC6BtHu+ZR/fI7Fw2n+sWhYjsdHQ0pyNxNQhGxAjZUhoNbXOo0RX2Cclem8Tse9zbkF0GmPE696ebpwRweJsEIy3/+qM4ig44gu6y4Njl5pDriYJ+87d9aoQPS+LW8JneD7Y1WdN2I2stEENbZ1514O0Y2dsBdqe2I/ZukEw6LZ4AavjkxBu3r5ZCnAO47PgidzG2U6HKxD2KtsqGaSR4pDS/tgra96XItI2jmeuVbmLAcNaJy+mAaFlvb+gQK3vivsUppd6ZOkjQ34TEgMWiWw5vClb82NBlf25SjtR9BSnCPfFE88l7J9Emdb0szsTlnsbF5/U0gOGYK7YdlYU/RsG1g8fSnQg2o53JBzR2MMV9yrZsVZldLTiaujBVTC5FxtLx3W4EyJbnmLhXqYim672soGd3marjbWuOLso6tKwEi9124dOfIK4BkrO1ZtZCdszRr5VMeXy9FfPGdmonzV85MKyvFi3rr5L2UyTmyq8+y9/Vla+z8zsHJzN84gaaxadbkezhOD6Bikk734ecFyG4h3aDh9UYmdNqsetgOiKggpQ6Lb8YxxBJm4/IZjpm8k9cNyiztCW5C5k435a3OP74FUtqFkVDqO1D6M3kTtWbO5psY4kWlLf96W+9+ntuU2jz54cd97JqTix/HaH7VtoPr/lwincL2F3vPgvenwpNi6VCYafuHKaV65JPN2/CiE2kY/P68m7armxp5mOERM4uFZ3dsIe0fxLclvgU1fEdNVDKyoFpD/SOWGm+DaSWVojlOT56lKk1yN3eJ3eqk7ZWQgGjrC1TFm3uVitEg+D91Xu9POF0eNvdGWWH7k7XVpQgJtmSAgLbd/T7uLbmax/2GRIKKyDZzAfo63EoIcjckehKcIwmzjYSNGcBM/JFIZ/m78Nl+d4y3a9lk17EcEKL9tVQ7l1NJFwuS0HZ9PWd/fjx+lBKAjKPQsAs5/xuh7meoqSYTsx6eGY02r4GUKuSRHZCdkbj+pFrahJgiS658OX8S7RYmWKW4urEHi3dXPY5PMfllvntN2jFxVLpUPzZGMzYz+fQyPpsQOmNMbMGa+Tfe44pIsf3kgW38IE6ojSvP7xegp+jQQmFAPwzuxI/XS9Snp8fMdBqKfz4S8qz3fcF2/PrQDA5gDmlvnZU7/nBwKVwe/7yiSKqsJGqqxS3QrEPKuVwOY1UPHeXqPMXGOBp2D4xLuLT77Ai1T9+Q8eZPzb+7magrU5W+BOWuskPpST++CjBYcdbKkVuDMnNPdN616CUk/XJ+ukrZhefhd8Vj/AF9NgJbKMlg08DAUkgQ/Bl3kbf+rwQLhrkxxth5x9eHZdcU9G90MhmWvjm6Hod/eEd+eFhp4eOBsMh2VK534/p+BndBtFKFZiTXfVU+PGdSj82VLmNZdpDOd5AeSwqgmf+SGd9qizJ/oMbyZH5oPHShkhd5Rghg/tjtpMqGMNBY3t3+2n7BaghEk4xxYpbLoohjBsMgXcViIGVJ2KPxS4B22UKrZI2Q3984a4uHgw/n4058LMgwe1kerjZvNc+Xa30Dsy13hBfzSfEj1DlMK8/ccVgaLl7lTtgxnmg68DW2/n/lB9+0jpf66ZYrNscMpTLeBCENBq7zddSPHFCzOTWZ+YfH5DTaz8wV6vefObHyo+vUQWVbjFtq/0R3Y+eiQfjIBUfrH1CsMK4InM+p/2zHQJ0G2KbZMdd2nJXPzR/9e7unrjJw2A/QDUNG2Ik0oCm21QHoAb5ivLGqYvxxl4TzHhCezk5m+t+kxggXFpKV1kd8L4TUxtWxK3J5rsR5vdALULFboM1IX6/QkyhRgMU9ntizHyqOrjRGbJ3ljBzsXn4UzjwAMZafMyblLV2LdP9hPqndiVeObS/+tjAuohjLM/z2X1OnQM0EVYULqw2hwTcGKoU11R81GI7OZWHlf0zOTNt7yzQeK/2tbopqMqMSlyiqSCrl9LuPy6FY6eZ/LHSE8gO9E70u7Q1x/6ONNioFcL587ZLp40EFSynpYkl8bSMpi6BBvjYjITczGM6rurJg8jzN1Qw9UXEj+WtQlaYVMx7CEHK41zyFHkwXLK96k466pjnf/XemesrI+RjASKrF7Gr7F3M9ddD2fuW/OLNH5WTXP/wkzjnSmmpdNskcDINmW23nuGPpfJU1E+e6AyTxkRcE/NSrR7alv35CW8zU1C4j32yQzL2xXX7vaHv6XZivqdJET/yV65+HKEkmRtY6eqe4w4YW7SUvwN33qM1iKoUHY5kK4zvYrijtwf8SSO8Xk5Q0M2XNuBY3o5KPCLFyEAboOeHK9GYlHL+Ns8S5OeesEBDTVS7le/AcXN7YCk0vLZZfOoBntT9sKxdHMzhLD4FmPbnBC/Zyki5ee/2sCy0N9tmr8Hnh1MjwXd8Tswv8Srt8wU+o8moYa7/tdmhMbZQZFkVfa1aMZqo7MVwi8UvCw6Hup3W7TOTa2VzZa757dGkupaifM4vg7i+GaABYsmA3/95JKM+88fVC8Js1TL/7e9M/rT0EEhlA1VE84kG1U0XgFqckVnv+IO7G7EajDL7y4c+Kosa9U/jyvS3KPpcyeYe8GLfskN/6NuhOk0h5Pt6IOT6PrZCsdVKlQrfkHwlO4+GvjFz5R4UFglW6uaH14IinBJKy4Vc+32pfBVkLAuGh8Bdp+NaW2hQ94uEWdnOb9k1bzRIx8OOadli1wolETN4j0nANqKm8KkxJAGmKpHxuC+ltiM3uwGvU4AYh/jZTj8/gJpkjadt/uKzHr5BcBJD9vNDel4ENzT7V/S5qq10hOzzUu5HZ95N8bRbLtmDBHx12+NffZpmvqq0wfhlP745+xu18vM7fn4YP5bHEh2g2TE3l5N29KaggnRXjcQ/rijn/vV0g15RLnTlC5TzT5h1Pz1GPFS67XQRkwmlKOiZk6mHiN9YSuEav+4Mg7Rs+9fOxkp0EQrmSc4V8ZfQO4jE14zNZ5DQj+8ieb+ibOcLrTnN8Y1KbS1R0ZTkiKunY/bjV8RSlLzg98qtwFg+GcPaqm/H20KiAOk2we/7duNzucaiNPsBuIIjj3j6vUiw2x0DYp+dbTSem8NZtU9OjLeIr8wuPaaJNNc3iryrZg77FmegOKea1nP+MwscR9XKW4YX8bvhlIS8hDp8qswZ9p928m9fgN3p2zGSL3n7x6dn/5L5zLLMWV95wHNXYGYkc7O7R0sHNXm3w7RDrj9Ubw2rs/6i/Dke0GTlrxo2X2FBfnqaaZmTozXeILxYTMznVye2lBuVHXaQbMsUT8tSQmHpOUR/h5U5nTNNRCUu1wSv48H88wdND3bEf/u92c98HXmPXUaIfJSjP32zqtiG/PSguL5FOVL3IacT/VbttPlWDRzv42L2t59oCG4vCb7PzxH/9DDfdJ2tsK8UsOy3HkHdHVGYH7/E9NQICUcXez/9QDYXvEPTapfS+caIkeDm7qZo9msBL976PJ/bdnh8HQmy5TEmf/7mVMUGTOcs/cuf9mnpe/Cbx5n4X6b60xW0TLUXCwGLNWxSzo4HEZn50scyzspoQqOr/dXnaOU++DBerh4QG2s4J8Ey7RXy6UATEmCECy6a3pl6Rj8+bAZZisYiMjRkWb3z87ejae8+5/i41JTetFc6460CbNp1zKsZj8YWo+CHn8QBfG4nW6I3JNptgUd7O0aNf3uCeq1viOnJnbXfdV1qsImmB9GTO2lX0roQkLT1TkRflGbx46topXUO2cTefHee1w5wlrY75nvq4NfH+GajuZ5jeziXKe9Fy4DFTqFsF+HGp/Pzo+SqnJl53+lcjDdJA/f9ucRP5z2a7UWOA1QMKMFNkFY+bUt7AIGcMdFmPBlvW2FQJvF0YdtGrjifOvKCnfvqib82/XZ40+T46yfQgV4Eszt+Gu3nL+By9ivaU+ploNNdjHn90dD0i7dXlLyIvZlcf+j8Tw3abfX4+WHm9OlXHqB0r/30h8+DvXlW7Gd0IV4WlcVk5U0DWpnNd1UOVrSSHgdFjbRoyzZe9DF5WL469d7dX2RLXLegxyXSYObftNteXTTr6RIWaRXgNVvZ5mryppfa0rBiWJBjf6rWJARLBoOlUCB/LeiHszrzBbab9bAg7m4NWuMtwuXDK1Ju9NpR3a/nntlw1grxCtoNLUn4oaLNctTNfBf9xrNPi7M5WsdnACcl52Qerz8YRgHqqEcmRfpdQ6vZ30DT+ZayVCijViTmuwYiXYAZcz1g4lrWYMZP4i4dxln6fUhIfh1bYr+fPXp5b7CQGHs5ln/+s3GQFbTUnzWW+umDBtLeSkBk/cLrp0bQXP9F2MjjDctSs0//+PntsGtnv9z2x0VghjDjO21nP623OuSBSPGSetJTLwaajwn4Zbwmv3xpNF/1kKbRJ7MsRP1xta+DPz9Qe1035iS36RG1NvOweGLLdghHLwRkfg26bKSm5fn5kiD9eErwSoHE/8PTcGHYzJy2g8/4VU6gLS82c93XxhR+etrq9iXLuBq3q0IZNNQMTct2y+OmEPiimfkQI/gkagmqhcVtgOHKHaa7L4fTy33qVEg3CV0C26PVO+TKb7xY0SvSUqcyAsVyXh8szfqh8t5gAxNNH68V8Z6KhnGUkI73Ctsk33c0TFvVBgJuSmxHkDj/DmUGh8tlpCsv2vrjsx3wn39jkzb36UHZnf/46S4Ymnb2Oygiy4WCqRtYUZ2sljc4CbcjlcVg37KLcdv/9BML+OOdTtd7V/3wnAXqxTKnk5hL8PE3JZVnf2U4xZsFzHhIecIMc33kzQslLyIy43r5zmdqNUsdd4/5TG41+eOJtxnM+pHZ000opg2TKtDyesn0YH7vD9Y+e2gl543lBuvFqBDWKbIm78njrpp8IO7wAis42sy/SCLqSrLIoI/OiPz0VFXzAdTcWIZ4cLfbYo6HM1rqRY3hQVk7WU7cKe4jsRjO7LCdBvZyIDqaFv7MfJ4fjeGFvu+YM4NND3NQTBoifJzeNO5Wg0mr9Tb805dm5T59rmVarpreYkc01BrtGJ3uFM18gZCg6RHdCf0Azkfx6BqRtz8+dq9M4er6QIKQO2hoU7+D1QtVzNyLrTlNiy8g52i1xMWZFY1cr2M5ca5XYuzUxpze1N+Da6ofQtTOmfcwLCj6+bn2/VVFP78Giq2tMj1NPmllOftOHcxufm9owE16incaLN6ZjxHddinfWh+QZz434+HV5/bRMmD43Cpy1aoNGq0OOfAe44AEZvKKfvpSnRoc90jJTHMd9ZTCcZM9WPCgpG2vh6MFK1t0ye5lakVdnZQQ+FiPLP4mUjt8yxZg9uvm/kth9i46d6pMnz5GGC5tJ+yaCXHLWJGgcD/muLqWAbzk9B8AAAD//6RdydayPLO9IAYiXYohAiKdCQoqzgRRARVpEiBXfxbP+w3/2Rnrskmza+9dRdUDTzJNOo6cvIVd3hxJnB7KblIiC9CPOwfmH2BAo1pGESjbt0T+refukyZoDuscqynqqoGcXQf52XX1l0+0JM72GvQPuvnLX1tzjvoQKfV8YL5gepkcRNcCJmKYy/mr0Ii0ZNEKw0Qs8c3Q4ne32rGvPKpgy7Im3JyxOo9HBSvNwbDE3F6d0cKvMXocT2i6KaKmpRt7i1fL94/OYVfC/6umQP3fNQWv8Hli/nivuvm0OoiQBPaWzmb7qqZjYR7BTE2NhSAEAUfd1Ub9qdKZJbcfa5bixIYbkBmj2znkXOghRQ66mFRQIpfPSXqXwNd6kXkwJNkc7B4+5FDtyHZu1oi6qSkA5/HS6yOou/7lW1grYG+wffLA1pywZ6ErFzFigbN6Ioqi5gxTLRHMu8hHE9DzEcTnJaBom66yt/vZPYGgPqYr+3y2+MGac1i/45lOTDxb8yM4OfC9QU3M6/Co5nvCGrXc5DoLi7MRy5MbHJG57g8k0ZsazSl/lbrx3FOshuUB/fTvK0fvx1Iz4HdOPF/j8IxOhjGwnbcuYi6fDE0XNScg/hj33ZzvEhPCezJjCX3xsh4nCcKUG3hl7dWYN8GU689bHGKhX/nB3D1zEd7O7k7H5LvnQ4LIEcXx4rnMzYnzssUKTKwzmJO+Hhl/LxxKtzZbYslPFgyOeP+gc0ET4hyrJOD7LHOUejMfybZpW0TrqWiRfdldSHi3QjRVdjFqdzpG7M6zT8UU2UvBtB4uw+r1nb02ODdQ2O80ZlufhQnUbQnERinZrEGJab+LNMgneibbjf9ATeGYPvjF8YS108vn8gUCH+jF9sljLVTB2K8aH72dXiVeCoPVz77h6FwsXbLh7cMa1T3uIatMiuUGUWt+uKszegTfGtd6MaBpK6Ez5E09MRudg2p+tz9JlczLQJwWU2v8JpUDpGhSEry/QTdDdg5BeodHVtRviib/caMonoQXnsK9E4w10h30AtVnZDXL1pSYTQ1VofbMfZ9FPrL+/IEmrA/kIhVvNB1xqsAQCgkWfbOv2mONfbhCfiX25W3H67/9KhMuUyT1RTZhvvXB97Y7OkXKveLrIsvR79beiX87q/F4Y6qG3rvkxIw40YLGm28jqoPVl2qfj97RpYgbyD17Yi379XzSXmYD20+aMdv8Smhu8ngG1RVfpNhjE/FLpNhgvPIPFS2tjcdaOEqQJt2ekPpdZvx1Oz1Reg1XLDw1l4BmclvDZh83dEziB5qtx4xXE39f2G4dHDNG9lsDbQR0Iu5RoPEglANAPQc7stGW58yUeo4gqWpMB5pvrPn2vAgoh9eOist54Z3h+aDvZYmiI5ID2i+e6fb5nog7jaP12Ul+iohPTbJ35kdwF5b+h3PYI+b9TC3umTBQqG/Rjexm9Wp1O3wvoKioQvb96lzx7hhFENvKh1zb4Izm5IY+AFoJxLsumlQ6TaIuKkRmoe6a1rAtnQLWB0GhuU2krKurmw1bTdgT95H+utm1Chvtj4rEbrdnFA/bEhdowUOGj9aUUSH5pX/ng6KLBt3wKV0Mm+6TkRCEzur2WezAodRsZnr3LBsfJ17qnGs983ny4XNzFUzofr1GPBjEeIasCJGDTibDrfzlvdi7H9BwWjOsExpPF3YGtDpSgXiC8UXDhRUC6GkYkwAUQOu/TRrzrE/eNxOdZXzHMtvvgtmHFwYaDgOzLu+I0+2h9qE73wys29cnH5/N4m85ckVM6/cNhrdCU80dsY/lk3O3JrLNz5BJp4YKyeNV8bhJKQirm0V57lXx/F0/enX9PszMp4EfyxUeQtiJ65wqG2ZX/D2+e1hZyY1d3+cm45vMwPpyvpgxOwjVIxBBkwXasb/9EXe/AsMaGy+y5wfWDSDsWhT27Ezc54XE4/G6ouBLgcl2Zv2oRma9IrUoXj+q7cSMz0cFmXCmtsK2qipW7M2tXA/XEsKKGBrxWF7OkrqcT6xFWM5YR+Yn9FwcWfp6doh/Lq8ZmqhsiNVfvx11CL79wzsrCNbdmGvfEZSLFLHtB2vVKKWyiZSll+C1DSTUt642o/rUN2Q5r9ngTLKEymSSWfCeym70nlYLD/iusXrRd/H82M8ifLOPwfYbfezGzNw4kM7nmnnPfcfnJs9G8L3djhlDVsdTq6Q3pIubM51jNYjn570P0QkeAZ7257Jih/47w+nqH4hzFX7/4qFmaB+fquR6CubuLtuwXpkzMQFvrX5bNAlsX9KPmLvHGIyMQgLBeFSYV5BnRVePyxH9znTp1S8Uy5OwiQL5Vz8t65tUvEi15XyxgTbdXHOuPKQR3ZNMxM+V/qrGrkURqjfjke3d7RHNCWsK2KWpTjb6XrYmRzzVut6iiW0bcYNY+vwtdeEkYpsFH3+CfBMBjqZIf4QU1i/fRC60Sv8jW1FjwWzbUQmHregx+3yM0Ig25xuIWQDM2NlrPkpZMoL27tZUDIJfMEbEE+Gjx3vi7Om7+ou3EJDoQ/YOSNb4mdsSCZ/oQdL+DhWLHokLE/9eiNO9NtU6TZcRzZdmS3Zbg6B5dIocLk1Il/sXZ4N2OBy1H/c/+L0KG2vud6kG39N0Zu47vHP+rfUbrLH5okrXDHyMT88Gfr/sTbz7lC34lR7Vl15+CL76V4vlktrA3vPWWJWYF4zb3akHusxNcPPXJ2ukZ3QEvwx7nD1Oc0zvl336D+/bQYa43wmBo22f34kFRhXx6VMaof7Snx/mOrQN+HpsP8j+3BHZx88m69z1NYdlv0hSpoWVI0v0/8W769WpAx6JGxO9Ak2l0z1nqOWv1ken5rnG73nuOXUKeUbT83hnIXmKaBI3ugJe6khUekZVMJ+apQm6dXfJZcFvGq2+Ihy24UDVFPbBgt9HqJeCT0Psl96dR7WAQag3xA5OT4u/Htfl6TvrxMha7IM/foDWF9/5W6+g9eEXarMbeGxHji6fDz+v0Y+jEJG/+zPId6+Gha9iGfLJ6uRj5aMAdz5Wol0XsDQQP/CbK5+F62odswu+JYi8LjKFnAmcP5QcUFu7MvMIEYKFT2B4V7NIyC+6cqr2pgkPeK+J+RSEeEzeNwMGhV9I4KwMLjr02sOr4h+sODcImrAOKfJSesRS//zGLBI3hv4Xz51LqXZtHPgh2j2Rw3a+18djYfUpPK7ahZii7sRjTpIebhszZL53+HRMKZMSUmOXLfdh5IOnwQ196aFg1pDuren8GD4gaOKBJdnhnHXb23YGuIQmOVeQ8CFnrgDfzb7Gvf8imTRcG0MzbadmeKvb1tjUeYH6TLBYaN123exrQYFejSASQ+3cbt3fUgFWH0tZ+EmIpL/1OVNHobIRbJYaXsMB7TA8iLNJ2pgnim8Diz41Ma6jn40N+X4Qcp83FrWrJJiRJGsgqbO95GTfnP5+7AayW4UsYG+pm/dGmcBpcL5sY/G2Gs/mw9bUw7nFa468rJGHToHP7yxjYfA2QcfhpoB4+Fh4RaauGhK0OwKd1T3bullRUadYjdrJaD2q/cKat9rXKSGdtj2eM9+35ikdaq07jTUhr1Vm8f7RadCq5y3bSA6J+z/8SI1eJluy2XYLH1b0adYR2zBhsMYjb2zwLVVlu/M1qujqo5Sg1r+aeecnoPnJUALi3oiI+Vgp1TSOPxclRbpi+KDe4qYylBaSF9MYqfJ3Nz9c+Qz17Xhj5v0YZu3onAtQla9GdsamjT+DeUohr7KK+Xlz7NivcD/QCZpLiP0cllyJJyF0t0M8PuVjMOOyleBHP5xtu8vFmtr13MKiDxje8sEaTUNQ0DXIXXJgohT8Fv6BmseBEWvCUsANJ0tg/yEjbQk5dK1ToSPcQMbEzJJNMHrPoIHNXrVZ0LGhm25+SYHl5kTX3eUS8C3VWmizlrKNAbuYz/3viepA/zJSxr9gMn56D3O0NMn3oz6YX0sfuscmJcz2zbCaNpE6w33b9sv/2wdzprkJ9Lv0QMG4DtkQZ30JH+G5Zdb8+nXjoUAYxlUUkCWed7N1E3qIvtUZIyErrWnef0JIp11P3Ac+duxu78+AXkZFY705ZDx65C6qYaWwcFt6aL59JwwEOTJl3uNY8RUMM3r8jghP95ygri6KDxw/b048STWCKTF88Y/PU0FxJj7Hbp9DdkUe5cfRzGTc2QVEpP3RVnu/u9mMDFEvAikghPc/NJa7oYCxRowqwcC637pRNUgn5tLLeLb42iz2KRprlZHA6WY0v0yz1NzPw8P9om/X/u2BQWLZl/jejnSzbiumfhqohZnd2tY6/357kA/tRDa/Pgn68TSmMEe/4z++MXundwijiQ9/+iUbr0HWQLD6ZWzBg2rdAMvRZL4d5j0vJpqr1zuCREIu+dPHo7JCJijikWGlm20uq2LVIkcbPmy76NsZYf/zhxds19ptN9MPb5HrZZjYtfDOxgjmVs+u8UClQifZ/Ie/R3IumasGW8TtvHvCSoQd25nK0I1CqPRwLXc6CXqljcfw0xbot3mquFvO40iGzRH98eXN8eRaMz5OOUjmacBcQDXinrFLwT0+Obuyos1GlL4Mvah2ORXLtAjGaR27sPBBEsVNYw15u801153mJf5Z1hSd9j1Kh3Fi/i+s0SjsdAyH/q5j1Y/SaoJtA3Ber95YStdD/H5FOxtKx2Bszw+kGw1iA0RJmDPsbj/Z/IFRAPmDK7K3iYcYKD1F9a8VmK0XA5+/sl6gjOYI08ITKn6dxw+s27tBdqs4yabXsRcBDteUhTkrOLP9/AbOShOx0n9512Nne9Rro7oxtyvOnKbbsdd3r7Ik+Fp8g/lwnktgdalRubX9TirUvYZ4llbMcotfPItUH7VvVhsk0Ys9okUU1bocPko6A35b/DU9fV1WX3fiKGNQiVkr3NCU9S0zz5t9R0+DSfW/eDIxYW/1XzMGdB+qlPg8cfh0cV7tn5/DzFjt4h/QcwTEdz7EI9eTxVnMl3mr9oVlwiEIRtONXCTmqUg2085DI9tYJVL2D04/+lIzOJrKWU3uvGKmN3nxaH1nDerz2aaw6EXpTlMDorFFdLXcj+W8NjqePgULzxPvxmxVRfBJ+Jbt1apB1MgmF/y7dafPuTa4OLwaCku8J+7KW2ZT0vWMhmjJ5p5dFQ2fR5ujt7yjmLvJnPUGsQV9ePxmElRBFtOjggzNL6ITRkn6QmOmb5+wnF+Wfn5utl7025++YP6p2yC5Mzz3X3wxm6EMlnidg+MNp6VPAecjvMUGxrP/JXa1bjpmtmoNhnvZkO3J2/HppmRPRLyHTxUxfGb8eN7Uuqq8NTqetE3cp591AvrlIzPTQ89MaqOqQH/+3Dl8e5a06DGk7t4/+k5WEeeR6JnQ10VIFn6G+HMt4z8/jCx8kQ9n8ZgjfR1hZvXXXdVlZN3C9+RpeLXEO/qHB4f1t8TrXZ7yebtKhL/1I2HIm2o0KlVExI6B/o7CBskLPsM+Lo9YP82b7k+PolNSP9hJZXrV/vmJrt84ZHsVpOznBE0E7lseaHMUaNYLeWnr3mpVUtj2TzThdanAfXowzOhVisdFr2oLP2HLfiJenPMCJX7xw17Yu5xf1OGGPnXwo6sy9qxxeD0piHszovLJ0S2q/eojpIk1MbPMXC7/3c9ZDW5YMNqoGsurWKMhPCvM+Bi44nP/ekKv3ErKXqssGL37WwH367wpbNMjGgyVOYgdsEHsCf+6n9LeMVCzTLEUHpDVHTc5Rd5RbSjwA1i0KdQSTlf3gG+vbxpM+umW6KKyl4nTXdqqFafsqew6JtPZniv+C+M2hW4jYjwaEKPxuxJ8dP0qX2bXIl74aE5BOJ49PF7HNpv7tUeRlNsDS+7XtBrHCDT4bPKAmOqcoIXf53/vJ0QnLzQ+372GrsVkkrAuym7CfO9r//wCoaXWFLDQgUlNN4Sc1D3q3uPQa4v+xNJRNq21Cv1ZW+I9czeZ1LVt1BXAXCcjGwO+iz9rnyHX/WrxO3v0p09hsz80i99sd6P43TqQPMyM7VaxmHHYHxrNJmHLtsNvjHmjlhEk32fNjPn2QzzKpRv88d+/+LimuGnBL3FPbE9Zd9Oi/2EQPhtmmk+/U58myv/0PjG/0SWe3vpL0cOy3LCQvX1r/huZvAfzhnlPxo7fDDsCewyB2D2pg9m9PSm09RxjoYhP1bA/hC3cncglSS284/krr/N/+tbM/KXvRNBEqjuG/qKvhoBndfuEtYg3bDvPPRrMdWT+7QcjF7PNZvpBLRI0vCbBJBM+Tu/XCJR9jsSVKQqmo7Nq0MI/GPnDv7vniv/9XvnJrH/+Uaf/IrJXKxctfkUK85vYWBg7CKgU5442clwSvPjbkpv6gMJ+OBPXVDZWf+kUSRE8XGP9G5SLn3U09D89Z4/bIZjqYXxqR0jveB35ZvZP35fTembkpA6o/4lbCdJpcJkbLbMxzciVNA/rBxZWpzdvQxr78Ftm2RJ96yOJv0oX7tevyazrwK2Wk8yAv3yD3e5efO5K7fOn/7F4edvZnNtSBJtVORHvsH7HE7l0OdqsnhOualFDHV5NZz2e4EXslG6C3zrZGuAdUUOMqi5iLlFbBNdvnb/4afEtnVs07jcmI6U3B+N1r6ZQb3yJ7Df8Wk3qyrRBfn93xMv4GPM//rncR2bmscPH6UmjP3+NZLLRZ/x4wDYsfhn9t97GNU7ReJ4tqrabB5ctrRQgKWGm3DnvrFETffrnZ7C7eOsz+Wa2JuiidaaNcwNrdHK/ho9+2JON9y3Q4qfb+p+/FaDVxHlc3TEKXwePLXoiGAwIRVBYD+S25Dv6hR/BbchbrD/ZMZtvEa1hd/8ExJxfktX/+U2rTixZ9FDCTPrLh4iH2mKP1Xyxxtl3HaQ8k+s/ffn7xbMPeNTNv3xNN97uS01qpRYYSb2QjULe2uCXkksllxnBGhW9AlHfL/qq5YhjPfvArYlz/Ifviz8W/dPf6n3KOlb2dQuYCCNdiS+l4xcIXNC6/MEcnR2C3j0qJtJMuLDgAFPVL/kFxFu+Y97ib46CfwOgorvMfgLJmqV3F0JkRA5xG7TpJHNf2f/86D8+Tv/yGefryyFeMFiBeOlGEXa4A7aRSYf6SMs1OKSv7794Mduzd4ZjkIYsqUWcyW+6E9S/fJD2GcWqa+TwX3xgS/xBc0hjF9TstWKbS2F3w8orDXgrgrno03c3lsVow6FIDsw8mE2w4F2rG7nCcetHocWXz0cjD0sWBMInk7p3moDlWQHu13IV90/tOkOlWIe/fAxnqXeWUPV4uRR+9yaYEv1t6t/bySXOn//jpr4A+Q/v2aLnUb+iUwhb2ztiFdVyt/hnEWzz342KtjoGLNs/lD8/ip6NjYRGc6vd0BJ/mCWf06D15aEH0S2Kf/mZP78INW/7xoJJZvzf/boYicmiqi6y0T0qBjRKlvzhbzYd1E4Ae5RStr8m0FH31lAw8UGliGWrrh9ezx7+/GORQhSzsu8bpD4ZJoRMXdcfrzKFTezEmKuzG9PqNRzhrYBJHhqfOqa7Z/cPn1n4iw+W/P1mrhbgDSXmr/92vO3y8L98Rpi9Oy51Xxs22qli7m17DobnpTmjqxwHtFr89q+WODn05t5irmdU2ZDlqqh5K70kQfgrlnxhIoL/1EUSbssfGvoLwhCk6TJL1U6z8ZDfc5iyHcbr4yB3bOTFGTG1dwlZt+uAbyy91pq3c2O+9n5XbcXFFB6DOGDhrKz4X/4N5n1yIab3Pcb8ptMCLXqFfqRizv78U5hqkbDDPuyqqT/dC+jCdrX4D/N/erH5GSMW9rjkHHdhjuDYRITQq5TN4iNMtXeg7dhffGBmTAVY8qkk54fc+j0vz0QPYulKDO/5Cfju3djLLAGBmHjEfI75qkRLPoKE7cfuJv/2CLU/PvPHT5tDfir+1oNlIT8F/e53DqEK6pnYerHnvOi8RH8/xDvZPzSrot19ZaNjk+/IaXhc4zEW7gKwXb7C64F/s6kelPIv/4hVpLy7cR+4M5ROG7AN7dTuT18h3Wpe9MXblfUT5KMEW+08YXnrf/g4hEhCcMhSQk5M4vM7PdI/v2LJJ3/i+S8+/fm3xg6HSFzRCSNdbGessoRn/OfogMI1edBT98LBfEiS8c/fIJt92HXsor5TULUcU7T4w+ORPx1k5nVPTO+OMvo+gYD8e6vSVXl/WuxXGJ//X02B9r9rCsRDq1LdvuFs+p1oipz+U9HpBWJHL87iiUbnHQvP6a6agjHI0fMGJ3Y8CV41X+2Li0Qp98m+WVdBSxNr6cUDK7Zz47pi3cMo9Wavc3p92eeKmg9Tgp2R9FgL8Dfr8vx6BN8rCf2qBwH9BlLkaHddZcyPLyQe+sEwwYjjHi+vc6Y57gx3fsvIRnpIiKVa0AI7PBANhmNlDen47GEKqUNVHEXxXKjqiLqdd6HR9xlXvBTNM1j6hhGXOgPv72IdQiQHwIKLUVej1vkh8ub6Qa7toUWTQ5QCeIwVLN7bqWPOZhTQXGiEBIpaxSyeMgcVk5izHW97PukvjEEZzDext5qX8Xehaqhwtjf8M9Iw5s1op1rb3wvipW5SyaGuASSqYGL1Eh6zqVHlBMZ9CHh96D8dzQXio+dLcdi2E2o+rUvNhddKvrP9HZtoemfSGTY+B2I/XBQ3AWtB887rOzGEd2jRbl8DpM2rJr4aYas3pgdFl/dxS6wVCYJ1oR4iYNVnz0LpIKOuEoQI3Uz6Zf4n36Gh5yzVrmuFsKJmezSUun6EV747Ef+gbit+7w4jQu/AIO4qbwOKs6xE88Zg9HMvLC6qskLhzNuc2GMho7nP3znyAgeTQLjsrUnNWwyZUD3w+Lh01Wi0SgLC46riuX7dq1FuRgzDfL9hOGos4+EnKvWdMPfMiDKUUZ9eAX5OtSe+tvItunqjIxqHKSeWx/ps0rqWaslr5TGr8Wc0CsYrAemHOdn1910w3cMvhlwwfhTiYFNJ+pGGcKkxUHXZnzkt3R7O8zcmrjysulnSdAfZJ/PH/FkqLf7ZJhq869EiN43KnDfvqAAzOxMKX2qh2d+KBZS315ntLGe0JvZRHJQomkrcp3qtRlTEvRpEL5k5aflCo/dsc6SYycDMn2UG46Vbekk73YnK1XyLp/ln2uiLIpHY+3kVzMF7NPUxcQeSmPkUDL4ypOC7d4eRuKbx9M6EMyoMzP/2PxhLPZ811Vcc4u2SFaff7pEgpdMXZWiUGeuPR3PVRLbDLIO32bBfBQKseH8i8Wl7i9lZnhp9qTfA83696eZKuM9a5It75hNVtvhtn86o8fwTw6tNH3C99mZo9fJLNunJRHyyGhfWxBoxVOEqa9tbnCPR+63INhztbnj3agq36rCjvRUzaxJ3gQ+Q/yK2w7lgjXUTngH5jx0h7N3wkbe8VungHUnki79s/KDDTY8MuiZWhceKP6cx0eeQ68y85y8+76IItK15fdGP76oWDRIAON4yTIK32CJO7GsN/bl9MTx0jM+5QFy0f5Q+C8RLwZmoBh90l2qL2sKXBowqogD6CbfEcdGroh4yCqQ6vxOz2CXt+Pdlafrg6x6zjFKx2G0fzfAmMBGsjVfOj+XtgwKsGczJilPMwb3NYJeaz+zT61eNrvFR0Hl+x8RMND2eU7Xz4fRNNLLtta81fFlwg9Pz6hP/0ry6+aj/HDT1+zsJy/nFmekaGnSzdl165crxMHNp6e1+kkm4Ewo07uqVhJb7gd870Yynrbi56WaxwXRKTyZn6/7uwK8oHRaKJUKtPMeudmwixvZf1eDyVn2MkH8dFXP3YFbj3lRsGFD1Y3Ye7vjnal98kAvDZqde+wYT+aEnuG8ism16qfm04Ls+B+6O+DjbZ/zpHUUY6rdKHPuqW7O/hQKk/WNazr8WTwb5iSg2hYa5v3XW8aTuP4hftw/aeNDFPVoLLmgEU3od4Wf9rb+2nH/cB/kl6C5d4KK7v96wy3tu0BTAJEDuPK9sl2l2xbX1vkXC6xmyx9Jbd96t7iIEZesxkpAi5nl+OIKF35SZXs2yKQzm5x8e4ulZtIiN38kBO4Mri09bLZvCKhegPzcv4p6qrpqP19SFzk9WzCRxkPHb9KPobgs3KhrCN55EU6qhlRtj+X4h/ltPxJ+biJmaG1q8qkiEVmFoU2iuMZ+O481BnzWyaPL5xN0ElTHDgr/M61jS9Z1tGlC9OSNb4+zH3+0Jiwj59x1JmDGgUWGP+u//Ua0eOj5HbW6iB2w6qg2aEUjLfYHT9XGlaiDVMf8qnzMcxvnBcFv8+Byoe0Vreu1OwnRnob6t8U2F0/DEStDtsol/dyWsc3QgwYzf1mQItIc7TzNW3D5y9hOSB4Wds4/ZbYlP4+e4PKf6umAK7rOqJtEUati+koCEpwRl82MIIjRt5zOzKUPdoClXDNrdJuz8uW25rGTXEDa5hpktnDM+jVNvQFxVLrGybVPx7ckRoXw9drSsd09rlqpbq4EHB5KZ9zJjtMc5HLUVJWSbKdbsWm2OVlczx9NUiWjYnS8iPKp8i7+WMwZzdB+eKAuOBnOE7BkP+++vhF+SUuZdwjkeZztqdQt/KRUkxbamEispbJ7NhRSrTWhNTZkr2rKeZHeTlIzuw9iATmYyHjM1ziZ9AKrJ6+eJduKlQMy1fUDi5fVkfkVefJrqdYmGRmrx6jXYfIqRYyDBfJdsG/tRPK5V0YY12YzMw9GYzVw8P9Eg9QEJv9Tiw0DOOcjr8oS5Pr1iHvYrDV7Vxlnik9pN3eFqonB8v9h2ekt8ht181D4/p/vbj5g/DuIMWSc96cypEaz75+EJU3ECOv+sMuiPVWADn+wreTx/aTVPt9ZG8pXHVAb7m01M2wqgzrfLHx8IFrz1IezXKRbjV2ZNbzvW4HC2Pwz/jGcwz0fXBWl/n6jyadbdYEN3RpsNGxiZVglf+Jaiv5/Vkdjo1gRDZXoKSPa1ZOGLnirOUqXWwkF5UYh+XdU17ygHZ6N1zGqybTDf6mMPZXQVcM2Mgc/zZulTpZ045qzxkXisLFuLy/uKWPG5sEYl9yhaD8KN7K4prtbt+iUg+7XekHCz3sayjvoQ1Pt7S4zDY3lOqWoSbX9KZ/x33weN8F6X+jRj28oseaf4hY9iNWPMeoxKPJqDn8DRehTEuKsvPhjCMoulkP0/volocciP8NmeK7pC4c/qk9vPBzhWCmbPn1LNvSEUIJtyxayDIsaf12UW4X7prmR76J1u1J9vCu1RZMQTPRKIyWx9gAD0zHl/A7Twuxlk7cLpe/5VwVheLQmyEElYVZUgkB/nzRmE2yfDTzEwsqUP1Bn2+6tC+XLfxua0V9BiNxB/1ap84TOtNl/gQY5tpHbDRx7O6Fr6O2ZKLUcz315bxI8eI+Q11GiYf74Dkx59WBzspWCaf76t1YCX2R/Vk3O205+odYwL2yZqX9G780z0hf8svVVb3uueFQF+9QnBSPwEDORLi77oKLLAlnE29HZZIh0fVSx+5KUuXilmCE9qQ9wn/nGOD64ND9xwtrv/DD7AcUsBv2hCzPp177rH7xJq4UeYsOb2h2wytUOiyzs7Yd58mzk3H10C3xtNmCfeXvHkFqMAlm4xOtEzRXNXNAYY+qrG6uVuV+vkrDso/tCRbVPn2I1vORTRr3g67P5Sj9388YxlesBzzY779aZqrtWVokW/EfOebzgL9Rm0Xt81zOT0Gcx353nWgh1ExA3PcsztWbn901trT8+DBR9NSMdnwbJt62YDVMYIT9rfWb41g3jKZq2HRX+QR3hxq8EweYKW84DnEcloJL/MQFhpbTz1yvKcTir5EH5gIq5Z8IAS/DZgtHY1Fg7teuFn1xuEhS5Tbdh9grkMwjNUhSxQPtdFN3ubr/b3OjPC6t3NrFhmg5k1ZZn/8bPJytkIBXViYvqXXzx6QyrAA6yOeFL3DvhR8GrwJ/NJ3HQ8VEP+CTEc643ArMER0fS7zgB1sh+Jsfmug2lzu48ghFTD3ofPHRWjfa1d7nFAdt5EY7bwM8ByjSi6dyWa/JcPqOmVOzvVzx4xzTFm2PdJicX6RDiLzIupce/j0uluHKslvn7gFSU7gq3dJptdXKRg3PY5s4eytqbzPWtA2M8WI+lkIulZ/85AtnlODLxhMdWiJASGZ0S2hWOg9R/fMyd+wRqaa2vcm6OjT8+CMHPR47K23jdwkDpnef8TcTd7p8jGjoKpNqp81KfnrN/EJCLOmW+rQfeqWT9Uwg7PqqzysXmJKSjdKserwTpybvtHDZZ4Qcvb7xpz8nRr2PzoB6vrb4p+WZZGgPV7yZzkwCoOtoNBCYstcbrtumK/AOVwulOfkCp/ct5Zh1Jf+BbxBHFvrTG2n7DqhowFnvus2NpafbTmBAMz3+8fGn8bxUSL/iQY31nMip0h6aysbCpJ/Qn94RdyHuOSI1kb//QDSj1zT8fvM+7EwSQ52vmFjRW3eHV9kLpPRPI0JFZ0a7tptidfC6TbgRkf88dpyV/Snx+AdTZJ3bSbHRGqnj2Yp5+rbKbwMnRXThz2py/5Kfcb2BePDfFOtKlGyYVG+1pzTeX778nHStREZKb+lyJyuAVD42sF4FjkbHu+SFnTNjeAe6At85RJnfXslDxhZ5x7Zpx9OWbWESRUtErHLOv0zGbtKzVww/c1/X34sRv7x2SCtNrdFj7+5Hx4HUv4mizDordj8bxfSp//nb/0xLt+Va76f3xdM4/vrL9H2RFeL10n3ss+dxwea6xfp65guDIO3XB5PUN91c81CQpFy7gfWwWwMX0v93PbSXv00FRhONyYt5HO1nySDy4c7saZJIdIzrrwszQ+Gvrrv/f/6XEwLuWdBJqj8Xk7ns6QHhudsk+adNP++yp17e4QKli7V9Y9n+sjyOI9JL7bT/FsnZ8aSI/aYvkSv6eh2+aQZJuUYL0q4z+9BP29PrDcJVM27yu9+NPbWHn7Afrj48r3fK+wtFJ9a5mZF/67j0afn/gIp2lGt3H3oL/jy6zW63L21WdVAZb0i2jNYnJ09THxB6qk46HjVVBLCN+FgAXdkm1Y+BmwDdQYHQ5uJU9W4//5O3TVJefq3fPvDeKhebLN/H0FbKMaZ9gJY09cJEyol+uuhVt/OWM9Et3uh70VoAArBpYP5NPNcfhr/vgwuwffJBgVdqmRjiOVndzHMZvmPK6h7D4PyiVTQmOZrCLU8ishr91sxGN8zmv056fxBQ/5W2sU5LXfNzG/Fq8WfwvQ4q9Q6WB7S29XPV1yIhPbye7b6q+a6P/TJ4ZTXQJ5v74aqBmbz7Leh/g//sc9zEJn2sXzPsxMtN+9DsR5n6/V+OcH/bT1GkvDtrb6hQ/BcRU+mD/NJ/5P7y78gfjWI1/6HqgmpFgR2f70SGPqhHYK5fdECVnJCqeHSDaAZd8YN26x6fi6v9toK7glyRe9N5/8rwPP+rv9w6euS/amr5/0/YuQdahxqomDC5+jj/A6HOuKG/drAtfS3TF/TMJgkm9RCPWmnFioGIk1tfswR+4n0plXuiWat7oloQWf8dtUnjHddGoCsvCp2eaz//BJnzcRLH4O2V7rPJ7jUavV6ZFtmfG4BJVYbn4pLH4r2bjU7PrBJAWSstORApc71Kk6q9Gi15llG1E2UzY/4V1RjZb574t+tnIekXF53gmR6YiY6boaxFctxaqza+LhbWeatvh/9HFZG9WwTY83UFySUBSXfTb2D9XQI/LriLvo50EaPg4s+EZC57m2+ql51fp0OgwY3W9jx03XVZAX/9bMM7Uy+yqygfWv91v6GOXx3+8rodLHhiWwVf7T73YmXOnIf6gb/vQtJwXD0xdKtPCBFHXMjf70JBqHthbgMjt3OvlhH8/3Vj3CgbETFipjqjo2xiYkK/FHHOjrePp9fjkasD9hnos2olKgYAh2QkRsMz9Ys6mpEuz7c0nRu1I6bqFbAuctzmgdz0M2r/Q7RYt+pS9jpQSLPvdhwQdmmN0mXq/SOoJCf7ds4fcdd1fSWYNIMcmjyg0kKsaNQnhzryS/voduiL+KD7tJOLHtuNsHSHOMUSf+QSOBrC/1TL0V6st5W0r4Oj7eFWWGTvh9mTOLRrCGyh1hvssOIf7lFoxb/tR0LF5j+rHofuErp1mXb1JO/vyccZZL+58fhvv9J+BRC6W2+NMsaEZhme2DQ+11DikL6i1FvD1/b3CQfg7bFEWeDfn1ThHxY40s8S1mZlaM8PzOA6XLfkz6y8Gw/F+GjeRqSTkxIygufoVXVYA7ngdFiHpCRzwm/b7iKzwlum3pTwyyfeDzevR8pN6/WzwJeJOtpXPQICI7W+KscbjorVsP9HCz6Wp8BQG7f/chJJvbjzmifkX/+Mahgh3tL9KUsRWeziC5TcyIpVOLxqP2QZtA3v7z5yb2Ge0//vSnd+MB47BElOKM2D9j1U3C+zjC2vM8+hq3QcAkdKqBWmXFdlGgxTORzVIPkrn55++Mt9fDReqFFsQMp3W8xJvijw8Rz9TMeOTxwde3TnskoTFdg4kFGxs2WyjIqXAMPnHyttHuM/F/eDYcdOODLv4npD/x9vrzR54wsPFGDump5Nyexxv8xRshPfGKuo9DoS/n95/f/I+vLvqLhNPphP5+H/w0eY21bnfpJqbtARZ9xa7HV1mtF/3+d99x7b9Va8ivJ4rkm5izYLWWkPSHr+57LzLjaaKqX1AZHP5MaPfw+u63u9WpXlrfD0UXw65k6yhKf34SnU+C1/FuPqdQfUSFXIciQvPVrfp/+gLV500wO+JPgf7jKVSqvnrW25dJAbp2Q7bgUbcm748AGq8uzLHoELR9/i5Q1Q8PYj03Pm9u5w6jQzO9iXHA66wvrH5ER+teMNO/eNk68+8hxJ9+JP6d8G5ygk6BYpJy5n+CU8fTtezAhhgD5jt2R3Pur3uYheuHBPlX6n7tdL8hp3wEjFwFLeNXIQ3ReuxuVPrc3mggP1RqndB9seRfu7h/zU9JX/wMFn2fvJuw1BrwPmslBa30AxZ9GECm0g1eOplk8vcVaOgvP+Pub1XFE9iZMIeTTtypdoI1dcQnLPeZeberknVUAeEfvxviMbcmeZpbfe0FHgueiotEOKkzWvILbMF7Tr9wS+GRxhUuy7RCVOyghrfv+FRY+Nv0x8+l1fZGXNCSQJLnzIfz0eTMMaMqG/O7NwN7SDb9fqO5Gt/ZXQI4zz/mDawKpKvb9dCodI3nhOyr2b+fNSjepo0HuzOq8QCNA4v+o6vnL+36Onpp+nPviGRPtn02Ts3rA616kFh4ea+CwRH0BAJ6vRBDkSKLp0XSgJtmOdabtRWMm0YfYb+rDpg/xjQbz9uUwuOYwqIPheo97TMb6K2Icam5vTXL3rrVOoN8mdOdv3wO9GOB/NXqzHaFVWR80ef/4tll8esmJBUtLPlKdtldyng2H74E++Tyo0fHka3f335m83zAjL1d3iezVcPhbp7/9HPW/zajCcaN5BT5nzaj7bTWgCuGR+IV6YI+KJgCL/e0x6q6nawF30ft3bYt8c1NHPDPNldg/Kx7sl1Lv2B2M1uB1/V2xvpp9LuR/GIT7gpR8dwlb04pvExgfZtj/X1p0TB6uNSW/AQ+Ln4brUikgKPeEGVLvOA27SRw1BSR4rO/dEN9VzR0OxeMiunqhWbbm2/wkSAkOze2u2nBY7DRfWQ28tacqZ+9j5b8BJWEzIglTVEpdB97Q5yDbFVTn9sCLPkW/Dw8vt3MqtAEp68r9rCxUckSun/++d+X/v615og2NSz5JeL83X9574WQq5Oy9FGXEP0/AAAA//+kXcnWqrwSfSAG9CQM6aVNVFRgJogKqEiTAHn6f/md6Z3dOYuVqiS1q0vtv/pajYMvNeXWjtbrkQ/hHo8jxrF3SbfDc3P0+3K84UD8KH/1DAX88kE4eXp5uwi168FvXAg4+uH7vIpK90++X34IMGFPPNA5U0Hvv/ia3S/BBdxpkmIrSHV7wm7o6HeKUyQoHx6M5NQZf/VnHEHvm66frOdgaqp3JGT718hCotVw31U6/eWTRyJFCwKOHx9o1WwmkNCmQ/CX35GNTrP720ck8BdPkeFXL/1Xb6hvZohgB0C7YvNiwbqFgBAMCnuxu0euNZ+MUDOM41Ik9GioZAEl+XJCEsnu2ZNg6Xs5GX/59BHK9wHENS8jzrLPNvuLt5OkVNAp+rrpktm/fOI8PMgsVSe2dPuvBt6LUSFpMjPGOjtUtP+rpwD8756CNXmLiEnUHmeV5R24aalK7OUyRkNs5gvYZN4i8ul1isixMjXgrydKs9zK2zXTowG4u0ODpAKwse3jqwb8sKUEViJM5/tNfEP/s8aIo83HXje7OsLRRAzjKdoiVn1AA/mfXdKZ3ttERKgD+1Pp0GCXIcaCgl1hGkg8GjZxa8nOfzVQxtIDe2vCj7R2jxKIkGD83uE50Ub9vofD/lDRQMW1vfh79wR1d/GwH+xDe/Fy4cen9i7Q1gS3dtOZP0GjcFJ6T22fiXnELhp/gx0+Kq5dyrnOa/D41C6IN8pr+0p5ddPCkQC8S5++3RvvqQF7uQmovS+BzTpsWrrp828cnegcsdN5PcJX3gxkiOQpnW6pvYcWHRUkRPeglc/dQ9G5RpOQcGzugIUH5wFPqNpTlNYBoFobaHDx+Y5ALWPtZiVvCNXqQChahxpMFvMlyEVPEzsLf2Yjn3Ua9OQ2Q6zbnUsC460Dxg3ISFoMbxy7hw3BGGUhTtwDHNkRLw84fYBLnXoV26ngrgKQn6ChNr97j5RwQ6OFN+VLb/3DBqt4vXPAAMEJu7vkzDYReW8tk28FEoObmdIIrQgeCuNMvi/9aItTetcAI5uJcU/mcfPkpgGV0HBo64uvvZhdgQBSCg5HiejYUmOgChK+IYhTuIvN3rzUwOFO3kjz4Ay2k/oMdYE4d2qCSE57aVA7MJIK48TnLXttQ6cBMR0G7F6X5jc7ZUFal4KCJnohR2ujmg/4EQobR9n4jMaUtg7kUyGhxqhx9vJUuA5OMBBooFiv3/oOMUw/ToUPOW+NgnNkNXw1XkJ01qqMzGNwgZ9OV7A/YJdJz6zjYJ21F6IWBJaM4FcDSucQ0IjVt3R7rPWmrXSUcKQSny0aOvRwQceM2vBlgEXuLgaYj5xA5NhpGbnjXIGkNppZEY1nuy4vCMGcPr9oVs5juSn4QXTfnSJc/OYS9OIcK9AS4ISWGY826+ShhrsaRNg8jFHK3tnZA/jKIZS6z2M0JZUnANzeZrI6eQCWstxCfiyCivqFexgn0RlrkGbfA75430/L2pT2MORzEQlyTkom9vYJsHnW0bwbRJvlw3cAr+V+IuqteoLViwcJXhI3xuaFZtGK5moCxrQl2LPjNmLv7OYAT4INtr9WCobgbEqgnJKNBo4Y2KtExxCqY+hQE08PtlZ1foVc3Xs4DV86m9ww7kDEzSm+lYkVzZ4YH+FcFAccVxO1l8pJex1vJ5tWWpa2qz9YHqwfjUOW5FRG03v9CvCu5g6+hsVWsgvbN3Bl55WaYjzba6YpJ5C1653uKDmODAHfgfKt31ATwDRan0Ohwf2pcLD94T5sa3TggNDejtS71DhiIv+UdKSU3K8/4mUvg3c9wuoWBRiv3tIybyx8TcrrieKbfmCseGobdHa8Q8OfvfvpT9D+zpenSna7vLQ90V8plsn7tx8LX71reDr6ETbaIgFDJzoIWjfDwm5is2hU+J0BcjjeiVQ2GiMCXytwt1kHHJh5N1JlXLYfn+WGrR9dDzNUs/47T9RI57QlinarYbB8E2qfjjMjgAsVrY/PE7ZrP2SiqSUTfNypgJai3bNt4dUJXqVKptdZE+zvO1E5OOzTinp62kfrtxN7qJV2RsN4G+3lKw9vyGaqozl6fgCV3aEHRXHZYa86Tek6Geagx0y9UsssLSZv3U0Bv/tH7ev4TtcmvksgHjKZsOvopes7WaFe2/sPahTXTqViJxkyJ0cvIhZHH0zKsp3gVzlt9Pi9CeBnDxr40l4j2tj8sLd7Q0NwzEFPjV19A1uifAUoTpJPd83RZisvtQgGQZpT16UAzNX67qE3X3nsGJabrh83csA1H140aclWbpeSerBZbxL6/CbCLW+m+/ChkIaGFBuA7ZLMAVWWPmliJAtb7svwgECNI5qel90P/8AVnJONoI6CL2NG6FSgfp17wmLuMg7nmK/Bx9/u2O5Vb9wqIda0nz6QHAVutLGLXoE83mJso9ROmS5vexiEygEfN/yOWKjOENoxOBM1QmYrDmw+gpq7nMkyzG4kpc6Yg/gy6mRT3DbdvpecA32cTeR0bO5sqdUi1z5o2CFtqq72NE59DtjumlBHkPpxi7avB7crfeE4LeZ0y1+Lo9evrKfB02LjcBABgUwPfHp+0KRcWvcKobI4F/Jyxr29DNk5hi/E71AP/CJaDeN5ApFWd9QLvSma5MYi8Le/NOgvIZPrSj3B13I7Ue/Tt+m8ClMHaXbPsSeAl80CI+ig4E0jjagytitywBEYS+XjfBbldirrpIKTfNrjosmM9M+ea3Vy5ZAU3x2w6stQQc32CFL/mha+29eA3D0GhMTmq50ueBkgM5sXjbxd3S76qCjaKOUqRVzasOnBX33oQSHE12rh2Srg5Q2mte7x7lR5YFH8XAHnV9hi+6CeIxYM0gVssZr+W/80324cMMTDhPS5tNL156+pwfshUmsABHyg8YzhOyELtZJCbudA+fFXki4k25E4pby3TzFUBtYgFovftPfM8wQdPQhxZN7MaN3ZjIO7NgA/bppkFINfTCGmYkkN/p2nLCs3C1j0q2BjmWi7CZM/gOnqsd9XH7Bcu6cBi/C+IqHp+5IFWe/AC3nluAjUE5t5aUTg0t1NasXnEaxj1ocwWLwcx6b1iNh7ehz1E89V2BJFmW3N+/QG4uopFGnVErFdJ3bwGgop3sVOC6jr2hbsf9xXZsNNbCOqAnV3f9zjpBm8cUit3IF/+CZNAWNTHX8m9U9eZztZ7WxTuwGHZyvQZG/l5VoFbgwlo7Epum6mLeeg62CwjAlRaOiUwv7WQ6AIQMNhetqDGXP3QdO9C8BhOaVMqIbn8k+eP/0v1k3soeRsG1r4WxQtfLBH8OrAEUF6C0cGrqmht260IBHzO3vdlccanBXhRqudOaTL47JMuhxwys9eO+N68B8T7DSSUyfPdZu89zn6w1cafR59S89dr0HOdTqK+Adg85RmGsijKKXe3v3Nxr55lrpZ8Q6nzxcuGe0UAg5z6iCtnFIg/vx5+FazExq9Hdf+82/iy86nzjMtx8mUaQ3IS4/R0Et+Kd21ZACxulpEVktrFD+7+grdXdogsB2cdHFD56298sfwN7eLbWNVTMB5xU9837pwJK5xqEH68SqK9rCLluerv8AqOzyxq0AZkD/7IGPhQcvycAQrd1EGaCIZ0djoV7bw6zrAx8vo8Z//9MNjBYYvMcWRzXvsu5vOOSja6o5Nb23Kbecd/+EjNc+Hmz2P2cOHsmh9iF4dSPTv/3r7zpHQ1692nfrRAar6/HFD1I90onu/hocw4HEsi3M7HV+6ARQhc5EexsCe7OEA9WP4eFLnyB6MRUiNoZRGKhEKKbO36cz5YK4nh8A6lcpVLTUHuNf8g4REsVIhW7lGq4MQU1PbRSPLh+fwh+/0zDxtnNfYDuHyOBc0ar8imKgmxkBqLIwNq72XLCbjAsf+/aGx5Y2ATkG3/fmn5CG7vc0Op7sPShE9cBJX73Fru+D4d59o3q8jI+zHVzvITklPCy+yxSqHi/aLB3Hw+g8AAP//RJ3H1qowFEYfiIH0hCG9CCYIFpyJBUGUmgB5+rvwH9wHwMIi53x7p6Al1mg3X6jyh0LDaIe4nm1omAEcvizUuOQdDrO3/0CrG79IlLOgZ/58kWHhzSFiTrfJ2dg+T6C8vCJUBdkbsPPAc5ATPxM1BeEM1t+/qETdAWrKaOonwcx8ZV/5I72mYdX30vTMoCN1NmG4uKXLQ28TaCVRgI9114Pl3D0GeJsSjIRYdcAY77wT7CrtRA154QALzIMKneW8RxNahHBS68nX1vqNqq4YGYPttgMTb6V4V0mbiuQQLLCrri8yb8wunOB0LuDkZ5TeV54g9yDbwvclitB8jfJqCm5tA0i9iZDYDDTvUDCI8DLHM0bEHq0BS8kEjaQK6M7ot+D9qxeNV/hk8So1Z1X67SBwe4CE9f/Q4AIySOynjm05HcPlbGgJDAvFpEFK94ypfCTCiJ1qGjw5r+KLkzzAE/lmOEJHoxdvVcABaGwFslFkg0npzF3hgwNbRKn3sQYxTV1tH0YWmZ4wSKXBu9wgfyg1wo7TFwzR7oyAsVlq9MKDzkbPAhB8dwYim/O6Jso/iDLkRmtHAyxvrLkLQxF0VfbCln130y61qwyufI7Nm/GxZtaWV+3Hf+M6XqaL/kHASlBAdbWMKnqrGwTHjL+RSYdZuL4V4KFmByJiNOpGvj6/W/jrp9v9GPRzP+85UNRmQyNxfjEymTsbDtIpJpPwRSFPWzWGK0+ghWTp+ry8EuAcPZ5U+of1c1CRUm18V6N2toTphJp+C1RedxBwXwNgPz5c8wHd7/s+J+H9KGu1zU9rvrByPlR1+ccLOFQO1554/liom8frgpZ3KabjKCUDBNI3oUFHrZy1w+4BKU8EIqjXPZul1nvD9MbZ2DA2+3Dy490BigPNCZfomLFXmL7hRTMN6spZ289j6RUQGmOHvYJvAVN5W4THTaJScx936bzblb6SbgwH//Kq4HwOHXx/9Qf2Hvk+JI3XHmBBPlvsTYVtMbGWTfjZawWSgr4Px+/t9dH23/z2N17a68HLoH5XJGysfMgLoy2DdTyg6sSnvRAriq4cE+tBzTU/z2s9BedjluFD2fj5MObbBuJSlgkR63varPVBq4XFw8Y1AhXzVH3RssrTyJq/w/nrWK4mIfwlmz5meZfVsgtnj+4wCt0P+/E5ED8Soz/f8Vfv1PdHRdDEikU096zDYMju9Kjz93w6F+yt8g2SkOjPz3wOueUGWPtEpN8nTT8KwV1Xt0lwoRG9d9V41qwGrPmecOImrPhJblXw5V5X6u6vVTpj7tnAiDYd9bxkybvvK/eVy3N50x0vfxgJHenvfqFyzS/zubqIUEqLHCMhe6c9Ar6rTooKiHLopp7d4rupmH0eINm5SPk4ojnRalucsKc+ScoGb/+AuD0ef/nHGqDTTfDHk86TJ/18ba8fsH4+3WvjPZ/04+sNv0xExEu7Y84aHh6gaRtHPMxilS6HNNWhG4cVXvkrJOKNi4AGPRGH2LxbA7GGLeCkoEbSyUIhczmawff9AcgMi3c6ytIGgZCj6bofEAFBNfUEPiN6o5b+SSu+DlOiGoPbE9rURdpenOek3vBB+vm3kLqp2sHHviUUc3Dsu59/Y0ZRUx9jPiXza9MBa93DYOtmndK5Ux7wKsgmUqKgSKfWr99Ag46I8fLuqlHt2gGcvbdL3qqwnlrL+/qvXq95Ug9nMm22QJuvHZGBr4R9oBsf7Vusp059GWJzwfwJztbtQXenfGLr/Y+1e/04ErI5o365B5kPnYYRMkfTwAhRZA6g+H6kpldd8yXQqgQ89rZCnZUvWdWoPBin2aUBXxfVxLPiBpvC+BJx0j/VnG7mBcpJbNPn7bStBOgHOtwICsKO8EzT0W4oB/rrdKRmcwnCAd6DGJx2XkT1tZ6x+j41sLteGOLSrxSSm9o8wMcOEN6iuA7Hvd8QeLSaM0X55mqNm7pJwLwskOzK7tP392fU/fIjGU166pmn+pNWiY6HfQ/crTmI41idbnaL5Px7Tsl7mWTNQMllfTei0P/yjPo1ZYluXz2XDnB6lrAcdy5KhGHb0zbfFiDirJm6s72ky9UpCfzxCcaRGK680MCWGRu88lc/VU4CwbH2q5XfOvDjHZgM65ro93Fjza3qizCLbx7qNnaT0rU/geSBcmy5myhsVz8EfMyXpNvshIqCeS6hP3Y8tj9ItVi/7gHyty+KlJPf9UypjxEcwGeznh/8Aet4MOGBO1dkMk5uzsbskIGX3kbUFlQ+nY/3i61cB3CgBk6SfrYe/hueTh1d+/ku5DdBhsCaX7DX+K9wLvIuAeejtqNRV0ahUn/7CXLN9MCG3O77Dkr0AFNLOxMxk76AvNzShMlLPqFfP5pS/t3A4irH+BA+g37Rnzb584+OzmspWf2YZnXbBW+3lyWd2iKywVovcbQJ3mDiBTaBR9fk1FIjP2RqZcjwaHXn9X4+w+V+TV045xePOpok5qtflkFTWF+89peKoGDglX7ZbpESTF4vfbUegcNNOKPXtEeVyA2jD4ev4qB6fd6bokMQnE4NxTq/ruk63JEPFbppyOpr2eB9e1HNdfOKfRT6Pb8J4gh6h4XHP14lD72NoT82POJG3Ug7zX3qUNPvKXXW1b6svIZIHa42Q0r2qnKmhlUGm3yRaLBpxL7db6EJyPfj/PHuwk7CA675giwkY2lzGwQXrtfjIFAOYH58hhso5KFEipG9K+IqAg9//t6ZlVc1i1nUwVinW8RL+BUygscCGsUxX3nyUy3mwSyB1t50siBprnrYmp3WsPFF1+3J4VxvzBjkQlTgvzydiUyHKuffyKT2FzB+ZDIA/fVdkJJbbbjm+wb6D9xifD0X1pQcVBcmB9vGjkNzxqx4h6CZbzgafkxULf757kP0VJ8YS42YL1xeRtrq1xDrih1Y9Ak3v+tpLEx5Ku531wTuhwGjOX81KTWWUQX1EL3J/CoWIGJd46DTzISGfnFOWWu9daBYS4zW/tcvRv/StWzmUhqt8znTdWcWapE/HWrI7dwTeQ/1P/+6+pOe7KpTA469HmJPVxRAfvz9us4VdsvRZs12HN6gbOCZnoU3BuLKl6C7iBx1GsvuG6k0B7DOR2G9PJbW9PN1hYdOGHNMz2dj/46he3ycVp9iAmHQgwZ65HTCxuQbOV+Xy58vIvCtf3JWz0iFW/R8/M1P/fo/nHztjV3tJqStavoJhAbtqENMAobzLJaA2Hed9Ldo7qn31j4gSZ4hKmrAwHB9tyZw4jhe+XybS7vzLoaYND7Nw1uYst0Q37ThcS6xiaS5n3wxfwCllvZ4p7A6nUVabQEuVXkdrzYQuE1iw+BTCtQqXlZVrv4RdlH9+vNxvC+mD+03v5VNjhWKWT25MLzvPDRPvpGON5offnxAaofmYDpVSAaPGx9QS1sUMF6c8wTzrT//1Usp0yT1b/7IrgY+nD9ieoUHay8gbV8s6dCU5yu8lpNGjWxT9tJIVRk2PTLxn2+tYyeBVSZ0SDXk0hqw8nF/fINU8LXAksVvVZvoUmFds5d+eqznYK08RECTe+myF8AARYEEaKY7s2r7C3iobuvHOCgUNx8+TPB/fp9upWkfLhrTCUzTrKT6N9ar2ZGeb3hTr5/VT9bWPD4hUld/TENsatZ81x8ncIqZ9+vnYL6fIQ/W78OR74j5gqnKQVtWc+obrK7WvGDCG19wRMB1Bv7nN/LZuoPFdCW4KSvfYFuZv1a/8hbon4ZN/VMV9ksvhiX0DFfFXi0fe8IctYBrfSGssoJ0kdukgGsewOFynftl9edQqeMb+uyvVT6Vz2iCP3+muKm1zke8RLDyLyktzf/jXbDZxh32nkoYztc2+cDWFT+EACNA3L+hW1wNS3u+weP+1lJzmodw5uK7C/fj3sZH3rjkk/PqbUj7MEHZgOJ8oZfqA7Pl5WNkjyQfVVOPf3xGPaA1+WB1Fw4YWTavfsCthN/8y1R3EY6u/wAAAP//pF3L1rIwEnwgFyogCUskgHIxQUDEnXhBQEAuSSBPP4dv/uXsZs85JKS7uqnuVI9m31XPL1WX+hkzVs3PW+xNhbcpnJhdSCESR/HF2sK3sMudF4JLUWT+4c/Cd77FEo9NYDjx8R8ftvDhoNurF6oMmGfsamYFTBQXLHrBNGKpofva2QIBnmLT9EQ0SSl0P3VFfMiH6B/eRkNMXNCU4CdCTwFA/obENe+LKO1SL1r4ARb/1VdvFTZVpwhsclj4+M6cflw7+eoBg1O2BZ/yMPnw/XAbgpy0+uNvMEzp9kSr5Bb2HBxWNjQXHVocFxfAwtKewZIfMRND6s3KGRpAwZVD/vyvD4lSgMVflvzkUk5ecjNgYckh/RqhHC38/Av+ssMFwzge0CSv7hzeh13M9vZkZFsWzwYcojbBIORGL6/y6O+OroIV71f0QiOpBP7qxc6OrLyRrWsOpXormHUw23L6qboEtbfyZGSu3FIMd0ZV+SpcrKny2Rvf/tyB/6unAP7vnoLb3syZFf5GMLRBYUNQ1RUz1kQSrIXrQX0HOwWDYuz7OUmsAqzyb8uS20AQky/7FobDa403bOq84Y0eR3Vj6Cdinrso4g3LU/jadhfiploVsTdeSbBNwh0WTqxkkyYXK5DW+EHB9cIjZvM4gJF8p8xkU4dGNSUh9L/RB0vFMwPD8fFKoK0UkByKeVFwcmoO77dXwFzl1ZQDCedc4xGLmRUMO8Evn/egOji90RWQGJrDV2jDtUgaLJV8W4qr7kJwXAkFFz+E0HYnWzVsX6ZDHjcqZyL+nV1tnb5KrM53XYid/lPBznlvCDrhvKfl7R5CRnWZeeIt0FTe9JeW3khFTo/O9qSPeXFheZbuDIXtIIaqEq76qtGGqqi5I/kmsxa+9RelE99uo+GkbRO126QTM6rbEYxFQCRwmqUdzuNkjubghVKo/rot5YeFk40dNYHO2UBYCS8x4LsrncFwrVVC2uED5qtMjkDxCo2YT4OWrXuQatDfrRPxrpcgE95cBzCqhMX2ifUS0xv7udqkicFc1KiIrhT0gu88v7Hn9nnM+C98UdCsjBdxVF+griLGHS7vw/xnGN588eoVPH1Tmdi+eihl1dNf0N1JGjF1xQPzr5EfsJg4I34z2Ih3U0/h8ecciCFkUAqpf+nwezExsYPz0RvLrwmhaFyHkf52AMPlEmF4Pf5M5mhlVArJLW3Q7dmToIr+vMFmqQuTo10RPU7CjJfgkMMNVAJ2vqZKP83RDqqPzrWJHqzPQtw/UQD6alcT/8cHMTnfnGv7x+mDi+S+RkxTngE4af6BEPmz9QSiAYQn3fviCcqdmOlKVmEoRynebAoZTWH0oVpYS5hOibUCtcUEB6VmQbpezuOnIVYA6kqU2GruI356uikwNk3I0LGyM5GVBwU2z5Vg7uFTZPzapTFMxkknp2SQkSCvpw+Und5hFXinvjtHoIDOa1sSPX+t+6kwvRh6hpUSh5qWmH0oDPh1+5j4kZ5E9M8ervXBZsYru4lqtbNmsJe6jDm4NHopH2djvbJYRcFYrD1aq10NKuNCyNOLgaD5bpXDofuNxE7DAgjdTAZI+p9ghom9aHZsGACrgQ9mOSsFsFuyobBfJ2/iusqiU7BuzN0ZQJeclE0LZrpaq+ruk3DK71rezx/z6YIsnl50Le5FOa6RhEF6O1UMGbUc8fjd25B/nIS8T+GEaKAFKeyHQSIXD/iAJ5sca0eaUHJYBmFOO9mqtM+5ocw+Vcu8bjuboePgmVnXqEXTGFkKvIJlvp1Ttd5E4fSA675MmJ/tz0jsDc5hLmiBNeq/+zGXFRMq9W3P0IvfvUnHxgp63WUm6B19BE1cRwfWMh8Hi22c8W/NZvhDc810scTYn33H0H62Ct0dwp2YX9djAMqrscfzgrfDzitC+EnEBe9UP0Ji4y7/uM41IofL9YLEutBVTWuk9J+/xa92hgelDQka3xfBXL7roHaYR7waXjGarCBeqWY8R+xkqaQXqf86wsjPO2Lbkg6E9FNM8CqNAW++yImkirh3+DK0PUF7yYrmrevWEJodYXb3Skq+0esYevG4X/DcjOTTDCGU7upMrPqY9WN2ao5w/yAfduiQKea+xS7MpbFjDj8OPQ+PUwzhPdKZXtIxEk2VGxrd0pmu8/7gTbRFBgzK+k6ser6IyXmsJNg7HWLOvSdCNpRWAg/XzqhAuwlNX8xrzXnJJQXTo4kGH+qDtqwH1/XVRJuCSAZYe++eUpg7Pc13Ur5wgozdUXP3OKoKZdHevDOrPoK+B5+yANPEJHZo7QAs+6+WezFbuubuRgy3z9aEevQI2W3xlzl21Bh0EO/J6QItNL7kTwp3dXFle0UKvAVfQvi4XFe4Sc0smo1ReYH0tNozdA0bb5b3TQJvn6PHnhuXlpz/xg3Yzm3K4q8AEa8q4EJzNEZcjcvsnj3uH+A3BRHzwZZ6Yn1LViCnb0JQwtYZv12UCj66o00ezN15QvX0B/xb3yGLHdSvT/cHpLm5J9nzJnuj9zzl8PL0c3bVq1lMytAYf/iDBTn72UyiQdrtK31m9uN2iabx4KRA3qo+lt3iU063AqvADqUcb0r7gvh8wbaaVnuNGfJUgimOlDv84FwlFlRCxGsLbqD3tgmzDb8uG+XdYtgeNzLLzmcH9NZ3O0DdNgJi41iAAe4/NlhZY8X0Q9X1/Ph4xYBnecW8dq9nwxvFLhwVYjHkyDqS55VzhAQEMbM1eSgHflQVaB/1A4n37VNQOosUWiczpcr5W4jZIroET/kpIOe4D/89H9RNQXwp+4jBs9MObsebRfa39cGjFtE3GstumCBJdNk8nnezuuQDWMhPs5zdeh9CG5H1WB6CqfwcM9cHoc1LPA20EJxFLof+RjHI05PLkn9BguHG9SG5wGPuzWujs0FQfxet4fYL5u5g5iDdnZe+/0OKRp1u1R0pnyYWA0NiOgR9++cfeGXCBM3z+hLA28f1mLX+KmjY9usN1LgtmHnrqcdPTyP9+97ETNNNNtRfZwONRyITPYnsiA9PtAJuMrvE5U8fLPadgPZ8CGnbpRaaQco4SI5mxUjwm8rpZw//9VesrM9rb/igbgPVX7sl+mfaZbydLjr0c0slV2XO+zF4Xwv4o92PuUmyBXz7Fgl883WJOfl+symYWwNW/vAkmf42Imk3Hgr4zosbO1W9DrbvqqnA9osTgujM+gFZTxW4/jVgR68Rgs9PRde621om7tNMBJP7YYD6zqXMH+V19qvNdgC73+dN3NPXQSLdAgPArWMy4zsU/dg2Lwh4r1G2v6ZKKcaWtjs3bnoKm8H25IZXOQw+N0DstVtHQ2+3CmiO44fY5s4X8u4SxKq7LxRCblqNuCqJZZZJcqTAOyHETi+7gHffwITs1a1g/uOsaG9kX9lfvjIDw6fgq4mZmYH6iXiyaX14M62WWPvT4E0n+PGhWj0xO3ap5VHNiO7QWe0wjYfPI5qUvCvgBxcq3dZHUHZ/+HJfwGGJx4JZX43C+HlwMTdjKLqecxteRyVhjv4VQIhfSGFTfr/MfF3aiC/nqerQkxgxP2YknDqyIWvlgMqpCTKuJvoGPIuXj3dcefXTdXuksEiUnhlf5w7GRKKtGsu5SYxpQ8RMZ5DCI1+lxGST6019KPugvCOH4e3c9vwiYRccoyIhaHa4xzb9IYFvIADbv28iE+4DYRVCGLNA8zo0J9uwgD/Ea2LmN+KN0tYIoYywQg7PlAj+Ln4u3M5dShyLYDSexDpUb5UXMXMdXIWQkqZSf2tLYOiSXy9+HGDwF891Zrclxy9Zh7RbdH4+9OwN3tS5INyEAb517rPstE9+h5vwfSXe42d5wp/0WJMz48iOrrwXUvlNODwPl99/49eEm5mrsd/p7OTFAEzd2aggDM0zO6QNQltpjyXwFx9xgwYxHsDWhQ+5OrJLBA/9nO5HDhY8Yp61o/3cc8WGTfvXs2025S8v962GQ/U/AAAA//+kXUuzsjyz/UEMREDSDLmLgImCIs4AFcELckmA/PpT7OcdfrMztGrX1pDu1WutDp0X833sdf0UX+9w358IC8X7ns/n00GFo9U4eNXs1KB/7FWKSv1ls/tbN4Lhjz/uzcRmnoZ5PNm4OUFhKyK5vQy3Hmh8+sBHOVyI/WCnbhR1ekJnG1w6S/c26NyxiGD+mpwEW8msm+SxGUHfeJQEFqj5fClftjpaB5/40pPn83TPW0gqoWHBUD2CyXUd+y9+qDxkTi4Ll/YEjwNSmFMZv2CsiKBDuM3ODG92O2sM+X2Gb3oyyfWo1kFPfrcXOkWHmYXHAerBZOEHEp7PWNq/DCQ/yb6CH/4IWMhSGfFnjQC2gf+myz089biPahGCsPgQe8xfXUvEx/yH51jQDnk30+1Pgb/ndT59zEBaDeiFzB3DWIYNt/j2E2aw4CNZ+Cbq2MlVIT/x5YYnRbWGqcUnCNuHx0jahvHoOK8X6McjX/I17/hu67pwD4IRS0cjC+Z+fvVAz92WWO97Hvy3HlPVKLpGr+6fnu7fOrA/Prb+uucTbDa+TnRbfnWcRClFRjBe2JbdJmuC8HjXahblWNrpj3h+23OlraPPQEWZaNaIvRigNskGtz8WoBHz9x25ZVRRaeFT9CqfReAk3uNmYO+Os2Z9guF2MVgwzntrbWe9iIR9KeJ1DN/u1+Y/D/pH6jNnKiXOsRZXGtuvwsVPCOq1nFgCPG4qo9Po1DFFQ4LhoUHGkuewvCcpV4DcW6uQXcGkrrmn/geK81kg+w8NO37RTVCtLxvppHI7GF+b3wtCzZ3Y1ny6SHJyJ1HZ4SPhcdF747ndteqRlh7BpsLy8ShEPVrqDyPStuGzeJ9MNIz5mpYedoLp2g93pD4Ll51XbyWYM0MstOHtRxgZRMyn9SrykLhCKYby7KAxFn4p+GKXYHkWp5rS7VNRrVDuGVEC0o13RatAyASJTudzyOevs8NowQPMR/eVz9dSHRF+V3tmkWMYz83HF1ELocEK583yhX8nf/uP//Z/GuM6QhthnpiJvFfMRb/I0BJPZH+NnVp0NqUJ9Ha/MGvxW4ZrWQKgXV8Sf/s04wElz0STbkil671iWHP+NO5abwg7tt1UUT19kND/q1e7tLGDtcN+gjp/dY5XZHUJ1pvOcEHLsoTZifDlfNHL6kW4lMQdggJNj81dB1bjB57m+Zf3jWtV2h//NJPsYXWec7yjeVqHeNVdt5z2hdFqix9BhfQcWpwVioSyiXb4x+6RNd5kT4GvVatMH8u11ZZ1XsApimbyV6/aohJseE6/K0vz32+5f9xVIBRVk475MHfcVBoRLXoYK2lco+ZBhxZtO3xgeJj2aNrfCoyc27PC63YnxSMXcxuVirpj4bf/WNPclKm2VdqI7QO57ha/pwBHfTksG9wwZpxPh3+fl3y1RqgKE+wtz8lOcsp6rq9RBNlHjdh2v6mswbC4C1fhExKyue9y3mtnV8OpG5CFr8T95UkzdRVHwLyBvWs2RiWAM3gWSx/6DkmnezOqv83NZHtAKJ9cVa9g8ecwultTPlcY9RCF1xNhqrKu59BbvdC+/dwJMfwasav8bf/Fe21tjtb42M89NLSO/61/4Cur0Ba+zLb6K1r0raFrf3xq0Yf5es9XBzRdHzlzxtHmskueCRIykJhBLjc02CyPIBm4TnZLvRyq+pBoZ/8lM+9NfT6V8uiq7WN3p2v5dYsXv8pXY6OPcE1nVvfGfuMDrZ3d0hNs4n/xn0NzZc6RPOtpxbY9RO5cM8d96p10G4oGds/H/r/8YAJ10eQus9IX/6b95OcPbPm9I85eeVq/7TuyUawZD+Z/Z7nu9dTQtc3rovz5a3W/4DM6LWeI/K/p1HNf7Fpw5nFN13W+znuXHTy4fwyRheR35rNttxEwyxNJ0BhlPP/hWWwPGdM3CKxpJW9aqAkeGblmQjxvhm2pWpfoQ3znRWN2f44tED070nW7S/K5/Rwr4HPeM+Mo9Pm4sl4pTPfOpJBcEj7PfHnn6/qZ/uKr+2yelgmvtV6zUK3EnHrH0EP61bFoe9HHoDEcgmHht1jeBkYwPYZrqW24cP2n54fudpv/rdd00ZS/ZHEstOPR3pIwFd759DrcK3VId9k/PJ8G4ZLB+6F8CBbqdT6U9a5FLE1dFtk4yOePWn3gzy+0DOmdM+XRhHAZS53EVWvm68cm0dHiD1PZEvVO3m/rO3z1ambe6ZrXc1y6FNTXA9OXieRuuG22CTJ/4waLZrD0hEbnAwInRyyvHp960iqo0KIXSPCxe2s+Nk9Q/T5DBM+5F6ybPCv+8RkiP88BD2YaqQr9juxPn04w2CncO5LT62Nlx7xWB4qmnX5kp4Xv8OAmi0hO5R+xvyPJ5fYIirp5nRWCD6cpn1a1heE3RTHz89bPVcdNFDAgDolJ+rtF085stBU/fYmN44gP4klvNmoRcmJ5xr3j7adO5Lw1R2JqYRfwx6WZYe0nEVZPcWstU4IpMF+wSZCYUv3HR1B+nBMSzOwZzId5EsE4XncsuF0vwZRInwaWekfROYX4fTM2CVrwmW2FMET9Ko0kmI3ThYTOm8Sj89q8kHM+cWamF57P3rSy0aI/6OC/dlxsD+OoLX4WfeqV3zE3f4vgZGVG3GzVoPkcUIBDMNzJDusqp426OSCtlUuyNfA+WJ+kC4B3UAfiT+On/tMPy1yePe0+omDRSt2HoGzMlpkLnxz0akpVR/04JOxvcTDvG/sF56FrGS4TF007CCQ4yZXN/vJ5eh2S6p/eJcnHqXlFowopqbAiWHxQ/o3v6usf/1sFyqt+Nt8E4Hfaj2w3B2nMw8lL/vQNWfROzo87rYDLPV7j0cOONZFmV8DCp+jooyCYf9/V/c8PY+6xE/N+FioAvUYF2Ucm8Pk9hqaaP74SFqQq69r3MlfFNr2Weba6R/z7anSwenQhXoi8evEHZlSsrz88lym1ZtPOP7D4V8yNBGzx5lM0MFJvT27a3Qrm3Xj0NJMKJZ3jj5vzLwpcdP3MwPTLp7TWtiNlUKxGmeHmYnT9a/P8wEMTMvbHp6Sia0wY5teJmYvfvdRb8a+/giXE34hf9WOjjXxeLf6sXq8XfxyY5YvM5XMQ8IE7IcQ/6EnhReeO6Urko0X/0Mn9TMEc7boG1IsRYtqJm65Z/Dn4gd2xk1O5gaSZeaYs/RLmPe1D/Vv4K2o/AiN7S/L4Wg6WWd7CPP3582gKI61F0cptmBNfH2iZG1QAuvgVzVAwdDN0ygFUI82J/nX2f/6mC6t947NF7wf8cHIS+MMDp2GtRRc9hBY/lu1n98tHLmxaNPJxRRb9hub5XiV/+g5/frafT0kZfNSvQ6/MpDeWj9FJE0E4eHfmyptbPZ7PeQhTrZyJpx94N+nVlIGZUJd4T3vshjdWXrDwbWLeui/i58fuAHfPb5ghqFLXa9Zt0c9qxwyvdmIpyKdMa/CjYXbwCTvx4FUNCCYt/vmxw8oSsGpvp5xs13kZ8Mb59fCqUpU5DfOD8cDBg+smexOfWWU+1tZUQW4nJzp5tZPL9rj/wMI3sdCJm5rK67+7JfADj2N5DkT8beCfP45PQlBPf/p6Fu9ruh7HF2dLfwyI5A4Eb3a/gGvPGWvjgYbEvq+qbr49D77G0H1DpaWfMw9NIYKt3hleEfK2+sJIRVR+ohJfhLDnQ3+8HlAlCcmfHuv4/o4rNNzOBlv6DXzMJTWEhX8z4/DSLXl9UgG55/uOee7+W88gizP8+bfB5TzmC5/XNbeOW7x+nEwk3y6Rqz2fmLDtjnw5O51aCj3hPzyV/MGHo3hqQIWly/XaKhaDQaBow+FKDm2B837n7gSkT5f7f3zxFI+Z9qd3dXlr5VMAWQnn8/XAzFu35ex4r5U/forV4mSjtdIzHU5ho+Nxg4qAu44/wrYLD39+KR/H2y9Bf/wD8UdscfrVe7T4HWTR4/lfv1Fl1JSxsNqTjv7GX4pwmXzYVoA7mpl2FaC86w657DdmQP/yrw6/Wyo83RTxP/9pFos12fVTGEx/fv3SL6FVdtrmY3tQRri4Vk7ce7KL5eO9U9VgAzHxPYQRL/cHFX3L141Zet11/PPZCyCCuswZyoZ4uiZmppWpdGf706/L++hRpIiic038iz5a01s13b96RLaZwXLeHGmI0k9YMIN6LOj7Sc2gk2tCTL791VMWzKW2/RkT8c8fC43j7y3CwX3KxN7XJZ/Ek9eoO1rY+KZuzfp97d8FpE9zjTcnmiMmn3ct8EmoWFD83sGYXd4hJOflrtnfltd/frkmlZ5DzHWwzLXHSYLK5Lci9tLPm7vG9UFA5nOpL0Ywf8eIamdz+hK72xL0rz4/43nPyPts5JKh6CcUq+aF4Ktzt1gRogrtXra0+H1nPr3szAStaiesLv3Vf/6pm96OWLusRj5pyahrCSImC1C5R2vXdVxokHYm3gmsXGq3YYVIYpjEFkqHD5/DgBG5SRHbHVUrmMLvy0Y4tQOWfy8Ol5f4Rvv2dSchfHKLBUeegHw3DnTtdY9gVKTB/v+dKdD+95mCFyoEFub7JJ+M5b0WLjwfVPnGY/A9HcQCeIMb5suZl8/Xn1JB3Yc+i7j5srhI1R6kK0V4uD+buG/nRETog2XitQW2eCw3Alj3vULMbpfnU1YGd/j2qyMWg3nops+U+puiVBUsUafJJ+psbNjdkg3bL/+PZje3BWgQpxelToL5cQ0iuNzUI9mdUiv4ScYZ4PiS7gyvP343R2dmw3SIK2aZTlMPO1lZ7md+AT6T7S3mQr5SN6qfBWT3E7N6tJaIl8nrTLykMSx5TYMKRdthT64Kf3VzPHAVvqMhEs81wm7aCKMCh932R+xgHup+3ggZbI9aR9H2GFlTs4M7rP1iS643l6LpVyl3iAxcs3BPK4tSUzyAdO0R2/ofKxZD51lob2GnkkCaRT54R14CnNdH5ryKG+rAihtkNJKON+ewiZnZ/EQ4yhudluZtqCl+rQUQjCwmbhxeOP+tVQlOu69LAk1JAr7z+QEsI7sQY0OcesKi6Kqx7z2I1xsQUKxNoARKdWZm9vxZ8/N9zlRvKzvMFhEKmBdUBbqoh4TF5826G+KLSLU0kTBloNzqyXpuPnAQVhZ2L1B1M7iHO2wdf8cs42jFI2WThNoLqGTr/spgZLv9CX7epGGuP9NukHU6w2ZyfySw11U8+3td0d7yMut+J6X1fJUmUZWLq8xI96jqPpnpC437OWX2YJzqKY8iUKXV6JH4CFE8nWsdaxN3M4JlvA6m63ZbwP7yTZjPb04gSePRQ9MKIYJfq8Saal2oUCtsBawxbcVH4EMB83tK6EjQyxqD+CpsXt56Q6xf/0LjSOMCvsDvePDpxpq8TvLhWz+AbGesxYOARB/WkhRSTZaamt20ygN7AwOGg6xb41fsMzSDnhAD0rqe03blqdKv9uhK9I9ojs5fe7kPbmLezm+7iRj4gOTwpBO3IhDPu2y5h1pNMZXfNc2nZ5NhuP4uF7wBXQsGsSAjVL9ZwVL5nTiLuk8E2tRpxAovdt1jeVQQ3t9H5vTnTzf82DSCFOMjCzbboRv1LHJXfe0nbB99n2iM8bYFKC6I7IXVpx4ZMxstM29bOuW++vf9ITxQqTLn7n7jsZY2Atq17ottzSHrOrP4+vB76BrBdeYFczknFNH0fiEBvvCcGYezCYfz77nEhx7M86fX/+KdTv37lI+WMJnoeRuvJOzfvJ7EYjvDu9umxAiVe0ddKctgPyobcr+8CqsTn1Omza4PhESo5aN/Mjzt+BLvLB5n16Ln2HcBHsmHBZp9QH3UtDpAdd2xXfjI8rENfRu2jrdjV1/tY4pHpUHZuf7R9bALELuDKqCdH13Yrn298798gmH9exCyXf+6fvf0C7TgA317tM35VRcy2NuVyIx951rsvSEmaNPHxcv+xdN1SwrUbfMnVcLYq5d8u8P+dDaIKYBfL+vXkek8GNkJaZTPzyCaIdYsjNsE/GCmJkSQCGfKtvlxzln/zX204Dee4zSwBoHOElxuypFZ9j1HsytlKahfS8Xr/ux2YzbuPpAJ64BOJ6OoR0k+ZiA+/Tf5y79R/8YZnAszZX76TC3O2U+Bx/kx0Hof/Pgk63SEUAag46Hv+eddGaGWmY/tEk/7rm/2KxU1LK2Zr6yknC94Bu2rmplVYBpPfvuYYXL7M23ih2WNHlVBbci8I4FZ7mr50yUVGMV5xfTTb7SmzNVFVXYdnfmnl8ibTa5kwEUhJtumD+P5MBqLB2YRSpMx4TzYFQrK0EsiFkI1Ymn2e6FKvyUsNQ52MObV0QWmQcCC6+3U8bBKVeDEVRh5o6jjWvMbYdrkRzoL0NZTaRYqQu7rxtInrXL6FK6ZKu1USpyNFeXztll6Dqk7M7Jd77pp/jUSxPxAlnj0+bzxtDt848xhhvhQ0biF7g5ve+mR/Q52LS7PG9WWnbO7OL/jUVvJH7CM9IJntnGDUWpTG+LD40Ir62nkPM2eH3SdGxULzrHq+AqTFPLUp8QG0UKy0g8eklbyioRNc4jpz5n0f/UpmqNrPlmn8aB9e+3I9tt3bk2V2CfoL78P317MKV3PChjmyKns/nRrYv1eQvreCWgpxj9r5qvShKF6aczG20/Ma1d+AWGUMIve9vn4zX4zaPSdEX2NeD3fxNcBQrH/MkMLG04LY2hR4cst87PNPuarbHMAF0kfqmabIe8frq4ATYsL0fur2UnP6WCDmR6+zDyKecBfjiLAd1PvWKgRm687727DX/3Aj9sLDR/hWvzxA+LCaVvzazjZ8PyeP1h7tp94ioLqA+H9dyWxlxnxbHdYgQrkjGxvn86a09taAk0Uc/yqmNJxT3ja2h+ehe/HnA9qYLlqa7QWbcz1xAey1wWw+d2isJuhpv7eU5EjeSuys/Q3H2uLn2AIa0Z86VNb4+FwxmCQ8kaOfuUFcxP/KhQ01MNCnTXBmNWXHrqhoLQi+RcNY3dv0P5p93hNJynueb+2IZ+i+z8+MBm7foRb/BaZTpAdjN99WWhvWzixv3o4ZvWjR9n5+Vvio+Y9j9QCBWaDiBV8Nx0N+K1B5+Z1IMfasgL5e/uYiGlCQEGmU96/LNuH/ahuqGB6r3rs0gLDdVf7lJerBI0NX4dwnVuVYOdodv8+J0GxImeUb2vemnvzD1+Yib9VN0n7QwsvBf/Ilq3boA8fvQuzMhrkoWzX1rhWvBew111i9vdh5WLyfkdoqU8Ei7MTT6cXFlU11lK2jU/MotrmU2p/+3kmchNwEYk61GH3xdOtIny0U7tUfGlr4W8xO3wKyRv+4ftsTknHgyQJ0WmzL5k9V1s+5f35owa73RvP+Gt28v7UpOiWzBFxmtSKp7y/vZDmFQm99lpaS+rTj9Aq8wu8TsKS04CfG+gMt8VCv4Hud3wPWIXijDDQsIyH+dCL0CefO/vLV25hqQHv6TfMU7ohHtvQtEF8pSqJMT/l/+IhiB4eCyrhy//V54toJFSOT8Tie+9NEVr1IdtX96DuSetlEG/GDbt50S/mt7GRkKfefcxvZlxPqrCj4O72Twru2w7WyW6px1EeMtxvoB4CK5fUx2y9WWCWv5pFx65RqfDOiXkID534KINSXfKD4MY7BVyVlRbg3d2p1D+VmCpV2aBE/DC8aV/v+HdVsQ3i3TbJdX423XD4FNnm+ym+LBmOViCLdO5R4GwOWF30xnjbCj3SV/RAV9l6yodYm00ovnnFnLV86Wai+bM6s0NHHGufoOnkh6HCjM+W2MbtvOBTYyI4y0f6enyybnDjqwrW95mz3VUb+ecNlgigNDvifR4+ksXTaMPCT7B4ugHn2rp2QWw3L8o5PqO/5wuhY+/ZtrONevpeekDT722TIDte0bjwK82XHIvZ54Mdi+Mz8kAdDv/x+/5IPjp8rypjeyP0Amm+thQ5bvWmGzVn1qIvVGhWeGSuvotrvl19KaTxb2Tu6lV0jaNlLfIhsVgYIrVb+LKq9J+sI/oWJ8F0k5+2pn7AYjdTnLtJgy6Ba2yWWHt/f/UkIPBQ1JYOba/nW86/dvSBW/xd5nLxV8evupShTJCDhd9eLc7PQg9Sz28k2B6jYNwQXCJ+Rw7m8krI6Yaqs7pW3SfuJdflfO1hDHLUKiQI8DrubWEngsOkLeVV7SJREEYAfxYp2/U7nk+SWHxgeK8jFh67d77wK4CDI5/wxgzL7l89Pczkygz8CHIOUnTQnnxzJ/rCNybqTK5mqZW74HGU8/x9O6FFD1EteTnBt8MPHx3zi7fkBwvm8xBSuOnPiG2bvs8nsypH0BxsYG4NsdXH2aZUfx7X8Oq9HfLee25aqFxlh1U/UtC8+6oUPfcQsstOSrv5c0opWm0vL6wdrYmPld1W8E3ajHiPJOTNaW+YmnhZmxSa5pCP5qoMtUUvMyOUSz5jbQNwnz8ChXVkdJN2lkR0j+BFnMllAQ9ZFgK9rwxCzJOUT2HzWyxU9PnDW053+9HVCn/dMlM/u3z9A2TDfpASYuh71vUeEiPU4seL6d1Pruffg7d/+oBuFPlhzaujjbWF39O5lB/1PH3jEO4hq7Fq7TLEsLr2oSsH+18+9TsPFwBVviNuC20+qZOeQqQtczHWkVGvBTqL8H4mV7zc6hJMG0FRwOZPFasiHvio5jsMOe5SPB/1M5fVzp1h4efEJUSsf1ObmoA34pqZj+jYzdnBOanETQdc1mwK6CQWFTxPR5s4xrvP2bG/3ZF02H+YHgTXnDt7XYROixAzS+4EaxvtTTS2/g2PW5xY/L3c36koXo8lT3oud0WxE1zdaM2C4WBxvntpCqrX0wVn0qcORlmqQpC4fmfR8nvWvm3pWnISzuxvP3hj1Rko0fZBc5UpQbs6hiGy7LYn2/wYxTwV+xD94RXeDlE+3kqVovq3f1C5/7F6DldpAsrENnQ9qWI+IvHUgtcOIiPZ+vinD+7o0dxTtr8NdTDlSnqAvdbWxH+vcMfbYtuAGMQ+051PUM/v3R4jv38PZMGLevby8gO3ZIyo+NzigPf7tAQ6rSdiUO3Xzbu94gKahYrhbMgsOuaGq01Wof/Ty9SyZ08zI+NLlcZW/tODW+fKie+1OJdvfl1BK55WbC+7Gh+NTx/C86gv13UPWTeS1kuhP5zvNO0NsNiDTa32evtbYtRWbc1xOb9UabVekb2p7+PpO5aC1klgL3rpY81K1TQQNL1HTMT7ejqPuxKU9PRg+bGmwXB6uSIczNeK9u7btqYXdwBuWwNYTgQ9oHzV6DD6pUX2DKpg4msVoLhJZ7qpuqKb3VuSgqfRBwuZ7nSzn5kYpn59pZP5fvG5KVsR0kTE/+rhn9+g5c/7cVnvDU3ZYM9INKqAhc+KBVNx7Ga1xO9lNnl75lR6JXeQNucz8d7du2NBkmCQFeowY4qqeJTabwVGb58J6R5mx2u39LUXRS5xbbUIpj8+Ka1mj86rkaEhvgBVVTsImLPVjG6d9+eX2q9WMtszbYXmP79s5Kyl6zdx8rWzfYSw8HXCpvXGmoNPcUIoyVri6+OXs0ZqTRVcy6bR5YzjeeFP4Fvhiem8KnN6369GcGr3xsht76LZdH4n8K2bQOvvieTrnaxIaHCxwnxWGlwWjPXh7/ljrZQMi3/t7AO5EM+EsMJBvBCuCcTD3qCa8p3i/l14HlinYsMWP8+ar9JGQqtDt8Vr4eV0s9kPkXrakJIi9kv4Un8qhBPBpdJD+lmzftrp0MNQ0ZWPAU07eZQQqeBNdtjy4zFqKhO5UW0z/bJuO/p7oPYfPptzdI1nKGMbTtdrzJxs97Im3c8Byi440erWfgOqOc8D/Ku32+sv5s7ek0DLS4UE8icLaL6OC9Cml0vlRS/3xrVV0S+KY6ot8TGys2fCHx/wRNpa40X4RXCPhBfbqwTxmfihhxZ/k3jf+GD1zQepyOa1SsWKpd2YvIcIcAIuC6NH202Ha26jtV8LtDkdAj6zXDnAUg/wdDKge531hw/P7fOKp9zP8t8633ngqYWP17+wqf/4kzZXtYHFm++jiTebRtt83zGWcqese91IbGR252WOTtgEE4zHUHtqKf/nj8wX5dtuPt9jSwUTfsvvt30glpcyvzKDvL8EbYs+Q9kyqwymrp+2VIBTuM6JXSROx9+brY66gypj6S++j+83RtfH7ONJyfVczkNDQfdwqNkxVIR6dlo9glK8y8TatknOLsbwQYMbKhRlxw0fXzd3Rhet7Ih1Kc14Ep5TpcZS+cITatKaH6NMRLH+88mC70h61UREy23gePOo7h3faZMKxylLmFNUl3xeySNFzu96ouPiN8z7oC2R/VECdirjBk3jsTBReNwwYoN9DWS5jHVVObs+2bYnCc1z+MvACA8ebYZ3GKAxDQ/gkvsTbw1nDNjB1XvtcvS/ZJ/uYms09I8Kj3doMTz9tvmQnmSApjgZJEYe5POhfnzgoURvXA77LxqioP3AbXB2mK+UrzWX871X0U6aiZ7tS2tMVn/+a87pGsIx57KbprD4Kcxkm481XxTWoj+8wybsEH96ZwEWfxV/Qiuz/vwDdcezLfOHzTqgrWNI6HMQOAvkj2rxoNZtbV2+w0U/u/n8Xua6LfyI6BUKUK+tSk9rLP2BRfvDrZcgKABZFZ+IjbduLkXP34jigRhku+o5n/z2MqKB9HtC2j4Ppu2GNuDOlyPDV4d1A4xHDJ7WP2h5cVZoQH6sQixVL+bMdNN9tKj9/KuPi7615kGqXNC8e0LHyQ+saY+FUf29z2sSvrp9MDbh5vDndy5zthz+F++wsemLeVGPai67TAJFVC+EeJ8571fCbvzDUzxvq5XFFj8FApK98eoVewGf/HyGm5T2eHMk72DoTukIQTOtCL6Uz3pG24sN0Zbt8VCoqO794fSBJvx2VH1iNxAvwu+AhkeZkTstf/HIe81WM/SRiCtmhiXWv7HVTLzMLQXYdM0ff/ThZP3p6W5uH2Hx5+fR74xv+Uwu+wL9+WXE/hFrPbgrCsVrt2fOKvX/8DuBZX/Y4VVukJQVuqn99VcEE3Zc1m1fQcIg+GQ/Di3iT3R6aUHDV3RWwxX/80c2Z2dKF77u5OP5mnuANccnCc5JPH2EYwGJ4Nq0Vtgvn9WnedCaX1DjNjDrbozykv7Di8IxToE4b4QULfyT7bdPve7bldejdNw3xJmWOSG+bDQgTOZA9sp3ysdVEHhqV6+uOB3efbD4lSky33rEgg8K/vAkhP122hF3ONZ//scdItGJ6HvxA1o5eQtguIZHPO5v0OJ/3FGmnJ4Em57d9ZIdzerwc75sH+dbayR24KLNPR6xdIGq/uNHf/ya7RT5EYzHdXeCtWo/6T///U/fLv4/XpWJjaTLfTDhQZctJHOPxv0d/vOD9kLwzEd314uwvlW/xU928qU+L/tjPph5HvVatCe90tpXObPH/pIhWe3wiKq4MNht8eP5ptMAjkGJyC6bkqDlq1UBSv4RmUs3+0WfHHoN64OLpTV2c9m9ZgLA+tbh76rnqOcPPkObE0JXT4HE/CtfMRSvYI8XPdBJaSt7SF4/v3Re+n3Twj/++ACt5mgTz9hHCVr8y2U9Rt4u+kJLZNnGknJ55dN86CXYXUyTWV72/Lc+tNRzzE3H6+hXfRew4AGV3mmW910QKZCc4Ezc7LxGw+nilGjRZ4sfO9czfq0BRkn1mEevx3g8SFGF2s4omHX0Bmu2lFWGAgcdGNH7APGvfAy1bN4+//y8YNRWpa8JR1yyhY/V8waB+8cP8BQfYjR8ptRDkpXZ+FffX8tcOYMi9iokkpvlr+vNWUjQibUxC27ZBfWrSb9rn71yIDdh5S5+i55q1Gt8LD631GLZJ6zUuQh3ZOHHaHoUng2LP0MFYE03ro8nGxRRuTDdnj8xdW/3TD1X5wPbpedPPB5+1xB1fPqwrYexxefd64OW/hnxF/+fl8wsgOftSAIxcYIpVbUIZQ88kb/+Dlvy+U8/0vWS/5Nz2rkI1o+OuJsVRQx+KcAvrWK2/ZXHehzPlwLms7Yj1pyN9TSUlQLs1PyI9WbPeiqLSwkygoyEe2r+14/9VduSuZ70rKfTZV/B4mcwSxbKevRPO+/PXyLWyjY49b9WCcLraBI7M3o0/RL3BZF6itiOdCc0252rgjcoESlKuuNDcLh5ULP7g+AVqi1uFswD4RiWxK6YUvPP/YbholUdRTGy4sGsmvEP/8mf3m1T+WfCoylSFmknPZAXPgByozGyPTJj6Rd6odaswpFY949Vj89jLUH9Iw+y8HlriR8Mf3wkPMhlsPQfJE1f9QdyWfqZ8y6bUvQXT396Sd7Ysw48zXJiyN06/tPzcO1PJvnTM30tbQCV6upJ3M9qa0lQ5i7ciWowtyLFsv9JCib93tlW8k0kL/0mWPQ72S9+zigfenWz1EcsqJc4mNJSbdHeLkWm99eqfuUsStEPXU3mhpZqcctYJzB+gxmryirJZ6xNAiz6kJbPS86Z1jzn/9eZgo34v88UfFZwYvvvN+nGNX9SqK72geG0UPnQlZMPWYWOLAxz4P0RYXFzyeIVC/37MeYnXS0BKD4xrwTOh1bdp8gg6wuxYggsHrNIArkNnyQwvrdgqNIwg4wVN4L1H+RsW34rSN7nGg/b4ob689bWURC0CW3IeY5ZfEMYjZ97xHbly7BGtX+pAGHfEa+5GTFvEyVCk/Ux6H1lVjmvT74NqxIs+hS/Hp+OZtVDmcsllYqijrl53fjw3pSEeJpwjTnWkwKt4gejx8FF8XyfNRV9D6VM7huw0HSNQxeMMlfpz03iuje7rkdhUiREj92fRRPLoPDOb1dmivLRms4p/cB5tzIwnXMpn6PfNYHy6VXMzu8koArd28prmDwWKPLBWr+jp6ItY+0pVKVR89wqe4hM+UqFnSF19Hd/CgjfhQ8dptMznr+f+wtuQsoZ+R6yfJy+rxfKiaMQ634c+RAnpwJwlGcEm8jsxvO6P6nhx5lIeDcFi436IKAD7x7EKEQ/n09aYKuv9nRmtzS38/akWTZU1kTYhTi+xZ/64YTcSTWYEW8fHRt2oMITRwcSGnpa861j+BDfXw9inLon4p+tS8F2NR3DiV+ssW9FAUYvL8hOXKkdF4flfrp9+CH7oGMdVWXFBWcnRMTb7c5xn0l6qhFb9Jmzv058DJ3RA/m0KWma8iCmv/tPAPl4H6iQUMOSqhyNSNBlk+jFeYwnV+5mMNJvSIjjSXmPz1oBd45mRqK1jtaxvHsh8s56Et6CKW6lzccHY448yu+lWYsPooyw/lUCFpIHiyd7GjB68PuR6EL/CSbj4B1AS74vnM712pquc6LC7Xq/kHC9Lur5eHIiGG2rwitRJxZfuWaCmKneqXBvZD6796wAu7n/yH7X5NbsoNxHWefWzPC3fj7KayTCafZOmC2/n9e8UMCS0jt9Xt6WtR6OXQNTvC+Y9biwfN6t5AzFqMdUQb4RDMX+94L7Qynw+tjUNbU/WxvZrrUhrnvbdpzn4wd+Q24w9921+ThvltPKlmVgLSHfoF9XprsqcHvBap6MMWOEFxBZc4lHpfxZ4yk5lpogPCNitvF1uV/vWII7KQbzqTXG7T6AD3pfnAdzZLPO+0LJKnhUtU83z7AIRv09eEivXUx297Tm/P3aprCypBPZznHIJ3ZpQ9B/KxGXxkGymhfy6L98+uD1k3MvaWbI2P2GRVO0+NxbPINAhIGkxyfpeHN/qSAa3wNxq0aPxWtseNrG2O9YLB76miXu5IKYqEdGyv1Yf8iRe9rKH1TcjmToGM2LUknel5rZeqXVvQ97F+1G6cKsh3erebN3DnDAg8nck/0L5ofUJsjwzJaEmfeNh9oTFGW76ynbQxmjCQdTq80SP7AdG3m8HIoXQIPbFoN79rh4QZUCy/NmtmcFFj/K2zvorYqYPuEh5tN51uFjHmwSP08Zos3eTyAzrg0xDHYImOWuMMov8oD542MEk5QdMuCl86XsbvB4tHzhg5Q+6un1m26svrueTyAg+0GCU00RPRc3AX1vtkW2+QVZI8RpC7/nMl8zSot4DtWTCvJZ/FJR/m0536QlVo2zf6X1D7l8fRMKHfxZrXDfZkrcr5RWByL4JfOL5b3i/Oq38FOrkfnn69vq2tgS0Vv5esyeT3LNs/KZafQc7tkuDV3e0xGVqHpKDtHzuxXzWMMm/P29HsmXeMHXFwqvmx2zuD/wuo0tCe0eyYDNw2zUa0MoX1po7M54cte0/tWCYoMW+xN9pa89mvyz/gJmKncWsWaH2M76SPAcTwXZToVutXPdRgA0PLHTZ8NzPii3EIzyqtIJtXM9EXi5AEf7w4zo8eqmdLRnWPCT+NH2l8/xTTmAVekvdnjzX8BLOrZ/eE3csM472s15j2QncpiH7063Ng56BJurJTFHWVE+/pz6BXdR2jBymvu45/hwUgR9bWLlGbzrXn+//Y1nvb94Er8Np3FyyQDfjQfm9+OI+GqUQige4YbtcrcJ5uIRekgdV2/iyYoTL/VTQfdBD5b6VqMJka8H7BKlTCfiEE8T0zNI21xnppdt81G8nxsYZn6j7/Jcd+xshS0cwzymq+4RWvwi1xXQoD5SVPSXeGqcTwlf+0SYu63dYLaS3QyiWV6wFM5DzEl97rUlf5mRPzaI7W8PH23PKGG7DQ7j2SMhgCgXnITuuUE0zE0bNuj+IWQSJzRavvRRp/Ec4LG8K2j8UCcBLUgsZm2SJX8uYgPlSed/8ZLPqjzaGg3vKTEP87Nri36VKNV0KzGH69kah5zd0fP7+pJcUu16UPuvCE9kZcQrnK0ljddVhK4MCVgayXLGytgXsOAJcSy7D+jXH0M4mIHE/Jq29fi+6yaUikaYU5MXH0MzoHB+HEzcPdZtTK+SewDhZv2Ivarv3WxGtwR5H/1CHpD+4tGVGxF0x0qx0JyrbkSBPEJxj2cqVz8JURnPB/iYkY21Hpt8+su/sZgSKm7VKh6HR67823+3TDKLeUk5asSWfLYvXj3i+WyYoLFzSgxHeHJ+7c0CbiemEGu9veYjGq8JijaNRW5QcsRfySmEfVo9aW8QP+7v/VQAdvFM179zivptwinKyVZh4XWz7n7U9V8wrrCLR7zMnXk91RM0u/WeXDTN5CxNpBTl58RY4vGdT2dN96F6R8qS73XeB8cr/vuMZ6RmfLxk6xGW58P2af7KR/FQFSiUTYWQZ0ys7ltkIxSXNGTF7vuqx7m76lpinDAphMLreHLqD4B27EqltUtr2pVgbz4r4cSC8XFGsxonFWKypOKTXt1qtnUMD53W7+1Szw7x6BqsUTfPqWNusZ+6v/3fbI26IFvuX7vR/K4OiJXmnphqaMTy8VcckKXOKeZWKNXz/spGsNJLQyX/c7Cmm3AyQbDjNRZXtbC8TfYQYVglP+bxH+94m4wH5fq4LLOnx2M80pGXsN9sLaLToI6pV75e4Ibmje0jfZ2zu3ql8GhpwXx/mcV/y68iSmdCKT+aOz6vjuVdM3HB2NWKd910OI4hJEaCSWi6csBEFGR/fIMs35fLfdua8FPLkUUPgXP+h4/4S3OG5zyJ2ZK/mxXsa4I/OycX25eQopsq6MTV7h5an4vc/If322GP4zHmGQbkRh8sa1rFx+ARpnDtHwHZVorXcaTufeBB4LNdIif5GFSKBDj79ERP3XvdX8mJguHpLbupJ6mbnPQgwFJvme4/btaktLcehVUrEOd3Vvhbyg6p1nwAmPupLtZUpWG62X13OVnwhs83McXAqueG+Tuh5Nz+SQWa+elGdH58IqYfsIcyI2/wxKM0nqL3UwAJqgNxbqpYD/8HAAD//yydybKyOhSFH4iBgEDCkE6kTVRsODNQREBQmiSQp7+F/x0yoIqiwl7fWjtkC0HUw9uzM2gcbyO+pL5xUO/oc8NOss6nTnRkwAhkC8XxUeD/eHHlSxo+lgvnr+l6heN4u9HIxEEuf/yLArWG6ThuJilhD19DQH3xgUDcUD4l3usETTUkRAfZJWRBfhMgXFpM45b5gH82J+tXX3EuiW043eK4hF5JrxS50l/OYKOc4LN6BTiez2YixnLfgpfVh9T2X/d8Plo9gZkb7Cl+VwZYHqxeYMPdgK56Vc9QzkT4aBsXp7QcQoKNpALGTngixfDLcG4KC8I31C2inRO3njI5vMKvHMiIUesQstNraaB2FzC1uqeZbyfo98BxTZVGhj8ANv+pGUy685m6xG4GMl4SCzwqFK3PU4Ilu2vGOjuopAd5p4U8Tg6pPi3zYz33Ym9Ll3tiwYn8VWgTUytnnroIoByXDg2l9OQ8zGMLKlY3k280W8NiCEMFj/3dx/4SVjkD5mzoWaUekWon33qppiQDpjQCvL/edoBd9pEFEub6BD7RG/BWze/a0Mp/NOozJWd3sXXh/GQfJHS45svq1yA+WguCNxjYFDmWpkeXGpMm0m5gSRNsQM8IRGrCjW2La/2A+m3tiUSqmYtbiYsg43JKiG9eB66cOfvxAI78dAHsu1WuP/4l2sd9h9StfBnyl0Go+6pMLtGvL0Lm/a3D4GiVTEOpevCdP//Qa0jNWqbyRgC7IzdWflcHui3Psr6uL8RyfKxl6dpqQADuEzHr7ebsEJxTGLwZR+LVFzjp2qIF4yFg2EH4E84+Oa/nFrwc6hepzZdWTUuIJR3Rva5XYJqeVxGKm6TEFmqb5J8/zK7kSzaX75+9lYpgBN33NBBJgJk9vRS1gvArZ6Q/OCJgJSoKsPoVHEbheeD3ilf6k9+POLyNJmD0vc5P7YOJuhisPanFN6Af2CPF3/t2mPO+OsDpMhC8HuZV80WKZDgHj45GhVWELBLTOyzOhxvN5LyvyZ5qLhhtwSP728PJpV31HOH+dK9p5gsGEDNCS+jcTyY1fUUZ/vHJBhd/aBMfC85NeZbByitESIeoHqvUL8AzGloiCqAe6DOcM92M0gZbQNM4x6J+1m7W84SmJSQ28Zs/A7qloBHQxA2YN9/bHZyftCatdDHyre1uI80/8RfeX0IhnIzJg6C/9U/qytFkk5M3IvCkzhVtT97ZXvMEAuUdbUlDQhouYupHP39Kms1yyGl6FTLoDoNCmHU9D7/1pe/Bov7zO3PpnD56cT7dCDiWDVgYZhU8KOYfNZ8kHEThUjEYCGWHhrxNa07Zp4FSg3W8Ow/xsFjcuut51EZkATax57bxK3gvPRNfz45vS1jZ9GDQ6Qb1j2oa+ns8VvDCk5To4OuCzvKOFeyR0uO9mT7rucoVEfgbgKl3YWZOqeUdYBZDETv5VPL5SVEJL2L0pBe52QAmdFYG8VLm2Kbm2mobRQ9e5UOPjV7thv/5N/+c/s87xr6y4KdTbLz6Fy7G7wBC5sAv2nqWkWzbgHv60SSX9f3oA0Ne8E/vKeptGPJnd2Ng02QyjcG35UsOIxl+I/FJWslF9SJ5YJRWHqeRJMG6OXdqAJPuekadfJcSupsqTT+cLQcbJ6MfJvp+pJqIvDvSnwUJZ8eOFFijN6KnvgpzWTA8EZ6du02vwU3I51nFnuY0DkU9sVnOVn2Gf1Js4NeQvmoetK0Df/mHmwubYRSLSw8Oli/j2K72NvX3yQkG8yYnwudi1eRPRgf42RBGmr1mJeN0/IxwSjyLHtTbBWzRUiOA3+lIC7S/2OJRACdttKGHVt4a2NyNLfwuxMZoo9KQXdOhh6NtmhhvfctmpVEfFP80v8hLeW3q3nHhCQyt+IfYyQjqb7c35H/6v+ZZNTs+P8VPv7AfvHeJpMYPAxincE/X61wEQlTChzHW2JLciv/yE+DX5EO9pHFC+uObPGXiyo807B9sYICCZCI0+tqc+M3R0Ne8ku4ulZZPjjtfwRIAGUDmvxcqRRo/1HM7Q6I942ZCPN0lYNIv0wgU5XEmYqsm+aj6Uw9uylUimpjK9pDorgUlrdjRSDH/+OKovgVynR7I26SAz3VUX8H9iVRs3t61/Q4uXgtd/DiQDSNJzoooOoPOIz752olfj6s+QPVaBoRNOwfQ4+QR+MtTIlHAnEtFQOCtFgBiaz45vkPXAdYNNdT/NnLSL/OjgI+d8/itv+GTFn2k25XVoN/3OVoPVkElJAG17fyTT39J5MCHE17JNxxssIyyF8APwntqa/dvPeqOvZ4DdeDrPzeXcI5uGQEr71Lrex/BIE4HpO+v8gMHZtsOo5ICDw4GlHHEv8+cGonWgLX+YUyqa9hRyzgBP4PrH7DnKp+mOjzB0bta2LGHw0B5zhog6YqC940k2rNWiB9NqK4D0Yq/LB9VJRZgGFCMXZ/WyT+/I9J+h/15ZwPRmfsDJK9MIuDU2jk3+S6DmhPl9CgV0jB30suDCDoX6iBDTlgQNwyKV+VI+Ef65HOKnx+1pj7Du9I9AsmYPAEMhdtgtBPGgaXMlGH+qr7oteZ5irstRZ2HfoCjUeoSTh/kA/3hdaGG8BATTuLvFSab0CSbja2AMT+2Ihz+xp6s/mGtx+yqr0OaSVv9oWGt3wiufICN67on4TncPLhVJYijP/UyLA/xgKAsXgVymsUuZPAVyoDG3Z3u/zIMuB4LEDRkxDTc8yxkygURkPJAwv4Ts5rMUCj/5d/Bmodxy/urwGN6jNSP5qrmu0hi8El8jCMhlvnEIjNQewWbZJMJfs6J1p3h8RJ6aJvWtT2CcLOoS5EZGK15ungErqg5Myrwrj0RvnwzvdTcsdngqP/2Ifn5xbSFMb2/62GYy3oqAC2NGMevfsi/0nu+w+95iGn408dzB1346TSbRn7n1CIkGwOIm2OJSHzwkrYLGALQu86oWPsNswCPKZyDZ0djCSnrHp50hDp87mls/J3tRX/4FUxOZkLxxk4B3U29Atd6j2NYcj5bQ/uBqLCfSIqqt/0hAiFQevsOjk6dCr6Xe2KA1a9j9xJ09RKNrxFOly9Bm+Kws5fL/QHBrg00sj15YrjqewF++d6Rn5SE6suhgvj8eGNHoW3NyyFCP32gfiKOOQ2A5sEuxNIv7wecn58jxCFlRNwsLKd6LEOoWsEBjQe1TMT6+3Wh9CJHIiVvAnoh2Ldwdxr3NL+P21xqN50Gg2OmErrmOXL2t2vg6D5E7Oe6CEYVaCnc5F8T/fy/VCSf4MejZPnNNlDmuYR/+5LiJGbEpmG+M+Cn/6NEyskt54/b6a4Hp6uBzcdwC8nKvyBtTZdmp72fb9krd4HBP4weTcps4kus19Y8CrsnqtQ//wOsLXfRVhDxQHEXBHBdD+Rt7g3Au/uJwWZ7d9BGdePhH1+vfEDQlbxC1m0aAfKz6FJ3zW/4ayquyi56CDjMW6Uu4VIXwPyWCY7u52ZgzuZxB2WaTjTiyhyOv/ujXjxg93lt1vqjtODilujXDwOz+1Ua+IY2ILM0dQk/KF8Gd9OmW/sHOBetLHKB5qAc+6QXAbO67Qm+x7TEdkf9YXtnZISr/lC7X3j9mfKu+PkTGqw8Om/DQAO/fDTpyhuQMAoX8DBITa39+VOzgBwV+Ps+V78bLm6kib9+16o3KmiV+AkhFbM9xnzr5uLjNqXg2jsWkaYmqKdbMQUwvIkComTe83kTzy5Y+PVB7ZE+QxE5D/HHS9R49GXNEnNXwJdfz0T2y+PwCdloaftqJyB22m5zYlgHS78XxwVbKejDZVKy04/naVQdMZC06uXAvU8I2npqHI52IDTg42YZ2prpZvh8zrOjJ/6xQEoY+YCFFZNh9dRl6uf6mU+xPJXwp8fhjzffQ3mCa96x8nha80utLlodejnNLkGSL0vdH2D9LC849De3/F//YNxnYJ29+2eveZEFtdc5WPWcAyLEoqG8oQnofklGQBsHNhqe4j98f4THhP4HAAD//6RdSbeywK79QQ5ERCoM6aWzCsEGZ2CDgIg0VUD9+rc43x28wZ3d4VnnnIWGVLL3TipZ+Iv8hxeEPzw0ba7zP/72WPg1V+YwV5x8uDBfXeuGIF5+KhAnVIhtptxf+GcOHQpiZqjRJhu38z4BxGFL13E/dMNjzAV086UfMcXSjTm06xbZPydYdp+1MX2QVSv/4Zc//Z7bYRtAbU4jIfVt6Kj1QwXQ4J6Q2K9GNDj+uYLoO20wr+pLx4OVGUJ4Uk1iRa/wP/nd+8ycBR1zykWfOMHpo37I4Xr+lNM66yPYmHWBFSIkxoyXOV5wet+Yvjr/0Lz1LREuxlb+sxfnlQk1KIctY446Zcb0p78/916DR/HU8fYhJAFw/FWW+uDWn17MzlE7Gox+aLvseorDVjmeXYdcuu0+/sVbrVKsr6mRi+RKHTU2pwr+9Lb9x7S4MCdXGxZ+gbn1tUpK3QngcJczXFxYz6lRCis4hW3HLDf8ZdPEnATeRVwT7JudMfrH24J/1IocGtgbQzmET2i88UR8dV0Yo11rGF7yeUv2Nmjd1rz7EXTOVJL9LWVLj0ZVgLz/4X/4cutsePWnR+LVekeMSRacHlzDs/HK8X6cn6LIgyX/kmdPdvEf30IffG6pnAu/eGnAPP3Vp9lt5ko2Wyh24PFp17TtttyfnrpTgLB9cixo9LPg8Zwi5LU53vZ7wqeqWznosP+mFPbLrpHP5Rihn+iIxLEVyad550Zo0aup+IhDY3CU4gL/U0/B5r/3FJSxfmV+Ksz+lB5mip7f1cj83yOKx6co9eJPngqm286lHEIxuKBxyI7MuNBzOe7fLwcOLL/QUQrVkhPFGeUcsxMxLq1uzJ2mXFCDzjGxJmebDfGlXEFj/d7EarYtmuW3paPN7t3S7bxNs2nTrxN0h69Pp+3rEk97bKQQH78jRXzzQa397Dy4WBYmuCrmsmPJrob0WHh0V1cvnzcF68Hsap3Ccbk3mVnvBJpXplAJBT3vI/9dAFXcJ9EUpJS/bQQn+aTfTlg+H5xSkKTeRk8QVuQ2vN7+8MmkGoC/GIbNnZU8+bgjmjOsEKsJfz5b0VCE125r052F/Xh6sJcHrVecsPQ9u77gSXYEw34kzCXtnPXbjx9AojxlnGcfjW+sx9FRfoc8IJaoQMl6f5ZgY1QtRZvWz2jZhxd5a0cV/f4SL+4n/yCAu1ZHKl4UC3G9E1oQXP1HAv8iZD8rzvudGFYz8VRW+tMjE0OoU33RVLRlX6Aq6HDNtjOxhXiHmAokQgnZP5hvxEY5DebqLhdFwNnTqPcxfUTpCu3wXmbBMJtogmFVQ0t+I3E68DijMJioramEZz+qOz7MQguh4x6Jmq5yYyrXlYlqKsN/3vcwtQ3SNs2DmE7a+CyQ1ykwE9fE8J1V/FNKLVTWK/XEvMdzY4xrI5vlV3iV6M78/rq+XR8juF3AxavR+XG+2tmO/NBe6aJxDTGjVkLh+9VFYpj9NRtPcxfC8bA12OH+0tDmQl8rlB3JF2+Ucxizcc0vEIt4pFnxBD7mU5aAeqdr3P46bMxH8XZHJ6IExP60u27aXfd3eLbJlmj2ZY75654U4BVli8VPvcw6tr8U7GBvYGl0K599x7GGTHEAS0a3Mcb6uetBEuyQBAIODE5RE0CRPC9YcJZ7/N+DIECalQJFdfrL+Be7ANrdxURzqG1sww+5I00yK6o4/dTxjr4L5Xbff7D8tETO7uW6gs9rQMS99SP/TdXRg2+HTGI8bDebjWP/RLec1mwfXi8dPxziO8T34Y13wC/daIg6Xsf3Z4zXAXcynjahCqdDadEy3I3x4O7fgaJaaYvlfr/JJql+BCgL4UZMa5XzacyGGhVG5bB0L77iYWL4CWZX6QxH4i/jDzGuYC6WelD7tlAbSE0OY/M28MYs3mUbXFYj1GcnpyDg3uiHINQV5yxauHaLX8Z2T1+Gz1veENPt18bQ1w2G26cSyCvgTVyZbulBrsqYuKGglxuM3o2SzhWwDH4qn3zartDu+nUp/8mmMcqzJinO4KXE/Ysf6PruYYIqYs87ZPH80tUTDPPnyfQg9zImXNocvBRsZrTvD5q6x+LvDCdk8Ve//XzXEjo8rg8q3m4Hfwpej2V/Nnkx511d4+kwTRis2jOIxiIlnpvVVwWzkBKm0W/jt8axegJBMLD9AbF4GsMxRF+ypsTonH03teIyh+StrYmeDGXWSPq9lhd74A0Xc58VINl/8ZWW6/qw3EsJCrS/7X2qtO/cH8ztPUDEYTo5hLu2pNxvbCg0RyPkZgqcQiinsOPTgHfX8FeOnmSHMv1sXPYXL+l9vZLlJX7gVVVEpSA6qxGstfQiqnPO/UF75YFyfF8VFrx1pZu8TLdR7acGXcu7MuPzR4oAfPvL1P08lfxa4xau2Wam8rNPuukeHQSUDnQgjhpdDZ5j0sLam3+MrNQXny/Z0gNzS2c6W493PG9sfYbnM4ixkJxfMV32+4G2aR+ULvFrkC/6onH+7kSN12033J1HKuv1XWNhT++IBvpRB2QlG+Lyk53RkxFiJajgwp6qtOr6pO5GMCVDoFut1dHvrjQ6LPmJud3+kM1rLwnkuJx/ZMmX2XjTpRDe/h2zF7u+urla7zB8VNHAU6vaMSfHukK0OYYsgMzyt2kT6rCbzISFzjk35tPBadGF1nfm028RT9InuYAlzJR4X7Ep+fALAtkz5DWxuSUafc2vT+CB/iaHz3X0Z6XKQjhFnk00JWwy+tKdE7I/dUTcY2bGHFblE94P+byM3+w6Tnh4Al2ZL8xrI8Ln8KY6KL6zN/uL1339Eiuww3VEVyPrykbZhB7IK/OF5075GOOWogbxQH0zdfc0DV5JrwYddRYx+6lixIPRswGlsYHhSBuDJ1LRKJiuPozkbe/TU/cUZCb7NbNrSTEG7Zc0UGieRozsaHB+C4wKKjvSibHzap/zRRN5CIPFAjPuulF4wwq8jJwoYtG2nFXzM4Ihna7MV9AW0dyXRrgoZE8M/PgZfZWVdxhi4ER7rb7LKpZTivTu8yDZEUrE6DI04u+8aUroxIJ9WEXoZuY6FmWz69hfvB5eZkUMZDx5o0GfoussycysCimerxW0spfwAyNcPvA50G867IfeJ+Z5U3X3y2bKIU7jlCz5iI/jIDzROxor8gSoSi55nS7B9egT63T7ZPPJSAI0DIxgsZzUbpSfbxVuoSJQgb0P5YhIHELxOFUMR+Rbjk7r9WA+4yszLoaazaGGBejlV0Xl7bRG84AyE+lz8yFOFGp8vq9FCSbZ8cmrQVL327qGBJgLArmYyS4b38kjQLbbAlbCqEHlOmAm+rwYomK1rrL+HiIRXhnOGLmZJ8T3880B5ee+iZ8exmxSL9CAfjo65GXWJJt1Ibb/8jNN1Ojq8/qrevJINGHBi4XfX73XBUR8k4jL11k5ivudBE4Rb5na5Tuf181BRX5sq2QfrpJ4nnUhh3Ol39lh56nx+FR/gZIod5mE+3nqps94OYEzOCk5TNXP4PbFpEj2BIGpsnvL5q36eUL3Dnfk//lLNVlHRu70VY7qKzZhvNjASGStsxmtLhd0vH5yshesZXrDcRuh0u81KiGOS+Gjf0JYk3a7zAU58XGzeQjQvOst/ojKvVzwkI1+vbMlh5t3NWh2HUMFOsn/e143HeyrDukx91hyk/ty3F9+AtzDTiTa/fPjQ7gWRqCSqrNX3gb+cN5fMBzS1mF7/SwZdP3YmfKwMT74E5OzMSVe9QR/sFqWhK6Mfu5qU8mSmF+JGtZBN6aXo6c8z3xL//CHMM/7GuxPFbFH5fblvOQHJLrRfbkn+4nZl2BRxmfsLvFe9TcfYx2iy41ivGlC1xfD/qeDt6snZm73Jh+cjeUt99zPdEy2N2PWrtoIwkPekj1xI8SVKEjRfUsVpnN1qXrd34FsN+qNWE744oMOuwI0etr/fZ6Oy6YjwqA8Naa/3DYezfXcyjkrpD8837WnqwIQS82W4fNujifLlUK46N0ec9M6l+POdzzIz/Od7ZeeUm6szzmkG8PAYjJ32ey+dwnyA1Ui6voKnI19epf95HCn8q+jxtCdAgzv1t79xW9j8o63FpXpqSf+m++7UU9GSZnKvcn2+1djjL9eCdFK+o5MH3yHL+9TlBd8ycw/e3/BV0Gfd5xpsXcw5vvGrZF1uR0p/aKxo7MuFGCvT5RZdVZ2007/UXhoOGBevK7QSPfbGok+LcleERkaxfurgf322TD8frkdb65yCqERG1h0CzcWmzwU0Cs8S8wKlikaHf0V8JijFTNHNmXj7Kmr/+TbbhA4z/G++bM/ySQ76saLuEqQOKUXYkR7jqYCTxIEj1al4e5p+tN6CkS47N9nYh+Dkz+ud10Ij6UnaXL8LZrms5HAdXPW8PZbVmhyFYmiItRkFrxcsxuLdheg9Xi/M3/aP/x/eLlTHnd25nJc0sSbKkWpdAvrTfU1xl8npbDRnJL4noKzwavmHJLa+9A17Pf+WK5SG6xhqJfZh9uOzyynyuUYz7QWxMafOi8bIYvTnOZ1dC4nPt97dN1ODtFWTx81/JtGcBrHiZjV00TzJ04d9FEFg502u3c2yRe9hgxPL7LXqBjzj4co6ulRJXuR12jYSRNW7Ob4pdK72i6zsnNVkZ0fYuSJTS54QwLQrowDFv7sTzZrjBa+R/6+/zx9Ogfklf0igcfmbpzUMN+d6OVH+RPhjkUnEP/sSVcAZilOkRcCDQERvyIYzdlVilA7vs5UeucGF4+nLwV2aQdCjPva72/GxlNk1CbE59g0tmLonCDwH3tiL/xyUi9CgzCFDxY2u3f8U/pdj26ZeCWaKAndJK6zBDbTas/culobc6eOd0juiUPR8vxR/fk5qtUoIn/4bRyrQEfhfTxivuBT8W+ipj/13R/e4IP9dWtwhqzBVDoXaLynVQQpsXWid4r1ty88BVPGAxblbsja24/MqJ9ljfnxBjoOq+4OcCgoc5vz5I9LrznQW/shS3wxJqV0o3/8+s9+c+W+e/hY6xdzTv3PmJf+DFjp7Ui3mTJ0Y8WC01+8Yrr1FtD0egU57H6zzny2u2XT7kqeaJ97Md5s2M3orrXdSMrPf2Ne9Wo5QTiESH5EiE5K6GTz56HXysfbDuTwGKxYWBvxCO5X+RGjC5DPDkanwomsA1qfyMMfrbGS0fe0Vahw+mr+NrPeKdr9Rp1c9kOJaHETTlIQ2g4z9mluFPmlNmU77M2//ByP59vHhjzBJf0+Zu7/8R1QJCnGk6RXqLkkOVb220Fk5nSJ/RHdDKoI29RmGsoKPtlfrVKC/r2jO3k1+bzS/BCp75PKnPFw7QQB3205eDQqO+hhG4+FS+5/+Zo4P4/+w5eKlWwTrLQfXo6701grv7dhE7NdrWPe7S6i7DHxxPaaoRm9ezQLZSOKZyoOYcgHsZtzWPAiOWh6zUf+TUP51MnFEq+OMXPCb4KCaHoQdyhP5V/8AGOf8yXfpYiHaeSg8I0oRn4V+svne8orvVkuIPLa58FOztEfX9mX6qXM1Om4gmDVz8y8S0M5r/yHCQs+pEL1rPi0v3JBKdUqZNEwt90orrREltiLsCDIzU5QNomDkrJ/MkcYLT6p+WBDnaqUBAv+7V8nz0bTdx0xWyB23NsHMYJPdQIaO02JBqk+Y2Xa9iZRL9kRjfT3XoZz302i/r55Nn6b1gGPCSd2TF2925r19QTvvlzeh2v6m7uSq0iA6ESnLLt1468blx6sz5O0j/RdjtBXFdT9c0PMQ+OXs/BSAbaG8CDkSlhMB7iu4HT3RzzTW5DxQgGA+82MGH4ZRUzPq3UPbHNMmP9tAiSa+pPu1HLcs0g0rsZ2zy+qfH+scjzF3mB8rDiniq/u9kRdx79savaHAkZiCFT6wzfXWJdg3m0bOrplWQ7hGkYk7MQDzfG09xe8q8Pp7o5/+qRBg8tqRsf+QYlD15xzGa8cJCWezILPp0NcRV4C53tv40UPNAZkCyJa3dYW885Cm9HbM1p2cVYTIahKugonHwk4CBbx+v05HtaPEhR8Dlym306W3xGeXCD4Jg+m01sQL/wuAk/oS6b7l9Tvuzo2gQ/7GIv6K8963Up0sObLl+0LMAy+V+z7Tr+5F2avdyHnve49YSMKS03Zsri46Guw5D+i5o8xHs77J0Zr7k7MbvRD3BHFmVFhHx94p/t6PHl3G4A+C05XQ1+UnKwOLbLXF0qM7TkvZ8v3IhjIeaaI7W7x+NHyBBb+wNQ7/5TtzLIajn2Qs+CWRIih669XGiuJKcjGlA2KWHiQXfYbitLDGLNR1CVoT+UaF9b7hOa38hXhspFn5p0PTjdb2k0Ep+1j4gbSxZ+M1JOgsOMHXUfask9exzoU372GZfHloCkyCUDBxo64m8PSuaL1rfz+4I643X7IuFlfL+hTTwa7R7dHzOd644Esjh6xhIfuT7fxfYJv5DXE3aLG4NMjoH98lW4sQSqpsQcdjOfGIZ77nWK2exoyPPBsEutrS2h2Egdg9VYPzFmRM+Ljdj/Dokeyx7pN0Yxy1UELX2CB54x8NvVnjxqFp0wnuyabzTRR0fWyrvDGCV9oq5mzDLMhN8Se0xxN51lKwdt6LYYL+J10sA4qFL7f4Ue33LHadEMCstMhCvnKM2brvK0hKemTisN27mi5PTRo4QPEMtbc5/nBm2HxHwrJdPRZWa1mJFmUL3reL+bnxDBhci/fRc/xuik19Qg6ed7j+y2JOL2dChXwtw2ZufWTuHvVKsBKea0oX/IN/45SLUfVJSVqT4Gz6CSICA4c8Hb1WHqoX166u9u7G7MUmI3pbeMTLPGfOL9pjGlq3UNkSprALOUcZuMlaQJQvFzEK1V6lv32WJzgeJJ8oqFMR0Lh7u9onPWIWHL0jSeln3oU148VUT0s8Sb4ogbwtwnZi7rgD97dXqGD8yDEKeYULcsEQrTwCaaJgubzKb5HcLl7Z+ZfJ9cQE01z0Mt//ejvEzl+41afFM2XE6Pbtj6gqbpvnuhyDffM3H3X5bC5PQu01CsYCQK7HLtlt1sUuW/i6n6Rzd7a6+EdzRWxburemEwt6FH5/ulYfBtXRAXl5cF3LCw81tGmy/mk0z+9hPir4lby0m4qCMWC4uZ8XcV8Hj+17Nlnm+nCpPqbw7QLZEksrsQxvlq54PcWHYT0Q/7sveC9QpG/RsL8Rhy7PrmjE/htciY2udKOB/I6AThtTTqJxxm1w1Q0EH01Rnz0Ckvx893K0NX+njmsPpfcLY0U/vLXQ75vM2E1rilg9evSoSy8Zc7eQUULnyfmz7L/8HKvKHdQWKDYcjwhJbig/UO5MWtyrtnYbhoBnoGWkouD9iVTMkGAdnycicdynvWTmKuK60/W3x2obj601waZpV+z4Li3s62kzjVi2vhiRwUtPf3PMfpXz9CKlBhTJsAdLecFS8Wc8v6+N1LQ8plgxd4G/thYvJBveV8TrAqdP1+lRw7breng9Udi3TjHuxR0kuzYoaxX/jTImg04mnWaS2FeUkG5enCXXZOR4WmjJZ+niE/9ia7Ug5uNZpzVaKm3ED//mP4EpElQUz8s5rzYhGanr3v4nmrG9Jpp5XQcmQrr8XnHm7e0WfSF4S4t+Q7Xu8cPcWMVtsCF2+9Pf0HCX/3sGZsFi/tLF/d/9aLvaaMwa2MaXFg5kw2nq3pir41z7IT4pScwKp7B/uor4/uanKAdgz072Nve/8OrSFitf+xwzvv4d3xgBxztYBHjs9p2//jl7xr+yOGypz7demcZQsc/Yuo8N5w+VrKO/vBe97rmmfArA+GPf9L2eLwb4+sxF7D+OTb5e16zcna2rI/4iQ+EpRm77sfnH78hbt7VGV/qH0oweTJdz72X/dULUWHrhMq74oh+JEEq6pTXHa+5PKCOHGkFqTYlxBNfDZqxXXng98KdBfmq9f/yFQQQdSyog6HkxN5FUn9Zdf/4Pn/JtEd/f388nPdovO/9BEyzQMT7OGs0s855wvqyPjBs67hkf/VD9d6vMUfGCvULHkaPuI0x36eqPwS+cEIpMXVyft2p0SuqVYDY2iqtqNyhoQk3K6jfZ5PYS32CHl05gcutx0SX60/MVdiH4GjEwrG+ndC0C1IH/vCZ4DyzjvuRNKLEXWlU1MsY/Tsff/l/0buMaRsJJ7Dle84cKQ1Lag6StPSwPokenVnHWTJViqEEH4JPHUbTBr8xSA/DIe5mof9p0PSwxJuFb5von30Wvk58tttlTWOhHNaRvWZ4dFw+vTQewKL3EOd+4XweV+8LSG90pdx3nvG0nkwBRV+D4c/7oPrCG1fzXz5gt0LM+XwI3CdwzETmrcZNTP/4qBirO3III4dzHsgmLHoPVsJd23HD0Rx4rmOLCpMiIEZDW4eoQwrB5ygse2WtVorfi3eiape2bO/rlQSn0yYjri5uy3mM9x4co7vJ3PclKykpleWaTfgk7vDS/PrWeDJYxEbMW/AHP3clwB+/3m/TphzO6dZURjzWxLcc1xi9IVkBx8+GBNdyiKerKqh//B7Pa8FBkw5TofzpV7iwu2ycn5SC1skqI4t+utjr9IdXieNL1Jj6MWyheXkMj7J7i2fWqU94PZqCRId9b4x/+J+Ry5W5HWVGr7gK/D2fLfU+X1yfrQL07vugwmpiS/x8tWjYzwTPJ/vdjdbD1KGp9BUzxUrsfmPaUFhdixVFhvyJl8/X75b6BxbOuEDLnLgUDkmgUYnVm7Knv9//2FMg/veeAuc7SlRZJb9srtpjChQRn07Vd1Xyrbl9ohV1MfOj476c8PmYoitUOrt++hcft9bDBK/pTeZE8cefw9vgIVp5jHjfXWZM+58Uwd7XXsRBXoGmYXAqufFWJzzFVwdts1yhMKY/zDyoc5824UeCIBUnKhLjbTDjBytoj9GGTrN1iBsbuTNkYp8Qe5g+3fSu9hh20vyjGy63HTPQ3YTfI1bpfLK+5Xh/Zye5dcoQl7/k6HdBFrWgOehN1FN6LKffe/+EU1p2uOtPWilc14IMGzl8k5cxzdm4tc427DQ5wDvzkcTzpBs1XC9sT7ybdc34rUkdWZCUK/MDC5dTcnxTxZz1M5bKWPdF6W4VEBwRprst0vxeOLJKdq3dRPwgz8vx7L9y8J3CIt6qXccvd76OoJ3OIzNY1fr96vXS5SbSJ4wK3zGmqYIA6mcqM3whrT9Jw0sH+bIrsNh9gmwqxzGC7ruOiXUpUDanVDPhPtQbOlmYlCOuWwmVzjMhttLV/miW1ETJPTHY42bc+Gj/ihZdRGSzg/TV40mgooyiLP6y/ef+zcZ7SkVwBImQQORfoy8+owpRUilMN/2vPwbz4Y48Mz8SNeu/Bj/ZaEZbsmgMfX3t5uj1o8g63EtipG5mTOx00EEsxD3xdqc2ZjlilQweu9L3UZRj/i29SkaSOpD9eX5l4zVRa/Ac2WDmXpX4pzWtGYaMO8RL/ZiP52QsoPWWGq9pydk8Px8nmD/nNy3674w4EYU7+uzpHZd73nBKlPgCmxJbRLeORrmxStTDvnFEhseoMqZZs1WogntAdMNqs/E+y3f42qsci4diLrkGgQ7StXvSpAv1WDBUJu606bXHSik/slmZpxDxDN/pwFwe/660S4A+LWGxz97Y9ts9wIu5H+a+03M3TZUQyNGHnmid0wZNJ629wysXKLE/Nx5PwqZM5HYyRayEquJP4/icYbvdPojz2P/8JtbuAryF5yLoufuS9+ZPB6I3GTl6p97nzn0ukFB9PsxJQyubeqlz4JyJG3JQoh7NVlTgdYa9mU4CTP5vqgQMrg8dyQrf8X/HWq2Uw352ibnKdH/rmLX0539kjwqVb8ybayKZbK3FX/bZRG7XAow5jZk2pAWa6+NDQFXwDIi6YZo/8Ghw4Lz5AJ06/Ct/Wu+YoMUnzNSzBQYLjL3+z98cYeWiYVv0KYik2xA1Pgl8PFWZjUrf1Ulo1YdyeT9PVKx7TjwMDz6X+9hRNmVgsfSX/vgMhKvg/kyd2cnl0jGcFj3caM/I7c46f/KbJEXl5Xtkzl3rO9aFRoVolnlLPNJ8joxXBfZrIszOOh/xwyqU4VStElw57303HvArgi2OzsxrczuestNaBmJ0Cjt0348xKlJUoV5pCSH94RnPE3qp6Hmyzgyf3UM5l4w8EfBQYeoZ5cY8fzQB+l/4IFp1rf15t/Zn0OfxSEjVhca3tcIVzPugoVv6qoz+3lsruMs0YBbaepz/rrkuuxaa8Px2zJgx3PUImwYiVkKFjg5G94QaSo63ojbH4293eAJc3JroWoU4ZZIqoOstmxgJbo94FJKTCZGWv5l2Ty2+vQTSCZZZhnTLPdyNW7lNgOnHhsX2EGTzs39jwKaGqLLnps8DFxWoebQr5vqmEYs/XnlAs5tHzFK5+PSzXjVS8ApKcps3Zim84YChc4WUaYXf8/knJw3EVn6m6LXGfD4VWxnQ5mLgDdp6aH6N7ASOIBM6nfS4HG3hESGtTVrirvVHVnWLUr0tXx3ztqXhj7J/bJB4nwJiHYM67ndL0VrKM4NKxWPlM4kWAdodihvbn+d1zJLASXbHx2lg5/GzyaYQHiN6/eYj8b9vxacpdU2Qbpeaaa1z8Ien80kB5asjZoXcoP6aOBXy9gHCu7WkZdtv6dXy8zw/2AGTDR+X8ytPBhaYoetvND8/QNHqas7E0/ClHMOXfQdJjzyinctl4mqY60r3IpRoX+CIGz8BoJtTlQRrseTtPZNVtHn4Hq4NofOHv/jm/YYap3RcoalCrYSIqsQMf6hU9kzctPBkZUnnn2WWdGvnEdgnV2f6TaQlW30GWdqeLzPdMefOh1vpCGBG+MR02Xp3s5sJq3/+csiGqpuyrE9hq7cOUVHeGHzI51F5yBfMjGawu3l+ni+AYlFmFnXLsn6tnBMc332Oa1HQ41mobpKs0DKg5UgExE/qPtx9rWPCjCMUWWeMvycs/sywaHQGb6SvKIfGcU350X5mY1M2AYi4icldWqsLx7V6uG2mAE/ZyTWEZSQ+XEvhSZKslrN2AFECJm8OxH2nm5KnfvKE/iFiYoSihab4um7+4iuWzl7DP5/ie4J3tM4ok6dfOe2aHHaBOS01zaWv9/kRKPASNLreqEX3S71lzsn2NRNLKjYlL4KLiOb1eCCR6X+NPr7ld1j+n5DPJe3Gj3aU5eW8YMWtuoxO6KrD4Sl+KDPsPZ/DLghh8R+6YyXmsyfhXk4O34rZe1vlv3eumYqkhx471G+n2yIvMGGnEhP/BP/G2Wi4DgjGqJO4NbKOt1ayQvR4t0j05hTNz+Ue5i35bYjqz/a//AT9czPSvHASNFT2uYbbO0vZYc8rn9feCiCSTZsYx/eYcfuiAPweR5WEs37LZqmYdTiYt2XW7VVC/Fh9Umhf3x4LeMjL2YgjT7HWCiYHLih8dOSjAO7ovRiu3babJY8mcDsr/oJvsmzSRLmXj2+aMyeYL+Uc642qHOy9hndLPh1OWnGH77qwMDtNpKSnMZFltg7WFIXjzp8/dofRt57fdF7y/4x66IGbnorlU7rss/+NITrKd5NdyoPs82ZYdjmYSUb07VOMx5G4FyTtvC9xW8mMtyz3BLCn6Eb+4vfIQQ+Va2buiH4aZ79/nVVx6Tm4YqE5O13/wqeTctp2OrO2QR6zrbm+I8+RDJa6vsj/vt8/+znZ5c17LVpJSBGq/V/8MkYwFAxIc0Kma1XG+XRqInRDgs201zouhzTczSBhtGNadbX99n4+FBA83hkJvuvS51CfRdA93FHUn7RONMUkXUZhbhk5B+9yrn/vJ/Tu/c6OS/6ZdOco/8PncvSzOuG7UxIYpsYk5pf4aCOb8gyKmpyYx+qC/+H33Qsv98zU6hv/ckUfwX/Vb6Jx30UTyU0dylchsGAa2o4lF6TD77lyFs34bczGM5hBltKO/cMnH7sMYMHzTFV6Ld5sf4kMY0hdYly+wbLf0K3AmJMYy+TK+MhtASA5fCpctKLfta/xe0J5fL4xk28v5Ry1pxPkQQh467w8n1ty5YHnL/suz75pzHs1c0Cn6ZOKtanw/i8fnUAXmCkaDDWXsnPksLCfRP+uv5zqW/Wk9JXULfjqE3OLTTlE9xVjweq8iQetV21Y8hFTTxuj2z7yw4ge2vyjkEeo5KlZrkA+eBk7lK2J2ECyFlJ6mZiNG+bzw7iW5O6JA1yPzS+bnFCgcNM+NxLgL0fz5ekKYFA9Z6pyJNkseXUKy/nAwoVQzsuqvaPPN3/gjb/cI3LX0gz65omYj5d7vZ/ALOBkOcschWprTFN8NpFymm2CceSi3twcAnmjUcDi4879CUxPAK7fJXJQ37RjQz7PcJZWAXGDTduNeHrksKkOX9wfd79uuETHBmIWZzgxTOLPp+dulO3oJbNA5Ht/0nrV/IeHvX3Kuvm3eo5IKkyfpav2lfFGYgKs2TNh3vdXlH3dPEP0F5/dO+sMNuvHQOHKsGdB0x7QHz6Uqf6r8aTBDk3UTVOou+JIg6/78ufxQB04pHdOzL/4wx3HQXv7NxDsvHU0octNBjPwb3htRZo/2ztao+V8M3+vHzte25KIcGpuiA7vOOYqjj3Q4gsmmn71EZ10v4b0BmuqxGOVjeIzbBQ3PD2Z8RZ1Pm2SXw8LniBGM9TdGH7kFRyz34f4qph0k5+uEzhm3YfYG2qh+ZCebZBPWKLrzyUt//193eVHZjg7q9x2l9FUWP3KsOK6u2wE70fRAZQn0b2vVI7t8egpcRKsiXao32gsXkahbOTojXsyhPHW88q78g9fWL93Nx+hTP7iHY3r9yFe/EtEhxInxJegz8a5FBtgmREseGcwphXUp7/4yYhP545vYjUFAwcvDHe9NLi/VkUQlLNL1Pnhx+J249poiU+Uv9UnH+og9aBt9RtzMwwZjV6/Hi3+SfyF/w7e6lND7tYRXvJp2e+vcf1nb2bSt9bNh/RhQpRGFnPTlYGm8nVzUDMJMzmEomZsdm/hCWhSOHG6sMjmnXDzUKPc18zadBMfraekwpaaF+K/ra4b0U7PwZ/3B+abpZpt1AMBeG6qJ/uzH3d3QYRMga4JiVUn6w/4FaKFr2CBJL7BopsuovPN85mW4qDj6muOFKm0BmImmWNMoh01EN/kPSG5+unGl/HrYR/0XzrdUwuNE8wBKoffwIi5Jb6wro1CtkTVJZfN6plxtt8G6GfjimF+f3E6OaMNGyM1yd/PS35Ndos+g1EtRl0/dZkJ99PmiLdlp/o8kd9YqfrwQDw6PjkVI11UqiFmS88Ei8ds9VAhrO/hP3w7r24bClm+7LbZ2yra/oqohUVP+MsvhvixuwDIrpBIsJz3P34DKc5HtpfvVfynLyhXqPVFf5nKuds1FBLAJtN93etGzTEjZaNqApb3Kel+3SDlsr1pfeIHFi35o54jaOyqYA8V1JJrm1cu95bZEvPoRnE/EvcEod0QFsln2R96qXRg4Vt41qoMjfd5fsKfnqC/HTPrNAhUNBwFgyXzddU1z1kv4AvuBvc7IvHxOXs5aF71Y+YqK5ZlxJGgKOepYa/lfUy2LavIcPwP88isoT76GOo//9PWXChnT3Bq6MNiR/SbiLtxlSUSekg/m+nsLfrdws+UQG5m4qA0i2d7V9dK/XVeRNfWB879YZlg+ZJn3F5PoT/fzMvpn/+dP9OU8YFkDZws78oO+ah1m+Iw66ip05Jy+hy6Jd4l4D2PV5Ib6Snu//z7dU5e5FW8RE7DaRxBeOGQmGu7Lxf9QET6uZGJHp3yjEf7rofH1VWIqXxWxlAcZlV5xezKnGhFOsFKjALu1xKxQ6OksaiI2wTNWZ3i31rS4kVfsqH9tF9m+1OXTaSWCrS8XzptxVM8RmzToOmbfhf/qY3pvipaUMnlRpb8mf3pFWC6T4bn1n8b48rdzegTLHMOF/w6OgXGSN5QjR1KWclG37xXSNBNmbiBlxt99XFM1BlTznR485jt1WaG1hJquslVL55kUx5hJcqcbh7CIgBd7VzBDaF0+3h9DbphZgHpbbWmu1aqYnpKDhH6rWaX2YseMJn7H6CTOn/w1zqc/uJhi7Q2bZk+RY+Yr7UtRYExnxkGmXJ6My8XePLdhanZ8WwI1iGR4aymX2LX5oOzIIsaeB9qm/3pc/SzFluIU/SjzVYajA/rk+ZPn8QIryc+jjG5o8XfCP4Y2KA74ehB92szZou3MWbTKQ8hK041s1V5z3tv95PhfslvzEt9jvq2kEJlez7NJLisa589DdOGMhA85pyYyHuiQy//7KDCK/v86yZdGxI52xjhP/2toWSKQMOQEZc59wXPBSpietws9nkbo6F+RVidby1eH4iWzUxyBLTguX/xhAsyUGQexDdxulxG4wFfI/Q4pOI/vDQzdzkfEyOEnCbWMUN3GpBOK4EcxOxncNgCoLG2HsynfOb8VesXsKbmSrSPPpZtc00TGSW4x43qdWh8mLcGFn7B/HEd+DT4rBtk87Wx4Ml3/Ju65TaL/exx+zqO8fjMywSW88RI8RLRtP0lEnLOJibngxx2mzKpWtidapF4Zt5nk7xa/DGpW4relt/tHp+v+afPUXjz1qDMzVXluN0LVNzEMf/n79wWWnLIz6xb9JIA9s5l8y8fLPxpBbe7apF9sbkbdH+vZJjuikycKLYMwbL7BHWOG5Hnogf/5Wf4rKodFTr5ks39Wc7/+CZzIJf8tri1AWKvZLXo7aq/fdXeBS34eOF3ddkv+qUsazkmznkTZ5zH0gnN36WTNRmHeO5mCMD3A4Zh13p8Hk9ps/vTl0f/KnT9updUODzcB577b8R7+g5TEC06EmyRgy8Y2BGAq8u92vM9NcZpX0kwTK1J1IqZxp/e+/f9/vHJudxn3h/+IjYv+m7GYi386V3MK0rbn1Zf14YoO36ZPUxWud0d81xe4j0jVrErly3XF1DFYItL5iY+fz8/EnycYcVw+DSM/qu+V6Btc41pi/7Ijt1NBkn96ASDjBF/Srdk98eXXqH9Mcazf80hgnEkXvT7dFQIcATVCrZsb1Mddd9jef/D78S9PTb/9Avw63ZF0TZ7lAO6HCXIKf/SbXfAWVXGDUAdjQPxl99zra1kEOH7pz+cS34Ug4WvlRnbd1LCZ3r2KhBS8UnMZ0D8qZ9WDXQjldhSb/Gnc0MFSIu+IgEDI95Ym0iEpb6Dh+5rGZx8HhcU1EeVabM1ZAtfFeHK7h1d8qUxaeLcw2D2PUmXesy0MlIJFj0B796bfbndnWkjj2HvsuvTO3ZcT84CuN3cE+O208tFn03g9r6lxNCCBxr78BfAjVK24Gu165f8B5cNWTF3TqNOvPmeCLZDOTMvrcp/n+J7QYu+Sozr8IvHPzw17ev6sOh96E9PQmJqF//06YUv2IhYZ4uKCz4W1tu2gUykCQ07f9ONY7x/otN1q+F/fL9K5kgKHGdPezHZ+N1wUT0IyvrCiNIcsrF+lM128UemGps6HtG3TEBv1Z4t/DUb5fs4Q+B4e+aEZr/kJzlHCx5j6VN8xrMQ4BA6uFpkj/YUcU0fa3ljm3TRywt/PO9vKRwfl4E4xcHqRP3zC2C+7SJmo1fA54AnLdB1rTC7ljW+6c6VrPTf75nhTaJ2AhibQP7Tk1bF9sQnqn+kv3zO3HlTddPw+lbQzYn69/mzv/MJyiyviZrWbcnkQY5QfgCT+d7pm036bafDXz0ErR0rHssAnpB7H4GR0P74wlyuGnjuViFlD1dD4/bnh2hK4xBvGFGNMbO0Cl0qfMfo5nTZFMVToXyjhBHXXdloVvpghuIlzX/ns+tfsHHg7/muu6pRyxk8ZWbASKys2fIhUJQG6mge/vw3E6KPr6PLbWKUf78un3TnJv3jF+6d+cYf/kPo8q7wxiW2sY3bN0AZy1+27w40G1evlwpLPYv4J52i8dk99X/1I2P79uLOtO1Zjq3iTKzzNkR8SHGE4mXygXuaW85X24MKvuVv8Gj5qPxhQ47+6dmj5Wcd77f7Fazdz4OonxSXv1FTQHbim80MKVjukDaXEISyNvDInQ0aVXEwYal/YPQ6Vdm4DEFGoI4RU71j4vfR0tOXH1YmXvCl8ZOstv/jezjXmYs4JqMJ56pOiWbol+xf/bB9fXrmRKXSjWXcrP78f9F3DH/K8Q+g4qeWSks8p2/tWclslByiFzjnTMWZh8Yy4cxiJDeWdRAFbNJnTszn923MnAlPOOdLfcF5ecbivwnanSoRr8bI9LejoXl//sM85o+cfpFaK+2n+bLogEs+xc/egZz7KbGHCy/n1/i9wC3pNvS3nw/deF2D9I/f+Hl76ziORQzNb38grnyNFn1/Lf2LH26slR33h18PBzkUiLF+tiWbUdXCb7oL//j4qHdeIdVzTYlxPwtxV8bGBW6lXfzpy93kXXYRmp6dTjSTKyXrzZ+qfMPhi/mK58ZSr5HkRV8gxtaW4vn06xP0hw8/S74fmai0f3oTTfvj0PE1Seg//fuwOffdmBZGCN56zolXOCdjqT9f/r1vSMZDPCoTtWFXMEaC13fkrFIhglg8S1QUhSKeV8Sw0VIfZM5j7/pC8Rl1OJofFwMVbbQ9bPtUpuaFMscKnWxUptpEK1fJsILeVjdZbRPI2UW+Mtv6RDGnxs5Gz4Mu4f6yro3BKjn945fkQJ8NZ3/84n/qKdj+954Cwf+GdG3tftlUbOIClbrdMKw7iwZp7XIkpb8HnYqC+4MSX0VkNsLAHhnO+Hj2FBMkJ0/YXhE9f5SGR4ieiXAip22flTPqehveDyRjNjfLBrxnJsPRf7d4478if1opz2R3GhSHHaKpzDr/6SWw8c0Ds5z5ZfT9MNvgvvmT8kq0unF4dxj27qkme9oqHUseQ408NwdcD28BsW+Uh8r9epupiBLetZHejTDWty+x28O27J1LWsuk7zjx7mlXDut4VMHjt5zsW4OXPC/cAnBzrElUrHc+7yQhAtIefOLb71vWXPlwRxq+h+SZuWE5MT+8KCVlFxbExRRzczcXCtNXBgk2VPL5RkYitOLlSdeKLZeUbrUKNgcxIcG51LhglK87UPnzpDZ1npxn1l5A4n4vUtm/qYiFuwdFnG9m4jriEf3cHzXhfs1m5pBm9Je+WQ+Ch10SozV3JT0auxXsvgkh2v4zojm/picY+PzD8FOKrP/wXAScfFxijF8Usz97a6G8Yz47y/FIL20B02Xpe7smh5gKUypCdIUdi5X5mo33uqnh/djJxJAXBf513VzgpVOJHCZdR0OprEU4xa8XzQ8155OzgRUczPxF1A/Kyp95y+6IU3gTQ5m38bh2HRFWnROQ/f14KHlyfyWwTklJeW+1xigHcQDOcAvZYVMJft8wMUQyzb9Mn7dONuKsL2BlOzuC15dvx+r55MFT7kTiyvK+mw7fnwROkqvseTzs/DH36zvaqLH2n8+rxC8R2VfrSQ72YYpHJ8hNpb7PXzqG8mT0sPHr/yPtXLaVhZEo/EAM5CYJQ+5yTRTUozNAREDlmgB5+l7497BnPTxLPQokVXt/lVRABFqJlKlvA2FxGYSoTT4IfuHCZuEIVrAqxwVrf9WQrMkkV9AN4gBNwzoB2jY7C9hTqFDNG8KaKWO5gtvuqWL3GixsCdxGg/P5Y1Pt0MNgGqNzCYPbeKXhIO2DWSJDDi12/qMYPud6EdJ8VXZwRkgwu3pgjXv5QMXDy3a932G2iXyG0ludsPcI7vVqzvcKajl2sd/1WjJ4WjpCCXwcaoyiHFDpvp/h+Ner1CfhMoz7W+XsRrita2ZiFMxP03eVV/CIscnOJKPOX3VUIV9KGL8qki3SPm1hz5qE7JplZcuzaipYQutG0/xpZaUz9T6IrOqJYGGzYF28uYV7avZEUOvWpIPMHyGqLUZ24asG5HqJZ+XVZg1R7sHBpNmnd0BlvAey05qMLb6nIGg2rorPcSixr+HoOXwsloj/sHPKaK/4BYwGLsXhwmbGEFgt9Xc/k/PfmHXrYZqVty8YNNqVQz12R/8Gn/TvgyT9HGSjkQIXlNxLo14th/WSpRxSIjK+0d8W35YgLkoo8NyC4CR3A3v9aaK69p8zUo9Dmiz3r+2Ay6oz6t2IHqyyAQjs7gDTcE0VRu3bXEDpmhyR+H2rJjvJhxL2n1Ynyglu52mex1x5a7pIhG4+1fMWH0AS9h32m+NGAcQshvK76JHoEysgtvTtYWm1D4qg0dfkZGsu9Ixbg2o1iJLFfXmr2N9vIVlk1drixdGFq1R9MO7X2hxtuRKBKykKkkbLMnmpmTkoX+YIh2/MsVGwmQPz/qjRZ3fLGVWkV65ObO6w7n1eCdudSAvV/HihqBWLgBggDtUTOPv0D6988FT9YwVJVh6oDuUg28b/DOV0p1EjE6Zk+R6JAh9WcSBKTdqBrYt0hQ9vO4/94eum+Msfpa7E1H84JGHcQyjhvIQ8WkeMzL4wH9vZKwvBzq3ss/WzPHOYPA8npPCUJUvYzha0skbG3q1rMzbe3RR+Rdel94kOw/oXcyloEtITQTzXwzL7/rYygR1o+Lgfs1FEzxsIz9OOuh3nJoyURQXYuZCppepetiwP6oL16AwYn/qdOU1T28DK+A7UDMI5WF1hKGC3QzYBcaFnQ2+qmrI37Dvd5mPGb/EGduOfREM+GxI2ewgCb2fGNMALMllOUQq2fESUzH6wtZDzFJi5DVCcCVFGml6/wtU+befqkGM2h4Umw6y9Zhi5cznMUiNDMByr9+bJ38HaN3Hzi49IeO7XYYoAkoG9u+yQdG+UZF0elx581aWmIVTzYWVrZ0DbNHjCGJD/vQ41WZLQ6HDPZP2LxdsvHyCll/lkdUztA2DObtT7Hk7BGv8VHAxa+4gDEBsJv7bBGZaHg00DsB+TKSaGAcvXKaTXjP8mPQxkBIjyLbaOf745DlQ7QktRVySotRtI23gDn27cU5OdUba2oPKhd/j+0cM8EHMWlfUMVy1FNFoveFjU5MkDfx4u2JP5oiZ/Z6sB858xIQExmmzxq4cZcs/47/0ykgX09AbW8w7gMF0EtvYkspSd6xTYPmUemK7nwoJnczFQqzz0QXxOyQirh32mttnV9cSpRQoO109GrcOhYXPXqA34y4iIZoFtDKYbS3izvyl2vyfBZJfBaKG302N8MTuz7rxASyFalyNZXviTsSzrbtCWjQN2PvGctb98dAithbrq6JjT9Xy14MyGnOy36/vpEcUPdg09PN/+sOKPEaqXP2EkPAU2ECv9BkFSMIID7FvBQnlxhNEZQWzfepTNRcUZ4O8eIxwh8wmY9g2q/S8/eTN3DNZKvCFwffEJDXfmu56BeF8hV/5phJfGbJjHSbFgNjgftAsOajYL+N0o2t5L8a1/xxkbGs+Bw2AgeuA/l2xpnrEP5XfeY0+tjIDtDryvtqUxYv0p7NgymJUGxde3JODeTsGmz0rog9nC7j0VM5qnCfrFC2r5mRFMoP/e1LjZB1hbn9GwRPBhwUoLTBK/bCMZtveDmkxXwmVzWrPwQwj4PT/d7Lt6cuT7GRRthAghxyaZz8ZxhvJ3H1MT+BDMNpnPEF1EDimbflwL8pIV1cJnxCoUmL/xCW+XRMLRA48Je8q+DGaoafSnV8fgQK+weK+faR/aYjbx+eKqaoe+VBuLR0aWoub/6S1XK5p6DdX7DJxnbuDkRJft/DMxhPCbGNSBk57Ry+vmQ5yWBDuH9MPmNr/HoOjVO/UMJQ1GXaEG2PQyfZ7j+9Cdh3cPnEOm44ikbTbxn7oFLtKuNCCdNCzV0BkA5+qVOvb5wf7Fy6HEBj0AYV9T/mCsak+SHO0KhQHGMgECfHMcevhE72AudcBBWQgOCEr8dhbPHX1AblQVtj/5OVkk2rqQ7fMAF9mcDrMtVzy4+CCluLtBMK9tcIVR/RWR0hxTczxf1FlJ8j9nqyFjwJQrRjDpGkBturzY9nkR2spWc3DcMvig7/EGhXTuSVzt7uaaABdA6L83z3A/xoWPI/BuMipXV+cXr6jOOc/kp8+B95fwhO7Celhf4amHu+/zhrVyLZP5/cCx4lD/Sbg/IUnIg8oOTOUakEQ/yvXItfwIJe/MIXWYhIA2SXGE8yf7Umzvu4Ttw/MID9mCqH+s8mQp6nUED+7cU4NAPRAsXEIgvt4lAeVGxSk/hWD7/VgrFgyoCTQCB/M4U+8bduznX6C84xKKksQIpPBDRklJpgy7f0UxzLkSNdCSa5+GdVoO5Bd/3+/zSH/+YLGsMoZ/R9ATkj4iwJh75ECbWClNedfLJMucLPAKnjHV1G6fzJvfgf7MyTjEmmau7HA+gr/7EWE7Ntg/vwUf3LXf5kNQLyh/IdW4nBzsdlybsWJ/t+DIn0Yyv0E2LNY9ySFfKgdsFUI1LGPoXMGe7y1q3PK/gfm8OcMVTneKg8Mjm5PolMOTc5UoJpOfLUflKKvmfesSaLgfk6n+rYJu39lYb2pzYFTrW9iTU079V7sbyK49Eci3r4r6eRoMfPR5I2jTriLscHLBcmMZhJUPMXaTWkoG02Ix2K4HR8N0Mdc8HQlcFMYj7g912Qov1QjFEzCpNlx0sPJLyoM1ag3ynizE5pVZBlwnDWJb+h4zFn6hArf7i2bSfDJaWCdePWe8SY97gybsYZeaOuWmj+YreGWzW0YOvPoWT//l710+8VA/ynt87/gmG5h748Dx9NdQexpubGy8KlbdB2FklZlm8odXdvzpISQouAdrzcEKWOz6R7HNGabk9/cYlt5rIup17Ov5pb1X1SrMkuyfqp3wv+ctGLRDSteXGQND+oEmx3lE1AuaTPv6FIPLlNtYP3pmIHy4mwZ+/iEYUmbO2fGgwfn+vCAw967Za3l+VUY7vGAcuROboWZdobhvX4gGh0fC8xlfwHwyArrpE3PSsmcPh2m9Uy+e5oEtRXyFnV9dMCaOltBS+8Y/vYR9kH+ydovHYD1aAw2/lwPY9AaEf+AwE5hUSzZ/2tYFrxotZHfMB3OdLt8rCGnU4gP/ETK6dIkGT1f9TFTwbpJ/40cqVwWlj0nOmN+fjoBTG55GvNoHq39+3VSbDhVZim8ABNtMLci9XwztStBkZECnEEqWG5DyYMYB68CthWv8SgjAfhNM4eEhwukq/qG69StG575DshSwD+LbbwvmfdTdQMXzDB+4amSM7vIUqPfSp0EpLcPcJOcVwj/ZxY8tni3Pm6LBQLus1Pz55W38gTC6OZt+fpmMalULynriieiTJliKWhnhn44jJESlUa/m+yiqJ+JcqNUlQb083pqiHkd/pvblejI3PXFW/4qHTrhw+G5nQbYOuJ5lnZq3OBn46U8mAI4Pgbq30EgkexpaGD01F2czLcH2PFtYBM2T6pOWm51txg6Eq4WxNlxerL3o/gceu9HFYZhM5lg/617Vk8uLbno+mdCprKBnu5RIGx+YtfYWwiKLIUVbfh5xWpzhV2U1ki6GZ9KgCyzYJGNP7z//K1Xf5sdzSL/Ft/nRhCHgPb9FseiEgHp+FIJNr1BLLA7DKnxiF1Tjsmz6f05mX7jlcLhMN7KGg8547xLe4CNjO4q2+8E6JBAgf0FMD3V5ApvfG0HMv1tqBd3V3OrVDtxTvUdvd92Z9MoIp4wHrqS6+hQS5oyXApqfvYuDR81nDbZrX22cXMDOiNqAbn4PJLz1pmhdheHHa0C28jaN/xQn4ItK1BTV6SD17e1sSYz//L27jgeiptoX/NNL1/yV496Yr+acgWwFojUgbOP0nix/XN6C5wO9cPSVPvUndOMS+h9vINuuczDD4WSptqnxNBDkPOhG+XVUjzrsiWq+r4Dn3x8Ipi7eEe6l4Zr/8SUtrIZ/+mM2Tm4P55rbbTWLGSzWPSt+eg0p5SVmmz9zAPO6gazBCSSrK+5boOrzSH1lrof1+oxi+PNfung8sjno9A8kWXXAbjC1bHX+wAx+vNCQmRZInhaPUNWfHpoLewrGZ8i3yjb+qW1gNSNMfRE46fULu0z4mlt8LLe+KEfqHtZXvWRYLaF0SjVUzTYc6FM2FMDftj0SqtibxEBSDM3zalJLd87Djx8ok9ztf3ofrCkgM9BkQSIzlZi55X8C39E3otGh5MzlIAU+/CueOg2+z4AJSe1d4WsuPlh/4c/m1/UZKIXoU5tHytDpTlP8+Ok//rk4hinDsNcEHB2tY9IOJiihno029jgBsRmdFAP8eKyfP5vNTzoc3F2uCYL3ojOn8vro/80Prz4Zw+wFd1ndeBU2oNHUVG05BMIodZBk1Rj06q47/vQNNSO+H5Zl590AuGUB1Z/owti19Dh4JN8bYe0yMrIPCQLX5lNQMxu8bBX2kg9HP3MJp+hpMFv7vQbTFzI3f7EDPx4ERj4Z0fdidMF85YgP9x0vUU//RsnsFaICx+aL0f5xjDMGXqUFQaUIaP1THJN/pCcC3zdHIpKN13p91q8QttUqYbwPkmSdrkIF17MKcPiFC1jMtGu3E4gJttQpDOhlJ4hwKCODhu7NZnM82Wf4Sqoztjc/xi+xxMEUDX/UuT7vYOne6xEOapDgsJyiQeDnqw91tf5iB3VDNr0uOAf4+9QQTP0AyL3tjZCbzQfZmScEFt0Zc+jt+SdqzK2v1WHMONjekgjtLdDXlPoPF2zv33jzPtv8dfrjB9h+C37yyY4Kgpx6OmGX262sFa1RBueTJuFk1pakvbuzDKgBTfIRRSOZcuAfoaEc79SPW/sfbwERlxk02PzU6pVyDPi6j/Fh4z8rx7cNCC5cgAa38gB/3fHXn76iRnXD2xqYwoLUaEv0PptW1h/riQev9t6gdZ/2Zvf7vnj1NKrd5t0w2sbjBjQxwxgXAghWZHMuuHNQwZrx0tjyzoUZXu/LCUfu1giQ6DOvJn6o07wY1YDsJYUDCB2eSDrA97CC6yzDjcduPFrKZrSdTfJ4pXfqaOtYr6/w3kPhdjYoPoSi2cWGGkPWBBdsdJXCytnPWkgeHEX9jvur/33/vTI6shuKNxsL63aFxh8l2PuyBMzsI7gwEesIG0NrMpH266ii29bn9F252QRFLVblNYXom8tSTaqzAKHPoRFr0SdhfRprN/WIw4IaBm+wxqz/cijfkIBE9W4FEni1Ftj4O7bdQDCX5nwv4EofDTa7m8iYsHhXSNAxptlH1plovm88fMJvhkMaXLMl4JZczaYaof3Sr2D2fJMABtGV4q3eIvTWjFSFwxbd6g2A3deZU/M+1qhhGVIgdHRcIVrZkewNJCWsCl1XsR/VY3sezbAIx/4IzSVd0cWXXVM63TseVP2fR82Pt2a04eVK+Y3HE+fskv7O/Bz09zQkv/ix4HdUQjk41tTrXH34xXt4KkuOngpNByL++KHi5UpEtba+BmSorRR8wRngrVKQEUtWeeDw5ozt8TYGq+olIlT1h0e9T/kNlu6tHIFe+BP68U3xdQ1deK49iHVE4cAi19OAsFYeRXjXgEXlmg/8Y8UF7U6mEEyb31Vu2ugTwTpGYMyV6APclRyQ0D4swICYxGDz69i9sTCjS5Fe4aZ/aR4qUkCE7JTDpzHKNC4eX7Zs/AHmdjzhwxU+wfIbf865F8lrTY3/8ipgwxoHggyDuT3dNh7XidTreCuZkyrsofVJbdIZSmoKxjwYUBa8Az06uRvw6aEa4S/+4p3sJJLwcVu4568vpP7t/pJ1Pi9nuM0XatB6CBa/fcrQ8Jcc6wb3AUs67z4g/uP26NI+GjD//CTdJQhxazDU0z0pHbUvmt2Plw1ChoUS3v9wTlr3zMxNH8p7sH5jJKHnN2k1R4XApqqN1F+9Y3qN5MdX8d/poINlW7SiPm2vpNrBXIP1xgUuNP/QQNauUsDUdFYLh2O59dq/TUlv0uAM+Y+jIDVezGw9D2cf/Pz0T48xsVFyiMo2QGzTz+tzSgh8u2lKnboX2AIuEAHzUCHqnjptEIpUC9XnlwTYqc0BLJKVpP/843qKAzZX5Z4H70qxcCQ054AKFknB0raUKI/plqzI+kLATfIfvkwWAs1hTDh4zkSTmvT+DdaHVV8hV140HI3nXTJtPBiWYBWIMN5Cc3rsoQW8Z3vDzntwMuFBwA2eTAWTl3zSM+KzgwW0D1mp/VJMsw1X3lIOd9Okh/KQm0y9nEKYteeMuFphDSyzMa+AMo+wsUptxjqkjtDSbUwgXzZmr8MyheGextiG0juhGD/dHz8gO+c9BkNnBwjiXaUjRu9fc+ma0QLNW6Ko2TuVyQSFiaBoMcIB2IfJP7+x6R0ceS9Ub/lY/vENpIx7CyyXZ7FCS9mtVPP/aLLx9wLG/LelB6vGbEz+Avgvfgbl8VtPNornH88ku83PszDxRrjvRIls+vhffRnGl+qEzZ2sJTMUggZel2pGfP96DsSuYA43HoOm46AkS9NZPciX75689g0K1iowi32CbzzeeFpC9ZPhQ2EElDp99Dds9bNZ2aVRvfHG6l++U72x6bF9UTOTjn9rCA533STCnLBkZg+j/9VLkNKrUbDaEu1h7ajy7/0BEyxyA5t/o06Vv8C8xXfgXx8II1rICXneyurHP/CPTy9FqiH1HbhvNDfToV6tSfUBX18pYn9zZa7zc9V+vJzivwFnohZ3IpxDvHVXtMthTk8XBL3lCcjeOpc1+Tq9As9DWVJdqh/DeHdlRW4ISqj2Pp9qMU8bAo5in256Mq3n8MtSOLW7nIi8JdbT0b73/9+aAvl/rynI/Z1JVjF5BQtK3BSGtTPTICqXeuKD3AVDGrkUHzeWyzxKANQ+kDpaVNeMpaiExT4BSFpcKyOzduqBMT41HOVjNXzL+5yqhz3xMYL8d5g/cpdC8mYmkq5/LWDpzT5CpD5b1ImSNAx7zx1hXr9jamZIM1dT3DJlijHZL2E7jFBoRXi+ajWO+kEGk8eNMXBfH4/iO+iHtRlLTbVAMVHfDIptHbNlwbN02vadPXAyi0wlIHahi63y3TGa9m0FL5N7wmhfimyNcYGANbsqThCgA5P15AOIRC4YfSptWLlMPkODu8U48/RHsAbV0qs5HmICqvXF1otOHfi7fsM4Ctlys04OjKL+iP4OyE7Wp3p0VVhtq6urVWe8W4UWvIaPHKPBCNj6mFQZCJx3oYb2drJVgccb7BZrIk2aOcEcigIPJzP2iHgW4mCyn1a61UxO2LzdG3M5v5EIT93CsBl82mDeXYocHNIixfi2qPU4XrQrECX4wd76NyZjezyHMCm9mIb5hdZrpDQpXFGj0fs4nYPxxdU3ePpbHPrEqg/W4aSv6rXMctJdgZxQ5e5cofnoDdQpQZutjvkttl6dOsagujH6zpYQJJ+ZYXcpSTBDoeSBUs0nRNRdkIynwldgxCkTRvSlJWz1NVlt9yGhLi8I9bJ/zuG+4o2AGkPAJ92uYzws8jYm8+fbgAXQ0gUd5jEuljEFQzKURD2++BSnHv8XsGoZXGgRd+tNOGpgazSIFKGS3lgvnmbC4DU6gy/yNOzknsEEuJtmeE/+XLJzuMFkl6uVKwSmDQ5JQoP1pYw8XPlqIqr1Fs21tBMNHD9lh73uNtbjFD80wLj7jZTDYTbHS7/n4fuivWmg4LFmOjgieC2vOvarDLF1VT9H+Dh6JY2+IhzG2ZpkMKcRpvqb78G8++5HMO/zHUb4rZvCwiQNOgGnEMHR+ID95hdSHy0SmgUPrXHTcpXyxxpbafYxGYI3ERbJH8ZGuJ9q+tylR3Dyi5aGpzAMZucdWTArbgJFF9qwd/xd/R0f/91IDhclWAp0JtD32Y7sz06eLIsTn1Wa9WcC8633zu//2ew8InF/fLP1QjgLjFd2pWHbluZyIFsPuIeSoG93brPlOasf8M2eBQJ62Ge5dC1asCOWi+3o3IDFFbscfi1BJWLuGWACxsmHetxc8L/5zJXhB+gBx3CwHEdGPt3WVYW0PT639zdjl1ZN4UnSROw+jdqcS+/UqIpZvWhoyQ0g4z38AKd5exSJAU6WxwBmONJ7g4Okv5hk4G4zTCOlpe7TMINp/5RDkO48mx66c5u08daXIyuvLnX3Zz+Ybf9+hdwneSO5rkj2KlA+QjW9hfgQkHmYWe5zMLpBnZ7CKq2n59UTofloDbzBvpoN064F17dxJLDnDvXU+lkFK0PwsLGLNTYrWkPADok3fFi8LGAyqT5QMxwX28WhHOg4vTjYVt+Iug/5GlB2n3noDGFPD4nxyiaDF6/QjOgD9ZrwlxFTrGaoi9UZBylnA7ItrYKEWg4RvRHV890/zWAK+y8+lNdnsuxLW4b88nV/8ShZTvYHwjjq/9B9NrJ6eV51XlVmi1KrSeEwaKy2VPjY36mplI9hvea2Dz6hytHgG09bPNJWQMXkSN3h6ie8ePc4WBTtDpu1GYNffIQs8BF26wolIrCyGIZ+/qKGmOjm2n7ACMxoetDwMpT1enMyBJ6RQrGpxVu3IgohFCrhTVbau2y1Tq6y3zfxggP+fc6Wk00gSGKep5eIPwbTzE0+oKbhEGhYu2z8PS++5fbUmqMX2FYFuVCfZJumVUbANn9i8IL4Sw8Gfg9zLJcQOp+3iMOnPwzjS2wb2MGHTA8w5oZRecsK7IIoQ+3T3IMvREalzsW+oNp3dQfJFgYFDNBN6UlDLFk+l78rvJZnnZ7Uk1BvyrIHpnzksLdEz2wMCdDg6W03OBqEN+jcWq5gW3QRejXdN5jxK5Bh1TIBO4m4Boug3a5AMb/beYtaG7SLdUTQ/cQ3HGi6U69ukDcwrYULRee3xOauV2Jwn5tge37qQG2hVsDOri9kPaRGMt6ldoa/+WqlOWTz/W1XcFnOHIGTOyRz5Rwb+DgGJT2QMwdavrFXmK1XATsoME3eD2MXyroU062PaTJf+r0I1fogUoQy3lyGjt1gcdMLBB6uV8/nOhzBSygHan3olDFkZSO8l8OHrG56D6hWKj68ycuXWnVqs7Vcpa3Gt0uIyBwjWLy7cYPor4Q46vvKZKMwztu+a5nQO+jr9VQdfKg9b2+ciSADEz+XZzW/xjyO/iaj5rko64EHch718VoGrMmRDG/TQ8QhXNKAIXjkwZavkJA8n+byuegtgGLdEuHiSfVgTS8LsjfzcWD8IXMpzZsMFR8/sPb5NmwBbzyCNJJbXPBlmax7/HTg64YibP9xyTCf3RsE4jNbEYRznc32wzjCX37UnsnZXKKkcMDxoaREZZ3OWHg4j7C/GCN1r6aZ0GRoR2guH4P+4sUiaB8NXnVvxIbXOGZ3ibUQiMHthm2IlKzf8pESHI4rTgn2AX8EHff7fiJNfDKs+n5YFS16JBR3zT5Zg6NLoCnHHCLlfhdMZWG1sEguGP/m/5iOSgtaVx/xb3xP1Muu8DY9RSKp+TAslSClQEKfA3YzsiaTN7Cr2ljlDT+26xGi93KGtuVAekiqcWCqmd9gci8u2IXdUo/qzZtBIL8wDU00JiQ4uqNqtxrAJ/8mAtaCuwUvkQqxE/yp9RjsXz7kPqc3NcjTDsafnppH/0X1LFgHNmbOCP+so0aj9ckzUtGXBvNb8qKHxQPBWq69BmPr74y6KI+SGaOYA+9jtiB+wLdaGJ9RvNcBqnFY9GXCrCzi4Qv6IYGloIDJOHyvsLm+bIwzByULX0QWtNPxQQ8PTQ8Y/wKtgknfU8cyxKQ7EHhWvrGt4Qf1o4y94Gfr++BP1PxTcLL6Nb4C+uFswop66z0ZPENgVeKTSJfwbTb0cEeAF09/NJvAO1lC85iDvSLH2L4mVk1298iA+iLa1DaCV8bIn2zAq6SpNDyNUsLUebiB+Bp/qKdqTc3sdPbhd7rN2BwrbluZDmTQVu+ItO/wA5aznziQLBZP3UY3zeUyAg4gTdRwaFjPbLv/rpq++BY/KvETdJ/v2gDdgw7NGhVmswslEUY3TseewS7Bln8UYDVSSMQqcTLC7Kz4N78Z/UvNwY08A8SjfMD3TX8Sfq1yGI2Khn1gPpIZuHceDsX+75eP6uUSPxT4eVcr1Wx9Suaysc/KmbQLei+2CH73UxEN+4Kks/5KVq4GPri8+BeNbhEKVnl3vykmpyrUOzswocGOlkDj+gs21csdjPhlyupeUWLyMpqUzcFnDiFPBwHJ4nMCxBf6Bhj70aRJa6xgbeJt+/xtVKmzS7uEieFfCp+1kFP9OTwYSaw4hTa7jtQnuAfjW5YcmHroTtpO3w8Lu/qxwpL5gc3XzQSS0JWzege76+bfTgMrpMmHi7M8sLZvmmQl16CBGKjulu/JsGA3jYGjdT51sh4FkhTqBCSr06CWBM6w+aEQOgPqcaQfyUDgOQjh+WYeycLHF0BE/xIDlTsH2H6uuF4XNy+gtBMbpIqcl7SY8Txk30UiTArEgL06UYM/ffmxtn0WwL2LwFnEkP4+//Kdew6Tw8uk7h/6BkvlpiPgt2WohXs61tT98rO6b1UNR4hUbBn//AJ2izMhqQ5ANsHYs+BFzo2fP8nmkfIWTK+VRLWCuYC/S+WqLkqvk+VbmMFqnq4NbC8xxXYWW8kyc5MLev6Y4/AUjtu++m8FBykPECF/LGOT6zpQNqUd1QR7W+MySDG4nL8FAo0Kk/mQ6jEk9XrFujsdwKbveqiYb0iY/gD/xv/v99JfPlrpQx7Blq9RWblzNkKhFMHvfmtAGcB8bPfatmFuxGHdi2D+a53yl3/pYewwG3ffPYH9RRtpNO26+ud/Yd6GDgJdfmSLKPQ+KDpupofFbZJlBY0PS7UdqS7kFZvXMDHU55PXf/M/WXq+K0G43gEiNcnMdrbeCnzIY4L956EI2idhBYzbJMGHzb/PSfZsFDslD+r8+QYT34eMByFJS7S/z/wwm1F6BoNz8tD3vSvZ9vwN+PBqjryyIK6FbfxCVTBdeniVYTaph5SDxHkliHcfn2FZW4agVJWHzV/YjJxS6wqF/cMht238t7/8cujYm9q3R5ux6KXMcEVDRv3OVsEqPlAI/ogM0JJqhM1Suyjw+Kk6wsqoDLovVW+wLj93osZmn7DDzeLhftmOeJE+U7YkFy8EQ1KFFEdfMxN//v0qGSo9HJCdSY560uA1T3V64L40Iav6iQG0kwDrz0FlA408GQrfmie81vn1tzMzDjrL/out+2lvrl8rFaH7Gppfv5tsEbPQUu5AvaJkfB02faxzkLcNhUbhPQ6W5BEaQPvYFQ53jg+WhPIQXu4opmZqMXP6UuEG9eZr4FA8DCa5kjaF8ahW1E+4dJjFuwfhGNsHHHwOXrZc+c6BQyj31EuV1zA5Z+2jwqYE1F4sLVivXh7+xv9UQ1/85T8D7oO2IoIxhAMfnTIIxMfdpgZUZ3Oe/DhUt/mKC3U3ZEsk90e4xW+0XIdvwtbYJOqPR0Q7tTPXWbv3sG8uElmKMjUZz48f6OXYIt+vb9Xrd9mVYLihDJsXmyXrwTzN+z8FjdQ/9EnSDsbbgurTyRB3WN4m2Z38ECYo2tHHtPPqOd3VDdS70wlHrNPBUtdODtdpH2x+JR+W/pCW0CP+lVrM5AeCHvYZNFh0f6/Xo2rfeIVFLkCbXqm3eJP/+A4NCUuzpZX6CkRtElLf0LLg39+bX8A/XraspZzCzW8jIfT0YNPPKwDssidruI+29RNpDA3hgElzyp1sycWXor5RZv74CWB1sdUQb7sD4s7vP7Dcw0xWfv401PZgYGzcFYBx2Y3qJvmC9bxvEIyi9kjtpHAzfnkGEFJ0P+GvpGrJosePXKl22RWHlOPMafwzcnDqGEPviycNQ9W1Z9CceBG72/yau349qu2d42hQq+9h2IvvG2zLpqTh+ZUMgonPBfS64kAd5+9gCnozjzAyriVRtnix3pik/PI1RgVphrUnrfjjJ2jQwz5ZCFFDkJylF0Wa+mT0jPQeaB/jQDj3dBymTJQ+IL2WEjVtiMGm51NlG69k1WffXLjXosH7O06ptoIxYG/vAQFwxuO//P+P51WVs6eusrv/eFgBy8OSYbec4mTNNSLDjV8QxT4PbBXpK1fZrRhR7S5hwDj5gwB5uDz1HzBNNv9JIEsfdzIkvRBMopu5wFutK7WvDAMac/QKZF2IadSVQjDtOiAC4xQcCS9Vnblm8wtBe89FZN7y8bKC0Ve+orHD+G/5sBkIYgXTc+lT/TocssVzqA92scQQ/3e4ZOv9hSCQdnyDhCxukjn4yOHPL2Frudn1/PzMvTpac0eEx4NjQx3qMQTOMqCkaLiElvj5z2+TpWf+wMapg+rNEAFRNn8z0OivgXecuRTn8wewZOC2PRdeSO2In4M5zJ8z2PI71W15GLqFSQZUufuHbvoi6wp0HmErhfrGW2kyfj7Ih8fDcU9W8nwHq18frsopf1xwgAVj25QWkt98I2rxtwzzSywbZdAbhSZ+ZiX8zniXMG+Rg3FPHybLI6/Y3zvYoWHN5pqtviuDRE3PaJ5OCZvd3lH2XhEt2IHvKRnJbtTAo3JWbJviMZPUeUgBSYSFqBufntfP3lHasC+plhWvbP5O4Pi7n0TeFVPNRCv/gH18tGjaK3W2BKA+QoL5K4LoDwNpX8MC7L75F0e3iARD1ZVXYGCsbnzLz+Qk+2tgOkWMetzA6kFHXgiXRisxFisj2fykAlrz8qDaDifZOChVCKNnr2783BhErZgNVVhnH//031QLLwKlDptEVd3JnCumHsF6bAhOju/WXH7zcePFFINXFSxG6jdQfgaUov1TC6bTqnJArW2RGoU0BavSqRs/3fdYg3etXvKTZkD6Z5ZomJ0nmKIPNn7zkXofCzAmhd4IcZRGaN5+7xyczxC+ku8d7V31xkYMdi2MPvGTbs8rWDZ+BjXDcvH5Q6NMuoBjrwjfF4+x52599Wp8Bn3zJyF1EGw23f587ccLqONLazI552sMZKadsbs/9wE7ns0e/vhLIMxyMD2vfyVI7OpKHfiOEulEOgLXqtSQXE5rQgqh1uD7eL7ikDAl62PslnB2UYUPa9IGRIG3FK5mfKSHLd/w0rXoob7wNr4/0xCs2dyFcOY8hH+8kDW5I8Pgjiwik2EBVEcegk7c5ORV7dDATqQboWncJ6y/eZ+N2Lm5sAnweauPNAmztNiBXb1iIjPfyYTNj4NwzQD2LV6r5zD3HQgX6b7xBcVcbn+GoVoaiKi1xQ/mPheo6vEwb35jz0bDnsLf/CDrVwwBu6tfH2z84lePSSTvEohwqr5niv0kHja+rqgY7FyK5pcU8JteVV9ODAh/yp2EJ6nhQ6O2Kuz19TFbztJuhnOoLNu+2EMtHkc1BvH1+CHLs/8GI1eGDXicBYozR6xqpl9DDZ668YatAd+GfzzflU82YlesZfym9+HGf6nbvlDGw+O5hfpjV1JcKX4y/uLZxsewP1kHcxHeSggKIBtI5oXLMJ+urgPTyb8h6rbmwB87hwCqyBZ2hBMc2D7btzD5rAzx7f0NVrucRaAcxR367I82WOaTW8BTmV3Q9+s3w4+3gOD8PaKyasFQft1TCvePASNuCmlNBLrzlUP+OGBTCkRz4wsEPDHI6aZfAjame+1XP6Ixe2YDUXNkgF8963vAMFh8JvrwdfqMZMeJ3bBOLV8COfKMjUfyGXMjXYOPQ32ikU1N85+f+U7pTG3rYpvC9xEW8C3Dhp6U/J4JWHgdYRf4Gg2uO1izk/coYWScSwQ3nk8WYcihuTQGPdm3Mlv/AwAA//+kXcvWqrwSfCAGIp+QMOQuNxMERZwJKgoiEEggPP2/cE/P7LxAFqs7qe6qCmlgJZEqpMKNrvyJSPNY9tC3bBM7O2cHxs+heINLGo30Y6UADNb9Kfz4Mg7DoQRi0yAXrH4T8+WMJt2dAA6/1p9K+SwO1RR6jQTde+8hfho7Mh55GatrP4ZX/h9wyb/HsK62FTOflOQTunoOMINhwnsYPwiF8mitnGdHqRlPpJuEj/vT8378I5ir7WsAO5lFlILtt5oPSWrBTNxniFrQM//1F4fDSJh/8IRq6drWB+fDBrKf/skn7diq//iKsl/f0TwGDlz7H2bRqku4cgkRDA4q/adPU/7mJbxYsYYPz/c5WYzpbYHk4db4KknlMr2vTwQqsqmpIu4qc/BnaECmKBYO5SImdCMcQ9U6l/qKFyzpNrPUAlfYNVjvOpUs+CFPsCJq/cOrnO8noQBiKoRo6f8Q+Plj8L5/HRkiBln1a02BP//VXPnAcO/mHj54s8FBIF2D+Tq3FlSQPOD98iBg+PG1othM+Ke/0rJEE4TSq0UCe5X5QpJgp+iXuMZmf6nIEg7tDqpC3rAwlurk50eB3Xk5YvvsXX79V608t5yifq3ny531Jxhb5xPW/SwFnEeXGBrnyWJP6f1OluR6eECZNa9/+vFwUTYFtPwwQvNwr8wJrrNSag99UU9ulHDYiD5Y/Qr641tTvo84fEE3xM+uvubD4rEBrn4Pmt5tXnHtMWnqyheQ8ERs4X70uME5uA/MWfXe8T2KNeRiOWLsthX5p2892yJi99Vf4zK+rPGSjtjbbMuKRY1Yq9luCJFEYsfsry8kKOv3Yf2oM3ON/+6f37cFqCJrvY1hMYlnnMrRB3DfTWroMOXXX8q/+tRCwrcXbO73S8VV/RYBqwhV1KDwuvJfwQDawEy89k/VMka+Am9Gs2P7UUwqvp4HMMzp38+fyv/Wfgeqr72H8foPMc+uoQ/Kxw3SM0S3fOrsxvrVD0okAJZREDvh5/cioR2s5E9vRQE4M/iiCvQ+mW63Z7a7bL87+k3eQ/Vb7/+7UyD/7zsFsf4ImY0/GhHtP7UBxXUDqDKjylzMs/uAIHduzGsfNGBR9SpAmzQiw+qxNXnMDi2sr2lKt/HNSCaY3EQQfHYp1rlgmfwiCQq8q7zEnqlBMuyTpwDluxBgFPV6LmnbC4KF9nbon69WwbRPLhAeejOlW/wpK+51zxu8zKt691zfcnqhJIbRSBr0Np9hMOvewwB8usqo6+mL0Lw6iJBu/I6KXn9Iltd9aoEG+EiXAj3Nyb3JBti+2BHJxsWtuPskLpi57OCDCtxq++3NGD7f5ohDCWwA28v3N/zqbYm10DQXftSLtyJ7vYTN+59OpjR9P6BrqW+qboxyeR35U4JjjfdIsC8g55NHBNif3ZqZ2LHBtH1cffgOTwm2BoWaS24dT6qvDDma+KIGpAo8C3JjUpg9fQ5g6vf3Rr4+TzJ2zh9lGcomhPBdhHtmZlO3zkvexv/iefhzGjAcs7EAZeP02NqQjvBFymswIwbXnixNJtpNCOoGSbDm2g2gaX6qwXnKKpZcr/eEQpQNQMSyyx6lgczJ0rJQuXiXloXGqwqG7FwK6j0ublhPTXUZsucdgXVUNpo/Jw1IJy03wHJiCFVa8k34RZgGYDAw4j1Z54NZhtzCwHEp1q7jN2DHAQrw9XKv2KPhX8L85hBC7XsO2RrfantJsghE6aJjXRwOZDoB14G1V7wZ2n/RMulJ+Qb6tdphe9tX5nIR7QfUxb/Nmr8nWF5BJ0I1WVyGQ2EbTEJ8TZUoeChoU0pesJAx96GvJoTCqTaqv6jqCmg5xwrB5e6bf36+QyD3DQsbsZwD7qdMBLdhLDHu3ziZo7B9w0tTalQgwndZzLNWAH6xMNPvWQNIo38M2F9GEQkn98/kY+CEkLaxhSC41iYXujiCG1TEqJdgmE9p2j/+tjeRMId552BeGimEk90SVP4d9URc8wELIYmo+ugssCXpDcFPfpOwjmmVDHpSlupx9/Gwc4LNQvtpPAHlVF9xsv6HvfT5x4Gtcj4wM+8msEBZduHmEw7YfDxiMot+fNtItnKju2EO8m/wGQogVfOM0TwcEx6dQguW/lThkJ8omIfWjUAaDB1duuMxWU7q6w0iYKXMx5SSeZEPBhQqN2S45VUwdHhy5VsfFzik6RFQjfghlEVpRkL7LQK67le4uxQ+dp3eXkYl3yjrPfsdrRx9IiTwXjd4JqqO1C/iCz9+jrdffHAcaadkvrsKBWVfBtiIozUfs1mq/g0uLNIj25z8LW9gHZ1d2mK8ACbxslX7v3uBfS6wfD0fIRT2os0upu4FTO7CBpynW8X238wIJn+rNEC2bY9Zg4ICRo6ZA04yP2NvxZPRcZQYpNKuZuHQfMi4F6ubGoYtYwG+omTe0e8DdtsMInmXvk3enk0NFqadMqPelBUfmenAGxLOzH0JYcXn/GbI1xfheJ99KjJtaHGDy50WGLNuT3ianxpo/6lPqux0HfD9PAtwO39tytnptox3qZLgqJkC2hmDu3ApEgvoedoTu5VtgUnQSAzN3S3E+iutFv7ika9u7LtF837cmrS+ONqOkP5DN082VZ+9SG7K5d6rFFh1uIieqxdwxS+s1aW9sGgzlPASI8IMeO5zrm2fCLrv2KG7D+zInMm4AZrWLMxUYq2S+iZLofi2t4iL61uNXhFB4HnGE9u18V4mxaAx1KLiy3T0JWb/lcsWbh4nh27v0tmcj5YtwL5rbKwtSZ0sBTrUv/yhBXaCOU6Gm4EVv9CyDdycx4lfA+4thOm1eCVcg1MMn87YYLwLORjzvI/hzc9algaymC/DwDN4dVOXOb21WabkQgTl7n0vzBFRTzhqQA8MJo/YC00WTF93Iym7fZ2yZGeMwWT5HwSDQd7TbVUL+Ye0naaseIjeRLIDMUZZobT988rcXQDMmbQvDXoiurH9pURBv9ZP8HQHE+sYQXOw/9QagMMsYddvDcA6zecwy48QddeR5/M3O4e//US3D/WQz2kia8A+HhzsHeddMmKFZ+BtXmysG1YZzPP9PcDLbmMxvOaXvrP9G7pehakSnjfLKERuCxdw/7Kwz06AtQVtoC5uN+hsvGkypW1WKiueMZzPS8W7RraANEybX7zA0N3WeeorfujB1CSzva13ahsOiGXBMQULCF1DGa3nk2nf6yGhJMQDnNEI0fahjsnA7FsN3gXa4yCHcj7NqHGAF3wZhYPzyOcavx/wEXR/zExIsizjrarhYsQ+FZVGzBkehQK65bHDxtHD1XRJdQpSqr+w5VZbcynMXQMVUgj4ab+NZN471xLK13ePrZ3kmltQZQI0HBohEYwDmQ2JZrCyrx/8w/cB3fYD/Oz3LzTa5r6aR7PvwfB2v8zQ2n01VwOKIVehSKV0WMxh4z9L6AjfATsVXjXd1o3htvE5tsNwXuhFknZw9MwQ8f29CwgXjR0UXgGj3D+NgNSnUw2RNwlUSDO/4qotuPCjjhSveFvNkXJtYWK+B3Ywhdic5pV7sdc5Za7jC2SJo6sLg+NXR8LjVFfcf3Qt1PPyjC/bLiVzMqcn4NWnBt97UyST45FBVvWThY1NiMCiKLz9l1+TvGpAvWkqgOEFp7Vevwi3LlcXZqckoBu0j/IpO5dQvRt1gx/KOlFDvrJQNrO2Znr8aYOpqdwHrKOLiy1nSwh9qE0PvftDw46I/GpB0lUDazyY1exZPoHGzxTTOphY6xEzmZJuJ9hrf5gZRfVMFuPchSp81QV+WHSfT7ZvFVAP2hd2j3ermrw4fQDRSnsWJgYJuPLSYniZhQRx11KSYV3/z6wgYcYtfC38T8waYNTPnB1klZB5Cs+ZgjwuYPRQdxWLxjtVPunm/DuPi/Tu1BrMpvdAuzmVk+EemJn6PPkpVbLjdRk7+9ODX72xz8e9OV/uYwTnqEHM9v8DAAD//6RdSbeyPLP9QQykTxgiINImCIg6ExsERNoEyK+/i/O8w292x4ezhKSavXclVS8nX573YobpyXxT9LAWk2V8E8CYnkvsn44XxugQObAqiUs9IdDN5eHmL9i2xhkVZ+qZawWqFn51a8YH+K4ZLX+jClnIt/T80qacVOFtBWGlf7G96gqYAuStMEi6D5pFz/WF190xoLg7SlRniZWsN0G4Q/Pa19R0d9OwSPuLBalZ+/jYYxtI34Txf7+Pj86EBwkLcvwvXmAFbnhb5G2ovfF9m/VQmNMWjyAiVoLzSN9VP6WzGniqE57uB8PzF3O83SGWzBsSjtvJgfw6i7AIL4x6gfDzVw509h9eo/rA5ckStUMNblWLMbraqU+q7sFDSuQTUaRTUK2P8mtBY3p02HlEZsLIERrgLZ4Nir9P1fwdZs8A4gd9sPOeAZgebv5Qj5eswqYjn5O5vU8y2PIpar22ZPMr3fWwMfyI6vLO22YDvRply8eklX3gU2hOD6ge3Y66TaQlrJ+ADE5TYlDj+OxMar7PLzislU+R2S1gKfmWh4+bBhCj7w9jTJM8aCenhqISnCuG9DCDEvMEum9XcZjp59xDnE8xtYpL5TMrmFQgnKQnduWs9Jf3bpfCwVc16n3jzl8+nCYCe649bA2BVQkhACqAjvQlJU3vYN0xVIKQe0lk50f+wOAiZeD3uTt0P86sWu/HqoC/9Fjjg4NS8IdfANw9V+xNkuSPU3lxQM4NPEp8qrDuDw+fh93+jx8A2udfC0iPe04tt59ydjvEIoxl9KWO3X/BEsBHDyxq3Khj3ddkOhwTA4oVWxBJPl+wyHF9hfiSLNS/B5O/6scwhVdN31P8auVkdh33BTOfdNh953k1Dje/BYOevoliFiZjn7PIA55BmwZLKA5s81e4/F4MabdyHJYPJ/AQETtBv4PYs7/4AcynfcAO+UgDORa+rG74iSRrZg/1hkdA3SFvw2v6sDiHeYaH/TnGRv1Wku197/CVlioSH3IBRqxVolYH+5XIrBnB8vi+Csg76oU6D4lP1tvoOpAV5plwQaD57GKn6d9+YPcNDDAPAhoh13saDt29NbDidbvDAu4w4oKxTvpI1jn4t1+ewBZz7gYW/Pkf9prcyhdDbK5g34gPgoEpJXPRWBzk7omLnUmuhnm4mb3mJdDA3jPDpkj06wMchDLHh8gjYMxfyQjfVlyi+TYdTfaVZAKiphfw3uuIT4/+eIUuXWX6h7/W0z4twd27t9TbfdScLlEzg5csYiTQ1zlZGriKsFSPL7SYfJAIcAoDoFUtpDj3jGHlLiOCXypeqBV8Yn8py7uhunXWYK+/7ZN+4/+aymd7soxzUm1896UWy32hoR0YQJjMvoWXkLnUz+EtH8XsnYJXs+PwUTAOlfTn/36lKEh+zzlY9m6m/+E/ig5SWf3xH7jhQ7Tb+OKiT6CFGHxt+uioDsTZHSCEk0GoaZjJMJsP3lD/+GHw+0TmTDo5UGHqjkThr1+T7jMXAjUyRhrwhpy0ovpAf/77j68u0zkiQAXZiriXdh2YbuUyfL4MmczDpc/Zs/vJYCisI93bw+Kz8/Epqq8W5viE0cMfHadH4NVoWy/n/pNT6a3YoLj3F5Rec9cfuPdxhYjf7qWd1Nxf6xZaML3rE1o6cAKL8NBfmvV2vhjVuu+vTWaV2n6N6b/4vdynxdJ2Y/hEq3FlYMNHJTyubU8dqXaB5DUhAlfeYEQ2xpatT9uN4Pb7+G/9l7YrC20x/Reqh6CuGD0msbbGLcEBuFmmpLfRCq1qm+UTV3NCurSMta63BMImjJK/+AKtzL/gw0kF5qLo5xp03NWjzyGgbGCsd8B8Lt9oXUq/WtRKGWGlNIQ67scblqc48IBjur7Fv3qYHacMoCHP8zZ7wvUn/vEJoArSlb5TGJsMiScD3rLLsOlR5pZ/yX9/t9fiY866kQRaNjxO9P5ujIFXZIVTPTFWqW7qp5xdO/kB5wKuf/bIJKFQGyibRofNuM6HddcuJQgV4FH7/L0zmsHWgM/zvkeXzh6GKc/LWBv9e4jxbp/ms6nLEFzlV4rmKo/y2RduPCTv256+gSnl6xafYM33T2pDzxpEX/UhOHxslRoXbvEX9I4srdgvZzyVvz37wxfaYKkB3r7HX/jm+QBEnRxs+LltzuZ2Zs1NXyti798EyM0JItj1tkCW2j9U6ze4RvAP7/kZinzpPRcIGllt0YgEgSnxnySFr7BNMZ7RmU16PopQLd8zkjrbH1bjGvf//F9bdqT6i0/QsMeI2jjSE/a3Hn94huslXI0RWgJg9Y1MwzyW2XK4fUTI6q+B7VAf2YZ3etBD06VmIK752hl8AC/pQP++zxxNfYaQ9FL6D4+v1uXkaT85nrAtcBmbyJLMf3iH7Jzb0aTLtag1UT7YRHwvTsKi6vOCN1aY9Fjdv+bymKIUDDGr0OTu62Fl96iAvtdg9D3+zGpcAfcCUdMKRDmgKScvjfTq/aAdqbfxqdHwG6Js8Zba+nPP+PuLf8EusSwck6EBbWy/WtA2e5maAg/zPpu8HoSXJkZiRQ/5P//SOM1A6iRdTLb5O5zH3MLeN3bNddzfOCipboOmP/yfz/sZ8GKVEVWEY7K0bFdCNf95hG/Put/tp7us2dx3RIQ9ngPbzU9L3fyP2tmYmETivjWUXy+A1JXDOfMlEINgj57U0xZi0i6+NfBS2m+ktUmbr++PISqNGIQ0n0qRfb63F4HjNB2w90kDf32WVgpv/aDjA7gG+aKIegFJwlG8z6qvvz6vkaW6+v5ET5uexbhZEOFO6UN83OyHyd03hZb6GLH3boyKTy4VhGEQ+dQe/Ks5PcVBhE4XSdi7f6ZkfDxVDmSacv7Hp2ZHhBb04QxItfGVJShufyooo8fV14FwVY412BWLT5HQk61PyVoDz+5e1A29X75kFNpAG3tvw4s5EC93IEKrao7YOITnYTV6h8ABFDc0yzsPAAn5Ojwt9RXtar4xF3w4PmDPTECkZ8BXq12MPaxi/oykDU8zS5Vm2MjLk/RxNW/67lbD0Asbu9+fm0y2YHnQ7x8mRmdME3YaeQixngfY5y/XYfnBuw0eseZRJ3d7sOEpHZ5rLqLGpjeslOxrmP8WTC2POcPyck4cSE3HwdaGz9f7cSgAMtYQ8T/0Gza+9IBgEXnEu/2UzBd0lGFVji7ehy/KaEfSVt70eCLthNpnd0u1IE/7GRtn8hwGey97avfqS/zHbyTtt6+hpHMutrQ8M5fknESwyR5fjLTG2fDhnYeb3kFPz50ElkLoM5gI0xXjQ2nk02avQFzs8zbrRxumTf+H00nFVN/0UdH8EA9E/kOlG15li5SEDngq6Y4obuDly6ZfgX/4Yvt9MqRuAS/dMaLeJx1NJqJhhd15SAmw+SLvdShH8PhDF/yn382xnbUQxf0eKeNjMDvnMK+aJcg7RNsYsDG6oUA9HFb2jx+ywHVaKI0RxuGWr+absVyVDa+SZV9fAbtbq/UX//DlHN2rTR9G8Ep/J/znX6uK7+jPX6nrBl7CqlRL//Gvm+iccjbmQQpHsXGo/u0+/vqnHwTweiGSXOSJuMUfsOFR6n2B5v/FH2g+rQN9bfxDWJ49ga+b9aOW+dpV823xI2g5kb7d0TvlyxfvR232rOCffsjzi07gdXLC//Tpm/eAcMyjPT6Da/CffsIJ3wiVf/ofBz6Wph9/NVrlS5izw+zpEIRMpN7r7eWCLH5i+Dw6CX1DD7N/9vZnH/6sGGyJz7wBohBwSDPQF0zPWlthTC8lxs7t52+9569/+hYR+KoH82wpPGxk9iTj9/QYmP8dX1CCjkmYNov5itN6iw+xhHZK4pvDhgfVTQ9A/DuehvkWom2iIz7SPz5BiqK3wLc8PQg4H3g2Akl+QXv0Woq+82XTN1oIxP1LoUflx6r1dx5meGriE7mZhQn4IhG9f/qqcQiFYb0LaQ/twxVveq458G4dFFDQzAs9fPjYXDZ9AP5ORfpXj6sEFPYGTJaTRI/6ch6kzBZsUN/SjG54phoX62b91eeQImw147eqBZDrHe2f/j6d09sMcUo+GBUG8uetfqTGatfRMBFtn6lBu0LZ1Dtsm5mbrNexU8HX/xhUb18lkD5njoe+7RHkrRxONnyqgiY3YrLytyhhp8oZQYZOCtK6R1VNppOWmvGsBYyHwatof5pF6PnWjoaHEQzT45uVf/UEwomnd9KxpwvhgX04QlJH8qc//lrdJBsf7rso/+OHSuJYNxoCywSz5U0BTDv1Q13hUyRzcqk4YEFlpia5dtXaWNkDbPmfeteTAsZSVApIMxPjPz16uT6DEm74iprNPahWZIgrvI+0QMqnC/J1B5xMrYppJMOmt6wHxDXgcbkPeMv/Pt3WHx7QuievlXXDHF8tArkvfWB3F9rDCKT5AVV/61veUZ2Jb3Zq4V11IiS7n36YQ/6awp7tARFxpOfi4voImG1xpYcrhYCc3ab8t77iqitsvJ5bDlSxeKbos6pJd3sMK0g7+YPR17Xz+R58W3iYOYLdokz9pf8cOfj1KwP7fr7k1PM85z8+GFdRvqKGtUBzUgGbevLLx1cqtfBPD7P92Eyo73bXP/0NwWTYmX/+B7d6BmJiWlXrwy4NeD+LgEB7D8DCy2MMq4KOf3gloeTuiTBZEmn7ngdjju+322UoEUHjY5rLPMcRnG+cjk2fKmChxseBMvoeKVqZO/yrN294Hm96ZUX3xQvCSW5bnCkw+U8vIRVfbX2Emmr+5r/7v/px133thNyH9gqkoPxhHUE/X+Cdu//VJ6lucySf4z4vwPVKRrzhY3PRT3KtbfoLPiq6MXxlR/ZgR8oMG+Z7NJf3TsrgVk9Fvx43YKvHIRgU3AEH2nEaVgj3IsyDt0OPjwPM5+jj6FAKih8+4jo1Fyk5eGAhz5rc9lH0z3+UWYiO+Cr7ublUGsxgvH8EaKV8abJ3UKVgIe9tEBBnAx5xVg3w+pPJcv+U/oqbWFa2ehIOtvi22KWQwj9+9dn0dbpc2/pPnyBCo/ySxao4EbCc7kgh73qw6NJPBVt+wMEJxGwU1RT9/84UqP/7TIFoThENouvNn98NDsCn/dQ0HImYEKmwXtCxkz21q12XD6LW8+CO0oCm+2RnjsbdgdAjzo38WmokSzeKPJgwwtgPfnNFjMPjDg/C94FxZLr5irhTr51f3xxbp9PB58fD7wUPJG+R3KjDQHG7tYT5ZjI1zCVJ1qZSM3hHWUC96yMYaEnicis6EWw7TQkYMnIDHBlvo/76GIcFW4EFvfl3JkyyF3OZcOfAauL2RDXEsprLtRKhcWstvA9vY0Lf3GSDn8DP2LUSiTF8LXpgOfs9vj+FaqsR8QiuQAqQop7kYdrJEgH50bfwod6b+fLSLAO+019IFlD3jEXlI4PmbIxYT9rOX7VytjXXGhLS1ad2IF34u0P1aVkYXRJgztd3EWmOcvXxYfqVCXtdvQB2jrf1VhuKYb4ai608o1bEdtqE2739ZwS/8RjRpFaqnFlxi2CoBRF298poTs5ielCq7x7GPDKGNbosDxglvwp7TzNPZv0Z3YF8X23sr7uRDfE7UIE9MpVaN+uXN7V3b8AsRg/6/hp1Mlc4t9Xw14r0Hhs6mKG/v2unUC0I/NWSORXPwx0q3rwgMflp/qoyo4cWnGts81xdrUiabfiq6xKj9GD6fKkcrnAvTCa2qlcMaIFuCJ6iy4OIy7Vn5My9dfiQ+wKVFbVMvr0W8Z89YG/sdtsN6jGGg641FMfRmI+P2/4OBXt3wUF0VczJkUYCq2ZG+PKuunz5BUIBq/b6oy4wi5xdz1mjfvLexME4R/4ir9cVZuzco10cBYlkCjKE4CxDHHZqnTDhdGzgOCo/fDS2c+uPfMsROZ6QJLjJtl8Ggtepi7G958/VKui+A7rCu1F3kraaLzI9yK+qSeTl82azkN9iuamqJ1rR3JlLzc4jNCy7J3PSdmZd0/QK7/XoUu+Ou3yhh9nR0vNck7zcGabws3MIWyu4IPK2tZy9P5oKkS3usI/4pJrSZOU1+2eFRMVRUq2vebYgdHUbJ336GthnL0WqabwgEd+64rNd1UEoXXqIvkXuDssnMuIdseYzkXXHNenlsM9gFtkh9kIzqphP0xkenl8bdctzn4uN/qkhe3SEWnKfVUzzPASc79ujVv2s8sWtdUPz97lE3h8xAovs4l4Nf72InddkmnP1bUdYHMkFwWF5D/T8PtawnuBIxuiq+MQRghfUmvqz3YuKhg46nQc7/ypg3eqSas6boISPwyfDqSlX1eRb7lUAEEDvv93WBx8AP5uLbBALvg0nps9h2pvrof2J//zDOZJyWBe71DXrF3p4n65OPofJ7wHBWYXU+YA8ISGZatXIPl/qbt9LQXhrVX3EkKL6ELLhxS93OCQxwr4XWowKvzOCQuMXRDjhIacPWRe1zT+pnd93Sc+5iQFfJXSpvwSzudwbNsLvHOv0qHM0WR3HMWQn0TF1iqIwO9loLPB63gk+SvN2DjfqbEhkc8XeIULJOMeBDdVdsaMhVbuqfQpyDZ7VYSHG4nwr+vf8wNsz9jphYqMgOw9oZNUXzb759ql4v9tQqq8e9ocmYnOY0BcUo8eLhg2ZGT0PnwKeJqujpnz4VKN7tzOQvpqZyF7JV0tyT6+wdZKBCG9jZZP+OY2anJmI2p9r4TOaPjLov1wLHwtPzudmtDjIk92eeudIMZf8NjdaeaQT0cpj6dfaUkfw8PzZ2NcClS2HxXnBFQOBgKkRk7E/X3k4gLiiZnC0zXk5OByI7em6+Z9QrYoe8lDedZCUX+pWc+6eM3VQWg+bNzUcSPI6j6B4yR6Nyyrb7tlqHODUIsT+S1/YpAnfBibTcUddTVrz5aQmOuTyzEKC+TAr0bmeI2g86ZXiMddzgcdNCd9tiZBixtu9h68XwSyyQnoJLkO+SLKawfAOWiTNsAejKwql+rn72va8MUjz8RaAlR45ah/uNNnyEw+T3f1Hg199Mb/+7+6ohRAdEcesKmmlUxvB7001kRB2yzB9m3sDH7fHhcibPS87WRqhImcfsrtGC1gNbl2Blp4UdA3TD2sNUXaAkJAvdhblk69t0csw1VaFmrVi5lSxjt6fv9G9tyuG2cqUAki74UQPbbv647dVRSje4h7tPo++WuyXBaV10Ht68PGXsTGULRi+24IGzu7pT3uUIUhN54exZ1aMnZ1o1i7tMaT6lIPqt2qFB1kG9zQde5+x2zAG0BfdO5L5KUnmu+1veKSq0SJdjFxQ47sDCr2oN/+JfPY+IKL63K6h2OrDZM333gjF5aRTJ3ISNgWhZsHteWxaacVmQ5y3XoZ1jkNyHNlK1EMG4yBacZy5B3O52ur1z74weh2cRCpks4TS7XRGAuW/+WyxYtR+3aHEh7jdg3Wxex12yc2n5nvq8z493RuonuUTEc6iaq5DFGUaPocnclue+2Rxw/WqmUJt44dWGtWaAEuF5WoMONCvKBlfuzqC50veYvvVrIDuFf2qhvtIpYcH2vvFimAPHKtvqUVfz4Eo1auGWb6dGx4CrlqP6FPDsEswxR9xZitrhhQqMBfI78//Hjf3Cp3wwePge+HNKZIcGZw7EmEjc78+fZ2KHohLomO9vTdb70DYqH/r56sr9cdzYrbQ4ziALliz2BT/3iX4w2dmlJJhLh9ZADf8hyT78gVs4Z/t3/rgWzpY5nL02hjyyHnTUM/4gSbxfoW8zY1Yf+Yz6/VvbsC7motYJ2GVrEqV1TAsjw963PxpfO3GCJzF74KNqRxA/yBHB54tbtrs78AW/S47GupnHed7lA5sOVkyDDmxQ7z7Ktlg2ShWzFaUqatE5rBID99TN3yAdYkZ+Vw5SgEOOZyINGWLSaNcXRVr4Ax6nEtr4IlzvYM/vJXaMU7YGakp4Itfjm3mHytBPncNkM06wXYYnqo5tqkOn5/3lUB8McFi3VURssdA0JA3tkn9eKr/7IX66X0F1eINKfgqdkCxKPhsfuPoCu95OGHHoGv+68hFhs7vWNH9/Xsw1wh4CP7FBzhnLpuLuCyg0nEqRrpiMfrluRVq8VDQ43r+5EuifR2AiJSSQ2I4/hq2lgHnt/rGZqgaQIyXG4KbfdLc4lEyfbJBhH62O9Fj5Zo+oayaYaXfYwQV6AC+bYUCLuLpiN374ObCbTrHECe1TDTueKnmIHpmwENchP++Z2DpW4dPI8H4Lz406Slu4G0aNGrax2JYD6RAcGV7HVvMkvLx93ZFcNvXKY3bKh/WVXde8Pz65TRsUm9YfIleYe84BDs+GHxSRdCBZ/G3EGlXvdgsvoY7GGe+w3qCSkBZejHACzYS1X2hYaN0dXmwxTNs3OcEzO/140H3+xSwSZS2WsbMG5VDuqqoaW6COWuDR6ArrU+yPqoILBo8OnAfyD5ZuOsDsM+gX7UjE22KZklPxLOnGIA77VfqXcwzmPIw60HH44kenh3M50+5mwHm8zuZE2QwyQp+IvxJb5doYxqZa3l0XnBfqx9qaKW44Unfg1NwmKnv7kWwdsdQBF6JCTZQZgDG61uj3/YiUfx43vNF3WUNlKM3v+GrXcVO5xsCoaEk1Je/o79c5pGAdHeLcTiDF5i5+uOp58Ap6HHnXqs1S8cR4vs64GMBdX9NiTv/40c4F4ec4P3AA0ivBup2PfYnv5AbuFvI+I9fkMG7QLDhc2p3OwJYFgcvQH3IiPi56v4y7AQDxOF2b/jR780N73oQG2uGlt7vqrYrE/iP7zz0lR+WWtlFUBKFA0XFmzdXfr4Y8Me1EIdn+ErI73mdIRnnfsOjYjWmYzGCR3aRiVwUhb9GF+UFqVJWaMM3YKkr5wHFW9RT1L9vCds/bghseBS7jbXVcKRTDzs+nOjxreFh7uWuVt/wV9LQcUXwc3a/FPLO94A3vF9J/PNTwlmSBfyHH6f+zYi2y1NKvVic8kUM3haUbPFOdQFpjP0WmsKtSdcf/svXUUtX+Bd/vaN0GTa+dtWuxyTDpvz+gdV68d7f/5Px5Olsmd7cHea5faAYGHwyv9fO+Xvfv3g0sMYqZaBEWUCk4DIkqwWGDHKpd8LmszjmUyKZjdbyoYFtrjYr0bPkWs1vvx1iQpLmK6QsgPSe3RH5vqxkVGTfA+bWpy99y4pPdbrx9dK20WrNFZvXrxHD9yfN6V5ZiN8u6+EK7fC3EG2Zmoo5u18GA0NtkfDEmSntqg+E+jG1CeQqaZim8ZpB50oh9atbmw+HXd1Lj52YbHyhMluBK7e+CuaK2vyDqykNb9GffxNJysR8vj8iXjvogkIN5Yx8MhbTv+/BjjKalSg1xABqt/sSdj1GbNRQUkDx158oapRdNQsDKYGtVA4Sk1D847tXLZ8+Ok1hFOVSt08eWmpBgz7wpQKz+mosyKlliBZQe2x6z7oMP6y9EbDF97WeqgycDlZK//DFdHs6BqzHNMFhfk7ZSicjAMH8uGLjUc2ACb9zAMHTpoQfo281PNLZUuUp3FPvT4/4lNIM//zdz0JcDRcCenD2iiN9//Ax+ZdPr+dWw645OmDs5U8DL8doIJKxjP6cmu8aJidexq7Qu2AVla6E2/cgLottf47tn6Fdy6tPLWKWyfKo6kh7xFFNLVfu/NmvruIfPydvrkW+GC8npAoXppDdK5LMpRs5Hp7AK8IoUvCwilk0a3fMfRHUV76aomT2tJoVR2zHwZ7xBXyIwCr2F+z+pNJc9uiF4IavkJK9CjZTIeVhHAIfHw9fzpzxQ4GQP6fJhn5Kn2z5ALRnQ0H9aogJXX/3AtJ5vND3NTqBTS8qoBQfS6SRD/PZ61S00OyfJ+x3twnQR35rQWZmOxra2Q10pYZGwH5rRe2G5Qn7pwe4PiHcPvHNRYD7Wdv4+qaHbfkuaqx//DBwdprfPrushbGmiAQIjGNrnPsNzM5MxeEy2cN6+nw9aErBmz5dmAzEs+YGNoolIZr2sj/dPavUPNP84kDNqD/51v6qVtazIaxT5Zx+608JJJu/0yz5Pf1ZQREPA8/OqY0axxeU9zMGnu1YNBYon//Tk7xrvcPj9n51dxhnuEdljQ/ek/MnQ11eQJK3voF3/pUsNLgROPDWjNSh7QeS7EkB45MYour6kcyxfLwCkNyMge7DW5ALL3Pq1T+96GL6cSK2WmzBCBcI8Z8h84cNP0IwPDKM3vYzZ9/9dYbBKcJbPinM+RPoEEaEXKjJKUlCgS4R+LsmOlJO77kizovjQcYuPRnypjHnrkw4aBtZT/jOik3m08cKdJrl9LCi5T89o57zFu+PLDTXXq9jMP3Qlx5TL6zWIVtUDZ6VH9ZPeePTqExTiPDgI16VbtWsDca4nYHRyCB+7WrJb3INXF+yqSv0HaMLf27h96AZGHd4BEu7U1Mg3OUrmd9twrb4moKjUjHy3eNiYL7ApWDTl6h1sfZssaTeAGYKJCIO10MiHodo/dNXsZsOtclqlMvwotsytR7xrmoiYKA/vQt9EnYBC3s4D/gbgz0aw/pnDjtbXSFZswM+Iq81R/6jilBWOEwx3Ndg8k5WATa9lKxodk0KL2EG4+mYEoFvH4AFh/6hzd0H0cNd8HJ28XsZyEPT0mM479lql3YEoyJbkLK931RX+gO2T+FAgyN3ZJOriiIE7Vki9bbfs3QqIpAH44tmn2ux9X5WVJh6HcVOo/rDvPce8j987Dv6B7DSd2cQ33Qd6zfU5myL9/CP72RcXVWznOccRC9jxXs9ZMNqnp0HjDUgEsmqXVP062WrMZ90Mu8aq5pH4e7BZ3VcUP05Udb/4aM/vni44GhgldUG8MWFEaK3zsnXDS+ALX9Td5XhsEi7RAZN6Bbb83O1DqyzgTeWOg0z0vhM8Bod4s6LcSDQIucTZRAh8TkHoy0erRaoMvjejXuK9onvq7ePm/7piSius8RknhGlWgDomyx5o5rLqQ7vcIAqRMs//anYX+GrbkqkloY/jAQtnKah2kfLzquH3wvEnLbp2XjbXzaHUK6hcwR37MTnDMxh4d4Bd1h7alhzBSZL6nVoBKpIkVkQf+Njvbqrd69N389ypjXLFXxUMcD78XtOWEfeMjjhQvmHv1eXlDLMb98d4uzxU7E/fzntqhqtpxr47euRFwA9rrd/9jPz/hRAeAY/tNvib3XYjS3YnsfmN3EHSb54vWpe9QzrZvRga9arKdBcY8FuqIjgn389TdBSmzTPYcNLNgz5u4UPe1xUQyR3UOUe3JMe7cuBLVmjGFBCRkh9HylsrachA/GLTggMTQQ6NY4d2EP1hDd9Ixm3/KfspfOD+gLjwHcx2hG+MgT+5Ts2Lo4IT6edQNQdouY4Hn4PiPg73fT0smLLKZDBxg+QiHW01dA0FX5DTyA8Z05mq6WCJW/6IUaLLGzFNb+GFoPXzR8t9g+vl8Zm7yX/y9nA+RCIh0uH7bPO2Co+1uxPH8Ob/pss50vAQfMzHKi3tJE5frZbeK40P3HipZ2/dGZQwCLevYmSH/CwdM05grY+nghksErEn3eOlX960mavK+fmBgysak9IOUq+ECWyB7d6D5Hks80EN1Svf/6H8Q8f87V87iKYDM+G8M4hSP7ZOxL3Dg2K+ZAz+TkG8P3Mb9h8J5Y5J0rFw/liJ0imx9QnW/1B++MLrmjNPu0unQVwkdr0oWbYF7mxWsEjjmt6VB2zWqpg5aGVzhj/6ZeL/rmNQLsJCcaFmfpredRf2sbn8WHhtz5N2uQof3xMOR287X2lCG7xZdPTcL7pvzYIX/qR+ta99bf9U4HWBireO/eHX5Ohc0BnNB25HyVpYHdwjeHbXAdqDGWTrOKEa3XTo7d4+GEbXujhjp0Pm15W5SxoWQCT6bCjf/bJoPqyoM1FOtXd1gTiqusvbX8gV2xt8XGdOtmGm/9j3TY8X8ii4Qrz3DrQmxJV1SpOxwauWBH+9MWE3+o1mnfKAxrE/hkIbabrcNM36HvT08hrH17hsL4uGI9CM4wXFkCYegMlIldXwyx+LQi3/IidHJzBH/5XRZNG9HjWvHx1T4AAqHbexv9LNnPHhYP1fGvpXv/dgABkTYeAPUYabPvVbnq9uumLm96DqjV65brK1ZDh8Oh8qmnMDKI1N5Vga5bS/C/fwvHUFzRUihYs42OMQSO9XvgYcXe/5T8qDzc9ktSCWA+r0GkPyNH8uuHDD1g2vAg2PEVx0pWM/q3vSzKf1HIO22zJ/JGp2iJ09HDPa3Nbv1rd9KmtXjhWY+CCGf6+OsIXZ1mGcTCe2Z9+ScMUdMl6IO0/veMPn1Vkw+N/9Qy83/D8ssYaBzzRo3iPG5xP1Ww2MD2vNRn7rM7n3WnqQSelAT5FIZd80/AUg7y5hPTwNa7JssUXsMUXtDP6rY8Ucee/euifHphLid8GKsNzSHYn0fbn+mav0LM6DntbvXIxP4874Bayp3/8du3C31XlZgwQULd5Z81Of8DzY2dgv9Yv+ZImqwjebnrAz9MZD396H9jw/8aPuXzx+GcMykYR8abvVqtueNFf/YQ6l/Rnkl8k8tAUGnub3XestnyoQlqmM5q2/WX8MVHhkUQD2T2ear7YJ1eE1gANepOeTTXeGe7hls9pvDiHahK+0IEeghGa7UeUrNgJ7+ApDz4KzpcuX8M20OHNWY+EaXZWlX94h55KRHIvrBnrXl4L2898xLeHVfjzctAhHAqX/tVfEyna+SUUVpmQXXh6+F0cFaMWJ9ssqYFr8lUdOxtu/JkezIc5SNoUQzh9mwD7n2aoliiRHe1vv93hcE+mu1ly//Kv1qRetVzDnIPRIYQINKG6ra8qwtu+SbHe/7qBFUsHwWiBmDqZqgNpy0/wc5yMf3x1bq9tDP7sMwi5KdnwDASbP+Hohtpkeeh5CfPLriG70XyxTV8awUCq8199yF/Oz6aEG18iazqTgX0G5w4suNZIfZp5Pu+LsoCVfdwRvnqt7J8+2+kwwm4pn9gKE8uA3GHu0XzlS38mq0dAn+Qi+tmXL6O2wYn/vzMF4H+fKUjAEtFw+ACfuhXh1Ta1PRp2nxJMh98tkm+Xa0l1xfuYY6V8DCiS40jDtCvY+i27B7zG4hnJvHlOqJ8J6tbyJUTCbNcVw9acQU79bvO/fDzMTqjftfUt2vjYHMxcfBhXD8JH6xBFyc4+M4xTAL2ptejp7dvJYrbPBnjvFaHkahdJe+2vHPyk/oxRoh+GpWuzHkSD/yJTMK0+zfFsabhvCuoIpmtKH4WkYMV7mwD3i9ksTfcVvh/qHftCCZNxTb4tILfaoLbNcWz17u9AtZfoh+/SdANMuRgIJq7lYGNXRdX8vuQR+BaRi6OC/1SlkuUIGK9goWbalmxhUZBBchw1bDiODYTPhpGX8G4SyTz7+eiNhgeHo+zTIDv47O/9YHYeBwQfMZ9/4XhI4cE2DOp/euKzfMcs0I7HAT3OfF/NjjNbGipNi+JLHYOZZUsP76aH8GFsfz573esGkvVa4/BQCIAJijXCsvkyfBTRysjdfLxAZgoNAtE6+sROgA6Cn1jTMHk82ILpwQC1DUaqW6fYX0XpdIdHgedpXL3inN7l1wpVKQI02CVTsv5UpII5Jk+kxlo3LM9npoJUuK/oe3Rrc1LOI4IvmnQIwtoYpMLAOlQKocNhYx6SFdf4DqW+vWLj2J+TFRxOUMvqviEsUixT9Bf5oX7HSMH6vjz6yz3u73A4z3uKPHauusD562UOKY6mOWXkfIhULVvLBz4W8ntYnPUww5PQ6PTw0aZ8aeGg/n0vRvLbGVaRChaQKfoixSRGJWrtqEPDT35ItLkXm/X09gJP2HzIYttpvnKFfwVnfLoifrC+bKIdQWBssh0+5ne3IqkGS/V906JtPSGg1Pzw6k2Irwgu7a+a59FE4NkNFySEBz9hciIGkDoJIOADaL76J64GkZ0GKOLaDCyFqemQaUhAS3tU2Cx1xgMaZmRjz9oTwBwY3KFSSB3S8uswkOUDa3gUVQWdvlfCmDjXNli+ToFfQ3YwabasDWBVhsmanEvATo/zDPfCNaLO2Xj4cwZitAut9kz3GZfls9X0Mbjfjz12Z7eo5uB9CrRCPKkYjTzwV67OR/hWthtLNJYYm9/vRhm7yKWH8ODnEwO7rWbBYlRM72RgmejJwNGXAv/9nY1XcAeJo5vYhNddTg6tE8HtfanhOzEYX0NbwvFQ7chu7A7mQt3Cg59y3+BQczAjUmV5cF99fJyL7JTXT971oPBq2N85tUr86PkIUbm36HX7PvpvvQ5Hjcjv6VytpcR0aOgpxEbGinxq4SDDsv8Z1KUDNpdbpo4gKcQvNaa7UtVyvXpgl98FejyFn3wdWjeDnb3EGN1C5E9XGkVA5ryCiAuwwbZeSONi4Ub9st+zJVKVHiorIdi+iiljeLoY4JGjiijGbjaZOCYr/PWPlmhqb5tMhNEIJkU44uB8uPqMndUe9qPzxlt8ZoR3YgId7h7RAMm4WoLCCRR2ft1IdhW3c7X+NQZWnuWEGw4VWF/nKYJCV72RjOo4n4eM3P/ZH9f84oqp6NNobpj5WK/4sPr3e5nPW9TlDr9qeir6A/KXw4N6N8WqhFcNAnjEzgPvxU9sDqnBZM0qE/nf/rPr7azDI/Ye1Nkrei6c9VsNQn2wqX37/pJFbKYX1HuN/ItH02m96TAMOhEfQ2oyCYVXDi7ulSfCenmZq2B5V2iCX0EPUr1nyyvlYpCdyYD4ePer2OnxnKEkFwjN8dAnix7WnpKP1YQ0BSRVa92FHjTx7kT3H3XJG6uGMQjV+IeauAuSeXSFFwxfBaAn2+Zz+i4dGZyqESDlfgaM7VWeB/gx9jRdSjow12xXddtf7HNU9xfl8IsAL/IXek2MamD3VL9D7LIC7T7ckA/fHDrgdbrxRNaVYBDT2BVh54sNRZy2msxU5hJu8YZ6jSCx1TGUFQyfeSXMRl6yilSz4Mv8cAQuigPItb734JKnGtZlL8xXvJshfHC7mcRC1ubLmR9VcDdsF/E3UFbT85nJEEAlxFHJ38Ca7wILutdYok5Yc9UYLaUBLdnb+oo8BH/xT8caRhFiRPL0g7mMr2WENnd+kBnkarUWDp9C7sNSokqTwuaP16fw+lY8qnNtxkav/orwblguWp96y2bbhVeIag5RV/mJybh7bphv1x7oRdW++bRalxES7pbiv/y9/JSLDA5vtcWGDvphqV7kAQw9g9SQq3qYK6Uz4N7ta/JzT2u1qppWw3nqHMLjT29Om73BR2fftjY1D3MWl8oCmhHn+Pg94GpRZS4GUHj0OCZu4G/xpoDnk/PCR7s8VnxzLXmwbx5n1NTR3pfw9NZheHrZW49DK1+8j1XAneR86NEufxV1xuML4ivNCTCvv4SUx9nQrrv+gK3KuZhL/+Z0iOCOYqfwfya7fIQe3nu1x/v7g7HfXoU8OGWKhz3hoefrw4gcTf3mIlle6tdvhsdjBIduwdSJDcrosrYFjFUvJPC5b9iyK4srrIWmpGaLKRtrIRqhm6M9DbxhNyxnq5MhsAMRHz39a7aRsKZQn0UT70ODJmO96FfQ2SzGWBL3Pn8PKxvax+5AA1iXFQ0PfAvZEhww3mtc3keg7SHYiReKhP3gr33x1f/hny1fDBOLghT+5ecbHai5KKdcBX/xwUis/SBUL/ICjWN8sX7QraH1HyECVeW9ceAN72o97r4jIOeG0fDSBWB5aNEM3oN4xm77YialNC3UDQ9SY5E9tvDJNdVMS3FxjKVDzlq7rOFhml/YPotOxZYGqOrasIpIbskYkV9AlDf7JCvcb7MylN6CILVHJLwQqtZWi2XItEAgwEuNXIDzswVlyE5b/DUYexJFhNVinLFRvl6VuMuZDVN3sLFjKtdqbgEvw+8z45CTGOawIlhz8CenL3qMXmRrRfco/vyZ7gMDDNQDjg3aD6fTA1zEaumHvoVa667Y3RPgt/5v4WFV2ne6t20+6Z/EE+E15s8YVXcxmVV4acCn5mYkrBfOJHGCPEhbXaQvPpaHMfR9qO748IIKxdv7szPZL4gKboc4fLKBKA7jCktwNej5ErOhh/t9D7O6beiZCaZPDbsr1Vv6vGKdvI+55A3m1vcijxGMs8lfu+nJwaclHqi54fXpXFMOHC8uR34DryZkfLcjNKR9guMi/Jq0X64QjPk9oQEnQH+GII+Ui/uUUbMEab4+xOEFqsp50/QN7oA9f+cS9vfkTvfBgnym+M8arrko4X94JSmKGdaPVcfu1TKS1TZFG/7coSWDl5bJ/JgFD+7pB1B92LusToKkgI459vhvf5bGTVU4NukOW1dA2GK9eQjvvdxTXcjLZL595gwmru3QQ+e5FRP1zoJ9cKuRxN5HsLjd5MANL5E5lzm21PfM+Yev3BebTKLEhqxm9Heix7YKfREIKQRx/rxQdDrtkvVjjQZcybonHD+7YNzwDPiarytFuvPwF2m921C9Pz1qgMMuZ06wv8N24mZssmnyyTeuC028OBFND+kHzP5PEaGhwCe1Vl1nkiPxFnTGj4+Wzd7m6VzacHfPZrq360PFdo/eBpGdBfRgDk3FQkFqoRLoGb58s3mbwnUqoOilb4zZEQ2LvN1b2/ASeWDZzJdD5XDw8oqPOMC/0lze0QThuocn1JuVljPQXzKAw5WSbr2rPtn4A7x5zUK35/11PZstMLMZkbFGps8kWb/C1dQzGgl5mS/W8Km103XFZJ1/Alsi8ZNpJ0+9Yd8WLTYfhZ8F9za9o8cuCZNtPzyw5zOf2t4D5kzeZlls9ksNGJu5ILDsCjd+SAMgUDAMk96DvC4DvN/ibbcr2zvcp9+IYtJp+XL4nWLg/dhMfUivVRfdpRXelpOL9Vx+sSX39ivkjuqE1ME4gnV3KVdtJwcNmfv4ktNZlHmouMeAHhJeNNdPdG3hJzMEepQ1DcxyKgTq9bNG2IdUHn6ve11DLwQudq5Yzhf7Jbdq3J1DtCs4qfpcWNvAQk1c6qaNxQRdow6MTpGMTU208m7bD/WsQUT1Z2aZkp9pKtjyFXa/+jZbKToRrXz3GT4alpgsT8V5QIkvdvjw0cJ84L4GgXH+vpD6edPN+e7eZzBYuz229C9OiFXDCIoptrd55zPb7EEF4OSXG1/Xc7r3FB7yO0UjY5xN5uwVzxL20sFHfPp8VnyYyQ1It9lEx1O4z2sq8x50E1xRX6NjvorgM0J2enrYCKUnmzd8or0FAlE5DEa+OkfDhhs/Jksn6j5/KfkWpv3D/ocPltV6j2Cnvzw0IvdpLlEPR9Drd57Ij6kb5sdYi+AvnuKs3plLacgEaJxuYwu8xGE9C7n8x7fou/OPg9APZatJSB2paxJjEJAZp7C7jQ982Pgus4Q2gO/guN0bky8DmUD2grq94V9TkQd6OL0M5Xxzd3/8N6cb/1c3PIp1kN+HVSLz/IcPaVDOGqs3/gOs5nSk4RiFYJZvYQE3foUTY6/mk8CyO/TQDlGsrW0+aqTPwF67LYjaHkr6U+XboKW6QLi9VOZsaOUUbvaIDa56gAFs84V/eTERcekP/0fauSwtyzNr+IAcyE7SDNkJCJKgKOJMUFGQh51JgKP/C99vuGZrbFllMN1931dCd8+jj3jTuC39MbcRcDyqGq7+xf+/+AkPryNIFz/CasDDTGj+WIfGd5jQlT+L5bh1nylMKfqSrf/36nnaRQCjc+9ogfxN3LernQpZmbtkq5nyzG/G6oF+9c0/am05maL2hsNVOGF0icRytKptBI9L5C1XUrV4FIluIvRdH1mg6t/+23hpBfMU+WRr9E+LH6uNDXgSbJb5p3c2sEbeI60JJiwufGSsw88eLpcLxfP8Da0+KqiNdi/3ykgbuCW/vpSTCnXB2LbQriVXipegUadTKLrfVxY/fA+DtpaXWUna/RtMAJujyos6ppvw6vWNu61sWOKJ0i45xCN2uw6W+bjE458LGq4HdIObMhUsKBAq2U8/9A/5D8+WgYP5E6wxpBlCxOx62o/ydLTR924ktGGugTgdL5L6ltOZPb3NNRsN0SlgELDIdpEX95I5fjCEVh0xfGR2JmsvaQCTRBJpF/8+TddshdjDJ8R97E49Dx3UwdnEJeY4vFqsFA4UNMloCIkqZ/5u/w6RVnyfKXN7Qc0G9/zSgdR/B2YAvS3x0HXoMDUSy8fGLeVouA2wFb4Id2Kux7Nz6kzw20Yk+NnL/be+XiV0afcz8ZLRjJf17gHKvw+za1mcWbaeHSjUw46QpHpaY8rSI5jm3ljWU8U8LpoJESwJeK1Z53m6U1MAIqcH4qcbjhb9AcAysiWuOtjWP97zVDqHIk2/zpzz7A3isbLIxbI7a7pmqg7+DqlUPB3/ykkT0gaild0wfxjXFu14C6hNuwvb841otS/y6iBsrm86h1ndTzv1aqNrndzx2Hx6q/vpDV/4/OffKMB4RHi3fzN3MLpyie8JHqPH2P5PM8pf/YehSzA9TYf3wtuuKfrVbzcKv/18/7u/4XbQbWbttDZg/HmpwL25HpXfiV0O1TkR4PawN794Qt+2wgnQ4rX06aFm/9PPcFZUFZ9++buIzZXWozZlRisVwRKPivbWaU6FYAqy+XRUJBRZmckC/2TGY3V7eBCbO/aP3w52p9awmQbKMC2NmF/eQgc/Huqf/Sno6psnoRQo+vFLa8i55i+DrV7EFliAZsMfBXhcjh6lbXLvZ78PlnnCm5DgP8XtR62sKHyy54bZdLZLuSr2D4gdf0X23q0Oxoavj6pliTbb3c7ZPD0+HUbX9PGHJ32f/nimiX750VJbzxpf66FDUkRkLJ6MOhsbLi+zDU7h4m9eweRL3oQsV4qZPuJj9vPXyM9le+FDYslVeFYoLYbgv/x/vz9U9Y7eOXHObhIIi59Fi98j5F6owT8/GpsBo9riV9BJJnsQw3GmL3VtxXN8MTwtfSIf18I1Kn/8GlbrfkenhT9NnjlyWJXNlYRRztG8xKO28Hjy028LD6Lasv6Ff3/KX75DxaO8L73Zu/4Lwzb5+VlmaVKVLX5LgchMNOZ9XTVuKjGiMEXKnt2he/Tj+4/YaNFPWPNWczz9ePCix3/7OeBdhzp14YvLrAU2T8HIc23hQf/0DvvqZwF9VJ9R7dQWiGbEsLV7POkk2J1wORd3pULry7Ume9HZBnKkN+bmVD/kpRUnL2n1vOe/50NMLB/6KXeahS+5OfvxrlGmuwnq12ZP51d8QvwzKM5ms55LChUurc7YTm9Y9i8jz8IoxXwcfBRZVxMvvD3mx2q0keP2W7IXL3VGczPyQcz6FmuVdUcjdt8NcjvV+/mvki+8DH486V89/LysXPXku0z0QjDKyfB94ecfMKSlWA6xTlXYl+Iyiy/axtwIuPCPtzstleYJRruBZ2Cc6afZNPGQ+hfn5w/w/I6bn/4QYOHtxOPSJuhz1HE0ozMnhletrLldGarWmGTLgsl+IHamtILAfF6Ij59pxlP/YoN0Ch08jM1f/4+/JMnEmX+/vC0h6c9H+EjLbN27dM6mjBFf3XvblulvYYOE4areYKLcYFtHMWfRH40cyF+bYHXR653hm4L243Xe+AlKYe0QCZmjtmaeYIkZj6NSAMMfWhIv5x+DEXAJLfkXb3aoDya8f4G26H9CnE2BuGQ0DhqdZ8cM67LLZCcMB9XePRMWWubemnhCAB2mpQ90P65intZ6A/fH0JP94e/W88/AHWR/iIkvr78pmKmregBZZbEfv52F8Kb/9DrR9fccN8cT+EAtRumPZ3V9YySQHf5MsuQPNHZMXaFNsjbxlB6SbEoMr0aXxqd0WvTRN1P3XNVuMVDq2d1Mr5lq/uNPGD2Fno85jmDh5XQqwu1P3xZwcDVCyGsVZHKcXR/gaIcLMZYOA1OU1RMUh0dDnPql9tM2zxqAtNsw97O8p6zHtwecsnfAHHc1lWOzL1RNU3WZHYo2z2RiKyf46C/Mfv60+9uiCvaBORPHXtX92CpxBcvvo+slv3F3O9iw7B+80QQnk7Xlzo1wM+uF1wQBl0R0A+mz6N1JL2Z6DTQHBeb9QkXVDPr/6jkVSrZrwnHmzmPXwf66olQ1yo/F4jWTkNtDSBUuXYN5V9aS1tZFSK6nukK8ElMKrSte6Jes1tl37UiS+jglK8yFgcxzVeUcfdozW/pwpH1/eWkN0OlWEX3EU9z3oTMBU1c6Mxr3Os/r/G1ri55kXuAI88hHv1B/+tpcnv8vnqGTLIfpHW96tvDWH78mZzXeo/HtGqZ2+KM+s4+0jidqThJ8EBawLD2F5fyzFmDRswtvySw6tamKApXMhDSq8x8/uBsKYi5hecBZs8Zw1yWJ+Mpyh+F4Ejy47J4KlUNWztO20SN4sEOLZcIg4GvHFVB2+JhUSUmaTZYw7iF44yPWwtzuF7+8UvcjC/C4WZNy2Y8Vsj+hyYLl/HJ20umE8o/r42o6mMF0SamuLvqGOCTAiItbJUULzyd+6j+yUWk3OWQW21PF2qT9OBW7CB7nq0W8ro36Zb/lUJ/VjBGvSa3BC/UUNACD/M5DuXtIKYjdp6KCe1Ktb64tfcXS64G+Fn4wfg7a+7de5o8kiqf97r6C1VgQFg+rdzzn8i2HVSI05KcfP/o1nVQ/3OxIgHQjmyff0cHdkyO2muIQfPOP/AZdkSusrtumnN4u17X58PQJEaVrOZ00KEBxUpuQSGysMTaWWZY7u6MJVsOSfuoNh6XeU8nP82w2O1mF9DvrzAsuUrDsj049b1br33lZOfRJnWrB+fbCIor1kts3sUG+UnOy6C1rsoQNhn/7DaJPNqYsOmqiMVpYwK8km27x4QbrS1Yzp4peSz6aPOjPk4EFEjXzlADHoG/tCyOzS0vOhFKArygrhGSjOUuXtDahL+iX6cEDW+NFVpRfPmFPJ2P9KBLPBCOtnsSISNCL+1Ncw+WLzcV/s2ycTqdmc7M8zKxqnLJm+76u1OvpmdJPNSgxb6zDER7c6eg6qmo0N+btiH7nS6ujfphb56F0/787BfB/3yngq82eEb+pe37iF4DDPfxjbhGowVf+bHN1p3RfPJiiH0z9PuQoeTxSthWf53JULliHe7MNqMZbPjPBVQdUPrsvMQ/duxzlfYhht5v2xK0e92DmReFrRDHPxK/8QyCcOqKifFM/sRx0WzRbbN9AND53zDxdq5LjsL8hcUx85kvqKmD2R1shOUEHLPvPT8DJ3nZQu/Mc4g9cDmhANxE8bi6l34FRi3fV0rppryWMPKkYf2+HY4Fat9oSMz4VaL4m7RsuQ3hje1PsrClyPjZc9ppN0kl0kdAq1QMefaxSwVC9gN2ov7zHWxdEF0q/H6/KDYNs/ln4ZJhdzI/7RIXdRymI2U5SNotXq4b+tpWpJpRz36zT6wpsEpxwswIeT9onPUHZmgIupZUez5YBCij+U6Ry6LVolvG92lhu9CbhPSyybp3vGvCTs8nOg8uCUczKFZyVakeuLkp6dgkaCtFNV8jetNqeSXfhhMobdGT7vBXx6DxJg6Td4imrLSAa6v4ead/vjoVN3luzuRuOsOP5zJ5Pes6mVd+kkN9OOxZpb44ovvQ+lHqaMh0d9/H8XDkSlJFZUnGS+Py55Pob7Jb9YfF+ec38z0AYump9xOc6aYI5ja45HP5G9ff/WzyImw640nrUj0hpcVxkFdilS6lCG9OS/jY+Bfm4NL5wzmXPy3dkwu5QH5nrXkwkkNniG9vYBsTANEfsUS/zP91IIKfwPQezGOw91J47wtzd3182BU27B+1EFUIiPczm9MAnyDPVJ7ZTB7Eo3ewGktvqhafqNPVfhSQdRDILsVbeF0aVXT2k4XxmAawcSwrynQPWbp8SQ+9ia/pEqYpKA65Mp5PVT/WrnRApqcvMz4rPzUofTbDaTiXefPrEo2Ku3ugRnWcWrr63kn7yUQc/SFW6zrJjNvUrHMGZcxsLJxlZvA52Ctz9VCLeZLmZVPm6BNWT3QghpxYN8YE0QMY0Z/7j2lnTmm4kdPEOBnGDw6dk2To7IW2yUqyxYECzYaMCLNsrSDg/yPy9Pg+rdWdWKiPu2kDzjG5vyNHyeSP2MbMMQQGW4KX3tKNn0rp5cUiCJGHmax8t88LOlXooXZnZzjrop+gvp1B2lcjs7TnMOL5ZBeze04P4f30c06GVOBwGcSLbOzctuhd3J6gscmTu4yTOX+WCTSDNzaef3gzi70MOKZCo2hI76Ok8mgMcQXtfQ3Kx3yV6/21MCjLbvImnjazkXRTmYE6rEwu7Z1u+8njfoPJQV3Q6XaueBrtIAR/JObE0z+2/5rw/gYk8zHwxWs/DSt+YyKwFnflMuQa0fr0mtOQH9ouf13TeOaB4SMCv0H70vFWGB1ryDx71QOyHWlKTZV73mpHd/YOYeZ8n8A8Hn+i8dWdxazwatU2nA/Nj27QEIgvvf/tfQ580HhWOI2TBBGQZx96Pm7cj/cunwfpmz8N6Y9QgnaOSys7+bX0vpEmhffGSBaKv91Mj9ylKnk1F3FeeWuzqvR0A8fEm1jpwgvG66o4gpfzGPDab82zsOxXI5+iRrdol8fw4PlL1cTYkpk+xE0x/G38A270Qut7Z23Iej8UAydY+MrO4ETREfOtpyTUt2Ik4gtWPn0gFEPM3LsasycZ56Ex0V+X09/vK0dn8Ycgv2MViUw/9eGmKBs6z6hAjvK/m8b7SHDBXxwi/3PhSsrsqptAaJ4Nlm3tZ5hF8IrDXfxLBBnuWPFrZFbDYMZiZvery3/PLoxqTJV4DGjQvDDvfM9gtzRs05tcThSr/pHhWrGUWic+nXzywS/XQArbUI5SP6YeZR+s98/YwcCgny2FbbhyQmP+dfChj70N8Yfu0aNXxB7w5D9kzSTAabR5SMMdbTBX6ruZh9adQ6HU2EvN53gdSez7l4O+EDQvgs53H+3OYZBMoYZ4S4vL3fVRGekn8PAlKXqE0AvameyzfbrH1ve16H7qb4VOxa/ugNbx5D2WVjPi7IQmaC+n5AM3pKCEXlSEavfaN2hnmhtjHP6kfYpsViMW2wWxDbaxxuo6SasW8xy9LF3q+Tg8Akr46M5dUXtkdttsJrB4jrNbuFM/mpR9UqUy+GIyujad+v+UgOWZIZ0j+rPkufBO06AMSiGUx//I7kkvrw3R1M1hNsL46sONCwy6+U828cpUcyedzRLzNdsjaMWlSKCfDIb/9LErrj77p6jJmO2N/Qp329I7AWL1j7kEIgzbLsxP00RlY2OlDwHHdN1B2tUjC9/IeUDbGCrxfnknuQxLOU/T8JuiXj3dL/fxecr2ASNrtscIdx5LTqgCwDTegipR02RQqRw6P+C7SqcFiNlWpFyH7ts1ZuMQrkw3tAW27ujNjF22sr/wJH7BLojNzd9gNhiCMKi1v0pg8zD8t5uv6cENaaznEvsKq7OXXlqMLu+QE69VjZo/wu9Rrj1B1vmb9d7qOApzB1tm5N4NsGsp6AHHNPaxe+CeezV11hHu13jFj56OZpVWxAql+MLYVV3MwC4UKwLriQMInvIN29AqAqLytyXb8HNGcVWhC4NQGsf35EMzTuDEhOp9E5l+/NWpixU1QFWR7sl3q/Wwm9g3k8OUz126MQPg4Vw+iRJGY+/5TZrpaGJRl6A9ySQoez4IeJMAG58jsxNtY/+pdezsd/+mT6X8AAAD//yydSbaqMBBAF+RAOkkxRHoBCYICzgCxAZU+QFb/D76/AQZVSdWty0nyLUpb4gsSYb3h23I5LbfHjrevFlF3gxLOO2RqYFu+MEo9GZ3h6jYT4qVtT/7i9ZjMRCKtYOC4zTbZsvINtJJU4uPyWZzGnHluh7dMSoKMaco5/+b2jvOrxyi0+EmHhbkmiEhtiJXT6ZXRW627MDlR7S3VsCCaE/iIhArJuLW6dzjZz1qDy3pOTPHvT8qnXzGBxh5NvNcJV05vWgugHoUM71X53NH0ExpARDsfJ/bSqU0MkyX50vY0Sq1xyJbNdLIgTyaL6G/nG9K8PBegwY3B2tXeOH/9Eq5nj4QCq5Wzvo9asHWb85jjYaFznFsv+NWLw95l6JB8DxFAvbkSHFs4m7ndGX79aFzC4anW9blMgZ9NMvLG5tVR+WsXUKh8S+xiacPRAWGElnMKYpN7guZUsjdApiXCrhZ6DnsNVkcc3ljiKd7NmfWzwUGjCAqxONKWk6M3HmI3njnyz1xQB27vJiIeaw/fnfTrTL52HpG033REJ5cxm9nxbKNf/VeZwz7sHf3pQfnNKYm77T2c3vdritrZ/BBHHPcdzcs8hyaNAqwzZwa1NWFkVDTDDts3se9I4p9yKHoWjWinqdkwK74IfKqG5Hg7yuHkmWGEtM9xwi6+LGgK522ApAfrYrulbDlVX2tBPE/qkWWGi0pyO/fQdJi+RLklNiVT6mtS+3mGWNNKF03h+2798kWUAMkl0+haDdr2zWF562KVyOkrAp6lC7HGl4ZY6iwJSNyQebkpHks+PaYc4pRHhB1k7hG9axGIp9R8E2xjI5tnkBdp5Xti3oUI0UXYG+Azb8ebnaMY1qfjxoUff97yUUHLu7lakMugEkestZA10khAUAUR+cVnGV44QVFvD8RuMNMN5uYOaOUJoqm6Rf/q5W8/rjzVtT2MgJpbccayoB2dZUC4RnGMXE+6l3s6sxZaQKX7/cjr+2c42aPlglprO4IzJXCYKq3bXz/B2DXsst72zwJufo3+6vc8R48UOM4Q8R6bkloFaXSG8tx/iD9e1WxOxqmXCnz4eG9mYNXptC8M8M32geX2/ij7LxZraP1GGyXptUPfO89NoLrnlOjV8nWWrosMOIR26DFq0TjTp7ItyLvXZeTTlKrkelE8UJm3gu0nQ8I5sxwOiuP7PW7zHZcR/qkv6zkAl8QJF6h/88whCi5/9ZvmNzdFLNQGVqWvrs5mRxaY2MOJ/PhyCnZjDfmnuI2C6B/VqaofmsTyoJLjxzU6djeOG1Rpc4jNlef6sCMucIZ8xOc906I5ecwBNJugw/iaUEq1YYjg1uEjUU6tUvJsRydp3nepN/WRhubCN5QfHxBre5nKNR8e8LNOsLPjSrrmewP2+equPO1R/sruGPTjmeO49OVw7UQD4edyIkcJic7wy09jfnSsf7+GQ/MIzkDqjU/MaDvQZRi/L+RbTD8K/bvslvbzPkO7NF+iaXZfUtlcbOmw35ie2L0jlb1eDyJa4+exd/rounX9Q8m+JKIvt6mbM6K+oGVw7W2LkiknW3xE0trfsbx947DtMz4S/Se3Wc+Jn7I5jdsKiqQcPMQkskPjMNHAHy8GVqLoTWdx950QHxw973XVv6g+7Qvtx4ejBC2o0+ZZ1+ggJ4bHeGfaLc6UVFBkDSHYNdqOykPwkCQpPhOlrThE9+/SgjLmam+bNic6Oc7OB0noTiOj8oeMps/XGdrLxSTm8dk6/Vvea2Izrut1lEt1wTUjg19tZWzfqxYtTis/IHot33HrX49lVT2mEZqH9xoftfpE3foEKLJVLOPjsl2ypbM/BepOO4loe8XOKM0Vb8fhNPT4tR/PGZt90OxcL57AOoeyP5kfC9b5B+vVYjpTOPM+UhY4j/yjSkNaUEORIAs0snc+aUkZT5kkyDl9rNx4fV363ntImm6xJ9CznrFqkPfIvhOLHJ97nbI0CR7SS3xZGGuJEi6nmAUoupM4LmljUXq92B509q33tu7bUqfaZRRo9utbFs42pZT/XjhJs3b+OPAdW1KuXd8H35/3+Lyunwnz8BDjuIyJmXUnZ9nMQo7swjG9JcuasK/PXYIg8zUSSp6G+g3jc0gR5HVeOpsd54uaAP5RrMZedxzaTY/aAq3qCMHn3u/I/p5pcKo6gRyX1aF/iQ3g37Vp5futOueiewb+drgQ96CP3dLq7AjRW2zWu6MbdYgnX0Gvrev85vOQWXkJVHu6eky2val1qJEXxG1zJT8eJvHRkpGvfGpvo3g3tXce8iKpnKPig6It3XIqDBnKwujxMb8o3VQ/1Rf4knQicfAZunnfvDh4CasPWfPNCpfPCCU3HIjSsQyiU5po0N51BX+7z9YZrrvdAybp4mDzcK6ycTjjDVLdKMXH99miZM0/nHYx8oT5ZCAmSLYy3C7R5s8PkaWcK3Sgm5ZoZynJ+CU+5ajsLY4k6/zIuNJu+vNHdvTWSnp/ex/QxmuLzZOyzneq7EMVsDesl4Ma0pVvwU8VgZi2oGd0KecPxE6mesyFJGjc4uYFUW8NRBdbLnt8I2VEmHkVWH/lesiKO7KIKi5yT9oMYkfv9lf+8xmJ6A/O6Jrr94xBJlbdyXSWpSWSVj+x+khJHZimSwB0Rcaq5FV0aidJgxevnDzpTT8ZXeJTAXjQjuRuMHt12J1xggSVB29CXd/RX73EzcbxNvvoHvYSWC5oQRgTXOKYkrv9VVCkG8Hqd8RyoDvb/vG0J5b6EK5+5YFKy7th14j67m0E3wc0dZoTeWq+aM5dpkK83xyJHQTPjsYfy0cTmm1PedDJ6cN3bImnrPt486EEp4lfyefPd3iKdUd/+8ESKtkT5zz97080su08kfW3aDa2vC/hMgq8WV0u6rCM+wjW+WwQBzVVO/khJvAC4zCuT9Y7RH4sCdzu2o4cV5+5+tYAJl2rsO2PcjfchEH5zasjc3/cy7GarRdI+UvCMqkqZ6rSukYan4G3xNYnm69C4KJoD77XoZ2STcFgvH77haQD4umcsPICkVBzOMhNF03lK5GhiT1/XFbenprr2RLtSo2JxT8ddVrXBxTJQRhnvLt1w+3NcBDnX+xJY08yqtzQBIW1e3n8SXG7OXWUQtS6sCbmu7mhYW78D5RSrHjvLuvKqZUuHpyIxBDXiNyO67QoAX6Mn1h5UN9hjcdnA36aDthO5QZ1hb4J4MAb/SjwT8cRK1tmpLafY29baLFaqnmeA0sD2RuQK6hUkTQDWvfMEk2Do7PYJ9mXLtOiYX2Yh2y+bVhDKu/14LXdO3JmjmqipM0HAVtc1IZLfXMYiIo8wXGl54jelIpDUaGVJO1Pu66jueICzw/1zwc6JP5YAXCXoCQ2w9+7WeZbf3f4Fk+svDivpMm8N9Z7Y1usAjHDP17GL9vwKPd+qLNmD2e4lVcLWyPSHXpPxhyt/D0y4TV2pvCONSB9YZK9rezKfvOdRsQdmfVeo90WTc4nYeCUNR9iPnPBqb+vFyNBKmLsatcuG13aynCoojvRrnbhTG/36UG0KBJ2Nuj7i4cGEGo20fz2ElL5HKzn0lkg2BhLSvOblsD0Lg1PemA9m1nsMCjeNxaWB0vP6MrfSA28Fpt1ckfL9nAqfvMTwae2K+e5tF6gBm7rgXZ1MrrMswJwjTwsz5kVTsesZaAJxyu2L7RSZ7l4KVLllR7Gqw9bnHyv/Xgcm29fKkdMXA3WedObhu8LTcHu0/54ehjaa5/RYvuxhQanNj6KKV/Sq9Uav36OTX2/D+k9+RQSkYKCmN2xoDRbqAuYy8/4FNT3bjq3WADCyymRGWgRpYdUhnV/jcwaH2b9nyNO3wKI6zBTtgwvM4XDML5H81GJGV8EUQrNAmScNV0I6TV6PkDbqKzHVrJRrj5sklSzjtf+OJXzz4f/fOVeFYJsqdoph9uTNXGcvUM61SnNwU9yfuQt1cimipVdKYqZ+1jDbkb054+jp/shPne0EOPsDjIIxzdPLFZqneYfAAAA//+kncvasrwOhg+IAYhKwxDZKSAtgiLOALegsm2BHv1/4ftN12jNnViSPMmdNjFrtVJ+/q6nQVVQ77TWUMxChgEXUzYm2LGhuCQ1MVavTftXby8ha+lOutQem3klwLHyyI7375Ynao1ReyVr/K5vTTZgqbChtdUFlcJv3E4eqQTIQ5ewrYlMb6kfogZmPWHbYH5jJHbPHPKoC9hms+B8+AhPqjpYNpnbNRfUW5mwRy+ukD/eMibHy+7HN/76K0N0IA3o69InB1dKjefSfSvQWrwmJPG5N454rSGHVdkfz/zjLc02VNnMH6LZnlPV2cCWnShgb5kHXYBu7rVg1mvxLriUNqtff4BEovppJz+cEjTgvGEzf2inLlsefzwVD+PTaiXhu+pQI/kVM++P+6xfo/SzF/zN2oOxzLrCBfdyN5nPk7CV8SEyoTmdt796lf99j19/8C/eHoe7oJwWty1WmdpHtVQXqeo2bUD03J/jzWrIocD5k11vycaTovOZKu1pIxJsTIJRzU8zf/GS6cHq5Y1WdTvCzLtINPNpipvsCLfUosyvAB1A4r+Mho/ZvNuRtI/9P3+1TtQFfUwiNv//gnMn1FB8SR+M3E+nf/0SJu6P5DzHe+rRMVQdy3RYtO7n8zX3LtTB54zVZlXzUfksS2X2D+JW16PB86AMfv0sssGnvODLdEFBtcz+p+dtV2LtBYfkWRKrwDO/9U4BLKORsB+/WEr9fH7F5UDMwFuiwYsezV/+tfdDKRtcbXWDoWcaIffTwpv55w3yCT5k7+kMdXN/dD33V8h27m/w8/RIgb0ljJVi2fN65eDyj8ft3YBEdN8fBHBtuiTYuFx58zs/WX/FOKhy3WOjuLqhqznvWn3YBR+3oyj98WRj5t/jMuljVPfmnb7f5bYojOPbBrn+jHgl0oFPbdKvkC7KBzLHg3aopzyFv/pQcnk080lZJUW3Zcn61rVd2QeS6griDS+jpdfSKig6qGVzHih/OHn8p09yMqVzf7Xy/unNXTfmXen3qPuYo6TO+TrZ67nDu3c4BuoVLhe8gvXIh6pvG3CwZJKtcX14wzuc66+bKeAv8apswB2icFKrDUukyEPSzLsQu8QWbq67vTG5xSpXr4/IJo5ln9tf/2zNnq5HdlX7mO1B/KC5X4iRgLbZaMrXCcotOhFP5JbBF0IrrOviWLJs5jVyI/YllPbpSNwfj52GA1ULPzzRqtsb0bh93+e5IO6bzDzEGCXT0OEWq91f/OjPhhYqr1UZsoMTrL3R5ncX/fRWP5VWtrybN1BeIvboac4PpnYp7NFBPzyoOtdL9DDNy2ZfmY8Xj7tpyMHlGqCZH+F0jFVvXFfxCmTTPGOVJ2Hx4/P/350C9X/cKUhWPjPcT4X4W97Y67bXTmzz3q5aViy/5So9xA3bHZxv0SWL6giiG1nMOXy1dnr2dacIyn2Ni8v8zva5WHQw5EsBT/41L4av58kgKi9GXO1at8OW6rYq68cXMQmWs8mfbhM62EFGGb+svW4TkRxU5xyx/W5cRKOzeMmqUKRXZrJriLpzvWkgiV4F0az9lVfCXAM88S6in+vCajl/DTbaLRYTI6o8GtNXvOnI2Vs7hhfYKAbNSJL1TTuc8ep4kyLK5VGGtZQqeFjkXz54bNchf3zIJA1D5PXbjStAqC49ihobz/fY1ilsMtvAYy3bUcfwJKh3ezozR7rMHDQWPpCfPohsl9ccjSiTKDTiKsYlwXLUa6LfIAfiCVdm8I7Goi47wCdbpKvYkjkvvsMD/M1hT4VzUmZ/53sp9y3RkHgphu+5eUBXnnOGl42PhuJ8diGrboBHXKy9Trf0ECRpsgi+OKioP8tFCEa3QMQUOqttn/VZA+ERTGRX3p9o9A0Ng5OtjsxSP7VR0jqWFfryCuYc3anorC7Zw/jdAnNL884/t3C6qaPif/Fq6SCv3YjCB6gXKATr2bcdRiNUoLVFTrYQ3yMen88x9OduJJqM9Vb2p9uAjBzXeBrrvdcL5JnCMj47mId9EI1CnWpQ5O+O9l7VFoM/KKWSngeJGM3inU2t+EzhgfSK2Yex9XgVDCmq11lMNlRLUReMI1aRaJ2Iu9K1bKl8wxzii46Y/92l2ZQdkATAYpEYAu7a6ZCMDzCj50Cw4euRJBbtDtRYk6iqHB9G10yHCdTi/MXT0n+206BfAL40zJlpuBkfdu5dUZ5ercz2qPIJj8ULHSfryuzlKBT9WgsxGPvsilk+dXxMSlkAze9Sgjd1x+vD+jDfCflcmTdmyOjCz2EHqnOKcNPxvuVvIzPh8txq5OcPHKXaA87rFyHu+6YheXPIQggGf43X2cktxku8HmB/7edZpubL+yanQULe18DEMcQh61xIK/Sa0jcdeRlk49UXJDhtlJppjVt5o+xNoegf7IThc1JGox8uA4WEuktXH7Q3Jl9Y5OBF4YFY7+zrcU+fHqp7uY10Ye3dYui0JlHSthiZI1LUsl5pb+Dlsk2c8ANo4ldnD3QERp/CpsraXmlzeIw5p6dDYHnj+FISOKI6JK6knLxJQTn+2S+lm3qPalnMXnDERUS59NBbthh3DXynTUpOodUhuooyHcyltSZmtftE/FwIGixVXWXGTrSzRgvxa237iUU259DmY1mNOfgCjsl2tW/QmImfPQi9Y1MpNz1e/eLX5ZjdsZJtdqg3/DgEU/FLtglALlrqsBgeG+IQHyG9pUbkuyB7ypmqeON4Q6g5Mhik2LH5+W7LddGLYT1GBA9Lw43GHu4VSoU2pw3e2YW0QvELpsc6Z/tglc/7SaMBVMKvxHF6pZ1UBi50g+wQmzVnbxrxqoEoGAx2J27eXou6637xgVZM50X/5//iNJH5exRdm9kBoFXt0famR4g/PqOi9mUSsu31WXB+dOwJpDYz8CJ/lZzT9QqjxPWe+J4sLnyykB2v0euyYHtBy4rhGm4eEHTBlqpiwKJJZdJODRsbM90slawP789YfSCtolP9Mtsp3owJnMICMWNxv/FpOlwnQIvng37wPOtd1Z0BpOcCE/Mbe9GYexeKYhEV9LmfXkazsuGIrKj8sCSVyrbjt0UCJ+92IxpepnxYzvdqj62mMX0974OmadAp+wIuVJqq1mAc5lnIa8dkoRUvPL4/CDH6TkZKp8cmN7rFg4UK7G5nprm9nY1V2JWoR1dK3EpWinE4YwAxqrYs3VabdiG/59mA792V/PSz36baEbGqKtgFHnE7+d4RQ6d97nN83LaTZsIH4kreUjh9m3YcHWdC2U6/zeeJCrat5BzCxsTsCsvJ67AopwC7/Dzr38Rr0fpKSLZyn2DvWPPuZ5+lcXhS0cnDdng7B4Dkaidsy6NdJufNGkPkvjpiznMguuG7OsIgfjZEywbVoN93n8Cwjtu/3w+wQwrorSBisZK3GV/jk6kc1nLJ9rTcZtNT0VIoAJtks9O+Eb+8vwp8W3ek0Kkm5/leXcGsH3SZ7eyIJ6y+ocNaKkl8PKpGX92FB6oqhpl1CN7GEO0fL1W+ZAIj3oLM/rjOAXTd/7PvfhrlPThrPcIv8eh4coGmAH72qITKM+PVzT0COamI7T62mY0pJw+0skvOrKh+ZVPgYxPF96tF0S6CiG2z7oHQYSrIrvs40bQxnRjmeEg8zflyOizQHhS3CYiTHxRjOuldhWBRxmR7KQc0pSEzgb6cguyNxRtNIRZB2dL+zrCarLzeTvkHtu1XohUeGoOdC0GH+t1c6HKwiqz8CL0J6mDsyC7Va957JqUoKp8aIU4+tawyLx2YcZ0R7Wb7xXgZXgkK/feTaZaQFGM+PnXg5v3NPFx3RXfa7HLI8K0ieutsjeVwSgeovcZi9od+Oe+oOUBUFhojv/zqU0r5n/7b+BOiXsm/AthNtyLWsbrx5pff6IvjhmSbocnopkman34xYyhY20aPMEAv65ril/UfAAAA//+kncu2sjyzhS/IhoBAiiZykoMmKIjaE0TkoCiQALn6f7Der7l7u+mwISmSqjmfiklyNkfzWKzgwh2brl6yl4qV+biC6VkrOmxWpJuz34ThsoYbCa/l1eRae3PUob6f2LJe0UBfaIT34x0TTxfkqGrINIOv70YsDbjnY3MeW7R+BZQFPwdH41HXrD+9QL/ecO/YcsslsjY7hW3hbvNZdd97bXU3U6rMXY24dR9kKI7Gmb4e+jGYhMsphvng5ixnlRNN4YsI6LS5bcnOvlHOHre4RrICLnGanR29ksq24Kb/SipnDUL8MsY9kli3eAYprHgtCQlaFaeZWFHgRZs2lO/qp+4/ZKc2rcmd/XJWoHBVafncfNLO/2oO+rI9JjY6BAt5fccg7ASV7a9zyUeveoSIWsLI3Et/i7ifdT5Em1+3vN9PwKJeBviuNwXzC8aDbv3zV3D/vHUsR2X9n/74my9mYmgmYwk2QDbDmD2vooL4X35F1/3Adl7y4lzS16Ma7fCBSuy3Cfhp6DGsTQFRXqJ1xKZRPEEXxiILbo5VzSi+/aB+jgdCApGhabc1APZbs8QQyoBG4Vjl4BQrQhxV8fhGrL+AWJNYFBXpMR1Ph3SEL8OY+Gzvo/myWc+K0EZXZlU3OeV/4zGaUsSr0zfpuNncKboYQspCZ4yiqRavPkpaYcfiM0UpzZXtqFXlj2BFTspgzFURYPWVPkv96NK69a9v6Ad0pPP5YlTN2d9RICwB5h+SjvdXcjQAxHdCfO92RdxYmzH0O/1LqXkoo6lTmxmWE0WJmzWIsxH9LLRJ3DNdSy8rnYqMXAFYvCbu65J037U49ppSN5Th6hlwScyRBXbSH8lOakWTZfoTI46CGwsOgoWk1HrJ6jeLLgQfhl20GdQqh6J2dbbo/Y7ST/mDdiu9mafOfTqWbprA43unzGtmo2PeZmdAvzO+RAf6qdjr+9RhqtyAZb+PkLat/tSV5EwzqniDWv3VO/Xt51+6GqBCw+BKd4UY+xXlu3Ts5hKaQs2125lqOZHNXvy1Alg37hB9PpKODu1ZRdo+XxH3FrKAbo9RiI5PISSeNQVRp7Q2Be+WIizh94mPidnU4AzL/1zS86+bxf5goGV8VIgCLx3P+H5H59mP2I4l52g8eLIBk1lx4o9j0S168K4qH2vHjqJaoPkm3ULY7KeI7RVpZwq+q9xBvp9HPHreiOhDEQ2ovWJDp+jM+ZjTZ4jUa7Chf/5H2MjKHdVv8Ufs+rtPOembGto5srBblJRT//Ip0FJ/yW60zXQy+fBGynQkVHtuT//5rU59AUVTmpqTZmqAJqfLiZ8Qao6+O11B6mOROOlTDKa+L97aO9afFK5z+eevLc1j3ZGu1pMYzdW5BIBm8mlbjRxNUqCekI4eHV3J70dKNa8X4C9fHG4PLR3slEpwuLcH4tf92+wOP05h9OwtXZU/yxTes3OFRU/g9tIraS3kho9cef2gm5qblSTZfv4XP4KFrEUDwuWs1ZE1kO39w6tp6XxDeQ7fZEcUXg3hi0go522P1/mNRKPlCD641mwQ37D6gB/z9gqlyKx//oPx5HhFbfAhNE1GIaBbaxvDsFMaKmJVqMY1FKW2ze8lIWMQmwIVxRLtD4pEJ+/jod6O7tJf/WTO9RgG7SNvMbIL5UaC16E3x2TjSJoVVeNyg4dvskL/1bDoB6perDOab4aswzukOiOZPgdD2z/26CFZhCQhVNF4xDtdHVafG1br3jHZS9R6dFPzLQs8e2OOXYpD9e955qY5dlxpDz0Yy/9MUt3boc0V+FXb6DvOvKRiaLx8ty1a4s8sE5Jq4qtYRlpBgEr2EHbTne9K1At+S2HaKel30TfoLh9OBLPqnbbaSzkh1o0Ya7L6DCZLtxK0s4Y9vTIjqsaiH2d4uBAS197s0KwlQaHm0R6To6vv0pGsAx+tnFNOhXWuR31iDm9E1r6LN8fHN13Gc0Jtek2Z5ZzjgA9RIWuJjUJCsnmP5n7vusCUo4hHvFERdc/iT3Nks6OdClU1fO1Tq10T0SDms7I7buvaCdBWu9CviBMkpbLpo6psCfvjDdyX0hGydYOJOfuzyaVDnkH/OkwL30j4tLvricatR0Pct1NHE0qBwt5b2cS/WCKfLfmFtSU/4OrgqXyKXylGJTEJcbeuas5izi2oR9wvfu6djgUwQT03+YzF6GtEEzleRxhe4Ycdz52VjvEW9Wh3aU0MKx11fKqXu6JO9cS87TsKuIbbDIrVZce8HVTRvPNyAPnxTHFxXr/NTr5tZfiexQNzXHNrTnsTZfDKp4Yq5nI/clV6P/D5V6HvpRCx4LsV4HSPDIy8zcTH6ffIVTLnLTmkvfOfn62zX0nFOf6m3Z/e6A85x6Is0JQO2yjRMM10Ev3xCSpsY0S+9htrW9dB83plUVQ1QFl6Rvt0xvWxVoMbTZf8YiCR1/0JfVaIMnt6vrpZsv0MPscaSN/iSzA1xwZgMl8cT18r6GpqZCd0dhOO1WfwiObtL/whuh1sFlDZC3qfIQDRiHo6ia5jTvJ95SBDiWZmnoYw3ZjT391/XcyW89e5GMdeCK1c3hk+CxT1lvq4Q5V9erK/4IPJagsnKpWxTUxp15jcuAo6KNEqY+5hH3fjFPYC2GPfEHJ76OaUH4I3ortVisVOqKNf9651pOuCww5i2USLvlPR84NFtt/TNp3t17mHbWqZ5GTOz6h142OuxcffmnnOueD8fimp1pvqiuzJrunGzP4J4L/9E15JZhfxw9G0wChxwuystNCcHrkAf+vnjw8NJ1vu0R/v2dXbFs3Xr1rDkd/vWKiDKBpfCGrlgJyO2N7KTvkNXP+Pn1F2Ose8183wDvzoOeRgMC/iBb/W8Mdn/GCWTCraYg/bjp0XPXRNpxc2MIzP9ZcW6JCjmUuK8MeDKNofynQIh3cJ4hlXxEP1J2A5ZjM8tTxgu5pX3ZIvBVC22wav//z7uiEJiNeXwXblgwcTtptY0wzFY+7C89oOs/o/v4HWStc7LtXBTuiRHV6XKv3TF6rs0Zz50utSTeIsSHDynxK+4cyNpq7QXLToQebv2lc3SsNhBdl+axNvbwYBl5u2hvB2DslufTEQf+yNH3w+wgmjbhj5QN3AB6uKgaX1wp/G0UrgGl5lEi/x4LyULVh4ANOnp8AnPvkrdKpa659+5+i7fqPF3zA7blecSZerDuuwyIgrxTwdB369gnuKvpgnv+pP34agFQdg3ktk3TI/elj4JnOdb1mNhlwVasgvNZUWPjFuo10GV997ke1XclKxlFY/dT74+TJfi4ClfjhDL7gtXQWxh9TVOQy1j3XyiPPMWpOf43mvrarrg5C4syOpmQ45EpuNiGE8r7qB130I4dfP/vh5N2YnYdY43t6Xehx1s1OUuXa29Zjsd4dntWwCdOH0uA/kYKuvinIrEBASq4IRRqxuRHB2wf49MTM/v8H8+f75DbN2d5nXnuNuvIpFDKUsMWIu8ZjxytgjP+MhBi3gaDB8xUf7j2PhP/3eWg64oNef5e5YreZM0jezuuRnLNQaDqbP43aFLSpf/+njP79lPpOYBMf9qhvV4ZiAEz9KQvjtFkywDYU/XoNF0pOI7qJrARb3XaaPvyHgu1bKwR74QEXuWMEcjL2M3Je6ZWZwNTt6bjmAZCQl3cx5UY38lPfoNsp7XDVHgn5T+w2BHwOH7NOgCJb6FaIuGdd407thOo/GcfWnv5hLmuM/ngvPYu6oYq7DiJdtNYJp/ARiqsdbxTm0PTLaX4EFiNqIg5SfwJemGquCPUQD6bzrH28k3uF3qDbB1xNA9dvwzy/xKXj0zr96uV/e9/w70B/643kBNV/RWCIvhuh1W87hOwvV3/NpmRJY7FDxQzWljVb/8XGS3aa1+RtJJ8MZ194SnzrgtYVj9dvOFnORg80NY+YVgdxvWbZb39Px+LHuADf7yywx0ILNJxffwEp8Y/vNw6sm4XJPkCBbNR4e9zCd3O/mCs/PXiTG4p82Q1SoWh5h/K9+zov+B7PfIOLtfLeaPtFFQM3jlTOL3xs0/lZjpo3Gb0OL4rvu+sW/oOXgaHZY+Ki4XZ2uQNzO/ce36vNWz+BZyQlxorNe8UVvwaJ36M+7yX/+LIHLl5kEv5f9Qayt3nDP8Qpv/PPK/DnFLwMUq5iY+fTjX1Nfv+HH9xLdvDo5Ze6iBBZ9SA5tPwastpzkjycx3yZWKi1b+8D53G/MD1+WKZT01wIT1wnbdzdmzk2FSjh6tcp8tmqqNzfDGkZ7LFlGFD0aL1kJaLcTNnQtuLtAcoatrxUdyf7Nv/lqVqd/POTYPVo0vdLMRRQVNcvzYTLnfeIZYCpxy5b1Ui2qHgPthivz8+TcbZZ6olrv7MMSVfnyoS+28r/8onfTr6MeRTos+pEFFiq7IVTtPfzOqkmLaykHf/4OLtFzYP7HNtOZ6OyOZE1R8Cx7kznHt9FFiz/H4/d6SIUOf2q4/j5r5ns3mQ81cSWYnT5mZ3/UTXHhbWqZS+m/es3H82nW/vi2Kr02Hc2KTQvGdRP/q0fTdnW6w8cl6hIP3fz+8dRhhxpmHtC5mx9DHoOY/gZC9MKM5uPaFf54N/1sHsDn/HlzYbsSdebf9y9zvj/tGZb8y1zbPphTRBsf3kKusYWXV7McpTos848QILjiT8GUNMGHht0iXJl91g93uJCe0c/C5/7qBSqsV/uPZ/8br7qZyb/+Tn9/vN7wNayQ2WWUor5hrxMsfIKcYMlP0vHlQzsfLaZzZxPNN2PUQXu+v/juB7ybcAct+OP5TtWlfyPYSukDtKpIX0s/Zul3vZFc0RlLn4pUzNifE3jlvKFI9V3057+UOsHXf7yZrpguo096acg2wPvob/1CRSybhNy5pEMUQwH7y0nGsKdt9Nl6MgZi4BXx5MQIFp7igvzzgU7hjvLpL3/1dzcmf36d/emrpX+AR3slV1Nt/FxkOYZH30GqVr+YF7O2jaWBOd6vqsb3jO9wj7Mzezy3MxpluhFg1zUCM3dpWLGjKrnoL98Xi76YKiJYMJ4yE8NurUb9TbZzYE9nIMbQK+YcaGat+ePl/o8/cCVlOlIOg03wy3xVk/rFP9iWXkH+9F8bp30MAnZCvLafz7/+mYPeYa+zJV8G8y1rW1jfrSOJTZCqCVIv09TV/kaMYpsFQ4RMAZbPWDl+iqWfNs3a4x2ZJAjyOJ34KlNBehoG8QblZ7LTLpbVkcQXdvGSLZKoXljacKETnjvvY87h28z/9SOC4ehUG3VrukDmrCW3y/VSTfx6eIOWGAIjgrszJf/CCnQ4WleW7kOSjuUrpCg5LXs6rLBJxzkLT7AWjjfM4fNb5tvXhaVfT5b1Uy1+aQ8cm3dc6aFc/dNXAaeM+crXQBI3r7X6x6csxR1N1seZ///aU6AK//eeAv0cDyzobiydeLIR1DA1brT5TnYwD/NUwMMzGHNvD6X76aEcw8GbTmwfWXX3ifZ2AZ/9Vsd83Ux8ZNlKR6gJLMxvtcBne3/PgW9OF+KVF95NO2M7a1dSvgk+/8ZgjH33DtqjSTAfTlra7Z/hVZuIeWSHaO9E416nDhjhEFJ5yyazDZsIQyu0NR3Roe+GYB+q6Lh1Ajx7pdqx/NQJ4BkS0NFR7nxWvtqI9rVlMjPrz+akq9tCzUQFEyu9GZzWeRSCjkzAm6LoI569rgLohomIFWLa9fRoG7BuugArZp50/GlKEgQr40jsNM0CerLMWeOb8MIClpmV0FysGbLQoMRujFcwZ55mwG/EV6zp4JiDXlzfUF/ajLndoPCp9IsCbTafA05WZRVNUhLoiPuNTVfK2U6n6X2UodCwg8H0+6DKo1AGSO8O88unmE6T7qvQ3DEmhx25dVP7WxfIPkc2sQ6yU43H4Bei4MeexEmEG+dbHjoqHwWXHPDDSIXk9buCcZjXVNzei4CtL7cZ9LOXMUccA3PuAy2DMNVvLD7VUvp1D/OsvU5K8u976lzyO/r7fWLwIZ3S1j+B7FNKSBVRc5gDpMJjpRBiTuepm1rHb5XEf0cEzwc7mJJNbaFSfn/xiA77ahZUqwVZjUO6wo1lzvGWjOjViG9in922mzOWrNR8ehjscEF+yqahvSMl6XQ83lY7zrWgmLXWEiey29YoGG15kFC1eOPH0/QrFhKvgK1groj/GLRgSOSbj67lz8Wb1LBMiXRCC+uTuic2J4dgMA3pDXNNG6zOtwHN7zBKkMKTE/OR+jP75FXe0ffoNmRnHj+LJ73msA3uOdvF74h3qRpTgM+rIfbZFqI+qpQE3dLjB69rY06pbKUCUg42Ybuu7aNpg3qAv/e/Dpqmm1CXWPA5jwaWpu3HnPuPXkD7ojHxl+fpQZUSSFX/QPyoss3pYhl7TVAkjxhTWAezQi4z6tEckP381gI6juUbhg5nzKuHtJsyjkLYuPGBZfbjiSbRPxnrLzZN5m7NbTRtXs4KGNNyEnzNXTWSW7kHUbwpZCdjAXH7xSy4XhUH88/Gi6ZEPvoIptOHOc7R5rP9HnPtxB1MXEW7p/Nar3SYUF8xe1SatA9r6qLYbnWKjicfLfkig70OJa6afEj7qLJCuD82N3r8fGzUVOc+U9m7XtP5fMv57KM8h4TfLHL07lfOXBSe4Kn+YhLU2tOc3QoywAY07BJtlrtXNpOBlvlD8JWByZbDfZBjqR9ixdrcjY9vWcMF3glbrmDhs7WGBMazuMZyNyiIyfdHid7NmjCLPP10OGidBCcz74nTo7ybnWmXwGbbD2SfOFlErw2RAMmnhu3k4zeY9VQ4gSF9Rjy3L90cOpNTtI2X+w+v7o2LbF5TlChixAzhhHjvbgJAIxuP5MH6TzAde6aiQts75P4Yj+kYufQEu11+Y1tZWQUMbkWv0Xp7IO5YvjsqqAoFJIcNySbtVU2ZUMRIs+4u2d/luOrbUVc1fp8TKpmiGE3LekVS90NsF6kVH7GgY7Db6xtDjlpEt4Z8Rdmtztl+37nV6OO3gc7b25YEwxxUoqqaliaPc0HH7GIFtBr0kyYkrwtz4+mLBikZLWAPEzNPzIqqvyr7Oxqupz1ziqvfjXWjjDC7uP6Xn/nxPpeq9dZtomOLRWMu0FJ1pWLPslUhdv1Xfc7ovMlnsv8G32i8nrQrWPLqjOn5N5rz6Tv0KE69FTGb17bi/hAmsAsFhSXuzwgk+x3cUV9ufcqW+A+7t9TC5ZuLzHuedhXbUXWPdpL8w1I0lyYvH4WuFVJ6Zj55QDfyNPaRROKAWFq86aj40kcgK09iSU8o4lpzo6jz6s1ffjWb/SWTYH2iiPLTs0XL/MyRX1o6M8MZqim2ewvRY4hZfDVWVaXuH2/4nOuJbQfXiEbtpeZowC+fjsiX0/7jKSqEruUx6/Txu/GrPkdkNYLAtvmspJOwKlba53wr/uKTjjmZWjhvfibW7vG7oqUzhdr2wzBzSfTqftXm4oOf8wMxm1QJqHU/3aEKSoW5qfVI6WOcrL/6Q/xdr3MxE9oELLnhy/xV0BApSIcevVU6CaHRjeUtovA+bSjRJ2ZVfVQ+MYJP1bClXlXT+gsYorJ4svMGAR/M7FOimq/3xN+4R0RXqWcg5XtbL/kmRoLuCiMkyTAv8cq6MQH9Ch/j92JOY6npJ+bbGvr296Or3zpLZ5MnJ1j39p3tSik2p0EqRo3efwPZS31T8fe28EEVZYucLJ5UXDi2BQzHR0p2ix6YjGNXq8u+IbJz5wpx9VO0mpIIR+JuzVc6Dem5h5tbthgJWhHQ5yA6cI6LkhkTRHysg3QGc91MxFwvzCIQS0vrvNElZ8NhnOUPNquf82wQ2wtSxGuMdFj0Dx6Pe1LNrJ5qOM1Dz7Yv/EVDmBSGOmjrlOHhKldU+Yojyo29QaLfYYo43NoepusYMWt68GhKWyMEsgr+BwAA//+kXcu2qjyzfSAbAiIJTW5yJ0FAxB6gIqAilwTI05/B2l/z753mHpuxkKIuc84KVQJFtsPAamVzJY+++8OW1JYDa3lNgwjAD2qjVojJ/uPvIFSFFCvTD3rde6lXuKKOUT8XuWFi2Q2CSD8XVFeFMZ6HadkBjukZemT6WCzF9+7Dp9Ql+JTSsfhXfytZ4XHhWkJMZHYVQGX4J5qd1lMxR5mdwHtUYGxBWQTTLT+4krdTzth6EsbmUeQlcP11Ji3gSYnn3s6U/+LFUSu2tLVWw82etIDb7MTR40u5kOwAHe9DA5iVJP5fPaD2L/8Ua57VCjy0HKKX+hM2TFkHDYjGCWHDcbRmbn2bkzCib3R4EgbG9/XIwa/2DMncSaI3v5d6hh8RPLHzNQ/NevNSCfiNtG74IGDcq7MJOCz2DhvButOX653ZIP2aCYJ+xxX0EWciOLuPnkhqGA6rQ6cSbvmYGnr30cmgGA94DNWKGiq4sXW1nh/I828XO2mjD/NepBlkbsFR9aNoejc+jR08fG8Q42h6MzZcuwgGyscg3G0UmuHjHTTYcvadFrrmFutuL4uguGojNe2+1vtWXELQPGKRpGFxB2umKpqMs/JL8SfLdfZ7Vwim1YMjvOkY3tL1hxo+PaRj/fb9eesLKD4MdG8l0i7+FBueiGAZGHdsDW9RZ9nVGYHheDU6BI+4Yenb6WCSfUKMSr4dWNqWH2hZ5Y3G+/cCmHq97qB0y3Uyxf6nWLZ8DAzxy6ihqVosrNb1Aw9FeKf3rN+0Fsx8+FcffayGBV0fLAO7AInYoSJmS3pHJuyV1aLWOzKaTmmiFQZxldCSvhadfDAJpSocTRyeHVBQ3V1tyEPUk6NqI8bt49MDhpYo4sBnbkFAWYvAkmsXO6rXePRWSyOEKpeifRMjfY2MmZM3fyDSac81CzBfCGz5lxxuhRL3nUoSYAViR2+hxYr1L58a+6zFevTs2EqyuIZTextocL9Fw4wz3gVpSlca+HPqLWYhEfg2jyXVFCNqlgEdeliTwxer/XhmBI+vUe5eY0Jv7s/zqLZXTdDPuoUORLUbXn+oPdSMvKLmiBGYP3I8Q/HOYcIbz9Fj+O6UoH35AWn68N0w08lCmLvAwaq4/wyLFmUdFHDqYTv4XOLJ7sJVKoK4J3z9a0H7V49qsf1h1a9vOuMP2gNObTEQcAiexRxd4whqfawgIT0Qb/7DH1u+pQazvOLn+ZkEtnqEkZXTphH5rpU6r6+pf0/e3vRyzAyO4PZDzLvazUH6dj3kquiGvSEFOu1Y50J9v2jkuuGX9XhSRNhcjB71mmQPh4e4bvW36bGna30xpuY1kcxNBdjiZaA9PZiwNUYf47NZe+tffr0G7onqbLjFU/+4EagryUpVfd+yuc5IB9PENnA+U56tROZLiaimjH1eCwbygL0JxSR8oreaK9766+pMLvSjR+13cmerc8El+Ho8pZ5dRcP6wSQCG15Eez9x2Dq8PxnE3HLFSLk0jD5ESYDBrFzIa39BMTMWx/3D39QsL0LMnk9HhBM3B/h6BKreP+3YhR/niahRvxp9fnX2CGZoqQgk+aDP8ivIYSPJLj59M5uxsmpW6RaZN4yB4bJRtyIRVr35phr7eGz87GwBfpw7wsqGP+a4OSbwQPwJe6mh6/TzuSgQ8R5PeHLnAGnFJYKny/lEzXjVdKErjzmc9e1M8na/g//7hkDYFRKahUc3UNnrVrjH3xv9q4erHMgisB1Bwob4jptZuK2RvPEzxP/Vy8k2fcjdUxuVp8YuNr7WQpa4AjVK++vNwu30L/6QaJyO+rj8EgOCKDuhY3oH3jIY1SxXzf208elLPM+PzBXzJP6hbW/If/FxsZUXze6N5h3uk8rJsMhMmtbLZ/jHr7b6Qg5bvqNi4baQ0wsBHVtmeOta9x14Gm1DVS3KBtZ8BRF47TnE6qQd2egXhgGS3fmJg7b9equqzRl8mZ8P4QLRHMj9qriw+EFI9SsaAXXMJIK75/6A9UecsbXn4hxufIGA4w+DZTC6FboviRLeFTuP6a5kg6SdKOJdPmZkgUW7fdf+w9qmlzBjUV2IXweL7I4YAgrYuZevafXG6NV2zSiuaiI/v8RAhzGBxfI5tjVcsjWmrvXJisPv3SF4f48qWcvvt2HdzbVhn9sfrKvHqlnmvBLluZMrcmxnykbuG7hQu24OeVnPbB0/xQNq10rF1+Rn65zVvyUZ7EYOcY9tt1an2w94Vg0PX4MHa5jIgQp6FsNUF4xLM5f3Ywv5074j0xW48Zb8P5JRnnV6KR5zPN0E14cjaCWKtudbhTMZIYh8DmmsuQ6sVr8S6OTDSjFHdG+LvxAm6ICIwE8C6EEhc2DKQp+6LTixiXcjRe6nyCL0NfbFzH1PLvRzb0aHje9P882cIe9/bVSZR4mt2ee3A8NadFjVspe3zNxNgKKUhtSqXSNmzLhnkne+KDho+BoQn+gfeeGjBLtT/wPMHZtIwtk5xcZSWcPM+V8b/KxbQ5NHIQ1ECo8bnthmnW/62Zz31xxoIQ0pblKt6Fksd0DAtoRHUDjDpk+UMNl16p9eUUxccxHBsfIX7MxfTl+9OvrAma5nREtp9Yi2TY++hmZKFc6u2PQTtQ7IlejQpDp4Hq8f1g/MdrsD9XZZzDgj9kSY1Z2NOJJ9499zveUQkKbBgXWp9akB7AHC/GCjw8MAjGltY0jr4HJUiQRrIOLjyMHX+DSJmBYvRnMazhvgbFAn6TX7F2/8KnjUGAmNWZ6cyD/8fzLKK5jx7mpAq4E5Tpg1xGMRksc//H9a3hf9n/7455+oQVXDALt14HWrBOrO9MJWF+oVUGxupMHRpTGlLy2RNzxFlU2fWh6fLgMlrAn2DvEXLOCEDbjxS3q6SxUbeeSE8FZsuzMj2/W263P41boX+mXHoembMUawMtCJKuV1m5smlSPY/AUrEYvj5WwBBZ6PEqC41dZ4wzcIHNRXSZ0Nz66t6PuAKuOT4j1DrOeSmsCKdSn+43vTfbdH0NG1gOre1R7YUT130LJiGzv8zY9/bksJNCWYYYdu3+WeXl9D5vniSET35RSLwzkzeJBLhYSNT234Ev69T+r8ngxQ2UUdWHfRZdOPQLMI80uDbXDM6SZrM7ZMVX4k1ninUbHmgD0fiQDf4z7ALpXlYvjTi//q6/WN54J8hT6FzmV3pwH9PIZVChcJDkfVpslBoPEahy/hn/94fvMBf/o0/OP/2isdtp7j0ENDhBf6pw+sHhQ/gHP9LwFtog9jIfAlqIJPi02WSMMy8mYPn8a2qwsUv4YF57AEm78TJgkT2P6/g/m8A+S7mEkzGiMnAPGbKfQcvqdirZLFl4Xd18O6WJkeN+uBCTb8gVZysMCU9Tck7cJtLpLx9D3xKSidjHyP/cOPPdQWKCcHPsS6oyobvpRqWP2OCTXM+RPTcx5sK2bqCTtx0RRsy/eyUswQ677ps05qklQum23ObNVUDXNOXx+KVbHDfq3/PGIuXAbDtnVpZDmPgm74Cb72ny8Nzk/JI5lqaxAm38umv53iJdiFIrwQM8IoT/eM9e7FBoHurGjXIKWZnus5A4fF3aFduKviNSlzDm5694bPcDO+gpocNrxLcSl/iqWFVQVdT5DJIjSpNxaC/ADl/jxhKyj2xbrLix0Q3mqB8RqtzSTaugFNzvkigt6ttzaTEkKwk07Ua5NmWP7wYDxME4H9GngzFyQI3lR6oMoNxMN4eDch5NN029UcpmxufUWAf3qTxu9tfWal6kMe+j0uXmKs01VsU+mGXRvrU3QvWPO7KWCrD2Tn+7Yu8FVBoNtVmOrmO4zn3dQ8/umf+q1N2DT8Lh30p/hM4mAKmz89UfbO1RnjVouK2cufCrwsWvOPTx5eh+3I8edG0EzDJ5hyFfkAD/mBbvq3Pt34iw15/21ja3E6thhGOMJNj8KWd7rG8xAXO/h1IvWfXja/1msLj+lPwQUnDWy6jJ0N+ym0SD+cp2F5k+ojDZ/IoQ5sFXbYX28z+F6Kiuy2fsuye4jRH56neC/onsSoTaAWwJDqZtc205++OKdq+MdvhylOzgYU7wL+q3fxVs8l+VF8XgTczBwsJj908A+/oMysms2/lL/6sd2/YtOmP8jrLrxQZeNXC7KpAGJoYHr/wzt/+f7U5R9qH75RvL6fdvKnnyFen9jQWqdFgZ+IJ4g6OxVwPHIiiH5Kutl7LeZDu/NB6hYaktDib3PbxgR61nuHXcSp+mLoQw8j1/CxHvIhWI7Jz4Wb3oi9tdXZZBbSCFSgKDTe9EE6UTeCxGp8shZiE7Pec33oXOCdOpI9x//4+O4nun94vZmL4VjB6FjdabbVJ5bTbIbz80bJkBq6dzg1KpI3/obR8fIuZg/HJrTy7IeTw1Ef5vLQV/BPD4kZmRqWrEkNTa7edgefjXgxhYzA8OCI1MJcUfBOHnJ/+vX2e1/NhC+BCAt2Lbd+FPRGMmYGnOlXQWH/NYp1+0QOOpcvQMv+Qgp2H5MZhvLuR3Wy/w3so3Yu8POrii1D8ZpDGNBMUi7pRPhvZgPuT29wdCX402vi9fQRNzy2Tawx93p8iJSyAn/9EmsYlGG2hVSSf/I92d53UfyL5w2f02A9NcXCO+0OOGVQYHzMVza/Z36EMuNu2zcLEmDWRQ3l9hpL2Jn7rqC7dBzBuXIkss9fPFtRJY5w04OpSd5ps6JtjpewW0uKafBpJi3Ketj1oCbHk/TVN709hENJMuyNdtzMp2Mkycdfsad66Kg6H6adBo+6qP6nV+volUGl2AVk4yMN096hK2/9HOw/v+LQbv1IsG5zKnRfF4clfl40OILih5Hvd950z7UUKGKJaGJc3XhJhYMmdV5X49PWT+WVKmzld0ACdHgunbfsQz2CdE5VvOHpmF120geS/F4iftOnFhjlCNJYUMgcsbhYtv4hOHk0wX4zqd5cfYtO+uO/eC80+nw37B62cg2xKT2xRzqtyCCnfy3EX05JzFpcmbDj7jHGWzwTGdUQdsBgf3peMVohtwMD7bpN31SLafWYCN63w4iwKaiN4MG5hbUtW+RgyVevdy7WA279tk2fEPSVk/we/pCf0FTn+eJPT4CHeT+Rb3UXPbr1L8H5w3Lyina/bW6I4svj6eX86aWASt+qh0PHH7D68viGNb+zIn+p/cL3cqoB28vVDFUve/x3v/uFaDDD1QfNNOa88SROHBSPMsHoaW9naAbigo3PUeUxeUAwFyv58z8k8FPK/vREGarDCQflpIHpACPtT89Ch1jS2WHrJ8nCbi7R/pPlHnsag/Tnz9hDghSPivMS/vWXzlv/Za3NYwhJ3k3Y2xWdPsniC8EQ1RmR1lLTedH2DHh7a7+//nIzZpGcw9RtY5qPysKYtncMUJmyQa8PK/TmyVRNWNw7H5+2/ux8HT8p1G/0TFginjx65rNKcsp8JLLW/NjsIqLAy3yIyNRQKWbrw0yhMAg+PYU3Yzhs8S5teBFJ9ZOPiU/mXv5/nSng//eZAnvnAorg+B5YSGgPjPO+IbBYH8NStUMHAqUyaL6gY0wK9ZKKYzurBFhPteEYICWEYeZhrPlzQwzvk8OPSSyM5guOZzRFRNac2MKn1jh4qxvDHnyrfYXEekXF4X1zMoBp4FH8exnbfpeog9+7B6iq7YOmK/1zCt4/I0Ktb2XNJ3o0rbSk0KSu4EXFqkw7DZYGsdGSsV1MH7/agK687VNpuJKR03rIADygE8Vl3hVjwnc7sFBHwpaRDYxW3CEEIHMP1F/CkDG+9G0YlK8SW3mpDFTKbhqUcz3DCutUb1YNVsKiPC8YA28BLLjeTOglHcax3l511pDhAaR8PFEjbeHAbIZ20Hw/KiL3ePWGS8/VYMrymoziPW+Wx3LzYSEcQ+xIdGTdzyEVbLR2T505ssHETo8V3C/wQTV8KYrllNxCIHiXmKrdtx7WplNM+Pc83uV40RcguiIINOpjt5ClgagXbEoLWyesarjT10S2DYhv6ImNtC2H1Trl7TY7/Iq+8jXQl4KINUyt6Ebt9hl4tER5CbrGt6gZpvpA6mwR5OXmIer1Qd4wR7uE/55H1Kxo4N+/SQNH/3Ei5EXsYt5nRg6uWUXxtaCiN/PraYZR9DKxWStLvLi3vIdcHOsIxL82/s09C+GrpAK19CJq5h3kCMze8ouaGMJi9SzLhP0jnKhVf/SYSZMpwVZ8WFh3zjyYpgWb4GzEJkZzrQEeWjcfEi/gydztnIHXUEPgn3281OwGlkraDBQgXMi57/fDdHcVH17z6YA993lg0+mHXdjXRoSTy/ntsTqOOXgmp5QalC/07ib1CYQSKrCf0StbcBR1oA/uT/Kb+ZxNp+Qcgm8CLXzTqkVfTcEPwbffMcS/DIWtUZES+NIJh6DmvZoPbg85xEe9RDsx2g3b30/B/J14amFNj7licTqIi9uXnoRBBnPw8B/wfvJCdLr0ejMa7kuROUn0sE/0r7cspguBcJzTbU7o1ZtDyjLQgsedIifX2PIZjyLUX5cMI7n0vE9wq9E+lO8eNUjdDERqHj10xPeVtJ67j4myuCL01tDAFplNj3s/4QwEsGFuSz1ts8K7EQ5zEtGsfktgsqyBQMmRDoRd7YP+O/0sF046m9FOxoeGBlXQwhLaAZLrE41Jct4p8JIdUrKEAtXZWj93EO3eCjXRz2DMN+Tdn38hJlfLMFXt0MNTkGGcgfgbz0+0avCKyAMJRr2PmXiZE5lIpUkTCK/e3Ix9ApmmTdh2XhSswXtoIaPdC1/newvWuezm48Nsf0ieRyEe//nfZ6XoWO9uxVif8xGc9AzSAMZffQlaKoCXPnIEnOodmOThkgK5OsRY/fa/YrkZeQ/z/dOlSA0rby79WwocwkxE4Hhq5n17muFJyT7U/340dngHigZvq3Kjql5v59AfIweCtJpx+pyVZmKv/AOSj6Lj4lWdwBo9hg/0z2dG1c1/10K9JzBQaoO85Efurbf0kEMNnxnVXUTY3C0DAfODrNiE6KczOV+IjKydg/iTeWNT15wRHC6EYds9X4oZV29b4s1jS5XZYwUNF66CWiWFOHCTgi2XTTO0fiLG+vZ+O3x+iPCVVBotmVLp/cG3TYhc+ESCtZ90Uho1gnxXKbQQz7RZO57fgdq9DlTHnsXGM1NCWNziAmMBZWyZyhuC/dvssC3qk87Una1I3O9MqRqnDZil2NPgX7zr2SmMZ/MtdvCgLTeq/q6d9/P1uYVabGXYDsltYFx2COHHGe/0/JJ7wA5mbcAUEBsxS33rhOwMJNXvOaMxLeFA0a43gU4uKpmXYVeMxvMhSvQaTeS4xTchH/UBy+UyIhGG1bBmn4WDB6U903TLlzMDnwf83h1Adtv7np5+J8HNv6itHTJvNQUjgu9VasjL9Q8x++KKQCs1BqqXUcPYNTp9QF+bEeFmXMfs8atNWL6TGCtIfsfj+2pHEAywwP6WP2gdFxyUDWX897zL3LMI2lZl4DPYIbB044nANuYvSC46z1vlu8tBWp1nIszfrFio3kdSZBMemxfT8fgLTVfAjID/Z+8pYIIJCfyhrZ7Y+iGvvj18Hn6QOiknDLTc+660n6oL1lvM9LGYuBXkdd9i57nT9ekasAQEmPDUu6S6x3fNDYGH/75Q7VK+9JlenA68V7HBnhURb6R3wYatWFoYc0AtDnnDVSCUSp56uYD02Ygvtdi++gDNrFP1g/6+GXCY0wj7F6oOfFCABFyjWqeejOxm6Wj0kaZX8cZ26FmNcLAZgvdxzvCjOBve+AFGBmU9eOCTZurNv/oRNj1AUnl9gXk5YR8G2SRi/3U0ivkbYwTcT+CTA9rmLKj7SwbFVpBJl3ZDw16i70LH2AlYA1+LsbPqcrDhlAzHQvxlNNX2Cfj2kFHDc5/FWF4CDnjDw6FOvTvGG57KYKxAh0ZCT7a1i3X2V79pcCY3fVWdgMDwyadYKTmTsfbCVbC23QZVrRo2rPg6GeiBldDTizML3lnV9q9+YpRa12Yq9E8pWbpxwW6v0maS606AOqoMnOd94zFLVx/wttc0jBr1ycb8xXJgWtxAMdv9wxMmfGnHD+HaYud1V8MzwPlw/FLsOnu2PF/pDHBRfLEHXj82N1W1g+TT1TQpyM+bT+RtQ14dTRyn2TJ8sKG48ns0O4z1sRgY45gBa+Rhql/tqzcfge0D7mt8ycEAMiPLQczh7vG0qFGDlX1F4dvK8c2TsQ1iq1hpENVSXO5fZFpKwHrrHO/gdb0oNETzmS28N9dQff32NAh38cDo1Z3B/K4nFGTevVgNBEJwCnJMkTW1Hrml+xx8yXol/G/306c1MlL4yiuy7a9DMYeOpQFOORIo0rZ9p1s+k6MzFREv2AMbdu4hAn5pJuRFjU8zbP4sV8/YoH/1dBl5xYWkFM7UG/sHG8+W4MPHF3Fol3CVPnH20MGFehI9vYyKsZ9wJFA+/AK0O7uPZr4angndO3KwGqc6W/ay+IDPoWto4vRcvNgfxQceeTypI0NhWHfjzYS3Az4grvaCgu8qP4WCncpUKaxOX+794QHEs3rDJ9zIYGGv6CN/HHJH8Be/BvZ+uzN0v1qOPVzO7LfVO7AIi47exbXW2f1zR9Jv5JM/f/WGn8ZcgCdFx+GGpznrskOwfFQZNdA3KNaQCzopi/YemZq3FHfypRnBT9EIAo6vxMKH3SNI3oeEyOhF43n1qh143PMGDX/5pK8nBWz222bDkmLqaNRKZxTd/uXrbp6MHI6pB6if0QNbi/vZhUqPj398JF4WyalAMCU9ArxxYoLUpD2M3q+SKmhewPKyvwLIbS7G7mVyvSl42j5MnecLvVMZ6OTO0REm5+KM1lbvdFaN2goKJkpkWY2S9WusmHCzH0W4ZwUzPRnCPZ3um/9GbPkm2u7Yfg4DqSiSPHaU1RTKjP/RwOBCMD81sYdPlYsRba/XZjuYaIKAc9//4b1psQw4OteEuvBkDHyV9RF8BcTCW36JZ8e/1PCS9giBeZsl7Opb8P6anNSk8r3DGvSm9JdfcNsO+rhe+wTKV13DgbP8ALvtxQTo5Kpi3xrGhjx0QYOOuqswbvJdPLYllaAQOQh7ndTotLyaOxhkVCQt5Qtv0VbKSZE3eThw1LYg2Ic9nCgqN7yzbwZ4bTlQiyshLambZvlu33n+xbe1KClgQROV8Lc8LOzLedzMtmwhmCeHERsHLMa/e+q0UJNIhQS+3SbnL1EJflV/pHq7F4fFWZ0PZGPv4UC7jsNSzZMCuhULaN341bq3uhWa/bBDx0P02Pw9/8BRWickZ9kMaFrb2t/9KUo4xfvjj9C+b/hs/ooxK69oB/PzIcU6nyKwnvElldggyARc0sZbq/RsyydOuJD9s9eaJcBHCIUaltTd6sta+3MJb/o7xUFuKzq7OjcDop6V2HkNLzA/c5bBemHLVv9PMX9pLjnsv/FMLdWr9UUKFxEOtNGxdvdLRvucl2B8nXVaFngcqJvMOVTXZ/CHD5p1J+YP+PHAmyQbvx5PaZ/DvSYdsPabP822H80GjxY96GbfguYV7SFECyFi2g0D02rfh2VRaYjnOgXMH+opoLdKhhVXGQt25tUcpmC06ak1rvpcvjCCeyxWFGUtYOzv9wXsciW83XzBXCxqD9Ov2FI7JMdhDinIgb53MTa+9meb9cx8SUlwQFXp0TBq+L0Lbfk6kflHqLfyj0sIq+hcUJcvRsC6b/OA3o2f/ukDU7O3zO1I5A9bf2eks6E0/vgm4Tr+rZPHAHwgheOKXUqIx7advlDPmzs1nadYsIc4J/Ccxys1WaIMQhk8yL94sOa7AegBpx9QL8uCfeDWYAHKoYRONufYk5a2GN43NYeHE6NYL/kLm9VR7MEWgtjVjngQ+jtW4C0vQiRMX00fNdtOwZsXjxsfXgfCmVEFW0shSHrkO8D6aLNveC7/7AmWX/xYjxsfwM43q4qlRZcculHRobmwOm9U1U8LhKd72OLXH5ZC/zzgnbUxRk5ACxY0+QM2E7r/00smdX/P4Bp+E3TY7j//5WvxoWvo8w4Kb+3tmws+90qlahEzfR71aJQX3a2xSr/ZQKO3CeXKfrqIkrPTHObPTYMvLtlTva65eF24oYZmcLiS+i9fyh9myls+wE6x7a6LqIXApo/84UWdM0A0Qp27EnoqD0G8dry8A92pjUi68Zn5qc29nO8GSLWHwzMG2jz/h7+Hr/wDTP4AA54vRkKDeRQKphw+EdTu5kD9uRriPta+K1hFv6TPLOAYCYKKg9OQi/gE37POCF1G2Q4biwbq9+vNye3twtPt1lE/1HRvwuYtApgpMzbroGULUPYl2N7XP3uwjo3CP7zd3hEXs80f5O15sPttvWJuxjqVm1t2JEfUx2B+X5UQ2G0y4LDb/YZFrivhH580+svsUZy2IthP9YVar19fLNpZ/MDfUlr0xuPXNtfFNkBwsAH+ytfJY2jtRrjpfRjn028Y3WKYgRLeflgFO8LG1D98/vQWfJqLqWDx0BFwOC2UGnWmgOlCHzPwI0ulmJydQfid/Agy9jApur84xgznHsKoSRJqq23VDH54SCEdjDPe1oXoY3J725IZHgji63Zg89XQDdnJ9zXFF9nYZv+uGsB8IJKr6mmewA4++sNf5BCvHesAHUDiv/ZtMAOh29t//hqTNjt18Nd3PpI2vErnxrBh++oC/EDSxKadNHzAPgMN/avXW/515cipdHRoBU5f0GH7TBBiBy38y2WLPtk+bAM9R5V8KoZF2GsS7EXRR6t8EAfi76IKimfhiySCdI9rY5bBP33MSJdZ/9NX4D4dC6qlVByWFt1zEFfMRBCfHMZ+iKuhs34G6v/iV7NAw0ig+itdXOQC0Sc3OIfSQCaeegX7eksM/RQUSnijp92p8NYpVwy5hG6AsXwy9MV6khL88fGTJvx0wpl5DSVTetHThkfoPY85+NgpBDvgucarmDnbrH/GCA+6dMu3Tidbt+195pMzzIdbKgDNP9+pcsk3f3vGEP7hL14THI/C5Arhn157ffgwHqdvKsD8IewJTx+c1313t0gK52dNpG87xP/4CU6RQ+Y6OQMSa3QGG7/G1xQH3toneQ2TJ7KpTfxhmFevg9JzX1o0++1FfdVZ0/5X7+SI6j8tnwwwpg5Ahz/9b62v226SQ0r1nz/qdEp6EyYfTacaWp14Lo7C1kPMamyPZVnMfaiE8uosN/K+3ENvNOJ7Der3mqEOI1L80xvJm0/IIaxJs72/DCDF25FZPoFhPVQ8hG2g5n94p2DixEwYc58eBxfP0pdatxEEZLdgf668QqQXtYNNhTj0j+93L9uA0+v2xt6rOjHu6+YEPtfyQZFVhcOn+EWVrArRgu2LXQ3L+UwesPJD8u99zDf9IUH/HDO8DfVhazwdOeiI3ys2UrXfdhUaGQilB0+RO0kFOcKgBc/9w6J+gf1mRdwiwPu4Ztv95mE5n94GuIrXEevEeetT9Z1rOAjJDm/xO2z4oATBrTGpl6XHeN2NZwPYmIpoliPsrZHZCZL0oxzptMTUZ3JcIJzr6oq9Tc99e10lyZ+wztDRzvXiQOhxhJ4iDGhf5l08LyfLh7wJWiTeTxSs9euTwIebBfT+1exifj+5FZq7e40DwxiKuf5dHrDaHzG1f/tMn6x0gXCp909ySHGgH05ZU0HiqzrFqPmw5U6MFA4aueNTLBtsBe6XQOR6ZxyQ8jSsTA96oDXSh7pFcNG5P3xSFzuLakjT2SIf0hHk8MGhC30k3oZXRPl2zSSsbnh+/lgnAZZtc8J/ev/4TRPzT88iw6Y3jPW9NMCj9R/YxgjFy6ZPHzf8SMB3TuM//R9QNVSxt+lhS1CwFFo86DBmO1s/VJWag8n47Aj7waVZBonOIHNcCS1F9WnWT9/N8Mpf080/tvgN60TWr41F9neJxRu+6IA+pAPZ6yNoJmfn7v7Z7w/fCH/xufEtxOaPEwuPA9fC2+A/8KaHNz2HsQLvKzttcwEl9q++nIiWU/97w8WaI1cESVJ8sdXFtU43fe5Pf6F6DIJitcemlWl+1ilur4dhnQi/k84cOFNfUISC1c8LAn/9Hm9OlIJyoTvDt/GsENz0w9V97jSpdEeOmtZ+8ialOEfQUZ1o27W1DvOZ2eGxfuzu2LWEbliX7Dv+8R8cfDU7Zrm3rFBe+hd2sR4VzL2PEkjDuCTLxr975WbbkvCEJ1rSZvX+6cdDWqkUL+ftjE0ui/BPv8elLMWLfHgQOJECkaM2GcPhT1955TWhSGuuzVLrig+3/I3d7tUOW76JZPbie/ROA36gf/ypB6cEl6X/Bv/0mj8+6s6DFS+e/Nh2i6YDRYCO8fIt9w+IU9+hltWZHlf6t0Q6LKikxobX1ywXS0hfxm7rd9SANdLIwfkxrpt9ouEfvxgt18enNP9569BUKxz9a49YDIJ4w48Z3J3KE87BIMfrcR89IMNKSk9Nci4E6XoP4XrOaurxnBfPvQ9y2J9jA/Fbv2Hhr0cJgkW2qS01L7b55wr3p2OA//o1VJpMEdJF8jc+6Xn8Fyr2X72l/n2cGWMcMKDx2PuEF2wPrOA3Z/J2f3z+SDrrK1KI8LZqf3qurTMciJm06fn49H21bOVfvQ2ETrbJAtAvXgqdlGDTS6hJrUDnGv7BQUeFFU7oiW8m6/l5gI3fUEW8CPp2/eMf/zLi9hP/61c4HGPYotXQTJfmnktXmv6QxIDasE3fhG3I7ak5cx4bAYn64+78fKB1ludi8KplhqPMdGoU5Kev7tWpodsqBtadx69YG04tIVUe7I+PFGxRKwLwUS1R4mxzyObl0cOorG+I3/STvr9b2j9/CjTpMTClnnNgA/eNjvg7Ahq+mQ3VsazwrWhLff2icSf99atOLVc2ddgZ4Z+9ceC0QrzYNUv/+iuoKXketD9ObEH/iCaqZPmeTSaoQ/A8DBCjFqze/Ke/bviYcPlObziCvhJ870UfB981ANP+8Z2hpcUWNS7nk77FHwFUvzv00nLl8A9v/lKhQ2u3zd3ea+4MeztSUf/hTmCLN0U+X8yELEVlDty9LU3w10/Iw/msrxORITxNgY8RkgK2WOkR/uGdP/0knl1c5/KpCY5kJZWvLw07EXgRnh72i/XRkFOkuPJ+rkdqSVIH1uK34Q07Q1i73+Z45jQ7lP/03FN9FYte/9Y+NOxdhZEY7ZpZvgwEnjjugv1iv3pzKXsa7N4Fxh5I0mIVZx+B+gHvNKOjMGx4PgNbvUI8Cj//8D28FPxILWHi//QqCDc8/V//xCaQQCSz9R+e3vCLAf7w2ZpD3xOm3DYAcbQJu+VVBf/0CqDZHtn3XNHMN9JBcF5Hh5p/+kPxVXMIo29Mg/JtbHMy1BoWk7nH278LfngvEvjTt70svcWL8s37/9+cAuF/nykoH4NLBJHKxRrqzQMc9Cqmymv6gmWRxh7Eut3SkqxnNrZqYAPnaHrUvEQ3fbHKWwhREz6pKZdrw67CMwGdwH/Rgd67Zo2++gM+atPEgbMaHucc7zU0pKnAJ4v5QPjWaQU6cHKpr1pBs/gCbmGh2hN9emLRsAyAFSbhoFGjmvyY7EiRwqv0qqnbNEYzw/kHYaDrDBFQFgWtxVcEIjVv0MhsvVm+yVkAoeYaFJtKEK/3wBHh+YFiIufvLxgfLykF0++lohkqLZvXvTNDtHBnfP+Fkrf+3c8wzR1qo+oOFqPDJVD8uCV73fjok77b1fDndJCeqGzGQn/WJXgrUYnV9rzNNlJOBMRVZCMQVrW+Hr9fAjuaTBRfHY2t/AAhZH6FKBLOdbw8gZFAhDqVfK9a7q3baVGwPL0d4eT3yCi1xO7f9QluhWF9CPkKsbz/YnXl5/gbp6ILFWnGOE8iuRmzAhHwqysZI+GsxWvxSCqwPJ0dRnw7efPiNi0MCLVJGQpiMzuXnwk2e1JDihkjQlX48N2bPXXO16Yg9XqqZb5Pn6QyHjqbEsNawQ7POXW1ofWYsE9NKOwvAtbP90ifD+3pASXhCsh4XZ/DguPdDFVgaBhVxWGbXfU14WvHa9hYhBcbBQlWUAbfHVk5RPQ1V7IdqOevgU+16YDlfh0TUF+pTk2pGor52BwVsDRpgVGQx81n7z92ENwMB2epfwKcGFshJGPvUOTyFDCG5hFKcs4w9tHUDJs9wdRLNrYQMhruuedFuLykAJsivRfj4bdL4eN+/OEgVIxiKY/dCJ+2vdDgk0RsPjcvBHP/m2Llnbbx0r+0Fa5w65H113PRC5dAlH6n2w1rAa81k6CGCfwVio49fJfYCIVIAPruY1APLgVrieiMEKFeJbvt/fx2OCxlM4cWRob8auZU4xQoI+2GhkMYgkNmOS6sHGnFZjRdYpKZjxAePuyH5DhGbOBE9QPl1jphs4tlnbSfYQVrFFtEli8C+PiwSeTTSe/J57JHMXkl6m4fj1pLkfLFbAWvPodXo9ltZERl4198xFZm4fTW9WD5FSSB51kvyY/2ircml5mTJmVQqdJG3jBj6u7g56em5JCUBpitMbPhXrCP/+w70XMxQ51sc0Be22wkWv4MeNw9LMRJcQzmHxxyOLq/knBjeY1pnqAacpjcEfc7sIZ9uESDyfGl4TTO+2HJO2EHX0uXYfT8vhj7+XkC79B8UTMfm4E5jv84RiJ3wR741E2fuEMF0RlkGLNhGdbGrnzoKt8TYWKzAvIx8h0sihLQwAqUmPUzmqWwQ5Sezr3TsH42V2iQ3Q676aww+vgUkvSdMw27aIkaGplmDj9TdKSOPezB+L15OdQjiSIuuBhspWopgaYMb9g1mqgRdseqh8jNHvQUDEXMnlWjwMuR43EkUxEsH8TnUOyaHmuvwPUWwkIXCmFi0FwW1GHxrBMHoz5qSPnu+mbarj/WyZFgj5i/Zt4fdiU89ucBG/qj86b3vKxy2yU/6kl+pq+J29SwPLw8bAVixNi3uQsw8phI+AzWA3Ee0Ad8J52p1b3UZkh/Nwhw8JnQw5DVRlDSFsqp37tUY2Kp/45IjeS16RHV5vcyECf+iPD43JfU3fLT2nuFBp2j4VGn0vhhCsxjBm+fasC3+MPrsxRJAvwM3IBm3bh5vzp2O8nu0WerP0e9eysiAT//ccZKA48NVepjC6dcxtT3Ltu5X46N4GhgBZ/gzQQkOU6hNHRcQrf8ODC0NyMoxeYbCfLaFlQzbz3cvb4NVazcZdtK4fFffjKLQ9mwIPQreOaiPT09rGJY9/eLC6XTXsVO8W6KSRkTAkWxbGiWNr9ihanSQ5hpPJLhLo7Hv3jY2gdIIu+8mP1zwQGyXAhF++27iX5GKxhvAaLp73phM1Q7BOdtU9bBuNr6glq4kzgUYRxcf0ozFoaHYEUaTNZrGhRMMT8GRNbboYhEnLd+67SGpskG7OkEA2LzQwieO/eCgx1VY/aWDFFOyTOidrn8htEaQ1eu9lJKxvuvLFbj/lZgFwXulp+22d9viEAsfVKsj/c2XhZFdWEvXX+ovRUsnu71sYOQWBXqZUFtWPByCeC2w1JITd46Gx+cDePgdfwvnoIx1OQxLY70VIhOsygvKwNf3vogRvVjMyl2FUHyEzhsR8F14KCQc5DP5AwJR5Z6TGQwBb3l5PQkzm7x2zFfhMUoaNRw55e3cHcxAsCtr9g+GGZMf36UwOclumCVXw7Nym9nIqK7u8f6y7/rDBv9DG+/RMHh0271pb/ID/B6TU/E7LgHM6t3Ifyq4Iq9Uua8sRBlATDpxMhyDvOBLThwId+JZ3qyqzpm4t7pIS0GiFa9S/R1No8J1PoTj13yzuNlKM4S7C7aE9s3Xov5Ec+2zL1eHzRv/txd+l8I7qXXUefFmmZ9CNEME80KCZvNin0P7lDCDY9hL6WMLa9Hm0HhrXdE2OrBer0mJXyODFHjvpw8AZweIvxX77LTq1hn0EDw0eCAbW9/LZhpdQK0Hm6K9Rgp3pzGK4LHc9pS6yDlA7OGSwg2PIbqrT4v8u7Tg68Nt72Rs+vxExtbaH+LMznyolIsp6kR4TMdGxzFStGwfSNKkNWtRLVwcRiJXlELFumQYPukh0W/1SfIBz6gwfMmx4z/6hlw0EFHkXDfMyIMXQXv4c1HO+ypwzi/ok7sXBJSL2Z+w4zgY8sFul6xf5y+xWyIKNn2y3vUfk7zwGLlUsOm04StvlG2yPnqQ+V3s/GpGp8FTbN4hvcqOWG0I0kxQrXadpdEFtk3+FysQhX7MDPPe7Q0d5t1f/GbpvCGk+YXx/ytOH4kaVRHjKdt9uQyZB304CfA5mWPCua9ri7E8yyjY9gTbz01avmHT4iQgUvD0B6FwE6+29ysY8pmdswkOAOxw4are2z4q2fK58soGpTCY2mAHtBX4xV9HL9vujH5ERBIzzf5VbebN9M1E6BrcB2NLyYZloIUGUhl1aC+YPRsnSQlgcXIaVQf70bBrXt1hehbaRS9eU1nTJYeICCTTU/49AZvZ3+MoOl8FbRPT67HXRd5BmDZueTwfUgFBaUowMSxbYz2a6Dz026RYMSCAbtiefCm6mZByN4Zxje3nAAFyjsB3skuqGkIImB9f5fg/GAGOjz6FsztbEp/8UfdLZ8sYVvV8O/3lBueHFcGS/i6yBpGeSuBSaoOFag/IY/NzR6kGZMefuPwQT3w0QZGYRNCy25G6ppJNXTbR+GHs3/wkSj/em/ty5sPe8vL0W7D4+x9yiMwPxYDu56deoOwTw3Q+NcKgT/8dpL7GfYIRdixhydYNnwnpxERyPIbHF3Q9rwAGqHtsKf1V301jmINR3W80GTLT/NbEUcolizA6sn19fXjegLc8j82NnxPokJwwUN/FxSbUz2wtPmZwGSCTYbqMw80fxYcoMUPYm1+n4fJprj6sweN8v0PsJ96UuD6NkuMjz5sZmCdzb98RLYsU8z94nQg1RaZuodOLYRazgUwCd0bkUdwiEeanhL4fGkr1qVEYSyzHBtGDA/4D0+vN/q1oRUdAPaK06lh3uvpAo2SJ4F7tOr0cJlncD0PNREvz3BYNjwAN3/B1qM3wFzgrIbU3GXbPvJOn1jzcqHdrRm2uG/orWkXdfDs6gfqXPF5mI/WVMFhviCqyvObMSjBHISf+YWveRJ73Qn9FFBTDInsbrv6EL3mklnmF2oM264i0rkCvIQ7Hp92nTgsJlMSecPvKLw6PBtP6KXBB41mlL7JMf7Y7WRK0TAuVCsPWTwVpMihIlQjNedoKCbF7kLYvPELe2x3Zcv7yT5QByvF6unwKpbOnk25uyhPrMVTCJiD+EQu0GWb27SCeMtH1R//Qp+yjTz+CfwUrr5fICF86A35uB4Hye0IsCdIT2/uBemvB8OwTwW3Gccd1qC9TBXVrN2JcfJzmMF9qii6hOHTW9KVN4A4JPu/+GIbfyEwqOGI/cd00VfnARE85X2Cjvmrb+ZY8DSYPH2Gvc9jB0ggrA849aJNFU+3YkaHtwnr5lkhif6YN+8PQglbf4gJ2ZEkZheqcfCi82cCXvEJEJM/jPAw5jERQkvRhawUpe0AQ0BP0f+xdGbZyupAFB4QD6I0KR7pBGkkNGLzBngUQUWQBJLR34X/nQBUkkqx98dKijyyjVF5ZwSr6k33JKuDSXGfD4iOO0TTpioRx1i21aZKL0Rm5NDMg58RTfq8hEi7SjqanpfbRqnbh0idcDej2U0CgEpqAuoNB1JyX3ZCWDrDYst9rTPW63siddbnTPfxyeWzpWw70BytptFpJVl01cgy0qhUk3VKHuWyX2w0fhqDGm/nWTLlTb+w+H+601JnWN+chPz0PZHP9iGbytwo4G2TL1nlZ5HTWkh9JK6/ZiR/2rHsq0YGuFRhFaFenJoOq+cUrJzY2JqcO1ryxf5fb3eHPpjc2t/AMex87O9CbM2nKjLRsccU7++8C4gPK4Y4KLufHxkmlxkm3JPL0sHmmQ8sZs8IpHVeRkhazkzEI+/A6x8XHCXTs5xJZ24AaeRFTXR3ODVC86EVV+FKfeWO0Xt343dtrb3XkcpTPMzqN9xAsK5z/Pveb3IuFpCSh0P9aGbN3JhhBf7N3+BwrbOAtjHokHzZlprOXkKdcDBN7VM7FHsnPDfMy4iKjOp9wriBVzPHmttri78nc7g1GnGr9Ux9fawj9i7iOmMR3ofqs9IWYiyniJnH8x2+ldmQVdWPfBmPiHTlaNBktTo1zHU+D/BCg0QiRkXA9QQt/4DbhPrd+A1odpx2IOazRz2pAD4YoX+H2zavIlj4Ub9bNzHgYuldMwm8mVu3kyH8u+R0/33wgNXaO4XQSBgBoa4Q2wzdAwmn5BCh+Ww20rtjKYStqZPZkLOA4+4WQWKpWyIs+fbV98kG9lqsRkr2yi2y8DJtiRfvfc8dNj5IEyQfYcLOk1zKWeo/IToXVUlTLkPAe+dTqb/xWpfqXnJuDQWa6ragxcpQBzZs+x38+A8ZdGR9uXKWkVa9ggjS2LKm6hFN6KdXnMU/f3bHrgDmgkzt4hYGr2r/d/i9nwj7+WSxpR6gpxH2NKReXorxPnohso1OdPsnxly8BrcvuiYso3oDl4ZvyroHqboV2JvWSjnadqmjqP2O0ZQk72Y+s67755ecbUMCdk6aVmXIc3Hgf7bZwmsIIP9+iuSqcILxmvAK3qe7QbdPc7YYXTqf047faYhACaYUcRVCR67wdV/qA8k5FKCeDjuacMWz5kvcptqxTju88BvEurcK0L60x0gF3DRs1fUV8GeBsdee3XK6vpvwl180Yt2T3waqHhCSt4BtsXwOMz9nIniW8/7NRzb2tTnBSz1faaDbBppqMsTyom8idDlIzUj42QfLPmqRkF9qTgddbmHhL5Hy57vB9NMTBS4GalFLGVjeUVtNZ34l9YvWiMlYb7VEsg/UFKrI+gadqYKVypSkW28VfH1BEUBxzfyf3p1TyT/A4pfxL/4v1r0IfnxHr3U2cPujdNo+9k6RtsxX/6vHMXsIJBWRVfKPsdfhzymm5XnxwOe7ddisteea2tWpGMaTfHkAO9576g5iaH2Ogl8ASo2EuvualtPhGW7AaRDG+oBcxIrlGHpxIWpE0PaEyEvZtyrFyi1i6P5C0zU4EVjFdkSrch45J5KzAZrEb1yo+2cwz1tVh5V/a/7pU9EadgJqw09GXaPU+SYwDymwu6hQ/bZrg294CglqGp5F2lfZLOtVimjzFrV/+pBaf+0RLfyDCIt+ZHn3tpEB95j+eMJ4dYiPcpRZZN5KRrnJV8YXntXKiUA5Wv/4G7q6lY0t/LSGyfbsF/z0rG2tg0HV2VRpC+/F9sQ8i23m5Kwt8ROe1j6XjPVbRG+qq9GaPXrr6+W1/U8fhHxnDQR8ftT881bAxo7vhnk9kQec7vsDtvlZyEZjVnYglHcJl7EfZ6PwXrXq9naSqSMhd5idN9KBrYqeBq+/Pz6PimFCX0029Tqj4QN/3zZomE4RDiEdLP4YM/j5fRzGG3kY+2/swKqdWcQmyC0Gx12HFt6AbQ3icqKlEKn3c9XSrU/FYHJz7Q4K6hi107vGR3UXFyBopxXW16wdZtvOTJCqa0Hmbxwieg5V/acPsAUhLb9LPYL1VAZ01yfmMG/HQUW6cjAoxpKHxnSnt7DcsEDNa7sf2nr1+UNRS0bqvMqoYexS+mLG679/fIb26GD/+Bhe9FxJhs+x/bdeXpz5wyR/PioKKauop0cjX+q7Cm5FdnSriFbA/sDqkWm+gOCRNxlb/Opv/0Sdqu8b9h8AAAD//6Sdy9KyQA6GL8gFcpAOSwTkDI0CgjtAUBFEgW4OVz/F989ydrO0yippu5O8eRLS99LUAU74ge2vhushmi4mxEJFsOF85XXf/qw3+onxF1vS+VCPxcUQ0fHiK/78HDK0dGO/F1UtkrCht4d1DrPdXvzb71P11NUZzd8LuAJ9U1U5/eqhfY8mUNH84GCxTIfq3m2AKg7if/pkzmtdQyPzGbyNR9Q8YiuAyt5tc405HI53vbX/+DN1yQl6brzvOSBzQogAzRz+yw+zXj9iz8sf/Z/+kW7fq/zPXqa3eymlU9ZFVPvya78ypSlDZYOOQ1/ww9E8/VywU2NHRH9e+o0PmdKxS/Zkot4DLUvlKmirB1A3drceuEEOYFz5gJ7846j2qSsqCA1xhZUbOqtrcDBB9Gytx0feUZx9+JMIKqPdC3u/37uflhVKpJ353Oc/ZZYv52EfwTPzm7/n7efigkVwB8Ygm97qBywffXhXZYc3ntJvfJDAHNQ6OUjnQz/H6hoBwz9kmrwdvK5xzT6Ani8fanPvrp468+RDUDMuOeyNJfxueho5Pdb/5aes8hC3uwm7Bz6uB8vhuRNWYAlpjJVQzvu5j58ykIIG2MsaA3GQHx5Iuk0cLQUrWNcTfET445PeYzVVMk+2DxmbBVs8uPUc2+936Bk6I1UnXUbEf6iplP+UEWM+Is543SkpKHF2po54GHP6x4+/wqfD6ktynL1U1RMUpFWp3Fy1fPWGVBGRQRXsAiOH3FaPQqR6NNQZ4rzn+cPowrrCkYZyVNTTHAsiGAxTbrzuW//Tg5/7d6WmObjrJCvaS/qXX2zx+C9eAJrBpjENZmeKpeQFubpTMJ7Sj7pIJ6WA5yeyqCpH0JOVvw5guSrBmqLd+43/p3882l88cwz/6a/N/1F9YuSaT45vAqsHBXWS4qvOrGH5cFp0g+qJ+lEnpRkeoMaDhhN6N/uhpUspJVuHgex1jkOZUlakk6u//v0fU3NL/vFYgh5tUH/p6wyo6Jgblh31E86bv0Vj6oi+4HQhWscwS9GyuDJO+v3g0Oz3NeH32k/0z16Wjbchob8yWLa+gCa2EABCbrtr6hQYiJfkVERvTshxBSXbj4zwvYKc8Vd/F8XWP30oPZ+0IiKcwj9/rhy4xXKxX3p8PqbPV/HHf7ESZG04vSdfhE0v/PHokJoVeqCtHkeQ53+d4aYlP2DLVsHelj8tvsoIyFOPKzUbH9U/dI01CO/l4vNs1Gz2aV5Qff3STe+carap1rfYVFOO/+Ltgk5XERqhK8jgeaDSk6Jl0nxmor/6sLOYvxjgczwkVN4fr/0vXiGFe5C7fvMYmHw9ARXQPvESspdgCml/SwgMvshs9Sw2JE54KSQspypObh8J0frTa7DFN18q7tdw+fNf7u7qY2tvXPLljw++03zyBQFX/ecosz7qkGFTY6s/bedlALNhVPznT5dNX0u/C+J9LuehJxnrtOJcRzne6t/rsvcOGbzaC+vPY9T0s3PJbfAdbsDe7YnV1RZ8Hxn4/aaXx2OPlt/ZEf705D+eOLqc0YLcbnN8N/4y7nBaHLR5ivB5YYNwPiuD/a+eIr8vfT2nDuYOWz5Nj6/b5Kz1dRDQZp/kgCbSz6xx9EX2WFRUTiwWLd58fIt/+Ze11d+ob+cdFJwmYX2rH8w7nJboS8IbuSWgI/Y8NyK46HEgUbxwKx1+x/L/m1PA/++egh2dJHoMJd5Zb0muIy7mZn+mZdVTWyovoi+IOfUElnHouTnZKAImoKqtKurUDbEJnXNzsYrbuJ6wdTahLn8h+e5itx6Fo3GBX5OnWB7CgzO5P28BoSfb7KFtyJNg3XRwSwFT+7yr80G4Si7sv/svTXh3VGcoEwVewS+gynKOa2LQ6SKpDaL+YDq5Op6/MYApvQ2q5yTMp8NN6eCuRjK9fbhZXSXmPiB7EUxq6fKvXs/NyQSWPWdk973QcLi9eRf1riUR/sEZ9YpfDEEyO8Q4CVjZ4S3M2oDkZ0AVab726xIbLZCD0GFdJnM92cPxKjH39UhVdLNq3jL6jYkEP3x5Bb4zSWdbBHW0PGzeHKsfmn0kimXyvGBPiNJ6fh+qFIT5kGBjTtl6PeE6AO4mNT7UxQOtSrXvIP00Z38Quj4k+0v2gEvm1jTpyCGfP8HNhjQs79h1owA1o1lfID9+7lgdELuSa5ZGKD82d6wudAw/b1Zv0Vx8Y3zqXx9nvtTnBVrdcH3CV4xKHE/WAMl1QG2PHXvSOX4BZgZXGia+hpYeP6/SUZLP2+9NaDi62QVQpbj+r3DWfFaPTgaXC3Pa+vpidY7zTIESvDt2prXLl4OZ+KgdxaPPWsOjJtfXcwfSykcYL5ka/hptSqUEU8n/VApdJ9fDgihGn9bn8NgjQpAvArB8QLfz1s8teu/h9OkuWPmZ1bqGdPBBaJ8attdQzdnDckjB+yUy9S7tQyURcgHiThT9nbK4OYnUaycmr5hizW0idS8+iwBhpIb+XkKoHrPBsP/2c9t/rh/KdTZB6D4lYU7NK1z1BATU3QQLZ4HtrJPLdam47QdVr4UY/rhG9eG10wHL077q112RdyhoQdo+MzVx5LFEv0+1kB23E+pRK60ADgcvpCfu+eyXJS0HSF4Jxd7YvtRF4ycZTif5iY9OKKK1MvIWmN01xVqv0Zwqym6CJjVMf9x9r3X7uzM2Yk8uYLN6GP1sXI8PGO/Cg4xToaOJqdEbXuvlSO3keUXD+lVs5vIsFWpKfLROnx3aAXhygP2+TOop56kAXm28sHImD2deO7mQMCdUWD1nY0jiR/QC62741DWsEX2lwPJBiq6eL+ls7kwGZAN6Z4aGddIwfSedFQHY8rUn880UnaWZXA3kR3325/1NdpYbe+lQrg3GNuuoqofReu8g/fY9NlkvrZcqaEW4354+vtxOfUjwybwCs9w9X9LMIVy65Lu9h/7ZZkmpzjrqXRcdOC4zqdGRW7i+eMWEv/V6x9V3Ztf1XXThvwHFj0YL/2u/+3Twl2Up1CV+RI+/9VOD0Uo0WbuHLRV9bWPnbp/7SQOTQ2/iCfQYlBIafi9jB0lT3qjVWEq4htt7VU7ShuTwiX81sZSvguBsnUir8UbIXvo6g7uMr/7hKQ/9GJrPCH2L4xHn0+WI9oRJCFz5IsZ50NX9WjPhAuJTsai1fX/6nt8DXHt18WtZ36/rz734qMt3Nfa6fdL33JJESC9THvuNdeiJ1JAdVEzWUL1U53qukKUDfzdHqrHnKlxe8v2FjljxqCahvF5MOW+R/p1teoTzGY1FOJhIyYodPn2Ocs1H0TpJ0WLHVLcOUb4kP9RClu15aj7ZBk34Bin82B2lbns51fy1unDS+ihCf5GzT0+I8X0jrwtafB9bRWXPei6Cid8qVYODjoZ1Did4gfKisvMZ63pbn8jc5yP2isu3XizOj+CJQPuz13q5sVkHWfxdsZppVk8lshSIs4uSpleuz2dT/RHYzqM/t2GxjtNk+uiYpQ96Nz6nfpHX2ATCcz5hColVl3BBEZTFcKURrlu0oCoQET3axl88cmYyigvy2XXeeljafNWTvQgvI0qwQV7BupzGHwc3P+bIdCgRmoKXLqPbuXxS2+ezeuLSaQHqSArNrpW1Tp+wu0AX0ZNfzV26LrvkbEI5py9szAdwyN1OOfh0c06eS9PlMx+2Gug3b/VFc5V79tWS4dB2g4TVhDr5Yu0qQMiYCOEDNe7X6nfv4Hp4Ueor5xNa4QwtmNnuSpi0IPVQ3WQCcSds3GcmNeU2ZmVSwyboturhnBKFoEwqO8KQs9fPSo72AKdpoRZ2vJAMD60F/m6PWA0O7TpFxqdAfuQGtCRREU65prSAx7al8rU1VZY0XxvxEtH8/ShG6tx/EwHd7O0GMMbwc172HAD9pDOEL+UXmgvVFMFrXZfm02rm068NANTmQKkZKyt628l9m5MhJNi0/wMAAP//pJ3JtrI8t4UvyIYISBZNKpEyQXCj9gQRBRUpEiBX/w98v+bpnRvYBVmZ65kzGSsbE/HLve/B1XsgurPbVbNzOxTIQn1D8j5d817Alx42zPaJsVOROe4hprC+bzJiJ69b90/vtsuM6oVHuuXnUblQXBNz0ZY7xvD0VCXlc6Ub+YV43/fMQHC3WqJ5L61b+MqCdr/qCI7jIfvVGwzzuyehFHfJdBS9HCTSa8Tv27jin72UwtK/F/1bV0v9zyiL7Cvm9eHSDVf5OwIaP5RYr0ji89/GGcFc5lBIjxM2h6u7s+At7CLmbrwvmh/VvUa1/NaJ/1y5/lhX22Ybu98AD00ymYM0ditQlFQn4VRwxK02ob/+w/zVfep6MSgcdBYtTKx35fBeD+IYAnyUmRFlzJ9qtTyr+l+YYyF4Cf6YBccAvK75kvPF/1Y9Pr1XiApDzYza2vEhVMcjSNUfECPP02qoy/YJi+Wh7LBSqimuLjOcHdujgiQ9kll7TrJqPc8jlnD54MNj12AleoouMyl+87m9SY6axyQmWju+Mjqf0x7u+SwwU7+80Hj0xxz5vj8yQ2bfir+uqQMp+d4Zvs006+wTKLJ1sSW68nOnmnSxjsA5ST2dN9sajXR975XgtStI2Glr3sby+omqKdqRv8YMueSsLyIEOJXJov98uiRxBFVrvAluomc2l0M/K+H6aTHPLp7ZpNNrA3s5ff36ExoKt1j99JbsJKMxJ4eKV0jyU0YCwj2fs4nXIHDnyQ6CYnfTYWJv1LzinLh9GVaUzpsIbqdCoGiz2WRMn7MCnKSX2e22ufnTTK0GRtXD+No6ZcXF1QTIKtOUar798UdpGlq0zvoP07mNOScfh6Ip7/6Y7uxe1XMMpUZJ7sUOy71QZlOZ71t42RolO36V0TQd7Bn+UqEk+4XfZ9MOFXQr54HszoadcKRfjiAP85PsZ6/0p7jrzig/nVOWrWej25RNG4PPNoj8eLq9drsCVsiPGM7vatK6A1BoVvWR3Yup73p02luw/6MC3W66MWH0ER3hdT++yR6XOmrlz7mF53tTMOdzviT8Cm2N/rb5gWW5Y3U8Wqu1chqFnoRHN0EjpUIO0X0o6LFbZun+1pflzwvRwmyZ/Tg8Rajdx0C0kp/9sbgHMrwemU5CiR/QrP6ZPSgSOTHNt/fmxtvJDjyebYA/5d/DHM10SuGYZ1tmW2mJxi43R/hsjzPx5ofMKb7LM7C/GDHPDlcZBXk3o4WHmbvpooynn7qApZ8zcs5xRXH2GZWFJ/C8U5E/CGGkqXen0ViUjGYyQBoub0H4ASFfolXiPaKKYr/a9KdPiNPvYwWrrHGJbUn7TAjCvaLU0G9Y2Gl3ToVr7UChHy1y+8trztT1Xw+5IC1v56zP2biFoIdUKv6InpMnn5v7TKHR3gcsb+naZLJ7sKAsUI+VxR80lhU/wfI+ClZmLc54dPwqULKbyfaJ3iT9+Zis0Gn7CfEqW4kd3x/kHuKz47K/m5Vks2s8NDU/HnoWdJutOZbfCoCGsCK7v8Exp80NRegqJzWVg+W9QmwbBoqrZ46VDzcyaYJrC0Vjf4mHJaX67hLBAivsa3zFqeCf0xiXiKj7AQvyufEZvBsR7VSppCK1Lv5gHWgLfikHzD1LIh/scQLQK3oh/np+VlyT7y2KsRhRNeej36DqQdVHGn6Jxg4dmrc3M1fvTqsxDOhtcnrc9D+epctNn06yLmOhspcYYwrINsdM+siwYZaPv23/h/ji3+BP/PsQ37mHaNSKrf3jebbbn4xEGqxrgRJNdYn+ve66f/w1lqzHKVwLPjqPZww/P7UJnrtsvtlEhKfhJnSMDq05/a2OFgxz3ZPAbvbZZMrbHr1vaYvR/qZV49/28kYS/o4E75MYzZtuf4bBKDGx7G1b8URSBdSgW8tMzRbQdO33zj89Um8b1Rzbi5gCf5YDHRY/IzmSg1EwlTr7+eOZIlv5+atf/aHxZuw1dPacmuhm9vWHVVkXatxHKjH2UW+yCeIGqv11w3xennz+bFkJr+qWMaOnT/PrvPsRtuHhS/xaS5PxBe8nEuX8yTC4WUVRtpeh7v2CeYbIzfF50FYoAkenq22SounNswCVQuOwW3cwkaBejqUKd7tluEgExItDM6KNd9YodJuLOUvedVSyfM3w5CdXzo1TZyjL/sBgPopunp6drCx+grlFhzOaOf4Z/eqDNKu8G6lZznD47jbMMUOhagKxvIIoF086laOb9L2epD89JG4UXivaj0xE+79ewCm1Lua0LUIPnV9PCTuZfM7m+t6Iv++Ju76NO95svzn8+tUFHhufHwzThk+n7Ng/P1fmpAUhO/V0sg8hn83r7KjAWp0F+p+YLTymoOd3tcyuf7iZVOxsD45rs6XC9DSTf/3F8a5rzPXLjvOH+9DUwLgPdFt0OJkXv69eRKcnRgSbiku1+0TL98er86gngnk3Vio+4oiO07s15y+MNbL3/oVo96hO+I50EWImfizrhzr645m/VCxptbG6il2I+4+fWD4dNJNlj9kDP84IZuO7Q5McfuWfvjMDqStEv2EiK69bHDBjaUazvcLWdsOJhgVSvfmszm4NGx5qREMxT5hbP86qfAt95uZ325dMUJ7wy5f++fXFH6KaxQ7Bo3M0ZzGf3qDg64nsmvqY9ZsPfsPjckyY64gk+fnFf/v/teQxfLDiQq1Z5JD4Zc9o8vkhgm+5zILent4Zj3Je/vMvSXc2fKl4WgaS43PEXBbm2fR8U4r+EibSeW19uu9j1wQwiy+T0L/vuetjQaTKoF4+xH4PA2dhtNcgpqcT/vmRzrgLLRSl5DMbris+DE4VqfKN+MzrvLD6x9vreGUz/fSyMyESlRjYS4hZuj4fKsHYojP88kT/4Hom5/Z2BuPeGOSoItTRjbNLocmgIt6szcnYvs+A0OqRsJ1uWNm0RaYGgmlZvzyLj60oYJAyO6HrDsiv/mTlqdlbClnimxslkVaAdv2R3QKt8Je8SVOCSrfI4acXDl1d4exYHrtb/MSnSaueavXeAla3duXzyeqPgPlwotLSn7ndf50frzPstSv/n77f2/DBwpxH5py/9Agc77wm4e2YdvzNvDNYz+tIX8HzlUyezhxEy3pkuzGoqmYuxyf0D5DoeJ9azrvv2YbarQYqmY9PMuOMjeDWx4EsfoXPrmgfgRwjSqc2j6u3ZOgeLH4Dc2c8+NN62vfwfNKWeVxwOZU27wIY6OXSfw3ebJAiwmo8/tFx6Tf8FIAGXFfTf7w/D8+rgeaDLLPdUk+jHlwjNTzoDlXqo2vO8lXUgBMF0XW/2yW8CE8jkPTk0N26t7J5yefACmnN7MQ6mYs+YsiPSU/F5HWrWAoR/fEfu+fqnz/91mdtVxXB77ztpsXfKaewqwjZRo3fhytF+5fv3W4b1R9Ol6JAXZLlbOkvfJpfyAAJd+OS0Rsdn6z6CPwSCCxY9rd0GNIZ9tN+j18/XtbfugG+gi0sG/6+oigWYzh7Xk1c1UDdkpfV6BNeHBJc7rxjz6sVIXqKJbxSdnomwdUOYHuhAQsvapcMfvHSlKOAGTP3tELckZwATmRQia87RifeX5kHx1YRiW8ePTRWjxpDpOEzI+PbR9tl/6oLj2Dl8ker8S9PetVeASYBX1HORbFJUVxmM/3lXcyRtH/5N7ET8dHN2Xqiqq4aB7Lk7f7sDgJVl7wTb/2qMMeMpRHIbScTe1+L5vDYhiW67x4pI9n1kY3IrgR1JuKN/fi7+/nJw/55pM/r/pzQ10cpIBc2JrHEOkrm6G0L8AKe4O/pWPnTzm/z7WNlFHirCm9zbMg9Qu/j28WsA5axedXYqN7cT1RaWwUf0qpr4KrmDdtP57+KK/tbqXziOiR58zF5W7AyhawreuKe0yjpfSFebXcnCxFn4cXvbIwAfRh3zFvxOqEPpmDYMnTFk30YePOmEYXeKj12epyoz5bzAzQYT8wcP/WScWVvKIT7gbDw+flUw/c6YtRRTolNra3fKKJTwlJfS76Bu+/qHAtoVW1nptXZJxkg5POPN+kyfgP9ywfvHr0S3XBkc/R6N0UnQ2zw5kVZ9w2nG4WOAye7I7p1PF/JGsgbTSdXvySJlD1mB6xti+nWXt5aW9bvdx7ANEOdskkIzxoyxbuNJbXVTeEFtPznz72fP2NGoYDrrK4sfN2CZDLqMIdtZezIVXPrhGnWfITtpG5IoP+lWZ/Q+Yl00zeYef/cTOkmtIJyX6aK7zeaxdmf937/8w9OsF35YqGZLfz80O98YBJNT0BzMHCiJaOZTTzJg3+8ueRN5oiqL4XmoriUGnOQsFMgaPAIQSOR/xk6Gsvr8ucXmLu71/60+HuVSgLGw+IXeKLtS1D325bdsumJuN0/HKj48c7yVW6g+So19nbJr4jB4JTMSz6qLPWMkeTYmeB+kYJulMbEs8Mim3m9PSIf4gLLOGD+XBtPQK4DV7pubqI/8imbYW2cGdERqTu+FRUMu/IqEO8i/vmDqGw9tOTTLKy+x66X7MMKKp7eme+vPuYQlkoOcPB3zB/8y7/1h3yev7geLkPFgnXVQzSfIuax7mj+493jezaII7UW2qSdGsNNC1PiH9zWH8tvt0Lh6i6QPTOljE/BBuDHv4W2EjhF8SpW9mLs4/frmvMpPJ5EmOx8z6722kHC4xR6aMl72L5PnZ//r+GXv+LbYc+5KTQyxCAemTsfXybj9jSihe/++eGx7z8GGj9rj6LFbwujuxIQukgO8cp+y7lBDme029KeBZpA0GZwughitwtYyNvcHFWqzaopXHumWzcxWXhKgf6964iZKzRr6qwx1P2h1pghvDmahGpdoEXvmXUZU/TjYbRPmisxZOZW03oiPcJ302c2Oy13+ufqDH924pJwqY/+fakLtPQ3vEX3Dx8PdZaDtJ4Luo1CpZofWbhCep4rzI3WL5MN0noGOb5GVC6o6rMJrg3M7FQTf8krx2htKuqmWz8W3purRn1QD2b5e2OY2W/E50cboNPVtnHiEK8a5e5boLdlzOTXD1ixsx0ocpriZ3sx0bj/0AJO2ojJzYUKcaQfjlDjfsIbL9yb/PWWR+AyQ8QW9Hc3t3N3BulO9lgNZqfbnF5bC+aLl5LA2Jec+8+XiEgt7oi39ONxLRQioPFFsfJYt+irr1QFZVOH8HJe1LEBnBGW/JxoH0Wr5g2LrqrN9+ZvfyQThHyEvOzJL0/pxnBvUtC2G5cY8wx+eyTbf3rODHNb8qnBfzXcFPtFTPGz9unudQggvExfvGVrm0tsWs6LVhYwb+dPWb8WUvGXry75VcenTylc1fSsntnuFX59fhfHCDxTEqjENjqaCjcFsLyXgsthZ3YCPr0B2g0wtvTnigXHs4HQwfoQy2Uk6VO9ilR+wQL55Y8s0UgJi/8iy+9PRhCCFZQOLYg/+FufzV8kQHBqJ7Jz+7IbtxevhcWP/eNjHgXnCHT6OBJrc1gn/M9712rJXzIJrppisrULIlp4kTi1V5tz215muHihQSXLwD6TD08K+vlok6TdTf73/j6K8Bz9Ewul2M8WHoX/8te/1K5YlPMnYE850VYQT+Zsxs0T4eZkEae9P83J294KVGtTwLyvBNWofYwefQa4L/y08f/59aLc+P+dnw/FJUCrj5HT/KopPg1966n8+KuJh03Xap1Zqn/H0V7qza6El5AryjWlJuXLenKh12MoFN+kA9xo0u1IF///5hTI//edgkaiL2bXroqmITIoxIITkPApftDC/DN0beCww8M/omk6q54Sr8WGYX/98VtpNkfo8uhJDEZbPh0vYCC/nxheB98qmRryUMCo054Eu/ST8fW3XKl7dA0Izm6yz98XpYDHVKcMPzPfn7t0fQbLzDLmW6AkzRgeZpAJHyiyQMl6O+htuF+GCTMibLN2MKIzzMUeU/XxKP3RiIiGVFYc2f4YRaYQFUhGN/uqs/DxKM05HpCjxJG8J/pK3ybtUEn9lo/FC1P5U5rj/iFqcDlpKbknyYzG9mKnML2rNxVswUOzSDUDRKg94kiKYbaaPGJ1ffI8ZhPJTzbRGqXgK2y5x3+g3dSZ3hWS6/2DFX+SOvYQNxg9Dw/h3/83Uzt34DyENT66xbWaAsmRQXW2DXGrYfLZ+tuskLeSO2JKhlix7eZWwsXiIdOX9ZhnY4shRtUOS4Xr+eN8vdqwT4Sa5LlxzbrH5dAgYouIGPJB4P0VsxQ97qcAr5bv38fuSdi6TjgT3ZxU9H02pby8z9yxw/mUdH3ezJbabrUby9p08gfpEKRQPJaJSblUm3QbXVMw+AETE70dNKVvSCHcVSbR2L2r+L7L3zAebAULNX6gyTjRRuldpyVu0oWIUVc2oE6dhBDtfapmxdF69aLE2X/19C1HC86p7JJdsa66acuuIgjiokHWgHyGVrEF0Sweyf4YjSbbh5OhWuOhItr3T/Hn27tzYIz3Its5nHJmW5BDHnwIsfbbqptQFwDa7+QVMd2vk2zGOQe0fH8sNjfdX/7eFsS9BUxf27P/PacXC6S7QChnCTX5oXQEBHMdkhTudTKN9ILBrPMt212zQ8I15rYwp/SPWJEq+K2OPYy6l/wiGprtbEIfF8P0FUO2O0hrsxflIocgh4I52THoxFYfclh10YrY2vdbjfKuEJTV7XQm5p58urG5nAtoQHOIts9eJtOd+xkanhn47TiV3yFSpuju0A01yCVAY5jqOeCPfGHekN268f1FPbh/Xs6sDL3RyLU5XveiMTOXdrVJzbsdg3HXAgxHQU7GfGVpICS0JcQjRsfP/q5Wz+76ToXMvvkMyxsKpTg2zM52Q9KN6Ziqe8n+EkKTr891K2uQJXxsQvabB+dq3jTgYQYUpXWO5lenNADNyiNe/YGs/Zu/IrA0CfAmK1t/+OkTYdmdWPOp5W9DftvQKvqFJCzBfu2HgQK/eg+xUFfjO4gclewliblHUmbz5HsiiO1Jp5tkelTjdy3X6I+fHOKLWwVRafZHuITXhIV/hZBwoispis8HjRkoyBDvi7uGQk96MvPrQte9rfKpoqpY3rtLzv78AZHCPU5lts+FZzbTRn6C65CZ6ZnRVTRrtwbEeV3R5l6jaqg3XwwlCdb0VazNSvrKzgra+DZRIY4zNOBHLyDp5TGy//tz0Lzr8RtWL7iTdNFrJlT0ib5R4jF8fh58dqqHM1qXc4jX/KzzcY0FDOL6W5LQfBvd3KqPFmpxP9FVAYdu+NhDCulcXJgtdU/O/d1fjHz30TI3fEAyeeLfCuzplTGH2SWfkj85hlSPKHMs827yy2p0oO0sibZ/7cTn0/rpqFZ03LHzwa86JqrbGMjFtvBMv7M///T6GZDlHuO4q0RTbynkbJmN/bFF1JT2qkTVLGNyEa9BNXmt9oYrrXK6ISFL5uCsXcG/SSHbr8mt6qv9N1fOYWwTY9/WCZ9GW4NcLjIqNTFPpsc4l6DV5kjLm/Q1mZ9Wxa/emFUyJxNvLVVQmTwrYul305/yUE2V7wozph0ENaPd5qyB5l4nYg1crsbtVj+rshBpLGa0RdOJyTJglsRUgmNadYnXj8h0PgPz/EfTcbZ7eshtc0QCQvRkPDWXGORtfWdGz0202Tw+NVKsa8jCTBZ4P4ek3S76yNKuOfk1hsdbPaitzpwhKJJl/Wv4flGAhY1YZ9NoVljx0+LIHKJPaNKX9xETpU3p/D162ab04ivSiuVedMOePnsVzhG27+JDzJXmdrN0LAMVTdcnM4pUSujq6aZASK6TYHkvlKIgKJBlXO9s2a+o++2H5KEd6eSxkc9XyT4joR7eRIu3otn/3fMefvqxg52U0MtNpiB49odYx3yoZl2TRvQWzwM7pfYqo73XGnAYhzPzT5d3Nar1OQLL7v8HAAD//6RdydKyvBK+IBcyJyyZZAoQBccdICKDokAC5Or/wvdbnt3ZWxiapJ+hU91GJM87i00OCwIwHtUjkQTey8SK9A1U9ZJiHMjLmj/1CKqbVKCGeGfJ24HfCepEvEfi5zIgsrbghqDOIV3xo+6nFFrwzD8pRtsxNxl6yx14Hb0G36rrJ1kuy2OAjykucLj3hpqFthtAdgNSxGqNZXNM95ZqT68HNstdkE3h2SugfKl25OQUNpsqDGwInHaK6k4O68n+4i/YfGMDuxWzzQ870j1UkiPFft5ZbJ6WfAPun6+NHZI3bBnr7QCsw0nH1rerMsoe3wlwz25PLyufmcqju4Hl6LfUVJ57NKqvrQWSxdxj4xhGycxblgaDr2JFvGeqbFHaJgbhaPfU9ORLthz3uxzaOGVY2wSO2b224ReIWTlgz7oH5ngp1vMoPy4/PEHML3gbjrxr0uNomIglmQJhu9/o1Oe8Z03evhfBxZ0otV+mlokmk45wX7YIG+42yJiKzwGs88sTO+oNZ+PLeL5gmOSfiKz8o9t7TwhD+7nFTnW7mWSzBz48NxXDoT1LjB2NxIf3ayZTzC9V/b2+1vm2HXMjJJtD/TsPQBeLhiLhg9hShOZR5Z1tj522q3uiQQCB0Z46st2Cvl8E1Hfgx5+iYjBq7jF2ExTQ9UG6/v1O3iQEC2jodKK7rPya6/7Pldvcn4jwez/r1UqK40dPbAuCjAZ3reF9y9sFe9XVS8Q1f0LBseE679RnXEA/e7iU52sE30/WL9mt4mBInHf01TvST2EaBrAIJES1bxoDhlIagCao9mSKP29zKvhl7dPjvbCRuKeEPGs3kH94qVrgW7fZ++TDWh9q7HgGMcdN+hyArCw+DeHcJstizJEKbpxM9wF+9XP4EXKYFQSRjyzbJqO7r688uEaPpGodmC7b/QLWfBuBShRrMvKhAlY+R9152vezhe8a4B6ZjU3hoCNx5XcgvQY6Njo895OaGDa0tWwiVVl6JgAOQPG/d+MPLzB9B0gWXuRMEvgqBFd82ERSG77AgjfnK7Cqi0rtQd2i6QU8BdYGfeAdVHREfvhJPplFTX0noO/tyRWA+EVFtZPpgKlAwRXyJ3DA0VYv+wF5ngurelEj+aDxYCw6zVbVzJ2pniSm+cNPxcZXRoNuZ6O5VLECPo84xB6CbTYR7ZbDIgnfRIwcm/3WA97F9hAxl9vUQ/yeih+eR58+8HvG1aSELR8aOBi/kFUqOQ/whG2beuaVmTPapiXA7XzH2iY/m/Obf9iKZVwf9CoqFVrowMXQ+HwQNa/nmi23PdkrFmt8Wiijmo23vjZgcxAmqr9PdrachPEFhWrj0l15RDWrX7fNv3zucpue9PxeU4XPir/5ra0HT7MaoJ64eOXfOuPOUyVB9cxHf/ptyIwbBDRre7Kc4jdiZ5wVoDe6koB6eCZzGKQSSLy8x7nUUfCVn10JF/4rYuw/5p4scwXhVz1q+KSUZbLcnrCAzFfXvlT7vTlvijaHfjRCGh2aAk2Hybfl/vk2Ii4DNpiv55sNtwlfUz0ubgmzRGiDrDXf2FjXs9wBb8GUiZC6tXlCK37u4ZcfBeqGg28KfRe+AO+oPQ7i9NIP9tfpZGxzgNrJuWGzj94bkNnOjsD0bmb8QfwQKHpJjQ31PPb03bsdHGcxJ893yydt67MAzgrvYcf02Dr/Pb3+8jfhN9gF882zvxBokUidVlrq74pfCviKfCSnMmWL/CwrKOdcg/GXo3U37CH58TusWVOIlo+3XefT0oTqbvtYa2r7CejH4EEa11sA25iaoCK3JNgplG393DLxCi+nocBoPjaI5W0UQTblLTauc9mTsj8IcLP/anR9vims+wfc1NMcsZ8+qJ5eDI8NFsn09U22cJs6hturZ+MfP6f2ey+oy5seiJoadr04ciSBVEIPrJ2vtP/q2nYCrm0i6l54Zg7fk9FImhDLeCcEdzSEfXaF9f6zi+DhU5nsEClfUAIbUeexeshPgQ/g/aBrNNgaUzJpbW3DQdQJXvUI4493cQIeZ2+il9hXYJZYSdT2/rnRUAoTtNyCqgQwcpRIIgcRjUZSKariDQPWA9mon8LtBKE88iW13euCvrxw6NST2PU0ek8LGLKkc8Hla+jYPSqBye459wIeqm6Reul2YG6SgAOz3bj0gRo/4ZolPALZf2dELQcho5h7c3DlozQjipnx4f1pqcK2L//wjl/3t7TiOY0+OwX0ff/JgZ/3FVm+t9pcwvlsg9Y9KtQUDk+0KO2wV5BbkUhY+e90428voCUah6PnOc6YMBEB7B+viP7pFyW+uIqzUzZEluUXYj983XmgxbqXeuaiCEoBdxceRVBZnlm38aUCXqRNjdEwzat/EZ3BJ1NfRArhDU2ERRCO91eK3XWGHusOHQfu+ZjTkGdx9pd/GTe5BH4Al9FDtHRq6SklkeZp6lmqfGO46k8iNVcVzZGwWcBn16Fo/lDHZHEsXOGPT0dDw2X9U1ADCB9Hh/pHa6mJomwiqPuvHLuvitQTd7YieBvOPDZDV2diFeAIhpHr4Z0nvWtWHL/wz4+6taLBhI5rLagMm5n6VrxJut0LSVDYD1vSHsSHSd9a2sFX4nY0i9pdsuZ3CahBhCMltB/9cr4ZGjyxk0vDx/ueDbu9vAF21cnUWi4++OErPGrbhei1EDC2+iew3UM92jhrR5goS11YZMJInbYze+6qv//8C0LAIqBZu0gTHMIixKEgIXNisVbAbN4c/r5vr7uPFHhkKaguDYd6PN6gBn763VLbATDy0DdqMtLhj/9N+L0rFeUZn2i0PeB+wUragegGGT2ueoUXXl0KpnWWRJjn72xp06EASbhEa0cn0Ryeysda7/Bs8fM0mmCSJkv4w+vo0GzMD3ZDTaHy84C191Sb7OJ4Alj9Hmxq/NtkdNq7aq4uCnWbq2qSg5MZEFhVSp0YuEisD5oB6UacaKSM90TUX5OmhknxIe9J2PXTu20FmPnXbvVHrIzF9lMD8uep/vzAZKIvuYFypGwoHqN9xo5zIME5U97Rqod7qlH9C7yTm0fLqRIQtc9GB03nNUdyPc7mXA/DF4Z2vaVYdL7Z5FclVPbhZYf9M/X7W3h/2qrwOe+oRVXfXCjeE1X0DnWkyjECk38qSmjo9hvjnf9hhBdu3R/+zd5XQuRkThZMxnFYez4ea9Z7oa2s8Yy2tQB7JqnUhXrt6dG2eHKAot1pr9SPziUw3FEwhX2SwsW6BzSkytUcnLsSw5X/UO+xcevl1D6u8L3eQvSf6lAvp+XJwWTR91TbBO+1z1otgMYNxp8+6hcVPF14S3cD4bdakY0musUwP4cxXvVWNnK30lZH9SnRKP4IYPGxyf3OC/a30ocRQyL23/s8h5sAZu7WWSo7tjfqY80w2fbTQSi2LqVmUhnZfNLyAAb1QaHW6WlnBM1lpGymtvj5RYyxKH/By3S5E+CihhF48gy42TZPmkj9E8zWLKdwp9hHbO82h4yJcn/9w2vj2erg5wdD5+o71FLbAHRrfJTVf6X31X8hJewMyHp3h+PvrUZ/euLnLxmOwpL5I/gGfO9OGAfvJ6vne+3E8CR+e6qlXVGz8yaM4GU63X/vDxjxJA3GT2Bij/QWGrXLtMBXyLnUqr80m2eHwB8+UTTy35rJRmmAFe/oqkfAMucHTe3NT451wdCBiKfGhtzzu8cmiU7ZRJi9gef48CVk/IRIqbzyqophu/oTSpKwxG8mdf8JDthb8xkvVnEFjnclIwsIAFhvSl5h/fi6OJrdV7/+n6H6pllibxuNoMmSzld3ZwFje37OyUuvcxdGaiRh/epYNbndpwGYesRR4701sjGxvhZc9QSNVn/7o1iNAPXK31HtWj2zxRz2g/Ia5xc2A/NjTv33WMIcvZL1vuopWy7brwt+/qu+tWOT8lkuwQf30rH+2Z4RUzJ1ALswCKL56lj9cE8KDZ5LvKeBtpxMwvJIUbpjUUZCfBjQFNGLD/k04MhWdPyMZHfSACU5U+yI+5fZGc9TAJ+Z/qEB46KM5KfjBnLJ8MWuHU79JMteCn7+r01EvV/irX6EBw/RHx6Zna7wBlzxPlqcr5Ww5UwCqFjXEKfJfkYD4FgJGbe4pH1MN0TfWtwB5m/PROrFczINla/A+YkdoqRRg9YJPS5Uy/vhVw9hLIzvL4D4VIiU6duZM1VeL5jprIpWvQBYLhyv8MjnFn44mmSy4FFqcCMHTaTMVAPj7JDND69XPXNGc8M/AzjFO4EMBnzVLEVS+eNz2Hj7Ur2Qy/cMQVVoNFj599DdrjmM1EDCJ1/VsvnnRxPwDaPNJfTQ0qqaACcTHYl80E6Me4zlAkllIPrD+xn01gbanGIQcI81IP3pGScQqKEhZE67l6lAuvjXCK58mnjJbViHw/g0uF39X75KIe2qE42etpmx6/WqQQGlD4xcZLHlGOgDbGJ+INLK19kQ6516TqWJ+junQ+N15yvKzPI9zRsB9EsRoiN4DcuXetsiB5/5yrtKh30t2kS3N5vjwlOUIuPGVR8vYH6VOx/e+I2Eo2Ko+rnk3RQ4X7SNVHRCaOkembt2C2IReNkGovd1FjffhxMOjtw1G9xT94WPfqPgQFUvdXfKrhu4NYQ31bM47emP3+CKOPSn58af/4j6hdH1PNbTHl6KH57S4Nbdahb5JoTkc7PoIS7kbNDa2lJW/U9UD8n97H7uX6hfKwOv9YBs0SQpgk7FbGxxM+pXvM6hmQoC1cqDB7qGeC+w8vvVb0oS9hILAwgGu1F8C0LEr5M+//JrfJ21mqx+qlpVi453TZP2b7E55DDpspC8pvzaL7/6nEQ3OXajuQJL1GoDdMb8RV7w0WRsiL0vLJ+5h1f+yla/IFD6bfWmu7viA5679xwci/ZMw0pwGPuE8UZd+RBNyd5JxFw4pnB/3roYZ2KLyiZnqbr57g3sT4qI5iPcX0G/Ld/0ly95cBMWkCjdGScOftdLbO5cmHXHiPozLQF7AGT9+YVBFklgEc3UAD//5TReAZvFg3WEryNqIhOCiU2f+zGCu8En9Od//fmXq94kTJkf5vK5eOXPT8S38dVn34azYvXHF9B++zJn9+7GUP/WCtmMnxFNEzTLH35EcBs/kqlYZ+fsLiLCu5Pt1at+tRRVti40vHQtmCL68OH79l3wr3461M4zB35INdI80jKZ+VMcwIoUd6wtXpYx6zVKsI+OMJJvjYv4yrZKZdVPGClum4z3XU2gY8sKtsXeAOznn59lPibgcS3QPHyqEuaEu5IW8J053s+yBIO7mmJ/38pmP9Ax+he/XLRMBlGc//RAJI+CkvUDbSNINThiy0+ajIRzYYFyjyFhxdRkL3L5HsGafyMhgFa2jLPhgm0i1pFSG7tEoAPcQx1LgNqfxQVj5skveM2jjigRkpK5xrqtynYikZ/fNQVFZsHJyUXqPbwNI0VxqwC3fAL842tLs0tLeIGmTARlV9fzjuf93/f7i8efP736fdju7k9ENttBgpkYT9g+BEmy8i8fLtYjiACsbLSetw5eAjvD0crHP/FeLOC1LAOaHq2lZ5GPIJzDrY7DBlE2e2aXq4ezfcPBWi/9+dPK7325b1clqx9L4Hq+yLsuDoCUsDTUvlXaf8+/pTkHVjymWDDmnh1nS4J856d4Z27HhJVbW4DODZn0r97VnZoGmqfygjMj/tZTaW8qSOX6QH/1hdnsOA6M9yalj6vDZYvonBbYhM8Ae/OuAVN7/CyyFGsi/tWfljZtcsDPyx2HjwvJSKtqnAqXV0jkPBLZyq9fP75Nje/NRELSPkugn3AWqe3eredN+iH/350C+X/fKUDPVSOGWQ6m/H1b5yXZUSSplxSMG1GJgYqVLzV3uo4YehzPwDh/79THSY0+bd/vYX/XbGwm6ZENu8rX5NQXFhxJa+sT9ZieRcRLO5zyXwFNt/czUsudVmPPGJR+nk+pAO5J8aU7zZ/qT9WDK9Ryt6KX0tvUYy9nBhzeL5OG/mVvEnvy1l7qQky+aXtBxOm3Gkg/2kyd7vYBpHqUHOQ+d22tsXQJu+4RB5wm31OHwU/SDZtTBfDBjCKlhVVGoaicweG8zlNz45e5XJG3h6IcSDgzzjoSUv7pw6d+fVLdFGw083txgd49QNijuyujL4fFqouqiEY5CJjAWOfD+0ZUsL9hz2xWbf8Mp6X3o1mjr4wFXBMrD62WQlF/Ptgkrr2DvhvOwe6jy82ZOxkDZLZuRYuBJDSia35W4MbtCTsEvEnJvEjqXtJ9uq+cdz/5wU2Azw+eI+ViXLL5rtcdaPdmhxG7sLqdNF8CpRHykSQBgLr2VQ5Q+rgC3t103E/37csF98sM8U5caxKSlJago1pIc1tb2EA34RUyr7XorRx2aAYFraDZTCn2iq9ck30ffaF3V+8UeVoJ5k2WxvBddXucNmeBzZu9k8IhpGfsWx+zF/BJGECaDAv2Doti/uIPHye7xS7W3WTaVYam7u83hHUplWo2z9UEnYe7x9fNXgEj2yoEZpo90ciPx561TbKHzpVV2D0undnNuzCFrdK/sB6VOyAU/lNTH40uUK8odohZMG8gYs4FG5F/6Znmcws4Hw2InTz1E+F57ST47IoH6U/oyKZjKadwNNQj9VvTSEgi2yVsWf2ino5eyZJYhxyUu5nHnqunNWvu2RE6QoSpjbqx7+aii+WyvHE4QKe4n30zuIK+314idj6V2fA+aB1oZ+1EdzeF9n1wtfbwrg89UXImosX6GJqKlvMOmwdZq8VRNiAsCJMIy2Oun0q/3KjdY35gvW0bMG72+ApvhsZjG3Vh38nqSYMnuFExvqZ+vzyOLwuu6yGAXVg/SXqpQa8+3KnREwMtZmXYW5sGMfUVm2fjcnAUSKz+QLjyM7MpSvROfVvF4RdvNA2p2sCCzBIRxV6tyTEnFXiY5xdde6P1A39x7d95iOa5abLpQuY9fPRIwOZO0c2J22uu+hY3mBzc+IWWxCkamNflgJ1G8NGS11EEHidRJOxIOUAecL9RLSG/4EvpFf245442jLFu49gpL2xY4w2deDhg5PQa48YpLOH8Qi61D7cwG89FrcDhxFnU75Zz3dXXkpOf8/mBvUGU0aiZ3ASLB/em5iUqk2X/1F/wPu4AgVEe92/ZjivYWVdM8zSL0RTHcgXPRqxi7Z072Si34utvf7iSkaElKeUC7g7WmR6H7pANWxQIUA/skuS2HLMF4UgBr8PYRtyWTPUSWjOBg3w2IuWmGmy48nMAc8FUsfcK5YzxtfFVYxs52Ekqv18A4TawUtyc3uI+ReN5n0iw6dQPNek1YfPjzipoXeMrdrwZmd9+2jXw4DEvUtb9/NLxNoYPPLXURLhk6/49w6XPdr98lcy3IpuUW71w1NvLirm0QBqU99bC1HzzHBpbme3huh4CHJFPWGwcLbUQe2mdR+b1U70NFfjB4x1jYHhotvhjA7rkUlK7AUHNYWv+qkW+f0fzgK1+KreFBnIVqdhLQZvMK/7AKWvR7/f9sOYH6DhmTdd4JMP5LR9BXgQD9r+NUNM9yC24p54fiSP51Ow4rDVFsMmxgacaUTIrivI1cp+efG5CC+o+CyxAKEU83EToq7nbM0BG6lBjvTFK+MK1oHGf7tiRZbWed/BYwnl5uxRprp7xPgePoJGCC9ZfRQMmL/1woOPOIbVm9YCmjitfgNtM21/8EduK3wgER8vCjjx6SCglW4N+s03/8IkU19kA0jAIdB8OXUIc0VPg89E8qJeCXTJteMjBblrCSPleDTQZR9+H2ZOjOEjmOFvxlIO+ajvUazI5Y5sq3it9q9jYTe4u6kfZh9B5gCqajPUOmFbmE+RzuIk+kiD1Qx5uIvi5tnfqIqXLpo83NfDpPBbqjh/HXNz0o8D7MYREWPsQ0HmrLP8BAAD//6RdS7eyPLP8QQ5ERNIMuYkImCig4gwQERCRSwLh15/Fft7hNzvDvbZLIemurqokHdSx8o6H7Y8G9OpeIqXMHj3bB2cyL/FC5dPjphHSbH4zr19RD9HD2zKdGEsv0J0jQy2efZZR0hu83isCanlkMzt6Q8DYQZfQ070DlXZC4oo8OIUgqpmCd+VcIf47j/VfvWOnx5N08ybkDVorcsmcO9MRd5+ZjN7bx0j+4o0J66IBU8zuxL23eTBm4cpB3r0xif809XKCUxzBc4N/S2+2XzndzomEjrftEwtL/o7u+zeCRtqcGEb/dqf4E/Swe4OAlYtM0BQK7gpiR+B0h0wpGL4HhKH9rBbN9XYSLhLJhMLYjsQIWTjPtuFlsMr077Kn7b/8gRIJD3Lcf2uDTsrmBvVP8Jk3mJeAYyxyyDdsZg4bNNT/4dvpsPQy69d0HhU/lGCMNJc2y/hNaR+0SDelDG92CU5m9RuOkK30mthekaJvmyILxTji5Pgbdy79+/4hjzRy36nPjmt7GaNlvNipKonLbfJSkSddQ2K4241BE/iZCEkSZdp8qxJOmZJCG3pH4gp90E07gdSy9KlEct/tnuUA8zqDVzaIeOdu9qinghqCCKKMBbvjc2/8fEtZ4gHz3NXLLak9BzmP6sgCzPOSd8c8VxZ8JIdtp3S/6XWX/tUb/Ln35WRHVao0fo2JI97fHWe9FEKGiISHO2HdDKEfw7ibHeZAeJ1HsT+rsIwPc/paN3i0FkP0jcsCrw9r1xgl92OiACsmO8BB6Xg32ClSo6rAI8maoPVulogO6b1Y5u8aiH4p1nJqy8M/fjT+6nMF641aEZ1Hb8TTUMRQ895nupOUSR/Tt60YkxczK3E8NK1P+hlqsv7Q6JA15cjnEUOf9QZJ0iL/wy8J+eJhz/Bv7oPeZTsOA3dULD/7rcHkpE1h4RNEPc9NwKs650rpdQOzwz10fBSVCKrg1/7xC2MQ79se8vtbYNrRrV0+CHaM7ME/YYWdaMm996NHxqlPWKp2gVHV44fLVaxHeH3etoi397FAN9cBchAqBXF6jGK4VImNpSZP5mX+K/numjLB47N3++8raqAtjzE5sRPt/sXTz889FlxUtdsIlkxhC1wiJBWdoB3FTQx5sBaYZvuWy8tLJCLsGBemHs92N6+K+Ayv42NLDm+UdQM+Ct5fvhBbOzcztd67FWRB1OAlX+Yh1hBHeXIQmGEVm6QdPlIMJ9qqf/mDxsB9p5AmjxW9EXcIhtcT5chtyR0rVUmMv/oLhXoZmT7vbu7Up0iFP75tewUgpj68EdxdtmeOeNdKUWz2Nnjn3CSOIr8D3r2VGtl6Q5ifHbfuGPmXM3wOxwZv4aCU0/bIKHJDFLFTfGMl3ZgDlt1MtJht6A0andWRQ+0lHzoJnZkMPI1HVNZFTPT6oSfDqOqS8ksil4XpibsMtvyGFj5Md2wvzRPHDkfrm/AheMNdNB8GyNB9liSm3aN9ItJ7E8HnVNzotEoN1OTrmwrUJhey4GvJ79iK4HuWLwRLaof4ke2Ef/hz0N5r1Lts4gBOM+BxDL8G3/gbDya3POJ/fEB6bCykftQCy45zR+PjccEQFonG9kv9nQ5GWMANUyD6on948WrEndOF9qI/Pi43e2LDrZcRO+b9xxg/gkSB8Om04M1c/uk/pdokP7zkV8Dlx6Cjm2sDlfWv5I5r2nMg7oAJ0dsu4fLjo8LWd2QsL3plUA3gsreiOq3K8VLyMb7GqPYeH2Y57NRx23vIaPZfJiMd/LpBrEmP+je5EidA22DOZTdFjRCeiKFb126oieEr71U54iY+fNFUam4E7n51YNr7+DHmbxd4UJZDj/PwZrviwr+VJf8I/n4W7PZTgGKgKbGX3se8CJ8ruN1rIMe+q5Z+f3cdXlHzYZa6x4bYDOcaHV67ApfoPic0TrH/F09UjIzBmDYnuQXnZB+J/cRLL+o28+Gt8Izm+fVbjvj9aNCf3tAG2+x42IoFUsXxjavTgZfsGIUx9MfYJN7CX3tP3PUwJl8Xw6PwjXFZjoOzqnjMKame8D9+k7PmTch935Zjdtnpf/lD9KVt4OZ+T0RkXz45Ozit6/Z/fGbBD6bXjyJor5OYgS11Gd7tyspg9c3wldyuSuKMy7m8zd02QYl4+4eHyT/9sMwfc0/N1R09ceqhUbBH7Ff6LXmtjxQEvNVoftCbkm4/qg76kz8Zvl1OhtCdxxwy4SBR/ngXiL1uXQ6/XeWwR0NMJCx8XMmF1Zu5+6fmCu1LzUG8jsAMfdaMqekSR37/ThNuMpYa/GGJN/DvOwtXmh24rFE7jC4qcvCWrFs0nHThjPJ7KSx3b3XdtJ6/NzjfAhe/d0FU8k0fWXD4kIJKTfhNuM1XgOK7z4m7vgUGV1xThpooH+b5kp/wKjpzcPPaIodn0CaTN1Rn+XQdNYYb2Uv+6p3yoaQmRk7DZJqngsKCh/SzGrHRJ/nFUfJkL+BCaa/zpBRFqGx+8YpKcZAm3H3eZJC4KhIjaVVXjCYaonUcf5jzzItyoi2XlNOtDBa+bRgN3T9zQJJMqYFXV6NvA6WFebmr7vAasnLykOD/6UHKN0grRct+WZC0PWXWKPcGD9tVgYZ7rpHg/RWC6XIXTDipqc5u5ntA7FMFvrx8nhyRGQV98Nil0A6mza6qM3a9+/5xeLVxRbxWnJKpeJYRzGNn0NVT6NG4uasmRGooMfKjP0S1PfcgPf7WdLX4V2Ojjy0crPOFOMeVESz4ZcL5sXX/xev2WPcxFC2i9L2+GmjxCyL0PP+AxtJHK6fEnim8e/31p3fdMae2DHb7ev2bj/7pTBYYgZ7gMdAa90+vKd0jtcjD+MTLOWXqLXdrenRb37PkT09AZfYP9nhOu2760x8lX8VUKMep480Q1XAQPcLim6gjfpPECBb8I99xc+xmd/HkF3+P2F1yMKbwM69kMjxPVCrdBPVb8WpBYTUZ03U3Mv74mWKZdfiPz0/Fc+krdOEDW+pzsnlXKIMcdwI7DPRYbpZ4QYdcOtOCGNtuEKe4hnG4O2Th8wm9tzRClYTv5LBXXuWf3yY3D4rZgg8dN+WX/cf3sWTPTfc91lUMlqaGTK3LQ0Dj1DojcemNqA+Gbmw2J95CmR97Rgq3dfklFRtp8deId1n7yU84bkVomu7F7GGTlHT+nB3lE6EvnuLXJ+HjpznD86Ogf3jGo6kOURHFTyorpw1ib81IgQuXPXOspOwaPXRsePTNTA7EahHVl04Ay3llirTftezPsVZDt2327Fhaj4TXvysHbL0udGPX54Av/BDqr1Fh6dg3Za/vZRvQ5kbJ0X/tS+7GjxGe2GmZo2haspkOuoicpoyxTIU3mj8qCuF9EnNmr4/y/Kt5h6H3VuaiP815uH86ET5VdV3G65vwPpNScAKy3KWTnxIeXGmNPg5rmPNQCjQu+ln5mukF/8472R22w6GBPbnd2Cm0CRqyG6pguBwD5sjrDRrmiAiobr8VW/Qcap39UYRq2v7wsAqo+15/XjcU+daW2T0k3ZTZXQ26nWXEuF3VhH8jtYFGTjLi+LHhjr33qeDyXdv4qzZr1Jset8Dm1YmFYcuDcWsOzh/+ktBPecL52fbgW3tn2hnJphwld7CQv/vt//S9wbfu4IAZnSO8+xvPc2e1UN1PLbHf7bcbR2SfIefujIc/vbZb+ylk6kem03wzk+0lE0wEjdgzrLPTzA9PpqPX+BKpvD1rndCdpRz+/MJFjycbxdJv4OeztehvHlCfaRn0V9GkdFu5CP3p7T9/p/W8MuD/9PHxMNDuGwkGN/etieJPOrHj4/hJ6N5r1T+/G/uRcE8mH4W64vUrA2/P31fCdY35UHPq410Q7ctxROoZMtOVF3/i2TF+1Ue0nrKKHR6vDHGs1iMca9Nl10tG5kk5HjJwXr+YjsezXfZj8IzRIanPxDK807zU/1bOL1mJ5crRk7GoJQE99+dumb88WfAC4OcXHjmsrkrS506zQtolzvH25x9Rf1hdJGXxQ9lR9euEJifRR3968rGSDLT94w9L/GF+D4q5lNdOJA9Zo5FXsHLK+dslHvjJy2LOyy+6aYmnv/elb/qLEH87ZwlOBdaYEZV58qnV+Qzp1+op3w7vcny/JOlPb9Lv5vmcm1mWbDhtc5UkJL669GGtwn/+sX6LdTQt+YKm8HFk9rytZ/qgPwyZBQ1G9Ss0fptUb/749p9+Mbhx23r/3p80m+PMBXt0lD9+YW1u7jy2LztH9tXNiYOkzcy71bVC5lDdKfDHZIymJ1swlCuNyn5cunOYlStoPvsXOb1VErz/8iuaRZGoxeFbLv5yply60l74vz2P0kMx4TefUvKaX8eA8vczhF97T+lK7Do07thJRcV4oos/9Q7EP7xd+AL745ONuSp0eOId0PKaqskO1yGGdPdVaOxsjUBkWXOTP1V9JfawQR0TraIB9aMXWNzHwzwGjZYpbT3ETNsFUfdPv3TI25MLekfB8L25HjyyTKCrxZ8fD6MmKaoiv5f5k1DfH/NU3pbSjkXp9YDEwH+ncFbXHjuA8HOHafhKKLvudvTtG/ty9ur0jJjwPrGTex7ducWdBRLOt8RNTqpLA/+XyVydDkxH53dCr6qVw/5ZXMniZ6Jp8RvQ5wg3Kpe0CFqenfEfXyWH2HOScWRKjGqCA3Yg/isZjV9swfvTTUxzH5+Z87PqQSbKNbM3Xj1Pf374uzhMlJd+kXDiTg24PNyzx+JHDgs/Qa/ddUPc405FwveitkpLfglx9jRyZyMSWngdky3R70GB+NZuVCjX0YPdib8OBgExjl5tVJ3Q1RVmvvsqOpSbV8ew65468fKYcrCKMWA3kbj/1ruUuK8mYshZEND9fDAhzYcVW/wjtw/cXwp1DgF5nJw9mnaTkyH78s3peoyOHT8dRBF6sQyJ63B1FuvXmYI/nPZMVzIt2dCdI0GMY8705nYrZ0/ofSjrPGbJzQznvg027e5YFC5R13EdTLLlZ0q5fw/kcGCvblTyXpZXnt8wyzOHbgweU4oWvbfozw7RxW+B615eM3vX1B1VXFOCI2Mp0fLzx+XVaS+BQqSWLXiz4Ocjgp0szHT3sc1Z/BRXET4Ht/nzB4x/fmS6+yjMSESh7Bshr5SFPy18Si5b4a46Sq2PIXt0t6rrE19zlEZ+ZHR840PH15tqBOu0nPu3703JN5lqoT++rLEimodN67dwFHyHOeqpRP3NvdxAR5CSSEKJS8/mr5Z32/PMPHDGmdcXuwf5InOyv2QMTXLYpuDee4vZryVwBGXwkBu9Irxd/OHpOECMVrX0XdZH47IXgpMPT412GK1vgcuUJL6h9rmJcXJv1aATTnIP9vWYE8tThrJ/ReNKWfgTseTOLWniTA7yPqKBu81n7qj3vtB//O9PrwwTWksonqSJ6Vv1Zkxp5jYwDleHOF50R2MJ6og00DN667M+GIuNLfz5hzSn66/RD4MdQ6tnDoVse5lnE8Ja0WP8/FsfS6bFn4PdIdwwLdjsyz4vRBUtfIvuvGecTPdPKcDz90a0/7wvXd++7AKW9VqiPepPwLPJMpV2JR6Ie5XUZO7Upc+rezsS5wNFMJlfr4YFX8nhaK67ZpZHW6mTNsDomaguu86zDOXO6P6tX28dBCE8zx0QfadrpeB4D0HZ296N6Je94dIgn1JwK8eijXKPZ+qXqxqUd9tSaZnf8eY+buA92ZVovrHv5nLpM0ciF7OTtKLJdO2RBEcz9Ei8PB8vDVtENq9PbIlng7OsCWXVOJckWvBk/IZ7Dj9Rd5gOHy0Q72kW/dVL5m+Q1m1vR1dCbagkf/HQzfgMWL76tzWVzU3kjvweebA8P3Pxe+NyrNIR2js/kgMIR2MSp7iSsnf1ZVrTm0hsvU+DBncb0Dm3VHfaWm39/9tTIP/vPQXfXOJsX3HV3TzfOpeRZFOmdt86mYfbJQf3uaqYW99oOXi52oD35i8634x1MB3Okwqr4M7pZtPmy/3fUgjT9f0jx4tslvPjNotwjE8SOYkNuONaW/mwt3qVmCFzXbGpfjkq3tqd6exMk8/MK1OxFPPMrptWDWinEBGC/uQy4/KS3GH6Gg7ap2SmbT0RdzaDbwq4Gd+EJMNpZtUqlXcy749YqaAORim2z6Ba4od551ddTsX0A1DW9kjXLpGCDvdzDVcfXSlCwWBwLcpHxdhsS+I+jsv9ZelPhPDkiHjdt143os8PI17HFt6pSu3ydA0xrIXcZvuDKMxjeX5gNE5hQw7KMLvTzQMZxOvDJHo8yGV/Onkiap9GjtnyvPzl9SBXUudSdH2cjdEUXyPK9MOXHe502zWe0vhgvR6IHpLsGEyvSRRglxcyUxuLdXzbvFqY6mNCnEelB/Rl6T74Zn4k2s05Gkwm4hlVhz0lprjP50FxpTNYuUEJjmzazYJ49UDx/Df+RI9m/nsfNCuvG7MCdkqGYnqD4hVmxPy2P7jjGgWFcjPtHSNTk3W94NkY6COW6bpZ7pvcCwoHy/E0cn2cVsHYckGH/OZ4dHcaG3e2zigFnGrbxYO6zZNvfS04n/CJqJbHg57cMw8tz0elLlWN8RK2GD3dkGDBk5HbiWrdwKsuA2bpkelu0eUkyj97N2Dgjo36l/5w4KYXmJwO3r4TiG+Y8HiXHuXPlZFs/uZfvt4HYkXDuqN1Lgvoc1+5RGMX0xCGrXyGSg5E/L6RQzI2+Rgrz26lEXtc7cq2G51MruqYsr18/AXTzlGq3ZmHMsGfKwr+Pg+fhLwpP8lRN3YyPaPGeNp0kzdGuT3kr5W80hKM4XlqE6Y7Q4OKl8mZ22q60V/CwoOm4DaV11LrToE8eeDHGtCZJ6Uxr1I6IjV+CFSg5zMSuXmOlZFZDiHWxUqGsc/OcG9PZ6K9/HvJzJM5otjcF0Rzlj0Zh3vQy4KXPakSHatkNvZ+rnTzQaLv/XRBA259ff3MUMas1LDKiaUTV+xtV1DqnqkxWaFQgdWPd2I1YtNNGbsvaxJ8S7nJW4MZe79A+zggzDTHrBvJPcPgvrcDXr8iLZlZrHrwdmBNXDWdyv5lI+HfeO+KwermHwYbtvdzzFy4vIKZNKOuzO5uR+XrajCG32Wgy/08HdnL+FsO+5NzA0NTR/KYP/U8HmjUgjyrOjlUnRjMl1mLlLVxrpj5OeXdHHlFBj84bDC879b82wcfFeKKhf/lO3ZbAR7Pxlju97S7OYmLAtDP/VJ0lR7ucEz0COYO7+iqeu9RL8W2D3GYJFjxQiFh5mFqkXC+1nRqlvuzjsFyf+KVTOzwKg8dz09QwLXa7IjqXMZyfj6PDSIrUaKcI20Wc+JZ0L8ti6nZTi/5SkD+7t5UH3KvOjFZxseRRfHGiPk5qeWYP74ykjfrFzsWQ92NcgshWD2/4xmVU8m+MGZQP60tsXcnIRgM7R3Bm712uOkFxWiYblAldHOXEKu7GKM1aBYEbZ0TrChDMF7e3xos+tAZcTancrzPWYimovLYwXk7iN5b3UQvH0xmPp94HsVUOCurCzswtbop80+FzgLvktXEXPKXol98E8szHNmrWe8M/i2cGJrQlIkVYrEbYUhSOJktJcaV/OZR761Yfj7PM16PwtHg75sYwiv0Reb93mUwQ3xooNnoH+K++TcY1SA3wQsOFzrNSV7yg1SlsJucnrgnMpd9r5xidJ03KjsnxxGNrUQcuE5SiuUtqcomfzBpd9q93gxvHrVR0d1RgC9RLIyKLjH47dsCaoxZY3Zz3qB5/FUUfWeXEG9ry6hvvomJ/NgAdvRDlnCj0iiMZHKocG571Ls6yiB8dxMWo2h2x/lWZ7DgD9tH0jT3wuNUo4vaE3Y9VxGaDuedDjrlPt0Mt0MwP7MLBmxhlzjZ1y+5Tr8rUJR8z9zPdt9Nj8Dp/+YbG+2l7kZr7jj05/FEntHRTOYvjCmo9vOMN0t9HZtBGaH0a4HZ+68W8GHeOeDfxpo46KG5G5FJJuiF8WMmFyKD1brRIM39RUTrvP0stl+7RdYrQbh5PYNyTOS5h7Y1DfaA6GiMlT/ewNt0X2In2yzgZ3Ip4PziJTu9u2fJVzAUgK3cZOnDGOapGOMILXiEgYgqGsWroyIWr+5k+X130+Fdj+Z4p+L03QfB5NXlDYHLFCo2kxNMqmhH6J1UEzutjHcyjdnxtnuon+WcPJ+C+QtSChfzkhHzAM08380Rw8jXAXGppS77XnkFzxe5/8Onv9/fLfGMFXtZAzuuzR6C1ashbrj+JP3vxzFsrdWbbs6/u/GWfSbCl50tpn0P33JepTX/h5f7SLqgKXJUSZkH90ms6YWNmX33NXxxGxJ3vRUC+sc/qjBzlvw7JUNeH3V5KuT9gh/fkn5/QgtkfFXM9TYNGiz8kFE6/GRy7MMsGFFvSHAgt4E51x2dua3eOGJecGT6rKru9ua4IaRy/yRW+rwEQ5x6BbrpOV7qyYhmTetElL2cI9m/dZzwoOipnCaPJzMv5r0b32HIIWK/DZWlkzjPGwlC+dhuW8xPmok22/06hNOnfuB3UarBXIpFA+M6MshZPwjGVLt3GXy5o5QX263bO7ZVAci6SQxx7SS8/aqtksJv6T0tMWN6fj8pYqedwA6bozsPkp2lQJ67E/OW+tnAEGTQgv5lODTOwTQ8DFNRFM8j9/y9Q3/4CvljSBg57BHq413vAJIcyrT9NM1c+9QO+sMXeZ/sEraFUoXejyVyGD9VN0NQAfg7zWA6RxoS9XdbwcUMMirhs4XGU7g1d935XRBNmJ/lZuGvoJD3lqjKU5rntW/n4Hq6SsyzW6LZcDcYns+qpz8/JMmUFXEIAhlmvIpsXPJOHGww3qsE97LUlxy2Xx+ifjkHMps8+S35AbbmmexSlHky8feoK+/nKaWr++8TTHw0AZn3wwFzdsbBwmc5/GT3soxfh8bwHffQz3rLvMJNg7FX9jHY14OHp1P9RrPlNjfYZfWVeeGKlWyashX6TnnF3IdyD5b8jAFQw8j+182IL/wJjEtTUL/+Nmh8WikF8UoVutT7QDQ/Fx9261wlbvbOugUve1Rt9Zws44/mta/m6LSRfWY85smdS+V0g8kIPKJp32sy1etWh6N1G9k+JH3Ao/6HQcsIZZ4806DN7V8Ew/WrEpfmrjui3pXQyQoe/+o/C8TRkuOPdmKWMn+NH7paK1nppYAFJ5UYwzQMopzvhWA5x9a6Y0ZuOQQPoMwSjWvAuTObSFGwRzmqvsFw2To5ulbbHd2Y5xcak01eKS7b2X/1zej/9MaSX5j1rVf+4yOGroREk5TYGP3KoigrDZ/pJ61Ck2Y+I2StKCLHbyeV08PLdYB4MPH01Y/JtEGDjKr9CIwkePn82sFwfo0lsV/215h+Zh4i0chycpqYnYw8JCG0EObscjdSNDVHlKLqZm7IfvPRja152DXo13gDnZbxHz/NtkDDd/ukvP7aSFyLuvhXr6liIJjnj3Xw4N6WR6LF4b7rDzBUwKaDQjz77KIpuU0RUHs5R6BHpjHx0VvBuvIIIVh25w+N/ebv8xS8a+tOczsJ4J5uHEv77zv5pw8fz9Zg2jcNjck01QIpa2ckula/unm4HldwHqMbe9RbwxhX/NKDuEMruis9VvIjMmrwQ0En3vPkBH96B/xQ1JkdYGkeH1JagV3ymBHF1t3tcoIXrvo3JTi//5JZNx0AVbKOFNF16I73OloBy8qayurWN/it4QVc6o2AP1NuoLopLytY9B8z5V9jsECULLQOqie5ks6cN90Tt6iq6Zc4l/gzF4OciJAm7IZHYTd16XHt9RCbh4KOTR4HXJm7HknZvaWjn3fJv/nI5Z9F9EWvTJpHGmiVzicHsufucNnIK3A660qO3c0z+IFrXJl/NWYmV/Vy64PrgXwZM0KUwkM8M+VenrT2zRwWC+X4G0MZyBOdyLH0SMkL72wpp22h4LV1qYPxm118eD/AIgQnxTwc3x8LDqPs4t5ubyWdjmUB6i9CxDienwll3j3/8wPY8ncw1as4hSIbd/gjL73lT8vdXnvlmNHbyh+NeXXzLBiZ6WCuBm9j++YzgLn7PZlq1Yr7DdeTDIs++sevxkXPofvx8iH738iNRa8Uiqc5w8K/P4j1BbmhdDnnureUt8uiMO3RRy7ebE+6Ci38q4cCv1RiZHcpmL/uKZP1teX+w/ehjVmOlnrLrHuszsLp5AnIFvUtlW67PpntxBTgkPuPPzzsxtX6ZcLta9hMU6nWibOnN7Dj0x33/DfNg7wvsn98KJmzpzt8FF1Cjo0tOna92Q3CPDeoy7cJ7uCyDrrvStXhHvk9MeCwcyfV2IvISfeYeOfYTubLfIzhd5cEdvok7A/PTFR7fEX02zEIit/Q3dDRpHvmXs2yG7wB62ioqgPBm/mM+DbWKfS+tcZb4pyDflilAOdTYREDHWs0POPGBD2PVmx/rqLFv7hgZeED//H935hKgK51hL/6tHN54aoF3AJHJcZlf0q2+U9e1vCSHbPx2ZrFXRWaCqEni2hsHIx+Ez9tEIbIZtrdSOc+fzAZdlTCxPqdg2BmeSvDLeQdFpb4Fcx34yiLv4F/c7s3hPAdU2QH6ZvcelTPU8l3+R+fZ/sh+XSsu28AvZUtxs3uFCYjQw0gDL8fSx+2Z0zlLsVowVOi9u4JCdL31MCfHrT3MKARzaINpbbW6VisVDTiw66HtfWW2cHStZlL6VuAi+CdiUXc2pi3oh1CuOoDhg/W1E03T5BBRfcXFl35mfDz+W3uXFrdyPGlzwbfD0YBUnZtqbhx3h3903/58fCj06VTjX48KoDMq13itWIXBrvsKkv5/bYRVnYrw92OdCv88S2y/3gtGv0KU3QIiMj+xn9scilC3ub3ZURafTq+uaU6krzDiVk/d+NyEvYNYoMnkPdXzBC3WNHAwhfwWD6P8xCoZgTFMKpUGVzNZeexXep1oWIlNGt3Wr+3KbgrmTDbv+6NOVzvZKi9555ZwbXotp1n28g2XzHTi+3WmNxsZyIqqz1TF773q+SSQ+EJV+JsfySZKs3KIX2MnLiqXs/8kyU9mD+tYwsfR4zFtofEKnbx9h72qNdfR10GO/sueB7Nw/AaRuhVOyFOfa+CycvVFir5IpKjsxe6P3xBGwIZOWtN57LslXNo4ZYz4928jd/iHyqsq44kW/hSf+9RA/HcJ+Tw5UUw5d9zBU1oyVjaGFu09I8W4PxmNkX08wtou7nWsNaXu8s2j9rlu0/X/Pkti95HHbudaxV61UnYQZM+Cb++JCo/is0K77SUGc1jmmQoS1xjHuNLyevvM0fuKeQEp75rzLL2C9FlU+rMweYKzb4+rNBxW4V/+rTjR30jofGtMkZSb2t0792thSU/aNBerG7IhecKunXRsGMs3TrGhySSnZ6pFB7GgHrPVXxQTjuPmSHr3HFc2aYiOWnBjGdWdWOQuzbyLUdYTkwF3TzStYA8gm1mC0RP/vOzQktmp8/t4o6meOfQPtILO1SXrpwvu95Cmb7/0vmrKmgY+5sP6YNz4h36KpnF+e3BKo+u5KhNSyukMB3lUg3v5Hj0csQ3F1WGPz/sLOyWu2WR5kBcRgUJUDl1E8L9GX0zODH7JlCDs5WTI+Letkw7iqMxVXLHQR/pliq//FRWk3e1/vwY4v71EVn0BPzuNcJvOJrdH56gVvn5mD93e3eTtV6FgrbKmaphNdiuXydZ/vMH1ks93aQfHMLj5VMMK8VBm0egU9DJy//nP9Pw+ahhGS96LiO3Q/IxqSAcNYsteDv3/KCBEsjSg9jxqi15vOl0efFjKNW/dscfwzgqDzVoqGK8fXdKs7JVtBYiDIULybjkA7RHJyKn3ao0WOS1KRSjmpFLoXTur9JvFlr4C/OW+R6QfayAnZDAjvW2NHp+qtq/eksnwAVivv4B5L3HF3lGWC+39nXXI53/EkIq7esOjd3JoKUXh5jo+Sz7YcvP//SaGjzW7ry6J82ffmHan36ottxT/vDTMCch6N8n2UQkgR/Bw/7kbnXTWaEne5+ZWi63sP/p0V+DB3L6yVLS/exL+jd/zHprUsdbKst/+h5/9TsNOlV6r3bLJZF03s6vedy3PwCB9jJTnRudx9RQKmR++BUL8q9x50DxR3Dx+kkWvCrZ/oYrOYC3Sezdd+2y00e7QVX3X3bA3SEQTPHF/9Yn/vK5pLD9nlF6KK4ULX4Ak21PheDYbMifvqeZcxLhDUVKvB+iLn2FL7xLbv5EtK+4mtmKvCPkqaJATHo+z3O4Km7oMXox3vDH/T9/7rIREcELHg1//s1k7rbEXa3UcispvFZe0mv7zx9q8PF4BtFIc7L48QZPD3UPUTIOjAzmNuHv4wjK6VM9KJx3l2BDC1OCxS9hug1WOV6uOw7dWnhT+aUpibjUi1099D9GcKLP4l99d47CRFebeZx/x8SJINmvJNo019CYgMyiMhhtyrSRiAm/ve2zvPgjxGgv1l/+m7KtCwyXrdck9V7YjErhiVe81tFrwY/6jNLIPrDoFhvJdq6lHsrlbutlfQIt8SbJ8cXZE/2Un2ZGqzqDpjQ1qquDi6btOq3QX/64V9Poxl4sKDxwC3g9NVk5zFOYQ3luziRpEw9RKkb+n/+P10nDOv4+Jy0MYtHhjdz4CS98mcP5lbXMFHdiMtrKxoHL9lkzNcHE2Fz3egPny+HG7J0tGvPzqbWQbQJGR/gZyaSKaowEjoBpi9+xqTZRA7/r6vyn5zp+yVY6UGnZUyMFDpp9eW5hzNKIXOWGJ4uf56H5Jx3Y0+1wOf35paopa+yQ6uPMJ7xqoUtXPrPy7wmJxnSwkHE9TexP70wb0R8VOUiORGMdRTz4kQiBk7jMXdaz+oIcG7Ce85lo88ZNhG92OcNxW4cMc/uZLP67iP7xi1QZjWkHTY3+8IY164crSulPAC1uXiyIT8k8BbtfC33RT4u/hOfNVtrJgO7EwNXb1gOen4RC2UyeQQLz/utmX0YNClc0YMfynbrz8VnCHx4Sb/Hfx/KSj8qixxjx163LU81UYcfn+6J/yoAbEzFhD5sPW/AhGIX7SkVNaWlUeEZjyZP9oQadPJe9XFlh8HhT6iDFY8KIAtty4ZfSn/9OzOtxM3cfi+C/ePrzf+cZgn4FY/GL2cmjL6P5NNscZE6PhDQfHCz1zgetl4CcfUstRWXQdDCt55Vp2/V3boWEOWjHnxkx7LflcmZ+zn/rnfizrAdyKkZn0HmX0E+qjO44GoEPY5ZFePWSVHeDbK2G6nCghASmnWxn2q7++DkVo+HVLf6jDoMoVFh4GpXLP6/Ol1fC5Uk0f++gRX+aoJ+EL3mMWTz3e2klQ6yKHtGFYIX6o9SqSLzfG6oMH3ceTaZYUKxpRbywMhf9dAjhJW48dng1+3mcjz8TvTb4Tew/fQ4xadBJp87ibynlKOUtoIUfktPK0IJZXXstireXliqhlHSdfAxqpay2F3bK+Q9NFUIhkL5OqBi0xP2r3yAMFsEbuRTcWVgd0r/8YM6pDd3F38vQb3/LiIbVvhzR5+0py3okIU0+uizxx7Pyu8sC3kmBM/NMsWNQraLH/8aLY/BALqIzweTqJcPwcC3gtXlifuee3e2zPahoLRQ2Wfz5YF7WExWnH1TiiXR0m8f2pCJseS45NKNQjtVrQ6G5sg8hwu6Q/PETRci7Fzn0Gz73o7vPJXofCXtVyYSW8TWhn28lsaaYzP/8TirFGl1bnm0MS74izQlr8vTo2hisEGq4mRlnxy0zgtlO01jO5ru7rL8OyQi01BG2bYan3pHc8bj2qCxr2YeG3od23H8UEujnw57pc9zOzR8/2wjPB8FhlM7jJfFkFKtFQHf11nA3z8e5gL0ddkT/akE5SeiiK/+vPQXof+8psOjVYTb9fZd9XTaW1VQ9Ea37+N3YW3eOzIRdGbnnO7fdX6UIIVk2aRHtuTFq9qVX9snhSZWijcpRG9ej7BsHn1jYK4LZ0WUOeqAFRNOfTrKZ1YkrntMfyL4z7ESUsusIll70jMDnM9O8ys/K3rArFitkh+hHgxitoz5n+/fXdMf9Xsbw3Ut3vF5/vYSpR61A/g22lE9bq5uq5KSi4Hzm7CSkQzCdXzXAr40kZqTJnOTauB1hV2AdKwFniEX+9Qbva2bRrVdPxqT4SAB6jQTy6PO+m9vslyFnrjd4Vr1Pwu/8MoILEiNacPl086ZhK8DzRWGHYZYCvqcahvizSYnHP003u0V9g6OAB7zz59tMyyRcQeT6A931uVfOnlaqYKT3E93F9D6PYyul8FnNJjP6yyaZmHHxQf62d4z0U2AM9+DkwdpvAvZ4NwYSN+cDhntX/4hjXljHyqSX0TGKMLlz/O3o126wPNzUntge+AEH7w7LnQucEHtfd3NKNgKU6m2ia7sZy1FcevEX2ZoxT60so09fYIK5DffsjhylG85bVVRW3/uL8m3gzCO5gw9JF0xUYi0g3q9OFjRUvhIzuY4GW+mfFpLf/oiF8St2vLtdASItRMR4ZF1H32Ygo21Cv8Ruhk3Q18fIhPUqm3DsMbkc78Zthb6/TCV6vzsFw+9gF2iuXY1Z2NOTzWVVVkhz6QUjtWcz22OPIyQhl+zZe05GbbQFpAdGwNTU/6G5Wz1VAF1cEU2Fr/vb3+6R7KiaR9xdKxvzTilCiF62jxVTPiQc24oIn3w94N+42nZ9KDwihBluGB7Dspza+3WEXxtLeHOZCmPWI6KiJAgl5p6LC+KvfdfImOQVs41PP483188RMjIRr61eQeyCfyLQx/nB3JfclDQf/BEk4p+pwtQGzdb1mwN3VjEdeB6XoyM3NuyvxhljtgtdsWkSDijBKl6f1W/ZB/tVCrWVE7KnpWz0J3X2QFUfGTHr4WvQSGemzFeFwYxqlyXjIZ3PivLhjK62wtWYVoXvrFfPpGfmU/DQ72i0LTBdPuNtw8tgovCJIHqYe2JUot5tWf/yIHXWGzp1elOy5XlRYJdfph5fqssj/xRDvt6VdD2dKJq3OEqRdLrcMdq1ABFA7r+xMfn4CPB0HIzh5Y/dT6q1SHmvgw6/USKUzBq0GJZ4Zpp7Mzue5MkK1JQA8XC2SfrIcTjoN0kiUeN0AdcPP0G+Hkyb2MmNzeNt1hrlvXEc5opOk8yvParQ5RodyF5DuTvjqDfR9Xog5DSu78nwFoYKwiG9MO06FklbuqsW5fHRp5xFv3ki5ELB1T7AzI2+R+M+c3VwH3cLr63jjD6ylwvopi87LvcoTSZv6jkq9fLB1Fj8JNN34WD8YG6IUd3CYDatVkXnDTXoWmjNeVOYxgoUVc+YZiRGyd5mJ8iXTSAv+cuTcY/7Xl6BpJHX+rAy2Prd+kgfC8YO5UPuWBiCAI51eFB5eNwR7W7Plbz8n5zaz6OcL9nSK3292pB95lCjp+lbVuR37bAjkspgKjpkwWYsNOLisgzGzzuXUe7dZSrNB3+eyvkpwJcxwNsuROXvdP6liIjvltmSegqmV31XFc3tL+zxOh6MUn1kHNbpJJD9RXii+fHQHOCr3GDX1QMMvl/dMoB42jK9yVbulFG/AibdPsQdp/U8N4c8BlmTLWII3i0Yvnbky+JaslnqrMpyaGswwT7cj8Sywqcx0pCGYE7PLzt9qqqcd59H/vd7JEsNP+DiIaRwSdKQPa9U74TCqwu4vjSNHIro0/X53uCQz/ORufv25/aNbYdQrgy09I52SjG9v1Oouc6pcNAMV2TBKkPT+1aRg1+U3fhS8tUu/mxTZlkXLRGU5BaD8KwI20f0N3erNuUQ7vyReMenmgjBNR3Rw49VZgi9WY5j4juyMlcHFpp6lHDje41Bp9uJwu9YBe3PJjFa3p8cVt+g658rif6rD3B4n7q+Ub0RVmvzx7TWZMkYPKMbHIbBJzb7vl3qPToJoeTBsHKlRTmLh76Bo/oz8fi4Fm7/XH9bcD/HD1GdfOPOwSk2Za8uauap5h3R5vX24WXLGbHH5hbM/s2rgdw2NZ5n6hp86HNTOWZZwvafw3Uex+BWIV2sgbiG6wVL/mfob/yz5lGU/crvZDDAuLBTVXfBuODrbnPf74j9HoeSskBMUb1yPSzQxnYFxT3aoE32l25+xccYYFYxeo3vlFmb+Zv0wtm2AQexQ2WFNe5c8Q/A/TuYRJ+2dTn7n0ICyH4pMdg5N+bfN1mhOfMO5MUuYPwcDsWu7+MN+at/43n7FSFLEp360Z671FjOjZ2SFSI42UtoOIQR3Y07dKWbg4yTcTgZNXxyZWCn1FaDGbnSCjpxlWM5PEwd7Sy1V4zKjMi5GyDo/+LPq94DNlTvE0zf/G1CQp4+Mbm9m5lb0FA2WS0z96++3VCKAer4y06XIEi4sa49lN7qD3H3Tjzzi6ipsJbiimH/WMzzQagcBGp7Y+bzoiPRt7IQ8rf0JNrT3bj06vIYbONVUTAMvZv7E4rBayOXuCOt3DFRtxl4q9eL6fdvjSbUp7F88/Incb+bXzm+ey7BtRcfeHW12m5somsFcjd09KszJfntr02KdnblkmDrasb2t644KHflzrROt0se9pv+j48RvLlKHR32TAZQmxs7lc00j96PW3Kl7d5MW+oBr/NJVfh+D3R33OZoroqI/sUHc65NOC/53StiGr5I/Ni3aMaNHkHkngfm5lLh8q9atf++P/GNjTG9q+gmK6qaMW+loqT//owGDCd945kvvaOt6zn/wwemN4mebGtbskHfqx7eJtmj6xN1m+5Sh/+HTxssRRUqMq6Sw1IvOSTiGTbEWeONvHOS5vU5OxDEXsX+8HyoL/qoKIFkMO9+Z2Xv8n7Zs2cXdNfo73JWClmHJV+JFVkTGtaX3oSutBA7hG/f7c/f5RzgR9SYxXdJMF37D4cqqDO8eq+ruT2ETQt1RWKmPTsjEdCJCFDWe50dIngHfDAlgCS4SXT8kksy2d7VgekdVkwN4BHM55q3KGHHG8NPzS3nftMWEH4jk7ih8nbnbnVVwdW+QOP52iYTiTwM6Ku/cB9dj4bwhgcGnRwHciTBx50hSHq0vC9JWZOj+SKeV7BSDiMjDKuJ8FKaFThvesQymq9BvzvlLexwGzGrSnVjo15SB703tsPu1T10+ZJPsD1sdaJ+yZQMRRou/Fxm5HSlejnLYZchWF1zpvWGghg5rHSU696DvcKVOs8/4jrIOOOZnPxL39Gv2jeAL48LI+5hMOhgjgDfvXzHn4ugzN0wUEDQZwJGIzXd4blWGyXHt5m4E9sZvXhvJQi/sYnFbdiWPNxbNZKxmhO81J956MdlPj2VJdJv74qqvatQJCkSFpAmGNMU+yGyH7pFpeRG0FS13Q09oh+w015SO76vTy2M8elCiDqw7nc0iga+bICFz1vdVD+UM1zuFWPng2okQ6xGKazzX0x0dbszZv1+tqC7n1MsyIaMeHN2/o+0a1lblWeWF8RARCDNkJPIyUQBFWeAioKIgAmQq98P7/qG/2xfgKIkXV1VnXQDnMPXDUsXV865dPGX8dRjxvR8k8VzktTyH56RbXCx4+G4wyHEkmURLMVHNL2fsghWlOfEgzP+i4c7iJfSpA+v+fK5+9g6GqSkpbyLHCTazfoFvtKb/37vz3C/HbqvdYWFX8+OaWrILno+3h9Cdt0laCXCzmjJf0yPkB2zMVj6MF2X3vZSPPEpNUoM5QpVJKS+Eg/R+uvCwv+Y7enHatrdrBAuSmYws6y0YH6K2gue12dGtpsiySfnvR4g6HWLLXeZqvrztTo4q6Slw1UK43H+llQd2ueBOZe26cckfEWwlrjGyPMS8vntNzIqQzcg+X6L+KzF1oz6S1QQ4zSa+TTQswTXMt/hVSKUaN6exlQb36JB0e9IrclXR1szCH/TciXse7EXRAH+9AhO3GNM56lPYNFbC18U80UfOTCah5SEj+hQsXifOQDphzAi+1I1GTq1/+Gt/jxUwe/2aUbUi6sP05d8Mx4kecm3xpEQZ9A4ax8KhvWW7LG2l7R43Nmv//DMc6/XnClrOqrX5pYw73wYEN+ukQoWfq7J/jY8Yuqse4Bvfe6ZsRHu1fiO/BrqG1thWt6f/dw7qw798WnTG3k8dg8vA+9e5CRw2lcs5W7go5zrgNfP7oHm29LFcjtuGNvqN7mfnVvsIv2O18RpBDXmYzZjbdGbC77ZaAyyfEYPUzqy/e1b9SMLkAg32zGY/3oul8j0YgBy4Fei87dRSd/Lm6Il/2AktHHM16QN4SW+IkaW/D8a5auE1zJA2/wWm3zYYDkFPfVbZjIUo6n55jV4sh2xe7Zb9bPyNup/fIIYvcsnsS1lMOvhQNWj/0UsX7WlcjbrntLybvRD9gxE9Wd6Owwv5vQ87Rof9MLcE2+HaMDdfmrRwqeIc/T8gP/p2ZofXhix0a8m6yyHqD/mArGWvi5c0bozeK/nyAw/7fN5pVQ+6Hp+pxKMJJhGdGpRvcqAbqL3Kv6O/SpBQhwFZLfzh358vFMX7t+lxnEZDzH3KsnRmLVbUSEK79XiJ8jQ2M8zXvyeYHr13IHv+RkTu4i9Xmx8YiJULp437LeWKF1esraWJo2493hT/dLsAxDOly0ljhdzOs7IgSEcJroqFINz0RWzf88fnwfLEnscn7Xj95az0CvBmolMKMqmIiT30zepRjJubVDcJmAu+xjB7PXPARrnRWh9UgI08atZ/+1vFtVCGC/r1aDeSjdY9ccwWG924fiXL+hU7BGaDhtXUuauu7PAac18vp+vA2xJJDD3w3LOX1VboGSdB3hUX994HC0vAZYuZ3SkWc+lny0Lf/mQOSvS95MfbFN4ZWpOsB2xeAqV8oxO4hTTzt+bAR/NbwaDuwmZ/pqchT/bNWrs6kzH19TkPN5HjvZomxdxlvUb58xPYUw8m7jequu5qBsq/PGV6+cTBbSs2wgt60GnPGx6fttZZ7Cnx4fpxZqjef352qquyQrp1uInmC8vVMBwbmuyu+i4ohdkH1ArbQgdntjK51UXSpD3xwmL77BC//yub530zH2IKqdrkkZg75HG/vBZuirwQrwgmOkrXYzHrZSLKA6vIf16l6inkEsRqKvPYeGzVzTup0SE++9IyfY8XyweF3IKKx+5zA4eNBgU/GhUJKxSPKil18+FThp0+4oRFjLb4nMsKgcgUtVh7UK2fH3YuKK6+IF07UlGsG5b658+JaFafiv63DsZ1A8qs+AqnK1pvXoK2vS+ysQ/+h76cn0a4bSLNxgKLlqDsm9bSNAtJU7S6MH00GQZ+uNVoKpGruiXZgzQuxEDktC2DeYqTwDSayzS+fDLg4HBqQABVIPZ1eEYzJVl+2q0N2xmm02MaHSCDm6udyLedS9Wf34esk+9iwV+9q05NUYXVnNyYelz/PXcTHcmekNdUHTLh2CKbuUBUnn2aLmr9nn7px9ew7Sjq+PTR9OjeZhA2lfF7DfbI37x1RpJ3akhf/xqVE9BBs/qsadrA+mBuL/autaUvoPHzTbO5+vk68g39S3zCd5Yy2cOkO6uLvNG/Z5zsLQUnZo5ZMGpDILpM0pnuHZnBZf2s+HNXdjM0B4dgSaqlSFaq9cGSbjakdCpkpwLkQXgPxX5jz9aA5+CO5IlhHHxpz/WshMhYxOKLPabF5+iWxtBcvrtyMLXkPiXX77S/sLIwCo+NUd/VjdfRhnBH2HxT8c7GH12otKj+vS/jzypyMLV+jfGoOS8b8JQOYtBjvtt51m/hT+gy2P0mfmFbb8p3x8XXW7TkZGFv0zcGyKQZnvC8Jz2+draHWXtnCZA/MKMemn9edpAIHOJMd5/FlW0LINV2WcUbfqgVyvLduFLoxsVbvW66tctA7hV8xYPz+PKmmXHBpgNvWXecX7ykT9/LtQGeuI6Kk5oOgevuzZHSoLXGzD7aXt+ZHA4eE/iWqbJp1OSAByRm5LMFpWK0jAeAJ0uL+ZzWcyH2ZhqEOPuxozf8x3/rAvz1UgtS0ZmGgWzhwQB7SPLI8a0OsTT/WzM4JUXl+wjUerHBY9h4WN4dmc16F7om0CUiQWxdoO0RL4mqX/rzY7PDtGjtAI47Y4bhj9CbPGs7FVUHMqUnJpWCXgr+zqSVqqLp3prWGO3+5SwjvU32Up3ZDEUyADbYc7Ynx6c0JBk4H/GM7OScs6H4iHaKJhBoyJtW+u36Etg4kNn9i25V/ySHWS0pmvrJ9WFGYzDbWpht/oIxBbtsJ/Wq6+gjGHoszBS7P6X+tnwlw+XeCitycbQwcJX8Yiqe05lrL/+4gmjNhb59Menr7NjE6d4Pq1xQnsKemclhLjtoR8OxBvR4RA8iUu/O873o6iiR6jNWNxWqPqV25yirz+IzOJ0uZdsvTqYi7VD7G6f8ulXTBK8I2iII0a2JTbewdEWfc70kxxa4x8+vee2I9nFk4MlvwpIuxs1s636F8wXFB7+8hvWausZrz9uegBVqSz6u2Ixp9fJN8F54RFrhavnsqDmprroBzqP14e1+EUJItEc0dOBu3zUZvkAP6U5YSlpSmvxcxpNr1Y7thP354Dnq7KE7xj4xDO1hNP91wzhEY4Wnhe/gN4edqg1sz6Txd/Ix9lQalUZThXLzHUfLH6oDLTCIfv7/PDQWkC73crA7eb1srh+Pc9ozweH7IqCB3NexgLSsmCFb0v95rf4rbDwb7pB/q2nnfRKwHtVI/FsZdePEPMOzK0Z4vq82QazWK4jiKQWEXv9Zmg87hwMUJ4zhjPbQmKokjM4kn1iZ1WEeDxXVQLuyX8yx5u4NaVGi4EjJWKetjmi2Q9uCVLah8AWP7wSd2vbhkH0deKNupAPVRydNf8mViQalH0+3ohjwkO8GiRZ8t204AmUvUhYEhVrzq9Xz1eXYW/480q31VSw7gxtHDfM/2hxvmkfU6gaGywufZLuMY3F6fBPf2J+7gJ+byQZoEk/zOcnP59yuRDBonuFkM3Q5/P82upod5qXMydZa9HbIwyRbh8t4k33LV//6ZXF/6fK+RAi8SbIA6ylGrOUCDKn+thSWPCCeV/rXHFSYlE+O98VXV2LgI9fUjma/hZ0oi/xw5M6d//Wa3lfE5pr9Vj/+bN4NTALDZGQt1DAWWJht/SR+eM7ix4lxnna5PS2uelQuNOemYdfbs2aqsow9jJm+892x7lg/jpY8Jz98RkuRIGA8t4xF3221Fu41wKOPwpxq+PIp4sKZ/i865zd//jZY62d4SUUNvv7/0s966A+f+mKGCup4qOoPyW4W4VHHtei5wtevdD1XmZY2AffijVPXUDH00cixga90D+/UjlUW6qK51XFy1oOoXJSAWu7q4Uk2QkBfWfXYg7Zb/LxtmIdSq/OloTP4yOYvFgX4IePT6Ifs+fiP8gCeGmGifPWtvl4SrYmfDaPHR7zjZq/cSkN8FcPiO6GXY23i9dA3JKe/OlVhiCrYbfKCMMCnnlvn1cR+sMXv3q4eesO1xra7eHxn1+OIKpBWsOZbK+DFYgL30X/+JLGWutvvVUtVi2ybeuAL9/fIHUnxMzQLrt4+tlPU6NVjpgzXKxgNNv9AXIAylypdtGoH+3wz8/GwVO5BPPF71qQc4dh7c/fkO+3EX02tx3+/f2euiItbMdOJ4u/lU9zx+q/+ilemmxW4yUbJc14n11i+c0L/fnVUNJlNkCBnj0/ceUOr0TCLPisvV6aOr2GtIOJEMVlnA9bV9b+1m/XxU41nSp+QH/+s8Ou34qvJreBoujmJT7eaD4FagYLnyc7M4zj6eMeon/v7376iv2YqkMKwS3siYdPPafM+mLoTiinbPGbpD8+6wrjheTB9xJPeLyZcJI7mWqFW8Z//iky3onLLqgLEM++91RVDs8t5uJg92uxbVVksMcXS2/tnU/nfDOAasgOCzfWcqdPd8s//4mYzYNVf3wQPU+Fw/yky/u1LVUjavS7SZZ6uvW3//5/fQrgf58pOF7UhJkeYoiHamZDUm7WzIrtLfoOgzigRNoippPOQ7T/zFRVDvzLzKtR8pFac6ptr/uISonSc1qk6IXm3FXInrhLLy/rG4Gavb54s21ZPjGNCXD4ZTsM/OvmGzArDBNoFxagSxhP7fF7gFqbJbY7HKKKdytTAL7KHEYe9c4aFXcnwQZ3K+Ld6bEfrWchoK02hFTdm31OA+t5gPYjmcyrS8MSg8fjjEyGH2w7Xoyen01xOYcuBHidxzRgw71v4HIbR7YnghLPGn10KBdaTtL1y+klb79RwbF+D/r5CU5Pm20gqtrBRiRQ5nM+WQ3y0ekXyix43raxpJUqBbfPEqJbt0Mv9tepAe/xdvH407T81zXPFiy1PBJLAhbzdfEDsG47RCdJLWNuV34I98aq/t5Hzm6kzmCnOxWW16+mGv1qKADkcGKH16PJp/T37WB93+6I3t5aPgyBHUFUNhYJprcW8O9+TEC8J+LSy/JoTZ+dZ0PQffckVJdeuq5w6qBA3GK7YONY0uFbqPB81y92e/E1oihQE/RsVxPz62fbM0G4m2Drz5oqbiVZv+3jGyF5qEVmtcmQj2XaqjDeozMJitWl4rLTzOA/w5hg2zb7DeW9gOqT+iPbNzrmn12TviAONjlx5PcrnybpbsOQ9gNVqnSOx9Vq48Dhl+5I/OmCmA5zpsIp6HbM6TKn3wijYqPV7nchBCly0O2ivQlfMgQkOQnbYKz33jLLAL9Z8A4PiKvjMrVnDGJafrxPwF/X7QzZ6jsQ+5jYsRRvghR29GAzU9ve4kGwwwgihaRUeArffvb0DCC6s4AO82pXSd61vaPTfF+R4OysOLcrM4SO5iE+vsofmpP27iDc4RCXztmNJ3dMXjCk34HoR1+oBrbemgCr44k+QTbRePPnFLwpUPHbVPKqFW7HUdsgTrAK+puP8vtVQKnXHjOEb4AkSxEiWCF3hdfVoMas/e0SuAT+D8MJifF0lQ0R1b2ywpu7afCv/Wp02MxOiz9OVffj/NiLkJDYwsrXf3L20OZoBedOp6K83VYDLwwHojTnFPQeW6PQSQM072tMbIb7fHSC24js6eQxY6+28S/ITmfk5YizoJKZ1T4rzwElqF6Uf7o+n3J08NU0lgpiVbpfcaK1KTjCvie+OtQW131UwiWxPbYXIm6xLLcy7fPwY2bMRVSN7mdqtKP7LYlj2iT+JYrbwXM/pCQqonvFXZSq0I/6hexvDzGeh6AstLpYHZk3VTigRnYaYGXkKyy8rSQeslKpQXfmO8GXs5Pzh5stsxKELduT2cm/B3pWUXYYVswtwbC4cKlqNCmNS6fAGPvy6aEGvvojpdrD9uNOvQ0p2gzSk7lmHVpjXgx3pFx2BrPq8hHT4tNKIDF6JMGwdStpWG1EONfGSA8Z/DiF6+OAhp8ys/1WrK3B1BhWV+xTEqsKbz3/ESFCXvqqiZXUavUTLrsMDqe9zLx6EAPqn+IEzkGa4ckrsv4nlndVCXL6IIEMr6q9nq8pisvkTHS4/nq6upaSpm8aizl63MRctEtJ04bre2kxXHAu9nEEu7wzmPtb0b//U8CKSgl9Ztop/2UHokPohANFV3VAg+LuRM00dIEdR8PldN58fDg2GxOrfVYGf/igltYqZb42UT4v8QMWFWY8N6sq4MKoOGinacvwYhNZU3t8Rpq+Xz6/l1dL34DMhfp5DxnJDu9qalLkAknolQTc59Z489UU/FwImVelUcxvrSKjZf8QTNdV1T1Rl6FVfJBYkrVvxAu1EgDFqxqv9887/wljoQKrRp9dlOJWfVX/e0Dl+Z1T1Owaa3I6446e8a9nu7bbBpuzKVLYf54j8VbPQ868reKiqIs6tvfvNprkI/dBv2ZPfGSVin5D/MHg5Qones93aAOyKUAlmBVzayNA3DnsZvTwXzcWpJ7F50atGqDj+YVVZYeXqfbi4W+/kN01fQZtvlYEuF4ONtmbKMxncocB1J3cECKKv35U1Jf0D2/MY4diuuAXkvjuicHFTj++XRiRvfcTPF1kv6IXWxEQ9hZN4ta3nrvCrUVL/mHOJVlXTElfGczuS8Lvrw7WFFwONTqMekAMzV7zKbIeCbTWxcVJcDb4VE0bB9H0npJtgqtqbOIE4JOKiF3VDasY5jqGXUQbZlmzwedNdrdhvIBA3E61Yo7bVkdeqG2Zbgy7fi2d9QPIt9ZhW/1+5KPMdxl81TBlgWT5qKuNdQnrLp+plAvnfMLGMYX7q0voCll1PK0/cwLiV41JsE0+8RiuWwexo7sj5/e45f09C2t1NsmdWFcZLL7bWya82enz7/vG50h12H1gIKaxnCHZ6usaSVkRMD191taA9LUA4TgozHrmSTX5ZooBhJdHtq7RxXT0n61GVquJhJUiVfR0HkwUem+EZVbX1iymB/8vH5Ptgv9TdapFtKJiwtwhkwOWJHRG25dPWQjDunpNCCJlvzStznVJqX6a2JnqrJxz9ocPo3U/hGrg2QWzwjULJmdDUzWe4UoCobgEAz7pA1rwCAumce+ng2ZjRTEkRAxl1QfcMTsJAm/dMjMmU85UODiqTX9b4kXPNObLz0I033zwdLqVaPxszBZ23uSz/Rs/+LDJ/QM6VeWRpAueTMV2zCAPSMB2GRb5wD6lDSxQdXr0iqzq4ypxtH0YXYgZ+g0fuckb0Ax3T3erxzOeAv4SNTkwLfob3u98avKNqr6mvmQ4y4/WhH5Orf3xD3yaDvlUO5sSQuLusKi9VYuCFgpq1B06dniu3xXHbakj51Sf//GtWWHnAkrhUeNP+PwEc5GiEo7bw5H5tNfQwh+pqmbll2ybdxRw92VliB/DNzloFo7X9zAokGmYAh7X5X/xgAJFNphendSALfi9eJcnvM1jHPz++O5tkhhz3uOb05fjtzCb+ztVaX/j8yacXGileSQL3ljsa+5GGGoSLOtJrDnocgqng4wxpcGLT7+WNagPG0obeTrFf/kCqj0WGL4lLeK7Ji2hPsk/to1rs5+3WKDIRtaI5/SiBxt1ZC/w1N2JORMGPpnW9g5hnWHm+W4YMPacVG39bRs6V4EUzNPJECGWTi0zg3KLNu2PnEG+JJTtjxGyxsr8UuRO1w/RR/2ZT0qDSrQN1Q+xt7EQ8LUeU5BvncNC/zvm00sf7jDdzS/B5b6sGK2lDjY2pOyy6sW4/5zMEG39qGYhWu61VXcyot+n48SNcyfgm1NiwzsXUhJs2pL/rRfaDOKT7CZrigf5rLmossoLu3ao4//wZT03JsHdZc2X+BrRCR/8Jb5O1b/9R6B5Yam3d/EsX65n9Np5MV1rGe2HZ2XY2rja7Ij39Q00/vGJ177omaG7ijVJ1TuE/hFORP/tvP6t5ckL7aWxZoX4KBb9wF3Az8NEvJuHqnkTKj4o359NvPPpnY826WQ1Wr1GtmU/ved/7//baTWdb/2zos39mMBno9+Izl5xzve7lQ2h0iYs0rZazsKnXaPyu78Tg1UqnxOjb1H21raMHCIr3xSx8kL6praoKB/lfgrdPlJB1jRmOBfGf7+W1ehN65ycxV1S8UsyJvDHRwiVgoCX5aNFff4siCmhD2din0fgUv1Cgj7/VPyF3zUkbvhgpqpH/d9+VRf+RWxnmR1zqYxCnS6/IyOYPOLJ6PUIbYVHivvDLMTtLOeLuVee2WGaunw+nQcdHsMOU+H9W1v8Gn8EyFfXFdmFz501TdLZhv1dzajWfEzOd82hhPEiCOxvf0gbslYhkz8u/hS3HlHsiQmw0VljzSY06I5cc9Bpe2Z4vOxf8b/8u+hJqp0c12JbtDvDxj19GK7dh7XEg/xP7xjXdBWPf3x+NYRH4rTrQ7XgbQbJdzqQwL1GwZQiXMMo+SWd0Chak1zkCUg/GzP8FLxeumqtCbdWibHKvaDn9HId4GYYPsk9a0bzj+5nNJZqRnyfizFdJ4EJELOlT9iHxlPZDzow5yLiaS6inp3k4o5SuE1sW3wYH0nnOXCLVANL1ncbT9vljOBtfiNCnDLmG8lHMuTGq8ab1/DqebyiZyRm/YO+vp7cz/HQY2itk0usjknBvIv2Ogj+Z8cWPlnxzQMi9JcfjWz37Ge4XiK0xMey36r4Xz7xnoWOh+pXVZvHs9X/8IUKQxMu87fzMziPSPu3PyVluFIUlEKDUXvMq7k39Ei7uUvfvWJG8RDq7hkt+hIrr5sWzMV6P4LRjxsWeNbMf3M96OBGd4V4crHl60tl3GE77Qqqwe9mTZbfyqgnmsYWvV5JZMtC9E9vyNk6mBV30OEvn9on4R3MwEpdW/Q/u53GFo20q0W1Ftf5st5jNfzpo01TeZSXE0djsd+4aPt4dVRO2AexT+oIcJXFNQlZkPU/zsJQjW80IpblPgO+lc0a8O+dY4lR1xpLkfvQ6N6e7LOmqEbFJSLqJutA8Pt3Cha97CC//rxYoMxSPn1NDuD4+oZsHxpF4wPrFEbPPNBf8dV73lqpC8WuIURXEpPzDxJbRBNu4c358c0H4/1ytJfaIPb3vElb+SGst8GAheV543NsTNBeg0ACLsZovfqlPvhcOjN/OIjWRMNTouW3DSa7b/Lmw1soSshtxDGzkcZ71dMcSGOxoOtUruM5v+kd3Ke3yXw37So+3KtGk8rbHXO7XfNZ397O8PQti2yPq2G5x6cmajwL16VBhp/zbZLISm4rnASpV3Emd0WB2r3F2F880qzcpujxyj7002+XeX+JnECeeQrbd2ea/w67+o4+qYRY8JWmvk+SZgQBZQPT96S0Jrl3W4i2Zo2Z6jJrOnV5AsXX05mbi1E+Bo9HojiqVDB91I188a8iVLw2Ldbg2Vm/JuULn5ssPAb61/ptdpkA1m2LqJCEajzkskT/3seS7/R+WvKDNue+Qty6H/quFLGgvvVMxYy0Zs7r3kjVxe9iUWP/0PCjivCnl2h/XpuBdHofz7DCJmMEW2G+hs4QwSlalfSKe+png1ch2l5JRIIHxjlXvbUDm9W9xvLf8zplmOF7+t3x9MirgH9SDKi9yw0j6Pe2frWSveC2S15U+ERBsOlWPmz++NFlbnfxZjKyEsjp8abTNRzyucc/DPso7ogTv/2ADepa/NP3FMT4G/OaYvdPDzOrv0p8+MFdVdOmeOBJs0+Ij3HYwPB8u5jLhykY7VZOkSl4e7J1fm3FxyGy4bMxb//xs0PUSuiQugYpzINtTaV6PMM6yUqma0JVTUGtvUBqZonsy3QIulMYiKBPUY81vD/EPGSKDFfXOGC5iMp88TMSlN8ck3l7o+K02pwO6Fn0Dpa6bOkLKN0oQm8pp0lX+xW3VkWBqj4r2T4NZt5bDRbQ5hhbzDuvHGt+XkQKgv/eEWwa92rWybqEmRsWsdR+6fGmTS5ExxPBVSv8gkXPZlCIw4NsvTnOOeTjP31HZfdFq2H1mQSYTjuMN3V4if/hdak33qKvMWJ/+7ndVEBBOAbVdLJaFeTqe2WeLzzQtB9S0JyiU7E0mR6aDuUEqrVzviw4NEHMfqHyUoN8eNA7XVvVTGQ/RLZe1X981mpPl0XfZBah0uao92NqXHW0+J9LX1nCOVfdWg0dPBDH+r7zuTfcA3S/Vv/ntzSfdiqBSekeSwtf7cx6rYJ2u28Y3mXPapTPa/+fn3P9nkXEt8fU/ctfbN8fq2pe8Fr93dmFhdn7ZC34bMKOlwHuT4fQ6u4/pMJOt6u/a079eog/ISTlek0765Ajenpfz6h6PbYMR3LaL34z/Pm/9FPrdiwWeoTRK74JzAqe+3yd0LYA9eYP5C/eRRcPNuKdq5NMHepgNi4HAeSXuqfidhcE8o8qgN7X5MT2gqNbExXGRFNebUn5os8YqSMVTsdvRoz1cibX2TSpWhTSiZgsZcvswmCGFNcnZveZkLPzPlG1xZ/85+fMl+gsw90ffZIX3K6YeXRqdeFHbNu8Z2uQOUkBJnRlTm/v8jE4qtnf+6Vy3Yf9RK7nEm7vl02w6L3zYdHnaMqzhnj9JCz54uCqYmoVNHtFx4o/b5kMsj30xHRCO5/WQWujJHhTvAp8sZqa1XInB67x4t/FwedYbkd4xqwn23u4RZv+JQ+oOC99kbT9FY1ddHf/xcNubj8xtY3rCM0j01n4cvc9v92vFIjnq+QPz8aLJI8ocfGDmevzkf/+9Nb1djwz0i6zcc7pN0I32d3RN3FENLi3YwaAbyMxAL8ChotVoS7rR+ttfA/o+7xWITwFGSPRb5kN9VHPoBymL/F2lvEfP1/il2CpJtbExkCHBZ8p/yoLP9wGEuzDw4U40kuIu1ZTVCReosPSl7COORVsFzoFemJelNma/K/Zwe0Kb2bltyiYpLMbAXlaNvE0yOIRZdb9zy9e9IvOpeHsdoATcFgk3PWYB7PQouL2eRK75UY/Wbo7QOojnTnroavo97SxwbMOd/yty6clDkF4QCDjie2UQuv5kn9VbCYWs/O70ovXSkpQ67Ul++e3RcUgwmPT/bDYeiWfpXsfwtTAlnjuxbLWejVIEJu+yExL++VDLwUisvbLPXxpj/ni19tQe7VJdvvgw7+L3wB8+3Ww1qM6n/7858RQdiwpZpTP4ng6/NU/2LYnEZ+nx0uHRDFtEhyferXpvT5Ei3/J7OBsIL6h3wbmz6PGcNUfwexoYY0+TijTafVY9cwxOxGIIizdIr4NH4pP2EGvpTEh2WHb88mISqTAaYcFuq567rprFX7pdcUw7zf5uOQfWA670oldPnzci48B3rTJmUs+ijVcFO0FKwcC5nifD5pNIUjRlKcNO/3uy2zPRY+9NiDj2QnrfLyer9lfvYKEV30V0LN2vgO5X3VyXuJRlPkuheWYDnu8KVTzX/1oyU/M0uqomtQUY4jK2mInSzyg9W1j6cDCPmQuj0k/7v2yhPNdvxE/Y0owihcESFufDPaX3357RZNRH9YUR6HfoPFGWwduV+FNYbVb5UxZ7tkv+ZO4vxW2+NFCLwjD0v6nl0QjTGq4HoSBWeNzmUWhRg5sLnXO/BOxq5GLGCPHhBgXKI3R/HUjX5PABKIHEiC2/b1StDyPWVWo9VP+3qXwioaZED/R0R9/glPjJiz24JJPZ2zY2h+/PC7r+f3zl8WDINONoVR8zm9uC303Hph1oU5PF30ASfChjEjXqpqHs9uisr1HzJBUPZbMp+KC+7aBpP6urqaT8+v++CQLSPStfmy0TO2vPrE2rQ//8/tQ51QWMQsnqGbNbu9w7F4XErryJ6bxxkqh2Rx8tn+od4vLDp0R3/YO+fNLp9W9ExH7BFcqaaSy/uITOenqjZUFT6dWjge4b9QMw/1qBmKdNRJSdcmk/MynnEsTPaM//HfUcxCPQ32d5cmdK+Lqp1Pch8+wgR+oCpYXP/AdutUBeFP05HFqak6/p5WDBitvCC6vcTXVUWuD/ZgvuFn8TcZ37wayoJCJvtkGfHBOa/jDCxZ+N4o1c7FL/+Gttb5c8z4TUxX++POwq9/VeIetCbiSxaXe0eWTWJ5VeKz1jkVnofjnPwHatQq7uhcr4No+SMG4+iIL0tOZz9XmdoCzcpSIKdzL/K/+qSr2XcDiW/X4hI1rhgZpjTES7yJni9+gbdBESKh8fD725Jhqqi6azDl3CR/DImsgB3Nc9GCes/mcySCIZ/ev3hmMNYfzP7wiuaPkzEpfOnz6QiBYuTV8SpFTa1fXOpBQOPYVG4fMRtDLDnGv17ai477JgG6lEyHWB4Lx0WUCVI+NQaxiF1tLfeSAbrvzi1lfxczFB3YHCB47irXiW1b8ae8zWPwkenkNr2r29EiAx5tLxFg9HhXn1UYCSl7A3Ocs8vlCMhekRFkxd6JKz72t4oMhb18kjEIXbRY/B7RzFtP12njls7b7hWir0ZDtqnMVj9J9p0OUXvninzpcEop3rQ6nw43oUWX06+tdPIPy6ko6XIZb/j2nz+j/16dA+99nCtTn58vC8uX3mxhyGVzzkLBwXcTVaNOPg27vIGa+cZZz+hgiEWyqmczddnU1rdTI1ZCqXOl3WDzgybNGeDLBJHqkQkz5dMvgONIDfkSfL5rIT3c0I9iWZB+oMRI1yZBUm65M3JmPF5+E09PWks8qZd4UQMw8230BPTkSXRNXrwYxUGc08aU3KkkqNEpjJcHtxGq8qqGx2giJLsjri003/nVXrZUx09WPJw7MDnU3GL32KgINkph4g++gNtmxO0p+TszwDdvV2p/CAxrgdCZH29f6kfZ7CVlJOdLmsrn07Pv83RENzjEJVokRSONwOsP5qngsvDtPPsGm94Fq/pvs3uyab9JnJ0DmpANe54XOufq4y2jvYY/swvUYc2n9G0D5BOefjF9r/rPM3Ibv5xIxuznVAcUXsVPNebgT8rxEnA/IC+EcvIGF3+Olnx5+10Dovq7Ee6z8iqO0onD5VT8sfF81Gs2yGxGl65T4VyHls/4IDvBgzCb+ZfFon97ThCHYnZi7PJ+Tw5VCeW4jdrunSc4699OionMZuxr2lg/J9p7BT3tf2P703cXTfvFAgdwtRsz420/n1/CC8cB94gwtVEM5J3fQ75CRYO0bwfziFYCQnL/EK1xijU51nIGd8IlsmxMO2HFsW0CNaDHfbHfWesjcf/+H2M+Txt98XziAnu6GflbzsNTa9Q7CwbqTnXfQguHyDDAYVxDI1bDfiN/m+wG9+nKz/N5PzpluJDDztCfWQWb5xAPLhM9am8lezF1L+qRIR7IpPLE0nhNrPudeA3XTqosGGhBv5SyExxteGHIwqs3dbgV0fjQnrL3IaM3+cmZAclPGiLLi+ajwTFS/H1RREaXHeI4sQUW5UwZkd6pvMVu/DwkI8ZgyL3Q2OXPiFSAj2JV02sauxfXtbQAreY3YILfW4pZ/G5GZdRSLgqjnm/PKV8GR04gYxVfhwyH/hSB8jjeClV/JeSV87kgqiweWbnJcTfkO1Wg8TD6V2bgKfg/HLSB71BrB8aRUnRKZ51VY1h4Lwu/eGoVMFZA2rH0qrxCy2CbdjhAcPyGWibhotOI6Qj1eb3ijpz1nu2p6QaOuMNsObdSzxmINarDkMqNLf8HUl0hGKrYrYqhZzfl4uA8Ar1TG6yKZ4+mEugSuJ7+n6/3v1w8aH2dtf4sfmNt5h/rOZR1gUb7h6hLE1VzHswA3UZ9IZs+7mL0uvwT9Eu2C5yeKKu40Zq09+zxlpv8uOSuVT4p2p14lQfHSq+F4CWz4SngkmAn7fLz49wKRp1UxYr4jayBipcP9nCf0K3/6+CfEqY4m01hqYr8Pp1pURtoH2T8q9R8H8S8fbdVoo4Dh9qrm/X70KbqfNtaCp7yinhdlqvHofOJmv4lzvfALEF1vYr6N+mp6n/kMFJqEEao9Oc9Wrfj3volD3K7n5mdNUXU7ecv7szn7PdQzyG90YhYulu4IyZTAVK9WWP7EWT8vvw/EegyolL9Z0HWvU7iJX61BXKus499nY1KtXpcpFRXtHvPN8L3DZ0oCYiPys6bX/tooRvYkCz7W1cw5LcDLG5vOljfxeeg3KdBKSCjPRofztBJ1baMmJbt/iB7zi9rOcKs/Jp4jcxVMhXUs0PGVW2wrlb41tVvioIJfDCpUfMrH5/XeIrGeA+K2sWGtazY1mql9XlSd2a36HetLC64ZJSwsr038e+2vNaiNH5PAVJVqKoahhVf/2jA9mlKLafUdEBrNE7FXjst5sm7p/wEAAP//pF3J1qo8s74gBgICKYYIiEiTICDqTBRRUJEmAXL1/+Ld3/DMzthlQ1L1dIkJ+Dlase0YvtHsrBQPBjqoZFdSi/MXvTpgFOc9K7yx9tl1VYpwuhQn4jyST8X1uhDQmU6UmVW4yeUg6l6gkt2HGN0LOJOCa4n+8NSmc9ONtuUtZx8nBzon/r7jOH7NMBjaBv+Ur59LUApXpN7PfMF725pU6gI62DuZeebD5HOyecvwN1/7e/WyJvP+A7QamgvxXSRV9LTSWmDzkh8bgdtNnbdzIew+PR1X+x2aQ+6/YL13HmTLwkcyneljRh2Ea6yQzsgH0VUBuCleme3mIu8F5xSjp1vU9Cs1AeLXIQsQIFNhlkeJNV/KfQvXaCix/hHu1nQRLil4bSdQpX7/qvnz+ATw7UPCzO1bq7o/fFako0284V3xaQVdACxtbJYd95+u77RnAft3+mUXcSTdpOZCunjsCmtLP8+ztC6hM34WbfhXQ7M57Oo/fGf+YxfmLF1PMzTy78XIusdojPJ3AGU7NCzwp3e3/N5Gc9rtlrj0/rT+8W9s8w/Z8aC25tVy36pmpxtysDeXhLFuqJEufwfcwXe1jNdpVDXpYzInNW7+3MqjojevOiBL/6N5PaEULD8rKBL8rGK9HsfwupOW+TEPrRbNlxjixOF4vJVdNapSpejhjWESpNuPxXceotquDWrivFOzmgZBHSHcB3uSLfzJVpdNCzGinK5pcOc0OuwLRMZHzPbJ62P1B2EbwHwwXLKv6ZqP6bY4I+20dph1P3I+CAJEoN2EDTPQoPzd3+ci+RSHJFj4i7tu2yK5nWLiHOok53eRpejxvh4I9s2+Y5e7K0PimQaz+8zwh9PWrmHLnCfVNL+vOFF7TVPHU4PZT1znY3tUzn/4zILgt/bZ+pqJy/8WInK5SF7FZW9fgLyTi3/8PoyOB4jq7hsLntrk1P89M70f7grZCViq5ov/BpTziTN7uwr8od8OBtxFc6Ka+TDRWJffGWS1HSmKYUoGn/Lg7/0YsO35U8nyBtU35YTntl1VjJ++siaFcGPFc2skv82Dm2jRM/jtuUvG78EZBh+LGLbFM591wS5h3BxzZrn75ZwC61ujjYFvZB+eP1az/7gjtBcmkY0sHLnkJs4Z/Fxd/eMXWc36G7ihf8aqoLFukDI5hv3u3eE5SUM0h3slhYUf6aDRPu/F9clAU32hzBSqxBp9OXP/6WmTPzfVbDysCGSNbNiC/6iv/THWVas5sD8+nR5cmtHn/Okwy7OMjxpVKPjYdtgj/u7RhDmP/viZVvzZVexqWybofaxSmRwomqShM2F12TG2hfOG8yqxMBrX9MS8T6z6FMnoCii5IPKHf2KvRGc4Q9kyrA4GklD0M+HObyXbjK8h4ekzNJGCcxnrxfNczUHUlf/6zwV71Y3Dff+CvN1EzFn4aW7Ss/and8huNQdo6IpWhkLhaxZeSsv/50d2piex3QYs6/eODw3cIqEgDrkm/l+/w3NvSHi9mgM+ePyYwkOoX2TTd4du+NOr/VTEzI9wmYzjQymhfj5XSz88u+krTg2cq/TCsCgLvF8fbwJC33NK+5u+TgYohTNa8AojzzasGffnFCx6iMnumKv+IA2dAellp9Fp0o1EUordFdmPKqGg0Vc+vEjbaufHacV859EjfrjZoA1VVBPrqvrWOrwcBXjenhqxrarK//FTKfQbdhduFZoe7uGlL8/Ltv2D5p2pGRnKo4gS42q/0Pj6RYGec86ZBbu0G6+rjaO1j3xDvOd1x9cmXM5wnmeXuaO6R1K+Qx/1xo8bhnep5HPI4gadGs1hzldlyXD+6Q3KmiAjD2lnWizMmYkSzzDI5dI7OZOCuITQ3mFiFmFu8cfXFaA38GHhwxsfu6YQIY/EFdZWlo54onkisui6wuuf3+SjdrYAqvfKY7vburFaNc2vSHavDOvFOU063vulNrfBhZ2MZ+Tz61AEoCdOQ4Xq2fDlPkUPrEp4EPfsvv2+4ecU2OPp0hXVn2iYUxKhVBZlFoy1mcv+N4r177n36Or8eHbzfh5qcE3xTX+y/6qmpX7RMHsmZrpMrGEdaiYEe7td8H6HmiLNPmAaWsACee1Us2PuI5Q7L59s7I2a8OtmAtT72yPxncztxgeB4g+/8epgzR3zPmUJ/GZ0zP/HL0Z7g/x3WzEje5BOjuBNAeE5wZ93anZ/eAy36BySONzsO77gMbo61x5Lh/xtTUcdXWHBO2bG5soa+0rswbgcMAlwSHPq2HH2jw/dr5clogInB3heXIlb1EPVpzfLg8vjXpBwf9xZ0p++KlvW4BXVlz0yq42t3YNnjB+t80DzW5McKIJ2WvDo2U1+37pg63LJbL2T+DzSzxXqb7jsGtu//fGTbK7o8RZezH3tSz66PRIgTW8J2XS8tORV2deacZEebPe4iWgUnEcMExsd9rjMq276qMkIE5fuZLO99Qm/uG9P77z8jeH6xBUL9sv/SPLDgTmLPx9LP051vY9UqrrnB6JqZ7h6e/FrQvTaqaTUPH6QeW0o2X0Ui/PDhSugiCNnpHVWfHohR4FFL9C1Yh+78T3+UtBevsYWfYeGP73TN5HBzou+/sMPtNQ3WQi9mtsycLWlHpix2n8R35yaFKmWbbBdIKT/6cE/fLOUy936TcN20b/HDSHo8PJn29+WYEc/GdeB0filEkQU9orUEzeOhmTAcpAh01ACct+OCeJ/zw+SqjMbnad8WvILOHjHBK+X/GGsi6wH5a0eiXUdP7w/Bd8S1q0yEXcysTVUs9doaL/b0c9XZTmd3i9PP6cFYiQ7PpPhresKZM34Zc7z0/nTtVTPiOBmRcxJ93LZePgxmmp9xXZVElX8Vh9APz4KmfhG0HRMvjEFLk4S0tVmc+X0I240XVabkSz6rJp/eu1AW8gjVhd9IElDZerrOJooGEeZz9v72UPZw7AX/dBWoy+GNsrg0LNgbbT8x2tXRPgmD3QK1ZGzncd7mJTzjuXZuUzYa6zcv7yAkZ+OuvG+UVzI/E3H9tVg+lNXvGSIt8c1cz1RSHrWwAjR9/pg4XqvWn3pjIH+lycpr3hrjfWsnWFXV2cWkolVzxvVqZrYaEvX3qtDrIbiijrDmcn2zt7JRKYXhusx9vC08DW/ODcHskd9ZJ6u2hZ//K4mBOp8pZsNTfmE785L9yJ0I9a0rfx+tapNWPrvnz+qP8e4QLd5HFm8fV87/uc39Cc4zHE6x5cf24ii9/NXMCPLunw2LfEMsXebSd3ZB587H69GorJ+kk15mpIhOOpnbcm3iEe2fjWouZDBwd7KxOvyqpsftFKAPN8ifRO3rNigjN4fP/3jl/X0emZwrpSWZa7kJOsTTCKMG9TjxFsnOaf78AN/fs523Cgf/Uk0YFUELTM7oMlgoI0Ck2n5S754zme+VT20Vy862R8Fiv6N36KvMBu6xB93U+Eg/sY6WfIEa7xnrNWWPIu5W+4isdxvInisPE72BnpW3zH+LmfzDxLbwGrirL37GTyEz4uQsHjkg7dTbfCE9oT7pd7o1oXbX36F1+qj6Zh9a67wCifELAZK/lOpIcA0U0RFVdT82WqGAqmiFtP3/fP0WXM423BVOGGOqePqx33fQL/mITJ8xkXCF/0J/k78Yb2VFM7Hr39DRPqEZLNTUt5UUXyGtMASvuve0Z8eXJ9huJSb5a7HZze/busA4icc2C6qdpwrSdVCsHda4jivDR+CpM4geHpXZmbqxh+dp9v/9RcdS2xZI0YFBv1Vntjm+Sv9OVV+pS4/jXHR28eOy/zWILC33YJfOzQeTHZGktAGGHbaj7O+Tm/wTd4Ew+rDK3bttt4fX9CYfLJ8TIobRku/M4dapJuulVegge4b4mgngjik+xocNh6I559Ef5Djm6fhzzei5cJ/fJ9RARKvPrDb0t9TpN8LWC6FJfi2vfrz57mOYMf1HTPYLrLG/tk1WmZ4X+Zmq2vCBfH8guX3k1C4VZyaqxj/5Zt4XsZDfkm6AVUffBne+SMakjy5otn0WoYXvz8vfPTn7/HK8baJ1ORcBmPKBEaW+pMHtJzrtVk9//xTJ8skyaCSzioJZ7fqaLgfM9gH/Yde9k8vV4/olf7ll1Q9CpSPv2tc6m/snXH3vk58cn/Ig4d6/xIjsr7+tHlwA/x2uhPcXK75v/xRO19OFMH3kU9+//J0ros6WfolGTHKAjgWypsUS947o7u0nPO437OC9zWfNTW4QXCgHfM2YepPQXtx/vn1+fid83Fy5h62v8uReDPTu06e/FrdVPuIkAK1/sJvL/QytTWebr8Ln6QLSf+Nry2Ci8acZCW6Z4lE1WyXWPPlde0hDKXxXz7Tf99MRIbh6AQrcYjk3IgaUPvoQIKLgzpmPb0SOC89Ys9l6fdo8whgUq47tuQd/hjq3xjay74m211/6Kacn0QwvHxkmGg6f6fZFCE233VG3PuPz/EUXaHptRWWFz3wp8/AhIeBpRU5WVQ/eWckhlHP3Hj381skthmy9Yj884PrUR+xLgrlQKxvRro5dnYA7pu4JBiHTzU20u+8rFL1VLp6s8We+58JVgUPQrLjJu8XfkFS++PEFrldzUtbwz6M11RViq+1+IsWzJkWjCz6c3rHhxaMSSXEAX6u+OBnLbxWGyAhDpVk+b4rIJLVDIfHyaJ8O7mATsJ74Ve3mwNV6GEDx+efvkKsAUghiCP44+dk7TR5g15PbDO3pMOSV/BM+5zNK1vysk7Csp2ipR6Zt+fA+fnZAkwKnMlf3kczVwAQbE2jsPifKTjqV3B23oGW/cvK/34/GpmdkWzxj28sBynowyUnobaOqt+qISWM6/5EAi+bu1GStgC7g5GwdC/vkIjDUgGQkM52tlMl//RtSo4ngsF4J5Myd7bG38FfvSv53KwkD/ZvRSH+6v7OuXP4aLB1bs9Fvz3QyD7Vcr/8dCF//F5vBI+CfIpC4tS+4vNUKns1KbYZCzbfdzd3l0iAb/IlzJSFBxordfjApTb3zKTPPBm7TzjC4neY+4rfFl9fMxmm1tbYJjqq3VjhfYq+9r5kx9Kn1kTO/Rnu+pTQqcaDTzV0f8EwuyZ51PyJRml3buGN3TPJh7Wc8w8dTW3hA3Y8rYdqvIJi/uEd8z27tKbTpYz1uE9sZt0D0q3v4jdFQb8pKP/9RGvAj0eNRuZkZJslWT6907ZHqnSrMPJPgt8fTpYNps8jul7yqsnjxwzyuTvgbq3M/nBEr+zf+Gydg1D1oMTaH59QgUt7Xx4Ez/iHFxI658l8tecRjt4R0YmkFZ+7/GWifRitGbn/UP67VmahD1cnJm4AGUDmv/3+deNuq4rqe1zWTPXQ86fT7t6gdFtLxEz8X0c/DxrAJ0aPxU99ummLcQrXo5iTxDfWVaPRsdexHQzMRMLH+lvP+ocvLr5M1ecjx8JfHsm2zqGouMbnGnVTytmm16/W7NljBNqnr8lxDLd8Mu3eg1SO30vemfKRfzet/ozDHdui56Oaj09xBuf3EslW/uFk+bwPWtbbiOnRt7XoURd1BRDK1a7j7bnu5r+8lOAFf6dpU4qw+B089aLE+Ty+Wwjc8sI20lXouHz7KsDrpsfoSI5orT2/Alz8s0ufO0VEk5QJMWqL6LHgoeGPjfS8olERVeIcYw8Nq7dcQHiQvT+93PWZtjdgZ7oSOS7nFrV/+ax38lSyLc0f52mBADxtN+DKrplPM1cW4Pb7FMRk7XbhH+7Cn/8ya3yyuO0G/T/+2c2WWv0YIRgt+ouOilxV02lrfxC+iQPW7lXvc3Tu6N/6K9u21ruatKPl6Y0drVgSKSxhXhyIwHT5yBxWvKppVQ1n6CbVJnt/++z+5WsLfzLrG3bJoj9TtKwnECu5g7XkgamulqqK5/dMc7rUn26nLcFMPuR86neC87ceR8J90SUD5ihCLDAtYhkDz+fXbYVR9Erq//JPuCQ3cDMVEUNZfTk/NZmrS9ruhZG4yapRrMcP1HZ0WtYDm788XoDGXkdk6X//X14c3g8P4qpNxif3+LhpcuzHzB5+wqJPVhEUwt0iphJhPgkCxP/wnMTFuxq169GEJV8mRHNP1V8eD2nBHeauj3My3Q/Hf+vnbPtVt/kaTb8XnKbXbuFfFU361Qrgnl9H/EXo4PPWKWrtT6+R6eJVM76GFIXazaPNBgZrPN9+DkJj/aHX1hj/9F2rkY9bEHv+1ct62yv7f+0pQOL/vadg/nwubD+ILRoz+ZCB3NQNsx/FreOen2cIv2uDRYdb1E3hqexBc58nGu3id8WLoDfgXesVI+9Nxcfs0adax9cxwetfyceN+LzqG7+Iydb+WEh+FBusa7crI35Ujx1f/74uYqfqzYLcKJNZL5wUmj6/siAWrIRuVk2EOMsUOgdTk7P4+zYhG/0WT29bSprd4+pCflF+dE6zXT4LdqTA4fCsmHHXm2q2rmkEjjAozMJ96c+zWyuQd+IRn4xGSvqa3l+wfD/Vd9fBmve6dIPUuFXkFj7jfG3JYwqunkdUPKQTGnLj04KbKhdm6fiK+PkavODLUEb1ovat9WfsC+QXnotHYZZzrqqdpuXz5YnHtxV0ExLMEhGtRrRbz00y/AZew++VJVRD6bOaRW0rwqfKEyr+jX+YRzaCi5fjlX68VDQ2LiPMzu3N0l5v0dDAJGvd3YvxqrRCPvdvv4Uh+E7ErNDHn+hmnSJdu8wEfx2fL/Obouu+CnH33r+64X6aFXg4WxF/412V9/RamyBtmg07kKOfUOn8a6Au7Rs7muGlaqJ34YD4fIUs9FXXmrahKMAQn2UsZ1zM6T59veAUhx4J9kKUzMmUF3D/PYB4LNp1ok3uZzTW+ztxSlZWw++Ea6Qp44rskXCshgrdbBjq7IXXbyisMZGuono9eB4xVodDPr7sLgM+5AGdPoKdz3tdv6Fp/obE4+zVTdYtF2C1s1oShM85H4vrRYRGODnMvKw0nyfnzwhOrh2I7eEBUX72zpDGZ4LXx3abiLrxK9GrGzgxN52d88/zg+Hzddcs+LKTP9+XNb3rvFfZ9jE+q3GNTRMt40+M+PyrpukAjnaqPZnh26Py+XlUX0Dm1Qrzr3Hk884eRm3rvyQMY0TyvvNYjMwUz7RXIzOZD7tnDKc9janivVuf+4lno7UNCm3dp8fHEu4RpK70wVKWRJ1crN5XuIfbnlh38WnNcbzuobO+LZ5bK7XY3dZj9aV3D1r2+7Gb+q+fouX56Riff91kd+oNpN6uqY43mU/lQ+ytwiOumRca22U3inuFT5I8MHqEWUL/Pn/uQoV47zTv5qYOXRgy74rFsQz49LpELbTBLDNfUIJkMrVzAfWNWFgULYxEe1BdOF6IicW7tOdztfEDCF3BZQHJn/m8T1+l7mVJTcz3trBYEfQmjHq/JS6/iWjwlaFF5Yv1ZOdtP8k8fX5XeG0NkcR8VVpzsN5itMw/bdLoak1v6+XqUvwEFrBJtPpNtm1hap0jcW7Rthvds9nAcLYdEpMs9Xl1VEqw9XRg20bgVT88+Qt5uSDScajr7rs6ZmfE1O+W+TwZcrqoLoi3L4bF59lH85O0GLFVdKRq2F7QrJjI1YrEvbDHYJV8zE7SRw0q38b3y0eypqx/KZDbuzcLF/yQ7GNQoIIkBlUjq7b4kzkUdaeHSTz36SG+NR0Z7tx4k8uFnPnPFh5XtOplyvykOSVDTzUbEnoxiSdnfjc+/LxG73pV4fVt3Ocj7CYD8IE2xF62VrSX7kn1aiVz5m7ea2t29QKDfEsDsk92LW8uhzDVDOmH2c5cvZIpbHGDgmQTYV7dEz6Lj8mFScN7/G3z5QY/wSx1ujIGdtLMozXYnVpAeusFsu2qRz5dpbOLvgdGmK3Tohq/33cMIxovVNjlEpoe+0RBL6+3yU3C20S6u9DCNt0M+PVZhT7V35KjPNs6Yhdr9UND2Z3SP7xc8OVbzeHxZ4CqHQnbnE5N3s/5q4R52NcknFvTmryV7qFjUs1sVyZ+Lt4aRUQP67whZnXr/MGoAgz6e04YKa2Bd9u9VKMIZoJX4t7ma6u0Ur2EOGXbfXJf/g/3wSCUWUeFrMoQz3PfgP7SZswU9p0/t33ioadbjnhkrZTQwwgYgvtxReX5FuaiKGc3sPNDyJxvts8b5TjO8HjWe5Y5plHNkD0+cHgv9xdXsGQSh8cL2W824VE+CMnvWZYuqKNRMnf7Tf1RlIsbPDpNoXW3Srvp8tZa1OyWfdINjvN5fXEVdOgcn7imHfvz63QWUPlQbKrc4kVTfjUHfleW0UYuczSZVVfA3e5/bHc9PSyKMyOGjegIxJ/FORn338ZFB+uUYxqeXha1X74BD2cnUqlKquUunVWBusuVkv21DRC9hu8Aydi1WZbxNGGXazciLbYNlj6KWzWwZiNq7yi1yZ6OFZ+Kc+xC3V58DHU35hOe9DPkij0xo7hZHU2nmYKU3hvmVpKCqHonsrZffWr6Fqu5G9ieOqh60BXVqmCoxk94ruE4OFfij8SppvKsXlFGiU6CkXn5eN58RQhPXkTXuN4k69zODCTdlRuzpl+OZrDUBtTASrDIXnI3ffyzhorTpNDjRY67af9ubsg7tNtFv1QJz6fR1LWMPci+Pbj8+5T1G9z1U0qwA1fexENvaxbVdMy8tOK0f/sN4pVzJxvV63Ma4XEEjWY5w2vvjfrb07SXcwpjdhCDLF+ez0bxuNsRMo1aNYWvkwKvsxYw53VOEl5+T4Ae503JDJKanYiU5AZ4ewsW/HSSRlnfBPQ3n4F/qZMhIBNAXTNEtgn5ddx42PJfvTAL2ANNq9EcocPgEf+wqisu7aoeqnyV4/VaW87W1dweNMNL6fj4oHyIquwMz1o1SHKca2s8+GUL0kN0KVrwahTpt0cCPnjM3rKZNz+nyfS2HC1SKJnGZ5WLMmSo9JhDVT+ZNvOz1xe8ob9r26NaErYYCv0DzPaGhrdOHo/6qcxjzHfHB5qmg2ijhZ+oahdbf56IeIVNvClY7r54Nf/pmwVfmNHvo2rylaFRyxDOxH0y1+cw8wbY08YscKtbPjf11oPqumF4vBRh9xEfqqv5pT7i8byKq/W2bGtY+JaEbGdY0tZxApC1MiV/enSYmqeN8FO8Mdx6M+rXjAbwhy+6nX2SIWxxi95tw6mWOnu+6JsC7C7fkJ1p/ZI+RHYNR9/U2O532CTTLQo8GIfPgb6GT2bxrYlFNWTdjvzp6SnW2hYMlBYsaj540ZNnG/qjNlMl/u6s4Xl4apDStmVhXE4+fzJMgaFyIt4Xe9V0+6iuFgXll7ktuqFp57wLCIchp7I53PORWmsTWt0sKNRdlI/56GaAzhrHY6jiSv7Tg/OnvtDaTQvOn2FbovvkqMSQPs9uSm7UQ74Xj8xvZykf+7gwoRsihxQvV+JMyn4CXPXXhe0qcbS4d718IFrbKxb4FzvpE31Tw/13B7Jf0p1x64YKpG8iY6XJDhav8GaGzg8+bDfDwZpvfYNhfJGJhff9yZo6l9Xoakk6Hay178/HYHdDm2g305mVb6u/7iUZZENS8PqjrC2G5tsZTMdoyV9/M7qlPQxjLRDnss4T1rdzr6et6lDh9rAsceWvATS3OmF0fDnVuPu6CsA3rdjBn38572YzAOX5GbGa73dcvoZvjPJOPlLluz6i2aNrDE6uHFi2f786nrebWPcOzZaRo2pyivHhBXaseCSkzduf3dSK9GOhxKwgMKBu//zZkNROQudOryyuqHYLEf3saLPwxVy8ox5YiCVcQr/t1uL4OEOqbvHffCSDlQ4B7Kt0T9K7tEf8eJBLyDZrSsxOtyx+PAglOt0qFStlmlr//IcMN4Oc2XXN58WvoCmqBjy/Nmt/NLHsolwz71hOojjntDsIEKQCMOxeAmuybokAUNUrYl0fdzRx62ijRR+wxzYLEXdGwwYcrgnO7dVUjVqjC3BBpy0JIP3l7M+Pksg7YyYTqVrqv9EcMLdUON8dX1KD5we4KfxI+NqFFksFNYKlf6luZ07+TupUA0XxEX0V+mhRaV+d4fSTHeLE0zqfX25M9QFXd0ZkGlVjmXjLHgbvSZyjt6mkwLWCf/7Gul0Gf/CNtICTYmBmfewbGr1ZqIEZcGVGXR+q2Vir5Z9+ZV7VuZ3kru7a3/yQzeWR/cevPzN4EKsQFET55n6FuSMKFuau5dPNvV+hO91NFgydlUifuyxCzFYxCbAxJPRAzuaf/2Ib86gkY3cZSi1waUk2F+GQTG+r9UA4D5SR6bCq5q2NS83en5b1+ueAKM3qFsnaK2Xb7mh08qPYY1gV7Yd29urQje+0tPUz/l7otM9vCb/beoQGTR2w0Ngvv5fDdoQ6kQ06X8qHNf2kNoOnMp+J++qelmhC5EFlFTWGgy0mz7/X+cbQWVzokb+MzwvUSQgweu9f1bzUu35I7oQYDm87tvdEB9Qmr5jjmGW36I0b7K3giNV0+/Sn7pHW4HvRiIWro/D5eqtu0GxpTqzL8WNNih4Y6KJeLszeeQ6XKj6k6CxIG9rt6ntOfeHWA7J2jHnd8O742ccRSJ9LyjYw0HzCbltoQpl2xPswVjHF4De4T7ZKtvBm3aR/YUSXcLPH+ty+LLoZX6b2N3/09rD8mWZ9C9Mnnchuu4vyv3wE1AkCFoIYWvz8RDHSTx+fVk5r+fM7Kil4gpliCd6kY1EwObAyrz4zW0v0mzPbi6j/zR4WYduhUbo9DbiehiPBMu7R7zI8zzAp8f1v/nO25Av/Pq+Xz7rfextR09Vqtin7+KijeN3fwJMvZ2I3BUFyLlBNtffHJyHL62PYOxnC2yJglmh+rJF3rgEDft4pasJf1a16/wwRrXckuP14MgELYjAds6UDiIM1m0o06yVEKTFNCazRvItX3dxBxsJ27y16oWmRZrgpOewSmkzNxxbhyXcuC9EpR39+4s//Uh6OX4t+9heMkqPis7z0+4r6x834l2fQEVGWT3uMbnCX5z37l4/s300BPJM3bPs5td28NnMF5FsWMGf/flXTPnthyC5FS3ayoVjDJYMzWHZxZcHz+8unTDy0MMt9yHCgfP3JDo89pCDPWAzjlPOUIfMffxPWBF0X2p0DpnG6spDNN87DQTBB2Go7gn1tRH/jqQu3R0x2zstO/j3fwldUULIrmnbvTQDnG3+y/XMc0fh4uR/0bD8RHUn66kbd+L1gTtuBmaZ084f749egYhMM5Lvrb/4kXZ8p9NtRoEoyCah7r5GgdF16pei9N6vektwWclJs8XSSq3ykvzaCtyIi5mFPr2j0zChk6/nDLOW58eW3ylsIH8+EFa038+mqrESwsrPzp18QN79XGdi3u5DQPVs555nXw+JXibO+LnfzSJEL39P1QeFYsYQ5hzpDv9T1ibnkeSNPc/OvXvDf+C54D5D96oIYn8Ko1tp+f4OYyx1b8C6nK1txtV42P2R38NuETirJINfHDfM2ucO5+hI0UDe0HvTZ31n9n95vjwfKlos0kqnXx1QvfqzGuKp+aLx8tRT96WnztTn5A1ZrT2t/e4dYyUVFsyDFH3gLL5/tetFKmP3VbNhRvaTuIeB+j/lyDsTb6fFfvsMnQb7C4n8xiuqomqtof4PdLKvEk9ZjNWl6F8Hi16nyjAafm+7agdCKFTzFypCPU1uO6ODBiVn2mFrs5SSm/scPNtQfPtuJPUNq4x1z+peQ//UTWvqJfgY9TsYSjjF4nuXS+C8PO49qqau9v6PlXW+6fsyt6M/fMRJnBhrE5W4jVNQWs9/XBg3+aXODEKkV215Op+73189nO26pdn7X/Dde/A8kL+/L/OfH6Ob8bvboy2dGAgm/8wnOjwh5yskm4TL+S33F8uJ/mBf/lI7uJFbAHkkGy4Tym4z/AwAA//+kXUu3sjAS/EEsRATSLBEQeUcBEXfiAwGRZwLk18/hfrOc3SzvOV6UJF1dVZ10WG9pYG+qCker/mDlxn1AkzsbApmqZsNmby0QnQJERFEydT55Dwl8T4kR5ML5FU1prtcgefsIB9OM0LQpBvivH9zecnc8+DwgOZ4ZkYsT38+hdnv88QfCzyhH9LXlOLSZyJHuZ4tmi9VNJ2U8ciE+irciWypL4mRhPuRYB0PX//T22ldLpJbzdVxkNrcYuoAURL7RRzmseKys6wPrlfzVWX28FX98meLp+EPtbiQ5mJ15C3bT9RB1YbghIIemip3K0RHNjERT/vSaNaWBzszJMmB2RR+f98Izm8rtV4UbNVvqR+irs7lqB0j5PKTH1Z9h9udjKl4tN9QclSX7tEbTIHPqv/iAh185tbcgRGt8BXB4bzNyr8IA7H70sGGxG6MbnzaIe6UcPThk7mdq1yZqtqCTYu+12XA5BTwUkQfU+9MDV84y4WGeJBy1N9UV1vGDo1jY2IxO4T99CitfwIe9vmczErIJrXyU+vrO1Wlf6hycb9abqrthiehBCwSUP6z8T8+US2HdB6j0waN3X/2y5uw2DWpefojNVZ/QTjoPslvRGB80XyoHPRnEtWlDS+rotGSk6hILBH5n0D8/YGfdlkT5x9es5ewSn2OA2lpZ/vAwotR/PuDoeD42kvDHhiJLE/gYzMOG0Mj9P7z91MKAvY5x+ui8ThxAe8J/+c0lktPKf3qFenuIsokd4uVvvsm2AqGco0dtITgGFNtOvbBlfIID7eslr/5lrP/xX+XrFBt8jM5Ip98dAuD9j0oPFQj9iPx1j13UxYQ9REvf1WLmwZJLNlV7957N2gET5CwtT90vv8l2ZZOsd4XUJuGEwGNslFPvjw9jxzM8Ntm2kYKg7kQy5j6nMwu9Cjg8Xx+qCue1tz1lqmxsTjd8fUxttI5HjFrnVxAIuTIb+VCuwDKmLzaN39BP1cGpwTW+Oc2ch9YLEgMBUVTMdPXro3HTxCroVR3808+zMwki0DFpAyKPPzQ9PpoJS5MfqM4MjMi1116wlU8Dtr/Rgial5R8w8KaMcaq07PuReQGOVTf/8U2X+lGbINgWPVXnY90P8jQQaeUf9K2sewR44fX65ydp1f0TLUk2AIS/9dj3eLBLoe2RDKn6MakRpyKi0Bsi9N/WoVlcj/1of/MHyFCUf/61O6vSHCgVhh/2c59z6bERa+iIkODbVjgiNnirXOZ2e7ryqXL1nwSkfmYB+yqrIlY8LQ1mIzrTIPt4iI9eXx4e8Xu/6o+pHJCYPYBqoolfKezdJZqjB8TWrl75/LtnWRSf/vgJ/sOXadiIGhhKMgbCxfn02eaS3JGO7Bu2pZvNdkdGFzTdBolq/ctyBa2955CaQUL3UvuLZsHtTUjrxKGqfmrKSZ4qAoP7Csh2BLufVDTJyuQ/ntQQmnvPNtr0AB7xQEPFD93d8WPzsLyUB4FylPXeOB8MoAxtqSfOv/Vu4kcOm8OBw3rzPLpTmrsVePfGW/PNrmRn/xTD6qf+0yv043cFrPnl3+9bRr51IKAipaqTDCXzDJdH4qeacChicCk8gg7mQd3T07b+lIRs1btyDOlh/T13d83HL1RZ1x7b4wUzVotZAHCIdLy/qFm0GPAe/upDdI95MyLPZ8shohz22LE0jMhPswkqv7lB8vX5a/4jf/UQbK1862++Qa+qAPuJztzF5WICqx8SCNnsZIt4yx3FllBMvtPn0nexOqtoyrovPrhd1zOpEESknGUUsL96ph13ObrFjYnvjZezOZAGB06fCGFHui/lOp4FupLn9x//pG2EA6ToA8OHK6nKqfTuBqz88I8vRIN/a1LUHIYM28br6y61HMrwLOSZsEm1dX6axROK0i+H3WEwykULxwKpARdQnx7Xu1EyNwTY7O7U9K2qXzaYxpDsppoGS++gKZM3OfgjzYKlun+ySQo+J+WCwiKQd2HVM7M5x3BmXz0o//JpDWGlrP4Wdjf8IVvsMp8UPkoOwfwW1Yjvmn4BMWM9dmKzRdOTxycwtUuLD9m57petXd6h4k4lfWXajOZVn4OKkhfG1w0rl978icrvoXPYuCUBG3/G/v5XjyH8Z1ezqdt1Grj8zsJ24p4R0Wc7RPb+1OI7o0X5p89h9V/pXv6qmUCPJP3H59fz0dE/Py3ACyLSGl+T9i2tP38BW7fR1clzwjIYoezQvYF/5VKXXxkpgV7Qw6xO/Ux3qgkPK/hifN59EVuCjEPPt54G0wW5/eRX7wrZF2dPNRGD3vzFi8WMT1C1UsnmqHqIKMTbF+G+HqA/fYzs36YJ+tX/ZJpwNv+/PQXb/72n4AtdQR3HcBD/+RgDyvTlTd2iuLEhXvc5HMPvQB1vhp5kL4hB3bKW7Hr5EbG7HVTAQ7yeu0ljxmYUmtLAZ3eMD/otmuj381JMxZCxVYvbfsGHr6N8JnLCh128yZanY8tIc58W9eNnzobkeefhhd8Xap2fChsqb3RQQFuH+vmHZe1ra3GQb0mGrSpw3cU32LpvrrTJoO4bNAiKbcEYv+5EaCSVbZXNGUC0NIs65Cyw5nAdX5Jv75RgSp28r6+WeQcrPbvUgMRh282FcnLD9gY+DzXvrr3eBXQ8Ll+y+fhc1OTuo0AQ428wtd8ILacpWmC7i3nq70I12u7VJoBgq+bYFtvIFW7WHEIf8SaBcP6i8ed/Y3g7Twe74aNns6U/YojP+Y0ek9dNZ1voBrDKfUX902NCyy7s7+h0+fGBwsKMMSo3MTSWgWmM1G02JcstRLf0C9h6CXe9Px1youCu2+DDLmJomtEmRVPunXEaW2nJTvdFhX29P2AjXKSs942CQ6LS/egRT7toeNiSBr/xJNBrcK/L7luoDxALUGjcBJ+s589gwqviboQ3ickmivxOzg+vDYHL69oziTMDQLYZB6LS3xjzjNSEaqfpWD3cWDY5tx+P1FMoYmymXNm+3kKBTuv9g0ZbLTpVYvCAJeUSbIRG0GcpCgc5SvIKx/Pv5i7xvAnRR33wBIVZns27KBhQ5C4u3v+CY78QzDnA4ccWvz/uMWONWPFAv8GDOr+i7SfzKj0AOMBrbyunH4aKqxBz5xsOEsstd8ZweyAtqwSsBSaJhqfjyjBu4pxI8TPsJ5f6FkqOa2+3oqijOeP1QGZnh2In31GdpctUw/st+fRATwOabXIRAAXPK9UqKSynGZ07yL/VGNSNlLMxeT5PqBx0IJufmCLSBWED6rfzqXp7H9CMOGRA2cs5EY6pEJFe+qnwlPchNggK0TZ+lAV0JIyx93z/ykm/mhWwz+lJpnxtiQ3dwYTS3eXBHB3bfjmmWgzGw3eCGnVtxmpvrpTBcLngKbafaByrxdnw+5dE99Ov0tn9ddOg424TPn59h02huZtgnjobB+lWyRie9Bi6lD9T7TTb+qJs4jvEnqtTta3f0SRFvQPTlmpkc7PUTAju6YAOQxUTybrlOvsV7QSNMhBS3Vbl6t6eKQxtuyf8SzhlpBBiTeksdibz5gp9e552JsQPf8ZqLRb6dH2OBPDFAxxGj7Kcu6A0kPzCKBASe6Ozy/HkKUNsnej16eho2iexADv/sMeH86yVc3BIBnjRfsaWzFnuLEX3AW7+tKW6c08jYt9MQHArZbKl5zQaMntUJVtkcxDUnlZOAZ00xa/aJOBgY6I5OUoGGtuNS02cPSNq66OHyv3Rohpr3uXw3dXdv/k7QF+xpZeoihRZW6h+tmR9VvsLgS4qO7JU0lJOXUBzxMXr/Y2Hm+KSQnhoALH/xYdW8nT2en86oG+Jp3/xRJ7vzIPDoqaB/Cu3bru5UEDeayMEBN9bNvaVdUevmO+xYehD1pppsMDhGmyINMpfNifPZwgoQhkRlV5ii613E6L3l05d4Zcz1gaOB9c1J334NtMn99YAHH7JGDT7pIpInpe8IopxSDO9110mhKoJ6uXnB7M/8xkLzfCBGGhbGrC6ixiRfwGC6vTF+x4zd+qkl4X2pyLG2LmRcj6bjxfc0h8Q5cl/+iFZKguu2mtH/aeQlktblgDJjrzw4ahDNEN3zEHLcouaZZFFnUNuKXzyusB7L9PL8bKoAngv/k5vw1ft+dPULshO8x/246fK5kIYXiig9YMehvrJRvOKRJQq5Ij1ulKimXx9FVLxllN1/tFsacvzuh49He917ecOgvJQkRgihR7OC3EXpZ0C+OT9iZw3yawPYvOp4ffjPsE2OkbZdhfmAFZzkehB338jVu+YgSLzXVErmAb98xMzDu3zfgo246ll08kMVLTdncwAil3EhvRl1LD0bU+dRk5c9nEpDytekip1umy+LJYg79VnjPfcvkeDluQ8Mn/1qukfY1RXXnqC21MuAz5hbTZsYetAsBkcrPWV7y7X50mQS1CD4OSZbbm2XyEw5ZcRW3xY6DPEpweckGYTObH2bMvgwMNYVVbQfsUuGnxje4fNNpmx5t4bvfOobsGKN9R+CoQN06nXgDjujxomqVEbmc0DXrHQ45VvlOPd3g8gFpwS3MlZQCw+vg1YEOmp/xV5tycyDdD+lMd/fAGRp7MXQXrudCJqw8WdLHJMZfnlo2DG5q2c2sCe0JpvcVQKuT5t1H0C5vGR4azcvXViXN8PtKFKFsje/CiZeuHuErcZN3T/+Mw94yEZ4D0dOrL1p6WfHR158OpCQvLhRMrWMwaQbX8K6F2Oi4hw8bwofCIEeH8YP2z+iXtDCQxmYPe9bfR5OV8D+FzkXSDhQ63PI6YD0uorxkfpwkeEfK0Kle60BEJ4bNzxON489Gy5imo8t9XHjapPyKdhiPWn+y2njfrwkBsJNbW8w1xOvwI8tFs6RoPlfHD5+NEaoJ4CBx9QrDPysHtNnjOfYf+y1G5PZeTJVnOV/sXjcriWL6hDL6bB8VqgMePdQFYdnqdBLvgRu7MigVTbUrLZRhOaHzZ7wPG4i4gyfJ1s5rosB/GZS//4x0RPniPrSd1TfNBG1jrkw4M1NjnG4eNSznN96RTUehqO5U3LlnfugezauKXu5WiWS73b5cDMtxFUYkwzWgrFC7gN3VC8jU5smZDeKJsL1rEZmKI7XxaVly9nZYPtHvc6+Xq9gyLzWdGbkZ70+ckDJ0ujqJOdds3crtr5C9I/YYKNNf+weF54eNGvTgODbLIlfkTmPzyttFFAzebyLaTkIR2wGRy8kufPzQTmr9vh/fC1Sj56OB5kwcPGhn3bl0Rq5BcKYsEIZHJyM7pR7WnV0BcaCOGpXxCn5KhJ/T7IBaUqGZ6SAGzdDbEmx07EfKMD5NnvA7U2qr56ZIiAPUJH91a20WdWfxqEnUeJ1U8xMFp9Vg995Oa/fO4uL+cxyVwlS0T5irzeNOKtgNk1rlS98707yRGngVLVlBqvbcUWFKvaWhNtqHUyPz15vWUTVjzAfmbXiIWZ0KHvbm3pfnvTfkmengBf78kTufD4aOI2Sogsa62xfv2PvlQ7f5KWOmzw0SVqtnvyuQmXs3SmVmyJPfsWjgzH8DfgAN9tNix1bcJ20d70GD40nRVuwyF1SxDdl/61HGy9mv74BjZ/ZZ+NddFPcLh6G7x3jaLszqanIt8oGyI0shctjc+Wv+dTm53rcr6zKUY/7T4FsNmnaHpvNxY6f+UTNWNeYoNndAWSrDchxXIuI3a4fkXwCFiEC4+ob/tKTRUS78JApjXodKnVSfnje+7FWvQFH+4nFDjWDVuLIrpDynQNqR0U9O4YHZpgk6QQe8aFfIybpf/TD2eURIG4bUI0nQ7IASnNCb0XHp/N6fMTKvs+HKg6hZ0+KJvuDvmdj3HwK19o8owiVx5Sc6dpaltle2diDK8KblStpbGcfn4ho1FWXcJNgLLltdVTuIpaQ4bpnGfMuTk51GEQkyXf7fQBT44I5+wc4deKH4uphc5qzQJWxctZp9OXn6T8hNOAfQOvnFwjKWCQRoqN3D9Hy/SVY3QZ+jZ42mT1be9zDelY37DlHc799HRei/S+Fw497OJ3xNb1KouFiLGD76o7bX8nToSNqtDXO9+hIeOtCXp9SMl25W87PfmEiieRD8bXxUFdao0n2FBxDJjcVtEkt9ZDvmp3m7rjCfWLNcoFKPacYLPwE3fZNdYA4Uli9HDUc9R0khsi3/g02DsdE7ZwGxaixTQ8fGxxnbH766yB/jkl9H3Qb9kSPVQPyD34YU/dW0yoiyxGwvXLYZWPtmXvG1sB3k4pBlFXfdC6vkX4CIeI+qcnRLOobGNY8YceL5aVCeSr1vB8+xIONLXQ6UdwK2BmmuCUj8Z+3lx+HHTRpwumcMHlqmdeqJzjiur2gelM5u4epKFM/+mDNT4W8OlVpRYfavruwdecyBB3xAFqzxk9XL8yLFn+b7x14e2gBp40lMjsHgK9e9i9+qfXCLeO/5K9jwG47an9069o9O/OCe6Mvsk2OrJoMUdrQVCF30BMll8/28QBtPLLtW9Upc8uxTU40dfBNor9cmteWw2FpnsPxAW8fj5n4wKnU/SmRjBpGb9R4wBh51Vi17lPEbtae04p6nCP7by4uBP9ti/Zqy4e1Ta9605yG8XK6VuZFJNa7sc/Ph+a9h0fLzZjkxCOKZJ0c+1F/LqX81BFJ3HV52s+8plgEz9Faq+fSGGQ9Ry7NFTw7mqRev79687pEywQhk30pw+yZaw+AyrdwcAHL/OzJjluc/h+ZIeIC9q7TFXvHgzBtqGYojcazFFbQKnyPT5fGGXk65UOrPwfWwFVe77wzBP4mxuhVicd+lG9zAUYw8nB+OO/IposQ43++Kz1/MRo+pVHE8qkdOnRPjzQ0pS+gdQ7KgI+mEc0d0HqyfrZTzB2ScRmHm48bL3HiPcrHx3n2pnk502qyAZxbrYcx7pQ7oE90qAObmW3vp+yuX/SQJp+u34WFL1GWQno3/rZZjZ9yX/+yuonRNPz/fEUqTwfg839dXaH9CkN0JciH4gOfejzJ//cFUkcnYCTI7UU5tNHU+Lz9xicGqzrPD0ZjqJu55au+TdatH6jocBxbtjtqm00fXd1A/T+0Ol7nV86nU4VrPgc7IpickfPuJto5a80XqBgo8z9DLhFjhug99Zyd9O3FdFZfflU775jRvhaNIHNmUS9jTpG9L29rXyky1c/i2fjghpDtgoQ8NFMe30ytZ8KwfYYUH/VI//ykbkkRcDeQtbT67N20OoHYdXQi3IK7t/6bz6xtb9i9Mc3FWOIRWr5mcnmRqwFeaTnHKv2vczYfCpfiqm5PHbv75ANeT7yKIjlJSjR5uJOyVEpUP3gOXp3DknGRjwOaDlJUbB/5KYrKN2Tg+/jZVJVvMzuPGAbYP08/nzEMFoQ1zUgeNMOu69cY39+DWrLU/4v30709NbACYwU+6fsm635x4JX56nUvh73JXs7gglX8ZjQ43g6oy2+tw5i5tOgl1WP8ntVbCCemyP1bSr37eqPgF63N2xM5yYi7i0EGIJJJlztB/r8E20DNpicqd9Khkt8o8llxLgseDu3oF++u6EDU7N5qn5KMSPxYwS0Cz8HrGrjqC/T6SeudwH+qLeAkM11kYpou9/N2D7PQ0Z2yl0DYRC/FJ+PU7TGcw2zmo5EmmpPZ1x3zsHWjQrrGW+sNb13Dmt+CySbTmj1JxY5ruFB1dg+9aT0jJNkwK3G2q/c9zsh/ApweVSIsFfuoKHeLQ3Y5Vmlf3xzuL9OFbocTYcaDg2zMXk6d8B4VxPyp39FBcWomLU71plyK2f1IuWw/3JXanrTL1ui+VagaTtqhG+rxZ1z9wVyWVcuPQpN0Y+IQyakynDE6/P/9KMJP9+8UyN1nGgQlUb7p3f+4rPJ7FGDNLUSaq34PO1CKVW+i16T5zr+7PaUHXlyFp/q24i6PabTA1b/kRTKHvQR4jJG8wW9CF9Lu6hR4kaGT+Z7RNkqQk+m00+GLzQFNdoqdJeDFjiyLsxH7FyfR3f+4/ufaeSwvg3Lsn1tIx693vll7XMzuW0XpAEoxnNPz9ALJdN6ee0TKl7w6b4VeuattdP5IkyEXRlfLnbaemhyZkQN+z7q0+Zy72D1NwIm91k0nk27hpQdXKzjye+34ewawMkxkBUvdJpaD16ieFn74sInm9m59OCTYS/YlMKHzeb1o0HahAZd9VjG9OHwgPc3LLGevGi26P3kwO84HbAbZIgR4dcKcJriN2mKneOK43qO1JhJEMxHPSynUd6ryh8fkrX1DJ6WNAIwOJbkD1+Jvo9TyCIJYX3lC3MhnGvlz//9LfXRHe487uBwPY9YlzvK5uN49iCeWYlXfdQvwg8G9Bs9i4bdKYqYlZ4mWPpaoSqBuKR5nt1BTqWaatYkuSw42Dys84/9q5Ww+Zx9pz+8xjY2zz0TwhCkah4f2Hm/tXIRld0E0d7FAeK6I2I/8QDIDd4nsnNJHpGjNqtKvSQaNd2bGXWf9b7vt/N2/sWLgNrBQ6fLl6e+eiXZEJmTqFiW+wyUCzv3nfBreXDKXqRBYvX9qr8EeBB5jzGecNY97FKVV/+e+j3m2Tid7hWwDB2pSU6fkrUluaO2qbbY5DmOdcrmd4LNxbn848c0nmVB9l6KQL433u7ZnXUxXLy3T92MF/WFgX3/518IiRX1f/wYpezoYs3Uf9E4SGL15z+uv3cuqfAbQvhp7xe2z8sO0bdTetDrJMUH7/5hbHPJDHDbsCXpyfyUg2u4HcisO9PDVtHd6b293eHPn9GVi1Oyj6DXKFEOH3y8soLNGf8y4c9PMj6fXh86KbGg6OsE+xc294y7YANyGTR63XFRNu0abQB29p+E9w5HJiRPg4fx7RhUb3HqshndTTTnX5sa4kVGAuKK7s9/+ef3jWZqTvA+ONtgmn84mjvJH2AL426tT0j6chxJAduzoFOjCh5okaKLBXwtAn6yEK07YxIP9rV+IFxfllFbCtNDMUOPxx4kr2w6T9AhNyg5ahDgsnmoslAWx+/vn36fu5JPgZNvHba3ysCY8KtOcHnUKPjjJ7PaOwJwseBiUx2mjB2umYbG+CsEFYFXxupd7kFnzed//JL++dd5p0yB+C0MNPDnZpHnU5HRgLtc+8W7SWu8Ju9/+mB+vk+LolQVXfVmoU+qusn//Fa6v/Ao+vMHoUvlDXWFdrfu+T6nMMYfi8aGcWWz2NwsUFplwfb0u/YTxHSBhh0XbD3cyiUvfiqU+SK98BVU6s5//MTHVkVfL+enT6n1C+Fz+hR0v+UqNm1UO/nDMxoeU6/fvZxTDIly/Kx+mbnWx8IT9O3JxnfU/vqpKS0Prfx8zc8zmqO5BYhcQVrPpA7ZHD28DtmRFwZsv8/L8bWNhD/9iY8/8RAJ+uBq6E7OGUFo47vbq+UCPG75QL3LIy/n9HVU5crcXYiQ2G/9b/0hI5G3hEVLq3dye0iU+ysYg40S52jppP0JVv+apiuf5X8F74HdNBeqfj77jB3Td/PnJ1M1dcBlctRXcDpZOg7X+gsJaKfC6gfTv3yxNGtfi/LsCfTw2Z3K6Vdi84//Ud81jGghcrVAT6rX6lerbJaisULCErf4bGVvd/aM0FTWeKYH4zajpvyUteJw94KwOdy4rUtgQCufxfv9+Myav/qJG/E1fr3csFyUDQ1FTj4F/+oD9Jh6i9yOioh1UL/Z+Oc3jW9vIewtoHLiOk5A3QvH//B90ZKQ/4fXxvjVXGE+MRm0OlMCwZtDNGtJeoeHYbbBlttf+uFhzxoSnw8XB7VX9LN340K06rWVX7junx8p6XurwRmpJ0ZvViPAduhtfDiM7r9639//Ux32JzYoMVrQdBdQII3oHC3XZ/pffDDDY6PPAV0eII0wr/W5V9nwZ9TBTrmtuq1k5UzkLkasrpbVr9v2vczdA/jjI7foqOiznc6dormlQP3o2GfEu0k8eC/hTo/RErI538rD3/dh259yxPoAAZy+DU+Przzuh+Vsy7Kl0CD4rH7p4txUQ6k8A7DPzqdsfLyNSbks2iY4r/WHeZ9cQ0jFLMfOYxv1c/mpVfj5toXV1Hm489mMX//0Qry/mi7vGq8chTnHsNp+GWPnaWsoaz77x0dIJ9kh+u4SP9i8cq9k9Q6ZUHvLCWNMS7TcXs8XjJsswNbpOOo0OOx58GWtp1rMjH4n/DYW3MtKx47IrXfpwESU9e9gO/1GNk2nUkUHGDQcjadGX3rp4cD7YB5X/+ERTV0pAdoC3dG/+uT2Lz6ruSPYSHgeLZuO58HSdtY/PFz1QI7mDDPC7ZovY/s+I+ivPgNSs9d3/BkMdDxOX7qPrIs7b2FTS6a3fWFHT1qdATf/n3sKhP+9p8Cpnx5Vh0pymWCNIYpr36T27x2Vy+7qNSgdlomacvBCbGcnD8BExtQ/+0ifn746KFYprPcNp2+d3TqTyHtxc8b+rdD16aqEhdLbfIjV0+6WzTjJBSUYNQHry2PJlr0u1SCfDwk124MWLfttGkPDvSJq050a8epd54DGqUC9Xeuh2XmgUL7QT4qNa1b2E/mECVzvo4G1Mr2iKSGWBeYQBQQVN9DnbIcMqJ9KQHX12kb0FbcyfMV+S77a/dzPn/dVAI8LdtS+OFjn7cQ3d8+GP+IkvAzulMuCBper7AWb5/xB49w9DETs7xTMtyHtGSFTAZG+OZJp46pMKHgagH1zVKyWr70r3JqugMsGcaQd5kM0aMoygPB+vIKFc0M2s8ARgeyaEh+r9wd1tx0vwkk/Pgio4ZJNtc5pKNKVIzZ+v6ScVe8ywdMLj1T7ViRbivVc+w93MV7Hh1E/DQR59/hdA7B/Tb+IVvmAm3wE7PfyEC3ugngQnGuKna9FovFsFypCtCB0v3t/dfrL6xqEMjpQxw0fiKS3kwWRan1oNsoW6gQea4iEF4d6dTDqTBxiDc57C+NARoU7kpISlMiOS7XiFenMXnvZ8ll5w85LINl8tkQe5LG9YPsRYX3is9lEYb+/Y1VgsU65bQbQ20IY5EUo6ZPdTiEMb1JhPyc/NMvbXw3zvSXUKuGAmOkPBbp26BoIgnXJ6NAoCSrXXqW3hTzdqYO9Ba/LMlIvZmM2wXac0D5e7xE+/jx3+aKoAuF37IONlWj6drffnmDWtYKM7/edLc7r+oJHDYR8iB/1Ez3YFnTZZiEVb50R7YRvLO/XXsOTePiypXbfAeJgMen+eHayyarqEG71Qaf+rSh1FthjB+1uqQManC76EG71BcAzCLUPtVKOYrUIcgFEWcfX18lOOqvw2AxH6h2zRWd+GvCwrZN3wBr/mm0v72b5my98uAwbRsp654HRdm0AhdtE8yEeCpBv3QNr6i7P2C8nNdIunzMNXto9W9yLelKOxPlRjNK4H+2HZm7+5vsgkwuj8ijcwdptc+yWTYOIcRPjf+tNf+yrjE2BmSPNFw18tKlbMsH6hlDoNUe9n5v0y3Nzf4EVdTHF2bfP5tu8EdHmK5ukSHHqUjtORfB/8Y4a6rzT6fYaPKA+z9tAXM5Of2GBJit6nlyDxZxZRp6TZYK12+UE8Ccrp4FqCbBdnuN3zcdsfssbAbXo6+HDff9jS3MOU6XvApG6R2Tr/XFdp0d/2mPnkNpowfIthTjRGPb947n/+zzUhagRMXrhcjEu10Ky4ywnC7ZzfdDpOQfGKbdA8Y/nklT9SVPmd/XBZvrz9OFRmQaSKmeimt6L7nw8rr1sQ45SV/QaRh4+I7B4CR+ge7SU/9ZjjluRWr9NV870wDuI/WKfWvP1y5jhOZbEiXqND79bgcih1Qis74M9b9RZD7qnASnGichrPA+PGA0wcUcSCEl26Rm3jQB2X+uFA3E5lSy987EsgWzjgD7vOlsOeaGETsNTb0OFaFHoi4M9/CoipScnYkYW5yA/31pw+0TPaH75swgS3rdEkfFZX64/1VIUkozB7pns2XSI1FjhIv5OT82Hz+ZbbCQg6ZODnSB7oKX4xgJS38aBXn43je0C+9ug5/ESY+v822fb6hupIOmLg4/1jWeseEydIiu7hhTmHGXt3MUGeJy3owHHmYyeT3cVDb/LjLXIM9hWqp8e9Hf1S62j/tJb7n2roN9HXsDlwcQ6psYEPtx7R83bZ0LLa+5e8kYwbsF8pXlJGoU66Dt7QF95cGJjUU4N6vdnD9srfm+zphmA65814bTLvZ/m3dkEqf+25EyPaUZH5TzI3FSNa74aEHvOQwgkcSci8s+9zu40JXBIfpiwn28hfvAUQIkcv2ggUVkn3mV+gK7XBvVNhNzfmRxqOO8dHEgBihhrt2ChQPHtQPp885I9JmQifzLPRHxL690ykqoqQmQsVEsuBmJjWxeAbWZjeyGKS5PbjZPBemV4f6mpS27HYwyvMZOInEwVGr3FEkDP8CnYOP6UzY17uYNKTyk9BOWGDdauCYEVtzu2i/chEjbbuwUn/fAIyvuyi9jmV3KQyJZLOF/4RQOdnzKo9NFjc3fV3OkzPHjwLOlFNck1ymoPaYKsqInpSdT27vxZVk93xRv9sTeif/GRjMsr2FnbGs2+5j2gX7iQqhs3R+3TVwmQIC+phz+o7z7mZEKOe5Fsm9s5m8S9dgIxPBoBV99/+vIu117VZ+OBo2t7jdinazp0FMQ9zoxt4P7arQbwfRy2hB+FmTFOODho+XRBsFnxi9253gAXri+ivN93xBS+WEAC0cZOOj7Y8o5zE8ZLWtFbYjA21gJeIDH4BWuCVpVTNnMGnA1ui9U869h0Yu1d3j0yI6BhdGNj4z5TdBPOCT58fK8fAiw3yG2SL1UliPVBGEYeVddCp95VsqIh2J8f6HhP9lilP/rf+DylKqbJ7PaoKUZT/cMrGjjjMRP+8p30UxIcRJMcDcvxMaBlFj7YKw+j2xyXV4jkT9Ri9YZNVwjHe43WfBRAzPyI4N87RXP5zehRMeto8AZdQEG+fVLLxny/RKeTB60WyoTboFM21+nDA7NpEH4e9o0+13JTIyfsapJvJRwtIXEnVI5nAfsrnpDHI5YVt4m/+F5vHiXTbosFT9ip1BHyNiLnl+WB+PMcikty61lpCx24On7TgzfM5TCVX1GJ7dbE3ltrspkPwIDqRxLstddRJ+cbvUvDe6ho2mi4HM76qMFv8GKyUUVZb7aPLkRImx74KCl1NJiRlKO3a5rU4A+jO3Mn8Q7SsZqwa4gLam1J6VBzSGLslMKj3F43a69n+bD2yuNFnS2xPUB35CSMN5m03gXmnFDMce9Avo5BtsDJVmHlLxSv/HLZHeUTko71RI998orm9m3V6LivG6z+Pgc2B9WJh0fNERrU96O+8vEXtC9eoq5kL9FSSlIgm59A+5tPnbniJChwOjbUFRSE2jGqLMD11Q4WX0ndGclzrdyr2KZHa2uiXXcIangJbkT30T0tJ03ZFyDcPz1100eVsasjLpBL4mHlRzJaFJpwyKn7d/AlRYHW99Fg1RNBq1GV7f74MV+FLJDNkJQzP1svpHTkjg8nKmTjW94JcFM3CtlJ+qdnb1OSkWzQFjtulevDO2tMUDcdR0Z9QTrxtd0L9D4rqWYpNhumcpTl5Rt+/sUnqV9nT+EqbSTi7/BlrMJWAwdqXbAmbAKd9o3hgJ47BvX0dIxW/mlAI1EWfKK7WK74TeBgBi01PqNeTvK38Hbl4nXB7NUqY/ubxaHsE1Ky8W416k8456HIHY7MxT7/t/6Vj2OkVP19vmzygtMJutT2KDb2st5fhDhBon3tqP/b/fp5kzsT/OVL9ZGaurDyG7TxuNvaW9fXycq3YZcuM/XCn4CYGnEcHDYFon4ve9mYrZr3x+957FtO47J3NT6g2J4MerPRt6RcLU8gLu+OFMMU6cyXowA2dmzSIGQTWu8DaNBnp3EUV4rZ9/K+bVDx5jpChFrWqdZEMbiD7eLENzdZH9fpgixek/Ef/ixTfzTR/QcPrF3MVGe+Ba9/fHR/F9VyyZTJgItbvFf8+WVtdvQLtK0dDzv02mbtdXoW6NGxmOp80zBiPRRDNj7HMhj8bszG0ThP8FWqhp7K18cdPyoy/sW/r1y8aLur9p2CtOWBNSVoM2ovSgMqi8Jgi+mPDYciJFD8vjuC4iNkTFKnlzI4bA6UP48tdDIPUv6m/FsPtEvVGowl1fEhEwWXOlX8gs9O5f7wGrFrUyVw3zBE99ZZROx3jgMkL5WNz5eWsbmqjUAu117Uf3x7NFtLRpH0YoF08xli37fngYBDl+opsnWhSFAD/o4+127afr/7aUhDuRVsyEYMpfLzlJ4PaB1exaFGSD/F6VJDbcYa9bY5iqYVf2HVw9TndZlNWezksP3cBuz2JMzm8kwFZOebnOJNdotmZzg08h8eWvGLc4d5dzNhxW/S9bFR8sdSMeD9NjZkMeSvO9Y2UpHjl2+idIqGdiV63tc+ExY2KXCInYlfAXgmoUbRjfp0mzLypy8Jb6olmi73ByCxW28dn9VKn2azL8D7Pl9YV5qrvrsYSo0m7kBWfPbd6RyaAWwE80atYlLQ8r1hD/V+J2KTaC6b+YA3lZPbFWSK1Vs21YmoweTnW7KLuLpfXqo+KLpeGfSP31AlfKUwlzfrH55PnRvVUGmpgvdJue5xi4oYbZ/fAzUu4aLPe4XPASeWgI0BRnfeVXYDxSO5Ut2+7noiOzsVHP/zpnvxHfVL+JJSdJ6lLJB841C2/PN5khdvrSnLQopYpK/rK95fqfaoVHcm8SWRLwnb/IufyYzmAuafT/Ce+GzVH/cUkHiy6O19c3R6y8Yc6cfgivFg9xl59DRE4S/gsUo73l35iIma9uLTY51M7nidLjl6//gbdjkTofaRvEVkjCH8w5N/+jpQw4qIwWsfLenOJfJ1wzuEb5nvDr1nLMpbVIdA6ZSC1Z+qbJR70kPAu+riTlpWJ1BE7BxspNe+53V6K5D58TR6918smpb2Y/zLJ8HH2pZrpWOAi6bcsH/2M33Rf3miTPWjwNYp5cvJe3arRL+n2ELxs2R4KAMlUWCmLjZafUw4v0CTPeCVD0DJGv48QXrdKdSKXy93skx5QC26S6Q9UqzPTL526HWGIw1XvTZt7v4EQXx+UjsSlYx5UqHBOENFdS/flUN4PQUKFTNKDwka+gG/BQ8496jSP/5AimO74rfrBdXr10SLtdk/lHV907/3Icn2s/Lnm0R9fNLdmTZqIf1yFeGDNHvRogn7AirtruCApy4jpqcmSiHKVzJDkUaD8WkLYJrGB+xr7LIlPVSc0myRj1Wb3LJve/8tqOfwHLiCkiFWvSJVJr1R0nTTfvsZRruCu3t/EN62dbTTmiiBeOw3pN9crJ7VJKlgaQ9H/HHuXcTy76v5y89YNb+3jMWGcQeqJAXWhonp9KZI8t/6xtiP+n6xgkwE0zI0ens91JIlabP86UF6ANnLhNsRJ2h9Po1HABRA67/hzHaG0ohQH/wtWfmqO40bX4bC1XdYs5QWjc4DnRBbviPGqnjXp4vrVPC+diYNmviejfQAFnokS0Z4R296+rEeIQxU3lH9wflosioSStEp4fHRX04R44w6lbrTEFFLlzmXlTbXoJWf42D1d4h7sUJASM5ogMS+ZBt7uit5PG2C+WCJjNanUoXdPLyCrflMomm+GINyJNaP8L+f0C+fxHlJUl48g4YFsU5LW2jQyoeCobnrPd/dvxxEx989oFZS6Cz7NAP08s2lWhKq+jJlQNCRS2Qa7LMtIzF3TOB2GxNqinHP+r4xLFj9KOzUWqTTazPEf3hDdv1ag/OCNIQV/wJpmL/ZLFtth6SIewa716nu2UdCGnhEq1Z/xmKDenc5kFys/9OTrXScXmBN91/AVv9z6mFJ4Is//wEAAP//pF3JtrIwEn4gFzInLJllMkFA1B0ooqAyJkCevg/372XvennP8VwlqdQ3VKjiN3+OBTNXyJa6jmBCUObrYvm4103vJiF1uv3BZPNLHmHSOUfEbfmQ7i7tFeZZB+lBWspkAb/9F8zWnqJR+grDaKgKAa99Y9F8SJt68WS+hX/6beEzNhBljEPw5++sK+yStvP7HG78g3yvvzFYuMc5hk0JIT2RY1Kvn0elgQ3v8P0OwcDE+/UO1114RLur+0uWrLpBiDoU/eUDcymPsgIrqxkJWNSpniTORvB2oxk+GLUDRFmT7vCb+y3Z74tbsWb8K4NfG/PUb5E3TH/+6rEeG6xX/LVerkniw6plEg20tSvm8C7foZDXA/YMqgFOitIe7l/eFzuP5jww6aEI8FUeTkgWVQ/IKfEgnB+Ti71YpyYZbWtW707jYquV22QRyn0PET9H1BHtEszRRwvhNTipOFRoG8y+bPQqxSeK4gv26iW+whwePPOFD49su6PujyFQvLuH82JOguXemxbc/CJ6jKKlXk1BGeFt7UzqbP4oExUeQXuoDKolWg9mW3NSeDjNYNPDYsJYukrQhV8Nu6ZSmlN2fEJw5d8++lYTXxPiUBdqtbXH5uFhFcvvdrwqsSMgivPBqcfO76/w1MeIsPW+Jp0xW2/wrG0ZW4biDsKGz9Cr1Ipi3pOHaR3sCFqCluF/+rbPJwjtL3tTv3K1gIutEgFj10XY57/NMP3F0493dZrd+4ixh7YbweYXU8vkpmR+a5rz5+eRrrxrw3qeLymwurbDm34slhTW/l89AbvZj9bT/tQ12+ysnh4uB6fmEFZ6uPE3ajCBBJS+tAqMsx3ggPMak77vc6s6T/m1+UkRW0c7XOGm37H+210LdusRkfR7uMNB4q81qS8N96dPkXofzGDTdzG8Xvit139Vglb1fQSKz+FM4iJGybrs1hhy3NPBXnq0a5E/QAd6Edv64PzyuvvzPzZ//c/vAiy7VrNKoyaiD1gc6hlcPA06rmNQ9EsDxjvn8wh3cHboGdV7sMoKyGEsFgdq7G1xED944ZR7rIOt/nMz582Pgl0pyBil9rumZnCF8CPPBnU7WWXLZf9TIDTrlqxdLwJWOu4Is07f4fy1Rwnjmt0dbH4oPfp6lrAGa63657+wzS9e26hDoCncjJbNiR/m7mZ+ARiIS3FwOP/5kRWcPYKxlmg+m/3+dYe95SbYO+oVWKql7SF/m5//9N68OPUbXvaCjw+Hmt/4UG1B+MpdbFu1mSxa+FjhGr4O2GyPYkF0PkrhH195+LpQTH24X5V2d0/ofcvn/OcyGFCLpZEs2/lnJ33m1M6IFAROiZXwan74wsNpBVRHDxrMq2REsFzTieZmyJJxlfwI/n5PbprhNqs2s78rDB/CCVHh6hRs47tQtT8pzuBlHhbxdGjhVdNKmrvlx5yLRXDg727of/wjYS13W8HdfgKK30sUcK7YRjBOckRRuj8kLPzsOJA3mYfRzjKC2VkmC9zrtECyL+FgcYurBMWFlGg5VvYg+OXzDl5Zf0XLk++DyZxVAh5VoqPFPUlsLuxXBv/8bvYAl4L/etudo4bH1Oh+zBwnCt5gn36+1Jw/ljk2RtKDVDnuiWh8h4E8o0OsvvJowOFzv4Ax8doQSih60Mtf/v3jB+oRHuif31RJuh/B6+FxoS5I1WFZw6pSBSkPsE9cWHc8/kRw/pZvwmEzY3PXPuA/f/0gm6/6nx6r2kWierHayZLRMZU7BjWqByk2afuRGjDxi4+fG39e864g0GYBpgjyfEHK5V2qQn2y/+mngR4fKdCX6orx+S4DOr8WAmka1vi81UOWJlsERfuCDwGPe1xTvnfvIPw8S6y/rU9BqLS3wOanY/1CtZqXODuEETe/afgO3IL7y2+3nXDf6l80YHbIMvByShut+bUbVuJQH2bqbiEqsoDZa7tfBb3u/cVuJeM/fOHgpr9RL3ddsT6jQ6R8XlqHTx9fG/7h3+aPYNvIT/UMvZsGfkmH0GKiTz3yyHPgmeufaN78pNmspBTeYsunaKp/JtNvGoTWrczQ+byrTcLeLwf26v2DvVeiJmwQszdI47zCuhbgYsbRIEBxZD31zw1klBDp/acPNv6Rm+NtTyyIvcWjnhprCRN6uf23nmYqWcUqe/cWDra9/u1XsPTU8sEzq2Xs6+ePufL63vqrt6F5ll8BXeu7BRs0d1QvwSeZS6kv4c3LZvxXXyI0WNy/9dvqiVywOOczgYwwhzrVxA8su93gX30Du3nPJesfHidyXOFjkoXD2sfcClo7TfHhdfvWc7jNilouZoEPEZiLpVqqHjLvOeGt/hkw7uBLAB+LO7URbwb8fN6P8O6jgoif+5DMgYdiWLQywO57frBpq2eBaTL//MOYTaNZfdWo4Hh6iNddPeHtjuFfPeiPvwpUEh3w4K8H/Nzwcv3hWYN7L3OwxqYrYFZo+ODVdyfqzykz553PcqhH+geV9elg8lu+lKt03ZO/+tm08RFF8M9XJBH0YWtnyAj+X3cKxP99p2AmyYMer101rPuFz+HnZd2x8aU6mzVqVmAc+y89est7WB0yGQC0u4aiQNQ2DVG30FYoIaqoA3May8AFHzOrsFm6ISOvX+dD//L9UjPgKFh2xiOHJAw7HD3eRiH4vFqCWnFGqkvFpWY3y6+Uc7q01BU5sWZqfjTg13Z/FMdbhzEx8qBSWF8Luws6BYt/PWUwRM2ZsPS0gDGcvRHEbnYjctfoptAk6h0+k51IRCvs6uXQnwT1pDQPaiCtBYvGewqg8rulR9Oi5po3wFfkSemwpz501i0tQgAeDUoErG7DA9rIgg1QGNo1yzZLZYx86abID+qe5SWZ4SSXsPy8T9g02BQsV2NBaqt8IeKPOq6X8jdfoXAyWjQ/hVM9p3B/hcv3xiFwfZhskZ56Cn1OpggGzaVYfPXsQztaD1iT9I6tVLQ4+HGITp101wXT82FBYH6vAjbk1U8YdQUXKE8yY/Pn4UG8GZcU2qYRYJznL3OlkqRBF1wt/Cy8sF6WqLrDV5tQivOES9bX9Skpu8K8bvuFAQsu+ztIfL+iZkezgooFJ8BQry16uNp9Mt+gsgJVzDXsdY+0mN9C+4bjtSloyEsvRsXf9t7lLnpiW+UYGPu3FMKzHH+pcfSjgRpOvYNCWHdIzQ9iTVqzctVHr92oJtI1WUPSXhX5F/zQioRXMEelF8IvujXUh3EAVq57u0C3UgM76jMzV/8+viHBjY/zKZ8Ak+2ygtzP8ak2Gftg7gaphL3v7olwfPvB6u7UEeDAbIjg8EK9lGyI4HrkK+o7ZVMzsYsVWD9PJRJvPQm2/b3DVq179NsJLVvBKTVg5NR3VHr3hi1RusuAnXU1RQrugvkuRRlESaoTMHFFPZnnOoMHcobkNdrGNpDIIEA/NnvqgDZn38a55OCVHht6PG0a7j3nLkT3ZkfU23U010mXUqh+4xrthFEtFq2Yd6ppkxA76HSu2a58c0ruOSF6aeDJtnh11OZS8Nj0d+LABvOqKEII79StQQZWP5JbqJ+GgIZvEg4MH97+/h2uExHrVxesteD0sA5aB2uE4GFa7kUK5b3hYA+53LAuoG9BUBU/bIIFsPnmXyVwhv2B4uasmL/fuPdhXQCV6rrUgOXZ1wZMTO6Etcl4BtPr1a+KXo536sNgb45hJs3gxMUIgUi5mhMNjV5d4+yJw6v7NcnJ0RuQLm5E5hMXmtxuZ7hQ398cHLmsS+gT2V8IfUfHdpvRZNbgq1FrHWY0NuJ1oG6334HLTjuR/TO9BHNcAQ5ah3eCg921D9ixdO+wmpsQta/fb/i06ovAIFzRXzwM1Mq4FgY1c8nciNwwotDO4OdoRBhxWy864dtG8FfmOdW01xowscsVeAnYhR6cSmJMb1VXHk/8DTtYdUwhPcYasJWJYPwQKnPxlPcbFsLWy7TMVLZct5zvxF+E/fxiF0t97d9/+RTBUxHX7HdgGdzOH7WNvQfG3y9u4Y4vGDaWKtneOyju4C6FMRFKIiZtOY0SAGNmo/dFD+r53IYxfFFjQfBwG9k8v7QcbvkTm8dhMNejaivAl04RtV9zW69uWHCAPbiMusOFZ8xppQoW5DUQuSUtWO1hvaqJ71b0trQlWJD16eE4tl+0PF8MsPXR9HBQ2ZEGY2bVonf4rtCsnB82mtQGvD7qPcQfYSX1qh/rWSnULxzHI6NHbgrY6mN0B9vvpcex4IZJcWsDcj/LR/LesGuyzvsQRmt5QPQrvlkPHo4Cvu7bxVhCOVuzYv8GZXvf0+ipyQU1lMWAW/6kWzzXxMeoVMZzqNB7cjADesoOLUR9qmDMyW4tknqN4ff9mKnFrlqx4ZMGSivnsHaytWFOQ22Et0tsUxzV34CYRrSqiTdN1F7hmc1hNq9/+QRrmWMWfD7mHNRlR6QhvBRsOrTfFr4uP5uG9UMyyT0/ENCvo4ckYfdMWOXMFUxeXo49+Otq2mi9AtrssCPzhqf/4u989Txqq0Ab2tLtLBC2tYo1+Xusl1BwHdgmQYSdh8eGWd6hGfZDdKfH6NIVZNW0N+y1J97yvVBMiiNyinT4NWRvRgOY4YhicKmPFhKvwKgFGuuaGqLvGc2rT2oW/DQCo92wUvObN+bEu7SH1tCUOP6YS0ID7TZCIc09NJ+jwGSpvWbQu7kavXQnsZ4iqtxBbBg+kTf83eKhBVPrl9hs/XVYiOKMsDqvO2rJLgJUPngEZs1lIIsG9mzW6qiHW7zTo6iDgDhvxYVZcx6wdxN6No3DKwSe8PSwgT/jQB9NrQDYzwN+/r4omcVJsCABjoEEB5qJcPxUvtrzrUj2ea4H4sArM7x9NB2HL89lbL4hAe5vyoKmihvMWUsPOdzx3Jcm63wLli2/QRYxG83G0RjWWkAtHKK7jZ8P7cCYmtsanI6zia1jNhXs21tv5Xe6eFuva9uc/vbrB92MnvVELsjr93Jh+O5fNKjl90Cd3zEFdC+I2M+jzQPjCws6LJaoLVmfYaIXvoJv01GRoMi0mHnp9Qaf714iD+j5bF1I2EAjRynWzt4umQgpOIDqj4T1hKnDXNubtKEDQ8zt3aK71JcQ7h9xTLW4b4rex04JzsW7p6jpL2BtXOOrpPP0QOuECkB3oytBVwV77LJuMtnbG1xwE2v4D29HOC0l/Hngjg/dSRzGlU4KjMwAYG+iQb3mwRuBISptAqetF/o5lUd4U8CDjK+9HjAOJFcgO6VKQ3u6F+RanVNVP0Tz1icpBstVdzTYa4qB7Asx2Gj1nQNK5DT0OL71hAu9mKiKQHsELWwXcz21EeRcUExyEjUmcwy9AsNMIbW616dYzaIjMErHAPGZ1Ncj48wRcjXpsLkE50ToJ32GzzxxcLDh13xRNFc9fJw9drdxyiM8GHeoubcL1gJkF4teDg3w8zpFYv3yzHF+aVd4ejJMzcftlaxSfa/g0rEz2ktIAYPxqixYHEWd2sslDsZ6amOopz+ZSGdTNleh6iQYKs6RTNc3Y6t/b97QznWL3gT9zfrrBK7QlYwah7epAwu9VUSdcxwjXnnqg7DuHjF0hPZGb4f3xJZ8zAVoe2lOnVb0wHoFpxIakb3gIP66g/iN2BfKpn2nBgM0YFWZxRB/uJUGjucwvg9xDKGZ7rHxbXmTqrzuw/CrGTjG5R6Q9RNmUBo6So+1qxSjUvANJLaU4/RXP5J5frk5fMSeQuSJBgMlfpfBfk0yAn2nKiho5hImWjmj/PY6mpPraq16mqUJb/HI2NOIR/jHh+0aPetF77NSjgot3/j9C0z5qRwVQ3w90JzcKMiFUiAw05KKaM3ulax12SoA5IwnEuTzmmX1ywGlT03SDDw3TDbLLQBozNBeH9xgbc5tC8koJwRau5mtL5Ya8t/z+aijAd3ZNwkq8fCkPtkvA3s0gwTv+T2jyFcAmwkO30BYpphUz8M3GO34+YXredSoV39vwcrdLQeGwjhSp5uMQLDLewYXzxn+nR/mdnsIu7EwaeCnp2TSCgn+8UkCAvPONr3iwltUm9TUD3CYP+q8g1XMRTTxd5dhvtWdAPWzMVIUGUM93/xtllyETHxd1PvAsrqzwKe/3Ejztr/FtI+/DnicXwXWffkwbG8b9vC3mgx7b/2cEPBwJPiHH9z2+RXYnQv742EbDD+eAMteqqI87vGDhk0JTOKQSfu33nvhsh9GzzAisPF1+jSjgK0b/1MLZvSEAcmt+cTqDFjdKw3tjZdWzOfWiv74H6L64JrrGoBcrq7TSF3RDgP+lYYEfr+xha1frRbsyXENLEg9ICk0soI0rv+FuuB62DifQdC/PvwOvqfHBYdbvuF2zcaUkGXT/HCcA+bNLgSrjg1s2YHBxOiiCMrVlAm2uvw6jGJ2zeD8MSp8WG+HgDdrLxf8T/amh6VGjL/qyABBf7ggKbcKwOL8U8Ku9h3q221YrM/5dVU1l/Nxdub0gpOPkQNfl49N0eNs18Lfe5jtLIcUS0hhTP2IEqRQ8cju2XFgHl5HQ9nWk2qTJCYb3q+yNQQD9jtcJz/nd8zgQdc4apiuz9b2vlhq/uVcbGRxZc6fN8cBuudEajmzU7Mnnld46aCDds3mKWdQ0eBYGS710G5k8zknCERar9EgkM/Bes8P45++I6prx+YcRHQFp5juEC+xk8kpXdECcf4OiPnuPqHb+sFO/wl/+n9YTXa4w49zQthFjziZd0EVq269uxJQy0a9kHe1U1f/ud3B2GYRBtppVL9z+6Ta2SsLZnlZ88fXMRbKMWFV5ZVwPYERrSw0a9Z9egvOr35P//S++JjLGU4HXSfcw6qHf/HRD/GdHnq1DaYoFVJ4Md45AdwLB3ype1e45Q/8p3fn+yNFf3oB7YN3bf5up6pRHQhb6o8NP7TKo1pVlGQ6RiPEJmvCxwp02RLx2eTfARNuRgjHq9dSPZoNxp7IbiA4vSXs2YJarM45daBtfK5IebGmYMJeDoHmFhdqofBTL6/p0YN3JcioOntlsizdkgOszz+i1KeiWMjZl6BZ312yV+a6nneNjMBxRQ2pRBoX7EfemZoG8Ee1MdeS5XTsInjBrkRaIdOGDV8UuI+OOuE3PT+j3Q/BLZ6oucSGyRnslaqdYXRkvgy/YIZyk6penO/QR0/khLjLs4fZMVvwAZlWLSzvG5HqzHjh0On1YnpRV4CZt48QC51DspyJ34L1UJ/wgYveyaq+xlFhj6Km+sihf/odZj8aIi41K7Y8y9n9h19FZD0BPYq3K5w0shJlW3+i6GYKLW05/fkXxVTvT2+4nT/CyS4B6yv8GGDYhRo15uVXT7qdt1CyWoGGddMwdskrTi31u0Nv+UcoJuJFmvoOzwr1rwMH/q2/+5Ud7Aq7fTLRT/IFm37Bur/mbJyVW/bHj//4YD1r7r0CpV461GYrCRZToT4kAROwVp4m8Dmtk/OnP9DOuzdg7a3fVzGLX0uPfG0Fgt/7Ddz8O7JqEwICJ2roz59Be81piiVSowrOr3aP31u8C5t+ks1y7+Fw1L+AbXwC2MB9YbMUr9v+9//4OGJgKQD73skd7gr9usW/G4xjeFLgVXBb6ldIG7hPU2kQrMc3vVxYzAScwxE+sTIQhvdKQdbbrYTG0usYn+LTwOZvo8ANP5BKDrYp7FnbwL/zoZcDqNd94OTwvP/yaJb0DvzTw/gtWWjIjd+wHneLA7+2/yOqC/ykLtwqhdvzEG4tQLF8Hm4Kqzm4YUt2CfuM3c4Apj2G1LzXnrkK5Y7ADQ8IuZkkGeeT6EK3j37UDOwmIUWkaerxcssQL1n28IdvsPAfFfXCOmILebe7f/giojUKuPRz6uHxZB8IEGBgzmuWQhgdo5KmyrTWmx/qy8rzpFL7/dXADNP2DXPj7NNDW+yTVV81DS7fgtv066fe/BcXCguNyd//n2tniVV3Ob2wZZS0WD4tQAD+bj7V/VUBmx8oQOmzJhv+vBn1vNNOFWOBUrtG+7odmavA8YwUxLcZTtbwIOdgZaaHsHT+DeuzDlK1czMJpWZ6GOZaTlzogtyiPieEbCa91qpuWA34IDTLsLo3+R8foC5O/GENn08fxp/ujbUTNwZjTG5bzTHb0/CnmWz5tCwEvG6u6PM0zwEDtR2Dzb8lQWsdk/lWvwT4NKPjP/9lXN9YACRps01/1+aGH0TZ9DHWtUQPeOUFduD7jSyss5yr6Y/0Kajubw0NyV1j8+ei76C9lAtqZtVKFvi9rX/+JsZTBsHKGcCFl65OqCc+ZTCOn16A61GsaEAWraZfWxtVWtKcwOijJKt+CSRl82e3/uIyGG91x4HNv8M2xFEgdupBgPeEphgB+1UsJuHibVYPT5Z18AJp9XsLetfpSETb0BlbBb5RF88a0LwUtbkmdEAw83MTiWkXFBPv/lrwPBkePpyvAut0kXuDi3jCiFuLIlmkHiJY+M8KH8VdZf75E+AsR198h+V2h6i3Knih4pseN7xlkX+fIbr1Ed0+H8wwVjOw+WlUl08YMFIrkfKltY79w3E2SdvW8J/ek+GvG5aTFiC4CnlPxPOzrte/87r589g96KzoFT1IgYb9G8WyxUwCHkiC4t0eyRd2D7Dp8RaGAeI2Pi6CGR78EkzaaY/E7nQZ+j9/d8MvovTcIViSKJEgmsaCZlkdAsKJbghs3Hdk89vrke13X0m8H0YCTrrFmChIELie51Pn+O7NZUF8rEBnrMiyxcsSZa8KstT/kmvf9sW6au4bli+qEnFbX8YdnBSaI7VpGAyWKabPIIZa9+ao/nwlgJIlyoC9exv4nx4Lnxf3jy/h0NrNoNNF+Ia/h/rDhyvHAzrw6wyD3r4Q8crxbL7RlChb/QTNtPkx0hD5C9KHY1H7HOYmjeqJKIpyCJC0Kq96+cMjFQkCDk7znLAuvPmQ81JE8xPm2ZguYQU7OjdYf8AoGKOodtXN76P2dr4X7Vdz//QU0tJzIpgo6EEq3p80mrwATEvrIEXtWovalSUFXD1VMbReCqF/+89m/WWpNWo47Nuv/dAxqZSgNj7f//xZprIHBH/+xub3Anb9FiM8pjqPT+S2gH7ThyC0Hit2ayCwP79K3c4f+nH7I1hpdOZgisCZGmFhB8JRPSrKeu0J/cP3EY4oArvTpUWyMJNky+cZ2PI92pXWEqyPcnor4V7t/vjbQJ7uAcF5yCj2It4N+Hp/qqD4fByxbvyiZG0StYTizd3hMBp/wZoN2vovnzvarhiYc6MxlCvxSjVz/RYLv+iC2t6kmPpCMddzulgVzMgd4T/+TNfTssL39LzQQ/reDUv/M69/+Ybqm/+05GPMQafgA7r5uQGzAn2G4uxJ2I8q/199BPSmMGM7k/yBl6Q4+qeXTbd3E3bkv+Hf7yOc08mMPfaVBg2xflDtF0eDED6fLhiSK0OLvkjmZLp2JEHtekJr+sX1iG7DFcSn3wW9lEMb/POL+MA9Y1Mir4ClFnbB5neT6u95paeXweHezTSkAUo2f6KE3dfhCK9cUyDiilnwHs1fbA2OZy6f4uwDFMsI++PwLkYR3F2Q47xAUnskBX3M2apmr1zFm58JmMPVV7m2gEWR1H+KvuiuEL4blKNeKKJ6/P3yFj53lxO6cJFRCMO7TOHTCzryorvztr84VFIjFolY5/dkXJeb9ef3UWt9u+bKRTektBF6E/osTCZicnKh1E46gfHJB0x8VNofvuM4TKVijs/uDqb34UTtLvwN01iavkrEhBD+aZ43/8BtYXHkdaw9ivOw7r9GBbd8hRF5rWyRhJ8DsO261O+5n7kCKdBg3Jkm/nu+idm8BjP/auLNn67XwTtewbmUAmxm4wTWRhlL5aukmAjLsgcbn7H+9BpSp1MIxDS55vAP/7yb4LPpz8+ThoEiblv/9fT4pbBzUwnt/bEHk81iS02ceY9P7KUXLS91bzh+swt2r9+GrbYdXOEb04Lw6QMNH1ubEbw9vunWN9Yw59+H3pWtnkD4R7kkS3+bUuj28Q8He3Vi46b/gR2dU2zP7bderowq4N2EObbLtBs2/buDu+Ie0Hw3HQCZdGmrR1w1mgS2VaygXC018K4Tdvr7cWDREqwKj2wTKfbrOSzwCsY/f3KrJ1dg2VehD9HvGuJo2jcmWTx3hlt9DPv7e1L038+SqpY57bH1YNhkVVnGsKRo26/3O1n0eB5hijMXu5te4Vkl+zCS5oyA2uyLeUi+ELbqq/9XT9r09l1lFztFoupf/1tv3PQIEje9Pl0Zlf5+L8bN3QFzUNoCPEpvhv/0HP29rAiuB2jRorWOxbr/+hV8LoQhyb7TemHV4kNV2B+3+iHazt/BBzs5POBzebwz6hRxCYPwUpBdaZ2CrRv5DhLuoiG13sWDcK3O2V+9Dx+3qT+sY64PoJNM2K3DoGCed9vBSlC2tylK0RxZrqxwP2iIHqqIYywdXxkcOPux+VERmFe/dyAt5hHbBz9NFjv3/P/vToH0v+8U1GojUld/MTCfVOSD3EpzjF01HEb6es9QJWZKkZwdhvW5LxtwFKIbNWVDr8Uf9V1ofIYfEebYMcfmWbRA2JcvbD6ab0Hrx1yqdkkA2StkH7CiADu4fR/2FXkGzHqBHHDbfBp90U/1SM0Kwi8zR3o4dHI93XzwVZIx3pOlcZ5mK8YVgpKaIqzX0B9W+dnE8Al3BaquZxawy9he4bkBAg1SvM3LnaNRTWo/pAd1+Zhzi34INm/pihjm3WH+ETcC771fU8vFL5NdjzgFbm6KGLUnDbABPitwtHlAVh02Zod4N4Lt18XYYOYT0ALJIdi/mIcgdyqSBQqhD29JPGBt+z0rb0IFusf2QsM65JLxJaNKEQS4x4YOLXPpaHJXi8hLsB6LNZubj6oBbr8r0Upro1jM5uIC8zIW6GcUnTnfHlYFSdpeqeMtz2EefssbriE7IekeNOb2dwVeBjhiSw7dgbtKXQTf6y3Ch0y4mWvf2xHcfX8vHHgGF0yHy08DEieMNMguo7l0xr4Fv6kxaDnJGVheyekOS330qX0mmkkW1RWgRgaHBnww16xubgKQm8jGjnh9gHXxgx5OWWiRd/QcGSH9RQLn3h+xdXycBko1UoHt+ym6avb23oL3hZd75GM7fwfBYrwUC744qNPDO/EY+/t80qxvIk5ODeYRPFoApYmj6HgczMa3f1fw4nY6Ns1dnNDQLXx44sGMj5q7DKz+7iTwOpo2xWJ7CIRgDd/wqTGKRHtZi+ZYLgSMjReRmfvdkpVwfAOvV9ukLn1farYupxiOhXbHtli2wbqSLwfWeLihGl0ctkgwlmBxWjpsJDwPSJbdBPjtlO092eIRzGCGPXwu6Eg4YGG2mplfASNrR1J90xdbsoTmANbcSvXo/AGjbhsuQK+7TvWzCsDoSWMDPouqUu96DkxRzLALq53hY3OLXzEF6hfC6usg0DgeGMJbHEIrfd/QqsfHhKmKvqq3aIjwtt4B/xB7Qzk8sIxe3EVh9FcGFvCl1KAnSzoHM1Njf383hQdFhv8Ea5E1JbQynyLZW42EFCSU4AEjEx+q/b2YxfmtwW48aNh5ewbjuWp4K8f5GtMUn6/g3/4qXEqp0wS7YaS+kYJQHUOM0BCCHmbzHX4bY0G7m/VKSFJ7EGrPNsBH9esEU+vPsfr0khNSZx2ycdT3DjhNs47WXTXXbHf8QBjXI8NxMuj1Kp/RFy7p0cZWfyP133lQr9l9oo9p/zKpWzSt7KTdhCT9xdhP50MJkpMuYTPsErC+C0eDah0HNPj4X3OW/F8DAqAd6G2cQdAtSnaFudsEVDsoBhvn5iBAHu1v2ITubZi3/YOzb7y3/VcDVohXAj0dMppzP8sU1mgylDfLzwjOYDWX037+whO9XrCduZ+aDQ4fw1AlIZGqbf7tj7gxZEsV4BKUWkAOQ/RWFS6j+BDfk7o3f/oXjkM3UX8Yl2KR8N5Rzvf1gE3ZeA1MzLAPtPM7oQfiV+bkIxCC643eiPB5hgG1XixXJeFhID6PZTaPtRqC/nR94WtFVTYDEKfgL//bvl6aa2f3DsBLNWzPK9eraZt3tQiVL1oj+1Cs/HWO1GUb6fc4iTQY2yeJwGoYLnXm+Bus2uEsAeb9MDXBzjaF5778gjxHL6yn8n5g91MZgUeYd9h7nki97JlM4IJTg3qAfc3lIfYaVDs3poaRecOWH95ARI/7dudCLlrmp1Dd5Uj/ly9IEKEr0O93Dxf8JwuI8NqNoFGuPL0agT8sRhER2H59TMP5cAiocHSJYl0Wm5bt8C3G6qlrEPfGEfGC5iTs5x1G2X44H2o+dgFYl7RL4bnSOLytbzDf7MaRsWy6FN3zvt76yCjql6576kLTYrNdyW8oKr2HOGk1A34fxAhyR7mnQbacahb2txiE0jOjh2i3sPmR8Ss0k7JHsIpmRi9jlcNo+Z3xH17Oe8cnYN8DSNZTsvXeWzwIjXvFyOLM92IcopsFx18BsQXKc/KHL3LlHDBGEjQCQY67CvZvfaXWo7yb/ZK+Muib2pseodsU7P5+pHIlrzciTVEPRlp4OTSePiIMBycmaq92hm5gQMKLZWuy1EkyKKLnndrOq6qpcpENKCvLA4dJ0LHlM4QVrCTfRErns2RYjSiHbqjp9Pp8TebKpwyCbX3RYpV0mPxbJMFaPjvYfYJ1YLUTaerBIS+KHqXDNvc9h+PvBolYL0PN1pvEAcw8HS3L6c36bu+28O+82J2dsDmq3RbwJg6wNZh2suKBX6Gkqk/89C6rSXquh9DNdRHBy55j63v93sHlFByJGp+4YfaiowVPvDxjDdSQ0UJVHHjuvB9ZVvvIZjYWDghmCdNraQbFeJ4zA1b+WcPWjRyTtdtrrfrAmoWfItLrtQdWCrfzRvpPbg2sYlQD+WPTxNxFAW1TXDJ45JOU2n19HpbXTeGgSvQUSdrjUi/cz5KUDa8wxlhO6PM7RtBOPjuKnnNSDzSwQrDxFbL8YgYWw5QiqLXrHvHb/izGKrswoa8Bm4/dwGY90xFwHRZg/awWYH0L/QyG227Cvlv+6tGWThDmqIyps3KNOTf6bfNS7ZAe4yEP5ta1ObgGLiD852wHI7jdQ/jmtQHnXhzX81l/uMqGx4S/SWnBlDxzoFbkOTZOicioK+q5ejlfdxiNvFITTUksmP7KH1LR6wPWbLekQNCHJ+mO78Uc/9YHqSGmJTr9kuXM3Lu6r3yGAzv+FPMgSc0fn8HOgdZs/V7BF0SAHql2ef3YAhStVMX5fUKq/k2Kua3fDTSi9UPYw6/YsnTPVDEzy6aZ5XXDGsAewbehitQXbJvR1ClSYMe7CYdseiXiH/9sx+6H3XJ6mwuecAvxDmDsuWk19Px4v4KMPA7YEfxjQeSz04AyfCT0eHp0A7PkggN5RBUacAcuGR/7RwSH2n5haxCjYvlQl4OlTnzqnt67og7F1AA+WmfCBUFTL+Pdg/DuWgjJ173O+Mdt66WveC96YatgjkAsNUgfqMEekdgwSQnLVW6XuTQ0HDMQvRPaQbnSUpoY0XPrUxMbIP5cPKII9ges3zhH8GkWPnayOBy4vYFy0D9nH6NHWwTL/FViyBBnY3S6PBN2pXYJy0Aw0Gk+fusFai8FBiHe49Bw6oA9zx8EtVP8pmaISbHsLYmD5/L6wHnXSKw5fT4EPlehJrDphYQKg/+GaqO8UC9dVtZ6qXcFErx4pJ72WUKKx5GDEc87SHyrVb18ktGSZZZoqMF7XK8ElDuwXB4L+VlTFixo5xCgLDRF5N7swKA7lqHkN3xHQMAhWzjJ3MH+ufr0EDVjMn34NwIbXqBfPFqMhrc8BG/9/CKi+bQTQh5nF2Yf9UMPWhLVKyH3EAggnIncW+7A9Edz/+OfG34MgH01PVIPthNQC0gKYzvaOPD2uNZIXb1z0hf2lMMQWAs9RL4DZk4+CzA4pCr1VF0ACwe1WLWepzcOPs0wrAepiGDp4jc1T48SMMWRIZgy8Yy+b+/N5qvUxSDumn/xVcxGUFeA02qHutSNAwFmcwmtC7OJuD3v+oeXD0sJ8emLLsP67bbezsdJR+PZXJLOVzkHnDNFwxYgTr0mH2rAy5vVGEtGyKbZ4ty/80D2rvca1kBw/+UHjH29BUwn9RuQu8tTjT/NJtE+FwJUatwQD5AASIa3eZx7WNJy36bJqorPFO4HoCOJWDxbDi1xIILHLR7HNSD9zQlhWiMBibOwDmNUaz3YN9eGOj4PwCqFmq/K9lNFcyNogagDEsHyWF4RyC5jQH/J56qUXvjD3uA2gIUqn8PS2glYd75uILzTsQeidmDUMDWtEIvvrQcb3mHcJ3QbJmPGcGqOCkagrAKyPn4rqKy7TLhu3wUreZz9P71IvUcN6uW1JDFsuxwQuOxRscSAiyEzrJV6zxMaFnBqIaT2eMDFfLEHYXrd7uBp3nzqHGTJXBbGG1BSCKMmDha2akphwUt2NfEhmV/B3M6fDJIHC6ixb0JG5OcYK768u+KjkZfJvCc9ghu//eMLCbVW5Q77b1IjuHxctsRL2cibPkJSEp0Sqvc/BM2IxzisKiPY+H4FX+6SUiNe5HrDyxJGiiOSz+f8CZZzsXl6ts/TA5xcthj+qYf1zDf48JKthC8V7ACS9ldye57IMNqL9P3Ll/Sfvgn7UwQx6GscfNE7YXYEM1jPYUJxbiTJxk8yWOj+lVo7rhzm4zVKVe2tSGSaKAWz93HvSp7uB+zzelfPY7zzoW1vAv7qhyZzx2GEQ+p8qRt/83o9LIv0h+8EHsjWt3HwK4iUL7f5Ebdh/OPHi9FQJO54vRBtsnOhkeQa4vmvxsRL8cogiQ11w9OAkUQgFvyBj0Qtaa3N6dRGvvoMaxXtZcczx71jELh61QfHJ88c+Ekx5z88pE79a+qFn74RZMs7wIfYIME/f6abpozA80MAE3+nIfh9R2HLN3PdfUp9BQeNy6n+llCywBVzoHlFBsaP630gJCwt+OPsYotXbJLpdSqhxHEjWqeiA0TW36WaECUnrOPfAR1OOYT921zRrqPGwFXpkMGNP+PDC0/DgnaIgEbtXvT4ski9vJqoUo+s3WEsotew8is/q1s8E+XmtWzzVzL4UR5PbGitUM/HNNWAbD/Uje+jmhGxNeCjuDXYuGe1yerqXMEPJed/+lIM45kDgrDb/+XXYS29bRbnQ5vJZ9Mny2h1FfhWs01zftCKNdvJKXQ8pSZV0J8G6p6DCMbdV9n0dcEmyTuTv/0nbKe4YN74ihK/rQdFcJzZFDu5Bm/3W4mNU+2ZS+DvJPjbix09zgMb/q3PJctNuum3YfaGlwA8vzxj/weNenksbq/cr9MTh02fJTPQwazI4nvrkxJu+DSEb/jHh6RJ0Qc+JvIbek7YYOv5TYcll2EJpwxZZOZfr+IfP0vbg0Q10ROLhfNMCx79w0hUwsKA5ycSw8fFY/iPHyzZpR7hfpB1TGWnM+fRZlfZNweGXeMzB9N7KiFAKsLYLc0gGdvQ9+Hmr2DcqzZgxQg0+Jc/MX3tBzocs/6Pj1P0QPywHNqvo6T9lNDCalEt5L+hgnb+8KkLj3JALtedAjf/7l/+XCdv0cBxX4TYvqFHvWKhuMPTtOp0w49hVGzJUtZwOdE/PTc23ZJBLzh80bicxYH9qO8DqzAXcp00eei/cR6C8eyeqVEbfLGg/t3Amy05OA/8GyNS6LrA1rPL3/kLJmlREZR7NySlnP3quX1+I1jLF4es88JMlpKVU+/3fYSUtoLD518+Ph0mwja9SuskX2FXf8qtt3ESiMR6c//8w4OmHoolJkv1z7+6zCFgVIteRLEvPKXGyyfmeB9kH2JlKKmVXy2T8216VYZs1HH5KL9sQX3fAOMWH1C79cqeWbr26p4GE+m2/PjHPwHnGS0NzvUrmF+yU4FdL8bYjUiSTFlDSphMsUW1y+FdtKl9K+HY6xfEKX2fsB+0lL98hMbsxYK5uSqR6nr5lx6c4AJWfIi/slYlDxqeEmObVTaMME/VAa3Rc+toVvgjNMmRUVTGC/vZRPChLFYLtsLbuVgvXNJDfpevFOFzXc/esdLg/msoBBw4s1gO8uQr3cOyqauezsmEeDcG9pXjsHmv+mC8/jY80p4LtQZxTpbZle5wOu0SbMwLC2Yv1f+r57VP9KmX2YI+0N6ShOD8CutFgrkCKybF1A7OQb2UysGB5XPa4+BnHAvOsbcau3AxKW6DbJjHWPBBpYsl9QbXYktWHi2odn6M+FYX63l30WfIS++BumY3FsvjXEuwnlHyl68GkZw7BcZf9Yk1K3WH1eLC7A+v0BSDoFA2/QTbSr4hoeH55Jtcm0jd8IIQeZ7MpT3desgj9UbYFATFqtYgBH/nM5gvn2HF11sPV5yPZJ10q1iFSOz//h+2pNU02eZnwcPpOWD8rbVicVDbwPjtPKgZyh+TfjUvgvzxYv6L/9aulje8PfKaajfGAUastwCH/rfD7vN1NGck7UOFHXmNHnb8K6F2m64we5YhUfhBSwRoy1fohoaOXShiNjlnHULR/ZzpccPbPsgbC+bRpNBN7wN2ZM9RlsH8RuMpMQb+czRGsATWCQne8qwZ7ZAGzWzK0GWLvyVryB1E6qWmFkj1gJ938finF9D0/I7DuG+s9x//pP/45vtaQUhLQaF+3/LmghLDl62kTpH0PPxqurryDF0cTdR8kHxYN/9XUfnXioNU7pPm/kruEHZEpjYHfZN7yegNnaCSaZiBa01DN/HBZ7g3RDyvd0ab856DtZIFWGuEKtj0YQajamdh1+zCYh45GANOKnVsmFqVLBn/qeB1uFDEFXct2fS2D2v1K275+5LMqX0qIbdL3X/8n1j1MQbGDVxx+NqZTAzBNYOCygU03vuHpPs4XQodvPZ/+g4wgrVKveak/Hu+ei2IJcH7cXem2PuZCUdHt4SX91JTUw15MD3czgdv9X2kCOlCIP75SWjHfajx4BrGmKXe4e5Fnti+hDrrn9FjhFP7HKi36e2Vf956cHlI1X/z7d/+3GP+irOU68HA2C4D2rMPkDjfJ3MesvWubv4Uqrf1X3z3xilbPYi65WMGy8sFs1KcWEcPhl7XV/HmNXBx78L23ndd9JBECtzOJxKW7F0sXSIQUBy0J9mFHgLL67YKf3wGvfVxBf/8EVgLK5nU79dcxsBXYFtFLvblYrs3ZL63YR6xjfatbhQzGxMHLpfnQn0/I4CSnZdDwBW3Tf9vfacLpMH4t2uw3sxnNhvdJ4PxiM70sO6GYK4ObfPPT3BJ+jNZcY4b2PevlOxRoAYr6S8K8AL7i21P7MBfPexvP3HaMy5gAt+GQJIOV+oH2megKqty2PDenmrC1ofNQVUD/uov8Xw5DgIumQbLw/dEPeXcJGwoHyM4CnJP9p3c1e2rxXdwIa+FqNrqFjTthQpOt3Imv/eEi02PIvh95wXGfoH+Q9q5bCuIA1H0gxgIiKQY8hIRMFFB1BkgIiAirwD5+l54e9izHrvuuppH1Tm7KskSbxgG6IKAOuKzXXpQryEEryrDqLqFrWgnYgZa/DSxcFN7Y+rzNvzxO+LEsVBEKWxy8OnSk324NW6/+EFlbwkCsTl6dWf1/ezQ4sepVkDTTtirR5A2/UDtXr0Xv3oiHNePZFiDb8R8KUs3MP1XQFxHRvEwD4P485+Y9+4Xf/jxk1/+2aOCZ0yUDkf5JLsvPPKPtzG7+16VRRAsqt73nPv+1euCJ+zJX3yJrPUZ3gW3oxj0yG1vVs+Ba9J84NLzif3yG/rjddH8bWfFO8+//ULwjy+97rKIZl216UHzeja9hcZDjtlIxKkzKHqAPpfD+qOSQ3IsillpgqW5ytzSrahW8Vh24Q29+feN4lXNx5OzPnfAnDIglrnft+vjdDj/jY+3PnCstS/G8bfe/9bDUO0gg3OW7qgWbJ7tX31z0fvkttQzfn4X7vF4WPSzYbCFz6KXLNpE3UNazP5z26DR34fEkb+rYoBQSsD/6n4/LjyzlzLOhknl7mRX7HjWnfD2CB6ypr/65Bz28hnZRvYkxspU3D68tgP8eH+8PW/9/n1wBsh3pKbq9laiea4PyU8/kl/9h37aLY8yIauJur2ZiNe4rFMIz67UO+/6ls19wMHCb0lgf62CNXmkgnp1vvhjvRW/2++LThku/hfXLyYbX6N8OsBl1n5Yudu3QW91aaEcCptY208bs0BIMATtcKPqu2ndCd+L7I8/mDbRDOEr8LzCW/fDUm+5xV3QjyAvfuVXP/npFx1SPiJku5YO7azKvgU556bk0J0Gd5g6bYTfenssfJJR+WDC81DoxDgomr/+lOXSM3BYLf7h685pxCIY8dEnlzpWjPfIRQNEODkP68yd/O+D6DmM6aYc1sUuQPy6sRsY7cgjmu7p7TrZCDN095tF7pu2b1uzu1vwVCdKdai/fncIEh0ErRTwyt2MxpzOvggxybWh2j3ntpcy0YFqcL4E4xgV7zq/Df+vp2Dz3z0F5WcZ8/vnHM/J6lsh4fHUsHJ5zm1jURSgE+4C+izPLJ6LHVej/h5p1MoOkr/c/ZeBaQ9nqvfGzsgKMHnY318SsfZtxLrHZYyU8tPdiFGth3b0BfWsRMomJsbqNbjjR37lCBmxTXddYhaTboYjEh4PjXqS9zRYkgc5uoglGSBz/XYU/DyCR2a/yY7bftvZoiyEU+pWA2cVh7hbP/sS2fGzo2o+Dmx+PJ9HsHu9HWB/n9gkR6iC1y428IOX7XgqDANLSlRJVC+j5W4XTb0td5/kJMkTzZ051TsipX3vKblHpd9CpKiIsauHN7rctqPX1DdEVLWnWhN+DMaSQwqo4r7koDC1FWkiRpAG7hdLk43cevn9oFKZx5tJLH3WX6dMuZTqijie5PisGJV00+r4NIxKfmxndZfoIKldQiy6roqxzgobJr/16V7ZGW6/R6aN6kYlxBTSlz868n1EurriibsevVbw2mgEXbJEYjxF3pg2EtNlY91pJCkQMWbpWkoQ3qqJOt95MKY3u8+bV8OV1DQ1EdFT3PAoFlVK7TDcxGUBpgixmnZ0lyCtEI7uqMOriUW8appNO03Z1oI0m7VB+Ehc8Xa0o42eqxMlXoGIy7azVMLL5nSqJUrlz15wakD2eEbsx460U3h0AT74Gg3AX5qCKcY+Qxs+aInLdreWBWTO5UwTVKpGau6Op2r25MDnTlim8mgMT7Y5A6piRNyafNE4rbEHpTR8qa0eXLTOMc+BdkklzF/YJ2bEzzr0IfJ9EA1jNMbP7auCPN/W1E241hgf9ymFg34N8apsDVc4HSoPNB9tcNkc8qJvlU2DGBICuny/YiZec0NSN27xOkGv4muPKwfwO9OH9ejfjdFdThvGGHVYVNFgjHvxuPQ08IQedg+lpdUXY5ke1OMgTFFrdI58GuFy1h/U5PBgjHbndmDJtx5z7GqgNW4TDD6NUuLkEyv6Fy+YyAQaYuVzMgz+4ffL3YsfiaiX6+Cy4mLLm8e1SejWFG9o5NuLBIX56qire994nJaegkuUvYeVLlmoQ1cuRBfy8Mjhfd/GE3z3NQjOZiJO27RorJPGQo+n4xPVSMtihNwNUVzqB+qV8ZrR65ObYbUdVpQ856adgko7wzFvWmL67dsdufMdfvOFBS4CoxdgeR9vrLMlfsisDWNhUHRV4fG8tWvUkXS0YIkf9MC/pGLyN6gDduNf5FRv7wWzzsMZLmJFCJGSxp/FPvcUUhgZxcSXjW6ZX2REuxveALdue3x5JGC76p5cP4Xnjolb3CBGyoceOm10hwyhG+q6wKJX+1XF46sXR5C3AQzKCuXFmLhtBBkny2TL8t7tJuVsw/Z4lOjOz9VWXE/FGUzVc+h5aeubvTOeUSTCefn9W2OdMzXcRGWs441cnYwRd2EFLjtvqPsRN2zUV+0ZthYZiZE9bb++aG4OBzfyyB64a1HH31wE/ipxVEsF052aU2nDdG51zMKlJjgWTojkq+zR/QNOxdxypYr4Ga7UvLkHlPH7RwRbFB6xoIajPzna0dmA/niTnUFSYyrS9YiW/UwP6c1h3W98zh/fxaM8yf7kHfxA6S1+woi7XWOmgJLBuqxnmm6qFE2b4NOAPagwlEj8tIxMmQMX9ZnS/bbVmLiyjhi40/5AdgdtQGyXsCOKTsJM9GdjGTP/TByor8mKau/eNyZOMHlAl3tDibl+tNRTjin468tmWK9NagwPI++Uuyu6w3yQLm036FwpG+3uizf9g2+XqHVGX2qU1PzyZzTP0y1C6/3nPiA4CjG9n29HRFP1RW/uNiqGbOlrHD+2NcDd2RhsmvUR1E2MByPHcttbJQLZ5A+Y2IW0bfvDtQ5R1bANdRTYuoM7HHWlKsRxyS++MelOM0DiKRIWywe0LNOn8bd/qaHcPWNK5muAfvvdro6dMQa3tY7Me1cQ8zo/2Fyp5IY49F0Tr4FvMXu3aJD4UOqpW1up3z5wbsKsTDbFQ9oWg70WEjjXvLPks5fRv4kVgThuVWJb3AvN+2wPIF8vKdW43RDXzxer4Bfv8SEw2mH7rkKwg7ygzmXKW6akogVltb8PoxbqhWhfACC+r7YYuVut4I+q1KCDI6SUyKUX/+X/LJZ2JHwIJzYmpEt++W8Qy0fS/sYH9N540N07dozxZG4G+YFtfZicdmEuRmiC4TQW8cL53LJ9qSznrC2TOp/o03YQryOUpngcJLov/bEZJgx0m93p7qBhNIczxwNUhoVn4LE/nrLhiFbAa+R+T/YGO2tlCnmjaeR0KhKDbY+SCaQsn2TbzKovSkIXwnMdXgZZ+7TtKEt2DVzzrchPn8xnkDhwLY8j5igcfKbxvoyW+aX3puP879GVdGgdt8Vl5FNG3bWXwdR3EblI8bsYnNo0IUTvkujA45iJ4cuE58qnZN9usTs/LxsRrY7z7W+/TpVPEjg9hzf+xqVrsCkwliYa504wWns+uzXL2UA+aOlhhfSCftEjQEv8w7fgs3PF9NsdkVhpErE09+yz4/U7wvG4i8leXqmIFTyXy3b86DBLiOnys+YfEejPN9aGqo1ZiZwEeR+xpdaxE/zRytQcuAgb1LFvLzTGuyZAb/1g0G219+I5FoIS+uh2JjeY98V0jY6AjrajDuXLtNx+Li3nF6+IzTW7uN8d1FTJlCsipDz78XeYtQC9dncDQ26cYkY13gP6eLLh3cxZzNZiOiB/uB1oHIaZP0tIOir8BmXEofLRHdX7qwNN39RE36lW2wqNn4MgrRR6OA+JP198DSvOfW/gTMnHttuyGeSsjI4Dl/IPY+Tbh4y4pq2ojTYnd1aEFYakqV7DwJGZ0XEvhujskhchVXTx10eWBnBYxUeiP0+iPz/7PgBhWu4FKMvCHz09BhTEqU12N33vd1N8r4E9WTModyqiwQtONSTeSqJ4Ii/2G08IwTnjjRh6bAiIasO6d+Qlfs2o3wS0QUv+WfLV0RhvJzKi1zlNiEo3rT91BTvDw6pd+tOz09ORE/j9f+upMPTTv0p6GWpq95oeC6m1iaCwzJYAD0Dwv56AjMU4rS0Md+fkDWdvX8S//ADvNbMwrzp6vD6srBqtrv3roPAvqZ2TOMWgrJxm6FOy8uf14SpDz67cUF0PH2Pckk8FT/fcEsd4fv1+y8khxDbwVN+pVcsIvZzhlx9v6sFlTG6GCPX5tcd3PiVuJ17bFJyo06lNUsfvhs9yLg2FR0LU0WSV9aU32AuffDjV+G3M9lpJkMqSkNhnohYTh24z8JtNRp3CMfyp//Ah0KkysLC3FKPrZD6CW0Vb3IahGs9joQcoay93qtfL+6bPepLR92stjNd3/fGxliR0fowTcfcHAzF5lANY9svwuZ37ggnnWkWG0myorj7533zV6Op9BGqcxcJlZ61LoI33QPH7zZb34t0zEM6UyMGjWzRvVpsQtISjdD+JZTx+5G8Or1PiUqunZTuL+1CEInuHZBtkn3i0HkoN3sWPqeENmjtV/i6BelYQ0fUx99m+FG5oH1kVPWyHNv7zN9qwOtEDTm/uLO5TEQXiyvzTHz89ge5GaJDk2TpojkisotkmWzy7u6ffV3c/gtWVvjDfAs86S99bUO2DLUk/oopmSegCiPxowlV2kOKpuY4mFN/GwyHjnjGLpBMPdCoNGh7Qyhi27yFE+25r4ybbXNC4s/TFP/APeg5vqTEfQsIDLlcBRmFlFmtY2RFE+i0jdmk7LpPk6wi3Sx8NMnIx64ejzaPffO93UeCuS2lVge7qCM/VeUSTeRtH5WMJBTmcB4hpcd9z0LMLR35+obPufIVeoFjErLeLn3tqZyQ8VZVGImra8XbajSiL5R3BXK0XQqAJMjzC7YO4VtK35SdMbcnkCR663Ym2czEaJnya2KT4CoPBBC8wf/pqQMF2RnMsJBW8WhCo4V2mOHOTc6D095tGQpqKaL4qroi6PrzS/RIPxFNQ5tBxYU29qnv7Y7y9JnD3p+rf/Xo340YO+TqmyfL5n/5W60ghDpg7/+f3Ib+rI91jt1n261MCh30Hsl/yy5zdZRmwk3zxCmBGry8tKjg93fXQNfBtF/+eKRs8f6jWXRQ2104Qgc4ZwyAU0xvR8uHqkj9Eh2EV78NiwvE3gnH9/hKv6ra+mLxyB9TtzaH49tbjaQufFN7J0aFBzqR4lq6dhA6BVBEzhYL9eIEirFcdLocg9ueUjljh8AeG6oCeLiVTZitiUJmDwPaPmEVRdPvxAeIxQWPiRqlSGF6cRFSkcQWNApwgJCnun14ajXcpAeNll7qnvovH6P0dwQuX90APGmaTZr1q9J1KgR68UHTn+3d5O61PG8yqlGN9Ml9DgNXrSRyievH8HR8AwjXfD9xEXujbragI4sPycOENL4P523cOXhqcyKWYtkhcOfcjBPvNnhoJKd083DgjWvIV8SaldBm1VQfI2SAY7kWNRttYHdHmyBy6wxmwrsWDhB6bmsPrSHuyRR8noLzrEzFVJ4+/s3eulTLsdkO9/nZs2DwkEUL8+uL15v1yJ/RWK+WWjkfqMeHFZnH7GIF+MkQMcdLiv3jDqQ5gWcMITa9QaUD3C5Oq82li8/6xMv/0smI/X+0YKZejMq09flhb99Jgm3rEyvY6U7LnscP4eJeHaEuOFbHGXevSXUhDOKeTPqzUsWR9t/rw6DDCkVw//ocxD21LSHgLUZsMQ/vzZ+BdTjHRb5ujMXvBvQY3o1+6O518oyNyWUMs6nSQppfDepvpKliZHNBF77BuLvwZtky8D1OXfuM52VwatEEnflg9c8un+1YLoM8v/cCFD9UY5UjzlDXnun/+sJyUyAZ9qBLq7e8TGnnyDVGZ1Kuf/jCmR1SIMJVtibkNbfyJaIWONB3Vw3dFtsZYZLczcngvoepzJbXMus1Y6XeCjoXXxnanep/rYI/VgepS2bjdz++lnofp1ah7xDK1kiA/ZvXPnyHhl98+Jwn+jVe84pfgJwImFeOe/nRpnAA9OT8levjat/MqN0f4zYfrbl8tO38lGer6ccQbIkM7/fiRf5G31IgrgqgVbBy5zLwXNRNeQ/y7i1Nk7Lc7el3xMePX700Gt3Fm9DA2pjsZooRhyOINFhm3in98Az0+uwFzb2FdjBVOVHh8tgPdOUepGKbWS1G4q7JB5FZ3NPLTS4Q2dmGYPpza8kTuGjmRDYYpwMy+8NVqZNFLQA/XMXPHIjIDMNrtl1iO6bSjtJMttPASShq2Nb5opzkK1+E3OVye54KWSE8Aa/CihEhrNrzlo6l8M0McPijw/dF0hxw+u+hEsaqjgnr3rQXoEjdDhQOM1st4gL0uwkFRoiOb8KbmwfreEnr17xfjTR7PSs6t5VzsttSNxY+Iv3w6KIs+GvfYOyL3Sa/EvOb3Yj6rswm6/zJx0/mZyxLnpSv2SjsQzTorMeO+hgW7xz2jeOE/nXr/Dj+eSUjvusWf/vrpVfW5uhV//hNduBtOVmHJZtJ8RXn5/pg9ODFmQyyXym1iJhazwy0e66y1IUelSu9EhqLng2SEkdaY/PygYMrTEcB/iNS0m4bV9OBW0PGnF1n4bdv5V1sE7v690ENKnv6U8DkGpftEmLOKPp7f8tH604Ore2T6Yx665z99vuO2+3a22uVu+Iq2Cw8ui3FnOTaiUuERb9xa8XrblTUIBiw1CbE1mDYQQObZ6yiuw6VnbNFv9KnOwyZ7GMX8JG8Z5FdUke2yn8TtfjPCJg/31AwNd6kx3y3wHbH7xS/Up9Z0U25GJ+Fc9IyCH6+3CviZu/7xsYmfEw/U+qYQy0tOriCdNylc6++T7JXrJ6Y/HrfoXzxsqBNL37L0wJ16eVC09GP0q9WJVxZeOPCfbizYzfNCaFatSsyb2zMqzo8aZpXixY9liHW+lAKf3XcLD3UK2l+qRmaWfyImiZd7WZw5gTW3d8lziilimb4ZwTm1Ht3nl5f/49Ow4cOWepb0RP3a7lJURWFIF77jzmYxOrBFwZEcAy6Nu7AwVfBqHqjqWDTu5iKeYSYd4HHQ+oLZGR8AU24+wQ3+xJ2FFBPljaHR7W5Xxb2a1SrswuRKCe9ZLqsv/ojAzWKSLutVSMJ8RNMbn/Fn4WP9TcYlatwdxtxHzNC44qME8JmbqZHuXmj+3vIEyuH7wmjR44N951S0svojdTyasvH5QiXCTvqlntyP7FcPQG7Wf6n2eY+oOSTLe7eZeqa66BXtjL68jnxXVIbNEbKi96jPg6IWE9W5zjMErfxaaPWav1QPvi0a1+8pR8t6wtX9fShGbjzdlP4kOcQOrjl6I1XBEMXShpiFV7t1NQYZbHbn8acH294eVzb68Uh9WU+TmF05WOoTg7Twom5+ngdY/DSWfnx9umyH3+dE/ajMYPu9LcLCT+i5Oh/Zv/xVUhSy6C1E/U+lKu3q6NLoO2Nj4a8BcqJBHzKXOxi8QEMOlN62aXTdlG337vwU6klp6C7JJySyTZTLe+Gd0/3FK9lYWidJMdRyRXCzjVnPoeOo7D5J/cfzx4U/op/e1Lmuc2cudTtY/p7cCmlbDEWn6/DJ0QHzwvK2Um6pidJI7n5Il/oMe4alB9pGvy9+xozFUyQl6PSiNt0ej4bRc/fb8cejiJF/HH827q0tPwfRI7b6GF2W1HUiq4flHoH0ReNpcxwqiMlGIVsuAnfuPNlGfRSdCU6VupguW44D3D8SghceOS7jjYZ5tadqnjntXM+1+Df/Pz3BvvdEhMCPi0FJst5giEc3VBX8iOvFP36H5QzqeXv+0n0cVIg12+Ym//KdLgVbxqcbav781CDtrdIdrYdQI6i0H7+aWxq01ELXa4t/fGDhpUKGPke5pepH9Y3xafAOvPiEoy7cVSbad05HB2edUo8mZ1e4wT2B+yV8DyPS0mKGibPhK5vKMIc3zu3zlW7+9Odf/aIrstsRXDRpxDtsoniqUCwjSLKO2JMdu9PqcQ9hL9rHH680pnvuW2jJ91iwhrAVRLUJfvqXbIvpzSbLghxBoJdETY+V37ALcVDNsu/ALX6mv8lWpawT+0s04bNlC4/zIBK5MyXR5hxPv+/307cqPxeI/uKV7/AdNehYofkbvG7Kzez3RM1HjOaF58ISP/AnQVo72LIdoqc+F1R/fRPW7YMbRsnJsnEta8wf1fXLAakl1jCtVp7R/3hx+CxkcsjGUzwevJqD8WFxdMfDwZ01mqV/+Q9KflcMn9rn4UKeHgb35aNplI0EpdN4JkSXKja2uJLlZb0Mk+lbbP7jw0b1Jj/e1kXL20f3hE9+9RE2LvkDVfepxi/Tr9DiZ2Q5OwunJZ/sYyFQYESW6QOe3YwsZ15PFjAl8oefvx2P+WTDrepbTJf6Yx/ktgevBspBWeUzevNSZivDNTmQs5zs2GjXTgPWJL+JKr5CYzyVn+BXP8Dcol+6Vy/OMnI3x6UHLWP94n+hxiAOM9Y0d6bP/RGW+En03m/9KfYusxwpKMate3mzX31OWjvO7ldfiYdD4s+w+Al6vcgfd3gntwZcs13R3djVaDg6zwzcKyF4SgXTYHr0yNGv/rjwcHc+3/ry9/8oEYPaHZXKjH58hzwfjV0MP7+faWuVWMh+x18+yjoFr/MSz2d7w0qSShakHsY4Lx3MJnaMByRUq3jpWc7iiZdq51evG+QVryOx5Ur9L54s+rgQUvWdKHIqXDDLP41Px0Eb/uorrhq4RZ+WowjnjRgTLeFlNCr4JkM5tC+MIrFGlAhfLAURiqjHKRd34Yme4hTYJbvIcf1pmLVQQcbdxuu08dEs9g1GdJvfCVn8dDdstRSm8lsS/XGX/vSArK2UHLcJ57qisKtrtKxfDDSZ3VEOVQeeOhHIrvay5Xoa5QxRhxzqupctm8ybNMMSL/AmDio223dRh/Ua69Tb7g/tDJPoIKHOIrwqz74/OasDRv+rp0D+756CiFZbSpxr6c7O3ufgPXA5JYf9Dg2W6w+QqhtMH2OStSw45zZAcysHeCKZ1fuvFKA0snliGeePy8w3L0HYbZ94dVs/24EX0ggk7WyR/dtsjZ6okQVp12hkf4mpO+1sXYSxXd4HdsMGUQHtS3i1TxgkLOu+cH/rHlKT6IQ322Jwe8M6hUD9oSeafohcVhpqA6X5XQ2dI2VsWkkOD9X7oNJ9fv74Y/TOS+BvaBgyJXONtRdFMtTvfTI0BaC2ue4OnHy9jR/qcbRe7kodTPmOihWxrXHjjpYsmHLyIQSzF6CYNv1rhNPz9ST77bY0BkfbpBCbfjN8cr92Wa2pshJtRpXE2+kcs7EIB2BIXlO3FXpGOf0iwxE7DIvX9dpge+1uQvDYXolmvhga+Km3AZ9WNZ5OougO6Zk/Qq2yDx7H6MBokToe5NvQHqQmi93JtQwLBFlaETfj3/5UdxsVrLk+kodwC1p2/cgdag93h/jM01hncVUAiMynQZoOhTvamt2BBeRN914pMhq/ZYD785nQnR68jGl/kaTNGLhbaq1vgdu7XJ2D/UkfmEaq6tJdIDnIyQy0nGNnbs1bWx31h0tFzG7/8WchxRaifteTU9QP8eS8zBrM/vAgh0jL2FzfpkpxRVkh+/tm474jR60V3d/t8Ft9zj6bv80RTCEb6WEWLogdb7EDX+HNky1pSmPkGsGG8b27k90qa5e7ErsUcHOWiVpOJzRt9mOiXArVon55vLi9dpducOHsgDh1SdzxwZW3DXWeFsX3KypYaPUlmKy2MQu7vpjO91hGLb6kw2rd9jHrHghgTamH5cddcftSjM+QX/FIXP+yKaj8mnJ43b4qLppyKLptK1kgSnlM9LNitt9ANyrY+G+LWN21LcYVYRWUrvWlu9EKWkbaGUOG6j21tsIWTa/HKYUoDJ5Uv8a4EIbYTcDRzZEeLvW5ZRvhWMLJjE94rc+uMfFNoYJx5/YEq4VVjGEbVyjPkivxz/4qHu1PqIL19AZCTmLIaA7Ccg6bngcBn7l27PRcXznvfOlpoaNLZw9HKIt2R2LiWW47PdVVxV85HtlV+cFl4cpQ4ZvPEsEMzLhP5GiG5q58h/rgX9E8a74O6/H7GqT6TRB9sK+OLpwTEK8shnja7KUU+mB4D4ppujEjtEhQL6sDLtTMd6fzJW+U1/39DwAAAP//pF1Ll7Kwsv1BDAREUgwRkLcJAirOwAeKD54JkF9/F/2dOzuzM+xld6ukatfeu5JKyoJmJSSDJMkzdHY7YVhT3ZTvY+RC49QNSTz3W0ybuovhd71MJPhdVxVP8ahoiSeaLPbqVzL/xq2i2ruVSyFwPohpFxoi0g4xfaYXkdMu+kZgyiudbRPUVjOpn6l2K36LR6lEwb/nLdxSjxm+HSZTWkUUwq2tEN86VcF0Xs4B3lbGh/m0MTu+ZnsDnCnU2V988ia8thvFwDkxPddOpiGpBfitpJiY+++YjOfUjOEwr7Z40s2GT7fHBcN2GDXiM2dfjZa9oZB4skm28PoEs+287tqKNR7brru+qtuLmqon3dDILlt9q/F6+RpAZ08kBuYomQyjtmGt6A+yN7srYqdVYICRX3fM/gmaOf/WfQ5Wmz8pu84mn6mvxaA6gJhtJwTNa1sakTP7i4czOKZ4ueuW9mb3O1UP1zKZ4sMmQ0s/iYVrbRfM3hUZsMd9wqyzckbMc9Eb4uk1MXufKtXQ09cLLvuvSKfpm5n9Lt5dwQvEmHJ131bT+k7varMly10lu6RjSmpe0W0lbJjJwy2af6dHDKSZBdxfsmux1JsM9Gt2ILr8eCVTta9qMEZHwPT7M0wqxWoKhvRO2e1wGSqKXBaBzGKRbNddWE2ecgWEWqVkxQo4GlY5FdQ2c7Y4q50dl3/rPoPpMD+x0pYoaL991MInEVN2MYlYzFrc2xD2e5s9lvo3D6vn9S+/8IK3JhNPJkZRWW8ZSW7bgl9x2/7VK4ywX1bcoC6Gp9StmXWhTiWrWnHd7PU3kP092vH5KH3fYHjrEk9vY0QDPLYGoPdNppsmGQN6ygdDDRT+YY7HOZqC+ufC9vjoSIBrvxo3jlxCf787xH/oTje61gZA3YYvZrs/r5rToNSRRaKYbPfez5xj1W3RpWYmc+agCThLDxS8XVHjxP441XQY+xBIODrEOLe8mqdr+oV9ZXl0diNAFL6B/w8fSXsKTGkS9xHct9KLhe+0Kfge1QZc0zyh2ngtK2azTQ8Lk8AsuT0T/v68Keqy6kKM0XeDv/xQdx3fM3epfzMGN0P5MQ+Y8xi9ZIbhU0MWoYG4j62bcEX+lXB6lT6xzFeIhpt3FuHz+7zxsdue+fgszi/4rjKVnOegMblyhh5FkTYSqzIbzoOpwqDTaMOCT8wKzlSmI4/9lnPBZptUj19/RedLj+gmtHvExk1mb/KyzJlxNQ2T+oLua55Z6VhamYYp/j1/1Vsv9529v3zuE/cLm1VXEzcjFm99QXc1z3j3hPx4WEzKW9XhuL3t2d6d8mK86H2Ibuvuh99+JVXj7igsPfOWkeD8ePH64T4jSN5CzPa71akaaRTZsNxBv8Tbs5j1S6ajwxF88vhowOmSzzCY44HcsTMgfvU3Oah6jEn4vW+6KQo+IpT6umXe9brmc/OTv+BN/nXJ5zWfyksZovZiHpmVBDUajU3whiL8AhbnW4ma0IMUyb+3QxL9QE0mGb2Leives4WvFOOVRy2E1XdHQmaHaKw+6QnyvaWQncLcjkvCLMMU9xLbJje9G6rDVUW36zOjaOFTQ7NiMUq+ospO3eaZ9Ne1p2iHhuXEMyY/mXnr1xDmp/sfnwk65SxS2CeFguXtV+dzOJtf+H69lLbPuSs6uZri5ULJCK/jNjTFSPN8OAQjYaYkfLoZnOikbYIDp3OxzLSPHPELo4/uBA+1z9dxeHqjqTMcvAnWTrWut7qizUJSEEsIsopV1vkN4eDlGA4brxtXoZFqAuxrplNbDPgn3reofcWAM/5VEoZj5w1umGJi9oqbfB+rm48e/U2kI7XToBZ+gQrzIfowV7rWZlNe6hAM6ZuyQNjW3QTbwQfVW262VqjDJ8c6fEHaCN0yV0oMhnpsYxDQIWVbK8ZITl7KCbpdf2NHHAsVO1RUUa9ebLHAJ1DQ+5j5iP60DdtvY6fj9YNT2EmGSKzxNxXc3BQC9Dzo8egcvYTn9+gO++Ez481Y3bi01LO/50O2/cYLej+uDVj4Hl3l5BNMq7E+oWNylrCQC3YwnqPcQAt+/9W3jvmt3mvlK6uYnecSn++ilyMt6pbLbcOpmPvNTYG7jjCWbkitlv+vw/NMe1qbLErE17OyQbhHNxZL9tWcxjE1YHYNgSz1L2DibaAwQ87pPXgzkwo5/qL1djaw9Jev67LOwMZRzkxbDDtKnBSDO1KL7bmVo1EPX7228CU6WTHmcn3UTzBuTx4Vu5XGmZk3PtAUN8xYB1HHFj6hvdPTf+JtjlW91arwtWFhfE66/mbcKLRRlrJ482gLvm8eCvrj58ZYx8FszgcZNkHC8Vh0YkG9sv9Xz5idXPYB03gmI3uf2sTRB7niqmurcDgKPtk9Ej0YlYctwnrsnnQ9voWKGvvkCqvyd2e+F6/NUfrlLvLG0CWXsbqh8WhUAiqfd0K8oDaq+RYcZrDkh4XFba8l3eEh1eizUmUs9lmY9PzSW5B+TwL9lPdNMeypSv/qN+anW939w9etgkK28HU+SaS5IiwVHgtMzLtRDrM36N9vyEiVC8FobMy3VmZhTdzB3HD+HEYDHYKZEFvCFaJSPKewEYaUIly3FQ82ewrKcXvCkF7dQspMzULagw6LPl11szggBb4fouOVgHuzFqq4Rr66lwhuZScQEfZtOGpYpz07HtD89GID7TMVU9X61MF0n8n17/eZZZGr+Q+vdq24Id6EzGQOk2iGrA0SvNbaAs3nVZehYRquzL0C51MxKxFU+PLE6wmsQN69egOkki1z1a51wg9bQ9QqXDxJGLu0m6zj6QSP/BOSnXHccik+ti3UTnhgOf+cq3lMVVtt3K9GxZdo8eGthi+k/14l2wXswfnb3qhQbcItuaTazpxTatkavpy+TL88LZPfBRgh3XgqsXfSB3Xa2rAhuX0ShvdNhdhgzEv8xzkeh8vuD69qyHdMZeEQbCv57Oxho9VCygy648UAntOqs3Z0SCBs3epPz2hxiH9YnPsdH3/6+II4DH9UzMNDN2ZSlGvv+VCwZBniM9VjGyHt+TkRy7QMNF2F0ACTzJjsHq9PQN/WCpRjZdgs2NR5MY+8V2Aolz2VsXhFs3vMys3vPVjEaq244vNno4M7tRl9J4GLetN0r+DYRcnI7/gq3j99LBGpxZbs1/gdjOpIXZirYM88nNuFfBe9DO5X80oXPEDT+HFj1IrBG6OtVSVTc7mA2mz3K2bflQefCvlZgiXfLIqEbV29Toqrglg5DV29jUM15yUZUZc9L8Tk4RONr9skaks9YeS5rVFreG34x99ppTytYup+ug5Os94SLOa4G9RjiNEcpQd2crN3xR20v6r9Dj8JjkKjYtZHVOH1SlcL3jbm8MhXLhTfeY3FX4x5P/zKXPvWW6Ayml7FuO+esjZfNl9mt/GJc8/lb21Zf3wUP6uCoyY14M8vsVxfL2Qpv8ooUdhref5qUR+siiK6rn3KO0Pp6ttVT7UiaGtmaFqajI+ZybCyXoiEG1dIZmfMLSSoR52Fbf3io3E3DG07zBrVjutzxZUoDkGZdhuye+1MLjHnnUMcxAnzgvWvotf7KIMqlx3xn+k2WbuV5kLt+h+2ZealmKqjvdwlgE5URPUG8Z9AX+riP1Fx+fxTIJQldHcwWZHYyyx14fuCMNZKEsZnXg1LPVWH029PeZw8iloOo7cm/74Os34x5YN/KzL4CvcvM1bcRLOORBu48zT+/C1zEr+bGdT86mJJDj300y4Uo2+cWcTa/bbVFKOVAKWd6sQVXrti5q/S13irE8x526FF313RasImCyDYBCyIx3zzp8eK++HbMXNTwD/+c0HRrhNft42IxFdwxJqg/3i/xBP6jFJA2LhpOE8WzcPf1Ya43KXF/Oxk+1/9mBb9w8dNZqnnl4HZ/ml4HXcryQX9uZMXPZTw9ijRN1KHxKII+3onWviKgaXNlp3y/MjlbY8jeLj9m36iMy8+q/wr/OE37dC94ePwq3MIipkS6yW++V+9AInNIwvODwO9v4Vqo4XP0D9/jLaeOQMi44HYV8oqdp0w/dPvxCeSVM0vGmWav+oDlqTyPWj0SadwmI3hT4+bzfkutMiJfgWVFOZW7Bmlvrb4DWRXr38djbVJ0d58z+iqLlHXH9wrIH9FA7yc3+PTrEYiGHocsK2/7Bk+bOoIholdsXLyx2Aq5OaFFn2PxePjVU38fb6jfcd8qtxnsxhTQa1BVO8/FhrRUM3GPrmrl7At6XeDYi6jbTiC/nRksvvO8aLXmIvIWT0RN/lNRS9VtQrn+KjhoX9CMe2EHcDu8Euo8FBVs18lbxkim0sED77OZ5FsbWiKywb/wtPc1dnjbKDD/RNQOGyaamwv80k743ePedJZqM6kLNN2WiOxXbayqzG5QAQP8HfMVv0zmvC5zaCa+ZluWn0V9MOBGar7NDnlJ1xV3B82Apy0OqNhFK8C9oyuPlz9MGPFvQwWv2KicI+vDlteNyl5jzYs9Yg4Wov48CkOFIabEBCbXvVgZr2RQ5AWI7PWl5SPB/cqoNYOL7S8jU0wx28So6UeM73xS3PRoz1sj8vpAvmz6v70juZujjtiTTuU0KUeweJnEe8Y+oHM4sesBullpGp99INZC7wvMmVNZ/rRldDkiVUPWbf7LXNSa7M38mwEjPF58Suybk6+z6/2MBKVmPoBB0u8x5DvF//n+1CTbjDmXFueP/PYz+vQ9ygo8Mw6/V88zq8ISlj0En5JNpgTfQ0CdAiWPQfPsPuLZ3Bv8etPH6K5l/oWejzJxFgHYzctegf++Emw8JuZxecRzRf0JcYg04LnOryR3Z40Zg7Ovlj8JUDr4HymUrb6hxcCSkb7yYyf5Xd8G71PgIC7JJQdqWK3uFCAwEdl5Bnt+WivAxHMTp7o9HzE5sLfQxBf3pFYFy2sZq98x3/+NBX09Fmxsrv1oAr7DIPAatT8+VehdB2ItwmmgJ+7SoD0s9ylsPhhw3wxewjf5YXsHckOxm/mihB8oGG5F5+DcfN8urBrlA+WWPAM6GN1cxE9+hrzo+SBlu8/L3tgPsx0N89iOP62oMmzM7H972SaslVsS+3y1E8k2L2GgqFhH4GaOD7d+JFm/vOj/vSdN1/2iehc/f98n9VfP+RvPf741p6eO9SfWCii6kTFP36P5pUhx6A5l4L4sUcSrl2+IVw3zprK9Kqb8vuVyMgkIyZ7bqmIDXbV/uk3jMpPmfSPmYmInJUTyQ9XPeGF+7CQUN8z4m3yU8Cuk01h8b/YzuYBn+0g6f/8H0Kmc4JGhA1Lc/bjfdkT4Jsjq3CKft5bYmYq303JYq6AFv+H7Yy3zSe7aFR4nvue5Y/71IlB7r/QwvcYXvyx9cevXNiuQSH4ci66eblsSIvVYMbK82iY652PUlj4DjMlpnf8/Pau4J7WCvHQVq/4PCQlGvv7mS31vajffj7CFFOJOM0uQPOyHujqRRZ7/HhfjKQQDa1ikLOTuZLNaQ1GCov+JZ43J+b8MZ8GvHapS8L37l3M9rCa4Uq/e4z6lxZMp1DPwUxvnG2r47YTF/4OwVo60HnFK95XvSDD6jY/8ahXH/TXz0C2+FL+/PRukpO4R/UnuNLN2r4Wy/phoGnYMM/USTJr8dtCc3Q6sO3ec4J/9b2E7+0f/+n/8mN7lRtmfo9exSvr8UZLv4Hs3dexkKLG65EXyDFxOl9PuLb2bTQ7dkv2BYTB9CM3F9zwhJkhD9+uj4fiBLIZxoxMLuVjHYYxuGg/MMNJ3W7dNEoJarLzmb34F9yP7hZI58edKmh8dtTfTldoyURZSD4EDXpBUnj0DxGPw9KDWvxnWPCPkKXezZeDP24WP56iCKxkbfNWgHw3qMS4X8/FeumH/fF7PN/3c1HnLqbok441wSf2NHnpblp4PtUlX75ewOX9SoW1Yjzw2/XLYhTci60WqUJYtLx/D/KmB64KFfvTR+Ifvq6m0MSTsVfNIUYrgGvg95gvfHcc3XBEsuV+WWabrTlb2vCGe3x3WLhM351vwWVUOSx3TfTtm4+bT5wj5YsEPCz5OusIrE3OjydiVtUOrSN1jf/xDetzNrulv2eDMjkbOmuaWAwP0mWg5neXVr1SJ93i56jQXCP6WuKlE9fZCRJ/PjOz3EbBGFX31z+/Ql76NXzcRBYQ+Km4Ja5dTfgRKpuUaiuyTS8pmvp2E0F0zvJ/f89x7QJUlhgy+0pJ11v+S4C9FpnES5xjwpf+GrSi92ZY1fYm4/EBQCnuOnPO7imY1Lm2/vQf2T2mNhhpuj1pj0urkH2Wywmvt64Ce2+vLfxiRrNIPAtJVv0iS78Tjdf1VkEeW/YUvb9bk6t3N1IXP5WQ7CJVi7+aw+n18tm+5O9qjrVJhT+9sW82z8XvM78wHcYnS03rhXq1MVv00OzLv/7V/L6332Uqkkew2PCKYf9jg3I0T8TtRRHx5fmCdh8vi1/6CsZs47VwiwWTXGJlTHosa0s/+AZkn6QZb4RpFaFX42R0Xvxg/jbdFpGoyrB2f/h8qhVrRLvqhjAsfGTpD/p//VYWJMdLx0/25/vnv5DtI9cS9j3KisZG9sZP65nw6ifQUuW7Nl96g8+Er6rOAFOyMtwt/VzJ9I0vWvgc3aTaLpCa1S/aqH06ku1Tg2AEeeq1/IFEOh9OuTk/d/UMEfJaZie+a86xtlHU7/CK/9Vb/pLyF8DBF6gIWzehKQ1ttPhnzAziUzcpzt1F13CZA14ZTTCTt2JDcX+8sdhIQzdTX4rQX3+Yhof7n/4UYOpVRmzuMZNSM57/9Uem9JLywS6eKhj5fbf4VSof77+r9b/NKUD/fU/BfY8M5oi600n44BrqK3JNdnsYl2LAn/cdOu8uLa//Ol42Sozw9Nph8Xhuqln1HiHUKbPoqJtNN69xHSIuqQLxfG3bTYMay1riftb0Osla0JdbmcJcVDsqHT0rEB8rVVCPVoIoxKe8G0W2LTV4nR06ijuDS+fWuIKT6xkxp92hG82PFyLNTe5YVoptIF9TJYZ2f5iYY40m59vjVoF6q5qMmN2QzEqxFjZVeiDEb/1NMt7iZIaNpQ/MbW3XZI7wzKFqyZeRaP5wvhJDUGUlbUgcPQ0kbcixhnsi5cSOqN9NN/9So2m+ZcRhnBf9O3nPcNmcAYPLvgH/ybcTfB6rmISHxi/ma2mdkLtDDtMP/pZPGMUhVA/fIeFc/v/nvfdZSHx0OFRD1tsuvHe/nIVfZSrYjfEaZfbwJWYht0lzTVoD4eKQMWNvvwtu9vwE5OOeSCgdimo6nLIedioxSSi+u2J6fjILMikcSUqUqpql9pJCHd6/dLUzrG7uUWOBg9s322tSV01blavw6LIDS/rkak7Wwx/ho5Q7dpUORUctxb/DwFuTuf36gWZBDXK0a6hLvE0ldOwSL7O1Cs8hQYK/fBw21hch/5CS4iW4gfS1jgK89XtCgpXZm3OIzj5Av2lJCE7WDRelK8F/0ycJz/oz4eZew+hKFIUZpZAWc3XyImhvb5sQ+HXm0L8/FpTnRMebfHjx4YIvJ5CieE32yLkVPIyTUDOjNGDn4ImKuQoVBZ4VrAgR83Uwn+R+VO1R6Jh38M58rA5PW9XkuaZa+CyrsQyjHNb3CVHB95fZvIrmwoodj1TaPw/dsLG8LzyTu0WMk15XrTZ8dQQ9aum3S92KA4VI1W/qg4TxKa9mMa2+oMvCnpBfcq84VGUI09l5UyVs92Z/jTIbilT32U46ndB0TV4GtFOYMasyzUR0cT1CxRqD+BfXLuQH8mdkG7cnMbzus9zfK1tIHq2Q5HmumJOjehiUfbIjlhj73fx6XGoYX0LG9KgsgrFfuwqc3ruI2ZUjdiP8DH8l3IhK+99tRrxv9jF608bBDQhaQNER3nB6OxHZ1mJfTOtTe9oIt71KdK1fF/XOy2zovKvEyLjKulmSPjl6J0lKxe/9yRmzghldN7cnMdeIFny7Si0YbpcTfZSvX/C8b70Ink1e0Ln/2nx0+uNXE9X0QdXXrzepXugnsAs9+ZcPMxZ6H803KSDn3S01Z4W9DA0eZMTi+9Uk8+f9SrXql38YQdIxmV3RH2G4FSfM1sO3m42mycDj2YmY72BIZuuV9qiBUaaiGLddf+e3NzKN9kCVbEXQZAquAvL2Y9DVrffN6Rfxk/a7aVeCbcbQkG05ABY2DbOU/FLMgdGp0AT3jtnxbltJU+gK0O/VEzGdzdGU+EewEL28c2LbxzIZYT6FG2P1Upnjk6aahiKl4GnChuCXmHC65NtGPMQzsWZudcz60BaaGSds12rhgh94Oa0y6yQQ7m3HH7dchQmfAoKlFa/mo/i0gbnfB0YfX0j6qRllbShfA1VNccM52s93sEK8oa/XsUu6y333BTM6BWynDgMa/ObtgnQTRrLY+pVI36WrBffEo/ymHtC4S98u5J+nzo6vUenoauQGuNGs/8PnqXs1uboKmMV0Vxv4aLn2COv+JjGD+EE3NambQm4NI5b3SW/SR+4KakuUkAQs8dG02TARtbevzcj0zoN/eLpb5wYJnK9YzO2Lpsv+0wwvE6bMKd7rqQapGxPvVN+6eSK5AsFJ79lp2226ZYKwCIfPatl3OInBYHpHA77vXGQB4XUy54cqRmtbr/4TP0u8oPEhbbGq1DXnfbOLYGWuXswe8RDUn+WcHjlfr+zwFFgxNKl7UtWT7zI79ZqgvqePO5QqOlAtYD7/qx9IDNZHPL7ClDd1vDJAShyFBW7WmhO5phb6kPuZrgKcVxwu9gv8y7rGrHz9zAHVUYZeQromlrhSORtt5wrJ6TCx7fmzC4Ym1U+If3KTiuFHNOcM3yN0RseZEOR+gkFytxF6ru0jne7LfaG3ZTYxOmuYOPT5rCh2xC+ad2/K4v677MsmmYvWONHx8CP/6iss9w3rSz2rEFWiSgUFjWSZmmiiHpvXHBrbJEs9sLkoX+sRefHPZs5bk7vmD9+aJxLonLvnhAORXfjkTxmvNhM12XUTGih8fFKsPUenY2b1AiiCx5npzt1BNNtMMxi/6Eb2V2E2eXUpMJJ2hUDc9++V9N4uyuA5tRus1cu+X7fahwhMSaOTXH5N7r+RABsl2BD3beh8FC/FCOvVLyBm83ons/TUBbV4P3cMu/xcLGMq3rDEA7mtNjGaDWEnw6ovU+YZ41D15Vag6rMSVmz/6Euz/YsXT4MN8b9GW01mnbhwOhUnYgfi1+S/Y1KCtjJ3xF27hdnvBDn94xcYJvm21LfBRlLJ5z/+gOQ//G7W5xwjS+uqSdlfBERHc8DdUl/HkW9DOKPzzPS8caqx8xoK1yLu6cq6VQEXjxsRtfmqI9bJuiA2RY2vWoPhEfLTPsU8VesTHLd3lfi7YAqmpR+IFj7B8N0QksGMhxy616tiu4F7ldR4tEYvZVP84ytzqm2u6KseAzp/b7nJqeHaIJpvhZwC0TZpys+jmjy7D3O53heMt6cYZE96ECvb291EJ+OuIfR54JE+z133cD4+mnAaMHdqpKSuyceCfKswuqGfmY/zyZ6Bvs6cOd90Xw3F1x+17PB+kJNSPM3l82aQnpUDFil9FLRHjQ2l9JCYuYk/1fTSti/UHsU3CdHKq6iajCry56xgxrzrK9aOBwFa/zoy+6NNVe+cNz5kK54wfz4PyXS5fHIgY+mT67JeYjnEoeY2VUZX6d5KpHUfWVoS4JiQ3YJceuGmyLHsLbMdY+z4IR8V7dt3B+ZToIjv07uCLidDp5qIfsnsJjpo483QMWxOOuedG1xRdbhiFpyaXTLybXtCn3AN9DpQmoz7rlXUzSMr2U5ww2TeTAOFIrid2UPXVsm0emc98JpYlDZthOrME2ywb6cL88+NXkiqvYvhLOOO2fNa4sOxaHJ1qUd0dTj/EsYqT4Wg00w6vQ0Z0S8kMwolcUvcaC7QiEhEtYU/EFMsR5ObVQuItrsj88k1TGRPrzEMCvcJ5igMxtNXecGCT2xrvcRiThxPQYojNURnCu2G1y+ZoWEWMCyETrWWzloJPzH0qHTtD8k6RiqF/n1uKJBS62jTCT3ckLUlQQMcUZJeAORXHrPdTrCSdeJGPhxuzGTeEj+T96uvsF6fKOZDmwR9kGzuEFT9l1kLf6CnLqJApG7Ba99L5iA71LB7xz0Lk4+BZgh7rP6O/Yr5+2wXjMWlvGquIIh4wp3O1y2iBorMY7DUC5ePiGQUDh/tych6sDt2n1bpXz4z+7768Kmp+xkygJjpqpwXY/aoZBiP0Z3Z6qMueEsi/18+m5/bI5j/8JYge6CtKW4QfdgnBZAy35dzIEkwjwOh6CWc1mS3Xj0qbmzPMuzWmUGw4pYF/6t/1vk7UJGXKZoKJ6zRkXWU7TPZTKSgTGYwy7VNlnpY1LLWflHRRz+cLnxu+lSpDW3mtsRZVWLVZdetglL0ei360Kvm3V6JAK45o1VZlwF/KYcTcqQsJHklVMGw62ofXakzsC3an5KRvmtXjWP/w/7x89zN1Q0cxJAlfbYt5phFmfbhdkMrn83mXC6T566370z2PzIU3DSerhZfFId44fVXMXQ2RNTfLwd6tzq3E1/ffbkJH78UA2ttNK5OHwvM7FuTbRofuxEh+kU8jgcsqcMezc51OceT6S+qFhML2J/e0itxzQJDvCNerPUUbPTELLyE52qUbW786Tdi+sYTzffqkoJ/1n/EWknrbnauh1TtRnyjAvPkalwnWQZpfQnJTjrJiG9Wl9Nf/rNFb1ZTzhJXW9afPN6ttHQPpDs4bZWw7XrnVOLBHWz43VZXhps24oNbmJZqDbpH184l7Hq9s77QzGHCUs+w0Xj3ghykyXKovLMzs3fOk68t+cbwtLY4X3nzCOwUXcjf+k/SXNz/6b9InBOT7ucFb1k5MbKZaMAfzuCCIM0Ds5HV8HlHVRtV5pwy9/ieCt4L3ADxRzw6rDYxnwxYfWFaqyKVLoeYj2dHzYHOtYtXoT4WU7XaY4gY2TC8PrUd3ySSDEK7EYnl3nbJGIv6V+szTWJEqMxu+LHNHVkzPOn6tWFBvfMiC/L40lIIMoraJf/VxP2tsXJCbiJvvpdW/XwyRrygPfDe6W9v2EHl0THM+mTUXEuHpd7StSpbhYR4f4VU3tmE5IegG6dmFKF5vy4sOMS0GBVfN1ACrxteG4ZUsfGz+8LX/LxZMO7Kavjjs618fBAdVj9z+F2dHCrJelCZsp/Z0J9qI/HUY0KK2ujkJT60RU+zQHp/kwna1EKjEbhYpFsSDPdlj+TCF4ldbzfBON6SOxx7cWCFed9149N0dZCONFn427abzfJgQAA3gZjzta7GZhpDLc+95a6i4VRNi15Gp2D7YstjD+btvJn//AJmNEpW0QfyR9gdghMtF303ndIrBQOHjH76a9zJRCpGdLr7CvMup45P28tsaRismoWlkVbTn57PVbgycutbc2TTSlF3xbAhwew5XKbiNUM8f/oYjXPEpzKXc20u4fXHJxK+Hsdlf931TOKfo3P5z6/Qu/eFOQxPqFcxyRQh7s54mMqa/+EDNF/5wfDjckzm7nIEeG7QiX7+8qtsxhg9yueF4W7rIP7cNiNg46WzbaGb1ZgJT+HvZ3oLWMunI3R4Y3ZFg4Vt5Jvc2D5E2Bz6HwvqD/Dp/YwyjV6Lgu3bNkDTda59+EioxfR5u3JeBG8ZTKM+UKCF0DX3rrijzFQ/JAwyjHpzPMYgPOQj2f6O32LUH+NLUw/7H1v0VTcPc0bhLdpvytcIF9MvQieot4rJkqwIg+mqiSHaTcKX/fkvo9JtZWSouzuxn8HVnG7HTw9tdHHJywpLczo8GlstH/qL6I34K0ZNQF9YuapJSFLg6u91EATTx9oqNDrJXx1UyB/vmp3so17QcDRtdMiSH5bSh1ZMUhPYcDnpOstWR2KKY81KOGSHHyO69lh2THUqmvUgxpUwBcVofrYhFPf3QDUj2pkjD4UMkmTVMY+f62Tous0M/OhQ/GipFrz/8GrRg8SPsGGOp1FXUMT2m+XuNz2R8EHXod0nE7NOtOwWfLyqctsy8odPg/er72jjXT0Mx2lj0nu2brUPuZ7JTXgh3p03Qg9j5jzwOOpa1wnaLUVCnm9IcHkYBZNVt4Vi3RZsqbcmF7TbCUWrEpPgyVZoPB2MWT2yhhJXP7bJvBqRjv70noUGF/3NPYAl3pnZfYOufpqugUJJ3jLf3VJzxAP9qsvzJt55JXYdXOwShFS7EStuUDHubmKJPtbvQdXsvurGtxtRkB8RIvuoIUXz3XgyDFlEyOkpGXyJT1klyBoW/uIl3T2SSiRengTPCmqqhf9RIPFWx7xPrgHfjW6q5UP0Im7sxWgi2lGBdL/N2DYpH4jL71wB+QoSlbvU7Xg332rEmfClD4dfzTFIpjs4D+9BV9NbNd8LHkJ4lmamj62VrMM4wWipd8wYt7tibvFWQdejFBFH7+7V+Mo3d9AdwcVI3LNi5i7GCH/dA7tLsZn06rKn5f6sUgrPS9fNP3cTwrK+tFNWb95vzucZ0beA2S64tQE9dRkFpW43xPzjC8aD9CB6Rkr2AfORpD1NqvanjmFlJ0YBd6WLjtzkt2XubfoUve9cLdBW2x2V78dV0Ed2k6PFP2OeRXg3hrqTowTKG8Hrk9/JzbZ/geHyhNjT523Ojl19Qd2tOT0W+6BQUP4eoXwLKrEIvi71VR3hMB2PVP3zo9MeKar3mC1mL35hH+okgz++hn/fpuD3SHuBEDdnsuANmlD8amHBW6JPZ7EatipS0LWIehJlAwvGPhiyP7+Y7Zf4HhIS6srtVRGKFr91Wu6sQIveZE6BqmKaQhfQLCsbcun8NGFur7fIv95N5ka7rmPuKVYRsNeOWblMkvU1M8I/fCVLfHOuuM0MaDIAN9XvZ06+T3V0buU1czBsUF+PVAVbzh2shc9lboqgzciOvIJYMkoKVjZKBAs/I1anOd1U8Y0L+q42WHRcx8Fo/SwFvkt/N3SiMvjn/+pTObHs23kdm+v8i04Zu9I5/rTmuDk/RqDXS8F2WtXyQRgaG9yLfiPhW/TN+nEsR1DdKyb+59aY83aeZrT1JswIK+NKitfx6w8vmbF+zwWLcPICrbHosgesLvgNT6JGrKPNnFWVVjTYrwU4euGV+H3yDRr1Ryxwrqc7VqooCGZ+Q6BeS+ot/kKJevj5PirnVsTinz9oJLwG/2z8yFaSH8nIdi8D7utbRww1Lis+2s4dFj7LouJ05uPt9hPBDz1KdJy+EUP9+NZCvv+ycJW7wVQgpYRFb1AFby1T7qyp/MNT5oDaoVrNnjYcErdkubRvCyk9OBRKxY6YfRu1avb0OkRlm58IOZydoi3ubg1vOG7x2IhOsj6TvoSEihWL97ZV8PMnjuDz0GJy+5F9wp++6v/pRbb480F/gw+AksOKOI/TE83IL19IF88zCzHuEL9mPv7nF/3p9YV/v//8aBI+lrMjpwxUNPDaJNb3vkX/+Mn6mZ/Z7vfCwTg9Hv6fv4m5/TML+a+/UT6MF9md537xsy4tVJL9oHAepq4fnaHfLPqX7UXkJH0SqBZCR3/PrGajF5P6I/Y/PDX06VnNB6UeUWYqn4Wvn6oe2e7p3+d9DNeuGK/F20U+O1gsGvVbxW1nktUbVjRCZrTsoRm/J/UzNCHZq/kQLPwkRybVLXLL1baberOKgLbOkYWHpk3mkHgxeKjlbPGT+aKHVRDfmcusJDGCtRFMpUYPsrL4w15H8e2VgnbUMswWvcSO4bmEP3/VRfuyWPyxUVueN14zfEDTp+/vYIhwJofro+nmnXl/o/jVlcw+lrq5fnZI+OP3xLu7z0K8Fr0LH+W1I3/42i9+PFS/7EP0/e5aTT+0f8HNSvMFr6vij19p27GUie3fWDC923KEUdjK7C9/p7Df/PP3mAmDZa7vcNFBUD6UjqjcBt3ueo8g+X5tXLiZb7KZf2tIsJmwBb/5Ok81rCbNxflX739/+bET+Y/K3xc3edIcAF45/eKnlzZ8QPGrhupCO4Lv/S5Yj5fNC14KKhjef3rU9/qi73h+otKC10s9fqM/vbpe/KT52JIMceciUnT7TSYvU/+1OT6WHvXJqjgbL1OJzFylWFr4MP9orY4WvsqsZx8m09FZp9CYzCOWLs1oUvYHAGDljoU3YR8wUUY1WheCiiVX3BayPUoz7N5RT9ywHczZEPYi1HEu0Fmfnh2f+bdF8iuLaVmc1mhO4xv8+bNkK5ffYKQMMLzqvCTbz2XPx8OvCoGJD0xI+XICJsxeDBdDbXGj999i2FfliJqv+GBEPpGulc/jGxpddYl+XM8m3X/VHnGU5ku/0UrWeKXmaOmvEpz/Vojt07sKtXI+MlsXvIJr9meErJGBOYf5tPQDehedsuH616+oxkvvYbT0k4l+t75B39hpj+7NNC3r26LxnOC72jw3Armk71MyLP4ibI+eQaekXHEasyxXVyrGTD9jL1jqhQ+z0BYL38PmnM8fG0LBvhP3IYXd6F5EGZrVZ81wGQR/fBnD6pIJZH89PPmMaznTzmFr0PGMLsXY64cUdpeCk+BRNdXsisasVu3+S/SB7JAUdExGWtLFzJquQ8ef3dLvAavG49Xdd9PqHfXa/flMsdhs9GS99wwZ4LEfmXOfyqIfa/YCAWGPuJiKyUASk2p/fr0+tu9kVLGTL3N5nD887v7Dl/v4R4z+a6MZtpmPmBmYWEySVzALqplDoNtHPO5eLJk0favCcZ52xOk6q1r8rfufn892RvXhnbc3Srjl8bT0R3bmmFZV+b/tKYD/vqegsF8C02+PT8DTQKxh/ZYkthOu5248ZzPAvrQ2zN7BNph+WSGAi09A30LjJetowiXs0ebDAsMfC86eZg7JuliRgGaE9/zZtiDirCe2lFkFFbflCT4rLNPUInsk/3Cbopt0ULDwYgsnwOcIqvNWZLtgjip+mA4i2g+aSMjquu1m6+bKEKFRZttb1SH+FNQvtPf7mwXhKazG5lD1cIgvFdNLYZvMcq/EaH75W8z08mjOopb78MXYY1sbu0WvsE0Ld6/UWRHuRHM+7esajEc/EX0VMVSfm9oF+hifbP+W42KO124LcRAkxH4/6mJ8ShEAiwmi3/xtdeNr0A043xDg8ueNwagfBUPddRlj1sGBqn1adx/i2j5jKYge1Uyy8AreMGJyNt96MT7LW4to344sgLREoxNgRd2nUcj2m72WsN1Aa4S6/Mccj5FiVuXJRc/Y3hM/DiGgVqb2kL3bhLj1SSt4pC099OX1wOi3ifTWNr56trwH8cdHFsy9I+hQ4sePmb5ic/GzOoj/fg4810U83+5KOH5Vm9mS0yHqY/Or3XRWMEOic1F34iNHu/uy79jXHd5HHTfQ8T0ZxL5MRdAniYuhWtsNMaL9vNydtG1BLg8ZHgO+SvrUKAxk2nlCnNrokraMpBDUs7zGEMI7aZ/uOwJtvFjMk9dKNwv6d4RzJw1YKwSzmIaDChDdpZm55u/C+c8ae1V2fx6xLq6HRHm9isC9nQhzbqkQ8PWGAEpVjRG3r81ATPxOWDfChTH7ebC62jUkQB0TdpQd3ayazc9l/vv/eCiuc8GKbSZC7O8mQobJS0b/Iwrotz5bjMTBPpkPM8Ngl4ZBCzDdYtzVibs5zNeMHH9ZWE3D/i1CfHEsLKxtyWz/4mle6YQEZcg5fVonH+nJ5UA3a3cKhvWRlMgK9RgrG7JJZoraENxiHzAsS9BN5PYTwD/ebyRo68IcRFLbKE+M5Rx7bZmj8DFe6DPGF7L3jbmjT+vugtD4IiPX2jAbY31NoRjTA3ES9R7QH36dVsv7M327aYLZmBQZVN5fmPmBCb0JLOcg5fMADUDyv53sbREjrhIGyFOqCy273K0mTG8+ygLlxcxH6RdtqDUtOp4VzixB3aLhMmkG4sJ5jSUrEbtpfetGEKXthfL9+9LN60yPNJkRien5YVsMTDNUzdWvW0YyZUimZNzbqNykV6ykzyqZlnNhWnu/vsk5Dd/msLJvX1gXbkjRdThX/CcGV+jZYWBBuBOD1rhKLwiqKWP7JquK6SOVoSbUTrzgFUO0NoJYXfKRarZI0V9+o7A+S1RRYxpM0eXjIn6Rl9Fm6sbss6g1ILqvZ7yMwA24FoxXcD71lmqfGnftZmXYaFJOlJHvctt65u5n0M69S45L/ss2P16BGmqC+XffJgte6CjdnccFz/pqXKXHE1iZ8iSZnpsdb4usRWu+drFET5+g7Cvp9bceWP0p22puBDeDKDYudKUT6CbJ9AxkNA+yF7fxqxpL7amgiXw1ui8EM5FRm9vQfh0BS5P0TPrtgWMonHfJrMd7MsdNPOQoAjFjWDh+zV5hUw2bg3ei4kPyKjE+B/of3tP1zDqTfS5lrz1BCVlqkQGNqp/eITK3NrNLlnSDaikCerhSzWwpeydz8i3uCI8vZaknTdHrueVC1POK+Ii6fP75KQYx31+wtD1ezelsfyxUxMeOOc1OD0SvWY8QjN2PrjdBXFHGLxG8jh+Xsov34ZOsjrrmdpFOCqrqaPRb04JW9jlz1a3Ujaptp2g7T5QY2KjQdLfiReN8AzoKq3PCjWqyAFI3o79EvZvjdj9Y6i4/7rG47iI+r5TbiEZZNSjXAycYOLnOaKzYlZmvld1NUJ1KNOT+i+12u5HT8ati2IWXK5bZTa+WfLXghz8JMfXgZ/Lj6vZCrh80LNz4Fedkc74DPPUfCXL+NKekEwTV9EqL/OXvjOupBTrQmDlRcOL0u10DKI++IVuGLXM6+T8VnoO6IeEsLOdy5rmEb6Mv90/d98W8mc898u2bz/BBxuYkyacvJOvLini4/RZ/+Qby86Qys+m/3Xzy8tdmvNoGCW9iYq6jTTvCs+MS2W/2t4QKOp3R8FkRPE3NPeE/S6FgPOhEwqdUJpOj5Rk47/eDFW2NApbvkhrxEHSCl/o/r4Pjcm50XVEhduyKm8SzUfsobWI8lW4ZRLp30e7xNdg2loSur5zHCwXB9odf4U0wR3N7SeEWzRELna1eDbLcqGh1YwcsPqSmWvBmRtO2N0i2j+dkfv+OLnJnlJNtlFsdE2Y1Ut2CBCT4dYRLzSxTuNQeJmGY84Jvx8yF1/tdkMP9W1b8fh7uUKvSaqnHLOGWtPqiP/5C2q1Y1RdEa1UsIrSs3zZobuvfDJ/kfCT+WkjN6W/91bleEz9zHqj/i+fhtAI8PZOy6oPLUUU7NTeYTT1eTCVXItBf+Zv54zhWDfzeLRRZaxDcXP2AH1fHEvj81tnOStJqmAsuwuaUBczfpvtCEp1AXGYdP7Dg/27BuFaML9yiMSJpab+K/jurM5jpySJ/78dec1KCfiyPzPArp5vTV9TC/ukXbDeIojmZ/PIC6SFlLPh5dzQxRRzB4v2T6dPX4uIaMgqb46kh+3srB31ADxic9/fBsNNOf/kQKjOgAK/9Q1n0z8n/P5KupW1VEAj/oBZ5S3BpmXeDUiu/XZpZmjcKUH79eezsWYwD817mQUaBJ5922H2eST5ku9cRftz3A2N3PYWfSYl7uPA3s7NxXfP7pZgh+tNCdrXXN/Kl/mgax9j8w5e99rC4dA4bSBi0WdQcbzVPgnoFf/gU50Vd8yzVPNiM7wabl/ltfb1t38BZYxri3pmTr6I8NXAbSUHlC34nE6zLCqRT7C713da8CfkK2mp8wk79KWt53+oFjCMk07W7nqwfnsNn6hX4fixvy0QWaQ//89cDWSHPrHUP9n8rC9XnfR3SQj9H0NFFxGxqR/V389cv4437Gxra6lALWz+Z8IaETkk8C8DcZ6yDI4M+C6l7TXjUmjGsJLfDbiN19axZ0QpGyqllt+W8iZ57PSRQSpERNBaZ8yS/wTbfZwxjZgP5sA4uEOMqYPf3prP4NO9fcKVsLRysSBpORM0C+NywFnFJ6sk0uLoDv7Na0unae6FI0kMLF/7G5lfhlvCO3w/45XMtYGZxIl1vcG2bF1y8rX0o+5UTgG8Dvsw6vVswUf9lQpg4CkZv4wDGqRzi5Z6Rig/Kcbamu9pxuNI8l0U0LK3Z+OPISDDjzBeDBKZGLjQ4rHKGKi1pwJzx9AKn/G/Ei56xhGrrGXinmcq28Erq+b7bLPjsvXAksBlOoxopcH1ULYaGYrTo+N7FkPurFdLPREv4eSgkgJJOQnNEFUIDu7vAPC0Z3nb0RoS6/RxhsI70Re88hWgPfq9/zvUR/a/3Rc/owiED25+HL2GGlUaw2o6IodBHFt+eAALHr2qjtgtvYO427QqO2+bCTrFcEuEMRPmfn5DkDeEfjUtQO/KI7TRyJ/Oa76Vf/bA9yN9kNnc3DqrNpcDeqR6FyEZNgafqnCKlM64hO3TLU8amSKim1239XvSm7k4FZd7gO0IhWR1BWILXD9/zWcUfEzYlV/Fuwdvv6fxKwbL+v98T5uMxbhy6emD0/pwXPxhm8MGfKju8bgGQr7vLCvxpkYXLTHKI0Kt78MPnn38j3KkCBPeZ/mQWckYyXXcXCErmBsz01CeZ7ePAYW8fZbbn1BaKUlh7fckXTT4eDX/xGPLwVvDBQEHdr9NzCvh5IswyTnI+NzU2f/qYGv1eCT+WEQYAlK8MgXu1DeUQN0eov3lPeT0KMISZ94JF6OZI1k4eWPA3hpujLbHDXduA6YUSB/iEBNjXL5L4MAe2sGxSE+dTK4hYrf8uel6XO+xaO5zL31flGZIa3JnLjlRMfQg1uMSPLaHtiEiKpwK9IYCI6dm6/my66mNooAnxiX6SUEIa4uA+PEKqzoebpQzfHEHvnmJ2ch6VmOZqCwHQYoUOi39o6EOncPjTXeYm+sr6PlThwL88XmNPPe+AeFw1DhpCHKTvxVCLC4g/4D7cQ7ylRlhPFXsFMLeXdzFkGieT348Z8AJ/YG5T41A6EmEaH7d7UF6FVyG2V0T1/Pw6MXsvaTlrNSeGGJU9+vZtZ83pKxvhvPdzNOeFVaudFJYbFMLboleakGvd/QZvm56xXNuBkM1qfYH+boURoa6aiKF+tkY9by4svFfP8Ps9zSujPPk3CgU2Ld6snQrOBvzSaekPUL/U+O97kSzNn3rC7R7BvnJkuhGDJOZkHBpoXKnHbLt7Cr5Bj+OPX1CP9pTw/pXp+qbyBrY7PauQjYjGoL2ZCgv9v22uwvAd6F67DdH4UNNk7tB4gcZUtIs/KwgzQIjAu84CfDg8KejSEC6z/nYBdqarGo5dzAuw+EscdNqWKI83r4wf3qvv1hLfy/UWw468rst/dUo+R5vkpa8mleOg+nsTVu3kEkJzPbNthUvytf0WgZc/5ziyCx0QHGQ7+KQwX9bbtXK0igKemleHnnPRif/76+8gZnl1j3IFVxWFDRkc5njXPGem9twblWR39FbbWSjS9KjDTX28sd31QwG3NHkH73jQmEnI1pLDzKyMSot1CuI5AQMzAg0u9Y7gDqnWl4hg9+MnJHvNwVK20/sF1np/xv752iZCQdbFsP9OBLvlphbz461VcBxTB+frp2rNMf1k4A5avPSrbIvHqOXAKTcjPnzsOpk7Q3b+x7+99r01RSt1918v4HXxJHzp94CrE9cskPAH0Iu5OkLz/DpTvu05YeoGrzT7U55YEEeFJaQXSCHzXjHGap4mQrBbBt9xIpilyF8xRW6SGp+5SJlbCT2fD3L2gZs40ig5OttEmW5J8KtvNLZyBL5se3LgNvK3eG8oD8DNs7KDm/3JXfozz3zaeGI2/HIG1Did6nqkdK2Aleq80eQ8KiCuJSqh/5DuLNpAM5T0IC2A2qgy1dC5Cyevv+7BT/9E0MXWFPvhUS+ZHeDa9WJrto6XUvtTg+d/Puf/AAAA//+kXcm2srwSfSAGIiIJQ3rpTBBQcSaICIhIkwB5+rvwfMN/docsz0FJqtl7V6gya1OB38v4wj5FC6NxnEiQ39kPrCyJ6vGzcG+hbsYz1aW31lfbe3mX1vWgWivovUBAiWCVBV96vqpqJfz4J1DqFluisfPG9GFq0HnQGxmIl3tESz53sMZDAlY9akfGLoP1OLmk6TOW0qSMGwChaGMjHMp0zh7BBQplkuFkuHb9tD0pE+xVucCO+93ro2VWCdicpDd1eK/x5uH0acEdEA6b8/aVdqDxOFB0V4c6p8+pmo1eaeRVD0Plgi/6vLs9WnAnAsUHPfqAxbQTHiLWfbHlJ3a15F9w+eU/iuUdYESIiCC55q2lXjbuerbs+hioR1QhWUZdNQvCV4TME3PqoNsRTKu+BDv/WpBdmRT6uNSJBWVnulL/wTN9BnRbw4+YNFg/dJU32sPow8SeZgTW+Mf0te/Aqq+ibYhEb9radQGdQFSw7ZSPngUzKuFGhzy+/PTZw94IYdYqT2r1XJ2u9t7Csm7SVQ98RDMmRSZdw0OA+stp8lheOIO8HhjAdno8g8m/ff/0K2pZjxr8+d8pTCsirnoiod1Wg/GE3th3fFyRQ8Pd//iGwqtPnYGizeG3eGzQa/5y0RwPbvjTEwlcRuqxs94PktnfKTqUh08/PU1JgvScvLByeQ09GyW1hEBtXZrt+0O/4h/4u/+K5zfevLfBBPwu22MPR9d+7fh9kVa+S48BXfq3EoQlRK/qTQ3PTxg5edMA7oG0QZBOFZgcDhhQD0xI7e300KfjKQjBaRM31Ov2rJ8O+KH84sFv/9hSKukFCO/yuOYHFQiD79sg1/GX7GCHwC6Pnhe46n8YpcXNm26GxsH4fH8jdri5vShdQAkMZ4+wzWkaYPWjKqCUSDe6xvtq14gohMqhqall7/2U6ek6u6eIEgJXf2G/+C1VfY223c5mf3y93tc7bJl926981IWhkjj4dhI7b37ugAG+Cf+m+a5t9Nl01vfmr5uOWtRvdXKctQa+9mNDHUl8gwEZsw+vsR/jlQ/1g5XyBtyE3IHsgoymPXoqClR5caEItW7Eh4hM8C/eulpY1cdTEoLPo2konghfzcH5qkB5zhuKMSo9uuZH2Nw1AeOmFNNFvok+DJ4gXo80a+lUxY74+z3YfXgvMH99xYdPB7jUVd9vwK7du4Bxdbmsz2v3u7cx3sED9yK1XsrgfU/n8gLNITtR1zQ0fdeIVgA/uuBQM4PvaPk9b1reix8/6+fweLsD13q6iLXfmdGKJAPYBhKgdp7equ0GzQJUv5ZJEWeMfeeGNwLOmWVhUyxf6Xi5hoHs90VKDe9xishyCS5yfMkPGCFrnw7y/K1/+h3aj7mlj6rOMik7oifWDueKrXoxhLujn2IjbkQwfmKTh4m9zNjdHN86Y6wopWRze+C14Xw1p4+jAr7rmQL7iSp91fMUKHYPHmXmGEXzeFENoHqHJ9X2GxcsJ08c/u7veJlWCZt1lgq6SR7V2+SWjrx348BihU/qjMexF05Az+FP3ztA+8H4H7/ec9YNyXrj6eQXz581dRE/+Txbuvl1ga5dIxon5tmbkGhNMNvCAN/O1yad632l7ds4tNEURS34xdc/vWvq720/nbnAhncqnqg1W1xPjhkOQZbawe9++vwI9gFkVTNi95YevbE0OUF6Ab5DQ2or0XDwLAmCIXeoqdlmT6/MWSCEko1VjfredtVz//T545o/h002N7J0HhnWoLtnVPbEDDa+aVJ7j28pg97owmgcLvR5+sKUUOq5kHHnHT24yoexzU5J4G2rPshFbGyP6a7EQXbuILU2vNf/4aFf/ehR3l32pz/tWiWl6OvNPds8OCjtWi1F3HvYpstp+fjS6XUXsGEUTTo9zUWEZ0+p6bPSM33R46H56bXU7JopolqkS1CPY4M+BlNPd9zmFEPua/O/+AZ+9bJfvkfgrhpgvo+LL3tbKaMunl9sXvMjrLtPjRKBnRj54YmW6iHWYqR40yCKAhSHRqSqlrNq2SV2CC1Flqhj0BIIi4x4eI3sZeVTXUVL4duB4drGf3rw7AxiCftxp9Kf/Y5wUiS5nG42Rd+x7Jd2zjUw1EVF/WLm0vF0RAbUOeNF9s1s6cJx1mp4Udqaqk42eEsmYANUV53HKItKwEpiJnDdP7LkN8QG6QIKsOINAtT9lc27zhXg/D2nWD36Bfurz/30dnULan1ZjtD4xb8/PLJkwsGCzr4Bf/rT4N0eElzxLYKB23pk5duAnu8v7HwfCZvnp9CBCt/vaIuVOGKOYXUgPuQ8AWt9bDL2dvzTfxD3zTqP/vRB/3u7rvioqtjtWNfA+2rHv/w2bzScS7A0HOoF1itlj6FYwLnsOXxc9RhBlZxFOgLwJh/6OkSTrckQHpzpiTEaTt7CDwP8+SPW/A1d61kHCJO6jXC+xqtlzl8hzC8JRkvp6P04TT0PSMAb+Ja8O48e3i/tn77o364RUz5MhIf41RF51W/HWp5tmBqphH/8fznQewvE7slT9E4hmyK0GLA9HUokzFbeT1XRcn/6T7PqCXlN93dI+g9a4+m+bww/bf/0aDwHZrW875wl7YMDj91Onyqy6k/gp9/pTCz7+agHJURTIeL7R3xV/aW5JpBnmx1GJ2MGo9jYijQKmkEYulY6FaeNBgyXm8iCtIqNKnjaPz6P8ef8Yt1eT0I4+v6Mj3uKUjLqAMFJEDX85G4DWwzbLORyKX3846vTWdIUaCu5SiT1/WbLYxRsiJrlTv3oyqULaHTup2dS3FXm2od41MDP/4O1Xsy8clNIuQR2+Kg3vb784skxQt2fntT/+P2Pv1n36DfH/NTJYYps8tPLZ/G1l374C72rfZAK27Zzwa++p267vl9W/RCsej8R/O/LWzxXWeTr4WJS/5r0PTmw1Z48pSbbzljrq+O1+6s/mbv8qedXVW2A1AguATja9eNw+nT/35kC+b/PFNyoy6gSbT7eQvUogeGh21BVPxfp1Pa3BDwYxNRC/qcndw0juMhiRZFfGEzgwlSBksZT6jGv7hf+AhGUb/Ue64IfV/3jDDuYVL2PscG+3qwrfA3r431B292A+90kPizAsRkgWe8xW/RuX0PubL2oDa9ffSh4bgJiNcrY7S6UkWwbaPLZVGqyM5yyn0IpC6EF04Ci6zrPSdx8eWjcwoDq7Biw+VnzF3hvjQUxeNCrxT8MBKaboqWHz1cGo1DYGgwP7YZ6OyTrTChSA9ZhaeJjzmv6YtsvBVJ/CFF9jZA3NepXg4dbqmDM+xKY9lvUggHGDzJFl/XcE3YuIE40Hi3T5gGYrAU1+LibPXpdgoVN2x7e4WzefCRsxE5nqP/60E/aEt8u0j4lmfUIgV/X67mV4unNfWAYYGODI2puz0yf7r42QKHXdaqoa28rkhQ+pDv7hpG613VWskGBGdIK7MgbKV0e73VUBYIixnnXrL2SjwZQvGjG5naj9BN/vQaw40ZGVR+YbCuYXQI8LpWpd0oDQI9ADOCMGkyR81I9pp1yAu+ttVBt0zxT2nVwkQRnU6Llnh3TsStSF8L3dMTOrNFo2PNBCU90eWFbT7t0eqSPHIZ8S1ENbl402+1Swi0KEnwgx483fj1B+VsPxbqpYLAdw4Dyrdkj0H7SfnZHu4bpdTei7V7NGLmvsyMSbyGof8QHvfcefiOt9oOPg2b2PKDIht8RXKnuCiBlaSq7kmZLKXaKh5XyNfNjcFLDjmy2wikitwGI0Cz2X8LF/LlilHs0cP4qF6quvT4nQTnV8BKdrtj+vD79Z3DzFqDdOFOLhDVb6sTroEqyGM0Bx6XtMcwvwMExweeoWSIWPFsf8strwMrW2afDO2wQ5NGwwe6Nf0YEIgOCbifuqB1GRjr55TuBj9e9QfVh2bPJk3UFXmuTUc/yeMBqzSYwgM4VW8ZJZHQ7lfbP/vHRf5d9LaiYSCZ7hljLlgugzTWF8A2pRVHLGd4ivBMeZtfUIsv5oKRrtRBt7DDeUFO9hmwYDGkCU33tqUL5wSvEJ0tg8PQ+2FzuqTcLhaKAuGMbUpfV+t7+ENuSp/oD1c4HJZofwJOA+sIFao6eFw3iE9yBYmRbbF7RlLL3vK9hqKpvso2aMGUA4wE2V+9I3dK8VsvzqeTySQ06qqbrO4ub7NWAn73t2bnQp9wNQnl5Jj0+peUhYvrk3iGfmG8i8tbElmybKLB9djXVu+ANhov4FaD5eenU9vQ27TeHbIJP725iFx6P1fAVLha4K7cd1Z7kBabWGn2wl+CJWuvvH7fnfSYdSBmSZdrIbDhHcreXFT9Gk3/9ppQNsQH5pRqQ7EVHxnS3tYDcGjONT5yqz8pyXc+RYQFrobf2KXgtGbyOgYC6SNixyXqmLRDNtWvpS6KMrff7W68IpQUbGvWlQbGxDKz7cxeRdT1gEak5Vp5h2n8O9a6Aevx5k5Iru37RLfMOleEaon3F94wOTluCKXYdwp8VOVrjmyafFY5he0NQxbLpHsKnoBKqiyWnz3ZecVA4oCvVHWeIWrFTIeTNyx1173FbzRKCLbTJ6UgPhqNV3cT8AJqwPdO4CG7pErGJQP077Ai32QspCSV6Ad1O2lHnslMYv+3X+Yf6az2WL/feeLS+EKz+g2/b3qnme793IdASG21puoum2TYKePQfiGzM3QOw5/uQAMnJHbL/ZA6bleUpwttreFB3kk8Vo5XKyy40b9iNjo+e/uyNc648RTG/7efxeRGk8/2aoK07bMDEQz2H1VV7UBPEx4qN+1Py+37SOreZLUsGCXhLzoNwSRZVq7/4MOxDh2KrEPXhG4BJao8WoPgZFYCd2yWDh577UgUYtj4KZneHIs2/iPFPs1+sXKzB5xZiVLkCiEj37jlAe9+l97dasjmb5As0ZpcgycGXaESDH4Lvx0ixux6uoMdX2P59v+0n557Y9leBx+IE8HHX6RH5BgmBUutU2GlWBn0mzWUHvGVE8ldXwdiZcgFesibTg160+hz2mIP+9FKwfdnsPBreHwLMtfxAjW2e9cuB13lwCLQUHy+Vw7ZZ00yweuxu+IAmQ5/kRMmh4p1mrMZVxRb3+EbQT7oSo04T2ewwx4BNEZ9o3nL1L79Z8OffymwpbLvAxIB3OW1QUe5e+gzJJYdC+7wj8G6vjBb7oQDnbK9SfDTUdDZMt4OiuMMIDgc92v3i8dN7fyiavveK8kLZQeWg5WhR5JnN+vTOgXiofZwAk4+Y+hongNZWgvn7YnkztU82vIebAjuHjcWEgVcacD/oJzTz+iYdg+kew9rdOjgztTKaTFe5y6cHEqnhGKSax2cugN/zOaoOGHm8FQj1+X3Gx5OEq3lzcAjcJRrD1kZ09embujEkX9NG0m1uwPB89v/sG3D5zZsgixEoY5CS3WbtFSi4rQ2CRqgoMrBfrfhogUMyRviwWWclvJe4halW7gl7f7xqSUFQwE2uPcl6sjLdRjRXYFOZGdonPvKW+6pxw0N4xvqFzj0Ft0sIX8dnjS2AKWuXkQjA05czkV9Cnk64WLj1jOmN3p7eXM1n5CzQIyileJ/jlF244wDtWmyp4etLxLZN1EDe9y7YSGGbzluvlEDeXWrqVLzHOr2ba4j1PMdeW1fewDRfg/PDOmClRBZjXsgpQDgTjO1z2HqT6dp3kCyeQbj3Rol4IX1f4PK89xSNncB6W+8Def+aEU61SmCrw9bwRKcXtaPrTWeRs84qscU7jYWDwBifHRWYDALGv3xAnw5owXo/xOv0lX5yzNu/fIFkXdtWw1jHNdS/ZEePfpvqs1UPOWxERLBZ5n60uw++D5f+IpEdlQR9WrJXK1+yHuLDp3lH39V+wNffCog30jhlTmIn8PKaMV3to5932yj4w7NKUQcR+eXnz2VoCO/dr2Cg+w8PT+YlRVPcSzrpJceC0vktUevTV/qSlO+LNG7DbH0PV44mwS1cWUQ3m55Uja72eeFBMfgvbJw41ZsrYjXwKeiErPgUMAEQAZ4vhkmTtJ0j0vZ1Dv39oKPxMx+9pRS/CyzD84J4/v4BU8yVF+hdqoLMlKJ0uO3GEp6jIsPBdomqCURLAobnZUR4Myv6xF+fIXDtYMTnrJL7X74G5FI9qa/e65Sxk30Blbr3fviakW1/u8Bld3IwjumOTYT0NlgumoVEbQl0xg5U+vkTtamfe2x+bNYzfWeMfVttvPl5fy+wZsxG05iXbPoKuQXEAShkRi3PWPKxNfAKV4326HnprJ287ueP1LsNX338XTuceEBsQmM0DYa0AAvfCvy3X68cCDDYvwk+Bkeln05un8Cv3VTUEbsxWja7bQz1ISgQ072aTSQ2y7/8flQ5BdCcb2NpxcdUteJaH57mUdy7djhSo6xcb46fFgd9y9jTuyQW6TxrSQeL4LHFfvt8p/OehhNs3Soka/xLl+k6FbIuIrq+t7TrF63oFQDOXoRdBZiVMF2nUt5TRSPNvizYcFIyHnRloxMxOXmAECcVwYt1CSm4wdKFzW57AcTWPxiL27M3lVFXwA/30dderzabX9KhAQqvoD97oyfTbcAaD/BRvAhpq+weLXw4pU3VR4GA4A+JJHH508LqTQzAsvmQEPh9OlJ0tzpv8haYw9+1wSXYm8O7NkHejO/0LK41EqYZCtSKaU9X+9V5N39eQOVZCEle+fHm4MwPcp4KA0bt2WHz1d4l8MF7M5EetxosID5mYM2HZJqtAkwffyRAONz2iCWd0m+zhkxSfbuqBL4rSW/lw/4O+UgIyeZ9atf4H16Ay/Ua1fhaT3efgSKgB3GIbxhrbN5L1xwKtX/AyaNSUt4/FQhGYzNih50Vjz9HcgsTdLlSVRxu1YShNcBgn/g4/YC2X3pJtf78a5P2JSPr/sFf/MN5Z/W7VjXu0uovaNrfT9Uu8DwL7rPsRq8ws9jcb3gIOLxBRyF6xdXSZCcCT7G6pWYsHvRFLjtjH2v7csWLoCe1/Oak8Xs54kOUCWwR3gEP3R1vUTOr5GrcNkIHi9adqE9zm00votjwx3fMkdjpts1MQ17zC/3Fvz+8v+4vNYLY7TtZlgVI9/sabTHHR9NDUYnM7x2LSHvksN33KVrAgreA7PNylzKynrnnXtpEXdtT+/E27zsobYQc7Vf8wkBSuPJ9b0cULdHsjWNeENmM5TuS2q8ChlxybLjZRCVZ9Ah49NxKGSzTYku6VT+YPv6bQEXaueS77tdyEaG41ogVevzqL8bOKOahfnUQqRIjB5PYORBMY0Govcx6v1zbNy+xnDOo/QzoGr+Fcj/pxtqy3IyjEadbBPnm/UBa2x89VkemBB8W90Rc9Gwjkrv9BR7eV4y4z4DTYSu4ECwtO618YOvNPT8Fcj0fn+TlRB/w/eGFFW9R/WeflNNKadKtFmuWWPTMHdMOOjaNqX4j2yhb/UFgE7bXfGunf3rF6o9IvHESY7fFH+BohwOaecUCczZtL2DFg9Svpc1v9oL1szfq8CrzxuSRFVC12A3xXELXWSnsDjN6qqgSt2q/2zZpA8CVQKoJpyWaNg+/hbV0L6k/uQD05OvGcNUTSLdtPMaYtV+gwKdf9Cxaok+dy0IQnOgJK06a6wxZW002BQ1gpfVJtNDHrEDvOVT4JA77atEucQZX/vLLl9VSLd8ATvW5x6p1zaq5uW40iOguov5r7cs4tVsCXqxNqBbnjTcnmjIB0rczdczh4s0X2wng7bwgUsDbOSWfT34HsW+86Y9vMTtXRGhaoYIdOmr6cvcfE/ieNg5FNB6jKb3iBJ7v54Sij771puLWK1AZziFpTvy7mqiuXODT0TkEOslPiemmGVjzK7bDqE7ZmIPlh0/wUeUKsKhNVcrRvoRk2kwSIKX4mgCJppgElPe9xYlGAg2pigjnocBbblktgN/1frzP6SRXR/t3jYTCejAm1i8bbOatj9+6+o2Gz3yTQLBMC7bj7xFMNI8NqBXLHvvP91KNlHNLOKMao6rm5nT86UvMT9I1Pxl6+5lPEuyPmkO9iKg9v1FFcf/0EpNGT+XL2OxLf3oRglj5Vm9PNEN4ViBDn8/3wb7sVCU/vktdBwsRU/x7AYXJvZBljD/pHz/e5TuK4JrfWL1bZyE87z02RtZ48w9/q5DzMd7nNB2rMckAfwq/9LgkBEzHrBahdE4SHMNe0Ze6vPtgtTdqG9O1J9vhkMNmCJ7Yk7cc++ZbPZEu/EXEx8Kh6XTJDR9YldJjJf28vbbKPwhKlRjQ+7T2qVLGgwVjDZRk8ggB8/o8YNWb0MUEOPqLF4OLU9Lr/smbT+bYwRA9ARGc6hjNOX5Zsm7cdervDRKx8P7gobTh8z+8PRrPIoBa5+TU/rwOPU/zzBJV2SNk8Y8j+NOPpsJK0DvAA2Dx3ilBTfot1qNDVBGxsNY+eMONYrT2Rk5VIwPrfmJ11R/n7PxqJO9hS2j7018A52byF6YYm9b3k47H15ZA67FPqHfWEWDBBU9QNp4fsgl005t8+7BAvTIf5O20nj5yRxfBH9/yxOLEpn46N7BDnEj4Va9avCtbwDDyb4yje9czWbcI6C67C3rPlyZd9wfBjZg15Ke3LJ954ECv76w/f51sbptBe/dl+AhCNd2OeTsA6rpfrKz49/PjF1rn5Uhc+WoruK0L1/xGnS49VuOZ1ZYEgw4Qvqw6j90WY4DzV7uQ/SPXKvbp9wZAl4xQ78ePphFkUPS2T+rC41gN8yAOAKnnjDoL5dJpwJsMrPovkp3vNeWnJG1++hxG6VT0U/PxLn98lbvkvre/QQXBzxvlqNoWKhjFt49+eGXVl1S2XfkidB5CQ394df3/GJ4PjKJd8XmBv/X84U3jJWG2HLMNlMrN9bW+d1yly3wSNZhb4309kz6l8yaxRHjvdjK10mVgjLBEhOVQX2i86kkTyDcW+PG3n343tdbbh8F0dPDNaF/peCq8AM5NPqKy1RbQvzWBB43dn9FXv/iVELFpkHd7K8aOI5N04GxaSqt+T3FKQDTpwdr3lB7fVI0rndHnZtTgytexhbYq4I/hJYZHsw3J9n6MdYJflgJR3yhk5GK5H3bnmofE/QTU0J1nP1+jIwRic2qw3Qo8YK0XQuBugweNndEG/ewv4V9+4ZnNdJZ3p0kq5ECjfnwWGL2wjQta4mbY3SMHzP7HtuD65iBGgV2y2eWOEzDjzZ0aZHdnwjZgRFr1Q4q8tTvJ8RV2wPkcfawJpzDtH1LBy8+NP1N/mwXRpF02JRxMzsbqTx/QhJEDVJbP2H1aERtGTvLFH17GA8wZM/kkg97uo/7p/50TjQPYaNYJ22l7iihgTILYje74+GJvxmJ9nTUXLTFZNs0mJfOoTz++g1jNnaJffIdrfqAn1MaAVWNfwHF8F0j64X29pwNQhctC3fZbrPpCVUL3e0HU/xynXvjhEbJ7K2RvDhd9G9GLBsuis4nYuqU+cPangEkgqlRZ+dOyHXAOciw+aL4F2PvT4356VJQYHJitjWuA1DRKbA7GCSxNUwTy7/7vz6SA3WEft9LMnV1qJG9tfbvJW8DYTDU9jdmjmuxRDKA/yhds8PcDGJYwNcCqD5G9qqdscB5f9MeHvHEf6L98Jf3iJ+K2ai+4yy2Bqx6DEY8UneE0dOW+vHD4r56y6tPQMTkHMcu1e8YLXQfdy/Km2q9eo8xQgPeNjKkeWrtoXmTLB3QqNth93Aw223qC4NffCdT88ZGLJuZw51s1tQ5tnjbresMf3nCNJvPm2zXWYPaWOCSKtPfm5+bE7Vc8jb32A/rJfMc2XA4Fotfio7IlCBThh4/oUfoevMHYVgh40+ZD7UyyPGF33oggAdWXujd+kza3gUkSfxB1rE3QTNnzrg2ybiQ6PaOTGc3qKxwg1rMc+44psca2vxoUJvuC4908ph82xBac7rJJLb+c9YVpTwseStZQA93Snu+fQSJ/AtP/xZtoSWSXA8HT+aB2yhc27aSbBrfDZj1zJCBv1N/FIg/FHVNUjN7agWrbgbX+Ro/05nmzOyq1/ONjg6lp0e71PWdwfT7yWPXI3++Hc5ONODttjulyQK8CXDoYUgTLiY2B1IpgjU9ELpZvNe23VgfXz9Fg3Fqd8ScuhzwglNqGYbBl00y2nC5WiN3lY3u77dS5f/FpjQeMLVdFkH/5WoqOcl9Y+zmE0WRfsW3OEWM/f+wTLsEG7At9bmCF4LHZn6lL+wxM/AxF8KtfrHySjbZhxRBxV498PF5kLD2RGqz636r3rLNx2SfYu4/3C1E0B+l8Ox5zkFXXM1a7u5ryP//UvMzAh4o7RAshiiH/9DEz3bk9A7c8gKfmk696hga2iWZPoCZZhJMfnlz9H5i4fa99nCp9EM3zBLTrPcJmUry99t4UMbS2s4AVwzrpi761bfgU31fqX08vRoI+riE5CCb2HFfs6S4w/upx6O0OG7b86m0/fNrmn7PHZq0nv/UkPLpU+vR4D9pffckWqacvPGgT+LbiGf/qY/TgVBMIow/Chj8M1YBAUsOyukXUbLMIzAN9S3Ctf677P0bzyXy38GvXFc4mJnh9eD8LQOBvX9JzqVKxU1dLv/otEn/1YiVzREAvhoi14h4zAvJM++nZaNMGvjfVcijB1T/wyejGitExSeQfX3883L5n8mOI9xocD//0xXmYBngIlJQePLvxpvoqNjDJX3uqZru4Zw+pFf7qHRc13Ho//RMcytrAD5VTGK+cQAzy/LP2STBOPV3rk0C51QecLQ+/X+u3SI5Rh+har43m45W68NFqChFopHp8dew0QOXNedX703SSnIoH+ze/Qd9HXvbT5hMhWXhaPP3xp8G7tuQPP++LR5NSJ1ESoITcSO1WiNlic2EC5YMeID4HvteNm2P4f50pgPx/nymQxB2lWsxRsCifbQH15p7Swzv2exb0XgHJS95RC+/adEBscCGLvjy1hkaPBP0a1HLyWRABqqD0vXwNur1RYg0fbKfSpzJUS9ktyRUj07f7qb05OTjdgwZJk4x7YfeIFngQpIFaNb3qs2NeDHhcuvM6/9HwZvzMJlBXsoa97VbxFld2CByM2wkVxg54jGwAgr2ALtQPWtY3z7KcIB6sD3Vu9jlalGIWwPtTWGsvmGdER+SFkEQLJFzOV+lSfG4FEMaDS91e66pJ1B8KrPaXAzaNtk5713VcUNaKjZWNLKVfyWIu9Frlgm/nt9XzL5aEsIoSSuqrIkbf+/0sSldLw2TqzR5M98+3Bgc8f6hCfI/NocYvcD4EEnkOdxBNA7klkN53AtYH5upTerwU4t7wHOrzkuwNmagtsMwNit5kG1asaB88OBhVTISvtnjfoQ0VOCyKjF2ntvRRYjCGaRKlGKvSvM7jOiXAp2aAhDLRI+G5/RYQUI5hX9GLtVfrqYZfUblSk9wqNg3kdAcWsEyqIzHWCTS7AqZ96FN1K6rpMu26BmIjieldEPmIzsKNg8YzvONDEh7WSX3VBUq1fcTWUa/6vnYKCRZNmmAVWmoqSHcBwXU/MMqyY8S4Dk2S039CfGhTvx+372mA+v6sEUEGlUelz7b+rQ9a2DlOJ+MaB/BqKZjq1Wx6C97cRViP2R17q/0tUVxKUPaQh1XOvYEph3Mhq5Cz6WG5zCkThWMjqaqZYEs/hanw5aQWHLMBYps7v8CoJV8fXtWwopgDF33eboALNaPLCL2Wfj+hYkxgseUdah47RyfR59sCqet4VNNM1OdE2EpQdeuJqkWlVssMb5c/e4nTiEWsQOuZnWkJsbnbXaPl/jmHMDqiE5pIe69aY74M0MiiL9rttod0Huh5gNOtR4jkvB4J+B1kMNhbEgFdanr8IeYIZJfujUD7fLC5jVwDXreJgP1ueOiDOF18sPozxtbRB+ssLwjOtKjoufgsYP568gQ95aL/9h9Q5IeXjTcsGj3M7iWiYqbbcO/2E0VGBqN+occWggWk2Ng4yFsWnNiwgTMgwucw6uzVKBJUuVGn6/5X07dmEryOpKSaebqxLrZCEZTWPcPIbHcp4wIjlr/TSaKHNh2qrryphSxb2RMtMUcZk42bBDNJvxO2vxU6uySOBk0YjghF9zYdytAp4fNezziCELEhLr4d/MJFpy74cPp0iLkBdp+Eoxo781Hv7twLKK0kw/jKpdEQkn0Lt97Zw/798K2oed7EoErslB5zPIK54LNaEg7eQhbztGfdXb1O8MsVHPV8Q6mEbuo6afVXVFWqyKj1WtZeeQZCPW3kirYbgYOTCgENC/5Wsa6rQpjbwoKPoqsz4WkXMYSxecB4GoWI9TTUAHUlhdr350efo3sZACEXMY5uVuxR/ihI0LWCK9bTvPOI/Eg0uH5OkX7Sq4VfRAN+xHaghqiRdJkvkQCgahcYA/6iT+RjWrBeHJkakhDpC0u1Rt71UolglInp8JECJH+rrUSt+2un/36PdESlSt1EzvvJvSbln/8p26hnqz/VMNptfQJfMku7rqY1JDVs6WNQsn4yulQDz50yE/BKZED8dOGgfkaUHk1G9ClmRQKIWe1IlysmWw4SFSVPMzh8fW4v0eTJxzvMU3YjouN+IuZylgJbR0gIE49vb7HsDZReonNF38fuqU/cIx2gdCBHerAd3Ztu6mD89h8fzt4HsFp+T3Dysojed63S71Lf9aXAeyCqqnsVLGBP79D+BgaBpHLSeXvbtrAJHZXAB3IqpkbEBZV21JF0PMRggskAAYKDgrhesHVm7Kw1f7Vnemu3fcqslrP2Hp9fqDdyEaDhmSIonuYZ++BNPDoiPQCqf+3Rh4OfiD06cId1SwhFYZfpi7y757ApzhC7bcdXy129LkCJHgMJetNjk+kYAbzwfEW168VkS/E5FbJnv99kjzu1ItevJMA+CDms0w8Bw0dKkPRKlgkJhTKmzdR/CuANk0Yv8/moswYEgjxuaxVbbKy8eX/2XCjRpCA7rfPBMtq4ES93L8eotwBbuMchgWoYGX/XQ3q7NaCg4oQtgo76DPOig/qNS/EB2mW13NQi2du9sqHIUMZ+HM5pCPWFT+kxnnZsuT42ExRvBcL+eCXRZBiPEjyRPWPzQ5aeqn6Zwa1iiBQ/VA3Mv3x8fp2eVLHJIdpVOd9Isv4g1NpUA+hq+MrhUpYhtiS+0lm61xPATuIeP641rCYjCBrYBImFb2nRp7Nmlhl0bT3EykylatnV11xa7QnB4yuqeug9apiV1wN2gpvXv+Ug6SBMBEbNeHZ0IVJrF9iJkVClHbesKwclhA1kAK/+U43WizN++QL7ffaNpvZoJXBz5l0EezHRB/vdFlCpvwlWivud9fcx4KBmpVcyn9/blD7PVwNUQcpR9wO6aljzNSQNrbDL0aJn9nOtibw6Sg/I+LDp9Xn4YCtyOyLQu+3tDs3Llu1MMJBxNFlP7+jqwm8kGVi7Xt6Mvhpbgtwbj9gqlDGicxUhuPo/kRDlevbW4hq6G/tCz6los3kP7A56SqxTn2xEbzq/kwSs9krN9XNmTFoCiRtV2LtZ7zQ/D8kdHuRbRL1bGXs04r8KsOnUYzUt7vpyhfsGDmwWsaWZu4ho4YuHB8w+qPcNpRciqU3ALz95I8fYYlaeJg3C8qXrSBeduTs3lm/t5YWVk6ql09YXgp//rHgp1Du2NTW4fJU9jV+cUW0z0/XhxzrFGMvREPWbGBhwfzUnrK/xdsCbSw05m42k+wq4nwXjxcErJyGqRuhVjdJtL8G3lI048Epf331Gm4cjNFqMT58D48N0EWVXLXrscK6nTy3zJBDGcYi18Y774ctxMXzKr4R6tJH77qhSEYiBItDoQpWID1NJAtJhOJJpVCZAReqIP38m6+CIqM0nLpecpxMSqaG0mkQcWPB7uEnYlh2Lbc/7KJfh/UPW36tW01MtYijfUovMnNTocy5ILpB5wyOStl/PKAqlJXuaxVETCYY+Xa/2HdaHl0ak4+7lLUfW5r94j+TsY3hs7nIJRJdvgTb86VCRBj87+Am4G9acmmeLny4Q6ouQItFpBH14bkcEyq6kWDt8KWCPeWMA8NB86tpJ7y0pOxDo8dkFW8vL1ufFyXIYP6Yam5+wYizJPi48OCcF+4wa0fRU2wsYlaNILT+6Ruv3txBLUYnAGm8X8YJzAM4nio/P3bWaYN0q4Pi1IUUvb6ezsTUJaL13RN31+aZXnOfgyomIHnp8ipZysEP4BNODvDaXmE09/N6hndcb7KlWnC7kubXgUAkaVuL65C3SCCEIUbKnat+pkVDtJCJZb3ukx++3ZYsliSXc1KpJdZJGjHKVbkHBdSuqNRGt2JrfQY8PJ6qc1DL9ez51i3uqw0LxBOmwyeGLEBu7zXpmTTdzGzwPrbvaz6NfrnhKZLuJImrc+m8/bUo3A8HQSfiYxI6++9xdC672gPrj0KXj2xlqybLJiPb36emxoj3zv/UmG7EuqyXE0AYfOUkwDvVLv1S7ZYCRTvZYkbRzNZmaUkvZx2KId8qaLd/TPocc8EwE11II224aHo7LO8CWDHRvG2r8BN9bqmIbm/56pum5AHcCIUX3l50uUrMPYUy4gB5ueQmoMu4RVErxQdPV/+eLaXKAZ62I6uXgRIu26TXY5i8Ja26s6ktjR1C+HNAOe9nRjFjEvxT5TMuKeqrFp2s+s8GrPG7IPtuoPY9urwFEgnFCYM/L/XSPS+HHd0nLzVNPGbAJLOPPFU0zvfds+x4SIKuEUTuutXTXrvPc8xbfsOOXz2gYtg8L3p3iuOI13pvmqawF8/T5YvvZPfu/eN8qV4Wqw/aur+uVAf5Bn9gul9Kb1EFsoFB9lj8+QAry8KGYnhzEwEPsZ29nrROT+zPiHq0d8btHa0HtZWT0ko6hvvIfERzeo4J2/EmIqN5HLeBZJ641Ko/98gWQ8IaiSRSkfpnc1x0+3pKHdaPjo1++/8Vv0vKCx6a33YbQ4WqdouhuRxNNtgbQq1tHmHc2091qL3L5ZjrFha2BRWUfDiZH06Had6eAZV9q5Y+fEm6cR51ZrWD9+CcS41qLdh900ODbNs9Uv4fYm7INyiEvuwHFLhSqoXuIK15iMymOkhZts0RZR7AVMlXpMfBG1h47KOQSRpunmaaMWAKEPzzjKmbgDV9OiOG1zDBWi80UzRvN7qB/Xvv6iGnKptS68zA/BwtqL/6gz5vMM8BwFL9UMVI/ncAeDLDt1/di7iH1xuhQleCL3Sv1gCL2s49AA2SpXhAffA0wKK0qQG9DvugV3+7pwjeyIr3C0MFGGrGUFq/Qhezh+Fg/aF068ZJtgOFpnPEF7+yUx+/MhoRLBcQO+U2nK/6Gh4ozyaZ7CulyKN7ZL96hFY/245OOAiRJ2VJHN/p+JqM9wXYZEnxHEQUjDN8N5PZ3Fx904cPmxIEDZOn9hPVNXAP2upsCjME9oM5cb725MmThh5eoo8XPlP7wPR6Mz8qvi57pXHgH6qO6knkampTpp5MPlV3r0GzwWDQ/z1Ui5y+yEHm3s/sh+XIFrITrBf3wKCO3LfnlT7SDtlYJn6M2wKznn/h5Lf1q2hM1lJXoOWBfukU6U6PGhis/wOpWfEVM3VctnCd7nQ0nHxjZYFvb36pmi/br83+iVxnKnJDeqGfeaDS/aWnBpjVuZKfmJzDtbX2C4bN+r/mt9n72LMme75GQNF0/yvJN+PE3mtv0Gk3qkZuA9vnof/ieDHbgw8ywfZppu5qV/HMfQ6fZNWTffwOPvSLXhumlLAgASlKteAGC4WmdsfE2jX6JbCpIy2F7JKJ7KdNh24sWHHX0xcdAJd7iXo0/PYvsYflKGbAaQVpbEWN71009O669vNf9o6p9UAG7BvwAXX/hCPjF/3A7d1C28ieaNvI97bjJsuHBeMV4TO0jmN52EcJFN1/4h5eGHhc+/Hiqgo+pPbLh5++8eK/RKLoVWPleAfN8cZHsXDLWmYKzwLVkTd0mUsDOMcM7+FhRTM37cGS8n3Ltnz9O30epz9/rJMApsj9YoYnFprh4tTJ4UUq2SbxjS3BVMjndPw9oYx0HwKoZXOCa7xDcdt+U3fm4A+/dA2J9M0Wrpj7WMLwc1gkpbdSTxyQt8OOEJsW6NQDaGeMEvpFo4PviuBWTir0E0tPEU+8zMfbhLYBgQoItdh67jf51TjcbuuVwxa47qd4Y8TWB1fF5QbzaJ/0cnlkJ8ecCKIqEnUeaNCTQAoaJf3hl+kiJD52t0aNX373SwatcCI1YOVBva0aAgWG4QGtuRgICndOJ8pFL6Bw3DWHxtYsYUq4BnLUKYVPAYzUOWlzAyiPpv3z11goRbK33kyrt6eBti/vdhsole2DvHhbpor+vHKAFw/h4hiEjPt5J8BUGzo8f9IyTzQK20kYi89mxqlnzGxdmYvCkyKbXdGHEieXVXtf1diLyknAHFGJPSHKnlzet+hF816/zn70J3VR28JpAgUjgk3vEuGIOrvEAVZz9ZYtl7zigvayM6uv1nC3eHZYv/YokvuDSAd3Wbi3vHhA5ib/e2EaaBVN+TOkfP9e5MAH+eDn/6bVLf3k2kljKD9SnrgymbGNlIL9rOVY+L6kab+1bgsdT/iV7NVPZlOtyCI+n7Eu9LjX1yQiSBvCJzNb8u+nJ1NMCBo0boeQrPiuaVx8DbJc8oFqp8P30xhWEoD8eqJY/3mwR+n4Cek4OVCmXAAiT+0pAOE0hduxN0PPauw7h/ti98KqHgOVmDwbwH/sa28rOT0UQcT4wbfv+h98mlcEAfvvmSp1HGkS8etsLYJNdZupHyrdnW7G34Q/P4SsH0un9bVb9Y75Rpz++oiWyP/xv/7Bx39X9pHlfHq76PdoMd5DO7egXoLD9Bz3PRcUYV3nWft1/qhdyES2jZLvwYxQ3Mqv7F5itl2BAC24V/JBQ9i9/utB5r+9MeWC4pU0JervpyKq365PRRYo8zdcSr3oeWP/+b78Rm623zh4dS6Bm3a4E5nejqmktuhClRYzm1X54ElsxHFwgEtJbACyr3gefy8mkR5IsVYuGNoMrPqG6eDS96VWcChB92xN213rBsOo5QLyViGptb7J+10XuL/7RAw5Ktnx7IEr2NzSoUTUoWk6XDQ+qxE3x8UN0QL49kOBP/9i8Jr/65FoB9+fbx6O+HkXV7rw/uPD1RhN1Dy3X0wYEPGQInnDStR5g7RsWPzxEUt8oKsbJxxJ6b/W98ldJJ/Xj04ENOgxIUl45exevMw+L/XmDndpSqxkpVQPTPvDJZmcO6fCGo73TlsAmdeyziqz7I/348qqPrPjabuCB+gmSvveCzSHdQqjJRYrtBTRsxR/1fs2vFCn7sf/TD6bAE9DWo4a+3W6ADZxDvqGeRjivZ63KwfJTcUjKDK7fzVWK4Acv6+ByoOvCBisKlEPxiZXvPmBTkCcZvDvl8S+eT2fr0kC/NDQaPk4umLOn0e7myZWwK1fvfuoeax+KyivRtNZnpl4fbWhpvoV2CRH6uYyOAih2b4Oi1zp7I+COEAzXq0jRNgaMxYer/9ObEByvJF2ytxLDYPN50cP386nI9zTnMHWtgizPr8LYofm6sNJlDmNnAv088kYG1f3mir3sG3tk2pWNfPciGztp0UfjO+tjEMFaJCIv9GCww+8C97JuU0/0GZiyt6/BwXFleoD1HP2PtGvpVhZGgj+IhbzTLJGXvCQIirgDfIEiCiRAfv0c7jfL2c3a470Qu6urqpP0xE3JDehV/EQvj2PNPKB8AQ3OI92v+TIffM+BlT/QUJ6/6YqH//KHRnuUlMvKTyC7IT9qh9YspShMjtD1uoVPTzaitV8gQ2+KHN3L7dKMS5VGCN3YjlrtSMohELcEtpbjUX/1K4WtjgZY/WjqCJ1rzpeoqdTCmp4kP+e7YKkdY9Je9/2Juryz6cdST28qvVgIu2i/KcnjWCzQGTuE7RmShnBf4wZW8SDUjhyJTafk8IPP+4v+9AISclGT4TjLMqF3ABNA7L/h07C2Sxz4LK6N9yOsR65W/8fAKqV45W+DPyec5la8hfHP3PULr6AFCWcWrP2vHn36qoz/8Zv6g5R0du9fF766khJeLaxyxvfjhP782uIy/hALqk2iDIzJRO2iN5v3RWuglz3tIlVr3g0zD5cIXnW0ixS32aLlocaJ9qfn3XO+M6dcmF/abf+64dzzPyVphasPW1uyqLcct+XcaIuj7Ue1i8jqt04b1zX+6j32WrVNl3j2ZWQv8+mfvltWvx9WPkZd0XAQ/6+/IRQiNtSKL2+rPwVrfaL25bEw6irnRI7ypln1tl8uP//tQmdbA/ZW/TlFw+OGfgVw2JietF/CUgVl9WciVv3slP3hT/VoQxx8ju+Arf0J+Fz2CDseND1b/TxY9d4//J7RIHdo8FwNe/j3bOa6tVpkC4uDrbpI0/FtPFRY/XK8JfO2ZLyDQiQ9Ohw9SBig6aBtfyo7qMrf3296fpAHIOu55b12gnRRXNdSezHM6P78qvrl+pIIOP61o3srsNKpz3oVPl5s01uYun3/4cMHSCfNx16FTykp2W4A/TDM2LSLRzNennUI0scVqe6wumQj7y6g+/oVJ9RQUqZHUg62MDk4eb5sRrK3ZSEs1x8yr/3IafsQaqg0PaB/8U0vqAO0k/sP+ejJOlciVGtkvEWXdMdXXbKt0v/Q6NEYbxFrg8F4v2It04cYl637C9g+orHK6Y8AG9ru3SzcFRdoqR8JUX/JrZwOmveDBxwnGlwveil4fflSIhZ29LIcn+XqF1fwSegR//Oz5a8Toe75GGgp2IzR2csXSKJCwf6Kv4uXXG+w+jPU/n6lhv35DXZ2OtHorz7unEb/639g3SqHkp4U7CIHJD1StnLcL8a7a8GJy+3a3zyUc8b5EcC1vUev+Gux1rQuIlKfQUUt4ZcH//Jrg2iOt616MperryXo/9pTIPzvPQXkeRupM49QMjPNbhBJrCeysqHB6JrfDrhu01B9xm4/9JtTi4KwFYiiOU4jLV581IqktijenZx0ufatD82JZtjeZHpD4/1iaBvWvCK+9Y2euV+6oMwVeyK50RGJjBt/KvkOQEOybNOFS/cTCH1cUvdB5mZUbooOwns6YMPe8Gi84oFA1aMP+fBxUU51PBua2GaIKL9rm7L5HgPcM/NI993paLKYLABZ0E5EvqlXc+GvA4HbnbsTqTpvyrG7hJV8K24n6h60bzOTsJCh2ZAB67vDukNaq1VIR6LjKN/55jzM90F1i1DB+Ciynn1RRED/vA5RP34cc06JkcHVzu+R2nZiOQ3fioMpeET04D/agHrpx0fD9ngmnfwZmnnXDg/ITq8dLo7poySuNHYAeUaop0WknBbnN6k3etOJ0NqN+f1Q21F/+vZFnYh5aFpro6qllwhjLkb92I2BC0KWTBgXvw9iwM0ZstPzjAMiPRgzN+cBlPctxbqwe6A5c+8v+B5vb7q7fgqTSfdvp3TCvaG7poxShjED6PkXovvPrJbD8mkIjJk80GpDebYcv4YIRZzcVkyMg7l6vzPQbcmPDh5vseXGv2og4i3H28tFQPNdeLgQGLZOpqp+9TTIv52iX50S72xyD751oQ3o7Scj8SJ9RrQoTx0MQvAmJEtP/dKcuAhVzFeIqHokmNf5BfD3/lbw9QMWN8sPUo+m2KsFrZ8/ZZRD4IkTDQ8zK+c8Twow3psHdtRtWy75eM7BG00Pm4ahmb/ikANwzf1CtOgBjD63XxF+wVbGeNPdzJH6OUC37U7UbW5iPzwkaUK8Cz9q4P6ZTkG/nmM+Jha1Q/dVDn4k/aCHrMf21ZbY8j1aHEDwTvD+Ur3S5eF8M/Sb4xBbrW80U8X6EI1ZvsfBOziWLDC+OkJ+7dF9HnoNHxvr3UEYROzgexBISEcZrPmFw4+osCl0FR704HTEoXH8BaN+v+fq+eA5ODgZX9RVXP8AqI82TQ3jGszPiTtCZh6fZMm7U8BacfE3XmoyIoS83S9C2zggNHpI8fk2oUHO5RAGh39GYmy+ECsu5YC026WONuaVmNNbdGr4Fc2FRktXp1OYqj5Cun6kplUnbHiHOEKNVF2xhZ91OWS/yoXbCwJsyuE2oMH+edQCS7LJazaTdOYkK9E+Y+ASwc1TNkumoMKarxEK2zyg3wMuEHlWI04vOGNzCJoI94fREylpjUZU6eJq23y9bG9wB0aPs92qpSPNeL9s9WaqZwVAk+QCn31OYd0vvMuoh2NPXS1wzMW+xjcgSnil1mvRg7m7WBVsjsMWW7W43s2p/VR4W0sTTflvKAdHHI4oZ5W04mlVzpl7bkF2u4FeXt/EZDYqebV+dfs1P3dMymRDB/o+IBoiCRr2lnkLNZtwT29ZKjTss5lqVbblD45zJ0GjV3drz+YyYke5hmj5euHvLz+o97UbNrrms4Nfu2RE5pqun7TW9EFyHYO0zWNkS2LuCrD2rCSjszMYf7UfhsbnVUDefDI3NGienHac9Ynu355msix0FzRMgUo2ZfYN2CN6WdA9rjKZb8+OMRVvHvBo7Tt23I3QN5Z2nWBndS+aXfW8nJMpTABcYU/ObsSv8ZIOoNRDRAuTmEw8LV6EyvHV4IgdzX7hd4Ojyrb6wfZ9mzIGTDEA42dJDnelT6calhja58unWRgMPSu3Bx8dPmVNhOfT62eef4DGr5PaHasEk0Q/sFASuUcclWXXr/kHoNzwlu4tqpfr+j7+1pOGg/guB6Z0N3i0b47ie7Rq+NCe1Ldh3Ih66g3GL9PPUZVH1eHoMxRscsRXhhLYSATeUdXP1UJbtDGqkh7yLSuJGiMfvbTmQHeJ4ZlrfkdAeq6mphpbbNb2IUA7vG7U/7qDyQZ9m6A/vDKk0WEL59o35TR8SNSF27FhKpYeqvCYWqwPLGOTNgc3hNs4ojqTbDY7ycjDIvoFdW/qNeiL+JQBBA7D0Zzv+jlbT+Z9PY5G6vr/xroQBqDctFBd30tsdBhZYIqSNFIVTUIDbrCBOuHa0D2W7+XXOz+OkIAm4a1bGSmft3EM/+p5L+kmc5pDjOxcQNRq6rc585v17vItM/AuTUz27/O/eHc/alf+w7+4kp7kXV3EZkHmJGv6iw8J87OdOX0q31APr/4aPfz3u58GLe3gIbx16tjs1oyqK+dqq59rIuYVxyaGvz68HkwkSAmlYBirZADlceuw7+5uJlE6gahsphdsr3giOeTSwnazzvf+hJhNk086BAn/wqedK7NFuDx4WOs9QZpFy+EKzxeERv/DbpXc0a/4XFq0lX4VNWXZSKVDIDsQpOKOOtHObdhj7B2IOcfDFsUaouVY5PCYPiccfTvJ/HKCnyH6O7SRqnkRG2sFBvC9xIkeUmA1P+ue5AgS8UUNnarBSMQihM+7zGnkGE1KfySs1HOk3LF1d1hJ3GHM1J2Rc4TL0lMz7T6PdV65t6emZO2RwMSfDG5y97DtwphS83u3kNOUgA2/bHs2PwsVjmfzgsNCacvJSOMF5o4/4nDwX+YXph2P9FPWUzuSv+mwXxQfmgwLhFclp59kZXbhwxfFfnl2j/RdN7yj/qj+xknAPLPrCteBkMkJ9frxGQwd2hrw3Y0eNoxd1bBI2/hwyyOK7fdly0Y1nQYIbnxJlHrL92Nw5Xh0z9mF7lqzZyyTfQOa/F7SyM4Mc7l/frHWjHcHe3GHy+lzMwG0pYix31U/Nthym4D9exv0cF01MhxVHS1c8cWeapzLBZmyjIprneOAqw6MPsXvDQ1L+aDBMXP7mU87Az4nJEXnV/9N5wSbGfzxF0xYkkqqIcTQbbQcG8NXYjOnG4N2M7GF7fsomLOqTToypnsWSV9co2FfyY+/eIroiq/jJYhdmHe7Pd3Fv7ZZzKAcIHQDPuKyYM9mLjOPEL8sRp19uSvZDT4J5O1YUtMtenMpnLxDTzH4RcPi6KZwtV4FNAHd0BWfm3/5znVa8/d86LX7dD7YIHbRuOKhNDXH9dxU01E987Nm4iK9lRdN9fGO51M0dW+90PYQDlgPBL3kbZkk6HwIHML7F5zObvTkNIkGfMS/b9tUurQnQCfl7EfCa3w080tXIvSJyxEbZFuUy+ngJkC5ZSGApKpf6C4tIMCZiiOHvBqCxinSHO9lUXeDApP1hhnBR/LvUUVbv1z1gfH3vGTj2EG/2EnsaiteR7Dyof4C2QvdTtUP27UymAthxx9MUZz+qz9zu8MDmi9HFlFjDtHIP+oEvE1Co4/XnlPyKDoDrE+cRotnvsx5vFxdVbH2PdYv2dhP5+TwgvPOo1HjZ7tg5r/dD53DoCBSULN0JmISwuU5o0hOT4M5ckGgyyJ7iTS++1s0iJpmSI6EXOpsDluTN9z8hibn0VDDPEvl4gavAt5+PNJtEH7KuZODG0jU4/G2utrBrFnRCznNBSLGwlM/QRJW8L5MEb2ySxNM+2qqgSjRNfr+6SPLqSK0PL8R9tsHacaLcZigpr4R/fE9kV4rHd3H5E1XfGPs/dJy1BLewgX3nEvi3RsL4paXMZ5T1/yX77Vbxjj6HeW0/+H9DY7T44BNP/sELBu9AWwpu0Wb3PB7cYovE/zujYWD32a9C3V/t9DGDwN6eV5RMORtnCBfe6/zRMmrn65xl6npdtNQa6ZpP51Z8UBHwrxINUnDGI+JCGv84eBEgmDYfWtLu4r3LgJDbprJ+B5yuO2JQrdXYdfzhfRx0HIOctKsz7cY+RVQcLZ6HGo7qR9KYfRhUk8zdoVSaPrA+BqQP/EB47GkaHjXWERmtc4aOkR6ILrP0UAHpXfxX/3+sm2fgNA9Mnxdtnov7sgnRpcdZ2J3szMCYbapC6H4O9MgNLhmMrTcUZtsL0Tcyk/mXCkzaPVTjbdXz0n/8EKLoirBacitPQQ3r2DOXoR8mL5J59vzeYML12T0T58sXeaoUOiTRpST9QzoZj2mqd3KmlplVJpzVRHuX/6Zgv5bz50qIlx2YGJdvDerfs4B1YF3wkGWvJqlp7oDfBnGdP8ds37M8dGA0/AmkTAVSjl+H678h3fUnheEaPtY55V+8oQs18kNpsdTchETqRXBfn9hy6hnHAxReyBL5m7+4QVICMVkvs9mzwTpFcGvnTJ6N/ZpOUfitF70czJX/cWZ7IscAu5pH1GfgJ4OczoasAkhpi46H/r5T599Fp+PNrpH+5m/dRnitGrdonAdm8Xq8gUuBpdjW/a/bD6ja7xO+bUJ2YzXZp7Lz4SCysqoJe+ePTvO9gs+dL0ncDopaEh2bqus+nPlL24p8ruXA5M53aj7LBY2SheuVlb+HS1399ez52n1+KM4xdZMWU97yRBhD9GA//QUExTiIv40rHf7D2EvfQ84hz62KeH3bydl2dmz0IdXlUgSHkKwHDfBDbSuUCI+0jpErUNVw/2h90Q5uy9E0w6v+lEe1vxym5mFzQuQsVxw0DYiWzZV6EJLRAvbwZCU8/6icnBsJuGPfwaTXKj+H/+gZvN5NdPu9py0lU9FG1szkRRI3Q961bbpzucuq57vfFT+xBuN8t5seLhak/aY3ifshNKezZ/SybUhWPmc1O3KyRGHDGIxu0Tkcg8baT7GP5AjX8T+/iyj9234Ln/xjYPu3KdLl0Uympujj/MNW/fUM7X6y3dqlPGS1o/3I4PzqD6J4FRSM5yTSws5uQb0NvDEnLCCf+izyQk1rjJmsxldEtXcRzP1EJeWs0QlV00Pd4vu/urxn17/2U9C3e5Wmz/CVZy8+jfYT+49W2hXHdHGDh/0ynG82at74fXHpygmu0MwXednDH/+2CQFr2a5H74/dTv2drTY0hhQIX9HcJemEkeGGJarP8UBXLMLefK3D/rDO3iG4iFSv/y+ZFQ5VeiPD87VO0SDVIED4+U3U5OFQj/fsq+LyPmaUfdX24ivWBOhKlMgmpxxn07A7AJSa+/hPql5kz7GxlL3Od5gN9zuG9INuwcqNcfCO1E+9/1ffIaoM/BJFvtg2vpJgf70mv/My/472x8f4uMnodYjcnq+BjWBc+gVtEqux0a4GXUF/KbRonr16741FgrYdj6KqLFnJT1kU64VQbJEXN43zXJ3+xj+8k/rv0k/X4LcR+Hs7mnwTCEYFV75IdBfHN4dsg+ad3Ejw8QLH+wKjZb+ml4UIeYs758+mck5DdEF0gmbdzqkgzQtyz997X20qenOyaHVVj2PcRZl5jogJYdw/+VW/6xs6LG14z++j6NJfwesbywf/vyXoO5vzVc5LR0knvvFlu3xPcvqbQ4vYX4SNZWikvZN6KL0cXOoFR12/XcX96oqfm2dGive0b96Jd7t7+q3qebKFzoIbmL5h/flmObeAElQYLq3y20vBftvBrFi3eieK9R+utoPHfaK5uC9RR+rv3jkIM1uFFveNkQsM/0C7s6TrXiUoHHNT1jXgxqXo5gOdkQ4FL7ymZo1aso/v0+DwGKki9+fYKanQwwxa490Z5NNMBX7zwQbTE6EhYlZ8g2d9D88JMK8IEbsJPeB2Psp2vSfMl2E+HdDq576599O+48sotU/JvkGBQHbvBxZXfMlkriHXjIkLBwo7yolm9z49TNMOxHSviroaefm7E/Pw+p34vU0GZq/Z//xz2/ct5czm55HXga3Ao6aZnFvxj/8KLNzQtRnjvqxWj4vNLmLh0PuvJTTWOQT3AqOpzhTz2m/+tPgqN89DcyvVYoC/VZQnKaOOm7Kp5PcTDV88U0hEqrmYBJ58YfW+F9n1RwCcczOLSxHZcFhdhoQlbyngTpVG7Ejz0EvV14vw0M+21QvSBx8hsyTQfMuEt3mI7/W/9hSVz+QsLW+z0N5t+C+xAey+skBm4xSBcSkOtI47hjMG+YWf/mPrVB5B2RzMPl//vjtch/65bczBvUD3ZfGhRGxP/z4+z4NU+FsTguqCyjTz55i9/0sZ/N1kUE8vnl8fLZfcwgekENweD2JVEs86zESQsReG43Ugv1tmNR1OtzfDwGn1x0Opnxe92yUUbziA2rmnd2/IMjaMPqs/tvHfzfqnx+Fzdk9IAnuyxHmW3aLyJ8fo3Bihla+FY16SppvgqwXXBA7UN3wGFpcgxho1Z+RfK2L5s+/+6sf1Msqc9WriQp/+iClRy2dtNLn4TgbE93OScxWv5ZDkvL9/fn3AZ2ksobnsTVweNT8dDbHdXaDIr9Ir1k4lQr7agDyHx6N2WbsuydjMthLxnC43ytoTPfbXHuG/IH8DvhgDiO6EPjeuAI7rd40xLoXhZpifMWm/iuagVi5C3YuoUjcl7t0UWPkorGUz+QDr1e51udWRXZ9w27y9dnY7FmFuGm9ad0+/dj8Pbkt2p6UE3WVdETvs3Pt4E/P+GifNMttM/AwbST0j9/2N6Dx3+9N2Loey8YJHuj3XHrqPF8zorZyUUFFeheVHywHYqTDAuvzUL1vEJu6wrWA3Okb+9zzkFJhP6x4K30iubmJDWv9Sf77nHpvZWCDHbUAK5/+V7+plkwWYKyvd482OqIFrY7/+P+H6feSaYnswPLsI7otTzNaLO5QgH5tVer/+S+n5jxAutUavF/GLRKca+tC4Zkheer8pafvi2ahv36SUm+P/SjXoMIQiOF6TejUTx3ydJg2AsLWxT+nMzeYnPbHb4+PyGnoJKX1Xz2k+k5zA3ayrQyClN/Ry9ovYD4a6n96+p9/eHuMPJpvokbOq38llWbp/OE/Pfzpr1oBAn/xb4npaK5+uQWUzhPhZWYg8b7Ureb6Y45Xvt9PseE4SrjvOezI9q+co+2Uw6M5FzSa80/DbJTyaMp0iybz/lD+cKLUaPu4BDTskgAJpL/IkEjXke4+advMB9eRQWiMMBLcnKHv96HLWpbwBo12xZvRDy+HcNZyA2erPztzUpgg04iu66yodVb3PHOaDXxH/VQi6cRI5yNLfz5pqN6LQPrwU6h9d+GP/un/Nz0dEognHkflWzr1Q7yPCjiyJKOOj+OSmNKR0/Jus43kg+b1C5KnB1x480ltMdr3f3oSjm2tRqpw4dI/f0dTpwfDu5R7BzP3DDpIApngY95e0XTeXWLwnXpLnTAYmikINYLQbrEo/mGZLffqyUFrS8M/vjO7r/qlztuPSf78J4Iu80O7iKzFOObKcvnFngO8Tkqq586CuuXQO2AlcRdxZPqZtHgdDehC11/xfTanYk8XRY92FxwoxxtbzOxoQBPTnnQPMq9627qh3dG38dZ6+cF8ecYT4Me0+hWsSReVqq668gGsb15c/8/P6X/vF/mu/tfojh2HVj+YzNYwo7W/FarC0fQjjlguI5c0kWE5e3m0+h/BrPjqEcTC5rCnqLifRnQY0HuvLzjmQgjoO+InlKbkh0MFb9Ih8NkC4sTP2MwboZlmbcj++qPRxvnaq97OY+CEYUOWaxj148pH0O7yw1j/BZeVz1guXLF8pJf3Pmim4ZMa//wnS9xEZT/tqwhW/5u6qz9NfrNvwHnbv+naH0FsDpJYW/VjJK/9lGnH/3KEm9qL1F/usPl7Nh5wXm+U81b9wuJ8yUB2Lg4uaPf88y9dbfVToml9v2HLXwY4b7/vSKyOUkBeGmtB2rch6bpbHbCpOfKgBFqJ7Uj2SmZ9Tj4Se8Em3/0x7ufj4Bbo/HBd/Ne/nAJR0LWc3SQcGFoTTHpdgbzy0f/2S8vwcPsXj97ZtdBsynkLq16j+tR8yn/6DmLrTu9LU6PVX4zhT++v/oAp2bhoQRmHmkbjg6ak3ko1rPGJw7dz/HN6iLb659R+HAibpYtY/9NjW8M6liI7tkdY/WWsn+tLQOffJYHtOxexywcqGs3LpVXoL23pnksW9r0LD39th/IR6s59SWOicsi6JkD9h34J5j9/66ZXG7xf6+2yN0Ty/+0pEP/3noJMkRjduhQQ+9RThkYm9tTg03PPuuURg63EF3pzzY1Jvs+Mg9mLLLpvJ6Vh+wnlIBVzQ129IM3kbXgDxao+4Uure80ifMIWquiwiZT5sUX8CPiHtuEQ4B2941IQSn3tuZ01oqKfXY5CbRwhO2gCtR/jg5E4bguYKwKR5mwGxPSE/kC4Xtfpb82nH+L3tUb7qOEJZ9j3dLm9zrVaGsijQXs30yWT+Bjw8ZXT7dc/mnMIkMErrweycIdzMIyw+8FvZxTUzzxopl0kTfDdxVdspfcAjcKl8kES4hDrYyEFpNkfZGRc5ys2LWVbij/0rEF48im1H6ZY9q1fROAmBSGscU/lZOuwzjc7Pal+fXvNEsAzRkfgGuyioG+Wo/uqoDryXxw3epwuYXiJQReDmiiU+wbz0k8EPbe5RKaXY5jL9SMXKvNvBfnoc1OybHcJ0Yb/eKTbrvtgFb+vkSF8K7zP0BCM4m96wH1zz/D2e7DZVHgiD0NxS/F2xz3K2RWcI3Diu6P22/sw9pW0l8LGTULD4fsx35YYPdC7n5/YRdaFfS+l64MZnCVqfuvKJNHs3OCiVRM1U1Hv+Xon3gBHJiF9WSbmnAd5BMOSJdgfTNSMR/MXwpejx2hczmYjnr2cQD/lC7YtMjUTfrghwPWaUis2XmxwvLpCGRcqdNuRMZhbosTQD7clkrHqNDP+nSd4nJcKG4yrgw5/PA6U2quwRcYNYpchysEQ+op6z+0XLRzD612nD4INRYiDuVQ7HWlCnWGLnn9pPwtCCNQ+W1hXrq7J9t0++otvbFy1QzORu1uB9Mz20Sc25WDQmawiVjJKaEnLYAjH+w228S8gXF5LQYuipEZvK/vhrVXsGt5IYxFk/m1g+9hw5tjzqqi2ReThv3hflM/EgyLaJTVp0JYs7pQKTOkFNKo/Xco2zQQaesU61XevHInMu/hww5sKe9XbYHNNlQoCESnR51FP5lBfChGFqDJxpg4HNoU0kEF5lDoN56ew5vMNwD7k5b/47Hy3TjbmnntG8IkeAdkePy6qB5jJYpkJm4Knm0MMYYozXIZolA9JCIjxCt6h+pGyV205YN8jifqYnti3qD1VrTMBEy1DYbB8/HcCgvfcY/P1IwE7jc4LrLu8jeDqEURM7tlpHTveSAejVc4Xr1m0304vaCStsw1wnGYQBI0RaQEXNuPWbVzVCyuMb/vhW/7me9bCts4/hF18gU3XLchALaRR3EVpOgnWEyBMXY5IPjXQcDK1GPLvecTOJLwCJg/MgeJcJ2TijWfKTgK/wNXgfbp7fJ9o2nyDSK037jFaWPlNv3xSFHCGsIi4r/tA86+53UBc0Jusu6nLWd+ACva+KmmyxucQjucKdPls4+1eIOnckL2hPs+PSzTJZ7GZQz7y0X2jXqnzUCwmBZhaymOzT3HV/3bmcunkFnhbOuD9rn43A3cpE2iIfKC+s9fKkZM7C5wb8ETefJJ+kTQxgf3bulFLmQ/BW7u4IUxkLOmKb0yscLKe63l30ZGppjmLj6sMAZZdoomDzJZ0+yPqa9i+qF3Qp8kc9AW1NLM42nRzaI6XeHzA52vLOCjrho339q7DqyCYbpMRyoVz8hasesOij5Bdy2m56QnEe9av9ePSCCueqGeNE6PueRjQyBQIQVr6GnsbljXLVGwTkO7+lzpv+dUTzslf4NQyv+KDhZYbWXzIURNj/94L5pyUlQVo9+GJ5NWbhi67SwdX42LiAKVTv3y2Gws1xndPj5tQQpPjrR6ImLWEV2QDSaI1GgieYkHx62SbrHuaMly1WcFbfpf2pNlfZPWWJzXe16WVLl1aVvC1H9sItfemnEO7fqm5NjB6cw9Gs1h2c0MrHlKLqY25qNJj0eRqNOmKp2jZ7ItMPZ5jlwZDNqeLjg8iGA3SqR8UerOMj9vyVy+opx5u5jSI6lFR+MnB1TnR2dTUWwPl6BkT1Z+yYOqp/AKVt4D6QUrQvDxvDiT47uLgLeRoVqfFgc+l3kRzMkL6laTdC4zmqlCXLnawzN850m6/m4330uKXrLufK/WsgUgtsxn60Y4PPqhicsc7isR08QfliHbylFJdVnFK4tIzwI1xEL1/7qdhm9Jf4J4bd+zgcmBLsEQdGhcLR+qB35VMyrYFxO/+R5ilPNNJX8JKrc56GL2ixxDMzjmRYeeferyuT7nOi8wBwy2jWBsCc2kMKYZMERj+t74KWVrU5kYbPZTtMxiqxVKB7uwHmc4f71/9Q/zcY6w3u/UuW/lRa/etrOHjWi/GyX/lUP7YDtvxTjKXReIHWPMTe5DhnhFt48I0NDL2t9XWpPfKqGGpVJ3a2JXMZUjSGIpvTGg0vj7ss74fCl+owL74Ymwgd/eG1t8XOw1LzSX6hQNa822tTx5aMhpZsDlYBxpux3NKn79IV7dhakW/bfU06VXoeOSGJCG8WRWoZ6erq46Lg8lNg8ikw8McIE+/CdalXGy+xtNLYH5aJj1woYUkM0xcoN7g42IY26Af5s5B3dwaeD8QpSQsLlToJsrjKNly/fiHR29TacgFnXHzG39zDsOGfugaT2z277qqWYfuhvfn2wvN0duvID4eTxSfxYHNc3HMwH5nBY7k5yclqQw3aI6XL+F2wYSoaI06kLm0iTB9H+b4srgFPlus4i0fvdN5HdAKorBz/8WnEKXEgqhbCiIVW6khcKoS2LXtRCPEkbIrjpdKW/EFOz/pVc5LLw9wNlqdcIgj6ahvvwUIwpTQsuR8tjBOrMA/XJ9kklVajlljWKg8OQP2xJwysv4esqsIbxplr3P62MxzDu1GfhEJBx6jb/UXoeCz7CLhtz0xEdqpg+pshGQ+Zg4TF+XpaiqlAvYEcNF8SEb5X7zuphsu58tuc0S9M52prmyf5jRx3RH8oxVQ18+J+be+iiQkYSRNN5qOUdo6CJWgUhez9dx89Vmg/Oo9jpBUNVN0LnQ1/kj7SA1SwmYKnYjIeLXpTS5O/cqPH0ilo4D9/nNM2W0rcX986h//Xz5mUwNyDUQjp5PNxUvaCT1O7bqveleVbNzmDnyn6xxJ+i5HbE8dDrpcEKj3ON/TefcxRHTswx11cVyZZMciHvkIvHF5b2s0uLNco2/+XrD5rSFYoMp0FKM5pG6ZjsHKP1v0NF8F3sVj3SzQyj9A0iLj6BpuG1HlsQovZ4mJjM8j6/Xk8wP35fk0cD4vxORXKMPf+znqcEDUqgwL6f7UY3f7eJjs/bVFuJxeC/U2TGyW3ntb6l7+ZOSlHj02y+7LQE8zSCNF5UU0PnZNAdw7Ttfv6+bkyWqCHqZ4xe6bt3smv5Wjmu63NTbTUAyGKM5j+MyiTT73ZjJX/fMC3g/P2BaexKTTRyFw2Dcd3VWOF8w7quiwby+MBmNlMIovXo2unX2j+0HogxEPYQT+W/xQa61Xw652W0hhvv+3/lvLNAA/UhwhW1PLqd5xldo755jqxvBD7Ar1C8zgJGGDT6WGncO2Bj187rB9mp4lC79zB7/8TIkkNnovbu/bCRpLnIjUm106/8bZ0m5cbuGiD/blonxkHmzJEbHlPYd02m6hUh+aOeHoY+Ly+4zevjoPqYDxZxkC4vAsQYjKSiSQa4WE39tQkX47NDissV6ye1odVfCgpNlFYP2ImQ2QalEblWW5BP/i98uskuYnuS2Hc3N10a59TdiD6zNlV6ETYRq4DXYuQtrPMQIXZPekkWIe3my5SY8jbMRpoAFGCpqcJP9BvlEz7FXGL/ir14gTPx15+/E3YK9meiBZnN7UvLSA2PYVGkAujYP3ldIjduGhhUBUFBou1h5JsvCMQRXjO746m5CxzyHl/uktOxriQOKrTEar3ozUwyHq2XVYOu2SlpjqmkJXPvUEtI2xhXfvJ0XL+z0ZcO12t4iO38KckYhzWJzltuYflMvhcmzhrOdXbESvwFx22veGDrqfUvcelunybO4ZyvT9JfoNo2NORfI2IAqbEzUuT79Z9YUIRu2/8P4pBw2LvEsLyant1/gp0pV/RWh5iDr2VOSu+TE60I2dEWn7x7tcXpnrwOHNE4ylz6X/x6/lm9ySXzGc0oX7O4fCtE20XLW5nyo2H8ELb/iP/6Xsvd5zUm7dkVoWx5oR6bXzx/eo6Z3cckb6z4G3iRpq5NwBsdR5cfD3PH/6fDH5nY7+9MX2e3gjWliv9k+vUcPzrHLac4gH1d8WdMtc1rNr70QwlWFDtJWvSeZJzyBENzOaLp7R8KMlyP/e76XIBvvlaye0yd4h3kb5J1j1xhFyTBNqRvusZLUVd3DVfx9q0bNfSgcSLWgpyJVuj1gIhvPba9HtV9k03B+fJXv91BhuhqevfKtKWR+nC2i7HfnnH0zWbCVIj687HF07t+dX/vPnFxB4GlfzH19b8y2qWfktJzX/GJCg1InKRO/LVc+pqF/a01pfd+V87s4FzOSeYy/8mv3yCS8EYtWYsNUcL+m0+ZohDIUZ4i2J7YapJy9UhrP0jXheaYIla+8qmGFoE0F9jOgVnRNdo0Lt4uB5mdFUfW8EKv3eEPSEXz+9D7EMrNim0fJBszk5SdxpigsuNnitNpdkcmKtzfWW+rM3mtNRmIl2Ooo13rdSn7Kt0P3jf9iHmjXDYfNwtK1cezhSrIc527uaU0A4JeseztFc/gMAAP//pF3JlqowGn4gFiJTwhIZBAETFEHdASICCjIkQJ6+D9btXe96eY9VtyQk35Tk/394ap66nEwLxD35+ZMjgoBMTudWw7jvYjiYl5lmQ7kN59NDK+AFJwfq/tbfe+Y1SFn8JorQv/sFLYsCf+vR2TTnirzLpwOexNnRVLqX4cwkewHcwUAInB5LRWXrHihiijq6K7+gry/91YTT9mxRq6tJP8uJdgNO/TkhifYsXNS37yty3lUrXvohvTyNPVTc7IXN73YGMynjM+w3mw5Npj2D+aIADspJ+CDzrc/WfKLQoC4KG3zo0yCdIRo/sJ3d9Y5HYnq8XWo1NOq9STpg+/1yumcfeFEi+Zf/GIM4TJpkBw+Ei7Y8eON1Ptag2zfhqpcNY3rpXwdmer/HhpyDtPv5RffItdgIQ5v1Jwp86B/zEin7CzW+zqbllFWf0X0ohmDRiUzAQxdc+ss3xJ/fSrvZRtvCiFN2YIUOuVN8wbbrdwYpcleDj/iqowlZc7hsW1n76VW0fRINiNfrzoW6yG+oK+yAN+u3dA+vECXUsnjd4ymREmDVcoh1Ge7YNAjLBTbG/UG97FWBNa88w+ZrS9hIAjtk7xnqvzyEaq3IpbR/Ta6q2FsRTXc9AG3zzBJwQH6Pj+en5S1npV23+MYJ29sH9djmnsdA8ysbDa93BOiaP4Bkl0zYnd+8t+qFP79LuB48wikQZElZy4fRA7jifmJJcwOb/PGh1nvQ+qVUX4qqCtueao/8ymZeLzPVk+0M20k9hfT2NjvAClegaJZVj/3GY+Vf6lh3krLcqNdawsURY/22Ndo1v1R+emp3iT+A6KN1VjYO8/7wZ0JBcIYsv92x+8PndFMGQH0mjNqpffDmV3CqVQ8MeyJFM9/TJtEd6MlWRvdbfj1DhJs98LDikC3Vtv2a75hQFYOFHibhGk7C5a5AXdFKRI8R33+vi6JDWShK6sLvO1y0m6YDV2wMFCxbFTBQyy7gqbKgNU8Cw0t/ufB8PL2pZbnXflFHJYFJY3k0euuxQYqrE4A86iVsba3GY7J1CuCUogop8bUwlpjuTbCYB566uwiHcyqBDzxA5FMtd/SQDe2sQLF4bjDyPyKYL35wUz25qOhRmt10NoV9ARwlGKjdNbtU6L1TAW00zBSrbzn86V/l3pMLXfNAT/wYtwyIhwwhvrt1/bIxaxdeteSBjY0Wsml7DFyovMB6hgu4KUg9coFy3lbYc/SefQ6158AQ5O6fP+DdW4LArvYM+pefqebJVA9Bgom6zy7eLMdN+dNnCLy3EhtrU1jgdDc0BIRLABjIdAjH6/uDj9LchfV7w2fwp19iJejYmv8E8MdP5v3RV6se/EC2ty+r3izBAtC5gM7nMuJMrT/GUntjBs5q9sVWtI/BcjiTBQYILeQ9fTVDWPERqq/PFSPHncB4XRRNedzKN7XnXfvPv1QLfyKS0p7BsGSh8IdH+vq+BXVUbjC63FP05rkoHZ8iu0FXjp7Ufw12PwPBvsFqrXWe9OTjsfC2uyivXSL+8uN+cRnYg6d+MWmy2Sg9OSuFAr7UTamWgY2xBIe6U5JWbOhBeO6q+efnzffnQcCaT03v/X/xzd7KsbHMz7gG8cW70V++K7iM7eH+vb8SrnnG6Xx0N4oiFRgikX5e3hK6Nwnq0nn/55/+8ridW7T4MBcvQI0wlRQXcAes88k3HedMm/70urezhnBY9z/kcX8+kW7Ftyk5cALQauGIVF/1qyVIDxrcSBzGq/432NP9OPB2Me/08NG+1RRH9xbquV/jo66NRm9E2kXF/un8yxsAieViUKe9+Fj9kMn42e8VpZl5i/7yw/G23hsHgpahST8snnDqJA4uDMxILq6bcF0PJZDpRsKYwxX7pM6tgKt/RU3Sl8Yfvnr4uaPeIHceXaw3gpBiiq2n56z5KTBBGNY+RfXh5TGz8nhol7ij3oye6SydEgRLY+39dY/2/fL4GBxIjDqkZ/S4h98xvRRgzWexmy4fMI3QboFeyRq6rfngLL9cF677U9gKewrma+cJsDa9D/7LBwrt1cLqqoU4X/PyBVhDDEFw2eHU0T02GTfiKlg5M2qYOAb/8OGQIZrAkvXst3/zy9fX/ZFw4QudV3db8ER8CBa2XA8BgV5z1agLKtaTIkoFKBaPDTVldAun5yub4EaCGG08BsC8EUAHP4l/+POLfB6ezvD0Thu876alZyu+/uXvidC/K2K9jRjm5qWicQIsbyjauIRHZZHp7sqOYMtJ7R5u3npANcOZ2ST2Xg3vX7sj8+G87QfcHCCc2L788U1FE7Wb/sZjZyZN/7fek00S/PK9kGVvSYGtcUgwerwENsuJk0D1MNyQ4iVFv3WfmqQO48b74WnKXnzbKUKaj2jwnNxgTul1QPeNHdk4Mc+W4R7p6m4rP6m76iumnZsWntX8S4/lZVn1OPKhEnxMNK3rlUnv+aIeKtmmNva+gOY7EQLFNRKsj8vTm9jgTbAaCKH76dyHc7MFOlz9NuFrYTGW3juVPz5C0rqfNq77VYp1zFPq//RfFJ4dtZswwTqJRDCB1wNB+9zNFOnWJhw5cswh56GZatfi5tHVbwDRPvdYW+4C6M7zQiC5wyN+rs9Hds/DIq35DTUty0pnPJg+zLGaIZCWBiPuMF/ARbnKqDy8+3B6Ox0BjyGrqUMdpV9QPzvqL79Ss0XxKP+ZS+URRzo+irGRin5yIKCebj32P70dLtX+5gCO3/rYiaJjT+iGayFwNIANQ9mlvzwettZk4ssz9QympQ8BdsnrvJ4N+YBhBnb22y/FPsz5anafjgLXvAWveiikVmfVELgoJ2LwCcCcvw4EtFf7ji30ztN5s/aSX/GJSJ/Ar4Tf/uQzEiCZWe+nA+i8BLZ3YlB/4GBIek1Qfv5gzc/f3nLBHx+em8jGh/RTsjkKExdst1cPQXV3TBc/TLXffCBVEtjpzDUeUeL4AvBtu0/CCc5HB4Jy/8DWyhfU8BMHoo83kSk0T94cuT0H7UCJ8GGjOOnwyyMeGi6wdf/iaiKPiw6T75kQbuX/Zfz6UKluE8XxtDUNPhiugaoJ9Rdbshp5bBS2N/Bb79CJdhVvF+v+r6i11MHXI/jxjTrZ5xqt3cd/+fUNfoy+oP5pr4If34LjyXmSfSgyNrVau0CMdoSaedaH/aNHSHqqIcPIMTZee9oe87/8x/rl5fS2W2Cuf2wire97azcuD4Jme/zLM6fmkzvgeERP1K7zaTJelxgYjyr5y5+Zvtil8ppdnii+pxpjKrEPTKKYUmxfL2B+Pw8XcI33EuLzjelNQpp2/1/vA/F/nymYs2lDbTsi6WBP7w5Wp01EPTK/wSKcXxp83jVC40syhySVeR3cyu2TtPvONkToHUx4zdIr3cXuXA3o6pzB8+yb+LZ91+F0j2aiLofPBX0Ru3tTVt87yD/DHNX9w/G2Q9o7QHWIi7KFFf14tBYNKk/hQQ9zskspd7MTWHeLje3Hdwm/SJ0k5XSuNWrXh3fP9DWDvF5rjuLdaT0nsr0G8JHDBgnJsQyXbF4gtLmhI+14+1RU+Dh7JRMve7It34ZBnun4gcjcG9TmHt9wjk6xqxArs3G+yU89C8MPBw07BYRjncaGNnQ46PU9w8e6JWChw/6mpM3wJVBJwmru1xYh36Iw6MH29x6fN989zK+ptj7PK5zYeNRhHt0oNkzFY0x88jzU802Jncvpa8wRcW+QDteeOsU795ZBDwXohy3FfuI3IRn0kIfi2bnRw6i8+4nU0kU5nJyAbJR9G5LdHWngdP5oWNN2E2DqPPgAgznHNg14Y1kkqYBjeXpjn4U1mFmDA3jyboA6ezMLlznzz/Du8z2N06StWpBLDtzthpn65f3tDbuHk8ObeQtp2swoXDbfRwfunLVBhYNI1TanJobFM98SVcWtMYl9yYPbtm/wbqzNXtzcvxqcdiokMrN70Annr660m2jG6N0tBovR9gJ/79e8fDWP9Q8GATjlPvanok+X4/1uwo/YxhQPe7mfjUDMoCAdPDT27d6YQC65kOcBxfqm4cDSu5kEk2V/p0gwx55VSaBAx4keeCdLcs8MCguwvJCADZWewuH5LHQFPYYtget4j8XpheBOjHbYe9ZBRZxNUavbj6lhLU2NalFd9lG/2zijJhau4UzypYbd0iDqqgb2WrDsCKweLsAuiXNjMQ6GJPNxVmFN/FLGIlANStA1JpHkIa0YzU4T2LbmiVrjcALsqccBRE3UUkPctmxpotOkFr0lI9h8vFSQIimH+ctg2Nl3jTFVu1MNxxPv4Dg5linZQIrg3s4G7HvPOGXdDg8gXIIrPRj7TU+/240DTwNakFAmhTd+Ld3d5If0hOhOysOlPd4IrA9cgAoLid6YA81RM86d8I6eqMcOPp8rgvnyKVJn2xjnMSnhw3URxY60Bc3nmbuwO81XqoOi6VnlqK50gVRDy1t+gwF2WgtTUoVEfAuBMSmf2Vel5Xgmr6Krwfx8VbE6HJPTb/5UQtUdS8jETkXweT9WU3XpHaXP6gTnqpeFy/XmltCivEumqt2FiwzDWlWc/k411AKj056nQCJWbmO3h3M6VLt7DYFsjvgsHBNGsri4ALCRVzzrIrBgkbkwV3cB2mrmrp/wTTBBqpkOdSquDCdP9EsotfUT24o69m3Eay5MDp2Gtl7Pp5N19j5QQu8zfRKZGeOrXhboUJXDe4vtGe+tvQ+OirJ29eWMShQBzsCmTV5U0y8fg9H6zENgZA98NcsLo0/qd5Djl5IoJvr2Y7y76PB2vulkliW5ot+kLmA7VF/yha/AW9b1BY+ZZaNv+nlVUzdXupLJM4/95Rix6ZvfcwgVkiLlXdaM0fNmD6v4ciIKL8zhdKpRvd7cbci88fZhFYYfqCy8xiH5uCfVdKZPEzw6ziLzPlDSYf9+OHDpbh6NdvPgkclRCBy+W5+w1sF9H6NtDMfnM6O4v4vh1JyaC5yA6mD8elKPwPp2g0rZfvCjbz8GK5TIVZf8NtLf/P2qzhRAXz5vqAdvNpjeAAUgRN2VfIUdBJXYrLW6lIESru2+VSXzrQZsUdGw9tWtfmJvA0IJ3BoanzWzX1a8lJvaOlGzf7Qe40+ZArnPwijmw2vILpFTQ1u5ElIcgGzMrSzXCn2/doSzsvfar69rldjevPBxq7vpFE4SgaOcf6nF7Y8p417lHt6uKKVmow4peahe/sMvwi7olk6p/b5BwNOZSOdrUS3CAV2UZENHuhvrumKbYfnARdhhIr+0N5ve7OivxdZ1ohDYslEVs1zhxvcD21HG96PQSxeYyYynxyp1QqZnJQeltdRDgpEGhkd2q2G4nK9Yp4wYRBhBC3n3aRGl2JaA5inbq0HefNCmfn760b7GF7BVpDuZRtr03a77LiChQYBKvdcNXojFFv74770Jw2qZtt89KETrSqaOBsZirLWrVzzB1tOywyl5rbXmBXCnWC7U6v2IE15pkiynWhLxFalY68OuhSnij8aDDWdpnoBWKAq23cgCK5+asGg7j5qRsE9npYWl8hDeB+w8T1q4PS5tAu2recBakA4pG5QWQf7UudiSwixcdhbMFJW5PNbsnWPwmxCc4Xx631c+uPc/faIY78nET62XjClsch3c9/oOPSLwAOzZeDVUYHjDzul06tvIvi+wWmaf2uFhYyxZ3MZKdI5Oqx469UsLeGW9MX1HtZ/p4SSfkQY87gn+8f0zwDXIJV/EtqjGHgM7coOduvCIBycJEKqWDvBuYk82kqx7rBNvE7i9kUtE9aqE07phA61Pu8UIx8QYXpxugiy9tNRa9c1IrWiBxRSM1NYdxxO0682HkbxZUAj1PZg/J8gDvXZifMrMxGPfZChkQfI87Biul/7Nv998kN+jDdimekpK9tkM1Oc126BVbS/Qbl4famXL4i2qC2q4t/MB9bdaDusgUDVwVKQRP2Npvfd6fnAgn5MjNbnTlNIptz8whZWOjyUqDTZdAqJiwHLspJ7MpuzkmNC1jyp1N4JTdYV052FVxxrF6sc0pjGNOmjxa12U8NgBkn66TF3xCvv75ZLOzINr7xJtT8YjStn7vV/vSfJHkd6Pn4Ut41MzQfQoRTRfg6IaoBXG8AJHDR8PtlmNc0DOAG5Knnqv6w70OO4m4DwOAuFWvhvO7wKBbVdtsMOW0NjevrcJKkUISGT2qsEMAzlw5Tt8JPqZDbUc5PB9PepE1nwEZoCfA3AenoDuIn9k86mpCvjIuJjuE15l02+95mwL0DQeMtBva5KBPv/0hBfMcz96MhaAdRIyugctz8b7WlfqShYdH5jdM9br3xjKuU/pdTbeIcXGHSk3ToCkkLOXN58udw6KHzhT7Hm9N4F8cqEl5yq1Kj+vJgPxDihupxkjcZa8ISiDRV31APb4nqRz+yk0eFP0iohtAAE9+DCHq54iPeitapuj+wJMp/aRVLxzYzK6/QRWvMGH97jeOzT9BboV/oePzE6dBRZ+O+K/v190UgmM6xRhlFRVOJ9oXSvCfHlR48T3PekqmShnBwXYULZF+H0dCkdtbjYjHHfy0q8RbHLZg9oRo6vRVNPdf2rKntpHovTwFM7gttxgdvFqMnNvUJHnuLuA290fqLXcGRgb6coB8abqSF71OyuxlsDXaV+TSc523vTBc6mcl1YhS7A46YCuWqDyj/BIPmfNrES+lNqf3qQ2MY6MLHqTA0OpHzR9c4+wt2uxhbBRQsJnATPY8vwisInqO9Ye0eDN9U3bw6uUbKmTe3O6tOs587U5EDauuxOg0+VGoBkggp3ztejH0ntAuLWCA72cBQKmu3/V4M3zVaxRKIRD0UkFqOqLhu1B5QAZn44J494xqLtPbyk7bU0BHt+jQn14NNn8qW4fELsXH0d003iLdtwW8JtGGB/a5sbmx/zOoLIT1tKlbz4lxKrOcLshCxGFoO9b7/z0gQaVKzXtr9xPZnkcpI1dd9hBYg2Y6nMSWPGFHs2k7HufnxFY8RN7myUDzKB8AdnEhzRdTq9+eC5zrZ6BgJF6JYRNUhAg1X3Xe7ynIE0Z2m1q+C1KA21XvB8f8qeA2+61ofYQGyk/s9sZSNW0p0jKk5TJ9txCXjwneHdRvbTbJt0eMGd7xboSvsJxQlIO03T0EMed+nRqQ42Dc/juqN0YQjrb7WL+6Xv7QFNjImH2gczzdZxtj2PKWvsMASd/APbFBHoTnTRePT+FmZpODNgyNDsXrPiEde9megIptgoUOHVLWN2G4HMcyrVWuPzFzxX/ha19K6DxXkxCdxIX/q3v3ZM8qbP620lVzwiu+gQbIyiq33jxj5xr6HEdL6rd0xJsB6nDJn91vGmvNQJ8PrY23TvjlbG379fAvBtfxEiZGXN0yh2w+0ZnIjv3oapVNUFQ1vAOyfxlSZd7eoLqMQAvwuLXcS22bJzBuf56RAmjm7eotFWUIukyjFhXsFk8pyX0Uj/++SODp/m4h+rsVkjK8g9g5W1zBiIPC3p5Tqifg51zA6i5toh9wPcfP6izU1EjsHfeF1iFoNJ07UXzqUevdXteg8Z1iYjsDi/ALt5bgtElKknVpMeQaba4/PAQ//zuBNpGgz89Q5W9Ey553wxA7VVKZjJ3gEVt4kAhJQF1nlIK5u/aG6Tf3EpqjNEWLMLIOnh4NSPqo84J2ct6E5ig/E425E7AEu2+xc+Povkl9sa3ikkOAT/OGJmxwIZSOOg/Pl7nL0hZdqtauINeQiR35lJKN2OuMA/p2DL7dY9xzwfK4QoVbICo7pkJLB3kVZJTXQl34XSfzQts/Jzig7sXPWJkUQ7119zj46MVw7k4fX3I33KecLDWWIfSvQQHL9Goq1ZhOp9jvMAge0dIFnYZG9weajDkg5ZsI0vql7swfGCS2A/yugZaL2RHq4NrnkLD8CUY86Ek/A+/yXYTsmroTb5Vz9xJJcB+gGpIYCbAn//1jNgMRfAJhz+8271Ez1j5eK/6py5HIFD34eyO4gXI15uFU6/SDfFlvQdobBLhx//eFCq0BvZDYkTiN3I1+Q9K4BBpjF4PFBgTzUcTqO+DRfEhL/q+LO8c6D7NRIAebFOS7lRXPveP7fq5VrV7YVIghYNFvfq0MCaapQ+j4qqh7eH2NGY8RM5vvtCL6O6qWY46CHfFQaUoMIJ04MbbHuyjPCXMGN8hMxqWwedVf6BBUK5rxQ6Bg2PcvZCknD/pMmfmGQiKl6FhOUZg4pxyUdf8Bs1HlbFe9PszwM+4Qms+0M82NDrIYnFPj36jpds5IAEYtnxH/f158pa8pwT+fh6OBQPE2Ok8TMkrxK26lMafX1v5Ez+oswOrfy3kNlA+2Mm43iPVXhaAvrgWYuv62j5f1QVuqnqto+MEFT2G4QX03edANf7Ap2x7CHkQCHVJnwALQPS/ySZl25dmZfBeP4/kGS3bivKl1MElu2XYv8hKRYVLfYEqN4vohQ2d8eUhaeF0vsR/fmmRn00M6b2qEAyHte1ydFVgqu0d7CxW2zNr/1j1MhIx6h+GMc2o5CD2VYke4GvyfnnT7/nx8RsFbPnevuiPD4PMsdgyi7kCbTjcsfvVi4q9rrsMCkHZIb4TH+mk6J4ENU5p0QawM5iisr5BwZEc6rUcD8hKAWCJjrdfHrne84e8suIvUkr9YPz8GzwN/kJ9MibGsBfWOyeBllG3wx/Q9jeE4NPTNlSj2dmYNamtwbzcA4yOX6OfkmtTwJ0r7TGyMgts+/59hmu+R/d4xN6MVEkC5tnfkJnvWTpVVF2U3fd6xp4V+GDNA2NoPxT254+ZjBUC+iiNCdvbi7HsFy4Hl6OcUPMel97SRPdJlV+6REZJ34HlihoBrn6a+qDQe6Gr5AG+pNFCqkyHdHm/Q0lZ88sVb17p6NZODt+SLpMhWIxw1qTi8xs/wgPRqOZkKBCUPpgnapbOHrNQ3MKTbWwIiLo2HMXNQYE1ONYIPOupn79HA0H1eojpc3fSmXiQO/6nH3GiGtQjVxY5oG7TDG2qpQ4XL961wJpOLdW/91dFn43xgbiPdxRPvmbMN7PPwP4NJGysfmcr6/cbnIXFX/GOpXVqvxM4PERCd3vh7f3WB+RLu6G43nRslvVTAkssHajzuWGPPyohhIbJHbG+0YyU96mR//JBap9Lo2fhYdrDA4ptbL9jD0hUFgfILvyWqPBw937687ceqKOJgrFcERXA6mcRW9qy/8sXf/zgfnWtF0t1+MByWyTYeLwsb7lXoQ4FWNpoURTIxi02TchKocaecLv98RPYSCJHj4/2Gg7lRpTgmn9Q26fnao4/hxiu+Q310Wbxpm0b3uAhgl8c/vLo1a8o4+PpoR9/kWCmEuBLqyFSxLFqnU8DaMbggyPr1ICRRE8FvGYlpVZ/fhuzKmbZL9+mv/Hu3W9L4KGCN/z8DFEqDseZBxQSC20f0s6brLNRw29ZXsiq58AUb1UIF2XbUmenvj0WHqQ9qDd1seqnzGOvJTPBL6853JjjDXuNCuCoZSa9jtWhEk2/5QFypIzGcrTpievKjozHyxmv7xMs4s46//iYzN+cM4aN9h3g+Hxk1EGiyQTtGiD1l79b7bOvhtQeE+CvtdyNdf3QVa/Cd7ZLsVkFXUg236iD6/pB0vNUhOyn93uw+2B3hxZj7Bi5AKQcJiTeMt+Yk6H1f3qd8BakHrkFhwy0jBC8W0771W9BB8gvTcL+5R6Hcw40F3axG1I9erop0ctiUO1UKfEhCw02PGjpqJ/H90Dv36PRT/0N+XCrKHdSp4ZfiZFR83CjTRoN387NY2n7XgDvPiyKP8M2FelBQ1C5dCJiUtkb82MeM7jkyYiPARH7dn7xhfrLIzZrXjPd3C+Cn5pHNP6+CFisWWuhcZ9+ed3eGCvjosB7yx/WfOfRD2t+CKcitsis5GbKTvcFQRP6Hg3Aoe/nkfAEDlfDpPvYTtkS3usBfh79AclCY1dDk7o6WP0PStb1sOqpErBJCFHvuCqYwwXqMKiWBBvDdu6Xw2e9qQAHC980UfC6E9uV6pp/4t9+AZFmYw9x6Q7U20qXfmwj8wyfnr6h5mnagNmttVz9lI+KVPc0r+bcFE3oxdsENWbJs6mpvD3ImQio1lCpZ/d3HMPDYeMR1qRjOH9GnME0pR56NmfNE27BIYdcwiK8Y9zsTUyLO/jQoIyj57vvp0bIOmUdPxq+ScmmN9if4XnpFIo0arCZdt4ewrna0zU/ALwsgAv4iF1MpvEA2WQlZgvtr3Qis34wPIbn7Q3udmSmByy3f3gGPuVz7aUhAG/e6G8NapplYP2xf6TTqHk6IKPZEnKZlnB6fnMFfCe1oI7rlmC7j4pCrT6M0H2P7uko6/cErnk/EX77Cz6sF+B/cpE6k6SHywldkPrdXjLSVpyeDt/8lEHSBpimr+sLjA/jEMDC4g0C/KAO51etTDDMuj3Vr/4FzN0tHX7zB99kq/AGcw9MqNdujLjBfYcLDi0BrvqI7pbTp5rXfAZuAPqiySRnNh+/FgEBj0WSbeyoGt7PNd802hRfVr8z764ugZXoOtSn7OuRmpMIPKzNuN7dUgCa3foOhDRH2PhuE4OY8m6AD5CW+NAkS7hI/mNR+uge0/1VGcA4flgLGdFcfIu4sCLMPJhw2fg1NePYrZYT2xUwPdIMcb/xt6HXAq//Muy8vRZM392IgB67DRLW8eWTa1NCH/ERan3TS9f5EMBfPiTTJvDa4vXg4TYAR+zGEe7/8unnVXvg02xq6W+/BHDYPeEdNkq2pPk3ATFoCkTGa1/NR2vRVdKNKlmug2yMlgT9P31fPV6WMarZgYfeebcjRYMv6bxf7+H/vt8m2QA2jemjA9GjEAl4iHtvSQ4cUla8o0f7wlK6+nd1muaSetw77qflDjJ4G3SeTEL2raZDURVwdylltLx8A8y/vBop3kS4j3hLJ3aYY3h5VxBrI22qcfWfsL2PL2wX3y8b+6r21d1UXNHU0Fs/E++l//I2JMs7PqRN9+ng5S5J+OfXRiMQcwjtl0x9x9qlkwBqDqx4g01ab8KpzUReDUe7wsdeT1PmD5IDjwRgjJ7Tt5qvcqKAlf+JkmHJW/DnmsDse7lSPw/znqVWYv7yUYo2+dwzunln8OE38G8/c8FU2cNO4Fy65iVgxoddBnYjQRi93SMjspkRuL4PuuYDxh+eSTQ9IEc8IyA6n3vwy8uxueY5y5rXg3Oq3VDJF1O6fKR3Dkzn49Nf/jD03y8H78+WURQJu7CzOcQpTnz1SXu+ar3ofE4BXBSxJfOnHo25Id/9/3emQPrfZwq+l6ZAQYTuHpum+QPawi9onNiDx17ygQcZrQ5US3zNm3AFciC3Q0LPfu9WS3T/rrX2u4kiJzAr9inlDl6V/I44/2MYvCzeb6B7fEv03BZfQO+MKcoGlBjruX33tt9tHSj7OfUo0qUuZTjHJpzj8kKRY9OKGE5bQmBwKt5H58QY3nfzDI/NnJCN4n/ARJ/XC+RdXkZgzvSQFazz4We2X0Tl7jGbE+ubwdd7w6OtvlnSgcs+BB5kMSfM67eMrP0Q4fr3yWw3DWOLmF9AnNsIa8pNB5M0ywtcXPlCHa6YwVjwkgCi93bBB27lSBPrOpzbgad6ZRXGLL4bF7pH54P3+WXbL5fLoQSR8T1TO/r0Rt+yoFQLEvZko88wnGVhr4OalhS9uXwOp3ckS3DXooHiZn/xFu7xvkDJK77U3MplOix6d4NVE4ZI4QovZWoQfeAcpQMSo4fgDXm+rcHlIV0xzoedQY+PHQTu6xxh23A0ML4vnwLWhWnSoz6idFavBq8KWdqRYQCvcJ6VBcHKIDJR7XsftrUz3gCOiid1FXdgpee9kPoUNw+yTdKqWoJtwMHvThyQcJ+P1ZTApYNiO23Rpgkf1ZzXJw4+Te6Kj8OpT8fb+Ghhu8ALdlvcseHixRp8yPcF73W1ZvMYdyZUL9RB30a0jCm/RxBWjdDgXZ4G/XK8hAhyPleT+f7h+vH5lT+wnMs71qIrMWZF05BqKIqFUXOKe5ancQY9Uz9Q2/ajdCp1p4XaA6f44Ek9WDJf54DmwwPdefwcTrchnQDyswyB5LA3JsbZAuRe+xDbW1AyehISHn6VNsO63oQpMZDmqgl913/zT5RFv4PyZ91jusNvNb82kwlL75mRrbp5gDGLtQusJFvGXvMqjN/8BY5/S6lnS+9wqTw5gGSqGJG3IQPMs40MhDHCRM7bwli0TjWV8nHr8DFiL2MUGz6BtSuO2BnelA2Ms3n4Ar6LH1E3eONZbxeYEXWLvR6EHtsm35vSmMl3zXjbsNfhg4fMLHpscNMLsIKVaOMUpUvt5jUai++TGE55IK6/z4xRXc909B/6RrPHn9IZ+n4NP9lmQSW3X0K6IRoHQ1OIENO/SkjIw/vAerrGqGuSW0/JbRTAeTFf2HB2l37SvkKuLPMiUrSNjmBO1zNKcN5cyMa+r7VwvigG6/rDOve2mOifXQLkKD3j45CvvTcuhwLO0X3A+eA+ws8FvRRARsah7RYPIemgNanYdN40zWPcTwdBPsP8GCCqK9he732ceHjOjBpb689PccorUJ8DivfVwe7nM7f34ZRJKj3kbeEx4QEmmBeaQU+5Untj/JEU0B1vAcb2B4UsYFquvr/unsjDSQpHh+5cNfMLg+LTpTHoxRYU0OWLi/f3eaxm4aknEEhXFW1aBzNhm80SfBuWS407HY0htQYCnLwGeGfnZ8DOu7OrLl7W4vVzb9kRnINyLu5YnzV9nd9aB2/T8UKdVrcZ46PD8sM/7CquD7rUjE1AKPWxbmdWOpMHEmBSDEfqyr0csmfbcVDxAx57pSxWpPnVFitiSBRvfjDa6zSG5qIp1IzSbbWctSAAp8YK6O7ke9XkzPcWBg+/ockpLY1xe32U8FLsJaL08uBNwHjw4PHpOepwO+5vfgBwDSykcN8iZeLnvSg3jw/X96mGi8zUEpyszKRaVFTGIhTmGRoye9Ad5zzB95OFCcwely+1tm8XzNe6b+HGbEey3FNoLJ738mHi1znOZWnLWitNHRBQmNLo/siqOdF2PFyWi4dY87D+4UubgStd15dHnVEpoH7YSkg1jIFNocXdwHa3IVS7K7E3HW+8D6MvQWhSdDNlTXs/w8du7Kg+dAbgZ8r54Bpfemo3XekN1+8uUc+PNKcHfWOFy/45uDDIrA155NW5It6u2QPF5x16qoKyWr4CcZSEZTv6w3N+3ka/zPaJ6Oz2KYnr9gYXutPx7uT3/UDyxAdzoyCKgk7sWbJzcqgUtwo//dY1WKnsIRQyyOFs+l5TqmvSDZ79WqJZL1vVnAh2B1d+wk6fPI2R3PkcTrSbUXeyqmrJDipRoHvykBwodiUsu3QBuXfVyMu/3itqJbsAPD/viuI8EY0+1a0PvDyuBt7NOmXs2u8kWBnem4B5b4ClWNoYOmS34vs5rejjXGfwKqoiWQY9DedEOwhQIc8LUu1SS4Xf8/bNem42Z3q1hLvHDQI5f9N9q6+X2A9jq7AP9dDLX2t7S/R1hgO5j+i58i1xuayF/aWyyCyTgS3D5f6BF3bTcKA3MhhT4+KDjGy2eN/Es8GC7/4CCnLqseHxHZiOYVb/4anGvf2QKDvdhJdJzpGUe4qxuNqXg9JLOyMWjHM1d1x+hp51Mwj1HnI4xdV3Anf9zmPzrnyNlh2/HaBxTfH93snekqLAV8/TIcQ4GPKemKekULhZkqk38TIYe+eWQ4cYDVH1+p4ybSub8HkdPIzpJqnmL3tqSpDXL+pspyJkoTkUMFJKnlqtZqfzNI4DfDVAR+Bku/1iZfcFnL56jqZt3KQk2RkDDHVgo2Y4ceB71osJtjn/RnNUut4CdIwAu56fiJu+Exsfp1FQzk9Jo9eSszwR4CBTqZlgbMiAgqlpIumPP84l7I2lebsOWAruRB3Hr3qWWVcOfgoeY2MY1ksiJQiUlR8R2IbHUPQ2ealszG6k/rT4KZkmngf42x1X/bdnM3qVHDjq4UJRr4bVG4ZypvJu+EYw12/GMPG3AVqtktGjfffC96KdFFjn5ECPAUeN4XG78bAulA6xBBXVKDzdBPLMjKmWGP3aO+vNKZGJPgS0ppOKeGwFaF8zG/vb6JLSUkEc9Jq6wlpzDozta7vl4K6dNLpWrWe8ogeDanpDT4+lfDLm8FhoALfnEC2rXuxuy6JB2nBfsvTbU0XBhusEqngHuvb/NHiNSTUM8s8LG40HqnY4ggtwveONugFE/XwJlkQFRvolK571pLctEzJDvWJP3nThx5k8HcYZvVB9W7nhMATaB1YN36x6wwr/9BvJ1Bu21I0KpspVOniZQE5db1bZUFmhDs/+R6KHU7D32OU06zAM6Uik4Y0Bq+y0ACQ3NbSJunc/6uqQw3uzF6ipq3248CelA5Aen0jd7iCjlYUCcNc3DuLv7dOYOvVyg4+vW9CdcizSyXQaHT5iqGHsPyOPOixxgO82XzIZ+zFdVj4HcHYJNU/Xl8G49MKDn57/BB/VICW8ZqCyWpsAx6LGXHENBx4NPtPdJCdsZgdDAYXfPSmK4kv/3id4Am+l0NB9amIwHrajBLQ8Nqi2jZuw14iJYLFAgv381VdDMWIfmPPzQ+3k3Hrsu/YS+cYloabf18ZC39taWf0DkQZ8CoXx2kMoS+pAD9GD9uO1rjrYN2eZGn7RejVuLAGe6WWgBtcMjK3+CMLXoFO/OT28FS8WmDbhSA9bNwcMHj1fGQolIHOCbGM4htkHrPMFldX5UJE8udRq3/BHeuEyN13s5qTBXbtoRLSjLpyvnXGGIIpFvJOBkDLxhVxl5Xd8DNqgWmbpNUC4lC3a5od7T09gyaDzUkxseP12rdW3LPB73esI2umNMXjueHiUSYvdlb9bRfPyH14S6Bivnu6fhQSbyxes+Omu+iVx4CO+DX/jP9MujH+fU+wf4v6PT/fF542gY+x6XhzODjxZuTlKJ6vzpk8xO2ryuJvUtdEWtNcP70L9JRjYGfYwJQwVgZrnnYNtXk3ZBKzK/PEZPUQXpZ/8wEVwys8iqoeXk265OrjACOwdemyTIqQJfCuQd09vvG+O0Fv5JYE6jQrqRRfeW+K6TeCrzWLqK+4npT7e5oBML0Y9uRDY0nSvBZwuUYbgAF7pQrtgryyP3sFW4229+ToEhfqMJpW60Xk0ZsMwnd/7xlhVIJh2NDbB3SgzjEqCqvkrygU0X+iCfW8W0+UunTqoPRa66r0yrH9+VvyIDfXymFbzmB0IuDcgw+Zpp/fLtXM0uOpPbEUBM+a2e+tQOJZnxFfnymPArj4q8d45tYP5bixWvDhwlLYd1vzcrthBmhd4bcj7p7fYgCuW//zIuo8Hw+8x7gfojneJ/r7PNFMOAThu30gdch58g+XAA7+wz9iuLlU1BetZyNlY1sLYgV7xdzHV4d286iiLnoExAVuKAVqmnp6ax+D94dnqB9Ccn0HV54+KqCvfYMeXip6+KB4UVe4z8tk6XNpLTAmg13wqIkaf3pvj1z2ACzV07Pr07XWd1sbgq3QZYUGd9V140APo5mVBd7bDp0PtiQtc/R8ZnHvhLR237uH4zo3e8ofpCe10uEFPl19rXuGm4pqXwK7geiI0x8wb3um9VC6PyEB5FPPV0FJ3ASRXPkjQeQzmdvK733oh84pH4+OeEHj6vCDW/Gjpl/zxgT9+oNbPX++v4hm2XvVAc55OPSuI+5FR3kE02e8CLLoGOvibT/60iRgzdmqpvOQA4kfk3ap589wKwPqoCOOJH9i8m54QPJrpQ7jZqVOmc9Ue2jqz0DmgT4+9g2MJo7e4oNd+8wxH/zgP6rGVdHxojwYQUL3s1bQ5jdR2dnYvzrzB/fw4NQMqVZO+3oOtH80L7++tVNGTVJjq67rP6KER38YSl6EL4axeqO5HgzG9YMvBwONHtGlPNVtebMzhSbnd8E8fi1ya8b/1j92o9SqeywGnCL57o/aM32zgw0MA0eOkY4f7ftg6/3x4N6WYxnIzs1EHTwRa2ntrvrFLFzU5Q7BP5RIbzeNd9flzgkC2HA3RUnarBRfXD7waRoXeXLMPBVm6aTDI+pBiTjIYqy+FphqKZNGbfz96SzvtbjB5xmd69NPGG09jcwGVZMm//KonWrc1wbMt53U9lv0SjLUJkrlg+Id/LIGjBB5yumBrkkdG9yU4Q929+9hqurafJfoNwPe69q+WJwbI56p24Kd3dccpV//M5aAmm5T63nxNhe01OUPpQQ9kvdEH5muZ3+BtfiPc2GX4098KNOLpip9zqKXiF7qlIhyLMzbaQ8mWYikusJg//Krfr177vvsBfOuVQO07u1SEti4PUaGJNM23lTf3ew/BcpFCap6Qb/D7au3H3WoBRok+Vysf59CIsYGde3s25izWYrD6UcJNQhLOK//CzDVehLeLMJ2fz02mREZ/RlvHrbzZM8RaSTJxOor581QxsBFaqL5fBO+57xhOZ2Wzh9fmcKK6rs6ACfFe+uPrZyl3q758ctAvug89eJLHVn7+qFSa8bpetmwWkkaC5su/UK1pUdXxfqjDMeJrvOZ13vSIvRpev/snegbbsBq6LS1B7ikXbNm5BfjHQ8qAES/rveaqqNj4cC4wmUuGvsnBrwb1RDNwlSoPhV4fsen56XIgS5th1YOzMX0VV4PtI+txlJ9RtUz9A8nkUQ744OxexqANBoHxFFKqe8UdTMbxUPz8DJGjT10Npa618DeffKoq3kRfwwfuJ1Gknq/sPPEL9RJKpKLYGo4BG0rd6eDJ3Lv0sOZL9NofJHX/WHuD9lNQMYktZ3C4AJds/HPfL6601dTVD6N5+6rSeTddIdzFwkItXyiMpd+NOdzJnw8RT0blrf6/g3ejyCgOBq5qcd/GMFXqLQHlgLxFWqYbNCQoYusOJ2P0jzKBmV8adG8XPlj/PcgjiH2K57AIp/vWWn7Pj/etZ6SzGUlnmC38mWr5fb23nfIKsEAXUN1eKsbuoFj+/X++sTXmdljOYP2++FjpH295XF0fCjMISWbXR/aRyEMBR2CWNHCcgzd5ujooUVQX9NSzrqLLLighfBH9p989oSCWIPuLVmA/Opx6kT9mEuDng0Omk2v225/fW/MBpBg7P5UC/nyBouJQbN+7Z09PwplXHXp/kSkSdn2Xl7scHqRHTX1lN6fTi4cm5L3vk4hcFAEm85sErvNl9aMnb7mgrwKXjdji/SAW4TxeMh6s+QBOVv0146Hz4bXxTqt+f4C5VDsBKB4t0G1OXqyfeY+TO1+P6WE4SSnpD+cYoIcQY+RfZGNqqTvBfX4zqTu8D+kyjWWm6lTiV71P2RQ6XguAIjzxfsAimOWJ3ODmIm/wfnsK0+H6Pdzgzw/ajUeq2X7bOjzKhwu2m073tmctLCD0vtZPf4Z9wJwMGBInkk0wcD31TM4HRxNr1Kdq4jFavfe//HbtZffoV3+M4J58Y6JMoAGTlYYu5Bhv05tf6gY78NcAvq5mRs+TOIb02ZbwN1/wnYvwf0i7lnVlYR36QAxEFBqG3OVmi4KIM1BEUERuBfr052P/Z3hmZ7zZCE2btbISkmxq5kSDZxydVoO80T/+vsykGje2qelCxnEp8K4gUuzNE+pFmLX9aZ3ljC3I2XI/tW+oN7TGktiJ2XAt4xTi6UTxXpQdNjsTDlA9IoW4X0PSWWi8S6C1mlH9stf0Gd+9CEyds6m9/XoZMy/1JNcu4YhTeY1ec0/pjRSfc4jViTdv9uzUgpNeCuv/lzr702tX/YfcV349iPswkJXxe6H+1n9mM3fv7n96P3XyONZ3pHEw+uq7ywjf9OxRybj5krtYiBKP7ZCgoYwDR9T242f7adlcv5ACsjZLRNEmjNiYm3c5i17i+D3dXtUkyZwLne55VA+GUzefhm+Mwu8uG5uezNlgni6TpF/SB9W35Izm1Hzd5Z2JM1z1z1c2Tw220LGJR+r39wFNf/5hs+sYPZxuasUQCXJp1b9GpttHJlSeeIY/PcPsdmdvdjaNAs1yUyj5fg6dACQcQdaveJRsvfFYneyKf/tRE8WGDePzbqHXR+aJ0fWCR5WO4+D5s0ws6/6LLWMqRH96JfHX9ZkT2kpQDh2M/EnVKuFQcsXfeRh3qx4+2d9nicjX6cYt962z2eaLCT57NadrvogtZ84FkKXJGJvck7y/eBpdLnVBlFmx2VQemjP66YtErP71Qssndffo971Gf/63mxxIJFj5KdVLbtGXv/xUpzse5m4V5/1dL14jbl75uqhP0bELoIteJjnIm13YO5DsIfCEgWoaD2gRkmeCUvcAxOIWLewObWNLg25N1JiPn4ypKBghLrQHcavY0Of+5N7hKV6umBenY8aT75GH9flHWPk+vaSV9i8/srf2MusPdZpCPFTSKPUfJ5yeJeFgdJc93l6o1U0rHxYhT8V1f26yYbxBLl1iLh3fwX6oJndTBTD5xpW4+evssU77RrDq53/5NzafZNWAWWq1kT+4PBvle+PDmt+h7oS+bGlqckZyowVYCh5Ib8TdKZXwsnTj/rLOkjvv6zeMxflFVL8Yu6WyTq28+wKh/jZ3sumStCUMdefSg7dfwqFZbhK8tFuKlzku0HDej2/gc/iueKzq0zYpJOR9dUKNW/P0pjqvJJh/gU3ylc+Mh1IooJ97gaZidwvn9XzCedqI4/5yZt1kJvYEI1Mu5LTiKSsN1QZZYxJxKBKr7s/fr/iPF79zu6WZnBQOjaCu+mKqT/ItiuTpmJ+okgdRt7zjfQHPnfxY80mKJ0zMtdDiooi43XTV2Zgf7+iP3/d/9vvb/86v9rF0GH7ZbPdsDys/HQXdxdnYbF+KrBW586eHsH/5hFVfxlvtF6KG2a4Cn+/kU//izNU4vqf8z1+Mi0QOa/4sXOS//WV9t0Y1/SRNga2+B6LltV9N7ebVgmcIFG9S5e0tyuBGf/mEle/p3taZrDOkDy4hOtlvQpaqyh1IE6x9qUSb/cOnv/hCO9w/2exsCk12p0EluL9/wwWOOIdQJBf8/N7P3dz00hm0vJSof4mR3v/9/laacizlUVNNwq1W5D2bLGKK6BeOcFXe4E5UJb7YLYy53C2FP/1qSJW2m8NjowHTPo+1xuWR/Tvv26tvjBxnbrLBD08xFLNakL/4hsXJY4FO75/UOmGzWj5RFUA5yeaq/3/CX/w0NOgf31Wvwm+96cMUUHYxj2v+ys+muk4WdERWSVY9N1uU5cXBn/6h+m6gD4s5l//0A+9wm9GCH6YP2/0uwGK5daqFOXYLAnXyFQ8Eb4FTA+hkGC5NeusejmclOf9/NQXi/64paBV7wfBd60jV9y4GsOMf9ZT+2c12t7+jg/h1qGGci3CyNDsFr/nqo9hGQsiEzPBhqxqEptdCYlR4cDk6JTuV4Hz66Mv+WsTy8tCKUcLNNZstbLewOUwGNcTy0gmCf+vh+HOrkWO9mLVqUETyJ0YBVRwaVMzbJI00vB8VcZytn7Hj8VSDf71zoxQ9Y7Rkz5+FEATJ2JuyF3YPiO6wbAR3nLnbEk7ZQG1Al2JDtDPfVUN9f5bofNCSsV7UMVs8FqTg9hBSt94fqunw3GMUHJw7ycVjjdisQo8er+cTiwNnZLQhjwbd5XNPjBci3vLRThge6K6P/VkFfYhlr4SrH7vUrouDt0tRcEaNCxxNKyx21baxJfgqGhv5WPuGbGdOk5xeQoLF/fANWT0PEzhVFlDbFZWuv7ewl2h7keghUU32467SHt5EYlRtci1jWCeupFfOmdjmsQ2n+ydJpcl/KkTHt5c33e6goFNVuMQ/FS99CWAP8PFeFZ7WXhqDclUDWbRxO/LiwFWTwN9cMC7nhFq3mdN/VfIy4M/+zqYqw9+uGhYQdp07TudF1of560joXbfHcfLTkg3amuMGamjkdqk6nTpfM0KnzTsluJDjbr5sthN4FUx4W/QnNly/kyHlOXciOApAH6iTGnA8KRohjflijEzDHu2PQU79dIw79iqLHp6vKMNfP5+8ZalCH6TfnpDDtuW71jXnFpaHUpDbcJG6aZc+J/B9tvYdGONuueTXAJIw/hL7xvqO5V9HgciXKLFt/VPNcjrY+1umf7GUuTbrnHdmQVQ1Djl92OT1P48DeJbKZmSn9JM13snMZfr4mONv8rZsNrS195vtt9SPXma2+NXrDt0gfceCzAmb1GYvIJQsLsGnvVrxXZRFErty/SiE776ajuP2jJK8D6n+vVwyNuVFJDWie8HTSzF1QX9ld+g8Q8bbTQTZ/DhJCzC/3hCnlRVvqb7hG5TNoSLYcktE7yfKwbeqVIyO+OTNv4sBsOgqUByJH/YTzC2AfmUfLIavspu6t3beDJWRUSwMj4p5msbJZTyfiIX1TUafR9JAIa51uq+p9ia3GhswA9Fe95eqz2NXYujN6EPd9LXR5/64pEj+Pr4j/wwADRZWWoBDa+Lr2bXC5WN6ObLIrOFZ/jy79fpELnZNSA5C/s1+0mszQm6EDt6c3E04+6atQLAcmlWjqKpl1kQbZQLwJF39ywRdUgJtzphYB2Fgi72bevks8hpNTqdM70jnpLC+z7jtP7duxp/WQB8AkzwanWX9pp4wmiqJw/vlNiJaJnEAcXo0qBrcMm8d0nEHwXkyenzGSTXVx48GRffW1phe6+aq2AhIJheTut5y95haHi3Yl96WepeprOaXXOXwO20yQmqshbx9RgUMU8WPW2ZqFa8L84iiW/emamrOISt24KLdLC3EU4tzOLcbMQdX1N7EvRYS6uvgeUaus/Za1c83b9lphwBUz+NxnyZGtwyHWw770tni1yjcu/ntvVPEHcs75uzyEU465Bh2eVLhJpbncKCYq6FzkxtxrM2sN1EY5uAGe51qHXmzX5Wbb8kQHy5RUYJ1fmqntywv2whzRLPC9+039bL+mlz6XO1Fs1e8R5ddlo7T/q5123O8idH1RV4UK6FesWp61VC6g4L3Wpl4bAxPa2+x/ZM879dKn85aEcvbmxhRtbJlNrE6OaPTtKmovV3nBc8qPwLf6bexKbvJG2AXLMgoGpP4afKu6KV9FuCpu5bo12/czbodF//sp2endzfL3xcPYb2T8IZaJpqTI9ejR2Fc6ZNaHzbTm6qAiLQIA24/rH/oSgCF6xX00KJTNXWnnwGtso3/3b8/lG0O6/pQzYHGW0qgCjpakUitWTtXDF5SCWaA7HE2n0T/CYLFQVnuyvFkFCxkx3LQYKJBS6/is6vmx+s1gnEJkhGorFXC+RFayHz8gOi6yme9uH1EMNvmRI7xL9enJhv2UMbGQFUOO1l//AUTdAPWibHrYm9424uL7J/TkMPmFaIlXdwAkt7rKW5znQkeS1KQ9G1KTF0v0bS1lhROssqoBdMpbJ7xp5UuB/c6vvB1qZbfxNtoxU9C4q7v+oVba8DMzsfL0d6Gc9lpZzj+dmtv37oI58ROfaSZtzv1bocELWqY1n/PNyI32bIxu8QNfNUM4R1pZX3E42QgFikyXlRy7KZh923AtcScam+sIMrKeBJxouXju/uaocC9lL1E1WK7+suPPtJ2WKD1xZq45sQY5eV7hC5t+8H8IR/CGXe4hpO/TOSgz9uwx7cXDx9RiclDfjThdF7ECNzxko3I1XS0DVgLULnhk5jfq46mVnyM6PmKM6oNp2O4nJaxhLu8CejRTY2QmZ5XQ0O9aYyx/gzZ7TiX0txigXjP74st3h720ouddHJd8au+qXMgr/iPAQlutjiZaaGdruzoMc633uxfXz4o5GVQS+XNblrPG1rxnFjuS9HnxzsEGDZ2R3yuN6v+5G4MaTT3Js0ko+rma4oSFNZOTFQ5jbu5+dY2oGLfk6e8bdDcTVoJqmPYxPYMpxt0Oy8QRIl0lO+uVy2Yj2p46eN7FJM3DRd+jixwEr0aRb87dMKuZxPQzejhLce12VLutAJ2VqCRGD5NOONPaUGruAs9xrbuTUKLR1CwUIx7PtuF/Yo/8noeiTH8BsYQH45o/7kp5Bg+JtSey80bVd2ojql3b/WZWAYGuuk9mnLtTh+e/T6Sqz79EO2VmN3EibcE0j170L/1me6fIJWDh7Sl/u/wrZZQlm2QPlDgDXYyr4+CF4bHroxGiHa7jBqJcoZ3o1/w12l4NGROnEr3j+3hSawP4dCasYbGds6IppJjtdsU/h1M9dPjJjg/Q57Kp0m+pWtNzcpHFzVoIpQE5p3+e77y6Srg++YJQ33qw3E6NwZqXmNCLc3dVcvxpARypuc15hWWhazf/gRJpO2XWo1LvNnY0xJtk8Kn7vbrVsvd/PZwOZcGMQ7hO/zFsl5IafTuaLzerz+O2+C/eLHRdlWrJDsLHOI/qJfMFtqZ9imGRYGAXr+WVPXxK4rhPvv3sSyvr2xWfE6AzS6qiCWvNW1JlOZSxuhvvFuhnNWx4wlQ76QT9bkdrvjVvijOt1dq7kHTBf9nAnBueCL4y6VVP9BEQuKhsKh6Oh7RYiukRERKvuSOOjVr2povkLJElJJJNjP6h6ffLHlSs01svZdC00clhxa8taUyW2ypBEhh8PHne61Qz8e/GFlXolBCTyNjn5PeQ32y9zQO6aVa/vzNfLYuWIqeAhqetK3BUh7ff/dfXnGRw69vq/X91XAay7svuWYZj+LAvcPhVI8BHKRwwPJsPRG7Oydf+rPnTsgPIf8eNAkZjtRR87vPEbN9svzxYZrMaegtTN9GaJ/qIf7DG7ZtkS1di1LGaPdOsyX2OEMqIuFHzez38fqHKZVQrLPS1vNbtb9qk0tvlmlYOJbvbEl5vpCDZyhT8/e+ZEsAE8D2hiK8aTLGpjp4Bmi3fONR2t5fHXOvcYqC37kca83ddcwR+DP87afETMJwyvfyBMbe0Mid6z/d1B/yBvWNTcjx8P7pHz053hHs0PodKTYR+5y8EbB6Mqk23ONsCY+9DU459sT+9Hy2xNbpDbLxkzEf+r0390VWw4+f1++msBb27jAbID1Ri9/DZoOms9ZE4L27iPreJuz+8bk1XiFGSVXE7jfFhceuiAi5vQ6IWrVqyzhRcmKbCQu7KW9iaY0/qbpc1G7nvgoBfC8ZKGb9LVv+4s9lPobjtAUxG27bPffHb8cPx9Rs6ftMACdRK3KslLqbTrYhoN8p2FGbe2y6JpM6AeWdVtLjIC3V9B5cSdqm3z1xo2hA0xUjFzFvnxF1FKCbHaeI5J+J3H/vK2SXvIFSLtr1PKy9DFc+9vf8jqRd9CkXvAJQ4dskkvo0W+pCVdB7GXNqZvyoz97jOMK1mmwaPnJh/Y7/sUcvJn/J4WulFTWKp4LMrg7W+PZbLbl3EmAcqUvW8xQOZhVZ8u1RY6qphlH9+SfwvXT4F4/OB/6A4X3/NRSz+BCO2fmdwudV30bxkpTevCtYAVfKJ0T/Xde+KuZSgmx08lhYlZ6xveAsEoePyj+8Y5tHiv/Z8/g5Jvru+zRqUBTyw6Kz7bOl47YaWOi20HM3PdGE73cDtVmZj5zgl9W7ux5ruBx4RNxT6HS9FB4xfIAzqR1Mhde0cABkG5ywzno+ZjtlBgU0Q4mIN8YGorx7s6CfO3Hc0+OrWs9LCURcOzYBSkMG7/eErhcnGDnr0qEZdsEEeqZNFJMjzQbvuQGkVzth7P7u/2pMH4xX9MPvUmpRPz5/HHCYKBg95RCNk9mlCCv1i6x8IFvxG8ttyd0xFNPGG/vfq0bW5vr6w+tOMPw1J6u9T+QYh743DPqXg+gzbInmniWPGqlUIOKVPdG3JnSjNOw4WP0vPQi8GI4eSxJA6VYgykA41sve0qI1HsYMoV01mdHvDWE7/8bl0lpslEVcS88PjNR5WQWao/sv/4sH//Z31UdheJeXGe3wkpdtxthdOqMpeZ2oE760bu6LsAY6r720X782XB5T5EO8XGtMb/2EuuNzmWQpO11Hbt0/k8L557WmMSZ+dlVCvraVElw+Oa38pdDny/mqyS6fnkbeXXPIVKgVuIS4IUf4batFY9BIijxmVNXCF+p97u0j3+0dYu32Q8XU0jRQdaIPaqatEy6Guq1hl6cVbqrWQ6MttRzUffGm1i3Q9eZ25xXA93bGM1aVbt4Gdvq3n0ahOnfhdPUVCcSd9SHmQxCqbl+feWSc1SN91rgMmVgVb3iZZk/t6qmh3V5QF3js0X2Uu72rTz6aAQXmEtEj8FzXJ3CTwInbDL+lXsoadSY1Kl95SpS8QGjcaWtjkwLb4+O9szyBH1/8nz8cK2/9jnfFM5gFuaNHRdx5rCGXFiWR7o3Q2x7iv01ZQ729tESvN1U234WtDQzdJVI98rXXtya68DIPPfGeax8E7/C9w24rvMhRZGk2WndmI3TLx5E/8M8/vOchyD83qp4SgdH4fBPE8pI4NObxBv3hrfT8BC7NEzPUhfozFJDsj/KIXrmaLSO/x3/rhzcGMismPIQcHc6OT3W7fDFW2jSCvBssqvmynzET3Wtp9S/Ee/3cbP7UL0DkWsuY+zZ2Ny3YAFjjgRF+h0PF77XUgHNo/IhdPUs0mjSKIMv5MwlPqZkt4kFMQWuIRZW9/KhWvess28w9Ylj1utm//nxwNs8Cv7TwxQa21RbUzz+RmD9cZX/+Fx2Gck/V+TWi3ryGAjwuGcYfZpZrDRDT4HP98PRwLpJslnrXFp9H3qfX9sChfo3v0RU+R3osVZctdzmQYNc5CcV6dKi2/eMXAf48d4S4i4EGvrEMqIaDg+WDlHn/7t9eazru48XOJrEEGw49H5FDe8gRfR4qG1a9YPUnT723A+cMoXpWqPnojh2/i9gZBoQBvwPP1tlWaq0/PkBXvUifbqkzyYdgMcZP8WrY7/r4tHBwKaZq8+uyufcUW171IixMfdFNkRVPkDqoHFnapIiFseSCZmgRXeOnbNzelVZOuqeN69vMeV2Wv1tIDucY83eDoHkbKKkkwOkxCvMxqxYjihc4YW8/Vl5lohHPZQw/U3TXnHLZdef6Z6DatL5EXbqwG0+UPyObCfMYrHrCvJvKO3Ik+/fvfI3resnp61rgrw55OJMLc//0SeIjoc2WPOAiOOaPlB6PWdOt+KihP3/nzjJ0v0H/AvilfaA30ndrH8zNW6rEHbeuh5cJq96IhGhbEHPjhJlwU+ezzKQlJsaqnw7Fw0mhG/ZfYrLA6/b3xm3AucYbLH3EDi2P4QWyI+2O1Jm8C/pQ34/Ri22+4ybYCFkv8CdbPubPlB4h9zt2KZVFHjY7Qg5ZkiHWXpd19g1xV31X9caSTwIEnR2S4LEp0NTW/D99e+UXZTgYUzJB/p2vlOyYEu7ckygBVYS15mABb5T2biqteuef3vYvPofjSdOocjDybD7oAgbikwDXVHF1/rzMMbri7C9+Vdmwy9UANGPcj7BVaPhvfbV+e6Mubq7hp/cUVxZ8JSW3fmN3whqfoHtdheOw8qm/eE2y/GqH982QdH/+4Z9+fiCO5vXPHxZEpT7nK3+6r/Zuc7jVt+hf/PO67TsfLZ9dTa14Etmqx/ty0loKxTV/YQOTvmf0jH9nckiuVzTp/hEjX3wbo+SdVI/NeE6gVPQ9/g0XqVr5qgvR8RNSdSnabknLLIbV/nj+NF99XuNh2B9lbeRWvtb+6SVj99zgjbu815olJ4B9bb6Jtt/4+twNyRneyifBVZQ5HTM9vUbzeRKJJUuxx/Kvqsj3WVT+4fnnT1/QGtRiadX3mig+jrBVLTLyN72rlv75tMHks5i4xfFSzQee+KBeBJk6rXMMB4FF/V98jr/WN6i20+bwRl8OO9Qq831F1dK04CBcOapGePGEHPsWON55xNzFGNlfvIFGq/4RPX3MjO5/piFfaLAn7vVyYnPzZhLEzwpRtTjc0PLZRjms8QbRpvOp6id2iMHkbzF1kludDXVkT/AmezZ2z6VFq36ao2NbdVR5edib1UMaw2Oo6Grv0qPPQ+eiN8EEC9ebXjEjlcp/etBQXu9o+eNHqx5JTI69siU5NRi4Ij4QEhd6t4sk6w7V/i4QN3LeiGq+2IK7X/uy/WCLpoW7cPAorCtVzndPH47bkwZ5p5R4xtelm08VrwGvf+/0OFtPVpbw1dBw7ccRrPARzi+38VGELGvcr/rjzH8yAfFnP6KR/0r1hauQDegtZOSQ+COaDg3mIBHcE9G5+Yz++ItYm8aXXLfbR9c8Lq87RPDE1Bq3qveeH2iPykvq0EO+K9g/ff+Xq90oqBvcCfr72P/j80Z8nMIlan494Nutxp3qKiGrpt8bwKEz/dNLRm1MbHgZmU20Nlu8qYvC6N96KIx+EdvXqQDC/jKSw9mtw6V/Xl0Yh0ijJNjE2e5cvwz5Gt17YvbkW/3xeWhEXiRu+nrq8+mlLvJ4OB1XPeVQzYIpcxDXpwven07IY/X8WcBW9QM1Wf3ohgN/8MGRtkf6ly8QzuWmRpSPn3/6KpocuVnjlXdA8O9pe6201xLg4ms5jhtC9SG6/+7oL7+HdtgO2arn//ErYm4iCOlP0lxQd5xOXWNOPHZprwVkh/Sy9kRru9mYkgUiH3vUrKuTN7/cAsv5ci9GMOUum+5JOKJd5yV4cx+2eg+TrCAh2hXEDs6bkA2V0qLpyg+r/vappj/+uRmuHLFNTQ1H0G8GBNZ9T52Dm+qTW/AJ9DwyiF5Ec8bueNvDOlYeFy2Wul4X5h5s43z+x+/ZdVu7IBySA8V2KWfv19zhf/ke9H6aVS/nGQ+jWyYjW/XrSfEcBap9LhBjzt+IVromAL5lNfHc5MIWwT/1sOYjiLfDdsZqrs1hzaeO0no+Jt05A3iZgMdp09CuT1TuDt4DSVjoNib702Mk/tn1Y3OFQR9NOClw5ItglIPvBS0hciUUa1ZFrfV6uuY75T/9ILg8aDbXMVPkNd9Hjs94XzWyJzXwF0+IbKt3uw++3eH+4Sm1ZsHMhL7PeEnPhojcLN7W53CGPTyz04f6q33m1/F8l/Pn2pf129jVHLCSQ8m51f/iJX2QXpse/en57/fcZsOgbEdYHoNB9TVfx6zu04IRdwX5i2d3P+AT2XkfeDwJU++VSrIzYPdbAuKa6YtNU7t/w6CcZ7zq04hms8lLX0VhxNZ8y2O2f5hgHGKNKv7EIzZvtAQczkqI3Qz7iv02Y/sv36blAwsbTjylaM03jszsrWpSUKrBzyg0GjB6YH1xUl24ZeqXEHlro20f5tL+3VCRuPzjg+ZX4I9opLeRuNtv2zFevscouv3eWHBfirctm0SDf/lEmR71ZfVfsMZr49c5a2gbcuIb9Uajjv/0b+0L6f9XUyD975qCUvGiEdFCQItURClcNt6Z+sgPu7n1noDaNKL0ir+IjRZKLIQuzwKX/M7Ud1GuF7Akm5geymOgL8fvaEhmN++IhocTY1trPstHvfkQjSpHbxYezxQC//sdhXtA0O5703rInWikLnOv2dA8wIbhR7dU+/2qkP7yK48G/bQQt+rzbqkSo14nZtBR+lVxx/TzV4NaK8fxU3YqmxT59IZHBiLmmsWvWAfHCbTychhh3910FgSLBJy9QVj0Qgn1SGwkkE9+TV35ZIX9V6oAvcIJkfzRW9nSpVAiXG5TXEvger+TLMG+k/QzcVH7ydjxcc6Be944DMpj6w2XXaIBL+jjuIky0xOy8LKgyFVsmirIYpRg0CBtOB9/Xg5Xzf3vuAd4C0eiyb5YUdv3DehfUNCb2kse9fXyDLPifzBvTCnrvWPqwyMuzvRcZmo3D5rgIju6GeT4ycuQ7YpXLp1cbk+Mjy54y/uuRej65nSifaWasQ7MCfrdfkuck3tGg/MJ3rJ7MXWq6LLKeG9bCCjZB0f6GFjM+tvOBVCTWqRkigfW3EoqAQo0kdrXz5sNl3znw4fgaqyaIe7+7CtFH4kRQ3dE1kveo0GB+Bwxv3PfaPhedwXkz5OOt35011fk1sQnJ9fkGNum3o+f9o2E+rjBFL+P+vR0gwDi5fkYb8qjQ5PMCQrUm5QfuXe57ZYQj4DMFEJidkocfnBhagDv+Lm+34IW9TI2MI2kH7eF1qHJcNsz0pTyQCwHvmiehLiAxvE0YrNi6H6pUfQQisqKod9ruLzqToNwX3LEO+N3NpRPB0AsopiS54123fIxS3nRdXXc3baPanbPkEr6kxwp2cpjN0sbz0KDHi54y5KGLbcX70NxQQmG14arFrPcnZEoBB3Vkv4TLgF9vSXxExJcn08QUjCrO1rXB7P05er8tEknOMG8HyuJN7Mt41INgoOnEE+9qWjm9sXae/5ekOtHf4az8LimcL5FDvGMw6WbkFjswexydUQby9PH6Nz3kCj8iIWN//KY/tWszfPgn/D3ec/D+RO9zrIhPhyir59pdCk97WVd508Ex3XhLZo58RAOtkqUwlbZXOiphPhovI9iiIyQjynJ0bsUvFFohidatuicgsO+IuZe/IsNR+vOo/lrx0S5K3XG6naTALufCjzzJ1xRr5sk+XxkEUbNoocCGcoRToGIibmR+XCC8OaiCiUdOS2Loy8331kgF/CWOMPxqk8bY+ll6yCkVNMClQ3aPrPQ5bxIeJNrH8QupRPAQKOIhLTWu8GaJxt41B6pkr4UNH84EsDZFjLq3jnPm5W83UNzaydKLm0YLvzx4MKZLj6eaFyF3eRdYviJ1xAH7+MzWx7Z7fy3/6h13T/0eSreFpgd2xEsUrfipW1ng7RR75TIesS29ussoNj4SpTcG06fw1tpIB19aqLHp1DvaWilYJzVlpBdtA+by6Zf0Bz04d/+yebWu8Kff8AceWSo30oHDJwtI2KdNOxNLzQvMPlSirfukOk0ubxGWWypMArGQ+smTmOCTOb+RjB5INbLl0RD8GMWNdr0iaZgegQo9TOEmViKOvtmzhv41NGJduqgG5OnHEEXHl708LwqbLorDwldJSnBwyuuEfsatEHbM9pSZxN9WP8snRpC9fBc7WGyPoumtbX8RSf5R3yGc1tNiyyma2/WtzGHSyixCCJXs6lS2C807I6v+m9/YZF0Q9Z4xzOWVhWbqLcPr/en5W7Dd+/VGNlXv2OhEUZwImj+tx/nMGsANdO7xOgWuR1T2KuFwi0z6qTrvOM9NgPwpMSkplZoOovfto3USbtR5fP96l2RBgUcltogjmv43Xy+rPPbLo+C2mYueMtvY677OSxGppgWm9IAYZDEw2GsLJZmsxTzOQx2WlECSAxnI1YtuRz0lOKD/Q3n/FstELzVA1H8cqgW9x7FyLlSTPRgOTJq3V8JTI/UxuJkvbOmM+UJTqZWUW36jnp7fuk2Mq6tQ5RkI3d02v16KX3crsQ66GnX7A2ngXFf89SvXioTVJVZMEyeiPc3o80WpV3na0W+Q+3XjUNDopQcrHwBS1wi6lPbmwXQZ/nBaHSO+izKvg+bJmpGfsjsarqJjgDiTTrjKXZwON/3qgGuM1p/6+v16/6AFS9GfgiP+oSj2oe5bhpirvgwC2yOYZICQqIkJt7SDkEPgfgYKWm/c0bdL7IRd5OvxLYmLeQ5avto8zi9iLrTCm8ixj5FjnryiC0/X+v9xAjlqLtjdrc7fa77cy0/4vJMjP2vzeiu+N1RPk2YpAMbqiVb54dDyM/ja1kcb3dwjz4QJ3wQR+1T/XsvlxjlaexSdSzP+oR2rQa/RlHpXcd19Xt8egmM+0f79/uUV/gGuqRXyM34rDWFQiaJVh48SHIcB53++b90QCae3QPK+uvjvPzzp5N43qOpf3446a1eVfrn/z7nLp5gPR/EgY6yFl/EFF3foOP5yjGvfRZjiu7bUqDWZ+N7u+T3CODbLz9CcN9Un92OvJEb2C65CRBmKz9YwJ5CilsnyLLpwLkNgoS1eKi3vj6HNCpR+a0Z9brgyZaSi2JY8WuEW+t6O0f88tDl7hdfLddDk1Xfon+9EW3j0IfL4WKv0+jQiTrituiYmXQtcIgjWFzX88/ecoXLNzFD81gtaH/skTyYAZayp9kNj897D7ajHcYlD2t9Fn/rfPRrMNNbPIfVx/kkb/nH3Q2SXQenGx2jU/788ygxdxcOh8fDArXaCNSPwiKcKbMDWPED06+wqQbFnnK0/h3TKHQ6xu18DpGil1f/t0F925slCLtjRi1SNVV3F4Y9+ppXl1jq+xJu0ThMsOjlKml5SSVEsPhyUWcW0frrVZ8M/2fDuH/zVEv4ArHlcyxg7k0y1gc9rf7579jFt3HeEFGfSLJ+5x6d2Ni+rLpi2V3u0fBegKr3/JX1P+43gh8IDjULrWMzLF2B4ss3Jtphp3Xl73cGacVz+kwqpZuK41gg+TRGWFr56NjqHobVH48ijvROeNzSFIQ+8unjIKbdKGwCF2w9a0a2RLtsAA9A8L9c/QEsiRxj9BMFbwk/yh4sybHxsZW/Fd1OzzNwuE6p+hhoxRyRCgiRl4treRFDdu5/HDJTLiT+SKuOCvbeRZdqian6vXtourddIl34wCA3Trt1o1BvInQorZi6fWSHkzYyF9b2g5Tg99H7JpdXD8riCpg5/aFb+Ffpg0oVGCHyDDTFlNxFdtor9EaFQZ/rNuxh/5JNejKaWGfJ5dejArYOMYwpRVT7eD6Sl9eeOvUhYAvX1evzBQ1RjnPGWJTrJdLbRRtZKeTV+B42CkLu+0QU20Xe/Mcf/+ILls+qvvOvD0FSbdOj1oo3bB8YLqhSJlLynUtv4PxsQuRJCyz376ZaeDEsQA1bhRg7zclYDm2BBMIQ9Zab4a32K4F7WjY5eLNfTdW12EPWLQ1Rms+MZmovk9yb7wO9uqmGBFrjQNo+nkfiVbrFBFSGAdy28p6Yv9n2psOPvtFl45xx3dU+Wg7rvPmHpbzpuSye+hI1V/vvecmKT9kcnMY3uudfgxz4V+L9qC0t6OYcZuI+vy9vakc/BXMX9+NUCttsNmLHgCE6YeqNJ7sThnKvgDg7Ej75+8Gbv4bHIXmp9mv8OOmDOUgpst6YrRrnHS3s2UVw/nUbqgh3p5u258KQv/L5SnzJVNiYip8SpiS84h3/SvQunYNJhjd/pO7hl4bzxdNblNxJO04dPqDtH56UpetTf/VXwyTkBcqyQFrjlRtiZn/F0ER4nWpZ9tmbjHmKWEnfWHg3ZcaOh0ZB0TOno/CNL6wvdrwG1u+XjtuoH6vFcA4WXKV9QsKvdelqtVdq8OWR4FmQjI5f4xm527g61X8bjfFKIxTwG7gY76+PX8buwkeCuFdvRJf4T8jSZAPAd/aTRKfknc2qj3up0p85jrKDUvGW5Eugf7yKGuishIKbZz6sz/fPn9HhIiiS2ho6Ddbek3MvNxxa+Sbx58cuG3/d6ve/r5I6wtp/5FJoCezLOxu3h803ZL75c9GQC/W4vSBADYQ3G5mv5Dru9d3FYyv+QtYH8bjhLi99Hg1ZQ7UIR+oD4zvKK9BKT7/dE0WrUn0aq26Eh3zXKXaEbK2gdSYp4Mst3h7HCrFwbASYtItGM23qOiY7Px8l+/MRT80jzvpZD2r52BoN0e+2pw9Js/ap21svqkyykc037SXAp2504j8k1RP+8NveShgvX8libDtdz7Cxtjl13tNBX8xdGiNn8LZ4XtqhYq78eaOmbXyqrPx9rvaSDUe9/VCzrOqM8oOqAO84X6oXgdUJ+az3EIRqR9TIGhlVvVCDPCIy3ryUqRv/AwAA//+kXbe6qzyzviAKk4xESTZRwganDlg4gDFRAnT158H7K//u1MvLGDQzbxg0YqxUwE5XPvjHd37PA1KRs3HEMmlo94eHrCSF+8HXZXCBhBGvwdBeDOw30zdfPWswgGNEAB+e3AssMeAtGGqXHFtcHATzD4/wE+MND/RkfoH9P32I/c0fmUvn9Ib9GXMIKESuWJTnNRQl6hG1Vw8VISjllE63YqRy7T1f+teiqOmzDGmwxf+08TWV94IvGnd1E0zXo3uCINb2FJNdBZh9GVdoESukmXGKq3WrNzC+tT6Cy5+UjFG37Vm4KyfCF01jTtVLE1X3t+9407dLliX+j48jmbWdyTq/PqnGpShocHJcxtArDsGOxwn2BrJU83IPDDCuJaLBhu+jlljWftOHZNld+WoWE6lU3P56p2FzPZrrjb9lsHZYS9r6NAYTetra/vnkHhQrkT3QHx8S8QLQwHF4WDC6XaB1qm6EfuJD9U9fTp9Tj/XLt0vGNfeUPXFihz6u+p/JuNfpCTe/gno2XIJ500s/f4DwJ0rMf3ztsO1rs0UkB5sf0sP5yjoC+68bjJ+SV+B2P2QxdSFYrB11IAeKF/V3qwYkHAouDIxSJq8+EwdmVOEF/vwF26RxPl/sVwHO1YZzcYACsT12PXxK2ZsI179nsJ54cYTXpNjjPtOeCXGN0YeIiSIOCoPLW32EMTTdxcfI/Y5gkoI3geElnsn+nHlAKJM5VOnzadBDaafV6o5LC50EX6n2kP2BV7ugVgIixPQ27xJTjJdnocqvnU1EQ9Sr8S4ZHDxfKSPSxgf70hUs2CRvHynLdpZJXJMCdvtzQrV8psG/erT5ef/q8dIulIAltxkOSkbBdJG/N3hNuC/2r5hU6xReLHhp6hVHExMB/Zq3GEZlxbBRG0bV0u+rhIXyoHTLH7Z8r7s3zBw1xZgnz2SxzVEGXfCYkQztfUJksvIQdouDo43/zHfJgDAmzkJxT0cwwUwJFR6tDpq3esOcosvg9QaeRBpDc5h81ZMBuhZ/NLGid9KzR3UB6js0/tVn+ujRBSLuhqgbkciUXqvOw4H0Z+y50xsslGnxz78iRI4/+XKJjDe84E4j6oN+wFKjsQWcpRto13+P+cjEGUI2LmjLp2L7fucCj+vtRr2fX3Z0nR7ITu1SEyY9Ww4MvyEP2ogergePkXfbyaot8hxS7eAb9INtODBrYUhPHhoHtn7DGzwEfo3YEtXD+lIuDXAfhU9tdmsB8yo1gx1TRqKGxyhh/kkjKgcgJsKgickUH5sGqvawIJ70F8CuxwqCO7RsihROZtSQxRV2wd+Mt4ZMMN1Ojx507VWiRlp3bHneowvgn4c71mddGsbX90Lgz3+WmHGqpiKAI2DONtGqAUawejNWoOnFMkn1dTa7un44Cme+UuxcZTXY7v8Jt3pP8aF5J7149ntIODOnofaJh0X+ZPKPX1FzLVa21MpiwJ+/gnYIA/HGxxnULKbjqJniQSiPy0WduxPDXmpq5myjp6Fqz2FE4nL2csBP254lUcGkP0nF5gdEN9gVj3DTP1q1/k0RB3/+jtstx6S130mtkmNnUtuf8mAN3jGnfmWv2fw2LWB5IRCwrQcOXvWrIvq5aWFJ5wWfeNoN7H2AF6CcBotiUCRsoeUnhBQb0j//S6hEcIJBd+vowbxnwYwGzYU///TPDr4my+hdhkKnGTTgtU8wOXQ5/fwFsjs0RsIbRjNDf3kUOLDwYrY3dzeCX73WYfcy1zZ5PlVuvufUNdqGtWD/VNSpniH+e3/OgXQyihLou2dPg+UgsZ/e/fmj5HU+/wUsypMG7tpLS31+ueUL6zhO2X4v9l19Cphy0VYIhn1F9ucTSejzdmxBbokSDTvXYLyY7Ap4EsibHpq/b/B5XlEB5l3kkgV2ejAPtrBCbPEnbCslDlbpqj+h1I064ugsmcyV41I9hxeRbvmUz9ias3/PR0fXNaEl97qpm75CTDg/A2pbs6Pe3h0hS5XGCfNinYcBkWKkvi4NWzh06n/+G5HS7Zfs/xYR9s+ZYVMv5mqMIOShkQMTI0Oe819/Afqx7//8/HwJyVDCjX9SO3//Vctr5tpfvmHzckcVdZEPYVybB2rMj9MwYlLefv4vAsnfqRIPZy39+TXUOA7F0B44o4elGAr07F2WXCph/4ZnEohI3vwT6cf/NJzecbD5rcvBez3Vo3Q9ovl1nf89H1i/+YBmv37MQ9BLCJoS4sN51sxVzq4rPJkYkvn1GIYJo1sK193+gLjeu+Qz41cH/PTofTmfhoUsXvbTl1Tbn26A7pB4AWv9DvAhuk3DYBsLgjibv2TnhMowua8TD8+hWGPbeL6Dde8ODpQnLcBhbHa/51WAi2oI2NfA1q2edEPd9AVaNz0sKuFThAHPms1/tNm41UeYnZ4e/ellafs8HG5Eo4foFlVb/edAEBkxEcq8ZwuWuAu4HdOCOuq6z9nuczspNDZS6m3+A39zpfHnh2HXeA45u9SarzI9O23vkPBg8//RXj7+XfEN2vf89Z3j9Kf3tnp4Y3SIWxn8+HyYBjVjXHXPIAlR/vOXAnEh+gz1W72n9nbBde5D7ee/k50XVUlH7rGlkmL06AVZVT42Tzb//FUcJiAaRDsKefnn56jNNA/LKw/Rrx+ADzu6r5iLDA4+42Khm18R8IxfLdUspweR/9JXMn+VgYPg9TSx8Xinyab/FXXYVzXVHHY02diekJoux5k8lfE5rPHyLCH6woDeg0Rhk79zV+CmufUvX0VbOqVgx8UqdTd+No8HvoWGzRGMDlrAyENyU7ifRYv6+dU3iR1ZvNJbWUaUZtuD27lTBn71cfMzq9mB5gqmbhIo5s66Sc9vPYZacwqwsXBXMD+3s3qCA3jQqODSnO5iFcFzmIo4vPd9sJgw5n/1GW/DVczRnaYUnFJ8wy7R3URIbGwoP74VZbFWMe3wF+89mfQbP8FsKdVLCEFTQCK+pLma/cO5hmJ+mfGvni6uZJ+AmAkGWVlsBStBBQSPqd/mHu0OuSSW7wb+vfaYanZxSCb3lYnKBNAOMTfLk64TpgJu+pjsKdcOi+bKxc9vxGmKkuHXT4JhHnX4oLg39p9/GsoZPrSWG9A9jN+KcYE+1je+ufUjNeixz56oQPkMW782hiXoCgQxW82fn/Drz1Bj8wM2fyYDGz9BnHzTwOaHPEFoJymNVjMC3ef0zlRXkQ5Ub/zHwISs5tWhdL8YXQWSLEEKYjhe8gHVprcH7CxAHkrUbynKBnWYhbgLwc/vvY6hWS1k0W9qLgUftHZdlS8af05V39ch1oh1DYh81zKwF08D4s8fNR/TLygUa//wEPCImI/P/apAmqoRdVnbBWvJjAaKg1hiS1eC6sevVeVv9DEmkpsMgM4QhjHv4XjTq4x1QQzi8PNFc3IrhvVi4Jty7RRIdlddDUYg9Ru+315UF1o5X4/enYdSfXjjaAJrskTrC6mv8pJQt32bwec+YnHfPi0eo60/PZOqIvCr3Y7/+CIDVOZgZhg5Ul7ICMRP6YVQOJj+z+8A0p9S9fB1ozxqPHgAYvA8WbCqYUv9XjDApgdK2HqegQ0FEfaPT02UN7B1K/2B//lrPz6m2sm7WqWRcf+/dwrA/36n4Gg4jFpN5AyS3IMbeDuTTzF0Ezb8re8a0L/xSG865w5MfC8lvM6BhqpRSk0BcTcLOjxVaQTvE5vZIxpBQmsde331V82ndTZUQzFytNPef3m7VISDUVMaSKrMIOdPX8+Fz9r8IP4+xwETrn4NFYBdisCuNktWCz6Q4e2Jo2jnJWQ43hp4PR5Tqi3v68D2SHPUSHgy7DlWw7rP957CFjQG1aNSSNg9MWRl8oyIBlJeJ508rzx81voHO0LOwJTos6i2i9BRV2xnxoJP6sJLFyb44msErPCJe+gerzra1eBYEXOni+A1SwTrddvki5WKN/jNxYCc2eeeMKMXOJiYkoeNl+YNkgiCNxyZu9BrvzQJ2YcXEZ7y2cXFR3AZ37VFAY2XEWL8B08B+TYehNNJ+6OFXvAD+ZSuAcrWH1CG9s9qPb68EaJjuRDu2mBGlVW4APs6Uuw/DlXC3lFnKR0sI6wHwTNYvOrYQmFdMXZjwifL53u/AP8uGzhJgZh0J2Ny4dtkBUVizSXMXiUFqice0KvdfJKlSF+WWj7cnN4sFFYTWjsEB/O7o67s7ZMpaRoH/KUvicBnqg1TMX1L6DyaHuOI0PzlFJYGW7lPcTQimM8Ecy5Ec/VG+3GOk+my7xvo1ieK9fxuMCq+lwI2CRdTX58fbL1AvoBnvO3belF/mIvudYKWprrUuc3KsHwY/4ZecaaoKQMtn2ozzqCzfH1s1tcxZ67NFxBOykSNYecCkZ4/Nbx0KMHh3ob5fGJ1Cm6DRxB3t77mchPUFnIXaY92fCaztT+FCvxL0xWHl/t2Xk8eFHCue47IRLIqRm+BD1MkSaQT4pvJdPKWFfebv6k1Ab0a6vOggWOpzdgz7W/C1gFAmCtdgb3iwzHKM6+BJrAHFF/qzmSttu+VWXlmNHqorUng89DC0vFDak1hY64KHUowOK+Jaql9HIQ97Aj0gHbBx+35zZK6t6D1NPcY753KXEd9m8UfoZaIQ2YOFPiJD7+q2CN4v53y9VlgCF8qURD0YJHP++OL2wVYTzFi76ma69utgbPyzpCqAHGYul7RALWIgaj2GIN5uZor/MVHNKIiGX75U5+rlYhhvIKxD16+uuUTDRn7DnSfP2qgP10de7EtBVMvPmVYcsaBBjtOTchpGmUIAwWh/cc4J+Rglgr0Hsc/MjP8TpZD+0UwkruGul3BMYZbnof3yuyxt9+xarXJnsBIoDLa1Z7FCD/Xmvqrb8F3R/JxSgZHvnF2gW2zHwdaX64p7Pa0xrp0O4LqoYxPWLbuNqsaHgYmlzEC8u6C6AE5UTAvb6UFmtPNCL6cKVm1MbpAvzpcya4OLyb7dokIKGQGYXZBA+J7M4I9/mg0tXTbHEVuyhTzphyw5u93CVulnoeD7BsUX4HOBGANo/KS2jt1XjuVzSt5PWG1v1HCt08Aug/TENx/c4x9TLihO540Dnqmn1O83e/c8UEKc2UokIAyOR+55/4NhOBwQyk2z9VseH0DpLb5UsfA74p9Jm1VTQJbsrw6h407a32r6VxGaC2ZCAhIxlKJtGWg6FUjxo6fg6ys1kfBfntp2NoRU4a/+j7fK3cQieffYCGc9F99yEmZ3AlUqGPjUEi3+s7JhVKGaKLBOrZsi68afEYnJdyFr4LlwbszvD9kEd+LrYfuZnyv6lZoUvMvL835+FULKJ0ljlrXZ2iuL/YZgcNPKnkFwdOcM+I/YXywLHKd9D4nzy8nKr1d/GHtIJGB/OJjyw8aSfsPmEEkaOD0NikadtxfzvCfzcHHARfUnw8sGA3yEBXtc7kSsOP+krUiNxcwycrwhid5B6yKwHCQ/pB6n+qE7G8RAen0LikOo0PA+/JRhH99npBnY84J+aM3At/yuybqWVcCpl1uIkyRICGlzO/melnsBtA/cqQ+J5UDnfLZgeAPf3EUaB1beZgpQEgPLVKebcDm84PG4BuaMaGOxudUe0MNqOe1o5F5ImCl066Hrhpz2Hoc5YT+rseM8wnrfmENW/ym8P0uTHqm/GSyiRd/c0MoEmlAAeOZV8PhfrqgWzyY5jKRjCh+xFkInGIzEaIvaeHV9o8bvqTJuvI3Tlk+21lJr6NZNV7mXqAa7srt+zCbtc+rhkG/RtSA8JDPQ03fQK8ee2rW1zBZ1oXdFKHhj3TLRzbfuawFPIFn7E+2kQvCn5jCHEsrWdlkgqXrV03hL0FAhmQJKjY87ykUhL2BUfydhy7JpBAWYymikzJWyXqQvhCi6cOw65dzsu6Y5cN0371wUEX6wHZ63IP3u3OxF6Y9W+kktbC6fs8EhOuYr691f4OK4H/xwbyvwxTlQQmfzYyo/flm1fKIDgiCv+hLw6auk+V54xx4Lf0nSss3ZPPpq7vqMzDP2Jq4lbFzfNk0fdYh5RDYA+OZKsMQkwxbN87MR4JFH3xLyNGDf34CpvkdBOOUpDRYtbKaQy0RYYnPT2y8zIwtx3L0QSFnPEWPKzSp6jQIkuQwEWmrX8LxpMZgMDMFe8V7GrpqUBrlxM83/BefymH808FNEXwlwYczv53HF4gF7PS2xuFV8tiy+tFbOfhZSuYNryZ5+brg5aorNeyDGixaEccwx+1ElEPwqagpzE9Vc4YZQfdmMP5PuPnQF3iNWi5bwNfr1AwMAkqRbKGxas39KVP39kdAENQM0Fbbt7+/UwtrdT6z8nhTw9PW2T5032ByA6bANYuPtDzkXN6XD7dWTc1R8aFyimEWkLDNqpQjfBiqxFxljULZPZ51WupSzUbByDKwrReStb9nssDCK+GuzkLylY7EnE7Gx4Up+2hE1fR+mFtJPilylR1p5L5O+YyA8gTnMPOxrby+lQALdYYJXRwc2LpmCvn57wbH6ZhiD313YFz8Zw2NV3REHIjbgW35ChVq2TQKy1cwToPgQsmpXSI/9x/G7sq8QsKJH9IO8sck3nq6QeFqXqi5NLj65Q8sw/tKgLu90+he3zMYLmmLTQcBxj6vowJvLy6jmM9urHcOJg+2/P33e8fxwCN1PtIY8Vu8CeysOWqVlm9qHGtWEcufV6C8c47MjaCanbu79XBv/BnUb+9yMNvCVCoO/5bRKxm+YJVic1WPV4hpJPztqjUViAjn77Jg3dXKZMNHHsTrUcaH5HvOJ37KfKg+yIH6z3YAbBj5N/CAccEBD0c2n5PQgWpLrlRTd8ScKfbEn94gquT7CVOdJlRK3uo2vaFWo+Q9NTjPDUT70jz/fs8MxO9YkJ4zntVcfvgLUMlOpUjQLDaKTZ7CzyWUsW888mQJhqSG8SHxqPkWTbbhVQl/eOeQe2Uugj3GijoI/saHLgOFyi4GUwoD+kjCJidknmPVRuODvI+vd7JclIsMC5rV1BDUAyPBtPiglduUasPrkEyiUFhgmmWPLC7ds3Va6hrYwbxQhIVqIPK2D0p0+ZmGV6kDW7wY29k8ORHn7muO1l+SgYqliFpiqQzEzWALn8eDRIOLTod58dv6x88If96Z7Bef4HzOMhr94tk4Hwt4aeJtbsvJy9esSEOoyElGcV/c2VYvOWCaeMYeDJ18Tfn1DSfegNjX5x2bivTlAJVvz7/1TNhnP3BQk082jpQwD+rPcoHQoiKj0Xsng/lPDAtI417DxvFl5IyEaQyPtX2ibtufAlZehgYmlDlo6P4+Q7fpDSVK6J1a7V8/zFYsh5Dr2BeJt1mpmHVfnuD45B5YR9HMBl05zmqO+4nq5zBOliDR3/CYHwwa9FwENn7whjcneuHgV89161HA33q47ffJpumi9bAJPBsjLPOA8bt6hfr+fEasaLRgDLVcBHJXrtS9cLI50m+i/OIVgQK9k3k3thkUg1216VGHDbqjGtBQPYQgvr6DlahJAWv8+JdvicDVuxHSWLCpl1xAvn4b8QQROwXY7YqSrZY/zz9+hovyMIE5VRYOeo7jofVDbVO4R0mp3rhDQT37PCSL9hfWsOS0A5GiVMuXWWgvyhuUp02PvCoWja8Z/PivxhmPvPuzo5MS762KiPeiZsxwXAI/QtKhb3o5mvNwvRmwfQge1YsAg0W+tTNQySwjTn2Gw1ZfZHVabESdV7SYDO0tTjq6Xkpei+QN7EbFEPgyxxBU+Stj6unPgZLDImQqpmMKWb1H4FgpEeKNagLL1bFF6NYxpeFHcAHfuPwM+lsWYNtW5uqHzyrX1W/C3/DhP/30ifKJSCehHaayvcswvAGKmjh6DczxuhukvtrikIkym+egkJVbYakbf7MSljyU9KdPyaYfEyFWKhde4ruH9az/5hs+P+FSvPcU+5QCJgT5CKWBZtSu0s+mH8eL8pGjKz4sTDLpyU1rYNgWwpueySeuNm8wqNQ3Wqc/zSQXCEvw6CKAw5ZvkxWeZB+s6JJgg5y4YP023AnQVaqpa8xC3p3Prx7Y6aJjHJRBPuurNcMz/wiwUaS7fD6aLoKbHqOmr14TWr6zAqz7s4EzufaGBRyRAkDm8AhUkV4JZXuUVRlmTxp14GAuRuj6YMNDvP1/TrnS5FSTF216CEQvWK9nVMPayHZo95m4/+IzvJGe+uzsBEIlvUq1PqcTvTmTZfKvSYfqFh8YF2UeLD9+qP+hEwKsFKpp54YZlIq+Iwv92pUo8+G43+enEBvl/KlmvucbVeIKE1vt9srddM+e4NBUV2y57MjmMJSMX3xSR/UIq4NWH0HFLoi6n/aVLK95y8+msuhh/1rNRSu2HjPtLjRIn998/S6yCLfnQ50SLQO9BsIJ3B35i9QRFfm08Tdl83OohkRk/sunz04z0L34cID4l/wGRSY86GE8od9ZDQRcg1yi2tFZg3l6HDmgODH4h0fLz2/S937847c5e4m7BvqCqFE7s9/B9s77GyZ38kFLfn+zBcSnRg3EfYyNpnwOi1lnCPCCJv3qTUCnNonBYfdqaHTWs4B+9Q+E35O9UutwVoZlWb8E7uYX/ulJsMWXCxum67iVMrUixPMzheVugXGRd6B5fo0nnHgNYt2ld0YAOF2g9zYORFpmG4jVoayh5xwRtVdRZUQ1WuOf/v75VTx3NlqA+j+N3lijmdLyiGf4ykmOLe89JfQw9RdY0E+HI+NpBBNs6xYKe1Mg89FZzdmK51DtmmahJre+Ktq7oFY2vUIkbucF637HGuh+0R96bn7fgnyQwkeHAbY4z8oXWzYNYNTujv7LV125z/tPdJ+wt/lLs8hNN3D9+jP1JIorwsLKUQ/N67r5d04iXr3rCM2Q8356ORlOblFDOPMFRospBuxB9BQ+/hyZhqoRmOtNzhE0C0NBO1s1A6F7BD54Hm0Je6POM3aY3qkaDv2NesNpH9TPV+5AaZgyioZFz8fyoxlQXfbj7+/mks+tBePYSnF4P7+263nb/WkiRofbFMzhbVLghteEN5pHMEZVW/z0DAFmkwWb/jv9/AgcvmQloDxTFXj2yoLqn20OUvJXzL9x2mTJtn1zxw9W4DOWV4ozdR1Wn/NilY9cgNHd+gZzG3OjovL9efNXSrCCZCzgR7BqfKiEW7CcRF0Bw4gswhThxNZfPGz5jw8b3jDpEb4hbvM/MpOnw1g6dAiel8sN23kHhvX5FXk4mJ8dmq+JVc1a9jWAIlvnn/8K5otkGxAFN0wv1dj+8P0Nlc91xNaGD/Nj27e58U8yL+9rtfQIaEDiBnfrqcZsjZe7CI+VHKG5Ef7McaBvB6b74YUNZTRzMQ8tS51CT6OWbnyG5cGrDvTf8on+WXMTLD+9KIH3mczGXarmy1C6IL12Bg3p4S8XJbOtwcW/fLHZf+NAXAX7BD+xf8XG9Pf8x4dhtCuPRLIkD8gnNqbKli8IbHhAU9m6qc65C1G76Z150x/wlKsR1rvrCzAp+WthIrQV9u/duM356U//8tPVcRSM6qL3aqqzBv/4yvoOzCeERiBgV5Z5sCT6zMPYDyVa/PAWyXGrZhWZN34dABbcZg4O4KEQEZcfsEpWIf/0GD7u5PvmL+sjNO92iA39MjNydYcb2OoBUsT0Uy07+FfA+O/c4+gTDsMqJPIIz7cqor4fiQnZ7b4p/PnB381/6diZz2B6HQzs+WIyCLkaxCCodm+yNuWzoqpicJBLnjqRZe+eL48Ih7BCmbbx8xr808d6c/9i/xiewT89m8jLhXqR2STMOccnsFcuKtXulVvN7+6sKTdVuRLl6FnV2nKpAfVDKmLdIN3AfD1HUOJKk8ySRgYKuDEEBf12BII6YZIfGY5qyp5KD2fe3fSGzkPJabbBXATn1C3RE6oLGFGl2iLodetawsGpJrTkBR9MN0FP4XRzOKzvhDYfHvsZwdJxQ+owtRg2/ZqBpsciET5fZRj7oHNhdlAlrH/3frX5I82//sGmr8zx7nsNKL3TjurKdcnHfL/c1CDbndBcnixzrrSVV8fqKlIf7bVhye5+CvPz28fI6I6VpNp7GR66k0aDqN4Hq5dp6X7zr+nPf5XeUedAIMMnNUdXrja+IEP0vUTIKt8Fo7mxzurpJmab/6CxRef7C7wNAdnwkQST9mfV8FgfTtjd/KGhDZ9vQOFiEI7DrrnhWa2e8tWlljxM+bw6oFV+evfvHW09ZHCD+1kdIqqHo1sReJpdZfNTf/XMHK3j+FauanSkXq5/AjJ0fa/IcVlt/OeRL/n8dODDD3yMpGQPGLwYGvzp31DrD2BtstyBndWckPASST6XWVTCqCkMevxkyebX9wokkRkQBZh6ID37NAOCAAyyTy4gmc+lAn/3S/jDWanm/CSJv/4GRce7mjMhSEYQ3vaUHrKqqtZU/5uhc6Il4lzRSqYdePnw/WEAG4eGH2jvfRXYIIvh+2N+DqtuDi746bVoKGhCloIhGOg78+fvDFX0VJRf/lDz/tUGfoR2rCzFxP3nL/3ZdgyeFf/E4f225vPXPvDgb7rqW37bYP7UbIY/f5cJVwDW55fjwTTgBVFov4d/nx+fkYl15yGwJXiMBG76gGr0lAz8aZ01NZKHhrB96g9Djroebp9Ht+4eVeODQxl45fsnDQpkJEI3NBeVtKuFnTh6VWOX70+KgEzn5wcOK32lJeB9zUX8MdlXK7s7Mby6ifXD14Df9LsKroGDpP3rFMzDNdbUXHp29NdPZH7kO2A3p/4/v221aWPAYC9yCH6Elq2H/lbAxBQ8tPMpZetlPsbwVQoIX9PLEjBm3leYG+xFg/x9Bb12iB01GdsEzeTZgImdXQvaff+HkSvWCbEqyYUf/6TgwGwUc+1e7Qh75dbTAE73YLrfxRYYtoOw9rBm0ATks50Nt0rUxfCQLEMTz3D5pBZ2PPQOlrq1W/CqyYD9OPMC/qNGImx2SoStu54OvNLxBhSZ9EAifl1NwmrVBZt/8OPfybj1Z+APvzS36XP22VcQtsU+x5cWjMFS7C8XKKL9ETtTv82le/AyLNZLgn96a+Z79wSbILDReA0eFZMe1hMyHJbUn0VS/dGSk4H8N+3xoV+cRAqWXQrUUC0RmU4dmzd/DsaVYSDldf3my2yYDWwmr970h5TXWz9Ibb3dRN2ND85258dQiHidcMK6VPOh7jT4cncrDsbHJZ/DcKdB0zQG0pbdC6yR+M2gkCgVNuK1Ycuvn0vjVsOJ1RvJeppqWdUPF3HzU75s9sY3p3gA50geZNtcHHPhfv479vhXMRAv0y6q5BFA3bx/59vfISiKASCeFR5jf9errL4McPytb7Be3SED94ciImXzg+aHenJgch8/OHrvbqwcdbgq+WuIsC9eRUBvVaLBl83vqD2dzwND+xDC4l65SF26t7nc71wP20dv0WAJtOofv7lAX8d6MnzZeoWar3YNEzc+YlcsOluasuklUnNgCZa/mPfBUQkYce9BD9YljjVI+P3h93zAEqFnDK8pNqiZyp9tfbUYJGCysPmQ6oTdD4UBDn+pgaYonsDvfoHeoDeaD7bOWicyT+r/650C+L/fKTh/yIlqt1MTzPzLhPAxft7Ul8RrwMIx5AE18Z562fhNanwAIwiti0OkZ+tUwse4ytC1cEhmf7eay9kReigTV8O3nUSrNc3RBZ4edorD5vvM14McGRCFgknGd5IBybjt3L23V79k7eGaE4Uva6i+mo5q1b4ye/5qIVCeTxAHxIBJu7qVAb/VMaeueA7A3F6GHi6cVxGYYGaScG8U+/M8Z1SPK6san7S5QZJdDxSZS2xS8U3fAKKaInBszGrZVa0BMj4yaOo/tvOq1SevliAPsD7PUz4F14yDYyEfsTk/LdD54Y0HhdK0GI+eMiwet+fg04QukncTBEP7hA0gWPZpsMrSwNgf5wBnjhP68M7GwFbeOMH6/EFoOCArEfn0+4QjSB3suNo4DJdh0GDZth19nMvzsAj2DcHrXnlTrc7vwVSNSQ2TNK6p832F1dw87gbsXaLjMMWvZNmfvhZ8QnGPD+8qCpZz/2xBKLz/sOYkXiXx4RDDSGs+OBySFozQ1UNVk8yY2u7JrITHt/eVj/rcUc/HiE1Vx8lw9fBAD249AwLnvoFCZDn0fgWfZKXS2YGTHcjoFeNdMF2O0goHriiweRDNZLFdcVT6ebed//5S8hkpBQ8SJWNIvu3tYPGeWqog61Vi7zjek/Zw0lLALxlPlkB/Vsv37+8JlMOXI+0zhIBF0E3hmDYjEdyTOSzP4xnCbyU3iK35kNP4rflQuPnbPmVwHli27l2ow/BB9eaGAvEBFBGM1Gyxp1A1X+bjvgH6y72h2UJxwkpjnKFv65SIXHisWLoAAgVrfSHW8yiYz2stw/P9zhPiJanJ6Ah9yCeNj5gQRomET2EPjg2qqH+J/6rxLHg1uD3yBoFwbhMWqI8WPE5+g+Rle+8q67wMfh/7iXpnMQxmBJcnvO6PV2zZjyRgsbYX93+icKB+DY1EvIS3ECKu/xBZE3Au/p7/Lx6RCd6MveWnpn5674TR8LmYdT9SBXyProWtyh4HMh9uPcznx4uGqOoH+oiDGsJP6lP8hz8DSxPD2dWv04t6D/RnLoXeZ7BfGob9EWfmepWfLYzLeMGavzsFk0ZcCPfv0UZPPCgVM5s/DnK59aHhzryba4UCH+68d4bNnifBdlofhPjPyagOr31FHxGRoVhvs1ZdXxhWXHzqX/yj3/rS6xW8oW2EJ6QejW0/o8feYPzCOxHyS2Ayr5sd+HkXMk4Uw62WJEIXyB6ajcvb8EpYdnzz6vGwEmovkpqvtraW8CVyOna32dvLH9ZDlYZuh9M8LSpm2ocWUqvE2L/rj4FyXN/A46SoZB9pMVixCmSoaE+KvWRZq9Xm/gjcFcoBqWd5ZuuVfeM9d1o06hTWOxmr/RGpv+dRPN4yeI/Hvy3eqxI7x5tazb99xon7OeKgfsrb2QhNBteDk1Jzom+2FmfggHcaPHEoF71J32KQKoEvetjP6ioY3+4hg/4QcIRQ6oK5lfYQUqFvkPw9HPPV6QkCr36oyCsq/8xZhHoNnfGYofwv0pjgPbWL6hzFEsms7tism7WjRrn+IvQPf6pZ5e+98nzNK9lr02CuK1eFQDl8OKRcsjlheTH+ux4OU5sMi99OM+TzU00PIxiTSQuVHugXJ0alcFCCSb/CWVnH743ayQeYS/EsNMUN9g3hhOPIqK1vVekL7zgz+qe5gFnPYDDDOwLoVZgMHmIDupcdoaZuvwYWqNcWwMmo/9WbjkvGJ6RC21B71WNz6eTEhe/Wv2Hf6LVgmSLXhXdUNDQ15Aqs6FiVsN8nEVqiFrNRhF4D6Vu2qHO5BcPcvaYZksbIyLLhiYDUbFTe3uGG6OgpFQmv0AXVruRwEDbCMC7A8iEtQUARx+aBzvnrAln3MAjDf1rFhMx3IEgfLdEe5gH8wwOetEfss/SVkEt4Q3Ctj4yGnvQ22067llCWaxVv8ZssbegTkGdcscX/YC5p9nHhOdN2CAovIRkl62tBON7vVPN3azD7DBHo6aOOy7/oGiyH17WH/vESYZdlV3M4orhVnQ8KyN6umpww75PBsMM7wtPbmi/biHuYfNsjfcDZBosYCb2yiA+P1DjwKrHOOwhfVZ1ivB+4pP3xA6wc90Ri4pOxfpYtpbJ3BnaSvwugSbPUiowPGnVxhPJVSmKk/tYrnIWRTVs9B2rbyRhBuTdncC8MGLmn3bZv7/IPz+Dzta402D0MwL6Su0IjMz3CPdy/ap7DhwG234tt91RV3ZereJDC8IyK+sYn4zWItn2DvIYjxb5X86UUMtgcdhA7IMfD8nDlNwh83sOXZT+wuXZkC3bHa4EPufMeFu6ih//WS5/nKJ/ryjbgMDiU2iEXmmv0Fre5JNWVwK3+sZenKDA/1PRffk/aMMZgpHqLHfAxkjk+CSLYl1OIo+bc5atg72+wsMo7At6uSZb+jSA47GdM08K/BSzaD63y5eBEz/y6mstux3PwevgTsFHrKmgGU3yCuYnWHz+p5n78ynvaNyXd8H8QHp+ogF2kEmzcVStY98PeBaMu+thdOjNZ9/5bVC+XpMRWIq0BbXz5AjJTG6gLgoNZb+uhGFMmkrZRy2rLRw1WThORJBWOYNntIAQ3QCxE5FCvlrJ4auoQay1Gc36s5lz3EPTjyUDqPLXDR8+OBahmx8eHjU8uzuXvDT+c76MdbBKTvVNBg9H+70IPycPO11HQUnh6PwwEuksCyCGXHUgfzws9NY5kdofmrqmFVdxxzNVuwF+DSP7VO2rt5+PQPROlB1r0Smg6JXuzOz1VEXxFXcXBX/Rk9BgwDpr77vzLx3xZvyqvCJZ3oUg4ZMFC9nEN2YU8aTRXAttO5uDAS6ADPgDvVvFb/ENM8UJ210mvRHn3bNVkHe9EREA3Ge2vheJH1xSt9h4lZCcUGnSvzZ5aiXQK2FbfwZ6XCnpIzmu1ar7kgotwKbFm3lK29jJM4Zx7PbX699VcwDQSOIiuRO2+/lTzw1Z6YDYy2/DBNHk7efRwR/uOhoO3dUoMRYb+XfvS8DEOw3zRgnU/50GPPmtgAMEfjFINO8nf8PIvmdd6xwG1HWTC1jzIlxs9Oar71kUip6YHJNuUUwg/Fx/N54gbRpDPRH0cXzkNd1HAhK/uNoptoBNRJ+hUI5NiF8aX+opLrlPB4HWyA61eGsmenU6A5VpswMuLW3C4M/dmX0ucAgeLe6J2O8ZwxdqtBWQ6dETwoz4YbX6C4KrdGqwNl6maO/vGK+vcHHGkcxOjtilfYOKhAkkgCRLq1twIBnE26COIO3PGzSeFu+IECRQG19z4Fg+3ekHRxu8W7KYK9HerTijSA3NNTq0CM+P+xD6v9Sbpr40Gb9cpJNwWH2stcTLo+MnDByKubH2bugZvYLSwt+HniODyhjidhW297GGVy1MKjKxNyb5WGBsnMSNwWw8ifGpp+FdfTpYZkWfg1YC9r0eiet4tpwY+7vLav+xX8P6zYhyq7jrQ6Sg+f9ej+fFUbvtihRBGyfWA9ka7VMvDnZ/QquY/emCiBuYM71Io8b1FmlD8guUi9DNsVtuiGh6yivkXrQH5537HQUO3WYuijcBYJA42pLsP1iS2trkt9huJvm0zMr1uImyfc0zDVXHMNbLCVnlFpfWvXotZ+SygfrFiXPz0oCKyExyi2KaJnzxYL9hL9sPbaKvnA/EW/gIb5dbRa/L4JGMRBilE131AA0n+VAtAwIHgbDGszWTr+ZUhD5Oi9oiSPEBFjtIQgvRZmTTsEB3md6Stv3jAoTC0wbIz7iO4BOILAWb0+ZzIagPlTxTTsLu9c7aeGAc+As6IdMzGYM5SmUC35xp6IOIJzNLBXKH3FWPsHuaKzeyii7A8ywec7b6H7fPzCB+yomEb3nHOZHVyYZSbLwIksjL2Fs0U9s1zwO6hKPMFlZ0DT49DShSm5Ww+7pwYBh/5iNFrvxtWp28Q3PCLIunimILxlU/w93zD5P5hK5/SJ3CqnYAO33ubvzM1c+BfBM/0jM1P/s21WIMyHgOsjWEXjByUHLjpa8SqaGYrF7QnqD+raOO/u2qJ0NT84xM/fKLF2JbwmBQ6gmFbBz89oJ4EXNMIinnFOO5dK0JYAGxcDZoPFuNnGAdvTLX1+E62+/fhWChH0i3XMJF+/L5MhwVt/DIY74e7Ar79TiDztfAH6QlTDb4enxxHQV8nC9U55+cvEBi0ZzB++8QHX46bSF3a3LB8DscTdNWDStTOGfLFevgKGJXDjGizeMmicLv3/to8BYxOwpVRQWYEmmvjkOUOhGqm5lLDv3iUyRwPLRtO99MMpOcQkvXA86yXkluoZP5k04ObcQFrbI6DOZZTGnYWZLRx8x7s0vqN3c0PIJdBF5UsuMTYcJ/qQHj59AaCcJ6wMUkHk4Xk9YZhX5xxKlheIDmzNsPL69qguXmuCQtJ9wbxpbkSiUNaIAbD0IKoOXTYxMm2EyYOEXxVTUomnQfBNCpfGfqDx6G10wM2xmIrwsfnneBA+3sP/fS68T++iPXfnLLzs5XhY65zGnoVHBY7mh21XfdfakaIryZ4V0N4JWKGwPb/aw/uBrw2722OpD5s/kvVwtp/OfQKPLlaNj9IFR74D5vl9TzMh3mBqiPBbcPiNWd083uASdGNKH9n2xTer3sJl1v7wHndD8m/+rbVG9QnHUnmzXqFq3wasHYqYMUW++xCfzfr9FiIfUJ2qT2CH1/a/ARzw7MZJF/ToTpVFkaNv/kJtvqN9jsa5GzTm+AZtG9qcU0I5gEON5C1L0q14flMWE2VFuj826Y23+6SUV0gt1/leMBhJsbJComtAPupQWr32cpoUqcy+OlZnJVm1dzeRQGzII0JkIlu0mhftfCPe73IUi4xo4Fxd/6thwt1Y5iN9Y7AxhewJ3F5Pnd2LKpOJH3I5S1YAf+ZBx7cnTVE8vKIh+UoGQYsGVno4ZPiYPmt9xLuQhoe03FYcDcg+POzUM2n+To4Odrfws7C1XqUh4l+XpaiB5qL/cUW8kV135mKKQ8Jdx0Sk5W2XsLhzXwid3KSC0fJ0OD18BCoQdepGsP61oCPwH8o1omd88POdcC264hqm3/Cf/D5CT2XxSjOonGY7kqK4K29XJFdGIwRbbQLeD/yKf49P8Zluxr6EXxQq/Bv5jwjQMBgwSeNns5fvhaSl8Hq2J6paS9+sHRy7oLGQydsRbFpzrmuIwiz2CDM1NqAXfe6CFlgRkja6t+nk3MfXpM1IYpoV8lCKytTf3roqJ99U8BuIcPECwvEft9vFU0IPo/xjE0NEDAnslADZ9cdiOKpV0D5IVXAy3Yf+NK7ALAajSksKZWRpB+aZPnxeyVJjhTf7n1O4t7KwFZvaaTY+6EPs5sIR3d/p4eQmBXvM2eEPz1gh/w9/5w/NAYbvhD1GLo5b/kKgtF6O9BY/742v8IL4ebXYaOok5zlKjtBoZfnzd8Jh394OPG8SV1tmxuo7+sYhqpooD0w34zpy9NQd8q40MMXCwPb+IK64SuSTGMESzRd0Y/fUDP2vC0++hvMeDGilmB1AavMdwiJvEKK9PHCGGy8Ht6PYoqDYFZMiuftnbjb+0LAsamq5Wp6PVR5eKEO4z7B2IAPBKML7mjfKTqYYaOIeyEsAVn3ZZ3P1NzXwI/OKdWd4JMTFvoWSCPvjKrKLAP2w6/gnDjY9k0pme+Huwz2b2Jv9asY/uHZplcQVF5mvjiK+4btV3hgrNfrMCtT8ISdozyo015dc61GfoX1Bd2pzcMaLG/N9BVfKgps7Esrma3vwVWMea3J6pivQPwzghraKyuxE4oHIJ5sw4K7NQ+xc/emgV2zGwIbfyDLtAtyZe8iF7R/tzfi3ewLCOvZqErnr0Wde/JM5iI0L+DUBwXdrpezZx6NEHtkoubLvQ5zUjx7deN31Pv76/JZGJED8be6YrTpefJ+KS34qx7ZP3/6/0i7kq1VYWX9QAxERBKGdCKdCQoizgQRpRFpEkie/i7+fe7szM7Q5VIjSVV9TVIRpTSpwaGL3/TxvDbmqNASgZV/0sJOXxFN9W8CrNEyaFaJeMUv/gzrX23jNKWXiBmNOENvV+RYg793NavX0oCXyj5Rr50kk1hbOYT3M3axYQj7gWdaqoFeS3NqzN3PXPW3GMr3SqVYf7z4ZO8qCXon4YVY7YeDKF8OCgj8+xWVK19g+OWFUDtIe/J2WDywYyKN8EhsSAPlFlajgu4yaHr2xNpbdMGSP3cJ0J/uizqfc+JzSkMJzLGdUXMvX/lcSWIJb0ur0pMAYsCaGj9gFP3uOLDhlDFxq0p/+RgBI3V9ttnmBih7+0ZtRwsqUV1EQf2LtyfK2mhpLFiDozfh9UybNPB3V5ewfsprX4pnFony5aT8y+c629oVLYV5hJYg1Vhf9aQJ3emorPiTLGvfiel0NkIQmkFP0jX/s/0vz8Ff/ODhufCp5b8RRm0G0DhvA757kS2CpgEAkZ+0zGi/f5YweV9bIvUXUk35Zx5Vv7whasxFEo3HeQ/BFQm79e4g3dzSKkiVPmIuESjt+NQFBoFw93xjXw0lsIsjz4bwLDzRaNgXc/FjIQSt8z1iLRdI1cXO4qisKV2i/uklj0tuQIIvm1UfG4aVjyZAFW8+NhuBcXanPISKIFSkWeOJxBmK4aoHrXdPvcF8r4gI3lIs0cv16ADJJ04MlBHpf/yA70zP1UB2bCm24Xnwf+crGJUVz671TIymNp5t8Lv/dEI64egvi+AZ8H6oJGy0oQv4Hx/N/arDdmbFJoPBpoWrv4SdR59yuuqH6qrHTzvpOZuUmM4Drn4QYWwyMvFniA7Ac+FQCw52JOKfp/3hQ/SHVyTiUAFkl25H5M2UA3bMZAueFgap86eH/OnH58tp1QMiP+P5WBbq8PE3WGvLS8aCm+hBIUp9nK98fB6e+xlKs6XRM55ccwtm9wHB1ebUOybOwGflIUANOQU9MaYDcYv3DuTi2yNcP7yrRd/7lhzCsf3nr427ZptCap722LgEsb9YL0OG87dw8LFZz6HM1dTCFX9hH231ajFjh4Edzwjhc1nzpd6zFLC5PlN/PF6BxAPDUsXLVaT+Q4irZcaxAv/0FUd8NBmx4p8Av9LPodaZyeC38hE1ZTzGaHseAS1hrinVWfdWPTjIpEu16iPXh4ZXvFnNP+2Vw3k5K2R6PcRh7mIbQveLDxhNPa44W6YaXpvjkbr40JsLe6WPP72f4tF9VAyxPYPYMCLC7qpl9uT0TmDK0xc1AYcRS4IwULWxjnB0QcbAmzsp/uKJupIZ8yX/yASe5c2BqM+fBsbrVl/Xy+aLTaBSc8mfmwRaKbliZ1DHin9udwK7K3GoJ39eYCnPTwgMouk4vOVexa+bRwnFPblTJzZ/fJmJXf7VK7SMVg2WGIBC0c6fAJ8MpxyIrJoQrngPH7B5yLarHwnJxfyQ0Z1wRnH8S8DraBVIOZxxxjB4BUDbQA0XLJF99qc/C60z4eJ1CTP+unQh2PG1N/6jrky2d2zvLx6IuHM/0ZJJHYLvU25h41T6w8L7SwkTyzuufuoAxo9XW3D3vqx7eB9HvjihJf7TX+ZifzWXvfSwASg9gJZpM2RkwZIF+v35RNrzZ44WO2UIWjvHo09dzPzZriJHbc67ieyl03Fg4fizwd/3a+HQAb4cF1HFVIJrfnIA+dNXIv1j/MMTjLtN+o8fpZ/MAaR/eCM0M3Gg2taooyUWUg++w+CL/vBGv0k+jz//GvvnS2GOVzYq//xfrJMmm9PMfQCq3jSM7NHif/Gq/t7CFxs92wyjXWUOFOamx0eqNRUBlc+AthE0xOa1z0FF7/lemLZHsj2Lx4z382zBVf+jRhv+AFMFPYWdp20JYPKumqaT5qlPoXrTP7zKpvxVKCs/wOfquY8mlAcPKO6PiOJKEgcynq8JnJDd0ZXvZstvK+TKnx+FVj2Ef8XahtVpyLHzEP2BbXYy+fM/6CFLfH983k6FQn9qhLgXbfjyOHIbFvFvIQ21s4ypObDB/v2k9KTgMVreKvkf7z5Q//uegtTeaNQNu85f3GejwQA0X+o7ZwBGG3oa+Ih0oUiILbDMHyAo0/QmFH1qoeLx1gvg0zsw7D7PNJqOyj4BmzEQkIDeY8TuVeipvfc1MfpyBYw1Egmg8/mM7VvsDDvZFEageKFMTWHUOTf8xwyTyBSpN78tc/ne9gREsLTxIT02EaXNKQYK0TbY9AMTMNoWBpAbXyPy4ybx/tZhDc6p6tLTTS/AMj5jWSlV4072/pgM069lHnRN4hLg8o/JxM3oAblEJ4r2aWWyyexT2J2JgV3weg2lfw0R5DhnGM35O1uQ16YwLD4IB7v6PbDrMl6AsU1MbKDnw2f3nZ8AnZofaodS6HM/CRX4GrqOZnPvRr246QwooT5Gu3z0ou0WqzE0DNZhNNIga9n8FaH0LHqqOb+UD/eP2cLboVkfX4mH+XJOnHWfskXN/lf6o+OjHhRB72P/NjQVf0agBWDzmLHfVG7GsePIYMLAwKcr06stPoAOPqrvEetebGUi0c+aKgjtBcW5onPR7h4QxvTYUFN9NgPxLzsLvoa+I8IyIHNyXFWAzn7XUf8XIs7m93CBe3OToEnPm4xF0s0A83MPMdLlbUXLRSyg+d1/8MXfzGB2i6UGcEuvSKaQRmQQfwpEwtXFVjZc+fQ2ixg+PIAIy6+naFbFtwTv0JKp95UnnwnTVYDb06VC33zss9a+GKXiDEaID3u7A/T1gYZC24zgwPiMgNX11gGbEQkUi83NFx/iHgKal0d8Va6Nv5g5bMFZbhWkjtE4jDq419CehS/2q8N67llcBPV6/ul4XR8+L9f7wLLErdH2JfbV+J75qikWIdqZD1jxZpeVcDiaJpGer1v0C6erAt/+bkFdcWsjThJnhn4Zr/fRVE1EN+PhAiHCNrXnCAJ6+N0YPOv2iG0xCrK5XUoLzrGe0qOaGnzrHfwA7jTdoRrnLhCPeO/BwbBDNIxqxRdjW6SwP3QhvquqnNHuZ36gAndX7JaClTHL9Gy4izeA1BtHr+ZdacSqp7k+NklyGNggvpXNABdA6L+6Pql14m/O8LwToBg3Ez4dFYHP6NVr8LD57kiSHHLAmtJIgWtSn2zyT82XNNzKkOaVS62EVsPkpcoFXrepjU1l88xmSS416IjKdh1vHC23a5dCUShO6PvuAnM6bGpLldI3QJK0XDPW9aGtKgwuRFnmmdNf+CZq04ZfepKKzJ9UfvaU8Rk3+HaQa05SsBcgRskR9V95Mtl8EgP1BziltjfoGV9EtwO12swYX/plmGVqzGoRdD6OAieJhmg/i/D3ll1SBomQEe/2a2GULjrV1td0M55C4G+8hrRaWUWLcHQu8MGyJ/bLePJHcxFj0Cj6jHqvfQ0dDc+FmiyiTeNRZ1mnffsS2lDfYWNSGj4X7U8A1+FTITE8Dya3HlkAshrK1LlmdTXDfVjA8Rs4+Gp/VJMs7qkFn9yQ/j3PrgKnFtpukdLjIshg8WOzg1oh3jEqds7ALsD9KFqxzahmQR7NoHmn0NjGJtm3J61iG10T1NIrBMJfuKkIcp8EumOqY+31LMw6m3EB3vviTk+i9q6Y6/w8mLjOiRrP2q1YcvdyOKcbF2N57S0av04y/IGFUndwPxE//G4zaN/vDdohsR3mW995yq/dCfR0f31NVv2GGfhB61BMf1eTtqybwfOlvXHGgtJkO3dRINJlBx+R2FZzkqgBRPXrS+S70/sf4d4zuCNShp2k1/j2a3kd7JrCJS1WiD/f+tKB2q68YM0oHsPcaV0NVZL69Abdm8/vKH2Adf2tCbbP+sXVC2hpTUbTpD9nzCgfJYQz+6y9OTtzOXc03PtNZJL5OCWA6bIYA69QSxy8Nz+fHZJtCIWr8qDHv3ytf7gCA/D9oihdntW0xWoCm/xh/Fu/izUPPXwLDw/J2f5UzefE6UEOLg9qnm+GyZF4noGsWAv2n1KcdYVyNhSLpgSb4tvk3GSyDJwN1NE7DdLhY5koAMJVftBkbHfZTCEpQH+/3/H9gE7DovK7B+5mpiHYAxBRfUdneP4tLXVMKc/4eNQSSI2uwbgpdv5cRd8c8o8eUhSPmc/tcBHhKxcvGJ8dhS8XeEF75RAfsOb8ZD7dVKODp/hcko3GimpJ606Cb3+74INy3Q6k5K6hbMyPRbV8U6/zMRLoqbNINR0XEVefgQRU/N2j7W4H+ZiYyAMr3sDe0LCBp8o7hGlPDlQ7TnbE13zwF+8YuZfZnHXsEMVQzjI+PGQH8PtWYsBjY4tPW4wiDpFzAXUsS/h4eY8mH/kdwd6rdfwqsQI69CIeoLcmRVzZPCOe3PYzbJHwQnIYpIBtprsIm9IPsE/JMVvScGHgL18iW7xFbPcsIUwzZcHeMpcRj/azpBrD84OEjRSYy/0lxdD95iHOYVkNYwUONbjVaYUPUjf7TJKQDFewROTJh9Hs/8wHIFzCVNO0tznJrBzBQKlKLbn/mTOzZxv6fSBirQFtxrcXo4b1Cxr/+X+JZYx/9YHa3f4MtmldimpYFRq2XsMh4vJ6jm80Cx0J0bMYmL/BAqT528VFuNkO0+fmhqD9jF8Ep3tsLgnxAtAcizM92J+xmv3f8QO+L69d56PNSDgeAujstx09jM93xZB7r+F8CDTEnvXDXFa8o1hae6fWI//58w9ImnJTj0/sJdpvIMdm38K/+tp8LmY26uA6Qs40RP3+lQ1cnnGtnCBMTq1QeNG0K5Yebi63fMUrh2rBzEnV+zOqsUfMIeMVNBxY3sMLxVvxw7m39sZ2Bi2kRTxmJtMb14O8uNhoV9s1n0PS5zDdV0/0mZQk+p4FSsA1H080iI/NwJSvwkCWHa4UuwTzVmVOAaFzHPDxs0v5TuzrFHwuzoU+hPux2m3Si6Ve8ptOdki0h/m1JSV4/54ZqZxMi+Zf54lQS4lA1O8N+BNmVgkHOqlUvxIcLexQlbB/lSJ297ptzv0Op5BwEVPcFDdztO5F/y/fGOlV5Xx87DpFQr8Ea7H54Yy2dwUqPyugMSdHnwn3VoZh9+DoXpTDsFxgkfzVYyIWLhokTf0IqjGnF3p3QGQu8iQggC82pj6iccZtFa29xS9f1Of+F7BDP8bwUbUHrL/2UzRcWp3BcbEm6l2i2lw0gXdQlxWTngQ/9Hk+Ph/AfdYTDn+dD9hQCgLchYZNPWJmYLGsxwzMZTbxPb6eBm68DgJ8X8cL2VpWVc3V9/EA+y/JUMd/IqfOSwn/1jc2nSwEPGiuBajV74wN7l4qPpcFAd+X0yLBvYT+uK43aP2iiPpZmlW8tXMNnOKoRHvv6a6dOcUAzjv2JGN8bKpxrb/gHHgKxa+oy6ab6vXw/jzX2AleH873t2mGpwV4K17vIqJoaQlJaTtkI19Gcx6Kd77PTRYgJCkPQM4b8QKvxzknm4c1+qN1GHL4xz+8ZQ45+wlm+IcPqbFhbrZA2VfA5nTvsdMsS7Y8+PuiXlpUk6gsPub8h//oFhtYVx5fwC+tPoPPzTJpgtJdxlHZSqAQvQfG1iuqaDKUEjSONFv5z6XiKcpLSH6rrSHLZ3/ZsVEEyajE6B2FtllG5XpLI0ie+AjdduDwzQsoB/kB54IQDLNU2jkI7/Vz5X8vzvLpJ0Cvk3QUFqgE3bGqE1hnxpn+1Veuus+1X6kW4sDGb17f354C2u/woBZhTcZ+Z+UBLrN9xMaG3cGPLfAByiIwaW5jnf/hI7h/SvJfvatI9avYX/xjVwkZ6NlcjfDv87YtjNGkKwcNKrGX0RP8dWBxJG9UqsVfsA7lsiIb/WBBZIsAB+D89fv5JNtwfZ+AfZsNrAjPHzUNpQq9h+gIZrM4Xf7xY7RPTZO5znoO6RSU+CwcVb7sin3/t16xtjnV2UjDew5Q32rYCAEDs/gbRvitDw+qGYVnzuYCYxh9+pqoen7IxGdLbFD7ZkS2L9Gr2POqOepa7/CpdQrA3rbswSzxa2wnhyDi5YESWEGk0qBC1796HPzxJRwctMOwEM36D545rnxzUDam/JfvseG+j4CE6cOAt8MXE/BwX9F4E7IEPu60xoeV3/DoHXmwKz8pEXt2BQNJAgX88SE9CqWBhdYHqkc168j+Zq/nDt0rgyRINOyPqpgR2t5l2Eo5ocffejfCp4cFPL4YpObveOfbPz6ZhruGqPX+PXB9Rxmwrc+XBqQLs+3bfAQQNG+EffG2iebGs23o+ehGT89gHMYk2VsQO8FKnkUP7Kous4F1fQdoY1bLwN1jWEBnI+jr67fJj3Jsw7DLtvi48g3i5ul644dQU7QMxCTzabZhhECBIOnmrM31uwVV72dTbTHsjLuZ3+87MXoT5T5tBubO5uOPL2PHD6UVj20N+DovNtZgfo6WXyuEMD/92B8/MNd8dYHwaTwQ2O6bajYP3xbeXk+O9XsmguWnTDFguXz9h++JhMoP0Nx9T7WvF/nLflIspX1XGyTlYT/Mm0Er1KnqHQLMzgQsaIkDsux4JfMfntqMrgcrty+xcd/FA2/t2ACBazjYup7UbI6C4bGfuq+KilXf4Jc9FGByUxuqkVowaV2NORwMK0TzXkiHmYbPFgbvyaQe3vrZVlc0BRY06GgonY2KqczJVa9SQnyCPwewLnlrarO1VLSHJDfX9wtgcV8m76plnKVAsoFY1wN+eumumm8X1MJgru5oTsQ2WsxcbJXSy4U1niGfHd/uoCjkJ5pes+t67sxzAEs4RAMlO85Ne/RAL2P6D8/O5GoFQBDqCza+9DtwoNwd5a8+BXIpmqMNkQfsnWXQQl/POc0fLkD96gnUiz5aRvZa3MFXvo3RKJexOX9GXYO1PGz++DhY7sEx3EeRiGiR3kOfv+/JDLdnfUKgZYnJz72cwk8pdOj82quA/Jqphda19HAsBWE091WO4PEgp9gqv9+MHBL1AoGYfMjGrHRfquXOAmv9XPlNCVZ+cYFEv4jU2f2sbL7Si/zH52jELzvwj9/b0NxRdHsSnz+jzQjMZTngPvqU0dhXqQVWfIG9z6/MuEcYgcEJAqofUm7SxzMWoGZt9oSJB3GYN7drCQ9n6NFEjMaIjkcnBjuZahSpB2fYtnmXwFhWHZoLwlgtO1aLcM131KMX2W+L8NpD4yRJ2Di802gpnQCC/FZdV3ysRZL0iUa1C+aQRpcWgfnS6Jb8xweNzNaybY/SBBjG0q/18Pdv/NBGmY+1XUmzLhbdD9Szy50ssrz4y6eXY+icPYIt+/7N5r/3u7JM6Wut3+NBm4m68w8JNpRKrZhRXko4XKUb1ov+7PNyvR9+1R8oel/1bHfZQwgcqprkUhqfbJmxw6AN197aeAsAt+xOgyufINLQW5wLM1fgg/TRmo9ANm5r1QJRJCGiPkiVTc37FYCa8AcNVv61uEtsQcvvvzionyzKT3U+Ax4hhQaK4YEFhL/+Ty+gJzDZ6/NxLVjtQu+vng/9o2g66BWwwPgVOREvwFOC22ZT0MDGOliad2SB3zy+KM7aD19OEvDgPb1y6leHcGB988vVVR+lnhnU/qJc0wtc+eHKx61h7LRxhF/tGlGz0NyMfX5fGfaH4ULtoa/5eBNeBVweiYK2b/NocpZVAhSOB/tP/6lmbxI8qKroTTaVVkTdPikh3OZHgOZyfAx0fOz6vbskWyKe+BuQIrx20LpWwYq3E3Ne9We46ic49wtS0ZWfAjl4HdG8GG003vddrSTvnfMPzxEocQSbIUjJN3uewHxe+w4JlAmoqedg4AddLaF7+bzoqheARn6YGhQCc08P3ZP5PDQfF8ijQMHBRXbN7WRxC7bScyZsxSNbW1ELEEXbEBtakwxiEDbjHtFqizVST8Oq/32gaXl3jH9+4Mu3vnOgar0HIuqe7y9WeoB//IsIc37mczfuC2h/vDM9arDyl+L8CdRYi0ICds4bMIBDQV35N6nhjQzzqvfCndovWMtmeSDCvZ+httz3+Djw3icqs+p/60u7Xuhan/wULtf0SLOVP02YaQ9YFsikh9+mA/QUgF7ZX1iP3fPOitjrlVgQvoUA62nQ+b28hBq06tuHLEh/RPPtYtew2Ns+xob+AOxzlVugVsmGegUcojEkpIZ/8YzM4zvi22a/8rPkgVh/CoG0cyUDGsbae90eLj77m+8VP1CLk6/PHsW7/MM31DqXO0Drqkug34Q6Nt3+tOLppoWn6ijRU73Xh3nHtyW8yV6/xlvPWYqbAE5TRai9mW5+Lf4GAmMZ2mjzXt4+0VRqg3F0VQTr5yX70+/A3/O5NddzJf35Faq3nit9Sv+vp4qvARDAgnLd06+l6umQOxgfQ7sSL+fE+xsP1tThNEyr/vmXH7G+4kUO2o8F1/gjc5AI0VSKdwLtKFZXPSmt6Gm/dhbTqYUPq743rno8bKXXjJS0uHBJ+twkCLL+RzE7njh9uJMMPUZaIvCTxWeBbmI4ew6n6Vrv/sPXttsU21hB5u6ajx9wbe4O1oKkyNh0e7bQz7KSAGiJmSSh7gPHZ9Lgw+ztqn/55Z+/Md3N4VfstVhd9XxSfPmDs/50VKB5tz16vLzzP/wnwJUf4+TOFj6rztMGKnOvdMXXw+KlLFRJo6vUGxrDn+VjWcJfqrX0gp7usD133xCs/gHVVzyw+FqaQ6Qrzqp/jxF5vRIbGidRIrLxxQNd9RzIBjLgo6L0/pJc6w9Y9QV8e6C33/zpK6t/suKFnPPx6CQwiQyGZDJFPqvOrgDxoG7JtMUkGgpwleCNo/06Xm3Y3l9SAoL3qCOgRnPFsolYoCZziu3ny+biCzkeXPU+otqDPkjY+toApvZv9UM2ES8XOYau00HUrP4CUb6C8se3//lJw2kffP75WcWc69n2MMgyDK1+pNbqv+yuFlrvZrBv6+s37+zuIqgrH6G65trZtv+YJWjOsUSPq9697Hyvhq1UEIw9dfTX+ZHhy4Az4oOsZtPiFSFUtEe86lU3MIvqg0EJdTF+Jbebufz5YYdyLvHh5ldZme5rAld9iezE/Dxs07oT//I39efezYaVT0O/TEK0/+ZTNu31H4Ik8xK6fj5iFyQytf3+HvjqL90fHrFAFb0PNJCuh0z689fUe/5A8G4eo39+wjOCEXVA4oJVXxBhd5Re2KrSntPyQEdYvwSDOvkWV4xcCATvx++A/Vi5VPxYd8o//0MR7t+KGeKBQKu+flZ9aV9NbFn7Bpb8g7Ew18OSG40Cb9pQEEFLCj6Ta4Dgt7ZSuupnEQvHE4LwDQOcWXUScZf/EviuPx224A1VS7fJBCiXJ0x2oWn60sdwS9gpKcQ36K5nYr4ohYIGf9R9njec6c0pBMd4JNg4IRWQv/zUq26J6sIlA+GDasEdayvUVZE8LEvhIrj6KWhWB8HvlLNUQGj6Ctou9wgsxjZJ4fg+UlT2u85ns+JAyJJZwU/8rTIiSbYC6XB9YQde8qiv5dIGnwZkZLPZLBHZa3kPfq0IcaAY2YpnAhmu/J4a7vsLRtUJ1/SfBUTF3ypa9ekO/vGFlV9zroeHz994yDItZTVb90sJb1qXU+/zC/lStQcJfn+aS2O5d30xbfYlXP1fpJhBPExbvCB4uT0QEnR5O8x7Y5FVkA0D2k3Gzp+fG5/94TV8e3fjn/8GobQEDMeP3DWXp7oJwFrfKYqewn/8CpB1v5W/H/0FeSQFKz7G3uq/0FSZHvCjSB71Tpac/c0v+DTyHWudvTX/8Lpa6O0GW7ssGGYbIgc6rf3Cf/G3dNER/dNH7GXLB34KNgz8+cfL6p/ya16X4KD0BvUfLgGM5XIJj68ZYrQMQjWX7v0Dd7Gwp44db82V79Vg5Vf/9PP5uLt9/j2v529rRnN68XJldwcjUVb+IRbKXQN//sc5DRyfdcnPgLGdDviAC5QxN49jQNs7Wf0CVvXxc4uU26E+rX7yGPHGtxn40693u9PVp36SyrIcFAei3l9ff7hFvvc/7SlQxf++p+Dz0l9kaQMRkM30nsEcmiO1G+pFc7ENHXDWRJPe3Mzn8/HcS2DfsB11Y//M+dzlIby3P0I94yfxyVUDCX71cd0HNTOTR7N0UQzD/dDDvaM+jw8/G7IX+WFv0g/ZVofgArwbuqGtFBWAxB+3hmoivmnC6n3Wn8utArUJ38gc3iJzfOyvPYzarUC9u18Pi3DfKlAF9hV9B+vNfyaXavBxnylFN/I1Z3rOBeXdOjm1943vc+lGaghfPx//jWecQFCAbyME1N4nqrnUVVVDN8UUYzeKwWi65UX9pYO/3k9sAvbTdgxSYhpIbqZgmL04RgDc3AqxUUHRHH5AD6zWiimWTJ4xEnkE2FrbUsd/jHyE1ZLDUv9O5Du81IgfJx6r0W2WaHCbLT632/cIj66NKIrNwGetvPXUxM2fVHeDMmLZqJbgdvuciDT5u4EkXBPh0VsguhZjYDI17z/ATI0aH+xj5M/l1wvBBz72SMXm3lxyK5Dh0fjitfd+k7FlM9QwhTtGZO0OovmS3i+K1GgOvRmxGU2hnTnwe/spBAzXwSeOlylQTEKDBlnATNZZ1QWedVyQOV/aYclObq0U4IrJ4mN/ID9FE4EV7jusa46Z7a6wjiGBmYg2WtHw3jkYI4zrMsLoKDz9sfwaobp9uQdCv+BusvGYd2Bf5zU+HWptYEV8CJXm9n3TYM5iQJOkiwHQvzkBgvQ1uWOZEjyK6Int0Dd9RnZvTZULZNNAckE2f8/+A7o3KcbOkZ4H3t9FCSrG6Y4Pvh+avNGABj8v84UddtRM9t6sdwekQMTG8A4yBsbCUnqy75Dqp8/1xpmHAc2pHRA8qLiaj8G9V2KiR9Qb7ttsEX8vGQTp10Ti8CLVjM8wha8bX9Du3p6jhe0mBj7FimFjN/bpJ37Y8CgGT3oKEysb8OliqZQ3HnWzd2cyN4s8mINQol5tbvxlrLYe9BrFwsYPc3NEt0MNd57a48BYe+/q73sPa6/4Yd1Cik/r5p5AjT0s8matE32nnASwBMYJGzl1ADcHXdgA90EovtwWTgp+Wbvpoh+ayqAxZ23tDViIxRZrR3WTjdtHFcDG0B/4CPA34mHVl/Av3iLIsmr27tMDhnqhkWqULF/aIdMGpd5M+PjLL/7PSGMIB0/fURtESzWFTRdC13W+2C/RBwy1bSH19fqaxPluGs44lQ34bLMDAviQcGbv4xoI7mzgRBBGTqecINgrAkXbfTxXrBreqTq1/o0GX9BnC0rQCPvwBHHQCFfA6Glfwqh5D9hG8o538tuxwMZ1DmizOYbRNwuvBsSMRdT65WY0P8spBcooBGh7Cd6c7TeqB5NG3pCelSqfdu48w71LZ3TzUy2abUn31KszH+n9oJZ8sSxVBgLJztgqTb3aRuhJ4OcFb1hLDvtq3OtMgB9gt/Rv/vj5rjnw0swnfNxfGJh3Z/KBWz09Y41dJ7486w0BZXh+UBwIs7+Iv5sCNFL1SD45UTW+jQqCI7x71NTspmL1V1UUPzxk1Aj2nTl9e6eAyi09YN9ogmqqjZmpV++1JeOh6wE54skGD77u3kgsj/fXXE7hoVBvaNmno8mD1osh0WQf55fnHhCMQqhugEdo8MTPikhRfoFvQCqy239vwyLsfQ0cmvxGn40yVLxz1BoSo9lTfNgdB+pYpgiX20nH1587+H+/D+9tGNG/9Tmqm8wCddPK1KE2ivh8/BXwxgWKanCl0Xg2SQnTae6pX/6KiJ7vjgPWfIWPflpmjGWHEA5O4lLzZZKBibZW/tUTfNrx27Aoi1aot8mKaWwf2opzPGpKmsgh9T9nYs7h8WJAnT+39JRLZODbsrrA7yi12D2QC1g89skhbcQrNY9LWTXr/EDL00/Uql05mlCCCHRIxomgnYZsiQJZU0Ydnwhzq2UYE2m8wNNtY9NAu244l25tDSqtJ9jeN4O5XOQDgiUPAD4Wm8inu/GcqJs6jLG5U4NothpdVo/A2lGvGQjgzbuRYCYe39hFjPLfbY4RPE6JgfUb3QLGJCLDM9Dv1L7uf9Vkb70LYND16WEfzwNZinlWM6BwahmPIZveMJOUi74Xscb6S8V1zZ7Bul6QYIRJNX9kt4S5saB1PGP0r14WIdbR717zgVoj7aDKzyY9s3Hjs5/iSLB6JQ+yF+QajJZ/gHCo5wHJ0inh8yU9h9ANdYPc75gAZsdSCP3wmFFtQE3WOU7rwdZ7rx76y+HMnEi53ySKgrUAHIB4AJcYMtb52N0qRcVIZIyA6u0b/8XDfBt1BS7iRsLHNR9PNExsKHnnGNu/Q8n/1ZNb21zxyf/6YCYJcaBCfgq2WX3PGB+tj5KKvwM9le8fn4dJJuAsOhuyPVKDLy/vzdQVjyC+5r9RV5kDc3CRcJAFF580z6yUi4RoE98qb5/91XOrtWPqQRXyH2d5Cx0Wnmhy3bsDcZUuhJJhf6klDA1nmrU40NaVPZmHGJrj9OpFcC3WXuh+vTFZ/d3KEN6Kgh6ReBp2h88phPCWF9jeh21GT+XiqOFNO+LrcXsfFluJCmUEUMOX/UMeBunWtrBqzupaD0t/thPRUNZ6tc6XxflffKXNJiX89tUjXpoXEWp8vNFjbYYRK91ehpLSYozvaVXx5zu//MN3/pZ5/mQrWQHX8eLrbs0S6WGSYKe/JNJq1080B/3YKygdcqKWbxcwMwAjnBuUYnxUGJ9zLxfgvi5qarFSi+bnRinVcbpE+Pg0hIHtyFaG6Zjf6OGmONm/9QgnraH3616OuFOlULlBN0fw0PV8SWKlhk+nD6l23Xw4Ud9gBPn00RE/7nbZ9KXnHsxcOWCz2bKs7iM4g7N+KvD1cztGu2du2nCahB81bsNQ/cObz1G26HUH0MD2970H7+0lwv519xhm7fsb4bY1S6oP4cKJIAcOzPUcoOX3GSLuAWwB55UMaHecGrPr7wcI5ddepPg6ORGba1eAQhvUGCX2LiI9IB+wNDIh8uwN1SJ+FQRLHV2oph6X6n0obyVM9cSl+mWQAanOU74/TrFBvV/i+VvRjBRVcHYeDYYRRtOaD4HpxjsE5ruTMWhfbPWRCD8kt8Y520rbEwSOy2qyOey+w3LzUgQXPlT0EPDS5HRqCjiMaoqdfXXKqFzlPVjXOw4kN8u4P0Qf8LybA5HuWPN3Ji4T8L0NCtbZ+DJpU2reH55Fi3vZmbR0ag1qxMGIzY1bLY/bAMFef5tY+51DMPRcnkHXJHit5zc+7p95CwXABjI322rg+SB0ALtXRtF3P1bz7tx+IJj6z+rx2lxalEcKK88l+G89iSgvGDx56Iw23+0nG/7w09nVZmxdwTFa2utzhJ7q7vFhfunDivdHSFxLxk59gJxtjasG3YIQqoU3bnZtNjEwusaL7JjfZ4vBQhnWXv7DhjCZlei7ewkE4FOTZcXLs140Gri3AyGX9f/Si/hjMIJaTxjZGYBb3yJXFE8bsB9MNmCczpq6/j6NBBr6rKvkVOHTfMd2fXxUK15xQJnaI4F31wa7XqEdeLzchCyGj4bRpGMITka6IcAIv3xC8U+DIH1K2IZAH2ZVceW94841RkaYDIxJrQzUBvzQUszfgR2eigD8ZvggxfglfLnr2edfPrDJXvBnOoTyP7ztfWo7W5jk2HCcBkIPX2kDpowfWhCONcKHrWxGi/j5aXBxt18alrkOthcmagq63VwiQN5XDOqOAuekHHB8bT/DbPknCOLwp6CZ7LWBP2LtAzZN/aWh/zHB7naqOqC8aoYPcOMDtkO+Be2UR2RfqNdoxW8MmCG+oMwdr/4U18QDRTJqGIuaY04ZP7XQVIQDKSXN9RcUvzVY3A4ZNo1iWzE7SluIm3SP7Xtdg0mKIw+ufAWv+Hbgm0W0/vAJPobrfaTZuC3hrzlOaLqxc7arKBjBv+dVJl3Fwp9Sw8skKNhq7QDwhwgSUIoVwo5lSdWiHWQDivoxocG3bSou7A6hckp6TmZ2nUCX/3oblKk1Ev65H3w6lWcC2ymvsI4Um6/456NWXO2xpd00U/w/AAAA//+kXUuXsjAS/UEsREASlrzkbaKArx2gIiAijySQXz+H/mY5u1n2oVtpqNy691ZStX8/MyC+uIn/9MukCSsyioFN9eMoAxo5GoJ3IGbYLEsV8OvImAZAfqV6Wd3qObLeDHTmjdDg6H6H2dkGR2CAk4u0CrNkmSohhqYviNRY2i5hs6aJgID9myzDe8z5AcYLjF6O+YdXAys+0tpbUxbQW390FvOqytFu09LTv3imR09XoWE8Iqq7sjeIm3mP/vINefmVyX8Cn0V4A/UL++EsWPNZ6B0I9cb+h29DjXUF5tduQ00iV5yp8rGCDzM8EYaEOZyROq3x/5KotZyLYdV7+h+fosGxiPLtJjAvGjOuG2zFP2Dx15JUQISHBgn3YgKcTlMB/j7v6QoPix89T4U3y5DXc6Ybzm5r72sDfjO86jmrd0Trpm2Pj/s/PTW9sCqA46S8MfruonrKD34LtiI9YBup24Hr3a2Fu6n16UE092BR9ugGquOVk11Em3qpJ9eBdRttqR8Wu5w9JU1S4qtdErWxXuGcTL0I9gGtyY45Rs6e21ugvV+/gsyj8gb/8vvK15ECN9nAzXSutIN476ixu0Xh9npyHXgBL4eG/ri1uu/40bW/eD98Zd3aPgTeaVfDWGcTTGPdVOLThCu+oSx+XesZduECoZksaGsHwjBV8/zUliCoiHw5Zpy9wq6Hhjm/sPHwZD7jcEz/8PPf//ND21yE6Uh17O1HJ5GE2Avg3DQ5fWx8FC6Xe6SAK8m+aHkuYsg+pSCos19EaCfUZbi8iIHUyCA/apZZY/1KRzrC7e044NUFT8bI7jroLfEBr8+Xi6bSQciOxvhPn3MLdym0bvcNDaRwZ5VvLSbgbuqv9XqTMHsPGWjgK0YKkrJw/uVqC/dmKWFXUKt6TG0Vwcsr3+DwfpitKUFnAlP+zbHlv775klZ+Cxr4iHH4gb+c1dQWwRo/NBlQGi6fR16p9igQasQX0SI1U1v4nJqM2vExCqXT6xZB+Xa2cQs6Ke/Sz0eHsv+7IgkfinpxMvwE2kQAknfxwsdXfC13w6QcKXIFLWRxOjFQTh2noYbkZHQPmxQcb2lGb6N4DsXa90RwAvBEz3Gs1PwbvW3Ymw+XHti1H0Z7DxdocsbwEf3GvBP9WgCvET6wNTxMSw6DboQPgq7/9C55WMgEt4t6RB1iVi5duCfBEuQd9uL3OZ+2QtADBFqNyHHQWMtP3zDQLDCmNsZqzr2u98BbzY7Y05NmGCnrHfic2ox6AsQWb6/hE+79/IjEz9xZ40HfBqpDrhnS5EkH/RDq3l++RkJ+r3I2W66jjNcxotaxpbxd85vq8NLF3rO1Q7Fa2AUaVyOhvjt8Eyachxb8jGVe/RrPWnabbbDrDCenzjGsLf57OSaIwUTp3/tf/vS0ZXgBLu5+y+fI+jEwigEhYnwcQ57dTwQSaN7RSa8FQP78Oun11JEm7eeQ9pwxcG8EHbFdcUlYwnAGGvH4ocVWlIaPRaYb3APziUY0unx5IehAOdj0ZFtdvznLdudOm6dRx1Gel+HSuKEDl/ZjU28pbCBGdtlpQZu8kCaaHzAe3lQA7w9uiHwGkjXGie7Az5KeiTQ8jmBY0i368z9IsXud+GyRKYO/ZoyxUT5RPkwApLBfFhOJ92ta8yBL174G6yzQcijC3/65E8GnTRDVy+LN+RchBn98zrBj3g71HMd+BBi0F2ocu8MwjT90AUde/GgchkbC9ebjQNvEAKm7qAdTWntPsLvuA+yu/sOfv61tL8KN6kMdhEv09RGg/BusfgJJhj/+rn1KhJ3Q3XMRD0oKVz2HMQL2sDVMu4TGZ9JxTgZjkFe+CQcw7PGq9wd2yHYOGPy+QIJ+CHPFPVUiJOroYF0muJ4uWcjgE1wxgX7ihNNyUeEfP6bGVwU5FS5xof35o6u/COZTUbfa8zN72CvTHowDqlttvJIIaRe754sP9xAyM5ax4e7OIa/UpwPYJ7rRbNmb+dL9/AbazWLQMMzyetkWNwFO11dPQ1cg+d/7AfQadNiKUynvM/mqwv5ZHVB3FfWc4dmvQGBaA9mEH2Qxz1sbk76GELufoQznXaaYoPRvG7R1acVZeyka+HiVPVqO521Cxb3fw7DVtvhwz4xc7qzmBjtVuVDr4aghD7aa8qffaSRZzcDA4afDoyHndL/q58+7XNbJ3iHBgcw7/i+/GVcYUovscL4YudHA9CO1FIfHX7LY5in9ux/qVPcEEHWbLVCdzl9UxIswfIS7psLV3ySjrechV+q0hwGQW+oytOXzCSgEOo2Y0SdLymTcDKIJu6uwRe1WxWBc/QRNfbULkvbEtsSbW7cwHvsvdn7Zp54G8irBn75DZDgmtBikHt78SsLW0vT1lCnPBdTX2iNs9Sf+/MF/+tq4P2BNHpZjAtMMKwTYuoe62FsLrBu1onjlM3wI/CO8e8oOGx/5aP3i2Ii0zTSn9OJYHeB76EfwChbjz0+3RE6CI2B+eKL28ELDKB91CS6TY1HHnWku7gQ3g4jgmlzLacf567CNtNakDOMtQfXqN3vw6PcTxWXwTZboa6x68jNR55fth7madwVY4wVHw1gk8zv/6fDJvQqJqz8x4miIQLKAPblGc5V8+GTdVMaVPS2GEeasEp86zCfsULyzPxa7tWwEj7sx/NN/s8BnSVnrMTTMg/3ArZNjAqKrIVq+0hzOqcVTtWhuBX7scneY1atdwuu1PPzxZf778zeFRj1h9zNLYPzjH6vfgcB5tjih+IXUD+87vF/9D6ncyzfwBVWy+pfaMGSpXmqSvqRoiRorEf/8Bht0OREbX8nnu/YVIDHXMzBrvIrF4DK41huIDpcIzOSeLTAGaYqT69fIxbV+BR6vqsdo1Hwgb/PYhrq59+l1XLxa8j5aBc++XxHhcXhxTqQ+gH/1AZ96Kljur98CU5+/yEb33+HDyVH6ly+QPC7eID2vjO2E18Unyrp+f52LRRh4ZY/17dDkbPSzDN6M1CdTNPgWT4bJBmS6jNgeAn/tUGBAMALDo1gLcrBdPx+eXiCgq189cDl+ZOC8tBa2d3ETsteYr2dG3ZGIq/+61s9arfcEB3tk9geu6Wufo9VPLfYaHqQ/f4sbNCGt/1r7Jna3Bk6vGFLnoS/WlMXZeo4uYnjFr4TEMkrhX/xE6d7/57eDdyP6SBu6OOx0L23hdd1TE57nmv/D3+aoz3/xnbAJRAXs1s6rl1UvEDB/4z//jpo+ikC3fzGiXTmk1PoqWk2lK2nhH966OTIsdvQ25M9Pw09X0KzRvOcSeIBNRK1f6AHyqRoC13rAuh5ZOKArLODGr0u6B63PpVVfgsvNC/A1fnWAV/fh+Le+CW2OQsgN4b/6Gv35J7xK43/5Gf3x3/6+7gF46bsrtraqETKxvzBYQgrw6vdbpHEtW9uLno2Pa36ZW7GXYO5pMQ6w1SdsrWfAx1JESH72JOG/R3cB0/XR41CvjHzxPloJTa9707s7uPmyfUgdxAtLsM3qgb+vwS2C0ZHPCHy+di3u35cMyrerjcM9qMMJM7OHh+A70tD8jPVkcaGFN2Nq6HFIi3D+y2+SuD8i/tnGCV1EM4Ue0W90bwfP+hd1uq3VfNMjNn6/yXT7zBJMOdKx+ZVO1ry/dx1sQLBZ+QNJ5jZRdPgO3DPa2fqYLMkpuMDbMT/hQ/4Y67G9pA1op62AnXuf18vYuU/IXv2RRmj8guVKzykIRvb8i1+r8are1lb/Aa35LVwM49CB05U88J8fztyDfIFiEIF1lloJlm3tikDl4hf7Ql1aTB76Qv2r9z5XP2mitI604uh12HV5zke7pS3YmfKFMP9Dk/ksVDasb3KOXf2KOPnzC0yDufS06tt52zgEPI06JWp4o+G/+uGav7BvxvtBDvGsQoV832QjLOEw/+nbqyeVNMBWkKz1YwItFe5XvtLU49/9MXV5oXFdf6IcnS/A4HaGjYuBE9YrufP/7SnY/u89Bapi/Ih41AhgFTAu8NZaPbW/lQmYO5cX9Yo2J+q0iW2N4z7qwH6je/SRnh7JMs1vW2u67EPmy2bM+7v8dIDAHgOR6x+p+Xz+OfAT5w4qlprmzM1uT8hO6joPcDwDCbjhsrtM9QV91F9Sz1vgj5D+9C0Ny1kNpwbUgmpOko42v0Nek14CEjyckEIP16Qc5ps7daqBZIi4GP+GARjCCN9KfyO7aZj4ctx1R3jeBjE1lwcAE3HLVOuObxkHOVOTXmrSJ9gObUvDiwbq5Vgdb1ou4wW7TWYPn81+b4LmfEY0imMjnMHWU+HhqkvYCM1mGIs9UUGQOC62jxrh4/eh9HD8OA6R23U+pKHsRHC4mhINU3FJyJjdIzgHJ4zOJBb5gqdMhLiFDbaLrgZUTZ4KvDtpRjPb0wC9RLqjhRvhQV1wGvKhFPhtncE4EgWOVbjkGSgA2pOALPYNJ2zZ/xogt/Ibmz165zwKUQScb37Ajvb2OXPnLoXGYZxxtLPkgR2YHUF7Oj2oX8s0YR9hIwCU2oSe2AUMP+U0NPBhvC2qh/Y09FngX6CKu4a6uyzl47b6eUDMLhFFT7kcuP2zBQjlzRWxZHpZE7gmR7ibjwY+oW4aZqfci5Bvthnef351zoq6qMB37+ZooXUxzF9VU6AlqnfqX1YPSTp5ECxl9ECbKi+HJXiDAjhBt6dJATcDMSbX3H3aT4ckvnlao3JRenjiQ4Zd9fMepuCrl1r8DEIa6JUIZkVNenh2CgGbq2/INLu6gVNnPcju+1CSQcblUQtn94fkBZmczjLPYP8Jbth5DdeB7+T+qM6196GHw35IujMFDuQmr8k9KPWEY1URYBGqH2qcxdfA85MxQjIvEAH/ZNTbvPRKuNfTLUb4KSQ8Fy4FqE/pgb7KJgh7pbcDSK4sR55T+fnMJM+GyzdsqWnfaLL4J+MC5zr40GCND9634wU+5muFkVB8rOkrnSKI7zQkYrW3En45jgu8d7sSm5lW5zxQCxNaGyej7k5/gOVzaEVonijHgRpLOXfrBW3ipxfS4nr+DdXnQCS4lxuCg81Z4Gxr81JrNmeCg/1kDNMIMhE25SbE0fBjFk+dYwbEg8NpZNsD6GdjQvAc24BGd7sIGTkLDBSxTNHcVlpI3nIE4SWAR1If7oRTt14iSM+bJ2JXY5tM889uYeWakKgfAXP+2Lyf8OfODGnCk1gMw3unyoF9xwkTeMLlWW1huNA90o6DmPA2/UYawrlKowzEA3mbbgH5/JTx33riy6hAqMVPHyMgKjXp018JXtcjpYHsNMko5GoM6lHw0dv/7K3ZZRsIg8PRo5bYFMnc3O89WLLsSU6PXVjz86OLgRPOR7R7E8eaaV2oEESkoJ6lQs7M5MzgDyYm3oeum4jq/lgAcxJ1bMZtUy90eyWwKzr77/nX7NIoHVzspiTyzqtCvt9mGcyOYYZgHL8tnlU/FejHTiWz3M8DhxKMALkuOVHA+2xx3O0ZuFbmjwj3GHIe6yWBe3fBaFm3ki+O6BMIz9kJ+xKRkoUmhww23e1DIwHZOTPkXwARvqvr+kn5+O24DYO9SLAphT+Ll+8Dg9mULdg47qec4/pta/0lqal1Cex6HjebCuZYU6hxI0/A6dc/qvnl6NF8xUOe80JX/64fbDLWtL10MXgEboedYk84v+6rC+zrChJFPGysqXi6Bbw16ovi3c9JFjzFEswa8UDA49NZbEe8Eu6We0RNeMpy2gSZpPZ+lWO7ukrhH/7DWWBvekbJLmd53N/AXWsSjMnNy/npd1y0wNnsqLddKk7jipsgoFv0L/+J8fYgqZLwLMgSR9MwP9jSw9t1cNbPv1hdBrJCLexXSI2pKHIuPIX43/8fvsicTJzAGBJ7stFvGg6Ay7iLYdyDhJTV2CfDW3n0sPhWFbXHMK1nef/0QIkHjqNoa9RS/K5SEL1vd3yA32vN4hhUkErHdZ7XEoZj9mhEOJ9BRPWx9ID0FG4LqI8yxK495Xy8PjMVXJN+jz1hO+TzwRtF2ClHgz5FRPl0/Iw3oNfjCWPZuIPlvXRHGG0bQA9BOFpUETwTemKb4kO2+9XLK/l2EL1TFxvbt5dwROoSFus8p0iZGz49Nc8BiVMf8SHshprO2YGBE33K9EAPx5Cxq7/Av/wYpE039IPb6iC70Q1a4uhQcz2uPWiJyp2022AIF26yCI7+06d7ZDjDUo1mBZMD7MmmDBJriceGqc5d/614LQ/zshNG4Cq/L1LN+5D0iXZRIOMXB1s90/i8c34B/Nh6hU+/Rq+Z34wi2JnthPdjbdYsv7o2fHbfHC3n5TIwv2nE9ZxyjSQfuWDedaAAX84otb2WWfP7YwawKiSV0PRbJXyZHz2ol2Xd52uONR3PkQed/SbGVv8Mw+VY3TI19XMH+7j2AFMurFt7jclIU5W9xWDoBdCxooEGyNZz7hPUQGRYV4ru2dtioWdGYNM2d+qX9S4hzcvVYRFvKREC37L+8YvqfC+pf9K9YSvEXgnjsaLYcnbOwPxS97RiSkt8Db8qIImiIjA23y02d9c8XJ4fLIKYTTEOVL0eZvs8F8BczJrsdpeKLwp7KyD9WBZpB1b/xWugEsvt/vgXGM+3IYLrz9j72J9k7g7vQHvNyZGu8QjY7hirsBt9ji1iixbNiyiASewfyJKvuzLDUy0AHKZf6tY/NCz5+x5BKkgcr3yOUxuwAGpRH1BvNqbwfUa7QjtvvRhHciuDRb0NEN6RuiHV9XcIlwbCHq58jUZGsUnYIMZPeNrGEtmal1NNGOpG2BW9TfHpI3DajJ8AnNNthWb/8wnnr3RHYOVjaKlTMySPr65AESwuNq+/g7Wt+1mE5Hg21llVkC/Wrijg/bHi4fXbhEzieQxP/Jdh3QNNPl0MDcKyq316qPZgoNvRVMDmOzXUprt3vfxeAwShGrxWfPMsbtF+/Bf/Xn5s13z4e8IJ2y32PhfFIme/uQEyM4gj53C2uAtMB1i/uKB69n3+4+tgOzQtgXL6sbqnM6sA0KQi2vJ2ckno344GcRtT1xT8ZO4of8LkZJpIqjYHwD6CLMATHI/ouP+iUP7NLYM/fAio54gwpJM1CPCXbV0anaMy4dTPe3ACtog98fCyJqRVKRTYa8CBW3AwnpqEQNuKNaoP1i9k+W+JIR5ZhdOPtgm7/IodIL5PFyS/y30yn7IfhOw6+it/zxL6+g4VWPUAtp/zFJKjYEOINmOP96/8wH/PPlWhiLBAZtvbD8yQ3wFY+R0NT2pisV90K3bynCb0duyympuSXmjDoS6IqH0An68SeMJ5fvvk/ZOSnHVbr4KhcQrIsjxyTuJ3n/7jt87vJVl9rh0YbB/yG7XbILSks/BWYL0/bOgaHyFvL91R1ZwzoP79p4a/P3xHSnJEGw8eki2TPAccLO2Fdl23T6akES6gzE8MCV8HWMTaFU+48i9qkO/PmtI7V8B40xSsl7URMucTK1qFigu9nv12mHvoqfBcvl5ojpFUc/AaUxXc0jvGg72EbHlfPHiLLB+9f0058KrVCig3jkpxcI/4fBiVCO5/KMA+reycxEFcgN2nt3EgjYdk9DwWw9ktO+wcPTdkTcirf/oueo1dwn/nJQKnfXHF+xR8wNLMagRJFDxxxHQaTtUN9VAPJPAPP8cul1f+Nu3xnuimRQq8M8FRiQR6XfGiN7o+hXu5JXR/c6+c/sX3vj+fcREHBViU6FLCjOqIGqib6kW/stWd7ZcVL41w25j+Aq70aOBnZS3DfL0fRJiFgozNUFCs0S+9QF31BHW2TRUuy23rwMOzOP57vvxWqAhuA2+gDoHngZ+vQQmEXfXGkSZOCTs1yQgmpzJwUPX3YVboHcFVH2Ob7/nwp0dV/dirGH2uHSfmRo2gou125Mc2digHN4MAjSs29gPnl8xzeIGwXWcTsOGcg/lg64GmRV2AQxXK1soPe3hQ7QN90O/X4q4TNeof/s/nauRMDgYEHmf6IaXyYPXYr+f+LgsKiOjW7uo5cUcjU3PHzqqf+OfdExgIh4Vi00QW31/HBW4fyKSHVe/3SvSs4D6trwgobhOyhhxEuBzCPTWWw2JxU5086LSxSe2epGDGqRqDx3yukFxpDZ/jNEKw3k0nanVfsean322Bu53UEoHKDMzn5BmoznaeqStr23B5nrtxt/JXbFw2Y7L06bvS5pQZ9GDVm4EqZsNgmQUfwlAvDfwSec5fPJIZHNWBlG0mqdv59kHwsZ35/H0Z//QryRV+AMtcb8q//EzN7bxYNChIBq23bK7xPwKeC88CXvsPou4f//7htICXRpipIxz4sBBHFqB20hSMsHJO2CWkI3AO2YgtyddDFmwvAtgcJgsbJe/5oqpCDBXvVGDdfTY1t5suhle3lrFRdxpYrpMxakJNahxuDw1n5fbUg9ctVwl8jd46aym8gVXfYfszjDm/Y4FAR302FOHWrJk41S3Ia+uIvWfQWgu9DwHc65ctATfPG5g5Wzcobl8Kqla9zfIrtkF3rGWyERU2zKPBem3VJ2sNqgfL6ahEUMrvexyItR3y5shazdrY2arPvVB6jUoLv79Eo8Gqz5a2jHVtJ5oddtTdIyHd2uS5NQ+ff/c3n9HuCWvbEZFwzwxL3lqZBJ5bScT2bhPzcaqWWBuwp9B98nSsP/0MxP1wx6F6nBL20lMP/DLZJaLrs6SfX7EIn9Hmia3u/OZ8HAsTfF7dk97+/BF7/4Ng5YNkqyyPcLlpQIT9vCvJ+NieABsU2YN355L9fV84DPlbgSyyIzQf91PCT+Hg/fF3HMUN5yz/rX1xIGI0MoKxXvXEBcrhoaHGMP3A9DQaCexZmJKlTiuLg1dzAdgCB7LdjNAaMxA/YarYGcZJsU2IZJqBBo7qBu9Hf6hpcz7H8L2ba2zKXTfw28augP19vDAOhtfA8rVCuepBejUFP5/b3mJwki4lteFuCVl3jVUY+68btT5GOGzt866AfV1C3A85zn+frYP+8AIj+EE1c2+vG8DjUqGty08hXbB1gbnwi7B3ICCfH6hL4W5/TqkZjp9k9Vt0eAD4RvUkj3L5vEsleFPHBy1+y65m2+rtQZRXHknc8J7QNf/D7I6O2Bd4laz46kE5cO7os8l+yRLuwhTCTTZTfcEgpAnVnxp/5i8iJNEwzP7rusBJAHuyo+I1pL2dmaqvRycCjSCqtxu9S8Fl5yfok74RmBswCIDY1MbhMNzD5Sz8FPUZzw9S/tpfvVwUO9AQhBbWL7Sq//gkWP1BAuQLCcezdBTh0X/3iDOB5wt3UxVeC9RTiwlJPlklUOFdaxNsUawDyXBuJuwGs6POtN9Yc3f4rX2v8hf9w9NJ1ucnjPasoO45vyfLwiIIom90pc4siXxu3d1TvSbdHl/1bWnNAVY6dcUDsq1oE/LF+7Tg1ho9tY7TJ1xAM980wrMbdphr1nzrKw2wm1Eh0Gbn+h/edIPe0cTne84jPWSQkKmh3qJYw4RekMD5kbZ0za/h4tpA0dhUutg4QQuM6rdfoKE/7tSVhypf84OtrXyU1OAJ8t9LqlLwuUsltXb0F06xdKmgbsYXsitPzjAn5mjCrUlPZPu3fo3okMGt0ThYRzcLrPkogvxxTLG/2a+9lJ13AF6TPeEgYH04uWwjqH9+p9OGGz6zw02HqBgS0lf9vZ6OVmzD6IuuZPNy+4S9691zd7vHFfUORVcvq18F3Iv9xsfhoVurPu0BHzoFB6+nOwyxairaGh/U/z6UnDmW3kBT/Xj04JkVYFORVoDK+f0vf9SM7Qr7j29S430wgHTzhBToNzvF+Sg54dZlMlTxBCaMvk5uTdLvV0Gjf+yIrJAwVMawz/7iC8Hzk1vjyrc0fGt1JO71r8WCJOoggoJFje27y6ekvHfwtD1K2H5ZLzBXWzHWDHw5/Hs/sgS3ppZLzhfJq/+6+ukFPG66G77PJwkwA+6l3ZCcc/r8XD3A0pcu/PnXZDvWVc3PVSRAQLwrTUDUDUQwdjp4gm7BF4WJ4XTR7gh0fjsR2X+eBv47qwgwMsRkPu4PCbMlYK+HhX74cE30YX2/N1CHFcKOwkRrjGqJQUWCDJvN/Ab8ePm0cMpIjd3w7IXSX74diuyEujnZgFWPdfDlqeGqj+yQzzLIwJ//9NgZZCCJ9lTBqv/xWm/IuyN9eur6/FY/Ze0juVkiWMY0/Oev/cvnDpG+BHygA3jT6U9oOYc9xt+nb5F4HBcoxVJJGLR2A/frKAC+cS3++IY1v39EgkHej3/xn9DpfWr/+ZGbe9+DWbkZqXa4dTG2wDNf+zBMAQC7JUVs/yXWtI1PHcT07WPPeJV8qg92BL+fW4jDvTYk7I/f1i/CUMr3yTDPznKEqaGN+HC4Pq1/1/cXj698ec8XwdiZ8NHfbn/1jnq+DbOuuRfnjffKolnfvLA9TS3ykXpT3oT8Eum2Fv8WD4FhuFvyd1KCP35K//wF+mlxBv7WJ9MlJd9uL8IFNlXzpViJHC6F+WOEaz5Y/clvPs6LlEL7WF0o8uKx5k3nPYHknQk1r2ADJjfQ4d/zxwcv3dbzCYoxPNz5A82XTZQMzgnrQNnUZ9Q2xWFg7Gos4NLAmZ7O4mbgbR5BmOTIosEtmGv++tYl/PNLQlc0OP9Ymg2y27ShzgN+cqq0SgAMyZXIMfsK+T/9m7/VPfZafh2Win0j6A9niO1HOtXUE5sLBCS4Yr3V9YE/86cDL1d6Q8vRapKVjx3Bqp8RCIgRSv0w31SzzVpUnuLamt1l1jX5Vmg40KJtzd7R2rc2mxa68v18qa24gEH8lZAy5Y21gN/FhkWofNZ8vRkmXymJ9od/97xkA/PNrFSPbG4wMhY7l/PdzIAdytWqz4Xkn99Z+8pCfe/n8xmnS6ytfuFaT9gM8y48SMCx0EAt79Imc5ZwG9ByPbXzYmYoH2NPUXmANKLlYZEPiAwlvPuugQ8IvsFSjUEF3yDbEMGLx4GIuhz888PWfDjM+vu9puN1J7FlWOEWXPO1fubFVBflb012RmrDep2dGmjtOIwACUD2v1gXMqhpHxExDzTJ7Gj8qZkND3B0zPth+fimB139WNNk9buk6+SPYEbQ/Ocvr3rzCdbvp4dz0Vsjfo469E1BwX6hsaRz3M8RPO1sR/eP2K6XhdkCNDIYYDzH33rWW6eHpygviZiePtb8VbcqzOz6seL7LRmXL1CgpRUCPnMq5kSI+BPeppdNjfdLHMjwSXrYlFpIvfv9mBC6fRFIrH2H3RrLNTmW1wsMr66HfbK3OTvSSwBzJE70tfu1OW1TisDqp2PrursAUltZAY0DmalhakrNb5e0gOuIRezwae2bKdNWXQ7+ntqbYsnncSOXEIPQQZ9H3Ayrv9f+6RdqBS9cE3caoAolKcJ7/dDls3E0GPzeF4RdyRGG3+2THLV1PWDPRdxqXnoaQGn/dfEeJbuEc22wAQlqkxAqH/nKL3rYSkRGMkzTkAX3/gYXIN7p8df+BiadPx382GaF9aMr5X39Gf9br1F7+qlXvPTAds4+OFDyDR8FIWrBwRRTeh4ckzP7fnjCuIYBfdxYmc9yHTK4g58Dtgcv5CPbpTZ0bMklNT5+1tkgwhGOt42C1OrmgFl0IgSDb/xDwK/TZJHvmQ4X8tXxWk+r5/NsMUgfmYKUkznXczzvJMhu2/Sfv7TqLwJuJ9lDWrXPa26JOIP6rsT0XmUUzNrmHMPtmXU4ui1+zoGXFtoz5g9ERIQB+4aHAiytmZOW3bcJf7yBBOXl8aTr7yfkWL4uatApe7zWgy2mvIENDP21zk5S3wkp0sf4l/+RlCElpBp7PkFTsI763DvkoxzUCHgUlPgAzw0YuWhctD8+7WZtG85t3ZrwqCCBbPUXCNl8HE2QPw4n7F+oCpiddguc3apD58+vTkajvMdqz5YzjX7LbqCivE+BIU8xalb/kD1/dgTVzcOiOnNOQPx1Bx18bgcbBz3d16u/g/6/PQXS/95TAFT7S437bT9sLe+ywN3TMajLnSEcXe6ncqCbV+p9fx3gOCt7KL/alprGq05m81SmWvwT3/R+9e7JDF9bAvu39EHCcObWkkuzoxkXFOGgFR0gvcsJgbB/3TDen8pBJshQwc8HCVJI0dZdyDYMHqXpTt1fiflcq0UBWFMkSIs/v6G/skqCx7R9U/tcvVdO0TOAoycnnKF3ToRdZP/7fqXS25rrctdAtxcWqo8Br8dMvkM4WNoDo+8ts9h89p9wo6sRDX+vtUbZ0Age0+aNn57IAPu0VQNrPW2oASQdzOWeX2B8/oz4oFWj9TsUkwmFVxDiUCEDmGgHLnAndiE+SMs5Z867OIIXOXvUue0Xq1OG1dWeOx/vi8CoJXD1Gcxi18M2cwJAKDBGjSZuSFGpf+uZqmUGlVMQ0vAZVDkLW8bA7StV1NbGNpzrjmbqZYIi2mSY1M1JkBdQ5oOM7RffDGxw/Sf4ZOiEA6nb1dzhvAQ3NZRQqcp1uLjwW0A1j1J6dc00WW6P+AiVr8Lo8Xc9g0UWig7ufDmiUczccAnOaQsPzdVBfDx5yXzcZja8l2ePbPYnfViiZOcA//c84P23Si32EE4rZ2je+NRf+ECf92IBf88/gKcipNR2WqC2txAjGo8hn8puBOfiM1J/14p8loWPDXzZF6lbCgZY9k4lArd9v2lgJ/ZAEPE7dX1+hH/ep4GC5ZPBD9YznN3ca844KY8aeLkRdY8dBazcZ6a6u3cMRxdvB8jFAk+Yz76M97RoLX5XbA/ujt+FgKlww1+f+Q3Yj48rtjzXGqTFuJnQF3ubRi+/tMhsggomErthuxGdcHbhRoVn+evSfbE8Bu5faAcGgeUYfX4/zuVjbUMZb54IgIYl/+I3cDY3ajj+l3d5AwIQXNoSKfvwMLAE+zdQfOuGBt3DTyRo7SLlkE4C9R9ADvlhrcEQWy/wte1Da+SkO8JpesbYKjdWzR5HJmlBjg7YUeQmpB/l6Ggk2Dzovs03gO9gOULZvjFsFtYIlgnFl02FNjl1wWcJe/JLe81HzwXj71Jx5r0Y06gLUkJhX4dLjLMjJLA2cJg2X4sLj90F2GmIKEq+KOE/CVXwvfFletAfer7gbGdDKe4ZEhuxDYky2DZc8QXJv4fHuSWUDcizz4Tt0T8BDuy4hLiS3giWW79erqwSwcHMerTproo1X+aPqer21l73m1Z8NE/KAo5Iv2LnUtCafYvvUTsFAqLR7VLV80ksL+AgBj3Stp0a0lOV3WCvfAOMru8yGdNro4D8drxTY3PKan5vrzbI4r1HrXYYwbBJKYO5V2xpUMkHwNe/B9/5GyCIVTNhne4/QU514e86X3o3u0BVdBeql9sv5x/laMNQdcq1ZqvX0t/6e9++hOwC1062eVMReEipQI2hRHyuu+8NHpp3RfWnGVgDtMpFI1tW4MCNjtbMi56BNZ6JEgphyIu1t6UO0Ex221/OZ5M467no5Y6t8dQlyxqvwBqeEQ42o8P5QuMneBtbH+9D+ZLIReNLkB0PT2oLpzzkf9/nqsuF+m0mhMMEiwX4z/iCPQlM9Xxl/Lj2sgVIPcAW8I959aBUPVMafTKh7oQwc2DoXUoClXabE8tzLqDQNzk1RlOz2ElUFhhn+E60CH5zivIsg+lr2GJDGPe1uHO+FziCMaaeeaN8/qSTDaBsPqkn9oJFBpEXYM/GA7VJ9k7mtdgFd430JfM5HweaXqcL2CxdhJNawet60VRgQHamV3ZsBz4/Xx4Yr8MObU6TXlf1yyCaOrcmtSWIE/5JNQgOynKlf+tJOl9t/S+/UJMJHLDqsK2gqrwtbNK4T+iuN1Sg598f9agBBvZGNAZQjlS6d2MjHz7tYEIlGQCpQu8zLD/pIkBNaUy0G/V7vejJJ4AVubn0NDtBTnHWdbC0dzG2YG8kW/9glOA2Fhhpe/Oc0OT2cuAPXRqsIx7lbNfzCCRVXVODZiWYgx1T4RoP2DGeRs2rxZCAUpAddpgWh+Mvy3T4IlePBhaWLVLUXQkc8bPHRvet85kXFQOF4E6oud0ci2mR1oI7oBm20dLXcwJjG76dp4Q+JA74tEkvKpxhq5N+zTcjVZkIPRVrKz62Fr9GTqWm9HGntmjV/Fvusyf0A+tNQ+PGkrHpkAMeU3VHAA42Xw56VwI0HzUEf+lx4GjaRfB1bWuKhTvP2etWtXDNF0RS5MZi7YeJILeNhkZRJQyE2lcdfmAwEfx7RgnZBHOkHUHQYy8qdwlb8yXkO1/Fln5UhtHUrRGKD5RgfcvPnP/G+QhvyWfCSDJNMO+rbwrN5ziTKdqVObc82quZZlek+uavZJmftIWutu+phdR3OC4GU1UeyiE2AQkSFmPg/cPLdVjQQKXaUOFWHs5Yz/GYj22S6dDubhYOHmEzfBaje0IBX76EZ3gEf/kEsk3vU3RzzvUoxU6gcqkPsHkkb4uX+6yAdfxTqH58nTnRomKEqXTYILGUp3BuTXSEU5OneI9FnPyLr9MGCxilfjEwRct0YP7UDjv2Ls+59hxsaD7JjL5jMg3jLUxTcLoNWwJoeE140kcBMOByRsNrt9T0k9oRrBJ0wpb8y8DSTbyAk4gU7HedA34r/mqyFDDqcPQeFuXoM7UTaEEmV9mB4f7wJWDZqoW2rqoly43uHEArhdL1feXUiCsIy4NwxF4oDGv+0ETgWNYbvWmmA9a7PNJ+IonX+wf5GAtIh7K6PBB0Trq1fFrwhO93caK4S2drmXrnBrTDbJGt1uCBDccLAUr9ehGFeUeLz+kxgLbk9is/6wFvwpLAjzwVZAZS+Q9fwetZN2T33vqWBF/TEU7pl5GNyE6W9Ftb1zlusRDtfvvm9OdN2R8e4Og1FxZBvsYgwmlJPUfVAK2juACqbj7pYWt9LJrACv7hMV7jyVoGp2uguSMRxbgS+DS9/RZWSMuRbPseZ0+tQ+D0cB1sh5uRU+R/Utgl75Z6/WsaemvMkGqc2heqk9fFWn6TQeDPhDFFuN/mfHB9FbK0pzS4o6Ge5GpnwmA67//xoQX7tglj6ykiOJ38QTwJG7azTf2CvWIX58v+bvSa5kgmxSsfnQ/FR4dhXV2Rkh8xZ70LImg/ogifmr5P/uIF1DvrQ8Op+IZLcqPVH9/Hl6TtwbC/zQjuWKQSNp1c3jCruIF9kL7Q7wGuFpufF/LHh7H5a9/WvDzSErbMaEkwZlWyQGtGABCVEWXG9urprXido5RaTaYlw3n5dvCrhQpFUv/87/qC189Cg8l8Jgsvsgtc+RAS1vU2nY7pE16uCFP89PWBO/uugyJvDGxm1zqZtGcWwXJ45NQomZL840MiZw/qF1ELSCb3InhshtMfPtVNuc90NX52Pba4G/Ft3vQESju0I1/XFPNpehst1B7tFw3PwExo74Ieur5+oSZMNkO7r54KWN/XXzyF7JdbTOscM6f7U3kDDCyNAN+XOCMgEMJaXufWALaEKpIvpzhclsdWhMoepvhwP5c5+1svuDY1GvqynCxfPU7hyrexUU5zPsGXRoAufW3EQcv5BOeK/btuXpv9MD8Fo4Izf5vYeBlf3m9SVADXzn74UIT7kAffHsKkhSJZLJQM4y1CDszCSlj1jbniTW2DHxgSBK1nldMbLTt4+dU1xXYwJnNxij1NnZcn3cMszXsCeAGs4/GCH0Ayh0WXZ10r756LD5sTTGZmbUfYz71PFPj2w23ml5lm3CjE1iXmgNcdKuGxyfY4QpxYk69W/T+9hZ9zMTA9SWMAZuP3p/fCBVxuJqiebU3N1M/4gPzpAqLrdyDijk7Wsm00EX6lSMbWdzFCOfj2Alz1HDYfixayfbVh4DSqPV75cc68wx3Cq3QUqH36dPnyXrIYIAuilf/O4DOnO33dw4OQlp6SkBWnqtXUuTGp7qSfZJZHFMOfbLVUX7TZYofg0oFigFukvII3Jyveqf75cKOWFmvJxKnRwrp6FDRMG9die7GR4AMYDQ3oevWNKAEETg8aLM5QswRWFbyNT0xxWu9zPvWUgGYTSdQzkLj2zckiaPPlQs24VJIJ2kanrfFA+E6uh0nMZxPeLfM+PVRKkuUlfiuobzqTum0/WLN/eS5w5Z/Ufto4Z5v0e4F/fN28NuusmX06grGsCqw7OzXhoqwJcH1/qLpkfdKv7xv8ZKNFu7gN89l7dSkc9+kHe5tMHPhJnCOYduWN7hdscYkHUwxUZ7ZQt+IVi99lBJVod6aR9awSfiC98Lfe6f4t9WCml6KEC7S+VDcOp5B9zMsI13ijYdSfw/lbPCXApG9ISk9HYB55mUGw/V3W/G3X9HUbTIhJjv/43TCmgC1aNOoQO4DRmhFkPOHVEzBe9V2+VYai/ONLCKx6as5aJ4K3U3yn1gtI4Zj+7gKUfvkZm/dDF/KP+QqgdT2s57yvxFq44mR/+hN71+TC522TVrCtyhz7cRsmDJQbRfUbqST5ev/c8r49qFt1oq5rpvk8oX6B+2LgNLwkcs6/pGDwdjBq7NoRBfPrlgWQvK8h6tZ8PHsgzaCssgfNXSOuucaOnsb15w47JBDz3yBmnqo+6o5GM6pq3m1uDjScW4dWPsOZEVcl1BefY31zn60xNBtVC8LsR4M0eCbTVuIpLGRvxGmwPdUsUywCTfZD1KamltMwzW4QZD+A9dul5OO2aSA0FK+jRfteAKOqIoLntnNxWFE5H6/sBOHuV6T4H59wyx7CkCg/6p6DByDdpqvAPri8EPu3vo5x9Kf3sbEdNquedUr455e9XgoD07e4SH/+Dw3PPgyJtN0FoFyMD+KB1lmM2rIC+BLtUP0CF4sdt1UJjRHOZJJ3fs0P+tHRzPOP/+n1gaz4ArM8cLAbbKZ86e87T/3sNwV2YKwBygveQaFPTXo+1BswvUutgyue0Mi2rgOXx2sAwmwQqV/MOZjrZ3nTPKOE+Hep7WQ+1pMJtea6NuKVzIFSGzVwO76e2LRjI2RpHxK4LVWGI+tp5ltw6Qr44XuKpvvtm4x+1EVg9cvIBvZWKL9WDzhP+pEe4o9fS3/5IobhFs3h9mT9Nkq/QLc976n5WB4hHfnuCB/pIKMPUByLS9tuhMdlPed4u7Uhc/Yl0i6RfqOu5xjgX74+s96hrnbKh9E8/TuXv7qMz5DLF6s24XCLYqS5yn3lO9MFtPdBwY52j0Mmj5cRsoPir/5due4hvqiadI0fpG3escUMcmlg9xVkJM8bCUzk97Hhazfl1CenXzifLz2Bui3b1HfTtv5x5SlBb6wuWJ+RDsSLVbXQ/62zOC5+PpSz2few+lx9at29Wz0/79sekheK0QdmYvLP79gUtkmjV/S1/uF3aYMYB0bpcMaVbwzh9bsQGLNvuPp1lQoimNIIq2YuwtLxYPM4Zhi3nVtzUDoNeIhOvfJXOkwO73u46hvqPa3DMF/ODML9p7qgBfe8HtXef0LQnywayussBx5oo/Yvf0Y7PWeboLxA7T+kXUmXgjgQ/kEcREQSjmwCsiQIiHgDFwREZEmA/Pp52HOc2/S13+uGUFXfUklKy2bCZZe3S9gtjOXHtrPQPGiy+5ePy1eiFPsM9eR88TQYfoUXVV1RdJlx7Tio6QWg6NuUbOB32xIORxjiX37N0nevwMfsCXjFo5wsmjoBv4Xsh296s+/CBFZKpVAvHBVd+ChZAlc+T9rVH+48OtpguB0crFOHMXb02g6s+o0eTHfU563dPqBeXhF+DLdPNYeyXIOhlwi2+e7hDn0pF/B88jPq1ukezGv+giwZtmS4hFt3EkLT/tPDBw/obLoHogA+va5Q5eB07nziaAwKHwZY+fRezsvz8Qa4tzRj9aBF1XA2bgl8PIMrtTLkutJPvyz7ISKAy7YuNfpUkdMUZ4Q2Pal+/g10eKunyHJRNFpFZkBtGwCsuLLV041TLHJUXiwUb3Ihn9SwKyHngARr5yjRl+p5HMCqR3FA9Y3LGnVMwVov6S07hGDYCpkG8qgdkHQzpmjmjxmCqz9B1rO4FR3wO/3zo5Mhr/WBu4sSqPoyo9bqj7yVSK7B+1zX9HDOOrbsuzCWDjAAeMXriGA7C2A2DwHRhtsbkE3zDv78iavp9Pmi7PYaXEiiYHXfijnTs9sAhiMXkuXbqO4sP10IU+ko0J8emtBNJ/CpKhmNDY13u/tJJfCXzyvfAoPJgAnW96dG4sj5l0pFCqLAw/QxqreK3YdV79yYggT8ncH85HccqFln40M94H4I7GMG7604rPkx9tMnLEJweRKe4jp76vMItx38XocdtZ+LzOhV3Eog9gsZzW/+3U++qqZyY1UKkq6o7+nqV8KLNGAkECeOxsRwJbDWV+wE1KjYo2c1+PFJf/GVnDlnz4GP05uQ6WjpLuu2twnq4bvDdkUFtlSSvMBpWf0I0ESM+c7TBFcwZlRZ9c8cX+KbTHRewYG5l3JKvob38+dIjRanZ4Gt8vIQDCLaND2qtl2mNtC1S0jmra7ngz4A81c/f/6bu139IXnVj9S8zyCaVnwE6/phN7ovPXn0WQB//rvynLNojmC2rv8+oYekbtyGiWYKPVUv13PUTjU1b5Hf78+6TrZt86p6Zz1D8T4dI7JrOtddPDUL4bngSxpsrrO7qEpcw/HeEWr+/Jv7xh2A8L2e//yqibuL4v7nJ00kr/TRdzYQuDrARM6tXc+M4bhA93k4oA1R1ntqwDuAz5sXYDf4IH06lLsF+mNmYHfXPfIfPsIgpxySvMWtZuQgBAxNS0gttimYtVObwPc05dgK3i2bqofIw0oYTtgYo1FnvnoUYNyWKbVnXOez26x77s74ifhz+YpYHsYTzIlQYnUJDv1fP2C8twT//Mu//FosGJFpcFi/mCxEf/zNkAQ12nH7d/rTZ6QM73PEVj9RNnX1RbjVf9p+bg/+V8/o0ZaP+s5CWxEm37O1xlvdL/dBnqTVL171zlf//PCVKlyEV380Z8M6Hm3th6GXXHb56q+VcM93LtlojxKMFtyJ0JZ8Gdu5bwNe9uQack/bxUfloenL+WJowHhSiO3PgNmkjYMAW8miaJpRwcYIhqb887uM/lP1i7W0D3jdWSNFL3oBixKNzl64fmYyXxzIhkdmmtBT1ZIqXHgDP78GnLMwpcapxTlb8w/er5a99hv1iL33qgAbK65R5y19xZQ3K6H58C/kFVFdF9y4FGSLpjo1k2vb0+l8FCGuFBlf9oIKdr98KiPvRG+GElQjdy8ecDgkb6px9TqvbT4+oMcdeays/a/pVLkEng87C2N+mvUBFqYjVS4Iqc8Nn3w68AMPrpMzYMPvhfzPr1zxi8w7SNiK7wEYiuKGMx4G+QQL5MC4EnuqBUR16YEfA+hmX54eU+yDyRjURFbbV0F19eKx5hPubbjqS3w4qDNgX3tMpepiHZFQbXSwDg6I4dl58BgHzRD1ap1qEG/dLVYtsNGXJ7/6Kfl7ovYY9hE9t0Unr/4iegvzDKZbfUwhl1g+PZYbI1/muKglefPSsX52NxX5Cg8OWLLVoQt+gWj1qyHoko5gfVN5bLpvdAJfG3dHNRo6EbsHcyjzsXumhy4VwTCU+vTzD7HvmGW1+oU2PGSOjuS1PzrndTlIx7cG0TY3eXcaXpkG+bRpEDtNBzb/8HCtF/jKdaXe7cq2/vP//vTp1hYleLEhxggVmT4dkw8Ca/+B3LiQ6zs+bxuYMm9LT/Zm6OdZdzl4fikcEY6y3S+PwVDkVL1tMbaUAMxobGPQMptQ7ZNvolkjyAGr/0vYWt9YsO5B6+4fitWngRiRpU8tzae6ofbK/0gtecpPn/zetyff8Uj++B8An1007rjR/Fs/84r9fPmQN5Ln9PVZ+2NFPl00UYAdf9yvfIVz2Sl4J/BucgFW9EfRz9+hzSC9DCJ2j3wQTZvmlkmnV5FS/AQ7sKz88uf/o+X3/NY6G/l9q96E/yaxy//0FuRcgHbRI47+9OL/2lOw++89Bf7bupDnRlj6Jey8DBy1h4h1l6nRIn6SDJq5t6OYNJPLhtjmoWmcC6oot6paXtC14WdKZXSvMazoN7iHYMSZgkDLLfp8XpYE3gu3RiBjN5d391wD6zl7YH3AKN81h0KARbkNqJae3H4a/TCQ7U+JqeaY22revoYYJLopkS/OeX2UFrsAVpV71GhRnbNP3Q1AX+qRqnErupPxeENpvDhP6lWqEq37mBtwel1KioAh6dMzu2dgeCdPbBODd6kLjAKWjECKOvlWMVVGKXTkXYK9UNLAorlnBXRMnojgKHfWXlQbglH43rB6NPt8CVQugXdpsJHw9euKTfLOgZvKSKkfbIt+Ct5TICnDIKDNtX5GNL8CDuBcy6j/ciib4fqjpy+XSObHqpbReaRQ0b5nRC6VUvH6ptag6z09sgk/ejSTz2mCmTNN9KCdjjn/0RIiZbUQ4qPkWD0Dl2wC8tfQ8WVL82pkWRzD+JCnaDrgRp8jZwhgvRJe2MQPMI8ujOFhNA1qf85ftrzVpyZZUlDRy9f4MpoPvgdn7hJSrVwq9k3qQwHG2VMRJ5x2fdvlOw7a/mOkR7cywFB1cwPZPePQboJ7nVYli8Hrimush9M9Z4+XzoHcs0YyHEra08vOvMEtCTs0z965p2on2/B8I29ytheV8RW+2dC6vXgyleo5ZxgfEFCJzn7x1387Y0hgMuORcKEOq7qSHQFMo3LGl/p51esu30Do3fYaPVTtMedj+Z7Ayx4YaBpKH0zs+RiAy5087PneqM9uJNiwJmtPaf39fHnUElDGj4zmay717La9plKxJx+qBPPCFr50Goldxxl7w+fdd/GZ42B3IzHFO67KyTTqAkxbfUeK5NlW7PjGBFxTbkLisx8iNlt6ChsY7al7i5RoXkCWQsWMSyLe+Llne3mdlSHoGTWNzbeatoaSwvV5qcsXDzCripPAx2YIccZ/rxUb67MIn7MaIJF/D1VHDHmBrpwe8O355quBbotEXopjRD06LO50e0kevOXdjQyVquS0uSzmZrmeAEWC/mbTL1/1pRnREmyfbBlutIXqO0PYevSlyzZ9nkLXbQ7Ynx4dG+i2jWF2hxL11K7Ip/FZlfKLnUyqDlfmTrzE27DwboB600l35/vmYYPDN9tR5AeSTnfzWl/WeqOdSjV6LmUhwOfkHBGQD7RaBNAL4JUmd8R/crXitaKzoTraA36SZtIpP55DeCoeObabTKhmLFS13D/01cPXW5eaX8WEXv19IdF+lvn8wksKd6rUYzu4rPuyy6YAyeyP1CWDxaaWkxDMnGWi7u0VurSQRg8usqhSG33zfnYbnIKwEE/4KW4ubDrZSQuuBcX0sO1JP8DnSZOt6urRZ1y5+kSAzcF3bb3RtDvtGOO/Ew9fgQGxe+i7aLkdlU5+lnlGj8bQ6VPqz83+mbUAO+LhnS/PIOgg3x0/2Ah6oDMXGCUM74NJjcmM+kV+f2MwyIaMzdtUV4uWHQWQqa1ND1kg6LOcC+Leo+iA7d3tE434wy3waDoHIjaewbbH45FA/Dn7pKPt22WzQ3mgZDmjXhNzYHjvSgQiXJhkqUDLZpO2KeRnbUN++UGY+bblQvoQ6vTcp/ou36MDD2FVUPwMt/rXuFYN4JPNnfpOuWdMEL63X/0gktIX7rDGC/i9b6LZpJr3ybrPksaM2ig/ssVFYBJPGh3IfIzvOrlcyxKKQ6YhIYiMahEF14PRfjMg+tm92YRFtYCftntgh88/YCkcUYMHfD7TJNdIz3iomfBXL7WtnoFO9a+edL5/Bmroeboe7B8DGBxdn2zdHYmYl3QK/DaxQp95e+kn164ecG/FPUZ4X+mjVbAaXJkSruuduIsw7DTILe6TKhI4R5MkfRLwOBl37Ci94m4/3tGB/E5KyDC3ezYE3xuB99vmSp0nvUbUPc4ZdJ64QJtgP1bT7Z200CULRpOjtVXrnWMD3igdsSuhuJ/e7xRCexOMVNe+TzBHTh1CqywOWKGfLJpzNUuBt6QBTtZxcixM7h5sWq+leKdP+sL4nN/d0+uBehtldFldbJz9Y3pn1Eq1vU5pngqwv9vOehVkptNSn2+/+ozt6PbQJ1jKD1Ab9kLdw/6mz/VFy/bRW8qx18QPtvKLFCJ99ImSh67b3w+khKZ+u1LdlyU2P+wulS5jc0Lg3u10+ko0Au3rXGCNYh1s5ZwTYbG1I3qwjB7M99GT4CzfXGxtKahm5/qYQHbNGpK29tCz46sPwPeDLfIROgJG+trb8DN6C77SzVxNwwwnsKk2T+yXh0qfL5Ngw/0r87Fbu7Qiqn9C0D5jD+3L69BPdnGPAURNj4RSksGiDpEpCXmZYLWl22q5XLsSpFIsEUCGD3j5dyeBVcG12Fuq0V3xgIf7PIfY4WChzw/haoKkbSzCml0GvsmJD0H12lGyv/UJY9bHleBN+ByIJEY7t8Mln8L+NDzpxQUgJ5KnGLDqDgGaSKCvd9176/i8K6OmJdTRr77Cq4rCdV5z1i+H14mXvx/fQsvsuj0rntYETSQZ2J1a3E9JlHn7cbucsUukazUgubPBigfYP7qVPre3xAP3gweoq8t8NJmihaDkxVvq0Pats1tl23CblB4+Jg4XDZrw5GF5jz84hM+mpyv+Q0VdEHV0NweT6KYZUDVkEDamLOodkkswM9GNgK1fRIu+dwkIuC6jnuB3Vc89ygmMXfJFQn8c9DEWQyjND+FM7ejG6ePupg9yMJwv+Be/8zBIKTxeY0wRnTZuu01OHXQgxDR0sVQx020eYHrVHdprXKwPocYp8IHYlXS6C0A3Oo8M3C6mTe1RKPNZOVopnPiFp8YlNvRpDIQBKuNbJtyX31XLtjBTkLnfHZn3sxkJ3eYlwvfhTgmPO7Of6LZNAG0Vl7x4PeiXu+Xd4EYSBATGSgNMlc0UxreAUrVU3FUzfBUAIX0Qttv3/e97y0VuzojnnvmvnkuQr4mHrXk3RNOPnwZ2aFK/VjvG9vL+AbFx1OlDv1U684x0ApGSI8T6W98PLbcgKH9lh7rOwPXLXgMSHGRTJtJcD2yujb0N1vpDlaEcARGGjQbc3tIITMkV8DbVHOA5nw2RitjJl50xmfL1sDTU/e7f0Wz89tRFno+2K/4saZPbYMSpgiOffl12iVsH9kdOobg+7MAymnsOKq1d4mund+7Kfx5Q58CT7E4RYuPHU234fJURtVJ5iFjFpRPMTO+GL1Ar8/aOCwi7PnEQUeFGX4Kgd6CCLIWqz+MUzc/PEACUgMtfvSP5hk+BcbwZND9W+4qaw1DA7M5JaOb1qWJJs89g7qIGm5qN+i/L4gS+lzHHJmfV1ajN5xv86O4JLUexYjMW+hqu35/+fs9K6ywCS3gniAlT049rvv/pjR8fXtb/D7uraqEtgUYkGKwyoUe9A3WOj7Jf4rPAwWUNVnNhx56BbIOgpsQ76jyaOOrEas9B6bK8sDkeGCNXpk9yxzYTNZ6bLfu8Em0AjLGIkL0dVgwc1AJGl+CNfSMtekbzlP/lK5H477X/rusDTeFYkI28ZNHKhx2wk2oNJ0wF+dg8whRKnL2lqr8fAV3fD8ad9Eagarhq+TR2BzN2s4m48gvmHucUGvfXmYjLLunbbF8b8Id/h0wzoj9+onHPLzV3vAzm7XSygfvJt1hlwQjIR7xKkrjVW4pESQHTg9uIcBOw8x9f3rrBemLVjQccP+faXfKxtyEQeB+7G3Wnk9GcIcj35yvV7gZxp64bFsg9Hxe0Cbdnlx8MZEDfVbeI5u2uah/cRgLngu3I3hgcfYwblcjRU9fRkttmPjtnKYFKzKXUycjbHX96Cm0rH/tegNl21Ud7wWg3WB1cNd/dKsUBoYx1rDbMB7vYD2y46he0vbjHaNaengegeHTQViyP/ba89Zp4t0Ub6wWIoj+890+aiT37c8tZ0syZ3Gw2Junvt3feC5IvAWnmdRrZ0Kz4ZMcPUFI0HftZ/u5nnTNNyMvn+a9ezaVzWqAh3jlsnIOesa5fCNzLZEN/fJF9zrIEPidmYQeKHza4e6GB2l5B9DEHVT5IO02ShYbTsCWVD5ftqddCPd5x1CvSSz77dy2WP9l6bncWhZydh0wD6qMQKN60BZvI/ZPATg2/1PFtRefboeXgVTtc6e95hyUkJvAOTk296ckDJtSB9xcvLpH21dz7UylHbzHH2lHUwXQyFgRVNxl++sEl7SXi4VvIWhK5TM35Ke5CIMPApz98ngG3d/70irkJjv/ypeeriGhkHA2dnxpQgHLY1WTxNDlq5sdFga+4D1Y+j/rf94Ir/1356xVs79/2AZeP1mEUS7ueHnGmwUfyErEvbXR9jf8MTFfBxat+6zvU3jUYd+Ibn6LtOZrX+gFk9xJjbNzGfkHtXYGn4pbjY4wEQE6uU8CtgY+Edw9nwGwGS3ApnQav39OdM/5LIDlumz98HozHyIHy4RMiZ/mhYnpCCahgFhH+842ipccbBbT7tYcwHiK2+jcOeNMqQDwTXz3LuMcDnqlEqZcWrTslCdfCGx1H7OuM9uT8dB1Ibs4XwVVPTT9/4gzinF61qYwWYsgTHHXujA9h2rAeLpMngx2NqQU1LVr9nAQ6np5gtSKqPv74GsrqGivw20czs3VTto6XjoivD6/PcSTe4C8f/vwAbWEZbMeupTauCaBZQCdobsMrNouWMZY9bw1Y1OpOza9f9+wNb42kNqczXvEoZ8MhVqCZtBV5HWPZHeK9KEHa7kNqLzuhp/JpseH7Mi3YcA9nRiIW1PJNvt0wXh7PaLlYp3BfyzSgiqPZ/VLQrJTKolzoYTh8K5q37QLVbPsdBV1/sdWvWYAXNAFWzNTVv3E03eBY1u5PP+vzHcxE/ioCQ5x+013+vesQ8HdphnOOvfMp3JwKyMTz50//TXAuQ7CpzHTFB60XghjXoJbHgCp52LsdshIOCmQoaBzcj/kUaoIC+TvP49cYN9GY8d8B3CthRjJv2xE1bUeT+G9Q4J9eGz4ntwSr3sEG7pp+ou7DgMPlPVGda89saoxQgsYJVdRc9cNOVxYNbp6iT8+LetIFuJNqmNql9KcfVr6cwNN5L2BbvOeAaNmRh6lvIWzaX0v/OuclhhuP6NT2Q4MR2+qXHz8mi2Oee7a/sQyeW+dEpF0RR939vA/BefdFSGAQVTuDrPfuJWgkgEj7fjDGcIHxLaQY3Y9vMCp1LUCb7TQyG1HLBisaCNwmhUc97nBls6N/Deg0pog9+9pVkz/NJXAvokgmM+3d1b8LQS5rDT2KSNE7Sc4RFC0GsXWfCGDZM67hpxAVehpjM5+uWen9/ENqfPJXxfwq7OA2FDbUM+8aWDxYPmAClhPZqO+lmq7TUwIrvv3pByqBbQhz12sIJwltPuscMkGbX97UJ6Xu7i4HEIO9jRe0D0PsTlurFsDqf6z+2DYfomkgUH1Rldoq92X9JfVq+ApMiPb87cRYObcO/PYsJ/PRdPP3URBTeX1+tCfC0C+SHCFo5d1IgOdpgOh7fZB/+mLEZ5h3lNrKn//mY6urhlwTE7jG67rnrHcn7eARmPCSRG1zHvIesc+wb0C6YH1xt2zwTBrAsDkPv3xa+Q/MYGyUJzS3Lx1MZIgduPJd6g3bXbQk3l788TXsXb++O90XKwA/Pj3eLmM0FNuFh7/6YmfikVE8uSHcSLxAHGsaqrk1iwJ+UA1x2iaPP70kc1X1pf7+eOtZrOEFRJfwTU37+3EnK1ACQAE6o81Q7sC4N6689Hvfo6xq/fa7A+3Pj8KWfN27cxgYIpzdzsWHchTcBSXuAtfvQ+D6vHvtaXjwW1USxuo7rOgS8Yp8PhY5Xv2hag7qMAbXc1RR235q0XwWHhO8yY8bXvE0IsXCcbBBrkl+z79wy4mD05V3cfa645yGoTjBPOlCrGqXl7to1lT/9CJ1rm/FFYixnWDHjBVvk5kt32UO4Zr/1LmyE/j5i+BsQAvfhPwWTZ75Cf/8A9vY1uwtyMcF/OKFS+utPv3wEUvVBSN51PMpeuQ3+BivmK58Lp+Sd3+DmHg1tfDl487Dw2+gtFEhNvaD2E83Xr/BHfLv+Ih9LVos30v/9JjxnGudCh++gy9PnGkgL1O+dJuvBFf8JhKnemzxj7kN0upZ0R+/GiswiPvRLr/UtqRTTs+ZssBM7ezVT8jAUl7aFviuvkVboXkxEl6AA4nNPYmQyy/AHkgi8IeHfnnQdX7NR7gLyhfFKx9c8Wn1T7MD1i/VE7C+CQ3ZR6OGFX4zMmosvgO8NCFkmrw+/xpWFoOzwVnY0MIoWvT00EKV1wx8/HjYZb2VIig7D596z4vGRlOdBzCN4Ib242itsyleELwk544EwxAignSphJdtMlF3nPlqOWCl/sUXdkYJ50s3yQbcZ+WWKvN5yufrZzZkH0BCVVc2dX70wxCI/uKh7VFhPbXjpYOoO7yofXZ4dzts3O7v72PbdPWd+bWNnx+En+qlAFN9ZAXc4o6nTq/HEaN5IMjqFZbYq/DizlxLi58+w0iUCsZ4FKXA9e4etkJUulMla7zsGgPBVm9r7lT7T046Zjihx8vh1M/o8hogqYBNLXf8VqQKbeWHJ+S7fSdsep2CBEjptyX7WFnv1fOHBZ42ZkDdRNmvfCtUwNO6zajqoqZnv34OSL0Lvt7uB50cwre2X/1mxMJJjsbtq05gmGl7JA4Au0vCHRRpd/wesX2VhX4chiWDQmD0hPuIlC3hhdmw9UaKVawt7K++rf796v+CfrmqYgt5p+uotuq/Sar3LZi9KsSHPmzAtPYjfv0a7DTBOitcyggAffrCcSlMYIpGJZS0ZnSp/alAtfjHdVYafQXks/KlHf8VBQgPDx37B3rJd88udcCvv6BJc1AtxgGmYNWT2KKg7hnnXUtpLBuXOrJ57Zfvsg/g6QwEjJfA79fn6379JuyCy7Vimhl26xnaPbGcRfj1pyCQSfVAm4YogO8+Sgwy/oypdnm0YPWDHOC69YGqosD04XVKE0hDHaDO4h5575BIks/CZOGo7+R83nVTCX5+/vOluO5OEF43eCH3dI23Xp/hnZngF6+a4RD9m1PVgH471Vgd4yYfeiZy8KE9PtQ4By5jaS17wDQuBUVwmXQGsh36+fHkp79H0gkITuJNpU7aeewbOUMIzvXdwHFqNWCh1NZ+fIjm7rXQ/+pLGLkltXL+4y7MfDvgt95r/wPQsT5LQPQnD8f7R8OYZwQT9O+JSG0p0vJpfmWSFEgbHx+64wss+UOIYR++G+pZ/L6aPF0TgEVHDqv7ucnZJG8cwNkfhcyubLo/vwb6iGoIPm6076Pt04Ts0BZoRvzLpYh9CDRtZUSyU+7BxF3FFP76T7//Ny1wiqFL+2TVe4dqSKIQyTJeZ40vVsvmhRN4eNxxByJ2GysSnMNnvRqm9bHFGAMDnMtAftThhypKt416df+CkMuZg/XraQtaujcmKL52jz9/cQeyjQco2k3YPS8f8Md30fblU/SGbTRwVzGDv++51nOXIk40IBAEH5tn86N/a8EIYPGCRwQOe+gySQx4+afPVj4Glut6T5o4PWPsoPXeiXHfKxCRfou1L30yOrXHG7xs4wkf866M5i6RG+jttj2p9VyMRvqaHfj1wgf5iE3Skx+fQYkS0LvWdT0r8iqG/REqWO2bKfqSs13IXcEaJAy79V5CIdB+/V3q30Ol+tXPn19MmA2b/q+/C+/ohfXRUaupfL1TaBwfBj1iv8zZW5xsefUH1nslZn2ZHxcN3qIUEE7QD6Cxk6CBiyfb+KnvYDUW0/T44yNG7kU52+aGBh/6haz9vmO/9dRa+vsevtY5/U5PPgSu/jyBCvX1n38LQrGlVKP3bT/jQ7rOsp5e2NG0hA3eOTZ//i4RrvtvPxm2GAJ35rJV32wZSYIk+X97CsT/3lPgqGqB+Nv8zZetnDWApEKKmH0z3bmFKAazX3ZUTWMhHxLfUaBxkkVqlfhRTVh5BXL2kAQyP6Igmr7VqYHiOF6wc2VcNOflV4K+X/aobYfU5blgSuT35aJj5cD5rmAIBwEG+1qgFlQP+fJUXp6so8anh/ACdLKrn+n+1Ycikbph7psXTiGg8BBRpx53PfXnoZPUnXdGov789LN2UQaYDUwhciRuq1l4KxMo6+Wz7oMc9Pa1eyMwHOQO22+07ankCAagWfqg1vagRPz7PtgQeE8b24lwBVPefUsgueqMuORM3W/jH2xw2BxLJNznZz7l5WjCD2+NZFnnpU/mOyXQ2PY8kYx76DLclgm8f6ID4UWjdkfR8xvgpMKVOsTh9SWw9jaMP9OOWjlzo+WF13nkaVpjKxS9nM6XoIQi3kA0De5LnybbSqEjfWVqy6rmCvEbNPAzORF2ODV1aWHxIbSg98CnKgB6eys1G9afxcCuYJ7ZLLKpkL3tR0eLUtT58qLr3d+XDBPpcaoj9rmdHvB6vtr08u3P0fThWQDhXXzS8Hin7hiRxIGmdXCpv31f2NPfv0w40RlT83DX8rEQDQ7O34DDOrMf1UyuDgezpWGrxyat81oGA8jnfOVcyqCPu7iG0Ns1Dgpmu2cjTQtFZouJyHQREjZ94i8PUbkQbIP6nc9fUGXwBZwjNW1ggMn/bjV43jgUcclWYazAIoHn7eGEH5tyk79rWUrBb72MBh3ADh5FBHnWxtgVmk/f3pzU2O2c2w2raZxEsz3YPPS244LtMqjBVKHTA+bKTUbScxHzWUevGEjFsKVeRZVoyZZdAOqRvDHaHZqoy7QJyafjw6LW4Z737NjfQvjWixSbKR9Xi3WjBNDgoqDt3lAYa+qJB+rnbFBvexjYDE9MgcdjIVJlcFV3Vul5gM/JPFPdyRV9dz7HNZzYG5DZ2FAwoxSY0E3zFKPh+Frz8RvAr17JRAT1OyIMXTP4OGgFRvf5zUYVfxC81KFOdbGiPXsfxgC+n9eMmsoG5j1pF7RR85tK868rMPplbQP3O+OCyiQpowkX0gDDZB9gr6QQTEeds+EniwusK8W9Wt5jlEIt5L5Ub8Y56k4XskBP0wXCdUMNlpDIItgFKbdqbLfqxv3VgydmvqkmGU5Okts+gOnuO1KX2Qd3TqPFgYqjdKQbvoW+gKVGMHb0G7ab8c7mxvcdaab+E6f606pm1yEhaBT5hdVsO67nSJdJftgbiaLn0vdf7aIQIE21iR36hfkyZIcWiOrGwM6LmmCImtaGw1O6UuRLL7bAzhOkyL4n1Hmc6pyg2RBhVo4lxfyhykc3LNdzM8TAOExfOv3EdwXc6HKnln+tdSKrNw2Kct3SNR/dES7eAyQFEcg3EBt9CQUpkdRnnqNCNCa21KOQrJ6QTY3zto6YQpcQXsyixbjEb3fKoiwD3TD5OIWvKWI3DQkQLwbGbu/dqiZ82gHw82y73t1UukTgAQKs9gysILBjDNlMgOIFvPGvfi/3b6jJLrnsCX2cAjbrjwcH5XeYkorZXLUet7d/f486sMRgnjf1BD3PitEk1lo1t9CMf/WJ7BtS6xSLFyhnCf+kQbj33AUeQQbXeCfc2J37eVN0E7Cr3ZZaNemqWeCFFNgXbqHm7j331DjvPen3PsHgqrog6crq+QwVSUB1YL/6t49PQkKdWIj6uXo0Asx5e4/tqS0qdnPcAB5epyvF0e4YzR+v9KAN1n2VWGrzVrVmBL3tW6dP6hju9giiEuaPs4mkhtyj9zc/cbBRNi/q7N4G6wX/YMAwEBRUtp5S8RW63kBGJos6DZFzZghaBwnfDIjNVgoWToQ1mE7ApP41avp5SRgHsVdJq4Z/ROy1iQVYs6+F9dbbg9nWFw5m3bwnW3p86LPoHRpI7I1FrZ1p6jNSVQ1+oxyhS+d+dIaCKZQSX9lj5AKrZ50kCNC63SH2rvwdMO8q1TDD+pvw6Or3U8YUCR5lj8cmqN5gmGycSut0QmxtD0U+zNZwg7dtHVAv2DGdXYyzAOxxqqmHMyFfmkF8QBzHPNVuy7YnonHg4NKRM/bDy6ui+/wqAjeMbayFKdFZaOEJhEtfo932UESzE/mdNL2WCz4GaRzRi3HnwUu/b6g5fVS93bRdBjvuPVM0HNVKGPcnD2oH84nVU3qKlqAwHRD0w/CXr1NrIAWm/dRRY9fcwUgmWYML96VIeI8fNtu1lwJ1h86o1jeNO0NJEcH+UJzQLGsqo/KrC6CgQIIfW3OI5s4RbJCn6Rvn+zqNlqbmFWjF1ze2WFtVY4yMAcQ69LB+uhzceX5GMfy9r+rlZi/svHcMv9EVoc1i82w4n78Z2PHmOovkMzFinGH2yxeslqe6+r7PQwElsb3j7Jy8o7lYKTfILiGZT+mcv+X5W4LKXuddP1ipL+8xz0A2zAq1RH12+0fANSDk257G1r3tiV0fvV99xBqz39F8regiKay3qTK1kr7c1Y8BCex1wpeTnvOPk57K+eIuiCsnmH9TdztAeNpKSLicPXfuwqUG88618THcFW5n3CceREUQEK6cbtHI+3MLtrN1J8V5B9lcb7ccdDkjJ/NG//Tl42jXMEuEJ9nT4ymaZtyKcHE2DPt9X+p0uoAHbHOpoQ7Kiqj1T60CEm2TEzmPvYgJ/KTJ4+gxrE5HVK31L4DMfHwJ8K6MvXd8dIOZqoz4EF5yfbmFjgjf7k2hp5Oou63nmIUcsO6MnVhg/QIXNYC+fvepurM2bn8/FjFQ9eJKT7HAGKtH5vzwHRuiYeg02OxvkEIrQiV/CPI5qScJVlqhUe0gF2CSXEcEP370428k2aIAKJS/IdD4ps63nnMD3lV+kHL67qvJQGoNt9ZtQw8fVFbv1JUJKKrpRLVrHLmTFfMiPH98i9qHhwqm5cFqyMzbF713h6Zi5h0/QGbDM9n6UulOucbV8Mc/bBvWEeMmyAHvSxRs7cxGXxpf5cCK56RVC7+ijLuHUMa394rnCZs5hQ/A+5o4aPMhYz5eYMeB+zf00J5+dZdPoYvg6Z6/iPz1kojtjJGAH7/lv57QE3I0JbjjDYl6Uer0/I8fJ6EwUPx1HXdK3k8NBr58omoV5DrLck2D+y/ysV7Ropqx/QzBur7Yn9p1z0d3JFBr5ph6aqEAwRB8AXA3QLD7HuN8OZxPD7g/XWPqSkanz2hvFNA8miFVn0taTY2ctXA7hjP21KIAC6fsDeiZioExqN7VnBy0DCbdElP16x+r+X0vIFzjjepHQNa77cIMRkG2IeuODUBWfgrxENyoUQanas6lnAOvF87QFKRxP/UdFcCKJwge5D0jP75+3Dp3xCnPWWeHwz2F1yoK0eBCxubtuydAdZsJiW/yyam2MTgoNEtB7cVqAVn1DFzrOfXs24HtHinTfvyY7OOk7adVL0H1lFZY0RQRkOnCdX96Y2pQWDUrfsNiV0PsWlwTrfzIk/n35NBor6vRuOa3VJasIJDTLtUfnxqPxY7woA7dOR6B94snIj8WAtj5flVg/NwhJBrcpNP3/RLD9gAPOF7x5K++CwNVkdygQz95oQah8BB2aLfWy3mNJ7i9JAGBncuq5fbluT880Zvx9KeXpFx5yNhYPp+IeC8JAVvRHaqB9yNnaFYJjNXNAWutV1SdkrqpxCbLopot3/Mff4SwIiHhjzeNCf8AAAD//yydy7KyOhCFH4iBIEqaITeRexAQdSZsRFFEgSTA05+K/xlTUBCS7rW+zkUOxhzqqSvwrUzWiIaHIoBPka35eGzN9l2WX1RKbUy1LhzQdDGrHJmPxMNRtraR+NPLxyKzqO8Uq34Mt7T6Fx8cXeP7PJ0cAr3dXMmZdXW/fPwrgVMX/v36Uz+vYjJAfNroOHZL3IjJvmwRu7MTxtcUerp/doA+k/PBbkssX+T5F6StL0ZM0wUeP1WACj5rogh3F8lmdCI/f4017c6a5YKKEqwLqvHulij+Ty9C/aZ9tNa01zJd/OsMuy3WKb9uznsrGWB3Ty94j68uX4d5W6PjoTjy82ovy5Dm7wQaxT9jl8fnudIDD7DitDTKcsnkei5HN2Yd8d/oedy/ZDFyL2eXnnx4F3Oo17NaWoaH7XLuENOc0gFXtXfUdErbnNagiLAI+xW11rsPWrCWlcrxHrfUDi7vdNlDYUBtmZT08ckx189RyBW5DRgR/qYdmswqFwBbt+afHpzGbXlG/RD8YU/eLea8kx6KatTigqOdsOV+YUpQtOdz9M+LiMgsGwHcJ7snK6mVi7mq569yb4I79anHlml3zL4g1zHGrnZ7NsMaBA3Vx82eFn7pLNJ0KzK0JsShenqR/fFOx+dPL9N/+jurHAad/FVo+IgPhQiHdQTZe5ax/gk/PWmExIPY0RgO+XgaLksvIiJ0HhH6vijaVUwIvIMqx5Zo02VksdMh6yjY2LwdlJ6NnzuoNMn2OLgzu2AmkQDQN2qoezyufDJeHsOPL+BAeHyKycBWgmxsLBE8KCzd45TOkCivIBr73vBnA+s2NHk20r1g9OY0r3QRyee8Jd2dpf4wePkZmUbTkcdeaPv5682CquLqRWRxV6KZb6gDu8+RYQM1c89uGm2BpUoY9beD7ov6rU+QdQSbXg8bYxGHWc9UZfP9w+E7LE32p7NB5TyIHL/Dy2QrLXtAJn10HJzTz0I5P0BKqG2wI7eTOUt/T1vtik1LLQ/15vSItgF6npQFWztBS9eeH2lIJume7uDRpL1Tuk9o7D++jv9RNlPc7Wb46aWjoPdNF3xvoKjI9vh16FmWWxlM9+BNPR9lBVty2YNd+C6pfcwTfzkNzQC3Li0IuohW8xV3swbb3eOAfa22TGbIxwx8fraRfcxnf3o/ywS1rrmhuyYm6TshyoCSYTSIVIhyszTr6wOqehY5H7AL9np1Ldibz4GazHmky89fj5JXYq/re7Qk7TqBJFq9cRBsBdQHh7UD70fiYls1SDFHMapQSwiie3EHiGmd16HbI/BpWGQBX4d5/sJjGDCt3pFRMOETZmg9jDp+UtdCbLMsA2wO4pHqqqGjkfs7JepGjB0HrHTeFkcb2G0rYIO9QzRHzkqDnu/L4MA9TicAFEDrv6fcg8L9HnW1m9XLPL8rhq9rNHuGmimha3JWt/fkRZQ3qdFCXJ9ASg4OjgJFKOhXWYvQa5X3z7/PWmwD+htxS3EfYDTc2KRAFxklNV+R60+H/eEK+/w88Odpy3zKDgo6ldk1Ul6hm4rH4+eszJ66ULuaDLQEhvNAhVFa+Mb1OBUungL78gZEXD3adGaObqg83v703MK26SOG/MsyfPQLPudxMAEhwVfJvLZzny15FsABeUA1XX8U48/P5fDeYPu4NpEsD3EHNqMf6sWbVTH2XhFAeZQJ2fqFmy7Dlgnw45U/PbG0Oy//9Seq7273huu5FnXqu8A23krp21mWDgK1v1JrZYg9I9rWgz66GdQV28iXreMUoOefnEXS4N7R4vSrCH2V7kRYE98R/elZHt+pG12u/pJG91gt0afGO8kOGub6SgttTUzu3x/9wvO7+hrTJ5GU5uMPnWUbkLimTWSr2vmMjx/I0OtB5sMGijEblwDU0zmitzr2TZa8fRvOf0pN3ZY8/Um5qjnEL+ZTIzlHvP1WDqotnWKnmh/pTJ0eADQjx7aDnssHGXUOT8/4RO8i3fYvNL+vsDeeOq2+QWpOaKbn3//GMf8+zpM3MKXZH8V4K5lktleKgsvCp+7qkSxTV4Dy45WkHr+fdBmnSwvifQEcbk2l+IqqWkP9Hnvq/yVv88P9H2z9aqZ7v5T62UVx/s8vyRtzMt/gsgiCA9pT85pRxMJDranzYx6xy/Ui55uARNvsIlaIvj/sy20O4nGzjVRD8xFqSG6h7ekk4b0P+4IFc3ZWPd8Woq2H5GaebXmD3Hec0pzzZLLYJcCGkgpj6j19wnmXesDNieRdf+4pfPWvupucL+a8FBHeX8H+LnvsqnpRLDXznH/50/hL3gUjF9sBzTO+ZLH/+mWiztsDd/Fzqi3u1BOzShnKuynEV1v4NDNmHwES3whJretGQdXptFF+evPE+fTEeSo8IkHEVrqREO1Ev4aXZFXU5/6MeF+ooZ6+BXUV02t+/1d1b7cL/vGD2RTGAGXjeCbf63JHxMC6pXJeg52DbKbv1B5EVBq6SVPBOKFJDKcvwEFWoq3YRuaUktxBuoQjarDPhb9/wX7vQ53btFnGWd5dURKpbz4eb8VsYNeCy1/Gfjx/IcdX3CE0OwHG1l/Vz4udCUq9bU2qs4+WrtO8VlTux2nU+WH6ZVrQgvAkHf7pQa4PS7h1hwIHq/uK84RHAvnmW2Ety51l8Ipd/Ms/WJPs2lzC7ceC+zE//fyqz3bjxkbc3/6LB8S2pC9or5mfzXarzEn4GB6ExVkifaT4KTu8iQHnfv5SW2pPfNJyaW2q6zrBHq+HjKfsaP34LE2N1adgP325vccvogwuSVma0xhVZ8mnOx4vZgctCQSWoRKeTwtFzj4zhH1iUx0MIWWXYsuA+x1sPGiDxp8emoqrSD3+vPkVDgr86jGqU678WUH+E3yjkrFpCU0z3pxOBD4+IhZeG8ROA6vV8iRK0U//kGjrZoieixO191XnL/FqKoHzHfrT++wdjGe0h6j6P3+erKOIuD+M/i5p2wznsiRgeq8VtRp6QYTG9Rmm90GOZK2O0XQcz/E///eHntPyKifxiZ7bV0fmvdA23zkSc5jS/C+aBv9aTHa2HbYyuAciPkPNl0FHM4RpXhG4ivd0qrFs/fR1tBJ3ZiqzTaCAvLZ1avfDHQ3htC3hnp5iGriImGN9QjWsvMcV73Xt0U9LfjBU3t74p78nxndAFkM1xlUu1Wg5HssnyoV2RTkPXJalbSIUHo4nsjmn62aptlYF5je7//te+XY+W0reLSH11UfQdNKrVRRen8O7bP32l+TkdPDzf7pZv4tF2GzPcHzjPQ6d8ubP+qmu0OMqydH0OFjNN5eihFeQdpwHCw27rz5fpFmWG63Oolgsq7ipQXsxgWou3NPxWZkbWGkVECmXdJ9mx9UDHVW3i+bR9dPRtJ+KujwjC+83zQOxA/2WStUNJT1cpRCJy/rVwc0qGXXN1dyQlCQAxDRaMoVX1R95PAV6vVaYx49+xk5mIe53qC++7gtzzbUDgiNk/P6kmd2lUKB19Q0NZDtpyCt8KjBvnjfuN/Y/f+P84+UVr98NwzdQYM42DT1cj6XJGPtL4GZVjPo1+/RT3IUzuvfxBuvk2/pD+TA84H4Qp5sGN9OPh3PeQIOtefd5fgf007ucb/QT53tovJwdGnfhsPx4KryO/CyOZ1j70+5YdsoFly12PsHnn3775WNsSrvQn3WaPFRJryvCdN1Ief01R+Vhk/1rjwkZXQac19DI+tsVsyyeY5B2tw32524phm5IFdCRS3F4ys/mIqpzBtpJESOwqkMzW4IRw31fhth8klP6kbMB/vEp65bUy7TpwULZa2HRmvfv6bh7ZZAmVxtH8DBNaSGthuZkW2LXBd1nCT4YILcRI0xso5TuwssapFd0pdhS42KqdJyBeJ8AG6t7i37+BeHZxtG+HZ89O5fZoN6SXCHS1H396U5f7Y+XR8DrtQvX90gWvDPWrRVGX7H1S9h9Tozzqsac/wMAAP//pF3JtqowFv0gBwICCUOkbxMERJwBdqCINAmQr6/FfTWsWQ3fuurTkOwuJznbfFaM37r8G58ZSXiUC3nw0DPNOkCjp7eDHIYXmm/7vcu3unCQ7HoP+/tXO0zLJROVVGl/+DgOgU/+8sItnybkzCvJenhfCjigm4attduqlb93C9gyvmD1yp/0LU9I4b667KiTJ9mwtm+owj9+0RdbZP/0Hn+7PmlYz42+tqZZw3XuDvh6Pu91UpQmUvhb+aRHYLKyO9mHGihms9XgHx3/0CWyBf74Vj0fIJgtRVuhkIsZDYqUDqQfjAKMr2lHzVSw/ZkTNAJbbrih9iw0bM5CT5MbznL+9g99/mx+Mhnfi3jj4/NAhffB+/9qCqT/XVMQHB4cqcRoP7AHRwxgEyNEigF7ML9P1w5CDl2pvsR6ydahciQt/O2pa3RWwz1VrEIP2WfqD77AFoPaIvhcvgLqzq3UMGGZ7iD71hMSOXws+ZdSFjDdjw02VPs0HLKyEeC6fhuy9pGX0MOsdkpvHVJqLBsH/JxvCmMrMwl/E81kFbbO9H2nGX//LufEVjopuFgYO2vsgfV8v+RwygyNcJ7QJov/zWKQtBlPzfMuH5YJAANYKXlg//fds16dDj28RlJA5l1d6MsuKd/QCxwfZ5fs6M+wmHv5mAADQRJiQIbyPoPYljXs3HPRp7V9a0HK71S0dmOSsIGFq5Sv94VAYU/KhX67FHjcxSMgu8blUrmztdX9XMlSXX/J+uGuT2gH0o36HSU6JYFpwKYgHXXoTRvm+3SpoXE/PEhvz2szz4qfwst579AgHoWStfdZBRxQfhhlR1ZSL4Op5AdOg1OMzWaelKMAnzZk+HqYg4Yhwc9hONEOCZzjg5WECQdP/rKjqtadk7kO2h7ekuFKj6fT2V+/9lGFRttL1OqcD3jb4HRX9OOup94vBWzaq59OegzGmSLnJpRzdyo9EB/7FhsxfAy/20GzFLj2FZLz+lDORL+Of/MJ+31i6nR//lmAX/GdsOPh4pPe9p7QOX0mMguVyj524jzhLXJi7N6D37BU+jOGQfHJqPE8euWSXx8CYN3hgh1r8RNm37QeLm9nxsXTvesD+Xgc+PR0JkoZW6XwS7oeONps4jziSn8BSWyAz17TqCVdIVtj/wvh4JQ/bOT2bWBZOQjQvi4ALec+LdfCsxzwPE4Xar9CLdnq9Bz4/vQpNsmpbyjLCYIfZ0VEed7e5ai8nDusysMXoVwADfvEeQ5N/XXBXgCigejieocKhxYifDPb/70O/hvoSf1Fz+tlLqe7v2U+5m2hJuDthh/5JoJS+raIso/FcoXmhODOzgZsqqmWzC7cz/CVHn6kJ9dn+ePRp4XmrHU4sMa57MdX28IQzHd67NTZn1/WnYOF+dXRiVMzfXGDFe3XvVVSZzD0hH1NOYaoCCQcfuOgHCOyS0EFqgIbb+aARXlIIzyksKHbyUe2/hyagrk1a6pHYQzGz2eS4S22KyKRDwEr36Yt5C7Jihbxek5GNOUqjObbnbp8qrM/fIGryO2Jknti8hvRz4IIyTlK1iZNltQ/yTD0PgSr/AwaKhrVDu4dScX3s/tq2Ecq3sA4GxAH/b5LVtcfKtj/9og6KfmCJbnMmnxyBQ4HHy32lygJVZCLY4ijQ7o2o4b7GVZ5+qR2x7n60v/8Hpw17k6PQnUHi5lOGXhe65nqbYOSbfwEmUhfCYF2vQzEy30DzGnzIY0S/5IxD3oPnn+3B1XD+TdMbiAj8E3GmAjqt03m5fTo5NZLG+q9ayVZe7TfuuC9PlTLE6IzoflpUOZaARv2OQezhxwIJRDauIK/O5vIK6oVhZ8JRUsdMFLouxRqQueSnVKvgGp55kly5pQ4rKVJX94H05LvhuBiY/p8y1E6LoWyxG9GAzk8syWwGhnaw0VEwFeacqSXzw7AEL4JLPZauQzKQ5ZuLAqweRM/ycR/mxQyL4dETInNyJl2T4WMtKT4vt2df7vAGhrSzKjbdfmwJqf9CpJ7U1J11V/NzFG1gHGXfAl7cNdy9t1LBfmH2WD3dVwY2/AMOOi2oqX8es2cSIsHIvVhUSO3lYZc+UWAgyHWaADmr5kEa4bwfIxf1A2Zkcy3rz0CkdsnGA+P0u/l62EHhyjU6Vm7+GA28RjL7a26YVtpw2EZ9e8KD51xo1EQxM2S+0kOv5pzJnMV5M0sHaVCusjdnoY/rAHee1l3aH+FBUGFNOWMi9qABRAO1OWZUC5CyhfQf0Q3apDbVV+TSrJgPNvHDV+UYUnXygKq9zrTQNijZIaF2IHLbX0R3rVUxl6dvYOfUnSoaUyvhp3PqQaP6+WBOOkTlvOMlwzynvZAc10TfQoT/QkPnXUjkluY/krHXwHF5R5g3WkDf1GL1YNKcSiwP7wzfT66BYSa7EfUvNS0WQsPeaALHyFaxist19Mh6WGqhwladrQH04HzIMhepxOuir2WcCEf9OCwHI4IZNc1mXnQqTC2RQ37vfrQ1ysvCUArRx4jxHzGpsO8QhxrA9UTjpW0fiYZLO+7hQbX0k+Ec9avgO/u8lYD80rYlxkx6PUsxJr9+pWr/oAjnN9e/jf+jNNwv4LnMlGM5HRI6E3m8n/4t1f4DMxxMbwh+rwKwqaFZxSdryrc7ZsfdsmHsOXu33PwufExPs/fZ/kTJuDIKfFarJlKnKy6tduBzDVibKRFM6znXz7CrbXQpmde5YIfgwcuqmzQsIIZWxfpqEIcqwPajyeJLTIXbDVpAGLDE6xkCcdjpFQ/8YYL/mszerjva7B7OAZ5dWqkk6MZdZC0jz023BgnM9dnItz4kQb6wfHZ8HFTsAzQpcVu/QyL0rpPMOP7E4f358TGbu5Gmb6bkBqBfWhY3GTwDw9oVvhuecARfcLdk2gYXT5euZzWogXtJTxi4zqkw3rXSg043PTFfqwm+qI6BgJl9KR/fJtQTzjK4O1RlQCYFYz5TQkBIUlOdrvJa+ipcyroWqc3tfNSZ+x0ww74/XYCtkzxkLAimYkimJecosunL9kwnDw4NJmCj3t0K4dvoFnK7mhirJvmrpl45zzLBf8psbbcF0D6pxPJ+deJNr253e0sX6M/PqLx/dc0Q9V2jtLVvokNQ5r9hWSPAARdH/x7/fy+WjFQ6p7b5jtulkPorICbvCO2eFVpJsmSq3/zQR0/NzDXAelAqXcnUr/Mcdj0Wi1nK4/IG+NPs+FtBnAe2VhPzioTMn7OwO1FMLqYY8fYHl8j+LwdD0iqPx3otvUC7wbn0sB0rsn4h3ey0d6pf349B/qxHwbgy7ZC4+y1CeUubgGvt9ygmmTmw2KoJ0O5crpFw95Ohzlmrwx+xLlFz247J7GcHj1oJFfHjlrybOLVnwcrv9JoOm/9wXrfEICNHgVqfI1jgwMjBLPr7UCexOUAS16rp/RSe6TGo+vZUq4PCzYawIizbra/0OqrQW5yjtQN7b3PjkOw3eVW2bQoHuHQbuMDw8odqFZQgS2v97mH8quCGCkua4hg1gjaMhzwdSkO/vpwegFKTHtRdAVPf/2U5QqoIjfYBr+Lv0gPEcHtHm1qrBeT8RNg1t94UrfD12Q97p0ZMvmaoh39ZOU8uJ0KhffOx0c9FRsS+98dfFj5HS2Ez/XZ7yb10EtbZv0IFv3f+A274YYd46wNS7bb7hCwO4rgiTOaBYtPGdaxeCBrI6fD2pW3SAL06WLXlS7NmvV7FXo/9Yc18vs1jLu4OTy4vYYgXVrGpKauYTYcOQLxgei0Jo8VPGAfU+/Sf8pZdFv1Tw8ThUhMZ2dynYEkNB2S7+II5pcYZ5B0R0j1hrT+dL0ADTpB3RFBVhJArrTW5PchOGH8ULVm+/6jArngSq8BDst502twXKGDw/N51jf8JNBp/P7v+YJ56OMctk/lg3Got+V6lC8RbB/XL1nGFTXj7apHyki5EKfkdvU7Og8jjCxSY+t87dmjJo8ZCDdn2fq7F8389f3sn75XvVrTl7366aG1vBWsW7/zsDaIc4BrH17YFg75MPhNuYOrw32pax4/YP3JvQDbkO9xUIcuWyb30IJSEk1ajLxbzkInG/A2VCvWd4KasDbvEAwuBsaZ8E4b1sVXEXKFZhP+s7sPS5j4T+CuK08d+3fzWfnMUwk+ni/sGl07LKWfivB4UHdU755vMIv8icDfMkfUzu5huV5pr/3zk/oyaJs+oCu8/2qVHvey1vyAnEagiWsNox+wdA5NuQb+8Mp6I8knOy9CUObeAsb3VClZKqAclvFNovYQLYzRpa7gF4CItCwL/cMFh0QO8SnEaji7DaNxJcJNb2LfUid9upmolcilu2AdNVoitOqCFLh2FU1vQa2z0i7ekPqugHX3fmOjC/croGPWUlxPVUM17zoCkZUZdhytahaFC3ewC28hxSEQ9dmrzAJefc7G9m3kwHuc+wBwTuVt63saNjz3INnK3PWLVoC5tEoO0uU6UHzU1YQck7MBKDnN1A3wVJKOKzWgPZlMw1n4NZseI9Dv3zuqHd+JfnixYwQvl8Ykm38u53HuETy0zye9bP//xr9Qdl+BiP/85ppVawtlx/xgvF8nfzqfXgS668xTi/L7YQ09x4FaU2MChMT359nHAqB1q1OXA+9mtt0bBNOraKjDP+Pkn9/TdFBRQ7WXZs6nqgbl58OIgPymXM/0+VS230uPv/fXX29oOwPgayNVj7M+HPwmgSDkGw2b55049NfsHUPwsmyMqsvPH4PzwYCCrOO//ICR8/1SQNasCfaceklI2K81/IGaYdu7f0sWveZO+fs9PswK8GtcYMBWfatUB+cYrIoiPuGWZ6DfzqrLxVcrA2hzMaHJk14+wxGt5XcVK4hzY1rOvPuuoTyED2zd1GWYbvcggzwZMySz/lSOsP5E8DgvNRGtfPTXXZ72SvqVPHqsrr//zlf9ohNsFf6vZOTjCX/6lYjXvQjmnyDWUOhuMXV4O9H/+c+d0j6wSd2q7BpDVkGDc5sU9LTq5CP/MjjmGoea7vlm81PFGqDvV4g1IZqTdfoKhTKP6Y7ia31ny5tGFQyKb4ZReoPJ8uG7CGz+hPCLtTIal3UGwNob2D+/1GbJ31cPvqtIocnacMlMLxMEVfSyqXuWlIH99oMIJ66+EdCrD7/TK6+AYY9e1NzwYnbPfAtt5sdUNT4DY+PyhMrml5CSSV99lrDCQQCLL5H6gA5zFs934Ns3Y+MjqZzDrxpAzldOqOW+u2QJGC/DtSje2Bpfpr/15vAguJCZqkrfJXMiSR70bsTZ9Mdt6Ndk8v78Lg53RTsQ0F7ecDDkGqvHuRn+/Ies5q1Pg+0uIJr82hVG6s2igQgNMA+ntIfYdEKaxBEs1+3zwJ9/bwX/XG748QZXL/Jw8OPmgXyh3UNyygHaAVFLZossAjQrecKWeX2DCa1XAypjeSGymf4YtbJVAKc7EKl9+Zk+N17eFQzj0qEIx/eEdc97Co874UIUtRmagRjRXdnWN97wcmDIsEWoL3sNe6w/JezKDQakFWXbOU0e0OwFeviAXUy9TvfAKq8Kkf/yBef3DEr2a1tH3vIP7APTbXjbsQPJ8KcPdeI89pdkJyN5Wx9/eVHDYu3d/vEVtS7ZS1+6LEWKJ7ctoT99TVgbEhE46nHGuLR4NltE4qCiKCk6LO13YMmvnaHS+oCan8foTxsf/flL7FOFL5daH2JQF2NEM+67K7v7du7u8pgGGnDNp6HGYLZwF7Y2NbY8bjXaoAbScn8TNttDs+H/HfpPocTWee31aeVJBEN/tag9hV25qg+AwJ9+i+ad4q/6SYzg53aIETMXHawb/oONT9CbD4i/wvFb/K0Xaj6naZg93e6gjW4F3vI7RrJKbv/lOcHm57nTdH0qVTMc0e9wCUsC9rfsz+9veO025EEnFUQQZtQn1135K+4eB3LtfqVW/l0Tupv9/g+/qNMOhv794weoQEjdYoA6we93AN/epGJHkk4NqbX0CWXH/mDz8wh8pm33qthOuKNqeOmT4dXhHSSWUdB7dmTJvPvmscQEMcSRzD/91bmfCllqSkKPV//Flr98qH3uPzQY8m/DSlKtkNMCQv/0yTKilwUp56nYudpf/58+3PIFctjwdsHWp4DPsevJcu65ctVPcyRH1lgTYUmahv7pY/NNbKrLt6MvSPdXpfzlwzamYjlv+gjqDrLQclOe5Vxc3RXaUk7+zVf5/jsjaT5pd6zf8rkZ1UoVlT72efKq+VVfpMccQNy8O1qY6Q9MLRANeAvVy8bfChjrXe0pnyL1qdvc5H95hyI8oxFf+lzVl1/1VqE+ZCp2s53m80Cuor98jWK22v6iF6yDkppwKOLEHxsHPUewuBUVtQ3nBNiy8yxJ6cQIP158z1Z0iD245bs48E06TIdQ3e6b1Vyi8Nhha+C/IQxxEiKxHd4+i5s7hN5aqNQH78qnhSyLcC9K+b88a4iyfQbrQ0uwOX/VUrD3+gw3f0eRHZj6eq04Q/msjYfVAnwTOgxXB2z6jCbc0wNr63wEyEooIcZIoJOv7Wpgy++ovbs/EsbHDxHO3+FB3cMlTNY3cQn8Yb0mr49vg2WutxomTpZxAPKp+fPLEqX8hI+oCsDY3pZIHl6L+k+PCOesXpUXXt8bnr4ZFbwmBs+2RBht/na9QNVRNv5GQNGeOothRaA6DRjb1+Q8vJcqglBTizNW6xrpRH2AAATpRcZGJGX+X14qe8g8I4XFa0JuPMvkLd9Gu80fza9H2sKND9Hio0/ybz7XrbZQfcOLtX0Nb3nTn0TgVWWg2qEZxb0D1L/1U84b30I29wsSSvpMhP39XcHm+7XIaprPYWlrOYPKeL2QZY+UkkN1Rv7yGurJYs6YYfg5dAyKET+jo754iacC93q9U900782aLmamVLFtUJXUnM9ex3AGzq+0sKZ/4TBs8wGIUrcS8jdecqyniiBaJt3yR38x+Msoy1J0/qcn13MUQ2gmnkePu2xoVrbKo+zKb4T1OILJ2p8RBMolTZC87y8lOS26AHHJEN3y9KE/hmEEPl/0w77ksHIsp7sK+PNFxUEW6oDdC02FrdqqSHoYZbnyee4B91ul2FtQ19BCXmWom4+FmlxalMJfnn7PcovaHEf11c7dNzyFZ4Ddqoubw1/efOGuDTXEY1aOu28UQT5sWqo1ctrQ+Q6fkPq+gLihi8By/ezv8P3zS6yd3ld92a8vD0bJR8VlQDVfaJHSgY1v//hcnxv/KPz55X/+e6XyJEAxe4oUcZezfxiGkwOt+0Oj6NYVPpUj7g1NITJwIV/bcq6eB1nq2KShwxAtYL5K0AGfqTJxYaYuWPunGsONv9FzV8v6KvvsCU9i8m//jB3qfSfD/t5P/8XDUR5TGDnxg+pF4yTTyA8R7H8Kov7N+SbMUnhVOipxQc1D1SUUGVj+wwNsmp+k3PxrKstfkm9+ICwPf/nQqcwXGoAlYMQ6SfPf/gn1xZ8KOA+pULlGINjyPrecqft7QlveDVTP90uynqJrBR1jwtgjVzVZ5FbVlGq3fxFFs7VmoahvwffZzkT+9kPC5oMc/fl5nOyEZzJu46vsFvtLt/narL0qE7iPyFbDVzfNwMcP+S/Pw04Cf/o0uftWJjBFuHy92oa60fgEoW19qSqdfv77kBkOrH7yDW945m/6IoApcVr6L/+xb14Pt/0bjD51C2ZU3wnY9tOQYF4NIGTV+obJ2J7++UOacb8W/qLvk6y+3A2Uv53QH59ifU9Wf0ynRIUyOh8pmtypIYIva3/jibMvbZPvxp9/+IB21ewkSzHiGExGbeKwai4D3fIF+S+fmv0iYezLgggeC+dJLXd967OcmR1MbLnAPkdTfw7stYcK1Lyt9/VRP1Rt54HHZVdi65vZ+shu+xhcaHanx+faNcvF9FvYh8ZMs596GZaVbyPYfxKKpJ2llesX2h2Ud+cr+ssv2B9ftKX4pP5WhMcFhBPgX55hfdZZX5LtHs11qu/YSLo3+MSnZ6B8fVHEzumpJsLvNVlQJOkJu2gQ/DedGyIbYiD8fT9/80s1vJ/Il6JxRqWQH7JeBr94wn7pR4BducZQ1mH3wmbjCskE1dGRsseUkPQ6cA3Tol8NNz2A9SVuSraHQ/znDze8q5rxc/lV8BIE760XGleu1woaf/iKbh9yTuaY/VKQSrftzFDIJcuYziLc9sex9+2Hctz8mfKm+YHa8mKWdPNXf/kc9W4pD1hc9tlf3oMO7/IH5iwW7//yIIe3mT9ZheKA0/MmUJTeqmQ+peUK2rqpSd+LMVud+7UAClQ9aomvwV9al2tFrhU/2Ov0nrFjjP7Pewrk/11ToHT6k8w24cvlJb1joMl2R41diP01DA4O/DXaSI+u2Q6jXJYx6PpkJj8oRTqPm3KGFiGYcHPd6GOw3xPgBL05LWnQNsz4lQjIozrjgFGhXD7X9Q7DHy2R7L0rn7sGhQBurVNRZ/edwA89SQBHVzOoofU0GWvhnoM2qiJS20Fcrtds3LraHiY08tlzWMRVrKGa7AMErJtTMq5AHfxO40idH39kLEuAAygsFKqmSZGwI6f0wOLaBu1fpq2P7icgcD8F211gptXwFy98A2/SY2ydKzZMr+gVw714+mENnV5Jj+I4ArW6lthM20+5PCVVg+IgDUi4cYs+vHTBkUX4NciiqYdhDq91DI3QTqmv7pvhg/y1hcwYf9i4FH0yf/ffNyS/8kTmi/9ik6+HHbgZXUut4XHzKYXHGTy/YonNVch8siu8Dg5iOhAJH2G5yrBWxfisMawrx7RcBvktyNvzwUdStCVb9skbDHWV44sUQbaWpsdBaSddMPJ2BWDSaafCSX3FNLzisZmlfCKA7/2RHu3va6APRRjhwbFriuS4Ln/unq2K1cwWjV/fa7NW7AnBXXIceikBBHNuHUa5f3omDrMzY3P0DGW4Bj8LO3dyBBzfXivwmm0N8bPN2PBIAYGrv5/Qmts6m6/PPoBnMeoo1h6/oVPwzB2eVv6hpumKYJbXPIDxeesnnE5u82PA9aRUfghY707XZElUroAa/7bxOXHU8mDuECfTw9mmJvkhIFx7TpWHTOCxF4SXkr6DwYD2S2vI7hXIjDZ3Q4SywQbsfQ8emJ92pUH3YVeI7+/5wFByFwBtnz0NNLXT16/8FGERuhd8fJY7QEpiCvDz1iJyUMrEny684MFOaEckz9hpDh+x7EAoFxyRJTltGMcWD/aCmmPndjMStsdqDbRr4iPlVSWAypeTBw96eySLQQtdOOXXDhb32kVAICcgRONLUz4B8/59PhPbMIff7/6G1sVofeK5rgG6z4xxfJQasD5QpQHnVtVkkbmU0b/Xc0dOo8H3/GVzRla0n05ooNvvZ8sgjwIMROuFrcXJk+Vm5wY0pCZFi/9bhwWhp6OQ20LQIdizZOWy9AmvippQXIf7ZOh6v4cHVHto3dHYX1i7rNA9P02q6s1DZ4mkWiDl4ZnMqN/rk3e5qfDpfx8oYvs76PT8RRS81wvUt+VFX4fcraHkBF/sPXq94b+3IIbb/MAVran+c/dbnendFBGkk5kIobyoSpPglfo//QNWwcx2YFt/SBmij7/av4sDTxzKsHUq6oam0StVnrUbUKsDJ78/mvsACNa9I8tuP/hr155qOZ3FB1Xf4l4fE0UL4D0YHfJSp5+/4WcEpUZBWM/Qdpf4RYnhO7MKahfsPRBFe91hyP0+OFRTkKxinUTg23UCevxuRsP7REBwUQ2d4uA86rNVXVa4PMUnvrVyPizv9JECF+Q5jsowZuzW0B38JOmB+tatK+e2BxDaEbJQd/mtgBKBdNILVTYOEqFPlnh0CGzIIcV+NXTlzIuPGgqnfKVODX46KbRzBLzjzsTeIJVgFHv7CW6UMrKbKBpW7uoZkOKdQpTLYjfrLDIR4v2xQDN5FX4finqlYG7tCWjTppyFlidwe740WPy+nEDYtFAcwED9KZr0RWLpKheTwtFjb0iAbO+HkVqEWH0KSN/mlycvT/mJhPYoJks1TbV82N8GsoPiYyD+s46hYjU9toQlSZhNizcUv7lH1ej0Syb+qL5h3qtffPvt7WHpD/tYVhMloOl2t9t6yq+9PH2tHVrR6ViSMDh48JDmd3qdM5hQimwRHr/9iUTACBlb93tBhlGdUDTeTz5TuVPxx3+IH+SxXMOGs4AQGz5NE8z5s358r9Cx35jAbNb1Dc9X+LGnFKv9w/UP506r4W9KKuqLl0lfwaAiyClbbwcm+v5MTp/1D18IgeKj+VVHCAFz1wdWw9oCbI6UO1wv34gwIVLB/MnUVDnVhzfa2woq50TRENy/qIJdizv78+CTAuCfa2P/LeJh7Exvhs5Fl8m7SBt90e0nAhvfo1nqZH+9Tq83/HBuSt05g+VIB+4JM+QBHCInaLj7FCKwtZ0keySJ+mx5pxG25tOi+CsUyWJJkfcPHzV5eunLtl5B6IQfismc+CwRhBWuTA6oquys5qDh4C5/u15ACxMHnTy7fpbbJZ6wCusVLK/6m8Jz9TPRy6CyPitvB8kyJC6CzlI28/lsj1Bft9NRMPZKFp6fDmyje0R68WvpG16qMHqhHnud9krYsIpvINQhxlddrsrpdyg1+cU7Ivbqa6sv/FFtYerWZ8TrT2VYtcdvhPBDQ6yZ831gN8Rl4Kq+U2qLzrsZdtaBgxyrIOH3iDVz2f5aqB/wEWN9zXVmqHkAkZnucNYGqGHRNUPA4VRMnb3ol/PTaCsYnGoeie6uZaTRzxzMr8ij4WdVy3V/qypgxPuO+mnSg840di3QHlqBtXN+TGbr/jPALYpceq871Mx6/53BcFr3FFdyBIQNz6Czi/dY/SF/oOTdveHp1v/wH7+un+KgQu2hFrgwT9NAD+iN4Mbv5PfKj8OyjQ9II0tDr2e5Y6scSXeIhL1ISNs/BrpzPzkMxvsOseDDbRl/msLD/jFgf1g7fR4bu4U7HH3oAy4DWLPoqIGuP83Y/GVqOVffUIB/esac8lNCsCpWsNk/t5pUVg3sG9cV7EBXU3d8HBvuq90QOMjxQl23OTRDeO4cZeM3fOmGrb9r++mgfkoJDQX0YFNLiAWK3H5RM3HU5N/6vKgPTD7hwyzZ7sbNcOQrA9upoZVTujoG2Blp9U+/zSdfeMLMNU2KBjXQu95JW2CeE4BAfn/pQp45xT+9pNXiRV+UpIaKqMQ3rCePUCf7pREAjJ4JUZAzbuM7BhC97A/aG47BZlU8zBAa4YV61nRMRuaePZhd5zu1vKfLxmrnzbDOOkKPMTkOlEJ3he8W38mht30mJPerCuYdjdAOu4s/oOmYQUl3Fnoqtl41Ysla6NgtJuJeHJLxEJMMpvzujOSVpcMyXV5I6fuCp64RuTqrKSFynv94ih9fzV/O7i+TEs0JkFK5ZnkARM4AF1grPXL6cRgVLArg4XwZ4phF9Vk8BjX4xMMdiYfh7U/xqBJ4CpIDdojm+mutLW+w4RNV9dEo1/5cQuC7GcK+3tBhBuWhhhv/oKh/uLpQsW4HHg/3QfhBDhLyWQAEXLD6pD0V2nAo/foJW0OYsM95JpubSN3JG78S6YNhQr+7UgP1up3bBonFfmMKOmB0B4DNtrKHeXjwK/jDi2e9Zf6DIYzgeAp/VEXsXS6RaOewebdvIv0+Dlsd3R3hMTs9iO4KsT4PgjxCLWkgaZSgbwZJaVsIH4KEpOA2J8v0+8bQbq0r2gXVHqw+J2167ulS3cinhMVCUQMIvs+QAfIZ1g5XLXzJsk2dq30A9A/vw9kxtvc/AJEOlgx9Z5EwnlHuz5K+Gsrf552kV1sua9Co8CWLNrYt/dcsZRZkf3qC6odc8ml96zr4xxcFkrth9aykBpej15FpfyjYpneeSmk0L/ynX2ZXqgz4oIKILS60y8X+TCpIi2zF7it/Nczlt37vdYjRAZW2z3bWQYCgyWVqQSyWy++QqPDscx1G2D3p/QJ+FThpR5saiXED8+uuBGDDO6xPYpMQr8QOaMLLneo4zQDrjmqnEF7lsK7JXfKnx6D9UhscbXpyJmmZwgxxKWqTHRqmn6y+4XLeZTQ0waecaXpoocNpGOOjzoOZl58ctLrTl6IiOvmLfiUx0Kh/R+2sqv6Gt3e4Vy4Psk9rVs5+l9Xwdf/4FEfPOqHRXDrQn8ccn94tr69fJGawuAkzdpvlkPQbvsFcJioi95tYLvJrhcqOPynUwdXQLPLDzGEG4pR8je8ZMK8RHVB68fzPz6xHthjKn/47pUH7Nz9nuOE/Rq/Loq/6c6sJ4EFCrSUhzXJpZkPR4S7CWuVyrA/4swz//E+YPT19VckNArv0MDb17V6xQjvHcA6NDG/jz2Y/i+7QCM0UG18uZ+xaZCsIHfyhfhk25ZrYqfXnb5DCW/bAj6qjwu9XudHgIoJyXPTbDCotS+gxESTArk5OoJiRhZoVCxqWwZ0H95332fytoq9NEc9Q+o036k3PVu8sVhGYkX1OvWqFPrPGSQWPz9vBVuSa+mHHLQQWNrz980Pji189GD9ODTW5m1oKo7468PIlKVU3/bJErZuCUlVVii/WPlks/x4Bs+0nqhmdVQ6ioqVw7/O/v/cnh3A3OOAdXXy0jkQa5he/OpD1LaR+U/QDS97zqLBzoVFvNOKSP8zaDpqmEGFf5aZkvriuBnfgGGCXiIfyd1IjB6qCV5LvQ/XZKLQK+ecvjbCVdFLacyFqyQtibT3rA98uZQdzjdXb9WN5uW7+Tf7DH5ehhpEnXB34ks8rGsxjOiwF4J+gHyxEVhNwYN2ZIJY3fsEYSbm/Wp0sA2V3d0iv1b6+7gqth3r5vSN53XmMFTcjA93M3zZ9V5V00Y5IOaTFnTqDM5fr+6amyj0gzra+jwMvzV8EjeZ3pEc6pWAtTU2AFhkxRZcXambuuUvhC91trH1R04yfDuWw+fUFNfWn0lDhiTSoIgw3PjD0FatbRvYOLtj+yO9m8QutVaT8PKBZfB4Zg3qryX4vGBi5gtbw6DB4QJ3LgLrc6LBpGlMOEuo8sRk+PsmSrqql3B5vSi+7Q7vVtM0dND/7lEjb9+eotjwhT2VA2IZ/o/oOPGBowpvihnMTGp6fHryMs0fLEJVsBneHg/Gzy7Aj4DmZMyIHUFyWPVXF5xFw3FNIZed2r6l5GsdhMRa7gpXFc2j2OqTznd/foaZND6yLwt1fQutxh1seg/ooD5vlXNLi7/tgPz8DMF7co6YETBsIq7u7z36jFAAh+47Y529cOePHrwc4zJ/UcWrm08a2obz5PYqoX5fziwUtdF25pmZaUn8ZY2TIeVIBXBMvTNblPT6hwgaddOrZByRlQS9Po8dt8/GqzxLte9ieBw87SD0AcvO9AM7c/UnVq2wkNIjXFnw126PumPqlYHWrCDZ+ofcNj9jS3TsIAj4kwltS/ZXTTA8+Tw+G/+VHy1POoa+3e2zNqqoT2O3EP31Jr/tb5Y+r9W1hvV7P1DVf1sClQ1eAaiqf5OAoWjJ1DifC1b4H2H3bhv5v/R2r0cbGfAnANN8NAWa66OO4GOiGX/dVXrU8o5XMmcmGN6uy8QXab/kEyy8BhNvzx0Yv2WxRdyz4848YGVgcGMqMHOKmFOkf/ozB/rDV5KUCNu4Z52+ZuSpt85fiBBvNVG73YBT5KtPteeu/3WB4UFRdk6q17Q+jIlgx2PiL4lUpkqWI1yeEVFFw+PkB/bf5YXAbgnjj56u/qH0jgLvkOVST6x7MlncdIYp2L8QH6MuodBJUmOcDjw56avvj7fzW4CdYPOq/RTqsh4dbgZczihiDpGXL57Kds0W1R5ST9inn5MSLSne2BNJ0p2s5w1fcQ/dcmzQ4p7ScyZBHgMhGjyRQDv5cit8Ofm3uSk0Q1M20rUdocLc79YC/+hRlQfGXh2DPUWf9U5/CGjR37YD4xHkmY0jOIhSzY46del7BrOc/AmVhJ5Pr9vmLdzlrcBFmRlMn8RqODHkMRlc1cD4dYsAqFBlww0saXpZvM03q1tsvpV+qalHUzJ+kWMHmZ6gbdVbDXsusifTJSqxbUCrXUJZUuJwjhRqP9QvItOYxHK/Ci276aFiFuYlB8bsnm16LtnymjGSCMp3i380YDj44ZSB68AfshwiA1ZQrIh0rleCA1ljvlNCPYfAtHSTkWVCCP3zdxnPzP44/lni7uKgpZCJv+v7AO6PwL2+1kh1qSIerN9zwD4dfE4E5Pp16JaRVT9Hmr+a7oSHFTbkRp7ZyYwvy1zc8XaQCq7U9DMxQowCMV9/Z9JQCxqEeUjiVt5Li5sd0KqspgnXWE+oF4aGcL6uhyvKobXezlxediafrCvunYxJWlAJgRGg3PlpqAtKk3/BQ5SDQ2hsSb7d3yS7aKVVE87KndgkgG3fvsYKc+Fw3/y8n9HSXMijUGKMV8FLJKpQbcDrMF8Jx71Sfq6/JKbfnNURr9rwO83d6PeEO6AHVb961XBDHt7C5kwjbW57Kpkd4B5seo+oeG/7WIjCAG18T0GdcQuAecPKHnFSy9DjSR0mXDdCW+RU7Tp3oS/dYBHiesjv+03vdVztv+PoZqRpYW40j1e4KdxQ0tPTGFSx2JOWgXHqZKCjR/vLRQNnyFgSl/DSMzTvP4DQKIXY4eATz32n5Pz2l3YVW77RdLIItv8V/eLaoOxCAPZsd6rZCm3QcEmMQ1AhhrRgwm9etP3hyOVvYpfrULM7p1kMiWz3FbTOwuXfSN9Sz4k1RZhasa3u2+/OP1GjH57B8uWMAdx8uRly44IQ7ttIow+FeofJ0jf11vwwCfF1fZxruDzI4uJ7ZQzS2OurdSmf85ypX8PD75oizeHN4sXcQgICpA/3T48vylAv49p2IRmy/A3MwLR383ZwcJzjN2GiucwUfhhVTR3Jdfz0w3lDU+RpQ/7rQYZnGVAD8w7jTaFgvw3JpRAuWZzGhZfWM9TUM9g4wPdHa9PmZMdU1LXCtDQ8HOep0xnPnAl7N3qMWZmI5bXmm6D/QC//tTy1cXOdQsbGO/cDSB1L/bBVY9s3DKPh8fLrlNVA/iAV2iyQe5gnKFpz87EJDp7cBv+1vwMQONGrf3qLOwm8bwM8v9LDrkomxFkMZLoMb0b/3s3OnPeFf/hNt+dXqXJQUYifrcSCF5eY39i28X/oYq/mvZePf886vgYdv10Lb8vhUBQeuqbde34M+A9uXQSmQmZrSjNg81EP2z68v/i8eDt9zropD9TZo8O6EgST3kwrvX5Zhbcv72Zb3Amz/TuQrRRUg+6IV4Q2BDFtNzAP2UIStV9z5TBjHTfpsTLcUxMa5wEb5UZtDb8R3+LjCD5I9GpcC6xsRLo/XRLf9DTbm3PKGQ3Wk6C1rImOco7Zgy+ep1y9Ns57yU6/ExqXAulPsyjUIYhkOvjxQ358F8KcPgX7KCA16rDZ/8xN69VxTjxebYT14sgFjz/ph7aRxYDq7vxSm6ChQK8RjMlssHeEgZgOZFCdvlkR/7eAOfQMClB408y0WKqDc7IyiJBOTdSqTFP7tP95bZgDCErL786v0uPm1Rbc7BF39IVMN8FJCpAOSQagTA+s3T0q6C73fQVdwJr69KsY62bhn4PJSzH+vH4MhMMAcw558b+9cb2O6cn/7JdR6S099rX+2Bq7Li8fahm8rOJ0J4N+7FUmh9Pa373sHG1+iw0UaAHsVzAKGjCYCt/2l3rvllVgWJYd2+T4ZZsOIUxgSdiICGlR/qU9mDa34muKLdK233iL7Dnw4P0X7E5vZtOlRQJ9LidVhPTRT+HR3wKeXD5KSi8NWZRgruHuaOrXXlOn9pveACV8q/qcvbVq08pbXI/nEHRNu28/4t/8qpfwEFr1KBPCr7nuqbvs3/V9+vvln6tw/1TDf4l0F3+UpxdpIrkMvR1IFhfG2x2aAvmBWQj+Cs5acECeoNjgkkmPBLf/AWHu4zbpfGk58VvCEdfPXs0+TAAMqNzOjODHInz+2lMd190Gxeov8Nc558V/e/5d3T8LugKBnPVrqpY0O+HEQW2BGa4Hxlrex5/kClRjQBqsKi8r501k5vD3LEEkM6eyffmfzIyIDrLeaAlGvob76/p9+LMcYjQb4w4sHAW7JiWPOwVUsJxw8HLURQlnSQHv+eXjLt5LDn573xouEg8ZbmlmINUsRqgxQBAq5GSLTEsQ//2s+eWVYzdbMtt7NAnbn1zrMu/Bbw0tlLWS9wO2e0Zf3hAVX3GhYuZ+Ete0i/OWbZLkrV0Yb/ijAUB8NrMe6VLL12hfypsewfnnd9XWard3/V1MA/ndNgREYZ+r4l75koVoT2dZ4m15IjYZ1Ti4ZXO3mSaDEzWA57EZBSrh2pM6OdTpbpmsBovxtUF/8tsm64wYB/pbvQHYXTkt4ySxrOH+7HknccfTZdBoKWGdujXXWyMPKX4u73KKqpz6p5HKiyJzhdLvvqXPdm8M8fN4ahPGdUvN+PZbL9bLEsB3fDnXqQvU5XTqJ8CpzDXaW16Psol1twPAbVNS/q+9knu5HGUaYp3+v1+fj7dYCLnhKiH3fDBBCfzt4DL6YLIwjzfqZZQPuBjXFV28lYHYb2sL0KtTkZyOtYQnKBIhZhrBzOEXDLEhlDPjT5FN7Tjk2hcK9gLeM97HZFhAsa9lo8ILmjJ7491Ofci8cQSDvnxjRFTN+b5xGZYmqCVvrICT0sfNyIGSgonrIqeXhWk4rGJgqYtvXa7YeyEkAb56E1NY6p2QTvPUHzfs52L+6mb7YgTML9xQYOBiC88BmaKcgyjgea89PkzBTVjg4ieoJl3fJLmmvb9dQfFJIzyxa2Fwaag+hLd1oToRMZ5dwSCF6jS5VDX0uaWtUd/h14IVqN91n9BurmjxmzYN6FziUK47yJ6TcKaNGKaXN/IC5IxPB8rAnBS+w7trSgMvlY27Px0jWrk5UECXRj8wFvjRL9z7H8nKnNwJw/tNnS31UwL1th1I56zWwtE8cUMoDR/32uN/uDjIrcCFkoarQPZp1Hz2Rsv0dH7v4UjJ2XzPAs4InSuEbvuA/0hkupPUID4axpC9jsWDE7RJsPruMLbT/RlDIpAqH/PDTV6+9EvjCXoK3XhP6WiDZgLYkydQYhLaZ349Yg/irT0jKX1+dLC9Plu/Cm9Bjq7/AQpqykvo33GOUXL9saZjXQftdL/hItK6hZqS/ZbYoHdXeLm3mQV5GeG7dgLplMOuDd9uPsMeTQ/FVnv1J3Wc7uLhpivblKPjzpStaqOx6E2ObdM36PXQjdMHFxvZ5itkoN4UFx8VasIOkI1tLW/FAsJoSxY/+VS5ZPs5wH5sODqinsr/x2h9FwUejj1/JbJ0/HkTBPUZJY7+HRau/DoR3uUbyRXfKeR/mIris8Y4c8uybLOs8jwp80ic1g/5XjuKyeIpuejz184j5a8ri/5B2JU3L8sD2B7kQEUmzZBKZTBBQcQcOCIjIkAD59bd43u/u7u4uLa0Sku7T55wknYtiC9kXU61lfBJ/dgB2OCjMWy37TjcgSWgXKj8sSIFtjN2n18E5CDkxbvxrjOvs18LDrlL6IVNt8PtKkdESvyTaRL3Ru0eBgjV8AnK4Ir+cX/h8Vwyt/jGn/LbdRMJ0BFmMEuL/tivUTY4McNw8jsTcboaoW/az/X1m1tc2sinrpQZJ8fhghB2FrDvdk/4PL/CcnfYd38sbERKODCp2n7mcrDdv0KrTY9obw49P+2asJGywFSNY6CN+mbQRlvEndnur+awq9x514tfEhXbgxtSoKxGu2Uli9qeQyhFatUe95l6IBr3UzelDF+VvymPMhdTxqDIkOigzDpk21TEaqbYOUYnXFZ7KLZSfsdVN2B2rFzMwS/7wr0J1X9tEWz1XZb8714UiJZcf5rZJDL51LhdARRH/xZsxRXAqUN44eOnzUvNBMRsV8DMieH3/7KL5cmlzWPAKf68vCfU/PZOAoYxSKNuV10tlnipe/hBw1rRCNKL72ZbR65Ay77n7RuN5r9/hGJgmww87N3qvfWJk165I/GjREMl2TJXbzd4xr3jwcrrVXx/RK/TM3sEOMa/rAmS8S5Oul+cdnXhqFBZ+eyp+uF92H8WuwDxrHd4GV7XsL+lXlXuJOGwfLL2QlnhF6b04kuMQ0O7Zb30Lgvc7Zc5P8LKpqHYyshJ/OV1HtGj7WCUU1mrgEdvK717PH7aJ1qvXhWgOrr35ed5WcrD3vKUXcZXN+XEM4evnJTPR1eRzcb/KSN13jP6eI2TzIYG7FNzdgBlRbUXzS/WpnPCdwY5cF8qBUAj+8IvgvuPGjL5WLVtv74EVVY7LoX4sfWXe6YMYZq4jEes9oJ2Qq+wRFayjzPcK0J+WRkxTcKO5jTjI+0zx8G77kTz6iYNK2R+3A4Xb41FSNecYyP1sE1VLERqk7VeCzcc16RirRdQfV1IKw0xF4u+EgNMh+rRo+745jFyJxWcu6gF6wEFjNmc7YxwfqIaVc2mJJpxWXudW0MD8LD7MubAczbuXPIOrX45Mf24m3m/nywX6y/tF/I9YRvOV2KnMz3eLuJ+u7MaB7JY1nPhN16NZcNbQdyEH7U1j2p2ZEa+/swR9uI6Y3xumNxMnqyB5/nzmXtxPxJnhx2hnUol4KCQR3wdeDQHZMnIIHauc9+FRQHXunmlybzHnH0+skUofE7EuIY16fNR8JRbxhHeoNKIpcosY8nDe08IbvxFfXVQL4Pc9MO2yDvkkxq8Z4rWVUHt6r6Nx0PJEac6RRmyhPpRzoD9blPQ7hRAs+NnsD3YMw9r+ESukujG5nvyEv/qudTfB43LvhPDQlnPnAh3L8VAmFP09/75xcTQTpM/oh/cGI8W5LXm2nyVY0TpnBh7KbBK3NxVJnbwhatGGxhx9tBoeUr4h91xRs63+LBpQV5cn8b7xG7VPSRLkbRqOhBx1a9mjMaZ/fAyLaB1xfh8/NhrmXvyL145dpUcFnq/4zIHdmS94JSgDub6JDy/ZGBDLa5CmaE13yfvg/a51EqOnYR0wV2jd0d+Pin/Pi+X0K5Sj1z59pMznD1N/4wbNh80D4LUDnS3xUPaVPhbK9tJX7OJG326y01uuLPWD6CSOukm3jg28ipVC9x6X+fB8nipo5GLLPJPFfH62jYm+baMR45T05dBWeIVSlQx0+9KCbHpfcQxa2g8EbyexG/3JFKCF/fXf54Ge3V5O1ORO4iMxOV/vlARkVHNmZupUjhclD5S3TnO2J1Ptjb1+rP/4Mq67T1j+tPGng4IFhdnhg3rDZ4YYrs4d4RX4U7TUx1A+LX07cMzSaLoKPxPQMXwwg5dp+ZU+aQtWa5gUjs8Ln2/zpoeXkmN83Yq9weLjrpVjK/sxrQ/0rv+iAUOZdwTzfNfykVVjAZuDXuPNdfTRJgAUQOu/66UWCnVe7jf3KoO+z76JcrP5UpAHjthem0V5iWc8W6r4j8+je/TY/uMjfB8YtVJvyifdac9TxFbqnKAyTJ907oasa8O/3tJx7xO1LM/eXB+jFnpzu2FWJTvd1pHdC5zkaEu8nOz44EU4hI1cHhlRNqwcisvbhadsy0zl+dfgsVTKANnlQnTp8DB4kycjKN3Rp5NwenrD+2pdkPRoTTpfGfX6uSow3G7ujnLYlOWkZVmM7hvnTYVsF3dDf+8FWPKdmURr+Wy9dilYQn3B0sL3J2VB2d0rdP7NRz/2fgy3763F7/WUl1yrzRFmaA228H/OKZLu8I7Lx3LOM8hGCacUQmGq6MCedsaCc2v9fSZ2dDkZ4zPPROR7xp5Ki76ZHvo52BFRTtleq/bdX32Htik9uutfQjdE1J7heUQrur6SGo36fUyUD0c3pl8Z9sY/PeTkTcnILlEjwVSHESnOu2CWfBzQqBFT+HtePD2abzaNUiiCePe37B/fnUV2B+WWEmawNY1aGqlPEF/cIHt5/kX03Z5GCJWfR7BezmhKX3sLGXBslnOdH2M4v369fLiJPlv4tDcbNLmj4SZxzG7a4M3Hq9yAnX0q5vb8boziLgpkSbtWS6/gPZr/4uVPH74WvsoRWTXgbGdEZ/vnlmKfthW4t+eHqIF+9Xjh+xIoTllQqfptSvYLnzI6q7sL0wVL64SB7FwohpNMrFWrLPGBY0D1kTMrpIXByE4t/p4Xt21llbNAGxcuebtbfv8wxjgNXEXSzhU7riyj7BlpRfT5+QLRxIdhiOX6ZIP+Na50LS1rFJS9V1A5jxNtpvc6Gw/r5Uptp1HxrlIUY46ffgOfQ+ku+eii7fx6FWjbvN9ENWqVj8/QM0FTvTtWtIsdzVtoa4DvViLenz7S71IKC19f8OZUTkJxa+AI3w9ev9UIzb9UktGbWRTzJtMj0fCuPpLE54HsV5dNNzJSiMshmA2+ShEqJ89UCrTwfXIIrnm38K8EaYHuEKt5ntGozV0IOTl75Phsomye0iOAoO4t5rD6FIn9ytGBJoc13W7F3pvt07b44zt4nuR7NKP6nSpMsA32/B0sPuHNzkdbMjyZGu/22VTYSQooTkUq7mIX/fFF+PLPFctX6CLOBFTAdp3XjJhfjw+bFXfBANLQiai9N5MgyGHahQy/3cPP4/WttRFs6Yf4c7hb8FQNQdxbL7y2vcTjBx71kD3tEE81VHx8v5oYeOB2eAfqjNpt7piA+dtifs2sbHusNFt5d3nBXp+t7m33/WAtHutMPOlrRYO990RY+BwVQ6p7mwQJEmQH50iOMPV8XPgwWvCHOKojL1lp5//4jpnthG4yV939L77x+Df/N+b4aD68c+Y606tjqlOG8EvaMzH9yxtNU3m0IR/uP1wmzzFjCz9Fyu6l4O15mBEfjLRFmfwTmLWMJ40+2tK3KTwT7R4FHb32xJSV2Q/JfqNLXnsj11AxyjBi1v3FjOFzSQWQjvxKnPWBdFwMohAaCCyGr0KRCeYcr6AXWoU5x6yMZvsUxspveibkr37MfVpUyp4lJl3fP7donDVvBtMuHIa1lqCfz9iINvL7iOeT+TG4Fqwt+Mu/tXxa+NXXEyFH9YH8+Q3C/Tb48qMNTWYWhWNMFzdWUXGVJrp62KohUG0bopPFA3Z4kDbqa+GWQG9uNnTBV2/7SOXgH368dVvPZiYq45+/wrTPFxvsVrQUbR8iMOI7ZTQJsS1BF6OUTpf1zNs9/cYyTpnBrOFsekL+de+7/gcJO/8gjka85Xf4+kVJ4TIL0fz71QL6wxtSzzvUi/dphmYthHTer97RZP7OM3Jjx13q2cHgYpCFQNzcw7vo6GRdfJwacMwwxpvV5dyN1iFOoNw2MYvYGmfNn366J3zp1Y0NPn0fzvPf97axCdF8cLseFj5IPg/T7XiTB6MC342EldP4K+l3m1O0fVUeluXVl1e50etwuw97/KdPJhyuAeZ+uhC8jO9surIqL+PB9HeOvLn+bVy0bco3w+nLKzcuS2T0SVfGP71Ay+NvBXf5CcRdZ1evNTdVAJ5a3vBWCHNjTN+H+K9+M9sfgNOl3iKRGgLm69zvBG0ugz9/h+bXCmfjXrVr+SwELc7//KK/97VelxczD+jgbRE/m2Bd7hLBUrM3mFBjF2XGR2PmDXvl+HbX4r/6buPdmy/4f0G7QrgQNSXXrknejwYu+jsjnnzzs3GdvVvIq4+Od9x9lOMp81o4lk1AjJezy+ZRTCqYguew/P/XmCcWNSi2gqXerM1yTM1BkHSNv5n/jDs08B+f4R69tngVMzni4+sjojE+TlTMjSybpuP2iWZZFhjR9nE2HZUslhc9jnt4yd6kraZRCVmSMruLnx1rN4ENt1XKiHrpvGh6aKMJf/qWGKOSdYeLjNF2XdR04WtGj7PTSnHxrBL1PDcZN692riz8hbgwYqNe6gPYwu2Lxej78Wbv5Kvg686T7O/eoeNpZleQsTWhwp+eTGzvCevcr8ny/t508IcVrMODzSwnrcqBWjtArXE6E7/ZJ2i+kWsAHckDciSHjTGI8XVGxnLXhWMe9nx+ntc1MtqkY0t9KscmwbP8Otnqwud5x2/Hhy6HRzrSX2D5JR/g3MLmHF2ZHXSNMVVdXihnW6OE7HPKh8UPhSrWS/pe/JNxj0+x8kSSw/7zs7YgorcjSkwbhxOaEnffQ5HdFWa50aEU83uNIewEzJwD1rvNM1AFaI3oTPRQ7LzZcR+J7DzIj+xF4ekt8VDDu0pd4iz5K4d916MZ/yTi5sImYoml+YpFHjMhyoaUG3H/E+Hmyjaz34eV0S76E862QTGfGx1tgltdwyVvdnSzt09olqlX/PEx4p5PerS5f3gPJ/d8J7bZv7Nxf2/NP73IUl/88jn80PEf/1NxEKDfadPKu9dupTPdKYZykNKfD8NtuVvmWT0QO3zcFXKDasXULXp3X+t6TXfzj7iYf+aBL/rWVNKfxvAqGfbdWLhhA6v9+CRqs51Rf/8qgO6971EJ0TUawvyB0fGL7+QQCwRt8wYoqtRvSzmCPGv1jVyBB2NMN2/l2M369yfAxxc/7CAqjseT+LaC0Qszoq0ntZzt0zqX14ZwZfZgjkYTjYYKJ2sKmH+3QoNvdEbR3qp0Rjbp2WCWnLTw8KMdlVj4Q921NRd9WeV0E/sqGpXSG9HiFzGDv/dcWP/kFM7Z/UuHL4yICygSwVF7m7y01TbrzhMFtPBNpsfNFA3Pvr2AxF4aFgwFoQZau4eZz3fiuJfM4I7sxuj8UvmiF+Sov6aOiAT+GejiR3Xb9HeLIWakI27opwY/VpoL1S64YfF866JxOz9jVCKcs8Pir9GYhzF4O2xTdPo+O+ZqTx9m3EnMziavm+oHbQB+nwMhAH65DaXZ/9MXzD7b14zBo/ChuMoT07sBdaJd57rynluE5VUhGHwEEv/5u4sfpJSs3zgCWMs6yT45QjTzXKghO3hHqvTXrpum4/qOBlQ9yGln9xE14e0jB50PmPvvVTbxHxqBnJqK6aG0RrPm2TFa8IVphtxk8+9HBfRB2sT2vP+UU2wMCdpbtY7hrNLo9+1SjP7+37kwFU09vpvoZWcdWeq/N0ajoQMc0OPvfTuRm5EFkeRKuL4jHdGFn6LzrtqTpPptOm4/LR0tfjIWsP3l0/oruf/0t7nz1mj+88vSdlyxY/nSun5+fAK4748WUbu9X06lFt3Rsr5E+cK3pj/9nnzakB1Vbbkrr5eaf3zxrz72LXrKf/FIlrUOxPP9M0RVZyPytz7AE8vxkVccDZaIybGb25/WIqRg6Y8/G6N9wEsfwB6zG7dttLVlVsCcwo2uCtkyptM3tXd/frpgOZonPnA3QiGcVLyiOx/NTZGp8NJO0XKGbOj+/KO/9Scsne1r1B/WMt79xetxta5L3m4SG9LATFlsJ5dOlN3BXOLIZvh73WQLvsM/Pm1F373HoikxYcEzeqKoK+d3e5oVgq0rccLp3M2vsrNRsd36dHq+24zL8nJX39Kn044uk0etU9OAE5b7he+3qD9HkQ9YVV8LvnoeR/xhAqoJZySxXWNUSmNGryRMmNaE26gvT/UTjOhW0xUubuWyPibA/X5+MgOBGm02RwNg4QvkckcFmun7hqFThjt7lXgoJ7yZsHLBa0wh+xVdy8NSgPHbtsSw4kfH1o9IQp1hPkikj6dojj5ODQueM99KuMcD/HFl5ftTCcbFrVv0/wwFyhKGN9ax3EzTQ5ZvE8Df+gpa/EOM/vBTvIQ429A1ANof+5T5592UUZ5DjcTjyqLCDG02puZHRELKW2IkcmX0jtXIKPLGH7Hst1Y2f3p/uMRfEs+rlzfNWafDDx8MsuQL3z73fQUKFhUqxNdHtOhj+a+eEGeF+673rO0Ig6Sf2HE/FWh8fJPxXz3xSOIYw/ex7En8wuWff7BxmwyQmDQdc+iAI169/RCq2daWenPg/KOotTK8fMxuQ3LtJiFWJcWwB+1PXxjjKcY9+pWxjGVtlhBd8BzKbRsvfYW8jBvXDwUXuWTxY+tydOJdg8KJJDRv/V/H35Em/PEXtkddH1UVPaxQMCUHYmz3oTHybqWDomcuMRxx49WftSuC+62Nf+tnoxIjFf7yz7zPW96jNa+UMv8RcqjO1Ovxr+ghT7WRWE5qlmMw3mI5S2uLgoZKxMXnwo9dySZnLJXeb1kPQcWvythjGhQ0l9ncK+6q/6tXeckK1l2AB3b3z69b9IqOEvOAiHoSHt5gjX4K19jJmXVHBf/zw1Bs3X54lg4PbxPnliw9m0fANPtseONFaULZGawLVt4RdL26y/1dndtnqkyDwrlf1Zd//sF+pxrRPz6ivbfWgrd2tr0dzyqY4nAmNqIvPv+td/y/9hTA/72nIDfgx+xgEjo+lNMd+rVPWDq7xJvl3myQ3a2BSr6LETdvwgyXaPaY7q7XBj9rFNDL50c698WHT0cpkZcLATPm6nvDENBpn0IQXHNcJbmWCcP0syAxVyEWRNH1hK0DTyT/qhdzoU2NtuRiD9JnpTGXkBSNQROMkPPLm+5IUnXt6egU4OeNRBnPdbQVD6MtP6KkJeR61DxW6FkM3+hjM6uxPsa0hAFcVvqeuay4d9+HdU1hjVWPzlvLzFpsohbeG3dkx/N92Rf2YBLaHfMzufT6lI0d91sgJ7ylRa7hiO6KCMNr93gRa4eLbBbT4wV9pZdIN5tbXf5ObhAqQskeZN8VGRqb8xijl+6m7MCCgzFXPDAVdoCOOLv8yoVV5TQwWQ8fT5doyNogeebQbKnJ3Bpd0PzOMxEq7KZEjRzPmJfvkd0pQA6FefHmp3Qz4agcZPoWysZjUrb0mvysA6JSa4fafQ4AnllTok/O0jvJQiqU3XYge6uJMxZWy7lervnsOYaDMccb35f6b9Kzl2RsDKZ9vQbMd/tmllgTNCVMfoJ6xAI7dt7EWWTkIprtKGOaJv66KWreuVz6Fw8rpHTKIZXoSjYA3Ynp6iPi7qu1gevug/b+OUJ0bk42hNooYq68b9ngBIIAbSN7zDtgqZzeyitBn936TMybRNH4DtyV/Nw/baZGTufx4jpa8Pv9FDpHlRvNoe/XEFJ6IWZ7nrspId8LesirFbPWAsq4b7+Ff/PrWPYa9Rfaj7t25c0YTeuWT5atxspDXUUE36Ay5rr+ivBo8i+xf5unMSUf34T6nagYnrzyGk/btfAX/9IqOETT8xxTOJNszWw1DhCfLkUFr7iaiHu/StHUv+QcuiQbiL5ZatRKCHOZGneROWC30Si21EcaRzOdNljrKE6TBHauyDAMcox+K2vpzX66+8y8Lr0Nz05lgSe2PnGAL9dtafs7WO20IebLpcbPv7kU4iLeEO8eHNB0eFgz8KoW6KaIg4zLy7n6axKoFCnY8NgD6Zf1Mj70Lecq39rvPUWXk/nBgpLa6LfRIUDzVyqw0HX7TrhKFx/ctNLJ3/NP9zdtgHRUZXurEbJ+Pp5kZRNkjIr5tkez5e5qsDshJCS/3ow5OXgVnA6jy8wTFCU96ZkNrL3pBCu51NFA+rUgiI5AO/ddLX0YtBQ2Q/3E1904G/yZJhXomlmQMO8PnPn2W4SrnbV4k68e0WC250YZzPjI4tvxnE3lKWhAvMOF7H+l3Q0oEhvY+hdMDHxY7vvRZBV5CHGK0Mk1hqDTdei33oN55TvN+O7j3+HmPA/E6rIuoiw3Qnj9esrMZv0qp18R6XA5WR9GTDbyWbDaJ6ybwGK3JpHLWTgFApwe2kQ8b7OKJn4TKrjXNKG9trG5OGiyDvvn0pu5v6hccCXVRv1+vybknvVoFN0pgZocQnqRShtNmvbUYRUhxOzrzeLsupyzMeEUE3W67RHrya1F2Wv2mKulv3Ksta2LtFPfUpT7gtFHiLfKa8pDYr42h7K/vR8yKkspZ6qxqkt+EU8yhL0+MvfkR6g5KS8f5V2u4FqtPGNT77IYjurtRwynyLqpPCUN5B4SqbDJrwZrbJuCczGP7DixoOyt2hZlt1p/mWXgK5/NPl/uP0sURr6tycdhelvo9+sUsm+Om+V51y681ayna7tTjKkVZQFkv11R7uSawVXloCLS9Spuv3UQTbt2BfCtjWX/r7DPRunnNtCunJngZ+mgWTea9r/6FBYW2qaPF0URPkoY3CTl7S3rUtS0ZbzM57rrd49XLMXHp0XI2RdK/thLM4gxqvB44ok3uKOno9xqCTm8r4XH2mCDZSszTObbt283P6QthcPaVZn7GLyIi/dVhfJccjE/3odsWqOUgrh3ObMSlJe8Z/iJgqEg7GDeLD72sLJksF874l2ueikSKvlQfK8SnjTR6abjUOTIxvJElnrszZHo2HDYGyPTXaXqZmOrhIC/2CM650k0XYM+ROVzLMiCT3/xYivrJrTYMTWW3tEP4srvtqspugdfNE6SrKL7rWywUN/qiB20dYFsrUrI4+/3wnO8w1NYt0svsGc0X7+bC8THu8WuBzoY0543T0CUrIiT32nExTmLQUzDkR0GInf8yI861Ad7z84eSQ3ezJ2MXl/NJtqw/kWjeV/p8o3GGywd8zeaSeUIsCrHE5Y+WIraqnlTtF2VFxpcUgVRL3SXPW2y/8c/vP5hyypEzYMz+6HsS65bNwlFTwsT/6geI9qwuUXNObsSv/0VRm/vOoqkTT8zD8pf19eFHsDPnAjZv1ojm23hJYBwaUPMvVccTYG7kuTMbTDTthKOpsdb1UG4NCEzeH/gs049Ebze0/H2vi/4rDKWgDQgTOwPTqKR7X0VyRWJ8B8+0juzAiid9kP2apeVf/MPx4T4+HfPC2+kY+WC0M2EeXvyyYb12F/QRu5++L3bHLL0+sCA5nW/Z4f6947+jX/5nAsq6Sul6xV2af7hdTYkH2N6xdcRlU7zIU+mDh0PLO0Co9kohCQvteSPMQOUjs6e2E4BGT3EpQ7fLulosVoBp99aw+BbqULFJPh6jPmTDcjjXzr0j1PUUq+8K/VFFokVXt98HJZzaOOv7JjxOj07ripE3VnJ9Ym3xpzz3qpVEdafKid/+DMO088EsB87uio3jred3XUALW4DnNWOjxhINoXNUbkyIsx6Nm21pFcObgrElGyn7PPaiuGZDozWp96OJsMjd/R6/4C560tujNSyQS7fWMbyzdqXzPHcC/p6vKIrsD2Phu9fDO76PuJ5tQI0Pc/3HmJ3zol608esNxQ2IktuPJKKFoq4HyU+lKWc/8Pb6VKzBkJtFhmmZ8Ebdq0IsquPLzw+Y9LxFx1T8H6PO3Nk7xTx81s2YTxcyiWfVtF4Uq4YlNR+Ep8hLaKK+wAYXd1hXjuGJS/07ALedFIxOu3LaGw8DeB3r2eKjOWuIrw+WUDw+GKx3z84P34lHXBoYXJw1L4cR6bW8If//rGzkFAXeqg48gox5z1r0SySy0rWxG+CC7b1Da6j7imry323bnTMs1GLnWJ3CpMV0/ip6Sas66kyBasLM5wCdcwWi6e8+84BXgX9OmLaJKvQrLsTMVd7PZupurEgDcoVU9VORqPY1hju3XpN9pH44lNNnjNkbovZcdv/okF67wvo5q6h20pjxnDblTKEk02JeuKJMdLPZgQDdnfiKmde9iXBOnJVc0eV7PbthvjbV2jBAwqay6LJhjvAWIUmFufW6Kb90lv/wKKWaddfHvHi6FDg7Pil+YL309maxb/4wKtN1UdL/Wzg7j8fWJiqls823/noTMIz88KbYkw1lmyIbUtmxo8XaLKeHoXP+vLG20GOvaHafy7o4CbA3G89RjwY+xz9/V5b+N9MvfIJja6o/+rRZEWPCxzeygmvz1vsjc3m48IWbUdcHzZKNymHqlcafa2yQ6Uxb2za1YhupomYjy9qtIUhXdZQbiazH2HvzVLyHuG3yyOyr06/bCrrlyl79+TEDBWdOS+OWq8s+o2i7Kfxe9Y2FBa+Tw73+YJ6/t5RpPHdTDR8yzp+0LYFTM+QUT5e3yVT+nO6O6X4zcxNvvVm9z5KoN1+W+LJ9djxt7R4yGfr+6cnvV6RjzoseEDIw6qzAaJABZpUnJ3HwzejY3wFCM3nnZFMsLhwe58l2IVtRNxvHWTc2N8BpgAuhOxujTFBFOj/xv+Q9003pWVTwCHEOXGPwaGbULRqYLXyNnQen7PB71MiwwcaRPyl31R/IMyFk/tJ//Cwmx/L/dy6dPsyVf3l0ew+rrkc64xShZS/cj6O2YiqKEyotNWYN2TXDf6rj0RLZe6NC38CabzWeLM7z3wmeDDhtFuHeOzn3OPiQXJh6OQ30X2QjKFvGwle1/CKA1zs//J7Ba23agnuTC3a7nfuCiJMJGbLCop6J5kA3G93pKPQJt0ct2cR7U1LoutI3hijVasCRFnaEJcQGS36fYUq7ylQySkgGi+7yEXi2nvi3zV4eH/1CtGBjnQTCZ+MtRYW4fHZaHha3Y/eCPsxUZQ36Czhe52Ly//Bt9ZezFDeu4xbkqWDeP24VPrxspyCzZgqeVcozEqUzBgKkGaED1+TeXS/8yif3RqqKEjoNKydbLj7ua+MYp8RPyb7UlDdFQXiZNGi36voG0lzCpvMPjBrgy7ZFEXmCPdKnYl16ptsKq02gKlMh3/jtfHMVkYX6jG8bKFHk1i4d+B9eqWKj41IvJPTHYRyeOBQT3ZZI7q7dMerSmC2U9yzKV/dYzit4ye7O6bmbSvRuSAoBgGLe9GN5inaXWDBSzr/5Cj7x1cXPwPD51rwaZwmEV3Q5UWsVf4up1UtS7DSXhUx+9DrhDmpJfiO+e8vn8q+D1MJ1LOeMHWNtx49vE7pf+/zFqCblbMZQ2Nf/OPnzBPOme7OaOG///Fx+2AkUvJ1UkbmzS+ibNOoUMlCT+yJMVStS5P+zQ/BeV6g6f6uW8Xywug//HhBripP+SKS45fsuy2Svhf02Z4Yc5Vz1G1siFeQXNMfc0TyMUZPmxrFd6wSf9Qu67rt6V0p2Nw96djlasfUR4qh6AeTIrPyeD8fbzLqW/NPf3zLv3xVwlt9I8fHJS+X/LDQZpPqZF+ji7H9RmcKTv6Y2eKvcJ44IIB9oWdiBxYyxjiIcjl5XUXm53ujHPfW3ECgVmzRTz4Sl/yEyAo7io7zNhtyRx9hjXWPiomCPGbpwhMJP+vHVPvTl/zEvhXkzfaKl3iMhhtRexCn7Z45ZzAy8fVeJ/Ip9d8seuNrOf7cvYo4uYvM3tejMV+V0PzT65h+p3M0hbFDwThfbbxd9EJjE7WAzdzfmbUJ7nw6PPAMZ1Fs8VqYi4xT6RRCz847LFsayebNR2pQyIWYBfvA8v74+E77FUfmh6FfNsm1f8KdTyXbS+0uG4D7wrJpfk/ei780quePCcbgdvh1CproH38ZLnOFx/5gdbPiPlbQpHOJJfGy6ab+7Nvwx28d9K4iZladi+p7qDO9L/ZoFiveo64JDBZxDUebb/KuQA+2EUXu2yznC2/++WeE3Licsc9aHiFIkpAqifmOxte0ayBYr2pGqtWTc/FbreAaSgLTTv2h21xqR0UPpa0wOyGNT059qtCtpPrS98+ItrzdP2H8vbt/9WPefMYWXnE9EfVbZEZ35MvdhnrQMyf8XaOpfT8t2OlcoZDlicGfpMXoWbwjvOxoyXr6UcZdlx9PeLV/p2ju/TyFwbwcmeWnP6//vo8XeKfShpjlxNH8UZxcNph4wnl+asrp3j9UWfeGM9NTXpQMhvAi//khB3e9Rj8UiS1kD/ODld1PjwRD+Y7ySpIx7tYSQ/SZ7AGkctGn2Rhm07EA9w//2eLvIF7lfQXF2snoXHSZN6YXW4JbuemJsW1ig+e3qJEXfsSWfPH4yisbGPBapWgXPMpeVA1d+V4Cipf5+avXucJ1+0FUqNxserp1DEt+k4OUvrx5jF8AD+5leHWDypvGr3eHP71I9H2J2vIphZBtLzmx2SyiGdTlrpXTDIv/EfA5yqsUnafHk6hGNHg8N5IALXydHPmSnwu+wu/dj8y9On3ZXh94BbMaY8x/9i+aTwVZoSq/lpSzfeHx5HWr0Lv91Zhvfjmnt8l2QfyeEcPt7csplo8YHBz+iBFMEZpn5VXB70pqDIUpIt6TU6OctqeeGYv+5m1WVvISD8zyFr3wVHCDznESESJaYEyPy6kFOb4XjNRrLxNZ7gV/9Zt4jbVHwiPKU1j0BCHetfQWvzJFy/wS9TY4CH2b+Q7BzLfkKK1s9I9vcvIU8WpUrHLxr13Qx3vKzg7Ksz4OshwcpXmTY+ed0IZX7Qq6T/2gwuKf9oJ4KhTvEMbksB5azrt940N9q+/EPJ0cT7yT2x00EoTs9ofH/aHPAfsQsMU/6D43M7xA+8w05vj9qvz9+XWfY2Qs+P7pfkhwRvmPT7ZehLvRv9ye6DsWP7qNKs+YbT75inpWE7LwqZIGpSnBO1c5RoQbfFr8NjDWX50KXlLyKcizBgkrXJNj8957W6l2EnlwvgKddptv1Fi1LaA9vczMoGlTTn9+0lSbEbMvRoQmw21EUHXWEbc/XiIurD4hWvw6ZsFrY/QONip4BIPJbH31KBe9r8Mx10fczKkTNX0YynAT3RseRbUrh9XdL9CXWie6icQ1Yjc+pRAZnz1zF/23udSshSqoZmI8wi7jhR5dILoYd7L/1qxsqaqYsBO2GV1/24r3thm6yufFUlp5iYHm5N7EcP4VAVn88JI3XyUH5E1fioZkb0y9e57RvVPWRBXVruPFtpcgPNg6sXe/dzkFnauD430MolZHgY9uUSaw+H/Mjk215Ne2rqAGnbPFr+vG+68bISHfPfNGPfTG3+s3wpyyGW8HkpZbDKu7vLFUl5EGqmx8Nqqv/ERxYOZ7VjuJOHqtRJumxCvnpUbCYH0raKMZM+31Tvi/eubXHv3Tc+XEGjsF8+U7THMfJOPd6KVowSey1NturP0hl8ilNshh0Tcjv3rxH1+npSTzbuoumgn8vcPMU3DpTRAlKiz8gB2t1Spif3wOv9LvUo/qcmikSwp/+vJwewTZfP0qMfq43wfZr5W993kte5KS1CJER0PrcVTmElr8VLy9LX1GQt+sYNWxJ3F3t2+2+CF3eckXDJddGI1WUFlwerEr84pj3vGXfEzBr3UTy2YH2eBL2xytTMcl6iV98D+/FYH8vmJh0a+CkiY+yrWTQVFxzEv62t5tENNgpFsrSb2Gjr0LnUxTYldvM+M/eFzQb3q8yTG2MjSxRk3lvTU+Wfjn102c2vLpMLvM7h9jOe15/lSyNF0z4ys6aDOhLoT4gbfMTttdOTcfP5QPZLbJXrtsvOm+9RIUSRcHQ6URNJ3avQnu7F4puqN3Nv3xtcPaVsnyvuXw9/vDe33C25SX0bhQ+D99wVSFGGh72vsJagYs/7d+ssQTGl+2RaL+BsZALq0PeTSkmO7fKefcDVqljUZMgk/5RfQch0+05APbv38imjdBJIOVezoGx9SM8XMs7n/rKwznuf6/+bNqj/R6fpveNqKmCo/xtWGHPz9RjnkNxhz+GJHNd9cYj3kFca80eN1LYzkbx9D8q5d0Y/40QziQrw1a5WjkfvpG3vRspydYQXJiDzZfy+k3aKkyTOqLYT2wvdEp8xhEoeiIl67sbGIKFqV73SckiJzOYEhiF1R8MWam3ytoLI2dvn08jQferQ5KOUSROcOin5g/ERRNRDs+5cl6+cSMa9KN/wMAAP//pF1Jt6owEv5BLgQZEpZMIoMmCDjtABGZZEyA/Po+3NfL3vXynfuuF5Oq+oYKlYqkCHw+uEJQciZv9QK3APa885EM+9gjj7cFxaENDKJciveml0URbPuNz4V5B39+EkAmyAh/syrW7Nm7gpLw1bZj3rFHlfEdg5nIAtbdwDOEk7bPofnzHn/9VmP64x+bnsbbuOG/flkFzW/7paonB2D6BvAMj1mjYQ1wcbmsvmeDbX2pflQHNl9yXYRvC8v0iArLI1oVxxDu5ZIad4N5ZN5fM8Xy/JD62j1KxotLbKicyAmfkFKH7PvMRmB+HgxtfopRGeG5gslNY2QX9RVYpoxv4BpP61YvwnKx09aFjbZKW730hnnVy1wJ2CGiJ/isSrL560D54Q6NpEYJffDRDlp2NW35qrBJvM2FMl2TJ8VxxsA8IyUFaRRo6K9fS9HyTRWAPpfNL+yGFXyzAEjv0MJO1MzhfHEbG4TJsyViUQ3JIJsxgb97QLB2a0P25w+Bf/ttv07Dkrkkgiq3OPhE/Z/BHE+///OP2O/gMGZrTxmwlPn4iIrGGwKq7hSbsZwet37VErBD/m+91Z4/ecK3PFrwzz/x1jEDc1O4Acx+4oeUE6VGayi/FTz1YKTahqdNxbYzPolmYu+yPsJ5fpWHPz1J462esUFeZqgzW8X3uXsYSyKqd+X/OlOg/O8zBXecntBPVnWPly7rCCVt1OjVDwWPJkX6BOYanSmKHW4ga/GqoN7fNWovRGKrMJ+fcEw1lZ5mVWPr+c128M5SF7uBo5fcS7q6Cj7cATaWmnjz8eEGkL1cjM2anAAv+fZZvuiyTR1ZiMDyvsycUp7SPX18VDWkZ/Uog4Kmynbs1AM0UlEGEy97U+2SjmAxulQVz0U04XPoDMkQqxYHp3OTkENGKFvMV2QB7YsvRHwRMezZZdfLjrZY2LHVE1uQlBL4xllNZEsd2Boo8AmPKDrj8JjevBkM+U45SquI9aK2h2XuHiowyN3Cdq3WyZw5rwLutPFOTVxjNrMukCFw3BmfClUduONDD6DEuwM9w8AMl2ooV/gT1RGteiiHc+JcI6VPVQHxnGAkv66ZIxi92WF7j38BS3ORYnBZWEK+WYqMuTf3ATD5lSEmk2qYVClZ4X0nrxirwZRQcw04AF/uAXu7IPfYpN96OHKajoRCcMOl77IWPuRbhr1MSIZ1uux8eCPiSNNUPRgrH7w40FbqTIM9ycvl9sAjvN0YoO4qPAf6LdIV3jOZ0rOsPtgsPS4c6NUK0w8OkLdGb5iD60FMsZ6GabhARZZBF+kMu0912jj3oipRLP+IwqnQY8v6Psjy+Rehw02ow18fvJ+SV7MrAbtANXi++zwlaRlNfGuEwpsdwc23bu9KbUPVh8NbfyJodbhE6yO9lmtXXHXoLVjGp0O9B/Pd5CGMGrEl670+AZ4qC5SWZ0Wwfqh7bw0BEUV9mQds1MQIBRR1KmyN9w2bJfmF894JV1jQTMHHJP1445LkPlzyaqYXIbCNtnvFCEZIbsiwrfeChiKA7bM60WwJxmQKQV8BRGRE4qc6GYsKOh9G2QPhs6Zy4Vx3VwifqwwoWoIxXGf9lUN+sWOsOi5MaJefOChfiEmYTwqDFWYfy9fDwySgd+xBeKhWD0lafdGq11bIRHMQ4VHDKTaWVDRGR3rq8PjCbySkah4uDRhkWDZSTzGfNGDVwTRDb2EBEkyylj1cg2A/865JGKqHknlRe4BzZxuEz2o+GSIVpWDmqhHre6IOQssVK+i4CpE5T13jX3zFlqRSfa4dttRdFsBtv6l2TidveUnvDGq3tcKOQWRGwyLk4Dq5Hpl3IQ+Ga9SdYX5WXSQJwubtXeaDUiEwIGEifDj/rX+b6oTiNfBL7sopDchsVce3oObKdb/GGdi9yAPrRbqWK19cZ4V6H47apVqB+RhQH+wu4x2rX1cBdFAxhK+7qODXQrKQ+Tmy4fkgnuj5KewZ7ar+AAzY7ejZD7SkbV6BqjSwUrHu16ehG5xslXMvW9F1XzfGvCStDzjHDvBxVwtDlb+uvTKa+p7amjAyulvvK/yquo+xkRghN7ziJzgX9wmxmZghhzklhquopVTdu/ty5oVjDrtc59BPE9qEdfnpAH35pqLNWk+Wi1cgmIOM//f9Vu3CfOjLDxXNp/TEmBrlFsT8UlJjIaaxFhc+h/KzvmF1734Gut7nnWI2kUfPT2c0SAJoBp+NKJMqqv1ySbzShcF9u+uBT71k6YfKle/HZUf8Z8hC9lFPZyhe7BJfdAcNtMlxC/V67akuh5lHTN/eAeVoy9gRhGig80Hk4MzbJk00lbK5/Zk9bMDHJ9yDWOVyB8UMpqdm4ttIxnK5SqkMfYX9iNSpHVvAW+ZggOQ3vVyCY7mCi4BgFoAQySfVG5r5skuhwtsKNUg9sfWp6hFEbsTh47mOkkVMahusR9ulpwPhARuj0oLgODr4LAWVQebLbruvyHD/9gtMbVKp8HRZFWoFQm2wq57M4HWXFZJ3qTtMIJnukp5FKs64pBh6OJ9nsP2bWhXxE1ZzfQPG1FCp26vE6L6TZEEt6jiyi9QsWYvgWcDB1sH2986s7px7Az9GRqgjO5o36sHPgqLiNthKhGPJj9PCwUeYXbBe1zYjUUJV6SWLe4xB8vOYX4Qt4NufSvWibgfW67fsL16w/SACI1PwCqAM6wc27PATrn1wNZXvPpOpOzpVyU7zsQBSq8lo1zo3wI6TwEFwJS729k4Hxv0rIYCWnwNG16A3mF4EBKbuYya7NTgbIzWFFkZlplFHEXijB0GMoFpfnG2IvVcuuzdQ4WpXC3W/6jSsJwX00HlhSrgracL59vCewN+JDyRU6tdY0mFAEPh1jA0lfYL5ezqfoXq8WPQv3ubb6ymDR3F7Y7Q6d494uZbCj5ESjLhgHNpI8HyZ+IaDnq1al/OWv9Al9wqfD4HB1qzwA+XeiAu2QkJYHyhcDEtOTf7qvTFTJ27/8AOfTKEdFltKI/jNwAe12+et4+z1oCk/mAizMJTr48Kt8NtIX8K2+jtzj0sGP6l6oqe5/pQr88825M1mh1U+HcL1mpADHH1DxRdbfRnzz9ybcKtfBGpBHo5Dtb8DPxZvf88HyC/37sDs1pWeX47H1lm/5uC+z1zs2MIy9KWi5H/flyhC0Bobfm/uuehR11I9wO2S7b0U7z3go5PujK0ezfCvfmYkKbzVVDUVPvvHF7ujYw6MrXcVIvkuYEutn956TRoOevG9JbIh8CFxksaXj3F0oeez8DHGd3d9Qgo1TPUNj5b2veRKagEHa1Vdbe+FdzFUtflDj4nw9ebIVFYgf12KHc5R2ZJ4gwuvPBuRjNVzyGZuiOB7VjVqy2qzvRex2vLhYsfUeNVbT3zIkfLRHztq0jrwtngQlXeSNjh1hd2wNpMy/+EF4iixPfJKaAz++JUhpGK4JutTh2Wqv/BJFM7J/DV3I1SVuaDHRtCN+dw9/b/1QPOu/gLyCfwIONo213/D48kA3+wf3uK3I4VLeZHO8C+fTExqtva5kStedxGp1qcIEDVXCcRBJFGcJ8dh/p3MCiqTDej5pd7Y9Bh6DkbKIpGvmM7Ghl+r/P1kApk1NynJ9Q0juOEFxUFAkol/yxk8SHZGvbMQl398Dtx34kr6n3phMw/aAtanj03PH+fsbev/BEPe3Ag7kq+x1esebPFOwN5xgNDq7+CP75HlXJfGinKnh2KuHagTqLZH/uJDrYaFTJfgOAjUEjno3hbvH78fy9f1oGz1+h8/mhUpqcAhNybUb/yaFnokgp3m7rA2h6+EqBOz5VbVCf37fSZayxMUZzXEz1nwjfkqeBZsKv1HbV0YS9pVxQEyzUXUeQhr2Ee5roKzfCf4yAulsfqgGeV3IflkRSHwJr77xPLf8xxz4Qs2vsmBk4ZrUjvENUa34k3oFNGXyKrAJ5M8q74iS8RG0lsIGKdXsIBC536xq6rDUAuzaoG9Q2KsPtMu7M9vAOGmL9DXTcdy4BrJBHF/6yl2HIEtLBln8MEpoceovnnLCMYAAH4808vgXMNBn48uNF44QmyoL+X87q4xDOJt9umRJMm04S3400eeJcTeLHu5rHixqGJVDRc2oPwIAdRc/g+/vKXzKlO5v9meOo3Akvks+WelKt8W1ViKQ0GqSgg/+2xBwlzvh3/8+Ce8IyS/HWNg4mF5wtOCWyK1AmOMrLde+poqxhgEV28ZJ4mTveUi4/PgnNlsO08V7hbywscduZRT+5YKyI0VpNaOBMayrT8Q/J9NeCfdeUvwnlXlpDAVO5S8wdK/lxH+hndI8TUxB5ZVvQXdw73BJyYMwyw7yRP+2sqkj1RVk1mWkifs0wYTriY/MDZOYMJLI2+zSdXfsFoJMWHM0hRbhxok06/LUvl4vyP6x9//5cOPSDICJ6fxRvfh9rIrsQuBF2cwxqGL7xD3YoBR7vDGePt5d+hpF4EIE7mFxEqIBTf+Q62ncCzHpRJG6eC4CT5SMpYz9Vob7F7uHgHXaZJFfMs9vAZyTGYWcoD98SNbwiMSmOCVhwTQFBxv8wGfiSp4a/VWWnA4/3Ssglor2UfFZ2g7lw4jmBjJ6gNCYBY8ALb2ZGGz/XAzuJfImx5V0pUzTL6qcjvIhDwfqumtrurEcieqPPXO6szWG/iZMLjLH4ydpATkCKYdVLX1Q45WHf63/nKi9pcfvUFuCtdAcLVXqvZpH9J7EFlQno092m16hYoH6QmdN7OoOqY9m8vfOYCIiAh7oTqD5fLArvyHN9pWTxYxmVxoXVeZOlg9MQ4+LB3azqKhzhOuw7rpD/DJwJ3sT84jmS+vZyRveopwDfmV7E//7x1PJ9kjyZP1Obt3gGQZU0OoScK0y76RfxaQEPg4p+FQqoYJ61YvySdxRLYEb1GHj+LxRuApgGQ8C+4Iw0AsqWmkkrFaSWPBIlJv2GUqGoh42asQr3c4LWZ4SGbbVFSIjyynehrCZP6YuwJGhdxhbycobNN723tGbkwMQkrwh49QSGsb/+U7XaryCXEjhthBwpXNj5+Xg+DCJqxp6egtkmoHclKmH+yMau+t5fpsgPO6ULrFw/CH3wDd2BujtxOB5ZR8Z9D51ZnscWJ6i/6wnoBvtZasJFSSdV/lOuA190Hkm1Ow+eu8RrjFAwKaU4P5VikH2VEWhyx9+AQs0sOdcnqtO4rKRNvyVVShge4GaT8CGUYpyQ9KoN+O1AXb3TfGZb/CzEs7GjdOZSxirtrKxt/wUxbmcMq9IYeZkE1EGYJfSIxkkuF1Fd/0aAt5OPFDJcMleSvY9oWJMb2ICRRvdo11IQ3Z2l54GUzPJsVOozol/+uyDOxvY0KTXEg9WnN9BYP4YSHBFWy2PsEvgLmtejQOnGKYPt1NBs9elLDxIvpwQBM0//APAVedE+ZXnf3HtxDvpJm3yLMdANdhLrWRWpabfvXBbhlf+HQgNzbaDzcFf/rGyggFi+TbSCpE9YF210T1tvXhgGp2BJVCjbZZpKINdsr4oie/fid/fFnxi2iPHerkBs2rPoBpAFwimEJb0s0PgZl7k0j+TLtkDl7PEdTsfSazG67eLHj5CJavbdN4FcSBjve5kdllw0OFfLy56K6r8sEZ+dMb3hpfOAh/ozrg/uzoIeGL1wz0Dl8xeic5W+XcbOF31kN8HMk4rIXv6dBZLgsSF/ICh4P+Ev/0Atnzgc8WMbddeakqShHn3AdOE7QdrA+A0ZNG1nDzP3z5r/7NeRgZq5OQAB5udorPrtOziTh3+Jdv2CzrJdz4t69cezGhtq7qf/ofQbXqFiLtVM/jPMc/w/cj/VHvrl49OhbvHLyKW0NkR+DZ8njdYrj5cUjeOfUw4/UnAkVyIVY1F5TEeoMG5Ll+oadnnRnrTg8yBVuyjzrOyUGVCgYHRvbuSS65+5BK6/0Jte9ao0EUlGGlxXXrad10qs0pTejV7AL41B85xtgRvRVfuDOMmodPFqcuWKuaXAb+8PcPr+mfPjrKkb/xNRQyfRJ6eP5ihRwYWQyW5dgEpa+/0K4JvGR5vMUnSPbZh4CP8xtmL6DtYcs/etbUKGFhbkVwipr3n78J5mMEZ3h4agOSFiFKxtHcZ+A2MUjVJAwT1jViBO/67YGAJcQGM/xLANXXnGO1S/vhrx4ofFVr9HirIzBnp7MOuKsbIU4hXbKGE0whfrMv2bWJBmYgXESgd2tH4N5BYT1cpBWq7+2MLKi/wyyDVoaDqO8QaQOPLRRUmVyb6hfjX4CH+SOc1b/6ipaqNsu/eIaK40rot+E9+wU3BLTzsFJvdDrjz7+FWz3906sJDXN0l09F9ESbf2hMz8dJBs6Lnbb/72zx1gRQNzuBLGZ6Thbg208Ajvay+WFPbx30q60kjyyjrqOevQ0PLejL8pNeiAqGsZCuRN7qB1Y/rhLOGsdlkHpv7o8PAm7Tn1KCgIkNWGOP//Mr1LSj+CSrhTdZXYrgZ5VeSOpUB8inC2iB4Nc2PhV1FlKNy22FRk1DmF+fjTn4eS58x7dNjxAzXJvVnxVaaWjLX+RxqxMc4FZPKbYT0/vn/7yLm4gv22F5tpplDgeoK1jN095jJdfHYPN76f0kmF63uzATYl28Uj8IA0a3n8vVDhCKowCxxZASCMtZT7GJyZGtYhCr8qdVbew9nV85KlLYQONyCckhqyU2GJf9DN1g088wqEIWm18OvvdZS+Ys7crp8Z6fSnYAN7LCMCv/+KfcPNUGh0uNPIGLyv6P39ILCo7hdh4Jwp9daehXqPmwytPeAkOuKtRW1AaUSfWVldjIXth4bHrLk6JCvtHUpFFLbGMRFDkH0e5xpUdcc+E8/y5I3vwIdKhqOZz+/JSfXxmIV+uwXH0FInBPMht7J3X22LeIVtjO+ja3RDVKfnEeLqTl+0AdXbh6q5rb4z+8tc6CCVYjqUVY3cGEvrfaKA/Z6iPlM+su2tmqMpBPrs8g5BmP5Jt6ZusvNyLISfaNan/+fXjygr/1xCaqfW/zK1N4nViPT2YNSxar1gGmwW3F2lQfDepFLSdv+UjRI+iTLriI5j//xp4F3xt+UTEq5xcGVK/TFfz5ycokVh/EXWs/5PtJaiEwf68tf79gmd+rKZzliGx4pCSc9nN1+OPU6U/vl3z0Fs+QcE1JuHcKvJYkuamsopFS/ZEu5b9+ybW/GdQLBBkslhTZcDabDq1S3Ydk428w7oGO8c15Dutl1irlZ1Y6PvWE9+bGiS24PR8NhDQEa3DhYnl5Gnfq8s7RYB+zQHA0qwc27Roz5kU5Jxy/q0CdWG3ZPz7Fzz8dO4rzTaZoKHqocL8ae3d18fo/fbrVp82fcg2qqUcXZpxq4fCxzY0qnQzB+WrrGOcBLdebAhvYpo2F4D3QhoMNiAtG9unJYSIzm/OfacIouyF8dgOV8S9Q7OBsVy0+F86YzNpKdnIW3ABicXoIZ+Pk2jDYiTk9JjVv0M0fVyD85fhsBuqwECfbAaZqGcYnR0j+9M6fv0Ov+9oyNv4W/+lNqp3SMZzr3zmD71hC9I+PCn71dZV6VIt//Gmehlb96x8gSRcWb7YjDsJ5bHrqKKqXzHH3OsO95B0xos4NrDmgHNC7ucMOUF1Ab1yXwY9+22GkJKXBYj2N/vQsNbgaJVz7O7dQsg2BulfhUE5O8t3BzAVXfHoRxibxvfbQcOZx09ca419DqSvtrC7Y//MrdDCt8thWL6o/6zaZH4KRwd7Y7srZ/NpROF1G0CSfC+FACgF9Vt8RbvwdGy0ph3EFeaQQ4zMTeeufVG0XuNB1o4JqWng3lkZZYljtJEIG17FC1hQ3G6rpQFENyCXkt34EEDr7i7POuZWkSOgOfis1oO9Gjdnq5Vqm/LjmSM0raZKNT69//c0/vzhc+9zLpb/n8Z4CCFcrdyyYfrKC8KdUGZaDb6tAvtgjfnPOakxfMORgTJsndTPHCIVWxauop4OIEU00sDq+EwHjNk+IJokJDrHu6/D4vXzIcqqLZLkKOJZ/kdoTsSYvb4ZeZ4LNb0HgoIZJe3glNvB2UY+NMr0DUs6eCY/SLOK7W4vJ5IFeh/zLfmLtW5vhQdIDE5DhvWx+eV2S3veaP/6LjWs9gHEWLjYsCKipLahNstiCxUHLiq7owMjVYFfzG4AcpDw5qIQYLDK/GQx7uSJtSZ7DjE6uDKNY/P3pJ4/21pwpm79D//jF3/eF89vVt/4AKeezoI/waaQ+/dM7TJ8vNgR2/aQ4SSowsct6h8Jce3jrf7K/+g6bp95g3a1PBu2KW6SsYsOh0Ap3jFY5ziAi98M///+fn/hNMhHbJRGHn8QNMnyyLKSXxbkCnlPWCAbN7YRP91oZyH3WbUVWNYg+a9KUA7VmDo7G+4cvuiqW0+Y3gjCQS9Lq5D4sSDidweo3DGvP8MHmq2CYf/1XaiWEDqvzBjOczarDzpWkxvrw3QA2CHCoIHUXdu4DQTAanx/WYCgbxAaNC293eaDOW+2MFehxAE0eJ/R0EuyBQwE9gNN3UantqWXCtv4RgLUtIGokRsICFfngPC03ejkGFeilNTChucwcWf30WhKhuO4gvLg8PeuO6/E2+B6ko3ZJqbMIUfjnz/w/cwoEjvvfZwrCy9Olp2s8eMt5YTNs3k+Hvgr+zZbBEFvQnI+YXvyUer/tzBXwRduirvn1jPUSmZwidqVIDV0uwpmXZQQr8bAnbU7UkBurBMHObHXs8z91OPh5G23vhjTYPQTewDuj3sNKPP6o7S3GsH4931d8YY5pGutPxgJ9ecIgie8YH101HHlxtKBevCA1xH3vLfBnzUB4PEckX0+lR7xAraDDhxrFOyFhw/uFCjAfpBNS0h540+MSVVBbZBEpnR8ajLvLGUg5KaLHbvOE90tqw+5gRVg/RG7C8m02jvYBBlYfgCWz7fkxtH1pwqf1pQyki28FHKRhRbuyQt6oSwYB3Gc5YZt/eWAFR3iA/qG70/OeHNnop+UKxO4rIq6BeblWnjLDeM8fsb7jfslE7PUJTYkE1GTuOIxHTY7h3tXe9JjuerYYeRtL4S6QERETCtqpXnZiJa0XbN25DKx08J5Q1y2CUfnzhvX3slvgcNMHq+Eqs/UXXlrYGXKPnfv3DmYTCBEkK6qp4bIPY8TNOcgHokpv/jMA1dR0Eex4OaPHt2Yn1GmnDH6gWNEoTo2Sb4EUAbQWd3rae8PAtoteRNNSLOyJihey9PGboZU2B6zFoulxl2jMIbuYLwR08PWYN/0QHGQtQwo/BcN8ua8t1It6JTt0qA1WtO8WhNNtxEdF/oCVTtcc/nLOR4cxyL31tQ6m/BbaHKve9xoyq3YzqFi+g9Nmu9kcON0InerbUc97qgPfSgMC235hb3ywZOVFM4aKFTgEeDfD4N/5s4LhVBZoh2DujRUqG6hOAONT/y6GoeHbXA4vKCKrrwyAuP73oNyr/RVrv7PnUelb32E+vVpq83eUzJXvRsCpHgxxWuqUHC9cIjgfMx47W34x9d6Tv/1HHLgBg0pbD/umWxPGrxUl8zru4dYjx+ixLk4pXNUyAOeBfckvM9SBq85bj97vU/JQ27fBin6YYX9PCuz2mu4tnfK04AlHOg58mSRLoMl3KF+mO/UeXe8xj9wrSPJyjw5b/My/R4D2S0uPhLcvVbg0XJeCJj386CWVSLnt1xkOMo6IvOMtj+cesQ3fx3bEpzUFxhQZhwpGX/VEPckqAA9A8L/BpN6GHqY6yIl8SCpv/T06Wd7yF5XeQwPrybhD2BlOgAqz7NjUKU8TjJN9x0de3O6PVnxX2T21joip/wqXQUEIvK0zok4M83DZ9lM4T+kJRyB4l118bXaQy7f7rOLrOeT8z9dXcLlrKXKTZJj7ZKxAJYAFsfEzedPffjcp98PB+22zeaVKKuvFb0XNndsxyvx9Bl7p7ktN9sq9BU7ODOM5bom8Wrdy7nPxDBSBJKg+7eaBldTWYWXxHjXcgxIO8cuPlZuevuijsTlj9T/iDu7dlUfMlWQ2j1WIIMGfJ5LiHoeH8EMt2bT2FrW9lDeWBZU5tM5ahPHFEQF7v/sV+Ly0w05pXsNxzJs7/HhpQCQ2Ndt72nYDls7/4SMPTuGaQs2Cs3lbqDVusyaVs6ICHL4sakdHFyzC5xVDLi/yCcZxxdYXpx2UcI9sqrZdWo6iWj5BPEOXZiX7Dks9CZYso7ZCFchYyW5eq0J2LgSM9yqXzIkctIop/hBF+icfxnWuDvDd3BrEcrsd5nVJz1CanjbNyptczq4f2+DGpRdqe3fZaL2rKML4wl9xGh8P4aqDroCanzZkQefFmLinKMI1sWoyrvDBVtEQG5h8jwXGjSonU6f4pnLTbjd6PPGi0W3xK7G9b+C3Hx4GyqLqLp9yxKhet0Ky8vzBB+MY7/BpH5neAMmMlD/8uynKO1keQXuG6iRh6tYjK8nK+zNE+BdS9/2tPfK7rwX4+uSBRg1xoL01Px/Kc/8iO/2jliuw3R28aaJAcXNr2RT7+wa+j9mB7C/Gm81hCXpYlBijhfH5ULhYzqApjcEWP+9kXllxh69UCzESsymcFUfIIQ1DD6t84pYkrLw7EB47hDVkiAN1hh6CvlFM6rC5Stbf4yvDIO53WG3H2JvpMFjw444yxnsLJ9R4e2f4tBeDHjtjF7I9/yTy7tEp2Pnd9eQg6i8O9vf6iZjkqR4TMvcO3qJ6xv6GJ3PlLyNku2IgQAeaV0eOjuAJbbOyzJ0bLoPKXJgUcYr2TWKwP7yGvrDGRCp4BTCpcRqYUxNR19+5JR/pDw6KQG8JGB9hQq97M4M/ojCs5n3lzf6L+PCE1pwo/L4cSCIXdxh9gE4ge3xDtlydCOzBVcKX5ZsOrOiOKjxPVoKWeCTG/DUaDlrKSUaK7R3LRSq4GHqy98JIfx3L9ai7FkyK2cZH2/8ytuCigpxvc9hw2R4skOS5cqi1M0aPizOMM8m3/exHaqfhgS3vzM3g+5getvz7hetz+mSwUbZZ1iFVQtoettn4l0e/4Ym+va3/ikBldbf/8oUMCGe41TP6UId4WBCfrUCe05LqC9wltJ4jEYyjEdBLerga1Mqbs9zsUoq+yLpvnF9p5UPF39HcjrGxDArf/OE9PZrmAJZ3JnEweNEZ6+v1zNig6Qd49tIQfy7OE6zudu8ovw4jvvj1r6T77RairV7iS5c6Bst/6gzDcwbR+jqmbDFeVg+fjk3J+o7mrQc023BN0ith5eERzjp0zvDahhl2/V1fLrPzkeHjrhyR8tZPHtdcP2dZJacj/uM7/eV6usNCv38wemisnG+tpUKes1O0K6dmoDWtCzgLAcPWwwjC5fDKYrD8mEBRiT8l8a6vs5K92gjf9cBjo/+1VWhav5jIu7dsdHvu1cPyHp1oVj5FYykHmQP9naFtP7th+IsX7mvpVL+qXThZ233t7+abIuH6uAyTVEuy3P9cmeqdbCd9+PlZ8Pj6bPnVpSUvt7YOBkloqW4+GJvvLf9UVLqdjo3fekJ0cdTl9zFUERuH0mNXdfD/1p/sknth0ENy5kDw+srU9jjNOOg8yUH+NiBi5Zwm9X71crjFC5knszHmsRwO0G31Cz7/1W9wSiqgHO8AsdxrjPlkcS48DqNF7yMuBio1TgVM6d5Q/X0N2Kx4WQBlxMVUX48HMJ8sc1U2/kiP/o0Pt/qH4L3CEtqvopEs8Uu0YCXtDMRK9gK8ehtayHZ3HpvsXgzjymuWEsQfm166OzKYkasE7J5MI8WOjMmYiGYOg1cpY7cugTEI+TOF3+V3oujhjt48k7yCppSn2J/crzdx936Fghim5IDWlq1eoDZKeOZaqmllUjIkXM5AmvQU26mbJSyyiwIYt/sOiZFXs3lqujvsdCWlasuvA3N6VgH/2MwUiQlm68lEEYCR9UGQeUNC90yvICgOBvneH/tyiV+zpfiHT4418Vwn8+tgB2CrN1hDGJX0/dFy2N+1A4LHbVb579VGsPHKiagtmMp/+smTR0DEBww8+nCbFThV2VFrxPpwmBpJh54sL/h8aQ+MOdNiwTXpT0Tk6+82R8vR4Z++6d+VPiyRgRGsh1XDRrmnjBy1gMBBNjIyErZPxkvI20plDTfq5VhP+MiRKugc9Be29GfD2PulyIAsnISPiqIkyztbOKg0ry8+dlUBVuVyHmG8uCrGb9Cw1c+CM9x77hdrtHMHdoXW7h//sL1i9uiZFyNopbBASne5DSPtAYGbXiRc/Gq88XVQA8h2+UDRqE2AXfeMUxwdfLGjsQtgzhjfZeNu3anJLr1H7uRJ/uKZsEfrhSMvwHGbXfmgV10rhu37uZBdfEwd7fcAVPo8EFhar8Rut6Jh1cVRhaaIC7Tc47exyvo+AhueUbyubbK0MCfQuPtnchgD1ePP802Fg/SBJPbBxVi7F3EhDMWOrPUQgXnl50wp9OKGvdw4h2PC7+J/8bjPNI39009PeRWwpWcaO4iqQf74Mr6cDnewbvgMl64NUfJoxmExnh8fPkRtwEhPS4MFuvSEHe9Y1OCml7e6KCQg3kkCVvlfXjLpO0XQuI39hmdwWLtX40JfaCps5Kgs2cPvVgiK/kLPx9IIt3rOKcPrXhEm6b+S0LG3gSlCmXqlzAZatO9eDHeHFIEcFyE7L6kFDzXWyX4dL+GqH94yTMO3jkRvMcr59xR30APWD4l8YSYzsNLiTw+hmT8/PDaYdiTL5/2OSDQLExoHRJXXxKypJxlWsq5s1aFxi3b0ZHLMmL/uFSk5iQ4UiVhi7J2CGL6t2KRG7jXe6qcskx6P/EcUv/4NzPrsOMk5xEdsPSzM5q8tZ1DsKCHr4fFjhOctGSqCeP3nX8xfpzsAgq8F4lORgpUHkg9Hj5jYGrcz6gPMDtCzvZrIPpiMTshFG5Y3bNDTpp/W391z5Y3vkZqnS7KeTGWERdkAasYfzeOF3J7hs395FL93ZiJs9Qb+EJegtmUhY3ld6GCNRwkfef6cMKc/n4G8py6CcdQBysJjI278Fol50YdL/LxGYMNPHDUVN6zZfjSh9zp4GPfZN5nDqtTB0j5ef/s5rCcrSgH32SlYixvmzU1gNVClZwdbZb4wUiHgg8vHxGin+xdvWYJnDFTS/7CFeCscfwEPISjaC/2v3+B8VyU8Xy3CXPYBbPNLoHdiEgEcEcDMi6MJO07xCe+fISBfy+yVwWY6gc1AkgX+drYc74UjPZ52frnpk+3uypOINdH5gW65flWl7jlGL9Ggl+vRaA/g2L/O1EJ8ExJgy9tda5yBP9eqCOfL8xoruFxXciibkW38sIKzqHo401PD4OO73MDja+A2fA0Z+T267b2pM8LWj8/Df/jAc1FArxp/Llm9lqqMltrG+rssWZvt0xgoTf3A7tVVh6Uk813aQ+NK2OP1AIv1vYhgnHKdhtxh+av/JpSx6iO5o4uxxI8OwqULflRjvDoIUvY7QP/4lP/x9fXr5jKULw5HzUv2KZcNH0F1iif0FY0zmMXdG8HsKUNslWvBGmDrO2XDP+w96NFgLXj1sOByBwnN9TzwNZMteQ/nDtveZx0Wq1pneNPNiUb76eetGifYYPNX6KnPVW/TUy40rTqmDkqNhMdQsyHPXiae0vngsVYyCpD1uopPR8s0mJF1EN6rX/3npxhTC1sCwfcWIlbuKZh32LDh43FfCOAEP1ywmAYw1aeeKPzB8/ht/RT54nH0z1/6x7dzUoxojK9jSIu+XOH3aho48SxcLo+rliq75+YZjxHPloZ/bny8S6nnORdvuSqZDpo0A6TT5jlhUjPvYJT3CVF25sMjl3sMYcFFIbUj2w4FIdPv8LtoNZFiSQeH6uo8/+o9ttPwzhYMxQJun0dVHkcDufifHfw4bCSHERdlf9yfc7DpWXJF56vHmC9ksujsdKxpu6PHXW6hLIUTQBSJtw0PRmH3Lx7DTQ8dKoe2IHsFLTo8nEu4FC1//+efvtOt7mz5Au0rB6jnYdtYnwQdgOg0d4r0Cy1n2psRRNhYMHIzyaD7+WjCvWd/qdpp7bA4De5hkOg9NS9VPCxwKFV4fAk94i5fxRtT5WlD4Wmb9NhhLhwi1wkg98E1NcEt8Vb3fKzgjzodPvrPgDFIRATjHRDQfs2FhB3eMVSy5y0mCxtbbzydygLIl1tPHZrcwHJzc6hU4ulH+O55Buvl+TXhs9c+aEGGWM48fO5g9pwstPbbJILYFxpoREqAzfjzNRrb7hvg/tov4mI3GBYMHRtO709F9ubOTab47iFoKeGM6pQ+krX/dC54pUZInd/FYaxle/Gf/2c2mVSSF4tTEKP5g738bILxdy8O8I9vH30ch6zh2wIKT9ekx4NWJKNyPm6QLz8x+tPjtE9VuO0X1RAmw/qkdQNpeLxRjZZ0WGnzc6GGlv2fHxvOM2mrv/Umcl0Cj5m5aIHN38I40zQgEGO31ePtpL33zIex8t07LAqhREoKz5784pYzvHG9gS9+4Rr/8H/DR8K4PinpghiCexgrVPs9vx6h0yuHe3c3kJ34OwK+3m4/3PAKcY1Ueox7qQ1EOHnjLT7KVeeb/E/fIJG/k2Q5vO7xn36j2FyjhJHj+wz3SuTRT2MIYEykIQB/8Rkh/TvQ5SoScG+sG7bokoQTcV/un96nXm51jHSJKcP1pXyp97hmxsLdwBPCqNXw06un8h//+y6rQnhe7NiqCxcfLvZZo5tfkRCNwysobxXFKv+8eIeTkUGZZxgR2LT+9qoQrMDm/5LDaPUeg4MXSdt+UZv/NGBdZ1jAP/9aK4116Jx+kP/plcerlgbCA02EP1reqEVlxmZgRTnU/EOw1as5JF/HdeWkeKbYcstbuGivZwE/iu9vzzN5f34HfDc02M5I7dh6Cd8ZTKOnT0/XyP9XL+FWr/7lB8n0roUqaX//+Nm6ctsZeZItpNOglbBWqFYIw0Ih5TiUxjhPyxlCLpnQ/loVySjCXQY826kRXPd8ODUH+ww/8KHjs+YJ4dIcbAQ2PxSbe1YY61FfMsim+k3P4LMmdONbf/WVKF39Hdqwjp//+MnmLyT05s6tkoYfHUmApoyPr2QnNYp0IQvKtvvWt/jcPXcCtcOD4PF//vAe7j7U2Pg25yLwhNoy6RiJwSP593xP514T+f0cy/nrqY0i3D8ZEf/wiHsENjjRwccOCntGdr57BkiNRiT7zW4YKxxAxfKEjChd2m18xI+h0iRfeloHMsxH4+qKonxYqXnZV8b4pDcZomXHoeWH23I9nbwD4APiEiWdDwb1SFaBpb29SOnpbPMb7BXc1v0bb/6hN+WNMwJed1vsbfk41Wt4B/OhTP7rH+lgO/P+x58f9YUx7m5Y0Hv5HT4dVccTrrubBc/D/vH3/CXj7msK19f+S2KfDwzeiKcYbn4wPsePUyJcwaORqh8F5KuBXzn9+UOb34EOSXAES9Eq979+Anbf36PR2t7zCc5jIWFLHAtvrc6T/S8fPyZ/ZSxytUD5QEIo2vyJeV29BnZ6PeNj91MTzs+fPTTFxSTzlv+zaPo+iGcVkq4QQbKu88UGP6xft/oPvJE/vOG/ftaf3puIZxcQRr2GLco9GSPGYfMbowbt99ts+xZoEF6yYiL7vXEF/Ds5Q2japrud+d7qsbTK0D+EPTYvsClX/+M0cPNvEcjPJuOSw7TCPz127LITWJxGUKWHiL/UG0cNHH53uQAd71lESfdducT+vgJt0CPqebfSa2yvNYF5ciE2j4U5sJb7+fBHJ486uv4NV9t57f70LFKWbP/XH+rBK3kvWH9Hfsgc0qYArW5PDc/zGMcLxwhW0nzB9/LNJWTzt4HmBzPF+1ux8ZWLDpNCn6lGm4u33olPFLc9G+hwVx7h7L+aAO49YuC/fsPmR+kQFOmDuj4VPDYobxFs/QCsTiejnPvPK93egQKkv55KY658iQBcjSqOzRvvDdEJuOA7DxIhW36xcvr6wIj2AYL7goLZRWcdjFN0xlbZ9Qk5mk8kmxbz0b45z8lETmELy1tD/+pHQsLvkYPt1clwvGJkUEjUA/z60YCP3fcYCjcvV4Enf48YuRVnTJveAVt+YVO7k3JcVxlColZveqWP17BeHnoEyRI+EHjQ2iC6LLuA7SL+L7+MOeGxDgTrtJL9/lYAFr+eT7BX7h61+e0MrHJWdBjEp5T+5dOi3kMVbv0yjDZ/a/OjbPhK54H0/igNxP+IEA6vPEb7o5snZBc87xDh3R5bbv5gW/xX0P1lAz4f8yMbdblIlbpvFeyIJ8dY//QI92GnLR4+Hm3F1Ib1EN8wGk82G3eBqEPRiXOqeptYfwRqAS8fC2M79aWE8Ie6VTrTzLHG6HFg+4Nq/cXjxlfWcq1wsfnzFUCCKROPshDuQLNra7SgTDeWqxpWcMNPenpxkzf/9S8c4/TAanq7lYvxoDI4DwlPpK0+zpeXaP/VF+x5alSu3RPH8KOkFr1qeWawB16fYD72w79+pdByvwBu35cIG79ngyYj+CNMQezBacmw+UXAPJGM6qsuJdNy4VwwC9wN/+EZXZBxAE8wHql+eOuAX3ypBZu+JPOGf6S6Ov/nmQL+f58pUJaDSe1CGQf2umkzkN6ookdl2mb7N78n7CK1po/5UbFfwAtnaLG3TM89ryWL8vBzJY6fKVW/V1yypb0QMPpCiu371jMXD4YLH15/QnPtfBOWiGqsdEpoYyexu2RNbpEOaIIBYWekGD03XzjYPz8uRZemMRjyex00cxpQ3LiVN/x2OwK2z8PO837zmCMdI3gIuCPGxJsNMjGykz6bh+7xdRiuA6pmiJ9BSGYKtWG9AzZDZcoQopfwEc71N7fhc/AJ1rWDVC6edp4h+aQ+frxMFRzwsOpQQ0jDmhwdPXa7y3cQ9rsI7cv8Daba8l2llHc5WUZhVy5HUTxA5x3M6JXy47AKVxUC43Q6E2YeC7Y8IVKB3R48NMC9VC6W658V9WoW6H1CRclaCGwI54jSs5uqnkCWyoVPvTSJvLz6gY5Ar2AQtIzqD7AA+nuIW40tI4wLSTTogZ9FsHu2Pn7d9dEjWVhmEPL4jfbHpWBLMbkiXHPEYS+OlWE+bvcFap0IqToFoFykxOwBadidHuH8CRevFJ/wRWlIzzesDotUHSxF+rRg2x/LYPqq6PCbTQHqIm7LAWvsxR7eLbxdQFQuY27coWOlFfbK5zgw9SJzIGIzxd7bNBgR4jWGtsMrWOvLW8mO766CBQodwu6xUK6OW+5gqV6fZPalOFmVV8TJHOZjaoJ7D1ZJkVT4q2QBo0/EG30wXnSo7oiM7bOjJofy1c5QrDKZOj+HT1ioTCZAicsQN5f9dh/YvQDjJHvY8OsmXHZr58Ou3hnYEKS79zM/tQuHF/xgPAg/j7VW1cLTQAak1NHJmA0Z9HK4hjFRkFYa09dWR9jv1jf1uMeJLbkaH0AkDm8E3oNTcslFaEFPwzta3UvB5vd8CMD5hiSqUvgtR/U/pF1Jt7IwEv1BLESmFEsmmU0UHHeCiIKKDAmQX9+H9/Wyd718R95RSNWte29CFfQYve92gd/e+YQm2EyxfrfkAsts/025d8I9tCeDM9/q1W4U4CqAfmosrLh1l9EVES5wvageVW9Puxp/uq0gLyl8KsSrMp3eVZ+j2hwHrN3WWtfTeO51mCd32UOxs27+WOHKn13GLIWHaOp/MKK83XCyudb3anQUxYFyoymEnB8Tair/BmAeK49C0858mov3COtva7OtUecVU+r+A0F0TognOR6Sycs8QF8eKhI8UYD6y7jb6YelV4v1tlDWmFrZ6OH6k5BNW126uX1Mrn5O9C3u3FWUcmHbfMBV6Z34d5mlg3RTm/VzbXzIgUpeRr2poADnt0Nc6qNqDv3yoi94xMxr3mfT6UouCDpQ8czXqOtpea9RIDo62bnDqurTk+KAPFpHqtWJmc1K8HFhFTYFc1PN5/xa8FhT2GfJ30vKubAtP3p98l8E/0rGqThuJQQ3O8PrbxOg+dgeCp1UK8zss3nPRiv2LbTVXzdiWkGTTtdxbyFHijWsRG1TTahtbiDdgpCRbmem0uOLDyiX/YqcV1OLptsxTaDPYCDbm8XsXqjOM+j3lce20RkQKyLhAOF+OGE4Sm42auLVBd9ZETy+x689y3sfQHqYCnHSbl+NShZpIEi7H/PSR8enEX1d9OuOLYsNOUqnW/QTkbUOKHPH2UTtUdwq2qNvD5ifbudqmtSuhO1hHumLfnf2dCJ3gPIsnthtwavG1JoWFMRXFPZnzPtMy3vQ0rphZ3+z4SKnxqhp5i9k/l0m2UQS2YHD/ZERO//M6RR/XAGEx+qI5V/tpHNwOF4gev8sqm9s0aZn+0e1766yiJn8Is7PzbWBGal0yb8vej/fSyW1J48EjXTp+tZRRdVemrgFk+h18jYZPjDLtoF7Ym8Qb36XBMrquWeR5oRo+nTJAaxDvcFCFbtcwvLXgPZyD+lbODQRfwmXHu0D8UKyV/i0v6n+dmEHvGEh671sTG4rjI5+WFO9Hp4ZHcOx1e/IJVh9fEvEycs8oVf9ubNYtRqbcfMmoEJrlj1AbYyYZ5QJVI+xYBG7XqpJ3WcYjKO+I86tSOzxei5ckB62gtH4kKJeUrYx0j7WitnFZCDx1A4CeNbKJF4xVbyuhGcBjv95kk0y3e3x3V1r2IXJk6qbl1/NhihLIHfNg5gl6dGEskejLfHDLPc4Rf0HFA2qOjwQ6+X11Zz0GwsK8VqxcK1Y9jjnvxyolT3pfBo+6RgOPxetsXIh5/1BT+fhqwJ8NrsdyyRecJq0ZqFTrUnYLo+SbFqvShE87CYYpd+7TZltjWBS3uKqU9poXrkxoCxlI574s65+RfrqoXU2R/zLGLHpEh9oRojSWb2N3bymVgJrrF2wdHnd+GS6RY6+juiRXbYROV+bgwB8K8fE8n/a8v/3C/r721BqXo1T8TagieKQ5KTtuvn3hAboaGskdBoxeu/XOtUOTqyw+H7ROO0cdFAXfoQhq4J0jte7Ql/ym4XTta1+2tV0AHTtvPSm6vj8e4oNxMIjx6BOy3s34BoQ7fdbsqmCJB3XqW0Bta5P5mwFWjXGPM9adhXSBV+h6h9G4qJB3BFCSPHm/HhZK7D9UMw8m+bpeNB1EUI6b5jRV14n6q3WwEoP3sRZW1Y06q3Woj60CYkccZl0vh1uQPXviyz1PZoE35sh2E4/rPfetxuvy7lphOcfHo87uxL/4inMpS+utO0j4s9evUBqxS3Do3ayX9kxN5Du9DXZQf5O589ZwXDa7BwW/epvxl9+GMP2F77JRh+sjOt7tng8/Y1YemKl68tGLpF9+qTL/eNqHNV2/Fc/SLjCKa+uvxd0ijcxw3VVzjXRP+ivpF2RYGWvojlpgxwuh/xFolf4jEa+zJ+fxfrHUvKV7b5KnAu0cHDJX77SwNBeCDpBxUr+q1CjGThEY7tTqcC2M+o7PuTQWzQk5tmv0mluHjFy6n1O3Pmb2vK1QMvWi3ylSIpVezyJjwusts4ar5NJjwbnXjqw9y4m2cqWZPdW7BsQfjYRc6VHzSf9fCnh6yUFM0rbWTSpLwGtRJeY/rGy6bXpFJgofi/zGj+80yHAkNGDz8hluFdj9xMtUFloMY8pg913p2sIrB0sdj9WcjcP3wnAeVwG3C/xRme56ZHRHjfM8EcjksT6IgGMJ0bX+fpXLdOjbugKo82sNNdSqrzKRN8SzSR2jPVocqYQEJzdiGxzXUc8Px5m2MBHp0Ii7isxWvkXcIVvRLXyRrrfOK0bkPPoQtxOnLvBU20Jvur0/qs3mdjiKoFz1HhY/I1tRFPvKMKOGzELHGRx2Tj3CbRu1bPw+CX2+OO3QhuYdiX+e7/uqHWWSm2+Xr7LzAPOmWt1EhQEdGZ1/TPjxxc7odVerxc829v1uWlvmu4tOjvb611vzNoIgAqDaks8TCbUAvgnbaAqIV31C8Iqhj5NOVVqO7THzTIvUE28dOHfF3u4NJWvZ4VsMtvYTjY3H4kP8vsKVMpvfTW8ro0F8mgc2dE7S8us0Z8Gl8SI/uHP9Hhb1t/9E0vhLe8FNyrQfXzIbPvMj9n4cdsbNIpYMfNwItHcupKibfzwQrbtrU5/fNw6YBrNlSXBboUa4fo5oK0lJxQEf5OKm4OhAWlkwMI5/UXjb/cR/+4Hq+NOQKPi/QxEmPNguHCDajy0CcDjsnsQA98re6gzoda08OBgKdxuUKfp04yur6jDl7HL0Oh/pRniEYlYOGuY88MmNaA+hS+2LXGA5O6hSkh/rSXi7Q/3jF+2mQJ4yj3m2Z5Uza7VuVr+JhuC6eLxKK9mh4BedywzulfVwzU7AA7IkYq+MqVjV1ofiO00I3ZZ1NGMh3UNjyHY0lUm/DJmj1MOzvMUU1jia7271QKQaFsRQ293aFoHyQHudWLjqaZONp6LUYB0JVuYK6u04rvVsYXduqgwMrpXR2/nx+dPP7Hg1eq8l+8kB9UXGbnwo8kl6yy9ICVjQuKZeN168xBa8A/FCaPUkDN2Jo8cPBpYLM4t0+bKDfl/94d5/pmz8Xo+uahBicbwmI4pS5f558990BJXif2IllTE//DKCnYPPrPT0CInMhQWX0KWjie7iSFwrC2xlvpHj/rqpAXS88C2/sGwZW4mAtym+EeCr+nZsxJQ969eLHp6bdO3e9H+4bHrlC8+S7kuQHNvnlQ7Gr+0H9l00t3LXsGafpO6CXkw/n2OeSoY6YIXF9W78i1Wgsctmor0RaGNR0KR5iy9mn/dsud1eGI9pa4t3bQIQ4xeMfvjZ2MeiS4cltlRPiV1N2OZWSg2ZAcz/e7bcveYJP3k0Qznn1PAP4fLOkQClxIsJ3sjk/P0GsNoFwNz1VvaTevUnpG4zWzipEvbne5X7eB4cyxiP3tWfTffzIDzKz9gkI8O76/nwkGfmy9g2AV2Ni31B+gnudN5yad/eF91jytb+GnG/Uy1wG/EiIXjXPN/+j8W7jmL3ttlvnaRljAvJ19+Kt7y0fiZB3iq6EAw3zgddxXtgI6V/MCrgyujsZbd5Yzifk3cm2tX04BlCyaj3jJ8eIq8s+a1BdtPj0kaXrtuRBulAJA7kY6fc4z6hFgYFjwnXu7paL7ZIkWJgXOsS9ku48fTfICFbxPzsna7+Xx2aii3RKcLv0XDgFcWTGWrM1+TT9mYK1cfBol+8HqtF2juHHSCfrfOidc/0khOy92snd4n8W/9qoHnbQyfUo9IHM0qnyb7aOjHvLzSlm2e1SjfSQH3h7IltnIZ+LyCrPiXL9niB4xvQSz0Y1gjyh+rPmXV9fkC8snexHWPoj01FytHnt4GLHADmk2/h3KABX8o1FGWcm1/6JXfvsbsnOzLjB51+fR3PVawu0IjbYkByPUYHa36nY3Z3b/A+SwjFt+g6vo/PXvzC4EuflXK17fSB+GpiZiH167iebNqVP/1bVjUG0I3hLn1gkWvYpHEt2hAexqjY7QRiSsisP+uR1ShIlaW58lWraiBawgcr9X12A3jx2+QGu1dguvEycbMwRhsp13j19vKsmljvQ4QR3Akpmxfo8WvCpGy22xY4luHbNqvvj5SD8+lL1wD0Zeie63lQRmye/H8dHMsHwz4xkFM2tV7E80H1Iyw8EfiLfqLP4zgALXbZSR8Npk9Z9HrA5XyCjBvvkJGb1oUgyJdLlj02k01xb7Wovft67Hl+kgaQ6X90/8sfJcxF2UpaP78qMWf2qPpQVEBwU26kg2Mq5RZX99Cb36aMUehZcvvBDeIRm7G8Po6dHPrCoq6+Ht05ZYnNLrIbeG3xRcq+33UsXDYHUDPyhHLSFVt3p78G+rsMGXm6mZlYq+fFLRFjk3yzeLssOJmwfA6TcwtVcdm8c0o9BDQmYRH45cN7sFsIArAo9psjGkfsL5BdyPz8INGYzQlrUHV8Sy96JNmXjo5GtxQQs8DseeYR3zPmwY273FilnVfpWwMp4uaqx+NlqXtRNLj655go4UfrIOxyXr1Nc3w5xdNqXxO2bszRIga70q2To6zIeGar73TncWOZ9ZHs3MvRe1iOMPiz1TZrKyghsfLBEwXfjOcNv0L5a+ZEvc2/DIq37Qb5PH9xvx4dKP5feUjnMf3h2oV/3VNstnNuu7QmuFEnLrxogW9Hu3GA0Xl55Ky/IFjJAmWi//8UtGzoIbO9lMWD0GbcWbbJUzn25V5KOFpXyh1CCf4qWzjBlE2Wdg5gPDbqrR0lOV+9Orzx5dx5298tPAxETalYhO8vm47uvgjIAmGyxxTtzrWPvWLin7QsevnZqZSyjUNtteuIGSr3aM5M1Uf8tbjdO3fD+l4nlMJnSUxYFb8jPg/v6C3+pB5H02InvdIFP/5CdZfPq3g1sODfWvan+6xPU6R5WtLvcUgQ9uN29pqYVobM/O/uWNL0ofdkFLnGouuXEZzrhUxrIWVT7zD+5eNpnMLUX99nYgVik01hnLyQtfmhol1uQUdyqLuAIPUf4hlNNjmycYw9FO7fTHfTlfpeC4UQLlIY+bfd79q8a8Bot18oNruuUe8fNsv/XHrJeJJ3dDNDTcE3VRvNh31duTTM+tqMO33jxh9d+QTEq8iGtD3wDCGB5+1qymC/M6AbadtzbnhLHtj48dkCz6j4ZFdaoTZqyH+2cF8Om+TC2TpMBL72lXdgq+nv/Wl3NhOUbvoW7g2F0xuMkao5zbboT8+4u0PevZLX28RMjv0GBEf12i+tN8C1Y1jkNODu50kBZmDFrylK6Hj3agZrg+Lv8di87PK6HW+HyC7QsoiZytHo5yeLGgiZtPicv107DzbLkq2s8OM4PxGUy28YvjDu83XrG2etmGMIrku6d1bNyld8gdO5kPBYyvVWb/wC1S+9eYfng5z88DI3p1HtviNS5/BLATStz7xF/1HtytT0/78/nU1Knb7lFoHAl9BFGZpSBd/pIX347HGpbP3Oz6rbwP+9FDwsi82j+V8/PPHqXiu7HSW607UXAhFKh2uRifljtejYwEj8bwPtidqWwZchx2Q6Fd76bpFgQvXqV1mMV5SPgxfNQZ9Eh1y3GdVOq4/gwIJPQ7MgVrq5qhSffiq/I0PHJxqfTkaO/gCASovb9zyw/KODvzKF4sKdR2Jq/NrRFL+frLQ4q9qIvrlg5p7+6TyWaiydjy0DqzjwiRW15up/LnCC4wpSpiRVmU2x3JuoakbMTmU9tce3ft8QHkkPJd8OaPxe9su378FZlbNB82iukrQ4qexWMleGb/Z6+JvPZZ8eKRjtpVbNOyuKZ6sEUdDJcEJ3Q8zUGXxu/m3SyXIwkdMLK3Jo4kVyQynxazCxUCy0TpOue749ZPceo1HA2rLm+53uxdJ37WZ/dQsbkFr7idM8fEWTcYvdKE48ZC5erLJRFkyW9jv2vfSW33HuXLjPrzNU00vbt0teiP8wE/f+1S4P2w+p3svAe6WHssWf/9vfwVN8yfD1OXvbl7wA+hea4gh7dpuPqsK/sd/bttPFc15esmRhHPCHopkpfywySxY4o2OSp1WI2vsAkzbHZlFv7tIYup1hw7T6cKcw8RsrtR1rYfLO3HBuCvQP76ZXg2J/eMTZvdQwH+bK2Lyp9NJjVspqP0K+394Py9tECEPXiF+7Y0qXepdjxa98effRPL1GIx//ivzhqGoeJTHFvShSSgvppLz77O9/eUzVtRfyP/4u25AUpHAXr+z6SOsY5A9XjH8u5iduM7FAlZ+7JHNE7mcUpSLsKqWd7hq6djl6ksd4fU1RGKjyePTbF5z+DqSR0fiNHx04tSC+1Zg9KPeeDXZv7uLFr3ODMg36SivkAsFEXQWPs11OnrvMtZ/zeVGruOu4Oxivwr9OiTAsOlalWg+aQGfTbKjKzofeQtCbMGN7UOqrd5vm79FLfnnh8WL3uBJv5lBI3hm5q2V0cjtb4Lu+utDzFSWs3b/SmvYFe2JmbU0V7N1Fkpt0QckygQ3k97uTkHe6D5pJatStPjnLzh/jxbb+uiNJhJsWjjy04cKqvKOuh9OXvKl499/fsQ/vbCVUxnza2d3/Z9e7zf+k5yG55rzi90WEO7ZiUTbyI2mTZyNkG0+BT0zZWv3/fTTYMB3kWylbMxGF+EGlCw+sU3jPZc+z62F7BZ8Fv5WdTYe0byDbL+/4qqYDC6vaWSglbKT/+EVzUw1/NPjzCjbH2Lf5+um8683MjNwztE0Ms3520+jwtXoM1oYRq3fk9ObqkJ+zebpY9606yq+4deyH0adb5LAmsvLbEQn5Pxy3h5gfenWCz9FEV32/2AVtgULH4fZ7gklLrDLVJO//apFT+R//IDExm7T9X9+WBnyDwuXerr4Rzv0WZ8NYrwDM5Uzxb/oi59CttisouEW/SRtqT+4Sw057TenuADJUL7kTw9NfvyZITHYkUT37ldR745EVH3qjp12T4qmQ//YweL3k+As39PhMucf6M6lz7bH6lxNnmqLEDjGlhxM3ar+/B4dNuHwz8+dfxcbQ93ZO7bZZ1XGT2U3Im90nn94g9bG49KC2Lw3VLhc3U7OH26Mlv0qtu3M1p6RQVo079hAtSX+Zy3b3IC9pQMzPkLSyY61k9BfvQi2jh4tfsrp/ztTIP3vMwWiKrnMq5ImGs3MCaGEOWdRNhzQfKdqA7K3EVi0xzGajzRa5mFtv1QpH67NL3sj15WLdmHmuw6rufsIIeoeD4/YtjxWfMzfFqwSycRdss867laDBXG280j4Wm86sac7B8w52WIuPcN0Nsqdo4c3+8z8t1ylU6T2FvIkXNJO+tnd5MkfCz1i6UNinxZohCRNwPw8fOJcd1Y1J+Ne0cbQqJmZyUI1hq4WQ7TaJswTD2I1bn0Fo31z7ag8rOO0yU1OYUckTFUqt9VYWy8HkiLYkUuy2nUjOd93SNlXK6yOpIkmiRU37ahvX8Qn8Tfi1Yw/EIUvmd4ifeZjMWgnGEnyw9pr/e6mQHlboFRtyvBY7bP2YXYX7dwsp9UrueJzZiEDnuWvYNH89qrRE/0c2o3pse0jm9Bw9FcvzTG+BAv1Ymg/1n2J0sv5yXD0qbJ5XCajnfXMx2UrHdA0u+8LnNTSI5uDuOvGnl5c1HW7mEQ2ldNZbKoS4HOU8CgJMeIfJgMoWy/FEormil4zX4BTUebMUNuomv18EuGByMzc5gxRez2JJ93oyLB83lWU652I1sK8J+H2OGZTq+w0sCWlIEV3CdP510YzFPtvjPO0ULPRKPYjnGVPxXJAJdTlZf/SovfrRVFVFumUPZEInlEgrPfom/6tr5bamsSsevNDk4GcBB0qqafrdHh3PN4vvXI6CInD29ievv62BRJIKglMyUCieZJLwFTGzE1fn2g2Z2sES4ow2eBjswx8DGq4eusA969ktPlnu6/heDjFJJoPy+yLY6npg9ZciCOdWsSxmlHtNr80ym+sSsetcQLknH1M7KAsq7GtZQm0ZGbM0KlXze9T5sLxWu9JuP9YXO598YSco6nhVRVQPnxmNwG/vEws2FxkznfPzYy+Gb2xzWv3Q/xXRjskfOsPnde2Zv+730zKEBaWeJr99qHBAxIgtr7fRHO5UQwQlRHIJpue/30+Y2jVJEIPxGncHxVo2DpiWBL0jIrmWOqZu3rTmrdxxE6a5a7GarVh8Zs8U1p0vQWn18qnWdG6ES+X+bcCmHtsmafpLx8N2FZfkWyt468aXzfFAIUrNjtahcWnJMIhODtpRYwDERE/iEKOlOQdMOIUCR8SaTPCpB8R1X7vMuunwch1dyQRlt4K57+rFsyw5D/uMKurSYoVA5KgfxPHl5XoNzJmgTIcbZKs7Zs9ZT7VEN3c0q3+Hct0lttnqXe/SGHb72PLqf6JE2S4z4R4rfXiv0+U7ZAz2m9iP3HU/Ys/lAsr/Dl/XvbMtI8Enxp1GMl9kk1OYwqIFVPAsP3yMpq6+0T/lYeeds9TjfhNmXP4uvEby/7t2E2i/ZgRJMKR2aNy6/h5/koIM+VCgvi6sTmJ3Bxu/ONQjpq1PZb78wwdIWdmXXCdTgd0vWi7+6olONl03Wx4dggOEn9kP3oYsXj/oyDZWGeR9Ku66YaMUV/wEIsZmNGotT8MzaidSIzelHeRfOz/1gOPZnOoeIReJ/29fhypYkTLPPtMaBHj9zeen9fIno/UToCyA8doc/aySQ+uI0hO4mH+Tr7VrKO4Rq9esNjWy8V0PA826Dm2HCo3MVT0K2xdWI36nblrvs7o7YxOKN9nHxbsJysdd8OhXt7jsZmzeu473s0ioOnat8Qbn53NLQIHtNoNAzGVqOWj39MY5XIUMfdm4pTF8DxoPjt/SHgSSnvJPxEyV38zQzQzPo3sa8C0RW9i5UmZtr+dIKId5g6z5zvNZiagQoUmD1kM/RXN+1tSw3gYH6yIhRINVy0YtbFNDsS+ZpY9r7bCARa8Y+7ut48m/Pn16J2VIhaCUY/ah1ldoPpsAna8r+RsLjejpWeVdcMryXx29N4OFiz5hudO4RE/78xCM3d6yoL4+rap76kv1POvyoxEltM+as8fMMtApd/jG9JJnfIbTAUwYs/UQDyrtBC2RHgxy0ktzmMl7yFP8pE4dj9FkxhNls7t854Y0zI7pm/tQtPsOiBLvbeHzP8osHsYInPZYbCb6NJrf+tBu2vSIH4Fw0VHXs6s2JUyojsn3WmEfQriOnNUid8vLqDFg8ys457bPTMDEdXH6kHV1VrjU/F4Y1At+7HUS88e38ibEbk5P5bdPm00TAGy4KEfXFbIhHF23pm5JieqTTYNS6LJWF0UeEQ8x+Nj90QTuuIcWS5VWJxrCZpda1CQKjgpc4gY2PMMvaSpr5RQfn6uuuE2sxf6dkL4h3cp/z6cHTx6OybO3e7tceMHEgjbZkOuzvFnDw918oFeRYGQ6mam4vfr5rANfinBLv5EXLniESpofeKxYNtN5VxompJ8A+Y9BZdP6nS4oSU/GFGrS/eeRG3RsElNXGV0KyZcBB++rWqQu7ha9iyI5cNutavpKju9s1HWuxI2Rx5i9aRs7bnbryXUPe4ewzpVIvpXj78EHZnVpquM4aax0LVxVbIdBMkelfe9hmtx86lYnId0fOmnC7h7683+6qFUX5sewt9Wx7N6abrxcRguyFsHJ2JvrXPHeKycwBshI+Zmrrq50VaF/AumnnlpOEYDRq0Bw0q7U9D2QzVd17qPprB08DBbczSyPsihXj1W+CtwqFj47iwo87Inp8+qqMbyWN8gUX3EjoNTdjTu78pffSbeyTMzft4FBaip+yNRu1PtP/z7Fy8b75DZdLBMX/fDLqK68tRSdvG/GNi1cli4alE68Olt6Hvaa8TiwCJq2esSfcebxIyj6Hf9/pLvlNRa9yw/s45Pd3Eo0cS7CCvqM0mZvTJq6LR8Jk7F2m7qQruBvT3ssNxQs+N/64fxuyBbX1x6j9/QS0OX2aGr1DxxmUS4+KsveIr3Hf/DI+29Fx2y1IuUbz5ag9rocCIb74BshpvS0K/YvzAHUd+evWkO/76PmTvnmP68NzqhNU6mP/5bTb/CAfAyvF5mkX2rT5meXFQdzRV9XR2oJq1sKKKi9MM/cIeKfV5X7Y9/sAzkazbYit6g124jMgfdj13/uGgGWjsfk4KnuNmYtFiA7ybImANrbg+rfhUiff/esy2OSTSap9ULssq4EavIr2hMDfcAlXRS2dY0m2wSRmeGP367+qlBtU5IMoLwOjyZ0S9nJpDUGDALypv8rf+orX4v4PZxz0xN/mXj/cwttOgBQvjRQi0SEoyuxcVnt9Hxq/Uf/nVdEjOsfIeUXWIuAqB1x4KvpGdzD3qBjK8UE6++cpu+WWPBp08cqppSyZkjf07w3Boxu2y/aTqo65+Fmsc3I/bx/Immt9q8kJCLHYnRAdKJ3eEEhn4wyea+ktPe5UEOmTW3xO9PXddv/THWL/oGE6sSzzY3Kr2Bk/ry6OgZe86LuIvREt+4HoVtx+an0qDssnuw/X0yI2k58vHHB//xf0lePSUYHI1TvnfTjq/8MFdvtlszO7mJyx5qJEDKzzEVR2Fbfc8zk5DgXwxCYv7MRr//xPoxIQrbpnWctdkwt1CVa4fKqu6kkhMEPpKCMqaCFD+jadXLPuRJMeLVoG+6tRipBoSbumf2RdXtf3hljSggGxPuaLgHbwXY5a6RRc+k0/ZZuCiT7xviMPnVLfhdwHfdIGKd+0fExvUkICaWjBH/hZGY0OyDhMSZiGtQUv1ukfhC0l2QmWGqnj0ex/0H7qfjRKwFn352pZ/Qeku+bKurcseiz8tSr7/Qxnz5fdzZ8RPaq/maLB5g9SvCWoN9aD3opCfHaoy8KQZZ/hbMy3AcySseuqBA9cPacAnQvDNwo53s8UXH6zeJRueyfsG3DFwW0r6LJol3FoAf3/7VGxYrOYX5dxkZnv23PcMuBvjTB0WpWqkI2G1lZO8IMQuRII7EK0U7/74m+Mm0brxQC/THVFlUS3Jkc+YOPdwvxQYr692KN+tvjeFxrp9UuiUGX/RMA4mdnYhbTr+IH1TbhZ2yOmKUcKOSvueb+6c3WVw83ErcUBDhMbjLbC8ou0EuXhQuTVOxZFbLlLPsYwHHXkQ2/NFXs9h0L9j9RkbCj/qsZt+bXvB7pE+sEvnBeQzP09/6MyNeZl+FVU9hVHMNL3q54x7ue2D1bkXFMO84O4hCgWK7E6jYHfWuv/yEE/po15KZ60dvj93lMmvZTAyqXFmUrtN4E8IeP0Jmufc8m/700OcNa5a9bwYap8EvULNROoL70ePS49RRuFexQaxhN3b0flVPCF1Gh7i3xEC8DI41BI+1y6JtOKKmbOteC8vPmcTjWky5XP4M9SW1nH5QvrFH1/jW4Ie/iAo6VeypnE8KHB4Xg9lvcx3RtdCKEH8Mi92tY9BJwbWPAXnL791u5WjSg/0I8AoRbsSbV423Vj+h8rS9U2Svfoj7an9Cdwt2zEm/c9W/D4dZe52uNtko6BPVrA8KNP5IiKV2a2VraysY6G3MGlVev1X3FEv1hKrsiBmpAszp4zaeIKjTmWwtR7aHbm0nUG3kK3NO6T6lydkR0Gu6UGJudkLH23zdINu9CXS6T097PKcrAzVMjogT+EtvUuO8g3x//eDwdxjQbDviS+dXZceIffbQfMh3tb7oE+JluI/4UPAW0DPrcBNbq25uDk4BgXRz8avIVc6d1t8BbZc+icS/pUNe0PiP/1Fk03M6/vrE1Z2nFuB19Asq5sIk6H/5vp1TpxK/Rlroa2Hck+CdTem86ekLPSynJ9fYn6tF3ylw9bV0wbc+o9uDB5BjwyGWuVlF34BUFFZWvWfHTWhWvJLSGBX5eYmHzM7koUANxLtyS5zvS4z4t7poKP5YFnNK6Vj1idfUcNTJi9nyuquGOCpmdFbx9h+/Yrk65Tpm2oXFYZos/O+kQaU9RRa0HHeja7Ba28AhILbj2ylXru4MytcUiaX1P0QldMew8AX8vsUDn0NfeaGg3s/Ea+K8G6NcfYEquCnZNnKXzTzpYzS0t4b44u3bTergzciKoor5yWrsxjbdhsj4ijHx7PIZTVpU3hDyywNzFz+nT+YGg+1eBPJLN1U3Z8PcACZNQxY+Z9PUchoUHwQFSyC+qlk0lRdIdqyTja930divovGP3zCME8vmEO5dqLRKXOJtyubhbOZo8V9Yqm4De01lc6d7B/WDb0XNowld3QJYkB6IFXRl9IHDtUZMnUWy+Rl1NQHbjnC4OhOdXUp5P2u0/PM7GN6VZ8S/G/mENHyycWOOAxptS1p645dfLFeJb89DIoraKTC+zNaNueMXn8WgzJJKDGE6pU2e+S3MgvZmjjdu7dHfcKyr3WqF53O/snn/CnZwn445FZZ4nRWF1OhwaF06ncaU0/LcUrTEJwtebK761toXsDueHKwY+dJ3ZuFT+qxFLFrim2/xwYHj4RCT0Nwq2bhWHhoK2reJBXt/4HQ7HDSo3xOh3Ixmmzvy5/CPT+2nbLT5yreKP36M//lbsL5QFB1Ig/lDonZ72ZgtOjdwX/jOPR3cg9GAYp2veNFbqF38QMj14sY8+NnR9GNygx6n55lE55/CJ80mIQQP2aXv48aOJP3j7PQ//e3aNxqNJ8s5oV39aumY11X2h5ew6HkW1wJG02+734FV/q4sXv1CzoXZdqEXfzYz/eKV0qfV3tSj//TYxlBJNC/4qS36gJgvpePD9R3kf3ycuGt+TBc9fYJlPVgofPuqW/wHKPTGYKcw9PkS/xj9PZ/LwrfmP339yzSDbRJ/z8fjZi+ANq2OLFCsqRpP+qpFi35kOBjv9qzAIUb6PXwT8qyXvg2sKmFwFE6iae9mwx8/3ZTPDZ3vn2c3l+nJgSryCuZkYNryXz0j9rNlQTgeoz+9CbvqXi7P84LkFbdcrcj2QMz+sEnn/DKfoMluJRYDP+y0I7V3UI6RgFFYzHazescA32MW4aZJWDWBn8ygytxh+OvJqPcYEv/qKbFfx1M2yePxph+Kk0Tw4i/8orqif/hMclHdpUu+X6DY+iVJdSPpJvYyAJ5SlP7xFf7nf4GkwIvZwttN58VfgFIuzyz53b8R/2yvNbxbdiNhjN/ViBQvAf2slHS16N8FX3zUus6ehcbZsMXyqhqQHvwP/UmtGE1xqhiwv5INRYu/XydeWev6tDaZ53dN9NS8bAb55f2IU5yHbDYsoYTFT6frrrft/t7zA5z6n0I8Lw07bj+/FhTyaWIxPtNuWPj4wmMSLC9+3ZezE9UggSO7qHPNuz/9dNavPgvu53X6zy/QX21GNnMUpXPBxhYyvgvJ7jUraIjU2kLL8ycGOZbp9NSWvnpqW+Imz0JbbOuVBP0mHhgmvpa+q+1P08x+PhPvKFG+8NNan5x4jUVaPdN5iXdA0y8jxClmNDiNCf/uJ65km8/t0c4hXYW7pZ7t04F6uoH2iSphZWh7NOmbrY8WP49t0uFdzX/83OzHMwn0G+Xz+bg+QeOsnyxe/Om5cFQDrn1Vk+0WQTWcCkmEV/gV8DjwTzRPR1XUOmP3wuBTgS/+vYQulxunz7DJ0GiKexfC3enL8G21QtLOSRNY+BEz/J/JJ7b1G6hNVyTeohemXOY+3BoxYIt/y0cyvrCOJFQy/3Cm0Vgve7q7u96SZZxz9jnYdgtLfWebhs32gD/PXl/8YmZeh00kb5AmQJDdMuYk5RdNc6gZ//SBp/YTZyhzRjjNAV38KsumyvEZa7z1DWL2doK4bgki8j+9waJFz/75qfB5XNfEGYWhG8Kq7//qCfGcb2z3Vd9SkM5dQ9ybSbNRrosPnOgY02q+42xe8A99jsOG5diFiL/j2+efP/GXP1wun4a+irYylRY8ki6jmei377him8ExOsrxuUbsVmN2jcxvtdTvUiO1WNMX66Bbnl+o39LDgWRF+4nG8RyEoPoHShLhwbPJUcUGDurhyfJTFlaiM4c5ku4gs9AJf9VctfkNSs+QaVNIp0jO68mHW7bS2KYEv2MftgLwd5FJ3INWdVMpdSVEh22DUfvsOpZs4xxE2z7TmXV5N93Fdwn+u5GYLwbrqL+nnxvSZyUii5+UTvlrlv7tx61zJe7W/wEAAP//pF3JtrIwEn4gFyIoKZYIyEyC4oA7QERARYYEyNP34f697F0vPVe9mFTqGyqprPu1ABBA778N5nS6ME9f/ziXD0H+T6/uN09f3zyz2wdmx1PppkvDrl/iS3mro0zn0LVT8dOfErk3vIrtHwS8v3iArwoFc/M60seP/jPgyGaD2TYRvbnSfzGw99n55w80qygJ4e2fMd3x1SWa3O90Rv0lf9AvS1SdDZV6gtM5K5i31I9G7RnPcAkmnwXTtK7+1beEXEyJyr0qmnUDSlj8SeYcC8anhzPIcL/tGZUSZde15yncygv/wYg1YrT4ga6iaElHcLwxI/6QtzmY70fIfNIRPmzuN3O3+Pvkn3+xPt9P6M+fOay0ETXr8/GEvN06wMjs7E4Y8XcL1rhKcVM8Px4XDrmJlvoYbX186IbL1pvhrx674C2fondiwvGERNqtlrujlSTIUKRJPVFdnqZc8WLjrx5DwheoFZWbZLtl/PkmqqPoOt3P7ght+jGJp68d9Gur8KNMDD/x/JnsqD9QQYC8mGZ2uBwqfZbaX4HiYfsXP17HnWg8I6E6Wnh0OYrGcl8ZQKOK4Y8vWt0YqfiKPvswYeF+99UHaXwksMQ7Oy/+8/hGZATpl2sUbfd7j1vfXQNOPgGu2ES68UOLXrkYRvavnjr/aJwg86kkxBOtVTXYwRBDfa1/JBLDGxpHzGT5JToRnWk9cV7uClFZn4Q9Cfj3wMdejzM4l7wk2v5be6NSBysInp7N9uXWQ5J1mq4gRRAw++vV1ezfLrWy+DXEy+9Rt8S/gB6lLRJNa2c+R8p6BYvfTLy8Xerdi99otC9GDgt/GtKjbcv0t69ZilndLf5YAQsfpdE1H/nUbmMZym67/cN3PjZdaoBzkD9Eo/WRj+lhf1U+KGsXP4pHw2q5O3nRU0x3CrWbElFwwQ3PX0Jem6GbsdXI0P92NpVWHLrvb1IA5aVs/tWXI/6WEh/e5nKmMN499GnBL/jL10Q3L6noGpUMMCx9z7+HqZqvhtv+f3sKpP+9p+C0Eh5Mx8I2nbra+6CAtgFzrFeb8p1aAJgrPDGTzAbiK+EXomgyN8zV9A+n7574sCbOkx1E/qtm/z71u/ix3Fn2redq+v4EDP6+sQm5XxtvfG9AhjraAbEs4nRCUkUNdEK+omxjb/jvkg0+wFZJWdAIadWrJyTCO7zsmb+Vao/Rw1mEjh1MutGcWzpNsQdo3N4YRrVQ6K39bM8wsRiYNSKkc0vKRvS6zWuGN6XKx76iIWqr+UYVNW88Op2tFVR+NOBxNeuR0Jz2IwT38Eqep9ZPpzE/rQAO3hmD+gnQxEWco0MbGXgKe8ubnq6wgps/X+mjEVA1DQ/4QKtZe7r9ni1PvLzfH3Ss1g7d/JRVNQTKIKPl/1GI24L3/tM0keK2E63Z8I349egISDZuFuXf5NaN8dnDaOeoN3Jg71c1Y0nw4VQkmDm6bKaSUKraDnwDEV1NNH34nbmNfkT8ERPrndfdNtEV+TjdE1vV+qjvTo0N95gPeOPWPeLvh5yh+did8XrWV3or7XIMT8mI2VXb6DrfpDsVdo9ox/xqvU6bx3XTKjtHuzHsRLU+6PxL4bxuWrzFlw7NYZf7IsRJQozNe6q4lAcmbM1RJTdlMj3psLF7sOJVQexjoldzVkRn0PdAiEZwFc1rImfwW21kOk4QR9PnnI3od8EvLF9HQHw1EkBUHhumcc3tJvctJ6gSP3ti22vs9ffD0VXyZq0Q3zs5qbjEA8rJtVriCXXjt0ACWp+rG8Hzw/HGdAxVZdxlBlYCRdQn9z3HcG1WhKj5u/B4ZKuJgtTRJ9b5+9IpIpkBilQd6SqrDtVoX/0G6ja2iQ0byvnltC7h3qucuc91xQd5TU8o9s4+Icv4zh9TVWESZoEGz0uQMkXehqCfLRXLz2FV8eBsa/C3Hq2WPNMxPb9qWbbqgGhca6u5/VxrqG+ORsxnqqVS8ZtNRRQUg+x/94c3XAJkA9K2CjGezqvjwfZYgP5wYhKU9hMxf1UUaLyNlDlfGnSdFoaCYhc1o4B3QTRekxNed69gy3S7mqNeTqQcDWwX0W3WdB1rNgOgrkve5PBQMzRSKVZh/6yPdH155Iglx8JHMO8Fpt1fld68EzOHq5Q8iWX0q3RSpbbdGsLVZ4aq3vTR+sUqONrpwLzkVUSjYqi9svTTxtLE+o5q3W8Fjnd94DmsX9H0eIoa6OVr4eiPb9VHvpSDsN8W5O7ZNBoC5b1FdW7+8HzbPTlvBm2rTNb2zNJrI3n9Y91k6PPSG1xP+jsd6O1do+zEd8T9fiw0B2U2wrf5iXRzmQU+rMnF/ff7dsIp6niThyJ0GVyY5VicDw+7kJWk+mk4fep9N/pP00DRqX0T45VYaAK8mlFw1UNm2W+rmu+oSmClaJQmoxvw2XzvztBIQc+MY4wjoV9nFAG57pmza6ZoTjbnBIRZNcn5cBUQd1logkXPN5LesqYalu+HI3pOzA040r/6Kwdg/u7OrP5OUeNdKw0c7/wg3k4+6TzLnmc5XGkhsVT3pI9W8Pr8rWcMr69WcX7RW9j1Qo552lbR3NWFDFKvHtn+KWM02lejgZUujnj70l/6RNU4A2FEE5XVc6DzFqKzYqdYYt6bNVF/8xoXUhyPdD5777TbcNNGf/nEK5DIR1EuBITa+5vtpdUeTfPQxeD/3JE4xmqt86n16d/nCbaUjz6mY6xBZOALMzphpTMo1gWah9W8xFceMfn4NeBMKoMRdbQ5H8e0hyRz74Rs7AvqKlyqqOviN4t2Z5Ty7Bf1aL2ODnhUVhOqDztphlWdTgzH8Kra5Kht//AKL/loWa9jqOyp9mLe33z/vHmGQOo/xK+Tjdf/vi8fzqlQsYg0DpJWepRA/pg5/RorvaK0GFaAqucKF8w5IImtgxmN2wuj390WeF8xUuwuG9tmT9M0u9/bmyhk5Tmn291400f5i0QwGnXAg3Qv0hmrtys8No7I/NtZQ9xtVyP4wkWmcvEK0/H9dUVo5Hwm1m4LqP94WYJmP8rwSnfOHR2ZGAMx+p4d7OjDR0zzEh4bTySqdBK9WVU7E8rHKWP7aHtJ+6zda1BcyoY41suNxE97L3ZhFJa42GWHigfdxYaKFBzP2XlT8YFtrqAKYkX87TvnfFRCE1Uv32XPn5mlH9n+UPBR9GJqHsmIXpy1jW67RiS++hkQv31eIQh9i3F3vh29zed1t6Hd2ZgZp+ha0fbWl/KwulTM4/iaNsMZMHrh/kPFdfPu5kNvX6EL7iMW258b8ZUexRBR0MnDxxDxvZ7laBlvkuBDkdKtmTRIGd8tsVY9jaboIgmoJu2d5tf55I3YDVToHWGD0cUrO1a1YQZLvmHk5scV+8On7KqumRqnIZ8s5/2Bfs0Hol6ud310914NcUENYlNV45NHH/n20r9cXI23XdVX4G1hINcT/Q2fGxpLLQEUwg4xm1/Vbow2bSg/0jJjuhIY3TS/7TPa5w8gtmXpXLRQPILU7oDZUedUM5nePnhx5rBHPxhI+hA7hvBZq8R26RdxeTnn1T/xcteBdegGYSGgno1qYr9WTjqlj9cKtXn8ZM57HaGe9IWI9DB+MjvfTdV0ZtsP4vjF6Sq5ix5HgrsF01sldENkt5oE770CxW0mcmvmlo/RMZyVL/s+mF5x3tHV16qhKVcuUetHm7LvrcqVZ3b9EfeRbau5COgZbZ9ijKXHSamaDeQFqHK3oevgTKtRaRIs516jsevf/Ir2u1ECiX6IcecVmhX5BPD3/Adi3r3Jdb0Viu2DyR7K0a3G8lNn4MW5Q/xNqHqTvKYhmr97j2Dtay/rRxPg4oFDwcxvaJw0y4cvUTOC0+Bb9ekWmej5fXGyl9wwkrYkVeFthQ0JZl2r/r1WzQ0lgezPvI+atyzf42mg7+1yX24/tg28T4/5v3yH6+4WDXbSMb06WlH/WBc5Wvge0XcftZrs53KXx+H6Y+bTeXj8HYom/No6/pevp9exvUJ+pimWxZTz/sMG+R9eZQfwqmnd6R/0UbMvpuvE5fMhvMvorvQOc3nzSkfxuNKgUxuJuW8J6xyRKUa3z33EPKPg9Vx2czAPGsft05vTuV6fPvL3kfeMnNo+nT+mrcFaSz4YftisNn5j5og8uEG3UfermJxXGaDXLSBLvkEz6rQSJTAkzMy2kseL1NZgiL6b5RytlDLHfJ8gTohEd0fB1YVAGEqwSm3HFv7B53dV2+hNpxDDMn9SKFxr2F/u9T++2MOrF5EkBSnzuu8cDYIQztDulvunf0ZXjWp63crPQL6T/U6Tu/k06x+0lT8W3sp1U83+pnHRbrtvMDqET/7Ts6SWi2EfEr/fuN3CZ5q/eMQCeqBqwpQLSn91z1RUTxKfwpV/QgaFM0bFva1o1EGN6ip/MWN9rdH82/1WUtClFl3HpViNVi1Sua/rmn5DekOT6+orGI1XwzCXH90kj4BhLxkyM4bV0NGFb8sCMnM8icT25pUmGsoffz9l50s3xVtZRZ/OvzBvjqi+xPcJquKwYW6kuFHf+0cb5uPvjI/Bl6Wz6/5CcKm3waPzqXmvNCcffOmrkv18zdG8n0ZQtoeuI66sSZx1wyuULXq9/fG7iKq18AE/GncE49+ez+HqV8uXMOjxuMve3R9fRNGpedNNVdneEp9bBJtQZuYNXbxpQ50Z/vi5Oc9yR6Xd1d8leeQyFcjWG347o4H1b4cpsnin858X5JC0nx9RFzydXZMAGo5PgwVF10XfneOrSEWzS6c2oN3oyUIJh/MuIAdXK7pefoYjfD1+patuGqJ+dS9sefc47vCYRwmanN5JIGe7mhmu+/nD/xMYhv9h+/pSd398Ez5jHZCTENuV9MfPvPYjE3wKD0h4rIsMwawLGOGll690MXpl0UvM5VfQRytLG6A6S/HYhdCNsy18YP1DGMuZ3Ed9bns1aNE6IcaV9t60KosSuvIa4N3GPOiiRbMEfq9S/cODaiN95RHGULIwbN85GnSSYyTcU3vRE+toMqZZg5SuJ2LqYxdNFbywsvAF8sfHeHIs8F88EG3/GHXqT6aIenV8sOymPbppeAgfsE/2kwTd7YPGv/EzSMqYCRX1fl98GFEomT+mLnqa7vP3B/SyCllQn1jEd8OlhL98bTZyWInPaHOFd9Y8mRXjtzdK30sO4UoN2a3TQ85dFpuwf36OxGCDFUnHxz5XfuZ4xGN4Krqp/l1EsP3xy7z7gNGIb04Mijzf/vCvm0ptG0LqOS2lW+lZzXzp47DwBeKLw7maWb4N4dPhpXfy2tZnr1DpcndjTPvL2/G4b3kNRINEmfc5Ct28lzMVFnxk6p1o6YK3MzwNcY9/urx009FlAf2+lxPdxcUbcRjQFu7wFXClf8KIHxrjirQVs4kftyoajXRzgnKrecS5p9gTpXJvyPYGPszPjgbibeyIYKjFAW/mWNCZlB9MmET0Jup66Lo/fbnrlNeVHapq8TPi1+kv/xGjvf06btKpBzm4P4kq72R9KopzDM9vxcnh+jFTLnX7DHzrmWBEe9fjkpa38P3NHu2SV5FOlJ9V5bUSfaL/lMobrV+oKah6rPA0nMxUyoptC7BZ+mpc9G00L/wJtEPlkkNvYW+wZbT0gF9/KLp4WjVtlRNW8IdJf/6JztX3UVbszepD3PYuR5ye7lgR7WpN6SMf+JhYg/+H7+RG4h2f21tdgPN8r5lTWD9E/U1hwz++uJVqfS6KHYVQMn7sEYcbPu9Ur4Fj/j4y71AevI2vCwDZ07rRMn+nHV95Yg7rwT7/4Qmakv6sQup5LbPw41hNqNRcpPwOe+LzBvhgXL0aTuy4Zf66vabjxB//4pPtL5hHFThlIkuPek+8aGNUwhNvV3B3bw+s+MWrG7X7D8PpGhTMEtQZNVMra2jBD2Jm15b3b226KsCQRlz1HHhjfaxi+fBQ3lh0s6833c5FAUv+ZeQnD2i06hX9h1d/em/5fh/Vq65l5LEV0sndN9t/fLqrVdz1RrDsF2B5QgJBvOg8K8YG4t+cEddmZcWV0yEH1egVst+/N4iW57RHlluGzNGGLW/746VA0kuq2d68W6mw8CN0vHUtc2zJjgRBG/7xObzEP6crbWXCNapjgrPq3bVN7Rbohd4mfdXSyPlxn6qwzy4e29+eu5Ti7DD/8QcqueLQzTtVb+F8/IlYWvU4nWOunuG4u6nEyCWIpsvvV8tjbQZMt4JzOgpdHMMlJD0hzy/V+8fcm3DN2pE595Tq4wlNJ2Xm15ZWdyvWefWWbLgVnxyL8unLKdcLX5nN3F34o774fWYuJeLW/hffv1untPLB6XUSwT3yxre2O4OsVAfmTdOe/+kvdG7cv/kbvEn6zjNMj9BjwUE4oGFVNuVffqYw3a6cK09H2E3N80L8vZ3oQwGaAGPeX5hN1RKNq3tjI1X+bejmgJk3fX/gQ1VYm8UvvaDZboJEvnYHlewHYe7Yhx9laB6fE/vzg3i1fzfoz39zzrs9l1Sny4FaKdDx9l17PDk2vvJaCT7l9t70posqzoDTYmDu6/JC02fUfdias8p0Fi17vIheg8Psmvmz10Rs0U9Q8StiuJuCdI4//+UrVFH4Fc1T/AvlcbDfxO6PP4/9+bF/fvBRF9OlyzNgMNn4Yr58jruJf7ME3KAW2J9emLfmqYV+3OrkvHkfu/F1DFRY9BDdLfM5j0xMIHx+1EUPitX8RbcWmmvbMYvaTTUfvl8V+M2eiOscKeItuwKsRX9g+maQoiG7nQCk16Ze+Pc2/TeflyS+M//hDzpNDFzKL/Q16R8fGD0ZCvgMF5MseJZynaZXdM35C88YVnqbe6cTcCgbPLmql+5uoeUDquuImIs+ocsRe8UNPgK+ELmtOBPbXn5w/cDs7f4R9fbEDWXBH0K2bIcG+3nQlGewvRPtsM7SufTGVvGtR0Ls4JVEYwX6FmadGMT1VLv7W+/QUC9i+ml4VXzxK+B2WxdUOl9SPjtKL8K5PXG29/kDzVfbyaDIMkJub8/k07syBXCm45VuohftushWY7T4gXgTvXC1/N4z/Oll5zCP3XwL+xKdrClkf/qNP7e1DZtde2a41aKqT67PE3ocb2zxn2ZvxlkwwpJPmf7ZeilPNrselvgm5MJqb9SjxIcFb/78CDTeVhWFxW/EvH2SdE6Omgy+cJOZ4SsxH3XzIYBfmDHzH3QX8UhnBmKqW9D2EjVRP5pNifYvphOrlItuGj+iCk/JjLHsleflLqUXwP1t+cyM7jYXuV5gZdFrlBrPuWPHfaTJxy9etgxcQn28WVgA/XY18bR/Xziv2jiH2Lv6xHrUJRpf9g+QocQ10cPVl/OXJTTAiuFFnLg4oOH5qWJA9SdiJgpGb7af5RnMT+8w7WCc9dGb79numMjjcq5Z4FOTui76Hj3MMIuP0TxTu0eb+vQge0A64n96nvbXmGHdETpW3wIDNk5BmRNVOhfgJI+wl8/qf8fTvhotLP4nC16B1G3+/Ptr9ImxiFgW8X71jYE5eEsChPzq5zc4+/PLqEhDHC38f6UM0XvDtPdRShc8LuGoxzZ53NesGx0rqZFiFyojG3uD2G0TnZUiy8kyX1s0Ol1vQiORnnnTM+tGTZEpck+rnjkPUa9GyfuqyL1vI6K2l3M0L/UZZGavlDg4MD3+RcIKPAhDsu+gSae+/7RABPFEvLIduzkr0jOcH+szcTA7pUPyfLboaQh7Yr/0l8f+/HW/DBziCbWQjkB/vnzWRo89pklJp4nPCQyPuWRuHKu6KDahoTyj8PgvH/z5RXBdXU1mlbK6rK/tCUVdr7Dshz/VxPPprJjH84k416uYjvbETSUEhAhWusmjqmO66AeDQy7To0OsPE8qyF5IWTTLNZ/I5oXlptdKZosO19nz0Hzg+U41Kr8l7G2C+zlBf/w4Rs+QT5qJbHgQrBCvV8Z0pLPYg+UWITOWfDnztSnAsj6JOo8/NGL3oMJhljXKFz7XOJWjImS+c2Knp6DarLNj+VePoOP41JGEnWcPXXkO2IMXN31eCzpAVl5zdjhLfrV5NetMjjsUUJme9Ip3x1lUPv58YE6/9Pk6W4dxVxq+wdJF1iz1NID6oh6Zf3n/9N7d6zVUYr1nh0ET0yndxTHYjmEu+Mo9vvrW2z/9g4HWdcSvRpDJPjq+/vCJT+9v4SrKZYNYUI0a56HVqjIWw4zd3PM+ErbCXQAd2QG5yieLz00/fAArvs7iQ+zq495wZpA2RvtPX9Pbo5GBsCzBv5a/I/bRDA32pnL+F488OKsaVKlw+ov/qF5dsIAid/8lFn5M3cB1V0b3XuNMnWAbMYAB/sYXr38m/BsP2DglpUo1akioj10CzvX1JX5IunRq2+QD8wAzVvRjkvah8lkhtAOX7ME6pZOu1jZcJqQRUuHTX/0R4Pm+a+RiKjafxTSlKN8/lrv60JX/5QvoPeXzVw+q+qtot4Ar/bqMpxFxoa0M2G1kCcvqedDH3SmL0VI/o0hb77rRCDyMlvoL3eRMrMbd6RzDZSv8iOWe9+m/epX9La9M68pHxKzIO8Gid//qI4h/C1yA0p8tRvy5jKg0IhtmSDX8Hn9Jyq2UnmHhB0zLpQLx273eoqfOemLjS8dH8qwz2M3+leiLn879i9LDGe41nc5Rp4+yHyTgZrpBPMf5ef1f/GPxlP3V2zx6VBUKJDGXPhmFlYp7+ayh0tWvxKtVXHH1ZBbKZv34EKs0mbf4UQUs8USVxR8U20/+AbFOdOL91Y/8XsvheCh3xFMp7+jhy1SUrKFgp6M5dCOX3QwJweFHzD//5/fIsbzoRTpzZeYTMaIzkKPqkZugzpwWxUQVR75RZpBi6bPzvJSoaOXngt/7TlqN1grqKnuR4CC80eTrwgqEvsGM9Ot391fvkdeDe2bqfkirMd/dM5SI8rLHTqyqefFX0V9+u8uZhkSv6Wb5D28Pf3ry+O7L/29PwfZ/7yk4bqwjUztP9Kbgyhuov9aV7TVIumk2vwIk4enJzICpUbvzGnHHdyxhpJLsblhl+QibY0OYw7pa58OHL/fPr1Xi3fQhGk+DpIESP47EfQaDN93WqAW/zF/koBRWJ77pJYfK+aTMarYhH/GYh7A3Viem6+GvGmz7Z8KxzDwqOyjwxgQ1IsQXWtMwFCmatU8So6dbnKns82/UP5b7hH9fS2XOKdeqPtycDVTYN4fuAu1Q8cH5yCh3PhOlhWnp01PeuNBvghqjt6FUvBqcHoiWXckTv5tu/m3vBoo3SUung3BGs69JH9m8vTUs0zZJRx/LLWwnLWRqj5WKM1xTOF5XJf7ePmM3xmKnoQe8Jrw79jed7Z4XEQ3mY0+VX6/zjazFPsTrZoN5Hfd8Uo5zDAdDu9MR8bqbeKyWELqvK16L7zefDulsy3d9E9Fm30M36/d1gQTwz4Qsz8sTY9+jjfElxG4PpOr9lT3CL13uD9wmlA/UIYaML0NIrK/+QPw421sINPvLtOLb6VOqnBOwahWzc3JP9JmfxRBW/k1gRkse3tCt55OSKd6baUZJ0u5pFiclsn8y3hYXlI75zvnAQ0MJbkZvFY3XlWrIhz6NiH06e95E9aJQpKkxiDNeLqinm5MKdgBPSi9KxuewmjNF/pI1Re6hriZptgw0fGmOB38D3TilqEDvZL1jAdHfHj9iOsozkt94U+aRN73PqQaXcodwuDo5ngSbQwZl+XWZs/0F3iavNrI8RMUe85eVoQn26geFLcmolCkkmhBjArieUxCtnGN9wIMsg3UYJqqYLEDc6gQb2jJkTEOXRu+1hJ3RoeqfdFitdD5d5I0IRSTOdKWTdcec+mmi6x7HxOmpV4n9W1WhbdSKaHIF3e8pfOnumFtrioLork/mPMWAMAkxTKLeiX/jX6nDjs774zqaa/UK8C6jA948P1vE388nhsreG0T/rkX0rc+yAG1WyER1zro+qe0hBmGvfXBl2jqfDoYsI0M2LaYKpYDobVRiMGidMzt8xunohtppPSc/m2mjqPPh9lBjqNGRY7gFBurdnQuwTT8XYrxXr4jujiQGNsGTYV6dddbKfovOfXxkd9ftIsoacgVrizv8GD073dhvvEWX9Uqmr6s+dJM6ngTlpjiICoeCoV/L1EyZoLxj6btx0tGdlRI+ir0j2lN+8ElrlBlibz4R+zQUfKD9ywe2V4HcRn5Ke3cdx+jUVh6GzzGLpu89FJTvS38w/Fnt9T67rg20poVA9JeV8W+YOg0oidqQ67bO0i5qKwF8sV3REY+qN35X3xwu3fxgJGoYopc5UJGvzSlm/nhBrS75GI7P35Xtj6oZzfo5XsHRQSVWHsYmbSV/m0OuPM/MmsR7x0WCGuSsfxLRs0cXNeIYlXDrDZ+OfKvrwt/rz/d+YIe7JVRLPAlQRMJMkv13g/rZkU2wdqNGDof2G7V1tTNhxW8m86/pPRodY60iUtoZTW/6kA7mJy/R9FInKm7rLGp0e9hCpeQrYtQOrkZwdglcnz+V1u/VPprE1+UEZt1qjNC2jqaHdgrRNtFW7PB9JemANptQbnnp0xXWUDRJJBJAq9Wa6dnDi6ZNWGXKpUSI2WRjdnzzUkw43eQDCbz54g1/75fQlrBbefejjfgt6b949G6Z7o22cLBlk8oBMZKZcOnwEa9QvvYc16d8W/1q/eWjY35Y06+idR77tmUGWDdd4qxfX30efleAT7PKmC8WF4/XqR1u5/thwtNVD7rZsEQTtksvyfSmB6lw7lmyS3JmUbFs2o4HTXAC8aWl7PBIPT7Ojmyg9VtQyWXjh9FI6jIENPYeXvfmvpse94WD79ya4EiiXq8oeYYUf90w05U+S53bE1DZXFdYV1aGNyfVNCu5MBdYWcZjVJQ8R8v6YJbqVFUToleJ3kCuDPddok/drhdQnX4HXGRx0v02PO93PxQ9iDX4jdf8lJuAhGQl0f3jvUsXfBRANj47Oj1WzON/4/dobmdCjGzVZYd2jOWvZXnE28dSNZx96Qzl/jLQOkinaOrC3oVVSFVCNlxO2Umbl3PHSk4hDv10PnnVBxlGGxB7c9zrm+DKW4SNJ1/y107n1Uc4odfr92Wakl756BiSBv2dIXJgGeI835cZFOUxZWS71/W3X7IW8IWFzJTvRG8fVyuEn5XIeHu7zen8uJIQtcp4Y/iiAJrFuM6AkUeNJ1fKvO9VNjVolfnGiON41fherw207Ipi2mHVp3zPKg3GR2YRp+bukl93CVryHcmxYHIREWkGn4Y6OY69Hw3S6gdoJbdH4iM46ZNqJTZi9tUivtc8utmS5RhYwTSiVXVVNY9SO4Pf0565z0/J59wIBKQcRI/OKnr/xeMKjs/uSkzl6KSTl4c9TOnSV+bupxG/3pLxb/0RNYvlim4fbfgXz3jb5u+UHTuew5IfmaWkBe+LqS/QdlJDdpKrrGPPChuyUV8jYsfJnc94/wUIh6vLnO9YVuNn2DR/88tsSd+m02stA3jd5BDjcj0hupHUESXrVU2MC7M7Wvk7Ee7PMyKXN9P1gepNCRMmQDmTt+kQh+8C3nK3ptsj2kRj3+Jx99B2CTnI5NbN313Tg6knb3yuHVpRfhZP8P7VIXm+ojdnK9k7wRCVe0b4+cL7am+OwOOHQoJoECt66dYf0AL9hBGXdvr0ydcx0o7ByIyirNN//PAQYxELj+M5GgVp/KCFzzDr+Trp04iNrbJidkPcqRS62f3+ziDwy4zfMV2hMXjvZMh/ocRyJ/7xf/gnyque+KtU7D5yljQyBN+MaN6ed9Rs1c/uDcGVmdbaQ2PopzE0tkaJS5dLj5b1DJkTacSrqR5Ju+dDgKceOMTemms++Y1iwOWq/vBmHjpEf7PegBxPV4Lx0ov1KbAe3fzEZA474Wi2D1cBvLurM/thfTjdmp2Gfk1zI/sYWXw0op0NwfVmUDm+RB49RPursqw/LMzQ6rOaWi66dOODgnXb80l+e/kfP2bhVvQ9ftLk8e/zeOb7kC8eYSyPye1OmT73aB7LYgakK0vv+aLnI7sqFOUIKXjh3/p7Nr8ivM7jhQT7aETj+GUlMm9fDb8Ax96CPxrcHo8NHcSjyOfXCD2CpMnwrJuz1+2eFwH8IzGIFVh9OkkkFdHqgG9s+X1IQjnG4FXL/a7ybKB55xXiH77iZt9n1fiu7idIn21L+1QSo9mS5wR4sj8TDPIJTevr1odBeI/EtCM9mgtHb+F6BR8rqzf1mHe6tBAZzwez31oTTRt+7WHFLyaxL/4hnYNRNP7xP4uc7mlTnJ8i+j3cpSSZUY+OZTOCYTTB0gv42nFTUWpoc/NIzK0y632+29eKkmgNBZ+qlah+y6WPU2LgKjM2FfMqksmIzF/m/8o+HYe6wHDU5gOVrJvEx/U9+sBrr7yYk23tqo9SpZYL7XthZPdQvQ2Tgg+4+ISp4FaS1/etOcJK/6kLXjJEvzwKFVyOIbvOedD1BysP4bf/mUzb7Dxd0CTQoG7agexp8OW9cb/1/9bzUbSdVLjiCWB4jD7RwsnWx0B7jugsXis8K4Lf8XS2fdjIe4ccwuUuBEeLWtjQqiBB1j27udU2JZx6oyTEbL/6fPfnAtbJ9cZ0r1bR5q1EPZxu2wPdbeKHx4WjF8JkGU92+sMLcKbkn/66b2LFm/b5MUb2wVL+Pf/olB6VL2uQmZVIarVpy+ED8SZuiUeFCU0LPwB5Zg1d4XTSeRQ87X/61EpyF0kqummweYs9Xev3mzd11+kj4/XvRZa/81k+RAk45fghhh+7+rzkI7lzTirRwZmW/DeU0Cbrio66UqfjR44LoPtmJKfcNiuBVX+9Y+eSkHiNOzHi5xbgyGUsN57o9SYqfaW4xA7Rg5ZV4yV5AxrxZqSjtz0gKRqnE3Tmcp+uLHXVtPBl0MadSP70+DjkyQyVdgwJ+VwHfdx/NQzojUs6TSlEo2WaDdSlvGOHBKx03JkeRtXFNP74lb452UWyfI9Fzt6lrCa8nGt95PelBuZtOV+ndIWSfLCIH1VPbyhKeoJz9WLM+qGtN+i77weJh3LG0uN68BY9XMNVbE7M8C5aNdabhKKXK+h4c2itdBgtKYcqKgbm9LSrOOFhCS8n7PGIuFEJ6vpoKkiGKwuYXSA6+DsXHvYPM+P97qph9jenf/ofNZeg2jz3WquIb39LtEQSu/5e/2r0x19WV9akC78zwL5eEoad2EH84lsFil9+gMXxJ3Pu5tsCqrV2IZ4VtFH/NQAg2pcPZgy7kk+/2PHR3dZHurooGZpPXldDExU3um0W4vfxtBgKk89sn98MJFqynEBZvl26NRS/Yp0rlrDwb0ZWhZXyPH71EPjxTH/mLo3mMUvPwOTuH16jkfr3K3iVccEbMl6QeBTqENpEqYh67V7VaNxvFOxpozOPS3dvKo2tCMIEDgnrfkL8PrgJOmu5ilccfrxr9r8ZvnlyJaS7n9Nef88flK7PI119/EvFH/Wlhz49ngi5Fq43rrXzGZU/+YIVdF55/Tl0PgDHSWYGWQveNL4NW/ED7UMcm9J0ysdwVgaVBXT1MwiSFv0PEw6AWeS0i8b589zCx3QaYkpyW3X8d7IVV9p+8LwKtGhaZfkMf/9vXvyGMfN0E7T5GZDAsqtqCsn1o7wTZUcOCXwjXpGNhrC4Gogu6lolLniNpt29Yx6a5WqQ85UKuVNPxM2FW/SPb8nRvmT3JX8Of3p6OO9aPHVUT8XgHIbKBksJXd1xj7i67wugr6vITOtz1bs3HmJY/AW6GY4UNejyjv/8EWKdlrusVncewx9eW4Nve/P8uruIgpAzyxqDarrtqC/fetPH4/Gd85k11hWc7pnQSMtzb84OjwzdL8ZIbCnD3rTwb5T+PoDlWtl3k9ZsZmCJEuCdRn5oPtKrAAu/w5tSatC06CW4P69LF3mouzF4T1vwjsKW/en/vhzPW7S6SQ+mc69JufX+UDTJikaq4brpFjwTYLezQqK91ILTxjjYUP1OL+LOZ1Xnq6P2gXdWhcRqB72aClPNIP+dJLx5CPtq5o52gr15QczfIwNJrJsSWPwLtq/210jKoK/hec4+zHwXNe99CV1hNbyPxAqK0qMLP941L0XFr0J0Iil9v89gHiWMGX7b3Sh7ew0GW42pXCuvbqZmRf/0zeLXABrW19GHoDe39LrEF4+vniv3UDJmhP0rHa1fMSL1ffKJyp9D9L7IigjusDozU41fnHsVyeHUmyVRbTSkwx//SgRHW+JP735VujVgfSM/8rfeRixWFHWzHLODUnyrPkGFCLuou9JTOW+9SSj7LWi7ebn//bjXh9AZF7yPDWJpw2fZo5e1kJbRhC8xzVG/8AkI84Hj6mUBZ/HaEyAp0Zvs964ezde76KL28/DZgiedmArVBx3HrcDMFvZICJ59BsHB+tKduUMp5Z1SIsnYrohpfURvuOSxBtY7lZh5OfrelOq/rTzYWoylw1vtBkVG5l/+Y/j+1Trx+rmrysLHCYkagliS2gDere7x6lUantSc0hrY6XRn+sC6lItbOKNKGF2WTaJezdOu0JRXWzjMXfDtJ7/1DJ38OGM2k8uIhYaboE+EG6Lp5umfvofFj8FoisSU0fPsgngo5r/81PFWTVy0jBdT9RpX/MeaE1w790fI5DRoLrSVD+JnJjRd9MHoT4OMvp/pSFEHUsVRHbUgRL+e7f2e6NOwffhINTSGlQpIVOcXlv3pqWW8q6g/tNsYVrX8YMG+N7sNPy57hM/5h5bBLuA8NLQEbYTjhZnuQe74gR99ZcE34o0h8aaaXDCoSFOJGSoCb2o/UdG9FZaacukgudBEHxrzcSPufRq9oWh4DyoRj3QL3Oei+4q24DzXEzvITRBN7Hw6K5776vErK2dv8VdEZZNuk+Xo3q4b/KMigkE/Od4G35XXwCwb8Fi3T4I96Csm8FWBViQrWRbBUjN/doZMVevO/Bfe6Hw7PU/wUdzdMr60Wvy5M9xbsSb7napXoz+9t6gp7j/iq+bsTdSxTGQElz2GrNYr6s1BD866k4jR7e1uGq11ht65+aWbHn+rfjKEELT5EbDAkFNvQqDRP3xY3t90/BNVPthVnDAivg9oeq1nAGlqDQqpdE3nt9Bu//lPARo4muWyMQGd7vSfv/C+r2oNknMGzD3TBvVV3Wxh8X8Xve9HvBr2PeBtYVAuD4LHhKN3kr3hWmChN0J9NO7PXoa7dcArkGc0eLH3X79riV+dn6L+A8v8YdAH0Ns+l2t58aOJ1pksZdKgnhUokiNNbqeu+uf30ocb48I5Vx6N304MMt4Y5J8fEQftGaT7cnJ5fVrxISTXGpZ8RXdutfck43DqoXi2Z7phWcpH6h/P8Ngk57/44QIOKu1PfzPH6kw+uWNio7Y8MWKvVnc+uK3fw5/+PahKko6Wnxkgm3bIvFUr8BkUMYRy3TrM96nazfCKs12aWxHTl3z6l78VlJ5C+kq3RcTDdN8gVdqdiC2f7ZS7cWXIiz7G8kNT9c2G5xTGWdYY3j+adJT2hwQdxNub/OmZ+S2PV2icz4G+//wAyR8z5Vy6Jt1tNA1t7C67wqGiTzpedldvPAl+Jr9/n5AZ58ir+tQ8hEivVxZ9RfXPGy/JALuF3y367J2OH8Ez4Si2DVnwBY2WiVtwgnNHSArWv/fDrt5ycuk8VWcqemp/eE32rgRe/pz9KwxFGtEJeWM3xd96lg3ZsFi0HtN0rFHjwkhfIiPdXYj4rtv2oB3JSMvvZh2N+QwujK/mzVymj/qw1LPkvKh1FsvnJpqu3reHY6CFzJjdVTdfP0dN+W6ITIIJs272tpGL7sIsEvX4XiFqe/UJhm+fs9DM7H/+tkytpF78Q9OjgaQX6A+/9IF5qfB+6KKssuLGcrMg1czPq/Bf/Urt8aObTtgEdHvqPvPgaaERrT4G7G4bTtQjMbqNnIsqyPPQUOH97rpydecJ3J23hcvbOov4OW4TlFgp4KoE0m26tRzC4qcz66IFfPCbjYEguh3p7rnZ62In7XP5pXgEy0cRVzwTb64C98Phn184HVLZBtfzCoYL0/I23t5QwZXkD5akro/68wwC/ObPj4pEHlL2p9cW/4xguis7bheqix52h5lqZg3ne9ZpsPBDts/Kk77kNxN6u/WZFz/bf342WpG8ZOr5sdM566ZY8UfkEqNtZlTnoSorf8/zVz+Y/vTjxzldafsMAr3X7UGGBc8Wv2PZU/ao//q0icSY3bxrOrtz4fvaPxjp5tabVtl1hKsyscVfzTsuFe8MzR93Wvw6lW8oyUrka2NKVMSNTry1XwCWlTXeJk2Zcjt6n+DlnHq8tk0jlZZ8BfZNnihX3jhqvqmAwR6jHq+XekNpmjRDrt9LxDupyx6b+qGipT5HLNXRq7lRpBZly92mXuhF0TjUjQ+x/atxdVmZaAjWwhX++I6q7Hg0uNU6hMvto/7L/0zJxFrWq2TE0+6qoMkQHBU+KxriYeVvo7HAuxDK3/ZCDDnfoD5kuIWFfzB397jqCz5QIM/bl6l8W3kcZ8dQ2dUyp5WW53pvbrIRJb6xx9JXV9BnLIsRdP+eM3OM1I7/fNMFXactXv0Mxnm51m2gX7MlKkoooqeyFCDeL33Y0V7XOcM9BW7F+B/ejn/4s+hhouJbG3Ey6Ca8VvTD8O9x6ITUDE5//jqxw+c26pvQ9pUFX8jy/B7VCh9k/joXxCCfVTS/8D4Hpox7jDATPRYcsQbVa31d+MysN8fq1MD0Gd8sDaKdN0RaAvDZSBTXWrOp/vyFv3oBO+rU1Jf683ZXkpVO9udvWLVvr8QKHrSULflJH7WLPUMtuFdmVMt6gYqLELnB8U/fpFMq4RVa6qd4++fn2m9TRou+/KvfRVOavOx/eDMXX0/n7+cNI5m+XHZaBVoqrW6xhjL9hf/mu/tXL/2/9hTs/veeAvm4LArxSb15VCUbXi770MkvS2+eJD9Hq947MU/Vs26chyMFf1gf2cEvtYhP/ctWSFZ96a5hrOrPjqPBvkk14nrLuak8GD6QymCQhEc2koJ6/YHxu32T7F06aKMVLoVrcbWYruqgj051aCCZg/WiWT7R+Aw2M6QBLulOcL8eVR6xCY/Vc6ZiR4xuNloxRnIm+swZ57n6mS/IZLn0FKa3iR3N5s3eyslpz5m662avZ93WB2dfnSi+jU41SazXQCy3iFinXafPtCsMJceVSDzvMaOJdWMIzXSzsfAuf2l/eOktetl4SzfbwEE8duUVoKeUMJf0h0i6OtMKymZTEPx0VU/MNCdEV40OuDkm+4onF1GEvTs1xEW3nk93TzdAOOcDno5BWI2xp6tg678Gw6v4osG8HQ30HeWejn/Pr7WHAqLfZc1cf73u5uv5oKH3xomJc7B7j+XB0Msk+3bE3qOPNwahKiPowoSeN3uD85vrYnR8i0cSHP0wHaOHOaL9oVbxLvv9Kr4bMxn9h7Qr6VYWRqI/iIWASMKSGWRIGBx3gIqAiAwJkF/fh/f1sne9fOd5RKTq1r23YlU73wL6VKUbW+Eing53anb02byKfL56VaXM8udF9ZTYYKKjW0ExCjTEK6azbXjrPdhWHIe1cZ6NRZJfPbxrL4ydp0J91jmEh0aDMiSDiw/YPEYSZHyw/Y5aqtNl/4kkpZTUEYEnN6dzC5Mn2O3bBB81u/eXTkkroJC4o+bFwmxGeTDDjH5djIrikC9p6nNQTgwBiU6n+UKceBAGQ3SlWS2QnL2Mnoe8efvhYIRqzu/Ya5Sb1bapl052OjvVSYJ3JBUYNS+YUue6EGVtg4Gqv2bw2f38PMFiAogsQV0bzOjbADzAQSU7/8kbTCC1B98ClxFFs/t8JuqzBEHYKWgnv2djLtElgpfPa0CdoDb+fDkeVvgGDofmpaMG+UD9JLu1wGP0RabPH29VpJDCCZHyucjpFm8Qvq3epv7+mOcsjI42fPU2h5iR4ZRl2m3bj34N0ZfZN6MLcHeD0ZV/ISA+R0b119oA8Ig6avuD6c/e3ZvhLbb3hHxDwx/ZtKJdfIsAdYyMDmtcXFwo6v1ABIh6Rp03bA5tsq7YrgNtEM0BdTCjtUmtqDHz9ebJMtBukUyfbhqldNo9ehgL8E6N6mLm4tXzXHh80yepnUeSL9fTp1BecmjTULO9vKaiX8KkE14YU1McOue6VFDt6xvWjuvdn80SZMCp8xt29Q8b5rumujAVD2ecuMrDn+F3MEHkrDlaJU022NVLCmWWh5rIXxGna2MJKnx/ZoQ9Sb0PKxX9AqYtC7FTXa1hMUv2BJl2GKgqaGbNZjFfIXe8nSge9FM9Gr0YwWC45FR9LjtjrPArgZdKPqAF4mGYlC/I4BOmN8LRqDUoT7weeNu5TbPyTmAprhiCfTS+seeeYr8/p3AF/Or5ZFANWC8/duvAOFwe1MajZTB9m7sSefERX9RoBNNDXzh4X/ZffAyFol7gN5PhBIBGtaM31fR2RibMVrwjwvEYgHH3vHGSnYg8kbzftV635wUwXPbYuscnNpdmnsFmHxOKq7Np7KNcINAPow/FfXb019tJWGHzxT2R88VL56vXl4D8mhdGTamkNC5CCEZfPVLfKRY2dY4IlfDnaTQXRC1nUa5sU9J3C8aC+B7+8AxW7nCiWmOqNR/lSgVnh9wpqvlp+JdP0VV8oXlU1FpM3a6XFb/qyS7/5P6GXwHY19crddbnOKxEAIHMr7aDTfn8Yqy1ORMieM6pV/NhOkmycwPvDKxIDC4rI/59yKBopW/qLh0eBJV9uQOHvhCJu1s4LD/3+oTXqM+pIwiqsXJdCsHwEu74ePs69b5zng28x58rDZtpAuv5eM/gR48SHAZVBeYiaEooabpAPXAZwLKtiQXb80DS/WEOCxGYB8cy5wgXnNe0h98MyrHVavS44e+sl3oP2S9VqJ2SbRb08V1B3TbLDa/ndLZHpwTBBEJs+K9TPqeutII8DCo0cNUM1gpfb/BcPR9UTUbZn7+KgeDuzklIGpW38Wthv8oJ4w0cj25Tjy9DlsF2fTKj4WB8/fvwhCcz+2J82FfD/EbiCharNVDvppHBXkbWyPIITzhvbzbjZ82JwOK6AjYtxQGrUwWzHHe5geSA4+ot3jnAjsaEteMxqFe5jeG//Ak167j5Ql8d/nZoocYufLLFvt5N6ETkieT96cjm2jploLHBhSJVksDSORyETxjfsPPtX8NcW0UG8EgZdR8vu54qeVHhAYkZdUdF89e7OutQb6OROl/9ZMzSHBTgh+QHRuUzT5caaAkMD9ERP+Zjm3brdCz2Y9jtMK5/L2P+cUEAYtdl2DznVb50TjvCzwm4WI2ztz9/V8mEn+tDpsez9KrnR/iIDu/z6JGVbrMnt/iFYd5TrNfBO//jE4qHL3tsBW8tJT1nnuCoKCniLxZls0B6CM9CmGPfXs18TlxXh1GnDxt/SYzpbQ4EjNMB02L6BICJ1O9gV7MVe2aMDDaPbgff2WH9h0/L/kAkUF+++l+93PjX9wT7YDSQmegjGMfd+QnH6CxjZMYoHfLL9QLMphPxc8Aff3auhwq63JxSq5mmfG1hz8MJiAp5nz4fY/Wxqh5uZIxIaSnOsFrvkwrxt/IR15SPlF6OP/L3ehyg35Uth7lYIZxARCThN9dzmrAODvORYE2b98bwF3/7NE3RQbN+xpq6t5tMrxeNOls9m2d1p0Kt3/EYf7W0Zm71sAG5F1dq3h9N3m31HAa+6WMzs2ewqK/jCOn4W2jIe998zoNTAqFvIpp895QxoycBFD5ajA1BLAErdO0E1S/XYvWgW8PMk2wEUZbHZJ53+rDfdWMEx9yLkcJ7Tv47HTUbsqO14CDRw3T/0H8iSJhoYN1VFGOZBP0Gg0mJsb/zH/kUNvsCcGN4wWp8L30SZuPt3/PSJPFiTD2vZbB4MJvs6m7r8aRNBptv2KNaXyr2l1/AlzkDo/Ihp9NX8RMofuqFNGJSsGXD33+f53j6fOo11xYdpr/rjlr3mAdr6pbdH7+kgTLxbDFLUADzVBFq+E+Ws2UfVBD6uofY3r2zZX/Yu4DzgU54EmWAlshGsN/9Qqxzswbm2hp72O9ojHbttfWZeLArGB6SIw7no53ycPlwwK2BRKTMXnx6P7cNVGXaYJ0pAljoqJYyExmmeC0Gf2nticDCNwPsLl80TJfjQQRf9q6o4/GtsXTr7MH3YMhICSqd0TwIEHhL7wDbTVmAWX1pHQxAUaNl458M5wEHzco2sZ++RbAOfEyg+0Yc1dXDwSBu9YlgKekj2m31aR4F/QRrPiho+LlkeausTxHE5/GIhOJ3TP/qM3xlukzALnjm/fX0KeHJ3t2xJ5MyX1eNSvCJ3iIBSOzSBednE6ID+SDg5DObeZKMUPOEkXpfZIDlWIdEXplooT1+8fVykL8yFK34TQ6hT30yCfoT/vERL1+HnPn3+gl3MnbJLm9k/6f9hBM8mZd64tKpHdjAx7PCLl+D4msl+Z9OGWagXuWKcEVxSOdZhDbER37Cvid8Uyp9fhH4rFWFZBOAgXVK3gG54AMkJaM8jEbfqvJ0SHz8x4f+xSt/KibsDMbZn5OkzqD7rAzs12qSM+Vx8yB/tWrsZyBMhb/8ez5/HLU0ywV7v+aaw3b/WFWI4E+7Z6wCWdv//vSnMe0/agc3PYp9+U1ZrXxBBfLHpaeYWvuBtDBrYG0/ZWqN85yuLcxauOU/9k63s78myVD+3R/5i1/WsyWCzH6Cf/E9c+seQc0NRKyNbjPMp7Rw//QLtqbswZYAd08orM0XvQbjXNM9TWXQpRPB+nePwWoOdg+LHJ0oZvZt+PLSeYZAhjY+/64ZY4V+b6AmvT1sRzcezMr6JFC08IOwrb6RCmMXntf2g+CR+236eblBhbvP1JdLBPbzGMnK4T08sM3Rt8F6zrz94TX9x3fhwiHoY5ZiKw4jQD7Qu8BNX1K7FrEh7tbd6d/zcu9FPUz2ewwOVlWVVKexnfLfVbLhd5ZG/LrWd4N9IfAgX6kG1t6nfb3q/VmGtyX3yUlQDbAO3CjCh9+MNIwaEzC4tB7Ava8hbn/y/O/Aa6WS3sM9xoMh1FQggwc2/oT9Qedz8sePpNg8UDWbOWMOMmP9yzeMhkNS89zacjAKDjtqLfkTUJGw7M8voMnLL/O1549PCGRZx7i9OYbISxMHb8/GRXCN8pxpL00EzffYUiuq63xdtFf3939qdXYFppexQtAXEsbHM04Nobg6HEiPFsU2jdt6zvWjCxP3i6lB8mMqqi9tBprHOrLprZz17BD948PuQbf9vUThDQofI6Z/ekH449/0W4bULl8AtLPmZFD8vCYUb/Vs2q4nHxb2IR+IetBxawshhVTAQeUJKS0NYMNhulFqSYELhD++6BpDh3jUS+mSpgYHNz5C1Xmn14yXzus2F6XEVjn4+TK4ew5OyNnmOprvnJ63noj7Trczj6GeMu4x91CV3BVxV+rWcxGMFRgngPFfPvRJUpfQrfc8AtW5ZuNfvJrfsKOoKR/5Pz/E+hgIH0fH9Df+Q/75CVeuXobNz+ChG3sy1TqCDEE4oBtU7qaKLbdU0zWM4kjR22REe2ZLBlvGQwYt5yWRdr+7GUscrwQkF++Dja/O2BrFVaXIiSZgVf8wY8606AbPSXbHoTVf2WpfYxfeSB+QPz67xIXFy3v2eqF1q7dTdrEhVK/8k6bMkcBoX2Md9vRzpI5YkmGtTKjCS5QYiP99xnzZ/CLgv5QX1cIA14v60kaF83c21U5ta0x/9ZE12xk3cB3r+cdKHqB786DOtZbqz491MjQMyaYOV8f1stV3eDnnX7Rfn2O98ESvIC0+E/ZY2oGf3FYu1M6jS4/WvB8IERiCG3/FjvgK63WrN/AifBh2Bc0ySFK0N0ivmYXo82T4LGiQCORgdmmqHGrAKhPa0K44SA207wAb+PsM86lYab535XxMCrEEbcKLuB0ia1gT13Xhft5251nuUE9bfYDb90e+rxbUb7YXPOiXWoPVw8h8+vd+qNh6BsElNZbzMQAVQOq/vsBRDde/fPZXsdlOR5dOR1XFcmshjuURWs6dR3x1TMFUmYCD4xDdsbE/yqD/8xM2vUIOo10ba5z4KtQEeCNycGH+8gGrCiSOJDgQ02e+6QUOzl/5g7UYxcPy/jvDNR5jbHiCzf78GGCX2+60AVu++EaiBLJkWyrYZx2bqOhnUFb0G/3DD1rJpaw8AFCx+n53Pn2bAw/lkTthzFWxMS4aneGmX7GpwRas57Sp5O3zUEOu5pQ8w6kD/cilCBrhLl/C7GTCQE15MttfwR/fiJuB0VIXH8u+H2a57W3wRF+ZcNvn++Mz8JxczoS192++rFM8K13sQoyMb1kvu65x4alSNXoPhWL4e76gQ4VGHVL0Azsf4wIyuwAUv74Pf858sMLyy3XYnblq8z8SEX6Sy+Xf65fsLI4A7xuMtVhU/Il7qivIpxuh2hmvwzxwPFTaKDHx0S3Leq3kkodq/75t/0+GpZIPKpz7x5V6/tDkizwrCfjzX5dmCv3fwAk6/JZrQ+ZP7fnrn77e8ouadsunQyVHHfir96h7P/O5RG0py9VRwXiLZ/KWby3c8p/qTqcCsusaBM+nnU8t3rPZen5i+c9/wOHnfMiXLX8UoJQSOVjOYNB1ustQTPg9xU4eGzOKDj2Yr+Kb+tvuIGHafebDIEOLupm9GIN5iQLlADuVuorh+N0kJA00DNmmmuV4w77nin7bCOtTLeRzY0wf9gqVgYgU+b0xCO5N45WtniPAVREQ59Ft4UvGNvZtZuXdHx9y0jQiB8sNfDnAZQnXi/slnvFV07FT6hF29bLioA+ldBUbqZDJMUupq0ynmrzNvIQr4y165H3X/8evsxEm2HqkF8A6plaKaIUPrAW1YTCuK9Q/vwdr9/g0jGFWqGB4RF9a6J+UzWLT2fKm76geXNZ6KU0fgU0vUN+1dzX173UB34K87VZ6AdAs4yEArqauGBvZ7DNJvs5g8+MRJbnnb3yAh9Zp52EtDueBhc2+hRvfJNwgLfU88HEDAaYJtYfoM/yr30PovbAF99d8tkdcAoWkHWIXELD1babln/5Ck0YENlZyOUKHvQrq/fHR71rq8ob3SHo8P8P0NDwENn1NzXlXgVn6HE7gIgx76tXBmy0dUzO4iieGN38hHfy6vRz+6cvRqWuWa6UIL4kooKWz9XpOU18Gx4VV1OGquZ7ta6wC/eI1ZF/tFv+38VOYK5WIg8yO0/kwNxB6I4z/6eU5faAVbvUQ27s7Gtb08fLA6g5nHHjdhbEw0kz4vp1VbOeLZ8yTkLR/fIHwYlJs+AJXkIrgjESmiAZhUviUN/276TerFpVHd4GpwfkUgd2tnjO/LuFjmCXs7W4TGP/iHR2fZ2rx/hcsyuOmQvfZOlg/3c+1KH1uEHZsx9HQcvx83dPRBsbJTohc+yrY4rNSyIjPRBzrF/unj0fw/GDbTBCYe7aYgH6rkHBbv2Rf6HGrbH4QVTM7Guankdxg6FdftNeX2v+Hz0UenLBV/H758tDfowKH05McztJuwxvIwe15Efh4fgBDUXwCpLBCGlTeOaXKd4jkdi6if/q0Mwe7hNIba0Q+3S8+O3wOFeTNywdBDbT5ynU+gTBsIGoIvoPlnPIjxN/SxxlH3zl1qkAEfph8UA38gtGXkbVwbw0HtIQC9Jc/PxJDtqcOyX/DrKzoCSmcBBoQdE8ZFY0S4P649RT3v3RexgP681vIRwpcRr+OfYLPMTzRV5/9Nv/lJoHHM27/4SvRfpMHg8f+iPHlMNRdETQVfH0LF5/fpytYQSs///xBGsKwT1kNjjc5zDuKXbs91dPPdQJwR/I2l1I2wf4ZfghwUzpS24xDMP8UBpURFB+sCmo9zGlqSMB/gZzaVGb/+l1AnLMQ//nv/NXLIvDa9yeyp6ZoMBwtIgyf4Zts/SZGuIfUQhj+VPKZjxYQ/AaNMNsNAUW3XEp/x9oif/qe2lfaGXMemCqgQf7e+mE/tjTgvSoYCoAG94cJ9plfj396ikYXEw176yKNQDsTl/zp9y0feeBqpki2eppSSX7NcBG4HHtuOvuMin4F3rerij7b3Ll19/xd/vpp1G2DvUH3h13yF+/Ug5pcb8MXZDjInEWA/2SMiYfnDC/Cl+FwyV95w62Eg6p3DugFXIZ6GfifDG3rXFFz5jS2aK8K/eNHzrff1f/q0doJbyQlw30YJNmpgLucbWrdIwaY3PYJ8B/ZhF2kjT4TmpsOHsjJ0B7tj8b+7/U5Fm5487uHvdGfOSAKHwH1we41rNZAPSAZdY3Dd7rh48ZX0b2844DfGems/ZREvnzedPOzIjArndGCGypUqh4Me9j6exJ4+O2ItagxjRV8PQKO8S/b5tIaxlIeZhUq5DwSmYJTPjTg3gH5lXFb/wD+6TUXbv1TVHqqt+m/hwT+/Cq0uxH/n392e1YmEjrrzdaRlwMYW52Fg43/dMs+uPzxcWo8T3rOfgr0YEfGmOqnuzAwefvNzpc9nqjxOjEfP9BD++fxlmDDtHdG799zF+I7FKiPxC7/1+9bXHT4548vchtLyuZHYTVz4nok6qUEg9KCzY9oamL2XAZPV+uNff+Zgo0vSLBivIk9E+RDf5gLEW7+CvVuueSz3fPugh4nAjbQ3mWL2Eg3Bd85ATuJ1Btj6pYVVLgXj8gXNcby56+ll5+FxNovh3/x9j4TD6v358f46wcf7LlMaLY/e4DniVfAPiAGDhKDpGzaTTI8nSpKNz5tzES1oz99gK3b10nnKO4zqAncjbrJcKgZ93QlUHDGhQaJgfIFfa4c9F5vg9AsefuzVz+kg1dIIZo6U8uFyjIDeYs/uvWv/RXnDxceqN2TcvoSYyECcOVYkM40FV9TznLtYII//xzLJfbXKJ+y/+9Mgfy/zxSgY9YS8OmsgdftUoLlbZsS4yHqr2W58LCmwYMm32T2Z6QxAnN7/6Jq3dj11Henk/KYrQM97qXRmKcIdCBh4YSthzUY6x1taCEEDn5x3cdfh/H6hEfP57Ebng75Eh6PLcTXrqXH7LgYjEfgBN2iSenrPNU1+8ifE+TkbpvQ2O1y6nPHC0ysPkA0PHs+2/VaAu1RnJC8HBt/UuUFwrPifWjw3IYB75feBq6jqlT19EfeByp1AcSOgPiWfcE0cp8KQqsQSPmjGhN/QdZBLjrrOAKl6otSXyDZbcMTEscT88fk6UegFNIPkc+hN6xcesxgLyKD+gfGG+y9XwhU79uZgTN/8Jcxri6wbfcmdv33tSbDeC3A0YpUfH7vtVRUb3cT3vfzbZvyGhvzWV1NaMbcm8i5OvosmntXFkkgoP3v47Hl8JtKcIrKO8WSUA9L323n/kgzYX9/rwFrtKCRD2p6xKZ4dcAyWOYMhGBf4GA/ZPmg0YiD4dgHGI/7FixtcW1BN0seDc18qpdvYK7wcTMH+jicBra87zWEC54pPWOQ+6sWL7KyXoeZtCx16lUTtCd0npeUBl+b+rP2yGSYafkdW0281BPlAgLJTYmwaheyP8XUnGHMPS18BE+cs7CcXfj9WCY1gl1n0ExiJ6WLwoEoEXMMUegFHabaR8YhTNVhAQmo4Ivun0RR3o96BkKRgeb8lbDZ332fxVeEIH9m26ztxwzmqy0V8DilIfWeLc6Xnc9KyMejiO2LD3xWK5ItJ3C06K0VN8/mRiDUL2mHdXQe0vG4Vk+lccKBInkVcqaOVIXtgXtQU3/xrO9/hgovfrlSXL7CdEXwIMLTbhqpGrMuX+W0CqAl4e3c0otni2hzM8DbHIdTFLH8m/mzpwDDc8k7fEbp4h2rDI4H3OMAiJW/5ifFhJntfRC/LmbN98Tk4VrcIEVW0g3M/SAkG/tBIzJVIsa4uSyUW3VKEHXrFLQ66RNQ4ecem1dRTBd7j27yUk8Rdav4aax/8bcjXw2B9TvVYzWs+m53zQA1zeQyTM3vAWF+xiNaosfHmGUkZcAv3RAbBjoOQgKqkxL6bkvPsUPS6f4dOHDH5kBP3+ySk2+EZbi/SBWSOlH050RLJCDuDEiUkjvXXSF+I2XSzIhqwf7NyEfsA/honxLG0/Ocs8sOnOTmXftYCxIlHfn7p5N/kfXEboedYbnL3Sgf7M7FEblEOYMxcoFwWylGorozZsldVYU0ck01wtCwXoRYhZ0bPLB2+Nzyuem+EXQB+yL5nhVptx+PDVj75UgUUlXGzDlzBuecx1QrNctYf8WngMPqL9S+e5jNsbPaigzSCs1109Y0OCUt/AwGR+CGP+vf92/CRKVHOSnyGWlgBDA3XCTePcoo4M8jqEOyJ7A6SYzhdJlhcnml1Fvhp54TLZOg/O4qHB8+UjrJNTodHtF2JguIusFqZ1ghuVQXqmUPKZ3EOyjhKM7zxiF/w0+YpwoYQZUh/pmjdBZfoy4fCpRjrcg1QHcMypBNjkg4vC/TuTM5CVh3NaPhdv+rcUYX6JyrjKrjcTVG7uYHsJK3WVlHIhrr7nIWwUzSIzXWk50voi3OSm7ePjSiVZ123M1AUGhGHTuhroP5fe54eNLdgF6yi85E8yolclJlLUUDEvKFmDX8h+dC+8RsPnSiCBepKEgrJZQt/N4kgLwumAbGtRx+6S2ZYXW0JOwpBKcLJ/QRLJL+Qw3ppQ1rYfYJSPbwgH27/NTrJ8166Fv8RK/gcvSFk/Rq5PXO6dhfNAX8bg/p8g+PT3HR5myxygrem36HLdNtUyYvxwjmybxSvZdYPreCKcJrYybY5Jr7MD5xVUARfnWKGv6Tr1s8y8VB2+Ewzs4Ds61jBq+vq4WN/TT4y6fiVnDSvYAafmsY8+V7sWG1sA91os42GODPBMaoSbBN3Rdj6Xy8QFBdC7RI3A/MexwHkA6wIILMt/58xJkEJ+ezp9Y7KcBS6wcOHis9w2YUsXT6u97f80udPM/Jrcs6KI/gTJYtv+ZXwsnguG8mrD0NMCzEHDiYafc72h1pC8ZUZj2kl9sRn4/AYXyiJTJEelDiYBocY/rt7BOIC+5F9kho0lXcJy2Y5rTBDop2bApwOcNltR7US/nP8K9+nEXWUu+ewXxk7NjAt/FbsbW9PzueWAbHOHjQ4PCrwcw50g2+4leC3pe9YEyaOfWyRjGhuoi1YW0v1IRMPT+ott5jwK60q+SfeIqoX2KVsYN2cmEdiTH2JHg3luF2rMAtHhg2D8rgjz++0UGb0gFxaJjSXyr4LtzuB3v17TPM73PJK7f4xzBKpJ3PLsWwyqP65mh4/KrDanuLBNMvP2JLp1q6+C/QQqV8YeydQ2+bBdkXMIyIjF3jyBmkfUkB/BS/BZv668QYbDwJDo7h/eFdzmq+haD17J5qsAkNGoVJC12wfGn+6T4Dm+zjCQpfDyJlq9dEKrsGajs5JMJjPNSr8D7eQJN6HHWJfvTFuoxV5XrzdqR5fd95p4BshWezOODgWmFjFtduhaf+eMeng+L7rO7BBfKlYxBuVH2wXEwhgBu+Y+zWKZubbb/ydj20/fYxbZDk6odoeB6QUl4df+yJKUJZ/4o4mK1rOhhWjyAP9TMRDlpT/8Pf3eg6uGhf6rB8KnH9ez16PzvVEEZ+keCUvj2qovDjE+ZJAXzn5RXfUDmmE6KfFogECdSBlBiEO3xuSpVnHpIlePfX5yQF8JZCa3teL39xL90KPa5raQrkgo3v16mAYsXppARlaYyrURRAT3mC1cx/Azoxs4RqdxSIyNJtrtbDjv7qM5p18cJWLT5IAHQkx2Ea7o25dvunrKv0jN17Ihp/8Sg/eMFCwHhHgE2ls0IjKDN8i19vnz0+5xkaMAup3TnvdJjs4wVk0ishHOFvA6O62MKffFPI2scNm57TsYS2f3XQrrHmmhrrlEEqfB5I0L2Cramw8BBy7htb+dga9LIDF6i9S41GzLUHhvfHE7h/rQN1fp+eMf7WQmig3Ykskzr582eIkbI7QQ3/4/N46UTYS51ClqeR1z/K321ossLBaN2V+fLtFA9+P45J9m178ZfgXmTgeiYWaV/0W2/1RAZT29XUh6vL/uFznjcDPpuUB4uhShlMXMcmknF8+uvr6chw/7Q79MGncVidt2HD3UJy6uznD1s78ZhB6hUi4TWpzck7SzqQK3aMHSQ0+fIUFVfWlA9ABzkp0sX2fPTH/7D65kSwsCm24fW4rtSd9aJmIDwQeeO72L+Y1rAXT4cRFndxoKHx2xsjGLoVguOPoiX/DfmSWBcVLIl8pGYYP+tx15QzpHCpsR+Oo1E9G2pC4n0Mamian85T9o1kgXIC4p44TFlwShooCjdIlI6Ww7yorg4bakdIFA89Wwh6tYe4qhh6rZE/LMptkf/yg2pJb+Tz5Ki60klmRENV6PPxdfQTcMz4lGpB8sjZLvqclKwsLJpYSgwWp2UNtMwYIVi89yn7zAciR8ddinhNsvM1yHwbEIH2aOmQCOZN38h3R/4g1tZ5/kP008DT+1piTzeclE54C6/8I2AzMLSa5hDPoDKRiY+0XIdfsM3mDEZL/tM/BjtkkgnTJLrTDFYwX5v6U0icxm09Q1Fk4+NwD+QNfzf+ckupavu6bMgOQI06pulqxbENL03wooW1zGBshYAHrG0wjd/6nLJB1TkoP98utr69DuZ8ZB0cdT5Cn4flGyMtPx0EBXOpKXOXfD2v1AbYpymqyjQfFqcFDfwu6pUsj2IylpvHWmh9b1/sHI4emF7p1MpBHjHs7rXY/11zlMEXhweqXyYTfNArmeHGZ7FhCJIxh8LF3Hr8BxxUJwmsbjQnynsxB7J3o3GYnpk5K5aw8mga6jDdv95dCbZ6QXXnaALetlVbyX+chA1CamP+xacCVEkTU2wfjUEcbhKCLy/1Ee/EvrHkU3+BXYQHGk4XbOyZVJnw9D6X2OiAVrMFnzx4uD4wtVX+Xq/XRHtCy0zRhvfUmAYQ2wpt1gs6VO++ntdDuUKChhkduEfjr/3P0P/iDyl2NwDWea8MdC56EOZrz4HwZqwqDxotGLGWsGmeDjJ0nqeU7Abzs+EPu8DzG6dUo/yBMdvSskMPrD3Wk+ph7EHf23CLByTNOhzIyzw+4WN2DvRo3TmfnS5TJtv+2cFHi9PrfdzrnCLKnovN3TwOY9vIOmiFMKYbP8uXxetP8BDyaJuz1eVkx1AAvprXoB3XWQYfxx8CzRi+EQwuLmMPd7pB4+LnFIkfoxYF5TAD0kg1DUN+zZfeHyDkLqNGoxdn5Lx8G1WY158DtQPfASLbgwzuF6STd5FrG/4eRPjD0QWb6LHUvdu8SlBW4kDdIEXGCi5iB6Xx0mHXcr71bBkXD0I6n6hRKCbgz43WwTriY3q80pKtbnOt4P47bbtu6Lf+xxfX1lD+8RVyGbEMDE5wyL5oKzBeGehh9LBHrC4wrWdNNhJ4U8URsQ68a3q6TDeQJsmdgKZYBxKIrNhm87/IEMWNMT3KmlPWXXkmc9r+ACsq7aRc2zrAxslHw5yxTISW14eoJQ4/bPEyw/L0fFJ1f5ZStkdZCe9JYOF0Jpd6Nd+1BK8TTRArlIbNje4nkAhTj4/v876eVN8Uwfb94uy16ilPL6uuxFxh4XDT/3zcVAW4PDsfP+X1nM49CXgwvYqCBuPrZCyy6JsQz5cUKUnr1rO9LQ/3hbGkxTQ4PpUXLYIb3pHVhfYg/OU7qkcb6+3wHlZ+OSGYvZYPVYVKZL9Wj10FHAdKLSF/p3OE7hGcftbjH19kdneDcPfWIBGaOB6Wyfc9aN/pifDenqTTo381IDXkgAgb/+O1RyJDWf+I2Jr6S74gvb+BWn+a1An1CkxSe7fh7Pszdq8vPv+VIcqgpfEn/Nrid1LlA4S16q+ofnuXYb72qg5POzpSTfHzgZk7j4M6XVWqZmuU/4vnx5uO1P8J13xdh4co3x+FhD9JquVL5HYz1LrRwaeWOWyZtjNuc61ecFg1n5SsXNYC5SIidGhOY05XF8I//4aMu8JK/1uv+L7Z9CzMmfe+cXC+1wp13cljgh9sTWqinggb3yaYiVc84UOvbtjNnj9/um9nQn68xhHwiEZjcdndBZZcqYRu98s6dZjBVp+xN9UqWNyyuMnf4Wlg++MGA9OD4w0Ub3XFx2ze1VQ8LSOA8c2lxYa3G5/h4MYH8eZfbh5uJ8JDEeTkII53g6HsxsGW0zw0P5aPT2TxMIMROQYOg+6VMsS/bn/+yj++yKbfTQKGMb7peaft2ejtVB0c+PCHjduq+H/+GtwlA6W6M6c548KbLJunPEcSF14HxqTehlETMeoLrZ6ydNYuCvSQRnVRjIyhj84z/LJXjKBXb34leIxg8OcLjY45AWOpNyaoO/26nWG8gaUSixMsOiRR04kHf6WxhMAzy29IYnkIVo1TbPgTLxHVlrXOV/75egKfK+9YL+wfGEtpzpS3MawI/spdPt+mU6EQ9JvJujyGdI2DWoKpbybkazwv/jSAuwnZc/rR4EnOw3qVPk8ovvgOKX6mG+yF6hn885M+UQLmmqIniGegUv38XsDWqXWhp2GC/bovjNERX6McPOhEfqH389v5HPTweyF7ajEDGFRR2QWGdp5RvXka6aJnnAjfiz1gbdO7y9umAcRx/KW2+zHrTY+JCpinH5pBqRpj6CYy1KJ9RcDLmOr1+6u3XadQQ394Rt/ahveJSdDV64uayOqngO3tuaeqyZf5spq+9y8/dY+6xmxEpwpu/J06Ptb8/Xu/jIpe9F+kPDndF29+lQBm2T+s4QENa6BSD3jVdKKO/fCAxPGggff9ekMSKsecPvLehZxi5QRcTKveDwU7wVq8NX9+z0C5MJJgq8sNVrf4XPcaSuBxFd5485sAe2ufTInWQcXmVv/nL/l0f3iAdb4o/cViBwidWv5S/4c6Nr2x9F++b23+HDt+JQ9WR0eiARetKVnffQB7d9nmPJrJMOLnaAJbWtW/3Zb+vKiqDljbYsQvn7gePiftpGx8FXufVQCL9n6q4HhxHMKPwcjmUHiaf3iL+k3PT2y62/DoHXnsVjHnT8EYu7C+9x7525251T8Xxm6YYk99XOuOPO4BnNLao9ZeWPLV5LseWnc9Q3wYczVtsq6Cf36acVsf/vLnJygGEah30q71LLmy/uenYOxdzhvf+5pg/0kodi5azyanBS18HMkTfddmBd00jTqQZCJQ13/va9aGvQed6+6E+k0/9gV6SJCFUoXzk5TUm9+69dTWO+Fkv2V/8Q7fUrJgx8dvf3XMZIQXkH2wuj/fUtYQZz78+Qdb/yGdlgVd5Au4fYhsGhlgZa6dAAx6gABK5XrcxaMO5GftYk3xQc3IOF2grHrbLsPDYozL5AfAdqXwz08BdIav02HjA6T0vm+wHF4HCRJo//DmN6bic5oD+B0KA12nFQ60DSsPtg9kUGf7e/9C9aoAH2rUgl+HzTJgjbwuSoSaK/4CdinqGfzp0+DwM9h+mGxPMYaJUHxzUrD55ya4KMIL+3NG85k/Zjw0l6NA4K985cw6nwLlLUULdmXVAsJfvye8V4zc9IoO66FW1D8/jKwn2UgZdJIKMMv80T//ZI/6egbu+RZSI1/iYa3LWFfUDwGbPxPmNLZZBuV3XyGyZgCM/wEAAP//pF1Lu3NM0/1BBkFCt6EzcegWRJIZckKEoBv967/Lvp/hO/tmO5OdNHVYa1V1FYhNHopPscN4MQ8DwfVdBpteQOobNxttKDsy/O32BuoMUg2rVgUEdA3c02NWT2Daj4cYXoJw3PRiUi8wwxCg7iOj7v2j9Vob3Q9s9Qq0ngAZhmUMXvI5Fmwavw4vg4DQUCHvFBlFeP8q5nCoHkot5g12luuTff/iu4sCG18FhIdNj+zAVt+ip43/sK+jc/AWIwubTx0C2hA8gxkOGfWV277Y9K8cIuVi0+Php9fjY11VJU7V25/+5q+8eVOh/80S+qdfsK2eAg+7UsNx8zCK/Z8+vumnSOwIZSyUxVbeH3IX3V8Xx5i/2u8BVZAgMn5k6M/BeuygcGp7qm76AYlv2gNm+iht9bqTsfwOXxc20WgiaF+fydi62u9PH6Ouel6KRb7FBDr6TaPpGARAPBhzAFN3YIiTfZutl0Ix4RbPKNYuU0Gm81RCctcU7D+3OcZfIG27d0uBOg/2Nlb7+4vkP/tDXe7Wq6BIK2zMeaHmqWyTJbnmK9hnckXWbDLZqnGCCYNLYOOMH4N60S6/HKpJpNHnLbGZOOtYhls8p9hUoprdjgjBc1fcyN54iMaAfsMKFPeh4SCBPhjX+fKDP5Pc6XHLX6w41yvsd94RGytIwd/zBLCFBUXLLar3Iz2Yf/oEWthOG0Rxnzfgoa5XbM3brJ04oioocH8lq7o8wGp0vg03vEv4aUcSViEdwk2/Rnwo1sYrdU4xbIc2on50Mo1FuUqyLPRfEdu3hUv6zb9k2HIFDq3ywKbnUYLw6IwyDn6WAVYv/LxgIp9arBasqDd9L4WLjn9E+Sq/P/1vhsm9DlBNiOHPXvxNwbVZAhySSjf486RE8BiUNsZn92lMXpLp8PZ1JKoLBhko4p85LPBwpeFKE0b4x6WEWC1fRPTWCqwwujyk19YWMbvb7vPN/uFY3iMEN/tlFUAe2Op/W/1p22UU4cM/vnE4jzGgm34OGmpG2L4ezVq43udM8fslxAa0TDDj5cUrx0rN0df8HYuRv00/+IdH3PS1A6vlOhA0EfnzXzRMj+jmKh2+1tg0Bocxy+9amBN/3fLdUi/RsNUDmBZg1elCf7n/nu0/PHJktsDGP3zwC18ZfWz66N5DZfBXX/2nD6168angq5Wu1Boi2xCD3DDBn96aydsdinHbVbq+vSN12lY0GLhMGajtaqHHu/sB7CKVHvyUw4LYX73gMWkVVNI33OLvNsdnqy+C0+tMn+H55zN7DRoYQ2JhN3092XytX6K84T/62Oor68PrOpjGuwRxr14ZyLAr0f+vpwD8756CcEQZ1QyJFcsjjwI4o19Odd76FbNc+yaQbt2Nnu0dKWbhl85ysycJDfyLWVCFqVcFJBebuiLU6zVs0xZaYZJht8hnYzmJEVKkDLyxZ3R8sVhxFEN93q/Y5XAIeO4VxfBF4T5U3GeWrIJfvmAttxo18su+XiI+f4DL53EmfHQYi/Hn5i2MTPxAXXFaC3o+vjsoiXsbfZybCqadzV7wukv2VL+OQs3kpUwlnxsMJPGPrzGl9IrA0Mo7BFKRstF8/GwI6bmn+AkMJgpZpCrFFPk4vl3rYVH8xoSP+p1gTdWXYmu7nMHwSQQy0TQB83U2POi0UkeN9uGw5VxZMex/zxztavvgz/sxr6C3VCtaoWnUa1yCBxRHxjAaxUMy73++CYezMFI/2oUDCxLigvLga0iCaTXM3G3bRSFaR2wUhjVMTXAN4P36uxOxDGp/bfdqC3+35IQdnkTFvEusDHxPcomP81wNbAiJCZZ9wmOtSh8182u1ggm+Pqjtgk+xICUKYPeyNRomYGfMzzbKoK+riJbLRUxmalwz+Iq0hF7e/t4fy5YRxfEzi+p6VNfL5eZUgBKPowgVk7+IBajgFAsudkZ6MeYvzluI/NbEnrSfhqUol1RpvivB5mvS/P5wi3OI+mzbV9sMCQEauyrat7XR6VlYTOi4XoTMet6wVt1hMUdcKYL3M/ugZl+gZLm8WQMVRC84yHsXrJdAIXAeBAfHR0Ur9ovXN/BhTiX1u9vRX/hmieTVvThIFu7An62ENNJykDnqRs7HWMtA/UmNp3tY1yaWtLlBYtg92wZN0UH396ubu7B7mRoab0rOFl93eXBTgU72t0Bh5L3gDB6NoiPr7p3460u2THgWkwMZxrdq8FRuAjhcm4Z6wr3w1+iZtjBWnQCJVzMwfl/iiXIPqgmjxQn9+fAFHTS1FSP552c1v0usFJJ321BDmINirYSygje9Csiffc3wo/JKu3B76tzva026AeQgf1QUe/XxZUzX1p1Brm77dcNT708d1/Nw2/2NncPO8ufmWuk7Lqfg7zyA5QwH8NO+POzvnCwZD1/WyZt/4nCgoS++BRL8vR+q2llXTCfxiqB7VBGNu7eXEJbmMQRMrIj4RVKxIH50Ad2tLpGdsPDp7qd3CucLPQ0uZmUsnCnMoCtPmwYfaWA8730PFlPsY62YtGKxdUWWvur+iB1YIJ8lGo7B0FAOe6QcisW0LipEhR7+fU7YXlNLJaYPibptc99mRcURzCd4wGEQyoCQeH+AL3KecOANYtGaojDKgxcdaZgaWbKGb4EATz+aFDmuBhbFsQIgvMWaHtNhx5guLLbyJsEea2Zi++1rr/wAN3GYGkIIDYJ/kQ2drlqJ9AIhmH87UkIS1Sck5zOf0Ocae1ASE0ykDknGFh8jaKS2TX1Q0XoxkWFChXQQPwM8+Uu/ZDJIQfbFblvs2LwrpByGBZGpXcvfZBXCAUJR/eUEYmQP3fX7tCVCbxVaP9Y7YQpzrzLVqiP2LjpmLDrnCFY3uiOwzdp6+30PcC6igKowHcFaoqsNpiTfUddUU7Asn7KDzEUn7AY3tRb+noeWnlcyC5o2/P1/xXjzP1r2YCpGL5YqKBgvF9vs3A9zlTUR+IvPrkMkgzGDxdCfI0SLYJ8Nq5CqDfT11sIepma9P376H9BTBNHXPsfDvJ0HzDCtaSJrmt+DOM9l6bMwbCiHuvh9pEhVcu6R0kDnrvVEftbWZxptnBu5xvrr8xi+NF+jx2ad/fUQug1smf1BB/8Dksmywgy2xrinl9OcgnKXhKlcDZcjxtFLY8LH6g8yRyqb7DOtHxbTeurw9bZbwr+auph353SGZ5836LW+bX3aPq4Avz4EtLvAX02dD8igOTIZiS28g+VEWQOMeYTUsHkuYaJcr7AMbJ3a5i8apnMVxrL3ej4Reyw/Y27CtgJSJr23Ps330PtSSYBuZT+y6lE9LMI5O8D7/pFSpBNcUHzpf9DjFulfPKJDvmx9sIcnzh9nYPygrTbw9lwSclir2Vg10MaQn4UBa4q4+P/yFRYuAeG8ya2JvbvaQJJUB2dWqDIRiDv+3/tS0Vmr+/05RJI5XRbUcXhiKx/r4t/zxjZIKzZ9rWsAhfi69ahkebEWQZ7BOccKxSbUGHXuTgRh/LshQbpYyVhdGYHddNhR7HMHf+5PUap8cchRVDmmMUkXHUIBU0gd3byzNTdIBEG1YIqmqi3YcxBesPL2E1FGtTLWaj9ACCqGsc0Cny2hyFqwR2mF02PyqWeqqbKsL0WPlsfhXK9p2a/gse5KNJ/krliSwVfh5t/YWJ77YQl4gYfl7eyhNrJitui3KILpkR0I2OI9KY2yhdY4mHiL18lYViUPOy4vsAMbny1p27gQ2+8z9sf3y2ADVl5/+QF7a9EMDC56B8dvplJr+TnDCnbDAdyPQUozOldgub37A9R59401tdza5+PdQZ6S644G04s3FhiCF+Swe6Vnrzn7vHnm1H/xZrPH4XWdAJEpCm84rOcEsNgRWnixuwe+PquvP53EKAD6WbSpJo7GMJ/0yoTe6/7ExprWyVIFvQyJIarUBr7lj3/2Wf/sz7bjMTXIw/BkGON3ij2ShDV792mu6ObKyHz/tgYZvjoPzRO6Yv1YEzCtn00j/8QY43bg2JyBawruB92nRi5/GWu6RYV88uOweSzrZO7tlIcof2QbfpqGcV7aUunIQ8SuxN18dvz0HXTyGZGdP27QfC0JxE0iUXT75DWziGRCXy1M7Jwft2LtaieF8Ylk2PCXt0+c1fLA+VBKRDjwgs+G67sBNzoeyNzIS/LDBd72dAQy9rvIT/bJEWQgzQUfB56ysDU7lQ3sJnmHFvXzHoYVYBccmdhjQ9be/mru+hn+pEAk/W1RiyW7tzl8PUBDRPO9spFn8Qum3pkSuBpmwsajE8AgrM9oJ76SevmLb4fbggmf3pmxlnAng6UYT4Q5rzEZxY8gA/fLW/TBC6dh5k5OI4f7RSKc477ZXKepuHf2hUnDXdwWi3FUZKjmFSZcXDfGxgcQvJ+lD9WK6V0sbzcl8ON4JZo9cwRM+u3JX74l69xrxboWagtv8xqgOVyXhH1vAQc3voD4fUGS3zl0rqCC1xLnys4cmD2+f3D8pip15j3x2SkoH/AYJzKSsSEOjfS2MqjgBFEvuR+N+frBPxCQKiR7wa0Y6zKlkr3K7LFRSZq/139CA2PVCtA+Lis2u5ef/ReP/+Kdv7icFcNwzyQa3Iddwsipb/7iN+KjM/SX2zN+wK5MBALOkV6wXBp4+aV+PfL+7SywPgzvAJQ5cqjhXEi9VhK7wnXbV6kDRupRf/sBBOaDJ/2tq+plqUMEkvsoIRLXprGQ+S3KiirfyKv3W3+VFeKCbD8HGOXuj7FqyD34ly9Y+3AAEbJIV5hj1wg0blosWRs/oJZeVooWZ/KZ+1NfsPzld3pkbDd0SmmYSncvaupbxTQMx1Jo4Ft9pH/vi61r4bbQvIOOZFv+2fK7CYJH26E1HD5gs6dA/v2yBusDJwHydCITXtMowKVipv6S0iiAdTF72NimAU0/YTTloZk4tDza3CenXCDwEi8HbPmRYfCf1N9mHWcf6u+g7oulNaqAQ/oPH8fOr2eBgE7e8CdNI4pqumjC69/76CLHMpZHaMUgO74CWqRT7LNqiF2Fyyfwj28K0wwq6OQrwv4rx2xsrj8VDk59op6TXdmP0yIdsKwaqb+7LYCJ8rCCZ/rysWEr0F+KNIzg2sUjWnxKGJtwLcIUpF+MWx7WJI8WBKXb74btvUH8aX9Jf/Bo3DrqDtgE7DWBCFgBfWLrNhVs5R0nhQ++bfFRv5hAeJylDF5T3qDBz/T98XkfI8i/lRvWTM2r96egLKGP98G/97dqgMRw/Hg7bA/hWi+X5+hCaZ8rBF5M3Rejj4SgR8EXo8PIwE9TQwQvtvmlJzJ5CT/u0hmSuRQx6k+nenWHBw+eCzlQ68ALBpNlNf/j2zj5BWPC2gtGEItchq04n+t1fFg21MTHFYfs09Wjd3Y5iCTR3Pjh0yeX83sGJHqfEK8Z+5rgGpRwhnKO1RBQg3S1k8E0eM0InG+q0YNjm8GPABN6ElWhno0HW//5N98cPUP8e76NIxyp80mQP05a3MKcK1Manx0CFuFCUnla1wm7Gz6ZwQv8oB/JL2xGh6BgqFQreGy4C1lTbvFZ93w3SsvMD0WxykDfL9kBbniFtM8+rsWHlWcwPo0Zdc5nUM+f1HBlCx1e9KnelpqdVaGB5WE8kBWGWiHcnnkJr8tDolp99Arxcu5nqLkrpugu4mLfDOpD2fA6keZZHxY7lHKYeheK/DTZDX2jlQQYSYUpWqIfm0AmxXJm4/sffzLmG3/NYBjwHWlejVEIwk2Y4fJraupfi6xep6YnEM6QRz/xeDTmZXIaMK6gxp6U3ov1pUsILl9hoJ60D+tpw8PwF7Qq9sO8ZYwddgR24S7HmiElyarvnRxu+JF6y4FPpg2fSnpDrqSaX3U9BkewwuFIYmpHXe2P2qcylQTnD6zGRusvaqTIMMw/AQ0DyQW8Wo8peC2qT58RspN//Fj6MPYvP4/S9w2V87doEUPsUs+31ZWhnM0DVm8bhnAU9wfWC77hUAsGY37em1hR9yOkNheCej6QKIKWfOtwyN3zelXDyAWCduA2zbarF+HSpiAc5xA7c3pnS3mNSzCKQUzT6/5Tj4e6nMEethU1gaACkcfsCq+70x7rDTSG9fvZdjEMlyP1X6fVmHmWv6B1R4Bi9/pj6xWB8o/Po/l9/tUMEhBA238Asmz+tv7ZuzX2Jj3yD8dvRiXMpIRD5z+8VPPcDfxA3b8IxisIwMrJLIPi8zXQI7yrBSWnd6s4RwI2vtMMw4CVCuJ0P/+dd6jfq1uCT5KIaMvvPtH3zhVs9kLLmyID9mly7+/3UOwLcrE+rDyFz3ibWyd9ymJ5nuISTgYU8SevvvV4/T5N2b2kPc7zr1jTKNFn6F4OL2pj/s7mYohbEC3SF7t+qQxDctzu+Fy2GSqUwzW7OmoFhXc8/sPj237bFh5t90VvLxAy/lGQF5xRl2P1c9fqyYh7Dl7a1kBg43cEglAFPy/fEWWgk8EKRVL/86e5gWDpDlYgR+v9gc1j8hlmN/ERPLcCxZbXCP4IL8JBvj3DEoepISbTESi8rHYxo5iG227Fo7rtnnps/P47JVMI8gc0T8GV6rt3YlAgvCtl09uwH9ZmPcPcSqF4B29sOP3P/8OjyuDxKjayPvFn7Rk+QC+dR2pu+KrXgzADHpW++C+fCcuwRFDU0Ikav/PP6PKp0kHE/57YyGUH/OFlGRVqSB+omIzfhs/gmEXTP/47VEPuQvJWJyTMnDSM1LimcMuPNLymg7+s/VuE16r9EramdcFG/9FBoAs/wt1KCGjK7VdIiDAQXmsdwLp77P3HpyolL5ZKa6/Q5esM2/LzYgxxvNiKm60rWRtYD7PYWamyilqE/aG5G3/+808P+OPDfSj5KpRFElEXJzuwCK84/+PHhK4rNdbjwh5gw4cIZlfen8sWENjtquN2vpu/irbSgd3QXTHii51PcksZ/9M/KuM5rH/4ZmJZQ800PRfkCcsK5urmP84j33rqrtk/PUe/vbWC2W/iQlewQuos6sCoKr9/ypsjCXmazPwP/yoUMcIDQWXC3ccvMJ0bFR8PwVD3HffmlfUwu9TynU9BloxdYdSmJo1DVxiWUAQt3PRJahjAqtcrYg/4+ttHzH9NINwT0EDNRVfiZJ5TiG2vdMARFhmHaZAaZL7329ax+xNxhuoBqcz7A6zC9oPdTa+e9Ns12u5stUR+ejbbhxeWwk0fp3/8aPZi6QUtJL/Ibm8YbM1w6ME+FBs0n5Fc9NPMKqUr9yPW0+ZRL9dWnZUg2D3+6Z9LmfeyfPmUZ5qrumOwm5B12w1rgx53MmUry94jRH5j0swFn4TET+/wT9/Lk9QvlsZoXPg82zq6PFQdrLqUiX96EDabwqrprtyNsLziEtvRogJRCGsob/r8Zh9PtvCPtPvLZ9R5HF/Dpr9nMCFrgG0ukwqCWu8AZ6K61NziM3tIaqncz+CDXWcvApLmeQpBAyOafS0wsPs6iODPP5GelmDTy20QUNuk5r4gBVsB9kASspRqv1Ko5zotRTCtSNx2X4XGuNn3H39AvCsxg16hycFGqGOymJ6bLG87jIA/ixa1YkVlQtRnEEznViWr7nzAfN4bLnQEJmN1fiwJjeONL84xwkEGmmQ2z5z+5w/YQOwyMHwK9f3Gb9GY9x1j+CaZ8LZkBg6mFQ9s0YRKfqzFB81X+ADL8hJWeL45PoK5fa3novc9OLSH3YavhYTx22jJP77qn28vYxqIsoLZPw//4sMadW4HhJg7Ubc4xcV8/TgdbA6Rh73HwU/47TNgjN7+9LDhnx6b0MyghmFLQNzt1EqJ2swkwkfp/+mB4C/fWrHyAkvxdGdoB+qKXvevbez1ydKVjf/T42gVxVqRvSxngpbiv/zH1EMcKLvBfhOGn9awgGObKrt9CLD1UXrAnt/s96+ecPyc1WKzR/IP3ypPaamX3VGH8icRJsJBpauZOmUjUDjHItL5MoHJOo7brjhORqK4xMMKQajDBBopEVkwgNU59DMUI7vG+PleilHqlxycVCaRXfHD/mzlPoIBwA/y+/nisEykscFpWRcy6xfqr99vi+Cmj293zsrkn76TelL7lw/rjb/xgD/HLjkkDV+TP/3MzeaVZipDCTvA/gW3+g21Mr42qEH1VZnM14TTs1onm/5xBZu+jMupP4G5ugICbjtfo3iLp+whuQ+4Pc+Nf5v++toLHfh51x0Rqqvhi8C96n/8gfrBXhwmubi6MFcOd2w4r7FYhn0vAp21P+q6rr9NzMh4qH04iDXnIfszdxkDEGDvSQAYpmSV3J5IOW11soYnlhBnDT1YDecjNsFo+PwkKwf4+doaAYN4qH+5a7nyhh8Rw5nDlh93dUGVn0T6p0du9cBcsY8nmeo3bIF93bIIskZw6APyHhAcE/xA6oGW1KLusLUdLXt/3e0Jar9WUW94bIb7iUR/fAqsU/MmcFciTET6/RgsKHMkPWsupa7ESca06ROKOOsuDTZ9hB+1MZLtoO3JuKBDTYYGbP37VMGhZkwFUX2VKKPQFTTe+DpbbY9AL1kRkTb7HdYd0cGj5XVq069l/MUz0BxiD/vb+emnfbeQU67Xja8Qf/3T9y0iWvh4W14FO/uLDbmgeP3xEWNRYnUEz9OSbPUTsWAG9VaguheEkTd1A4NjPcM33up1W73vj/8Bu8dPJCzvnq3k7KTgDx/arn2rJ2//4GTz8XwiJW3bugsNqwR5CT5YZ/y5oNE5RpCZoCKDJtqACjuvg+IYwn/8/ped0gaO7XrE4e7Ybb21zraLlZxomAb8Zq/eLBOt22H72w2g5xspBv0UxBjdypKtLSlfMCx8A7FNv5qPEVthPu49Gg5BCRblmP5gOm5zU/pqHkbzLKogvGcmubzJN3kDX1j/5UN0JoeEBo++g3l5Ieit7BCg7jPUQT/NR7zZL2NVI7xg/rRbJN1Q5I9MeMM/PXrjq1G9bHozpDt0wrhS5KQLo+iqKOQHiayUfDF95Y2vW+3Wo0Skgf2yWgSvV0WxOj6v/l/9Tplqudji+ylZUZen8sbHicK1h2QeDEbAcN6PaKnVcRj3NXnAIkxb7PRNBSZlW2cY63FIj8jUB9FS4hS+jFTHNlaKeqW3soLyN3II2+x973xYCmO69RQA/Zus+He1YVVIKsXy5cxm8yW9YF+OIsWbPssec5nDi/EXfz6gYLd9a8M9Otw2Pn/2WaEsOnjFQUrzJB0Ksg/zGAyeqKJJPjC26BdVhN8oibd4DYqNzzzAhv8Qt/HXv3rS/6+nAP7vnoJD+zjSYKK8Pw8PFwJxJ6bkO9hbTtmxDpS1eqQlLL/FzO5fEzhacSJ8se9rdigWXvmm+kJWt/DqLnz4tuxd0wdOm1teM3ZJMuWtBBqOhUH1ecirP2Xa1XeMjZs77F9m04DveLCpL1V8vSgDMGEI5IqG3stny8c9jNJTvhByOHhc8VFkM4fIrW/E0MMIrMwAOjgHIyYsZMdiLhKtg8apqGh4zis2D/u4g8rc6URIfGO7J3bKwZWpOer1s1oT63DU/32fu1LXEBZNDZSTGok4U8ShYH3Yt8DuMoqxD24F1aQ2lj2rueJwqUZ/iWTcgltgAmpI78GYqedVQERWj1Ej2gUfJPsHfL/WC4LoNftUnSQP9u09xMd2l9czj3oVFvvrRA00omG52PcGcAc5JXPQZdvzBx2QRe9JDusKfCJvNREeIYeG9kQH1k5n7+/34yAAx4LxYLrK/A8D7DWNUtBcsDoIGhrisKeUzaEp5SBFtYSYWbTFeheXFL6VIqRacbbqvdxkOqgwdGhczpd6+n3PP0DH50RNXHBgTJ/RT+F650X1Pqi2e1izDg7a8UjVTL0Bds46AuvL94K+mnoz1sHSfjBL3QQ7WPMG4XzxTZhekIFRsERGRz5zDgPiGWQ1DCdZ02etKuTbNtSfDJExUPcRmMJvi8PH+gEs7rapSYifCYysi8Hg65oC97pPsX7rS7B+mV3Bq5QKOIK2BvbcEI2wsB4iRaL8A7P84DuY1XWEAOfX/qzy5gGQd3ykWooGYylv1hUOd0tDSfb02BSEp0wBrvwh8tV6Dmtp6SOsPe5FuONPSGbLVnX4mba+9pfXbPaW/+BBQphsfw6bPf4g75oH7B96miz0XolgfhQNUYSzWyzHB2vh83stkRJYMfuNka5u9/gsHJy+P8CuT/MAfe/+psH34ddilw2HP/uh3iPhAQNQ5uCwfhECavuqWdrIKgyza4Y9szVBh/V7IF+elz2SHE03ul2duFDTaECRsk8BE6bS/Hs+aG25ANCa6fHO5XtI/eKog9k61FcYpduWY26vJkPQqh3kxrLHeoRssC9U24R2Fb6ok8xPgzlHC8HuCmRq7u1pGPsK/aBu345Usx4NWCVZdSE3DgLJTmVn9I0yR0r96iXqyp9LMtnznYdj0VPqefvQny72vYXn87xg7PIcGKUp5EBaizJa+eNYTLqZZrDB3R1nd2AxMh87F7wfeoRdPH3ZjMSXqkh8wVPk49JY791LhenlhjHS9pI/Ql7tlLKvZ2yraQFI+DiXkMXsQGbkeQMx02GUdv4vp5rZxQOhF6kETsL5VD2+S2PxEbLh9nnzv7745a+5hbvHZyTiceQAlZtMld2nT6kfxDt/sbmvCx9h8UDch/r1HO7LVd7Oj5arsqtZO3ZXcEp0SPUtnq7yI46hao8MZ32zFOues0SoKekXP89RXy9u+uXgyb5a6BV8DLa0iWRC7cIXW/xpC1Y3Bw78nVfzQimZK3LuwEHzj/jIHodkCpchh0lmF4gdnS9bxMchh6cVTWiOpadBDSRn4CNrjOL3KhdEC2AEz8ezjVXk/eqZ2+YEGHPuUH34oWTqfm2jXG5aSe+HZ+Yvw/rQYfdeInzcF5+CfkBbylOY59QKnDJZL5sy9hrtG8XnqB/WVrscoH/XC4wyWzUEU/OvYP4JGOv7yAZECWYd3q50pTq9/2qqSD8dKAhkGK8mn7BbH72U6KrXNMztpqgyYZjlYI8+2I1ux3p2v4IMe0l1aKQM7iAc+MUDf/HJY4XmM08fMnCz5he9eOfen073BsLlhhbsqg6tmafXKdSPa0zWWw8BQ/CYw+iq1mjp6qu/lEuVQvSlHvWeQW6Mt4uTQZ0+f2R4HvbFaAA+g+YyAmwlfg2Y198a4JFOIvV8dA12r4frIc9kl2o7OA4Do4cYvp4dweqC74zyYMqB/XzeMAJtUAy8fPiB0xpMVG/qrcdtVQLoQxQQmXd0MB8qq4Vi/RGx+sMvwOpm5mB/zwfsiDRICCy0FPrrq6M6gG4yu1/lADAHNep4V+jPH/Szwa/hKXV3yALk4J5ef/Edm9+7bvCWraow7C8dAoceJ+NpoR2YH8EVmR9AEpbkbQ6Vs95iveUCxtzUauAhGQ2q7iJabPjiB+/F80u18KQZS1+8KnAqxxeZj29ofGMxjQ/V6vhot8r2sD8NxQFmf/u0b1xaL0S6EuhM+EADmuZse38pDM4xQb9h2AN2KEkDHpIuE25FfTILt/cVPl00YHyDvrFwViCCT6TEOPf2obEupIUwRW8J6+W8r5e1xSo49hwkQjHxw+p+ixf8Ol8bo/LSDWtj8CbY4ifh1HhNhpy/HuB2fmpd9p9klq0fB0eCehxk2/SRN5oDxT4zAQf05LBRGk8B1K7aF6tGqNbLqTwEUPO/EDsOQgXTDQnCM4gVihNyHkaTXFb4kfgvzVtYFyvqehNK8VNBoqn8klUMLgGkH2jTZ5pfEhaE9Qi9Zj7Sm/VEhUDvPx5eE7EnM7Eig/Zh3wBh6XfY2PDTcjKTGLK4GfHNMc/+0v3aFujHOSbSD36H5XvwXdjfrwPWVCFLWLDLM7A2oUe1nzUAMka6LmsPVyR/72uYxdwF3xC8scNV3fa+IqLYR4+jwTRqxuzTT/rveaoEVAm9Hh4tFFtuh21F4pJpb3gv0MV5Qk22Wxk70/UKk+NvRod34zIyafMIp116oo9BUdnKfn2kPNN9teVjEzCpXQP4MdOCfPUqYIuSZB58aoeIpr1+NOY6pivIX0cRO2FZg3WL9+DNqjsay7cGVkH92WCntCdqfaw9mC/qjYc/X7lh/X2zffYg9Qp3hXbB+JyU9f5z3IvyavIhDo78VnO2o0gBJ8XBhvmQkkklyQsk5VXEOq4+/thltxdUzmpL8e909WdV6ytICleiznQ5Jmz/2x+kjs88VG3+ubY314S6ahPCidqnZjGSYhhpxKVbvE9mlQ8OctlvNeFyvgyUP3o6jO+8Sy8Z34LVKRMXBttcKrc8fJPVPuUr+Dofm7obvl7AWc6gflQe9Pi5vNhcH/pY5oTap6GJjeHfeRnFFYIfuAfr2RBcsByuFXUvL9NfpG/aQgALQPS/ofRXxOUCX88bH/iHh1hqLqy748MI//CprY9vsLbq4MGNb1AnmQJ/5RbPhuPZdbG64bd5ODg5PJ8VhdofUhmL1wMO7L53nRotvwfjHR/Iv/e3xa+CV3MQwBq9BIwblbJV2z1/gBsfPUYab/vM608t/DiHmT7uEG8c8m1CRa5WbKJKGpZZhJUsKXJAj8HNSn7ubn5A7VSpSHGBZYyvS+fC6ItSdANIqxmCogvD/twhlpon1omBySvd+fJBu25ckpnztBLk8Jpi7cvXya+0diVI813zdx5/7d9NBM/P8oym9lMZ62m+VpCG5oyY/0nAusZBBqWlrCiWpwqwcoEEHpz4ig5abxTr7pwGUIqjBVvLuxqWl4UgTD7PK7W6Q+rTREtHiOTIRLv3Kier0h4JfObcQtgHL/4cWq0Lqa28t/jfFazSkg7cGngiWH/VCT0+bgHY8Bz2IxAOM9a6Ej7lM8Fes/WMoijw/vEjS/PihBpC18KT/T2hXTLoNT/lBxUe76lFrzGvD0JWGSWo6MXExnVSi6UqHAI2PETxaqbJ/CgmHli1wCExYLdhQrBeYfTIOIpd/gHYZXyXUFWv1398hb9oqIWnm+dj3BYuYDf9F8HgHBFqU9vyR+MYQfnN6HbP5luD+XIbqr/8iO0NT823LG/gQlMVB+tVr5k+pBwcT/MOm0f28cfBanSYil+VvLvXx59F/2pD98HV1F/odYtP+gtGVnzHSNnzbM2QUMlCeVyx4VcvMJvkuQLXOug0bD+6P7u3sYH2IJnUCsw+YWlwN+GsKTJVY2nnb/mqhaZx3u4djW+DPaXRhSMJeuzaZxOIrXaRoWBYJ6weH71BZzzIcOPXNKYvpZ63/AvhuCb4j88QzGcBHIuBUrTxlZW7HK7y9z6ecbzl42XRIAcZGEK0kGVKVts4liC2jjvs9vnVX8YmGMFhVGbqPjNWsM9xJwLO+KbYWQ0PrMU4jdAwd3vENr60MoPp//Dvvhu+gCitRsDm/xSvclvPtyxuwVvbdvWw4m3s570tQ62JbbQvseKPiy210BDHij6jxvWFIowiGGnStl9YuRiMzR8deoG1w66v2cmI89WT3pYHqO2ali94egSV+JQ/qK+26rCqrHrBv/MEKbFqnvM4BKebaBE5tPRa9F9LBwLrKW/+pTPetOEMb/hhEv5WRsPSzMkIg8XJqL1G65Yf6hGup6dJndfBH0SjcmMQGkKJDi9d8On6aX4wDN8qtkWYFv/wtrjjU+q+9LMxGTgdQd+LGcZbft4mcCGofxoZHeqdBoRdnx0gKpInWi9nrZivfoygmNcpyS5TlKzV1sPCi0OLQ1mmPpv3SIZ///84hZG/PkMigz9+ZhRol9Cb/oth7vU9duiqJ2MwprmMb4OG4C13/OV3CzKgzD+dCDa9+SsJFlu5OlcOCZyqJnNfoQ5+HHlG+9j9FIshehxgZRyh6aLDYd7BhpeFZwW2eKYbwllZUgWGTUW+3rX0Z9CrkbLxdzTV7zxZ09dlhZaYH9A7PL2N5d5YK+R2iGJLlj71LGjmQyl3vx163UytFvXFTmEWMQ8HNJUZM2/rCGUqGtSN9+d60eJPB9rzgAkPVmwsY2MScE34nmbNATMabdVOnyoTxZkwF/Nx1V5QTvIbEjJO9ZfMXVY43XiLFhGY6nHDv//iy1PlcL3IywtB5/XRMXqFF7YWSalC/nTMiZIfL8V8j6YHwO3pQHYEWf7f+z4MAnfBmufZCV9NLxk+hPKDw9dlBGMhjz+wleFoGBEtYcenxUHO5u44zHbHYfm4M1HaQvlh15H9gcj7GsIND2ODRdXA6qDU5S8rCD36kzEIB2GSgQwfMkWuhYY9L88dVANe3yY+NsVyfdII/MWz92tyweyU6gy/uy7AT6MENaVm/YK14tRo3xGZUathNuQqZqHD+I7Z9/qIXGhNaUYNXujrST0fRUDezzN1Mt4G/DNMK5jm85WWzwEngs/DFPp9H2P/yNU11e/+D76/Jw4bqbkAOnjXDuodZ+CgbFK2SDvpBdvudqbWuRwL9iDDCjT/A7E97H7Fcp7LFazKaSArUk/FYn6XDuKK1lt+PSVrIesx3PA03fhssaav5wzOxUHF5/Y71Oy7f63w9Fl06slX31gdfraV0yCfsGk5Ri3woFDhTg5d8kyGql72/TwrYv0VEV//LLDsusoDf/63bnhtMkQPghGrB+wvo1WIX//v+Vk11X7cYkyMqyGMZL8ln/i8DMtB+BzAn56irstS0+vTlGEwyx4NhXOXzN/AOsDT4e1irasPfh/JTgNzb+ip7RRZ8U/PEpHTE07jW395SqcZZhPiSQV2oJja9CPC8SsjxHGT4w9ZdRYhvvUa3fDosP7pFRuf/M//mfH6KSc1FskjOzJ/BT/nqmx6GJFP/MVg93NuylJ8V2hQCC+jfw1uCegYvf/pN0ui6elhs3dqO9c6GeUH/4OFVYrYdRRu00eWB0zn+0LD8/0MloczeEAouBabcgQK8uc/vmgqODznOlhvnMPBLjgZFHVq6i/FNyNQ6L53ah97n61zJYng0JZHfJLIvtj49hVehiYjXKemxnxsGg4K559PA+kc1KzKPxlcDnlF/eFBGfMFROQ/fqps+HVdn6+DEnQ6Tz339va/p7vewj890+8uQrHxLwS3/L3hv08yL06byc7rq1PViNgw1yeg/ulDqNEl5O/h27LhdnELq6rd+gR1vQ1f61XY9AlvkGVLbeDdfZ2JcNlbxfwG8obX7gr+l489pYzhUN/uSNzwyPhBlfmXDwlHHTTMvqtnyh//5buNqW58THGk8oLzY2wnw/63O8BPNNv4drJs9scvwcYHqfGnJ8jrN4VtsfvRMFrSZLo+vxHoX95KwySYkrfVdCPc8h82zq01jMf1+AKPMTeQSI9Xf8MHENRmZ2FbEf1kDqQZKvk9qLEzv/c+sy+PF8j7H6J+ktn1P74qSpNFjVAsi7kYkwwqbgMwLt4LWNBZeEHcJgfEbfF0OdqPDpJHpW/6hLrpy9etBzxq6WnO0oKJlmTDTc9Du0Pcg7E6+xzY7J3a1dcppuaiq/IrwSY96le2zVlKObDpQ6iej53Bmkt6hZFCAeLehmesZFeWctJrE9qXged/Qs/d9KU9phv/TfYfeSHw7Ufepp9UYHy2JAA+nd/Y2XenenJcmYc/nFXYFaQzW8YzyGF9yX3sPw+XYqymTgaZ9HviP/1uVrX3C+LdMcQ6Uk/JWj7SHHrLTd34lQpmr54RzFIvQdWth2xJ1wMHqb17Yx/9LINPpp6DRg1LmuyhaSyNcojksXNyNG1zZNf6dO2AoMsWNfnuPUxVHsM/PRA7j19m8BfNbv70KmqmM/UZJP0PGqL0nz7C14d3DBSZcuh6eZmGCPq4A+Wu22FPeVqAsXlS/+wVKUMq1osVGKvyZz8GS4RhabiPCsnZ+G364i3p98Y+Apu9kvpepoAeLT5STrRf0UF16MCKls/gwhGFatLQFCsvvDvo0/X9L79s9Zbmj48QUNkBW0X/VwJQ7PdotcOzP7M7teF3lG30mz0B0NK7EQj2sUPU9LrN6djseYvXWLvKQd3dsryFIThUG35uwGTgkvzjO6EZiwM7X84leIxfTI/SOIGl/hQZ1A8XlSxdfTDm3lXRP343m+u3XnN6lP/wPPFujVos34dUwmlsfHr/ez7rJ4/g9ntJh9y3zw6CUSmn2+WC3fsSDJ1RVT8Yv5YCp7bagSVdZwi3+hn9y0f7hyNUUAhmgaz0da+nl2VzYNwnPg3yXQj2Nhes8uUqRmR3Nz6MvCv5AAuS+tj/dq/hj2/C995caai4zbDZE4SG79hoEXQBbPhBBX/f701SmLDUf6XQEEmF1hOb6o0f5FCZBYR+kxQW4rCfVNj3fLb5M0zG8++kysoZr6TVx/dmrzMH58etIbN9QclCBt5TlO88IinF/LD4yDaByikWzTZ/3Z8v91IuhRWjmU+sepb3pwaaBPJojPTGn/7qb+fle8PumZuLuTGzEmx4kiLqoHrTm1KA3PeNagsoDKaM4QPa/JpTW6ZzzcqFH+Ff/YxzbtvclH254fnSxPe3pNbjo5hEOOpXnWaZ29frDP0Kvh9qRDWQPIzFlfsHMO5CgMMNry7vbozBsf0wjPL1XS/ay0PwclA16vdS77NPVa7yMene2DaVXzFpp8MByKrwpNoUtPW//K/eSgkJRscV80U9iTDpjQlx+foeVhAJIzTLm4yNo/MFbBddWsiLZY4YF471fACXWJZhKW/6Retv+nsMcBhmOCgE1aeldxqhmrgPnG/1vsm+mB4EMl9iY7jbSW907RWejjDHx/miALrXOxeIzoIwutuKQZrhYkKnJSeqnZSqJqW1L//0wY0/PItpi8/y907O2NuZ46afH10gLY+KWGLY+GxlGvrnPxtf9WdpsjgY1lpIQ047go0vbPEot9Buq1cQ2XJbsPkvDhXXrP/hnxSlEz1+cgb+1Y/iu+j+q9/04uNwhdVq+fh4ciXW0Xmeoei0OjYf7mqwP/67XpYnxqWn1mP9ClLIsqOGkeS+immioQ1BU2kU6y+jEI6HMJK3ejb2q+OTrcdmnypROuTY/ixnY7QOQw7+8MIfn2CM2+aqGF2Ew8uBgE0vspX9ew225xEM5MFeOZDby0BDXUO+IH3TBnLGJ8XWXlDYDAy0wl9s9vSvPshSZqRw/54DnFynVzLnLqfDh1ER6li9U3fK7qgCv872VJfzdJgvXyhCrvUQVvnsMCxszn9gq48g8Am/w3y51ZX85I2EOtn+xlaV/SrQVraMDr4pJcsI3z+QgOZL//L1QuTwIXuxamx47TFMNke9/19PgfK/ewrmr6FRowttn0+SfQfkobpQdYiygl5YU8LHtbvTE92XxXK7qrmy++CWHk+ZauwVX1eVIowRtYLxlCz9gvLDejQn/LgVTzYPRUSUj/g0se64s7/0AiPQUKQZ+1x5Kvjbi41g4D41DSTcs+UD7Q66a2VTM37WyczX9hVo9/SCXf2sgWU+3So4nzRIvW27KGmccwC6X1NS7X10jYWETxV0NT5TzNa3MQdkegBxeflUC4BeDAHgTHB8QkL9gB3BKHOjB8MnVLFzj9R6/6xuEZQ/6QefNLAbxiwxeUAz74ddJHX+5F2uDyBXCiBVBBXA1qT4geRqvpBo7a7JzHuXGKB8HxPS67zPDFePYWMtObVf6v+Rdi1dyvLM9gcxEAFJMeQOAiYIijoD7yhyTYD8+m/Rzzs8szPs1Wt1B1K1a+8dUvXh/OtnCRp6ySOm3fV8Spd7Hoeer4j10xvOFZPH8NC2hO0O4gbNSpyqIPU0x4p8TLvWu6x8VSpeDtWcp4pGZXUXUPzYnkiwH8D6fb9zj2g0SMRYhagYq3QL6FC8MbHs7pVO5nAGVFzKNwnMyy0cm2v4RgGSamY9S7dcry91ooTkZrHMvhacddD5IJ7zI7NfOxnR4lcGGld+JovQ6p3S4fx9w+4h6FS9f07dfLls76pZm4A1K+tLDo9FZW63Hyy3k4Lm0wViuHs3H3ftS+fj71W2IGjAyK6pW2v5udaS8nFjTnptOH9IhY12zYyJ/WtRyL57RVE3+OYzz1n16JM4R4BhvJfEHsU+nD1HyxDJ0Ibg7BSg9fYl15BXnsiWw+eCk9/2vunJrOBxVtdoPIvrN/SHT0Ol7+657M89hqy8MuJ8n69ueD0EF4KrcWT66n4Nh24sPgDK40jnB+jp/PGOGN6cUboSLzMfdwa8/8WHoKdpwe/BVVDFzOoI+b1lazyOTQz4pwdUMZhc0CTLJfgU44M4rlJ2NWxsE71FZFEUbky0NuLfAcLUe2ClR6gcrXdwBc6ELcMXegzXQ4UDMG7Zifjfzz7lShvZIN+mO1aWsZ9UreNo08mBTnanvWbRIygiCGLwZhaXv2n3uk6+djl9PPqurLKY5NoQVsv7YU4WvTuaKtIB5oMbs8BceeV07oMINpMqk/DSfovJvt8jmG/q7V888E1mJvCXX6fOxiFjvVZB1D8TtpMe326cXEvfrK6fgdg6fYU80surJn1CAStZ6XWjM/Y+XB5GixP7LHfdynmpWkmfJZVXSYrm+9hTkPLTiJGzDQrubMgV7UI/JlfmV2jYN0WFlv3Bv6zkFr8TM9YUM38zIwibshH8SgT4SCqtgsXDlVpBgZ2WNyQyOOqGoy6paL3cM9+FehTyRjsK6PddXf7wJaQGnwO4n9sbMwdPSdnaoi6wl78jW1JuCjquwjcgc8LM/8pVOQzCOoF8jnuWOqjupthVbGRu8J6El9Nojb3ZfNSd+RXxESnrdDre02zz1aSQ2Ws683nstj0ah4iTNIk25XDb+QHsi51AwvFIu0GutwJ4z2vOjFltU3qujwBH9/Kk8Lv/iqlVXyYacLTFqpJgPj+7qFL/3r9Bdavk8fZrgtYOlDjvGy9H39JzdD6tXvTX4Gs693gTgNVdWxY8grc1H2EU//CS6VdJSPnBym0IU+fBdqtLX4z3xrxqsdEzdlOgCadmu67QUh+Is6Fe2te2F8ExJpTpHt2X8v4KJnziUWOk2LtWZ4o8gmMVcXKRCiNdd2NRQaLsd0y/93E4aafmA3F3IGS7vYTFwB96juaqzIhzk0xL3pUYQFaqAyOepads5bwUWPCKUjWy0YiP1hvMSv6x0C5XaL69Q/1vP/DXTDYhD+4qBVQVDdsO2CmmXfHpQX4VKt50lHOePRcN0nklFT7+UPDjJqrg9mvWWGrEpJirx+UJ4654Mme2f2hE37UJr0HaUGReprItteestdOpxuyAleLzCnikRkm/zE9UbD5+7TpBsrXaM/wp3iX3w5LCT8ksPJ3JK51+5EZRc9cDkizxN9Ddw0TMfC+a+OuHPD2lCnx832aRcP2ieX5CAvPBjkly3iTduKl+krrp0IQlw9mXXNVSGyRPbRm+FCs+DC26/+ERlgexQjwcrmfVXd0m5nU2tuptJI6b/S+XiG2FdiqhuzlCHNH9ko9tykY9alE5ai3+6n5njcHTmkEcIofkf/Hjgq9Amb4M5lWBV/DfM6nQ+uaIjGR2YPFv+9QBvPOeOa5idb1+KD5w3F8sKq6wHcriZqrhnB9C5gq1WU4Rq96Av9KaSjJaWz134ggUVRpYmOhfNF39XILsdmuIM01JOZ5e9I2sdn8kXjEyqzU1+gZMZEbC0bwUTExqEWxRU4m/mWVrPslxD8pLf9LJP57QXMNVgbdZtyTr5WdKvzw9qOt0/2P65kCtqRvTCiTsXqlK4nPZ59FGhcaVRzzV3CspO6k93HISEX2tlZxehjBG85tiPA/eOZ2UGzxBmFc72vCu7uamHEY0PG4qc4XjUPTJfWcja+U5bDutJfTbyq+lz8z2S+yLtCsnP70B+nyrgVnSoebsgfwz4M0jXvjVFomBVkew2n9Duqp9g1P9e76i4xRl5OQRMRyg63IoVS7/PX/I5Uxz0bUtNnjdiDc053qSoVOhqlRJOeUz6DRD0yp+MJPLI+Iobn3kp6rP9LLK+Hj5Nrq61BNiV0NjjYJywZC+FIoVLmzT6dYKB3CuwYF4yrtIp/b8SKCOl3GeD2ttTdCVZ1hVZ8T8fRaW9e5xBsBP8Uz0qvlwtr7eMKqOnsmsjW2UNEw/kXaFuSSWcRTCXl63HzCab4fHZ/Qqh9OtfsNtrZssGfJdOWoF+8AakEe8Jd5ne+nTdREkjUS306ccn+U7Q69vZLAIXU5ofibHK8jK50CCCssWu7j8DV9NDMljk15KMaLDFX1Pa/evfnNJWKErrEhgE3Or+GjUnlflXz7Eojdb3cppFFitLE4hV41w/K5mBdhBOzJD3R/KcS0dz8rheLiSbTyuy0Hwqai6Y+PRV1c+rfkPT7JfKuN4txZL7j++z03cZYTYr+fO6q+0reAldx7bNUcR8eiSfGC7qQiVmXDgc+fc30hZSzEz5sMKLf9fBaZCzhx2YBan5TZCSmjltGpet3Bm16epQaH3WPbeTTFuI5hBXDUhjhKtL6bPnCdwMecTMTcC57wnKlZt3m+pos9OMR3k4IrKQ5+Ru7NTw/H6JQLa64HOnGv67Wb5c6Pw3B48Epye7643fu/qL58xt8+91Unsg4HrgYw3331c9oX5uaP9tUiJJ6zu3ZRvdzUoma4RxzEnztzvrlV2/lQRXZXbbmrwW0UzvAv2t77Rtisd6bF7xa/Lo+44eR8CIL0isOghemi+TGMF6T1OSFC9+pTdnV+LNEmtsMQMXPRFUXyWm9oliaSoQONxfMVaq/SMKlk8pzMdGxEuxs+kWqXs0wmtBoym9T1hdrRKLFpq9QjH1kJUdI5JufCBCu23wg6r5upXNrqrCrDwR6qOyO5kqRVUJO7OM/Hnouf9sn4QdCpSzY7T7h8/bESvZ9vv54smmSQiXF+TgdfX9FtOlD1naDeqjVfbp4Vmg88+TE69YmGFu44Lsh7A/Hpv8MujlUUPx1pHQlAaRCddVdAszD9wlHOf+D0qykGdwqdSP6oNceNL3I2R4rtgks9IHL14ps32taqB9EsfsFXiFyLseQTf7vGik/kKwlGIUhdpg31mmXRWyror4h6u9+BLVeX7CSdn+mIw80/KMuPsorf+ja/wm/09845px+ek8AM4VeqNWNHxiebU3OvaO3ZSZl/TyZo/xUOH+65WWWj2FZpduaigLRIXq0E2oXnBPxAfa4V4zWvqauOtJWjljRqt942OaFzMAjhGMBObXI8FN/y1C48HrZh+On4Rj5x4hAM5ZcTHVcJ5rJ7vIEbkRqwY5mI2vS2GaZU8iB2t5nC6Wt+n1jqpgVfYW6dzKJEe/vBCE02zkM/KZQaqUIOYdxeX9WEbX7Vas97EX9azPt6LDIIz3pFd0nYlO2aNCxcJO8xpxBuf0M3o4VONJgk6WqfD+XdQ0PFUrZnT5nU6PagiLV8R5CQYlKyc+yCUQGHrAEtd+7HmpND9P31CLMKysI/vK/WPH9Ppta1DXonXM0JaZWHJvhaIW8/prJ3Y68i8oLqnf3oOLXi36G8jpGS3TwBo51EWy9Tivivl//hmUOGTJZ0uYvLHn5l7TE8FT69bDDJcrgyXuCq45Kc5FLHa4o02h6U4Hh9vcNfNhxjmqw3bx/WtIn+gxz+/oJjbwz6GKZMOlEtG2tGiP19hqZ/EOTSuJenfeOE384N4ZU5LrtDNGe1gd2CWMvUpP7BzBI/3dmAh1k6II76rwXukNjPX9hDO6K3YsM2FPTOcvYnEJX5BeD49Oq3CovjDM+j9YqLovpcQu+n1B8DFwILTbkjn5ykYUSDeXiQ8yfeld+uqRXbdVySyml2xfmZGr90rz6WPmdhl4/SyCsENt1R6DKwYgp0momL1/JFkfTILadHbIJ6IzgIlwYifeH9Hvwt1iD15r2V+ZpEDhXJLwsCarPn9/VyhR+sHlvEm7RrOzQjMsVmTreRHVlM5TQYlWkX4if0t6jlaP7U9svZ/+NHx9St4w4J3eJUepkVPG3eojo7JkrtLF/x6fTS12Q4Uwsq0Fj1z0Pr0cqB8iafGdPVA06OrTsgBK+l0WUsVOnc/+IfXc/oR35pCl/WU08qac9QDkvLjSKLxWFo8cMMPDFV7pBt+5gWN3o4KUf9OmMe6VUk7J3vD+nAFdvhpcfrHX9HuAHdmXqIf4rxqW9Tz6Ee1V7cupqFyA3Qb5B/Tb9ca9cVTV9FqmE3mHCxUzk69UVSx10dizL+1NQeTX4Okhhb781eGl4cFtS3VFZWncAqXv1/DfZ9mf36ENcKeY6DS8USIezui8ZOKM6QZCvEG61c0dlmXq2/JPRN38R+aFVu1cNPPKxLlh6ybbuIZoCIOEKsJzuHInTOGZ8F3zIyOUSGyTxLD4rcwO1iXiC/6568+sSis3iGPcXLYVPo+IXXKMaJXyRaBKr1BTrHL0MAf/hkq4/ojDlLWxVDVtgQl0iK6alZ513T27QpeWDckwpZTTp/hI0C0f45Y9M96J+fzpgW+GU8suV8svtbDZwzu29jSqUwzqx2raw6fajbpZutK4VDmR0CmPrp4upZaOb7cnQIr1crwevFb/vHJkeY+Idsd7Rb/SALBULY0vq++Rf9dqQq85MYjWF5mi6HblqLk3vXL81tIHI5KpS75949PzmR3SaCpOouR9OeW/Hpoc/iMVUxMqgVWr/ibGmVaAiRk/lxQJG0UEEKaEd02fuH4OPq1+ueHeut7lbJd//ogb7tfkQitzEJa8BtpLaN43XqpNZpTJqieIV6Zm/O6mx8Wn+HR9luyq5Qppd5lFUDZPF06Hucmpd19V8NLz/cL3z2GQ1mOH/glB4HFqzuEk95kdyS/v2TBb7+Yt/oxgkd5NMlfPe27vWRv1DHzyXbzyApesZ8LVpseGf74u7QOP5P9zz9SlYTymTCYUR3wLSPfcxOOf/k9ra8J+aunLBHHDNBdcJg1eT0arfNPhNvBypnuo+GPH+P/+NHpo3GaDYIL9tEOidFqx65/HP0WFv1KpfzJi4GyeoYZngVxrvpYTNrSt/OWnW3i6H5o1XsJMPi+8qUzEr/dlIZ2BhWyPZZuk4SPt/w5Qz55J7KrvhBOTXqOAFWXhoTrd1vy7y6s0FqXXnj063PJA9eqQNVWN+a6X5NLppkqG1tcqbjeXjI0Bz+qw1pMyJ9+QfUjLjKojPuPhbLjhVKpoPvGUS41I9unxeVLWIvwcj8Wcy5lhOSK/Www1mNJYeGHItWMHMpfeCUWPR1C1phWBgcu5Fi+amGhXL8egIHgyKz8WnbT76wcQJePCUas8Mr1ondQ83zsqUwiHw2UPUdN70+MrtJf1c3vfdvCZN/af/5n872f73CpZQVruXHkPJy3PWp3aLP4cU7BXus6RtVcdkyn6Sf952cqB7n+pwdn7fxul76rG5xoxgtNK7EH2CTeZ3mfQTfDbxVslvzDwriqF7yIRLQviIC160TL8ZmT5Ru7zCLO75QXo9dFJuIXzWZ6J+lcXPIFFr+OOYcsRn12UgM4XwKJ2PLH7sTtvrVB/WZf/Fr8eLHLuvOf/sPxh/NwjO+yAt35bTKzflZoUm7iG+bixYkVrFnaSHJ2R4lwXzFjdR+7z4s8/+llRpZ6KR83doWIrL6YCcWpGPvnaUZsMzmUn1a6Naap3Kra25XodL+QlMpNqKPL63xkV4Ojkufz1AI1N83ih1fdGN9XClJXC/+7j2LRHIPLE/p7LmG1nNKSV9lKgD/9NUu/bTeYRiJBybMDIaH2s/oksBI1Dt9AtvbjU9IQSwpa8pGK16oq5kPk5KiTfZ24/GCVPBU+9G9/SWSXYjqKP7701UvcBc/NkDvm2wfvsbdJJFwdPrzj5gNSouxYHDoI9ZMb6mCjbY+ljb9P1585j8EcrMvi35khe27fAdquZgO3maqEkh2vK1j5kBBP8x2+3h8vM3o5OSX24rdwgGesecAG2s0PKLnbzIK21sUXS5Z6uujPEV4fvSd7j7rhlJ15hMCNgBY0fBaj9TavmsCyiZpUa8O5ct85Wm8fF+bUcofmjdxTFf0qgTnf56Lf1bWO1kFNidN63PqyzdH/e34sCyuhowt/074PvMPT3c3DUdr2d/jaUYcl6y2iyTRyEbaXEcjjeTcLLlw6Cu5gdgu+hWh4h2IC+1tV/4fPpkaf6rnn+4XvyYhfmpP5p1/+zotSaf6+PvDKozsxTCzyhU/k6OVWFttKhVGMzbjLoGefkGUfNSxl8jOuf341C+j9tfD94Q1EGiJimYrazRvITRhHmZDoOHzD2aKJ+ednMzvfvvmfngc1Ui/L7D2D1yDeFw9/Jiwcj7gTrbd53zRbnLOw7og1FtrKBvuunpfzCQj/+f9LfrMdXVdhf/LlM6Qvlf7Dz/lTnHSg4dUhgfL9WAMkYoyOSxcp4Ms30t97fNdW+1+I1f6Yh+KvikFbzldYqJOy5KeoaJEwazviX9JnOsWmOcJW3n2ZnfFHOVrqVGmLH0jCt2wUUm2YMcRr/8aSR9OF4+GWJ2r1tL/0u+A/H2+NDcfTZ82W+ENUOoo6fD7FmSx+cNgv/hG8X0mNB5n1nB/atwry66JSITu1fN6tryqcCkWlok5f1hiav+zP7/nzozjXV3qtLfWT3OSr3I38kpughsxmxFY3KetkTQL+EX74ueAlu/2Wvr/mVyS2ZNThL9MmFXSttEl0+tzQd3/cz2jx25bzON5NVFyueWG8JdjLXuH8icwnsj5OSYVcgJQPcmiiPRZaXEZm181mdlu6O84nKlynMpxHa1TR99Ud8GpTUTSSiyIhbEY5Wfgob2473f/LX7whEu16G+u1WnGmk6hSALHl/AT0spfJXhankH3bp6kt+YVVOyrRP3+vtr8nYlkh40zyixy5Z4x21d95Ze5HH5CdoKLI7F3Ojhv7A6ieU2Kb383iH+QiWvgtWfKlnMfXz4aD/u4xz7e0GFl8voPuJpi59hWh/m5s2r/zPmZulZrXwz6M//wk4jorpWCO+Q6Q2K6L5fzHsHiTq1dAr0vEtoLzRLPE4/ufX0Kil5BZfZZGIpy+zCc7O+YlTQrfh/brHoi3g1fZ6xdfhedmJ5EgDh7dl+5OOlSieiRBeRdSZuzaHMxq/WPWst75N9dvdE9rndxOnzmdleM20pbzAPzn73Iop0A9JKt58c8Gi1t+kIDYmyOV3rc6nO1Yq+DPv0eH27aYtvb2rmrnuGZxflHRfLo3H1j0DtnefnvrH19e8olFLX5a03J+DI1vOYS4Y2jNvbQV4C0MMfPUzkwlNNsViJnRUS0/hOFaQWcBYlO1//zO5c72ywaTVCMelEzolvPi5N95zP5kOtaYWcpBXc57mB5/h3R+FYqNHjazmZtIHE1/74fgVMdw+miI/uHR/+ebgrX4f39TAOI4sp2zVcLR4TcJGWLdsswqf920lw9PVZ/nNcM2jxBVaxegugoCsw2jsqZGtmJ1v6kcthOh5FMTSwek6MmWRfrhbHF//Cy98KcVsR6Zjsb3U1HBLv2QRHJnovXkGgLsqsTBc6a9uqnkqxglnmiy83bn8VEwVBPgJblUQCs7nF/Hbw7NDy7EMRMXcU/+9LDvMh+vmH8vZuv66NHKHU/MD3aPsn8Iqwi9t7XAtutHX9bVvfPRxhU74kR8svrfKzbR24owCxuwuQTDkwLeYoZVcKNi7M+mq+20s0Uca5EueGJ4s1GvJfGvRoHGqo6xFuGjS7CTG9Ywr7YUNklzIj5e/QpueKoK8XlymHlkF4vTayygi8w6PPkhLtfG5RFDK2r9v/WOc3cw1ZeRXdjOGfvivYpcDDHbWPSVqi9rXh80HSXOeWK7nzxbfbNa38E/lTpWxrZf5kElB6Ty6zJv+JyGU8nlBFrhicjO5K90qI4KgOn9Dnh6VFLHw/UdgBkiMJNc3ik/eOYTRPdYMue5Hsq5sxQRcno3maWPt/DLi6aFLpoV5j2EMq0n2CYgXM0n/s34WfBN2vpq20gYt49gKsfzPFzV3dX4EZ8/XuGsHq8+PGzjgRfvIG0vcSHB4bb2CTkiqWNcKm24fK+EuP6mKieCfst8ptwnO2eMiulVR7WaDcWdmQd/Z3FtgAR5XoGJeXd0S7qdUABG5+U0byRS8BoG/S++mNFu/E7qs67e6G/vh6UlvnupwQkClot4863LbrDCuwL2L2yJC83RomF3z9BJKhLiqVqLphVyMuX1kmc6Ga2djqfNt4VtGChYNeYs5X5w+sAkHoFhX3gWbKeOPUKG4ZLt12DpYLifK/gXYU/cBkd8PG2GFp7cvbLooNWI48mqIRzHM+Y3X++4neVnUHMNmFWLkjXqF6uHLR1HEvWl3UmvR35X/SsZiGk9rtZw26lP5NcYE3t5v5QZpQ32dPZJfNrJxdBuRh8y6yCx4FY65agUOwWRX3XHa3VXo2XkTbY6zl3Ngsf05dN1yiswrusbwa9PysdHH51BbtUdsbdbSNnBC57/8jMJMeWDBAhAfK9vzAoVVAy/Lm41q79wKj+Espijzz1A7eGekp2QvLv5aqZ3dU1OGV4dxq4Y7Wepw8UXjgQPslayY/nONW17u+FjdihTnuKAwjXPn3iVu4El3Rz/gOR0JOSksKCclcrItSX+iGsCT6frlHy02PdkZip1hTh0JFfv9gcR/9I54bSh6ANtgCyyU56l1Wjb3QjR9WdhftZ24ZA21wDS+/nDbOd7C6mn3wW0xxLGsz58OC1F1Ud/eBR107X75su9EfbDMl0HuRZ2Dkmw9u5/NdsyIbe4tz/NkOjUJkEjkZS3h00LBpprLBz3rcWvmwaD8rqPWFhXccqHcu+rqS0fif/7qrxvzTYHqN4cV53eF/3hredQ+cmeORdXRdyUnQ/sa1WmaJZMzqOiFGDBKzrql7Ic1yO+QhapDhXPV1yMJyuf4UviGzPSNOLTgTQBfOWfRbXKmbthgoME5U6wMegoSkfZT13gXylgRhkc+eyPMWhKP5r4Mm4HTtUag+qzLGLut92V4+Ht5/A40IHtVFqm/etu6//w/Zau1+WUybwFJOAdVqVxl3b4l33g9aiORL8f13wm0FKIPDVjJCRnzl9VFalZcBeZEXzeBWcsnFFzoVfiWqVXzl462drWTGQqrMoynavHVKn4SxuqjQGEXbO6KCCU/oOd3znpZquyR8g/CmfYlDbdcHsOGZzyqmJELeK0lYftB9DwXNEORoWP/v2WINbUPtva/TacX4/kCgseEbOMu2IEf8ZodbE4C69F0s2HhvXomEmA2Y4/03k6BTOEMvFZ4GgNmmJ/K4F/rwXqGkHKOb8qNuznq8eS4Sjy6bGabTg0jbho9tribRh9oJTilljfWOKDdZ9MTW12GzqaYRnOB20rgldlF/pWSYLW++F3hzzG7oL/Rjo9kx6genU9cX6zklJv6G2o5kxlwd7xi1nZNk/VfvYqnvehGdLkptkgfmPKwu+0L6ZdZmKoT+IPr71bYs3xun3DYReqWFsleTpld79G/gX2JFh/zbB+CCuMLLUZiavFTTooV33UqoOtMff1yMP+Dz+fH/HBjPp5QLxv9wf4FPWXmFKXdjO83HEzm98NiX47p5OW/YWGXrYMbwUl7OpZBlAbsqGKY4rpnIWvM0ja4Cz4+ex4ah9b9eWcFCr14YlPjn3v0VIPSGQdnhZ7O8gELtoe0bVHvPw+69GUiuUy/69L5/OuEuDHngbZT+RRTE8WifB4vi5Ysj0BzcWKvlV+pyGzR7O1+gmLAXx+tz3BSz7PU6NV8PBVgxjo5PBhEJdZDOr6S3T/deGTcTklqLxig9hHy+ymgn57eN6MhJmb+t7Rs91gFG1c7W/9aBIN7wCmVt/ohr836TSfYQQQ55GYl1Qp2P5q2bBRrIRtz9Qp55pEBxiN9Mm22TQXY+47EajyTSLm9KyLVhKNEa7VLiJ+86ZW3SpaopJL9iKmkFfF+Mcvbv1EqbQyazS+RkHaJBu9ofNF7ct5tzubSDuxnK66zypkm+oKsBnRAbfGLKVDvv4qoMoPifjBblUO8hqNkB92X7Z7v3gx/O4SBV78ehL5VoCmM68zmN7uk05RZlpis20rJFx+5C/+0nZjNgd1EIMCq9Qw+bLfuVYECWWm1PFy3NzUUdONChPTUeKQ31E1gnJsbWYemJEy5ksS6NT1WPgQBYs5zdKbXrntmO5p75I/Df/zt//Mq/dDOh99eKrz62WzbZ0X4cKHJIjlPl7qOSl4lmg++quPp2Qz8XEWsIj++DD2jMGaLbYRgd6JRdcnxAqun5++arfxduG7RjnGZSXCfJUyFqavQzpdD3MPC57RJVzK8fWbbLTsN8HBNyomMYAzKox8YB55utZ0L3MMp3N4pCvMz9bExjeGo6UmbDfsJovRpFNh9UtHtjO+ZzTTJM5AKVVjef57SMdx6UXHzA3evG5xKOvnZ6AFD+1E5eGqdH3EXi16nxSEf6t+XQxhfnyDcFDfZPf4+MU69N49rNTFAmifCM1Se6Dw1hKJRZfXis9IfCqAnIGT4Ot9ELWPpycMCV9hzRL6so3X7zdceB+xQzQU3VgEqovUL86J87AGNGX7qledd8WoEogcdX/4sFJzwjzxc7LGq7VRUGQZIt3IQ8+X+I1RYx9exI62djk3vh388R3ifQ/vdJTf2EVdk8zMztdva1KSolclg0RUbB2JTytbvULaty/iOedHOYYuk1Rqns8sqDZ2MZ8OLEC0tRhm9ewh3u02V3BzdKCdmr/DMVqxDzw3ZUQnE6N00T/Pf/WWZ/q//0ehCe8PLM9YLySxWEdwX/M3sUNh5FPtKQvfkm/M6bJTOUgcq+pwql/sXvdzMd6iVYtw2OosujpeOq436A2KHm9JevP1cuTUV8CcOo3tiNuF84Z5y+wotSJb/bUuR9F6tnD53gm20qvazd9b1MN7fw2Jm51Q1w1ENv/qMyHVhfMxzl82pNOJkOj88sNe/PkUcker8SZeJWj+1ats459eOjPP6bP7ofO1Qvn78cYrnVJOJZvMf/WQXsbRDCep3QaQ82BkxuF+LqbgdaQAiDxZtFsHBX/KxX3j6cKdbJvIRAv+AlTzQWX5ofE6SUjxGRp1t8bzX31sdCWH11zqJNROu5Df5pcJ84wTgqfiymdJNGZUq9OecrwnhXR+Ga66caUOS2F3Q3NwLp+g9LNJvIITXsclFdGSn396Fs2rI0rQD2UD5cLt3i36owWRPzvm02GzeBT9+Z+ePT1OzJpqIbxDYAc9bvov7ka3v7Xwpw9D9ycVI2mZDkm4fhFvR6typoLg/+0PVd/etZs++iWGUOQynTy9tHrhflHg1zYPYh7Yq/gYq7jV7DATiL5SPl0LXjqj8LzXmCv5LR8Lw9H/01Of3yEdcL02EeiPFu95zS3e0k8LDbkJVLohFXHp1b6BdD8Nrz+XiE+eHuZwXl0c4sSnOB3v5POGYlAqPNdBU04gJSrE+8bDS6//cM198gThOWA6LHjD4+05QcdLvCN+t1VD9vjUNWzjt0gs7eby8e6s7uCH9MD0OI5KMVr9PshXHy0d+3yVMkNwZih3YLNiyafZjxRF3Udn7Y+/86FNS6xZoZr/qx9vKggBWvQD3eivdTcJplPBLc0PLAqvUjEt/AcJu7lc9Ib5z89Ayv3psPBXxoj76uWDiu5xxGPkXEJqphcBzpTJeHn/S1+TzwFkLWyYIYxTxwkfn9pS35l92ptImnjbwr18uyR6NveUax8Po0wSKObazUUL3xJQ59QqltvH0LHUPtZwgDnFqnrou8/Roy7Kfweb7PxBTqvk1/rweq1nEl1eD1TbthWgRa9TLb624dQjjYJnaxpVz7sKUfq1AohGDAten0vO9TOGV0UPuEXo3M1a7lYQze0OC3dd7BhdTbqmZ8KWOGHtdKMO3Yj27PTDn8dlEw5IS13NlkWFBaKwQ4wpo6gt+Iqr+RN2HM2kguPvGbBwvJFQ3Bx2FPDRKhjRvbzkp+NbB8qrFTEmiZe8GueztuQXC8X6XfKmk2dIhY1G11SV+HwXdBspO1Em3oHEiJ5VcOFe9BsqH6RvyPZKK4D02UoUSQSXvP3Inz++w0IleiEm5+0BbvdywuiYihb/CPMIbcYYs3/sGc6Hy2uGp599sXRDOZoHRzjDkt8UiL7uBv8R+yjT0Zf5x+dUzmrtClDW5kD86luGQyxce/jenjnT9YtVimUj1dDjdvinJychVGsgofthW7WVEfvT661ih8y9oZxzdeONMLS/ECvdNg8X/l5BYPs9MR6VVNbN9l398eF/+dIP+60KGWoK2h1TMeS6g03EwnO47M8lHJ/yykSKDRJ7WN6743/8dy0kL/bHt3lvRzl02cFn4bNyQ+nPb/GOTUjKVfezvunSZ27T4+pPvxfjjUcVLPtPwll6c57nhyuQzVplYb9haFz9HjVa8IcZ5dRaQ5QeD/CufIUdBC8t/vl3khwf2T34Rqm8xB/a3+yQBfLJ6JZ6pMI3kiMSznZhTY/LEIBzyGYSUOPNuXXLP2BfKvS339bCL55AvtsdC2E88+Ho1wI8N6+I6Sz/pdzU1R6Rb7jDMr+E5YTaOlET6Xdm+NCu0T8+Fb6fBdlPEu9G3Y0V9Q+v83t5W+4J80xLj8+SEcszu2m0jja8V733D1+Y6yfmZmNfcvxb4q8PpZcEi55h0T31yvH6uwjq9tfOxEnGTzhG6XaExT+i8GyEdL5G/hNJVntjxOs2HfOMvQQLv2cutifOhbEJ4JxsIirVv6XXeaDa//jBoHok/Kfn4yLKmP85vREPV7aJZu3E6PqJL8U0ZZ4CP7z90pVrD+U/f5IX3554nWvw+c9PM4LKwAjGMxqj7bWHxxT9iOlZKJ0W/aEeikKmLasx4pGhgKa6e8K2XW6FzR//9Ld7iwWX8xyOZ0ieWk3hy3D3chE/z4YKto8GpjvMTKdNWLzhobo1iUozCRe96qqtf5uZKdmrdEi5gbUlHkkYfZpysLE1ghmYXxLUNkHLR5E5ONloEeO6C8PRKJRK5a6yYvEuNcr1rU3OKNrYGjGW+tWT9mci7audmFv/lHIsL2MP4SG5M9ymQlqHLhPRu//WSzybiK7vbxct/jDBm6lE/+q1JtXfv/fDZ9d7BMibtw7TF/yft5t7j04sTelMLmYq//H77KDbTBdHt5DviM7wQ4eBFOlLXPTy6wk6HGzyCMkZjQe8zA68+4z4YeGHm/ndiGBYV4sUHg5KfmJHXbtJmYDBOuiWiMico4CSA3Fue5r2VzUaYRj06+KvrNHU3uJEO23RmaqLnzkr1TYHPtUS+av3fHfoRnW9zp/E2mx+Hf3B/qoqbTYxUyUz4pJj1tB8S58F7a0sZ5qcM3A2dKArO6EW29FsBqU9TMTptI5Pt+f3ACBjA1dE2hejfz/GAIG5YX/6dXK1+x19TCcjlvO2EWtpX6vDywKyPdNvN9uov0Jl+ClJFv+gJM8sh3LrvRc/54hEuUM+OrF9ijdJdUc8cO0YIP1s2alzX4jP5Rhr1MzPzDjdn8XiF5koc2aPkE3sWIxeY4CfR9fsH35NjuciIbntmX7ayWm7Dj3405vMEeXWYku9QY+30JLtvvKsyRHPFDE/7an67QrEz/VBhPp4yZglg5hOf34KP3127NbGrsVn75yrYT5gso1XM3r9+Zv7vFaJ491ma6mnJjQr+0S2V29fDPvb6wm+XpgYtU/EeXzJMFj3UCLG4vcvOPOElyYlFC3xwP4HAAD//6SdybqyMBKGL8iFDEqKJTIrmCCg4k7AARQRMAnk6vvh/L3sXa/ZhJCa3q9I+WnYrf/y7ZPt3YQ4xDcDJWJ6YC1WP2I8lN8KzfyPeT7cBB9wafzTP86zvxwnuWjh88JsnnXj5uNd2c+dsN2RBd0jF8oydMN/PNasoyARRh8vYJrCmN1QxpCcOuCCAPDZ/JdDPbJdGf3xI0LqwheDpOIWDlYFxH6ehmSKN0cMf/wOb5QnEiUxAOb6nGyybyA4v38zVC2px/ap8c35g64jcMPvmX5n/vDHn7VtZ1vs/PrhQJnrA61snQ07FSkV01HZtpCaZokXhl0lvV+OFFa3ymGzXhP8yx9ODvf++RuJNc8X/OPJc74uRk3JYGtTn4W1OVlTb3FFX60aSv74rUjssvuX70yelee0HBtfq1vj98fXgzF1wNY8tHGZ/dQfNX8ElxCU6SLw4uCe/ms/V/67U+FxJ5jYbQdg2VOBtUsWWyIOjgrM+g7BmfzNef76uUiDNCPnoXigSUNPG7jrm+SWoCAYLfPi/8t3j1RTEA1VHus0H6c/fmz9vCY66bVjW3j1EFYvsebbwDUlbzre8j6nq6WUocJQD1hRk5PV6Ff8gmWpHWlVR33y7coo0tNvLxGfpb9+6hNlguKaPdiWnmkwJiHEkGdVT/Z6T3P2jUP+j19sZz1EOv6QAc7bNJhR7rq6Fa9c+VevKO4j7j+rSI9h5oV0dekdS2z39k3P6E8lpqZ4QXsf7Az23eHFwsPl2wvXjw20GLOCigib/cAKeIA8LefZYHkhxj/+PtsfiQ2X98PeTB+wNSOVjgs+1nP+Y6BPcamYsfWpNcHvMcAc/+lKwoHgJYwd3LC/Y+fFc2fxz7kC+DSzhvw1y34e73mFv3rVvl2eCUPVpoPEixtmsf1WtPV30aGxgych+zAMhunwNWGOl8RalIueyTe9087h6cssmabBdGKb27pkeElMw436XxMGK5hnsrDdZekm6vPUxjDvB5YvK7Pnt/kegDm+Em8oDCQTpwAgp3XEfNUykhEuyIQ0iq9UnI21oGzTu+jPX69Pu5s1x3sbvK10JzN/RwPdbYe//ITEwpOS72M1avopG0ZSOjxMxFyPa2xpWnR5qjohojqI0bo+vakar0ck1MUuA28KHLaJ/U3PJdVtIbyb6cyHs2S+p+uGLuqvJ/vL5At1xFkDh/Cq09+0jOreNDQKM1/9px9MNykx9aDPCnb4etuAP95hCD1jFR2WxLQ4RkWE5niG9W3a/+O7YOpdibvF3bAmfCqnuUcBkZ3x6a2xwodWX5I2I0dXKRHbWuer1qsVw1wsFslAOmYCHp9HLDVPtR7+7M0/uBExxtCzpnKkOzR/f3YOoEETIWWDDtxQiDMmO8GfXJF0SrUDcd7G0xokq23ByW+c7EXzEgNUPwzqFS8pzP5GtlYvQ/vjWVaQ2gkDCW5IDZbmnx6C5vwy1WdejiddxBanRtrB4iOHZOaH1hSqqwi+GxQRE8LGYsxfKDC28z1R9dGx5JmPo1kfZEakGkguPu8HXC+uRwxb1/rhJz0XMNfX+FXpq5xGfpmhWS8gMy+ueR0FLeyPL3XWi66CK9BeAX1cQkxdTMF0oFWKtOsS6HqrSomQ3rqC/q+eAvl/9xS8rvxJtvWyysf0N13hrKsvZv9oiEb47iO0ZqXNjJ12rml6X97Qx7lfGVkX2JpCvo8hXCUO8d8XnIzvQ3CDKYyubKuef8mgra47qNIvJdba8sRQvpNK1zeKRqVRmLn6KV6ttiaixmu/DPsx0PIHwE5MzPyQtxj2y3oH8W19xhyxNWrfmmkidIwrKkUHuR/yLvb/1osTPzMRt0ej1buMX5l72dYJ8wfyQpAMF2YqI7W4oikm+luPF3SpJQpqXyE7ygbDmfuy+HVXFFrwfa4I2X1SNGQhmhAa0omunzLO+baNJnhZbjH3XTa5wNbxhqSm13Hb76aclsnthLbyysNKsXQt9nRfGDS3PtLP/eQl00S8HeqpdmJBmx4Tle9fISjgIxI0bVPzwJB9CJ+PgKX4sOiHt1KeYHeMYmYM8SehFWkfKEnZAk+909ZMW65tNO8nvhsKF4K8pwI2YbwjBvVF8I1ZeNLKYhzpssDfekqspoAErzAJ9+UUcHv0W5TpuGEWTl7W6L7bAt7+2mRk41i1vOZ9COK7PbDQUargewoiRe+iYMds832xGN8uKzh+kxF3/nroOW+7GCWltaJHJ6oEfzy7GKbq8iB2Fv6QiNGygK2r5Mwp6iYYd6ApwG+TivVfaFnT7twCSJvCYjcYUTLqzQ/QO3r7WJ1ex4DfbGsF3wNLmLvJrrXIB9WEh8pVEqV8TPjY7BbgOEPEbiMRweTCV4JSCjIq+2qM1M9y08LWfTrE/Bgi6HbjHaPyTTMK+zIO2G/62XB7+YTEP6Oz+v3HvkL4lRxycUu5H9thV0HpGipWh5Vbi3uX+yjcSB0xJVQlXE8uEXKnuCXeJD6okfYyRrJyOhJSbTvBUXKUAB+3QExhGOL3gHl2g3990WlRip5taZeCa6KGrt3Bz+V9vNSQT59fvNq5vcW11dWHYNwvaKwoVi9L6WlC2wY3JEihy/uXqQFYTf/DSEYQ/HjlD7C6xgkhDX7k06sfHzDulZr55c8XE/IeNgxwMRnxq1MubDXGy6bxCCNvrgnxehw1YJ/LgewV/WNx/xNk8CQFECynABhA579tz4pxbaOt89Zo7wPUvJ0GG2JP9hgp8LfnlYYbCLrpQswWST2LkVoAHbUNsQ5aGojI4eG8BTKdtZueH9bxC36atCaGWKvzeXgsdNs9Y7q0DFtw9ik0cHfvnm0eggTD5aNmMKKeEufWvurx3BQ3iLRTjvmymyzaurzVY3nZMm/xqtAYxSIFX71FeLqn+553Y+yjwvsYJGzlHWKH0vNhf297shfeK+fyXbuCO0Uts9S4rqn9yCTtsPFOzP5+1bz9yEGGrs+A4lG7WrWKvZ2PpOVhT4zl+oVGs1EWunR/D8zz1o0Yi+clBrdLQqwM54MldHXPV8W9yeniunkn0+X2WOhBaFhsywrZYmdFipB8j2wStyjtpz/7r17WmnjnsMi74zNUAKHLh+2qA81H9/0o0Ou7f1JRahvE784h1mu7e1OVPE5iLG9rAEMcX//8zSjJ9AqNl65JcPvhRFyPrYtm/4M1Ifa5uIcc6wrac6rbe6unYdydoP+EB3axM9USw/lZ6IX8exJ3spZ97ypGpHubY8lMciut/np8uHpaZBpN5WBZ/zsvFl1+mNOmT2tU5acEW+IfmZvbds0fzyqCwLoKirrbN5luqkF1Ay0kOvmuYYlstW1hO2tW+4936jmzVQ2c/fWIv8boWdLf+Rt/lU2VyVrWw1esC6DriDNTG5p8OuulNM93D9lBeT0Qp/22gVGcJYySeb41V7pJ+zics7MWaf1Ud4OvSZedz7ZhwpLxNeUu8IYnJDwnQU8L6Q3w6ZGMX2xlIKXiKx8t1PbMkjvf91Rz9ifE74NJSFTifjimFwqjQ5K/98vFoFwmOMaVijXL95Nf5sYhsOi8YfZbpDU3p9kexG2H6VHVEtrY5QrC2DewsKuHNSr8M4H+rHLmPmQfTSGWWzAfsofXmb3L5b94vPBfPblmh3MvUu39gKB2U+L3uzjvfvcsg/e9B2b2TttzJ7RTDUIjmddLe7E4Ww89yN0VVY8n3guKld0/+/TzyUvk/WlooJDZk2z4Uc3F/mNnoB+Ig5cbp+7pxrlM/57vN4s1+pnNAlB5zE1ch/jd/4uPL8suWPHcvpN5HG+MiFNsydYYPwHfOoijKG8cPFr5Mv8apDXg+r23dBVvrEQclsNOc9ffM45WlplwqboMyMaL215C120wOcutD5GlGVRD1KnlbaHvNLZ0TsS2JRONhyg1NabSD9kHrBRT834/wBDnFzG8xKtFXM3/TZpIoT/lPwAAAP//pF3J1qq8En0gBwIKCUP63kQFEWdgC4hIkwTy9Hfhd4b/7A7P4nxCQjV77wpVRCjmuAmvsH5JM3YOqA+JWskO9FRZIKIqaeZs6W0J8S1A2Auc0BR2pYfg0qYR77Dc8sEa45VyuoAGoyD/9C3caBG8NqcUrbyHU2zOl8My3zV7U/eRfmJGosPSu5geiRyVRjjXOz1S9+ZWw7qSV9V8i9MEFkxwcGY5Qjy95MmAVZ061PDHizk9gAGhkVsRxZvrOZxd6SZAEgYYW1ON++lDXhJoo+cLe5+E9tw+3hSgHr09Pr+jV/jDS8ofnmqaiE83ze9gwSSHiGp55lO48hCUAGbIJrgsJiR1ewjnO6VITLyKeLm3B6KUnHCy2d/D2u5gC5b1UiuNJEAOvnKHhuFM2Padd0/p3JawTaLPkn9yPrFSI7AUjznV9Tfv59ZhHbyJVoX9oAxN1h2/EswPvKLhHb5MXpZqpOJK9nH08u1irnd+BAs/9KnWvMxwNsttAMXGWFMDxutq/lqHFNjXR0A+ymNXzIh5A7zdjSPWi6g1p1f2ykEJ6IpstxLivM+9GW4MWULztpwLWrpTDXZN0WAs9xoXZVZFP/ugO1u4VhNYNHzXhyPFLyULZ1W/WiB6vjXEsiYxmeOPGpDXc053gWfxaW1sNGg23xGpk2FzHqLWAtpOiKmrPHYxm5deRvRTHKhDXrbJlVVFIKjGEh30d1wt+D2Da9coiaTsgmqKseHAxk1l6stnK/5+yFcAb1/a0SVf9rSyj0eQnTYa2sAQhtP7YN5Vyz1eqD9dB3NYzXoDRdJiJAfxtuD5AWTK+UweiEXiJWSttGdwOj2/CMJjWGyu4Sf/4Q0kZpfCnAn45uDUB+7PXvvp5EkWtHfZCZvarevJ0S0C+GCUUeNSfXta6WMD3/uPh9EDNv2kumILFCI5GGvSntPP2m9BBbKU+tXaKJicfNjmnPKE7hT+BfPM7gyslu9Cgr1Q89nSn6WqDc13iZ95zFJ6SqEREJ1qiOXx3DSzAqHx2BLZ+nz5rHzKBO6wGiBQzhWfXpKVwrG/EzJd3G//1VDeQe98u6CNsleqltVi/YdnUQy3gK1mv4bi42jRaLsTOUMaq9Vf/nAX/C+CRcNJoFMQyY+PYDL6SYOOiSB25uMcT2mYSZC84tMP3/a9EGoJ+OEdbf2G/dRMegB/+H+lfc1+Mh2BwNPxucH3y3gLab4nGnxJQkX37dXqN+ss24Lyum5RZjlJLApy4cB93iloah63ft5Qbw+5YetIrZ5OPwO3dUAJxhXZaGYdc3IsBYhG/4zDs94CZpNXCvedvnwHXdO+u2X7HC78g+p2scy3Xh8DqLL3Huvk2/alA18SfG6JQeQIyWB5XzMMwDBiNF5YMQpZeP9dp95Rr4o5vb+f8PgpW0LR0BUTDJIVXPA1Pe3nPqRvSLZw9+h6tJ2Cbzxt6UkA+kwaHNb3Yz8rtp2CUyntsLW0iRPOOHagdMvfP/zRL/EqUpKTFuLH2KhVV2x2e7gj9ImNw+iAf/H0Ax7YLPosZOVzn8Ip+dyxdY/qnm3UbIZn6SoSsA3eYIAnVkNpZ2Mkpne54qx3A2jX92bhux/eZ7GdwmyUCsQQU4rpMPUtxDxOEPPWaTzvvdGCW6NGOPRzIxwG5kWQsP6JVomOenqLIPv5Mw4Z3vWcjs0dbo3jFmuulXC+2sbB7zp1bXrkfAqjLTxkU4H9NG5MXtn5HnQ6CbDlpbd46g1cK8/95UAdwUx7rl5KCT6f5ENWTl2Dbn2f7yq6TRE2P73NhZ//J7vUxu4p3VfMHFADTXpUsX4yhJBZYwzh/ghFaqFUMJnfZjNsq62HlJ6v+5FpkwXSLfTRqpq/8ayVkPz8nZxE8OFTb7g1DPNwROv9DVUDN1859J3KJuM3fRaL/z7B7T1k1P0aFZ9fu90Mz6uZotZw1IIWw1oDvaqG2Lw0l34q08AB6VZbYfflhv00WmUKTx2C+Mdfx9f8aMHVK8M/PvrHt1M93v32D7BFnVXFtBWo90q2gN2+WgS1vr9TdIEUMNt7tD+8ST2gLQewyxwBK+1qrAt5xH/8Hjo9OmO0XWr6eHzlyqI/YHdVG4Bpqd7A1/meEfjsH4D8rr/bpsJepA/9tP56Axhs+CFfZaUW/SPaInirHxsi3oNHODVoCMBZFWsaucMI5pORlHA7JTW10zGK5+ccOMrzYryQpByf4VyiOIB60Z7INtCXOWDbowepXzs4ns5lwYNObKErGxdsWHrXz09yy6GCdjlZ7LMYffC+qo+87vDCf3r+DPYKnGPzhN731urFOLzlENfoQdGEucmexgQhVtQLAsP9GbPtVffUQXA98vPXOW7MO9RsbFL/rZhcdF9ghuPVqvBBeBgFl439XT163g3by3opfitXIGjlFikjl6rZWNsDvJJVQx0c+/2/93M9xL94VLGtuM5ArlgJTeS9GI4LPpYX/oKR9q16msW7BIokkam27wsw1OmjhblxyahZNSym0bcagLUbVcSY15l887ITeHXfGjbceVPNq+tjgP1Sw7cXf++8XNvDhf/RXfVs+jmX6xpO49OihlSCmPBxfYcXOzIQiWEGhgVPQTCkM46UYxLzItZm9UWDG8brMy7mH7/a+isVvfxnCDZ0H5bg+qgLtNoEQvHnv59ho1EEJ1DQtQgE4G2ue3qo62sxm1oc/PyDEJoc+s3UfgRY9YOIP7dDy8mMXQ+Yn2aLhspyetF8vw0QbQ82kuq+r2Zo8hw+L9qL/OkdXeTtYW6mFZGEo1/QjVlmcH80O7o7vM+9VDIWQABbj95pcqiYMwQaVO7lMgRU2C3+pXryogctXD3gs0AjAcheLiA+ebhi0q2woCmpJjX8GfWz5soWWOI19ZFfmOQmPw3YfTaYarJMTF6/+j2I0zqhmh7vl3yfsh8+REzPmuLHjyHN4AFnt7sUTvpOI3C1cgHVdr5eTOFZKtXkZIR//IXv/O8VJleyp/jqC+YgrroBPjUbUJeQYzw1x0yAeHheaDLxhV+shQ7m08PCCGjnkBsXIMDnc/hQfLdO8VQdbxns3SdD6uWJAb+hIIADeGyI+nHTalrZ9wTmodFSczxGXFwbaw3WE1Ixjj7hP33jp7e6CnmGQ3ntW3gPl280rPIZLnjO+sVP9EU+MNlPHyztuCLr6NNz9j3pHpBOVk8t9G7AMI7t9o+POoveMAcxPML6eP389jNky++rv+tnX2gLGn17Ip/3Rk5eh6IO59OKMih77p1I+lCCXzxe+jZdaHy7woIE0tIH4mXfsdfbVz6Yh2AFFn5DsTHAnpIpDlTn9YVL/DbB9NjcjyAPtZZM8yMsRjyLDXjkTUfDbWAD9kljB54/Vkfj1eprTjKOa+hM6hE7ZlxwFrh6AHd0pSNpZY4xa6WMKdMtItTJlH3P4lPf/fDhX/4nu3GEgNIxxFi+kpC060cEH52iUetq7Hu2uzkBYOfMo9lXuxdTdGU10ITGpsa5bU1+uOEALPo0aZd8MIdko0ByAAGOtrsTED6imUNZwmsc7ud1Majx4ajy11xig4CwkE1HGGCY+yPenYWXOcbDW1OrSE9wBM1txQuEBjDH+unPXqY35QxGcrRHCpLNQhAfc66O/BqQcf6u+JBNzFHhcUJYW/TOceFbQPCkGS/6RME2MMzAb/+0vYL6yXskVwDzUKUW3T4BpzFDapVojLrxO4rHBV/LpvZs8UX1DtVQ6k8N/OL1Gryiiga7IwHk8sZ09ypacwxk5P307sX+N2ZzPakd8CRMkXRXPvGi99U//Rj7sgnNPtv6HTi93gO5TNco5PbkIGCueg97KHxW7ebsWvCKY5tax8Lv50+rHaF112O0SvaveKjhN4XORZUQR9YUz+w83+VF36SRPg397Vbs9vD8cToiXA9V/KtfKIu+QQNKznxu67iBdT6/0HSIDjGzsayBt17G1L0dWtDZILnC84pRpO5WbiX88EvNwIc60vkDWm1ziOBevuwpTj9Gv/m9LzDoV0J7hfCprx5o6TPiUWvRt0YplZ9AeAADu5fCMcdQiUsQv1cPtOpHfdFfxlJZ9Hkys48SUnB/XUH6OlrYO82sIgu/h6J7/GLfGbxYAPFJgtmtsila9MFxeK630Hn1EBtv+8CbT4WiP/2B7XvAu3StBuBy3br0V4/ZjPPbgUzceL98HnNZvSfK530/UK28jr302it3xd5Za7L9JLgSNvfnVf0Mooa17riPx+e2b2HKEhlrktnH0+VtlBCN4ZmGxJaLSTqs74A+uzNSnWNpzky85UB0znfqNK9zwa/dYwCEfZ9olTmWSdbwlkF6pmyxJy+UsvW2Ab96UfwQTVP4xTu7vjb4F7/6jVnmUDco/fl7MX8qB/30b7T2Jj/k1iZH8La0RssDYQRjMioZWPRmaoStEvNLkhMIQPHB9nHj9/PJ/Crg8CIGDpxVGPJgdxygnhcCEeWp69le2ggwe+/CBR8APrmVHyhvV91grb3WFXM+7uqHb2jA+bh4XDXAp1eI2OIPxqcgvwlgyR9kUxwmwC0+ln/87mevLHhPd3hzjA2OGuVbMPfbDVBoy5hGz/6x5GccwMTuNGoefYcvfL+DzvEwUT/3PbCxJxSBOBlXVJM8jc9yt8z6xp8rqi6N3I8Ln1RRmt+osZ3e5oI3a1XqN++/+3Vz2pZwP7cpEpukM2eajstskY27+K8b8wnJjTLG85dq5q0G4u642cIwMkyqr/ZOzG5OhaCwFxDGBqDxeNxBAqT6Kv3xjVmYp1LNtxuO9UVfncHb1OB6lXvUPK2/Pf+AZAU7P8cE7kq3GiRlpcHoVYYkbZlu/uXDJV9gJ0SJyVSh3cLiG2h/62WLfUKxWQXUXvgD25xdRwGnfUkjeOxjXiCH/Pzjp/eY40+P+fGrbLRjMOPhagB/hXSK6evO5+s5NKD0zvS//effa+vA6RpXZIoPFPDSlRu46I/Y6fqyIOl9LGEQ9Tr9q2f96ot8CsYf3wOjIBcWCDt2ocmbCxVbkUSB53RKsL/x8oqkZR4p9XapBxieAYTZ0QYoklQm9v0ygSk8r0oYJCcX76qnUzHS6zWQG1GgzmL/bXd8SXD9nrc4GHnaT81xL8ClnwJ2z0+rJ9ezaQArbWu836yGikedbIHVfj8t9QiLc8nRCeQBOeBdp16KeTu08I8/hhtJLb6743oLuXz9YMfNppiJV3sAWFlfcJiNm4rpcXn8+S8ZCh8V5ODPdzjdEKG/+smUDu0dnr6Hif7qixMWAgg+wsv5xbeeGhcuwMM3c/HiX2Dm4+YKqyjtqDFMm3gYWyJB5xhP2NGHkrPzsNJg4+0tfOGvoJrlJlkpv3qpu+v6kJT4WaqxG/lEvVCj4lmqaHATfAC2eA6K7pYsHYWWfO9Zp084w2afw/AgcmyNj9wcHs9kq5qr84yd2B8Kpk+7CJxpXmPMm6Tg1/3rDpuPkVNsajVg691S735+NBy0rhd+Tx+SwbwyLOpp+h0MmzO2/vIJr5p9PAlybP3iJZkq91l81nL7VFa0Bdhf8Nvw0y/rlzAveppszrDJMriJcUR3X3fs+dvSEuWn3//qd939JDtwwWdYv/NtOBzFtwLj3XdEW9l+VUu9Z69yU4uwJ0lnzi50P6s4kraE3ZsOsCxsMrhXkmLR111zav2x/P/6FEj/faZAi44xEYg/gHlcqR3ohEKiRt1wMDo4N5RsONjUf5pomRfFBwgtSDAq4o/Jk4ncFUL3DfXlUYvFT9iu4DZHd8TrlvKpc84CPCeah8PwdDd5fzsYqnlwHjgwm3shhsVFAYV0n4jgTqbZ5ueyhRR4lGYZiys2ndcWkBvnQ1aXlw9GDyIEJtZ42AjHMJzvEc+gZnt3rC2n5bkkrAblSvyAyJjyatocPxGI7qsrEXfkXU3yNEtgZRsNdjwJgYFU9A7uD/VMd1df5Kzcpwyi5ZyO8bb0YlPLrQTTXbbCVnn1w1ncvRR41LiMHVFpF03GW0HN+3o0/AY62EiCROBrZ/tkDs48/LBvtgXKtGJEGevQ/OYF24JLrD6ws3qkXLIe+1bVZpQhedk/6c4SQ3lo7Y3uN2eBk7WhG+oR2jese2/DnIS3sgJv2sXYftVzQcRORwplzz31d3bPuWtkT/B7fv02NYCqWbOFQ08sHE2nhrNV3T7h0Wc1xtI27pnkygN8CEJEl/XGm7NxusL4UxjUcz0/lp6K3kKXVx7hVK8qqmZEAf4mCmkMgqHid1A1EIH1SJjozwXnfe8Bja/GZX0Sn977zIDDd4OQdGtQwUDE9moiKSn132JYTJ/wuYJGhDsiOEUYciyEe2D0QY7GO79Vk5MWKXzGXYG4LCT9eBtsBjtzcyQrK4Z8+PoDBIu9YVzEOZ/myunggF5L7/ISh7MS7izYnNOR7rbtqxDjshtgG8gYiUIp9FzKpjv8HsoLEYqw6+e14WuQz9kJX5zhDNi0V2dYzCsXm3uWcxrtVqkiRqVHnXYzcH55YQ3cLBcTZbee41E4bxPoGzKgvmWwcHRkDmGj7ie8uz1GzsmjOsLdEznYVIZHOKzSUIAuvBypy5qon+LE0eAU5RlS7a8ebl6qKkBb+dg0LE9txX/vM61OJhFFzQil2MxSeEMSJiq7MZNYyzyy1eb8wBg355BERjMDO/nqWJ9t3ZzKgiTgfnZ3VNucE9DapM7gOtNqrMPrANqHpitrnzkpDXTpG09lMhqwlt8E75RMiimL5AXmTxka7icY09/6i5thYM18duaEeODBy0k40f2pefH2qt5KuPs6e5S2xaefnShS4P0wjti3szZkAz0L8Np1T+odQF6wQH+34DHtdCRkqmey1VwFqsu0OzbkOetZcDaXXovPAMnOsOFsEthVPbzWHbZREPBZ/NIAVu21wVjHYTXrstmqqfFdUaMOSM+TLWXwchoFrEn6FcxOW0ewc683nOz2VjxBgDIIGu9BnYfAli/SaQov69gkooatfop3EVFE+fEiq3d3XO738YBcp0dsLc/7kUY1A2VMYqytWl7MaaE16pj1N6qd08Uf0vUeNFIAsS1e3ZhLo5pDqF8tisvm1Y/PYz5D10ssmmxXjck+680RPOO2wKGqkWp0ZLACND6LWIP5HrCHayJAT1FPM0sTQs5W12U/X2ts7/ZZyC1nLOHLXidkrfEm5gYRI7iSbQG1Tgc4/drPWd2f4RmBaheHPEL7DFxmBVMdap+qY2fPAHEOBsS6ualagvoSqOOuR8rrIvPOyb81dPnLQ/OerHh3SA1N/T6YSUPoAE657iMIxmNC1oQGFUnjN4Irr9ov1ws+t3r+hJy9HlTvh13Ihjzewszf9Aj0wrdi0gmmENSHL1LdS2ou8SBRViwJqbedDn3/erH6b72avl/HDLxgBJNt21NziVds5fkR9J4fA4cnMocc+98Efg/PC71cOiVkpr5FEJruFqmNdQ1nsRwl5Zu1iBb69l1wZt8R6OOkIZ1mReZEpTyHaQMRRdsIA/bpeAIwKVysdemrmLygXL5r/3TUzEy9n5381cCd00loYEUSDoK9y+FFymWKrPjK+f1hHaE59Saa0mdbUGKGK6VFhUy11HBNgWjtFhr6J0RjY0FzRq85g9euWuPdu035Eq8MuJ8uDjU8n1XN+t4msD/cGA703Ao3bFOU0LfYhO3d8Vnw7feZAWNQKN5N55LPaelv4Td7jVRf12U4muyZwZiUG7QuvSTkxAwhFHXu0Yi7dTizu57C4rTd4SKRPtVsNZcVDE0rwbvPVu/bCcjzwulGJLtNV9FXKyvQzrUXPiRHm9P7/lMr0FoRGj16ISbKEeWw09KWuurONGfrvVYAPXyeODjfeTGP9lpT7OwYYd/1biFl8byFetE7aGS3vTnfV/cWfCgJEdDKMR4+p1MKNDNuiZhOeiGUeyb97X9zN3g1ye5egaJcGzg9Y6Mab2dfAnZapNhUjobJPtolg3BVXBFQFT0WR0ELYLM2Hawlex/w+57W8LQ/29h+eWM4p3lTwn3x0NHkuULFQf04QnQL72Rr3fWKTT68A/OR+njH3+9ieus8gfW1O2HLXtuc9/Uxle2JALR+7b/9BPf1FYahqKKVXLqcH/L9UeWsehBl2Y+vnt0taB+VgVpUP8ccjzqElcZ2eN+jnk8yOkYgWc9PqqvJJh7y/SuBIgohtZCHgLR+v1o1c846RnVahbS/XTS43Rwz7DLvERJxa0pwFxkpDtLA7Jm3zQ0oFVuA9bbRwvc73RxB5q8ishoeg8mvc2b88hUB+taO/+LPhIKRKBsgVeM89QnYX8iwxOO+Iv4VSIoRpSG1nqjpB0m7p9Awrzq+5M4jboeWNeomGAPEbdXnUoakQBFBeqbRMYqLIbhbED7Q1sVOuKpNegd9A3cVYdQRvD6myfbD1LQ6m2jjs1PB++sKQlZufGq/6mPRaslLUfnmm9CrdxjNWZ1yA+4FwFCbl4zzWn4K8IEUFyNrCuI/+67veYealXno/+LBTPMUBzRtC8LeRgsrrR+weXRmPj+5l8BNHco0iles76w9gPAoWj71gaz0k3wqyi0S4AVb48GIZ/3UG0C4vTMaVrvYnFVna0F6eD8Je16OfPxQv4b5e+fhIPVAPMcCr+ElsTR6nF95yOrYdFR06QTCybqImbcuEpD4wpVqeLcDy/NGIDXYg56eSIm/PzzMXYvRnCiV2USmtpyxMitEHNcoNr3LDbWQ1wWNeuldzev7M/3FM7Ra7KVvmpMDRQGV2NnstV4U3gqEFiFLb8+7WPzs9RdviCKcr+Y0d6UhB+eZIqBZDzAXh+4KwsBu0QrXwOzmZ9HA3WujEEGw4oLVcejAjG73OF3yLzueCw/Iow3IylkPnMkH+wj7Q33A7soeq8XeJHCb5TvZ3NquGJ16a0B3E8TYUT9DPJaVTtQGlFcijKNbTaPyyWF/U+0/fDPH2XUP6n2o/eXnWe0yAj5d0pP5xg0+O69SgfupcFBF1kXxjsuSKO/2ecfBaZBMEoExg7uvtcehIKoF+2xVCNGxXBPx2a0rVhqJB4XcIePUCUYl1OGHwJtLcsKWeLIJcm9WYJAgnF6JyYWPvDfgL/6b+fgteEAtAl1/vSWr/LLMZxcOd3U7bbdou+DzQXN2CNpbieFgdG6LZvVM1PCrZfTcYI2z6byxwKdLe2ws65F+8RJ3HKL18PJC0YMo+sV3JNjrN5jH70Sg8Z4VuswriucCRhk4F/oVe2Cz6gdAJQm+RoaovRvUYrCfXwa22d2neFB3BXtovgIX/ENkyqZqjBNkKPYj17F2Fqxisy3MASYSF9HoikXBzg4YwLSiB+qBm15NP3w/zeltwaMRmJASXoGQNhZNbJuHHJ97+FsvDQ1GOQNUEuDuGTn4Uh5YP8EmuENcajFiu2JfMbmpjiBKrSOCneUVgrz0VWtNni/zusuQCXmfQflJXSQl6zPofvmtPIg3JG66L5+y0F+B4ngwsD6FqCDqTs5h+FIqarxhv7S2HLfQ6xMDJ3alVVKbbp9gzJ8x3nsvFVDpwALVXHkZju0HLEhaeDUcKCJk6oSymquDDCFxHwO2XmVasJPaWsD5XhIkZ2kXj10iPNVvVo1oa6eDOZrRSGAzd0ckA1DyedzlOVjiI6kz8PjhiT3c2KeOwIXv8cWfoZL2IVLrxDXZ4/qNwGSWCLUHk4LPZeXl0Oqj5ffkvJrj5q7AijYF2XzcMOYHekXwQ4elV/ul6Mlyvx/+ptH9dC0WPrxVCzAyajqiEHNrcu9QyY8ptsv7O5wzF0pwMp+IRsfuyaf3cDtCgsjSW14FnJ3CksEwiHy6u37MYo6CIADRDbnUORVqODvtsMy2aTIy9cNoMnw1kHrE3tJruTuE/PsiBrCLWSItkBvAvgLaKhW9KTj6tlXIDbiRoPlIfMRH3BS3NxYh2IvGgYBvfQdT7uRbeDk3Hd0Bgoph8T91g5IT9Z8PXrAv6PaQsoIS1VEZWPhfAo/LbAd7d9QKIfefhoqHdiYwtlQ+TOe1oxSyWtBgt8xHZSxHf3zY7peiWHQtDLjkX/QYxQ1o/D4rlZ8+cnHIM5zVAhoguCv1P3w22msDOGQW0EV5d3wqO9OAIYnPi71uABk3MAWEHhsaCBcrZqQ3BIWKHJOZTe+Qn98rB4pgJ1GdxRWY1q8i+xe/1yLi3N0XHlzJ6ETRyAEfR04cWGyxQ8Pnet9PWUC3sLlfS+x4ud//4XHWXBNqV3MCNkDPCOx8NC/xyo/ZChtP6G63LVLM5RuJr/CEqvyRIPWmlVYJJxUZivPedjh8Vn3MhKhlijZHGXaCdghHAexXP76E2CpC4fC5bgkUHldEkb2jFVvVz6e6mq0nxRpvitmXC095+bcVxogMFcfnCspSoQBq96pjToveAsP3ZfdbL+DffBjgEu/JUz+6/fzDy794snuM+5iTQ9vCa8s7Iib2If7mq80VmuIR4XCjztU0Cp4H2fhoybxViPnDLyDZnR1qXG8BWPK5Blttz8jMi4i3WuIKy4RMgfD8YIXTCacrcI+XMyTNaJg/PAHd3dtEKjh+Qx6dLgQioI7oE3ReKMqOJMFOeJ6J+hhZMVv+3MHDE5+W/Lz0obqdGbRXaE/N/FCHwwclBpRRtkPv70EKp9tZF+DrtZcx1aaV2T09K4FVe2+QaNw+4STczw2sD/IJW/RR80HbtQ2UHqWD3Vr2gBQf8hWgcpajz/5NqvE9nPZwGK+XPz1Q3LxMBRI0GDS9Bb4paIkrgXRcl9S/DEaxidA+/8MvqeCFMefYlOBF0Sy8P3lCzGQzaCFpg4l6zlCbo3A/12DZX+oYuth/zc2LQFOpdot91/E0nlsJLvZNd3fR5hv2zRTgT0vf0S5sASOnQYCMJnds7hOxHyQEjF9+oPd6bovv8ryqM8gr7AZRXlHs4z00nkVOpNPNjnkzsiv09aOLd9Mpr4bg7RzhOg0JUafpAYadKEbb1vcUbLlTFTIhQgMUCtGkobaaK4anZwTjMjCpZVfPJR+3Kazz6UF/+WPO0MoDS3wkrHqs+eQdhj3cWcoLwZA/Yv7LF4392JD7onfOimUyIDfWh2wdlPZTvr48oa28bRws/PunB8IFT2MfFRWfKL1Y4HzlE7WIH4Eh5x8FKo/XCTu9KoNBNoMOIGgh6m/5+NMvoTr4x46IrbjnjMyW98Oz1MeU96y2tau6xCeKTZkXs1qKCbSqNaS7bXMJB8mVCXxX3gpbi15BF34EFj2GuurXi+mWfQmc5PNEdV//xOOappoC2T7GtqG/AMfAamDakooixy2LgaCqBAs+/r2vmH0PWgrruckXvuD0HPvur7f/hJ7COJpsdzlt4fcm76j+qCyT/PSYCXkj1sOehmTRh8GWeRU2QTOBwfAeV/DTVxx4SOIeg6gBPzznrC/ffhLucqc81I+IZEzjSqgjfYb24/CkaBStUNyE7y08dPCEz0H7AJsewQReALvg/XoVFuxcxQa0no8jdve+X8jv+7GF671CsbZ2NDAu/qiSkh+Q7AZ2MSx4DU7ixkULvjHZA0VPKGoa/6f/fb96roqu19LdXovA7OS4hFxU1susr2e85AMNakhrcbro2byXt4nyvQZbqp1nGA64Cp9QOWQRvTWOVXALeQrUVp+I+ugCqjtT2k5Z9H8cpg2suNW1CJa55BHppD9DJmwMAtXyE1H3kX+q2Z8PAny1OcF6N+cF3zK3hUejpVgT35uKNwBYUCvtDZk/xDcps7d74PT+d9GfHcDsT++ARX9GJLqTsAWbPILtehnrbDb3eL7MTAI0G08//wZ8ybdKZ78/y/vE//h+lOArxdV9CGemOPVPD/npJzG7hspe2XlFSMOFb1C2iUslr+4cCbaqVoP53gtQOKAaO1K6A2OcPC1I45NItWSgJj+/JQc+tqlE/e25jenLvhxhcNMJNT7kG/LLy9Vg+moIEl/ezpwXfR6ej/6R6q03VyQ2swQu8QVVytEIF/65Akdtkn96OKB3vznC7QFzolrxd8lvjAC6+l6o+SFX/rMf8ACbJxE3EYwn+ZpIkKPoTW+f7avi1w62cIyzO8ZiWVSz794EuPA/6obOrpjmrjOgmdkcged6X4lmNA7gKEl3QpZ6zXy55RJo7vfyh9cKwdvmmrLkJ1QPZ1ot+QlC+/YKsU/ZoWLadulb/Lgi9NRJxPlvP9bpEdPQSLqeY2O3At3MDLzjy7CQ6uY/IWUXSo07bs23/jhnEO6kLYHqnXKaXLvyx9/ow1xOPyF10yrGN7NpqoYfkzxlWgPNDu5YE/1jwU7W6w7Cr5FRdHl9AftsRQhT6ylQjwUgnJ6flMDEXTdLPWlVjEgxr/BdyzFSzEA2p89zUOBlfTBxUi19W6Slr9n+LEqIlvWl4MZzbuAu2Os0P0NtUSzWCCz1G2qSSjJ5I8gzfO1cH0fL8y/24qhLfQptL51TsNNlzECdKxpZS5pvCtenhKC70WekCJe6GLR1KMHi3Jb4fNA5YPikKSAmzw1Ofab3G+y7R2DeHjFd9DpTILVeqpN8mn76TTF8OpBCekI9dQ8PvRB21gHCTuYpNR7r2z/700p3g6RTcQunz7Hb/+nXob59x6w8z57aZ4ODE1li/R++g5yp2Nueoh+/y0H4DBA1t0+L/+pJ0N+gkO7u/NZv+vqYwNBpVlR/vAC4liBnwL5VIel262M8UbUgsDxdWxo8XzRmV/VUqjetfuM7YF1BjQ/Y/up7FKOjWzBZGLdgoBEh63Gjhfxs3K5QUQSFuqvXzKebt5T4VKHClrNh8WTGS183votxqJW7WCwrn8B7TjJqbVeOOf/4VnHJNwSG4qdiYBWXsOrXe2pj6JmzX4keUFZXG5+v5Nz/4gmoz3uR+p/QjAXJfXS/+gqCV78028dpJ8HWbvfUjrJdz5sxzaEzgNWfHsSETbDwr6Whh3ggYIzLcoAPxQ0xkp/rnjirIILmKsioWbeYCx5bdWDup5BIi14ytzUPFOg9MvIulaCQtjdpBvVc59S0wqgXf/r/r145K0Nf0LtRQ/AZbA2p/G3HTX+guaIfjA+O2mNodluFeWo7DwFOtqXGJziGM1SuWo+v6/1oTplJauCK8Y1M/ML4tKvHq7wKcmfBE1LV9QGxIOKRRdFneyq+yGsjKJPVhO0vrXru+hfhZ/+LPg5NrorPPaxjFpLN4SaHw4+PxZWSUSPOEWfAvirwfr2ONEEeAbOu7TRIXgbEP3xNtwy38N0wn7DKLsE8OgdLHfrBonb/yCp+da8GnFjt4fOnYhW7tpf6x0ewteTH3vUPAtx1whsvekE/7J7TUf3Vi0DVaxWTAxPCV5sRfPB1t+DAyw1YCyld9HoKprX0SOH+4UREdcVi+WbxlKine02xZlo1mH71uz/+uuDnbuFXPz0EqXbIe0aqzx2mxvzAYZKX8dwu8xx/elvRZ3XBPCcZ1IW/Yp8mUbzoiRJ8nkMbgTQ4x0v9dAvV+m6gDYxZTH968eFzDqgxq+v4Vy8ADyObqUXec8iE10DA4d2ISEB1YpLn3Pzpyzh6LPNQHlfXUw7VuKZ+Xg+cYaeOYKV9BwR59Y2nzStU4Gl/smlgHEnPI5RlEG0fJt5dP1XMA6uc1f/rTMHmv88UhPt1QJHwcsF0xk0Om6490kfGvwXDfZ+ALkoL6uJqFX7OmazB9P480EB05oonX7aF982+RVK6nkz2UOQUhkQMsN91ViWdy5DAU2O+yXThpKep6q3gIaAXNLaPuhf3F0bk57UbKN5su+JzMPdMBaF3p9dD11fvcY33oE3hGaHUncKvP+5mUBmaT41Y3fPBi7cZYOUlwzsxsEMaS1K0peYy/xERMxYf2/sAinQUqbXMd573DGTg2tAd9g83FLOhtWogtopCLT/SKr78PeTZUpM9nfxQgMbuCDYsS6nn6lrB3HulQXOSJBx5t75g7fpCoIUHCeMMCuHgfG8d3OrVgOShpP3y+w10j6uEajdlMAdTZB6g6/GE1qfPqprz7uvB88rusb7u3/FsPfYRvD0BoLZ9zip+VM07zMJCJ/JuTUyCN1oHs684Yh+c3iEvZyEAebHEIDVuzQnVfQKPh3bG7lQ/+DduwBMaFnTI93WrY3b7cqhCW95gNIO5IPpcMpgMRUnknWTG4rlPc3DYPy16+PK6YkfBYxB0vkjt6+pSjb19bWD5udzo41o9TKb1ngHuUQ/JPd0DMH9xcoXq5DTY+4ivihVpv3A+WGAnT5p+GiGsl95vI9W/vO5bhHkC1PoEKJaKB2BrL9Pgpnye6A4YlE/bdDPD22oCWDvgsOfJYNYwSZQNDcK7zafrV0dQe9IMu9B+mlO7PRBV+l5VqheXCgyO9kzUq/BG1FnRIxCFfo6gOu/g7/+H0znUNZiZSkrm8jz14yluIdh6jwFHyfoVzuU9CuA5I2vs7o73gis4KMGeI0LtNbaLaS+2BLyAw9CTzwMnURAfoTwMOY3kahuOJ5gegXEUXLzYT8wc7ZnC83PXY0NwPpwCet7CW2wqFF/sFSAzHQR4UsQG7/iYF8t+1zAkm4A6FgHxMqZ2gFywX6icz24vjSJs4Pa+0bH3rV98Jr0PIURFiHeZI1fkHicGZC0bsVtu/Z4Ow0sBnzRL6BWDvmDmoY3gBbkmgmvN6NnUGs7a8maJRpqkxYyeIwJfrmTuhPrw4qx6HZ6qF5dnMkj2BgwR7CNI4LXFaIqOMS9n6MGf/dxWX4UPL+TfoXhYKeiz3F/CcpwCqXyqOGLpGbQ0UTRoMOJR+/yo+r67bSK4P98HIhb4UtCWrB1IgtMBgWAVFzUB1w680GxifC+/MQ9GdlV/97+1U27O4b4tYdMjFTtnD/Bxen+uan6tXGr5p7CYjrt7BFcgjjH6bq6Aj9E6Ad7N13GxBqeYmJ5dw+zJCeKv97cnXrObYXhOH0g6ewWgErY16F62CTWG1q1Y5QoRkN9zjkP37MW8HeoMwG7ckibbwHA8TiSAF+t6oTdrV5mz2QUCuKAvwXjxf3pcpwH8iqqD1pHXLib0VeC50U40Tr9fkzvMbmVFL69Y++w3IQfdXILcHR28u1V1OH/OQg4npyU0zW+HYro8ewZbwDL8MJuZk0mcHfX8xD0S/FMfLxVjS9kqRobEt1zHtDBXDVz5PkSbmgnVrXxHAdRXhk1tyXiH9I4IAfozsH/2V3wb/9ICroZPpN6q2hwfXE7g+lF+sb+TqmIWr8e9+lTKkVoPS4/pHAkSpC0/oTE/XwoOxh0CBzGxaZ7ry3zpxykC503YE4k0s9k4ggIBnHoZqe3DqsTm7XfwiSKNRizd8MHItQASeG+pVq838dAH/hbmtc6xqYCumlkeWNDCQUi9TNbjqXnrLWS7T4ptdDSLX3wCl65g1PVLr+/DT49gthnJ33po7k6Bklc3j55sNAIqnvI9eMRaR+17TcBIZn8F9zUzaASpASbfqQLFxAFHq50JenqVzS3MJyBQ46I3FemhL8H08V3OxJGrOelyN0OBbkoiKMU2HC/3g/OLZ9grcRRP3d5F8KU8bZrdWz0W6fGcKVrANGpNaMPZaMIWLP/GmZrs+uGi+wHUaKOjTaULRfM5Cxk0KyhStD2oPYuUfakezncLO0Gy72fv1WagjpCEreNF4xMKkQbnOfeo8/EOYBJItFWo+NQQZ54Yzh8YJVBQaUVmwfkAFvdP6e95dSPaVZPgCytYNkcXm4EbF1y8bLptdSkFJK6xHc8XrjvAiQyAf/FrvDz7GT6vlk6zj6hXVFjh5n8AAAD//yxdx9aqMBB+IBdKkQxLpImAiQIi7gSVqkgLkKe/B/+7JhtC5msnzMDxeMZUza9TMSrmqAMkgkCs9Lpr+0DnPUAOPfzqPR65EwCa/JVOtdVJ+V9P4ivusES3s8ZwcGrgpw8MXIpozpbbo8t6zM/67LPnWAAKr+WZPCaOFJPlihH6kKdPSPtax1WdER0unVyR4yodtf4G/ggSXe+JinqvnbYHKYFuFjCxvn3XzqW9LaUz8CM5fHXiM0H37rJujTw9NIz4o+WLdwB9zohNt7PT8ZkUgCdoT2IZnuL3o+GZYAWGOqznQxMzMio1PG5raRgjp9PmSr01v/en1rPO4jjMIljumWv04bSFNqV9p0tXagbEVu+jzwRLmKXLPJ+oodWi38US4tE+ixV6NEBz+M92quWXeV4TSw76dtCRgoGP34BX8mA5bL8SQxTgIsNsGux41l8R/u3HsNr3Y9xfJK1EC3/j90qUC+aFNQ/D+ez94WlTszKCl2F9F7341OhjuHmI3rcB2dd4w2h0uplwD5154CxORPT8UmZ5wVuiLvqFJa/hDa8HWePt50K1KddMEZTPN6Lufci05sdvW9WgxLLGtKBFfcjhFEq7ZZ5bxRY8teTY4jZkH+EnYh/ODSBDbUx1U7mgORe+T1DSPqK3QhjYfFi3JmrN4jAwZap9msQHF7LwRMlxdTXieRfUJpwIKH/7zw58dAe3fhzJkRwKfzxOYwnoq7zI5ZtSn/GuFAAUk0gXvi1YlcEJnEPy/OkZNBR0lyN2xQe8vhlPNr+6bYjM1SBT2/mMRbd/tgp8SOJTu5TPjNF0H0Hh1GzYTzGnTW27dsE53V/UDg5my4pukKD03i5e7cuqmHYPaUaRs+4GJLlc3N6Lr4VU/z5TUn2CYu7uegn3i5LQy10uUL8ZdEl6OukbC8eD387fVn/KSz1TFeOR0fPLGtFhWsWY6zgddeh9wZAm5o4c7pmGONVXLDnobvkwY3xivaEq3k9P0gVvfWGTv0rJtqQYd+fGaUey9yOkqKeOKOSqtExbbp3/9OAROfd2lveXELavNSUml8/ttMXX/8+N0Tc0ruqzEpb6IgeOUja5fgVQ99J1mKy1Fn9WiRGiqxN/f9/vp6exrH7H/SCrz5zNVzMe4Gk4Z7rPDt9inJpg5LfqntKjOkZ+1n7OG0huN2FgkKXa7A4F/uktsvChlu+7WAUxvPSEXI8+6j/K1MnsdX7hNOhbNBPBqsGxdwfieAkrZuKNHVr4mSwMWrDs9tygM3jGwCVd6UzN5mrBu2k8YnKt7E8ejZ/g3YeJup0otJM8Vx4kuzAb2pN6cLqVbzeAW/uDGyU3WnYu3jY8v/cPwafo7Eyj4enydCwHmoy6GrfcbV1LmbW+EWM3HgvBnyMeEVP6/voOOfzt1o7wcDI8CMLOjjea9Ej/9P1hq1f+ZOjLb8sB/hArtnfOZJh9A1k/3YnLG1c0nS8rCwXFtRi2TwuzQRFFFXXt9kjwrTr7s4rv/M9PkBt6UjQ+jVKBnx42lVXVTtow2ii2/AM1zmPRdgcnev78A5aPXcSmaa3PcPUuDY20rkHtgT9F8PSen0G8lA5jR4l5qA1uNnncDY31LKBvSf3Oe6KoXapNljtGSMCnFd2DoTiCeqhSRKrrhbif265lwzupf350EF5F4IzrUlFB6PqG4BMxfRbuhrsUtBvhz+/17y9V4SnGq2GdFGvt48lOAlN+HwkBUDROf0cuxP3eJlqlHVDrOAgDGGjpRcjt2vE9JAv+757EPh5Np/Z4P4HLyyj/+GESB/uO+pl/D0Iufgu6EuQAfnxlLHpkLOVDDgnnbBd/IPlzJLMB7rn4oOQo1Iwh+hKlcW2p1HF7v2DcxfMgrJ4e3a03o9Yjcc5hvEvdoveCtgd0xGg8qi0uQ8VhbNBfd5CovCfGpy79CeenBh4fAeGSl69stgpmwlIvA5IzG41NAClsb0sT4LG4aFPJ73L0w0f8eoDWCmb/tx53n1tWTEiUcuD4GVGN8MyfrQLp6Og35dKPOEWjt1FmmMTRoA/OrpwxTFCNijThsIwcqfjrS+OPbYZlEkfsS1sY0E5oRozGNedM9KQPEl/sa7x6uEk85ZVrSa5mZoRsP3Yx8Q9DQU+B84nicSnr1697B1Wmnui+3zTa3JiQgyzZ1ZB0yzz6ol4yci5VqNld5phyk32CxR9Se6k/biecTPl7P+rLLJ59PIURDtH3TvRBXviDoy10qB8qQmw6fuI/PGrcrUnxvh/9yi9THpbzSW7JDaNRXUU66GEtECevAr8X+CZAfs5S3Altv3QvVCT5bvnTwPHBvWVhdloBTN8tNas8KRq94EpUDw912IRKiyrNrjGKBDoMdzGunalIOoyu3rX5469h4Wt0inZXqi0j4MYTpIPMJ4fPom9zNF/cGkDVVyYxdp8cDV+SPME7m3ssv8cynn3U5rC6SB+KHedUjLCWUijk2SbGyb9ps5WlkZwWqkoJQKqxW7czQZA0BRdmWvuT9JFteNxuZOmNbiEqETWXw6j/DBCsM21OFG0F6cXekUNyG9j0yBEASjOHkqG1nUmpqwjY1T2QWHIv/m+95NmWSQPJO/r9D189/ZIQ4yPd0LiHvvv5FTwe6rTtH3sNkJws/8EH5U6bUsqPWwMlJ/w98lo81rsugU/JKcQW41qbUPYR0ZInYLC1tOidG3Ol+qReh/oSZxrVdkYJ2YbGWFiZXNvHx7MLj51YUg2y1Jmm6vP85Q3EuUwHbVRXJ1NebbYrsjOywpnslWMj5PobvIlp+3cepPD6Pv/5hdkUjg0Se7+nO/FY+VQh84jGYxUuepPGM+9LIfB5Lg+rJY9hjfwdocwUkTRibDlMW808GGq0JbtAH1qG6FX64cHiR58Fs+cHD9e3eiFuRzs0F5fShdWrOA+j6bdaZ5Sih0g5N9RW2lPMu5ZVovrQ7qhqhabGb0rJRYqDQqpt3aadrl9ngJq7aeQqvZqiCw5FCRtHy8iRxTrjtMneQFR3V+puz3k7ldIgIXtOn/S56Mkp0Fce3OK1Tp1N0BT0YtSAIu+q0p1zKjR2+tQDLPxOjk6rOXP6XvokLueTP37fzqjeLRt8bTzQoDzvWN/uP578qycI1jutDO81QLNWH9QSVrlPyeatwMDv/Z//0f7wfsnXqLpWa4fteu4Jcf/lsBzU25htE7KBwjEtamwqqVj0pA5IeDkUPxYiqPrvG5UrUaTYqOI4j65nHUI5q7FQbtc+++GJLklHYlTbMq6X8/CrH2pt+7ydZNdupA/Cl5+eitny/nAgpwiXXu4Uc7L0UdND3aWmI1WMdb7+lmIpSmlyZmHcv9gUQvhqP1iMtrt4xjsUwt06T1Rb8o0p0PmTzI/rLyVY8VuWPGIRLX6Fup/cjRl/fnUQvhUZ8+o6duaz2yaoTJMj/eHjPJ8bGxyw01+ew2YUXZb2xleRWvYrLca8c+1lyrK7+C/PZ6g3sPSeSp/oLc1QF1TxG30/+Z1qx4q13/XLG/70733RvzMQ+YSU1Oox95G27Hv9aoP09Ct5mG5NwaZFf4KVvENKlrz62zgZD0L8DshfnovDIkSIl1LiWkHa1u3YLXeeLgp1QTy2873JbNhcR5eoHLdH1KlOubTkN5ivcihmvNwBD3CWDbzaGy1v4lMAzVp5kHvgneNNHJxd+WlQwLMuGmg8TuL7933IfvLsWETvhwtdKR/xpeNKRG/dTpfP5/aOt+hSaUu+aCH7et1TpZdUjZZWCPDMXqslL/u2o7ytPHnvKj5NLpaD2Fx3PDSi+SC/88qsex2BJQYRSfxb206PQ1hD9kI3qi95XZ9XuoWkd/ig+ntzdUau61aQFopKA++WsvkptIAugUjIQx1Ff1rqAxY/gmueqP4gG2qzzB+fqGsOjjalZ9BhyQ/J5e3c0Py5fDsJbz8+2Tfhl83V+1vCoieo5RHep/UgmJDvniYxKKG/fGqGeRtYmA95M55u+Sr5BwAA//+knUv7e7ASx1+QRVFkLBWldUnUpWVXelGqlAry6s/j9z/Lszt7z0NiMpP5TL4TuJc3jtrm/m7MqV5a8NK1mabPS9lP2ftkofEUhVhc7Xtu73wKy6Av1Dhyh/53aNsUhPxTj2g3M4O90Wmdf8Gg3ne7Q3/zB5CPJfHX/QKDV9gg7s41eHLlZ96HyjQB98tCSrwrF02zoTiQbQ85vbtxno8nJ11AVrcT5pNt6U4JJ0lALKlbeeuOCU330f/yA2q035it/pWH7bTZYVF4hdXsoKkA+8knxHd5Hy1ZVi2wtWOO2pYfGXN+4hrkHu/3kf/dX8bM4k8Niz0XI1KMb8WmSLfgOUkGjVeeJiirBifdGwMWF/9mjD1XPCHMTwXd50SObvX5DkjmfYvu2JFUW5uTYrS1UUeN7e0bzXVshkpTLCeKV161xSmnQ3Jw63GzhIkxK+9XAb+jV5HkWWRsbvyNhtZ4SHe3Q22w94bjIECD/sfj0Pr8HbifqhKylZxoumEXIMpDHh/J24hYjDUJrM+ijuOy2P1ULLmCVj5J72hjI4EFugdBalyoKfavaNmcNQ1QaD7Iys+NIYDnANLhNlBPvvr5JEf+QWk/lT7Si88QZRZt4N6pIdkbbRoNb76rlfS0XAh534+Mf3XzWj/ZDMQcdtt+djOGQZcww1/3M/Wj2l0btPItelBdHfF2EZxh0cIZC2KsVIuT5wd0xb1F9Mw5Rax4NM2/eMiquOuXZ51dke8N1XqXt29sS/l4hVC8s/E7Oov72US/K+y25p4k2VPOp8m7WkhVDm/yUPdftPzFzz7OHWpdGzCWXba/g4hPDdXfwszqP3s0K86n3vuwQ8I3sNc+K1Wy8oU1P8iWL4i5fiLE9lX0e1JuQrOvGdRzjGc/3Fw5gNVfk/vjVrhs5bn/1iNZ85e2HzMRLYm50H3jyohuv4ImI8o9qMnOA1rckHlQABlA5r89lCP1q1qufkerOoB5wC7xhkY3po3zHSEqWwdvrVWTxsxYUZnzuBOr8E49g4MQoPOOfShJIXbnM00BSuW1pwdDSHr22JWpuv94Ct2FnlH9y4+ga15r/bCu2CciJkxloOOX89kz4fbsQiSx3qBmTl3GZG5vwiawE9yoR7UaOxLfIfJTRp02/OTDfT9oSGZtTi5zvWHjuQ0AtE+fUjcjXfS33wBd8hgeomzta3bdnP/8J/42wwnRZP/kYGqXH3Een6Zil1TWYeX31Kdq3S/cU2mR0MaE3Kpa7mni4HW/jgW6CxMcbW1uOsOxf+9HER1stES3lkcijpoRVh4imF+hQWs9BfPSVe8F/ggcbB7PDosrX6MT2l6het4FsuPp3v150Q+QPoeM2O7pUC04D1pVTWSy2leW/54xXgC2RUXi12tXbdd8DkmJd6EG23xXxRhvQbGTvT9/iAb7qQ5wUvOc+kJxrSZD0nkQaECwWCRFPrsZ8mC1f7xcQisSit9YI1fwnmSPc+wOxM6v0Evf51/9plr5f6iWVb2nKW77fIkveQ2CiAPiUvu78u7MhDUe03+8WNlueVXJPssonGQcfX8C36x9MDzitPliLLKuFOAF3IvsxPveZc+SmwB1+mOUy5sZzfunzqlhq9tY8FYNoS0dYigfckb8le/SxLHOUG85iXrRS1zXX2jB6zctGAbp0o/XgfHqyg+JPw81++Ob0AnXfBQuLY7me7o7QzbhfOzDgvU/B0n3f/xXH2U7omU8F2rCYkRPtU/zNf8c1NlvxvF9GEZjME7rTjOOvT/+asyvz53/41kE/8WXYGJX9S9ee0Ym9IOuq0/koOZGDatj7s/bCpJic0NCXE2P3ME4tRjml5oT85bscsZ03UPF5yRRc80PqOY/TWiqIcRC4IzRnMA9RCvPwNu1fj8dZ2YCNdLuv+uL3Rb8/50pkP73mYLb66bS/a2Q3SULhvN2P/A+fVwPHmKB90iRUlrPUUwJyn8H0bZQc715o1IfdYOvSZzCGDEeQ+HU1byZNE3RbuZEHNeuqilTixfKwlYnWFk+Li2qUISLqc1UP0wZ2lpp1Sr36eeMbArMfG5OiQRFus3pof7+IuawIlbazrwRTHO3GiUjUcAvlAtGNdzcebkuofq5+zviXPy6+t7N9xMm6edhIdu9DGYHmgc37xPgZyQrbIik5gzPFvPEVOt39ePd9xP0k/elZptP1eK+LBOk8EaIJ0l8zh4W1SGdxYpo1zJAC5n3VxBpTUhcMqVfJLrTAUXvnOhm8kKTKnYcnHJNJOalOaLlVWciouYnomYjjtVK3AP0OH9EDO0SRaJEjxosmzknu/nTs6XLW4Deadf7JBHOJ5vfNwgpdEf2m9KN/n2vf+R2YxoHNzTvByMFxFnL2HCxX038ZzKhFcYBi/VU9r/uefPQ5jicicVrViTu7C8P7/LrkN3ZIfkEX6mGszp2o9gkVcQUJ9fQ8TQSuteuCpvT17ZFsb1Zxm237d3SscABPoANDYv4Z3SHQvxCBafzODrP2p1vz8kCiQUjCYQvx+jheFbAvL814ga22E+ZGj/hKxY8PdKvbcyT44dojGZ+5HGVsHng0wPcMv9B/cw8R3N4hC+q1Fcw8ufp17deJAO8yHDH3GKU/XAqjebPXshekpNqqkVXAf05k1GVAylnh+NdgqOxtSg+fm20rdiSAr6FOcH3x5jP3CPS4FK9z3h4iAlagtxZdSuUEKMYZncJsxuGN/lMxNZawe1yMxuFj5bImH9iic2/RrbQ+Qg88Ved/qIrxggb+tbHzar+G8ps7eXqigkx+E3H5t0pHOHclRkx1/FOF6+L4SPELbEow9G/+Rbr/jb2p1OZzw+PDihP9g1d32/MytbwUGyrCzkYdN9vbb1zAHfSFwva9cpm7S5PYKahTLAhjcbPQKkD10i3yF4yspxxb3cA5+I+qW6EYzXyO7WFqhhm4pm/1qVNoeONcWpGak5tG83NdzzDcx/eR8mg74peuQDUQm4VPKBoySdJb3lwC4cQ/95JxtJ2Bw18YmCqlzJmo2/bHAzVbr2//VW60yKJAKi810S7bSqDNtNDA+H9jKhf4KvLLquu1I+8BzmcLMVgIUrv6mO28bgM1qan2m+vQJ39TGJa57vRukpXgBIXJxJP7SGf387TUbXqKtGd3QUGg1KY1PH2GCjxPVqNmyY4qB/0pURv2jifPzc7gE40J5Ifptydy1caA3eMQzwci1/fnbsnpzY7TLHcn6X+l2yqAkS8TPhTh100GVmhILrqnkmSffIB9/EAW5S0+HsrPXe6Hn0OlaOyoYfzcTQWuSwBHRNTI2mFPtXsPM0G2pzEeHuOtmy89K+76vweH+pF+GPMj4dzRbZ1p8Qo6dtd/fEVNTdRJd7+8HAXfAHuz76oWaVF3os3UssekUziYZe5LBncEUAPDXr0qFTRX3SKUdK5ycg9km+12N5JV19hKxDyUZp8Mlddxt5hPCVn7ujOJWoXONd3jzqvWnNn7AcayDInU0f9YWPyfk4KnoU9Yhvr/ZlHc2nVGKAct9ExNuZffL7C5kQVPGdtWVGOKw7IcIyBYpz9ItZe45VJu1eKk10VzfUQa/CFBWH2sKkxK0E0qs5b67DqFXa1yIqSooqJ6dpb/NQzOzh4YAW1QezF1NkW58MBhElu6Z6QNu8PgqNB+sYx2e9vI5q/s+OBbZgcvS7npZ82kXYFvXa1UZ4yj/0aQxRBxNNEC/44okVaa9gMWSE5WPIxWv7sucyho3qUkn5s3or5N59Y5LSNS7VILZQ79jC9ccLVZfqxPv8bj5z1AmvL4YBhz5yE7irL64dNpKXwRK6DX/7jEbGm0D1olVn+81dMjC/0pZy1AIhfpWq1uL4cwOP06ojv/ko2hANwIB29me6ydtdPQ1hIEH8199//W6I3boCQ+UzwT/v19GI0L/S+2ge85VMn/2fvAsUuJW3nuQxKdUERulRYnS/EXQxHmmCaAkwL1dPR/B8AAAD//6RdydqCOBB8IA+ySZojAgKyJCq43cAFRVG2JJCnnw//Oc5t7i4o3dVV1aT7hBsFbZbZnlipJyfcWywx2OMpJhif41yUYsygyKs3NQ4cizHINwe4ZdKV3KmRJOPiQtPFD99NdlBzoUUmhcfxOGOmPOsTsRisAr5y1xF7SdK2rQzFQfL2aNOBPM85D+wIUNBfPyyqbqEY35lJ4XsIPPxBeJ6M0L6/8KguS7zQqlcrZiHaoE001MSZ8JrX00S3u90WZFVUIMbmkx2Q/QgTYu/uRTIO57cEqJM1Eh7f35K/Lujyy9cpn7uQawfjC8v9QpD1hAc8ShYzyFflksVo7ohx4W+fv/ez5felivG1zimYauUT/zAP8oEVHp/2Ac9+eJyIrS1A9/rXHi+o1CBRR/IFxtsc6PwovZPmdLMzaK7RtO8x89AA+taHrZSk/37+4/S9oD3vjsR6H5c2b3TdXfC5nbDAclhb03NmwZeGDVvxgIe826UaRDRmxDLVTdmUPMSLo9maJM7wMhyj9GOBCtWTBJs3FsyrTw0ybSlhrsZaxD649VG3TTcT/sxtyj+R/hfP8QXrYaebwocCzw5Yrr3SHldsrBZqLmzi7+V7+ff/THySmaxZTfH0VNAgszuJrmaB6KHfBMYUb8S7NiIZu+gSAXeMI4voUQ75jdQS7PvRpAM6vxNeLc4KrOnhysIIxzmn+0YyHqeXRrzLuQi7bB0DXDJnz/BL7BHvjpunUbLaY1vlMCT8bJ0wmuoDlornJxmedN2BsmUeFq+3ntNre7XQPHY9zMciD4XFEwXOu8YiIdOW+VjyMEKWlm7ItTKTUq2MmQPhO+uZ1R4XQgyodkCl/Zl5Yn8IB2PpzmB22XxJoJdNwh5rCfRfvTUN9VDyWEMcxeZuzazyxsuBc+Dww2vUzwd72MG+gM6+eywO+yUaHG/aTXBsA9p0Vpv84a1ZnjQWubu1EEf/6aO6vjzYzY3kknkbHyN8sR/Mwxlu+UJeUjTHosTQxkPOj+9hNFKeJow8pwm6yzuVFt8lqCTUik3SyzM3A3NzeZLg7vZoFHZ5gHgNS/x1F3Uurn5KYSMWG+L1PE34uy9uQMQjmvj2quU3ZXvQN+mhxbK2kNvOJeEIZXhVmb/Nvq0w3VsGDTnGJH5saTisUUBhcR1XWDt/ikTMj12DXp9XjF/G693Wr8R+gd6MJxa+x3M+hk/sInXnhWQZeyivw2MdwB0sk3j5IRQUdnuM/Ny02Xmmt0KQ7uyDM45bRtBiUw4g759wHC53hs+XLPnj9129F4R8nMDuZ1p5g2ufMbKO7U/YObNbB85r4VM4P2k7ahsJAH14S/7un8I/6WIn6zvMd99POSBP28GiyVJiuZcxF+vPE+DY+sdehbdlq1o07d6IlYD54ZciYSbGDdWHZ8hMvjLCCf9m4LpOy+yPecr5cxu4wJ/nFcHbcgjH7LFNjY61+pRfbySyXS+hdxTPibO5VMlYW5snrN5JRMXwUFuehGsHNslqYDZZ4lBe922DFsY0i3ArelS/tfgEw/x8JAGLMBo94T/hqT0eJFg9l4ga62H84RNVYStK+sOPlZUqJPzx11EKOl3W3wWeX3e8FYfD8q++4WGNx5DX/hmjn97cW0kbDlfdfMKq/SR0CL1n3rhn7qJbzwU7b8euHbv36wu/+NHjvLUHW0kL6Eq7+/HPsAvsaY7JR+G4OY1V2Zlki//weKWPKyRXDU0Ri4KUhBmL8nF83yPoT1ZO+SjVbR2Vu+cfPyVSPmu/ufl8AgbVJH4iu+1wzeGi2Z27omh2LlqxeTMJ9i/HJyv/M5Z83JEbaq74QLwNVcIux+sKsnm0IPn0fWK/ukR/emgZCCHEe7ORjF9997r7MuTv9GShH1+QL+FK0N3KPBnStzDJtqbPlt7Wj0AP9jcH1962T/70aXR5JsydpX3ZS+PVRE5LCGV2thc8Y/INvh+5ZOHG2Alhf3gGxxpd6T6I0lxU/GhBiBOXDmu8s3/6zTiCKiiKcJ+MY7NT9J1HGlodi307mmjIIBpzk86azg0l+3zRILudM6pFbWkLa90dYKnOIqoLlE71jozo5hQH5qwlngyFE+0gOi6+zL35bclpudR0ZeVqzF0n035aK3SRmqQrdi9DE038MkOBQwIKE55JV5vfjPNrf2PEfJloiPfiBo3VzcnEp8o2O9Y3GCTTpjDpuX62RYBW1dPF3fmJp33W2wYuZSpwe78NiB228QsUut+z2CFM9PfMHUGKBMVNc63zqX69ULBzE4Zn7SYX4L9TiOrgyVbLObTDT/8O7mtPbHoUgq8uTwlehR3REQ11Pvrv+gIa3s7wWG+CXJweevXLFxKscJI3q+tR0zeyH5DdhAf8ORoAvHMNDGBpYffjp+hWxLQ42rO2J+NZgY17fdLTqF6RkFadAuGX39i94E8k0sWTg+W8cvLzc2ibzhtU75MtWz3DW8vc0HnBdS/TX/5O8XdSFld+dKnef+JQyA1t4FcvPLk22vqsFRvDL5cfYjt9hcY7BBaYUO8ZEdslkuXjQYd+5azYhqNFItAhOkH5NggVzllLhHHepUZ2TmPmJ3JVThsvqh//p2hYS0IctnEFxjKP8SKFTcJ2aTEzXtBmxNFdkfBDZmagvLUjhpV/tzl2+uj3+1mgl0H+eb/6BprvuyWrS/gWYjVPApj0EbOGq2Uri0uVwuQv4eHItraYhWIDo5R5eBYOak4fepqCqhoqC011K1jTLgugO/fEsIOeSd0Euw4dT9GSnCY9OtKv/oLF5RGyWJIfeV2/TxJsEm9gzm75DbuD2Eiwix8DcbPZRzDTPWTIeSGf/vyi1nDnDSyK7vLnh3TJdqZA4FWIRGBp9vuWbC2jkuDFMH2znJOr/EV8MXOxFKI5ErfqO8JfPE7Xzx/dtCulPchslV/McOBcGtG+yQhZGbBuB/l40OD5foekmfwxERGdI2d1KInTvtOQu8TmwLS9T6Il2Qs+s/IMdg9mEXfy+8ZMrnx4bG2VGhec2bRBLEDF2EXsePrM8xFf+Auuqb9jNzWVxHinDUD/2C2oouXXnJPnYofk3ERkP+n/zj6nGpohOSZ2FYA9RuhWgPzantn6lFnleN/vnkCdmDBrhuJQvFXzYISok/DwWhdoHG6Py58/tH5ocfmrh+gztwosnu9lPo5bKwPwXwEJnpuhZTbEGMj1e2c3zc5K0W7szMjmeEGI/F4nfDT0F6wei5zYRrRsJ7y8QPgdb1QdnSfqJHD0P/1zOJE875vjMMKCaMDWtLjkXMsXG1hvO4INf7ZPRik9pZDHjsWsxq3arkmDaTdWINP5mL9LjqLuqdt2/6ZCzTwhZcy4QFNLb2JtjG05Ns8DRdd7WeH9efmc6r0z+9WjH35P+tWKDGLEDvHk+lqK/lMFoD+cgvidurKVhb8tIHvPLszpb04rPOsRwFQvqF7NVbu7nMcZUlcXYHh55eHP/zBkh0psLftjzn76894tDLZS7CIfvj1sAPnYxR9F+LkknnBB3p1FDBfOJh/LllSgLV4ycSXlWdIJz5B9w4CLNK5btv40f34olewoS+rTU20gyMot1vffJxJk9Whg+r3s57f2ynqugJEeS+ZepastzHFdoPWredMhj+18/AYCkHkYa2okVWiLk+KdIF/slMmvzBCtD/0BHYv4Tbyq/+QDD1Yb0IrD6Ye/Cbvf5xfwumNOR3tH206zCgW60PSZf9NE291Irfz5s9Ja2iRSjipF38vDi5mfKw2HLX8Fv9eTO/nErVq8hAuPtZmQvWdt2kk/UHhkjBEv3ARId7SDCeuDuOC5Oe1aPM6tyJj4HYZ4rwgu1i8LPbZLlar7a95SNPPTX/z96TG1y6XRwJflg+rPV2H3cj1UxsTfp/zMczYL0U73PjtMzH6Q275/GBd90idswmvRk/42nVt0SnY9cIyEFHxv4L92D4omfia+S8cBO9xUJDU2algbn9kN1GqX0/noqWEnfTQX+HyZMG/ypzg/cW68imVEIji4LQ/lXtFRVQ54xoMhGe6rBcDh8LaZeylr8ZbGq7WY9Aht603bCifSN7ppKwkWw+PYDq8kfAFOqpKqkpMjMeeyAzJSMubtrVc7rNMcIyKNLllexnfSD+W1050qsFj4OFo5/fE3ZwkjwbdwLkQQvSRwtXfF/ORxsvvtLMTwWVaCxGPcJv3RGi6wf7k+cRVvL2ibql84F0aPT8lDs3nvyAqka9yxcKWvEEuL3QHGeFeQ2JhfUaWngfbjt1SZL1gyzLlvgf/aPPB4UB6i1+KY/+WDecmWOV0HbYqm/COONZRJN/EZmPwLyqGy82EZHV2k3/w1W/PVLeHjqwlg4j8Ea8e1LSUaPaBbplwnPXkWQt4eIth+6hUWy7K0x88pN2EWUZt5j9lDtJM+0re37EPn/LlPZNN8d4swW+yn+uSH7JZiF8m9sWVucRGh9NMPUz3DargJhPr8Lk2Drm5rPM5WXAynD9ogDaBiHnrGYoiZrUGKk8UfXoxWcomQ7yqChEV8bPng3hzInzPGLD3yWr7AWYTk7d7G6mW1Lb86Ui8oztsrC+4QhOprXnKdvi3KnPn6k9CD+230PMkCEhBlHU7+uoMmP+vPz+SFVDY/Pk5Rmr/DkZDt808vRj/95Z41Bw4NT9jKs3g5SOH7CRNekGDic4N0M/G0+23Eut+922Hdlw0IL72yJDfCXKbu/IDSZdtidpjVNgdn7SC46VtiHo+9zfN0fkBVS13mT/xr9Lxrpv/izdVyI5n8Z/+nz7GaH0I05vpjNIKNeiZLev2Gw5HfqP598gPZ6P2IxtX1rv30LNtl5rvkOprf0IQXk785lFTqvyPc8+jBiEedXKp2TQpXN1n/9JrNW7d8goyzjgTazG956tw5zGwrxN/FPRFjhA4FNN9PSyzxGlqxOI4OmvgiwY96DGufbQ/Aj6insmKbiaRUQQaTX8N80WehLObggBKXCp0bt10rZrPUR7XicjxoMy+Z/h8XmdDu8ekw7YrAurwzZlFnk118v+f8GD1SuO5VysxvJBDTy/ICu7gcKPLChc3u4fMLz3V2pP0Yh8m4pFkK1zO5k3WHsnL85ds6P3mY7pd2Ik/85k+vR4RLopduPkYLlziYKrdTyfPPzoJ1nnksVIeg5BcRnsDl/pfkm2lX7v5ZSrC/PFxm0tXL5rZazIxr2alYUbtj2//0T5Rvz1O8JeGf3yYN/Ebimazb02aVHQzddclWaipKmj3OKcyNS4hhW69ysdwRjuIE31lcKUxw3F4oosf1m1j5+5OzTXQ8QXtYnqkcrRykVkf8Qj++56xWDZoO8li/fhbVpn5BDw+/g6nfSuywzNEUPx3S2OpK3Nb5/vFVY+LrZL87R+GA6i74u99udP2K0UUtoEkPE2vt+Mn4HDQd3l4wYia6kxCKP3Jo6GJkUWmeW0FMav7bX5j6D105Yyls9XeOF9pOsfmFeiOqZt8LFS27Ir5cjoFxCigwogbt5P+hAHT34zOvXmL014+qvumeECZY23sqcHhgr6AX83xuaYOXmvHD81/+dua3bv6uf9Iv9piM/RdpjbkhhD/lvHpqVQMT/2E4ksJSTPhsHNTTkxA9xdMZ47yA/V1XyZ8fZN/jCuzHOsHDqM3DIZxtGuNgf3uyvtG14Mp8JxnUIWTqTy1DOSii169/h1NNNu2fXoFjkGrUaN/7fJBfxgzu1FdJvNic8sHsNhKwWU3Ybur/DrfucTF+/pjjDJdELA1dQ2t91rHp+pMpPkb0AO5PXZmTPfTV4BrvoChZfg6acphf+xQth++Kqu5jlSuZXAVQfvCaEEW5lK/J7/zpCawmaykclMvuiS7xzf317+0mjuwXnNVEojPPGgSP7+0Bgm+WYUVSrFYO3iZGfXiKyJ0rpRhXDrn9v90Hi/9+puBlVAGzlKHKOT2OGGyrq5gVeFk4pNuYo3eRaiw8NM+EyvbmCdfqvsXGpXZK9RicfTj13Zey5uuWg7nPU2Qe94g4WTgXjRQX2Ci+3yNZHTStbGeegVGi04Qet6tNrnrm0MBVsSvK9dMmr5XVvkPXo+Gw9f7YlsLX9UxXMdtT1eNVKPwuw3rN3A6jk+vl4yEsMSh73hA3LmI0Gkd2gfRZqWzJ5GfZH74uwOba2jggc7P8Gojv4Gi4Ib6em8IefV+x4HIcd3RYiLBUqtF2QNHmFnG3ZxGy9oZuUJ8PZ+K6jzrvC0ubodnt5ZNV9ExC+dk1Crio80h8Rc+QEyPegSrZMywb10fOzXRGYXY6BSxP46c9HjvJQdW+LYiXXoZy2AXJBTn0PCNhNduIsSWzL9ps8JzF3BDhIHvRCdm36dzCIyD5eOzAQcUj206zMXk4WLpE4YFPDSEDoclQ3BcpSsMxJ8E2f7civL190P1XTPB43QpFd/sLmNF9IKvl+TM9R/R4Qd0VA1uFLraHxzLYAEQfiUXHTZHwWfs4QV/7B+Zmsoo6PEMzsKTozPI7DZJhd0INRAh9cfshOzQq4eKJkHykhMxeWjJgzjMQO2/AclYgxAf00sAdZ5iF5bxLho9zxxDtvRiLpLjZ4jTN9jkbd8Zs9HV/7z/BdX1Rmcnbuh2RSTcwEk5JKN8Mwed59oSv4i/JEbOmHBzj9kR9kV2x0dljPmZ3YsKD2dM5dbxrpQ6+F6idBhNzvIehOO9GH2p/s6VaUZ5CTiX9BV5StcS/10d7DMK7Ap6euySunVh876yt1Gf+VqjebDV7EL5wYNN6PgkfgtrDU9ELtN17QNUgdttxN5o+pLPSJ34rbomARFRIuVctsdbxOe/CqHbg3XNg+DIz2+HzuFconGaxreJLgrhZHnREZD49BzYuEk6PegTT/WeOn26RlC/MAELUKcTbSDQRp+tSgqgWJ2I2zkMMFn9bSL0PV+Ig+9GOAagviMSasZVf90K0m2QDzVbO8EvPLCEQ3QXz4SDZzD+kcdgr3+sOnHh4YFbPPcGD9waMcHVwqZqNx5BvV1WKireZYtmVO5uzIong8SYu++Wj8JPmAOmJy4T0nzakpzbOUFi/KhJW+zGkXTXtr3L1mCwpWiLlvRkjo7bcBBt9tRWDaMfGQANrcXfev0JuIG0H4XZ3Iu5zfrfH2tt/USjdOAmLRZ/cXW1TGY19jLG2h00yqOsqMq6NlzLcnXA+BjB/QRi9ImIZXheKNm05RPNHS+xwvm+Hqt8DnP3Qoy89eyI+yj1Fb0SWVJ6bBRq91nghpxEIVxHe5PRsuV902eMjXryzUyj0ZtmgU+v3VEneQ85vC7ED5uUNHRZBJAZznxxAZHJDvEuliWH1nfsIafMBt6IBmzoGClCYSAkLWA9ilL2HCanEPBJPW7pEq5YHCJ+HgsQqHPNhUBcWePvpoYNP/QzFMdj6IM9mmMTVqs5FvJhmZ9ZeQRl3wpJ350IDpfhKtBvEQnCp/hxAFJ8Z5rYHOVUnzVOUs4gtJ6edd/evC4UoHox89Gl2J1QpzOLCZPZ88U1GddhpRvICkwTbwG6p3BQv4zRXNEb4vm9Ht7xUoNJtQwfl0uRd53IMx/nXZbce9YLfZyHXwbvPWMQX53B8XfjLqJXD1MMxy0SgcFcZHr1JeHF3dsmwDO0v+C/5zTzMmpazhe0gv1u1JBpDpRRnv7lAtL0GLGh0BdFTIXfIzk2JuNb3FfbqCZ8gEiFjjhkEbWOvFy/dne0s4llGEQ7pvZ+h0/6UsURfuUg0L/2LEtXdsHUNEPYmtBlc1PTDfng61lKnIXZ+6GRpdBwN/FD4oFTKZI4vM8F6fRXA/h6+sRR7qvgu27kOdXupWUbmZsvFzKV/8be+BUM5PJbWDly5WLO47rtyqD6HESmn9M0spXASKhcnDZLK8gkW7qYUt6a6Abmc1ngrfafZn9Mugyl+KNz/AQAA//+kXUnXsrwS/EEuRETSLJlBwATBAXeAEygiQwLk138Hn3d5d3fpOR7BJF1dVZ100k87kvyiA9NjgdjhIGST6XoyGt+nkBClObfTt7kGcDTjnO0+tYs6olghOqj5B6NyGcSNY/YPWMfZk1muzHjHco8i304w0fnWMNabcwKIE+VBrMW5MGiZ1DZSYyZRLu2teDKSywRJLH8Ike4C7xafUILLd92xXV/t0dQcFfEXv0yzQtmYXrlUobW23xOtuz3bSSfDBKupijBa3a6o6y61LJNPFLMgP9Qlb/u4AUdNYoouqmsI7BFjNLW9itOL8m15c4pmz8564Je1HuPJfMgTIslkY+WKdGPNjjcZhdZpRWy36g0OIvI2z8UnJzMel+vbyTFl5E5LWu+mrz8JuZsAPfYW2SY04HQ9pjI0bZvhSTBeBrO+UgrsulXoSrs4sfCcdikcs7LAiwXJY77N/ZO8P70Z0Ve44rzDXYWcm3THqwuee/ctwxfy2fRiwduhZXu23Qbl5yFiuzYM/B+eot/vo8NON1b7Q+kCmjXV+rjcG2OofCVENmnJ8FPSsgFvfYrc6+fGth+8aYcIOwfIayEl2beL4798EJ7vFtk+t6LP/MP19uNjRPc1GfXFtg2BSpsrXc38rQsm/Qa3+wWoUp38jEZErZRv7GbMXL6tciqXkguy87AYHr5hPMz5Ej0X75zkc+9MbpcbjFBw0ZlLFk7G5Ox5A5Qtz8SMNKntT5aTKqa+SUhQjC6iBvZMQBgUpiLE0Fh5twT0sb5R+XUV2z5kWwoBU06M1H4Vdw9POSjXBb8TN0cCom23VGE376+TArItadXLFYxhbbHTbiSctxqyIegvGXOL86Zk2z1vUJ/RPV4dq8zvVkdnAf6ty9k2jj6It33WIPlQ3Ik+dAUa68UZ0NeN9sSOxTgWTxMPFXksNsxLcVtOh2GfK8ZiN++5wrrPF4/ehPwrF8TWN5XxLXdoQEQUa6ZJYeDTVzTfdVJHDlOXZWywb36p5z2OOX0d93djeJR9ID/Po8bui/gUj3dX8mBnjxPTpvJtDIJEHmjumoERcyVjUPrQBvlSH9lRuT5j3n4NDypVOWLlGhkZS1YbChdtuSVGmN798a2tUiXfVwema0ZkTLZ9wHDYF4xoq/2npeaptUFe0zWGA1d9sZL0CLmv9RtDd175k6MedXQ8ZR1W2HYfT6uNO82nKwziJs2EOr7AHRj+7Y7XtvjOxoGFOhz6u8q0DW/b4YpTKsd1ZRDvNrC2211LG+xVsSXb/BMZfNfeGtBftcn81zSV3JkuKaK54s96RfZHXCQYBVnsY5Swyu9HXR3ge3+cia62x3jSUvcmq+lyMc/3pRyuh4u8Oa8EiwQpefEh4+oC+mMRU+hsbnQLeVuBIb+3VNqGb3/EiVsA2SQlcbehZQydr1KUdMFqzo8vn3vcfEBfQIKlH99j0i1Hy2S+H6xZi8Zwc+MCBX2W0fbUFNloCMoDxNujxGtXq2Pe8EiA4GncGW53fsbdwisApRvCduglt/RyqnR4urjDy2nq0fhiQQPnlWjNeoT7g5IMHXCHfJi+Wr/bYXi1FIwiQsS/yC4fp0/jgTN8LCr4bYT4MN1D5PRJRwV8OWZrG742Sk55wcwNefj9s04P0C/kL/GStvOHxWo0obrsS+Ke3sSgFaSDLFbCxMj0bFHH9kiHL1VfbKeoy5Iezs8KpluImN9UB5/3TMnRzF9YkD2LbPjpMaM8G8ybsns2OaIVQl40+W9+2m5IDzqa8XduD9Bn7CMOgXJRrowESVbG3LeUEPZ+/ybemXz84ZoUKRyQsqNixqSWfiUlRe/p7uJFHzH/bzzc0zkhhvYdfKrXj1ox99kb/+a3tctNAPOlg398eRSa+Zy0aObkoGZdOxJn06DHqXAYhixF432nNsiGiRCVVm8+FMOJQhKJd+J3sEH94f5ewPJVYqxIN9T268RO4CKdN1hJHLUcxkJRAb3HC9ERfP06t8YO5JULRF+nlvEbb4Xfrj3xPuWxnS5vjDfrzVYgtmaZJfeccgHN+3plWOLrctqwLoCdd1nRRd/4fDzFrELo9ozwarnX+TDPj/zTo/ZWatqBP+0TOPnpxXaXRvV77QonONyAM69wBv7Ht83k2xJrzk8cYvRC8eJ0ojMfy1Z4Wx/gDLrB3PN9xtN1ewKzGRGZ8bTly3UVokC96HT4ZqXBkZ9WoLPHjv3473R8eC+5OSkh83K9j/uxf57AGd4Ws+76EvGGeSdIUvtNcDXvNBFyN4WlHD8pmgaU9db6fALjwV28HEy/HVUoE9hqqyXbJrRDQ/i6pnCdLuVPb8UdD+gCTSvnjOMfPxG59vrxqb/5GF9REMFPzyirYeOPxYAOaCnvn8xPS6dtjLwJwWU9ZUGSGdk6vZcNrIcLIv47G+NxumgA+XUR4pUzn/OujnoHwXVlE3tLWtRbh/sExlteEK/1Ez4/v4IehRWtTUuP6XuxzeFiliZen4uwnWb+tRnX+YOKURyjGW86dDNLjiE/1O1ULgcP9uRcM1NbBP601UVRNm7Nmuh8eiJ6Tg4USH3I8Hr7cjjdvPMHkkMpJ9ZSfpajPvQ6kD7fM48sH+3UdksdXFFZMVUceoP1K6hBp7lFeTBliJ9ttQG/D77Mz+s2G3XLvAF5mkd2wikth0wJa2X2S/BLzbpyiJbMhLwK78y16vlcJ1p4Pz2Ey1nvi/P7gntRMoyaSvjFY6NU+aZihrsRS6pUTg0ELW548ThqfAwDz4WYDho7z3qXfjNFRzd/3BBNNvtyrJDoQfXhA9tREpZjzAQBiZp5pwMjr/aHl398Sh+PWjvV59fjL38aRkBKPkznEE3saLDgib+z/nmYcKHLghiOJfBp7XkCGEm+YW4q7g26eZoqPDbdnUX2/YQGL6rDzc9vEha6bYgH4buAXEoYs2e9yM/lVodX99BJ8P1O7VggX/8bT7KIT9nwOFq6QptLyLzxuWi/622FQX81JrG05ptNDl5hEJ8dsB2bBn+4jmkI13JzYkTcMn+MzEMEFJ4Punk9ztmQndwX/Pj04xU+Mpb5QQhvr3oR956s/PG+qBPkiKNBtpm/M8Z9mDaQHzyChe1daPkZDRLwdN1QAbBZDoqXPGDRPFJ2vLl3X2xeJ/3nJ7Htad/FjdnqOXofc0q/yZKigW18GzZc0ueGPQXq7WK9QChFZNbvS4Of+7BTfnrODHZr/4P1uyTP+YmRdv/OhuXZ+zc+eNMnGV2j5oUCaf8m3pQt45o57eGHb3/6cfysRJCfl0ggjhVbfJQeLJV/6zP7SPt5z7trK6+u0OnGuz/nuyujAzyZNutruWqrH37KcX4mpma22TDrNeQfpIyRr+UYAz63Elp884iZO2eNmCM+JZBrtyB+0VPOu9IH6HvhyZx7d+asjxQbiZe0x5NzOZet57SAwrkH1w+/1998X4OTdE88dqwsO+HLTsi3U/zjWyXd3tcYmq4vWVA11B9VG7k/PY1/fLxaW9MJufvd7/mYj/P4wuLehMzRWr2dUNkLiCh6xQJEFuWko/0JGP4OxEkWq5bT7GQqM79kFgjz94l9g9lvYfq4eGRUt74muhrRhlhLVUWi6y5U6dlmJsPKEbUdaQ4Voq9dhCHv3vHPP0RfTfXnfPIwOH7fb3A0dgdmHvd3n1mBpP/eb85nq3aqIJ3Qzw8J+FLyp1VTv+R3VncsyecaRncME9lG1Jn9T5bR+gkBCjU6Ubn7KHz2z2z0JjRl9m5kqI6WHxvkUu2wPD5vZder48xH9BfmZi2048wHFX14ndidZ13LGmeKoL+fDizIFSfjbhcFsHrZFpZv9125Wt2FCN6fasGc43L0R2J8PbSg3pX451fpiy26B3JzuBwJ0db3f/HM9TIn/p16GXL87eHn11Hun068QnDtIJa7mFiW1pQjb+UG1k9EqelsKaL1Njj88UtjVRZoOhddCjO/wMOG7Uu2GVwRTPuZEZso2JjWqHhtSHbQiIZOvt8PQXJD/NgLLLinTjkopZtAa1syM62KxHSzCNK/fE3WStgOs3+IZr+fpPGn5LzhqYiohK74pPol4pkqVPAkt2n+vU/55xeGwvVO1OZYoklalQkg/a0RHel1PF3edoC22nqJxdkv/uJBSpHMkpp4RRIh8TBcckjMQ0SCy9E0RpOKJ/R9Ry2V+00Wd+Ote0AseQnznrfJ56evGyB0jgPcF9Q1ptMtk5BPXIddCkNE7KQNLvQ7bDLzcF7E40n8uIgd0XrGq1fZ3bMAo8X3FtE/Pm5lYbBx+FYlzgOD0VdIdMHXOoPdX2VpjCNsix9fmOOhKOmH+MXPX8LN7d63I9nsE4VM7pXhWc/TLb2nsLyvdOLlMcnee9sDqEVPo+W+y8uxKDIXhadUwYKaBS1983GCZdMHTO27t9/H7msCatYKcdTxiej2vsSwd52CuNVGKXnnHUw01z8YWRuEj/edW8Mcz3O9oi3HdUVfqA8FlyWPMjG+6nfqYOZbxHtdT+Xqcd+c5Ek/NFiOPwZqqmm+W+6izr3Qr2+0er40Efq9HBKHfP14VRovEy5XlBL/vHobw0+vOU99YIYeUT5W3ikBcSsmf/WhgUfUhWP/nQiWPxvj54dCGK90tt0zN6PHfZPAyNw9i8LrnTMrSwIw85gyTXpiX3jcDxTOm5vLtNkfHbyTNMBGtlUS5EZV/o1PcpxrYvqm8qcSJyk87qGKlzT8Ip6YlwX81n9ymO92bLu1igp992C6vublOPNDtBinJ145twbN9QAdZn1Ll+gdI747rSPZFZcrZujlgEbhjW5AspPGHAMXxljc9AYSlRLiUQ5G8xVeMhyK1/pXv8gGWqWp/BDtnAJfzntSyCUAo1Jsoi0lZtDjQ69gEgxCbPfY+j9/BL0v5kiSM96haWUkDzgrps/SOZ91nNEC6QK+MPy9fPm4ovkN8m1kMV042P5aFi4ntPgs7nh16OR43JfGCcyjUVPlIdvllPYsgD4UXWbNfnURXcJQeYuOj/tNkmdc2UEK+/11M9erdKO/Dy5GRhGin9/YtqB5MtClk1Fp9/z4ws5EAfS7wGR7I5eyzzfaLjYbLutMN/VTOayOZIFCynz8xYPBV3d38JSDoRbkpFmv9q++9tV0nxnGCmevremaP/5C5e95HXOn1jrF77wnBr5MjBmPXGXWn8Rx0df4+eMgvqI1RY+QlpOY7ilcN9/vT9+VHE1Ng37xgqvUigUhIx6iUD5YIG3vZb0UvASYvhdmv0ZH4/Qp3B9+Mvd5TTjPqCH+1gMjg9mW43gYbwp1sITt+L2P6exvAM2XPvnFH19EpgzvcoGwUns7Yyh3ZxdQc38RQ5JfRrO25ANM7Gz84dn0Yt9IHuNApYs5Pjp1XJvwXhkGLQTlhQb1IHbw9cSAmdqxz+b6VvTzG9js98+dpw6HH14QmxxIRme+jL4fscKznvKnn35dTa+IpJTn/igZH/2vfuVfi8D4qxe5VhySbay9UdO8bjoyk7ad84s+nw6yH1ArqTPrpQANeb0JQdzdMmJthbDto2vgQn4MzoQI6325mspLg96i5ePlzM/4QM4USKju2GHzKIxJWiIb8kBy2X32A7hjeS4c1NuH2PkeePMxkQC+PvhkGyO7FU9a9oCfPlcu2jPjd41RpKeiTk7eNijHFUCD5voG2fruo+3mehNM363FTHOej2uOIzC+T23222Xeh5qcg54KOknTdRNTOTPFn9/2F0/V54NSuN58nehjZbSdIDkP5fjci7Mfvm6nmb/COt+mc372ymFIcx19T8ON/PwU7ofmAszPViJuuZczCh0W0ZzPWby29Wz6dL4E33WKyMxnjXGun22mp7ykULiNweube0Jz/QoL0tqIxZm/KcdnLNLZrzJGnKgFxJXqzvrn1K7vLxbKIb+c5/mzeLczEUazv0rus/9Df342fX7PzDJEp1wv8kOFprSRmHXo0phDnS7+6p1uvA7awb/vpz/8Xzbz3XR+8LT/vz0F8v/eU1DmzYXp4tX21+2xkdFnubiznbavfSZs20Qm1e3IyCe2/ak/PAWkCw1igb9wyxUWDja4x2RPM1715VfLZ08LHy90jBiN6SiZFPJdr2DlptL5JvB9quxupKBrJ9z7ghOdZdgKUYjRKbkg3nBHBW1lGuyeXvt4OFF5Ae+PKuAVrl9Z9zw+bTgsXj0xFvXcm+sTn8D5RC6t2ZLxhq/2rnLdTTKd9sWTd4fnYZBXd1lnZHFuysEa4YBKU8txS+1NyVD0LEDVviXT89Tlq1bqTgir0o7pL+eSTffQn0B4xitiq3bk01u0PMlwNyJCSuWZ8fCQ6vC9fEzKtWWd1feC36DaqSbx9+cJTTHdFnBbWDULsvWpHJFXN6ChISBmrDrxunlsO0CoZTi6mi9j2FmXE9rs0Mj8Q39up1u0PkGZOBIWi2PAR1N+1OAp3gJPwlQiauFJhpPs2RiUXIx51Jw6OFZ6T7SHIvvMivgJ1nJ0Jca5TObnP2pY1+cv/j5Q2U7JUwygStMz84/0Vo6LOqyAhFeLmdphxScLTxKIzkFn3ipy4v4jJyIU4nfLbLBSztBaksHIOcfTijdoqrRAks9lT4kX959yyIUNhZ6/D8Re6e92ukwOgPYoCzyAfuSDVA9YWVyDBC9LRYunlX+UYKtUNnOerhqP18uVIvI1dazctRXir0Oigr4LEFOPOTGG5hV54C/PJXGM7B5zdygj+Lrukc3Pb/lK6DtYL04b5vNq1wqHllfQHK0HsfdunfG88m7o9/9+8z+Gwd5VbgKfiIFA51wcZQ8Wm6wnpGsvPgsOdoAednzDzx39xJO5eNpQi7snwf2pLacXpw3qBD3Hi0a1EV+R0wG8r10QX7n25fddxCJ8wu+FmPoyMfr7GFGoUzVgvrF1/KkRRwFixxlx2+e3bMr2QwSf9rLA0qiujanZNzko7+mCl8OjQcPqtnuhUbITYtvhM+5VtlDh+hE/JLC8hdFBEHtylH2OxK+zczbqvZ5DmvKC2c92bOu90Ql/60GRLTkbPnaBl2HdyMz8Gi/OF7IUgeWeA+Ll5aOc6LJzIQh6kQS4mQy6yVCObkl1peKyfJT8W8zdyW05pcsYJn9AxKZw2e5Fok+1kNGnvknlYqp6ose7lz/V37iG6yqQiUW+bTaFqxog3R442XqXjdGL03lS6mlr0Q8/+XyIs6eovMcxxaIdavH6KdYq3MtEJQkXtHaKqlsE4VU+EC1MBz7hawmK+817ttcDy5/8t5FAH61vGO3Uj19HGwvAVcot2d7Gg08fDRzAF7WeDlxMfA6uR+EPr26LgVdTWr9Qol5c5lxjXHIUPR9QaxdC3Ov4ituzLEQgd3zAl88nQIO7jArl4xYP5pz3j3gwDmYK183+RDT5lBvj22kjNK8v/I3Jng/rtp3A+V4GumR3oxyc13OBrubdJCq7d/FwPV4jqAyKyYwn7ZRgSQZlKJZ0I3hiNoKqCZC9PxZeyZWCqP82UtB2jcG0vMJxKy3DA3yNjzBvKHXigSVYhI1+i/Fbm9qSlm53AhnsNV3JpoF4eBtExbh1H6KZEi6/PuIFRI2Us4t69o1x+vY5ROp8n7P9KI3Gea1f8JVknwVo5Ihm3UNULt33wnab7G58t3E3bbLh3DJXCYSS883lhXYP98xsB5Ul/yanHAxjoWPExoxPCgsq2AfqlW0xbni/jV//8FzbkjQbB3EtIj+4WSQIBa1cfe6PUDGnI1Dxs3pw6qy3tXyqSUQXnr1tJyPfhXA3zQ073AMTDUnjmGgn7QmVmoXLu4YOC1DpAdjduNRoah2/hip/LrGA9mG8HluewruAZL4/L2ynq95XsiN1a6Leb1efe4vtDc3xxGwhaeIq20shPDe7De3bXRyP2nw/7OG9HJhT8KIdEth7imh2R2JbVWWMoSYfUCqb37mKSGJRvewk9Da+e7Z7+u94bKYxUaQ6qfDb254zivhwUxQF7enB4gXi8X0twUF+7LGU27o/l/4WaK3ikZDVc0Q9kyQXwJZSkrtLgnjrByZk11vAjCPO/OHTjtWGRxcRj/P4cih4qOwlMjG92bvteFnJE9pJMcHLaM/4cHt/dOS9VZsEE8qMITHX3WYaFIfgp0d9dt2bIvrlwyxd25yfH373w1O2HW8d4vdbqUNmDwY7f4RtWa4aW4JlPoaEtM2IGL89VSiPEBJNajfz91tVBkQ7pnIxMSYXhBfamB+ER/+15vyrvAUgcjESHH5eaM4HIXRGWBGfkScf/acOMBWuRcy4KUqeYusGx/3Pll+FfFQsGFDsWCMxh/lc2rN2JyimV0/cU9WjsV9JA9jEjIiO6dof04fiAe2/KnNaj2Z1r+sejDXfY5DtsRxZRW3I/eqIJd/0Sz6IUQBCiQri4R0vu8VlcwJR3Qq/9Yom2LQJRCdRZU4vrlHNlUJHWpJ+2dYxhKxXj9YNjbDu6eLpUWNwl+kDsmsekLNwjv0385UHuqdcZ/5O/RgTSaUEkLCsmHEzORrgNAJcP8KH2NfF0+hOVAZ4DEefkM2pbKl9eIvgL48l8ReOi7i5c1PYvTCna7p8+DTSsIzOdJHQ8ZGpxrCK5wOZRmizH57zN3m58BxSF28cQ4g5q9wcov6xJdnGfqLWvKYudK6G5hrI6HNaCzrcNoeYpGgRtt3mdknBeCcjcSNSGEPgBjKa8zsz8/UnG8dL1qF91H0YVjYHRGs+3ZS30e7ZNs/FctjXEChGwU3iKOuPP7ZSdwB+WvzhSzuU9imFXA/v7HCnNz5gP4jk9ZsBzah9KcdEogc04w1en9zEp/Y9aOR++VgT44GNjGssTOH9bZ4E28ML8fsmq1B2cE/k4NwsY3VD4wMWdkGYifZDzCvLOkBnyTHlLeItpzwSkXBfW3i8fo5xd72DiWrXSZiWvT8GdxrpAIX7VDFciosxHRZZCM8hcWnMbc+fhgfp0MynmfnuH/4odVIji6ovYHDuqOztFUyglzigSiU65fAbz4zKiKn3m+L3qR1UoH/CmnnvfeJ35e8c5bfwyI/fi472KBSkmy7bB4ZlDM32W4HQvFv8UFMJcfMaeRAtFhIWwy/KeDY8Q0jL9EFwMHGf3xLJBmLYE9s9dMUYjO379XtfQtYiy/pWeh1QqV0Y2Q1Gl/3eF7XjcWLGe2O1PM/aBs6m3JHtvCdgku2ViLa259DenPOpsr7mv/XHvJJs0R+fHK4KZVpfv8pWSfKbPP8e2d21Ix/ky7uA101YkOBNT+UUabYk/62Xja/EfXlYNfD5HAusaPva4Cj6Pjb2h/h0cton51aETijyvAqX9HM1BnkbTzDzEeIOp4x3w7ROgK0EkTa7UsqmRks6KFqpJKbZyCXP/YuEjO91R8X714hFzVYrxVSqiq4l8eEPD6VTwS2mF/nxXQEfW/OX75n9aLy2TnPo5J3n22wnslX7F2/z+LFtwmz/ZYo1hmoUzmS/8Wze77aXAcYxISyOirEdX9pwgr5w32TrUpGPFLV07kXsMy/GactZLCaw2IcrtmOdmv34CmgKEvBwixzOG+vi/vQcsbTJb7lvwA399AjUxTOmfHXx0MiuKf20Ho0b3sgnmPkgRkO4Nabv4aYjIco50/zXGU3pS6kgQaik8qdatUNu+QU81sbhxzfR5OR7G071LqJSRHSjwlL+AFMIBxZe9yoSPH0Pyk9vrKKjwCcnv9iwd0AjV895oDGJb4Bi+XoguvacSraQhwjyDb3h8TX5SBBDhFHeXM7E8oVLy8PNNwEyBgivbs8p7r9KiFF+1Uzi3A7Hdi5BT2iUzIRWxTFAI5MkDw7PzYGpVrZEg7DjAhwWVY+n/tPHo+AcbzDJkUKV3dUq60OLKmSLRUS802X0eaJ+QqiE3CTbya2N0eFaoOjpGxP95Wyy8WvNvUu3QOgE90PGrmIeAJYOAdlviZwNR0NqoF8Wa+JrN5OP4j29gfNwZCrMeDNlziVH07B0KNrYGh9E0avQOKYEV2L/4WN0Xutg9/P7n8egndb4GAG3jBKPDyU1xvCj0V88kG2a1vFklkMB5023oNLUXuKv5tEaeUVyISSZfH+9yzY55E12Zl4Fcsyf4kOHoFAxXXRdmA239WjC6/t+Ef2nb60RTnB/TPG8/uTZMxJfwFozpNIlOmfdShI9aPnyzizEKn94JfUNVdZKpOygXOIJ4aet2BdRYj5utxn/fJ4ezPhL0cts2+F0+2I4w6ll6nW7bHvdQSZ6abeOHkepytg8/mjRGSmG+y7LJmc/hbAbP/Yfn+TBrddhp65CsrMj5o+16gsgN7XLjsRbZPwTDC9lXAxPtt2spHbw+zyCZEVSEkyXpzF+7nUIY+W/qFh1UksR/poohP5Em6hT21HTVVfeOwsN1zqOEEt82/75G2TnHq5xdzlrg+KSTKUym2JjsCD24F6mKl2IwSvjSnK4Ac7mc3aRbmXTcXRlgHUTMv8SmOXnujcFeeazxO1mPfW5bGXArMdszl/xH19/Vcs1lhMzLjtnOyY//MY//VDP/E+x6Cmn40+fLKXioIyF4xIS7Qka44lVoJ6wSWX/6fkiI6sF0NfZY7YyXI0f3kHl3ktaLiOnFD57TVU8MV8xS3W2MX0PyAbdLibKvZVmrHf7qAHP6pZ/fKoXuk4EnQg1cfogLwdTfATyzI/nblYNH4Jilf/8D2a/tVM20RevgFtaSdyp3cRTuHoAvD+6wNySTxkV+7GTwuV8TrIPoJz1iABfMbxhfuiefuslsol4GGJ2tSNiTK4T3yDIVYV41Bk422muBG31Dii1LL1cH67BAcTIrpn5xrHR0XUbgmjSI7Oe67XfLuaaWRkfSvp+aVXJhcvKQ3I3znejdG5Wo+8yAtVTLsSrPzmvSf+wFfXYL4n2cb5Z/4o8Gwqx3dLl4ty0g7PdpJvZnyDByzhkEyPKAp3rkLCrkCb+8JSHXBHZTWamKJvtdDEjG6KToDL7s1KR8OBWAIauYVJ/46ocpFoKoA7nvpX+vs7+1u9S11sy+33G6Ow2Ipr9D8q7aNlOcAAiQN2/kwVovltgluUO8fe5GGRI7h1m57HdtutB3ZjS6nmY2L66UmO6sUcA3O87Rsi7invEJBW1y2BLLlt25SO+tAWEYaH/5U/+uXoHGGHV/+WjfrfdT/BpZYPhCIqs7229gsaoRxaY9csYxK2zkN3cTNnPn+mVNnDRS5Ja5qbKpp0CRU3k2c8jNqKUM/SuRDjDoWWJjifeOUydlCnwhD9/51u/swAKTVgT7fR6+NP75D0gm5SEba1k8qledSaS9OzEiEarcngkeY2OvqISRyeNz3/43L+GCK+eO8R/fEh+knrPcNMUBnvuw/lcnXujaw2XxrgwtoHcso3OjM/L4auEOo/f+FOO5740L0uaAFZ6iV+DLfuUEQWQRYwj2/VnHU3q4hhCVTxDzIvywbnzuBRwrNSe2GP34H/+U194b6Z+XLWcQksefn4U++H5ECbFDbjzDWmTl2o7scJVFY/oK4bXa7sdM2Ovwqz3mc2KfTbKdTAA7FsVi8qg+KODPhTEbr1j6lbu+DOPm+nP31Gb2zsufd40f/Fgz35Qxay7BxfHxWTr9KxkRvMqZD43EdzF97jljbX3kJWG6vx/VN4GBxz8jd+MtzFX9euAkuYmEIMNVjwKa6OBH/76L2pz0dHqBzQf9fD7jPhGGB+wWUdvgs/KNxtOt2eA5vVL5sSMpma7DGBvnQ7MnvkYt5Mqgka6GwwPT93/+X3oqLcefRa2Hq+f+6SGn58AoWdnggbkBLtKeJBsOfn+agWLF+pcAxGHn1o0LgwNK7N/hOWZnyKK/fzn7836t0LNZcMD5Xz/7uli9gvHcVHa8Laj/wAAAP//pJ3HlrOwsoUfyAOTjIohyWQkDA54ZhwB25ggAXr6u+j/3NmZnXGv7kZIqtr7K6FaEazguaM5VhToTkvvmN1+QIu6dEDg0Y8Qhw0dvQSxCZutoxOy8CHexutGUcbXg0TC59ZxU7T26Ft+YoZvwq+Y7Up5AvFnxNyP7xbz+bH0MkitkOKvdCrGNExstMTLf/ln0tWrgO59u8GgFKx4xvFaQLw5O8wQD6L1jwer82QQcmxQNaD3GW++1OjoeNs90dBZYQRuyb7EskKtoq84x/B6+zeyfZtxJ/7EGuB5Vwvix7GFZjG8KXA6Hgrmq6snmkQht0EI5x8zufsqRmR/VdDyi4OFabpm/RYyD/DUWMwddbcY4+1uj7x77/7jlfPvLghoSMjEzF9iVL3eaR8kcPwjvnW0EKWX64hWl0/HTAYBYiVcAKaPXzNzVxpcFtZRCX8/t/rLE9Wu/E1QFZ9SPL2vbjgO0ROA+7X9x1M4vy+9edPX50N/Cw/jRzIBWJcmJJ6tXrO/+UOLPyOBpP26907O7nCh4orFp5VeDYHk1SiKmET86R7xeb40H0S3pUewWPqWtPAdqJ87yhz5ZFl//hZWcrIlV3EbVNNdwAmw13xhumEL4S+/iSP4F1wxWyRlJshIeyLITz7bxivfGi0qABLw5cicWZFCaWCXC/rzO+KkOJn82GS1tvDA/68XZMQDKbUbgne7pzX5RWICWu2uLNJ9OeS1v4nAtNCWbHX3l401P+toqc8wf1ez7h/PX/YnXnXdL2QsW+VQkthnlyXeC+bP1P/4Czufx8HiXlgo0CgyJtuqPBd938YO0mTiUTn4iIhf+H45NLZPSTi/nU6Ar9Ujx6A6Meq5Q9P17tcgHuuIRZAYlnTa9XeIUubiTUZ2aA7XfAWfd6CRuH61IU3DoUfVd7m5pkpeIY+oNIKdlSrTq4zyiRvtE9hrvBAcefJyyTGdURJqT8zZuC2mO5YUVDR4xtOPz5wb6feJlK1hMXxdeP6F7S/A6twl+dUpw2nV5DX601PGKhzQ+DNWe7iYbcu8hT/yez46Gk8LiS35xZrBDlKgUbSjgkjMQo6l0oS2vPE//1r8zCG4q3/5Z+FB4Z++0V4716Da07xZo2YsPHta74i3/P85Pz0u//iQ4yRGMXNxF8D2kupY2aOumn6dE8AgEYOFlVUXwt96W3j7Pz3F2Me7w8JDWGjqd9TWz9/xX/0KPZSYj327/ff8ZKucX90QdL8RvtpxZpY4847/8Xr3uVWxfNZ8Pu5w2AAV+Wbxz3k2R1sKECSPN4nz9ZfP9Y8I4BzmK+W5+eazGxAdWb2j/u3/bBY/+I4WXoar89BYk9rYM2DOOxaeXqX1cfZv4V/9xmnNWzHl1C2Rcb1tWXCr3YqnrxFrink+smC6Har5WzUUgq4nxN4dtuF43OxmyBilJLoqGmp/+6MJxsOemdHdD+HgiMKomlUUkfPrdquaq7DpIT5VZ7b8viXLprWC7n7NyLa19t307ucGduyiY62TcSdERPHgL/9a8SvoRtNSW/jNkUmwe9HD0d3nEVr2M0bD9Z51N2mPQTL5i4QPnFbjo0RXEAaSEzfclmhCyr38V39MtsWDT4b8S6D/tD6epZtjze3VSGFLjANVV60aTl1zqRFN1YK5U/frpuadRdrNEE/EpYea/+kp2HY9I2F07PjkJMMFBLeP2R8P5RvSBsDFaeH7lZ7xFJoZvtEHmHNfN+EwiOOIki75Ev9wNopB6ccG1Lb1iInuQzgd3I0NWia/6bitXlbjyiwF95t4JBcftiXc1L6B7vONSOT/OoveFYcCXW8ZnQIVKnbVkfPPX+L6mfK5xqd0o+ennvjrQ9QNj2MbIDHWMMPrWg7H79K7dD9FBbGKPMj4N1Jq7btVOAl+zg9NQ/LLYd+8b8T3mcaZKYZHEKvVg0Ui26LFz5hweRwtKi/5lHWh7fzxbXZ5qn3Ba3+KtD8eTe3CzQZ1rmrYBrBh1nFzy6b5+Az+3h+xqR3yMb3fLrDo+cVfb7LRMZ0AaXnuLL3nUyTenTz/py+WfBAu+dFRNDJ5JGb9s1jqp/94MkXz+1ONsTpf4fpoJjoueozH9WMF63eOyf72MjvZbZXjn56kEiunbAKxXf1vZwrQfz9TMO1rj8VaIRVz8wMMivEBtl0VT8RVa9UgqZlOzH4odsH18OVBX35qFg8BruRr+LpCEY57FnxPW2u+v0UHnrkoEkOantmox9kdPveNz3SXfwqWduEFZJGd6ca6H5C07vtZ/eEgp9Lr8cyG0UmfIK3RlhlYiypujVKP+rONMGzEb8Yk56OCJC8a6PZ4F7x5SSrYhmISlxnPrvnI5xzkwNxS0cr7anK24R4+4UZh/u61ySgpnA+UpuoRErpRNn2bnQKxax5ZnLPJmhvgV7hf5D0xm1FA42iPWNsq4Y1ESmx0/aYcZ7hYtUseZGeGnOnPu2ZeRB3Xq5mGvcIvH5g8+ibee//s5rg/H8Ga0o4ZIxmrudRwopZ+/iD+cRdXgrAur5o9wwtPQaxkY1HLIxhpy5muBGLYj9OoAhoCkeDYWVd12/S2uvkkFrM+oRXyxPxeUSZYAZV4WVWj8lMBvhM+EcdZoarN2bdEyn65p4DcN9Uc/ZACH6klxKrP327M+3LRdP3MQkcesnH1awKU/Owvs495wefLytRhtU2Xuyu7Lvv1vjlrcNp+WE7cb8YzvQlQdbsSoqslC7lL8VUVRs8kO+nbVsPJwxRejT8R39G3SDT1TQ7pd+sx/NoKGZ1vuxKCSXFZwE2azSOSe5gkzmmyVl58bkrVBCNAA212D6Mb8cP20JVEA/ML48XHUxKZUDNvS+LAYdYce2MK78c3piqazW4S6kEB4PWTPYJXjMSz9QLoWBAQ+ww8nEmBa9Ve4R4LpzpHDAHkkDzxkURP+2R9onPqaMdTLpGroRrLGQ9NUL3bxiJ+HaBsDHbpB9YmzonhveeKN6+VikrXfNOdcHaK0bFeOhSjtiMxiCfORc4+aFudf8TaXKqKrwsibbThlVChO8uod8Zfr57FY4un12gX89n8CEB8f8+CUNhY//ZjFt0z4h6vcSGqH6WEPo5zolu/sZrVQ1FDCeSFNZcKqIF6SNFk1DLZmmDx31kNEpgfHmHnzH+E9ODCE4Yh6IivHWKre/9Kcz3qZc6s9Fhbk3pLVO0WvnIMaehn032Yc20ZL5VFEDsO4ozV2j3rzLbYho9QvxP4rb5PFo2Pfcds4DN8PrpCoqqh4SgyvUWGMyUknLdmNz5K9wlDk8ssuj4f/GfktxxN8fVMfOdTZ5MWOYH2c80WowH1vO3qTwlSbVVEl2spm1NH19FuUiLyiDZeOD9fyVG7+eEdb9bD999+1pyZvZmVzhGa/YPuaYGS34m7WjSkrrwErT40N5JtLlU3flyUgPkCRuHA9IpO+txqy3iwuMRDVvi2rmZYiNn28H7z+airR+hezy0J++xrsTUlDorRF9GpWjXd3I/dBy5YShne2D9rPrhCiWQclMQ8d4ElvG7lDFZiaXga5GPR6yOUkAgQsOP99a1GbR9eEQ/kitirmVosDtIPci/3dumP7PDxZw4fEI6WSdVJmgr+8jYR0N/jSIjIrJB/8bpF5HSZmO39aqtbxgvv4jpieq6ffCpRt4L36m4Q/Xx5hcMtP1DYhzOhUv6WikF6+gEMH11jZlsmWfcs1QatpUljxmz01rDCXQ1npt1J6MXPoqWOvteW9cS2x9Au+v3SX/D8u7lUJqqW0X1+PyLt1VHmVgyyvlSNBuRtumMGe1yt4R6c92qKBKCTHP8s7nPjCLNbBBis8pu1s5Xb0MypxKxd8A3nqrIFIGmjEdvdsIq3n80Ixru1WawHGu9l46SDfpUetKT9J5z/fp8hP2JLfEH8Db8UHlITMOM11gV7pbkEtIQ1S+zzNuR18O4BzeXSP3z5LvKXqSXE6I2Yx2Mc8ks/OGjzSS3i7R6vbn7YmysKd0xh21jO0cjC+QJuRGLKKdU4OyqwghLiF9tenxc0p46nb+jzu2X++5hn09cscrD2fGJhv9lWkiEdP8hLW4WK1iq0pNhTEtBzu8OjZc0hva1XJXDHZZQv+WAqt2EDsasfiX5UdiGv9/ER0PV1JySsxLDvhF+AlvdDsH5m4RDh3IPkRmy6Dl4DGso52iPt9aN4lWAaTt/mrMB8yQu2Xwti0SduEyByHjvizMdPNX1SDaun/HYgwW7/4j1diynsvjzCG1vw+Lj6PQOYQudB/MHeZr9AugH8wvnOnOfmheZlfLCjqsqW/Vx8jh9FgHfvuCSe9nXBrOdVQV+5p0v8O4cT39EG7aqWMb91omr6Koj+W78YGj2THP7Z/+Vnhvd5hab3Wc5BP+49trVKMxM/bG/DXzyZ+/uLc/O2viN3V5/J6XD5hPQopw3okr8hJNp4ltDitkFlOJ9JkNCq4D48QftU7Qqv7Td0U8iyWfsWRGC+bu+7iZzrFD1e6ZrFLJ/5XIeNpJ7KzwGru73B6THb1PCa04n4bhNW/C8+ZvS3ooJxWqP+L/8v+4P+5StWyfSC9nE5M2s3vrv+/H72sMR/Fl83n7/nvyJzkHbE7+8O52/S1OhZnu7M2lysavbSkqI4fg7sPLQWkuJy6qF19h8SJecYzeXJHeGQ0x2Gz+eD2NrAOWKvX02C824VDudbd9mE8+pD6zU+opG8XjV4T+VAooyzkB3W6wAK0aUMN9wo5l9/bpHrixmVv5vZ4s/1rkSnGgg5Ha/xcjeyqKDXnEzMVZ2u+NZjjUHa5JTkzFIKWt+fjtawrMZyWa2zeXytEuQ/ox2zTkvvHOpfAezaHZjBfxMf/+LlaKop8wf7nbWe6SnaoM0m2UpDhvgODRFkjf9lJKwOIQtIk4K+7SeWx4eQT+x7DFCzVhDOA22qhq7vBEhV50xXao/RvMQrNRKMLfvTl1NwvT4R/+5vhNjvazcRvjCJh+CTc3ELKuEbJD2YGUtZpHsfa64P+lXbZVZO0QGUcK4P3h2i6I6JLujrrA8E1KAXCk1mJbVXTYYgJCgpPwlzlT3hk7krIuhy84rLOpAyBuIcQV61ArMs1+rGv/jaF3eRquU34ZPEvQvay48KPwX9kTGtGGekPoWQJYYsWrQh86jO0wkxk6V1N5nyuVfPcl8TY4e2hXxC6UW7CkXLlvhgsUMq3cGs978//YLGG9lgWNYblnfJWPAvlpu//U3RthuL0V59HJBN5UTwOGrVZMo7qnbmb4c1cn2h2bY3HsL62sUKPLXin/4b1Zu36D9c8ONbo2gZD4lH+kbzZ/8okVPMWxL39WhxXfkJ6BZvUmYEcZ71uRQ8wQzIj246xbP4mro2PGuW03Um69UcnS8OrHoiEusIZtVoY7tHIMKFJZvjbP2LD7zCOtu2epXN4U2SgP/oiQrB7sfn5fnQOnR+WM3Kj9W3qDrC+rx3yLYWnGLe+PcnsCZEtL/1gKZWixv0nFciRlYmWZx2YY/eO22JP3lfjd3rpcLip4i5+aJwatDZA0fTRua3fWiJprzrAZ5fQse4XBXDeuebKJhUl+lfdip4H5ELfNDFYvG9KzPmx4EE6lMKSXRXNn/v64m8d+OzC5rLjk/s0MLajHKyfSfMmnD8xWAplzPVcjaF012fephC+8GieVDQPBzb4J8ew3ZVc36a1BFAczxin2oFsel6v6jtulvjr9aa3b98uOFMpZP3Trs6GDZ3tC56ndi9H2WNvfrYkFm1ySJjb4XSQRCjf/tdX6dVMe5RgmHxC2z/UOqCW8+9gsIZPsxu3gdrdMZXD8LFf7Aby1M0/MXvAnuYGL5RZP/JL0cwSXa/SeHI3lyAdKwn+tuEp2z6+LcPmq/jgY7nixFKrh86yByjiJCr13STsI/spUaZErP+PKxB4nqOChxgQsbKsbhsBgEynmqyxMN7SA8DMtHp8baYvk6tQrh+bxFqjXrG6mPp/XV5VQFctFImbpqeKiqiXtks/ppcI5KHf/4BnjL9UR7aaz4ZAiT/3t9X9tJu2m4wRqfv0WdG5P9QG8Y3HdCnuZNkIM9w9pj/Qc4mBuI2VmONhbw24XC7bnG26PX5kodPMLv7CSt+eLQGpZEl4FWkM9x9a2uORQXUMhzPFIRfW/QbmDEwoRVJWL9Va0anjQnzqwwo1zOdjz/2SWEZP7MLSruRKdxWK6MemD0c/EKkxqMB5bw3mFu6x2oOR2nph6x4xH98n8VsNSmGzIg8Fm+fY8V9q8OwO78YI1q/zkauxToqXP3JdEM+hJMzR7r608uM2asZh/x3EajqH90dXu3zik9892mh07MT1U7razWcRHKB4zVoMeyrquO/C1C4xSilm/0jDedLbj3Re38wiVMNdTWr18MMw8fUCG6Lb/jZ+McnLP6LbcXXkU/qoFLE5gQRAvamG7+ZsgdSpXtm4eYUzv0+6uHyXmqusvkr5j/99arOSw06vVi0bImOjv1ssLBhBC3rrwZzexNxOth6Mfe3/vgXv2n1CSvrXbkvBxyilOTWRgf0z48Md4Txqi2+FpVyS4K/8cv6OQi5Na4o2su3CkOy7ovZQuc77M4VY3/rk1s/eCLK6yOJ0U/t2FUpA/DrI6XPhb/0wtXItderuyy9V/xqNM55ia7BfcPC4WGHs5lqJVSFfcAcRzQbVDnda4seweJGNIt5LUWXf3xgmxq0G7dG+IH6XlJm7g9yxpVGbzTfFQWmny+GJU79Tteut3tA+avAiKaOZ/6tB6ouenHhESoYN2WFNQpB+B+/ecoRsZ7imM3zZxNAICQGW+IbH09a1IN5124UqeYd9cEqSyHeyDnmSz/oWXp1V0iw9mW4/oXVLGzcK1opbk6bx2qoJqVZC+jPzz4XvsIyvfHQbyP2zO5ZwIdqZVxgaMeJRUs8b57UrmHGpUL893HpN77oA/149FjkyzdOnfgrAKqTmqXgdyFFk3qF0m46PP+OWTbq372C3r3t4m8x6yF/pYmktZuwwcIjffOet/EMVeEcSLhejWG/euqlVqWRzczLcoa3v5omtF7/xGP/e3XTSigdeEkFZs76d+jGol6PaJImzhw7yNFUdWYAeRuGhGj9o5jnjZLDMXxlhB4uoTX1aZvDog+Icw4FxCbpJKCjMz0Wf2Nl4+eiltAoPCaWgJ1Ocn3L/sufmO8C15rOsVEDuQZvZtotDef1u6whqIyM7d/GjU9Bde/huxKujPBTg3g99hhEZU/I4fq8cP7nX/NiQ/GGJmU21/enre2kVmeWYCd8el5Zi7aCobMYJzX6W2+wCsyAbb9m0E33W/75039UZobeTdVOp396mwrezw6lKu10pBxXLu6zk5P1PLGPcGmrD4uDfljO+L3u2mkHK3KRI9sar0eUw6vfvOn6Wk9ZuzoPT/i9twoum+Vu5Zf5wSB+qcJsd0OqZT8KKBzrHnN+T8Ppwj0bYIo+xBDWNheTtFzy3cdkREJPi6pvLd/8+f+YHrtqNGCq4dheXKo8PasSUMfu6uLf8axNI//nHxb+iZ/Wb+xmd93l6Lr+iX+8AfHZ3AN4jW7hdeW8rJGmwgfWBdXx9DmWfLbucw1373FZ9JGS/e63pAZhCEbmDXKR/eV/RPxwj+XGasKxc5ur1gqFQKvduO14evl9wC4PAfvTJ+zIDnt4SG2AAX1NJC/6A0WCtWXY0pxwYvujCol8tPFqvyqLTjpTDz0m5UjRvDUrWp7IDBN6fdlfPhjU4Nyqr+3Sy2ONJdRnyjyj7xSd6CY5QNHk6zaAOQpWzJiKoZpyI3pu/vzDnx9hb9J80Bq9JuYer0NG63eZwLEfDZZkal70inqd0fvYA4nUYnlfh2ukXj17jXts8G4MM0WHZHtbM9NMMzTipptRpL6u7M/PDoK83OtqaCc6m2nGJSf+SqpyBJeRcbl3g3RGhC5rZSKnz3AIhWtcjGj5OckWHjEu8wmKcF4RZwr8bhPel14A7cUlxjI/Q6jwXEMubynnqsqn8SgcYSUOdzznVl2MghQIoMZxSch22nTjXzwI3kVMtTCNLO7HpqT98SDTEyw+r/2wR6TRPXI2FblY9OoTrC83md+lfkX/eK89r17M6S+HYpwnslIXHse86d0UC38U0LuGM7mt4x1qnqIz/+kHqj0Gvxt9LAaw+F9ma5+l95osNxAp4wZPuaQW//zoPilt/Am9XTY9PkqEtE3O6Wd7PHC+m+MP2uT6h8STaiIxL2JAl5exwhovm25SP+NTe4pHRtHN/nSTQOMn5JOyYw/cVR19oN0ML+SbGCGMELskTgS4cBxmhfYadW/HA/DzR0j5qTQsAXYfXe1/fcriNhIRlVbBEejtzUkgCIHFd+gdIXtzVQhWk4/Ft56iIOtdeEzXnl8+vRhVYeH9TDeKKBvl/TH9x4NdXZzRsD28PdjSTsCKE2vZTB39qKkV3mJ1yf88q/0INpnq08tVFLNm4ZvI0dYjceUaFf3tnEiw+PF4zIWymyW31CHQvBT/zS+Ld9cZPhvdp1VpxJkUOakEf/7zL37803dblx7wd5ckWXfo1wqI315hV2NfWcyHBmCnBSfmh1HJ5bWBL+rCI5leVmrWb0TFBPRSW/Y3HgGjygShnSWM2pNYTdXludd26+eOhPt9mo2339xCKvcPuhrHWzVLuMfoNAhPliz6V1SzKYGDlkkk/ukKZ/b50qNRfXh0euB9Nrgr30ZG7xVYTtodGgtZ1v/pxWLRG/IXrxtEb1/OzNOGZp3tZFfg9BqSpLcsq9+Q6QlZE37pagJ10eu2s0mH94PK27cbykAQRYbDE2JkwxNNIy8ilOxWm8WPzBWnl5cK28AhNLHXVTffr4c7vJ3tm6KFVzYk91fosS4LFiHDLsQV6lP0+OicmSrPLb470B6K50ElW3RrrHmwWhWC7+T+421zxIsnKsQtpWKNXS6uthbAZa1O+AhkX4y0X5l/8ZgYVd6G/OVNESzjJZae6Uhc9KwavSyB6Tph2ZzcehMOeb9j+X1OqrE8Pj/aTvNOLC6Wr/IX/wxRv1szWzXPfOr9YEb5pO7IUj8pxm3QRYAsS6Lynx6/h6hBgt7JZJvFXTf+5UNO3ifmjWuf8/v3lP/5AfbHl//9vbXXMxb410coL/UcMIWVzgJJd8O//Q0PurGZM3zmjL3euQPqTdgsd9tP1YzuHGtiJx+I2xZm+Je/4NjoMXu450cx98FgQ0yULwuz+sbns0kFWJnq9Y//ZXThPbDkD5JYyz2Jf7xsye9YoC8nkyv5c4ExnCuGJ7hU4+2cS6g/DgZd/USvEjalMqM1qibmxs6l4pcER+D/7JI8rvWu6A5rOUCzP9nM6YRjtdQzA81S54xFTW5WQxZIK3h5e/2Pn1uTxPWL9OWfHXFI+rXmg6BhNG6TiOnHa5PNyT7K0SrQA7Jv4wuf7Veiw+m4LZibKpLFo/wO6H4jmGrnA+mG5/XbwCC1eyyeTkYh9bd6D16SrujD8zM0ltbrCNv1LmTxaX3tpl55qvDz85pEkky75Xt4D0r9iZd6T1Lx1zuxtVF/5iRt1KDqgdoq/Ew1JiS/oGoKpAPAH4/rvmfgEzUeLSLJzqLTKLKw/+gbGwr96TOvwOeib6M4gvVxFRGctBJnb3gl2v0i7om9jG9yO1+CKb6fKfhL77WtN6pasH5GrGgY4eOmTy6a6j0osy/l1I3696rAjXk6w8a7t4b3eZ3DUo+hq4a/Cp4NT0Fb/CJzhTHvlniswh0ck2yvT5XPp41i/6t/2oHsZVM0bTCsotzGe+9nW6OPNAlk/XnDK8kZs576ewCqOsNS7zxXvby/pzB+HzIzhWIVTovf0trbfY8nfKLWCKtPr5lHNyKB3ESIVzumgKhSH7/35wYNDU7u2in6zgxvWrebHU6PsPCPP32AZreyS1jiOwvVaN/Nj/usaMKnOeO1yCrrn94h7wYzcv4o1T993e+0GCMdgdWTzsDaoodZfOSPajIvs4CU+H5n7lpxkDQKYonejvsm+uaYhrQpZ/MvfhF954hdj1GnK6s1cZi+8L6//Y/yj06Zn/kP65+eW/4/Xg+F3M3D0x8RuZcPggWVZ8PiJ7T/6UwB/PczBZv95Uj0Ox7QVG2aAIJgylg2Z5uCF/k5R8IBbBYa8b4bZH5OYFI1TjurDazptHGuwOpGYdvcuHfN+yZSmNQ1x+pqXPFpNwQpslPpide/Y5j1m2I6arzLVSr6+h7JihFgNV5pCX7LZlCMMZ89CF2lZOfy7WTzJpNSOOD6ymIoSTZIansB47nhxO74LZyVguRIs8I9XrvPNJuScgNwoj2lwrd4c34+pBHyr+qF/hxjtBrlLgN6SHpAvPg7h3TFnjWc2v2J6bsz4zP1bQFyS9gQ75hky10x+AIpIwIhr4B2lLuzs/TrvBIvmN8hR/hMwf0kLXE8a5u1YlVJoCPe0Pnhb4pprswPMG93pcf2WFYzkH6PEgNuzHdFO5PRN0qAdLpOYhSus7kq8iuUR+/KMn09F7z9+Rj0Y3en6OD9ur5T9hSZXymncRMc0LjSXlfQoBPxbbWu+Xw+1gJ4aLsmUWOsl7tSa2Hz2BNGy2lYVZy/HwK8zaWGRlEe8krTe+1611IKWmZn4jaTTEiSIKQSCvVK2j33OvhKjNl26i5V87z6ElzLWmcPcXe3aPTepGAHcoGV6NUXfE8KAU1eX9GBfrvie5B+GMTP2SSx7U0F7/juCfujGjOPBFC0ohinSLh6A4nRZuB04udcvTbjj0rmU6mm70/9wFaNVWJd9CEc18QECMT9jUXe1UB8U28dmI7qjoSI3605KFUH7WNbYoaXVN10G9sajNeqYP5u9AqBRlqO7mu3xtN85910WPpt68NXxetyZfJpVzwFDfnrOzGDc9M1Ny2XYHl/RM+kd8Hj3aQgXGY+hfHuZNKbTQ4MukeIPh+0bLo+DE91UrzGsiIbxdiG/hP693tLvP11bfUyEk3U7bcPElsPwsdMGSIYyn7Poib9deOcohHweJWJO3i/hal9csierGCudAmr6aQlsHEQe2L0lA0kruLxCL1l6BgF48ti6qEVYHe5PIh9eJZWW0gvB5SfGJF4tbbRiEkFQK5Cym7LevthU1zu5hwf5HyUaDjsBjNdLwfA2fYgpnx87KZS+2kPSstC/vJeua8BdtbVwuqVdtWAH/MI5rlpiX976JUEr3iEVyA/mPs9G/ynWU9TU3iznAEgTTdvcm9EW5WoWHnvbiE3TQ0AqqvPAtGQ0WwbPoBntg4J5cLhstVaR01k4UjpOxYtnv7OvVobXr3sf83qD/nrCdS6uuTU4BvnWhve4XKYblgyp7Kj13Ota8t+Ye6hVbr5zSZbk4f5jaWEmOG8w3MNH3atSL6JUqvPDu0ezvudTEy9NTppW9uSZoeqxczv5xnOqXUEVFZZSTcPs+Uj3qxXqBUue/p6qLTo6DlrkA/fN/E7uUFzLQcYXi8zZfH+2fLZ4HOO3JeSkeyFHpwL5RnDs9pYWEE/txsvy70dHbIQC83azv6eD6XHh4NFY1uGU7PTTcgDoySuuN+ikaJMhWMuTcwv91D8W+/L+yd6/vig/l16GHo+L58G6G/E7u9GgashxYTUQ2uNjT5h7VGeb8SJ/TAcC/XcwjFxLEaa5N0x42sHoKzTkHko17quwiWGvbpmVP0KSxdf+SLA/C41rGXyrxia+x0gYjtgunCgFVVGdITIOy3neg2Xz4TrI+Sr3GTnoJ2yYRUre1je1xIPrllzGswApPL2o9L9G2Rja40X7fDySsyXfNTb2muPepYXzDEns+t/lWADTd4xRlbbWnND3yOQTAdGunWRsRCrPYCkY6y81l03rXOvAce/JuyyGldovjnrFHnlaUc/KNQ7bm/FANTj78NSH+yQIXzuUWHTFVZxeavGrxccYVeFmG5wHKHRuCs5EHY5EbMpIByy0b8CC7aUGZu67fpH2zvIe0whVR8n1LGPE89QP447FhjDoxt3Likh9fc6nXMt5qOXuwIgtm2YazlZJle4jMA/3QoS9ofR4uMgJGCLlzex8ijn/fXbq8COt4B582kbTs8+abS93Or4+bm0Hd+e7h+QzlQl8fZhhD3rNw1add8j0a+mmc3yp9PR/EN7ZjV1mk3bkdtQeecev96/QzelSRxBJ9OILeOz6Ok0BoB/5YXE196t5hXIJdxo+yF29hw5M2B01PELI8Pz+KqGcKO08KiuW7J/rpJsvmhzBH/7cZv9vuFUpZcZur37YFtrN3QtvJMExufwIPgYhcUkSScF9Z1p06mtnmggrWXDNJMt5cvzzuuNoqLj/nohW/HxtOb6dUzg21UBiWulLqZ7tM/BuNUWcxJSWrNtLHcTv6qcYOHR8CXf3kF52XeyxMOi22wmE4KVG5Jop975zO7KrD61/kyC1ylC4+p4teHWpoSEV6x3Ml6eeTrIP7qOn1Y1H5a78CwlO1JJ2X0qLs/siOxUeBKTvWbUb04f4S+fYCn/bor27/l3l/xBInvzKXj53c9oDN/7Zf9tq4kp2go88L5su4t23Vg+fB16W06Zc3vZlWD+PIpqReIEU1fPZmYgCvKBv5gnVCNqy/JXg4+Xex3O776bU/d3hZM7piTQlQq1T+wBpBsrxHP63hY8Lb0Pum+/FrF461u0jLQWOrArZrDIDPm+cXLVHW2D4BUmfLa8zAHn+D3S26fAFYV3niIHRo8Fg7O1pOcUCqD47plEZ/3AB7heanQ58BsLH9qxYL/skELwBIfkZ4754PWvQFvmH0NZmZmgCJUKreFcmSMKCZpW8bjXjoZ6wIdzjjN6vokryLLPgQXpsbJGvAquWniwGixWrliM3eEsgDClCnOVzynjl0dZahWt76wIpQ+f9TJZofPh+KBy+ZCqSXcnAZ4aPeMJjGfRs22dovE8mXjj3beINx/TBBx7KxKHXd/N1257Re/xZZH9qukzTuH+hBOoV4b3IqqG3ykWoH2kPouu1VTwVakeAT+Y9Zd/rHH7rBPkaNXMMHWf2RwblQ1rlLYsTqeq6p+n9R4uR2mLBeMdW/wT5Al82L1iyxGBYkS9ewcxNTs8po9DNW5OHwlBH8kDzO0OzWi7NwEf0MC8dGXwWT4Yn7/1yBY92vFU5R7wxHYJbmsbCW5V3bX81hB2z3+GRV18vsOfXrFIU3czf/YthKo/M0O520hK7DYB9kxfJGrvh3Dc7BsMy/zTsZH1TFj0DLL1pMAr+Vyi+U6jFl1inRI9x4Co8jirMF9nzLxifSn4deelkLy6hpD9YexmtL2aqvkVcvyLjFe2jE9A530m40P2+1p9+HsJYG9GoGpzs9DANP2OesvSSXBo9hV/V4EEy3gwjVQP8dLeqWjZr8xl08Yah3xnIsc7N8wVLcSnsI56FL+kEFdzXWWL3lrB9hjkNH1cqoydseFAu9L2+C9eDxti2ZpX5AIz1uMxnFb+IPzLR9rpYnOJ3ZURTg5rKRuvZjYGseKAtM8QncpTHU5UJ566o7NEyLSOKikejc+fnmW2/nCLwXQ+TzToAfmX7xZ9KmlDMBCsPnffkH7DVlWrmnuEHOdPOGe7adTaqLfZQzkdwrm18BWdJSfFWq3U2bg67h1wX2pG0ZtswgkG0MEP9gf2N//SNrwkm9f9HjH9Nf2yOZLTHk7xCuFqdwoRD7QdhsRY3Uj0itKOkhBdIL31J7Z9u043kvkjgeV9Qvp6/8RumY8rnPsEEVtoUDE2525Wj1/9QcJxNRUzJxYGs7oaLKtS1v3EMbXRbq898dwqu+qVu689yNJrzw6uitEsW09P+9MTk89jPvu7vIW4L0ISMCaG//xorQh8iTciH8S70iLHvycs6kQbSfW7GcGD4EsFr6v/9JSucScdqVyOerecpUxRaYxb4vt1WDEL1TO4aysnwU3YZfMYRSbsrLvFfOarxSzGawXmAPskGH96JRG6SlSR+SOJaoatynT1uxalnkyuXigjWnhmDZvyY2Pwri8++smqR93veSdE3Fbdor8aaBC+M/dSW3z296cEgjW6EddI1+HXnPZ3eH/H/fJd451P8TdUwU07DUu7uc/m6EVntOg14tf7oRp/m6cOluVHJACXco6UN4XfaunanXYZGoe9U4I8expdaV4bNlBLR8g/+YqF5yngXJ6/RyBBEjMnnJHFvkMRQJLdVOKfYRtKwVbTIdXOJZ2ijc1lr/44UK5bjRhf/V1wq7X2aoWGmsJRaK1x+Kl3OPnLNwnpZFVTcv9eIRCPN5xs0aubhXNWokXfMF9V0m76FckRfHqWqazIr2y6+ge8nAeoGfZ0raO90AebtTH6eL1Wx2K6XlYtbAbfJuRQSBl16CFAP+9QL/qrqHpR8/ZK3vIDVvclRpMhbnWQvmqDaZ7LIQs3DoVVIFYY3iJHo3e97OFHapHZ1wMLh+EWRVCsyIMZf/pIHFNHa1RfwsLhaVqT2goCGtWnSKs2dzopLJqlv/yvJ8T75Fn3YBMGwRkoVeeoRUMnBw48WdmRuPmq2TDc7Gi569oj3qMU+ZjSvbLxtTamKHo0GUV8LtXV+zKQ0I23/9YrdAc0sXh4vbsZVqYA2B3WJHxpbvdPD6Sre8B8dqmLUcQ/AaSVbBNzm5VoWNY/6MNbJc7h4KJp/T59oH1OX6Z/tT3iz/pWw87hM5b6Emd9VCZUm+F2ZgZy90gS47WKilX8YJG/jqzp2ecNWJ2XEMva9NnIiiTSFp5Dhc06tMaJKRK8y9MBz2JyscbN/om1v+cN4uGFpvxszlo0Ky2Jqp9nTb/TVgIIbzbDbviqxuu3V+B26gMW3VRj8Y8ioD896ssfwxLuk4ZVkEzM7ItfZT1rvh5QkZ2IE/SHjHrTdQ9zCgoJmuiMFn+Ra32Q7JitlZ+qL+hKR5fYpPgdVUkx91XQQ2ksZ9oM2Fai8tUaiJ+8onztyX+3HlxQeLl//8YfzqeT4kEzmCMdXcPN5pqAgDIXb2h1El7FfF9/HFAnPBL/fcmycbcZS01o98XCTEnFd2MrqdrsiFRV6qyQbMNYoXAw+3/6cEy6A4XvhiosWI131E9sFKBp2jOz5NiuJpk5M6xFxyBmMu1CQXqGCaw2k02+bZcVvz89bO+4Qpb8Fw6C3GGQfxeMfw8z4PNO2zmwjJ/uFr0nuV9bh/XgAJ61Qeej4049rNaRxfbCZluIgeFL6iAmZ3Zie6Hi790vh+DFRvanj/gzFQII9Cgj+3j/zpr+UQaQ3HYJiYsZrOnZYA8YixX25yf49f7AahkdljPWsoz6qj+twN2WMvPS4YSGWBn2aumuKPvjDQItX3sIk25Hm4FaaM70ZA/72JGIH7tuODBFXEGaZznDW2HiozTVVFv8DjGHg5uN5efiwe/nnqhVpaRa5seGncgyKk5Qd+PzJB+RzeuM6SS2rSHenVawul8T8qdH58Y+j/ArVjsS/1atNcX4vEfvsbIYJpWCvsnDz5HlH0TKB1RazC7nCNaSmjFshEk1TrIB2pLviH/IKj7Cz5P+9CPmbf7p+CDl/SZWP5vFv2/RMLqJoFXyISbmwvNGGmkXYHKk4Xk4fLOJ2rsGVOVqsKuevEP6w6UNd6GsWbDwmjHmavCnT4j1Qg80/zSv1sLpbDO3kpyC2oa/QjxxXGZ/izeaNOupa/dsnvC63YjdWPo3B924uWKWe/0inlwkFbL0NZD4bS/KizlP6OH1op8y2PKpKV93rTq+L1TdJihkVH/ZqPXFgAo7zan6Id/pf+uFSnKztSaquwE4q8+F2ct6mf/4Y1LShA5H62DNWCIX5B2ikG1fdWf9tpmk/4tvLhbDbsDTPkKbsrZJujUV3h1ZYiPn+D7SvXdRw2Z83XU46BfGzKb/WL+knFZQnDKLmWwlZ8O+fkugX50b5XYZc9G8Xq7Qpu8Ni/RkG4rJnd3VVsj35CyRXSEfWW7Dn39b/EjB1sUPg+Jvz1jZD36oPg4XG05IFEgc7XHIBinpNc37ZFhD1182RncHw6K3cDcfjHC6+rcIxMD4kDjwzELoi0cL5brRMOp62nH7zii4PsLL/N+rKbIN/Y+fkMUvdtPf/vicHg8Wq8eq6q73R4ROB9DZYfHXw0ZK7lp32EzMuNESDdjUKHK8oiHu6tNkoypXDrDU5sybHRQOu9P9CMOmHdm2NnTOZGkjwBN+0xJvX+F4tUsd/el1XLp3i5c6ydHi1+glu3p8/qSCCdh4HQk+/gjir7DTwdzH3RKfpvAfb927nbzE01PBnPd0+YuPzMi2SUZfezyj19mKaYKUH+9+2S1VayOomd77ExqPcaz8W9+h+J3/eMQT2OqOGWFc55MRyy1cP6sTsb4o4fOolk/4zOYPb/y6q9jvPipwfwYxsw9EsTjPPRWOr/eT9kpbhd2ff2Ba8cFNI+QdXaXVE0ZpuXfE+WE+BSCn8LO0mNnt6pXNrHf7P36GK3ObWzS+Pz3waSET6/7DxRAd2jt4v09J179jV8xRst2jJT5hdfvaWvND2a/A1tMCC7a8qnign1T4yy+BeL9mfFnPWvm6JSQ60DrjtXu2ITP0hO0W/9Fc7VZHoSRZeDpvX5VgqmXwt/6Yh35uNRV7Rdjc2yFmfqNRJCy8ERzb2GHpZeuWMOzxE9aibRDrzd4ZN13vCn5ne//mY9a8LELNXTaZv35l6D+8wF9fsFC+LtXityX00tMHrpp6Lth21a3UP97gClgPafJdzuyAlC/52SoEi+905Gb9m93QJubjVsojkCuNEFN81RalH0MF/935VPk0PRqNy1uBgrcP/DCmrhhnzZ1hvo6YHAz1hoY//35eyToV8plXi592tL/9oXfPpJh3WP0gFYQch69e69qqSK7/6gPh4of++DNS0TQyLECccbKObbDF/E2sd/pc+ByRQE3uGuWitEftUg9Cl0oLmUVHjY/ttV0hD7lrOgjHtKJsvGAwyGU5M3hcek/aurrZg34i2bbJuuklPVewyU6U6etim/Hp0wXgFReBefosWOzRfSg0jrhiZq4NaH6hvQfKT44WvdFbVGgBVNgcNKK/rQsayUwF2KEN/OOLrFXb5k+vEidV0nCSGZ7hfN/G7E8vdQfphZGi6CqGZT3RPsgDxHNJ/OOnhXiuMvtPn7LgV/264X04r5Cm9TfiTlObMZXelvpYLNC/esD8fJQXbeGZ5H5w3l271OdA56a68Be5mKfbcEXp8eYwN83dsIPpWsP7O++p6nwDPl82rIdz+XgTO5F1zh8d7eG6z1P8XN7PwhNmCA9Gw3DXtt0f/0BLfKRJ7098qZdcwPvOCSNSE3P2bJ42LPyBnBc+3hBpOsLWhZZ5K7SxpmI/Stq4zTuGy7yxukrTqeaZjUPsxnaLxQ/06E+vuGy/r6arjOgfz2RHFt6z6ampNhK1w5045lPp6j8+t/AwZgubbSZenKP5Vz/E47Y9dTzjra66j2NMYvGqFJPubgS08Cr6Vy8SP/7qCE4bWUQPz/eqn+tDhL46/j/SriZrVRgLLoiBoEAuQxRFMEAQVHTGjwoooGBCyOr78L0e9qx3kOTkJnWrKqmE4De5Yb6u6xdcsX2Y+/ltTGe8Y0TPqCD/+HrMjQb4vkfEnfXOSducZKgvbUq55PdiPKMhRQTqYubDcc9nfgFSYNrMx+4xL5LRhBLre+IlOhFUR7iDe/Hak03bmJa8mHYyqupjRRfB+ZFNuFvogJ7OkSXR3sC/Pz43Xjopi25plJXki7cw90dkzT5NzYee5uA/eU2pufuiyaaFAxc7GgJVrkMkZj0YTo8OkXWYm7HyN57mGC2JM+dGj6e9Y8PtfHoQL8KO4HcvT2HLFm8qq7kp/s5TaJVLGQDbLzM2udSGFWtWDE8l6rl/CJYw46lg+boca+6r75NRdbQk2+3qXg+jFG/h/K60YHLhZb3a6XKBUxa9qLzMWU//+q1cOeyIQ7Im+6bDdUQzH8rOoY2RwM+TY8QScoKFnXr1B+PUQQc7hYA7odV/17tMRSgeFebJ61IwaWdEkE4Hjc16kRDDJb8j1bz0bP2tTbTckFcAbP4HBqvbLhN18PW0GS//Fx+kneohr5gec7ZtW0/WUnv90/e2O6eruVvuKoD67v7je6arlz9hubQvxHuYjZj5+OD/8xQY/9tTQN8HEVTXyyObVn6fIsvzY5bg1QqJL7nLCIqFRnkHRT8iZ9iiblg/mMugsYS9eZpG+8CroGuTCA/F42ODR+1rwHXR1ONGHSUoLfSlnHmfmtYHdgDihz05YDNBy8q4V9omcX2ybsbvrBR1JtCwz9huXVu1sInaoNcniYJCaDLq5VCWwBVjFgxWtM54WJ4quETbK7HEOrE+ppsd9MK9ITqmeBkzrBkHtBH3PX2/ysZ69x5/AS7UlpDh51vTIEEH0rkhzH0vfkIMSMkRl5FMb8/zJ+PjxYuQrhcLsk9DUo9qIMvI8aSEOJfbNlNKm1b6Oe1FoFSrMhaP3dmGqpjzQU7mGivr7hPA/UkWAbt+Q/G7IUeF097VaLEQu3qFtGKAlOkkWJ2a3uLnynqB/MzWbB/zrmfb+yDBt8obFpSfCf/y/KOj38U5MvNhqv1vzbcy8OXOYk6u4lh8r+OwWuxPHrGnw7we2fWLZMEOgcJis17livaCebyUB6mejb7kj7B4Tybzy+OmXp6OYolKZp3oz3ZXgsPW3YLHrxXbXb6A+r5x55py9uzBSdaPbZ5GcHISJ1gOws7G+HbZoJ78DmTflkdrOoQFhYLYFW3LzTcTH9n4ouGhIraGhTa/iAxtCHcdotJnKvoheC+eIPdaRzVr+atFomwqoG38C1a+PGYjOkMH+j39MEzhmI3qeojAvNYdIQv7VbMDv1WQOZ+cjo/Yy8ZvrwxQGNWFBdkBY6XxDk/9niMlQPny1/MOEhnZ1RIHKu2zjGYnZYQgCF1y6nZG/9NEe4FGITk5WIsqE1l2vWvtS37M12gSTx2+eGCUhUyIlpuWomKlQ2F+9ClI8RPzfLfItV5ypOCn1bf+lxnxiJL1Y0UC2j7E4BiXAZ6hKRh27Tfmk5KeILSqNcHhb4MVqd3J8EYfg6q0R/H09NcehKurSsxdnCBlqN4T9IQdSPBybtaklN4Aan5HxBeJHYuzHy6hs8KYHLxsLcb611F0z6QD2/FHLH5qIeY8LAOCle2LbMq86LAY3OjDNuFzX/OquEogQj8MdP8hCZ4Z2Qj5rt7S5SGZsqlOVgMch1wiztcdBHflOdRiOYbs2L69WtyrawSGsvCClV9CLzTXuQJSvF+gvMoGj4368IBVZkaVMSnQOJXtFrisyYRsdSdWntpZN4yqt2iLV4n47HbnCIwrbckaFjcxQZDmOkbYIxteHmv+HPwLWCdTCbRku6/5by1U4yfS5Tyftp8wmzPmlHtGDsIOY/ZM0he898ImuBI7weuVvkXBuokDbUOTXny0qjGMpLxSOZJe+JnlD0ALuEZkm75nX3SrO/pf/Uon/WFNruU7YPLqFqwe113d1o00m2D6kdkrOat5WukdXE8GJxuXDoK3/bWBKJ8xPC5t60fzYgPF7Av3I/UrhG0gE2VOnxMv2bhoyiv7AvFYt8TEtYXE9LEC1I9HjTnrIMJCqfQcZEY4sVfvJ+Kl3VTgZyeDuZq/F/xvPwnV5GTb1lT8aH7eGKquskDgIMoEwlkE0nG7Ytg4u5ZYvK4NLLMhZ3tvSOORny5PHb6hYHt8duOxN5AH1y7WiZ2gtp++Oz+H1ZdKzK75Ix6vbfGF8Dk2dLGwX/2wUVUJaQtQ2AknLe4t1DngsnjDNvw/AAAA//8sncuysjoQhR/IgcgtzZCb3CUKijoDRBBEBEyAPP0p9n+GFJNUku71rSakq1NNvIvXy1/nfKd21YiM0UdRQG+fUchui80orzsNVKOYUq1CjsF8Xx4hvZkEm07wrRdTT0zgfpZAbV+4omX3ljpYDmJDXWF5oNk2pBx66uX04DPIpvKBVRRV9Z4IW0Ez6HP/sNZ+Twot6MHOFu8VBzCMukm2xrGuZ8+bIzjnfEl4zsbDVLadKFf35hR+g3eJxt96rUGZ1Sl1va6Lf7UgW2DMp5R8hUVhhCePCGxS1lSnQoAYstoEojutQ3F+8MaPVbMO0nnnU8O7Hw2BF9sO5JesYyNInHrntnwA8bk4/cW7z5T+m0B8zk/UUHMBjWVbisrL0fdks+rF9EjBg83mmuFwEkajPSfdgl5bvMfe/mv7xCnVM3R441LzwBP/i/Uwh/3Y7sJJdurs99OQiN7ihaO62SaIXAnl5D6fNziM69Ag1adPQNzzX6wuVZsxyypGWbmtvTJiDDXVFH8DyfkQ4eB2T9nUitcAhAg96EFdbF843eUEguEnU08SfWM5eZwqz9VnwCr3uw9jqwQO4u+XDT3IAx7m8fWeoP16Fg3PQxOPQd304P4cB4eX0qqXe/QSIegnjNP7WGfLGy0jbAYtonZ7R8bk4PMRvt4zxuG3frFJ3Wrkb/7xIUBL/Vv1YO2HLWD/cznHjPfGAILuPocLbe7+Iu0eJrzzqMB2fuj8lT9KOZLOLWESm9lUMqkANfwE4Tb5ifE03vIUelNdcLB19IzsMA5AEbwMe/c7Hbrx4SYoe54I1s2WR+PeOeco3qlbsnkVXDwp67npJtFcGsZHOaMrj8HHSgeqCuLVYAw5BO0KjsOOu57R+VQ8AVkqz9RHQxNPAiUjsvnznt5MdUQsDA/NX3yGbXSqfZJYvCN/3JHDlgjz//kiHVsLH5aX6Y/8Zd+CFI0nsr1dH/5cxVsLxTt9G0q/WDAWE7c91IR3QlmtZn9qvXxBu7ZP6D5bFsbMYgQU4gOHbRIPjM7avUSvjcbTML04bI0fGX7qs8f4fa/Z/BB8HdSfoWKffJV6FCghKOlIT1XplaFJsdWjck2LzxoPXb0ggW6ApqFE5lVvJpR+GyVVTwfCuLzyF6erAe7iY6BBf6wROwbfZTWUOY29+2RMJTVL2TeRQPgCHsaM8VOF91sbsHF7cj7xueMIQZBkZHFJgOZSesho1XNstMY3/lkzE+VnDyM+joLGdtdM5gCfFpPqm4UZ46nJRshVS6MWfnbZdPCTFMQ99yVbc28Zy/e9TeQDkgYaPKojY97zrMLnoSrURieppl/dOv7Lf8Ih0hgT3vszHN7xnbrmMBm04ssetLwzQmXlkZ8AJkDZv7T+K3mXOZdI6/tl394t4Kn+/ps/Ng1WIsJRqhdqbKfeX1L53KDs1B2oUXbbYTpeDU+peJ6nviJca4b8OPrT4/CdPZ/+XLhqq2Ty/R7uNqGFBIWZAE1fVhQ/gme2mHphQdTqDxpIvmcwM9ESBMfzDf/xzfTU3yIiJ67H5hTp/iyr2w0g4fohsPL8FL6FFwhB7GH/G41o4i+HVjYOtxcNRJGP2X7YlfDJdiScO1Dq7ns6N+jE7BNZLsItm7n32sV8Znmo/NLQYNvn0EMT/dSQ+/CvYb0QzkNC15g0un2ZsepxLxsO8tYzlHLNhNjm0Js2nxCKr/U3XzLo+DqEMmkq9hucoEf7qE9DLrzBQB3hdVSm6O1S64rsYdXPI3jg9NjYIJtxFVxM2MH+TjXwrvW6v3SIckujIdmfMvrw3zxsTYWQ6aneau52qgrAgZ1jY3wdM3azVQusZrsnglXa/hzLdx5K91biYOVLeno9Nug53SeMqdgP02Xtn3h3zYAePaINgqaJgJiTkZA+gm080UbzgKfqO5RK/TIsiElHCMPIpaZ/tf3dym/yj2v21PlqCZtJpQEo5gGHKWkqNG77gw7zjS+w4Vl5RiCMCujXr7cymEVMcK1HSEl3Fdb11KhnfSctAN53wmY0TNmqn0d4+ecQFx0pB0aPe1neDEZE7a1Q+ctR3OQIqd4n5Dhuqke2fzlQWuaVplfaoyXkhwZOfWKS7WB0MfucRBmWbVfhp5Sr/s6Lc1nSl0jE1ilXEUuFRyr9rjbQ/XRV0CyJ+RESv9hja69W9S/jJkfZ/xaTepUaDNN+6UI45K8A21b5MRbXli3ArSFiG6zcnzA9pcoyuC41nicy9KmcN9CcdzK2K72P558SitIx9WJsRLGK5hc7eKDo1gUby7Mb5ijqHODuCyHysNgGs3yjgz0+H0m+Ude7E5Uuh2+xGai18jU53cwGfZXbE2ffdzkwuf6+4PwBH+u0kYxRGKZ1PbiCukH0M2YT5gb9dN4JlbaL43/xu+pnOFfWns3Sq7RgV/BcuHiaOkyneYz+rc/+mzjxsgSQgJ1qPmkqqY9nvhN5gKfrUBvQJmbvm9uDXAu/UCrkbTYJH8MElboy2UruGE/Cx7cAb9UOh/ExzWa+8WW08mZ4y8UhniLjy0PzCW/0wKQzWw65ngMc9JAeZLfyuztHQrTqO5HV6uQvmil6wItbjWyp2Nfzp617SDbuj67r4xOq2Q0Kr0YSimm39Ze/51Z1E+x6F25o/EzT0cr/IbrgaRgn+7BBf/r2599Z8ajPwN0+T5Jud0bMTh9dhuWrY+rb7jgsnJQC2L/rmbQJO61+oG+AnPieHtKA82fjdSyUe1HhUG6dV03hzd1giqcbmb+vvc+TITuDE8AV61n0MmjqRhtU5uOXlIdDVw+n+5KAvldjnM+nezb3MqfLVV8Ddk23qpmZuGd0FX4BdfTE8SffNV4wbVYejOISzd9Y/5+fbMcb0Hjxvh2s8RQu00gzEgtpD6/pdqEauX6yMasCEbJjscF21dwQOwzOBEf+8CX//ClH3RbGJj2HSvceEL3d8Bm2aX/B3s5wVl4lCZjS90v3TRhlfOcXIXq8yY7uaVzWzBH6I3ygU7HJvIH98ZYilnCmvtuxerBjGiHsbl404NGDsTBaXsrtrFrh9vFk/k88vlplrdf8q+dMYT8WcHB0jgjtVq+FWdg2QLocqPHrrYw9RTNH8sfnsS45pF6mt9egc7FN6eHJiwNd/S9a60U4lLkmHuA2cNDdfgmRnwbnL2095nBvk5mu+yFm6hDmiFlHjpq2yTJWNYMDr6K7YvOjqfFOq+GIivKwJdLK+0zlyjOcPKrRg+Ve1/jqTFjmOQ9f71trzOz2dNDK6+v4X8M4+7IM9lU+Ye0gDmzWN48U8DN7Y3XN19Ovv8ugFZNCjdtiI97YHQrkqjuMtd0wDUzTpg2c2wno85R8Bip+5SPitUWjgVGB0c6CaqHL8ryEG3Lb+0L3eZuwaAHBQypdjJ+sCgBSPAA2xp3pk+cPWSCFobjWw35GxzViCEWxNwnoo4SW0OACUJOUYF88MGMs+2sDai9bNKCykwnid4mA2GJI46vyjpf93Slh9as0tKJxWJzSSYBB6eJ7fVh7eWzFCU0bUcd385bHc/j5HUEhfk/tdgzZ6t8sJJrflAbzScpIEb51sFwhJSD5vT9uqioF40hGquUno+ZEyWnR28yV8LPWKydDy3u0jg8bUln4y7dvVj9rCdRJu60xDpIVKVWy3q17dMV40Ly8Acd7S0Qp1/69+uZxA+FbU6J4m9QnQSjJSNpudtSOkgKxfDZ7yJpNgvGtn9B03dYi4C5NiPiX32ypUyHfVyYNTGiNCe/3HRz180LNqk3quRMrB86yvafOJnCN3bHVcmV/evjY3snOyt/khQAV+hofCiJ/+lwi70H1NV9/Hsd0gsudOBhnr7ReEn+wQMKpjS13VzMW7r+AqrBoqaoWl7rjSv+ImNsoNFjuNF60RW7h7JZXbHioGNjEOaJiVR3QP/9BvbFpYePlDcWJ/0VTWSGA5IyjsC5RnE0dj25IwjebRqsfmjLyKEDzC448vE1qrAYv+fNj9KA+WdzA9FiQWNshab1rlI0Laxqo1E8Vzk5ox7NExU729UUh4P4HAAD//6RdydayMBJ9IBciCAlLJpHJBAWnHZMIiMiQQPL0ffj+Xvau1yw4SWq491alUghDn8NvAdfzpBhJZT2LwW8j/ekj+rRs+SxnpwfwTRjQ0zS9OSudlc85tyfFIVqGcROHIpAuco792frrqcLNOos9pwcxFv2x7F8NRBgLZIlwVs/TZ9yAY2L69DTMv3Ra5k8C03N/Wvm1bC4a0izYeKBA0u579aUPogyseiyOT7oPxFE8a+DUZh2+ulsDkF0EPThmLSNvGrgDOGk7DVpSSXHeXl/D7Nhzp/LCutI/fW436VyBurzvKN7a1qpHvoQ/vEn4vV8GftW0i8q2/ZuInlUMyzFY9WXP22JjjS9/ep6Sfo8hNjZhMzBcG6Hyp48Uf3og3dd7mCVaRotYefnMJgJR//JBUS2OP2/e7wd0OsvAD8S+0bRFUgN+M/khWT59wXI45BdAlI9ItYvhgTnxwxG6ZXbBt+cnSBf6+7SQ1/Xznx62I28Xgp28eaHW/Ej1XOzyy1/8w6v/+fMX6yP4wx8gTFDa/yqtU/XPM6T2MMzmZPjEULZOJFEnn6aabRTZht/6F+JgzCRzctWug0XV5tT0xhpMb5uUgL+TFz0YB2YyZj0IQPE+o653jYcJCaoIVRrL+BSv+f0nVw2Qx27E9qYVU/r83BU4BKlOjduWRDyynwZUJSelWr1T+Nju7wgAs5iR8ErqlCm5LfzhR/S2G6PerfYBfur6/5RdOLuTrwDhJb8gxXGQP0u0HWFv7GrsdfEVzPqzV/75iygc6bBobuoAFCsZkm8L53Ni17O8BXjlc4HDxfljtPCqK1/qXZSuXiQz0aC1zm3ml6jk/DBXmVrYUU31LsH+so4fgtPJLQnz9LIW//xptXfE0nfGl606h9AMcET9xhOBwMi2/8M7hDmyV4uVoOxhYTk/7N6tb82fZJmhD9wAbfS8j/iCegus9Rx6arso5c/PSwH3t6VgdDN2Zps0XQL2yU0nUjAm6VLl4UZuYkkhO3yLhg7ujBFOzyyh9/YJfJbb+gOGIv7RA9UCvgif7wi3lmFioz91KevydASiMa13In5H8KcfAzbeHmh+3gR/NvW4V/NZKHG+8t/lrPUd7BBTkLDqm/zxwDe4tbYEB4tUglkM3hA85U7BVnQqwLDqpeB8KWuK93HvM1nxNDj7UES7+a7yX3PXAvX+tpV/+vDurx50yfUReZeDna77X8DOOFpU89mmZtqnMiA/ZiapMtgCDvOQqZkU6fi04qvl7acZKJ7fEVsO2fvsEEctcDZjTM8dzOsJ3Pvkz58oOiZGPa/4XkWlcSSAFlvAi3y4gdu3Xid4giidegUailXrd+yrkjQsrmDPMLYRIqqyMSP6iMNOXes/+JCGVsq3I0TwrX3e1AOabjLv63jwde9qimJl6w8PT2TwT3/Nu48PdsfgasGs7Cn1zJHUI0jeDZz9jYgdMBnm0I2JAbmMNIr/8H/Z31vVcbItzt9lHv1WPg6XeuPS07M/DGLzUwNlXT9puseSEsI3EKpydEWzMD3/1qup1+fo4Pzw/UWL93AFiLTUoiuf4uLZg8Y/ffXI1TkanplwgRsmCNQssjHiw0/awOOAEmqfNziiK36GAcqvOM7why/vR2PA9dVw6lzPJGJrvUtNffVDj4eh4eTQnm119TdsDtPEf9qtJn/+seoHRs0+QCFwxS80PbrBwG626IE1P2KtVdzVHvoMRlyaqVaqZ3OH5J7B172vCVCNazocZNuCE3+I1ECiAQT/ltlgrQ+Sphs+/tIdZAYF08mo52sSGE6Dw+B5uxz/8ak/vLoHi9L8q4/MfqprqlWbd+xO0d2nmlDeoON9ZWzXyzZazMemVVb8QM6/6mMy5b3ORdU9B+Oc2YA9eDZDkt/PZGmOaTo/dVEA2WN3+uO7JmPnXwhXfI0UDi71X31Xft9PnJzj+wXMi88U9TUdW4q+kTjQ3VDY0Cr3OU1Xe2VfQ2lgrD4RPgXPxqSNbTmAF/aVBjnK/XG3Pcfq3D96jOlH5OOOOQzOHv/io0IH8y9fwlqIAoxOsluzw7txwCKnAfr89iKn7wUQWFfe5Z8e02hbd4TSFt2w+Zl3Q7++lADZV9Ioll7HQcLNbKgrfkNvNCFz8WwrVg/BlmHNWtyIgLYc/+qbaDna/+WfCmNwoMZtVIYJyRWDf/6Lz7djTbPNNYAttyoaC0I4cD7Njip5Toj++D0js3b5w5fUa1WLs5tfW0o4ZRkOesbSHhfXG1zPb50TYdcCsbgNM/HIqPMTZX+OCgOCUH4z7AmoHRY1aMif3oLXetKwpPtWUP70/xe7L/U45noMp5HVf3pXzattcFHWeh6RH+lj4Ku/yrXxxtgNLidzcdWy/796CkThf/cUHD7eh0jugwGGn5cCqM9mR5NY6wEDZv4AhpKX6FNIER8/n70FRPGS0OD9UyOWPtwRvnCdkK3g1wOtT7ICHzcvRtvdiCLJH3eCQnhvIgYlKxovRBNVl5YjPR2tatj5y6JBOQx7suX07rPtzu2grzR7epdu+5pG+e0G2nteoKtJNZMtaZbAlI8htopX5zOn6REc0peKQEd5Tc6utAeaO81kqc6iyfbzRlBq+rGpdb98fFJdzxm81j+OHW1ZOCmO3gjVd3KhwUfoa97NfgOzgvcInA9vMOf29wIs+XFFXGs/6evTdI5yljclxm55SdnveEug9eMZUfgzjxhTKg+UX1MhwMB0WCoXjWDezh7pl29UzxJokaLNtketJFY4az5BB3t/VvDJbMt6RnDtI/Ebm8Z2/zMHZU5u8HovM2wO9s+frk9mwCVrb9gRfwfAoK2N0IudKw2y57kmDhT2QLGUC3but4aPhXtpYHMIB+pWz13NxWpdH/iIaP/dlGByU2OGlNxu9OTxumZ7qPcQHBODmiwKTM6lJJal2KvI1grtoQvp5wLPuRPTVy3Y0VyWjgjVqPSw85l7sDTrPa/jEk7YfdklX6y9bMANQjmCn0eRLiTSZrWzeUIDAc0DG4qgB+bOF4hSQTLw6nZ+qPucyai9L3nNbkRQoBQ7FZJOdenPWrvVQCdcUoqCNE0X8zlclP1CJ+wdH6ReRngpYHdLIiI8qrM//w5FCYm0VcmiB366ez9+IZSFU441dnv6S3xHBNwPLCM7+sKAb3gRQrm9X3Fw2exTYmS4hwOHGGMjwun86roY7uxonbUrkHrZLEUC4sCNSDsaP3Mmt0cLFzmpyI6jEPRBXTzA0f84+ACPgbkE0/sCt6/ujL0ml+sfNUkAh5t9JBKS82GRUgDhEo0bfMrKTTrnpz6G72AqqDkyPVra+zUDULt+qNtGJhCe5YkBaZ3FttoD5+wRNNBCo47m5ljWy5SWF2gm9hM71Dc5C5fJUfYV/9FDEGCfPaYwU6VDUKA93leg2Ss624ZSMVMTVz+TBXWRQI9iSqajVdXL6xOWalFRTGan1uoO6nkJt5r5REqCNC4Jt9JRL0eho1c9HEz6aUpPlfFXQNuuElKmdPcb2IYErfauDVIxlGtfV+ST5X69+HP9jUv4iJ81Dorvt14u3YGodrjfYV84mpyWtdYDSTKfSN5rRT23MtdgeRk1/Cy/AxiheiJwqM8Jtt2zbfLzqXZUubNsGskl9rn6imJV+vln/Be/psOvKBQhj20cHuTC5O1uO4PjocoRGH86mK3HcIOKtb9QfMJR9OvWHGs43YcsCi8jro2Vo2zDEeFgftGa1vZGAC/VSPFRbhCYRXux1f1Bzal24mO0PLWohM2o+fic614kmeajgHd/d/y3vjn6LbZ6P8wZvZvqs2aFhnvlNd5bfHosecqxCEUAUPXD+qZ6p8vxywxwRkFIoxakYL7FVQzJT5exs54nt6uNCE3hsCcs31URT2QugA/ebAjEsKpnmYgb1ZorFZGUD+msF68KLDFT6J+9kkQ1e6VYfhHRTSz40/WygfLDCQPq17M9cPe8FUAsgRoHq3/P9rGJ1QeDJXW2d16PoDoSmDYsQHtr0MxFzaNMeRamQk1pa/nkK9UOVJKNSo/MHvlIyLDO/i50tCdUqud7N10g+ziMCEmsgGm6PyrgJ+qWuhYbeQf1awlTTkIyCMeac92C+7/4SPHjaw7s9LI7GEdwxofUYYAxpXegcW9+9JVLNJ3NbM3h5FGTT9TP673TgMBWsu70uv95/hwGxxmUHiZIbpuKc2X0WgjJ/k0DwqWUuJk3KgPfYOxxZ5OO+VmxoN+UJ3oWu8gkpnTqofb2bDRfNRqNYXBk8Dq+/bXDbhjGx5Hb8JDfHbTmW07rPrvBCo6YRu/kbIofK8ngp2m/+HDaPPhuETd7GJ/2Fi58H6c8GM4JFIYArfsX8HGv6LM6JQ9Gne9GAyLeQQVe1DLAx2/6BeOnUA3Qnh8cn15eOTByOnTQGqoTxeOkD6Mk3TK4H4lK5F/7GJhapA/4UI5HoqqzmA6vb5hAxJ0Dziiu62U1/b94iLgQminbPxoHmvdoRDsP3znb/QYPmsJxjy3F7MwJumEFjyYfqdXDG1jGB9zAC9piivSXFM1T0t1ANxYbfNIf3tCDVlHAbEQeGm5tMCxG5c1Az5Qr2m2ulTl9E43BP/89ZbCvWfT9BfDTNF98GGYCmLrW1I6y7ZJNPlc1W/EBFPWO4bDy3GjZA3cE1V0b8N2Xjnw5CL8QCPvnG1vd9sUZrAYHXI5ih/2TzwfeGNSCZJEvZFkex3TXVt1FMcjNxYFpHuul9hUDTjR9k2h+V9H83kcVvH33MX692zntT60+wqsaaDhO5qM/SomgAacRnvgYigJgHH0ciFsNEuHUTuZyHvMC+EjsqH3drvirUDWYXgWHpvXc1vN5uJawMWsFG81VMRnaxImin6KMzG73MvmDhAlsKkuiuUK0YWccyljFLpqRWsn6wJcsjmH0DDN8ZeoZzCDfbsAaf7BmpJlJgR8m6rPrLXw4ZwlYVG0xwM89e9SGoDGXEOwNmBv3O9mv+Z9ayryHsSTXpDO2R86eP2eEW4WOOGCbpuZ37HUgU29feszQwedZLCswCVoJW/TYmEttbTZwMxg/jCXFigQcvkogursr1aJXky6oZBpUqjnBxvGNzHnYVhcVEuVNncy6cB7Qn6OOAkXkvuIFDuvBgvrBkqlugTFll0ZV4D6W3/T2SkbOvb3Tw0dxk/CpvZs1N9PBgcc4e2N3wV9Av/dZAfffhNEwbV8phXW91hgNiJ1h0gGNup+jeJH1xGc99yLRTIYAPuK0poFTlJyfz8oeKk9ZpwHF9cD2syhCV+8+61sgSj0ezbiFcaUIFF9eL5Oh9wJhKxopPV3pt57DAM/gZgQzWaZfG62sIfjLt9RbbsJAhHNYqPbDzNB23JT14imPCl6uOqBGZwHz92lnQ8mw1FLj+bz5k0YUDXxLU6EGP6ucbNS3p2Qi0tBGf93TWfPiVo17EpJFucfmwskrASD+XP/hs/Et+Gzl8DYpVeKmgl59Q/hyEk7Y6zb55HkY0Npz5ZA5Ue1o7h1XhDrWTtjblGjgBwT2YI1POBhKY2D7HWphs2iAbBOHpIsqqwrczVsVH88X3ZcKx1jnIrR7JO7yylxev+4CDPVywvb7bvl0ej4SQAahxUd29wE9DLdYeeCE49M1AtFk6mGrOrkGyRcc5IFsz6MH4dlI/uW3JXoRpHiVltMiN+8Rk7RnBjAHFlHbe13P/k4T1el3E7H7a/c1VUajhZnePrDV+Fq6PK06VEsi3VD5KJaU0+DnwHZ3bYlwv3xM5kV1ALd3YYeYoZmRKKrEBgfBXjW0FwW8i34eyN18QybTiyPJlT82jDPBWfH36PPpcr1BNNw6an0V3Zyi9neBl1yOsPlO1pdX3q0NuWko2G2jGizsZo3qV25Wzb+CgPzFwwdwTaLqj371P6ODt8QIiNIEysCyQNzDqEMldU79uL4neC3A3SIlWo7JO1qYXAVwOr8TMj1Pv2FWLU2E28+oYvOVy4DEL3cERlgYSBbOat2bxqOCttg8qS6Iv5Ts42ytmW1CjDdQ8edHYAjwu9mq+LTJ9WH3zHYboM+S+88/fh2LCpDMToMdOcnqydQfLUgLbaDpYToPPDiCPVz5FD2cpyefyUUTQDYODJ+O1/cwL7orQk64i/UZAnN6jGEFtbaG1Bg4AIvMqkD5PTDCGOduypU5icEQvGWKEn19/5NfC0hs38DHlTguTl1d4KJkBY4+LjN/e+CSv/1A9+Q88eadLpb69/1QXXec3ZcOAfsDGny47o8mCa8egX4MYhw0hvbHJ0OYqfEXO7GEOX9lhwaueBlbZJDAosq7/R/ewf5OngYayqWjpjIDOBAzexjdImn/7b8TuJXJPfhIoEuKmepr/Flu1yqE5nfzRrJQZTUDr60IVjyDym9yNblAFBH4BzXEeKee0g9jXw+ueABJ29Dmu951Gdwp8plM9/eSTm6MCWiTi0892sOI5lPQQhl/BEKhfE6Xw9mf4Uu/BNQI4Ddi6R4oIJxvLtr98YtPKShQyEKPlA86R/N43xlQ7JILdeZ1fvjqrzA65xr1riweZre4tGAW92z9XxY1yZ2EyvOuYjSL6+zT17a21fm9N+lpuwnSSY7iDGhdOKFNet/6y1bQRyD93DPGPnFSlmbnAgqKd0FyROZ6WfEreI7bDZqcz6meYmUM4BJsc2qs+sT8WHt895/mRg2RbsEkpRxCkm8KsvOGxmda83Wg8Xoc6HMQ0CDhovLUVtRSbIkf22RZJG+AeugMMnvXPuWDUXlgxZeofNAwXTLeIHAhrYOP+PrjDLwkET67zsKvj3VJ2al/ZkAIhjPW/+JvuzVGMAdBQWSuLzVloFo1p0DDhzVf8+NPVv7hKXx29WFaRHEP415PiZScT396jQ19XpypO/P1ns7HZeB0mU/4Dt4H/odv4UbeTIiHbGfS3pYVqFeqTmSzKsHiGrOl7jjr8Umdb9FcbDCBh/zqEGn+GL7wzR+tMvkFoeYkvTijndnB8t1bZNesPS4jvGRq/axS6h7Pb96T06GHllKcCQN+YP7xb+ht9w3Gt+dpXf+5UKcuVLBxu2tp0+uIAZRSivZ2/uMLFiCEpesy6r29BszWqskr77HAt4O95/OxZTY8515MdYVrKRmUrw0sa57wCVVWvYjHRVPvyeIj8aR9/X/nv8Y76j6Tjo+G1T3gXUksao3y+vbGd7TgVbh1eL03X8/HQRdg7YLqVEZznS78LGwACpaBGvvxbk6MUQeg/RsQYAU2mBlkBgiTrkHgUdeAyNKi/Isnhz/8etLHC0gHhWM0DTylaf5M4CVc+fvwMVIpLt1egZM/IyY/jVR8tY8CcqmraAFv+6jrTqIGNePr0jVeDmP8frawlew7qrrymO7mbfEAxHYNXPe73h9fGrBAvak9RGftlrLF1Mk//jFnp0s0ZySu4Cff2RjLKU3nXydosDR0n3qv06le7A8aAQnwRFjseqkwDVv4p59QI7H1SJCRNUOqVz7Fqx44K+29gFKl9fi8dzd+z5TKgej3lf7wfS0Oeh/ALKeEBjHAw89TwgqCz8WjTolL/59e4hrkTRRIGs7bnTSDkQ8X6vdvNeItZOKf3ogPeuj7yxRPCGDDcrFxoFbKz7swUYum0Ch+3Kx6sQPBUKvX3sSJez1wfqNQgKgJdFKN2InYRzNG+HGEO/VJOtSUHoglx7bV0efl9AEr/2Dg5lsO1lR94y/WokLY5NaRnp6FU8+bSDBgkY8v6m7pNiXBt3VgGW4xxTt1SoksyXtwEieN+pl+4NJGecaQ090BW2C38HHVB+GR1oCANf4z/EwKYJvGRP3DJqzHYHzHKjZsF/u9+qtnp+pvoBr1hGyWRIhYoR17ue6yF41eZM9/l+5E5N7qI8RQzvx38vpdoONoJ2o/5cpnXEweKgT6ntp5cONTW4QlFNWnTo9yQ8A//32FKESKLplgZwdQU1yH/wcAAP//pF3J2qo8s70gBtIoKYZIJ50JgiLOABUBFekC5Or/h3d/wzM7F6AiqWatVZUqn9rLI+nmNT/Ahv/tidtcv2ggO6Pf2rZ2HOdL1WR9wBQNVv2GWhLpWO9ekIG27PHAM+h9Nv2C1xmt9krVlY8t1nx6QHbxIqpGUxXNQhAUsFxeu5El2TpnKfEmFH/l8yjfg3V2dd/aKGjKnlrcMKDxD2/x0vVNzHqPPZq+Xu7uG3rLuKznyx6220BoHaSRrfyszU64RWJQi398lA3Xo7bs+r14JYZ4Puj8buQ4+Q8PbrSIZkzJ9A+yvK1J8tTLMgmRxgbdcy+EJHHdsanoLbg7Tw6jsXc75NOXjTbq/ka89HLsmGi+bGXNV8T+PT02HQ3eQn0sWHT/USW9cfbb9V57PhFVDr7Z9OL1RcHZQKm7CzQkshBk+IbOQrzXaa7W/JbDNPEHkp/uQzdl6amWVzxIDf4a6D/f9SY0pOlC1dMJZ7M3zxqop+pIvSSs0Y92WQ7o/vhPPx16SB+w5u9RXvkF1Z6yjNyUqBSznZP9/vhHlJ4TEp2VMmPaofFR3XIECyvekfTNuvumSU16uK+zsKP3L0avc4mIEYsJYqGTpaByl2R8rnrgWM5oC/11p1FT7Bc03HEZQnf8Cqs9iqz1SPbvebDiMr1iz2+SoFVvGX9+gNFEgmsB2QFUrKx8aXlUg4vm8yTTY7qJssGlxxHCO4owOytlxAoUnf/0YLzMqMhmc/j48vN+KylpSj6aS8ca4dxsnqMw51+9lp7rTntfCYj2iupsPhTiOlt7aseJ6UYkhF4XAvDKke5br4766cWrCJs/Y6zt+BUN3PaWw1z+NOIbEeuG0T+OQBQ+oZirccac3dtATKw/Y7M8kmreRfkDJfd1rpeyOLpkMEFEh87f02vVf9jAn5sAbrdRxcKqZ40IF76y4j3qiFPYTcfXo0Dj8fSj3mfJI6EzFg0iej3Qv3wzXx7OglZ9Dkur3iCseABW/D6+ZZdn8xcrALdvba/4/sZmSX8FcOPnjB7GpmXMnY8fcP14S1XRlL2VbxboMlcIn7qe6mxDcYHS5noY0Rqv2sjQezhtjxSLTf313ivfQkdF+lIj4nVPHE73VOa974Ue4rJnS1q8fFlJ2xnLtIXs3TrOhDQ+Eaib4gIttr5V4U/fQGe+RAxv8hh8xWqIwV8nfXIeaQ26KL/XeomjSy/JW6e1MpeoRsIyOtm3FDCpE2p7HN9Nf7Pcv7vPYRTvje4JV36rITV4nnCvLU01v06jL6/2TTTk9foPWQNG3bKNiHPpvmi6CHmJqitrcZh9fV0M7egBD3On0yM//7opoEMI2GcdMV0iocWT1B61AWvJoeo/aJ4f9eo/66jTfSZVy1t1xz/9jVrno6v3Fr19AMWxRa3X2pPv7LcuWvVi+uz2TjQvysyBaZ9vK5+giAESJggPDvvH/+kyPQNwpLNDrs7vhOZZFGUYosDDnN3LWffcdAbaOZXzjx+u/ExE6su2qL1pwk6o1a8PdDzH9HgNwqw/fBYDLdZbIJYwvrzhL5+8ZP9J8YpHlmGQRKXpbhpJe8tGTDiYNXjHg0SPT1ftBCEISmTcW5M6+FEjWob7Rqn4rzhuFUep2qJUe2W5VDuiZxuJzVXgTHB7muI4g+5HgmCaI8QNt86dM8Ro+MgyJyePs7TGtzGaePtSwl/9wgwdy1v+9LZH3lTk7Nqd1/3Zw32dsDdvHU5fZA9kMHbpBePnacgGsY4eCppvL2IFWo4mkpUxbPaLu+LHumrxa+YUqgQpvY6Ni3rf0XlQTuz2x+8zZlyzBBYATMN9fdX5gdxL9HMid8XPYkavNvmgJXD1sXo7oSe88p2GNpDfiT6ZojedluQDxSjEGN6HZzav9QbUXW2dXIxN77HvtjL+7IOYOl3nsq71w52WlOT6Pp5YJ9uD9cd3ibPyHZZyXv3HnzFPD4bOJ13w+asXEpOXHZ0t0zUAuxZv1MJLwBhUlQGceTWJU3w7RheeqnDbyzXBe1RV7LoUNhipkFDdML4Z+xRBqqz2RdOMetVszAL3h2dotGiD9+ruRq8EXl/8q4ew6P44I5Pc1XF+061H42trA5+HLpakeNv1dWUswHXqD0toqdlaX0uQ5fIOufg+0df6XChnD61b4+W2Gg4Fx8G7n13qbFWuGhkebDhlWUW8YbPJKGPuB/aT4IzTe+dmIhPT9E9fG7teVv/TSx4R84hDw6CbtHdY/+kpo+icPt6w4vu/+EidE3zQTyq8EYm3HJPE9Vs2lpdbDn/44boJLCSt9R9A5u9E9Jj6f/WkBb3uaUT/3vec2EhFgq2lxHgHD7agw+BCuCL/Y7l7VXPYrvpqoHVU/YqvbP5igfvT08m+5F4ZqyxRBAFajfzV/6RVX0TGVCj0aB68qvurl/s8CUYlL7hoOT5xC6kUeZiRU+ut+nb4j/+7hwRX47k6Pf5/PQXC/91TYIkPggUk/bylkb8atO+opd70izx2tPJeNlN5h6XwImV9a7wBXm5/Gem6v0jMvc5ASPhc6GFOth79HusUfFHZEy19YF04HMZWvrftZxzM5scayQAZ4FVsCPH0qpNuWzeRBWrF1PLUB6I2uDl8H/5AAzXtqv54a1XUVJNEcRnX1Xj57EKAQA6JYWSFN2xNTQOa7kq822sa6vDj9JB3zcHBvaUJ0RINlQHfvgioGmJh7X0PRpDET0z0B3fI+r1Cgl0ZBSZVLzofTRfpB8DtNI5omLqetL8mI0yQG8T9PV9dW5lfGciUSkQ71U7GhD1w8JXE4wheaWdLvvYN41Yc8Ktd6m722MmG5JRm4zYsHtF8XtoC1Ya7nnHrVoKTzLVy1AKO7A23i+bhGTawu+Y5jY3YYsvWtzkYoxYw5Khlo/SYXbjtOJfg+Ft0vWc/DVTw1BnFJvIjZqqnEmQnCcmh2xXdUhIvh+j+2IxfLbf1WV4x9+9JC8y6e81+lJgBrJVpasFVq/jJ3Voo6XVED6fJYCK+hgXYeWeOW+moZC2s9xC92ED0Tk0tmk1TF+F0ChSMCDDEKJcXKJB/OlEPpK2WY6utuxrygHi1e+mmXn0AhMCHNLfD0mMi9fudaeyG8UmUJmNSfi6gQyXBZRNKbCinwwhNkstk//neuyV7RAE8vkeFmjv/EvXxiFPZrT2T4ODK68yT0APsddGV5MU+mvrnsYAdyyw8HTaGJx6QcIY0OXIEH0seseLww4j67804hRzuZjUWc3hPZ0zuEClo2FuTpqA2TMjefF6zv/NApDTP1NVKgS2hQwHVJxZimPhUZ84vDZF/v7xwEVffbPDP675BTQBiFrd9tLCNwaGdku0wpz5qNoZ8vgVs+Dy1nVntZjnf8FA8TEL20wm8yTw0ObQlV1DNk1u2KN3HlZ/U3mD2HFUkjJeNJY88Z2LOW/MSy3gDekv0ifoqT6gfd28LOd73gssMH6pZa/YJOpNUoEfnWHbTZt/lIELs4E3W+9mfP21mcS9QjctYNftFwSmGfY6JB8lVX7aXew0tF+ajwtMC9WaOcgBRonh62IU+zb2TwzOSdKq6vJ4tnF5yyqtY53hs8hea6IeX4Xq1MTEfDt9RBHYDV+XQUdyolbeEnRpA6Z5CYlvwihYZsVI5z+eeYP/YoPYb7DX0fqsnil+fTmeR2uTw+G5vJPI3IusPXd4Cr7gFcXJTr5hzj7ZKGOMbxRn0HTt9VF4ZP21JbMa8jn3ODx/l78Ell9826b7++NyiUx1UFE8uzqZl7EMIWi2mRubgrLlILwCvNw7UkSovWmLbHdG+f32JtV1+iG7eTo4CrCuYDaXbzTC6C7i/p0ANDfWMwSnqkRcsHiH6o2XTm3wWSHRji3n77UVzLBxjMOTAp7d3nbLpdb/Fcp7ejkQd9yRjyfkQwuRLCfHatPQW+3d00Xa/jej9bs1obsQbD5sieq/v99zN0kZJQX+N93HOk54tIX/eoteueRNyloaoz/NoUS4teBjqQu8WifddaCLbpeF3ML159NtcrjiXw/DMrt2wOTcLqp0HGpua32ezuj3w8ClDg+zjEWeLI+iF4jiBR23L/7JB8pAI/INX8FbteUYfOFKRz7Ut1f78e5/rKpy5i0n93e6N2N2bfEBCfRn7ph3ZdOjOLcx3Y6a6NKPow4pHKpcGV1Ij3lTeaGnUR//iwzxTfSomp4DlfEkoCQZNn1V5V4OVuD2xiyf1Fi97FWCY54nG5W9AyxD9UijMZTe+hW9edTsRLESTOqG3OXqgITd6G8FOuOBNqGF9OpZiC2EhyKOABYm9R7/Mgcc4wMpnCrzp21pn2E58RdNtc82osG1CGBRdwxLS4qjZCIMGnVDpVG3zuBvkqMKwv/oS8Zfzca3hzSkQIz/SrDQJ45/abkIS4fJRPAZeJX4MtwFN916ErPFyuDyXeFeKR6CmGavd3C0uD0bURHR/5J1OCOaegx+vBfibU5KxWf/Z8jd6PYh7Oqn6fHCTBHb4/qPqTzK8RQzlRQ5OozoysAY0ve6nM0SXOabG+Uyz4Xg9pujHqwG5QvmrFu3dLzDUY0/8qI+62Vn3z2LnVWM2XR02PfHWhblJRpKexKUbsus5hpeqW9SZRj8aapfGMLklpmRJZTZV0nYrH7lV83tcAu/zKWcMg2f6RJ8PVUYndZPI+IBT6k+bvd6Wummh6HBn9PDjPhGb9ZeN4OY3eDqQtpsNT2hhPiz7kWsLylg3JKXsjbcTiVZ7GiJMU5md65nkb4FWI1/ZNgRXbSLmvS51VsZuIue+2RIMvw4ts8nxILfqBkvsrnT/4tkSanjFI6rOboYqKld5eo0DhxN94h1dhm7APTHQK/Mmts6i83rrQBx6U70pQ9oZSq7eE30fLGj5bA0fcn+yxlkS+YrJ69Dqrev/6D5XNlH/2TQBDFIf0oibX9USzLIBLA9SktxbuoY0Ya0xnhqqk7at+nq8nBFX6Qu1btTxpC2/5uqwvBJLUNyOnaqrAU+v7Mnx8THWbqKyhPbJ7YhzfBXRY3u5fOAZCTpx+3PBGh2HAZwS7vMvnrCWd2M0hfx7ZEcaREt+/eUgRFNK1/zKlrCzA6Qr2o1ovF+yNV72CI7bjlrHwOvmGyssRZCTiITF1tIZJ82t8omjDkN30Sq+V2NA+yuWqJ7d1tmfeXyG33MoiHMLjIjp8xRCqB6P1NGumHXwS3JlcguM1+dDi5YHtiKjs02j+Cd44xo/YBiHJ71nn0e16HPlIj2h7Sjt+7FaKvO7BaiLN3ECFHpMTo4lap+wW3sb7Y5pRlP+8z/voFFv+MNzdwEqkjzdkrHWuSdwyqKJ+iPlMwrLYADd4BPdyx1D7IEjDYZJ++FveLlGcy3kIVSlpFHcvIWKdkNSQLUV8Qj4eug+p8grgHONkTpxZuqiHkINqrV5UCOgcbf0n9NHuenn07hN3JzN/l3yUcXZHD3c5MCbcaVPYG3ZjVqx/GPjLds+0N/3BVmksoVd9xMsRP3inVR12VJBhJXDwQBqFliOhtepsaCorRzT2RxZjWWUoo9cp+RwNSe0iPm6e+zhGrh6sU83a42TAjqdPlSz27qa/vDk4Ut/eOH9Eq355CHrcVIQ3Xm/Pfqz5A88dT+mx9+bZOxE7w/IuLwiZ17SPf5mfzSU3b0UC7/oo8/N426hq813hPDttxriHwbkSYlBiZC+9EW0IJGTRbeJpogvvRfFqFXGR+yNWz/bsmH9fVA00abe1XpHbL/JtijMKof6zd+OW5+429ZoFIrn9hVNbyt1QTGdkDhJ0bK+V2MOkmVvE4fimzfcWGEoup7KuGtTzRP+8uHjgT7j7nn5selb7HqIgvxD9LJSdd7buIm8ex+qkXt9PE96ceYHWB6mRP1qBhM9OfnHH6hBj3XHRKRb4Im0GXv7kHn994xiOGXgE91P62jE17QEdOxCcsDI7NgyTVulSKYnfaz4cj5dChvMdLv2GIqWLqW3iIesyxWiPmz1j9/0MHUuwpW8tz3pfGH5n32PEp4e1Rx3Uw+RbJhUj38Xj5nqrYQv2blEB2tgvxUvorTZpuMOWyFi9uRbMCXeZdyeJ0+ff5vPAxzvfSHGx96iSUKND+udN4JHs+kWpTyVsrt57qkPFed1F13/h7ew+OVu7Nc8LtbagyvRqB26bNLFSw437SfQ/YXjGbvUeSOHH8Eice3sPWHobhpMofjGLHz+2GQ2O1Hu28eTHszTIfvjc+j1OhOSydEpYzfD5kEkVB933inq5p8WhH/+QtTDptbn+Xzj5T534V++7EO05WDqbERX/qmP32C9JyKHPjHelRWJIOx7CFo1JhGCMhvm802EOMQLsZm+6PUr/dZQbJJk5Pefgk3Vk7eB7B9fsvfqHE1GGrRwJNEV7+LgodMknlVFIpATzRTMrC2a4QGz2J9WvDVGCzrMHDh0a6x4QqzoE7UTDMpewxuZHvW//w+DvWjEHsaPvtp/jrzjVGPxyY9VcxwFDeVIl0c5Kya2wPLkoJMFNq4TE3UqHFn8x+fpkW2++vDJlhAEO79TQo4ja7GX2/CHB+eP1ulsO39L0H5ziuEqcmjQ5liDWEU/fBJfTcXY9xIDlw4ZtdigsJ6fDwZU9+JEHVXK0HL5zCH84dkbH729+Xy6uej8Udf1qUit+B2nawrU5XsU0hqh94qX5aMPR+ptcYem6gmurAq7kdjcEnsLjQ0MshDDWPmbGA0kyD5I94yKGMdLjVb/KYD76Al1GLdU/fp5KDZpMu6qp+DNeBtPsH2XH/w+ZJY3HUuuAespXuhxxdtsdylHBT24bOS51ysayg+yUMRbu3E68Iq3vIZFQ0v+G8mKT7Lp0QIHr1gNV/8r9PHNceouuKoTSYbq6TFY3gZ87KYm/vE76ms89pEtQ0Nt+lOj9lPuMFrjP4bU8rrx73112/JHSeO1eq9rmYzeyvn7D18u9nNbwqhrhGrCa0RsQLtxJ7fahlgAF31y7zsVPjS4U9+8a2hYjoWmXLGXjfw+u6H5+50a5XwdfOLwW6lr3TjnwOyqz1jrnZVJZpOPaNVjqP9Lm2g5LEWPdnRaxnl/6fX5cBgbeB4FkdqXoq6m2+Z0Ri9ovVF2+kM0F8lNho/XuP/iweSYEEKAxxvRHLLeSy0xRoFwjv7hK54RpYe//OYdNOJNqH6pkD7RlzhxwOlT8j1/gP6OJt3X5VYfh0Bq4M8/9eyGKwqnrAfLFykGwekz+od/1t+jpDqZOnuicoL3bTyPf3yI7UTegDmwEmKu+Wf5GFoDt99pHHe7ZtaHy1OOUSe8dHpc8T/9WUsNr+Saj8Jwn7P+ank+irqlxGETSqi/Fe2CLG55E6NJzGoR5lcMzulTEuwo6xwU5YHl9xTjdfcG7ZbDp4wRiMLaUzHL2aRmiowYlQdqplRjy5//sWeo0oNyAK+7v3QM8b42R9n77jsxPjsGOIIvkA9W394f/5LDyGfk8Db2nXipyXqT4OZhOO8/+vznr3/5QV/5q7Rtwi0cZ4LH93J02Wzujglyol1P3YbanqA1TiL/nUduDE4kxVOmouJxIPSg5Y23TFmygHa6G+RyfsbReEmXLeL1av/feX5tAODmy4V65LrPlmQsWuCS5ESv8l1HkzbYIuJlWx5RLROdeWXxgPMl0Wiw81Qm7b00RshqTWI6RYcWzt/U6Erzeo3XhTdsThsN1nxL3StK9PW8LeUPH6x6Ytc1ozLB+add8HflZ3NYO2dY9Uq88LMQ0YgvNeBfYk3VjZCghV3XmpxlPTCc5l02cfY9gOSc7KkvP5JofpmvHq34lNrt7oNmdWQ+0uO0oPtDeurmx8y2EN/IZhRy3q74eMQJjL/GJnjVbxZObzmI5kM0Cr1tZkzblhbMbOyocwvqbDJo10A1u29iq4cyYv7bC+HIyfoazwwmFo64Bee33dL85FuoEV528z8AAAD//6Sdy7KyvBKGL8iBKEKaIYIgcgoLEHUGqAiIyCGB5Or/wm+6Z/sCpMokfXrerm759JV3/kiNMmPR2JtozNOzr5xfN2fO1pdCichx+Jf/TO6QuvDjQya5zku8Llxl+6d5JKlux2w7W0UNdrYl1Nq2NmK7V7aC2Z99fECDpvcI1A74p7lQp5apQ2Lp+4CFH1N1HTQRsyJmQ6HmJ6wOyxw5F9gOyQ7N6fFz+ujE488Eyac0/PEgfcKqqkHUMvjZl940peSi4920yHRtR30en2mLvnY6UeeODn2bUQfk/VB9sDbtERriqNnKn6EM/P423fvxuPoDVH+mBzWDTZ0N1rV+QEo8m8AkyM4QUrmRzeKu40Prrarlvif0iwf8txvYMJxlt4yb4nyuo34rI1RA2Igmdj921rPgjQgKhK+Ive5sIWni1hXdD+qIXeT/Ib7a+zH0MZb9ufko/WhIxhV6H52IaO5VPiXuRoUHbTR8TLtvP5cNN5Vffayp5zDjh6dqKsvvsaaYn4rV97qFOThccViMT4f1huWi60Yj9DCLwAcjUA7olKCQukDezlzbnwS6fB1RvRudaJw+mgpwRE9sDNY7mh7n7wretyGmjpcfnbm4/snwNzQSPe4Hf9GUFAEkZFJsvMgSxcdvAKB6W3yKGoNvqCS7sPDsHz+LGCUWIAp+j81GX/dtaX9tIE7y9jdpnSG+8XgM+vpc0ePE3xX58fX8fLjT+8IXqZjnhXQ+xCF278vcvS6oY1jeC9kUK47IoT3WqFsFOd6n0WfhgcVD/sevF//G1c7a7ZxXuvNX8u2pM+cqTvD3CU7Y4ac1Gj7FPKC6m5a5IuM3mi7Tzobj/jhRLHTHatxJTgOiu9r++E02oWvZgqeFq198qMT9Olvm7N0UevK3bsRfwg5++R5Ze2OGaLCTVLQR03HRO/Se3X1PBqaASJf6X/92tNVgX29W1HKzK5/jZrDR06pMIi48Y3KsiwleUb9oAKqqby7l3YJyi4Hclvq87fJygMJ7lHThnf0U26kvv/XRotiogkqIV9mEPDeal/j21rt3wrZy4eUlxaqu9OL9ZD7AMJqTL8E9iGbmtSqcBvmBj/60qoaY3a/opwf5wdLj+OOZ1iU5U2vl6b2w9l4CcCbH/jq9qJFQ9XIBW4105EUA8+89L2RY7oOQ7XrMBlkdZbQJmECtT+w74qx/bXQwkokeF57SbEM2wVJ/YiN+JhmzjnzZpUvORCn6rmcH9XBFv/OPTunKGafM6eAkV2/slJtTNiz6Anrf9jsfFp62CV23gcAZOD430ROxsE1KEKt6wiq8w34Owm0KgvrKqH+MdLSh2AjRwm/ocl+VWE+vFUirwxkvLTnRx95cu3/f07Z/bcZ6PxbQSQ/XhCz+W3CH1If1CCld3qNDYh9K+NW7QeG90bT1rznaGkOAE/8t9ot97SCUtgNd/BWfd6Phg+6bJ4ov5cvpP7tbAo56pHThtRk/430LQlJ8aGAfTujt3kUfVrZJsPl+jA41lM8A24fWkHUKIR9Wa7VWpDTXcFhdQzS85YzAwntJSMUpGvlwbCGrrA+1OQmj+adXMPqNF3s0evHCNgKAWDr0QJmoD1stPSDm6nsfTYeimnaNGYIhFDd6NJsomr5VXCqPW73Fces9enbfyQJapTT7vXeHL7xfXPQNevguPeJnXQ+URf/zmbeeqvFyUwslWYs7vOiB/Fefg6MaFPun66naMHsb/quPjSUfIVMWTMj2Xg5Vj4KiL/zp8fOn1N/iiE8ZdVbI7K0QhziGfuGNsfwutX7xh4YuaGfXhPicahgv9jpcebhSsP9U/V891C08BBZ9E+M8N3XuzacOppPIqCmVVcaz+VqDMrMr9p6OGFEmewVopnOkHsde9S8/cWAQsKEA4cOLDQn61a/LeWXbon0/oHy/sb96q4AYd5wUcpeZZM3ee8SVJ8jIfjlPbK92OppWRaih3bgFbFvgcbqbaQGrtWrjwHzOzniO+Ap8yQpwylY7Pj8UFvzi1z8eyGS6sdDres4JzHVUdbtXBj8+T91KnZaNT69YWfJJbK4/Fm/xKW/BD4sL3h/TuWIev8TAB+lI5CI9o+mV0gaW/ILab3nZRTAjGe1HV6e374n3P/tVtkJX4CNiFI2GoQu/+pRqw8d2JmetXZXF3xJBdrHzTWOphANZYX9ab3ac18ZGBWMuOV7yq4zNVlvDj18fHweU1caxeChgI4Mg1Qv0KY4aAQ7HXsaaFgz98MaEQWCmOlUX/U/su4bB9htXCw87cbroMcrCR/HBUFk/r/9EFbCSBX7hPbK+wYcuARJ8E6qHzxOa/4QjQ8OaY+x1chbxbA5qRWD3P/p3sPuMd6fzVenaKPDZelr39Jyp2o/XEJFZf/2wy6UWNjfDxnbV5fqYxnOpRGee0P2zjXSOjHMsLf+fHr98nbW39V8CVfx64kOh82gU3vctEq7ijI3m0SBWSrsrKPd7S73zUOgsud8HVNpRSOCo0GqOxvsK+lNzI9MylmVSMiOHV9XfsIfFtGL9qKf/X0/B9n/3FHRaqVFTMfp+luxjCo8UbjSnTYGm9Sq8QhPTmnpzP/XEypYaLzczH3TT1be7bLRlJGctUXD94Wyj2hqUx8kjL4eAPnVKQRSfnvTFBqXoa6jNFgWfXPe/U1UgoT5/SjAz0SIoHtWMrte+Bc0YddQyxzEiVcofklK/nv4MhZCRQrBdBIl0x6aM/6px40YCfDXz6SO08hGXI7BQoJdnsk7KNprefnwA/6FuqYeON87ptylAvm1LfOLbNuJ5Y/to/HyA6uIl47PfRDX8GRPFakpVJNZ61iByNjN/pS/7zq9VG4A2+nd80i47h39KKYHrMh1fzVy/n/caCqEWrAf2H847G/qVKYO9rgg189SN+HToSwTTwyelysRqUgehBfl1W2ODPIg+bfqjBQc5ulLreyiqeTkvqAN3ovr6u3ZI5H4CNJyEC9alqXWIJ0oJCj/Jk7Bd+q1m6XzP0fn8+mAnD/ts2OuiCtKltghaHadqEl/7g5IazRPbz2+NSLyyYth8gFMNy0LFxEMpgJKDRvNDuamGaLQsSCvJoXq8eUR0OS/wklNKL97SeXmtYw19Unby+YhYP4/7WkO3THaw3XZSNBGUh3L8eiTYTYqhZ687OQCfugd1xsrWu8M97VD9Xp99prmWzh8b6QB5IFTU48Zen/caD2HsbndfuWx7Z5KGTQx+zUx64qdJZ8TNS7S8V3wN+rqao3bPlOU+fTa8BYdf5J0FZ2GrEHmCvBe8RrLgUsw9VjPJREwNkqs8FfETOx9x6wwBsgS4Vc8W69S49tzgNx/+jp8GW5eV67BbuArRrjcjsnk/WUWNfGPCIbl0PmqPKmfBe6WhjNQW1cWPmQ0dCzs0x7cJ732hqBg7JzYy5QAkQNu/k4A1TVKjQRqUGPlNo1CshsTh+jUO0KEuOLbAT3om4t0OGXutpfrX3VdinoIFVVPmRAHz3G+0+86HW/0Isf790mhu/iQLbl+zw/tAfVZjbIc+WOwhYE/uXIchr85Rj3qfHssnQm/v4LjwVNUzdTbW2eHyU/PXg4Jaum8CidN9hB5w+ptsfLxPHWcf+c9VzL/coX6f186IrUGFqbJVMt9XSTVH5zaAfg7+6KWb187w9mMTen1m5DPduTPlqZUi6qw9jP8qFw3VeR//zpuw6N6gwRqSKySvhPkrw/jTmWMwUzmobwP72dnJ5mSXbKEs7iL28k3DOS2zA1xuro+v1Ct1vjFvBMo60PDR+4b66DlJqzjBF6iGgiojhpADKJ+Lis2rKDusKs0deLqb4PPdo9EbPy1Lfo/CjDG4y6yz/eQrsU1N0jr5Khsgamoo5/xF1t0tqYad/leg/PxA/g4ee2dypbRF10dwwqYMJ8Q6PZSVOVUZff78kSLNjezS8INNK4oqprctAT3ZzQTdpKc+/wcAAP//pF1J07Kw0v1BLERE0iyZBGSKMok7QEVxYEyA/PpbPO9X9W3u7i4tLSFJ5/Q5pwPd5dICHcI9NRTxE7HEFiV0yfAbB+JYu/P3PDtweS4JtsSw6ZcBWw5IH8+hp0VcilkLOxteJquxaoYLGi/3VoJvAFywufN9zZCaN+i5/xlk8+DO9WjFp1ROtHeNzV94R+T0ETRY8ntCFTm6FFO3hA2SgrtEnV+A2ZTMFUDknOuA2U8tmuQ6KcGhuYsdvx8RW+Iwk+1WGqlxdJp+HD3JBHqJt0G/4tHMoqMJu1h06b0yynqyteWNOPvm0+M4mqwzbmED2u5TYH39fz437xKMD3VLEN//ooF1FcCvelGqSzclmlueDmiNV2x4tymaUdjxsOkUmbpLWOg0fo08ulrcDVuu/uqnz24nQv2tSnr7yTrrb1FD4JAyP5iLbYzG4te/kNXeHJqZSuLOveza6AGvI7V0dCh6TT1zsDWFL1Wam1+38+ZR/cMP045YP/vpe4BtGPzbX4wIY3OHFQ/IR/RyRpk6SfKKl9RNHOIut4f0AvlTHXHUes+aXfwrQa6DUnpotTebT4JTog6ChGznuNH/ja+tChcHGr7oy1G9hn94GMhrfu5eYq9Ab0wlxQ9u7icJHxa4p7GKH+vn8blX3hINyQ2rc3bR2fUsVdAVpk0PopejZblmE1rEWQ2A07l+SQdfgaOrSFQbN+9+unSIIOHcW1j3TyxifpkKKNpNGnYj1SvmJnyk6LnxzGAa6MTIis/AHdoBa7zz0GfzlBBAz+2LalQseiJ+UQAtWhZqPHZTvXwzW5A+/FfFgfriEOXYVUIJNS/YxkODpr/1jzMJE65JN2zQticTGQU3BODxIpstmbelmHR8gC6TXEzd/msi5eGIwTGPzGjby7oNjPYMG4br67PXBoEkCekFu8uGRWOH3wO8I+UczMkQRVMz7nmo2YCw3Vg3tOzwJMrbM35jdTfX7vRQ5g6qOgdsPoWknlR9o4GyWHJwaVzKphtkC2DuAzgQb2I9bi+tCNWtSfFNKR3E1If6ApW9HLI5cirit/7lDf0cnslHtx/R4tRtB/tAv1DzVY+IVGY/wfhhB+oV+FbPn56YqDHKGw6iKmHzxOoQ+Zo/0IPBR9Ek0B+AJzWYFpYnoKXc0xKOkylgxU2UFV8mCYVRNuODMM3FfBK0Uvr6joUdZX2XokPZHc0XfA4EeanZqATHFPHc6UGd5/KtZ1LzOThbe/63XrVwKxUI+YqjCjmq0SRvBW6vnDYTVilOovFVXDV0vqdbii9Y6RdhrO7yGu/Yz4ePPhXDU5KVMVWxEWtFNH/8UyxbdipTIzy+3ZnblwrYAwkCjhPefauDz8GxS09E2t+7aATlGMvWw/DwsSwbl704afjDQ4q79ul2W+t2/4c/4cq/Fm5TE6RuE5UIm15i43Sz7D/8Dbb6dlc3lmNqQC/plizHOXKnobqkUD62YtBJrlZPzTjz0D2GCt+06KgL8/EpQnvtEdXvhhHNHJ48eRGZSvbyO3GX8/Ytom9CgkC0r89oGZXmhGIlPVLcDlw0vh97Hpby7FF8zV7RuHxeb/j2dxbwr7GrWUVdHoajcKHuq/AQOc2eCa7yuhLx2lX6ctccQHPQO4RHplkvmpYM0kPdedQeLk3E8HAYwJcsm9prvmzy5mjCh3+rOLghCS0zt54xqxCmB6Iq0cSVjiahl+AFm0r2i7lp0F06nhcHK8l0KISjfH//8Y2Ax9MOUeMgLdK2/Llk88yRPiv9JKGjzxf0cL8kxczDICJJ4ihWD9uPuyRHvoPvpT5Q0/w9evYart7eah8O9uq5L5jgLC/YsrjA/p3IbGmbREJ6fDhhfQ6kiN3svJM+81IRqZFqtKx4ggZLE7CffcroB2Rvwn5H++AVl6+aeYXYgT60KVXn5lmv4yklJdB6wi/vjDE6to7UP47XQDzWv2i+vScJ1vkg7ZY+evKjugMQJCl20q6NSFKdJjmyy4H6wEY0j5lto3Aeb3/8XJ/KQIql/Vk2sUPSUV8ulqYgxXwveOXb/aRHHxHm13uPVX8ns+l5CO9AhKChCjf+EBMc6QXSuJyoIQmly9x9E4B7NR8BJ461Pl5yGqK/fKB/018/p/oAgH9KRVN8HAvm1oYJo3mj2M5OtF6wPnaSOkwSdcOYd5cNDhuQS04jE9r5iEfz3UbXfP8k77z4RZMbWQ18hEzEbm1/3BlHkvmPfyljeXSXtd8MElzpSb3MU2p2Ndd3lb/jGltZrNb/9OCBXiKsGBhclvzMBrZ2eyP3SLfdNT5EZC36mSpHhNH0c9v7vvvczKDakiEao6QKJaYmNr1y3KcfL1HBA7scxqDKacWWCiUdyjenZeVvuJhFLjIQp/NbHKz8YkYfI0aNr9VkuPhvtCz9EsJ0mTKc29ioh+7nvQEpNAl2Ik0LpvtmACt+YvtyjlDzPDUvEBYWY3szN/1kD/cc/viKgSPHfXdyM4C7/cY4WPPRdH0HpRQ6QocP6SHU1/nr4AJuiI3LZ1z5wxUg5F8cAXCsfilOboPuR5mu+LgtSFi7GQLVFqmfDwd90Xb4DQZBU8Aa2LmL4/urfiwDfD4pm3pR400A+KsK1Obbvl75lQGrPiYCz5poDA/7HC63la/kVGFLna9nRpShXfV2FQ2e0Sxg+HNNIJTzaL7t8hy431TjY6MyfTnwMQelHZbY6Iev3tfJ1oQGJTiQt4GGdpeelvDIi5DsouTDFiU+KwgfxAg7cxujoT/eNFQ3SUQ2ahnrTPnGHDjJrlj1+J4tWx6JyHUlhf79fn7ulS9MMbejzul8K+aXwUvIB7HFx/EG0dT9jC+E7TElfO6WbPzQhqDtj2Pkx4k7xJS5VlDkhj62W650J/eihbAzx7VGI50Yq4NnB1qXAdZ/1ViPwsHO/vg0dTlr6js13gVQOlZEPpPzclm3Oyp/+Z3iFp/6pZ/mWK60kFI14JV+dzhTDQqL32NsFrie+3lroD89otOD2E/bsjrBbqsS7EVd2LNpf8vBjUuLHqj7jag11ByYyL7jKMj3xbzv5zfM+9T+p5/7df+jeVvLZL/ddO4okHcAlWF9g+U4M5cR6+6gSJgz6jTdNVr5lIf+/BjxYbbR+9teNVR5/RCw9X5YYnAhWvEQB+Uco7ZMNAVKoqpk9T8QrRPZhLb2BqpUblcwTwoy8ClxiLwN1ucCuV8A5uubBVtxz9zJafsF8rbyaXbedvW0kR4TvI+3Cq98OZq12+TJVfUpqHuJaD2xRy5BGbY5/ePrU9HQ8B9/sp/Yddfxf+WlVspAysyQTVmWB8B95z32S5vUTCrwG/3//E8Fk2P0834KVostzxb3bQnoTkSLlvXsRtP8te0/vwL/4edy3g4i3JPLJWio/3LptzMm6B6kol6jB2x2Q1dCkhBfCJwNPRotGWzob+kL43Qj6AtDT/ufvzWVjaj3eQMCwsa+pSZqX/pwjyIb3t5Zxfp8f6OfYnhv9Gm9K8WWbbHBIJ3w56/g2zAk+ri9yylw9sMPRDw0rDed4gsf/DoEq39VzFvVn5CgP7gALr6BdmXO2+LKh6mbH4/9bPd5g0TTRfRPD7Ll6KXwLMIs4JzZQIKJzwBfXpHw9xdyaKTnUEKUmAb2eS4rpifhQnSLDDmYxrLVly6BHFa/Dh9vR6UQXvreBu16otS7Jy+3dU1ZQKKaK3Tl8+5OfPICMp8/Qld9VS+FsX2je/gUqL17fIql03MJ7FYccaIctOLP3wDM/QB7M9Vq/oOkCr59yShekFFM7PtNAYp6++cXFvN0sxxQloNMHX0U+oag+AT06A5E3MxNvZRLqaHrwQZsdJsRTSH6KZBiX8Ludf9wybxTUpiHjUD9a8j3w+tsEtnY3XY4mMSxHqoLAvC0hVGVvGR37L4KD82+yrAbj1UxF8v8/cu31MzPXT9kdRNClakxVg8fqf/DezB/wUS4+DHXy1t2edB2v4I610ovVn5boopb6qDoTlrE0l49gfUwPXo0qj2bCXXKP36Hvc0Nu/Oqx+EqKxlVf51TLBucd5CKhkp9i4YFi79VCea9abFNTo9obtIrh2bKLoGoqtd6EZdjCDIKCXX5okTUdKIvHNLZp8qWeNHqr+TQf6Q2KDc36rKxtWPZtEWDRs/L4PYm22SSnkozPaKCFcut2Igwmg8asMmI1/xaGLBwmU7TpTN74jx+Gqii/cKecGc16/uFg+f+Y9CV3+mTVXUOJELLU++AffS3nmhjHjA+ar9X3/fXa4mi9rsnu0a03dks+gU9s3JHk40W10v3XPVvc/phn386NUNeReCepmpAkf/70z8G0uVOodpCkn54V/JXunvzKWAn04+WjK9K8IulDIT1fudUXHvHrfpbidMYsY2uCLD60VTbWk+0SNWBW5+OOhBU2wd9+/GzGCZVPVK98k135144BYWdreDL61Eg4fBEJZTCz8bHJO7QP36EAumGAxc5COl+4AF39xcyK8KxHx+IebLmIwvjx/kajXsH5+t5vNM/f3esLFrBFMMuWPG7mM2iXuQYJ3eqvOZ9P21rRP7iC6sU/HouqsyA6zc64kC/yu68O3zf0NUdpphuH2hCc2qDpEQLxfH1i4hU+RzceOys5vbIBtY1gC64v6342+vLNRUlyG8uItz6fz2xUhu9qseOrvtJn34hL8J6v9hxX4O7VJtTKAkd9gO28eaI5c82gyLynqvx2xe19Uwk8PbtB7ur/mTmTtKkVT9hD5xfTzdJF//p49UP7vTu9OEUKTiUE70OUVrQp2Pz0jH6qdh/5zMbW7GL0aqvqVZoMyKWKE+A8vBA1aM9sGnd3+gFvE1tCIR+zDw7B9HelEEoCyFjUsTbf34MNld+/F79PLTfjT31t4HGdr9LH8L9uKEUQzu7lPL8V7pwHCPb6PHq//wzoH1YB/ua0nrZy/IL9R+xDabPL6qb3DlXf/mdcC7qGL3ZeYO6tTWvNz4ylyL5waG5WjQa6K1VT9+7xsHUjSU2FWLXyxCpE7R598FmbB/1LakhR6J4WuhNPdb69G3PimzHtk0t7+Hps1DfbXhqQ0hPtfp2O+KVlVRGnUHdcqPX29Z1JeTEyvsfn2R10HbwddIvDcq1xfPhxELAS24Hc3rt6yU6tSKo24uKPXup9GX6nUtY8Yt6O7dn7Avf8A+vVn2qFTudTDko9rXFvha1+tQVXAV/+dBb60etEhxjWP03slP5sif9IBB035UBjWMa9VsrzmKpwbxBz39+S4yzNzxQ/Qj27Cszan2yF1LpuyBye/WLmdvHCtq+LjPhYXP7F09QoY2G/etmQKR7aiXk4cQFfHg0dH48T3e47C8z9tNS6ll49zVQXOwEc8s8fbYOuEOxV8vUmT3L3epWbEJCjQv21aOu86WzIWjFD6xdHpt6edtXDj4eeQdlAVu0OOrmLm1fyYzNq2XUu41uC398MthGD61fTMOVgF1RgP/41bS+M/HvelhR26GfjXa4SzFf5DQolrV3MY8kQCgPqSu9uYiMShXKoDrimt/tnue9fYZ2gpZR47y/1pOxF6U/Pw0H3NErplM2lSDn9pMexjlh06E8xkBMFGJt9S8WC6Zcfn3NPT4k2Z7R32sfo4tWblb/9cvoazgHe/WiJWTepIErfDObh9DvXKqV5MCWW6+8EaMtw17mVfWqXzrw6eBQrFDE1msSOVD4DMcLXxfTSYtj9BWEgrqdckH//NH6xiVUw35Z0E3yiuXH035RpzNa1i9xnoH/Tmusrb095uVJAbzhZlKlFLWaN5neoaRwWiJKh5ixh4dKJDRZiq2ePNlCyVuCS8V6ekiyK/rRce015Fc/HA+9ygYcb3kYwuxODf40sPnRXgkkQs+TP71P9awM//x07OP3Dw3zV3Eg/5IBu5fpFjE+Q8H/5e9U1d15ET0DqR3ouPz+DgV9xKYIq7+/+nNyvdZPc/A1PKw1as3tXKnn0Ml2RgLKKSyEfXwdkGVWJsXDwel33e6oAcdsl+IlGPTReF01lGpqifVN+9CHVX9K9jn9YXXqOdR1CWSguL6D0+s7LCZ5v/+CcUljHBwOs87G2xIiZSvaARdNVbQ807wD/kOu/+oPw5lKE7iuqNB0xR+KvGaAw8vZBnz5bl2aHh8GIPE944PoSeyPX0n53fmQYTujYhDOeQDm80P+8XuyBZzCeWsc6Cl/CMXsPaUJ+PvmuPqto0vL+XSSI4LPhGlbUsxzwgZ59SPIfNge3Bk/bAfgJ1r4dh7begkv2xg4ubax5tzdYio2bgYBXF5kMh7ftZ4RdrI1eXkwvy8vRg58DH/fY1NeajR2YxlCdhh0el75GotPXvqnd3DAiFUQZflOsvUWFowf3LkfdNXIgLqyj73TpdcnensTdNihnIDTX9wlrPUcrF8TYX2td1L1oVby6d28aJQsT3f584P4lyjiIG8i/c9/kGbh9SPfv3pPrpQT/PbmNtiVqRQRfopM+c+fVBXhWA9rfRYsjSIivLG6nr6yhD8/F7vlpq6H/aeVYPW3sVM1Sj+x2ONRnBqEWn676IPZi94fPw/E+3XW581if2HlT4GA2pc7i8fWk37j6GPLSbuI5bwjwf90pmD3388UTE/uQc3fcUBMja8aOiXent42+200VpdlAEsaLrSUjhUaziXLACIjone5fuqscJRSft8oJUIzDT3xyjKQBtee8GEn0nrh90iAHc31gAvCGvWaNXOyxKwimEQv7LcqGd7wzd8C2X+0Y780PaqAFLVElcm7uPODcxaIadIFO+x9I8qzQoPZHQMiWskGzZmc2+iyPxNseM/QHd8fvYLGYQph/L3XF7rfBUipsndQw92sWX6JG9SeizFgIT9G49MtF9CUN6FBmGTRhIXxhdTxsWC/6XO07KKuA8NJE2ryU91PdP9u4L4XFuwzY3GnQ3FVYEK0Iq+DNaPu3vsOqiStC+SqcdAuS6tGWhDK/sajD7wJ+b777SzyKipF3yXpS5Rrv46w86JEH56inqEq3VOq7b4Xl2Vp00F/4Wts3CWlWGKBH5DsCRM23k/F7bMaDejnIx3rvt9GTMxLScqGvA04pbfRvPulFTz9pMDBA1i0THsFZPPE3bEdJSlaoJJiQHi60FMyGvrul9kL8J7FU/3oj2zho0FEPPVVesiD1iXD8M2BbTSVUHIX0PhzsxOiWRBRjDdNsaQC+0Kj4jPWtVll48875FBQieBgrju96cRFlM9u8wlgjacl1nMC38vjgjUvfLpLfT5NklJ9hH/Xn8uZmvuLd52xem9+aBr3nwnY5/6mvvLx0JxMxxTpFh6wRmtL5+3mKcDQO3eMSfEqZrnBNqS2GFItJR7azRsUwF14qdjzXmXBduw0ITtQbWwJVVl3bKgmWSgNG2cHgthMrgUHDWf5+FB1iT4HacmjzuosbKEQs3kTJBqcxepF9vKuZgP3LCYkvaQjdU2FL9jh2QzAH9o3tiJPRe2eLR6s84XV05qTz3oMEG6zB1kS2OpPubFs2Gr1k1S/S1QvgvTj4ZGOKg2W5Mmmu9E3Ek4Ulx6Njdtv39nnC9fHIGCV3b71VD/MDLb24uPjrCn1+Ob4CgZyw1gXn5t60tQuROVDcujffJGN1BrwrqHEB+9H3OV+W8wNbmIY5d4QatKE2gv+9st7erv1FN1oBtZdH4K9NPA9M9GVwN2sPlj9NnW0KKoMkAyKTm9IqNBUdmjtPyRsyGaND6Y/Ow5uirnHTha9CuJi1UH+mfCEGZnaM7K8MvicVZl6mhkzoquMyM/TvSWb89fW2dOlKRJsDlFbqN86e2WejaZDxGN7AKOeNlbbQXgo9MCGzbQ+VzK95b94dp7SEy3xaZxAmbIQp2nc9tOhOCvyOj5sv50ENdW9qECNhpkGl71erOstSGMsAZESyUHTtO8rUI7cJwD7PwAAAP//pF3J1qowEn4gFiIiKZZMIpMJAiruQFEB+REwAfL0ffD2snf9AhwokvqGqqQef3y6XQQbPkkV0HXbhdXsr1MbYcd7YlT9vdBstP4M6iAVbLe7djGbD3aCTO/iY27lWbUZ3mmhjGmuU7FRx3ha2kN++4sZxQR8RIhoCtvtbGKq8Yx+8UMlnyM8pGUc02tYZiC4aMX8v07KR8O4pLDkD+IddpVPtWwrQbN57Oh0kO7VZDpJCdcgu9DnxHPzO1/DRv1aCGOF1cecivGggBGjB/3wIkSNKT4buJs4ZeT0gYplalWDZ32ODA+TxOdX78moS8oz8Sb/1I+rV9SqQFY75lWvHfqXv9M3XP/hy1gVxxCeZiMw7PRWLMb3vxQuV5viP01HnLJhcJAKUkD2WbarJqdcRTA7y+Tc1yfunz+N8ovXKssZn2+WgeEVN8t8ycO+WvLXCKuPsmHe19FNLl1bGVVeUBLNce/9lJzDBBY8YPksr/sZlruZB/1Px6eHuc6HgFQUtrP8ZSEE2GfeSe2Qc/TOVFoJe3M9zKEAezHaY+H03PdjsUlL6KxnSyzGzH5yWWLBt7j1zPZtLx8Pn7yB5hLtmObYH7Mdlx6C9JYi4rkO+Nyjcgby2Uzw1VntTY6yqIOvUFyZVddixR/C6YzCaJ8R/3ab+VR47Qjn9/gi5jOv/W6lvGx16C8jVfzXBn0XPIROgQSPC37OFrFnuEbSmbjhquwpt48SHFLXIvbepojXK2L9+x970Rrisd1lhtJlQkNhd6z9cW2jENq6Giky5sFn6VJff2T6TPSa/FUcNWMDZSObxI4SanKTShpMVMyZ/pb6nmH3dka9/t4Qdwi/8ScdIYAg9RW2f7c1mjphNBDFxZ5pg2tUw7IekNE5PnHznOaf3OsNNDnpnQS7o+XPHzlMYJiWeYrb+BJP0/VK4bIqB0LIyon5JxVHBJWlE0PfUp9LDQKkNaJIbO5WnE+NF8B5PRKib7dzxdQDb2CfPFRirJq5ouLTk6DD9oUc1Pvb5PJBEtDW1kYsMUHs+XUMn2iot088Sm8cz9i8YFhDLNDReHzimdyuAmhbQWfOZ1rHvE3XCvqzPAOL07mK+Tp7OKCUsksKp6/zIVjPHaDHuCNOsvdynlQbCy5BPmHloLB4wq4+Q3B82mxvZJeK2vr2BpMuHJgeZ23FS29rI/OiOXhT3DN/Uv8iA+SdaDDvqtjxfPxUMtgZezDjsN350jUs01/8sIBWa8R+/+uwNmNCYDf7s906KfLrziW6aulofFrlE+nfCGPx9qqrr8idAt3cvqCrvadVcxt5Jdq6lxfd/uW7eJxsJ4PX/eQy9y7uONdQEUAsI4HY6tuPx2ffNPBW6R+VuBD6FJIkg5KvJOJ6jW/O76KkarWxHuTwp5fmD5+BE+3NgvYtoMlnGYArkAhTeTrw2cDZDMq26pkv3p78M12vg/rDZ/fclP4PH4C3tck0B63zdhzCAtK1sGfYoveYm6edAXZWHvDHOsS8Vb4IQPvGFl6TebmLTD234OGDRiEoIf59P3z+2ivZCcc/c5qvaY0Sh2bEur2savO3CkSg7XKvgrDz+jFYKy08rtKT7c1gyTnfrISr7V5JkI95PF0uwRm0zn0z47h9Vrzzn7W6sjlQZclf84r6HmqV8bbwwY1Pn5ZqwaqpbXb7vc9nRSN4jf2H9sm15Hy61hFa8JjeludzcSULihRYGTvyu11xa7lvYVzHIcH+dogZLkMM6Vu4YmpEA5rxh3qQS+cvO6y2p3j4Gy4YdWJp0dmjJ0Sn586GoR4wc26ekk93wZfB1KYbMx+fsZ81nCu//MKMbor5lKqRB3ls4B+/6umPTxY3oSKHXO99flHfEqzsJmVeckb59HjbCrA035AdfC/VVE5dA39fZaIjfjzj6cuxjW7antF21xt8PpJZQY7utOSwu2jmEH6uCVr0BnEPIs+/D/+uIPd1nulmsEY0uOQroK2kBewuRWs+86Gdlfuw2uON9IRqVuI2BfVDVxh98Kua5fhTIlMt7IU/6GiKz9cCNC2TaO6twZyUTEpAJCSm6cKn+8xzazjmmw2dfvtzwR+Q5uee3b6XyJzO7hQt47mezLTSVz89hY2CNBfelKJDYXLttI9gu01UslfuVd/NdiaAYz2uWEG1E8/J3aegsPGDVyzE/Sxv5QK14jkgrhzW+aSILIHeW3qCh/KNRi1fsOZ9uC96RuFju4s0QHbQMlu5/PW8T1H747OMKMUBTdP1OKD3JrpgJJjPeNzjSUDJqfkQY7d1e27sJ0CG1lASOI/9wnfjWel9tyE7jCNz5vZVUt5Z6iznWlJzMhKlgNV4cnC6j2wkqS92Q3YIBQmkYIt4yDoHoWEjM9uU7YrX/tdGK/XQErf8RD6fG9dCSXn3WFKxoOdyo4ggbz2Cr3JoxeJXljtIGcvIwk/62W3FFLrku/RAvvR8PkiWDXuPIka81MrFRzfdgKXXDdFq4YL6AxtSWPQv2V/IOf+cXCWFuTwhvG6wZs4ouZew01YJfjr2xx8aWTPUXWK/mMYvXj+l1cdTBhwRYlxhrPg6u3jwFeVu0Qtrn8kHV0QeslRCpo/tz42c1XAlzMHzesVNfvfgBp/CRjj8jk0/fa6XBF7qeYMl92Hn01YLg3/8dDc95LytHjhFIeo2xKtqJR41vc/gQqqQmWPBKlr1+gjefh7ppshe/ndc7tV4Ph8H+lrOmfCDey/QSrsMdDSTU9X2j0XvRcmLaH8XXi34Y6N4lx6In5l5XBXpvgT9LIbMU/2gn+6jLEF1sacFD6x+vei/3374ncOtNiGsMUreEyI2E5J+9G96B/uDmBH9pLfxxJu+g6f2eDD3Lerx2qYfjK7XqKHyNIVo4tmO/sM3axfTfOLZgSLFJkuZ+PTgjIBmq9fh78LIuEP+cD9uJBjXx5D5d9z1oyam4XZysjv91OGRv9RMtOD8eIn0OQYb82s7WfTLxwTD5Ob0G0EIF/IK2SF4V+h7hFcJsRFRCn9jlI+n26ipRZyJWLReUr/gVw2XbUyZX649X7p2eQaWKe/I49AM1eSfLxZyJs+iy/rxpSXfQVpKCt6+N2s+N73YghCHPjE+q5vJxpV4htOu3pGzcKn8+XCLLVDt7MmC1fiM6eop23DEs0Xf31uF+tQzKDTfwSSZ/7qgaWy+Cpp0OLD4HiacjnZioe+x8YkbNU31XvKVkq/kG11f1seeCns1gV54cMzl16qnt/DpKUONnlj+TOv8u2naSM1WKGJaVxqceutrAKTcCxSdNRt9rwKJIHNDg3mrvxv6/T9Y4sN2G7OK+Z7OreoeLxaexCg2R9EWU3VAXsBwD148KMpRUYvzMya2j87VvKX7DgTNE/7p1+5wy2348X/7gr4Vs8u7iEL5lZJD2Moxl5tZgmZ//7DAk6ueL3iLlvz6D3/X9wsISL+Y5Y//+5NfrjWIy+hGR/th8RESXUSVh0uq9hLORyPPQ+gUIWEYRxVnQ5DUP75E1+qDxWzxb1Rplf7Rb9tnnJ9gK0LKSof5rl/1883yAoiZA8yO7R2anhdlQBGGmfiXv47P1vpEYWN8r/SZLPfynWGkaqM0NYZ3UppD0gUY4nYYiNPCx6fYfGCgbbAhTlMde46yrIMwfXXE2dEcjd/oRUEPU43lkn1H88m81tBO+Muc+1TkVM+pAKb6SfHG4sRf72lrAX5tQ/KRY5mz5f2VaRcJRNf1LGaL36OQ9WGpsgx7v252sQfO5FiYCxsjl7yWh/B5YZfpc085XSWRA0c8WizSt9iXxmg2QBidjIV5UlXj5isE8qJ/iJbYmknjuyWhKF/rZL/4d7TutU7x69al02R1fFpnQQ1X278y/ZJZ/rxNig5WKmn/u3+6XXVDjoc+zKdr3ZxOapLB3op64pu1yeem+NTo4Edr2uu+4y/+jwhFw954/I5NNbw6+QxhWnVMT0m49LBnClwbf092ZNar2RTbGiqt42Q3H0efMvsU/PYnXa9sno+ecZ2RzJqJBRHi1Xd3agrI48NMjDf89VPgGjKMJzv85aOfXoBtj1yDhZq8iwf0KgzkT2X3T+9+8TmR4CD8Gf/43QYdYFDkrUN+8Tfpo2AYNbp5Zf7CL4aNcvOgm7I3Fb3dq6fkdgQos6Xz7fE18kFUiuznv+HNzSri7h1ZM2r/esKc+CQhNjSHGt3MA2am33wqxoLsDKI8PrDkJXPVG9SR1YUv4vV+tv25f+RnlDXOkeGaNmjW2kAG43sDYu2HzqeLP4vAvp7/6Y3vrU4M+FD7s8xb13o2zH0JZ5KUhJTFin8X/wSi9BmSg6nf/VnLJhH6V6r/47NsfQhsqGOBYtGNXTRNAZ9RFFkaOxHtw0dmGy3o459GnP1pxVlVtwL88GBbfmZzVp8T/pePTf4xzdElbwG+RdH/2y/ToUQKSojT4XrxhyXxaYhqTrYaM+dNn0/tW/PQPRj37La+HPr5Km2Tf/z8sJF28XpZnygPasJ+fHVi10gCj2JKtFUm+aNhPDKUwh/6+RX9rLWWAnBrDaJbgdsrK2p6yqKHMdSlF1MTH1vVvosCHd3vwZwu4/qMdpbN8bw+5Pl0rzMZ3qF0XfR24K9D6Dqg611KQQnWcT83qzOcH0n442f5ID9LDRY/kJzpJewn4goycq1bxa4fY2cyyh9PdDWklmn9hfhtFCZn8JPNl3lh3CD6fWQBmnahQNxH7vLFj0jhbbk3Yi9+/vh56ApI5Oozbzi7cYO+Yai+vSyj20XP8zZVZbQXwz27Wiu/mjdPrVZJXiyzP/ueL35xivLtLSB3HOzROveWnr/3+8AsrSj9f/7bkr+wlF0Ks9PzBmDhA7/9krNCKAoYrOFJDr1EYx6etg74vX1ldjpm5reePsV2c/UvzLjurVgUn98M2cmRMPyqNj09dcWMmNAdmWYeXz47so+h7F+egpFkq4jvTxsF9dNfzHRXP8ZSYPQYuOEtg1PY0fy6aDYg2dWIBJm7ydmv3rHEh9kXdKjm7nErYHdvQ2JR1Uf8yF4GylfKDQuXvd+Pcxzf4NOpHjnkvETtu+/xP30P+YjyJf+OW8F8MKL72cGcIzOXfvmd/NYz5zxxQIR9uOSDm9+t7XSAU9TL9DNtAjQEn9sAmxR2LIG67Bf9JIN92IRkX9wzUxwfyhNI33/ZTr9S9E/PLe/H/CPmvXi+vz34/T+/Mw9crPo6Uf0+VrF8py6iR0kAWPQa88arykd1382gPbOa2RWq+zkLXxHKHqgmBJQinjFRPbSZ6Xrp2RAQw9UugbKaa6IrfZd3eZeFUFVqxG7L9094mW3gCEbN3OTQxPzA6hTcfWMQ4wumz7/pNoOnPdxZsOF3NF+l6QyE8oDYIoeKxePJgJ8+sTKlRmMtb7Jt8dlYP7+v6hf9C0xoj+S0+Ntj2O0bkMrvcmarMHz+nHTv549R+XH6Ii6IboacTZ2Q3Z98N1v6XWp6+N3Q14J/PFUHCut3d2N601/QPz23u2CNBHx0Y4kP7QjL+qLzwu9+8VHVJsXktsxMEY/hqfjHF9Oikvy53eJayT+3goXL+05qBjbMabNlTrLv4pkYrQAvhaTMs2KC1sR1Onib4DEzMk79YOhlpFhecmLuuTH8zfEkaxD49p4tforPnp4SgO65MdmPkuVPzmnAyNvMAVYoe5vfbOQWJCl16IYRK+a+8yqg+Lrrxe+99Rvs3hJ4Hpwv895+0Y/jtnr++B85THfsz6N9s1Gjbk/MaaqpmuKqLlUyyRlJbCWKl3gNoHX++/c9OV/4O8L540hnK3r3vPErAG44u3/+Fofs+FR7/W9DzHc4xhNdlbL6Ty8s9ZW5j5wQ2S9/xKuyePBJ1PIG3UDtKXRIr6SITCNM72ig8Cwpn3/75S+rl1mjztcfXtYrg8+l69n+2h74/Nq0EmDaFFi9tSTmc7NKUPLmiCx+evw9uXMG65slkFAUuphLB0NQijE2mYWVAxrZA7XbMO9dgltaxpQYT4BgI1jMvpeHeH2tixBN73AgVz810Eb4629IbkyDygs+jzR61vDpVh4+L37x+u1fM3REnc4sqI2+uW3qAFoxCX5+ZU9fvSHD0bAl8uMzU8COonpZL3cr3J+m2aWbvwbcTOZYjJRPvNRnhl89hqLHnx3PC4SAwnc5nsLg2XOLggymcv5jZPo0ZuesswRCuUqxsvoDPqd36R8/witxd66oRfCoLPoJi3Wd9PM49AZIN9thwbOkaLhuYkX9+eunjWnm88EoLfXnDy/72Zx94jogbLc5bd5li2hiZgMseg5/zPQvXuqdLZI+PiI791bw5fkaCtNzSrzdbl915HYFyK6PhIL8nuJZE0sJ8MnU8dqcvX6+hNVTwf1tRU4ePldjJXsRnIODSdFSj5ukw7sE+ykE5MfHKNtuAtXRvXZp4EjRFF3IgPpjGpPU2fomv6hf8VefYaayI/7kIO6BsKUuMa77Op6i6tv98zsei76fyqms1ZQ9HeJXfy8+/vwov8hvS/68L2fggggdEjEm5LnJOe12/U1x9JPCfE9jfGKrz/irFzLv5MS++OrkBII/OOPm8HihCQ4vDf3w0EYBR9PDPylo912XbPHHTa6IwYh8/YWXekRVzW3RFr98hKea7PtNUF7Pyq/+5e5zxKnRmvP/d0+B/L97Co4dCpkfNHq++TwMW7kOLWHxINCKydK1RQ3rV8yTc6sXjx+lhXKjSsz0V0a8jtxnAPVK8OnKQ2LMwRNKRfK9F7FXhz3nt9lS1Ge0HnHwMsSemwJSAAvRMu+sOPnS/RKMKJ/vIZWa47EfraWJe1v8URa8hVs1jatngvoXjSjb3uJ+fC/zI3eCrDJfET20HvduqsBno2M6ZlU/1VkQwDnabSifFKmaSWA26BltRro5B8CHZlwVaNLkE/HvWdjzZhVEsA7OAmXxyozXt0KrYa/fdVIg8+uP1/zTwYtZDnOs782kX+4OyjXwOQl0JPf8uHoWSKy6llmCs+vndnUr4RhnIXFi/+KvBx9hELbnC/NvhVNNPaYScs3qRYJ6Y5timWxbOFp7DyMw2/5zeVMNVvCXsOBZhz0/+OiMbvZhJPs8V2LKj3oCu6/xpdsXy/LhF49t5iXEYmuZjyMVJWVVYYuYUh/64yc9h2B4q4QQ/yrHnH6iUI3j5kms10Xl9PCJHBhPTsoe6vFt8mdxtaHVXy57fDc6/+bHOUCk02yWZDu9n7Z7JYOmx2/m9sqD0zx6pOjdlTNzjMsfmiW5tdDyfPxnz9eeFTvxDNtZ7IluJGt/rDe9BkKdvoidHpVqUMQYA19de2K2h5M5K8yRkUrgQLmabPkUuW2ALjy0SfLQP/381rMZcX16sN3wsRBdo5jCd9QiEjh2EY/qfDeWPvM3SXjQ5F83NkWQQ7VkGq7lfBzkxIDQGO4Ep9k65+4pesJnaxpYtHc85r17e8LePB3x9Hy4pjSWbglteyFY3N00xErdeIKcJxPxr++VyS5/QCFZvTgWeWDn3VcpKeQCZcwLw20/qYkUIGpLKX1/RhRT/7HK0H61P+Ap/NM5zcX8rBz8Q7fMn3MRT4dumZfz3FMlTZ/VMA1uAF++jGks3lk8V8XnjOr8S5jWc8vfsHXbwZc6OskpXvHZP5UjhFC75A5ByTlHZgG+3WgE3+RrPK6nwYBDEYdsL5TnnEfv3RMcLaoJEQ5ff1Tz2VhRCxyChz025y93KbK3oDE7b//QF3QswvlP/5Jg+7TRZiqbARkP5FEeea3P1liRUZUlJcNoePSjtb4VMJ/OLbOf11fPO2uZ38r6FZ5buakG2/UV5VF2V+a+7T9Exb86gTRb+gD11x9il+ORqoXxebJDoWM+9w06I+Xlz3SVcVTNj43xhCt9PsjZv/fmoJj3EOWLBsU5HM3hYlqyuv0q/wEAAP//pF3JlrKwEn4gFiJTwhIBmU0QcNoBKoIiMiSQPP099H+Xd3eXffq0NkmlvqFIlUhD+BoH4ut7CAGftthXj++Bf7SHAoemrbHpbc2G18wo9YVtIPUPzq1ZvrvBBDi8aYTpVlPMZ+FZrlNITLxn5zYl7u/RwkTTfMICTAayU19nzR+xTJYPcRq2MVigpkp1pjEr132MUgiFkATYWo5vi/3Q+Q1bYbMn0tY0U1nrDg48xTSghvkyG9k/qBUMX8EXo9qVAD/7CoHsGylkyzYK+GxWDqF4aUgDRmrAnBONtGT/lFExhrt0+ctnl1BvSC0EN84TVNcaKqIGo3568WW67lq98L4NUvTxnDI6PgJY7zVM3Ym44fx2PjZ4hlJCd+RphKyBUwZjpopE2Kl2Kl5AI4HmWibkpV2+xVwIqaHfdZNSr1jqkB11SYCWY16w78oA8FYeEnB+1iO1RbWzlmd7Mf++j0iaxlLatN8azlWh4kPa8IZ/Xkaiu+5+ob56tAfy6EUPdlZxW/czamZ/rjvI++cWKfdfkkq3LoLw5SVrTTXrmmmAy9qXBFU4eOzNkBkfVYCyoz1omBiHYvn6tgnhFy5rfs1TFsez8JePKc7AMHT34FWCMJ0WIrR5lErOiSLwi7MRuw3BgJnekEMjFHKk2LY/8MwVIFhgd6T3LDsUsw23D7gLS5lGxmYeyGWftrAYBh8Jx2UYePjzNdjp6R4pcCYpe1mxAM2HoVGvzgdOT6RLVHlmIfb0UUrZeRk9sN3pFIEhX+cHFmztJXhkiL0/S8hUQ3gD63n7ki+JwpCrZuXor8+N4zB5LAW5RmIL1XyL8M75Bs0ifzwIjdNpoHs5Iely8y4PTcBlj81OaYd5fC2G/n7eKVF0lKT93/pUW1Rip5L3zW+0k0iXxWogm89R4oulqm9ABoao4QdRyqxMZcD0rgG25zYZBpLHsV4Wfkv9bZmGy9FmEjSoYdDHMf02PQyOGTgE9Uwyp7mkf/kVYCsy8HHr/cCs3EwRBmf3TQ1h9xyWzolzGM9Zj/fTZ+TLilew8ssndc4yKWZhd7Hh7ST61BaLtzU/LV0B2kk74kO3c6xJHn8CVHMZ4YO66ClJzDGHdVhtUMokoZncOc/B42NGZJtOqJity7WEy5cUSObq2JD5V1cwalMRSZ58Sfk7WzRYh/WGog/sivEv30qVc/3DD759YtHQr7OS4sSoJ2tutHMPncs3I9ur8Q4HMoMY7vDhgg/xs+D8Bt4OfCjr7OnXeyhmfhe7v/ihoQ0fKbeTIQMrv8D+A5jhfNDbBwSnnBCZPauGtY7nga9pjEgCV6mYJyTbYOUP2LyFE5+nbZWD3ReQv/UDS+S/O7jiEd4jI+JrvL7hIfZfSC4KrRgP5P2AcX64U+uIKosBUznDk1pUNDqeCsDOy9uDR3sfUGQZGqC3BHtQHc03NvfG0ZqPoptAS7w8CHue05QUQDxDRHQLo9B78cWVQQ6nwi5wYFxZOn/CvISv45BS00/bgZ/0PoaS+uyQZkhSMfk/IkFFtDwa4OxYTJ1zvephShccXn+Xv/UoYXxiFplrurX4iieguCg/Wphtb02fy7UFEkEuUlsTgzk7HkvojrsvWvlgQZvLVAGlSjqyBZ8GcHCfSwCvv4EIzqUraJF5ClzPIzY/1smSVj4E95MxoZ6px6KbyTqvdw5yulvxna34r6VKfUZTE0cF9+LJA4p3DCny7N6i0igoMDs8IpKJhW3x+3eO4SUGOXqpalNMy0iuAGw2GQ1RCDiJOGFwdmlNxOfu13CiZDHMrccZW7KfWdzTTAcq+3FHY/ceNGzOqxqGXhnj6MeRtfhpKME0YjdE404KWXt4Bbp8gzbN1nildFv1cM0fSMS+Wczv2TTB0ZV78l3jgXYJH2Gb7zCSiqABizy+BB3iJKeRMzJrua41t40iivTgCi/OOplXUIp5gh3mK2CK/LGH9tAZtBjPFLDv8PHA5e6p+HzsZs70h0F06SV0NFquG/DOitaG0w2F1Cmd0ZpPV1ZCzbsX2LJuctohTRPhuv/ktR/qprUOVwZUutiIPw46n/S9iADQ84Ca3rZuWHX4vOEjlSQcqWbNycYrPChtTUTmjAoWn+2eaFy1d4gtP8Ni5mXKtdgQD9gW2l+z7A8vE2ZHNJEFX+2QlcZvhnOaeGQ561s+m9AwwWEgDj1cvyZg5tPJtT79/FBJKzr87Oe5B8/0lKKKfct0zvumB8Hn2mPvZ22bEWZrL3+X1ugG/Gz4UX4U9EOIe1TtTzlgn7hkIDWLgFTmph2mhxpD/Y+vHQePDaQPawF8+ophHAfMmpWqEcHuqxKKu+5dsK/29WA7RB+ydbduuOJVCQBZBBqel5azUvWIdg24gy1Q/gb+hdceePYkYBS2ez7+tCSCOVUjfDgMVjP//DKBl1jN0eClIWc5/UB4uQcqGm93E0i34w/CjTl12Lw/rOJffMMsOtLyfavD7qIo6E/foVbJHgNtWlrBrRQN9JqGcjgqx5eoc3UGf3jbbK3wmwCvEzR8qLN3sfRzPevGVnSxcejmtGHf0tYsV/lS+9F8BjbE1zO0FFdATN8MxWxPoIQHRV7vreZW0xNHDUD0mDlSRW40jFwJg5Q5jGxUTR6I/DgEkN7ygu6JFQNySrsAeh+UY+vizBbL1v64n82jQ5sa1ANTF1jDle+guXbMgX016kF1hgW5Thu9WfN/p09O8CEy3tNwqdgn1+bxd8V2Fbvpqi9LvXBoikNmLQUt1Y8GN5Lwxp6VYj7njdlD0D0yGgC9ShfEZeNPnyNZqKViyM9ipUkf6tG98VD5QgdF0PSWZdgVtyIgzdScIVQ9l9qzR5pF+opvqJuvK94LtzKc64Z3GkyyHd77dQfmYHs1wZ++cjxZLugfni8m+1D8e0fpdtN9WrjqP7Ihpw9gT1Xy4FQKA2ly8GqWS3HM9cv7p9H9qofmrUFs8DSOEw1OTzkcr2eYwDzfnOkeQREsnzZpQRicK7zqlfRPP8NTZcR0vyh1MSKz0OBTV1V68K8k5CPaKfABXxGST3unWCLuvyFRwAbN6K2krH6VAiyxtseBpaGQnIqdB0PkGkT3tMCSStzM8CUSFUfbw7LO4+xLWJP3h3rTRh+W3Jwj/ddcE5r99A7My7hD0FMSA+/tBRdr/tbA3fIt1G6FvpjHPDZg3/4wtukl4zRfZxOSqX/gcPNZPaniJIJEv6fYWrTzsATxNYJPH5pI670LoH/4sEEbl5zkOSmYKLVnGASiha8/6zTwE+liqB+lB7Xak83n9qWX2uh0Htk8nSWcad0+YEzDFGly5PApFXAEC/aMSbH6EfP3uZNgMX8MbH/6tODTuNf0km91GkW3lLMEhBlUbo8XUc1OKEbs7mJt+YghDeQ+API0HjT493MpaIxzk30qvYslvHryQzi8s0XRd4/6TqRRK9L38af18IfKAnvrdGWW3+cM5vusxfv3686Xfu4ZpLDc0YOn9RZn0tmBp9C+YdPJ7//VC99WqCn6PN4F/SIng1FhpkTVhrkZ2WZ+Q6FNln94w/m7K+GfX2CFm7rgS03In59CjeZwC5fPY2mBek1sIu+lY8OuEVwrbf26nrzjVHhMCpz324Tu9zhNlz/9u33mb2ogJysW8/GK4Cb2HtQNfDdc+p/PtCHQQsTYOr/27UwOWPk72o5rX8g/PFvxE2V9MYLuaekaxFdpJiw1Omt4WgbRV3zA9lHXhnHPKgkWU3NDotNciiXS6vYPr/75cfLAllL/nTYltWRfDOeEVKa+5mN6ULangv/axoZ400n4G+0uxbDylz/+hL0szzj/aGcFGlr6+sfPFlHaBfrKF/G//a3Oig2r2pOIrreED+1sJtC9pi51lcgstn7YS3A6/D70pAZCs3zjjwGF9BD+w5tur/kS/MOL6Bm8i/741CD87XYtof5mTFmw41ddKzGgAbquvat/uQnrcjz981Oke+swePHzG3U0LUnZEMdnKNNWxGFRV+mMNLbOdjG3NCDFodhuHjGEz8NY42D/xXwGxq8H+uWJqKHv5YYMl+UM0yOJsaF8eTP1P38GzfWRIEje7rB49k7UtZfPiL7fKwN9fZgDUy1v/+nNxVrnHWdt0OAD8te+QMbOhB3uFLrbD2YjPmZU/vFr6hdvsSGqIbSAwYDQP73Fq9kh0N7ujtRrp10qXz++A0sHzwgKJQFsHKrxz09A1UaowGTCCcFi5zREmukImFXmMzB91yYbJ8gBJS81AefgLZH5JoBm4orI/vl5R0P7he97EpQQnp0XijXapFwqdon+PfGI8IPMGhI63azXz+MTO2u+Ys/OqGEVJy0BpudYdLkmNqSTB9CSZ00xO/Fb0fSue6/rc23+/E+4GW4Ctn/PN5gPOnnABHsReedEXFn3robqxgnwqr9CPqfjCFY/h4AXNq0Z+aIGB7CvqdO/3XA+LkUPmk18pQn7dCHpOrXS1MeH4Eg4VgWr57Pwbz3W/WrYYuzfwCLjRFNpiK1h1bsQTp8XdndNac0m9Axtwab9p3cHKf8cM737zHtaPsaqYH1YQ7DmW3q9Yqf4x9/+/Jwh3LqNjJ41ASc/8mm5kTSw8oFZlpNwg6RjF4Ot26m5+nacJ8af4xnwo+vXcIgriINb5g1qNt7e0LEkEUl/fHfvGIbuACnGbqRvUp7ms6av/tLqhznDHN/HGB5emYwPv4KFS+ySB0Rc0bBJR2EgsuEH0B8PMvbuP5Yu28aN4BfFIX6UilossfLOtUCONZqp29lalIAYMEOhQ3d51qSd0K3vfFPHoyhsP2C4e18IP/sWYufYxZzeEtfT6vrkYDsid4u6UB81Nm47GgT7lM+SdLzq+f7cEpmu05z84ZqBiQQ76j7jkC/LObz+7Q9asNRZw8uSgn9+63k3+4MYbGMDPowlRnU2/cB0Okrdf+Mnk+yQLMq7gvdDldA1Xoulf3UMfjXTI2AUU86dbTlC/01kis5T2vBzdjj/5S8ahYFkLRlnLTh9fgbSuZcOC6THAK71DXJxmDp0a3zBZvF+pG7CN2Bxj1sAON1SK7o7jaSkSg3XePtXD2GyWwfaGV3Of/xwmG/Fq9OpcD6u/M4cmHweA7j6GTjwy1exnA3fgLuyO2APJn267A8/Aw47LBG5396Hrl5ns37A6KF4OBnhwpeUwYMzx/jxgV66XD7EhMgLdOwG39CaT/RUgl609/RRwCXsmpdnwIOtGETvdm24nHFowOS7ztr89RzQTXaL4UX9zkg77VJLUtK50i98Y1D/J7+KVU+NgArZkeZvVSu26XdE8BE7Z0KPb8Fir5K+/+IXzfYt4Wt8Knr7y040X/X4nx/6x1+pufyMkIKRldBNugs+btuJzxXzIrDdbSiSynccLms+1t9i0aIteWWArOcVbsWsoKtfDWZnVyt/+E2tCPQNS49tDjrrdsP74PdMZ826J2DnkgtSbucSLH9+zJ9+PKBvOLCVj4OvZnjYzZ+s4OwJHNA6mx/qps29+ccf6H27RUwIVMDLftAgG+WO+keZW8R7+gI8IUlFxMbKQONBdaA+hx/ytYRXOqVViMAjts84XP3U7QBVD3QftifC+GEh/QAlQNq/XX42nAf4QHL+ZOmi4vQK+VcZsOfDW7P8+ROR/Aww2qnvYgLFi0G8NC4O13oPX/klyFJHp9aaj/kfPyxv6ZmahaVz8uefTj7Yr36SV4hVImtQg+PlD585JzNIgFyIGVGUuwLmxBVGkLXyndDfeyyW1S/4q0cQKByNYr7iIgFLfvwgTa1BON2n4P23nuS9+g0SMOezVgo4onaYxUDqZFBBSzw9iEqPU/p0LtcRHMelwkYiT/y7yY4J7BLypA6eq2HlY2f94LB4ra/Nw0T5EUIf1Dq1/LceLpxUAbzwxEGLdnGLmZ/TDqL1nUSc3b/DaCaDDaVGVLDHEbDGnZONEO68gcb2jfH1fBjA/DSArniQrnyzhjBDR8RW/35L9m4HtczYIZW/TS5y99b/+T34+GwMsD27vQl2y9umxzLizXz6ig+9KSNGto+zElJ38GyYJMqETWRXFk0+61tpt27BzxrUzSJYXgvaa7Ahqkq94c9fAVl9tfDjbL/Cfl6sGnz2b0jNRz6ky/Z4fIMk0SZsL/Z5WBrrhYD5MDW0WXugr/WbDjx1oJLT5HpALA93B6x+PmFdbjasTy0Bqh4U8K7Sp/DjvK45XOMPu7/YCv/8KD39HWKcaakYknHoCGRGztD2Pn0aZu82Imx1e0vtnGRh91f/3BxsGbsP9gXTocIdgFD7UlS7Z/B6thcDjlGs4L/zuHwucQv89uuSrXVpLP68NSMwGVywF22bcKyYh6A+YELx6h9Rs4s13b5bIt2t+X86OOtstVk+Y2MRfL7yZ+nPb8Om5VVgadZZ37+TXhLh8gMD2ahHB8aw9bFvdkI6eu8y/vPfVj0fF0txSyM9HfUZbRq5b7gbbmZtLyBr1RP7Ym66lwmfmn/Df/7yXKk/BH9K5tGr2+4L8fvciXD1Y3B4rH/p5G6yq77qe4xXPsWhWDwAfwchPgzNi8+3j5BoSV5MJL04cbhQf2v+4SmObLEOF+PGJW3VT9T7ijLgs77r9PX7sN8LF861wHegdlKOq769WLMUiQ/45x+dU7Pk00/brPVU8KR2cO34rFSDCPuj8aT46RzD7U0IZu2vPrMh3AfEa9craKGUYPxzvJQx/ajARgQ+Xeur1sLxUwLY/eV4d34ufBbTzvzTy2iG5T6Uz/48/tU38Z/fT9Sa1f/fOwXq/36noNTPGlE2+RzOj6WvtGR89tQc67yhTliUwPFlRKOtSAFr9tTTToPn0FP+uKWz9QgrdW9WMUUQrPeoP/sWVOR8IVvys1MJ0V2gT6Zco+UhasV8ehiSLhvfBu9QGwNROBkaOKQjRO1r1Pgv++gepNlVpOcziQeWX1MNCGYQIKa0FRjd10eDefqoaVQXysDxYxuAS2G+Uc/OcsieVLKhmTsJ9o/RK51Px0EDu2dnU/wxSDgGZ7OCdKEKWqqrGTJ9KBlMft6LWtUwWZxktQfLc4lxLFzdYhGbgwn8j0SovSu6lLAjlsBD1TAO2PkScqnqBGBrhUV9qLV8PjzPLfRUuN5b8IeCb8Cnhq44UWojFqXLdCwr+M7nADvh7KTbixjGMCgSARunTcIX198YUNuQIw3V97WZZEUy4WfoZgTOx8rixjdL4Hkxe9IoNQVUX3unGsGNYEc7HdNZqkELtzT54UCRtmAUX8EVPq64QMI7CVMmv9am+iMh2J3GOGSm+Lxqefd4Uk9Oh3SmPWy17/yK6D1Mrs0Yva8d/NvfZ5DswRz2wRmqm7tCdwnuw9kgFYSNjDpqkrsH+P64D6BdbB/Y2e5ZSJ/9SQKxGlvYdOysmA/PxxvehUOFtuIFF0t94p4mfSUfu6ftoeB6FYhw8URI/U1qNNLOaW3lWzQIu6/PUCxZZPVw2UKHXjLkpqy6f0uAHr6PPBo5zTiHtxwK2NSQZKuvcAYZzkB+UzTqp0cGlkleIehnbLDzOYkhi4NB07TfnSPtEjQpl8Vq1oPbNV7Xc0nnAMbC3/rSQO9+A7PNzxvulOJBhvbpDz8ddz1c45mo4/VkdcW2MaFgegEtdSAOM2luRBUunouUgtN0VoRzDN3f8YajQwHS/qH9RDif0pxIO5KmM3seI1hf5jt2m2gp2L3tDZhhy6aRMpyK8buPYk2cwhrNEl3fu9y6LTQ+fYDX89DMBS7fmi+EIraMad9QWewYNCeZIOYOeUqv1+kMFzN/U7eQjXTYcTWCr/p8oJbwNoFozkmwedXZgR4SsPBlZzcP+Gl0majCRknJMDxLSEXZRdvQbAZ+/QQxTNOgRJtmRs18/ZaKFurild6/by8dc1clMHVXT31ThOG23QwQGHKtkLFw3IE4TZDBKptnGnLpMMwSjSso52GABH3OLAasUwALWenJfHDylNv6PgZf0t+J0M1nznmSiNAMqwlfta5MWeT6NdgmH45D2/NS8qjmTHdK4U7DrTOFvAq0DmRLEGEzXV/LsM6CCD8222NnF7t8Jo9nB2BkHdbzpwxkm+xyjZtHE0kMjQMV26TT9VYleGfujGZsaiGB7iUfyFxgZrEzlh/Qz/Mr0t6BAeh9u2vhkMmMuqJQN4tT7jtQF26L4KdtU25t6yukwpXQXSrNFle8qteXy/VF7/7hazH9IYswcvwnyTTTKcThm0RQ+hEZ++JTBdPOHh7wfjlv6eF5twZu7PYieHaai8PLWwf9h1UiWJ8PbZWtxseB6A5Qss8Vm4k+rpabU+ufGBX00PhFuiS6/oBf0t1pDF4vQE6GStSdcntQ08e1NbfBFsJHtOzRR5p/Fh2qfa3Fly9GA7dvgDfaydPRhSzUVlwlnKyPgWDqPD9IdV8ZXw7ul4DHkVs0au0jn8+hhoAFbiE9TAlP6ZisNetEMXGxpygV9VxrofMSCurZpGqWUxWWcD2fNBH1b8OucxZBcNidKPIyi8sPOJZQMNQftcwsHGZ959uw9JcrNryOAO61UvD3/9A9fIghn8/FGZ4w6BGAxSPkt/DKoL02Vi4/ySNkB1ETQffZlBQd3pYle4OC/vIPxoP5ChfdCgkM3mKLg3ew3mCnRQRFK+zoXv2SZg4oNOHl+NDpfiaSNZi/wwN8EQqI1D7IQNqv7kD7cFSROKgoXZ/vAQ9BmFG3zu8Nsc2pBfY3FbGV1FuL+y/7AZ/78wfNXPEa8hSVAKhx4iLxY/7CpSvQCNS7JxPNWsZwjqtrAGkNb0Sk9XeY9q/NGbbj64y96XhN+WfnlZC2aU1+r7zny8aGCjiixMCYEAWwDkAFbvynR4Q98MGUzyuhXJ8/X/Ml3YCpAvQOC4xz0wJERZ4GwI1EpBoxbaaivzmw7A8DxrK/B5xshVobqb2nJ9W3wuXpfkxoiQKnO12nDVfL6gFiOhbYOWwVa4ISGcFrjy3sHZeyYKev4ellqXypWUj7gm3fVxPSb22Rd+in1mA81Su4xuUW0RSVYJH3qQEsCreofhcnvni1ooDKP+c4er5T60dWT/SVYwPv5jYcxmJ9n/zvvGj5Myu44BzPoMsbZ11fP2Sye+/g+bP2ul5CCyzCrBtQruMLRtWPWf2lU8/QcYWK3NG9TSd5eD2g6CTyv+dhMzEjHRysE/aT59Pi2js8AzJvE6JnP8jfnN8MuOIZtuJ70yxqpRNYZCcPO4FfFfzvfIhFLNLbrrRSftSeEnhRpOPIAWUzWw+rhrnDB8Sn+J7O08+6QtSLBk2yQ1RstSnvoI6CDPvOaA69VhsE+ik0sH9L23Ba8QyMV/mL0beS0+mRxExzhfSMlEbLLLpIswP7uLeI+lGklFM0r30L+JUiY+ibzt48FfCPv6znlysWeUMcxim+/+WXNR/o5a5MqP+HJ9tB08A2nFyymedo5TdlAhs56ug+9b10rjsKQXIfwzX/mCH//jwbnn7gg1TopdY//jan+Ug2x68E3s3up+i3cZmxk198wONbWEIp+kwU02psxjdQAm2fy2caAj1JtxqiNngh1iM21tpAqrP9hmf5buIo0jFngwyvMPpKKXboxbV4czOY6k0pQmJ0Sxr+lNgM62LfIlkYD6mk0nsMT9sToLv6zptlwEMGy90jodGaT5bH4UxgOTwiommLHc4XtalAkV08inh8SpeNXMX6kZMjDgfa8b98rqJeMkj9rHXrt55vWFoXg+5/t4+1aFPS684LFkh4yg+LMyGB8HCPG6LuyiZlOTvk4C+fGPgphoP2tjKgnp4COnG1aZjxOXaaqEo3bJTPZZjrqTb1wb+V1Jm/bTMWhVoDO62u1Mw2RjhceiDApm8Wsj7/MF8PzRV+neZI5rcXgEl+2rV+nYFHfeE1rnrg0MJs9BC1laJKF7KoMdxUFxHNqf4c+PksBrCWMpOe41Ef5vaSa5Bfkg12FBKmY9nLCbT2640XAW0a2minQKscHJKXo18avuZ7rTMjA5+M+mP9+3+m6OZjRxqVsL+YvfYXT0SXjUe44m0OE/Et0xU/+ZofPWgR2yVtbVgWDXevWG8j16Looy7p7Iy3Hj4vOEXC4M8NuZ7rUcvu7Q/veicCtDsvJVSi5IgNuLxS7vHCBuE939OQXk1ri3aCAWN/11P8qHBB9MdGBI+3khB+fXspvyPugac8tAhsnYPF7q70gCu/oDtHlwd6C2MGX938IfNt7QuiIkPT4S+4kOrWRSEtX/4ME48g8ngVezDXW1vR2SZkdM0vIa+jQYTt8sqou3nsLNFmYQaKWpnoAd2dYk7ubvzHX9E29buCzdmVaKLyUQhMDtTiz/4kateu3eE/vBw/VuHA/HSKkaAmXjPO1wkCizt7xO7Oe9UvsvkPT/mulvnfeQZqHLuErXxre/VCD/7w5oxdMSJg/h5fEfzTZ0lKq2ZB1auFV/lUYXv5qmlf1b8K1MLPo6eHyxqiAS2Chta5iJwGl8sHKy9hllkmDjeeEW7To57BzGtHHAmTl85/5/28D3b0kOmfkOvpR4Pa78mxXfrxMDe7lwJbjBKieotY9Ozsa1Dbj5cVH5V0gqf8DE+6KRLnYHwAG+xjrv/xAaeISotf7KlSL6OaYN/oabPqowziODkSxm9PMJMzZLD7OQNGiWgWfHBKA15zo0SSU30tXrpxrEvttyPAeZmhpGi+qe3z7RnbxfDmS+6LGajAr8BBQ9OGTerUQu8oqjioDpuUs/frodc+UqiX7O1mm23aDmYfdcZWJPbFyMlZgL9XH673jHWLBfv4DJ777IPxwR9SGhY5g+1dX1Z+JvK/z9Oq4uDRKM9SwPleV/7iGS3+eRlo6caJLqcjW18iakIit34EiF55NDpJXiqJy7uFqWEd/vgm+MfPcu10wIEZtNYfvusLnb7U6V2Xb89jdYU90hENncMNMLn1EVjxgsjlaQz/8Az49fTEhyxcUkZzM9fHAUr/vm/G7jlWp8dRxit/LVipzD1479kBIzOJB+ZALq6zVW7o6Iu6NRt1ZEJ0TG7YLoG99tV5/tsvui/NnSWunwe/ax+1yAFwIDdZtuHu2dv08BgomGNt1+mbHyjoiuchJ1uphnr1PONAW2yL44cewJ1j33GYnRewlMJVA2v+w7j7ueny97wK/uTYodaDc/QmIthTOUXKB7qFeJezCIpvqcS2ZrYpyb4yA9rDulO/T610/k2WBvtPZ+CkzJaQz7MtQSG/xzQg050v8vB7aJ9mI5OR6X3B9tis4UdDJ7JY2aOYlWVHwFP+tdh1x1Mxa4wpsDZZhd1iPw4Ml6zWh4u+9iVkr4Gbr/4NBE1tsGG8gnBmxtRDpfF0ap/deyG5chDA6ji8KNr7ksUiE5dQzv0AR0wP0sl4o+7Pr0Bq2wfhkOfnGk64vq75p02/f/xn1WfYnvwDZ9SINV0xx57a2zhplkt+mzX1vWvwjp4ji0kbbVTTcrTo02LfkMebmwK9Jwyw3/B3w4LcZeCpazY1gamGkxmhDLwWdyTy2GyHBYu/K2QKzQlr9D6cA/mhAP7zpz89XtD+I0fwLTQtxX08pVMhTx186axGRzbcLfaTwgjMXNogZfbuYOUjDjTr4ka6y6nhv7euzcDFx8caH1eL6bI6anI3Uuy7LxH8mnj30BNg4T++wievVjRoF/ID1WqRWnNS+2eoIy/D9xWvllHPehBh6qD6ME0Dr5mWAF+TBhpYSxSyfQcNkKdlTY+9UjW8dK8JzD5gpg76huv53SowpDHH0+59AAtyFBsusiSu5/nYrHwSQuNif/ApSiyLg8eth13+coj6ynvA3Pu1g6nfimQ8UKtZhtJLYFVhh7q6dhtE6xHWkOJcovv8oaZs6a619hfvBz5M1ux8Ly2k38rC8eu4L+ZFDUZ4o8pm1dNRsziaGv35B9RJ5TBcrlnnwLgNRKRxrwd/fB+wht7pXrjVKX/4uxISW/j9+Q/Nkm1ID9rjfkdD/+oO2/PYXTVPkiRs9VMVjsM3QdD9CDEZm8OY8m7uBShlREOft7/ny3JTIABzqxB2EpN0Ud0ogt+PI9GDVLOBqbsGwvcxamhmiaZFrsGBwaQmPjZW/4UFOWbgL/9GwKbWYifqG2ht0NPQtzcpKZIeaZfosaHmY+r5WDZZ/odPFK+XaVg/3yq4/61966qXOzAeXxFkkjRS79c9Q9LrxNF+lt1Sw1xnO63xBNRhLFFt30kxuWhxIKWyT7TtATajDpGg7bOrQB8Q7MA/PpkJJsRm5Hyb/ptXtb4seYm2lXANZ3rvDP3j6xDp2a8E5DpnCB52EkLQAeVA0qpU4Nk0GJqnXVNM3jmFkAo5oYcwURoSamMNH28twQd6eA3zd8gJLDyFUVzVdTO77jobDUsdPnSmGM6jdIFw1WMEAhtb05ofoSC3OQ25feN//Bwul/xFJG5Uxd/3gyUUQuxVYxeSk7GMIEzFB9IjyUiJdmoYnLv8R4P9LmzIF4UtcJe8xRjNx3Q5f9sMPvNzTYRb9gp5weOrLiMiUrM9v8M/PxQQR75QU7fHgkgbNkK632JqHZItX/F7BlvXv/+LBz6KhwxaxHHx/v5zQ1FZ/BFEPP7hxDoQTpHeEXgYRA/pd9sH4NIDCI7Fx0ZSOVsrHxDnP78Fr3zEYm68zhKMvtN/89XldBmh0+Uco3b4hPzZ36V//liU4bpgP7NCOq2FG5qc866Z//zdiQoDNvpNHHJ1eWpAEAxGk2d9t/ju0DPtGc+Amsypw2WSewF+9cikRdO9LdI8fgb8/TZHbKD+Bcb5EyjAmWsDe+nYD7OXHf/5I0Tp84QzUz2W+oqXSJ7G2GLCpmzBrb1cCaypweX8eX1DEucb4h3TmM/b87mH8X584WzFi9kOoQaPmvdDaq6NIf3ze8ewboiWP8Wia4OtAFZ/k+4rQQlH+3qTwLylE9JXP2zlaxr800vGLagaspiBDVZ8W+NH5VWp7zVI22NN5q49F1za6TkMilhY+QFIB2N3kDRyE1rEHFssFnXzSqAbCykRhNrl4nlzR7AR9+udlUKwftY4OGDVm9gS7Xcxqg9gQxGLD6QO2trnKH0GMM4Sh8wx5QOv9x6EcU4eOOqAnM7O9/mGrkgp4QUTi++YKAK0u/qEppWvzM9Egn/+Fzavg8xZud67Xv12/FjChs+t/svgn57CH/biVFR+MUyre0W98ghCfi9iW1/1PFH3XhGyi9krYH+pDoRnAFvSboQVBFrwpLhCWrHy6zd8jjgmoPdMoMzXSYC2Z5tEnTaFxbzQXOsP45FGB9o0dNUzcDfbV5reRbeReBwj3bjXOgEPGzb9Ru017Y9/mfYdpWxpHg8QrjXWQ9gagG2cTQWv3XuHSH+B/NUVzggujvld8UMd+I5sPDC78Lz6P7j549fg20V7IphJ3BC53SG4nhfCNncnZPGsZZDMcrLyl21BvDeo4W5wcuyCrQuWcfZscB6NETt8y5oRim8Hrv4tNlc+zk41cuAfvzFbs+AzmUkMnuGsE7jbfIbpt95r8en1hCOaLeG4kU4J/Em9hyRTnvh8engSWP1y7PzVF5zx2MHpZhuEMae2lkqLrzq8PBvSW8torfWHM5RTwjAKQz/8NdZYw/W8YGfNB7KM8gxsO+lIDzvHTKeLUSVy5IRPRA9+mPL2ZCR/9Sha7I4mkD6sk+DuUTTUyO+PlA9j/YD0QnUkTv4E/vxiwPf5kaLVr1v5fKmHqfTA+0meBy7ttjm0mnRDAMPfgXzzrvrTj+hsqy9r+fPb5lJIqf+x7FD+qy+hvfjn1y5gbvVXBj4humMj9aZiajk2wd3MlJXPCrzL9Lep686zwDv5HgNmlxcbyuVOoea6f9vNYJ1hOT8Cun+4bOCiEUXwNAQOEYhxDhcIqlnvta1MtJXPsuTKDLjtxCM9+5exWa6YmOBzfb3o6gemf34t0LsAEwGZpJnrqTfh+fPOaBS8t3xxzcwDc3+84Gz1Kz6dyhL45x/mq35ihbNP9E8cFTRY+Qb1WiEAa30QB5upsKjxVHO4u+ghLjZt2Hyd5aXB+sLuNIjO5cD88XwFeqRyHKz7vdZzJPinh06rntjuX/IZ+Aia+KhMcfFPT638EO/X+pe0bD82JPF1gz2d9+FcbAcTvjr2waF2jlL6emgP0I/OFTvA/YQL64RRK9qDhG0yczDt+kXRj/Z4W/miEI47KZTgZG5r7IPzxpr1+l7CP//eFtnXYleoBrC7dydsnW55swTv3v7j/9TTuvIPXyJoG4X/V69Lf2fnCGHaWy4ODzuDz+DmX6H5qTpqN8aWz6s/BMH07Oj+Mw9gan5M0M+WWlHj0ipg2lovUX9+mIK9Z9k1g+mqNjTE4ofeKx6QbFxEOOvXlrrkYQH2NCMGaL6N0JpPG1ZftjP0zTT6p8fouTna+l89YVOqfsp7VgZQ1b8B3vniPVy21k+ElcomUm09z+LV4jvQ0HqXhqu+lsFRHOFa38ThmQ4D/5pLp5szFHDwvUaAL3cJwV7fONjlpLFmHToQvs1eIAoqh5RuxKCH/v5a4OfHQNY8mRDCTu5imokPATB4KSEscl6RFzsszWgd2xZai/xG4EzDhmxVXAKkhPbqr15S/pXK/g8faFB76yyuYRYhpG9KHrEqhnzpiwB0H72kqL+UfFrrM+AyggSHvzMNufnblzCCUkyDgzcXbRwMCqz9SMH2NmbN3OfbBKrWN6bBCW/D5epZ3h+/wtFdP1hMpffk/5t9oP3vdwr2G+uODk/6KxZXucbw+isHWvBUsqaFuyK8XVRIqrsnAl5Viwl4rezoKSl/KVtuiQDebvbFho3KZhTSYw/Frg6ow0PTkgdKcqiR5Is+m/s+ZHJhSTo2xC3dR3Q3iGdFHKH66Aa8l3Uczsqxm2HhnGp6dGgFlhDNGtxNI0fdiKzwndRlABdhL1J3Y5jD9hrEgd6FZoKgWGyHEcZGpe/JIcSRYfSrBlUliK7WleibswlYrW9MEGyrK446cZe+9nxq4bdCiJp8P3HWntQI8IJ62Et3GzCcB2hoM+gEsgWxMbB7FFWAHiMBB79jA7j4yhONbtCJujbzrXEUvF71kgQgzQnEYm6+LYPf/W6m/vN3suZqUkeoZcmWhvHz2EhAuL3hlT4U7JHuls7Nzo9g4Gs76u+2PpiPaw3rGLkuEuC1DL9fViHoxMjH3n5aJaFWQrC1Mkyks/1JB8879fCktBjvYPAB4/tnZFqa+E8ijzxsZGm5vqG/1UrshDIJiaVCA361n0qj2jUs0fjYJuwHu6SXxZjD4a43Eex2EqOWGx2Lf+tXz1pErZdjhfO7TD3tdGcBDV/OM+RbujFAotUTPtCfV3BYeD3M78oDKZ+iGMbAaDuIt/1IPed7BlxQGwKDnKToIwd5wXGrGbAF+Zka09ZrxOva++iMrwRbyzQP/FeeIdx8cEH32L8Axr4bAmZReqKt2l+s6fhENWyKMSZ1ZL/BTLNXDB8uFshmGc1BbL5kBvfdZ4vdWwvChX0h0m6QcqIHXt3wSTzaugbUFpu/8NWsf5/ARqpP2DnKFaC2UCP4XcwKu/Htns7X994ANVIRean9z+JhMTnwTTZX6mrGr2C3w3tW38M5wgYw24K4SjrDpq5nbJpyyxewVIq+jTcI9XQxUq46zw44t22NdP80gYVm4wzkZ84pzpPDML/ljwOIXUBU2to95CPb1PADWI7DT/RJ2f2qjvCAZhOf38JgTcDYE0iOXxOby6dvqOqqCEYl31OE4xfnO/SNoRR934dt5i8FJ3KNNq/evdCdVdJ0ZuhxhgOoemrsvq+Gsa88QvFwGRFDDxDy2zfooIeOJ6Qya+ZzuE0gPCbgSwOuCMN00W4MPtQI0MPmXIO5EQsIqm//wpanqgVdAnWED4o9otgaDb+qu0QQapcIe58CNDO4WqaeEzLj4CgTPu8FnUCAQYh0fb6lPDmlpYovQ4bNp6Kn9KtzCR7kg0Nki9FmXONTX/b9QnHzHIqF/LISClKx4DB+LsP9u3lf4S/oEM4UCtOfpSoVdMtuoXj/uYElWXufvb7xHZvq3hhmtTpUUDJhSJQ3OYSjYTwM8El5jL7pSBre1j9Fo+tYocMdj2D0pksAg0tjrPnlwOeTGUtwQgvDO6Gv0+UzZoLWRu8RvV73Z7rIv4+jr7+nZmgPKftkl17r8zjA/sNfADfCswfUzzNEUi4oxXdnFT20t7NHs4yogPRuw7TwtpEQSx9iMV8vTxE8eESofdvZDf+yLgIHryiRvH9emkVwqACvdidiM7Jtzo/7UwDbqk2oeRmunJ3kKICn+22hu+393dROdyrhun/UDOXK4g8DXuHZbE3snBcORgqQCPdW4ZLmk34b8j46NTxGexdtDuyR0swYGAgFPlGc7H/W/O43CjAu8ZXmT/mV8tZ3K7AIroiU3VdvWJlhE9ZhbNJMoWXKBni14Uf5uNTpHi+L15GfweF9YUT8gsCSNu+50k35XFPXYnjgz1gbIXenBjuP4w+w7ktt8KyNK71+CjDQqlJN+JriHlnfSQfkQv0exO/yTMvaNUJ5A0UJLLdU/5dfuas8E+jEkY9KCSQhB6F5BvvLdcRWfMPFsjm3MXwS2abB046GOZkog0dNWeiuvV8b2mflAyoI3WkQB99wkfgu0JNwssg2g+06bzuo1En/ltQ93aRmjQcb+gEV8L6LRc778RRDn1EfW5/0O/Tu3jdUvdjMaFrxTQThXYR28OmRHnZ7IIqpb8LuMTww/t0ufAp7UwJdIb5xtKsOKY+G4QrN8MRoBMCQLk/zDeFFF7P1eWgxL+EhgsvtqBN97/kF1853AWRvSHBxewacL0L0gIpuumhjDy3vRJJAMD4rTA9ht+dDeh1bGHz8DXaWjzL8vtGtB2N5hvQvXpbN7PXQO5WIFsfESSV7fkIwZ+YB74fzbuj7LBZg0Z9cHBztPJw/mhDB/uDaRG/gxMeTGYtadlk67A3o13zCPhDhrXAx2kqxWyzyb7Ih2ycTtltkpouY2hWMKjZgazQ6PmfGJgFPRZTxA8c7PppKWgJpmjFG/bK1iDj2OQDLayYq1M/DYiziCN+dp2Lr0TopGwW3g45lWUQxc5bSnVV0WkfvM41SreOLUsoauA3qCyMeCtYiCeUMW1y0ePeNp5T0mlTDh4oA2v5mJZwM4aXAjxHYJK/s1mLi6smt+Iw93+XDXNKjoFUgnah7jJjFv6yKtBM7/PDBrTcN/eylHIpBzejhVS7p73JqGFB0w6XP9/MNlsc3gX94Rpj0aXj3M5kDN5vDAR8up6pYTtivwDSzGTu/EDdcBaEAtC7JscHruKCJ18YAJVZIWDu8+TzDLodcXecRi8VpmI/DjIAhqD71Da+2eGAUHuy/qo8TlqgWqZ6FAMspOFP0kc1wDPKdCTbZzcceckdO/Gv80F/x/oP3bt00LJmuDEA5VOlOsZ/DErTq+I8vSJHsDkPzH5bOpe05HorCP8igSsk2pFSdQ7XazlBPix5QCcmv/y59v6GByyDWXvfaOb3Tg5YItkX4wC2TRc8SNOZUOt5T2xyYkrrH/3lj8RfyvnoZqjN7T7faYWfKAoktrSfjB4c6shC7Teod3U7vnDQ05JxeztYRlONHwSYaTZ+eUx7Bjy+3UVX408P1Fz8kO7zzXKFZeC2A5lJrNLwCSmcmPi4/fVND6LcFC4myBaW4XagVHnuzN6KBoWrfnulFcmhKZNPXQTjykNCVLjTT2v0KKH9vErpzsd/MfAiP8LkMCd2dM0gHNTsJIIkvShT1duVTcdS3v3pHnii+N2yA2P7HPzz96g03yaAqUvY+k4ulYpOtYM7QwqPYHHRasAc9HLT9PRUIX3hvdOr9Fl2rQ03/+fWif/Dyb0r3zmocJtv8lGDZQhXxX73YWPylRZHxpFurjfj8VDwPVix/RGubRpy/NSQCvzTriAWWhcYbIy9YxoviZ8CLecjCLfxZpo4dWhCftf1Hhac736h+JU+/e0F6APumr388/eOFSIkkfcLRySMpVZAPm8i6BPj2cVlDrFmpYTRWNpHxn+fPrPy8YPPtCHW1yU+l+9d1gNXKlzpv42mO+quzAAV0Q4P83ZtTmAo2UJKbBO03JmJXXW7RUg9xEOSpz7uyAmDNYYcjlgwms7TQQfI9tMn4R91U7KpAh799lFJLWmM09n8PGzZRcKPbhU+fcuFksNmv5Wi9rft0Qv5NUlUSv6nrbaNiCnZJBk/hfVx4qmq+lYFVoEMwLf7p+qy8iwEkrX3AwSF8+PNp2c9QvH3xx8+DeMyTj6bf4mfUissc/ynuLaTruzsNDqHhL3oNtGwT+HTXSjtf/NWDPLQCItYo5vygGiWIyrH8+ZNPtI3dw0E7vbFt9m7D7kc9AyN7oH/8NTq2ZkNTPTy8a8yME+XxsuGxrV6E4+sazU04b9Dq8cLL/eTgTw7ZfEGSpy1Nku41DMnmrYJQsVXUpsbMab6mOfqrdEbP2Ur352BDW+jPloyNOhZNvntiEZo9GbCxvM/DtG41UclK7Brbtd+R8n1A8qHd03Tx97mTHyraDXmCd2RKiqm+ejrIW0yoY6qnhj/oiYHlvXu8o83LnE3nlkHcVhk2btnDZ6Ea9DCPSU2No2umfPd6XMA17Cfh+9XLnKRrE8OHim7EBOYUrN8PDKD8hvis6m7B3UsKUGrwwdu6uqe8lZNW02QvIurCy2TKXBFitjthx35LiASH3f2Xv/AuLCfzGzp9BflbTYigCc9mztf3XIvTj0VDszBSxozcQ3pQpXhfvcR0RC0nMKWdSN0526byKF4tZNaCgrF9iQaebR4RWt8yIxLR9piyc11WqE2OeaR/1jjt7PjqoWMuoEiJMOP04k9EO2s3hPEzSAtGH7cSycscoznrW1M6yZYHR8/rlh7+1Z+04VAuZ08WPx7mXPyOKoTfwqD78aWnzLnngJrujInKhRaNhoFs5LXEpuZeWaFRUYYcVSecRZp5KkyWrwcVZtw31EUxGVooSk/dHCJzyYfxwI4cbRGTUBINpZIP80SFL7rxFyPVSTPNGcxKUi6HhOM9GhOfmQ8UgEWemPrO7tPM83mtwnrzXJFf/hoPSNWRqqcx9ZQdDBPEzh129iun7r2LhvUv32Tymv30Z3KruRwg+HuvIsXFysDna1bCE005DsJwz8dRcj9o4QNsn5KpIb7E7xApgYmDt8H9WXCMOyz1GRueOzXjm8kRbL4DobpQSv5odCz69z07TuSCnxE7gjbNH6qH0Ql1vW1/lzV0LbbEWkYjN6NlfI8Gvbh73tCV21soUdUZe3PlFDN9JIC8z+mAHeQ4zZdYtaD9+D9kUjrM91EL4FrFNd7q577guu7V0FnJh2hOffXF8x2pcA/Ekp6D4MLn/sA3UFUXCYea2XMiR9UH2HafR2unzDhr11DD9+p31FGKO2d/PX3BXP7F2JmdzO/iQsth9cnJ8iyZo2ZtchTfkht1ItVo5M0QLrfpFTbVxbpDP38F5scq3oup0chSULdoyYM0vNMajcpXCuBi3B5YvzlH9K+/Yl4cEduGN/o/XljO3btHyffmF+yQShd45m9KDU/6M7mJFr0U2X7h5TFlj/ppwbXYYaJ83HbgLJ90eLQ7jwxCujU5dOMFXbpqIF9GxmaMi3UOkthSsioD1e9UEGutSl4e/fUPaNdZHqCrKhBargiff34wXFU7YqsvKpY8UKPD93HC+Ln6+MwZHQ9Qo84/PxhIet7f4W7fJOpVicyHEHUE1sRJyXjafopZuHtHEFfHDndEeg7DfnOOUf+0cXTDay9d/tcYLpfPFVfVOTC727nsQZLZljwxfIdJNvoSfnqqpafJJ7u3dRBrv6W2sosG8T8AAAD//6RdydaqMBJ+IBciICmWyCQCJgiIuhMHBETGBMjT9+G/5/Sqd/0AKpKq+oaCKmq2K7hwMWdE4XeDv00rR5eb9qTq67Dmw3sjUXDO+w3ZOQ8HLXxx2c0nEHIANSlGtsxldLxXyg590hh016gUHTqlwecD8bqRv+J6e8VtxfwNdqPR0x0frvz1Yvv9OjZ4FnsiCC9vhbuvb6Wb+teVCCqqEfLHdwX7naBQpRoji/6cDZrdVbfLv3hMUl5M6fvi/OETPvpMLWiXb3olMQxEpb2188RF/ypqGF9YKmX3ji77ldX+luu0cN86GsXq+oDV6asw/bw6GbOAiKPcD8qW6fiFjH6L3i/55xwNhqVTmdJj7v3zI5mB+30kXtXqCqrnvYi9svaIonKN0aLn6LYUI4/buC6VfvAwc6sy7xa/MYD3Cdt4oqMRLXpiVhb8w5m42XERHkIPwScymIMFlPbxsX9Aha4JO95ZYMzhEMyqctkzvC2NVzqvYsVXnTGMmJZvoJuuPqFKJ1Bv8Z+OvJ9WF/jj6+RA9F839lP0AMz8gMV42R27l4NQbbXwSnDgbrzp3KavP71AQaI2HyM3TQCKfCC2YJ3TKQiaEbqhCLHQ1LPR+3Jpo8djUpn+XhnFxD63FUo3no8PNzhGk4RTB+2soSHk4d+NWav6cit7hkvF+rVbenjtVSlzt2dEvhW8fZu6Br70c6k08WUWeuPEf34qHe2P0M3iZe7VrjzPTBffz26+zvcZskN3oBtyuPDv6z6MyMhhi6Wed8V40+QKtSezZc6EXCQevC5Ac2KuF/yk3by3dhqcD+OXvKaXmM5/8VF/hQtWVcNF24bkM+zfokmcNHa7qTwZmooM+43FsGTRPCY7EVybUmY1RtMxe2M7cCKL3urJ+s9P1cFX5ifz7FBJ6TmdsXrviieto31lDIL9jtHiXxNt0CM0r8sxh7J2t8zbW8yYposqo8fNndhOcvt0St9vF2wbJ1TNSWXMEhl9VSzmJ7Hiwyld9E4Ci56k1WOquj66ODmsxNvEjNQeI35En16tguOW2MM1NkapaUrEc2VHJ3CtP/2hqX9+lS86z2g8fB8tKr69QW71weykI4UcXYje4s2i74bfur/CEi9MK+uWM9HPK5QlIsFbYQy93kzECpb8Jfoc3ozZusk9HHbml2kXJPJh2J1jeO/9aLk/95QhvnvAYdkCpbYNMarFr4ZLpAfksCo0g98Xjv1Xb8XhGnuzbfweiGjiBreCLBs8XfZ5//nt0yWh6SwR2UeL/4KVRKo9bn33AngbN/7jB3x66/0KHj/nwEKzxGiwsVTCap6/RFfDrzEk4b2GYPVymM5lvZue5UGE9mS3DD/LSzq3yir783OJufDdudQ/819/g+y27cEQAskT4KiSiJk9MopZOQwB3Lb2j8oiMr32/dAFdW2P7t/5pPPhen3An3/hJpJjiO+WlahaHQN2yBMxZchzYwhI+6KTdZDSTSM1yl8+0s76elx8k2f9V69xMwUPY7aOXgav3tgwcug0Q5KEhgJdl7d//vQ/f4+YukOOs8iL1mtxgl759cH8NL52429GPXgkd8nR3UxeG3OuwfpYNcx5xKU3q6fGRIteY/dEqo3pvPmZMBXtgbhhW3QTPaUt+iQPj5B0vUnnTz6YaOEfxGoLHy34q6uq6qTk6dVfzh7n0gT7o6V0+zqc+Jx0cg7aJ/DIfd9eOv4NiwpOxbDF2Zq0aFhlegK6k8vMFJ1dOk3rjYZyx2bEtt0q+pw3zNyOS4/WbaefMR6H4AVro5Kw+seP0vfbQUhSEqokJo849jJT/Q1/+2pBMaa3dApV/JIkPN7rq8eTrL4j9sXFnz5CPHu/X4hj88Cel7OWzqttjSHsizPz6adZ8M0QYfE3/vHPqV+ZLvwsY2SGouBo3KLLCx7FSqQtm7J0ybca8Nl/Le/QmSnvy/sI+/e7W/oxdToaqKyA71lB5e/ng4ZGVytE5ueNtqqX80XP3KEE98Xs0kvSjSp7Dqy7Y808RZPSuXlED6gCsiVa72T8T4+i+9H2CTlabHlnZ6+rNX8m5CrVYcdWdgDoma40ZtBo2XWt1aGy+E8Mf80h7e20CcCNLwMWeP5Kqb3Ra/XPr/XY1k4XPOqRXUjnxU9JIz78CgUSSZrxsNRXxl87B8Zfc8NKs5oj/nBEGZWbSWZ//hrXrkYMRrz+EL2VD2nnv0QMyuXhsOjkm8b4W2eKug/rNR5DzIzF/8//8fEzuJz3tpG9UH5FO+L0uPDYBnoM2uGkMVd87brhN6/9v34YHs4s4S37PF/KbqCcEUf2IgHS2IXgGT3/9X/48vtKXH8VKuxjKZ1Tqw3Q7+HXmB26zJvgMWG47V8G8cL50I3YQyUs/YWlnqopT7LsivxwisjB3RjesLIZwOIXEyfebaNha19bWPpJBHflgQvTRblCQu4Uo2dPovEmeAl4QfJc/LwxYs1TzkBsK/jzlzruv1Y+TL/oTBa+Ev35O2jBE4LhpUfDkh9wuwZndpRFOxrLRkvUIYXlKd1V13G7mXO10kuFXW+7sBjWo1PD2Io9OZxZjagxYAG9T75NV5tp503HIYW/fF/4XZuyR34LEVr1G2JesBjxenfU0OJnEO9jr43+t85kNZ7BpvPiN3zNryaqi39ADGW/7SYIfA3C3XAiR6/+ItqvGwxZ+cZUiISqG8M8dra5KN/IwTxXXVnfl13sJLzj6S6aKY+uZYkGtnoSX62jaFLGfYwW/ol7mWppt/j90KtqRm4vqIo26eQMFrxnMdKFlJ9TtYfkZ2QYZJpFE9S+qCz9cHozz3Yxf5RBRot/QrPqHBbTA9wW8Lx5MkxX22KMVGqiwXJvlD5aMxV+rlCiRb/g6C9/Gul7VUpZ9cj+fTt44u1Yzmh6PANm9IMUsTaOH2hnmzo5ymIVcRtnlfpsqjVV07xE//zopR+AxZOU8fHbn17/35wC9L+fKQjym0cO1og9kcaWiW6hHjHcrLXFj7AEaG/wZftmH3pM32iA7mK0xR/wdS7J6c6GdK12xE32fjo1CQHFPfY/shukbzS/5oyqZAyuhMhcLcqnaYrgZeuQbl+thMbrRbFRIZ0UYt0XzxV614TDsG7YAd1PfJ42QQ2Oe9GXXUCHrlah1eGa5W8qWavWm5/BTYfTYG1p1X1eXX+seh80we0oOrx2HUda8AKSbS90W4li1GJ4U3ifAQgm+TmiRE5Xy9Bpj3keenOeJ+cahhFmYufrCQ3WLM3wmdGN+C+L8u7yMTWkTDkiBwnzlMNuDOGMdBtn467w5lESKrh76p5u4mnu5oPbvCBcX36MNHLOxy47lsrvGblYQYbJhd82uYIx4/Wy/+LeDdoyK6+wvD070v7hcUG4KVvKn4tmE1Wv0b6qg4qe2lip3k1EV+G5gsdFqckeu3XXdGdP3O6bn0NMv5+9wZrXsyI/dy+ifXur2MCm1xVNyGvi3ZNHN1Q9CHDadBsqvPe04JvNRJVdEr3Y4fG7RuP3XMlg+SGls7ladSxPni3ibtUw/ZkrXn+9zDYoDrHofE7SbgrKY4u21YsQcnRqPo0vlyKy3Z8Jqb1TN1ryE1CKJYFuCpvxXmAGBWeXW8Tdat+ot7ebEcYhJExLfxdjShOUICyWXwrKpkYzkZfZ8TIy8SDWXjGfi7aCrbRxyL5zp264+GOiuvbnS8i433mCHtk1fJr4w45tckSi6s8arHdvjXjxUUVjfiIPVPFk4dguiYa6k3uoXD3DUxq0xrjeHXKAFH7kPkt2xK+vzIYy+41YTJZ925F4s9FafwNeC8csmhU/iZGOywvTL0aP5tPDyGF63W2yZ9qH87uJKkX+fu9E1+oxmtwUj2A92o6q5GZGPJesDJV4eQ9JTXi3xLemOCdFZ5rofvjYw0ThqR/veGtrqjdtmm8OP1VzyOvdFlE/e7EPj2CoSNzd/GiYP3oCiVHq5IoNt5vs8z6Dr5ZQZlfoE/FC/sZQV6AS8z5lKc9onqwr45iyY12o0e+36isQql1IN7r2K/hHOMrwbMYb8eX5kEo8dDFy0gERoylaY/p8Qg3Sap4YEY5aOmdXwLAPtBPzRPFXFOdtQOGZL7s4GlnndKcaJvzFA1/tqpQm5n3BuBsnjrTM3fjF+ayaSJ6IPoy/aPhorQsn72JgSe2O3S+UNxq63aWAGJ9Lt8yuVCk8FSch+z1qo5EaG0dd7gcjcxyk/MWqB6JKWxLzkz26cY+eJZxy2SBp2SkGk9ODCSrdxGy3ek8p3bpiDqtpb+Ctaz/SYVg849Vb9Zj5CYZu6KUog6V+0vUHoqj9IEOG1KoVohedjFp1GlroKTOYqd3jaPKurYi85hCQo7qXebt7cg2O7lVnO3hMfCrdwYUqxG+83exKg38ES0HxdbwSfCQ2Gl+7TEari4OJ+a0Q6pKXf4d72lvsTmTs0VkRMBxBnpl5dtbduBm7fPuZ5CczUucYcUIVDYTNPSIHKZ6L0ZG37V+8YBWkBg2zmeC/+GJ60V3R2N5cDJppjMwbh5r3xJR9VJw/JjtcP1uDb5EMEB92d+bshT5tP5LjIOP0tNhuRfSojXd3BcgYXmlzL+WOFfI3gYkYFrMbPBpzti1tJPTihR3yUTImY++M6K8eErmgxfh4n1y1ut+fVH7QJKI/q62lJB01hp+D4fXu4+ODVFoV8Y6lxiX9PMpqtP9UTNeuu3SmwSGGe4k0YkpTk3JU9AGcuW8x041Mbzn/CkVkKOnWOTy8LiNhCLuX9WbvYss7frXWPVrygzloevH5UrUY7i54DL+VOW38u1sv+61Npt/8Dk2Hc+fD6TEAM4vng49yHNnwqMMvflYB7ZiWqDqE6/OPkdsYozFzfRsOxyMju/OxLWY2nzQIGj9gu45W0ZTnkwAg5AWmt0/ZtY3TBuAFvzMhJrTRnPafB/QW9/Bvqf/c1gpBUVf4PGwc8kV8c//e0U8QXHLrN99i2odFCRokDbGktktpP21iKNZvmZlJ9zH6ImQBMnaWs+Sz64035TCCW9UZ89NZ86ZB5jESD90Wrzx/ec/SW63gdhNj/NUiMR1O+qkFnx81Zm9GQO3rDBXszkFOvDh6GvPWXWXK5uId6OZzYN2kRrIOglqd2DG7rPiY14EGSsZ3lH9OfkRt29VRq9A3RgYx0hmLggOS8CwYXuodd4zipcSO/qIbPUiKmdw8GW1fW0KOdfFM5+SrXyHDskC0VaJFUrXdaaCaSoZHMZ4KfkmzF1RpeiPu4Z1F9OZsAeL2cMLlt0J8lM+zAgWzENMV/etNA6xNtKualJgr9xIx6xXb6NYdj0wbT6Ex34ahQuVFkwm2DCcSlnqtBjN3/n3/vLWVEXr5hIjTQ1H0v21yBy9TQ6weAqsbzUtlwpp/OTPT0ysa29cwI3Q3RXKkPXiz4oQVmt7zmu2+318xGtO9RGNiHYkm7PWIf6UGoy0NA+atddubVK7ZKKx4z3wvLtDEq0FGE3M1csChwpkWbkOIW+9EBSQ53dhc8juIyjSSQ3i9e9N1KlaKr2gWsd7aWAyhMb0UQbwRZuGaF/zurBP4fPKMuXy/eIbZTob0KMh0Bq80uP3mMnK884ok67WCeqGpXZAfWs48rl3S0b4PFK13T40cymZvTOJ+ylWnjCSsvCKXz9P2cUXBPDnMPWxoN7kXT0PPOTnj1ZFUvD68jy68zdJgT+t+jkYH1Kua2p1IdCzRqBfcq4mcCClMg4L88VlxCUvOTPvJ+SzkvwyuDbvh+Uvlrm9vug+SrjLi5NLG4NY2u8JosYAOaacbXHlpFM7FxmSeFRreRNanFSJTFONZJnGxoalnglc7MQubsubj4W05qmboAo2bHhmDtuySiedLgHM7XXYpJc8ahfQ7MGctvYzpEoAJRYVU+lcfJ+lwiiH7CQMxZHzm0zFtH7A7spyRblN4Fb6UNuQdDpd6IvCxvtsxrFsd4VWvZ8UU/7IVKHKssUtQJEUvNJkDkh6P9IbMoqBlFoUQBdbSM5LX6YLfurqRkEFVZbVFwx9eWbHY4sbb9mjcnagImrkbmb3SlW5+0F2oXCqhJ4teQOK8klbQJ4VFEdekaAr3KkaJUel4sx06b9A+2yvIfvf5qwcez+bKhnLfScx2nB+ao5L2ikJ0l+CbFKJRC4iOaLH/4jwlXcSeFLcQNDhgdrXJjfH4cVr0ccofM3nnetOld+4gqOWJRFu09/74FLBuTrGMDbfo68StwP11D2Y9jSAS/vAj+oUlsZy3wOk7urZgKHeVuaJqFeK1dnWICCspv+jYG6evQ1F5fGjkej/XKbNeDxOF9m5mR+/45d/7Oc1Rajci0Uyxj0YjsQN4n1dA1/3njYbutuzz/OAt0Yu0QYOb2jOyHnVH01aQ+VTVkwk2dt90G5zvRffwxBXcTc9mTqkIaMLq7KpLPmHawc6rzXm+ou8NfYl/6TU0ky0aFeUHBgvSi+Nt7kJRKcv5Ef1zbaPpLhSl8n7OKp21MDf6x/vkqGv+41S4xStvFjWUw8U2Z0r3gVR0l4+vwadJPnSOohSNdL1NEFKEkThl++V/+g3OHFvLeegGf084hAXPcd8+OzTvvaFSOigDOi341uCdulIGu9bYMe10T7jKH/jjg8wMvx80u/3koOX32F88tlahhFv3LFfs/POZN+0TFsPyeZqftCGa9hOqYV0QEas3eer4qikyNcqeb6IzNen49amF6I+f/PE1Xl1vLnjv6voPH/ht/87g5xcBFsyMd59vd9bRV+neZD8cT1G7tedZXfCX7Kdo7Ibl+mH08zPzL0A4aw3fVm56F9L1XL4jesPPHPH7qiL2mnVoZPnBhvtzUPF2sOJulutqBF7kOSG37Mvn5jfHqn7hIZY2RPMWvuxDdEEFLrV7nI7fU+eAuvLPxB7KVdq7u1gBGg7LLEi95eP2cqewbu/yog92nDlG8YDua5zoINZd0Rtx9VAG7a1QIdyMnKd2dIdz/vKI+RAyb9o5pgLPz+qKYTkv3uzKEPqh3xP7o0/F1JJsWemc5MTerR3Et1lZoz5ZJgcFjZZuju/Kh4XPMh080xD7446iXx9g4rbfupsv1hyD/nMjGjBUFPNr0hT1Dz/Iu/im9fsnxBDVp4xhK7pEf/oTBSctZP5xmNC0krsW7u7Kw/Ju6vns+rsQPS5yze6qbXYDTQ0bFvzA4+XkIFrpnYZexcunq4Wfzd6xMdGiX/Fffg190rWwxZ/wjw9GNWk6AQ6rS0VPkel1k9XKIQyTSokZy2M3W2brK//lJ4jTBvnADOlN1f3e7sSkwS7aB/qJGDj7RJOmN7GilbzF2xGV6F89L6+GQNxdEfB6K+YjRHLzJLp+/nTzevxkcE5PDjEX/BUP+OvD4HQy2T82ccR2Uq/AcDM2zNysZDRdceAqrzQ4suMxMZEQ2IEGjzdt/tWzBZ96OPnnNbF+PvGGx9bQ4RvQDgtuVBp91jwc2EnGFYv4VHXsPbj5H3/BW2OgUU++ma3KhliyPQtG1FfSqgQpYg1GXvpB3FobKwiTG6PDSnA9CT5aoubRMvHC360jbiHNV7uovZL99kujcZ2dSnXxe7BkbDxD/NMnj887YwfjohnSHLR38ILvmSx6MerHolb+4oWQuVxH8/z+KfCdHl+y/F8uLNej1K9xxZ6nR+kxGzIdLjgYmSaaeiHKh4Si/Y14zOyaNGogkK+ouT4mslMOhcfmIL+iRd/h6fv9dTS7Cj4Eu+5EV/TMjMEAHEDjvwr3Mvg788gOez4Uo3V2HWQiZfp3HrNVKAE8UUGYfjBV3rSkDuB5uz5YPORe+q16QUQLn8Jb7KfFLOpRAgsfo5U6e9046OdE5XeoiNcKV77gUw5anA54FV2/xVgrKwza5lOyQ1X90tESQh8Z13ZPbDcV07HdzjacYacv5z2mHA93H1Ys9lnsJAbi47GdQbzpCh0U2qJ5vtRXMEPYkp/+HwAAAP//pF25uoI4FH4gCwGRhJJd1kRBETtARVBkTYA8/Xx4p5xuylt4lZD8W5Jz7BtbjryoAOmAHKxe3Y4NIWI+XPMlbLYX5JFttN7rtV4fNHqBCYRFEHNouJO04vEzmkm2+vVrNv3lU9y9mDbyyhc0y7Ff3eOueUOinilG0ndgTZruCbyFSoSTg+T1ZXa62yDQahVjjXkrP6IjFMqAp/rr6lVLpG8EiQ7zFYnl7uLNi/FAYJI7n2y5O46oXYICOh/Wk8zLVPbH52fFv5NNocxgenVsA6Kt8MTBygd/fsYHukpdNXqx0d+HRE4kM8bKdFr0+eP7EJb6KcYGonO/2O1cwABKC/Yj4dhzD7WRoMnXb2qedyc2jne6tiN4qGh/zm5gEhb9DATlsSW/PG/X6Ybx8xPUS24wG9XvGf7lRXsUpuxvPq9+nj5PyNa533pkYCjwc9xo3jxXdQj6wY+o8a2gTq/PN4Jjou1psPpzthkOOfzlR8FevVW0volQep3c6s8vL6k3vwF3aS9UneV3P0vLO4FFoQxEMm+qzsMwQfDhikf0ut8cb5ZI08hz/DZppJz0bKeEc/jzV6jAl1vG0pb6cM2j0Px62hm3HJIcrHkMVTyc6qTYDxZc9QPi6LPvae5kGhTadIeE9rHVx2QsECw55hIGjdpbfDotv/lGPmlXRoN9H8+A+ygxdVRJBqS8ihYcLq5P/Q2w9RmXHw4GHOEQOcQCeLfXLoW/9WyIhyub+4vHSTfwdakfCVNPNugmSE5eTxQ1/pTNkB+UvR8+LQKCtwL46n1q5CsKJ4oXQ82mzWO//PwQNTbuLmOGaNeAaJce1eeJsel9Phh7uzMUim+FCThJdGswjOSAA6Hxej7bVQjIlybFz+u1BvOipA9Iff2OA7hzwB7gY/1b34Rjvat/37f78YfH5FuSt86uMIkhvz9BtDF1O1vgFHDQd/Yu1p6Xrp9ZWbrwjXl+1RuUtTTvJHhz8usvT+9/8x+sfI89NV/AZIqXze/76ZonV0wA9yPcLIftn75a+QuB6i2a1K5lLhuOvddAH6QbrO/EQ7ZAL0XQm+KI7BQzjdhB8zpQwq9HlchzKg4dcvuXx6PFILQaYr6Mga5YPiGNP0VsCsoJLq9uRjPlzH4YFLmEzjldsJu4vsdD/q1AGqEC20li6yxO1z2nTW/T4B1QnTju6wGP0tZCPcdsbxa+av3DDyI5TyUawL5MAS9GCjU+8cAGeeNway/ghkzP+zea9FArYBoVB3raPE8RWeebrJxvIw6m5wBo7m2g9Mubf3kEW+bwCEl/qgjHb0Q2y9GkyZfo4JLK+J76399Q3DgXqjzHOFv1ow0DbwFkwpd9NBTjVYLadkC/fAhMjST4gPLXCPs3qvTL1REM+OV3FhEf84UN63yTSjdPqPlUjj0zge1DdG8GfKGPga1840pQTwdsGEej2gngcoTxebPeZnOv0XyLwABDwR1pED31anqzpw19STOpFV5NMP/ySei9O7I/ex1bjo9vDp4CEdBClDibVrwBP3+q90WX7YrooUHmvlvsS7zNhJQGCTzaeYxt+axUE3mPCnTOyUJ/en/58aVur7W2mfQGM7prR8gHEOGbsDGy2QObBgj7haPqEkQ9641ehIf1pNK7HYBHnzM6gh8+aut+wjyAZwiu2+RLT5T7VJN4kUQYPa0P6jsuAXPkXDQwbA/Kqh96b/aSkoOhpS9oZ59EQH98dw8/119+6zHnA2zAW8z/redoOoBLDav87ODwYg39JN9PG5hWkoHAVUYVecy2BLe3bkM95/HqZykQJ+mnD3YPkbHlXKNSet4nGQcTD/QpBW390z/Ug9u6rwnHQaCSe04PPC70SV0eA8wL64t++cfgFsPmz+/qK76y7ikiIPrtC1vhlwOMvzgc9NvOpgdbdcBcvW8d/N5PLsVvM1zz726Bi+QPP33t7db1C+VtcKKH2SnYwpSr8NOX6/6IDdb5PsmXamf8/Amgd7R5Q29fBTiInlU/8+1YSE8z0BAYvm2/rpcSjjeV/+03VIvUkxQSNaZUp3Xb7zBuIZyvH5UGHEiz3/hA6NUdttb7e2O/3z3Ayv9YtcHAJgg0JDs+v+CjaYGsHfMDgnRgV2qE/AQWutwUeJjZgeyn9Q6HPL5EWR0fBbZ6tehH4au+5Tt4YXzw79do9fMJfAaZQi3LbPQBrr1eXTRWSNgxGA3qqebAfP2qqPjle3w6JtLq96mZyCf9b3wrMm7Q9rNU/Xy/LRt4k96IPofTkS309HLlNT8hjOe/bLnzRgddUb9hw62Yzra9foadOn3xIY6/+nIqcAg3NPYJx6li1d3aFwcPByHE6sqntXsaOGn/NRF1AjhUc7brEezlr4+22r7rR+kEC8mbyJEoVVX/eiFMsDJsjyzfV+sx7cZ1PzxEk6pArwdG7kN8PT9/4wvmy+iXMAx2jAjodenZUIM39G0R4csHEzZ0siz8+UdRPhfV8jVcAdzUJsbreqvob7/gcAs8rEue4LHX3EL4NSj+4UnPlJhX4Kq38MG+Jjqz9f4BplwMVz11qpbdYSOBOnznBAjCoZ85W+4gv48g9R55Bgi+6RK8LVNAE4ZDb/gsmfLLT/ABpbuehNpTkX77AcIn2QL6w9M33vFEOKZmv+rV9Le+cPhdz9T0lj7ANT/CCowUxj5ggFDvVIWiqDn3C2i1hzzUQEPfcsM89qDkAXy21p2l3KdfBIWVcJ1f1GvmW/bT12vLvRy7q15b811R1hBKcfC+b7w1zzzD8fWdf3p47e1zOoM9qkJS8wL0ZudWb8BHvXYYf2nFOv6Nz2D+bjb0YHi3fq6bvfGnhxYrUxj31O0BCKediGSu7yMm64kBRuUuURtkUzW5ai7BRxYG1N06b535XfqWkgOsCM7Gi8d/u0SEoakIaMhtUnX5EijSqt+w0vNG9nt+uL+LEXUeqc140d3boK62FyIyHOos6KUUvlrywDbonz1ry9wG2c4l2LidH/pvfwj8rzMF8L/PFJA6elPrqFs9d0jmB7ye8oAGp61Xza4CzgAmdkCvFay8pZ1OCTDNc0KjvHYioWt7A6L3WUN0eu7BsOCbK2116qK6capqrJTXInM7cUIkPOrecmMOgUpBBQQ2UM14qjch3JZmhV3y7cFCOymHaiETateFoLPN3Zagrl5LVHfZM6NvHFvQCTcEsaY7ZFO7vROgfISK8NxVj1ieeW8Yod4jsEQdo+49t4G6zJiax/alT/d1zpL3Z4uDYDPoI/luY/CVXYz6G2RsyZ9WB+60OeJjcZJ64jeyC0V7OWMDvvWeHKcSwgFod+w5+d1bDiS3YDiwAW2UvRSRTXR9wPp2jbD+MVSPe53mWjZYuaMHTi3YMi1KCXfWtF85CkbzRQiO8HuYOwRVnK+9Zh+CBLR+ILvvywFkfveSdGK5TvJ5RyuaNskZqrGVocXox37KtI8AG1svsf9ip2qi6FXAB558fCnCD1jqlxwC4QxSjD4P1I/q5p3AfXkSMS6yDDD7Ivjwk+cfevqkVTXr/jTAc//dUTsUZtZSvTmCxrrKBHy2S/QVA9mFUMVbJNZFrBMTFAIEV+lCwKuUPCZddB9kW/Qg3GQO0Uz0YwKECvNY8RsezN1Y2+DqvjZYrfoto0WuW/LjKbjYC/Z8NOZrreFL2GjUicqyYu3naMNIM87YTI4WYEYGJfB2ny55nLgumrfDxQIvxGH8vJ9INCUqiSF5f7fYd8ZzP3Nt/IZJt18obiez5wJ/QKDfXe7YOjg8I7dBL2G2tQvC41jQF3AjChSqgMdGISoRb1mdCwa/tDE+IQyW+c6/oWzVb2wMxsBmrn3UkDjvCVvLfRMtFpgIzI6TTXjDdcBcbEsfZsFJpWbGBYypmRmutcBHtCnPqj4dM/sMXHYuqe31bzBL26aQNpaUohjENCMHcjbg4chuZFIzh+24V5JDdvNf1Ex6xdvV9zKGtbuRsKemG5381uOtiGNsSPyTzfayFlXjhgHf3dsnm62giGH8fMxUaWsjmjhg2fB7+3pI0DcNmOFes7byRwNkv8lOYOSnd7PvBveM9XdjR2w4re2NDkTDDja7bJnfvSip3IMjvO052XgRzBAu3eKSJXA+2ZL0oIPSd8iofQ3dfhqUIIUKL72w7pf9ei7NWeBnczaw/ZzK6P1yWQrjgCL0KqxbNOzd00YOC5/H+nFbVdPJklO41zyIdlXhRrusKXwY6BDhhxUY/YjsvQbtcuGwu2diNPGO9pa7ZvTpUcat19VN9QbKrjPW8WxBW+6zBj6k3Q0t4j0As2G5CUTao6KWrR6qaUJzIhFQBgiEF6SPXb3lpGRoL9TXLATGdKNtYNV8euy+RpC17z1LoVWeDGp3JgSty9ACs4KzqCLjVp/UqxZDo8r3iN21Up+vxukNj5GFEXRGrqq12irh9lP0pAQ1qCYllh77LjdiHH2Ml75UX7CBfQIsxL7LpaKv6ubCoIy/RC7mTfb7/QCKR4cGqpFVK54+JAc/v+gxwjqa6KE6w3j7HrF92j7B0rReDJzt+ERc72f6fNbbDfRmkce+9mp0utyWEmb3eEvNY7C+/+ftAeITulDHK/RqJ2ZtA1H4fmIUMJct7KM3EAffkZohyAELn5n7my/UWRKWsc7FCqBxldO1qhzb7ZGpwQDNJZJfzZS1jbSI8LyUFnbTzVef9Gtn/fCXmnooen3qb2Nwvp9yRMWXyAYzuRH4/YIa61dyraYgPQ5yMvQXxMTQryb9Om8gfF0B2TZ3CXSblwdhquQhfYryqZo+3iJCx2girBZlqDM+7Vz4tumX6qNVeCxtjmd4Xz2jlVumzt9NUQAWGrfUj78fb9g55XpP08jQUlwnMBdW8wA7cYgpmjrgMaUJNXDEH5vMDlEi9n7bCxSvFiUsr52Mvxn7GH5H60T901rrySquA/RQtFAtcD4rnogDaMdapS6O1/6wqZbIx83hjvaPiGdDExVEdlTsoSkfGJhBf3/D63No//iUNQ/NguGvlq80FRVxmqAAAWfbOIx2ezBo2jaB7hk61HUfx4jJ2CjBSS1rNFymSF+4K1Ug6zWNank8Z/T3/2ooXRE3FJ+KceYuh++0sqmiKlM1t0Cb4JGOBjXpvs/Ih94keF4KC2OF3PSlmdRCrlwcUqNyc29Od3kDbCPNiEzKgtHrtxng9aEbBC7k1ffnerZg079rbF4ZyWZnL1sSd1243+d1GlwvD6h83xbFb5HTZ1/NDHjtWolsix3XLx/qKlA7vydsunuZfRb5VUDlWtpkGU+viEm5k8L7naP4vOIlq2JjPQeszNiw466a7JsTQ/ejHUh/l1m2zv8cgvM9wFZifnqWN6IFtqr8JaB1nmx+WDYBdXs7UWX23Wo+7O8xXPkXbUPzxZbr0q7t34CO1cRIo+XS+xpceJph9bgfoyZIkwHyznDC5rkr+rYnpggPZ7einksPYOZ3IYQ0fuUYT2Cp1vUKYZ+fET6ImpJNO6c8Q672AopscItmbcYThEZ/oIfwk2ZTZ2UbQMHaj41TCzC01pqBHqoFay9UggkaegKaxHus/Mn1C+2WHOT39w5t6kvRD2Xo5KDr0pm6UudGbHNXJHjZxjy1H4+dx7x3eobBNCoUXXiHkaANFKhcpg++XQ9ORGxSQTjvHPunD1aDKCJ4eKMXNvKdAthPX7zIxsOoNTi2JA/sgg0fz9TcHgSwlPyxhpsX31OL0bYnYf6VIMnSE8XyrYsWaRShfC5zGyebOvKm33i++peOdtIZ/vBbAKv+I1zztLzFacwSvDeWv+LPMRo1s2ygph46wrbiUs0jGTsgOaFB1wO/3ozU9dLeA9/QR+o2/aBoz0ZCwZXHv+flI34sgHqOxT89OCGfM2Q/Ws5oB74WYEtk+GDFH2yV3L6i3RUU0FxMl2rF0nnT/Vok0LAWk+xX/TN7tppAXzkhbPesAIwWjgHsd3ml+tk5eXPPcQjCN9PJUlyPbPGE2wSmehcSfnuIGUVH6kLuyy30dInNajzrqQWfimZidf9UdXZrlIc8WzLCOsjSjPvh5apf6PWqLdX8kbwQcLfiSv3bekbWE24LWC6fJxqdMsp2fFrakCaBis0iNAH/VuYO+uqGUS+Ox4q8iFuCnYtUNHNfXC3nDtpQ0rKVn5OtN+zhJ4XpYxro7flRvckLpQXg2Z8wlvnK65QPWUAyCyo5GcLau6YrRMCuJaTm4Xz16PutLEBozuV6pksH0zOxbdg3WwNt+auXkY9g+7DNlgJjs3YrdovGRvrA+vXjb8aS1LdA8pp0nC9E7UfdXEo4X1Ufo1WfcYZ+tQFSpg3Wb6pWDUAOXFg13x410aiDsdxHHWSOW6HqWHVgavyugDoLt4T3G7XaldVrvfcS7IiQmGY1v5bLA8rntdqS9mq8iaBbA3306vChgpU+k+8uBunU+VS7B1W0dCVcoMIhSDV7GL3pdH6JYHNB/G8+6uPROS5w5QNs14Cu/HpQ4D7a3qkOsrXWKTAe8JMyBW395aovt8/FB8UAJ3oQKJ+t+NtJTX3fU8X27tWsi3cBkvr0Rpz3TKLxbooctDGm2EgyW28f3bcBpB0GtGmBxcj1LT9A/XgoOPiguJq6wA2hw4yO6Od3FxFz5M4wJUJHulUfkXd6jffUoIDslvDuTaUcE2hWZKae5768RRne8I9fNsn74U11pED51RwAded57RcM3r4sJ4mJZntHoqmUH4N0h5GF7VLCgKm0MGA0lT2Cj6CPRhspBkDno4GxfdmAWfFVSxY6w0Tr+u6n7mzn8KhrJ+zsN/tqkW7oCHa1xCPQvvce00rvAZddppCxLlQw+WbsQr6xOmpnUeexvJkM6TkQEUnq5xmxuEg72Fn8SMpicb15t5kkOQWvBz7o3NebP6pTQOl21qgXzhbjbOPR/PQggSfK+llWEh84ISRYuVcmmGNDHeSfv7nf/Ws/PY6LAXwlQghYY8NazW8EuPkcGbX8exHNPQd92HiPDpFj+fQ6EuNFyk+KQn96mF0KbYHGxX0g0WIs6lf8lgtf4FB+iiS2KNIthz/+0yE1AMNXHv34D4EH94lGY3tWYNkdYoxOt9mbTwAacHuwQ3rdzFw05cf0LD2BeUIwXc9YrnwMdPVSYu8kndlc7fsSGvwxXfXCsRL6dtnAe3f/UG08qdGyzidozLuQemMtequfO4P7KI7YK/k3IIfvuMD9hypk2+xZP5711wY6r+uB2vjY98u9Pg/A0oXx97zZYIe6DT+3Q4b4HXCjGb6/IdCNqaO+EDVRe3SSCfLvtqQK32rgL0+4qgnGuD0PgOWlM0HzksT0aIqaxwcSfMN1vKjnkiZj3+O9BuU9LbEzw7RagjbQJKN67NE2aJxqeiaKLReeg6md0RLQJfIRkNpUWf2TG02TZHWwHd8q1t6s7YfXaX7LVFJKaj75MVvUAQrAiAWd7L7W1P/puXT0THx4Ar0aY8MZwGurOdT85pFO2jbzwQCUO+L8a6c3p3MrQevSIcRXWdS/6x0V4ZH5Hra3d1Mn812uoV9kLpmNjK/I/gnr3/ulP7zbjUlly788h6jTkC3nuXvAElsHwtO9l/FftQ3hx0+/1CjuB32B37SAeFu52Fj9xJAdtVxGNDhTIxHUbEacFcoUTOZvfNnk3cSNyLX1Be2+cllN48GrYd5vjwS4pIn+8pnBbEWy175Ltdz2ogbsRViocoGFRyA5EsgJ2EPsOQkVq2NOgb1/PNJEciRAzdyfALAMjnqvTQj64pJP0srvCOyDO1gcWJzBOxBDeixOaTU9jpIFdcpEUh6Jr0+hsp7dtT9HqrVHlfEJ3QxQrqcHTb2LljHhJfq//IvGWTv0C7jVGpiSfL0TwF+j+TnzBDyoZKPy4r2zVS908Dbsg3/9kpCgBba9lCMB18QbJtWQ5FXf/OUXYyBxNSybK0O7J1h7DfrXGlwU8UkvU6wD4cUrg+w+dxnFL2L1XBqLi/R5oLX3kNB7Uxdoxz+9OoyZwJaoG44Qh9wVx4IU90s3rbW/qcmwdyuA3vCOVkvAyDDZXbWlX9pyEKF5SWPq8yLWqVZ6OVzxkbr1xwe7qG4RzLd5TC/Zjavm2BU1AGJ3QeQmtBEB37VWbKUMWDHzNprOSi1AI+Z0xAaM9GmSUANDvVDpQ538aOqDTgOzGfQYNU3uzcieNXjzdELmxhYj6vZ2B8PXJsG42bNqOp1bESSTm9O/vG1ULkfwSWcFB2FmRLPYPQxwDHYf6nfHltHkO9XyTr/M2F/HY9h6ex+YUcMQWO6dR70+KX54SlYEB9SJ75t95vD7le8rtvTT3gX7z6hghHDVLybXNZLPxCOhtyNh7JTkG7DmQ9RMZQDqlJ1qsPpZ6sTDpE+Bv54ROLS/e9W42kkXD4HlEFjYlLpHvwSUxXDVW2u+KHtFrFo1vPsHn3BnXgUT2dcioF7t0TW/Y+xxljUJCEeCLUGKqxVvLSjE7y01v7shGmrfnX7rnaIuVnT+IZ7dv/ULtMGJlkDYF7JVRgapuFPgUfuy8UG9f2KyTArf09TfnWHumjM5K2svwR8+ivqnpXjPVdV8ny8bCNcuTLpisH4+ggHBVHmEf3nXiEEew9/z+Vr57ZtFqhN4pNRYD323fVfcrgI4IHmHFe567RlnbnNwOM43mvSsYDO/Szfw4lGGldnv+pbCUoPvQAqRFBY0+ukBWLfZiWzEIfVYeeFKmD6WAe2vhzbrHmMogovcH/HhcAuAgKfI+OXPZBuaKluEDwihWeo+tcIp65ehOhew6E8etTLEonk/Dy74PU+gFuds8jd0gW+pN3BQ6k7P7V3XAot5r/7we+pEmsJOelAigNnupUc9vOHluZ4hfTOnmsbzZMi/PPuXB/ByL8fQ2dInNpO+8Caw1u384Ykff02Pq31tga314bEvPzkwcLZEwOr3sYNflb4o0imHnz2+Ygyr65qvEhconA+pf5mYN1vL4Qh/eKBx4tfrd6VtweCs+NTKWr9f88cY6lYRYPV1M3TGXsr7D1/s/mp77HhC4m88//Qma5zvEZbU18moGqCazzyfAAffv2S5B1XGSrRZe01sL9jJ3mo1R7rrg6KPPKzR7QUIFV/ksL5dInyYlFfWho5YwNvxmJA+joOKbu/HSf7l0ZEBP94cC3cXNtZFJtN+vXM4zI4C92UkEglJjrfc9pMG1zyZ4uYusRlsxRQUskJoshwAG/Yn5QhXf04VNWvZOJKxAUu1l8h8T4yqTagwwPvzHdJ8r8FqJnqSwiF/WzR4PMqVH5ozvHkqwShI5mrc7aThx6/Ym70HGyN+LH95DurWvKWdhSgHathGa54GdMa9kgdY83m03PyKMXT8umD0F4X+rfeUnd6QNOoBn9SjXa1+fQH7S6/95eFML6MYnqrEpFktGBmt300BUSFJGPGl3y+vYhThWXm39OwzjdHvW0xgmQ0yklc9vhMtAQL7dcBUN6DpzS9LjOEHvl80jS2+30EEOzh/rl902ZZHnbNOfQJ1Oou/vDf75YXycvk+CXy0hr76PRcO3eaJPn6j9stYDQl0dbvB17rfRaNhaQmsM01EGxvsMxY9K0Ve8y9sp+oDLPK3S2B4tHf05N/PPX90jhOAQlHTX/6y5Gw+/+UBwXjkf36tk6SymkjIqRdvehmBBX/+MNCuVsbHhkokPNIWCRCpHi+0whleFO5FserOjNgwecA3jFvUrnn1LHaxBTXV7EiX3ZSIDi5ZwJT6OdYarvUW8NW63/4SxeIrYcPjOh3Big9ku+aFY7o7d1BIwjcpTkDpJ9uIm1++Q77dcaMv/kuAUOaNPXqNudZzQ7CXJNKSASsXk3gtt3HCfbXWAcVz3IOJP9oT7HIrpv5+j/plm35KeM8dlx6WUNaZdXk84BMcTgR2RwcIxdeI4ab6IrJ7Pl3WiMcpgfFgfqm26guSfSCEz8JVqb3LLG9mky9C+uZ3WPe6fU+WpQnBfUsQ1Quf9qx/qjX85SUK35Zs3Z9x/9bX9kNrj083LoSrviDFrayzcfUXklmqPnqLleEtBpcu8PFY62Zs7x+9f5ZzKteDcMO63qQ9E7NXB+dmojT4tPjnvwy4rXgLCSCm0YAj6QgtJfsQGHt+tHxeYwIzapX4p5fnmMYQQNvC1IsXK5ouqPchZ5wI9fS1DqbfNymIlHhGsX9XIn4rqW9IxINJDYYkj6z5H2D8Nvrbf1qk8LqBy/eiUS+9jnrn0aiGzrjf/PynvryIWwCemx/Yn5V7Txy+tH95ELYO2yZrt8PFkKJRfZPN1GUeST8fC77AV8XOTZD7Udwqk2xrnUgW9oYVE6yrD2LVvmKVX+84Z03jw8V8VmRODCljzTWboFpsCT2QUYgG86kocDz0EVn1kccewYYD7tzI2NvAV0ZKPqklTcgxNt7ayPpnuU/gdz8ecOjxEqC0cCx4eSkZRs7SR8uGTLkcBAcZycX8iEZu51lg8gQdSduD1rMSCbH0y7vN7HbuCb3fOehFZY5/+d6UxDftL7/DHFz06Wu+Y9hBP1zzQKUXbFJtYP3IFRrrFa3W/SAJOpo0Ufu7qFEvY7/45dc42HifaqRwFv/+n7N25+AuB06ERVs1BKx+b+WXEO4j+Y6j1X/OA+8b0MYBxTo3mmASnDCHkqAJaJrmOZqrhUfwu6cH9NPrczOiFLy7r7X61/d6phYf96tfpCpsST8Fay+wuStD/Nt/mDZee5a3BzckTZjuvXrd/wPtvdDxrZ6Qzk6184BR6IbIXPe3+MB+rfgHn1jP6zZj2WsvwevGUaiLnhQsTXlXICjnBv3yO8IGlQOhYux/+qaafvrcPj9uGI3Qiv70f5ee196/5jdaLu/7IB0M60MPX7nshfK2q6VnG004qIsXmLYbo4HSoXyRhY+UaJJOiQ2To1IQTqwMnQ2n9wbCSC0wdvyJ/fZLf+sXu5Z27WdphhrgbxOmzjas2JTG0/L/eh/I/32mQKDfG8V6Cfr5q4sISJ8RUceId95t8Z8TKLLoSw92/QRz8D0OIit1m2q7m13x71v6hsbNvFOLelyVLVXTAOPrNmhTOi99aUf/AW2Zv9KDeh4z9qiyGmbf84DV4ORn3BUqgjxV0x6b8HTvZ1WURPgRvwZ1rk6uMyWXOriXirVie1NEdLRiDTYJcJFIPkFGtG8tSE6rD6TFL09vBC0YoA7CmDRBUbDRXO8dE8OdqPXdzdW8AbcOSteDjTg04Gg5emYKxXCKKVI1Q+cOHz4E7yP3wjHVTMC620Dgmz5qbOUEeaw/mwbsvNTBFtU+gOySRwxs2UvHacN9qkHTqQvGWxVjs90KHqPgQWCCnjrFLior9swMFxq3wx0Hy96LuO+5sOU9Pr+pWu8P+rRE9gA+7WZDFu9pZQv22gJk3/0XW5LiRhMLhzfUH8OBSJkwZpNmeCEMi2eH8WIbjBkWZwss5A74FvPEWw6HAAHUZAo2NsdIX1puN0Fb3l0xToSmZ5Wi2fBsJSm9pexeLSHQ3jBqHifqHw9aNZPycQT1uU6oF+Oate/cTaHhiDnFJyGqhvaU+8DaFx9qFGzXT6f3DGF22z4I7PxUZ6PhxqDivCM2VYnr2eC0EPAX38BKVG6jAdMZyfZROWF7BgVjfBIc4W88XO1Y6Ytk9hM4HB4E6+a19KbvuXABCKM78VLtqi8ybwhw1x1mrGv+yBYx3BDYhnaH8ye69MytrALiMr5TGxLL4/dnRQNKmBBsL1ahr7VzNHhYJhMJelSyyc5SG357S8d2b/X6bN4nCd732oAdW0l60o5GDmYYZ1h/Rh2bH5pO4GFZTIxGk9cX9ZO5wMkOFZGcWw0mqf4W0ldKLGpZ8jsaTl+zA/oYB6h7Xgt9Pp01TSpShZK9rYg9fd4BBJeHLaMlPQwZhe+9AtfvI4IlGxH39JSz3OpZiV6L5gI+9JYazirVsM+NL7bAZW/DfDv7GD3YWC3Fmrlv7SLC1+218abLwbal2uSPVGtoGE2PYLLlx6FbkJhEtbfOB3e770VGtXuoVMNuv0Eg0JQrvtMkqRZ5uStADJcYu87IAWZP8htctxQQ0ekLfQSOPQGzxIBMRt33i9JJC3zCqVrnjwWm59EToLttbtg/Hspq2HESgWxqEVai21QNYd6VILvJD+qwuWed+olceZY/EWLqWFSDuEMpTKF7ReJTPkT8On5/z3dpt4I+Bt+EwMXdvDD6NHq0e8vhUR75oqO3j1N7i72XEDjEBkfNa0mzEb9yCK+zKWDcbVVvQQnM4R4ggQb5UmV18Uo2Ul7UPtqN+hQNTbaLAS73CeHFiOjpOt9AXpkQm7VaV6S68DV8ytcH2YFe8MbqfRLklJg+9bdbTl/Km1NCgYCcbHUUVBNnqzk8JapD9bN7iBYjLGqYb5mPdpzP6ay0b+/9dBC/+NGGBiD+S5egl4sfrL2OR325fAokRyhbSC4Wi7c8SS9CmwYnqu1QG415iB6gHJIBdSTi9Okckwlku6DDbqIOYDHCpv7hC9nHccGYJexjSDaTg3EgGt5Smw8CntCqqUV2VjXNKaeAKGMKPbSIVrNZGG/4PgovNJ9SoI/zYUrkLd/fqXIXv2D6vh4b2G4GkVru9wPmd+4m4FbVPDWkgxHt5umZS5/sLJLCvmXrblXjw5iPa2y87zd9ieQ4hMOTAGoe9SBicajkIKT+TBUjG6KeAEkAZpHY+GF3vD6bmWrI4PQt0La3KRtXvAcPDqto/7pz3gj11gbShzvSyFH1at6fbQ20xpyT5XWc9OlpJyWsropFzz3zs6niPg2gPY7JHJz8iDs8HAj8z9WiOsEPMF18r4Mo0xck0JiBqfWPZL2aHlB9XDRv51+uDzCMhoOYo+r91G9eNTS+wodInbvGLtL0gI2j+NRr1v5bz23EQVx9L9TK19MX7kPXJK8TCOEW9oqmjXPi5FOiO4iTwqoi/CO0ZGLQHmmb6+gtZmBDmJu7CXGHZMhmb2stUHLcLTY8LQAzfjpHuBNEAyfuA0SNSfwB8gdBIMLBYvpYfp1GImeVoO5cpF5xet85uL0K8d/7Hy6+3oDN4y1gFb40nf/abICbfmNQjw5aJOz1xID+e/Koko5RT707kSStSmbs1tvZ65Lr3oYZv1morfWeR4+iMwCnpS3Z2Pw56gO7aeA8agniwtfkkXyrLTAMXy+MyUPP+GM8C6A1WE5NMc/ZEsTFBATViOnhQ8doPsZ7Dp6XcCDtJtMy3ln7I8/PdUtJDqKo4Q+fM2STEWFls32zlR9K6L6GE84zyqJJF8Qj2Iw+xCbXDtX8tRoNJnvrjtLz1ct2h/k2wFPdYrSw9wGs+DZJK7+gfaqU0fCSTwguuxuh/tO0GMsE5EIUmC2i1vulz46LDPgkNMEalaxohtZxI8/Kw8XG2/F0di49Hyb5zceBpGF9Pmb8GTLDV2l0dg/ZdCOnCdZl8cKel876Yhn7At67tMZ+BHVvHibzDGKuWS+06H203MJbAe0R3ujVPmsZ/1S/a0XQXMDBiuctedb5v58/m6HHRscUAHltdzgopmW9J6At4HJ/awSwzRaM+XlzlKalVKlP1JSReT8hGAUjTw3hrgGheCUQmsaWEllvL9XMwRzCeVQSfB3Ek76IF1JI8nzuqao9vt7UOoUE65fwxh7bPAGplQzBpMuv2Fr5eEldzQIrH9ODfS6zWVYuCL6MzqHmFjzA55jxMRj5sqMH+z7rFMvtWeb2aMKWblf9NCfNGSrb1w6b07b3qPLsHsBWBoRe/OBndOW7H3+j+fl566NPGxu8j/b7Ty+t+PyAyM8GVD0X0VvuAohhu1EANo/6mDFpaQygvL4Um2KE9F13fvmwnt0valf+YplQHuUuHXxs6fmpZ6OhnSHt9xH2r7PO5g04NVBZVzDWy6xfUOw3QDHVgpoZekXTEikDUEy9QFtXr7IJvLAIXiZQ6cE/hP0svsINvGMTE/b8imzVdwsUq8uJ6iOYAOm+gwAfrDJWvMb9HMxXAiN0WxD0wxejRNmkUFu0HUbc+5pxneGEcCO9XXpmdV7Nn7hc4OmTXqlxP/MZq2mPpOO+MLFxd2Jvp51AAszpZKGtfLJ7vtFzC5rRl6f4Ulz0SXq9NbgVLik23k2SUXvi31DY4Cc2Cr7xRufwCEHU2ojehZ0Exo0kl5LBWzMCgzL1tHQ/IawjMaPWzRj68TW0IZBj/UyVyNT68bnZDdBw6xt1NhLth5d88yF75QG25M5j9LOTGnB9MYatZThEi0KFEOgPcqDey5PYoDlokpCQe6teRh5pmIJAw/kv7HPbtV/9uFbsm08SPhhwk/U+ssM/fu6+9pa1HNc2Egye87gl8tQvkvs9Qq57d1RN0kmfXYM8pKY+JoS7e3XVHB7qBu74wqWO7e3AJJW2DZtPnWFVW3idsYejgc1eDKh9lsNqega5Bjdgp1F/9rG3wGV2oTf4zR9//vgLFrudgJ33pmZkEYYjWPGdPnn5089jNw4gj+Y9xvvvV2fPrAjFq/H6Us1QjGxnE3OCoAhqekhnmzGn6jro9WVPyrDpdHqvvQRKH4qwsrWjnhy2NwHM65llS8/nnjTM9qUur7ZI0G29mnorX/eIkxobh8SPZg6eIVDRTlr7I1+yZdmfLbDbPbZEkJ9+P720fIGKbvXUNamZLWfe4qCySVRsn75bj6ZgnOBWuKbUi41vv2hldZY9BHO01UtQLe1oPEA6FiechWmtdyf78obyojXoy/lnfS1X6sOrUX2RLFcq2OlG8ZDve9IioTDUnrfSN4THezmjDXdsowWIyQTc+YvRttu+vMns99pvPaFdOtuA6YdjCI2dXlNd3F+yoTkbCiTG2OP1fTJ20/kQzseLjRxpVgA9kJckq1kTrHpm7y3nBdhwflqYupqpM2GXPM5w12Yc2S6R4e0ej6MBk3ZKsYeADhbsvQr508INPiWW5k3fx9eGRwlp+GA0U9bPrRLKMLjPq17Vo+lpHws5a75vrJ6sYOWD4AxG93yhqvPtGGOVX0hIPG2wIUnbfvi0JIUJVjfYiTvCpqc7+ECc5Svavzc1GKWoksAR1w2Sxq21+knThzCfOax554MnXJanAvkDJ1A/yz7RtFXdFMygeaDZtURvkk+BDeLESklllq9okp7HWL4tCCAQkrPOrf7jTx+6xD4zJm6BBlUUbilS+W3GKIgHWHw3IjqzTI4o3aASPuXLgwY0bT3qJVUKT3x0oc6uHvr5NbyOf37Pkpybt3xl7ANCHxaSLJ1FTH6NBsjNI09R1DmMYuXmQxqkmKKJxlU/sSoFfMW52CYp8WaadhDG1+ROs/trn03xZmrkPKxUGqzNw1ml7SHIX94B+xmNouXZc4ZY8LFFhD746INVtW94D9yUHjif86jdLxb8ZLGIcdK32TvWOQSNG0ux789Ub9d8RUaiDKglxA3444PKhoDYVpv2y97TU4gydcFBT3b6eD/0ZzCrukmVWNKzRQyAD+y114ssJMHPb2+geTJMbMlPv5rCvCsgRf2BhAXU9LkTHAuScBHITuEVfbbdEsnmadGoXgPAJn1TvWWi54yAl5cCloJxgbM6aoTnHkHGgReW4GPZONSR5oItCt0cofAkGdaw82WMgIWTo7SwKaoPx57eaz2Vb+/jgoOTPFYsHLVc+gTbDom5XbP59rm78K0WD+ooA1+N1avTgFuefGq2nMBYzuIz8C+5TRPdTaJRQk0KHSGRyE8PLw6XvsHZHO40lpy99zEL/w0Sv0TUF33DI7vYbYD+0FwC65vDPkGnFHDNn+hjO0qM+gkOf/6eiKe1Vn788Q2YPp8WVTacWe2K40uRo77fUPdrPwFD5nmAp3g5/emRuR/nDuBXU2D1nBcVg1+fAFVk1xHOlztYUMI9ZLXbITK6rVst6ogeMNSaCttBUYDxCd+avN+HKva327M3/vRXIzgxPqz6baproYZRZur0fHcEb+k+J1tG6WNHrdPk9EKZXRBkkSzTX/60rPnYPlV4FXcndcem5nYo4E/fqc/P25v1EXRg1XP48MjcqPWFbQxie7oiWec4MCubtPjpIxq8Mb/6+/UMHwE5NWgTePx0vWpQtsYTzVY+ZYY6NTDKLwB1VStX4yGcO5jrEvjpZTaPX1kCj/dZx2g8nqMZenkOQQEqqqWZFHXYe5WwuwcQgSbG3oJOqgujnXGlhtCU+iQ9kxhWcexgQ4aff/Ol2jxeqOvcLLD6rRwKuu5h783DaIg9WoKVT+jD976MXZ1ZW4+EdPiQ1k61sNlo4MG2e6xC/ugt3+1OgTBnHJGFAfS0P+0T0Fv1g4Cdc9bZqKYF8N+Lh50XW/o5PwsheFVegApMqT4lbE7Azw+Z/q0HgziTBehPuKV2wBFGhOKzQCm5a9RJmVxN+V0S97/54nwcy2OGKjbScV+aNBAqn80//27c0BMtIXOyRTxWCoQCF1HLnbiK0IOHwH54T9g75Go1TVniwsenBkSWqxcjahc38L4fWjStedvyerQuHIW5JOLeeFf0QFpRJmbWkCWEokdPdDnCLn9tqfZBz35QLWbAO8pC9DqlwGvx67wB6/uheIne+jLBRoMXkDlEqPalt/TPfQnF6nqiqmXbFXlQW4MUtQespG8DTInIiXAvlXvsZkKQTfTDQri9mQiv+NsvkUQeO/KSdzThP2U0y7qpwe994PHpG1y88Y4fHfDXPmba57Zh83S9KnDND6hLorM36o3oSuvvI/P59MqYH+kLjL/bZNVXF4//+SnD250IS2yBEfHYa/A6HwTqpE/cLyc9tQBvF4z6nS/ps1ElBVjxnBrCfATLpPZrfh0P2LYKD+yk0c6Bdnk0WPlcO2+CV0WSK1Zf0L65O56oqVkOS+wWeNXrFd2eyrO8vl+sxfV+PYPfEPh8llcc9J8mY/ceidJwnywCVz/H9dZ5A19b4U5EPtW9bv19Pz+KDXn+sOVozwMITkGCD+0NgSkRXghOcTFS83pTeq45+wokZcvRw1SG/cjPswCd78RR5D8vYDnvhA5++kBAyw450XA+9SGQLTsmZ6Epvfk1tEdoddKT6uLnGy2SWU0QecKMphTV0RJqPITWvToRfvVXy7yffFl7WwQrWLwz5jTE3aOMUoxly8l4gIwjTHFto4M9b3Xan+5HmD5Ej7qJC/rh2Mo5DLZeQfGp57K/vDCkIsGBFMve0Ku3HP7yO98MB0Bvalv/5SPSim9MdxULTLN9oFfVWftdC6kN8+LtU817WhFTr5kCVr9PD1HNVaN1P09w1ac0uNnqT4/FcPzen9StWrkf9M0h/81/jN1y6n/+EJqGTFd/qVfDlB1dmZQ9R/Yfp9YJ/1Il8PNHdvIwI/4h2y4Ya+mNNmWI2ci2xgLcbXejntTVoEcujEFLEx6H63wgyljWYDN0Kv7Lg9K7SeCaZ9HgC2o27jN2/uU12Bf9t7eU8WmAa15ML23RgO5g3BP4w++9sjuzHVE2iSQa9pHGq55gulNt4Ey2P3+x9Fz4IhrQZeyRnR2emHAyxwneA+GKNmveuJhX/A9p57KtLIxE4QdyoIiSYogiF7kkCF5nggrCURBIQvL0veDvYc/6ARjASip7f5tUAYz7kf6rHy/aajDyO4r8++BLP00C3d0kexJWtp22/uOzgoNnGTSM3Q5NeYCeFfF+4v1pv6szA07PhcYi1wqROnyiDGju7lhaKVkyzDQlB2/3tMhOtZ6SxzdBQZG9SxW+aJGw4uAJbPWpyFg/W8mWSQCiDvqRB3/T8bxw4Yvq2cQjJAsibuvzT5bh5hm/0NAYVQw4HD60KY5/KdX72xuNz9PiGyo+L8VtBjJJt8xAzZD0urVYgEzmOk2r0EgkNT8YPDtZ0WLt07Z9vdUMJr20f8ZzKZTyUcFe3al45iqLVJ4vPkx+h/jyJcp+rjw0VMXOjTjzfImGs9wFYPHEZtvEuaTsHZ5sWOPfl5lvvUukqDsPRr9DOWoOqepf27s28izKk4rI6oqqDiWPzQrLVL+kA/5ABb+7QViwme0RFYtrBTSnczLxBX6xnRWknp2zKU+RTZa9J39FsGXIUo6z2NeZNSrj36JASxd+Bmya6sz8Yhv4sg0OAqS9WbAgSnnb5duVBqvdMsSiM5WkH/MIPWZ4mPh7yo+HNtI+TuhN/iClNY+uyEXaGyPp78o/N9BX0CFK2CZCPWLOcOh0O1OPxB/1Zv1yrzlwcZ+zsXGByaPfrQJN8hub+JV4dtdAm1/TA62qepVwFaiBTp1msXBmzNrfs4sCGIgIxv1U+Lw+rM6gXNw1c4VtmDy3agrn2yke/fhFCvMU3af8iTi1tmm59MaqX8ua+KphJWzglwzSL/rSeswf5ZQf1QtcEGd+upS9P8d8Wl/MuTjfZHh4qYu2R9FixYpqn/pNepzyRNqawvCX7dsK4MLiLQtn/kPynz3sQNS4p0uTv9r/5ivJvqeqMcOy184p1awD31K+iVZmT7LxjlN0rMmzG75mp+PxTvj7xbEy11ky6ssMLmbMsPaZD2bjz22uKecM6CnFRcp+Z9C0iRdkQ66b/Wbp76D3UIQX1aspaa297rBXG0GcQutKHj9nGM7X9oSVVQZoMNCbwsq56CNviuQw8hz4lHjU79dvm/994w549VxivomupgzDyoU4f/zw4vZatKNfjuCnRin2qzBPxcH4xeA+6zO52zhuWb/zjnAcPow4qD37A/jH7B+/ddflYfQLJw9G/YLXKKImO77SKwrzMiU+K0pf2ggW6/77erGgWXW+UMp1B91rOyPGHduJqLXLVU+XZY+1V05lf/1bRxNPIk4/9n2b/GZQ7TCdzvNluns/oZnRFS3gxxH7iGQL3fNpsjDPdkiZ/OIJLJt+G8uQHJUq/Ze3EBwIcwC3q1GTj7Nl9TpNOKtbGzx+vuCtf/ya4qjOai02jzl7yO3dX1bRA9Y6/1FCMq9t+W1p7UB8c05PG6YkE6+Hyc9uC/ZIJr8w8QdipQGX/3jM9D1c01ulHGX5G1Zv+0aVwV3L2m42+P+afaAu/vc/BW0w69n+U3SpUHK2Q1WaOQz/eRvEP7N1hKpZJtgDHXKfa+dUIB3JmDlJMS/FS1ePMNOWKnOMR1pKv/nrwHHNjBj7ui9ZBcVWnz/UN14UhYOU7sxnOlrSC11ncy9VZu8rhTsbHhT2918qj2/vOE7ca+lgtTtTOVgYwz3jgvgeeqdCSZIlIO9pM+dg4YQr4bdG6jLX6ZrhTco7rctgb55iRtTHteTJB3WQtU7CHPhbJLzv3B+8kDbHYp73yad4GzHITvuwYP21kmX2+d4hKZBCNs/ANftL0AgQ3uJMrMwgSOrLnKJfA1tirYoEyadiPcE79S0u1ugoxXOAH5zhQLBwrT1a6vcsBrfMdsz6HBtzOOyuAr1e5z+MVqyQw/drZLrTz0Kyr/SH7N5bskLP5v2hy5piSVklNVBL1oyTTPtE4jvl/94/jLW8lb9n60HgxCnBab+R0u3sBWRuMie7vXlruc23HNQyj4m7Dx1TmGsrB92aJ3i9znHSHveYrhtKDmyDXmYiv0UQo6Z1FmxvJUnCX79tBvdMCOaft1naVhfygcVqQVn4+mvM7oATDLl1Adz0P4Fk093ekLuPGxVwupeDNpcZ+KpEZO90FEnbTndIbaAce7WqZr0N+w9wEZrEzmwwKea3CobDSqPwtztKvsAeh/X2YRHSfnWfvspoCcBUj35mq7KUx/dcoHA/0/FgBBcp+CV8w20tHIJ31DB7d/6M4Nt4Z+b+NTWS/wEAAP//pF1Jl7K+0/1ALGSShCUyyWSC4IA7QERARIYEyKd/D/38lv/du+zTfWwMVbfuvZVUhNor4G7uJOwi4Zqxe2yk8PidYsJgcjZma4kvcMmKDi1JbxtMGRsdfr6fFhvnvsrGUxTI0NTYCx8gRtlPDzVO3WMnpN580BmtfFOBYI5sGmTfC1hbK+WAFZQYn8zBrdfQ/bbw+3NuaMYerUet+yJoHk8zdXVo+vNL7EIgHX1MhDjJwdL0dw2unnijx7MCYhbfVBNWN6YQ6boamXARMQJ0/6U4uIYftl7GYIbWGNj4JtwO9TwepRWGpbJi2zWbbDkXUgTV9dTQw7Ze5O2aHZyFW0kPp/YAhKpfvZ0ohYftXHbud+22j3yLF9JydhCvgq016lPxZGzqo5exSt23yuSnGlm5QcvWTAM99DPdQxKYt9nDjVPBp8ibVNNAMjCLfCFIKwWQ8juwgZ19KgLe0CmaT7WfTXzR8vDv9+rjjMEc5odWNQoTYv+mw3iVzFlXu2v6/fd+JHSKSyAsuY7z07XziYIrT31fkIeN7X3yahnmatpqCY3UvevP/KHhlC4pTercXzGbLlk3AsGXHthd0+ewcNCd4cWcXOpQVTf+5fenCVciHNRfPfGmdoEgZC1Zv/rOnzb8AvjC9ViPUWh06lQTIJ1Slx52TxGsPLkW6g9dDBo9Prt4nPaxAu2kuGPrheR44aU+h2GjY+zsU92Q5PJ3g/gCe3rYpQdD2vJdiZNcxpFj/dgiYapAevuYSCzyA1u/T1bAPgQ82h8SYZhlH5VQad5XelTvQz3N9ruAksFnWDMuF2Mxul8Og6//Q9wROjW7HR0C7mROqYZhy9aQHnTVWi8Y8XLxjCejexcQrdtE0cjs2ERB7oEuqUx6SCbAFofreOBd6YCe7KbHZBd8ZMjxaUstTpj8WWBcBedOfVKbk41h1joaAPZjLvW1r2sIzuOYQnJ8v7ADtrsvQvfbwFI3HOxG2zl5I+J6GA+vmvqGcK7ZfDJsSE67mQhZ2LABaU4EhwBO+BgXLltepaapd/2RYG+4nOrl+1UVeNv7K1IkWGaT2hQj/H0Xjd5+ZetP2qC38LZObwKuJ5p1IR5WGKovnwaj9xl6I+I6+DA4h2rN0zeEnts4J8+FNFDyKJsdogSA1HKFrXW3DCvIRhHeIjGmmMezP666tp2zryjFk6wBWginAkq9r5Cd9Ey2+P+K8Hbzj6ibGrtetGJcwSxcShpfmMNmyX/34PAqIurc+paxpp4SeK8sjHiFN3w6P0pFlfOfhR3q94BJjhhCq+oSVDvqKVvPx1+zP53sFLvZs/NJ9f440I40Gxfi5+qvc11fVOG9+jTY98AYHGvHgf7H6dSUs29NH+eVV21BX+gJHnx/y/8WmrcxpEY5KgZD/IuHJot6atbq3mDFd0Vw0Gyf2l+uBuOqO7ZCmV/gP7xZ+OeSqJgXZGqNXTUsze/XAjLnkJ4m6Wb07SvQoDu2Eurwu4zH2yynwNW0Ap9XTfLnfKwb6PTHkQanq+PPvu0hwN+MFMnf8GSIL3V3U9JWTxC8j5LPcvwYwdztnmjJZFRTvVZ5cHf6CG35a8xjyVIoLMMDI/FzNZhjeeX+ais+1q0ljJlAuwgWdTwiUOdtNseP7f748HXDLuMCn+U/fYWhN/+osWsf9aKZgEDj/FhI+jjWPvXzqFAlbeSwAeqaMWXv8nCrr1hfzmLMLvTawizwSqQ89ZKtu7aA8DFnM1Gy+pKx7bQwQB15UORb2GePIuygqI4RPvr1aKx0xQ48NukLW1Qc/Cm/+RflcrYDaocnj835/pBA9/dKN/yVh6XnwgTu5bOJBM64ApKl4wieh1OON7wYph2tOcA53hUfc3cdGL+02/c3r2Q9Jpd6/RnfcD/TjFCdIzd/MnK/VyikAdUFbshWR8j4Pz6HCq6M2FihaYQfswX40HqgHo3WNqEJ+QSjWNiDZeODUBWuB2zUUgBWWxxTcIMxxnZ/jY1VKn4mAA1A8r/oCu5KkRdWPjtzlxJq+/ebBtc4G5aisnV4yC8CTd5kMGY9kB1Vz5IUJ+TBBmL3qIGDaL3RH3/6GUhOYbmkIg2COmTMoL4JotfNJHKjmwM78SuExy+NEccHj5r+8aGZPgj9W985/OUi8P26JzCoQ8Be7a8Hr8dxwOjonWPh5Og5+GJ5xkfxrDBW+YEMb2vpYfRzrvFs7CQHNjKWESNg2fhMwsPuvTuQfXh5g+VcHHj4PClfJGfpUs9a9w3gIB7fqHm/v6x8Y4cHHHnxZA/2P0Czp2ZDqUwEqjkHN55fBmiU1UwstH+YYz1L/q//w3t6vD++A+sHLgGnOFMQi8/2sK5XyEFBUmJsvpvnwOupkcJBkD16H3YntqCL5YCvoSMCk8eYze6l1aH7e6ZYq7Ypk0WFNEBqpcKo2Bc+Cz9Q/8Mzqn8SyxCLxG/AHz7Zx8+dLY0IefDHT17SU66brwd1YGqNQ+Nh9Ya1F/wUBKbDYfcbG/ViHaQCehn8EOVIPxm90GsDPwz+aMw/42x121mDlydHUMFyUtPvMQvgw/RfyOvsj0/1Oe6Ud3+LSCuqH7Y8ltJU3mmXUXs3hUN/Pr4bpXBFivGNe/uTha4h2OoBRsddEa/CZCpgnbsbNmpLqGf7jj0o+J1OuEXwsnXUEgIz/Log/qAwn7nGHkLTu54QuLc9W29nwwETX/JonnYnYz6ZSw/T2+VNfeF39lkmkeZf/h4gJvF6sZwClIjEhFu/h2FF86P9V2+8ZYBgslnc7g+PU0Jx9+DroVKXFvZp6OOcJsTo7ZxdoFMPGfWW7uvP+Su5AJ/TBez5vWHw2z0qe/+gQvL3vLOl7h2oeS4jkFfCjOZC1/7pC1IqvVCv2lttwSR1Z5ycfGX4OVzJQ21fv1FjFId6tSQeAjkfLHQfR8Nf6fIgsBUHH9t808cLmsQA2sv+QvVjchk2/mqD7ZpvBN5C5S9nSVFgdk1sep1rLaMnNNrKK5Ev9LSflmHVlH0ABX4W6e34kcD6pw/4aGxJ2vjHmN/0KPwtWostTtO2PVnSDN9pn2EksCdbfu10AX/6k5PuQSaGLm3/9CqZvbQBf38PQNjibX1qg7zU3QVsepCA+gX92Y3lFvp3ZSKl/vr6f/wL7J5C9a+e8/wX8ODz9q/YKh7DP34Kt/XFJ6UqhvVPv9327orR8A4Bc6XchPrVLan9K21DGOdKU2noMTSZZJfN7eMlAv8uT0QguGX0fA8DNR3zH85TbR4WIzf6faM/9ljTqxyMl9XhYLQ7RRT3msyW366Df8+/6S0E5q/H65A7jCa9eP2TLbxUFfDB3ieM+OAxMOma29BOfgTNIA/Y+/atEyDo8YD1TR//6aN9nX/2GFn1ye/bs7wqmx7Ex3KbfalJZaJyDaHUr3pszDe/gGDmZERRhK7DLGiXBK5P6YBNiUTxHApKDzP3YBAhvh4NUXtr3h//neZWtOu14NICnuzOpXct/YA13w2aDDQlQbJQKQbV/OcNxll7pdpecIb1PMnbHAn7Szf9A5ZbmjjKH3/bnj9bUFlBuAfJmx7Ssxevv59G4E9pLtRQT5zR/eHp+15x1Nz47vzWa00pgQ+QNOwmsPyY4cB2DhT6lEG66RvWQS/3IZmVXhjme61roK6qAdsbn6QbHwB/z289fmU9PT5euN/qA5FPfjqsU2sWsORpj4TnlzemsxnO8I7tGlvtxfVnfzyb6lIsOWHuqmTUPVsI+P4lxgGpD74o2KIOt3qEMY9DY7p0DIKn+hyplq16zNTeU8AWf/SAQwDG+ekSCI1wQarychgtOtpBPn8OhHVN5f9iQ0PQKJUz/ff/G+2gqOKlmIjw8quaZU/NVLtr8v3zS7Jl5z5tWBkLpnbxkobV6bRWfVE9pzo3lPF6/w0dzKLoh//8g2W237nK5+GFatPu5H/1Oe5V/cK5SNJSi0mn7uqAOk8r7CS4AMPb73SY0tam/ghzgz2GWgHp7fbGfv8Z2fIedQLZdNzupknOrFFu2az0aeSTXQH5moW7jw27TyxQ08+v/krvZQf2VlvRzX9g03vURygqjYAxfX188kC9BiSNcNSa6zJem32I1F+TB0SVZbNm58TqYLtfO6R+9nrNu8d0hnz+GqgdtW02SZjK0FfI4U9vDWzd5R3I5HQhgk5LNof5TgMcCZ/IQl3kr5coI3BK3AVRcNUGZpeBB9e0OmHjjhWjc6d3r7bP7IOWPeDBaOwkDxzfZx37cJUGpt2BAza/iOJwUoflzogJff51pAeUEcCa+pP+6SGKpVQHtB/EBHiJ4OD+4clsvjxOl398zJY0MEyGHjUA6dtdQdwyDs0ufpX75NKmRALz12e99S3hB3k/GsgCMv707z99oD0eNuBXoULQ/YUGzS8FqqVNz4CNP5GyngUw8aZzg5/vt0UsJ23NlNJGyuyaGGPf+dSz49QX+EO3bc/otR6+f/5Jdv0+//jCf34N+jQQW1loMnJaKgdc5tXAgWGHbLUNaYS7e3amJ1luhvXkxxEwoZjgoJpBPK7iqweHq9LQA5HCerV7u4WvaEjx33qNL4M1MCGHG/6LZ/Lnn3CDu93/DBZjsCalBMDEAbGL/M2W06UMwWWeDfw6v3jAvuRewsnybSKnn6ZmbZWLQI1uN7r5CTWRn0kFBpsyop4yPl6cz4Qg5rIWdeXRZiJNChNcJy3GqEn6YXbJywaT/73/81ckRx67fbkkIrWmJ/2Pv/Ovj0P1Xvn65GZ+blC8Nx7i1MFik3z6KZB/ONLmvyl1//s5I3xFhUF4uVDjxb/KIvxMfElPp+wS/3jTuai5H1j0oIrRwIxrpMMN/wi4JHpMLWDNYKvHRHihJFut/k2g6d1PFCu1Gy85TNE/P3V/dgn49VySQi93IbXy9WisirDX4fWniFiTkRnT7zEOYJuaC970SE0sCXKwsuURO410HubX2ebhnx58hu+PsRRAssFUJAMOxbEyxrEEKfzj62QX9cb6qkMeaja/o3oyr9l4sr42dOL1RN3g0Ri/rF4I/LqDiIPy4vmCf2vDP78UTbLc1NOP+R6s4pdND+wLss0vkGFXwCsNp5PAmOZfb+Aun+7UjjOWza/n2EM5kjWcbnxs+aKABwjnDGvNc/BZ9lQrmAnnC/V+k5vJ/guEsByiCdtfzmBk9/BH2Pi7L9op9S9e+MHs4YYXWKvcpabOiHjolLcv2f3Dh/HNwc1fxH/16ieE2102PTWwm5VPxgo+0feb3sKb/z6shhza8PYiAj1e1zqbG82VYRXef9Rrv0m9COJDBpFQnKiWohjQP/0ZHodgmzvk1HMPBA0ee34m8PAa62mC4wh13RNQPVZCPWdlJ8O5qgPs62iK592+TRWcmMd/eujf+mnGVOHg4RvDjJ6pB+9kt2Bj4+v8937m4R5fv1hr9zAm1eUsw6I+j9R6+dUwPyoiwy1fqA6jZttT11V/+YaIL9nZ0mC5hAqxDOpy4d7vc2YhqGaKSX3PHYwZEBhuiuJM78PpVq/TTjNhprcrycZ9m63GKy+gq213Jc7tzR/d6d3BONK/9Jhzu3ptRiWF9uu4oxq6VvUoMK4Ev2aoEQ6n5zCFEd/Av3rlzaZcT1lDPfj+IgEB987YL/NEEzRcsf75w7EovPadsvlh2D7rd9br8XmFk7KziGi57TACEJlQ+3Uxzm56Hs/tRwsgfZD3f3p54wPwOukx9fPbFcwNazR11wcffI5uwcB8/ZdAoBg+Nfgny36PZMzhtxotqofasZYmw07+/D+ajTD36Ss1RNjoqKIuC3jA56W1wvsnGDc/GtfC9+vk0A32Gn5s/hudW95RIyE/4cPiewbT4b6A5zAs6UmpuGEF6NFAwSk/+LHlG3ulBg+udf5Bcz1p/rLpBXXz/5AXsd8wAa6XoZjKHH3YljcI8zSt4M8/j2spYLMQKAFUg6xBwoYf7MzlFbjWxYcGvgiG+a/fILxnHx/vj+MgFonRwCKAAcbqsvrLRcQBSM6FioT4+jW+fjdHqlYHOjYvpuOzh+wSuLzbhUAp9sGf/wS1nbriw+55A4v+W3WgkKNBT8ejwsYzX5ngeRwmtPWRjPVSLCXgDY1iHNsPf/3L56K2r4g/WLYh8OesgRt/RqIVwOxPv4Cj2pn4ak98Np8sagO81CYO/AMZ5vajdrA63VRq7kO+pgYoFeh9kL/pw2Xj0zcOuO1VpZai4EyYj4UCqltbI2nzF0ildDPUuYdFJBcewexHpQaXd7PQ06S7BvONggdanT0w1rNwmNvHnYdjdV2375f+60/ATd+hHziu9TKqagRSyp7kc2Ifn9/4PLwJPEfRM3qwrt0RApvk0v/rP00ncr6pJxeqCFyyxBi351W3/hu2VNQBOuW7QvKu1YXq30Ubxt6J5D89j4/P6W3MeuonkPQXtvmtVv1V9lIItdL+YFSYi08NBwYgEn4NdZ/Lu/6rt6DaiQ496ffZWCbYECjH1h3j2DBi6RvvdcB9xYDivDS2PYU3CLf8xcetX8K/pCeBrMTZ5uf4xjrfrQp2XRbRQ8D3Q+e+DR5Oy+OOD4fZzlZ+KvV/flWx+eVL8U4aiDjxjW5LVoM/f++f/o7vQZOtK5GbP/1H//qfDLEqgX2457F1JhUYt/6D/NirBdlteDI/HJX/8zfpkSrDMCnB+QbNo/ZAqjYP//oT8A+v9U+WMhYGHgSNP4f4/Lmi4U8fwb9+2jkz3sPkPHAKn/PXQ9LWL5qm2Zah85OvRJ34MmYa5+nK5leQajnfsuV8HjVAVO9IN798WAtvvqia5zM0a3IFBsfyKuVm3BkCPN8YzH9iBf565YnYhjezsdt5QCkeATUOOq4X/py1cA4yg3rW7cdGoR1CwEmVgbjwu8Tb+42A15U7rHtv4K9uduzgth7UAmNbT0rrpXBCI4+LWAsYUXI1gUD1uj9/f/PHpBBueh3tbtzBKPNXeAMXCV2QsI8H44/fKdOFVzH21XXotvX+139NGivNFm3QG5h/1xc+PNOQsQvpHHVwhRDlhtz5DH3NBsqPyxk/U+NrrA9eViCsYEcU9S1ny3QtUzh+npjqj88rW6TcIlCUogP1n87Jn99Y4+Fz/nh/+rr+15/RdmtGmOOLBpmSPQIbfuLUVokxTAKwYeHylHpPadrmXFn9H/5TaxySjM/3bgKvx2OF7c+25zB7CiU87S8DPpL4m02Fk29zRGx983t7QNRWseEFRRLpt8+f6etIoEvHCy662MmkC+m8v/iinnv+1ozDh+j/NadAEv73ngIr1H/UUqfYX27buSyV8oimQPQy9njTC3AcPqUXfM6N5aztRbhvs4aIvUFrxvFdCEko5PT4aUBWp6LhKEn9cvGBKbJBuO56U699c8em9Rizpf98OQBOlwwbzDoBodADWWHoolOL8M2GIZ0MT02wo8HpyBtr2xoIfgRsI37vO9lPmfoeusshptrD3Dz25zGERrUwBMTVqjvhwZvwsp2TH5Avs/5+4RNAY3YnnCl68Zzlng6LY0a258fD8p7NFtYdPFPz/VHqtYjvMkSPJ8SHx8cFk3+8pbAY0h67L/edzSb8ymC6Pd/46PNqtgxvrIBt/dBaPwxGP48ogs2+99DiRyCbhaumqzRqbxTvs3c8l9ZvhG5PL+jRtjObd4chhPUuwtg1qnogiV+G8PYsI3o4jAOY3qeyhVEkf7GVlB82isyHQDmDElFJOg/LquIb/H7UHfaqY16vsSOPYOEkD5toBwA73TUHdtxRQjncz8aqKG4Dhb6VsPVVrz7jojCEzstJaBF5+3qtt3Mae01r6T3kg3qu2S+Babnd3/xs92DiT74Hg59kUu9T58YIcqmD30bgqLVWNVjV8Z0CIQd7tMDuazBzMGXYNPUJG/ChZjPnDQmMp+sb7cDnHM/Ta+5V73g/YzeMonr9vmsHPj2ykCXK03o9b/ua2XQ+4GD0zhlbr0sELkKaIpEqOGO704zgQWkVrAVGaDAuSiIoCsaKg0etDytXv0P1BKUdURyLG+ayPvegFgkmyjxl2Zplsg7e9rvAgbTNEon4loeanupoX31KNqe64kEh4Pc4uJxZNr7rTwcfn8D4i+eYTvPSqxxiJ2oEl7PBqiGq4HEtc9LKkBsWG6Q9WL43Hx+aeW+sZmop8LaOIT798Fivky2ucJS7mkjpcQDj/dEWsE7NCGspQIAFZR4qlWjd6EFZNg9uJgG8zvKNug09+2Lb7yKQ8ynDh+bZsXmtugA2a+Djq6t8DfYLkL0/XUMNx5iW2cRkGgF4JDeK3ro8DPYOjtBp24So8YlkKw9We+dK4Zlap9+NTUm+RPBz8D3qreceTLONS/i9KjsEPLrP5uY8paA/RgsB57bLyPVZVnAamoIiGYjDNOSZCB/HwqJePQQ+E3eJArOq2ePTr8rBkuGHDT0FBdvzJMP0eYShWoX7B5J4TzE6GNeV6rfAJfOPVxl7R14Pw0mbCavArl7G/CuCtjMPOMxLVK82+RH4+swf7P8WuxZV75yonBK71NwZiU/vRp3Aw4lTEXTtxhjENw/B7sbb+G71UzxW8iFXv8CEVL/w14wB/9+05hsNwKE02M3xc3g1wwcR9EViUzU0laKUy4taJ3D315nnclBK7YsA5X3NBhkEIqw77vyHVwZzLmMDTGiM2A3OVT1jNYWwuMUTPmANGHPOER3U2TmmW77EzJ1gDo5198TZwf2xrselAk/M5rAN78RgQ+6KEAzuAwc7ffaXh3hwoBQtMxGvn4O/1lCqQJ3aERI+74Yx+9mMcJTKCls1tPyVq38RfPr7FZFpPsYzanwbKrvhiUBZHOPRj9kNljIrqWYXc7ZYrciDP3zbsy9lTFVhAqVzSwmHXLdmraQHqnMfHzQsEcmWxFBTaMH+g5TTfQIj5+0SICaZQB35wdezbuU2ULsUk/DHP8FiUBEC1kwHHNpzWLNU9D14mz4R1bwg9Cd3UnLYilCjwfNcxfPnZN2gz90dfJSkX708Owihrsl79Ar5S0005AWKuUYDPjm31zD3qymDi2+9qHVZW79/11kH7p6HEfRD3h/PkSdCN46vFKF8z77tow1h7zxX6kzoE6/Ivnrgg6FDt/U2aPfrdSgoP4lMdrF5PiVQwMT0gnoRnGIqOB8bul0aUWuwm5gG+9BThdqTicJnmU/9UougrOw7qt3LXTwUB0VW3vma08OGnxRFpQ0hf4vRU58pW4/9s1OM+b1g/OLiYY1dk8AnN09ot7WYZv5Rmqo1rS3q+MSsV5zOHFwE08WvgDU1IVnUwjGVP9QqrE9MnVUr4R9+nYr7qV6gnlaQxssdLWMg19PXn03VlvSSqHtuyEiVxpXyTJcFW2JY1/OpGxwYErwgUAZfY30XrFEULy0pDphZs6ZqUzh97iUC0LIM4cqmBkL+ESPxLB2y5fwVFHC8zAW1JZPUM7PMEI69+iGC9j2y8by3FcjYV8O2DMgw7uzXBVy+XU79ab0NjJ0fCAbL2cS4r/VYeM9BA5yXl+Dj1+kByyZfU6SyIGgf1DqbPaVOoOuvV2xMJYlnZH+9v3jCt8ehHGhQ5hFgtmLgIHrU8YpeDx0K+0JEn8q+ZrPwgCaMLscOByQ+x9RrugvYPp/i9MjYusxFCm6oi6kZTaCmj/f3BvmdDfBpSMZ6xaoDoXNIM3zaicBYn0KswJyeBexd2CkeMwM5EHVXQEK80GE1oKuAZt951Njwe0FCYQNumVyqyWlez1fNa/7wCTtX4+svx4fXw0XHiJ6KXmXE+agtvGZjQvX1rAOxbf0Afgg44oPlDPHUHRMNtufVwPr3aAwSO3+QQnvtiqPt7/n1e4mU6u7dsX/eyzXz9eYC5mt5ptlXseulvQYIhK/rSo3298pWVngO/OM7vlJ+4m5xw4vqCPkdvzb+s2acowHkTxw1G+KC1THOLRT6RsLHd+1nq1FMHFznwcJ6+riwVT7+eHBOqpF0DbpteCIksBSLgoh3ejZGkoWtuqidS9PfGbD+294Dtf8cKfb2U5+N9fmRwLpMzls+P9gqhSoHIVRj6jcnyWBQz0vlWml3bOmLBAg6/Ez4EU42tat2w3uKK+C7tk9R43/B2lDjBiWdzPS4aj8wTYvfgevAEuyZJqqFJa0vcMP/rb5Bxoh3aFThEu3RvU59Yy29+wz9wxQg/v1JB2Y6UIZVq90Id4yUgeo0gTB9XHbUqYHFlnIfjPBwgipFzZzEdJWv22mp1kLyubvX8+KGN/WKDik91fBkbPkkw2zJZRykDjNWVvUIJuvdoZ6w6+v27/1kii6TDe8Msjeuq2qXpEIHK/UHXiY7BT6OuUXTDb/Wl2es4DYmZ8SxTvLpcP+tMKgeFrbb7+wvuZ1AOH2uJYJW0mRzPNsrTHzOpUZw0BgT26sODUmescst2GDiLlTgejEcbJ1+IlgVTu3BFn9Uf/LmNksacvuPU7nYM+8FI+WXjeAPL9/AOGaTd9QTGO3Rhx73+S+mUVGvEH6KC+LfUZ/NZf3oYMfpEj4+BX8YE+KF8HK4FWhb35rZwOmUw7iH1G6v+L/42uo39j5CHs/D1IgQMhQhNVmR0R5G24PtrtSwkS+4Lq1rLcLAHI5E7AIKyK5WI7D7EAubUepnrP5u5wLSE8abHorn+9pf4K+yebQ841+97B+2CANPtmj8Ou3ANHADD5FayNj38p+xpscLgio3brNoL/uBKr7TQ834GPQgBN9hHDCUZeRVKj6Z3Y7RU8YH4DamZ3wkkefP6bENYPz61tQR3+Ygdf5qgz/+h981i5mUdDworv5I8tqp/LWW7/kf3lC3lc/+4v3SFEoGWAjb3p8YOzOBF/Gb4VNSnsDUgDJU/VZ0sd+87vE8/oJZ2fAFH9OjD5iW/jx4DfgH9iVLANPvOGqwFkdM3f4yD+R26RL4yyQBa3jBwz++rn9jieqXt+Uvt/6TA/lS9Ui5sClbh06ZYfng3/R1shqwiuGPk6i8u6DK/dkGe+Qsgkv3DrClnONh2viP+oGNhYQpvNTrFSQ5dBwxpc73Zw3SLmoiSNxbTpQ0GcH6u+gQsI+kYyu9W8PGH7g//ki9lzpm5BhMBMLjeMPWPPI+9Y9BClpdMSmSbiJgzXO9wPc1e+I//ch2s4bUVzh0W7xTf7xWpIWETim2tOtxWPaXdIbr/LO29V6MJcOTCe1yrOgRtPuMer88AZveQ6oYDnUbO/OoXsRPhm+HLAL/9K4lBC329Bdhi+eLBRzO07jpy0O8zryYw4WqPtbrofG3/J7BFr/0hvIzWzJvr4PHczXQqpl23fEwsOGYWy1ZgqZnlLvNFzgcuhEHmn31R7q/VDCrRwXxTO4AuxtDCmh+veOjlhT+kk0HTcUVFemx2XlsnmcnVSALImqXc5gx0bR02VTAgMDQtfE62tWqvg7Lj2LrZ8UST7fZxocUEOUjwGwwTjkHq6K9UZfKmi/WcFcCIvkpUYEwGESbCQLypexpQLSDv/h6f4PvvkypudAOME1+mLDehZh62o2wgVq/EnDPX0C9OR2MdZlvKbwfGvzHb4YxHqIRbvWCgODQMdYbJ05p6luADw9Z8ReD9hDOq4eo2x/KbEX1Yisxa0sC6K3118TvIqU8R29sbPk8cp6UglJeSvJmSuLPyvs1gss2SHvO0MufXmqzQjeTrji4czpbwE9vwDUjCfbz+TiMN1DlairHHJL5gQdLU40JeNxrC/nNS8pYmnyDf/zltKs9sGbZrMFgiU1qHtSRkWLeOtHyVCO1htN/+Yykk4KAE/98IgdXGbZZbZLVAm1GndWp4MP52ahskyKeu93HVh9IMYl4jNaa5l0P//gE4Yb9N2Pzwd32KO8XGkQPI+P/4mfTQ/QMzHs8v+G7VFWOnLDzMCVj2gkohH/8a36Y1CCbXoU7Vhj4dOoI2/wQAoPHauJg72nxWh1ePYyy4kv4YxXE6zJUFyDtshHr6SAYa3xq1n9+kx18ImPBowuh7v0U7CtMqNfbQyvU4nae6PETZcYsBbEMIHauWzyVBlHHdwK4PnAp7kZ9WObtHDGiRCELMI5xswzwBg3LECiSjHbY9F0JnTt5kFV1D0y4O9ccBo/ZpFGaNIw+kjgAxz2XUdztVrDU7qWC3fkJiGxenE2/8TlQOq+gf/x1HjBU4P5YfLD1qzaxTd5Erb98iPGYRdlfPVMr8XhDVVIJ/px+dA8k1uRv+DuBedLzUZmbJKR3zTqBxS/TEBLReFD7EWtAPJ9nEboGupIdaaKMoTnR949CNXHfcX7NhPagwRkHEc43c+afXzAdPxUpeU71x/RIEDyO8RMJW31mR7FrlYGEHTW859mYts1ZYP9BNZJuj8AXXWNqwfb+6OsAPjX7FPYF2O99jY+7y8MYXD8s1Odbn9HrljTGPPgOD5t+9dEj3umGZJw0qPpa5dNNn9Vrnps6BDlKsTOrV58/fEcb/OnRVRKrbB39Gw9Ho2ixd1Of8TypXQvK3/5NT5s+Wf3lEUFgrhl2hYKyZb35EfCuGqa38HCuJ8tMRSi9B4oP/aUbJuCTDnbUkdH+WMcDMR57GT5WeKBG1dFsra+g2O/v7w+ZJzzFZH9URWDPrMKYnCt/9mNwASE5LfSEF8RWzlpuEPmUo77CrgM7e5j78wupj7a5e8EyRfDiygX1eSiwtce9DGPyrLDhxAdf1CtFA7P2uGD7kK1gzsrKhsnJ9pB6R0W2/vGhA1gASeftLqHB93j4NMIVmwt12MavdbjVRxrAfWisA+ZkULnPB9UTbDLhws7tH5+hun5qa7LxHzUEO0r2+9NuGO1gIH96lurjWGdjfbNy8B2RSvUxrf31TLsVcpYeUDdy9M3Pq1PVsA4CeT9kZfMDdz3w2737L9/XX7LTATGsguwi9TKwP34rNtvFdiX9Gctjd43+/C4koyDxN7+jULKaKdTuAsrY5xGFsOlnH9/dZPKpvMxETXrgYK2AHCCpXjrQDXY3qp/6mzGgiLehkI0yPX3eIxtplBQQtttdiK2JgHh7aDkQ72eemkcBDjSNgaf44den9uOgDWJE4Qz5+axSf/M/+JPHEDwW7xfV1Tzy12hwCFy+Fx+/kvDi86/vMgLa61d8kLo7WOoqTNXV8l0kSZI7KLvXIYCOZ2SEay9fQOWLM8M/f0Pn3ZWt3/aFoOZxOjVMeRk+6fI21RiXNT3cPCX78wdBd0gAxpHK1z1X/0IoZ9wPHzZ/dELRasJz9x2xnlRX/8ft2xt0hPed4vTBG/0v2Wl/fJK+3F6IqZzwIthBzaDmJ06zP38eXiSaY9M9BsZK9GI7PaJ1GEvNIWOHVNjWV71RnIS8sbgXsYFSWRO0SJ3E1tcYz0Ap2Ys0e7+LNz0rq/mn4vFBuh4H+pf/f+v1GP1wkArdluGvhIwe0OSx1Qr3M7ytJCSCaXyzpcicGd4YONOTGPrDshxorvzFu+Tzz6yTgkyGv982R8IaLkNzK7Y5g8f7mYhOoxtierwEsKkvAS0Oac/Gff/iQXTFP1LzcGJ0FB4EbvUb+zy8gg+wlRbe6SWgSXGzY5Hr3Bv87T+MmscqyJjVNjwIus4g+6CuAKPWu1RD1ZqRJJDfQA7f1IbeqcFUM7/zMBm058CWz4h763LNTvxsgv3t1mArPtnx8ux4DhZ5NdBTjk51270lDx6nrMDHVXPZeg+dGxxP+IvWLZ7nfgpF4J1aTG17qnzGnywHJmbpYU1rteFPv0BzciealYtUj/V1yVX7LNZodq5hLA5YlKHY+oziZ1XH5L4mN/iaUEOPu8veF/wyiuD5MU0YsavNpHfkdfCeYoz/4nEq9+aoPlbuQGaxGuvlrx+S+NClV+36HRYSf0f45xc8nvG5Xp/3gQPd7iRja/Mbx3y/QDXddSrGY1pl7O/9Wy7rqWF+DplU8mkPD6um0NtRi2KSlokJVz89YtQUiUG7Y6opf/XtiEPIxuRqp3A6fiu0fPR9xnw9uYGtHuOCXbcJI49bB0sxL7C9vLA/tsaC1Fvrxvivni9HcW3/6iWBgRCDxTilHPSWLiAtyhfwz6/648Py9BbqlesONyCVOcF//Fo6XpL2Ty+Q75FNGXNE2ADBShU0Jyth8+OYBtA27Q9Rdp/UXy7s3Ch/fstf/W+HTlkVUFUPrDm65kuFjmTw56/6J9mpGa0fBVRF50ST4f6J5/z+48DWP6PBVq+lNPkiMCsjIv/8LO2bmNBb1xPVPmzaJsiJGiS8mFDnxwRAy1s/QjbaGnbwfBxIaQ1E2eoV9qdT6y+X86GF19W6I3Y8LPXaPX0bbvwarX75ATwvhZq6xSPVzh0d5pvkpXAvnGuMnpeEje966mGynI7/8Gb8XTRO7RGZ8YZf8Xjssx4kVeRQE+iOQbr3zgMbvyC1PKg1e/Okg7l6YDTY+2E2db9Og7+SYxiH7yZbW4MFcOPH1PomTb1Gp3CF2dFV0duPQPyv/7VvHw1221irRaBcG1g+xDfhwVeuV1P68TBsihlbObIGYbyDFcbwVFLMxHfNfkeiQ2OuFzIv4TP+dL9Ol/78KvNzSI1FVdcEbPUFnwLzFa9Y1SBQ0+lM0SHtweYnQUUeDz/sVtLbX1snC2GzmB61iuRad/FARoVXOQVbQKj9dV8uBGBTlqm97aUaN/9GuQlGRHHUm5l46s4OWN+jTZR0UA0qGIsGebEEiJvmY7Ykyi+A36Oh/es/0r98suNDgy+j52aL87j1kHsOAdk7gmH8+7xUPnOEe7R7g3zo66ZY97zDwUOMwNaPkuGjsXWK9/mSTd4vTSAObhISn/pckz8+8/tVDMl4/tYL8bIWrguzibz5jazzVxMQ7vugRrHNiZyjMVfe1u1J0VV+ZMT5CA3c+qNYa+3CWFG9t4EtO29srQL/X79iCMuBesUjB1NUX8U/PYsvmz/IvmHqwPf18dz8ybpe2jB01K2fRLhH3AFiSj9xP/H4heR7cNzwMhEB7eQLTvH7CdhW76C5Jz31SO37a1aONtjq/ea3uMaiHaRQ3eIFW/tdnLG/+lz7QYwLlP0YM045VKq7c8eBp9ZgLdAg/tODJ/k4DOze0wLiiypT4yRrw59egV82qZsf0xuzzegKENfuCZ9N/UD+/v/nnjj4IrXdQGuzKlQ18s/UDrR3ve7s003Z/DEkBp/IF5hMQ+XcfUZs8SkD88c5h/CPb239F8CejS7DPMwk6sa7ytj4UqTWZXrGFn7Z9SoHTwWojzLEp1Eds0WqbA6ez/aERKepDPq9IgT+X3sKxP+9p+BxzmpquBcTiMg+rPAp9D8EhenHiDhOGhA+oKHIv9NhlloqgmGSQ/qqIiuWnokuw1e5D6n7Ky/GWr32+T6ftRta78nRWJ0TITDEekVUwRizeVHuHlQjU8UutvWBT25JD69WXiDlBods5cNXCdTIVqnftUu8BpzjQePFj/gY/y5+p9wPN/hapxPFdj/4P1UHkdJ03EiGedzFjWJ8HajQ1CLcm6QGy0P3Aotj0VJjsnhjTc8tB2vuKSDW7Wx/EnG03Vc1EapHRymeD2WWgprED3yU7nDzcJMeaoDMZP0ETUavrt0po1Cq5G6PaJiVu3uDFrf/oWGSDoYgbvuAvXbtsZd+FH+x3oau4gwFRHqmfbwG/QT3Rmm4SM72gjHrxA3heRgR9j7fTfN+Fh7Is/z893uq6XsP2CB4YuvoRga73mAJjRl/yC7h0MD8ndjDkO9FfLwoprHYb36F5U7TcGxK1iBV8AEVK/Ri7EhvGpPmfYHwU6I31jtZ8fsXvUP42MsaTaB8itkJ3W7AtGWLJqzosk78cCZwYcyocXfeoFvzhw5tq/Uofgq2MZtq1ENxbiVUfTmw3UUBbUUZfYM0c/GsV0N4c+BIdYaDJv74M3+/5TDiYY6dJD7VIzo5BCZrH2BbwDpjVtk7kBRqS1HlrDELh2cDXqf4ivX4qhkj1sQboDpTyQyNfTyp8OrBc29PGCccqpf9OtuqbTUezsGhHObVOZlQ2N916mqAz9b0424XBOUhUrJHP4wf8TCD7Wcy3+Wlng/tPoe38HLC7jtttxx9RKDbrxdsF+YRzG9TbGA5NBV2D9exnlsRVJBJGUDC6C8xM19yus/iW0/NJUL+cv8YIdBldSb8qfmw6iN0CnQu+YDUl3swaHDRe3jungG1ju2Skcc9C/el+fbo6ehdh6US8xk+pchDC7jx9WJntxHuD/YeAee4G9ZAqmx4y+ITtha9Y2sXdQHkuDbAaIxLxp7eU4ffYaixPxnzsDqnlgBHPh+o9/Y0MF7ZpEEhinsiVMuYLe1j9XYXIdKp+Qs0Y9mZxQpkP//gk3KvjeXBehny3ECxu+OlbE7vvAOs1RkRy3WtZs9zI0LXeT1Jez5WGZFB0MNjId4psu0XWN78EsEGph7W1LPur2hX9/CUyi22CmJl9Nb0iXTLnj8kWTJn9Fv8qGHVP3Fg3Bmb0yJFcBQqFc1vjGvpDboAJH5yx/EuduM5Xg+VKpfkgDXrK8Rswyf10QgHGlnv2l8o4ry/900deBBYzz/jDi7JjcOnI9f6jN9DB0r7rkPVJzCzIVZaDn7evE6DU1XF617PK+BOREZd+65Aj/ZWC1tgY4weXWCQL3dBCnqeJar1LvJX9bMXoWZHe2ogZMTSfth7EPaCQ1j2ORj8JIUOvO2ONVKvyWCwil5FWCVFT36qrsX8+KtCEJ3GLy54kRhLgE4FbJuMkh0QXv6YYKWF2+UuW4/RG9boJnbQTc8ptsPJM6aBWyHcVe2OSH7dGgwSOwGDF92QaO+Dze0ABfCfvE6RvBeMhdeA9/d9ENM0ZGzxG0FPhxfqSOBbs0HidSiuKNnip2QLQWYC97osktq9+2AMr14IKydCf983m867sFedRqpJ7+4sIDwmrlWOTyTSLZ8Y75SyDt84yLF2aEjGgrQbATgvd+wcPgsjXjWmsHysH+rmNo6Xi/4iIPgUlPrrpcymDW9BsugDdieVxes0nwM1sWseKdqAjaX7+RVEn/mKzSPD9bxoQqgoGfzSbKsXbeJOCZhIElH0HGJj9X8QgQYmHo16uwJzmHUX+M59kUBVLJhIFp4ACAeLbkM6wKL7WbPPLpyPvYzpYG1STpE/7r2hhlODbCX9qIAJ7k5kLHbIWHcdtuHhuf9QR3/omaDpXQQJj3WinDq+Zm/SmH/1gF6WsY1X/cubcH4fPXqUEW+s98PAw7vE7RFH9108nffjDVLFWMiSDXE2n69Qgzs9OJLlcPn5y1x7NrBWb8T2N7MGsiOTA3ZRUuN7Rd4GWS7lRY3IGVDP3X3Y9DgkItjwdIsX22ANRwMoqleejF8r95ewaXv4YWKGIL/fx0stoRJu9f7v+8ZroWsFBB8kEPZCFJBj4CMI6u8F+7nRGF+7G0b4aryIenW1q+npLZd7OhTbQeHGHZZhEXnI7M6naD996n/vw3j3PUZXxwJCKDv8/5F2LV3Kwsr2BzkQEEgx5A0CJiioOBMfCIrIIwHy6++ivzO4gzM7Q1d3s5pY2bX3rqQKSTgz2O1009G0Po8rqILuSW/iOPL55MU+2Iqt0s73nt2kmTxWs2tIMdevdU7r36NAa/0aEHsXDFWv9eMM9VEQSP4kSTLevk6BvJ15JaFzMBJR+aAVwI988Vhaerg5nWkM/GxYxPwdDv/hM7CWPWafHnYy6wfpCmo4h0xPD0E4PyjFcHh4TwwRnTi9Zjsdlvgku76qrVkhcQvKWyHLfm3D4XjqGridXzLZpW+1Y1m9k1ViVz3b3irc8elt9yAz+0mcyD3zkd+DcdGMJvG+oZ6PxLtlUOSZyw7bVZlwfxxi8LZTxoytwPL5GZgm+o60wuIu1buZTrB0kHzciWMVVsJdZowQmKuU/MXnBvG5B1xWCVaMZb6ZfUERinMN/uWHMemqBxxV9cj8LBm6iYyKjvLYaehrlnAyr8UwApVlDkm794Pzzf1SwKeIXkwPZCecpgcplHzPtuQvvhvI3hIkp5W4aOBlNtB8K5ThOmdM/x3v3VhdhFghzbZmkd1YiN+23QEJ0UNlbnZ58pmTz6gteEfMXfxEM3x8+x9/DG6xmVChUnolY3hgOjm+k6lJNzVEj89MNbHoql64Q6EqRnLEq2PY83k+Xl302pvXP/zP57N5rGHXL+tnuV3Id2Ubq+ARTPzbKa0E79JESDzs24XP6ZbkRWEExH71WIachrRNrR6c1yomONA2edGV1xs0ypgyrz4z1OfZR4Y9Uls60VNjTSL+6SA6aUwF6xTnXPnkrvq5cZOZBfuE86pwSsBvX6DyjSd8bJwco+X5+FumDR/Gpa/NHsktSz1J6vrvyjqhPzzckRbxYbzfZ2gtsyS7xzHuRF/LSvTBkcf+8g3f3PclXETrTvl+M4dTcvQDsKHMCC79Qy6c/XZGMlgKnnFudJu7Ja3A2JUDM7KnbQnpzA+oc3KOfy994HQnJ8If3ySpCXI4LPlM/cPby8/NEetsGcMnNp0lvje8F1q5lV/sm9LN6LvhkJpniowSPuxCpwqNatzFf+/DfPe2Tcb97WqDFm1eWIpay+K/3+2qzHucEsfTympqp52LVvZ+JtE+3Ie9G6ontA5fNQl387fr7wLP4BZk5j98HYf7U0YXRdXpLP1Ga4q7iIKXf49UaOYvb2djLaP8438purJdOJfROf5bT7ofPquKb+J7hi72bcuIcUFJOxnYV8KW3yh4QhJOBtuM4P6wjXuFb/jYj/4J/TStZO7l23TUpNcAHq71Yrqsz/kkeJcIHZ3Hgy38DrVUvs5w9bszsbbpG1G6+elg2qsV85MLRVwyWaFO3XhbNP3XGmdfElBQjy0L0KsLp/HX+OrKKwXm3eoLH//y8UCvBwqCcknGoExKtd6IO3LRzCLnJbsLKHHHCz6ySeZtoW1qtda5iA1bO3NejaSGzcmkxEJxmUxy18RIIT9OS+SyfFaQlKmzIGBi6ToOx6/9e4D1alpm3GCZ7XFGrlrt5BcdS6sI5597FGAt6XeWixoJx2GcbS0d8ydVN4bN/+XPhV+QcE0/Yf/cTj4s/IbYA/la09sWbrA+XCss+K2Xb/BNW8E5Pa2JdTP1TmhfRY+EYHPBZ83pqul4Nyi6V0KPpcejCHmrNSfI7lFK11mwCmc9Kykc30RkPjl90RhWax2F/VUju/jFq7FKvRV8MPao+SNhznt5mMESbZ84/dpAwv27jtFvuxrZ9nV1LaHFbgHD+XWiG/PndaIyj/afHqCw84OQ7356qq28QiB7emrC6VlfWlAUwMRNx8kaAsWjgHdeTse2qpN5zmUf1lizicfprhsX/SaL7eix/SzRZHo+eQ39XrGIcRIQoraUUzgqBwGrc7BLFv4p/It/Yb8TqgHfBlfN8prTzavIktE9ZBlq0kIh+pIPxdR89iBnlzWLtk5lzcMPBShQsc/ILCvdUBdZBJ/xcyG+4R+qKSW5BH/rWz4fR0u6L2dmL41tMW/hG3T5+3/xbu93QsfvjwJguy5FLH73h2r0EjPQCvkFbPtT+5xZDr5CWzc3hsPpi8YYvyP4XcOIhT/910359prB47TTiH8279UffiElcQ5UCX5WMncv5Q2+YezYVn/dLE7u3x4U+TRQZdOV+XQ8VQ2MxB5ZLAslmv1rK8AS71Th2Ao31NtEEH0OCYn6S2JNSraRkKKsMH61ibHo9WCEx9b1WFi4ndX1kW+CLycG2eLDweKJ1/mKVvxk8qf3Zvjotma/DcS2xjHq2Es0A3jGVMCrtpG7UevlGb5zURDnYmk5Za7fq0f9ixipmV3NX9t/o3QbtvRdGVM3/PG1RyDbzNYDw+JarMd/z6czlgvOwyRWEUFfmzL5R/hQaX0NavsqWfiu2oSvzrGt/dZfC/P9/bLo31UNpiYlVEHpFM7XbGfCb5ZctpX9F58/TT9C+oh+eNXdthbdV4auLe9L1+VhmW0yH67aozsAVtErtMSr37Ro4ffEwMt80yWfwCF4fvCMCq+aJF+gKPlu93gtRGM1+y9fVoN03LP8gqBjN2uHEbnUHUXXo8DHt5jp6MOFnKVNRrq5S8UbsME+M+dyF7s2aj8A4VrKqbLZtxZVT81NXfYPC0WNWQsfLYEeoh/Tk9mqps2W3v74OQsfIrIm09YKaE/L/Fj2SrqxcZIINkfpwPyEf8OxzYMWkd/kEb/2goo+RDuGhW8s/ocTziY9BFojvQ54rbnE+ibYwPDptQfB7DmG3DqYpSbRWVn6UNUWFU5iDXBte2oMn0fHK82iMMYyZXm+dXLp+uhsWPgTI7wPws2lXrfou07uVIbHMZyCRNfRb5hc8svJphqTduqBZzefPINEQZxMW1nRdPdNIjGZOrbOthLq+gNjpD72+eQ2VwFW/UzY9qUPqF78QeRLz2U2ae2jTaLSFcr5ULLr3/e5l+e3il5rTvtHqFW9cdFOUJuXE3GjuOX84CpX8LQPxev40STzNk/fkCdpy3RaD0lf7P0VUt6IYJRHUULPPmqh8MYIo7y2OyYa4oyQkT0JKQ+fpG/zoFGvwUFmi//TCaPyyaBaPUVCushCs+d8Aqie9EHH3/FezfpTn7XmgDIsTqaP2iLgIxJ/QY0F+1vkfOHboFQJxRLz8nz/fW1Xaqn1DjPcsKh4vcMqerurhNhLPhGn6UfRVlNSKmnHmI+2JY+q+60rFu5FXDGa8hP82nNDJ3ph1nDhrQoi1Dbz8AzVSGVDBua1BRar8N31alzFYDvxm5gH9EV8HToUxGPREz149GiSuyIGJLcJ0wM77RZ/8wSX+lHiTVqEnFrMUjX0iURm2NrmT88Jf/oRr/haShb/E9R5rbUsPB12aDKDn6CdzZfJCPtZf/7cAy18gCoGe/PffZ8DrJ/bAu+LzxwOC56i71wWjFyymvPn4Negqw7BX1Lvwmlz11vtfQ4YswblXdHvRgrQ6sxistsf3+FsS3mPHs7GIbvv75t/F78RwrWQk51oRfm0XQUx+sPjs+fWnO/XrxKiqpnJ/Zh1YRdPvAUn9hOKotXZ4ttV4qP4fbsu05lWeXfq/Ju6+FmYebaVN0lX3VDpx5g8lGSXb67Gq4diW29ZcD5Z1Yj2dxPU+9tnz7tx7LjHUPHnhy188pdwee/56sLnmFkcezSrcXCFy3tjEJK+SC6UF7NEXySuiXsMfvm84SD96Q0q2voWqWzdvuHwLN/Euaspn46x89ay7SwRnUaiNdcMaviuPYNY3/SOWjUOMrTgATaKdZvzfe+d1KF/H4m51mpOpcc6QPpP5v/8STrnYwCHfeD+8btw0kwUI9dczhBTr174x2cEv44bZjjnOKTE+xyWGtuVRVelCCcrck7gKjUQy/vdqinCzg1oudx71lfrrjepEUNUWns6Gm+aTH/xZNqwImSsXpwDxZlSNOeCSiIp0b980dqNRfA4FlaR94qAeG+bJH9rZid5h98B3W7XHM/Y2OZDHxUyzBwPzI3iAHG1jgRY9je7L/ExbcNFD0TvGqtOWVc98dIMYvaRaDenejIsP//zs5jz7Vo+XuL3CZVf68OwtTeq8eQpOiDjjYhr3nbdZB2qDKXbbcuwRwvOzX02wvFnZyy35aVv5m+1rMe1YMv1X97dY2QjCB4xccqzELLoWvRwJvs1MRZ9xtQ6kiAxFAlLpvThw4smETq+dyIJr2xnbdjx40LX30NCjEuejO2roHBMjQvTa9cL6WrgGSz+E7mco7hiuxSuyLusBRIt+DllfW4j5jUFOy/7u1XQKgMht0QSbR0r7Psb9eE7pza7LHzlHW4uEVRicKJycsFc/FvfP//gL75GsWuvqr8nP7a9baVccsbvFXyzpSx8a2YlnIwDaGdntoln1kVHFTMttAG0HTNwV/MxbI8u6Jf+jBVVzdAsLFfbq6mXScZlvRvPRJeQv9/9SFAselU6Gb029PWRqvPb6f7qQ2A38oOl11eYb3Izv0GdkoThC074lD1P8OdnEr99//goq2hUNYM6LFi/53Cuf6cS/fFp8pKH8F8+c5FpED+N3U7k+jaD27mS8bv8KgkDf3xoi3+NN5wO3TgftxjW85RT4c+fV+sPhfOBPajob175H3+FlyCNzB6IZ80St2w4l0jFE70Qi9c7V4Xven+nU2q+0bR1Dj7s3Qf/j3+3ilUdvt2vovx6lv/qDT7MgoQX/5F1b9UUr//8LGfxX4S/+gR325A5TVl2i/6x0aJXsfhIB2vMs4/6l+/pnOc4FGThTpVed1wKjzUO+yP/6DAeSkKCX/u1KL/9ZAjk+os3n+qZNJ7r6rALaEC2n80n50jNRtBVjzAjczr05w/C+iMZxHvd98k43/a6unwfVBPv7040tKEB6fG+M+N1MSsepUELu6AP2HbW1bxHZ+6CUu0pXv9WKOzfYmZqSz2MWM/GD6fiSmLZP7nRP37NYvnSQzpenmR7YPtklI2LDFNX62y3ugZhIylZDLg8bUi4F2n1W/QpCuT3l9lbb5m9q2sx/PlPenbcL30OmIvwpj5gTSCIz16SmGDdPi2LpGAbjtYP9+rCR0mMVzz8q8/AUy8zhmn37Jr3S5Og/eiIud/8Uw1bu8jAIm1McLzES/WybdXBpyMxN5afTM73ZYMxvQqqrgOFv5d6kDqT7ESO5kFdZtHuMjDIqaWCeBSt+S4cCoQ/83GpZzxCLvCTDeP7FOF1bGzDTR9NI7yemfxPL9G7cCgh+toxFmON5DNT7AK2/v2Oxcg9o1dy1H0otOxJdGZFHd0MjxHa/edOzmbU5H2cFyfNC68KsZ9ZySf0fd7AVvucrl/yLhzc5iqhdLZ0LNU74L8/P71U7xaLruVyJvLCbrDUn4j1xIwPzyeq0eStXBIdmziZ//KH3Il3vPbsKud18l5BHnsNc5SSWdP3W5ianrkS85b3/dL8koH/lbcLn0L5R85cGwq7Cv7VC3nv/ADkdYxYdIVvuNT7ajBBP5HLLAScNlHgg0F8TBb9xYfNqX1D/NKBYHOzTabN3W/h6uwU4r02v2rMTlmDOur2ZCe6PJ9mWSlB4EXCzq9CzueNepX/8VGT669kUvqrrikSi/DiJ6ApTKYRqp36InqSz8m8GowWnliV8LS+oOWOl2/+8dV/eDP96e8iC21mXwYV/eH1nz76p//oohfVP3+Mq6bSvYX34a3GL5IRw0i3Ft/dIgz71h6Yn8Z1NY7uq4acs5K5C//cnB5Rqi7rScKxf+b8vfpGMLQgEP++i6wFzzN1wV+21EvQ15BqCpbo+lS7yFMy+u5mBnczrwkxv3YoLXwMOtbv2Laoj9W0tk/z/9anYPPfzxQ8SnJlRlgvm9JaH1DjtDoLTkWZjyZkNzjmtUHlyP7mox3JGIbf2WDR+dkmk7grQHv6r4l5m1fH5zCSIsVp4yPJ0EnhtIy5pLVq8cEPsfh0/CaGAYRrWSTe3VTDyQWuqs5J4cy7y2U3YHLM0N/zDWL5fA47LqH4VrgE37QgaT+NXsP1oJZ0bJCH5vVGK2CSfwpdNbXS/ejmCeh3w5/l86Wa1tdHBOH9EbKw3RvWptxlEhT4pNFWbqxubuTiAKrR7Nhj+f2RydIB9OSpE7xfp5yvNDuGUygQCuFqh+brborgyjuE245u8vnL1yp6PkedNrh6c54E+wCe0eVB68+edaMnFg9NvnOM5a+rWxzddyPCq8hlxCzfybyrSQPoESPiv4axGxpbtKGV0y3tU3Pf9RvuBdDCYGD0yZd7gpmqw1g6KcNC2ebjvFEfsEXxA7+I1fCfkJ0zmCMzJ8aLXHLhOCEbCiEIiGefI4sPirWcK/Q6ssOHS9cHj2wExsszsz+xyf+tT6mPCru/sd1NKi1SaIPDme2Um9LV/J1j2KnfE7OvhyHp8/x9gCbst7Sinzrn7WWHYXJ3BIs362DxITMyVH9TnTxuWpvPfqil0M4HHQN9WflIYt4jPbnrRHfELmk/o5qiHUwz5WJHq7kzDwCP2vOIKchOzuIwXe55Hs8sUAAQQO+/tw7ig9++UXV5qURPRCeZ97erC7NgLr2F9EM3O+j+hk3onpgJ4CPhGIQU3FX7wAJeJuUknmdDVIQ2FsX3ck4wdwFsWLpkvy+7jg9+WQPTHjuyndf7btyYtQ6hIdoE3x3Nqu+uftK+9q5n+NusrKG++i5E6QuYfkircJZ2YYmuR3uF6+qYcS6/pRbWr+cL7+W+rvhlOGI016xjUWmG3ZBmUaRKp1W+YDLOudMkI3y2ps7M/IyrkQRuA+O3PVA4P4NcWtdXE7bb05ro+9OX0zBQCohn6UF8OSqr+XwsXW1nfimmxbXKx1x9qXCrAoN5d/NqdS272HBq84hFrnnOqXQrT+v015b0+/3kITPduIbjRR6J/cmO1Tzu8A12T9UlztORuikd0xla4XYj5N1+qslCXEfbzdL7sXjUySheNAqvouyYOZqAxkfCr0gJQoaRtuKISS/FRTzld7zuk5SzJNj7mpulHhY6pud0L5StJufvmZifJ6qW79dG+vN7oNqFS9bkHu0CXjTF5JnV5fI5Kpd73SfiJXKTjMZO0LX0e3PZOZUs9G9/2hBVeGVfSTg8bx5Fm9A+kQxNNGRc0Uct2f72VKOKnHfrJMYA7uHNzMP4XnpxxiW893pGx2+ZWcxfFyXYqu4R56ToOU3fvo6a0nxR5caNnDYHsYaTIV/YHQcuF445w6hUQSM7i8kJR9UsQHx4xyRPiG+J94sZwG78FSwKc5cL4lkxQZF3L3JVwrYazk2nQh8aBhbeVzVhzUO5oktD78xpvGM3GveDgOj+1JLwI0Wo6ZnVoPXw4WR36axkqrvuDVUJNcHeLekGq79haP2Py/TdQ614yy4uZMK7JG551qrpPB1buNydI3N+zZnPghWr8JS+FV5Jj4KPh9bxl/m1JiNWc8jHUzyOmpudPGYdbcIpWmoMuqi0ZHtd3/P580pK+PrehRFKwmRzqtoa3utvShzHUMJ5vSpraKMHJ2aSdNZ0wJcaivFwp910/iU87s8H5LqNxLD00Dnn1zD4wwMSpXeHT8eHEsOW/U4E861aDYaqBmg/LDWziQfJWLmnE9qg9M2uvpOGY7ZXWvS6NRqz16meM7nreqSQfmBZ5gecH3ePHsTnXWNeswr4ZiUcCtgdVzHDbRlbv+kRvlFmn1KssjBOfpJBKKqHbMsubkryfl7OSd6dumPBhiR83HlbF5q1ZFOl2bzR6Hm2iS51abDwfb/n9P4NGhQaG5s5J6VIePKmV6Rfqi0dNw+fj79Ht/rDJ7Jb83c+REejhquCFbruJcQH4XTt//CFVqx6Vf22ON7A1euBBJUX8bmcpAAt60lISlPEE6u3QXsaH4a3WZv3L+haaGceUi0LXhZNVvcY9tGYLnjT5nNZnk8g6C3H4yNzq433uzXg31YP4o7EsTY/1SuXG4ln5pfxphqqbXOF24UdyS47cD4Uc/6G9LzeY22Kq2Sa1jsVLVyBESTsrcmzfiZSX2pOG/LSrU1sdhicKy8IOe8O+SiumwxaqZVZ5MMv585GrZH8KX5klwWGJXV7ZQavHK8kqqoBscfZzZDtqBHBCz9oFZGP6A/Pzs+Lzefr0u/k1Rwcsq0LBXWZMwioD62lL4754TNO+wA2Q6XjUSp23aR3eQrxajUSc08MPjvoWMOjax28aXKLi/3NkMDYHiJmxvu6+3/4cHv6l2qqDtdlVgFI5Gk1c8K/WXRC/PSgxPC3G6tdY+MGKtUHYhXmJ++J+p3h/HbdhX8M//IdvJrYwfJxWnPmr5sCTsXzhCd/ew4H9bktYD/oJTPCEFW/PqpMWDlnjdbYq9B8i1cjHCMvwl/tJ/Of8JkKoPuNiAV9OvEBpkFF333p4D9+JQrfFUaXVlXwqlQK1MX9M1bjnbVnhtIuE2W3vo4y+UGYHQ3fbspYDEh9vGRmr2+JxU7cyDQUPzNiflSGhk1cFzA3V2Dh5SyGjAfvEyx8jRDTi63p+O1MqKIGkxMkTTVtxVBXy8nwmOdKv47FSLJBfD41LBM3RH3h3B9o95Rdtrc0vRrjczFq/XS+EPe7c/+zHkt8Yng939WwvM8fvjB/+r2S+f7IVPBv8KDaStyGbK9MGXyUAyaOYhiVmI97Ce731GHJ8O3C8fTbnmCWcME8zd3z+blpT+gYXBAx1J3PNzujTOEcszcxL6u1teDh/IcPxP2OgzWnjplB7pl3gn/rbThVLxngbtAVFZnxzbnj7W/aWqc+82b/liz8UgbxSzLKdKvmg/uuUmCt0zHv95p4d0rD+Y+fsuBs/ZL5jlUbDkczJLsdO1RzGCglZDgO2E0KDhVbRZWvLfwAPwRPCvn7qWFoOjgzJ9W2aMOvVgCJdjDY7jpNyfQL2wD23XlPf7Mh5U3NcA1ZoDSE1KGHNs87usFTuHjMzmO/m3e110KxXTkMe8Y6mT/X+qFMcqdgKSMx55dcoVBGKCTbyULhBJf7Sb1vtYo56bVEv0rdlii0rYIYgTNUvS31B1Tqs0JfuDA4/xaSC0a1vrEgMNqqeUVBCXu3D4klf/SOv713A8bEdYIP5XKtdnX3QcHGDWvz5FSbUptW6DeKPRbeB6+jC59Bmf744k+IWs5u/T5DgrKtafZ19XAwytfCLyuVqqhtLB7G+gEOz3vEsNbnnHJR6lHo0IkYfWNZ0zX4+kDzuCBB+f5wni+9+k5g34lxpIAGPVlmkX14zcjOcSo2Jw8b1t3lzEyS3/lcPC8zzOVmReXzIOX8zW4mfLwTYz5xOzRtXVojm0gmcQSrzjk31Bq0A0rIX/6YCrRLAUXflgUKnbrZf+9kWPQcsbpOSGZpZ5UQH+qYionBw/m0fvhIiuUDu9z4K+fG3jNBrBfNaSjIGvuNeF3OcEvkqVsump1uNSIlqXMsPAajoye2PqFW3qRYDK5+Nz7mydSQxBkJ7W1hzaF2TiGL3gqxLZ7n8814rtCi10g06K9wdpVYBaT+boygyw2N3ubjo157dlh+HW75qJZ9qRbzTWGXOP1VfXtUI/jsrjJlZaJW0wa/JK08PAJavXS9G6D0bOgP841s+XJv26kcHVx8jRkO0+VUcbR7gNiPJ7ZNTjQc251/gy+QlBh5WXQ8EXYY7kWCKN/qfcL8olRBubRvYp0+czh+0+kEe1VyWbTowbHVfm/IkZ+RIzO85F/+WeKd2N80sug79FqlFR43EjzJupsY+ClkmB+ZH/5mPm/sy4wEUyQk1IULmsede4Moy394/W6daqyOmg+/aumjs+D3dCSHB7zeWUaVn6hboh4dKWxeisJ2WlrzMTh3PZITMaMymnDIF/xFiTZFCx9hySDQ7oBKu6mJfr92CfNmfEX1HaX0hWhoTdvTLgNffB6wcj81Sf/ehdk/fqPYcW2Nf/zVEiJE3Kh+dePZfhYQzt5hyffnakzGGUOmth3zT1FqTZn3qmGWomLJ/wkf43MzQ2w5OfMOZ9cSjh3W0ZKv8CpMC973LGxBLfOaWY+f2E35emxU540jLC18dPYP5VU7rVcBzS6uG/LxcMewvB+d54vXTfunZv/Du+1PLMLJxecbZHaakiD0smp+NlahYrvaUXrO7ITefEeH6/YuMX8ZnbFZ8gsaeyPA3HWv+WjQVQryc90yo28qa/bz1Ic+fussfB+DTjTK3xvUNtSxeFL0ZNqenCvwB0vwbdMJiGLLbyDLsMHcKBxyWpbPE3Aa+WTBWz5+oejheRQC8khQl0/ZWc+0f/HnumrS/86SjPKdXZN/evTEjSv4z0Clo8vd6i8fIv86muyRFBtriVcZlXxXkVDfz4gtfB6BVM4Y6YKCaLefRriHjUBfi79C97eDDYLbwzC6SMnZone012NzoRLfbzvayE0MZL8FKvvRNVxaSF9h7c57Rq5tmE+W6KwgG6nIdMEYrblFgwDrSLriYTw0IV/4Auzr1dJ3zuYWXfwS2FffDW0NzbOk87F1YfPrEqw80qqjq2ytQtc/bLyZ/Vveno+ljZb1J56tcmsqrqGOshntlzOolTV4XZxpUxy6eIx5wWdY06sSfeUHO/qKm0/b1O9BEY4C/sdfo7mR/+0XJ8wsRP2U2Uj9wpsRn9zD2emkGZx0OLMg2GpJY7uWD6wmK6ocsgOflpFrSPX6EwvxZV0Nym8NcNw3IUu2q283bc7JG8n7BhZ+9kT949rckJBlO6oa1yIcH7dPAObBwsRnQ1BNVyWs0Vc/r2ml+F4nbUsDa1srlv74YNj/xYd019/MzqZu8RXfEix8jC36MZ+bS9mi7rgTmfnY6504OdxEq8fYYC0bmnD8vjMfbawUyOf+TpMZiHNAKjUHYsW/vBu9nWIj15y2RD9s2nDqtCiAJf/SLh7bbrpeHUCL3me+GnecDYZYwlfahsz5OSPiwTaPAN7iiz3pfEgEsWjHP31C66x1wrm7duVf/OOGuCGf/A2hf/7cH7/k0v5jCai7eCUWi4ebTOweUOgNJ8Ry/qm6uTSOJhxVf0Vcs/byGfdC/w/PcLj5ou6Pr4kUZspvgRwufOOG9nprEv12i8NebjIKyvnhsyj+ZNX859fcSfH606PJ3PaeDtebkGHxfPPy4UhjW9Pz6EqiTZfy3rgfJHDawxFri17vo/2mBOdQIOJ0b5xvVlEVQHDZ5HTjSttuJu1ognJp3mxfOwaa/vjz8j7Ml9mvYt4+cgHr/pGiEURr/lqnEQqcaiRSPy6at+p+BMCvLdvZn1e4EXlaAxYOMVaPrYLm5tK20Bhzwqw2mEP+IvcSXfkP0Y1o4rxbd8WspWdtz4JXeEoofycY/vQjlGZXTfj7WUG82Z3YbiX+wlHe5ram7+M3c9i67MbjpSz/8iuLBHyz5ugap9rYWwFd/fHVqP7YkPksYrp3GrpJ1UMVCl0nJBCTe9Ln5eUEmVuOdG05XTJ/xjkFX2MbDEu+56ubAfDn93yDpKwWf/EEu9Mzp/1fPn3fWowuZZOyW/yRq/HYYROxJN6SyyHWQ/bnF6xVNSI+wp7Vu0QcYTbdD5Z3plmNPwlKNH7WBpbD34H/e77v5QWxPd/oJJxfImS52y1dr2gVDunv2//lQ5Ywf5ePRvqytfjRlwx7N17Nz1E7IK1tBmbzjP3jl/KXSJxE8Ufupl+ur8ASMMKKdGu7QVEeM9xdR6KjnW5D9RZLIxoss6XnR77t2ufWkSH9zCIWlAKquQlCCQRpHVCpOsqIJaoaw/D9jSQUhDKf6jluUSaNK6ql4pWP9fM7/vkff3yS94ufAXi8VsTd9aSj0TU7qXbxvdFVW47hT4+OPSJH4/fHL9EsUUdC5WR5DP/eAurtaIxgs4725Hn13gl/DocY9npjsnCWu27Q2A8jiNIB+8ffYLGLEMQwvuotcXt1xVlsVhE0TqMvfqcV8sEQC+17b89UbK0opBfPDqAMKCPBbYfCJd5n5K9znwp57FfcP08+SEZ+p3zxj8e+3quovlpfZo+nLhyj/bpA8nCw6JrOh7z7SIYN4iskVHCDOpnqOWvACG8Nuy9+4Ny1ZvrnJ7HwKp/zVhJmGbqywMy8S33O/LMSwFHa7zEXDmur/zrXApWCKjD3LNySf/73icbKon/2+XTXlRrdd5uYVsevxAeNvSJt80IKVn1HCD8b/JOA3LiFx8OmtfrLK76B5YZbQvR64FO39FFIxPJLzMORcP6WnRlO7SVi+k+pLL4r3y2EfK6It4EiXOoVGLX4R8jixybsZL9XUGzBYc9Po/9H/4P/XPqOjUnXB3gCjZSpyZLwufT9W/JZi337n/7n3/05Bn02tCWf3fNJdkYXQq2//NPrUrfVTRiC0WbGy3MrqZxWPsSBJBI7OvCEwmfva+/LQaNrXH/53L3ixc9UL8xenT7hOIhj/09f5E5rJl1wsAHdd2JMXCSnYbMxqQ67I8TENakaUl3XARRCB2ZEhp2LZXqS0O/UfZmbtY41v0OvAUPLPGIg2lnT1v6paPFfmP0YXt181vY39Hj1hBE1oWiwzcZHUVoBIbpVo6m+6vbf+5DHZl1ZU43Mq/a4PtfEiUuxm6a1o4Lz6HaU/5iGFj+0Bp79Aka2uyyf6OnewqK/6fo0P6zpZ8oZbDz8I3bH9ERa/CJY4oHpbjbnsxAFrYqlW8/cK6XJ/NRv/h8/otpSL5nXyxmYu2wcCQ5OTtf/1c+SH3oS//01O+lW3N/Io2rPSB1+OY/bwxtQhmeqnooymTT5sILv6JnMvoppLhLRt5X7pgwwpPcPHzaeMMI17l2swSns2r/8gW72kxHDMEN+AcFUh666k91588zH4k5NNL7eW9wa2jLbyHtR7ZZ0ERUuGyX8FFfrnx9JpzDMO+GP3zdvrOHf/eQnTCmVFRhKeV382dDiylXHYD62BfvzI+f1vTloYF43JOjoOecxWrlITI7dX70hpO7+V0B4vppUpU6Z96tX08Pih7No+xzzMWAQw3aHeyz6ipv0xEjlf/FmbaKYc39dFKCEos6s4/fEZ9+yahir8UOs3m34NB8vgoKiT4unRW+3yekjw/K+//g1X0lPDB/raTJfyh4VLY3lTFmZ1/S71AdG9niZoHr0RP7+31k5rQJkPsKChNdjnMzpTggg3NYPZifRJ2zq1ZCh+/3kEGxfWcjNx8vXuotT4vlwZHyW6E5Cy/Mx4pKLJNLKJlr8b1zP1Oymj0ZsROgtxXU575Gw+K9oTJMRa/LjkbBWNgVtqceRP3+lZ9/rCObQHPF4v3Z5b1ApRUfXsMilRdhiQ4ECaNaCjTeP/FdNvzSRVUNTDnSzgcLiiTofQFjRNxYlj1TcKD4C+svvmfUhybR16/dffRRP8n7OW8V7ntA5xhf6vT25NcH0UeF7mVuM7qTMZ30sXfiaRvzPr2Lvpl7Bn7+elfGmo4u/AL/YTUioVM+uO+4eVF2b6htPeal3IkyDDIxccxb1poOmjGUrQBfZIunq5FiTe1/FMJZeShb8SvrjxG1tPcKJedvjN/n+1au9l7el/a+78mnz0Bv1w8SS+Ndvk89/eqIFZjD3u6vD0aM8A/lT/oi+1G/GY/6NtGem10R/PoSut3xPUosxvpMUTyPnPOhPyOC3PYlQVYZ01TwoxLL6pRs3P+b83dQA01kuWPwuePfnx6Kl/keCuH/81etaaKjPmb/Ul/70HlKSd06ynmd88dcP8Odv/unL8WDeZ+it/ZdZP3ZHgpa6NVzKNiXhnSx3EGElqAtfwtOpl8PxqL6Fv/3NzEyeLCZ3FdX+8ku0rAdj7WeEdqwZlhZ+wL/fKoDjuU/x+EC7imfOR/rfzhTI//1MwSb8YmZvBSHkn7ND1cNnJTDyNA756GqRj5q9uWZ2fz7n3JFeFDVP58d2WZtV0zmQ35COE2W77cNNZgzqDQF6nkikPATOiGWvNNPyPlScP0k+v2b3AZqvpMQeLR2JJyJheK50i+Hn+YfY73WN0EfJBGbiorIm290COkX7G+X95hr2q1Z/qE9wKQY9K0JeaV2GPHtPGCmx2zUZ/ozwDCTMthP2Ubv2SwFyOtTM4XZTzepbMOFDC5kO2+0toctnFA2Bw/wYAR/3eFJRJ7eE+IZyRP25qCKAdaoz/+VcOv67vGVgQs9IlLwPIbd2vSDvhT4l+PkSwyG0EhNYN/oMM3PK5/K7OsEzmUUWau3LGuCS3MB9VGfcvG8Xa7o/ox64cbOJkacD7xXhhtGPsBtdr/ouH/4PAAD//6RdS5eyMBL9QSxEBBKWvN8kCKi4E1QUROSRAPn1c+hvlrObZZ/uYyOpunXvTVIVqiL6e984iPZBuljLr4MR/u0I+PEymM6YQ1A+zS/srAilS75E83b2XsVp9AqC/VwiFUZ42OEgrvt0NR9XHjYi07BffKuB9colhk85uNLQkPxauK23Bmh2VtL8TmSj47kvhNMVy0T83OqBekRcYfdTPlSlwase/GRAsO8Gj6rFqSjW6uzdYPS5HrDzDJ10OS5XEb4PdYFVdHADXuGqURnuc4rdJplYk6dzogyFwGEvd4yBhZwvQnAxNGr8dpQtrsp4cERciS1YtfVoOdkZVHHNIW4V22AiMpfL6KnmOG27uehCpLyhzQOIbWmbx7XbeqWo0Imoyif7YfmUpxlGvHtHtdxpbNgNOg+ix+2DvUCx6/kQ/3i4tq2LoKT4xrizoxa2trBi1bzv/t53CDXL4JH0Drdzuq0qKBkXDVQDXmLM+rrrxeQre9RrjlUxk8ogEOwyGUeC/WWrcKNvoNPYxTaL2nSePbWH4CUq1LVsPxhJnwrw5bT3Ld6kgSwLsKVq2gEiokhhS8YWU4GhG1DtoqBCMM/NG8qvo4/dwb8wphTiCO/Zo8FhecH1Sm+gh78fHBB/uKnB/l7+RMBCbkRcqfr1vL57EX6f64MGZX4Plhi89Z3YljH2ifoNpowtNjwFOqTq8BS3+C1KGP/QB2vTNh9Kcy4clPxkxdHXrEAjjUQUb827IoIFzWJRznOvOL1hUzdzl2A16stDzm/nFONdUA2kCz4+4Nn5QuQoytPVGTRXcftOouptlMHvYhiJkhS2iPGz+tYru4k69PmDTeCGL+srWGJI1uCLLdtRDOZYQIY8BD1Zs8+rXt3jOVcghRM9uXtorI0XcbKelCL2UfAG9Oy3Llzar44tdw+DbeclBIUfX5CwL+dg1BRnlcvgfaDuq0GMyU5mA09wOxyE06n+W2/gdM5C1iKtCtYrz1jKTtJKuN2eDIx/+Q+gZ3lEH1Rf0jV+6CYcH7mNpL7fG7OvuBW4uReIDS2qDdJWVi6ZR78k+3NrMMHeeklP3SfCSfbRaorwQYbJXY+wOQrjMMhKIMMNH9GXh1OxiksLwfWqL+hLz2aw5GpVgiIUrmiZP1z9hzcgVM97tK+vr2BWBHCDN69rqFVfNWOfigKBP/34xLofSMaAnrc31EaqkmWLN/qdvxywncomQqeu6frMxxBOappRc4uvkTfWShFuGaFF+nkO84ZnkL86Lja/cV2sDbdfwclzvtS+3tX6MJWhLc+46bE3ShyYhdO3BIdacrG2mIzR62tqoasWA2K/Sh7a4BEREH/TmADhmxvznMYrPJ3rD9bn5mgsu25qoHH0zuSA9X6g0vX4ho800LFmJt9gfH5+W29+8UMzP/UKAo2OB4fz3SeySa2A7c/yGbzNS0uxbuYp8aBgwoTdVuqYypgy9LxVED31nIb216tHZ74ieCxvN7L6PSrW+6FswL59hxRrxQFMZ6u1ocu+FfoRjR9G7p36CppBi8pJ1QbeqYRWhqEf0GA+1Gzc984IDjVwqYP1vu639YQ1Db/Ush7lMATqZwZIawts84oMRmC0N1h51UiYAzSw6hNtIB1Wl9rPKANzVrwQfLyrEy5YnNcMdHUHT571JbIZYzB39seEsqvENGzB5rE05wfkzllOHat8DWSXrBBmSK4IHXg80FA4NSASxie2w95IBff4yOFpnnnsfpmYrsJz3WbJHPfUiK+nv/hA0BXtAw5mZKSCscomrOIXh+B80YxZU/AMPMHvqHuKWzZa2Ov+1U8/Gqe6/5hqBu1fkZJlqb1AeMFzA6cvrGgYjp3RazqWgW79vmRnzS/2x0/+Ph/bZ/sVrMlhzECyPzvY2VUqG5D1XaUtP7DzNpd6PWuiLFdBqeGbeiuM1t69cohZSbCV70Q2j56ZwO/94FFEQzgs00PKoHsofXwR05FN8ejkcmdVZ2wZOGHrXRtXwJ3POTVryWBMMHkZbniAA4m7bL1hgQp3SkbxzaQfY/GfXQvfT/zCWz4MxNfVTtriBzuPKQkmbMkIirubQL0vPAfMIjCHr8eXIKZUo7FOUqPCPUIJNuP8C6a83XewTTuDXo9Xs54fdCFQdgxAOJerh7nM1xgKZWzgsrzQmp1aMMLCveg4EmhXLAtOTaiR7oTv54KAlWvmG3DHFv19P/CTHr8WbvWL5gs+pwvTKx++pXKmqm72gJ0yLgbGqB0pAjuJfe+vH4S6DTE+yj1kRL7bIwQnZ6TY7cKAvL9CBm6gXtBiJo6xzCXS4SBshxIf12e6HmwnhvumPSCJ02yDvRNjhLo1fNFhi89x5aszqMUA0VDc7QYivDNekWU8YyPS92AJrD0P+ea7oM81ezMmyCOBcdvVVK0WKSWWJ7WQGiUmmaJ6xYJVSuRIhR32R3FJl5z0HLANldJYIazY+O0DlnVoUvXxxsO8O3WhPO3zB1Zv443t+8RXwXpdD9j3eSPdq0Y/Qys7H3Fw+Og1O8xZAz9Wm+CNX6d0fBARcq+DRtVeuAzsIkQ8vIHXQrWCGQGL1bcLz4WuIz6ljjE/P68Gqpz6pqbXd2A6bvNB8/zGEeG97RnctWYGwdPOEO9vfXvQHNlQt7bekgayUna+qbOyA9cbRa/5AdYhzx7KglKX2m9rFyyv3xXBPYM+Lbf6OgOD5EAFjwrtLWVhFJ223ofV74JaMZML9jvuGrk9EkIUrzsObFtv+eKfIuoNXp8uJGQyxPdRwJpmJYytTocg4w4S1hhUwJw/3BtQ3ORLjWnfDFNOegi+cn9DYva1CxaydYVzYaXoc+qkdFxHpsMdFRfqPi5y/acvIFZjicjqDQS/UNJ5+JKePXaTt8PWx+fpwg/IPPL3/LPvxORfPYMbP1qmi6kCm5fgH56yeU8TBInOl1ivpN8wnaMiB/eX/Kbo4zzS9ei9+D+8+dMXbOoePASpigwiNbLKhq+qd4oB8oaIX5anrPD7CsSqOGIjFvt6ODZlBdaf69PjLHdDJ9rXETbDySAKffPGko3BCgOtv1A07JVgGgi2//KB2i5PBgYf6Rvud48V8Vu8fq7NTYDfx13A9jkeCyYrgShHn+JADdkbh9kQdV8+v7Xsj38b82lXtOBw1UKKu/QTsJhsZzCegNKwFBqwttLsw3W1FyI7i7zxMc8F2ranc97wdMkXa4bZCaykl1lTdOUOPwDSmgIdso6xsd4GWP49jx7lU0qc/TWG3+HoULzpGRLtTom4vyztn94BtC1zBJ2jXVFrPP8AibxPCe8XtUXzchuKNazjEKa8+qGpak3Fz+ViqJikvWIdaRNjG3+A3SRgjPlvFKyd52fwe9972KwM+l+9JFzmDW8eKtj/8Ul+nk9ode63YPY8UME6O4/Y2uXxMIeP3Ifp6bjD7nHr9Y5O+k3BBfvD52qYzfonQ8NpdHqbXkfALlZVKccfn2Or2/mpUKcPG97hfMdWewxStu5WAebzKCKltYViWV55BVU3HijmhHO9nE8qAYGJrjSyVgjolD1WgO+2R3h1qlJK8NFV9qeowXkDSLEQy27Azqsiwua6rpeu7RPoGN2botH/pmOwijn0ksze+PA9GA1Rd2GV3TrqrGZtzJZTnkG0YhdV4MczWs3QhjsqL9QWs1vKQtCZ8OX7TyTNlNX93bvZMP8gjJbHMKVdZ39suCIZYDWSlA3/qlDZ9C+9KiM0SJ7PZyCsfUcdMQ3BrHaiDlshUEjFJ6d6zapfAqGSD2Q5rEktnCm7AVbvOLKY4DsQRYp7ZeOXNB54PdgfL1//r95Sj7eZsfkRPly66oIkTXSL2TtWAtxNu5LqleQNB9ANHWzZB1D/9uwBm88KlJSqfWFXHnhjLtLvDBTyCzA637R0LndOCW+7vMCGop0Zy0GcwSwwBLQsJgOrUxc8/ExiQOOXhAP6xp0I/vQFuPZcMAfrnMPa5Q0c1dMrXboHz4GMw8OWz1lADaMcYRmV4Z8+TmdrRzhIkLJgdZGqmtx3mgyftevi82k5BMtyVERYTSdEwOXoBZPg9L5cySwk4PDRh9HMcALq5HpB0sYnZx5GPniNxkiNX3UbqGMBEVD8abBdCKeCbXwdPkAJ0C6Z+pQGsbqdybQc7IA+NJhzkc7yc6QFmYdnbiynF+ihp2kPst/0AGt+gQv9o96QGah88a+ebPhN5leMhoOSBTfo7GtK/RtXGfOd32X/6i2I662VF65EJVGRgvbl8E5ZN7zPinVcMcZ7W08PjsVkiGapxXby1zctKm5w6d4XJHySNB2VRoHyids/sJ+Cg7E8Xa0H0A8Fapcnn41hJUM4R8MJu4/RrA9bPIPt+Wg0at7wT29t/BZj91GB1b0aI2S1wlHkuYSN77cQQz5qn9R71a9iDaYuk//yAdFXO0yfJjBh/D3G1EqOEiM936swK88PalPBZsyJQ1WW3V1MnaHCxSwt0g2UjlHhkJGq2PJ5BtCanmQNPKNeul9kw+tyHnAk3Z1ieUdBD/n2ZWP3czOGJYkuurLlNzZvdzsY81SMQcybr0kYXiVgsXDk4Ik7PGgoOKdiLr1nB56uLFHUMQfwmx4B+NkFOJD4sViDOXCBGEYaHgXnlC5cWL0h5U0dZ/CVBeRN6w6qsiei3an4pf11F72hPp0ZIQL+DKtarB2wjjOmp27XF91tulXgZ7se4eGLD9bD6SXDsG8NWvSeyQ7nmztDo6p+9E/fr+JCOPiZ5AAb7VoM5E5pIhsnXSUrqgyDl6BWQXE5hzQ4r4yNbx6MICuzB3WOMv+nBx+wkckZwXB0A7buZB5s+I29w/dez9+33APxqidU3eJz2fgXvDRNiQuJD9OlxW8B8t60p1YZRsFsy6+z8j71CGuH9J6Sg41jeI3eLvWPxmSs8m0Q//QKKjZ/bUw/yxna8WNCSlqb9fKNVB1SBA/Yv/2EYKnVeATwZK7k+ykWg+xuVQw7/vCiZkqdYPxbH6ezlq2+eWBcOPEB04IMhNv48fILdxXQ7HOJXcB+YPV1tweXVb1hq53VgT959QoBN0bk0TwUsHwjVwXb/6d+FOUFyXMxA/gaPbFVDnrR+bvhDNtu2v29/3rDszNMZmGmm1+TziD1dBBFlrLxy3pr7eJXCkEnk7rZsgyUMuMt475y6GMXEoPOjyGGV3o9IWF4QTD1+jeHgZ6a1BCgWHTCvVxhsq4WgYyoBdlz7xvEgjpT/YjexuL9xBGkS1mTk+0oAfu2Fx4cv8DAzmn+1UP2e1TiP70/fx7DYi2vHvKFeqfHrDTYgR+SBkYFX+OLbenBrDR7COKGIrRO0bGev/m7gjyUeqodScO6XSSLgD4yHzv6Na/HKExG4Jd1iANnDsFht084+c9PYxvfXFIDyaA8gpKaOzEtVhHsTMh7dI84mJnGXm/kDEghcmjQr1Yxp49QBa2NLGy0XVwIm36EkfHusV9ZfECEp6xD9knazW/1C3EXn0aoD9cHCdTrVG/6Y4TZap8x3sdTzUJQ2YpG+hNae+4L6OcSjTBaD3vEfD8Y+D8+svnPZNUmC7BXs/ExV3yQPm4uoHMf6Qz8o9rg23bxmLmgJoCTXZlap04q/uGVaV4C6gd3A/wishLIZVeDen2wA5teEv7pO/TnT3F0m4XzUnIyO/wzIHFodv/8gMBXXsb6mMISzF+5IZz7ROmqeUoIUKv1SLl6E6Pv66Iq/Ee+IuVzPwGmHLsG/PT0iZ3VNALBC/MZkuthIqtmWsUv47QQZkisqHmx22FBt1sJ6Yxzit44C+hFAS5I7mqEjY3/kT8/hL2ucJvPng5k5/aCXHz8lEZ6oaSLgo0MZis1qH2mr3ot7nL2731Sz3mlrPkZPkg4cENLv++NXwCmHtCNCd3xoTD49BHqMBTskZpjFAb9+1NUQJVeAVLK7czN7fDulI904xEPdQ5MUjj68Hax32SnyZPx63WagzLPXOzPeGYzzz8FsFfq+5bfHhP+9OPmv1LVvD/ZbJvLG9ri3OLbcmmH+beaK+yGJMIWrmXGkEVXuEtKnsZHewGjfxBUCLyvgR03G9ho1i9RKblxpM891RmrrXwGf3povD+tlJe/rxhsfhhFJzAG88fLb7Dj9y9qOOU47I/LVQYb/yD7VDTZYeM3f3xt889NMF+9ylXGn0yxWvRWetjwQPal852qA/8OZjlHnfxO7RDn+0ZNl7EWOHlR0YMobaGm82i/SmXTU9v+jRyQvEhdYMmmS9NU3gGWsrYDWjrf6GN/LIype0AIN/2II6871uw+yDbY8IxcN/9jFaUygd4UatTevUixuaM6ZF+hw/6QuAFfHb3sT5//2y9hHplXBb7fM9Y187P50WIP73C9UwSzJmCucbWhGLQZ1Q8JBv/4jXyUDuhumApb1lCMocAFMbYb9jAWVwUCBByJ/uXPukjdDTjjx6UoacaaXQSLh6dPHBCx4D4D096RLZHBPWFjnAig2Ag5wHBF8DNfO/DHj2BjGD41avmYzugg32BkVD0NhK9osMNctn/+Gw0kPix47bw2cHu/qG69wpiNxzOHwxAeEYv0v3yrGvg7qhaN97EarLf3DkLvuRr4z09Y9cOBQHiyVxxK2W9YFlzYEKNLjfZiv7Dp9fRsmIannMzvvCkOFyxufbrangZ2dwnWfoQEoLI8Y7Sf57RvvzKB6SndEY4OC5h68YIU6dpZONn01TjBa/zPT/3TR/O2PyeLF1OhLl/2Nd34ObzTXUhdcgkDNpWmqUztsN1cVrWaqK0+w3j1Qqq63i9l98acoeH7JpGO16Zejq9D8scfNj9YNP7qGcxPAiTGWekA8cy6hC873WP9dtqDmTfkNzxwzCA/kDrGVLKRg1eWqDRiuQu+9yZcgdv30rY/WYHVkh8iUE7k8y/+2U5REwio8iW/w30tNv8pA9Py4rFRXVswlzbkoT2JPXZOjmdQ+1a6QPq4BGuPlx7sb8k9B7eTFxHl2hnBwphVSrP2Vum/3y/HvQh3u9hEAttmpXS/rY9FrWyzC1y1+PODQSlHJ6oGATd0co56ubE+Ib7jCbNx+/kf3/rj13wiHxu4+ReIsU8ORqOjb1DOvY5DSemNOcpU9U/vEH4cXylTPBCDzX9C8/b50/HXNGBCF27T40HKHx2z/Zdf4Y9FxbqneAXl3Ok0Lad78a3amoPkexxopMvJsATg08G0bb/YTOOFTSRk4p9fheQs1op9Lz5DkNWnmRoXhw/oxerecDxkEy7geB6WQlFMePP6Bgc//sZWIX7m8M9fVavlWtD768dB54736Ge233TTP7KsyoGIzXF8FZv/8oauvpsoTswfmF+H8xtsfA/b3fNbs/HRikrtCgb2b5waLIFRqFDr2YDNKxezjW9w4Bw1JkapoYE9k+UVnj16IzAcu2CdaCrCeuw/1Al9dZjdMynhXnnd/9XTbb+FwH1bhdhTjGJgZMc9wI1YDAfRWQh+bH73yqZvqA2Ga72a3YuDZX52qZogZzhc8NzD7JNaOEo+t4D9jocGSu9mJKP3TMH8kD0emONgUmwdx5p9Vb1XwufoEKkpgno2j00Jx8fNxqET98EkdguBmLcK7FjOpd6+r/7/nSmQ/veZAk3Ra2qOLzqwLHRdwHdspeHhdw9W3pNU8O7NN33MP4k1+0vzgKJljdQULC2dRcvM4XsXXcnuQf2hG85eDH2bnLCD5MBg8jVplX2gLQTspsfASJ3I0J7NAqvcxQ14oFcCFMiJEB6uNGCfvO2gP94y6mXSPmWHYe0B5Q4y4tL4Vi/wl7zhMIwJOjyDfvgpqv+Wd3f6RAel+DH6CB48dDX/SnZ5JjKC5JsKrJydqGOfh3Q5fjoEXVhdcOSdYE0+51IGJLeU6Pfzecaua11C7opfWPOf+2G5oNwG2JtDfNyXdj0x0s9w73wWHFrHeSDgogqQPV2IXb7q0hHy4grDbL/NGxWN4WAe51ZBRwFR0yjiuruQ4wza5pdiFHIym+nt6kKaqyHWOLVNKV7cGEzrlcNqwZ3BklxEBFpPKLEvA7Oe3zuphNFPxDj6pAAw6/x8Q3fvYKy99a/BVmZv8ze23nb04AeMWuQGTudSwuUba2DdQxdCy+gef+sTrEc/KsGla/Y0meHKFiS6MeAflUHvi1rUzA8POURHHtHHA4dp9/4bE6yKNjVNYa6/hx9xQYdvOfXbFwtWzqxWmHQch0CZGYzJX72VV3jZY+2b8WAhoi7CXEAMG7I6szEqV1tZ7q2LvSm1wZI7RQXpbzLQoEw6W8Vrk0Nu9+iI/M1ZQMLlZgM+7QHq+Z+53evaq3IcUR2H1+FtsFI/y3CLV3xTomb49XmhQk40KhoSdC8Yedlb7846RmLXC/UY7aI34BdppTh6SAZTBAVC6L8+OBQqLaXDh3uA5ClwRD5d2UDPe6zC310/40hqQEonSG5wSQIRrT+cGuuH33ovqQmhxujXxSokMwf2z1ZDNJFE9i8+FKz93ZMvjFWqngJ0LJyQWam6gGKrXuE3029kzvaXgK2fRwzCz+1IcffJ0wO1SA69ywkR7qbIxdq2xxyuLufgkIteBvuVXAXrwa9wdJTKdK6b6wM8OvOHH6dhHFYgZbEctIZPXrHs1OseXSC8181AvVbjwRykq78LX9yRhvufVkyZYfQwxcjC+h42jDqRW8Ht+2D/bVsFE5wbkdXH/k5AYCQBwUddh59veyfLY95vvW29GzT1psLBeT6Cxb0xDoY5f8S4TfNilZtZUK4ffUVLkznGbJgnHszHQUf7SEY19W70Bv3XK6SO2w3p7Bv7HqpvvsUmuGBDaPPfDTS0e+DjqLVsHs5aopjbpbBo7001w8vW6/NgPui5UsJ07LpfJu8NfZuFEbnGYh95FT5tucPqhLua8uQRwsvzsachtZSUCoezC3kl07EWG9+a7tZIlEctT5DyplUwMI9LJNakPPosn2mYD6ELZZY0CpHbVxosk7VySnHwCWE8qQ2Se1MC6vD8QmtcW2wpr2kOsdgEOEIPtV4csXuA1s5LJAa3X7qeyugMPlb2wOUA7+nKPkcdcr/1h0N/jAtqufQNY8X2yG63OwyL0ZSmpA7XO1Zz7mew28V4gG/5OWJvPvD1cpnrCi7Xr4pN2uO/fLjBTySdqP99WYbwaD425EStQspLVI0p2xctUB+HOzU3Xsug2epgKhpM1t26prPilTH8xY8LEvRpMua7dDeh+L0M1DDPScGS09OH1ru8U/Or4IEGNc3AJ/2eqOoLh3RVkniF/c0KkaI+X8FiTZkKG6+4IHDVj2x9NB8T8GkH0GpNtsH+8gMnYkhdaT0bLFguZ/jZHzLsR2PKiKTGovLDEiLDVNbpenu/yB8+o/aLw2DlriGSiAAgNRtFY+s1kGY4rQWHwBafVGvyHlLjCakKq3NAeWiHUDx1PEVxHDLhoV87yIYRUvc5uGCRq6T9e36KRjQGrH7WSDlegEojrSvBnKGfDObjTyeX89dna38bV/j0zx2KS+cXLM9sOMOdFlRkMJckXXOgIPBMHx1F2hEYzLUNCLT0UpI557xtR37Hw/jG+xhri1TQI0d9KGS2ij2zO4H12UoNzI4QUHX32wM25vYDTulnhzXFs1PKLiSWafw1sQHUN6AqhS7chXqHOH4d2E+ubi2ImIqxhrpvveh47pRlOB5oCMArWDPnJ8MUhxbWlV9Ts85GDRScSiWs1o36AJOHCrzHeia8u9OH+TNdbxCRW4SjLIDp6tyjEV71lVENelkx16v3kFR6+xAYcnHK1KgaFbKfI6yGx0u6+v6nh4f3YcJ6jz/BkvhqCB5e0tNgOSybM1KLsoBriuRL/KnnULyZ0DmtN2xX20XiAgw5nCw5xoheAsBuDoIgcKIAcbIp1WxBbSbnKeRxIqKGMT/c3cBLpgXiWjYaM3ajNxSZNKDdzj0My/E0jBAouw/+i+c1spQWgDEhRJGbKCUnSRLkJTJUtAvCq7Fo96pXglbzsZfr+5SdE9BAc+Ie2HOWfb3outorJH0jrMmHNp0hL85/9Rwto9gChr+HEGR8KNMAhUnAUoe6csOzM1nO4SllXDRBqI3PAltIroYVXFwBMl6AVAuXfT17iu7K89GR6cYfhkO6j314uAcTtsc+NBbHjivlMI17xGIjCQZjilvIX0yAM8HSCl5yYhmo/OtO/ZRL61UkWPir54SBw5stElhbcHxmLtX4jz300lxmsApuLdVP+7Sejy8NKq1eZDjYTY96rYsQgkMf76m/1efVuVsECJwsYFde3WBBe7DC+b7dY97/XinLHhcbjBF3JLI62QW9SJUOD+1xonafhwHxu5sPs2tu0EfOj/WUVaKr1IexwpfLowck3v/gv3wwxYuWMuFw9uG1kFd0Y6gBj5Vr3pArhxeSt+cZAyFq5IXGOxKA4s0YTB463D8bbavHh2D183sPvFRCaMdUP1gsJX9LrlhjHL4wZof1c47lJnldcPAWn+kqVBVU7N0rwUZzN+rxMUwmeL39BsGloml/Qvdsm7D8pYG5JAVr2nMHU7k1cXi3FUaV7F1BzqjfiPldEkzcentIMUr8TeM3xXrZeyt0enAkHEUS+N6TNAdsm6cCRwsPwzbkCSqlO9BiKuuCLGHWyG5EcrT7pn7KQIV0GAhtgjb8KQR16m9Qm8uGFo1W13PLhwLY/h8BXfos5p3ZIJjuCCCKusBtvmibQ6HsD9gVgRDMbDzqUuynOrX8BdXzxJoean5UYp8zm5r5O3wGf3gVck8I6Po5J9C7XBDF/ukarJXye4O3cShQM2BtmM+SkoBVVQ5Up6+ETYd17f74Mn32ZZ+OiL11OCRtSqQN/5bdeS1hgPoUB1yjs8XDeQnpZwJYkw78v3oDjpzvUHR+j/WaHT5n6HNOgP3M+bDFot0bMuXKsKp6HmO1JowyfbkhxufAZ+y7DDbctYfn9DmGVU3BJOggzWQLGw9pGSb4u1Vwrz9kspxPTnqIT10CqgvXItnetX/4LcBNzxDh+R6LLujuDdzqBQ7iR2Kwj5D6cH6H/lZ/hID8xee7t99UW1N7+Fsv4N6SnAaNZtRvIRE5uABhhyNLVhl5nBUTwBh/qHtxfsEUIzEG55Co2G3zc728dSMB2aGTaYROZGAg2O49CY+R8F8F19RcDm/4lciV2qs1sLk5/0rgp/EJH5eUH37h0+ChFBk92unLkE53hZ2hO+wwWazoC2YrOq2QfCIL/1v/MNw3//gfulzDgfqjeINzoOib/ioHVk8FgmuNBRqIzQOQSIwq0AVFTH720wHzkpYNzIWQ0Zu9swPeMO88nHssIfaU6nqGDZ/AdrQL7L3ab9B7bdTB3ztA6D3YH4PJoFVhcSwp1r+KFfCm8Flh2NcuOZS6D/aXN6ugZpkfrMXyt568pZblruBysnPDoBCMwj9Df//OyCAmdbD+umyFG1+lhuLFgLlLV8LxYh8xCh2ZsTFHD0i4i4n6t22lzJerm8IbFkNQMpVN35IO/uGl6bp6vR3gdP+enwY7YR5mPbjlwLigFzWsaE2nP3z2O5jhczyOYEZaYsKrPjOMfx8/ZYvKnWE4KS7Fi5cbzIieDRDIhaD9I0DBeDxGD/C0xY6Gd+XO1sPlKQNN6z5obz4RIJN/RMp99gekcLvCmBHrVXi0kYcjuZmKDzj4bzjCOaahDHDAjHtpAorkEOsHtA7rlfNGyKoDT9FNuf3p9Q4qcvEm31LvwVoF1xawx4cndE5ygx0fFVI2vkDdShHYbLz9M1T5+o4UU0ZglZAqK16RnWlOoVsIU+6F8KhjLYJvrDHaiec3LI4PSqQi2Af/9FThnikNU4cLWJgHPMBiG1BkH6OgPaHTGY6e4lH3pXSM3XnCg33mLQQau3c9Ar3jodNLR4pF4cJ6QiQfXvNyxWjD03/ry/3mHy3FSAlYPp8hlERuIaLl/ob1lUQ6hJd++ou/f/oRLHxxIOvCErbgsoohMicbhctFKWhodDd41Ffv7/3Vk/VstnqWTqjqbbee/vjWZ9tTC3um1VMasw6e+odG/fVigvkQqhw81aqEfQpXRg3cmFD4oQN1kDwE/amMMgAzNJH5ut1DNsyTANuuK8g+O1XDaBXRDCdH20277ftOjlBwkFfOOnVR7aX0b30GMU42P6evmROpldLhPCeNPenDQU1wD1fS2ZtfhIdDehl6KM73gQZSEzNmd1315w9hS0milGUjNqHjhTeq2sWvHlX+fVOwtZgY1S/ZYL8R6KD+BjmSBq0FREnyFY4K2JF5w9/1fl868Db2Bdb+8DQxVAS1B2qovcKAzX9+Ss/WDJuWoNeCJ/gutK7ZnSbv96dgV71T4V88oSq/FWvrjiIQDyLD0VlCKaUHIYPiQWZ00/NFL16bG/zjc/KT/xTkcHmKMFNjkwbpd2FME2gDee65UGTein/+2J8/QTVOtYvZe957YIG2RFt8DePunRPY5e8crQ1vFUsyFj1sPb7EmKii0ZfSsVeUTzxgnfQJoP0x1ZXQPXpYfb07QD834Mr0QwEah14b1qX3bHnH4JceX8E3WKXky0NOdd4UwecwsE0vAwZjk0bJXBZU0vse0PZoYPLtR2M5OmyEx0J0cfnCFLCbdJYhfacAxUt/TsfH8LFhZhATAfLZbXsuhxIYVfaiCetNRrjzgYC6pjmBt7ceHL6p0MLZfem05H80ZXH4RKDrMSaV6nlgVJtJhl8bJGhfSlU6w6+7AiWjNQ6P22wuUicilBLa0+ikl+nvXLo2/MzjHf3Sx75YC0cjUNbNhdS4Mw3yzq5vsKuvT+wA78fW1m1koF5JSy0lmQpGT28ZTvojxsEzO9YLssQMIJcgqgaCl/7zm4zPM8deGTjF+gR3FXY6f930xqGY7sGQw61+ouE4P9k3PB0ySEEhE+adzXS+XT8hFDfPGQvNAay3928Ee72UaVjn93q9VncEzslNpSaoNGPeJRkCP0Ijij+lmI4gzgVIkRj+88cOr2abv/x0zht/pGDdTbQH1NRM7CjFDzCSnm/w0/h3xINKC4Tu9crgibYiVdPbxZh15Z2BzV/EkWPAmvzVq85RYhpMZGeMzzgywTqfORrugWLMzvlOIFiKlhB/vIGxcaVS8Rb1TD39vAeTe3dLYGL3SVWAumBMDosI5/sgod47tkG39uYbBtMjoW6DXcaikSZw2fEO1Q6frPjnV5IPtqh6PP7SJUtdVz57iYr9v9l80c6q4Kb3cPjGL7aoAu8D7rS8cAAKHazb3A25O1oxjfXkUDP83SGAO8PA4dC/hrlQj0Te1cWT7P78uv5Y6GDfjRpFu+e1WD1B92E19R+sXUKnGJF2M+WNL+G/fN2nMdhm115cIr3vX+PndDUH9aV60+I8L2DTYx2cjTygJmOvdB7cawwE/KLU0iMC2G6nyLCfswyXFOHikEGjAaevquHjJfwW66AdE2XjuxTvEz8AeE9DGPYvF+uX0apZUjsuTIPVwjq4NPV6OMSy4hxZQs7oFoLJDNwG6gmpMf76YrFKXJhJsWJ6aCc0F7BedEmA9Zzm2PrcK2P7mQfmb3fGf3pqCfwu//PX6T9/+LkNieVW+fdPv80P8GpBGQoTxfE8GJPPxNt2xk3Z/D2TrS4+ERhXb/+ff0aN6NLA8+N2IHD/09KDtBITXPPHikQRCAYDla2D93u4Ea7K5YLa8q785w+cZG9K+z3JOUinMcDXLd948uE7MDWBQ+YJu/Xa7EYR8pKsE8Z/lmBC1pxB8gsjejGioFjB77kC/mIDwp+4OFjXGVbwO/lXMp6uj4BGfiFA8bGd4dv4L0tY0MuohxG9vyjZetUb7l/9J0r8RQNF3BzDZIQ2DdseD/M7elXQCbsbvQchqg9/6/sX35oVOWB5ZnX258+gKr79CmZPuIT65XAjAD+egJTF5MM1MR0Eo/2cEu5qIvDCcoPVZ9wxNvfoDP7wJbhlz4Hs0YUDp+NZp6p0OQcEof1bvsrjgouh3BkT7vPkX32yX/yY/vlnAAb2RN0vFmrauYUJ4qry8fOs52AGcc7Dza+hV1rydS+bBx4e1C8hSq0VjH8mxwYM1jPY/KQimLmJR9BfzYzeXjYr9oFcC7Dj0IWw0TdSPiYShI3KVzh43o1hCUfGK8pLGND+GG53gIhwA0xSGMWptJ3ZLB8ZlKXnFzvjpifVndgBl14xATg0g/kXaZniEPH658+BdZ35Cipc3tPCNcxi/6e37uY80lRJ3mz+AC+Hx6V1sbMQ32DHMiXwd9hHNOjSZ9or65NAznn3OEwACED3v2IuWA7qe/zzX9DnOqvF/qcNJgRPryXV+9qx/k9vuckhJrFWXIYV3mHy7+9lGK3D8CuFN1C/uztRLrpaHHCdJ/D4MtTNqXwWA3oZ8x/+EvGPrz6TY/uH/2hWKtdYT6PHw+WoetR53fuaUUcWIapri3y/1C8OA2vLP3/tz/8YWLrPfYgtZuLNbw3WMJ0aqFr0QQ3O08GcllcZetoPU+94+tbr91kKcNNvBGz4eJAutgmje4apVnz3Qadd/RyaefwkMdr9Urp/yyOcmaRRIwubYNz89D89hM3zfg466mf9Hx+lUZ9GYAmpe4b1w8jRKQ5JvXg4fsANT8heBa+A55R5VA4T2dPgkMyARZ17hui+twjbPr9ZFs+Gl1HdU5e/nIvl/Jtt5b3DVxxdA5L+23/7Vs2NPn5wNGjwVHO48Vu0L/UqZfuEC2GrsIR6l6+Tjp/pmCsbHmB8zXywNvhXwng/aNRq6cSW/KOq4NH0PyI9s6+xygdnhY+m+1FfAmvN5K/fwI0vkXnLr+HtshiO3s7Dmx82LNq962GskYD++TvkYLkcOH50l6pbvExbfQDCCVO03KW90fzVP8dDN+w9s2/QBbbuwk3vU7UezsPyeQEfmHnyxKG244bfOQwa2CynMwGu3KTrl14zwJl2j/0t38bGXUrIvS8vsl8+0bDF9wjnoyX/8z8W1Bkz/JEpwvreMsH6pcczPNW6RMDBezCyVykEKfMhEZR1qEewNjHcY1XCCTp+tv3CGSntshb4b3+Dd86nEVYvsyWzMx0Kyof+DI6c6+CoyMpglAeRh/2OBXR7/pr8xbOFhxOOHLms2cpQAp9r8kXD+KlTFsnPBPrFISScbF6H2V72BCSCadPs5ryNOVMXUf7zZ9LLqd6YDDSBXJ067IHELkZTmFagnZcSq49YALPmWSIIuSrG2vfeghHnvg4lXvnhx+ZHd6fPlYcbx8S+e2uN9fvMeAiehNDNLzS6Pz3v7i1M1m3/ciR7yZc5IlX/9CmLOvX85x9vemEATPlFEOyzYNn2IzNABuzFym63e2BsGlIxRHCY//QCLme09SnV64fcJlxJOr5yC8HVPgSy5sjTMB/mYJlZIijz1fbpH17+2x/Y6gkOpIJjBIJqlf/iCarCm43XvRXC33s845L/4ZSF+/ms/L2/P39rbX0pB5vep/cig8HmR+dgPaz2Pz06j+MSAjXyWyJZ3RewiZPFPz+KmtY010vBg9u/+o2Juult7uv/+cF4y49hrt8h97dfSDWZZCnTVrUH/9eZAvl/nynA/OVJnXr3Aqx/CqUstcZM0eddD8vO2pVgPpc3mom6Ug+s903AB/sD2T0d21j5RZkhDLKZatZDHZjaWzE8eUaAkRd79eIMe6R08D7hsG7jYY5M8QwPtU1xUCXnQTitxxUaBNY0uL7jgu3WKYTB69NTXR77dEG3hAOPp3bD6ECOBUntOIFBp9ZE+fVLsIhxuM3rKhdsT8+1Hjlwd6Fa5E8kd9bBoLIHOziBX0Rx3ZTpOM13AaIw/w8AAAD//6Rdy7aqPLN9IBoiIima3AQETFC8YA8QFRCRSwLk6c9g7a/5905zDV1CkkrVnLOSKom4xZClv1gSiy1u/QtFt7wrx9/mWAF6XWNiPoyfP/P2FYAruCY5T6dbNB/25AzpZOlE1/mwjGe8wrt8BUwTVwaaDtv7DMktEjDvHoa/9pzSU4fUbZjeHC/l1968RcBz2hDH9YRoVPinB5xaBuZ9rfjM7J0K/aI0oKNWxj5/dMdZmYs6JbjFO3/kilPB9cBcrJTH3p+3I/OAHecHOWzuTTm/KnBRVl17QkZh4ZziESDnASf5b3Xn43UdntWf722JJkbvdG53WgXyd+xZeB5cvp56Oiuv+9lgx/SiR1M3NQEQujkx+xlZHYvetgeVkUTMGZ44Gg/J1kau3t+ZX3zqdH4EWxtmV5aIbpURH/eufkInxbeI0/Mejd7Pi8F27hPx5a1aUtkaWpDvuxfREHP5ci+ggaPQ2kRfsaqcz8aQocsQlLRmc5Hy032s0Odbr4mdLvfiPuGUw3VURTz9fT88/2rwuQYke5LM5KLmybC3kysLhNe3485+JSrSSjLxd7F3Fh/elbLFvUc3ub4yp2uIQ5iF7Zfpwk0v+8k8UCjE95XyhN392X8cRhBQuyd6tT6gIdgPORR62NG1s5dN/uOgIHHmV+Yw+Yl4pcgt6vrJJljFDz4bKFZg/JQDFt6bsfzdLjyBXk327PDMS38odA2jLtE1Zr9v+7R3NhFF/teRmJ5Pe1O0+/QMVvt4M6tf674UKmsAizdvotteYU51JGv/xh9s3aoc9/TSwvn73RLdLz7+uNOOInrfvjYddwiZdN1sejhOyYGZ/mbf8XZbGCtX4z2VzKH3WV6kFO5YexONtHP59Vb3ENhTuzKb2S807VJCEQrcFVYe270/vxVRAfPaH5nZrHfptDb1XJXVUKaIW5XPB1RdIb0f1rjPpLabzK9cw2WmIxVWUlKO4g8BctDxyXAlFX4bbT6GOh1XMZ13VW6OYEUhJDILsbxSTHPdY6FCnGk7cj0c5PLf/Lsb5hH9JPScR2/bVddjE7GorxWTib5/Qv09mCic0ika5ixyQVclRIhblZy/8CME5ephdoifEx+U17YBaa49DIOt+sxUlBHswjBp01khH5v30ivkzUP62yesm0tn1SAcJBKdvw87nc/Z3QDoNhcs/iRW9omrBbDYG/Gn/m1Ol2hrwet+NYj+uNfmEJl+tY2SpYnLYo/8cDsnSDa/Z2JP3q6b1MerVwQhJuRO9yve/4yTofajF9ItT98+p9+PAlCcCDGKXRlNVqS4SqorIfH2TI7mYyiMKJq+LtkVbCzn1d7y0N9688tNMkddbq9/9k2jKJoiej7GLdykOmc4l1f+gHRFRCH0BCs0trnYnIYGvlFwXHpCZpxOPnnBbUhzph3VopuUE85BM73DYv8q6q3wk8E+bxu2CwIaTWHnZii3+XLO1xLT371+yUiIJgFD9n1GfDNtC8V0zR0+z4fKZ81DdGFfeWtKz7dqyREGM6oc5UkO37qPxs9LAPh8qzUzdOfL5yCYXcCSvdRJObGOFqlkwxgKmFlduSp7bald6wxvjfjsfvSX9bBhTs4uS3ffln8PxXkEX30xOs0XxRxjI7Lgtj1XNDXPCmIVG0+qtVIHvOx/n0pGd4VTzGaG5V3tz0R4zfD0nzu6Xp+4T8P9D0N7qlUMenjy57S4Cf/2yz646/74vjuFvK/cNbN307j46/iKYiyOxNCC1BzzIBDRbbjnWKx96Jb5LtBz7bX/9tf4Ok4Av/Bn4+7PH8fMleBCcovsRW5FtfKKCmVz2/+IniRiR+F2yUB95xrePtWJTxd3pPDslRvR50tiTtr32sO6YgfmSr7fzRA8rO1PSCvMT1/G+WltVepPuFe4b342F73kiRHetyPb1YlZTkF5N+AhvNZY0EWdi7keZMu5VcZInlodX2pbIcV5Grgc3jYfxyGQ4Xr2DDyKS+GG0YwkWOyDuNHeT/nOb85osWdmTsLDHzx5pSApYQKG+lOY/OpAhuSPURPtfm/T3h9vAKXiaXhzlr9pv9E3FpyebodBzkpzFDwtge4WKiRb7G3MVp4NRLdEevkYr5KTe05BvI0qM1axjzYOX2koFjfFsh8/HaveBxs5gANKraox26ovawWU15vpY+OZc/x6tGAFg0GC81MyR1QmFtDPdSa7Pm8ivvr2EpytGyb753GMBiuaXXCMV0OMq5miyU3f9VIbjuAmDvRuncCvlTXj8GLGnkzm6B6yFyzzR8hhSLuJkTgH39z4//mvXepQ6KuDx0wvRCkv134hX06BT26ObkfzOTtqaoxOKQmaX414On40CL+BSdLNuOskA8UycmqqsR3QhM+oS5Xt/h2zxd/oJo/YdEWOIJzYXmge3dyDkUH6RTrTPaksJ7HQQvXqrQxycNGLL3ijhkdyeTASu2e04CsM4w+/iBmUXTqojxdV08nWiRP/wJzex1RU3IxOf/7fH5Ru1pT6GCZsry/3eswQ1Ui5upjdr0qKPrIoW6oxaD15hv3gDwY+aPDyWgk30b6L5neoUlQqrsYIq5dWR6sYg5a7HzrXxbbrK/zTEJbFN9Gdzcmc6l0gQUsLg9m16aGN+ikKxD1xIMbp9PW79NO3yoLn8OZrXcy1XFsyrPWsIBdrrEsuhWOs4kF0CRlNJaKbssqgeblvgu/MiQZ9MEXAu5VKEbka6Th/tw3Mg43p3ClZ17tf14LNR1rj6m1YnBbtL0RLPGRYF99o1tbdDOv3ymHeqqzNgYxRD29y5mS33wpRW/ptDpFteeyxfRyiZTwikH4X4O/P3fJqwWfq7bs9UeHOnHSjDaOtCkmwYfdjEfPJczpvK2RLr55GIN10nHMDFPXJ8RbPcze7O6OHH99OWDl7U8cdvjGAXL8as0eURFxcGzkka9Uj/uJPl3jkwTk8nZfeD3fE7+1GgXa9bpjztdY+bXdujSaetAS/PK0cI1zY8FOuLTtIw9ess2Zno2zXvdhh+xiif/G1tkOdxk0m+sNm549QfRqB7C0jKPkopzH8/Z47PVtzJndRAv6eA2a9+LacBOEtojN/rYjGIChn1dlLoH/qH5Wk6BGx88aW0d/4BGkoOL/TlsJdNCP6t97j7Xos4DrJb6L9ZNfnnVVkqvzRambdoqXXxWGQlFA7ffBq5Z0RvbhJDftaRuzvfYZaCWIIy3dISMmdkut4e4LzOG6ZtkOpz15mpoDXSDOVtieKeqBJDoIyZMyZfYamlx3lINnuk+y4wtCkmqoLsrbBbG+3v7T/vCTYgrSmxH1cttF0AzKiu5IHTEOmk0rv50tWb1KVM/1CuT8cv492KygsY36/m/ny/iJ6JLcHsaQ2SQd67npoLp6LJz48zD7enFqwg61K/Pe2QtxHNEdRfs1IwOgd9fJtOQO3jF/Y60I6fMXJA7Zb3wh2fqk/mdVu/ls/Fle7VUcV+wuwyhWR6eWj7cbxFriQ6Hz+s6d0Kgv9DAdpKSTX4hfnVxANVD8+NXGyMzGZqBmyCpsxZVbcjengpr9aeW3FLzOF3valj9En8A0XNTrzLCRNjGfq2TV0YpfWNu1GMxIR+qEct4+D062P+v4E3xFGog+yyVvF/gpQ3F8qM8fj4M+RHYfbyBVDcmCqxjeaLOcQf2ZC9HioytnY1DYMblIQ03mtfZ69jjGwqiip8tNMvv6wQIO/eK8Lt3c35c+PB3/rEUTOzEfYnkQ11qsNCdMZIX7eKQteFREjVDEiyfwu9rBRr0yXrSOnceVm8EZzTgLh5XQsFLxWoddfzcwqH/mcpEYCW1+wsGxfXh2NKy1XfXPt07UZlxGXT0oPrpU9Ce5PezQfCkVB6sAD/L1XLpoJW1dIgn1InKozu7Gq3qN6vcoue9x9Hk3VL1eU3DINyqXL1E0BPSZ/fIT+m4+j1nlgRmZON3oSm/PrjmbYYurhtT5d/N9+Kq7qIzdCZhZJ4Et/41niFf7m+spvx7VN4REVDyqQM/bHm0OvMK+vbxZY6PMfPzbasKaw8L/+Og0FUl9ltHyfmvPtl1L0O8grLO6yIBqfnzFG10l5M03PLb5WGoLRzfM4OdhNiMTJHl8g1tme5Z/CLMerFo9IaGSTKo/Dt5se+z75F69359Lg82hOAJvSYn/xpKzF62+E/JKfsTi9i27Oz7gFMn3uZB96F85p9ilAQ8jC8sjdkhPzAqoZgc/sZb//xTOYf2lK5dfZQ2NCsxr9xWeyTtV0cMN3gBb7Y/dvY6F/8QEN1fGPT/jz4k/hftcUor3fvOsitj2DOBz3dMusoOytZ9iqYXpSmUU2Sw6d9hJkmn+mG3HJGS14B0KghNZw1NLN+uq3YASFw/AefH/xH4p6C5QtM4d3zUdhzEbAr5rQ1WFAXa/dfgHQp/ghBvuwrhVOBla96FqTvegYXDRw5y39lh5YePJuwSuEAvekgXk0rvm4knQFodjeEdfP5Yj/9msKR38qmLMpZz510yuARzjfyLL+5lQEbgUhuW0YVvJNxzbpOKqa8PPYvgjfaLKY7SGIPuaf3mJ2oxzFYL2UlO0nd4qY/zrlsHvZAdvtt3k6/y5ZAOEqv+DpLWXRaF+TCpTv6suM08kxu+meVfCMWLzg97fPFQEwkp3QIZqr9B0rzl4Cq/Hq4N+Cj/pbn5xgmS88/96d32vFu1ZXdlMQLxMgagV8S9RLpVfE18gX9comLODZyzeGg35Ke314C+Bfwge7LKfj5s+hGv/4JbOX9RGPLgBy1lNEjAOay9/ofxoU/9Z78tvIm+iPz6LjrW9Imr31f3oEErcBWc6ckYg+dJn+rTfRzoOLpI0aG6jJGWbmju/MQeDvHDaPusDq/mukosTeNiz4n2Vw2HC+JY4M5BMGxIyvTje+76SAZkgSvC2gXOKPMyr21VJJUCjMXOJXBgt/Z7GwkqJhbe5zOHTKkco8UHy+OexqmEAdmW3qXjctn6NlfYit3Qc+qbJI0VsKT0zP8m06uZJaK/vtTyckuMQlP93lCr26fcpcHigmVUFP1MyuDiT27HXEWJE0YG9eBE/lwyuHZHqHKvHrLxX++Nu6WfVKC+Gb+Z/2XvaflyCg+vfqiaa4STcPjWWgZ6e2bM9Gak6abpxhdDhmJv90EZ0VLqLBUK7Ma85FxP7wTt7ghHIrNUwpH+YAItv2lhwMT/nroWXb4dWuyZ6N2J+COGzV+BWaWFFhg8aYMxENS91UbfV6lLS75cX2T+/YHwuZ92HGE/BYN1OJzUU0XZRdjn6FHTN9jyTOtw3PVfr+rXAjRCLqo6oV1UXfYNrzQVHfnr/CFvzryILBfvgv7s7in73RjTM4aL79IvpPf1r4ekS3q+QKtfxdUbQZPx0/nv0M/eE5A0ZmDlhjCXo4n9sfnl7iZRj+rScxS/tQzuK0nqEdPheye45PfxKEn6g8u1XLvFIdylHMef3f/7vYRn/+SDlZboRFW2TRNCaxhBZ++29/jzH/SnBYbnkfjqbn8+dJsyGenYxgMYn8dfziI+iP65UR/3dFo4FLDwUYdHaRtu90fB23AG4RCMTGYs0ngjIbUUs6MINuqT8+bzsM34/ZLvZL/HX1uypw/DwdYs3bT0fXfVGoPP4EbI+WOgX2aQEPnVBj1VjO9CleMqJFnybu6HwXvirm6p/9kkuMu398+/J7j2Th/4jHh3cNKEc7elyZpjkbG2qjgGU1OZr+WE4XV6Z/eIWYriynveYKGlr2D7NWOkX0rYAMl7NwZE4ZvdKWFeOMavmzYpZsqB392//Lev3NvznHTJPAWM0zluR6iBb+2KN1dERsf3rsSilmmgjUO9+Xe69+NC74D+n6/ciMRZ9jX0pG8BK/Jrv1iZvUDX0bRH+zIVpb7TtxrmwRVmqtMZ2sUMTabavBT5RyEhjNxZ9uFxSjeq85LJY2g/+3PxWJsA+evG+cLny6QVFdMaYdjrrZ//H3ctUGLFj0vLkfbiEEfoRZQDrfHK/+3UWf1cahsmWMnObFJG1FOSoouhdjSg0UytDuU5W5gZSW6zqSDbhL050dcGSi6enTHpHrRyMHM9j70xJvVdm+JIvebaezcPIwyO1rJl6pHrr+T79c4ikei0yL5hTMAq5i+13qiPQ+fe8bD76eeVzeJ0SfgbeFcqNnn0R6FpaVlQ4SmI/yiKcSP6Ol2d38h5eY99j+/D/+oFzsaIfXSnv1x/6nhaqsrTGLDJGXbMuRCOf7OsHCcudGYoU8KnfvRlngrfYdu5ftFdqDPbJg/Zg6sbr/Eljp3nXRR5xo/bn7IRz1IyN/eHnMJUtTF72ImUjn5vitK/tP/2CW7R7QVJneC4I5GEjWHctyGJNQVBZ9ltLqK/FxGB8iLHyNHDi9dPPPi0Tg3e3E7DG3/A2VjjYU3mZi9ivLyimg90RZ/COxF/41oy5SQH1nGq6kVol6eLITfPbSleBKMvxNLEhXUGX+oao8+WjjozoDO16beAZrKNm7yg1AiegTjzgonat3iSEy7jfatTr2p6mvZ6SfxJIZxVShUWmGK7DyIzH9fB0X+zUt+MNj+0Uf4+p1c0V3WtoULfGgHc0t/Ol7DG/oFI1/+SenNA94ROY3nfL1IKNdn8ZkJx+tjoXcOwF/jwE5pyvcTct8qWtGNPaHb2igb2d4t7eAaW31K/lfvoU4W3HBQzaSunrfw+KvyJIvi8ZDsJNBypOJvl/7Pq1WL92FvHp/WWBpckrrOe4hzeSGzneK0WTIFga43vZ4o57abvz6sQ2Hu+sz97CrOZ/37oIvTo8Fbz99ybnkZ7Ck+MuCzPv5HJLCgxiFKXGUoop6tK8L6M3+wxzr/uvY8rm66LNkyReVbPvgNmjkeWderZ+iEX+WnLrCMoqy95vP5SSJ8JB3wHbCZe/PyiVy1b3ZhLTL3joaB0/PwOabjO2rc13O8evSItWYxeXMFJRcXHv5Xz6RyqkqmbMIkgtr3KfEOYlGNy/xHnUfsMnTrUy0Hv2hRUcDZ8xTYcOH3vkZf+tFAY3v6CMOWgvex19htHkrEes/ZQV+Y5RkZ2ivaNxb1wyd+NVabmP1HVPKBiO9OTNyCG9u909fKa7zhsr50itu/k4N3LbXCi96mf/HN9HtbS1cfndCH1OdzrC+CpSRZJy6WcDPZAuapGJhbZ+739KpXbECZuB+uLjRdA8bd+md86JztXfNQbirMtT1WP/tv272O1mAbVhWWP3WQbSRYZL/8pVs9zG0jn8MO1QKtb8Q9zA1KeO7q4uIMsfMIIXGWfa6xyB/555gM7B4T+1rC6l6PzAHbiqfVs/SgEOrVnRzDj5oPBCZon3eNOzJahPV3mXEf/mURZ9z+KA0TgCAbYmQByv9vv+5JxhSryH6nz/HWMxg4bcULomB5qL9ndCfHnsRLj9/4duAtrU+EsN+tnx2FS8Es8cPZl+qwRxeKDJgWQ8qks0u7Zf4j5Z8JvFDuus2t4eKod3fVYbZLUMzvY0JvM8bjXg/rUS0DV1Q//Ihzsl9my2v1/GfHkcOzBDNcbxZLhyTjP7LH0xi4Z4gDqyW7el+hfhffswL6xdVXfRCPLG6FxjP04FOg1xy/pBOHjzPzY7m91dmsn7sBIUdxwfJTukxGpvTp1V3x7vGgkfR+82xeBWQPhvKiHYgqbSLzgb65++EfdtNFsMeEvBxomcc3nz+rnINKVLDWfYkYE4Lf4WN+NKJF9AfH3fre4z60yQTcjff3bzLz7Ei6PBh+0W/nX4dt/9/dQrQ/z5TsN4VKvPabO7G8AsnNJsrzLRE25qtzjMX4rCxWT4/enMw81+GRO1xZAZ56KZ0HrMKdkezZftvX/DezVmwjbw5IOS5P5hTBp9Clbr7gcoJndEUl58clML44blpXv762CMBXmW+xpJqdt20e3gxBJMBTH/r32gyy9OI1J2X4+ETXNH4OES9Yh6vdzrW0w7NH1s3EI53b9p9l37ma0kIIJazA9k7CefN+P5pkDn35d4p8cyxlw5X2D9FleBp8y67+cs85ERnxHwpFKPZsyoRzXi/IjgtxJQWwT2BXtssjTFEs6TtN2hg82wv9N03H8SzcWWjwyW0sHzCVsd3iVTD21VOWJq3Wrf+BjdP7agkMXuzukfzvfm4iKuhQY7vc1ByFQ8N1EKS0HHrbnmvuUOICjoWVF3Gy1cHu0Lmaj4R7dleuuoh2SN4z12KkfB4LBjrXaubuJ2JYydLbd/IE5Xk4bok3ntzN+22WgXjsVNJcJiuJf90Y6DeyD4m5s91O/7YjhoIAgHmpy4vZ7fdtWgZL9sb31e0jM9Cww5lzD4pEqr8VkkgH4QL02thb07+JREUeTXcmBscCzTi50ghLtdnKk/XTzReXpYExrv3yF0fN+kU5+CCtJEwcSdTM/lJyw043n8h8baPupzWwyEA+G1nKp/zjo+bhy+irThZxJDmFnG83WYogfGG52d1QO1v/J6Ah2uDeF394vxjODM4e3dPjvmk+RwL7QhdbpzYYe/b6XrebQN0ReARXJduOubm1lYeI50wvHocTXZ8t8BMS48W7nUyh6JuPagT/0T8fRWlvXNUrihv9g5xbaWLhg4qG0zk3/G8NmZzWg+7AE3g23/25s+nwTgrZK464gyZE3EL1ZYixlGMJ3Wr8XEfpie0/vgB3V5do5uEQHOhzfYisR/IQ3RnbBslSL8589xpV4r4hDPItmHCdvwZIul1GDPIxO6NVRo2fHxnWxeS/Pwg2D5uo3ke7xSkM0+JnxcLJmAPV4mK6swwEs2IV8UqhLn8Pug1ea/TsRFP3urrfgO6uQmm/299omGVEMt7jSm91FuA4e26bH91i26Mt4EC69tbwpWayWV3PVcj3KpaYuYbL/dqHr4E/ljvmdkJiT89bgEFuMlbouF+hVh/3uTgia8t5dPlWPb9lGnwvRgHpmmEoeF4+drqJ1j65TyNqWSHQJpBSYI3Vo+71uT+fun9cAx2JL4fn9HURpMBrqxJZP9dNeZkGWWoHiSrYRGdP/54Bt9AK71ZOLH/8Ofi6PXwbQ4pwZfPqeRv1AVACx5S1cFW2sdbS4HL8anTjxaa3Uw1a/z7fbxtnlLJLEmcAbCcUfDfJF3G1yNXub9YkDaZz8+CoMCBhi86XZKGT651zeBs4BJPlwGb4/zaA/x2DsHic/Kjcd09Z5Tszjpdr7OZT/4265X3I1oTDN/NUgvuKSKWS08SHPJjNKJ8ZcDzUFV/+wXNKroLG2tKU1q60r0bArGM0Ul3vngWVpzzg5m56PI7usSVMsFs5fXNA3Fne+xwuxzNuRxTD5yfMGD1PFdoeHBDAdWEPcv4UPi/jOguSr/TwHY/48XHt3epYMWjH15o7fL8I6jdZhOxAH0/iF+/7hU0ha8whPKiCXTcQiIUL6brW7tcr4+OhpSfFjBdeXbp8OznF4RRSoi23/YRJw90gvspwnRLvoD6FT+M6P62t3T8bvKyAsHJ0QueR+JoSzxqjrkIq+7xpqtdXHLWFz+6vV24T/zG/nVj5QovRTP8MyP3wI/4WztXqLgKKVafROTU8VQM9Fnp7O4MW/OnabKtvCbLZ3iKVL7E8DNa1pMZcvbthiR8YbVyzAeWV4cWTXvJyP/WkwVr9ZfO95VioDvfzUy3V6uUEhIKKi7PB2aH1i5dn/LGQLGnRVQIcBpN2LuHqC1XQNH0ePFl/RIFTZGDBfjeTP4hs/YXL4jD7z+fCTvfgF2VYfzo9nL3z796vnwgS/xMJynfnuCldjXxb6mMekVZB0DjKicJGoZuODmRC3tbfNOVSR2Tiee3gtI+rglWLK/rtLVeqaK6dHsPrldOv8PDUK5I8PB3me+N0nsy7PakoOvb4p8Wf4/Gi/1mZjiqEUus7Qxt5otUXc5IzPBSRGDbzZpuLJWl7KbeRNhdJZlaNUYlnbZwhqT2PnSbNyEaT+9OQeN6uyPGB3udaMVGj/7wiqb3ZTQZjWVDMakT5svzJn6iFuo/lkx0I+jQRG62C7i8HnBzniaTHdxdBh87QnhFvbc5WxdBgSbISpJVdslnr6mXe/qOiT9KrZsirloDVlt7Qy9VrvpzmB1EtJOeDtlbm283iK/wis6NdKGCnn/4hL3jCc5mItPpFMnlgkcw+O85x8fvEUfcdrZnSF6XGzGGlJcTsugJzpd0+mc/vZWJGmy++QNzou5Lpn6UAu11PWK6utWQ9DhrIjzDiROtSYtyjDKlgvXjtpRmce/p+IPlnon1rZjV+Gr529qHq7J62Snb72/rBa9sLJC69EDc0/vHZ9lRRgAvKrF4EX/diPKNBq5WvchtpX27UWwOL7TayAUJhvEV/YuXxuGh/+0HRK/63YN5Y+jsQEvqc+SnsZKvxwfz1eUeTuXNZ9VV0hfZh/4LtUJS5LDLWpvt1iz2l3iJQRnujHirxI36SZsKFaevHTGW+Ds6q2sP50a8MM0OjuX3pOWa4kX0gkEZAfX48PCQqD2PbAelaU4ncfNS3XsFJPOx59Or7WV//oAEPvZMHqC4QBdJyRkWE2wudTcKEH7SHRfPTWT234vewzZwY3IYVLP8sz+Ak9Ph4yZGPmf79Qyre9YwoxDMdFzfpwp0Mf8s73s0N8nQizDPqYthiVfckCNRlcS0xStWPv15e/42wO7mEcu38yPtO0Vq/vAiMw+D0c1r7Ltw6q8nZtr1HP3I79fDxeiueI36O5rWR6KhKXEP7HxNRJ/JjdyCF/UX+qly1Zw+BwkrU/DakAMNXURPE2rBWzPMtGe7LofuNciouTw1ujGjuezdtWirhJQbPF21KN2w28tQd1ljs3jBZ/NuTa5o5W9OeNxvg3TcRX91R4YIT7McIKlujRG2kfAi+s3Tu01p1hJsBJswm81hNF6PowLJaq8Tq9tZHS+VwEMH01wT61YZ6aw2UoIeaRQxl5KLP5odEdAYKQE5VNtj13cns0abb/agzHonqFnx3QxrUCO2o6uiHHeaKiE5l5euDKdDyuVGbuA7miW+KtyK5op0DcT1QSBk0E68p6VroWx7SpgxpFHJn6oRIqXEAnHZvYxmu+spKnfxhRyOnVjOFEUxyPoxx/xDI7N9J8MV9JA8qJqwupzEvZ8pPr1sme/r9lLnaXiBvTvNdDTmzJzrzz3frj/7gNhX/Wv+VvHagFCWeipjkfn0eNjK8OevLCF6l5OwrQo4xVtKp7Yr+TSdDx6w5FAzfzN8UUstwQb3hk+UX85v89ff/BPCF7oh5P4cuylgswXlLcXMWDfQTVGXyeg6uE+ynK00Z9h/BOVOe8x29svrpD9/e2lsTtcFvvBuaIcT3NLqTuz35RVx5/58ocV/Evd4S7tZ7sQXzOXnQfZs2/GhMcQXMt7U++cv56/1E2CiiyY+sTka1k0qI/thbZlnJtRf8G6IrGuyI9pLrHxaecoVTi8msWAOcTfXOKig1j2JytUn7viNoAwiH97sdtL19C/+Qp8/duRv/aYm0WOUPmpE8DjwqGdGWKkLX6QTsFPHl/iFgvST02lyRZ/bCjEgUzKGV1mtocXeNbWKliJsvfZd+J3VoPNbnHHRNJovmmpXQHVuOXG+c9v11EcYCq9MmIO/HRqUz2VUyjuX8XxMTFNqSiWB6+EVEo/ofcnaACmglIFADkt85hHWQojct8q8KxqjP74Gz0Nd4V9h1Om47m4jNHhzwFt9vEW0hzlTs+5nkUeEUDe9jSaGv/1tGZETjaLyttXupjG20yRq9uWParC7tCXxmtXT592oNsjxrjnb1+s7Z0EjAsonv6JTWfHyH7+18RHj6fE9ck7WrqtwLLpMM+bM76piEyJiuRP5h98lp4rRzRK+BO98rZPeyXAGy6kTZvDdaHL7GAnQOOsWK/la9OdnZsUoKNOajm8l4/NvZCdAoz1TGhm2KaL+fYL1b9zR7bESOD0bMoY5TAg7ZKsDkk4JHRVNgxVevft7SQlPKBIe95jtEr1H/VeFGeq3mjBNNHRfPLKNCMf3I2YH4jb+l4+NjVaCssNbxZQ4PzyTK0pXXxG367Hjs04L8R+fdTV1X86Hr1Mgw/nxv3iUSoJry2gduRGLnUNYTrerXEFTnTpGbuT31ytIggU/Evzadpw7pqZBHt40LHTXFM3ffRr+4Q+Cp+iB2GR+Evjj8zvTXpvDq9ljNCIaEX1Kt2lXHo+Wmixpcc1lgt9pD7GHP/6yN5RPtySl+u2KH3/EuVjg9+2mStBWqU7ssfDbuXAaC6GHLuB6ew1Rn5uTrWbvPCKOpxxN5r2mGEL/49C/+cwWPgRAi4798Yuer06Jqjd6tVRH/JZc3cMZoi22ma+3rJtH82lA7bp3unYfQbfZXQ8nOMqOx7BiteWkTi9Qo64esXoQ7pwOsu6qi3+mfECZ+Xsbr0T9sx+vmiWTv7JkhtXLSgmx3grv1xftpFq/b8TIir6jSTUdjJZTOVSA78bk5okbSvkxKuaIQcbH+GK6cHq8vsQyttOCL2cRcNYn7GLelajztb0M59J0qJzK77/9ryFnU5n/8Exz+EVnWPAbI5f5wrkwCDaap4Azf6w3iG0DJQO0VjQ6Or+duY7UMVMD42ss/LmMem75I0j9t2CWEX3T3pQVjNx3apGD896Xi54WojYc6X96jm8hDL22Hgn5/lA6xMp8VeFAHeKtRx/1zWN3Ul1VsvBWffTpCGFngyy8DQoRjdOJ/H5UmbG/YnZBhXROknsAt+vqxfz4ZPjrLFJyVHmZzvZjv+qm/LTEr1zm5B2YUznWd770tw4t8pT1mve92wjI9aYjWeKvOU6geXBwNyYe3wogro3hCfnXcmbB6vwqh3qwGwTq+coOTeT4kibvcpCUQGaX7vTl0/HytaC8TzKF1yrqftu4UYDl4pN4Q1lwbgdtA/S18It9R/l8qSf440/McsN9NDDhdkLpbhbp+/Da+ZtBX3p/nXuDhcmmMPsfnq7Iezop0W7jxBd7E2A4nR/MpsamG9dG1cPde9r//ONMSAiAdmTDvGqpa/cQ3ldVJCdE3KK5lgueG6E23y8su5shij3xocE8YU4VOZLT+RErHmqGo0NXs3ou5/dFNEDaaiU5FMC66aIbo/I+ygxLCq+iGY9uBrVZvph93sg8Sz09Q9fLNabTyxOi4T1aMzp92Z15T3cbzYKLZbTtBSA7pX77Y/Y7yqhe1QxzZ3x1NH+tKVxZuae0lg7dHAjnGC14Fk8ysaJZkF4NmtG9IsZ9qZ1NS9cGTZlWzOj8PmJee9ZA+RkB2xeGHYkTuB44Lzgyy+PrrqnSxFIJTBkzvWjwZ1c/1XBOjJZ5N7zuuvMQ9+D0lxtb9AKf7l+d8YcHmNHKjsklfCxg0bfoKBpvf8qRnS9nOgS2K7t9NJ4ryQO2zk6ESLfW//OH6GWKNTGPStcNgxRR+D6xQMxal9MZsv0LUjGgLJtLzv/wEOq2ZkMcFAWIP0JSozq9ffFkPCdz/MPPrsePzMB17HeHZ3JWvqNeUsu3EzRvi7sC1u8TET9Z43S9L2v5n95JdgJOFzzeggIkYaaYvdGIq0IDdtePeNG/zHX3+iio1l2JaVt3i6bqY9ow9G9MdJbf0k0arK9QfZ43QtpHnfJtMOeqmrsK2U1kj1D/GGMYHqzEKC/2PisS1MPgFRdiPX2Nr62RtHCj/Itlkty78fBLz7BNBJMi8l77i17jQW+3Apb1kHJKT0uvN/K1yb6ZEZ/n7pUof3hZX/bLVH18G27mfGIG7I10agx4wRGoyUj1qrq57H4SWvRx9ofnONNST1Fv/g1v4/jHRyv2KMolYcZ8QGAypqUurOe5YEGz3UT8G1knRIBneOU3LR+su+yCr4wKC9ZtZQ6LXgX+9T2TwEqeETd4UcByG4kcfHrq1p6xif/skf7pd7R8rCoIRcLx/KMy6rfz1ICrihbLIiqnIz7ZOcDlRchud4WUwv4D8I4ci+1fcuz/EvEnKK82j5mbu260/sObq41SMGPRu9j4wwH66HLMTE/78lH1pxmU6h6RXXKe/WE4HQF2at4y69sRc72rBwOssN4w85Me+D8+iC/9hmhj03VTFs2ZuuhfuBcPYTdrZ/8f38Yb7aH7f38rXP7tKa4iPWKX9TlEH42aBGvnW/f2jE3yZ39ULX5tRJPkiJFgxUAeSfaOZv/pC7C5bxyiyQWLxgV/omkcNRbnbpPyLzMy+NMX9Vr4+WM+PTL4PgOBnY5JabZeQ6s/voOZj0JzPZFURDtijMwJj27Hb+pTgoL8wzNjt3mfZHe7yTONkIN8MsXy5cfwEM42SVZJE7HdcHLVT8diHE2XqZwh0wv403esxn90/BE6FXgCa4kfnwpz5rwDdHxFJuaHoShHfLi46qI/4ZHGVTru1U3zp8+zeLruUklIigyaNMQsPmGrnI1T1YD2rSbidM9P9Od/wWpiYdE3tmn3PskerLQ8IEH7C/3N6tl6qOdySXZhu+7GlZdQJLuRTt8/HKbMmv0cflB+cIWe144r33sNS76IaSd7nTKXgCKfRC/B9XbpZbM/aVQNJg2Ys7525vRJXxnEnhFRgCHn06LX/e1X+hWDpc6eYvRwuOZ3hnP4cb63kxBEXljE6YKlF6zys9DtsDKJP9Y33iur+qXMYUxIdsinlLsEZPi1Rc92C39qzpXgwaIvMVOG0RzLHzWgXlXsX7xdh+4cwMI3iZY++nI8OsGIzNCzqHprrinf6y9Q90K4YXh+BP6sPJoK2E4y6dBKUcp/zWzD4n+XrvA1moRwm0MgSR7+bTgrefSkOTLLy4nZLPgg8Qy+Bvlyx46IyrX7w++IJaTGoma+0sZRhgS+a3FiO+/wiebfU7fVRS8htmr63ZIva7ddfLCYw1a8/CTiW5Alr/rhrZNEfLF3WHotbtheH2/pVO7mRn39TibxCSaIZWbS/+VD2E79pXzRx0c0Xk8S04RZisYhrIq/9cG/q2uU61jaa6A7ZKmbmnecCYNk/eNLj+3GSaXwN9qQ6aLFtNLyzflSbwVojyuT4Sp6R6PqaDms/PWJuNOvLanxcQP4eLL4T69b9CiKFv2DBdWiv/6u1wL9+XtyK3DZ7pwWYB61nB2W/Uy7IjqD0GmUzu83QTNYYoP43lDwkDC7G/UyiEEkIVrwnZzyWh5spKZjSP/84bDoP1tynB0sTNGD919VHOF6fQ1Y3kSOSf+edy51h6TZHKas9jUKC56ivFmbkTQV3wyyi3miSnLZ8Vk29QwK753g2b0efT7+MEa+ea2Y0wUvcz5d1hmsI2+po47TlPrOxkLb9eqOR+5v+PQXr8pHkJE9+WZofEh4VJ6lZrCravplv/JOFA5OS//0lY7x9T0GtLEvRKvzVzn0NPT+6c87aVunk7GKAdB0dBZ+HHd8EB0FDs3jRBI5iqMWfXr3X/xf9ANz+AY3F1R12hMrtkb+M52shu5lBrR46HrH19knh/fHUcmeL3emD9vOhp4rJbPZs/MnUskJag6t/C9fNyzPV290+hISrox01EsrhmopR+MM2Tfij6L0IBN/b6wS1/U3C3/8l28RPvfEn8fLXMNxe3wyB5/rbt7vcxf+8jOHY8yiKZb2xp+ehydrf+Ccr48J/MUDL18vhao2Vq16w9ZmuzR/RWMjJi5a9ET6WfRRKZeNGmnrwCEZlbb++FJfDWCGGnwp3qm/+LcMAbg6O1/EX8nbNRWgdYWa6Mo8ltwt4hzYTjRJmD76bn4AUtB7egnEL9hsDugUFv+/MwXwv88U3P2QsyA3Dt30drceeuXfOyMhzTtqjjIAbHLMggadOFNbMYfCk04MYxuVPM7bFzxHW2M+P7TmWOqPFhWNnBC/QEE5YxUKkNucEMLmvuNJXxdwDoOBGL+t70ttdDSUsn0UxLws/eo/5v0MoXitGAHLS0fxWWgoq357EtSK2g3iWTwh6YH3zCGnFA2fQ/wCY8Ix5WvFjn5TVo6QkAtd3i/t5vTdzIqntAkzE6dG39f3F4I5nzExE8fm/SB/GnTcCAe2+65+0VzF1xOSTp2BV/f4U87TUTKAyPhMzP16cWq71EVK4Grkme/f/hQxywau84g4EyHpWFwyAxlh88CfO9X9ze/8rNF9ikNGotVgzvZrk6BddgcqXj9rPvWaHqinWE2IFty+nP5UQwFCvhbzrsoxHS5TOsPWf2TMHp1tNKz6Y4Xu/onT6eKc01lYFxis6JISXE5TNHbSRUDh+yQRXU7XaLw1C+cuXwXxH4UY8dXGP8PEGkIurcN97rzKGOJzv2O7ngDnxW8E+HvfcCN+Oc8G3YImKQmd79+h7A9HLVH/3i8I74XJWqE3ILmlJt0oWotGxvbL+NsHOXh45fdsqwXQWEVGrNo1fMn75CNExWdD3PaSmuP9lbbw932/W/pj7wQAcOWEsiA9OeZ8jJ0cwQa9sHQ4v/w+Fu4BcBa7VCgSM5oKUaEoz9cvvIo3j6jdGFOlBO2xpZsX1jouW0kPo5ad2MmBW7cJdqEFt3n3w8rvUPlzjbctiI88JLvV7KJp/TZdKIM0Icv8R9M+3l/hOhZvsi8+uk+bo36GzlBiDJvl3rB2f8xgtqctc98P3x/J6t6g27GkdHRXVUetbK6hraSQWHtT4OONrzJ02tomluRQNqfkDTNSAk9jWBbbsh/66QqV9JmxXAxVN94lx4UujD9/9svHRGsAEiWbGD5tbv76gk4C0CsLiPZ5X9K+E16LNrYySZAqJp/M4+kECctvJNCkNeq6KzttRcHwaXsvy6jPbTWDjziWxHEMt5tzMtsrN5lkOq7UumTfMJlhqdxMt3W/Lun4gRjgntjkIJ6ndLrrrECv3HWY0f+mrnevTfDPntKz4XRz43ge1IdoT7mVTT4fd5EHl2pTkn2cHtLRCexcfjZGR99+7na/mp1kNYzGHzG9SikXe6/VDLcXzC+PFZ8e1nFWkSz6tI/kbTkeHB1D7Hkq8eyGc+6ZbgKwyTDRiIPNNUvOlqqWRsmMeDWioXjBGSxZAbw1xlvaGlVhwdWCgNxXzpE3H3M4/+0/Kqgf2180mAQE3e6YtqdrzuBcxyjS6xa/A1JF3KxNDCNORyo+bnb3t3+QfjISPH/Drd+Tyw6rY6/VLLTw3mcZFbCy3xZLBWl5W04klxPUfs8mIZr6i2brxBPg2TVh7q/e8w2ctiekls81CWI97pqu/bXIii86cRSt5RT2toVWn+FN16G66yTYYxuxYpMt8/VEU6tuM+X50I5UdTeT+TPCTQ94U45UJvPFHz3aJRBK4o3txOPXZAaSKPh1wIgTB1I6r3z5isa3cWDe0wx9vmsSBdiwWeNPTzI+t48wQM7mJBPzKDR+i46xC7W8yZl3Pq5K6pbEBtWClJH3u4poMH0aRCeRsMzX9uWm1/gIm/6YM9uPPD6urrMFuX1WSJ7dcTrtfo8cJuQgKhc7h/Okpy+E4lOIN00ecR5eyhkK9/okHrmTiPPvaKlXQRuwfEodsy+7/yPtWraWhZHgA7EQEUmz5C4CJiiouANFFETkkgB5+jl8/yxnN0uPihKa6qpq0v12kMvkHdldM6Wb94esAsFxjsy5CxqawzakSGqCEq+2mZxN7YrWYM/Wjh0tx+7G+XsrIHuZBTMwbaJRGZMQ+TVmzJM3FhqvuSmAj+aQ+Mn+7o9++JFQcOQWFdb3XcYhrlPoDDlhQfI7Z9MT3lg9qjebvrWH5q87z03Bf/QulUlXlOMTJPwXX2xntp9o3IamAdYgv9lOOxnRUOp6i9h1YxDfpM9u+pICqzvdv2O5F5Z5flwJ//Iz/tm3fTYm4sn4ww+S7sKwHKNbVcNqHBA5kO81G/Yb0OCjewpVlXOdDUQoHegxEnA726I/264YqOd9hJnbCwd/KvKqRcLtc8RreCkRD59vAQz369LZXJfmZGa3O9q6xZX5/cPkNPjSHG7S2qWiWU6cn8djoOofy2XW7XzPFvwc0S2KXeZ/Om52kalacJBuCn4J9xZNo/OgKMueAnEjT8645SRvpWyNkGEbd2WnY9eAX/17EideG6ZY39AyK8edidt9xG6qEQlQnqeY2FrXmHNZNBe03F94vZobPkfp1YO9sLoTHD05Z9qWaWgY+xtN0GY2x9imGAX32CceU71sxlyNYStaPXna621Gb8+jA43s2ZSf6opP8i1qwegaCXOx7flE5WOrciwdiN4YJueX+qSBPlpvcr3GtTkXkaSgq/i902x95rxO1kEFP2dXMSPG54xNnyaFnUJUhj+z040mmnuQun1DZ6YU5lxbyl0Z8W0kZAtFx09XnitZWUbMkPgnGmq0C+Bz6bPl+3U3bT9tASdD+BJzJ8Z+laO9BWunmMmBFG/EyercwuPBWmKd8RfNne8IkJz3V6KHF5mzS0NcZVkPFp1qi4+vla1AbPoznb/hze9Y5jRQfosHs69Dxzncx7vaWqczCX4l6diU/TCYbJiYHaqfjidtLiFmRC/ivyOCRrT0/os/I8ZCpp356OOxV3z3u6XUqpf++0u/84cQfXALwi2aiqaUoCYjMFPSUz673c1VfbsRyWXcbTMmGb4GkudlzL2iiE8PHAowGWbK7Cce+ORe6xHmDFdYTk2165uTL//hL+UfrTenUt+3cL96gDerm+lP5idsoGfPLZ2POUX9mHkN/OruuaxPwtdphwTkXiXOdsv1naRDMELpCG889Jxk8/vi1MizCoHY2yni8+E4g5pvhZIKtgqc0ttQwOdCMywjss7aKGk1lOvnGE/nnZj9PMsAEMuHRXuhbsp2G6o1Oq82gAWfFOU0w2TAGeQNwXlyM+fT+4ehacw722vaZDaZnIvA77xnVrQmGfVJdwKOxQNxW+x0m2irSmCNcGTXAhflpIq6BaN/7wgeTeIPL4+eYC5mB49zRjrxodAC6B6viHd9U5+tO1BAf2icefvjh/N9P4dQxjmjwsf7of4nHHJl1PLTX75GXBsUCp+rPzDjQtps8segQJdR5STwtV9ZGbcx/uOjxN3K32ju1lmC6D5YMbKJaNm4fUQR/tVHspdXTda3BZFRninZXz4yByvapYgg/0ZZSPOyX/4v+mWdzfbC82yytFCwwg5HBYvE4nwakiAB/r2If3wNVdq1aEFe5z9aHYYPb3TWSVBJbkGCJrqYUxhPGM3ZTyLerb0ivu+VEFbquKZsC0XJh0QCuG/ohk6f28THoEYKzNrvQfmf3mEjqQAfCxWvNhEu+Z5+U7S8Jkt8or7z7glydVGjb9rWHXXLnQMDxwE57K6V3xrjJVGe7Wok5FmwhW8cAmQfi4A9WtNF62m+ntCfPjDcgUdcuEgWYuSSYYknXzTP6qaCcr/9Mqve8Ixdmp0HDbI9hiXLMv/wC52dy55Ym2no6KyuKvRE1o1g4WAgLlvLvOKPs8XMXt8y7mojVSveDMTr+wxN+w0Yin1ZWeyPT0yv+JOj3wt/iXXJ9Wxeay8FDlKmMGtv5mhujvoF9NOzJ/5gax2/SUMPv9yVWTZWckYj/JYUPDsy0c+7OBrF7nIBbkUOsYaf5TenoQUwxP2D+FX88fn3tJPh9R0rutkm2N+QdZ6DexdvxMYQZnPhehVKxjAl+4UPjrFdY9C5+aVS37w6qiuPGuZt2BN99N9lv3V8CZCGgR2Qde1GHmUuhMusPDOVZHP8jnquUt3viJY2oVkPh7wF9y7diGlbA5oqeVX8vaZXxt7RMI2tC+Ta3OhEvSGb8yMLFAd5DbOnZu2/3/Hxrr7U2CbhSq272UjfCryC34uYb9mIuJI2M0CVFAyrfVpOq/5WwTN957SWw8Snd/IslELoDXZ2EYp+f7+3nD/T3vvZnJ2nEaJJaX9YbefUZGm7TWF7UJd9yl/kM8/UUvWGiUy7u+9kbF24NShXN6XzRUDdfDfLQF30ChU+RyFq1WfsgrLpzxil84EzVeSN8i9/Ok3E57eWOeAIu4Ht07sRiW2xU/7lzynY6D7nvwHDSctFprXK0LEFjxC/xykWb2eIZrniAqw+J8LIb58i2j5CDEiaWvqVml0n7oOXAUt8/PkViC56E3EleWMxWrNoPJmXt5IG6Q+fPV/kC9/tYQ/PH5WyHjg1x1FAi1/wxyd86fY8WirXY52l7m/xEJszgGoghT7W3SqbR8Yr5aigE9EGYxONoe5I8LcvauEb/iTp4R3d7x+RkHz/MmcxbsItkiWfOAG/8kmvJAeGprOI3Y8ff9bl4q7ivXHB8t06oUkbNG8rWOZIlU3e/4sPlFErxVGnv/z5dj4qoFpCRrfp/Z3NYZv0SA6SHSE7+4QWPuyoi94l+KF3Zh8dxhCK6efS9UuIF35KE9Q6s0s3c61m7eInqH/8eN89jj5jZdiralGMRPfzpvv96bHOTnxi5V/NFwdpfKvfKuMsiORtRxVkaCqbBZsEZg3mGOpYBPu1ymlz5G1Er5GB1Ucx3egawxjN1wATQOy/xz5FX5yuiGlkGWefUqhh2+tXZtnVzmy/o2ig7yunxL0GRjld1XeD6jJSaVHNld/88T2L5xYzyMU2pWOQefAw2JH58nA16ePzqZSFXzNtzli38PHkn/+0L+NTtuB/ANTvZ0yN3PYnv0rwX/5lXuh15i+TDRFuh7mmsPgR6wb9RphNP1z0jJXNRtrKaMkPDJvOC03T+HZBC+WK7EdVMMexlgAKv+xY0FVV9wsD5kGRf25Edw+K3/+t36JvMAKmZ0OvCxfIIb/QT/qYMx76VY1e7elKfDU/dZu//995G5O57+CejdZj7cKpfn6Zp+AT6vfJ4wKZpkXMkt+/jJNf68Kz1G3yOX7eWXfUhwQUYttUwdOprKyTK4Kf4fNyve5mv8e5h44Wl6i88O3F/9LQ7tKrVL73pByEbmUg5M0mc6z25osvfqvQbumDFa+UPhqlblRQqPWI7Q5o4BWPMg/Y+UpIsFKlciyHJ0ar72j84Xu5XtZLPezkgu3PZutzJ76/YZf1JbEts8vGxLNrCL6XD9kvG3H7a+N7isXRhXgXvzDZtn44kFeZQbmaNdkMvyzeGgKtiHYft5wV/FEjV5Ff7KELHVri/6RSOhdkf+4c3hs3OYZK8gqsYOMV9YLUj6BNaKJbbyv53JpTC8TyadHV3nHNMbe1CyzxjtX3L8v++WV/62FrM3SsHu07nGzUsyBvvWy6LrPibqF4Zrgt3yY/bqiH4H72mRbkEM3zbIZoMvSUmH///5iQu/Kyeol5QFxfbE6mDDOan1jRSdbN40dMwNKOA+UE6+VfvKE6iUq82juN2bCthtW/++EwB7uOO3FcwG1KQ7bfOsBHZ9njo7lrQtfafO+mGbaaKtneehlKqqBhCEJHnZSll3Rbnfz5sOMjpHtZou1vraEF7/Ef31/ur43PIlN1QE2MPXF37xcfhXa8o9igBUUmfZZcOqwuoEEuY5SlbTe73dFVz5Oc0wXfOOvi2VOinfle9FKAFj+uAcO3EEuW9onraOuHaBrcO4kP9t7/x5/a+4ywGifcHJ7O7758S2D2U12ZY7hO70hM4UE3G/ll0kLwLyBU3w6/572QjdJmCEDZ0DOzSXXwxzvuBRCFx4M56ZmiBU9ltOAX08utxSX0sHIYX9qBOOovzCR3Y9/h8LjrxD1yL9ssfjbKIksnSXlfo7bJ3DcoLXaJvfl5Ptq8wxCE+87Cq21cogXvLZS/EMHLevLN+ycLoLxdkcr71i/ptVn3qirX1qIH7ogbRPWg+LmvP/4UsbSn7+2Sr4hRFTMa9uW6AcCiQPwmu3X87FgzLPmG6U/yQNNtv63glKxShrtTFM2D/o7RFycrLEiW5Xe79l3D2nnP5PBSPHPufCygLHlvaflhj4zuN4WBwtvhxUzgXTnh/CGCULcBnvXgGPU3r3Bh8U/YYdk+P9k8btTo6vl43btu1Pzdb5sLU8lO16NOmsC7g6umMRWL3cHkf/pstzqUf8fv+IJP6M0VkRGCj924C3D+x++p+H2OZvNQ6gKK3Nuxw7HpS/rHH2ELOrtY7dacg882hoWf/vNL52FTOlAPG4uuJv7ikxjDCT6BH1Eh3erRhPOzBPp+ZTPrYO/NTV3dPHiqdcAOlRHxuU4/ADMNTyxwCPZH6yvG6h8ek68+mWPurHOopO+MZWO/Lz/7jagpIT7siG/vZPOXBfsQOYmjkEB67Pl4tz4zaM71znydxYjbeUSh/74wiTMBm/3xepfR9mJUy+d/fP4qCMPo5x0LmkDvxjwUG4jtIKK8c9fdp9eFGFRBA5Zu64tP34U9gvteH8j+PKPon3//h38+XztofK+aHBa/iNm/p5SJnfbAYM/ODiuLnpamo6DBKmU7YuuRxSe/CgN1ODXHxR9uSk63FobN5igzfWV9u8k5Px05KypMss5fcZqVZwW5aVwTfdMqZrf47SqikUmnZd/5H1+E165DzF7y0bg3XtKfv8KuZmtH//ztpKUyMS5CVtKLgy6gxO2X7c9zFvXSa0vRohfxSuomNGWyJ6HD4ZoQIohjN15zH2Djh0fik63bTdLBmlVvp01Eq2bLn2Sz8QDjBybGk218Oqau81d/oDO52L6ITimFnXJQWVD7QTSqXheg7iFPxHtZn2hc8BW+G40wa/F7xQC+KUx65RLrMNh8XX+y/o+fU0pbqVv2fcRo0Mw1WfwAn1dvPUee6h7I+bvaZ3/1iL94YqbS6Xz6w99nadrs4O3acvhmSz68UJX5Jl1140HdwxZf1DXbf9QqGlRh6VNxXXP6S7IhW/hUAote+PPjy+G2mmN1ndcO8Y5p1S3xLCzt3QsK2s7qWD7ZCvrZzYkqi14ft6mH4e3yiYL0+KH1X32quVYeO78u124Wi3v9r77nptUHDaGnGLDZRDIj2rkv//x99QSm+y/++8jcWui1p3d2cNg343FlxGjxg+jW0GtzrHQ5gEOY7Zgv1u9yNsKuhzmhEzEgmjPmmW4Cr31/Z39+PrvcTxKMVO2wIq7Tcn7Wrgee0qTEm4eR/8UjWs6PubvfJeJL/UJZ/EUS3nW362miCHDaWibbe9uLOTXfLoXVh70o39lvzoPMr2GSPemf30hPckwhjVFIdvWlNedBby/o8QgT5hpyisau/TXQz84yC3vYd3xDrQpWTzos/veznN3raYZ0LhxyWvwN7mgX769ehMe1pXeTr5i9Yl4PPtOss9qNe/ldQ1Q1CR7hY3bDECQWoPP4YMaqKjjzMFAUfb8PEuTG0NHvCBqsmkP87/jDUo+B69cmxFwrdTTeJOJuV7Zf0+0jaPi46K2/eiee8fqOJnHl9rB/AGG7RR/PP3cTwjR4d+wu9acZRYcQLo/7TMhlJ/Gp5fNJvTqOge3txFGbDQ8L/elLW91fzTm3FQWKqXOZaVsH3idiqv3Ve/Dm+ah4I7Ryjtgp8YjlRHI27vHFBafwCO5vx5M/9Lp0AVSGLbnRdZz1ua3Ff/UJknBHKie13cugP4uabs9dzcfXL01hBjJhKevvnCXNi8JfPeW+seuS3W8eheHUHtlBtXs0Ho5aAit7XxOrCTs+atemUZfrRbB/WftTMXcGIm2/I8mcb/mS7yR4JOHMDq/TkM2ra9WiFCv3f/4fjZUqBdqzFXPEqchGcX0u4M8PUS3nXE7rl+/96T/m9T3iNJRs488PIwR8AXWWgFOQg3S3+AmbcgThfvrj00RzV1YnxUqVwPt37ol1O0M2bYaTBovfhMf2FKIlv1mgHa8Ss/w+LGfvc5nheJNt4o3UMfmuf1JFbLZAXPHJfP6K3jL6AdGI0WrPru+LNv//nilQ//czBYV6iJnXpWHGt/GxBXdyEdtnz7LrmFzKSDq0EdsJk9uxw4RkJKVjyMI1N7thRS8hKtzgyXZJvOxzlY7tdpjfJ+bRnpR8IP0FrMoGsnNWF3+CUFDgIpEf/nwH6IaDoM+A2/qDNzo4aDx3XINWvqnsIO9JOR6WfdDtSXaoKqyFrMn3lQJtXesYqguPxlBJQrgVa43p26BcniOFChzxcWNOwrVoxDuxgfWT5sxLfrFJi1RK0E6+e8QRZtnk+184A//VCBfG5VlOelvNsCHcJrtDVvnTGUIHzpKgkIM6L/3c912OHLL6ELxr+pJrh84B1EsW0bLyx2etmAR1/uZ7Wrbm1p8eK8WAs/qW2UFY59HAL5MBElUPZI8GPxLzIRTVWDjt8Wp+RXx8r5e+DZmSsr3hNWicTOuulKA3mO/XUzRPR3xH9mfomSk+dya9bEYFOrbsW7wYKfppkgWof2UV2aVlgeaPvU9RgrMr2dFr0A2HclKW3t4BMV1Lz6RmSu6g1caW+bK57Fvmbr/k8Aszomrgk+iHIjg/+mCaIi0aYNRm1VHTBHPkr1EnKzoFSFKZ2FP2Q7N4ukmIbNcx0VbTsZyEzXyByJde5NAxno2nGxIV9fr7kn32NMtJwsVlOZpENAcTk/9OrwS6nYLoFERCxG7Ldoydu4+ZazEJsbFkLRLu+5R5PzM053McAApu1CE7EojmMByMNzRjnuPNdWVk08M/hSrp8Zkdjtdfxj3FqtH+pnOiofsy336qLlArsUJ2Nq5Nbj7fIaCXaRBvSvJyDk5fF9wbX3qHl8C/6bMQoSLBi+3T6c35Sok9+Jj0TAf7lHH+uUsB7Hk00OHln8355zeJcgy4QEXnbZRjlt0ayOTjA0tC+y2nPmmpsqwn24WDmXGoQxHOEih0vCletg7XkwU2Ghu2SxQ9mvlD0aApVgUWrWhGc4LcVHlcTY+QNY/Mbkp2dyh+xpVg+3bn7BjXAlyH75Pg10nyx/P7IkAvaDkey/GLptndx3B/G2cs3K/XbCbR/F6Jrj5jsR29iKlaM0Ngdh4hjoPNqSe4AYOUL0K+xqXkQtff4XjuBSrrj2s5nQoQUfxyDyzoyymbP2g4wf5mcoz0Wenm7a9qwPS+ERZbL/Xn/TIfSH5jSl9np++48GtikM8fTpzz62W+tu+yBfWQDVgS8ZbPeNvWcE7PKzwK7mzy7Ti06BtXIoker75sw3eLoXorD7IjsxWJMLxEdeP2NovOMe7mS59QhJtDxTQ1PUbMij0LsuH9WnrfF7xrlEeFRiF/M+P2BpMOsf9GOg2+zPXCD2L0OzpQ4PnBDq/pk3F6KJZJ3NlADP32Qsx8tifoIKHE/n4CcyBfPVVfGgqppAV1NAhbKYfHJtaYvVm55vg9YBFNgf1ibuyUJV/FlQOkD84Ee0rHp4N2ALTZeEB0/VTw2Ttkb2gKtSCHSFvwoZZTRdDTJ1U97iFx9X2EyrUunmTPi0O04K2MSlTUxJylb9a3LQ1AgRJjWSWeP1rrtwCfQcBs90VCOW6SzINtdS3oYNQB4qdTKynry/Qkf/E+R6Gaw5F4Kzr5IeUTlQwL+t2+JVh5FtEYxk0A15NUMS1f//zhfshT6OPjl2FGS/4rTL2C1He2TE91P9ooHzuHlWcTsveuDq+Eg52AJOQ+cStjhVgify4wjP6RBa/WiviPrlPUv24VM4XH2ee61LbQkPaDB2EtRIP9Zf3f8XCfbCSzy2j4htvFsfDqUng+D03kQrn1P2x3vc3mQILtG50EWmH5phvR1KW1BOenpbOcubwbCdwTqKQ6YcYR0WgupVuLrry5s6Nc846HBXFBluee+NX63fFSTVvgRQfM1mw7ooP3vUONZ4c2WfIup/XdamHr7WpmtZ7iT+vVWKsGMZ5UfBhqRNXg2aOLXLXsvD+fyn/3i/GmGbMuucB7R1buED2LO9kt88NntLMcsGzXJDeTNxmVgkOIhFUc4W+vBdn6ts00ZRaMHdF76+sPXeXJcNGZRHbDdM/mqlcrqNy2ZEEFZdkmSEthczlbLMiTj98Lh0MCkXJMmFOk1O9HXDVowUPKCPjlXKRSqvjHd0IPGuk7Zt/OPdzhhHFyephoEj8FhfRz4WTXPh8mc4+2pjaCfWfWZ911rf0ABRWSFzP7pQ98Pvk/EUzzHWFZON2ysRibGPTE74i+DUy03piuC0RaHZnVjl420ngbIHQ5OfT75dScUS+6cKg/Ip0ue4QW/IM/fkH2dRKWszSpFzh+TZlu/j7fahpWB797EPP7VEoaSJEFaadMxNwPBR8PxstAy/kQBxUJGsXp2kBo7TCehJ3RcRNJJ2DnO1C7PWZ+t/OnBPm0jYnlvN/l/GRzqzb38U0ORFLM/rC1ZOjW0kgO2cHh84JXShDyHdmd8ijqnbyt4P7Wzmz/Or+y+baXPRRwQaNSqM1+eV9ZMbxyM1jyy9rkIcliIP1wJbi5V/zf+oep5zHPXTfRdGMCQCimFtuZyyyMevty4dLlA87q+tQNlWYVsKEHwL1A1YjK5D4D+uvzEyc+4sPNTRXytBLmZXVV9vLXEGEqHwkNA6vnbNOdNBg3ckVlsrUzuhxfzf1CpYIxDLxf8AjsY8FImmlxRP1vmShR7WRY3Mg7f5ONcYvmr+rjMT56aMLJjcKXigNz75FeiqGSnNCCR8xaPKnxJl5ceG1Gi9iHg2F+82UnznCkKTNOglrOgDpRPbA3J1p06RDPvL6C9H7jbFf8Vt3wK1AK6TtfZu28WTfYF6QgelNcdtDUQzTX3kP7iydcoLtpbtrXzUGhmCy9VYUCTbl0Bvjl25jo4vFjUt1XKaR6KxMTmXa0saq1Aq/K2rPDub/ysfmkS43v1NLpe5S76fLNpD+8x6s2PiOmlPsYgqleUV4csrLXPl8FLXyX7JM3N+n7+wKw8XVNjNUqKlnRRXf08q5HOjtx0c17oZxh1aIdFWfVjaZXr7sIr68vXET5PRo3eOVAlEDOHhyO2Xw8fAS04AEumGrzYXzqPcpqKP+t/5pftsYfPiz8ucho9tzUYMbrA9uJyPenP75Pnp+U2LZW+aMcKAA737wSDa6GL/VbVCMshAXTBm0dTZwfNMj9t4qR+MPRtBOz8I+PE9+93MwhCbMcBd+zzaLHK+hEIyhTJHcNI4dEuPpDNDQpSo29wvRhJy33x7uCYlWdl3h2ovnhbgKg6c3DaBf9yinUb7ESRK5L7A/05SiV6AL0Jrv4HZwoZ+u8viNvE+bM1VI3mmTvqgBXtmsSvCzRHFZvyQKqViZ5LPfrj8PPQT/3eiHaj15Mrm6CFiAHiegC4WarelEFUnY84dOehtn8nKQRNtFDx0pFX+V00GyAhZ8xW9wlfL5VrgHelxcsiHQ5G9E5t/7wirgP0M21/WUUzcizmBuAyFm93oPiBp7NtCB4ZLOf72IIOGjsbD5jtPDbE1QiuRLreRzM4YfMEARiPpbPq9m8fu3fsBoFi1J7dTBnzWkd6Jqe01XZ1Jzi54kqL/no4M2CD02W3do/vcPcLDHKtX/FMegRUPK3XrSzM2mLzYCxYMwKNN3Q1YW4ORz++EvHf3v7Akt8kwMqn/77/HhpG4/IX4bLnxT9duH3AqGTE+b9fkU23Z6+h6LtfGFkHEvUL9dLyY2vQIXWrrJpMOs7iNdiZLEqrTOe2iGowju44rGN6+V+PRswuDwlwautst5ujVk5fnWZ+HFWl71edjM6u2+TGOyx8zfvOLKQhWuLuPWRdBOIbxG2SnInpI3PfHri34ju2Sqhve0raIiGIgWnJU88ffeNz8XWadFFHyS2F25KNklikoKfOBcsn/cnPrGXLYEZNiFb8Mnn1aTk4BLDxfM2qtCE51elOveqoNNpA+V0yuUeIiVKsNwFONswthPB219+NP7WqGtWvh5C+OV7skdrhFqj2ucg58VMMNNKfySX6gLXwXowElgQzbl6ERB6XB0sFe+8G76PUkGmXLoE7499RIPT14OtLf/Yvh2e/hgq4UltfsoTb4Tt1vzHt2w0NyTYpV7Z7y83BaY+vVL5zEyT68u+8iygP2LFA0XTr0AJTDNc/unp2VhqGB3Ot1gcqdyNUdMVsFr7OrFc/x3N+ypTYDj2KbPE2jU3z+FZK52iDxRk72lOJUta1ESb8o/voF7bRwp0J3dNvFQ2+VjMfQ6LvmSHy8n1+7at8T/8/9OHMxmdN3gPrWKB+1B8LsNBAnf6qcSAj+Xzq2VXcPKCidn1CqH+cpFGkA5NxIJj6EbzcbopUKJ3TSzWLb1Y724Mr3VmMu8w7vz1s12P6r4pJjpUDzHjX3stAXdDnehx4vPx6l/q7Z/e29IPLsf++KKQzFt/yR/aMv9yGWm94PezXPZl+U76Ro92sPHkhxhxKXJCmAvZZ6Z5nFGzxO8/P8OLY7sTs+zYQl3OgLvV+WHOpfyYEVz0DUX6nHa/P/xGj7ODRdb9zOHV7z20+A3MFeRfx9C01SBBokdc4ldd4/PpBIoGGbHTB4v+/AT1Jx19tpvMrKSLbQzJ7nIlerm6ZdM56T3YvW+YvkwzRBKgToI6tHX8y03D7B/K2gUUIZscfkIZcWOXFxCqks1MPI7moveEZZ68SmXiW6X0OasBKoCeiCEmjvmHL+Da9Y7KSXby+3nTY7T8Ps0jokTz+vrJoaTbju2+nPpUPB1FoMV9h6HQLb45ZzbA9Za8WWqXP/8fv7o+hWWi0qFGU1xZMWzuyKCrzX3uaOieYrjbt5Ttn+LJHHd7elnyxofEcFhzmpldBe/Na73gt8xnM/mFsOkTjV2E9ttNMvVFsP3HjBc/wu9zFgPAeJxYcN+vo1+xeV0UejgeiH/YNH7366cTikLzSeV0PkV8/0tmYD9vg4HOuj+x10EC73KvyUHcjNlg+1kPb1/VSZBsJH+Mh5WL9hD07KTxqeOfwEvgusyqca6no8ksehMglbqB8ta8+dMSr/DYbw+km57P8h+fvljOBvPxu+mGxNkkaKblnpgpOUTz6CviP/5l3n6q38NelcH0nCNdDXlVska+3f/0FDt9vvtu/Yd/K1Mj7OicQ3NWz3yGzzUN2aF6iNH8dz33eNoSw4mLkksRPkHHThPxj/tvNJ/NowvVaKTM0dc2mpSrnyvL+mKp+fbmlLrejBRNyAhx58eSv94Wagn2sBjNjHdlaczojWODPU+N0k3vayDD0yKU6MNQd3/+gNI1lDMjfvZ8GM/LrM13QP/hNXvc7iEqj6eBbohVlnWOUhFKmv5we7LP5T8/B3qHM78M3nzsu22Fkhn5xBKqiz9r17OMEku9/NOH06J3kTqhF92I5xSxoAww/LZ7zHR2qc0RbQ0Ntre6YiTetCW/u80drPquElsonXLcz4OMIElkYqGThPjjFofQ3Oc30zYVL39RlBRQb9Qtwxuk8/EQ3UX05we4YuxnQ9J2i17eH5kdfCdEBQHFIOfvma73yODz9XrPYUY/h+kree6GrbBp1JMezXj7awkaqxzVaPGP6Kc9ZiYrS28ESSuudLXmkT+lUStASVHHyD1PomnzSAzIN/ZELDMso3/+ySW/jMwwR8Mc0ugtqOVxYgtftMzeLmgP5yhcLfn46/en8DoDap8m0W325J1pnxLUjPecRZutVI5Bc3P+ve+V9guxnXG+IIHoD2ZjYTZpruaA4rTCuCSXIqIbb+/BgRAVrxd/5XdOehc2hrsjwWm7Q+td+I2VaeNHVCSPV8T+/I1FnzPnd+7RqLSny3/5xvZVc3656SKcf6LKDuuH1klISjBaT/oyL7zaZSJLl1mE5rUmRpA+M1502b98T1VC9912vRor9R36q398l39/r1GdnmHKNEY+Jg9KK4DqLT+IrvVhN4zWJKqifGmW68FQb2D2hjm9BMSXzdznjfKokTnMAVaC3bcc02YNsOAJwXm980d398bgiM8blps19qWHwx0kmuKaHWox7tjaSO/o9vAt5vEvjQbLcR3Amf0lhnM/mnMVvioksM2ZfsWDly35w/2X/9dY0ktp8TNQWxGN6G25Qf/qAyvTIHhq5h1aa7cRFB4ZKiGjx8tOXFMJ7sDDZYb8PhPfq9BApmw4RPvz27H46cE9UYuK3zrreDzjC1r4EHO2rEFjtznOQCeu0+rg6OZDW70M5C5NfJb8kvEsdlvlz0/45099b1YPq/VeZw5Wl33yQ0XhVmKdjnB9+/zuFjk66m+d6c38XfyTwFFum1Rg//yRuAouED3fd6ouj+RRIx2SP72Cpzf+RYMyRTHKn4FMcETSiAskzNWPPHhL/ASc9s+yR6vQC8jusdbMjbI6X+CqBCkeP7dvycpVPqPVvj5g+qc/N49E+/NXSLyRv35zPnYu3FQByN6SNnys36YDZ/GzZftTZfF+wQ+1UauU3Hb2t+P5VGjqM6I93WqvfTbijTbCMBcn5rZ1boqdMWuQP5mCF7+mG9bS/Q29YOTM3O/Gbh1uVAwnD09Ybc4ln4xnUCFLcWXi9rtDtvCpAhZ/mni/pc9kvcwGNYj2ZH5/HzO+2VELVUV5J77whah3BWyhqU+uzG4K3xchOgJwvTex+jGtbh61tEW7Lj6wk9Xp/rrpoxpkeezZtaGDSa9qUMCt2GjksOhVHo8eRuvN50pnMXH8NaQnAGxiRvs8sf2NdH/H0NmlQjy9u3WjMK/vcCYfk+lx0vHfaE2S6p+HM9mdG8OcFj4Miu0vjQKWWQN/57fwCdqr3dLnyyop8q00Y9Y5IyW1ZWsEo94meBPuuF87ktai+nQ3iNefScbK1WX8x8ft22ZlMoRt689vwVuxBDSOidaDISUXchIuos+1/KKA7D6kf348F/m7V/X03TP3cRlRfwqf8z+/VBu0czT+bnOq9pt7wYLbw8k2SL0FyGu7khmLnhhe9BBCoCY62Z3HuaPZc1XBwxAPi/+w4c3zNTbqawoccrQqzRfDUcRo7yPpL15R/9w1M/gfHNHtN1txlsVuo+yOVsxw+fqgtbAMPtyv//adi7tu4pOrADGeOZ3X2TrqzO3sQb/zW1q0cZ1NVHawirW4X/RA4o+L34wW/43O7bvJOFmbCczH7ICVU/fhw22bGcq9qSNmfmhbsuWxMHXUCkrw/brJ+tdH8yCTowfTdwIrufI53JV3e5OZvW12fNSYCbD43Zhb89sc72Sbw1JPYkt9LePQ3AF2cu6RgLCtzx63+ATXzebGDLXhGXscwIGLZS2zsp5aNK/VxxtR0TWYEfV5xK7WoQZDSi9Ei1dd2Q/FMYXp5OVMU+g7m1QzrdGjbGwSlrKc/dNrf/WC2801o/XmGXvLRKFyqQ/uefvnt+L9PDAiaJM/qsK5gS6rJLKv9DAaH/nLgzg2QkqzeIf6LvpIUB7DgdlFNPh9MTYXRX4PI8EFcdB4uI/yn59KyFnZcvpK5pP655c6Zv7JqKKPd0BG7TN8zL2MolbWIMG3K14ZIl306K9Cpqw57Ka9ftlozNkdMfUq4uYe6d1UmPsaBebPw+uFn/BV7nrwbUJGIX5/u2F9D1rwWu/FjMmpUXPMVgIIO3iwm3BLM/7HzxpnqGm42+By1oqtgNxTb+HN9Xbyp+27bODeVBHR7Ebg3ff3m//4IDG/19YcTzhrAL10g2TNTudTLj1AGc7oSqwoeJazfbpTiIVwT8VaTvlUz40Hy/t4wXtzioV7gB7aM2CH+Nd089uUNPiu054s/Ak1Pt+G6sJPcSG4sz8s9SvlIzOP/PH3maq+hR77xGfOiehIsk9xj5DgCswtP1o59PNcw8H1VLoCovubY+5rEIuSSys4rBG9abED7OduMH+8glLs3+cCrfnSZ/iL8nLkfWCAKCj1Uj/blNzvmxDKncGZGdcDmshjiOH3/oZ0dWrSbqp/gQOHTJKx/MJaNAQ+dcEM25CYBe84PT8HF5KmO9LrUg/thcsvhzZ82Us9duomwxhr5MsKZkH2HwAAAP//pF3J2qqwsn0gBgICCUM6kc4EARFnYIOAiDQJkKe/H/8+w3NHZ7wbQyVVtdaqpMo+sJVJrvI/3SmQ+P9+p8AMS4CgpbcDC1X9DuagelDE5T9Gazt3AD3xkLr3WIuX3fpu4GkQrvQqZF0xmQ+pg7/TWaeI0nEYFks2YD9UKyl/qVCPaM446Bvyio1OaMAs+bOtJvRAyHRqG3/5mKCHysq9SP0SEzC713sGvtfnjTonwazXse8Q2P3ihvAOty+GXVy08FETHlvA5msKU7kBSWwFVL8+I7DMh7lUg4unIaFBe3N8gUsFZdfzKL5wtjk6+7ME8e2X4W299fqEjg2H6Kegmr4nk8p9EYLCmL84/KU64I/5LgV2+enw6fLqzPU5ugkQIZKwU5e3mEYgf8Lt9zG6Wxrbn6qHAulh36DvPot84WS+FPA2k4oeI8PyZz9enqD6eBg7JFprdjKKO+TN0MJHL6SMbb+vnNu2pzo1qEl64nvg8zyaSOyUSz0vfH+HBg+v9FZtvYflnhmAQvWODx8U+TRrohkGzRjixwLrYimWPYT4MViIP+/FYjj+Uh72dZ0TZVqEYfXEawL5NW/Iej47NTsMmgQTXD+J7NKILZ9atMC+SFz64k4Pn5BMeULJeBo40BxjaIJYzIEyZCLiarUZZpOLRLDtL3YiYY1peHIiOLTBF79eewYWsi9HqCthhbVf+mY/vIMKvOl5j908l1kT+/YdlHf0IwouxnhVXLeBDc5jaga+6y/DXfBgG7Jye9d6NpdGqEUYZ9kV52Kf1PPOdDyofu8dPZ3bK5iLuZ7VYxGdEHe6mQNvonMPhyoA2JpPPphh27Xw8lg1rMXyy5xHMGRQOHObxvv164lrzjx85uKIduXM/OmScXeFW92RbueZzSa523BfpC7Kp+XN1lJJNeiWg42Ag3Iwo+iYAefHbd3Djzs2ZazX4M4lB3yUzkvMxGkJYWyJBUUv6zMsWT2Ef9+L7hGLC5Fk6x1Ky2dB807f15QTDhps1rLEGk13xayHTg+x27vYm/seLPqSJzBazgRr4drX03yQKjCWyh1jIekLxp9TArXw9SDsbHX+ch5jBLxVqTEeq8JnshIZOz+/+9h4me0wmSqz1c3e2HGgVc+6pkvqkeNdjKKoGn6bPWAaynci6NLEWLc7O5A/Thw9no2fv67mb4WJX9b4lGdff86SIITwHIQ4guUMCLgdIiDyuETd7xYPqyOhBNbZlG/2Ocfs+EtF6Ly5FPHaoalXW55zNXj7NTa+8FCL++cVgdL66fjcubm50q+HIB25Ez52rWyuNxNpELudS6PazONZVMsQvtzyRA/c4MSrsU05flZFg7XvAxQ/gw4pUJyzTP1MRj5Z466C3rDI9LTAOp6r/dqCNJBKevsd6qL9Lq0Fk5f1wgi8SzAZeBJhcqz2aPf5RWaPXxFR5+A9UvQTo3rlLjQCbtOtSNwaMTP8XCF8TbZLWGwtjErjEQFt39ib/Vxz+VZHC5bh6YN1YiTmmp9DUS3p+sGHsB581tEoh4965Kmn1NLAMj59gh0Uz2jUHKOevcOPwDZZAnwAa+wzdr7NMB2fMzaX/FvMjnwSoQmPTxpojhjPRnhq4YnmFsZTlfqLavspAFFJqXMWrjHTjEML73ybUKf4vutlSZwQTjsvwJpxnOIuN54l/It311+b+HPGuysss0CltjHcfbqL4wbAjh3p4YNWc3Xbooe32fbR2sNnsdYtTEAl+E985M6FORuzacNMzg16qFFnttt+K59fn5EOQ9X/oXebQ+d567ABb29zloEYwGvtyNjJv+0wbvlE2d3CC1HuNhum+lM6cOESj77OB4URnx8yMH87A2sEl4wcbzsRlklg0CLRqL/w5U+D2mgsVIfTEq/3Xa3B33xDNLPMwyAm2W0G8NAB7Gpi6Y9AKkJwHZwzPY+GV6zXZq1ADgKOojg6xyOreAIvKf7SQDGOQGTnpVJ1/IXkrfBXc71akgVgOZf0lXFPtvh19gTr+9US6fHdxVv+tFQt0TzstTtYzLGPnvDv/CfrSRiYKjjWv3hgg6cBhOkXQnAd/JJgkCT+IhJ1hHFXtBhn3BMsTkcTmGvHnLqMG/2+3DSVN04EiszvoZjbaHDgz41sekyBaS63eKxkehAaitUTipnPm1uvwp1EmBq//FFNt17F4KOjmWANrKk9GuB4jd7YU+qsZgKuZnWw+ys9xDUGC7ldPfB5DxoNyqfOlrLfafCl73i0v4HOHGXPteA8HiDpneI47Kfc7qALUU7d5L0D5FD8FIXDRoiab9HVS1t5Dkw16bTlr5VNsv8I4RZ/sXcq0pgVoWgoNRBaNMv6xJZEAhwcXbbiw6TZxepbfQA9Cxv4GLi9yZz9rwPXwTtjNIgwptwHhcB6BQU+7GXq/+UfsMUbAnLZMufHkzOg5f8ItsOUi9ezvxiqCh41DiIWx/MpMu7QBP1ri0+HmB3lrIfMamvs16sI2iqVOnj4yS+M+WLnT+exCMBOEnj69+ed5EsW/MvHR/Nq/8de9Y43sVvFKpuqb2JBXsxC6l1PZb0Q+d7BR0ECaoL44i+zsIxw30s36sjWa6DSaISQ5GQm1Slr6t8syASSiLj4CD19WEIUjKDV1jM+4elRs69+cKBF5gEbwvfLVrtoeUUtJIsioVPqn3KbNLjegIokVe3BCNuygVu+xFG0zXuTFY4owUwa6kozLWYlD1bwmX4xRpX1jFe+dCM4bfc9ZoZxLYScxkH3bIvUnx99QW0QNFDnQkSI9k2KhQ+rUL6FUKF2iq2a/85yp7LOJ0jyoVus5ivgIcu+T6r9UmHow1NnwGrxamrnTjeMeVnayl88sOUPrMlyud9hJ08HAlfXZLPwuq2KtDQV/Ysnc7VXGuiJCsbe9kBjOgRbX6nN33Sb+Uxs42sLDBQ/iLrC1Vzk4r6dZ5XHpyIzfPHxkFvY7+0jEXPHqWnDN4max/2RGk9zGEa7XzzwFh8qtc77NF6/7yqDXPW944MuncBqy1IG4zDf/eUHf3UyU4EPy2mwfWiWeKqPzxacnCjA9oYX6f7EVvXz6zL6SjjfX3+cq4DXo3bIEowy6B8nhQdDNChkL2ROsQ+qkIPHggYUVapbL6ptprAezyk9yOuvII1g2fDqNzo9OIsI5kLrG7g/rieM4mgpZglss1aGWabmXZzN+TBOFsDzamDrl1SsGX3qwC0eYfcVf8yxNcYcJPWxoLrFhO2O3HXT/PX3dv5fPsNkIRDYZUGzsiy3eNVn8OBdMNWTz4PNm3wBnQs0sH+TXXMx8MQDyC8FPmR3ajIlK1toH0yLgL4JzT88+4cnNj5TxovaHlbgXg4LqrF/YksUPAiwZ+eH76ZzjHljNi24nqQcGyUs2fpSbjb8/IYv+nbtoWDEKSDE0vyj5pdKYHCO3R16Af6hdxkasegnHwkGcNzT6As/9bLyHoHHKy3pSSV+IUh+mKjuwapQtCsv9V5xfiKsLfKiujvq/vRAeavc9adD0VfNisU/IAm4bn2iQcIexZJejRIGM2UYm7k0TA90LaG1si91UmIMgnmSFVCpnkjmx/CIlxGYPWy4iiHB7Q1zPgfCEz4SnxHlUEXF/NXmJ1zMoN26R2hM1EvA/+EBwqfzJZ7ifgyAZr1cAj7D4i9X4QIhsNWcutPh6jMl61rwsetiwxfHYrl89RDy7R4jYpXN0Fn3dw7bMn2jFnzWYXXFPIebv1D/qjFAJ8+AcIsPCE5hA+bLfhzB93q/0St2CWB6GGZqKhkHql3WW8z6R9NDsHQavol7wfzA4z6EiFQN9s6JEo9NEnnwWzwSpGz+yu47P1K8IVWIqA1rwQz0y/74DVE/Hm+ObfVTwEs+jOgS969hzqNHBOudaCJQrpG/djtJgffTvaBmaE3+hn8i4LFLhW2UlvWSmZ0I5XIyCEzHephC4iG47S/2tUvtr49pTtSzb9iEqywunuPiEPzDt7tqhoBFRQLhHs88xlbc+HOhVa1CR3jCN0tkbKr2uQgdtZQx2vjMsvK4h/7SWkQwJZOJX32UoGS8zojjchesWbN/QhtuM1kjozHZYwpbdemXB/XCZKgHcVoilXbwTa0pEevlKP08xU7aA5EtMQaztqw2DGv5QQ9R/TZXXeNSuL+mD3zUrpU/+8KXh2otAzTH8s5c6HUI4EVNQmyRkw5EL+kgLPcpwqf7+R0v1sSnQOciRA+vy5XxR9fqIHqqNRJWWYvZxhcBp/gWdZsg8//lxw1v46O1vcZibymC39pQyW4uhngo5SWF/JFyRFr8I+BD1DyhNmoL1TXlDGZdF0S46tIRG5m3DBRp411JeeOGwHN1zPW+oxDYN31HXVO0GDPCSwpt3rlgXM+NzyIQ3eEvEXuqS/yp4KljBarfapS6/SHy13b5edCZuN+/73tMvwzC7LfXyXv7+33pJSL06jQmkITxsOGJXiHYL0h9F0N/KUK3AX/5w/K5TXMl8ggdoYwoPsb3ei3wT4R3/lMT+R5rBb/hR9Dylzv+4ydT6fGtvLtFl398a+rCJIdNtXshcfcUhyHyzxGU78Sm3ubfa5r2MxxHhWInIcHAHmoSwch2FHy6ZaO5sOgcqZ3dytTMVYGR01sf1T887duXAMwnwyfwdS4Fesqzoy/ybwGBgZwQkY6mF7Ojm2Rw6dlj44vNwCoHWXD+9gb90zcIPQbkH/9AVmnVopP5EjADyBFoOsBsp37y4PY9SAKWUK94d3Fkb39FWNs7rGbP4dcqZ1+z/84PoLUdOZDIoo63+Mv+8cdV1RQaaa0+7L+6g2T7Zu62O0G+v37iqIOju6zE/cOH9NjcoY4/kOqmIg7Drs5T+N2Z4aZH3Nh0O8+NusRYQMrDJvU8+H3wDx+ncUqLZf8wNQVEFSXAvoyMqJ+39ce3qCnFYcyoXRpwi9/YYz0dJhalCG75hZovMWF/8Va12tXCB9z7YNnxjwpu+Qgb2/rn64eDwE/vLxxUT39Y0/ZdwsN0D2ioH9fi13OkgdLyXahPmyfY4jEHQWXvyFKGRrF/+aMFA/0T4zbFWcxKWU6AsNgH7IJZK5ZPrOTwqLkSxt3vai7k9nLAZg80N490YLe1L+Gv2cuopcyrZ4GGpZooP5PeQ+YOglwkBjyTxqDnj/uOlxsjHEj8qqamG2195Dg1h6/H28GnLb7SaZt9RHX+h51YmOLZ4q4znEIDUuPYKiY1ySCC9/HywF4vBfW6+Q/IDOqiiZjMXInDCMyto00Wf+zZgpaPo0hCi6hzMMthGeCuAdt5x9aYgIFs8Rq8U+VJRPeh13MqzKv6h8+Ny/lekD99pQxR+i8/zhteVYWpdOghrH3zT6+DHrtW9Di/HuayJqdAZk6LEVgfiVlZapEqN/0mk30zXczlfbMSJY+7I7W/il1vfDaF59ggZF4xXzPN0Dr4zPeAcODNb/qjZsHb/PawtZ4u/8Fbp90txt7GV9ktmjTQCfRG0ULFeuzVPIP9EYr0H5/a9Fp4ea+QlJseRL+6E4AtHlOdAeKz3+5pwc8S6PQuuvv694dX96I00eMh1H2GOemuTpleY/875IB2NM8hveQf8vVDrp4MWid/8Rm7u5n3R+3NUkDEOKFBzEhc/8Xf9fy8bv9eASNn8RY4Dfsr9YyfG7MgipC66RsYZX44TBiDEVrHnv3xsWI9vd0R+Etj4YJPSTFFwWMEzrPo6LY/8R8eg7f77rTphZd6LuVfC5wJ/qgm6yc2L9Y7gn/6hCF+xZpo0WhD4V1bSElOdJiSbg6h1BsyqfhvAPZBlAdbn6M3ga5SDl007iQFRdWZ+usj8deemB5Mk7tL4338jheM2QjOVyOnqBdPw14VNAtGQpxj3R89wHO8GgHZdTxc4CMF//TA5Ygiqm/8HxApDNR+bx1xZLZtvKKzAdVaGxm17SaI19V8z//wu3dO7GFRbqWliuNvj97cdCz+8Kv62Icz1ndT6s/uPhX/9h//6VF/egGMziPGj6hdwRxyUw92OpnI3KU2EDd89advUbTxpbWjqwevxTekf/yFms+PDem8c7F20Kq6OwdzBT8L0vFx59nFqoeqpYzzfaSHUy+wv3gu/8UnJHbCMF2FBwTu4f3G2r1ZB+ZepADKUtRjK9wX8axrrgIPF6nZ9EkPCPi1z+DmH/hePf2aXa4c/Jd/AmCI9e/ydSPQNsmJPj8qqknp3cU//L75KyymB4pasO0vWWcC657fbtO9W3miXrXr6qW6ZhlggBTU9h5hvB784d/3ooUB5I94vkjwPmkDNTLvPDDFeYtwVQ2FWsH+WP/Tqz5GTYkyLko9Xg+wBH/rfyjE3varJcr7KR+2fJOxPz0B/k6xTje8Zs7u8dEp7X1tNnsatfBA1wp+r69us9el/uMr//Rxd+SO8e9Pr930E3zyJsTW5mAoUrHIR2y0sP/j7z3Udu1EHU6V67a56N1Wc/U2/TRk8yTzGexyR/hXX2CraWhw03sJB/PS5H1TGcGJZhY2RkEaaPjcKzBoSLjpAYLPZ5bWqkdz/JBNr2brjRnhn/9g7dl0NUnFTwD3wzXDevq0TH7TNwC8oT3Vv+7gb/nrDgt7qTY94AjI5j8yC9s9WgTeKYSgvmQwuDgamXkHgRXui60Gr33obTxAfxHIPP/Lh9GGz4bujRs4N8cLNg6vst7qORUwPvmRmjX9+Ouo1BKsmzNH3ZU7+yLT1xkW7WXFh91gFlsXzDucMrMmfP77DGzjs6qcjTmS2wD58357VfBXP0L7bh7GP70QyN0Xycp8KGbtzDfQTKovRU4pFW1zQQ3cSeKH6pfnz5/+9KKwVhCRhptajBmvz/Dj2Q65jYe7SU6LdofKS3hjdPP9YU/tUoNmWAGs/9yLz0xSi9Axchub9D35i93fMqjUOaZGD7miJw7YpgYxnv7x46WYrU0/etUEsAf291GRadATJUxfr30MxluUJXC23gdsVrT31wgoATwIT57A18cY2PftddCevR/GWs7AIk02gb+Q52g44Q9YhyDtFQznC3aT94vN4i5BAF+GkXy79uYL6E0y6Db9Sr337lSvw3h3lMrTeop/lRFvet8Kz1XLkXWr7/3xMfVsviaMyzn25zrVHfheHwb6bfvNKse2/uXDWo79mNX2ywZtuJRUP7KWdbVtZGplGCb+45N//Er5DtqFHvwF1OwJygTYupmReadUbI0KfoRv/+KSKjlP9dxpQg6e0T6hp1sW+Iv1UJs/fILzMBkG9tVPHtydqEYPvMyZ/+p3PjGOdPO3gT5Bl4Dg5gGk7oWzv8UzBOx7O6LZ0r51l35WAzxVKFH76cCi2cUmL3OKa+Hn3eKH6fdsHLjhe4rz/cdkn1XK4Mb30Oq9cEGrzm+gdT2Z1Nj0sCVWegjvk65gvNULJu/gctBsahEtFqt8stYjAv1QrtQT+2SYS7fLwLEOBeoLqVuMf3rwX30FBbd7QXu19+BbfKnY/R3MYm7XqYG6OAnUjlMcN5mlNbAcVpkoT/s30HYVEng/v6701JluMb+GmwjS5pXhgyZFYFkOwh3+QpFDwhcB1sa99fzzX+wASxjY8fcU4e8Q//7p4zP/PhHoPo7upm9/wdKFSQYFr/DRns+mmGqrPYPdJfoRlRfGYuUu3xBozlMgvLr7AfZd3Bzm9PfDzk7V2N4aIQ+1Tj/gy7luzbn6MlHRX56Kg8vY1dMfXp4cLSHiFu83vWuG3/g+kTcaKZtn8fyEDspu9NYE0rafc7DNmrji4HMtAR18GarGZW8jaeMrtAg5AxRRuseHuKZsycztDbGZadRSbHlYouBCIP86t2QtPKPe6gs5WH93jp4mU/KZPRx4uJioJdnj6w/sCboU/ukv0oV86wUclRQu69XGgWQsrN/qQTC9A0pEranqpTreOgiIZdLzaeTBwmtD+Y9f0D99wJhfKxDs4kX+6q2TPFxHmNfBdYvv2dB76V2Co54ESAkTv+6K8mPAb62pG18k/jgUJQfnuk9RLeTAr776+D/eKRD+n9kHkjoQ1fvgQiiVZoU/dDmh+fxqirE5MRtaeZQTwTF2MR35uYNvO9zRMDs/zEY83hrIPtNM1C2BtEfyrMD+F/3I9bK+Gfv5TgRTHFsIntu9v6Be59RncJ+xNhVhIdy7IwfUN5ypTm7DMD/RbKmXpPToPWJ6vEfp3oDX5GSTBdXusIKjSCA83VIiv/aXYnmEMFf87MshyZDe/oQuowO9Or4Q9YA7c+UKTgOfnfOmxvcRshn1IIPG5a7jk4t8f6DPt7UPpveOSGT8mTPeuRBk9SjitLJMIAoPI4IuMl6onhZWz1lndbCf7hd80S9xvZR1+VSnyj8SdeZqk+nFq4JUjCx0+4pSMU/VVZLT292nBzr1/qLYbg+eI50RF/Ifc72HeQCrzwjwob0aTPB03oL3L7hS72ByjCjzmgI49jYSE76t2bp2GeRfJaI5/63AWn3sEKpV3CBu7o/+OLN5hM/jNcanWoZD/tg6ZLFdayAm90E9arOYwTndS2R/gQVY1td0h/3EXLLWz4mxurnzsIjUFHF2FMYrtO8BtOWG0EefWsUc7zgCZYd80C5oY38+WG0Fmz4osXkNBsCIP63gYI1vfDOBGy+mZaWQf+0NjGCtmfSYdjPonXwkl3H3HsawHz0IH5cKWyI5s/VI0grSo5kgPvG+8RLvDiF8AWWkVr5fwfz8wBwMe76jFrRu8Zx+nR5maAhwIFl7NsdqhmA0XGoy2cOtWDpx1VRXbUzqi9AohM3+kOoRxsf3/AXsqpqKYn6izzZPyotnLh8cqN39Fan79l3T/bL2MNhPNlqRVw4f1eYy2DYvnwZ9r8Xi8vIjqO6NGw5CvLLFyK0ODqb/JWtcHhm9cVhS3AwYhMu9oPjpmZzBaC5O2BwvVcys2zQDZ+vl5dy6HZjKurxDWWpVbEqxUwjmTcjAWtoxmm91Es/pNi/siLorkutlKNjCGwrUAtxi59xQRte1zFTzE37wo1BuNbuH0IBXT9/hI1/IA/ONPQE39s4pXjojHncLvYPAyB/YN5FVzEm02rtaqLexStGnpveQN9RpMn8YO+/W7L+BBtWM/QySGujNfpVshOqPXU3sDfcoXh9gsiTDdh/U3NkqYOAupuBI2poo6Wn12QPfSrjnjxk+XtY3WHzt1sChPjC05PdqIN/AgbB9FW8kVWz252Drja+f/Q6x2juzNQslAmcA3tj0sx1bveFWwhzpCY4HN2E/zerFP3tixOKqZm/ENNWkfExvF+/HRs5SLHCb1oTwj09RL9QnntJPzws+dbvSX+FBg1Cgv5b6c1KDaX1GCGaOdKS+fzoW8ypiCGIKZxpu54xoppzB33Z30/ejJCY7Iqd/54sGbvU1afJdUnU40Qv148CLZ+alLXyKrYmdVLn6xNFvEszQL6Bo87elL2UCD563Ui89rSZRCj2EXcfNZA2kXzEy10/hnhtsbF1aaZiJECN4+K0etXl6GdhLvnmAu9sGAkI/mExy9gaEV/mM7SEffHZIZw3q5TPAFn8Q48e3FgkcOhzSU/50YvF+np5QyrZ7rl5pFOOBCDnUQninZuEjtq6PcgVmT0QiPfmTKd7VYwOrw0pJVCq7+KMeakf9cuWPxuPFKBY8bJPPH31LdfFRDAPx8gooj11O7dd7NZf3qfOg2IT8ln9oQdIfWeVk9yzx1nc+FoR794QGcCN6wPBiLmgHDFiFQ0S9ktpsFh9GD4SGWdihXFl0Yd84MGv0HsmvtYspdebtXmaaEZk7t/56vogjpPZY0gv6zGCcPcGC6PsQseeoPCDKIUTwnBYV9XYJKpYSex283LiCWkukDUuo7S1QrHJFHz9r8pnIHg5YL3KAD/a7BHThPQVKXP2kRqnsiq87ei28f9uaOucfZITnLyLQtVKjl/2i+FMlG5E6p2+LKHm0M5dPpRA4GDyjkZHy9ZJFQiabu/VF9XovsmV25kxNGbSxLoGymLu3kkNazC5+PB9DsczCNIMtH5Lfww2AYBxaEdy/zdabMPFi2p1EDX76YsTWO7fqMo9fDTxczAs1pyUevsvzxoOwfXuESOTqrzhRRnCPBEI9/lsxdjBytHfracFWvn7Y+pXEFNRK4hCXxKU5lC1qwbAXO6zlgj+wBiVbfqgT7B/jJV7avRtCXeB/VGvZ+d95hQ53O1K06kM8xztxhKe3eMP4pO7jKbwkCkz5UMFagDyff+OGh+7EDdQbrp+YRMkdgeD6tKnTeHy9BuOjhLu3YVHvLoSAXOCSwM0e+DjY1B+GwIogsiUDH/3wZIqOflOgzLwRb/V2f2zruwS5FH7wCydFvfR70fj7/7DtakpN3rh5gj1aCZKHmRTz4/uUwEe5SkhdL9+YZtzLg75RHcjO+s4mS7k2h6fKPWG7RQ/Wn3YhD5aByWht7bFe4VzbynQnAvphvirYeXd3IH6jN5HUbL9V1t8WzMg3I7ycznVz7u8SbF+3NzXK+RM3/nCTIKjabovfTcyOZhoojHI9NffHnC1VM97h5h/UHl6SP1VNc4ci/qzYOlXOsFpE1YBbZyr2XwezYGWLGoW2aomDz802l9X5OUA/cGdsvV/L0MQ7kYDLxV2x/54MkzfnqwQe0eVJrV7IQHu66FA9XX8RWmTtVCzF2ewB20kiLpD28JlFzAYAQw0p8oK2WPo9Z8D7qbgAEUDuvyNxHzfm8q05AtfydqSHExrrVb7XswLWkqfoVbJhfKGSh/V8RIQd9vowNydggw2PktXi4ngmrmyp0327tz9e3WGs5fEOD56z0lzgjv4sLWekelLKUds+NWxxtW3A+L4/I07dLTG7nn8zlB8zopt9ajqWkQhztZGIUjRisVTKpYRuTRcytnMfk9cZQSWPZg8br5vGRIsImnKLvwi9rMo0997AEpXvUxVbpsbAfNl9n/Bz0DHV0P4zUNnWQ9Xt9ojsYrep15WdeZgyzkYj2PU1fSqsg+nt6WPzt8712KEvD8P3baIGyOXttqDBwdaqdlv80cDyqVYCml3oYiMD93gpWp7AvLY4evOVsSB1FZZgNJKacI5QmWv+nWZwe3oQddZtN8za4R7Be7Qn9MgXt5rdwC//w79kLedPMUnHxoEwemgU38S5mJ+hn4DxmwdIHoSiWES78yComo5cmfcy//C6opeLhtaGOvH6ly+vvB+h5FaSYSybswJAZ8hUL5gNyLULIhgceYJPXxYNrJHFHnZS49CzEjVDt/KQKIq5AeBjONR/+Povf6Cx0xu2nIbmCRf7dt/6LPmM/fGHLT7T4LkcY2ZSYkHuLDhU2/jL/MaNKNsvi9GjK3esafcrgUY4ZPj4DWRzzmD1BChIYnzcW4K5PkIPAqYsN3x6UWNYZIZCeD9ZHXb1k8aIc/UgTKjgUGPu9FgUedSAsYooRcU7rNfAsHv4ua0WNcxJAou21RAFPOXYrtyQiVGscTCT5hcNhZwV0yVyehi+i4n++R+LVLkH5EwG6l48Fyxq7kCQytkVR6+bBuaUCyC8PXiH3pdr4C8vhddgbjor4Y7Nt/4Xr46W/UP0wPHxdO8wp/CXOEEiTXR/7+qMQPkkGtSu3Jkxw/Lh33qwkcBbTD3tHACoxgQBGP3AEkxok/RfOlq/WQ3G6W31sJx5gmTMG0Vv3UwIBe+rYu/6cou5rkEG7sfu+o8PrRW+IGhbYKL2XUqHsQRpAHllWIiA4cWfmfdsgOX9DBp+7lPBbHO6QycGJ8IGl2fTAz7Lf3gev47esEadov3hGQR+y2rOZ04hwOGsGMVOvy8WMLsRcFBF0XL2u2K5faQRJJ84p4f8+WPTJaEeFAlfYUveNJ9OXA31h7Tbxj9/w/r6NFtv4VGjr4P8LaY9e1TgDz/pUDHjfdxTW0Epj7D+dkmx7S+B/in/Yqs0y+LPXjAMTEzeBlXrtXv3MxyYuUPsLSnDesh4AnsDFqg0zdvA8q1Gie7RCxvkgGumUzWFHbFPm3/t/LF7r7l6eeUjDRzfYPvkZzXwOU4zPV5WfbNPWsHFL2WkfB80Xqn7fqpHIl/Jd9Arc0i/vQ3X8Amoe5XWeGaPnwO29f7FB38R7dJTrYR3STilZsz72TGFF+HAYXS918M6BuQJlu3OrT0On3p2somHSla75OfVnb+El0SCe/6QYQN5ZT2jEfVynLfxFr9uTFjWWYOh/npTFMqROQkPQMDGX+hfvhj98eNB7m4ZWP+Y1rb+3xMWJzBu+2PWbH4fW7jOFJD91W392boFCRCs0sIHwVyG5bMPS9jH8UZf7j5btINowTFQzvhQ08Zk51jRoH3rK+oXoRL/ixdPaCTYhYrOWNMcGrh7axZN/cb1xcCwO1XXKo1u/g72+LemMLiuCkateSjWwxRt/F8e0b58zjW1iNkC2fw62DMrrRBFp3lCN14+Wz5JC/aqSwvi89fFB55rhnUrMoJXcHWwprRaver2S1FYeX7Rv/M0S0XnwcdRqLGe341h4y8OKB6ChO38ULJ1ciUC5ta5U39wxGJ0Jr+H1i41qXlEB7Dw7uRAcv+esBUxAyx+Xz7Bn16x0mvLiHawenWn5yPV1tEbVuF4DlT1gZV/55Nk7W+FskpyIpWH47Dvy8oG6OsbZIDXlP3b7/XSZlibykexnMY9kYFjT9Qw0qRennK5qsUDhfik5ztzebTTUxH5b0e9+BPH7CtZipqZc08dJH7NP3wtJ7ll4qszcvViZ2YP1aV1iHpU5w0PdDzoH6KKdU0XTJZxVwdKdeLQx8bn2E/sczBdwwZjeYyKJdzVM3Rj9tlup+QDbfah83e+qMulsUkfcpfDd89p2NGStaaJWmXqhufJXt+tbD5rtvZ3/qnD9dSfn0oewJfOciSIuQD6SgpFQILo9hffGR3eairL6NFj7Un1YTGtIAXxwTGorW9vBKhnRurGJ7ea+9UfBQ+nUGI9xJs9ig2fGeDH4Q9aqjIa1pM2OvCLY5lqSaSYX724lhDfvT3VLHz0R1uXZmXTQ8hyCj4FS/orD8H08HCzvZNlmAs9mMW5gU3zdmejP04efOyLI/Zf3hwvn+YAgYmlI938dWCLCzU4RHf/T59gk3f9OHDP1oaiV2EPe66wWqh+b1sfknQbLvX62ADr4YUageTGSwq1SE35SMH4fjP8VSrCEuof5YHNpgjilZSCBlu3v1N/fOVgLpSZwHv1spFAp96cdjb1AOiuE5noeqmZbX6eChw7G2tof6hFYelspaH9QnZfXRtmjmqc0vDb7Kg//SBWwwBs/IM665Kak3qoPbXysUaqb1YzIiydBRvaLYTVh4aNymOfwS0fIHHIB3PTx55AvN0PNFmicqCL083K+KXaxi+dYk5jzlaCfR5RH+i0oFYWlRAFw5H+fd/yRYceWvx8oZ4mW2zZP3cjEKzKIqrdjvFaSp2tuM9rjF03MNlaKG8bbnhhEkyO+utnvyag8cKEpmm4B4P8ODUw8q2ayP3zaq5Rcg/gFv83/Fky0olOC/UhJdSNvpK/Gjm5Q2OO5k1/GmO6+ddfPiYz496AbudHNXIp2uwVmtOuCDiw8Yl/8WAeKur8+RviDdAC9n1rDaRiK1EUf5XhMwhaBDc+jG0ZVGDuEBXhU28Qfc7990+/iFR8NXOkbv44m/NLAqphNPhPD9j0xBEs2s7Hdsbcgf3hjyLqK/r3PUt9ChW4J6OCTwfs+Ovqetz27rylNgqOTLxE/VPpDa6g7jmMwd9+QPXo6djz32Y8/vzV+tM7JoX/GkD8vhUNbvyAhtpl8de/eBwW/Zewk9gMc63sR3ihiUSjbZYDGd9BJH88b/zL74Vo5xiCeWgn7F/9UyFs+BqcIqxjo3j1YO18mcDFtjrqqLEHpOtZS9Rqp+gYPa0qJga1QtVVW5N8LhEc+vTXzrAKfxHVmsPPH6V1vEPHtZ7YDoR6GAzL5FT1cVIIZ18fxRJyYQUvP+mL7ad3Yv/0KF3hbIxUxSr2TbWm0EpE99/+rIpdP2FHrBONg+ZU/GY+r/7pW5u92HiLtnxJfy1287YwmZueK3h7iA7+06s69ng7wOEoIN8H4Bjb3SoLZI5yxLqsTQXl7lce/vmjvbvy/uekPxrwba41PjJvZ3a/9+BBcAo8nGw9NP6db8/8qf/0yvW9zeKshWD4w1s1PXOOArlRQ/Sh3PbFFP3qJ5SRI2K3yr/+nH61HoagZeiq1e96DC63FoRF96VHp7LqcXn5PaDF6lIb/vyBybYbQZsjPj6Il47R22dOYHx5ikjc/GlEo90rDmfHRJGWO5tvUZBC4NzeFNknM2Y6FRJ4Fq8Eo6eL4/mPf3nSsKLW/LQmHU6vCp5D9UydHWzjtd9bzT89O7ifMsbkY1JB+6amWMdCCSi4cykoJG2H9d/pGc/EDxJYqK8Q66z/sJWzLQjRMdj0KOnLlvWZo3/4I9/Wx66RoKlof0TY/40fk93byYJMM144WO43f53Zz4LknZiExN+8FpVDFoDzZ7Spf4CT/3sp0ABJbpvUVS0AxF1BVshd4xuRrNuunr7SvQSGkJ3w9bY0YES7WwCp/jWREu57NoU/hfzZj3obn172R5Ap3LlMsPX4FMPs66YGEaxfRHrfB8Bg7jTw7/cxs9hAj1dogN7JRnp3v7w/m5Y6gz9+F5sJBZQrrAY2+cc55cuuMRlO3HCvvw88Nqrjb1h3eVyBfOpGJEwWGoS61jkwSjqPLS3yi3US8m1/Ug5J/WT783frK/LpbyO2u4Vus1e6FWYsRUg9O29/mp+/O1z7Xkfy3/kaPSeB51l+bH0wfTA/wecJbqzOiZo/u2K2rWsEw8U8IP6dNxs/ULY3HesNyfZvNVn0K3iw4Rf8x4+Xp9ytyt2oFGzD31DTe/uxwR9+PVxOdGCuiTgAtzdszrqI/rA/Div8yzdnOlO29c031A1PI+5pGYWQRWou/+VLR7glbOUKUYPN57anf/F3/Ktv/fFDFD/KgVWS0sFggTp+POyvv1ImpfB42xNqjTYrloMp2CD0SYGt8MLF87WVc6DZ7EL27/kIhEwNQviTWEKE38Gv16PBZ/ABq4ZsfD9mWrb8q89hx1CJPzLXTNVSgD6+C+fKZ2/ZlRSl897UupVo2PT7EX4TjVLfafxNv/V68IffZyvhfbpflA4m3nPAp0K5DayVvxmUyU2kgRNStj7PaQDncvSpy53bv/yHgI1fBeJWW4rZ7Wu2sGlWTINDt/iTZGcSDKLkh8+WJvmrbl8V2DQzplHv34Z/8XTj39T9ilk8mtvMtL/6HNjwCOnfRQnyaPXQSu8MjJt+DxAMBvIqa+jTP729+hCAHQ+e/SU/RxL0smylNzEyTTFXUxGGduRhzZaqYXWuHqfYViNjLH8PhfBvfde7jbffL4gyKyl8vDsDH/KnC9j5N9jwsUCR7B+AA5M9vv9m8eyolywa+71PpaN+b06ATxC6/pavPajPWYYfL57W4+pN/F+8JXuMZ59oNC7Bpk8gddOL50KRRnDeZn+oh+Tiz9bUO/DWpSY+zZxpTp/mBAE6IhEb38xk8/EaNZCOtrrlgyeYx9eSq1lj9lSzJaPmf+/aU7nIh1u9LgJ//PoPTyMFuYY588eSh2afG9TeP57++mpuJdhd/YVQYIrDcrw9FVg8agu76V03BepFknr8vWxsnoXjsDw+eQCb/OvgjU8MSwGn9U8PQBDsvHqua5bBjV+Q0FZxPaEkVIAaAJviA8cX60O5ifAWhzkhW74k/q6zVPVb6EhwE3Ggx7RcleOPKWgvdCYTYnXVoB/x8lYvPII9ffEpXIbXAR82fEai/hD+03PMr3XcOvoDDTSfo4mEt+3Uy7u+IVg89hJS2TjUk7ocIuhHoowUDwfmrZNOEQwCzqfHk+QztjjlDP/sdyqEcWAPucxBsc2iGJ9iUqzKPSmhIUw6xSepL2bdlGfgqc9i2/+fv0axBtU/PeG35fMfXL8rzMgnI99vcPNJ9+5XkD6VOzad/hrPk1+0/9udAvG/3ymIFiGlSAmEYcm5Lwd5e9WIzFW1v975pYW54v2o+aBLMZdwtMCluuf0URQCm93wHkBXUErqycEpJs3+WQJbiO9E3F+/9Xwe5BQ2988FqcnpCpbM0yPYbvPsTvEtA8L6yEK4pEikfi6b8QxDY1ar102hfhtARpjy68FrEWUi88phWMVkJhCX8EWtSr/56xQxAg7JrOP8+05MlohpoDifTiJQf17MRRy4DGjxMKGOSzJ/8pRLB6I3u5NXm9rD7D0KBR6l6YCmfjib87hzEtje+B7HiZL4ayXuIjiSpiR8tDwAiT68BB3jauLjga/q0TBQDkQV7uihYMd6+SKfgwcUelhPhZ2/0hHYUDnEjDpIcf2heBY8OCQ7BU0XXmSr65aBmjw5Ebv982cu9+ybwUNxhdRujkFNxWZdYU9cj/rPo14vcqSWijMaCtWkqK8pf62fCh/vVyRdLkdzpjniwCfGGhluscF6oNqNHIFHjA1oFEWHJc8DZ37/Q6L7Ff1RuvsQviQEiDAOWr2PDHEEnpy4NI8fublcqBLAqhpEGsDD219MSUtVfI2+iKz+1Z81/evB5/l9Rdwj1PzluZIV1Pfiiw9U0sz9D3wNeO+rAw540Yrn1qsSyFExRcsKUnNpvpYI51XWsUX2PKOfMhTltOocBBvWMcZ7LAP3a+hRI8J+TJKgyeHbsN7UwdOvWIzB6ZXilDdkOXOGT1z128PAXXpsHZ9NwfZZnsC4Mi2K7iXnsxYcZ7BPniI2+8/kz6qoIPB4X39IXOauZofPcFdqOS7Jrr9+zOV5s3vYjAPGZhwnYPYfdQnfVIupVn3PMfvY0gji1eKwFl9Tc23PD06JK92iBzGFMfE8moG/9epSHbPVqlwe9tYrxoeg8U2x4H8QviOvoHhqLLZMP5dXkp3V41Owk4cZPfMMflPxSk+7+scmOVIr4BvckTyfplbwv+Wdq6V0r/Hz2HTxeI7cBs6uj7Erlq05np9yDxt2DPDxWOjDLKDJUBijHHUTjbJJtk93qOKSx5YTmfG6KEa+wzzKqX5S62FIxBSpA5etGK3+1Ryr2e/g0/o90a6/HnzaJhRCRyAr1o6JUk9p+iPAQtadPnPjDWaqERHc0q3X3p4mYNQLUoGUDjts1/GpJr3UdLB7PHWKnV9Yr3/2KCvti48fTizo6iUOSGXLIlOwk+tFtk9PmKzRiMRvMprMyKwSlqBr8CXdOWzmu4MDtN6tMbrhrffwke9UdcwmGnvP67D0SOGhH7QWUsCHmOR7nhpQZesBa8Md1YN98zWQe5pAD0/0GUZ/X0SwujAVSTuw387LGqiK/xPoSbr4oHfcrIGfO69ivwJlzNp4zpXhC0Xql++3uQTHyYAcJhU13q+2nkahD6H2OPf4kJ+OJu88ghB6uLlSu38PbOm7nIPTqnm0yGWzWHeqegeHZNVJEsRv9gsrvwf3b2LhDB07sBrJWsGd6QT0kLSdv76NLgA/ZSmwGZV8Pf+4nw0dSWFI/T/SrmRZWRgLPxALEZCEJbMISBAUdQeICIjIkATy9F14/971rpe3rEuR4ZxvyOFkf80Yee1cG2DdNtGBxXa8PJHaKy5qr+RgOAJj4ttNgXLhZmJv7uZAxYxPYN5c4N/vk499HsS3q48MI9zFc8apqpLWeCK2F1yM6apopfIahIjsscri8XUYBOhuRg9LTauCpTXfMsQ3xsgxRzxjWZEJME9zjyDRX3tJTbkLx+H2RDfR3jG2KI0O8+YKMWdxH8ZQIEogFz8iFt3uFTNFVc+wlIoaGTewDJ3XZw30k29NjvFdYuMvXjlmRujeF19v2dV7H7Q+nMl5Gy0AD6Pvg3V+sPKVQsD2fsrBVyA9ya3rH/XiVHSE2AotcormKh7YNROAKQoBQbE0eSzMVBUE7lENQGB8hp6dNQF6fmOSxN/yGRbwTYDZ1c6JzbuOsbQ9Z8MrmhkWZuoMdB/6Lcwb11hb19eMKb6UwtAMz+QyDmU9V0crlz+PKMaiEuJ6TpLvCBp9c0MHf2bGlN8+6a5lZYWscSiHRT58zF3WJ9cAHJAD2C3kZbjzwiDYzeM+xuW2LMD8XHZoX17FjKz5EC7sfCUWTwFbakNU4byrhmA3St2wbOU5ghs7OeLZeH0MNpFtAYmz+yB0HkeDnob5DMcXrcihffTDQGmOwZLcmoBL9RfDboMqWAAUoB8/EOX3LgRpwvNEffGzxyJdwNDOPg2GvNDEbPf+9vB5WnsBT+erMTu24MCTFmrIqnUzE15fsYG/+LMy9qkx1xwxCNe7Vh7+5l4XIMEUwJ0pkceFT8A4cHSUbnV8DeZ2d/caYZvnYN0vwaYGTi2clkcC70bmrb2LX8NwEd48/OFlBoRrzMx3LMDnVpWR5307Y2pTXoV9Ux+DGTZLRrdbnwdtGX7IXlNrtpze01p3GnjEevK2IezgJwHDfqujA/KWeFmmF4TSXnijNd8NxFqyEmxC1ULevvsO49tNRxg5+wYD2t3j5VA7Z5A3joFsXz97VDH6M3R3yYEc91fAuvzySIE+60IANut3fQ9tl0BFxwIx9DwdWHCko+LFukZ+eLc8u45CVobuihdOtvz42uk8bZFf+4dhuR17CS6jUCKDpW5MCwdy8lHYWMhae27N96vKAa2/nogWUINt69RyZXTsvyTY3hIw6yIdlWsb9wGdjCOgrgEoOBOVolAeD2w6V0ulWNq0IQa5e6xY9wfIQ8kh1og5QNz7LCvP7KoHvPF4M2p/L7+7aW5YtDQ9E19jqsIoeLZ42HffmiphepORqY7Egfg6LCK4lYoNvsXKfyqGFfcBYbKM+t/+mB/vjw1/+2E6H6+MeqZxg93xtidofhvxD3+hVEQvzBG6M4h9N1ToPH2A/O9nPyzzFJ2hrm4dEizcNV6oXcmwHJqeIC1bYnbOBROeM7rWkec3Q3ztdFPh0yOPN9edNyzb18lVXrr9Cna8/B7mKb9T2EBywAV3PBsr/t5A9TWkYAehXq/K/gaPRxQjzbzYhgBrnIPrOIxEfWshIN0FBbC6UQt591gHs/86uvKC4AdZ/fkZMxQ4Z7C/ZCGxV34zNSrsZSPF0zqeT82u4tGUt8dPHXR9yHmz1s86/KwV38VG5eOhHncRfG3zkGjKdRkGczFkMEM8BtX98R1m8n3ZMLnrLtF5tcgW00ltKMiUW3tPavVsnqgL27ro8Ju73WN6OycSvGzCG7qe9rk3q/3rBlEov0mgXjswk+/XhucqWBCKrREwkjQQor5a+0QozTAOt64Cu7e3Cdhx3LIZXQwOvpzygbTLRq35XR63cmmZfPDpl63xlZ4PCBahuhGX1Cfvcb86EKx89y9/LCZ4Qaiq2UKCO9KGGaPvCJHKD0ivIpsNF2ESQPKNFTztnNGYYxh1cHs9ZVga1NIbJZRJMLlQhI5vcfnhUQJP2kPG1SHFxprfG0DR60S83UOosVNJo7TGA9kftpq3jM/clbXPIURITst6ybTU3HV7xOHX4dAAqjz0HKzjI3v2iWK86h/lU5aIBCu/Gkby5uEv3rbAzbxZjIoQ1mSoiC2/32A2LbGHNM/c4PWNpXo2izKABqdW5PjMzxmTN+t3Mu/7Bzna6egJIi5zoESUkmjYm4ZQ5hsJLob7RebR1g1yN885lD7cHZM1XuhJ+t7kxU56ZMPNO54vSWTDJPe9YMVrMGF97gAy9REZnTexl2AVDaT+NUTWIL6Gv+cdNuXjT+/QcaOeoTEHTaCohweY93HSwCdulVUf1tlSdCdHaZPuS6yPUbGvVjgQQhjtkAvvR4+dhcL/rWcgNPLIxqrOGpAfe5+otw0DS/qpIlg9Mzngy+w24DxY+zb5zgnTMTwOhGs7F+6kuxzM/rX2ltleKsUsnIS4Psq9uWFQhluqxMQsWAqohDJZri6zctwQr2ZMuLkjYD53Rmrus4HOmm3Dsrt9kWdmrrcdMrmEqHFLvGkTu+bHOxmh9CofxDugDiy7ZF/98Qf72PHDLI/vEPb8e48CwM7Dj5/B6z2b8RafNIPKeR0oPz2S3iKxXvYHZ/UogYslIN8Guv+OGIRH/krcFjM2v1Rrgckz9QOhA0NGFgq4P/ztNfas6d7wJfmXf4iVh2zFhwpmShth6Eyn9a6rQ/Vbj0C+W1ewiHhtLuoAlxy+Q8d+eAWLvfgMxH32GihRWwG4BydDXjbW9Y9PgqOgWCu/tmq+TPwQZMdbQ64oVw0men0E1vxIdCF9DMsYNTakhwMKyL3s2aSKpwJwY3dBmuxGbNyHZgs0yoJARHnpzcbzSeHJLHS0v75AtjiJ2sH82Pn/8GzbnRewlGaOQkV2vL7tORMOp1ImXmobxta0Nh0A0TXFjA8O2eJCyQQvqT8Rezwchm2TnqlCo/lITM20vJ9/AVa9hIJCKIdFcR8cfDr7faBFc5Uty951ICH3B1LpaTSmNR8q/ZzZWJnlCRB4DwUIn1c7kIgJweyWSinPh0TBOxJ9GDu0UQKfjrUnhtx1A5uVPIX3705DRn4IwdKZ2xKaKbygw3Z6sz9+BvRTiSzicB5+P7gUvjbmMeBPsspYIig53AUFWv2G9W6Hw8cEj15pCZJ41VssolXKun5Ei2Y9E+o+4WEV3Qx0HIo5W6K7L8AEviRyUIngLSufVN6Hjx4svMrFI9e7zg/PkD9/zWGOYdr9+CSx8Oll0Ef1sCGfIh6tfIEx68ZSWGXQRtbl7sQLetu6svojWDRSwxAORLrJXqxqqKDNzaBbjed+/BPPqfHIfvENB54nSBULr162+OBDL/F1El/PcYyT9Z6IlX8Hu9FyMv4z3yl8nogVNLJ9GthNzDGIhuwebNQu8thYbRdwsJYR/8Yza+bdh3y8XbD49gSvl2kgAeyB9bvWWANky0US2OT0QOI7jsC8mUAK9kQ7kgNX1T//JACZ0kRE3UqDN30yr5ezWsqIl41G3b/0MlC+10cbrPygZup1iiBAVhHIpvIyuoPAq3/+FftcAzBLzwuEuvuwiLrbfQda10MAhOaiE9WHt99+72F+Ng/EakN92CInliD8qhyqntJ+zc+pDavtbkZ+x+/jubgHvTwTnqFkc2+GaTbKUk42lRpcRlwAauZHCpvDNQ1K8piMaWdbORyaZRvwmvn2mOwfKlheXIw3SAzqrbW7OvBilR+EBsWqJ1Y8CzgV+Iz2C79482x01e/56MDL75q21/QG7wd2JPr3VdekGtf7iVc98cvnU5K8MLDAg5LgEtTeqGrEAYOkUnTwXMboT5//9JV+/vZgOVyRAFojxchc8zs1t9sSbPLlQDSbvDOy7jelv04B+eHtnC2ohFN38/FG9Kt4YWeNB+IHz7i8bWLAEN+50E+GmgQfnBszcjIZZrWcYWB8Bm9B3JaCrD9fyV1+mfX03Ro6kN/Zh/hJMrGVrydgHruFHLWxNGY5thyQl5xOAv/+ZuOx0BeYpdED2VTpYnrfCznghCjGs71SlFv/UEEvzg4WBT3MSBn1Ifz5h+/w/a1HV/Q66IXaDh2vqRiT0loCmCxYJ9Yje2dDKjZnCJceIv1jv+tZsJIWCtPOIvvj7gF+8aJYp9L+i8dq1StQEew3rqNyrQFaMIX4NjOsgGrI6PPgN1Aa3DSog2disNeY6vDBvxt0eHRTRjlj5uA7F5RffLD5EG95UDrRFnmJ1QwrH3T+3ld/l2+vO0dSAXcNZ+PPQVfBtPp5a+9wB9e+lbBlGjNB1hWBDwY1HYalzJ0ECj0x8bzqD/5sb6Dc3LMzCbAr1finf7iIKxDiVS2bZoGm8BP3CfJap/Rm01JNpezSL7GSTQd+els+8dvvn59M/b72f/yPnPxrbcxD1zdg2eE7cTl19Cj8yiX0d5tbIOu1NvCPy6TD7WN4oL0fKzG5n8wKTlkZI8/4eN5OH9QOdsd0T3RPDYZpjV9l9TOCXexTtiRHo5OtzDHIPprgQHz1dYP840GQOyvhMDyG2lW6/ZFDRvAUPNp7paCkcbcS+9snXjrpeAOd2hxQ+N2iYQ4cPwQX5DbEl9e+f0MmV2CdL2Jq4jsm2WlYQD4pu5+/vs632sHhVMmBMJHeYEXBTCgG6i6QWv+VzSFm4+7JdSJSJyEweEdobjBXFhVpwuGcYQGo0t//y172MMhEtjkU+abH9Vb7Du3LeC7wlovpuv7mIAL/7gC5ABTv0hQZbL+peJjv/ZBoqfGIx01/X2CuUJXc332fYf58yuExfCJ0ODQsm5ewDOBJi7Q/fsu6yz6ATRsf8csCdk2fZEzBR4AeOQnwPJDdRlug5zMF2adv7C259hphF/MmMkoXxfNmYins1PZA1O+W1Pj9EFLo00uGMW2kNd98HAC2A0KWfZgMUhTAhFk5pkhPT13Gwg+1lZ/f7GTUZPRiqzf481eC+FMzZtzOLhiCkCN+ozoDnXzHhruiPCDzdgd1z+RXp6C+rAIB3GyDb5vUhFJml8gQM4ctyHvLv/ki5vAV6uWwNpW6tqc+4Oy5M+jwvq3fPeM0gFeIM6ZdeQkmJLeD7YgLJv70m0K6jujxdmBsPAS6HFztHbGjnGXbn98WlKMYAFG/1fNPL2Fv1NCJYSHDZS5K8Fbuk4AEJ2zQHRoqyMvXjhw1wmWr/6eDQdIpMsNrMbDquWtBRpdzADeXAixLLPtQ0IwjCQDjB3bqxAiafHckBf8WBpZLXgtW/5pcH4e7MUIjGsFP7295mrHlIypU1vlAxPz1DetxZHsBnAeBBILJxGyetjsZDA3dIp2nasZfYseEy7d/4h68g9VxgQ30j8Yb7b8bHrAwc3Qge8M2qBjUYvFb2RJokmOMAu/dgnnpnbP846d79VjX8+bs9WBnClHAZV8VMOkd6fDDFpc4H6EYqP9gDhTcd0g8K+jjGb14FQYfhxFLu+CM4iOKfv+P7OHiDsto8SpQ/DNDRnaZAS1hY8NmVzvEvL7zeoRfuYKjFw14O4haLdp3Q1cuo/rA4Pw0PVH3zsXvfIkEPZRjKuh+A3/8Ividx2SXIwXcRgpJvrlw4PvTT1nYlyhArZXRS7zpwZqP8DK3HFjie57/nZ/lhnSOV/9PBxE3nPHXvcaDYOA+hNXT3SPkhmgY1+fD6Kw8kP96uzVb3LMLXYtLkatRLZtoqHJKarQ75L7krbccvaCHSbTWmCVrjbJtJ9JffqcWTo0lPcolEJuSrvu9A7MvQ+mn1/7wiFg3cIPf16Egx/V8bjakjSS/jYONpfDVxUvKpwn84cN3Pc+YH77NyU/cKETLHzlgyr3MlR//yXmhyRaZBjKEF2aQQ5oSY/zpswQlEdlzRgD69vSAuxXv/vx8nGmRDenz4yGz/txr8gVEl/vTKSJrfILFAnP701PoEG9mr3buaQeb7yMgtuS1NQ2l+wK24vWCTL23BuFw3fNwxUM8//j16yu2UB7YFytvccmYvHwTmMm3EzFmdTDK+54r4GsJEXLSw5t11/3Vl/kD1Mi1uW0BfVwmFaquRhBKY89bFNq6YMRtiQ5Wzf/0WgmZ6iYBWP0oxl+HAi4jXwaM+3685aJ6HJik3Ca2w29Bm312Mlj9RxQ0VWbQ54Xvd7/zilVvMFbtTqOC9VgJSlPO4lF5uAV0rNoknpN39cxN9aJI+JyRsyUZYJ6+Gq9coluJvEhsY2Z6YISd69uYPu/MY6sfDF19ueM+fqTebD9FHR4sOqK1ZDXGAYcd6AkvghDxakDPEc0Vv37leHdpw4wGg1v86TszmhXQpWfBBbvXYiH9mPkD81KtAn0K0MpHXmAZd4YMgbd7oECnh5ruv82odGmoIruRfTDmWCl3Pz7Lrf7XosrAloviepkEdbkBqnYBBxz9YqAnMnH82S2nEZ63+URU8Oy9+VLrax/XIMQbSSximlfHAvLlNGAYkoAR6fbi4EYgfCDlTQ3G2KKLInLBhwQBe3vjJRa7XZ4SDgtVOWXzoEcpCNROIVr2fYDl9XVUmD4iSqw9mYYl3Fjpb/2xfDJSwLQrlODsVxzRVr9+2VWODrbpIycHfv9e+eRFhT//rFvPN1Z/F+7+r5oC8X/XFNy+LUIB8bVhe+T7M0AiXxCV48xsEbmdCz37ZBLPPDcD8y+tACjHdGI9MWbLNyAU8qJ8xTzbDWxQh81ZrrOHSPwxbGLq7QsBuhLskc3ZEphvnVtAbat65PCqIiCusgRy7bMPsDSWAzbV+azImfchlpKH9aLTdpTbl5bh7b0WBny3vAJwNqzI0dKWYRkuGoavrk+R9ilUQGWcj/Kw+S7IOg1NTWOFOvAqHX3iPGrToJQGPvTP3AuhNnh4fZHteyibiUYQQZ+YXouKKvVdm9BzrxDA4MKbcLOMSkCHq+mx+lrqsEfRE6m/v1Hm6RB8UjmgfFjWbB/ZLtRJxyH1LABvvi6UB+WnYsSejnm9FILagHQZTAwEoMcsBwcegmrRUTAmhGHQFR3kH+qexJPpxZ0+cCk8vvlxrSu9G+O3kW6QFG5M/CMovRm6Twiy+fxC7t1ujPGrmQ1U9dcL2ReDgs/1EHDAbGsrEKn+iOfLmMjyGet0rcMXjfFdniCUSRAS49kZMW9/XhyUJBOTq/+pDOaM2llJqFqTSNjDgTD2EeAQNVsMNd0AjPU8B2XzrJEQj+5Aa17iIOyqFzLuD8/Duz51gHJ5r3WUigImx3j7sn9/37GMCx6M4nMvw2xOXljZhxqj1hKeIQkvOtKnzjFE/rvx5Ut7TDEwYtlb2tNLV3KjRiRwx7fHevuL4ejORTAjUa2n1JVa+DwqNvI4xq/fjdxUeMksjLfjx8sES9Bl0J4iEem9MHmsLlNZnvlXRdB7mGt8Wi4SdA5dQRxFF+K513YpvMxXG6FMawZ6PcsO2LihSDxKXYOqYlVBrn30eKvBJB4vi6mCq+cEJFezV7ac3UcP0su5R+pBLw3quKEJ5aQiyOpvgM0J/Obg/mxckhFH8b7nk1pC8H13CJ3RF8zG1EGI7GdG9imuYxbuXwtkO3+tKWGjx9JbvCjnnZOj/BOHbMahmittIYxofwyaem6aSwH7HYiRK72TbLjVrgt3l8whgfnYgqUhUgcls1KQuXGzGKdz5W7orR5IsI0NY6SfOFFYkfRBm229ASuYNso6Pjy/0Dww0B98+JK3DvJv+quejVpKxGmDI+JyNBhoNkAbvqXPhVjv3T4b37A1ZXDxfXRmOw+MiLxMmFuTgmcwGvV2qtczU8fX0f59ozGVLtcIyt7dCNjlpRs4j9MKfg+VivxYE40ZivwNHim8oUd31QwqGnMFp7NgoMO9V9maXySloNmJHMBNzxZwdELARXaAgn28H9jj0zWgbm5bdF9/n99c2P3eh+hItmP82UspzKSsDgTayh7JzKWESTUeSBE1VwN/LSgBraAM8+hO4vEWwxTYahJg8Bgv8ay5sgx5Z1MQw9HqeOnspYNFKB8CSP1jLJR9nkM7qiD+ipuGjSU5L7A+dycS3tCtZpUyUlh7JMbcVn4P7BlrLZRVDSJt/7gxekYPCHbK9kjUXXIdFkZ7W47lY02QzV5sDAz9Bi/EueKTHbtszTcCYHyjo1PxEAYSvOdUOXZairl22bGF8kIFbSXzsHDEbsYS7S7AivMeRHuhuca8vpfgtxXSQP5u1FjY2fgMXnpmEPXFgmw2phIq9d2YiOmri0H2zqWC/ekZEBR9ICP8Ncaw6b0z8S68EfM894hAlhQnYjR7yRs++MtBvM0XdN33uJ5nue5hqHMucelkxhR5SgjH+qniODGnmt7FLgCTMF8QOj0CRrUROtD/XhRiofxiUAzks5xl+0PAa8nbowqjEgyvl5akyfnrURmfMRCXMwoAfqXD2CiDAPcueROPCzswkeu2Af02ysj+GJg1i1AiQVveaGR/sZNh9jY3DHOLKIHiJDtjeF+aEmhicSG+Mvoew21SwXBBAtHLgWfvlIgtHIAqI0PuNE+44EMBw2aXE7RoVcyEtqzgRrxuSQC7Q80w3buwfx0XzO3QaNBPUeTQErsROXjjsYma+Rko7oMhLVREMAsv6kMPhhtipKowdN35LcDCWh4I+bIR0828TUGP2SeQSHXN6OcyNH/jdTmK60XAuAHvjp8x/xZew3w+OSWsX9xAjnuxWXs3Dglw7ncd6W38queDxC1/490Ht6ienR1fgjxVdbJP9yX77mU5gkrsXdChOU+M0kc/whbZDjn40zQwW+1SSMVRJa71rBnx5fAGrttZD2oR1TXDnrr2EiuEH74OVBNGCtXGUclhkoy6J1sYwdF224Dn1GO8RP7d+eEB8aLsDZgUHUpYuNkleNd7P27r3StUnL1/RsaKrzxZ7+t8MWqjOyx2w3h5liXEp+8brfFU4+3DWe/QrO1gFDjH6I9ZBqGn9X4gm5KWbYE2mcAWzge0d/NvTd/LtvjNNwmOhWrwZ6YtUCmJh5zBWHu1JQcKXYnrEXo5rbHm/0Lun5qB5/R1HBbjHDXQGk9N8PLTMZ6a08zBE+ZUtN+1sceya6FC7tkZpGiXHSBC21WgER8YuY28Mcbr59LD0/HyIsGan6jk4Q56pp3gxY3uA8OPoYPLsXgi5/U8etR1zs0vPpFVNCVYdlDp4JQBC3nEeRgL6JIO2pv3Dm8+cgmWRhoq+Xnc2JjaoWUI+uV2hspoR+T4frfelCBLhe3WNJFzPLnx4vQJheZLOqLbQfJB/wmHCFqYYOJX9J0tTavqisIZTTCYYG8wzVpapQIcCXD26uO5W5pK1hPlQTQWAcC8ZGzgN7x8go96Oq0a+A7lW1HUeJstFqAcaFXFruIy4DNSekuQFj68dnlHdEV+AYynQyqPXDtgXrn3jNY8hX/80MqWN8PuxzF/+RfDWmbZ9L1EHfQbYgXtdVcNlLOSEUqbA8X82Fg13dNcAJfjSwqAVh1qQfF8Cj2HBLh3eDcWZaXKlRKZE7HhxcloM6iJMp6iKAADedbD6b4v/+LBb8cg+15Cl0JiHROyf9/CbKmerQlj+J0QkvMNW+ONQnHYZsQ+LK945X8clOfbBq381mO+YZxh6qghUouUMrbmdyidxCtxjqc+niLJU+EJsSEodfFTz+HTagFC6Q2TdrsZGH8cbHjf7CNimXvMltvr2YJSPF3/u7526sjPuZSI1W+KjDetuQcN7Rxi9BHNVn5jK49N/A3yk/g1lucQBSBdviYx88hj8/3jj+D+bF1kCd7LGz+ezIF42wzkenKPA5s3GQeXLiFIPby9geXzyYdOYciYSRcZrPgxwqd62AaCV5/W7yVpBzO0eSA7Om1BG/YdBcbpL/+obKbglYJ1/chh5sd6fMqeC8Z4zAnarDV/wZdB2fG2/tpHoI8HAMcRbq7ChMyMqIZYbroIJq7+wXIX5zX9eDIEuyKx8OPWLaz98UsUz1vkrus974yuASHVHBLsBFwvYSk5oBwPAwkCzasptwBHvpihQwyu6b3lVdY8+OWTJSce4z/ewv3yRcCxIfHo3TUo+KpvA+9whjxiZ9wC+VrEQfgmYjYBopUQva5DwMtmk9GMezbwqqMTcZW2HOZIMnR4GB8AC8v2G7P4+c0h531SLKqnU0YbxnyYh9tvMBVi5VFEvia8nNWR5EGl16JI4tsfH1UhuRi09ekIBc8fkWfEstG7lGIwuqwI7on0ZnPoV7acIeURKJr1rakedirUkI7Q/smn2dQ4hzO8J/d51WslY+4r4mAybHbEXraHbLZvpg/9q4fQfpGIxwbmpPLKr4h1MnVvsTmFwqmwGHF9GmdUoqGvaHE2Iq/9dgNtn2dfWeMp2OyimRHrrHVw1UfkWLFhzXd5C19ssdFBN8rhD480aB3R8Wbts3mjhK2yBbkTCJc2z2aXBC58nJQQ75JTHXfsJLRQy1uL7Ivej2cWfx1webUVnpATs+UT1iE8F5GPnL09AyYrfQGxKEN0LETdE2v4UYGut1og+8cPW3540hqThnmWqJmo2lIC2q1tIsfTZTA9v58OdheI0G3rNr/xBoo3lhmx2N026FfzW+jzzy+x5H5bU0ptX8YPdUQHACYwnU9qBaWHXxDVZrSe+ayIwBUxO+AK+cOWXZ+6UJ+KkOibYYnn0O9tYBUbF/e4ODP6bWiqVEbV4929L9msCFwPhiFKAr6Ht2Fe/QL4kYWaWPLeNejHUE1lhM4r8Ff9w7qatVC8Swfks++rXhTPpJCpy5Ycx7g3Vr0IQcqpHnl+VcmYeq/SoXbZCmTF02F2ie3CI/NspJXWWpNg7Cr4tCUTf67QiXH6mSt4QvNAtPk1ZAuToxFmNylD7rx6dEZBVdiOt4rYeKfGYpEvATzI2ow3ZFnAfNLACE+zQ/Cy8n1h9E42vH0btOarAcwf+8jDIk7iH38FdP+Yz8rP/zg6Chj+8GkYwgTFEdkbTFaqAoqfoA6WWbPqeT4iH/hn+EIeKKafP5LANR8iK75xxrg/OyPYl5yCUBWt9+0O4hkSgE5Is4Ukpu4J5eBY3yriNlc2LPnDc8HEX70AXF85mE47lcLHI7niLWcwj7wvTQUK935BR6spvEWIogKu/gOeWZSBet5kEO7HxETe5aiCucrLM1RC+ME//jsf+SpRKvc9Ev3gDAPTbokJo3AQcb/O5zzEVxeu+Irn5G0OW5REWP7tL//JuTErdsEZ7nb+BcV+eQUsyB0Kzbs//PODPt3ehuK3n5A+a++amfRCYfkpGYa2k7JJj9+LMm+kL+Y8gRlUa7QIOJXZoLtuqLVouXcd6iYlxIwvt/irerSDSSOJyHfkLft25UGFPPG3Kz5q2ZLOlQPpMdsEtPyWGW2/Pg/jt7DHvK8u3t/7rXoWHbZ0O5CBqTfwsMUGU5uF9d/6y3O6wf10ttmcb/wbDDL+Qx6X2M9m7ZGkYC1hJsElibxJ01Udnup2F3DEf9XsFJ47UO7IC8MxNGOyqz/RXz6mg4yGITOXSpnUF4fcvvIYA7DBEGheHQz9+zQs1/EI5SAIZ/TTT9NCtiHgDl5IDvlmn02CLYYwk+41Wf0EQHbTVYZD6A7kyHvQY+eiHmG5Nb9oSLhTPLqnffHjh398HB8dmu/0WZyQtn2cs7n3eh26WRei+yQZAz9ZgwqdIE4C2B4qRljQ8TDcv/XVbzK97bt+YqgyuSGaUxgxP979EK7Pw1FOBjBKO8NW1vn4jQ/88P8v/+vX5ZZNsp/lEPWlSW59XmYkO75T2d58dli8Xt5gHtwxAqv/R+wOd94He44DOLO6/fSTwafjToCJq36Iuk9jj04v0QV725wwjakB5uGxp1AnPYeVvMnYcnYvvbLml2ArXpBBo33JK0/V22LljrYxqxfhBknE/EDIItXb5o5iw9x4ob98y3iTBsqPbyp70cwYsC8pNIB0IsVJOQ/jp0gK8JhMQM63XRAvKJxakPLbhZgJ3gLMfCGEpNy3eDMIX4b9/I6hv+EpSjfXk7GAC3OhLdGYuPnzNbAwtULZuz0WXDOh9ZgdexJ86p9NwK36YuVLEJg6kYLpdDUy9jzcOPB8LefVH1SNP764d0oR01CO1t5/7+SHf8Tw0nJg3zA9K6S0WuS2bQUWU90lwHjfiwC+qzJbUvmhwsdkA0xc4oK5Oc0Qbic5IvY6P99V/8HLfLGxVH2Bt+qtClLZdUlw9huDmfSxyD+/1RIvyKOvDJSQk6sY/fyCz/syVpK/aE9y9Ngxm5Umc+G6/kQjycKoe9rnP3zAgLfowJRLFQDp9QGYZt2Wjcw5cmBr5UdyPivvePkGnwUexidAx4arB/LzpzxnClY9o3jje1l7ox/wlaAXcQah3n0j+FI0gfiUobXvU1+Bro6+RN+XXD0+XtYIbsOikJV/g8VoBRN6r8N53X8vT/SO8wjNl3xEPk9uoHvhqw41Mb9gIbj4QHJiHcLi8tJ+fNdY9sO5VL7WEWAwXcd6Wf1ekIonSKxuqLIuq1c/TfUvyDHWPqSHKsSKUpQ50a/L2hTfKFvl26QhMszOYuJhMBpYK2aCrnapDkJ7eqnAVs8BebqOEy/M5yIQRiMm6lnIjKU4XXXoZG+64lkO5uvX8eGgPEzkeZPGFhVGAjweDy45NOIu++1XcHh3F2S8LoqxnJ7LWgNkXQNl5Uu0n4YQ/vxswb0bAG/jmw93ezHC8inmGAbPYYGf88dHuhRdPEEuvyXc+EQLZmt04vn5JR089s/1rqs0iulodwvkx2Ug2ks4e8tbSwp4qH0PBZpDMtrp7hk+N2tN/bpfplun5z89R5xKv9W9pICb3L1Hhn78cCky1IPtJZiReo5RjfHh0gLF0b7ITcAwTOOUJuDoVNHP72FUznYBfPTSkVxgVNXEzgQqf1omI4/S3pvNTTD+ve9WXbp49F+pDle+SIwSy/WYyIIsr/oO2cWnrcft7VYBv92xlc8chtH+fDnoJFAiBg8fGat7owT5l7YoOKVfY5liOwC/8wAtfU01O9w6+4/fHXYjVy8//+IuF+m6P7x4Pf8YlVXPBB/63YA//+0rtFwg7D8O49f9KO+PB4JMECxx/zh8JRC6hr/ip5TxnoJdeBuoQjx9vNY//gxGzO/Rc58cV79UDeE2Wj5EvzGdsWo4RDDT7x3R7R30lk45QGBYUoIerTMPI3MsDvgHYYt0XWHeuCNpDtf5w/Mj7gYi37lezrzzmzzDWAXCHMwUrPyJFNe3FrNWipof/0LHI/dm9JgMvcz2W5EERfyOl4JjOdS+0pO4qLU8PkrNBL4Gc+17Ygpg1Xs3xfFEH3PZy42XSxPycHkcDaRlAxjYt9oKkD8N6urviPXcJeFNjh/uG49HoHqiMx4S2N1chbgbOa+XY2PzYOvurUCxtKimlglkOKk1h/uNDIf5/jFHWH6hgqXd98ZWPt6Azz5ckL3GP+Z1JEMrr9U/Pt9ZR7yAFX/QsbtqnkB5rvrzx/2o8GpaOWkEV7/yp6djqtw2HAyCaA74s2JlYiCd5Z9/RLTY/xjsxe8kuMz6KdiJmwaM6TjzsONuZ3Lchy8w+r0pwfeDWOin/+cWCQV8Jn1HjNJDHg0ubwmCS+Aj/epdGMv9Tw8tY/v809+86I+3v/MsKwpCg/z8uG/Lp8gkis6W+Tr28FbkNUHBwNj000/tboQo89ndm6FKEgAF+0q8+qx7wsrPgaIFBgnYkBhrtToE7WVH/vxfMlgDhEFhXJA38pq3ZC2gYGraD7Gz7VCz/m75UGVSQ5xkqxriuajx3/4Cn3Aw6Otw06FhyUkAuRjXZOEKH6x+ILpfszn7W//1PJLYtbsYi9e6CWyd644cuKljeL42/Z9fasW3wphXfw9uKnhHBn10oNu9vzx8ttk/v2B86oINU0730F44+QPe9ZEDXoohkJ8fsM2FUwlL/Nkie1dPGbuquSmv/ik56L3hCfvbTt/Fkr4lgYfCgZ7hkirX22gSH410+DsfU9X9Ff3Ou+a+sCo5LzoZ74Ki8JbF9G5Q32QVsif+6f35xePtcg742mzrP71ft+86kA4XLd6WSZDC8OJISOVDdRC/qQ6hsShncnSSu7eA50CBbC8e8pVDWU+Gs0nB/L0LyB/FllHr2C6yUlQ5OpSAZqM28i7kYY2IDpyW0eAyyXAgICDBVn7XY7k73n5+w7o9GmN+h9CHS0p3mD3gZlgyOt7gkauOGNzpmFHhK0SwWQQBGU6DGV3eTx4qjvFFvvwfAAAA//+kncnWqjASgB+IhYBIwhIMIJOEScUdKDKJypAAefo+/LeXves1i5zUlC9VoUoOt8YWla6cZloR+Wh28SjeshVu56fPTyRu5lRLZbhXFe/vfjEsRarJf/lHek13B7Aga5fK96V6bvXLhk2Vd5kV8Ah9/O9+t/EBiFpS+pwzvtGSyhMH2kaPiOT1J7ash7cM428Q4uTnWu641S9k0t9Mv5vOcBgDMiR/9wus61aJtnpRDXuN9L7Q77iclNWvg3HICmxqO4gGQdZW5a/ehITmxdYfu19hSd4CtbZ86X4Rmusfz5DZ+NXDX71XLt9Xw2eRpQ+/LT8A4nOm0T/7XC9tysM1bV2fv5czG4tzW0Axln2qd/ezy/O1bcFcUO74WJSPmHZS9n/2KZD+95uCS6A+qZviXz7vhnaF87W/Ugcje5jzvlDB7dWbVLtyv5xdo2jLeeSA+lMooTm+eDoc2pdOj/sLYnM9HAto6TbC6NVljL1SQYZfX3lizRuMXMhOhQmiqeCxw543IFoi9oED7yUBVuS5y/qbZ+UoLSW164w2cwoyD+5RWJI91cKcWnf1CCN7d6fey2oHBnR5lMsx8Ijr/krQH8JZVbrdZFBfjDq0CEc7gOZ7m0eqfjlE3OneQrg7Jtgwin0+xhfPBDN+JtT22D1e6M6H0MoTHUdiUw2rl6QPaIuS6HOyTcAkOqYHLVuQsN974TD5gtPBAp4MjOXnviHz68DBd4MyH2L3ky/+7pmAw+O7p0f3wgPmFjsLuC8Z+NWnXZr5Fckq5J8f4rdCJbsEtaWnXKx9TrGd2Ix9P98jvH8LjRo1e6Epm/sRipapUqROZGBbrkrmcqshu08eM6aBzwN6zPNwfHFew2zwqwSkc/bCp/QrMZbjnIedrAbYdmgJiIjWBI5Z41K/F2Azc5PcAfKYKppCEbokzMcRkvsnpcZUmPk0CKMMEzo4ZC/VcTx0jWDKwAsqivx9ntP2ss+gjTgJ48k4b/+Rxy1MyU3D6sOtB/ZemwAMQPO/B0yj4xfj55KB2XKUDhjhJ/e5spaG7yYPYGpwolp75dFqiScPGpK3o+iD2pxWHWjhmbsP9AytPv41dblCcn+n1BEOcbzmHLxCreFjHH+Qnq+hvqTK5UIj6khF5zJm/WRwG2CJz0X+yn9VoYjg9vqa1K8LFQma6ep/8iG1KWjughJ1hdhpZAKcFxjmJOIioHC8TdFH6IbuElSRsu3P5x4DButOmK9KmeKEmkedDGMe1wSaYR74i2+uzSSB2wwfB5li51t92Uoe+LjnxENJ3XHM8uX7TAr5Pckaxsog5EtlHWv56W1vCsYHx5ZTHOiwipKEHqu3mK9rXlxh98A99j3j1Kx91HJAzg8Yoz48ouVpMV9xoh/zZZN/gvGW5Bms2ltDUWQc3FX4mB4sfAH6omTEOfu9o22y62ulGnJQvhAtERXvNc5+cK1+8Qpcv4Wrndr+2j/P7iwlZxWG+2zCOAnuaMbpsQXkQSuqPjvMJuVyzqCivTXqbOvPN8fq5SPVVmwKvxuYnzqfQNZC4MP5JrmfdO8m8BWNPbbf3ymfTnFgQpjCM3WN87tZh+DlHETOOeHjjz8iflsPHlVrwvnHTeP1AUkNxVvdYPQ+7NDKC3yr/CLepTFHmEs5xj2kI9MH6tx3KaDtTlfBPcltjO71sWFoPfBbjpknrC1CNjcMZ6DkwpxAx7nna8JhCR4c0yUS+hyG2jGzGRbvZ4Wdti/d2RLTI4xVLqDus3rFW/zy4cUMKA3u9IOW4z75AvN75DEmpRz/xSe5JxuzBJrK+Fi6cVC9jTq9UW2JWXfWZviyIKTOS+3AGMSEg/X8XP/06/aH7lkCkFOdiPOtAst9F+rysektbOzlqpmDuOPA87DNJ15h3zDfLjkQOnZLtZdYotUrBl9W0c8jC+tNxFdTECntbDyIeBt0wNKzSKClqTLVFD521yUOU9lYawebUS+ymXnzrBS2fSIl21k5P9cmhDDElJ6WTkezmR9W6P76H+HPQePOZBau0JOARnENVLQPL6kIm1LQN/tQwCSkfAeDcpdg46rvmjlZJAu0SkkpHh81YvmdtECsopD6r6CO5zEdZZk0cuODJFUbkvO/Fub72ifKfLyw+VDcVqDj+YoTy3yCea5NTp7t+UUvV/21xfegANMDjP6Fb0awyBfOhNt5QsMCUTaP2qGFim5P1IdvJxa7+PKF0501FK1fblhRW/5Xv6dVytDcogwC9eCK9LgNep4e0qeHp7zG1KP7Fq3zmNXQnKYfPgJ0ydfMTTiYa8XJ53nTY+tOdR2YhaZAdUO7xdOmT1hHjo1PRiegOZLfK9B1QP39bg7AyEnGFe7E6YLtkD/l6/HEW/D8C2JqnlMV7MXkPoMCGobPf9U0Xle9OcI+AxXGV2THb/HazXDd05Xie/hBJNQPKazPDfMFeWe54voRJfhu2r2/vzRRPJcHSYRW8HpiM8S/ZmWSk8Jyub+xA8amYYn+6MHh7CfkW5gdI69PkBz+4pOaKi1b0jQK4GCRE0VJlQwkedoiVPljQVU/UppZE5oOBkNQ4O17s+yg7oHN/8mlgOLmfycJ1lU3Umsdqbv5TwR3GUypvTO9eJbKdwee3jP3PUpGQKRdsflbFxI5Ck/xHEsvCKWum7Fb11O8vmvvCAq6DlhrJout1MhHkIi8h5NKtxF9/FYd7p1H5S9cd8mZOBg6tPYnDbsjwnkPeusBBLWaCPfLaLy08Zopnhr4RPCvvrv8Ph//0MXZiPVUUGLqWohXziCusf2dYjAn8ChDET0HrK8xjCf2TD3oZGlIXR6Y7iKB2wp9gstNPs+ByXGlK8nYaBTD4IveuSw8gJQcdexRo2Kz2/gq8M6OTpGrrg0p1HsJpflaUNeKRnce3sYDdgja+OpAI16/Og2AgVsXv2YogOVQX7+QlGuGkbsmYN69PA+W7uWJjSIecvrh1RZej1xOeMtUGPs4gJOR8btRQ+Ayl258Ix9/V8Xf59d6YOBklVAbhxBrolk108PVjsreKSqKwyPIV8jHPjgL7USScL6yRaBUlm2zarH+FId4xWMpwXU/rdR+XWx3jT0x2Xf2l8OueGX5O7xNPPjuEkqtQvq5gyjceKVYGMAnXendJXTPAewBH1Df/o1oTbtGhl3Aq1S/NSfEm/jugc7uObLcsxaMidWUEEiooOZ809gcNfJDnoXm4QN5V+Sz9nNV8Kcfo2Y71LftnYeNpBrUAN8Y7a33t4XkHHE+PD5OTLzuS11ZzUglh505xvW9vZrgRioP68r8Bux2CC0FV/aL7DtbboZs/YxwYIcPGeX+gVjv3XUA5XxH3jAs4v6x5jP8vrU3tT8oa+ZoG8krHCaFgGLQG7roIgR1Mgr4fLrnDctymIELcrqNR/xh9K7vB5xanRCO7io2259fD//2vxsftbtSUl6h6vBnmv3gFZFYfa4gDJjt8/3bAdNoSAX4FWfB3/ndDjAGteiPj6ne2rQhscdd4eZv1JdI1TChlBNg+Y8zkTsixf/sR3nrDxx51waRZzOl4FG6R6qdkyBnF6HzwMbv+Pp3/uRSWcBHX3gU7dVqYA8x+gJkDDeyF5JLs7ym0ZNryQvwvWhMxvyYjbBKNRufbc9Da6NkHBTF+4+q/OsRs2zrHLbZOzmYpYD+5AWb2+lKDXn3dedHTr/wcxAN6v4+MZsrTRH/+Mp/h60Ltu89+IycT20LzsPGUyl844rDdtGYYLLypyoHX+tCT/FJZCwOBB+ovykmUNZCl1WBFYGT36fU3Xjyd3YFDmz86i+Zd0JiyvQCXo3qRHYHtxrmxviuoBj7GuvVlCB2C7waFkFiU6tK9GbRggsPnSwLsW0YJ0aFRrWUV5q/qLms2F2eL1KD+MmbFM2tGQsGflsQn3Y+kV+/BTByARbcRmT7i2hujZIIaqF2Xl2qqxVqhAurvD9/wD66nhi5CVm0Z3WGCWlOA/pWUxrJf/wOKfHAP76e1/t/AAAA//+kncm2srC2hR+IhohIFk0qkcoEQVF7goqASGUC5OnvYP/n9k7vNPdwbIoUc831JWTF5LATcMzG8XZFidOHmMXfA+JY1U6qst7ndHRnF00rCDBI5qun6Agfnw37dYa6qid4qpKTyQJmNOB22ord9E1n0q+tWhDdZYdZx33Pi2tdymhVDTa5HIe2nz7p6gSxZd9w6V2+5TzkRaMcsnvGAngM/eKPbDXIqi/R4qxA85B3DTjKwSN73X6nPDV4BN/cvjJzbSn+ZOjfJyx+EW8ryffnoZCfkKmGzExl5/jNbfczUBqsJ6aFdGuOh1oGOLl6Tcyzt+rHP79WKfeaECtGiHe/l4Oip3YkeiK46fSOziG8huyy5DdWyr+XUwFHz69wqqyeMfuLN9h4VkR7P+R+3mbGrC5+ZpmPHR9zy+/AGwSVWY+DFkt+vtXgckEN5U//V9LvqFPY7h4SO5jFzHvfMSWYkqdPt8LjHY9n1iWw5N9s731Lk39S2YMQg8WcSRn4KFg/Afi1ezP/dM37H5R8Ro8u0jGnjofGS44AwSf6st05FUt+KDoLzpkSM7Mvr/6Y7T0PpeUroa2s1yYXWU5hGD8xc4WHHov7Wy/8xRPmTMc3GqVr3oFuvnS2r12lnzQkR0i5nUry175TGyIFzNfNIl6kzHHGDm2G+sP6xbzheuzH45JMpN5xR9yYiP3YPbQctqrmEm2f0PgvvqAWtJRoYxOXfaZ9MuUy7bbMrY9yPHW4tkGqVZst/rOfv6M7ANcfOXPnS4DGB9VAHfgvY952P/nzlYw1zM/yjYXiqflT/ZZtUIJsWPI7B83z0azQfUNvWFziO91TI1K1AyR4fWrneDzsV5Y8vIcDuZ4+O39j1cdQ/axQiOERPMwl/9fg6m1qKindB42Z8i7gd79oxH2dW5+fNmDAVW4CptnVYI5UPSvAYnrFY4A/8WjpcfEvf3bny8Ab/hNE5OLQoMrCX8ZYvsB2qxouw/XZQZOnYRt+lU2ZsXxpNYWVfQXSP1ti109A4ya5S396QYXvmPjjXZJqKO/kxYIfgpIBOWQw+FZDzvN+ituhtU6w5HsMG9WnHEcxj+B1ljjtvRcq5xNfO5Dsyj1GmXxKm+hyVFQv3O+ZHhbYnAjJZci3jkmS0+Mbz5vNkYL/SAgjXTv1P7rxNBDCGIhR11U6qqN2hSWfY677Qf24jpiMpuZxJ3/5y5RWnoemVZMSzFZvxE+GLQJqakTH+mn3XEfsiT4/WSf+Ek///DxYH+mJZSMY4n/+6M9/mXvXRcN70xtKfzbeWNkVX8RlOhogSCjHq7LyzfkcvkOQD9fXoqdlyfL1W/jjM8wMO5//8RvoCrskzoUbJZOeVQFLPCT6Xh/8f/mOqB/PBMfxx58p0uTlOzSTHe6V1E+Zr2vgSorEzNVF8P/lQ9jIKqarfuMv/SWitag75Jdhwpf5KoD3KO74s/gX9qk9GTxeF4RA6Ji/sLLvwCdpXvo7Q7Oa3i0oaXhhi56Vg0L7CH2v24QZt42FNk/regeput+ZrXQ7Lp6cPocAPX4kYBvLpFV1lNS370Z4/YQknf/0e6jCLW1AAnPezoIFr+q3Zc5bJT19TaUNm9dny0zNKvtZXj07dJCpxIy40vp/8f3cjh6z5V0ci4m1V+CWqOs/PuaPo5920H35lezGwfIX/QXUO8N+aZ+nyXY0wWod8D1e5tM/vw9nlq0WDIM5TRvXQIt+4hH9bmgWX24E68et/MtXymaLfAnIXsVE2yHdF//0auEfzBlCjjgtYoo8c/yx1G5mPj9uUfenHxRUe1NOXPQLJPnYperrU5Wz+hkkWA2rL3Eity2rku/vSu9HHEORGOnmL1/3pSJnls63/SwGX4BH8S6JeT9VaK5oVS21QRW6mQkxfy4WnzATS1h459On5ahcwcrsEb+zxihn4/l9QutaD2blUY3mhV+o8kmzyO7URinPvX0B+HW6MwekzJ9ubimr0r0Z2HI/znSsiTCu39k/flQ/vSoCTfp6eCLvF+LjeLyrfzyyGLZNT41JG+EcGg+Cd5ru0798cb85BsRf8vU52eQ27Kf6grf6pvNpwTUM5c7esx0vnuU08IsFV5VXtOSzieZDowrbZX7jKRHaeLrFUiffT1hgphp/+ORptg07hffkz4/y+861lMUPEFve8ZjlKxj++TvHNtf+vOZ0Roc2itnCK5d8jQXI3rwu2FuHTdrr9/aK7s/CYdbCZ/nxHIpo4TW4WU/nXlLxNl++OzyTf/zYyg4UlOA50O2nOaTy5oc9RXutPnThwXFrPuNc3XqWz3xoL+W4VW8N9Bx9mRvLr/KPx6r/+NX9ZKFpq4e1mthWhWXnNfYjOhee+rnFAyGvnxHPTdk64Gx2OgmX/HCWn9ca7cUhZ5eXdVrOZYjuECe7hrn+uzT5qFQevF+Bx14Lr6PtOz2h3Zx75FVZL5O/a16jv/Z3r/tlzT0rR2T27InHg/b96y8LpuZ1J8bB+cRsm+uNeh5OEjm0dl3OQtAPEG+/Jm4D/eLPZ0ujagwsINrChza8/QL6xviNKbea9MdECGCooi0WPxXwyuoaDyqvmtidqpY5HTbXO3pAHBK9vRQ+vz2NAJZ4SseDtu/nj7xJIF1xxgIkvuPJayOqXCt9g+eTlKDZHq/2n18hpN2QeKq6D4WF/5Bg4XmT5lwVsJVv/s+/MHOepH/xVgh2/3/9zn8KVDqStqfa7yHCIdpFxMGRxsfVaVr8od3T78K7mDZlVLHWsU58dq/8ttzgSLnI4oUufrQfkl9WAKaHnO3m/TGdvtKjAud3jv94b7zwlDv8+Wm05B/sUxvKH19ZxufPHEL3FKiFjEPiCLPZ8+IwZ+ofPzZRfk7Zkm/BoXY8jGjz5utXMiqwF2nO8FXc+zOReLdV+vPMDvlGQWu3bwpAN+/KrM3jXc6XZjuAcVPuxCPrnjONdzmMt4PBgiEnce9P1ydc30vtX7ku0bx/twOEebohh+7NUZ+SVEL+40SYebH3JhcevgPLfGKOoL3TqYl1CrrXGOyoY4Sm9NJWcAp8tuhnzKcycQLkRT2n2cIrF56qAWzWMRWLlxRXy99IztYGbqhp+WJ0uSlo/7QQLi5pm45//PGPd9c/VMc0R2sRaKsjQrbi0E/hSAXA73NHvN0tLMfRjzt4FGVJv5+c9XThETDmd4uu0w3h81c5ZSBU8pFo4gviaUyRjfAruVPZVVQ0nz94hDEuDkR76Q+TryxPAwishCz6ypnv+BIcnzgji96Y7XfwRFSdTi9cLvxrmoytgHjXj5Tvkm3J946Yw6I39PX6FUuDjJKq/i4qlY+XfboOb6iD4JzWS/ubfE0yPYNy33Fi7J+Dz5fxixRSrZl2Y3tzKPn+CtvRi0mgdJk/CvIhQavvsudBa98pf4byPz2lEkvivk0cewS70UQSGNkebY7v6aoSZRuQQ73U0g13uxM6F+aw5It6OZE6w2DsNgVeo4b7nbEXPTVZyzfy2N9Q/8ebwWDmzBbenf7xQrQlk8b0zq3iMfa2Cdw3w40dRuOMWByqAcqs+46y169I510e1EhJEfnHi8WoVJ7KXFR3tvCfmHeldf/j/3S9zN9/+YaTJhZb4r/Jbk8vgGU9iTy7NfT8jzfbotL/Wx/8mw9gW+WNmforRGx53y1qKoQlEXsljxw5QvjyBYKV+cbHzQ876OpECnMw6tG0vZrK3/glARL1dB2azgkWv8b8TBbjyTw5M1xO/EV2S23n0azYHX4KjZi+5zSdmx+XAV8+QKFp635stdMTuultM/2opumvVZwC1esb+uM5/WjXQYEIcZb1HeXgT+6NBOB2xurPP/R/fEL5W4/xk89ozhUdKiDH4e/6drnkn95fPo/Rmf/QaJrtCf7aM+Ofcz8fj0cAor5kLMmbcznBwclQRe2A6NXqZU5/fNJlP5E4zissf+2XYXSMUbS0h8/p8/2qYYzzA0seQuuP3cPJQTP7gFibh17OyLcrCH9rD8vL804/s2tgaFWKYRmfUyazDkhzyom93H+E+HT6tx5g/pKmpKtEyKAT9zPe+m/T5Pb5YYO5fgXE14JLufiXHI66bOK1aaS8U0y9Uz/zS2UkMduUD5NnQ+OGDXFPYcHr4WcGqlLaR8yX9SEadqmNpmL+YOHCZc591AcKVbtwWW/04p+I3xI6C9uC4OPlUXJf3WroMz9UZrjKvue3rhhh/rg20TLxVw675p7A75gbhNjEjKe+jzxwv1lMXrfj15/yt9mpLRt09iiX2o7+dM2UhcfjWbl76ZqtsIA27flLDrf5lI78YhZgPIwSjwq6lHyznzBywseDWadgTnnVhANa9Jou/cunN2oVVLyrgR0eWuSLTbDWlIc913hzmkaTfvwr/d/2FGz/+54CjWCZKvJ1h9blhysgWp+EWaaMzHZ1Osqg9VnAEoTBb6cc1SCKlzNtnoEYT813yOARpJTpz8vbnLrT1gApt75Ep9DwaZtEhlrd2pLYj3WLxkg9ZcjAzzXZfY55urECs4Pqyq54asYnomq+CsBTogez1quacxuLIRyDl0dLNl0R3V5+4WZ/FQzmfMI2HbeVm6N2OhHmtS5NB/ilGWz2e5Wia/Ax21flnyC2E5v5TeGZo782Krje6IpofPct562hY0j388gMeK3K8Yz3InzbS0v2wvfCu5eVZ8gQApEKeRL2E75eTyhtbzviHewgnVjyrkEQKCNBtRnRFH3uAigB+IRIQtlP1fNeIJguLhUTf1+OHynTQJ1/D1zdoOI8ukoDJGdLJ6lnpT7LspcIq1TBbD+dv5wKmmsjeI4NVdY76s+/Esv/rrdd4wHxY/a9ot1qColzdPcmX1P5isYyQuTglgqatKYYoMkVm9hq25rT9oGusBWkN9F8+4Pmy75poK6tFTtahRIPb0HNYIosxhK1bf0BRBCBMXvHnKP79X+r000B5VX0NLzOKP7NtztWusvtzg7XkvT8g3e1ohqrJ163ShNP13TK4O2uHkTLTmf0g5vRwLmODgQz3ygnq4sj0ATY/Gtvpl0fIxL8547pobac3V4fA4j7h82Mlct8VmmGDOqhyrBwvYd8lD56Da6suERzMilt192hAE8JHySMj006tduXCG9v2zCj9gxf2uXZEzkIeuJl9ttsSjZTyE/ig+EhGuPZc8ZQ9a6dwwKGdiXfIm7A44QDYtK06cfmN1dK+21TzPjBjnnjZhIqIwUTvW+P/u+TbD343o8iIxLT0DQfRxFs+rWwSvLC5BaBE6wC6YbF7fsdj4l3cdBGp8DM4tWg37rbFeBG5gaLWPuYTF71VHnze8j8w1qOl+fR0CoQb8zoj6SXxCgw4LBvLHLPmWvyQr0H8G1uT+I5+F2y8+kgwLNqzuSEyRfxk+1HEH+1kGWN1/TcWW0ziIJtTFynLv1pvkV4tT7rL7ZvvU/KtggZML+MAK96o+SjpPwakM/9SGeJtWhad4cc3rviS1x5/MbjbUev6HuPRUZSHqSj71EKVuS2zPm8BrO9bwRREXfvNzH2A/dZ6Z8A1t/vio7fa1fSR7sPERKsJzEn1fQngjY2pPdzSByRlv0obH5PxEsU4CH9LGcdL/N/Xg0JecW3r9mb8c9AdudhQpqrGI+hUorq8nzMjRK5ZAOWLGg+J8Bf9fjtuaWEgfqOu+My/jaoG66gIGpcWyyEWl/2u7t9QrV90RjetU80Kc3hCnPeFHTWbmk/LfqiEDB1vIXojeZoJ9sg5faX8sg10SzvJgU+huOzs0JnztfOIdgOE+TEGFyl5NQcNCSp0Y5Kb0cvpc3RF5A3frv/9HcntSfYeU1InClo/fHo0BpGvauJ60Kc0sJs7nCRrQ5vi+HR81SeDFD01MBN/n3Hc1JRSyn8y0Ql/WTEa1KnGlobzxVdx9KzbK+/SgLrQGeid4VZbiTgNszxy2SWDaFJ86j0oMllm2XvamsOz9W6AMZzIFqjz5zrp58FZFADYimbv7q69QixfbLZmZZhSiujSYCetydmd/JSNinUIiRDbrBjkuqxyNGPomX+0ZNh7eKJbl6D0mrNjjweqRKP06tJAD2uJ5ro5cecHVdO0GQutV+GTuE/5+l6aEjaC1bk64fz0s8Abk20VBV3LF4HDT2hqrgG5G4NX5/389goTX3cs0hrhJTvfbMCQRgY2T8eTdpxv6NQ6dRg5Ju38VRXXAT3uBuYd1MkPqmHsYaHEl/YbuVc/VEDVMC23m/xhFaS/7tO5xyylFV0Q87PdCjesvGnV8x3gzBmd2gp1B6XqCIFqJ8+91aCz74MqArOYM5MaAxw1WTF9vnKQPO32QxApE4jOzpzc157Xaes6JOSXblLzAGLXgFXr/UIYQrtx3WjhBAMJ7QwiyAdSSM//+mvfU6rcvyuU1D69epA/CH+pj9rtTnB6hiH7MDKyhyO3MiQqHk50a1CSSeZjBS8p+4SreuLuBVSHkFpjRV5yng0p26SMvjl44nYNSHm3LyfCehTfMFq61wWxnKt0S5+q8S6jEo5kc4f0NPUNGa8zgT9brX/BPqq92yPccindDw/0Xh2j5QT9VaOm0eDFRkKA9+l9JnO7/3NQl3umcyxy00/sDy/q1CSF16vnKs57eQzwCF8T3jToKKff4dOhMlUd3SzXH/utDxQr2shJt4xP5az98yS7W8lOuQkNBT96gpJSmU7Mp5WYxxP79IM0TLfiTGfq34eg26E+/D6YjVXT4h/vJMC07IGVi/xdfybH2J96Bf/YvP5nJR35bxRCuIHL8ec1DJrAJnsTdzz/VdSJuQGWvwUcds3QWP0Ha+qRe9A52LjpUNvJB1q5jxljsYLn4fR4wpkLwVsp85f3p/Dc4Ty++FJvNDT4zERkQZtEd3ZoQqHctg88kDNPtcr82/FOh1T5gV/8Z3ER+Vt8p0TATqdRYvEiMQ+fxx3MzKVYE8un82v55dEqFCXvAieuqIsf3KgGXBZ6tv5T1+Nh174KaD1z4Dp93VddlZ0HKFo3iHZP6szp7h/Aji/jf6nVzHLg4cB5Fv7zNqOlT9vVtdcqeP8RYj/2McsWrUKPKvuTIxT/uBTxaUKcrThzKpHlk6/S9ss5NYjVmW/+C/uIVIsyGtGMkXxf+pBrtSfzNbEy1nrT32BBkhsIyD7pJHMOVvq/96ka8YI0Fs8q/vuidxWOjHj4i21HdA3h+0jCBge0TXmb90TkF7tZbp+Hvr0z8/CTODCyMqt/enBznf0uigrqtyUhG9We7VBbqRvGNkPnrl56waow/5b4O34qdBU/B4R+hyxRnzxF/TNt8wrNVhtaqqcjxhN27sxwGcT+4zsUYDadv11oJAahQRNQ81h38sNCNpmT9Hyrct87ckd4Cc9cA/tEDPZzJ7I4B8JT9HW5rMbHjuIV1v4e16TSvYWFPHiS1jZ8VPJQ5gi9eOmBaYOSP10zqZCHYtkZPgRpeUcXvsCdP19xf3TV9PfrTafoCvgkd1hY6eS29KrYoevFG+eXC6rvZ7N8E3JCudLfBh2wzggcnu+KbDBQL0iHhv1/glCchVfGhr/fi+KwGLZdzT9zcZTJdRs+UyslbAy2dEDA024Moku4605bLPGQ8l69vHwrm7mmPXHAkD/esQ4HVN/+l3eDfh3+BKrb+7muB4K4c8vEf82Xc2R7TcKtApBVN2obTwo5qaB/eMuMy28Jj6HjRfCrk/uOLazmk+kTg2IBbPG0/Py9ifKvwYEHq2ZK1WqT6dkOejivF9TWVdIyXNJluFrRk+6ar4Xc05DpUJ5e4zJwTl45Xjd9N2/fMOK2p8/5HYiIwgCB6/No8THC8oS8IKryPbdMUK/B8c28GMy/Bs/NKmoDfK8JliaYPB//IVytH16S+0x84p4BZGjXrdPgR1ObpeOQqHfwdE/lPmHel1OVeFjdBejHVaHrdiP0zq4K4+19MYr8SSa3S7rR7gdkIivu6wz/+nd0MQD0V+/KR0/1nNWzvjBMLJOn36+Z1YDjbz54t32WpSTemwj4OH9TWmp5f54aRtBYdVjj8U//1mQQwP4ah3w+XfIfeqGtw4t7ccOU3xDXNWzE4yvkVBx0eO+nB3nnz/PGs8peXx8nIBIjUZf8JJ6BvxYIR5e3+R85rW/6LGsyuV0J6ad2Xw+3MoKOHuemS2MUs8vOxOr8VWpiZ7Gw1Lf+wFw2tM7Mb/OyOk56e8KHLyYSutn3S/tW8BfvuAu/mouuo2Ezo+yYs5Ht8tFL0c4e8YW87RLSj56h5MyPy2d7Gg5pv/i+57EmJiESmj0vXqAv3ize2bYX/ojgG97bpnBexExYTvLcNoPd2KW65vPk+cL4PGlGww5btDcJUEE7ZrvsLAPcj6w5XTXiUUHtvhpcw5iIwQ9/BxIELcaov6979B+2wTMWfL13w5wt/0br4rXr+JOj28SLP6I6Vd/49dPstTSSmVMZRKsysoa2zu4rXjC6mrb+uzn7+7QRcaNVqk5p+OTeg4YWf1ixOEbRLeGG4AC1KPS9/NK5/Kg3OH4c0903b/SeLqsMYZR3IbMiJuZj8Pn5gGKpoQdHt3D/33ubwlgvAq4fZrrnqu9HKCJngwS3Ycv/8unQaF1jtF2f+RVi9aRYvCvROX8+06nsRpCSL7dG3N/R9H0uG1P0ERzRvZGdDQ35uVB4cdPIrG/CfStuf6c4HDQd8uaWR2PpuyN26uwXjFfK510fb1qo3LJ+HvZw8fRJB0cC44DcZnBs9mfg6ZOkHvcD3/5KJqj9OTBVoMtCeDYIZod3GWTid/R0bc/fK6MPFGj1vsSN3sa5dost4C+60olNnoIaP7uQlBVQ33SYnlfnnpVBsPm8qbfxQ+OVdV0ICdfREz7YPni8M6fqpoO9l/7mSOkjQ35eW6IC5HON4mDFPjjLQeSFz4l+JajdNiOVAlvlflrvsMTFp5CYdHfiRRdAuSHLsw93w/9dCnvIoxPySL7xU9NKEMJjE/RYqad1Whan9qnovyaM8viNucjvMJRbTbbjFjzwMzfpt1lkN/Jk2lf98vHxzbDwKrXHiuLX5Gi3WihP//oQFfGbEVzSV2Pp4aR3fERz25bX8HU+Jns0U6NZ/ezplC65M4O2WlAg+1IDkhCEBKcWnnai9JxBlo4DXuanZ2OkvJp4NTcKxJkA05n4fxzlGEyznhG31M/unvJRncx3DFbvdcxW/QBIQYi88ZDGS/+d1Dvj3TG6tramGM/zDkMxzBhSVvYaBC4OKOD/gLK8dXup+vVmZF8DBS6cviGT/l1CmHzMyzy52/H66ZsoOT1FQt96/jdGseJ+oqfLjEbIvTdY1gt/MjQiKa7Qj98nP0TfUuhIYezfvZ5fb1UQF/Vnp3ifdTPm0Ma/uM1ly37+Rz7oo32fVEwD2fQj9s1yPC6rj3CUh7EP5nIFPzWPpKdOu9Rm73vA4zv+4cY98fH7FdWsJyT46kk4I/cH3dGJv7FKzoN0S1+P7+iAf5hcvD8zaNUnGTVhv3zYjLtooSxRMp1BX18/2FBxqE50K3qgYSfR7L/Ld+hewrOwUnDN13TcoxnZyIjXJJFn+Pnw586upvhsTd+TDMGrZf4fjbgt5IcZkm47eni3+EUuCHxPQuZcx0oyX/8TcqHdHplrbB1Dt6G+G4wxoP0DmXY5oPMgj2YiEFQ31XtcSqY51YT/0lPnsFROfF/POxf/O/HOqDrW2Wmoo6pAAfa3lkQ7Ou+gwgKYJE4E30fuGiNr9cEjreuZVr1usaT0uzuUIu4ZYfya6UflrwrEAUhptnCK+YnmXM4KSuLmU8Vx1O41Ka8CpsVsalP+W+sqghW7LpdzoXd9eNukCksfpHt7grvuZ08GnT+JAbR52cZD0Lh3mVRgJh22blEDCmK8MdL2S7+Ik5/h0IEOZvNxR8h85+//uOjomF90vkR94HaHKUj8cJb5S/xN0GmgveMxE2L+HU7WeqFphKNuy32J3uECv3NZ7y7Z+YwvJsnpL8NokgyMzQKzyuF0d5ldNmfUc5lmTxBLvmdTtc267n8k09wvwIQPUn1dM6x8kQHJG6J3bViyl3Qxk1aaRZLOnljTvl1GyrseuBk96VPf3L1r4DKuTkQy2zl+DdRIURj0wIzNf1uTsPLNOAnRitiUN6ZY8oMjJwxLTDSyiYd70IAoJjxlZHTcfbHGtYJjKsCLzzWQmIulk/INiDjXCjffP6EpQa8WOn/+n+kjTuiJX7RPq+9dH2W7BD+5uc+kPOSxWiL4XamEd5s2cGXsWjksIkvR1zt1kXPZPOUqQifXnj1C1fmqLbdrHz1u8Ow+JjRz2tSB/ba4U4898z8UVaf0R9PxuJbrv7xZNgSuyA2vrCSto5bAdmLAUnfoPSjYZ6ULXN9gRlK/jWHj/Uc0cK32H6bezGPzHv3l78zy3t2/Xho5RyOV/okul8Tcz5bsoHIgRzociyGP11/lQhfm7vsYPWjOYnXyIFf1HWEZMrd79qbCPBp/TdlSMLxyOZ4hGenJ8RH0zvlzvlRoxVUV7xRj/teWsYbnDdywfaPh5POc7XKQDpqMyPL///5P6Vzzh92U873dNYvRvHHe4gVrx7ppGD5P/nMzuZT+gvFMwVuHgz26OeaT90kZMoRhQIV16sasVTean/vT3DwPJrcFBwFJHLN8CTcTZ9/V8YMXaTdWHIIDVPKdk0BYi51dNMgo/znb6/+57zEq3c6vzPVgUDbN1hS9rhf/H2NLvDOyb71dukcZhkGJRB8gktNM/ljdU/QDfEHXS3z6WOPUENvHzAdsoHGPyLjK1zcSCJ6tK35fAqWPTlrE8jBPcnmfAo9Gxa/zrSEF4j++YOPaSV4cD6DP63Cd6Bq1ldhuCQGqu92Xqli3PvUPm49c12iiwDXteYw26X7fr7k6h2S9eiz5KJt+r98CwYDv5lXHc1yrSmJBbV91oi3Va9ojn/7/E8/mH+L55KX+yqCoRQlpvvrCQ0LD4dxzO4ky7HDl/WEDvWnRKbq0B3/8U6I0G+/fPev+XOPCwUcJPQMX2LT36isURDLhYztVpc7n9/5T1TkA8XEWa8nc+qu7wGp1ZdTnsw+Gp/d7YnUz1ug03L/Pz8FgTfUxFQ7zRfPcjmAmIvdwktdc9oVkwISzo7EVW8kHY3fOCuSuY7J/oE/JZtOr9NW03yLmQ9J48t6UQJnWfwt6xNFyf/4tKbkOsHH/c3kM289iKCPmP2z9FT61ZsKLf7oJzfl22RhYlvQKgdE7Ee9Nyn+1hEkZ1vH6HiJOAU1vELsjUD8bSL20/f2ngG0bsV2+lDy6XgJI3XJd5nj7WZz0WcMtxarlNeh7a+3vWQvZ85EzPjmUbz+tWcNFr9BtDFYp/NmFeYIPx4Yf35ZgYYfT0WYPt87rc/dN+Wj+MaAr/aBmOh55gPLmztSD3WG59I+mN8lP0fXWn7+01up8ZXwTy8xuqZf3tybRlZ2t2FHXqtrw3lvVTZoccuwkH/ieKpj7anezkNEHuGXLXwsk5WjX6zYXgMNrdehPIJuvErmbJ2Gj686H9HCzxih/G0Ouf2UgTFrRzspWGqD+AWFjbiqmX+8zPzPz6NA2KZU7BvFHJfq40rDs5qQ3VGNx3d7u4NzTxJmHScjnfFZkYFPVk8egTT38/PzrJTG6mZmLO/753fRmaQK0xo94qPuSRH88UpHIEk6tblvoa9UOou+a+X4KEcP6IQfbFk/8udpp1/l17Y8/dPDcSpvGlTvTGfBWP34nEQKRct4IQa8Xj2PzKiDYVZ6DB+b97T5EA2U0rzQsZ8Z4uWseer74gALxLNv0gPbN8p+2wXEeVOKRl67HVryEzo9axPNgrkdoTCyHUn5+t1zPxwkVK8dEaOFd0xxcg1gLw86cW5lEPP4eE5gt31aeI1qtR94q5xAqsoH2xtvjmh86Z/Izd03wdPtwQeFxgVa8n0SuMOtlCRTD9F99zwu650hH/NRmf+uz05G3JjL+i2G5331Zu49uqY//uI5KAclWfh1bM6fsNeQHIbs33oGJ9adbrbRB+OlP/0xEbkBK4OkxL4XkTnv6/UItfXsiN0W9X94YufGI9lTYzSnz3hQALtCiRtHsMrplb0FuFyu+V/+j8ZJXtuw8BX2vL2FlAebqwE3ND0w0ubepExoNPXihhLBDiQ9XfQXlvUBvA0Lg6///KiOlDNVjuyUzpV9NFA5dwdyQOHbn46Xa4gWP8+077XruaSVImjWR/nHL6kWjDnk+07AG+kQlePSnuDd6njh6UY8CpvPU138Etsdbjka7Y1BwZ7cD1Wdg9dLy/oOCmXhRXZvtkP/eE0jr7/Efl+qmE4JjEoonHMWrHuUdtej0ijL+KRb/EHxOK2tq/LH63XiuL2o9ZqHFv6B1fBL+Chu1sb/tqdA+e97CoQ2E7DwQXn6c+9zhLwuSJgWmAn6fX8/Af3O0wMLwXhD0zVhFYLy7rDAeH793zefRvV9oydGmNWWnN9Pw3arrT8kiOSRc75tJfj7f/nen9Mp12NBTdaKRTfhevanc+WPoHvimVkFbvvZM8dR3atyyw7mJTeHA3WuqHDeMR0jrY8HK/dEFG1OHqYPa0C/WdBlFPxsF8NemNC0v6YyAmMu2EGtvZK/fm0IeHcx8Eqm1JwvR5ygTVMPRFute0SPIAhoOp0vVCZv22Tx5AO82bAi4c69INFRvRDiCGziaknWs4MjaMjum4xc0S0yR6JGgrqoHLMEqOPpEpUFJKWVEfcryP6o3Zo7rDP5g+eP5PczFD9DCc7RBjf5ri0n/xE2alqGKhWnqDCnIqwL5MnGiXkyvZfU34sS2Hm3p4Jpn+Opmu8aSH7ish2fsp5u5OkEbqN6xB67NZ9+unpSVun+QyyFDCk/8+IEummaxDJitayq9UmB0p1feHTqSzw/ru8MZilwiSu8QlPUlBQDvxw8FsmPe8oPy1n6K+MYsZO4ltM2g5cHsJ8DYqfxu1z6a1YZ2E/mX7fJUmnQqSH6sg8JhM42Od6HJ3haKiPBg7CUNU5sgaoHNjOqRENTyA+dcou+AVWFG4rHYz4E0Ha6j+FBWDxqt/yqMKcPqep/x/hj2p2AQnEzMxKbNWoMmGq4VMzEWyOezDFTIYFb9AlIOnZuOrEyF9XOeFoU6tZMpWY9VfCQxoTEG6lJv3F489Co/nb4/vD0Unxq9xFcYbXGYOtqPCTOHIBYRydiaH7VT6/2GMCuS0M6QgN8nH+2B7YhucRmXod+OoktEOlLZ5bI3uVIPBKgWbhLtOiTJJ5urVaAVJwlYgqSYHLlqIZIOpUyMzF9o1Fo+wyNXWGwnXjV/LV2NQOUJYPPzlp2jKlUZCfgOn5hNZ5aND7WFlZ3n7Qm+iMs0Kg+TwBxI0xEc6UJfVKz7eBQ/TLir/bPlL/qRAKDRBWz0MtGUt0EA4Dpq1SOpyTm/qGwV4YVEeay9NLP+mGtqGexkQlZ5s/k1dqodlv7jPmlH3zuGWkFVq5ecIE6N2aeEVfw6syK+crpV1LN3UpQRjXH69PBRFJl8UKxoX+QXRIyfxhVZ1D+fueRr6fT6pU4sJTdJXgViWkbrQcDLfcjLjtrfE0PpoRueuWTaCpRzMoAZyAr4pY8jbgq+ZNhUKiLe2LRhsdzKq1ldVN+DYZ16Y6mh+0Y8NurL8zP9NJT4WPeIdg/tyTQp4PJLyUbUaWse6abUZ/2ZqIXILRPYRmvOZq/UX6V40iw2eH92aOpYLwD39Q6YrVOU7Lr7QhQKK5Cx709pCz6qE/Qt/2J+a/yE4+D7AsgVyKmEDh+uT4cEgsW/WF7X/6WMwmmWmVl6DNNkvVyMu0O0OgdN0SXvgmvTflWwLaNHlhaXxj/bbKvBf3IGub/lBLNj8+jQ3F8eS/6ACWN57cHnqydqDK/z/1cDuOI4DFvSHCKdub4fB9qMLVtwJx+9zKnVfQWkHo3bsQxurlnY8AkdMdkz8xtEqfNtJZC6LsByH6MT/EkvlMHxpMys8MTr/wBR5uTejnmGjvHeduzTppnxCbbZdiN7ylzeuHf8zPvVArxnL1vNUxUONK7e2NmM7WehRa9IVqprDj/6HKH0slGdCWgiNPoGzWA7xAxyz7UnM/G3UBnsZOJXoyHfnRUI0TxD1J2aNk7Hr74etpWF9MgB7f6+NOjnkVYX2TEUlxc07F00xohv+gw+huvzeYVQTGtDswM8YCWeHGCSr/NzPHEwa9V5UvBWZUh0+vDwf/1z8r6p7/OnO0RE8eJouDxqihfb2M0bZhmqPAYNywwKpW35nF6Qvm5p3grnaV+IkR8gjqIOrtWc1my+uNKgNg5ZvHGxfEUn6YAajUxWZCukTm15JaDMydbKv6uMp/tZU9FnM8WMcbR6+fbqtbgXEsKnlIJ9+P1ao1QPL1ymf9C/Mt/5wj96c8+kh8p969jpUpmsaFVqd+X/owdoBbR/67/Fx8BTmscM39fFOV0Hlf//ACdq0Tj47oW79vl+egmOWd8ntmYq1mwCxlWzyvOHK4JAN6KkH01oJh79CSD4w/fRR8O/Wz8fAM1nxrwxL66KX60MoOZX9/MRUZYjqraWZA8Xj4ew3FE40frM5CKi8S81dX1i100d7A5c4sqPxGV7KUsVdSU7srINm18LpR1AJ3XTCSoWzPm6qtw1Iv6Tug4TLzkgTUJAJTLxL8lecmTTgn+9Ivglzib0xw5NThVjpjeKXt/enmWBQOsXIz4nZbtimfzdhkPdL8xb30HXpfAQZM5M9e2adJNMBqgHHY20eJcMtn1vmnQX7w4RG8W17yhNtCL0eJVtakQ9abLDA9pTnAlB29/Ss13gw7mkBLjCUPPT00qIsWLn1S8nLxyXOXohKI5yTEECGJuSmICYvwcsNg6TsmclepAtH6Xi77s+9FwPyIkxlMixlpTEF0/ryHcxptHTE+U+9EU3QwOSW6SvYu4z9u4rZVd9omIT39iT+1OPaHKJRZeCY5hijExAZAoVNisDa+fhLqpwD/pPa6f0gVxE28s2A6PnNz5FJpz99kYQNzpSNF0KVOux70HfYE6PGfBNx4N9yfBuC6uxO/DtTl+Dq8O/emhGaIaMSLkDrp97iLRge78UcTbAW13a8Isb6kXvRfrRt2KESc4fw/p1H2zAJgYB5Qv8XW6nV0FHok30nf/u/Dp2J1zsH5jzIJjI8VUODjDZlDcNzPtyokfrGwktNl+fsyt0uXsvoZaYCZFxvzl+Rvi7fFfPMXjztRNESGfolt3feIqO67NuTAeDnynMWbOTa76gV9aCUwxuROizauYCh//Cqqkj8xt+jll119Ywb6Jl7P2Xis+XkRUoHq/Pyx+8moOl5MzwBIPmLb11ZQx8WeDivQ7cf0wjWev6qt//syw0hMfU3sokJ03exYKnylu2fV+gn1uD8ySowufV+NNRhWVTnRKJdpP683oQGVrOrOM+FHOqq4EiPCDz3zXOPRTS445eMXNIprwOaYSWqWjUqu/J3O//jedacdnMJ3hyaLt78QnqxU9Jdw+daIf25YPpqYOaPcNDuQ+0YrTUQ8liBPfZc63cNAaLNVGGUNbYkbC7PN8+pzQ4wEGfttGuJQD+NkgQFTT4iP5JW263gLIq5zczLIvx+fpeP/Tf0z5pyq50MkdEJcf2eEgrlPa/fQnSBOkzDuWTsmdXiqgix875h+Dpb5gUVd/fggHgdOXsy0gAULxeaHCLHv9/Oe3f0JwZu7iN4djrwzgfJlALGPcx/NUFZoyunLGyKGd+Qj7DUAv5wojz1Eqm/N89qC05jXbDadHylPODUjCSKTqLcXxJjhSDwkrC7N9U1v9mM4/Eb7miREHtqo/SLZbQxhLEx3vXoX+4jnsXN4RQ1Ysf5pndIWuDy/spfRGz1YGv6M8fj3pqcBu+WstU1PfaqHSKedbf05uQoa6MDSYncZ6v1lRGJQKuojt7DYxJ6csriA3+pHsOl0v5/5hy3DftPpff/Efd68ZfGi4Jfr3sS/70+kcQEqeMV4btw+fMrg4QF73N9FtI0TTfvPW1El1O6a50pFz/zPMQOwaM2v4OP7oHB0BJBBG8ueH53p/kxFVNhHDpr2OfwbNA3V/f6T48t128Ux92qHh5uTEYUORzpxDBea7mDFL6odPf6dkhrWMgOkX99SLnTtEgNbnFdNm/9vz6OaGUCi+gkU9HxBj54sAmI81HjtR4K3KrhTAGAt20LzJH+9G/lST6bhmdvDa9r+b7kfgZdcrIdK0jSehsSOYpW+F58PaQXNR7gVAgxeSYDPufUkOwYLmVYVUfX/2nK8KJ/+Xv0yLf5/st6UBg8eWWO748KugmGRUbZqGPIq1kUqHC7kq4mGdMp/faT/YuKvB2O62jKyFpuRUPWO4KKeYfleH2P/R4SogUWst5h/Yt+TvTDfQTib4L95wTse3ob5teWC2+ncu1Bc3W2ETAcFfwS9Hq78l0Fo3RIXdWJn8SH81OtMmIPdDu0r7vJo8lIqxwExTuZXi3cgzNTJlINYUGf46w6MD8v7Wk8NBr8oJaZMBT6s+MV/cO3wd7oMEXp1eMeMJQcm3tDLAN42OSvf623PStQVM7DJQmcPcs+jmRtB7+wRDNWDUNpUqKS/XKBk+f3/pL1HyGUn2T6F9Mkxo8hM7gMOTjlR1q485Dd7niYAIW1zRJk5Hit8ahF9d/Oe/h0erDuj6EQjTFz2cd/U2hAijIyN2wFO+eR0z9c+PiudL4m+a9qDAJduOxCmbV8kqM0lQnLgunYMPjvmT2YB2eDr9y3doPx0KWHu2yvDDGvg87TIFsoFK5DC8asQbMbvCvE0Dyk2x4NOZRSEQvaqY99M7NB0Oyzd5B+9ETFMs0PDaFBVc+Xxg5Kod49YpuytizxYt+c2m//PzcEgKkx0U1zc7Zgg5+KHUEMw/Vc9TjUV//oId8Sr12/01VlT+0jIWNC5Ol1pIV9g86oS+HbJG4+cl15Cx4om3v2uQisZjeCJ89Tq8PsQW53BKG9Cy60Qi+aGkLEw6GZqIn+jh3QvlciJ6AeQ1wXKuQ865OiQnYNpGoLcl3xy0FNsQ+saD6eGNxfOo2CcQ3v1AlnME+frvfdbjjzCc7mV/eKyDANrN2iW796Yxx2IKRTWcGsZSVDn+3/2UP3+x8eVvP2HrA3Bsjho7vK4FGs/PZw7lpX7Qzcbc9tP9sHn+i6e2sV6b4zCsMwACW+JuZ8nk+mrI/sUr42vbvgTmRUFinA34uugP31nvCPaq0lK2jJc/3oO2z7ZgZuS/06Zqcgr+tkPMOK+MmKf7LUV2ufHILu1Mn98iUkA0/AhxPh8xnZKGSEjC74AOa01H3EzcAiXb/Z4Zt0xH6yKkBfqReWKmM/3iHzsSBdpB4nQYJCeVqF83gAoHyDeSH/GorvYzer3FDfHWR2TO2ftY/x9p19KlLKxsfxADAZGEIW8RMEFBxBkgIqDyTID8+rvo79zZmZ1p9+pGQ9WuvXeSKvDSzhfslFY3TJbGSaDkLRNtfkC23GgawFN4k6njR3dj+dM7MGFn6ve2Dviv+asgv7/cNr7UhrMtDxL8ee8c/ekDUsyNC7d8wtow7cHcPStZNtm8w9ZfvLD1nkD+fe3p8Y0BoM5LjwG3e3Vof5ic7V7Wm/+nB/LarwFb9kYOYs5c6JGwUyjIp7cDzRe80SMr62zZ8EbGfbJHI5wuw/pTcQ5WEZ2opeZL1ggy05X6xkRCru6Zrbtl10D1km53VO5XNk/GtYR3fFzRfBIX1umkRUCNfi+ymxu+3uKHg6IXnYjs+jtAMHpd//yqTZ9l3nB9aAHQ6rajhWb0HuvdQwESpx6pdnoFGblAkfvH/83omNWrdZV78Mp4D9+XmjCWv/gE/PHVg1PGnkAvWJI3f4eUYRl785k46eEvvkR3t81Wsn4O7F66QGbFsutRu944uHhvg1rcx2RMtskMjKyyUVeT39brtyqg1rYhPb7hDcyCDFRFvEQCNoM+N9ZiHh2AwUMiHPeqhz9/Cu6vX43q4S0c/uo5KGvbQKA7d4yc3QxBdcYZ4TvwCGfu1oiwi9SSmlFjZXMT4xV+yPVAutN59uh4uDgwfj69zU8+sBWKdQu6Kz6gEWdL2G3+GmheZ0qfxl01RGEwc+DVfYD9c/I1ps/O9gH7aA428jauF9Yb17/n07/6srb7+xValV9jo/cb70+/gkGqZHzcnZm33OY9hIW2jvRk1MMwl2TddBV0aMo5ZGiPlpz/+Qn0eHKqcHk/ih6qAraoa46Ct7iFGEEz9B4IgvN3WKVm3e7OJTL2+ToxWFMNhfznB/lveMqA+U5U6OZpQvg/vr1us7W+8/uIZMFrwvn4nQLw54dYB29mqyMfJeiR9kPki82BVRCvnLKrJAkpCeGz+STseBnevi5W6yM1xl/ml7IuSyUuquZeT1XzceXDuX+T+b3nh3WR2h6WS5gTMQvfw59fBgqAPtRrS8wWB9cr/MsPgxMLg7WdJUOy7zE9f69vNoXRgqB8kv9f34u30oGoON3+5TNj6ysB34ckoHrTK2Tzx5Q9SCPy2fBsFcSUg/EspfgivlWPJzQTwTk+FAhepYDNj/1Fgn9+Nf79em/s2yWBU/3L6FF6TmDshc8Xyu6lQFxwPmTzZxxn8IHmnoC3EYT0a/HjH/+nJnYXY1YzZMp//postTWYr/sTAv/4/eHHhn/x4MREId/w1HrrFr/A+jy+qK/v33DR6geBz8edkb1dhAO7Wm572PwsbK7WyqbLNeWB553v6BCb9bBwx7AALkUqPt5far0k8a+BhdlEuPDnA6BZ21TgUAwVaq1IC6c/PG8B8sn+KinZ+udH+7J0xA+a7evpvsw99P2i3vjyzOYU5z1MPhDTR+zK4fIQ+FGJreGALS+ejUWhwag8355NBNjO2XI0bwF8MLRi9W0aTPzzs8zPTqO68GzqqeCUCmz1nJ6ODIB9Vz5XaLJ1R9bNT2USLmSA7x/854d6JIs9E4JH3CK2hy+DWbbN/eUzxamRD4utXgAHQPi/fJgSfsLBtyHDeBgWB8atbSM5VxUw/1AQKeHbe5Hyj2+b70SHv/Gk02v7vXhiuL4duOk7mkvqvh7o7Q5hBBCHiB42w7c7wwiMjSsS3pVLMKWT2UDvYdzIPdDf2ab3+3/PP/28YybeJsWE/vPZYCuYzYzZc/WFs1AmGPlbPC5Nr8PEu0dI+DaVR71DncKLIgXY2qPcm+wxrYCxvhnVZDMOydOsRFiwLEQLuX/rfrfsmz+/n+ygNw2rmfUz7LNuxbZ268N1ek0BsBCLyNeHRiZ0W9+SP38bDIHgrZfcd0Fh7iiRXbvz2C+/jFBZxYk6Z+1iLG+/L+AhyF18LF5iuCgzl8JND5Mdr0Xe/g/PUcpdibLslnpOvKBRzvvaJN0Hraz/0/NPJ1ppIN/eBrtaeqts9RFnR0sCC5TUbZbtfKKn0VnAfJb55l+8udQUjYWa2QiO/lXHqpT4gzDdGIT4lbwpqi9LPXHf8gt9vPnTviGytrvm6Z/fSCRtr7HFV9+yksT3fttveg6L6f50KGQWR/3Flobl/roTeJo4HgXa9z0wZSwi0F3PB2pufLrrQcpD+9uvZA1vbJiKVYtgH76s/+Tnth5AzG8u3fzpep3RWYdByC/4zx9d+VBb4b2nhPDy9iMWmy08v6sHtshlAcvNCDgFRDFHz5VQhfP3rhbKhsdUe8SPgb4effvH3/H5Z13r9c8f04cLwLFoduxfvc2S6486VqRlm9/1hUNPID6R9vvnL0l//gE9WoPO9kFcSeBujDou2sECy/sRt2AcOIfahbgHS50JOpw4dCPi+uuzMSQPE4jUWUnf36E3Xa5XETpjdMbH55qHq/VdrnBbL8Qfn+9wnDmSwCeYVey7bVmzRPb/6Wl8HOKOLWri+XCknkdVcuHCMfqhHrz2+4ow49iCOfscWuj6jFFNfJfGgjMXwn67cuNcOWtYntsdipKzE9Juep+P0jSH0gsp2HlI5rCcvTmFz723UN/WniF7O3qqbP+fGk/p4i3VfYZKuVxyrKf4OrSc+Gr/+ZH+L4+8tQyF5E9fY3v9udl8kKYYKHvxjs2LHNf9mL19BQ6NgI0vNevFHq+lAuFPJMr2ftghnVL454eGx/vBoNMnLUHaCQaqu1fvUaE9NfLVkb40lYg8rLof+MrmT2JVvmkeu5BPo2z6aNPLzBiz9cPDh/8tsbrfZgHKejzC0agD6j7d90B+1zaFouw52OSpVi/B95LDDd+ou+nhrlhPEdzwGM3ReQ7HgK9EuF8eKjW2zzeo3bEALNVX7KFKCln7KxEk+xbT++/ghuPm94DyG9pov/nJ/LNTiFyGzwKb7HbezugP/d9+DPnzixl/Gb9yNd63+YpplbHNP1R8P6+x2/MWGOMbSUHFrSd6xJkCllbicxi2cMFe1H3rSayXCvxPZwrAfz9T8LbXgdTS/jSwGmSiHIqpR11vToZl/3zpsl5oF6qd7222vLVYgv0pSNFj0gJjvdA5UipYvunLOlWMNdGkQ52/NdgMiF7vhTKL4bHlKrI+gh4sruB94Q/2BVV58zgInVGX8CLH+ta7/uvNbfaa4dA9Omo+vBjMZRzlUJDPMeHQ5Vf/mD7w4C75Lj2lTQnYQb3acN+vJT0VUpKN0sF14LCbAKrfalAvuglMyBjSyQGd+mHwDZAAcklHfDZ4n63m6vfwI0YC9QQk1HN/ThvYuOILG/urCcTqWvYAJ9Zr2/OFxngSFFl+vsAeo69TDnM6LoXyuqgCAn6L2HIbNQKeQFzo398LlxPjQa2HGvWMQwkm5zFcAebVB6mji84EEEo+PLxtlzBF/YbMS4gLDvskp48h90J2IE8OVsuEsGHuC4Md9HewnSmA1AsWb1isZpnh1KAI2/Lw9LpjF7jwrBBK4K5i2XzHGnc4V7cOm9xhYrNecBUwnesJn2NbC1du5Ep4z/cGatnFMoSieOdyn9YSPU4XDox3rEFlrtmRqkO3GMTNaA+7KrlR/Xd0GH0q0xceixNC1S/4DOswCzacd+4Zn16a4NXzgeoy/aoQDTAuAXvQHsLWmQLqXxkGZM1/wd/7xj5hVr2uOQ3gM6UeupFVrhnl3y48/5IndqPIA7OJege6TM4JB05HsJSytgL8dLd7YPa3pvk5rSAtgyd+NVqbsft2D3d0a0ydMQuHPRXnCJ5XsPUianb10P/s7YwIupOdnZ/Z6tm8BI09iYn8uYXG4q4wBbiSGLYqY2Stf4PtNsWaooQ6TsbezzGGp2JMCE+fnrFKy6sAr9/tSGgbvhlD4q0FlwfKyeGo7UKidUcJSFf/ge8KR+q1DbhUPjmpTf1Hpw2iyCkOeF/3T0LR3vSEfVpGwN+lC7X42ztcp7IcYXcJKFnLlPfm1v7oSvyIHjgr2m6YCrdA4Ni83tgesBxOp+MPgdT9frAxiJU3wwKt0JcPM1VdUwQM1sccHpZFwGelubPv53h1d3kbHykuwi8g9uttK+HjUGBtfv9C1nMYQu+m69R2kJQt7BtH8DY0COs4oOAvfuWrIo7koOUpm+++vMJDWd5Rqhg0Y2JVVdBi8wvbclmFFInPFozv7EaPwMnBvJwTFeq+r2IXFO6wyN9sheEDFEgZjm09K6dcPxD/vsdWpqthdy9GFTa/p4mvvBOEc/L1JPk6XQ9Y4xIrXOyfA5UtP+iRbPMcQfQikPumDCnBeB+mkymV4LZIbxzcfN2bz8bFVM57LsB2eqeAxAMnA+H5Xag9r2+PqWy0QfsIDfQxvF9GBktNQRD0HOJ2V3OYmVKbMKbtgM/2W2Ns6G4I/q2nejTcrFHJkIJjDQhaf4FVC2HQJfL5YnqkErIs3AuCbUOEgooWJRHZ2netCpAwZkR+G49hfSP3CqPDTcdHhSMDcaksg6xXT9SrrSegzbczQX02I2qI2p2x6HVx4VdzTthOETNooBgI4qcT4uOdU9hIaVvAybAJ9cKiDOfZOfTgfY8L7HS1AdpJN03Im8+SupefCMaTIEhwW1+0BtwSLkIPR5irMqaezGRvRE4BYUt/N2p/gQ5mK3QqmPUTT3aCTofVL239H34EeTxkA9xfCWTTL0Urx73BGneqD/zOfGFjyr5sPUXpFw7abkEL966MLg2f1UHQl4Ka6Y+rmXhocigc+Ss+mlUWdvGCG3A49RfSj57Jlus+8CHjvDNWD53vzbVncXDtzZlekh5lVHs7JeymW0mULzcAkneTC7M5ymleV0r91aOnAw84nall6H09j8rUyis6idSL5DZbPn4lguiwnVkLcgew+bxGUE4qnbrzC2bs3iop5HA1oS9N7h77rVGlPAG/YE986Rt+H1Y44q9BNW+t6w5qvAsP2auifgN/9ZqBDoFwb4lb/XJr4cjpEsyEt4M1icvqtRkOKxSt5ol1J1GzeV/REeg7Z08t80czxl2BDfcfVcPPalyzcauvYMNPbIfn7/ABym2EOvmYVOXPZii8ahoDiYQumvmzmc3K/i5BvRU/ZF77Z82O7ymXP+h+QrKvX8N1PfKVrB/ShOxd682W++lwBbExrdTyniUbt3iCtqUpWN/iZY0OeQPeT1Ohbv8tvTm8rTYMS9ag5YSGms0NH0CZ1jv02Z8DMP6mkId8ah6JeIqdQbiUygx/oz3Q4y/R61HZvyRwPPIQq7WhenR6qCLsvApT536hGf2aQav88Q1HD1qDORJN4NtT7vivni2KacSwpNIH30nlsbF+XXxZlm/hP37A/vLJmnKf+pd765ELnWNgR5KFb8eo8chUPEr44IOQeuZZqudJN234WxMOG5VTsomEQgyV41vH1sbc1yTrS/hucxPfnwL0ht+zW//xjT+8m3/mkwf+LlnoWa6HbNGGtwy3+CIQMnVg2J8duJ2koyd/qthMs5sPDevpUk9vQ7bMaS+BjxgLZKkSXK9GwkrY5aZOTZv8ajLoBx9ueLud2WoGOh3NFeKJ2NgajR9YzdVsYTyjF4LXnnnro1RluOEtekscGGZxjb6gfVwMsr6nnTEX+CtBY+0q0gce9db7/AzggkcVR6VrZftkCmd46hcXP8GOGXODmxgY+zGmejtOw1pYVgnXc+EhlpO9scz01sNZth7YrrpTKHi+1YDqZnbUqBwVLP6hg7BHTxvb7jpnU+I7xd4Y75jaeimCsU06U1Ge4Rsfl1rKyGvtJHgMkUGtr3+q2ffhpfCan0JqLjplrL9mAbSmwkfKUTnVZMz1GIqXDlMdpidAfep8QfVFmGIWEW+pjK8J8VPgqPa2moHq2C9gJc46ds83JVwb4nCHfY8mineSZghvrnSgQMidRIeoy4ZtPUDRaSdU7tBcL0xKE3gkk0Z1mxOz9qs4I0zHXUf4l+TVwuBeTPkym9Uf36wnV/AayCTuTdHsHoahEpUCJjD4oV//oN7vrz43CouxfuIdYzH3zwhseEOfwtEYqHB6JIBGICbKa6eEo/d5VzA83QbCPcWjMXzNpIfakkw0O62K11lV1cDfUEoEnH5V2Mjq/Qo/0Iqw3gpuON9rfoTOurz+4THd3fSr8uWikj6a74HNLJpMsEbRhXQWiUL20n0Vlkag4auJ65ol8YWHdUcOVMePcVghHFL4bekBe8N9n81H0oqw+gKZ+hG+s2WUcg5cIq8lzJvo0O2X6gpBrEhkuW9ndMXk4kBoFB9sKstzoO8XqOQmgxa9uD3LpsuJiXD8nXhqy6Uesq+ZtLDgkwApaSqB6Y9P55dCR4tlEfYPH1D0FRDs0Ntg++YwQvWinFAr7b7Dqja6qlDsikiJ7Xc4P989J3eXK8XapbQMHqWhCtuwaqhbeB0Yhezay0ZwLehWj72x9iwIxpscU40elXDLbxf81Q87tsSMnS4PE0S+25ND2qhgr9V7BBv7XmBs5+ctH94QbvoDG9t6kOBuj8rGL2n+VA7eEqdWC03jfEOHxR0ZKYhXAetq2fi4S8WMofO9/Zevtnj/DMwyBAjDD59QpKanof3jMy/1pZNBhiJYlRtsgPOuNKwXAg3JPkERUGwFY/dVRICNOkllOpxbeuSD83ZiYhAPjZde8XmLv71P1UbpzfOXnk77xVvanWXDZzp5RDSWGrDz06zA3+fJYKwC/hu54+Gv/npbf1dy1x/JPz23H8bU+6vXQFUk/d96DBY1HIV733YYH7wxm9TbMYfCLnBpRDQj48FDleGjsCTq34bdwIodP8O8fe3QXqpstsRWKsPLWbhRpxcRm6VKRUqczF96Ho7tMP901MMselTUuQnHYTwbDxuWhjJi/T28jdVNZg6mv7OLxHeSZ8SkQgG125MRFl10IJzBwYGS1n7/6omxCPEJQkFn//jMsPFbFUQ+eWJLLdZ6PhsPE5yre4edfufVY7XAGczH8YakMQvrJc5zEXJBHxHIYScUS/5gA/Y0fv/icXWnmoAJmA9qLBIwWMafYrjxRQQFfjU6PVN0eBiNG2G24xlrdkh18ETtA7+ijzUsL8R/YdvYd6ou93UYnaOsy2+/drH2UyJjFh5GDordAVELgjVcVlfU5U/U5djUIgVsetCEdto2OHL3TbjkqWHD8HP9bPEdhyKnaaKiF8YF1bLL10MO4hRueEHvRzx75FetBZQf5wkJo3FkC7ce0d/nIYc4M41VQJUJIXrMKD69rIzRarJB36cq4tebDFb0BQ3Q0uqHZil+G8vhrPdw6jiGzcPTNjr+UjeHmi/PWJv4a0ibVrpCE5xVqjf1DOj34SVAfhLyF6/Ghm+BsjuLA1l2/Nnjw5HXAerBEbHsSo2lIzOB6hRhfPSVZSCPUpXgX76cPnsbjK6cX6F2yjR63otiuJ6GvIKa0VY4TkDrrUr4SWAAJ0p1Exv1hO6XCj5v5YsoflJ6y7duVnj36BM1TjhmC7o/KigfOUyd/SevW+3IfwFdEgNHP50H9Ow8ZliH6Q/9nv07nKeY4+Ekah/s1/cKzC0ddOCN2o56GYjq8Tv4PTw+Pxk9X/gfYBxYtlNeq4uRzmmD0Lzs5LBUlkX1Mo28vcnNOnjfo4LamkmNBd0vpcJlxoiPG7+hXcPxYPN3yPy7b/OLwySFrZx2qG1OssHmw0+HcvhE9BgPV8YyMagUzo01qt7ukK1//KoOkx++Xi95uFz3CYKbnqWGotrZiq8OD/++b74bAmNZLMmBbdO69Oly8ZaPEvePX/Yb31zMMkwgs+kNLRmyw8G39eaPTxE2hvHAyvVl/6t/xwmXbI0jyMGdY/tofq+hMRcXzoRiJlHqWM4dzFmqJOBsTSZ138ZhWMUfQ/C5v89kd3rKGaOiFIMk/SG0o96y6dVGhzvH9BF7iL+sS9DegXkdhtjXVqdeFU7+QsZ8Hf/hAbPTJIGpydtYc3sWDrheTeAfuQMSS2vJZmS1V2CGzKH+2SLDPOm+/edHYCcIDE+41j6E5Ddy+Kf13rDw7aeCxySh+FhWF2OpbpUD204USbe4Ixjb7L7C00cd0HLj4TBnT7OB4Sf40Ed/UsPlKtsShNADFL8oGoTB0WT4x3fO23rPRS078Cx1YLtdqdVCGx9tiA9ni8ibv7dEKizBY3cusPrs4nDtelxCvTZttHzQO1vD0ij+3hcRo3XI1vr2isArZhG16le01feHAzc+gw7X6zHk//RlPRs+ET+9ANhB7wJ4vtgekmqhysb1epOhcLy+qAqskDHbtlxFA/0Zzb+SD9mUJbq8+QNkJZert9Zq84Uh+O43PvfMNn1ZAP2QJFS/XmA4gV0jQ/98+hDZCJvsz08A+eHzwUhNu3q849NWj3WBnlKaDfMVlhLIesqjGJun7Yyn28Op8SOkvHi95pfzvgS2ay44OkszW8bzcYV5vlORqJnUY8wEOhw0ZaF//spa3+4RzA+/D3nIEjKmzT+AcxI4ZMcfVjBd9wFSNr1AzT98CNaDCDNHrrE1yO6f/1cCYbcTCCzsG1jXWS6VT6nWWMvhERDT3ufbHuaNqjsUDItbbL3thwYR+TaHw7J7DS1crLykui486rnjtVQ50cCjEfYyNu9+XgWFbqixYY51NhYX0YbuwXJI85KGgVx5Dh3yqWSE30taKDY6mGXjnZhEyIs2ZD24XEHePndUnayHMYG2gn96Dp+UQzq8pmxfQeyrE8XJ4WksUSdX4HIOq3/6bm7eZfpXb9GJPPeAzmc5gid69bDqtNRj0+yu4MFfQzLsrHBY972bgsBsfPrsRFB33w+D8ubPULMpcsZu7zb+w29q5cU221EUKkCxI9LT4WN4wuHstgfJ/yxU2z9iwIaoKuBv/+mxL9veACZTaKDf9Vcie3NSLzFJJDDepJjaY9eELMbNFZ7muqe+bVYetdK9BPdG3JId1jnAbCeKlU2PYet7+2YjMbMAhNHWV/Lbn4xZJUMCtnjCeWELgAqCbcKzWiY0Pd+UjMnmXEB+PQ/UjjpSD8FF1OE5N2JqSNusqr96ufHtjS9oIbvsrom86S96rLEF/vmZGx4RtkxluIimJcHyY12JuFqjx9RiiSEdcIvkVncM+pd/m/5Hc9M2bPX5yxXcJSBgHGvnjJcC04F/8XYUFd2YnlYQQ7BKK/7z1+hu9H1wtROenh1sZGtYXfttmNuOFHzOPOr1PQJdbusUXeu3MfaHYwDfdRbQky896/msaRJcPx9KDbInA/vjy1Nz2GFXpWPYl/zBBNhvSnz5KfzGP882dD15pg7XeIb4eB4I1JPrSuAK9ezP3wCKttZYM+FqzLV3hjAdlQ6rWz2buBUjWITXHtv3N2eQ9TE3yra+//JpLjCRwfJtbPrnJ5Dn/dRA1iaE/PFxitx2u9LAZvz3fRZvn66gFmwVnx1ch6zynBVeL4BRM9faen7TqfnnHwS8+avXs1jmShV8Wupp/ujN2mNuoUz4iMzkVTHRNSfyl4+E0zmtnk5H6gPitT69eS0YRBVzK9z2A5CYvUpj4Z55Dl/K8CAQr0Y4H8AlUmqd5wnc/Hk2TuALd+dAopoJr95ffh82vxLfj3aYzdOgm3DMWgGJM7/zlti6SkpnvzKq946QLYN7sUEAVZOmuhd5fH++NjBBVU7te1xnlC9MB/g72FD3dxiMdWeV/j99AMKbUa9V8MhhK9wFssjYGYT1fEbyhufYKa4ALOJkSDAsuCt2H4c5XPyqVaHKGTLhB28ZpjdXuspuxjOSk+8n/POTYVmsO+rqHu/RJvro8LWOaPOzNCYm61iAU5RLaOnZh81vY5bh/Cx4othjPrDgIqrgfThRUubxEC45EXjw2Y5Sqdd4ztaZC5Dyx78Oj5CB+fJFBfSW9ofdekbZ3/4ZtMvMpMf5ONf09ThDkJgBpNavXcJl8+PgVHxGtPFzj2+z+wxAHJypVvP7cO24dIbD/Ztgc/t+8yNsY7DhBz2DXWj8nhdJgusrzLHXm37GjEvYQ6X+8KR8r8yb/ur//qNraN30/P5Pn9fJL0TCQbYArwsJJ2/P/8/+xeTfcrA3om2WSpgwdjs/bcgvpYodt3oPS7zgL0TiFWFERQ0QcjiIshg7AY239zu/k6EFyeBpVPMULtvSgP+LV6o27DWsGvAg+MG2QKv2uACaPr8S/Lf/eIXj1ucLzAAtOKWYP6xsThOCoCoJCIk02RuraaordLUhQHyaG2C9E2RCrC1nrKIzG9abInPQ+V3LzZ/Nw6V5oRTypyqifv8evUqV4AoEMt6pj1cjm1+KF4CpmY/4lhdOOOtCAoEfxioZSe8AxubfCKbiN2I1XCWva7c+e3JxfVMkNEYo/soh+FdvWqNm3jTJjQOmsH9TpznJ3oJuegyX6miRFT/8gd6kKvjzfwnpc8kbs6f//fNX8NG8q0Nb2Y4Jf7f1Qe19H9TDH97++bvXd9VkG5+qoBrnLr7dXgc2q9aUQHL3PCIIy8lb9MckQlbfZKxKsebN6XjIIT2ld7rxRWOeX6z5wzO0XDqNsYj3JGnbP0Dgs17ZfCQlr1ij9MA4ewpG/y0iG4SvTqHHPljD2TayHjYu/6LBYXXARPpd8Ke/sWXOo0fPT7OE9MG5RNKPQ7aqb5mHQHGv2LbOA5h5/VRBhTyO2F6t0WDH9yeHxs+tMRIm1Zh/8UVSSqGzqHbjYU2eA4yhr6OUyHetrOe7v67y5hegzZ/0yFSWRNn8BHr5IC3jnYJxMHR6FXtt29TkW0Sm8vd8g/8E//gpXGLK4W0/rt5745LK+6hAf/tZYK5sxwY2fApIuHh6OP1awwX7xWRU1x4LI/f5FsA0kCSMV602lsRXC2WrL+f1PtiGUI2NCTd9hHii1eG6s1oEf6q3bvxBZAM4cRFocktBf3yLgZWP4L361Pjo8BFYB8tJYf042dhLXyP751dG5E2oo/JlNl++dg47lUD0WcE9nEG8EPC3P7et17Dhr6mEaJvFZkg3tsQkkJX/6UwB/O9nCnAWvehZLi/DvPtcRHjUbY+ewuWRkdQ8BNC/hheK8IdlTMuzUaZO/qU691rCybEukbJSe6WuchzZchc7BElvtFt3QLJ1Rxwq2Bl0JtL1F4Pl7DsIlqP0xDqYHY/3hVlVztbWW4pdRo+IwRsqntFDetZ+JltlUTWV/Xq7Yht3Qzh88kcDaiXbE1mRDG/fx7Isoz50qGEOZrYC9T0q8JamVOWbnC2/cMghLZwEccv4zsbhUDbQdsYWq6+vy6jfLYWi7E0Hmz+ThGvBTAhP45jhZxb7QBgOWgM98impa6Jy60UJbbm4Bmf8chfDm8put81feinol4Tnmqi214DQDfYUr9Y0LMeRc4CP+z3V7IAaE5c+Ahnk+h4R/GEho89uBqgnDtmN/WIsbX/9AuyMNg2GeR7IkXgupFZ2JnIAoEdODyGHFp4tis1Rzfb2O27gK5AqpIT+0VjH82eF4RAhrD+DbrsnY45wsqY3xgOOwnUiYgHwIX6STkm+bLoQFMFaEffkoFUzW6Ktl+b297S4HEtvmwggKdOBv9DokP68yf+9CviFjkSdR6MaC9ZzG9LCTQj4KAZYBXpBMHeDGzY/8xuw86nwD4J/ywlXjVW2OMiW4DUPDtQ6C9XAwrb1IUiUAuu/3ZX9UE8kmJ6xTp7Rr2aLzLAJyDrzpPOIMSwumBxo2zamGkoj1mE9soG/HlqsHvLaWCNYxDDAKsb3WArAco6UGX6z6k19Ae+8dWaeBBq7MXBBaOJNfF218MT/fmR/3GmML3gdwg9DMTU4SakH7myN4LMuMXbcRjOo3GUlXCvHp+p9B8LR7/oCLtdhjxERW2Nm+sxBj7+EZMe7c03kTi6h9esu1LQ8dVj2X9OEjchSfGqVIVxV2/jC5vBg9CxYN2/Nre8ILWU1qJrsNSCccieHn5+4UEuQjZDvq0MhJZ99hXa7+gUWLpmu8I6Ahr3Dr/OoekwaGGhth69SyNVD3D17UETyFzve8qwrgT4QHN58uuWb702weiQQ7d4ytk/PZGCWtsg7+jUa8nuYNeg+j/0XEo0+Uf05CfV42Hpvs7M9I3ZoLt782/b007b5YTwub4/xiWcD+UMI9WKlYcRnSAfjXFAk7/UOzNPSFjDAmwWc6SmYGpMv5Ip/3ajhm+Hf73PQPh9ffD5+9sNScFYJ03Or40soLOG64QM03PSHTVmo66Xo9ERZc+2BM1d32Ir3YS5jUIsYu0vt0eYiqUr44jpqDDcnG0+fmw6PWuehnRXb9frlTgHkbraN1fV7YkuKFx6IMHewWkBzWOUWVeBEDjzFV3cdJsv7FGAlw0pE2tjZGnewP5S0FLFhNnzYt/zNATd8vqH5u0tDIrd2BT2ehPS4JDhcM7KvoNzej/jII6fez60RAbEOFTJHtlcLcjuV4Dj+KPU+1rOel5NlwgRw0ZZPGuCrR+fCbO9DJC/lM2NXa+uL4nwlAiP1Pqyv3bUCOPhdyd41G7ZkDc/Bk5kEZG/53DA6phlDsb4oGBdcUU9JlVWwG3NATzdfNObg0SNwOb5XpEQ/g037B1eBy7FeqcP8xKO72U2A5pjV33qGfBKPEMTfRqTOhu/d52s5yqzxJxpMsB66tk+/UHE6l2qtzDLWBL4OlHcS00vl9cYqHOQV/r0vb0jKjL04UMn+HGKsya9bLbzczIXeu5XJujS3kE2ftwx335gn3OjybFrc1Abt11mx86quWxdEq4HCnJ/pcd/ohvgL/RxmBvTxzQljb3KQLcMtvujjHQM2Av8UwN3F1rH5eI0e/VvPxwNe6XU8JWA+/U4q7F/TQLd8zcaz+ugPf+txln/vYc6dZIQzWilRbpfeW8JsbIEq5CfEXFsF+z2lPdzm0BOx1x+Adf4lVgR/zVGlz0O4rgWHYNkHJk2f4Rsswf2O4Ms5xTRZuzdb1vcJATtbNTIX0Kz5Yo0hRNEvRkTv79mKxkWG5kOFKNX1yWvHxzkCFS/fqDckaibA6pFC94M57EmKDpa1E2fIBpPgq0Iy4xv+Mh+2XKFQ7SHz4fKKIAFnO9GwpgrXevX5VQdxXT/PfBpU4WzttQBKTmFilIkng6+qggD+YY/YFZO6Xl3rN8MuXk4Uua7IZiYOMegE/4gv6N0wxqEDgXHWXyja6st6oWEsD3zOsLuUSrg6OJPgEasLPWWJA5akpOVhefImRlv9XsLf6itOYdtEyAWtXmr5KkJbHL9UvQ6IEQIlFaqPrqHHJDwPc7SuM+Tu4wvJSDkZ8/WolopKbzGRds+JrYKEVqCF2hE/z306LMQ22394cHyYNVtQ/F6hhddtNsnO9JgX6jE037ODUzAGxnI4qTwcbE0gG76xlU96+w/vsUXN3iPRws8yp6sTVtv3z/jHLw7j6mEDh0o40Ge3glNq6jhRExRu9b+Blw+c0XI7FcZAbLmHfYgs6tVLAIQcNDa43d9v6u+qN5i0i+mCDQ+pdy8zY37dMgI0cLtSu07LYWTet4R87lqoWZsz+w+/2kcj1uwAe3SQjC80Bp3DapvevUE4hDPk93aPj5yfZctASh1eCbgifi+l2fxyZRd+LZFi035NBlvHYAYul57ocQjHbFJGGcIc10fsp5aczaefpsOtbSrOhz6vl9vJ5YDM6QfqjboNhMZuCyifk2rLd6Fe8uOBQPWueSQqZKfe97Way/p+RdSxnxdvCR6GD9PrS8A2kgSD7tOxAqc1QYTQkoTT5ZPMyumudvgZ+j9vVvHegbcIOPT4/MkGrafjFforaKln+LSmv+uUQ2FUGBqHHtbdWzynf/yIoiefe4PQJC0YDDGnWhtM3oqqJIKXZ9sg3vLUmsVsj2DvagesKTfEhHIYeJnWmUe4RqXGijXBhJ3pzmTnW5TNxU9JAbwlKcauOjKyI0IC61m+UM8dqTexvRRB7B5e/z7vUqGygV+Lp1jf22/QJeWvhPs+t8nqnmQ2GpH/hVb0k8hBkI7ZcsrVXFHvhYe1rzBn3akRddgYZU+zWlIZW06RDVJl/yA7t2fGyD3MK6we5UyPll8My/4328qOO++osdX7vrG1AoT+IaCuFIvDIDPB/sff1WtTgNk+zzkMYpBR/6eKWX8NRhs+7euFWmlH6qUvvwW8tJ/Ns9JlNiZJAJXU/XbYwOk5XP0+yAEN7iu137vGW06L8YXzmpc42ktytn5y6bsdRjWpjgKXrSm+ilD7DCWSqx8JiTl0BLC+I9iNn+0wnDI9h5XBc6T87uRw/rSJC7/fl02Ph+rmMfsdf0HYBgLa8NqYXeg7sFy//wcAAP//pF3LloK6FvwgByKvhCEvkZcJAirOQBEBEXkkQL7+LuxzZ2d2hr26Fw3JTu2q2slOgGRautkkLlMLG162qH55FRWzg1aG2+CrI/lyEfuxIscAevf0QJ3dfF3/Xmxh1Tp7rEpbKZpS0wilNR+iBhDf2L34YwLPn82LOm30NobudbwDbBNrjS/ofY9buYGth45/fHJ5nLh1F1iaUBd/aDaSg9jB5uXH1MgjmLEaqLy85geM86zNpolzRLjvTh0RC1/KRsMVVaW37jt6dlYP6ZJzJlxeo09tebhW0yOj/B9fNo3JANw59gq5tV1uXa9p1KuHoIabYXsiIjxw2TuePhO09j3Gh8HUARcc7y04OmpKHUcPol60dQ5c42btG6Lp0fwIsxCM/CRS2yAHxvT5wsHrrvPwseH9jHfhYiuf+GlSzwEiGOcYdDCkcUj3qmz1HJEvOnTb6IpNblIBFzVvH9LmXtOw896srUgdKIsxIrTU0zeig3nzxbsbnjG+qR6YFaO0leAiZeQE5MUYpfsVwtGeZHr3/D5jsOc2cNe6GsXJZd9z6c1KYNo6H6zX1uqpbPocCvQkIuXz0avB3k8XBW6lDbac2u65j9PKUDINle6VtARvwxV16GgXAW25U1HNNGgQPOaRj8Q9c8Eykk0O/I9iYIeAjTfL3a0AdcbvkPCen2wK8caEc3DPqX17TB7T2lcAw6t+wOpJTqrlEbXBD3/xoWI+IEaEaqDS5ULqQswqeoyEBQacdKPe/hRWa35f4BDeZyRqOlctMbzEUFiWkBTqFlazVdsNVG6mixq03RvTOXyWsDuWIf3pA2ab0QUE10uGNeBkjFb1jUDJvKv0wWY7+678F9qb6IH91Hej8X6YByCh6Uj4w/NdLZMy3sG6XvCfnknNOZDmAw2xtz8t1crPc3hbwpw6WhkwIVaqi+K76X7NH37Uc4lhQWnRN1Tb7XA2Y0HOYQu4+k8vzD++emYXa+19zdgv34jv7Qipd9M/jFrJV4US11+Rcu+kflrjFWb34IrN47mJGNYuFlwv78Z4qzr99AnzO3xUO0xgc5kMetn1CLJpelGk8AdvVk2+hsA4DdQ6E5RNN+nVKv750lHzmjqeYNhIh68mVMm84i2Fz0/64/vYPTy+/YKK+gLF5q7/xT871enywwuKh+5kCMPRWuD3lpXYhIGa8e/7VMNieD6onytqNdcnXQejZb+oP/K0Z6epuEDd+OZYla1vNsvdqYTr+NJ9i07GXLzcABxz4uM9I1NE3pnfyGv+QxIBG4PRU+yDKnxG6KdfWK+PSNKe25GIUtJ742+8wS3J6b49vzz2vp9q5VkdAOI7xwEcsaoORpFq4IOBvJ7X4TOVp+E8rn0qRjZVtTtAuueO+L7q7VVvqRBpUKHayveneh/lkqF8r4j/Po1qlxS0BNtcbcnG9GtjvpGXpXRtLpBp3LFqtve3GGaZcMVurXvGLOXe5qe/6MElnjc81aSG2vtbYBzwjTGVx6iGmhsBiqs9qlhwkxA8CnpCNgiM3vRuBlt+j2WFXt9a6hdV2kFAAb2QEQ51P4hKiJQt1Bt0XfMvs5KX+ufvAL38RpOuPP7J1waOHtkyJIcYbJhpkmkv6IC72wmBD/7ZEtk8TB57aWcdPPPAxpjnDTCjlxHL7WHk6I/vjOagEpm5+RVjg5MACS29hLghJtbr6Zsxw1l0qGRRRYiYuRV9OmcXcmTKyS5+AMDY9iPDS9ae6P1W1t6yrTMeRo4gIFk5+EBIjwcOuu92g7sgeTOKiv0FBrv4hi9VNFULzdUFbrT3SA7DarEMCY4BCe0H4gp0zpZNggIwKNl55ZfAII+oDeXVb6JPAziAPwxXG5ivxaZ4oYyNO+L7EDE9RuDtj9Wf/iV+3mG03iRNrctOhQ10RaIcu7Rik4Lu8KbhA9V05+nNzt3O4SmUrngfye9ssQ0rhqF2OVNDb17Z3EzNADPOqUjyLEPG6xsvAdkNbcjCn/t+duqN+pdv3IkXvG82uyXUrUggu1LfeD1v7FJlNAqbumemR3ze9gn8dDb/83/AAja7Dq7xgY+l33jjThwXeUrtmJ6mV8lmsL13MM7gG+vflPZsfR58+w+fMCpuqvElSAlchGRD8Rt8wMRjtoHv0N1S49pX3nek5xwerheF8KYOjTmb9eJPj13qzyNi6/wCiycNEt9kD6Z+jHT4tL0L9R4D8uazo0OYGZVP5PMQZuwROQH0u8+dPO7zt59bvnCVhbu+qQZrsZ+bTRvCQDt+Vz/l2tPnuRvgrlvS1T8sMuZFbqz89LOubXfGMpgTklZ/gOLHXHpL+2W14rrDjarjjvWMZrsJku2YEmm6pGwRPjcL/n7/YHMbkfueEJgG4R3vn2kNppNkybAKHxGaiquWNVF2bAEwyIC+wGdsXvpugS871Mn8m3+5fRe/9UjV47WMRuN8auD12h2xWZzf0bD3zRxscBJhX70sERtu8QXmy6Om/vGEonn1k35+FZl/eAM2uIXFDn3xHoi8N9FwRvJs2yG1Y/YF8/kclLAcaoeevvWt6vCO3gHZ0pSiB/C9eUvjFArLNaRusN4NvLwcX752QUOKZ+MC3rvnInjwj5aqL+3Tjzqn8nDMbhG2m8T3xB3pfWhK32j1mzswvz+SC6TXe0N2Z7QYYzORAZh5RKgzPVzA/O98V35+J6hEFeyAV4YKL6UUO+gCQb1933hQKZyABF+/sjmGygWYdfLCOZhN7+fHAlvSe/rzy2ss3nIovT4bQjY3Jfv+/I/w8lnPiAlFP9ykbwe2WYp/+MNG3jiksODmLyLzoEXTxynEn36kmtbYrBUPgJOt6ntEswrLfr5wOx92oAiwu+rfeXZTE2qHb0kt0/GNQXtMBJZ3z8E//5M7usyHgkYA9uN5ZMS62apUvm4Qo/NsRWxbQU4uCSvpmq8zNm2WHJbCgaDT816AeTur6c9fpVjkeNBn726ted4HempgES13OJvwUsEHtu71p58GVC3wPIUjRuv391//dgGPgvFIOjpFRhX+Uv78y/XAoMe4XmobaL1UjprFdt2DtfrD0axqaGucqmrRZ4WDvtLtSFlqqlcbsdlAo03eVNe2Z2N4ZJQD8atN/vjKNLuSBa+xw1HDCD5Vf/XDBFL3u949ys7Z/LwUg3KxHRH/Xy+RXDqHASW9obwZu4l+Bwv0eFJ/5Sfz0b37UIivMV71kjGBeMPBp11f6K31zx5tmDrALzcf8E+/8NIz2MBg+Bzpsdzz3qC1aQCOVbWl3ikTs93KF+W69jTU3/QD47S7P0Dhmo7I11SxHw5UsxXOyiMiLM6+Yke16BSJ+17pz+9t4619ga8mUPHZThtv2RyHAazxQz1j/+ynLhZEZW6XL5EBUz3+vm8I1B5TTJ+/+kUNbA6KgHBru3uefb+atsih0OVo9euMSbg7JTjQ3sYuf2I9rQgLgd8mBr2HutlzsH9voK8cd9hvS8PbNYeHCEl85bH+cCRAowb6v5/R57B9AeZkbg4dMw0wxpttP96EvAPyeyD0cKrNbE6NIYTQ/yKsvVLGFkW7uj9/DFsKo8bw0iwdrs2AqS0oKFvXmwkXbnmTrTtXxuIzS4V2EBVI8YZDv+MNnMLlxqvYfxYX0HDILqHVnBqsnQPkMWUsNj9/m55WPkC9Ry+D7n3LSdFPU7XsxhH99Cw+bCIv4/h9mECOLDk1wsCqhNXfhqseQNuVPwwnCYlgrQdQJzuJYCmRU0OEpAof8FPL5pee6eBopRqRH9GLDQ7d1EAyc5X4/qc1CPe6tnDFV4pqFXt8zokQRs/Xl678hbFmjgf4q1cpKJvYNJguAsZm3eNLks9aw340MH1XCG2CyxdQfc55UL+Kdu0yzPdTUi4FSMPH7of3xqiFog1DAxJ6eM9PMPX6xQfnrpER/01YT1d/BUxXC6DFJnn05y9u3S2mhmupjJ8vdgeDJVJRyZ/7aurKOQdcRvfovdaXJilfz7CCrMZeIJbe8v6kLmyDp0r99+CwaUD9AiNl8/nzX1rXGhd4iElN7fRwyagIFB+ufi02+11drX6OJbcPrsGmX0/GcMnf1i9/4CjZYsD2QhAoZCw16nN6WTE+0Ddg9R+x++DFn/9QAzRILyLXTMuEojBDyN3MAWtpnVbjHB06IAc6REpcRGAZ8GmBlzzoyMYppmqct+Idjrk20P3K/8iO3nx4lI4ztvtB7IfzQdnA16b2cDYMo0HaL6jhm/kXchHMN2DTMsjw5L49bL/JGxB3CWolend3Mu9MyRhPVT3B9NjpRK6HOfpOGz+Hn0XWCf9AI5t2pPIVq7aOGB2yYz/vqIjA6n/95Wvm2sWifLSsp85dx9nSbLRAKW47E1s2C6NhS3Aid4E9UL2s+WyJN27809vY+ig8mHzO10EsXFy0O4tiNH8cR/zDl9XfZ+t6gQrgt3dsVF5ZkYM4EAgV8ibM9wxGbQRlEHKf/Q/fo96d5wbKykcicpWYPXeQSgKfwaNc62WOMax+uoK2lfzHz1d/Pv7VW9fx2bOdq9xs0LrzkR7eyOlnoKkEypF1xnvtARmhuT1JtMlreowLxv7q5VxtnLAaTzObl+9mARSunXF2fP/zRwIYKfBD7cK/RZO+dVIYGzil+hq/faxUMRDBwK1nJMVsBJpN5Px62OLjYe3L4p0uFxgbXUo2+B1Fk5WkOhztRSaT0VPAPo+DCvu1b453/fQGfURaCN/jvqLHlR9Oq/8Ea67WqG+Vb2NqwCf8b3cfKP++p0Btco2q9d3tp7IXQtj68pseA63sh56WIvw0OaX4ejGzHZ9+ZfD1115jxWkbDbFZqop+WjqKI+fI2HY7dXDLbISfCAoRuxb9BhapBhHoieYtx33Hw5MZxBgt8dnj6vI+wJOzvyDRit5g5tOXqCRM2VPvKJ0MduQDVVHJ00JCk9dR974aMTz6O4aUayaDKTm9ENwL9YXawiUCi9uDBOrmZqT2+2xVzI/QBO9CYuPD7ukYyyiMrfSmHkH+UXkZXRv7BDJRW9+2kaLlcywm+BJGAz8KfAWCti9EIO6tOxGDmGVDzA02QEIs4DTEyJvtUxAqtFQe9BAFjjeniYigyKqEvK8l7y1344YA7TZXinKp6IlsJwXMHUsgfHlUGBOX7g6PNudRV0eh0avltYZluYXUFEffGB+3gwyUEMeoL+M7INl0HKAO0opMozGBaccPHAjYXcZaU3hsMoIcAfAIZnzo+kc/N9KrBLszabAHSquatKYI5Lk5qRQb9sxo2YECuqdHRi2GTgZnyV4Kb6f6Tp/Me4NJv02mcmqGkWZa6IKhLXsCD2y44eNGsKvpoJx0GGungR53j1f1BUglEJP6gP3ubURjeR8KOa1OHrpR9QLmzyDFsDvzbwTW5/3eB2KaDYgxzDFi7n0OGicupYdB1BlnGzsVBqZfY8e6ij1z4QDh0sQTRYV1ykbjIeXgw8IBW3BH2LQd2xCmzQPhU27lYPq+51iJHiiiyBd5b5GzugUvIlb4AnXijREBEOyaUkVcHaqRYNDLIu/FG6AO4FjV1RUr4USQi/g6NbzFexo+JM6JIe6S/+4/V2UlYLmM9231rdhu97XglUlnpGhHwejT46f4i0d1na/G8goLjBraYJQOnTEPbAilMdQT6nTNx2P3YoHwy1Kfeuk4gvmYeD6oH/mW7gsHVgufnVt4YapKlpOT9bNYR7kyCZyJn0KyNejSfkUggVrHSVvu2czFVgd7O9hg/+SqGUvdG4Jvtmko3pdBxvTBvsPt4wWRjHe4X2CoW9up0o6IPbkiG0XuFColYxfCGUHAliYNoGLYfoF968KB2erEVhYeOw/bVrQH7H3dWkAvG3Pta/GtmGIdO5DdRo00d5X3ZuUjWrA1LQt7PzxoTSSDB/lWFJvlzRtk2blD+Yg1tFM2Qz/7sVKDxaY3VFyzq7GYOwTB87bR8Do+jF2VE1QE4bHHQX3vqslytQBey/Cyjq9rrP/PVNw0kunhFKT9WH7vBBTb9oikyp+jN5zTFh7L+x6no5lECyWGCb/kE5MNeJVgMIpYldeOAdS/zU0/XwCz4W4bP7HeXPcR5cIrD0PHsxC81YG3SGd1AGHJVDIl7d6YX7wpw4qqBo13xcBGdiwJ1Gw5xU769gzht/5ejWVS/VubFb+LpQH4H3ylxznwDFbEt0UahZbD1kM9ZrNZn1MIhGGPDZtt+oE+oSm/GtOkmi+G0WKBEsHpd24kaW02l35D4Lu5YsLs5p2R6nhboHHi0/X931G/3YodpBevIItLHwb7oHsJf3jhk21k9HQDOyHp3Te1fVnpyXFXQ5CCcE+2DrWYcOb5ASrn25Wq0Dz3zLnsE2XQPEQxeO+qcT7gHDj58UO9z6vrJ/0mWjCzTZ3exA9XzSJ3C+GtSwBGp73fT6Unb4Clpjz2xSZgfBEEKWzCW0l18J7ZGOytCVBip3S/2VSMJRFb/uIdt/XsLURmAXAeqU6xQxs2BSfDh8Pe7nFS2AmYlOvBl3/xlvmSxIgj9jVIu3uPNd2sjdmfqwY2nH6hzmOrgvnrbE3YhFlJhOr09pYp7gYgPmSwdpVPvQlMtAaHfdSiRbd5QB1e0yEMnZqAp7zJ5rZ65jBXwwTBfmGAenjKlbR5IiSwvVtNiy90UIRXgXq5bGbDzcYXoJb3ml4WraiWj1KKoGA9j76qO7F590lN6JxvNt6DGhnscU1S6D/eD8I9xBerk3oXQ/MkutiYcdWzznv85Wv8VLacN+iOHACdNA0+lrjJhh7TANr7a0IPy55FU72EBbRvlx0BoXXo58bfEaBQLaDmIDXVnPm2DnrhFWPdOo/RfNqpPgyE/Ipg4b2NiX/4d3gRBJ1Yd/ViLDWTVqCtG3zRvcqY6jCXQeAYDT3anwHQYd7lsLvxOlKmgDGm+yYHz+UmoOpitB6V9nwLbv5cY7N5tt5clNOk7B+bO7Vvr5cxeq9xgb/59OxBrZa3cGhh0LUpdTXt1c/b/OLDjju90KyZPmMCvXOwCFUBCfaXi6bDmCHANfcAX/mnmrHX4VvLrMwM7Kkhq2ZF2DR/8etstKyfhNENwRrf2DOfrkEM9Engvc8mcudvLWPKxcihULYGWdr6mFX8XR0gIuUVr/jPZjWQA6iXtYkfuU7BIIx6KK/xhQ9b6ZNR6S0Hcg/KmWwU8Mqo0jgh2AhSgRaHGh6vJU4gT+GRUU07GdmSVKiU7rZypeg7EraEktPIGil5apw/IGtfSW/D7Ra61Caw9tqp0gaFa/IAW2KbZPSbWKZUlu4Vqy43gUniAQezx3q/5vmZ9EzASQGeD+WLxOigVySJVB3ajzgkinF8V8vOdgoY20//x7d6pu0q9Tf/2Dw8PtmEHyyB188+Wb8Xs69wlAhc/z81pdHIuJNQLlBueIC13Nqw5R5dCXyrhOHja7W5YPG1wGF/aqm+5jvG+7oIdybwsRvfeaNPIjbBC9u9qZ/NAuv2b/uuJB/HxtdpX3qzt8kmGBw1gxq6bzG2fSo6JE7EqJF8tOj7bUYTXntrR3Y2aT3iUUcFVJhiak2o7dmdw5Ysd3xC9+9Ll804pzYw2PNGyl3iGmwzvBFUGG9jQ+EdtmvZI5T183Qgm3NoGJzb3WtY3NCV6rrNs8XePTZC2Sg3fCAiZxTklthwb8YVkYkQrPc1eTHsHStBU5yRakZZwgHRjHSsly5hr1dzMOHjxr/oIQxObJk/Gx6OoZrQ4yVT2WwoygRttbxglfKqMfvaNwfbWxHT+CFqbF1/IjhO+w9ZyMarxvIbE6iqu4num0oGrJSlC7ww4U2dUd1Xy2TWMogvVkUPK17R4qVt4KaycjRKnQym7aO8w8fe6Ogx3wX9dP6ADfx+Mo6aigwr5t4iHTbQyBA8X2/VQjrlDm3AEN675BYtJN12AJxCTPcvJwKLr58RBARMGJMNzRjpixK2tmRT55r0YHQOmxSsfJ0a4bFk85KmMlQYZ+MU7h8efcfFBF3zmyPB/ZZsWvFUJunhSK20QWwR8iqE+LGM9Mdf2f4NfbjyFbLbbhQwJKevD4LbTqVGrrXZ+2THKdxSd0Kc9Zi8AaXjBK+CvFAUhD0Ylc9kwrHjBOz7ypexaAonmNqCQJZrJbEp7ZMasvPbouo+dQDZv+0cnMTzQA91fgYr3jRwA2SFGndNYsvZsnmAukKmhuon2cp3N/D5cE3CRacBrPjFQ/28HBC3RGO/ZNN+3dR3OBFm3hCYE/1qKyu/oUGBOYPsz24rZ6KjoM9GCoxFffUciB+hQcSEqBmH5G8Cq+2upVoVDf1opevdQNvLk8hmlhoTuTd3oFfZd+UbeT8fXuv9vAI1iHgjcjQEccBBpfMRPrHDsvKV0wJqEt4IP6G2orX2iGFx0WPsifSaTeQW2Ip9cdc+NiToZ3bsCLyo74VaeCn6Jf2+FrjqDWzcuBksstdwEJsQ0fOtNMH82LNJ2VRmjsBDPhrLzWlcaK3p3vuSsF/E1yQq8Xa4E36jPyMaVFkNcFd39LavBTBdeqeBbhOG1HcrL9td+l0MPZ/YeP+tVPY9bMwFDrftiArjqDEWSsoFPsvphT2Z7gFnKK4Ocz+U1/nbsb7zzjIUhWKHD/yziKb72SqhDWaEj+23Bj9+Brb2IOPj+/7u5ydtITToAyChOD2jRZ1frQL2kUD4u3rxZr9myS8ekZiQIvvpJ1iCKcCndX5YW/MBmNSGI7z3do0//jQejwXdR+dnxe7cwYLb7cYlnBDVbLCrqYXVKRkJ+PFlhp0SSg/YI2ErfSJibFoeIlPOqb4vh1W/vEzI9acQa8aJ64f7279ABeyOVPsUlTF8nrkFOtV38FmNM29+394isP1CpK6Q89X03e8G+H0wmfA5e2fMN9QA7rvphm0kD8Zi5CMC0Cx1esjNa8TB4mUpAriX1IDGDKi6nFO4JdfLXzzOzoFfa3bjmYg9rcEc7x/ruT2lwQ5VeTaI0VcGqRC01PqkXrWI2i6AiBRX/MPvRe67O2xFL0fzy6rZ3AfpBR7UvMHWLrt5414oOGg6hx2Zubgw6OOQNuCQmk+Ksyn22MV1fSidlZl0VfDKpmjOC4g4l6P+VsWeUBHNhcdT26PvyKzoWz1l9y8f/PjKMsTRAA+nQMWHp0CzjjOZDK2GG6imnnxDMJchhd32nuOH9zlnTGnWGuEWnahWRudoQvIrgUdub9Ij1nqP2eWukV9kPXcMauRNv/wIUov86Qemls8ahCdXw0bfvhnTRbGDh+0AsPrTR2u+AcNDcdHWo6Lx/eln7vQABUD6v73Ro3YU1rssNfcPP47XLAXLeH3FyvIoAyIMog74hPkXeBZYiCYzXfrp+5YuML6FzZ9fM3lKq0KbbE/YFKIaTIvziiGjaEtkFRWMXVJVh0W3u2AvG9+rv5Po0CvjN9XFtxOxtt6E0HjwkHCv/ctYABFNSNki4OMc9MYUcA8XutSaqYbEAkyqcVVhUH4L7JwTJRoDbborDuA29GT3gBFz7SUdnrYN2qaV0c9yOskQVecUFfW96+fr1l7EH96jbrSM4a7JKUweL4Tmo/itlta0RPg+v3bUfQUhmwxFV5UToQu1tvqln4M9mmS9+zhEKn3Zm66vD4FRqgaot54gWxJmXmBpViqSq+AVUbJK3Bun7qj1/UQVc2G9+fk9GGu22jMDp/nPD8JPs5S8Va8g2LLLnYhbJTWGlz3GMj4zRiQhNQBX60H6w39q2YsMpveucBUPwBwBAtSMv0hJDV1BOuHvNfHYqo/Cn3+CL7laV2RdL8DcW0dCFKBlXeg/JvDLZxhD0i9FVRfQNfucukgXqj9/4QMP3orXar8zNSOHZ+16p1q4L4yp8wOoNPbcotMa3+TWxC4M4OmGcX1Nf/oOwnTa24g/N0I1d9JUKHEH3tR2x10/HIVsAd6t2ONjiLpsLr/xAGom8/Sg6ftsNh7SHZztEqLNdDhGHO9MF3gg0ouq1kfOpu7m2HCuTAWjOX4AOtskBGs8UV+4qcaS35aN8lQvNpKOm5oxhccTfLB7hpTP/cJIYbT+n97QiJxV7UZOcnn1u6iZ9fdquonqothsctAXbTaAnpovgv22QEg6J4+sNaYbB1Nyt2kG6BOwKVRd0J5oS3/8bRTNJy9/8gdHRFC5kbAThURa9SzOzGdn0A+KC5iVrxfawqXqF84E8i+/UctMeo8tmUSAWuY1koTPw+vs0FThxfxgAvlbC8ZgXhqlOqUjNeSv2890enegmXQJcXex64fJsEygCLuJIiEeMhKHkqoYNirwoe39aIZaUMLQjE3qzicE5sxXVeVrbjMyndut9+MX8Hw8b1Z8s43FDzMd4hsLqOvvPsb753+25UvH9ggHMH+tYoF9N16RtfpnLK7KGnyEwMF2YSdseRa5DO7+hiOhW1ZgtDqxk0/d4NJcJro3FvrOhuZDHvB+Vz+r0eY6JP/yk93TmjEPi3eQiZ5C9Zd7rVZ8LsH2VsZkSGYcTQflpsK16yLW7B6AWe9eLXAq/UnRp2gAux2MBvaOmdB0MXE/8Y4Yw6Gc9D/+SrVdpcPTtvKp+dprngC2rw48VNQSeZ+dst16uhB4TaxTf/GXjC7tS4aJSShG/MvrRY5d/fWqgogolX7whldS2fC8XXzyCveqN5Z+MwDqVw01AJ95C0DwDiFbEiKtfuBUYbVRLnYzYL2p837UPncd3E37jI/a8WoMK98Q95pd4FC199WU9kEDM3p9UK88GNXykIQQVmxnUU8No356JLELtXI9l5vWh4ylcnaRM3YBhDyltJq3ee6DoH9uSV/FsTHwzhTDTXkyEe+9u7UvEc9BaFcdEhRJBJ21bhJe/XvqrX7KbDzmu8JXN5EeXY6rhou3h2KjThV+WKkJdhk9rfaIY2G/9C7Z6G2i6eeXo43Xv6OZdNoA97fNltpW8fSm+wzLHx9Ye31/fvrLlVN7J1Dt/BR7Wpx8V5ZO0KH3fCMYk/I5qiBvCKJH4bGA6fWOLn/1hh//ok/NioGiNmektHzuzUMRuH/6Xby9NGO36iWocV5EeN2rPDK8DBn89JjAPU9s5mXiQ/ZoVLQF73O/PKRtKFe92hDxHHcV3ThZAA6NfP+Hj/aKJMsctAaKDjli39SWE9A2xZNqTdEDFkfDBPkHy7BeXy9sMqYTD1f9ingz6Y11vTRKtzc8ur/RjfGHn0l5sTBye2Ss+GIrgJGWur/4/f3+h3+u1OcVZ0w3HjLReNL9oNyywZKN9Pe91HFr6nErXspEfcRrvUev+HZaBngXUhubUNb75QKJCGtBjqjxbYWo3737ED63zWP19849e1yDFB7PrY3PNrG9+bpVJ6BzR+PHP8EgBHGg7JpCpY5XWxmvtYcFxP79S+/dAvtffQGu/jn1dqXojWdxLGVdyCw0Ya41ZoVrQ2CBL8G6dua9rxlfGzjZH4lszNzKBLjMOUzK2MIq1g7ZLuxJ/Pfzda1/tHdNTqAgPPdouVVtPxAnvfz8A6SU2MpW/7qDQ7nopPq21+hrKLvlx7/+/PzFtV85XOMNO6P6rlhxMl3oNRedYgSv2aqPRfgyHwERF6eK2O5dBfBY5nv882d4ORs6+CYXB4lYNjK64jdc60XY8t6ut9Tqt4H3x4TopTw+2Py2bgv0bNJTT4F7QyBeLStXs9siBXMeEL6tJ4J1/qnd0q2x4Gfqwz89t/qbrEwVAmaz1ejl+2H96v+30DHfBNs3kmaL+D4gwNTFxJ5wDrxp/r5beCWhSLbSoqx9LPhEXutthKda2gukbwuo3xhF5+3mwZjrlxwMNPX1ix+DHZ50AyyhtdB1rc/VkO2QYpaUYvtLL9mfn3MtgwtNuEufTT3tRLknA0fmLSCADmd8B29gW9R0u6anp69Q/OIDu057YPPSBQQC8x5SXVpujPz0oMheCfWZ/63mW7sh8GxWT8T5AlnrUTcdvLTTkZqrXp+ZMnA/vwfvL+d9z713rQuv1Arp0Tju+36tV0Dp6J2oa7dT9R0vfAhP4nUgTZPG0Sy7wIRAve/wqS4e0WRGPQee9vVIeLgjYFzx45dPsZMvWj8rXBEoRtdJVA+cVzWB8RbAvBt57K/xzogYEHgGC6WH14nvJ5UlOZzst4Q9fe/1/eZ2M4Gk2XStp2k9c2+ZDqPcEInDp0M/rs+HO1Lt0XerhWBh+T2AO1+28H5xP9703DACD6W8xdbraLBpbT/983PIbPcZmObLrYRDNx8wOorHjN1rtVZ+9Tt7cmK2bDLQ/t4Hzd1YRrMlC+7PvySgjvtqPnKzr8wfK8XHrD1li9XXiWg1/EBdvKPVtFHI8sMzutcPkdfz7SQqqs11P/+gmiJi+1DfpirZVY6e7UopLOAOnHVszhGfzY/vnsBum+fY3l3KapHaO/erj6zj+6rGYT0zYOW6j1f9mA0Jx1y4LS8cWtzSYMMTzTX81WfR9emCv+fd1U241m+sfiJSnEPYbDLsVXHsdZgmqpKXw4xdFalr/ZglUOuqG1bbr2YIPz9p9X9+eiz76QUoNN8e+5/ENObr82jD960KqbXR13r4K1FBU/kQH61Pbsw/foy6UkarHo5WP6gBjv32SIRZHdEoeLo/fU9XPt5PxAljeNofJEJV+5v9+XerX46PoPuuZwj1FLZlpRM26DtQDyEnw6ZL78Ta6nw/J2U4wZFwMZJKPzXmvVDw0srvkLLWs6fzdWMD8Xh4EW4r98af3/Ff9hRI3L/vKei9d0/9RSnAZKpiCUXpCal2jj79sKHPQR7OF4ksT6MBi32nPNg/f70t366xi8tnAW92aNH9etv9gs7nHIxJF2Hre1YiyvLcglUjqtg5JZY370UdKdrXKkjt9Xsg3IZbCw8d/ZCt3m/6QT8cCjjBmCfZGJ+MabPrAtjsoxK9inZi/UvtElA1skrV4omyKbx+XYii/kodFoQe419SAoGpAHoMUMUm/RiaUDyuu8GlwotYMb1zOCCwR1AJ+Z5wOs2h6DoTNbUaR0Jzy5FcJ+2MT3J/A/MjuObS5rwAxOXIZktkBot8xf6Ac/O7gCkYNFfJ37pBHbdrPLK8kxwWbfVGU7G1PU5Y7ws/ELIjQlmqjIh4Z0IUfa9YvYkKWwxPvsPrphDJLJimsVyjMIDDNz7QUL8do2FqRAvW/f6CHe+Es04vUQwPyUmn+1vQZuNXWwYQEHLFKBAKY6YwduUgGUu832kPsJR3JQBnqvUYN/cyYiidfJhbb4Y14LGK0WukAhkfAbU8xWW7gVolPAf1mSafpcnmN/dW4VXrQ6rHu4Ld5aZdYHlwFHrEaDJmcP1sYPlujtSo5TMYzj7L4VXzY+z1I+cNx2kIQfCyFarqSADj15FsCF0qo/Z7MzJ2XLYbidbvAHvSd2RTDPRWSW6piOoP3BnsfXjf4Tx2X2xt5oc37zVYw4AMV2xn9c1jLM9NcO1eHeK9x2zMj0upK892ynCs1hmYN71qK/Wld1EsP0Vv6gW4gKd/XvDez2YwZoMiAr1LIozezDJ2cVuakB+3CvlyAjYmfd3H/CJRTeZzdOjXeLMhv9+/MY6KszG8lShU1vEjXzw7xmQLfAeX8cao2o8fRj18uUP1xUTyix+2ryUe8rtNih1xs6kGKz/cf+9PXnztZtPinjogF+ZMwCYQvEWZPjG4Rp30Gz82ZfuvCWn9CQh3DHXAvY8BUn7Pw331joZWHnTZZ1qCUf9ae5EKkg7zT94i5eU6bCmkjMAbfe+o97FcsNjDMMC+NJ5o54ErGOO2tLY8LRrCJhtX7eUyLvCJZZ0e++c2GseA8xV/TxiBT9n0duzUBvC+JA/sv9qp/0LhS6DHRp/6A99FU+lAGV5Osk3xu8oz9mH7FD7MnU4EK9E8Vu+4Tk6u2YliJ8TeRPf6HcbZKSJONmb9MgwdD9EZqRjFG1ot4u2TgDfPe9jxk6Va7gMyxa2YvPDtsi3ZrHhWAq5LccBp+SDVbDlMVU68CKlG+S4ahtOgSr/1rTl5XU330yGAvqA3WIcg8pj0sWvYiA0kXHjbA4aHAoJGbiqqh+cnYOenqcKNcbkQ8BRPHqXXTIdH5+FhLWZHsFy9jINSc67IRONHP9fpjpPOvm3Tsx3r0TRPXQoQrChGFduwSULjHW75VEbyk98YyzVLCKDl50sRCmi17O6XFhz23AMH/ZF485sbVZCWUoCxYbZsCLfvRR5N/0CPZhFEc11yAaxHS6HHueGN/qQeW1nzfQnb6utetdVtXgC/P7zRJt7gatGSWIdX+DrRfbWxvYH5xxIIQnjEjrQJjcUAuwJ6xkantvqCVX8Ibhx88aFG/c1isJ24pAWEwvtFdYSCbDG85a7Et5WjlH2VLUEgX0Ct4isJupHLlpE/23L5dG8U90ZfTd7ukELcJwr22vEA5u3AqXCnXY+Iq+4gmi75gCAQuCs+yNElm7CPEzB/vhxd84nBDOnEQ5OCO+GuRcuIal9toDRgJNMz6Y3BVKcCkj0UMZ7mxFuSh9nI+8933eOR7Dw6dUIru6hXyUK2UjbSYe3tzXMefQZFy6bHy7eh41y3ZOeDvm+3+FRCN9of6d7iYkCWj3mBUV862A1eZ2/WOliDwZUE6rdY83aTf7MA7gWAiFlW2WLotgvBjptQ50V6JmiHz0VO/eed2uuepqHnbRn6uX2kF/fxqAbuwQfw7Ls2djabfcVJ6H2H5eoZO96JRn3zWs/NWKlDZEEiGdMONIbdIT1jy6/jbGkWLZan832PI9qe+ynXJR5sCDpjpwG7aPwkqIaxvpOocSiNiEP62QSpEp8oCq5NRIPmksDy8Z5QW/ZG9EkFgQdU0u7r87loSlzfh3n1TJH4VSVjLqJlgnqc5RS1mh/Nm9524XZ/OGCzOntsmUAdQ01FNrWOJvEISXT+l4+pHw08m5XI5CF3agy0C3VS0VjJL+B+K0wcQq7qp+NUBxDYW4e6L36fzWLbol/8IP09W4ydbNMEPbwX9HCNP96SldEEm0Pk0MOYP9kCzn4AHzYfYL+9BBVb7h0CfF8lWKO8GxHxOUPgv4wZO5KgV7yA1vsY76cntYPLtl/8mYlwxWPsfZq6X8qarQXQB/7D50UGDx2s402z/phmiyS9bLi5LiX2z1HE5jXfwN3i6zi92DOb02zvQvh2IcbF2WPTq8UInJz6in03rzNmDVMA2J1uSbbEZj8acTH88R9Dz4po4WGQwOhcxYjfdprBC5a+gEauK+ruh301zW0FZYPYPXX6Mu/Zj29hxiX4ZnZb78GcFwe9MUowjm77nrtlEML4FToY9akOeGsb8NCU45yidwoAWdc3WOOP+v0FsmHK5xaKdbNQzyR7bxbLcws9wmu/7wFz571VuO23Ij6cOIkxK6cBuHbWQIT9lgfdu/RzqNrgiY/D1mdzuWtTeDhwJr74plwtKCt08OwWne4fVwGw7Dq38LopRfR6ahFYajXn5P7UvKg5zT0gZfOplfcN1vjqW2PPNgdZhM7zwqG50D7VvOXk/IfP1PZxYLB8fyyAiw8bVO6Oz+rve3L7naLPRt5Ww2JiC7yNcqZ64XbeLHaxCVf8IgX8Em/SwCuE5jPPsePO54qPYBrAz0m/YvVtXavpxQe+UgHmEknc5NVi7qkMXlmqYcNximiMLnMMsV6+CZ9Jj2zlm3f4iXKIUSM7Bk+/oAbJEp3wsU8wmPfSxpTs8omoeZQG48NnhP/jl3M0dBU1wXGATe1O2CLnibXmxBrwy3/P9LCvpkvTdUB0vQltxItjDN/7iSj5UzuS3UOYe+Z/TguUFzOhYV6NxjQcpEFmOy+lXn+Us0+YqBsI0s2EUSQM2ZwX94vMlY/tmq9wz152wSskT0KqCvpszELxXaD7fi1osndtNPV0E8PNdSpxUD3l6i/fmC9gUsc9ATAMp1qH5cnW8Gm4mNkEQ3WBlmrlaBNdw34Qgb1AHW9P1DgGmA3OdcqhdBbf+MA2Rf+VTC+Grtq2WKeJUS21/QiA639v1KCvxmBA7wmUcD5TP2WaMSNBFmH1Pl+JoM51xu63dwEUVYf0oM51NOed1YFnHGOs0lipxiNCHHCB8qbGVVAN4s9AhIdu/Pzz/VdbtGHl3zcI3FdP8GUXHKBOGFKbHWg1ThcvAR/PeFFvjGdvWai+gEBoJupmmGMTEE8lvHOJSZHztbJxU6/JbLSe9PAJbv2ct+kCj5V4xJ5J3t6yvJM7FEpeQ4tzOGaTc3qLSquy118+p1f9XcvLbocwKthSzRGSf/eb2+hTlirgxuo+Aa7NOeqo98Ibxj5DYDP0A/XdvWx0Nx5MkINAxaueAksff4qffkCsSyuDBZvbAMvn54qRWVYRSS2RACEVaqIE5ygafvkz0E/0lx+8abMrAwW6ISSKOBbZYNWpDiswu9SVCi9jQK8GuLsylcBzFIFlPj5sIE3Tm14v3Bj1BztKlI12odis7lnEvpdmA/do6qiRbIxs6hpfhcsd7rDZGR4Yhlt3lz/ydaQ2h0Kwu5hHBD0WIupJet1PcnKdwPa1Idj8wLMx73bOAp0nW5CY1TdjeppvAqNeOZDXQTj0QhlmLvTJxyNbJ6TeEOKSwAzsOeyPl9pY9kKYQj6zUqwOXO+NWa/rsPGCK7Y+nwmw74VAaHWbBzW2yhLNtoA4WHqOhxT78wSTd3QnwPKgxSqquKq9kpepnGyDYJXPPmBi/rGA90ngyCz3EvuqN4+HCJrzyscqxl5uTACfmSnqX9sPm16iaYGfPj9soy9jfDWG0nfZOGip5mc/vY8Jgj++osNMitjYMxWu+Q6rcHpUtGg/OgB3eKXmY5f3y9U4J/AmGgHWeqx5tJlPBSxro6Ym6XbGlI7j8NNXZHcqObAM3DeA0ykX8L7atMZ8fS+8bBwGkWI+iRknchsECRECwt6R6g36OSnhGj90D23b24G3COWza7+wf/LrbAoPQwglOF+Q0sxNRQsiNXB5ZTo1YYPAsn+/Wjh95I7sZG3OFlI4AZz7r05A4D7Yn15F3cFFL7gEFXsigZO9PprJdj6d2PI5Dnegs2AgcmbvMx5ESQJbdX5RX/CegJVhZkPHlzFFznQG68Zy9MtPSHEKg7GX3fJQuO88BPDdBENc4RhQJwhXPRx7y5lORLlq3xB75llmK1+7wBV/8d3MH9FYfp4JfMbzkboXewZ0Q4UC3Hjti82vIWYzNcMO/viXi+W+n3IZXEC9rUqqznHN5sb8QuhL+hFxR8n3hpUv/vCMMPqyjHHE6rrnNLdILT8TYxIyrIOfvvPEb5otdjfxyrJLA+qj97rzTgti5YLlgozOh2XLtj4uoO1RiX76TzgEN/6X/6gGQ56tfoitfNXDiPHgIrDi/wRzIHJ4rzVlNH3vNwITLhTx0biNxnyTnrl81VBMJh1d2fjLz8f66lGXeKUxz09lkD9AvuDDRn5Wk1JJJUwo31Nf6guwCBs/ACt/Rq/ZVIyer8YA7k/HgD6KLjCW8v4/0q6kS1WeW/8gByIg2QzpRDoTBOxmgh0gKk0Cya+/izrv8JvdYa1Th4Kw83Q7JKsYBPIIPs75wI+vew2h6hzi8+dShJPxCmK4yd6KOdHljn4zn8H6pEXM3XdK3qevvIDNJ9qQwNh8//nLf/8eqd0un5LFCtD5dNkze2QqGjdWf0XopZTYfqfPsN/raw1uA7vSlaThvP/L12Z9MOunAol2vAeo8eOReLeOoKmJnlfdvtAH2XXqrxuf90wD5R03ZLO6euGMVxxEKNlUZYYRKg7a9DCdsMxsmbih8sCKDEpwbvBynNRQ7LgCgMkuICXeGkLgZOJQH6OI3B5VJHpvi2o4u4uURPm1zacH37iwvJUvElpUR+KclAXMeu0/vkXq/gmZcy7Z6ZwHuSJ5VoTcHhx2t5CbSqUpF6AvVB8rPyWwu906KNG6PU50mvRXOK501VpDlFRUTsLJnuqXcYabK/2YnShRN8r7gqKVoRGym9wi/9MLyFB3HTP63QuJqrcyCLPVAnPZtStpwU49qoz7jk7vr5PLY/cp4LW5RGRHqC+4ekIlUuNPzSy8NdB8/6U+6xWy++yNdJzakwRf41hh+tZWFRP3owPfIz+SILpuqmbzOTzRuLNauvKyMhXZLk/g8LZeuKk/Tickz8JQ1mZNnOTyFnRfVg64hnNnMfxwyBfBvf7Ld5hpjnt7uGyfpX6+nFVipdgW0jpa19pOnU7/9CBPXeer2Vuq4pIuL7k4MkPT95EBZBs1n1ws/WaEwnb3uM2JhFgspwlYeipTZee+bEo+GP/ljzSPAx3NfmaBtH5bzpK8Cwen2d/hxeQdc89zD+SYBY7Oh1xgKdvytC+22QLS3/LJdvKwDuknHGvwm12D9dd+nU9L+lHh8vIeDGf3gxgO2lUG+pRVZnqLVkz1VZeRfekfbNfsezT8TI3C8+x8aLNsX+HYnBdXNF3wDU/efW/zOk4pUCXpSKA+FfHbViVGfqQSdpvzW+7LJwOQW9bEWxZ9SiNzlBE5LiZc/V6P8HsaC0Ce36yY/0GemCh/ybBXTtpO1MJNpyWoKprHk0R2HHTy4pre0c91S+ae+IBY9MiPIDvfD7uun10+jC5+wjpVF4w43UasHlpYQp6OG3YSC6NbRdKjQdekSP78bb7yT16Lup2XMfN6DbqRYYnDcaetyW6d+Z2qSnIE+/I+UkUsntWfPgNilAu8/qCvGN0ib8C4qxlzo1st3uq8pv/61TbMl06rfKR6uIDNr23J9vOzxShqT0IHN0yJeUi3Fe2u3EX2Jk5JcRUvm/PHTkM7jS9YWD7MildyXaBL9XGYbeY96u/totCCX2X889/T55j0cHl4ClbDb1ONi/f7jF7bs6Bj9bh2TPICjNpcftEsNZg95V1gwCM7EuK7QZSP8iX1UCN9KFUDb52OS7J//uWRFFQOon/reYyoDy45Vk8zX6FPL6ElW7p0mhw9/ONvlO42a0KQaoX8uU57KE7LnPl8POfj3ZpkGMds85c3ob/3g2AdBGz3aIt8MMuFh5BQfOYdj2612qznsza68kPz4PBCwyMw7gA4CfBgr10x16+GVv0uItbDdgWdwlf8N58YnvFrNef9UE9VgNeLd55///Ah8qlJcHZfCX6hegYYXoxYsmt3dFW+MNzvDSEeMwx7et3eDoz7Qvl3/WlRmRTNeRJx3Nqa/f02QlZ2uTMjC6ZucsZw1N6SXJNN4i/s/q9+/vB/e0aOPTnN5Q7DUN3YrpivN0Z7R+/SxiPY8df2708//j3/ZqW9RG9tyfOff7fYI7Vl83vWQMu/NZv1Rc7y07oFslR8ts1zuVste7DgWIsO6xsjsFdY4SrM/hJLLKCC1ufE01c9iVh4aDtb0E2bgA9Rzv7w6PvenSPtT48UtpKiurqsx3l3khVV9tIFceptQPerycSdgsxcljxugdTcdiy5FEG4AuXXQ3T96Mx8fmP0u+Gqge1GvmF1eCaI9vTeo50sxjlf/9lD9m0ddK015S8/RcJeX2RQrquamPM3OaufqfXakj09crytne5fHjzn6Xj5wN9uuo8XDF59X837co5IBCuG4Z1DyGa878aEtBRiK2VUqfzAFuZhPMK8CzUW6Ojbvz++il7mxOz72wiVk7Hu/+qNuRtZSsfh9VUhO8sUS26odkJZ3a2//Iz4wrc66QByCe503hNnDMqOg7xW0SYSNttQoVRi754jNOvrPz63lS4J5X95hX1akG5ltlKD6qQDPL4fLzHVJSQavD1gGxa9kBjXRgvgpQdmV31l92199iAh2ZF4kWd0qzefArD0vUz8284Px/gt12jWM3Q954n88GIU5WgrUb17PHKZfNwIajKemd2bT3u6VnYD6rc28DAtn+k0nLUWvLpYMfu+cfOeJPuFToZrTYys7XKRovYOtFd+zJz7aXxxze/arP+Yzb6rikF0N2BBowNeneMM8aT9PcGMO5eujYpUg5sORwSfoPrnF/hx3Rnwp0+xnT9tjncPC9Kf/sR6URmVVO7REV3fhxULYjPPxfLVOhB8qgsxk0jPRUiOd0DefMrM0stSEf127Z//YIZq1YiRunzCe1SOlGnLuz21+U+FFTm8yUVSmC3sKT3DZ2d6tHs1etdnU3yE6/u0+tMbaNL3MejWKG2Ze7u0f3mg8dfvYB41+o7vy86Fv7yDKOdvPl6uvqOdjeV91hdWzv/yhGt0KzBPD2neOqmqal55w2Rb/sb0bzy0Q/F2/3ufDy18wh+/GXd1yv/1e5KdGIgx62kh51T68+/ML7PIZurucv3Xv/h+LwwNhTt4/+afW3/qSgRoPUJxWVp4ck5mpdS6cCH5YkZro0ZCWKc+gpccm3/9k06sTKWFjMUvdnu0RUpH1B/hi4/oXx7KBE1AH8fjBuvysLbp08YOfD8kw6DzOB/3+qQC9RculpbLdz5dL5cEPsRiZParqEccA8x6Ys63gopt1WOhz/oM97Nf+pcPvcx8QduX/E77qX3If3kploOb3v3ld8B8FrPw1dy62Y8m2uyXiF0JXvV/eYn/mDju/vIA+7sK/vie3EFPUlH8yjPcb2bD/vJ91qcKhcjvTZIAEiF7WccE8CEy2O5QHPPJPxktnMbySbtBCsTkjDaHn7hssdTanRhl8ySj4OdaBHPC00nKk0ZfnTKLnbT5myeX9h4qLrpFfKMinQSBdfzzq2R7zERHZ7xYPzetNeuBSvyy8Vui2c8zU0/adCjcdwDxdfDpeu5HSic1vUJU1lfKZj/AhWJGyBamTJc4KavxZVjN/29Nwep/rynQXvRDW5xZuZTMPZGFlO+YKTlb1FmtF4MxkYhZVrbt+CZqLG0vdJOZv5zbwjkYsX46dw2zEi0X48H7BGClRkl2ZvGshH8zsH6pCqDdczQ77smGrBdjV+HuWHXziqnhil7LQmbYDaS8Z46Uwdeygvl6CNF7/B7By3ZbYqLo04mHMrhIlruELgc3zYd3aWLEk8+CTk2a2BMM6AnjFwYWvZXQ5qkrMnh5WGFB9omq0XNZjA5OcsTqFFXpSLLAheNkHNhldT/Z/V3zNe0SJCmJtNHoFMXUMi0wQ0bVcrnrxC3xLEiT348YK14gHl4NGZL788Q8/BjQEJ2bBoZ8dJm1Cve5aKbBAtpjyjbacxP+mh3iiJf5AaNX9KrGn+1LIH8/iMz6vRIlPn2RUGjHiIRF2odK4KB4E1+w6PNY8CkxCmg/3KNC68aqW35PRyguxp6Q7f6GqPzyrpAy/0u28tlG0qj7PYR83rtlUt9CGEsvWbvB0iPBrjyi6VbSM3zeZUB8ObaqVdXSo4a3Yc/CdWymvXmBETaH5MmiR22I/lJDCd9+9Nnt8jTS8XqTSkgz68S2UUU7YReaDJet/yZmYXi2jBfGCNc+Tsj29HVCkV0fI4zYcpivNor9/OylK1p5fsrsPdnbYnXqVbi2ZcKsqc2reRwDsNjzhaXn0w0nqjURapBfMEviqBu6I41RZywmgr+Kj2j5mM+PWr4RIc01zcd3I51B8QyDLse93vGHJzASv19GyLi/dSJ/DQGCGDd4XPFC8NPxLcFC+sh0ZWmaPTxeZoK+vzsnjlc06VToc0Y1v1ENZ2U+uXHTwmT5RxYS6dXNf+8KixzXzCFhnHN38V6gVko8srmWayGK9O2h7X3YEutzRRX3xjfA+26FbKs/K9TvcqkFKUYZBTtYdWN2kBrEl1udjn4o7M9myyV4GqCSnfMJkFyfUACvycAkfXFkU+4IA3IrrMkmTjR7SBrzCt72eSdR9ghz7iaeBvrp/maG73no+3hDAcO3YCy8fc1KyIQfl/XUr5i3FTshHo5ngbaEBpeysbWFeX8ALOmiIqFlvNBkbsFDkrnRif81LEG7s1dC97C2jGD2y2l7Ri6g6N7QlWtpIXPnve7burviNT8q4fDa+DHEo3Vh2/vohNymhqqfSJIRa1V/QjG0/KordKuR4BccKx5kwwI+AQ+IY47zd0EtzWCnj1dyS+6S4J4srhDJzMECOW463V9C0l/lQmFREz8F95i4QuqGP0IOip8Oyl3UwJYwkFS/auI76iZFk/FZUol8xpzFJy+ADj23bJ89kpzCz8tAJtGP+d2nF/R88Ci8XpGCVz5sKvFWB0t7fDihfK5PEaEhgWv0q1mqfZuUP9Gbgit0jzgFNDaPS3HUXv6Iyaa0SSUvtdMCVo1lMrf9OpWsKV6m/eHfxbsrXf+K4Q5OO/hs6y1p9eNH3wV+sWzmHOMm5G5oqJDEyZmidfzK+e2GMKz76EMi7Xqwp7D3C9gHukm2a7AFa+pHA9zHPZUvcS3oZzW0WjH+Krw4PX5C9JN2RpSVG2ai76fq75qpaun2eSKW+dgjkWenHvQyx/Q911unQz9CysIv829iF/LlUpNhXBUD5mm8zaeVRAOonHHHLiZXKp6pKEbHcrHAsMiMTomkdww/B3NiBh1Phej4Ufdl4lKQ5YPdHRrPgbP5axh+MR/N9bhAtw6vySYf36moIv6E9MkMKi0ZQZPcNAEqONawNKAxFPRYA+yoP++V13/QaHwCjNSp29Ol4QrET+Qtw2lHdRag7IX6fD7vuNh2FTXi+Csme+2XEAMzZzweRa+0zQiLPN8RO77m+ZQ0/lV7Le8yM39KYvf2giWo0nnE/Gd5ysdLbS70+4HHzHxrkE9B0zQQRf7AfEc7VeLw4C14W7ad+eJtD6ynWPub//1mvRQjcaUvtLLlEbsMY8HP874YRNlZZOa7UAz3xxOmPXeYXdZu9VkLLUHX9pmQrL1e01aSvTOSFqM5jFHviX/P975SiZYzHtFBHhpwQ3/CVS81FfUYOsMz5oSq+DGIIhotF+yqE7j4nQ2hkLfh/cOvwO6iarqVzRUVp7vGLN/Yztd7N1CxMiLhJZFtoaBagmW83s146ubTyH0Xmjnxjh71U4yy2oz/5rOzKt6IyX6vwuWAgWBYCCTyjzGvK41jtnus72LkJZW1MfodiR0EKBUhnGTIX2OCl+HHz0d19FttdYKWbX3JScXy+8jQ9/70yf5nQTpeOn8B7Tm8Ejt/xGga7w1G1qAHZOtbZzHpgwdQ2Vj+xx/DJaIFxK/xQtK8zO1x1M0eKZNlsGDY9un0cQWHd3GXmGHZwh70B3oi2RhNcl2opuDawsvAXhkvUiiRUfFDKxIYwgUjOzVt8zGtAgOM4yPCaPlbIrblHv7DZ8zTfpt/b6YJuhn5ElXqD03nzkMEZsdLfA1EX/U5gRKtf5v1X32lnIweR8oL/9g8/iFXNxpAnIQdcT4ktnnRCQwLOdzhlRysO1503hfKKHwQnLtSOO1OfqHli3hP3LPC7O4YPbi2vYXjrK86e3w/mwVkv+eR2FqiIfZoT184rGFB9ef3mdLbTUQgMMr+4dvUVqJHxcXaM3dZ1/k/vrhZ1h4voquUDu/cxPr74t+IqSQQNr3+ruFyLlMqfZJrPjaNL8G+Dlt6mPGGTsl83my+vjDv3FfVwI++o5ck2WE142oojg/PgXhrXNgukYxcNKN2Bx/zG7NnvOeHbpDRbtBtFq56M+3Fy+//8AuL/BH/1SOH6Wk5LOzm82dN21igr2UEzKq/n7z30sDT5I7+iFtIjpCuMXPQ/LwUHcGsZPZBBsz6hljJ3LNffk8ZZHg8kqBPjhW1vtRACoR7upz1Css/ngGiwx1WToSmM55rEKCyoPpl3ttz5keYfx+v+vid92pBOcz6m8qkqAUXugagefRDgoX6EiNNzBFdzs+UnQ/hgPr+2qigiujLTHuZ5JSujLt+/QJiXmIP6O99oGaRBCysFis09AfTQ2XkP9jM72jGo0g73/33zB8VEt+cF0AfPWWbWS9RyDUNlfm4Y5kazmtOLdNAMQpbqrhxnTOz1STt/QWJFAppUV9CA7D6jCa7NpIVSlrmtxDoSYHLpYZyRivtCsvhs8LGjFfTLjbvek67ir4ylKRcjTRA3SMa6XrmG3bW3x488pgQ76HsqvG0Nhd/eMcCZXyJaXEWJZTB5cGMKE1t4ddeBNNtu8D0xTNbZIPhQHmNZLx61+/0O32lBP7wbAsdDan8Nc6wod2En+v+mwsIagktzhsZ18e4sfk+QxlY+1tI5vpO5/kV/cOj6BF2NnMwlyAtbwYLFsULjdEvcEDSccu88aoI4RpeAncWvpizZAzN/HuFA7MObPcZnyHP114LE733xAszuxK3kNcwrrojcaslRfP4q7BfPc/sdM+cUHq+fRUq9oxIZINpy20yfNczPxHHUZt8jEbLQSjcqJhTdRsq8/OA6AyL7CSeVVwbNRU0+lEJfrEfmiRTfOFw+32Ib4W7lP/Vb78sGF3zNBL9om4oGP5YkeBglOmEECrR84EVZn81FI6L1m+0pl8XJEwa2WYKqmXtT1+dTh3Nx09CAb2O83mcsXnvhHc+qcgkcclu5iMQvbaDCMoQZBJUsWWvBuwHcIuTPfHC04CGzKFPeNS/F520a2FP18TPUGIZZ6o21a6T96XBdV/6MVz9+qYbzhehasdjfCAefuxEy0PjjpZxXxOXGDWiaqQtIKu7L9nIsAmVnWYEOgq3KtveSrUbS2gWmmxwk5i7K1Sjcf0c/+qJRLr/yPmMX5rlliXZLfM2FLTSzmANy2CuR1OI0ORc0w/9G4tcbbrJPYKL2OJyJEaneum0Jf4T8Bj2xBvnhr9/1EZtp/MrsXup6ehreFMIj0nBzO3za4+lb6ogJUVHda9+VgwlpyugD27+9LU91siXYPG71yT8oK4arK3fwIgNh679uLInfhQtfMpLQcy8hZTX+4HC7d6vibf4DPmQh+YR8q2VkMB4lh29ivcI71V3Y9Fbegox89U63SwN3AffVyiO0WNEePR74lYVFqOWAUYtR1e2e5KgUpa05n/8QX+eMuTioWslNE8sMeuynLrpYPtXJK82iLj4w+wxUD8YTq2Rsd3x/ExpffJqlMnWkU4/aSu4GnlnuKpjgvULGLkyGdoZ6e5Wwctl+hWjvwEK9jQExADpm/Y/gCOa/RueZjwRl5XWaPQenuhKhnc4f2owQtkaO5ZmY4PauBQZHDk/0GpP9uGqyXysbfvlFosXz+1JfzYuxLRraTNldTVgoE/0vP2eVL9UQTV6qRXo387ySRT7DzEs994C5K7/kZi2BVrtAlojyckz+jtSJWforsXo4lGgoJAAKapUy+inX650Kjnk0+MqZHiVHGOY8w7x+vIncvrkSTbykuTT9mg+oYJoRXbNIuv4qfB61K1hJNHWednsT7/taNjTZfbTEbuseKMfWv9DvLJRUO9HlqfbIn6RzcLZhKvoJFkw//0/vZWP/bXRwCiXETN47aXibPOvfl11NXG35SUdKySd9TlvwFVeIlswUi9083sLiRHHnlCkWjvC7K+xvrxn+cTns0NymyIsF1Itxm3GYm3OP8heu4I9BfOa43k+MPKgaTrucvjCZr/08XL/us1853O0Y88rS7x6W3ELPBUIJhYdWtTmAj8fEmzt8cF2q7BNadkMFFGHu8wOni7i6c7jaH6/zMSEp8KqNHl9jbqaYHfb2j/Toz1S9nnCTBRtu1H9QYToPnGZf3JKJEazBpQexhNxVRsjNmJ+RjH9tXSa+XbUMrPVl0lRE/92VXJmx6cFOjDjQMdX9O367ks1tNj5OxLleN4b+4okMJY/ic6nRSH+EiJAccqsf/ww3b9+DPoC7ZiR5gnieT/v3Ts/X7Q7hTnz7kO23l92Jnm+SCL4Th00jfTJhfzlLdPX9SOolwuJnu4nmvc/mWoo3xrzGpjCzGc+/sITlZiRRvzsYrhAhtzr+GAbYa276ZIgTVtJsckOIieprKQcIHQ7in91YQmRv94B1BNdYe4bn25Q3qKGb2f4c/6iV3xYIQOe1pPgtVVXIYfSOGozPrHwuu0QXy65pA3fxGUhWAfEo9SQYP2gH7LDr2X4ZKE/IqPyV8zbfwY09R6NgZp3RkiS+jn/Sl4Js15hkf18he1uY8i65T5LEr0lQ0yXRGha0o8nOs15Ji174f3pRWJ14yfkS2O4a5cjT1nEpmVOJZkvQB5ig0R91c3nsZseMlehhOG0f1Sz344QWf06ZrszkuPnSQLP9UfMvXCPaPDyZDBNq2KBcpXTyRdgwGTTgbjO+A5HjD8Yzfke83JNQZMvNQ06HpMDHr/Zt+N6bmTgJb+Rcu8zoWGlieZPnxB/xk/65/eTX/dj25fq2MNrPttvvyrPbHMtL2JUi4b/6U9Gst8N8Rk/9XCyCuavpXJewwKFdgnilBmg8G6c8z9Ue/2KRPmnC2d/O6+xKgTDXyuzh67yA1COscEihQRiTFqp+dO7zD89LbGSTNRCvrkjvCqNTS6XPfLQP3ysgnmv5SctERfcxrr5CNAoL/wW4P7DbD/zKf/DW+NsVWQnsTalroPuWuDENxacPWue/9IXZTu8ZPYvjcWIdn6LTjnP5vw0TSfl3HhaWC43ZHemEuLv2KshzIYN+9OvfLwgA1X95c42NV8jsYprFaTMsFi+qU2hfI+nBmB9wcwdy3XI95nIUKUVqxlvdDRRw/RgEX5kvOr7d87e/NRAeym9ebzCEP2XV8z6/JASm5fN0IN76ia85mkv/vJ0FC674V+eMKxj0wB/Z9xYOPEV4g9r4DDPV7zEzM/HjsIReQd+J3/4M1ka/SKNvlUy41lOD6rXAz8lNnOdcWMLo38A4u+nzQ5ycKk+ie8FsDO7gc18jLgborsqpI9OPKTatnLaew46rcKGPmXvm0/CajCK93OP6adw+199Z7toSbylYYdjYcITzf6ZhRPrqkF/Ng6swthk9vbsCpq6BteibzcQ45bc/vgygvMAQBw6vsWEJPGExwlU5lXnKufOBRWQlg/jL7/oRs/9JIAj40pIUf1ynrrGiO6LkbCrcuptqk3vAtpjfmW2beXpZGLJ+5f3R99lGNLFzjuuj55xoHf99OuocLwCzXyHkWWYom0sr0aHoVgwtwKnktXlcId487DYxg+0sNcnKUCrS2lSnRtPe6jaJoNtnDyIh9WqGtS7bwFuxisJzl6ZD+uTb6D5/ZLtaontf/0Nzi0bK68HToWDNWn9aLCKdS8MEC3fIoAchRXZZk49n45Gv+hzQAVxSN3Ywq6MBE5yr7OHY/+qwTMlR5/1FvHXeST4VhkAPBYy5s1+dzzgwAA//DHK9i9dTPGAAFmpVbJIiZ6dMCcug7t6PlgkklUorXMJw3TbLOjvIiupuIyPHpHiYZHdx7yj4euakW6/dwFl5+UvnRYJdeEPb93OqbvppdIjGnE0kPsdZ2HPX5Boc36H9ZVnhFN0pjWcWivDTWGt8yFzmhLaBk/M8Lie88sWxei3ffosFVX8rz8DY7hZkvn92dd97nGY9TFFr8js6Nt+9+iLKZ/rPciFYvUaTOv8MPuhqpvzPg/G02dJtvcTTQXEPNHlW5cQb94tjyeZweGUL3S6erUXxM9YJFC/0J0ZXQlIpJLWwup4Sf9+FvyvfzH3i8hfv0LsfY2iZ0cVhr+5j+TqjgJkOcuQ9ne+Sud8oYD96ddSFat2J33Ovgx8/B0IOTeiE4qnHYFtw3kfrXIdikPjucgr4zsrZj0mVsHjjoQxz1/UnsW0O5l30JaLhuG1eQ8lkVEZ3ZOupCVVt7Zycx89iPCtE+x3bTjrIwuG3dNllzRQUsFFr8L6t12T6Gy8Qg4/74gk1KX/9Nn0Ln0MKykx5zVbtj0ZB/C0ZXKvce2UVyT95Zuz/2Z+XZSI2tTTUHi8bWij2ljM4RUGpeTG7NcW1eQeJVe/3q2E7I5nI2fz/Wl/eLPRv+9QbKSHConxMFnIazOdYuSfYRD5mQVhVOZTV/keGN4uIj4ESsg22Iv//DMLgqsshs29aWHxWe/Y5svYX7+sBdAWb+J8Ei0dYWk2YJk/iS6638L+ygvzq3/GX0H8tWR1k2/65V+/jf7rD/AjaqGxwhszM8TzwV6bJWr5+orVmX+70+JB0cGAJck+37cYnfETI2lbWswQxjfvk/rjoU+wEGTmw1DQYs7LzTujND619uRw8wm53SPqFNWY/+WVqN0ZHrHd5RSKjaFJGj7qNtXOYdRJuxxatJDeMkZq3lWjrEAE9SK/0X7rmGGfHaAGfrr3BJfhD4m10GL404sHeclSRuazsLPPeCQO5lr1ZaE5/utXbvJsk/b861NQBf7i9Zw3/0oFjf/0guHXXzT79x58PN4YGds0593eeCJFR3ssXSyt4lOIDDTzMYW//DJdv+U/vz/7MSOlpwIlsOK0ZdvXg87+gKow1zPB+ulX8W4vHNiMxpOWc3+Xs9dQw/jJj1R/krab/vpVKx+lxL9HpZiMg1n/80tuYV1m/OSSXn4LmRnXQA/7mtIFzH5jHu/ApkTx+F9/hDjH2A2nZ+on//jlNuwXiBsOnb9BtjLilcuhEq/y7ejbjmyJnZcoHP7q71iXB0KWqSek681fIO0Qff7pwcEo/Oafv3foaQzn+vnCnJ8wvJkW3bCL/QJ1DzySSNCVPT0jIQNaFQ2zgyBPu26pndGst4lxfX4rbgK6wyYJOXP+8rKpNl3UDfGWRJoIkNLUpxoW+WVHfNerwmnWB0hyLhkx6hNH8/hLcDDDL3Ocx1j9Fg9jATn9VXS5eOl5X1jMXc/+iQr9ekXTShM1DA1l9HIlO3vG5wb9v9YUyP97TcF6j69sA4eyGzfLNELPudvkX6auE588HsFuzRfLl/EKMXEnHjrh54r5t8lKV5tvXevt7Xxi6S1U7N57mQtE764gUbOM0lF66wEsyELFXPuGnVJPCxlKxmwsuMjRCo1jjZp0t6CTEkT2tL5eCpCz6Pzv+uWTzuenU74jUdT+csGG0kP7YvmhyhM+nTC2XoJs++lgqf7tUvbRHUdDh3Fk25o8bb4KC4BETiW6NGJajcfuFcHgcAuvL04dMuOLGuSQLmXhklmVAsfzWSN3+0tck33zqdgZBQyGfcQQqxpi8MZfLXlfKSGglfmkvrujOm2KO9k1t1C8zXckaTu2cYi1LpR8Gj3PhfTZpgzrhSUmKyHjGq3GkJBdawoh3jzTh3fnESOd7+/+2Xuw1YYzi4ziZdMbbRrYGFU8P9+QUg0pDepsFLPwuL104ts8s3W3fllYUPdW8eKhZpC7Y0G2uzwOR0eyW5Q8+JFYwNi8puBmwE9abMnuYp+7sfWKCLwrFcygyWhPQXCxwM9rxvYiOOSDdFz3sJeeO4Yf26/oWXm7wvObEXbaaK49DunvjqakNea9ple52Lz8O2wCVSUYX2/2aCbZAqI8J/P9jHZ/45UBJDg6WI3WrOqdg2LBXvNqvD44u5xtLscYTB3lWNgHoxI3816iMCpcFrTzuk49WBToWuke81prkXba8drDXI8YrskpZcbyYMHm7F7JltaHTqwSDcC8WQeGzy81nK6bR4NsUK54KlZ+yNE7leHswotsrc+uG33sqNq2aEesi+CJuDufX/9ttB/ZJh7Ox19TebD3ExvLp9MQftX75gjc6G1mxp8n4ht8aaAvsiMLBZs/zCVnFcl8bxB8vbYV79d2qdX2eY0/pNRTRhblGXBNE6q2r9Aem3X7hB/J1lR7wzOctt82RsEj9Zl3MkTFPfc16mrqnZjJbzuk1LFdwqLbWWTfwGDPAtNDy2JTEUderLu2MCsK7qLx8OqSBum0EXKhgdvt6cLqXhUNbp4KibyXKFuapBo6wvHy52oOVd6/jegr2bvDrvkSEvYzi1n454DMHi5xVnUqqLvXAdHm5RCrufZdc8k6F4bRipjpZ1PXtXcuw7D6VlQZAoamxGdfbb4fttl2m1y8dfeMwqfvYvTEWSXeOj5DZHgv4kVr1v3W4HC9DsBmG3/TpXxKIw6QyoJ499QSino3Itg8nx25aNreHnPtXALrgz0Wm3ZZia9ujnr5DddUP5Ie9VctkeC1jkK8oH4hmlCUGcTKaUWC/HjO5///BLfebZjxe0+iv2pXCaU3+UJbnH+7UZPqAgmQPKpibtnSX/2/19qHnsuXlDYZX7RIP712DAdR2EkruM/nJX8fLM+MKBUa/pTaXN+EUNe3V8ZFj7W7lh7x4T7Etnz6tHfozWXKyJKebJFaQYR0qQ/IWRSaGE6mXoJoLULcsxNWw0651BpC15Iq39vUjW27fUJV5XesLbmcs0GVj6gV6xXBP2wLkbfLo+YapYvlMTFT5RKvS9Dek8ac3ceqVrqULSC0nDsxlL6vhBLuCsSPxysdF09mD6XHe8AOVQieikPe86H9QrHwV8S4Ovvw/aVhAdF7TNnRq1o0aL8thfNzrxKLNNB90RIsIMl4YLe37dpSVL+oRp/qQN/b7p3zQt6PYHxyj5iHci2m2lOv0J64wTzJv+SDNRZnWPcPD8/jE/LKG0rUR0dEnN8xrKaovkuAwktPfxfHCfkuMEt0uCpvErnVJpyGqYpAUdQde0yXVyf6gY7osVQrKpfqDom0WpVQ6eOLXffUtMeCDxk0KVng9+f6tqeL/EvgkbAPXtXbHvVuf/e0Kn6/aU/iKp9Q0i3gbo93FrP+IMTbmVoI+nvHNiQi6XR8RneAeljTSd+P+YTr7AlPfdEw7zN/OuiJtQxYeYbs8H7xaogv3hFmvKI8TnOb3yN1AZlzSMj2fjxWnauUGtwfdoQXYTPl/cfhHhqGKJmP29gJfli4ETot8yNd1+LRUSNYy+ivPhTPbPM+15cR1Nl+STar1zPsJsc/gryWAiyU5zXk6Yc58F6WC4bx+of4szq7oFkOIu7rPvcw5GCEdO1UzNifwGbivg1gB3GD5cIp0+kbnQNQAhaTDfJPqThoxRfIKOvMjLxbzvf77QJKzdnO86WrpoV0/aL1pSNU3sRJLto7l0BeFi/yyJennN/PgQTO8uuzU1vfhcBfY6FdVLogu/SXi+kdZRwGwzwy82g2HUfbLYZ1baXEf76pLQ5a9oXcbzRiRp/Wns7ZmOjbw7YhpN4tEQM8YHQ4EEy8eT730b4BxC7HM7GcDUes4N8IfNt7kOyr3EUfYKsB1pI7XVyMWoj1q2+QNgYLZoyXLG2iQ3qFLbQhibrdTQzeLT7Dyxif5GrtjHRqzEBDlOprhn/FoqPiV6ngndQDfXh61bXNqnHRJB+XFJY7K1S6NjjDRu8jRrRsSqfwso1hF6UjcRW3R72S6BytdtShUvGTK1pzn8LFily297N9t5KvdwdU1HyI8XvvEQ0DW4K71C6Jxb8ZGiszucJDPVyIJ33dcPy7nv7S9sQ55+/wm/r8CR/Z8gAfQOC/2DYjvOIwVleQPEchTlLm3VR6Wg+LWFnStvx9Kn70DxLQ9VEnpHF52tX57QqG+7RINLhxJwTkHF1txyLb9+/9n74odmlG/PNbSQdPrKU/PcOcE1mLj4PdHmgeHxhRta7qY/d8hxrJNdskBrL7CHux7rUUz3w+dIOevL76K20u+FeLRzWV5rYEJzsbLKmapxDS796jyxttqELKWzqcu0sPk5wtySZuVjkdtzpG+6zkzAiZ0013zTQArz5nNvMfYtox6dF1SWTiFpMvlMRyyrV2rUK6qF/vatokoQcLzneE8Ezrvqm1zWDrywqejqZbTVdTVSE6/hZU4vs8n1ZD6qGHlkRkp/JzOobu6Qx7P7aZ2ZBN9w9/k+r2fwAAAP//LF3H1qowEH4gFkpNWNKlBwERd2ChqQiYAHn6e/C/axVPwszXchgAMcRuGInuDhksjh4K6cP4tKselgLoYats/H9px1jzK6m/X3MSgUkvCYXlDDkenMNZJwGYhZjeYcFkHrHmWC25h2nO4BodQuJMlEtIRrQZ9qk1I/VcTuUsLLYFGe6xILWy1ZF3CDXEjX9J2O4P+p/+a7/UIvbhsVLqH2sOerezj5nbV9dp6Rga/MQuRbZEXI96RFjhr/6t410aaSNOGbCW4o0Ux3Hb/qc/QJA98PV4PrR8+c4HSHf9C9kbHw6sohtQNBSB6OVy1MnlHUPZmkYJgwk4LXUux+GnT4gWmUqynCvXhauCdWLkpanPB/45wZe0zZjtPF9f+GJbI5CzsMGFnnxreTQAH7Q4fF5fDV2NTk6FTS+hw0//tiJxJb71aoR4NQeLFtYG9BRnRAem03UW37ELJBRff/zc4l0cu1DiJ5tkxMq8+XisFLk1My6kUMro4rhJBvs6ipGf3FOwerTJgMRjm7iJbYHpI/sv2KyVjGXBjOjUqZEFTwdXRS6Xi2Da9AnUz6gnunPtAD0T5SpjvBORdn7RZBW+3gB3FRchZJ3Xca7V6wTHo7WGxJAnsF7bhyKVq/Ii6kEa2znPP3ugRdOM0v5jeJTRjwocualDWq28aE8NwwX5rvBReAuzck2lDwdM7a4j18Fusj5ypZI8t02w9LkN3srXews8VqIh7Ql2YKofdQqcfj6SaPM/3zwwDQCC9IGUydMojjt3En966izmuffH7zfxUoRAy9/JH7/+9KidPJRyfhnwCoUTw4ZSoDaARI6kQLOXq3Da9pN/vYYB5oar45mlhbe+knUGO8+/ISQEhtetT/4OI+7uErf5vEesdfwA77K5RwF1FcDpYSlB5uYWxO11o+SFHa2A1lYfdJe4I11qlpeg7jEiOhzSEcz398WGan80kB0nbPmNSD3LnMOnJDx+2XZlelkAz3C4bftpAY6Jr3fICEWHxf7Z0XWf4T++Q5nndICm3BzBawMOSGes+vc5ByJo1cSsk1onxi7P4Yb/xGCYOSGvbXawelNO5CYzerI2NtkDT3hmyBOdI6WqO/UgeJifUDRbv6VnYl/B1t8h9IdPslgUuoDl9TIctEAp2TcOVhhBo0a27R9LGnNSB4Yn1+MqGvYtvazdHjo1OuA2GLhyqcrVgqV0Kze93Oj09hhd+HxbmNitoup8ZnaxSA8hIIpsfcqVz5oQHtaoJTlHaLlmzm0Pfnzr+V9ZX67mLQZYEWNibfoSc9nU/PQGsSl4j4sg9AXcnqki4TP8evNkHyWY1hUKf0+DzVzRM1CcbvYfvv38ONjqBV/kqtH/9jcLehGPl2L16Fv2DViH7ETCqsa03/gF8lpUEkWqhHL5vo7Zr14wM5MveKZMub2EZVoIesev8adPQHbrU2TZBqPjQVksGD6fMtJUBo/fs8o2UOGLFnn3Q1RyfL035Po4vsIlYsGIBS9K4eFxCzEra4O3pG+RgQyCAkHn+OJNVXqZwfmYEuKamLbE1gQfWuO8ja6XtHKfOFIDt+shVbnU9E/vbniIZ3+Q6bQLvxM8uh7G8OoNHgX6bYCPIl7C7Go05ad7HPfy+bJ0WBjBDOboKkow2zsr8iuhLwdDdxXwUPd1KE3MNmdBRdVffWx43n7Jh53kQFVu4S4x3u1XEVRJ3vwlMr6ZlnCikPjwZKsTsoDVjm3WzpL8jZSFoO37s5wlIayT7oKOH31J6Ml8vaTN/xGrPLcA67yU/90/GAkFpU15xjDQ94AkodPqOBylCpr9riJW+2RLmpldBF9vZiC6fqrG6eBWFTAHKcGCmZvjhu8ZmN5vE+dpIbaL9DlM4KneIXLw1NMVi2oIDk1iE1Rf9t70xnn/05dEedwzsPDffA8dnPeBCNOzTveHtoDIQwSz3PXifTPuK4GtXsJXulAP84qyyuj5CsOqvX/HBd5oA3l2V+BudrE3RbRMgYKZGOnsZQLzD5/88oII6oIHmMW7roC7U7CYG61HueVBmewaSolhOyWA0qK/S7dIdlHDOKctz8tnuKODg9TRvbdL/IYxYD16RKgWFLC0/tmC5+l9Q798aSaD3UH9HehIAZOerPLBl375HUErfZeztntw4MoShQQZ8in3MINV4i4cwZKqnspleiUDrANGRc6yq5P+1ToGDGW3QQEebwktHmQGFxMMWLrBT7ki7ar96ick06SX88WcVrjvZZl4Mhd5pDUoAxFiyp8e1WcWXXLYDkxPQuxcwYqqqv/rJ7TpZ+yNvAu2+0HSvDQ9+ixLC4oZt2z/L5eDaeECcCLnokPb1O2k3wYfyjenQ3ZaiCN5nNkBltZ6/eH1OG6pPXAWv0EZOnPluk8UG34DnyeBYM4UG7xgSeU1p8T37ncP5+kzl24z8yQ2enzG6f4+urLI7X3k44pL1mgUfFhQ2CILVs6I81XSQPUJJGIoUjByxUPqYSeKSzhSwnrLLc8V6CipSmyB48dfP0FHyVSkIDnTvyPkc+nxvibk8hDQiGEoWCBlA4p3taBQdlXiF0TxesIrf0q8eb8cFHnLP8JVz9OS/vIoKhyumE+h5NGv8unAaBEcUhiQcpGeHwVk9Ukkf36mlkcLCvaSIHTzmnbWdtu7IA+ZRUx9DNt5pyccjEfdxORzGf76FcZs7pDD7YN03CZ8AYUl3IVN8EDlzz9B/iys5AR6Q+cZ/ajBJRAThKL7d8RtFGHIP4003PO3VzJ3BjdL75z3QlgJdrL6p7KA6pbhq8ablthnFgGG7DNHYVebI/eyK0He/BxRRBqB2ebHAsyuLyKlPlclLR/P69/+Xt6ClfzyCIk2N5McMtv02BN1qp9+QIaVJuXMomMBB7e7IyNr4mR5N1SCPCsXofz4OKU0fimEWtKG4c+PkfzqbbPYpYCEfHtJOFbxLGCju0F+fn6BO7yHyrL64S48f5IJnwMOkkuab+u1yvkwJRzc8sON/1Xwva+n/Z9fU9njZZxlwWqk1IpNop+NGIzWdFSgtry5zT8825mF2QvCMCyJsuENdYE7gGnl90hjei2Z8aBJALmpES4F7sBfnvoynQx/6/nbzkemEf78nO0m93bI02cB6lcRExVJWrkMCFaSGigS0a5JP67uTZHkZxqzyKnj08hJgO+AN1SYOGdBoHMfqZP8jvIMoW6axsXoXwJU1pEnapdRb938L8xZpUMHlDbjDGqSC/t+JxPvVth0Ug5BDtxd3BF/oduZQqJdoXOCOfGo9m2nTV9LRW0PJMT9p518Al6QGsUNBbv8o49z8TQgd9kTYjJXRLnjETFwIjbCUtpM4DvZSAFbf2GhKt5epc6fDmZtPCGPO728J9s4MdzyObwzomeyVDarQMXJKnQg8wesyj5KweQ0t3A5bHOF0pNrAJ/x21Ae+eO4HNzTAK3jxQ/FZ+wn8289Vg4zpA/PIZn1gzLD3V3LSLA3C32NgrEDWS/quDGZZzLAecxhmbIfEgqkG9ejdpzk2Q1FLDz3PuXwkik/f0i08ytJPrGlMLBJr6ftepK3559zBYt7OiPTMb1k35flS1onnkfq3IFkHY3THTSSvIaD33D6V5jlEEaXJCAqM3Ie9a9gAsH16KG0hLnew/prgO33YcRP/rjkQWD8zls2fwvKjxnrLrxn3ZkU05EFlH3OGly+EiZBnh11kpsfCEGtP/70wHx1Qk4C/euD5+MZetOpuvRg6D8WXrfzFVrKqwXpY/R++gZseLMH953yRpfmXrUzV1SMnLKIImUWVI8GvR7Dnx/++elKgEcGGnPNEp+l5rgHdwXLWX0WMX9n24SSszLJP39ofac5oUA/DaCgTIvZ7CuWsxSL9v967uiuXbU6gnLd3R4huXnayHtkXuHb5mdkqZoC+EbsMriWcEH35ADK+dIuBfj5+0zVKroCvWogEvIDOTdZkKxCvaw/vPvVN+C2vBPGcfcPAAD//6RdSdOyvBL9QSxERNIsmWWQxEcccAeIDIoymAD59V/hu727u7SKihj7nHSf7spZ0+fCf/Pm0u1hZy1exOqJ9XxY3wCmNrgzor49PkpwOkBxLi4k06UG8UUPhvVGT/F7+X1jyKYjzKt2JEYQB6ZIr7YEfJC+//TWjbFhBfS38s1CVaij/rntDLCNzCSecRBNVug3BbLw78T225OMmnGKqOpohcPc226Dfv0PWOpxpiWT3I9T8pbhji4hs6jZcj4mXwv905MOehnwn57/q+fM66Skb1R2B3hrMWK67RTmbI4Ew0HKfGbfoi7iH9WbYSh0hMesq8y5uyYVbP/2CTMWfPzwAsv5RbxF/xzjGtEfXllc7nDNb4epUn/5TLjwNZXNlw9LP5L4S706BM4j+ddPe3zfWfTvfBhKoMwQ2TZo6sNhUHdX40ZwXMYBu0v7Bk1m2eNFX/6tXyDDznVMj9ui5w7ex0iWZ48+hqFOpz/HPCLF+9hYDNdqymGYJPR41QVubeuB2NK/ktxuwMR2Y5PXYxUfYFWIBxIaeohmbfi6CP60M/lbj030Za6RQHT5IyRwtZzP2693QffmVRKDnSFa6mfphxeKbsnR/M7BkP2eZ0t9FYyVZIxQeuRMfGTLwaJPyqi/1W8qXBLOp6v3oeCs7hzDcGuDrn1oBoSweJ8N2DD/6Wt/SeAxLZRcNEexLMLSf1n6c5uI4Y8GUA5Gi7kcyv0cxaOoXvXziVmbe5POKzR2IBa1S7zRwXxmVixC+03LBT8Fmszb+FHtouqZ+cybiL0nBf/iizaIB+boDLmPlnyJBEa8S8d+fXXg4kspc5d6cnpeaadUymomy/v940c1s6THTx8O+A+fi75G7Ggb1mtRfhmwnP/0SBMznYbUm+G4F+54HdpGwM81wtu8jQ8sW+Kfy7m7/+nh+G0rjcljuxXAK8MdXX/LNppOWWGBmMgjiaMvMuk1i5tfPsF8j3bRCIMgIHnbinQiSpUuetcHxgSfiDcVYs+Tx3tGKlvdcfbTg11kAeTDnrJLJ1v1D9/o44o689XeM8ey4xhctdiRMAcdSb/65qcfLPxa/9Pn/6+Zgs3/nimoPJ+x/WaZKWjWyFXGvyMwI9v+9Y0j5BRJU/ZlN6+fgm56GA2843yZE++2fFJmuvhP5CHTTdKYjfusAGXC/CE48EtOxzX4UCdaTYIX/gvEcYUkOLs8JKZ0OPfrcZsoSL3fffwZBct8DidVBOX8JkxrqM7nhNwBDap7I35trANuTNkFgWwnzH2UbcqHz3ZE/XB4YZyUM2d5HYqoETybmIVrRHPq/T3BvfYuHYX9FE3ba7D4az03yxweC1g1f3LIb2CyeNernIeea/0+k8Rz/J5L85yjRGosqtx0LZ13e29GXRpPRE+2QvQ6fA8NJFUy4bVIsnps3dgAnx/vWIl6K5AE9HHA2PiUGQ351t9y1V0QYUGLN9vOM6e3r34A6RuJ6Nd7bc7yO/3ANzp8mVNWRj3pD7kDfV1cGTYeec13Inqij+ua7B7+fVNeK6cMvpy+KdqXT3Oyys9x+3QiH8sr6cmboI5jUIX+TUyivMxZM8dBjTbbG9FUL6vpVFkj7OezTFc32EeSGZ4uAI2bsOgiUERzJQXo7GPOnJWqmnRPSkPN/CBlhohsNHWyKiFxe3RZWD66dLJCWYG1xPYEj38in6ZXXSEMMyP+8UNSLlLtAxxvDnhV55PZbvTBQBI1Ac+vvYye71kGuGusxZVy9+vxrTJX2ewriYVmVgaTfR4URdpvHsxOKxJRzRwpeqh1gnl3XnF20z0D6r9WJX46V/2Ed/sYSpxiZr4khsZz0zcQX6aMaMaLBTw6RRfUlbVN2/QkpkxMbgfAZjgQUzesdOTetYKHs++YcWr8dG56lKHpIET4+JCg/7JiosC84o+qeJWgD3vGOZA7btlefGqp9KirGA1vwyGhJTjm8MXbHH3QX0GM4LOq+7v/7FDJXj0L5tiKuHUtnoCah4nX1c4LplvgDuDpeM/cQtvW44U+nvDnxhbzX/zar3/7TeqTSm6ZdIuoWCgYWTe1IgHJWfBaVZcjhL0fk50d3dLFG0FA5f3T02H1afmQXKIMiHBzmN7evoizy2ysfnh3sl6qu940fGjwnTKv0/b1G1XdCe7dccDP8n4MeIUDGdbtYBBjI4/opUkdhm2ypix8Wk9zSDpf2ubzpGCOdnq/Odv3GQXxJ2R6aB1TbtKjC/u20FmQ3iw+mk4jgq8EEb0OQ97Pu8tKgPVKOjPtHr/4fMdBAlelWBObP+t63gj2Hs61JZKj4yh8PAUaVv2nqWG0C3Z8LQvlqC54oKA4r2DZ3wa8bzazUNBo/30PsQbpVxGJNjUGmiN+z6DVbyLzb8M26N3D1QBVaN+0L5ge8EMdK0rdHjS8fadHPjXmctu98+fjhT8Q+x41DM9OvjI9Lwc0wzlS1K0Yz+yqfYqa3ppdpfgnXhPzFO5rafx7PJGgNineDhMxRdLgCujNujL/vdXNef1p9ujcqh1xvq0efHunUNRavPjEtuqDyYXoOaJTfbszL5O26ZjrtwK2sR8Q0pgd/xe/QyVy4ghmg6rWcyrFZzsPFw0tOX/WnQLJHz5RXtthJOVKKoDFq4augiVnnDc7DK8mSenZuu4ifveHTr64+RMrh8s96MN1/IFztLkSx2E9oqcHtaB8w5Elt2FrDu9ZFv7h0fuKJuJumC3+34XPUkGY+aTkKw0l7uZLRQu+6Pv3vMaw30T093/wTatM1Y9PGV67Gt+I9zSDhU/ofIcmope17YCSlDYJMuTx0ZPyz299PO+8xSujO4tKuf6uSPCnicFsV+gEme+l7DrVXc8PTeqg5Tyj48loER8+04y+qzpiu/ZQR1OZ2iPEWusxMglavZaFdobUfGO6AknvZ2pNM4rHU8GsBwoD3l5OAoLUOrBHuc85e4qxgw50ozH7cWnqmU7GBZpbKROz2T77kUX9Ee2T45PO1fthTr5aUJWzyGeWO9rm+OOTScVb5tJbF82j0yagPKWBmGhO0nGVewZ6XX0Bv8KvmU5LvEPLfD/crK8lYmEkHZVJ3W9//GnOj83fiBTR8bB8Wz17dhrEQo1gTVh476NgiF83AxqjNahSG+dgNp6hDOLaWTMjOV3RbE6jAhdlnZPg+vrWvLh7GQjuCuNpZi2fDrIzKo53OWAUWyqfbamjqApPBrm2KDPn264EeOhHkdnVrg1mGQUGrJD+wCJYmil61fuACsgxhWfr99/s2hRgnOGPHJW7308nafE/T+Qdu+s+5uN1qyUwZfOK7A5BEo2N80nghGaTOeEqT0eDFIYqWh9EyCnZ1RLz+gYNGX0QizvriOsx8n/fT2zRjNBQ7xQBXYXBJaeNqqezjEwNQglXmBPlFbAuOo5woGuN5NHdM1nAW+PH91TQXp9oDuo4gQ3sQ6Zd+D5gg3XGcCHXhFiqIKVdul/yxrjeE7c+FzWvSn4E+y7uWThcg3Q8CGyAaINu+FXtWpOf23m5hyiWmT3lSjDHzB3AbESbXaQ0jiap9cflBuCEhCuzjiijro+Cy02h58D16pEL7RHCVEZLvhCmm+Cx/cCV5f2Sn+mIP8WDBd7zvPilO9QcvOp9hFTGKdkjca5bwk8CtM65w6oR1v0nzUmGDEF/0q3SpObUOx9l8Rv8UnHZL1rjIlOl/frBnGDWanFtRi6MdQgEC53dDzhPKljiGwu6+EIT0v5yGDXrwaxzBemHXl45yN5KIWZ2Cswp28sncGxXJcSZnsF43hxG1T9NNfM+6pWPpN5fwBYODkugwRFvru9CXRu7FQnvPQ+m4WFYauvNCZVy9cPnOVvucUq7mRmHyDQl+7UuoJkvt2W9DWJfPdLUGII9cedhWviaFKio3A+d0eCaU1zOB2gc6cy8y9qKpjgfLbis+Ik4q+kUrX/x6lbsSD+Pso34Kdud/gMAAP//pF3LurIwEnwgFlwEEpbc5R4URdwBIoIickmAPP18nH+Ws5vlWSCH0Kmuqg7d0FhFhMIjWH1cXdlM/sXjKaqZLPdX95JfoOSIGAXtViXkxTc9lELhjZyqurTzvp/BPi+DhANvF5snaxDqV+ZEAvdm0CW38BmOJ8iiMGJzuv3m1oRvwoURa7h8uyJN1eEaw4SU++8vmcqVcL6VKqbWiys2Lg5VoEhkxSIOtZGbtKgC1x87EASFV7vdwu4CBb5Xkc0qD2NaWCrAG1JX5FBA/IX1Tjt/5QUsZbdfQr2GCtDrgwRZQ74kVPv1KZDHucHCCp2EVsehAhq8h8jPTAXg6KPqMKpOPAmSTByp0FgxEIS8RZbVvcEkPVoGZq9Dh/Gs6clhO8JSevAXIeoCyzEW9yaZEIyZFIlF1Pj4lKixoozQRBf/9S2GQyRXAMh9SjRyLJIJHXsG6jbmcM/Q2CAwkiEAAWAxV4lZspmVW8t7vKPggt50uchnBgoW/CHTYpt28efYhqff+4X+4hWb0iSCS39LkD5x32KR8t8CLdmkUWzf7eRwN/0AhOVYRSdGcJLN+igNuETGROx38vGn3MIx3IxrSByn8Ywlt7ozPCLxsePH5NPk4zRgX2/cck1vzJ87iCDgpxrp3/0Qz3R8ZmC6LT+kg6n3p94/B8paqiV5doYHpnl+qjCB9vS33nR7W+QM+WtNEDJHeSRHZ1RhdlAkzOt8U6xL6F1AAs2JaEPvJ7yn9BP03PmOcjH5+l+BiDHY+WDEvXUfbCyZJvC9TS7yxOToj9/PuYGZKZQoDHRC8YGxInAHpkocVjCBcNITE16mpkNm+ll9fBc4DIEXlOQW+3kxha/LBG9X30KagWx/qfnU/Me/T7raj1uceiWsvmTBH/uktPXbFDewxzfKp8AZaZo4C7zXWx6xwbFO8LdfY0nKHJ9ENGLB8l7dXd94Oca1bAA6HW8ZZNlgQ8dPOfnL2c06WLAHjqjf+z7/21M8KIyXe0QN2o0UfN4NtPGkEjPh8Eiz29bJ7mG5o7JsAoPSVedAa38pCjwdjuvcCSY4BLWAoq7sxz+8VaTQ1oh5MoJkfagchCN1SzwdrvrIP9OEgShUAqJrhW5smSSI8Dm+c/TMHd7f88EF7PoHIXGfRSzbW/4P/27XmTXoH75zi8diliOG/5vlufrDJ+JuSUL3fBPD57U6YiZ/nekiqBkjd4cYEfX+jtrNpn0DW+7iRYyd8JQK0UOGTNOcSVTLLVj4i5pC2pbVjhevcUMTpwJ0NFNiBB/GIOtew5AGyyea/RRHqgeH7Y8P/8OPzaZ1o3T3ViSRUvQGjQ/OGZxOCBB7kZJxu226DH9awZFj7MvFP379fV4bFD3soOXggdugGcAsEsb28F/+l7nb+U8/gDWrRBsq32XFaxpZo9Br5wY+w2ONPweVoTTVk7cIj2ONoVkf6Jj7hwBeS6bG75+ltpwx+rl8jpgTlscrLOgTVSU8y9WV6PSugm1tggV6Z1slvnGLx8NX5Zm//IXp4B6MMVFbBr7j97rPxcgBFi4CByrUl0i9v3G7vjDvweT2fO58yaX0Cb4qWB5Wj0Kj1Hxe/757pTfggtxEmw2cSYIsEwD86Jdos097BWDQ5nobSU5fFmvsCwEAcbrgYGbtcU3FVpA9nWuR4WV1sb0HQ4A7v0MubwrFoFv9BZTG+YMZF5gJOVo1p5xOISA+fs8+jaZnBXMcPnB80V2warRWlZsRWREE3DZuR1A28CIIYUSnvcycnMwO6o/vQLxHvfzLh8rOD5AlXO39O9mmVgoxKKKinSaDzlqiK6NvOijY13/XRyLU25kJgVRio3q8tk3hfeTg8SlydJWGLf/zN5DrK0ZyePFDDz60+JC/eCIFH74hYgob00frjNvzcN9guGmI7PfzsegvexN6HBNbL83xwMbNG5aSsGFl57tLcO8xiBZo/Hs++iBaBHe/hyBy7+iKlnyBZmJPCLEsn+x9YXPweVWfSFJ8Dvzk6qBCI0w0rMjBocDGKorQ6cQPsfjzmizVPvux+ughZvRnNS4zYwbgRdUSeeO1LNb+SCtlx3vkNrABW/RxdPCn36L9/WDq3FU4f8IZGZ/h6+/r2cBdDxK3HuJxNdVQ3M+cGuRPT/ztF8XVgoBcRkGno8alDXy1C4vmzcrAsnWq+U8vH8P8AIbmk+vwZkn9H38A//L3O+5WZIOzWayvcYPQfpYtXj5PM1mR6UXQl+wjCZbl51M9YBdAloNOjpNmUR6opxLG7iOOpOtGxj0ebEXlDyrSi9s0zlMTxNAomwqZTzAb28DfTFi/Mot4+36bTcUf4CoZHWaWEwfoWowCPF/tD6aKaPpbwNAF5Bg9kH0WhmRL778JBELrR9uWBj4t7k30h3+7P1cVw7NtcpDKh4pos6hQXPlapJyu9ygSO9swlv7HLmAY+uhPn9KtrusAHE98haLSuIFtxxfZrDyeqDtfI0j2KlD2/RXdlsvsUyG6ipAb9JEcffEMpkmIAxgZaCLavr+XIrnHYM8nmPstUoI3eWbgyYxW/HvNn2R7tkMGu+iJkS0FOe0VTu5AUY23SGDXS8HdoPeGt/slI7YWHn3u2xgLjNTaJdau9/i3a+vQYy4dQlDQ2vVL8gjk38uXPHa+Ob8w7/zFCwoXX2/57xTrUFu6F3HG/guW4/rmlPgHvGgbDJNO00URQHsalai5W3KxuaGUgUuaJSScOwf8+aNSNkmEaOt0NXBqySkEl9rADI2elOTicYN/fguyV9OgbqXrMAAPDRnv77lY7nOogmKfOguU2EoWSTqmMEBBjsy3PoLFmqgOd/wjZfE8GJQMv1zWgllAxqPtR/qBpg2PIH9hicm3ZAr4wAYRVAOi73p/9lOXgYdiScjRTiNj9xd02S6SOBKdZvAXzr5eIJwpxSKXs8Wan+EEZIFO+OWn5siBxVnAozveiff7YjoZt1IF0tPYO9hHJ/9g5M2ipEaDkSngFqznTc/h54wc5F8PtbFMml39PQ/xnTkAcr4sFyicdBoJu3+zwfN9ApRpvkTPcq3ljF6LxPgGPXKJD0ZLeZ7rlT8/svEUm9KLc2Mgwz3PkcyI6rgI06+Bo06a6HCdWZ982CiGaS9XKEr3WaGFe+/gFYOa6GGjjqsu3jk5YIcLcUfjtfMFOYfByS+IV7Uffx3c1hSJ+S7QE5ljsqFT3MN3N5vI6WzDX/qO72CP1hIhKUqM9c+fSdTuh9SbUNPl7MZvaI1fKfpe56dBSSqrMKhzEYNh4cFz9YRBsYZDijRz9X3BHr4XELzffvTnN29LHi/KozBQJO35bf3Dj/ZjziQG39u4MKuYQxP9AIoIs8/2GusK7utD9LMWt+vUmDEcDmO2Ox0d3ZhBFuXXJDrEueUDWHY9D+l4PEQ8OAx0Guo1Unb+jdzicinm6BjkwIt+iBzR5BlcdXXkP/+M/Pnj88+UzlBmvTN+R+cfwJrMln96Eem7/9Q/3bCBPMoK5Gu/1sen9cMB5Zge0PEUIZ/8huACdn2EDPjrRqpl1IO7PkfhwHfFJlwY4Z8fC/ZZrct2zUXoEctFth8VdPoE7wVEauPiX3ZzkwV1UQ3rh3L58/fBvJ6gA3c/A7MNSsbtKJ4vyq6PiPnWfXr44ze7fib6+1Ub09tcNgBnLcbMAMSRYytXBYHpnDBrqhrldr0F3k27IvddfelGD+0GXPqxiYOOxki6YE3//EFiKOLb387jrwTo7NSoepz54icyvwUIpQnxN6lfxbT/PuSvDSERf/mNm9/GGWCB8SSq+xPB1sXZPz1AwuubG3+foc+gx6QdCit8BFtyk20QmN6JqEEOCrz7d/Lud/35k7t/ZOjwwacCii5s5K9mTE34c5ccXSXb2b8poxi+mIODtH1/r9lLPsNvsyT7877oDLlKBxxgR8zwjgoO6YpT2NofStQfwyWk7WYT7uuFrOboGvzl+KvkZnnWGJZpW1C38lSoWfYj+lkHiVJlqC7//CodxZG/Av84QO9squjxjieweNFBBtIHiChSP/3ep+HHgK/CleRuHe505eNfB/70oH7lv2B29xr3ZloLcaePXfD54XRW9voaQX4Jd//0oMI74Fr0p6/4Vjvr8Gd9jwSxdGr/6eMuo1eke0oHJnS+edCcszPm/vzFk9imsGSWHiHhEbebd/1kUOAHlei738ZVZjHBn30bsPy6fNtpzR42ALbh4sVK13YFPhrg7peRgPnwxjyIvKBclTxHhsGSYjPC8gKXT4nIE3tuwf/xw68odsTT53tLv59z/eeH/eUPsDheZEqHlHug89NvAaH1tYfXcDbIXo9JDvl872DqlO9/9UeKSyGHsjEgLKKj0e7X22D3P0ggGXFC44MaK/D4q1G2iXlB/+p9u74hCdOWdL3xr0H586Ore1X5m/crNzA7Ufuvfrj2bSVAZZq+KL0WprHixMbgqok3cvS8T7H08gT/+CSyCLz622dlOeCHb4Okl4wk2+khlLB8dD6ybqj3qQKMRr5/xxhvWf4at90PBHmTrcjZRLlYdBx2YMc//HYWy19vl+MZPqS9m4RkxMViboccxNh8IDfl38U23MEEh+fbRLEnpsm/61+M/dn9kd7Y+UAAGlGwkfMonnRl8uEMsSvIWHgzDzpfjq/yj48T/9I34z99uF+PvL1+eegC6QLnc+NFTHUdjOXzuDNQwucKe649tORP37nsfSPhWD+NNZ6zDm7IlQjq+/dI7xcxg8unQpGSfn8FKatS/ecnGTtf56ETljBzlzPxNasq6DXVGWjFrwX58lOnm/HyJ0iK5wnt/L19X3wngHt9l3i7H4HZi5v+1Qv/1U+Xo342AYteBV4Oznecn/LSKL6FHgTpSgBoYW3cIZsAQeHr6SWr9BUDZfeTUWQ0tPjTo3/1F6RlrGNw5zdgQLLqLQlu6tGYRx70MhkmvOejOZnpcL3Av3rseeefK01nCExHbyL+HCTJdsbjAD6ByeG1ek2USPU2wfQ9+yjf43/3/1L4iFSLPONuKchPlpo/fo03JQr9g3nr3zAAT233P02f5iJaAP/DerRJ+RVsOkdNyJgUkHDxm/HnnWIH7vqE6KhM6XpyoCru8YSOxscfD6BpUmn3x5GrZT+61WOa/39nCsT/faYgnmyBHNnHDDa76zjYX0ufRMju/Cn9fnqA+44Q22MXnwDAbCA0PEAiNk3bfVqzCZXlIxOb/arjdIleNhjYp4FUvj/TzdiyAY5MbiO9vnsFr696rijDFKM0LzPAn0k5gRj2NnHY5ujPaQ9EqPxoTQxfn5KVFb0SLjCtsOyJd3/Tri8bItU+RYpmyeN6MLAHeL2dowfyVDCOrF5C81pG6IiOn4QKg6fC4spKWMh7h67adRHgdYiYiNVc3l9YgQsAZreemDE3GWv6G/7dH+k8+RXTTT+cYaT5UQQXzWgXwFAVPm96FW1W+gYbEd45bNhOwhuhKZ191c3h9XeoIrqYasF9zbAD2k+5YiX+PIvldBVF4K7GHXP1w6RCAZAI1bHYIlhnAxic/Tub/atSLFrpO1maGW1gZKKUhFaE946v+QR/g3AkGts1Be7twQZVLxTItlBIt6eY2yCbnAXpVrjsvYtWTvn9yBf5RIoMiqRFVR5G9UQakcO2u9fzBeSs/CQ+ez9Tfi6GTv4MdUNKHv/AfCaXCf73736lP331cpj224uE5d7cJ2+GDoY/5UJs6/yjeGTGCCYpR9DRunyNbc5bDjLalCO/9JRxq8/cBIqbfUcBAWOxzg+1g1hbUhRZIaFzOqqiYvfcg6gxMAzhVx16OBuagaXh9CpomHUl7C8ywAyyO2Nlpf1MSHbyUdA5obGZQXCGwchqKOS/1P9ZHXpDa5k5EvID8dff65LD5sYvEbSuVkHPSxIBaCIOU0/KkmV49w4MRnqKlvx5TYh47Af4VMYjsXmuKejFizi5HMk1kvPsQXGYoQiehuoXQb6R6ExXKYXO+JyIyS9fsMyFnAJrGPLoUD/e7czwdgX2+yOfQM/AyiNzIEqxTI7gpADC8lcIS9OHEUv4xF9PaebALfMvmK2vUbs0i79AcYr6CA6+6/OvBFSQ128KitjGbvm5aDpYwuoaKexFSjCR6lyB4+eBfH57t9Oa0Ab2Y/smZl3XYFniQw2nSZUIYgsCFp9tbDZi5ZoYw0kDk1TPFWRvdkqQhUJj7q2EU5bxjpE1ILMQ6nM4wYZ9Syjkl6PxQ1LfwIh9qST4QMX4OY4TwevwroiJPG08OMcaA+5aekStqxZQn9k4mLL7PFxCSn97e7wI+yl+E0c7ZglhJYeBEaMsRM3HT0ILVYug9OMLFMafZ0KJUPZwyEoZPeq8N6gZuQ3kzDZH+/s2lqdUv5XVSHuChpMKeCItHshGGmOhroxky9/ZBXZZwyPHuqsFPqVODo43vSZOPPPG5DVbAzGLMszkeQ4Wui2mgpjKiLbOjlvqvbMztPTXilBnxWBDQrmJJ6OqiRFPAvi4FbvtE8ofJOvUzFgdywxAq9xLZBEpanmdTBkITCQio76Sdg3vkIHP+XggDt+KdOPCJgIP/coiY/B/YPPZtYPMzzYQ8nW/2LZl6+BBST5R7UnZSIbmLEPJyBuE6vO5nem6ptBmnzbueOwli1vPDWBYPBHbQjNdzMjdYMU+TBLwT4Wuj0d8VhhN9ohn3XSw45UMWuUb/OFxMctNM8HjLVNRMJw049CNzgSH2yxHq3Uax0Upml4Jf+yFuOxXTX6lWmPAZFeD6NbOqf/wlDfOM9HYm5Bsmb1u0NMyiXj5rAHKcB0DXkOkIDXee3sVbO6BSKsx8a0wNlbTE1Qomj9EzMV4tdg57t/FpkyL9vdLZ6CEMeTGOcFb/vvSSUudDljDWUZ+Phm+YCL1LH8GVyeP0i/9td9n5p5/aoD0Ye89uhFogkKNVZIgv07WAvI9fMP0iSVwhsk2F2dOPi96SvzBHcGUbHUFL+PBx6C+u+0kjH0M3d9IiFEX33aNT0cPgrQ4kaCuGroY69kBbQpbpBGOH3Fmvje4jDTCm3cojE27bLZSj4+B6OxzbLev0Zkg0tyIRJpH6foUXwJseiZGjm944xYnQQ7qq7oiz7o1YHmUuqo4YwIjbt9vy/OQvIGfGnx0tC5HYyuAIEM/RR9kxcIvmdPhJCp3XfGISrYsWbOjVsNcww/iWuffuD0lzVR2PCQWe6dF3yzbBl+/cY7AgFq62N3zAl0j69Df/tzmeyiA0/0l4cPeJ3i5oNgEdnYK0YMc4hY7dl7CNLtrJCiRALZCKWXwlz/8+vlqKReJJdDZVouavEV0WVO1AZVWbf/ez2YiJ4ZHZXSJAc4lwOEjjhTzeq4wwzZdu823rwCCq9MTNSaJj3sL2LJmXCb81Xxq4P15wC29X9CJrPeWapchBdfVyJCXv0O6zIWRQswaPTLYlwNmLlwh/CxKSWxk9T6VGzmA8UhSpPJNDlYA0xjKbHFEGj9Pxtp1zwgaqTgShJy2WOyxT8GOF0jrzCRZ999TOlaukBV/Hwntug7Dv3x9zKvU6I1NcxRwu2iYta4fn3DhuYIg/WpY5PmazpOm6mD4qR5Jd75F7S9vQiZzE4Ty52U/M9KaoJ/Obwx8Y0ioPdYmGLJjTo6TahV8WIoQnrXEQFo+6+3C8lUAtd/6QXoMtXFB0nKG5kVmUMBWu0cLvh4wYXnDSv51x48ZyipwDcOOKCHljmc0gjnrP4ljxUGySTUHYWCuDnHqp0Z//bHmlHoKBmQRthvnU5p5kNxSHVkgfhbYsc8VSNTAjkqPPtuf++w2KA3vAhWaxxlrAZ49+M770CPkvfz14rIXgFTzhDRwqhJ6MKIBkH0eWZZPRvHmfGtSnje1QpVvDD7RCRD/8mdUWPFkbAejyoAK04aoyDHbg/zOApAwmbPPVlLpMJcap/BGH6Io7wZKkLTosjY0n4i34qkdAftaIMP6JQbDfqzHfT5VGU7OjBAhhcEpD6cHT4U74IfHxJQ/L/IEi1T8IXMIj8aGpGyD2nDhsRJzY7GZ/jX+40+YIscsaOaoqvRV2lPk5d8fpe6rjIEy+CoK2dZK1pHxIdj5B16sTE/oXGy2MqbWjLwhtFtePXMcuBuX4d/6c3/4FJskJH5nIzDMd46D1k/Kifdh8nac89KGyrIOWCSsXQi/+jHA+1C35FTXL4P+npUIdr5LUAw0sDhWwUCchYj4Vhz4h4N+68F1OfRRk08G3diDjGGbhm20sSVp16dwEeBNuT8IYt8GmBk+qoBqfu/I8wDvT+4TNcBmJIGYMeb81R7jDv6MPkIJv3Yj3Qjg5EFXNRJ4LGpx3r4u8C+fO0Pg+Ljd+jMIzG+G7DobCzzfIfcvPxo817Tbcp51mEGsoohIIf3DU/i92dk//Nj5XQ+WC8MT1cqaAjsmV8J1cDUU5GWWDAf9m8PHYDnIzpuFft1XeYaVNjQRtDItWR75W4Vv2CBkW9cPGHd+Aj76XSKmr83tgiQthm8TCVipa9XYuABE8Ju2DjE7k/pjeL+WUGDAhjfNu9DFZwIbwgs1Ccr73qeseGfgzk8jhaetgfvj3YY5e0MYau61oHP5M//iH6klOlBCDluv7Hzlb32MdddTcqplIu7qK0ko4isVoNvZw4TvT+NSqG4J63HMia55HJhYyY1kZ3xM0UakiB5EcxrAQ5+fKNeclG4H/ZuBPX/gZfAHf3UcNYBNZtSRWKczJX98aF2UAjn8L6brmowL1LWaEI1t7eIwslIJO00OkIusL22V8p7D2QgoOcXcVJC/eGv6bokkHg/+FBbDBL/KrJEYOea4x8db8bTljl/WaWzXgpUG2CpFidR4Ovh0OeEYpizMUVCfz3R7h6sM159y2vnr7C8b4WyYjZ86EtMbW2xE9DJI0+sNhR7gAOWCtgKNlh9IQJhjQYn4GpQ9HvGy89XtKYn23/4nUf3UCh5JdQ2M1B2RSwhoV+d4CmCicOIeP2KxTupdh0BZZHSr832eK8dwUFnogFkyPY3loD9FmKQDi9/5YBeC8Bs2oGsXFi/s2zJW9xUsML5WIUJ1pY98xSEB1NdOQ66VvVoSqJkM9vzwp58N/k8vH9IeIreuDJ9Oal/Lu54gJuGuyabjuQcnXYojPp+Mcf01fg7g1XsT1Tp7CdWngwj/nsfkqydduMjFUPjpLt72/f2zx6wDkdZg5AzI9BfHliDY9QfxY1jTVcd2Dmv49ohbZ6O/2IOXAqqIC17/8CQ7nnSFpvhAdCuM904BdwY0WaESK17WAr9DSYa5JofErC8xEIz1NcBwUSosWddPS+3uacOTYal4GqKPsXb9FIHnLYp2fpIUNP1+Mtj0MEaWdhTHtU7MUr4uPxGFml61q74UOQwN7KM9PydbWGwBuN2cC7nVl7jlC3DroXPNEoI0W/JpWAwlMJjzhXh59gB0zksT6pqLMI1/OeD6fXYESO+nKCtjHswWinVFZt8HzHwU0E7z/XOBXnbXkR8PIkiVR+wpu55Bf+v1F39AWb4yUjsH+9vjodbKrveRxZakwNmx3oD2+/LRIR5vYIWqmMLp+lbRib2lxXoz0gYi5dbiQ7wisD3Fsy0/lnkjYXw4JrPXDBtklYlFXnw4jvQS6hxIM+MVLR9YGRvDHTGINDkiTix9/JVIogc9LXR3/mIUZE3VWPGy8Ew86+SBRXqVFdRvVMSbda8Btfu3DU/3ViJqLH4NOrJrqeCeQciNQVP0T3F9K3ovZuRYP8x2EgbvDAvG3mdj+lu7STWEMmcSD7+R92pnImmecjUWizzi8ZYsxiY6cDU8ER35gbTb0N57cPrNPxL6WgDoXMgmfP34B3LJxLZTAdMMGupZJy6ZniNtZqYB4ZByO155e7zqDLAW6Y3fH/D0twbzZ7j7W1iI+WGczeily/qN7Qkqg3ycw3KBisHY7+hj3dX2cF71AL5HhsXveI336+0YliYJorGO+ZGeyTsAjFYPxK6vpJjS4dcDjy38SAGnx+7nCBvMb0qHoYXmZL4ZVQNt9thFbNw9wNrgSgVvWCO086Fx09LMhH/v0/JVDLZTAnI5g2lNjDIoRg5qjgkbFt1JMJxePnUb/wwVvTgQxF5vAK9prEKkzAYivj4m85q0G7gam4WObGvteDeWoGKF984Hm3Zdr8sGGa0ZkMZT05gqPnqD64+vSMi/DwZ5FPkGU1YbMOSfCqDdb8B//Je4nXVK+EexxXDnh1gBJyUZ5qwSYDxehb/8C/B6MVT45/+5OVZb4XS9Z/BP76iTZo7rk/8I0FBEjkQfBYxkzo72Pz1l8q+CTgxHArDzJ+Tlg0X5U1J6UF/sM9H5Viq29Mt70L0/2UjMf99i3vX0n3+JNyLt3TjPjxRiLRciju0anxibKirbzzaRW7q7J346OhAoXw/zbHortjXNdPgZ8JmonlCOs8/mKZRvPEYu/xH8xX0KNdzzBT7Up8u4bqt3AYu5WqSIZ45OBfjm0NOQS3T2046/bpAi+GXOJ6J21tngdj9Q1nRaopCfR//zjpYeFgrRd39JATQzHyq4wM4nYTweisX+RhdYX98a3vbnpcKv0CFI0SsC7HMA/VN4d8DLjIZo8cFJll1ewM8g68iKh3tCbzqrw04TA8yS7eD/AlXMFGs4elGN/Lr9FTAa4GOo+oj7ANav//bT7veQoLNO/hzeQwZcYF6QcPCGYrQH3f5bH+R0quhPamJ2EDAXD4+x0FPqWMU+mwd+sMBzerG+ElpCa+jzKLDOv4KEGa7++MLOb/Ya9lHswDM9VcTM31HyZCUHQge+A2TVd8+n0qsMwMmIF2Tlv2NL++OSQu/n6ORa3wd/zJumg3BcQzzE3NhulzDvoHR/AGTzY1TMPjNeINOLCfEm9eMvBSA58NhlJLcyysb1a/Ac/BkxxrJ18ugiN3IFhH74kSi9MWBlD0UJ7axSMPDVqOCbZVTBPEQQmRdFNZZH6elQ12QUsWzlA+leRybMWfeJIc9pdIRqzCk2y3XRyzddsIyQn2A2rjHxNRP65M+f1YbpGn3iZU3m00X2ID9Yu94Ck7/9KnYANjsISI0J9cnpkvdw05oROVa47M/XptBgzDe55F8vWe3v3Mk6ezsRtPONLdlUBrrGYpPzHj9zu4kq3OMFOXWy0u1MAghWo8miP799MSNt+dN3kbwYr32e+ElUTPOGke4dgLEtJ0GFv9/8JQb7Nqnwx78rTTjv/p2YzMkWY8UyjlrE/+FXsjkQblo9oj88w9plMxW5hxHy8q8L6ov/Mf/p7fLD3v3Z7pi33LETjph45lqSt/c3tBf1Rq6+4YHFe2cNWGATEb0uu2Qxo2UB9x9tSRCTs78p99mT+UGwI6x5CV189e5BgU3OyLLCZaS/6ivD33A8kmP8YenOByLwHj9PcsyHzl+6njJwgtk9oqX7HCfAmOq//GXlnd8ScpAHKMI8Q2qdjWBuiKXDv3xu5M+rQd0nE8N9vaI32zXG7L2dDQbX2iF+nYbjGqhLDpdrYyGt9B/G+roMFfDYbUSex6z7rDS3Afv6kLDT0r1Pa6lCj4UF2v8u6HoZYng1Iv7Pj/cn0ZZE+DDKJ0GET4xDeGNL2db6N0nijqHTnx/hKxuDtzwH4MAFbfm3X4ie3lhK5GYL4Gx0e1/HM/V/va1z//woLVbqZFXuoQxeOn/BYp4XxeIrDxOQFDYo1/wz3eTWhcAdNhQJdXEslmSVSmjp8wuLBA7FXh/JIHs72+QfP1ZKUYRyhiKix/vZt9/z6YHxCpRo4bmG0vV6isFDfxGi5qVUEKjGArzNmoK0Sf0ASoTLAGxdNZGJjp9xPV1fO1+YHFQgV0+Wi8fY4H1NU+RZUQSWe30VoPT7jdHG/9ZiEb7KGfzVK4y6ats+O57O0N1nXfJ8x/vTzcDnf/fTtWNG9/zEAZAyL+KwJfE3t1ZU0GnNFFG2Cuiav3sTmtcqiii/99pHwrv5i2cUxJPg0wKmHpwXvkNmXauAe0en7J8+tjxlo//4ye4XYdG6q8kCGKDDXHND4gxu4AvosG1QZu9H4vCbSTkuEifwnJNvJMbz1V8zk2vg93Z2iEWWvF19JbxAQeNiVMRLDKj7FM4wUSMbqfn9USxPUeqAzDI34uSPQ/J9I8f584sjqT4nPs+FHoR//jP6qz/Y3TMFg8ad0JG9Xemf/wIPTGbt8fOk09HgGUW91i4qPZaMi9z+dryvBmLxxPV5t2IXkGbhCbO7fz2kY++A1/2pRGvMBQkW7XP2V+9Dx+6IwaxdNQFk430hiOe0VhBGdYMkZRri8x3Xbmk/ebDKKhCt1q1t6Tu6e/BwiwKistXsT/1RfEMjffnokr+jguuGOwP+9JA2xEZCPx925y/bl2j84hh1WJ4mcFAjIxJi0W5pmJsV3LKaQ6d4jROajnG2I9yuDwzF3+ozxOD1+83oTx8sByMSIWXOMbGQbdNDQy71X75Htgc5n8yFbEPLqF6RXj/1gt6MToX1hdfQkcizv7ovc4GN1n0x2euTrT32NnwNWvg3K3SctasogIYN70glYlx8LtHpopzZp4Uc9mP4uz/EQKB8vGgj0KMLy6cB3DTZ3/31F11EqxBBYN57fCTKzydPqb4o2o+9koC9Zsbs2EMAK0biUJgPn7Gb1CWG1hDLyInpbGzpIHmAVe0Q97Hg+kuYdRi6q3Yn6oeVDdINJ6wImXXHL7btivlRvmLlp0sRMtOMSaa52C4wG4sl2v1uf1HP1zc8GUNM0O53UiTmOlwXtkCRp5z9nY+rsOvla3Qgq2SMzSzUEKlnDens0x8XJObnf/+vRVi7XQ6GLUJhURNy3PP5X30ULtfaIin/ZIr14h4u8pexX8gb4mYcpNqCCquaIR4Gbxg34dds8GeYDFI9yLWb9WE50KZFQhxk2+38PMgC5I3ygYzdn5oB+Mbwrz6r1lcC1klzVBhfzRkhfrXaxTH3T4R78YpZTzoUY8U903/+ZcxWobHNd7jz45tAXMIn4/pXD3KmvRdqvJwKnotqRu7Ya4QitoxawtADAxi2gci0Tn7xV18AENYhKXwVF398B0CYPiKmTudkKdWlglf998EH6/L1V7sT3gCzMEOqdbWTzfQfZ/n/OlMg/e8zBc/v50HMCBn+Mr6HGAaSWZI0/80j8bVhgfoUWMh+syaYB/PjyDRqr/hwH5lxCtntotzd/hThAxVa6gmJDt9OsSHEISfZLkZ6huBkr8jzq3TvxU89hZ5up+iwSg44EMfKIHenOvEvWV5gXP9qGBhVR3TbfFG6rXcOhq6VRrLjdyOFcxoDfxlGzD+zpdio7TEwuEVBdKk/Dt3847WEbCOsEXOPvnTtzV8NMR5GotHnK6GzZEN4PugYf55f31/Ok+TBX3fziJefdYrL+68Bt7K+oGsl54BIn7WHvme5+FsJGyBhsJVwtGMHHdmkKzZXLHK4zL2IV1ZJ6KLI9QD1W81h2aiOI8/8XiJMXO6HB/76LWZLjj2gtMIby7wdtPxUgQCyq2QTn5lruqj5q5Jvw8AQZ+0Hg/6686Bsa3pD2ratxlayNxXex2aft3o4AvrmZ0/uX4OFIu40FdP9FUPIJ94T+TYT+WOo4Qzmm3VA7jNWE845gzccjglBDnvSC8xftRTebCmLIGffW/4pNWfAf1QADkDxv0Iu8ysGK5mVAKp2fyMZN7HG5OQxAx9jdiKuE3ot/TUjA7RFSfb1awB9NbCCaYNC5Eo8SZbI103Yrz0bfa/ltVjk0yWAPzuNiZnP/Ljcjp4IuemtRLjyXskqoThQ4Hx2olFavwkFTfQGSy4omA20l7+muDXlYZI+BL2CczHi5F7Br+yIJOKIRqngjx3suMaJZN0UW/JsRA5+jrlPTNa7jQdDo2dgROY12m7QKKYtFHToSc6b2PLBTpb43JpAmKsaBVpTGLMlZw5Yz1czUugtHbeH121AsGUWr7Zt0c1dGB2SaxBiyScXgO/LQ4e0Y0LivoQnoEf3KQK24dZozWTN4MuhjiHbLiXSXq6XrLkVOcD1bUjs5+drYPQzaxi+mohoHjVHLoCqqrieeyLO18h8+quUGIDPpiNUaoy/wC/tFJwDC1lWXSdT+Ylk4DP0go51rPtbvvcZ2PcD5g/Ox1g/ty6FXSSfiNexi7+UH1uEXb015BiGgbHk/cqwWrtdiGXpA6DoqzbKa0hT3Kr3i7E+lRgq+/tDqn0zR0HWHQc2/NtAhnUNW+J+Lz1Uh+xA/PvmJotgOzJkxNcvAqdW9YX5ehLgYvsTlq/HaKRi/mMAu7AFCWHCAHxb7hncZEoi7KedsSz2Q4eB6KzItSlItuMHX0RznycUSioyVqRIEHLL5Y0egeUa26D/PFi9DB3ptqnRg11qFwUchjNeYLSBFc9SB68/WkTcNn389UiOGMaXGKCHVJnjVr9sB25brJOT5gUJPhv5ALpZ4//uX1De9N6wWpUvZu3vzkkCB8pdyHQo0NVlnB7s/QJN610Sa8bHdko9qYP2LXuT6vL6GSQKGBtyR3FD5rz47frY3BhWL2Y/R0ajZA2+efdvv51LP6Db5S6rcD4/LshuuaXYprvTwDX6PrAwT+04jTXtAHeUN+LMdxXQqwNiQJLLgXi6mY1bcjQZGAaCHnVP7kXx3/si7W2NFmoQSuqiqKBW+bd9nuiL4oGRcyAXlUqskLjjQiiRgZh3D6K5nkzHWyeqEGbdAan1LFKydp4DtUXrydEhvb8dxnpS6NsNSPQBvEFO+NdA9MDPaBm4ru2+k4ahwRocUdnlYezr2cGPenjjr3oyDWz/TjmMRSZAdv8iCbVj/gwNVuOIazAvg0qpIMotdKoI6PplJPlmpJDvZAv5bbFzzvqk7uf23OgqKWzSs/IUQ4CiGqmXSvMPUlXGANe1Ti7PH/Gpb50q+LjSa3Q4yQNopV+dws+15smlghVdD7xnwrJReTzcjw9/Fn5bDtymc4l+mOxxtTZ5gZ4YSVgewa/9ZVrBwX18+d6Lbim26JNH0DRmO5LySwc2uwpT+P1eFGSHsC42I60xbKFXkX0UTLJenhOG0mHKyYlqPhhnXyxhMKhH4k5D0C5uOsvytuQTUj2+b9eXNMvAelglsvmoHGmfzO8/vEN7PgOH7BK9QaA3AIWcybc4OZ90uPeKQH73TNt5My+9clYfITGgY9MleX1scBGYLjphayv2/Qkh3rIz0edPBvb8o4N9/VE4SFtLMRo2EL7qCJkqb7VcwDUDFG78GzP0HSaLih45/PVRjZDkv+gmCksG+u09EP0JT2Ax58cGRUsKIsFCr3Zay2UBb9p/kH2CEd14V4lhQ6cZ3fP2NS6nh7zs/Tx/xDOq70hM+SHIbqB+8WbxX2P7ix9/VO7EyIk00v52OUNTOyxYmqRvMnOdaiq1ql7RWR3OlBbmUsofu6xR5symQXXGEeH4DWbkxqFkkJyXdajrfBv1fsP4c4XP77/4RX6Q+WAjvV5D/m2Z+POJ25Zaoc7Abb3ciPHca5JgJFDe1xN53Stv13f3MhXPykyUyE9IiTyfBwDzMkTHsLTptHkoBQNeAPF8OI6T1ugVzA6bhgGVLj5+TnkAM05RiS0BUAze8c5BcN5nGY2dTukEZR0K2YpI0EU3SrMbHwOKnioJuWQpltqbJmgEAYvcqo2N357fQTvEEQnHm+OvvWKa0B6iJwrv2urT13DngK4f2ojZ8zNNvsdNvvaHBXOf87Hlqa/0wL62EVaqwErojifg5VR2BMaAT2YZdhPMqqJCkciMRh9wwwCN0BuId/9sLfFHm4G0RS/8Ue1TgoG1VcDJzkekUgPRuY2t9C9fE++SM8UA3JcD93yIQu0/AAAA//+kXcm6qjASfiAXAiIJS2SeTBAQOTsRRFBAhgTI0/eHt5e967XXe5BU6h8qqaILG//yPgBTgyRqtp9rvdSBEcvVwt+wPf2VbIniXIH8Z3dHJUkWj5Lo7wHSEyp/+a3m+IP7gM+2zcn+dI6zrlN3HHyBEBDYjOeI7QvbhVd39NGnjHuPrBLwgWlUMT0zftS6+bymcDW8I1YfWx8MPL9E2CyThR17ULTDUmUP+Fj3d+yNNtborZkVEPDnEqt7tK8nyVo5uXtARs29iQf64OUO3nmhxpZdTtHKSYIAuKxP0aEjjcY4XrdhZjIb1c8h0hi35AW08lOMVXdRaj413BLC9H3AJ+gjRrwkRdAr1ju1tcWNFobHGB7f4pM+3XYBw49febmwjeaqs2FNwdeE3aszaMZHWjZ5aezD5WobGG14vJ7DjwsVg4zYeBgK4G0n9EGg3gfyfZ6MYVmOvvTju/TySj/abCd9CILTU0F7z2gjdloX9MMfbIVpmTHv1K/HcTzkVD3kA5h/eOn2OsaP18zADIc+lM77/kCt8Xlk8+tv0KWHQEyK82NVz+x9mWFy4BzsDugvoiibOThJooeLTY/M+QHsIDhfXWoscsDms/bSYVjdcmpL77re4nmGYlbZBPibJ3g7bvlcKwk+j9GLzTv6aAA431zCwgtf0zKLHtB4ijm2utOVLbC4I8k8hhx29kpdz4H1VOCxhhw9/5FTxBcN78M5m7uNz7vaeNt/CthPhwDxyrsBsxpZI8RfmVFji//5qgUNXFr1So37GXrzEzQhfHW5Qs/x2gJa3L4u3I3hFRtn+h3mKN+lAPjZtl8DD2x8VPnFK32eHthb7LMtAoD9Ehu39MS47fkAdx8nbHPj3lt1bR9A9Zjp1P+bjYiN/KODV7k+Ue9SlxrL7X4GfCMaOF7zPmPf200EukbNf/trTJNTAF+KzFHn6qzDyB7cHU4mUrZe71vbn2sXwDf3Dqi9V61BCPZdAOVD42L859fgnYb35pdftj5nvDdn+UeCpt58EbyGr2y5xJcUPne2Ti8vp4+IJEAFjuXbxaqSiRp7EbsCH2gmZBF7PSP1ZVbkrJ0mrNvNMfu6BnUl3B+LH34O3PFRhvDO9mfq+JKT8Z9lnmE2PP7wPz3yGMcQnPt9Q43zTs8YuSmunFkjo8ZTMNj0PPYhlNJ+T/0CfaPxL69C+ODXDJ+iUot4vE6ihAS8zSttbgNrqzKRPccp8ENkYsauQdDJ623PEf7mWNqsFc8UrrQwsT+4S7b1kVNANx1T7MefRVs3/IBWsJ6w4ul1NosOQ6CqVhvbRfKXzdEnW6F8Ub9U+6wnjRfhoB83PKUoB0097LzI/PFbWhB3F60bvwZHlMgINuOUkbs5c+CaVxY9v+S+nj97W4A366AhXjr20YzmQwNv0iASqUU9GH58zq9qHtttuAJyGQVBiuuzQvZR7UUc3bGddJO+ItakJwTztBMT2NvnO5Jl2NXsfCJ3mFvdQKOT+Y7Y8f55Q/l8Uan6ssxsmiLqQi0QLzTcj7y3GqHcQ22/f/7TT0IAjg3kprKjvllwNelZk8D7yU0xajojW7vc3B3xzRERv+sLb7bvKYQd4TUU9J+BrapIK2jUvU4xV2jaOpy3fHF5fempX9Wav66XGRbUG9BRNeGwIALekL6jB1Vvkz2s367o/sWPrtwCj6dHJwRD56bYuDmttuB1kiCPnmck7Lq7N+6ZKf7yN7bb1zQQOixI3vwWrGz3RpfdlDbAvQUxThXFyP7pld/zr/dFHubGTRsY7YsnddoT563r7iXCr2TOVP/txxk3KUBHJabPkjzYZ7BvDwDvxZm8FZvP2KkWHoDMFURjk4fDrMOghOJxGNEufjneNERDBfhntlKL98VhedSqJI9/1oHsj94LsOa2xavEKOHPF86br9r2vHXdkRX+GcOBt44hLCoppWr/0sASt6oub/wA+689GciX9SP0k+BFzbsnaswZtETe+C32oiGLprgXZ/CU0R/hpyD05mN6bKBoCgdqWVeRkd/vpWcqYSVsHtF6aCUFBlqc0MteZmBabS2GNNruhe74gK2ZCQtQcV1Ko0OvDkN4PPrwFKiEcJMGsnnzqyB4C7ct/z29mWfZDJb1uiNfSxW8RYS1CQP8+VJfZGk055qt//IVkrnlw2Yf2gqQpjigSrRUHr30KwePH86l7qZn13G3U0WUoD+ybni80uGIoFeVJ6wr9jVjmhP0crf0ewSHv1FbsuAqwOSqIoyYeQBzgsoQ4rnKMI5PdGCuLKY/fYAA1zBv5t7XFH6a/E7Pf8EAfvoCAP/vSe0x58GkGFCFr/Z1pVa9jhklN9uG7jXd4c/DKNnSKasA5HOkovh2/7Albl1dCkTo//CWteVtXOG13/K7FXGA1Q2ZgTNYAjW3I48L6V1J+phFSeBoet6B6gUBV5f49MdvhQhVsXzxZov+aeVQT+XJS+D+7EvbsD67XiuzS4BjRwBxRvWO/u0n2in25g+U3spfwv6fntQkec0GqicEVnjn0/NRodrof6gIDm/YIk473qONnwqQfrBFjv4jAtt+egMu61Lsj9cPmO0QNNAIBIcqJLl4JMnHBO6Oz5hAdgi8z8+PEYbWReC13hgrbi8XOrl0wFpYzhkFlfkG27+n/lFl2hLX0R3+1m9xXAksf8Ed/dPj65YfFljZorTpQeoVz85jy1cUQHt9TNQoY9db05zuoCrmf2TPFn07A9YFkMZBhZ+yWA49/vrVT2/Q80c+essRpz685P2Nmk/uBf75E5uepJjYUrTFnwC9Yr5jY5KrjBzeWgJuw/tL9c2/I7vHHwfVERlo4vRrPRpWF0Kr6i74XPhGxu4k7mQ3ib9bPjplrPCvOjBmXsO/+F6W7cyxdKMxajb/l47TIQQRHArCt+3fMAn3Q/+LXzSfskFbvGDHgcu+aom+P7SMNbe0B/ZgqtT3xHpYi/eCIPCeHGFP6fzzawuYO+WJ3oeRAPpX6xBcE42n6DX+42MraONaRX09KhlRRVqC7qHZCLT+do9/vRWwBXpNs6vh1utJHERY9yGivudFERuq9p8fiI0uTod285PB93r/oOPm5yxaqZryXfEnWvzlVd1/TPoGKb459Pf8y2A/C2idlTtNfv5LjZwYbn4SdY48zg4V8W2JirsJI88aovkD7u4/fe+2yAWSkLIeUvwJ0JIOZjSri81BpMcO2uKlXl6RmEqHSL8hyA6zRsx70oH5QSLCPnWTzXuBb2R5ukA0v+5f7RP5hx7GZbbHzrGJ6w0f3qAojRv2doXpsXHaBwAcupAGTMNgAd7HBqenoVK1/AZsW18T4sfM0WK4vr1NDxLpuitGJMerxThDWxrpuXN1am1+CLu0ugvP+dySeb+/MXb8HDu44QtiZeuDUVSvAiix+UXClt+X9BRxsv63nfEegRetksCp0PNUDlVInze/fNs/562vAvpeAaV6MsLha2oIEPJk6y6tXfBbz3DdW2DTyybY9NW/esGcfbwAPk56QJOD+dJm57X5f0uAadqNqjaLl+ANh2uSU2PT4z+8BEUlpthRzcdAijzjpPqb1Gg5/bXaEvjiHeh/iUq+xeoy7pge36B/iAM1woedzcO7CuHZsRJEtnrC5D2XN9QHP8Sn2+WmjVX3LUBkaR25bPxhtaGrw+aOJawQK8nWffut4CG0R2z78JxNonLh4PF5qbDav2rArPZPBWkMTZz91aje4vUN32QfYXQ8f8BYjYH7b/1SW2FsDhCXysQ2XHz6pGygKjVtKJC7RxXH3wFmxF0i/fjdcbfY7OdnQ+W93WP9I6+M9Lv1DvqyC6lRSBIQ7prrQiId99Qdck5b5Yvrgqfs/2HjQkVt/PHTkq082Xtxpc03LUbw71H4VP/5Z3d+VYA0PCT8N8jnevQnI4QbnyRD3PLeKjyqWP75e2L7Og9zh1wRPhT7Qx/D4TSwE1XLHz+kRfPn1kt4ohCUfO8huOEvvxx1UdpfJP9fPWjZ/Bv4100lVj73wzA+AQl++Rn//BAG4UWB2/ex4bOiJin46uDvCj74xAJzaCc9MuGjUvmNPx+zZdUfPTSFJ6O2XXyzefPP4bcNeSL4i1RPgeMQyIK/ZvPr+2i2vQTBajnc6LnxI8B1l+MbXrzVIqwTBG1pj5cZwGTrDzMFq7c0RDV/+gStpQcyFp3uIfxYqYcv/dZHGSSLD9c1VKnecatGXckhP3+BHP0B1asqthWcp14kexFa3uHqvyB82Q8Tq2t4qLv6Lc3//FJL31WA5NeVE7f6HHX5axvNT80b4Y9fRl9jButrzDmwPjpvy0/bbQx7J4lU4jTC39IXW2/zJQVmUhwJXxo4O4RrxsFX8+kRGPqejYH1VEHxuM1nJt5eNdVOIISbf0bkqI2yCQuPBmZD8Ydxz/fDek28BMYMS1SJIr+msjhBwD3e2sa3q3qr7wn/8EF9JSdtG6k4brNyKdb2mZCxbTS3tDP7J3V4e65XRRNVacufNNl1d+3nl4IyP0dIDK1XPb9fmIAfX/b9xAJs/XIPGCj1Fbtj1w3kF++uQieq375lvbJzmcjTNbxu/vYdLF48lb96DnX9O2Yj1+k6vMJPgpMjyKKF9qgEQ3NRyUrCr8fmm7b+6l1ItDEa2OYvwV1/31Nt74N64wspOAUKwarBt9783PrELG8cI9IcSu/n1x3xqzAJv+t33pyiQQJwuK/YKOs3W7Jn+gYd4hyqG5FT//gj3NfrA5u7QwwWkBz9n17CUahKYO1KuYeGG71+/nLEolMYwKC+Boid2aUePr69+8cHdn+5OjAR5yL8ezx8Gv7ef6dIHIwF2OBz03+jrz84IfgzDwGab0tQb/pWAuErWxG37f+xGZ93eAXDQMTloDPeda6C/FL2m7+/PwD6LfhAnpf0iZ/NralXoGozPCE7/8XDMHaqwME91gOqlWnobfUyCS4xumMUJVzNXk9jhm0XdnjTZ8OvHviPb//8iTn7O6B/eDqzcKtHTrP689+oY7IsIzfONiGqs5Qq5u09zPHX1OHNGf+wc49Nxi5r6stou6ToiTzM1hzlDyAYpy9W74tcr7p2CGFVmAJi/Fpo9Oq/dtDyPB1JLy4DqzVLKfyacUDPh+YJ1su446RATQes3Cqe/fMPC27tCD/JVcRy/+8BwHpKsPnkTkxg6iOE7iFC9NTXFhPgLleA43oXtH4SPByO3y45HiMFI3HzT9bcJTNoj/iM1XU+e2txFR5gq/9SV5uqnz8jgdk+qRTHJ1z3NlT1rRKNibhjI5ipeUnlPjtd0e4DeG/A9UUA/9eZAul/nylYE9/CSluKYNWVewkyTw9ojrb5Wund5mC8ezfUI7oNloh/xQDGyN7c3yUqIxKI8u2mvAgM7LvGoke/g2FHdHziTlI96li7y551VLE732/enEqnnVw3tkLti7B4axRsNfT7J6bPLP5u51YCEVYXrqOhfa7Zgsg3hjB4PLFm7RUwV/3sw91eeVNvKsqMRY1hQlMNHOwNwZHRJZhLaA9SjKp865OWB/Ybht2oU1+8L/XYoqQD1fuuYF3R1Zql67eC2/NT5WN8o0XvvQdY/2YJP3cxN8yO5XMA7SqH+te76c2RaYZQLN0/8uKjpqYoQNV2SOGE3mEItbUdvwW8hIqLLbgAbx1l7Q3DQHlRtLi5R5BuqNIhmAHVpXdUc8Zkl/+e33XuQ71UtWsCxHMNkTleB6tz2plQnsI3kis0sKUyxBh6CGnUDtchW9KDGAJdwhZq7Nspmw03TGCimwFa8HP0WIotCMcr5LCt7k+RIJUJB/fSs8belIVsjd5/Oqju1yvicWJEPFjDAgQaJ9NYNIXhPV4CKKf1sFD/9Cb1VK1KL0ctFYiMSKMtbaZVcExvCZoOAZcxdLJ2cExLH4duF0UMnVgMEHvo+CSsAKw52pfQzxSHPpKkzBaU2B0sLdXD7pJsl+jB/JD1oypgZKtNtOgElsC6am/ywdENrPlUKtDZDZQ6Z9UADHi2BLfnxVZ2vDOWny9I/h6hiVF+izSKDtMMj3BXbB6QCfj2aHdQTSYLuwUVI5oWRxGyz50iaf1QNufpIYaN83SxZ6Z/bI28OQXFoZ+oH/HXgVXAMAFwd/w2G0Qa6HL9NnAwPwnq2cv11iqLIBzMNqF6szg1SzGGQBy0Ds2nR8vW6FkqMHFUF3vWaft7BibSSZctaoN+yBZhCAuoL+OdmnNkeZzjvwKovdyBmk8UsEmJ5wDapYCx/j7y3px3r1BOX4WBPdO4DkQS9yVYnqWPo8xXs6W9fO/w3A5/iOkV1Kb87JVgosikJ16psiUt3j5Exzem1p/9N9DltOz2VnFMqXEQ2UCFsg3lRJ0cxMjYaatzL2YonAdGeld7DYsuAx3Wr1NA5o+asaXKPx38Y8ig+uWPRn077Ez45C4yAbpw82YU8hLkFuWN3af6GGYUyqLkKU1D0XLua7oX4QzCzGywfQ26eh7FGclyfZYQp2VjtKK0U8D59ULYyhSiLUjUHuD3/+U8WQYKjLGA51eNyBXDM1sla2fDrjYS6v11HWDt932HO8ns8UmoPt6K+OMKOJaZ2G66ik17tlOB2BY8WspDM0x5n4cw8KsSwVa9eWxPaChdLPmJDsYVDyvgFuG3nlS/7G9gGffXABKukii2vCkbBaY08hI/LBpv+YHu1WIHZ8P8UnPBp2xdmoWDW348c4E7g6/hHwlwxPFO74/27C2tlYlQcUobKyIowRypSiOHmd5gtJq3bDFsu4eX3MTU/sBnxtJFsCG350KKd3E8TK0vJnA/fyi2dspfTdBij9B/Qg17pl17a3TqJZgozkKVzy7RVpSW6jb/G22doteMolpwoRo7lCrv9eMtDra74x8Ev+9rGldpKYSeY0Wk7uEO0FGPdXnLj9RK+Ws0L1K2wpeid2ifsmKYU/uKgEj31dYX5VovkXS/w+fOWVCrU8tbQCfGIFGpg8BQF9ragk6Fcp3OqLVcoZ50HyVgMFefWuZhjegi2wLQl/qNoFRBNi4voIPd7AtYOT0sNjv+N4D7YxTi0zlmGYt2n1Xa8gnVrCjPFp1wFTxpq0D2BJnRmG69bw/3jtL0A/dRl4bVCBfvMxG6a1M2txHTj2n3GShiu4ERPX8HkDWtglbnUWUk/xNTkLfmjqqPRshI1d8ryHHrmSx807O6qsY7FKyxwJqpF4DtvwICp3PfU+PMqfUcPe8J1PmHRh/hEUQz2h/fICqbgGQb3jKhpKG0k4ccu85E2awcZ1sKCwGT5Sxl7JPiqYPnJrepd3/X3tq24h20ERWxgayG0V98IK67YpyeBa/T06mE7dXcU2sX5WyufGDCxV92+IxPfcZyf+Jg9bxgej6vHht/+BcfQhcbVVDVLH8pAmwjkSB4jHYRa+8TJ3m+AKn+4XHExt2+gRccASTY8pdteJAA9j512MDJJ1uRflahh05njE1xmwXkiwmAz+BMlfcjirZ87ssOa3t8xtJBo9FtEeWcfgbCbfupH9VSh4on9WS1XSFaIuSaMDnvdGrd9QiwKi3Eo7683kRYnqnGjMv8kB+X9opV56FGfWu4CD4us4cTO2ZsUQSmwz1ffxHo42fNBN4N4SEu3/RUvmK2tjO14XjdcfjExTvA9vdDB9VCqxHI5lhjW/6E+x32CbxaL7YsE3wD9R5J+MyTpWZC440Q3r0cW2NqD9S4iAWcqG+iao2raBZOmfDjJ9Qy1CGbBe+bSP/wwDN4bwa3cOvMz0H0qkxDW/Z+MUNODiXUNaDVZh1kW9+DW0ygONfRgiAs/+WjM8e/Acvt0oa356jjyHhpjDj3ZIal+95hzVL+PKZfBRvq68T/8qs3R6r9hokSt/T0cns25zj3txrrjeqXkdVLCr+xhGcjpqcDEbShzS4+dMT6jQ6T5GUzagMJbhN58PP2foLOKJwdFMzyTPONL7z19m1CcK7O+IxjUn+NbA43D0bFt/st1dYIC7rYZmeXKs3lHr2Rk81wasoau0/D1WagVSs8Bb5G0+Zzjca2OcSyXPlPRCcxHhYBKaP8PaSE7FhaZ9PeT1Z4ruiTIls1I27hDjHU51uETabbEakuCwfFl8NRlQkfbaqE4wgS8wLx+cfHImjewbZ+SCqep3rOYxQA66kjfNvyExNs8/17f4QvhzA6tHKswPH5Xam5PEWPOft3Arf8hdHcVh5zlostzyqx0M7uCKNjU4gSG6UTtlsvZ7PwTKEURp8Yu3mgafOiyRDMmpRSd9m30Wq4nQrz96shjUcGbV72sy83+mgi9MRWvQpfe5YozAx6OsdRNo35/QGsRyWQhvUBW9PZdeHziA9o51zeYKlS2MC/fZFR/9229SftzBgcmdmT3WoeolUSDyUUTlmOtck6gHX0VR8ejz5PHYQEwPJsvMOpmiV64o9U+/F5KTGMgWI6fzUGirmCw2l4YE3/fOtx0fgdfIOCUTyO9bBU44hgFTxfWAk93ztEt6MIolYayV4einrRfTOGX/G9J+2YdsMypt8UhAW33aoV0dZrG4TShv/YfZze9SwlVIWDVwfUdIRk6Nsq2kG1QH8Ub/meItbpP35FmI4PbHWSiw7tgRZoOccsWozym0BSO4zMN8uMuurytuGSzTX1t/21RvU0wkcyGjjLcsomXUw66LC1pGgpEePG59uGYzzXNP7wOKPp+i0hlT/J73PAnPSsg1gsMvJo1ZvGhPOggiMXAKr1X2lgqfmHoDb9nbBR0wPrl31YyWte1UiuDie2jHMxwle6etiWshGMW36Q025+0byET7aCYy9JcqV90T6Lv9qSa68Uzp7PIaiyX6/ZaYT0kHv4fGhMbxSm0f7HZ5yX96pZWlcQ5qQJsGsXS7Y4aT9DuYt7bCe+yli1F2z43qPHP37N0umsw7T+Lth0AvLTgxA67NNjG9wsj0/jYoQb/uIzyk6AKfhbQcKSL7W2fLEqO6+C6+2eYk2ub4AZl+1MXejM1H2c9HqqWmDDDe8QVMuOzY64vKFMHjxWXdUFi6BZHHS4BWC9nTTGKbZ2h4qqCGTHurvHV8VFha9CSrCDXsCbxttOAWSGFjaEfQNmSd3fYeKiDHtEvg4LcBkC6y1NsWa8NDD+46/Q/FKcXUDdI+f1AKaNC1LTrormUb2nIDs/VqyulxgsaZ2H//Rd9CdrQIjeF12Od01D1WcP2OqwnoNHvlcRj7/fYXufLgw0QUYNu/n1T+/K01Dk//LPspzGEHQkvmClaX3tLfVFDwMlcOlTNhKNOOq3ANYlAmRuTtowO5cwgV/ukFAHXd7RglaqSJ7u/CEw8m40tb1rglmxKZq7Z8lYXl4LWPChh40zV9Vzxd0TEB/7kRzuPYw65+Ps4Bi3E3Yf7+cw/+J7t7YpOfJvTmNG8q0AYoWOz7XbeIvw0ndSmw4rIq671Cz11ACadhrTDQ/Y+sMfndMhWrBzz2aU3hP43U0uvWWNMKzLY0zApjfR6vzFgOQVdeHG/8n4vvCMKFRMpMYQb9g4gNMPrxpopTsNK28He8wZ4AgHTakJG5GnrcqnEmBjmR0CVv8Bv8+Bc5QGsjfFrzYvuaqANksVev7pWWHo7P/6DVbMecvI4xmee7TNNuDd7JBia3fY9BeSayutl1ZeCHwfRAWfyncVNVVpKFCkcoWRy9phw6cENnZ4RPtJjGuq3ymC+YcesIG1l0fyqVNgdc0y6p8ubjQoB2WVn6LWUE8/vodViKf1mFZdghbBZxGRyoIDmy9KsX4fvamS9ndpzC8BPfnp0ZsXvhph4mGBfA9/mbfmwOJ+eITW2fkOJMI7U2JltKcmi/femK/aXSbfaIf22SUbFrCGD/m9Uz0il3APmC6+E3jBxUIRA0XGOaKJ4O0qBFQbXzQao+lTyt2wHvG5Qh6Y9EwXoX5UBAI3/2Vt27MK/Yf23v6+Ux+i3bSCbty7aJ+W9+i3nkCriUbNZX1s+bk0weYX4MR17mzRg0MK6eHpUUNIAvAVhvvjp++w9+NrYO1s0ObtSE27FbVBl/MUFgzom/8ie6y9cjNYL8EZ7TY/hrXyQ5HExiD0/AqXYY3i1oWkMybq4LJiDLh5JbVXfY/tkzWyQScJB+1PG1EHM8tb0/4zwirGLtWPQK4pMse7tPEHIhRhUv/LFxt+4lOJ5uEfPy34wKMnJGx6SxfvUv4mD6wuqe0RQxDj3+9DwFgvGd9eXqn8+oOPTV8ewPrrza6mJtrw38qWZZ060D6ayxaPfbYKBQthpt6nzW/JwBop+xJGX13GX38vRrNwWHqYk3eA5NfnypbU5d7g51fZLReBqRJQAusXMrFre5M3O4mXQgdGZ+rwh+2MxeqlsOCtKzke6AhWhxxXGDVjRoh9dWt+MfMYVlndUKeORrA4ePOLmtcHCfnfF4zLbWpA5oL7P/3I//hre6l8avD5W+uXfl8CrX6dyQy00SPj8yjAQp5FvPllwzx+7De4BWJCTc+u6hV8WAgK2LRUZbUCuLQJE9Bergk+8VEzsCq3dkCeDIJ4dPe8OX3MSO46ZP7Dt7UdBB1wkpRS/y0NbMxrXYCeUZXbenTez7+CmR++yOq9p5pFYf6QLo43kzL+frNNf7myfzN6JOXlkc0jqUb48zNw1k4Z0xkI4fpIwo1f3Lb43d9//h4qHG7P5iV3FWhlHsVG/XxprPXDHqx/q0SVo3cYfnwG/vyYEx8cvRmh2Zd3y59FDWFvglH4g6W0KK+OEOfteHR05grWXVnR8KlH2aa3fei5jzvFe+EWUf26s4EDL2d8OtjTMAtvV5GnlnDYPvLvbK560QezGUpIKLouo0byKuWoFUfCC/uGrQsv3kE9PR5ELv/ebFbK0YRRxSDiOS/VmHBkCXTkZ0FtNfEipij9TkK7WzRxoDyDZYHMhdvvQ5Gl/GnbnSwJ6PzlTBWwb7KuXUQEG1+tfn4No44EQkjEoMZ4HLWBW0a7AY1qE2pf6pEt4+Ka8GW3V2pZblLPrdTs4HEm9o+fD2MOU1ESNLZHwPBtsDqyv/vnH2mdJw8bX0Yy0PKahs/pmy0AwDfUhT6mdtCGm/8kIgj/bJXmWDp4NOcMHY53iRCxAZbHR001w5+/mZmZFS35bg7l9Ltb0dwK7iC2qOj+xSd62Fy96oIO5bqNL4Q7HZ1hXJD2gIreIMJtfiuNbBaDNnmYG/8dPZbvwkb+7c+IJEnEHFTt5MSwBuwILqwXXSx66aTvLWxRGmYbnhHwwwsFJEHU/fxM09tb1J3vB42OztmF+XR2aOIc31o7otf752dhO4hJtCB2T//lE3WLd/rzJ4TTX45Ymp20Tc+Jx+XehNgOJAGQX77sPh3B7ipy2mLYSic/58mlNri12jb9bAcXfEvwWeg9IKTDxQRHLgSEEW31yA+PNr8IK296q1e0z0QgWK+OovUvq9k4sAQSqPpYCeC5XpTVVeBFT0caK7eGzUsz2pAQLFJb4bqaoXj//qcXJLu4ZAtaWxWee3/Bpuvb2Sww5Q0p/DOway/XYRH2rg62949RAbVIQMM7gJ6eYGocwMtb08e92mpKO+yDJfv5GW9oGhykXmo22ui8kwZ2r6OBfQmLA2mXsITHI+Kx/m4C1isXgODmJxLp0U7eKmBIjl3nm6Tsngo4oKf4+OePJ3Zv1HMbWQRkhlzic/UKNDYOeAeeXCRTB7233wcLDn7l8ogke7nWUxpcFDnB7pU6wtn1GJJdBI+i8sbqMviR0M6tLckfaFPN8EJvrZJKgnk/LETY8J4H03ebF28nqB13F21tBe8NPK8fsONrO68b1TCV5Xd7opve9pjOLFHykK/R+0Natv3CNTCw3g2+53Ub/fxa6IivN7plsMtW5aGM8k4U/yjK+1vGwF9swurGZOq3xnuYlQwoEF66mT7/aAoY8hVO9kNvRsKG98z4lCY0nfcH//yXuXU+b5hXnk6qxagBq/7cEEZldsemvR0aFbRrCa3LBeCNX4MupbAA3yWssR/Yd4+22R+CWzxjT2/Kf34azL/Pknqkv2QzaqYKZFbcUkUpp6GPDtcEFuyoY3cFr3qJcrsHGx7987PXPN/px2jkmn96cdon7wDoC7lTd4s/lmKQwObsMyJ4mQkOeZkXEDgfstndH28diaH+6gMUZ7GjDWMU9vCVjwZF80FkFHUUwVgSZMSfiwDwPz8j8BKMHkFWRI3CvVJ5aqoaK3Hy2dZf9SUEdgvVRUfXuJRPRfDTR8WjMLM5fegcJFDx0fvUGNn6w9vHPRAx1q2WLeh+HOEtCkUC/lQlE371jO5d5PTENy4YR1IRiHalQ53z1gsfIRFBwYsuhPXf+zBGa9FAXWbSpsd6MFeX0QaXXMe0cJlVr1UfVtI0PHKK77tDNFW1q4P3fCdUOTnasKCvL8LT4/GH7bgvPbZXCwi5XXeizsZfVuH0qmCpPxh9bPx4bpt9AkpciRR5YxwtYwMbOODwSI64VNmkq28fEtnP8X1JLtGcu6ML04lkdPO7NKZb1U6+BbQknNIP3pLT4/irB1HXXvia7uWJA5mKD1g50VGbo7eWwirobxtfvAzz8rIIbG/5a3v/hrekwZ8CE7NYydzELZtR9ApAISED22J0GhYwve4/PUiN+sGGuVW0B0z8t7z5Ic7ALfo3gXazu6NffY3krlnAwXEJ+dZHPvqirxhCK7kPSD47PJhbiUC41XOwZt7nYV5GpZFNVD0xcmdJW/LbnwLH4vki8N22AxHuLoLq/SKhhYt3bHIaGUKtrs8U31X5px/SH58m/AG8tDXHlQh3ovSHtWk+M+7H/04OOKHjGax1n7tH4ec3Uu2HD6PlFXDL71Tb8vuMkM7JmV2J2Nz8VaaLYwydI+XJ3iqW4cef4MYvqH7cDVqrZ/cG3p5ExyorWTTpmS/++ORv/wPWqnMpb/41NV7vvTblO1/6+S1ob3nniEavWIU6v/WF5RU1W5Wz64JNr1JrilVw2PxfuPhsR246tbTVUV8PeXGwh9Xn3fB4ITzO4OdXzwGc6o3PkSMqJ2HzrxyPoftDAZkODVzM73iYwW7p/tVHzlxVDnNkHjsYRqu7+dtGJKThWYUNnj0CwUuvV1eeY/kUNh+srq1ZH6oc7+ClCEuqt7dVW1Hlbv4r5dFSjdOwjmJYwqiPEGLWl3qTclJ6MOiIw+bceBFxrLCCWDg/iQh0FTDgbvkv3eo7VKm9zR9eYcyqF5G8j54JOWA+3PQ0PZf7czbnStL9f7MPwP8+UzAs23xl6ax5wjzwuvRxp4qe4ofgjTE9B8AVdYcWRLhma5GJBaweREBZH1wZ+37GET78JkHzkEXD+MLrHWSoMSha+YIt0J1D+btXHOysVNnmAUoVJNhFqP24TTY/DlcEnyrRqTUPJ22JlrCASjZ+aXCR+GHET1+Bp/1Qk2EMzYxRM7AltZ5HbIRm5TFbH3cQXp4IgXIZhtXX1BgeztGdrO6zz4gx2CmM44tC/fM6sXXR+ARe53uC3QM61sx4jyagPLKI9MEbR63UEn62e06O6Qnecj2WI3g/vgdCP4fMW8AqqtBspR67up8PtP7kd7jmPiVyF/Pa+s5WFwrH+xVJu7kHxM8CG4p/hUvV9lQOk3yP3+DKJTw6XsaZrUGt2fLpud6wJqlnbSmWow4dVb1gY7JOGkunsIcyeH7IhTy1eu0HkAKX7i1q1PU+m57OMQYtt1Csu7rCSOXlPRDqe4jV074Fo946IThF4wHVxeahq6bEgSnTS/yMROT91hOcnDmmJmjjaM7bIQDwVHVU+Xs0gBUfpEPXVQu0f4mXYTyKsSsvkfGmzs2/1Ks/qCZM0FlGoF+NjEst0YRJGVVYTfY+IPyj06EJGMX4cG881m/zmwCtcoreqRbN+RPfQRScQ6ydysBjpze2YTvzWy8U0WXbudcZ9q1yo6FXhN54DHoFDIvuUKcgFVvPPSwgd/QO2N9dX9H8th0TpiQ7YZ8PRcBa/h1AwJcvQu586vH5JVdgJIZHbF37ypsM8WND2al4sur7bz23B8DBWlk/2PUIqpfDdvPhFY9fIlsh9NhD/pZgrNUjcR3caNP6x+9g67MXNpyPo83x4eVCW1cUap06FK2X4S8FlyC8kC3etxpAMcLTZ81++0ETcvBIgBRdCTXZ95Wx0ng08CrFIuE9s8wGNcYNEIzLGYm9RyPSxgoHH0opYI8Ljtn8xaSAhrfE2E2pGzG2u9hQkBMO+3Y4eSNUHgLYOZ2OizsvemON3zOU2YbRu4lpY31IROjpeoANv3lFCwvDcI/trZco1e/a9LzgOxw62aK/5+VvlyiWj5f7jsDd9ZUt2tFO4bK3erJ4MPp9P4DrOXBoEtmngcdKW8G8yEdqq3aRzbGVucC1jiV2v0jIWHj1bDhn7kzNsFm9aa0uHBC1wiKC29r1bD/VBIYkfJEDc5166fpTAU758Id1XZ3rkXTe+7f/cHZdlWyNMx9BS5MWIpPkE60tG0cYBTikevyCwxQvugDVr+BgM+7Ugf+c3jOUsq1X0xR/wPh7n12wCBRhYWTryKAKyccUqb+GN21uLFCAP/Px/T3P8AVqpWy9qyUy/z1MwO55ZkryxnF8Ozxr78x6CNBa4IM+4uWodWPpQmBdd1eKH1KZzRNtA3hN8IyYdrKif/nN+RwgdXVfrtc/LYvhu+TuOGaGpvVKOIQASyjFeq3hjP1tjZNtdvTRsR3yYUm+Lxv2FyWmPg7RMFsJZ8IMvQ3Se4TUs3e7KKB+cAZ2peWVzd2TqHD1PI8AA+XaetPKHdyxJyPLJHPelP69GskrlJXG5O16404cHrCYuxK7DM/a4pYwgLf0Qsnh1Rb1eLmV8TYPNaOmbZcecx6TC/TjNNOzxqseX6m2CoB3A1T1d0yjDX+UoG3wL6odtU/09Zd0BlcpERHHfd7aWmRzAd1E/RDJRWc2/+3NCmx4Rc/GtfZmKYjvsI93DGP3rwZEXY8jLLjXh7yM4hRN13SvQN4KIT59d/0wdb3zkL4P+KFZFVZsBF3cAN7wdoiliuCNCc5W6a96zPSGv7Y3/z3nAHq9ckQ7kNzAEi33Avzia54kGJGDrnfwNj4u+BLk/rC662eGt+SBaIgVLWKHaZfAqTVbcmS+GE0svIdwXqw7xeZhrfuvfgohdz671IAGz1jJ9w1sHuKVFvCvrJdz0OrwlhSIGlYt1quzgjvkcGJjbar6enZwcAdxca4QO596sMq6GcNS+LwRvEb2wEbj84a/fJ9kZlyPHYYmKPWO29ZrVxMG/96wMgmjWlp9hvFqnSspnR8NNpMPGIh6H0Tw4wN2OX604UvsBroRaLHmP0HEuvNYgayoBiJYbQOG/vqxwQ8PZ5ilbLYPqQvPoy4i3jOVaNEvSgfP372E5g3fZ928NTC7Nz5Gd17UFu/rljCLG4estvJiS+UUOrSAtEPQiwyPn9dLKufSk1E3JHM2nizlAY3LklKvX42I++LmAcX8iqnbkms2odfFh520yxAYlklb7q/Kl4+3IsPefKFsfu8n99/6/bWDXM8p7X14b6oC29W30BZ7ZgKcF+NOALfabEmOmQ7Ni9RiZB20bEaJPAMLwws6fB3K1oE79fLCezZ5oQxqi+B2O6DRYYeVPlcjahq2D+M4UrDygt+oaw+Mg0O3t8h6Lqu6fsvXBvpXuSF819gaIzuHAy91MIhcJqrHDbY6w+xdUSIvbB8tfgAJyMomQEeCWm3S7fcMLjGasZnYdTR3z0aBkpbZ1HRbe1hv0V0EfnWysDoovcbueWTCbX//w8up/bvF4GrfbSJJeAFzv+ce8EIMEXHl22TrZygKcAJrQS2nPbA1rFoJWnh3oc4D1WCG9jxC8M0VrB7KsSZmOO5ggIwcP5SoHroMiwQOIpio6Vgt+PondYVXLuaxupx0b4lfXQWNr/iHHRG5wyzbg7713C+wtrw4b53iwJatmsnoNMmxtl7vu0a6knih6msnaoSL/zgZdy6HqvR5ZhSdUxtOhplT2+lx/cvfkM/DPeGfb56xWq79X75DoA44b0yxaUP2OuvUg8ua9RTAXhqGbbCUx67eCvTvG4Ape5J9n3IemeJg80iDAGdb/DGHWyFcLTRSq/yeI2HN+FJOzPQPLfPOj77xonOwsN8itZ7OGJG4LnX5ux4x9a9RVy8b3v74Gyqn/K2to9aoULXWD1ahQrMJqnEKVJ4LyPc8tdG4ivcCmoZUUtP+iNH6YtdUmmSzJ1tb14itOa8DoumE/j3HWKPPberTdNU0rDXKMRqi/HKX96dGnPoZiR7b+AYcIz2iqT+0bGal3gHuE6zk/ff+eOzxOAjgvOqQSPNsDYLFHBX45kmh+vKpMtZMhQr3xutGXZ1MGiX8BCWVCj61/r5ePWUXMYQVme/4uUifaOKPwgrz4jnSkw4XwGDxisHf+BfiH79lUmOocPs+2j1FZVifnij9w0OlgNawSuM3hjq/XEjJP851I43fBK61z/D5I1SMXaZgBx0ZyhTLWanNJ8t+AHsPR3rhYT6sh4fPwXY+BGS6cFQjD4ZMab05IdbM01dbkRc08toaIvVQQL1548/QhuoZ239jHTFXdnzIWNhh5QY/jB135QOCfa5RdSw9jT//qfC3H6hJ7S5avsfPDNO+qOiZ4w7D8rj0HSSO7WFPiEpttftbCZZXqP3i2VvWP3kH+SjJyXQJ9wMtz3MBm3LJqNdcxmge9g0Hlyuq0H44DtkncrpEIthG9PIqOo1ufOS/fGO8v+u56xwJXiTnD6Od+PUYM9oQZO+S4tN5pwFOCh7pMRfqmJpeE0Ssn1Yob8+Dnc9EvC1f2nB5ogJv+89bW/YeodcCQGb+MdXsfv7akMti/MsnbIlO/kPSDxLGNhwHwIrpC6En6HdcNGIVLVOYNvB95xJqWsYhW3V3TODGP1Hpw3dEPr7tw89uCSguDsfs+8ODMiEpVmAmgn/7deM3OO/iq/bvffDfuMQeuFyyZXsfcL6hCzVa0/KEr/dM4KY/8IlAAEaxzCAY/tQX3vLDsPFzAiWjMhFQaZyx5BOqsmKMDZntbMhWPvYRZJq1p8i6Mkb66NNA39dzrIfvOtreZwDS6vZCez/JPXoU9AbcgzLDeZlUHkvOug8Pn5uKaJTs6pXzNk/nNcsYmTd1EBJw72E8pid8jq5NNE+UBnA8qhArGcDZ570qKYx9Z4cty8baKMxRJW+/lz6dAxeNw54IUl+AKxnk6AXWP2l/B5+3ZJN08tt6fQ7xDON7kpP9W2QZJR+owtv6uJLhEaw14z8ygRwIeWw831e2tlBpYNW0e/KVfQBYanQV3PYPWrPyA+b9Nu/UPgGVnmtuzQiv3wOw8SuMjSTLts97cN1FNyRr0Vovk+QSSadsOzOYhVpbT8cAYhV51F6mciCXSGugfl40morbvYvLNViPRs6JpNrwgYVXzYUP95ki8enr2vK3fFc4DScTY1FqvfmM2hKOUM4Q4IK/bHzvPy7cPTsLq8LrDbpDet5MuIqg+Qx8b21jm4Nn1yQb3nbeV1bNGSqX2cKouH0zIvu9D83DIaAOPHP/Ie1aupTlme0PciAikDDkJncTBFScgSICItcEyK8/i37e4Tc7w169moaQ2rX3riKlf/vUEf70JtXqnQjmsdDgn/5B8umq680tKkp5wy/Sav3ECKm4J5zutooN7lt786kBPeyE3UhufKfrS/FZyj++h8NiP2fL5MARZsKDIyXKGRu7OXBldfrtqf9duaGXn08bqOeRYeUIeH287NMcOIv4omeL8ypia1Mi3cqkIPswmTI250kMTE+oMHoLSkXW+pJCGRcCVups1fv70BIIuwbTc3ywsmVXlrysfAcf7eSkzRjZqZx8vCbPP/zY9AQ0pT9/5bDF03G5NhxYD8GdKhfpUE2pUyryoGs5RtwRZ8uf3g52oUl23/ugrzs4I8gWr0cyvZ71g6cGKZywskfCzV31MbqfTXjwzhn1STRVaz3UJuxcUcXm0cyiZSgTG6LC/VGN38n6+HgLAbzkToh9fpsslol9Aoa3UtOHeA6j+cLztaQ8fgO1jM4c6KavgHMVb/R0rZ7eMn2gBLoSdtR4VWhYKlVKoZw1D+phzLNltz5XcFNiiJVXFmRTtIRPeKginar6TsnWk3sbYaGQK9UT5abPzf2+ipt+wPpO5Yfps7x4YA5Hh7T1QAYajzKBw27vorXeiYxsfAo+ubrG1ui2+l8+APSBFIqbRz8sohSNEO6bkNDNf1kvkVcDLeJMwvtWN8w5xvyfH0QAWRCgI1JzuAz+F2N23M56/bQFfCtfE3+kFz8M+5ugQRzaCzYU/afPLs9JovUWjtj8WKQavxQgyOOLg914LsAya14C/9bT2fjxRNOLLwX8aSAfS+7A/PpVIbS+EiDHX4cYp+dAgU3AH6hFumBYVa0if/iOb9cmYmP0LnZS8EQl9sOoYfPHuhXw9OIFIpVz7S22MnHgGkYXbMB6GthNDhFU1Z+IQBmWYITFLADei3us/mCqtwbPfOjuDJ+q9xfyuHBv8PB4iFrsm6vvbX5WKEn7K0c3vv/HT4m88Vl6voT7aim71Yb7V59QxO4oWnmuCOG1T0NscX0/zDB5KeCR3gm1N/ycw5/fw03fou/hpw/HhU9K+NG6E/b2qxtx1X6dobBP2eZftAM1YR3CLj38qGa8Un0OcGrCSxPENADSvmLNebXh81lA/EqvrU5szwngbugRYbuq2c57cKS/56HWvh+9dfNn5cuMjmQ6XXVvNn5OAPWoExAk0XmgwPy4QKVE/uPngJx7+ITz1YqIxu9eOt3zKAB/eoYnjjLMXNJCuRPgSJbh/WErB3UINj6LhsMyD0uVKr5sHAWMUXzDw9jc7zP88/80qSAb/yA8fJaVQroF2WzjQwiOzT7ZWq89xsYDayDmXEC42DAyKvOf8m89sPHnJzg4SaWqmLx/em/SbCkRz6MpUMUEfUTPI9TA5jdQ69chsAyra4LD+fagp3tTMvb3PIGAOmr7g8WWPzyJpXNH7sieGbWMtYbxmKoYJw8rYgdyqf/4J/V9Znrcw+pzeLpzB/LtTRscV14TpL3VXunryaRoWV1Dg8PR3M79OTwYketZgQfxYlJLsc/D0fmqCniu7wYjepC9Ift2N9gdlDM2j60LxD+8ivtIJ7OWXjK6vwmKPE22gdhFiSOm1PEKf6nUUKP/FgO1zzYHf/7yId/1tGbrOSQ9PKdqjE+y8armfnZL+EKVic+7w/IP34ABeILivc57q1SfcmAbmkLWsvgN01++eiejRe+TLUaEjMkNpsVbpfpOvQ3zp7URHI6Gj1N40aIluZxGuOkbqhjPDxiSKW3BPb4HFP8klXEZFkYg03eOkXJU2VhYW8+su78gh5Efm8mbjtC2dm9qfX75MKrNjUjP9dVgw6gLjwv2rQmHr9Jib9PjNI6pJG14QTixOkR9zEIFci9vJhypXX3a9P6fXkPLuC9ZUf6kBtqpotM8PST6klzOI7QLxaKvw83SWfbtYkk+ZxK61y3PprHU/ttv+CASQFygtjCZ8wYJt/FTkVpfIPQXeSL7y+NbzdVs8/B1622qfnLb+/Pn4YZ3SLTP22xFqIXwHuQeGuRIZWvn3W9QvF5f2PhpAhtN/r4Tf+5OwcjgvYi9p/gGn0YGULnxeep8HQXmWnMg67BfWNeKLJVEJ4IY/fk97YW1//govolNxLJDFojb76lbUY+tlsYUKIA8pqb1M9kWfxx8BA+fSK8JDHRnngQ4KGJBXQeb+vE8chrkPnGEhNPQ6PPbWlaYJW9ET6iSskP9kAATQOy/Gnj1L2eMrkcTkCsoAvBB5IsVB2rV8uzmp8xlN0ykFpPqT//981NPuvYe/uIfXPskxMH58azG+/4zS0HjndBOv/XZQnvdljc+Sc9SLGSzl1MT8K8UbXrXHg6/x/smivtCozfBMTx2u7bGn9+C9l7iVawjSgNPIr/H3pbfxpwuBew6zSS7/ugBzj4GrhiEgYITzzPB8fMVWnGrR1FXR6NO9rHwhOyEZPS5ZjJgIvJ5KIj3G/bH9ZZNmz8D//zIP790XfUfgafPtKO+cCiq2bJcF5a34YEE4PesLX9rAxuDxYTHXxEsoxTcIM79C3YRbdjit1CQ1McoIXBdi4xdD94OOokWo/38QB5zvqoGj9ZZxkr1KgYm7tpcSsxrSh8nn2TUGe8m/Ks37XAsR6u2LkQ+yUu+7Vd12OLHgIQaHFVGwFUL16dP+F2n+Z//N/3x162eRc2DU0br5of8q4c49tkcOrfgQnDsog92zpMVzTE9hZLu8RF2o0nQ5yeuTFgZ1CBM0s7e4b0MT8jfEw/jk9CD9U9f5+ZLwsZsDPry6M4SbEOBQ4fDidPn/Pfq//QZOt5/mU6ew6zJTT/JVL9rdUXqTLKhfKpvWC9VzLZ6YAHOvJrR0/i9DJufNf7pP2xqVuMtRHsosDb4iJx0bV9R43nlwBJZNbWfnq8fCqcisFLmL0a726OaafLoYW2vK1VcibFxy2/wPt/v2Oj1RZ9184tgV+46uvnXHvmwVwotXVjoFn/DdE2OGvjjY445favvfrVsqLw7Gxvbp0NL7KQEqO/5jrJ4ay1M7qUG7/E12PjhnNH4cKnhbbxrZP89Ap3tm88OiGqebPW8j7fxVxdq4krROuwvgHn+VP/lb6wm2XuYpqXh4W29m4j+kjD6w3/wEvoQe14wZeOc+Br8SF1IwD6QAHs+9xyke7vDW31wmItA0WR9mSqMnLsRHb5dLoHNX0Lc2/iyITp5DRwn5YBddYr/84tZFWv0DoaymoYHF8BHeiVI/BCj+hoXu4VeJnKIk04G48As5EB/Twk57u1ntdIICiCts4Li7HisFttxCLAZ8Km7QyBjyako5FlFCFuS60XfWdMTeOcuPMWXx2ngNz8PCu/nmf75g5s/iqAQJROOQ23rcdUURT510gPjXfoD/+qDWz3yX72SfeSZl1Oh0VBbuIeB3Dy/h7n007BXhhqg2XhMISbukdrfns+WcYE5BOdcJNx4UqvZMblCXvXgjG/HtgfzlwIf2KKIsfHUJ7Zs9Q9g38UTPllVMqx/+u5XSD1G1dH11ivzE6gua/mvfjefES0AVY09mrPHnv3Tq2fBfWD7z0+jisdBX1DdTR/RiH1fC5Gv7SUmC3lX1bLvF+OPX2J9VqPs0EiqAhCyn2jUl4j1e9g3QADPGL9rgUUd+jwQ7PgjIbsfH1VTdalvIFD8J5E0XGdzeE8JNK7SiRyelQxmBycJdJ+GRt00UIf1PhTj/6+nAP7vngKtnu/U/V7lrKZBWsDP9RnSN+eHYC2TpYZDx/nbqd191K92X0sdKQ8Ue46asYWbnvB9E2wi6GRlzIdGD5LsXWEnrlm0rvi3g5cMFNibA9071AengTFSeWwoTeDxulWkEO55gRq7cQZrrFsKvP6OM7XLyq7mi28UkIPWEZtsfGfL55Xc4FXCAtG8Rs0WbjjuYCIfBmLr2cImS3oaUAFHmyqnvcBm22khzCutoj7pakZ6dIFQ7HiZjJ/BG5jyDUvYGKZO0Q/G0XJRfxA23bjDwUcTM9pUiyu9H4cSGzf8GSbRNBJQ+NwTn/zqnC2pjAwwGZxLjt2Fq+gzl3JJXeUPitN5ypb2FqUg5DhKlZBa0Yq/dwG+rXdKdq3qsuN1lWqoy6mP+vDpRHOeLQH8JI+RokvtZwv+fUrZC78eVtaGq5Zx6+uc9NakhtLM3mLOoBb1+f5Dr9NBZA27TjNIhhVi9VYm3grtRZEzmlDqXbpEZ1NxE+CivFXs0wRE40N8CCA/pAMSKYbRGvH6Ck4A3mh0kiaPHKpdAc94OFJ7oH41LddnuE3vsKh5XA4V0bXZhlXIJ/Q8tS2bavlZQs3wvkjsuzSa5cMrAQEffrFpHgWwyL/cBnhv+2jmdwPo1vKdA1aULT7l1yiiieX4sHupCSrF17taGj1NJNstCnJgOwMst/dbA1VEdXreg7Ra3qnsSzGzCnSsXROw0tRM2CvCDusn6eyN1emmQAlFHEWj+fGYSoAm8c3ZxV5qfodVoKsLKz6tyf7R7/SxffcJ1KImQutr2E7oHLkVtsf0Rc8THw1z9y18+AZtgl3gPyom/QQCP7rhYmM6e6Avk6WB4zlJtrPVg4xNeFHgea51jPLyW638c3GhPu1zss1Ni4hzkGPA82WFpJpbql4VXAVAR6qxH1wzb741iQCpYNf0Rs1XNLOlDqD6YS+MuWk3LHJWlPJtRzDiJO+k8zb3m6FwkBO0DoOYjU6KeAi01UcMfU/ZmrGjIYHEIhTN0gSm+0sV4M7OCdXd0IjGw7E09yrhNXq6OjiaM8NW4AoHjYheI7JZvF58+SOKDnZP+eytZvpJ5NJFJVaySalmy+NNaBxIRw7+IuhzYMXhNitEoW5BQbbYoGuh87twaNXa1ltj6NTwHgZPUiunOhvb3yGGi3ofsQOWQh+l1+hCdTV5NArdYatpSQ04F2GPrKm+bn3kH1+ujheMH25dRmNBpBAmjpVhW+YYW+v+q8hVLFp/8Zetuf7KwXv3W9EoZINHpyIXgHE9HbGaSjSa7u2xgBY4rUSu6Ym19KrNgOX2Gx08efA2vIHwtbdl6vLJyEatvMQAugvG9q+/RWsj6THEs1gR4SU3w2rVjgR/iz3TdDfXOpO9dwvmR68iab+CauFp20NNSzH2caRH3K0JJBn6hx314VmJjmFeK6B+wBmfCyHNxvkBNKnMhweiD9QO5JBVDcSuWdGTdXe8BaYphLXT3bHypEk0maN3A/XwPFPbjq9eh8olBDV5/LBlcKdspfMSyvsybEl2MDBbL+/ClMdLdSRSgegwG8PCw6ueitR/KFE0KQabYQP8DOsr17FVYZcZymGZUq81b8MqX3Qoa1qC6ZWKaKDrmtyAVJgD+g6RPyzB4iqw844x1djhy2YnNXl4vTIViS88DH/5Agwja7BqYDM6dKFAoAjPJ8QTYa2Ynb8a8GVrTwLXOUXrVBYFPM+NjrXy4lbjpDkzvD3Fxz+8p2++GqGJ9BNG164c2OVScPIA/Zg+PUXLjndhTmXlbgqIC90hWw4kMuH+XNzpwzsRb8aHYoa8ukbUqPFaLUnTp1AR5wfVn88PGBPu04KTKU1o94D6sDyGtIULbq70vO2f+VXuekj845kqhNtHwzKGpfwRgYPennAHLCtfLizY8MTeIAwVQ5pbQlo3CfWDK9ApeVxKSenvA1l4L6226/cwrK4hVmrRYLPBGSu0z28J2wMqttE+fgIf7/5DduOj9JajYjaQ0JJg1Ko9oLrYmTCvlApfL/dUXz8hm+UqmnTqrhFfbfknhNlL+1Fji8d1l2MbWgntqeLwdbatxwpbI6vQIb+yaHnMrgRz7bFg16nMiPVKSuA1GkMib/mInR0sSTYxR2zcdok3/fxVkDr6KDDi1WxY8cvfwTbiLjTf8HGeL60B3WH2kNHp74gl7iAANS87fA6/bcaqOORkNnMqve2BpjN//7vBU+oUqL4c+20/tCWw4sYn38s99bqEyDHA8s7Gar7/VstuiiB8J/CIXworoyUydBPGZ8fDb/pJs7U4CTXML9ybCL509DqjOZfA38Zx68+nyqbdzLcg+BoffMN49tiyaDP0lLNOLYP7Rstydm6wfDY92aU74FHZe/fw5fgdDvjdwNZQJE+IrrcI6y55sGmLR3h+m1/qfOIPG+2giWGk7wzq7i+ULReV7kCOwm2ecfCN2pM8hVKvSDvqnHZKRhfu+4Ql2a3YUmSRTfrDjeHlwS1UVV6LPmP1tvXcuS9qKBH11p+WxxCO9QmfnfEUrUEelqASXhESrML2WkacBoY1lsnHKH/RKH2PJtR3dYCVabUYKZBewPQ+fCnm3oytZsnF8JiFjKpjpXpz87IC2Gr9merq4xPN7/FuwwPdb/MErSBaK7JNgn/FX3Lcd3AYndtoS3csRWh4sHpgGhsCcBzzI4EPhUXsuq4N2A02RlS4ODrTZnsbUHZL0HJl6jB4vMlD3c1Cqh9bvhotxX7KGz/C58LRwdLdWwgrtY+p+ibQG9jRbsDJNhb6xB+kHy5SX4A719Zop6+m9y9+85C62EgP1dD5WAigpvoeVluvA2OeiQHQd01AT0MzVb2kfltghO4L25fioXPqMyoB0PsjVXlPquaL3XHw9Sg0JD0dMWptYx7/xa+j+YNH62uRyO/7zKhxSp9giZQ2gV5QPsmxaGC0foe1ht7lYSFA5Q+YBIcaMDFdFS1t7jL2uP9MoK77D9kPCqp4XZtdeBtcHa3NTWH86ZHx0FF3IdXmS1bRCYsKPMotoPpTOGad8dry6bJapFd6PTtcoy6Fz2/7ouF8ARX9tZ8UbPeHwvLiDrMJEhcSEvfYax/H7SztNwHH6VqSxoVUpz5bRumQs4SAcrQqzu++LrxYzw4JA1LA8pl4BF0yfdFOFiyP5DDRJHEQR6pr9hHMGZZb8JEYh9HOa715HaEGr63nUBxfT3/PZ8M//th9D+dqNMHWYwIyD5vRz4oYOk3+X/xg/atVYHQjJ4etmjv/fl7p6GjgGgs36pjTDaxXn5bge+av9O//debManjZv0ckEyceyLHjbuChYA4ddKPd8mu4g/Vgc2QfBDialLM5wvFyDJBwKR4eyffSCNmHjNQzEpmtKFBn2MYjJFHk/bLt+Xoo1C9Az9/gMjA7lQTw7oKAaj3UQL9iugOTUSxk7+eSN7PucvvDW9JtfGhqHzsTRL8iIIe/fBpf+RK8QZ9gJ76E0bKW96f8x9f/vZ/MTyFEJ0Uiyy2eor+OCUivb52U12jJFvl3syGhBaGI29fefAc/Bb5ceU++stv9x9/a38nAseR9PfbmKwK265O2Ct/euuprDNNen9ByKYph9sk1lTY9hZUnGqvF5PIADElvE6luTHCwVseGnKTb2HJSK/vDa2jdekBt2+wzdheEFMJnOFL13F290YDvUXSu5xON30fgTdX8iOHahxL27N174yutCV+z3mFtGB4bv90bcIsHjJm4VFM1fAzItxdxszIHMIfXSQNyLZUEGIkM5pP8DWD0iBrSXo1qYMfsYEJ6PHgEHksLLNcw4gE4TQ0p7q2b8fznkwIUu5i6nbUOK5fmGnAtqcE+JL7OwQEKgGFwQOBwDwD3PLclbGMC8YkOFViOXCDI5uUiUsc7IZ0va+qD+mGeqBVyN4+7D6oNU1C52OZAwNi3rGpYacUeCcNzGEa9H0MQBnsXAbFfQFtboguRQT8UpTugz/q6R2A3KhIacimMaOlKN4inllInXnc6fRaKAs6seiH+O5KK9fohhWpedPjsZhkgf/vv5rQNOoZRHy0gkHLQdGRHlg0/p4EYPbwMN4R9rt4Payg2TxhcO0a39Y/mX/7koaCd2IRq9511fYt48D6NBlVnvtRX3/yE8mFSNHr7ehrjRXiIQTbXHL1qi+Wt00sI4YGaC9V5sfC2/ZzDb4ByNDa6xvjnwe9h5nEVWnOfi7Z83G9nvauoliQwrFOjIzhWYL/pnW/GRk+ZIR8dNazaBzs69rqcgD9+fc6WcfPsbgJcT5xOzUL4sPWqiMI//ujp3c+jq1QF8tzzJ+r0GR1oofgBlOPLTE8P+elxS5WVUIGUoaNjmdE6iz6CbRvZZ7bh2eTHbQG+XHfFmohjNus/tZEjIFtE/Mz3bOHaVwDPbznAj07SwaEWRQ7WD+NET8Kx1ce/+KNREmNDemCw3a/0p0exoXApYMYpX8FliBF9alUMmGxBKNZP9U148r1Uy6wXHLSSqUd7c+m9aaSpD54CCNDn4FQ6ufq/AiongSMS8MXhn1504Q7TM1ZlwJq3IsjS+mSIf34LNoTvpZG96MUTQGUVcMq9CuEWH9Rnr2WgOidwf3weo/xgVtP9G3NyHGR7UtRizWZTezWgv94PRCTMZBOrvgq89LaLX1h9AbqMaQlfsokQH8VNNn3d9/zHf7b40RkJO7sGm16hTnKMs7mOyAzrHVUwmqUzmwfoSXCVmohaPD6DOa4OK3hqEFL1D5/YMgZQrn8OkiMz9lZ7jHmQf62QzPzOAzR71RJ8IM+gjiq6+uqsaQvJy24wFi6dPoOf30ubHqTG7eVn9IFjF8BFbEmxv+n6Qi29kARFN6h+33N6q32hAuh3fRI+KfqBbflU3vgBao5BByj2Kk3+4+c+wyYYw4BbAaTVG/Fr/wNzFGox5NtIRMIlJBmb2V2A92+FqVdlO2/TlwLk2qNBT0GrV4Q5swuWaOKo467Tpl/aGbZXUcH9Oy2HWV+PvvjuwgBxS6h5rKFkBtwPPvCD/dhAobp3IR7XbTq1v4vILnwUYMuHZDYNqv/lQ2h+hIG608QN80UXG6Ad3TdV1sRhx+F8FcBVOgubHuQrKvYnHriPRMdvlpwA+zZmAJO+EbDrGqu+RP5NgRq4yP/4zXpIbAmKBtLIMUsT7x/+/F3fsZQ7mG7vuwKlwhiQdOat6PDcdz4gpNWpb6ZFtl6VRfjz/7ZZeLnHxGZw//Q6qZUIe+QTOzfoGOJIjtXxNMzSa7RhzE4F1tH3G42AvmuQc+hHJCTkYFX1PYFeKdQ0KJoK9L7r7cASHh2MxsNxWDc8Ai34AKp82ywaVMI0aBzfe2o9lTQj0dpt/LkJyMp1Iej6enRByPqB7EZT1Y+vNoXwzz/ILtmUTfklJrDbcYgiO7Gz43jbJZD+qpVwxmBm3KvkW5gtq0DWvlPB+jYqBZ5xdyTzvp7YNONbDt/SM6bX3GqHv+eB7H2rsJUOn2ryonAHuWa+bvzymS39x3nKl/1rJAL9fMA8yo8cSrnQkPHzUkA7XwpDJt6uRP/27wPHNrT3tUNvcbfXSVlTBG9PhWBHKHiw8cUEsvJ3R+ye25uf6K3AB8UDo8q2hj+/VLI9UlN1x4dsPXuXUp6k94nsG18F853FJpSCTqb4KxZsgrc5lP78TEWaVW/d8qX0p3f0Z+9XVMy3Ezd0eKD53/WTpkxACrMDUfjBZUuwaBrkdN/BniyHgPzl25nIFfXmyvAO+ePXwwQaV/pM1naYOeCvEN1PHcVeP+lTZpL+n3975ik/LJHhGfAwhzz67bvnsHo2n8Afw2+svslTXz/3WoN9PVf0nOVeJnlC8JT+9KttP4ZselqcL8vR40QRr4Jqlr57AzSn0KLWTRyj9Q+PhYMxbfn1Pcx58Snl41D7VN1dLY/omuCCv+c/6Uar0z9/SELfM97wylv87CuAHzu/qRVGfcay8urCPkwzat/MTGcej3i44S89/RCfTSwLTaiI6wNb7S6qCJ3FEH5000Xjhucr2AdPqJwkDivg4jPGGR4H2SrN2PmoBaBZ6vqwm39fxJ38VV+OCqohPTk91XGcsTFw+R2UCvmGN38x4zZ/VbT01Cbgx64ZMRIUQDfL1//yNZ/SAjS/FtMQi1rGPN7k4NEaf1QN8d2j441PIB5ng2bjmGx+hbj55dlIlc0PWpSzSeBjjXWKFOWiL+dHsP7hJ7aQ0kX1EZ14+BS0L7VLvqumxptuULTvBTXvkh1xmS2Ef34ARfbQZSRtmACeghhg/5W4w6K6Yg3EW+Pik78k+qqZKQ/v/BSRwd69wfAa5BYc0HuPtTx9e10XziPcyf7ujy9WUwgEE7rZc6XGlPEVTSwVwTxexM0fEfSh41cbvrwowU6pC1FvlvD2559TlL5wxJapMOR7rK6onveqR1S4BuAR/uC//Lvp+QIWuVag4JsG1bF52wKMPeNJ3fdUDct03GZhYAuQ+DYcPc5v3Bxkc8MRabu/eR2aJ3xNXYF180x0Kv2EEQ6PktHtefQ52DshPKYGpSjFxsDne4nAZJghzv/8nLBTarmvXy5aPW7U6d/9VnxSk4OYMMA2PgWHvUMobtJxYGGmxuAehk96+vOLP+DwhFc1dqkCTw+27KX79h1zGVDP/23fAb+OEBYz0agllYSt2RxvfO64w9ZTkTK2P6/znz7H5+76AyuKV02exDrFL3AVhunIJRLkwNnHuGmPm9/dG0BaAorm52ca5jpqVjhy54QqkdZGRFWuCthf9hgj42RF3I0MvLTlB9Qbcp2tVRmaEJxogw40KdlyEWMId7tTR44hd9PZeONTGHxl/68els0CjlIIvX2EDuJpBQsMFU0yAvigyVa/Wn87tp1rLbsIXIuqIru0zqHxfQTU2vySRcMdDzY9Q9bmOA6kkRsFfg/HBzoqnzqbuwm4wF4/NeGq7FS1J8mtIXm5DfbGURiW2/uuwcHBKeHetlGN3if1wZ/eAZueWlQUB/DgZwHhC0EFnDdhDtbpISMyH330f37l+3Es0bLF42Ktjgu3+gXZm4vrtTumhPJhDnj8ICQYplo5BnBK9i01yXcZ1hwmChCY1JHP7vrzVnvqExiuq0I1i17ZmuvXJ7SXe7HV16asvn6KFv75A9bSeYyHMenBLKMzVVbxUNG/9fU4o6XKvqv1NbkqT2Dn+zvhTVuL5pMgK//8t3vtmn/+2g0szQlSW1R++jgco15u+l9H1fd5ziZUiiFsO4dhPFtwIMlVyeH1d5jx03se2TrWci/+0AshYU6/3vp4zCO8aiXCm3869K3i+DAV84xu61398yc/opLj51bP2fjsCsJPWBHBwDswYxmM4G0POamzy8Nb9OdXgytY79gb84mRrHW2Lk3KyL0e1i2f35tjNsUKRvr76y2xawuwCrkE3+CTeGQqi1JmqzBj+/ql0eJ5igJeg+CSNV6/1eLd5B4M99yguJ/Ow5IuyRPYblnQTU+w+df8ZjhWaoydvkuzZS3fT/hp+hs2N/7PotYoodI2V0K/YgHYa9hm07mPkJ7Drx2xrV4qc79Oofdbomzx7cQwRFKKFfcrsfEb+AbM0CITvg/ngTxeWQL1B6+QuVfCil4uLQ/1QTOwdzmX1ZZPFaAkIcRuQbPor/7255dhC6FYp+3qSDCPmYh4dR70+VXy/b/9JW969lcofgjRDe2I6K5nj0expEAzv+WIa+MW9K3Hc3LmU4R2jpWDf/HlfMscK/eK09egmXLQqk8HcX/16SE/cgC7RoVE8z16m7/fAv3JUmqCVvW4kpsNub2xAW94Vf3zd7f6AGEfL8nWL3cqYewHBU6u97ra9EIJn5pxoSkStlnLCmpg/P5EFNki5y3DVxyhOisW2unvkzeLQbuDH3M7502ADCzWYeD+/EkaRFqb0Ufsp2Crl1D3nWrVMtsPE6izsGL7JZsDl1r9CBK4V7BNPypjxu5y+//1FMj/u6fAMG4W1UZ5F1XpXWzhaPAFddTF9xbfkFqQ1e5EDT4ohyVqBR6U2Aqo00+7aGrOeQ3F4qNQe9450ZFzlSfIb+KKT4dxm4d8nSTYd2eK8VddsyV0eh6+gG3ja6+9h6P1241S4jcR1X5cP3RxdhzhOyp/VI0uD31Nh3cNr3CJ8PmXvLzZOqQEAv3mE/n7vWUrWWgPS07qCOThCOiJ7n0YuQqiivjdxnUPFx9WnqVQldYPNjVHJwH+PXCpPVxWb+nUKw+DM06p80nFil3EewP68/OEw9Jiw/rUvi7QzQmRGYJgmBCUTFDHr4o0Bxt4pLiuCbjevwr1BcrY+Km6ELK1CbDtDOOwaseRlz79Nr/7JauMemmqwPVX1wROna1z0+S0MApQQ4A5n9kc56otx0Z6oO6jeHjLY/pocnjOHmj9HteKfZ4dB70sSKnhnRuwxs0vAd374FNvVjS2+uNTA6l6/2Afd7NOqcQS+abtB7Rs67lcZjGGHK11bFQ3Phu974WAuEwn0ofuGK2mK7mSZY5netkRy5tti7aQe+816ufvFIx8J95gALg7jdJz5FEeVDGc6iylTpjK1bTroQufalUg2aO4msXXXIMH8q7Iq+cvWO8vF4LDvoKocQ67bFTmvoTPFqpYjywrm+lXtWW8wznh2i6L5l/7eEK9uWGKx+EzzO7+Z8Kp0SpqXiip5lcQK6Bd8xRbi90D+nKeDTS8ssQ4I1NUvO2okHGAf1RPf6eML1srkALpjLAt5L9s+THVhZH8Tajr/8yKb+SZkwOrt/EZbvO9bze7374TolSFdwimuBZqWPHvAa3wPlb01ZghFLu4JkuRo4hll5cJ2zgvqcYdyTCreK6BEkEHK8a+jFazt23wQnZMWq81qhVZHQeiLxMIiVc9mrb3I8mXUsce0fthFu9PBTJxHaia7OZouR+6Am5/jx3PmAF7brPRpYp62HV7FB3+3u9bJDtUxQHwiDCyVJ6ujxybLW6HkX4dF0bk96Tek78Oa3gsZnjrU59kKPAY2cWLtPfvoUtPlfnVl7USTFht471G1ij64eNpoywNoCdLISjD8YpVX5ad0wtb99DQl3Gbd1rYRCL7ANFqscP7Db4EUULjk9/OsUC2DauUqOho2HeP2U04y04sGETOT0k2G/nZB4ASCevpmekDp1oNPKT3jpTWUaroX3ze/CTGN/N9qWY7KAoZXQ8KTtWzEA2ykjXwUd07jNv7Xl/OyprI3uW4/OGJt4gZdYH5GB9IknUeTKhQEnmaeB2bANfRhB4DBzv1eaNe+QAZfcCBA/BsTWTf7Nxstaqhhk4lKdRX2HcYpeD4hA00dOypZ1tnmjFLQPHdFoGPYoIq44YbLC3hQF/zgUVsen9bEKl+v+0HLTrqitDDgfQ29j6KyQ6JxxNoSdGdKltI8JYpCmC6az+MXx8uWxj8FLAV2wNWJhAPM2z9HeRv1wdVr2iJRna1bXj9+SoCCruy7sccF97l5k5uu+zNWKu0hoQYL2AnTF/DePwupkwMJcNOtVSMInQJt65Yldo4qYY1He4NbKRcoufbN40msW4V6NovtM1by9laRDcDLqI8EFl4l8NiZ4EveydDp9fdVkInQcmDy5GzEKdKmjfntN/OGrUfNA8Pgz4Gv28Dl2vywm49896cJXEBSukFMJZzIzq2kpeDpj+IpHv/1moxq4QAZD/PFO2H80AW71GAt2AdkFTdP9Effm6f3q9UzT+8Ph5+VwUehOsHK7rWeyRibQE/n9ODZopsedx+n+ZQyGMBu7FlDMtN/KySEcU6TX4f5i1NxGz43FURWbwl01mYTD0c3cdK9i0oh+XY6DvonLaeOulCvFm2MgXa8ruklhHa0WyufPr3fqmrnpNoDOFthUp5VbB1zjLAvqW8gyAge/JQl1FfuhKv8PioampO7cubH81Sw7Ofv6gRBy7jszlBINbZvOWDsGJjr+Xw+LmesN7di2zR6eMJrZqcqHMjikf6ereTmmrIseGkijcaRVdCzaU5dobLh62vD7Nllx1EckCPVV+uxXyDX/pC1AkW2ztqu2cAgye+UYVcTbAM4jWEqbBqGJP4qM+7ws+l0W8V/OinPJrf3SkHNzGxqU3VRd/wOweDzc9Y28VGtYi7QwrQ96li9BoOYK2s1w3Os+/SSw7siHGu/YST+djOXYiVYXpMnQIW7J+wVZ8sb7rKpSJHroaoWuQkmpbffIPXxD/R82+lEVvWVQA78fKkp77Rva5skid8sB3BntY8q6UWvjGk8e+BPft10kfhM3Mw0ZwG3w525q2+c57h8bNzEQskEk1K3hYAGuL2/wRlWARNJuAO9ghr6e8wzJdeFaCkuCrZB63K2LdLS7hbR5O669n3aHukLhzk1sCX3f8BAAD//6RdS7eyMBL8QSwEBBKWvEEeCYIi7gQVARV5JEB+/RzuN8vZzfqe69GkU11VnU6Tr7m8+cmCv0/3w/rxsRakS2oHeLE108P3VbOF840Q5sk8YK0I5GZRuycvEynsaXZJTulg030IPTF1qSYU6zDW8DZClaQzDoXDx5wNY19CGJGVugeBmExanBqe5K9HkZ0LwWyXvxgGu32HD89v0oxDHj/Adr6x5gV39pPbyoCX9kCoFVcDIME6f+D0iAzsmAeLja6QjMrc5T8aqOanWZnGj3CLR2rvrjajD3fu4DBeFXq4KkXDWj+sQCDHCT4O3MY2osZRUxpub9sbTkDcO9aU903SyH7b33kQfB98jbggysvv0rWtBwt0vc6Tnb9cU/Z532LIPy4ykX9WB36/tnXAxcstmr+4qKDR+JHUP7y0dKUO2PD9eDCSyyMRtVpuentoHYBv3Ykmf3wq4WIEdrElYyNYfPAHhtD6ykdsUP9S/IvHC9rdkPQmY9HXwf0DLKnKEI+adHifWunz9/2QSN9nc5/uWQ80Y9pRH/SGKeRJEUPZ8o9EIJkRLPMwf+AVzw9s4Es+sKYXS+gOxwK9tvVh/fkag/C+rxBTtIWtNzQpwFfjmlReoAIqLaiC2W0JaPR7fpoptJQeGnO9RzPyBMZWonTg3r9MbGsQmsuFRQjAGjgUXxehmLgpLuHf+fH3ShOw6Tl1CteMPrZXRw94frgn8D1bJ5pGp6pZx1J8gO28EHCeD4xJp5MIdS2T0KxwUsGc4+8DZ+6r0Qg/0fC7VV8Fql9yQ2vUHtn+8BQRjMLyjvZRARgLmfmALZZOSOxLvRkPvsnBLf9SY3HpsHZJb4F4wAk+gH4t1omrVtgYx5K86W7fLFk5WzDyhRNSLPWSzsah1KD5OWH8TI77dPzdYQc1C0ZYO0o8oxteA6oZAcb+IqcT/Z1iZYtnGh1GFzD9XfMwZCZPVIhfw9iX+QhkKisEauzddH94XU0gQsJ47YOFFy0O3tdTi1bjdAKrVrNODdXHC4HjJ2+m7e0f+Hk4AdWNh5guzzQIQexoO4rm426Yds6Bg8HyWKkvqEMwNXUcwjn+Huhh9vnmbdmkBw89qygahwWwQO0SGDfFiuRiz5oJZD4He6t/kcpZD8H6VD1JdmJFQKvYn9Nv61uVuhOkI70fxi9go3WR4I97HKjtmna6R4PPwa4WroS/qzpYfq6Sw5WsO6IU6RPM69XLoUXtkXxS6DYLFs8V7AO8xx75coCuZO0h0G0O4+R4KVjcGFu+GW0cRuKvmLJSsuDlctOwU+6Ghl5hI8LXT1KpC3MX7G+XpYM+ST5YlwO9mP/4dWJ9Beon/lis1Xm9wfzXujTKxwb88Wnw04QjLdosHZaneCzVoE8y7PpYS8V5rTRwGsIjzjY9Qf/0kehyNY6YMabLg6m+Yq+pRHGM6MCepnSD/FM1sMn5ZsAfozhUpfYVk5VZ7sA0pxSBeZ58sodIHEgdnD/QiY8zDqNRCthoPRWwl/031erhMjDjVX/gGGoAR9L5mAq89Irh5T3vsftA3DD/6aVP9HTwxt+LdWxSTb248450EDnpPtgHI0yAkVCtq6tAVIVGhDP9Wti54rFZhp3Mw74XJawfpXZgz7bPQAiEHHulfk6XW0UV2PW9TLV0AM1aB+cWMku9EJK9+2AUf0sGKyyfqTvlA1sel+2t5d6vkJwfHXPjk/U/fPzTI3P34hVY89IPu9Lj0qzK45GBd6BYNBpqVMy70kLwrN5yjIu2DJZg1D146J8ZDQN5Manrhisw5mpPD1TXGPu+bpqyim211WAbNg/rJMI5Zx01dWVNGRp8CM2p6ul15L9g+g1eDyGrAppLD7cQ/Fm/QRNWH+ywM29u3/8BnW48Y62xD2w5RoMDmpd0J/LIu2C/45MZopaHCHqpOex9EECgSa8LDetrYPK38rRCOadPwppqz9hT2T2Uzb9AcqT/zEVRVA+EpHzT6CXsi/GnkBPEvy4mM3vctllWQwvju/jc9A0eeLwaNxjshA77X1dLl888inDTj9T46A2YNF7tgC9aLrZeh3u6aoZO1K7oVTQQs2+6xGA5/BHBw2mskGKLLwnGd/6Jvfdp62v2gaSg0bwQfk77gf3pTd6bv396AQj8uTDAdj5pZMOOjWnRijBLPzOCnVOnq6EcPEDHXMbBPuTMyncCAnEcfcn7yrRiDeZTDP3cwZtzsh9I82kyNSmvZ2qq8wyWorFCNdXeb2zWblOMs64osMnvjCwYjAUL5cpQm9uo01NTfRviixIP+6U/I/nOB4DtztasLs7thb7c5km+nTAB9VuasF4P33Q2ul6Dz5utYmcQRJOc3+ZDfXgVoLhooTkCXFTAPgEbQe2aphs+5H96Aw2huQJyHipN5cK0w+b7PpvjFLEeDlp/pE5hpCmZ8XGF4Sd2qM4R1yTpQdj6zE4Mu8dzGCzi3K1/8bX5RQ1gh521IflbpU4u3NJe5IEE6/Oxwza6Jlv8BSW4jLuEqGVpgPEY5QjMJsrILrYe6fyejxDmRvChwaWJG/JQ2g8sDxcNLY9XFqyfra+qMaU3km4PXLDuflxV7yvF+Pnh+nT603+hVhLsnsAVzIh+LPinh3Sn+w5/6wmd3I7pph8LvnpHIdz2h6LmUTaze+pWwMJ5T83oVA0MBTyEFF11/NOX0By146mCG36grzLMA6GXJAaeKIU4T7hjschtZ8DP8OCw+d4b6foBZaVs/gPZWVzSrIo+9hC2FSY/jIxAdO/YAOCVWdTLTg+TnSnzILjWDY3c96MYWz5BcCl2DKNvPoKlC5QOvv0Y4IATo3T+46/hs/yh0Xf6YmwEzgOb/sJuWr+Df/z1e3iINJTkt0l2g6vBzY9EsCxTky/3fQXk1Iuou3g+YAxpBBzmgWCH2zUFu53vGSS1lmKtkmaw8Vei3n6zg9aPboJxci8WfC3jAw19OjQTf04N8CN7Dy2f4lMsdgVvsFiblmqjF4ExG8/rX77CbmGYgTiW3AMEcpJQuzeezaoyXIGo24fUeyCSkv0MeqVrHg/CYTs02bF8KzCx3gJZdFtn4udWt1DN7Su+VGfPnNxn/ICbn4g1v/a22ZdVDMHrZNGLlufBSpZvBzc+Q16WoIHpvfVdGxQshOs5ZSCeIXeAK6QfzQyaDBMUYqj+6VtL0fRhPUjlCpPRyIjwOkTm2ppnSy2Ui0WGDU/WTIUK3CccQiBlyzAud6+D7snV0Eer5WH9LZIDYgUjGkWlw1aLthksd36Oo++KC7rlR1lbOB31z/sx+DqBrQFFlmvsvgkcBh8EnFKRKqHhTz6Ya0jmTG2b5xMtllAxqjeoBhs+UWznLfjjb1tfSYjt+XAI/sWPfMs6BIcRs65rj0j90/OldUgK9uUCAna6o5J6VB/pnK3rSU6/Vx1bHRuH9RfaFZRKSolIQm0QvOSZQetX3WhOvg+wduOuVOxVUQn8yT9z88dWaN3qB3Xa529ghzqpVKPPnmT/WI1g5XfxCMew17ArgqVZ60hWoPiGN2p3vyBQikiHcDXyI0aT3Zp979mxihgvUXcY+GYGngihx/84iuz1mzJpm4X0FcseW28zGtYqfThwafPrxiezYnqRnPuLB/xwAwCI/cYVCOpSxNrGx+eY+B549tSgjv+rGUFtUcPd9BwIZwo4+LbTbYUM5RotOHFKx/g7teDr7Zd/fikTwZBB0ztdNj/pWLDY5Es4mviCQ0m2TaY+fy18Rtn2VPrdBVPgrRLs7rGD5o1/LAiuFjx/Wkg3fdMsR3I3YGc/PjgADirE5iD3wI7cFjF33xez71Waqh62F6ZPLg9m/3eFkLPtiF5yoQ82vtkBL1dOZE6MT0DE49T9+YPUuv6eBSnfLIfva7KnXj54zVtAXAnOrco2feo0c1/mBOav9Z9/lpLWXnJwP2UjDeT0O0xNnaM//4beEj9M98xtfQioK1DNC1Q2bX4I2PTSFr/lMLd8EsLh2YfYME48oH/+q1UREcE2MwvmkCIGm1+Jjag9AvrUTxZUv/aZsN9FK1qJ62v4reKUatXjMazfrM+UMn6VVDOknJFdLHcwk2/en54Pfn3ViHB8iSfqKsKLbfmxVAdV22H850cmixXC5pjmNGSfKlj//K3NbyTsFBcm/6ti+F89//xcCkbgJVNULZXJn/8uSvGBwIv2aanLziYT3uDQwQ1PsW5IXrMkfTnDv3iKuOTwz99WhmcXUrTF04ZPiTrOfIyvc+uAJfiNPOxTPafGgbM2/+2uQTurEXXkbZbjls+hfSe/zd9sivWpahL882dd4zybs3KWLCgp0xd9/J/BVsqbHKygfECCV94Chl2egPZtdWTe+N+87DMD3lP6xa4N7mA9gp8G4rMGsBtIZ0CeqqbA5G7csJWkSdP91WfSq+aj3atoh+7VvBK4+VFk3alKsF60awITRzSpSeYTW1/4LAJy2GZ9kftkrnGZavJffeO74TETHA3949vCXv6y9Y//dGNs/KvvTN4J9PD7HKIt/8RgjXevBKTvRULLNa8HRoopBzUcDzT2a89k1U6yYHM85tRxZJOt4j5H0E3vgPp+pQaz6UqWEr97jSwbn2HvWuDA+tzeLSuLPVjq++Xz5w+Qw15JC+L0mqdqKXfAVjK1YFU8Hak2IK+NXyom4cWLCOKssyg2j0XKNn8BvPraoPgdmANvGLsSnsL3ifx85dms7t3V5E0PbPxEBjRKrttskPGI//jnyi3DB258H1+M8xysJ9rFcKvPUPfXhUD4q+/9rZe8RmUxIrr5LbtxoRb4XcxV5/QcuqXSYiRwYjPp+yuEW/2EHiOSpvzlgGvgmJVB7y/hkrKZz0TYL3pMw3w8mTMOnzwozv5CrY6FA63UYv7jF/jRc7fmreUmB1veaWk4jJSNHrKQutUraAifCfhXvwMX+Ya4uZgZcZ1F+cMD7JCwaqbGNEL4d/68jS+t6RRw4OKuO6z1bxf88XWgj/RDdjKxU17i6hpsfhX25nZvTp8o+/zxEZJk+2xYFiOagXR+nbDvnl7Dylqfg5fn54n1gRvNUcp3EOjaSaL6clyC5fYNS0Uz6A7J2WkCi7CGI5yTMMGPQ/0p5mX/MKD8y1qMOrCyZX9IEmX7f+zQ3TedO93n4KZ3aXDO9k1n1tE/f3TD011KP173ATQL601PfQFrlkKDG3/HRs5pJp/Weg7NAbyQWO6CYcarf/vLbzS4Olmz7uKlV2E0rvRmu93wtx7wcfU1jDM9S5efu+bwpz8yElePR7M+r0oHJHyCOBTXYpi77d2wDb9xKMKQLXCFHbgZXI9tQdTMf/UW+TsV2F/Ylc058nz4TpwSOx9vF4zoGkP4Ocdf+s8PvX6Wj/rHV1zPcAsehxcexG7nEViFa0Dst1upBzs10VIfheA1nRoLOPvxiL0T+DXzH38NguGKBP/HgmXDY7DpXWxwflqs1up1//ihM3VqMD+S+aSaj5pg046fJtWN8vOv3m04yDbJPJsEbvULnOQ8YUsrTRn8TJZLyxMUzKl5MgV++r1M5mVgwwosjYOxfVXwpkeKUZjkD7yeoYhd4xwH805SJbC7SFd6l57bOxM3N4YbPqP1bFFWG/tWBBv+b/WTZFjOj5MG6fo+IlneDw0de78E/8+dAoX/33cKbBVkhFtNFCyR4kuAgxmk2vnmDbMJmhBeBCBTLfRrkzQk4LZr6QnV4ns0TIfb0VN59+NR83HM0yXlwUcZHhcFNSGsGLvyngMPQm3i8DZxw3y7/j5QKiUFR05XD+In9jzAwROkLvUbRuObLMHn+5FRYz41JrkrcaV+C7vCYa9ZgJeU3oGTWc6IRJ4F5mZQash9FoiUd343p7MaWdDwQEf9N7+aaxR+NZjgo7q9lSWDKRlrC9YkOKNVGnfD1OMiU6pDYlAfSZQtbPR8cDzAJ47vT3mYxU9VgoNQmYQTV9J0xU0QITzxAz4Yu/uwnm6RA473NaB2/LBMpmr9B9Jc+WHjPavFqti2BRo1d+hTe/Rp/7uHFSzF30zkY3dK+f1QnOCpezUoU+ApZUYwSVBc/JUGy9QWm0Il8GEbe8QeRyld6P7RQtF5X6hVxX/3xFcNHFa9QOCcr+YgHuIadFn9xm6uuSl7DomnKq+7j60fnM1ZG7RQxZbQ47C4kGAaao3Aystzsr7uC1vDi6HA+ARt+vTzqpiv5rmFn2606PGp+EOlOLcEDo+zQp0Mv4cp0r0QagO3UO1xaYY+Cr8GDJ4CwG6p1injsJxBI6g+SLouHVgVnTwAN/gIB3GxD1aDvBXYatkBh7+1L7rH+rCgOLwXotapnQpz1HcQrUtCrVBSi5XWVwf+jo5GD14+MWY/vxX8ic4Ne8apGsgDjCs8ltILH8QlD6ZuzzSVoVWnzi9wgZDUTgha9sYYLcI2n0/vfXCvjDthMgQmE5hVQvqLJmwcVmpSjbc/cD6SmQZNZQzMWU8SnPbfCi3QSZslncQMWnuCEIBe1RDFjhyIi+REg7O/H7bfWwJdF0XEmr5LZ5m1orL0ewUpSXljcy/nLfRldU8Ev43AdDmiGTzZZGBT3wvB0u2BBlUh9inavajJjr3XwZeivZGkXD/DvMLbCoXnvkMqf1GbubpIEjw8MEHCLLnFvG8fDizmsiMfr/HN5fnzCMyW0qbxV2iHKRByA7ytRaU4GQLws1nt7E45ehLB/q6MuV7HweVWiQjUIjNZe19O6gOsbwLCzAlE39Rj9XGBMsZ7Hjfz1eERTNRMo/rLrtK17/gePkM1xeZZX8Bs8hME4XwsENcdJHOC+4KH6f1nYT0rDwPt1MECnyS94ciepWYs3lcC/YEG1OC/pFnu9/wD+FvtY03nM8Z2T81Szdy74st7YWDs5fijUoc/4ufHNM39k8yzWpG4pNftvLJfHNeguH0atPdA0RD+eO2guf8ypOKD17D2Lp/gN+gdqpPzh/34n7oqf/HY0rNmrupXD9XJDi2KRikfFv9ziOHuUZwQJ2bXZjlgNVZ0g1TYmWKJ9WUb1vB9fabUV588mw0KLNC+6j3264fe7J/3Z6c8nDXAgXv12d6/mhzkAZGo6+uayeOXwMOLfHthp1OnraHL0qCiJSXa+/o2W8DYcdARpzuhfNyyboqSGB4eEcFBY0XNclU8H140UyCwOKTNmjhBKfWj6OHQKsaATr/IgHmNOvLafm8XHPRM/dGBEshGrRDyXr5B4r9qirpL0hBaFDz0b/UdcdNpaha6z1rYc0pFrVUOgn/4FBuaScs2eIIlYnYP2ZFYhAVNPJDAOlfgYUsvelYfXDFu+AdYzN8IO98/YHmJtrX1vctY9ziv4RGdM2jMjY7Wbf/Z2VBDQHNjh4YWmwULgWeBh6280BwPnUmkaZyhaZ0mGv3tZ9DdRuh8YxOfLBYWSweuHTTuLUfjxrECHrikhvADTCLM/cgGGT97EJ+cgmqi8SnWO4Ud4C27otHpilOmO8yA0n1ucRRcmmCtjrMII0UUkBi6QrBY3wVu840pfYiZPHTuW1JgSmlJwO4Rsxl1zIG7Bp6pU4RVM1Yx6GFY8Tr2t/w1X0BowDzMGhqWp0OxJpE3gl+MMqq3e5vx6qQnIDqLBRLq+2ASWBwd6I7fF7bt7wpYp4Ql2MuchJRLUBQsv50fkLtkNT5Ivpeud1bESqcLW1+M7TTrwI8zrK5vh+LU3e6hfsUEllZyouZu0QKh4JimnnUppmfhGhVsffoiwPBuYHPDs/UajgnI3IigXQGS9PO7TpK8fV/yDjSDCWHP+9A8DQtGe9Q01Hykifyls/iXnwMmV9IK6Q9PFFd9anZvP7ag6rkLkmJ7KjoHjxKQKvIlArYZGK/RUqra4LpkMTo1pUA6GrCejtvshZxPyUUwIXwpCqbe0jsB0/1rJ59Fqcc6s77p8qIuD4W23uGgc2Qw+OfpBMRVcXBZCbhgldJJcFsfMrEOgmkX3CvFSR8XJMSPNvhef2MIxpLq2PQirRCIuPWR3Q2duh4ADSuC6qayp22j1UGt+Sv26gp5eddi3SQ6Y7tj1ILdM+FweOa4oK5MMYNoAR1ZXzpkYzu/c7jlZ9TPd4+J1/RXKQRpPi0y4zVMIdlqJsItplby/IJxcs4aPHFchD0BHc0lJ7kGyTOUqDllrbnS+ujAq+331L8EoFja4zZLqjFbHJqxmNJ0TXx4bhwOicBHjKTuk4AtX1O0135B187v2798bp6HV8rMd1zBHlwlIj6BbvLe8tPA9YINaoZQY3PitRI0r4aJlkNomkzfCSMUF2/FhSG1jGZoyuD6SXboHceHYTZ3uvgXb0g0ogf7eaorws9JI9iuZc0U7ZNGwOfL37Dx6b7pnNFCgsBD0j/8ntYz9JXPVoZ7TA4L+te9g+o0WB4+NfyuGP/yoVpnHsUqebNOMUAPuPMb0SM4SOk82t6s2FObbJ/vFrM8oxAC94JIcx5exfiWOAkEuNrj6PT9MZJE2gj9iy4giNxv09OiEEE9Y0IykB9SngSuAmPDMKkeCztzLm4qD8vO0chikhcYvb5ZgRqWJtWU5QPGtLjF8PnJNOpr+Fosi+nMUIhpSvhQUtNVe2s+fB67nm7rX5C3DC1oq3JGjdcwpn3bTxlUC5MhBUmYiW63zf7SUg81Iv8254U/JNDOjhw1UkMYRo/4OShubUM946QNzHwUMXgyamz8Fg3iZZkyyGWl9IeP5roDPg+WJX7T4Lj1KQDpakDjsCRY+wrWsN8d7Q9Q2Kumeum9i682Ew72ahDSkC90U+izfGsKP5zJfL51ze9yRCs49ckePTVDSH9E7jhoz9WZusl3H7DIPHbwo8MM5+k+Gf7iB5jS8051WHvN+o2EGXLyxCEIGpHN04F1cFdjHYceTEwq7ncn+CVyiH2JI2D6y38HtlLURs6erYe5EJVrH1jUYH1aUNf2T0DQcozD6rvdEbi1CchUe0XVkr7ZjF+CCNgTUvSVD0PwL5+5JBOwfY3aYVkRJ8FDzE/YKJMynUBnW/A+Nvzf+jYC/7l4cCcqF7L8eI2x+BHX6o/dS+qA/FcwdvpAiL0s+ff7Oq01ODhLjwe1zC4b1iTSiPp2miM+TDQMaDqUCjwLQYYkLr4H7Dr/HsC3bEZKQu10wWedV1kkXehNOu0Kcr14HnTD5E6Ui+Az0TlyGTwWQUQkmV6C+ZaMJ1gvbk4+t3oJ1kVeTtCxMp0e2jZrVhLaFoy+5gH72OkLwg6aD5Mz6bDjLdbmAUiZ0hIgof2BvYf1PB8tuPFtrJNGT+e6HFaAtj5ecP6Eg/AuoQ8OS7Bg3XMewyzmEwduUhXQC3/rBybfEw+uMd2RX0AeAdufvU7pB/igz0R2igXnVakmXd9jLcbM3PhmCEjtAXzrd9+B+NJ0glkfzFhvoyxls+psbyEqgFoXbQJrhW5IWVYPE7adp7nkuxKWSaMReMjdYCW4IRBQPqbm7aaDhb19BfrOuGAtluuBdVZ3g+P9M1AdsC+Y6P7xAbV7/SLwZcRcAPVPoGVfjNaPqAP+7cjbHZrygfH+IwQr+lw7KBxblcwfVWnYefeooLl/M6rV6BbwvRy34HTJBOyfzHezsNcYg8NxvGD3ZbBiJuXPgEfnuceBovps7gkk0LOdlh4AnJp1kp8dVKLhjth50FM6/WwDQl35UeQi0qwb3wVViSzq4GEHxh2MDajw1xAb0rhryOdgKHDLh2j3FrpmFbutRlLEE8V+rhXre+VEqB0Mii0bvwrW27BX/OnxJILw/TJC8EDAwyhk0iZmAv7wV1Gi352iyGvZ7BZnA+ZRGNFngkW2qldnhA/YYXoFVT6st1pKwOvkv2h4+OjD/qQ0PURCHmPvQUzGH924A7Z5hmifPnVz4q658U/P+DNGhYCPTQjGNTGIDCppWNMj+wDtoFzJLkoKxmYr4AD8yCYNGmtqWBOYEFqRx9BMR2DSbT+AwS0jNXqQAKbDiwWTE8+hXSI7abeTllx9nbWABiCwCyHSPcRH3XrHQdhWDYvMaw/Hw7yjxj2vwBKpvwq+ndcRracoSBlfPR3YfYQfjvLxBuadcJthousJvn/8AizVBFooetmAw/2ypNNVfNXK7mikZFaasZiZ1WbQk849DpQAFEDrv5cA5l+JM1CRpNzyb8XIpt/BxifQ7nILi59hPEOwfr0fGvniFTAuTAjU96OCDe0rD9NL+2lg81sI3PCPtbeEqDSXftSQVytgFKy5ekPiDUe6XAfLbYx6oKToQW1BqIuV2C4v74TApN6Jn8DkLs8RXqRqj9HTHcCy7YeqjXxBxEnpUiaMLoLZIFvoF7kknX9N2MJSulo4JGlcsE7XV3X/lSrqnWODrXqtruA0+C8E0dkwF91WeUWXS0RPeWAOMzj/NPi7vy845KNPwyR/XOXrYBB6CAgX0M0Pgb/HXUdALFuw2oeRh3W1nnBo7fWA7XJDhAvJampdkFfMQlyWyq0lT+qlv9xc2tOf/8ASbPFWxRawVhx8OHNAHQc+Cxa00ALJB2RUPz5J0yeH3oLtsgfURXPVkCiOesClgkL4dYiHOeYbpJL7s0VqKv2CEZxfhnqu8Qlvn5cuU39D4He0NCQp31cwB3Y9/uVzcrPFBszuRcwhifyKHvY/IxB+rs6rf/tvtbtzwOw+uEGrXUOk9Dt3WNZSzuG1P1i4rZTW3PiSB+RfPRG1tnuw2O9vKzvyqcBJSZZiavNDAv/8NrQeu2bQ/Wv/F19IsUM+pY9nb0D4XSeq0W12GXqfHvA+vngaCKuQrrJ8kmDO0d32/eqA+dUhBKZj6fgq+V0xLX6owRa1PDaVT98senwd4fy0F+rThJn0pAwdIH5TE/FY2cEqy6UCi3yPqc1lXrpw11wDP/7iEDm7nJio2LYDOJlyhI/qELCJVQrYH58ixnzcgk2vinDTD//2byKikaltfXshaeD8gny4D4TaKBYYbXp2nO9qAo4VQUioh/fAnmRe1du+e9HkVNhg1WcpgdccZvh2p6+AHT+9ARaKQooWgTXUwGEFX4rxpoGvCmxEdD79i5fg/BkbQkLbgW813lHnaMXmnu8VCJfrL8TnIRyan2NICryOs4Evr0dXzE+9/ccvaLzxxe33Saputj5a4AmZ23kKoTsX6B/f/IF1e5fr97nRkD1ssMVbqFZFdkPrS/6AtRwOK/w1fk43P5Wt51/Kqxu/w/h+qgdm3vgeNrAuMZrmuhlDR4TQmF864tr3FCyNsofgfviu1JfDQ7r5uxbY9AB2CfwVBH/fyj/8X0xrTenGb8AgiipGrsab5PY89lDzV5P6V60a1vCh+erGt8g0W4lJDvujBZx4f0V0y/fseX/2//KbzhIdzCtM5n/4svlLBfn7PVEa3enJ7MSBYNL4oPs9voh110PAFk8UwaafkJor54KV6sRDjVMYqdPxHcy7BfrgeJ8Dmv75D5fc0kCVT+WGd4Ypvm7+CYjX5krtFyuGJdK1UFXpdMCWddkXq3A/bHij5BhVid7wvyb8wFg4HhBwr9vsg0dtQdF96kjg2pqRWF0kVZoijpqr3TbMr/R/+0e4Knk1szw7IexS+Yvt+h4ES2HPmcpWZd38tk8wjG3iq7/1uyJFw3LRXQz9BET3rhO5mrRgP37nGdK5Ngjf+31DHkbvQFBqLY2urcXI+ZdufaBWQY/u5c7G5fe+KQLqFRxWAk7nLlVF4NkQ0TARu4ANx3Hd7xWxRlRq4nS2b94Me06qsLns+2DckXulADVKsL6KI2M34XT60/uEf74Ym8tpQLAoHhHibn4M9ls+Va670fp3Ppc/PCiVbXCrdHoW82rmFtTPXU2Pv8+nWDTr1YJNb2FLswKwpqiEUDlZHr0rYT2w/bHXwLbe1IUgbha4T3mYLQ+bHsTd2mx+RwJltzxjR4wYo/UuncEfP9bhbJqrDFkNo2y0ada9pHSFxdWSWXgwqXu4xMP89mMH/OnrP/9t8GLlIb93Rkqq+D417U5abuqGd6h8ljvzu9avByBPJGHcqtww5sfcghbS7kh9FaAgqAYGLMYOEDWVDsFSIp2Hhbr/odE0CkA2fg7EAzr/+TXFZCI3A+Dg1PSQWL909QU0wmn/rsjk3Dqzpw/l8S8+DUf7DePmn4Nbbb/Q7n6qGz5KqAUspLg0ih0TbP65pWz1HQTbYAf++Y3ZQRy3+ovJBO4s53C6JCXivODA1l81eFAXdh8iS7nB5q9FHWA1Uk2xySvDeh6Vx58/ja+VGTc/cXVjmPrUoJoYV2BeJmvrE/+u22yltvgXP/zFrGnwvcjBvPlvYH/a+H02Q7bGIuz+4UeiCSdzofbRh4nZxSRJjfOwXMVfBYr50RGwTFbxuV40HwbPPcAO+DSASJLXS4dVtrd6gp+yzW+CtnmB2KoUK6C9kRlQwbcFO6btgW2/HXg8OALa0ZcV/NV/YJELmHrO9djMvbBw8p8/lx2rt7miZ3mDLz18IvWTi8V8UK8+mHlVxP48mOkiFd4INn2CVu0rNzRdbz7cicaED/vCHdhJGXrw0a0Re47wGRYP/TTQfOyVGvrxZ673MdNg43Q59e9UN9dXNoxAQY1LcSlNm94UFQBT+0KdjU/NRy29QW2wXewAH4H1rcn5nx7BhuzxzW+4tLwqJOUX69bdGDb/nYPxXnGx+zs/2LRD0FP8sRX+6k0pA0sx74ux3+4wvK1CyL+3GfK3yv+r7zR/9RflkHz+63+NDyhz8NQ1DRKh25tU+RmJeqxGhDd9Xyy1t1awKMqIbn5TsT4cb4Qpex2oj08tm/782C0fkPWym5uVZB2Eq4W+2HpHdOOnL00BhafQh9PuzKVaEgStOkDUxjZjjP+eMhidXJdGrwKkfRAkK9jqWf/04mqQSYJzvHf++VezcDmSv/2genFtm5l5BqfOz12x+flSQ6Odwv3pK1K/ZzWdNv0HypiN2Gmeo0n2j8yALNIm/Kcnl/B7rqE/fgRs28JUUDPd5eCjRQZ1xL2ZCu2p7uCcfG7YUp2RdVs9BtyS3iXddKgCZmSHWalv5x/e/OBhPleRD+RuMBFfxaeGfqU5hOjVtjg8fF7DIl16R4n32p3Mdb8NQ8mj9i8ecZLwINj8yhp6Noewl+7XZmmjdw6FT5L+Ow8rN/AOXONpR9S0PAWM71cIM59kVDfJiy19wI/gd1gGovIsGdaSdDkcl1uO+D5/mwsyTiVkfO8QFsIKsAE5Phx3g0mjb6yl8x+fFfOBUutS1v/l25Oc8dg7xzWbR0ZbsNUT0Tc9Os18ruztzjM5k/2eOxdLqeEMOMlnwv4Q1eYChmaE/PQIsXYNiUnX3G7/1cNs4brdgePgB16vooa9qysX468/8NC/gCeNhp3G5qfX+5Da3Hfjx0Kw7L3iBBrQrWSRdKOZ0kk8qXjnaNjxzniYu8up/NPLWKPKuVmkQiOAOuIRnehZCxi2JknZ8GjDkzZgkvmt4DPAO6pniAZLZj+2/W5vRLhG1kBVS0dqvYojNtCLNsvz3VuybbsxRt1le/e45JQ/P/qPL5vEu5MHeLXP9+bHa2BfKm4I2HJ4ID46rQV7fkENyf3e4o0/BnN4vPFAmjC3+btFOt/uXgjnyNx60Lk9GM9XVwJhcdSw+xoNwFStbuFDOqo43PyiNdA45f+7UyD87zsFJ88/EX5fbT0TzTrDktxM6j7lPFj066FSPjLQqH+p4ECfO/oBzZJqFP2aapiG+yDBbPINanzO14YRPqyVs2wl2FauY7P9fw2LGJf4oKQaEPr19IFkFiZs3cIGCJ/e1ADTv4j6xi5LiYxmTSWiwlP9sdXkqPAtobWiO3auaAHsuL3NxRmPM+q7+ytgmZtzsDobExKeWV4QWo8dlN6xRQveGE2W9/UMp+DzpOjL75qyfSgjEL7GjQiHmm6Vo32vdG7vU5chZs5GmZyAy18kjC4vrxC9a/UBl16LqfuJ9gHxTN9QjOSmbG85rcW8J6MBrr2dUCMgZro8jvUDqj90xWiGrFgsWJzkY009Gj7efUEWm6vA45oo6FZ2ccpDUW1h6KctGk+5aa7XMRohqPuVGteTOoxxHSJovk8YB466a9jd3odwx4Uu2UuYFsxecg2cD5cF8cXTaRggiwadLvtgsypqk+B7XKrFztZQtlvm7ffdTpBz+wpH/Htg5Ho1JPCsmidazII1q8hVECrnuaWlpAlF16E9DwfZ6ug1LQD7lT+Hgze1tOlTM5/FKJRfD5DVc2luXwzA0kDp4bae2KvXqJlT/mDJibwbEdP9B2A4P65Kc48wUpNDC5jg7xKwTzKKg2v0AXS+PHL4HNaFSJkK2fKQ7xDeVO1LHXHmA1bNXg3l5Zht8SY3y+1xaAHw1Bz7aKLNeLZyHwJziXD47B/mNGnqDMnDyih6n4+D8ApuEjAdycNRBATAdr79gLN5aYlSviS2RG8fQmfiMHYc9w1o3QUOXJv2TTXvQoOZHV8z9M1JxZEgoYb5ezCC0yuPEbVym4231+0GK7UYifz5PYt5aPMSSi3/wUixPmztb6klv5LTFX3vadIsye06gqnlC+oVSZMSMb2OULddhO2PqgRsF4ATbPKypgcq9el8ib4d/PCjgPjp9i1W8VPWcMkSmXQDOzTCdJstNQfRhMNsvwRdeS05+LsebQRsKWBMRV8f/uBTpkELtICxQfdB9RRfhBf0g7l6pmHsZFHaUYs8gTnD6mJAmxUKEevMTvfPDIXQMfc5YVpYD8t0NUL1E+MvEtrHGIzpzVnht2lvFEnN2Vy4fKxBSNYVMWP1Ap67uSWEhTKR/UzfAdW2WoDlwReSVOEF1ujwHuHRzzzs4dYP1soiGdg+nyzN4jfTp7t7im5zPnYVOKZLpySaKnzabR4hXMD2dx/kaRLiv/POqusPwravAT185gyw6vrigG5XIxIt3gzGnd/lkNG3iO3A1E3CXQ4tZO+eoyGQ7w0lr8MIhBePERDQ1rfUV5r6O9U5DY3MBwusfhAyh10R67tfSnP9kMv7i11if5epjNgPI4EyhA49ZjNp5ldzymHZeAtGKxbNpRPFWC74Y4jt8+Fo7o/o84CWx73oQRr2zRafJSxkZXuX4AoGVnwOFugUkUNq4WtgthJqwNcXGlRrP6T5RYnmwYPhGmiH3pG5JufUgFNw0Imw5HHDhNdZhH/r49dGP4yfM77Bbf2Q7FMnHUmZGqpKbi3V2nw3rGPHI0jPJ0DDexCbwz3weCB4bYrN39lp5jsFFfhOcCY5jPJhuR1iSR0vMKLPXdkXc3sPRXAhlycCjvoc+ocYeWAb1kazprgGVCqcBEANq2g5HathGQTppIxlWmLc82HDz5flBEgU3cgLG0I6nye5AhVTEhwo9BCM69Y3vxdeDTYSw0inmTtIEKPPmR72x7u5gqua/8PPfIunmaxyCy5t/qWX0nUL0ZcfPeRPnI7299dr+Mlq7MBnNHv0yD3zYnHu+xM8GHVF+CmljLqD9oA64xiBj/EFmDt4D0hjfyYHn36K5VUFLZRzKaOX1AnMOcgyBdbaWtFQmZJ0iR/sBnUGGWrrXQwm+bPU6uGdikQYkqqZn1/OgfNrGah/Byyg1exVSp7whOqvwDaFRzsligUPZ7S+DySlB/7JgZt5QdjLVAhY/bmHsqglGRKU4D6sl5eXwSkIdOyysjY/xXc0/vYTn677e7qaApnhXeg6GiFjSper22iAM7Q9Db3+AMSvb1lqXOg2DU8+H9CifmfQPbY1RidQs7m8UEfxpSjAB9qDlPQmrGWmH+ZtXr2b8gexW2Fz7yeMm6gHROKFTuZXlxAlerXF2lV9D7NvdaXJuP82S2keTqBTeA6H3+OOkZMocsrzq1kYVwkHentdoZrfI4uGHP9jcw068T8AAAD//6RdybaysLJ+IAciAglD+h6igKgzUERARJokkKe/i/2fOzuzM9zLvQSTSn1NJSno2ueQeL0jNUQPbimEV08hurMnDeZ0DUsbH0DecjUbNjVy9bc+kL3lX7rhr8Sj+x2daXz2qfEzW3jZnZ5EcQWFLennakHkmBRZRsf57StlJ8hzqYXKX6OM3OEtUPiRyxMGBZuSJdaBB7Wr//3jI8n09tEOqk2zeQSi1SzXUGoBPNdX5LZnB1CIPAPUJhzx0Qu6Bjt7HEnCoCzInwovOWpbF8ja93iCQgMU/ZOwCs7N/kWU+euNbF/uHAjNY4d0Vs9s0kongGF8N4k/hSBhNrzkcFauIVHMRipW0x4nyIajiyzZSPSZpn0NbwDN0T5PuuRfvmJa6ZGAxg8d3++eBMPncEW2gEgyoll7wHPTGshkO15f5WTrf/u6CcQwzk3C8iCiQNSKZevPqrOlhOIEZ3PHo/DoLwWuymqQq0j+RMfvQSmWbgcmyXvlM+Zzoo9sivsOnvtsib6nymy4txBaQG+fCTKO1VFfU34HoTuIL4Q46dEwr/EVoLevhGikbccx0w+BPLw5A912rPTn3fwM/uUDDXtesYpNhWG89S8slWBuaCQbD1G7bfdmgKs7Lmuj9rKo3RfcqLcQ0Nv3B8Fe6EqkDoGqL/1J6KGnEzlipXTyV4Q/N3DjnwoKsXdJDo/rqkHwZjzmeAsyZo/KQ7aMKSW+MVUNBk5VQp5JPf6BrhmHu6UYkEtNk6CbOPnr8HAg/AgnE+Ms+jSMKkcOVF4gYLrNH/77/fTLr5jPctmf2qrq5BAaJeav3DFhy6NX4E57XJCb/AZG8+CNYT59XeKjHRixsJ2bbfiXTwy+aIpV3ccWuHpziI/Ptzryvb/s5L/4il7o3VBtpQIsdr+aWPvh1nzAspPEP764c0N3PDTTjgcb/8eQhb0+q0NZwoQ/Sn98TWdPro5ATMs4kvbPS7LsdMBL1W6yiKlfvmDYzZUHubUJomX5MLD0QuvAR59CdG4Wb1zeoUKBn/1i4qTXYzKHzdMA+ZtdIs5sLf1YtEkAj89WRffuGCVLszoPuE9rHElrcwKTlDQr7M5Gg3TVKxn9fcqbdHlxGYm9Qmn+xhuI/PMdMfYzC3Z4PzlQK1cNy9NxbeaTTzvosbJEoV29Cppzl0iiIZEiaT8aBSadc4Pb+kX6/vT1sUmuAQwkxSSv6DPry9v9KHDTS9HPBueGnQXEw3nQOmLTPhzJH59nAJvR+8BqtszXNINCe3c2/H2N63RZ8r/1gpz3LSmWZlVKude0NzK3/L7EW41j4y/RYeMPa/aKH7L7vpnktW9UsILn2ZED075HUDmIOk0KOMBRtHo8EscujnIiULhf4QFt/LJg2ttV4NWEVbTy8jFZ9RDEQMnQD2lnMACCsJBBGnU80gdSASbpbwoq+T4hxNcfQH4yEkBZSg3ymDzq7PkSK7BPxjWSrgfd581VguAZ3Cb0RI/vyOpzW4O0awuS99lvXAaKMSCv+Uz0of8VTAmzE7hiKpN8d3uP7JfgCm74Eb0rmddX9UIxFPXTjNLcnIq5r14TLERdRKFV+A17+goP3TGTSZDt+nF5v8UHOM9mGe2NMy7o2rbtv/FYt/ywdKMgAb84PomWH1Cx8bUckpNDkd0Vnb9YrzmCvztuiDbDIvntHkoMbSnfI3NdPXZUTqsi7AVXiYT0eiyYIhU5/OPj/vmW+cupBDd4e/Y1MTCnNpyflQJc+0v8930Fp5VKBOWYcMip212zZpTcQN3yJ7yknutTGwoZhFwyI3Q8OOMf34UfpLnETWidsI1/wuxqgWhHYVJMUtd1f3wfczfxrS+w5AwYAlRHXd4H+rTWOyxEnyzH3MGpmm18Smh9RQdZtZMly/123EFeOWVEbYbEZ/vwF8HpWhNkRKfiH9+D4dVfcTsps45jZcikrE4jgjLzmPSd2WfS+ywAYgLWMbqKzxgGvlORB42hzm6X1YCB2H7JQ5rXgl4ULodcClWSUOgUB86YB8A0bYr+9B6lmV/CgsMDVpcPY3N3VSJwElUczabjgMPJpy2cisMOmbotgMXYqQFEa28hvwn2Oj34cQSb0vCJf9sfGZs+4w16F+VKvJddJutfPt70FTGlyvDp5RpDGPvNJ/rD++V4O91kvXIMYuuCPR7tX97BTzgTFDzjbzPrrSX98Tvi/cVrheMeptrORf73/Wlm611Yf3wb/1r9DojmcC2sLsqMsix/+qv4ljjIrOWOHD6q9OV6wJZkZ3Qm3uZ3LPH8qKGKLy6yk1AbuePNLOHVbDRi8NYDUGP6peDCyh9eb+gH8EJeAgjpMcDfU5yNLDCI9seXImHDx8X4nSpwYY/fP31NQK5k8n7dHTBnnJuCSkoFZdS9j8jb3dSR/j0vDdMXsb+VCP74rcQj/kjsh20nPVVzCkdW7jG47a+bPvkq8vuRnLG8+Q2r9aIeFJckwxBGbbIQCTt/fgfyJV5pKF6XTkb8/oI3Pamv91ygMOEPEgr69cyoZoJVOvfpgqtkdxpxo/c3mAavBtnf6g76gztl0saH8Jh/3z6TI+KBtGrS6FB6s4+nHgYgd2wQrXaVFnNZH3N4eeUChq/lMPZJHlEgnbo70Z/VAfR1JzhwbboPMvXolKxX773CI73e8KGTc59eQzKAwPgBohnTi82qIhtwwwdix8LDH5TPawXaYzlh9lK/42IFdf7Hp/GP7N+MyB3r5NrvUhTud7tkshGLIJfWTSQ3pARsuFFPGo1Pjgw8Dz77Pu8cnIfSINZN68ZF/0AKP1/+S9Dv7bLZ+A4DzN3bhTi1aPqsEH0BptU7RR8Pus2cfl4G+Kfn1XVfrGWjZdJVoZct/mR/oumzg8u+5lDwNIRxOt7MBzidwjMW3UugL1Z0iuU/P0uXZaPY8vkOLhm+EqfZCWzJ1/UESQqeJLw9G7CUvav86S2UK3e6xTtsoVmUNxS51qrTzY+D6bh2WOauD7CsvFECdR+YGLZjXixl+4mheUIWUaQ30lnLTwGk7m0kSu7fNvwvIrBwRCG65+dgJp9DCbb/R/75FY4L/92X8PrrVhS9kNrQQ6VJ8uB0TiQpsViQxXI3PLDLiMNdPGIiiYak7ugXr+QZ+oufvXn5PFeQ5Bt+sT+9ldVZhLTzDMCqXgQM/vT3pS0DfVFnKQB/8+OCTh/nMFY8wMlXBQM77vTRUPYe+POHuDzQ2WG+b3fHJ78HSuCgjnTczrknZSlFgk7Egv20ewd63jiTJJ17sOW/B7QapyDu7SHoazyKLfjjG15ge/709m0IgdG7JAmtr0///AqsHY0NL/pxYr2Twf1xrrGQfqyE2d92kismxBt/WPzv9L3H8CPEZgQ6e0xGL2gf8JdWN2QLzhFs/qIGpqdzI49e/CVrtYwl9ETL3j6/AtoW5Q44WAojacunUzcn3J/firyIs3V6pGcJemkrbn6WV9CLNsQQ1CjFeM3CZkk/Lwu4YyoTU/LlkQRWKkFPGH6Y7V0yTsmaBBAv+IdU+6c1P/HjD3DTi//8R/oWVyhJr2QXnU5mn8x3U/bA/pXVyO+iGpDlUSmyLcpvYjX1aVz57QaUChU6MZcbHdnBO8bSEfhBxG/4yATHf0h/+b78RJJPx3po4UW+vzGHhgNYSLz2kPctD6kXBNkSxo4HnfJBouMz93yQ2TcI064rkH8EXDH597WX3TBLI4qlMFnPyewBrlRlEryEWV+Ls/n441/oz69cP9G8wlMW3zb+XjTk3Fer3O2hja5CZgEcXxIF1r9WjnjZYD61z2/jb36JqWkffZJGIYLWFzgkuLRRsXq9i+H7/Pq3Phlm+06Cm/+I0P7hJX/4Crb4/9NzBZX69AHXp72PRJuTdNK+QQUDJZuQcxFcH2/6B4bPQERIfYrNsvn5ELk3jyjnV9388SkYqy5Cjs6fAJe8bjnUW2FBwUl/jPSP/1wElGHhz58xrkIPYrWdSZmCGiyqNuzEbbyRTexinMZXxMH40D/JVY1rf1kbtwdTcdwR635xC7w8noZ0yr9f4rxvLGHBg5WQ2cMFBTr96Av0l9Mf/8Gi+9BHWp/OHQyvnxN5Bj3T1+tbyWDgexXRsB6DDW8rqRCfV6RH9x+YoNA8AFdKYiT1aNWJmS+lvPl5xL3LP/CH72DTm0j5rHdAAuOrQLwkPpbfV6dYP31vwc3/Rq4ZcQ2+K/x271LaIcX39aZ97dJefF9tKxKanQD+9LZ4v/84gnbut6FQOqdycxOUzf+JiqWZdhxoB3gnT27S//w2DojhT8f07D10/g/vHjVJCPrlcbGGftGB/YsqCKWj7B9OvtDBGl8GopcS1ekNPSvwp8drr6iaz+ZP/if+xEeXMCnlMTxxZ5VY5OQCvuRND17y3kePZcoKthhF+29+vLWhgL52jx7eX8kTS5vfuIYchPD7tDliLq/eZ3KsCfBvvk++Eeg04VQD9upXjxZ0ahM2xVUH//SCLVLV//PPpM0P2M5Fo2Itj0yDQL8SZKpc5q9IzzzAI+641R/mbY/RJ4d/fsAT39rkR6TOg8AYXKRM4amYd0S3oIx5LeKnoS0o3e5Z9u7XDsOforB1SvUaUGcfIlv8/ZoFenoODdix6BM/ErA2t7Mh8ai4R1JW9GzNHCBIZ1QnyO9sP2Fy7Elwy0conM1387O4pyRtega5jlsBpkD1BDb+SAxD5xL66yUPAKS9iKdKdTOvjTqA13vrXbLFwxKbb+VPrxLr0PZgaLIxAuvT3CODT0ewypdkgrvqsdv0IitmVTkYssrlZxSdZvav3gJ/pbr++Sn++NqTFjitcSdhCC5s3V3dTvrzj/TM1n1u40MwUKhH/BmH+rLTGQ/HSKbI+YWGvzr3voOxVHgRQ6zVyd5nmbzpa/TaaRsZd1IHmmdLI+baArDstBCCLAv3xHtFBzDtCzmFqoePeDSFkS3XYwIlWLwQ0nj5WuDvcuykzT8m+vMbJtzeq3KgHb6YqHIy63Q8zDnY/Clia5+WLY3pp8DMTuFWr9ouRtzueRPUKEWaXaVJfzv7Odj8ZeLA8Nasg1nnMifTkmz8vqG4VCQ55IUEqelZGelL8TqgvEuI7Gfu6eu5IzsglsYbqeOZAwypIAK96n6Q6R1iv3cf+CE2AAlY+IWGfnCsnAeLglZk0uCT/NbotpOcUj0jTbgugELpnkLDsT8ROL/mcc653oPomDNkl5xR0CSPVok6cogs+135hBfrExSs22vTUxZY1KF8QEENUpTIclvg8gg0uE/NE/L2z0OyTmCvifv7uUBmNtRsucTpSQSz7mCe/8FxRsW1///6xO+qL37248CmL6PdaU4A25e8A9vXuY/AFBbJai6hBazva4iIou+T/jjxHsTL2Y+aoXcTKg1aJo9e/ybFhrd0baf/6BsrYkXCFOieQJFhNWL0QNn8V49LR9ohf6uvzAYsMvBbzQZpNyfe9EHnwGAfnZDb7bad9/yxh4+mQxg/wlKnri2v8PMtXBQelqvPcHBX/tYblmq31tf0JGYQawcDb3zJ/6ufgdOpJ5jfnXbF1/X4Vkb6+kZIBrcGA0tqwS/3VOSFbyPZ+O4JbvqHKGcP+jMsoQU3fxuF9aKNrIaAQpF/vYmuvj7F6iVnRb5B44fsU2VuvVrqWjb4vRc1/ueiMzmhFBaFfkIBCx19CcG7lus2X//Vj9f7cOUhvpUz+av/USNNBYBXz0be5jetAicP0M7WGTksgFv+8o1/9e4Yn1U2aeTpSFs9NZL2bcDoKwlzQXQewj//6h9f/ONjZtaMyU88xbv/qfeBxP/3PQX08ChJIMtXsLpjZIDJdmJyA/MRTAdOCOA++DDia3wOVutMIxAsxZm4xWTryyIsghz6kUeMpzgky124xhDN9T7injnR2VbJkS/25CHH3c5tj9uphG8NGZbaQwm43nA6eBAnF0eedteJs48ECL1gxdTqPbbOkLUAHeY9ctqfMy4ZShQ4Xqww6r8+G/F3ynew4C53hCabNXOIQQA6KmESvhQ5YW7ZTGBwfY1oKN0nk+WpGlj3lY3M+UWLZbqxAYbXjBJ9uJ4S1r1tCo6F0KHs296K5U6cSqqNGiEUW8eCaM9+gnp5uEewgWBcuKXgod7hLjqUjwYMdO4wVG8ki3ZzPfuLERWlWAjxnjhXNxyX9o44MKnxHh9elaQz6MIH9JgRRcA7ygw3D9+AoI9E4u25pZgneuJl3l0vEbeNL96FNw70UDBI8eX0kY/B/gGcJWwjoZtuCcuuXgD39NshZxzPYCWP001mZHhhnvsI+va+HDCq/Ygn5xb5DFeshSpXu8Qj65is50KvYfqiC8m/i1Mwa8c78Ls3b+R0/XnJL8kWS17sx5UkdnZtVu7pDaCmRI24o9QV65KuGZzG1xG3za3W2fq+GHBJOjna6bvOX6mpQygbjoG0lWPFqotiKTa5KEb7t/H1sV6nJ4iTdx/RfvB0vg0+D/BrUIM55WgDjj21E6xgNZDgI0WMyFo4SOlhOqNINDhGvnTngeXT8iiIsrc/XUHsyKd5vOLZKdyCb1utl6TY16L3LWh9egeDBPLy/MZztpcSWo1VCgP3JURrsHIJCfkhh008SQjd9dZfk1UsjydxkaOhPW13RZ1cHvq/+4TC+mEWuGWiBoP5NRC3RpeCNsHHgo8pXqK1P5sJ1zLaw8uB+0ULWLhm8XaOAf/WT9Tql4J8X0ILjWk6I6/iAFgG1Zxg1f5K4vEcx5adRBx4taEUybt9MHJbPMvJHn+QegsM/ejh3IArW94RlOUjo1Uh7uCRcAGy447T57kfNMjUSiW5sDr+ItwdCLFdaHhN2bVgYxVbe6VadlHf/vpxynRVk/2voSDE3AeYeTVR5NOdLMgd8ewv7d3mYHdVe2Td3oG+VEcpg/bdZ8QYcr9Z9VUbYCAGZxIyqPi8I40TjEiWRgOKVH8VLnIKl2/VEM9i+xGnyechMxmvyIger2J5OFkJna8yEofHZULfQZpB5s4KMk7izFZVrCaoBbODbu3PaT5QC2MYz22KSqw6CRd47CTnu8tMFBAVPpsERYPxYUmR2046oJEfKOA22QYKB9g08+NmcPDG4JmY8+tUUF0VMFgTcsHC29EZuWHqyMCzcmJfdK0hiAcOXOzyinz9kvmT+IQVCH/pL9rRNmvoh3NzeCuVhRTq2jZLWgo9ND2O4ikVSUKVPE1BwV3vyOoqTT+21VGDGt9GJE2KG2Ov4w9CNR91ZFU6A8MRUgcmYV9F9LHdaqpsRVb7rSoEpcbQ0FegdzBxsRSJN/psJr8hA/gF8ISF9FuP68sIcuna6xaybhoF8+0Ve/K0L55YuQRQJ6/KWGVdwC/MxoPpr2tbYXDXtJZ4Wz5Yysq4wXdZN8hEMkqOkXXjICKPibjXoAd0+IQn+IrfIQm1Z+az4tXE8HFygqi2UOdj8jjlUDqhCwnXckyWobpjuMUbZp9j7C/cdtONWrY/pFqBx7gq9T04vgNGQjev2Yzpu4XBNbhFDvp+wKQPRSkJD2WH7MpC/nem9wC+htv9P/GnSHsB+B8vQcEq+cWSHj8KVKKbSW7IGcaFidoAdW4VkeP1QbEOwbZn6QhdUnqa6E/3xHGg714qomn4ndAkmS1Qt10RrS1VxuO1E1ogPy5bP94a+evLMHKg0IdProam+/gBoAaXb90QFY31OMWraEFyyKyIV5oXYFbpRTCYnwM+vludUS2fLeiKHiTO22kYzsF4Am0tllGH3iRZuzbJwSVXeRQAyWZLYJMeTOPziJRPX410Pez6PzxFjvRTR+Z2eQ0Up17xRdqPen9t4A7q6TSjYhKf/nDRaC9v402U6Dezxb+aJ/isUkqcDf+X49m9Qftp34lpvnb6DFzOAjIfuUjZo9223tcUlutTRUF4tRuehY+TJEa2HoE3f2oWjZ9LyP/4N7KU5sWocNksr/Sw9WaY55HIZ6gB/+gEJDlfZtacdusEe0eKkXrGcbMm61LCW4cWZH/Mflxj/yPAAF38bf3V47wqSw0vb6CT6KUL2xnwew/+xrfdQQIwiF4nIPEeh7Z4YVQ2f730Wj/bHqArTdjFLngwv14/FDyktWBfp7hBomYpslJ1Zowqpxyef1UWSVu+onZypeAvXvSdyI2bLoaAviuBaIxNbMUHY4XP7M1jFjNtpJnuavB8rZ5Iab2RYUvKIQzlE0Iot/OCfV9CJyY2C7Ec7p+M7bXyJm3zj4XD0Ouj8Vz+8SWyzTdgcdZP8I9/2W53Hdc8USq5lGIV+fTy0ZmVFTdJcOwbsS/9s1mbUXzASwhOxHCvnc+sUgtkNmIRqcLppDOhEhxQ821KtNe5H3+HHOWgxE0e7TrFLKb+EjnSFp9I7/hx+76lhDWebaL9LqChfvMdQJV9fOJTTknW9bFs56zQI5py+PLbKT095K6lDrpv+ehnfOggj99CxOvj8vLpLX1l4GtwKbLXT5MsmP466DzRgqJO+STLxudgYwxfgpAxAwwPAwcyVUZI6aaMLb0zUvCKvh2xUjVkK4iuJ3nDE3Te4md+3AIO+u61Ii6/iA1xsJuC9d72pGz1S8LAPd5atmdWxFnSdWTmZ1HkLT8gPeR+OkHRKYcqV7mRRJePT8fgJkDjRkdinoHWsBaJD3i3EjkSbNtuDkzUenhcOOsfHvLv1K8gGJwOOdhREirOtQTDMc6Q/74ekom/TMEfv8AJd1DB0e3i6i9+iN8Kks6S17EErq89o1Fho07+8ODp3U/EyG+fcerSQw6ZyXLczHeRsecLKtLGN5FeH5xm0TMvhkdEFZLn57npPY1N8NOoPFGtsdN/5fHXQbWuTsQb49DnWbuUclfzBUFBrYEVB7UG7RjOxKXYBfShgxiu4UNDtmXGgDPrww0+4fNCvC5JmtWTuBJK9PzGR8uMGScezhiclm6Hd1+jaJaPUjwkep13SG/vz4Se1iqD8745YPa4SQXmOaGDjgVfKLkmFVjX0K/BOnZvzM86Teb8NQiwxYNBQvtBGrpetOnf+5w/gdKsTqxA+aqZ32h3Lt86ub7UFbh7BWGS23lCf4HiwH4f0uh7MlydJWUV/6236E+PTNpWiXxFnw73yPFGxpweA0s0vySiLT/+5rPBgx/euZHUnAe912P+JBU7L0bO4v3A2nEqhaLnPoljdxrjn1OWw+Tc2tGbotDvmDzzMDhfTBIIu12xLO6xgldJ2WPuJIZsQcTfgXPx0CPZfpBxGRxYQ28MVfzjl/u4TsE5lpM7syK+NzLAhl4RIBZfNkK2PgBsurSXV8QwcXZeVzADHxX41hYZhRpckqVXuB181I5JtO/SgaW4QgP2/a7EoEjq4l88Ena7E09IAvaHJ+LRFWaUO0sMWIS+LZyaWNh6fRTFavg2Dz6GeEXGWwoLdiJBJokPN0NGeDSScYtnkBXUwau4KP6xFvyHoAYdReHxaYCldL4R6Be/JL6QOf7y/LIIEP2kbvnK8umb2xtg43sk/RSrP9laHMh1VzvIdfC1oSG4dFB1Rg9py1ll9MOpNzmS8y/SYBoVtCzeEdhJsU1c5H8A/ZqvFYiVJWN4PpqAc5tSANq0pEiLTj9/SfYFL8G0GLF4mPViTf3dAGN9RsjvMgwW8Zx7kKrlRCy+dnQ8cZwGzY/+i7jsqLAD/5OpNCzWVkO44mK9jpMH6LsWUPC9NeNy2PYk1UaFiA1//Nb/d4Fw8u9jJD5GBRxfVUABiBQlkqUXTmbiYgrR73uP+vln+nwUswAOhQciuVdyfyEuXuFVs7/bOQnK1j98gdzriI+oHUaSI04AwflqEv1zy9gqHXIL2hZnI88kv4J1SsGB0A+8CI5y2dDa+NSgjgbwT59QbdViOH7vIqan79tfp2fGwx2Xc8gXDk2xrE6VwsORPvCOM4tkcSJuB93R+CELa1tNO5VS8VvvGLF2BmLs8a15KGIfEeujhcnBiJIH7CK+J87iuWCpqF/DLy/difdmh2I9DT8PjvM5QIj/tGz9pLMGNzzH4iMwxzn8GjmMSa1G8Cga4Hi35VQCp8uM/PIygnWcuMcfv4qAfHk363us8F++jCoQAX2B9+EB1aClxMZtlbCpv/fwbzza+XHx1+EZGfCpRWeiJ7fnyHLiCPBGlTGiwnTy+RuIa8DMJY+kjDpg3YfvTu4vmhCt2Xnyl1+vVH/xgQJhVyZT0ZYl3PhPJCyey9bvFENYWdUeva4mBbQyUiofROwi5eOaxTgs1wEq6e9GtI1v8lXgQ5ABPo0E9DXBQs7PDvz5M8oYHHS8v5xuoKCGgl+7zmZrnKQYiDq8IrWJ5oIWyU0C3tPD0XPj33/6C6i0bYiyR6XPsn27k93lAolp5u+CfgANZGm6Slj0RnukvaF08P7d6Zv/UYxELY8CZP4wE+duK4BcykWRyf2dIN/bRsbvxhPk3viDBburweRKnAVf+Lcif8OzdYsPkNVqgQIoqs0EDkMJtazWiPPyTs1S3i6tNF2CDypK7qvT/mI5wP6hPeb7ZvWxoYoGHPbejKxAGdgiqOMqVcEtJvcnOfrk/oor2Aj9Hf3puQXfgxuE+WmHXCl8j398BWz8HhkLTBL6bL8RvFtnmRifItZX4eCmkPn9jAyWOzp9cV0mUXl8kuAu9IBt8QZy7wI2vq6zdXhaBnhycUaCVRqT9TmVOfDexgWp1+kzUjELMbyGXBjtXvqtWd/FmsmV8Y2jw7LH45yWdIDj0bJQ9Ky+/nJYpg56ZlIj7XcpxqW2xeqfvxCtml9wukonyBog/psvrEhHCb41JhMl9O/+eqqlFNov1UJ9M0RslZ5QAFraXsjGb3zcBXwEtYA4yMPszKZVnkuYvIY70mNWjzQuCgGK1HWJq2OJYVPyIigJ1hshoU/BcX8HnXRzzJg4P7djx/X9NGBuWTUxnceffwc6eNPC7a7eORzbWN9NYGXsHUnS4chW/CQt1J3WJrp/lZpetK7pP/3nbvn3nz5ERWNhflAtxibBUWBWmhwyjcJm/FcXIvgrlIbocfpNRqaIW/o++Mj5uRZjp52E4eEJMixZbN9gZ5AzOIahEt1lNOpzepwV+FKaFAWayOutls/G1i94h/zx4hR//h1M33Qk5U+LAOmEFooBuvpIPZ2eYHEzrgbce/oQ5eD7yfrUWQ/nfaCRwmV2w2gPHKDnrYLlaHfd8m3Cw8p7fIgLT+fmEL2eHaiV7occx1KT1ToLEWhazCJYC5+C/uB5Ajsn0ohZvI4+NaW8heBhJCgwwasZG3sRoFZNAMMoU/3xsDwisI0P2fQzoEcraoG+HgKCjobis/wbW/Lba2U8bH7Lb1F6Kg+h1UfiEn58tpwxhjLOYHQw83ey3n0FylX29aOD+Sp9KnzGVEoOYCIqH1Y+Y790kC4/rCPL0o7N/FGKUsrXc0qi3Njr8x/fGIskwWI/W4zmel2D4O6ZJPgVSUM/baL9W2+o+ozgd73mHcjufEHsx2coSGSdODi9LmeMr9qlmYELjX9+Z32O14YJNcrAt+cs8jCOboFF2ZFgM3QWMjtY61TR9p6EwCfe/ON+/MfXd/QZEV0uXmDjg5686Tty2vTz8jmpHLRq/kIizgTJ5Hl1DU/kaxD9nlGwwtIc4OYvb/rA9TlXqyGMVVYjpfFjfQ1H0sFvJCvR6lIPCPjTUYjN5wV5W7x33WNq4TB7HOYPBkv+5bc8dQ7E2PjD8tdrMPKzOpI/sudjRdpL8F98Wf3AyO5d5/JF5Y/RokRHtpyzPpMY6yz0Dy/70NrBzd8mj+ZajZ8/PSV4urn5b5WO39NRAs4Az+Rh37kC2556A5ufif7wb/VrxYDxgaXRYXxUyb2yK/r3fKS8hjlZn8WNg46otVs+7H32VdoOSjflEnHVQ2hWS4qhDE9OTOzfp2MDNlgEy+HDbfOh+dx0IYM4sauB/vk3jnem8vXNKxH88zNUy/eAdAov5Jxj4pN9HKzALy53ZIKyKzb/6AY1QZRIQIQ3mM7+p4aWaH+39Tcm9NuOFDrW7kWCGEAfz7MZiUKLdlG3NNE4h9dMk8ryGSH3MSpstYapA39+24tzsmbjAyXsoWQQr+IKsPlHEhBbpYnAIvAj/oXXSThfWvrnrzMmLDKGxXqfkP/HL+Y5DIBkWASpuvdOcJgPCnSfSka0lUsKCkoz/uOTWIh/JOlkuc5hVtrcn3+o4yOkHiisSIq4yz3QmfkRNXitfUZsR7d0yn/iVh70hGBZe/I+Wd9PS3rd8or8+Znfqao5WeeoGHGH500/bPUN4H7CjCiX4KFPmrhYcL7HTcQlhQC4WOcx3N6XuIxQfb01ciohtwlRCGRd3/xSRY6/RCXRXekZBtE1hmdQI+LRxfSPf/jqqYqLMvw2/Z7K6QQ+66T/jcfIDksawBZOV6LK6Ddu9YIers8qIkW0vn0Gfk4pKX27I5lSNvqyuPtaQqSc/unfNQLPnaQJQIqq45wleE5vnISKt4UPknIe2WPvaPAxnRYUZnup+Fe/2jnNAVlqfS+oaDoeeJYpH8n87tf8Hi82wOj8OSBEv2dAn9ylA8dMT7BwdeeRmgnS/vEt6/LSxrHunxbA9l1DCpyZTspTmcM9/XTE2MaP/rhBgOy3BER7UZ3xx1mloLACCanS1kuuMfgYylFMkQdS5pO66k7S4LoaUl9zPy5W1AZQ0cbXli9fOtv8VHDM1ITor7RhLLAcC8qGZxC/5OxtvPMKXGfhTuxb+02Y5DbTn5+PL+KbL/CtOaQAz+mbWF1V+9Qdwwl2097e8rlacJpuSzD7ShiDL6c3RLyrKWzWxdryr89o2R53sJtkm+jvawIO2/qX/56v11mYLLNbapK711AkPZOrTsA9t6BwlmK8ROHMxk1vy0dZeP3xNX/6tIkiHa+yQk6xF4/H+nQUoK86b+L8ek1frmik4I+frwOjBcn2LYT+r5gQehu2Tq6ouIE7Z/xIrK/Hhs7Bu4dCI/nEUI72xrciC4bNMyPuh0o6G9XIkNLLXiAqH0MwLW2Vyu9hdNEWT/7aPw4Z+HjrQIyL8E3m+3XMAD/SiFx+O7/5w8d/eOb03lz8Plc6QI7hEnnfpU9WuczyP32KNn8WUKX2HahbfY6CA0wBuyCvhxX/u+J1iwfuzqABtHrokaWUjb92bZFDoXdbvLzPcvFX7wQ208SI/2hzQQ+cEMH1Q6J/+X2K6l8ANr4ZHcLCKNa0KXggmpKBvPbUgNXMd8G2p0tHiXipfOYcBA8eBT1Awb4ImlX39hY4HaoWIc04J0w4qyscDoqK8WQIxd/8yxueYxH5JmPWLLRQcncaXp+MsfFLeQda2ur+4+ebfi8BxEGLrKXB4woPAw/plewwuyYKOz6P50guykIkbuprI8WyDuVnkMkIJe2kU8OlJ/lxu/h4/zM9fZUPoBWdj7XDoEnNgqmXnwfZlSVbPaTW2V8961llFOnBATX4MIkKfAapjKKiTthMqZT94Vu0rx056ZvDVo/6mhxxTtO+mPIpjGGRJiGx8hYAHMR1Cc2P+vurF490aftUpupjiponT3wma2EPvJdRIKX62fqRnfclEPXdFS8DvfjL7vfu/uITV0+nLhbwPp/g4UMbYtl7ezzomRZL7vlMkdHcNJ3Z0dT95aeI6YeYseXnS3DzV5FNnYu+XsYkl62au5BIbhO/2PAd5muSEoO7q4Crxj4FnNrfI2HyabHkR8eCTcQS5Pz62mdXamegWIuJmIqk6/T74HbQ4vgoElO/bqabfqZgTopTNJeFVmBUv9s/P/VfPDOhtrP/7Z6C43/fU2CFgYxXPFb+Mn2uEDzg6U3SEMxb/8k2hfyX7bCo5LtxkdWqlKkZiwSVn7QZH0DmYPPwBxLh4z2hhe0Zx9MR8xFPfk/G7FzBspmnA3rk9AhWehszmLt8QGxcp4CHqebBn3egeOFR5S+DvVSy691z4tDsxtjjRztYXNgVmUnVFTO6vqCIzuGED49nViwmB1PgBOse+Uc4JCyujiswPszGOwE9kym7mQK8XXY7YlyNLiGdSSIQ4CWLDvroj6z07hnkuqwlLgz2DYHnNoX3up9RvFxrf2XVeYUdbb4YE10r6K9CGZAu2oD0lwWLWWWS9Pf+CJ3DExgSS+jgmT/LmDiG4E+PVavAVeZWLH0igRHR0j1w+uUWcR/JXl8O+i2Fyu+0Rya0RzYnKe7hZHkHEia3CrBP3mGIX1WMXv4hYOuJG1Kw/U00y4Zgue4FTQrhfdl+v5cs9ovj4DSnKToL5O7Tz8sUYPNwh0g66KxhVp8EMHATO5Iz/AZ/4wf3h5tCQhidEyYrrw5g8c2TRx6r7BeIy0N2AronZ+Z4/rJY6iDH31ggZsC1DWtHVkLfsQz8uduHYrlGXge/O+GDAm+K9en5HSjcl0GFXrvy4K9+4gSwOWg5UuTbpLdRNVDIwp2KrEPoAdIoQIFvvV6QRlpP5xTkK5D/CB1y5oEHi/YrHKAq5YsE4l5M5s6iFvwGWkx8EI8JkUCTQfrjHiisV7shxxkJUHqXGnF/jyOgML5RQKZoq4G5rs/KVDTA6QlypGmJCabjDLfmjYcdsuLHPvkZluvBIuXGCKqmXiyf15CC9aHlkZiBQl9PwtOCXuY8o8UNLbY833kEzqV0IcHwicfl/MMemATjEe13yNOPtPqcINW/v0g8TF3D3lV+gnXZIJzrySWh2am6wTOXb/vWro7Pa52cwsLXEZZ6q2FMWvwWprfKiw7JDhbryfoOcD92LfKlPkgYTz0HQMdPke7YP7ZmmVHDqpRDFC2kLabVnCP4LRJMggxWYBH94wn+Ll8hWrroUSwSiaP9qp6S6BDGeVOt7msHY26AERuz0ceNUrYQT1KG/CevgkN2G1IIHTdFf/Haj4OgAU7hLiRsHl3D4HnK4N68LES9n6eRHge1hesTrNGSIHdcvY/5gPKk1cRarRSsKuA4mbzWHzI7VfdXbD09EIhNSZzqvdPn8mQ+QO44EKGSezVL/1g0YF1lE6WiwFgbKJolF3DHI7utVn2NyvdNvtW3jOiRG4xsieMVDp5bECW/HUZmEiWAW75A6iTtEsy+xxP4dC8OfxJyLpj2Pa9wex5xydA0bJWLAP59DoyfXizHRtSkiexOUcMZ1J+K6NtBe38DxJ0ckc37lyXB869/ksfV99lMjp0DPvu0Qdr6uup00IdMur+ximzjZjXH21EdYIvom9yoHTJ60IAAg/q6R2oXwWTe8q/UZ4YZ7bTR0ftQtlcYmppHTN50GP2cWP6Xv/ANHtZxnk0lgnxINwyjFWD9T/Pg8spGhArEGnxQ1lr+XT4CUex+Zswx1Uh26jNCVv3U/fUQ71eABqsgjqr/7ZuXNMBWMiNUKE5zyB5PAxgo84kWO9W4pvBG4VN/qORire+RSviwwtIJp4h+31FC7w+1g8dIWcg5mffNWtt6B+OiNTAA8VisVTdwgsqLOTImYOicGD0t6L8dSMxJt3R2/F0cuAj3Blkkj8H6oKoDMWY44tj3A9YW30+QHqOK+Ons6gt/2J3A+RHfkSEtMiDo3HDgsocKuZrn08gubwcD1lkhim4LBTTEhxisZZ+R03Vi4xTKiEJt7Z/EUMcdW7P7Pga3NsERrba7qJTgEwDflR9Ej1plXF86kgBHHYU8GPaLNb74FhDlo4eltYMjG8Apk3OXC3A7gdafdv0dg5MWfbF1K5SEEXxcQd4cKQmUok2m+N0GcD77abT20S+hyWk7zTMYDP3NRx9/SihJdY7x0fieR3ajjx4WslgjlS9Hf8n9ewwNzjwSIzxHDS2N0wqtG1gQWi6Pgn7nXwpH777ixp8ODbt/OEn67o/n6OjLa/Kdz/cUAq8So09SWcnqKJICvZt6QO4DM30hn16A9baPUvFIw1Y2LJvJAh6YyJmi04PVDXBbf+hpO6tOJfFZwcIuvwSV27nU655qf99HzFqadTYNfgubJychCwzvZpk+rx347LMGhZ7+8tep3s6RvwuGP79ru/Xa6Dy44R9RM+7QsPdFqoEbqhlSDL322cg1KQwtsUZGqOkNS6K1gi8dEuSekJhQ4aJZ8GRwDVJPDgPsk7gBoD/+gdAODfo03ZsY7oVdjwJlIAnjNfsB48OnR+Yf3qX77W7BsAdE6fo2WTrFtyB7xAuWGzUe34PfxgAJhY+UK9g16y/BAczCzEBBeOP82T4PKRCa5UZsZDgFwfoxg7k8+iS85zpYYbjdu7Knd6JTjPwlR4EiDcnuSAAnQNi/gtD9+dOWT+VZggTZg9wzbHi3VLxX+yeJ0D1g1L+4LXwkxYoX692yLqpTR/7WrwhZ5qkdJyPZRyB43xPiBkNYLP33RuHrlNsIFcO3oVzqDNBpRR8h7BvJsbZ7DQ7730BCAqqEjVvvn1z++cQRJXOc5aPSg8kM3H/48A/v7Vpu0V2s5OZvfED7OS1R/707gKr8aYLq5Mf4MOmWz46fOv+LD6QK50ZnQiA4cAT5jA+vveJzz0ZQYA6nV3RIyJJg8RSVID58e+L46StZhIqnspsGPEqvyTlZ2PA0oONzCUlmVvsrPCMJ8LTHpFhOTrOkgtvCp638iDGUoU8/1+omy+Ktiw66xI/1s3AHINz1UzT0lg6OQkAdqGm5RQLx3RQTdrJKKs/WA4NZspvDHx5RIw2RR6S84X6RZ8C1ozWygYpHzEvhA3iV8EG+fzF99r6sFRxNoYxSwzn8y2fysXNk4vv7Vqcn+Ybht9N5fCxLorPBHQTQ9F8tejPH09l843k4AC+L1hchyXLVaw7yvleiIKdXgK01q+GRiia5qpPRkPnGc9Ci5pnYOPmxudNlHtifT4XBNl/88/PO5eik/Ei07EgyOXulg1pen5H2qb/Fht8dDE3Fw/xl5xbcuT8HcovWNwb4JjfYe8cYvstYQM5c+Iy7v7gUanq2YunCxTrtO5jBoL7skdXjsz6DPMbg+InOxIRZBtY5JQMc398YqUHzBWt6GFcgn+MC70131OlLHidoLeubhLc9YczZpR7842/qFt801QIIp6QScWXotU5rtOxEc33wxDbPp2bjywrY9EokK+EnoWUkVLBBtYeiC9+wETwMA06izKGo0XYjXg/3GBRSJhEz47/JL7+IGsTC19sO1M5b/sEe2MYXBUzOio0/xID3nRK5j+SlL+7hsMJscQ3iePwv+TzzTwQHaGq4Heabz07CUsF6dWwUZtvdg9n5kEp/esSOflyxdPAUy8I+1ok9Fjuw+PG4wrX/Scj28bfAyP0JULbLPdKlPWRPWa0ecohtlSDgcP56W6UHBMR4IHTuWzZ5zcOCuzELIyFXTX85fkcKhZqf0MZXwOpKBoQzfl+JXoZxsv6yqoR9xYUo3fAKszao4MYXkH/umI4d51WD/k1FFJSWAGigQx4yVp4R2vL/es+VQK7G/IPQ+KoLNl8CC3zp/5F0bt3LAWEU/0AuUsk8LoWczYhS3SEd+EtOM8ynf5feD2BZZrH3/m08MwmYb9cGYm6ZGxBYjUlv+aPx2NppZNhMfyk96F3XTb/8dKj3BX08+bOj567JwRuqmPpY4zqb0SEFJnk+sQ33U1Zvf9vD637yx93uGJUsuQaSvC8mjFeY7dB8gnBGjqAdR2hdoeMieeVI+8hn4opi081Swgu0vVhfeuDNES152oXXurgSJ0HI+3byo0DtaVdSrZKaeMyErJEvU5YRFR6avrndZUBhr2lEx9dtx9wPFndbrE1EP47XjhfXToTE7W2y+F85ldKpAiUiFobNep+J6flUQaag9yhcJ8ab++0awt3SviOvyDqbSrAS+C7/NWt2xVGz8ChYV1Dp9XNr+DT4fyP6+THZzlynz3bWwGhuOg1cfaX377gff/418lMqdzQN3AbQU1mP05Iv+WQhDRnVJiPON/DRGD3eG/DlSKNBfg4RL1WugXcobOLL3jvjHWMVPIpxMyr5mXGq4qJGj81WwxexuqCxtg+a3CYVx4KY1TEbvHAGiBuVLvwcc7ruGQLLb6iz+QtLGj1XM4hid6L+hxy7aS+kLdT++CGHy2GOp7+zW8Oy3mOpnSY0/vJoJp9kPKkG9qbr2EXyOpUs4p7FyJt8pfchagQb75Y8Pl2wVoN0zhtiq829XHj+BN+3HlKX7lk5r1X5KYvEMzDb9K7eKZK8zGq3jlT7s3jG9SRQ4XqtZRqYRextWK2IcszhQzVBYIhtJ2qCtlSd0id4IN4vowrVzVcnXncPS8qrRgD5rLajIKCHPl/2BxX98n3gHz1ve/H3/n//csymjZdNA1x4bTKD2sHby2b/UPugWPlq8dfXwsOxC4/77FKronednbicoqO2/Ke2149lt/gniuqTTxb9yehfvMfoMexrarTk7dHYiGa4D/cKi0vfs/h3qziCelzmup3RLz/D9Z0mOOcPNVtrf02K6lUl04NZSx3Tk93yzcampdoqyPjk73Y5NH/nF1EZ4fFwe4YMlr5l3HZ+zHk+dAk0Ze5gZEhjPHt+7KNV/wqJcTHMmDnt3lSoEQu4eeqNPhXJXKAylzC5Xiqss1Auih9fEl07HREdroIIshu9x+838Pk2mHQT1jin9G4W3Gu/hOeALFnB3OvP3RxqIAEJYxVLz1fhzWZlqGjRH6KzR6WzjfhKfvw9stD68HlnNwAIiicW5djirGJpg4KwF+heX78Rf6ymJ0otHC7rtUb8zAOQUxgfVF2O500PsvzLMwasvojHaqPKr83NINrfNMfUIo0AzmUqRlnz1IxeDicMyBSORCOd020fO+MNrkMP+Li7XT32vX5FQIgCtYwNdP/vr0tQZTTS3iHnp42NQW2SmBrydEfT86s2Stw6HummR1wyeZJU8O0kw2L4oWUX4/n9P+/ZssM62jGphvLTJmS/cwePHbap/eNPLF6UMJ73Zt5CfrY03KFXkq0dSVJlzzo/qbrjT33dN6kPjgDK4h9z3HM2tPDjITKZx3ha+i20vvlbPNqFqnM4XwyoZ3+L35Vkx0NO+xGtQvFOTLTry+9hcmpY+klqfEpVb0Pz0/z4+//zPD8nt0Y37x5Q7eqW3cAyx4U+fu+I4YrbclxlUg2HWi+wXCgub9UQUnjr3P7xgc7upaTJ7aprl/xs82Fe5dV/v8yMb5kNlKNUPm5ihTqpNnmtQweMzCq9L/rQet32e7dRQoIcp+jZxhNuqh7eTdJRw9q5Ze+IjQh5dDcJGVgYD4s+wXAaAK/E4BNPtrs+Ib24hMTs1jUftaFNkP7x1RHUnZxx9XgVAQ9pT41LPP3nDfmM1dt/P+vZn5FDQW/eOL99M6sF6VzDBWSTBrs3zYY45BJ4kejjQVrmMDlb6oJsf6KxusTHjG+4KCkic1WiKs7eY6/CKKCIViJeHRsDTa/T3laWvoHgTDK7KfWOEXpp9YE6ZuNm407Yu1DN7Zosfl1Ss8kwsFDfj5Y8lyW950mNFh7FsxRRrydeGcHPX73RmUtGojCCuWgTnE3Gqht23jaSz/nZocZGMTnHb1bB6nCZ8LT6lLz7XpQU/fT7x+vjl6ACjYdxS61T8Ir/92G/fpGEwh8fm5fqw0XgBd6SmGf8YT0M9NAFSjV79UGzubwXOeCtQEn30LK1xlQbvLfVUL1ozJhF96lQlv6O/vrryVcqHyW3VUXMKDhlYikMNthJlRF3nP86WsqBAGH4umCxnD1PErPahsRrRRLo89HrzXfaoKXvwmKglSU/7ZbZ00FiUN27uyXV81lVljyFlTK8d//Pf7rlG7zmtxr9Lfr8//rcaYhKNjsPQN7LBWJt82VvJvZpUHqqTjR/zikfrVsfAT2s8Lg6XDc6dzPNhe27PlO9s1RvnNyriLJdion6rPclm/dzDklFe7x6/gMAAP//pJ3J1rK8EoUviIGIQMKQXjCYICjqDFBBbJAmCeTq/8X7Tc/sDJ2wJFR21bPTlDCbOVSSCILj8UTwA38b0ShpBF38/i76lRQDRD3XE2v+0Y0BQTPBdBxgYnpXKp0KIngavSgstuWXbN3v1C/50QXq6d5igS/nhsKwu0DXjFViRfMsuF1f8T9/6Ca8S8HhdrJhUdWPZb7aaFJgn4C/+Ii+3buZ8HC+Q2AUEfvj6aF6aSUEB3pdxrPrKQwXnty5DUF1sRfD8HJMffEzieVzJrqelwHo63fCzNujb0Qzt3eorAYLv7gH0RjsjAws+oafVEfOEv8xRF4ZYKBf65R/djj/l4/DdHLQKA2tqgeXh/jzp8TiZ9s6PDUXqlrO1P/xKLDclaArvvkU//iM364uOa1w3Y+PTRrA1dDEWF16RU6dcaBw8XcWPlJAG3aWa0j6+4eVR7ZHkzRUOvhbj/nTP8a+SWzILYG4blKSKlk5VYakDgcWhlJf0J6XO9CG7ciQt9UKGaJmhqe81/75tfxJNAlqrMqx6LcVWvT1Bfs0eWIxfa/OXPJwB4+8zdhtdfqi+TCuj3AVKzeC8OOG/vxu3V8FL+IaWAZ/PA4Pj42Fq533Akt+PRpuYa9Y2KAfmPVNuQObC9fYcbzmznSajh9g3QVm0fcOG26iOAb9rpjx7o0vYDxNxxdUmrhjVvkd+3/zfYoPFxLEN7WYumXP3W2o1H9+08LnT8DGYMQrmpNiGNFlhgiuGTWW+Job2M9/+kTln4zRrIs6N3y+PTDThBGa4VnWwV5/XomXSmW6+C829No+p1AYSjGBPB80R2wqKh8j0EyW0FWAdHjGvyG4gvEDL8m/9ZbJQY4Y/vzxnpo/zHesAbM/ZxV8jM6HhVfxQfNtxDpY5jfV1K9o5hlKM5h660F1+6cUk0LjGbIhstht2KGGx5ZTGYv/gWV+eKPp4Y1Un9fbhBHpfnI+1zyIILGkGAP8MNCEkoYDuWwC9uf/ze4uPsLy5NlUvMxdwUDp+nCJV6yznvRK5NEIft7Tg/nt44N+QobKn79ANwe/T8VR0yUoF6+SCjktHF7XKwyzp3wkN2eenIU3XTAwGLNy4a1JxVoFp1+w/cvnaBwGV4K1ta6XG+K3/fxlCdXPjduTnY2qlBYBuOvVmBpsi55SKuT0iHVlbynM/HItHY6b984YUxHjHr1iZ7NNC/pPP/xpE4JpW9quoSHQkIBnKuBBWOXwMfj64nfvxbx6NBk8ijhhsVur6KsWdgee9lbFPF723K+dOIO/Yx8RvG6Wc/Y4+/zFH5YXHubzJm/Boq/7lZGZSOmH+qIrK2ox15yPYqOFhgrA7qkR+3Sv+8lzfB2ecwJwqtc+oCibIdCQ1pCoahjgl8nyDWtt2sxyUAPGpChasHKvHokWPpzWW+Tq2s5EtB7KthDg08swhGeL2IGQFv74+irxby8MRzvsp3BGtu5fuxNuisRLZ138clggi5A9vJXFtCrKAOYsK7Bu56iYnmF9ATj9HhY/HhUL75l/4/NP/+dXf7bB3++oy7YLn2Md/vHwzkZmKvcdtw3RDiE7v6oETUP9jox1KR7EE+205INhgEbVbOicnPtmOLQHDHWIQ8p1u0cTSd8YLvUxXmFoi83ijxnvXJgE1ZEtFr0v4WsfvAmu9V/PFG7v4PuLL8SXsqYZvSl8AWU/58w8kBJMRriX4MUIbuy4P+CeqyX7AMOvUnpc6t9x4RXD7FVAwjRjSLDeM+Hg4ZBE2E6X9i7I1pTL84mN1cpHQ346fuCR9DnVn88MzM5R9UFERYajPz4qe02Cr7z6ESd4r8QvPX66v/qcTqnWNqLb3zpYBn33r35o33uzM1TUR3T9Q4UjXj24g7qjMcMqMQqBLxcF8PuZY0NV44JfP7+jHqVuQ7Z9cQeMl/MTDFvZY2Fs0oK3jfXRQdJ7i966YOTPTwcWPWT26W71y/pkBPXnhZJ9Y82NwA8l+//uKVD/956CKu/ebKcjjuavre8gNviX5ZvVF034M/v6s67uLPNyH8xJ6JvwdGAmQ602O+IM37LxRMWXmdXWbfhvm6vAmE8Tc5O6TvlqBSSYygkkzv63AvN63H5gQYeeAjt7FevNrV76qZEjVeMtcubfxoyN00UqqXq6qmmv5b2tXRJ7xNoh6tD01HodBtLKpcbeafv53KA7+PYnTtB1fKesSRtbh9aHMb+atuInfdeJ/pE+BiOfbSg48H4XmKO1TcFDw86I17Fk9GVGmVd+3FS8KkkF4WtCJHlSs1gXcMBaXu1svGmXu14O8rMFm1SW8LoKPz2/UtBBTiqXRdCoUvoFzw7+/X+hj3avXHxvAPr1E7NIniOHZ+cmAf09eLMIVs9mjPB9gNn9MeOxN1Azn80wht2LTiy0fEvwyEkx1Cnz6Eq6+On8dFkJ1vMUMc89bYE8T4cY9s2hIDhxin5k2peC3QkNBHNeF/zRgyNMtKNJkCIO6VTftABCqOTEvPVFwZvxdoHUZRRLZa4KsYwfsPbp0o85tpwpbNkFlgkFDFvVqXmfmmk2Hr1AzGXffcrLYs5h5zoVBS93eV9+zmBZcEz23SdJOcmbjzbMik9C3DiF0Bk+giQPFRYGW72Yp6A5gmLzIFhL13E/U05UGHxwTfzdIDu8mlazdt6CL93EV6+QUw3lIPNGwrydm4jBm3gALlWkEKSVF4cZfjbDd3DJmAX9D2Bfn0YQWi/GbEgDtA6K4gk08cjxZnu1Cn5BUwnbR8f2m+21TicW+C1sNo6MhzpboWFSWwqlNtwQ0tkGoAJqJbSveL30K2xSuvNDHR4/jyM1Ygk27OAbHUzWNGH7In/3M3xUJaD3e0J2QWII8c4uLkx/tCbk0gWp+KokAVvIB+aH86URaTwHUB8AJva3YX/nmCNozOeJ7Y3AEfJbqjNwyzMVK1m+6xXQkQSWbBsRP8t3zUY33hEMvCYm5lshzXQR+gBoJ7+IBwzPmcDYdRDcUsZ2LcWNKMXPBUaWEIJe7rOfN9F8XzmrIWJ7V5XTsTPbHdS/tx8h5btMOZCuKgx+MiFEvgLEmzNz9Y/0MkbgeqwfD0WQwG2evpg93UjKveaawKnfHbCm3LqC96C29QzPTyp1RxWNsn89wux+m9m+d2I00vDQGgRJnOytU+JQyTpT6FrkuNz13DX86j5tWDyzHPPaqpwpKtcv+PNKhRRbJERdXDsbGllM6FeHsxD3ZrOca1tO4JP9p5+G5znTxe4SEUt5XdEg9ZcWzq9DRm5kIM7kHx4m3Dndm64iOIlBmltXy/WhxJx3XcPy3+sFb/lRxc9KD9M5bVUFaJIlU2pvMBih+LqbfeXIVDX4zeFBGHyAHL1eLAW7KmXpxXrBYRWdiWNGUjpvq/wF6oMhiH08O6mSW30G8n2rsevPDARvX5cWIBQ/yUXv1H6ozDsFr9uuw7x4zMVwGg8f6G2ugDn54QAmdDc/+hKfZI/zWohS1D7c358D5sp13Qx2FOhgOD0E8fQPEiI2J2xkkdSzRT8L1olB1z+ENRh0cV+I6jMkcJpdiSEi3oC2MTahVgUl8b2N24jvae8CdkyuVHpUN8RP4+FldK5VMXP5Pr/CARQGfeuzfRfK/cRusgS94nhl5wBPzvTsPRtyyaeMkL3fTzoMK3DH5y1B7Kk2vJEHBbD3VFHu4JOogylUoMj4nSo7kqXiRgodyIp5JW7iOo1QDlNl0OYdMF8NAiHGqmlBrqpvkkg34bxOcm2C4+d2ZAm+nAH/maiE7aH8EpJfRcFD4tnwt41HVjzKuGC/sIihiwSlH2OTitm1dA7Iz06xtH5zMPdGNOjFoMv0nZEt4g89ieDx9buxvFs1BY+qWILRQ7LZtu1qMMuA3qGUWjZBy/Nn9Ftq+KAuyK6+rcGPHJwZlmN6YpH1HdJ5PFUBvGlRwv70Y2oNYUI/S0/ED2e1H8Z+tQNWWf4HAAD//6RdS7OyMBL9QSwEBBKWvATkkSAg6g4UQVCRRwLk109xv5rd7GZ9rVvkdfqc0520QYaoOw8z2Ht3uK0f9iobDhNnARvq0+6IYOytxao4oQ07OMa4OFzuYK42j9y4BQIBGV8ma6dTTwY6Qtjtrs6w7g+DBueTGdDDwzT8mVpxCyUlOxOVSrtmvt0OGZyO80r6M30mc287Cvi8gpHMBZzNH79Xcjg8uTt2xdhm4nDd7uWO6EOxv701F5gFAk3luESOaJDMycLgH34h4fg9m+xkC53y4vd3bCmS7QvXMrj+4Uk4JynnTxI2RMjVoY+ks5iZi+SwK+zFUCKAdA9/iycKkEY3wNbnpTZzYj9T8AkOAnasATHhKXIi+JsP0+ucYk5k8wofj0HEOmyshh1N+QW/j/KCwzY/NuN8+txBqQY1ziKkA5HMjgKLX2KTZRcM5lL4vqfI42tC/L2o2Kqg9AUDjcl/+yshzs33FLHxJ6wF6MYmDM5XUGmWTxquExviTuQONOexUiz2lA0PnCiwuXkF9Z1uGRaiKCPc1ptes/nUdElztqB+FVN8gCvP3n94CML2SR9OrTD2vacVFHwfUf8ROcNy3NuRKoi5go324Q/zbOIWxPvqiA/n8zBQfrU7uOdfGM3XGzGnw00uYdP/Xlu86ophx1d3+LzeQ1TcpkMiKF5XKjYXGGg7/+bQGz4P9eZKcbg/SsnMOo6HyVfqcd4R0pAvXyCoBfKFepV9H5jNpJcyRimH5scACjpVQw9bK3cQkOXzVtaLIOjMqESzmxzA7K1OAL15dKmmG5M5gQufwqH03lQ3YNGsL+t7V//Oc/m5tSYND0ULleLq0Eu73yX3F+muYDquK8XCnCYMdY8ZePn3RHaf1hmWPbtqEM7HG9axg8G2PjncdztGBMxUMGvsfYe330Uh88WpGvZZPREkQc9hv/ZBs55KPlPIT5vQIj80Uywy1MFkfRywLmtGsZbTxVCCj0IxmhOzmc3bfYY2zP0/PlGsfX2C4PuMETVRA5L1QXoDyDWX0JCvTozU+6SCgkwlosSnnz+6UWSosVd+Nrzr2Pwhu1LJK9fAj2uqJ4u76wicl3HDo4PDFmNURmA15E49/XRItv3xAm0J640v2YC3BPyCn9ZoaKBYckIC8QmB0xpHsgj9Y1gcW0JwKk4yDoTRGfZfyYng8W58qSOHDuuLdnrB8TA31P9+rUZstdBWzvdTTsQLzs31IWztMFxM8MHbbv89tv6f6u8bUtdpLbBs/BWWIO9xGHH3gf6mqlS2/UrA4H3Y6oiuBBkTdbrhJZtB6sZQp4tGQ/WtD+Mfn+PwaGI3Sxhbz99JBIlqPsl8S34DzV9nV/nl34Gsx8ZN1io8SqB2RhcbL6Il2/l1oSS9SmxiJW3mJ/NmwHtb/2hRZMnwu/zxMxlh0+WjZPrmswje0rzH+Ku/C1Lviwr+8T2kV0KzxeMW/EAMERuZWcxFf4vBkZ7fNES5DvbfUO3g1N9NJJ3KNlm98JbBP36MM10f9iP1KkAdyaGGSOFA/Br28PV2A3xQx6iY5SmE4GNeYtLsdhtffJ869ZftVGqkvO6LD0He3q7uTkjNq95k+QyNf/Fbc+em+b6zyFLVV1+j/SmpwNLLUaeOUcZR7XpD5sLvdB7Yz6zD5hTVfvdJrBEa56+DBM+KwVws3Qi6g33GFu6UYtzOO+C5FWLt23+aubxcDSDMuzPRdsD098nzZsACmTk2OO2cdPhn3KFplTXFvfEAc3deZmBZewMfaXBqNr3YgpdVAqpr8wqWSyS9QJbIV6LikZrbeTX+xbP7sHb+mDQPC1bnUCP7ysBgqIHTwv25F+jh+BX8RT/OFVArvieinRqFSMJwhNfv8UXWy8MZmAdfBvC77ECxCrphTetfDo/08kafzqiGZZ/lMZzZKyXC60yLtZXUFlyOtMTGRTsy8cpxCDwl/4HxIKZg8d9XA/r5bsXOJVeHeT6RO8S96GHzS1iyHpxdABwzk9DnVcWAv93CDP7xTZa+PmzuzvIMvZNIsCdk2rBH8beEQm902Gqsb8JSTL0/vbLpy9FkotdbsMm5GGWlq/vMPF8JTNbngeJcPJmL4lXl3//HTprKyWRcrCukJc/wYbHKhI2Bm8H2VsH/8u93q8Cd6jo0K93an48sR398feMv2zt/MxfAP3zyePnF5l9KVjm8EwHrmWAXqy5vzON0S8jONOJkiW9qDKTjz6Kh+bGZ6HpjJPurUlHstprP5rD/N98Umek4rA5ZSvh5oRHxRxkn+2jd5n/ji3aVev5iXKwcnnnkor233w/ze/bugEtFGSm2zQPCGyoHKl0ysDXWP3OR1lBTUCmHhH7LxlxDJdJUuR9F6rjoZK5pYryAVgcX6gdRA1h1PVyhed51NLAi5g9yYLnAguWOtGfP9XkSyyW8SS8La1l4MNcMdR7M9ajDluW1xYz3vxRa/kI2fdY3dIt3MA97mbxf62ROw9kvlbVNMuza/a/4945Q9xAltNvOP+NXu4ebf0FU8/jz53AaRXD25gRb+ulRTAcIemWO9yYNTlM6DFEDcuBWK8RWOvXFVFRLCTPf47f3wt/mIod7XiHv6w7b2/5YUzEYZZEYe6otTlfMY9nEKuZ8lzo06YoZ10xT9San2PxcFJ95zzH+p/fbuNaLFTkNp7wcJpOd2GNAvGIOVHFXczjIV6tgl9vQwSFpfXq4cFtNWRv1qo++FVq05GwuO2//AiBtAgT1b5As/jsy1PdspOiPXy7keOvAdjcKu+z2ZGuLGgj6x2zR455vms1fglBnzg6xevf3Ll3fwyF/7an9QIehHwQ1Avt1vG77f/HncfJc+FMtRg903WqIL2IF8nihaPmUEZv4sFuhwH9N6mx8gcr1ege3kj2x8wwrc1WPigs2fk09u4mHBTz9GSRTiulp93NZJ2DZBY7CCQQG0ttkPX4SRZvlL2kWX/AJV55LoIF1QRDXfjNonBarRr27bb0w7aKfLwaCMbJSqmX9C6ziq1oBxOseHw64SehDUw2F1MvpT78PK/OjHDQkiagFziYjJ37T9zE9U6wPN389fcwZfuBi49ZjHmDm7pXCRzZ52NfvHRizyxCDtuRqrKk9KejptxdhoC0yNpduBcufPs9J6lE7PQqMvuZqho9T8kbXU2kV/Ki/K1jpikE9ouyT+flI79DRa50G/Bn94/f/9r+R8rU50QcPARm7Avvfb9t8myBpVfuZdjSos6dfc9Qa5c2fQKun1APLKmZDzXmupNv0w89djjxgibf1IlOP5h7KngjP54xQLz4d/XkntS/oq6Xyz28Z3x0w/vQCDU6RyEYREQ+GCRfjcF0+zfhRyxSsr+cTa8UzTugJhRZEyzXDZ67egemUSCJ0TXqjJudLbOxQn8Gd6jlIssS4YF/7E4DOjEvqC7VljpWWjYC1vz3VdqAxB9pEI4QyGonsh1xDR0tS4BnlOvVFtiTzYMyVWq6XC9rXS84mg/c8YIbYohqbEeAH/tb+6XmKBsSGEcZq9A9PRVaJwwhzawTbeSV3eeuW93vqHzi8nZh65WUp2O18jOB7EX3Ct1nKZgEvnvrnF4Sq2wAWndNKXVabwyEcPj6R3asNgST6hAvSeWBJpLhwOOcGUe6+O7BqYiMEV09Br2+D2dzbWIGa1thITFLbX6NTV8K/8eO5dMx188eUn/w8oPZeaFuNztWCrtw8/33f+BxYBrdoi8Yft/jT96XFf3qSejoxt94TsqugaDpg/Sv0PiGzs90R6wv653dNOjh94FQk8j+/aRWLUwYkcfySnd9bCc3UWQSnJ1JIvz8MAxOq7Z772DBSczEeFnI89bCqvzE9pNIE1ta5v5RtvBQV76O5epySw59qM4o+og62+HsHeOx0XA7DqRDUnxbBAuk5PhDzwFb+63swE/MKdXboD5LGpvvfem7+tWcyNhoB5IblTS21HtnSrzqCG1+if/g2ZyNqIS/3DmEnuTL77fyrO5BG2EmXiz8p5safWveE71DViu8tlEUAbdpiU5lewwok4oJau480c6WH2f/54xNDXxpeU72Y5bf4Ah+9KagGr7W54a0GLVP3sYFjltBglhCAiSMSCNWqWNXrSYPocchQEK5aM0PVluBiCzE2CuFWzI+fHQH9azxwUEZK83FETVI3/wKtf/7Yth6qV9cc9vvIL/a071w5+So9DkypNlcVFAHkk+a0+f+DP238Exhll9MkPy1gUO+hpZiujdHixVXBJE5CCv4GdxRpb5qQkLkfEHOlQC0uuyfr19NbVbzYPvUjf88oba4EcnlcYo1rf39+hwEGOoxIIcqlGJ6361ZaOYzUx5lr7vkV9TDtHYOaY/YeJv0oVcA0uh6jN/wk1HELCf4+roM3fDXnTOc5OHV9QGbtjYsuzvTgTy9g4/JwmrXmeg5s+IT//DmKXbdT5lgwqUtLHzDrx2tQOJ4v2C11L2H929agNHEm2olhbLLRmiW4uL8jvfgLMxd+7iGcBK38xwcJf21jOIckpMG9pgNV9zsevqSnh92Tbjd8Vq4j6B+rhdY/P1Z6rjbc+A05YYeC/SjeOHioHvhPbzT7rAIWfDmLjF3fKMzxXqxX+H29w798QTLDbvhAZGWM/vEHnrsv8x8+Y6dMrGHB/IEDglNXWDMHNqzDt7zC38dzNr35LlaXVyVgCbih6GBeAPs0DfzDW3rVdIPN8SPq5Hx8JfQoBedmzd/SC+zk6kZtMHhs829TsD93Av0b/2opTQxzhdw3f/vtz4e+G/99z/H0+7JO5h9X8P0EYItnMVgHQY0hz80QH5Ljq1nLyvTgK8Tlhif9MN/U/AXbUVCoNRVtM72QE0HjknPYPSSRueD314bwFWv4cLGyYRFy2MGfpxTUtw60YXPOxeDCqx7axWjnL+9ngqC20hJrwjM3O8ZNHqCZFeGLc6uLpQtOUJntcrtzp9NkjAKLAK0xEA2N0U/ojq9KdfNfEDS4w7DPOu8Fr93uRg/uJDfTDU8V/POzjYvyLma2P49gwV+BzFz7Y3THd3e46W+MzWfkrwdnjyA6b+P7vB7D6B61FiZHM0JKpGw1QPdDD2vLyunmjwEBXGAKj0ls0cNicckSi0ADOyfTqV/7RcMufrDC4sy51L+zI1vUvM7V/f1db/p0Lv70O1QnBP7pV/a3v34ovFHkG425lL8XhBueUvN1t83fEPKG7GB6xPouGPw//gGOA92Tf37gJb4jALKLSZG5eAkVeUBgmnIhEXIPmIxliQIPRXajdrKYbPQ04sINHzDa/Ol//H7Ld1HvxA/Jyj8ZAWMOrhRfw775FXH8gaaqnJEq5FMxbnz1Lx5i90c1xuZcjMGmn8mumINh9r/VFWaKhhDY+BRbgsv1Hx/CDdAYz5dXDWx+EP7Ldy1XsNV03aIGcYLL/PmnmSW8XsoY+08Z+SvqiQfPyWuPoMMEk1oBFwPP7N5/82HSPPjw8L3wPg5DtfWp2qQVnHfSG1/dGz/Q3XQz4E5Qhn+/X8srIGDv2zlq1hdJiB62HzjvlDfiF5YlP+FlWRCS/kT1ohfAr/z1nLK/f2u0a0AFGHR+M0yG15VIdv9LFr90W5jNEGx8wfaXeow0EHH1j258kS3BbrfCYjV7Gqyfxl/aabVU/1gOf3jVsOYQuFBehgYJCyezaYl9F/ay8EECqZphnZZcgTOrUmzJXN9sfrIEf/rexXr904v1L/5rAbiQ/eHdJ8uf/7vlR5AcxajZ8osZkDtph9ZbsAKSocpTeblz6EMzW7CATxKAnxNPRHq0Y9OB1I3UWpYqfNNtHYiRd9L+5UvPLZeZ/It0OXTVY4iD97H+0+8laGplh8BTJmZ3VOoe1kbcUPtcYf/PL4Gb/kHSxlfZxVQzOH34M3Y2frfp0xK4Algw4nptmNLtzcTf0WqpdWGkmbf8jiJeFYNq3TMr1r6rr7B0nC1fzgyfP/QdAZs+wna874qX8+01sMVX+ucnLvZTVZRh1DmqHUO9II9v/FHuV69CT7+3CmHn7So4xp6AbVZlW75R8f6/mgL5f9cULDkuqP1x3sMiBZTASP+0FHVbf8mnKFjA3XWA3rxrMtD2sG9BiuqUhrjNTXYqa0v9Ka8d9fllbKZlDi05u/MORZVZm+srnUTYr/UHybx/LPaXt5TB0oUCNhchKPa2c+BhLXkrRe9JZFQVq6uKz86bOkQn5m+9nCCgWV+RVTQmn7VWZMPbTu0RdPrTsMxcwcmzEQgYi/XH/PnPs6F8wg+iOIa3ZLkGZgcPWrkjqlTyyS+2YA5R+9PIzEsZI4pXiaq87l2KZZWZc+LYFry6go4vLzwVy+nuGhB9lABbmdX7TDd/AVCC7ox1S375Ez++Y3h2yjfZn7XSX+Qoz2CVpRw2WqMZVipKHmxPakiyYSmSBZ8iCAnWF4rUymATgXWnwi+LkTCGHzYVp6pVX2b8Iiy9esNyOZ1X2A8KQrv4G7G1UrQUPpshJACkKmD0EYvw9HoSJPyKnvVWOfPgHLdnHJstMDtT8CSoqJaCraeF2Ixn9wqvhyRBsjdBnxExhLAL3wXaXX2XCXj3vIKjNw/0tqhVwshQj7BwPjdqqYeGTedrhVRHKI4UX6tTUf0OwIBxlGBq2DoZmDoNW39sM0SrxP9MtjN2hryNFx8XqwU0HCcXPt/SDZvUnIuBiAcImtQfEXc/7sxpGKu7ujTOjnSip5ui7h8MmP3iG8XBzfX3n68SQcfsDYp44dPMuWbf4fN+8LG7Po/D8FXDD+SrSiCCJDX+EtFaU084t+jBTIKBT9nbAOZYcES55o6/tOfN8yvIC32s4paMrt6mcI1AhUBj+wkpH891s20KrNmpzWZfWlMo8OqEnd2Wg17vrQ28YhDQ3jzf/94RKJWz2HY0iKVnwX7FgygDVmokVdG5mVNvJgBYPSQfq2/YXMloVo7JD1MtTeeBQGIaYLl8Lti/7aHP9mqnwUo2KD0cxNJcmm7R1FqQPyg/qcmwN5M+h/N2L8qteLfZS0exgzzoWoyiT8eo/+5G4DwEh0A4nH32fKueEvVPh6KQHxnTzTqAQeUXW93Yq2DaxUC7bbwUO7fGnLtbasCynyDGmpkm67f3IRzC3xkHyX0tRkmNOliU4YyD6/IEZPe+2bCQDI4Gu1UuSPBVcgjcoEcnVTkUPLd+cui2dUD1O7r5y6QDHpKdXVLXPr4G9hpyC6S+Em3zS/3BIo4IgyMAyHrXRsLU9qPA7BHusHeM98k6WjCCjIcVvp6AWawPQ8kgjsIzPkLx3SzKe+rg74w8ahrTr5jBzFuQIy8Tu6JX+4vmj1co8LsJW/ugSeagH+4QDxeLiJemA9NTFGygi+89NY7jx6RrxEWwm5OQCHLoN8un/nygogUWDdrHq2FPskjKpv+oo61+M09vIYfnoZQoPt8CMG3rB4fLvcGHOq2bucw5At2rpWA9a02TD1iHoB/qFj0cg8mcsZC/QH2SE/yUu35YP2rLQdHIfkimfltMRShwUGwPM5nEaCiW0stcoFX8A59PXcnI+btDYPh4Onb6d23+zRfYvh/bXio3v69ZZ+r2d+odRS9Zu/CD4MU3KxKXR9Of59fjA8p4Nol6euTDAp3uCi8wp9g/2TqbDvR2hQmfYWoplpqMFy611OHj6vT8DWswG8rDgN03/xEApAjMIQoJ4HdBTCMhfCbsTr42rO2loceJnMFy9PQRzOuQ43CK7Eb0UvsDPN6tUduqtJiGfUCgme5VQu7XY8Pek5WD7h7L2AsslqxbVgtGwmdP9UlW/D7aqk3xnmXYraLzMFvXtwtvs3SmV3Z9++strQ2wJu6IVvjUBn6qmhiS7Muoe4i+/qJ+nxB+qp+E1jOGyeJ0iINPM+gQtJfMn9/JzgJtv5+J/P6Ow1rt4js0Gkuk512RJrNMjyu8ZH5Eg2OzmrR3ePIfAAAA//8kXcmyqjAQ/SAXCgJplkwigiQoitwdkwiojAnD17/Ct6eKStJ9Joq0/F3CgErn+hOzT8blsBz4FI8ns1hWPMtA25ZH5txc0++HplZQMRk6u6fRs5yL0EugbbcVOXw26/wpOb9C0oTur9/R6HDHHsxTRMghfm2dOd0eWzi9NIdY+TN3lu5znkH71BXx/6Dw54/5GuV2STxi7rrCH2+20Eu2+VDwxnin3WTIuSdfXs6Z2XCY0ISraYNoyK9Xdj2xP37mo42moj8SktFIX1BaZNDcLjk7kE2NvluzaUHtTEJlq1f8fSu+R3huZqCCedK6UT7Nprzo3wt226wt56f7ipBTfU26PHaPeFr/bEKS5chEEfAB8b57GeX5wtv/+XviD90VfG2r0P1I9vp6PoDm0yOj1bN+oRnqUYKpoEf6nkdBn7ZKCtJjCynJZr0t5/FZFfAadI2Q45/uzKrjKnC9fCe83ifV9V0mbECcig+eYws6dlbw+X+/prznxKPyeppoY4JGzkdz03WHvr6heW9tmUGvycpPOINnkxxJ6CyhT/UmNVGJhuHHf/6yiewaQXxXqNQeLH1kYnOG8lXU+Nt2T/3HF5Ada595lvtd551PHgS6JjGr/zRxzz+tDzpUzyvBzqdELKHMkHYhLCw9dH/LVF6GEN13j4QpnPuMl+sxTeA61Da5W3uja+/FYIppcDGwaIPZLX8zltDHrTB5+nkfN3dSZlDM4ZuQ01XvlnX9SDDe63y8UdDn+hLyYFhZiMUwTOO50VWAH3+Lez4vl1HhDHhHQkqyySYO00IowDVDiZy8y83pH0dPAnsS74ScdNFhTXXN5E51DbqXHuoyXY1diOQzJfQyiJG+9A9OgOGbjrjbtGf0xi9yQ9nuZTPF2UBJs/Qxyt/U5ol2k3w0/C1hAtGj7Jm+6qmF+JImkXX2itOboz/FVrmDPeozcioucjn8+OBXjzw7tjHdvi8mNG5tMcvJGJrtj2WAyvl3+nJFc5164bcSJF1BlKZt9HV/sCTTZ0Cnd1r7P76RY7NjWOLHyqekulaIvUaPuHEgIapmVIES6gezrzxxlmS+UBQFrk0OefzRR/2zU9Au3Czs5NKibBZpZ4GxfqkY62koh1i/UNkz3JodwdP85scvM/vIxCWV5PQWXG34PkON+WnI4r481jnoufRg57FylmESVR5obDrM3sZKxylOFUEOVcp0LVQW3r39hYi6jOCFheFSO0f1CtyBa/HLEDWH33DHBH56+4e/w8g9MORuFjE787/+smcX+z9/f8p70w1l1Noo0x2Et4VxcuZI++ZSGhYe5W4bF83TXblCKnMHoomnqazwxCRkERwQMzIl/78e2tBcp3yRUH28KGqNwv3WoLM4GOWsN6kBO9RWVFRDuvzwUvR23p2Roy2Ug7TschQeiyfD75D6S/+QBSjd4oYFQX+V4/hRzrLQiHtyDNWqZF9Ti1CKzipx+4fjTM+pBVD57x5PNHX1QWpCD+3zav2E000O/emjo2feiMshbdlR41CgSVEC2isCh/pv4c3gJdRnR/0OaI7MqyWjVoj/r7d+Zk0AEW4sZlR/SbxsnrcZJBoneL/yd79BnQ1KFTnkJHJbvbm6kwX0HA3EbdTEGaR2O0LM9wmLpS0XLz6I1u88qMBpSJ93VkfBUnJx7bc/Z/7V3zN8pWTth3jlixr6oPrQ9eLlcj7zJw+UfbrD+zbgS9r5ugUb3jxQIdPO3Y9/weDuhKg2JjG9aEUPpyFLiKPth3L+c/orkhRsMJUFdTfv/WiUbOO4I65lufHgsUZD6Q0KdtWr2GmTp2fIivWYsLDi5TxF1/CnH9mjr57dLN1dU9ptLjUjT17Rd4eDYQOfvCi5nlLUTZN42kHltR2ds+Wmj+mhDOGx3aTMrBXT4ViuSzCLoUOyIzrH+6S5AUiMbTCMSojmFQ+BBu+Fjs320k2ssVpYpnAm9nDuu7HqbAp0jFVmRncD8TwTcmiCol/xV1+4STzxaN3v//g2Q7CN0PZTtERlgdUNj4AJkM2XDd0p9FLOyxLe/q9frYkR7+6NNUuVgHsq9bVYLvuO5oD8IPrVfzy7Hp0RjQ2HeI/4tiyIxJ//evvoB7U+PWt6Bm6PRWbW4qsbMj8SkIYdgR2iPdZHS/jmcLpLMfVvYVuOY+pkSEeHhO5fwWWZXwVQCDKr+fldfQiWQwsb7dnSMZpKNPYdKeD9DRhxR03rphV/Jc8gNYVX9yknp2I2GpNY+q+P/vPV+v7VH290yul/H7jv7gldUt1ceDI3iaTWe50d0s1csp9eyB9dzmyTHRDPv5oWiepTxEhIKn2UyRnD6m+xsIQHfQrvSgSP4lvge7qZu/kgZh7ozvaP7vM5Q8t8yyXQ+78NwX8ft+Si9+mDOHq740utiMtcrbMOkhHIrz7Lnl6TEJImcumeT7eIWpvljHRH/mPkBLdy2vej+cMj+ubNo7Pzj9iEtr7lhCjA0MD9na9AySbGc/z4Osuh5no4+R3B05oX/PeX18A4MdOIRZ+q2UeDSF7/YRA83plwJcKvvgiedbub3m0ZgIy1iSKvoGhen0eehkzKMtnoOHUWMRqbkWfWpQ+X6fHsW7T6B6KZUuuw2DlLcJfsgLLCaPSB80ghbmcA3FbnL5rfkTZLjj0JDCenpzM6GyOTh25jMR17z262DDeEGovy6h9UZ9ncxkKOmR3RfSs1q14wBVQtQcLUQBl1GqmKIrfaUSVm2V71ud8WhgyzqOFtdb3qiy/i4ufnMYzizR/eS26idf+JObUxWsTtNZBDCXuY02tOnwJeuMJ7Tp5EVUtfH1OglRT6MFFBf5jlFAVzL6/+AYsrHk6Hl12Abd4V9gwdC7Xr+sDokw6z8Q/F401Fq57vBNzLxHJGwl1zWLanNzsZdov6Ie+uqP6GzcoP2KffmDMkJedTcuyrbTm+aJGD9mkrdrgX+dK+HSSg9+j67PD1nwvbantFTMPcYybCy389C1MoiZSu+nzFvxnp9/mLRaw7zrh850IuyHrX/bkNulXvBvA98ipF7jijMYhESWrrICfYu+TxspiRAs/vGdHpnAjx2MuqAq0el+yk6h+fXj+GBN9dLzDlEHfxJGQvDGJ8MclnEs2YmruzhbZxJOFpxZvevrwL2G+9M4naTVlO1Tm+oqlSGjyNktLNwtTy4mVTHGnVMUefhHuVoK36HSi3NEu3lKl+Rrdq3P3PnybneVdQ9+oamutuEU/BgArIpceFnCT54HScmyXg726EbrrPXh/ty5BD93YfzL1lL2eQv48N0rT6QhyurZ2ZqUn285vsJBlNx0A1erj3S0TMBB/8vZXrM/QvGjBd/g7Oqpd74Ia4I+fi/ujaH56tfvJ/fsR+9TdoNiKma3JdJxW7CnpqfSl3HY1lWPM52bgEQOy7r3WTlbYUJuclM214eGgKwA5R1sQRsfta7Fa/RNHqx5i5qYqOfW9/HiKBRph7SaVuUGfxDPyU9Mx8Y1ufy1mWQEa7K0W4wf4+8p4KRGVlEstZwphF36JGi7dxmW3JGO3Ej6tANf/N7LzvRmd2UBxC9Hj1uKJX6KjYexSOT6fBvONyOi1ubx6a4x4zpxwhZm8Uez//SswHzn/540Yug1Bgyk4I0BKMt0pe8yy8B/WxDK1yykUx43c0T7ZnNNVfJwf3YIZ4t+qR+Rm6NVJN58oOTWwvbM2TYKsVD6KRIEY03ZIWVCvKMK1t2x8ur6sNDfsjeDsa89LrbBzhUbwLphxGH/V6uvcQLoMMI3e8ouXRrZk7HFzmpG6n0/t3fwaxbjVyPFbfeEDxKQTpXojsfLw3+mI1Sg5DBxa78zEpp0HYa6DfOJmu/mDpCRflyEgXF09F16/+5ATAbn83KpnOFU0r/sBfIqnr+VdoATPbIe4iGCxtVNDZL5/YPeoLO/T7B1ru5zmU1afKEfe2nLr9JdokKA8/NuYOo6L3rv/gIb2pwn++F1Ll4sEl3gXkl+8Va//9AwAA//+kXcm6qjASfiAWMicsmWVMFBBxB4oKDsiQAHn6/ji3l73rtcfjkFT9Q5VVMO2OApLDGjNe79Otyab2KQLfJl14odG1BYJo088emzVsI23DP6Joj3xYzt2vhCeqf7axUyNYTsEl+8f397KaptRp2w/w5VdEC3ermZqQc0EU8G+avZ9Nus73sQHhwpkU54mXbvk2k/747WV4jGw2jx2Bl6+zJyycULhqxykBdqdqZOcnbTsGp8KDF8vlsZVtcwDX7CFrn1NwQFC9RdbaxSSC94u0Q+LSA/DuZj3RoqnJcVQMBhCrh/SBfpJNGJWB3s7b+cPXcRf/+eFgAUnUQbuP7/TguybY8OIBrm/xjtSHKAOilb0ONr1Kw3b3AeP9kFyh+tyFdIv3lsTN46BV/P1AcRF2bNQKnYOCOn+p7sX7dKzmwoTjXvFIM51nNmz4CJzC0KlPEo+JH7kUoSiYJQ1pnLWD02kEqLlQ0Xg2m4EFcwTB3upMXJ5s2aLHUqz/4h/xlxANq/j8dQCWeo33PtLSsamMBlQiuWJfglw7zh8PwXBHBDQJoAHjph/hdEt67K38ak169gtAfhX3ROR02tLofBThXzykZ/6csoOURf/qEd6Pj6u5qusHiPaJRP/4Rw/k7wFe8NNB8vjxU754cpk6s49Njcuwbzc9EECEs4A6x1SsRJjvCglxdUzYBZqpZIy3ByTYWvA+whaYuCsYwagkZ+z8+U9x80i0nfGe/vxjMD8Ud1Z16c5v+gOGw879dfDp3A00C0uSkiFABVR2xwsp/vw0K66J+t3zxt/nqWbVPnlA6TqTHje/bjJfTQZxUj+JUsC5Il4cBPDx8CK6l4wNmU6FDus+s4nY6s9wFW87E2jklmO9XbphRtbvCp8C+OA9NCTWecaYw6+dpNg9xKXF4nEKoHQmIQ1DKamWQYpGQJ/rge43vjd7wc+FUSC+Nz7+SlfPdop/9SqPn9aWts0phycnviAWg3O4nZcH//gQuDSsXZq3WwD9vM0VPtlyuPmlJTjlnoUPxyZrxwfjO5AE8PLPrxapKHvwru+uhH/ZjM1ideLg+UI4air+cZiiTF7hNT4xBFDmACn7FQFkNdXpxpfYsrO91z+9bhyGBixPV8yAdgme1N/8nPWPjzV1ccS3+vys1ji7lNBP8onimqjW4gf+COLjo0eAX6J2fr3lj8pWmiEpWU+hmNknHYqfHFK/sx/WX34AG/6Qja+0DIK10QKJYCRe0TtdDNnKtc0PxfsZn8PVaIrun996S4x4kAz1VcAMZgLVv9eHRebut+FTohPAnV7pdJH7F+CYqGDfgE+wynBv/90fakRXOd34pgq1kL3//GL2r75mBb1EpELVLfGaV9mfXqBRvj43f2fgoXsOLexkv3c1d5erCaFZ36iz7pp2vjZGoHXxt6KWwceM/l7lFXyerwap4vPCtvhq/vAJYzGp2rX/vAK4fV4cNToN2fuFO7jhPUYq+YBF1C/en/74l2/EjzZyavpDdwKQA6rR2S0c3PxLJCjxMIw6Kz6qBXUXx95NACsnqy6cWBNgb+O369/93+KJlKdusMhROzxAGDAZgbf8rRi6RB58seyKK5S9AXnYrx5qpxfDqA3e6ZopM1HnJZO3eotiTTvb+wAPHUdsrWQPaPgUbSh7wUwjkjdg3F3YAXRY/GLzW8/VXLfgCr1F9fDev33ZoinHGpbUmXDQ04s1ouUrq9v5Uet4/IRUiPMaFr/jh3reeRiYMz4yDdYqwfp5vqVLjbwZxh/hThgPD4At01WHHo5yslPSJqRlUzTw4HgJLuSit8bzvpDBtkoFR8ttX605tm048fyIrfZThKuEvB5AHR+RhId56G9aF6h//simf6zZcaIA1oeHRGv7rQ0zWr7qX7wT4fYLLPaoClnb+CiuNz+IvhDMQZuXMkZbPXKttl3FD/i5IakYhGGZhTv65x9YnikCAu98oGgP0tI4Mabhn/+Uz3z1V/9K510zm5oyfyHhQCGxyTbVK6h7CrFpsXc7Nuda3aZWhtS71ZdhlA7LCKE17+iGjwNvHrsRvp+tgPh7Z4B1q68BWUoYjmL0G9bc3Wfw1nY6vcnsymY7rUyAnvsEaTdcpeMVdR7EJ+dNGLoHocCsmQP/8Hh7fyMcntz/11Og/u+eAsOYPkQ8JHw4/Gqrh/uKS6jvUVoNz/upU+jr0tHj2R6HGcWlCgV29egZWW3LxOSmw/fQ6TQJfSedg550yj7JRiTu5LWdqR7lyvVYM+zQtwd4NY0/EOHxhcPQM4DIhtyE3SnyaKHZXtt/k6CAj8A+04N9/lXUlzhOPXXqhE3DdsJ5sLgG3oo7RtJ5KsM1xsRUESYvxDmaOBCFJhl8f8QY9RHXsbnKwDYLaX7RaOtJm2t4UmG+Az4R/MM5nRPxUsMzmC4UZd63XXndL6BMXgI+/Gy+Wt+tUEPrBTIy2QAMQPO/3xkMtCu3/XrXD/a35cL9LZxkoD1rm+pzvgyrcppXGG6zQfCzQyFRrlYA5UnHOHqkOF2/7+MLWqE50jAvONDV8CZD9HtHSH0+U2tJdK6D6/6dozz43MKlm9qP1qimjOTUPlgPyJ960M1Djp7ovQ7sQr0XtMhDxTG4jy0rtp4ISP0LLofdFaym/3zBnAVnbGQ9s5azVfMQb56fcZIwYAp729Dyry423t3ekr6+XEja63ug1kX0APOOcwfggTfokTsajAh3LYdB02F6Pp10Jvpsi0KlmWlEuRNY+kpuoJwaX9LnWGALTHoXSmMZYc/bYcDWHEfwe56O2EActN5OInWgsaGNcSP0bCX4eoBcfZNIdNAMxsvvgkBsKIjqg/OqWHjBrrqdB0X38tWu/U6KYG+kF8Ie0zWdVbcT4fH4ItgJ+wNYbtvQwWbRZCLa37gShc+ewEvryoh3hGPI0vCQgzF43bGxKpnVl4sXwatNdLzPntOwKtcwgOR0jci8BC+24qO5zT4+/bAZ+u90xcfAU1neMRwqbmmtv0m3oXr0njRWh0u1PH2Wwcx4YuxYn0c7X/QuglMaNmhGlm5Ju1eJoFvlmFr9CodJao8uLPoLj+1bXwyzNV1nqB+vb2pwRwMwuQwfsO2PClnDBgGxuF5VmGHY4eAkRul6k/MO/m5LgM121a2lb0wV8idyINP6/YXjN3s3QBXxiQbLwNjUd7cDvGm9jbhMVQc27c1k9xHYj2K/uLJVmjgEr1iNMCLzarFYvXtQfooW/nv+6JBZ1rb3hw2W3Fq2ihUCZTsCwtZ7206GqIlwta8BdsYzDBfE1aViTqpEuDreszEazRkqOySj7iPs0zXM+FzdXh8H8us7zNForpqvuy+0Qn1JR6RaPRz3pwTjqo23/elVBBvW3fFxVfhwTtoggVdl5rENFKVl19960JLYAtQpOifkD4aKAK0NhD3u+K5Y+lJkGOXzA2fyFFvLc9uKeu8CSuOlHCsyoALBnabm1OSMZ0o1//qAdlOE5OPrOSPckTQgPSaI9Ch8D8P1pyZAI0ikxkmijH4pR2Aiw4jaaOKHsXrOCdidA4BEG1mA8uchh9X3E+Lw44sWO0VZARPeu1Dj5sfWchc6E9Lj4YrPg6SCOei3WfKmw7BxsuBAr5pfQ1a/V+rz5DwsSsBekF95B9+A21pjf5MDNe52PuI/msP6PPuUgHEcj/3jd2VU1n8cbJadTO3tcXGtlwQGQRbT/Zbft/sdwEbADrlr4j1cGK/bgF7rDvvlXawGvlcfYFSlB5lP5MNW0C6dNkahQ/en0wMsuaiaigzOHXrzYh6y0+UYQRnLJa2yVW4Z8jZOaFzcLR/WjOkr9wLHOfWxpz8EtlR3uYd0x4lIO71tNqoj9RTKInvDk46tmmPMQBqLCKn7AaTjQ8IvSPm1pzrTvqAX+a5TxSmn2BaeerUqGGXAFyeOBu+vNQh/+Wl3mBsc6p0EGEXyCtJfHNN7MQfDmFKqQyXZ22i9Dbt2YY9Z1SbdzGm4NerO1K0JsJ0kRyAvasB2NzqDsnsQmpY4qUYO2gHkRKZQv3i47Uwfh1zb7i/1jOwXTrm4mlA4ywpR+G0/9DQoJshx59GDPSds/l0zE56m8UEUpzVbqYmbD5zm9IwtW+YB3fIhyH7SAaNMLYflYqsQhrPloPx4P4C18B0Cr/zOwH57voBFIMoKrS54Yt3NLxYDFX7BHZ/M2Ox6i4nvczECl+NvZLGVCjD3dsy043m3JwLXjIDZ1C4BBkwg3B9eoh9+qacgSqhBHkG7HoLzCL0Ip2RHJ5SuLe4RDHaVgbJbL7cza+aHhl5s61P+xRVLZcPVxGr2qXeHrGVeYZlwUmSNqN/YZ/Pt+uOA2YwDrhRXDZk3JJF2erkq2X7ll9LhrQZQjoYYe0/8tNgv4K/ge21tUm//nyjCSGD6upQ44m8Haz3MnA0CHOjYriUhXe8XMqve+DnhvT2LFX1XQ60OX/eI7dtxq/H6JAFpbhv4pBcMkG8469oZ0AvGydCHGz72cN0pZyJq9cWaX3qSQJIubxrY7judnlbHwTH43PH+fTfatbhmMqiCOkdTVnTW9vorJGd9pVYLth6823eGRzn3KXK0fJg/2yC9k3pPaXC6NYDZlYDAFl+EQLDtJnHTGbgvQcDx6f1iY5o7NSiSq0DRWybtxo90oJ64jHq72gwl/jxk8LAbHBzcmzbsqJuPKqaGidRVPgyTVTgc3M4XY+12GthpfJRa9FNGwk3tqfrDZ/Bu3zpF+nlOV/35NaENwExgunlywy4dwZerR0KYX7WLo3sPCPLXGdd1/GXsL99N4N5ufOMbjuckTeDvGr1wYN8RYF59KyHU6x0CB91pReUkr5AmkomD7PCx2OlyiaDR/hC2zxFp52sVi3/8hfoJT1tyddKHdjx+CLYizqkmOIYd/LrBQEM+24eCshw5eCFHm+5fyYvNxliMoEo1SCR3+aRDieAL/OGNGLv7dPbgskKSsjf5BB8tZPMp9OCnf19x5MrPinlDiYDvWS32H+GUbvn3A0npc4R7DQubL+760p7828Tu87cM4xHlHPg03Q27irLtm77sbajnSUF1+/xLJ0fJdXgKUII+0kVu//K/KlBJJmC3i9uFSOoBOif5Qo3vVwTTzdBXbTtPqjefPl1zlJnq3e6fOBSeFnvTXqvB82Ixatn3oaJHHyLF4VBJHbKcBoLP2QN0NZ0IDx6HUCTNsO0PVo/UdoTFWgs6ukAO7S9qbfcJSCt6n+13KBL2fGaF/B+fqfdhj/hsPVmLk0g9nLtEpgZLtHZd5VIEosGeSOqP/DBgbDYK2eUMYziY7XitYl4xiFASYJlLtYKgcGUsVNtck10XztAoG8gndwu96y/P2G/wrirnzw521+976J+VKcNHN69oJYfe+rGvdYCH7+j+l58R81zDdJ++yVsvGOuaexAARModxf2+syZdexxgcuhDErDRYuxxCQ8wunkKDb95wihuLgTqcqRjYxmlakJyZAJO9+7Y1WrFYrU965BXUI0tZ+zCLV9BsFPsFsGw59PFrOVCljymUU+4GGwOXtcERjLxCJD2fcgeH93WPk1/w7p8baztPvPg3maQhoI6pV/562Ww73QemyMuQwIkT4T3kWtwcPP8gWzxB2juYmzj5x6w1+loa974OtFD35fDwjHVg+r5oSK1v+QtC5Rq26f6BKja8Got6MuG0S1QkBxE0bAqwjiqG/8nu1Bv0/l8L2zV6rwnNst7wuYyvWcgbj7zn54ICRHWDlY48bGz9YH9HF1v4P03nXDce3ibZhYVQAG7gdzpRKrZ8cqHWijRAR+Vcx0uzrgksIKpRo07nK3BrrQIZpN7Qz/tA6zxIe1fsNMePs2x0lcfBbsZaMC3pvjW3Np1fO5zKCuLidO5ZgPbSc9CoxdcEamOX+nSMYEDm56g+IntQTh8Cg786HlGYETi9ve/Qk2I1lKrIVE1R7sjBzumtmgBizSMJzspgImjK8ajW4SLRAURqsz2aYbVYyXc9pUHw2Pe42iXW62oFQcIW031sP3x12E+opqDUj+9cX1nxCLvVrhqBV/eyFh0Xcs8G/BwSv0GyVt+FsLeCiDTSvSHv2yhx0qGXT1NGPHXX7i8L0X+7/2cShSmpBDEK2DCGVHHkybGise3B5k9X6kJ+dcwJeoLwfc7/Gx8FDOmPlcdaL/KwoEaTGye5NMMbb1uceCMQ7vcDG9VwZWbMTqRGFDbTHvIRIUn37i7ABbvryb4Kdllwwdh8/CFCNTnZqTmT9JbfuM3gAhTTKMdncLlsy4q3AWlR3gq/NI1bjQEM/+DKZ5GLl1uZZNDJVclavDRc1g4veaAo+5iqoMODZ1HIQTt7kqwzYzcWpw7rKHl1y7hyJxY05zMJqQ7KFLn0PDDsi+JB7rinG3316omAb1n9ZpaF+wda59JW35Xxe4Baeii2povbMggF+YD9YOT0E5LcoawmuALO+YaV0t0czNgN2VI//jTxqc9kD3inu5lYat7Ika0RtXlv/y/7YM9NzA/Ioq4z/gEv957ZjB+hTlajIladOO3sL09XTKvZ6NdnvOFwIUeM2yElzcYkzY4QJXvKAFXWwDTQL49lHr6pkF/EdtPzR4lTOMfh+M906r5EkecdBkM6Z9em4zDuQb8+SAi4UiXarpsPdjS4uzQLhl6a0rK+QCFKnCxteXz1UvlBP7htXIwxmFBy9Jr23lTE+pL9ZePYEYGCwf1ya2oq8UJxO5kELgc22pmP1P+5xc5u1wPVyH6eH/8GjsbX/xsfofm4euDmolegHHfHpBWRrs7glUVDrTuxQwSbY2xXk1iO233Ratu74a6bW+06+Y3qOa3qXF87x2L2ZWGAJmVksBjHqZMeZxkLc1dAy2n+pOu/KXh4K/QzjQjuLXoq3scoMu6I3amXTOwo/iCEHfdj3oXzWLMO8o92Pg52Y2ubHVT+NZhwekW+Yf/m55QN7zAG99PeZlbD5ATF4WGhpAN82mxPBjMWkfDyfQBK43dDDd9S//y4brbsRJs+oVieCjAev8ML/DqFYhgiRBYFPuJtD991maHZljjRkCwUNABraXrV9LwVj0wnbUTmd1cCan4HiNQos6lSde3gOWK40Guqx9bvJBhfOllAgcDXCne8i2rl8cMpcgI8PS4ytVUOdKGV1H9L37HaacjMEzXHleCGqfrn57d9BMSUfoKyR8eBM6jpFZ2aFpG1LgEdthR6k9XtWKu5iSwEpQXUVHotAJLeRtme6WjEYR9uP7pZ57Tj/hQPi5s/bnPEabxwCF2ET3GU93OoK2eAsJ5Nx2s4X7XwD98wF/EV4t/DRKYdUlPvVcVg0WpzRn+8S2HayLGD5bYwEa+JtQPyC7c/CYbCPtWQrshs8FSDJccfhOlpgbZG9Zv1PQPJBX/xhkVftXy5z/98VtNTTCbvet7huHyHVA/O/Ewu0/eBdv50L1sAED6R3j4Oz8cPFU4LOMcrmoWBgL1k8oNJ64sPtCVrzY97wMMxoYTbfgNuJq63CCwSUDT+s8fwhU8W/PH8+a/fIHRuDTpsvELeAg+RxqViAD2h//xFeXUfs9+uJ3PA2rB2CG5avuQjWuuwlHnFKJly3GY9iUJwGmWJqq7SwOoK6oyFIlyovrmZ1JeuifwtyMr9aLwOgzPyL1qPF8OOLzK/ubvnIM//MD+Jbm0FP4eD4VXmY2j9FSF6z65BgA25ZeG9NpWo13Gnz+9g5FZ6NXcJHH+x6+xF64JW/rulECucfd/fNGaxd6FMGfemTrSAbdjClsR+mEyI2i8eeu3V1cPrF+uoKbZh+kiVP0H/OG7dbacYRDvF/7PP6bmezlYv4xaDRyapKaOFYpsNi5+A7Z4JL92bdufJR8hfLdfHes5aAdm4+IKQ66uybL5J/NidDV8TK83ArVUAGbGfA64Yl9TfZ0Ha5GvpFdQdD/j6FKCgZkZGmFxkDHOakmotvv6gE9H/qI1qcyBHq2nCDkBp396eFDCw+8FmC/rOCPYslhqTzLcLVaLpq7xmKiFVw9O8/G84eE2J2itZVhPwKHhCyoVQT/8gZoYioSv6wHMP98W4eF8srHeJUa6lgcYwYdpnbH5kx4DyT5KA9xiv+16lV7Wv/v8py9MyZvaLT+tf/mT6pFopSQE5Qg64ebj4M8v5z1OBov+UcmOO3aA4oomQFErZ9MzRzZb6uUF82sJNv/MqWbO93WIXsuFOsf8y+aphtGff05YfCZg4j5aDm+8WWMbZUO4+QUf8DK/AHFTK1Qjikv5n38VbnpvrE/SAzwNm6f18fSq5uDouNDNH1dsHYIkXJxoOqjIbgr659f8XsttBp/4/qXBXEvW7XD/PGCGCpMWxby3lmT/dOHmNxB+X0npIK4/E6rlukfjKv2GXyt7COS52ZBl0yvz5g9CfQ51pO1LBma4f6lw0zvU/KtvTIOiQ66xtzmahtKOF/0RqUauVkiBfBf+869er7bF0XK00tnz65ei8j1F/MIrFSlMkKnK7XjA+61+MZ8OUgCHx1vCoWUeU3qEUg51nmPUGdc3m5v1koF9HIo09IiXMny6yiAHTo5Nj4bgz8+AZzaX9PwaULWomjjCw6qm6Ii4qyVekyIHkm2HBKanylr8Juvhpj8pQoIa8jQ2AvitnR5bjwmm32kfHEAzXxK8xXc6bPUA6D0Ln7pMp9ZaBk9Rq+l9IOJw6qoFcXkJCnPP8P4a8dV4lpUOxM1rJqPc6u2AcfCARm99t+/3NlB5KkcYqQdCM0dYwoV9w8Off0ePUxqzMQq5GXjR1qM3nq/W6F3fK9wlZ48GlQDDWV60K/ytUMfREJlgmfypVA1vv8O4U8OKkvjag4d3mXHOf04DS2Xfha5c21jv+7KdP/zSwL/6yaZXw7WAnapu9w/N1SQO69H51XAJmUv1fRBVa7/bRfCYl0/S+M+azY5gHcBuHQNqmGoIVvt4sOElOl0pPkoi+/PLIK8uNnk4Gh5oKZTcnx+GTcmLB3q6XBAUjs0DxwsTwJz4jxGK7jf756ex9ar08Nu5KTV5wluTMyoJ+Ezij8h85IQSBc8GXjXToIatAEZC9IMwOXQhdl7pAObmnT3gc+xMWhH8GWa7jF/QUYrvNjO4DxdBsAPwTLbdDRfhnc409j3QnZBHlvNNtH6LwyJ4lDOf4kYIgJTKvg33irunZgjkaqht2QSX5yPBf4+/B0J7uPEBbGRHv12flalqX+464iJ4i+E69xcIs7d1o5s+GsRVTnjgN2ZEgyg4DQsr3Vp6dyUj6jKkgGz3C+rXfkF8dhmG5ZD6M9zwjGjqoKTLhKX1T18RrXrx7TqWPPfnX1KrvzDrz2+GHZNbGpfnM5u4vVFo0vd1wcnmb77/+PCW36j/LAJraWUdaSpzfWqfPl01arGUQOgKBfbCi58uxi1LYNZeJXxj/JsxcX3qsO1TBQkXwQBi7FcdUILAxvEa3asJHd8dNHVm0agvcMsbslDDY4UyGnWrXy3h4ff5h9c7MZSrcVrDUmWOHRMNpd9hrc7uB66B2CLhNQrV6P2aD7w/1xz7B7ZrH4M22n98G5tJ1QzzecUR5ObqgRESyvCf3jxcPQm7QczaP/4FyrBUNr4hWTNSwx5s9xEZfGQMy/tyyLSt/kvxxzgPq5RlHRwG1Sbs99VD/o/f3/fLhO2FV1KKhYcKL195+Fd/mR+aasL3h4+pqzl0oD+7cbUPrTDF6e0Wjo+jf4B/enK/BF1FGPeO4FesRkKL8zNcY8s4aIfMkZCgFylYtUVtoDyZGP/j/0pHZbDdR5xwLKtmnt4OcItvpGaHT0hC4x3A0jopGEWmZI2L8biCsncybA9UZotkOS4sG+9Er169B1KzP0SQq+8SWg/l2s5N4mQaRrOBE3r7MKI5xgqm4wui5WMc2oWLqxWW7/RJ1ubdVgt68SJUgeER5WcdwALeywG+jaGgW34Z2M52I3ADuxvi8fPLSHviP9AGyrzl29JasymUwWogDZuW5Fl//PHP36fxcBoYK3RGoM59LhQf66lahFMR/at3oZs+hAvloh7++Wfuwxoq9seHtnoJ3dOXwRaBLCs0n4GDdsJKwFBWS/mvnhC+z23IM/zLFNlvDBxJB2aRfZL9n3MKwP/uKbj7ZUFgfh/AlJkhgQf/s9AonMfw1+0FCKPpWdJjd2rDqWPqBzx+80xvy/Ro525PHvClspm6UQ7Z7CRXF5TrxcIWewvtnEyHUmsfqMRxtj9VfDQYvdaqzwcOorM6LD9Bz+HXSD50n4e+tZSX4QExYzNFu/MAqPJKAiXuZgHj+z0F6/KICVzu14zGMMsqNgRzBuXl+UTKzvJD9r6OKkj6+ELdI5ssVhZ8B0ndHGg8HuaUTKFfQlx3K2EvMbfmk7E3t32QPxqV15wtyTDy8BsuOr5SbQjZEuQiKPd3G0kdX4O5sOUD3D/3I2E2e4dLZasc3OfzmzrA0av1xXwTVrfHiewyYajYvktr6D+XB3Z3SZUuBnh5IDiTH3WruEtZvAMHKA3cDs2f99SyV3X3oLt4MupiQwPTPo1MqJ4vNUbHCbajJGeFmup6hWSrP1eM8G8Epxs7IElMj9YC1MSG1L9inFcOrMbveirgDhGM9y+JsVlqchtq8XPAxukqVGthXT3YlrKH7Yre23kHwk7tr1JEMbLEdlwC7gBO4tWmpyI4sNE4Vi58qpZOnUeUsMXrDy48h61ABOdCw2kJYwKL0XmiZm5qi0Xc1MC2rAp07jM77PvgIWuy8ZrITuoIo+GunOGdz85EU755uwz+GMH1bYoIVM/Q4uewbaC0pEcirbkbrp+N43ExA9Qxx2NFzK+lq4daMRHTbC9k3u8XqVF8SahjXO2QN951AXeKX9MgjexQrKiSwPAMFSJil1bLcSxtEGhZjnXxd2ynejnY8JfYDY5PTTss/q8X4WAeP2h3mLN0kZ7nGYbaXkScau6HNTnLEPx9vpl8cTu7vy5QX2+IKdrhO1i/Vw2CRB19HLLvYq2tI3bA3N0YgrPZpCzT6QdEMm/QUBo9i0nt0sF9vr4RgxCGS26+Ikizg0vjD/dgv9HjIGSna0l94RcDQXreV/jgHQmbq2mlS26OEbxx2XHjUK+W3feeC1yxv6F3Ij/TnxpvPRVNtqf1j2vbcW2CDIbMjlBveY9wdrqk3CX2d6R70Anp+Nv66nuttpHcf3/W3PNh9/d8XOuXsFoWycy0haY6UmS0a6cLubpwudcZDYulaOfU/DVQqoYWPZ0TrGbwinJ1Y8xE+t7LqrOO4AXNTDhS9D2+2VQV3AHMF3LHfi1H4epA+IHp2y+w5VpJurzW5QOeGaFY540wHO+XLw/9ce5x1Z8MMI9B34Bz+BSwb2kwZY62HLSp3TcUt68ArCxqZGH5sQpjWeUq5v70EY7xmOEz1BRGsG4X8F7HCo0V2rTkNPUNZOr3TL1U/KZNF3gF9OE3p4YI84GKqPvAexZhMg/qkTEeeS7s9mZFQ+l1tRZZbkUttkIPHZXlUbHvLS6ACwMTR4OchfSo8zl0w7EmB8eJUjHYyS+w5TOqu7d3u4pRHQBfej1xpV7eYP3dLzVUTSfGHlOKdJGbqYGkFRvq1Y85nI1j6gJeLy/Y+SiHdHks8wdQpbLQDF0znMOdGoH99RDgNBK+W9ParGr7pfKod5d/6fJwGAePZMcRbjuPHulLD4PJVIkY+q9q2b2zGW75EHuDJKYdi48zJJ1wpl7Zvq31bBuFtuUnen26u2Fyup8IF7ursdUc7Wr1fpcZNsKhovfvU2Dzy+saqCWSRk6JbFTddGcv0OXSHmPaSmzm5V8ADZ76hBO0uR3DnYrA7tK41IU9z6jdPSIoP0cBG85/AAAA//+kXUm3qjzT/UEOpJMUQwRE2gTFBmeiCIKINAmQX/8tzn2G7+wbnnU599BU7dp7V1JJpniKln2Wd+0esqBtbN5Rr6yR9y3PhGDf6OYwZhhV43J2EjYUNKEoyUBb5ngIVzXvphU4F6h10WDnodv5vX7UT5onC9NfvSpHfC4lmNb1g9k8pukcD4b+h9+0uBVByn/PjwKn3Rix+Fs3HTWP9wyJIq9ZiIcNZ7l9lDTXXv9wZztv3rx31xkZrftmbuLjcuZS/0ZWqrfs8j0V8fS2TxkIn+LCTBzqseT/QgPtojknpmjY/pyaQoOCJv8QR+0Gfzaj6wPOtpFj0G5OJ2L9jWG7pjGx2aVMx/vtYcM6yxExugh3dPSgAQs5My1FwzZFW1MVtJOSkJmImZ20/WgRVJGL2V8+clNLZrTgAwYjRnxSw30P1bnhJHht9v/hmxPgFR7b1uq4GB4lmG7A8OFkgTmZzfakMRNaZgxakM5TYNy1y2X3oOuyavnoHMlFHcKXgD9j8kadr71mNGSRTq6k0FNRr2NL68JoZDs3q03qngoM/bGUaLfg62geUK3SbDmLB3sWmtRNcIH1ySiIe0tTTg99kQNw/CFGqxfxdKG5BOMrsMirq3s0kLWgwMYWZ7J3BANNmqrW6Het92QvmiZnBWMB1KkUEHtvDSl/UorRggdUXdk6n9SPa6CpGmtmdmVccqRoK4iq3iKZlRkxfdqRA9/D7ki2v88Yz/msG+BcdZHyMoNyjq7RQ5MfTkznEgfdmI65B8v7ZMHzoHfj7yHXqvIN7swOpbfP4+1JgLb/KcS0uo3Zr4iwrGkobBbMbcNnu9kc0QnhH9s/xAmN8LlbcC3ckuiX27Psy+fBhq89+lTa9YLZPWmN0YLXxDjLdjodr8VbU7b1gIXN3fBn69vlcLvmEQb6mfjsrZVaZUKCaRs9Dt2csk2EDqdGYdaK1SlTSisBya++5NWs6ni+X9crUGbjQIyvfy1pmQorOEfSlfjB7Jes90xbUw63G7GMWx/zmo+APl1vYTi+cz63XqPAgZxq4pz9jvP3Y2qQncsPZqDTsZxf4xxpxktK8Y+ud/506QcBnmYSszS+aj5H73WLkmukM+PA1HievH0CqwZhEubuNR3TpBbg7L93xDFnM57urJDAu/Y/5q0v1J/brAogbpfzeZZ6w2lGVdRAJhAvDipz0pR1jVY3+41XQaLEU/1MR/ANX8Gbyks76sRpphYkeRLTzPROKEbcgFMIPfOsp1WycvZ6WJXpD8u52vC5EQwd/d2/H79+/r9/R0Nrsl1RBSa99NoRrFa8MGPL33ET6scZHb1qS+78FPjz15ZbdCkSk91PhdN123oD6JtvVsz5eApq632lwJwbW+Yt10v1s8Ng6pHO/JnIfJ79swdcrN80/5zzlK2rj4ouUn8i/mbbd9xE5xktfBD/io/LJ7ZMcHmtpInpag3lv/he8BKL52fsd+Z3meMiZi4J35OGeikMdfX7sB9UPOSNP4+CdATQ6Jr4lTJ1vH7OLTSpDHgW1zSetGhcgV2cAubTY8DH01Wt0EkdNlRT14SPqdXl4Bn3hGxn+VWOsDnfAa/ylqJGfJTz4dIFKFZfP+bWWmlO5CdVMIRPAc9p0Jb09zo8Fg/zzLZD+42HYu9SSLljUq3xNzFb+CVa+B3+q/dTYgY9fCbjsryPoJtQFD1QfywkYhQSj+cbS0bQM9ln7ud94v3t7l6QBIbP8Haquvk7QwQTcRRiviq7nC8XafWHx2wrW0bXWcefAmHyumH5fXz7/JEmHvQhPRG7+e14ezOogqY28slx0PqUa7WeaDmLzuzwRt+OF/u80u7B6oc3y/eR/LV50f7wLoAtS7mn65ZGNvOO2MHlgeYtQpX6YsaOkWSW4tk/b3tQ97NNiKg38UD9+wO21nwmf/yo18EF1ZbcgTj1+/jHVzHKnC4h//jP9SpGINWhR1Vbe/k8Y3yFcKJqZK8vnuiSf2rRBid2J/vB7J87S4dKnUaC+/Ics21t9eDsA5ddT5zx35pkmWqDY7Dn7UXLcX0wDO0UVXuS2StA7J5AA+P6EtA1jduSf/d7Gx7D98CcM87RaH4nFdqrcKV//Hp+z3n+pydpzuTHsg+gwvAtEkr7L3L9uUr3VJ3W1YNgK3uns3Zw7nB7lLsFP+6pFHdEh+MNacRG5yiWrsucMV/Zb4n1wbM/u03/hrk1O7LNpKjr1wdD17IEBOakoxZP7/lgQbZ4PzQlJpLNw8mDZ9Iva2in0hwPl+CEEGhriu7uYVnj/VVhUJSS3M+bLee2FhjwkUyf4Y8klyMVgxYtfHTRo3k6p7d5BfdjhNh5aiJztLUuQ1rTroh756LJJynOoDgp5nLylMyZAb4B7FdfF749p7TaB3fYRYeR2WOZon96eNOvCNlx3Y15Qu8P9ejtDgz/VmYpWYcP3lB6AQyf+N3x7Ka1y5m5Mf4mSs3/+DC4QfNm29wXTe6exhY1j1NPyCW0yua9e81I3Y82u/7VX6PmFXJt7UeCy6vjfIW/NSTBwyX2ysAm8xpMkXAOVZqf3TEdn5PTwL6oHsy7ST1qvvMzQepXwYSchnXM79bmgjZbSaMv29XLf/hvCOsb8z7ah8+CKEdIjNofnuZ11803uvgR9Jkxb1jvEW9fjaIi7cGYPZtbX/LPW6ot+p8YG7ilY34Xa4hU/Uz8NW19HnVlgDZzVJA9aDc0XQdUQWY2Jd0cih3vD+er/ff9iVlm0M1LPsNhPXpEH8gl/v3x0ZHpI/O01QlxRd5TeDo3hxin1+BP+7XTII6sPVXHatM1Xvvz1FOLQrqOkzta8u8IzdcpCZ71Xce8xu6hlh6MWNst/5ev//SxL/eNP2vIMDT1ff9RftlL6XS9jZGm36412Xk0Tmc1fHngBu2bTodXm7LgVCrwOPKUTs+6jKcH3Z9QmIBLvKXe0NcdAZS73Z74GXY4f+11W5s/uoS7a5WbPDpXCqrOLSdkud9ej3YX7V99u71bkw/iMYPvoTLI81N/y1ktnw80syKibfCqy2rfzIomQ5Quemg5a6mMLCR+QGUJLkyfNc5DQP2z1Olwl/doOTQph9gSgVlXNS97qTRP6NIpT7a7z3I6LM/7l//M/zaVObzHzEZHRleE3D1WjlyOEzhHwpWZZpZ3f/mC7vunxRxclP40eEEPbWjkeFIOyOSDe5ZA8BROxUVP/NULdNrFOVXP0xnNwemRwUphKl6d3nU6OitzBc84WBPfjDcLv3sI6G5kZOGXORqfO8vYOP3VZnZVUTS7Rxps/vyrvYBkxErHtSFcHe///LFpv9Yb4C8QSONaR8QkpQ3+8V3n4yW8rdJ9D8ojKcnlwENzcn9vCR7NrieeqZ/8vs12J+gVv8RI744lf44L325O8qL3dr7on+YI9HVmMr8RoRzvu2SE9t3gv5+7zjkw9V98uxfJM+nveXmAprxa+vEojycmUAGeTRFReNcV+vWOtPqrF8QVbnn3pweArdSG/enl+X6VAX7Xak/MexDG0stWGkSzbc52YTr5I5Pud7ToPxK6eVE2F3q4a2+2chnh3fI51j8Pft+EkzSzAbX9y6Lqkg90Za+AL/XV+dODC/9/o3/6YvFPmLlP/Y6rmzJQtyqmRH+h5XzwMNTRevUzWcI3SToX03GG1wkTtnuQL6I2kBNa9AcLpiMr5/fcvKFGcGKBncyoPQ9tDqVa5sSfryWfgcwtul3fETNUa5eK9TMeYRK+R+YGy5qrhLknGF3CqNe0ZTfHHTHQ5bJ/0DkUrXT2NK3+00sstR0DTaKiVPCHd4r36P02H0MDWu1hMXz1ejRJlaNr8znwFn/qYI6PQVbRzn9gvLwP9PEasQJ5OhyIXciTP4fnd4CMjzcw4xuXHWVi94aBWj2eZ8NMu/bVqPByUIPRK5PM4TtXi/57rTFa8n9GVYkR33krZr88Hg969JiRJXYh5QsfngyYVOD58cAwOgq8md/eBfb190B2t7fn8/IRJJsRDyf2931n/v5h+PNTl/fJ53JCx3/PT7K9WtKoi2f0teOUVjjfpXOxvzngf/mHAn7+lu55aqFYfAjM+CliOvUCr/7q+aKvDHNK2PYC4q7L8Kz0vT97yx6Vb/rtif5ujE58j5mFtm1iENt3rZjilh/h4IpbttWonyqPQVZAnuYtCc3V3e+/TjqCTn8yXW1UVI7na3hCWcPzRd/lJUfV3Gh/8aL7rcYr7/SWtB8MFr5tn1vEk/6agXvNboueRZz+6TGNOiW5rI8o7qR3qUJJvgWzFKNZ8NaxVH7O7uxP785F+siAYiww+zwqJouHwwMe4csl+osrnFtNjlHaXAI85f7Z59t6s4LTR02o6F7u5pBZNIA490qyw90q7cLzpkHWudzRjYJf5finZ4gpAeWvqi7LRR/Dmwhbchu+PhqNZZ/vB+Xjkt96yYupDeBAtRXbou1Qfp7sbEHBTJEt/C8da3drwCm1Cvobvh1i32d4R7J9XtYQsYM5+j+uwB3Qc8Ff0xxx1zpw+K1dZnx9uaSdixqkOW8Jsz//j70++J+/77w/X7NSq6mGab3v6edTyCYP41WLtEQ4svC9+SH6spUWHsPnQALt1nTDXz5VkY/xeM9O5R8fgvt1zkkYPvuOBvrNQYt++8MHPkVnrKPPZ2BEH63cH/GPeWjx2/B4uWndsD20+UbI8wLL9yg3+9NWOIKVGi2dPLEop+hs60g7ihozq9XbnIkeJMh5vO9k4Xvd0s9I4Lm6HFhwC9xuctrEgiYwI+YG1rkU/97nObp+8SywwpyL/cH701MUyRX4wje72yAX2QfLr0+V/q43JUL6+mGSSKVN2X+mfQO2vuxb3+iUz+onyrRxJT4YzguecjWklUqEY05015BTNvt9pf7sCWFV3Dw5/esvvLj8pdGiH+cnzWY11fyBhUP+7OZglVnI3gYWe0hfzn834/VAf3o4yIpwWStxvKO/fPceadZN1bypoGjxCW8+bwFNjTuuAM1wJkeYSv+nR48RrvXPIeehvPn9aVBU0DPRJ1bhpuY//ihLs0TlhY/xB0szJB9clwqp7HeSpf0kCI6sYvtkVDn9vW4POO6sB/H1bi5nolt3uFzq4M+/isfgbJ5AU1Z3FiZkG8t/+tBvjme6SvdXxK9XfF/OL/8tfJX6tJjuMxxbciOWnZXp+GCqokqRuqHwPOjl3Lm8RRk97JjTrd8x1aGRUL75PmibYtuXnV+B0daKP8zuDn3Maf5T4OKPZ7I7P7k/Zo/EVrx3njNn/nX+uP7qJyheoUseqTD6vEg7BS31hHL16sUSew1YXfg3HvHrW/LUsixIjf5FguNbR9L+5PRw2w6EeXlTlDylIUX0d9ljtfMyc9wdT7amFFTEwv11jGdd/Uia6Y13EgznqqP+2j9B0lcHdl2dY19w1weK6sLLGAb2Wfpx2wTGKr+QrXJIfXpj0Yge3JKJ9RKkjqvkV8EpqvcszA9mLESXTQ2/aVBZSJUL51mqtAj/ghvbnXYbPtf7XkVOIfX0j6+MYftIIFetgJzmJvyHJ9oqq/YsUcy6nD9ZlGk5O56ZJ/S7jm9wKm0gtp94/Go1n7df5QjCuW9JvDqJaZdYiaSK3eNF9HBP079+jcpPWktw9GTpyIunja6pfGDh+W2W0u91yEAr3dtf/e/mU3LLUPhcrahwCEv/d7PuGeKvlUD0Ivql49/zLfWU6F/N5vwPz83zviDWqNdoGN01/Pl9VFoZ2J+AdAHEL9km3gRHzjTVp7DoFxJGRhaPozg46Co9BfYX/8t6jBU6vFqDGMkj8bmguD3YxSWg8tGezYG/b+NfvDK86FHBOXknkKbtloRNvIvnUZoiFLetRsji5w1Om9iAQzRTpVu/0/G1699w+twa5i/8it9uP+Vff2bRu2nrxRzA299CLG3Zz2f71WHUgjg4sV1gyoh667FG3/TTY+mp1ua8Uk8jSKD75P5IV11Ptk3+1+8l1vI9+RQcJKjQMSdeoWDOc/sowG0fCCT80wtRl86w+FXscK62qRgbCsDiZy5zaQc+XPqPoOXrZa7alrnmpBKDwtxuO+KP67bkShncwRzvzr9+6+LvZPDXz1v8+HSCss7R91LJTMevbzfDRwEwz9Wyqtx/l3xdNypIqWqyP39g/Oun9knuk9Oiv4bgohvait4526NxG0/kzI/oT+/ZMOtIkJXTfWMfjBFP982n4/755gH9nfbkdiu/aD6buQKD+fBY5nK7o42zrPk9XydKXW6XE1ciC82sjNhujC5I7B0JNks8EENPXXN87DbH/9+aAvjfawpsDwZm4rboRutntJDGoci22vzl3fb4spBsxR4zKmyhMdD7Eanrx4GdyntWTuGEG9AffcMs8Vum3fm8j2SW8A+dyG7Zl08fKqhptSam1qloxufC0NZ2pxLdyA7LLMryAnj/1pn3lRtzFjdZBfUzCdnrmdppv7nqDbJGNWFu3ySI/65yBvds/NJfxe9odNf2BUC8cKzyqOnmvoBcLY5FQ73itC7pobQBcml7osq+qEs6PtIcrab3hz5lhFCTVDyDWBx3bDd4vByPXq6AfLUoeTSUoekSrFvkn8852ak3sxuPg7VS7+VGo5s47RALuusbzlryYFhau/Fw1RUbzPQzkV3VQDcehOCCEtt607cmM5PRy+cEsYNN5qyuTz5fldsJNLG/MUvnLz4PykHX7qNisYvAn+m0tqMMfJydsPTtf5xLTwWA2hZm0Whwf24ltUV/97vcXzk/F46US+aJmIei85mkny2IEnlP9OH7NfkLcKauR+9MdqGUduP2nLVofXtmtBrmXSyNj/gNVXh22SPseDwE5x9ApyUOy5bZwfP0LWbNzG5n5g7nCbHHIWihHWjLcDm1aF5rEwX9lQdYLL/vcj7OlQ3sCA7z4pz73KxNC5619STOnX2Wn31brbZKRXTtYJrj777W4UyEOwu12i2FYr/08Kz1lYS10HSjN5FKHSUWsq0u7jqh/3YNktfbLzFFCTi1b10Lx6vwJK7oMTTa9d2B4lg2DF8JR7NFfyO8syvH6nWi3ZQ5ogEF6Mv55ncl5uvr2gFV2cXEOsshYkqqZ9p+/uwwawQb8bjEuvrxVxt8xY7NeZYXI1riGRflw4pFVXwo6MqPK7YV9mo6TlY9ouQ1HTArpdkc0+GA0bIgj75kKyrHrPxd4OK3NdVevdn1p/2YwO6nrpeSe/NnEFMA+ho13BIil1NXWydA+jJ3J6IHX1pZk6fJ1sEju4eZx/wIsQ5uvpznzQiUY/o2Vkip56UrJVcxtfH5jkTh27PwsvgmO7EJIHSUiPzL//FnGOtTedqzGLdFSX955qGVuSqpMU1iOQXm49/fx5L1G7pJXgcjvA9uwqxh/sSjvtmosA+SLbuQaY57zb4tmJzPzNkXdido9uGOlINr4RHJEedXpCva6ogHeiZ9Zw5ecnwAn3KGeW5E5XgXkhpexyNhfp4MJmODKwFX/ZFs4TelVCfsjbJC+ZH0Sy7xGBznOzzMT0rCNG1MvmUzaMv9M/8LLJ01vT1u1pHwJIEffdPh5hEHPotnFT/Urmz7dZTAEbSZkUzRyiaudzX8CuXF8FbemVNbaJkqhXrCnLUl8X7/Os6Aih1iZJdTPq6G4IJytabMdfXcHPdh6KG4oldGvPCLZvqyDPDbVYO1HxHKsZqHRmnI7YHLK9E4D4gqoalrQ/pZ8qcO18EDabdgR06Wue2E27jt1VTxROLvzlHJ/q5/Z2fOXJo1KT98pBya6OUT/LIm3n24sALxHAvEMEwzbdFnJaHDNZNJ8DyzeLh3k6ppqJCYW+6+fApxW0NTvDdUmiDm/HzeH+EP76Q9SVMaa+oJcPr5Enc2PDTsjkOAgl+dsD3dSCa9JRZov+FqMXv5/u2jG1faFZ814nWp181rV9fRtFGuLKZU5vN9tVYhggX/5Cnu+AqOCWqFr0QCRfjF4+HQHNH9TkK6ET2C5vPSk0VNtmHh3orNqZzwCWAuCfEF42cueGKBMFxUFn66ozm6jzb6qw9k62ttOniH2Aa+HhX2sn+7VE4Ty0DyJAbErDcb1BQTOSJ6OiXs3h5P/nxLAgBW4COVWoHyubGmB9o6b4HZ8mWHxHLCF3jv6Iyt0zNFfGDzCXpHoCx6ar4/guG9ocoSmWHRvSEm3t62tjw/ObyZn45CWegwyJLFgjU5m/y5WoGiFvg/vBwugdxCF+pvZkjGwRyVTDfAttOY6I99WrJPQylKgRIKivBLJ3erAVSRQ8neq6xUnPaXC+zSRiTb9FunvNM2NvR+eyTO05vM37V8OJB8kvvy/6FyvDzOdDMOxpO+1Ib7HHotQuo6O7DtSynQfPw+JVTPRUn+4n++BRIFYV6ZxD/I35LnzymCBS/ZViz6mJqBbPyLF3Ne83gSpa+OoIp3zLLMouOS/rShdeWEwokrcfc5JAoUYBhYTc+Tz/Ln5ogyhQtU7pdZyPtjH4EofHpGir7gvTp/Lsg/X3Omd8t50P5bf2jzqRExqt/PdObVdFSV7Pxa8GQs214wHISPq5qYj4yac5xfMjRPrvsXz7yskmQ5oYN+yLZfn2PW5edAndaDgMv1rv/jAw18D3JKXD1zfV5KwwPkFnRGjsYOTdz6SPDWfh3zj1VejtbPa1TE0Yt4Wn7sprjRHGgoOxH9WQzl8PA/byg/SUQw3Qp8NFESgZi/dwQfisKkLuEzlBCnS/xsUJ2nLkX0Xb1Zeus/HVfZMCIKhwP5w0d+RY6CXpa+Y8fHrebjWrlX6EQeAiM8x75sCFtBM8f3THb9Mpv1+TaMv/jDoumd/BkrO3tZo5GRgBRvNEDkXGBlQsl2NxD9McicBq2ZXeN389JjYRSiaGO8+AfffhNJx97bz6je8x0VYGmbnfbjHcoX3xO9fhkmF/ePDBR2C1kwD5nJz9q0zHK9/Uh4lT8lq+9sBWEue1QxtcocU+trQc7Dkf3F+6ye80SbgtOZuER20/n13lpwvrCayjTQzHwf7hxNLQKHRKGXdKOHuxxGPfeYda9qxIX8l6GUOCE7bHaYz+XaciAnUkTXz9SOf3lyd0DE9wZvnt0ZNY/6JiB3qlLmPQwvld8Od0B0RUxwdk3Q9DYfBnqeDUYs2VLLaW0nDyjKz4Xs4bblsrX9CvC8SjFee6qOOLG9FbS7wwrP+0nye5xGDnTOy2EYDw8+drrSA0LRkziPZ2IO91t1hEZ2tnSFB+DDXXYcyDP7zlw9+5njug5WAHNBqPgw9Zgd98VJ9V1V/eN7fjMR0QD3bO+ZrapNOn9Lu4HjXCNmDPndZ0u8QGSSNe13LqST2+a2pp41mXntUTCn4FysIMlFnTnrifBROrdHsKRBJH5Y9/403jpA5dWz2X7dO928xCcU5bLGZqe943E3HN5qAvGHdsHz3M3OzxnRRc5mLLvyss96mRvxfP5GKunJ7LMqiY7aojew8ngqPsNJVKnXg/tmRjfvTf6drIfaRE+fWcCadFoxpCDjNX2wsNooXX8uzxY4j1jAirEXSlaetncIkneLJTG/pCMxTAduc3Rixwu9mWP/LRt4cG2L51PloLH01R669NizEAeKufBnG8JJVei1Zx/OsSo0kO3uZyoIqpeOIl8/QIpRRXAYfTp6C6T+L//xMs4+lnVDb2B3MQdaHH8Hzj+216qX+mYxcpNL9If36lO4fLFoVXW88AMdUdvGlIXnHlEDmrfaN16NZfV46foamXcNZbNLTKNyfP4o7xE8a/tJghd6ml0vTb3mHqOSLfyyG439S0FKdn0R/Qu3WO7mVgJ/v79gZX6/0Ezwr/njP1TMwrEb1fzVI1TsEdVm9W2ONRMdoKPUE/NKnnz8SJCj38tWMTcPhT9//VFAmS4hsvvVB5PC/tdslvwi3s3XuZzlxYwKnOnMVNqtL/+u8kNd8IIYeIP8rtyiGc0iLdk2np14Xn2fAVJVVSae353N6bS+Nap8LE/MwT+/m8/IFeCvPkkfSY3H93G2UNP6Kgmr1c0fZ4kBLPnIzF0/mDNfZmc6u/uPYXIX0exurhjQNfWJs7lUPhdwKkC5ecm0HB3Pn/z17g76fTXjEarW7NVoewTrlFhk738yv6nmoUUFfujssAbFb4a8jyBb3YFYi34Sz2ZeIeeSXck/PhB5B0l7GsQnZNGzE8vLk8ZVd2Te1RLLf/pkGJ82M0rN9eWZ5lgTRu+Fo3XK47HfbCI4XB8yubDii0ah/BmQXrY38lfvhsfmKsFbNFoWtolvSo9bd4IQDgyvrOPk9ydoLfVyLGdGbl7LZ+enz6ALvzfBo5Ob3CS0hqPsnYlDLlYpf82jh/ize2AtW7dlO9w1D4oWTnS0WdBNxzDJoPDbB3EWTc8rVTjBL5ImKkqOY3J+jvEfn6JSRs8pr0JDR+HVubPtGhRz7gXDgzoROLFWm6SU7YMF6HvDNzoh8vLH7fnSwnhNz+yP388lF1Vok92buJbRlbMpFp625fGRODIc+Cxpn8cmuMwCVXfRL+XDMXvAw1vdFr0Xo9ESIgWSXNYXvbkzpdXmLYH7ZA6VDn5VDpHGIxjOtGHedcKlvC53d/WPv3vry9ufo6OSg/Sdpb/60/FdEpwg5C1lof7bp4I3kRotfI+Oe781Z8U2l31Nlz1zaufTcWGUFfTH77C0/qV9doh7EF0Z4xVPaz6Hj/yu/sWPXd1MX3KtIQevWG3JtnxU8QtxoYWXGjqMXOJtylb7vEeeZDbEj+jkz29VO6rtz48o3KYe8eKyUeHc1so/fcPHl29DpkwC/vM/5pBLGDVn47PovW035WWTQKYLiO1f5O6PXj552q+iJttr0s1vP7g4aYaj3AlmcpVOP8G3gZ4uCYXrRUdilnotsL6VmQ+Vbsr2IQAg1xsnphxRPuwJ9HCaqgOxfrsg/ubP6agtz4M//VMt+wKeOTorskH21vMW//ExzYvUmLZX61zO4drKYGhljew/35zPBBcNZO4TmHOw5LJPLWYha59quFTawmS/ctcvs4mO7ClOftcI9s5B60Lxibv1DV/O9WcC4XoXY6a9Ht3YJfiNkH19st3X//hjno+CtvAB5s37o8mP1/WIxpXlk0DYj/Ho73sHhU3gMHsPQjrpr10N/jAHLDgARtP91kfonC1zjqBJ47lfJ3cUo88bfxxxiyatGwxYP2Jj4a9bNOa5IgE1jy1ebb3e57fB82DvVk9yUoNXt+RnBVw4xYwo2RtNZt6t1IUfMUvIetRv5/n9j5/5z8jx5+ynZ+hhJ+t/+kbYJ/FdmfYjIr9UM9B8K9MAdKF7400BU9r/6QlXJQ/y51/91W90VkSD+H3YmR3iy5rje1gQ51bjclKUMNks+MGM7w770h//94cxYPHzW5Xj3/dY9BtVDCEshyAfsfa7vWa8PhofNKfzeNL8Fhqy5Ec5f/W2gmOj+MyLfj9El4M21PRi3vDYWauUi2B78BcPar1NOjp5OwUuQoexmgVqyffnVILT8Xj7V1+E9X1FEQr7lPzDZ888H+E3ej/m785jOSNcGBo6fb9k3515ycbae8DgHQ36OXe3cgJrtqC+bAlx1apAi768oHVbBMx+VDt/Orjb6o8vEXIdlW7S21TYLHqd7dK56sZq/jSw6FW2bMVE0/pZH1FOhIiiXrUWvtG1MH+zG950aF1Old7lEF69O3HEnVMuejeCSkU+s7/9D/H7dNPRecTbPz81/Ref0cUs6Wfw4vLnnPwavMdJwcJ02fM/PxCWeGNbT+Bo0gMZgKysHzEDYfYHn689eJ51RkVHLNDsWp9cw+fRw5qyicrpfJfu4Bmt+y/eutf+NEJ/LDJmLhNxpvnCH6hovJE5ys/35+n7m//8UjraBu/oE0iC9lfpy4LIXqfFk0CCsktmEnflWP/qH+jna0sLbd6j36WN33A/1AEW+ecVV975rapcuMRMf2qdyd+pPsNh8r9kfxJoysVqPGnXg/+mWrer/vSOijhlHjNfk8C5yj4zGpI8wIKntry9CN4DCYVyZn7ZLWehecRRI6A3PMR16w9f143+4yeH3bDo0bON3OOxxBsi/2L+o+kKudpWJ1uyYym/x6KjlZ97RHx+JkhOt98ckXdrEbtZveJJ1UsM9KEtc28Tr0NWLD6ArR8p5lIpcqokiQKHNkqZE3Aw54FQFf35uVYlRHy0pyaB3pEoRl1+QHSpV9rjQ2UsGbjoRtXihhZ1TYdlg9VxXSw9H7DWIVn8tZKnSWD88+sXf7Sc9UJz0KJX2fYdh3wW/OoIVeRR5huhX7JL1Sewqbv1ovcMznftAWDR21hd/IdFz43q69kLxI6yrht0KB7aNr0kBKt7nI771338x/fX5u7Npx5yQVv8EKbfotmku3lsobHHlBx+6Yy4hnMbrbXTiNFSv3rUDQCKaFywVgtON3nJ/fHv/cQ//ePz7fFq//FbrJYe8+lAagUdd/qGYVhdUV0ebgJs1Sb681f4uKGXB3rHAMyjJetaL/UMwPtcJ97y+72xf6loiGFmgR/tY4YaekeX8/myxM9p6Un+VvAUTl9mqcGrpHm6pVAdV0eigwAQQO+/E5R/+gO2/d0mTk7jcjxBa0O1VSviLfjEaaMCPIvSXOYY53xCJYnUV9DZdAy9pKQLn/qHz+SPn8u3jQfC4xAQO/VmvuRfghRDUck//zBiWgbchIGlyAv5vDrvKzhZBllmgAkpF8xdBW8DYRb4mp5O6r6tYIlXqoZzHsuBNjj//KHJujX+0ISRB/ur8MWCztdIFF8HDOFDk/EkCDyebt9Oh1X0kImROF06bG5jAOG2OJJ9VM589G/TrFXr7MNcKbbTxe9VQBz6nFya1Toe3squB+2Gd8S5G4s+7DYVxK89xu85ox0fayND8k05speRuEhIU78CZZ+dmEfItaSwLxpY+i34qbLlXJs27JH+C4CqpiT79M8v3JjHnL62EKS87sUafKMEXK/9kvf6t4rgcw9Noqd2UQ5ecs/++iVY4ssegct0VIEp+yeW7dhBM/pIEmhvVaTIY0YnjSu5ho0Z5Sw6LXMr1nepRx5zHmwXa3U5duVjVj3mPehKLTs094LnoOtHF/6eh8vXBkUQEe+K15+oij/y4Zhp1qa8kd0gB+V8a481eJlFycEulfTP/0XOa5+w0H2tzTHcfC7gHBSNYVE68o426goOH7b946edeAyjDD2UPGWJEoYllzfnBrSDuKfr8VehaWW4FXrLAmY72Etlt/QzEIf1iRh76+nPNBZnuIARsFA1vub4cb1AyTPrTnbr+zPmLtgznJKdROFtOKmAI1cBqb9EzDEj35zcrQhqpey+zNXSLl74dwbqT3SpLMteOX3zq62lXs0xH8XS58+VtEIZ+ibszy8TE9omaLmeOO1t64+afUtAC8IV2y7xOa+1Tf+nN8gpE9/plGyUBjrt7jDnbgSm2BhbBRa+Rz9z9fmr1zZoZq0teNaV41cI9M3o+j4d6Sk3J/F1C+AyyS2xM3qOp6okNRyj14ttd3Zhzq9NpoJWNd3inztx4390A9bKdCF2Ev/K+esrEsibwCOXBX9b9ZzfIXomBfPt7OtzXZpPUFW6TlLPcLsm3HxO4E+ywIJzfoiFQyNZ8CwKk7hnSUb/rm/zN/nzq/yZ3zoDXnl+I3uhMtGEy70KjtlyvB52RjxX55z+9ctwnTv77nfVRxsO6OISv/k13b94X/qx5E5LVvYQJjO0x2hHzpJYmJMmoWiz1E86qCz3W/8VqdARySbG2KzN/s/vmFfXim76RuFDS5iABLw1iLuRG8TP+TNHb34UiB4fzHL+649ExLmScHvR09F6L3pHTikjYHzSIYSTqp2edMXs+Cygf/2XqZF+tFn8Zib55QnieVXQVZ5Z/tjTTgfpl/dMr35z2W7WpgRCJHyJbrOgnJb+AryT/EKuEj2Zw1//aYk/EgbGl88ciI2qytCJsfhp9E8/sU+8werNz/+eR4I2zwmLPw+jkxa/A9VsWBF7t+v8etF3GkpXn8U/Df3BOZk1mMfViN/d/DUn8eStQNziEK+jDUsnuhkvsPAb4p3UT7z4dRRBcPH/60eu1jeA+KBy8tc///MboX09cuZvTqt43G8lFb5iP5DTkTl8XPgqbD9bh4U9v5r/+OKix5mpClM6NkPQqGKe7/Aq+dX+SGVnROTdWMTfWqI/D8pNR5dHf2IX+fLhC79s4P40pmUNx4pPR8ML0J//PdMw9sX5qQrgg34h2FBWvK/Dg639v9YUaP97TcG+Yx0LNQb+3K9+LepIe2fulefpcuZdAwqdI+YKax73WXtO4FRfFk9Y28RzY/gVUJltqWDbu3j2vOIOrJ0/JDyYktlD/lP/rifedgxS8fgiEgRFZpEddkMkfbU2UHKpAzrPpdvN9UpW4PqKD2x7oU45XQyO4VNkPdO36tdnzj3M0HeORdoaxqGbUAo5ah6KgT8PJqc0WB9zCIqHRdVE/JXjtN8BFMnXZ8F2TU1aJUWAaJ7oxF+tcDmiZ3YEJxa/dDyvLC7V4T0B4xhtyF1/1d0khLflXBrvhqWrnfucz0q+wS34WPASr5ueZ1mFVyzozGACi/kuV1dLT8qgPF+7qVgaHxXcapeRbbQifn9e8xqwfK3w6jPnfD5M6xx943VI5yDKSsrILYJxCl0WgFp0/Lzd3UGpQCP2/HyX836VWlCsq4ndv+7QjQRXF2g33CXbslJSVmuZh+S2upIzxE489vcXILR7dGQ/x1D2fjTm2ssNZ2Ip74/PcRblKHGKNy6uaxrz37hpYbMnX+ZFDTLpVrjpIHTjlt2Sq+/PW+FgaCtsndjWaFs0H/SjAY8oosxGH7mbxa10hCv2APf798bkWzmqNXezYsRccb2TbSXStfpWf7HYF4Tzi3Uw0IP/BoLpxY/nsp8bkG6BTxVtt47Ho104yGyGBwlJ7iEufn896KM6MH3/nP0xoxIF+vrs2P7j78vRlciMtj+jIc4Hden0PjgnoFLVMzvY6UjYb7MGNQ3oZDsUeTdew1eF/EMQYmXLGZ+rKQaQT4NN/E2upkPqpCvwvaAmbuOa3fxt6QOJxa1ju8uQxPO3rTN0YdLpLz7MWS/ORxj3oFAuTFskvaEdkTXPX/qpDDD5sP1FaIqfHM/Zy+c05dIdpioamKnWR5Onu+QBit2cqeIdy27i6vkEse8MbPudaj5q0WYE3UA5ldDn2gk2aEfYqLFPDCE209/shTkM9UXESnYp4lE77h8wrfEZS/0ap2xcPw1kCNhhjjjfu+kz5bpmEbb08CqznElkeOvxKbkMz6rIh3m6U/B5JlMFS9ScVwmuUPBtR2KL2dsfpUcmoGc6NYyAO3TtazzlyH8s55kdjlfe+x93Bejy0VlgRhyNpbVvIfCyJza6t2dOdHNWoLz6LRWndeX3+C2OkBYrm8Zxuyv5bjNQqPMKMywkbcybPrqAlBchsbpXXfKr0EjozmFDXpexN3lddQla/h4Jk4NlCofLIdKcpC6Znh9dn/+eooJCF92paEs/fxDCgwOZWbnkOX6/JjuYh0r7jtKOmGzbmMxTPx6IxNWZjjvdpFfvZKMmJE9cXrqPz3fhGqv78dEw76Ps+ehfvjnoJb1Tdjhe0eCXDQaas5QFg/PzRwWkNxiN55EtbyRzyp+9hOQJ3fAv9RGff76Noc5rzJziqnNe+2OzGW2hJA+x591QbEoMu4/gk0Nj9vHs7M8zBCQXGM6Nbzpd70kE/ZCuaXF+38qJ5qWzqd/bFbHR51oO09ZQ4Hv3N8Tfr6qUBSy7wNtvGdsGvcu5LIYt/GwnJv5pvzHZkGknRPDVo1OdF+ZUbLoACAoM4kbz1h8f+GqgBd/pJtnt+JwLoqDpx2rHrtvzIV3iQ4KfegmI5bUMDfkbe8gOwWZ31mxjuTsyG05RBnR7eZipeKFF/xffBCstK3kr3gGd+nyDq1u0SQfsFEfYvFce849Hp+RJGDfQr/CGOFWix0JcaoHafecLHev9LR5jxW6gpH5EduUolf3+dLzDQVUkdnUayeeT0VBQmygh1nZz4QxcXYWHZ23ZzSh52btjMi4c50bCYs85r5gagB2ubOa2mpBOg9XP6HF53gn+mnU3rs6phcLvfmBurMg+34BaoyKbZEY+F7HrWEzfYNX0R/SixEg0ja0NK2yfmM9vVlm/zOgCaLNe/8NX6pwVDM1en5jVhdt4KkLokY62Kdnubh9/Oq2/b5jt4ko30nuV9q+tmoPw2D8w/5UcTWFyuGv++/ImOtrlaPqUuwrN/jEmGODEf0Hj5vBNepe50VyYI/ZMQ7VWZkvB1Ydu1IIoU9urqC74fu2mX/Bdobi56jQn8OGzv6zrrN5nj2x/tRzPD9nTgV8mzBxLIPHkCrW+eTOT4rfrOfFsVLkC/NDLTDf9gFeKfzPgOwo7dn4FvTma/a6Hl2naZEtSk0+trI+Ijevjku92J9TECaDqvSfb8eiHWukWX2CpH8xPDCOePlOjq7sXLNNjO90XLft9/1dfaek846kxh9M/vDjF+B6P0UrwwKdMJd5LctB0nM0Kld58IHa/1MODeagR/5kKsW7RLZ2nJFaQ9lndCKnfVbfkc67uu6Gjm+TamTRk7zvc30LFDDzEMc/5w4bVOb0QLCIx7bP2mcAn/d7JX73iph4fodmu7thZC7d4LreWA3/1zljdFV5HaGyhUnDKPGWUOiq/n4AujkSZ02VS2vJcF8Cu0yfZ1a8RsZyfbMh/Dmb37FOaY7grKChHGlNY+ftUaAU3gC/sHfxj5Fb22pFkSIF4RVfb9pNORJls0Hb+i2yla5QO9/XtCHvzO2K5z/p0pKLeIGfaqlTLRVwueNGgXPoB2aZ6iLgeyCM07W1k/jl2zNk5K8E/vIq+yaJhjM0KhFdvsr2g6eb0Pugn5N5ckYT77dVv6wOn2rpNXGZMR5NLxs/AG0eVQyond1yO+6YTIHo+ekYyc0R98CsjSB+2wFyjjMt+yXfNWVcuOTwyI5VxRXIojsmLWSB46eiOyQwT+lIWbAeHj+bazVBmoopuDladstvvrkPYST/iia2eyq90rSN3A4yF8Tz6/GUGEQpfc0enC1/HtHoaOXhX3yA7F9bxbNeSDiv3mmAVvRaP9ho0iLyeL7zOzAgNenamMN52IdtVxsMf0yRytElMDebfPkPaX8NrBWfznWO0ye/x1MrODHTKz2Rv8103b0NTgP3ttWVWlX3jlpUthVdObnQK+h8fsbzH6qBdUrKD2Eknj0cXbRJvBrM/vdtN4iUd4UOKB/NP+5tPid9I6KyYApaeL+RP2ZZmoAq/iXn6qy4nsf1gyFhrU/a5iCUL00CFfZiatGvVEY3h7tdDV27vlKv17PO1DRS+59373/eThchqQRbfOrEvgZT+5Qda3V8D8Tbw6Wbw3i2M6CozV/KNlHuSKcHPKHtiwsVHoz5zDC/JbtleNCTOzRs20P+RdiVdy/JK8AexEJnSLBGQ2QRFEXfggKCITAHy67+Dz7u8u7v2HPAk6eqqatL9lJMtfVSfLKqdhHXgbx1CnB6HBmtkCCHi8J78ztcsaPVL6k3LpzZ7+OVUbpIAUk560suiZ+b5Gefo85qXe4l17A/3SLsCqMINL4hbzlzrxYo0jCHmz5mD2GW5552dFAefUqVCNN4Oy73fWSFGv5aNbiNeczC4qh/y/RRHY721TXR7JIQ49t402MxjjKSSrxc+8vWnwyXh4YTvzvAsX1I0jadj/ItXsr0hK2PXosuVMgSOarf9t2VvPisgKzMBC6oRGJN/2o0/PCZ4z2T2keuno8ZHqaNRgsPsL1/DaSiw9MuPtKowXNZqN6xMT0fibHsaNH3vU9eM+mx0BXtG6VIj2nWnJ2M2yMcf3hKXXWuDvugcqM9bbBOXkkvLlE3EKaY6EGJ5nyCbLh/AcDfkFxbJOTRmlB5GdP2Ex1/+ysTPkR3AWc8C2QaVjubH+TvDsp7Up4Hgd9nkSco4WjwhFsfaYUXLGsVkk9JbX9ntdNE+Grw7SgekpKYhdE2CQQ1th5j8UkIN9LsJmq2Kg7Ss9+QFhqPoye1N8VsU2xF4FoN6FEzM90fRH+vE4yHdNstVOdT6jEZVAfCccxoUvMnGqtw3Cn/dXikJhl3UAY9iuB+HOyWQHRDb6QcH+lOQkwe52RFv160AwVxd/tZnnLJzCvY7X2EUC8yfLBTl6k/vqlVUsEVv1/DYccOQ9+ndH4ly4JFanOehPRzqcljFo6TGoT8S73Y5+lMdf60/PfLj18zDXAN+f/DozgMt4o0zH4KhfZ4Lnzb9WZKZDtNgajR1T0I0bxG5o/SsIGLDCZVUkvYHKFf795KPPuU8md4dVY8pIrt8jdtv4tUeLPhMbf2ZZ+zH11CYHomTfT7+nOB1Ap+g8amWhp4xXw4b7ccfB3nvqn5nEdlEP35swVQx1g3vO+wD+YuvBf9i63I4ptDt9Q/x7PzN+rfgxvCuSoMa+92IxkvtHFCmaSLR48MtmnYux0FCS2cY8mPQDofxKaCNQ4YBXt91Ns23Tfh3nna1wzLq9JsAKBUAywrt2IiuWoXUzt9ibq7Dck7pyUT9nDBqzTe95AuszYjf+/zAFn4/tvvbEZIksKn7sN7+JKSqCWHTrKjHFKvlbzs3BlFQR4Kf72V+ML4I6NFoHSG8UKMpcutOmfnihdXx8/FpxJ4pajZfTAIl5Pw3v5/vgHUhJAZJtGwND8dBC38mO3NXZbN44xs47j97/PMn2OQ8OsS7/Ey2rrj0wTqOI5gfgVv4Fs3m2zH2YD4f90NxUJ6I9ZZXgffNukH5uH1JE9lb5r0+XeKPTdN2eUklwN0FUWMbP8v32V8L6grld+pXtV/SM5/z6mvriZhLaNGOQxEoEDv8sMQbQuOqkzw4mc2a7u4WHzE0laOaO+cjcQTuW3YSUY6Qabo4TDdaG9MRezp8b48jls8sj0ZVVTnUbFo89ObOith2babqgh/DVQk5Yzp4XArSbRUTsui7sSovNfDmnP34g9/DQ3PU5voSiH7Dlt/pSu7BVb1p9Mx2VdYFemyhrN+5BLuEZLw2owDkRH8O/DmrEavUu4O+B7yndqud0bDvtBxaSWnpj49N8sc4IqG9rol12S2z2JwMgJvfX7qFqM6moyzlSDk7Bh7N7zObVtM2Rb/4q7KmKUc9OnBQcEOEZ9erM+YpvQfUWccUO2rj092gNXAlTkLcZPtGk1/mWM3HR0j0BHLECOFMkOm5IPo5+PizuL4M6HBzc2oQes3G9+tzhEfrbrBQqDQbr+sX/vE3atlVgITXlAEKpGlL3sXOb0eipPxP3xA8KydUl7oMaF/XAdE2qxtrCeEsiLNtgqdvJWbMkhINmuLuUP8mziWt9p8GRSa3ob63MpDYnZTul0+ohkeBzfP6A7A8D3OHlYNm69BV4KxHgeAgxOgbqmkC3CP4Ei8wx3IyHzcHtgLk1Djc47Iv9k6MFr6Hx/ea9+eivsQwCFVHf/mtC6tNAhu6O5KdmmiGAMLFQ2qmjVSzgiAbFc3D6OGSmWzkhLAJDdIBevHh/fYrmpWTfAfUVxVxc3Qqaa19eWD9zBO/qtuScaqigbmVKfFJOWTsVB9e8LUPNXXOpw2j9nCX0C4djsSJHJax3aDVYIn4TP3aFxDV0SSBZDUnakTNu+0Pt9mD3DkdqZ1zskHFnMfQZl2CWfC1IjbzVoC45+1IyCHYtEOcmgHI9u5DPcyadipi8Qhr1dtR3H72/iw9nRC2qVTQHz7/9BmsxRCog0KMlvibQRRW49/vs9x4Etq/N+8BNitsTG6GDlDOyo6aWT/444LPKvPF9yC1Iyrb8BM5EHDqRH/7M2yRff2t11AVKsnYMVQL8XlIH3Sn0z2a9yaKISsvAnXym2j08fAdwDxVRzxzqYRe+W2UoGs5QnxvVTKa7LIafRqO4bGy5YjeDpAqv/z4w+PGtTQLFUUd03gqJdZDYKaoWHprJ/b+5U9TJydo4YsDT6eWjcv5VUQs8tTx10M5vu9SDBoysqHc70bWWbA+wNcOa2JiWPvTl6keqt7NG8/r19eoS30CVMirM9XCfGzHK37oSlefauor3TeaCs7M5fqunQdpPSst4+tVAg971kkgy7ovjNH8+uHnTy9mXfu6WFCuovcgCZzbKpcGjeit5l9iLnjTLn4KLOuHp1Mhl9MlKkZlyFONuq6QRI1P9E4VjFhZOnXp/mxh46Ba7s77p+e/j3KAO+pMcrsULvumSWBC0aML+cXnQOF2V6ZbZFH/vdXKHx5DOtgfaiznbdgZSIG2X+l0t713Rnd78yZ6hWZOzgJ+s4lKGobglFrElsk2Y0a3meGqPrTh3p58NG/eS1+v5+GO14t+YXzpJPCnzwb09JmzOXSqYN7I8r4q+jqOWECxEa9Ea999y7rGdNA3iFeD0D5l1s3bMVSh4kUS2Lcio+Z1X//5L8e85PzhcKssaGt7wsBEw2f15fpCdD3g4aPMYTQnSiuBcf7Y1JrKhM1cYr3gno/XYS7V3O9fqc4hMKsd2ajN2uio/OSAfV4O0UHsUf/z5/vw8RomsD1DCI/tHbR8y6hx41zWndrCg9A+aMSxzmlE+VJL1OX8ENNLmnIeWCr8/DNiae++pMi7v9CUYIpFbHkRC+K2Qo/pNCz8RY3ooofkL6XcoNCVmjUr2jbw+mRPgvNjUM7T6mnCr54hcMc9Y8M0Weq4GQMaP5b+zd5TSZEnm3tyvPlFS/0q6iCfPm+6VUrczqPG8fAIhMtfPYE/knaEbexWdLcJKtTIja7AW/wmRHM2gMSNtNSw9J00fHuOsXHLlBoWv5RoycqMWLvfJwgVNYcnFo9syDKjUX/+m/k5SP702k455OsgIFdQniXVj68OvTrn9tMXbGYSey1z3+JBsKsOTfaKF5CWjBN9UIv6449//PS7bcyV0fGfd6O0XmWQTRHN5WxVnI5GYZ/Tzam4tIMo0BQJYs6omXBHn13XdQibtVkR/fVsUPOU3CtsnzYhnkdyvztYXw/oTu4xdIKBmB4aKXCnSzzU9t702UrPUvg93xyNfSbaw1354zP29iOUMx+TDlb6AVNym/xS/PHtxf8f+DXz0Lw+zhoIaZxTu96rjG38ZZCz17RLvYf6k960HByr445ED0LbPi8sD5Tz7U6y7ZO2U5qYJmr3aEtJw38Zu3wPOpB3PFEDzRtjlnBQAGPqkzqF4iPBTffFv/zuZresLZOTA1t2lsmO9TefvZxeQ4u+oQ5tX6g7ojSEDSVHoqGz5Qu3+vNCdzQsM0y90uh3rgCK9hLoD8+MtTMGA+JD4UI1AlskbsTkBXFlbCiOtTqiBTkU4MttSZ0ej8bivzbQmfClZLZx+avHqGuHOxJC/MLv6du8/vQKjU6P2Bd/8f2r3wnGhYvesY6Cn96lOh+V2UxUfAQmDTcSmIOTMUp2ARx436baZqUyduqQhKppKKnWG4UxKmZbwPj2fUr6tRsx7pu/gJF7gIVdbJVri/Qa2pSwJ/u15ZVUC1YzLE38KZFTFs19mluq+7LvNEDeh1W9YWhAENaJsTZs4+/8jG/XJ+FG+RhTUG8KqKau/P3fiCbKmf/pfRL0juuP8wxXFMVWTPUmzgz2vdYBBB21iTfdJsQS5SzI/BMGso04zh8bqcnRu+v/8KMdZVQLEL6uy52xbVoO3CqbUSztlz5mTPHpFZ0PP35FvPN57XeeHCXwga1DHhvXiLqrU+vge7giTngsSnZ15RFF56ClgdQzg5pjaSF0pifM4nZrzJY8jT9/gJrG9s0WPg7ocluPxJpKCTHxmkrKeHdfxIywEo0lFRzUei+DhJyVZ1+TVRWyTI9RTQ3iclzN1INk95H/+PTsppccFv09lK11R90n+uYQVEX25zf+8E793KU1Zq3FIdruLym83XjEjGN5OTbvaqkHgUXueyajoap2DjzLgsdo4RMzCT0PpMe2JZZqBH7zq09VsKrwkj8NxjXC4bc/FPPW1l+fGi1B40F5Eru7B9G875xcXaHiTohSFVFXno0EpZzy/KsniHn6jSH5xley8Dd/iXcd7rtOJO7YY4NpD1QgzV6J1OvkTzbHMwew8HM8T98HmyQcVurlmmiUuH3PlvNZoT88uHFf9vNfoYtNjm6nlWmMg3vwlAX/aeK9asTOjvLPH92Uj00rLnpAWfxE4qFH2E5rauVQbNZXavV7VlL6ETll0a94tIIgGtdnNZfJeEiHPA09X/zlj7bje6IH4b3t+3Ne/F/fFCD+f39TUF/mgvoJWqFedi53kHNFo+Q1GRnTAkNDVDpvKFGVHM3ZOzkg+X2+U6L6sjG+Oq4GGeYP3T40qWQPLN3h4CpPYloNNVgjeTM4H1km+nDctmK871P45smWHKOHn61PhWihUOM3FNvJ2FJecRN43b2W4ov+zT6pvBNQejg5WLOKMWsbbV+B0FsvvH1QLZv9oTGhPRhXzEUXoxz3fHmEEI9HjIxeK9eHGzfL53vZUVPb5dEwNL2EEq1+47X76ti3l40BdOfJ6FYUbDadR+wAM8cHuU9q6k82HXmUTBuRuNpr4885RAHEMd0Ps1JbrN8WzxEdN6NLNqr0ZcyTxgLlbFSobvWWz0udE8OnnXQSFDuPFUD2V7SPXyPZJewTsRSeGnT8syKbh0LZ7AkSD/dca6keHddl2z3uBaxfWUxca9iUQjt/JEjF4U29qej9ac7GGrR5Mon+EIyW2er5iO4H80wSl1zRxAwzAW1mJvHi4mZM9qYaITLVghh80Gf9qViZ8D2POvWV5N7S6fvwQJqlnB403Wv7+0vt4CAqGxokcdI2eCQYMkHhqPc4y1Fv01FARqi5xFPO32V+ny/ALG1MrHqnd5ZvkyyGpTkmMdyL6I+Gb4bqZxt0RHsXWjQ+232OUrffDtKgONHof+wcLPRiVJ9YU87oVRRw8688IVMyo2mqFUBBNuZ06yWxP7Uf14Igm3MSPDZHf7r3wR3mqEiJO/GVPxd72YTC/5yoM71NX8AjCZR34PmYvXdhNpvynMOZIW8QlXtQTv50gr/3ufXS7WjDKxge28Qh1us9G80OyUvvas5evhIl2SjjOofZ4VtiqJtvyfw60uDE2XhQlv3pewtb6GzNN6Kf7kI0ThULIbiqF0JOcxXVdb6xgD2uO7I9LN+xi5v9HQ3DXcar4rJG4/WiO/Do3TPdDeNg9MwIEnAqqmFUPAwkypfMg+ReScQJvnnE2kLuwPVJM7w1OpZdL5o6ct65TawgvKFpzqQGuAF4qomPjz/6RQaAHuE0rNxQiljpF/rqErwS6tfOtxxTThpA7G8CMRKZLLdXHke0xalCDG0flLQ7XJd5U69xkDXDMqYyiAN0QE5FTVW/o15cqQpEYWFS+y7l/rz+vDDwWhcNtNZROWiqA3AL2p5up+4TMct1jzB7ypkYYnswGD1fC4ikfURMS1Wjev3RdGR/XxE1xr6OmByEAlqZxwMJB5ey8TXueSi85Eqd4dJHMw9qCPWnE2iofj+sG7UVh7rRcohZ24NPe297BVN/2GSTZL7PHtFLg4BPSwxtWfhLfM/qDTqZ2pdNj6i1Dy0Y8qKiWOtPfhVu3xYkZJqwHJ32xlQFBSzz4VKCVc9AY/sFDrQr7mlg71LGDk/BUz43YcDSA7XRuP5oGhKb3Z7aqrovhVCNQ2G1fp2pF2yHaCqDO1Zy7eaSO9IMg86PUUfvoivIffArRm2pnaFLh2ZYac4Odf8BAAD//6RdydqCOBB8IA6yKGmO7LJJFFzgJqIiqAiYQPL08+E/x7nNHVGToruqmnSHb3wHvN4tqJGm93SslqkIV+orsXqAe/0d4r0Ib/uwwpGiWOlojEzWGj3KqN4vqMWzq3iFEj10gqoRwo5mSxNeq6NNNHX7sgZN1gUw4BNi/3Cb+Fe2ck9NUloScSqfBXU34lIrNcSoF+wYGr5KZEKelTp1cttG0+1uBvCsUUG9vrBS5ZGODJCiirF8E8xCmabnEpwwOMRi9patUVkFHXyql4Cd/JRaXKgLBkvcEGplLx3xRSIkSEbmElvp9pNOkyRtQTEvJt08117Pwj5W1enUvLC5jiuLPYtGgIw7NT1GU4am8Nba6GbtL0QVNx5iVrB1wYcbpd60ZAW9h2WCzsrwxLiZ6nQylJcNzgM9Z3a6KHjgMBXsMpBw9AxF9FsPcCA702K66kj5OrkK7re9UedixryL8p2pVdmuwThdB70o1Y0MMklLMhKfok+wGoiKu/dInZR80/EsjAN6QlXSOd+lv/iFlmVl4o1ai8UA5VpQfe34IGOUm5xN3M/g7D0iomh+W3zXBmFwulYD9pupDCeRvWT4arGIceTrfKrt9QU8sd/TqD9IxTV+te7f54X+3ofTa78a0Fp5vInkK0VIdyztUIttjr1mXHPJeC4jRJXAI/Thvmue9fII1BJPcTfjd2yW99dqlV9kbBCnridInD0I+9SNF+qGWn2wXD7Qbz09S6z5lJQyU5WPmWE79yZrICy7AHfFEKcPPPeGfXYZCAPyaBTVSfoXn/DwuWDDvdohl6pDgJbtXBH8CnrRl8YnU2d8EVEzBf7F+0BF+cI44tMovS3ObqOuJt8owWmTv0O2wtGgak/3izf+q6x5W67OSDp9EN4cvb4nP77xuz5K55ZfP7yUdzGJpcBZc872rgsbiAUaHECvWbn4dPA42CEu9Kqzpts98ICR2MPz88GHSx4E4Fk5/vErPshxMYL9ZMuZD2DEd9/WVpMD92c+8QrH+H3ZQtuuKP3hh3Mzi1C+WPr4si7WNWvv3y2i/ftFY2vV15O29Dp1zq801KsuZLuxALhtc232WLSQJqX5giEWTbyZig96T5+Tp6JbMsXasVgh4lTuPC+XOBi3W6/g5K3qIBooImoy+px/nd0Sng2LaXSTtILM8Qv6gQYUR/6dD69E1X/xFx/m+M76+ZysiKUb1fFy3U/3daki4yFvcUSqKKTp4kE0+Hgr7H6Rn0qB+7ZR9tJNivPdPD85L7y5xiVQi9qPer6/iTKT7Kh+EFFNdUvcat/quMG2YIuIB466hBiSIJZv5bqYbHidkVORgZp67dQiPucCSiWd/PgFp2TUR1A+eoaPFkBK9bl38EKetnTdpnnIvHIhIiy6L/LjNzTdegmS74cAW+Sgcn429h269cIVe+pZT+X3FIxAQt/DFpElPuP9jtCgRxjfipB/3+BkgGUvob6u4HTYKNOIgoPwJIdj/rGmcOjO0JS7JcWtWfQjOx5GWIpOTgO1O/Usj24JvFZ7G2PlwVOGpkFG+nWb4+u6v3JyVquj9oS6pJvWYfV3+Vxt1cxQrtQU1iGicz4C7yxm2LXgUkyqLSRwEASDbqzuU0/ytrjCVpeN+GNJq/mdvztB1m5jxvIzR8W4e1c62pqmSn2XVD1PnvkRolKOyDLhdz5ujS+BlmVPHOaXMxq2vniF0FonWI9yEyn1tnyBbjwWM37KYjyjw129Ju7pD4/skz4ElTqqRXGQkHQSGZHh2YwxgePZ7h8iSNu//RUy8dIP1bixIZTigADRJ2uo3sIRLYZ1FY/RMFlDLF5f6KPdnkTVuWVJdXSN1MeqkfBGeQbpEA9YVpf61OIYpbuU0W2VoEP2neKlWMdhd1IvL4Q+zhfHSLdCrkehDk2ZLsnpaNV8VAUTtJUgpvFyOikpP+QQoJlPUIsczpzpmieg9RZ2dO8fOsSradto168g0OCxNbhUDAr58bF4+cjOxeQ6voC86UxpOOdjJt0OV+jCYhVXGcnTbxkMR+hcocCbiWThFH9S0OC53NN9JFI0zu+GQLw69WQU07GeuLBlWtm4Co3zw6lnNBt1kGmwjbXk4/ajmbkvhNfpgijr08Ear7y4g1qlCQ4e9RgOsN208C5FgqOLFaQ0e4cRmvcHO4r8Rmy37Aggt6N4red9ShVZFdR5v+Pp5ro9e69299/vwWYQ9RY5SR8TVqcioN7RXoXsl3+08KlgVyuM4hXXkYo2Aaxo4mcGb9H3eYGZP9H4EaR8kq1doCm7N8aW+oFwCBZohKLz61h+ul9r+vGdCdbbOEmNd8Ha7/sFzYsR/Pd9v9/zrBQa3x5vs580X37BnF+J4lcHxDpV7sDmNIo1/1X249aHKxzGAFEjAzeUP+F+PkN1qvDMR7h4FkYCGReO2M+jup9sIGc067lYtAYnlK8PX4Rwt8zpWT35qQynNkLeG602wqSp4RiW9zPUV0iwE2Gvfm7CdwZhOelYjxa3gl8b4wFjOVz/jTeu7x/RVOUP6t3O25RXXymDAxgPMvahw0n1DgKknYKcBtqBp5PlZWe1GDb4T49yRWYCJFU/xShDC85uu2GPDmdexhNZDbwT5GeAhimdG0NKecjt5W3erzzAxnP7LtjHvbcaI5FHU2JGNTlJlQ7B2r9SQ7P1etyLSxdd72ZPHfFUWxMZjDO8/GRJpoe9raXSPLzgqBrmvB95yPH+7YImrNq/fEecy5mAds4EbCmZxWVN9Y4//hWvJkcoqB5ZJtROWcY4WWmIEWLY2icDREONPcKheEUXtGqCJ2n1NUvZ4QQX2GXthXQulTmNpYeNyNwle+EvdItVvTaoVPE8bCjkE04/Prcb84HOerWQ737ZgCaglhrEsXqx6ncP2Gm+S3bulBRTpRYPxILliTqtVSGGhtUW7PHyjtXJSKxJVbgKQmVW2ND3Vs++3oYBltIb9uf4ynULtvBW+o76t2MT0vWyZhA6gUCWLR7QuBP740+/xPl8Pdt4/A4L6XWiLrJSNFp4ISMsBwnx9aNYTNVHMFG8e13iUR1vv/gmouF5zvHMv4vJT3IThVdthe301hcc9SWDXZXcaDzzP7KT1nft/aFHHN7medE/vTHvZ4weLAnZy7gfNdSHObXUz8Viz/a9hVQyCZGe/b5gz5ZuwU0c4bcenCkiSsBd1WsiJWpjTZcEub98gi232FhTf2VHTYpaFxsiblJmDP0Vrsvuix1Bb+vp8Don6LiUfTI+POB010XLnx+Bf/pqeAV9Aje53dDMx8CnUqsAOP+pWMUqxHhYi2BkQUWEi56m1MzPLnBXDmf/64b4zD9gt4gZddHuXk/uZjto7fMTUL25dym/+KOnWb2lEflWvotRFQIBxtexIjMFQ/2icHTwx7cXM13mnGfvMEYb7O7w7D8VE3veGCy2sUp1fzNYLEkggH3Zjnh9G/xixq+r3fWbj3/6ZYwf9wFYdSE4zkSo6eFKieqMyopGz3CPxpN1a1TRWEU//ozGQ3N+waZ+AY0sIiEuNcs9cr2difv1LeUfKesiKJaOggPxrlhEMaQWkbUxYudxK+uPIH6v6Kf3jXQFvD005waMalESOvt9lK+tESnfm0wjRakLdsuRDc5BtOlBaZE10bT0YM/CgqxSebCG1CUmdGG+wnr2bSx2uIfRL75iW3k7XA542UJ6vZyo6WcVn/D2TeCsLgLCH9gtplGwTZifX2pkRR+Ob+2+RGNJrjhoI4mPn5O6V//4h2654aQQT4e7eZfwrj+vOUnqvEP3IlBisU+beuzkRQLmslngcLre+fgK+i2KPchp3Ei4Zie2EQE5HGLuFpuwDdjq+usTSC8aV9LupO5fcD5e73jzBRspbceHH3+l0TOv6q/wrj3o9iql3owHqvATgyq+ttRLXRy29rc5w1Udcor969Ma8kzKkHnYxRjfwOV8ox5aVNhXnW5E99mP+LwDePj1Z+av77QXye0CLPm8qT+98mJuyH9Ht4/KiPzwrHBchZsj+Nr+QXO9qazeXt50lCr2OVYep6fFvKow0cvfLqm+tvqCXfbqqLWltY6V4HAL2X5sB5TXHiXCxpCLXtVfS5j5JDWi9QfNeqKFTyYgalTTI/3iLSUwLQ7S3Os+6Ds43WNN3c8Jtd3v+1enyi30cqxjO0pF9P3kzEQdujnYj5aPdDzJZazGe8UgKFn0aJjzn2YePYNm6buz2DHVVbTNLxZOD+cunL5G8kCz/0uejwin0ydXTfTnJzycwRr9bX6Ep3be0h+eZz2UoAafGrxRt6+QpcEzAyM/nYkoekbIjmY99xiyznQdfYd+6NTzBT4nZlJT0XrruxaHM2I0N2a8W4VUOuOonfgqwPbsd7Df/xOfsRY7eiz1/TObXFgy6xvf11ZYrMImbeET4Tv+y39vatnaBiIBuyoOauk0xgGyPor9b3yZJMPW9Fbw4lyFsZ+KYUHAvSMnnma+N/OVB8z+EN4/L6zo1oIqoqoaz3h7rK3ib3+CLxVp/Pws+XdZdndI9q8tUdMmtRi+7o6aeHmp1Dpe9HDSrcyGDnoBW4dzZw2iGBxRQJo3dvp9jqZ6kYpgIqmZ/ayaj5dSGtDjLnCymvPPOMyzbxb80RPlNs/uaVbR+PMTsK591vwjlfOZF3Me0dEXWsideiOsZj0fEz1Sw+4tCXuoKnaO1ejlpxOc9zZKb/32T7+zr+cwmPFI7ce1LabvKhxQKOcWDWd/f3SydA9TLNTUSNgznf1eF6J8EGlMFqNFf/F4O21SHGexbvHd9+7CF+N9vPzh5a4/WnUCwaKBuPG46HWlgIJk0Gk+ia41sGPJ0Dj6JY6nyyL8/Pb/8LxF2L4lu3potEsAitUibG4CKZz9AXe1CYRV3BK1TXm66Agot/qBf/4GWTbluDLurCEyudgFn/2yP7zFWRWnk1l+rmDJzQ370WmdylvfS2CzMZ/UEf1jylg57iHt9gs8x4/wY4unP/+f7nRXRiMh2hZmf4NuDuqVS967s8GAPowXt80iJFt9eqDZr/z594V4dBmD9Ho9EUm/mKn084P8Rytid+2lFlUQuSPnINs00OQ4JcVzm2iXS1JQW02MXvS3uyNE74+H9+uwC1lqHrsf/4+RtltbXLpUjTbnL2ocSiNUZr4KVE4PNCahi8aN7jUwiolErbRWarqIgwEUGQY882trZNfm/sMzkTPWI7bY5wx2i4hRO/DnvoojjpFURyVO9NrpxWdDl+iJsxHnawPzcQuqi2Z/OZbEbleMq2zdQZ1Ey3ispLj+FmOyRPL+8qDl0Qt75XFHLjzjSqNOexwtLvBpqyX+sprX27Hk2b+Di/H60ijaNuFozjXMWU9SVyO0ZjF/ZICS6kRm/zLk7HKRYZOhDcbHtErp9DkFSP7aDf7xxTEN/Eid9SndZHydMtI91Z+fTPXZr+7My0aAP74TDbtQ7oSdjIoWOprM9bTWMrU7ujCR4bQiffHTy2gexkGUUXqH0+GVJGiTMx1Ho4BCri0bET4bN6Vhv7+HoybrAJ0X7rHnC009x8ez+vOTx1EMe2kNyPuLpyFav1LOLnsRltcvoroaPPikcn2vzvU0qmffuQ/Pvla1n763yS6uvy/7EsFxKfr0lo3bQup7mGdVIofa/iHghB0+jVpfhYTaSW+GovfAETxWLwnrT+NZcIP0Hmyy1Yaafr+1WKkkS7gl5efnV6bU0r8ymN/VllprLKfjMSRHNOOHGg0dUuZczgOQ5U7CeXrYhZP5KE3ou/768zd6qvAbg3Q499TW73HP7tGSQXkMalJP4g2NWRV56pw/cdaMb86Xn2WL5npG/L4u9T+9DdNje4hH/34uaP+YCOzGYqB2pLs173vvsjpXAY4/z2QZ8rOYbNWdcFiQ7+G97SWcCdcf/5jfEUbhrMdN7UgPKQ5bz+8Z3yTyinbn+cztVQr7X71i9oeoRcyon+Lmfka33XbEedZ79a8+C/P98SYBkU978tFR8bVNHP38Qcs09sjfpMc/v1hKLeZBujZiPOsNi11ysofwuljFC03VkeyGWqyGQ7PGc32YTye9JrB9n094c9vKYZevewKeVWDqTfbHGuf6Cjj1mNGjzwka8i1p4a18OtIfQ7PnRo8BRa8LjsvnWUbfot422i/ebYL1sh8bbR+A7DNOpDl/Tyde7f/w6aJ5NshcP/3j926w/3De6fkL8uymY0dNZc6F8ehCBVcPe7fzWAxH7D8gMnf9XC/dhHL/hf2f/2TccpEPlpsN2s9vDo547jOmlTE6r9iOJCqSrPFRB7P+8gQ8852C3wp1RFOkKtgnByP8+SngmdGRXkg1hKMcpyP8+AzQuQ/IFy1eP7+c8MdopCPdHa7oZJMJb/K9WXBR9c+gm3RJ2G0926uScETH7+79q48U0uz/QBdsdLxRJyNUEBkFICje47XWWemnYfldvX5BoOYjTeoxFo+vX/2J2to2rEfhy6I/v3iu1/XSYz8A+qv/HKMTZ8f1Vfhfsw+Q9N/vFCA6vzMgr9qCv8e4Q1p5mWj+TnVEDlV0RrnLOfU2TlWMlyqy0YqRmvpZe7em8UMBpsqc6LrERc3FoHoBSf0+fs8D+Di6myZ4zd7Apqs7SHpJ+RnwWrVw/HIOoSzl/UXdd45Pg2ph9xOz1AjyW11Qhxkfa8qztgFTUQ3s95esZ3kr26iIQjVWX/exZ/d3EkBjpDlRFvLEvxP96kjxVUok/aTV02e3atT3BxS6+WxO6VhpwRIJ33iNA7P0ak7bbwdaeDbixfglKc/DQATStIDPcWEV4upuPFQxeW2wd0K3cFwE2QUa1h0I41KcUgEeAVoYhxavdx/JYkVYHFESOSTmeaeE0yR1LoSe+yDLXhHrbxFtPHWBrlE8xNe+Hm+hOM+7+QL1SKPyUch9ETaG3lOXs3dI3Sp6/NYXr+972SIf4keA2fyMJ6t3Tze3++u3voQXByfk18CLEX2sDOyqStWz8na/aHtzsca6FLGaH+9JA687c7AlK8Z8vR5pb75bEN4elhab91uVz4ZNz4KWWCyw2FYru/BAbSP48kGsogC+9n5Nt5S5Fk/vXIXHaojo+j50xbhN6iOENG5+97cYeRuP+bRtgv3FaBZy4Vy3UG6UPlaicY/4550cYRvkGhmNp59SKVu1UOI9xOOmti2pDj4xSrRLF2txMWvm3X1AMYRLsjwIVd16u9URnERViazvD2jMxiuD05ceSCJ4KBwGrWhAM0KPBlLtIPGwawe0Cps7DQ6fQ89PuyoCcRkJNCTzdLFcWQB8w9cVx/3R7zm0pQnrfdPHk/yEggySqqra/uvTjdG0iO2IH4DUup/4PXSOxbnwPiP82pb0rD5LNFSKI4O9FW7YbyirWVnJ55W3CHKM6+uVsyYxz/M5PJ3ifLimVAfWwmoFKnbbSEfi544u0OJ3S4Od59fjx1J1WLp9TbTT3g4V692psHtdNWymSLBIE232gBiycKi5Tc3vWZaA/1JQzLzDCdGXLQXAEi0ijBltT7JX60F2s3exu4rSnl0DZi5irfeJYr5uvD8oVwGuJvtga8bXdMz9JVD78cbBa2mjqdMsG4TmeouH82WeVbLHGRJuRUSj28Gth+Z2DzSfmjZd7zd1z6ZW8NAZvQocYbUMeZLUIoSMvagpubU1VfJFh1zur7F4VH2LPbI704TN/oLD/vix+AYeOkrPB46DU4nS0YnKBnRsb/BRa9ZcTvKEgPw6EjLjhbMVfUaaE4Q7Gi7Jtpjx/0JJ+VrEz90r4q2TJC3ocrTFB+2Na4plq4VTstQoht4PB4BPB+MyL+nv/5LxdZ/nK0Y77OwEw+IaSVwYlk+gtje3m7Hfvqsej55PvXWq9zzJWhUqccLUc9ZuzR/ieEbd2TCxs/gHAAD//yxd29pzPBC9IAdFWxmHale1i9INZ7SlqNpUglz9/3i//wY8MUnWrDXGLHaqRDe0b+g3sgr/nb/ZIgpAIu8F6kmPpmKmrdjIerIndoTuiujre2rRaWlMrO9PQ0YvVOMgpcFMHecRs/6TXlN4J5yIMZbkahzfYgCz2t8Jt9QZm9UCFZIqppMvfG/t2oeJpX/4bUnltZo5+oilIvvNvrRri2gZ4/0L0mLRqJUpSdUXdkxgjb8vnYaUMTVJeRCcZUMxWtphQbIcwMfZPKiz1CgbA2OTwrTpeOydSm1g7jkuIZGRQM38JUdLP+UWYu+1p0I5E4dZW9rsZ0d+YdVo54qlUx4ioRBDHyjvZZS2nxYto2v8rWdYRG4jobxu6BrPrloSfnLlqRYe/vfj3aIl946ctM/tN3Z/7huxk8Mv8GIeo484cLPlLiQF+Kps+tWKh3xqdypspfueavard5a5FS14ljsOn5xZZ2Pa7FoQj3ChSSrPaBadQQIknVJs5bGHyI8KovQtfwWNPGfK5n2S9khGgkN17fZFzOanm/ywrhgrN3nKFp/0L4hvt44at+07W/H6JauGxlNX/w3ahL/JhDbfneMvKhqiJYTEXefKEGxr+9QhJ/rRYc1P1FteA/phO77AG9tPInjrXJarM/T/4n8wNa9iVXHg4GrGDN8N289+gvv8QW29J+qIh15bXjrPIRH7A5HUpzXMR5Au8GjGjh6lj5yNpV7bUje0Lfa58lYJsUseCGMr9TkgAROU7itCLnY5tdhFiybZwwRt3+qCjb98PH7RBSE+vmAn3arRTLlbCk/zc6HKlx+iWXp/Wqgv25SI58rQpia7/2DTPnt8SDaaw4fUeUBtVRPhLdxGs0adBn6S4VEfCUG0fORoB8LtGxNp5RO900zT/+u3cMuWjhxcFNN1wM99saK5CUMJcAIMX8aqRh2fXkPpEBkJNixXqRZZjjjow2nAvn7Pndlwhgm8TabjU5kWw7ThbiHgs+f4vLt+tVOS9AY9NS/+5P0yRKtUl8A7TRF+Cs6i0dnwePhlhGFVlCzGrO23lpqFF7A3hTOahtA292PH7fCpqeJsxnJ9g9szLagbt8UwZSEoAFtRoW7hH7WFCkkN24NzxE4wjtWoNrsG0Xc2UaPoVG3ShOWBDEkBiiHi0VJ8U+sP//GpaxfWLQVqwZIHizQPf63J5nsF8Fjy+PS7Js40Q8BBYXsF/sOzOdQsC/AZO2Te9yJbejiHILR6R/b51XSYoykvNF5Q4+8d6VEx18keYIQ7CZ8fl6u2PM5BDLwZVPSWi+eBeXnbIDFcRuznijT8NM57gZnrPrUs96Btz3o2wYW/aVSh6nMgfXT9AY8VhwiZkmhsFwcX+A4vi7rSMdXGK7dt5VG/Hf/yK5pBkCZ4bvwvgThwo3nlE5CYq397TCZtqrltCe2lRfgkHpOKhuEgoovzo9jdphGbDzLPQWBnMtmp1c5ZjqLzAF4c1/8e3DejNy2x0XoesZKJQcV/vwmPnqXE+XyCkTZfoPsBv/M5Al2QOwu4RgwhkhN8uv7kqAs1xZI1qmpege8dGjo94uHSqgnhTNXTZhbaIbKGOqbmuj/Duyku8GqzlAg8odkY8JMqqxs7xl79W71jZTlEbx3VWIXfqfpk1OlhvW80Iftvtnb/BH/7S+3TILG3GXHLHz6Q5dEdBj534AYukuOVj9fV8oROQs/Y/GCD1FI0Po1mgetsbon4jZRMPPCTBduy1KjbBRuHNrpsw6jyIvWeps7EvUsICm2V82E2VK256jYHf3hwOlfGsPXEmoP0qu0oDsUiYzFIBBZFeqx+z2Rgv84HZHfEotazbrWpNK4c6Hnu+ewoZRVjScgh6oUYq54fa5OZji2MPDtjjXseK6G7HEvJzE3f3+7me8XaxA6QrTkfv3Ek0OhDrx9wrZlH9s93Ec3nrQHgZH2FfdctNSbqjivV6tL7jDNYRLP3uFsdUGKqWtctG227syDZZKbPHd5vbUllzZV3o2/6m+54ZGJm3ALkLFNDuHBvOYtibEsoFpGnf/mIhnG7Q/ZTlsknqY+VcNejF2RikNO/fDLVeWvDobUHqj832rCtz0Ej91S/rO/3HX6uzjewv6X7lQ842fSW1Z38xxeV5bhzWCzK7b488W9sJ2YdzVarSetse0z2qgXOLMHqLyypsj8ft1G23Lf0hVY9RO2mmKrFbz8xFMWk4+e1E535BGcFfs3bxbb0kdkgCMhE823eYo0zWLYEJVbRodhd8HNzNdnykbMdClp/R/ZxWzjzPnrWcDruVPwCMqHeHKcXbJpUon94yhZyiNFw8+9YDY9xtpRxuyAef3uq9fsmqnOtu8CpZg5ZHmcvYhkkKexG18SXcqchZqXEgo19DAi7yQFjTwEp8FDr099+rX70X4Jmtb3j448BmsryHkMn09jfh5u783ffwKwwJV8+cAae/x58+IjmAduGTRDVOBrCqi+p+rbH4V/8Pvn7iQ0m+Gybipcb1PvdDztxxDszcw0flLz7YdeZjYzfyr8A7EoL/uHbdPj26Z+e8YHblgOrZC1Gx4PSYzwGeTUd9GEHnV40OD9524F16xy0UH71vuRseTbNSfiSV/1E/VxJq1X/uQD19uUjkmnDkhaHBVUBj6lbqi5jd+dnS27Zn30gyrdaQLA4FDI8++VtW7DFFSwRPexkQ/ULodo34F49kp34QLMrp675IObAL8UZa15Vrz3XkyWn/EWnvpm+o9l+f0pUbbmzLz78RhvD4tBIlfhUqPrNN9FP1oGgvDJe1B4OUP3FT/rcZoHav/CcsZ6ON4itilDvJfUDu4R2iagdjX53duZoSYvTAtvnayLb6KI5yxGUEjhvj4i46iVR/LICYGPeKT4AFkDpv6z/9Yq2ZEqBHNr+53bcsZV/x6B68+Mf/+DD0FZgkC8JPW2Xb7WcXNJIuvgN/Ifs8iufFUL0aGhHvYr1aDZFOYBrPkrUPM56tjXiuUTnevMjDXmH1YLz2UQBX5ZEen6DaNYEqwVxo9+wkr0eETXQpMpxbp6xydRXNS/a4gOakwUr3PPoiMl5/slTetDIkrgLo6aumfCpjJxqo1EMc9AKEuimZZLu2e+cxT93ClrjQU/hZuuQYvVzLVsfYdU+PYf5W/QcsNwqqGl8+og6mvUAbqcWvriZDoioW1Pf/abFJHuh8YZZE5RejibpTi3/9Bqme6tN8taJFXx5XIRhiez3Tc4SEPw9S1n2T//qt/FDT2fnHK33JwDaO7E/nRzKSFWwCS7tZ0fV/UaLWN0+OHg80zdWRk6J+G67FWFKNQ0rSX+r5kY4p3KuU91n0B2YsOIV6Df6wYerqTKxsOPf3i/5Ve/wnrbsQGnlxdvvsWKaQjTPcdvD/FZmepffyl88dJjOUUYeu4j/4+MtFOP8poeWZaiukkGXriF5+pugbzIi5G0JO7OrqDkaB22m3CuGZ51iH6rXK5q97yGQDft0poblFsNyT4n6D5/8JasdomjvBhWKlGCrNHhtbFsBYH0+1j7tGbEYFgKb53D2pbQU0HiBjsB4lyz8x//nu569oG3GYdVL1bDs6egjPqw9AqfPsM5ef4qIJGJFdWNI0N95QFzSm1TRQzowJd/7YIxjSL0QMOIlJ9L/1RM+/r6plof4E1HuvX7YKrqy+p1T8YYuqEmJzs93h+SJakL1Tgj2bTRmkxGmLTpv3A/F18qs5pL7Kmjk5zMR85ec/TbcK4D6IqT0Znjiqs97BfTYF6lylDJnGkLVlJ3dezXC7XWtDmg9/fEHf7/WQ6bRIC2MJXmT7efTV9MNFn/fnHr1r/7nzFjrXnA8TSFVrdF1ZmR3gUQmrvmH78JtMkO4NsGL2sS8O0ufpAu68BcNX23FjFhOLz00lj3Tow+EjZlr2PL8XMfOzEapzZ57nUA8chdfvnY3jQkh1HC2zAqfgN8gKhGUSvnOmuhNzMdobJtClZf68aQn8mbOpFI5lW5S1PlGyUVsjpzIAt20TWp+As4huvibpEEfTeosgCsa53MITVM5ZDz/BwAA//+knceyszAWhB+IxbVJEktyNrIBB3bgQDLGBEmgp5/C/yxnN2sXZQoJne6vhY47GEvxjTY+5bn/eADVOEzl6HUkxHn8tcHC93MKxrrWtvllBhtPVZVSfMtYGnchID/9a3hwQVFzw2DmcZ0rPx53Ots6oHnIQ3CejDZq/OdgrG/hwkPeVFYS2I040m39U9ouHUl0nHHAsJFFwK2ur2h+1nzBog9oYVz3Mf7T/qzkN95y94gMvMDrJlyznIeGnAEsvusa0F1l+vBPu/bE8YuaMR2eUlh2jY8ccLbAxkNNeR7vHtGeYpMstdm60GqVAVmR1I3LJQl5mJfUINelsRLhcZM6cPDW5Kdvt/thnfDzA6GYpMlyoVEMPl9OIA5vnopB7TlV+vkBN9hNzbzmXAvE9vlEPz1EYxuJoCumlajN/RqsuqHG8A/cQ5KX6WVk894z4a/eCLy5JPNPPydbuopuxxDsdh8vhPQwZyj4+ijgjdMxhTs7bpAfXFxAJGVaoZj1FlL7OQDAAlQF/+rlwpVsApSUEGUcw0onWonQJ4cIGkQ1SKHnJVumV59CxZNpBMvoEywfo6oV4RJmyN0dDLBM9DNA41GvSAW0ZLTYyyXwH38KslkeA/YgewgP7kknBa8NAR33aguO5iDgZW7MYvXicYC9t6vJa9Pb6yeDprDNJ2T0c5gsR0vIIX8gOZbOk1IQJ3za8rYeRSDy/gz6iOMJ/Pil99jOLXqagQvPxdNCqI2cX31IFdTFD7y7yF9jaW9SDIWUuOjAvbli9chsysy8uBHb+Mq8KooJe82W8ZKhfKS3LL/B96t5EE04t2CODdeHajv9Ib1FbrD5xRZcdmVD0L2vDNqHXQqfxIzJRQpZQ22l9YF7069Yavg4+G68Qfrx+VD7M9lPv/z8WsQptmUsZR2J4GR/YuIpYWrwo//N4cbHSOD1zBjvflXLG5/anu8K8Gi2qbKt75Fw0bxiHoMiggfRnZGZPPJk6Uia/vhD9FeIt2Q5nqQang7CF0UQU0bi/ZDK4VfusTAN74BN4aEEd7/4i2h8bxOqJo8YzjrPI3vhqmSBZI/h43AMSbHdD5sMuYSCkhbIC7LjuJjCs4XtEpjE+WgwwEF4OELObHd4uvVlI4hxcoQ69PgfTwqYcjr2cp0E361+SIDf9DX8DsEVs4VTmcA4coOPIx8hxxvlok+E5x1+De1MzH4wG0bwgIGTXxcSYYMAFpSaCI27UW3v9xv0ykz/rcdY2TddQp6V2SpaKadER6tdLFXyqIHc+YhYyoeMy04pKHQHxyF+kjbjfBIOEGZzekG/POS33gGLhA1x9eZmfNeSDbLm0ROuh1YCW1NEGdB4nRCSHXmkGMrHf/xzy0ca9ufLMYDCTo2kPaeBlZUarzwZYphVzpvR9TPU4GBvGT7Rld/1McyDif7jCctJCVSYNdYD2YPaNfRemTYEoB/xX+XNAd2+iJRH3taJufl9xr3K6b88RXfBuNaKEoH0UrnIIHlckCTneAmO5WVrzFUVS97RHu5BPxB3cb/FPMFqhWd+rxBVtlYwbTwIao80Jtv3aqMgkHT65SXEeB+VhoDUEWEz9h/k1CUNpqrU7tCQC4DLZ8MDPHOWCLfnE9UF1YJdIjyfUge6B9GYyAeLYvqyVF1lGwVOohmbfq7BrQr0iC9JHPBC5m/+vjTIxj/BnAkCJ2uJk0V1zSXJlhf28ubXSFiIAsMObzyVx3EXodfzbm/j8xFB/cjrjY/3BQsU4/Lj58T0izpZd/gkQt2uLGK/na7Y/NwNfg9xhKzP6w9MMs7a3/hgaTpLxnLzbzW48neOGJ1qGxScbj68tvl2MEjaJuv1djShItEi6q/gZTDldOuhqCxvlDiLAWiTjTbc9Dqxb4uQYLUrbYXpvECC1y0qFpJ5nAh6c8C7DBUBdVN0BBsPQd40HxL69iUMe4+vfzwioMV+LSHZ5TFyMrsBi3Uqd9APwIEY8b1ly/G0lP/4ko0lG+w0rlvlTb/h/efiBnxLAh7YfHSKFpTWwWr0Kf6tP2jTywVl+7WFnKiWm988jPN4uh1/9YPYfViy+f3Z9ggs5h4V37oplk3fwEM33pHhyKBhSSdCmIku+eUtxj9+s+UFyD+532ZR4/EOYL1ivE/HT0I1rqO/PAjZgXwPFlqlEJ5vjwZp/Bsmi5BwMpBHcI72bz8KFtM4rvAx9h3J1GloVs4iOnT7D0+0TR8MrL7Sf3naT9+QIex28NJHEm6cDI3r7/fNH0TS5mc2/qj//EDENTfMlrI3IJReboVO2/+vcxXewTY/iOV7T2MZT8dYee9ailBsX9mmx1X5V4+Dk1WBNU/RAJl27Yi/5bk8Ng1V+gZUQRFFvvGbn8pv/NCm/5l4u6U/PoJUdPWYEO+HC8TalvwM0hswluUc/FTbnvzrNQDzP36cnACxsvYzsvtcqop/C7c9B9InWRKcDf/8qFo572QGnwGD7JaYyNr4Jc2qOf/3vodhvDSsPR1buOVBxBX25N98hPtyFyO3XfNiGQw3gsPkrBFnRp9k3PQ+KFoWkUNT8M3P/8losfmI8UJlTBk8ilCslUMEV8kBQh3sdnKd9jLyxIQxfBU+z/9vTwH/v/cUBJZnkkg+bvsgjk0KvPP7Ql6dpQeL+nrz4M2/ChKV58tIV+OIYe5ljLhnKS9oJqUUbn2DySkZ5GLKpHQFYbidHaGQkTGxenUgkbkaaecvAAtQuQl4p1aOwGg8gCBpiJPXMS6RfShKRi9D1kMLVzsSHqVHwzgCU9g0ho08NBoBq5xoBfu6HCIcZ38Bc+fvBR6mRieGFl1GnOS7FBLA3bHghZ+Edt3RhAdzpJincZrMztPdbWexHZA9JS0g33duw++3LKMHq8eGrobZwhpEe6Tp+AB2GqpKeXseyDgE00g5VeshaZQzMj97J1mv2R5D971wyH5cu6S9ZsIAX6rDI7OQKsBO41GGuhCJRMu/9rjakdbD1AYmcu7OOVnlxWghNfYlcXiVY+zv1W1njekl8Q+5PLb328wDHJ4n7PiBArCkWTlIXjbD+8dnGtlkvlR5WEIYKe/2agwqaWxoNOYH6fXVCHYmlktYO9c/dPh7VQ29ZbSFwds8ESvY+jEHW2OF9XoR8Cipb7aAo3SDtGBvclBehM0oUCbIEnMh57rrwFi4lFeq6+dL3O8uCch+PcqQvvYG8bxJA7vGljloXoQMhTtasEVa0gg+6WFEYbvjC3r1dRUqfUmRWvG3YMHmYYVUwBekJUOeYB2pR0Wy+hqPtW02Qn8eS7lC34Z4pMEBDUOJgnPUV+gglWWy8gtvw/FkOciE5MLm/Zrz0P9errj6vq2AJcN8h21HHfIcU30UxNNjB3c1TfH30+ZgroRCBV/l6eFlaRzGbM6/wWx5YOTul2+AMynCoHTkM4YzO46r9Xy2oMisCzJLvijoTp9jqH+SEWOAhPGtkk8HcZqsJKLx1Mwauecg4TgOGUwXGduvJoV/oSkjfUqdBLuPFwfOl/ZDDpdebJhzmGSAJgNHfJqJYHHnMZavuUOIexPtZu/PAYTD+5hjoB24Ykl9UYV3+lWQGkCFEfWvT2F2+jRbv+f3OO/ioYZnfVJRsehNUOVf/wbSmjKi5zfC1stgdDKEoxaJChkBpay2/3pNFrG4rurY7tfXBZaM6OgAn7eEpHLvQtHbdxFk6wIWefFUmMqTiIK3CRsiLFILPrYDice9wpHGwJLh912bJBQWK6DN1d3B4GF5yD/flIJxqn8EbAUyhjJ5GNMRzCF8wKeIkHUIC+pgVVd8Kaqx8HJwMEin5CgJvhuj/JizZrSx28O33cfo8exAsuI00OEFn/RIQIHbTHdXDBV/iR8kYPpi4ItspaDVwQlzXnEu1ikdUigpzzXalXyRUL7Wb9C3ckzMhk+NJfNyW+Jr9B8AAAD//yxdy9KyOhB8IBYCAglLbnI3QUGFHSCioCKXBMjTn+L7z5qiUkmle7qnMjMcad6HhLHG/pbg93tURO7aA5vVOTYgV15bIpPmGyzC62RB6TctFGfuO5gM6iEII/FCDQ4jc77kFQS/S7vHTm/JMXvuLQ72p+uCcWUTtr5ELgLrLvQosu5DsyiLbsCVhR8cXmVcLGrtjECRvR7jMOiCNQomG7biVodsHz1zkPTShv7pFmHTC7OtzrZOoGN4OrZP+RzPadZWgIzHPfKaT2qu9f5HoFM5L+oXt6qZQzjwoLhbOg2aQxGwkb8jyMGQ0qsSbfPH5jkHi/kVkaqRV7yAGUqQ8OGOGsdiBYt7JDy8ruFIr5fMbFZtN4qgdCWCg+2+jtKzsaH3a3V6v/xeJq0ks4XQlTCNlDkISFhOJZDuDCNZqoNY7C41B73TRyFrkX3jmYvMVHE+eke9f+e9nkXoZkKJwx//NGl3eM5qehKONERgbNa7lIRwu++43NEvYN7x2ILG8W40jZUULDq+QXgeoh1aik4NZm+qieooWkyvwokM40+IQwhmzieLSRI2DpY6Qi467aj7ELmCLnFhw+HgNOQZ93mxiGcTweCAbHrna2GYL0qRg+0+UmtH6cBwQHv4XssdPZjEAIw/1x/VMCv7j4+byTsWPbxt89JtveoBDUrehVPUGohImGPjgSs5+FYqG9teeWxo/b3mYN0hjx418ipG/5hZsiKHI7XZeQrYAUVXqAXwjFOVgHhW58KAiQ9qbPFLErRhOHVAuZxMqofD2Zx/QowgbY0bPoD6ak7u/VeDmrKUWh8BNlMuRxG8fiIfWz/eZSIX6ZXyWfEFyRpJio41ngHtKkXUTrKUzZ+PyUHpxEbCQWw0Apx/RPHUqkPi5zIH40fMeOXzOS7k541PtqTeO4LH8WlQZzLfw6jvihZs8R8tp34s5tKdQ/VcXFYEmHEyGSrUFxjuekeP19/PXBxVdmHSL1td5HNiVFhTCXYHkCDG6yxeX1+tU6+v+IENKRrZHPvwBWlpnXCWdygmebq3gHz/fBHPL4k582tTQf3Rn9Be0Ltintqchyfw+GKDxpsnfo0RSMh6pdpbGGL22Es51L68jiOD481V3516yL5ajq+fZNcMbJ0RGEvGYSxokfm3X2D527vXw1gFLJUvKZRUUqL1UNUDa6+9/6cvUPoUo2LpDsMI8G7r1UmYEEyP79yq2iDe8aH6xk2/o8sKL0bPUdst7WaJho8Gn2aPqfYRX2BNs76GwzZLwvUhDnIQAQiTnJ+oM1itOYXhz1VmMMxYrz8+m9TobMEzixwcoCBgc/pbE9CK9IBUZ/IbIf8ZOTjt6yNSjnk+LI+9kvzFf7QXtWrLU1gIUgBLHJdOEEy/Q/qC2m2/0oNUqzHNvMiF0mkZiTw2l2KWT3cEGcc9EOeVb8Zw8O1g91t96uepG6ynAteQq8+IfP2QxPNHPBLgKEZMjcN9DvpTkElqWc86Lpe1Ab2sH1JYx+I2a4MDJnnbJwKTau9RN5OOzRIc3UpBc2ThyFO1YnYmIIHibThEkmepmbWdosCoERFGYa4CZqGmhreXLlAjz+r/11cOuYR1a8Kx+L7iK6i60xt1f3hbzbCF2n5SyfLoajCzleuAdOdP2LooWrPU37GEh7WuyQRqVCy7nQShQaOVujd5NBdj50MoKNlENWUOzOl3OUdA21OV7CvHCVZnkjnYrDAmjaDnMStcSVRyLzewGfsT633VC0FY8wGNcaA0RFpeEryI1Uo9f3TZ/NpHlXoxOo6GqRQBYbBkBJVLbFL/fouaRa3jrdXPZ8DBXm/jsRccG843MSDiKZ+LhTairfAV39Ow3FvmbDxSGzZf84VWdt6Zc54dfWBx44D15+fE1onPe6hhjqBhMilYQM18eeMPGm5vDWf3rvigkycX68nWG2+L93AMJYO6V/kdkHDsXPj96B7FxpHFq/HwDWg6gUggJNUwUl5P1U0vYeOSCc0qGJGvcNbtTqSn8GDMJMyFjhHo1M9v+4Yl+TDC7P0MCajtlXXBpOfQ/iQJokxHzazRtwaW4gmw66h2w+Qlj/70MZKk+dSwSx7VUHW/DXpmHTWXVuxquEutCuPcDc09NedOvuRvE5uKlgzskls5LDX5Oz1/LT+Md+nqAm95HBBRIt0UXrcgh9R1O4pzdzQ7GPUEys8Hpof23RV/ehD6XhWSthVQQ47lOYKmuEPovX2fLn40qsHTYNT4JaRY83RnK/runlPrIs/m8vju+613YI7W9wUESwTqUdUfb0zgjjqAp7yXgtES5D+8mYKnZjyc6Rph+5Ytwyystyv4PZ8ZDlI3MtfYV1ppbBcba+LaFctzH2tg8ws4W54Pk+KArUBSfzmRTTIF68xqF3Jl0uLT0jhgpabqg+386OHzFoulcnECGAfuBMS+HYzP/e0FaLjlTA0UDOyxn3MoH741Wq27F6z3NB1B7UgXfKFNA9bu/RpVDiJK//wXNR7hByzmW0QNMyTAvHtRgg/KamzoFQTk6USJauyOM9YIuwSzVY2d0iJhpcah0oY9NdsXvPOVhsNC+g1r6fY+PM7VSHWubsHKnydLablx6/Wd7cxl40OY3d82tu5SU7Ag/JyhrJYrdmq7G+ZS6iNo9YtBra/wjcnCHAlWyTXA7mOPwLzD+zN8lE6GQ41zGz7JBwuCi11gR9Few9oLBx/+4TsoHOmfnlP7U7LQwjnO5nLxbzMM7o6HhLxrA9IJY6no4KVRu74itpwHRMC/+Pq0aTOj8FwqZuE/0QdiP55bUfZhZaUcyZLfZM6vm6OAP/xd2fkYrBZHQpAdBh1b9/0ZrEqtjtA9Kgr+pydPwyUHu9SuyOSOb3P6CZcVBJk1Yc8gH3OxuKGHQvXWqHYCTUDOwWGFmzShprpzQJHK9xzmXsH+8cHaio0F7lofomVpvoxdZUjgcvs8qXtWFjZe/N8V7H+7YvO/++BvP/C5L01qkLgb1qR/KXA3ag722EuPxeOYGHB2JA7b18xvBAyYBB0Dmdv63z/9fQaq271R7UEKlsdNUODLyXSaXX58MG/6CsYBCoka9/Ww6o87gqEGNSR/3la8lN1gg7DcPwi7eWpBuksHlROrKNaEVS+W7jJV0NwbEd72y5a9LlxBPawQSbXoFXwpvSK1PfMVPeRda/7ji82PUcO6/4K5drb5tfolJ/vMDYGgPO0rPDt5SjVjZw3k6rs2/Br+C2NJ84LZ2OEKag9eRoNzjMwlAt0IlUMq4cAN+2FaG/MDl6JViRJnBZhH/rv+6RuybutNFnqXqquDG/7LPywrO15h2c53bOSZVuyJuR8Bi3W65exWczmOp1LVv88L2on6tyHiS6tg+lzzzd+mzSyeMYHH6PMkPEe7ZsFQM1TV6j1sDNugVWdaOHXSegFBTU1NcfMniuf1PMYql7FFf5x7+KmSiRqvre63SGENf2rpYc3i7D/+TBWQWXuaGFxVrLUzbPz8big+HMdirfdPAmYsHag9JH3c8oacQv61Jtg5+0vwC8OfD8HRickqnoJ45KIghWTEexzqHG3mvb7OqriiIw0h4ZpRPl1C6L/PMjXG5FuMT+d8Vo5Jq2Jr5J9srlK7/stfITnuzwMtu6cPeUNw0DP5JYDxr9dV3eIxtqvbVEwgknMwP7YOAhqSwZT0NAeCmJ3IShMt2MtPK1V4Q/GoE/nNNqtlzaF4TgwaZ24FFv2R9//8WROEQzDzxpJCaRll/AzGW/MvnxHWYoBDpJQmOQ33HA4/PcROY+sxw4OEwOuWoL94N4jBCK5g43dqLPGzmRaziEDhuSk9pN1azAcShyCxoU2Lq4caNrSfDj52ENPAC0/DGIHlqk51o2HtJsfsd/Efs/I7fYoNf/0wbnz7h38EavsMlkTZ+oa0kU4PzrQW81azDTW67JEoR08wGjQTQa5fZIwFXWvELf8jf+zbBy3s9QumLV8Jt/9xlnZaMR9QryjVGEX0eixqsG74UJfb80FmSxWa1VHZCDn3JiNhaOdmEs9BCIO3fUIdW7/DP7ypdfkfAAAA//+kXcmWsjy3viAGhQhkM6QXARMU7GagqICINAmQqz8L32/4z86wVtUqJew8XXYSiaXxFSF63iIBYhUKpi/4wNavsoc4dqKlPpUlL1v1P35jOprMjjv5TlBLCRgV87XCmaeVLpTqX8CC1DO4WJ/MUFsVRbvwpxf//CC09yQh/jc+BZM8PRM4z6bNdDTOwRjc+FMbLpVKNsvO3l4YsaxqkF/JZvEn7epwVUGeqMKM5X3f+qSKYEXvAcH+redzJyoCvLryQKXFX86vzSXRdnp/okKXFB3LL7oLOLkcCdn7RTan1yD86TVisMqN6R5dXFCvyYuRw1bmr48jqbCuTYMQe/fOJl7IKXhXOWfHQ6uVPG6nGj61tSU7rxO7OVbHEcl7ibLwKxoB00muo0fkOiR0tAKNuRfOUJtpyH55Ba9dwwU9QBGl76ORzZIZmuhylRL2y7t+9aMueRMV7+sZ9SsztdVPan8oqx3Tmh9rkEFWWgHv3J4H4/m6biCU54gZDq3RtDa0E+quLl787xxMuHdOirGhIfOrYxjPaJRTuMm9yx6XzdCNtbSXoPYzm/jvI8+W+XcBrXomJM3Oedfof3SG5f9hJBpBh9A4A7QafhBXIHI2S5Ngwyp9Fcxe6mFO1H7p+YWaPZJty0fx8NEh/jN1YrerZ9ZfrmOt9YnoLXhw5ax2QEALnpP8ell68KetCdnRVkkoMB1JYVj28B0eKsP7tOl4qpgY8jB1mB8uPU8oYhLS/0aXWW8nQS2KuADm4/gmW1purH/jH5U8ZNba6C0qkFWClvqmz3xNSkkbrzY4QmGRbdj52US6ZZ/rkm/u3MEqpwWv5KW+8Wos1JJmjTJD/xxb/Ef8MZsjdPbQxG8RCdVxV46+ZnnAZwEwursKYndv6bnOzvO/PHnmM1DE/gSZ+NfLK+Df4+Wkpk52ZsEm/Cv7qu4idDFkwnIgRUnr2tR/+QSt1lOIpl/+2qz6nrjFSS95dTrpKuq1nASD+Zc1zYpe1HIWYhYe5TNf/fANfU170c84nssanuCtWIAXfuSDRTUbcJSsMRgC6Xh2UWt4bZrup2+Cd+OUPeRyOBP3czwHY1epvhrqgk68H57of7OMlvnFAhIc0KhM1wYW/UKs45bEc3NsBJiyWvvN53hW954L5vk0LHmIU4p1fbFhycOXPCTMRtz7Iyxbw//p43F3uy3zVemZV6/8UvzxT97Eb8pxwEsWdQ9AvNMllrQiQ2KfjKn24/Pd833j4sfVb8tZ/ioho+nG8/W7tzWtKhI8Dpxa/LVxR/jx6/m+0a3pdnkl8D59IqJvNJr1aFQTWPQ027XllI3+zgbtjb8+Iyt9DJb56cKZWhc6d8ktm7bD2Uen9HxlZnaROPV3gQ5jyTqc3NcHPr2lW4qKTWbQUtbd8jtU9xR5R9Vk7pJHSku+CO9DLRI/ubpoxefZg3bCgKvHuipHJm5TSF97l3gPKc9GOx9nrbvbLfHEybRWWSNF6HqtWvbLUycHHw7wwZ7DsH8L+YR0qYclXyCeRrNlzws+If947okuT1/eJ2pdo+OhDqgSdn5MnfxUo9BGKeaxPyAuGShFy/yjbXYWup6VqFBvz2kmu/N3DPiQXHtgfyAz37uNix+5nCCR6I39/BT7HqOT9sk3Fv2jppjNUqHfQI9XJ8p727CmTJYBhqg2f3lFNzTOo4IOEKd/8GfFc736a2Dxa3glvnZoEg9F8cMj/Hm5rBsx2AVaFY8GL/7MGqcywYBFkmO2Mp6dZOdtD39PvSJ2vr6if37Gn0hGNgauSu4NxxAl85J3D+YuHrUor6HZiw6xcBB3szi/CvT8zE+2rN9ZU7rdCSgQhdtvfaAc1b2vQ7RBdyq/V2XZh+HQqq9HPVL1cS6yCT2Zqbwe1ciwSsZyOrVbE4gXbBge97DkOVf6W4/4l/dO1aly4XxyYro++Htr0asJPHq9JjeV3YP5dnmMy3Up1+VAJbPjXUVbWJ1K9zf+nDrCkuc/SYi/1+aTcRufLwBjl1PUm5eYZss5AmZ23lKZz5tufJxRgrq3OWIhTO9onOL0hspNcGbb+0fi4xzjBC3rbQSfr18078KogJkdADPJ2HTzIdP/W58Kd+rK6tXJKYC3mvgvv5knftN/63VYJugbU09rnvDOqzPbfqse8eXqQKgF/B8+jq9z48Ovvo24VePZFuoQlnwSwzylMS0+eqv96Zvzwi96PB5QqsNvfWlbv6usbd5tj3a3zwr/qX9T3DTvvkHt/ZRg4XKx44lWPgbj0ewZGY0j7xe++Ken08/RsUaxeFHY6fTEgoX/pu/qPqNj2jgk5uaFT1E2piArjUDM16nruMDEBOUiPlGKIi9Y3ZtcQHYr2iQKoVn0yiCi8LK2yJKfl9P6pcxo4XNmCI8kXtZbXO31eUoEo6gJmqP/Sn76muziVu+mLlEFWPwLc+PUDOa+6l1Iv9GOmEoU82G2PFtrhrEmeZ2cl/UsQ4caZ0+y6LdStP70C7j1KaHq5i5l4y9/X/w+WfLEYL4qqQRRpnrMuH+ErrfytYiur2LEfPF34j57Ua176Qlx3KGL50StWiis9E3Cm8TL8fqNTQ1d3TXTE7Urf+u5cD1WmGw62w74yTcbddELZHtog25+nocD2rN6g3tx6rPepnMBiz5gx+rdxNNRPQK6h98nXuo/mMayldHQFBv6+vHFdrjV6vMhpXhavfxy9u5n+P/1FKz/d09BndrAtpEoZuOtUDFSzk+bXT/2I+DvXI+QKq5rRhhaBeMcnRKgfdvQdb2dOUffQwi3ed6zXYL1ch1hHkGcFYyYPO74TG5MhbBy3nhoaqNbO08Ng2jUAjFzD3erJulatU0PB6r1p2M2Fk/Ww04ZA3aUyz+r041cklQhVbAosjLjzsbM4Xy65GwTalYgXVe+iG5cOWHh+DHj96V6XsDpbgHz5CApedTsL2g6WgUVBmqX/en70mEvRGfiIcUK+vN8N+Ft2Hs6pqs/3mvL/fDJpzVJ5ApfxJ+bowolylo68vyvpN9KyVGRFCsStl0RcMfapOjRmg7Ts7MWsydpWvha5UT07OSj1SGNciguq44FsH5bY7jHNjofkxLPeSeUs/2iHnRy9aZC2hM+WxJUkD+sNXOC2c/4e9GUHi3vuOCVX/I63YWIBAdCNR0e3aTYVEV7GUbig/7kk3xterQhtkMe2b7g37LCN+QIzMV/w9yX416Ln1oafGrikuUuh+RY3UBjccAcL/Es6S+XTdiYR4NlzaOy+NtTRHD6p8vOT153vVGgFOzbdsM85Umzfpa6Qo3v7Zs5r+cazZbV9SDqL4u4pSaWrFvFqrqdnDvZVKISTEJfNRC+3ROzpFjmzD9KPXiHySdOUerxRNNORgd/s6Iy0RifDp/ERyJ5bPC6Eq/BtGs3shoNImbH5+2GWEQ2KthRKrJA2O3jT3ROW/h9nm6vXtl0cecKunGzo8peZhk/Rp30q2cs6EGdjZ/rYntv+R+WsVzEkxmKOtT7IiVBgiY+r9y7i+LrRSF+bW6CsfeNG8g6vWK+mlDM0LeWwL7vTObHBUHcb+Unii8ngQV7SoPxw8+mKtozo9KOQjw1f/oTkuKUEfe5e1njr96i77dnYXPYxfPjMgJ8Rm2mq5XdBpMZgg6Xv2zLjE1FMn68PiS0l4WRrp6Zn0lW0uYAeGWS65+P+eienxGwda+T5FE5fMbms9AM9umohPSMz9/hIkEymJxt95+oo9vPfoStUq8wLPU8ht7B/dtr4Y3Zq0Mcv8364EMcKS+8fB+LbkVdhLDeZXi2t0XHR3q5wWWuEIbvcr+qerUvYHTHP2YFKbXarahL2tebMfOjk4Cmy9fuVelvn5NN4T2zZs2AouS7Npl3aKRguBfGQZ0u/pYEXdZw5ufbHLx45bDtYUut0V21FAlQllh6iaG1Kl1bh8C43chd90Y+CViQkH63emLMwtsaBCyJ2uM9X5nzvAEab9vERm9zdyKbl/3OJgG3Ibzdh0mwfj+XPPsUovbVDxLbfmro+j0+nMDbtw6upBPO+psOPZjyzSJB24TdXOGNjR5Vn+N5JhEf56+YQ8a8E8PGay4ZUocabmoks9NyLMPEyXBRN85zJu5OaMrxEzYVnDPqUNQ8bEsMbT8FMHWRpVCOnL+vcgW0MFLiYacOpubdpuiLvT9iOEHasaj/uiBaXGBm3vYBj2JTQKsbe2AebFn8vcTfFr28rMCHHPnoy6f1cvJFSglJ2Tvu+7E8aBdxQnhdeM943pY5heJBdsyrwybjxzavUB7vK7ajrA2+9+Iow4OeEPG0+a/kqRP16pRXK7YhbtdNjRVFWrkOBEbMpacqmnYpRFSLiYsjBTUL3qrlUD6Ztd2/Sy51ygm60bQoX585YlPtUPDyW0wOt9mMxXU3mEC/+ZrZrwGXk6CVF3iUw8DC78mLx76EEH2Uu09wYmy5ON/GUZNeScDMB7t20/36leEc44G46FUj3sXbGTqlfbLNbtqjsXdxqj7X0Z144RhmQwx/GEl/cc525lxlo/GxbJgiLlEx+DMs0V0VFJ5/0h9GWhej0V2tT5CG9RkLR/kVjPNF65GFVcbsh+nF43z5uv/wIWy39nIf6SCBNrgBCfWPjMZhtamh7e8Hst3LLJ7xxpaQ0R1WzO824vJ+X+6aJH9rrJ21Vzndr0KBZMcgDFtXiAeFx7m62c452ZBzu+xDOAvo93n6NTcC/jSnWrvwRmLYUj9x6TMPg7MKOLHum681hrZ50UpWhyxI2tga55s8IqMNVSqu9CKYDo6pa8t4UdSed2i++oMAUnFxqdbtN+XQbMQKJDBLGg3Ssq93vDfqhbcSs6TVKeZZv/ERZUpJrG1RxfN1IiNs1/kf8w/0FfDOb1PQzy1im7ecWJPJsK/k2QxU7dSRU3ad4V89HF/PM5pMvg1hC6uR6ZmiIpows1Ie7/FK++9nY01lYzzROeOEKu+7GIw3LgM6p43P7Nffg8/XvrxB7qYB2X7evjXCqjmBUa4uxLpJfkb/DjpA1hsMrxZ+GT/tX4u8izsRV5SefPJGoYfvbmMTbEphxsfX6wLnu+IQj/STNa67twkvd9+zBV/ifi2GKaRk9rBax2/O3zvjqW2Cv5wE3Q3FLPsUEhAfJ1gsXve435faBSSGEzxN14c1Y9VwteV5Keo0N1s/31aPvm5zYef3SSr7ly+baBXJJrnU9M3nq6EIKHrpOvvpL/4+PmWYp90fswMmIn6cXwlo/SYlhpO5nCb6SUe3lWAS9/k4ZHPC/Ao9+p1D8HB3UP8SPBVtBfVG/O4Sx4OZk1S9zauMkT54lTOrCx3Rahsxt1CUrv9QtYf9lG+ZS6qXxZ7qwdPOkQ7kvHvoJT9KivnTN7RcEQ01wb0pwN7f2LIvlwQUX4IawI2euFa82eLHeQVIEGrCds16uc9bQxHsNXyjq1J9BOO+v82QdcKbOSvbt+bvd+tp9p2YxPEpy2asbm2Ib53IiKkm2Vx9ogq0RnyweH3mnGcifaLoaRCsdt/ZKlamk8LLXvZ1nC+4a2752vvhF129xipY8NaGk0G/tBQzEjT9SX7C55vqBPdboRzd1V8CwUbxmP8565xHDdVh47yB4WGndBSTKoSFj7G0eKhZ9XYNnPf2mpkOjiweZUWiLXhKZ7s/lKO2EgVgUuvg8bLdZNSO2AVI1BlsC+On5JEGObztY0hHfh+s4X48hGg07yWeuZRx9ozlRJXdjc82imBx5l+nEUpWhcTYxFE5X893HWV1IxBjQtCNYdtjoJXtsv3Cn/R6kCla/h7Pdzvu+v1porC6PDheSdtzt+BLBc4nfNB5bN6IOwn2QXlul32BMYnXmVgXiL59g+lTfeQTX3oawr7SiHFh4aKv7yrQUl9u4bBeAY+ebguPsilJnvpzTNm6mdX2frPY9aDd+GgU/KKW9LnH6h+W+Hi6FAeYzsGF2Pmz5eP8Z8o/PU+cpx90k9BfTNRJL4X59arMpkv8amEVb0zaKNNgDYdP4oFCLRWPjoo5T3ejrbWlPJLge9Bj8ayKqbLgBU6C/BRMynFo0dva74njhxOnaiL2kEznFmtG2PFPXfQVpLvhxoLoYnDRjaMKFn3Jtu/hmY3z37mAhNqU/l1kanXS59XC+VIkZEOUDx/D6ztHeir19P16OHF3/LukoB9fDrNX+yei205wgc2XK/nxU3/L/zxZidwP0S9pHbTfi3nRsi9SmLMO9WDyjNUT1fmpwTynosWjcRwh/GYhs9e+FkyC+7jBEL2WHtmLiKZduLv99PpPj1nTTp11eNRiQiz/+Oym+32qIamrDTFGU89YuhtdJO6iDf6+gwLNW2gwqIruEadUwpJHZCNDENgKlkj1Cpb6CpH2uprL+D6zaYfcBlbp58u2dTT+p1e8LCqIHdAio49kJYP2big7BO4VjaCMuvYOVpwKeuDGkph1Twi8P4u4L7EPJu8AEbDplBO3kD8WO7anCjpB2NBxLFTEpUP2r75pvRu+aLoImQcnS/kS29sfulmsfBVuCtZwG8mQ1VX6LUAOHghjuk9KNoWshpM5V2zBTzTjr5mAUl3vBPdeaEkJe4Qo4Y8nloVEC+bE3rsaicWZXmNWd5NZHzxt2s8fXDx2YM3W+xVq0wH1+F02A5oruQTknU0Jr+Xrnc82PYZwUYwP0e2qKMcb9MJvvIj1eI3xvMJiDl+7KNgPf371CzdR2xMrD6VuuHNdB0lWgIVf+c259Pm26Pd9t/WLWV95vz2BnW1C+t6i2OIosWak/t1E4snDIRjn191GH9G+YmFY7nNnfKDwlE8XYq1wkI1nFZY116ZhYQs6F+dkn0J9/nOpUkdjxv2d2SPYTRuyrdTK4k/ybLWFn9lWOM/lZP6NBzS31GO6XZndZCIN//iHBZ3vB3M12jWsbu2R6Ndxjpfx87XH10iYnjm9xVInolCia4vnUam62fqOqvJULjH9swIe9EaXjv/qzbA3f+X81yEKAbky4u1Kr5x2oXOD+LTzmL34JUl0vRuU7HsixEkQGnYtkeG9077Mb4LF34Ela8I0GuxuRjWa1T+K4SLDnZxD30WDuR4K0HPzjrXkOaGxUB0RLX4Lj24wlLPd7grkHXqdop+/IUrkwcJvBCdiHUx0O3jwNv2QmOPl2k07q7aRuTocGLa+TTftIm/JJE2BhKf4FYxrJwh/eM5+zzftglFCC1/QYfl8/hS+IjpnEyHeZ3/8578Adnyz4Ms749Eoj7BdHbdYUZ1XNpPbR9VOjnBkweHlZ+Mr7nX4oI+Oq3z6duM53Eiw2a4a9sNX0fWXHjTp78awLpjlLPZFpI36eSBGui44r7f4BmUFwm/+8eGuBzMkVb6n76KaOfvpp+LhWcTy5agcFJ7l8PKuBYWTtLe4tEUSDPh0JAZ/ray5JaWONmRLGKavJxouVXP5zQeq6S2Nx/2hNdU0eNds81q/yn95FVg2o+MiWWc19HqkPPQOjxftFIzB0fBU2RYc4n1mHf3yFlg9RJfKIab8m3t/I3xWXkKIeznxRQ82//TkkfAb+uVb6me1y5mRHp2ML/oe5edXxHZMXJeTaXs6LO8PS+X2jcYXuZ1A5f2LrorqwMe90R2gWxctVZs/oet+enh1OnCyO66Cjj8FIVc2um8seuyNJk6i8cc3zCnPJJgfc9mD8fX/mL3uPGu60/GkXdD2znTbfAdjuP7IQB5vh3xexyqYLmYrg2XvXwRf3XU8XG5b/fe85BrpTjkdtlcKWSu3JNA8C4kLXgME9YaY7qGzGBKW++m34pYd8jYMVmXl5pAfs5T9/MsvbwOCbzoLErRH4zlhGIpT2xGsDyUalOPQoPwuz8Qp1T9rXH/uCWhDcGR+dOxj9hSkHOz8oNG/NHc7KVkLFdr/JQeGh2WNBJuajxb8pcJPb62hm1EWpxYzRokE6665hEh01TdxX6u8HG/se4BzsQNmjhelq+aLRqG4rDusHLY4GF1X8NCJ1DNdEQ58MPUQ4EQ6wOh70LOxd92Luvgl5tXsEk9yobvw3fQxOYq8yybvIB6A0jFnmEamJZ5m7wI/f+vFftxNjfTyf3kR2x2rkE9NFAtgsOeLeqixY9FtePvPTzur+tOxrjr6IBtzwn7jP1e7+QYE5zqlx5PVSfYVjz89Rds/fELzI7rWSDnlW6y8b0Y5cdU/IEHorsz7zE/U709KD/ZV2Czz0eTj+oBVyMrHDr8e6Yy4JDcXjWTHKzFdselm1rkngDhQMFre3xTDXwjxY8zIZjdN6PZp1w10o7NjHlKPJde3AkZ1njT/9MGiZ1uIPi+JLXjDx74UMVKK+EN2xr3tGEqsEYo4V7F2+qYxf7OsRSUt9kvecus+WRn76G1HJks8PloUr5RUMcr15ZdPZNyZuPDTb/jPMP1yPCVp/W8+/qvfy4rP//SMtS1PfOwzPQR5s3VwuZpQNm36w0VbXdIv89S47cZXVcyQ+rcXi6VDnc3fSrmhtoKOOf59LMd9n8wARNWYFz52nfix7yIs+ox4gqR2S/5BUR030ZI3GtnQRJkAw6ELqZAcvE6hxm5ETPxc8Zqc/WxO9FyHlr69JR8P+HrhQ8ivnYt5oOXW9OMbBz7RTw+i8WNvMaSWYVNZzp6oP9PdCab8+0fI8NpxLh3i8Pf9iL7gGx+jooFhuZM2Sg+ET/STAnSgZEy/ZJdy+OVjq4O1YcQw25L98uQvwSr54RetOlDRTuoqPDmB2tFt2vboNg5v+pcVRsm7VSbDVrraJGimY9YH9+b5y58oOrz8eLoj0CHsShPDogfG9ZYV0KHxROLVww9WMppFJMyKS4xcPi55qPeE8x05eLRNx+rnKE9+eSs7FuUzm0U/8iH523FijurZ4s9pHv/5qW2l2tb8CLcyWvJVtj2kPafiORaXg2QFqi557JzsbzPMLT/Qk4Jo1ofr+ACfCUq2edUF6n98VhZrj1lLnjuu02sL7536YC6anY4veRSy/M4iJON6xp/DXw/Kc2k+scp7x95rZALtujUdzlkVTJ67C0E0W4Vso6K0/uXBYe3tWRBLtsX93fn08zdsG+++wSQcFFn9uu2FOGUz8NGA/RMlq8+J7JZ85acPf3qC+e37HDTnO67AaS8R2SXPPZqt9zdEUwIXdn3fXt2//L294jOW1ZVnSe33PsJeNbtlz4WajdrNDNFHXs4qr5mcib04CxCEvkj5vVWsuXrsRPCaAGGt405Al/UVqK+GwVw1HCzuvEMV4muqMCsfXt34MqMGStadiOHi5W6rJb9f9AuWK/uQ8Z8fCvChpe2BGsFPz8DnE/nsWnlqNl2myoYitz12Uv++8cx0PYTwpTGqCuB0zUxtH371utmRZPELuAE9efjELbsyo+1TSFEcoRf55cfj6xakygk/17he8vbm5TYn6KbAI5b/mdBPf0FwjxW6kq4ln2Ln1IJ+N3qKok0ZzGz9nLWdzFM6j5dr2Sx5Ikz78YMFfbD42mc6Bst0X1RLSBxw57kKYdFzi58ey/GlTAteztm/ehrMfJPCTZQ35Fx4ejbRMjj86o3gvoOAo28tIuPVXhY+Z9a3iTJAczdaVJLtszX++Oo2sjdVNQdnUlL/SWC8mgtb9Hf8y+/AeLGCMvYt0cyKQ6L+8gt7u+6CGUtYB3kTOHi16L3+xl4RsojQsk0NJKgr59ODoEQN8WKfl2Mx1Tf0+Cw9OpfqisSFH0F2HZ8ZtrLNplIcK3XR28QO/oyAO9+kUj+fg8/8ZtjFvVYJ+B8+Lj9n3LldZPBupztzpNbs1o7KBKRU2Z3y++Yb8DFMAT7QIjo7D7zkxc7ltz6yUwRlDIby7I9gZ6bJ8JIH8O68z0H03RNzSWzGzTn5YPiMy22n9lez/uV7ndpnzHrMzBo1IUlguu4xiRZ8HIbtpQAvDT/sCgTKaTMWruZd7In5+1RBw123RmiH145Yt3e35NPT6d/7y5rpGM+tFEq/vA1rdNd3i98N0TsYv+R+jLHVvOJK/62/seP2a3BxXz5nOJ/SnOjpgaB/+e1w+IZ0ftBNIM4v74ayfbRjPz8tGrvLCRa9s+TVLup7fPVRp8kh29bzjs9q0rhQnIYV2R1NlvWfOktANCqBRJeu4rUaDSYs/Pb7fcyd57PSwg8OMc8FPZ5Zq9AfntB0mV+jsasA0u19ZLuuqLNJcM83YKBLxBdSL+gN2RAhiy8W+eHrzy8hZ73/Lusffdf/9ASEjcke6W7D+XMoXW1+2io74ejKWabtZAis7rasByYlX37+jQ8uNp8K8awnHjxX/oeZ4/kTDCbfYrDs+EV2yTSW0+WsJChOc5EYc9CgH99pRhet6Cu7PmM+JuoJsg9ViKt4B4tlhyT95bdk+5ftSjYtMEAO8/qXR2cSSzc1+m5oTAhNfGv8FFajpZujSoxLjoOJpqWKdnMmE/0CZTl+bCP88SltBT9D4y0vCsgvn4A44n6H+tP3q//045LvVx0/vudIg3ir0HjJu1lXeQXQz9Fg2Hg+rdna8AuI9sjICb1czrKe+D+/x5xdm/z4p1HtRyIzp1julln0C5q/7Y6R/j6jLt02KbJ0Y0W89/aBvmXGbJiZLjA7yE/WjG9xBHOBR/ycr7NFr9Nmhq2U2cxwpzhYnr8Co5wxIZcPyZq+CdT/X0+B/L97Cu6DtWVGsLY6SRVrquaat2G3Hmtlb2x3OWLe+cmwMfbBqJK3oCD/C8y5RWI8c9J76K0JATM/V8qnW3ls0aZ0MgyXP1rO4W6m2tvNv1jIsjHgMQpdGPvHmWyMOArE1vib1d6mCZZuK4y6zjVsTdzrIrviAqPhwFwdmHd8EmfPjhk/lZmEvl0XUxhaO5Mu/OqjZvO6kV0g4G4yN34PL9S+iPfNNvG0O7IcqTeFsuB79oL5vJZ7dbg3J6KXnV6O+7B1oaW6hZGt1Hz0o2FEGNkpOdCwD8bzJ3Yhao4ancZ+CLrlTAmwhk1OAlQ33bTZyz46e6uUrkzsWby8aCoEzygmNz2R0Vh5qakWmeYxI4GMz+FO7QF1VUjITfe5JH3kCC50OVezv1ldk25HUWv39MRCf/MpGdn5KbTrLcMIR3drPCMpRF0w7+nf7tGhsTxbvtIUw57Yn41mDdLjm4PS+R9C2OuM+sd3ewHboAYxn+Yx5mvd78G811uy3SlN17yOcg+jOIbsssIHPvW3Z6+egytnkb7boc+dowiiN6+YxT3aUYNiDOugSKjaLBl3nOgV0GwI6LipPtn8jCFE73qKSFgt1y1rK1VGmwEacslWPRq3ehHCn3/dUVRULWJddGhgVR8qEl7+cDc9HHSB5Igx26i3j8Wt+yGB+qgJZMO/XzTpRy5Bf2E7Znw/Sx98FmOwl7O7vHl7zibbu/twdP+OxDvnFfq9bzRHH8LM0NcDsff1BG66jbE6zBmaw+Iuonh90zEnMS9HaWfYWn38E7CaqiLnSvFMIWrOGp1OF7ObNcHoAT/UNyGR9O7aw+XpQ9OZDtsV6C+mwzaPVKMjVxbehjGbJchSpMRaz4Jz6pSrtLDC3/OR3Sy/rX5/Qg2q4+ubOXu2iln7CGb0cVWMV/NO6vjjWVSIWZgy+5V75ZT7BwFt9DAj3jxrHT/GlwOE3/BIHrX/Kqeu24sQsyAg7rsUODPqfa4dDakk9ikps769X034Hl2DmYF+zmZ4nXR4M9smXhbW3RSVhfl3Mu8TI/KmspbPA7SNSx3PtyTuWP88heBOSULXgu+h1UmIdbheti7bGcG+5I/T1USbLiXMmiTT6rMHTeGHF0EubQOpYetGPTVPvtTnmg+vjSNC+vdHGC7WcTe+lUZEx21J8eh/Cz6yLD/Bod5tGX7MsjUcGDbV5Es2xEs2QSzKOH6qRyTn5NFxyZq9hwzIaYWWbNJPGDTiyQs1XKIHc7RvGsyXjXhCq1tJ8J9wzdGsVKWnLe+H2Pr5ZfW4tRPQ54/ATOH0KPu38pTgxFODBYPz5f30jWRNPqprEhSVj77ZR8NwnKw9nXe3vhwNxZDAre8us26Fa31V69qCd7wF7LF7dHycDucQPVAIWD2EFefV6ltBpTs6M26Xv3gqj14KC/6wG3uvrdkT3g08cwewnJZ6tiJ3WVdZJ21JYCs1mosjboFfyz3Dg9F2y3ysYZm/ZFP0Rz6t2VsHHx23dKSrN+fDLJ/QsRpKvBIPFp9oY1PtPRZvKrKTYY2b7eukrc3Nh22KfoVo2H8uSL0hyoiUHK3v5zxE6vtuILLLHojzWhJ1QF0dkm3Sv9Ec58sa4t4jLA2uyz6P6iUBRm5KXMe5d7MS6TqUCQqYZ8htOVLDwFBPAV/OxbiXPcxWC3OblCS5b/Rlf/DOh8y4jgxvVyves/dHBuV2eLIAR5rFEn25S+NEEJYOCeMLP4gQ3uQPC1xR6Yb6FooQpgkmQWL1AStVw9d2s39hjojaYFztny3In/OZ4Pa9ir8Yegro1jssaq4jGsdwCFHWvytm4CXDEr52AUEh9fS1nrxsKgW3BT/0Mip+NvdgYsTX4W9tFcxxYMtro4QWzkXNWGArLh+RDhJyhL+S0l257vhWDk7gwNWnqw2W4mmKbjfUlr7EzL2PM37CMoXrsV56Iua/eK5T04XCLxq8Pilt3Nqgz3B+bz2CcaihscjaHj1Xkcz8YXvsRuEbFrAlT5cR8VrEQ3wKTrAf9i7RD04d80ua9HAkhy0zTpeinCdb99E+k2pi5Pc+G2VFTkD1dYrH6+vL+/PUt0CMbiB2Ma6s74+fve/DpisntspR+StO0AZ/KjMOrY6Gh8NTOClaTDbjIYrnY7C9wZSSN3MXvh//za8n+WO4v1TxABNA7L94bd6Lp36usFLu7HKC0ZMRUQKC0VY5Blyerk+4pPZ+wdN3ybz5mqBdc7WI7uzA6sGtRaCJrhP/bXeIjgclAmmYXTzF8ceaHGtVgbwxRxL8aWM5q8Ezh90JSpIpr6wbouslR84uvBH3nOQB3WbXCzJfb4sseBiw/pmHwJvrhRBdeaDpsl3b8NUfD/ynKw/OxY9QqMt4L3y4iadkc8BwWHdfPK3Su8XVuQPY/GUeIUn1iWdn/cKgbbWGhOdl30VKChH2LR2wrLxV3k9LRlcGW4kqktN109OIJTh+4uW2ritGo3Q+NGAXeoOnB7vwWRO2FN19b8s2RKScV12kgyyRnEr5BmXz5yHaAO6yj39zTaxB2SgYLfhIvGY2grXGThISxq9CdqpG+bt3Pjoq2XjBf9YntsZ9WLjq4YAjtrt97XLRZ6aaFSedWSwN0RSS1Q0WPcIsc21wvhvzBj6ujMnj8FCtfn1ALoimPyz3K/+h4SRuc+SbA6Wi7/zFuScMLQTvzMHKfN7ymelnD+DYemyDnCGbIVRlQCZMxEnECNHkqtZAw5XNXF/u446ez7b2vluIGOYpDmbt0MsgbYOKHhe9OtbbKgdV6iy2AQfxCW2DBrWlJ9HBCKaOjZlno/H+jqjC9TF4l0fvArXx52DTqjjvtmYCsI9fMxaET8XZtnyGIL0mHSuPh8klpeo8aJ1Lw9xmP8f8S/RQe/ob69/3f3+FtkBnQb1hVlEV9blpe9DEa58FiRUG/P799iD94Zqmeu2XYxlOtWq7IsezeLKCRX+F8OHPkpkm2pXzCaKD9rcRRbJFjsKX40lC0A/7M9nh1OLc4RsVCWOnsOV9ojedTweUnMcPWfi2nOmYFbCbvQvxctXLxJs+US1/SinDWRZZo0HlSMn6T0XFLNmXdNHzyHx9LArBeAv41Tjo6tuSI6oOM0I9F0VVM5xRZ3v0aC2+HaYZLru5ZD4YUPK/vVih/LZbk2D3OSHuEt4i/yt/2eOmt4gnwYbCaMQl8VxyKAcyxz6cpU/DTG1Qsja/8RMaO31NH49zFS94a6KP5ALB54HGE91edHik8pH4z6HkA7mPOnpuni0J/XGHxvNUtbC8Dyp+yznmQaU28D6jLV05sEWz+bjb8DnOR0bGTi/FnbzK4RXdBuJBe8qG72Xdoz15ynguTRdRMkYXqPavJ9l47i4erbfioepvPzAv35vW6rb1ntAsPbJKJNgBf1legn58W84PL+618vCEeJ3rWKucxpq+YiRABSyhY/j96+qEfE1YDRpjOP7ru8mEydX6zzuh7TKezSqbQ9U4h0+y3bB9x0fbvWgJtg5M1/6CYJrX1x58DRVUrHOJT1/xIqjbz0vB0mO1nH1L5CfsGy8h9recswUPb+AML+vHn+X006u79O+Gv49HgfhnTnI4zM812R6PYTDVt1BSPPqRMGroCzW6leVwtqUXcSF+8fFtzTf0Pp5GnC98N+IqTWDf+AnBu/Lcjb3vJSBcWpf52r2Mh8C3ctiAxIh/bbxslHZbG3ZltGf5LctLuvgLyDZewPAtE8pJuSUJ5EnRE784XbJpczN6LVjO5tU/1yLmf5vORGtsD4Rc0b3jr3OXg/IXPMnufmgR35ZNCJmRjbSdwY7549nWkJ83DhbXtolY5dszYHxzlvl1RTNVBxeS8WKxdB33GUuk/ok+H7wiPz0yPq28Qt24mSm/i4duhlduglo0Pp2v5BL8xlPb3J4eMb6fqeQeFLImHe8HvHLfYzBv362AbrqLibWqSs6bQZRhk+wSoi96eG5PIECt1k/i+sS1xCJrKZyagi969a8ckz8rAX5zWhIs72O+n7cnVDSRhIV0/nKOrq8IDFGg+NsfgPfKX3v658fW3we3xp/fD7uREj8rUTCJu80J/fy4WW+KjLOvgmGjHk6EnJHOZ0N+jOCm2wtzfJAt/q7lXFn4lhnDMc5aOZ88KA/JTLaK/7HmWhZmmLQeM7cqo3LxAy1kJ/3ATLo6ZFwn5xk2x07E+jNZepTbu4905XYgsT6LfD65L1Wrv75OX2JKOYuEfYhWXnHCaHC+aKxjQUeKWYb4NhthxuO6geUevd3SQ4fL1VKvINv5meC/qLOGRxTCTz+xn3/myGQVCpM3J7/n6TaG+YSFn1h4+aMdd/5GXXOG0mJGISbL2fBNjm7JZkPsV96U9J1/W1DkGtPxVfOOFd6cwA1oQceD48Z98RYjtBdzkzjbtis5KlURbXSc4d98H/cvJ4S7NOZ0lu0KUXa+iMrf+2My68TOAa/7NkfP0XPJ/qm8ugnd6/Efvix5SDxn9gcj7eVVix9eZ/PVus1oVFQBj92mCvg8rlq0+GO6jkQtY8cPSn98RAx7OWckGnitqZv8yPwFz1mafTx4hPqvHi0keqWQQ/C+OvTveT4g6fz8M0EIkwvLh3bk//zzaq4OdNCudjCrx1nXRCar9K5dbWsMtbsJyHNKpt/qd0wLaa/C58sxBvlulKsxEU1t+ILNSEVVPoly7ymR/2FEVxrLWpHGqOHnR2zH2Qfdjy+ppOhY8z5Ha/EfPoxNnrNA1cx4Kh9XQLhUHnT9SrfZisavCooha+hf0N/QeLRXKTqSaEuwqlgBb5MZo0Vfsx2qj9bHqPc3rd+bJtsYcIoXP5rAHW/NxT+vs6lbdSmYkVcyu9m/0aDUg6oetNRmlvsuS/5Xn3u46+z281vLicS7GbrDudp9Fv1Br1SpYclzmP0tD/F02+qFZlbBjfiCu+3m59/VRKwsj1SMZRpwK9ZHmDzuMC9Xm2zc+nxWl+dh3rPUgn5WbjkYt/OBudK8/8+PrNaDTehsyIiijSeD63oPstkwx5rIHHsQmE+HRC4yrDm4dRIseEHsc83QfBiCCH5+0V097XK+vdUcYrYNWNitj5kU7lSKuPO8sGxNnuXUT4GI/vGD/NJ5a8iPGc5P80SCt64Hc68cGvg79Yh53+wT8+n0fGqClCZsww4Gqvx0fUK5uIqZMzzcbq026UVpnr5M4fz3tDjeRBdUlJ5N9LMjlnPnWdJPT7MgEMxA3JuXQnUWXWCWZo1aI1ZstQ6lA9MXPc7/tH2qXW5NS/Sntovn4zHW0ckLl33x3bZs3DXx4JOiDRX58F3OVQx8WPiN6d2mssY8vFMoS35Y8gIjWI16pMKS/zFH1p1yfVilLpKF4kBV/m67KdH0Gh6S7TOvmV9WffxKPqzm+sA8BK4lLfWA7OpjkNDq5vipW3H+Tz8a0Zuj6Rm8UyjZvCRevpWJ509mq0v+w/TUjwL60/uLX8fyMJN4ntZnAd6H8cxO4wksdrx/xd98I2Ew3ix6Xo9U00az+5d/cUm9NNpbJiNGhtjFn8dqR9WyPnZk8YMdXcYPvN6602n3vGSz390A9ZvDwIKbd+TznN+Xc5NqkzjRvUH8e73O6OfXze+qsrjaHNJ/+ayXjPtu/tWftUpj4tRpYI2l2ZhofKsOw+E+CFpLb1JoFDVk9ngiJeWk8tE0rwyyiYJzwMEfPTSG/ohnfafG7yTTTkiCdsds0Z5imk+nHGY0WcRmf5v493wAF/yi/SKI/vkR9DjkzJCnExrbSfTQ4hdZqtdtx4dN/ASFCDOGDjOLvyfTRGI7e8w1edHNe9fVIT6scmJ9jlYg/vzr8r4x1FjnwzrbqrBKRJsei36bKbYQPJEQHQ/MmSTcTS8QQ+1O71+C/5QpnkKUHmDYf6MlX8g7/kZZBYdDGJH7+FLQLy8A7LEWS8q6L4df3nAIrATLpSqVo5CrAKO1BqwseS43gZjImUqN6ZXZ8HElkQQV15Sxxe921PInAXQlP7DACJygu8mpCH/XOCHmuS6zXnVuF+SYR0I22qvoRme6++pnBJ/5/viK5/1UiBpfx4+FP+7xPB6mCB6f0GKmq2+tEafe+MMLquLcsmYwX6df/ZPoczUzKSzuEiLKlvzywm4QUC+D59Y2VqvsXVKXbxu4rMUHy4s176bTfTP/8yf/8PW29QqkCx+b+Wzd8M+udmwIu5kysvgBaj7uLgh9+0elSr10Q+6nAtzerw8x3tG27D8r4wAvoodYZesGcUM6mmBvr0tP3ta0VvoRST+9wPwZ7EUPNzdU7csn2XwfPBjKo37Rljyb3majz6al/iD57jZkY75vHd8Y/hMM73QlViOs+ZL/XmBrNwrzIMbxtKq2Juo5Mulb+6rBLGtvEZa8ZslnrVjyT5P404/E3SVGuf7Trqn6XnVnhpU7xPRhjQ2YxuHGyHZqA36h63/vj+HiGXRjMFxvYF/imCqnz6UU4aPawJ4CsH958Xo12XCOacOwO6qZGO+ggHZ7fVGlPeiWJPNbBE7ewA+vguGvX/p4d5crO1HbsFaq4pmQlylnoWWGwfjLrxc8IfbqdOf8ONsCerETJ0F4bLNxydu1xzFQ8SzbNuLNXTmh8yZVWRiMEEwoPoZAiBP/w4u5u1EBDf3z/sMTzk54pJC+nC39LvXdj2bcQLJa9nR+nruY/fTo1zLkX54ezFEni1DZjkJc+a1b00nIzJ+/orM8dMGYOfuDxnxFwdPuKcczrQ0BEk99Mr/K3t2cPfVcS7VUwvOSr7SrSKhVXN9lDLvQsqSF/9DDGlK29cVh8Vf7/udnMF25STxdOj+BLhj3eLCUivdYvKuw5M1ko7dbPsndLoe/fb0lYTYYaMWucQW8Sh8//RywD1AdLfjALGd747PeJBhM3Jvs9NlbSJQV+QSu+vhjP3/8z08u+ETskM+I+w+9gSXfpCypPtmIpC4EZWIqlt/Du5sO0fUEi/9k+ulGM/b+P9KupEtZWIn+IBYCIimWyDyZqOC0A0UmEZkC5Ne/Q39v+XZv2adPNxoqt+69lVQRcQLSCzlxb0eOLcJRrFCg+yENnobnb//0kao/juPOf4XJ6r8Vf3hCVv+OLVVgZyjVrQDz4CJ/mC1NVvJ+iYlefvOEfmZNBf9h3v7xyeWZNDJstFGjeLJqfz7vbhUMeCLU5/PDyqezpyKUvU88tB/94SiZDqQnCOkp2C46O7vKWX4r84V6q38+bz9JClXtaPRvv7HKCxa0rXt3ZB50JfvMnibvh3khT71bktVfLGDlp/R+T1k457YpKhsvOYzS6n8tSeY80X2Tt0S1q284nRVJhh8DhyRr/WZudM0DOZz0f/4VO+127W7FQ2Jvb345R4pTo3G/2f7z/4VzXEjQbn1K9Oz4RRO55AGs9T2CVz7GkiXjwYr9+7g17l030Q+VUdWdeTynrz4cH7eNhJD8DEnQfhw0WdiRZe3oleNgHA/+Uqhd9lcfJLffO/RnNTvE6LhPjRW/tZJ3Hr0EB7eAUYb9s5ysXqn/+cc7cZzZUkviBF7gJf/wbuSRA//8UDJ1WTl/c1GUUwdzGP1ujc7yXFBBczbfcUmULhzGJhhhbLQdJa6js8m6n1PFcb0X9cJ0DqnJiAR2aSfECadSn82Pw4NofXyi50WUMG1WnvAbST+i7P1C//wJ9shPWKa4KNl4e1vyGq/kL18t6HR+Knzxiqhlmko5xe4kKiueED3brWcCXshDs96GxFDHnz7updsCSOPmf/6auOYXxO3fPt5VB+YPambeFb6dHBIpW9Vf5Myv/+op//ThbNfhEaQwSgk20wEVA49W/z1rSEzsX0IrIa+QWKNlrc813ZQOGSh1wJ+J+5xpSedMtmA7JhHeiqMZsssrF5HDggd5r37xQqZjrKz1Tbr6C2zRP7aBIsnEOA9D2xcOl28KiTtWdG8Nid786dsG0s9fvkhm1ZSOsHC35yi2G7OcqTE9YaCGSOxCJyW7bkXuz9+lB9JPyRI9lgpUPTkS66yI+qh/iPX/nSnY/e8zBbNgt+NkHWU0WB0fw+/0q+jtMmqonzmphizAPHUi0daHxQJR7o2OUjUrN/qPU5ABlX+7j2yz3ruWc1+DfXLMCblUl3AKTsgDXz5cMT8m0DXZ7bgoa3swcvhpbifEsV3Ij3fUEawodrmw8/Gp/PbKgwZLTMtRYWEB8v6YU7OJoo6ZQWRBrvcn4hbZ119ehnSE39e5EcM5M729eOu95a0kYRk+UTh3fcWhtqw+eFNsDTQ0ybEAfNj6RL/ec70jxJNBECyTeNfcZov3vFVwUsuC7M8d7ma+dmWY6is3Epcd/OXxymrECbVODurZQv3CVAvsh+FSG78qNr8es6bA8x0TYmKz2/aiLEP++jBKbFss+7cI0d/nI1g1CBMWSCro+doe61B2dHqwnSvysuFE3Rvn+wy1+hmpoxgSbVkO4fCTLim0AtLH35eyhI7ZDyMp2qGR/eJvMlN1X0OzPWxIIKyYrX9cB+VCYhL/s0HsF9cTr8jlycP5vSn92W4HAyZ0onTPzX251F+tQcmkPujlOFhsHq7hEV57s6Tr+vrt9L6fwTclQrXtjUeVy4QI9GAv0sNVLZOJ3Mc70Jy1GJF+Wy6VrdTomPIDuVyA+dN5f7iDonPbsXhuWDdoRr+gZ/3jCL4+Z3/62EukXDQxwfN99RDUmHuiSD9IeFv5eTeqEzvDqbmycbdN0qTTjUeBpkrNiN90Szha+90ZXnV9JV5DjJIq4W5d38qmdj1uE9aYmgH4lV9xOVxan+4utxjSS7OlPr055bYKHwH4be6PU/2ZyinL197Cv4gSUzs6+jw7gQPrQEjikDT2x91b5OBQPr6Yfi5KySLv0MIT0nqchsBFk52fKtilgzB2e2WvC5x9UOV+V0iE3OWpGzLtrsLCoYr6DI76zCnIAi5xUszd0wItcvptIE6WHd3L4o9N4O2uSO0DlRr8ffbntPRkmK4tIxaodUi/1umOgt+3J/h0MNj0BXcB/Gle5G1UKqvOV3uBc6x/R0mYqmQRpO/x33p2G5111Ba16+bYyR9Kmj3v/05bwQLxuX+P8mtoOmarZQW8ZQZUC9ZzkbmYG8Dr6Q7vNu+8GwdxPqKwFArqbZOPPks3eYE2eaU0CE6Wz6eS3kL9GL9YVHa3hImGxoEAnUvdj1gkdNf/ZNTJSzBazs8LWbeeCAxTecK8cw715VklItjJ+CS+9/JDIevMJ2qNgJB4oiObzEGz4HmwjsQ3zbSctfuNV9ynD9QUTw4b9e2Yyduu0cYI73q9ow65g+XOCVFjryzp59kZYCCNUmd5WwkTHuYVMvFajYIc+B2twGrQ8m0vWObNVp9f1TmQtadyGbPUtELWDT8VjsQrcOEqh2R2Lu2ItMWLsLwjO33ZfEsV5guNiH0PknJKTL2AmFU+sfpdwabU5yZ5/T702Hy1UMQ6PcqSHI9En7pPSIPZtEAgyMK7EfF+dywUDg5P50adj5h0s1SEHOp/4kBMlXH6ePs9DPly8XZEl/KWzUuTZWCY2xnzODLWHFikiqUFN2pWjxOb3/1zQc7LTsa5eIqoYOggI8GDC72qrqo3vvM7w+btTuRwiwLGQ9rf4RgUBKfSJ2azz+0b5f3yQuomuwOaevWagumNMiH3Y8eGmnAZevP2SL16uy0nQicZKv9yxz/PivxBSLIewr24IySpLTbvukGEFf+wfGAb1hbCY5KzK+CRhX1bzr+qjaF0uQduqyhn//bn21U4vOvaqz7Z1+mu+E5WUG9Ij2jaV1YPe5nrqeE3WF8Oz70BrLJKsuJfN8mB2iqvurrSx9DbaBbJhEFOm8PIB4cLW7bGPoLQTRRsKF3WzeFNw4DaqcbKpATJDBsthrRd51nf0sFnPDhXuCzBTN3Ne19Odv6owSRKhpcupwmzto8Wqex9pPbTThOmjdcjFKZ9pBouIjZpRucgd6M9CRZtTd9OTTmhut+bZO/5RtI00+msPPq4xAsueMReWJ/gL763XPrppuD5vALWmEIwrv1y+Rqk/cunRG+NQB8+StyDYQoz9d+1Gi5CxWPk/byA+K/3XC4/kjfgTY8ntlf8XUxdreXfrMvEum9ifegP+zt877NDtc9bYfSSOfxuSnYP+pcfx1bfebDzjB1WJPegb/v904EZpwY1lus7YerpdAU4H9fJ5klWLg9CAR1TccC8snLan/R6IiM7XclBltVu+xxoBDFOgrG6i1nJ4k8/yf2tILikONFZ5Jkt8tL7QrWhzH12knYOVOp3g6VvaHbDdfNzQK/fCdG7UArnfX1P4fe8KyTtPpY/73KjBamxjrh9Hrmy+1afFtD5l5FD8yr84XyQon/5337Kejf3t6KG6+lrj8rrlIfz+v+RGD0TQmqnYNPdmVPwrFNP/NP4C39ZsAtgV2Up0fna0UVLIDLcJp0j5unWlZ121FS4qcoL7z5iEc6f5v7v/eHS9DBaXqWRwZs+Z2owtyrnv/X/qEFBvIeT+79xf5ThftsSGnBHQWfv4S6iuxJpNBbnLKxf4rYCQStj4qjAhf3utnP+4ZVs/CbElAYBKl14kDh+et0U9honu/XuSvBLb5M+4FRNjrr1DKq63qs/2GoEbDzJ9PCZu45K5VFV6Pb8ohoJdn/5fUK/oF9ItO4fdg9dDbZ+Iqx8QQ9npXU0eLEW031923V/+03B8hdjQBVXsktbqLBLqTByVteghjsjCY4c0XEdVAd9Ab4VQch3E1Xf0bnsJmaAclM3L4K31zEc4LuRwMPjl5Idf2B/+w0o33qjnDdduDRVr6E/frbH1tefuOdhQjN+GhTXh13INDPjd5yfhtTlw70v1l+v3a38DPPVt2F0jS8Evf8h5s1/hyza9HdQpUEkWO7dctJp1iv+6x1Sw803IY02VQyCYJhEu2kbf0CClEEexk9qgJQkPfV+DkTCVJJ1Pcqxu1UYhgZh3Es3Q5+PYxkg83A7jILKUr0H9egpKz/6t1/H8AIZ8k2Z4HV/dP/yocnzLY06pWTz+X4qkLSdknHjvPWSWpeB+xdv/CNx/O19fp2Bk4IrxQ3p9EmF9R7SUazHxVrvhZ3X2VuF6r0xn3AKYuTRG/COhvsoSFLhz6GQpiD52jorJXuw4cY9eDlXRJUEVjSXU518YsROi0lU9fn1WRZtNHQ6koF6edMl00mLRtgK5Yc4nXTwGffS13uQ7Zaa+ZAkyx+/383VFXO37hUuKopSsGzfwSK5ZN3I2bhBHdZcoq94MLspX8HyzjGW6+2tWyrleUXnTRFT3yqcUnwZ0xFmpfjgbsW/4VXFgVT+rpTYoRaE6+e9o7UjPyFaQfy+ZDhGQo4mnMVe2a18ZZ3HevWIXfn7copuaqUEkAYjp8ceE23fd2QLrhY+ahfJ/217xYPypp2o1XCZz/74afEWf8Q+sExf+XyAihe+jruuFfXmG6cWvDI2UuvmW/6UkH6E3nve6N/zeqF2jjtvNBRCUij8MfmUjvI29QMlSV0j9r5aEfpazxYXiVCF02t35uDFGozRlN/QdKrUO3xfww4rwRCi+fI2FhTjR0Btr9B00YkuKnIK2SDaePigLs+zCDa2nBM80Usyfqz6DB8+/2F5c2q7uWhGEe6tOxCT92J91OK8QkTrL+O6/9AynUf4y3/Es+MqYR9HUlGc2rdxI5YEDY7aRKC6t4wQ7iEks9vgJzxiw6TP7To7L/IfPeLuhU9c90nCBX9iDh1+ASGv4Xvyp++cVUqm7JoVTx4lfW8XDV4JD3SvSjyaxEri/ulRpH1NJJiD3ivchsWYs6x9KG6N/RXVz0imRNh1/uKI6qhkWLBxcmB1R0/52MLd8Q26v9w+er/yNZRbGsWyv/GZ+JQsGe78zibBVwrL5Z0NMoydY5BVX3TT6EtPQJpyoVYNYzhdPXUC+S58qPty5KRXYxARvwhkZOrnG7JTPjZwpiIZ42b3S37m3b3Cmyw1XrbwDOfYND2wTnJB95Zch9PvI1mIekVM7ctYsJEc7zXiB/lFCAWx/Pv+aAw1bpTF5s2WQZzPygsdzpjj27s+GePjjlb9TzxJ7dGsQuuh7wkbVLtpb/8fH1v5NPHfdZaseB0o1ZTdaOxKL30SaueMdNGt8USab0k59B5RMmkPPH3JJZw9p5CVdLKe1DRrPeQZnDhlY57xmG2ZhuZHo3rKdOo1mj4G6k8CFhY4XdXLOrvP0RdwXhws7xLjzaUSkr554AWx9EtH1NcXn991VQDPuuNGKVWvOhV3+Qj7JZ/HU5rz+iy3abbrwfWJQXGOlnCbBX/4u/INtVzcVy0j/v5oqb/3EsRqu+lR8ED5qPx6nAjpPe9heBCdkr/n//E5mVNLPK36Yb49aw8aRfuOzHsgf92/BiSXmsfIniPG9AFz6DhmEgke1y2bQL174JhiQExLICUrlRdAsv2+RlaPE1rYc9eg46O26T4rP6h9IF5EknreEIOxX8LSsXFgZz9r+k/vtoWtoeD36cmfHpi6bVCg2dvI42aN56n07hzafrYxhs9G60ZMwYPiloyjiF+cT6V9f4X7BwNVlWLXtZdNMcEgfR6rX/PrpjINNHilL0L34qlI+NMWpcDjbK0Iv0q9QmycoGXnibi5rujtUXsDNOePjnfzt+1WfPKUNf7Hq0KWbrg5zJK3lkvwdDzQcFz9FUWCIRg3xUHVhdz/yZDKIcODn9rh9vM1jjBbe5f+80NcVw5A56qcvCGrwgUJiyOfvcuTXmhLumF8fxzglboZkfSUu/kw73l4k6kmxupHsdi+Z+h5Vdi4kT55Rw+nX4Gmx8kapTX/LHZ2yEDvz/p/+eaQSxnQGH+omlLfX7T4V6OPxgv06hVJ0hvBMKIskTZ0v/34bClScpSzRN7gIf60aHHbOwZueMJf/LHJ1IICauPAjwVXXsrpkp1TBczAJ3ozFd1fvoQ1v2BR1Gc0cc65BzsMc2qxWxL2qdbLqOYu5TiHG8mnH0fSQH3su/EP31nBDUcwlJ9G6r/1TrGTga1/r2SPJ5+N55svwm/3FKhatAe0FMJpgS/Wx394PwvVUv35S9SrDwsbNt/fHao7NemK775Y8loKEDBCces8dfbDIYeKr73D/Oc0dKuflyqvq+yPl2fZh/P24RmykpQI98nLKrd4RxrgLheR6ndxx9htqWq5xMjD19EhPh9XXwO5eTMRN27zblAXhwN8rz9YzGRgc8QTD9XhbkODM027uUnumSxGaUL0FNcdNXbTWTbwsaeHKfyWi/44n5Xdzo/JYfe6dsvpHjrgLBWhDiYHxqZI6sG8W1+svJDlz6etYqE1X1DTj7f+b73TDdmjyon9+Jnd9DOCGPGNLVDHpGXJBqGr5KYI8bjNhDrpx+ujhe4SPkZ+1ZtTUt6Wf3xWyjSbiXvaATIvaUT0ejyy9lC3Z2jL+oOZL5q+uOK3bCuDSTWrp8ki4iJDcSmr1PM6LZwvqlTI3+YVEutibENqR2mLnA8uqI22fbhsXi4PdnjKsXJsxJJuD08RkpcrjTNtXX/O/Z+k2Ao1x8/ljJOZIeOM5DL0MCqMnd/0hefA5nvejpNSPMpepLEHH+AqauCoKunYabHybgMfy3/8jUdaA1OzOVH/J3NlM7kPEX7PWMHbTzywRpskFS7V1sASSWN9ecxJA7tc9sfh2FzLaWGqAZJJplEJubmcxjboZe+0t+h6rt2frCKToA7RBo9Rmelze9/Jf/l4FI9vioZjsCng1kwjwXwr+cPrsdOQRH8RUf2hQvPELQEMzQ4T/3n8JGxLnUx+ROGLul179XvxUD/BJa01yqs/0Rt6KP75u+PmUl0SZkdpI783HhA86hxi6HrHf3qdmE3Ed1+1TkbwHs89Xf1khLzIceDL1j6JXpGE0yAIAYS764UE7oeWzLwKZ4gt0aHu47Dt/vQlXDb1i6hMUn0+mEgMsd6xsal/GZvu3B2jNEYv4tszz5jVS08QnEgjUVP43Z+fgT7VNqUmZ+Nk1d8OsPRDqZ+613DmmmmE6y6+//E7f2HrbNL8OLkkAikJl1HIuT8/YZQwGdA6dVFF26P0G5U8MPTtn745PAqDeO/9ojd51jb/4hXtPYTooAY8uBC7uEwlP1yyd1qjzQ95RONKoZve5f4MfsHZf34TmiTf5sEpJGMciXBj7LVzI5gHPqYhjhQ0Ph9yC6t/RkyzLpPh7/39YutNzYlsk2m8Ppo//UEJhWs5b3EmQ7jndzRa8XWxrqyFODVvxJeecsm+1iOG616GkX6ffcJe2J9AOJMPJcW2YuySqSJswwyobQcWEk6PjAcus494A1mV9K2U8P/4pL/uj252HQzqfnliZRFfCUPZ7g4yuh/HP30yLfV1+cPDNd/f2CQHTotY/jz+W//tmn8AbzlE9JXvLffj9owKmvFYki8dm2IrFsEilU7T7RWHXfVa7mitxxA/dcWk67JN/8cv13xHu4w2wh0+b6kfP29SlMLDip6wibgH9TantuxWf/svfil5vCV/Gx/bGKz3EVOzzrJSLDYywOOgHYh6PNBkMMqZh9+8lyl+OHYp7LqB/9O71KFu57em+MYy3IrfP7+V7emnlotezomRqrTr2TxNyl89xZr4T8d461fJmnYAakomoGknmvd//OGhuhvGCt6w4FibCh7X+sh0ay6a/McHTe3Y6MPgy5Zc7+4LJXoQosXMnyJgbVaIFr1/ycLQQUJjMbjEcPN3QtfPA/uh2vzjQ+xP3+ItoFG0vlJH67Mrg0sai57l5oym32eyFHTox5UvXzt6zt4RSkzpR7XL2if3Gv0AaV6zHZVr6/hL172P6PIcFLxd+fakHxQV/W7PgB7S7NBNB5hGWAwmkINdGt0/Pvu0Tw0xEu6FJsTqCb6nwKDXdzclv7/621+9TfeDLKS2Wtboz78kCp26+RfvMVhcW1F19xVZT99lBj9yMYlf5rq/iA+9hyfHDLon8dQxeLcGPKgm4vly+/jNn368WtuBmruiRkv2vlZyV/wsXKz6nmlmI6KVnw1dZXmIr57QA/YDiQaD0PjL0B8NeO/k68r/1YQd5CsHsnRA+LvnY30Z9udCWesVRO0L06d5K2P0SkSg2NtXPtMeoQyJfr5SR94cu0WSjhMs8LUovixByG7RMVJ8mVzJvj0///ith9b6ArU3ThtOAlYWpKDJoQHmEZv++Od429Bxto77cutsngGQ2+X0xwfKyf1FDshhtSHhyqfHb3L24CRpHPVW/dM8PlwMd8c1aLCnnr5oksL/+YcE08xh01++2hfbmuCG+P6gxlyKDBWpFIdT3LHBq1VE7M4atS1AMvsnmAAtukhNTQ6YGD8fxz/+STxcmz6/N5cU1V8j+le/GJLJ66F8NBWNo3jn//OnOf8ZEpveCp/RHzNg4XYVOXj7VzKdtuwJXZxvxtSy9uuxlJgH4I89eWn+FjXFO7lCHTSUHNd6BG+pQgDKR8mIkfWWT4/Gb/yrZxJPiK7hsOprdDt2DfVWf3ApWqkCre8yYth63Y2htn8CJ2c8cZPdwJbmOHHgLDXBVafojIk3ToPfe3+kx1UvNNo0acqql6jrHHR/ECq5gj+/2uFkFo6f17QgyTxM4ya6/PypeeAJVj8Vc6ftr+tTrZIhRFxD9uNh4zdVWIhQfRYFK9La5XL02gn0Ub7Sld+V7EkSCyYjupAzCR4di7o5QuXzuCUH4/Arh/ctXiecX7315ZudGF74Au56EBL3FtUJFW+iqsgoPv75412/ON5/+bEmDpPOuHNxhgCeATWp6qFlDLnzPz0dCJOHZud3WcD/1PG4U90NGvh6LynhqTSwsuqVv/iFu3LVMFrrrwNNL7wc7MItMd281hctzmsFkDBRe3lvyknmOQsdg4wQl36kf/obRmwFqx7Qyp7c6xiqJjniJ6rSslfcVoX32TapcXSkcr5EXQ3H3fFMzifsJ2Pb1xXKfud+lJ2KdbN1aDxg0f1OgvfdDVkefsf/70yB/L/PFHiP/kz9uGX+dLcehsQ/7zeayjc7YYnsGIgpukAtsbT8ebmVMbje9KHpcW7Y9KpcCah1aalGHV/vtdbzoMzdku6lO2EzF8ctTMZ6r+FZMTR9+6aAvPU8TKdwndEq3wGGR+NTU8PruRjf6UGnaU3t7/LV5xvKK7CuQoHnw3jQJ7v4pjC0v4DYlegny3t3X1C5JQFGh+yadOd4Z8C3zxi1ds56z9HfZKg7icnIuMhZ99gnhRdlMp6u4z5kulm0kF1dYWx//p5t449SwV1PEbG/i+3PSmUZcHnnW6Lu6L6b1HTKYEG/E853zxCxj9WK0PGNgMt+EMJJPEsaGG/eJdaE7/6yv3+voMk8o3cVu/q8OxQibC91P/LvQxZOtO5ViM6PCm8oaVk/XkoVuUQVKNn2ud8zxT5DOwRfamjVvVvmFw8oKPK1JkOFclA0wwJ5Z8kjdxJ6NgVLM8m3u6cS8knVRDArnoPj4nyIk4VDOPuSHIF5wiNxm9eFTTHNGmW//x7wQsKtvlSZYKAjhy4UxwULf9HTfMLfz/bGq9CYeQ8Rgsk4UG98X/UlX+/xh2PtEI2Lj/78EGQMn/Nu7Y2TfnTWQ4tl3XQGPM1nP2EC5iN4GW8VswLa8tsJUYvqTfzGArpG4fyNeAe2B8sne+3Z6LORSTK6kl1Mg1+t+pMJ+RXudXih3mzw5cDSCdANb23i4W2jL8wO6r/4JOptMZMtPh8i2AxXPE530e0Eb64WlPUkJS7PODRhZbnDNSbRKBrZKVxG/zWBFi4usTJg+rhLXA72mX8juJr4ZMIYPeVEWgq8aNcsmezPxMEb2pAc3K4KF184puBaxYX6VVOiRZiejqyxS0SCtOrCpe7x+Pf+13jKy543nrI8XcIb9dzrAbHIUEc4/1wFd2HDJWP5nFXw8dUkqnvjSlbvPjw0A7rh8nhiHSPbo6is8Uyc6BB1tHqFAXTTOq9l8yrDuU5pjR4KLYipYbWcsX+q5PO7SWigB4eO/a3PhZMfWFh+BzTTUvM2a7zQfSy5jHE5jpGsqce1t0xVLjtr+wSJ488kiJjKhncsNXC7OyrZF3mfjCWHVDjEd4v6W7kp5+s1tdC1zA7Ee/RXND2fEKF0hi3R3AXYT0R6pYyK4FL1midhW9NjoLjybcKCenXQ5FVmq4jYS7F0c49h366TNg3Z0cmlN2jJ8N6IgIrDgVzN6OOP0b2rAbcRT1Tm6TqfXMbpH56oznRE8x6fRrjY+xvRwwNNmu1XMUCcNzIx32OdNFLqNvCo8B5P1xyFY1vuUrhfjtEo2Vs/nC7Gek/Wk8JRGBzW9YH+43fp23uOwEsffWnkXARpN7fUyHKe9aNRaFCNoUj1X+7qwvv29RC3vjgnqa2Sv+ukRtVlvhLzfuHDGTJPlZPrxqXG7XZjizdqEnBjnJNgJkXXOz9BA39xc+Ia97mcXE1v4Xa7NdQUBNmfpIPayL9u340pp7poYupRhDmfDlg4V7+y73fHCPSaszAH8GF9hOsrkN05J64dDeE83KQCveLsR9xj6oXjJgYRcr9Wqer3fdmb8IsgsLFL3NmDkAUW6kGfXg3eFmPpzyd3PILp9Ad6D6JV03nFCOf4y8bZniCZxHKnIeWTpfSmDxoT08XHIJnuFs+kNhi7S7kE3YlPyE0I+HAO724MBtYmSu6RXgra9neElw9v6uGt4w9aeV2g9eIDwfvzC1F/HAzA4Byou1MrND4vUg2/zIqI2Ruk67Eix+gjTz19bD6lv3war0X5JkmwUHLXbnlE5xi0IWypI3JGuAjnawCOG++JZUYfffpbr9yvVHrflQVrPvodgBxcPIoTvuv0Lx6XUcqoli6FzyJ1i2V3qDdUf96CcDBeNIZ2wN9xwpKEhjUfoEZ8SFSl88S6T347w1LfVXp+yl64lA9aoAvOxJHPL065bedjDbZ9MIl93tho9irKowsnPfDW3G8TFtz4Xin2gUCsPVrQdG9CC5669SRYCMtwHnZygTL3YRA348NwyVl+V87J3afvKST6PAWPBb2luz4uOTcmy/5OI9hLv+0//F0S3GmoXudFmzlRmVBwRxGON7Ej7qkYw/loFhjK6L6Qw07Mw4XI8ggX1HlEtfwlnAn3rGBzO37W+ZSvjlWvECuHhjtSewJDZ6eqz8DQwv3YfhZSzpNkBzL/cB3Mza2K5n6pACr+lo0sfG265lLz8l++o9pbtHQh9jaRPFs/NBa+XiNKiZsi8UNcXFPuWy57RebRQK6n9fuzsM2NNl3nJSrEWn//Lz9VamaSIPF3+mxPVgXXy8Yguo68ZKRlH8H1O70I/lSO32fiOnsk//2oHzyXcLnuGYbbkJxGxfA8fXIzt4bR2Fj/9t8yt7MEQ30HYnOWypZkGjT0Oh3mkfYy/MNHuMkQE/1a5//wHZbfVhqnLle7xU7KHjbpYlDTQ7a/wLPxYO5pRXRF50KqjH4kW53k0YP4ojpLX1kE7d3dUDsKIVku8lABC7No3S8Kq46SryLJ9LdEdauqm3aGPaHJyWpif2SS1C0vp4CHSqdqeivRii8tqgjtsfB5z/osbkgLnqAfxk1hjn6/8g+IKNdTJ1Qqf4bZV2Vet9/EpwdNX+z3d0KCm3Vrr66P/zvnIEKjrR6azMxusj8SB+4mvhNyZT99OuVxg64uDkdlm4c+c8vwqajjshD91prdsJ+SEeYw0Km+Z1o4XdiOV97skhDNLIJu3u+fE1CRHkZmPg3Efq2vwWaPgTqt1K346TfIf98szAtR5BfgvBoUnvbq2mehDtkPGSqMwDtUz77Q9ZK7cZDs0NsI9q9EUy5/HHi2vrXGj13yykN6wqMK9iv/+Ky9urOjYrz1GWd/+x1mX5N7uqFEVe6Vz4JqbhQn/Z1Xfid1ax9jCQac76h6Otg+Na5dA308pngS6005aNv8qDx2rzMlnzQLGeHtK9xPqkHJZXMJmao6d6mx+IHYr4PDJv9wOcPNun6pHbQ7Nh45cQLDXTK65ruwycTcQI7z+dE/vive04MIHOFv1CCjEA790nNgfs83anACTpY6OYxgXlIOo09vI8GP4Q5r/vvjez4jzklWLsfrccxDUdCnkhcWsDxrHrP9+PRpGl959Al7jdx5remWbba7rlWtnhr5xemEvbL20sQ3hzhLPur099A0aG7COApVMugzlo8FBM93jMdHSsNBcJwKSfhJibHQS0fTcZ2vfoqexPAOiT4ID7eG/Cic8ZwFaUL9TW3BOzhPVM8lqxx2acdDy5Fm5L790R+9o8EhF3kOdb+PuZyr6srBwbylo3S4f9jamiGCrrvB+j7e5fzc3u8wpRUhGtq/UC/bpyMc31eP+lMulpMnrb3N1/W0vqdc76TN6Qm/c+nT/b1M0LJLXEDaMZOJFh10tjWkTwMCv63HHRft/GXZiBzopjeMyxV2HVMLL/7L9+PKn7t5QvcR9PmojlWWR2huOL1XOjvLaVIlr/UeriyjmcsU4rnXgS3mElkQP0/92K38dD5eywBi3qGY23RJN2dU6ZGoxZTayi5mLAilRn47akauAj0n7HuQYihzvxxZNP7QIis+h/7wbbPqje6HAg0O5iUldhQ+Q0achwTLy7Sp6lZGJ8r4oEJvpZi4++CTTLvi0KM6F25UVe6GP22Om3oH5ygn1kNOk0k8T6oSbj4ufa/4Mp/HeZK3UmL9Vz+N0/u5fW+/HcGwXvytdwMPd/2JsMDRulwey/EK4ebrUnuinM/O8c6CfIxjYjTeLZl5lalwFO8C0W1b7Hrp4LQAau6QfWpc9XkRfldI6PtHDFq6yRI0YQGFM0ZUrUAL2ZOYgTxJ9oyz3WZmi3becrDqKaJO+JtMbhi0sENQk1f/5rqZpRJA+gmscVzGis3DbslgxX9q8MfJH8yQcXDLmpzau59X/rbCMwDvHDBi7OY2maJCEuFKUEy8P73qfd8F8Bs8U9uJf+t8UyyhUk4T3MQX6Hp31mr0bc4l9e57U5++v5sG1vlzJiY/i/rwh7+ufJkwj9tT2L8ETULWvjoRPZfqcrHfdEFvTZEoyfetPrvcb0Tjadj+43MLqpMKyLTs6Z8+WWv+LXKuzjKKeN91U3KXzv/ipc3Grvzj38qx2fbUuZpByHOjUqDFqL/j5h6VZY+VJYb6YtX0cFd+yeTIogZ/ekBhp4Ix53xOlfgZ9ut6n9j8aJQzsOxkUox/ave3XxBTxMM6P/eKxuskO1D2uzPxea5nzDzCGT25x5W4WKFoulyYBJ8bnOktCiFkd+knyfvYHlZ9pybi399LzfKje/FodyIMP+cP7yh+bvedcOR/HnpG5gvLqXvQ6bhWFErt88BL8iBsRqIcw/o86idpjea06g1kXbcF5sacYzMnHWukWmgiBFtat50FOwPeqzhiP/hrVwnyL4ZTxG1oMBOtGyO7qKWL3LhE/Rptwv74INJjnmqO7etUwBCh0T1c8eZETZ0Z36pFSL/zWN4+tI6d3ckAWTYRlk0l6ZrZUjHavJlJtfU6y5yYhAMhnWEUC75F0104qkqhXO0RlrDumLVwZ3T5fHOMFtHoth/ht8BziC+UBLhl87vbNbCU3kzM66HXf5T3Hfi4d4e+zd96RktMOJDjYsIiMWm5HNLMgilYxH/8lGr+WVMOO+WEN2EssqUcZA24GmnEeME1ZLvmZwBethdqGvXDX9674wSrHie62Jmok/IkQ/HLMOh5k0Y629fWEwKpGsiBNlmyYPZx4BjWCZYn9dhNWxMZaEHdaVTi/SGcT9KAIX9+9//8rFmrm6N80ZhNzJITS/Y+lndwtbNJ928Y0KKbzhPOodzTQ5Qxf7mrtgTy9ZwRw9hZaLJtpKEVr/Hn8z7p7T01RVCj544Y9e/J+uJJMfiHfCDGo699NgukALjW86ic7y2a22t8hej2DPBmKt/J8v5YZ1k/oZS69WXomvpz5uQ//wo2Lz1kU3goQOiu/wEAAP//pF3LlrK8En0gBiIiKYYIiAiYIKDiDLwgICKXBMjTn4X9Df/ZGfbqboUktWvvXUnFpEN4Iq446zXkK98tocanRU1dPc/IoWpBbNe4tPw034d7uSU+0eN75H6P92FStV03821ldDlTJBmeUId/fhMbwkOGTo5f/eVrMeFlBw5kHbthrIerH96v7E2BEYmpO6q6Z8EnJIh4u2/B+2JMFXTNYCJ6cnL5KjJnv+/+PTBM+rJlzjX7m2+8bqYC/fKv8htPV2CXkOrBAiAaJ4tsnnDg/BI+EhQsuy0ui/vQjqEhySCclA1Gt8UrHehweaC4Kd7MvU0obZcqD9ShvWjkjz+7kyWg29R+6OQaFu/KZBOpy+Fz/ovHOZ9I8MPPvewd3U4S3g/4Pb8nyltXXEiuha7Lg872lv8Np+jblWihWAtm6EbQTiOaZBRt4oJpZ7pJ+WEtUMX/1iazZDMrhvz28f70keXU63B8J0WOynuwnPeskXY5WXkM9mfP2W6ncnd0z0MEmyKp8Gm7Kgz6yusEeT5rsTj3WR198eXArY9PLKhSs53x0Udut12xg50oIfvl70/tF3TVXN7teN7eTfWK7Qt7tFs9HQfvOIHxUXfM8Rd+ypkiyDC+pgP56Vl6LJ1ImfUaVYxlmA730FZgtzB3zFx5Lh+ejyQHwfvYNBMfq2JakeGsplmgM1s/j26fYFtEsz+I0WXjt+/7/ZyjTzaauO6ulTvex68Oq4XyZh7eQNhd04eN0jE0qLCQX+1wLzcy6vm+Z1tnx8P+4jUNWJvqSAd9URkccYVCHmqYkHz9+uMvqJgEwKLvtnzGF02Nr3mJJb9qXOaFQwNRfT8wWxofIUXmtQStCgL63XjbcIlvQQljRMzf+KXjY/k2YdFHmASH9Jkuq9fahGOe2eT2rFk6vOLWgWiPDDxohpMqVTfXiPzVFcPsx819hjJYfeItc/KrGva++LLRrE9+/lfKVG8TqfvX0v8b/2G347r68+fE16kuqnWnCzCMcUOMwfoUvZAENZyUZk+wHU3tuBlC+lsP7Ke3h1EXOuCm4DBPt7/FhMxjpYZwUdiuEsJ0MHR/AvcsVcTZ4Xc7+YI0ocEbJLI9DkvEuvaLoT1bLTNGpy1G49pGcO3oi5jPg5ZOoXbS4LbqCB5mfte/Vq7/85cZeR+TlG1Oh9mvbz1iaAvaTsvggVGa4JhOkMsp41HbwXP1bpn91cJffSADJasSpjetyFl02lN0GG8j2VlrZvC9GD0gLbOAxXdh4XaH3VtZN2mKmXPgpUFX2RjB5bvfYFGyP5ypyA5AWuk5+flpTTq8dbDqBpF5vSLOX3UN2ioMmZMMCh8LclVg3NYK22xqMaWrbB2h24qSX70g7e/3R/bjt2yDc42vZr0B9crzqei7Lh9//kPV2gQvo21pjKQPyx9/Im4xn2sV03Xw87fxOtMW7XQ7yaXybESFWPvylDL8dAJotY1OXOW5M1ZnkpyhXtCB2U9J4sN3pcy9wvML+ekJNvMVaHf5iyrhTk67W69GqETigrlWuyvEOb8go8VnemeyX/Dynnpo9oPYIacciY4cO+BvuD73WZ7PcGyPkdo9gBIrJl7Rdc41BgqSTcfipBlNqN31v3pNLAlmynnUUgjj7En8gxihYdQlCnP+pmD3tjs86gNAySxMNquobSc7H304sPbCfv7V8mZfbzDnGxZVUs6Hi+/l6HFpVGJpK8yHQHpS9Mm4SXn2ubVTJH0zZB0ijYpxnbvD69s5P3wmTriL08E93P0//X2cVstweD8OCVSrtUa027Nzf342nE23xbzrl2l5fCUNKJ76YWTx5mjaGifn53ezbS0b4biG17AqSd+x7fDa8qX7WZ8hSBOXWVb8damIAxvmeKUT2qh/fA6mpvFxe0501J6FY6DeNW8gd/H0cXnq7h0w2K0iNsLiXM8BQJvDGZjbioyPk5UnsNj3N+Y05M0Htw0x4KMBdBmU+3Y1wcmCqMQqs/Hty1nNhRv66ZNNX2zcVXHe1jCvNyr86nMbvizh7aR7Ysmm1krDliaImDVls95EfInhvG5q4UKVOf7HQo8EMCVFxIN0Jqn08+Ot5bWjS7XNi3aUj/rf5212A4S9WmILDiXV2NYIzGIQ7mKuHm2MiW0j1k6Lw0r584/iQ7xFknCWB3gR0Wf27OePsnXy/+oJe3c05jPDsjff+DIQnZo7l/70xaptTswWPhX/5SPkuY8rw47XhJPZWtnP7yX7w1Y2eGTaFKr7x2Jz/c3gKF93MJj+maSZeyj6cXpKqL7JZyqMytGY9TJVxz1ymFFqlI+VP1jgNXpBdrM/PT8PhmOr1eRiJ/uiO3yZjOBh+Ww7vveoW4mKrtzptCaudr62A9lIOQI5djCUJ8kY1prbQX5X38SF1bMdZ78C3o/vFa+cYJP+8aW5PkYlqhjtcPSvf34+ffH263L81H1lbVgF0Ul4cdn7dfERNgIHS7cuR+O2BEBF5bkkENdL3lVSCoqslDq5bcx3MYXHs44mLboQ4j9SY1gYtgXk1DK8vF7ltIvr1ARDU+6/eqMxbV+pCdr7rhAyFIuwerx0jPZGaGGJCZ+WrfamANf9lhE3XJZp9auP+TcLsdlv5tQ+yoG6u2oPdis2r3Z8glIDMRtKlzNf6Ze2VqrH+/3J9p3SuSXuxlh138nASL7eoCHhJYWq2s191onDf34xsj/gkuS+/bpdlMsiVK1DfvWXYhQgamCzvhEKx4S2fDqcbTitEoWyZhKL3swGRV3UYcUs2qvtpEnvAL7VmBKj1DAfD6apqe+LEBD9pjjpaN5ZjM73ubHI/P0DzwMJ9FvwpQE1P8awbesIWZJnEjfaivz7029K+xrZXmqltgudxocZLwjZRQ9j+vAoAEf2b7ib8z+HkzihDxt0cg6OiPPDWqKw0A8qs2LSFaPXLuM/fxuGFKOV3t90FAj4TTzZPKbTQWscOO2MC8HrIix+6w1+7+fVU5fO9d8JuHSmWNnhbTE0vj0p5YmfqTLXF1fXA9ORYJ9lXC8VLZSSrhb+vz0F6L/3FIhfembW2X600zmpKJzZzAmgsdOJm5EPgRntWeCN15SHhq3AunxUDLvx0ZjUvo5AMeP09/chT4RnAnzqGmaS85ePdVJVQDWlIDsYkzTH4lCBj5qObBJt1y6foIkQnC2TMiIjY7BXHxGp6gAMQPO/x2c7S3HbFi15jZDpb5npESecF2CJsLEf8eAOetgdklMDl/10w0PxWISdvWIi7KuXzwg/u2jcxmMDVlB57LD2Lml/Vm8BqjWhx6J2ZLwLrkUFA2xE5kY+DaeH6WYQHLBFvL4a0oGwiMIrag0sJvK2nZTjq4TberoT66IsXBYdbR+9mI8IUReflG5e9watQiMnuPYKNB1AEyBNNnsWnIUTHzuzHKC17xNxs7YJh6sTDxBVnztuLO1rjN+tZYNU30V20JoP6rG3kuDzVZZYaTfPli/gCmibdznb3p0hZOsPBEiurjoWjZiFk6lGMXqtFZHoL4fxNpdMHy7o4RGsZ7wYNseXqYbdTiFekstoeldZCaP6vdLluKuNKXW7SumCxYnp0to2pjvlHQRBbjDN/s4dNnOigGmyPdON+41Pgi47iG80he1ySWulp2tgMJ+XDTGMqDSGMAgxjOJ4I/pujVq2lswIzrXZkU2gOG3ZZO0Zcn2YiMcv2K03x68Jyt2PmZnI22LKP3sByflyw3S8kFsWVlmnuOXjwbYPYyim9TKwoD7ELUkWq1XBT5Wvqwvb4gSX33c6HOp39ze/OJ2cdHl/rhO0NH2TREZM0nGCJkBLPdsTS9CpQZdZ24H7dF7EtDuXT224mOB5Zsv5OsWHO3yvbQP0ad4wN6LSpQa762id0xbLy21hDG5Cz2iBsgdxpAKlfH0tMVTG5kl2T6bxlQp5DYtBSokjjgqn26DD6CquKdNHu0nHixnp4A5SQA4kNIyxeZ1KECXLoeq3FcLpfi1AZdpwYOb7tXHFLksa4IeHTHb49kl7CWwZrWNzIqTsh7ZrKE+gLVcVMS+nndEZcWwhzfIuzNW3K2OIXF0EkwUS7g8vvRjOx1FauE/7xdzHveGdktAHBNdmS6yzLRT9Oyc1aPspptxa5QVldWWD8XxeiFcGojFuVDcD/ZiKTCvPd3dgzzEAZkaYkOo5utPwOg1g5pJMiHZeFF3gphl829hkdrPeu9P4Opjg1M4SZyTMEN8KVqNK42Wi0vsQ88msvQYUN7+TjWUwPmTDJQPv4PvELx7PdKDGS1LFKE6IZskmX14+SIR1W9bM15p3O3yked/uwnySZw5BO10kwYYtczJinm8V6kPWl6DpzZkZxpCjyVINCoUmnbFQrcqiFl7mAJpen2lW2feiF5/jDb4fyaBSZa3dqRMuPlLTdYan0W7CzmOCBfd1vWN+36xD3j7jGM7EXxPy+vCC13QjgUbMiBjGoHOpeI4VWGW0Y5uQN3y6bC0f8au8IlGwrtP+9Yw10NXxQ7alfwj520A6nBrDZlo9ITRugjBCUv0U8eITj+lYCziB9XrKscLuj3BY5SRXbr7QUuWc5GkdLrmuehQ0EsVNFU5qn0XoNO40ijCMqPbNLkfrYdb4K97xSTGOmaJbI/qbv3E19y6+u1nMNvsKp0MdFACNuADmauG5GBYZWNAqbs52yg5c+jbsCR2ZeWGR2gIfadA5ytmlMq6llVEMIeURZPEpISZWWmMQzK6BqFzmzLTQgYtDJQOaFoFAYUIs5QunseDcxzVxLmFeZNE1keFyxikWLue2HfKXMCgxFnRiZ53XTkvTLZHabBN2tHvq8ky6CQAlEvHqWOzc8S18JvSpbYU9p7vb8pt3FmGOhzneTYOOySGB+7rZ0WldWP/e95jXVyxgnaTTWxwamGqyY+7XqlK6C8Ic6r3U4Mk+JUV97eUK8qfzZlvtlLoTetYCiMS8s92+/PLBTncUOeSiM+upgfG9ZGAjuX+ZdP11OWedmDm/9Ug0Z5W7w0e6PWAhxjemryY75cLH8UCTzA3DgeKh4emtKKSyIxMiaY3By2v4UJyWSsRrjBE1NiANbDl9UXUYUdjRz6ZB79tmopJI5/vn1FsM6GDr7Do6ozvly0RDv/VnCOAX4vm4lkAnrYxVRVjxrlYjZ/ZcSrpazvv03+H2DEn1fpB9KivGtPokMx4bIpvxD/Urxz5DWBCVGbezWrCabkSwrhQTR1kk7kBcUYZn/RwoauQKTY9PG8EnEAW6rB5dMbl0X4JQVipzBGEVTjf1dkOWJh6x/Hgc3NH8JDHCVfvB8pSaXMKOHSO1el2xuN334bhHsgU3ZpfknJT3kL0NpKG7L53wkq7rYgiz1kdJnJZ4zZcjYk929+GSZhdy7063YmTXVoL2eBnoAg4V51/nONew3gPRp/s35NlVlCAKtx/iXb9xMVluKqLltdSIv7XMsE8Cp4NtWz3pysO1y4/GtYTxwBlWuxMUXZMVZ1Ad9812t3ruJbfMZVB2wm2+v3pyy6EaBNALl9FlIeJwqINWUFbuoqGrl6kZ48O4+n/xt71XzB30Zz3v6kJXsrUWV4OPX0JRdn4/ia2a8/3owiUBHlsj2V23Oq+PGRKAZVQnW3O8oqHwzmdkiiUndklaYwxf9xzkfLVhBrpOBnNVQ4b+qkh4nedyyPJrZ6+Ju47JrYHAoIdeVlC5+ArMfe2+7pDXwgPeznFFNsb1WHSNaWBVHAZM9uhyKOZ4qqGSng5efi4dGtXV8wa3KO/o9BtfNdNzUATBZrgYP8UkQ3NT+726Ifa7dNx67OUa5UH3ocr6cC3mXtgUkmkRzEXoRzjIgyUjX40/mAMdw8aivEa69H2znTlrmthNO7RdT1dc6k/ijikNbOgaw6PC5sPD9uPkmjpZxYVgIhIuOTTxYXGIGUv6VuWTSzelOvNjsnPPTTr2ahTBzF/JflkxPmHDpspn4Y3MuihPl8asH9D9o3hMmxZyyu7SXBmTnIiQ0fba4fMyO9gfDxHTnLQIORfwBGfbWbG9sHG5FApMRlx8vOnqpWYhXxy/ExLYUWNPOFSoHp91BTEGnW1c8dCyu4cd+GZ0Q6dluXelLTPP6q0KPkyb+fW0/uj633g4sauF4215lNSL+cjIzMdTqVjOHmh8OWMWhat0vASdBdylKqWM6caYLPMczfmCthiOaCqdow16sWdEj1mIhvUKV7/8y1xLFdvJi182JNGyILslEVqqHjUMMx+lY8gdLo2vrQXcrBBeN2ZkDL5Z5jBabU/Xt+jq8vo4nyO2Uo3o9NEZWaC6CRRisKEHedbk+UfESKtsjx3vhWUM++/O/PEZsr9ot4KvXlsf7duVx/DWOfKRZW0O+Tmo2ea8cdIphytFX/dByI5vnsbkxqMIpmNs6Vvd6u1YpgR+/IeOibYrlrfPZoC2VWv6w39uqUsBNPFs0TF4tPN6vtx+P8/3z07/9M/FvGXsMvO5yXh5AuD6mjN9uu/TgcbrCup1F1HO0ksxfkKqQLESdbxAp6874nCRwczv2cwf3VXb1w845s2VbLEghWPWZ5ZKn9aNFtrXSMe782rgYmsvgrHO0uGYcQG8O97ihaQ5xpjSxIZAG2xyO+JbOw5B+oAtwS3B2aFqR+1aUKginlCBiIzTO0UUyGvv/PAk5FJ9b5BOvjJzvwurXd7jdfeHn5433dHQLrkJuS90zOHruzs+nzVVhtcVaGYeTIPXcJXBDbqC+cp2mb5OUlT+8ivZ6ru0GCXnqiFxJfvkSC6ewcYv6WC5E7d4ZW3acEKwseBSOT5zJemVDgs1wuBFkU2SlL1Sur86GejxSyJuvt63dfTJBfD8YUdIKw7uaDmvCq7NcUnII+NzF+amAk31DHZ918twwNLbhK56uliZ4334fjiFhSaMBD9PNvp8lglGn3OyILrY2mgkwlP78ceZ7zsp27FenrfWdlSc+d00uWUDjnRmtB4XlfuuBStRbrHVY56XN8R9uIrgXeQ9me+JMaZ1PArqZIcBc1L2Coey7ge45CUhDk63Ln8vG3m99YUPVbeLig+nQM+Rf8hUsp1uH4Pmznfuxbh7Y0TTd8gWcBWQflirGL7OWEyxqorK9yMaxAzWdjqvbwFRt6yY9bwlSMKxf1N/+WvCC7kYK++D4Xtt9kQvln7bfa9FAz88M1r5avDDp3iod8m0mH/YvopJvJb6T98we7TevFsJnwaixT1hO3zbpdIemjNKis2dEKt8cL40lxL4X2Vkm8+QF1PZywLcy7OLl2yq0WS5oajslItKRWk+GFI/x0HpD4VOjM9NCbmXtQOSxRKotHm90g7VvQjFt7bZYVoobbdZ2jKQsneJJ2j7VlxcIVaqc3GiwvnuplLV1z789NcuWRnpMlbdSvnhlbaQuDEuj98EiqdO8PLxJOloZo4Gz0hVsHg5fYzJe65zeKm3JS2229zoarfzlXPb9MT1jqM7CWKmqecya+dmufdiUo7fCtT49GRuI1v8fVtepb940oN85fLcjBI46l3JrHgC1O1zEitRuiiJedrt+Ci8FhoqosgjtpLk7nhkkv/jF2T3SF682393FnDx9mbbZWGhSdAHR30dPu48vwrqquSggfJtPLx4fcJW7CE3f/wGq/N4TbKRY6SObsC2STYZ/bn2sj++YxXyteXwCWS1e7mEkctKDimVBAyHxVehylXV+DKmKEe8T3qCq5XZUk0SLMDjMcPrT7Lk486JFVj1bUJX8dc0xPYaAFxV3jJydyM0rQxFUQy0dInbfUvOd/U9R7nk3Vlw8k7haNBmQH7sSHSc9cmUx2sZDtWoUqpnYTsxD2sIpC9jtsciNPOlAGa9wLYJDHxUw/n++IT0ROuxUozmJ4ihkw8Ww5sPT7nkqhksnnbDttXDa/lxubkBzaSYbGf+OCY0l2C0vj3lXSQbXV5LD+gHgRJdXbxd5n7AQW6Fr/Me7aPbx1n7gNte5kzbCy80zXwJ2nJZEUNPCzQYVe2gqGdPtvfPQtHLT99Up9duy7y7tzKq3HlJ6CKeHbw8eEs0+xs+ZGKPSZeb4nyL+F2E8zkayeZlle20CnQBrmAMxLa2UtHlL2EC79qY+MvjIeXD9qOs5/XJDvrNDlnQry10jG5Phg974opVctDXrpl92WlpbcNV7kYm/PBKGLPMZY2hCX9+z+ngnRBDn6IE4Xw1yGZf0XCUnKOmaofzdc6vTTqe1SiATmy3TPO8V8oP1zSBo61lmGtfIxwt51vCwN0VIQPxwsEw7DPM652ilHctdyXTg/l5yE8Pjd3Lk9Ei1ur5fuNV2sPwnKA4BBHRVunF4A7zciTHxMZqyDaIR8/4rFzyihDrp3+a4SmjOV7Y7CeFVJRMBwTriYnj3D7o55cioaUL+tP3o/Ssh3kP28C2krzlPRGe+ro7fGNmyEFQUMMsJYXa+pv9+XHdsokhExn+e79puooUlPQWsN0zzN2ZLzkwivzGzP27czk2FIBKfXv0+/rGxhi5qon+8rFJuTEY4txXLyhP7LLZ94jxF62VwL25zGLJKRz9l6Ago+QRFWqv4D0NOlsVoyRhOuOuO13rUwK9Gnd4WHtLdzo4RxPNeIxlO5TcuY9GCZV0d9i+/wQtdeNRgqRdJ1QeDu+W7o1pAmUlWfRzFQqDZ2ZvQTFQjdl9sUv//BStvdnk8Lk/0BDTfQD2YcWxzMaqHcZ+aGD241gwbZyCt7FPYVHh/JfPU7ZwcgvN/gLucjXio/bhA3q+LpTt0qFo+47dBOiZN+GlutUL9oWNB1LVr8mmf2mtNEk3EQR9fWDazCdmPuBB99qTP3xvZ7xC9zJyiVcfj6EosJuI3mNYMtPsaTt0n+D88wNI8vP3Zj90LUULgVgLkbYzvgaQ2kdMdjvuIrR83QE59xzw4u5GvBakWwZY2d/xsi/3xdhLUQPFStKZec8LNHnH1009qsGRii9Bb1ezP6T+9ISXri78K8bjpM76fn6frODh86vB2OyL2d/oWj5+dxQZpMjZzJ+Lr3ZtO+AbXZn1QYs6vR9ydSW9YqyIp5s7pWanrJdYmM9kpW+jGcIDRUqPDzgvj6wdf3hkxnjB9tLTNyT16fu/8cTia5un08n7RODvBaCDfqtmvXn0QUHJjip280mn/SepAFmahldzPhd/fHvh1iKuBSmb/aRrBo3Ur5i53R/SoTOUDGY8ZJvLeZ9yORMrNOdLctBvdTjjtwL52a/Z43GrZz/HKH/zwfYdDcJRhGsJZp8hdlCEC58Ym/sqib1D7ORJEKVMyNDqRW7EuZpaMR5rqQS60I9s87LMQtwYR111bbMh5u1rFOOyGh0Q1sqabf1wWVAsyiVoh+iK160ktr05nyNNpUQl+HGz22GuR6A5P1D0Lj6cPaR3PZ9pK7HoPLx0TD/J7bd+6VNaN2m/r+oIZv4131Wn86FMTn/1F6Kvd7tClFIiIXUT1owsxh2flp82RjN/ZnqDDgWTr6IM3zYxmZ7R0fjVP1CdN3cqKU9SLPvaqxAJVJ/MfqxBcZXlsF0PV5bO/p40SZEEVb6ImDsleiGBOHRqn1L48Sk+85UMtnuZYcWRrWJgxtFBcsr3bNYTKfv5B7/n37/rU9oqWaHAJZMi5j7PrsuBtj6c1+KH2VSu0kljUgzd4mQzgk57V/zpjbXkvdhRCyZjwlWWAcjXhhhAj+nIVLcB5SMfqfRqlLT7+QUv9bGk/NusUefX5hlkkwVk36hROh3ABqic/Yt+PGwbIx4uDWTykRBnrp8M10pWYH8kEf75tewVlA+omZmyAJ0qNKnPOEDt8TSwg1/n4ciXRxlN9jHA0kLEBT8+R6rO9QliJzpN+UmXsXIcxJA5dvMJx51x9ZRf/jGfUZl+yepyhqlsLaLV813LrvOaFI1pexKKTHS5VVcebNUoYYnWOsaYgKL85h+XaPMoOHGUBn1euvzL9+1cb7HR1ocPHcuvYSy38Vj/+AUuj+U3HT8D0UBtVye6mOt3XSmpIoiVcyK6sXn88wuPU4WJy0Odj9clwmjWxz+/3uDh0RfUWa+yfXpL02XrLm0QXjpgwY1Ht9PgGvz4BfFe9YlznlQCNKIKdD8cBz49sqJRf3rJe2xXs/9sJWvZDsMZPwb3Lz4FcnL//JXpXdUlKL13YIZihu60NW82HN3yRYyn8miZq7oy7DhBzJ3jqdOcb4zacNdSwe6HcGivCUBXMp8ivyfzveS2hPjT4+yy4y2fdFPNgPb+mQSLcVtML2hiIOR+ZftbdDWGydEc9fpKZYZ1U+TTKfzoMOdzYh27BWK5G1k//kHSu+2iMTLVWDFlW2T2bnUxuKsaCvp93rY9Oy4PqnWMjpb/psM+N4yV7aoxcgJpTXBX5213WR5r5J6DEg9OavzqUTHKws2DHFAitUNsXC3gC6fG0vz9dXBtS7Qd5BudGnRo+4vkKmjm40yPGUfDW1Uz4Gk9kROKzGIkycpD/HCTiau/TnwEbwWw1geJ7C6Ryfknniyg6OYTlw1mOmThIoanQRa0Y7HPx6vpRvB5+kAc49xw5i1Rhn76eBd7ecGf6vsM6fO0JTu0vhXs5ZYTjHFas51zb9yuy4JGfd+M6U/P8yn8+PD5ykuMJGmT8uPxVatzvsHoRtx25vfyz1/G+bui7TT7T3AzyxU5H7snH7fHUYCEvCqiD6Qx+tFQOvjqVcCcfbErpN57UJj1Lx7UOkSDEECHrCnfYAWnW2PiGSS/+ilVnVWZTtYHCTD7P0Rv9D6cmuEiq9bZPpDzrJ+YYOQxpItAoeVOxMbYBSBB0+0E+i47z+gY3Zx/enHG+7qdHqaRQZcjh831VjQuaqGD1b1///P3EOwt5KO6o3J1d0JJPio+Kg5+RGzZ0/lqxs+fnmfHuLWLcWMaPmTpOmVGoaF2fAtsUlJE12RzOX/TbvZ3odagJ1t1m7d1mZw62Cknlf3eh9+Y0KAZT8jBkndGHUguVZZ3ezP76Yo7JrQR0ez3EVNtb3xeP/n/t6cA/ntPwVo6qMy0xwYNk7OIUUzdE7OE1HDHI2cxrL6Czg5C9UZDl1cBLKOtiJ3yvjCmsd7GanzvNYbzlBkTkWMTersUyVGzs3Dy3hpWC88o8XJN5t4z/JbAdgxtrLq97I6VnuXg7doLrc+9bowZv8bw5nhillrwcHSHBqDO6oxZ6xt2p92+yoEtpg19J5nX8uYZz73JH088iLFRjO1sQ+XlY0u024KFw7BiN+iD6cucN/4W8w0lAmAt3FHJrwnqy3Ejo49VYvasWMUHs/gqoJ+OQKz1jbrdwbLnXsKaS6zWv6bTpq810IMsxeBvend8u8sAfZXgRpfV3nTH/dNMIEzogYK/ObgrtpUduNHcoRd0qAvuHNY6aq2vwja80viyEXEE4Ss1CG5Mq+WufC1Rf4M72W+TOBynCHTgJ1LilSZk4ah8Lxpkaawx93y5tOPaUxIo1XxP7FuluLR9zznV+O7IfvwaRae32wi+3acmbq4xg/t3zVSSzPRJLB9iNK6y7AbHTb1nl/RpFtLFQw5qnG5k4VP6uP01v2rgeF3KjhKgomvuwRkuU5PTdfBZ8SlqPwH415PLDH16t1zT1g8otqNJDkOdcm41XEQnLITEMEs5nUrKZbjq2YLCuWyMFq6igFh8oVi264n3x+Qdq7UrvTBazh5ou1zUaHmIBYK5dHVbwcKyctCkBS3WG+y25JBIyLpWW1yg+5sPq/jkgImqJ9lg+x5y72XL8FUNlRH14rdLKmwegCMvxV+6eLlDl4GAqBqSeXyI0dWOflNWtyMmzmtXhv3rrugoapwT2S8Hm9Ol65Qgs7ohXmRPKYtwLwDbPU2GuZPxqdKSHCRvaTErkpSUHstcR6NQH4nz9J8hP61OGHYna42VzTULx57ePDR+DgLT2+sxHc7LJ0b9d82Z1XdjOpySVgZEriXbGnLO+eft3H7xSN+f3nOlj25IcKkfPTHl88DH5Vf1kJf3ErHVrV2MuTnoaiGec3I4rT3O4vhlgZz2Z4aj8xN1ixaL8M7P9i8+2lFfboSFIZ09KqyOljHpsd3AedgPVFrfqDFFQe+DT9wz8fb+NhXPzdWG2tLOjNy2ZVsJdqQonWw/8TQ5V2O4ql8dFsLk0bVRv9vxOdbmumE5w/Jm1brj/eFjNBzcjvZtenOnanpkIFzQyJzkvkGDsd4EqtnaDtGiseTTsHhYIE7TksqOl/DxNnfxfPJFTzaG76dsfC8SEPNzRkhUTOG4ik6i6qr3nO0W0QHx/XtD4Z1HNtHPzaLt5vWCjtB9yI29rHT0roEPz81gsvMdxKJLki2F1Rd0Op2LJOV1hQb4VhcbR1JrpN24tyxorVbBQ/E9tiN+UA9KNduz8Bo27rR53RNYP+o7iy/Zsx1ld2MhYbfZEa11Cz7pjtehu3Z8Yt7H52IgbiRBmn4MtvuQTbjUFDCR4rhHgp/yEXWguhVUEF/ZfuMdUG8eqwa+m5eDlwsrSydjQgDuRmBMM3XuMm7UDfKGuCEHdW8Y/NkGA3A7wFQWvn7LXKn2lac995bKOjOdfz+pg5O4GD4y5lN/DJQf3jL3+7Xaac3WGqxuIaYDz8JCahfgA8u3mGxkrhVTL/uiKg/FiTmG2bddrS4m9HX9L1UGoUpZVRwdKE/ti2mta/CVlnYTMh73gqrj1Qr7g76vlOGw7wjuPgYfLqH2UOd8w3ZDUYUDawYTFmUZM+22ICFfnoccVkpywaK3WIZjvBpiNfKeLzzIFTYYIaYNftCcyS7rynRcEEmED3V7Zr7h2E7D4mwpG2ILZA+voaBHt9ZhV3g6O/FzUdDiiWtgG1wyvTA3hUQ77KFE8U1G/NOHU9phrNi10tCFehnab9gZAmz7E2d2f2rREMVTBSLkERWN1g+/VinkMOMNHhHyW6596065Reczc/bUN0Y6HLKVeytlZvvO1lg+QklWdt9HTqf9OeHD8rHzEaYJIe59/eVTvGwSqF6TTzzxo6F5vcVQbolH24lpqHutdQ1W4+5ANsKj5/05IR6Sv7FDfFK+3XEv4xh8tROZtzgaxoB3E/7NFyGBdnKn6yrt4KCJC7YVsN8O8bmw/vKrZSfvkKt+7UGuL1WyeQxfPmgCSlB3tzSqfJpXSA/jooJpe9qRzeG2NcahSWOIzt8zO2B/mQ6skS04D+5AV9vttv3iMLPVF7i7Ob4V9FWdRlZaQ76Ss9rE7VRpQQZctTxm3WKvHb85m5AJuojFStyE4iW0HyB5K4vtcLB1V/vFUpvvG02Itt/YRv/DmzDpDuSWH14Fl+/L4V8+zDYfozfuow8wKA45rMAIR7I75aAHlkXsKGZ/+AV5EvjErXZROm6EB0WNdHiT7W5RG9wedhOQ5hIzckpzYzypTQ7tm8R4cqeg4Hbhx+qhfdoEr8UiHBNh2cDju07J/r2uOH+2yQAOeQIdewZGUxtLW8lS8cS2dbdJB180TSCC39GpWC2MPkJrD2xKlxhpyzpl7X4QIDasFdv07OayjXmzUCp9c6ZVHkZi4V0Bnjq+kg39tLx/3bROXUSO8cuXaQ+KWiJ93b6JFZq7VqqutxydlPuO7QpRDKdrsDMVm7kO04fq6A7282XB0UwbZtxfUcs1kU5KLJ8cZnydzmWH/eCpyZC9yYHYW4OW2UoAsteuTHew02bLBwnQuhYDQhSRp+9zsvOQeupskpqmyrtXZmsQ0Dti+mPrtVOy2+jom1n1zB9jo9sdewfl5W3Ljs6UF3P+t1Ue3Axy+vSeMbRPtwZQl0883V5mwdF4qNdzPmbXRuuMLv1OAEW2LDB7B6Uxqa+HDAvNY3R5kRqDk9py4PzV3n/jv7w/Ygw+Zpt+2pW2O7KEOsrMv/Ckv0NDGqqbhWQ33GB55rNi0NX1j98S0z3kxV9+b94RIptj4YST7V5E9OlZTEFzWnf48TVf9za0mWtU0wlFGbjnc0x05PNwkm5fG3r9HLHdOWNFf8/2OTjFsiLmvP5X4vYIsDjurnj9uWPOL6+l9ONrbDfzR2pr17nGvSmYu0d6Oyljflafau8x139v3ZWixgFMzwyxs1wKIftcrFwxjX7145tFp3qy8osv4hjmoZVov8ogXXce23xrCY2ffmOp1SP02YxHfGVeTwFku1uHBa4+wvacmTl4p8glx9rEaLitM0+xH0HG3LIZ2y7IHtq6K4k743+BOL3bEtReIOF0xrtee00mSA0QFuI8Tzs7fNyUIPW3f/mRdW7jQ6LeFTLzp5BHuAfkjFlCiH/a8do9dBHCL3dk+7cNIYdJACWTbk8soNgNB77Ja3DIHXDZ9eu0q55fUcFyZWI4PhgfpGjKoVakiI7hbgqH7BtNcDSXC3JwRTWlxsQBhMVwxVR1BGN6n9YKWiLhxnbBtQmnfbq1APvsRrl/YKjz7scSvlttT4znfLfcYNwf6HuSOR57w0DTIVYrUCv7zg7HaVd8udoGcNr0S3K43CPORLrxkDI9CLGWp5r3YK9LMKe5j9dheUo78XYC9MPn7ZqgH78Q4V56HK8i+LTjIxRkWLbZjj32j4C377BQUCy8G8rd3TLkzWtTQ/yqTyTmY9EOZAoGeKwqQrwqqlDPFtMAn89Dpmu62Lj85mABtNLKiFPen0Zny635x9cW21JzV6bwUpDwrt4YVpJkvK7RyYK1RFTmkoohlrQDQCWvEzzad98dNjjr1PBywCzx46ml0ufjAe2SNzkoT62QsnNswety2WNFGWLUnXgv/+UnfbWnBr29H4JCK2dL23F1dJeEpo8//qupb8OVnMeng/QUFWQ/65lGSY4NDAu8p+KdfoxBNFIBXu9bMOPhpx3DraVDiYWWOa3cIi7f1QmFpayTtFqUxjA83g+Ui0pCzP5RIPb7/UPWShJsybKdOLr7YNe3E9vp376YQkkr1VlPsv1r2rTSLfFlJD6uLkVWtiwmP4IB8jM/ElOZ6nbaykRG39PjQcUkVFwq2DcFNfwxn6N818Ywx88P78n+xr2Wf0lrKfJafDLfVHL0YVvZBrgaLyx/FYGXfLEOwMuZRNV5PPknXknocw8NYp+WUzrHmwWb5zsk9j7L2998gK7sFGKPt6PLrje3++k9dpAdPOMldlC85x1F2tJOB3KNJ8g2nke0yzrio/J5U/A2yYouJc0yVp94JcJKLxjRnunO7el+V4G5HCJ22txad5TVg4UWb63HYlx3fJIzd4J7ogvMGz2O+uH2fEB80V363i1sd0rHbwmhNa2ptDzVaNKenfmbPwyFNufLCAWQJ76PZWt7anvFP+nwjNeYGeadG8NG6waUSm1Oi5m/867sfBgs5DGz/Tz4j/+jdnH1mEPTvbvcyzhBP3zWVp+Y83fYKpCLcsKsjtC2965BgII02GKewXzOFl1ziG5IIuYbxmK85kcdRU/ISLzaCSk7bY+eOhGzoqN9btB0v+kYVtXdYDvNGlredLtOaRw6EiNZBW5vjXsHmnVXMm/FfDTJu82ANsQR2H46Id7eztcK2etoMXdynIp+875R5akGK7bfSb7Rl0AEhEpSMDL3xOm/lxdV77K9Y/gRfXlXPV+i+rEqTNdd8U2HtzTlSDwIEtu8X8dWXGT2BAKLTHbu5vunJs4jdYw0m8zzw3uSPTM4MUnFy+T6CbuYvS01y18usSpnYUyPO8oRXO/SjCcWGj6F9wDpHqbMuh0/abc6FyJM28uOeMvkETL/bpsoP49H5kV2kE5U0W0E6uqJl++jGE5Pq5EQrewtu0cnkzN+a2qAgG+Yt4jrdMj0h7iOPfFMAme3Tfnnrd+Ui9EwHFyFXcoNkCuY9Qf7PR+V19sBws+3YHaCumL4iq3249fMWo1aOx3LRoPl8RyyPUrP7hg0Sf2X33cu+/Dh0ukPcG9OgV/Hognpko+S2qvL3Y9fpvTsbiTYPf2eOOk+cXlyV3X43vYhVoTAdf/i+ff/SM3sVvrl/+gpZAy3NW4li3IbLjLSGdH33P3pNwT2x6No5k+lXF3N33oldfwU+Rivvx04n+hNXGmLWjr50MGkNiaxF68s5L/8/OiThGy7uSHe+7Se99hYMnPr8cyn/U1KkNFSnW0menSX+94+g3EZKEsUMyuktHjXYGADMwOds5Z94oUEp6tjz/h6+fHbCcl40oixUZac47LNILEPH7qomMX5Q1OwgmlMCLl/vXaUVqPz05v4h3dV9F0KSjCt3sRc46yYzupBgi26AdsHVHUHT0orRTvP5ypTlYTtyb8EcA3TL3NMhgx2zBoKfu8/yU7/HorRPFY13NbO3Edyitr2I3g32Frel2FvM7iTr2ySnz9G1dO648NXLHSwGj0hWy+S3XG4XR5gv9MWF+isFd3+RCblxESVpetrkbKf/yVy4tDl3djzsdGOuipdNMS2jb8PJfrSHDTzG3J47Fbpn7838yG6nt9ngnbAYN7vZ0Yy74uG9Rd1KOk3b+Zep7KlP381li8OXgf07k4deVWq8hG3zOmLa0gP1ToD0KOO7Vy246NmyxY4ev7Bi9Qi6QSt7Kn+6hER+6s8UG9Ldwv0IE/pEGtKSC/Cwga/Ex1i6rs6ZRFXKoBVuWC2mdjhDw9g1q+EfK/fsHcvtaCszceX2bOeGqrnS4IykDWym3Y0pXjTyXApF5QKO/4OB15nlTrnKzqeGtKOLKkcxTTCnOnO7h3OftcDNdoiINo7err9bpoeSBO6L3GW27bg/mNMUBK3wPRzkYSDJ4UVfFkdMLN+UtRvnG8C3XK7JBv7Prhjc0011L4PMZ1+8U99AUP8kZfsnjViOw4kM9Vxqyzmz1NC/vG0h5p2m5jtIld1+U55WfDTj1vn67SisDo+4LM/MaI1oeh2JmUCfOi+J/uu2KdyzN4m5OhNsJCtdkbX5dSHRBq3xMivZjjO/Adds9qmkztN7Ty+JWhXpaXjY0XcKU9LHczDZoPlqiyN4edHLY32Seb5L+bxslEFyRVL4v3q8ngsLFhzbccel0J3GZUcEVgax8y77nbheM82OViSOjDM1Uc6ptpHA87PPdG39hD+/Df00+OjSbbtKK2bB+rupsY8zWkN9ovXX/7Bsz/Izes9QOXzqjGNvh7FrM80dSTNg0rtXjRGT4sD6GTnSbaD4qIVit0agrZLCM5TYoy2eTXhMzY9/eUHFvMoBr94abgl/ckdpaDL0exXkV2/NhAfr7YGkmUfWTTnz25ePz9/jLnusykGPHxvP3+XRYMoFP0xFi3UbNIPzlafGHH55j3g8UUprdSCp12wi/7ht2f1trF0L5kAWC5Ndjtcmnbk5/f5N794Mu46LxvyiOHrBl+i315m27KA5aDam4gQgWjpdJrvIp7xYB6fyu2OSzVBx3Wr/vv+dTtSsGNdw/1QI/TdzDXSLQGb3LZ7zaVRywJ0vXWcbFZ9ZUzOg1EEtzxjxPLllP78tZ9fgLmjoWFvxzH89G8AxG75J16Iv/oNnh7brhg5m/d88MWJYVdx2mnp6hUMUamxYGsP6UpR/QCa9+izvRXYxrLfnf2ff4gXi84w+o95FNUcfQhd7rf5/0g7l2VldSgIPxADRYSEIcidKEFBxBkgICjKLSHw9H/hnp7ZeQGqqCK9Ol8vqutlmuJBeue8TV3xOK2tU3sXNOGT4Uy6EI0BUfchb9k5Ycx10FwdKkU2d5sJn3xJWKhG4Bf6QhbSIJqOYDkGOoT8vnhQVPdZsKwcG655EmGONC+Lfus5aPhJTp2zRpdhrx5zsOqDN72eai9YUmvCd/z6Yu26l9ECNuoL8M/5ixX5XaO2Mp+RLO0JxWrSvvpOfkYSkNWwIPs5VMB2nNPqN58pss4K4j8mcqG1fG8eU+wyXaygduE3ynqMUOHWk3UebTBz5p3+8e/bCGaw8gPCb0wl4GkMtxB315iQlA09a9KqlH781dW1CkwWBjtof/MrVrZx3U9+6upwrPuAomaja3P/VjjoF++eusfzGLDp2+nSoEVPehI/Ptian2MJ9aeg4CNeDgED4tGH2mDfCLDO5ZrXfeI/Xs+teRy9yDjc19Hpjtd8C3x1WO9hCJQNRhd/TulJHqsf76JGRQRtXnkdgFlZUlXH755/uQjCfeFdqTEsTT8qEjShbs5PD27Otbb6qd2ffrrGp1tGqb0d5KiaDJxkNk7H0BQiGGiBRI9fU6xHctNKKAjX0YN8cNcWOO84cH8gm5rzjGpqkzyD3Q6/vQn3XToMZJLgNnZ7alaaCLq9eJrBcQNDepsyVeNZ4JIfT/bE6PBapnsTh9LKG6iDZD7od3G7hWpZcFjBLwNtT8XadQ5gRvG9sgI2A5H7+QPyNeV3SuO41aFQdnuvO/uHYNVTHd50Q8dXt3oHTPL6QeT7yiLNyiMXPxeTv/soPjgBmnd8b//yPMLWvGzVRx9KybvBqjp808lUzAa8lrnzdo1boHF5tT5wtHJLlR+PHa3cl1ZeS/bdTPoff4Dx86gQHvRBME3DM4bXtlm77PSobl1xM/zmA0688Y3YORkT6Nwy29uHMa3Hy9n//vgS/b3/Ei9hAl6S5npgm3jpaCJY/vgFPbR6vjBMgkwOjXkgm/X5S30wQlios47t4C4FU3t6m3AT2po3mXkHlpCvJYDs9kVN8npqv3xFNg9optojwcE6n2P5DbkzdjS67pBcmQRWnuqx1T+yX7543uUWXc/HMshe58GBE0J8HE7cQm0SZTA3njN2JSFHfzywyOITVqFkLNOP/y2SWpGRawywvI0PB39+Yv2+0NjgmwQLj95/+oaYtlt8OCW70lubyEHbt7Yva0+uxmj1a7O+ffsQPMwYa2cmrH6XS6DlijpVQ/PTT2jbrd3rLKD2yx5S0tyzEpzcJqd217fptO3Oe/DxJw3nj3oTsKFjjUzkM6aHva0Fs2gvOuTc0sTX+xeCD7srB/nUgwfFu5FoLAyXC3SfpoHRbmcigYrvDArRgeBjIH36OWxlKP2dL0ngELtoGQHaLJyoMRwyjehpfZEvVsioVups+cuHbqdtjc3YPaCtXj/3cOVfq14oaLJ24vz/dgrk/94pmPTLlTpX7t6zJmy+Iv8MbZpXzdgvqVQcRGD4Eb1HFVom+BR8IHbdg9CrztXT8DweIeBOC7WvUa2RsBViEKrrHuA5rWsWfm6urL1j5s3Sy0mFPKtyeLp7LRHV5wHsaCL7gK87RjZxUvXfpOtsKEkIU/3Em9oUbY4uUPUHItBRUE8buOeAGKUz4RP5iia1iQaopreGiHl+QWwpsgFOyJ7oQUFuOo3gnsFtxCg9lAVf054JFVTp60zmM3v0C1P4BN7ozaUK20zB7G2nHVCs8wHrjnQD7BGXCWTu6+BxiuKk5AL2JTAkyVlnX4pYyqUmvDr8TDjDfQBWH5MKsDpTqHP5yD1rHceDbuSpFCe2EzDr4urg2gshuW8iWi92YQ9QVOcS4zbta6K163/8rfqgSG3qlGbNksNF0CLC6PahsQ8BexisBVnu8RaD6VsXJkRB7OKHxYVr33eUwAh9Row7hQeTdK/XO8HpjE8j4IMpoNYeJod3gtEj2SGaMj0DA/VdmtuluvDhp3ClOvqKtNC/BZjbD7JBA3qNuiCuQTc6QwNBmctUI6ahzZZoN9KOVD51hMRJWcrbFfxs6IdQ/btZprQ827B+pRNWnRkhIc3lEA6N3WD9OLR9Gz08F94i28SxUZB68MPhC72noFAbj6dlpudqgMIVGVi9CCewGCbeS+LpOOJTV3xqWqjRBLLYnD0wfc16TCsxgY5l7fAR/AMAAP//pF1Jt7I8s/1BDgREUgzpRcAEwQZngoigiDQJkF9/F+d5h9/sDs/y6CKkmr13JVUPKx2TbvWGbLPx6dhfUDp/zeqEHkgg5Fk2OmLk8wTlt+Eh+VvPb9hZJ/QIhz2zv2ptUi4EDqzt544cXmvmj5Nxw9vCDUyi6UJY8buiG6riJRLTZYHGn7WQzkDE94MZ9jlHvLuche13gomYN2/g/FfUApLn3RfPN3dbceUyKxD3KGQmKYqOX4o5QPbtQInbaK+YppvVLB/tHWGO/lzz0SUvQT3P9x/zjqnZSd9AVOBT9BYxduUyn+XlBCD4kU60YvWNudDHF2imZ0WsT6Mh0R26GdpdtmfZT/757HAiIaz484Olle2k4kMwnLWmIokZrybyp6cdSSDv3T3dTn1Z8TQXT+p599pT6TFzfxSYWaNofddwszuc074TvjM88FCzfX2X029OtzXwa6Qyst146bSTmguKL4ZIbC3emD3+zhiE5zbGvDvxdLhSV4B7vf0wfHu1iI00xOomQkDDpwLxFNyuM1SvUcOTZVnx8rwW3KV3TtLIKP2hu98U0NfdRMx1p8VSWG56dd9dXsw07Rufkkj1UPUcH5TFyg9R0T4J8FyfbBJyN+DjihMADCuH8nWnpWNLUKm8lfuFael5Nofmsz5BeZJXlMn7qmqR4ZeKW04dhdX5iZhiVSPY74tIt/TsVBN7HWt1iYcsgO/WnF/hLoDmdTfJ/t1P1ei+ZIBP7x5J4EdWJcBrE6G2m0907SgyH0sf9yi543aJRxvO3rebB9i6hcSVeMunr246YNddTg7sl/l9sfSKe8eigUf/YVfTXTqtlnPRN4z02ozFtDcBjsM6IO5TC/3f8TzmoBV7jTj5xY7Fj585YFt1hjkjescOnkChgBIzh5iVz7QqzBQsJycqZVYfT94KMpCdrUbrz/BKx8iLG5UJ34zZtfDrRh7/FKhv3Qsr0unmT8MtztEmMwsWkDir5ps+SeBv6JkK56D0ecCilVKnckvC93odz/melEAy+mQkWfd8if8AWXtLmd/ed6bEji2Fy6UXyN7wV5wxeRP8PS8VivfFn9ZELdHKhjN5Zum9m4LydAKaV2emnY2XP2nP/q48L5lLAqvg5k/d/e4QznPNcG2k8TTyVf+3n2z3LKk57daKgtBecinqBzllx9RZwRkVB3Ko37d02uiFC69iqzB/OdDJDEe+gNZ9D8zbPMSua02Zwg+uBn6V7J6OSljXYNl7j/KpjPhk5J8VRMfVkWnO7c7ZmOmWMo/Dj8pkGHi/W30tOOmHjASz6vMZ1ZsZfueJLvFw1/GVkcigunNAZxY9zV7cJ7JCtfFJjlR/V9NFXmYlqJJE9uVNi//i6Z89MP1UmKbw3isRaO9+Jsb3+PWX/ZNhLpo9szRRND+mbyRw/h5LYrya2ZzKAwVQXOeApfPRqKSS3ww0nOU12a/Rjde3R1qC7tATXpV6FY/vOBAgT+sGq79LZ9J1dJ6V3UsfmcOQVs29dtegLl4qM7Tx1E1X6kqQmL8LCYzDC83X/AbwuEkD27mnZdbFtlrBOogM4hjmbI6bXqaIbtnSDy19pVPz2ZykojlWWF7wyfyZo/e//zfywIo3cX9tYUy2XxKQDeXMbqmLZE374K38XplTOdsYPfL7E09V3HdT7rAQTmJQ/LOn0R7yu1LE7ZHtiEPi5d5Qriz5HI9h2VRDV/U5WDiiJEg2hfm3PhR4xoq4b5ubw3cj52h89TZ5PJ5S90toLsChqyLMvUxEf/ERHcqUUoUmM5r41AkQzmNNwTi8+Njz+KRkwbrDzwLFJhMqd1b+7Nd/9szvRPGjQI7OOtsfVb2TSn7U1EYyz2SvNi7nzu/WA8/9hOxe4jqdNo+9gGpbI+TmM8Pn4ydtgBnFnf7YMzW5xUsKwTenzKzUazzl3aFEu61woBxf3/4sLfP7jr7aMkfaa+bcv8dQ/fOvSJDKrneqQ7L9preMeezFUk7ryEFD/JOYGb/k6h1l7QwF26/+xTvu/I49bMJPjNfTdUIzW6clCgtuYYTWZbr480UJ8+zOjpx1cacUdqYa3iiTSPPbdAotcYQlfmN+8w6cu0p7B3ptFWavvlY8+2mpwfrsacxRvMQf723pwnT/lQxbH16NoBqrP/9ixvxD/vx4xxj+8qM7Y62bhaIo4EZjjN9+k1eCHTYhRIfhgz8fx+BiKmqFap0Ekx0WfMa/ryHc1GH+wJtcNdEEripAXPGe+l7n+MU7uyaA76s3c0St6lrlFDUgFYKCufnrfbpB5gi5WnvMuUX3anx5I1Uvgvemm7G6xtPTvgvwnBpGbKJTzhu8p+DaYcqOzNPN7gKpDJ3VRGy/OsR+06zKWd1kesGCp3f0N1+SeyCoZ5PdrMSJBTqfFJi/xZu5H0y6BQ96oHWfA3H7j99J670ZwEPUT8Ra742UK1Y3w0G79OzQHGjF95fAQ3MJM3GQvOK9mBYGCjKtIAlxq47P70eAYvIsqKzqbfpb3XGJ0qYrllk/H5/azUFBMjr4hERBZTL1udMU4fBumU/Tpzkd2nuOwp4cieHuwo73Y2VBdsRX8oefh/74OEGpzojCrHZ8Kq7rFXofyxuzT+37H75DafMrCJHpgS+H6EbQyTYhFpMKs7PsSUHx07vhv3zOFj6ELmwrM0v6/fh459Aj8zzIeDoVlT/4t/0Iu610wOOrmip+D8IArg/jhSfub01qT16OrjArzEqf3By4ybV/8dw/KY9quujvHE5jS7GikF3aGx8vgq8ze/hziF1/FOTcg7Xp5sS8y6dqTHbeBSXVjRHXMAvEm2sWQv5AR2ZnuuZL460RkPPEJ0L08R1Pb/Ox2l5fP4G5j+iXjqUOLgzZdP/Hh0b8nQPUyGFOnDU2uNCWRgOUBpicQ3ZGk7j9AfzhV3qus4rROrJguVpGHGlfmEwqvQvMvXVhWMrv5h++RQufIQ4xTX9Sd78EdufCINfNuUGMyi+saupWYt6Vnrrx2hVvVGwgY2Zo+/74DbeAMIDDjvYmQ0NxXQMcjN+Z6Jc47frX+UqXe7Ez0eUQzGZ5frWM6jPRlVI02Xp80q1Cmb7UBOZ0PKX9BY5roMSrs76b3P2hgE3X38gtG/10Tsa188dH6Hc+5ib/FVSCcrQ/xBVty3+fNKOF8Ns9mecf3n6Pz5WD0rvyI+aZaqakX3kLI6ElcfAz5GN7ww5IlWXitSd+l/jSurA/yBMWl/gwerhL4DEmxoIPzt2Mj18N6kEJiHYRb9V46VUNknzMyBHDuhsf5qTB/eZSQvz7MZ4VWVbAb6MP86ep8n8maxpIJTskhn6qORXxN/mXv2MUPPl7rYwWkmgR4pUPLJ4fwzCDWUhrLETrezVzwXK2fBCOWGKoqIZAlQyInTMQPztuO/beeQaorYiJrWdxxy92WKiygzRm++3MeRyqgD6b93Oxv8KnZGUmW/BrkwSsZpxnW68GYa/JjHjiztyEg+vA7bz0Kaivvdlfu6KGXn4QZni3fSd1Xmcg88xkvDnLL7O/ETcHq3wrTPMfdtdnsxTBrt2fGOn28zKLYTOilM9f/HX04I8fyQiYgin6Nud4ym4gIXbamFShqup30Ji1Mky7mqrkPPLpSjUJ9jtbwjI8ZJ/vD+QNt2ijs70y2fGw1X690jyTAlO2W/nj5v6r0WZ3X3q9HrWYl1XrodEKz2R3rXeoK9LeQNhVDaLppE5Zn6crSK3rGc9JReIZMeECyapcZm9ojd+GSdirp8/rS4hxpv+tz6mdkX6TMes4X0sypCD7f/ufjp6dSIpSRQLTn0ked8vzogWf/9MTGr8ZW3X6jD9CUik0x1iSNWT72YaQ8CmkdHtmDmqRKDDvaYfdYNMSq5Oe52y3bRR/CH+ZBrdrwtlekq4+3S9nJtbXaWTBnOidOHRlDcUxdf/FMy45RaMW96Int+DUd9N+N1kq/0VP2l7pqZr9N9QQr5SZBIePyGel/o2oEpwf8YmoVMPy/tUOHZc+AHub83ndyFC9byMJ3PQVc5sEObga/TGbnQxzSiLRhUV/INb7+Y6X/O2BtouNf/5J98yuYVznCItnrlXTRm9cGPiJYRHOfswep/cJbD/fUMk6Tl1Df8YF+oRKbMdWPe/m1GtR/wgbFryFVcxzLz2hIHzHLP+Lf00RCuiPH/3pA5OsSx56ZeGX4a4L454FLUa3650zd+XViFW9QOE7raaFr4HP5uPoqFvnEpFdsZO73un1lbrEa7rgT/+P/2wXvkuyU/LsRq9QCmSQS/svXkxSsHP/9BHmBajz561iX8CYbgPz1f3GH42Iu+DuPhahnVP7g7p7JQoe4gPRhKn02d2MG5DguPvHZ//sAazf80w3J2Z1Ai0OI3pl0ZdZMiCzp/NJhte1F+lUxUEn6fjnwGJfLJc7vZKKUjupv1ERiZU0DLWnZ3j/h/8I0mrE6vYnKbez5RFPqOeYayvFhc+mfjLT/AX+xJtjBMHKMIi+xzKam+ZaQzTRlmlPJYt58W7e0OtSSvb6y+CbOrlTdGVn7996l89rtA5CgzzKSo/H2fgG6CiUL6a5dRlPVf5q1a+8CchizyaDxn9DftWkv/xtsjn1Grg+tBfTQ83r/vQw5PSqj0dhMsz3CqcUKf09IY45yWha3Z0SRpXMtNiPEvqd8uCN2u3LZ7dhOqXD9/O6/MNPxm3pe3kNPOlP32EmhC0fU3UX/cUrsvv4VTo9BM9CkodtzCxT7Pg7zGr4cZLT9d39/elrBbLrX06s512P+YXrJ3hU5kzHZ6ilfds9MMwmvjFbzb+I2cTKkOhmHjM+lRaL8Ukx/vHLg707doP27BNV7OczVfXORGyiFIPTtuWivw3o8yCdAId3u2HBKVl3tI9+Htq9zJFpfNiYrQFM+ctXTDdS4v/xD5j0LCe7euuZ48uTKbzuev4fP6DVVoBHBNHiL8Ts6YVjMGPHxRDj5U7bY5YBmIzZ7fml1R+eQTG89ySvmOfzh/+dwfc+PbFtCPx+mdeMLO2bMKtKbzEtSvcCSzwjWKej2YxKrKEsa9/Exe8p5Yl1t8CRnYjh6fTpRrkSXOSJcGfRZrCR+M36EUWKgPGsok/MRxoG/+x/9zZqNJ29n4G+5VEmwde5pgIt7BlGV9qR/bVzU1ZzuEO4uSTkTw+V7SFPkGvqETOW35sfa5D/xSv3Ee1jHsTbCIjj+1QpX6v0T4+EuqhUKi18ZFp3ewwLvsObgPT+9HuXMvxGWfzTb8wZsmREhSdyYq8D3HHtuL9AV1oGe36KR8qtZK/Blm9Kpt/aTdUY9CTAjx9yrEzeu2LJ7Ckovtdf8qff8x2SJHjudzLdiu6Y0sPxpqEDCny2v+4kc8wVSNBFcN+EfAo1HszHsYDVxRT/4dtBXb1HtSwMm5jqbZfyU7fcTknTjAAdQOK/4JQcO+lWUwsJrA7oC8Oza/70eZ+7FUXZ8dax/cVygZ+XPoaLvjmOZ2GE+vZ7kUPl+t14T2IN7frkwWLxofvzQbIjtOif7HFxlYpPHgEA/22yU4cmNLhDNyKlX85UvMDg01pNLuCez4joL513XF5mNTqyFbH75nGuBHGfKGA3ypfp0WZAn7f5AMVxTle2HPLqpruUAdxr9MHSQak7uvduF4ih3hMiRoVPs9RtUe/cD3g67pduP1fjDYPruWRHWr1a9O8LzLipmfv+2enwk2YDmldiktj/RCmtm30NneYUeHtU9ar/02OsrYeZc1nv42FQtz3k2rPEU6i11XgjWqb+5ef7j7tda5u35h/+9IPbwRToz7uAZq1uTH+DjsaT5rXwp8+ZEdBU7ERUo61zioi7lg+V4AoXC0y7SUh8zWpe56siUwNPWxFsbIJq2osvGVLrfGZ4OXnETWHjKmfqq2Sf57M5HfA4ghv1Pp7jvE/Z0gRaLSWloGoafNIJvfUS/vJjVnAnFZp7UCDP3UzswN9ezCHfanDOnQdxd9O3Gp2bIgGPmM+Crd/F06BuKaIUY8p+qd9t3GBbw/K+ietZMuLXq9ogv/9iQtKjzacLe0Rg9nGAuzIv0PjHZ9vzQWPWpylQv1ZkB7ZugwgpEPenjVyV8DzhNf7ws2JOjDc90HLWye7y6GJ+DxIM2Sve0K+dGemiz48orqYes1jZc37BnQWE6S6x0mfsz1RyV6AfaoZF4xOa41cM8V/9iWhLvBYSgbsQqe6G7felwrkhvDy1P/kWC6p2X81pbJSq2I9nuoG7jzYXrl9g1ehXPC/62/inN1xjRWXWw23S+SV8MmhMiNk5ZCJni36i0nLUySNcOf58ftI76lnkkd2JvbvZPJStGm5OCV3VBooHIx9WKI+eFhap/+nEkUs9Ytd9z4xtGvDpdkcRuhvf+7/6x0zKF1W3nmL95//NZ30BsqI6MfTt0efHFK/Q8jczrK5EXPl5GnptHpiYH72M/+wHlvjM/vjFgi9lMPm+Id5apX43fGkBe3k+MofOb7+XK3D/9GzKX45gTrvIcECdWEt/i79IrZ7ksNRnmH7He87mdSFDSCuF+IpkI0FMCw0OlrqiK1pyxIzybsBXKiumi0lR9ZNxDODgz1tidice07f1m9FhR3bEUN77ePoYerGds9uDHTZa4nNR/MjIxY8nMa9ZjeZdPWWq51QuFdJnbHLIJwNtGSbkL5+yGzrnSC613TK7g6E2Xu4gPDCrKXc9QP/0t/vNo3jsppE3YtoYf/aMZUux0nE5hQ3Px6XCa5kOaO7YNQS9057kIdCnP3seu4BqBXdmrTSb/3v/lXSLmIYFvWuWeti/929dlAZN4vcuQFtcdmyPa7sb0esXIsPNCR3ClWP+butjCYpZpkQXyNvk7fQr0aoNCyxJ+8KfnA2MSickHcvgezOnRe9Ef3runz47nHwxW3w6IfGZFuZc2k2A/Fy6YukWKd28O5UXeK4vNsP3dpcueF8B07wRssTjjv/t/yWNarJLxqyav2Z3AjvSAoLdQkd/+s8fv6Xcjl4ps9rEg+96+BI3wXk3/uXnfT0ylu21rusXPgSpfLrR7Xv3TacLO4cqqWpEghMs3TRj8f2nxxPTtLd8PjflCp7JOOFJIG9/ippHDbVtEKysVezz9nm/K3rDL3RzUGfU920+Kt6xIeSIumM19m0+A+mnNUW9i/1h/n0oHArbXuKJH/+C23MGGRGf+eKMzH59OUrIsWyMt/AMUvF9/ljKVVSehIzzt5s2clfIxRkUuppO9nKnPrr/1e9YsNTzmqV+BL/4YeOt4wzmWJz3/bZ53guyW/UWElzyE8DEYkaFg1j7vXpNov/XmQIQ/veZgu6Xc2ZX59GfjtffDHt/c2N+1I2of7anN5C1rrH7w7unkztK7VZdq3dmV7iPR3qdGpWrWcqyE43NyWwDKgvRxST6Lo/45I6rFtLNoWHG5W52opj1FNqbrRPt+Dqk0nV3yFBivO+MhO9XzDTv0MD+XvRsJ4+RSYthLBWv1TSs1M8NmuXQxVDsFEbF5mxUY+dfVuCvrlsK/eCjGTILwDHohQqQC3yWFHkEX32mdGTeorEOyQybcVYpElO3Gi+bSAHZjVfM+XkeF5610isn0u9IPJygm5xTVUJ9fWV4VYLD+43dFOg3vTUSaHGXzre48FDkGU9mfzUL8c1abaFwTytizyepGx9EuQMUuswMsW7jCSWLJlTfvuTQtVXFolLPVHrHV6KRUasG7q0DqD4G0EYf3+l0NqcSueGZEOvhe/EYhRcNuGoE9Pubuo4Xj3qZD5WlhFTnwuTDfByR3Rc6Sbb5pRsNC2RY4WYgUcQon8NvG4BnvxtirMPYH5+9XUBsly1zd+qaz3f+8JR9MejsMWyeMT3FW0Dh6bJhByk1Kv622hXk31Jltv1ZerO70h0USbiy8NhMPv/tuxWg92tgBFYvPk3id0YSX9nE7KZNOmiiG4JuB1eiB9dXV81bk6J1OGVk/8FFxUsWF2qc7Q946h1kcoUoEVxwN2ApL1jHy1lM4En0FdOKIua9KFYybEq7xbIf2F1/r9oWiNEm5OA9jmZ/sI6hej5KEgu+5tJlcfso0T/7ue8u6ahMMgbz5Kt47XdzxaJKSVBEZYfsn1sDzZQyBb6hlBHjRcWYrWPvBM6dXInxKg58wF/ZA0m4n9j+kzX+8Ko8BYhZSkwT6jGdd1t0QsHRuJCD/sj5XFqjgs5S/2Bu+xzNQRO1CEnH44/tx/HGGfrsW7Q6jIRZtwj7g+VcZXjvlYr56batxgufNPXNmobp4umEhHa4SzDJ3ZEEL2rHotnEIxS5beLZsjkfk6C8QLq3TDwu9jUFt75Au7i4UgVH12pKFCrArnJchrcuSplC5mjNhkPFzLEqY/52UkUZtTnHIAo6Ys/1TwYsxjPZpct8x8C4hMj/lD6e26XX4aO9lzDqLTBPCff+8JPdHJSY9XRdnTVfbE9xg+ZHITN/73aIh7EogBCNEfMEYcenSicaXKmvY/3MSzTv/UJRhaa44vHYHM0xD8ISwjM5Y+lLf/Hoz10PW8M8ED3SvZj5+9aAVxK98Ic8kDmZr1BTlU1Us117UKpWXz8B9Zp9xZvVXUH9WgWAEzgjcQ+R2g3A0wBOmndlgRSOnEZaXILtFjLDJdSIdQ8vAZSfE+LkVlFNlyJoQUuNLd76fdkxNKxOKLzsODOCVZmO/jjPgKbMYg/5pVQDN7xCQZl7ILaJdC6eDa0Gt64qzA8f0xR/2+kOQfjeUVENtvEov3gLcj9cSPb66p00+DcDjh9PplEkRdV096ocbMoCunb0PeLWzDPk2e6NeIryrNjuaQYQBaTFq9t3H49sTiW0GS+UmOP6GPPv9nuBE6iYmR7ZVlz6Bos/Jy5d07RNmWOMDsyirtDZsmPES+kaQm6QHe57FMczK48nOIbHI53OSl1RNaks9TPmLcOeiv1x9RwV2H7eO+bkltYNZt1K/+z7MZyCSjKmJFOele4yQkjVTbdRD+BjWTqJRGHi044kFELFAjoFn5/f6L1fK4s/Mv+03BM9hF8BDRu7JxaEh3jy9gyAmIXE/JOGK/p1EgPova1JoEkrvx+7xIItEXR2ws2MxmcVCpB8c53yEs/peBybFZSnALEjz6yUp8dXqBZD8GGkWnotddsqh69pfum8Eix/fqdbDIXzNoiRFGk36s2LwtMvHPa849bvIbjncG6eN4Z968jnrxMaKmddTaUTq/zxcLABJEGqqOpdDvHYnH41EivPYqSR7XhcK6mDil1eMPf5HeLpoUoy4OcaEWwHevfLJeRBVKZr3NZe383dRilgbAZKnLwgXV+7jgLbOv+QQ7i7+1No3O/Q2Y+WuE/xhPhtzXt1/dSeWHJeEu8vs2spSjz0dBPoTjoX3Dypi30y3UGaLz5jfEGV9nkTb2XolXC97gDGlfmmX3kj8lk96xgy5+oxx7F3fC6kD4Z17urEsl/Ap5+sZQu7RGz3W8f+uGQvaA6/mPkvrUDstvR2XvaTGYnVd8woJRlRSzPJs8pMJJR3HMDalXzmyqjizD6cKWxeh4C4QbMzN3/x/ZXQkW5mWe9m09NnUBu5IZobMD7T79uDS5CXBHtSG0/HfCjRdecQEojIrnhX9CEKGrUmmpOa5tTPVwpviaUUHuLPn+vJfcPx48rkoo1tyvx9aaCCb/Z4Hc4NYufrQUalvbsxPb18UVW27qKpPXty+PP/HypPYGH+I8ZubGJepKqD/EvyY2aJo3imHxTAzNmB9lojdVR7tiv0xH7B7JNbpuOz6Rp0Dos9M63rPp4qfafBu3BkohW++1/8QU8iMW+1/8RTJf1OimDiF9OF9b4T3XHVAGb2gzgOy9P+/pp6YMhIyCFfZx279ucIfsLv94dPOm4fHhQU/xTQ1dZN0xkf3GW9icJ2z/OV82HzrkHxx5SuBuHXzaO5OaF9qVNmXdUwnvPk54LsrI/EgutkDp/DjwId7z0J9urJHH7b7R30TlIIaeRPTFeDkkMoz4QYLf1W40vlGsBerJhGVo35s4yVBrGzuR7Q10m63nAGCS14k2kz7NL+4J81VbA3iOzvD72b7Z80QntTn0wTjh+fjpuGgvg2SuZdRaiW/Bv+2QOukfBBGRPVHrS7m5K//M1U8zCj9TOjzG7WW39096qskPU2p1vmjIinx1+kjA2jRC/mfbxh+7ur2G4pY/H0npb1v1z1t7uXxJUFzR97Kw7Q5N89Ym82qKL027vgPrOR4A1XO/p1l+WyJKaru5nE06YdT3ApcUPVtxPxX9y5AUpW1pvZTXtAXAgDB+R2dWfY98WKP8HVtpLIdOJevqnZyFX/VljPT8xI/DEdlnyPOPvV7CCVTjr17wRDGc89M7uWd/zKNh4s+ZwZVpzG8y0/jGinuAquSax3s/D53eHnrGJivHyjE4aHlUODq4mKj26XzqL5KWGTbs/MpUe32kTlPgegIcIlBz1uF/sB2KcnjPauj/hvxw1QtnrJSNgt5+zLXYLQw+hw/6KfeOqHQAFlE9bES60yHqW9kaAD2Stsp187c3x+ltkCLS/wqkncmI+fIYTNiwRU/nhRNbXhNKJtc3hhAd/9eFrZ2gzHz2fHnF8yx/yuNDIAHTziZcUiSTqOBaezktETtjX/Dx8hgBWm6oLXp56qAuLeecQ8e9h8yTcrNJUaxRLf52iMbTn5y1fEvO0g5nWxchSvJz4zdivC507Sa3B+3F3yybfj8yYa1Wy0bmx3niPee7c5B/va3P/Z36y9UgVusdASa3keepc2y7zhnBDzomjdrFWWhLzd+Y3r+dmkrE70BOhtdFm4fJ+PFZz+8hvxMtrFc36PHNjJwoGQJV5xeRX0EG7bgQqZWqJpvFY9PEu3pe/GC/kshxoG213vyP4jb/zODjc1mk6HLZ32ZN11yrEK/vDcgj8/abttpgwV+c4k/l5vzPkjtBk6csFn1/agdBNFSYFqtBLI/lN1fCgOS29FrS9ZPDmi/5aCPgSfzDZVbzj0f8HFa+Av/8aHvkZz+Itd6CtssF1areN5Du8GXCr1TeLs8UGjlaoBnENI2C6fbbPX26hBZhw/6VqND74kfO8X2NzdG3GpZyGx/OsdHKEAg3ZnfnfT+x69kn7EYjNN3RCPqQGHam8RHKtaKh02cg3vY/phlrVxUoGn+wV/oo4cdJ3xaeFvSjxfS2JskxKNVpJelOchNoivkUfKHdeQ1aM2FMx9HaV4vsWNC4cpcZmebpWOG8kxgtdKqzFocRdP40kX1FUFbxKtrxKa89dZAGvKHWKf3lNKDa4n4D7zke23K15NeuA2qInFhhZC4qJJxiRCC59lCx+sOOoPCdre7DXRjmoWL/52R1fPl7FgvzLO65tyQlZW58R90skc2nA7w+MSDf/w7dgOkQSrqjhTYUBq2jeJn8E8S4xZWLrH//h0ysIrZX94Xz9Mb8D76UvLl7g1aWQEOQyhpjD3WewrUclNAd1O4ZYdhlLw2XrpIwCD0LObr7T+CO5YI7XJbmR30e7xWMVeDq+VUVOxqTyz8w++AuI7m5i14LmFL4YQUcVhxOZlPKxsbYTIk1Xi5L4Vi2Lh1HDe1OiPL1ZSypZ7K5/WporZQDxQFBZ//IPKvq0jabFf4LdntPRGfVbjs0oEpbTtGwX0welm8W/Yoa1E3LaO+bCuawqd7Dl/8bgbbLVzYRb8jA7eY/KHTySUaIq2AXG0suTzVVdaiG3Yktyw1t1EV3OidtYnIJ6x+iCe8V0AkZdTug7fr3Q6nmUJNjfqUaQRNeXbOPNg2S9mXJrOpKI5lP/4v+ZsInPWHooB6cs84VEdnJgXL6KgsS6qBR/TqsMrmij7e9lTacl/czFFd7V5YcyM2Fd5z+gE6sIPiPMzv/4UpI8cYttJsXB9vVJ+3IcYVlV5ZjY6fEz+1nVL9WaREb+uPnyx51DtNVXE0pxYFd9vhFz1teBMbJQG1eQOpxGyrMrxIKVlNycv1sIrCV/MujYfsyefNVZ+PU2IvjpUMa+TfYJ+U63RqXjriC/PD/JpdPDmjetqnoPRg3Z9PLP8PfCK/fBqRn/6hP915I5iLK8QXa8yLM11YPanCjLFB48y53zbVgyqhKLPNF3/w2PnvgpA75KOHDzyq+ZOPZzAvw4X5rFj2XULXoQuppRZ1lh24/5ph7A73UXcLP4zp/0tQWtX8Nkfn52cS5Yjn4w2XumvHk2v13GlXnvphLemnnZLvMz/4hse2fPu0y8JeuW57Tosv54PxJu5eqMmmEVMN4aZimR/cYGMk8qCPEnRGDBdgkr7vunoxryrb/dKQbfT4JK3eXqZ3EhuIaTH7Ux8vE1idlujfmsey+ofPqWjub6gOx8PxKuPYTp//VZAPHkLhGzKIublFOR/z8N88Tf643G+KZCs0+PiH+uK/+O/cX5b/M9IJ894Y9idRItg+LjdHKB7BgtewoK1as1p079C2OF2OVz2VBH1BkeC6fV+kh0f191f/vnjJyz4Hr2Ubtv2jhY8Q+z7+cEn9zcrMJqpzNyg+fpjbI93QFmdEbPDVtd+pGV2wpJ/ogXPTHG/9WB2Mockb/D9f/vrjGmPt5dt2PGb/u5VU/6ciXNipj89Y+eCAmlOqXrOrl1/zl8NUtfrO9Gjt+rz9LGRtuvjT2HOfvU2e+t5deBzD8/Mfd5s3j16M4NveD8w80o6Thc+onrO9ozVc7ap5sz2ejhM0hUL4e3ZTZX6sWDxRxb0tesL1fFYgO5YIu369JJyGdIRVNOtiB+RF2oMb0dhs5Zzor9wko7N5V7CWsQCM63Q7vh+HHv0SMwf3fBD/6eHzmDNM6cCXI8+1ZFkqXKX/MhO3oio+TRHCQZBeTE96Hs0iuPNAulZ9liZrveOb8xrjfCef5m2umZoeDUPCtlPschOzzHqq+OtBON6tgdFqIt4FMejA37ifzCaxhiNQ5oWUHBxT6e9nvj9Of+1sFkrOSHN9FrsI8ohKn7mH16o/uGFoh8vJDlEatUs+ivgXo7YLt82fBSWe6uLPsyuQ1bEsy6fMPzlv3I0P/HEtVutJEZ9J1ZTrxHv3o4Lvv4yFn800JTzYwTVRwOq3rSmm8ftrQHvUcnMGtAj5s04t7DV3yviNz8VTZeX+IZbnKRk0UO7zed9Beg/twM5DM7HZCfoWhhoHyz4ykWysPQ5uaRvi+zeGTV7CT8CuO6Pd6yC7VeS/ZNmBQapp1OrVSaPirBQU0ZrXDssj3vr+XSArFGORzeOOz7A+g7pfvUixjdZ+f3qOcqoEH2J+KfsUbHz1VYU670rmGXbBz717zCALkp0dj51Z3PJ/3cUP/SOuc/I8LljyNa/9SSBGsXTnaxCtNU9Rvm4PqY8dy8N+rOvxd741H8VC0YdD2Tn5S9ziDstAK2Y18w3OTUHPQ4S6H7IoPKOJSn9fdUVvFnbECNiGAm1i+U/PIx5/Ihjah6q5m89TOfnouMpGU9qq1oei17fYzdZxspAV7rX/+l1w0Y8A/hQq8wpjpAOSz0CfvwCDF+OTz7PkQEQ7d8hewr3vPrHL8WqjpkeXPWOWexW/+WLf/hrONtlBs79cGWakLhcot/eA+1et4zQzS2m269bwt5PPboOO9ufd1t++qe/EFpSv7Mmr4RsujkED4ONpnhMNWQQwSRXeZz9T0c0AXhSC0s+t9FE9hcPxa1U0FHwXunYdi8Ffg/3Syxr5ZnUmJIc2iSoiPFnv0G63Exb8EfwPbbx9Dw+ElBHcUtcfeUjXrx2MvzpySneyindZJcRHqiusMLqAxf0ehxRf5B9lpzVd0ftEhlgvdcrOn7EKRUX/AfT5vL+h4c2drh5gytiiezmtR2zqNxnIPzuIl6F9M7nsFcN2Ny9G/PcuOrGyUhyhZiqTZKzpHHeGkvfyq1V4s1QWSbfmM83mGFr/+WXjtr1SUZ/+3P5JXP6T78xkm5mxr6ReS/yGSClgkv+9CFuXIoLFO5lRcUmq1OumboCaeFJWN72uf9Pj1j2i/zxqfkjlDmqr1VGtN+tTNmjHlu1PP08gkPLiv/Vc0S0ntne1FE3/70P/yLJtF9fHbQ5PNwcyX28Y3a1c7vhmA/FH35d8o3KR/nrZOg3a4RlQ5h3fC/c3+irRx3DdmzHkv0oAvUwCX/1nKLjS31DqbDwJcfULeK+24kOvAzrQC4/c+dvhKP6z17YVU4dLlLrECkLPmXO8vlw3qV3dDtFW+bj+dRtVNBXaMHfeGrPNB7/9MyF/1GUbtuOdw/jriz4i5nJfPSpe11n6JgXJ5KdxMvSt6tc/dUr8MTbjk+fCEq0NfQD88UyiP/pObjPTVoc1SwVhlxNYM7TC8Ob/dfs94/sgtrryaby1thVtBAgggM+Zose+vZ/3NtgtcJJQjANk+6Pj0A2M858tt75EzWyE4zfTUhf6ZstfHGbQbPd53/432QDbBJgXf79l88mlGw1yNbtMizxIpp8/HwiEHGUMfxGqTmes7HfLnouRnVmmJsp/xWwOx9jFsTRsfrTo6B6wJ7cFj1Icq/rHOL2fmTmQcHpe7teU5gCumFaGt14caSyhtTG8DDv2rjil/NpBX3VHP/4JV/0CBltiaRjdb0x0bzkTzBU2yPGCn3Rv/paVUUaCyRjHws8UxokcbCZj+IEjbvDc1RMSbrhmtw/KRsEjyp0Gm4ED3Xpj/5c9Yjem5q421yqMnevKmipt+LVxqji8XA4ALw33y3xsBX6PIxVAQ4ZMJLlCULDbdxjMIxHTozxGPBFf7DQnz8tenA1I72c//Fr0IJvx4TQskCSPk+21APNIbs3Gix6D9GL7tP9y3fx9LTwwg84H+bbDKfrLyF767JN2aIXyWRtav/qK8x4PgywpsxhpuJ800G8ecIfP1/qG5U5ylkjwLbWLsS2+ZzyeXMfQbDWD7rwg65f9H3Au3dGzva1WvjtPkE1pCYxpd/Sh33bZdCTbod5iaOlProttoMXCVhdj4X5vcS9hiJPexJdkD9oWB3UHE5JJTHbzr9+vzTRRuew3BM/netFj3YzVTxIB2IkVtBx/7RrwJSEG9kV1cTnh3mboSlLtOhvM5pZUdxVxA8aHQvLQnzRe7d/9VML24U/lz40aNTGnFjTk8Z8la4N4In7IT6Tq5iV3dSiyRdu5Lzg11EA1kKNig9VPuIrnpd6NwiN5bK98Qk60Vt7IcxTaRB/WqF00pMrVrL2sjRW7+ZuaqyrBc3hYLHoEPw4//mZAnkjtlSAT1LNhtSFyqK3L/VhzZfsd7UC1mVf4vRQxcPrzaX/35kC8X+fKSiPzGHOd5z8+TT9Lsh+5V+Gj1enm8/rVIbL/RixY6u7/rTRQxnsYHVgAer7eOSSIav97j4w3fyOZjuu7DeMQSqTAD/Oca/0pIV6u33RWUbbdIofeIZWg5zs7emWiu8b7lF4Wb3pODjfjlkL1h+Vrc0c/SvGDF9zedtKxZfsTusmHV10iyDePC50M17TlF1VQQL86ycW6Fbs90fz2oBU9Rjvrz2v+HGUZcBgt3QSs3M1o2Ffg+FqE/Omrc3746OIYCM2Fks3EFTS3YDTlsyZTy5/74NtV+/tU38MbM+1MGW7z89DA0wBRvKhQfP3PjmokQ8WC+6Lppg2sgG9IHlk5290JGxO2xJWp5AxLzoN5rSzggw9aksnRNu+eT/sX6Pq+JRjsXOCjoabvoBmtBJi7OsCzZIXGCjhykx0/WObgyh0Agy7g0nn3ZWhqdwdPCSkXk4OhcuqSei0EG6vEyH3HZ4Qn67CCK+3FpJ8Ok7VFNZpAuLmoxAct4du9I+/Zf7xqWI3msvxPLP3HehBALZ8n/enU9wqzegk7PBud9X8Ou2i/wMAAP//LJ3JtrI6EIUfiIFIlzCkFQRMUFBxBtgBKm0CydPfxfnvkFmoVGp/e62kCmpuPNPiyGPOjeVXgTZ4IRqLUQXWeH1hc3U/1BmUhrN0O1/gVggcHNnXPFxKIfOhc7jF+LAJY3uivkVgqlxLNPubC2eWRCAUbLRBy/FI6ln6dUTTrl2H0Tsdw4XYYAS+TCPyDQY36a0lz+Ak9i/sGoUCBmMrVNB+jjnODdBzEt0jCAdffVG382UwOy911K6515J3b7b2VOMhANStvti9lyjhiVCX8HY9Fwg85BeYyocmQBRXZ0KpGoBZGpQR8o34xgfjaQwLbacHkCE1qO+8d/WgRECA2sG3qTlr+rDc7ZFpUA1KfLirwvB9JyaBYy9fkPwVFE7rY9+r86POCHdO8zD5SxkBfbYpkdk5Dmf3u4uhk00Hujdf92Th3yXW1/2je7+yCknqCYO7dvfC5tazE+kI+EszBokgcdy/bd7/nC/Y2+YerRfgk0m4MBG+xwAScKhSPpHN2EIls3QizhQX87457TY8rT5E4muvO/k5+mDqs4S6xeFezPRapjDcyi52HX0Gi2WMjvYSHju0fdJzQSIlCXRv8RJqNd27JkYz5UAWtxP1wM0I5dTbV4B/toTiF6eAm7dqho9ST0hXzjbn28vaC3Y7/YjtnOJhvl/dXCdv64Cu6aZN2PNdacAPz+u1kgasd1rkF7S2JcJZv0lr6vdbAvsxzlEPLkKyFJrp699WXqhbYSvhhaz2WrMzt0hWi6EYa5s0kF5kip3h5/P58CxL8B68iDqBUyQslXQNWEhKCRuOGpgEKTMgvEtPtPHtSzJP+zfT72fjiNEV7AfenNUeOLG8zq+7egPb/64BvEfugZa/A+HjTT5GsAYVxpGd2Fy8vP1eGwXri50yXjh3Revyt366a8wpYfdEuUA7U2Sc4UEGS9UvF93SGw0bxv3BpzrRAvAsyhcpb2JU/8UfLGo3oNjwx3pqbogA8LD22OfSgy8q30agAR8Be5K89mrvlACY+SelwaRDe4FdbcFOkHTUzYKbiA9t+cJVD4h67v2aClvkwANuEVGRuqmZrkEfNiD94H2/34XcFNKXjp5lQ7PCoiGXN+YFHuBxffSiOIAVP7IDRj1a9PIhO1vW6VLBpxU7aPvM65BP2ZCrh+1zwZ4+6zU3REWARef+qGuMKaCNlGawia2ORi/tx9ku3lvwKZsSPjS3cOiOZMn0uNs59BCXO3vpP4cduHjKDaeB4dr9Z3rHMDpFjKaB8QnZ1d+8QHjKS9Rm/FEs8hv0IBzbliYcvZL5Gpil/hLKHdIuGkjYfO8luPxiRrabFIVzRgCC5fmekvYUNmBOhpMIjo/2QOMDCwCXaxDAG2gKerrVu2L05OAEQ/MyErjq1Yx+WvkXX+prl5DPwtd5aHpw/9B9OduAm5pbAfeKchpUFakXMZZbUL9jGyeJts77S/c74GlHSkNbuRTz0X62MGanNw4mvbTprrqOWiczE1t3JRumk1IKWiVqF2xoYhlypbV8PRRmH9vt7Z1wCcgarG7fG9m4wYuT7Hh/Qe3xjOj+c2HhTJJDCm7IF7AVF4a91VEqwpI+PCLbzsQXs2AnWOOgou4OfOpljo4EHnohxPs8Mmo5eRij7jA9pzu5MwpW4u4CWTpiupOzphiy99uB9Dkz6rZyAWrtfBNUQeE+3ieFPLBj+Uhhb2L5r37wr6/HDD7WdxoRum8T9gOFBFY9JZ/004TTpvRyaMcsRIoeDjbbRZtGe3y0Kw5zcLW5lpMKeGl5wMXl7HPCk7gF2LUItmUR1bPH+Ans99KI+v3dWutVP8P0A2t8aU9dMSw8EEAghAVK4KDahJwd8U9/aXbUfDAPyjRqWktveP92JZuc/FcD/vQgUu+g5vJzDMA00JKonx+y56LpDOh/85WhvTP4qy/QqlNCjT99Fdq1F52Y92SR8yCZuyDL4Jof2G+K40APU1zBf3rdxWe+7M/+A96u14LugnxfyLddrkCHERMHV+8dTgIzDYhf6YDz9XvBZteqqz5g6wvbdd5ub8E8akPCOXoVDLk+grqVqjSsyRD2lvSF2oOYNnVp2wz8F4sG9OxBIrojnjj7MF2ExYUQHD5kAyyPWVznSaNxEnV5W9exNwdQu1xeONxOgJPdPDAo7i0BhxhPax+fa6UdzzQg6vEWDUvyPs/wpecXohy6iHPZOQvAI+RGveE1g0kZrpGemrTG1svbD0tiAANihANSGVXMGU+yHgrfrqUHz65revvqraYMz+8fTyajp3giNLfqEZtm2tkUCCfyj3cCCmbAr49rD7Lsu0VTmJ0BW3ZDD4xReeBUEgxbPo5vBR6pfvnjEc4DuIlhak41Rnc7tiezYDGsvFLF5kBefPRO2Qti1yDYHXbjMHsMnDT1aM/kmN9SzhttyKCYHENkRSgvCFUWA5xSdKX287yEradgCa56Rq14ZgnfqHdHk+Fk4GD/Vm2y/T6ZpgdRRPOi5EW75iN4Wu87tZhVg+mUDAh+X9Sl9kcViyUQ9ghGHvzQkljEnsMTfYD8omVoU738gfvUIVAW5Qnv+lQseD0qEvw8JYF8gM1C+vUf//KFOuv+8kYqczh62URY05n1EqgaglpbGvgBrxFgdp4gOOjBi8y5dgwXP+pL8PyQCbv06tfM1nThr74gsDdKPls011TnrfbojBnm/LORBaBpkoqELHL53PxOs776DexVWVAzco5EsBV8BynP5mcv/VOp4KFTChpenJHPyZCvnvdOsROc5WQ6d2AG6N24RG/630Av8bTTqtuW0QMXM861WwuhoUNE9xkK+WS9zBO0xUj8O88DcSo1+uNf/M9/3IK3AvcFjKh1OwXJP/80H54tjcbztqD97i3qcDnuqe2Lfj1vSP+AzG6fOAyE47B8yiyAolQWBK7+gtnbLofnSf3gA31+h/F2FS1YKn1Duv5QFuwMIgXi9yDSwI2+YO7wCOHwSQ541142NT8P/ATbjxRiF7lyOLMFKBBoHabYRHLIJ8VoADhgRnRNE+252c0GEItCxgFDSjhWt1cE1ae+QUvuVPWyj9USrvmKDeqz4cOrKoaOe2qw6T+0moEjyGB0s84UbatpWJSv1cKi8344JOK36FpOTsCqYoFmTXCuWfFtX3CfOir13Os2nIVvVIKZzTdaqrdPMS/dXfn7f6Kkj9Fe+SOAx7ssYfO6PQ78gT0RltFJJkKbewnVzkeorrxGDQkdgCR4HYJ3S1nQqPZmIT1N34e7iK19vDIlpNdbuAOfaCDoo5u/cBr2kva3fow05zPMtfW2/viX+qG7H0SLnhTop3GNy/m7JEzPjzlsLmKEr3PzDvlUajmYPGxjz3YOYK6FI9TboEL/+GVRKYlAtM0spHDWDouUxTsYd46DD99Cque6tmd99SP4LL21kP2tdzMd39jnzK//+Bvoi/ek5iz9klmKigocPAawZb3cof87X7qddTS7lC++NJnpQ809zdjCqscXYFJR/SzCEx8M5Pwff5j2Ng42tWPPfiHu4GOz40gRlHWeu+4+AOZLip7l4T0ssTu3+qV+Uhrc8jZh8IoF8F3YlrzuD7Hgbib6sJ8uAVLH8pCsfNLD+/nY/+PHv3oDauQwGioPB4yhVPRQu6QvGofIG6To7kAoTPcQW67jc6ZuVAbTL4YIVj9jIM/PoukgEm50j7Zdwavul8HzBD5E7LR1dkZICAglbUuE4KvXzHCCHjrv9ojE9bzP7/MtgvFZEYnsXs82f8qhpRXMGsgTpErB3y9bhL1U/ej+8WacBDjPwDnJDOprPw9ID7jsdOdQxGg+eXo4PSKLaYst7anDJidkf/5UKAOLyGW+5ZOkMAnQx2RhfxE5X7y66+FrH14wrpZmWLB+avQ/HsjB5ZH00083wKpfCOTfBjB6KySQzFmONiRi4fRXHy6GvaOWwSO+bF6XHEh+fsSGtTMT0m/jXl/5E+9Xnl/uvwwC/gUPMhIL2fOvOgeQB3FG8amuw2X1w1AgFaAojUub7UJm6EEjbMissCVcziRg/wEAAP//pJ3JuoI4EIUfyIUIQsISGWVKUAZ1B6goiIwJkKfvD28ve9ePECBV5/wnpGCJj28iW5YIqKsoC1yfL/1bz708QNnJNbD2T9ulN/O8l8/a8Yvx7nAKx1l8PWRPMc7YMQJZYwhopqRiY8RuE2ghhea0yNZ+U6NWqDcliZZ6/7eeVQ+xmb9eTWmb+zNFsRyxqZ2sAQaFeyDf2ycpyVASFRYHpaOx2rUlVd/HCZwenU/thXLZINVAB1ncbMh7D24ZU2b6BobUa9SX05fGiozj4W29t0E3aKvNdmIqcHsgHprX/bX4iuhBT34Tamp8rTXDZ1fAK25nIk3e6C6G1StwfzNHIhsGYgu8WBsQPI2AtFfUA6bE2SJdg9xGAnJad6k+2lle9QgCu/bTT2BKup9eQrvMttz5kG85sL8qMsZedF79d5TAprYqwsPCAdxv/ad7fSec5hqA72a7g93BF7A3CX42Q108g/L98fB7il2NWZ/XEe6E6IXzQH6H/cMGAfg8GFr9AnSr+YMkuOQcwOrtC9dZVtNGCmP9jr1HUpVUeFYOpBfxSX3ZzzJ2fb1MiEHzpY8EBYy/7zsdflXuQ3HfIPDzU7BV7yciWegE5h1XcnB7GDzsFKHMFnPqJ14ptxnZ10cnY7UVPCBwpRZ7+RWDhW9fSBbwqaQW0SOtF6fCgTv+PGP98XyXS586D3Btmw+9iTvaM/PuOuAx3WRst3tHW9ph6eD7Vt3oc/UzCzIUJPM3mmL3u7U01qSXGnzpvcN+4HYagYl6lUuODGgj6UY/bYyWwMrUdmQx9AY0bsLn0klLTthvgNZz+iEvwHEr7JEcFPmPV0pg9V/01y9Ht7EqkD/6iSKnvpdD1b8W2d5ed0S0KNGW6ykuoJNNb3ww+Jc7cVuSg7U+0tVfufzqr8HX0w5ILo60/+NPG0d5U7vUOtDE+dxB0f+a+OimANDxWqbwLGkiNVzv0C+LI3XS3HwBmUFfh+x5vp3hnaCRel+fAHIqPpFc34MMawwp4TR2XiHZB6JQh58md/ansQKWV4tIiCOpZz9/kYskor7Jy4yO8t2Bx3u+xdjyekDdSnpDXik2hC8dla23wiW//on4XYr79X16soaajpqrf3rL6S3945XH1X8vnkwJfJ9Gk6aL82Jse10iGB91DSc+bsrmFZ88yOrGQJz4LsOZWbkphQfgU8xva22S80L69SvCwtb66ZPHn99y5A/OdjH6VFBQ4oiq28x0Fzdsr0Dl0gc9eH2RrXoSQnNJRnq4Xmw2tFQ9igjwJ/SNAz0TtlcpAlwYugjyO9UVInUp4Ho0Ac3pcc9a8rQleJyagPDO756CGgUgzCQFa+brFbLwcRx+fJF0fayW3MZ4Ebj6c2rI66wI3ssKeBn8I/VOh2s54DlRYbYoPT5ymg7m4xyhX/3FhnwuXZJ9ax32Gy/AiaTIrPMPmwXEg7Bb+9OXsXLxr3A23DO1kNNq7OuNCrgM+Ej4PUZgWZylgSsPxT8+PVX9a4Ia1C2KXpHnLrYJr2Cah5bMHuVLBr9ZATV4Kf708vA6OQjkEztRPdvGJZODPIJWLZgkm/Mn6zuz5SHUhAHru5OVCVfV3YPVX6DtfROUndMVlfzanHO01L3XT1t7GuRuSzWqpfQN2K3edXDz+exR+BVadyKIj2Dz4VwaI+Pijvwt7mBOaUERC/NyokAp/vTDRczccPWjKqxa36DKWTPZoAnr7LZj36GPkl1ZX6XHBnKKdKZrfQ13rRImUFXsB0UfXnfn3t5Ikvm0cyTf11lOV86afvxm5SdQI595f4bKuTtj/YHMcvQ5WIEkDc8rb9swytlZBYUusrChdna58gL4q1fYry9FNvf+MYFtVM/YsJ9HRn77JW1PJ2wec64fjcxtwMUilCqsc0r2nW4e9JEgIJCCi7vwKFTkWo+vVAWO4y5gPFTw7iw6Eor+xLiseqnQJrFBL/Ik96NPGxWmBtdQ3auajG9s8wF/+cGRNzDb3S02gepifTDqrEIjSXk8QmfgztT7FLzGPB8kEL/S7I/PMAeIAxDfRoFvQEhLirJRApFd8X/1nW6iPoLU78+oHr5Zz1xFmeB1HXKimRHoZ2dzQL/vj+JL6me919oFNOOt8lefJyHemuBXfwVwK1yy9gNIH1T9t1+u9RSuoTU+aAnnLvKjSaX1MjJ8b4MdGHn5wMtSO9sY5woA5C5+O9jyw4nm+ZWCOVkz0h/f1oVwyeZ3JyZQ7dGBmmu+MK37F95eCcaqZTI2cSm3Tk0gmOI2ttjKjwrgjEZPV39Qsu7rVT8+hbh4IP2cnpQU/vqNGc9FPxzcmsDVj+O7nB7c3SVLK1CLzZFe3RSwWf3cefDzb26lyWXjJptc+vHSrLxjl5ubawLTBcVkry/vcll50p//e6Lz111YlHj74wRasinPBRjneBfAXeWesNLs+n4k26oDPu4QtpkyhQOMHAlu8qNK4nU/LL5pLFC8ihoCye3p8mt/hrvQeNEDKQttnMX2AWT3FWNFAGZPtDRDcAS5RjEVOzDpL+EsE2MIsONONmBvP2vglKQDXfVdtuaLEZSjxw3xadOxZXTbAD54aFEXF3Y/PyZYwEbtANbmwO1nzXZ0KGtpS3Fba2xqnSCF88OM6c8fLeN3p/7pof2+Zdqy6mWxPL1y6k/GTptDhSmwcxwJeyALsh2pHg8o7Dp97cdy2VxR8JDz+BlR59w+s/mLYAHG0zNAe9xf2OIrM4LcthFw1LaRNhcPLwLqTX9Ro66i/o8HrvkFdpN11tpn3gc//01ET+BKtihyBR5E0xDHbxSX60IAJX3ZpuRd90O/5jE8DF2jxX/+uAyXI0x2H4y16mhkZM3TpOdQBPTw6Cb2jSy7gOWpzLGvc8v6D7MdwdUvYAU/y56e447AYldqaFLuGzaaW/kKSlBgNKOxD+f+KCa/fIKcZTKueU12hB+mYGoke9cd/ejEQTl+29hJpCybL0BOpHYrjVSTrifGZCq+wcl9yGjb1iVYfvzVfLo5xbl/KH96A1bGlFNL08f19KdYQeMRJlgLpbKcFt85SrvKPmFV3QlgscTDBBK+2VJLmU1AhsfpAXeh9cLqmm9S8NgVEOog//HdrCEkK371mWzg8HQXTBQoYqkWyGbNB4dtlz3gyv9++ZfLxJOzgRkFDnVi28uYsb9FUNmeLtiU/LJk8iToslgsF/zLB4ekviPQH0GB9vU9L9mtlju4TKpH+A+pXSbo9w1MztmWbEF0zZY7F+pi6m8juvKefoKRKgGoizlWdCKx2RseNVRh6aBnfFUzejeGM/jOX3ftn5esOzQwhev7oeqtrMMl2u0T8MvnhJP26HfyKCnimpchwWhmd/7S51miSZ3gg6+c+x+Pl3JxiOglDqpwxnJaw6w5CBStee8fX1v5E9q79hZMNzhOYLuJT9jgX6k7fu538v/OFPD/faaAm/YGDd5p2U8fGULQU6RQ/3lO3Ynn6gbO15tLrcj+9PM7OEywCEpG7S6Wyxk9AyiP+/uR2sXEyjEZXgScxeiOk/MzZstLUpHs2fkFEXuj9twXBm/52ScnrN441xUqsJ+kWflQalgBdJdpna/TRg+DHhfSMvIJbgUo2+sNm3lQuC1Z1A3c1q1NwkvlZYvryBLQw5NG8Tt6aOPc6jn06O1M9YtBQiaLAoSJ3fj0kDuGNgwnW4UMRAFW0lTS6Je7maCbBkytO+cwXr7ur/D8DjJ88eJzOYjnQIXB5bjgw2zcwKwnXQBu+7uND9egyJYlsIkk3G4L1fB0y6r7VCGJjucj9RIPuUJgtwi+zN0BidlJLyf7kJ6hj1WXOtdW1KaytgP4taMcccYwh9/wyetwY5/21FJez34RyjCByO1zbNdfGi56vuzh+VUeyBRQDsyWUzsQ2zcOe95Xd5n8tBU4X/oZ46p9Z+M/AAAA//8sXcvWsjoMfSAHcm8ZIiByswVB1JkgonhBLm1pn/4svv8MGbCAJjs7ySI76WlO4PvYt3ij5s+Wt6kJ4eEyvZAytxswKoXhwltnbemRikKILnkczLdnJfRY/Z6CXH5CgrIZdYt9s3aY3hcCV1rrUqv4sJazBBfQ1/0vUZLOGeY0Bz3ksmMT45XK7Sju7GMG1ueE3c3KidThs/KhJv8gMa7803KjBL0eWKgn5tsxlkE53YeP3cpH0mxeM0Y6OEKTYwX7jXkHQndvuSHjMiFgE2dA5OtIAdtOUQk5nQpnMvIYgWNfbvAe7rWBpluXwTPwarr/HpxBrYbnFZ6NccabUG0jlu+iHNhJ/qJ+sNZalr3WGljOGxliKjPmfzoDIqMBFLOoHabX16zA5lraqNFjqWR7ufBgOqxjVAerZzuLb2ObK82YiewUasn0Ca0Al8+UrPovdSZrBX1wLJ8+RgsemKzsa+DJUknknOYDD4Ttw8/vqJB1VChANPWuAk61XrQtNeHw+z3RzElHT7Rih3xQui1EMFZhgMvNuc9m47SR4GMCDprnlGVUpi8FtumqR4qa2+Us25crXFuLVBPcjBHx1DGG609aIfgguGQ15vb6pvZnosztQ/DqfeEAFqcLUSVtn822BhJYAgdgPCn3clZMyQB7b9chSmxZTFELbJjeaovMz40lxJuvDfjYfUpqD7sYzOu3asOiGRMkXioqRRWaEmBuHtH9Uf+0c8b7F0xvXkat9XEj2MGnfNERSREn9C645Q0dSD0rpf7XmzLhX7cW8JTYx5W08ktxOdwa8JgeBUbRb5XNm8si0UbAQB0XPcQwhM0ZHl3vgoDcblqhjr8XdN7NgI/pbtPOaS46qJGvjvSP/ohGW24OMPh2F+pIOxNQiT9reI7RmsxzJDv0SqYeki/JkbF77geOn+0K3tTuTLemdwZC4n0NddNL6c5WnIHpkwd1KZArbG0zIrj64r4RcbvDm4ccZmoZVz3wNW7Q6FzM7bK/WIIrTZvxPd1UGfsdBw/e1MOAvV+rlcMQdld4+iQuts4/J6L/8IN+KtH7461lI+4RyJJrg4OgMYbFHyQYn48JjuNyaqeqip7wJF1a6lZMiPm8uStAsrmF4+8dCy6N6XJtfdA6CwMxJ+Dngrf0tNFcXNxM6e/eCDGTQhzuqkPG5deawWMUyRTtP/LA2HuuYSDPGg53hRqxc61fwUMuBA3Gesi45NMenOrqS6Q0n8C0jnwX7r1th+3TcMv4mm4PIOJWR9HpVER//mSINtjRvVJUw6Te7NFoLnWBzEf5FWIz2hbk9Xgh7OmnYr5newtu5u35L36WtA4Zggk+Hmn5cn+lSL5HDu3TPKGVFj/FH3/B087WaIiTd0bLRHehyfcKtofdKObzFiZQfRYFWa2NBPCH6r7AEp/I26kOw9yt4hGkkl/Qy9FXI56ax4O++BvFu65rx9+5Ieb+1p4Q2Dl04JkmEKzfZ4Ztm/ntcC70Fdy1H0FtmGctE9DL/+xLIz2SWn4Z9QoeHkGO92xQy8E/4Sucg+ZAhJEMZb/wJXQNwol6sFTA+7tH4B5bEd7F+FQKCj4veAm+PY7kUxTx1xyNcME7tdt7knGpFzbEv+uVwLjcD/NqSl147J2coqeulr/f7bDsY4x9JDfbdSZiiY2mlOh39PFMqRXH+tIDPsoamedl18h41moYfA8j9qX3G4yljBLYatmBsCjZAoayvQcvzTCRv/jEWT4w+LhbIY3qSwume2F3EDMlxFh/qdG428IcKqJWqX1SMzEapAlhQmKJcDaenPn1NWvwzkFA1ukGlkLkoDGW56G13vNs3O3KEJTZWsextPIzdoFdYaC9n+C0uLxKvkrrHDBnVePt9vIT85bzM/gZmwzv4NiU4nw+M2OsPgMOm1MCiI/vK0PsUURAYH0Ep0INYVXay5zdqXFoLGkESqw54wX/7Rx8Vgk8G2TGUeA9HbZ67BFc47dHd78kEeQPPwv/I2mr7cCYJhsJGvxwofteKstlSCKG+MJ3NJZWXbbcHwMEDkccK/RejmDaLD2Xz4d614vrCK61ORh2LKWuKhWRbBxbC56fbYdEbzTtTHgIwVihFd4M4ydi08BzeDn4D3xnWz+bRvG9wvWJJ9i7Zj7g6GudYY2KiTqRkrf0WQcK9MzsRcPgbUVS2DQ2sPLbgwZl6g7jzlb+528P6nHLHGQoIH/JexqarwZwqDkcmq/KxYdh7zs8Pwc29HakwPaFUCG2rz6H9ZvfKOrFdhCiuBZgUz4Durtam2z+lYAYs2a5tHK/RvtNIt8yb4q2wtcfNAALbN2FV+q7SOz1nUMf5hHBENAL3XGgREv+5xoLX+Owvl4G0Ty2Ljxctyn2tp5dUgvrBlCvT53uH+UXsFdNY7B8P9FWyeCMz2/nQZx+VkiubnGmPE9zDOmU+DTgAWvZfF/F8DHpDt5M7dMZwzU4w9/w3CHuft1hqhVJgtdl2S/qvzTis9AbuDp8Amq9IchERTobloM4ItLrDWCdckzgdAibRdt2C1j7GBWoXhsdI93UxazWj+ZfPlBN4bEc3bC+QunndrRc20k2/eE5Ppktjb93Csaw6Wy4xHu6P34lwMyvX8Pdq9jTzXSK2pmiLITgMvrEWOwlqqG/Quc2IdK2Fi9n4zhYkPE6Qe/n1Vn+O4+fUDznK/XqjerwT1gfwFCkN+QB9HX4h1g1vMfbLU42b2vgteWE0CwDQTdf/ii50Zw9o2k0Dx8S/Ihmtf49oflcJ4QlMnN4LssfqEgopeErMkoy2NoK1Df8QVrW38AUN+YZ/gwnI8YM3YwZcc7BUc8MZIZb0f6e0VSAw6H3qQvIVcwD2FTweFgfEBz2tTNb946DIuj3eDsz4kyWeczhy5KCf+dDKfh8YLo9qGjxl5ZyeRqBXMgW3k+OW4rRQTksM1NHX/jZOkr1Thm01euHMNMyxW88XTpDfWBMjKv2AJxo5euPX+gGTkUmRscroH95EPS8Dx8g/vjA15yGrC+bLZCte8PNpjthNCtQbmmgihXUX8DH9ruIS4YTXMF8X96o83ZcwB7+NYf5dHbwLseWUE7kaMDVL6mp/3Neg1D2mQT/6hV/lURRB/qIAFfHK7Twh2D64WxBVT+f8YnuxoEqKUtMN5IzHJTpq50T8PAgH1UNW+Eqj/oUrCowECXDQb3m4k3otvjDO+q8mwWUhxp/jEmPn0hxjptBiNMcwszHBbWNmzoQo9YTo2HhiF3zXg7CdUxmVBf9Sk/+4/cXL+O/9yV6LWDGfoephs1l0U7/UTSIl1rl8LriJxwnQSnY77TRYLLT4kV7nIJZM/QepsP7TtbRcypZQm8xBF/5i22mTQOxfLs2yNLN+Wy9Zym4/CbQb94zjr/vKGIw1AoYN+G07KvfRbKmH6S//BbvY7TJ5P6sePDmb+44xIU1KJ0/S6BpmgtG7t5e6l3GTOYWEfVvZeeIw1vP4cZ+fzBSHDniYu+6f/xAoKWP2ZQWh8pc1/c1/qtflN87WIHXCgny2n4KZ+5hd4C35FVQC2lnIRByEmi+vBOSKiaWiZebZWRfCdP0IfcZM0gXgr57bPE2ACNA3L8qLMH3waWG78k7IM26kpZVaV0BiRnbP/uBSdOviqElHqF2ErwBk8rcB5oinCV/3A9TdR1H2Fyqgl7MeR+NW+K/QLmVrnj7ybvorz4GVWk9sJ3ghyOMTzcCPwAl4sYPOVLu9yG8+Uz/6wc4I+mWXVubbE895/gYmCVPBohpecChXFeOOFaGAiY7MNCcdA4QgX7l0DGLHUVa/ATzfdG1+MsXNwufi9rLGGwP+Qn9ZLUWfASFAtZfW8FxaaKWHT+pB7Gdn6mXF6mYF3+FcBI+WfoXgAdkGqH08zqiGrJbcoF6DS74o5b4hpF6ndsDPDw0ghQHf0qG5aSCUY8jJFUKXfZvqzFstX6NDhfjk/XVswrhOV5d8L5kdsbxYx9CN1IzjF/tN+K3xsz/5eOb4Zpn/H4/G9Aj7IxgfOQlA8OzMXz9mePtsJ7K6abzGvzZH+/vr2HpDxjgMxsTYcnv0nb/AQAA//+kncu2qrwShR/IhohIiiYCInJJRFCxB4gKiMglAfL0Z+Dazb932suxBKlUzflVSLmbKQevMjHZ6elU0EDiLmhX3uMhD61gjO+fhSzuwokRqq3QpC91WdF3m4npubzW2brVBiVYLSlVfv7Z37kTWF95S3dxNSRDLOkykC207MKeLBhf/SIEN6IKcfoi0sulfqyVOZ/TaTQMZ0xAoSD49YZs4/2pEOZ4k+VG+BLrY3rBePhyWbmaQUY3ifMNOCzS6M8v/3jQaJw8AZ3yU0JHe/xwvrbWEdCHtCZOdPGL0TypGLS1umFJdit4V6/BQLNeY0Z9Ojt/9f3nR3QHGBoML9UAJwFjZju9nC8akQ3ucvvGuZ09ky4NUwM9gnyFQURnPu6P3+jn/5j7GV/tILvpAJDlOZXOyaIdUH8IZbHb7omzgJU+3jdyhuZ4xpvZf1Etu17A2HgLLPkbE3Wf6z6H5jO2xKDEdabmgSk0tTSRn3+ctOwawvPzmc89cB8OT/sDhlxfLdl+cb8mYrplJcin75OZ6Xzuim265t/zcE1RT9bRObA25gWAFFTYBVN+O6ow63NCLlOKWNON8ea0oTbx1O6pj9vEvQCW5ZoYV79E424MSlhdcc8sAqSl25wPqHfMOzOLad3yUHmrcN74MtP9zzkQbgkfYH8/2nSj7vd6pwnbTJkq60B2xG4C6tnDEXSc1sQYXD0QZ56lSFazoMC3vj7ZHs/hqNxjZqRN1E6tNiygS8uW+aN//Je/5vgk7qz3Bt2XMrAvtsPsLN60PFTzDjb3R0QM/ZvxwYm7CZbkYzKvNXt9xKiisE/zgXit6vNJyx4X+RCpJl7H6ivgk9SGsLpWMdHJsEm+/cqq0FZTAua9yJh8c5wvYP0qgWxZuHG4qUs2MlrjQezG8oPpevyGUH2vItu2VcP7l/8sAT3jjGmzvh2/2eYCC3t7Ypacbgtxf5E19HlqEyHb1m/54/19wrJqD3RM7bde3yLRRg/jRJjL910y1tBLKC/E9188D77nYjT7Vzq+Vk3CSyRNkNyPBxa852GxzXx2/5IAx5PW9AFv6nABX7epGRYPx2TavjeRImhxQLSbbCbjdR+YMO2PDVXE9IoGtjMkWCmHmnlHzUZ829kqaJYksEN3EjilmykG95nH7C+/n96bC0ra8UxHHDxaNuc/5PVOg4f07rZ8uE8qGEE90MXVeRRjAisKU2Uf8CSybzLgsJBBW2sbttuUL4edbysXXqvu+U8PPsJWkOd6gJWPawXrzugthBboy3Dz4pxfhSoHtasbzOrdgtPzZT7bfiUk5AQxRT//Bh/2NdgcH2jY+qKJMmXec3uSomS4bu0UZr0x86YlH8evmyH0nBy2q0LLEZeTLcmHRZcQfeZX4srKVTjrXcd0mvO2ezjn6ue/8bK8O0i6xSmgWGmPZBdXx6BrqVKC9HneySHwkT7lIapA1qcPs2e92u3qXagsfJGxQxcdnQH2E1U2EK6JJnXPoiZ808C43D+JLqYvPlTZt/zVS3I4VCvUX9/7Gn2st8bimV8MP/81r29mdeOEmEMYRUbuAJt5TcJ2r7IDPTMQScK81iebxCH0jnGfec3VYYK/klGsfI9kvyimYurv+RGGb9GRWc87rEhbFb2RN2K+W0qISW/yhEoLBLo6Tfdg9s8xrBSk/fnH1TZxQ5j9G+VvvUQ984+DMvspoubWiB73jwcIu7HIzPeqcfhhc5r+6un65NJkbMW3CljOER2PR5H3Vrd5ogilDgu0+1Zf/fjqYp0oeMX4BbW+/oa//oHNlp5OM2WXwSlOFwRLrsaHSTs0CHqdMktZ3ALxJbUx+jobzGZM4IzPVTS/x99cyaE539txpU6lMv++c/4Y+Zh7rg1v9MnmfHELpv1FVuUoWZ3wVNxWenvjmgntZX6V0viUxYi4v/jj41MbFMFgVjRHi2/jENMShpYidIhhOz52eLOsH8EIQzq/46lu2Ukb6raXfbP61feZH2LEl1LwhPjanVnc7axiyHpawvSeUnaY9c76/v5YkJf4xCzTt5PhvQwm+IbpjhmTvmqFzI9EiPJXzayPetLF+33dwfXhbsn9rce8l31cQny91Hi08qX+7q5+o7wExWSHibRoWlcR/PUX9jgqOS2E7QUdKWBiV+EHMeecgzLXE6pMwvzOzTe8IPLVekbKe4uGV4Ul+PFtk3VvPhRlnqLO2K6IJ713xfrHh8PzIqSb6kMCFqoNBZHv7R//TcZbbsSAbpeE7PytmYjnIwX0i1//eDnp0/nSYPRahRxP9WIZ0Kl7ZGitsTszyH1E3Yac4h9PZcRJJ2fyDn6mOLpzoH0ji8W4PLyOym2oA6JPF0Wf82UMNZaOdDH78aq2jzXM9Z5Z97PLZ36hQjNccrrQDCGZ9dDl168iv/4J/fnXMlt+iJupL2dUHI+i7GLbv/paDMfuWqH20tpMXRKz6CJ4L+CxeQxU/BZRIuQmesozn6I/vzrz8UFWu5OCZW9/RcPleRaQfjnt2MwD0KjK1w5wIFZk5uvtEIu9gWYeTS9vtPvz20C+UczMg/rRp8R4u/LPf66TddAKqO6kX71mZNmXxXBfWTXMvJa5n3erj5uoboB5fs7Utk/4WH5WmTLzT3LhWCmoph1KKE6dwfz+6rSiEiYAM4/HYnwr9XpvnJ9wO9mvWU9t29G/bo6gJMWTYC9e6vUtQQN07X5NYf6+YdYX6NtaMfPbJymGO/Ni8I3iTtH+vA346RNZMJweDXO/uRasq5PXgfmwdsTf7PREvH2RCPpbiphOqa1PO7CaebKeyYy6rND3VhQucqPrES9XosXp4Fe2vBuOHxJR+RlQ4zHkf/0Ao0o2zri3qYXmfhzZh7qdjFWRRKAL2zWz/E3Fx+PqLaDh++rYQd3vHdF/PCksTm7KrOKkI3HmPWh3K31Cyus87sAVLrBbFi6VfN629H30c/l1uYfERi+a8HgwUnQ/gk4ntvXbKSJajgK6aUmovEXO0POdgXuU93h9zzc6Q3cmoEBkFl1Dpwajq1sCmjhCGL55Hsx60v3145h+11HQmgoI8Lnef/2dZcKaOgQovoM583glGGNto4IzNojYz6/Wri9gVfA+n+bZpUPOf/EM0tGg7DzzoD7aXgX4BpcF2d/zm/7tzpMopxtZxQvNJrNfkSX48Zt1subt5JmJCNPDMH/ri0/5LVLhUBWnmcflSYfDVvr1d7F4Rwnn7pCeYIMXLvn1d/isZ6E4UYNYwqMp6HLozL/4MuLNGg2x+DZAMXYj0Wb/OaiX+KnM/oocVC8PvktHNUHfoQl/kTzqI9cVEboyspg+867Jn7eRB+rgkYPSjqj/or2JfvnDzPZTMvq3o/HT53SzrJfBRGHQlIfTR8zOqkEfPL4+obk/QzQzStp+Ooym8g26lu2tjzHz9TgHkQslu3fKwVn99OeuftjEsiwzWfnX8fT3+4ix57XvEE8T9Kfcm9f7jU8oWmjg3TcG8yb5qfNSvi1g9uNYTO0ScXl77UCzij1dkeO7oEI/NMr/tadg/d97CnYFvzKd17bD28WTAmnvFsN7nrTUvMoq7MLLnTn0ozmTe7Yu4Ey3DdNgfwjWSN8OcOr0iu1CweMtWRYmwsbY4Ndy9dZHL9Vt5f1MFniwvMkZ+Sc9AUSnBeb18YjEVehkiC3vNZtfgGuZP9Q1bBh/MoNGXO9qc4jgeO1eZKfEts6mbJmjj6ADbYOYJNN9rcryYMiYYdw9na7Ynzt0u289uuGDyYeNc4vAOOUZs1NvRK0a1DIoYnjBq/f7yGnTRBdYpJnGrNtC0Xn4IQYkztgR52p2zrRQtQW8HiInBx3l7cDbppa3ja4SI9qdHd5BGMJtlHpCjoJWTNaxE9D+hmu2dZ0JTSK7NPDpnlvm9coUMP0xNiCywWI7bTWhol3UHfh6LJCtfQ6TF2FfA7zb/sr043HHp3DITnA98gOW9u6XDxXa1yD62oXtn5874spGNZXDwQvJnuteMjrW2wXliRtiHf0h6T24WjJVexujlioFx0YL8BJogJcP9nEG73l7QnN2njg7nEXOyV2jYHmvLQvL5bela1V1lVrjjOEamwnTc2qC/kh99iiqVdFvyrwCt08MKq0cgnjwTTLoHGFBdOfi68PtfRXBP9kfYjHlisTtOZeUSF+dMSiCjbptYWUofG4mrKwviDOBKAayP6fud3+cV3ArETyaNTlox4tD881RhfHi7KlwRzzpI3WVyf24vOKa7m9tpwyW/Isfsm+fmrPmp0MK/Ve+YBQrcjt1u7aSURtmxPgcWmdYvV4q7C7BiNPg9SrGy7txYby/5n2Sa+Kwi9xrsHrgC+Xr0ESjgk8A02G6MfOTvxLmmcNFeayRxYgWTZzWswZ+BBVjelXoaGWmVgxFx5d4JWrHYrpeYxel3rslriqrCfexdYIiNSTmZGfBabnwEpEemRHZ2nbeTldgKhLyxYJts0nQ+dvAEjzW7pa+sil0Vm88aMpkPV3yaBZEn763SgD92D2Inq/3+rTnHka76WXjTUh8Zzhs7hXUmlmzw7HbIb7OYhdSVyrZPsGCw2nvy8t9nK2Y5W4ufBQvXoaK+3nH1E2vcY76awTG6+gTLemydmJC2AH+tge88nyt/S6+1AYraCjm93PndFKAG1hM2pdCsCpRf/b0FC28jpADsZt2LINBQHN+oaupueq/+wVFP9l0NWyfxXeZDqbiJw+BltXqw8fhYlNIX4NB7HohcJ7KbJITh3fEdcNY785cxkDnuVbi8NnztT88a0X3bxUjnfvRmXcoJxDjc4H7p+Q6TEnqJzQ47MjVXzUt83BfQurKJeYXs3R4RK8a0Hf1Zc5GbHT6tl8Nyq5SSpdxpPDuvo8B9e2qmZ9P6HBdO5nouyw3TE/4wCkbnyfl7B1sFtlS1fafbt3AzcQx0S+moYvB6mHIZ8m6kJu2MwJhMSkhUpe6wNRY4MHYfW45Aho1JNq7B8SE5onBGZ2OqIFvOb142WXgdtaa6OVNC16Kv4+gNwMDj+cSEppNloGu9jcl27fYBENtSpG8nnxCvCt/tyyrB1nRD+EbX5N8HUxacMl/+XBeH44+UfFlwFW8MgriO0f99fmNEcF5jQdtGev8UUgG3Dt8oEJxp0k/oMcTvCg6stQXVw7LzGMO7+VhIGTzPrbTQrUBbnLOmSeuTc6rTNbQyRM2zMx41o7fu+LCNi7n2fSKUtC21hdwEPCTfvR+odNwyI7o4bortnPYPuDijmfAk+2JeGfhzEcPHpY8rzfaqF3Ch2lVnlAlyYzgVbZICl2LTZlF9Yo9MkNux11la/A4hTnTR0Vp2wx7E+yXYcgiNpn6kGknS3H5c2QYHRo+cfX9BO9495kjOUrbNbleonPORipqsHOGQyKq8F46AzO99RdRbE0XAM05MfWilJyZOBeVYy94xDaiqJ3rhYjypR0RG8Vl8p0OQGERFjoz0XLrDEL1EuFOnTsFq74H42efCzC/RUKcNCydKRwuJ5jvBzeqZ/Ke50EKJKzPWPgcHGd8+F8Ku3RRELfPAdHqDQIil/eX7Da0T3p30T7BvegO2xm6zUdtijSY1zseWnObiPLlVMLp7nO2lbOEd6kfVrBSbjrB0Jq6sN+1NZySy4N4i/ikjzhUFihtdz4jpsHaxnx8TqCyUiZOqqr8+3RrCXTty4nWWDjgX6/FcARNZmTNTvpwvhEDvRfZ11u3T00fTLtModgpLpmfd7JehEGozPWEKjvXCDi/Laj8CH2RiuVWLCZ3Ptt+Xp/EVl+Nw9VRzWDhUUKV1bYupjpjjbxPHCAk0ptiKntNQ7/6hEG8oiGlYMnnvB+Jvv2WwTANbQr6I/PJXr/FaBJu7hF6qT6QmD4Z6tjhU0H4RBPtnqeSj8c6kSF47Ce8yZcFZ7S/yZB9rpff//+LT3gdVJXcKG75SLVuQnO8U3EC5HTuOw7hrU1Xmm/zk8Od6INRzfQ92467U1J/RlNFgXVasgPFDh/zHJ2QdjneMKTjhne/6z8+jJht07vKhS442JBR1WLZdnJacYFsA8wFSf/q86iFQ4o6lh6JaXLeTubKL0FT1wJxR7xpn/7nlUKAZJ/sl8oWDWPkdmjOj8z2D6j46RN02J9UqtyeUztUUuIiZV0WDHe3SB/0uecm7W1K3Eh2grF+bivk21PP7KU/odGufRuRsVph7pZfnau4NqET5z0kLz8PpqRoAJj2OuABFS9n7A4jwA0RmQ7i1tS5VsopCspnxBJmrp3KrtbuXz1MR/2DhtfoHCE/IZUKt2Fb/PINiPpzYL71EHWua7EhRwvhiddz/u9yKkpQSfO4b9WreJ/n/IQ6f9Ey1XidE/5ttQFZ6Ulg6nw938S+TUi7nG6Y784vXXx4QQi1MsgM7zIrWF2fr0iRl7WD34680aldagPKn3GFN0UWoXFG+cq9KHX8nuvnVCfIBalfvjBfFJQPnrIx5ble4GFo5qk99reDtjpFVErOVcBu3wzDo9h+iepsaDE99dusf3WP6PP1TGysT3967eITPZgOX6cE6Sy/mHvf3XV2jn1NWcj7L0VxNr+Hvb9TuHQZY1ZV4mA0Wk2UnSF7s8NbDfX+qh9EkOOhI/r+obUCPK4RTFW3Ydb9cimG6iyLsFlhk+n3p8JHcRgqZJkHi+wKdkqmc5U26CpECUmxLSWTqhjGhm+8JVNf0qHl+Vo0IODLE9lfWwvN8VhB5EtbRu7vdzHN9RR4PCvBlc6dtoJbhextZ5JzJ0RoXMmyCwfl1ZO93mc6O5QrDK8PEmYmMxbdI5YkZLXqhzlenxe0WOs1xIq+wWUiFzo3pCiCBU4ueNKjIaDuWb2g3HA8Oj5Dlgzn294E72rpbP9tCsTPsIlgXRQpbjs4t9Nr64Vw/byB/OrF4NoMo8pDBS5X6TdgEXY0ZAy9w4zDJKIOro310x9s6/c9n8B2K/TZNzl9eqx3hlBCGtw2pwqfsk2VcC58RbAdPSDeKU0DvhkHC15XtyfaI0IJ02wSAunYmVmno+qIIrvUv8/T5ZpN+pglxQVuaWgyZ37e4+hvJXg9BM60/K07q/TdwWYkl4Ds6GMXiP1THCDRsgexXlqQTE1zDJXMn3cqThPnrPCeGdzVVsKbsdoFfHELbbicTZHou+cJfU3zYsgSmYS/+s7rU6eC4cYj0bBVJEP06TAU+H2a693LoZ3aTL98R2xT3zlDfehEhPa9y5JP4SD2qMoniM/HEQ/nkxTw+fuVxd05EO87Pds6TJIU5NyusLBD9e96LBjy14qZPcHJuCmbChBPHn/+c/DdRYg01e7JLmoh4ZbxwoqUPT90/Ok5bR/LcNq5nMzx1/bS3tHAj8mH7R5SgXi65iHsnV4jsz/W13LTLGDWb8T9tjjhQ+VSJNrSlxiXteIMlxAfIf9qHdtNjqbzozwz+t37TH3bzguaTaq5OZkPFed7kvFROixTWFrWmVy/jY4EanIbTVbukv02avhwvCwXP//GvGdZ82EeYw9G886odHcMNG7h1sDj2yUsTccbGluBVPLsn/GUdFnBj/Higq6K9sK8Ic9iyDstg11hHIlqXIqivL0fApr1MnO3uGjH+iOKIH+fD6LzunGaYGrmkQHrN9tzvU8Ge6xDeJYzwzlMF9Rvb5sj+pQfjX5Kq+b8JWsZWKMVYiRmx2IV3G4ZfOvJxNDnKaL0dshBvT0w2zLC0dBj6/KnF7zy+C6mrnBsQLLp08FsL7zOPnTxW5/Muj1qZ64fBozCWWCuIjRoOi6kGgIk+cQaH1wforyNAT7aSIj3iXnHD/YJtp75pJBbur46LehR9utljKUydtHP74Ng9m/mZLaWjBNWnnCSxB3TpMRt12cYY0gW9og3WNwHVBALEfiX7/B61gtdN9QdzP4EK7xZ6nXqpxXokRGRHeVWMTXTroKMKSkJTvE+WRvxIICG5Qf+XNua9+HJOAFeDitmTAZDE6l8CZYkx3iMxtLh8VLNFWc8dPitxI3DbCVYwP39us75OW+7adWd0Gnzcv/l06+/KdGmSgNirc9+Muv9J8J5cKRjtU2dwVJzUfnGWkCLugydwcrsCKLNDRHTyNRkLbN2grZaPvBC3S8djvTD9NPrzP/me32lFpOk3HAQ/3hEUO+Y7yr3Ujxi8bp7FfzPv+D9Y/ZXhi7+7p/IGBG75rrOZ7+gdM22pUKIq2LIHmMH5jX+EnPrSwUvptUJLqZ8mIcr2EVve1QFvpTHH+8IeHGcz/68SimLrkrH+xMaxfkcFUrHbbJEXSs3Icz5Fw/fROClYCrSRggnn4omD+Z8eJBBzlc9M9WpKNjMg5CyrgpiyRIUNHYM9xevTN83QjLdN6sQnvyd/PGrYR2RDAX86BCjvur6KsseA6oaC/C6DOJ2mrSNDJn2WOOF85ASlg+qCFdNv5DdQ9IRi8t7DPlnetAhejydqSFvF8j5nBIzKC8tt6XE2qzvCaMw55fVHsJYJs20Zd7Jt9v1uCiyn95i2sOQnCEZrRw2tiuT76wXa9X+UkgOQkQMotK2V/x9DCXpbILvwauY9a8N4acqyXb52qLJh/L4i2fmnnOff3+fn7ZWwCxHl5LhhRsJvQ5szwgojc6ZvXkim0kTsaT1fGhEkOWg+0lFSGbEBTcU31V4HDrk0BlNMNdHF27m5sXM/IGCN5MKA9EyTKn4ybfJeusGFOpH6bE7lAEaKh5HYPb5mRBBPxeTUQkZnCRhN/OyN+LV0tRQunu25KLBW59exZuC1J9ihtd3rA/LGlGQ83VPtkpbFL1THEPgBqrwVzuKetcNz07pvUaZ9b6MxvC6M8BZixnbB0vXmda7rQZYioG44ltDIk0UQJepTHHsvFX9L760s+qy63vx0anMZRv99Ori2A/BtIy+HXrUKWaz/y4mJqQd7KbCJrtM27XjxV4akD+jCku3ZoPGRgwWsLGxjLOwzBD3Dt2ATF5rWFgsymTw/aWNrqqpsV3UpsnAj8v8tz6Z+vTuzoQpsVAYiSN9t/uW8084RFD28prt5b3ergMTGQpF3Znt6OOd9M9RoWAr0XzO2aS2Y5oPT1CebkNF8zEEDdhGCbO+ZDtSnflY56IGG2bcfvmWz/Fp//gQpnM8TSVpMkS7RU62s34ahSVXUdXYgDePKdW5GRQN5H7DqQSkciZTjmOUbaeBzbygGL4fN4JZr5GLEBgFlzZ9vBn3t5CR7tkEveKTGFUTUdihyCQ+7vrlCW298cP26cCCQS4kGw6dUJHTrI9GL3UsmFZZ98eLR2+Td2jW18xZrmVnfNxmu3453ag08+DpqfsU6RQb+JKrZiJ+FkmJ6qN/Jm5u6c7KHswIrF26nfN5PT+/tQnlwzGwoBGnRR5+V3IVXA50E5JRb79e6wKOXULc3W7Sh/4oTD9/yQh9xUm3ad+RgmQeMX37NZJhF1IT2FbUiOcrn6SPSVz9+DHxnyFJaJo1FtjPj0w0tkIOi/hVhLc2XJkfo10x2vZY/vG9B5eKglW3DUY/PnNVFid9hCAZZFTAmxw3fc7Hs+ekaBW9SmIl30M7vZ6bEzSXW0/0fRMGf3/XkLgkVnI2E+51ngWpVK0pu29qPud3V0nxSvrzf7VpdxnUj8ojGmvmc/KMQwTh0W2pNPJLwNrUCsGV5ebPDw1ToEvol3/n56P3g5hRdDLvKnFEu08mTPc2pIHmM30dVpxeFigCMb4WzG1XjA+VFLg/3kz97RE7fXwiGtI43mDlO6kFF/q0gUtZDMR+yVnLHsVgyLPfZlgHT1/310/154+0xPsW3Sp9usCiZkXH7KMlI0v0p2LbF5e4N4wLriDI4fTKXCysKxuNxzqQ4ZnLISGH9Ov0E1ZyNPN2Qpb7thieyJBhcJeYjr70KLjPzya0feMTXIR+MdWXKUb7hbEnThvHwWh7lQZPs0bMfd7FtrftTQmLSf3+8cOvGPgqZGyZMk9vDs503yhzfdMMtvskRF8t9rsBit1ph4fZv07KPPtxCSnFuO5RssZGu5Db6/NN3OC1LUQ/diQg+7VITHXSi4G3ea3YN27iXGKEd8+zZAKVU4vFaofQmGXXQZ7zD9kyY9az0VZCjybJMT32Q1JyrBtKEdIl2yriORlrrdHQH1/7+QmjVFWlW7g6y479MZic5Rl+9RQr1Tvi09PBIAumlrEf7+3m60HDUL6YUa0+M48wKBg7tiSErpR2rJWXjeRwLxNyQJk++jv+hOwqp3j88au8szPgdS6xbam6OiPL1oRQ63fMji56ItyeVw1cgUh05Vu+vj6uvilE+vqMxbPpc+EQqpMy60e6/OzVdnWxtBq4gR9YOniy3nfdKYS0iWz8vHy37bAq7xn0+fNO9It/5swMihrl4vNEUmOkaJD6zYB+PJGsqKaL0brCCBvmfOLu0dGHQFVPSr2yBark1E5ELg1YnvndXG9tfWhXrxydlznB/P68o7EMJAHN+YCpVCFoMO0uhXd9Ucg2ghWa+b4ENpMnLEYTLXoIkglEv78zC7OVPplxlYKhDy2xo9fZEYyLnEJ/1tbM1Pci73K6kNHqDgemzf54LJ5Uhjl/0JkXBrzLhEl5XvYr4unN1+nY4yaB9vhUzCGFitaHcuVCFVMNrxMs6Px836UQvULEjDA/oMHb0QgVmyojqqGpCfe+x07hG7LE/VlY8WnL7VTWVKtnltw3nJ9zfILsZn3//ODUMN+C9za32S693vS1HfNSQV3ZksR+xmi6HT0NrFBGzBSCsuBzPpxnQd1YHGmqM30FfwEjCQNi5dJYzDzSRKtLeSTXmSfQ/RANSDtrLnOFijvTzTuW6JdPVD/5Ii54Vg3udCoZvk+XYtiFlQESj/b/6otwj5uf/6Pr63XXiu9m1cj3zj0Q7/rQkrVnShckfiyNSovyltDovBMQT/QT3gTbm8PrQa+k+fswP7KYd7M/k2XPN8nZyB/zsKsRw1Hx91ig3iuYpmInIe6UEX078k3n/CZSUBdhjzerU66P3EASxJfJZfurKBfNfD/KfX9p8NjNsxW797qE8477eHHPgoC/QJSAKc+Q6A1RWz6f7Ik6HUvM9cWV3i0m5QJG+JjYId6RZKgQqWFJnpjM/c+kO4b6E9TbHdOce0I77VJZ+PEe/En0POG/fpquNAtiK3s/4P31U6LDgYSzXsVFN8CYKsU8y8WdeTjT9idZKVJTIj99Ov++NWyiRf/j43p379gEy4ts/eXPsXh/KPj20OP17E+Gg/i1lNk/ksN97JwmYhLIFNEz8RZEDdZaOWUwdkeOV5fGdYbbvalAXHoa7Uw0JCwzoyfM/oARz3ojDsV5QE7ouUSX19PcP4htAPHR/vxCMO2H4wAz/yTetr0F2fV6wsrizI/MPaoX9NcPfCzFPTsUwd5Zt9szRltp4j+94HDj/j799b90eX1yYp7tzM2hEytmScU3eIfjgOEWdCrb969TMLlXmNA2LWK80Y6iw89rqUL6FrrZDwdOff+iy/93ToH033sKpO7qMucspIiLD+8ECrJFhmn7QOO+WIXQ70eHZaGZOgzOQow6egC21RaLYhJ3r1oxwyScd/pUAZ0kNqFGrw1y08dXwO+prynRORvxRnu67fqOZRmUal9g3rQ3JPajZsuLvAK6is2rPr632xKUAdtsa+OGs5rKC+Qb8kTL4XZ3+vd2W6H+MA8QcXcBaiRYaXJ+DXq6+UxNwvk2BBAsMcermo86T49SBIxbjO2v0bmgqfSpAF20JZ7kh1pMK9lawMNmA0ViJOl8rUo13Ifbixyji9quzLcswmRsDGLiZ+uMW3gJsBLV/wEAAP//pF1Ll7Kwsv1BDkRAUgx5yzsqijgDWhEUeSZAfv1d+J07u3d0hr3sbiGp7Np7V5KCte17209O/kqgU44lxYOVs95ifCr1aT2HIr4FGfeJkkEqfS6h4aH5REwUDQ2iMfWI8FraqBETMkEEEgtldfGzqYNXI9vqh4zTM5nReBLzBQnHq48VvaM65Z/BEUBcDGrNx202R59mgW1PFuzfbrQaQA5t9BWiCXsPOevHrTuIKEKBhg/7RtMFVtlHaHkH4bDwCzSfZesCr2saUc3spmjevyIJUlEU6IVHVjWf/E5BXnM80QuKS0QD88XLaFh0Gu7QoE/VgBZQnsKVWqEZokn+NDX4aJeHW6Op9fkxZx0MytXCqpCce17UBxuyUiHYSG99NCBzWVBgnM/YencLYwc1f8NhVBdqw30bTenQFshQtiF2Lh2XkbrRL/C6WQbZothm02BrMcS+fMMHufD1uv+8SrAGzsEpBN+eNbtOgRIJDQ2nZczYG3YJ1Ecuw2ZRdGhpVNcG8Xvahy/78FfNX7/zUT5w1xD2RovG4YJ5KHThG+4KdPDm4TUCaA1/wHYTf3R6yBMeqmP2Jh+tl6pWsK8uCDfrSKa53Pe/+Ie/9zHDptkUa7wpgDb9TiDS98V7FH0SDSY4fsI9fl2jhjupNlxc2pHrls3eyM3rObIcadSMw1Gf32TmZOtyv1DXDjESruKfBCyyQqySbtKXu2tPUJhVErJN21STEu4V6ebz51DQjLpq95G8oNxeNTbpt4zw3XgBd8xb6vNynrFjdXa3crLu6ehjI5ro6fNAMnBferCeGptH6Px/45urge3t2J/VwOYymTQQk302fBP3DPWwLaiuB5U3vrCvgaQsOrU5a++xzHUuwHUaIrKY3LN5dO0E5V+mhcsf+kT0nu8uUP/lItWNzRPRb7QhcM52z3B0C8LoRdVKeD5nnVBdqqKhwX9E2kTGBcfyrGQTSc/ab7zCTSjL+myxI8ja9fGhfiS9UB1tjQSt8YOdU1OiGbPeB3USO3zZto6++I9CkUdKGqpNyKzejbqt0estIrqOrzdGidag8191DPePEEfs3OgEkq4wqB+2gUf/KsWQhrC/kK2P/Iw1uh2CgaOchruCoknzUYnSc+vhA227apIfcwHf5FiEkCN3BY/RQnsID/SwCz7sF49S/BZ3OIMb7pdhSGpoQdxiV9YLfaFQLnCWdTHkpftGJ1F0auDdjQwHBC4esXyuA8uq/8Lxw67R1HZ3QEvvTlj7GoZHFvG7wPHIYxrs4i+bpG7zAPHoH8j1eHgiFviJJG33VUuEPjayybUeA+z0xsV+0z/Yb/2gDSYz1SJrlzW8dTPkN7NbetX6tGfF07TgDw/PcH6Fnjelw3qO9rDsqXULx2qa8XcDwfGeUOdpfBHjP9wFQssbsB6uO+OffwcNKkWCcDnEarSMm+YMa7xQLBVTtPgADUrljYsPzouLmAkdgNPvZYrnJWBsKMQSnYTojfFhCSKyU0RDEvaQ0mNWHBBnPHV/v3uYj5AzmsJblNgsQWTGid7fQc3IEg0G9Ii5oURiS+ek+VPAfAl1an1M6rHpRS0kX/YuVkYcZQO4wwUFJug02ZjHbHb1PoTbFhv04MBUDSk71vLucXiE05pfxndCbaTU7xRrNxjZct+xAvlE+9CDwmZEfvGw5iOqScY7623LsqEm7Qlby4vziBlKLoyeO4b77+JmrBdjAzoazSEgdkHk8fRLyNqPiE0WvPvpwR1c8PztCZupJXijNbxEuawsk4gunPR1vAr05JWJBhujy6ZAtTl4qhDQZDYO/bz9tDZSqlAM97xh62u8GuiqPLdhsjGnaM7czYRi57Mj897QGb1X7xRpNzfGzqPtq+nubnzYCB2mhw8WvHHy4QEBt41oUPmKTu+zW8Dwej3DkmEuI0ci+VKxdWvsc7Pe785yeAF8TxysW93ERqw6KZBbY1EFlg9bxNt8ge+m9KljlhtvTtM0hUoR/+Xranpw2EV3jrvguJ4LfTmSJYR1vf/7fDieMgX1z87AXgNMH8+yFUO0f51I83rtPEa7qAFzKyT4N/+/+ZKunRmEs32QqzVeLPRSbgpVsaFHa77YAJ/WAlaqY8aWohtt6Cf+gR382kXzNvE0JBihRR0MczU91fECcdja2H0kt2w5sX6SvmqVU3xtCVquj+UM7ZjeqGqt50w9GhfIHOQQu1rHVdRTprO08i+afJsymoRXdEHPU76jR79PvN1jzhrQjtk53A4WsBzc9wU9qKVhPzfP2dB2pw3I7dPEjlk+PFaZnQaXC38ikjGX3tKv56h2dXmh6sgJ1aC7GwVdHqZP1WGz9ZaaSCkq5HxH7Q+HIiJhY4LvsJ4TEsq0mrDfPsDpkRzue5zoi5pDjW7OY8K47G7V0hzmUI7ULxcKZfCppp06Fkilw5HMSWFXk2vFA4TzY6DYCFr2UXbSJFkMAbWtMOznk18q8re3O3x0DQ3NH9YncNIDlYY7M+qn02PvgiG9c5pq3aViz5f2hsfB/WCrjnW0pGyjIN9zM2zD/ZnNiZo1okqUJ7XM25Cxq8kZwG/tBTvvpvKGp31JQYjW3g634FBxH//VwJjzj3Be8zHLoLLlaFO/sS3jG2OQ9w/kLWONfbEd+06qTiBn58Ki2uXmZstvPRnFH0+dazGwRYculU7C6R220o1kxLB1A6zzWFGbg7lvh+ZPg9pjB2p63D6a1frporZTdj++543ilZ0BPSOJ+nlBquZxsgHp3fiiyqHce8eDeydQJJJEBOhYv9S79gHscOKptwWmL3co34hKdE/4xbqh5fp5xfJWn68YC7rWCztSSEjs+owIx7no5y6HFOT75o8UY4cr4aN+NeDzY4NxejtlzHgRgh776obN8v639gO3Y4grbNAAh6eMXcKikX7rFed6WTVM7zXYmk9r1Q9DNZ/MBSA4HxwaXG5TVufpGcBGIWCrTXbZdIFXLlsD72DjbHx0klAjl4Jr3lNTjKu+13PZllzqplQrQ69iLD/5aECNiZW3xfVUKUQbXU45JRuZxXrzcE8iGvabSyjckl01JtJQSuRsZkR6JEI0BNJ9QDR2NjgsTZaN31S5yEX67rEtBXW0YOvGIzRMOrXkuYjmm3530VJSRJUMvb1/8Sx/5wsZbV/Rl0Ctz3BeDj4+3J+Vt/zy9xqv4VywEC3mtQ1hfto0FGnCR8T1jzEKhyxZx0urZkElBijN0aNpFptoanLEwWxn/fr3hM1U/IZgiTKmCs9ItqBoc4Fq/shkUoov+scnTjpWw4Gbq2q571CB7q81v97YCY24Dgw4lkpDts+m9gZ6GnPkH6Y9dsZZRTPNj9aP7+HQ0FW2Gy4HDsjXJdTXOdmbl+RqgdtkMf7hQz+echGtePCbz4gcyeJD9zATguzkxqbddRlAM44+fZwMt2eHPOH+vZ9hIyviw+pUy56mfPBtE7978q0DDsLjMQpprmv9L59BtkuPZMK7bcZG+dCBJZwe5E/XVY87Ja4BfrTfYhw/vxk51WaHygMzyXkyA4/WnZogdkr/yO72fKF5GbozMox4ou7pRnrWwN0A2KUltk4lVLPq2hr6ht4e42OSeiy8zSX8qekJ4/H57cnndTnK2cZjhK84SZ9Al4/wnh8iPXiBmQkJXm8wGvWFdL51Z8vdVSb57F8EfOd6OWPT62sA5xYR1m/Hv2ga2M5CD4RtGir9tpoC1jVw50sT++1LyIb06SVSBCKjj01LqqnJGY8cLmb/ycegy2fEwd7Eah+U0bTDeofSSwzYUo3aG4fLgf+XP4wg1nr+F38HNgn4oCS7np13LQfb/WvtRZUk1W/9wqXY3sj0ti79zG32mx//IuxtvNmiu3YNK9/C3gnOjKukk4Rut+hLulXPsLNua9DxCk9TyZK8WY7uD/SJFYaDuN/qlNm+BlFG0rBe9Tjh3G0Jj54URJrkLJuDV1aAaB0KqiimV7FS9Di08musD8sh2pnupkbUVUTSlq9dNY875KKpEn76P9H/8afKOD/o2oDbm9vhqMjf0NlTb0Fd1PzG8285nKmDAgtxlyY/Q3jarBVas0fTBl//+RtkUe5ZP+1ZpSB7Uz/CZUJm/+OX6O0qyy/fRtR9+hLsFWRjFR2hZ7eHxIHqcxb28fPTr3wgRsZOn0O4NO+qjR578tNL2LVkCS0PdiIwKDeLKtURoeGcsw54J32EY97x1Xid1RS69Z4R61Tm1fS0LwlMdqiF4uGpZzN/mxa4c/yF2iY7Z8vjw2r5EColDToLVd3uD/vQqMkN22rCezOxXQnIMevIDDCiGTpBk6LLNqa2C7M+j66SyB09zdhIl0M1LZs5kVf9QuBv1qOJr468LBJFDoWAk6pl7fAJ6ae64tBDfdUalqnJEEBOIGBctcyhVEpRqrVYe8SvapI6/gFf4TSF0nvxdHZzxwYWtSpDlKFOn2PqSUia/wx6e98f1VLZ1xLYBxJqz1LhEQU/con3DEyDP+Rl0+kxu9BzvkJTS04Zu6huKT1Shf7TI907Lwf4SG+CVQWzamm3/nvdI6JSrb91WS9ukAFwLhKqv403mi7Q5siejkfsa7pSca71INLqLxBh6cGbls0+hfd2tqjlNi9vVl1FkyObP2J1b+hoKW+zK1sQz+G1bdt/eIZINftY1wPdW7Jrm4qr3qfOe42/x01UAEm1RG0psDLunlxi8Y0Nk0aX15IxZhsaKhJRwsWVi9m4+jkQRIuE8WABan587+cX/fgn3RDkQqyTHOtTd8rmvupz6ZqIHNnHsRnN710jIkaD6N/37SxJ0UC+IPefH8jOkIjwPD12YfNttGzWpCEGX34FK5/c6N+tbifQZLs+lC/LUE1J1E0QnsCgfi1pHhvdDw9yXCNsHBPOW6TqvgF7//L+zdeoNJcGPnB+4jWf6KufEIOsVg3F4/PQC+/bniCvOZ/wQYCJLZ/0E8KzLmyaXFBT/fwq9FeIe5xu1/gpu88Av983O8NkoxbOb3ldHz8/xSO5SOsfX6NuWozR94fnAl+L2GwSDrFjXhmSn7Y6tQAdEAk7u9uv+Em1uj2geXqpHTgCuRJ587SqWUpoDNPlZodzd2vZ7NmXCTaRdcGrP5hNnJsaoG8XjrrnRs8EeZoaWPU6mWZ5h9jeLH2YcXMI4RWePEbzXQn7r8uRTc2uaF7xGpbvHNLD8/jsF+cv5H5+LfacdqjmnJ1cuYqYRbVC5tGMa9OQ/UQ+Y0t9lhE1XceFwZcrqjMu6Sdv19gwCfgcyvegQfMFPyzpz+19qj/MMRpt0S3BEYYrxpUZMTpEaQoPamg0+BqdRyKTFYhrbi42UdGh4ed38n9w/+lb1u7TgQfVyd/YqAr35w/F6Of/XIJYqzoK3YLWHiT4GFiXjP30L+8vCuE2Cbf2kqoNdLLeFc2LRKwmxXY24OwTKxR+699QLxqq7fsHY7+YvCXLkxw9lzYkAuIk1v7mxyTdlhpZo3jcVpiOaOotn/pV+WT/4k+4ps9wV97lbHmw+wCb93nEurZYiEN+yyHeSR6k9J9K9s/vXPlh2JSLg/YSJK60+ishUsy5Hxjvc/AOkgsp5EDThXuX5T//k1QqkIj8vTRF7pb2Eu5t44vocZrO8sq/QqjKLWoT2yUwalTEnoFcfTRezhFWPoEPDhyrFc8n+NMNjeY696fPw+sDQLHh0VNprDVivdLQoawf1BfDU8QUGZ/3Amo8fPzc2oiIIGuowcMnFOTC95guzAmsfm+4XZo6Gj8DXOBYxAI2allA4+qvwYbiOxEG46Cz9EVE2JuQkVlY+er6/8AXnxJ2eEnphVO0WfccuSlpmvkVDVk3KLDyD7Lx53e29ImeyIe/yqV23uc98yTHlVb/mYgJW/ph/rMMSLrSoO77FqLPZ+AuYIlbTL2X0erMIUUBY9deqeL3ovfJ2d1GhfzYEfnDrtmCI3mDNDnVSLbyy7EdjhrsBDJSZ/+6slW/dfA4fSTqkrj2CHu5IYSP+hWiW/CtqIafCmxOaYXtFU+GA6ASDeKxwsr7NbFx1Sf74Y1UHIjJPWpjqotwQ0IZsm/bZONP769+Mtkh9PWGab0Xc33/sF7gGM0nU9pA2w81Nmy09iohDYGPVBMaXiVdJ/qOXUBWXw02N7LYj1dhykH17Cv9O0plT1X3k8M8bOuQN29+tONEV4TRs0dq6DfPmxysn0FYd1rNGWY911G9/OmDoOFgrpYv6wEJyaTix7ENI3bIj5yMpbrE6hS/ouETHYmcwvn+q/dk08G9DzDeIobt6/zSV/4j/vCZbEdJZ0OTM06+H9c993/dyZs3ckjQqs/pfY2HxcyTM/rqOKDGErz1SZH6CS3tY0s2T/3FlixcYpikmiOQow7Nv/g/Pt0/Mr2MylvrO6mk+LKHVSdZ1qufyjc0kWHj6zo+xErTBa668Bq71b8gaf2UIGu/IlVuptezhNkaXMrWXv1WEwlr/odtp6s00IKmmqPTuodoyr5k9bejmT+pBFa9ReQhaL1+A6cjdAL5/qufLPiVG1AONyUUr/EbzVUk17Ap34AvWaCzX379+SP/6hPLu7pPyFtoTXWvcCJOSN9H5L1eAf35P3T3nXkYbydG3StOemEfKTEI1+RJVz6mT0O4TyA78tdwPkOQ/fQ5wnCMVjwrvHlH4wvozsvGath+PUaY7cO3fezJdnx+q7m4iTW6bw44WOsR+qSK9RkMby9RZS7vPQf67giAm4A+1FeikzzqRWQn8UJ/873euyNB8HVzqqDXEdH7rJVycsweZOX3aOE3UgEtNWyaB4zrmR2texT9m/PDBzat+hpwrH3JPgisftGaP/+3/rBlwORN725zBCEaCF39an2nXA4P9LVqStVuqfVlnF0XiolLqD4GerUbd8yGlX+G7AJrr1izNcA1Kx97F73IpnPVEbBtzqVp8TTYP3+wCTWO2qtfO57EywRzxoJw+45txgAH8W/+cfiHUzb7+WuDvl9mh5tNuGRk3BRHGK7pHRvfZO3IsjUA9PlRU41hLpr4/DVBn77nEJ1gQVMSlQtUfH8M136PiP2Fi/Svfhdcbsf1HhHvgXTLq8OJFLb+BWzGcO0OQYjYXLLV37GlNu4jrJ37uzcn9fOC/v5eMX6cnjVqf37lX6gQvObnrDuHhQHl7TSGW82CqGvFvwIlfO+Gk5GcGA1PWg67dAQaPnWVMeelJXAP0hArclB6rB12uaTPeY3Nbwn6cDxFGprO/Q075evas/HBFJTiU/Pzn7J2e8o2sDfOHXU01DBqR8MRuVedI8W63rqnZE9g106LleB17FmRPBR47tMz2ZyeFqIrXwWa4RP2vHKrd3MoFT+8wr47V97c6HLzr167+M8iYkdsbNCIBILX+l5E1vWHkuP9gbVfveDqfizwWtBoxDixZzSXC+mq/G0xbg0vYpOwn+S+yZq1for7xQwlG8nAf//V9+Ynb4YgFcc+3IWx7u0+dXAGHCtfIots1zecm1ooruuaKjQuemaLX4Af3/j5PcuAH/yvXhm+dO6mL1F0b9B5yjIc3F63alhEN4bsaVf0EBV9NSUvRYK19TO1D88qmx36B+ho3+/4kMOEpk0OmoRxVIY9age0HCG5AIuMkN7UkOiT2VU8hMdzRPYyB/qyNZG4l7Lghv2zlSLOrLgFyK2zsLvWM/rehPN/t6dg///cUzBkAVWzdPDmDxsJMF/zafDozv2ccl4DsrGr6G22nWjZJSaRuE+oUO9i7KNpsWZRFouopI7fMUbQ+a4gpk46TlD00peAj2o59E4WVtNa8XYO4WvQROWOLdImvZDcFBck65uSxPlo1TxjM4Evf75T4yu8K2ZBvIG/IpAIk9p9NIhaUcJ4Xwwi2ye7n/WXNSH7MXHUn7sFLcFnN0Aq+WO45E5dTS+unUDS447Iuxn1T3X0eLDTNsZYZkvffN34AY5MHtSNHCPaObmcQB2bPj4LR5rNxd/eAq2PHKzlTt1Pr8/Xh/Gy3p1n78Z+dm5bHxGuPlL86RadUJxbkuT8XUMmyWdvd+VnAvhVbwkwa4qmLz9LIGlPCNfnr5aQE4+gPvjPuu/EQNMxXhTZEW9/ZM7IG43C9nKWuOu2C8UXN0XkkAQi+KPMUVWrBjSD4rhwjjY11vJ2z0b+tlXQm0kLtu6D782OKIGEX+8txltBrbjjVnrDgC8j9s3zu5823tkG7uMr9GbkZcRUwQ6hyuBFr20hRkR7TxdId0NKb393goYNzUvoqFdQi24btqAIYrgeDgJVCDG96WX1GuRxe8JuJE8R27thB927LLGlP/OMK4lylIuRJBifDn3VppYvofFkR9jtOhZNcVDmICvXI3WCsxnxj1eY7HvhMGOVVUNPwvb4RqGtxeH2W+x6MmknC0ReTbCqCZ9+ENlHgtZaaxjcMHrsz70OUOW3mFrE+WSMW++tiF+vEK/xm82pGg7AtNeI/awn1SSORgJrvBL5Ee9Zdzems4yIvcNhqUNPHr07Adlw93C6Pf9YI4Z2CGZRDNRP25s+5S6XgmwOp3BWIj3jREFZ4DvcDWzp7KpP8cHeoPrP+BDxz3+gGf+VITClKLCl3YSebsmOg/oR2+H2y5GsLUK+AEsI7jRYn2dyGTGAow+Hqve33QtNsXWh3z3v4RZuO30uOjDgCwrGtvdiEVMd9SEdzI+KDzNve3T7WnjIo/RF8bmNo7Z45gl4z0KnmkHeaDKtxdoeLP5Nje2y7+kt8Bb0xE5FD/dnro8XfMmhisMeq3Oke9xLcQr4Nqea+pZSZS2vbDsQd11FnTB1vcFs7y6gcVHoYZL+ENun7wK+oGFqbM91NvfjrICXd3a4EY9DNBbJIgJ+HkRq0VnOSNQXRI64siH3YEmqiXmiBe+p00id2U61TM/9Bn3nycInxRRQT9yhRkX5eWEjTBibmDcZsiicEXWPJydi/rOUUDQpV6z0YZIxLnr4MGmtj2/Lu2YjIFeEngkq9S7nN5vyi7ggjRUWVfpQzAgKzrwkcplC/h7xnS3vixjC3xJ7BNL25o26GLpS95lMquU4QjPuPiHUz01Bg7zgs3mujQVNqWT/8KOaa7kzYDc3b2xzO18X/i6phVolEKilnbqIlRGOJTkwnvjyviXech8nHkLtXGDlirnoHz4l/vWO1Xt3ZaziPAN2rJ3DTfVMve9fnZ3BEQ5SmG7uAZu8/nUEXB/O2BaeWcWkya7hnMs+1R7mLZrTpYjlTZ5sCKQyZSNWnFhCL2Wmdm5IHkF0FmX02e+J+Iuv83ge4GmUHxo8B9cbi0IY5Ji0Z3oc6yJbfuszDB0V//B5MjmRA18OXar7VIkWVAgxtGYtkvGPr/vpy54KiofGxKcsHfTZOCgLXG/wCdGAkmrpWrWE8/kS0tuBmyp2s8036vkBsGZI22jalPcCWvzwqdu5hf7vfe17xnAYFLxOreTyRqWhnGh61GW0rn8i5ZfGwL4Sp9mY7h0eIun4oJGNJDaMnneEVPqWIa99dJ3LnfXu8CbYUPcUFYjtX6GG0u1hFwp/46EfXq1mwKY+RvRR3q7Z9KJ9DVeLajTYneyIEZOkYCeNg90WLj15E96HKS+LUOrXc+4YeZZ0zmhLLdofPSah4gyaPGFql/kLNbF7eIOhXJ/YU5x31HUf0qF0Q5WwEs2bt7zF5Q3zW6jDfd3e2HC0cveHJzh84WO/3Julgz/xwWNtp5ho+t5PimwAHkDhv9/vjB4OyrtiXDwbKAn5J9lXM/SM9M0FHDAsmh/4mo3Ces7lyx/vWE2HIBL8ed1zAcKXlKbdMabcvhMq6otLlWsV6JRcmg3629UI6xXE0SS64wXwO5eoypy6Ive/dAN2FNlUvR8pGpZCEEHGkFKF5hUbZ1Tw6Ie/qqpqnqA6Tg6Je/Hp4WDNaMS0SiFRDJ3izWuOmHR3fOmN2h11pGTJ2BbvOxgCcsWeuv2yWU/HM1rzAT6kr6iaTCWpUatgATufV+QNpook6ZcfzDhaexN4qY1Ks2vJHmwb8c+gFeGgb1ps3tQCsfPpz5a2u+2XcCvedL/xrR58Tt3Wtqt5xQNAL23Gliqs9x5EIEIqhSO2slyLdsU7rdFuuqvUPN9ptLyVbQ7ONuax5oovj50Ir6BQvS/U8Y8BWqZ78oDzI6Q0xG9T/7f+rgdTwKEY76uPU+8XXrYOFjUg9aJFy59nZG13Lo3cW5IJ2xwa6HppInfgD/1wNEROKr6bEhvvfmKtznc8WvkA/uPwES2oTVIYH8cb1ay3nS2dYgPEtfqiuuTUHvVfoY9++O+ERENcfLABrfyLqppjscX+2jlcfWHNr9vvf9a7yEtWWFrdtVqe7/aMTBrZ/+aH/fGzK9fOFbDxYbuK7S+6At27KMleSpaoRu/UhzeKFOrUeGb9tt020vnqOzSf359+iRy1kQ0jl3FMHDMjbyO9QDxqEpnV1y6i21ZY42G40ufxPjCi6dwbpr9Fx4YPcbZo/L5AT0U7Y1wbiTc7WWqhMZtP1E/GOmN+8BogPDgNNrsSo7H47CRAfUvx4XEIKm6NF9gJSYoPc0mjH7+Sd3ttwU7ITfq0qIhImMQhdiPnnS1BuLmAWbGcLLzd9bR5p4rk8KNJA3v7jdgZz9wvX4di5Sr9oj0lG5V+p/34HyNd0newOVcdVef7FDEi9jHabnmEPfpM2ezchBDZf3ZOH4E1eaSDWgGmuSIRV34+68/+8VvPa3yN6IfXcusevBWvmmjWL/oCRJZ7aksfLaO3bujAvqU1duG6QbOQnSQQt+JA3Uap0HSkOQEi7BSCFMeIhLORuhB3Lw47YpN704LONpo/wwU/1vw05cXx8VtPa36Ms1+8IRGldxw49zEahTgjYH4LkxrvbVvNGOoEDOX2XN/3mA15keTANFvEloIkj51umwaelitjp24FNvbx3KDtfjiG0jn7VEP87DuJmQqjuE/taF75Brp6wRWv8YRGXbRc1No5o5aSWWzsG4n/h++lkfr6FAfdA3XF3aCOCBdGdqe3j6RAbrD2YLHHbtxLkaMpc0PufUv0Gf5KBWSNj8N8KkN98grnjcbz0tPAc6p++s5okN7i3Qx1x7Ei8stvQsrfsJo0j2xOm2oDKW9ikni7wZuF7C6td8lK5I+r2oqe672P8vicY+eTfRDpQnoEjU9Uml1Tp192qnWBqGolbMXSRp++NnPBTvuYLGYoekskKIl8f84xDR7vTzZ/3I8LP35dD3eqs8QrcjjfSf6L757d3rotJ/p6l+jhfPB+3ycJ+e6NNSsGRpv5qv37Pr2UNmxB858PKQsu9PAXqb3ARXEIX6LnWFXuU9XEdWDv/XHLUee7bXSy8n2pjvCJbPaPTdTOLvbRZCKg3iU5e2yfr3sUhNwjG9sQq2k8qg/5Xp7/8I8vdoibDNmn+BbCFO4y0v29/q0fqnEJl7G2TUJY8yth7k3M2OnGN/+eV1VGJyN3K6uRtk2/pBJNwRvW/I1gf+VDuAf3nq09c/bvXeXSw6qHmLq4CvzBdu2Fl+tsB4HvIrM+lvhZJ0c0mUFUQ53lwZpfmEfX8ZSPcjNSA4ihC2179OUfH/7pF8aVxwU0JqJwuqCsmry6MuQ8nShOeH3jzdgqOVjzAZEfmz5a0POi/fQoDT+OHu30Z5+D/96GWPs79Rn1GU6k7Ta36EWUHhU7u6hD9xxl+KdXZtyqEkxX94ytdRcz6byiQfZ1CbGqz481H29FtOPQhTRr/DH/ZYXgt3+vn77IVr9g+I0ftXl9o1NJczj0HeY9qfXxi1a+VqD6cbGp89n1bPrppTV/YUt5XXShUZcNVN88JLwevVDfhLsNoEocaKwKRsav/BqVdvH+4WVE7KVx4ancDyGvrPl3e8o34Fnqm/7ed/JwP0CrWh+q40irGDHrBGS8SYkUCbrOvaJag/zSGdgu+ZUPiJYLkfwKf/pVF/4C8S0lOLiE87r+pnzMcjiE/kKNGqVZm3b4jGJaKtTsXTXjlpAn8Iv/wyHt+mkcuxiteEzEvbPuxnoXoiRZ4Scs1/hb3mQTIq7mE2y8t05Ff/6GOXYTduqq62dnm+dwcEHDGnc+eIzzgSAvKTvsBI8nanHyVpDDHlds21XvLTvjFUJXnbcUH0ezXwK6WLDqPSK60SvrW2vdQ2cIS7jrN2O03MeVf6/HKAOvcnpCU7QA97LK1T85o9XPCOE9ZwMRuReLxg+hBfCaeCA96QmaXhHR0FE8DRRH27pnZNQ7uN59mx5J6kc7Y1IvsmQHC9a9559Ogo88QKlNBLv9kuiL5j4siKpeCuFg2zo/BeL0w1fsfAIpIpp44eX1eUj5MIVosY+qAeNTotgazDha0Pscwjnf+mTjNimbvjMbQJOkS7hZ+dASRFy5n+Kp++U7fcafrwYO27k/fycbzEi2pHU+iXQaa0R21SeFYnjsqDcchopx3imFnZCm1O26KPsXz2OsZj8+pi/3CvK1RnGg1qgWFYlMMiGuySdqvG+iN/d/mY1k9c1CfjwEbNePswZ/e3IP5efZ8HhbGjZoU5/XMxyh6LEqK1LZCCyCfa2I+8lUmSSLnOJR4/Q+oNk4Nw9UtG8p5Nb4W6LR16RNt9T/3meHFfUCqNFcanOHINv1J/ZA39JFK768vSUyvFyyT82Eez37ZP15OYpgP70WHxJ907ez5qZI+CPnnz+nM4VQ96d3sHJ57frFHltAzDrG1G0kWSfPc2Mh/LZMgoguZ2zPcIiEs1/TtM3VaHcR/xRY+feK78d+2mSTJvdsp4Yk5OtsdMjmDdO9+xBWbIg+xa8QgDv93ailOmY/HdW/DaovQosNzM3ZXMx/NaQL/6Rh/VEQa9EpgfwmcVhb42MScV/++CVVp4+R7WpcxSAcZR2velWfNg3SgEgXi0aBYOqch6v1Yu7kjS8/PtFLoEBcLjM2NmIRkfvfGeTBNN5YaWI5o38DLGj1H1Z8+Hi08rQStOVcYfwOuZ7tL56CZDd8k89NLdjAPNGQqic+UZXKSz/EvR7DFIl0xXezmq9PKQb0dXKyCcMLW/mTCF+uUfEv/05f95FDKlsN4WNp47FStVyok/eZGhF5e2zVW/tJzdrwSBQrW2h+W7eGKG4Yj2rRT+b7vIHxPhnho9Tzfkk+twmVfqP9459Ld9ZcOcTpm1pq1ferX5XIxeu2CYX81OkjnN0YZPdzX/mW009jqTW/8SX96pexW1I9QHrwMVUuVNVZCQcJmFaN5PkGlvU/fyma7m5It46GlgRuNmL2qcLK1fl6g1h3IoTasaA//cn2YpCC2SUK1vfqK1t++D7XpkPvweBl84d8S/TDj3TVy0w62Ar8feSJrP5YtESZyyOH5Vd6WrIv++e/bbkbJgNTKn3poNbAc18CPiwxyphaKBwcxWgg/MB2eosVNUbagF40lIia8e/mMvzT25aCUn2+1BEPR8hcsutFxePWeEXTM83wqm89oVRDF2lQDqQpS+xNMd9rEG2mGeto6/TS22U8MsLLKdwHjy37pFkD0KrPNNxdHJOxm/DtYOVfZDGkZ9bO5+Ior3qV8GNW94N3LywZfV4GDv7Cq95N2t0C3pw0fPk8c0bLzhrgNUXNbz1X5C4h/sevaay8OH31Zy/wx3MPekrP32wYt32JJO1woH7CWP8WQ9tHqG1KfI0Oof7zI/dmWa29PwU9m2fZt6VU+pTUCI1Mn1xxOIK/gIof+2T2RvAKDpjVetSip05np3bLQdet96g5PUb//A/0ymq8nkLqufwyTXuR15Ow/RwCfXnyXQ7rz+Sln7x+xXdfJovp0nDVB8tD9jZoxatwTuzem47Wxf7519S8OCaiSv4B+D2f9gxAnwY1FKXQzrz1nqMIDS/v5aNfvikFt/QWqkOK0MfGoTCHfDUK9VzDe8siGkrFlfGaG1uS5BKR6u7WQbMelOcf3w735XWrd7Y0AHgX7Yb1QlTY7OAlhcSoY2yLauGN6Wmo0Q/PA3fnsiUQeBGE2yYnGTk1jNy76waemhQQsTib1fAKKY+4bCzI1MR/0fJ4hSkctycTH9iSsOVOcxdCHz3Ixj8b3nx9LhfYbZ0/7EIr9N3bORb/8C1n1pS1q9//W68hV+8CfdcnF4BUfF/pjz9MY9xt4HlICsJKbu53WH138LxONg4sJOrTmLU2cC+jxPfvaa33HBVRNux3hjVrE0bj6pfBM2l0GhbfpzfPvQuQP/Qntl12qaY8S49g35J69aMEfRj3miK/mbjgwLhdEauoL6Hum/zRyzaJ+llneINWfkKNY17py47zjhK+CPR//aQm6FA0addfvkfTz8/y33IYfqLdgP75g61Hq5A51ZCxKgkKlOi0wTZ/i9HAlCSFg+n7hCfXJ1qeBzsFWbkd1/j5IHYwRAt4RfGpEn+Mnt997TO06l9Krfsw6Mzy7m9wQJjIrLWSzs4XUYMerbciNEaKWqHev0H98wN6D86fiPpBO0DodCTkIuWTsX2OeThnFw5f5PCWjYJzJLDpphqv/jH6xStiCrrSgKucavXzbRRx+z/qH3gLtfitE9hUaULxBt0ybsOlRPIuyo16t+OozwWVjj88DGV+NNGC0OmNtmyTEjTsvGx5iOYE6p8sYB31E5pE82vD5qpMv88jpr4GF0Uc+iMbiVvrHzkpUZVfYxqYz7Tf4c9XgaLHZ2qv+EZX/YTMKv1SPzE5xtS6i6FU3ZjqJTdX3d3fWfL5POpEMJp83XP6UaAo3heaUcb6aVMBh+pTvQ9//vEU3zUbmFIWhDvmlTdtuscFruHhiLVf/e3CHtzPP6ZhQNRKIPlnksZYz6j+WtJVvzgSPPVeCL+TJLPl8bIS2EqmGYr8tokm1x0LtPINjJtc8fid5ZdwLxqT3nH+qiY3rwlw79uZBrmUZ6w9J5x0voZOKKToXk2bcQ4lNb2c8UM8+tHkkq+Etmj8C+e1/tZs9omIzEFL8E/fMlXsC7TyJ8LJdqf/qzfN7XU/LparZXwCN3e/1m9Cke9pv6DzXUNxrb8wPsvYWyKxIihiJxNrO2JUVC0U/l99QC9iqMZfvUTIAh9bRHh7TMk/GyQ8zAPOszlD5L5dNBA5zQth9bNXPs3B3N72RDhwU99eXtcGpFtur/giohasskG9YM7Urt51NcWo9UETtftPD678eEzRyu+xlZW0otvsdJHm15vHttNT9Mv/iMihSg+TNaM2PTpnOMf8i9rCPYyG3/z6k2GtfO2WDT//Yy75O/Y1Ke+nHEtvKFrfpKpKC0RJ7J/Ryq+xpY8HRq0KjqD+bQWM4Xb1lt1p8OEcwc9vLBn158FChl1neOW7OtnFZQKrPsGB5+g9I6TeAEGbBw2R/c2WQEUXZHapgg/r/M6Ok4iycH3G+JDcbtmsz0ODWofE2OZeUTR9g30Mv/pr931ssyV45iFsWjukqt7PPbGPjoUmcw/UvJ66fs3nDYyP8w3jdzlGcxFuSigGoSP96sdNL3Xg0OqX40AI7l6/8mc4P3drL2fG9GnDnQlEsnunmtXt+gUlSwnma22NtdCinx3jTFBHlp48JKXsl7vEuH9++UOSMjaZz8sC6m3nUz8VtErYtkKzfx7YNRRmuGbCn5x2aBO3Nv75X9PxeCz/u94H0v+9pyCfBYuGf6c9otI9OoPB1n7lQiJ4RNnWbwi/k0GTXDzpSzAqIcAkLdT6o8dokc6eD3y11iCf9/Xczmep4fF+pdjxN0401/WykeNKWLDT23O/RJ/GAr7Z9TjkX6HHj9A0YHXjQPVGOjDyPwAAAP//pF1Lt6o8sPxBDARE0gwREFAgYYsPnIEiiCLPBMivvwvPN7yje4d7rbP3gSRdXVUduvnzMIKCZ4PhbNRMqr+yi/pXHI94TIsqHZP4E6v80ryYsbUkj+kNTdQuzA2G7x8hrSMx9lG+f3V0FVRlOebPMUc3WduyHYnLqB/C8QjpqcZ0RRTccf1PqqA2rzo73G41n6PDQYFt7frkgXneTcMpFRQvCgVi3452Oi0fyqiAbmeiL88z58b5AMJHNelruzI8rlduiGh1TTH3yQvNQ/g5oKZXv3QdVFeT559DAjnZNLQX1+HSq3rzhiicHWI2Vbn0evmLNXRrHaaLytfsdLaTAaSni2WjxOXsaB8FUGjav/VOuZ1HGFmCsvTS3z3MWu1mHxSrD8klfezMJrfiZV5R4xL3Ka9LHpXvE1Tv8Y/g+PpBIxduPnT35E7ntNcjWQc9Q93zjdijKVbpENj0DSF2aubrgRHNOR9tTXgLGtv5xd57R1FaQb19xct3lgz13BwplI/yjtXHYR3NSbS3IWt1mRj6YeuJQ+Ap4KtljUVDMzmteJtBbDtnLMgFNie+BYD75osoCp5bUxyO3QWdlOcLC3JSoEkNj29Y1pdhed2hKXiZI/Rav8Hlst4s6Nc5cv08I7o0px6PIqzDpsiuzH7I0E2J67fqHpUCnn/P83vehtVnZol+wUc73Z4gun5kYhlSVlI1DA9aaC/DgYKdh0buXEQID/eY1rK7S/vq2apgwUGjdVLt+DAE+wxCXboyL7giNOuz2Kpb5a0Rs5te5vw9fkR0n0cf85bVnCaCfIHRwDrbte+dN6l714JLbwExzM9fN+uvywnkd3Rmerp+e923J8vF4K9INRIeOmmAzgYlkIH4mSiWnN9qBRp6zOhr21jRzKvzEf3Wk5NpVTL+1E8Qu8mRavXXi+i3vdQQG/cd8ZOhjtpoPhqrrHnvWBo8C3NOyImCkK9j/JbKJ5/1vAsBPaIrRsGz8OYgkGu4I0Vh9vM9RQ3fNRf4xZtuWjfOvxWT0V8DAds1StONQR650EuCRUi3VjzKb+UJTvBx6F/L9Yjn/V2B26oGLBr0mC63LWRtGt4Eh2vzs/Tuu2QQL0UZNQ7NaJ2v01Htor4gf/jzSadAqwUkl+KbWHrJyykRdVf725gOM/3eR6N+GGs0oeiIRzPy0lHlfg8g6VcSytu+a4epGQG0QGOENA+PJzoz1NACWOIjT+dkc1GgeckSfT1YYs7RRZQBnfMXMX1icB50VgZ31QqZLmeXMh0GVYDLe1YYfs5yOgxLr+VGYIQ4pN2Xso7/VKheekm85nPhMofIgL9GCFiAeV7ygR9jNDqBQ+7bx8mkOY1bwGX9xOvO35vz9/mcUfcYIyyL5NKxnPg1utUnhUrkybomyGOKJirYhHTRlo/6+/5CoScSEt8coxv0o06hGUsFPzD+i2a9ex00/aBjdjAfMeL69nqECZo9M2sn93ignUXUbw4l3nToFrX2NbbASw5/bEeMT9nboXHXtrnosrT9ht44tPcDAtH5o0fpu06HZL+manrrzswMjEM56/imQuhHOhak/dWb7PsEUFv9moR6sCpndTXNIOftjlnJ/lP2yTeswcv6L/OlVilZcMZUPcn+nhzisIzm4K/TIU3hyHZNo5jsG5gAZvYciS1pXtqpmqxDaJkys7dJ483JN3ihLgssoq+/d2/m/iZRb+X4Ytfg2fLe/vJQU+xcofQuMs5zI6FoYsmaOVig3jgsd4Le4vVC/+pbaPZJK8+oDBkw3aB3b6qMEIP8aXwWYLXnc1QgCsKAHbxq6bGbK0uXQWZhQGyRyOWki0qMfvFuBkZb8qjYhAizfMNs4/6KaOBe/R8eE9uYc28e9scW3ptki0ezaTxW6UcdvFTY0JesGP/WHyzNNol9v97SUe8WjxWVAtG3ZOkt9/zEmr5TG+Y/D8eIB2s5gdFbenH7Vo1m+23omlDv78zW6dCN3PMwXCqXYVEPJD5yZRqhqS9/RF8v89y/QjkjX/ymNE+9pU8K7E7qcl7IvstYNDk2+GCt3192yPywrIe6sLXNcJrY3axnPqq4AZQb+MvMQDpGc3AIX6ho4ytJktTwRNuMc1D2YcX0tRyUjZ4PFPTtKWL2rX6bk60aPtBOXDNXzkpv/pbWAXkZ/ZKDvj+V01e/qDDu4icJpfsj4oP6Vn/8hZgBCF0/7KYYeiV4EF0WT9GYF12F0MntiNPmQTcG8zuH7h7fybXGRtfklzZEsfPwmS69XyUfjo8ZwRw2zJX7tJz4nmRgRquA7PClNX94h3DZPoluRl005qephrvQVgyv26ichmOt/MsH+/a85/Nwur3QfpAR0/WZoilBSYuiv65hTrM9pJwLZg29+krInlSzx5LkdlBDo1sxUt+/5cB3xQV8kD/M7FIrXatggBZjHmIxPXre7zyh+2Z/IMY2skuWIPIC3VqVxDfrI5oW/IClTwuGBX9GVTDf/+KR1HbDp+AzHuAuQcf+8YnBC0WAlbVnlulBxHXV78HOG5Uckp0VddFFTQDmY0NXtb1H0/CeQ7hL5gev63ce0SUeYb9qSlyZpDVn27/5aFMZA5bjfc7nHLQaNWOh0NGMunRImn2I8CusWfbQzukcZCfQYn3vkiRrkrIPNisdvBO2aNMNOR/4M8DIH8Fj4drccVGvnDfYH/qhwrbYolrN0Qlur6QjlmFc0OS8rQz8UfBond6GbuLVtYfaUAnD683OHHmVx5Dl6oHs27tsjnnfZhva7PbsICI3knQlyyEnhkNsUdzxNlqZ8C9/sy7B3jw8w1jTrXymiowCc/iW9huh4yxiMXmW0fgN1+3S3UZnXn3eeXNu73PAXXqimflY+mP2r5e28GMW+OZcjupBq1DoXVWi68GznHQXVNhLn4nZKX+h/se/hD7asm19LNGQ3/cU9kNyoO+HevJG3uIX2ozlH9v77MrHQLy+QSE+xxuyr5ev7bsMcK5MxJa+QSfx1rLQXxEeGZa9MRr4FgQAlJ6pKJUrzvV0HyOUdZiKRnwqf3wIROQb5NZE49I7TzmgzUvGVHy85aj55Uc98Ady0J9zOg3HXIUC8Iqq9+3EZzWTXIhuy6yyhc/+0wuXNjxhkO65NwRNFoJ5Qwl+S7bE+0qqaxCaMsLyole6oLnFavV6npgvbVqTR6t9jqYyf1BY7xEavjvhhKx555GD9C35vORblJNMocK6/Eaz89EstOADFhLfRqO6VXSgxeVEbNE9pLP6MCytS40PMeQVjqTobPlwWlc6hlhxIj7sShn6OQqZv718Uf8NVzXcOrvCgkTtlA88SdRLM63IFhOnm9XaFZC/2U+/8+bRr37PILeEMxa3/cakDrZCVIz8Qrxmq5eTugIfpt6P2d2It56kh2Tpzdt5xDcMM5LVba8CjPctOehx5fEInV24iSSiRWC/TOac7yeUUTelqwU/Rv36qmAPSCLW9uOjWTdTHRTPwbiOd/t0DjpbVe/akRH/t/4Rec8QJec3MRe+SXOuWNBdRZs9Fk9U5MpmRlG8Goi9HSvURfHnjrpQ4MyXyj6dnfzRqr/zYT1U0ewi8VAj1wGXhUmco6nqkxg26/UZH7LozsfcG2TYvERMTuu/UzdGhhbChocr3IvrkbN83B4BJOPKsF6JaIrGJlazz+aPeb76h9bDMAP4Ar5j0fhW3uTIZxnuqh0yay2bvBteYKOT8ngtfHzRr7neoulbGywlu7Gbv4EdQ/PGPVn4JZeS2Zbhr5slgmUvTKeo2wuoC18Gse/btJvzI79rxUfeYkSUOJqDwfXhtLpI//ZX/F6eNlL2w/X3+9HsdPcc/DVXSVD/Dd0U9ZIBMqOLHhUKPn138gVOs/1m//huFN1ceE+HNVVEa0Z04ados+m0f/xsVl9NjvYiUfHUKDziv/cvH3b3j0+yoF+90B6e1jI/uOFDfmmPIK7mmNnGrHujbcYvuG8+iLg3jNGc7LUQLkV1Y7tmt+VzIAcjugyGQUXTg7TndXpHonoELEjPEx+Tz/MC23VgU8G8vPg6bxsZULi1mZsei3S0tY0B4kb02MnQTCQNzssAnpwuhBCFlrN+i2c4KfpEVZ2anCZx/gL7qwnMFtHs/csPVfXeEPycL+mUS5+3ajfy0tv9uy4n3XzcNyd1fNJ1EG4invztTpB9/1yGb7kXTYGp30FoNwe2D05fb6zaYgT3QArm3tQ2apbzA7XuFpQvemL9vUkqnCYvI4u+KblDQAW5DV7MC55bb/62WQ3x1sYLPrQp41vFVjaU1mRX53PZ/9530ZMk9dUJjdVxBK32DYRXrWZ5k9OUCsLF+cVcsQA0RxcQ0Xt+USw1Lw/J/HmYYcuykGGxD7w5ueMWiWvrQZxOeXdfe5xe2n2SbOJ1q685DjC8NmkqHOkonSevT54rBQnFvMyGFG/dyH35qPUa3TDf9Fw06WAoGsxDQg7p2+m4XulHrZfAIltikGhQ+eGIusR5LrNkbiWvVDUHM9NXxFo6sb+//V2ErVAcqHAzt9HPrwA590aMyG4sR33Cd/DnkRPjVmw7ypWq1Rb+jKfWefM5KMUE/umV7ePBx6E9HSDrpIyZQeymIzfHXttPZoo5CfbRmHzjFqqGx8x+do+yDe6NCv6m/vlbNzTnXg6/+Fj615dd64wcoCjonXnB3kwn/ehSlT/PD+aRlEbcSfgITfcaiUdeajmp6e2OFvxkhnjddUxfvV3Igzak67rryzYpqKWOurxnQXvWTTmvNxiJgnRkvky+aOadSAEP9I9qHWIdz/cDhhO/p2xZz5QPYUvhr7TUf/lvHhQIgUcbkejytU3n73EQ1cv74jDXMAZvssV2Rl48J2xb30ZvVJ/6Uc0tk7CD6OqdrB6UHlV9YZPaLMa0zWlYQ7NeAx26zx/iXFzJyCWhT8JsT9I+GAIbrPFYEl9v/XRp3HCHSTB1CmJi8+kbShhGXdwvfNfoxAi1FKW35szszFeXvpKKjcRZUOh4uzjlPz2hWDTEDVblrs/71x0WfY5HeduXPDlNvXaf4jPzGnTqpiC7JtCdiz05ZE3STXq1O0BW7pfZKxeHT9/LvYZ4P+/JLtjopmyjWYZ9r0dUw48XWvxGQLR96sR/dMu81vcagz/PnOnrPyGilZdeAL+dkOybMSl//tuPv5DfeaLJeDvB4lfiopYTb6r6YwK96CjM3V7+utm+htbP7yE7v5ZSbn/mGv30y0GioTcEG/EN9P3izDY/X958U7CRTiClK/8ccxqdt7N2kvGeCj89aY+b/MenCWk+gTd9N/4FLe/DzrUcpmIV3HL48Ts9bntv0lMcAm6hZK45btHP71DfUOVYFBM1HQYprqC8uhk7d+IFDfyET2j5GY9GLESDzcwLlMlFo8rt7Xeci2tRS8NXQ7w2L3mtm08ViuGwo9Pip8zBa3vSto0gUq02wGOBe5+R0BQRO8hWgNrFL9T4Y1WRBb+jIbCrCuSvsP/peZNyVtiAu9uJLOtXsugb91BeP4ThreChX34EHm9vxBKTJF1uCR9UUVgfmb0+G9Fa1WTjP/4iJhWa9Fvkg1yvO/pd9PmsDnUCZiLm7G/BoynYOofffmHemsEyG69WIUqHdNG/m3T8WrsevOc+ZlZ8encT17cq1PqhoLGx36Tz4ochX/DvTH8eT5wl9FxBd+Tp4j/by2BD9w45uSsk6LJdJw5voMj+9B/i+XxXTj+9BatVxwzj7nsbPl3e0MXhmmCj/aZ9Imk1KHg0WLjOCZeCUhDRggfMNeKWt0F0sbS3FN6Jvd4oZTOcIkGzRHnzOy+IRQc3g01xv5K0a/Ypt29uD3e4NsQhuyTlunJr//Gtu2GY6Q9PwZ/WyyyXmCGWcMmA9KLvmLUlxKz4yVR+fIY8CFQmT2z7DubleCCLP9P9/D011+URFzUb+JR/9TfYvVOSw3p+lUs+s0D3/770LV/1cop6TQeLG39s31hPjw2MGuBa0enf3xNVeWOjOLjdMK9xH7XVZqto5rXdUnGdVx5Xr7UPuIoDdk/lAHHn8MhUd2tJzL+vom5Sd2kPFyq2LAheZz7rO2yjaajIovdNc9HLOdBm6WPmM+r1+u4Po331WmN54V/9oN8EmN7qCYvrg5tOQ6xf1AWvmHHzTC4Oa2zDnxzdmFfPxPsu9QF02qxvWIknC00qN0K06C/iSpuI88jjL9i8/R3JkhXuZpWld/TLl9vmdS6n4YYSZKHeJw72lvpB9aRoyY8UtXmJRt7aLzDv/pXoN73hcxWqM/TSg/2rNzT6tT7AuBckFrRBwnkOaPE3EpvYUr5N+VDsddiKz3jB/9Djui30kNU+pj+9LCbFxgdRiIt/+pGpfnNB+UF9UdSNUifl5R2jJX7wqNtRJEbN3wkuLwiJF1RBxHQ/c1HBCwuDzDOzH56PI+xRITBdFsV0HoSoB9cUy4W//KHf/4+ExnoRez33ER12NATFPN2obNhWJ331TEUnQbHY6fZYZlPuzBrucrrk361gDkN763/4Q3adiyKa/JEZocx/YDC9mveRbB4h3rVvpuvnN5rV1WZUF3+ZmJ0/I6q+ihyi61cm2EjPaHawfwRx+myJu+WoZFWoXCA0DyeKgn2Zcn3VH2Dxm+i8xOs6MfILEtrsxqz136nkgzKJP31PL/qfWYrJpjXAl9V4OX8S+ueHuJ77JVv82UUS3xUnreqtM9ETqUWTekAHAMWXSWIEjjlX1ZiD/cptEm/JJ510cYzRwo+YiWvV/OkPZKmXM7OlvEgnfV7ZIDT2ixmm63RydD8d0cInmdd+Q3OOzvsReKQfsaDvD2iMxk6EqQo9tm2mrzdFbhLCwieJLjbnbh2UkwA3gck0X2sbNNi7rQt1EM84XM7fGAw7G/j5r/v5WZ2ob3sRxi3rmIcFK/qnh4U8+dIxbn3vW8UHGYTqIi7n62P2uru+aKFBMHHqt56Kwc2t4aSBwI63elhmY5sjNJuA0warl3Li+l6B0WkUOq/PvjdHBe+h3kcB2TYKT+dffbAo7YhtG3/NZztrK9TLibTgy8qcEnI9/PP7vGDYlDwhycKXkEil+lZFfND9GBT/sSNZFnFvCprLEUKfTYz4Th7NPz0dHjZ7hmXr7b0HVb2jaf5cl/rYjnNb6+5o8c/IHl/yaEzsu4EmrmFmmKLpSUM1LPUL90Jf6QMjrpvxG8S1/WD+1pGjUT8oNbjk6JODUVpIisYmgYW/EbN7jV2f7+cZCnXtErOBrbfW81qGv7ehE3f7eKA5sN8H8B6XkVY/v9fJzzX4PHgTO/OTdLab4g4TBZs827+6G6JCOMBJewXEWfRNXxnHFkbXDUjQ9ZnJ1QiJv3hn21btu/6bCjnQV+8xQ9dcTvlZFoCfR33Boz3iqqjcoTy+XSo1r46PUXbM/vljS75CDb99ZjD/yJOK8jUveTBnAuDvbDGHTBLvnTvEIE6HEGsdIh3Vu9aFrMaYLHq0m+2b5wK/fxgzm+sfmnTl8vpXz1rqLyYbTGWExY8gsX5SIqqGsQt7Pu2Zm11PaZs/5gss8YJlMavNLrCLXq3KOMFiKlQl01kgg35AI/vp57FCuo0utfKgL52uo59/pJmnVFj0OSq7yotV9Mt/zqKH5WB1qwDnd535N/zxeBQPGXgn38KKaVXp4i+16Oc/n+TPxhuHurHAUrlNgvpQRExXffrTf0w3Iy+i6u3Ro4qeKVn8XD5VoFBIo/BKX0/8iMbB6TOQPzhlTmDoSLbtaQSBGYwQH/fdVE0b+advqWKul/pDe3IhtPmi/wOJ98nBTdAvH/2efwyixkeWKG4IzpoRjfrt0aLcvvjkEA9DRPXUk/9/fQrQ/36nICRNzKxLvU3lYRMLsM5lma6fWzGlX3rXIYs0kcXC5YTG592PVed63DK/qFXO111/guJdfZkvbE4ll277C/JGHxH/JZ/L8XHJX9roBQkxn8fJm4MqV4Gmg0bMcn31RPr27uq6O3Zsm7KGz4yZo7bNccPMIrwt926uLyRpN4fosdmmk3LJZLSR34DHm+x5o+0kB9hzLSQG1CIa8NDqYG42OlWfyiniG4GcgKdyQBVZ3PIR/0UJkKcaMU9sq7TJ0laGKdFjFonztlxXg3oHZ8hbcn5JStQMY2Ogu+ncqCVmRVTvyRdUqn8aPOny2uMbwblAQrqWcvnzSrmrZdnmfG09Yr8KxaOfWjnA4+zu2XEd5Xx0Dr6FkOSu8JhtZ9RJlX6HorhIxPn6d5MG+7HXvvPHZYGwmrvcCcsWoqw+Ev/ZHj32jUQMVdxJWJDPBpJut3WsTJlqkt3yvLzK+Qn+2EEipMjlrtlwokOXXQgJNmkdcemZK9rBQQWxhO/UTZpSW6BBLjDy6YRolI6hD2cIEfvbhlI6UH4EoH53Zc4p26HqkW6P2l4REbvFUlPO7lW+gK+jhLnqqummOs1UhDL1TPykG/jUTN/lKlOoELfYXLv52kMOtlM0ZJ/g3qSfXZ6gKOm3ePV6qnxwiR0DjlcKlYsBlaOSVAbsvvObmR9phSYNjyN0f2+DCpfeMCe7n5f5I/mK7LSniJqresZw8a4FCQoao1kbNidwTgb5nc9Ojp9agjbJ7OLVvTim3D61MtqerRNW08EvuYLOMSQGeuDsLh27kZ6OicbZnBHjGhZ8Cq63GL6jRgi+9C9zdKNHpa7lVKev3LuW/LyaWpTKZ4/tzOqMeLArXmif1TpxV8LAWWM6d2jiak83xecajevv4KKg8Tk75GsF/dZHZeFpS3bS/pPOlXs8gWqZDcN5dTenb2/WWnPPE6bH5iFdBzcda9otd7BSWatoqs5IB8MMclqt5onT253MqD10FdaqSEDsG5xq+MtHxow0bUpe8+wEMhmeVFy3724WLMNYpW+DMw+2f+UUc62FfSjcSFCiNeefdw0wCH8hVa+u3c1yZJ5A3kUt1pLJ47P7l81ID543pt/rMJ2d7myAJ3o+huq78qba+4goSfiKrtCnR9PjGd+hEBwDj68q5v1uXehwef4tszxojsbBKi6acGEbXJxKu2zwITnCOhYiYj9enI/ne3xC6Oi65FwY627cFWECkyT5RM9vN77szxvE/erGguflD82PU9EDaRJGnAfm3bQ3SAgP2r7x8j7lYO/bHKUnIWDeOTVRXz8rCx2cTUHROS1RL+1uFlSm02H1dCnK+Tn0IZh5/CF79c/z5mxr6uiZqITt7/4J0Vi2Ddg0MmWH/JF0o2P2ORLi64wnbZzKyfHvGRyJdCJErdxSfgg3A2T/OVD5eiujtk60C7rV/YucEt540yfXffjhj4ouQzrQ0MPAri+Latck7yZBnO+ogOfSV2WpWTX62kLBqTIJEevcnHfPWwXexdCJJf+9zPF60mworuKN2cnH5vPFVmVozUdJfLncmaO2KjCUoXxkxuavKakr0hyk7yGjxauXUYO/xh2KO7XwWutGPnyN00mbyfXLzAUPx/3mekQ71QbKldLzeHZRbdDC3mMnucujKRPmCozrUjMpkrikdSD4MJ0yTA63PCjXQ/z3Bq4RD6dI3pds+MQ9OKu1QR/i3fJYA0xETYIN4sasK6dHPCrasn5st+VncyL6zoYiUl1iZcLIe6UI3ujWnlJ2vMhmN2bmVkTPe+6S7Tow0DTYGwpMzRFLM++vZOvZVLQVVwSsrTgz52U/4DpvDRaI8isdJU9pIT80J6anZOjGr+4Bmur4yY5ZQNFwnTwKOFiXzEpuB9S7DcXQqZ5J18UNRe0lmgTg627LfKUY+BQ49Uld1ou5m8rxOEvNF2THM2K7ZOOYk6LbPpTHu0eiighmJ+3jI6z5HpMDugTptNP/dHjejhcspsE3HePr14AlfkhQnJJlVg+zIZq6AzkU3Tnilw+PNWpKKV3Wo+QZb0PoprOD0a3quvnhhb4mJ5LI7Kp/oumJyx6wT9ol/3bmWGk3gF0WuoQUdhxNQzTK0J1fEfM+blZOzg5UaJpjTUfFbqLx8XAtOAvfiM7FIUXTEPwdNWP7+TKymXtzlIRNhgrlpVBFXTVln8mHVr2Nnx2JlvMjCV90+odvmvLt+Gi/D5d/eD0q+becPn6Rw/CeJeblZdyN8TaLN8J2z0jwzgVzlN0lPiv9jaVU6aLJeQ02kgl7Ej1LJ29o8HUEFL4I2QoHhpr4usvgU54qKqv4282j8gihvNWYxMv+zIqRVSqONYWq30ZD/ZncMMLmjbKtpJt8vjy8DLa9IJP95fEqR/o270hLXZ0kH/lh/sOD61V2mK+pYTQ/ilqEG1M+xCoua/5dd+8LVIc/+sN/j39tyUaJx27Mfp7Frg9ergvnh38m/tkxu0EJdicoZHXFdlkbln0lqzFgP2iZrWKnk3JxiCHosw8JhI8YsbN9C1E5ByFZ4h/xZ26+kX1sBIKlokqnXRAfACWCRYxCiNNJwnsDtNvLoVJhrMvpLG4uMLv7pa/NlqFJVl9H+AvtEA+/eLG9WYHndNgQXR7sso/f9ABDLGzxpvBu3of2KEbyLUBkW2R3r7Xj2dCy4xXRz/0xlXwnuTWs31ZNO9hOJf/xs03WL/Nb7YiPK+9NgcQ0ZLvNKfB66Rj7GsuoQ4y7TtCw/1x1EOxtwhxYn6L24YUYOqU4MC/fq9FcbecZLc9HAYHTTevEvwO97PnCD+Z0/Ay1ilZj47OdMLBu+j6tHHaqBWx7nrYpfzKo0fN82pEQOhKJj4e7eFKnDds+hrmcXEXqtXJtI6Lf7j6vRuVxRL/8Zp3SVzpdiqSGr7I/Muu0tTzO3mcDLfyRnj9fraTP4X1EL+vcY/hutXQQUKL/8JcZKHM7vg9IBfOeP9hu2Q/+XZuAbkX+JOnrcou4bU0jOMwt2XVjt4gGvNahekoKOyz5699+pCvPoatykLr5fMgzbXa9N9tL/cds3NU5hM1g55SXjxhVC1/TRo8keHOVd57ohGUN/JHZuHoVitk+0v0RyvLQsoWPcx7XwwXWUbLH2trcpkySNrlq79C4xNufx6vvUYXrBWO2L2c5pc7LzOF1HDixs8uYjo5mqeCstzY5vNpNOV/W2x4+p1Cn/AJFOX9W7gjm4M60lraFx4PXrf/hF9m90sScVxtxhJ0U/BGnip9l83yLF3QrXk92WH9MzlekVCCI8xMhl3jLqfK0RyAvv2fGs/qLJskpMtinCaYScgJOswfyQX3uNeIb/FK2l7LUVa2uBvp+uw9v0s7xCVZfdyT6D++E86RC0c0tVe655HVnf5ThA9JSkzruUo7T2dXa7brFm7Olm71m6zLwko5Y0I4ETRvuGLA6iTExi3ZZ31ND4VkZb7LXzDFl63NKUdrLDItK03gL/1aAOrxn20JRU17vmY4O+pARV/y++PiobhU0mRsxR9103Si46ghlbJxpk+DeG1dUvMPLuvZ0tU52Jn+cXPdfPrbXxtv7xOFHgdBe35ea3KGb2TF6o8/mQ8iiV0qemWmMBOtWEHLyDM7JXw/IfNIdw/oym8K1L3eU3FOFGMVbNb92y+/g3eCPnc+5VdKVfooheOnj0heji7jeSzXsKHzZrYwV77c/6CxZCoacxNGYsc7adNflDvh1VXUTHl66tnnVHXNzW0YDsfsa3WLdZE4i9x3f0cKGplUKYkvNtpO/QmCBbX5iPJW2ZNY25wlEWXvEi2Gacve7k4F0Rk30pHU6cdNebXjIpcN253yZJSQbrerk84O4UIrm3DxYiFBrtMRTzRrRYRMKP/63nN9bV9tv46RdHt2Gbhb9NCnlAxC/HE1mps4+FTU/T0D1gh6/Ras0ecBCUZP+3idylOwtkutpB4Be8pfscpyaXKtGrJFUMJi/GiZz3DjkBI88zDD6vO6IXquTAKux8xlR/TaaNVW5o/LWYrLdeF05VRtjhIEfgPov42ZO2euQIFNuMLFV/C1n3BxleCQ0Io72d+wmWhYqoDqZCH77DzQ9wG3R5dFsmKWQlvM6tCtUpkcHy/lp4/GmuvrI3u9fbPvMo+j37+Fi7TOqlH0cybg5ijDUxpe5MfPK+WruMJzDu8ueKfiezDzRQJlulsRUx9YcVlZXobJ0W2Z/c4joD29257vPfHlvIzmGz/tffNko6NAoK38qwqEHxFGfQSR9cheDRC8FWfA7kpX5s+jvk8QOlzIve/xWLaDmOsXaQ2PpeHanGrohlti1ip9d99Cb+z89hws9SaWPX7w0U1v/kR9eDiTqZtgdcUK75/vkzWu/G0Fq7jLRM4mlwyNWFPQK9jUVXnjpW/c0jrD4AeSW3ThaGoNZWrPRHGKKsZkuehyDGbVXZr+K2BvCu3ZEzUUIMZIsq5Pl/JABO7Y3FpToysf6WdnoJnsET3Al5rTPVhmkIjviqexSc9Sa8A0reuJYU4KgowvfR2Zm+4u+/6A5T3aVFoVHn/n3DKN+P6962IdwI/v0XqFGFg8U2Liz2V4wxI4LmxQjdgqPLPx6Au+DafK1/fF9ZE41a7z58Q3bv50oJLaDeHzGLahOlGIN1U40Zd40q9hucnIos4vZaNup1dj6b4/V0lrz8Xm3YnQ5SRqxPsWz5DfXeUHiPr/4Xqao6y+Un+CHn7e7L/LRqeCI9jD57Cg/rWi+mgFGZp58aHs/zmjaVERBiS1R+nnIotlqw3QCfz9cmL59n8thPZ4tQFd6ZD8+2ArWQUfRQ78RR5/kaApaxYIgOQTMU00X9dlz1qERE40FL/fqzXFjK2gDno3F5HbgkiwaFNSrpjILdDHqqZMeIYtWIp7y5xWNyglnsFs1NnNvZe3N1w1qobv3F6Ir+bebLoIhg/QUEvLTGzM7pm/k3KobM9Ktly6TvER0SNcz2z8S1k2Pj2LA9vnaM1JG65QF/t5Sz8InIrXRSl6HMdIRF28EN4pSdxRHBwxBnqzJvvBu5qCd4wts78crwadl9k79xiIyNemPHT53gfcbx7moDKSIatWg/afnpjEymJUdxGg89/v4x0cov7gfj0nPevkE5+IRvUyklDlO18P0cQeyv8qfxf+pY1j4HtvJ13zpw/JuoeusB/ERfDvubP0DvJxvxrZitSvnWMb6enNzCTkWB8SHM4pV0Ng4YunZiGhc1XcFRX/qjpir8+j1cbej//y3c6p4KadFZ4NqpCPxFdR7dF84Ivz2ay2i0pzqQrjDdzN5eLq9WjRr15z+4pmRanfv+NlXRFSktrfoZ8OTPmxzBDaMw49Ppu35zzVQ9bfMExYjoxx2rXva/EUng1nSuuTT1bknIIfpiqqx45nSWdycYC9994Q8VBG1w2Xrw/comuzygNkbd+vCQEMMW7bdrGpvYqZvgeIOMdnl9S2i4yTRn94jJNEcNFyKYwv53kyZsY5ytPhnOnRitaFo/VeWP/8U2msqYvm+n9Kehe9R24SX6J8/x4WVOoN5Poa0vb4sNGqrxofKPj8wN9JzN2mzm0NZvCZ2eIVp1J/nWoBvSz/EfOxmjyl/1IaLdy7wWOpXc9qQ9RF+fHHhR+ZYyXP84/NsW9qS9+/8JQcnJ3rOY2+SpnBEX5FsmZckrjkPmxggcR9fYsqe5Y22rr5//gfboaI3p69xuvz8JWacGqucbemFUZC4weLPGeZPfyIVP7Ml3tZoqppbD6yR78x+shlNdKO+UDNzi8rf/J7O2t/2AER1lq+x26M54e8hQ+STZWS/WfdoPLubGgJtby3zxvepuJv2958fTogUVF5fG5oKQTralKvjwdtcdRCRcS4UQk6fwhypE4Xa+u7vmK61vOSbNZuRffpbM/1VKZzGjN5h8SPY7iXF6ZApkaHdQllfZs1aHa97YQbDJDkhX+WRcifUfDhYHSNBWdy6YWcrFfy99YI9TrePSb9W36udvPljmXZkP//BR0gTEOUf6Ymmnz5S/fWH7M6qwcX9xcmRs5IMitZdgaab/H1vrsWlpJuvJpg0e3CMRsu8Ev0p8o4O8yaG52uemXFfnUwev4IREtK09FUISsSqHF0gu08j1oTPKZWZBwYcDW/Amub/ce6ofQ4X12FUQTeHV+7208PA/JZlhSgjmmHjAMUQl+RXnxgz+VBvruuvz/aK5Zv052/R3eNE12WVRHPMqvuPz7P7W8xS9hiVC5JeR06/2t/c1Us9Ao3W9kp84YTLedEz//iyubk6pWzXpa15j2W2pXmUut71BUN1D6srLWRudZO0Vi7Q3emFBG/7yWu3tFsIjsKB/Ph2/9goR3h2FSWelohe+8sHt6/V4Dn31t0cM5ohNIR3vFL4l/c0mGVYPdoTOXwbjQ+b/ZXC4+0zclghHk3SFM9gPvsdS4RXyHu8bU9wvF1HDNeT0fFn5N+h9aMn236sBxpo2SjABcki5vv+iOTVw3+rQnyemas/ZLPH7l4F7Xix8H0VzWi9+sALlvOBZ8ne8vXC3yGlWb3ooYIzkr0ttMQbHdWojmZtG9ratc4rtlPONRoXvrrhrcJJ/HTmtP35F1qpl4SsxTLqP9cw1KIuyeksSBHil3ujALlaV3ZVN143amx0Nzt5fWDBpXqb4+3AFDVS1gH+xSOj1qz+9CTW9P7cjY/NGMLjfvKJIxZvNNV1ZsBfLz+IY7zXZlNT7Y3svfcih3v/580Lf4Ts8IgJ2a4l1GifffIvH/gGl7uRHLgM37Obsr046EgO9iOFv68w//gk/+VziEQVMKyvRTkOxe2FzmHm/qsf/au38DETmHuZDC66TeVDYq8plc/Vq5vPlqvCj78GyjJ6YNeHPWr35vAPL/n1GYkg413F7Py0Maeb5hwgze0Xc57SyHv69jJIayVjvnQwOlneTyKS0ITp+rauo2kdvRVot1LLzIpk3j+9sOQfOsein05yqAKsej0lkfwxUnkTMwyrUHWwgDaDOQ/zFMNyw5NqZXErJ/mh2mg7IhcXhZKk4grx9z8+5JyUZZjp+6GjX374LPpjdFeCDF9ay1RSmGMu9btZm+2yI57pyGhiVSQCZ2PGboW38WYX2RY058sVW0qzN8fsqCqwqucGy5uk8+bb6pqr+1FfEf0md97IDoEPS/1vef9XOYfPoEU/P8vQXxc+XtN7qz604UBX8tYopcUfQTM5f9m+jGOTfpTC1+yHw4kPDutGdyXLsPgxbPcVoRye2X2GoBV7Fj8o4eNTgTcyG1xg7eVezaW+dULLfpJdfGw4z/aqoHarIfjFP5ovQRKDk+IjPZiSlLJAUmLAf5PEzFg9RPLDi/1/fG0rvLHXKwFV0eJ3kKCKMjT/9NwPj3Yb2qWT61IZrS73P0IW/d2t+rv9wxesyU3p0YX/gKlEDoalPjLJ4qGHlN5rclZfX7T4ZS08qZz/qwcOP3/+trltl3rfX8l33t/lx3eIvd1dumazf/aw/SY9lUs1Kfvnjo/oPJKA7Eoid/S5fAKziq0DiU7n939+yE8/7vMp4ZOm5DbavMP3P7+rz/zoohnnUmFeyVK01INPv/oA0deFaVLa/4lwO81/WL7ezHSMM/wGGw89FVS1RvznZxM0OCQrdDWidVvFULaX4V++aVc2h2XGh43n5Dt4vZOfKKT3Q4hzNXLTmWxMBYJnf/1Xz5mlYV/B8bBqmFv2i3/pFHeURF8gv/M0OpUYasG6UoldDGm54EeFqN9ciX2ujFK+BEkChaysGI7bA5rGJphhuxmsf/Whsb7ZOdoqjscsudNTUThPijYnDyCurH+iWTlrR/huuIcZCKQcq7wZkRw1E7GqM5hjBi+sDU2ds1+9dKh3+IieUe+z7fVgIvFz+HNhfcc7gj+rrOOXeX7BIXh2xCr3SjdmyyzyXz0wXPz4SdExRgu/IG42nMypURxL/fk3+9c77WYmgIxICgbZnZzXzy+4/F/vFPwPAAAA//+kXcnWqjyzviAH0qcYIiAgYIKCiDPBDlCRJgFy9Wfx7m/4z8547/UaoFJPU0nVvzMF8L/PFJhBLjOjWN755tgasDkJaxbo9jXn731RIzjHHdvM6SoAFkDpvxiiX+GDdu+3tH8MTiU0fj9C+b1WbCccPnlvC3OJwjmuSNAkxGo8tvRK1U4D8bNeC0a29kpYW/WN7CdyRqKSHwr06Yw92XiSW42tkdhwv+tXZkzChvf3xwEjYR/aJN98n2i88qUGFfU/FgwvpxsdVU+RUTtr5n7XT4ufhXcIe+VEmZ+WScyH+jDDZN9tWmqsrbiTcgf0Y9uw/fO7icfT0ldBgpPHtuZ7rPh7tTMg2696Yu32qGu/9yRDwuEZkdDCDzRPwduHS/tJCdkKGhrRM8jQ1X0qxJ9VJ+5Lb26R7psHvC7jTScKayeFzTy9WMC73uLle0z1Joowfho3FNDyeKh1nI47cuiLMug/iXhHwmplM7KPQzRfUnEG85eu8VluvYo+dkWm9VBiFiKBBXx1ukiaMx1FstsltOuVrf6Ed37eEmwZdiCsg9aALRF7QhzbjsXVXrFVpZ9aYtLghPjGHyP9ldEN28z3IxdPfumgtzJqLFNfh5it1THTh9uhYbt2tOKhv86SvlrFHbN9Nw3G66RfEafTb+m9erba2+GrwTFTNSwoeWdRZg8+WuKD7Lphyue9rDjq8EZrKteC2n0ST5zBMUyPWK8i49Pt0dpwFmQLtyTu+KCSoAYmzIDLZ8uD+V7rI1hw7vGLGPuAe/4QQqzKjAX258EZQoGiCTyKyN6OWM6/242tf99Zzbw0MHJxE/WCFtCpJIGeWEi29rqGXD+7M8d6BBZ7jjtTcXcXhWz6UKnoVX34kBDvSaW1reZ9qnoFMKbfSGhePtWw+7YmPHayzYLubHCa4/IIjmF4zL6aTTD67xi0yYKJpOsQW3x1OBfoxwqTONY5zb9b641hetOJCve1FNDxjEzt/DIDLCZtk/M3OYxwaqeaOSJ/Wv35zJb5RHeT2XpjdiKrFBMMRbuRYPN98sm+lCY0j/iL5e29qfg7OGda1V4iYrp3t5uLl+JBwdMz26xNt+pbo7CBy2qM10nbBrOxKfE6jeSRrpQ8RNyoizu6+z/CdvA+VC0VLzUMnn4j/m4zdXMSjh7YZa5gobAvVstnT4NyfO5ZQLyq69e7WkLtS7/RUfP2wXRNew3Fr74nO616dnz3UCK45qJFNU4f3cjVudFxOu+Y0yY06OPROuqFvCPM2etgjdOsteD61zvl6erLR5gKB8yfcCTX3epR8VEbjiDL/ZZWYa0svcdGW+ebs8isMzohPt0cCqmqX1jInxUaplMPcGsQWfLPt6MRDlr1WfoVVaNKDib5UhzRPtcedDW6m25iPCjRD11WZH+YZosZn0sLxYVd8Sy2X97WnqGg2j3NbCshKWd1o68gN7OSXUWrtwZ1rZgghOROvPL7jMXDzYmgfs97sjspViybV2vWzEbumbHeImvWXAPQoTqZ5Cjcopxvt+0V9NG+kZ3re7w3N95du2U54HLALqeTVmTw2VwOxLa321wyEsWBzenU45c65DldxukgcjlUtDv4QjVS5Piw1lcc8/sWVaNcFQ6c9ifGdtO649MWrCsA7hIqBrt3PK7db6Pq38JhmzxR4vl2+Cpwr48h5ffTNph40QOMx95mx8GJg3kXXkpAdrRi5gmyrryf2iPanKQ1MzB2YynxtRWymXOk6yXfjSulsBEQ70tO38zshlmzSq1xvZrtqcFiir9fAZq6vrDt8Vl2/PMsC0jWqobRnYfWX34EqmVvYqV0FbMmPYww8sedWORxQiOOtBokJItstwsvaE7UMoTdM1ex8M2lYJZbUdKax6wxf+gpp8r+HAGmuUrXniPG3Cbcgb/8uA1223g6qYcEXdUxIM5xO6LB2Sc+nPgFsZDMSTd/iKdomz1uWIig4oO6Hk39Fo0hCQ7HX9yV7zGBpnYdYpSruRploR5RQUuF7XrtZ83oO/gAYu+QMMEJH6vhgqHs9jkx1qe6Yk9qScjYiP3SWzVBzWRbGXzoaWa7u61yJjQ7Bz4pNYnTp+tg2ES9hF7nISeGcUMWY99HBtlmelOggVwx2bhIcHeEM/PvKyGf7oeHgT4nVrBg8zWQKFX1Ci6HYiDOjwSx/Ie3q/fvRJb9atF3u/QKDPKYrspUtEbljPE/fLAyq+U8LzeGzs5nl3ktl9Cwry8p0o9Nw/DrcIznuLk8YTxSm4XN5mhNsVU6ID2uHxKkjyfiwWeMwJbpj5ka87uJ4n4F0wfbxJ+nqRoLRczg8eEfurqaO8S7fjii43ZrEqP/+svsgVQD7ZsWZBPryBrj2bvDEbXPPzzg82vjacjI7w0xT6BU86k7+/AWwCT++XsORoYLGyYvApJcTc+ahDVOAX2MFdtplVHJs9WW6GpRg4qsvlizsa5XyDCTNcGOK3O2OjwKhCzekf0ZyRV7FNxDXX/mGDR5E4zVLxVgtVrOie9XN95oqJ8Rtc4Cc7bTtpM0zg1YraMDHdPyWI3bUzprp5bXi8f5zsdr+VNQeDAkvGY9qWbvOyvoqR0+bHv5prl83uoAe719YIHLacB5wkPtJsrTMgvlmc+9Pjhglwv+OYWS0z3Xe21rnAzcPcVb8LQ94w5l11MWH9S3Na32ioP2b2PH8P7zQ7NwfHtgTUFAZ7Hk1kSyoNCUpP0Sn8Qdot97coWXiXSq/6xXPvSZ2EDiSyfi73ZOzrs18sF/fpK/Gl7MpkegIG37KahkFGq85OcGHfx9xsIPEGtCpkih+tQZS0/JJR7MSut1Ltg5yc8F5cza6wocL8qTCpZRxqMZxSsomBGweHfbWsIzDhKobXNPiBxsOtrTSw0L/mFAvZa3m483o7EVXfbHT3i0zKqyoXSZHYQZfzZqYsAf33UULebiYa+NMGjDjfn3jRML51bPwGDxk7iKbOT0O3wV+PDgQHvUX3N+MrgHVl4fyW52jarf04v3t1+ZOcd+xbfWOwSZ1jnbyF0b9+fz9wnqo4ywJiA5766Y+/Dbnjl9zen9v3i7nZwz8fKosnhQIweoYRCWjKBa7PbGDTw+04ftEyvsZu+nOHAZEKLLXE4kVZLiw4DCkSUPt+Xj6a19kGTet2TT+t+O5c9AAnnjfQk5Pu1cJjgp1cbXCzynoRlM06lfgVaZB4J/omuJ120Rouarrljov3Wr9qaXBNeoKcn5tJuCeeFX6PujjP3x0UlFYgPQfwpCPOeU0/FnUbiEP0w2a3M5M3RyEmBC/KNcJFLQil8Fw+MeEDq9tzZa+I+hPy/PkPi5/OzG1de6wltYmcQn+bOaZjB6OK2/Ji2FU15NU7PcindzlWqiFVpzunqbEA/ZEz+xM1e0MZGJfHwyyG4jQjV7qvVBq4N0w+v4/Q0aXFqR9jSyiuzahnYcqbiH+9RvmJ0MiE8nOfHQUZJNKj7UqJrqV4IBXZyC/cV3S3mRwXKZmNm/N+KNe49XSJneO+L9pAYNm6iWYCsiZcETofvHHwaN3Qhuxjrnot8+0SZNjsRJiFS91+OlgK1xNtj+SwU0bjoxgYzRnuwMhVbj+iqWkIwXTKyOxsEkJpcCEuI/6Zza+7yn3dzC3ZHOVNT3Ix9f8kuD1eHsk4DzJ5q7QAnBvo4u8Xq96IZcdSJ1PIYT2VtBmE9pPs9A1cuaBEA2wfji7ImQPR7Y7RLZgdzHGwcaYAVxveEQTDtJLJG9ae9s964CxCW2ccCPvQfbF2cZzaQrQ0SLx40F4Pb5pP+W56NHl8IHmDUVuteCBaee2Eqc5l3oFs8//CMOu4ycVrM+ok9n7pnbx13Hb19LQAueUvqtwm56bzVBy645wuoMFzSSKZ1BlsOZ4bphXT/sLkfokt7CgiXmVX/ZpxJEPa/+xZuQW9hTg3QXks2Nfqtpszmkun3/rAmZVn4gVcK8+svnBAcJySUCs6K7XylmO2f7sbgiBAoIg34n+8Tqu+kPn2kPI3OLpgp6/50D1O55JvsGhZ0I3yRCxeZzpqtvt4klzfVWsOgpZu7G0pp+Zukj76bcmXlvyoCKolOiTBZH9qdP+cbRNdUd7y0eXjWL6X6LCxSk7YOEX9v645MFunhCShzVbKqh37U+TC7/MbcPUrTw8Qh5BVIo14p9J/zx9c9BqZmryM94bkxu/Isn4dj5aNZvyR3k8pJQ/XH9VSPYrQlZd33hp4JOlbhTNIp+8tshxjvbIGmXDyZ05HJgyfI9x3g27tA43QGPOWut6RUYVA9XRctse/vOO56OVx3ndrLwNYx4zg9Uqw6HL+V2ZubDjYo1qH4/409y7uL5oXkSHOX0RPVLZFsCW3vPP/5HedTvq7k+Fxls5M+aCkGooHk1lgkgVZSYG7vPoDfc+6zlzv66+CVKPt8bxfvDW2IP4jvmhjj4oO9PEguO5JxPoS4+VSdJYkL6aa6aPT34oCS7ZOFjD4sGRtBqf37D/jN90IQn1gBJ1hlWn6kQN4t+Aj8/lMxe3dAf/zmi4HCmZHthQcCtVZuCYaZrton2NppzXEaoYGaw5Dujm9xJo+BIdvyPH/3Ty+nrZP3xXz4bR01B3/e1ZrtUnPI/PQ9UfLss8KRfTJfn179eYdLc/U3dPF5GrFvu0aVo8V+m9Xi5A8fLmX198+GT5R0SPVeKgQpiaFbzi42evvBzOt9yv5vg/XBgrpUPHdcnuxLX4+GuPa7pmeypV1tjsJs/OpWcKx638zfmy1RkNK3OLnHVXq1G2s0NzMWRMOeJjICe7p4AdT19iS8GTz4eg55CcDhRtlU8avH3Pvmg/C6OLMh+n27+VWeMnPg00OqgvgNet8iD8vjeMvN8sNEorvQ7Uv39g86bpLSm7uv1MNziBgt6Y1YSKKIAZni9MV+Lqmo6D1ah/xA60LH/tvkov1IFVpEs0/F0QtaISq+G4+fM6NxsonyegsHXBtRbZNHzwfT4tA68r/KMFXcP+bDaj46+6FeyvfZq0O/XLwFx5fohRs7aYNT03wp6MBHDR77JZfJ4h396gGpd+Qv4un6nkPhnk8rX1OvGb2uU//CrP4AWD156SNCAqEWcUoSgf34OIRIfw53gETT0qx7n5V7xoaTi+TZ2Y3yf67/npc3tmFj/9OPPNDGz4L7quCCer6gbkgs7J6FliW2FU+3yOQYLf7rmP/tcS6B2+gPrYa1VrOS4RWcS+f/0g+DugwiOm8hnnrXiaOE3Jer9GeNM/X2CcY++d7g2/E0MjL9xt/gZcA/8kpipPcRjsklMmHRZYK5xmIJRCIKrhjerjoSgHi2es0eKsg1/s1D6nqtR2BsfvRvSC8HlfcdnZ7ZqmNzp948/z8eT1YAT4B/xykdXsUN8TsEZecm2hbRCNHoUCeri4Ub2Ya11o/52Qjj4fUfM6oZiui0VG/7ykduu1gFj3WWGx7ZUaTp1XcwGPhzB34sD1dB+qsa//HN+GQEJX+zczd3FecLxku/ppIpRIHlqUKMmOmKsiYGBhO3pPiLJiXQqLXpums6t/8dXyKmQ7mjsyPcDK49ytg97ko/3PBWg1pyM+INgVVJPLx+08H+6+lZ91TqCN+pP41qRvfh45WPLghS0NczM0LwhmId1G0F7OTmL8NFQlxTL7FPq13hge4czV34cwRA+R7zw2XiW/EuLdJwUBD/IK541ccR6D0+MR0m1u7l8DTbk+TPAuh2RnKvSzoH0JaUL/351o3A/HLXX8zwzT/19LE6iS4/KNNdJSJeaLBUvH0QCkRKv6ivr8x2YhhY8Wfy/Narnz9InyZrqf/g6YLE0NDYWE/kXH3/78S8/kPikV/1vwD5KV7PMzGqwkbhdeTV8A/6lMJ5ucVtfLjW6P4qBfuXW64S/9xkWtMXy7X0I5C8fl9mNJ07++FbfoAOGcX85Mic5BzkqYh0Qv97uWIX31A3vs/VEUT9VzD0dtly8Zq2DdlrpUbTwKwoaN3ThdPIYUU9uTP/8XyYcfmRbBp01XLPW1mRbf1CnNErEzN85QvIlbomJhygYd4kVqYsfwdK1fYnHlXaJ4LeVHUa2wjIL7V0LqJCbku2prsfftYxCFByThJzqPQSsOg8RqADb5Q5gHMzX3hAgaY4+RZtHaAmTY9T6yTd9QqqIVLR8vR1U9njDrMM0xhP5pgCvOI/ouN4TNHRbNsN8vk///CjZJsiGjPX98j3PHd8NuIbv6rnHaPFjBWMXA2jr1czM6j0Gs44NAOtx8bG4rG/qM73RFn3OgjsPgx745QjXIknZptZHayyvVgLZ9YLYfjr31aSS4AOz2cVYfxXXblafbx+afGVi/ri6aNGPPSx8hu2XvhQCsFSDW1gYLFU0jprt5eKhUjhtiYd7nI/H/UvRoa8LXA9DVM3jF5dQpmpE/P4bBo1ydkII2lVLpd/ZsP78bnR/rAz85x/R7oKfCFf7DP/5yUOQF762LeuY5Ecix3/5CXrnbpE9YRtroriGf3xFeiLDmh5xEf7FA1WcCOds3rwTbdM2N3YQxiGfuXVpYENXDV5Z4i2WtqQNYcFPZsEnzv/xsd3zojK3BprL+qxk2lxrH8ypV8bC3/MufhLxHTlAv+ncevAi9ZkYsjRXkyUGV7ToLeZ1lpGL8iWJoP/24+JvU+t7OB96dICiI7v446FZs3ANuXIfqPBJeT6ekpcCvLvbzJm64F++QYufzzwnovHwkVkP1U/ViTufIH7++YF/fqKfy0ZFj9vRB6Sdd1R7Z1V1HY4KRt+DcyFE3R87aUvKEIL16JFkELc5k1fJRw8PpoRrOvN4QFO9UpWetws/LOPhOB/Sf36RcPg0Ae+XvsrD5T6y0Bc/1dhO3hP9yqnBEMrnapra0QTxbUbMz/prwNPXI0Vg3fk//2zhWz3A+dCx3Y08u5HvHIx+JW/+1Yt4zs6p1n/JjZhrYcjHxc9Hj915YhtBKa0pPoof0NaPB/vz94bnzir/8g2zTMdFgvWqG1TGTsa2x2yPJmM06j88pNwvXTQPWBcgcsOOefXvEA/i6zsCCWSKV3pj528lP9yBp7uY4NfFtehr0FbobG0tthVXTTylnXMEOM8r9ocHEvqVib749wyrT1axz4R8RA2T0JWc7vjUSQUGews/dt20ST6Y3ME6mZUnXrNaQ/zLlUQ7HdsXW/y3fEbvL4AssQdVSbqOp0jrBVjqe8yKhDIfOuWQoeONZWR7FwY0pl5igN5OHR0ddorHrNdq1K9lTsvzoeZjLwUpWHdVJuFHuMbzcSPO0D+cC/N9R4hHNfdqeD+9mhycfoNkRQg04NfVxJb6XtXtswHDa5k4cNyEQ9zL78MRlnoDMaY6i+fGECX4qxe5TmdY4jZIAXHByZezE6ibP0gDKPFRJbu7feHsqCIbpsP1wyy9k6zhUfcKkkvtS/xMoMuZ3bcD3qcUaR1eom4+V1aLlv1IyBXsXJBfqYa6XnZw5u6LfD6/nEXPCzEjEsqCCfHSg+0Qv8h+9MVgUteKAc40euQQTPby94IWilK2sf6ZHD5+NqzWdmdekr/91X+sftSQNXVU3+71uFvX7wTIrD3Z7p5UcX+dxEx7n02NbL9Z2Y2P8aeAoSg3Zh/Se7XoHf9v/Vhf+AVf8A8teudPP/NF75fg9PBjzvU1cvaK3ot/roYkIHrBabdDBio2rk2IutURXeIVTXZhsz+/nv7p2eX3yJ1qvz8/3YM///Ysl5x3/UbJYD4X0xL/A/rlyLrD8FnuYH3unjW509yjw8OQiGc4DRog82bQtu4O8/s+ysfoPH/gMMY18dHpE0/G6NW65RxeeBIUMxAW/ESPEijxNpbExz29+MiNTZFtlvrsbP2cK/z54Th3w27JZxpUbR4x/Lp8g+nqHrI//U2uJjtbS73hA6l9fS1+ehL/07PfSeYkfNxuFvur5xy2uUarV6HwOTANSZecOcLzot+lKyoSZF+XPvY9atE09NZT+9ML81/+aNAFg/uRB/ZXn2Z1r6SQvs4Wvund0md04c/JOa7pxTsb3dS+rSfK2dnCU+u71ZB8gvv/70yB/r/PFIyN0jNv2j670ZfrOxJmlLLNcYo6rlXLJcDL12DGdnoHfd9FVz3+XA2qmluTi+s86GGaFIVtueMFXN0tvVctSSYeMcucjbRN4XS5RmTTft/xR0v5FRJirIlVuCmSu+zsaP3QV/Q5J3Y8Dc5RgW13bJg5uAwxHPdPNGaDQ2w1oojZM6zA2h0PVATH76Zo80zh2X7vzCjsTTftrGSEuuU/ttfuiPfbdfVBtuuoeIX2L4tyufmA99pWbDtVBA2skSSUrCwHr9eRxWUFd08YY60l4TNIY25W5QyE/w7E+T3XHT1dLh84Aj6RYDwYwdxQZUT7sJGxdWlJwPHgrUA6Rj/iqj8xnw2h8cBhx4nq8YvGUz9fKQxF39K3Jv34vL8+GhAydCBmcC35MJ93gnoOrJyu4/qaz+Eh81FZewWWFUcPylUfRSAHLqby9jKgacsTD95jesfi1zhZox9daxgmJSbXB1vn4/f6K0CobZH444ziaQObBnD725INk9+Ijz9soNFiNsN7O7JE/1woau6QmgXatAkmtTIFwOz2YkT8Kt1wev9MGPLzm4UNJpw/CTui1cPYYJFIJhpP8ceBslkpxLvOdTDwbgNIkosDsW6JjsY0Se5I5IWHpUAKA36A2AcUFgrZGeElpq9dngA6CyZ9HZZ7D/LJLdCWqHe8Wr1WXa+cdAEt3x/zW6Lz33zeCBCjzMT9sp65UOoUnV5iS/D3HOYSEcpCv9GvyYxXYgby7WJ5sPrecuKXyAqkjBo2uvD6yfYr2anogQlPeCiewfDuuonHPny0MDXOhQ7p2UC8DzJTVYTYIMFnteVTVux9tEfNivlu5ljiWUAYwimmdFjJTjeLjn1HZ81azjAcyrhv6KuG0Gp6snE3mA+Jos3oU05A/OMsVV2pW5K6bow9s8Ik78bDbicAF21KbOkK8Wwd0xBaElQscKnRifn6cYeKJzsSirUVT3dDiKCiqYPFq9XnTXDwVkjZHlXiz6e4Y/rjWMD2U4TsPryKfK59xYY82v/I7hCijs7SjNepfL0zJ+GnYNKDqYRBooz5wzYO5ni6ROD83Ih4wuwhXta3EYVlwykwu7TY/aKWSNofP2x3IaegPg+KBl9J7+g6kI/WmOvTHZb9Qi+lYuSi/pga/YpHi0UffIjZ+WVGerH+IObmv6gaIy++65ZyzFg4Z49q7LssAxcfFbJZty+LGxL20RXyLbHa9pCPTHSO0MjPG26HLbdG60gMEKuoZNtnNVT9pfq04EpIYdtH3KNZX7cGyJvjSHY60xAl5nmFyod3IYHcSGjm/pwhPh6PVJzUjdUPwkNBphARZjxoZM2zH5rweOYCRhhv0IzdrQK/nm6pYuzSivk34wpB0ryZ55FdNV5+/gqcGTGy0endkq9jUsDvvXsQ97Bj1aTJJmgPJ2ds/3xFfCru2RE9znAlSR75VnMQFUMTD0zGIE1+PuL9LkMsPil4PGEW9N7Je2rmNfIxF/d9MA3GqtZ+q7WO69twQBPIUwK2phZ4ildyNZXpxYezg9dka42Mj74vHdHffl/ioeIquWgQZi2lk3dg1XA4NQU0XpniBvcHS3BRb/w9Dx03tOv6yn8qOvGFjuXvTAj452V/4L6DEMudo3Xs9FYwHPcYs+3yPuXypzma2Dgr/FTuQt7TT3kHX7ivSciQzJnlCxTFK/FC62O8iSdGYw95/cGh3NC6YHokkKnxpZtw/eM1Hw/iaOhPbbKZmZw7PpfjEIKzPQ4kfBw+iJVpk8B8izbsFtwFNG9j+4Oq8b1e8MrMBWGu7uD8thEzsk1jjbJ7NMAO1NPfforp4xWb8ARvxwItJ2iw7kOj2oWN/t5XN0TJbMPlV+fsQOwmX/JjpFkvdKDSaffJ+yX+9SueLRKcVlU3ROQ2IlLdOuI/2COeqfB14Df1HsuIacbc4VUKJotCgo/JWPEVv3603jxdSXhAPKfj7tagfXfLmDWfLx0HxXuC6qo6IeI362awI1M/FiYj+99drbpW+hVacNuuyFbiUTxE5DQjN9ue2SZKdtZ43CkYqvG7XuJzFbD1RrpD0X5UZu7lZV4UXffogM0X2fAaWyK+NAZUsVeRpewdjB/nl0I3BBOeTliJuboTP9DdzxHxP++Jc3ZtQ1g7MbB9ley60VlmKV12V5GCio/WKCzz60J4HOjR3WQWz7Nkhnt/aWkmhyn/wxM4p9mbuYV6iKfBkD7wBH9H5V3xjef+nSiw7AeGDdfNZ79CJaS364VguG24sL0YNojVsSTBOWireVftfdTvFIOcuNMEU/0kBlJp0ZLjXvYrYRSFFr7NzsfS0SgCHpEaILBcjewLubRm4sIRrvros0jGvOK3S+BrCx4Q86DZVrsjKAOtLARiaJuwms77Vwru7BZ4vApPPihfZQRXj9aEPDVs/SJyGjXbtVXKwL2gaWKbEnXDbqL7ZGLBrKUog8DaamzBg5wJKq7VfX6Yyf4ntJwNxiPTcNttmeesGz5+kvuIlv3LvFNpdbLnXZS//YDRXom62TrPJVQ0ccjhENz58PHcRLvoJPvDNzQpu08GtTG98SF2X2iZmHcE7thfdr/ax3i8cYbhdf9+macUcjdIWuGhK1y2bLuzWov/ylcKghDl5LrgB19vVneEXu2Lzof6yHlgH1O0jdwtMYLNtuOoNq76/b7CxLsdt/G42q96pEStRWUv/CB+kCQB/vKvr4gCH4281bQ/fkpEfYe62Vrmox2KlFx+5hjz33gfgYhmSiX111ujuzGu0O3O+N/7YRvIBFj4CDkdnKrj3/0soLL2CzyB3MRUpiFFG6VS6Ur2v11/qWgDRT5mzMW9y+dt1mgwH4828UHBsZBB0gNbDRtm11Ud88/nqejpSeY0c9YN6rv3tkfHU9fg9/sGaGg8vYd1eivZRvSNgPPzxYAtKjA7x+DFvGqbAt1+44fCcI9iTpKrhtzmqNPhsJKsxvdXR7hle0QV6/is+FrwABQLCWS3YVM1SoNYgjHZF3YcbhtL+G5Qhs7BJqcqKFtrfOLnHfq7YjLPOhqdeJujq34hdcryOZPi8bgbMcy344YFt9O14xOLKPjv9k7R04u7qX5XKWjT4US2eRTH74WP60kdNuTSM6WaNevVgvVhA+VtO8X98Ty0qDx+J7KRcYF46r4FxOKzwnaK2HUUnX8zJOssII+rjSp2qN4OXDxrxDKp9Gp8eLdxmZKKqNT8fpxvHd2Hk33FC78rgyWeEv03UQ+vRP3Z0dcuTuEXlg/ifsIgnnnVFOgs7h3mzyde8WHLe6j69QbPtG2C8ZGzEird+9JJOrsWTY2qhD+8lYmK0fDxSIoOkugy0/HLfHx4pxn9nF1GiKObaApWdIQ4MlW27X9GJf4KUYAPXmd4bbhjNV5OUwi7sZCYncqPfA4DJKE8Ij8WRjSMp++rm+F7TzsqbtMNmjNqOHq8CTOWe6tl3jDZm/AS/RPZGK8BcX4+GBBlgsrMryB2/P79ABTa/GBbp2rQQIan/xf/xGHOFI92V911PWmmP/7P5wfeReA/BZOYvD7nU1sZT9RZu4GF+iGo/vHlhzsLZMGHYPRKHdCyPuLU8KrGPa81+J2phefgaqK5gU8I7uBeSLC67+I//QaFcMmY9fSjXDxUN0U7h9cn8aPOyOe89UpY+DHbeMuZcWfwMFgha9jC74K5Mf0PcmlxZ6doPOZ8MM4Z+Fq7nIEQlntc6nv+w2vi58Emn93kleju5V4QXLyuFo+a2IBo/2BUi04kmB7XiIKg2jJFYffr+Im/G3jX64Rsl/04m+1NQZd7JmP1l22qqdi2GOxv9CBG3Ty6iQyNr5mz6jPbHT/dBA/rCH/4ah4nFVEl/y16N4vIrXTNThAveoZ0VbiQoj/88uk+lIX+OzxL5jwridO2pk/0tjld8KIOprieW8jTi0/2SX5b+OgDlnncLTGbvdEJ1W1uUQlfkTbC7HE5ee8kWNWGzfK9MlbUYJaAtKw90bXaHq1xyVdo81BUtkHfbzUn20OBdBz/8HSXq25yBP+JCiHPMHxWzBrzgxWhSveXXrBuw6d8fb5DCW+R7Zkd5L9Yb3p4Ct+Kaqa37cQgsyJdr6Uz20yuU7ENRAI6oF/FjPDg5PPPVFbgefcKK0u+nWpFdGAb3l26vt+cWNxZxYiGgrZUVC5lPrd68YF0/pgMd9ctZ6trX4K7amxiW+eccxz3JUj91l3i6xcn+LqSIJ1CnYRRlgfTC4QGwkZImJM99Zw637BH89l5/vd7f+/XLFlN0fq0toawDzLARrdhm7tcVeOSH+GlriY63NEKzedk6cOSHvd/eIHG9/zzUMauI9u4G4pGtyQf1BF6otBghj4S/5kwnRXO/vyPX1MePdhP0pOme6fnnRZ5x7/9hIGhM//Hr6qC58TaClrOg8l46s03kUkY5EdrDpXShAveH9jmENzRqOmSDQ9pRMS5F8ssNv16/NP77Ho5ypyO38ZEX/5MyCWdh5w+XrkJC37iMru+F/14D+FQiCYzhCm0pgPMKVIzt6JzmMz58vcdUFdNxKxmv+NjPJm2nlxxhdW8h278DByjwJcc5sLj+5d/TKSsi4rFtm5X0tvxPRB30Y0ZK9sJpkeDvT88opP3ffJRya8+aLdioqOHQy4J97n807PE+V52Vnc9f646E+0dFvOIx7Pabj14HCEj9+8GWRMKLA+Yr93pGGy21didswjYim2wHtLTwo+PH0jPWGF+e7xaf/kUdZdSwNBtvG60swNFm5+2wuNgW+hP/8N9nmfM3WsY8OknZKjQxgezw4FV3KGuqbXXk4tF/2PGPFiJACIttizJbod4Sh73BJzExSzQD2Yu8Em3QdlGKkWL3h9v+4BCeyo7YsdPL6eYCzbA9eHQ8bmK0KLvJaABnYhxXuH8jy/pH5bUWIqrJOcHaSWhzzUpafMJk24cjssZEuE14irfu7mQXpQRsaftso2VOJ3cSq8CCbOa4sdZ3wbjbW/1cPfeLqEn37JGPc4NhCdzT/75feybCdAcE5HgxV/56o/rHTLtk+BxwdO//PAPr5zdpe7q7hwt8abFWHt6bT7iZ+yjebLf7IqZbs1BsC/+/DfqnHZOvuDLEcZ9VWJhJT2rj/vl9p9/x3bdQ+bzzxxBr+zEXPTBgbc7eNWor7Qt7eXVlPPHMLXwzj2R+LH35QMZGg9WulRi5K02ef3HT77Jc8+yaWt08u+2N9Vt4JqLn2ZydtuqV3Tch5idM+nMGb0gCY6SIRA3Za9/3w+dXPFNjFNt5LxMnwnIqLiSS2B2VTOibAV/fhjWW49PKz7NcFvNDZWfH7Ubh3VUokm3czxuc855RHr404d0ffL7fBxFaGHdSz/mLv+frWndgi0XW+btirHia/c4wnpzexLL378tLqoCQKDcPLb9pp98+n4NG5xZZbgqbl4gC6tS+eNjxDGro0XFIU3BUqKMJExDQbNhlQlq0oQMC2eMuCW3GuKc/RY9qFQzVrMrmL5dM1/binlb3XeCXjagEDO7buNxUxyO4GRqS9edraPhJy3z0fuDw8yFH03tKK5A96UjVvePeDnauXH0TRpt2J+e+vPLkMCOGbOdPY3n933E+kfdWXhiL6HrS/uOVRExRPV5irtxZWyOy5meiey8dx1MF/H1Ac8rKpZkvOymv/zckl1FDEXYdvJ7HxZ/+5mEa8qDftPiXktU3DLMXWrVy/7TpH30YdipMV/8Ah9cHClYZ3aXz2bxLPRFr+CP+uuDHruDrRlCNbJgiSc53fsefKV1x8KFb09WvVtpwsOZmfcz3UBe/AO0k9ozXh1Wj1z8w8cvL5M/fYu463YlaHIhkeDWBUh1nuYVGkhV6ixDCWmUCxmcLzLQJR9VYvJIU3CT1mDm7/rtpjzb18A2tvG3fjTftZ0DeVh35M9fnO1Oa5Hk3X0syrtXR7OmGtHsaNqCH9d82jpvgF5RXHY3XDcW8DP34N0lOTMNbcPHl/WVwF21NiOmtovb7yYJIR9zQoIGO90kdmMCt4wgut67M+qPuzEEy1VDLNAhsUTe7QCoRhViyHWNJuZujtBXypYZaS5Zw9+/p3J2Z5vdXar6Nv1p8JhWD7JpD0IwadOnAVFCD4y8Zgwmo9ktfd/cHZY/YZDPxcpr4K2uU7ZMb+iEuHuPIEE0EI+oSjCL89yiewUHdsn7ont4KUnR4k9SITzf43HE7YjKh3/Bk9/pFSvr0wzbYGsSqzPKrj8ZSQqj6hyJcTs01bx/INBOMWZsn0zEkv78PqafgdbLfupep2kF+08DZLv4A6PiGZkumVuLrsbhaS2/N8MnKm1idjKxuNBdPFR7aUAVtrvlA0G3D7qb+QdrV3G0pnB98qCGNKF8WmYfQGYAyONRJkGJwphfiiJFzRSkxF/8S56JfoZs+b5lvum9qyFKNBu888GmcFUKq2nTnwJ/fuF2iYe5uSrNn/+D52U90jUgs1alb43Z6sewRsMECal28Vn8nl8gE7z6oGszelgI+NOS1Hbraycc9sQZeysflnhAj9esUo0pHZ8+nptCPl4Iu6JjkU/TbwhhVzRHctjLr5yq7FWgP368+Jldz7eOAlgUfmR/rr9obH7bCPaT8Fzw/hfMp7XowFmqA3awcWpNVpArgHOpJi4lNecTyygagmCN6518s+YbX11hFxb9H7+Mx4cYrEDw7ZHYdWXn0o1LGYS6kBLL8btqSJ/IgdeK77HYRCc+vCJcoJm91KXmDjkzmozCEi/MP6En+tMH+lKPYTjWynj64qupydH2gAVmbeP+vdVWf/yXEbT34/k4thq6fnPrP78a2Z4AiZEtfdlWesAyL8HQ3J4Z80tUBYu+CYG+qUT2g1znY6/uJU11kb74M9WfP38Hu2V/eGtXPY0zik6u/Gbb5uMG4t3JauisYGDW4n/+2lEHtE2jDwmTaYuo17wKfW8KFxb9Nm3MkXz1/vw7Ki7+LnsMavvf91r8ySF17y2C6835wwtOrbNWgvJut8wcp3snUS3IQJCHmZBqcPg8YhXQH39RjJ1UTbzbrZTnEz7MaUMzoP3R8vWlnsDcfP1CszU2HxRrps52HyLn7Emfhh6WLV/8OjcWbu9pBO289D3ezkLOvqJNUdV478VP/AS8wa8QvvHOY57/O1d/frdWnGoZs0xOqjFXTj786SFqTSKf9vEthacIDTv1MVv6sm17UPl9IM7eCZHc4B8GLEo/tiu2bjWJT5nC4fN7UZRkE2eo9jLNc907Hp+rkc+R17ZIf0gJhSjLramb+hStzANf9Ps6n2pFt5EfNQWz14MU90mfeBCQtmS76PTmfFMKGarF9Z5Sw/3m/FIkCfoIyZfZqyfJx4/zSkDLmhM5nLCy6MP2Dn/6fPFbKj7SNoGX8u6x/IQWTd39WGvXcKPicTttA7m78Qx2UnMmh8UP+FdvvOj7jFigJfF8tKBHr/v7S/D1anU8Ou0izXO3d2J1shK/XpFT/PmJFJl3I+B/9SFtbq6L/tRRczs2hvbqvIjh4H63JnRPFKh7jy7+w365A6JosNQn/uJ7mZ13/cCfH7f1o8li+W2yYakvL8+jVUyLjAgdNTkixuH14XSJJ63I54zq+DCg2SyaO7KwPRA/Mc/xdDmfQxAe9kyOsRtYbD44KTzOqyvVtNypZvk6g7rUN/H+bu+C6RDZHvzMfkPSxW9n9YNJf3qc8sV/4HBxZ3BO95iYpfaJFz8z0tNg6UPxGpPuj99oC97ice+BxW/GzUFLfYe56WXBq3LAsHk6T8w7Wcn5E053yM1xz+KPvgumMgLhT18TnG4UPi56HahQnZm7SZO4FYd7iv7qFcISP799NrX6e5OeqbDkt7FQgxIOh+5Bp/a7zaULdBpAfXjjlak9A/7YWHe4z+NMwp2iol4bjVYXtlHCUuESdIP9SAy0rIdCMr35VGzLEHW//sosrw35ZEVKCOP39cWi+PnFA6pU/P86U6AL//tMwWGaPWYfY5rzlnYauobXiAVtVVfd4VE80fN9RCzoslXe99/8CqlTOfhkv6JKwhPL4NKaJnOQ4+Wzfx9atCteAdl9VTMfjvqPwvpzfBPbMPyORuufoSjRVaW5LT0DQZGaFkUfqcPqi4jdbzf4gKojIizguyb4taHqoVqzVCxWUhAM7RZSqGf0pKh/5PlcrWsMw1U22XYdbNG8V8UehGtFWRjswnjMnnEG9JD09OVpfdWKWPsA0M2NeRuxCZjsXp3/1n8OfEuKG7eGYvNIsfRaf+P51WUr2AWaTyz/NqHevsRXkKtcJoZSrfN+81MMTYgvJxLe1898XrUWhfCpvwjpy7njpfe8qtsmx8zWzR/nLlMcAHwSaX7ZXiu+vF+Y1domjyYz82l73YXo8/jsmBV4eT7uXu28XB9u8ZT/qqq5nF4GPOMXZcY1mAIevtal1p4tioW9nFv8Vwg9NIfVj9hlpnQz8fMC9vLDJ7vLSDmv1FMIYzUExJqGTzddZiUDbx8gZio+tsS3XiuIHboTI5IGOa2KvQAYyIfO1WPxvMufAyp3R2b+wmc1pq9eQ7MXECo8P8d8+lbfK+BjvyYuc0bUpzxxkCmdXWJmnRWIGbkaqEraAmuVUKP+1rQz/C6XjhjHvo37w+X0hCHuf/S5mhTeF9swQ+u2z/CsQpLzXrFHEO7rF66U19K7dm2P8IYtw7K5Q+gbFeMdNivNJu6U+J3wFFgPhx1WmesdSSfrlNmIBMc92Xq6hSTHZo62T4Ud/pwlXjGBrZ9IH92E1ishsrjt0CuEqE5IsHLFbhh/+ax9s/FCnPEYxDw9CVSrEXfosNVna7ZD8QrxLXmzTTE+u2ks0xVYJdFJeLadmB8/hwS+D2XGKImeiGY7y4RjHjFij13R0W99C9H5muyoDMds+b7yE26XPiT7NzUsodUKG/Sjr7Jg2ZISPxuazp9Xh9ifXRlzIT4BOBfJIrvqxoLecA4t2ofkRPyz6qNJRrYBbf54MZvX645ZlQsA+CxSX/Qhfk/hjNcImZgFh0+M+HQxMKSNmrDgpW+CKW9bG6zDB4jR3MVgVNWQasVW3WH0YG5MSWG2wML6ybz9WAb9KrZSCNEnoau1/Iwn7+P4IH1fGywl+tjNO/+aQQ/al+2ix4s3rySqdXt675nFrEs1j06FdbxvfeZdLqrVp1qmaJuPLmOp67/V3GDlDqNOZuLAfpuPYpLPYJ6oQ8tfaFTiw372+lY6/Zjx290rdkxKH27+783Cg/7rxn2pJyAJUo65WcqIzpHtwLtOT5SenxTRNjskoMeKwwznpAddXY0FHI72E0uzPVVD0Kl3OKTPmOwl7RuMwewVgJ/mBc95/Ql6ndUaXLPvfTk3fbZ4Lv0fSdeStioMQxfkABCkZcgbBGxVFHUGiCCI8mpLWf39+O8OmtfJSZsmivunf3zYSJUlpTpSwKp/NP3mpWbHZC7gGs/Ukwp1oaNgtCDQf19811hfj+tLjIpuAceeuJyyMe3gGXzWmkBQhzacdT3olWS6euQzKmYo9UWZqGs8Eq5It3o8iOMb5MEFIrAfdgvvcqRCMa0Itnx8j7nNYgb8q72nXqlp8VJ/WxP68QUS7bbfWf39MzYwsbYlWorYWeSKwguc5RKhbakEwzc13qU2qpFBn9lnzBYbgA240snGemKU6xuHbcIl2g3UXyeMy+NREUE3Kg6SbOeZzZ7nv1XzOrr4piZG9rO9BsGAfA00G5mz8FA+/SB1cg+xUJlCHsbgDDK63jEr21/Nnk9211DWflb/M60Fl0SHpsrVFY+OgIybjME3PyJ6mfkjYxmbXej2Txvvy2YMl3adoyOPpyfd+8134VWT+zDP3T1RT1VlLf3ZTKD1DH2yE3ZtTfehj9S3tk0JVAV7mKHS6XC++jqN1bgPWRswrn63RCTK6r9kcU5Eu8+FiMSP6QzL0F4bkCNOUf9hoOZEM8/wWuVn+vCM22pvt4Dt9h5iPdNuMd+8The4v6Yc++8Mg/meRnd1yltMjVN5DHs3KY7wc3jHWDfDCPDQjFwo9OSOo88tyNgt0gPo7bYX7NZuExI+fn6gdkfjL19m4wTaHjJlEbCRddYwg7lB8Cuu/5Lq9D3wJLiUkAeShJ2Dd7Hk8NLZUK4fMnY6754x2xsRrMQ+JKeBTMu8s8cNPIkFwVFbfC2W3h0bhh93oPYX/AY6TucU9vgY04hd5YXHz2sExZJQothKNoz++AxAp9UuKmYSgaUyhgbgdbcBdnEfM9PXCJB3rYxa9Gnr2b8UEOzj7kO9z9oH/BvOJtSUjYqEXbOPt8ImgfCuJinGG2kbz3NRpTC//RKc+8cuY6chGsHVYD2OmwEv4gRID17OsScy66pwGZWIwY8BPZwcFz1mnKMtDHXhSNH+lsWs7KQEaq/ijGYt+cX0YnQ57Fv7ik3zK8Vj9xsVkN/6BLvTbxOT5PS4wDB9ykh12q/12+WDD0b6OSDlpJ6z6YUzVz3rA0SKaK37dJtrBH4n2FGn1PyQGK+tC4rTHmO3XHsm9efZhEPnNNQ42PkyF40gqn94b2zfYSixdwLhNZHXWaDYy9hWTRAo7vEPG6XKwNT+9AAOl2HG9l1HYHme/f/2QO9PloD5j8+dt2VDb5/HsZ6jnCTQQWpLV3my6Vt/7/AL/C9ZOq+25gzpbwAwe+A8n13AgWan8Pprhj97A9LEcgkytr1iLBq7bGoi5mq/JM2RqJn7helif4ePfPwRAUkTYML1e4er/ESzt1L8h6fyJtldqWG+zZrP/b7RSlOZcIbRfiEpPeSwsmFNXTDPC1+q5QwLtpWpU1aXhcm0FqGZb18Ycakb+FipEThSciL8RbYx5cphC6ILjwlvLmlI2mrnw8vBPFB/GHPQ7jZPFbrBkiPYjOUi9k+1hObpGNObZ5jxdo0XbbmVL2wLIAJ8twxv9YvCDwLCLgMTtdb9vRUHZEnuIWADdxgkF+tMrUcmxJ3mCCVIsbslQ3MdrDG9H1w1yCWRHoSyr+luyt8QdLFBFCn4Wgvwmx+0xXjBjlR8aq4/UxNC3bHow/bFek7EvaIIlcjxHjyXmBK/f0Or7Rh113y8NGfjrLlR2dFj6w7WPNr9Frz3RCDMyx9gUXqlgAUTZXyYb3I418epB5sXB4i376X+pYeUQIXZFX7dsjnmtmmZcEzLB91nGz+mVXxmSinrPn5E5B4y9w2PKrTLLT3KxIkn6bpvwZo/MUJqGLPA+5z/+APW6RLG0picdTi73gOpJlSt8TREBLpEkelB8sv1fCzXuhmq2DnVXkavSFaA2VkTWvlpzD+peIF/+QmjoInZX2cDFb4UwXF7Cnl+9TYwEewL3Z+CMJ7bnx+AwdYZRc5hsPqT6QTwnIgQCWehCP/jddyiCNWdV4fc4bII2xneqWmU95oJ36IB0c9RsT/6LJ6/UtGAVX4a1WIaMhPzUs2MYKLeVaBgMMt6nfPV7GkI7He47N7vQHMxxvTQC4eQPzb3FurP+fufb9DC1GxFCwWFgIBvh5le/RLa5Saijn4rswXzK4KbYPTwsy7bmMvueIbx0YoQO32mmnS5q8BRRQb2c6sNmd04HERjNSExBHYsHbx9A5fZ8jDyj8XAYnFqQCaGENtf4NfMfYtnOANoEFlcTjH7QMFVs6Jw1/rCHf7jZSmb6y63xwFIqe4q8HMoYxyRRxWO1SHjcB5BSq1Vf4x/8wIgNqTUfq1zj94TRmqowRM959KSTSuewbDsFezly2Txn2YgWAHe4GCtJ5g9mI3m9EGG/WfwXn6l+B3hWd3cyOLG1TB/tEaFd0n5YvtS/UL+qpj95w/4vtaDy+7dB2DlV+jP37mBkAqVizhiIy+0YdaA48JQ25yo0ZVixv4BAAD//6SdydKyvBaFL4iBgkDCkF7aBAEVZ4CIokgfIFf/F77f8MzO2CorJDtrr/2k++VL/2xC7IrNBJrrraghrksVx9JIs/kEKQ8M7ZJiF+iqe3Djpy416R4T9zIG1cxzZQPlO/3++kObnuHAgGhvfbe37lpA4ihopLgJVWy8CMr2KhZLwN+HEC3zDmh0GNP053+J+Q3iiE7b3cH85z5OPGx9SqWJmKCcnOe0bn54oleZF4PDfcBe11yzdbpVPPyOrD8dtICvluYhcGA8ydokZEwT0Uf8DuGOOC4CH3nfT+8kCX718tTeZgT2SjvLUqzkCgmFUwe28ZyBczo1xFDtul+rU1TAs+ndidt3z2ipLwnzq3cniAqVco7H5fC0zBYxkR1l66FzOpgz+ZUcz3GdrZ352vbE3DisO0m86f1swseg90QbnEvfWTVgoDiPFO1LZ+f+5dP2rT6mjnXybD3sJRkwSJkQLHZy9OMN8GtEu+nLFuk/f7f5ZeK824Iumnd8QzYiDKrSF3RpKo4NmEl0/fGQfnVti//TS1m+mf3hvBYh0NLiNR0EEWnj/dqmsH28ewRONaXtxVgsyMQeQYfB9ynp1R2CkpSM2Nsvrvbn7wQLHnHRYdM9JIs3Q2n/PGKnOMWUXlz1AnNfeRG7dXC/3NvkDeJ7i9DeSeJsIdrpIqXPh0G2eAdjeuJMIF3qAf/qt1W42gzEAtsi/nIxqiWqBg9y8ihP/DY/5qMZTuBq1XDafeEEqH0WayiFlrDpdRON86uAcMWnhqiHSeyp/kgT0OEwIkrWVv38gQcdtJnDE3snmNX+8F5y6ZdvZKGDbu8uaiNdKbdMu1w5a39+cMsvaNlZqDrQndOAu1Z52Omal/bxT5SRTn4zYDd4HDTapEnzq79wphhcNK8ao4ONb5BjtFy05de/0W6gf/pDX1aTws+hh0QOioCu1Sip4JIP5gTGOnHnpDfWH69AkCn6bB1om4CiX9WJ7dDZHQf9tRfueboS7bvteYS4zUGhsSzW97kZUdG03rDnLZfcmGMZjftkZ8F3UIXEFSQj4z4pjOHWP2jjJRr3y79bfsZa1iZgNGVtAOLVd/HRm15gyYOhhin3FLBGHh5Y/fC5Sj8/O9ph08/Me31B2+Wd7SK9sf/pK9SW8D1BtbIAm544HfJPRSTuHBjuIVaeuQgvgbbp1b2qj0QNoNwbCh7c/Zmu3X7lwSFrcmzfxZ07fhPpjwegQ5Dv6Nggtfvzq7Z778ByPhy2e2FqRDzeVPpJ1eKSXxDcTYwYzxltPpoK9aFMSMzsZ21uDVRCL54jND8mxV1+/5d94YT/eFIkcDO8a0+PKBD3FR2CeS8p/gNPP74z3+98CvwLZ6P1k3GA3vO1hlv9jupYmqtR0N8QfoHzxVpuDNmEzwYHV+fAEi2ujZ4V9Dcj3j5vjLOce0eL+4YdOBbvBwnn/piNIQ4YKdpNdGKbHFG6+RGwfKiC8ePiZkNTW3sY7Z0vVol1dRf/aNfgJR9uRDWgS+effshLqGLT7IZ+DsvwAr535GH5MH2iRa5aGQLd8ze+8ujXd5KEcJe1C/Gl6Z2NVBAKGPOCRhQLV9rywJkOv3fPw+p6H6vm4Bn5X3281RMZ+X2/ip/G9taZmFGnM/Zw44NY+/Evtw5CqDuWg6/37VzfQy8neIhLjRyv5tDThlsRrLf3ic2Nb81B03TibaH3iX/G1B21oIklyZV4bCKbRl2YLg7c4oO4qXfNlr7nZli8+JxYJ9yAubuvJTAQX2P3KT3d/tQh8ccDp6W5XavF5SoOQnVpCQ7jfbWcUvcCf36XsocLWKjbTOChvnWC5OUKNr2t4fPzeWPr6u6ydWCyFWx+nwQ7/lx1eb2z4MZ7MNY+UrbeK/sNCp1RMHq2akWs/hqDglZ3or6SKhocllGB/yHSJDKqSslys9AfH9j6C+yJXcbSgRNPZOvvvrPO3gr6wGc2/VTBH/99zighiMI62uL5Jeys2CF3ljoZG8n+HujDK0Fg49ds5wkOvPjtA1u71wxWe+RX6N+Z18+vZgJABvfjN0TpvidtsnP7DXcafyUGo9vaxj842CrdiWi54WX06J0GSdLZB9rn+cud5ZOn/ngxtgLKVr3e6SsIBd/50/el0ZIA9K5rY/yFCIzQSYJffiGn5naoVtrwOuRn80m2eK3GDN5CAB9A4L8YK4VCdFhz/firl9Nd9sAaSE1KlkqsuVeWe3/8fzTzMQAbr5sWR7Ej7scfzqxoYFcxLtkyLS8T5MPobGdsntqf//3lK3Mt36Dt2nCCV0zOSHqGHuDe5lP/8TDEJtd3T6T8wEP26yXYcDkTLBk8BVA4VBUxdhzJlnlvWvBVOCtGH7qCVXVuFxjVnkeuQHE2Hp+loDhIwUQLhkRLYRUB2HgIYq+PO2iV+C6C7qpM2B0eIBuAOnawC78Aq3P/jbb6SIa7e8oQJPhRtR+chYM+EKWJa6jeDzq7Z4BAZgu7XzS55JQ8BmhocfrHf//0uBoyDstZOIK/fE/hJ5rumz8fcfDKRXQ7JEiIkjdd2tedB9v4o7MZcWAEyN+Dd+8Y2EYlE4236dGBbT5hsxWViM3gLQB61a0Ex8yz7+1vO8OPrZfELPmuGtl6nn/5gUQbjxur9tbATZ+39ZRzxQpP9BIX5+kRs7YP1YAx7CAvCCX58XnO0s41bG5HFe1Y+qjYjR+Co7CPMZq/gUY9Og1g09uJjjCn8+EtFODT5xPJ+k7J5tnzEojHJsMP/j5UYyK9Zij0l/O0YOkBaOndIezjdruASXtnc3thBxheODixG588/PhP+m0McmkLpI2LJ3pQfX9E7L1GKRoe2iqCrX8n5mR9NFpnnQPPd+mAcnfPgpZdqj+ejLGvHXs2fMoWbBdGRPsfDxeClYGRSlbEa98p63/8SLJPIfGToc3G4HXrID3TkHhXvc5W81KEkEbmQIzzeNjWN948eMrljJ1n3Udt9co5GCXiSoz9tQGtalcvkBvAJj89nmtBKeF+ki0i16brLglOVUhO7XnivKvv/tWfH70bse4+Fpc+bEEUX2Fdk+NjCFyyra+AzZ8S/JnO0fRIQQhTcTf8/FV/uLhqDOE9zYmc3xxK6U7tgOLfMZK6SgADtF+59Hl9LaJHaa/NZSvFUOHkAgmv9dMPH40ysDzGJc5QVWZjDAMEU3mvEznl0mpNIimFoZrZG0959dymt1A12wdadceoaP59M6DVdzxauu+irXBN1V89/qf3ZLJeL0lpRp14FljBclIesbiyzomoxknN1qjBb1joUEGwJ7G2bw7bOftzEiC2P5/AzETuBXiaYuL4M2J3btRXDt2jE0yz6nr0j5du8TzxuVZrCznLL4gzAaF9Ik+UCoHI/PSGOPvzq/rjseem7rFyyxyXZbU0helH5MlR/RBtkdkEQV4AJTFO1Tf69nGdgi78AGzqvBnNQVN28FevmS64VSurywhWY6kS9xHFLv0q7+ZXn0xLZTnRIhmHEpZX6Uns1HtpM5slb/jUmQpRCkp3mQ02AdXMdsSU4pc7P86bfiqPy4/HZOvzHTvw6LEhxjUbautl1+lQktIRcRdyAYsWlDFYjvt6otJF6tcqN/Yw2dspPlG+cGc5sfZ/89GIzmM15M8PBAFVBOzqXKm9Nv4FrLNpY9cVoohkH4uH6zwUBF1uobv5rwRO5/WB/XDX0HYp2uTv+63b7aYtKiPogJvaFKvNPGaD3js1+Mv3X4joxgsR/NrjSixyr/spIl4CrUKwMAqxQn/xAPygtzdeqbiz4AD4451TJTRyf6jk1ATj0us/PxANW3uAOj5KbG/8aoqPcyH63fZax1N6anVNywvcgesN7aoS9JMolpff+h22DbxEXYPmQmqlp0l8kpXZfDs/VXicmQkfz7EZsY9VyCW9hB4OtnplmZA2gOvr+EbrjPfakvS0hpw0KcRZ1zXb+JkIP30xoTm/df/iFZtc+i9fqaPN/3gt9s0GVL/5DZ5PeyGOOVaU2kLCwL/4QnYUDfOd1pJrZBrRVaRr8/TwTYiKkzsdXDfs2cDgTShxYYzNJPy605pyBXhd1RuC348G1ty51/BXr/huqWrLeTRMAOo6m6jWxhV9fhQoRujEIHpJejp6AuaBv1/f2JwI0Ma+59b/b08B+7/3FCT6FxDcemW/HMXFgp65kwnmpRasHLBkmK/DSK63CYDJDooV+kp5IZpCZo1yzTpL92SrsUKk9oTfGGOZDT4O8yGsVntXImmovnd8bMJDP4dj9ALfrzohcj8GGWvxcQiq1pOIY/IsGITEfsMbzg/E8oPtXL3I8mAKr+zUHbhZ61Ou3u7GOGpEUWcJjOd7MwsRf/HJMbpVdFSY1gO3SnoSBfCqRvlgbAD/yvdo76s4I/7gODA+3pINQzpuUwXWCvN7zaK7mSfa4m9rJn7d+diQ7gYYpnWdoKJ2O+xox8odw3tvATkxWuzy3dulY1+s4MSkPdq5O5zNwi1Q4cN8Q2KbyHP3rn5V4azc9kR/9HrF3Rxngs0z2O7Gpa02soW2l95MjPAlGtOMLPF5gGNUH4gqCVpPTeWAILqoN6wd3Wc0Ctnwht43UJAAi3e2UPudwnMGMmw0gRstLRoDuM4rwm7MfHsqL0YKbS1hsOnbbLQShtdhmaU1Nq7a3A+N9Z1hMGUH4p617X1JdDPBQ5lNEiBXj2aXlrkkRyGdKNhZLjl9TRUeqgRPu11+1ubh0U7QmAtnYr1H38/yCxRwjPgCsQ9Lplv7PTAK8hmns6yBfRoOM0Bp1UyCt56ieVdfCohch8OaT+pqvbhZCeerJWDLfqtRW4zKADGBJfb5IciWL/o2kH9WO0TzSM1GLpsgCPaWNDHtJ6AE7zIH3NChxZqrjIDqqR5LnRMRYol3FeyRnjdgtOMXlr+oz2j5slJg7hUGzcjVM2IZjQWVFcrYfrJJNPd79wXthsuxI56zfvTvXx6KeXLGquKUbnsyJw4eifckGuuxdM4gLETzE6RoTTVadc/JyGHQ8g3OuX6i84f7WJDZyZepmlbdpY2+X+HlUiyI+p0HpiYeLRDaASLyVz+A4e33PDS6250YTBdFqxabe8jddxeC9EXu908x5eCDCwmWqW1pK+sbKrxcXAebpIoo/cVT86x1rKA5jubOSwboSCpPDD0FWSfwzQzP0MuJmYtFTweimrtRqt4T+L40d2CVYwOfH+1ILLrXwLSi8x7iILBwbn1kwJmxngMmRea0C4sUNEiPO9jMDDdJJZgrusT3CTh+MxAXpWq2MOkthfHduiMm+FY9LVeOh8JdtskW31kvNHwC31UxTNQ5iFkjnt+TdA2Gctpte1jWpe4YKNbMiXihmFSrrHohGCUsYfN14tyveBIm2D8yGT1fsxIdypXhoXl+K+Syn3l3+NocAmLwYYh8P0S02XX2DI/MacCy+/pk7esid2Cb/8QUPTujn2MsiyOfHYk2rW93NqyjDgx5vaIqQKFGqxVu8eEjrNZWBahYcQ18Pd7bs/Xiy12C+/gCyW57T2quttsGA3mFq4l47ElOGh0G4uiQ5CeIVZ0TtPVxq1XoSJcHQWMmRcuBLhOsj+cnzo0x7of7h12BuXtN2M8mL5pvbVXApLvKaM/Ibd8FQhZsB7J5ogVRDxaQ853I0YTFhjy9Isp47BsY7ElGQPsK0dpJUwpQymLsf98kosOcvOAbNRlxRxjTWTodVNjrzwIx2F01wnWKB4vh8p2kTS+5eH+1oMU/M8S6VgRm+6HIkpOUmJwbd+nXWskdaO41Zto9Va6ansNOFjvWGQjKTET358GZgH0/91i/qQalrmbxgHzvJi40F1RP6imhRM+iQcy+8avlKLwGWLhkh3YVa1H6ziQOpAzGSJCeRTTbZFdC8916U7TpZXd42zEEnmlhP2vXfsTrMYZ8ZKoE7/KzO3NpuYcdMXbYnwcBzK+PIIvytvHdtKMGNEyfeHBxz4AYjixr3HPyc3B+Nk9yXN7nqO0/bQ3R7sxPa/7lwZhfIw5gY/KI/a4Wd+65JgXFEc3ToTdsulYaTSVyRws2juExItJHHaDX31tiHK+KxrEoKqBnXleCMteqFs6Zc7BnhOtPbzS6O/ghiK43Bpurt9IhC7AIwHxyieEvISBzYstQL10ySUV4qpbbtUBgcfsXRgUEW3ufNWj7l4u9e3ME04qHAMrWLSCOdXtqi45MBi7mxrCgqGqUMGSG+7jViOsuWsZZsaMDVrBN7JqpSw+G8Sqh8H0bGEF9BWTu4xQoTaoTDPpXRB9stEJhdRTs79KGrupNfkto1z6Ih3XPnXcNvUCw21XTfj/1lEK+0EHQfpVJulJTW6XyFIrb79jnrN6l5aMqYXxqR2I+Du9sPbyVC2wyjsGqYtTRKmvhBC/uFxEDQLGfXeNTwJDRCyzrglktz+5VwKdr3rAlW4u2tOgTwo61Bpxpr1013tVVhfVVE7HWXla62MhBAJ2ndaqTXZItBDUldKT4gZMtP63PVDTh5meIvBxkejjEAQOeqfsmRnP+aOWleaTgaC8a3vJ5dZguEMLCO/ubPlM6d64agp/+T7sdT1uvYGK4q/Zfoi6MCeaHePagfkpc8svXqy+cGwjL4EPkdbf/N5+Mj4iw3kznbC6gaIJQugdE3X8/dB6KKBRbgN4ExS8b7J27+IZKeE7wMYo7dyqXeYadkQs4Myy9Z8/kM0HNq0tsSUrjUpm+QrC7hT1KF+vQE6TwJrz7QUPOx/CYbfH/BvFpFxM0lgd37aQ6gX1aO8QTbsdquu8TGXZdPWP1+m60v/Fh6MFHglbSqKmq2IJkvbRYbg9ORh8HvoObX8N+FzYa3Uc6/9OXaQ/8g9uLkeUA01UNctyHkzsku2wASpPopIjv88+fyNLhKxQ4x/a2T/wuyrAVeWmqCFtoczQY5rZm1BDlfmvphLe3ldynD7B8vb80IgWlCP3gJGI7qcRq+LpeB3o8fImDpNqlNzENYCnj+wQ7tgdDAVcTrsanw0dH9SLWYg8JnGE4TwxzMDQW3vwYfrmsRIJGymr+sJcBiHl6xh5UzWrd+gcwt5rf/Mc7I5lfxZA/iOG04/lZW4if6vD2Fi/Tol9UutRhyADHh9F0VriLNvIzSuGk7jQip6aicSl1IRAOYYHRqbtXNP5ICKq+F5Po9rH7sYxqC0qPq41G88pEva1ADvYthMS63HcZfbGnFH7GISWJ5z+3feIXJGaRUuLf+M6jLRQwfH0nrFf5IaPvIp2AEbj2xNuPpqd6/kRSGzABOvROVdHt/0HW6t7Ef5TMnaPB10UA8hgX7OebUUs/TVCWcEm2/u7Xw/NdQEzOIYLGuO/b33w00+SAlVK1KO1NmQNSV0bEK0TijrcbNWEdlj1qFmWpeiiuUKKyLWP5Bv2e7D5yDEn+rRD3WLuK0j5VAf28C8Q/9hxd5EgzwZe7lWhrnzYB3wpBrqkiMeT3BPo4fHKQKch5orHOVOvLTELI3PgHQfpQU+K3Ywgf4sJs7WvA8mpzGb6rNULOLWQ0Gu6CGdo3RyO4Yhu6nPP0AqOx6Ijt6Hw1fur9DOvRrFErPYtstc5JCe5X7v2Lj34EOd+AVTEzYuQucBuXNgVU7kjE5itrq+b17t4gHp4bcv+UGuW+Qwx189UQc/M7tFUfovhGjLrFt6rt76eIgU/Ct0jY+rvTx0aGK8v3xN9t5/j9OxHh/MzQxN+Cha762KhAVLCH7f7U9ps/KKHXP9ppp46nikpBw2/vG3bolS9DNl3ZCsHkUzoTd9NXl/SmvJfIMmbELyzGneXnR4b1gbERcyLX7G1wjglb8Xshdmg34KdnwOhGfWKTx8udi8Ao4fOjHEnYClw/s8RpYGfMJcbr7V3N9hqnUDm4DcZ+VoIlT16BtBrgNMHkmNOlxpwOj8wnIl73HwAAAP//JJ3J0qowEIUfiIXMCUsZRAZNFJQfd6KIgCgCSSBPfyveF6CoVHL6nC/QrcRAqZI/AstR/Ccik0Fk8uAEQfbx8JnQbGDePlDhwy4f1KVKGU/+80+CufcCxOLtCyyHXTeCpUMJtRsOCmajyxeGy6PBPihZM1fJg0B3e3Px/b5p4+UWGCY8zRLBwVayivkQV6316NqMhuwiuwxIE4QrtH2i9wN3YE4LlJi5Z9T/z9O4+trMKjSN4fiRivMZ8gMEMXvi4CFngBZoXoA9gpTuN/jb/PcDbf4OEeybtmH9Y/RAGmSchrD00jlumAfGUMrwVt6f0oF/3Q4K/4weus5isuD2ABNr0XAQns/xEE1XCeZXCSHSvxjoskD9gO/hdCNmSWjBf3qLjbdYT75p2DJJnYKuzw9dezSNmebpLSCO5SL2lwcp+2gzsqyNp2B73/hcE3oBxZRU6rX6B4zERxEcWvVBVuhDimXqI2SO7W7AfvKt0jkNwwxWTN2Q90QCTkj3yqy96KHr15VbcADt/JdPkLL9e8Ysh5IKRJ5EpnkGDcvHdQZUPt6QKjkKH+/tOzN+eQIF+YqPm/BegU6zTzR6Pp+AwUxncAZfSNGdToAuY1XCXH6fiZZiVsxqUHSG4A1IOVyPYNlKtwhOJFiIGub18MtPYIWKQOj/uukj45PB2231xrvn5drwa72PwOPmXPFWPO+nV9bQ92e6zRwHKJoSBMD+iFln06oWepsQcHh8Uxy+mDTMttQjIPIlTYGYtx405u2Xh9AtMfNhniKtgw1xOQ7DVfmrH/BXnyg+HqeCGPpngSV012SssmqYYs0todBv6m2Hv4Y+Y3u0HreTTeT61AzL/DrV8FwYBfXX9hDP+nxT4elNLjRMC+YuMGpy63e+9bWrpfRZnj2rN00LGSfNHrhYP+vnt51tH6cq329zaCyBjdMb+jT0obGvtVeKmXzO4r9pendKkKRyhAtYZJzv1qMDpJY5wi8/Y+E3czBZz5bamdI27JeH7Xv1pEexv5TnwEygeNBDlcjTIl9HUOVbhNoPp/G83xk5+DOH/f/1GNFm8KFF3ZruXE9pppycdCif4JdUgodoZfl3M7OK+tS+betmPGUnGR4/fyuimHQfy/w67EDhfgj6nm9z8+MjYGUkGxolfBmWT57fYLK/qzSag7+BbWTwhWxnttgB8Zf/9Bp24yMnt8TUB3brew/2/vWEA5Lq4Ff/oFZzm27XgwwY8o0Krqz5RHdBxge+l7Y+nE5oQ0W+LMZQzOvNqsnHbao8mz4N7RP8iwaO4yRW3LE6xAG0ZPbBoeB3nGcMWcIvIbBKHSDWUwasdkRfLf/pTuYGnkBRol70VeoHcb47+DyfCMUF0xveU6+E3tFriSJ4FJN9+wq3l1ghptoGnOk0OMDXRK4ILoqTKn+OxCCrTy519LQE/F3wEmy+1MOxFuqAz+n2YPj4eSLEjYvmdfeCG3yYXMLbRzS5Y+w9HNCfuU/3FTgM2l87Xo1lyOiP1zT8pnEH7tcgoN4MLul85MUVrklwxrdT4XIWUq2CI/Y5joS//c87+7iaCRuPMKYstx0whQ4Q+8tr2NF1ZfjJyBPH7fcv5hfDleHYvO7Eum889z9fG1bXK0U9bYt5aIsI/vgZwGM4EHtFs//5bOnlG1/y+BJAk5krNDe8EHqK1uYrTyDdKaVdyOOieEal2BP1k1c3cI90Adyp5x3dj3M6zDpDOUCvIv7pKZjqTovg26k3xAw71MxvWH9/9ZLoO3fi/PJiJURZtqb2vukAbUNdtw6P04jDNFNToVffHz+k+1HdF0yfDBmuITBIe40uA9//fTIofawv3ffrNVj89exbnmLKxMg/cjrF+tGEaGX5SMsHmzPirQg8qXOLVFqaMbGnbw6x8XpTV/q8XRrlc2SJ/YKd5jwXTL0kV6A5/E2dv/OVz9VJbk1F1x5Y+HXwn3d82IDxHpMz52XseUDoE30Ifs2lmEYQxYFKHW9epaP7rL/wVas6Fnk2VufEDoDgAeS4dG06SWOZwb769hS5MRhm//mAMB2VG40sV04X3lWdsQ7XJV3fl2usHLdKAv8U+Q8ptZEOintoVCAapCGtvcUx//HvPvMmvD1bYaz/ZdcbCFG7pdFKcHH/WSVQ6BUCJ2PPlUOURPDYyIwGC1q5RMFP3brSyCOJp17iWd7iGtB9nSM5ZVvASjB8oDdIPkZHqqWjyI8QvS4x9tsVARMuuWQInkKDnbvnrKlWB0jc5Eu32tpvNJx0nZno0Kb2qgUxpSt1Z95r38AOOLQNSZ5+AJ+rt4OkFhlFF7fqDmL6NRAtBomz1Qec4LJ5f3HUbrbxhPh9ASf1btFNJmV8SXCITMEPiKi3A6kvwxcG8nqH79fbK15M1dVhi6Dz3x/wN/VluJ5kgrjgf+wbchlG9dLSaDN8Cv7L04re6P/58xw3ugd//nwfW27MfWoi4K/UM8U6gc1sLh8THN2GUq+5/aWi3txMoj1GYsWW6y74cHXgvss6JP0dnHTRalMHleKK3tEhTpVqnTAo/BPdfvZ3IPhNDoQeIN281/zHvyyh73hjyh3oTW8yob63z3jt22ZKFnRXDcE/sXsvsnihEvOhPp0ywS/ieB40IiZW/GHCX68qZt/dgUA3axDe88fOZfekvsJDSUu8w97oLsyQToDLfU/9xxINc1r4ByBLL4a38wM05Odfzzv5QG/6tkrHnz+Od8UX+xe0aVT2nnNYpG5F/bXvcQa/u98sTZcWlfwdlM37E/14J7YdducawCcZ3pbtA4v8/v8+yBr5USVyyt583lXeAgUPoGsn3oN5dYkg9BRdxkUgze6Y9S8VFu6XEGjDJ2DV8dhaDT5g1Hg5jdl7V3jgeGkLGg+pAhZ79c5gvvZH6oy10ghecYC2m+yxMxt7d3y11Q541SMj8iqwinEsiwS629Klkc9vMXM57YBadi329tswVnv7sgDbgR1OLDkEC7iri7UU3wwpmXGPhX5G8HJdc7p5iG/Qvesug69Aj5C525gxa5pTBG0t/FC31rYpcbKGgHydp3TT5w93/t3/WJv8Rr0l6gZehyAxp7TVaAAqyOdi2nlwa/oeIbe6KkbZW6Sf/mNXuhhgfmSxA9Itff3qXyGLfAOkPj3SuP1qLvP2axWW2x2ja5zm7nLfoNZoP2lNuMjvGl4/P6A2cIMWPdeHRvBzIPgsSWZjHy/BZ9Dhz+//eOrQlYeTJXgoDotqXZD8YUIYpBsL78ad2ywPP/nCEtprkspe7S7fftf9/AQx3G8HVKs6HqzhmjTUEfWKfeMogf0r1om2G+L0cxhxaYr6RXc43HAmSU1nfRhUsd09TzG/aWANuu3fk+LKgoCI5xsqMmM0Hj9zyro6PsGq8FZEWROnIOSV6fBuHRx8zaMopXXQyvAD5Jy6Upk2c0nyCJbaTvSJM1u+GNG0QLODR+w4CefLn3xaoMgfROixuwjQDgLPWXCQ1Ua8lLfIBIZv3QlIDggMFzNJLMHX0f0ETJec9/oVGmMOsNNc43jsajczxP0RdppHy6fVgHWAN+PuV5/A/Bx0ExQTcBCfC9cV/M2D/NWV1MsuHZ/DelyD867ucYAlDn48FIwoln78wiV7sNTQed96UnfuN575zj4Y8VYvyCLu/xabMBn8eHyQu23aX/7KHdgayx1H52dcyC+lHAG9GRHOxPkeH588ge9buSBj2Kru9Hu/az7PSNFtuaFQzzy4KZyBaJGzK9gv7/zymxvKVUEEf4DifgDvwo/JJ6c7eeCkPizyeUsVZ10lm/B50SyR37Wiv+TtBxhJ9KaR2tcNb0NmWqzOXBokauUuypPIoODfAEmCR32IHEbgQC4aXq+lqpjTiyb/93+PYigBDd04gYJn46va1wM/pssHygYz8XG5HfhYrMQ34+Yro/5jYqDVxyaH+pRlSJb7xR3pPCb/3898Pm3A8jHIYOvGA+nhPwAAAP//pF1J96K80/1ALGSShCWTyGSC4IA7QAVBZEyAfPr38Otn+d+9yz7dp4UkdeveW6Hq0Q/TI9M/8POWTZxlPzvmz4d2VEHmxtjmB267s8lZYItn7ETjWM33W/SCdSLPWz139FncpjYY971LUZGMYN05gQcr3i7+9husfs0FcItXrIfH8b96zqafaTA9ziZbuW8Ko1j0Nj/F3fRQ+4JbfZycHy+z2vSeB79ydMPOit6+VPruCI9cPGJL3bo7PTxvBNDWQqzl33HY1k/807s0k6y3uczyjNStHoc4oZiquTg/Gshzvxl9eZtkSw+LCAxW9UI7mcCh3/xr8P+6UyD+7zsFwRvn9HB8E7Aey9KAdIIDDdAjiqnkjeK+0PkdjcQoGdYhed0g8u9nUhd7wphUv1o4QP9NfXq/+vNumi/QKDwJW+JcVoRoJaeGEnzi9PCZs3Hi7hDe7a+D9c/n4ItoUBwwjr1I1Ch1svm9KglcaVhQyzcAG7vgVYDyru2wa8RDVV+bQYR9yr3I3HQWG7nkfoGKuAfUCpLCXLvIscBTBRk9yWtvDtkMEARnkeLDftdkc9J2EXxP3pU6t4/uM+Fc27DlHycym2cWr4UgFPAaboMNz7o9LPRov6DA9tt8Daz7yyt+bh3rWIb1zk6yeeLeEFi30cGe5v4GliRDA0ZO1tHyvYhg/rTxBz7wTyKKms3VoHnTDdav5Yy9B3LNmcSLpm5/j1EY1tmi9eEIj69XSm0V+f5SXiMCft+ux4F6bOOFDUoCRWG+0cB/GP7qxf1HsetHiVodl+YyXAMIUz0vsHbIp2HmORaAy9p9sWl922pVy6KAumJBjCO78OfW1kLVpHNML6fdMRbEMivA9HRO9OG/BDamZ2LBkhMnQuzy50/x3euhrKc8xZfL26SHYemhQO4e+qTZNxuHYUrB7RGIROFOOlsM1Yyg2KktNg7OIeP1u58A5/K54kPpmPEsWuENXpwkwfchQebM2lKD6NnkRHB715yN6VmD7LGTEdjL1bBO0hQoaBw/2DZhCRbnniRwPZx+ZMduublAR3TAk7/v8QHuxIFp3veiXuDpSPNpZ2SCrBqz4pvNDgG1//rMkUYIvO+FYRN9an8az9MFfis1wn7ZyuZ0WMcUnjntjq0UMpOIix4ohn1UUd5luJobbUCwCsiNqLIms6X/agr0r7yHXZWbsklPLzP0S8nf1lsz12Ddp7BmT4Cxf2fmdIqPKzxN3A5xzDLY8p0+F5jY6EtWaf8GnwVDWemLyiBz8erZijMxAJYHUurKX2uQ5Oc9heq9sHFQGzZbLDEw/s4fvlvaNtJweMtArz8PrC95UDFb+BWwfL5zio/f87Cs1zaAf+uJ9iI/rHlvoJ17f3tkLbxP1WFuhfA+nBeKnLHM2LLPEzhZry+2m89WMwfxRdnimdRuxg+0NPwe8tLjRh3yW9kyEG4F5/fqU+fxOWer8q5sKBqugkTe1IAQ0FaDN4/riVRmUUWPvlarL9hzRL2mckXua9WrR+Zb1HerJl7eor/C2T2upOKkMl5ft6aHvyVP8HtSWTxVKHv9xTtSH5wfb+19CvW8dWV17NZl8yeTAvmjvH0afDviD22yt+D8ehnY77gxmwRuhADs+ydFZVVnc5Z+Vki8z5saH/6V0RbzKUzRNSUQ+1W1jOfvDZooM8i/83kPngWgSepQg0VttpruOQHb+1CUGVfGPNUzQO69Mdbzu28Kr+lowa1HFpLcm8Yk8vx68DjVBbXszIoFvxluMKXjgMMdaeIpOdQfyPJ2xdvzxMsSVB/4fAQraUv7Es+KdhwhmZsUkXvIZ2vqgRt84K+E1LG/xEwYngoITJTjI4UFW6Vj9oIQfiPCR82LLVV7imDbpgE9dPGTsbZrEOx4o0ff+6PxJzeWZyiYgUXt4u6YkiyGmnprbxDt6/3AmuM1GOH3Z91p8p6GbEWRc4OJW6mEaexojnFpr8CethqYZlpMSvmIB/BnUMQb3QcUTBALWHTthN8/X6/a+ti/YHzf69TSpXO1unfDgb5SMNL87rK54ZMNrPDJEWEM3Xg1UlRA2w1T7PxMzJbT6CTQjNUG22UKh1lLBw20WvOidtr2gFbAukDr6X2xcY53YFVie1a0HMdUq8MxmzojSmB7eid0i+d4PV84CNRLphMpedmsO+w0AuOi6Sl+mz5YVppqIA9NRs2PcMlmeKhnuJ1fAsv4wdbQ3yYaiwCgKpcTtrr1vQX3Wrhg/x6ZsXhP9qLysbIzDdLSMSk+rzYwwxbhLf5iEnIj2ePU4v/Oj88+vnaBsTMDqnmals0CkULIUbemiFkfQLKpE+H9xz3w6QMkcyiGfQoS1XtgjF1+IOx65sBNaY7Uy35lxawP5ODbZxaaNbNmqxbLIVxBXKJHcd37rPs0EHbDXUeyjnVT3PKPnCjmBRtp9o0HPe4NeHqJe2r08GKuQ732QLuuIkblYjDx0QYzzLgcUXuRm2F55w8IQq/xEWvX7Tun4PZR+Pf3R5F2O5mL+d6LcOWl7XnkdNsfNIPELVWKdviZrQy0NgwUL8T+rVjNCW53jT68RqhukNvA/p5n8vYGNuY9ZauDDjncn4CPdWdY4/Xe4Juy59IPDo6/YqDgUBlQM6sBn1DbsPUZyDN4Be6PmkUOwPi4nkb4EoMSnxu7NWf3ySuQSIZEzehyqKQEpPa/82VUybLNFDpHMAV0xKejVTF2x0QGUrh/YtTAyZynxcvBxl+wUe7amNhfp4XQuNlEXQWUMTPoZ/h7tB2aqaECxpHfDJvOjSiqPH+gD2l9AfW83Ukar6q/hr5rwZN6PFAczLnf1sC2wc2zZ+r1peuL37srw2OtcdgoktInJ3pewY2wxx+/GuZurXv4O2Yv7BSyAGhVRoVijh0iU+5+q/WWn1//+Ee8OHVGrhNqQOs5Gj139ta7Lb6GsJBnRrXTWjL2pmcNPB9oxcGY7VgxN1UD19HPCNfAySfccEvgdedCxK+c5jMLNivs1/X0b3/Ymz408IevrUKdak2GMYFBdPuQRfnd2PpsPg2kYnuh4e+VMtao7qy+7K+Fr6CZqjmO9yF8sWNOFA/szT/82wO4E2hQSzkjJ/qYoVToFbYf4mNYD20RQcOYv0QQTzVbnPbwgddnk2z5T88EB2Uj/D36jsx1GMTLsi4tSJ/vAq2RZMT8gcaa4hixh97sBs2l5u45xHoWIL44PquVl7UcJOV9RKpnXUxC0mwG9hma1IqT2acbX/nDP2pPF8bYwG+zWpZpt80HrPyv7XCtYidJgQ5YME3mPJmnLudUpt4ROGyZxUcI4V3uMBqP0h9eeurzPWDqQzkG8yC7I/CljKC9mPbx2BpFr4IsPdNjqJhAYtz+BT29sGi48eFFSG68ciqtw8ZPrWwJQXaDqPs+sfOZsmGGkW6DDW8IXBaTzfrdT+HGv7Fu7UPG7DbSIAavA9kl8pmx9Cd+4FxrDb7t825Y95UxKidWVdTlmemvO2RxUOx2LcaEWsOcSjyCGa+MRPk84ng2jsccnr8XSgMxATGhN+jBR6G69HhSk2zJefuipmAacUCbblhhcPwA13+5+HiLx4q1HUEAio5AvXE0YwldHwS4aY0RwKSIl1ECLzB0REefW1eBXpt6GwZl3qKdUN7iWUsrA+Kj1JHZE8SMxI18U/74dXC5Eb/+O2+GvXk2xctkwml/lcGmHwjY+AuLe53A+Pyq6Un8UTY1zyaBWYhM7F+Oj4raqA2g1H0P1K5dd5iIGn7Axpeo+/bQMD+OcgA4STrhv/wwobadgbEL4V/+YmM74Rr88a8t3sDsLMk2v++VYP0YdTFzte0OsLR38Unbd2xVy7aAWqvp1NyXataqbRxBPTojeuKRFC90L8ug0MUdxkJ5y1iLYQLt0nKx2T+kmA66IENDmFLE+sc9pk6ZrnCMdwibJTr56y4tQzU6S0eqfy7NMKdW0oB31TCsX/Qb2OIzgqowR/SPry7Luu/BdSQvtJZLB9YNn6CIx4zey27xl/u1eMFtf/DpOY+g+eN/geKEOFs+OJvHdA5VTuEitHRyV60v9+FAJi17qjVdDeaDG8ig7CKPHvoD9RdIrUhpv/ERay7CPvPmiQBP6z2qCwj5zLsBBR7CQ4b9ZAiy+WOcEvC+vCYaCNUhk2bIG7D1PA1bd2+pmL6fPVXxsgqb94lkiyRNBAomstCaGAFYLNHSYKAd7n/4bLJsBgHsX2cRn1bz6S8DEWfwNFu86cPOJNf3Yqmi4SsbXuu+yD6/HHgDC1HvT328ys9vD7HHEertjDubhOQlgmVdXaJo7q9iZnOp4f2kf6mhilk1D8M3hRqvG0SIBJZRx3IvQCjzENFJZVnXGWmq9Jo+4JPyOMesOrYEuH7u0hPwP0PZc+sIBLvKyRw99tnyPV4CVQrBkyL+ObB21q45+ItH/2UJ/tQeVg1UitVi55u31ZJrH6L+xQO/n89M+Mgugve5N+hR14Jh/XpTA9/OsCNQTLJsLfAvhRs/we4+3b6jOtwieCeJSL1r/quouc6KOnF0odrR5AGVp2123myDTW+Hw4oOtQZ5z7RQqz0xEx8o4sBNKxE2rBtvDsX7aoOb9DQoolEZr2n9daCQrD+kxOdTtjyrRwBj4/aiVqfXA5sUrlYyenGoUS+Kv5acEsDxWczYOu1+2XQVH58/PokGTIpsLlyrhUfmWv/069juKwWQYKeivcqd4sVPj9of38KHvJ6H8aeahTo9vRNFjwwNs39Te0WviwcRCsUCPGtLA77sn4XR+aBk7OM7N3jg7g09Uo9WVBieMrj69xN2f1GdzWgdFThagoP9UrxVc/LVW5U73kW0qmI2UAWSCK6taBKx5nYDPS8a989PQTTSYwKTile3fINPJ1EYmDd/CTxhwrapbv0wn/l+m3VlPja8ebN5bE8zrDI+R2pyr80/vq56y50nuxLZ/iTP5AWJBlWMMv5oigvmFdDvhuPGX57mjBJmq0hnFD0/tm5K50WDMAw9iu3DtWdrU+xWZdM31D3EAExHWc9h2Ip3BJelYgtvBD1UnUSjWf2tqhk7Ow9kt75A3/f69ldlnyuw4TkN7Z/VL5uVoNbg83acyPASm2zOvUaE1A0N1MvGkS1D2YWQ816A2tKZxmyJ7RBunaipY+Elnl+dMMI/veDdTQJWTlpH6DQqQ5MZfWLWXc8vKFy7D9V2pMnWW/7IoZIMlFTzjfmMcctLvTaRjo+IdtV8Cc/93/uTRltkf16gMMM09RzsgfD2jw8qHqdl9P45VeAfPm96h7o3Ps34m5um8GzuXuj85KJsCWihwWN2veJuEaVh+pyZpRh4eGO9nBn7CdIaQFBwAmIrHQaSyA6B/JBcyb48etncGm0LXF3+UZtOQTbWx88LanY/U1cb64z94ovxl69pYJoTW+Qq4YASbLPyROGardfJbqDFwws9jf0la8+pXMBOeR7JzrqbpnAe3gnUagUSIegff++3gt339MZ2zg6+SJrZhgbu3vhYdovZ13x8gd87d8Z2ydF4fu73Pdj8Rmp4JfG3/XbAnaQi9tgYZ2M63BVoOHeHmrxzGYbVOHvqHx9HjZcxdgqehkLdyEDQykWwVi/dgZ3yPqJZvU6g384b8OJjS81KsMx+l3Yh+ONDur4vBnZKlgu8/+DjP/3p7ecW8g/fQwp++2C+j44CQRD59DTlh4r4Jmkg9wl7il/ntFpltuNhelRUjA5UANPdtRwIfllEwPKh2bp0DVGs8M39+Utg6fIggH4e/jY8B8MI3CABXD7a+NVeRX8QhqsCy7D+UP01V1W9D80eSOlrh1YWtfGK27T4pwf+9O7EoxaqO89KkNDEp2oRj+Wo/Pk9WJX6YZEbuYaa2tTUq/x6YN80iyD4PSJ6dGpcbfk9UuFd6dD686LqH17P7mElm15jBH41T41qO0LCfmdnTIEkBH/Ph8rKiteiLQw1MqiOytdcDfN91JR/50nb+Pzava8NXLm0wX7BPv6iaz0Hr+gVYbcqDLA208UGH5J7NFchl425+ojghLQjdTLggn/85GM9ztgm9sEXpD4J4G7oID38lAugZ+72gg1In1SH69kX//yLlRcsqhfuWK3isvWNXURAlrnPMmH67Qp5y1dI3PxZiaaHDzxllEdrPCYZ20njC47C5U212PcGebnRFshjpSB50oZhjhaDQF0NdKxt+kHiifCBlwIdqR9Ut4He3h9e7ew+IX0oXwC73hoPWjfioOrZeybT7noLG/qlGCntgbEBpYESDJqHtZMWDiyPuxnEmWHTU4BJPBuFZqm72/FBLdntq7m/ZgHY3xoeNd85BBveWvBhjCpO6xs1J6N65HvOvwiEKysr2/KV/Oc/IS7Y+go5Egtge/P1f/5xMdXE+4sfAkT7Y65P7ZL/+bHYXy9FNdrvtw37PeqxFe6k4R8ebfkciaYXVowDgQVLOQ3JcExGn4Fh78DHL2uIPCIlWwL3LCu4C5Q/PQa2/DPCvmqPNM9HI5tZHhDY+2JCvdfvzOZdeTFgVWYaNRJjZK2unj/QQwmH/aASq4nTRQUq5tb6S4x/1ZRkIoGprxk0/mqo4v3qDOGGd0R+XiKwNvs5AbxSZFj7HCJ/fgd1qBZN1aLlwlqfinzUQLcbrzi7R2bGnubEA8HtS2zD/AFmRcME0F5o8Onc3n1mNnkD8uVhIbG4t/5gmI31t/9YFxAxGWzPH9jZbYKfUdrGU5cHCKj3j023lvLDcrYSCwxPEOPDGY3mZDti/+fvU42cjpu+4go4XK4LtubvseJfeRHAmTkjRZ8mYawVjQ8MroNCrSr6ZZK5yrLy1EoPG4b/YJJU31oQaU8RB/EKzFZCKPjjjxiXqDHXdl08ZU/DnCZ8TYYOgqKGo9xJ+FI/F7A6w01RvPeM8YaX/jKL51Dd+B/5Zv5vWAVdTOC7N0PCiRbz5z8/IO1CRB8T1ky2D/oQBnND/uk1chCEVXmcJZPI6cUYls/htv6rPxywuf3eS0+hdjqcNj3jAnHz52GRfn5/9YZ4yptZVKVx9JDYfaJssow2VdqjAahppCSbgRukkFc+GT3BehiIdsw4ID6531Z/yv7Vt5RckkokFLfVZLKYGLBMHYv6hT6DpeLLGtS/l/Ln98aEPysXONdGQ6K1uPvTaf9UwP0dzdiOrR9gCk1mUFLyw/a2/8s3lgtQpp5FrdArqz89/Q+/jIEc4tWbLhf4hb1CxM2vZKrv2PBYgD3iGnjy19RjFyho1g5tH5pk8ymPRnVbP3pMD8icVVTm6sZvMfpeD4xldz2BkbgRozNHsqkx+ebP70LfJp7+0y8J0WJqcZd6EIyZQBgV6onsbtO9Ys/Q8/7hAS9wYbwa2mUEfB5ts4DjIhunxXipB+8jIagenWyNTxIBDZIPNB3HKlsHX+P/8GDzTxu28QcNbv4FWS/hkI3ieeLBvP+6+Gqdi4z1572478wqppbPTyY7rYMD0tRx6NFTW/PPv4Ob/iVq5QoVK4Ylhf1deJCq1TjGyHNyoDkOCB+/J96f2/dqK+cNh9zd91KRyNJFlY/IhBbruKvINc5XZS5AScifHjArM4CKHZwJu9lHk/351eA1ddRRqQwYC44G2Oo9VFt2brx0uRVASz6P//QWe2kIKY/fo8H4KuuDcDV/NlCutzs94Sdkw3lxOEWp8yfagTHMVurdRbDxc7Lbx3cwzaHp/OVDIpmPr78e2jaEtM7cf/lUNIK9BlKOXzY/0jGnSzwY8Puz71Q/Rm68OB60Qa+ZA4IKJCatz7dG2X9HhZ42f/GfPnpKL4469FH780/1PxDpC8WbnxL/qwdLgA/pac4FNjvJW1SOF1lG4uHaAzJZeg2MXQSp9nDseG7z9AWH+0ukQZfRivr7T6pkcZlh79KL8aqHYQ8NFxtYP+Gvvw6+wyuHQXHo35+nt9F60ICuhB+b37FqilRDoxsfODkHT3PRnjCBVV0cqB1Ft2q8BooGzl4GkFpeMJit5nb7x79GjuCKzZX3T18irjv+svanmh/o9JaMn5ufyTb9q5611sbRlr9n67Hd6dn8XUPa7xgzxPADtZJJZL+2LZgjDzZwRGlPDUdpwAI/lINFhULq/OUrG3TW1sT2gt0PDM01Ae0NvjTvR/E+vjPGkuGm2OXWJ2LTh+sHpA3cW9eObn6syR7n8Qamz7jQwyRtd2RxI8P8m5g4jB6PbPMTX2DDB6IGmGRb/aCHF4iPm5+E2Xzfv9J/fsTxMh7iVZq6Br4uQogUEnt/+rUB/qye0bLV32eH+8L/350C6X/fKbguP0Bt0eUAO5wuBtgN/ZNqUWeBmcvNAnrrRaV5qb38SStCQ2X37EBY9RIqVml6oL4E9qHWvu388fQ5RtB97SjGYcHF7VXmU3WwogYbTjQPC34jS3nwFx1fUFNmorKLIThe3RvV6rL3R2zuZTgPUXNiyrpjs0iuFoy43MNuY0YZ2/86EZqcFVNXea8ZPbbdCs4tYjToHwe22L9Qg1HgHSg+LNd4CbynB0xJpRjXKAMzkwwEr0E2kFndZYAdorsIryX0qX5+9CbjFC+Hem8gfIhtBUx1HfBKc/tC7Fvrz1/sVW5hKzUGPjzAESzvxN2+45ljbOSpngkxV1wAJ74QIqXsAh5EAIHV0mV6yA+06k9G4sGDYFQI9o8vmy09LaA/xQU20z2f0YVEM3zHXEG9+u1ky5iENjT9FWFXz+t4RQCEcCbOjOT0sg04IukM0zFJMTKmgo12vmGO4R5wcHXf2dow3YI1Sig2zW9vzsdytGAGwhC/cLNkrHikMxwGy6BJoVM2z/u02Jvr1tHBT48mHVaQwOyS89SRnxS0sjSlcFI/Cj0JmsuWi6cbEOFPRU/33XYnJNkrcBCbAe3GvW6SXaXYSpR+ZOxcvMVfzge+gHk/+tgN/FM8fYFtQzsweXxYB8lcy9G1IAO3OxF+EJlr+OlGwPdzhL1XogL24iwI7xgxxAJvqMZn5gXg9xUN7EyaFbNOGxMwd8MDm+Ozz+b7xtHLd2LTNDCdTJSSrXcrIm/EXb6NP5/7NlSuwWNAfVS+/RYc0xomUaNjWzhOJjuA1wdGr2FHLg1KGe2UYwFvlyjEFtlrJltCSMBVzRmSRKGI2dPqRKBbT4p9DrfxpHR+DaxOk3DIwpVRT01HcEpvF2yfoWXOz6Hp/94fSdsNqPVWBTJ47PgOKTsWZavj8zXIQBRSfzdM8RKUtwTmw86h1tzxw3I+Pz24C9AHezkS47kA2QrYa20wCi68SV5XyYH6ohc44AmoxujZtDCwbJWiSbd9QtN0hF2nHNGQ2+dssd2F24WPi0pPD5qz/nZoeKB7dUzfzHQG8rc/d2vnoN30Mwf+WwsjiKWlJMXCT4Duw7aBoWNp1BDqis2WsIjyASYW1b3wBNb4KHnwO3QJttKn5ouPLSu4Kd+S+Vxic01WRYNy+mSEu0tmvMLGSNW73Vypq+wPFUupLMLL/ZRTx9992FLKaa2wm+PgJIjXuJtd24PRWUmJkgVWLPxkdYa68JGoPgyfeJ6OZqHstGtPvaPFhh4JrxzWCldgR35itqDF/MCibXrCR8UzW/1QtyG53O4UP94RmLlrM8LrVubiHnFbLYH87sFfPHnoV/nzxxo9sNLbQM06SDLmNeeXAqoipuH5CECf9ZYMJwAmjG3fqfgnLmsYOPUFm1fJqCQrnkUI74crPYrZZM5C94igp2kyjvcz8cn+IIsQjyxAos1+oFPsksCyyRLScLY+jNZZhLCxLIMG3LHKFvsaNcCuXy984qNfPN+XIvp7XySj54Mt9piJ8HRpNPLSv765TP7rBdPqMVJt/YQZHcLzB0qPGZB1ihc23pc2hB7KeqJYgVuJTem38PQVVbKcH56/0Mys1X0PRfoYX6O//M6hDenVxNSZSAPobmdH0O63Zv/2DzJWiLMI9/SgkitMUDy2z7KGuqPa+IW8MV76RjfgsnVRksrvnhFJ9FtFnW4jkd7HD1uJ+XhBIflp5MFuN3N5PwMeXn2PbPhBzPFnt5e/9cInGq8DY6ORw2PY7SjW9NLf1iOEl11/wGbl2Zm4CG0Ouk4+0jQ6UUB2yTmHsjD/6GE+wpgdeS8FTSi1ZHD5hJWrLYgQlMCmh7C1/OULkAXLKDzTOPCGYbGRsEKjO+7J3J+5eNr2QzU5Oyb0axjxnFsaB43Hy0X98WUzYX1KNridE5veo09ZLT+8s0FctSlG2vMaL+pF4GH79hN8qG9l1W2/p+yLyacn0736a4kGDR5eJxuJ+S7P+kpbbchX6YINc+slhheY/sUvtibzyJbUOiYwe6s53c6vubyCIlWF5KsR1XE6Rrl7W4N33nBk91PGbFmfOwvsvO8VBx+HsQXckQP6RF0x/s4WW/IlaqBDQokams5VU45mAqVXFGH/+RHjdSwJD43q+t0m3vqAweQug53k2vSYV47Jc+FHBh+dBNTK/M8wbecTBIrywCdD32UrkeQZchfHpdHGJ8bBzUToGcBAu8e+MZnhFQUUGpXR060ys3maPQSpdL8g4Icqm9Mdn8KX+X5iLzDbeD0z5AER/FRsVE06jPLV/MA+2a1Y97g5nqfX1n2BIwLd3hfMn10bQuVY/PBfvlxKL7GB4qUL9WNgmtJ3TRD4Ow+m6YtgEjIyg6s93LFnKaO5zK7tQNGIftjCl4rNb31uYa3Agjo34rPl54Hwjx8Q0D2u/vRRbwk85N899dSuB6sfuhYM9nFAMVt8s891hEA6pin2WFtnq+LxrTI42US93QGzFTZeCjJYnahjpvogNp6XQPG0YIzt/eBPQflKgfUsEH6HyjIwoyxXWOVWj3HQfLJFeX4g2PgAUssGDH0pdSNY6WWgCTFu5jy7OwOI2pBSd7ZksDZcNwKRr0e0S0/XeBWWnQM+sKfYi8q3OeJRbmChL4iA3XDKxij58HBMlBlrET5XLGmKj5o9DxH2VUEw2ZE3Enhg2Y2wCx3ZHCjlR3qn6kIPh/eRzd8T/wJKwmrq7P01nvzD46IW37HAz2H6bvgi8/AKhK23oHCIpbQOkbjhBT2ZVRuPXNjL8GCML4x+LeeT20u3wDYoAk0PCtmYKnID77utq1oOEzCnEwfBXzzzDJwZURi7gYcl2/jMc3YsXf1oBuVz3RO5fPKM+addAKO0kLEWD+Iw+eECodrnH2y7Z45VXnPO4QPcIwLOgzT8ipqlYDh6M+HloDbZUAgQFrsfoMHrc/QX/8cCEED3RsYnX1fLZfwoqmqYe3rSvko8b/kY0uWrYRRoNWO4nEW17OIPNbCs+tTILAgnU7hQH7IqJq9DRFRSHtStPSzcDqDKwcDf5td/LcsUsIhvoI/xi+zYXQKTAlwDfhbviP/4PiuGMACZOO8p1p+2Ob2rslfB9CD/+NxSylEDm2AsSEdnN5v1axsBteQtfNdqeZjTZ1Ts2xmV9HA4XAZm9asN52bBSJIqgy1v5aNAJTZDNGzPu7jKD0IlWWpqr9jYZnnVN/B8nU/0VDbZMNVJHah0vpkYN9bFJ10lOcoptDsEzV1e/eUL4DX8hQbqQ2PSwOUaeL7iExL56cEYFFQOgHoJ//BrmGjmN1A5fn6kThcas10+Jn/5mHrNVRvms+goMNObnkiSFPmz+IE5PJyPZ6Ru/FgqjHMBQyU5UKfITHPjrxw0QeDScOM7pIPnRLXL+kL9vuzBpGiBovy0c4XUbT875AQi8OhrRQ3kfMBe7reHG5/C6ZZ/18OlHGF9mM9E3PRb74e6pSqnCFBNdFR/eZTTC/C6PeLgyVuV8Nj5H/izTQmB93bnZz9OLRRSdKIa6xufdpUdQZgLHdkHe8zmHss9VLiLie+fiQ5r6Lc5hJptoQoo14q9RvzZvx8jjzc+WtHjbbyBlb0ZUg39nfUdfCTQKrsbtQxqDCJMyxm6d+6F0eMngV5YJA/eUq2mabj0m4cOUnC7hCE+FXUH1jzBuSLaGaFmScpsVaw3DwZ42yHOmDQ2syMh8BjFATaE2gT852MEajC3hLrYvMdr1ckzpMtPoz7vcD6z3o8c3Ia4JEAVhG16faiBS2xfsX111GEGd8mAxvQN6dFVtWx1bHn94+ek29/hsDpd1CuHXYhoMEoQMAijFbZSbeCXSddqVj/tDeKswDjB+xf44wv/9IT24lewal0zQ+kb19QoNGSup1rR4E7RQ3rgUDPM7leuwRHAFfsCJ8ZkPJSzyoWA4gOH7EFQZZkor7LPsLbwJzZO4CNCFC4ltabFi6ezEBpA+5o8aqIwjgAPQPC/2bCyRFmE7kDtkEfxdA7OF8VKW+ufHhwvJfCUPz0vFzpmhCDFAmjGOYJ8OsZb/knh4SZ8qW9Z1sBOnQUVhbcSwpO95osOCC1V/e58elLml7n02ywQZCsHqr3S3TAG5w8Pr9rexLYvPKrV0WJOlQZdxvh7O1dS8mgUWJxam76t65ytqx1wcEL2jgbXah3+8d8t/+GTKH7MefYTAzyEmiPFkZcYHa7PGxSll0jdz/M7sH3uBpClMSaBWMeAtV1lgfn7iRAI8VotdR2I8BBwLnbxs6/oCXgp+NMXwRlX8Vw8hRFMgWigXXYd/PV2H0N4ueOcWpv+6zVDt6AcHDSyTxsbiK974kDTkS3sBHGUTfIbRFC6GD8yP9bSX95KL8PJqO/4YJ+8eKG458Dv+16RNOVyNUnLTCApjyrGO/jwZ3Wrt2/xtvGJyl/cqhlho1SIxFo8gkWe7wQEBq/hpygavuAqPw7u3/mJJvccZd2Gt+CWGjXW/eg9rIvuevBbPibsTo3O+O97L8POEXdoBZfEn8F9Z8DHqaixX9+rjFbEJJAJtUlfpXfMlqnlCzUwnjP2HrfRn48NVcDjuIbU4d1iWOq3a0CHyha9/uXjQnu3kO/8A6oNvfD75HdOVCO/xERQ7ZlNPyzZ8E8fH1uNVesjfc+gjioJu8ktiydTcDgI18TFju6J5myzrgDrB4nY3d/zanFjIwJU5krq7hcMiMndR/BguwXlT9swN34W/fFtanw8oVoPrmuDjwpGctF/I5jOhCF4Is8MG1q2gBUJr9d+iyfq/zptWPfnx+svH9OTtpuqxR5jHubl9KS2L+wr9ty7DjTe6EndKSDVcnvtIZSy1CGizY5Ayni+BaaVTFibR9lcTMGBYG6TnBpOFG7flb9HhcfvF1l4rsnm9LwoqvNZManXw6Mat/WF8H68oqXSVH+Zi2MC//iFLhJlIOHB78E+r80N36RsUbO0hfZ3yijSXNsX9Bm+IK49QvYa0cGSfxcODuvhgktuNw5kRyMCPcvfYes3m6zXTt34p3cRQxdmjmA+R+pfvlu9PPF7ZZdxyu70fiP1Q5YNXxIDiILUkd18UAbq4QTB12lyKM6ugzkLUaL9xQOqdB3Hswu3XuLp5YKYp5lgjVEGoce+CnI1ojPRea6aulx+KiHZM/SZ1Ss24PL1hzXbMgf+ut4bwOT8RM1KdhjJvrqlemPd4uui8tUcPP0XyH+8TsPHqvuipI8XOFhhg+Pb92uSP78tS7FDN35n/vMv2wuY8MFavjErOymA4+9c4X/xpk6JBYPD6OFNnwLafF8NyO43jh77GmUTWsxCGcsKowLi3zA/3WBWrj/yRgsUDiZNLpUNdDnT6Z/fuLhC7UFxPlwJ/1X8amZD10DQpE+6+WEm2/gHfO5rHfuc6gHiROcUdKY10CcmYsaiur5BxBNGJCI/h+Uy9jLcCdUexegS+7N4j/k/Pw4b4xdn66HwblDESU61FVYV/eMfbdzPSP7493gN764N0SGSqWlIx2Hd/BfVeAdPfPLGumJwXj0g835KtcOt9P/8KMhunkMd5Sdly6xOL2D/bi3VdsdztdzpK4WfxTniQHAQY4MLCRDO+E3IX35u96SHt+FcIn6blTVJl7SF46uzqN2KwKTX3WqrUPaeaE+NBsxHCxnA6VhB/eNNByN2hBG+vK0PXZ/9hvUhCSIUBaHDQbdbK0qMtlE2P5eakz8CuhxyG3rC6Ugkf7pUq5kJvAIvJx+pl1gC602rtH/5Qj8/PLNTp8SGQath+tSn0Od17OewbB7Jv3yw9EvZwnoeBXoqaheI63lqwK5dY+o1HQaidrQU+KqL7z//lYxku/PoGQpStbPvg8Q1chgKMsGOmznmaCXxrHgCPhIZf3ElouC+ws0PpNr5mLHZzotQba6XHTVPTTisDs8ieB4sFeuv8cQ2v7CF4ft4xlgJajCzrzXDx2sp//KjP/VOD8HTc2wab/G3+hKZ//zUza/tGDMsc9wvipeTafv3s7ucA2j/Li1ONv90+eUzUV729Yd4FSbZYp2R9RePhOl0YSsV7zPc+BX+4wOzLhuOUniPkfrvVWciX6YjFIMiIvJ0YdXQFOl//OhyOO2Hv/2AR+RYGC/lrhoFHwRwseCJ9Om6+OtfPvUq6NFrz8vZYhcAKfvu2lHMFRd/3fQnvOzaA80GlYIRvDIRTvl7padLLLHNH02VvEH8dv7NihllN4N3XnOEoUtszqCDLwDX1N30bFZt8Y8U0Qh/NDFJyPhj85NBs4/OFOf3pz+MkhQoIegMtLCP7rcpn80wsy0de7vHzh83/flvP9AYmwPNniABdp2/0C556j5LVtdT/vx3L1w8sCptRODZiktEN71N99vsybN1LrGef+ytV3/bwKHg7zj/iGI8uULtKO90t1AUkF9GlNszBFX8CrB3fp/iWczvLZQu2o9euY/A6CjtApgktysOnvbHFKjctSBWS4FqKyrNrZ5iQ3jBPvW29ZacEH+A9ct6JBtNZkoNul5gKCgE/+Et2/xqKDQ7RnJO+LJ//Cl0bI0eO8fNhj8/fFILBYfPZPN33dCBg/qDqG8wHMaoNnO1fSoZNQZpHNbwrlvKQ347NHimS8bm++MDp4A3aMrQYq4Sbfg//wZbys2vlu35leBAvGmO1IvP0jpBUAw+Ef0777NxOYbgrrh3jFJ6GgQ9vqX7fWuN+O6qRTzOfmioB5ha2BxNyezy9HEBf/ptq09lpJvlFf6+2+/n6JYtgvX9wOXyVanjn4uYeYtiAVw7BPU5lNm6q1YL/PmBxzvXDGy+nwuAgvbxH15s8QJ3lqQTZfd4+8ufXt7qaVjPxeuwxt8rApuex/jc8v76KPgGdta1pfbzQasNz0VoSjtKvdRC1b961qbvaOCLIJtPHxyBdwwLqsFKBKT7hg689nVHD9+1GTZ/nIfao/KpthMuPguLNw9ry7WwD5mZEd+tQwCK3sVW/WqGzY+pAaAGIGTzC2a91BR1i09qc3zti9IpgLAWny5Zq8iPhekZK1DfzR/sfru3OU8Ph4O102f0ND2VbNzyvVp8xBt27mI5sGs781BUTx693Uc5W7O5HGH3KRp6WO8/xq7PJIBW402Eq8jHr/VSk8Hrl1B8+SrDQE+RT0AUOAd6fnJDPA/S6wauDDvUOx9S81++46c2x9pj1U0hnZANpvlxIHxwE9jqu2MII8nusFGKdiZ5oiAreHB3RNz8l+EEjFSNYv+OSpGk1bg3kQ0O8S5DQlwgc1n11VD0xSywW+patSBYe7COSon6Lw5krIF3EZwrmiNlVXS2+CTR4DE6B9Q6mmc2D8XVBlv+wVZl6Jk4lo0IagEFFC+nOZt+7fkG9Z9nIXVyB58BlESK6c8Ipdx9yoYCwBYUXjYitvnTrNPqBNqBziMFvE2fl69mAfff4IPfG97M09H/wOa5exJVFA1zHc9GCp9PI0Q7NXnF6+aHwPBxUxEUPh+TjDtLhkFAM4r2zS8mxk4eQZsZZ2ydXn41X0rmgIpwPNpZ3btaBGsqgBshD6kCCbLFDIwQIGhd0OJ+hnh4ZoMNlfXpU/2dzvEkZM0MY+feYMPLE3OcP48QbPiM9S4TQadExgVu6092tu8My/TMFOg0+xt+0a/GFutsW0DxkgWfhUiohhPwEqj/HIvsg3c+jJseVGpDPuKTPoXmom8Ts55JsceHyHLNmUkegrdSF+lhx6VgLGyYK/vokuCkyCqTJU1bqMsNexiV3i/7q1fB2vIt/Mf31/Nv+kAUspJAnoB/8Qu5a2ZvynHJVinuVngPbh21EiD581OtLahbb4od4Xuo+D/+s+kjAnohNRf7uzPApp+xQ1+Z33Lh5m8dPz/qoivP5qnuaiBkTw9bwez6/CDdLn/1Jqy3j6/PrrvVAuRVG9jJZnUgD0nlFaO6f6m32iAmuTB94Oa/If4bdOY83+QeXtUXI0XeD9ma/M6pcstlsunRPltc6HD/v9kH8v++U6Cunws9nkVlYMnmYT3d44Ua9Bow8sZMBiTGM7XX+DesMi05GfBERgvCUjU34lOD12FXktQmx0rkokFUyPs1YHcq3/Fi2HOjPvyHgYMEPwAD8NnDQl0HrJ9iexAmxjnKaR842Ou7n0/TurlAdXpfqcZOmcmiYWlgYEwq1e9AH4g55za8X6Ydddf7JVvbo+CBh6BQUsI1yhZFTnl4TB2EUfxqY5Ilb17mD2NFUWwDNr0eTQOVymJopeyazQruRfgcXy2RAqWrZjYWEMa7VsJX29IGSb0nCBY9epO5Y3o1Ve8shTP/TfAx+67DomaDBm4R8ShSfWLSbAlt9RAeJIxQG2e8ZqQfeO3PEj0mZhavU6aM4EfoEevP6BQL9Bbx6mprXyKBgzR04j5vwdFuDIrn3wCWsd4rIBTCK/b8nzdMtzaD8HO2Muzx4hGsQvAQoYSVE8ZlLZrrc5gRML8dxb48NqCrp9EDVujmWP90MluqxtPgp25/OOJE3yTJ9C3gsnZneovEuWJNHHqK/D3f6VO4UpP85JmHSHrtaSCKYCDWIftA/PFfaKfwYzY9YhTuT4259bb/8cPSh0QD7SPgqVPtU3P5mm8bbHe0MSJOko2R3cpw1POEumZcmdM1NRE4eiWH7Ut7Ywu8bPeQTnlH7ZUYpnR9ph+gPsgZa6ETgqV6xync/j+qr+1uaKZL2MB21STsm3CIl/ekvODsygw/YH31/623YFgrtZ5x4Esw2TRk28yojggHyHZ+IP+IKBLNeWSLJ4stDKLqgBiv66Zwo14Db/opwQh9D/G8JE8Lqo72w/bKv8zF45YVZvnco2m23hU7v/LbPokSh/x2IBjWmwFCYFbNlUyMq+L1p8UGPKF9jBYUdFX3SeoZRvnVoda9jtl4O8ERcHNzougH7hXJbzOv7roEU98dzGo8juILIiQRwr3c8yAR67PC1Pe+OLgJhclyLU9goadPfJzvRTUnFW0UN/E++EC4t8nmlqQgz/cq9Xz3Y7b+4DpQ70oVm+tkZushMLyd9YYVtmv7aLbfovcA8ZU32RnW2adtZ2rwnBY+Nt48Gvj0kKz7L2871AiI71PJc0NooMSkd3C4DwsN3wRe+ntOA+f09dfdeb6p30/6IuIk/x9pV7KtKoxFP4iBgEIOQ3oRMEFQ1BlgCyLSJEC+vhb31bBmNXS9t66SnOzuhGRv/dWvYugDYp4TX/Je34kN0oXm+Q+PWFbOstYaWky24+YcLPX6Bl1on5QPa5qMiieG6DahM3HtX2RR5/gYkdg3Fp3OAiknpUwKrR2tgJlhZHbz5f6K4Gf1L2KfK47YLEWeti1IQ8LYVIJBqTAAiEXOHntfRCyraIomugmJF8V6MOahuoF4umzJzg7r5Bf/bjNIP+LTjudrq9951VMVHSVnvuo7+XQM1EJR74bI9o/2bk3USO7I5XmN6+NWT+TigQs4UPf89/zJgicm3LZ5y4K7Y3MxUtauelxdMpJerSkf8z3NkFLJJjF6+VrOf+Nx3ds984TsGUx1pIvoE0QOC7fSJae597ShOz0U2mR2bf0+aHdB9W1rEkdySj6fL7UPpWqMhHiHA//xLZqhrOOeGRfR5j9ZF0T0rssds73XPaFHyo6ooJ8vcUaC+fojRD3sP6LIvOuv61iiT7pm/Lz9v/nnPt+ksBvhQ7B9qfjwQbsMJVP6Zrv+rSfSrF8b5GtHTsfqUVk03m0wOl4ikxzjSE74NT3V2r3HAfPo/ZvMxWdXwSfoJCp26GvNcqIXsKwXgpFoJvLzdvC0v/VkvGufT+pUhf/w8o8/5uKjuejRezXTSesFU3isKNwm+iDB+rKzaIPLGTxWnpnnl180z6X7RNne2LLAWinJGCkrFzkv/sKDYUHe3+Wp1ZbxIpZovAJ+208tinjdMSc8azlfW3ELrjcYWNx+BotRTa/hTu0B80Etci5DCfBrRYU5UrDiE2BnhJemCMxRjSPvlAd4SIajQfA3e1lTLqcXpCP7SOw+ffHpffBbCHRFH1jODCTutooOyapdU8Tzc0CPA5KBHvyUOIpQ83GDUhUm0bdw9XVmq9sNux7WOCyZtVEri4uXZwpqABnRHTRa1InHUbPXLuD4VOnBrCafFiLptic6ZXM53817A/HWiZkhfw7lbDvJE1z/W7JdrN4Sfko7Fa57t8fsA++yZ8N71NDrVLFE3N4C3rCpQcllODPyWUXlIG9+vqqbNx+v1fZmcR5/QnSJ+jvZerbYMQPeFTSzuabfukvzSfh5MVrqAX8X/qarw3gE1/+UC16WHV9bWaOuD/OIO64X5YTHuIcx4CcM9frI5/PjOMPxcleJ7cGGDwP3W3TqtBfVxKK35hO6un98QVer9pVPhaWHmhWue2Ld09Gic15dQLJWR7zKZ8bHWvq9gec5ZTtYkXJWNJUCDKnJSAoq594XV+CvzBvZ3R5tyfc9z0CRUYE78RAm44bDCNcg9Iku7E3+9q8HF17kfsLjfezQbK1lDFflx5ldSGU5MbzpEcyrH9leLJQ0z8yQleu6ujLdMPcWf266DWwLc2SW/bFyEbpIhJ37GwkxtyuLnRVRh0CzU5JXHAJONa+C1cieJPQiHkyLLFB27n2D0aw+u9lizxptDu+EuTfFTYb19nNHu8spY7p4b9EsBFoIAfpWbO8eAzQ/iH7R7PBLyH40ppJ982FG10rfE/2BxaSH3k7//R5ro9rBaO9oCjf+NTCqOFiTXjYXlCIEzHlOQjcmpbaBz108UKivYT73y+GLa4xLZkpbHjSf16nRHoLlkX20koIhZWYFwnn2iZ2/Pnycohkg1MiP4V1v5pPUWRs4tckay9XuZM2Sm1L03j8x1hzlkEzjzShgk3wGhr+ZEUiyLoto0Tt4/tQiGuf7JYS3uj0R87OctfytWQiB5qZU0AJs8evpbWtucdjjuYjP+dR6UYaaKxYxKosoaXPv6UI9+8af/ivZFaMC0p/4ZiQ4Pcu5bp82eBe8JfojcBPe2oqNxsf5xczV4dMNSuu78BFtj12IMSYLfoaomATAakocPqL710ZFgTRm5yuc/BIZmQiH85HYnXCyprLW3hAeQ0Z0P/U7Ca1AgDA+7tk5f9slR+jtoU9121B5U8r5rIfRHXBMLGK2jzUaS9tr0cETX8S+ZLtA/ELka+OtWC149uBcu6sp2JvVHT/U1OJT1W8aWNY/2dZNk48t7es/fmILPyBONbDV81fNyX58qBZ3Lfn+p+/Yto5yNB1eng8r+3xgDheP1rjbTiaMLyMk+slI+OQLyghkfT0yT1t9uuHv+3rwAX/Dwgi4Kn1N6LRNsIwHTeZ6lnroDCoR51N9ujFUrhsYb/cV28rhsRzz48kEcLM3Hp3btxzYskdKgupOduehSsbRX8voE8QOlb9dnw+7n3qBgQwe8yrGEm7I3wJcjxlsNykdp3/6r9g+CFX6t57X/Ldr1b6pRrLonbKLUhUrbCdc8MrcLpeJxqoP52NK2HY86yUPz2BC/3UEYiD5ZbHL9pD+8SldrUiNuPj0C1j4if3zW5i3OtokmYSh9+xS+vj7HpwHddmWgYPWfbMLoW2rgiz8g/qvPchg/Pw9M6wd58Ph5XlwT4UTCQS9yqfEWaeQZHhHFv1dtsMxqqAKnm+68rDFp0S4+SAJD53yeZwSdvRyDwr6/bLdlJf53Ow3EbiseTHDch3+ux0uAN/np2WkS4tgqCM4ogUvsPyWzjmPoqCC9Fj17H6j52BOLjpoa2PVUE2JDUvK2XcEWikZ8U748Kcvj5p4vuxZwPOlrRAOAjr4g8WcrNLQdNaSVNvHcYO1z/qOBrK6A7ybvKOl4175CL19XNZAjiW6saxZTYYWcn/jEfeeFXy+StsW7leDsd3NHq0hTBSMFn+Ixx9/ldMThB59tzXD661n5bORzLVWklOAlZf6Cfj7eAWAHVDmH1KTS8dgLrR/89dFeiCxs3tEruREZNFH+dR89FCTITXIbrhPCVv0u2qqmk/C/oesgW/1GJTN12Xhfidbi97uoXgmMcHz00bsdspHdJ+kmfmP0krk16ceYV8KMdnJ7ImmtR6k0NB7SzUhsC35ruqCSt67OzHidg7mgAXwh0+L/l4Hc5UeMSr39x/ZLvzL7cc8auVhT9lWrQxrnXeFAN4qfVDxNYnd4qcFdOCDQOxbmll87RuxZsaBR2XrNCezn4UV6on2YV62PVqDttxv29eKy9yfeQlmUjc6WgmyhmfJdizuXcxU27qzytzk0FmdaR1ibfNxH//mt8InVEDfTA3bxgcpaI/1tQcD7b9kb1iQTC9TUaE1xox4FAiiG/YCkL+JRd+P6VmOW/6x4RP8JOJldh1MMbtsIHY3GSviG+/4bRvoQJREZn/jN3O2iaEnqw8xdqnYDT9+WZ7/+GB//nv+9FsbRIHdqJBYA+qXvEF9KWCS+1oVkjEp/QsKGuuCxUWPsdMd66BuyheV12Hbce/5ALW17jbbi+qxG7ZHZEJ8qWxSxLekG7/aykNP43NiTra65APanj2URZeCnle3Kpj3vmoi5bOfSbj6meVcd0kFkDcXOvWy0n3qSJfRo41tnFTlyIe+mlRt0SfMeON7Ms/vXIfdkF1ot6OHbm72Y4RWv8/2T58imZaFDGV18dnlcV+VfHMoLxqVs5Bsg5/Cf0c7OmrgHWyyJ905GT+NHWvfDCwSTsa3XPjhCH/5R0njhnPtHGFt8e//+Hz4Ga8Z1Me7JlbZDsv97Ncncl71jxHTKC36TN9PVTpJMvPD58B7JyoA6Sf5zszUkcvp5Rc6/M7xQPn1udy9kzcxzK75wfOhLYJJqbCg/tXbvo2vCa+Pax+u0oaxiPbL3SEXpQf/YmvMEo63cqyScANp3Pvs/kXrbnIUG8AunyO72/KQ96tiGtWTdk8WPSFZU5S8VTC/mUCF98rtJqn8zZB+QWferLz4X14E4Ac1VdnbtwZ/I7fa/hj4RN8oTtLqzk8G/fd9Y7SWD91ckaFCyuaC2XU7Bd10TIoKjpffzGzZ+6LZvx5s+D6/LYWttMnpq/ttwIr2BvkeTra15HeguUWyJ4ZtLm9/jqcClvVDzGBz4nPbHmatlh0Njw98zKW+ez41sYUrMfbUsMavNR/B0BlixFXdYO3Q4A33q8XYn16V/uZrZRaM7GA519JpPQpOeQuI7eVmPu/t4KLKSb+mYCrfhOtsf4Tl+5hr/0aLnsCuQVhtM7JXcRyIlvrW0bu5dsxMn5PVO2erhvq5nH3vyGUyvuUyhVUXTyzYsCOSPdnb/Pt+XJrHkl7uvxj1CGx2vdmRNfYB9qEn40Cc7MXQ0A/krXrucCI+e7cBO6XlRlvqDasSaxF3hsiE9Ce/8eaEJ2tM3ayGFmIXy82qDWZP1jfQnvceC/sgLv/mB5a8hf35QXaeDxt15xYbtn/sviW99qoJiEU7Op8q3Vrr9CqDsvm4xDb7NhjV9HCH/L2/Lvlrz+/PtH2rT+u2JoRNacdXpqzDNju5dGUaVtBzMVhuoU914mVb0WI/QVIh2RoD28VXl9Pdco5d/kzX9EOFlTU7Oc5APj8QXl4VQU2e/J6a+WFHPB92Tjfnl7OMvnx02b88pO8LHdHDCRP/UU9JedsG5p/+pWjBt3Zc+TLcstolxm08oXE7KzVsZ+HA9i0J8imRufmn7/B0Rq9u3OteBeXBlLFm3GXeL/wA9V2rGC5NsWvy401XX0fFZgeU1yX745P71Kp/+SDis9UIYIWNuMy/lUxSG13Qgc0GM742T9gNf3w4deOPuFe9TPqkSGbQz8oGQ5w53Xrxm9qf/jG+jwGx8WXHUKrWyHbvy76s286J4GGlFdv2NyhHaee/Qf66ATP2ohZMS36sfgv5Q7Cl+YHYDooLWfQ5Ev1U0Hy01NYESzEsQiS0y9EgXwFeRxrSChk+Hx7fQAT/4mrEyVabZNq9o1i7RsXC73qD+sy1I1jwfskjQ7Re8jxVuDY9fpY/jNr1cldgiM5bYkz9ctbJFtvoZ6ErCb1u33HYzQBreByZc2p6zmXoABJXlujkbUJrSn/kjtCtfuBW3Sf5zMbZBtk09kSvHlUwfl63BrGNeaAUhk83anoUoXn+9MzvfK2kd8QW/SJQCvsqKkf6Za3KAlml00WsUPPHR0seSjf0JSX911JT1DrlfdEbOhJJGfUoxLChgmV/LTqcbBvm+dvTzfMoIkadNELBV34y03UJmsI8T//wjdhwSct52ucNqPJ6TWdBDoL6JL7vigT1fcmrKj7PJX6jRT8znfvLmxb3toVzff0xWy7NvzzuDtf3sWTu7uFYo3oOl2NEjnt2vKWqNddt40Kd4yct7WbKeeS97jCxrU3+8rDpCXIPxmlWqJrGCe/6ZofhGmAfPwnZd0u+soFpK/QkWMuHcryNwhNxofIZWfQ8XT3FGpWbHWa78zjn420MdHTFK0y8wBaS4S/PSY91v+RxE+eBn45/9cDwd/Prhr5SNnBZyzLmjqug6ZDvdVh10cTO/a3opj+93n+3AtmaRE+k63V3gbei3hjxcIn+9ChwZ/TY+XCZA2mLVyos/mXZUzX/1UcBebF606468a6d34muGXoa/BsvMd2LFM5K7bB96M5/+N6Dd7msyCPN7WT8vbZH9AkKjXn69Fr6EwdRC46PkPzlkdPEmQjZOxYWf6t30nYfqVAH1wvbbXZZOREn89HJCh5Ycv2i/KXf5g5szwoqVZ3Zzea0rf+N1zbftgHb1YkLq5UlYfmqW7m8kS813PqiYd6pv3YTO+P0r56IGSZRJ12vRgbzbvox0+hOOW3SvQqmOsbMzwac883VeUNc+BEzzs+v1a9uQ4w2YVxQvlFti54vtQdn4l7oqt+V+ZwZ0x20vObMclyF859gXrR1cs9wyzW7G1/PzR2NO5UT89laaCo0xwT9+/aI6+uomwKnKcDaiAFLNePOn0G389FKaB32l2eKMQ5MpP+yljnL80u3eC1AoFOPhF1MkrEDLVVDTZ+Yl6g8n9V49uDuxN2ij4OgSfe78F/eHVSxU9IN+wGEelti9bk2gul6FVX01+/y8yDlHMGphSXfYq4VV/mi5wGavvZYUF7f+XR/nvDf+lr0vBpQ/ts1CG5vlc6u9eJcogn+y8fw8hn1v2ciopV9OjCjU5tkEH56/Oc38CpnL8Stq+3BWZm1hW99NGXP7glLvwvz620fzGxUbRhl12cefZ0SFs/PED7y7s30X36y5jg4Y3QoPh8S5tNkzXf0BVjyaWb9rg6fX596hnd9PJBHrP/QlGivFv31J/IrYXwSxnem0X29w9XXrIImdbMK3ejZJ3tDx3l/+x0v4PhFRC7CjVrjOb8KiIXGjOcRj//Vp7ctnompaF6w+ElBpfIlZKF5D7m02T8rOLangk62eQ6mNT66ytKfwBIVVsF4HQ/HpeNjs/3TuaBJK/c+il7IoNqyvsaNWl4gu9OJBL+gKYepy/BfvxWvpJuO/vQ/sEqSSDqnUscS1UwhzoqaGFqk8rlfHTxNfbA7zdw0D9rURDE8NDEiu8bnqL+8RRsJKydjBpINi7moGeGl+iqWh1tcTjljM1Ifz5roWVwm81++dFxlGZ2Q/Aq4awl3uMSZx7YHHpbz+WCb2osUJ5bv6FQ2+HarwBuk4R/f/+ufrE6iRfY/cUTzUNAQCpoxtneUwx8fuSCcVybBt2VbYOKsj6CE4Zp2Pyx3k3USRS0Xt4iKK3XP5/xcHWHBGwxv48GHsepqaK55T9w1uXTTX782KnnJnEA/dJOYhk/whlYivrGZS3qk36O25GMYiYc+r7a9D+jcbBOyROacb6MmVHej8MHlUo/TJeh95HfdjgTa1sin7/1a/8ML0odTPvUDeYJ+Rhvctr+t9S9PWfrNxDzsnJK/9l2q2p88JkZzOVht8dnVsPhZug6WLUqZu5oRVYMIo6Eug/XS/0CfZy/+y2+6s6I///rRRN8Az/uoVUU1WUmMEUabclr6K/CRhBZzx+r4lD02JjQzYXjTLjuG269foPPxSLCwVu/J5OWvVvu/9hQo/3tPAUk0ixkt3aDxsH7G6G6MT5b0k5ez0gCM4vVly5Jm0wdMORxUuDXJjpkdn5NRAK0C9Ti/MMrQkIyvqi3UzzRviHnceNYcZkatWeNKxutn4Vn8ne1luLzxgwSebgWiifUIdeOmxa+KPDqu32gIqJo/TL+91ZIdDVSoZC1igv1hj+ZOEmRI7bWCpaL9deMulfpN4cIRC6vu3c3v92qEnHJK5f70SibIPBHdfl+VjqJxspiiTj70m4NCRXva5YO8/sRwScFj7nyFcjr77wyJp4aR5P6U87FObi5YkXNke1ek3bD2VAG+zeFHduOU5xN62SLcX+mBGZ6RBl2Z7GTIwzon5ltadZNCx1TznyVibhe1JTMoElGqWhLxfbRLxKvQjxBk1gEDrT/BoKOwAWvUZGZILu6m9SNv1RVK7hh9EssanqLvqV7p7gm5Nnk+fWFVozx5XYibBknwo+GxhjzGX0KuCQkGU9QbtCk+a6KrT5qMP//paUVRPUhqyB/eq49Lg241XNjh4mV83t/KHvK9ErJY9wo+Vi+vRhgfOSOP2cv5/VK0KDpeUzoh9RiwNbQuOIlQMn+Sj4gP8KrhdJhtupIPbz7uhnuGztMcEseQ32hU6mMDH9mNiR9Ep7I94e0buR6NiLn+tHzqnOgIl7ilVBC3M5/rsXwi2RcZca/MCkTpJ7yhXksp2x9k4DSa8+U2yFeJP4q2K+eVtF48uEfIVcleaMLJw0XfmxWz4FiIAb8bCKCT3xJ+ujRBnOXrp3qw1z96PraknB5bb4TAGdZkP+KklNPHzYfomKdYuTZNPlTbnQ6n3Y6Q7flz4XM1GBmqB2WkoIVl0uhC90aPwr/QdRzIAU+6mEL/1ENMQWfWv/GBfieS8P7QkzE0MVb0R/ijHY/Usu+lTQVP73Cg426/z7ks5DpMgzWz7RznnA8GUGSwcKCqqJuBFPo/FSzrHZJtc6oSru1HXevllUfcqvhYI1v/ZtTUbka8m3Yoxym81vA4zBUjudIHg5wrT7BVXSOeo0XdvB3f5mp/lG6UHbKYD/lbjKH1DhNNYLO3+Os7HeEyIJvKacCD6Vj1Ahrct8KCXebwSXlLI7DnRmbZ8zTk/HhjGHR83LJ457KuFTzh/q8+0IvxgOk3itW1uV8xb2rcnD48EcDKbh7Dv2zkw4z3y32f1RfP57sT9Id1E0Oevg1iVORRTnW+GaGXNY/cNFlAw9ubBJTTiWKefjNrbNevpxZc6HNZn3IwSMo9RMh9fQhuTmpOL3QStcslUogZrTreD0rWQxl6Fdv68ZVznpi1svweuqlRlX9er6CC/e7rUilXHxbHj7OKfiZJ6CoVT2U7OHmF0v0G2P54kpNKJ0qI+FcSmN1+BYun31EGPVMICffNlMwraSVCn2U6s6DUufT1VAxt/Z4Y+XZVOXbVG+CqIY/o+BsF8wlvn2ijmyMxiSoFww1WLvzhlf40RGt4z4cQSfZ4oKpdRAEnWxxv1mpW4Y30Mkt+GKwGdXHX4nnYSwn7qKOvhTuPE1PfbIPJxtYbNvnBZf5Tf1kjvNUZeaW9Z+ckCkuuXe4eTMfZIaY3WYlUPrIGNiv/wIhcs2DBRwDxTdbMfPRDxz/52oTzYz+RnTcpyTB46h12lsBYMLy6krdphdHhm1lsGxZbazSxF0MV1muy6+5gjU+TYNhG2ydWF7yYa0MJAY0mUEQRTqbfgV3QVqllXHmrAxe/4cHWvA29MJw96mTYbE0dssLzyJmco7z3lYsAv2eRsINgv3J+tqoWXtrtQPZSk+aMXk4Z6MKcMeM5GfnEJdFGL/Ce9FtsLtYUhYkL+03fkP13NpPBFL0WpMPpSgyTyogzdWwgG/SWZemw9PgX/DuuyA8LVEzK4SrNItTy+0OV6tTmszRWETy2ssD07lNyvuuyEEr3fWWWoT27Pqjji5qWrkL2g2OUbO6OIeRhlWNkDhYasnCpN6v06EiphDivohCMSKN0LqYqH2/63fxbP8R+X08lb0Y6o5W/DjAo2qPrd4e2AYXVFTPU55SMDpnuECX2h4SvxA3m1zbU/34vnlTp1vFwTu/wcJ/7f/gyb8dWh0Uv4N9NHvk8dpEAbmYYTN/th6TavcdYW+pn4a/SmhY+0t5xh5k55TfUa/7LR+VguIzgg84nU0ko3AblSHlt1wl7d8n97/mw1Ew06bufbKKH+97T4RN+kh4aR1Sf6fvAnJOrdGw7WL4aD/cXI+8aB7wW4lidp9MB1+foV/LX/Lir62q+4vWteeds7goMtBXPJOY9Lqd+3c9qoHzNIdtnbz5vJcmF96hi/HoHlTXY3lho2sp7ETtQ86B3hHKEYpoLto2RnojST34DBElMPzemW7J1iXxwS+FLlaLA1lq/5N4/vtvr+s+aAw8J6Ho/nQk+6vtg2oyvCD7e4UU8fpbyPk+ONXjZ7UK2290XzYpV+mCtfjbz7E1m8cJbAdqI443cxW3MX/pvbaJo0H2GTwysbhwcD6J9cWU6ve66dSwcIqQE7Eq8sGgtut9aJpKP44mkH/f2p1eOsDrOE7HbeEL08DhuQFFFRAzhOpSzPsc9YG6/lrN2zW48/yQTmtrOWDg/Xvmgjb8ncFcrKEBxDVrlOI4aqJlIQlo7Vp8CqkGRwhGrfRFbzQcgVW97fSZWuKKI3eEpg5VzBW/CSU5m/7WvUB3/MoZPjtVJn7c4wtE3Birejo9gOG31GO3GbcPCaOujKdp6unYw8ZaQi/BG7HJUI/BWvyNGq/MqGdCcFej6bmZ2uH/FoF/qHRHfuJH9K9lZjYn1WF0+M1/TriWfuyJETrV2cOM0di55605HP33zJj6UKRplFHoo2kQv4hynfSKK67cOofVsmNftej57t66AnRfvqPzYfdAf/oIRrSj+jvjZTd661OE444Q5H63p+EvIdBDzSGV4aq4Jz9OuUM0Ty4mnIidhm8QXld2uVtnCH/mw9V+ttl5fEbOFOOb8PKcAoLgWRi7qE/Ya7Ey5vzuTGc67KPs9IxVa8JoYOacJXw17FY7GrP/Tqwu/p9ovE7csV5oo5+l3I6Pelwlb9EM3/k5uhJb5pnVwPwRTuNyPd7jdb2RXtXI33byJajGdYmaP7bdrA0xMMOWPhsFFJJmfmVkB5u6LWJpmdaJ9aDPIy+2O7T08dXO1Zk+UTalDrOeKcL63Kh/pD/xj+2i7RzxM3xRQNX6W55051xLLhcHBHlnqLxk3frOBwtI6KmwVz5qttxzBxji/8OIH8tGrlvvb3deOOWZArFka+wj0DBFivNx9x8stiZAQsB/DZK6SORHDFobabgne7m6om+udD3J7eRJ/93JLvheuugKRcqfrg/xD//D8IKQrFl5OSTIvegDm0Xwyc/3x+Wxkhgv57jNTKf/EaL76nxaONzOlQo/Tcr6ItqqGx9ynq/0rLUcFtBSq2+PK7Le9y3mmm7P2rqGhK+HR5W2Y7Wp1JXUJ/uOTMQkvNviM7BhW0SUfTof6glyHff/pE8lB4QbtHsRhQVSu0Ww71wqk6mji9LK6oDkbdBU6132zkO+uvPKqXwiPwrsQyzaKYLyElxSMFiUkcOQTHx2hG9Ef3mVSZnN+hGeqBY9fQel8sbrp9AYd6FmiLExMMRh1JSqgVeUAC3UdBDP2Bw/wg5z+xgeNn/UrRqP8cv7hHa+FLAKT/XR2wE+WL3q615R7b1IeXw+l2AznDbCx+BLnWLwCruh2pO1V64r59lwm7FZ7PlplGbDtWPbon/6twR+xfP5IiHaSIMJ255VUdm2cTNrWjFB653esjeUKDX199kG49zEJttGmHPTfykSicT4xvNTXdK0+oco+OKL8lj/4bNONDONakskfPnJDN96awd8eFlS0yRe9ZkPYWifaTE2djC7Mona1HIMqknxA87Je0KKXSXT+mGhqqgHAsC81RoVuB0MWJjVUiF7x9DvK1p8fg9XVDdg+UD7WfHxhG/78oSnQAo1lE1bquzlcmRethL/6szXi0R4rgL8dZ4dDBrp60+ncb3aW/H6vR0WvZInocaAHf+sRDI/qxNcSIxA9ZKhQcGdP7O7s5dMrH58ae++/LDibkzUKINXwPV+3zBUCKZjcMK4RuekuMXd5zmdpuzchfuxfbMfM0OK3o/pEsXi9Y+nbn7vF/9RAmuhG/z7zvXDQoQk9cdFb7+XukUcKKHoE9BsW34CH303657fpJjrV+UiUQ6g96XJHUB2cLR57qwL2w/1Am4VPuPv7majNo4wYflzzYUU3FcykDv/pT2l0LhXo4zYku0+mI9E52W9UoshlhyUf4Y8b62GMO5UFSDGCkVjrDNY74UD2n9ehm7Iwr5EzbDzcmLaYsz887lH0Zn6Ff91IyASgjigjtuOeynHRq+Cz/Y45LNqWfdXRHhyGFfzdLOcsPm+vO1gETyzozNn6br8bF2nKOyVOWFZo0a8NBJd+eW9t9eVDPx+oGj/IC3ModSQPuRghWWrWeOlPJkMosAhd7+czlon5slhAIUVbmj7YztvqaG496a4t/EIhj4py0CRY/Ghy+DcfY3RyTNjkictsGuBgXQ9hC2/Xdlma9ErJ55FF8ED9jgTj6ZA3WUdDeHLnSl/Dfk4mU6DzX35CUVSu+cg6FqKVmL6xtP1MnEYe4H/18YfnM3vcMzQNxkys+blOpiHzbDhzW2MuMktrjm8doIj9ejo2K5f3xyHdKHtCDsx04x3n9RA2cPYiCY8YIJ90aarhPW4w0d/fKZjN8TcjkLcZVqPyyKdQKTAas0vIDuH0TObDo9jAeDjtmO7HJZ/o+Bw19dNZzLoHbcAjChU6D/eJBV/ladEw21Ugp45LNa5srXWgmyZ84WNRVdOu3Qz6Loa/PGLhn4AOPm2RpjxTKhiOWUobtM20x+22I16N7OVupYMA0SZ+ka1Y/II5UR49Kn7Bl+2W9TvuUq0HdmofDOfKLxgPSeGiIZMTLGjZAU2h/9uAK0o7wgTxXNJPZooaklcbEma1HdBxa4+IxE1MYqJKFt1W7A6FmAtY/p5xLk+3oYD2Tc64uWlTSdOxnf/0FAs2pYJmwZPv8Om9nqXUjhLxPpwvkAhT+ufPu2k/XzBouMdkf3iNHRWOkw6r1Hn/+UVrjsP7EZhxctiSD3FqvYVYHaL7A09+7CJpzJUY5a/5whwoSmtY/Clq3/szcZKzn0zJHN3h1/sbZphXvxPXoudBSI+MOISrSVcmhgxUdildPWYvGdXk7sJ1tVfo+vy5IH69FJk6vc57sg0nnnTeckyGr96eZLv6qIgjRccoVQ2Jbq7NJxmhcWQQWX0kuJw/+egQpVCX/JPtSBSX3O6uAKfEldjf36M9neW/emPZdzfzf/lHehbfbD+WDz7/rDZD8/fake36HCe8GEIPferni4XxsEUDlbio4vI54snZjzmPrf4Cf3nghJ8sYb/LyQdHfUQLH0t8Ao9jNHWDQZtoJSDqv5wKTDze91xcRXw0kyTVosH0qfQ9Bzn/qBtPc641pa9l/Eal+/ZA+FMkTrl7o2Gz9fX1vnRvxJNeZjfI+fSEO+Yy/oxtW05P5Yah9gaRBOmw3C2kXCj6y4fDaNuiQXIiGXnLllzpWTron79a+IF4gmh0IhGqGK1JXTDnoG27Pz2K/vLonNbvYDwOd/UvPyN//77W9hsTzAu1iRlfcTnewqj6w3/mLv5ufklyCuekDInx6P2uEV9GCj5/V7iqShNJKyXttc0H93/6vvvn/1UFbiy5P9Ocic7DVrnTdPjr2odEEt/SG+LkDWwv1L9gzqxXg8jpIJJQSraB9JNQDab81Yjzp+dcDy27eQ4F8Y3Gz9FrfhTq4gfwXBhqQOOtFWnL+iWu1OiJbIW3Grp5n1MtRTz5oTkuwFZNjZjW3Q6k7Wk7Q+CwNZWtj4h+jzCX4XTMa+LYbVNOwu0NYPsoX/hn6sa4evWgqw+dYbZb8Xkz+Bd4xuGaBZ+kXPxqNyKt3AR0tfij6aAUBfzl0eHi18aMqAWS8mG/+LM56P/Gd6l/ZuXnKlnmYwP31/HAnPU9skYGoghelQk4dW2a0D+9rdXlQJU32ia0CFMZdj7q/j3/P326PuEG01Vnlvzd5QXU8vNDV7Zg/Ps96Ce7d+a95AE1e+T7YMi7lhD/Ynf9OxUAsacqMzJf3K6gfpOBqTsRC4pTlIwvaXSB7wSH7caCBPzp3F1IlF1AZ+teBf1ZP83/8glXap75wMeXCZkMEbtWpzYZveqHkWTPByoGH4pmWww2aOxiSnYNdrtJ2/oRKD/h+qcXAnbd4hn99TckcsfBeLgwDwz+9Ah2xUPJ9VsdQjP/3syan+e/vM2DLYeO6cZxCiZTqEdQJDwSOwsGa7qivfqnf0hot/dy7A/9Beh5TZkxvO8drwe7UauwWrMlP86lvzwi/V4Sdlz8wXjTUx1W2QXI7oidcv1JO1Azesqp+spKNBow14gGcc3wBUvdmqljqw1zN+O1vlL55EuzrT17ryDuXmu7XqmLBqz7/P77/+W8v0QtTAdesO2ksW7hzxGEUanJgm+ouaRCgUJ7fWX/8jA/0SstHwqNeDi4Wv0zKcR/fshAny2S9Vw1QXe/EtOH3yPhVwNR5F/i/ZKPP5PR028mnLh2xp3z2nX81iUY/FNSEeM5vfLfX/69PWYqFtuvEEzurQlRVvges4MPRr+D33pqM5o6sdQr72ZBuERgOMOZ7c47zKl16zBU0/HDvE177Hg3PwRQs6zH6znOET9RUYTAck9YiJGc0M18uoPNbYPKUVEF8+zkMlrySbZfm4o1gIdC2NhHn2rHk5yz5yFqtW1Dj8Rf8nruHZU3+sh2TM5799FNix8DSb+vmXWZvslAEVaRYM/D0o8qyskkYvHPH9mr8y5fd0L2hgss77Uven80q6eA4uQJzFG0X8fzw+UCin9pKNqUCmf48djA0FEJ8+/9F0z3sdFh08prOrRIzP/53Uj5xguftskUNa4MS/+A7W6vqlvDyEbYOC1i1k97d1Mrmg1c+iohafeR+YMnfgX2A0u0qjbMGuvqTbVFb5O9Jt/RlHhTiJRjipkX9Kvuzz+ipb9FDPPalsP6kTRg/Ko3+asHbqZt+A9PtFdzymfBE4o//8PuP6cqFz14Qc/0eWBFr3vWP/5f+i9YtKdfMrlvHoHh9Tpb8is+PkG01ZUCA3k4CQ1mExEVXTzmMf+O/GR9Fg5vLdzKJtsrr7gchkfi/Vs/9iC/0G/xz7DwMckkdrDGx0s/qs2o60t/Ilp+7ztEf/kxPrx41y7+Dy1+j/l9MVtzfLls1Eo4IzzznnZTQaQe8Ff2SRCVZ7SOreoCzZROjNh43Y111VKYq3GHR/U/AAAA//+kXUnWsjAWXRADAZGEIZ30JiiKOBNUBESkSSBZfR2+v4Y1qw3AIeTdd5s0Jcm7RVJEuOIdPqTtNxzTpEhhtgtzMj8qdRjXeoOp9fZw9v1AMAtvXwZ26jPsvPwP55t0iuDsOIzsbp2Xr/kM++dnGGt+N56AmYEkO/3WfAkAMmZ3D9bVcMKrf1Mvp3cgAsey90gM1dxauGvM8D6ZPZIn2oSk2X4r+Jdv/H3vnz7QWo+KNCJgSejw3YkQDPSfX2otRT6f4NEqFWzyEa1+z7cEa75FRK5q1sSPVAWrnsBpGiYWv8GugQ8WUfyX37A657O26h8aSPeGz/c290BYdQ4Ca37W/+XDK57h6CmOA/22Xg93T2JS9xSmIa8TX4T9B+l4/z4ICfmK+04LAuuAw2NShbOKQh2u+hEjtR2t5U//48B6IC12J8BETxOglNMDXvEqn//0sKm7MYERIsPivYPzX96FcXwpEvYgqqMee+NDw664WPMfH1n1ON7DwvrLpyrtbaQ3aqenmXP5jsRtuMEHIvNnEkrS7olAC72ZiPwzgybPvh0wEuGKrfR0ANMlys/Kvq7ONFr9tRlIy3m3K3cpYmuexSRpm0IusgNS6TVf846xA9epWPBeVHj4/ojm/f9bU6D+7zUF4uk0UE+mn4Ez+UfA9lmkNEa3Ox/SB24AzWeHXuznLeTP27MFcOpyGqfKli9qDRUgTLFAxDOYOW/KZYZbPxgxZl+BT6g8ytpOGEbsxN40tFamt9r5uGtQHm91IB3vvxE0IimQ0D8eIXdOgwhf+UOi0evyTXr1fBnh9igfENk9qoErU9HD9huYWB8vNOTGJPcrhosYB2gXLg+lgHAP/ZaGtslrlo7tDMx0+pJp1OKBfAPHBJn+2eIwNup8OospgQeGJ7JjtmpxaV5aiLUzx9lPVfKlZKMMl/THyDR0F7Ccxu8TvGI0oWVbOjkLlncJ4BkCak3vS/LCjf+EhW0Z2J1ucjifRSuFjEo2Paq9xxeaZzF4L9ERO16n8qUxwwwGZyXHgYxy3m09QYSzlj+pHsQo5MJChL/3EYjTbU0C4+xBGz5NIpwsNyTF26mgdf+sZxnvx4QoEXmqzzIhOKzET0gxF3WYC1OKVGFSOCO3uNC2+8jC92BIBvKWDRtagV7Qs9kVFqPhzoHV9/em11QTa2pnCYTNUHj0WGc/QCS2u8P0lF7IDASSTMru2sJTeYpooBE0sFgCMvAPtk+daT0rrzSvT0iu6hMHp7DNZyB9Y3iaxQ0OKljwpUgSBscoarBeT3trjq+HAqx3teDoYpi19Ktpp1780MR6EJOQo+fnDkcSZETYnvqEP9d17Zf2uiHzXtV4HzyJA1MiPLG3QdUwR50xwzNVCbXCQsxn4hkFdKtaRoJ7O4IlfYo6RJ2S4b06pAnLjV8Gv8c3xLoNeL3w70eFSWc/aMS+bT63zjMDL6m64r31Qn/7CGXo64VONl+xAGTT4juodnpFD4IqAqaDoId3+/7E5oOI1joexe7wMWd8cKpXMomvqoGHONmRQVeOFlEgFyEeZx1NQyeBmQd6o2UbaNJLKAz1XBOxAjkJarSAHw+ZRvU7dI0sxkF65habURTD435SsAUi3ZqvM7mD0114I+X4o9biPFsGD671oUFf4GE8+q0NR9zcKdaOYjhtvMrZbN7r/S9Xq01mf9qp0KqlmihF0iREemkQ7C63GzU2GyuXmfIrYX9DIY3Q9ZCwR9u3AAdiRB9yvgXrfHtqxe88UPdVLENfWl0Ff7ckQjAeWDJ+h1cLAlnGaJMePECSjRBDLZNr9Hht0oTOx7LShvc3pofo0Cdrvdxhu0cIo92jqtn99orVZ3GxcVrtj2BRqO9As7M77ICq45xc4057abcfNb8RyMkATyXsbHnB9iZ9gx89zIrmHjULm8/pmfTklhVwwL+ceg17J3x9PxQW3BFFqq9gXMzbGSaBe0J0erl8nY8ZKNz7lnzeuQnmw8HS4V48nYlklnbCvFSQwR8euY/vj7MorRiIXFXE2AQ/zt8OtqEEzZl6jnywpAQ/1vcdOuqWS5SwKYEZ3A5OiR0z9MNZpP4M5Y2S4YNUTMOvoViFD8tnhJ+gG47GJoiBcdpuyE/8rPeP9e9S9dv0QTit9XpWcharNjV66ui+xn+DcEq1/vw6I1Yqcj1tUuOprfVGeEWSlWP6Dph0+0CTeMEW4yocIdu5GXblrZYs2rQ5w/Hsbun+UvBwMSLJhlCNP/QUdhVgeL4ygITIxKf2cAxn462kUN2ueJH/pnq+jLoJU107U7vI64ESf71fWQgO2DK1bcKW+q5Ce79ccfBxJWs5KO4IgV6WFJUbiVP+C87QPrgy2T6+Ppf94qRoKkASUc9+bvHS4gq8AS/AR/PEk595OnqAHXYxPS4XlDN3e+whKmKELZpq4fjazDLw7fuPul5Zh+NNefTgZeIKKfxTW3ykqAQTa0REztfRmoZwYVB4JZwAxc4Av4+tDfVkQjR+V1O4uFy6w80y3YnYTA+rO0GnA+962ZHyZs3hkhadrAYkIDTco3fCA/obwQAVQOq/NCU+3R8TJ/+ptagCe3AN7GwjpR7TZ9lBVnNCKHAA7zZfIALc/JL1PqljyJ9+owMt2Gb073sWcxFOsK9Wj87prJqt+Kj2v1nAutVmnJmnsYR7BWl0/84rvozIFsCxvBww8sg48OOgjP/qdVtBO+EGeJrwVS7lXz+v2am8eVDUQY/UId9xJpz9TgV6VRJFsfWkKy55C2t0jrB/PHO+JCwsIYqRQo3yes659eEpTJ4WoO5CnZxo77cJgu3NRArFJz6H1YfAM5cyHGzqNJ+ObhvDN91itPnoAWDK5J927XxPqf6Vj2D5NLtsV5bkRcP7xQvZ2i/VV9LWaEOezJqffRUBTfAOpLRaBdDeZQE0y9nHr+f4AWx3MktQVGaE9c+w41PDMgaP39+IFvmc1Ty9wwzu9c2LjGPyHthwG0so7Hbeug+3XPG2vcMVb4ksIdsSf06QwvHzVNCy9n9ptxQx3KeJ/9ef6lnfEaTGV8HDTptXIX091e4fnue9e87nsmE2iMLtAy1Pi+YsO88KfEuBSrHhVBYPm0ulUnQlONh93nz+OWYKo3foke/94SZfqb5HcK9rL2rd4iiUizcq1elsytjzwi8fjeIcA89Hb2wbvyOnsUU6oMWhhXX5xzmtD0IKcv5EKBDjb7L8WqUECHc2tctmTgbnVMuwf3gi9a+vEFC3Wu9q0LUXyt55ns+NMeua5Jc+vtbrWevl+yBD9KkqpAimyMe/79Ovw5bAQ2aF3ZBnAsyJV5N3eRUThgzPhmyJHHrY7F4h20diBsmYq0Q8du+BxNlPBeAjBvR02p+Hebp0ogbf3z12ImEIR/8uF7C+w5T69TGzeFpmBWzF84Y+cvlXj2YTViCckhdaRj0Bk51uSxD9xA6BsHJCXjTVDBHu7fW0KjPc3rYshn/4yo/zLemCzbaDNLjtMTpfI0tinjerGxwxam82OV/88BrDlMAndUVryMm7+xFgwTXNOZQq+Ps+8B4fN2oEy5wvf/NjgxFb+YaT8EerCUDtexMbe+aE3I/ACIMoUqlJByWhohAL2tvsEur+4l8yV7ePAu2aVVgv64rz8pifQOgxiyK1iDjhQ+DBnhsnpETnc825RytY6HaGI3Sd8nk4LK12KuOIPvzdJ+fDQ59VbVwiorW/sCa33fq/gqdKRC/5hpzV5AT886ZA25gVw2L/mKDtLvkN9ToyLSavNz2eqULQt3Vavkzc8eDFkGv8xzdYrX6f8HaRS+qxm5TzqVF0+NePdSCgvBfOfg+v9BlTd8jfCRFqiHYPV/lRt/4ISRd1PgOH4oqxrYU/zlRxLjVvohqR8xwOdMTvDP6Nj35WrXzWd20ErpcbpX4mtvVydEkMrz29YUcYw5xtgySG0y8tqa5uGotd+qQFvZx75Pqe5Xo63t9EswxA0aZ4H/i4zm94D0eN9JdLB2a1/pXwYUGdnuTLVM9FpULYiGNBrTy3w1/3PhdgZl5Kw+n7DflzvJtQRKlBUd/rw2gulfqPf9te4lp8eHgM8oOM6T6fr4DHaeVoUn2JqT86n5ru2DzCtV6R0s4XwPaaP8PldT3966fsO0L9jy8S/qa+JalnMwW5unpWeV4MzI+6M0wfnwfSlHYOl1beBKB+KhuKw3sLSFrACK7jhQ39EQ5MXb49MOlGxc5rGTkxT2OlWoFZIO1uGOBXb+ZAOw/+FvHDN6qpK91E+ETXHdlevBHMl24TACkNEmwO1TCs+gbCzxdb1DnB1zCLUcJg9NkvZMokMRyN93yGN2486D17Dfn8HV4NtJ/FFgfK7WzJ9aEXgPhtL9hAx9qavi8j1gzXtBB0tvd6rS/nH18wk6OZM/2hEMgMSUWCaW/zafOBOtzukUV276QeaLyLbXj5egds3ptlGGWn7v/wB0G9lgDZ0/4Os6oeqAsrL1lW/QgiNc+R3CKhXpxzdoIrX8U6K91w6QRyh+SqPPH+xup80RY90i5fqpNlJw7JkhalqK38hh7ER70aLk4Pw+3ZwEfs6vUcbDYdsJT2TpYCucP4Ha4tTO+HL8aVxOpVH7TarSp6ujYbzupDD2HKHwDjt9zlXD1dFDi+S0yPe9ZaS0AOMXxK3+zf/+KdbqpqIIsY1TTVrPkjDzNY+yfej1sBTAtjNvz4WEGKOKn5YtDagdkRKv/0MwPbcISucY9p1HDCl0I2GKyuDiE7Hru8OWHT2x3U9E60JSn58h3LXoNMcCg+TbK18h8RuBvhQGYX/kJenBUE3k3jUufJqoGVSWLDJ7rssO7Cn7XMceRA5VgvaJsnDZjiznDgsiQu2UoKD9lkG6KmWtp13eefDUtSxVDro8ZAWnIda3aa5gp2ZG9j3F8+yepnNLDbPPdUTz5eLQUxP4MX895YP9EwXH6JZoPuUR0JZ1MdzmLhnLWms0802Ur3kH3MlEGN2ds//A/Zq1Sf0DSjkMgjdcPVLyig6XgiNRO1yNm52Zbgjn8t3rf1jc/za4jVjrg2GbrTOMxODHXoDcEFbYYzrZesrU9Q1Hc9NdzvBBa9xybY3ugL8exOBoaeJx0K7v1NYPl4DiPx/AKElXlFq58R8k4PFFX6HnfEftwPnHxHUYeDd4Y4SIJ4oNz7VvA4ZjXd97vAmlB5kzUhvARE3dRy8oP50mjb9vKj0dPfDXxQ76MaO1+XSNRMwdaPOIGmMuR09RusRaGGrV3ES4CdxK9D+jLKEa58mvzxx/l2+fYwfm3vpO0bwpk4Pc6gvgspRlhBfIZDzLRnluX00Dx5vXhtasItZwa2fd+upfiy76A1wJga1PCTKYV7CN1bUhHlC62aRbt4hpEFQ3qcpLzmyzu3YRAhlSiOPIWLwJPsD9/QroNWuKjynIKmc054XzhesuRHvQFq/H1TFxwONdPePx2qIJIQbyxkzW6CI1iN94w6dPfLWYd7+2+8aSg7jdW3ap5Bvz0/yB+/4Z/L1ALVGxEh98oO2e0aOf/wDh0Pfk0VVTRh+/VM9Luz3JrPbS1oK96j+ZkF9bS9sSf0ZRBjnGVGOAvVa1Y3C71TY+Ur3HjaNqRqalN3xVd2VLAJnRR5BJyDOWS/RhlhBg4hnq7lLe/miIoQngWAMefRwDWaMGim9IsPS6JzYvcohb0rrZ736s/9zd85f/Vo65WWxaX6jiAN8j31xWwT8iXhBP5II9PnNXxaUtj6cN1XTtFDA/3A++tI4NJ0GjYFMRho+T6I8HKvLLJ9FUv9D/8Xx95Qm19P1iKZWQes19n589Py2Vx6Vc2tGtOw5jhZ9kiMQDUDCe/BtvnnF6mPj9tSB26tQTz6xFFvURuh2eianKz6BGi/W4q2qbu1xub9CKC68Z/YsV8oXK5NZoM9DFv89z94vvmVMB4fDT6oSxfOf3x0eH9i+ucnjVStTPjIHgU2fiMCvD7IZ/XUIIlGveDwRe9dHeLuA6lXFkeLFaIhwJG55trPvxa5F2WgFUJ3oXtNUvgy67cKaiq7YmfVC6zKzTOsy9igh1z+DXMovYO/8SfycB/zCUtdAc1lrd+iy8KFHmYVWmnX/vN7pIWpNvAPjk/ETWoAduyKAmzM9kfoZyOFg5XqTJsbP6RhIr6GlX8V2s6LClLTWh/Yz36oYDhvHFLBH6vJHx+6KEeO9R2X82n3fo/w2x8KGrqRxOdbeAugfbq98V68HgeWbIQToOhCqEXrsh5B9jgDJnkUh1sQAi4KGQTrfEPq2Qch114/BL6VolF8NmPA347rQGKFX4qZaCbkJw4n2AnDFrUPuA/lP//RFq8X7Au7b8KqHiqqR6qQHuymX/3N7AltQybrGvosnDdfIMOXVF7XeohDafVDtOGoP6hdf/ZgfrgQwVcATBpalh/O+t23YXcsALosB2yJpWk78KIknLr7jTowpwp1mMIwx7q6sUOxEbMWKj0+Ym+5h+HS/0ICo2k5Yv/lhbnSvC8eRMUJoZ09BuEcX/eFNu8KCaOxk5LlfN61f/VH5uJwqunG0bp14Evsnn1zkGuVPqF5YgI1a4sMQ/99nSAdzzusR3m76iPdhucjaLBDd36+lepT9IcX1AA/bvE2Nzr453foNysOmWvvHCjfW0L++v8UZX0Dh/bs4ouU5oB1LLb/9Ar2DqWZ86wRRDBVukH/+NY/f37CiUB4Ao7JLFTXGfy88fbnjyZjYHkNNETOCRdeOKGbb/aE5/vHxvbpGwK5l4UCbMEvQZvPRrK+7j4qIBq3BpL++Ia9+5Tw5Qi3df77A6nyIIU/gHWM1374arufDj9pF9OHSyZrGM3AhOnpfKHIbwJrsc5NCvmcbon0vV3z5QCyFnpRc8VGToOEd3N2guTtMdKXgpev/dZUw0q/0tO9WWqG5xcDq/6kVvAIQh5szjHM9O8WqeD+G8ilzxsoxI75pyeSxXkSBg/FBa98y8v/+PY/f9Gd66zuaT50UOGvD1GLTgnJmn+AV+OnRGBQDcdQ+nnq+jxsfGrT2qpSqML71C34L09gTbU0f34fPa/zmWeNLMIQnHrq7kxpmMmXNFC1Nle6R77Fibu9dfAP75TdzrO2+4eiq/D92ZN59c/Z9jshoLSnjhrftzxsjUnoIR+zA8UGLazlmVv6vzzC/hJWT4Xsz3D1c6iZ5g1n7vbWg1W/UTO73Yb5xx0RFPEvxKs+Gv7pbZYgQI01L1ikUxjBVIkYAs+nyKenttNhc3hq1O1sMPBwgSr4yxdet+uQrP7kCa5+8KTrrOVz9/ZtNfNIgwTCDzlf+yUQn6qI/Q5aFlvrAxS73RNbfDzkVP58MrAfGk4U/rGsRYFdAf/8x4gc5XBh9na9W9jhZBv9MGeyvUXQ02uDzJ/hBlg9x4KWy5ZMpvSNw4koFYLB54HwgZ0Gi+vD8IQbpz4h4SHxnEkvCYLPvd2RS8A0TuO0t+EoWwOamxHX5POxmXYZHBm7W7sERIrDOxDc7I2zff/KZ8cwCui/v+1a36gegTIHwBytIxEm0bJmq00JdE7iiSarv7t9t28FqKy+UHuudUu6Gr0Nnq5xR4KclOHyhXkE1W0c0T+8JjTc2fAo9VsiJOaS80uXzGDNG9D0Wc/dLFkjQmL5X/znr/OdhhG40iKm17nOBulPn/g3ktBog+eQrH40EO++hl1TysJeMFD0z/8K/SuxmCYwQTMCYcT+yv8/jwsRwJlvs3/50FY4+TJwoPPBxk2t6uXt8krdH0wJ/X6sHNj7QmJYdt9lzfNu/83zjOag09O4dRIxfzwVwKGm03TVn7/r20XQrueKGs3U1EtA9jEkn32ONntMOHPtxYZeVUj4QYU2ZBf300LWVR/qz/iUbNe8EwoFCelev4wJIXKfQW+atDUfMPh8esIRzA5EOHbcdzKZ9sLAys/ILr78BvZr5hHYvv8fAAAA//+kncu2sjyzhS+IhohAQpOzHBMERewBKoIHjgmQq9+D9X7Nv7ebjuFwrZCkas4npCrEf/6dYa14yP4lD6mx11pjCfZ8DW6kVgmD58N/fmzjE2gnH0/Dvr/dPMBb/QtN0NYBf+b9FDK4U9GfPupCEL2hNsoVtidyKkYgih4U2f1DvYlyYPzTo9H4fGPPrr9g0XaXHmz7GZ/OH8fomrvnwBiKl3/6big1foXfOUuxGa1vY760Bwe2XHegWIw7QHgFi/AXpx7+4+sTHXQesmacNr0hGhRC4IDaohMa5qVrJhe8e5gxeaROynXNcrmaq3Kt+SO9QHUxNr/6hkMGKNbEvWYw8d7b4NNs73Q7sB3mQeZM2N89Hr02Pv9+9DUC5XXXb/yHJDPe7gQpJbph+7bVBX2EUaQ8y8igz83/LmbuZIB+9Byt09SAjp9cCPQlhRht6/2dctYKv4M90M3vFYvALwFQr5aJ//zemuyESNnOA7HTWtHwz//aaeDg50UDBrPyn7fVTThjh9N5MBvp+N9nH43t8E/vOYA69I+P8G+OmnAySgMdyMdg8/RJcsjD40LD37Mz1ujrxgDcAhXndm0z8hdvdso601D8zsZMvXMvFpkgUecHjeEwvWcVON/bA/tcdh+mSn8+pD99EcaZXszNU+PApnc2fao3c3RoIzD51wvWXuGJsfsxEqB3lgt0+bzpMPEBdcAYoDfa/Z3Pm7n6/3ynAPzvdwpGW7RoFlz5gd1GSZB+lW/T4CA+kul+eglAccUTze7CCpaLc5Lhd/FHNH8cPeFPhGSAS+MrkVwuSZgSDKp8hOWIL7N0amZbjjils74jRqp8K5b8MiLwOM0/7BEbD4In17J8e3AfxB2q37D6ynxWLp/jjrrUapLpVZBRrldFxtaCAp+NPHyAubUy6kzfrpiHzOGAxRCiwUF9FZT/vUzl8rF21DFoxabnncqydfpU1Efuzh/5A0TAB5yDQ9P7JGObQgKtobxStQ8vBvs69QzvsDVxLKxBMUtkQCDiVhflIfk0xJqir9wXaozt3Y4M7Phs30Bt+xTx0bIv2Em2EKxJTzCqXeTz1C5EEJqgoU55HLb+w68zlC/KG/v7YGSru5MqaOWDiha/7Nh4H64irHelRa99dkzmw3BZYRjZFradl1GMF7SaEBmygpbKRcOaXPAXKqJ9xu4bzgbhXRb//T3sDftrsf5YBmEK9hirf/MFjDCDybW64Lu/94bVcvU3/H5EjUbzYBj78WhUMGGfK43B4Wm0ZryvoHp/8mQXHLSC1SewQuUXK9QOAgeQOVR60Em3Nw2xvx8WFpetDOpLj51mjQr6eMQIvqQqwLfmEgCmzm4GhCtbyfvmq4zYQaaC48jtkNI4L7Ze5RcPX+3Wv1q0zsnaHJIzFI3hQ/azdBpmYc90mI/9hZq/g9Csy+r3EB3oHrukSfxFvk8r5KP2gqOwmocVcJ0Kzad9ouF+ZP6/+WzG8wO7up35a+xqFRjFH0SHTjgYZGdcz1AP5hh9a4U2c7lXPFg+yx8Sa6MdxsCqHbDr5S9acrUw5ucir6C5iDF2n/2vWCMaEaloQxMdXhwAqz9bPezr2UViMFJjNphgglKdY6zqP5MtUSpV4L5GMtVfRQxmKyQi0IuyRYJE0oHxRmKC68Jc6r2fQbMioaqgekhHMmMsFsvpLKZQqLkzNo1YYGt26yKYvo83HLrvuFn771rDOtxfscPCMRklC33Byh4ixZ4psv7HIk4+7ZQJ8c8dKFanWr2dwncdteIIJzOef294lpqIsMD9GmvsuhW0EvIiXH5awcJfahvUQv4hPKruBhV3WQuLwNHpTbyOPiNoiiG7AZMGwfPtT+n5yYGmeB2xehbA8L2eQgSokqrU4M0ZzF/+x8NM4g3sjjHwR+036wpQap9worz36c0ZBPBBlxs+1nu72TtjC6G0QgPn10s7TK/uloN069eq2zs7mYvniVdK0HTU3D2dYkH0sTWnOVXYFfVlYL1ZZco81AY2NbFrxrRCM/TLR0EDhHywDpbEwTQdJ2qGWy22CZIAqkejRa2Vvv1Jja5E5q9vnrrwrYFlNjQHvHL1SfW4PhrdOJxqeCphQGOToGQ16G0FrB8LrM5p28yqI7aQGkpJLacUGha/WgJ/6nCjepmqBmOyAKEayRV2nffXn7NH+AXKA5c4fIDAX1y/zSHW5St1tvU5P2CmAp/eIeKZVYL2wRgH1BunYn/IGBsVt4qgDG8zWiKyNoN/iDzl+5E1xCuz2oyvvYqgPNGcKLsk9Ue1WwL4es0pLZ0YJYRLoxa2YbNs6x8YDFzVCL7acU99hy5gztW8hHp7OFOtenT+vJNgCr3nV0f84Tf50zfENkifa0j1gqfNckB5DIXD6UnNv3iAo1sKliwr8U1apGS+44mDcBgR9dbkU1D2Llp4viCLGs+3xsaxu/TbvVwZrUX8TITPbFSKc9tn1AHWcSBhnFfgKF8HbKN7Bdbv+faFO82gVEcHbWCjfxWg9wlEbH6+3DCJraEDGLeEXm+oGdg1cU24xVNyIMbIlq13GAzcM4+NhB+KKamEHKo68pDoeBxY/tZjKB9K6q+EY7TB8he+fcGnWpuayb94JcTe1r9c7/wlH481vDY2Q9NubyfCj3hn8NFWi7rdoyqopj08wNO0x4GdRs1v68EqS7UzYocetKKu+VCGflkW2BbPXbF+sc7BTCgy9AsHHfB6/cqVqPm12P6gI5smL+OA5JMn1gx8NqaB+2VQNHeY2haR2TgenDM8vF0R7UZ5BmvociVcDZdHTDzZA4WnpYdofHjYlJXMmGXnrEKhQHe0v512oIumsyCjomdU+8OWTBY4GHPKER2ONU2IJ/ciyDvco8/Bc4dPwQ9f8PZ5n975+MMWi4krBCPhiVIduq0zfZ1Dp28ptueS+AvK5BH29HonTDX3xvb/pnB+ORKaksli82vvBHDb7wTGxWtYLs5NBMFL1LE3LXtj3eI7oHnRot3rOvv0+z4TyLeZj0/VwzXongsy0LSAIS6+XRsWK3EPq44W5HeNP2BMp6VU0vsQYP8cx0PPfz5IPveCjH4QZs2iPGQdRDaC2LjZZ4PpREWKMF9VtNARG8JMuABeRyfB1+PBZbPXNiJM7JHD5pu8huVl+Rn8m9+j+5iMLR6tcM+vJ7Siy1Is2SczgfzybLrpC2N8HrQMJI8Hj/XfdU6WxvACWYj2CVVjvWJzrsYlfJP9SAr/8i5W6Wq95WN+4DDqRsJYM4wVMINdhA7ZNQOLGl1HeCq5ALuv78f//H3enfY2dlPDTPgx3G77al1Aj9t411ctIXi4TwMNr0YEaGHXLZT0dkdRsPMS2n0qqPjm+MHpNZSMLsiZKN+t/IXELX6S8Yp6sOkNsnVSAP1Vfm11qH4jAqkmF/Rj3c/geE09aj4+yF+75mPCebdHSC5/S0IlnuXQs+i2v7SOjZx5a5VxGe4YX8VlWD+/XykvSs1RNyq15LDpEXDRTkd6/suXzP7wwEzVBetjd/PZAfoB2L8OErrEH5cRUSln8Kc/pHV2AEsx62XV9ToansoQjJu+g7vfE5BXdkqSw1s/ijCxijMNA11t/p63so2HSA9WDnOXew40LtOEhFzVBvZa4Rm+8/pF7fCb+jMnEBFGZyne4seDtb3kVkC4Livij/zRX63WhfDuaylVGS8aC16HB3RiWSJ7RXg2y/3U8dD+aTZ2ezFslsRLbOhYVUgftB2TIazvLTiD9oTNK26MpdzOEK6X8UhkHhu+0N+wAE/v0aDRpheXyLUFAArpTs10WsHk3n4tiH56Qp0ONIAszk8Hsai22AuJNdAqgRyco2uNuu9wZcvZCh7wF685tecSGd9eHysocCGHvfShgLUwyQrHkH9TbO6+/rLDtgPpnU9wuvoX0Lu7pYZ//iS5Jy5jStDoUG/3Z5KU5c7Y9HMNr/PziTHsf8WkPFYVeqN7xT5wvGLmX5EIzpfAQsKVusmUxY8V/OWH7e8Zy2nuI2CrXxkb96RjtK/yM0xo7FM7V7XmULdPG1yNn73FIxesj95VZSxMGClfdiyWP3+xJ2eTPpejPWx6AUJ5fz+RJXhBtuxKkd/qeOyo9cuZQTUt9f70LapM1PrL2TJLuP0eWeJd36zne9NDOlYdVUVkgAmXqqdML+6F5C3/LepDz5W/fLeD/S8hm1+CRiVj7JzffbE8NQVu97JnatUXteAdpjkwdfQrOUgnZsxWqnNwGEOBvK5BVbCd1/EwdycFb/kKzIsZjyBnZo24XVaz+dr2/F8+IOt7uYP1YTEdKs/GxkG13o1Z6VsBGs5le+dtFRkJry9P6XqKELBuXzb16+sMyyNZCJzrZGDMeY3wsEtvaN7pj2LeyncrpUB8inqtK5ZcWhGsvJAQem0OxvBoWl7af6I3LYYJFTPTT5VyLdsvmsO9bwjwXpWwS3MDW06ZDvOze4xwvesDdovdizFnViKQpmQi7Ycgn6XH5xeaZ3rElojLYbK90oHJcKiwUZZPnxmFLUNru0Ps+dGhGfaiskJyC0wS7fRHQqVHZkP+vauoWQp2smjJ5IA5mUOM0m+Y8F/FkMGFc5/YtNB50xO+Drk3nFD2emXF+k7zGVrJ+CKKizNj3RMtUuSXY6P9upVsTCephMqpdfCFPd/GgCHKoP3KT//0aqu4VawUfWphJ5LebOWxK8MnfaR/eiHZ8k2gcG9uwnoCz8WrQ8kZNotypt4X8Qnlf50Ju/Vu4VCSWvY+HI8reN4vF6o2gdmscl7oUqn0/ebXpWLbnzPgIGmQzKZ1mKtoDWCtRQY267UBS7N/lpBlv5woqzY1y/P+E0Ez9Q7FcPN73aeF8NzIBZnr/pzM+xT0sH1cnc1v7w3yuVVIFntroeGxPYPF+5w8WCFoIKXseX8Rn4QD+LXVWfvtvsZ8gidbWb9mgMTy6BsztGMBukumUtx34rBCrMxQClWX+orp+IurKO0/vR+IOWFLsHNlqDfoiTW0nhnrhX0LG6Dz1FLfIFlr2EHoXl8ORsu79+fJuZjw8PZFGlzeAmBGU0Pl+/5e6bHef4flVRACnCr5YHuyG38+SOoDQu1wRWxbT6uTpSbc/AAO6+/S0NF/CjDfDQLarQJKSFr0Jcxt5OLjDRmDUGcJlIOWf2EfuU+jUx9eDtqq9Cja+MiWH2QwkPMBhx63A+wo+CI4sfxGneGyGPPPalVw6fgz9i5fFfztL3jkiYCNVvAGtiF24ERMJNxZzRl93vwv/NPbxu53Khbx+eWUPx6Cctb4izWUI6x/BG/PpyiYl+gehK+LSfabfttHLhJgGJkWPcXOk62QN2Zl89s4OKhaMX+/1VsJufhIA9MSmyWtvR5u80Hd5hJsvXkOZ3D7kpLMfY2b1S2G+h9P6ltvNZZz2Nagxf2K1aREBh8otgpiUW+puRc/yQJ38hu+6HCm4e3sGkzr5RV21nuk1zXSm1VJfCRPxvwgM6Gff+OTi/5sUUsRngPJ41spXLzzVufk9Wva7hmtMAr9grobz1pFSxThy6tWsjo3xtaHBVQ4D5VBr8lPLfgqWhF8KIeWev76A+sc7nsQP+85gisbmi1eqhINVYi+9zQYVju/xnDKrI4G1ar45Ok6Dxjo+YU8xI/cjEpfCYr3fOvYXAY8zA5iDkABd//Tgz6LLocAPsSAUfMRJcOhrIrsz69RI3nOgHkeseHJOF7++FkxH/1pBEZkiphM13OxtHxfgTPoT1gdtjsd91Qs4TT3Bxy8zlPy3sajbM+b7OOPC/h+nkq48QLyFc9dMmjY4WUK0I7I07L3t/whQKa7iMY/SW0ESe0j8HuVM7a/7d5nnB6uf/ONj7kyJMNe3M/QuNAJwctbYEtScRlURPNM45FjDUHND0HyvlPqXcxoEGLXrYH81Ew053euocZR0kGH+gCbyqwO48aDALksN2qZy+KvFFYyXL92gO3B+yQbb0tlfpB21D0JZJj2fiDAXS9+CV8K25lsaIjw2piMzPn9MSyOE0O4N+8hPl60EMzaT9RBQJ4pdUBeG2PHRZ6y8QysBrZR7BFNVVBerDt1+J/E/njNv/H4aMDF5j9rmPsCR71dlCRz2IkevPZGTG0ustlh8wdwSH8a1jc+QCUeZOBW7t/b+rj7c+DNKyz2vxkJsrH4816NUrDxJBwcRC4h7e6pgzUIz9i+0i5Z+jfXg9j3MDWZBUG/rH4Ll5H+yNB1gcHO4PaAE1A1JDXqWqxLehuVTV8TkYVBwT6hlIGnq3o4jAVgtCKTePg9DTu0/vHQ81kdlW3+qLbxgzl7WN8/XrjFoydY0XKTYXaKBRrIgw3mGQjfP32GOi7phjliii492VJjK3f6ZtIUbYaPxD5RbbLhMP7pj1djqvR0XMzkLWxn/EHu+djeeNyQ1+UXniQNYVv+aMmi8h8C3vi6oz7HMJtz62XDAO069Na0B1t/n28MXBpzRIqONjjYV7NS4GzkdPMzxSqfBA7++c9IiL/+WrRwBuHCIDk8Pc3g//TSFj+ptbePxR6vTQmn7NgRBvJi6/35MuH+E7/xkd5loxfkYwpHeVTQX3wUd81JB5Z4MEhC7tOw8bhKIUSQsFFxNGHYXTxojqWCZrfdF6TiBudvfWCHqsKwfnylAiKDHdW257HxTB3W2NWwQe5Tw4TrPvjT7/j+rmmxOE4OwaZnqCu3psFG/8nDBnkF9cNT/W+/AtfzSrK7Ngefbv7vL97hEHovf+nfQisDO2qpV/5OxeRdSfnHy9HOMzO2Pp/NDBVXPiE2ASWZlNPxDAH/GKhNZaVZKtKq8JhIT3QYz5YxUirW4KHsWxwaCi72NH2qQFH5BVuRUBvzu+1mGGSaR9HnKRl/1fwk96DuaW5kZbHx8H/7mez39jH506fweii4Ld9nzbwHWgtOdq1u/Fhj826nQ3lbL9QLDjIglDcFOND+RZG2mP4kHfVSJjdkYnSctKYz5yGF0bH+UudoDWxt4yyHW35Ba/DtGrLxFcC3uY9Vxmc+I9O47afpR+3JNnw27E5E6ZqZop0e3Ac6LD8VbvOFj9r3xNZT75nAEF4mPbKeAlKOHoL5rhPocfP/HUb3Elyr3Yr/+NBh45uwN+ISh8eWZ1Nw+URw7xcjDbM7V0zRVPKw/yYKkcPgUrDz1S9hK4gpvflT4f/pYxj/8AkpxUczhHQ3lyB6xiXVbFkaZufzKOVzRiXq+hPwBV8R03/81EmrIxP00TzDjc/90y9tFzxLSJWzSuNXsbL1kl10OOVBT5296/lMJ04AD9i4YHU/79l4+77af3psy5/FMs6Voxwv2CXvr0NYZ8dzoDweV7DpqRTMZlUheL6XiN49u2br+F7OMGG/K5rv0c9YrSn7Qvk7gz/e5DMvy1bwF39RVg8GdXlvBCLSt1ciRuovvhl9wT1eQoqoXRrrWVsIFNqPi6L3d/VX6Rp+obwTChps+fnf+c+Hcke68SF/tCOYQndyFeJXV6PhN97/559xol9C41BCK4XKIyxp0L0an+3ruITxLzz9W8+LhfsZDiMWCNVJyFghHmRonX7Vpic9f+ldc4Sbv8JFkB+KJa31FtZ7GyAl25FmygDI4Wm3m6hXN4itQqgS5SyGX4qoYgMhohn54/3U7dwPW7b8I18OoUqsqfkOC1KcEWYpGNBNWm4Fs8vCgWLjx4hYZTdM/KU2//gZ2scRLhZ9HSvwtx/U9zc2Zm93RHDzL9R0pNzno/tp/Md3XV2pwajXXQaqagBoy//G8Pf8qW3eUbUvQLLexKpXVK9McL7FD3YQ4BuEFyJTfxE0wINotgFcnYLq4PD0p8QrTBjrNiWvmmr+ftsPcI/4K9ll1m+YL/ZD/ePNVH8vCmMnvUvlS7TyRJCNk0HJVUuhLTlHbIRiyPb8aGXwp+2Mfzx93ngQvBofG6cbH2XnE+TB8xCENMv9KWE0GO0/fUNNTeNAG6YcDzb/jHrlNTTTVxhGeVUEHRt2rbNV138EHhScIdiDuaAHaARwuMrDFj81f2kUVoOr13zocYt/kw/4B3x46kzWw9EGWzwRxX0DZSLnAxuW014UwR8/4t35Debz3o2hoZMACdfwZqxvuVqlLb8haZtPahRIhlgUIvTyj7RYBJrz8KCXGi7m3dVnVcJDAB0mIL573Ni88X5l078YbzyXvNN8Bd/3+4rxd1GS9m+/gnHk6TG7iqDzzewNM/1dYe+RSsYsxVIEbfUtY+M0d8Z8l7w3tMpZQ/t+5ox+ToIYXmLzQa905Zvpqnk2nHUo0Azkuv/v/ELhh61Xnn9q2CS6MlTbNsVB5HUDk+k4w40novg0wILGiaBD7LwCfLbQuVnS8xXCw+58wymp5mLTX46y1sOLSJcXb0x/fGmslSN2PrekoXp1qf/On/BzfSVg9Acphdt6oT73uBSsQuQsx1W8/vGiZB68NFL+zmP1In4W6/H+HqVtf+DjxqvX51vOQOqmGtWsaiwmVc8ef+cHOLhzejEqJefA9mvviDLxh//4/6YHsXq8KsacbuWW8S1tqP67Rgn73XYlOFkoxfihfQwWvyqiaKlwo/a4OM3yrZz8L19SjY7Y32/5XNZS/oa12NkBar1eMzjZlYqvpeQa87oLVGjf+pzstt9bIe/PYOMpaC7ObsLPnyKGIMRHMl8muyB/583HEe7+rYfVsBQP/r/eKYD/+52CIfWPFDnJfatF4ehQKvGXuhfdH1b3HrXwB543qj3EGazZYqZwXfSCapHgG3s0mhCqhLWEBtacLKZRjnK3O5vbPbuMMa045QrkDYAOgqQWfKe2D2hMhUeWOXOLQ6yuENo7+iWi/vZ9GqsyhLcRHanz2esNaw+oBTT6AKScig6MVAhXaBbxmXBF1fkLmXcreJi1RQ5DMYFF3/r39WW4UN/UfsncJtMMpTL8Ur+0EmMut3uDXkpywvHae5hPAMrgWwQ9NfRAY/wIChtE6qXG+cX6+Oycyg8ofHYpEqQ8T8iv/woQT9uJFLvuiqX4Njbgu76gdmFojMSzm0O+sR1s1Zpf8Jnpr7ClskCNZzs08ws20dbftcWIvXnG8quSQfQdbOwLlcTabJ+ZMPsoIz1S7+hTuyK6PPlmiNX2oBQkmo4BVA+eTIT84g9dNwwehL7U4ECtd2x0OtOBbZ5z2GhhUbDnpY8gchaIcUj2xva8ZnhJhgg7SAkMcswfJXg/oUez6v5uWMa8QPZMqaQp6itGi4kXAX9KPGo0VxPM7M48GD+eOVmqCG+11o8c2KW8T6+4bQHT9v0X7PLGInJ945vhU3sryOgt+xsvWGmDMmitxyvhg8etYddDIkMIexvrh/LTsLStIjhp/Yv6T89MhO37wIucI47a3jLIS7zWwBcUl5qCHRjzwWprANZxwcddrBVTTSQZJr/zBed4ssH8CS8V+Jw9Ql2dL8FqY7jVHmIh2q5L+uvjKpgwlu4+EZ3Dgc2P0uVhtqArKV7kwNaxLQiUfuUJcWMT+6wnQwSHH2dh0zlpyWoVsa2YqtaTTvOzra5EhqApxBb13N86sMtxuzG1/lQcXI5ds57P/Bukr6RCC5djg8iidAZ7fY8Q18uTMXlFPMPzUIs0KAUdEO8ETMil55oWnVw1SwvyDBin847i0x0V+1jqbDgYdYu9T35omKRfVYj23wH7/VFky0mRV3B8nQas81c+mWQBPOBrlad/dQUGthdK+Df/niVKxfwzV2/XZRqiVppWzfQ8XGIgZoZBWHgIhlH251lx4gNFhzyz/IPUWqu0jZdwOjkazO/EUk5aX6Ae/zMKXg9nXbGFRKYYe9qWQ249WAZVQkKQWGDBYW2D+CuMVLN8tZjnwDpDvmsLatTBziDNS62VU9y76Mcdi4ZdXmUO2XgY0VK+9mz25YUDcsh6fAyawzAp9VrDPVZ4jA4JMdjzfRGVx6kfqWV+XgNJbAdC/uw12GxNu1hMtEZQlD5H7B53+rDcouENNdt80gzhC2OapiJoVnNI5O7w8+cVPlR4EU4UKSDa6ngcswc8Sj0kPSdjMMf3WIWyeeGoeole/ht9Fx3+Lo5Kb6VBmlWXxTd8SU8VKe44N8xZCx4Wh8ePjPqoN7z6EjkIfdDQv/maDT0u4S3a3bGbDlGxXPhklXL99cI+73Ks7dTqAZVDptAg0S7+msGXDKSsHsmLAmkg9W7IgM3JFlKOt4Yx6NAY3L73C5G/zsTGDL9SJZnEFhvaw2/Wom05CNL2QySjTvz+d33V8OOYNY3nFvj9nSyBkm+X8uZUsti+s2AG5WN4peaBzmDWAapg7/5iagVcPcyiw31hueIHdgktffJw9RLI8UOnamSBZBX3Ow+c62NA6rkFxnj+AQ4W+Ixx/ty/jLlyVFmZdXeHRBpWDVOKbAQgWQLqC9WN9Vv7WzArLkWzMHrskN71Ufk0ZkLx1U58+mPiG9j7xw37pcV8cspdGXSZgWigSzJr36cfgmF+PJEftz+B0a+qFZZxmdFTEn79vg18CGxOtIi0NDY7nJ53Abzv5oK38TXdI+49+IB9iW0vXIqp9ZANJtie6PNYtMVcx70AueWc0DBlP0aHxiKwMsYbeifx219ZejuD+EYsat7PvcG+d8kEemmr1Hla32TGV22GF+9xx+btE7HVPCMk7xT3jUBRDAbZPv99Hxv+IvpLH6oRlM0rRw7lcAJrGZ49uC/QEwdj9GX0/PnaMIq9ilChPRUM22qkNPIjpmoi1mzphsYDQhyXZAG30Wd3Xz0rxWfoSOZVZUPOVe79219uY56StQGnUdG9k45kLpCaVRDWFQ52ptEcmbXRbesVxrPxRN2rGJsZw7lSPlf9SLXmUhXzZO3tTQTf6QnNQtPTxs6Bl9/OiBnHKFmH+IzAt0A9toHx9GfFbkp48DJGDTdX/GEeMw9+sfcgwmVo2HL6HlrwplNEw1dj+uymvB3ghvsnWaEdNnMWHzL5MBkx4ppSbl5bvgBN+XNwaCmHZIxUuwfp61RhdToH4LcIsik/bamn4W4yt3d6SghXztWw78A9awV3ReCwGxYCvv4xmekv9uBJPfhkvcVWs8Ze3sPKIDeyfFMjOaBZHZWkmnV85Y6gYXnwFOSxv/QY4+uNLXzkzrDBjxdihRQXrHxYPfzb7xYzeX85pLkq3yuzpUbV5MkcRFIFrwPaY1d8d2z6GIoAIvEpETA0n4R41XeE7hLU1H0VwbC/i5H4p++waUuNsZKneIZvIXljLKp0oFu+lmrEiRgbI/ZXYbggQC57k+x0o082vSSCh2C71Owm3xgjf0TyengT6tZp4dPn+yLLvmvtqPkyjILVxVopicbfcYHOCWOPXU3gwzczrEnKbviUjhrIvBVw2KntriDt9+LBt39iGDmJ0iyfvefAtl4jiu8CLebDUxoh/UQxDhLqJ/QzcxnQWsLRYBOkkyvtW2Xcvy+4cOAebL1CKnDxEw5J0lNMllNmqkB1SkyTw3hIptP30EsdHiCqPRb5q5zob+jKLaLByucG+8AEgt9hflL9KYhgTYMTguNO18iy/f/MOq0Z1GJnwCpRTo0w3ioTClz6I5zXi80cqaiFEbjEaHU9P1k9+SCCbb9hfUlPBeHt2oRuHSn0L36MypgH8JUKLxqo9ZMt4niq4IK4CSPNqgvmOUkGkS2rFKnX0diejweLE0epKQZVsz5WHIFzqqnY3X3Gobt8Wkd8p9WDXmr6asb40ATQeDw/GPeK3ay1r/3Lz6T/CqYvyC8Owd14Nuhj7b7FdPlUDvQi70gOuHXA1L6vMZx1f4dk2PCAMa005bG/9ig6Pl9gBRDn//K3/Strti7qTYC/Ov5RRwXfhGqaGsCjx52wAYp5GNXXzMHCMDxqfiIwLOO1D8DRsUUctoma7OldfsCuyitqtBAU07ZewPMZA2pdd5+EIKnNZbDbX/Gf/p6Tm3pWtvyA1k58sPa2k1UY0GNFOjkkw3R0Rw5c2fdI8bFwklUWl/Of/8A2/tDk/bseSuhLQk31+LTVZv1FNgw+HU+EeY6bqRp2BHbusUN/+XN+380V3qcQocUJjGKJpc7c+rH26JrBrGGudqzAaS0wRefnt+gV/UlAAoWQHmfrAhbSRTp852FGbbDsi55B1YSXHS3Q/hHH/qiAra6HwyABvPtgYxbvctidHgC9VBKB8ayHCFxvtwNS6sc6MLmBJgR3JFKEbicwI02PwOk5U3xk112yfH1t/PNP1HWvKhAEYZ1hCxSd8FP5LubwOTlgGy9VX11t0OtpckBFiIst6tTD/Fy1FG6rHc2P/TWZhHwYwUImtp1RkWb8KQRBfOoP2BEKAOgp6gO4EMrI/nqi/rytb3mRuAdi950N1i79bHVXZps+H29rmF8pX4ODZD1oCCJ+6NKLKMKfK13+9msx3YT8DIktPTHWOZGtb46uIMoIw0YhxUlLhXCGhKALNn8/oWmPidmDNXFPVD/vBX/15J0Mt/Gg/cnPAcPVqVTsMNWwt+WvafcSRFh26oC93Z5L6DFsCcxzeUV7mYXFkGWLDrM6XmnQHKyBWYfOkYTDekYiUkaDvdUPAff+sv/LD2B8+SkHF43ferE8loJZJzmDR1hdqHXyZbZm/uWtJK0rUPd4GouZiUEKksHA+E/PjZWjioo7kA5b8e+YkGwJUvCzUYH2heokjEWYgP1DupHuy/pmpgV8w3CQMcZFs/Ve6C0V5k1k0ju+7BMCOs+UJgfxOJwQAd3MJA72wE+JPIu9MRt6XsKEZS8cJjvFn8TxVv35gz9/ur1qx6dwd88eWJ+LGjD/EYsKKYsrRd5dTQ5/zwft1Cs1Da8Dy+74IWAv7z6EX7qymZ/X2VMOVB6ozqYxWcdbawJcvUuqrRryN78aQz3czkA6uRrmWjy9obxiB6tKeTTWDpY93Pw5PYY706e5OdvKH3+QcKiA5RxzI6x6YyVQvRyHlZIBwkBO/b/xsvnDghhWvbbisH6sDRFOgQqesXOhxt4xDT7d7nGQ99r9+SfAsO1EMM+MGw16Ly5YE/gRzNqDRd3iywFWnbIvNHaBg7WbUhdTYy4PyEW/mbCWGj7zu7mEmD+lZOMHxaimRQ4vad3hP/07ZfJbhTpHntgWnGhYN70Jt/iESHdqk066PHKwd28v1PzpAVXiYyju5fDf95dgUt+QMIJo6Bg+2/bnGR7CKKDO2TQG1q2Q+5cPjuWwgFG5XE2w2mpPelXx2HJ03xw8x2cbzfrRAKzV37HiNxGmGjR4fzg97zzUFjsiHD46/prtdhyYZ82lRvZzgDDeWhv+zb9WfH/G8tRXUSnpl0PiNQ0NcuITU9n0B2HfjgyPr1brSj0YJpLd39owAdoj/BkXHbvutQK0l1VB0Tv0o45XwWYu3h8Es4/nY7998Maq3j8IcLlWUk3rdsXkf/gRPn7Om4i17SZzLd7ewCJ5Sb0W1QlDszPCzQ/Ro8WKoussPofzKtY45E6HZrzlRgyI7nmEu7nIWDe/CaOXadHHE9fFR9jecdNs+0ngKYuShRNXVYFam9KztP8UjFuiAF6OP5O6Pjj77BK3s7w4Wf7HI5LD4u4egPlJS5YjZQOZ3p4OX1rabTzlDeb26afwEMYB4oJ5MvosZZ4CpMREy9hFPu3ebgqHuAzx8/H+DLOaFhnIbPSl3vlKAKujEsJn8dZomc+kWISvG0PbK1tqlV1YsCnvz/CN3AD3C8ua1jo7EVwGXcJ2CL1mGYOghdUtOOGzRpSi98NXrvzlC4xKv9h3pxv8W+9I3tcLI9NbV7dKSS3Ft9sOzBY5PeDsfwb6fLulITiv/gwVRgxCi1kG//xCqtU59hL56Y9o/26h1fgrGeKlSdh3HEcYS0+fmvXYGv/063Iuv/hoc5q/Z83RhqL2mKmPdc9YqaMgoEeHFNtguSTr62Gn0LiCmG7jGXhv5/fAi3YtajeeM55/jJNf2rmjqpnPTVvKIwHrjb6xFr5fWyGpQwkeEzlgl8kvMJWLpSrurmjQWnTVwBBLV7g1hiJrJ3Jsaj3bht5x3WNtm89543vgvdSYGp6TJEsR3EQgSr8j3fwDWy47KYV370v/+EOz/umr843KZBlOp+2M1uVg0afqpn/dYlrcpQK3dMQUfaNPsfm/FeLLdSHr97v3l/1DyaB/DQy8re9iXKY6/+N96Db6Dtv0MYHmJDJqxu+JjcvUZ0C76Cb6JdfaWIpV7ZVDvFpEaZdnwcCzzxRWf5+IaY9h+Pd7m1+kx7gbwOggGcITN54RdzVuw3riCxOGAddT9+NZbLbOTgxTqV+wLhBakJJrH3C2tIwou+ltEAZVG6L8LWP0kzx/Poog+6fH5z7p2KCewxr0T8ujvt51m990Utk8jxo9qwyx+Xt+5fDr3ka8+WOfBbmLYGwGIUa2OrOFin4r/+2noBfbZi68UodMO0DsqOFsTL5qcRCYuo2tKrMHgaPxWVGbh0o3fTC0DyHR/3godeLRKiiLjiN8Kb5MxOpuNofVmlYQmyikgWlWYF0NKspIDzuMn8+zf/jLvxvPw8Y8nIdlzSbvz2/9G6/8TN4ZtMrfA6VSLhfT9xOLSlg/Gmz02ZHtv75L4DXevxH/LV5Fe2n6CD7Dp4KRY3+KORx0AisvHolkN6nPUl2q4eytHg6357teVdZC6f0WcXEzZ395vO4zsKfjkeLurDFeoC2ER1hfaPA2H8bgi28TorBMiPwzyu0ePx/AkxcdcLnr+4FI1zIGrmt7ZD2uk9/VV26WzccOEWUnw4SZx6yEqWNO//nVP/8G54tG8S6+GbMSu+qfP0fTxuvXSw/tP/+LDWNvD3s1ACMY9uaI3sFDGjoJhA6QTtwNQTkOhhXAYwbfcH+g+lzoYJHLOgaJJtxR81Fdtm7XSGB7bT5UbQ/3YgEB0Lc6xS5FY7MaCzqxGfj3NaV/frbnx0wAXCnuqZO3KSDhWtZQCOaGetqgGSMn8B744w/nXWgkQnH38z/eu/mDtvjjv6BGUMThxTP8OfLHAK7RSURS+L5ttb9VXTk/HyNGTZkP8zQ0PNwHsYx9TTUTFn+7EW7+iJyoOhitL0scbBK3/Md3Wd1/PbDpP+y0t9Sgu/xiK+6Camx+oqKZ+3lx4JY/KG62VobFDbcwoFZFA7zVKj/TcIbZQB5Uy1bYtN9zl8GNx2B7eTjssPELYFw0iQa0jopVLD4ckCB0afktJJ/vP8lXIe29QTvtwhtzGvwcOBUSwUGuZ8bSUp5XNt5ETbNujXlf7uo/PULNMMBguWy97AJDu+BbtrwZjYOsAjtGRbJEgu8v9YrhH//E23jZ5g8z2NZztPEh3Re+QpDLDrFvNCiGks00uup/+oe8qeUa6/Z8wXHGETn4Eh6W2jU8uLDMx+X2/DZ9LMNfQRLUyuJQrNTZI+D9GoCO+uvUTHnPz0DDtY9DZ9F94VOZMtylgk8dfj34/84L3DRYCB+/JzDT6KlDGu4KRDe9PsFfgID0tHeIuuaUjNeE6fAiuQ6qznUPllvUvOHrKEKqPvaHZFlKjofpVY0JOKDI/xeP6tcnwyh1Bp/M5lCD0M6u+PRpJ399SoUDXblH2/nTiy3Pu2nDV6M4/3jg+v1lK+TwjKiaShbYN0+vB06ZFOQ6vfSEt8ithIFhXMgXf2ixHGUp+i9+2YlZsMsoQdgHjwEpE/z4i91iXhaM9ICNF6n8eU1/EXiq1ytBL2vXsHy1v1Cnq0zNc18X/HoELWzzjKN//JQqvZnKO33r3bzxCfISnxX423/+i1zZchcjWZFYdUfLpVoBEfQoh6cRpNQgx5e/vh4oBZveRXu29snc4bP5jw+ynaj6Czr01b/zlUAf64H9HwAAAP//pF1J27IwEvxBHEQEEo7sOwkv4HYTVBZRZEmA/Pp58Jvj3ObOAUKnqrsq6Ub+FcLP2PAUtTX+5Wcl2PQLin752qZfwG+WZVjd/CH+p2/Iz1dHYmma2Ew/N1c2vmOMr36C881Puv2L/z9J2TXr9NJ1ZcNT6l0WEyyvtDUhfix3bPC3iA2mExdwex4//+4kJU5Q8z99HnELmI3x9Yr7nz+C2N59BVs8vEFznSjVrTz56UecHOjNiPhNH/9XP/38H4mFwzBvfh04XLMLDaPvIWDb+oLyub6QbIlS+vOHoB65+T8+I73oc3DDT6ydDxMYIyuHcMtHcfLCcjCb2kmAg4Nr7DooYWv1HUT4scMcxYae5H2gGwLEocthrZIYI/khe0GVLB1Fr085fJmriFA++RBv/M/W9u8vAaUfjxhV1rNZ/kLyACR6rkgcht0w/iWiDXffoqcbfzSDTP96pRnqieqKVhhEdLvul7/hTf9IaZAo2WG4qiUOKnIAEyfK25004tKwRiqYroXnw8PDmTBav3Y+/vzSn77gBWo7jM6jDhVddMP/rm/WElOOjRDgH36svN3bkDvIb2xCwc1nk3MJnCYyUr1It74COc1AUzsaVrO6Zz89WGF2nf78s+3Oz9LDOY4NfPvpO350yCTQH5/YdQ8HMKH79fSv3nOnhQ8WgYcyWF3RoD89cz0WaqFMx3P+04PS2b1daiirg0lg76/p4g6+LvGPfMbRlfcZS8K4Vo7BH0d/fvAsNniWer41qL+wy7D/WgARQO6//EW8dHsLb/gbrA9l5OXIqDlsPgcrGHjFz8BbdjG9SPjdsOy0PuDve37+11oHng43/51I9QkEa3Kcw3/8bVbcH+iPhfr4//oUKP/7TIHTPTMa5N9uYC/kdOJe+wPU9JIrWBUAR3BgzKC2+8YBm7o8EYM1FYiMwJjOw2l3gWe5Lqm7g9CY39+kgwqMDZxFtEnJ3hJsJT8vOvawBQP2yvSH8ri9DSR4owf21CwJfO/vM2HfkDaTfvvG8OlrGo3+VpNRh/kcUKfujN4HfUgn1v5xcFnc/N/7MeO+fwPJuyUEciHIl2evq4qm7jHa2fOHzVKTqnDi5JwakZQajJdDCBQneROasShg39SS4eToKnXaxjYOFHg1RPcwx8mX9MPi4csNliRoiFICk61dcRZkq6EqEdeTOhy+qSXKH1bfqX0U7HQdNHiDUVrdsHs5oEEAPjxBCE4Xakq73mBxciDAicUVewtvNfy9nEYYBfCA9VVqBsLeRQYt/3wg+z7DBlW5nAe9hAoc3i9aswgmG+FycQJqFacuX3wJ3eDn88ZYM3d6OhRf2kvl1nsGY1CCRSm6ENaS6eHoDrVUcKd7BvUb72FfMXNGh5b3AaefJYq4d5DOL/GG4JxXAc3tjAVvKLe+1LopR9WyQMNEypyARmwciu56bqyJU6lAu4oPmgx1BtiVq1UweSKHfV9ARic7nQ4s/3jASNNowIxmvihY+Quw2q9qQ2Z1J4D5KQpY/eQLI0C6v+AhfoXU8TnJWGN+HSEv8Df8uN/e+RidpxUa1b6nbmyWYFDQnZemcDszUSrfgR7v4gorpxzxn1EogOw7UIAhElUaV/4jYDz5mpBxnYX1+NMAdn6qGWj1UsfhoW2M+eXNEH5WYyZfblya+S8vHvBdxxL210ubr5nvunDW7xAxPywDqpGQwOSjKhhVz1dDdJEgoN5PD2pMOyVn7XsmUNbeHyKnat8stRjp8HY5mUimV40t/s5DQNUufzQghzejUhHxMHR9NPHAeoH5USkxNM4Xj6ax1bH5OFc81FxHJGBna8OB7G0C2SMLsdE9VGPfF5MKijKNsQ2TmrFc4lbY6rWOo5rS4BuosaA03kUna1D4A/ucvi+YMllA3OHjgIUyjdtZnTls+y3Il/b+fcOhMkVqZWEAlsNX7ZSXu1cxin0c7B3hk4C9/DWo1bnSMOHKt8XbJ4ipng9tTtu1eMOsE1N63ytRzvagKEFWcBZR1vdjKG2Lt8G2v6h+a/tmLM8dhDYeIqreAnkg8ExX6CWzix0weOk6NwqC+9SsKDoZh2aewsaGqzLe8FWPYqMz38kJDpdzhcNa4tj8vaWm8tHlgXpV9Gy67M5ewK3dEzaGSxuwirQibCz9jMPQCI1xK67gsTv/Udue3ukvXmXD2yEk1o4FWMkpKtz2C9rtd6tBvX1tw6uoBlgXD34zVGQSAb19SiI/t1kChshuAILsQuP8WzbMSK4jjKV98IvXZl44oMKoPalkx1TUCH6j6bBR+5E6uwtMZ80Wt74AOwXr5/cnmIto9wAk92sc2n6TLkNyIXDYrwX63irPYJhvS8CWxiQi3unpWlhUBK9KjImkvAW24QeBA7+VTLtLkbLJusvQ+BCdYudxSNdL+pQhFRpClEXEweyLpg5hknrbflPBsovKTjGfrzs1t/mUewT3NuinGFH73MfDUud6obxB5tJ7+qYBI3b7gHkmmxg7Qj0sAss4gCpZpTjtUrZu/AAnT+bQN63bhiBjPcHlGEb49idTtnDyelKwoNZIgiU02PEuzqAShoU6nk/Y7Hv9DITtFsDhmSSGwDKlg9J1DH54lveZGWVAztgD+6HmpIPL32qonF9PmtlDNayh3q8Ad+0HO5FSDJN3gzHwn5lDT7hNUgaaOITVR2ip1ZUmExr1T4DjvJ2p8ePvwLS6FJQfvmrn+QSG43kP4cSJOU3e9BMQmVMFGAQvRIMnscF8WpYb7D5GhET9vAMrtjQRdi8XY1c6vow1Pou+3HQYUS3g2oEVD2OG31DvEdcFIHgf+kCHP7y1Xvl7m/9l+vAqAw8drtfv8C++BnXe4VD9bB78xyOg2l0dbB1e7/STk0SG5bp3cRSPvUGm6mFCxzthGkRDxdb5K6rA+Iw6Ni+sDdirrVzFjVwRR7xnBAudsA/sC7lj1UNzSjlTK5VT1l5wUBRCs7JM6QFn8G8a6lZrTGl0TqB0zEok6nQw1lnd8fCprxcidzrL18v1RgBDakqPTw6yST80PDjMooXVRHsY0+Hr9v/yiecf/x1mQREKWH34loa2mICFoL0OvovuYq0JG7ZmFRZBzY8PqrKW5Esb6iI8J51FVctLjNm91Cf5dnh6OHiSN5sfp+sNttUZYdMetGbrCBrLPEAW4UmjGFP6ElcoSvaVumzTbBb+WkL5XvNI2q1jTpv9nMCdOf9Rxw6ClCiP1f/3f5xnshqjZos9jBdrj4Bq7FIW6PcXDPHtsPGPwQ4v5PSQLZWJLT45GUs6Fx3k98cJ/75vQs+1hk4YRUjRmj5gUlxB8FSahcy6+DBGPhFFSEU9x2py9dJVGnsfxAIXEaV45Ola73QErmvAiBw5eiDkx50Ke+2kYSf0knRV3f1NBoKh43Drzk73VOygrDoy2imnEvR5vghwXLOCejp4NvP96AnbOeqWWq0nGN+NvyAv0QsNDQnnM3rMLtifi/CHn/kSkNVUPk5ywr5gXdI1bYEPTtnngshutI21xNeb/AooRwb9owaLbQsP8FSqBftP3zHm49NwQfARjhQfJYfNluS+wPT3rFA/On/DXMyQl8thm7WSjXVAso8+KpfBTfBdC7htikgXw+NIIGmzcGDrVD1s8HIPKsWLzBgTx4KTvJu6IDDrZTATmIuAjnaENVU2Dbb/KjxQUIMJK7NmmBl4nkDcBh8yu2UJFjScLj/+IDsMSrbHazfDY3E1cJB/3WZlxgPCXdre/+HTSsy0hOVblDHmpXO+GLnIQzNaDlQXD/2wKoAfIdkJNpK5umKro4wF9Pqsxwa7NzlRh3WGUZHMFK0FYWsuwhtkcnKjpnNdjOUm9IVkFe4dLfJTTdmeij1scMBRpNFHM910dAEbHqPxc+rSWf0LOfhotRdKj7EG+CkcbEh8/kvPp5tt/PgHLKGrUH2ekEFG9BF++TpWX1UI5re8nCBvUoCqz38AAAD//6Rdy5aCOBD9IBYCAglLBESeiQIi7kARARV5JEC+fg72LGc3S4/dEJN63HuTVJ10j2zBk6hq5PMUv6bLWsfeU6D+Xi5ENauxXkRPUsD73TXY/E44n4LLa4FiICg0KLoj+OFZmas2PdY/d7Fe+oLjoFZpBo1sratJOeQQzhEtqfMYKmPBrLbhFpZXvH9wN7ZcUs+G3RgiUtnVqx9P1amFvDym2K1VHtSgThFsGxdTp21QRHTp7f+eh13jscm/mVjdfvGHcJfVP2yWutCPzdsvnhqTxZ8TyO9EFQGwM6JlQJTfbhCQ1nj+YCNsfRMC5ppE/SitMY9ReYR+BVrUbtBQT7Ema2BTg4Tu7EGIPoZfSNDRbxhr0aMxlveDVXDxXoA8P6fKWyR01FXrsbHIGwhXrxMut+VnT1iXX5k30vHgAs72TxgZQdMPpYZvEL/Il+I7Z3kzpygxiD5ciwMie7X4hpwF9N2kkGmKOG96r/1txUdbkmbFm/OKD8VxX0fUgeXNmEMamDI7v0Uc6N8GzPm88eVdO3YYHcIKDL6rxDDt3RAJ6Uau6eWhJapZsTOSF6WMZo8oJlTuJU8NxZHB3J12Nnxjc4ezSHN7NkhVqhRL8aD64eJHo+7ob1mR7zoROSvwFrNwJ1hNMaNHSdiD6X0BEOp3ekBA/EoGM6PvEVxEW8BezfbefLlok9r53Bm7+b4FbXiyXejlyoHiekv6mfOvFhxi8ESyX+u5+DHtEj6t3dquRC/YKJx1Ea4Xboic47SeV74Dd3tfIewTWWC4L34GxLB+UD16tuBmGjEHQWbxONjO23p++a4EJjuJsSUB3hiG24LUwtknWKuTqGdEQANM4IORMvOUegpPtq12dtNRZ7xAbybG1QZuGFj4gHO9Zlc3gPChdAxrXSZE3RtypowDPsCuevsYxIdUARHFJ+rFFymaoygzYQByASNWfXvyWb4TfElgohbH3+oJpWoC/Epu8S629ZxdugbBqAApmS3m17P+DmwQP7YGNtuO70c5nUvV6F7a7/052z6epZwIgYuaUQj6yYxZq+6c94vahvBif/nk/CoiAqrzxmNCcYU/vkgkr0rZ1HGlrg5uoZERol3EZ3Q8ws/uyiEp61PQSSjVIbttHysfcHux9gQCVryAD0t5jJYiLVx4n0ueaknx6b/A2Ljw3Wtr67+P14ubuUzV7NGMFL2aCixgk6bQ/bIWweZmRMLrGxTwyPki3YlZZSxy7t2gooojdW/cqRY3qNfgR2EW3tPDDSwm/d5g3FQt1fd15c1L46awK72AGsrzZfSvUlCgG2ILo3LH9WOCuVTSe1une0e89mNynpGiwtAg4neJPSZ8BRHCO7hjnGz0WnzrE4TjWfBX/+xrGsjHSX2wzEU7g/96bGo2b9BrywaxXruyujxGk+I+kgN26S7pJ1k7t3DlU9Rwfc342T+8FOGVmrz17JeEcS4o5NHGh7sF67aKgxAUouhSFMhr058Vn8Xw4NJdGmg9UwhvqXtjj0gZPRqvoycEwSB/9mSz3Q/gT0+Z8Q7Qw704AL49DCKcJn+ij+tbYVPg7ySVLHSPXRIdPMa4yVdXPoF4r6DRbJiPBIo4/iClVmO2ZI7RQNdta4y9WuiH4GsW6kjeFdXat2dM1DlkP/6LjcIO2PIx7Qq6AhWpc0qmdfyPUHka3g7NFhvq7vP0LGV3rti6x2RFk6WkNmy99R5Rvd5DX4SvBUc1J9gevU9NaPVqQTEuCrW1WqgX8jkq0CojjXq75z6f724Zq54uSoS3+mc9Oa/7BK/Z6bLqQQ2g4/6sAFl6XghNPtucMCPh/vCWyNtWxG9HmgCVejsyPatvvmzmMlOjQk6pa2zdfiqSU6au/Bc76jthbI9EXT2Oior3jijXjRBrBZz4d45N8+F7v/FAM9ke6Pr3YH4c/BbGpa1Se+aEfHIlX4fRkEQ0iGc7WsCHk8AEBBO/D+zp0dvO8eEP73m9VEeL/3jFcMXLOPVWvHPqy0UN6P2DtaptPPbkywGejxOlwap/zZYvh/BnD+BenfJtTYUCwrt8p3HfXGtx1VugYgtHpAAvMhYWCx28FMcrPhgboR9EQ46h9dUTou5bOxL4JUjh4Rzef3gMDJVO3sBbTiL2+WgBSzSv9/C9DyCbyxgabJHUFHy6R/CLp/X8BozAaFO7VN8Ocz5JrLLhT1+kGGhsaXbPDFh21lA39Wo2P0BLoGw8FSKhJ8zHUKtFEG5jkdRd2EX002pH9Vxv3gSg65zT/AaR8tND7Too6+WtTxz8bCUbn+83w9s+T30C3Iy70QDlyc9e058eQyPFkdmYzxsE5L3+oZ4A7J59jmSBP/6sz6xde4EpxU/vQw1gcT4vjZ7CZbEs6qomAEs+Hku5djKdyF0q9X96W9yULRLe+AiGT0MzuMYXtDmIer30UWRB71LeaLARBdDb+/n4y3/Ym0U3mu/mWMH3bqP95bNJrnNN1d3yiLXrvfd++Q0+2cQQIZepZoEJB/i2kh711flhEIWzeeWzcWd6SLK38T2X+wrKim7ilR+DZdi2OtRDixFl8imjc1aHf/rNite8xeZ4DXL4plCEL0+PbOY2g7sXP5DmsbQ5eSCHB5uz6dKj7pJ6zp10ge/gE2PrCpp+PL/tBDTwPGHz0vZsqPT3G+67zffHX8EHK2UCtfKZYPOztWryw2/aLjut/ufkW/5yaGBSPt8UmdrS03R76eAUHyt6pg/b6Fd+BSWgXmjw0gxj1Wd0eJEN9hcfhXHqeOAgs0YhmHG/VQi0oFHHF2z6p3s+vRU5gdUnqhF3OjoAlMd8kYdKrxHQccyIFYAWhpMVYF1L11rIZKNArGQB2pqXnbFEttRAtg9VvBeLvp+F97cCnYk25JvjtCeP3s/gyz5xeH+xJjYJ+nOCcDMYOMb12C/IUBLgc1uBGvn2yhbySSXo3oWMCCv/od+rPSirfkf113fIl198X/UsbA2GbfSHxE6VCmwOSF716Tl/57G8TK8rWfUHg8G1buO3fgX4p99MzXLJoHBWH4i6d4VRQwMaHAScofcVmD0L2Jn746f2qXyARWjZDby4xSbbPIhApyHJhys+osHGfuckjHwJwu+2p8GqH/30fJDlgU6+3+7rDeC12PBzOCb0NiG+HlpoK3/rgyfLqdljsCbgul1NtWf1jf7w0d9+hTNFOTvZfQYpayfCfdLAm5Z74IMwvFzpIY0QE9f1AOt6Un1X1KAX6NSBj9ft8IGhByOrXqO6b6nD+rNB3kQdnMEnLB18W/UW0gm29OcPeLK+9cJNKf/TT8m2rb79qLwG7qe/0cMRHftmkOGkfMQ8x3vH7ox5fPguJPKGYMSft32vOdsJRJeO0oN5eRrdTz9Z9Q4kjd6hX/WTATZj1VB/QnE/4/xwhDeVuNh1JhZN5juL//QLy83kfLIqrlOyCF5p8hoFsOoBOpxNJUaylzrGttH7CfBJ9cR7+mi99tvPk/oQTzb1YyAZs559Q0hhZq36PzD6n34M3eGNH/WW1LMzhBC+d6r202f7Ibw1mrprabfqOZwxvr77m7z1pA+NeX72mP+uKniLLzp1Vr6wGOQqgWsWXYii3Ot6fheyC/bGASEh28c5u/kvC7xHEGDL74N8rl2QwLtydP/iw2RdwgUe7x8TTd2i9dSgcQhPNYqpnW5Jv/z408rnqaNdX2Aep05c7/gY2Bcfds7Aaa5+eBwf3KNTz8l5rcMIqyuaThGpVz1tAJ/3oSKsuT7BjHN8hLtzyYhKP8BY458GzQg6ODg/toyk4j2ExXJ7YIv2t/4Pz8TpO1vX99IvPMMTFHYRoIi5XDRlQmuBDu4zulv5++LHuwKOB02jx23n92KtXUVlkF97IrbDNWLtRbbBXkNHbAFB9lZ8siirnkiNtii9qU+2KZzSNkDg2L3yyR1aG0p4PGJr3Ib5qo9bwCHDmTC1tGvezXcF/OmrqCif3tbmsxIal8xBta11/R9fj3nxie1h74PFvVsIitxjILO5qSKmcZGoUkPjsBNV+37sTo4LdqTRaT7pmsf//j9rjuHKL6HRDLfFhxn/9gjbVs9+QkAZ4KOLFexybtKzPj7f4GZoBxrZJDOWx6MtYcFZjPrUANGSDTYH28m8k01LFfbTz4DazQlFTWEbUye90J8+X1jKtp824SH58U8aRo5aT4lxdFWRT/Y/PJJPlf1N4XNAR/zjv1NShoOy6pc4b97MGF6eXcLFHlQCHkneD3sWTIrfLhrWwUz7v+817ylRtObPeSfGR6i+rz3++QPTntcQVEA9/O0nTXsWLMDFOiKwvOw9fjk9E3hSFhE7YCQGMyEewKkrVGyzZdN34CMq0H0rHSK3uO9Xvc+GykkqcaQ4V7BsVDOEvm2jn74StWe43oasPwHd6QRFZM0vW8k0ITadUAZ0b2Q2dJxBoj/9lvCy3kB1q6T4t5+7qEFewN4pz4jtdx9jJmoRgrRKIfboK8nZjXYFWO2dXlb9c80nHOx4caauPlM2nLgT/6c3uqwove+Wb6ptBDt/5UtFz+I2MMFxeVfUiN2DMXNWEsJjRiyM7e9U02OqlL98jDHTUM8WN7bV12uQKU42VT1f0zRWssd7xHjlJ4P/4RV46m7qbz8RzPyyz+CkPyA1t0T0WGuFN7iz9xIOINrlb7w5aOr2cSiwd0p5MJW1KcIr60ocrPrppIvfm8JJvEH9/SJ5fcsDAkucXPChrZyerfkBphl/RZX8Urwl3BEfqnU1YltSJUbUrtChHY85uh/jgv3l53U8eJdRJfrDfw4hZ+py1Y5ta0EKYTFtFqLWggOE3/7zin8Rf74lPz6SKGEkWtipZy36Qkbhn570i8fT9jgsYGJ7gkAQifWsO+4brHwO24rBeoa/TgfA6Vxg89XP3mCHtPo/dQoknv/vMwXTvifUKnUezHZ7smF8BxnVb/q3J1Owl+AiTC+alf7Yz1NgWJCaRKBa+70Y29f1lMKQqjZF03Gop0NZQhA3+QGb1vVuzLrtFbDbmARbhAn5tKJy2EM2k+ny9rxt64K3cr9mItXuyMonznlKqhWHOvV2i16z6cANypXjFzKN97jv7MlJ4Li/GRTDSQSzuKlcuG1TEweyLXpsRHTVFBdEYAJXjbERGsgaq6C6U92Nwb99XLAPnhbGifftaQrtCtrB7kCtvb5nPPLCAYRBbONrvOvzpeucCnLlpFOzepo94T16A6EVvDEyEQcWVZ5vsP0mR6oBuunJHF4UKKrJDpszPOfbXEgt2OL3SO0Pr7OZMjOET8e18GH0dGPbhi2EXzONsHPnUM7m+eirla+fqWMeXkZ7P/AJvFnVBzuP0y6aOF41YW60KVER0tg4bBCB9EkQdnPjwCbXn+3f/OL9Zl/1i5ZzJsDGnaKno5iGkDzKSeXD9ILDl0cNJj8jCPMYSvQWqA1bnvYas76nkEanqgE0ZoUPmm3fUU32tXxZyKLDFmyOFB1n21hEwYbgoLUvmh0/NGeHJMiUI2EaNhm289nMYvH3fmyfvkW/cNvEhJHPrf0q7/uaHRxL//tsTYrlkT31U/C0Xgq1uceXsUCMTJidHgwb79fU0+LZhlD+Nj41Vb0wvsgyKjhm+hUb4tfMu/ctQND5tjK+ItP2lvckc8A/A5N6D44BNqKPC4Pz845tf0P6ZeO7EgTdFGPXEUnNto7U/NnPe1LeBiOS1qlp1xrUIRfXm6K+TUEb8g22NNSu94YgB0+OYFB39Y82szYZWO0XgbkU8uXSqI2CD0mOYBMZbFF61QUP8xCi6bOxALHz2xskn+pF5IZSj+ymjofx0zsRlXkLo0jb2HAW6oQGxl0z+Jg8NEWOrxrVj3cv57kRE3CNlgkbWPnW83e/9SF30B74kXgrJgqfGVyy/YC9MroZ1AhPIqx5lhMhxJd8uuP1HG2/77BWBVy+VsNTNkx5u6jVRyNiwM7cP//3xDhk0xRmR/h++wvW1vFvL598US6voKV2GO768fHtj7KoxjtquV0J5tLoLPh5bT3q6GeY0yPtWpCIgCLuyzPQ8EcmAlbIJ7qnpZnT40c9QtNtt/Sw9uKa1WUXqspF2lMjf3zYJCSBCG+X7YGkqz+J37vuQiy0Mb7YZtUTz+cWsPoPPuRcW8/PM7upRiX21AXJF9CfvWNqf8j2ZGT9lE9HSa0l44Q9jb/0jArjEWrX14G6w3EXMZwJCnhFcU09ae1PPH9bDZaEjahTDBH0WdkncOwTGUlSes2ZKBgTUPe3ieL9MoLRv1w4GL0Hk1403o+mr2eloCxMAzsm0GtRLtQJjkY1oi08qNFSL2kGn7zMqAUfZiQo0jxAsVE2+LCLnoD97B/u1B4fpKmMpq05r7XaUo8GBTT7yS72DWzEi0tU1rX53buCGOzrqzpusRKz6bg5IhhcCobAC1yMNV66sDP1ASmr/S9nacwg4kCKpNOXqwlV+AKGYiFQ/El1QIqHa8KH7kDS6EiveXV7LKQx3Rto60uat316Z1OtZe5DHRNU/bw1IQIXmLjYzN9iPkObTjIdhSfdK6eXMcGqJ5DdmxmbK6f4zhdqStarqXAO7mk0KZymqELEWciz3pqxiGPeQHf3sNb8szUWydxoys/e8GrvQjypPmxjx0RLJhtsvlSPFGg3UcWmvZPyfiFQhKFrhjR5jH6/lFwoKpwQp9g5qJdo/oDIha/HQ6S6W9oeOaGphdWxGajeDHI961gSgYGOMd0XUe+x5OxmEF7XOjJr/iLZKZgAyi46DfhY6kcyKkcFZulI9XeheyMHXyHoB+uA5CgIesEW0goeheOIYrsc2W89wPmj+NTa+LMxZGhYFJ1eXlgX5JBNWX0tf/6KFlMKjEkhbxe2RxlhP8VHj6n0eIRX+fsmKhE7MHYPlYM7EcnYgDfFG5/IsmBB/Jx0ETv1LCCvAV7bi0XxYb/Wys8HG7jwaZPNg9t47HtZoHp4+YAE1bL1esWwXdjpg4+18R7XkxzTFDbySyPTvNzqpQV3DnwwF1OtjalB4Ke0YI7nnjB4U4yvGz9j9b5yDN0tW28UOzUDW5cJ1FrLHXVZ2ZYgnzRA+CXv2CTcGYKDocTY0x60Zyfne1v7bVrU1M2zxxzVKLdRsxCsP0wumq8wseHsuIzwo70FtGuUGCrqAtCnN+do2g91CszqbmI9XljeR09ThOt64lTth/zLxK0ILEf+4sNUPYzZ4rZv5XG42EQulh6wB5NbSL4GRPIHnHLGbNZCvfZDInZqxab5MoSQSS1PzU/XGQ2pCYHl+AhIY3t7Jry/u0l1Q/bGvrw71HzVujqsHZoi2TzsjanceRLk79jF7otva7p8DgVEtEQU1dupZ6Umm0Cs1C91M9xF45iXEryd5RnrmWysN4aXI9Bvw4tappRGbHIzU4n9t0LEvf4CLKpbH9hqmGBfFV7GfBlaF3R7qOPzihfYWbu3f/nDmIU3IMNu+MvvBEoGrAllBwv2iQQodm8qGLL6WkH/ght6SITaW2SSlkA5c5TIyLSNyfycUlXalTP2RNZGS0R2GThrloYW43UF0+QOCpDQUUFzF1he19rnDMTv5I53ZugYi0yOJZzzmVGH7TKPgfO1hKbETWR6Skm+1C3u4OnZH6kjwzanbGcdVa00eZz+8MY1etoQ6NAm0zIdaqEEsAOXsGlpwmAG2IQHUykZVDBShpfH9twTAtF/QDRdTob3h4fR2EjUN7UdEHG5N+FL2NREsr3ZW3atcIPT+FAQe956g3+dRP7390jiND4f9g2nwSS8XIlsr7UCe262fv6OvbkUIip/nRjuimygB5w/8mnXkxs8n7KS2vmEjbkfhBjifb5HVSavZyA/0QTvlqdR1+18Y/YHn0Cznhv0e/507OobjFF1xOiap8byKtr3D0/QQ7jb93PJH46QS/IvEulcRkvAoPLDX0g5K3ouZqdggZlufun1A+aI8N6nAPAWGxQZctKv/tDI5DLeiMy9pZyZQ9r88NPK8T7e3NrhW13zE7WONqmnBtsIXvXbEaOoiNnsP9Y6RCv+jB48BmyrewjyziYmC45fPTsp1nqP8ariPbqaTNQBEqEUTx8aGvQTLWGst2Byqoya9qbOl9PmzMMmIi4hLm+yidvBEvpDOmELCXlODuiMgDOt56Fb/cCmXf8u4D6oLcKsuTGY/N3FUPrkH3yosmc+GGHTwh/+dk9Ww6aVL8AHHz9xcI2/9SLF1wXgq5oTsFuqeolZnv3wDJkP8R2wNf/BvfeZiKpYT2OWigVCdQMgAQ8uAiMu9RA2b6hRC7N3PsZfzINOW0TyrQ8RY7cFEvlYwwC7k3LKp3hSMugYk0GDqwu9zp52iSpqyRct50Oer/EtUdijPGDNX3uZWcbsq8onwtQp7jUY5O/NBgq+64SJXzMS8+SxgIUJmJpL7gJeu55N+JEPO0SOs+0Ny9xrYPds67XOyWKwrXKfFDhFDd4HCl3rpJk3OOwRj935aoF52WktGA6ui23u4YBxfsSF+ss3/qBGbMWPNtRY3FFj2gIwuWoSwxdafKzdjmvdib22SkvTjh4vp9pbTgcjhDiXZuq95coYY6lrIC/sLjScThcwZ8kNwvNx7ki36WfG2rDlIB7xCXvV3uzpnh58VQmeA94h7BvzpbqkoMqvDxrIn76fSrko/vC+JusLWELzI8EN6054f+eF+vvLj/MSlUTlTqCm+6+KoMzZFXUf21fOznjKoP7gcrrrgrfXl7LRwfvQDVibF1hTGIo2vDP3is1K9Osl7/0KzttiQCC1n/30AcdYvaplSN5mPUXLdWtBFUTfhRrPW+8tBgadErt9gw9lm4J+jUfqig/xL74yuzYXKL0PB7QZnm09lbxZwCAR1DU+KsaQJZkNOXbVcYDqlpEuIwv4hJ8zdZC0r5fN6aYAYmUQW8r26415vyNQfxc23csLrWctZ0doOAcbu6jk+vnqSRBarZgS+paDfA798AZJ6T6Qcs79dWd5mVSt0l3qSJwaMVzVR7Be/KaH/BF57J2IGrgPhkiqlX8v63jgJg/+8lk9Fd/yBisplajdFsz71mMhwkb+rLVzqeZtbws/wKPvatg4j5uIDs7dhcL7ZZGNWHh9ryVEgW0YkJVvaEDYmtD/4QUaFHfqkWDAJWyVnYJRRjxju8nbAqbtMOJD7vbeIDeuDZ5C9SVg5UdbIzzxsAFVgvUhf+VLgWkMPlwYUCuGw7qnm5V/+FMH/gtM83DVwL7RGdadoetZ9DR5aKvHhNreAHLSVbELoiNKiSQnZs4sA+pQavU7DpT8azCY1SUcDraL0UboeioK3gTvVKqw9vG++cccjg1kdv5CUBVeHjHP+w4egoxgn/tW/eyFewivnLhQe4tZP1Stq8E89QkBu2j0pknfVtC7lk+8D5tNRGvFbuCtt1RCb9CNVjxhQV6SDCTEftZ3zvji1GATbsjmPMTGxPGCCec7ddDRus7gL7+f6CjTH18Xd1KK4CXIc7o/7jRDuDrnRmV+eELcRHWPcQuS4GofBLigNUb+yHVQ2QwnMse9yYRYS3WA1/sTDs8qtkjPk6tOy/fwy7eM53jBgmNZWdi/Nakx4ftgQQuaiPpStXg/PAmH5BlTvLvvwet7vkLI2wa36iMl+5ufd6yE1DXrvGd7ekBw+yUNgvfK8IjFFym4laFLzfn+YF0SDv/+nuCnr9RjwcNAPX/p3nl91vmaTbWqKp3ujbbxJipFN/jIGo6iLx8BdjiCVFrxGxGE+6EW+SgWofS5fugBKzwbRSV1YQ/nme4jgwejuFSLWjjtHu++17amzmS66s38nNDm8b14S5hLOoQG2GGtZU3PWpe9oVk9TIqU6tIzpy0mOKRFR42TgXOhh0dL1UqLJ0rpB/20H/oU5HA2cT1UERjOhsHDMywqrH0/lbHyySM0FcXCO+X9XB332ak/f9EVpIAJHYcB3OfAoDtEdvUSmlQB40bGFLnaIef77uJCeee49MoznQlFLJYw2gsbjN3bHSxJdn3D5ulwSKA7AsabmptQTfcTtT/nMZq/wdDAX77arfYwG8G9gHfbTDDq2vVWfZ+KgH91waoHVvXgN3EJi2VZsBnEXjTdNQsqxdXAVNtm235pdHQD4cs9Y/f4oRFZ8aHybHyHuth51kMbfBcgf98+tt/ihY3KXrYVGYtfxD2MyJu9MIDQuPcFkT7eA7DBNFx4tCWX3sK5iqZSTgpYMTxgd7IYYMNJL8GSHQZEZ0+ql0DjY8UowZlaDGZsSo4eUrxr9Vz1v4pNdm9ysOt5CSnD8RnNC+8gaMjxBQG49vs2P7EP7UaIsSPYHVimW9mpMgx8aldPDNjBQRrgX21ANu89BfTyiRbYwrdFNuv7KY/2HfzxL6+jcT9V6ecIyC6YSJ8JKPrj9863k9F0GEwwX2bFVveNxnCQ2Qdv8gdHAd7u8CBs3H2jZn6cWqhmOwttNd7PVzxkA0qXLcV5TI2xHhMRGgdnwQd130af3/u3kS/9yw9rJU8VA4UxRlrq51O/mCU8+0FETV84g1ZudBuiq16h5WEW+Qzvt0pZ158Wa36gb3Z0YdFdKHa4d5ovMGsJRLRCaKEQ1ywwwhIuj6NE49HesiGfUgWOs/jGqz8DSqYoBJW9PNBmEI+9gI+0/NOj3Gx/A1Ot2yLc7qSUXkZP9+ae7wa4V8oHAc/TwRC0qdWhlskfatplAETrKL1B1350bF/ygyfowNShsiEnbMzJnDMgbRP4Fl6QSCseUqaYHWFYtC0qP+UpX9SXP0DrOYrY6fTKWD8T6EReQOZU3OS9ro4aRJeDj5SjLYNpe5IWuK8Od7TtzTkfDtH3DTWWdNhUdc5Y/auRtUpz8VWGdr6d3NCC9tvjqX/Qk3pGllf+5ov61ojqKTnfEXjygJHtLCzeROr3qv8dOhwExzMjP/5teuseDlTMaPJv1AVqDm8/PcSg7/dxUjkuEFAjjaIxtHuYgp8/m8Sq2BzMxQCU11nG3vazB/NjTru//HZXcsfj3ySF4CWoNQIav63Jin8g4uQULQb95MNnPjTwF18d6h16WlqeBX740z7FYv19Hr83aJ7shhp4uhmLVlwL6IXXDcWYHtlUPIEF3B61ZH1+/4f3T2UykY32UNj4IGr40+8I4ZVbP7lqkQAnfozU+YBTxG+SbwjfsRRSz52zfpliEILPKRSwa2RnMExheFR/+m/AM+TN0lpLv5GOJcaiuvMmbjwQuM4vNg+XtZ86aU3oJm2I3EdKwdh9+uTHr6m9Jc7K1/obgBd7u/YyeTKSF4ELR6Mc8d5oTWMKi6+m9C3OKab1PSfRU9dg+42PVDsEOJ8ej8sA4Zdtqc25T9ZYHJzg4V3n6E4u52j7jNwb3MwEUFcMmpwd7soEAHhw1Fz1Ef6jddmPz6LNJ9WZIC7dBId+KLG1eV5/+zc3eFWrkPrJJ2bzN+s5uD27aJ2vOac7ttP++NGJ13LGTgpqwToeUrme5k0crG5q9tk8EHiePsa49b8NbLt2+sXTfL6a3hvQa+RR4wm0etXXM3BjlYbte+pGYw3nt8LcGJBS9st8ubv3BHhzQjB6VG2/fO+uCx7L1SNCFOj5yi+SX77CKA+0era4zRscrx+ecMqw9/haiTK4fqYrX6jH+UItmCT+Ho2K9fQm7Xq34FK+rkT5dsAYO5oOsO/vJ/TkNcAm89HocCxLCz0Np/6Nv4E/fQ/nzKy3MORsKBnFAe913ur7Ad4JJNe1d9NWDjw2HUTyWy9sSO+1lxXsbqDQnzW1x9kytit+UBab+RRNVDcmGHAcLGlaU+uc7/r1+wxshifBTv12oung8T6cPcvBB+9oAnGQNyUw/IQjm9Yv+8X7ptKfPunNnQ6mVY8AeAxOa3zm+1H5JhzkCN9j7UaPjN+acgbdC7dQndqhJ8D7rYQOF2C6Pp8N6/yADTNypAphXX8ZsnXI2zuO+sVa1zjdmq76iyfmaF/ASA+z9acvOqteMN3U4xG63K3AfhPVbLZTMYW8pBjUBbsnYB+ps+F8S7/4MAx+zUrZa+EiazlNkACiKQkoD9b1olckverpdeJ45Vjun3/6EvO/+QB150ZxQM9atO4nKjDYHDc4eZ0PYKt+KgWqYwipNsLOYNzuSVTNzAFZhL2Q0zOWUoj20/DHnwZnUWJgKpKFi9fDY1OV6y2Mt61KzW+4j+aX/+mUlY9jt3ye+3KR0wy84Xqnabzz9fyzH0nzT+sxhsCbms2YAXcmZ2xoHuctg5PFYBZtHwdxOXgsZgmCrMQLqujnUw/9YlYKr6AaW0cb1QtnSQqEu01PlmT/zhfP56ZffsGX2/LO2cqPwO0iHJB0yQ/GYvFJCn/7OeWK30e7rBdoSbgi7cpPvrZwLGH4lB50FxlOPepaYcI1HuJdVSjRct97CRC82iDNx4trluXXBExbPvrhJ7A4erjAHx744Z1B3M6cuu6f0uh9bOtljMQ//fUPjw3HTYqgjbg7DuKd2P+N/+yeVGKrvZ9PdJ8p8BBJOdZ/+vZPj05OuozNE5fnJLrGrSrIIiRg1QcWXeB5GFePGclxwvJBjj8ZrI7vAVuyXHisGh0E1/FTVKfAW3DV3sC3PTPs/PSWp/EZ1B+/cF9n9tPPQ9iGmCDJqs/sX31oV85INKU0X5gtiXD8XmusVUME2CJWCD6pDqlzaGlOeOTy8EGd+Mff2SK0zhsGfOGTShmnaPnpa+HLPuNTPQfR4D3cCtav7EQDnhFj8d9qCfrBPBB1zZfCypekyCE9xqs/r3jRB/Z76fCKx3uaztsJ8uJlS+11vGQKAgWoxjMjYcQJNatKR4Qrv0IbqJg5z0RBByHd2Ej4zFI/fD9lpf6vMwXCf58p0EB3pPZVJd7CwysPm3CIaI6Si8fkR+6DaNYsmrb7R74MrodgeN871DF7k/GxIDVQOzwFejgf3tEkuV4J1PBywrvxfjWW6HPS1bj3Xuhz3nJg2B7PCqT3g4nRhfq5IHt2A/nPY0ve593WY690btRt7j1oEFit0ZvGNMGo2d+JrNYHb152FEHXSjUiyi/d4+dTdQO63lBsr+ObuquTQhq4MmGP4N4POs9SiPIgp26NEzbqAJTK86CM2BoaqSYX4/uGVVCYNJjeM5ufyqORD/oU4MfrpfV8L0wVWD5ShzZGAHqiD4cGPp28wPj4nnu2x58GvEoOEZktDWCvVH7DeLmkGAlmkAsSfytgueCB+h+266ft5xSCoi8GjF8vrRZPozLAb/HtsW4eK2+SPjuoct9LQ219kRgVDZeAMw417CnSp14Q3w9wz1chdVQQ5YPJ3xZYQNDivZ670fz+OCKYl0uETbHQPRYqggSXyuHJVrx9jEkytZtqxbc7fmwGPho4OE1wPPAiDZ/v0lgWHTSKpActPefLq58M8tRg2eoXGii7ypvH14v7+z06pWuPsFdRynJw0+gZ9ClYzuu92LT4yNjcw1M/fWHmw0YWjxjzFsgXyPcNzOVzh21Fqfp+Wmv7jBe21h7dVf3HgVMK3e0YUhRAypjx2TVQC8Ie7xwV5yz7OBU0qdUQIV/2/fy4jBncX/oCu1HUg4Gmvgs/2I5wfJavgLJB8OEtQQX1+6XJWXQZTbBB3IRtV9uDRX/7JThr04LNa3mMZtnTGsg3xZmMHb9EC+TrtzpUuCPP2FIBhQV8Kx2/v2J0f/ZsejCywDtiF7TZEgLekRu+YfJGD8LhyenF7thIIO6dF7atXW1MyylyYb/TdSTy7oktwuvgrrscGpFeletN52JUwOf4OuK1TlFE29BuoIvdlFqHL/dbXx5ai6gjYHsoFwV938GkfHyR+tqd2aIZzxZKF+mLs2d+N0Y/2VRgOn85jFW78silbHWgmWVED8bkMvZOuyPM5KeDXX4DAPmQHbfZalKCdbRc2dx82gJW2uODbjFXRIPlyg18hSVPpui7yZfNuDTwe5YjulNExKhajKFCCIsJwIvZb69ulsGPHHB0dwIx+7IiicHhK7nYmjc2+ybwmwL2DSAC42NmlH93PBycp4VYIZxyJjrBAgUz6QmI5k8+3sJjqBrXj47eRd4Z7PnoGnDwyhdOnFtuTHG6uFD91ga2up2RE6+woLo8kEX9ualZFx4HCO6WtsG+Em2M5u7KJTzxRY79L+f2tIRS/JtPisvqVi9YeRRA4IMdXccLpjhV1nOeaI+2J7vux+GhILh1OkKk/mz1iyLoPoz2o0TYEHTesCgXArPqfKHp5quy2TlFFgz6VMFatPY3jgFo4VS9P2S73M2Ib+GzggC9GD3YFmSsfMwS/CSxhVNF0XseOVYGo+Zwx946H5Q3vgn8JIlF5oiSnnakTWFavGRqRmS99+lpBOwRVEisn9dzbG4owunLI2zT2InYSHaL+oqNF+qexsQWamQI7t+mRLgLHaKWFgcEN2+LUOTNb/aFbtbC8e3n6/zW0VyQyYStqKmEN2a7F79jHauLHhXUyXKnXzr2zmBl+XesGcPWm7NC0IF7UGbqDw6rp9xb74Gatxs18FGISJtsQsVIzROOyuOO8ZqgEzXHvott30OM2eXuCO1JKajhnZZ6Ug0PAT7RAZq6mx0JW76fIHKWB5kS6duPBZkskGBtwDdXwGAuTnMHL/2woxdSPPsZjXEIHxOHsWH0cjQUboWgBtojzZ9O6ZGABzqo+YRQ81R1jLWFRcDRSlyKH+zpzeSRv+FLcrU/e1g6RlKAw6j5i/czx7ACsn5PURjuGm+gBfYVKwg7IoQTB1h/yjroe8SgBt/IxuQNgghBRTDVjLgDFKZzBXNqldhctn09vtxwgNI1z7AzVfd6mE7zAk9j2KLUTUNvcl2jhY5+zqipn3NvQaTsVDE+XLDtTlxE549TgNU/kTps8pzc9CGGZ/1UU2c7f+ol/JQxvBe0QsIa/xeO7CQVTXxLpp2k5u/ZCTjwuZ5bvHcXOZpH+1NCGzgfar7uaT09Ta2CefkKqVtIH/Zbb+jvNwFRl6zvv1uF8H/xUgyLJ6DueprlpOUCxZlm1ovxUpEkhu83eR4WK1qOnl0p7F7ssCWrJJ+ZcB3gznvn1FUy32PeI0pgbKgM+4gP64XpwxFuPq8Htdbns1/8DLyCIk64yfU0pNUEu+XdYnRYGmMeHguChp4fsa7f9zlJnXsC7FoV0Nx3t2gOh3cMzvioUdOpbY8N/M2G3PS8YA3wGpie6z3XdTwEKNKhZuagJrCohhipNZINGgDgwuvEHZFcZH4k+Ed4g43MH3Eh9Qbb0rF24fjQWqxvBrGnm1Ar1VdY8Rjxw85jqtC2yp+/rviGyfDUwm/R99T0Lk9GzUFIgPhdUrxvD1lOFlvswBeNJXaSm8UYPTaDsq4Xteyh6he5KGxwP2/cnz8a08fe6kBsjAqbszGDac2fYN80B2xyq0b+STMIemfKaHDau2zxwD6DBj0adDcNdUTq1BPXWmCIJgLn9bP2iAbwlE88DSrRZ6v9taqQV3esvXapMZ0etfuzZ2oqwuwxWY+XX34jNd9cjUUs4KT0Ry7Auo0bNklH1EALvDNq8P4AZpGUg3rQlwC11q72voXCoV88pbhKkog5UEpVw7YtfPwEnDckwgn+xod37hnU0wY+C3jaPlTqLMklX/rj/a3UoDmTeIuUfszSGYLbhWIEFmXV/MjVV8bjM0PC2jeI7TFtQODdKMW6gPPlQ3YQFvttiTZPrjMEBm7TtvdOHrXlQjCWKrQnOJ177g8fTkF5tdba4S4+LMJUk9GQeCgI40LdvVPmrLoefbVMLZ8i56UxKpaODaiZPbFF0iUn13KXQuuOBLpXrW+0DKbmqmLYvPHef4nGZJ7yI3wAnK54u2CLAoLwb/6CCe37gYKghUpB76Qbd0k0bxyow188gKXv5QILj0hdx0uDsnuDURmXBc6t5RBm9Nd8iqDOwb5UUuo23SHnPy/1BkXT8fE+dUNvSsBd/+FJ8or40pi50RShOMwK9rMr6cdRH25AI/SDg9dO+PnnG2b9gdLDqPPeNPM1hLsmcLE2oQNjX0UVoVR+gt/7ouXsGiEooNzS/efy7JcHYEcoXZQvUvN2A/ro1Glw5Q+obj5HwFCznZShCjrss+nL5qUYO7B5m4Rqa76Y8ceRoKzGCfY3BOcDUm0fPKf6huTuwtfTxIMQpn1V4UDZ6cbUQV2BeGNfsGNtXTYxz17Ajz9o0zv26CnUWnAPwjdh3imsl+PFahXZOU1UR4sMiLjjEmAvOSayZCegt0snVJJtn5OmGUtjzacWvBF5RzbTIe1ndLyLcK0GR3/jW1TlkcCjcx5+/MpbzwwloAmMEwJ9bIOlLF4lFE3PX/21A9NJHwiI9YeOvIDrGNs7QwkOEAxEyBLJW5TUmOD98gCE3XeXfvXvFMiiSYn0SWo2i6fqCF/eeYf1JI28EXzaDPbRhuKgbf18wXycQozDHVGh73kzNrVM5Q5Su9rD4lG7dI4wfc0D2WwTvWc/fLJRjyV+bJOqH37xmFlHTNPH1PXMKo9v+Ip3L+ouN6sfr8KUwiI+KjQ0W5Qzdffm4WDrZwK9ABqDWu46+BTDEB+IGAAm2R9brYXtA7lRn3rfuNy94fv6PKBhspN86nSkw4TALTbnvPB+/vubD6x9tQyMHh+E8Od/uDvLHqXrHpv3trZ0z8YoX85HK1FgfrL/4ilNP6UN/SZZsNcPZ2P2k22lFP1twCho6ppsxuWtGq1+w0Ymkn4tEnyDkU4ShI+cyubdw0xVNIktoTau+h+elvXbVsL2h0we7U9ZCw1NemAtKJL+D9/qN0HCu7Ua8pxCd4Hnh+/R489fGmHS1P3xusUGdMOcDKNJwJSnPD2QYlfz1tof3OkNFS2bIenns85EePv0GeGkvmZLFWoT+B7uMkb1wPeTZNo3wH3PDd6veIAJ5fEGnS33xi6OHW9RQm1QbbkTqcdCEk2TwiXgcV1u9JCA0qNtgYiy8gkCpOFZT8draanVGGc03jf7SHTSqoRs+03oXsNmvugOsuBvft1zEYMlHOsUnqdXhI3AxNGw92wFEr5IiJgIRzYF73i9U2DZaz7cgW1hhKaaHZWcqLe+8eb04cc/PQBb+tqrq+CBrWjxraAojG/eyLGDBLPvm0PPehAZw7s3hK3lftDWSxqPZezQSWv+paeV/826MN1UoiJC3XEn5mx5Ky4wWu32w1f5+B59SVnjNfWzK+pnWyGc8ssPNJmzfPjxxRW/YisRJjYKF74F549E8X7aP8CU87cBxqlroJnv38bKpwcQy82GOkU25B0mpwTszmzCOG223uIJegz39yymwWt3BtOdcSaw9YZgpHkjmHcPP4OXl+rhIG8fbHGEFsKNhVL8ww/j5r0U8MVkgA+XyI9YUR4r9Rff7e9zYF+OYQmWR/FFgDXdwZylMgfkC3XJ8mBGLjppV8EwsDnq7mWJTUmRNOomcWuss8QEEzK8GBbB/kC1s4nZhMrdom7umUtEolnGVnq93lCvKgUfnKqL2MqvoaY6O4xuey76i1c79A9p57KtKs+s4QuiIQqSoomAyMkExQP2ABEBETkkQK5+D+b6mn9vN+cYa7g4pKre96mQ+qh/66+cjkNXA+SCy7yj4PIpp6cMXYNeZd42VbzWyT4VWuKDeW8nN2Y4tSbqf68TVfsVSkZsGBeUEr2jwltW0C9GKIXkIJS4csrGK+51aYF90mx2vkWhwZ3XBKrwsmJmVKQq5w/NK5VskzfbvfMR8aRfB+h+22lHxbGNf/EAarDJ6TbTNUOyjLOLdr1aMGPxg5+LgzHYsr1nC69J+kumYpjQvsNjK4rlGNNcULfj0pMzqzuaG3dywdZrSvaB33fjyv62sBJzm6VLPaDBHS+zC2qVWbIjdvMS73CAbc/2axmSRQ+clcv5cSQllh1vWvybcolsgzwXffaPzyx+kRDpVpRfXK1mSDQKWFp4Hb+djPiPHzHzKb3C4a+e451+YJj/4E8fCuBEWsKCOR74+HhKAMqh7JbZBLY3b6PEAk89//Cm+awR7ZY9Ocv6xdIfLxwV4QLCy4yZ/S4PyTSv3zqsUdYQq50Q+tPn6H68pOww7W6oC8Uyh2ajq8Rc3tevq/0aGb/yyPavqUlGVKcaEinL/niaMZpe5EP4UGzmXJqjMd7PjgvVXP0wOgou6qPI99Gy3mlEuJ5M2R162Hgxpzz9eYm0J9962T+sMd1ePcN5Z8Q3uL6wR/aTs/PWByq7qMiQRufsvuajQr4Ccka6YuSj+pxGeUDREl/LZwyjMdf0dIZTtsaMbLd3PmrnnQ+r4DEQZ3XP0fTMiKUUtckZvrM+GV/BcAZqVhrTl3w9XBzsw9PMMfGXLZHjc0DLicHhTKOFF7Z/8SiKy57ULw28Yru795CcPRkfjeuHj+KgLLNOHkc6ry7tHz+4qGj9A1qFdET9sr7QwtvodC285B9PMgKxJZpxcRGXXpMIcvDTGUm9YzkNr1YB3Lgm8b/83bX3vnYBVUTDU6sYfIqjSUB/+WZHt3U3v7Obj6JidPFvEjyPQbVqkKB7MwU/0BLRGS4ZuEyjLJVYX1J8H85KhmLpj4cl08/4UdDo8MUIBSEaLv2hB6uKGvZQy68x3CG20N0y10SPx1XYPgwXlPjRcrxJv0EiVvlJU00r3rHdqbQ7LqxPN0gzYbPwnQZNX2Orwf7AQrzq7SvfPB9BjD6yrbFUumuJ2KHldJLr+knM8kw6Mf8+buiPF6fSPU9GU7zMEGjfC5Zt3/fQhZ5seDzEMzPorkR9tNYbVT4IGdHIeQzH4RzE6r/69c7WnF743QZ7AB9A4L/bbMjhcN8l6/VdbKF84hELn9eU8Ct1Nn/rgYT2oIXrS76rkKrJV/LS1yxZ/LoCi55kxlny+Ny4WxviXKyZfhe1rof+ZaLfPB4w0vyum5thbmD3EzRyVB40oUdlY6HPr6+JVq9PiJXgRpAeJhM3up6HP55lF1A9J6ObCteIT18nhc1b1+g2P/6Mf/wuzRO+6NFmWU+sRYPU3Yl3hSDZvFHaIDQ3MXGqKvLon18/F7OHt3tj8lj8dXL0m+cDnW1iolnKPhlqk3hN/vzGn99WxJuGmM+mr9FwcX+DYxcreHo4b84jXp/hpPqc+fS67eg7y3wl/lUCXr+mJvx1uVPA6Xl5YuFz+Hjj++vqKHhpA8s078il/v6kfzxk+dzW6hY+a4M4+AMh38nqFn7UqAufoltHD9F8CuAMy3hzojd25M2mXkXoNb+0Jf/oxtf9fHoIiFUs9bIMWeKgGU5imuDbfF97zKrDBnptpOTBZ5PPY+3HkCXFmxzmZxXOV1PzoXdKix33dlF2f/o3/71ttu/YgKarjkQgv9eNHcNTgKYwj+R/68c9vc6G+Jf/0iEOsLLoqYk+guKPv7AdD9bdugzEGF4n3Vy+cYFynGgjw/OqusRf4m9oerWCMN22TBvxl49+3sQoq8ie7VY48XiuoxSZm+BOkuHw6brRPV+QdcmezA+WcZy3VwHqwv/pGL9ygwVRqMFX6/bMEgvBG8lLyRB+0JbpPj6UpWuzAC3rjRzE4G1M8H1YYD/mnGmn/eBNdzib8McnonD+eH/8H7U9qrHcDTPi1eego6U/QmzbX2YD8vsZjCKssVzed96mEmfhL/+zfXNQQhZz0iLN2pnMLJQymbrarGH61QrzHqXF+St3fBC/Twm3+7dfLv7CBbzTDsR2o9mbByIA+sfvdi8ezpWoACx+E0+LPxu1yD8DCUa+8KVPwtrTW4DqTEPirJYeM853I+jJ9fDHN/ikusYNpnNiL/00K+To5Sl/epD52aSgP70DzuusEzzs2/LP3wLfuB+yX/zclKDKhtsztTCHIlv4wiiqw5f5WFr0OLeM2EbBYYPI4YY0T1qtXR3G3waTA6zScJLuww0ev/HJjKV/tv4EzxH+6puszxHvCYwKuj0zi+zWSVb+02d//G/3F3+nte6qf/0fo0gPiOf2pgCffhAjS39k3qxl95/e09q0CcffKxnhNT81dsyk1puM9dsGGlwRIWqOw58tdvI/vvOsfr9yXOl9hRae8I9/8PBU6KA8cU90l98Nvrt9ZeSs8BEv9S2cnFNibu/P4EsuO5WiSbmtYuR/1iXz9/GqXPybqy75ig4Lj6DHu1hB2N1NsuiRkDVr10T6CBcSi8QIJ5+rgJSutZilVhVipiHP6DMnLpZeLUoGa+3mKA/ED1v6gyXPPwByLOsRwa/rpxtcunRulm+aFp7gSRpXG5SJXoAb1q+7cennoU8S+lge7DJpH7WZwmW+RgQ7nxxRQfQF2KDjhcpby0ZLP9aHLpejZc/DKZmru1iAdQza/3iu+Aguf/mNNks8/MvHdaTfKGSTwgcz+4xgn3SbGe7WShaeMcLC+4huieK/fuI2lrUITxKJwsmKfAuu3g7Ryb0m3YS/D4yW58Vsv0TGvH7sdDXVyufCa77hFBrnVN2M4JHMfr9KntaFAtV+aslRiCbvz9/89Y9xeDVmb4762wYWf0HswS7D/ti/fIRli5BlfaFZq0tbXWUKYlacfsNFz99AkEaBHFqpM9hff/Dx1vdkJ7cN4jflICiL/mHEbHqP68E1B/d284huNjQcLqqtqdYs6uTcXgRv2kdJjD6POSHGEj/jjo4X4OOD0THLCjR+DO8MuHhgsvh3NLvnyFZyPfEWHrjMHnmuRPTH6/fv6mPwu7vVYUShS1cDsPIvf8Kx8kLir8u6HMTIEyCt3R/De6ENp8NdHJHUmDax6thHmwt/uWjRK2Th6WhYOaApdTCzRR+8k3mszQi+TP8x4iZNyVdrXQd0CdYEv3NaTm0e/fP3mLfxkMwWnAQ0ntuUmGO374ajW1j/vz0Fm/+9p+B8jBkz2kHqxvHhjsBn8c5u0pom1JutC3yvF49dpShC0/d701FTsiPTTOPJJYkMMkKviLCj/hHD8fTdpYrcRT2xy3tpTCZqb+DmwzKeaB8mfH1+3cAufxJeVdMLrdfT9oLet1Rlh8OrQM3h/siBh0nNjuvr2+iHjCuoSQ8ubqOK8uaeRS0s14uTTbTrREPYC1B2OBlWcoC7X1g5/13vHt1ffJqkIgWjO7ypdLyuusFEFwssmp3oF8jD63UhxWAdkozeLrVeigVWqVK9I5+cfq2MaH7WZ5iPNxVPJTeMz/XtNOBpFhD/QwJPOtx3AJts9cX9YLbJaKJLgez0EGG0+2jdmrQahcFkJtvHxrGcxPCE4SA2Oq4062tMxPNNYPLsES8kWTIeGckhtciOOW7iJNN5/8OwndodcX6/NJxmKfXhE00CIfnaQPzT4kpZN45JdCTeDY77UgM53GBiNX7ozd27SpEOuk3c/CYY816WU7gy0MjTzlJjzsetDSl+xyzYiEYoneuyhR21JxYJY4JaMYxGGI7Gk/nKcraoWmsbOJrzhu1iswn5yT6NaHu+Rcy5mRWaPm0HqHX85RwH1ShHmuoZ+E/hTMi+4IhnlyEHqx4OVNSdJJzzEz1DoMUpcaV1X/LnNQggeaU7St1NZ3DjubspPX4xYhTyM5nwkQWKd+9iWpz7suPPq6uj+vAICD5odz6UfnMD6eNFxJmez45zcXTBKJSAaZ7ioM3yPrfmr+dEu35nND+SnYjEk3oh5L5nfC4wiOA6WCSawt1wE9aHGnZrMSJ+2HOeoWYrgs2thnhjSrxpZQhnmDAnzHjsvog6l0iAbE42zGt75PFtV2zQKDlHYsinno8SWadAfteGuP5klXPwm3VU198Jo82NdfN9FZpwOuwl3Axm77GT7eVICPcrOr1Uxrl7ikRoncD99z7WupDMUPTtQPaq8+GjWjsBOFNzI8khs43piI0ZsBFqGJ381mPZcjZgHul3dqBV4TWGuuqRx04prtdbhCZdKPTVb2ptpq+6Mhx7LRzRlQka2/26Ex9f55MMxN2tiHWp9W6tWqqAHHfEzGb2I5zCvU8VQbFnZj6Tc/ILfhWGm3DKmFZexa4dt4IAcZPNZKd/tuXyvi4Q794HyvO14/HaVjWQns+JWcFIwprCplWVYFNQ5KUbY+JiOysNijjdWpVqjD/j3SvnYxqSy/NphqNzMSrwnzIl2mCScr6WB1nd2+jC9jj4JH30/MhIUJazPcvb0HXHI43ALllCjjzRQkpTp4IwrHLmze91khkpytG2OIsURLnrJsH8adAR9fN3/yW7r+IWZN/+0rm4WN6PeL6F4kC50M0ENaLE81ogv3vDsLR2+di/dBteb6tf4pMbXCL3Br2xktGtleqh+LyeajX56jnThKYqxzgWU5RL3oXseWLwsfk4BZTzrOD1Z9CNcdvbLZSehJkxZlXHB/VMlVT1Azydj6kx3/IsRW+r3jNP8H6IeQE10VCZJ2KZgmZw/ZWdYVp3d6q0donGymMz7PDaZjsp7kt+PEKLjmmW0s9zq6E5rEmFUtXu2f473sL17sUb8L6Wh1fHK3hs/0DLWZaXB8P9zkHToL43QIsqIX/xQF/nkw7UuN2Ybisqn8dH5MIzTa/s6F+bkHbvPkPTLd2QoPO+fDwO2kY9ppHMzKRoy0FxYxuelSYy11Q/4Vx/ZwvF+eTj7XcUy7HALAVNIhYVlnxAl/uHzLg9iemoacej57yRN0IYMPNDeDfdM0eAq5S/CBFjFA4/432G0FO2zB+MUzJi76ehy3T84g+rf+U4bqUNmGfjSOmtUZKG9GQDxTH1mXE/fL2BeOcLvHbcWN53i2bclxn8tusHwwGbeR+BPAMPqzOzN6B0tNUFC5b8SVd9rRhjfvYaJE6XN9tdHMrnnxFXivj73ogh+HU4tzoT0er0G4gTGx6fcd9lyGNXjYqizLxJMP0cuvvPZ0RwmdE462Ug5nOzJl4Y3JP5IEkZIGGZq+M953LI+BSowV1Q2PGltiX/frGMQk+60um9uXezzzobBn+1pUpUABqCn5LBWTyGZC/FLp/i7diAP0gundF6NMbgd4vhEb8ldnjsLIOFe28DbpNtibnEJ7dvLx9+59uLHU7HCk3u/NThutrIzN4LnA9b/2uC/jxRtpcimdNfVS3fEQ46OT7lKhnzUdFgSDPM/MczR8MUvWp07+GC17ExlPyWKzm4+RQy+9rYCf9VZQ8T3nC6uh/efI6e/IzYTjbJITydjZkpPwqeZgKJXq8n+qs36O/+/MdT46JgmgL6frwXbldtjeb9A4mANlJNDvLZNGZtF1oo0XYn5s9Cy2fSWwI4W+Qxqz345TRkNwFeo1qRHfvM4azWWqT2A4+IbitPPjf7bwHPS/fFm2Bk4bx79QBH1KrEvf2u3r/6vw+aFxZ1ByVMIq8WScd+x25Z+jJYW2g52H5gEjuk37Jv9Y3w7/nvfq3Mh5Mdt8jmZsPM6/fkbSRaABhG4xHTk2/GmJ+YK1dumpNbfZ6Tv/qEqIKf/+mRRc8hTQpaYl0+Tjeo1pci6XozGQFyLecI3i3ssBCww/EWdfOqqLCy1VceVd3k0E3NZ2eqtJUCYjz0nI8F/mawLUjA3H7XdRNq5jP41rknOzcOOT8fmI6WfECyJX4nM72nMN6hZzoSJW+25NaHuCluWNlZD6M14+CmpjfvybyK824grd2rblPtyH1ZX/34eGigyCeZ+IMehfMRn2qIUDgz0teKVz8giRXsfR7kyONvSHe5k6HHVHXMKkIv+b1HS4Txu64oX+J7nKStDavdcCK+7khoQE2lQb0xLXLejg6X3LmNQO6ygP3F11wQw1TFx6hjgDbmk1ZkIlr0GRbW8irs2kIrYOvSK3Neah/+XrzTQDDIgbnZcxPyw90R/vLb3/NBs4FGGzYvw2PHi/MruRdQCyTYCMy5+aty4leIgIcvl+D4ZZX8az024MSdxQ5iIiFqqIKIwiSwiGuDH05Vp2VqZBacokVPSw8kZPCm5oolzp3xfv8Q6T89jRvvVg7aLiygV30Hr1e498b9A3pwd8+W7Ib33hP/6kdxjBqmiXLAuRi6FtJWT8T0W3sq/+o1iLqtkZP0CLvemw8YkGYYTLv3W2/Y+sz68xfkiHBTDt7pQYHI/ZrprX1IxosuYxB1V2MYi1uPfpzcR0XfDARbK4H/9NfLBsOTUtoedK9r4+0bIJAuB2IkZuoNgypb6IQFhx3fmznk1iOT0QlLO2Lfyx0fo6dog+P27TLPGHi/7bUWzldtZot/CYdJGntoyt+PHeTgbEz2uhCgHU1KvJrVHlc/2x4xdzfRLU90QzrXXQNn8ZawQ9O+Oz5FNwoyutr/7oetz/cbbDZawpynbBljeq/z7UvuXLyqhznpfdxQcJviyUiGjMVvOAIs7wtP2/ASTjJ9umglN0DIQ/t13F4XprroY+YlxqqbI/g1yGNhSlxT3YeSYJ5k8FV8Z/brpS75twvAPJsTc854KjuWVC341iXAfHx65ehw2wdxClTiZhlJJncug+2iT8j+Zlod2wR6jJ58tWDTi5mMxlNvQfo4EcHt4ee94pjbYISlQVskht1mksYAZG6GzD/yPpmYUtiwXB/bdd8qoWYcXZD1shu6NV83xIPfVEFx1Tr22hchmr0ZXwBw6WOXrx7hP33kjtgkviidO+6zS6qqx92N4PU2Stp+tbnAfNWqpZ5EaPbZFMOf38TUCrxZPj4iGMy5IUfVdpKfWtsbWKa+YpWViTE5l1Msz+Jxz5zvNHTzJnA38Fef8UGTEA1+ir6tN3pB3OrohuO2m2PQq9jCSkCTbg73y7l0mX8gB1qM3tjqAsA6OvsUrrW46P9rrm5u8w1D2HPEN0HQQLsrl+/yvUv5O+Kzpi7xQ3CWJt24CR6Anse9TSfV+Zaz8dzNaC/v10w/6MRrX/xygSNX70RvDzhpt115Rt5hLphxeFUl5+JPgbN4SUi8+h2XnvMQw3TLNlh+PvVyc/oue6qns4rFUXl745B92j99gldhsO6GWbr44OOXilHTHNEsikcRcCtl7JAhq9z0K+GG/u5/vTqG3lzbX6z8/Xv+l/+X9aEu8U2n2CDh2r7RG1Lke0rX6L5C7HisY5DLwWKkHs7JxMWtBlnRWuTPz7MHxALUL+NMp+H98ShN0A2qbbllvu7c0ay4XorqQybifsnPk72efLWaQpPs3Xg2pvUZKFibz4rsAk9D85s8LiD+GoVZt0bli7/GyG3SLfn7vYlfXzJcHnPAfG3fdrNMcfpPz9tJYSOxIB6gy0ktyG59tULmXNwAPTnqqXS3+mRs36hCG7Ls6V74xOidYhc+UhEtf9OS4b7TkN1lH2JRi3ejfPQ1IDJdYxEGJ2nVT6cgZ6pmtu++RffHT1Cm4Irs/vTZ4R41CD6VxvBaXiXD/gGB8nBpSVwk8m5sLFMBla8VLJa3jvNiaEeI0GmmaiKUf/Uihnh0H8S5+a/up7iGopo/ypn9fBblwkd8EGI4Ed0wd564jx8YGt8/M/3cG50o0XIDu1sVsoeb/MLJW0YO3o+UEGutiKi35NJUNS07LP4hR3QzrhRgb9shR/1bh1MauRXarZezeOk+Lv/0CLytak8Ou8oJR3s9NcqTb3uy+He+ibcyhmt0jpnvyeey/X6fFSqOYY6LxX8xe72vUPK6bZmjFTs+m8seqW8v/9jhoR2Nzg1fuRI36Yyj0++djG2xEwEd6I957XAxuETbAv22isr2/tXj832VmKhjpKW5uHU4X09jqt6y1Zr5C++ZCmLkUDyPywzmI+tmprx7GPpTQWHQ5XAqqObCh8nXRe94HRdMr4WL3m3pmn3GbnxAW0BN3Bh3zuONqOIamWp3hUPfb/nXjT6rNESVYEfwlnUd/9PTi35Y6t/DG6maaiDtBYnh7Wh2ks9aCpn3OTOzvFdo0oqbCIM5mKRKSqMcP04sguPSlljnzubDbfUe1T996tbnsesF852p9Wt3JoaXbrux9JsRCvE80g+rpLIrsBgh9dI9qOgptif12VxD/Dh82J8fkVbG10WK47+IY1VP47f1vxakn6Jd+FnpTcZT9+HYhyNVbi01RvuSm+oSX3S8Nh6n91ViAdnJZyx5zxFNPm4C9NGaEwsfGuXze7w0kH9vGrHyaOLTi1sFbLfSmbmr1kIi7jNLGVDDyM6/1eU4S9Yyq4S9mZU9ZWO6r8ICrlobkUPF1+EkkXoE6dg+ia3wGrF97DRgdPiHZcK0bsb9E6Nf4XDm7YtruegFBXFP7sg+WeXelK1XAjLQTqXS1Zs5d0LQ0cKHmHHyj13vrC1ZsX0/Z4QWfjlXnaarZSHr7I8frO9ZgCEXBJ0cz6RBUzkcbKh+9POn13hfYJYBbaeeGXc79+Y4vpvwMHSVrsb0GP42wSkHtdLrP/+aDOVwcCEKFY3p/uR6f/Ub3cX6ToXseSnnAtMaQk94MiMMYs4OdwdUJR8Foqfxp6PuPFny8j7pdsibbnbnVoQlP9GxvNcdl8hHBnQYj0zbQOaxqu0sYL9wg9eI7L2xIJ4gM7kz8PjK4+SnfuYK/Yrj8t07TjuuC7EMYZmIuHvsqrDrNRNDFZ9E5pyPcjdnlxdFB7HO2J59gpLO0rFAjZlUmIencOGLhwy6WliTfcl3ofQe96AkQlswHzrO+9rxa7A25sLzDm8+WI9ag8tWuxJNaMxufdHfuXoNyoDZR/Hr8Ul61xAH4sguSdF2fL5Fi/7+kw8Xr1yH5iYD9sgK5lbYSDZVZ+vA582d+M/4itajsm//eBreXOqim+RjbsHm8HDI3/NXgl85/uUrCh98N5j+ygJYyX2+5G+p5L+KYLDqrsST+4jRcK77HIQ5aSi8H4D4epIXPW6tiOmh97IH3unRfIzfeAxpZ8yHux6Bmt5WZCc9eDfBIc6Qj8s3+3s+4kUffdXdvVpmJ/kNcTe8F//4jIMjIRl04ZjDeBd6Ym8gLudVoaSw3U4Ui9fv5PXxdrL+/n+KotUczlfdr+ByNlvil5dbOEaZHiN//Twy84fjcvGH/V8+oI9few05v750pEkXTF656KJ1Y/kprJmCKRKTmzHvXtyHa1CJVFa4xVnGWxvy70XDauAW3ZRGeg3wqTW85Ulh9P1q5cPiV//y3z//Df0wiExjNvAxjTxdudWDxuxZ8LsZDrGO4sf+g1G+3necuCD88W+8fqnYGwuq1crd0n4sFLxjKEpEzeCYFhozj5ygqW7sWXkUoU7c7ViHQ1PNovqxkUWV/C55v/eIN7ARbiI59LXa9WEV6X+8FvPdx/TYqrQDZYeVnorhEIT91l/PoDhnA8Pjk3QcOTRHntD8yPHXhuUcVpqiRl2a4X98/O/9LvmfvVI1K/nWfwlbjxGZ8qaZksGdrxr81WtcXDTeilyqIOLm+1/9ls71VgaNUY8t+sdrLXnfI9l87phhNHIi5ic1hln03pjL5z1ff5y8UZ1WDyna3Eg5Cmboq3a6j5h9+r3Dwb7VN1jbQslsZR5Q74TqRXn29yPBaZyHYwTyiJZ4IniCMuFX/Ryp6N7taV/e7GTax26ulGH1YKfPWujGe36/QRm+TkwP6MvgLLnFyvkYMczbQSq/3ZsUitTLBTua76+38EsLPbYciH1fZgnE262FgsjU//wbkjZEtJGezgb5Wx+90l0VxTaTGauXg9RN1uM+I5u7Pjv6F7LwAO8G1+DZs0NfP7tpORkfonCT0pXRhMb83KQ6WvI1nhEXDD5kRETn/hvQcEznbrbkEOB+vZ3pLEm6IXoz8aHoPw79BW6V0PQ+tGB4QoWVXje7mbT24geGmRjtcO9GaIiAtltlw9z08TN6UcQU3Y89Yc/IysqRqscZjscDYXZ5cz3pPaYYcDspWF786pzxtkaH/bZhRsUlbwpcVsHe0VK2wyfNGzdB48N1NYzEXvjWv/6M8thxsp/yNpnFUC8A1tcRS6mAjIU31hDnyzkJi76QvtZJVPc2yGwvPU6cWvKxV+QuDcgfX+rbIjKV5feZFg6zMewf4ln946nnxhcRDfdxAW/qlszWrH0yxjHF6KGrD7J7y7+SNh+7gVZ+HIi/5Ltulzvanz8iuis5CQ8rO/3Lj39+ldPomY3/ntdx5W/KuS00ARpuxXQl+G9jUtw8gpzVayoYhs6lePteeCBj5FCzAxLhcFagx0/GDCfyw5GLU6b6w1TjUaamV1Wt0qCFT5NdstpxuujL7ZKPyFUrypJLdJz/8S5C37zjpf/AaPMyGfF1O+PDe+wuaMqw9sd/+Yy9xgZ4Kg+MdtW3m+JY1Ld/ft8W5WMiDdlhA0t/iPJ9OXtjsi02YLr3Gj9/bdhNd0HSIDJz/sdvw3nRz+h2SO7U/fNvf3phvmzTZXZVnUwRLCrIzR6UF9tNOFbed4T9arOiCQn1pBA+z0ZBG+RilG1nTp2L26PpcPhRPmZmxx9ISGH1yBI8vQSbr9PNKKDGfFR0HetiWbSGeQG10mqmWbsimW4rWQd2GiK2Y3WXMMU1dPWI+jf7l///6l0hEp9YO9vn/JZXZ4S995ocz5gs65GkEBqtudSDjdf3KwmjiFtvYsz5i/Pg111QIQYj8R47M9lETx6o5nl3ZP69zA3qs4vyr/+pfQKaVJX3nUFODwbxlny/+GUBHlspX+rXORkP90eB/uIPn9s+nNbnOlX14/VM/HDoEd/6FCvbuPwt/Ui/a5nyplAig1FV/4gJH7KbBTVNDaY908GjSmfNQGNFZL4y+94Ih1gGd3Rz8tfPWOo1/VdPNNNQ+eL3CzDC6kvcpZ/NimHS1UMvJGw/vaZw5uJYK0TuTnQrPQJv/TN+AXqcY5cYyjX2+sfz3iilkptEX/b0jVf9B8uE+z077It7yB/JLoYdlmz8+ePhJjIFKMSjj0Wh0dGGixcTZK6zv+dTzvvHUP//Zh9I/3tPQW6xD92ec99bGz4FNN77kr2M4onGCiYMDc8NFr1rguYfMqgC36ZhnvzecTHU4ptiXKovMY3oUvIT4AhNSavg2VG8kH9SNkMa387EY9sOTe5jKtTqPmZsf8y8RDwVhiw3+qunynfUvPl400b1LiyePVt2hG5ydFPQeDkwc/BNNLtC28I2bwc8frS6m3tvKhCdjJEYyUcr5wt6NbAfm5kZhR+H3C3uOWK37YlZZl90Q/RAjXJT2hsdki1wVpODC8Oh3xH3MMnhqDhOg+oxfZHU8PturvxDjdB4O2BVDGtvJlssoot0Xc45MNfJ+NloMqy64IHX2mZdMo+4Cmi6ohEPnkG3FleKgkxvazN8Pp3KQTZsC6UkehMPLK2UpDDu4RE57+WsGN4N6S1KQZAslWk7552MuXbJgKjzndhZbpTTixf539/M9o4Fmg90wvA5xgrRGmvms4WuBTrFEBPPKy/GULjmBQ6zdqITUSXOq87vIf2cDWLIww+199XbhO/vuWepFFjh2rAUAZxNvmaXFL2MWYs3F5DyVcgO972EBtnQLHVzcGLmHtuzN16fVYxuoTUy65WP3XBjtgwfAfvEtVZfgzudlgEF/0NhCFHH+03WQPZ7F8TYlQYaL9P6BmpSr8iOPwejNe+hjWR4BeyYHSU+mu9jqljH5TtKvS6TMShtDMzNc2ZB73n8pLoULu0gkaNIv0mnn041KNXXJP5NoR2PFVGDrN/2zLvUXrKR46hCL7llWJ0cu1vX4TFF5KP2VK2sqRxfeBuBvZt84lzbX8nTCLsgdsobb/i5ROObjyZUl+iCV09nW8731c8CxzQyzL3I95pv7F2Ue9iqzHxkOlqLW7dChiqeib2+TJz66WTB7eTUZD9dg3KG354ib3u9ULXrAo+3pzsg8bWriU/EImGfu2xC+VZUdhRKVs7f59QoE55WVEnMrTc+8m0BGureRA95xbmJyDJ/9cCIed1WBlVO3waNj6ghDlnvvGX9FPKBv07M9BMPjdn114O3rR/EPdzu3qTkZ3d139cHSvkj7j7p9eJCwwuD7Y9bv5vtOA9U8/YVMbpyFU2SM0bQyZVIpWV99J+NLSu702wz/R4Z3TyYpgL1OvxR5diejd8np+Z29OcZbzaXjE+tPQHslJHilSJaSVsdDVndcy7hlSqUfHoeeKFWRU+Yr6JTOHhnXwHXcDv8fG6+nMdrW4eLVM3kTL/cGB/DdQP3/V0nnixPfEbCGdQjxDLbC7zhw/A59LADQvHmLCuoMY+jqMbX6kdeqnIu+ZkVpuoQP2QGXuafXeFXgJ05gD9v/xjWr/s9gmuwyfC7Dwnvr1lOYT9fJGZn+yJsYr+pkRL5IXOp9uM/ekIWGE4yMWf/vHrDrpAL8GjTEO10NkuxbpoArOOuoMrwaUp+ONcW5AG+MafPJD4/hwbgs+p8sjv3F29WTqxFaxPZ5JD7edLTbb30WJKJgpoH3hiHkQxk3D6JXxZV0iLzoP+7PhKvhfJz3BzOaP0SZWJry2TxLZkEVcWqQ/bVeVt+CuOiq9QRQrzZ8Cmk1zyLFVu7+czzhGvI08iyYZPBnu3lJOXjjFYaDOohot16OdeEbqkPrSF5zDB/o9EU3cGFdZ9RjCKv9doxaQHp11fMvPN5DPnzdN3AemtVtEmGmzGe4leAlt8nJ6Xchn/3C3PzlelWfarloB+7AIy3/2QhnJtySp/2iCQr+JJ9cje5aAmvHIpLr9DtFgJjuOclwO1FP4SIqZL0j+G5UX5E4QxfE/Zf/vomMcFC5HbhIAU5Bfn2Zcwcb0Uy32V5RBtTv7Jdf38b42ZlusAxzTA4+zoZvnPgLucCPHD6wL+OnQsnhc46PJm/XRVdj6h9A0daralg7xpveX4uOnziBMtZXnZjkbUbSI/PO5WMTRP+xSf81vOVuW5+Kcfu1rhQHvwTCRt0K2coH/1/96OW+l89KNDH1UZmglKjaYuSCB0hkpm/WX+8MfH6M4jy6Uzwdrh2Q3vNAmRrhwPmK75Ggx4fKuBipbHEFGWDixutBmM5AVZ4aEe0MT6jqS71ii31tRu310FQlusl1iYajSFNzRTWZ1WgSmW8jHFlfDaK2/YnfA+REvaufdXhE106QqT6Xs7a8dmD4tVPtq+m3uvKeXsD69FFzKa/GrGh2Pewv7ce8z4u4XNXKyNQwB8sWSB2fNfdcni9WpsdOpx4/d4yMWCb/6iifZExWLcqAm8fq3SljFdvricrgOfPj+n6gHeluDN4hE6fziL76bHjo+aW9F+90i5RwOlkXSnqOhCIdsI8nJ88BQh5k1AEOkv4TXj5sEw/xO6RjGgu4z5HIyYzhfHdhpMqNAXK+uU74OMahXypR2rtn3QMKprCEYljo27vyY5o2akNx+acUZT3Xwuj5jKEs2AHqUovskmcV1ka/fe1uijWQ3lisZ/KbnqYdQyuYXfs9GsqzsNLvgF8TV5EV4W9MdddfAYmpBJda69PydnBzADm+sEMFuqdqOiPG2Ll7BPj9WZhb17eLgqbviWBRnOPOZ2dom990UhabsVwWPKzojhyxDS6xnw+vKMaVauLSYVNKRvDUfJq5L7eCbO19QZNdbjPFC5eEDN2tl5KgcNM2NnhfanHuOS/MKj/6Q2fLGlLGZQZvL0n03aybsb8pupylqXOiWU3p6R7X1pA3t6RmVGtvmhk9alS7eyxY+Z1a3qUrr8KyEIUs2tyN9FswUNUk/sGEf3gMY9vXpIG6jM06XRVCj6i3VWHoIxEdhn+DwAA//+kncu2qjyzhi+IhohIiiYCIscEBRV7gIqAihwSIFe/B3N9zb+3m3OMteaEUIe3nkoqfs0ZeYgxUHvnMFM9SrwnSwF9bk2H8rUQdPzSuTXsTBTg7d56e1wYdjUERxrgPk++Rlf6Qvz3/YiZN0W0nspCVA2wgyV+X/l4OdomHFMhZY6UlVVjZLcHGOAGVFSPFzTkuZ8rj83mzpxFf7O/9VLG1RrL66QypiNvEpBf45vsw1XCqf28ApDJLRd9UaLfZ99LAHN9Y3YspAavH00CYdLbxGz1bzQVye8E+YcZTL+yaNGfmqn21q+lmzZ3+GK/JWzi850Yr7WbiX/5wDXfHdNpaHjs7r5LON5OZ8rPQdyNcu0qaNEvzMtGu1tn1daE+qW7xDR2ZifttClV0cQPFH4zNebVIXfBSvAy8a59G3wrBAm6ng8qwUwevElq3y1KK6Vmu5vGvPGNQPmLt+RgXM98evYKBh3FiD2kKjEWPVCgjfq2/63nU92+ZVj0EDGVT4eG58eRoVA6wOvYkaJhVEsLAjvIaf2529WiV1JY7Jtlpv7hE8ndGE756ovFS7yP5p01pMq6HX90iBNWzZ4k6SABl7DKfLWiTXjTlamWP3T1vcfZYO+eNoSpYzNrrVK05DMRyMWf6GqYWDRLO8EHa8pNprFwNKjx8B7IOCklBTUXELs5Rx0VnWth4dTPfLrjTkSbQQpwsfjjNPRwQWLr58yp7BcaRmmaVVrfFLxeH5/ZzN9FAt1piIjNssSge0IL+D07ynanXvS4UpkurOX1k9mxb3OpikQfHuFxw/xqK2ZjyOoCMCr3FD2PF29az6cQNmhrMFvbNstdLMkIXLd+eKjfpsFDA5kI1sODBOGmNLpAdOptcDavBOeWYgx/+Wt3rAw82ZuOt7VPajQ3b5mOcTKi6UBEE8LgdSIOb87e1NpbQOXr0LHArb5GR8+/VFniEf3x496bive+hkiaChb7WtvN57RN/vb7E3zTBs6raa3DTTgdiHFu1ojjd92oq+50wzK+atEYd4GuDOd5w7BUJd6ETlMJJymI8IyWHo51bXrYRYFNXF8u0FQhdgFhF+RE01rMp/nVl2Bcdl+8PryP3bIrkEL8OFtM88aUdx7RFcSS7wWLFe2jsfvBvLU3t4YY8RxlLODBCc5yYtI5MBs0u+ajh5M4RySYnKaa7zwGdWPtSuZ5vulJf9+Tvk7rRd9pGY3RtYFTrn6Jbw2pN5265ZxbKqTEaJx3ND2sFQb3ORfM4j/O53WY2XDIbUasbGUYHTd+J+iOBsbHm6lFG03euDAT8UL07+uDekmzS6AORMQ6vVo+vYuPpRTbfMfIkj/H18xntMRTOh/KlUcjNTwp0kPYk8NdL9G8vno5aGzXMWv/4HyyQjmFgh49vJazHE2prOtA60yhNSgfzm9ovKjjfCPMHy3H2Gynlwm+Yn+YcW7OaJ5X7wvA91Yxt/B23finH1/ojunL3/2ibk+rVl2+P9OeBupYZ2wuUKpDwcwv2aLpda0FNGW3NS5c4dfx/cvT4BFGG5ptI26Mhzr9gF8u56ACTcqaR6XH8JIvDpaqPYvGz7cCyBJTI96zv2azXcQhrPvgx0zl46GNv2tDwGWYsgTTMRvZ5/aB8rBZEXxUXh0NSJKjpT4mxjkQ/+ofGWbyPmK4PIOoNe8HG3qrazF8mrEbfhX3UXNvXoR872I22pcJwKpch2DYv/j4yO4UaczocIGrJpu+smkrN+/VEad6HtGs5q8ECuUHDD/jphtWzUNQ/nhA8Lqus0mqpxacn7xivlN8q+mzGse/+p3oivjtGu0UxiDIL5XsoKijfgXrh6qZ9Z5pjWsacwQZQLB6qXirUxnN0yHV/+yRlqqw7CFzzh+I9I3D/Khf8TF9rn11Z+QBeTTzy2Ordw4gtjinaIm3MxqVC4Dfb+gc/r7V+JNvFPWhnRHjnToGXyVjq47ppsFb3qyNcWW2Nlr96pjg03GqZnyoxD89zYLX9Ry1/F2kUL4uIx3l6BAN4mpW/vLZUl+EEfeILkMQb050c5Pf2TRK2xE1HyWgtZGI3XR6ezmITXGl0/4ULO8bCUC8SKPIFBNjPrzCWhWb8kqF87wypsfO8+FdCy+mD9PYTc9OVVBAL/pfvYdo4Ugj/DZ5yrwd9biYrN0HKh5l+MdLDFat7i08RJowTY4OWRtctFl9DvctCeKEdHz3mLEqF2ZB/njVNI67Byp2SkYOhtRk82611gFV/ZHF6tn+xwsguFRXZl5C0Ruv5PAAI/586dxZ+0585KmOvh8TkTdt3127PXWAApvkxH1gqRt+paAoWPVdEqvnxmCGMQrqcQ6BuFRz0IYfHRnt+bRhJt+wqj0eXycoto8dbmY3ztYtaU+APpsL83vwKslOmxDCKhUXvb/pevhkFH6tWBMSuhHq40mN4aVomL5fX1rNjd0n8DSfEfPKLKr4eu2f0LUIOd7c7rXHr/eXAJ/mx9k+dqSs0/pUhPo6P4jTHw58FrD5+BePre2hz8bp6F/QWS8rYu7HAv1entbA+NEei/92nG03dwva8Lkj5ohXvGd9UKOzXlTEndxDxJ+/0VdvryzAAh5NTwrsxgVNLnJ2d59nPgtEGxG1aoeYQyWiSeGfEXHptGd2c0z5uJEjERZ+wrwzv6NhTkUffXEVs93pXBvjzxRMRcUrh84Lr5h8g4FSvWSVWGSm3RwPGw1WnRHjebqQbNxMVQG3V3ta+FnWDaIg1X88AUtlS72eSLEEWMUu0YvrEkwOl1DxFffD8G//RLwzeQOIP32sftkuksL3jFWnu65os6qzbDQaxVTJ7Syx4Kpij3eCd4K5EVUsL/x1Yq6Vw+3yzPFVcD00vuTvjOpx2tNtZb943Y6DBfHj42HZNN5db1eXExwCSaTOZbetWPP9Fch9jgU5OLGGfhfq17AVhC8dTTJU7fP6TNEf/2gX/ju+1/4HHr+qZFoZ3LxeHr8YmRdxSxZ94PHVsxCA37Ub2y18oJ2scw/3txiyeNHf/FdsMQh5ciR7gV2r6Xd3FWR9yoiZEWy90YxftqrJZc4OG2lE0y7XMEzzKl++j+lNne40aNEzdLXwoHV3WDdIO90k3MgPkm3MdSagbpBtEi96V6yucwnzzdRJ6N1aRD/1T4DD1ypoxx5up+g87JV7fn1iIQHoBluPclW4b4501KhmbL67Twm3ml/xwker5i49AGoXVbh5qSs0szI6qYt+p3zhUZzctIv6l98DsZWMce+LBfhxtCcBNsVuvEsPAZlubrNYHX8RfwVKA2/vPi6/P6sWPpCivbPsGTWHXca9WJCRa4ojyXl3qLjWp5Jy5AP80wf8RId52TmdMEvix2hU9GOssmmjY+Go7KqJXpmJpuQ0YppAXk37Vo2h1XqL+KmmoGapN+HA+wvJc25nay9R/T9eQYLgZGQzkmgM1qeI8GbRE5PDpfyPF7Dd9mKhMUisB0yfT0eW+Xgdi+JGUs5DHjFinbtodNHYwolbmLmT+424erA+aLH34fLHay25K2GjPAy8XuJfr7M2hetr4FTG7cqbpiaWkNN9TeZ2AUTz+ZVSsHPYMa8Pc29s9kqiUOvjkCDki37FqxGO+S39e14+kXOqw9t7jnRciWI3jGs1R3XtEGJ79YnPrlA2MK9zTrfbF+bTqR+tPx6Jp9xCC7+jvtIfvxmxV0EXTQfXtmB3HO0/PRCNnD4SdJ8fFnP60jG4yrcyrNv5Rxa9h2h2tmpwj8GLkVvTewP+tfAvH0oXPYnWpZnE8Ml3Ki6L668bPlHwUD6V9PvnDxvu3j5/9QCeYBNHfMiPvaqjWvuv3jS63oSV5LtMny4kGvNNdAIZ6Jnh8/z0lvVvQGifB2JPvI7+7Ad9EkXG36IKs1nNfwlgVOwZXk8f1JXaSQM2uurST7ii+Y/3g3bQ2Z4SM+v/+F9iuTHepJFVTdalT5SlnmO7s3TsuFMnNugUXBJ/5B8aKVcwLHziH+8fu3uSw51vLeJbl9aYSIZ1OM4nwGiuJTRe9cpFKKky+lTETzROZqP/zRVbeJvYjYqzawFGOWa+dXG9ZqVuR8huL42KxR4qniqg/1sPDEXlsaI0PrDkbwqppvDZfj4BnX7fO32Ym7Za+IUAy89kX19axJR66YfYISbRaaGkNB5Mpet9gz32p46PCDUCvLbcYY4+t8a8N1z8F9+ZtVOtTCrLo/uf3vUzjy/9rwKEXf6iYw3rbJZ0pYC9AD2WnkXYjdcdFYHf9RtxlrkaI+WzDxc4XLASkBBxYV5/kGZ+9hi2q7LiNxLo//TkbjtckLgCNf/rrzDDxJhT8Y5mBb5t86efoz5+33RURtqaHcTjKZqfLrdUt08u5Gg9n90PnZY5wG9lufv4aqPNHz9Z4hMx1V42ejO929A9PwGVdtuzR4/JrQaPtg2xnvWLjyHrCwi9TcDsVY2ima6ZrIRXzWBpOvyM6RWKLRrLNqZcOt+rSboetb/+GRWW9ZzW3Q+UV/F6kGTiy90f3nr+8y92fn1x9a8feYOPzoiYp9Hge3GNxN/qSg7591WxIotCQMG3Jfv0pUdjE0U6LPnzX74YqzstUC49BWJahxGx0PlaypmiiHnv92RM6XSkqGRNS/y7K2e0wraPQNzd/vHYDbPtGYIoObG9GwdIQibRwdHkG8H8pnTUeBj5trqoPm6vVdcx3OcCbK8O0GN/fXnTd6vlakBjnaTG+tdNQ5HoaPTHGdOFJyz1sQbuZq/T9TQeUVO7NwUcGStYXem6NwreKYfQWwfMcXSOhr96uHnuX2R3Gt/RCN9Qg2ONLfo5ySkff6ZkIVuLfbJ/fWnH//qdHz/Sl0O/Kv/Zu6cLcyOpbPcLjG74qzeq6KsTsmkbPuhxVIOm+C/ildqc8SR04n96WO/0OOOvYG6hvlg3EmSGEo3R6gxgug+bBNk2R/yo6r3aH6WC/dUD01QW0rKPriV/fJCfmu2ITmKFifXxsoreP3ILiRPd2A4KM5Oa8KhDx842weX64n08SdLU5DS7/z3PEXC6ndP5QPycbbwh2BgfkO1yixHbemh6x878158he01ad/T42NdI+Ttz7XtzNzfhUVO/jb4n1tMpqlnS5xLOTzthRlN/quFXIQw+kjpiZ4NkdKGBLLinypMZcVZFUz/IDVr4AR2ZL6B58Qcl2uhvPP/V63LtyuiiNBf6Xvg5jw823urqTqObjRTyv/yJOmUn4rX4xMY8WXeKqG04VNa2tidldhnChhUnojFf4L2Y7eb/35wC+X/vKaD7z8x2cWgi8Ro9GzgEcc0yW9KRFJRxDFO879h+2jNvxMZeUOZhaBg2JcaHkb5tVIrXkbbm9RBNHnp9UGA6mFhjNESj1u5mte0FTA7tXfLY2IMLtdBjYr7n2pt+xyoBi3omFkpTqNrXfhLV8mF/2YO9ao9OPAjRgO4HYvDXqvvFm0pQFN/PibPBe29s2rFBF4UciS+fvhWVL5kNX/Zp6DZxNL5OXmcJ7Sv6pbVqjh2X46+POvUrEl0/a1wqHE9SqrIf8edgCQZ/BZUAdIgRyZSz1W32YuiC/TIDLL5n0+NdvaMg6euEOHm27vjm1pho52qMeKMWe8NRCmf1mfgJub2fLpLS/KmAesUvtry/0T4/EwZV+3YEv/xjJbkqaQB/ZYkctveA1+vgJENxaiW2X+7JnXdul8DYYUxMJy+j6fvIcjj0hcmCe0SzkQl5jOKkuJLT8j7jyR0wNKI7YXXfTF1nyesLSrzTGwvr+6ca0zoGqAWKiY8DLxou8spFYc8nZrk7x5Bgdih8Mq1gcUCvHlvns/n3vMwyr1nHWekqUGqFw/D6/ul4TxUBlXJ4Yrv8PHWT/UTadlCXuQj14Bj9s2kx9PRyxi9jxbppFawT5dbtOxLsm2PHXS9QwCSCQPyQWcaojgUFN7n8mH1OV9G0Efc16CiViP913tn4iFMF3HvyoNOKW0ZfHG0F/NdDIaTmmsebyE/hMHRXYsjvtTeh2ZrBtXjDzMdm642acDNhsR88WS83+2XpVkS717ilSkeMSpI2pxJWRsnpxhMcvnnS7gLGs/GY+4p22SaclvvHRdNgh2h6cS5bFcBGJE9c6M3Bm7NbICuRX8oMk3blzberQtGx8L943fcPzvWdHaLjzjgQH+o8+jrzLUZnHjV4nMNzNGfNqIG7dhuyW28MNFQX0YfscmrpPFffaORwLmGXMwODkh3RaOzlFI6ZO9Ftua+MqcvzBuSn7JJbddGyiVzDZTYNTfCt03M0CzyWkf2yAkbYl2T0Ks8WMrrhR0jopGg04XRaxfnOw1yMiojrvawgt8xjsjc+ncFM6pvgr/YJfR9uhid9PkGNBFMvmDdsftW0x2qvnGkwM/JkbTeqJ3RBl7eTUzXPXtlIrucQSO56uNuaTjaOZpPDnaUKMwtbqnrJABE2VL8QY7/mfPz7vmpgSfhV2043p+MXg+BYZ+L28xr1gnM/oZVRcHK0Xm3Uj2aRA6tPb7L3uiuf0/wqw548j8zRHrXXkmFfo2D7koinK1rED8scjkusOcSJm3s1F44hQtCkFVVKj0YTPY8NNE+UMXKFU9WSpxtDnoozfvkmVD2mwgfY02dsj3bHaBT15Rquffmiyu1w8/59b2frOYzcgtCYrRV+QOKFb0K+ZVlNntPLUNiVR+VVYFWb/GtasKLTyPxfpxkb1Mk1rE3FIh6+xWiuf9cPGHNckPwlNx5XE3jAdtCBmfT+M+ZP4sZgxUaK+8sp8ZpMGC/If25l/HNTK5q2I/+gbRo3hFBWRrMjlw912EBE19GD8FF+hFh93eone+xy2+PzORWRrgk3Rs68iehXiWVgv0tKRak881FAR4DCN1ZY0lSOvod1F0PpPSK2TC7wfiKED1CldEecg+x10zXAJSTdN2H79PSM5oueYKhc4cNcpzG7efjaItLOU0qIvO+rMZX7E1w10SZ2ZvZ8TDZHE4S1HLNMa5VuqG1ZUOwLlER/uqtoVI6FrR4ze2JWkTUVNX4VADE8kTaZ6aN516sCenmgseScrrJp2j5S9Pr6Ala40nS8nsda+UjRg1mR2mVU2qQFurzahrnxuo7m52eLIfydVLIr6Aux/GZLcNhv8b/41Oj3Yw9ipJ3YFTbrjh++haU+d++SBO1PjtjVGmNFdo4xc0uPZvNG96R/3xfDUTKm3AgLuJoXYNpnKtBsYbkF5ZS9iXc1b4j52/GDmlg9Ev0nlxnHydZHl+B2YrbnN17L0mSE5X0oN9UPmrr2qYBm7C2iVaFaMdSNNTwz5hOT29QbTUhDuGqSzfCSf/tkc7SQc7xpxKR3x5vBOpqwqSyf7LbHrhqtg1FD+9v1BK+0pBq7chjhlykK3sT515iVyHGVw+O+YQEq9tWMOrVFsvAD4oQXm3OaCSIK0tFk8WX2s/5+lwUY0PPAgkg1DSrLbwptMFM6RGpt9Kd+NaK2uBtkNz2ijv9uYQ65SYBy7fRCU2+iy188pKvFn/p5M8bgK0bFrFe/53y1WWuQxqnELKbkfIbZ6SHdHFxiZ7DlHRuxi26Hk0kMgZRVO3w1EY0X90asM2741I0VwFefWzpGSYK4PMe1KjtRTNzduu/o+FABfqMb4lfbmga3VrsUiow8qWgp32oMV0iBrEjP9GFKhG+iy5yo1Xgl5JAKu0paa3KLrHedEdfoS4+Gh58G3Ec2BkNOOnb4NiZMbf8iTuIUiNcaUpQwax/M+5jHaip2Rwqd+haJcRAEg6b5VQGjpjv86sqjMb9fRaK2s27izxnbSHp+Jh/u5ygk3pFD1ffNJMEcvYXl/z+87l4pFrwebUx00rV8mrrIhjoyKoYD5W3Mr9W7V578fmHW9lp2dPWTJOVdfAy83jtqNj6kd650a8NjdgY3xKOtD9BergnZzxc/6nxel/D+2T3LYkPveBOZKexcnTFbKV/VMIarGRVKsiKH21BnQ5ipCXhh9qHzUTxnk5O/NHWxP6abjy573/NA/xdvdi5fef1NdxP1t8xJ8pb8MhfILqDRQ5UZofuphiQ61RBa9Y8lL41kbIPmZtsfhiex7tuAvx/YGSFVvgKG4ttylpnbAuT9XOD56T6z/n1DMZj373K/KeVZJ4pRClJ435B9cH5XorHqQ1jiJxU7RKMJrIcNo69REpyErKLNxlWUJd4v/q3x0cpOMhAZXBZ3xivjNJOWOQbpCo9VeK8G5qcfZAXSkeDV6uVRbroNsrBaM3L/FFmfvVwBkNUq+LU9ehXtbC2Ejx37eA7Kopou9uuiEio9mZU+LWPKn08NLe9DzPVRrqZHeTQhSr0rlrZXvRPNRhdUW7J1dhmmUzUt8RUtepp57X2HJlohBS6ryGJ+Bvtu3jwnDHROJmI+NjdvKlMLq4TLZ2ILohR95u3tAlb2GHHlPXfR5ug7NrprQfYvn42ramyQeUjPbMfPP286nq4xehxPDKuDFxlM1p4KzHl9ZtEjUSuqfJMH3Db1BgsHoazGs7nD4Mq/nI7i7YmGLJ1EqAdn2bNxL9B8mamO7h/x+F+8PkThDOKlsii4vKqa8YO0v/UjZAul0e4vTESL/mcE9bnB0/ZhgUTiigU6dvh0e3gSIMO2mHt6P6Jfb/IYmnh1pL9JPaA+vdwouNgXmJbkOBrzay3DUbkcmXfxfTR0whdDmok+02xJyAZ3HJdzMt8Yb33YGUu9NKIl3jMHvJU3p9ot/YuHTNt6Wjbdt3Oq/unP+NMevflPj4w7q8a1L7neXNEwV/uPsmLGEh/HacWKZc9dwJz1lVXcKb8+QtMhoQo62Nn0fUQ5GMX0JERWt91ID3MO+7g6MLtiEx889KpV5654WNnleTY4+U8HUVpvidNHy10rQUGh3skhcb7N2Rh56gpgWSnCv9/0rNhWbhrgOHfoRVp/Ee+s5Ry9ZOhUWfQ055TE6FjgL3PQtvXGs+n4yOJYYZYonLJ///6rjy2LlvfhqfBOYKlX6DYX33zy1ucCyfjq0Gsm4W7yZ6NQ+XyciOe999n4M94+ekuT9y9e9RO5UfByeSLaRinRnx5BT/68YJmaZieJSl0i8Q458X5+3Q2WNj8gXl8uTCuIlU2p1ZYo0JqUaU/pzGcx39gggV2Sw8d7RbybfVBeKZupGq6P2biM3FEPob5lflats5nFZg/57TgxH2qIpteG1+p+OTdKfMa9cQAUQOu/uueAFnvBm8P71rXPYrBhqSfoXHZlVZTF8wKWlSAsbQaRT9b+2cJWwwI7HN7baqo7owC7/u7In73Nb1Y1f/mMTpuvyqcgftion7R2+V5rj/8ceoGQpw3Or0etEo+xcQLblzaEaO0n6y59rCD+wRFF3ZnyplzOld0+O4k46yvpuGLcANR6rTH/8dAicVXJLVyPq4xC7AyIo+svlE893mP1nWTGuC3VFDT5SZnRF000hz9Uo0UPEewj6OYdFBac+XG5C2g7Zf0mMV2wwuJDvPFWR73Ehgfcz8eQyg3/ZjTetxiNF/v2zz/WyvdebMVfkC71jIJKdFcSkPkwk51/7/lsI/EBtQV7LFRINOZ43/pwY3pA0TPUDdFRshzpV+9FHHNM0HdZHwXP+mv5/p9skliRqFaWj+z57gaPG5vShfaq3LDIzheD+t2cIJ5bDW1f0SubX6th2Y3Y3iic5DAbL1h5gPBwXeKo7qH6npN9DUMpP+hQH1TEf87nAlbbhPQYnLd8rO/7C1StbTGff8ts2jyFENGfdCC2Cr+oIV3/QcHjJDP8aCXOoouSbFkdvom+Z003lSnG6LN2PUJ+e5HzKrn70OyniZjJ+dFNHb6lYDeHNd1kEq5YuFctePCVQVdiV6ORN9iHKtRzrOjDrRvFyyj8+TMz+0/UberKesBK3mbM0vYfPu5Erqmh9fkRY0jO2Vw2ZqIKe4djYUYe/+NBMITYZXjLsqgx3fMH+ir1CP6eEe8VL7bUXv+1JMC9xcVbGDRo0Ye4nbyPMc6RJKNBd1QWbH+jQd/BzYRJvmpYiWoLNd4ttlC/fUcseFufiH9Eb4RRVUr8aYp1Nuee3gAt1iPDB0Hv+Oe49dHzLW6YK74HTrUmmVH4C1UWSUaaMWkfjuqif2lz46QajemlwXNfmOx5Nd/deN3HqfIsLwZzT9GvY1IUa1A83R3zy/FszE99M0LNZ5MqF4F2Q0SCCzL2xYvdlZdq9P2NUOhOlw1+263WMXUhN6b/cEnAh6Gi18zvUdAkFfG7LPXGJb+g3Q0TZi76eTClnY0GVbPZ+a2V2XBKqgTM1Pwxzw/b7j+96x498s7F1Oh71bGVY8NDYiIeGXMcDTmi9XwiWpTIfGgsxYVYXrt4vu3W3rivR1A142Axb/WpeHOd9rpSSIrHDp7wQ7PJRl1t3PWHEb67GptV9aZbfOce0fABVbV3yy1kXH4icfdEzN7RzjXBYcYDi4/N1pi3vmqiJR8zY1lvXilsRAtvpDL/XrrRTjQZnK5s2WJPUZ9sbibIUbLCL+iiiEbEPsHGi/V/9eD8G2oRBt1TiT0zp/rzJzTR4Mx8Q+u6YfEHmFssUvlou9XEm50Ni3+T3U56Z5PfbXIwju8VFiKvzLh2OpcwR1+BaVcv5LN3rUwFz9oLb3T92/FFHyrKJT6wu2Fd+LjYL/qz9z/+OJsnvUXL72P7cr+JBkntWkBxdGN7r9vw+fyFEQjeC8T8+R16Qzrk0O7xnmjEqj22bYQSzfnnzFw1nNFwe3givMT1famHfTRGu4MLi/4mtnELjfF+HwV0O4Qmft1epbfwghrMMZqxdBR3xnrVlbP6gFePkcpoNh1+N1PdUO2yzPmKsxEXKEZl5d9J8Ki9jtfnZQ/NqZLwqDdfjybrwlSLa99hfhAeBj+mfgpwpRhvxltSMc08nWCKDx3bnT5Xb4yzsoBOrlZYQJ8RjTKmJnR24BNsh5tudPrQh1Y4vJjuyTPqK/HT/vEuFhTDxehjtpWA44eD1aag3mRpygMVF6+lY+vZXb/d+BSNO7OmzfpoRuPrt05hib9Lftf5ZOv7Bv3x5H3srD3eLTjTZpX3j2fTP97Z2v2W+QsvGd2NkyuTrQVMvz50vnn44QjV2Tqyfd8LiNOuARD2HiemePO6zfDOFRRobUr25nHMmr/n38MxJCQsPQ918k1TFh5AAlHwjOG9Fkc1Nh4lsWByo4nJBgb6Ew/07aZKN2SNasLC34g/7A9oqRdTdeFNxPT8PFv4hqt+qq9Lf2jbGvPZJQkqK3zHaMM9NIcVK/7xFIucPtFiDADHVWKxQ/HiaCjpvfzHy5z3s0WseZHmj28QF5I9bwI5b/7qm6AoXsib1aZqIOr6hAXu7sV5KgwJSBNO6FIfoe5Pv0V+IbM/f5/+9PDVSSemKcYQUTLsP2hlfxridDqgfzzOf+UKhtgJ0ND8/B4W3vOPL/f5Og0RrlOdBaqxQcPPKFyVHP0diavwFy3xyYY1kZZzwpfZYJweYvglqcW8g782BqftTxDypGF/PHj6hiGG3ep2JYff2zHYPnz06OymHguOeNdJ01vX/ngIVR+1V0nXwMnRm4dXqvTzGXEnrgBp08Mizu4yGbQlqxxe59/SE78/snKkhaU6tnQh5riqeL/9OTksepQYXGGcE+dgwuNzqRn5VKnRD89ohtnbxX/xp5tZ7Pco+VTLfemVwaWd26VgDGFL8OXdGlMoEPinX/WpFnjfXqFAPxxmzDj0v2xK58wG0Va+LJjXRTfTSbGQ2FgHXH28dcXxR8zR9WqEWDXHuhvfm6ZHXnj7MB9FAlpPV0NSzbMu/usHLLypgd+vulFe6F7E92Jiw71EjCqTZxm81rgC5c2a2aIPI7b8fmjfhUwis750nd6PMtqgdk03KDYyuvBwyBXtRDdWDBklTz2Gn/DFzJTCnTd7788FOJdmpu3dF1/8v0Fsv9+TvfiU0HAsdw9AckHpfP4GC6+7JAqNgiPZ2W2Mxu/MJPhd1nvi/KZVN4L/DSGk8Yw/uZ5E095NSsiirYMnanpo3SquDntyPy71sVbNFz30/+IVnbry6I31lLfodLVDpt/TfUQvM9W2uqXjfzz5X7+iZJFCVzofO57fNPG/+ixKEj7e7zL86UEWBIOQ0emQt3/10HJGpInYSa8s8Hf2gVynZOdNklq1qPsmPbtoewsNEitSdemPsctHrYwpzNQUtcpnYM4Rr9E4R4Ki5Ez5LvZ4NOZIkWWQ4uRGduUD8Z6nOkA+10AONMT/8T0ITzKWLDx59Pf81X+8gXjcthDv6QzggXUkhn3F1ZhfewW26aVhf7xtHXsohmvzObLDsLnz5r2vNbB7/UocWmkGv1pyDKV4HpmnK0XGouz5AWV678m5c/qOMfNcwh8P3KuV783P009Rgj0lWFCowft5jxqg2aQQ9zF9urGujola7PUr+eOHPeJKD9+25HT17gZjEjW1B9CbG970q5FzTcDuH9/B8rAHjx6iuwRFEZ0xF4heDcSwZXD8s0suNS46lio2Bmca+GL/Dz67Kmmh1Epn6V8dO67vtBCUarnbLdD7jP3F+zpQB2LZY8d/BQo+kJ9ChyX0ss2oYjw11Cr1QBb94zULj0Hrqd8zWzuq0XQLtVpZ8g0xpundcfMGI/qGNweDdnS89TWwyv/q4T8ebK2sB5Db2BITHw7RvJ5wjpiQEkJ8FhnjgZUYcLneMXPbNmgchqv2x0OJO3mWt3ZHOVa+B/GJ4e/9fl4awi9JLMyPetRxYZe58M/f58t7mVOqyeB2uoq/iz2O+fp0At3SMDk3aWvMxfVg/fVL2H5Sc+Ovv4YWno5Hu/518+rMSkhpWVBFyqtoPp7SExxPtc1yjk/G+Fv/ZMgaQSCHw/tWjYcjiH/+8ddv6ZgVmD3gOtHZ388DpO8H+qtfgrj5ReN1nyfoeliP//LhRI6mrT7L2GAWTG30Lx6hs5gSc+Ef9TpIZSSRS0X8Jb9MZhLNMKnpmuGr9M347firYYh64V/9M89ZBepIqvJPL6DJ2l8bJDjmmaSntxCxtL2Y6H5oJlrUipfNivHUIePWjyriO0D9o3zYaOnPMicX32jqy6YHZ+s4xD/JYzSWxTVWFr7GnL3zM+ZLmD1A+loDHv3rqxrvHWC43e8+2zepa8xp/pS3mMULH1rW13vt3H/9ol3PcfXXX0QLjya79sjRDPOOwlmhAoZ6d6rGtvdEtPAP5tfb1cLHHAy7a4fZ4ePtss1r1TQQ7kqR7J0yqIY0fs//vzkF2/+9p8CyRZudpHvgSeiORxRlV4l5M2nRfPtVNnS277JU1rZoYnmPFeOkd8xMRINvjPu9gdNaejDj+zYiTj66gOqXJRLX8x1jyN8Xqo6BJGB0/3yNVhC2Lfx2fkh2vWZ7UkweGrrP9o4F44SjcQruGqT1R6Tr+VdUrDRNDVqRHPAqGt7o3UnlA2i2FYmVf3k28zT7wGMbJ8T7DC/Uv++irerfSKapcVGi8SiOMaxO0YauVqGb8bNTpOC/NUJsybhGzVUhEsrYiJmxX5tc9GX8UKwtS4jzNKul561KCsuGK/26cVtNQzr1KCKqQMzmLqFJjkoJGaNDmP6s+qx7xvNyztezyaH+uZnofJ4zvJ/kynT+JcZ8LHwNaQ1yiHZ8asZmn25jUIT5R4j+fHlzGBIR7TJ9ZLvqQb1B8LIQ6akUERtiMWo1Y11A+dYc+lbGthvv9RHDmJUK2b2anTHdVjGgvZalGE7rQzY+Mg2Q/bs8yGFVtXyWSkUDJHx84ggtyzpvew5B6McHe2biMlvfW0vIOnwnpptmy5s5tkHZGNaWab+qRNRVwIK/75VKrl/N9nZXI148gPlk9csmk7xPMF+/byymbYj4WAoSKP5PJ6a96Twe+SaFbmAl0X7kbnA4XSnoSUmIeao+nIMpN7A+pRbedqdNNSX2O0RHK0iI/Vnts/nz07CarqCjsrbc9SBdklwhhXwnvtiP3uCXcQvC6uWSDF3e3WRx8QFfLN5Z6uiXbPodwgLuznDCIravXr+sH3rc1Dst7jvH2EiqJyxnWO6EqJ1cTe0Wz7Cytivmocu+26RTXgPKtwHBei0alDxuJZxrfcR8+4yyOQGvhdvoOMwAZc5G+vB0ONS5h6cM3sZ0uWUnRf8eZWKtrnrFmfCtUWJtXBzyYsu7lZqKyDnbApXW3QcN1D76ECqbgmEr1fmmjJf7fuGb4uTQimjyu1qB8zE0KW+OtJpur20PPmUHok9TafC08WO0PD85hJrV0VOHZxQI6omR/e6WzWuhHdFif3g9mRTxvimt1W4aC8rJnC2zwO8tetxWd7p9PPWOF9udrzYJf+HNQ8XZxv/AjMh03jOs/OZouiW/Bwo29YNdW+XrsZuxtre1aajMgPMxm7RHM6O1EpTE+wiq1ydVUoA4CCkjJ1v0BlULC3B2HsKTdq8q2r/JA1qQTrSkqDbGOlgJqPvEFMOzgWg2tyhBwtMsyXGnm9WsfVKMqik6Etve13x8yLWvMtanLBP8qpp+WVUAaaIjsV6REA3EfiSgvKmE+cp8G+wWTTEoYWOx63rDDC6Wew2o+uF0rVtdNtxPgg/lrT0SvFYPEa+BYgjWYcoOzShm7KyFNqqrVKbboNwavVfxHNHdHDP7qvsV54GiQdIUDtHLWxtxdbWxQZVj/i/+SAaVWyi0VcIMYVxFY/AeAFU/JSc4DmzEL+jSoos7Pkm4+A+FSqGA1qsd2zFt45VNq/SK/9kDrji/ZnPd9QWyYJcTrW9zY1aPKYYyurqY3+PPch9X+FCbtZQwa1gnBldu6gNuVjuwHc0u3t/zKt/6KjHnoGmIFutPDa2KVlgd/SDaPNFQwGU8ymT32QYe/4xTo95vZsCi7ZNnfPzKJ3RJHkvP9KJkg7/aKIryuOyYcyp/fDwK9gf0WhWZVp7WRlcRa95KG7Yj1thJBtfCIlXzbLkf9vYQ+Vz+FA1uQ5Kz+2n34PxtnDC6dWbCrHVncbHdHWt1Hd052ze/lceo8TPh++kUDGIfejOSMqxAYzWMIKfIxtkde4SaaI/5OwuruvPzC/DPaLBrVpKI4cz2t49qd2TGV9MjXjUZhkOWXonbzcu5DPH1UP3oHGI4d/tsLGlpA6F1wo5CgtFINnELuV4iKqzM0hj6IfVhbe8R3bTKwZtEzWm2VFw19Oq/v9Vchu8aBtFKGOnvHDWxu5Zh8T9i9rJV8W0V9ErwU0o8Vqc3p1uxoYAq/0yVsnPRLOQx/OVDph2fhTd7u8JSQytbYynXTxm1t84H0mBjYngFNKJMbU3YQ7DF8lXv/8VbOJ7riCz5Hc2qHPRg1h+FotSzDWrrRwVipYyJFRe/aLpa86gGhs3JTjqafKjTUlL+8p0Jr23VSN/WBX/fxVQ1fzaf3diuoXX7jj0+b9bx8VHocL3HlGXG8RANZWl/UPvKM7y5qfeqPxxcXVnWgxyq3y2b8fVdo9dNooy030810JWmqGfyNam8Jx/Oo98XkAzJhi32Fv3italBnn0oLhrhxWfHNJN/+c96fU1jPpnZCe3j5E4ezis3Wm5pHzC9l0Ws+l4ac4G5CU+zD5mFxSFjgedrsKbrlhyaMc6GbqVQ9FM1xnxND/kofVsbnae+J+Zzr1Vzn60woo5jE8KjYyX2hmmq7GFkxJ0Y8Pmofk/KeixbvN693Ghm9bmBd/slxCVy7I0j2/aIF/ly7jreeev18LKQS7WY7Z7X2qhHNlGlK3Zf4qQ/ztkUPi7oKpoPKh1bL5rbKgYAexjY/qb53qZL3goqcXgjx16zjfFpN/mfPiLevqyzyQo0AQj9JOTwwl3Wk8ppkLmCie0ec2XM5eF+UdRoazN99MNoyulHgEQWJuY989jrH3KNwY2FFwu8p9XxiP4SkMr2SEiQ/4y5hVcKG8PcMnf/3WR0y74n9DPKGK/sPMl4qSAKZnmSSHDaCbyvtrUMt2df0FL8FkZPY2WE9dudGX489lVvHrgEir5cwcqL29LDutnqtscp0aX74LGP4sig395AP/O64bNlSj5sQ7FicYECPhZR5cNeXO9JIEfXbFryreJ9y5Fy4Wka3HTXNuRiW2Jxp1TeuPx99HvIHnGvzgtN6tfXUZ1rBsEbHkfrYLgmUMRCRuG93UZjJJWi6o/pgViHkxnNT2O8gN01JTO9jeK1gjA1kHXco9tQXe5D5EWCGKMp/obap5qiQ1+jxtLXxIn5B/FCvxXoED5tZu7OujEV6nSB6DNQ5n2EuzHbl16GP71nafmn4pe4csEb65rd+pPdtQkYzT99vp+VjM/5vPuocpOJeHUTdCTV5qSrluarLPmkZkbz2anR+ugwtisD3aPK56kj/pkNuuRLjz7tg7udhNdEhYLpHU/dl6Xmmr/Bm8uxisbV5JzgeP5ETAvMMRr36yj8iyeEXG0T8eF5kyDYPzbM9E+tx7VNJCNp/07/6cOJj0EKW+JVTH8IXdQv9o7us7tjh5yjqncTmULSlA5ddf6hGvP4rkHBrRXdXvkZNX/+8zCVgZjWLjDGNJtnNN30G/MO6imaH4Fdg/zWDPJUu6Tr/eMJYB1aOgscJebTca9YkHovjTmhKhtsLCUJ9MC+Epv4dz6n4iAre+GlUihnzZtPQVcgJY0FZh1OdTThyzIL99EFbKlXInrmbwyDeVqzIBm8im7CWwGztCzeNOnGuOqJiF4HS6ff62HVscfDPcEsQUGFJV5S66G36tq3BCopcELtxfg90OViX/ECF7s5L4MEpNbYM62/FWhO9pHwF6/x8KjkavLNKYX9XO2YXzRDNj4/Rg+XV0nw3BZxNhtUbsTrDjbMQmBU89M+2LDMOyfmcD90/+LlOIctMcr3qZoe2pmiLE6XOQXxiXN6WClQoN4lnuAb1ZRTCmj+nWra5LTpJimzazDkMSVECLcdw3WSo26vWCw4b4aOXWYrReFxGliwohdv8q43GfqVb7JosTcO5tio/GceyF/841O43BJbp0fMgvznTc0mDlXvjXvinJMDmqSdaCNH8CeGC1Z2vIxtDP5mRsTcpkXW670ogl6vRIwK+xlRKkkuzGKbk73TxNn06Y8lCt/jyBw6SN3cvw8PCNzXl/nK8YXoqr+5kKBwTfzT+hvN++ulR8v7M6w+x2xQNooOh9PkM8sTWDb56GdCV2st2wcGj/70qEpLDGz3jrOMvy71wmiOPcGfN6vo9uRr0Nrpl3jWYZ+N951Yoj97KO+CUnFtky17fLC7+FcYjeypFnAI+ox4CH0q9n0cXfjtcMj8m1VH3ByOIvzsr0l2YXft5tgKFsZta8ylW4FzO8pqAG83EXOTPjp+ma0ElnxLUbmJPF5sHR8JCc/wNElrb3rbbgzgGRPDdjgao8qHD/zst4kpfvVoPMvnGML9xWb/x9KZ9CyrBGH0B7FAUOhmyTzbjcCLugNUBJWZZvj1N813l4ZEQqiq59QhAXt6o2h+KLCEmfR0iRe8hmhOhacMGu5wmyY7mL2FG1sT/hmiT/zbW8u41JQh7KOPiinvgb5+3l24Mn8xMc1RiwZPea5QMPIeI/ZPyva8hJRXkdg2IZjL7/0Ed142ipLTtrbNRMiGlyNWg+Nr25KYftuJT3OiH1Om2qYu/gBXi0ps5aWccY/czOH4iBuCcmEDqytCHfrL60C8wmaz+TPnHZRM7O98vnXeS/ufH03t+I1GTe8KMOuuiaRsFKvh9ylM6TATC+NlYrdxOfYueIa/ltaz7i2Hn2RDul/ReVpWy7mVP+Ll8g0mifbD2D8SFfr37oqd56vsqS/gwXJu3oTmPxiurq+DRhsWLHvbx1uOPiMCV7j5+DEBRRvvvD8AWg9ImEa+moT+9oRZcI/R0RT6fpIuIZLo9RAtbO7bskzpCdJ+J8jrJ7CdPV0GNTuOxKQ8yZebG+77FrHPyc4/pS2BQrzs19u3Ox/+rMac+PIUaEPhpgyciHicGsvYthGoB17UlQPCeFK/1efMrKnkqLeQeA/lpy1QGEqQJUOGDYKUikurDwKudimJHdY5GJ4kg6BiWH/PZ21g3mcdXE4xSwxJqSvqR/zdJ5DzmJBs8Q6cC3deFyfhCQYsDwy4hWeVOAAH2XgSnwkIGMoH9eL1A48eA3R8y534uHAimpcfqa4ChyTNx/fWclMDeDHxjdjis/bWwFvkfV5j5RuDaGZrQRW3P0OfDq9O6YnyASlENf2euygRsKFMRhJ7PpvYn+Wv9wHLZkqp1NVYDcLntlywm8DOnXqsDsslm1v3fYB/7K0mcsO8wZJ/nwN8PWaNxF3d9guJMgZQn0L0eumrKb9JNjzMo4W7mCVaYwyeDA0pD3BWHbVt3OeReQ9nrHZFHO38JzlqGtL+YAHNixt0n+2d0PNHU1fFjPhCmU205jL1G2D8Dj4tfyH5V7hH/BuGBXQeq0P5AoA6niMR+j8LIoZtK+/f+XQHq2jumXlblLYvIGdbgJxpfa5V0a4wvfA2Ghuj2v3ECug8JOY7emaDy358yN1XEVuDF0VroDYrOLaHhuTX95qtj4oVxdNDgRhV5FJtsjwg8PFbG0mxIvfDdgpcyZyuxe7HoiXvAldYVBIiQSa6NwtCcNiPT2Xw+/RbebvKgB3biZyf1a2adaYv4d+tOeFzceD6pee7J0S2YhLP3eZoydIIwtrEIUE6t2jE/DuKAgF6SHLy5TSaZyKsV2UlsovWaDV1BoFYLGKsvDQm68CoQuij4EXM74S0YU7GENbfz5mojWFmdB++SZQX0TEeLv3WeHOz+xd89ucVDP23WeFwEiXiHQpro74EiqwLVDQp7KZNxBRTiFQmQW8remdkrk+BtO8n5qXzsuUd6un+fxPp6l8/8ollQ/r6ZGzkWb/72wa6YfPY82+jfikBqYEFdOTzgO6bjQmRChOSUv+7vmxsg2F8GxjNN64n+KdCmFR8hJifPFXNVbR4QH0Y8XpmBEPEAhO0LrCJ8S2/27KFpQ0iBSXYmzvB2waTvoOliS5oTPKp2vY8oL56YqLzEUx0v5Acrv5hS9bGbdI1bYLq/DdguWEUwGvT3Eh7Xlm2e6V+u3dhuQ4GyWbj5v3jEz+6BmSfN/yIAls8vvGDGD/LBKtkKxDcQMhhl+XtjKtGLdn3HaxlWttTnishgs8FMZerC8C7Y4u93qeTJJjaRH2ppBzMD7bUs1wdCfdKYG2eQ7L7hOXHtTPchJJgvxM6b3V0P4VOUfJoTmbfW//8ZZLMov9i/359/c9nEWYZ7JInCxYPOQ3Y/dXD95Zt5kS3gZMyxwS12diP4nFVoa67Ifod3xv1E3kD6TzDV4c41Rx/1BjwZXNBp+XqZ5vmqA1ourxA8LYy1exVIIfL0ZaIVbVCNA4fhQE0r4isWMdqM1Ih2ft54pD28ZrmF/7gvr/4wiADLioEGSZnvcI7bxCNFWNwC7GKFvo8YN55LLCJQPb7vealkQL1xBxp/xZ9U0S9D+XEfpBLyLnZcjXFFVK/QdRICaslHeBzr1eS9cy4DU5pM/DrujViJ9Wo/vmF0mgR3W+9bD7njwGUGfwjKU/OFV8gYMJTSk4T5621t+77meBzL6xYkRJt5bsOYKI6MXGw1QHyPuAVPqwM7TzqrQ8zbuDMMl/slr27bcx60+HjtzrEOCkJ2H0YvN/v94kxWQ2sL4bhhSK/YnQa4RitgI+QtCTDH37ktlvNnKg2MGq1lWj+VdKGPP5TwVje78T/xqdsFBQ3ho02LcR56Vq1cMvxBIt6tCapZOyIT7Q2B7eUPxPHvozelvvR7x/v/ZEXBEf6W9JfhYMN6ddUK/WH8JRBjK2/S1gtUacEkgIeN6K8GjbaLNYuRDk63HcfXi0kiiB0Y/jGd8GQKpK6rf4fAAAA//+kncnWsjyzhg+IAYhKiiGN0goBsZ0BooAi0iSQHP2/eN5vuGd7zmKRrFDNdVdVttWU6mFzn88ZWfyB+jlXTyL+vitERcl7//lzeuUN86dz/JPh5Stf6n/Gpa97gAIV28sNu7HactJ2bADAmrTw1m9CwGuO8KwkCetQ6Zw8y6wB/5hr1Kw+rJ+YtxlQGksODfMT41zA/IaCSKJ4Hxemv64etwLIw/FpoT6nhEa5MqCz2Th0v2nWqPvjzdY5HrGnv8aFV4oKstztKvwhPC1zP05HyH/HLmTS9+WzbFc54LnvH/VquPCpYdiBg+hSGji7LyIM32T4493Gd79K2obZHiw8HAeh8ulZcYkkSL7Cnnq3lJgkfR2VPz5I99VgL+tXCKR+rVHPmLfZv/hrJRw+IVvi18XfL1c3uWb4XecaWuyhAxY5v7DlOVXGb5dH+49/qqGy76cDEUK07HcId2uXsXLfSVDsNiM20qOWrF9PYIB579K9fb1mclfnABjjB5H7d+Zz23zellnrO3z1Tl3/48fO++NN1F6tqd/jxhP+5U+Hw7vrZznenJB28R40yJxtP4sbNkDD8+VSY7niU/9ppz/eHjI9HNCiz93Uv3xMOZKjzz9meoB6X8wUX+qa/50/OCiWuPDRhLMwPF/A+9Ig/OGh53NUVjKQ32eiez9ozNncVS+0qyIZX+K9l8m8rmWo68+Z6v1nY/6LvzxEooUnZH1vOZH0X/yymu58NvtCQ2+B0VBe+PKIO24pi38hVVqjeomHAH1FOoZbzav96aeMb+WwgGfBjp7mdI7LpcfBnrBd8iFjJaSV8se7Ft7ac/T6pcqfPrm1tReir60eAmrjPQ4y515PXH8V20UPxE6Z8roTa2ezPZrDmppvmfYs23UOvG+6hh9AbF/u11RAf/kxbg4X/i8fWvg+3pnT5M875grwNNIDdpJvUC962gE66l2I470YHxb9FQ3ye4uPpeQm8sJ3/vI3wqK1yNnY8xvoznEXrsfp4/+tB9r4NtK0YSc+G1ffAOP+hcWfB5y2CG4Qm+iEnaEvk7m6bU7oA1GIg+puZ3NVaW/0NG6HsLyWq4yBXhiK5uTlYv+6eryqVQ6dc/uGEPVST/bf40YVLINSn94HPp9WB0NZ/BUO42vH399LkaI/PWJ3vr/RtHrJIUSJtqO7bY/6MbTqDfy9vxCVIpmEqySp/fHc42DJV4bRnQwYH5cWu3L9SRjoFw1FzrgNRUamftBvP/k/frDXIZvndf0vn6CYGPt+fXDvL+TZSw3Awksnv+YFNPpFDPtGUM3pVjwthR6NJw41tzE5KXcX1ayeCXVt+WEu9lSAr9KppALi+dLG+Hmg5lWC/e+x4nSfzhf44497xf/Vv4y3N7SvrDt1kTQnU527Hbr2WkcUe+5MZrQ7AsR/HKj/PRqIL/5WMe/3J949O73mS3z6/6spUP7vmgJ1SAWqf15jz/SKyyh5X0IadA3rSWH8BohKJ6ZHyX/5TC3HFKmXxzmcZTTXsxzQCJrACTDu9AyR700noPlSge/pkfc0kupU3ZPgjg/m2/CnUmUMfqnvhKXZV2gt2qawLbVXiq2NeE1ajcYb4Ny9UjPWFM5JLb/g6ZpBmDhmUo8WsghYoVPhQ6r6Ple06gK+95Ho/pLH2dBxnIOl2QHFWVvVrNxuc9hpnUxIzzfZbLwfA2ov94rk5rvyWekWE7r52o0e3Mo2Vye795A4LrNUj9HPZ2vfluF3OJ5wmN5OGe+HhkBb5FeMJTHqJ0XmHQSWsya3svZqWj8jQ3Xi7Iq9yFAy5tyUDghrMc3r7IuIuqWpYhrbCbtWqpkyly4TBD/1RMbzWPb8lGALKcGVUA2GVz+J6vmI1sSb8B6LJWpHr2tBNIwbtVTx6zM5109Kb3cr7P3yqB4D/STA3/c7t8bM2M6FCCoRJhw592297NcJJgsnZHPaC/5c9yYAwk5Hz7uq4iwqigEZvx1b+qBwzUr97QDVapNiz7uYP3+7IvBqW4uei6yu+SGoDZA3sUB1zzlmQ7tzDZAkSLA53S4+nfzS2hpnm4foufwj9fl3A/cauTifrmU/9Z5swetGVGxPscb7i69rqm8NL+xUxspkt53loONh8kLBLlaI+ispBV2vaPjVBLeeTVMG9Pc8JpXus+AbKugprzycqtdDP09P3ELsam+aN2mXzetHfYBUvhikPL0ls22TJgK27ztCNM01pbXYS3BaCS35EmYlk6T9CqDFXaZ+5/WIKVUFoCoxWypeD/W8Cu8per2+Mbab068mp09XwJo4E1lp+qOf7+rqAk99Z4Zia7jJ7KZ59W9/fGFvc5KCoyGxX5+JQnItmVkBh+2Wv+ZQco67bDKsS6qE9hzTS/6zTVlhygm2Wfcgq05eo9n2DaL0YhGHIHDTXPXt6gYeUA1b+e9rdsdzUwG0/Q3bttojIuU5Q7f3+kJaz9N7fq59DQxqH0NJNJ1sGlJmiPrzXlFD6rqaVPOJQL5fRSHSLtgcYiV8A+4LDftR7Pvr/K5LsFnLGtnKB53PbrU9gmBcWmrsrzwZTJJf4Kj1T7r7/Jg/7YJVA37bJCGanAlNTs4FpKv4SYOA4Gzo/NdB9QpkEtrpiI/a2VTUgoaYWo9vbtL8rsswdfqE/cbf1rxdFYrycN8yLiB4mrO8lzrYzo2N8VbUErmaT4Oam5uG6lXpm7PVlzmcM0rDOf7MPXGj8was7TrB9jZs/fFxam5wkA4Bjef8mkwgtweI+A4RUQ8IouO7bUGjHcLaCpfJFHflRY2PqyqU8sFD63ss7FAhmiORL33l8xndO7isrz9q2XiqvzOKW+Di0cB7MRISpnH/gOT8dSHb+XA0ZzwxCxz/OVLfOW74xDRpA2l0u+PgZ3U9xcPEIKgFCTtynvXj7943EHELkfFtKXz49ScZSDPscVD++mz61d0BsvBwDvlVd0zWEzYo8ulZhptrkyRTbrcNsPOb0/B99mu6fxYyhOtyQ/3Gv/f88Bk1FI5EoVrJMWJ7/foCu2wnbHyxlUiX2QMQH0JJF/udzddm2qiE/DDN34qRzFRsUrSW9R32Lua3n/YrVEHMWE9x8YZ6JI55AEPUMqqtiI/mWUwFhB+PEhuS/zLZ9VAp6LwdQuy6m9Gc/dTdKSH9valdS3M9x5v4uHR3rantoomPTkoBlOs5pHgoE16r4jCgekvWeJ88CBp608zhKDwzapznO5oKYXNC0cONsa0Jbj91fhvC6iJZ9KI8xaWWrH+hp6sHNLTEPuFflbewOkgN1jZjmM0lBw88RkuKRfXj091LA3hszw/6nEuzZ6GgFkiJLySU8RgktB3fR/By4R5SpfAQrcVDq9iP34Qta3zU0ykuGTxWuUv19hn507Q9t+gaxEcicOb1Q8wSAfWrnGF7nlvUyP5WQK8jeRDBetyyXyFtBzjm35Z6v3zqR0muGEjyRg2ZvrWSiZdOCOi8O+H9LB3qj7waDyhTAQghTOHzrTh56JK99VA6Rq7PHWF4g8jHH9193dTsPlFVoabanrG3s6aar8vTC7Z2X+DAowMaOm7naPd+JBSz56amezuXIZblEu+8WOZcFd8DvCyW/Heefs92A7dcNKhLAlpP7U7XVNJ2NPz4BfTDaxRkVJ32BWFrr8pmokUNZKnzpMeM2f70JK0A0cOPQ3aLYz4l+kdCQuPvSXPyu4yFNAqVe96xkPnnjTm/ExeAHEcLB6WncfmtNQ3azOMK5/jVo6FHEYPylo6EKuoqYY2WeKBnr5AGivH2p3O0bqHm5IpDTRD8uUlLB3T9Ranm3O81s+6WhTzdiEj1it5meSc3C1Ivp3/2lzO20jbqEaoZ++Z5XjRWXqHPyr6Fm7p6mOw7+QMc0viNLeX5zJZ4aYJTrzpheTaFnpzGswVN4AVU2/go+T3eqwm+ry4jogpXPn1z34ArDoAemu0JjU2VMbSqWET34yrN1uWzz4EWmYyDe3c3x/8BAAD//6RdSbeyPLP9QQxEBBKGdNKboCDiDFBRFJEmCeTXf4vzvMM7u+Oz1okh1ey9K6kqtZ8Mb8P9h80HvQ/zsxkXeDD3Br6/pDmcVnwHyp1QUWfYdw03vElUQ3md5aL0iDMo1UjrlcWg+/W8pu8pykHPfxJF1dUABBQoguH9zfG9uj750hgxgZcJlX/2FC75+3pXjsEGIfgs1GE9f1OznV+GcfH9WGt+zcH19EuQ0lNzmB/pCcJOPWwoeuxI0/FukeDsCwq1D7FSdrnnVpr3qyJcLNcdoLC2angbqh/RQtYnnNiGCveib9HDPj41LEytBdrmp/6zH8Dbdm8DIjUNEebTAt51ayOQ6q5E4L2Uw/n9ogi87FgnwEkTvhg9uYMATjoS7aVqRLHObHi/xi02jH7bzHHObO0HdYADdZc2dBvEDiiL4EHk634CRExfHuwVZmDXr9qShJetrRwqu8bRT96Vv9Pu6/0X/zf61Rql7zaGrbC9I21875qpgrsFbh4gpEH5Mrj41FQGq89yJc7HbfgizL8MfnPm0vjJKaDRdOlg/HNLEh/khI8PUgsa4v2b1AeZA+aKmgDNrQ5p8dUki1ayVAGjKV5Ek6wZMCnPTXiNyQ9ttncQ8rrTI2iZgCGGCgdQNVYIvH+ilQPbuiX5cinB4Vd3SCp8bM1XySSgOasFdkizHcbye0NgW9BixVch4N1H6eEfPrZkaeGvnXVD0POfFnWPamPNhi3Wf/mTog3+8XEY/EKJzPL4l+///D3SruLTwW5+OTU16UMJiD/Tx07ai5y39+IOypfJqX3GQzOZ9s+Gpos22KRhHE7s4fbq6r8YReUt+QjD24RRlDNsjoOcTO/EF2AXlyaSve7OVz4w/tkj2hijUhJ5KD0oOe30x6caPkSqDcbP4YrtZpisabmLCGint0HTrhObjhpqBU9pf0fbsjKsbZzLDpTi60C0EF1KTrl6h+j3s1FzMTqLXNPAgbfknVFz94sAz1TlrdrCfUHcb8qB569D9cevqOXbx5DdJGqCBvyeiMW7LJktaJ+gJOQ+qTlKADvHmw7KN+VC7aVVSjI5zwzWryeg4QuZ1i5ee6vPl92ED/P7Wy77K0PQm7MaaSELksVlsAP7PmwQY6SymOF6LwCg8EXLWXwlc6w/cpizuab4be1CLh/3HvSFjYrdlqfh/DW2JgyrzqdZur47kr7bExhpJNPQT7KSB/e9CPXdE9M7PGzCqbEcHUpdVeNI4I3F1TqDAA1LjA/mkYXsB8YIToLaYRce+oa+3F8FDK0wqMWVoWQ6PaqQvgqJqO2NhESq/BRGJG4wLh08jBLmJ0izasT7WuYhGwLBgTf8zdBrF5il6J2NDEbk1FBnT72BbT7lCbybSsB+M098GRAt1CCXG+zWW1qS/mIHUAX+gHZlloKeTJoHHbTOLtlYXjJvrKKDh0ER6N5o9HK3eewFsBsjBwftxrAW/lbq9fZshm+1b5XbFJ8ZuExRid2o9PhiBLMEDxtVo26x65N/+TQ6pQVOLCcKiWIZDK7+RaSNoDRMfhxsNQoqB3t0E1l8SbwTrB2WUA97WTNvyqqDvzy6E1AQtSSmebahYrGA7utrNyxsW2UgttIU7x9XeZirqaihLVQLdcMy59y95AusT+MNKZ+4K2fTfjrQbq8a1cGhtRY5OQYa968xxRrc8dmw4Qu8b8+UYp28y0VqgADbHGyp83EtIKpCG6veUEjY2Mg5X/kRgpF5PVKP1s9hnK8/E0698iPct+eQpXOWQ8hGtNZkH8MiDeQN6ohx6mnQSnaSATKoaHVMPWvYJcvpo8lwi3hMra9mNNu47gmY9sELm0N0+88/Hq7TkJW/lez1YUyrjuu7Shez//Bs8T5OOHyQ3pqEpDeBtSwm3mssS0bOPhW4CvUHbbVjyMleGSXYSdnwl88aLqqVA2pEbyueuIesvh/f2pHwAam+o5f0I6WVkjrIwJ6q6WA5ajsVXrY2pXvtOICFnnkANzPbrH1r3IE3u5MJVr5FVL2zmsUqrB5OlpWhubBI+c7l/h+fR8JB0y0K5P0L7u2iQlujqUsSZ6MDLcJNAkzJ4Rx+BQ8an0tEwM7lId/OmwyMx3RPD8R+DNLh66hw71UnWhaY8uVHWaxRIdvgqNspfNpbQw1r0rXoO/CGs/TXLLDr8yd14bi1GBROErw1VxHbxCV8Eu/1oq3xjx6Wz5v/4f0/vIfLXas13MvaHu6CNKHRRtSHkZ58EX5mZOPwNzyTxZNpDDTyCqi7xVtOlJeU/+V/6n2MyzDF3TmDj5se0ZV/laPajjFoR1kkgnR6DVOsXwroYgbpnvOHNbT3ogKVDxyi0OnSLG+dvP/5v3F0XIut8UKJt9ZnHUKnld3daXRQZIWCMasdi/240gLl9zwSGVRDMh18t4U/aAKk1d0B8NoVVc0/exp2fnZZcss7FRo4RDq+ah4A/Q70L7DyIxy9VbPcua6fw80XGjRDh0/JhEnWoRSXA/Unsg9F5k8OOFROTUTiIjAZEfXA3jk7mMrCi8/uSUsB/8QNvq18m+xAX4M1XxFhSA+ca7vF0VY9BBv95guogOsRBi/Vop45vcqxbiME//wpYhdjEMXYIf/4QWVbEd+5jzCHJOIVEm/hNiEYzXe4X6Ir4X4Dhv73qGXtj3+zKj03c/fSU20OQUONdO83f+uD6J3YhD3TfTn/5d8//W2N5wM5SocYLueWY6Qw2ixVsQlA+wJnauBvNEiX8fEC03edneTenwmJvrMOEvNeUmO9gjU+z6Kk/ToLos39XTXMan8jzGtorvaH+JCZ71gzNulApOlTr/oe6EFWtsY/Pr7qi3eooa+BzTGawEw3pAAkEBdsDPcl4ae3/tZWe6Qr/gkX2zQ66F/cL/XW8z8Njrj847/IvZ+5uNda788/Vz3BSJiYDxUAkuBShKpgWNRCzsBOsmyiSMNYzifdgtBPooQ6N29uqlhlBLbY2WFbfAtJl8t9AG9uF9HyH38/DCbweBJg+0KtZJcka5/UvkoRu0hy0z/9jGlX4fUhMvakZnoOj0ItdV+nf/hzInr8hm0vBKRtHKkc3ljv4VdoEMW7h5cQaWhbeD0NCYoddRPS1X7V5soJ/cvPbNXTgOgGGV750TBb4rWD+tp7OrzEU/LjaJRg/t5mSJQcI9wF94MEAYRfGssTSvithhWsxTbGvqGoYN5bzQt0LAuReqtbTu4nxQHVPDbUqGsNrPHyDo+++cbGpz4MXQufDJa14yMgu1a466Fgw/3pGK98zg63q7+D9G6nNFHOWrk4fi2ub1oEBPEmS5azdjTVVX+gD3dqBxaFVFfl6/aJ9wchHbYnPRSA97iPGJm1DhaqzY6mDumBOpcgGhQrKkeYBu6ZzOQmgvEusFTLrCYiu9U+59G793ApPwkRO7+3lsPl2WlxEi44GMvE+go7LMA0dbZkuc9+Q/OikODnkABs+O0mGUkfinD+ySZOn/0GTI9q34JRiXJ6vR2lkP7Z490oEup8WlJSs8O66mSmRFd+MrDgnQTqql/ji4o/DdcV7wUtMpuo3RmncrHXWRCWSiPyXv1j+73udHjZpx5R1v8/XJZUgmH6SandRGYj/eGN/rHNqTHcT+WsHrwCmvv4jM9rvF3kpq7hxyrcVd/RrUUuLQbB1xTQZJ2mYYnv2QiTIiOrf2wBvyrQBJ14eGDP6a+ArPEX6Oehokanfwa6QUILjO9Rovunwpo5lscRpBNYCFn1emaQ7wIfNzPC++1JGcjY3uDfflY8fghZ7rl3sPITmkkvl+/+1mv91VneVVQuiuUzMBz7M9bH2R44qUIZ5irbUO/Z9EN3k74mtFl5wwdgPYc5c6Y30J+fFnugCpOlsJZRY6fwRtf1LJZ3pwWSfGr/w+fNB/XK33n/6SPzHY4ZlJ/yBeeeLyZzbVstXPkmTWNmWMvp3NbQtsmIUCWPJc+Lk6hNL+Hxp2fxISQ+g1TOHmgx85jv7C9/w6s3cAIssQRMol8VTgvXqGnmDOzKp6tC1rnOitfNZHc12vEfnvUAOHP65y+a1z6pLTmGJR6XEqrzII70du2V8Pc7MqiteAofX6bejEsuqeAOvCs1U26vNf161E7yHeDooItWt+IpRXuVD2qv9rq81zvntL5H1NkZp4TMHxtCIChHHGiXseHnXuvAowc6DrPZBFV21QUIDPeMnfeHgQkb/gvKliKveG8z8D/9bdXjCT8ZckLqQFdh1lRnbD7RNeQbN4TqXdtbaLPoyBp3OwVB1luM2repK8eVL8HQITX2FoE0g/RTTrBpOMJrPP7L/+2fHk6WcvmG/OYtd/Wt3W//9F0u+0UNhfhQETU3oqZrbpUJVz0Ke/vgCH6csEC70fqB//RFfrK2MaSozalrQKGhl75HMLDBmwZ5fbF4kigIaulroJb5NYbdUqiy8pePcNjfrVlIeh3IFpCR9vCTP75YQVlhPVpNuJx7JWJQ6FyKPmt9jNWTJEFBMHKshyoCs5U6KayOvCCKl++t3ZLoJ+2nh78VT3zCnaGDCK76NIIHXQyXMWMEjs+wQcsdZ82MaiEAViZTqudSN7DdbkZac9nZOLyyT8mHm3EHf/XD/G29BgZJWMFv9SvR/Ifn8xYxMCTthmztl8knEN1jeHjpAcar3j7//CoC+/FEKeq3VrJrHrEOV3ui/sBqi3y68QVvSZtRDIG6vtF7E/Bw7YZI/mHbTI8xheoY5iW+xcgtt8MzWOC+ixQaRO9Dwtz1tm6OHfSvPsNfOF1n+dgpNQ2lTRjzPzb8q18t2vfIWZ8UEridnzrZtak/rPxTgC8vTLHxeg4h3f3cANKxOBPtQGjyj29yv4xxtGzvw5/eC7TTen6LjsJl2AQ2OIr0T5/vQn6LJwfOZ2Bhy9mTZtXLRhhlRYxqRqpw+ePn72ed0qjQhnBuXyWDObYRPgJglNvfURYgDV4vHD0LtfmmYVXJSZ7bVA9Le9VH1imU4WNC25Nglys/6KDi/u5UF5EF5jMRBCCerQBHQQ2tabn4Lfjjv1P3rS0u4G4Et+cjQPOpxeGyUUoBqLv48q9+ON4FOQOXBEECYnYe2KIEETyK0xlHF8FrmL6LXgC8NA+bSRqUDIXlGyDevdE2A+sb1vhgqukGuvjyS0aLFbpfAMe0dmTT2u9kycfIhs93tiOfxzUfhj+9aMWj+A8/Ls8r8aALeoxD/mvDRUreLbzsjCvFTzsd5icXPfhUTzU2ru8GUBb+bO3wMgPsxd/ZGlZ7hc0gWjh7O+v5/+RcWfM7epeHuFzrNeifnih5WB92K16FZ+3zoobbqeWSVWoM19+Ltmt9Zx71twm/7/GIwytakj99WrVSuMf5wbet7aVlqibp7wM93Y5Gs+L1AOSm1iClOa2z3s2hgCPw11nerrXqOV8TZPsuR3Pz8obhkUex4vJP8aeXJH/6OUwnZUHst7wsPol7GZzqd0dxFFoDycVahNntNaz1019D6t/29f+7UwD+7zsF1+8F0SAw1ZLlCJuAp1ZBzXZ8h5Tpagp1T4G0KjShnPXkfILyZSbUYdCydnywbHAx3QC7nlOAuSdKod6OdMRmgS5g3B6wBPvKHfE+U0M+W29lAc5LDrCT+9mw9dOih68ltcgSZ+1Ak4oxqOyvJsXCjzWsrs0Iig8vw/rT9EPePuUWrGZEvU0hhz+Tj29Ag+2J+iJLrelG6wzcBe9Hq5bbfEHuoALxVW7QVn1RsOzhx4SbQ30nEMBHSEXfrYDhG1807Ld7a7dliQc1MeiIeBfLgZVqv0Djub/hg+YZA+/IxgHAP++xU9yUkmb6AcFWvyIc2noV9hXRe80zThTbSbMMLHfyFq77pXd3tpv+3B1V+IqwiOqOWo1YJBcbXq92SvdddCrng7KYEG74g3qh8imXH7sz9bVkFnZ6sB8oOuUd8DvwINvrph64/J4K4D+GBG3dOuM0pFIM4hH42JrCImEvKbfhU4Mqzneo4Sz8bSO4N+53srSjHe52cV9DWfrm1OvZpeFtrDKYe6VCETNIsxRPMYIhajvqbpsvn4xzd4KPSkiIrLwcTuRGN+FqP5OwOe3KcdGkE/g1pxab90vDJ7FbCniBa42gLY1hq/rdHVwd64Btt2/AfEjnTPvIsodzo5Ka33Q6iH/2hR6bo5Swo/4UoTQEmCypEJXLLdqbMFpeI4In/53wdb/wF0YMR/Qr8C466gL8mLOKnUr1ynn4bnWtyuUPvd7ReodErhnYv9iDhr9UC4l9rwkgW/FNgCZoDfOGZ61Zc8qx0y7Xhmt3l0DXGkrCUdpZJP6CCG7WXsLeW3YS1hPHASezTbB/R6a1iGO/AOjfGca/DbOI3ll3sM3rA0aHX2bNwggl2J7AB9t7weHLtFMkYMnOl4Bwz5rRYScVgHOfk0myRsBGuzIB+SQiNZwssMQPHmx4fMYneijYL+RUnERQ79wSbb/vKGEk7ioI442EHVXTy7Gug0gthjHDOZB+zfSqhAjgKUXUfwYBn+Nkr8OuC39I6DsJMP4xzc31e0ZUR/anYdv+5ECafbeknjbYmvmdQU1rvjKaw3Y7MOvp52D1V3zol4b/nie4wH7jcSIa24JPDV97+Wv7Kw09vwt56ygZ5JSvvdBtGSy58VZhU8mYXvK3a7Hvh0FtIBNBsM4ya/5s4pd26juPxtczaZh6XQT4ixeMDfk7J4vo9rbKozrF121+5Ys5lS+w24cjGuE+TETncbY1+fnu6Z4rY8PZh+tQj6MnjQDcWKTv6hSu/kPA9qeV0+lxrOC6Ptnmi1ZO1oswqGrta/0e+2ZxTwsE9qBu0Fgt32Z+HEYCjptnSP/t5zFWGaT2/k59l+YlS0Vowvhc2PTwvI4JXeMl/LqnCQl5+UlYcF4y0EqThuZariy2xScJiFMZ06B/GQlr0rSCgMgNPrjLp1kO4FLATecM2DLW+eIxrnp4/W0/6FuxspwvaMngEvwatLuJp2H9ewevcxBgXbva4ce9RjpYvzeOXn3O6bv9CbBgdE91jtVmzOOTCSXLKcg9mKZyCeUiA1WWI+qgdzAsWvHIgHpnMkVDDJu5btQ33P9eCQ2yi9rQoOQ5PMXbA62YaCbkMv0ECJLAwN740Tktjj8CggDX9DD224R91hlmr8G6o0EtcMhwfbqr+1Hv0VLjczKbv8GDjOg20fcJ5/QVpw48FfscuxFuOes3lvoXr8hrt70nPNkxXWP1qyJb7Z43i1D1KegP0oKUck7C+aqENkw2eKbeJSAJg2f/Df/Wmze2Hm473i9A09OYFkeXhjO4NSl0BxrT6NQJFk9VzYbW9h0fYLI1ysXn5gl+5Tehue8fACZA2b9DfssUBi74vdDiLNdgiU21BhF9vLFhKWVI2oNZaK/MZGSnuFL5y18agqYdvLG/yObQ3YolAPFFLalDHqI1Kt3E1Pic29QpbteE37GWg2DtVYY2ZVOOXSeYAC+pRnJoClaf74YcbPgW0Yv9GssxOnoCjOjtjQ1MjYYPx2MFkxL6+CZeMFiUKuyBgJWAmmZHmsXXLAJYNtVIW89ncoVoBOdLeSKa5j2bURIqQZHz7I735Pe0xn1YRAA6whXrPrgOf98fmlf/RP14FBoSJtceusEVo10h++s8FcWDtrULiBa5TsioTCJQ5eqHOifvajG9nFOYn9AWbc5nOvS7WjPBF+z3RMxhXy6X6SnAv3h42FR2OT6vBwmcv4KJllsyNt/heL2DsbF3NPwwMvBZ2cpKrXwXxF3ME2Ifehkec9PB2MZas4Dl+ILz7b3BmarVJWGulYNnsNYUkEb4UsmBA++7YovAJtTBPERbBl9Pnqx45Bcu8+0Yw19vFkTwrn0zUvJeYJN0NkYF9axZvMAWvir2xs77u97LlnEN96/lgf/sjxuFYII4/Hhoc1jnB1N/tGEdNQhBVP3AtFn7OrTnK0Rs+R8AAAD//yydSbqqMBCFF+RABSTFEOmkTRBQdAaIKKhIFyCrfx/etwE1serUf46SjDIaeymuuLec4mG2T5Y6ZavUhONFNobXraTqcK2FNwzRs6T75FIhhjDnoniLnlT25CGd20cLwKrKJsH6eWGT9EQXkKQLI8ot7Npxs3NFeFr9jcQh2zp/9btPyxXetaxns0D4/6+nO98nm3gXcwhv6JeqVvdMpwCnNaTq7FIt36Dyo3dJAbf7rJHESjYl5Y2HBkH3oRTLne9MoXQaUSUxZ3hl6JsyeLkGdLlh4hU+Ita/qmMAztfcUu0uzKgfdtcCScvxf8oDBeE0lc8z9N/VmWrFt2JzeRAj6byX7kT13Ws5b7nOBbFXZ+pW96e68IACSvr9ksM4n9WJbM1GXPiTOvr25cyTTOTduQyLQXgVncoUxZpRVqQtNVyhb8fHRjd+83hY8UapsgdcbTg6HSPqWrJCfk0iAfbXd0ywdJBLHuGVC3/1t4+fTi024wjjfpgHdn0d1YmzrBH2r0hceElFY2Ppl93rxe+JMdeyM+96K0PFU+uJO6yvKhO15ey87JguztlJO7czMRRtJAyc7oTq3O9ZBEs/DqJUaGz2w/EsJSRVqYpOZdu/P+cI2cdCJ7Jd3tOpZK4B3tzEeOPgOZ2ol+UgnDYHGs3cOZyzcJ/A+VNIhNQhc5jNzQ0aXscN9Y5rPqUGjSuQjdWJWH17D//45vTAeCCXoxCOqNwkIF2rlOhvMMoxsU4NaqMuwOutsEJ0rYc5NIrhU9sxjuUYRN0Abex+ib4TG2eMNe8NhXpUqeesdmzg7I8JP30kk1ax+aWaK6hy6UEUWuTOEJdFIf3Wd/dkkg6EG2T0Sox8mD6SX27Lr12LXm8IVI1Or5LZxwlAEe8hjnmiMZ6tvRUvlS+BmLvnG7Ezpw6otLYmIfE3SPvn3cLQ+tmWGNLOchb+lWGe+yvB4zdK2ev+qqDcXE/UFihTp2fGuaD55o04fl6HtZZ4CozETeii105/CssO8uo0EFK8hXJsLC+BGyER3T/2tTMlHlaQedsfyeGrpy3TuXQF9/d6HAR6kcJhdtMcDvyN4c06eradPe4qkDJjprr9ctrZ1EwbzuWxwO+tGYfT5cgncL76KiFT15Sd/RZMsJPRpy4fXcNpMlsDeSHXU6P6KGxjv0cTpuIQE1nBd6dbeATx73s/VE/pU86c/bHRV5xa4lwchc3fLBXE6cjdCF54cpD6wpS241vF41m4l9+SadruV8/Wxlz0KG6egBMno/ij1Skz5FMGAZe0w/wsL864tsINeGEoLRnKKmXosq4RZ20wuShFj7qNaiRAb+KV6I/DrZ0XnpMq5G/Ir/6W9WiQ3FoJj28xSZkL9oCuk2lTsvWvajdLKx/0wKNELs8O+tbPbgX9aq0RbO39lFOz2wAHw5nxNlypzobZ9gzjoGhUdi91y+RYWIH93dsD2tplOTaV1kC34q/Lf6S88HulVgMn/5tTqzmMiF1J3kEM7XnYlXlfsmD9ziBtuT3do3Wb/vQXVdj1qeWZvjpnN3sD3u7ikGTmH+3088uT+T5i/vXw1L7qDgNs3+wwAOm2IRPvoCBUmxRv1/a2pJG41SBXqxsOs0Zn/DIf4S1KCd1vW7PtXLZqwF2eo1v8tNoP9KLBZFZHYtKLlDa7QMFwSW8y9XRlSsdPxOw//7Jf+H9GEADcqplR8o3tlP78aO/Y3SAV07udbkFuIF7F+pCNm2c4bgu/ke73vKEmfVjhJiLo/POnVEt9zxkrVNhStspUGjZt6fy9n3ZrdLLHalUOjhCc4YPlB92rx1M6ZWbUwM8Pi6hFLbM5sUGpJ8cLbxZo0j8cJ5qrOBhQUajqJGiXBPjN0yBaUh9Cdi2iArBuDlSP7LjsucpS4H1wFHLwkIpYZ980UHgAKkvXyln4OpJ2Fe6wNAXI6c0lM7RMGxOvzh/qcPWmM/zyAc89vFWa2n0E+jbg8DredyX1DBeDc9hsqFXmXjs+ykOAotN5ub/4bTl/fCBmwePHxyktk1OBaoOvB/Gy+bbLvJwBZPdFzWfKL/3AN4A2uUJJvHfL0X6PNhwfQUBUDB7qsYqe0HibmTh8vvjVtSPAJ9z7eC3ubTTOB36Gczon5Le+PmTZGSpteW6u5rRwPseRJuX2+YjH3JBTfnwhBZTvoFCDc3G7yXA/wG0szxTrgNqOUTWDkeCEaPutyHr1+R5Bbog01NO2C2nICwo0JqcNYlIYi58TV8BL85HghZ/e333WwEMWYrLUZ7nptEiGE+te5NwxXh1vvjBAL3g+cfNca0dbZDIIuwMlbnylbJQ0dQRnTvdU3wVaOh2umgxerwmURL3F+lXKK7DRBYfKbds5g3VRZWDRPhngpHvOdL4vdz3zO44cshGF3eFRazBuHzZVxuOo0l34qSA5opTqa/tUDoMDI9oLyZ7q7u3mTGnj+1BmIiH2vk/U/tf/r6za4k8ifNn8ywO4h6ARPUNWOiW5yklFzT3+9GkadtfnH5+f57pwfnkEfKlqYsHQIGUmqmQYI2JRWyqq5Y7oTQZLfkKTgLnOdp0rChyVrCb4kuop691a+33f5OOhks3ZYNY/f0FU8752Bic8NhA2nkp1uRrCQSBrDJpv3zCnEDucukZe9len9KBOYlo3g6EJ45fw9MA5fTutjtIbVtFuRyNTJCXTGlKgzlH3mHVl1HbXdWajx93xB6TJmToF92v2x5uEQMya1F9dwM9rQgO61xa/m2XoYl539OASA43bJjFgOz8aIsOpY8Py+eEhrURCms+WDQyd3qg60TP1VhfP4fVj6osRGR8kaPy5XHg+QX/90aELYmla2pK7Cwq8nrQK1fla3IB9fOoEi81Utlf95gNIoTls7HfXjuCYJkhTc6RKddmHE563zS8/I0rC3crhVF8FZJzf/PC+63d1ZLYyQjpyI/3lnbOH7hc0fnyfXh2hCsf47nLoLL416lyarOQ4ZewknWcesSJPQwx1Zg43/mgv8/SJpg7xIlJe2YvaqdmlU/zdVWDdv+Hw4GO9nEptv0Jnk4bEXm8ObXetMhHOQUFohG3kdPY4vWHhn8UfueXGGAPhlw8MNd/fyjoPt6O05A34QeijZIpgBru5yu5/+/HhH0UEx6vUU4L6A2vVj52DcnUCSh4NYaNzRzOk6fFIXDu8oebkBTWKC2FD785Yluz+dgJ0VPJ60UPDYVqxlHE/1eSgBnI5FsjKwT/ELTFUdEhn7jMlcCKiS+Ul71nysQ1o5NNhwefadq751EbJgPvFH6Rs7pdzvn95GbtZ95bWH7OBS+BuiXvtZ/Snv4v+4d35cWg53HUV1FeBUvs3L358Xx3yjB6uros2fBAL4Ox1maobn6rTtPpW4oojIv3jwWW+QnqZRWL6WEdcbD4C9BjvAVGzxw5N0+rxluThlhAr2tqt6HAkgu9rlPAnKK1yxJPvSz/91FgOi1bJtqSNaPibl0yGqZaeUrnF677My+7mj4MUCDuFyHfvzqaXFSjwqMEll8KX2ykzsxqWfiRGWzphw59RJV4m+U7D6PRqmZSTDpyVU1J5HmXGGt1T0O7RnQYhGYB9f/XszkVH4vq9Z5yF92/Y4NebKoFStv3M9y6Q5HjAK+cUqhtkbk3wu52F10rcOd2TuxggxGzA35z7sElgSQEH/s6I28RhOBstxXAAXybR62i328yMapBTSSWe+b6zedH7Xdk6Ft7Z7iFl56Mqgyez9998H0flM0APeU+0S1S1rHcL7a8+nLmP2j5t/ACaTO+obeQOm5RvaaKvIYUDq+Ii7e/xYCL5mnXEmKoadRL2XHRiw4ssftBpe7c20CFyHRp/9eXuBiKPCPduOaBP1rad7QgCqNdAIk4Rx85M5E8Bv/3jdzRzmPpRcoicUsOQzYeSDuiJkdNfAiKLsFWH05xGyNC04m9eNK/XqkECb5tUe+38dLyuMxMZNhcRffkx488Pf/2RkHPnTOGsrK5nyDdiTm3vHwAAAP//pJ3L0rIwEoYvyAUgSpqlEJCTJiqosANF5OQBTIBc/RTfP8vZzdLCstqQNN3P23RXm2qazJMJf/xlZzww4ut2iPV5vbkra088yceugL/91MRhValKe2Tw+W5S6o07u5qvl6BM1Zc7zfMXLDdX+/uXz5NyPDvh8tFH0b/4ycfJNfi9xscAfzx1VK9NJcjp8EUva7jwhx3K4kdBsuDP3qjzEPrjQ+gvvl1Ip2vG/3jcJRtSHhRXNfiRN+zQ5bxpeS5lOFsm8/S5l3w9ctzkEpr5YP8XfxOwuxUWYasRpDjSnSzbaV297dvB1P/8k4HXKPjLVwCFrkGDXsHZsrz8XIgscWADHcxq/NMfkNkcqVMcn109xzvoWe7ieZbWUYjPxVyC8jgYs15Ui5+HoyWMhX0lQxiNePS/RQGCmh01r1okhsdlM+mzvWTUVUDj49q6iF8ahW+nd4GFUHYFvKSo5K76u3cTPTYXkPXFhm6i3xsxIzl89X1aP2liCY5G7XhZ/fEhApO1R8NIwIf4Rat/PLWPvtp8Hl8tW2+CbzBcBv+N1JT7HGdHgv89D3YOPNiyfploYtpi9ZfPcNPczL3x9UcN4h425Fs866DPa9T+6T2sXTznmoJ0uIAy1Jg6QS6LMfE3C91eVAY3YqsM1LR/A3rn/u6PRwai34RfdKjeCybbi1ZMzklboKfzDcidZC5Sm8evhbB6UOorQd2xFqwC3U7uyM+KF2fTthoGfTMWJd/XZwWPuB6H//LyLnDxcPv0APKQxzRwx/2sJ46xZpyWFbd/N12MCZ9r9MjKpHsjL4UgEp3gj9dS32qrWd/bwMzvyCdOkkAsrYsFwU0t6Xy9++NVIJeJNL/nnwYiNMZST2gYs9Wcj8zf30LD7R13h1HB/+y3P0XITdw3grFBydHM2+b4pEVje480OP5MmWI8zwqb9z+QaX/ixm5umLz7NS3Ihr2grvvsMgGZ+YbqqS3+nm/drGfWUOfSkw3Sbyt+qrlPgSvJg/7pbdPbTUwkr/uKm6/ogyZdfbbwtx549m+CBrcD4sbLoXbxUOfe/YavM3Ozo7eZ7493/o4As7BjnZpvM3HQ8hRwJyKyNh89mvUr65+/kA61jrh/XC/QrHdQn6r4j6ebsL6uE/Ijcw37WjVX4EebG99fXJwN42fuA3KMLvyoqzf0Lz7wy+OFe5fnq+tt5qxQ7S3meC86BR+OQxOupu1Tv3hawZTs1xe427pHyc+20XS/bHN41PeEHoukDOd4+oTm/JlpYTYK4byeLiC933MP7qTqNboukas4DrUxuKFI7PPhX77jVljHjf8tSmgdz5x5P8m4Or8TN/MnevQX9I8fga4hK6CbrtthZronWQNtGOmJNnI1TI40oZnX/ONtKjXSJWyN1uPbvLUzVfd3S3jE/ZL6lv8JBsMXBdDwGXKCmCuWK6oSmPVFokmyU6mNVi+1m9pTetrA8d/vQ1K8Ur7fMhLO5/uLdmm+ZHBNOOIbWH/Bd7hHfYQVxI2D3EJaQ8n/4jMuJXmEsma759hCh0qUym3QzlqeUE/bPKrplLixNufPTMv7VHBoLAuyeNDYOJa36p/+8X/VFMD/ril45GXKaW5ustFMvmwewJRy/5yijg19DOhlH4Df0fhAkyNvNKAvf+QOG4xsaKO9jNbvAeimpUnGRHKPNDK9nhTDfYk+5/2HAPVKQv2HtxVt6TY1Wm34leJecwKl6rYLxJd5wbceeWTDOrsOcBoXLSdv61mJVd66YCyLgFpTplTMPkxElzuyYrK2/eHhQvdvJC/ccQb4+24YV9IXXZp6y288WuHXkzTmeraHSA9KgjGg+QlW+/FORPOT8E83fjXiv7dMmvqLQ3mfnCyYrEVE9EJ2OtFa7gTowiK6t1QzGHG/8NFuZT2p8+iemNUdnCBwTwHFjs1xn48/Bgm/SNRsVQ2JrxJPkDd+OP8fo2NE8pZrA11NVt6fWyzHNpfR3+f1il3Re0sSF7XtK2ejwXjW24vzEpxgKZFKwQx/yLM7oPQzmExV3203HLeXHI4T64kSxm887A0N0NZIdLoLSFCNZfiSIdl0JXVPyz36yXIqw6tcPxh6fs1Oxfm5gEY4Hve4E2GhaTHADm1SfjyWPzF4t9Pcd7lKOWnbGjH9sfORqX4w99rFPujV+5H92UONcTDxeEqvBJrruaZW9arxr0suX9C0BadE6Zpg2JrPFnXR16D7pmrQpFCphOwRnOn2pPvdeFcbF4oIPpzGdSXGZruW4VDlE98/T2rAud1p0JGBcIO4NlZME9dQB4VJT4d4Cn79oEzgNfhObVfLu8/aHd+6Q4YVPwfUCKaQRgC7knCydE4Cd41s3+D8OdhkQNgS6m1xXOnpWAo2/UQU8N1G+cJRu9+4MekcMb8HGRZj6XFn1xq417rMhIPz21NndW2wMPQNg3uk5kyCXSGm8Rq0oGsbidp39g1+5FmdIPdSRmlz+2Ce/w4EPgdZZZLfH7PBe/sm2p7jkSyQZ3SqHam9ViSi4EZr+5V61UkN+Xu7I+Mdqk4cdH0HL8fTqPk+X6tBPX5daBwZ02z1QkGPyGeAYpUvqEVE3I14NGSNJS1mtXGvRK+Pqxv0Y5kziBSa9ZJsEildtGtOsZGIIav6FHTNlAis7n34Q/0m0uf9QYPoySpWx4UMR0oupF8kcSbY3pmgui1rth6nvBPOUJawaemFvUKeIhEX5wuoYivTYLZvDPNS0+u5e5A9bVa4I9iJgbr3kG4C44TFo8tPcCGfmJvPZBEOb776grirQF09tfDypCoT7G4R0BiBE6rLW5TC0cKErMP1TiiGLsnQuYnO3TN+C4GS20b7rrQbJ49vVwn1jefRAcfPPN8nCMU2wTEoZW/yuHa9QJyStwV7UwSk/J3rarjdNiWotM2JrG33eDofWQ8S9TtuXDffTBAn26Liuiq5Ex67bLJ+Va7P95OJ9dSH/PTEC1ich5oGAy/FGOnNCtJKO7CxO8XhcNDYUhPy9OX4rmxFn1mfFPn2a02thdKFw+lyZGg9VD+6U6YnEuWIGERb40r//Ivsi3WN8L5QqB0ffhVznFu8unjyk/r4exBj2JIJ8fPKonl3xsFwQZoPGqc+t+3RquS9oS3g9JNGNt73TfjrDKlA66e54/6Jj4FQ55oG0PsFDdaXJBTLQy/D3uYW97PXJZzQbYpho7uYnxt3EozPTP68LwsmJeOx++19y4XBCHzuHa63Snzd+gTGEGjkQfRNoLjMy1Gwt01SH8oa9/V2V0CUbgJWxpMjhu6mmODRt8dQmxRicJ59C7Y6ETbEa6sa0tU46FG/sAjHQ4xH6R6n6Opt54kFconGVVOu5t7kH25O4ol/LvNucHVxQYbFLkez/Sl05anm5joPusmRVjdY24cXf0ShgocpKgtd22YPdpmiGI3Vclkiz3oY3JCUcyB6nPpwlYoPP4exG7xJ4721hfMpqUfWkui5NrZ6Dghzj6wfgqX5s9WX3DSpd96mYpCcO0NTKm/5QWne4fguvj1SvNWFU4F31dgqKwt2x0BmaOAlmtwclWtHOkeU5gVFnZvdXeTz24NfPF3vxsyYZ68oe4cGrHTEdD62PVpnbkI3zuuTjfvOs9D5c7KZ2me5EOHBP6BIa1/UIG6DxeH7GcBxNi436UdUfXLutojebg6l8B1CcdZAhrLK73SP3WX18XqnACUYo9nevuNRdWbQZpo8798glPM8PUDk6gfufx4u+ufP3Z2uspZmGuZPx3PBcJY/1hfFVszrXcJKimUifvGy64OT/NVuSRtzd+GZ83kLLXQDY6LkXY4Bi2zJRWf7eKS+3/p40BbsppVteqHbw3qJ2GLZHeAjFRHdo/EhFK+nJRrI/kCzw0FCrKGBqVWuOlDn59/xMM+6hk84DXTvCxb8Wj0EuJzee5qdmjIbRJFasLXOS9al97Trh6YnoHjafwAAAP//JF3ZtqowDP0gH0RAGh6RSaFIFRDxDRxAFBlboF9/F+d+ASVpkr33SpOYOJrQ8/Fje2+Yr/KRZGfxY0yrm9nD33l26+t36Zn86HAKbhKlyCm6dqWnMny2w85H5jDisZwnDTb9ZfTlY6NhGow3Be3KT8AO/flkLPF7gGXZH7Ev7rccvvZWhOtH0NhFYkY4exl34adfDeZuXC3bpJswQa6vGGSJ16wx5G8PmzfVaWEdEjxN288K2pM5kegT693GNWiPBjdyCL5QCOdheKXI3UQBuy3/N5nmI0YNfdyY0d3bcNCuJ1DtlNR0jbywpFRNa4g31o+cHKsyuCZvdFgl/YNp/VDi6eiaLky1IxDfvH+68flMA3jUQkD2IVP4MFv3CqnvgNDN6SsaQ+YpFbIE8cK8yJ4MNgqtC0Xkl8wfziQcu8vtoAbn1CVEvdGS7WU7AfhJHttl7FBOnZJV4FrfLd1gUiw9XEmCWiRe/G2Dazxz25GVYyjY/kAzbGwe0tcFE92P7HB/TB1/heuDEqbzmZFhn5ez/PbeaMFnNGHvcym0VSogPUNPX1xG+c3X7c5U79o80NGIle4XnvQTfCcPs2Maq7zxXrccrh9RI7qgEcyH98NFj6M9EO2uP7vlPAr6CLJLsNj5fLT98wHkI3/QzyNtssl7nd/qqqtjfyzyDC/+PvzhGzqfmpyzqHwsu6XWX2b26hZTD0Zz6UHRKQqNM5q7zmoB0Zfp83M2YX68109IHo7H4rTWDS7tiYaW+0slLOmdsF5vZ5ByFzF9BTUe9YdjgtlmAfF/phDSSNm///AIw8H3Hc7r26zDEq8EGyQMp+MqesNfPjxsZd6NtyKoFeUenpmee6duxnitIJZ/qN9dI60Tb3v3CeaL1szexT/c33+yCUVrX9j+9LyFk4BWdOlzv/swGmJHh60P0B0yleDNszCmnfO7I03xXWZq1CqF/Vc+oacX/2jjvcyQ/uYzhZVw132leR34RvkJLdyuFSHuVpc7Po7PJ1r8T17Xj1gO1dSn8Ev8DfHUNsXz8OU5KPYySw4mqWuTxDvAOI8FM6T9josbIuXw4G+g17vMDK7QJoWbP5bseS3MbiRQj4C/CqXr9eMdzvv9PYXbcN+x7Brl3fzKCh9RMB50NsgDTZJvzAiQoLGFX3G2FY+n7fR8WwSjdDD+8InybNbu8v0CzbUzKtDt+gPD5nAyxiYtA2QLJiH7aYuWaRXYg106VpR/9IKPsjCKoMJKZpafIIPXgWsi6yQVxHQud0y5vZO386tWya4rf7gFPPbAeP5jeGVJXXNGkYuOQvImz6K68uFcH3qA78onukmwMYmtqqHlPi78MF7u37GFIDNkKsTPEfOKjBGEQaEzh4lzNpLDKUXP2vTYabjvsgXvV0g7XT7kcJv3eHIlyQZeMkb0J+VokL+t/B//4l9Fy9EfJx+pdt4SV7L7bL6x8gTp+JLpZ7Xpsj+8ABO4ta/CNOCZ3S896unn448LnxVDcl/B8bgKGdYnA0nq7xLD+WI7zJM9tRuPuxmWh17yf/tPXqWmKOf1nhhT882Y0yUpJNTb00Zab7NRbnYnNW4Tlena5h1OSz7+szcFoxQwl9fdMoep+zHtaQfhfN06JkRXMyDPeK4ynpKwhXjG1H9/EOV0lA9vkJtCZ24RF3yE9BzDGHgW2c0qQf2S3wAHsGHm6bwJp296DEBw2ztzp5qgGrlPG76Xe8V2nnkOR9hG0X/7tFS1wr5GtY++7fnBXHUSETsm0Yxa118RUihyN4SVPUKQ7NdMu26vYR8t72zzYY4W/rXqhocRzehS6KIvTdssnB7jLlCpcngx8hrUclrwHnhm5VHLae5otMTtCtY36cIsO9fR3KcYUO13hq943DLmTcZsJMbelWnDvcjGct7qINSnRSOcNLzZXIsKcapIzN90Fp794BIDuT/3zNsLb96unNWseI36Iq4cKotm/z1A45i2T2VhjVnppApkHrkTcgt1POv6KENhODXTbtcIzznXIrXb0QNxxc2jbKuqdUHrrQMhO6E3moXPKPy2s8iSb41x/qmAhPB+IM7Ki0I21koFLs0+dHvZbPGg4SZFQ2ArxF56+uge1yboqZ773+0xN+aP1Alo8TdzrLLD82IhMKYdZoc9FrNFTxCUP7y4P2kNb9wx81EcFZii4haisY5fFRp7mTI9MZpl9vjTBH+YG2KlUZFNz/CkqxCh0J+U+pfNQ5Dbat2mNRX20jpsR1nLVeX6TP3tb+gynpdzqlq7WGOGJGp4M59NF876YXn3u9H4wLqyBh7vPaIJe8zH5PxKEBLJhq5v4dtopzdyIX1qD+aLTlTydqel//nwoUA+7tPB9cHo/dAfoSjKucy9Hn2v1w/540Piu3m/YX3Rn3Tt+gVf8H2C7F2mEv8r2aVQeQ3ADQsti6pxhWfha8oIJb+AGbHLwmr3eh+gxzZhFiY7YzzbzzuspYdMqb76ofEvHmrZwGRH/XNH3eNWAHuzPtK1OX7D5sz6D+jFdGb7T3DlVDD3gLp7MjGnUaqM7w5j9FdfiX8tPl1tiROgP3y1UlIjm/H3BPCnj+3lTdT95Wd1GtWc/PFfWgQ4Bdu8ikt9DLvR/+5qOL0eKjveZJrNfWoAjNIvYfpsvlF/UqigrFv5xJJ0LSC+4qYCpzzfkj//8OM9f0KyAZlU074z+suof9Ci9xBP9h7dpB+RC7E3prQ+zakxvLV7gl7VGROX9nFJffs7I+10/TC7F+9ZU5adDc9XkDOrM1foP9+p5R1mqXYjf3jzgFKCMopOpzXvZUEWwc73GU2XeBuJafZ/fHHBN6uu/fufKEMOczTB44yEbo1ej8eL6QIbshHSWwz2sdUIsfwIzVl7PkDTtG9atMKB89VrusNaKNZMR+m1m86sr5BnP5bdl+kR81cXnxQhfB6Y5r18VAePTaW+wFWJJz+8bPqwoFaDmOz8yZHEjDqXRw/BWusZtrHXjXPU5gChfmEHZurG7MFoA+o/NnmshpsxAMYJWvAb25m3G+8bn1OENOHN7DmSUfOn9ziimbDb6lEa3Iokip7RPqFI/R2MzYK/VSBGTnZ7D6NRWN7NXre1RJb6kNVtFYjg3/iGrtUb7Ra804N2XFTa1S0Jp2/QJMjXDYvoyrFB4/a3j8F5BD3TErfK2qZINDQb25s/6nJncPZZmq8K0lApS4Ow5eftXcUremOLfhv2k4pjdHXMjNmZfe7o9/28I4OrJjuQSA3Z80AqJNWJy0IzUI1h4U/QJpHmi/GVZ9S+N7MSbcueWaEolbPvbpehk/uzL2Hp3f3Pt7N6zokVzyc+LXwBfqISEi1x7Yz37koHzMsz2223jTGu95ceKqUK/Nq+J3jsnKaCzvjavvJyKj7h/ZzAom8ww9/V2bR5WU+U8mzyp1Y4oAaesQCPAHLiua9jtulsw4PXM0+ZK9leNqst71F+H25swddIuvWeDCztl10cWWcMbZZ8UE5skR1VAt3/+vN7GD05yJ2FJErNHnGpL8npUb8Rt+hpVr/j0kMjO7hThqkzoejUkJANvRrTTgxB1fC7Z+6Y6cbUP9oYNneR/PkrHFJYn+Bqu29fgOnazUceBND5s0/fs/lXD40VxLNDyR4fzIx1OU7Rcn+JwxIdzYoVnkBdbUS2e3cFWs5rouGrc+bxr42ayHnkKOftnmnI+PBpZU2BKpHPk1z6d1Yu/A+QMds2OWYW4P6PrytpEjKcIzMUbaZ6yNu/LULM0cqm7enyBjSlK1+0S4F33775QGMfjuQqXa+8FxV9pTrSOiaLXooF5lvmohGZPs2lW8l/lEdQZbLATKE+dXNXNiNa4p1pce90fOEvf/FFsJHreKy8Av7yG9MNoqK6wHEL38uz8mdn+JUfT8SRYrgVsKNrMk6FJvmgUnntCYnCC25F7ntIFGdOrKwgeLgFHkXePrdYllInFAiBAKa1XdB1LZ7RFH+1SL1QE+iKsg7NINzyv3xE1W7Muyn5pTYs9vXZYo+xc4oK0Nb5BwAA//+kXcnasrwSvCAWDCoJSyQICJgoIOIOHBgVGRIgV/8/vN/6rM4N8GSopLuqmjQlRnF/hQtKE11d+cmqPzp82tRarS6pYjGy+hG0vbYPyB7fHTkqi1dxhzQfdYzBTFzk70OFyLX+h0e8ub4+4RjYaIKFThg5vus6m43rW4elTbd/elW1vG7XHL6drmX7T5UiaXMpHUjh/knzT96i38tuX+DVOCG7LkzJlHHuLSg7crbyRZ0rKE0MsHuLZ4KqEGWTclhqrZfxk443aCC5Iz8d5OptXV9OvaGR3QnSe43I9QtMTiMhw2D/pG9M1/hOh4JJ8OMIAE8v+dwvLC8SsPINdu0+LOPsEr4gUx45C56i3A/01m0hV/oWL3ArhTzfHBQYpYa35ovPai71Rwo35j0muL9W3nJIYgsIc34kOKLLP/zANR+nwnRqq8HzzovGlV9LHNy8veH4SF//+Ildxl41me9U2qHk9F71Wi/jm7y1YFT1Kr28j5dwacr4AduoVAhBQVtNts46KMoflRy9qQHLuzqYf/oVQaL4RVwQpAfclGhHN3Vl9fIf/+S7b4E33R55kxTDAGa5fyFBKRr9uDNHCO2jsGfH32/TD/ci7UBmJw3zJr2upm9yL6H2ClM6XbQ+Wwxju4VDQhf2hy/+p5d39uVAHHpFYDh/swS6Q/lhx5JgsCQVGGBjK4g4YnxG0xoo4d/39ddt73F/d6GwGUmMd4/Q4LL+ggroklinatQ/MzneZhNc8/0/vgn+1h/8PsOPfrt3UA1/8Qbfthvmp4bm8WAAK//3VELMd1x9v8obg/P7rbE1384GTct17SwcM3aE4ucv/3/AkB9eFF5DAdA/vWT1G//4Wz972UECf3zUWPVfOVGbcrfmf+T0qLZ8ya1QgeX1llFRPtvVcvOjGpJjjonDykvPk/wZgXV+BK/62rLZXFQtPLcme0bpDL6CAF9w1cOYucnKiv2ecwerb4Wp6l2dcH7UFwq+b7HB6sofx0OUfIAcvwVGNEcEC0rPBhSUm07W/er5uStW/0Oq//kFi3/7vqBqlgWxxKcPlnHtjfmnB8kD7zIGJ+7AVd9iB4NI3tjm5arnoxv5iw9T4HbuP/330Gxm1E1ckmCtxypDomijgfMxBxTRC0HdOHjLQkuqFZ15Jekjljg3y8KH3+d+YH987eOZDwOufiNxrkWSLbbkbKG2dfcUpM+06uewwer7fL8Tct75IcdYEcCaD+M//X2I7d8CPdc74tvidt6QmUUCj/vCYZEF8nCesJpCvj9fVzw8vem9Lwy48j1idgGueM4KATw2GGBZPA7erN8SCFY9n6DwXQP65+fYniSSQGJjOK36+R8fIu57e0CKWFy3oNzFhJktVgFb80/gynFA9Hx+8NWvnSDXTynxHr7lzbarLmpSGSLzHv7Hm4bCGcDe3ErkkYYeH6nfttpjZ++IbsZfzgpwydXt8AAktCuhmhtrlsDv2lMqHT8dmLa/YwBvrninO/9tZhsbCQYMwtChyqz8svkCIgd6U5MwnJwRmhN+7P7xcSdsfDTsd2oEYkYk4t/rU7VU0dOFzXiK2Z9+z6whVtTsK+6Z8/scKn7lZwF+4PuMlSizM9mt+w6y22yw4+qvTQj6Join88R0SenQ3ARFAqdlKQiW4Id3q9+p3lztzszX8duz9iSkALvniOGjukfDY+0d93/VFGj/o/eB1Z0Ydl4ZmMd73cE8eB7Yxc7lbLqdVB3s67hjzs4de6oiKYCY6zZzbs8jWLRmW4Mfj78YHta64eRit8B6ljaxNlzko1BcAm2bBybZpzFGHIt3B55q+UysZZi8KQ33FAq1FtPYvBzCRXLhGcpk1BipCxrOzxg4sJ1mlRC4VCE/HfoIjMZokkPQ9hndj3a7rXP9TnyKAf/Wr1iHPpohBSZTwXhjaalGVnRlxnLXq6kX9h2QtyeEQd3eq/mDqhf0g1PK9mlM0dxFEYSPYqPghe+2YAZnKVKN2kLEOyI7m/qhDMBh8H3iavaMfr9NSGH/4gFx3eTez3fr2EHNON/ISYkOgKfv3QLpy/wwMj3rfvqOZ0fr7kaC4960Qqm6NBBG8f1FrGMio1EVnQiWAdKxqkmWt0BN6AAGEiTHwhR6eqn0+N/4xWt/7RccVCl8IrNd37KW0YLyPoE03j2I3WRrndBhksDl+nqTwwUoIUVImGB9FWZyOt55NoaNPcA59idmiI6KJuGmSPD0rCF7DLSq+LZPI4iMT8f0MrfAGMt1Bx9YTKiSFUk1RE4XgyLun3RalA3vBn/4wEJ0SuIeuiBcrM3XgEeR78nByVWPWUGrgvT3PBBb9CWwdlsOwGCoJTnqyy1bKthuIQBBx4x58KpZ8tNSvRvJmV19yernOnsIIL6UKVWpcAqXFgAdugOzMNx/qmqEj9hRv3dmEtf3hb5/aiSHDm5r9sS22vNEkxMYBM+Rnl87Fo7qgVlqPKE9FqpW59K+wzW8YN8jjnruUb0YVQmjH16oat2+GffbzoQf86Iye9koiM3b4QX9uDnT3ZmOfYuCqwlr6ZkwpPrncNJPpxTmwftASOs0fBqj7QTOAVjIvrV+IVebxwT4JZEpn0wR9X5bWtDbmj9yitqoV6x3LsBvDCZm2thEylvrIyhKfIs/nmf3Ch+5Dk/RYhNH25QVd25TrQWteSW3XTJ5w2V7iKBitQWJv6tbWaR1DfZPK8afthb4x09yCPdIZ1SzG5wtIS1dsbnEEXPeB14xB3gqPE3PFAO+UfuuaGZJM5FI8db8zmF/Iw9FdduzTdb18IblnbjQmt6Ubtb95WgaSqgXs4a1t1KF7D31Z/BclD0x+C4B/EvX/1Qc1LAVD5xJx+MDqttRI7b1SyrOBx1r/u85MgtKRTUIl8SFD7e8Exc9a86jbMjBeh+RFIQ+kjPdt+D3ej4w7zLjSi7jw1kD0iFnNmie4bRNEgeueKPcvWUhRf22/RsflY8nhqawL0xAm1ilspwN/QgfLweeUHFlnty/q7n41i28NRzQrKEbxHN4MlWrXjJ2MoOqX2tIIMjFWMfipUOZErWrZmeUAp1Sz/H4ihdwS62WmFv3h6jxkXMoB0VAFbKjnDfVxYGVxETmTgctpBPVXmAl7ARNc4SWv/2yXMqJR7Rfz6+fedF29euBQRS0/eK9uAkfz0Qhbv4ost9TxQ9VNUSE588gIh4jYMDbIB6Is7T7bBnByYVZfHcZkl9HJB8/1QseBuwz/4jHbD1PLnhexQNzmlPjzc6xC8Bnmx3/9o9Pm1d51oYaP+n2EH3CWafNFp6s6McyvPFRL286A57bPCXGeWRhGzdVDvyvZLDUrCM+56MywYLnd+YQWfeUua0iYLcC/3cexs/25ar+VzGI/v3G1TzCDYSI8Cvml7VSK8NpCvLfmODlPJJwDqcHhL+RCbS/Jhaq4d6eoLR9drgo+wHwS+wE8PWqQmbvS4fzvLs7kOBufet6abNpEF4Y9Ll+YHestv1sbqf1rX4FsIOgtHxii7W+9d/k5Gh9Hmg43OoFCK7SMH/Y0356nEwXjralMr361Nnw+wYfyNvewYuTTP3YGYWhFUNwYPprR7I5H4UFjsPSE8ybXzY4u8KCibJYK35pxa07qYHG6wDLJ9VElCZWAgxx8Gl/v28zJoZ2DucYTwTt2z1YGsedoF7wtYamu2U8QycX6liKicv6MpzvN7lWn9J7oIJjFt7ku2kHPNJUdJnEuFpuDz2CJmc2XqrK5kwMSQ4NQ74wg4hfzvZObII/fJlmVPAlqKItzDbsQLxv8asG29NzNdqFgMqjdQKtfGcuNLeWts7vGG6oCX2AW+HNnL2+A+N6n8P9sjjM/a4N09KozqFHvhUW6rjNhg8vz3DFF/Hco8nnu7XvgPF6pvTTnItqAbn8AqW0e5JDTEpOvRewAL+k8l889NpXkEkw2wsecT5hWU1v9tThOn8M4veVy6do3/4HAAD//ySdy9ZzMBiFL6gDqiUxVNSZFOVjRinVgzokIVf/L/2HJqzFe3j2jjeBoM98VIhNPlJvniFAB++OyuG2i6e6AwGIv/ccV3ehK5lXXXngpocDUoxeKgnnNQKcJzoG0iftRiKpdg1/8QuLkMVsDDUJFi8TIRsba0zVyGqgGxVHpLpRxBhQaxVM7vwXzONZ72Z3PV+gkuoD0ZV5KFfPL7H0jdQJH62gB+zF02bbVyQnvhj08RortQPm0HogfTRVxirZfECt3tzZpVM1Kvp/NbBBqhLb8E7lXuMcHuxfOUFpcWpidsy3scf5KmPpfXm7tBr8FGBGM3T9NG65L290gqe2TZHvGFYsJOc8gvsj0ohHScJ+/UY0civEx7Vvy7lH/gXeuecnEA2v3f6heuiwj8IYxa/HyqhsqBKM1OxJgsMbjNPdO2EQNcAN1v1cAXq1HqksoHsa7PzjC8y8VzTgP59KhhavKVt4aPcPTKxI48AI738B7OFV+l/f++I0XOVfvMdoOZdL1xIdpi5YiHpoaMx+9ejXH8zCe8ds5KZaspXTl/gHfufS2e4asPFaQH2bj1nf94K0M2pCvBBeRzaLWAJNcskJyiPffa/82QHX6tkj9GyDmA+vqwJtRfsGnBDaMX0YngW/RvHAG691A5WcCeCp0ZGbZG9tnoXwImM0Wvg973ow74HZQ5Hqb6RhGblrnqoruD4FiPkJfNgaKaenVPVrvtXjszu9H6okJ6l12HhWHOf6oWRQCosWg+ZjxhvfYbhne59kGx/QG5gm2H/bN378fcJxoYP9hlO4rRGx4emuohMUsD4oOSl8btHo9M4cCXNFizw+9bc1k9qAnPM1iXnNTh0+XFwIP/nG45+oB9+MEOPHp+REZqVjbmVdQPGIQSA9K9b952OrbVWk9iEqF74OanhGySVoJdgCtsWL9KVdjDTxDkqWTakq1UHtEF3e+duclvyUku/pShy0ah0v7WcJylxQBnIM7iXtnTCT94EeoRjLSGOuUvbQMxqTKBufsu95MCBSQkhQeS9iNjnLCh/NrUaGP526wxi6EpwSyiHTP3zGVbkYNcwDNUfmrIXlkpGPAdfDRUdVhiZ3VOPuCmVYmgGvX0+MXedtDhi+WoJkb6exXbRCeL9NDvGCpNKW1fwrYEO5ifinxe5Wc7ke4e2rKfjJBBgP/K3c5o7NBkvr6wm2sxxUSaw8C53F7eyV4UMcKIajFYCaPWIaN7EA6G53Q26eH+PpUx5XsKOfhhjqAbjbiV4pULQwDeid89gqrcoFcoZnBXv9/gHP+ajrME24PAAv/OdOty9dQRVMC6m2esT/+p2nOiGy9RwzXJVEAQdeHgJheSnxul4WAZZ5UBPNSG136XYlBuPhkqEqbp/j8noPHpTV6C/ooJJseo5Z4MenMVT2cT+XfzVMnMdMfvEzqabJQxndVaKH9FIu3sgceNRKi5xk4VkuD30+SoOWU7Rt8jX2llsZoJF2DvqvX+2jyssckFV01u8fxg5Xjgfe9z4jFZ+3ORtnWcGp0lNkfnoe0GSbu9j0Jgr+ZggWV44eMLP5E17XXBn5+egZcNOvAf/0m5FGWjH8+iPxY8CVq1xwRyCo0Yi0Il66RXukAfwecIUUT0vZ6mX9DibmnOMu8U5gv5r3DNZkPQf03A4d+emrUQ5FchZax2XDo4vAlV0Kcs+jWWNpgiHM2G5FSlIzd1XKcgLN0RKIFVGerWPt7iC0J4uoFem0dTipFLwcQwn467CyeW9YGTgfhJS4TnfvaAajN8S18cYyR1SNJMcZ/+o/OaNTzJbs76uA3hfiAHyTYKQfzjPgyaww/vqm4C7nRNxBdTg/UdD1CpheaatDm7eOJP1UAVvV1VlFj928YD5nrUs7XLzhgecGfIyFKN7y9w0rs/0QxUEhY/R9fMDoFZ6Qpjz0UjDh4EB/Uguy+QeAKdbpAcdDlCF//6Hs//sJ4QIwKe9Sie04j8AUySOmDO5L2t/OV6gZsCF2fuMBHr1MhTSPRixJPu5W3VokaORbPN8vYjeBbW9XKzafmL8OEZhu3+MK25cOkJoUeilQvL/BV3i9Ep8YKfifz+4rTILl9SLxbB8dAWz+REBPUqwtg21O4NNbD6SZN6MjP76cQWAjpO5vbD1M9C0rh+KFpQp8yv6dygOow2uP7E0/rmI5U7jxMRZc99P96qNUgV4gobcdtOqcVQj/gluN1H3cbfEsUmnT/wQ95m88/d3DDJbV84qCgNuPS2QZD1iHaf/fb1n1hoNg46FgDbykpDx8SXAW+Hi7n+Zifz84MGNwJcGsk5G0ZpTJCRD6YPl6Bth/knvx4138PbR4XJfzRYVi+LWIzdnH+LXl9y+f8E+vr63te5CZf36wH7wxphqxMSwqHgQMXyRt8jg/BXojDMisJX+c9SPFcpYDJxA2f2Qpu3shZROu0Um0UXxgkxWAH1+sgTjEs1eUFGTcEyDHcr14f05ECBaTRcT/RpH7n+/5aBHx3swHd3EWOkEJ3CyiHEM+npPuOMG6fwNinP9UwPs34w3BjWqYEqC5y068X6GhdV+k4UuhzZ9m6mFmKnPwHe4SmF+JyoM4zy7EWDjgLm6w7OCPX4731eoW/2oP8BTefEyGhGlz7Ns9oE3DbfVcdymfR2/552fZlebF895QCjnOiwva8hHMXPsSIAsef8QTNbUki7as0pVWxjYHd2Ns/1YHOBXWntQbL4/bNXgd1DPy+TaO8fZ9pE67AtQ4aAHEc+UbqMAgILdSCCCV0Aj/+URYOKBNWzz++CCgx/BarpgHKkCzdSAJ9uWuv3s2loZmW7PWS9/ldWl8QJ9dMLmJVaUtTqLrQJzD8Jfv5SJKfvDfb9r8qI6dXuoEQPIWkZfpb/e//rbMe0HU3cmJP4frQZBq7hAQN94BsP7xRgGX5xAQJw/Wkrq7IwVivWfIuTajthwrXYHdKCgEqeXDXatEucKITXd033G0w3ByJqAfdTng2s8IWKTva/lSGBAZy0sp6aDHvLzxPBbVl83W9iXyMBBPfQCLMC7X/XZe8WWSc3Liy15bl35MwV//MND5mBD3//1/fKhwx7GbQvtJYWs8ryRVq6YcN34Ev35/Sknabc+/iU96fmAGOJUJzmk5yko48Sh1zoNLLtyM4avNKxTQ8eMu4HZ6Q6c7hkRvJ2M8FNepgbTq24DfVin/69XzfDgEXM49XLqPrRpkSe1uvCFrK4oOO0hQNWzfa9YY36IH9MMdwy1R3HHpELDkkZoBLlfqgIWvjRpsfiSxu6fhrl/zdvzpdaTe4SUmP/0RRfeZ2K/M1VZYjCls8h6R86HPGdP83BM9jUFy9nijE1K2CNLwPbfEOSqnUrDj8AKo+McHwNbMmB+nxwWusb8LmORdyj5obQwnTngTrTtljO7zjwWuaVljuunptZm0Hax5/4yl5FOwRdYvBgw8syNosjOXbn4kNJrihbRSeY+rMgH9px+xEDdGuZ/yTAepExlEObfDSNVIaeAWr8TWRrMUkBdeYOZWE1Gfw4Gxe7zrwUUVvuQkoQlQr5RUkB3L5b8/d0Dh2YEfNN6QHlJaLlBUV5g6F2OLT9cVSQ2vkOeVEelp9YpZ8JgaKPLdC4NNz661Jj9gMUU58SasjYyW4wWWyBGQ9+CkcTWXmwQxfPkBMNGjXEnIR/AQmT4yn8ngTneSKPBMRw/Z3fPtrtwdKD8exlu8M3Kn3QXK7B0Rr971MW4mdwfOrG42PdjG5GHiHYimm4tyCEd3Ur6rCj+980BBDUaw/vTe7/14lkUYncv7DUSwvW58IzD8x5WDBIGiBXzpTt3a+x8Fqo5aIn1/MTom7xcsd89BCCh/UV3+SFMPaK/KxPTcOt02w4DFJHUOeLkdencaWqWW0iJBxLqvfTe/tfEG4NEjKBDuLlipO1iwS1FGFF+wy6+sZ8Yvnomz9dNp2tUeANPe2/zKoqOfOXOkkkUGOv8lTbwYK7PAidvmZvfPa7zxcPQPAAD//6RdSduyPLP8QSwERNIskVmmoCjCDhQRHJAhAfLrz8X9vMtvd5YuVBI63VXVSQW0DfGpuvGSRqzPeQnFI9jQlZ95bP92B2j0BNFgmzfFwmkzrxCtvFPX8Ya4O/FwgtzlSmqs/IzUnzAHmowc1qTgvdbPPAc1sbpwirtQJ/vL/oNe2zV/EidqJn98c0gRAgW7k3mPSRt8NeiYoWLtffWZ8Ke/9cfPl/r5kRWEpGEqr/mBCE4l67Q+gQ8FWIj653vYLFc+TGGzrXW6F+or470xS5Fwak4rvlkQWfP5Xz2mapoKvbA3nfKfPq5PM69Pd2tZfa7SYOVntGjtI/XBHrMlhAPS4n96Sb6VGnq9qV4xRtkxgbJ8xjhWmM3Yqhejxq3MP/0rHjljaEGtnBMNVr60XMxjBOVlKGmBzEP/rz7+w7sfgpph5e8gPx9duBhzpk+vG1r3GLZHao/TJx6OZ1mD0j6q6/Nf+uX32tfKe8PLGLOJFstm9Ul00Ou39p8ebD4cRBGWRQ5xeHeyYrI9p4ZLqQx0H5JXPLDHMMirfkHzv/ryLaZFcZHzwlgrNJ39rocbePBssfVwJn2WyIYDgW2DUNombb+IzB3Q40ZcIrauoU/173oDNW9+ZLc5SMVsJVYNZvJ9EaFUXI/RqNTAaQcfR6v+t1xvzhmi5aXRZMVnRF6cE2D3lNOgnqX/xn92iUeDLEGIDSQw4CCCT1OL55rZ3AUR3D10J/yq1zCG49c/PlCcyqZfLu3wgi7kJmwJn1PPOpPrQML7I1b/juEe+yBC6/iobSdjMx/0yFXq8XfAe/VdIf4u5C9AZUFo6B5J0b+tVw34lWjYqYden2WGLFiOn5hafHXxlka3O3hkkojPr6BqFrz3NVm63yg9nc8fNCGV+SA0k0EvpdLp8x+euvE/l5rTaBbTTjieFX9jXcj38jgWhG1OKfC81lNnm7QNe6CpBtst/T/8q08p5B/4VaVL/Z/t6wtp4hYG6Xcjguzs//SN1x/+wlFmdv2U9fYC91feUKvUTg0F8MQ/PkCDQxbHrN6rJzTBwcE2bOyeMiNMdivewate1QyY0ySwjhubOp/xXrC72IrIqPgOh9rv1TNPjVvUsspc7RCezQKDNvzpIdjH2uKxZ/ceUGXoX7Ktn29vSB9vQNK0rseZOt72zU81WvsdoRzt4r4/GcpNzHF2x0Fo5/0Q7uwJ/ulV9Sx5S/atHfRKFxOHq57L1nwO+vth/6e39rej86fvhhMR3v3KN5M/PQSXxv3QjP5WTZVk63tE0pgfT7576v7xMXc7nBs2ENMCjD4Xcl31skkTCvEfnkf30WD9wd/IO6tK3/Rm5228uPtZhg+vx1Tvk2s/pY+RQ8UePHxZ43+WdlML92NtYReb6x5JmRno7/9/dGcAG0Dkv6BF76UO1vWI80tQ6fOfnuW0xMfWfvJi/pIn6x43nFAL78L/9BzZdQIcYHnUm0yTXrDyFWy1Lw5NH9ad4HjqPWro36GftaiL5PsrbXD2nONmqGtpUuqxP2BfuLmMWZn9Qh2zVIzXfMQ8r5WA2y5dyF3HG5p26YvAmClXaq79IbatAgsO1xgIyrK0WNZ+9L94WvWyeBaukKDNXjzRlV/pr3166sD1Cg/7a391Lq+YQCS9mz89rZ+sY/4f3vC74NePa/8ZRl7dYKPZMbS0AdXQwzbrUHz+Oo/t4oqHnf2t6GH6+rHQaT/tnz4VOPEF/TJr3yJtkCUy7w60IH/8+hNGKfk6d6UZvXAH/y+fAoH/33sKLulUUPWm52j2TEcDF8U/amyPEhqll+LLiEUjTan16xf9/oxQ/bV1au/1qGBccMihEvcnGs7qTv8I9T4F/Y1KbF89vWHaW8/BMd0IWzd3Zr/utHeR8bOdkHWq0fNinFdoJx0Tsk26HE2B+5NAsN0PNTIR9AkvqY+GrsNYO2ZKPx6uQoXmwizJppQeaNhdOQ49OniHSftFbOwOIiDN8inVs7SO5/4ROBC9vw6ZI9Swtqd8B4ngu1jXLBKzIC0S9IsDFx/ehdyw6PTk4ZufklDoubVnN0sf9HwcExyY7OEt0vHRIvotQ+wTvW/YRO8ayIl3x9Z6wyddrl4O+wn3+CDVSTHpP9kCPuNU6vZUQGRrxB2E12QOueG6j8X775DCUgcd1bzo3LDntm2BfpaRmvEYFEMeHTlgfZ5ibXro6L1IXQrxdn8YRXzdeoNZDiXadtqGzN+Ei8d3Lhpgf6MDvt4fL8T2ge2gur2ZOB3Mxet9E/nQabc4lNDu5RFxuJ6hPpob6lhBr4/qs3MgvtsN9YykZszkWwPCOI3o9Tcn/a/t8gXkNFSptxv6Yjg9SYnsqQ6xA+O5GO9bVwROk6z1Mx/Tdf5AP6QZvsqZhJgi/3xI42aL1XEf9LOwTLLS7AcXZ5xmF9MDhgHE4BuFXHBj8XSNaILaY15TWzUcj3XtQ0b7ATryTTqZTZJ0WiBvxBkHWdE01JxlDX7fQ4+1ztOagW6xg/RvVNEiYsO6rwz5kJjKHoePjMQ93m5L9PTOAjWfgsoW/fIwIAWGQvqWNH1CsA1BTngO+wVKvQlpRYqOnHUJpSlyC/beXTWYKa3I296tns+W1EnCewjpVZj2ukirNgdshhK2mHXRyWbKNHn9PnZ7OdTX9+MC7OiV8N1vPQcnVCng9C6F2zo+I74WkQ9THC9Uv0qzzrY71Vfg7p+oxReh3vo1qqBKPQ+7h+qnj8J4myDTb08cn5q0mDbHyQLG/VJ8eINesHkv+FC25Y00jrFZfRJaAyRhDv7Gj7aWcQo3XaGKNPjVd53Yj2sHalQBvjOx9EZv0/PgZMYc1nft2iwe4c/Ql9I+XAopQVNXSy0adflM1SX5FMsbdwSezS6jYSqv57gjK4LTRlawGQ0CYqWSu2CfOpsoqSyz9vSTWsDUvYfLRnnH/a8oZPj9wpA69PhE9PwjObo7ho/PdrGPt7o/T7Cl5xpHu3gTzyQrOtA9RcKH6naKl+x2mpSy4XOaf/K7N4sbXkJtRPfUwqPdLEw5GMDrxyJkzaDHIneXJKhSfqA3YXg37at8vpDwJmH4Wv9vVpKXA9+mKkLhwx88Kn5aA86SMFPjkQTeXz6QhQc9kLHMezQZvpEoStwqYbF7xvp0jS/5v/ji3iNdT9c+a1QNc4AtFX90ZmdVCo5xo9QXPGCdYvId3J/JEetz+Ynnup0X8M4NwaFdav1W1lVR4QbXpTjPq3X9vAjMt1uFzec51ZmqzSFM8XHBxnnL2KSLooWWGnchr7xzb9mJD1mW7pJLL9uv3giOu6vR5s4tZJbvuT6Vw9LBTY2q9f5Ev58us+fCoCBM+K7kYuY6YgvtydKpuf3q/V98oS6/XqiWht9mnj/uCRDjwrCcn082/YL6BukZp3RdT/py/xQJjPNS0IOo39AsP+cJqZ60Iy2M55hN9VFDZo4mMhkO1afDW+Tg9/V6avbsWCze/rZidgWH0y5+xK2gLqkiq1s53L2LvJmfcf9BY28LOPDZs1iYHGtycRwkeq56S6fDpUuh3SkmNra3o/dvfHXg3Wk47CPEwtZMwVPYQjaHr8l4Cam8ku/cMw3I9oLm+qMTsLaXR4hutw9i6FJxyhvub3oTnmMx/JzwjDLNfFD79ymL0Wo89y8+6erxh5ZH9RSVc6AFoQTS0Cz249qixPhuqHU/n+LJfOYVdFbKY3erPeJ5isBCcWO11HDe2oohTwvwVwxk8wij4rXogvhvfvzjggvetnIRfHu/xeZycv+b/9J9XfAl8T+I7S/HM1whuRBJlZZi4ODJo92uTfFFj5p4uVzUSBGsh0lVogpokEfTBf0dKOFWJ9t1H289AJ++OKy/BT9e7MejRYdKKukxerO4n+pMA/273l81Clu2HOxQhXeMn2RaEiv+9EedyM8GZeHW0tJmOj3JDeKtfiB0+xiacU8+rnR3LB/jRzgVs2hmBmSp0VB3S9RinuLagfMLRWEqvrx4KfaFAdbhkWJ3yeyenLuGB+5yfxOFiZxO6hNxUMfDjSxrfC68j0JoP+oLPz7DSWfOoFZov0RhuBRj2YxH66fBZzrPOHbeXzToomhALF5bjOOJ9EuczxMchKrCellrbEKb8QRazs/4HEt9TPcBdqHJvj5Wdxs1Fu3aHCC8nmds+0nG/vAFGG32xXq3GdCst3wL6VnakZuQCN6ok2iB989/r/N9LWZHo2ekvvkH+bTfgrFp0Q1lrW/4frXrYvxtKg7m5zo/j/vrL9+koP5mlXpfGnlTUfnquk/WxK6RtH2Pt5sbTOeWp4aCuobsPqMob8/0hn38+xSsOScTvL2kpOrf+suDRkZZuhjU2z2ZPifjtUWdbVwo/gwnb3HkA4BZyUKIPtOXdbq3d+CHoxZnkvRB5GBbKupvnkJtM1PRnNEpAXWzGHh/oQz9q6f5lp0IA2j1OW6uBuRlE1C13/qITotnoDYo1VB8dhqbDn1hgawKMvU+qNKXih1AOcvSGSf1r/fIl68BDpK5+cuP8TwaQQlJ9XJoYboL+63xBa9nusPhdeKLAdPagVu61cnEd3bDF/c7B+pbfGC1wG4vdlxTAzaljDpzvnIQTlRBfTscthZ0Y9vq8UrBuwSYfHbTh02sWAylRvqLbP0kQ6Nm1Td4VfstdSXp6dHzrUuBnkSfTElUF1ORUwnxo/wMf4/7D43vxomAy5kTbi7mt+92RFJlZ7jMRNCjpmDPxa/hMgwQzvd0ZGRiTgV5+QwImJd30V6emQXlXbhQ/HhVaILr8wVD+x6oX+NdTJ/btgNfX7ahiP0SCe2L6+A3Twt9bDuDLanfEohe6EukOXfRUqJfDfA2L9TjetazPP1GgJY1vtmF9KMtZQk8Ou5N0NPkmpkjbY6GSzJgPKosnv3zYsm9yIz1GMPosV86isjAXk2dhlXe1NVTB9c6nYiw5qfZjHoVpCc/UF8Y3j2bHjWAvt4nfXl2bbNI54CAlh+i0HDyA5v03eCAi8t1D6evx8wCzMnfNGA0zCKz4cn3YqHPnh3CZbME+szf6wEN3GvCB+la6rOhSoCov7Wx7V2PMWv1RytbNb1j+8aBToLPbQFv4/A4QILTzG1eDegddRo1DtnJGyRhGIBNWhEyxVbjtT7zqD7aG1JpLNHZ9XfUlHV9U01wUDPwrWih6LX7/sOHf/wH3QypXvHJt+lC0RJBsHmb3n/S2LPm1nJg4K1OVY5z+pmv0uWvXoRSIL712R31AfilftGDfTXRVOZ5Je918vmHJ6gQNuvzsCrku1+y4m9J+osfrO3tHo3CIslgVvhMyo+u6lssjxU6SKzCuNt2xSTobbmjJ97Hzj6s2ZxvuhRZ0vCkvn8X+6X0itUbFRgunbaJJ0usBgTOJ8KBF0deN0qLBlouzlh772tv4rYmAV+ftlQNl6pfpvGVwmOvq0QsvF/BHqc2hc3hPNFzPDJv7g4cAMcPBOPFZagvu0WVVzyDvc8b98vWKFr4nT8+xTbc4rnA5xouGrtiB+0MT9x9Rh4931HxL79N7/kwgLGxfBzOzydinFskMjEHoJYh3ZE4fDIJmWKYUvvqNf18NWMOPrN2oqY0v4rp8swM9NHKbsXzRJ96IV1kVS6fobzWn6FVpNWXC94hPyhbNOVRBpAl45Pu08xsmHG1B1jzOd671g5N+kaNIHiJLQ3K3GPLNA4pHGS3xuriEW9wEl+GmxHsMZ43RTPVu+dJ+dZeRu3748UYVvdE3nGnHDuqtMTfdKdb0NBXRI18z8fD981bcGOlS+ar4fe9ttg5hJuA0UBxn33rVWaJ1s+haOqi/mu70/JXv2hgnb+owksUQho/t9gGQysmmSIf6uNcYffzFuLp8jxa8NxJ95APictmOaMvRL+3MOQlqOP5uxET2O7LG/XMi6cvUXNMQCiWlnBZ9G6Gle/BZRn2NBOzoJheyTWFJP/qpKEMGH3vHhq8aiun6o53vGnjxxwIza+nQRMixFTlrkK3oB09BP3XG3JXEMHuZS9cvM9bn3yhaCEhzxc+IPLRl4vWOrDyeWrG9cVjl/VUyB/esh6bXbGcu15E/eFV0pNn3ooFRK1SRB9RIuRC2S8dEkq5v1cb7D5nMx63mGrolocmEZ6HDVv0NHBksJox5A/hDg0lbQkcbqciXCzrrLN0pxvIPenvULEOtB/9b+7D+xFt6EG6cvqavwCp/ien+7F79LNjXnK4V90UtqWTsE71ygodw61Pg+NyaOZX1LqwOJt3yJ+3DJHzGxMw2uJLhHV844TePDi6OWLjD/+ntvGBSDz9wt3Zrfq52uulImvSHRvxGOu0mJpKOfDiJmSizXmzdafr+vUishtMvxDn1BFlbv80KO41rZlvD+sFf3qNlfhPfVm+iwTN+Bypx4+NPuYA6/tVK4K+ry1j0B4ssMQfh83l3uiTrXIEtolRUucHB33rhqcFTt07x0FDjWY7vs/lH5+h9msh8Sx12RlU5GrYPbhSM33Qo4WNvSHU9upDL/xkg4dTv/rD/vzKmxeBP4Pwuvh0v1lObOJnNVLmqtACEJLVq1rxOLCk9UyHJm4Lqm+bCpTTEZHB4G8N2dr7Yb1HRaRmSN7eNJ5CCbjL403DMrd0YmrPFxzbaSHCIfP/44tGd3MxfuiSN+Kb8QIdBXvs0OMeDXnQy9DZ1mXFz2uPSrVL2EncNuTjOkeT8np/4KT+BIqr5lewXenU6E+fCVAXFVNxvwCC3Xp2xnhWaPkNXg6bJzoTPq5lNImBmMLOMybclHXNlovPWXJn5Tzef59iP2uHtIZdeZmwmkR1PPWj9ULlQeKp+dk8i0UNjc8/PuFq/cb7ZLfTgpS4U6ilGgFavjPIAJ/blabXnxKzXalWSD9yStjdbn7PBE9Z/sWD/n4gtoQSL8P6fWztcKmPZsADVMTF1L6qXtGO115DiCYe9TdCWMxud2/lwA2eGFfkuZ4T5QakNgzIsrc9Jp6/wgT7TD1Qpzldi+WykTW04gec69fKW9rDLpT/9BP1psuM8rvLR3HR8Yf/8uuIn9WgLIfeCvPPFDR9UBxS2JLfnsz6kvbEmPY5BLuyW32etmzgZ+cEB2muMD5832gazzzAOl/E95x7M5FOd1F+CDpsfVtWTGJ8quF92Nyo98PPmO0u3FmusjqgKoa9zk+lUoFQ2DY+XM5772sncoKCd3UgwopvCHFeDtp2Q0UDGljFVltwCicmPP70Bp1FQTDIB6GusNPZz2LgW86CrzgXdOUbxTS/shZtbIWEu95q2D89bcDXL9k8srafz6g4K1p2p9RB6Xp3ojtZyLy2UyjWsdy8eiGd4LS/JuSrGq0+6UPl7L5jk1C1yDW2+NbUAXmBSW1Lk/rlr75zmv+m53DX6AzL7xoKLgDs4zL0GA1cEe2XU4idK39pJrPgUrTWR6wuiVV0vUc/SOOnK80e9i6ewjzm4DcVE3lVF6FnF6pViM9OD+p93rSZvPhwQ3OxbMi41q95bqcEiq9aECUB1+tN6gG826dBOOC9YhsbHweucL5Qn2oxY7WrivB+cBUR2TEohDXeQGzDKw2mq61P5TepgWehSQ07OngCyeIO4odj4XO3sb1tcy4XlHKOgmPKCR491rGsxIeDFl6Wk4uks+9KUAnXGevqLPT0Zs6Tsq4/0vO+HLPnYtTw4HYWdSxtYcNdKyMw892EdcWuimm/uXR/+OGPXxfMTpbkj69j4y18mvX9Jf/yn3EJXgXbEhtQNbCA+rgk3sL7LAS4hydq3S6ut/Te9wW632fUi1q+6fTLw4LflE3Yl6tLMxi+f0Z3IVpIFX7b+J8eejm7GdnkBmVMCBsRrXo1Nt4PUe91Ofv81S8cin1dzP5rcFCTn0Zs12Wgz/5ZtuDDKSREJPz1s//NQyBVoodK8/LjWS+mFrjKGsLBvyf9smkt/o+/U++iBMX4TI4d3IXTgjW59fslarIzbMo2plaR7Js1v+X/9CddbD/s++TlF7rf1JHi8EP0YZe/VbCkvYq9xDH7wSxftz98GS7d6iv6p3+eP6cTteqfp/NFvViwTaySOsHlVlBfNx3AS1GG8pr/2pukRsqC7mTtj6SI5Sk9QeC9mhDthj7uV/0ePaM2C197FMXTLn9rwA2Oi4Oz5SLGhuMHsjlpyfbGgTecXucKdoBSHBy/x9VHirN2yNBf2BydLp7gzCo42G1GjeXeMuaVBg+m6Kc4o7Tol/MbD/A+f5p//Q5q7QcHFk9zqPXYZPH2DYEBDR/GVL2FzBu15FajAV++9PEZFk9QslMIko2scHdmUszERlbRX7yqh7uNpsGeQMnrBw3Wfk0jRLzKA7l/ORr494l1W/swQOCud3M8yUunva5FEPYcW/NPtd4Hrp2VtR6HzJkqb171bWT8lh81ltPUL8BuJfrmUULPc+zErHadf79PmHgnDdvcWAlyZ3NE6Nud/plU//PXb/qnf/J/+PpL5DTcrf2WRb//Igjn6EqdoOKbUbmpJ6WQOSDs/SjQktr+B77G8US4KiibedInAzGuT0O67Qw0c72cQEc7iXq6kKEuHwz+74wEtv2hi2fPp7LMM9/E2eX81GcwfBXFd7PBwYuMq6/UJ0VccrBCrswtb7tku1JSP5X6h0/68RkpNYoPnob336Rc+VR1U3DGy1QP5Kqfs9E9gdWkHA37oGrajV9w0G9vb8J1wxaxzeNXQX/bltRql7M+DdqN/9MnQ2mtv/RxqlJlP+18Mpv32mPad3eDQ/GSsZ5pR7b86TE4rwuqo8Uu+HhXExDkc0S2ZqYyPjDNBWjEfiveKz3hqw03WN8/mQZRKGYlGVxoiEzJ1h+6Yjzcjy0ogCuqDuKlYL05JcrKN7HzuqXerMXkhvLmEJHtl71ZT5SIwGkjKYTPxJv+EzoyyDg7ZITnrBpN3yZU//UDetbUxagl5xr96U9BAq4uWpf98Jd/QkWuKFsupzz8w6/U3JjvmGWOEMJ3fCZkK+RTQ0rn/QLhaPg4uoWxx2TdEeEypndaRHcoFvnoniDT7AfF2W7bkKg5nuF+IyHd1zUp5vVIkMxfA6COV+toiQrbXW85caivegbif46VoFlMLeyItOnnRHiuVkKOS6PD/cvmHf89obhZDtiwzQhRVdUdiA98Q//wN4N2b4Dt/zTqkezJ2Fr/4fjNJuxq4rX4N56tuiB6eJzmZvGGMPrjSxSfZVwsq2ws12H9wB7+Dd4yNI0ImFkbbHvjngmO491AwUNBEEtdnb33vxNyhuscysZTRYs4s1Jex0vW+qAPa/8GXsIlxwcqx6u8KIiwe+yPOAyWhpHS3NQwMf9G9dOuZTNfRRM6csaF3ld8zmRZ/CDVwyk1LDntp9xVRGg/2gubt6rV//1eV5BrCPfPvt92U2f86a9ksVafUkGvSjCTDcb7HV/H852/TfCq9C12syVnS1IbEboXK36/B0Iz1CIKYRZ0A+vl1W3+6eNX5+Gu/Bj15ODXLnT8CVEvh0vPuqmzkGTvrLDa8Y6+tIngK9cnxasvjM0GLVfVP30JZ6gJ0PBNJwNoNP/oetWsJ0oJWsC8QYxV/rz1ZvxsCSof/pVsN7sfmi5lr0LHvnnIOacT+3sesF6LSlc8GC/vUzr91ROsbg4Vmy491eD1zHfhrvp2DWMvO4XLolV/+kDP5FF+yeAJEVZvL70hf/jq2JpHIt4qrWDXTw2QPySMw5U/z40gTPLKT7C1aR46KSW03s3TeyH6oMqb/Wvrgm+UKbV/EKLvihf+f3sKhP+9p6CqszvFehohllKukwd3b9AjmUZvmht3QCfj86AuTlK0QH2qZVn5fom4Fy/9OFzSAWjSvel+oxfNKMvzCUS/xTg5ncd45pqKQHuMO6x+/Nqb5s3qWIEskbyrKS9ELIov2LFsxlbWq2xJOTeCmj0ZNe/5az13en5BYWhbrH0rt2D9xdTQa5Luofj7ycX85BsCkp0fqdE0Wk/Ph90Lwj68kEZLxIaJV/0GwWZ06SGfX4xAfaqgkjwN66tpXWsU3Qc2+hRhq9/94mWb8y8YvrcTvs2fCPHn9FDJ77OeY3MOT940VrIKR3pvsZ5fgoYJSufCYjxfOBC5YzMPkVfClFYGPg4C86YFGg5KolOy/CzcT09biRBrxCP2LWevi1Hs+pDEJKQ+tDSemLxXkWtd9zT8nISectViyTBvLiEj631SzDylwB1eWfhJ3Gc/YnsM0XkYpfAr67uGmk/SITRNBfaCQO4XsjzSf++jXORMX4Z133WRZ164DSMe0TE482C9uoqGl27RZ8k0bpClrUUT8XNiS3A4nEE19y69Cbe33qbqxCkDXX7UHy4qmybfSFG0ry3CmHzo5yffExh4ocP4J7+b4XX1cvT9PAxs8aLmiYYcpIC83yuUUbms3qH31XumT7F6yYR4uOv7VulZO2Es3fWYvz9MEdCJlCHPkQYx97dycu2YY+th3ZrJPlxXyUZBWL2ecbx4IQ6B00MTa8bjos+lB2d4UBRSX9UUxDjgIiiM34d8DsFPb0/1uYWNbvZEWjhVZ+gcSkDV0zFU7G5sCDkGHNKzJCabkBrFYndvFdkgxVhvJa+Y37tHAhA89ZC1Uh+Pe/QWQVML9Lee2HIcmhvyHAHjoGBTPMvPVIM9DlSs6tXq7ZjVGvLYT6D+/R7qE3rvHfgwEDGuQ8VbdtHvhpYuPlDbPETNpKTeAIJ2ywLUHLfF9P0cKxi13TecfukQz2hKJmiq5IQt1Xox8mwUF6zk02Bt+1sx/i0Xkfi0nvTwVLA+VYFWwQdXL8JgWxespid3c14eJRmLEhVkfT5lN+o3fMhnY+35piqk2ODI7GR7JGgX7CDXbi/U86CLyW6rurAUrzu9PB6ux+pZsUA5aCF1niJXjGe/8uGuWgG27FOIGC9vxX/xduiNOF6UXcQrX/65x+Fz/+67Tzu5yqlLjJA/qqY3L7Pbwul5dfDfel70anDAp84G32shZILGpS7Y0ZKHMjoozahaTqqk5Q3TC2t9tCRD5iNz4jmqc9/YIxf+kMJhjvYhdPmnmfjwYoDvEkL3la6jqSIFhz7DMSBc/e16qhzYBOv6DRG+//qBGx4E2lQ5kTdV9mhZPcthSMeJ7HanmzcVjl1Dtn8H1PnOaTz1742EtA9vhttbqTSLUe594FHxwJqQlTrbFRsLZfyiUjuMzoyd38qCvGTnYzO692ge5rMkC9cmw1rTJd4cY92Fc6n71Nt5Ts/2erbANL4NrPqnoz5VJF6t2ORHKMdPTRejeSKwt6QftsWUNKMxmCUYz5dNr9XPYotw0CtUtmeVHvjk6fXWwyPgtNeWak0nevSyeWiy94nu+EAoF09jtahKfH/saajAtp/XeACeqDaNPn6tr74BH3n9fWx97pNHtzg+Aeu2ZxqMtRQPo1xEsFOGPb0fogWNry79IOU9bUPkgRsL9JF90ESkFO+z/bvoRtjJsnrOC6rvksYjAUcWFPG9jl1d74rRdZ+TstYjIqEJx+zDBxO6l5OEj/xeKdh8XibY1seCFsLlXIy/186AHUmmsNu2XDE3Xm0p7xAyGvWO4o0XQ1JBKx9b0qjFrZmOncHDS39gaq7xNO34Zw23i5yEMjpbiJWepMGFvK80fQ9Lz8grdpHMnXzqE3PuGV+iDqJydyeTeHmhRfMjV8k++5Iayafz6GdXaPAZ4oD690XXZyM6RBDBJg8XTtjGk3RBGkLPzMX6tnDYPIi1g8JiaxBRRPZffa5AbutvGJfeHm05EE8Qnr0bDl4Fr08lynL4Xm2GvaF5e1T6ZC9wvNeGel3brecQhklusjjF6hiqzQQPJMH0ee1pZInXnn4uj0hEp6HERvAw2TYe3wDb/nQNxau8xEt+UVvQPqJJ9+X/AQAA//+kXUuXsjyz/UEMREQShtxBLgkCos5AUQGRawLk159FP+/wm51hr17dYqjatfeuJPVz4+Us/Qgkz1lDJXipMf+x9yF8my1PHeoMjPYcaiVk2S/EPQQYT6cB+MBTeR+7s/2Kh50Up5JSFjesXLs6Z9nOnyFVwjPFZ4Cq5eZbDfBv60DgAr6MhR/NgZ9LEyLhFJy80UKTK3lFzVPHFZqYXdPnDTrcds7jOhKdKPv7CvXfLcSv3C+q5RdeCNxRXKN2l0sxPX6MFHov0SHt3aAea01BhIump9i096230Ne5AQYnF9jdi0HFTuQuQOe8S7BeLQ0bs6hXgPxdD1g1pmO8gCSqISrxHStr94jn38eI4Ewww3/8669+87TWZSTbu3LY+IYGC63JUQXHuzejjBsBvVzO1GriOibLOzHkrb5hTL19Nc7WwYVdWWbUH5WBTVzVjvB7nLc9KqkHZhHeR9j1woJtqgKv046aKAf33ZfA8L0fiGC1NTy+WgMXKC6GRWwuInAyLqT+J9ZixmleDebpZxCEYq5iptk/QMiuFMWnqfeWtDiH0CZCStZjbcfLlo/wPk0WfnBVF09Yu3JAxGNL0/DO4qntBA5un4+gEfy8ZeMzUDKMFJvvWfpbnxBWAmnoyY0Db74fnRE+FQJJK6dJNVvxmoGo7B80OMTWMIu3C5T3csjhSNAdbw35vIV6q+yoen43+vy3PlH+K6lnpWa81VsXVr/LBTtFn3ir5t8ceJeNK3kG1k9fHXXI4L0ZdezGfuDxi5H48Dnye0SiU8TWIvlpQL91BGsngOL9W+18WLihjnVSzPH8MxVDTgrVp4a/z8GUVFcH3NL5h22ahjoTm3MNhwm4RCwuL4+BxBKhI9y/VOlufrycFucBg6x3cdC874xggavBUQEVmf3o7C3Kdq5x4DmD7OvtrvcjTUKw4SNG0WkF486zIlCFO5Vqg9pVdH6UEKpFfaZX5tfx4DafXibH4Eqk8zn2/vAWZiG+0NMuSPWVnAMI9GYaENWnL5secV3C5KqcsI8N6M1GEbzBVn8Ij3E6jAkfELifjhMqr9parU7rGsdrfn6gffgc2KwNLgdD2mjYxcME1sP7xAPDfAQ0qapyWJZrl8FH2e/QcQ2fw9wWnwQGXSJQU+APHm3D7RzuUpjUr3Smr94oE/ioYIyd8u3EdMHTG047/Y2tp5qy9exFCrzVQk1xrq1sbXOJgDSzSmrfozhe2rELoYjuyaZn9hXZOa9Wej9Uh4BmTatJdM8j2J1PLdZ79o3piZx5oKWnNxGWS8mWWZR4mO4Em+zq5F3Np50xApnxPFYFW6kOwn6BoHAjnTxqLshZ4c2aLLRmvd2tDD3yqHEGwuZnIdp952p1bx2Bv998Iyu57obOEcUe5gfhTk1pp+TLHc2S7IHrkyzfYjdM+e5WALQ0PZqwqnrst5S8LFDmU0t6/LzpmnbGcft8ai7VT1/X3OLhFq+IO5haflAfTJGvgWRQXGz3hNRXPQPWCA/UvcVLxbLKqeF9n1GsYcHJl65Eq7TlDxI3PkO/YA+lgqgUB/6yevNFEBVY3doOX1jx0f/y8Y8/oGIQpWGpVVyD7eetfrVgGZ6OBHtpDajt0suw3sALwr7oY7JfKtublmt3A8zKdaqYlsUmyFQDXs6+go3kU+ftsrMksL8JE0b2o8snXmOzvPEb+sdX50mKI2hE+y85nMEOMLfpWhBXh/SvXoD1e154+X3RTGxFXZmvO+faSzzRbOp5v30+D9+DJG14i0/nXhn2f3rWe0kOtfn1NCyp9HxI2/ORfg20ak/NOYGFVudYP4S7YUK+VMC2TSusmFYD5ujXiZDbq4QGaTDExLwxCMVvgTAyPzSf+qyoJSPyBWyYTI7X5f0wIPfipk2v5gNLbBxJh0TSiWBHhLEnv/TylP0wRa/8Hc/yNg4cxNcA65/PAUzjkkjgENd008dltfZIDqWT6drUuK/8do5sRdBiV5/w+SHTF0ecW4nb6wT9drzNVvPGOKjM7ws9r2c/X8yuLMFtDSDWoPTM2cUYE+if8gzx4RDqwqJ+G3C5YR3/4fEqWO8G9uMYYjNxUrbckShJD6syKbrsbH01dlkPlX6l1GDjNx83fwBeyO9K/fB9GZbaevAgc18UzY+cMXopggY6Qv6lOn5mrJXGYwqvi6qhFX9YPpe1w8Pz3UyQOIoPsIidg/7wEC2xpLADLx14EFf7FGuPRIn3pnM2YLW/R9R5W1M1Hzh+u4fPn7AZrgrY7/K5BHX/dmiufA8efR+nEEYZx8jhwdaB1eWD/PERrB04TZ/96ZSBq4Ue6GAW32rEt3yGYmrJ2NnlWb6Ml5DIG56h1lne/+oXrL2lwYH0msGsnj+jrI49okbgzmz+DIsGP0/xRy1eKD2WtK0Fl7cdIwFe1fzQjpcGhLTWaA4/xTB2otuAweHdrX5mOTuaiiuHV7zf9MppmPb31YBuoXTYHy9vQN+cVIKzp14JJOZ5mLWvTKD8dR2qGmJZ0eGozPJWDzFKjMA7VEghssbjJxJj2R0EpJ5dyJHhTvHGn+Zbqd3k5hu5iB3TSqdic27gZJaY2pdfGy/WZ03lkT/0SFS3WS2lElh/fgFiEZfp//g3BvOb4lBJqsMgpA8ghcIOq27xq5bPZY+g5Nl3Ak026tPnOEO56/nt3LBjVkIrGw44G0pC84hrAYGqasiXfX+mmKkdWFZ8RBIMKp0ITzUFE27yEb6PjxS743KKKUiPCG56D+0e7c1bHDbc/unLP/68ThKu4TefNOoqnDEsYTXP8Hy3kz99G08XY9ZgIBIb43jY5cOGx9uxfPqXHx7lpZ1wFLxdj0RbWb2pyWYkt2cOo4N8DMDSCDCDp6AoUPnN62HFx1aCBN0WapXr11t5WiI4E+lGlVIVwWqdvRU+08eHRmdbHNYLgS7Upr1D6OYfMF+SW7iLHhA3LHMqJhVdBqOZ3DEWHRT3MfcooVo0Z4w6xrPx3PsCPJmzgA2RnQCfeoYhbfFGT8bk6GUzxAYcis+Raq4pecthGBzwO405fQF217fnv8FJ1J4kIeHoTZ62NDKaz+m/etw+zLEGU1z7m754V+PZATeoXQueyNH1oNPsW5Uga74dDU7fH1i0i+3+00sydzH1if/0EUhF94WaJjZivkuPLrzAIUHPPXoDkmStCzbrGCNKEHiHi6xJpat8aJYebt6YL7dShsdWxtrsIH19Rb4B64h/45MG79V0PUhvuNVvwm94tC7fTwp5+ydv/LfMe/cQIvlQcgoNel/LZ3e1Q5Bx5zPenpdtevAN7qdwT0/g8PbWQixnYLQ/l27ryQjOpAyMNzqjcfPP9r9YUeTn9xRg95vtGbFRy4MnRBY+4ePqTcrvzoMqCi8U9U4HNvwP4RqUb3zaLw+2ZhenBdptdbCrdHToOsttYBXK6p/fCab4tBel7f1gq+NwzOQTW+XNjyXclV4BO+4kXvagplHjdbvnPyFpSyBfLQ+xM+ry5fvMHbj25xN2gzlmf/EOGtAXVLHVNyBq4qR/fJr8/HftMf8+IvC33lcU8my+Oh8X8k3ywri8Nznb8lnsYu9E4KuM2R9/hX3Rxtj72cPA+NqRoGjfzjQLmlZf5CGUoCLyIyJ+NQF2Cpwb2OrhH59mG95kf/hM+NFr8j88ABt/RutOUSrycDwfbutLJnunDQJUVUu6u82JerdM+/PvEsm595C6rtkCJklTDa99O1EkNZ/qH78M9/BKnzAbvHX7vtK7srR/fEjYLe8WHizewrezaLBlzoxUXu6EQ6IB/Bz88fv2DPF2zrwC5K+edw/HJC3drq305DGCd35W6H3j2xTbrQjdOuP+/JlhnQovgyZK6KY3tzNVyqKAgowJjhS+1xfRPRNorm6E7afz2/Kfd6B091KqzsMvn4/htMLPcN5Ru8HDNrnU6CFvf2XqVc2YT4d5zqBlBxE6jnuVLUm7zTrd/DrlTNycctVTAa1Wc//qtVApzvxPH4Oq8fOl56IEli/7g93NX1o/nXsDnyHeofm4zfpTH4cUSiG/w5qVUW82pbsFgPjQ0baPLF7+8s1/FwnGNvp60+Fvvnd0+FL0HsNqbO+JBfcUq1j9ETIs+7tkwD9+i670wMj1p0P4Le3r9j7LeGaHYgQ8uL9w0PtlTtbn0Tl+n0qKXV+pvMGWVx/+vqcZB8ukDkzLbpa04TXF1LtU+4ek+5JOyW/zv1Rvw9cZbO8DLdki6IQLMQ9BZ6zorF6rfJxPXQE5OKUYF5PMfidy56F8UhBavsVr+KtX4Hc1GQ6UExrW9zCl0h9/v4+7aRgbu1IgQdmCTS+14/VT7V0Y9YmB08W9V2PCtQg2JyekV/9t6Ac0PENIV1Pa/P1smLOoVOSj8/Mo2vT6WIjU+ONT6KdXXiz41lU7PlYt/Kefl9pKhH/9kOjQTd5ej0YEFz3p8aZH/tU3sPFrJPcp8d7wxUS5YamN1J0OqrmfoxvMDiH6jw/ejeIGJoGecLDl13AYXg8go0mm6tXyvD9/Wd70A5FAEQ2kkzoEPT7N6Ek5MLC8DMOBd/UXUHXbQM888+ZD8igImmU/05c90Ev4/swEbXpAn6vHrQcJljH5PjHw1unGuVBGVEbypn9424Lwz99BISrf+nKsJHjc/Aw03yR+GJ13gWCq6x3hDX2s5upOEpCd3x1VMb0OTH0ADXoTNKm1mw5eb65PH2x4gfX4pMezIioZ2OoRts9Loi9gLmbw6OWUyEl0jpnOjglACa9i19sfhzkMqwbeG6IjThXqfIx+Hwnei8seK5N+yNexCltZaNcTxSjDcRckZQ9PeZlTVb3qMTOcIPvrl2x+j5Hv9evx8ee3UWu5aGx6rrkCsQ05HETlO6eFNysy94ITdcHpOVBblny4HBwf23rl5Zv/Q2DxnW6k1GoJrM6T1uDi7Fdq+tDf9mi93T//A3unMc8PP0E0YPIle3SY4SUfS8W0IFtLGftsEKrN77bAxl/+wxM701w5O0Row3NvWEu5yKTP8QLpSXbmeD7GNwte0Ztt/ZgnG5NjBuG0G02y3opRH5NsfIBrgF+kjK/2wIof74NXduqo4R3fFbPFkQN/et5+dw2bp/RVQpuBK0Wbf8hc7StBKXJjtG71fS4LVkNXciocH1XirWnQE9Adfhnd/FOw9Q/cf3rsz2+dG3vQgLPLPmh1Ll2+HjJY/+ERkW6tVa2x/hH++AL11lPvrU/zHf71I7GhlFO+OiXk4eZHUvxoRZ0l7duAp4fnonXLt60flwGJVj05CGWWrweIFACtt4JKN9RjKlz1Am58EVueo3vj/ickUJEchQiIIZ09Us+BpUMDss7Pylt+2+iZSgPG1k/8eOsk2Y0UtHqJzeCsVrwsrD7ExTUii4PEatr0q3y7PGO03NVtdo32eUO62hK1mBlXS7iDEJ4q38BOcXnpZMMr4NkVQBw//KpFVZgLgTfUJEpkn41nGllQBu8HjXbKu5r9/mVBJc8Las9wn5O5NSKwfX9sXx4vfeuHvOHTpjv0p7/n8pO+oQzKx+YfbWcSXmoJZhIwbFQoqJjZABF4quBjW5iqiv3pL7ik22yPyNCX4vts/vxstH4kM+/vj1mAzdR8sM8+PVim4F3Kf/04Q3OinAnzSP74OgE3fPeWu5HeZBHlCdZxjL21aWcHvnbhCz+ev+M/fnU8fq88qV5gHf70mOxWK8Z6+jrm7Jz+ethfhitZzu/GY9+n/fjX3/t73qXaZoEk0D6hKslYNV67tQZLZ2FshMOsr08l1uStHtJTCuaKxf7jDdllTQjZ8JzN1wv5459IIleUr5kQWfDPj1virweG7xMXIGHrSm2azvq89aPAnqsjvOEDGH/NufyrB1s+/QZ2GK4PgG2OI+CsE8bKcGj/X7MP9sL/3lPQzTeJWsHWs1eEMgWIvy30Jqt1vozmswbjcToRrnXrfH5ud/XL0fSjzln+DZMXtC08+JFB3Wb+DP1D9yLgiIaDz59dzljdPCM4JUmKn1ZugcXjrG1f3LzQ0/rDucAavobsY1LyPe9qQN7u5QHzlfqEu/SPeFU+/AgDvRuwJ+xzsIq3qpHuO8PE+GaYYH+RWAMv9NRRz0whoGv/4GGS1m9qJIuszxf9VMPXMn6pLkUBYxppU4m+0AUrqRoMKyjcFTaIC8kaJjs216YNwaVLLXz6KUO+3k5RBIbqF2JT1tVheTZxDRunz7ADIBpm/idYMNTPC5KHutMXhe16KDWcjc3rsPV6ZFjCN1pUJHyeg7cwSSRSUZQIuzLXVYv9HFvgyGCgqjDs4+Gwz9GRKf2O6ut6AVN7zVbgFkjFdtlLHnkv1nbOU0rQo3G6nK59IkBt+erYVLNrPEfvZoUmd/5inFvQW5/TW5ELd2gx1spfvAbuUYRK1zYY+08VrNwVzNKLpGfqhKdjvLJ7nP1br1dv+fo0oxZC9pxymr8Eo1rzfanJw0PoqMP2ZcWe90EE+VHVqKu+smG1OaeAuva28Kkr72C0SisDT/Ox4tgYS8D0yzZvWfYdjCal8xbPowX0+HXAQdQVbOZV8y2b1snHp2VxK76wRQ5Oeywg1u7e+brC6ww+yveLbf9js9/h4QmwE8YZo4Irq2Uq7y5cCyHHmhPEbM13VwUuU9FSqy+VYa8EtgFh/wsQ+dxNb40uYgjRKeGpnu33+tQMLoT6qykJuJjfanmUNAN/8W5a4cNbWfBF4CVqObYKdgBUUNVCfmIHoH2/9jE5ELTCC/U6ik1Gqmk/yyUw9uMD2zA/xaycwwLITRNg1R9RzLKOSmAnIka14PjMV/SFIZCRWBH+/TZBWdtSDwpl96L6ED0Zu2X5CL93eiC7654H6/Pw1I5SqhvoUBdORYXbtYV79wuwbc5ttRqdJUHhxxHsB5dtlIDxsAB3UZ7U2X/8mNBXeYPukxIyGw3IF+acuZ2eU0h2u7bPGa3lHnrv1wV7z/g5dOlFUOB0vjG03DXP22NQZXAiT4z1BZ51GlZBKTXHSqJudd1XHQzUVL7zx46qBeGrtoDaCFH1JNh3rlI+3yzagGmXRYh58glMr3C+ycHZzzfPAIP10s69fPw1PGleyydez68pBJfZmHBgfkudxYIpwrN/CXBo1gY7JPGpBAGMrli7t9v8bu1Wy7l6vdO/fJ7Si6ABIZz2iGBnAr3O7w2odH2DVdV0/8Mbm2oDDQKW6fTw0IWjsa5HApbTmg/JGIoy+iUJDqYwApN0erpwStIU7VNrBgzMBx/+AD9j3Tq/c3ZyJA4Gp92HLHVHdTbzNwUK8XBDe1lXq/37mHNgDvov1gw4Vn/4C6vUWsjekXDMnCJ1gRYGIcZB3Azs6WsEshpesBJsp2+254NjTjuqc/c7WMEhc+FffuBvaMfL44IQ6FSuR1x03+uL1WUC2DvOgI6n60dfSoA4EGbvnl4YBXpH6JoA+uUgYi/DZKO63hooPVKJ+p+jOIxaECv/8NzldRovXrNxWMPMqD5f2cDAvPPh7jfrNEq5iP0+4xj9wyOXcMdhUYtHAdZ2d6EqmF22cLrlwKsZV1Q9wsewtB97lZIOMrIy14iFg50i2EjbOf4le+dTTi41NHa37zaP+L3t6bogaFxHiNG16Ifhru0S+H1zCxE7yYkX8RkkAH2UAj/ya++tdLjVUmW2Kg23eJ+En/OG4+2aEiI/F7Di8GzJhtu+aDavrU6dpHOgPN5nbHqXc7X+gjsP98d3QTEJRK/1YzmDimSnaBYSz1u4qC3hiDqf3mzw8dbl2mbQKNMTdafPGywy4tM/fCTC3gMe63OxgLg8qBQlgV79V0+A9KSnxFFiVsrHFkznjGFb9MWK3R8WAQNefWzYBY7ZdqMgCIMiIPAoHPPRm/z1SC/qEbVbfZ73USSBg+zVG5721fK8rdnf+8Q+Z/beUNZlCJvOdAm34ecKo0cNjNzGGEcnL57Fq2TAx2q9qBHzoz4udWiBrb4iOOo6493hPkPt9OhIf52Xav2pVQub8fX8Wx+dDspPgmVWG+iMzgObP9hzoHxXn0RoYgroCdyJdJUlTBXWH8BkC1CBJj5c0GHpXX2R96MEYGAouBh8aRhVr1WgW3MtqZK4Yd393PrgOu58tIt2s74eUrGGB2FPsKnvj8MIx+kB7SR/ERirQTzr7fMGUfUiWN/imzWmJ8GPzRf4fNcGnfrawP3VBwKnVo15zksssOU72d+vorcIfDdCgaMJRvv0C5YjyUZJiSQFqVt+LxcJNNASpAhv9aZqO+uewNTax9gv2iVelAAb0AUUYdNgVTzL872HeSE6OD00cj6Mg9GCfJ38v3qdL4+LhaB5tTCSqutlYHc0vQE+/n5ETkVaTVzHjfBQPXOsfZVj3NkC1IBnpTk1X54Vr7V0zgCmj4kaVBTBWgpfH274jrFC7vo8rh9DBpfbFTud1OZjFQoOTO76jAPHnofVNbNRUmHm05N8IxVdBE8BKNY4skNirTN4/Qkgma4W6mjaelv+zmDLX1R/U3egBGYKXMKbj2/uE1fj7SVw8BGOI00XA3v0q99EQLS1wY5mR2BJXkcEjaNFsa1IOhOuosHDx17TKLoldJjx05kh35+2WRbdR/9d7DgFh0Oi0sw5TaDq/dSQ59/ywq+lqb2R5MYI/9bTdetZp189lEBN3YBq5TdlrRu5GUSnlN/q7ZeNsdwn8GW1LdU1jVbLhu+Af780JJZZmAuZegsB4rOF7BkF3miMp0aqhOqDTffls72l9SEojrWHUevW8cZHnL94JESFfr4WTvmA299jPwhe+pRS8wb9u6FSLXKIxzxFhH/rT3ZB3FQs6a8jLHtzwfZ96nJ2KrUEgJwENIgWfZjK5c7B5K7OZJeGh5jVu7EFeRlts6/Mx9C6kXYD51S/Us94izrBijDC4yfi6Ek9nLz5dao4GUnjjzoBScH+FkANaiD2qR69bvk09LELx1lVqPKoHvp340/g3fEcPpG3nu9/Mamh1gsPtJC6y+eb814hiYOUIpoPG7/5iWDxjT0NpnBlDN47De4yHGNb+mVgu5xhBW1cZlTnmzpngSATGGRSjZXy6sbt6zRw4ObCkXpjHAyUJUsvraYT0QRxdrxqv1z6h6ftBRHw1tWRhxufxh6r+YqJL1GB9HjBZBedhngOvu76F2/UyzQhXj7Td4YPMbsgITmfKhbCRALZAb0I50/D8Nv4mZQd/BdV8unqDdPl8wDq9xRTzDtrxTb8Aic54giI+kqfh8v0BtdH+UCg9dXqEKnQPaoAHIl8L0uwiHGYysFPVqk/H9uhfRj+Crb3gXZUh4zNHongyStytM7KKV7pq89gmTUGPaVVOczP88TB5viRqFeef97yNl0E0k/xJh/97VfUelSOPNXM2t6fmE93MVxhmPg8ETODVUxQTw/4+tk30r5OJ4/XdsssX9oDox7Ko3wG/VoAIaR7Ip5lu9p3nJcA8TufcbHF7+JIrQ+4PI0xAkurj/SxI0dSu3eMo13osfvwMaCnQQe/ZrWplq4GEMSuO5MDssz8sJPcGu4+RYA9+myHubJVF274SdWJ1APTXgEEbuGrVG9De5jKz6GG/GQQGn0FzhtQvKRgFscSW6TzKyZ2Xw0+VuOFfVI03rRddSBnJj9SM1+znDlJ50J6E19UfZe6J6xrv8JVPY9U9ZR6WPX8O8rRCg7YOjTPeOnWpwPEoroSeMgFwIBr9YBZcI/VZT8PzNbzFYoCVqnNKQ0o6XBr4Ks+7Wmwi+76Isa3FGz1G02GUldfunxTcbgfLXT8JB+wvq9CC19171Dv+MIeeSZhC3+21aNVZgWY4cuPwCHNOOx5y05n+qmcZXE0bFwUnDYcvup1hNA6H6gW6OK/ei5v8UsDfu7ZbLuzD+XGljByo86jf+/jG5YqNY2hqNbzED9EWQsPZPy6L7Y4n5sAJwXq1PxMPFsasXagm0fFtkcyzYfX82YAG9oOOT7BBSznGmtHXdvu/v5a7z9+3srnhsvQYebNWNjW41jh1MW6zwhrtPs6gthan2h/3tVs/qH8H/+hry0fVy8CEvxquzNqjcXSGXBRD/klMykK+cMwh+eshtksdkS45sawaCDU5GvTpdQwj2cwHSVHgtdDfaeWeT4OayMfbnC/ExKqJI/ZW4Sf8oZG6404aIgRH/a1KUD5rj//1YPlqmQC8J62SpV9YcUCOEQunPaBgIMQwWFJv7cbIDJf0mebIY/plxuE5WlQqeXaXL6eI9+CX00+o4N+aXT6DVcDetWhRcA76mxcb50IDvKpxq4dt6Bvmg5BlRwe6Dj7k766Z0eCmdSs2NBxMTDv93nLGH5c6raPIV4egJtB8pBSMr9XH6yHdG6g8TkIBFyAm/PhOWqA9G7PNHtDlrd0jCzonusLmS1PBKO6ho0sNdDG5mM2vOWPPx/4W4HRIgRsPN6/Fjw5b5FqW/zR8nqyYFkxgAgXCxXLXpII+zV4/sP7w1bv4U0NK+ztwyIXhPfUSMQvKDWXRGRrM6e+bBwNin2J10D/yXsebvqWNAW7shmtFSfPOvdAQO+ZPrc5LKF7Fb2Nn9zYQt4vDoaEV9Cv0S39sN927m58B59ueIznXhosaPaPkvDqajJ2eHg83PQEqvcsjv8+H7p5WNAb13zAaoifUB6pCcm23t6sztdM4pebidF8nnNivO4ivJVtSt3l/tAZsm4u0EtOoD4pLG+5BVCBH/I1EPe5f/U55+e37IS3F/XEzs3nPz205Qf1XUnN5/3DlkBRXiMkuHaRT1O57bnI0xjNwMVszq48B7b8JKBm+4H+1bvj6qvYGlH/z2+Sq+5lIFk8CIC1lVSAEIhPqpb2e1ge5S+D9CZtB0e32WU2pc0/v+75YK4n7Iu1gTdB6fApUfJh1ZH/hlX3NHB9BTd94UKaSq0fv7HLoK4vi7auML/VEVmF3BuGW5YT+MdnlOQReofstYrwRZIzvTrR9Q+PVhiIkkFd3RA9tq8DHpwXM6HPl2zq/OURQhkuvP3H38C6XN+ZjEI7R5XyjDxidEgCrSn3+FS6TbWwIU3g90CvZDwK95hORBTgg/9QdP7sACAyPKYwOMkf6mpPQ5/V+wnBAZ+PWDHrmi2ZuWowXFGCKvfm50sR+AioahISXsdcdd/4OdhWi+LnTONhvtuF3ItVjFFicoy4RW/AdUabvP61MeXMmZd/4jEgc3nt8/XHaxkskstK//jm9EmKv/Nu6T+9Qt4LUo7giDNsR8ESz+r8uoFB4k/UOVgdWLNF5oGiQpmaVRTFrSS0PUyTTP9b7+oAqlSBa4Qotjf8ZM3AP6Bd2C3qEVPAv3g/8sMZAfp0hsWQPQW296uMNj7BWHczIsCCaMCmMXAVcXaggBt/oacb9uP1lO0l8Pf86qu+xyMVsAUreLii97XxvBmIeSsLmXSmOIitYeEvzAVXJI8Eivf3QIL6FMIirweMs5ejr7bXbfeI3Diq6WEJat91sj9+hdXDJ/PYiVZvOIRom58dvfVld7hKsHOiNzZ3RQWWH7wAF0Dov6Xg63fZNiKL6OSU7cWje24u2z2xE1giVesh6lj9Tz8uSzckwP6mJda/DZ+T0OglaYtvag+UVsvRLp0/PoPCl6Xr83r7iLCGfo91CFWPhAe1hePlzrDGC8RjjolmUHzD7QyPHoPpz/8g2tzQ+Cwa+ZKNfQ1f/Wsgck74mBWBTOCm/2jS+zT/56/Oyd3HXmV7QBCXlYN/+OTN2bH65wd+zmX7xycHkS9OBlRXPBNlwftqVEvOBy3wdXzan7VqTgudk+WDJv/xb1Z8vlce6vdoRLKhGINQf1wN+mORYOclfgB5cz8E91Bc8LPbDdUi6nsO/PlXf3ydoWeTSNUj+1HPcz3v7/3DJKISAftb5bFTRKG0+SNU++X5MPFVkkjHtFuIvOXvfuMvkNudUqo9dGdYx50zg/eLGKjssKsLFwWJkH1sivaX0PcYqbQWBqJoYPuND6BvdnMNXfeaI2CZl2p5FecGjtSGaL23lrf3OMsHn1XMqSseE32168WAxi77Ysd9bgd9H6yFFy9paEanNZ/Kz64BaS0wHAz1yZtPiqxAoc85apFuHCioUg2e321N88dTZMvOWhNY618OSdf5PKxmXBEQt05Ipm29hvEsh9IvzxR8wno/LGE6CYArSEPN1AqZsHorgqvwNqnGXCPf/FMRZr2jEW4do4q98kL860cQIS/DYdxhJ4LbyCdsadTTJ8gWEZK+wOQn+uLwb33IyXpgfcdd8/UGFg06eqJhlcalNyH73oOrxsd489+84XkfJMhdtCdWJ2JUMxynArbmrqeaYf3YsncNCI3PXsB//ObPb5HdNgXUcBI+rrf4gk/JF5G4qknMO36FYGodYqp12PWYqbYr1Dif0ic/9+Awq8cIandwR3ttl7BDW0kPuFTzC58qWntj7xiJHD5FGe07+K1WqRMh1E7Fds9AOXqjOl9vMAbvaotHr1plenMgGyKPKo/hDeYP1h35dzFcjJ8zzlmyzYtv43dG//jIAcDvDY6zrtDTCEy2akwz4OS2Pnbv9VvvzXggUBGojjj5uTBqtfcURC+LYd9vPO/wiR8SQN1SE1CIwFtluCTQq/YtYsZYsuUbOg0U+jtHVm5p8/k6fF24zAKkrqJ92JqsUyvtzKNM8X4KvQUGpxSWv/aDjoN9jed6Wkb49360rT9EWuwL0kXtn2SKugLQpH+NIFz9hAZM+jLqFIUDTkdxwEHf7Lb4+gogD3Ymgq8i3WYZgq0/UlpIhLoE/vi6PKrN/OfPMLJ+Tw3cfR4BvV++d519pKD4tz7mlm88X6gG7PUlwErBcTE9aPAB+886ob12e4NNz0OI2WpQBBZHn//8jMfn9MDuWB1ymoyhBI/+7od2dN0Pc1VcU7j1A9ChS4J49iZjlYbTIyV//+9wIbr4p7+whVLsjT9FcqEdtCLW9V+gz1SwLRixm4t6Xsf5WnwWQW60tMbOgzTsc8svSOpbq6IekJZ49F5DA9x9fiPHtCqrWcKiAUGkGdRKzl1Fi0Ae4ca3CWcG8bDp4RCYtTNSO3AAoD/67v+tT7jh6Ty/Bwm+O4GjxhWI+vIbZQ6U1QLQbmkMfZn39zf8q49WTdb87/fS1i+hqPvJesdTt4R+Vy7UcbQgnner34IHN3pbvh7i8V4NDlRUTkbL5/Zjf/kLot2nIpm83WM+nuUIzPweImlX/TzW33chNNz+RdaUW9m8P3oPuOUnyVv/MzBa73u4z98c9eF73PTnNILxkjOyuFruracg2WZVohYBYQ/YZD/rFmIBJ0SWJ1Bt9duAqIIqVT83G2x8x4eCEpvYL+kzn0luEPjXv/QE9GPz3jiO//jpqSuPgKbLbEF97HcIbP2c1eiQCDa+8ecvVPOrZIm89QcRT3JF36u92x//4m3Dy2om7VeCwlXfsvJU5uOhekdwwweaJEeVLVs/A276lbq7ytYXPz/xf+8bax8a6bNaCgjezlOM/fs6Dmvi7Q245R+Jg44NS7RPMiDSIvvXT9r89Dc0n5mJ3ecw6vOXjiOsgzX7pw8ndBQzWBwbj+RwFuJ/+gVqxxp7ZvoAa3DLLXjnQffXjxrI0ZczeCnGI1bCS60Pif5z5M/RP+Nz/pzy8flRkr96jW1TpWzDe0na+jeI1P2Yz3yhWvLWD0OCNwIwe+LK/fMLfbTC4Rfl+hscJJLggA57fb3gTyQn77Cnp3a86IvJCdpfPmBP40nM5jsu/vBq0x9QZ7v3do/8UAiEjNpuoN9tt3eoCB+sIvEF/vpz//DRUt1pIN7oRf/6VTa5a0xQOTGCs1KfyG5Wm4EYZ5EcT6OAsH3UnvlaS/cMGuCzow4//IZRvrrh8f+1p+Dwv/cU5MOnp94RamDvCU0DOKP+0MvxvfeWsYtHaeGKH1VO7jrMmCtDqFyzkfoY/hirB3+GBNlnIsRAjxf0IYqExbeCzzE0q7Vz3kjuv4c7NmiWbfPBQwsuoYwJfawB4K/HowhX+3MkMhyRvoSHYITD7bnSgL+XMZN+xxmc/UbH6lIV3to5LYLkaOn4pJjWsOfNE4L9LnsjkOE6nghuffj99IA0JNJ1NvmtCOfd/CKfITpVM+e3KRQdl+FTQM7enFZFCX+R/CBzxmR9zi5KCPVeJ9vzSvmKpF8E1smh2FIPtGqHLBFhdnR97DnePLA132dweuUnwjLD9shFkS14CrxtH4pj5vtEfJdy877o1EE3jc1+lUNw46IKW5IoVQujnwe8rf6eOrnWeWN90Xh4w5c3OTRJB8hBj0NQAytEwoRnbxUSRYHHfaUjKdv/8hkenAbeuLDCxptANhZF48Idp72wh95sWM6yqEBOaUMctT2NV9O98LD+fE5YN5Q4nwu0N+AdvyJqf2Qar9/f4IPlboz0mTZyNcmvFcLp1Rr00YVJNSjljoPX5NfTQP/x+sj570Q6usynunOdAFMSrYGfSLhh81vaMau9vgdW519whMAxn5XgOMJs0Sg24Mv1ZsMmJXTv6YyV9rDonWpdHHnE7wi73op1fqR8A68+tQmXaKu3cN+ugTTKQqxxpNJ77530UD98bKz2sZmPdQ0kKL0jCXuymOhTjToI5IPtULTel2H1t3NUyDzv0PqCkkeGUQ5Bde4jqhpnnQn99VlD+zeUSKDnX8y0m1zCs/FoqD9EHpgTLhgBCNYI++05zNmz3mlwp0cdggcY6XNCN894/5Yo4ox4WJa7ZYHDuopoOMKSzYbdlODzk29Y7bEwDLdvXMNFuLrUvvfVQNL0Mf99PgmbMgDrLbdHqNH4QM1pz/RZUAYIe1BganKSNghV5L2l7rk3sMa4tGLfGdxgeCcUe57zjOdPlqUQXK0XNl+BoS/noHNA7WcOtatdUxEmHlu4W7iFLBYe8/nhau5OnN6EnvDs5KtG7QKaOmkx7l8/r0fDUYRG83CxvsU7/9IFCDyOf2Kc5CyejsbYw/DnOzSj6z1u/biXoJ+gO1X3nJ2v4fJ+wz3Yv7F1lL/esjeCt5Rbt55ajeSDafsZUqODhMdTDtbvdXVlTKBIxFwuqnFtzqF0EDgDqze8VPP1NCgwHJw7vo5doK/cyxmBiT85Vp4+1edzbCVyGUGXpsejkNNg579BaNhHxKJxBuMTz7NMfv0daw+l09kjjBWoWhZP8SU7VGtRnh34vAEJLaZ/zImHqQgFM2sJdeZzPBdItuDvpbuE7Ke7Nz9uuzeI9+KRmtbM5URx1wyegR4SiOSqmnmX3KCg4geS236pWAceUPIcTcTBJ8rjORBBDwySjNR7+kvMwt7jpHgvHbFVNd98Ke4KBzGf8NjCdcu6fUV7eLebmbombw00+OtBiKmJDckS9bEzRRHYR9PHp6P7jmcqpS5IVDoh5lwnxuSyjOAO2w+qvaCk/xbrOYJd8rxR47lgNhWtpEEYiAbNKifWqRk3ijR6jYp2gnvSD2Vz5mXKmh1Vh6gbZi5/jjAtlB29sVzRl5oYFuwjR8epvhe9+UefBbg6q0CVsGwZOwCuB3PgWDS/ClFMHZz5IGo0DduVosW8zysE8gPXkdEHYzx+OjyCse5i6vdYZPQFogzepCTC6lG6VUseVKM8JOuDWlnYDNShswbNNZuxvmSex67znYAt/iiqx1s+k33lw2f51LD9PQtgVTY/5BYuHj1nQeatnrK+oRULGcZ9LsbTMXmOAA5OiVbSXsF6G2dXLtaaR6vZdTm7vtseygfToY8SnPP1taBSGnEZUZ87X/Kv2qwcjMLcR+Q3MTBn9TGFntSdqXnj15geoJSAoE49qpzQJ942oyawDC4xtme1ihdCrPb/AAAA//+kXcvWsrCyfCAGIgJphghyvwTBC84AEUURuSRAnv4svn+vdSZ7tp9ASborVdVJN9Dv4mFvxZPlsztF8j65xtQy2q+3kPZXSLefllHjtjNyIZt7E9xXp2Bdnn5sON2pDFKU6vhCQj4h9ZN/g3Lju3BnvNNkacYjD7zW3bElXV86OT8zEfI4KOnefuOeZvnNRZ9TescHkgv6fLPFCR7XkQ/h8XUYUw+3l1TeQ5Hi5qCwkdtmHeR0EEJUetuaHYJNCstS9VRz4OwtgflzZTmen9SsX5d68DXBBoVTOrLDUp6wJxYKlBa8hH1B2nhz/bvZYJztmBoH4V1PTrpk6GyqfdjlvFdPz85LQX0cQ+ycTSshY+JMMvcUNuF7jWfmdW0FoegkWLevAZtTLSxhPkkVPmMrZdMhTWIIM3Ebbs2pTNbzQgNhX1zX3sGaJ+SmZf/xH2x+UNvP/btdUB/xHjX1baovK37L2lnp8WG4B/Xyab4vaT76LlZtjyTzcbDeMDVlgtWz+K3nUNNl6F+ajC3atfVffiGoYxU79N6gRf8EGqp6tgu54jb0DHxTRMi4yeFPmMNkItveB8V/+1j3k43XpYW+jszWNGqs30Olp1VA4eg6Ddb5h3MtuT76fVMfnyTvVc9HZVIVoeFjbIzbxJsJx1IQXr2JTf9R9qzNZQFNTZFQ65j8dMrNjxZJRSgQEV+/Ont7rw7ce7In0nbpvJmRzyIjo90SRrQTo/03PcAVtS4ul9tc/6TTncDjEwTU33K/evkOFxsqBT/D7lIOaJofhIOJnLbYVr8ym3x95uHend8UP2jWs7NnA8z6QyCx9T0yQmyvFSup8mhUYs2bdXQBxXweRHwbUqhJl94iUM6/MpwbRPX1PCXA035DpN70cwYF6pAW7zPs6o86GcubDfIOS/Xaex10pm8cDgJpMLH5quNc6IdthAh9oVBQxT7/PePtJKdpP2K7Ot2SrUh9GXUb54ONpGTJbF6fqrLuN6nkKu+n+PckECvyG6/nfT2c1ztLG059EGHFq+l40lQ0y8c8nJfmqC9Bo0fQ+YuFbRfuaOKKW4rCSRfWjdoiGj8C4S9fibLysaU9NvDHF7Dhu4PX3ri3gE6PQqXFyleGIcoKyK7kRU1V7Fd+EF+U+n43CB/QJN9txLW5fB2pNLe9qJ6Pox4h71e+6IrHOd2aIKBDys2hfMk4b/7DQy497kg6cI9+voyvDApnr9PAkx+MKdqhhEQ2DbK5FoQtMsk6uKLOxdqyWXI2FkcOHp/SpiFoRT49ts4L8vK4vqvAZ53UWlwC3HuHalnnemzxDxek3BdE9Vzv8wETKYTd+ZWFOzne1cNps0+Vw9HE2HEvGZv3V0cEZyeZWF0CzBbRDkNRo6+F6tY+ZLsoi0VohnQOW0Q89tOGXyPPSypR1Q0+fbPlqhjq124fIsflGe0iIOj51i0yOLWgT4SnL5RNjCcrX8xH5OYRbBT2JjxyPJ0X6MZGu3sGZInOX4/l6pNTPuODENRJbj3MjwaAacfpH1+dpL6+AI3TKGRJf9ZncVIbJQg5TMON1fTz8MsJPH5OSa2xnXNa7fcmOGh3Jc1RGrzpOx1tJa97m+5/p6fHYBgI4qVCW8+/Xmcwtim8IL4QeetbniCwzgY9i37Ut9u192b6E1CgtFeK2ztl7J3nA/qnh1Y+Rum+m5AhJzHG3jwwGt2uIaTzRsb6Rj/3Aw4eBDUmQ9jbftpkDmOxBVnXCqI8L67HKtVIgUXqAWdaMeUskqcB/vYTb9cOKOz8rmAPv5Lujcj22P0jD/Bs/YSe13gepY9WoOUTB6ESHeV6uNr0gsql4fGKd2j2rodCuTb7E3V9x1lr+In2Lz8E00X59K0qE963tsFG4Ez5XKfvVDmHro3dl0PYLBnVCUxAPZnebyMX4vO2Q6+MH1a+P+WTvN7hCdb7oWE8JN60XNoQ1edzS11voTrbmsCj9bwPs5ug63T7jTv43X4i3vex07P4EfBwb7owzPFjx+ZqHAB0f45CviKApo9nZ/Ac3DcODxuJzYX+jJTFqiUcME5EbDjTVsbfw4U6F6OvF2J7HZypAdQ4Vi4bnwc7RamQ7bHPb4yETIpRyM6r9qj+HgR9Nk2I0cX+HbAlx9d62rxsDdqp+YYSntpkic9K+w+vteTy6udQ80SINYn9xQOa69/RhsnmZBzOl7KfsbhPlTBmKWFg2mzb8zcBCfvyin36M3P6lhUepUfNDHdYcfVZOq99kt7dnmqT9qmXA6oyZZBjh9oH7pwMYXoXQN9NGr3qiY52O8S1SEHRaV2/X90/XCyAFV7PhD/c9Xw2v7EJP2S9yAwYodmJbxWIHKTUXeOrnz8bHincpgu/xltMmCVyC9JLX8aHW3nQtzlxKijPVk71R/Zhs57zgpiZewVjvdx7u+vjDXBR6y/VmqOSr+xxQih4Xql9O6i9oDc2AXHtm2S7oDDSB7mLImEThLLBN/VSLq4PQQgY223PEFn5AOiIJERE3V2fW+l5Aelk3UI59J7eVNyYrzSS7JK+CEZ9eQbRGy67s0/x6pf88StIZmgxRgbXz6VYm6j96o9Vj5+8CT9sFzLJ9rF9GhvvT38oRXyOsM1n73o4pEkEuxuewu3iB/1oFTkH5TEzqCOMm56qfJUpTDpFpLJ4Vi/BJfaVFe8wNq+bnH2FToMbJkH4Lhav3674Kl92b2vNT19nry32ofNrP9ys/294PYIIjoeyIdLJqvWuXp4XRUw23xDp/Jat/owMha+cQoh2Sj09f5iAsz8VobJNzVow3LMAjaUK2HdfcrJsuE6ABYtHIq7fQ1+Ctt4pb/RQeewbNpe7byqXx9Sg10ou8mE0I1UxrBtHAwd2OfHWd4OrPiDcnz4vbypAawgTUTbjr14mbu/K2sVvqJW3g07+/II//ulVVcomnwUq2D1XUV89Nt60Oa54H00aPc415xFqWSDD7a784+uLipxIOn76c8jT8qfTzfXtwk7+ZdQdtkM/5mVUKn/+VVvf9H5SObVRzHaTEaRJVc6UWAph+fkl/dN/06rnZDRlAw1ctfEmY5QBHW0PqGoskC8rXsHGc7xQlOm3Xwz5PQCp7wEeL52fMEVXbYglSPD90txrFlfOOhvmkOE1ntfz08ng7HCw+jFHj9+Z8Ru4tFroqo/Y8NA5QMn7gcn7wSxvOh9EE6nVINHj5Wgz/sa9+T9/KOQTp0LT75NoSt7XXSjTRUpIy9QC9DKUSdW8Rja24thCyd2+ZLNzgoR9KrODIitGvKdhhhbbdDXYcXxDw5NZoVGHrJMDrW/wgZaOvlU2ZxMc0d3TQzmdvDk8wsofL9twyT+Pevjz8/qXKlPsLm09ZKdDo1SFtuDQS716aY8E5PqrBv/whZibRwtOkLmhsPoRsyB7GmQudqj9vA75GJmcAM6kvulf/pEuPUbiyk9xyJMTm9zyqaFV79CDUXz72Zl2AH0keFTvjS9bpnt/Aey8Fbr6Rwm/a6YU1GH6Ym0zWvnMbbMWbfdWR6ROl3Li5E8CxPVUGjpZ7c3Pg5oqV3sSxv5Ze4y9Lqv+aEITax43JEsZtyas+EON5l6wcbS3IgqneCa74Teu79i0UjHwdCHZyE+IKLfsoKz8lx4kT+t/q1+IiOuo2LSCMJ/ujx8Pz1A0sUuXWz7Iz0oG6yrfCc89nwndFcULlCNn44DrhH6uQk1Af/ru5velPt5scUENdhNsGthAk8rZDdJ3i0amqMx05r5nEVa/CYdP2uezP7xdWHB/oU6ed8l//LLBflMTobGf3vwbEG9eGell9NWXPf5cpKOd7og4cJt+bJadBop/PmIDvfxkbvSah/ns5thXj6a3S7Y/H8I2C6nOUtYTVJ9eMCE+pNFpe+pXP/UN4zUZiFifT+xf/q16l+YZPuTCtnRL2IucjdUJW7kw+Vwjvz+PDP/5h6u/9VIE8pBCZmpuL+4LeoB1vbFHI8Mj3uykEG0OXciTx4Hx3+noKje5PFB1Izven5+O9uIYYNUQem9ZmKcB3g85trDSeaPtUV8O3FnHVzVuk5k/ydGff4Lvev9CrKp6H22Gq0z1g8qSMXw22j9+YG/PmbeYm2uHiLavqf7ps5y0y2GCxHM0bKNO0VsJUhPiU5MSzjsV6FemQYTUVriE8zUKdGGn59Gffgp3cTzmg3BMByh91cH2uUV13/a9iP7496qHvc7xxA72bqz+8cX1TaAMUqJHFdVWP5jOnx0PQiPE2GzkAQ0Hq6lAVPULDRiXon96zTuYX2yYU5kPAt3ZcK5fB+o/xTJf9ZIGc/M26L3UXvV0rNEBzXdVoQYq7/UIasSDX5iIFEPbsZEz9AlWfA9Faarzaa66FmXXx5fq7+nAdlfVFdDqp1NXrMJ+FvFrgj//HcrW6Kd1bD386UM4JVrfP7pP9+efYjMNcU6W+OODJBFMUIs0by5qPYU13rFZfX5o1ArxBZUSPGmgdt98PV9DeIGeY23zS2sWhEoHl1LbYG/1w9jGYia45+xB1b982VpTBYOVbgk86txb+iCxFcPKOapF568+2FLkK+wx2xS75MZ20ku3EeHlHbVv6oxIbmJb1M6bnjokY2jn/wYB4gJvQvl3vyQ8RTceuB9XhG1C9v0wRHGhNO/jia7xp//T63qgevTRPSxv6VrtBK998sHuyEeMDTvHhuBtRPTPv6CnQ9lCOO0FHL4I7elHHSqE9uRNXSg2aLrokKIDsWbqP2HUmZmlJ7TWT0J+ZkNC7rD21aCiHDa3o5bTZPsL4R8/KychZ0sxm8oRRR75SO8a/flhUClFEfLF4tV//jtc/dFa6zGffGHi3MFJrGN6GIuZjelyvsBOls/UW/eLUpWacBynZfWnDX1kXMmjbVyfQqUlVT7w/cGHMXlf8GGm93p0tKqAFF8ramtjxaZXpXJo1Y/hfAi2Htv5dQkl172wG9ihx2J8WmD1b7Bqbmm+vKCfYHMa/vig4o0+nEOQW6+gmnxt6y6ruAus/Jna+mB4Qri+cfnCsaW6PK09c815AGlulpAVty6fZ+euwrQ/pGSevz4j9yF/QyOJLl79VrT6RSHSSssm4neg+ZLkQ/SH11ifcpNNDz4QIHdPiHx7/Mi33HmqlCo9PLFzsnRvySrhAoOyeWCXd056pzg/DX3f7Z46ojXmg6XHRKmkl4cNhqt+utrfCyouVUGYSOKeefJx7VOnYTIXLyUhE7e3oQ24gCzJReuJ90xPcLQdCAsNk37eNzKg7zs3qScjS5+yWunkRhFyaldpq6/5bkJ0rmsaJLGgz5Ep8Kg1+Ikw9/bRKydd0j8/D1+CRs2Fc0RcWX4XJo24FSmuuuuCEy8m1ZKYrbPmTilg8Whg/HTahCwLPoGlRCk2tHtc//Fr5B0blQZrPPzVU4DA+tbn3NveGm8HKIJwHYF2GRhT9TOPKrPdEe6Rtd608it0VfsbkbF5WfPhXSE7O6JQXPOTGqcn+ct37J0ko/6HH6t/TQQZfkmn2J/T3/5Q7xap3pzMnA/ip/XxIzFO+TSaqQavclGwln829SRMMg93x96ueC/na72nQ3ZJNBx6J2Bk/V7kNI+C2m2fsJlwKAUp8mxsBZtnPYEpEbTWT7BFvtua2tyYoaqfdwQVDpf/2CZ7wZXYM02lSU8GI0yFP/+Dan3vInpVNQHFSv/D1uFz0v/8BWiNzxb7gRz1y73oKqi2pw0NHvsGMc/VCJo674fVjN31aX9/TX/1NzKe+1ZnVuek0FiaQPF9nVWuunIGq1+ODbpzczbmZYzMfJ3lKKXvfMoOyQsum+JHja0j98RYG1iv+BeijVD0w+n+FZXG8zWcUcH2+iqSbVF4iXt8Qk6vU/cUuGh6JRbhY3NEi+pwBDbDWcZW9pG8ebi9ur/6BpnZ7+2xGkkVcIfmSRSlX5K53NEMutjVCdx+z4QBnBcUGskGB6dBZztQjqUysWGmXh7a9VpPOqDHQS3D5fbdebMF0vIvHoxUfHrL3ZdKcDZzi1Xmn7z5oiQlDG8xpOe/+uDhZ2twP+7TcM4CWR/+/L+g3ywhOvO5t4SFLYBD3hLVDp2hsy7iyf/Wp0D873cK+rIcqC22IdrKt95ESdrtqP0tHLTkj+cBSfvWoLeu171BNxEHr2B/ol6dTglV9UlVrnd/od72brNp6p48iM6pxpfrJ2fzDsWuIlQJDXfus0bTV4grRM9CjW3pqeXCe7ktCC/qifoPm9Us3n8BArc5k504CGxe77uj3WWdd2plH8SoJZTQ3Dgp3G4e+3zxP18R5Rws2PkOZ/03i2MBD49bmyUOUb8QbtegLd+lodLsePRrrF6GOXuRcFutfQrm1CNw9L5aGCszY0vx/ohwY6jEYXwyEX2OhY8u/vOL7VIP88liN4LUmWwIw5e3N5TnEwcN2tzWkQNczsahI3DvVIvu61+DFq+qTXgF+okebg+mT+f1PYHANxF27O/AWNQUPuj6F4coSFJ9SfwpBUMIF/KiA8qnNKgL9N0/bazf6tybagcm+Xs2L9iu7uDN42eIUYCzCWud90ymD0krKG4nwIG1+Pl02nw1dHhHGS4G1UgW5Rr7qLlXFr4rtubxeBEHGbuFQQvr9dSnbcRPcPcPlJ7bQMtn6qoHWH8/5PBZRAPaqppyv8U89XxzTkb5VpsQf6RDOJyp6E2ccTAhx0sQ9lbj6Gx4VwNsw+sFO5GpIX772LdIqTMDG2LF+nbqfgK4W9HF1q/xE3aSzqly4S2B7Jx2Shi4mi0V9ve3ziP38xmLywW+fISwLwegT8bd5dH7VbJQMI2akTEtQljjDftKdc9Zah15MHKhpY47fr0ldL0BfpsLxrZVjuiLzkcBBbf9l8AYDPrIlY8Upu+EsN1g3VsuBWSgw+BhfOI2qDMHPYLZmXO81/uOUWs5yOgz7ZRw9vtcnz/ShYPTZ+HDXypzHtlKxwnyzr7iMFf1ehdj4OWK61zs7r69Tt/d+tonK5u1l6lbs7G8CzC9uCqUL0Wbz86s8jCWp4IeYmmqZ4ScFrhrbhAFc3uPf9XHE9pkskd499bW/x8/OGyYzz4kOzVwmIsHLn77a84+ozeg3fek02i49Wx5Fa4I7pVbQvHyFvO/fN102/NEzaI75MyXuBQZ7zAOt9Ltqw+mTiK0/x0DbCXnjTddU2aDHZYetie7Ya3vpC48zt8Lxee68sa9QDroeTWnezn85nPvRu+/fMT+Os6b/m6/CoI3PKh1+5KEdBUZIO9vb6wljcrYuzNfyuv11cNb2nRorLGQoqB4b7FBeaEmhNu9wQlTHd+/k50Mr3U+qzlfMHbHfcuW+6304XN5MLovLgab61KPQIMVuW7W0LNbO6XK67HnseVur/qQuMKExMG8UNVC33px2u0bjsXlTMM1/mnEP0205dv0P/H57sIXsnZnSqY0lDx2zP0XhFcSU78+tfmvfe0acJWqoqmRsnq5chnA9IIKn0VfTYYsqlpYJvUcLp23T4TiPYpIutKR2ubR0nfbTZJC3nwd7D62Opst/2PC1x8GXLZqwujlxWnA2u0UdmAl+fSMcSwbn8eDLDtvzofLeQsglvIRe9fPV1/E15JCu7+r+PA91MnSUN8Eq9h8wu3Fdth0cCQb4VS60kCP38mc/RAHmZ9YRLpvzJxlk5wi1J4m8nb8PePfUuUrydn6kWknPnuiPk9vAIHK1FpMPmdKXw3Ii6IT9gf1k7Owfmjo1H0xxTvk1NtYlxqQSt6hf+fF9Frn5UVcqmAzEEd9ulFNg3QZbnQf31/6/HV/B7SuJw67zbNuVA2FYC31Ce89V2X85awAlE06U31n/XIau6Imu/lLxYZ7rvqpM8sGcW6gUhy/F4+B69pwxG6EvUuq5jvPCF0Ym8Gkj6lteyJdXwOEnbLBzmhEbNrf8xN6nu9mKMrE8diJjxr4yxfvU3ZoWXxQ4dbXPHWW+NqP/wcAAP//NF3J0rK8Er4gFiogaZYKyiiJgiLuQAFBkTEBcvWneL//LKlUUWToZ2gq3efdOkI7UEqyVzcI0dcjxKCOlUNFT/Zc1ktKhIzI8+nv7uXlrD20A+w+hcJwveOok+u1pjAv3eKNJrYlzS46BfEXuSSyP1YwiLWVonfRuVT8Lf8kN3MQooU/GWbBGs1D9TbUspU/5K5rHh8zERXIdVczwZFiB0ORYENhpVZT/iA/3npl7cOvLGtiAATd9N2mgrL6vDUqHyPeDW78fsIcoojoM1qX06ePLKAxM+gm28gdJXlcQfzaxezI8jLgJCLh33zw7A9esG6v3ROyd4GZmQ11N8ZaMgIRsiOd1E3CO9+Rd+j+/TyZFY+ePtw2VwvgeRvxRgr6br49pBOqJOXC/s4TS4kbKtq3kfCmSpBOZfFkKCYuArrV8eRS02sUZb7VLjH/5q9O8xV+D3lih/Oq0+dlHMT9+kXSZFeW812/L/9E1i+6lvR9IOVyqSBbIhle8eTdjafflKtvK9gTPDxIwpy0oGrSJR9m6trAp618ekK2mxEWtVkrx8JYVeATwyJ6m/TdoC51IYImdoiZe2fOsWsV6G+9D6p610elkwBcNY0YmQvqTlWsVmjWDuof3ybjtb9d4Zisa+Y2xyyYhL73kdwfQuJW3aVsE8F5Qny6mHQOqhxxO/nm6CYNJ3bWxCzhK972IOrHlpzHLef8frjWsB3F9h8/j0Zu7ZBUf88kzm8n9x+euK46E1tVtWDWlbyGduWbjPz0SJ8La4uhts2QWbldo/Fn92f4PZSJ6VF4DWaS+x/Ud5+G3Bd+n+ASVYqq1TMVY/ml15lzPIO0H2+4uT9KRG9iJMBeONb/4nkus90BfLdQ2OFs3Ls5P653sI7DEEP+ZsE4ZbH1T5/eV92no4hEJzW5fhoSPgWp7D+nLYBUjhuqWl2ucxpgB92/1ROPprbW2fzWchBiISDLeibjzrFb9Ou2F7ohxS8YYy2Y//CVHVZlk8y7y+4A9jn+0LUzID6o4S1GcYszcjANM1i/uHBFscW2NC3XAuds/elVS61HZtOVGDC+vp4gzEX7T7/pzJ0ggoXfmFeV+47HJFhDU0GFUXZKyp7dIwdpn7jFq1WR6nwTybvtHD8rurKkMug9YRerB1s5047f6RJvZohW96uKu/vX1KdJ/qbwWb8CdpHIIxldvj+hS1PENFxq5y/806qdNzyYbbz9ZBPEVgrDxo3YsVgbpYRTH4PoaXvindMmmVozicH+nlb0OeZewp+mHf7pYQw8qJbajeFH4UnTYdgMV5eFry1G0n2jMtOuz8FgxlsBHLXIiSNSqWPp64yhKSyXxWJ8SFh5kbU/vsNf6bdCfVuMIZzvH43sb2MZ1JszzLDEM90OwiHYiPUuVQdrpOTIzaXf5G1/VRe8IZjcIj5dsTxC+buHBPt17PYn5GI07K2Imb984pNh/2T0qIYH/bT3Q8lJ4BR/5/mf3mXBKvfhtroVVIw/DRqeR0LRJnknOFBipxvwPZjhiOuS7e+XVzIdyDyqPMNbZu7Ilc9HyQf4tvOVaJbp6vyN3oY6Z5c9s8k+Duj90vdw0ncmIeYR3G73S0/Ij+iK6avfFHAUpy2Y+pUx4/5FaMr7uoW/eN5FeKsP+WoO4cy9BzkoodZJtUp6ZH0DkzmWJLvznHsUlXYi4OnL3sHIN432tx50mx9zxDN/VyhQph6z6mZE80ErKHoJ6wLnTazyiaO2BvzMB4J/fZ5wae32cOhrnfhWIgTsAY4B0Vs1yO63LbvWzHkFkxc2xNg2fjA/ro0Me8GsKQtex4664+qDvLNzwMLz/UJzZLx2iIfSmTml9XV5FTALLfqXrvLG6XgtazLw7LRl1+d8DfrWCD/w8u5Alhq0nKldTtGsGSpm+qygafK1g2o9ty/6Xvaj3yGg6PEyCqpu1CyZI+OmwaXJY4Kl1VR2Z3Neq4t/I8S7d8F8uTkKcjaKQ+fG95B4NkQN7A34JOPJvqPvPoshf6cGc8x2cqdHJcwoka5PorXZupwy2DhQysZyqS+FpPc/SfhPP1hRO6OBDvQMSjrul/XSy3WHjDVUSH3gBY8RDwtRgwUv8CifNvq0Hn2AlH9EYj4V0o3es1lvFzzGwiu+BBM1HQXCVRAzPbfVkolefgVFJQHZx5+0HA7w3kH2cD7M4KAHay0/F2A5iorl3Lb4aAtnRV38BR4VnwQcn49X2OOtjvkXfbqhSIwD+oW3//v1Nq8o+kmi/Z+eSqKiVsNqOzFPFGc+L/pdIbN2Zd7z4nfztC18QGMfM3M6FgHXzqIIui1EeL19EX18cSGE7pSe2Ok4xvpQUeLDa4dcLJ3xjEY1zVtVAIGT3eu3LnnffAu4uWFBR9vC3fjIN85WIQFiJ4vVLk/8yw4MXCXMrAcZ0e9PM1ATkuA/Pi+wIv7D//XOfJQUXV87kEZBWfzOJ2k3QvqBZvy+/vM3t3V2Bf77lCxa/NE8dbcIhW26wvfHjyaz1gczXCblgC929OCzH+2MrZGMORY5lMH4u0+Wuoyzk/aKOL9BXIGyqVSi5/arHMto3yL8LAac7+qqG+nvU6srrSio3Cy9pnJjFKHnQsAOkv5O5m8wLufvaZDMPD7dmdLugNJRr+nmxGgwGDZTULZaZcSy7vtuSs5ZDP7z7JEsHCtex6VyRVHF31S4D0Uy4XZIYelPQcehmrtFf4dgO+sN3gzKRZ/203ut3vcXRJxziF1p0++p+qqeW0ZuEk/GTOQFwFj7LGIw8da+lTKMUzL/y0fUq8QHta4DRJFuvHV+NYtQvUSTSTQuj/qkSkiANYQi2RtCr09ohwtQ0nmP63gc9DE8T86fn8dKYJv6um+V8I+vF30tlf1yfhThufTzrUwopwN9OuC9Hxd212wl6LXv64qAuB0d/bfjjrmwKWAluDIut56OpD/9Xf0cgem78Y3YCBWFX+EnbM9B1uezIe6A/TY68b4t1v/8MLzj4P2Pr+eh+8owasRjmuMdk83AJwce7flHdpX5LKfj9AiBPJ9fYmTTuZy8a/pBbLO3yFETnW62gfhAnukXj3flWHJ914Yg73sPr15hk8zdLdNQEZMHObT3QzcJ6T1CQ/ZtmLY+HF1pyW+grbb1meuf3G7MPSdFL94KWG6KQ9JnIs8h6+wDqVeIoe7ztXuQU/lCnl8a6mOzv4yw8DfZ3fe+PvUHjyIGTUoOSz6h+PM/1+WuBJHJy2XVaCmI3z46cWI4J9wYdsbf+9jjtTIC6S/+NDcYqKgURzQJrkfhT0/++cmh+a5HODntC6+Mqebs0+IcrbS8YCYPkNt/TpMA2zDN8ZctdZBw+01BTu46FYPlToJvo5NiuLpHjF7dlPNzVkbl/csqKiri1p05mTDMH/NF9KIug3Hf1SflMskHpr2yTzcF8S5V//B6bxzl7qOmeQ3VaV7/+TNO9+FJhl9xTphzK6+8rq5cgL4aMdtnL19nt8ZS4MLtCzkdnwbiIemvsORL8XHjzQFd4lNR75m34M07mdLwMcJ6TXN2aNJJH1PN9aGIhBPTs2YT8JX8y//2n9j3h47+4UNrqQYtHgHhvXK8VmAnlcWsk2R3s8QNGa5NqJHTKYSyR0n3hO/tVJFT9WvK+cx7Hyk2Dpil0EYfeyY5aBqNF+WwloPJgqiA+NpOdKVdcsT3TyNXtW8n0ep3rsqmPxx7Bd97n5FIfCdjkyELWo+/6WclQTft9kKMlHEumDakWjk5h7gCp1n5FJZ8x/yNNhjqMsuZGcVmOSdZY8BhSjMqx+PgzscGG8iVTEKF51vlw1iEFUD59Mixoc9gaM0gBitPe6Yv38sFXTqjP76YjtM3mf74bF2qHrE3Xxn131xvwWtmhar5FHczjqIKbrslnpf9p6ZydiARlvyW/akTvvA9+PxoM/1RIrdBaF+jjBeU7Suo3fnKgxlQWdyoxHqj3PjfswUDcMqsqPXR3FRTBZnn9Vi1ZQNtmrXd/j0TqxHv5XzlyQxdvE3JgX3cRPkfAAAA//+kncu2sjyQhi+IgYBAiiECIgImCmwPM0FFQFQOSSBX3wu/f9g96rGurVsqVe/zVpKKXkwD7wOvf/mHWUrnGjFxfarpTztZTk+7NGe9zHyQq078fS0N+lVUkI0ZSWjkEj+a2HqreDHrnWE+M4CyHGJyuC0Xgn20wFj+hWlJLnM+/Gb3fo/2JDqzNbfC7h9PTqW6Z5t1nlViY11kYHbyR1lrN+G4SDY9PBt8Ibu/bh+Ot+f3DmgHDSMVVwXbfb8aempYZ9Y1TZLlsZQsyEm/JlG+2iQiuLc96KdhoK8XlpNpv9Kj3+eRVclF1m95ZEOv7AoSab0dKnjrabAhY/HP7+Lx0bsbt+fnTrzmJEK2j5YfeLXz2awoI2jyeieGtXNfEOt7NdHk21cMuy83mD8dFx1XrGKPPsckY9tr/3Im65nX0FxAJ2RRSs5Hv48+KPjviLXYrASVq0AzlPc9Ievvdev8828SR87ZVWRqwnNjFSF3Yj3V5/ii1+01gtQiHn1r/RH1cZ2kYJ9vE83XeYPes7/08xMxq/gRjRatP4a88w9UGVa3rq+2ModFIhjxglcnhuaPTxC97Dezi+mFplV9mIBfa5X8+aRJ2uf72qC9IBeCI9xXYqUVMUxH/czW75R2faHzHn5+QOR9d5348WN0kksWf+OdmCrzmZvlaskx253CRDm8Txz99OrMn9mQPNYxzP8/23XOt1N5lV1/fEt+fLZM4sn6l9/915F14jbUPYzlPHv0jzuJ+tNzz90mZ2FgqYjP/QOAhyH98/M7tpFyNPtDVBdhF3Kazn7nVqlY2C6bbPZH7j+eZeTIPSS3bzNAm9q1Wb7mhtOKVX9ESoXWGPpUq9pvJ13RspqUeY+A/C+/mmXIN2Q99yeWQs7xT68Q7733OmWuj2BgmxIHipcz3mQUwE+vBg3TuzFw4wYOKn3Qaa7X//i/vm62zIlNrRoauol/vEnl/P50+qd4zffetZx4ZXjPaFs0Pdo3q/kc8ilH4n3sjyjICoudG+I4U7MbCnhvt3fKmw10IosvNjxCeJDVrqadYEfn+Itv4gpehELnqgX7VmFscxNVOOn5uwQz0ReM5Fu7EpdBwRB/7zE1k4OdKV6zav/lR1wmtRg/5aIG5rd3tnl6dTaecbE303PDWDD85Y74u8qWiarij3j9t8zE6USPyMKLEGuf716w8+agwuMGCyxcp3L4+IgDcyyNMzVvQRMu/+iu//UjqL7bpEjc+dcAo5M8Es28P7VU1P/6Kb/6yE+3pQTS9/KifNazv3yNJPXVMvz3/oRjcOr3aL2VfULM9JXMz6OGh0RjyuH8RdRnfg76tF6S6LtaZsKI8w9KFreJhdveqXgW3Djip9WHrIOvENwRLf7xKHMUw66Wwv76+uOajT9/ufuux0sK9tgwYrXJmP3qK2oW5ZuRmefE9/ItAdVjOeu/FerJUikhyMUOy0b7J4RVXs4/v4dYG7TpJii/BnK32p6t5/U9cXVwwamPJf22XRXyxc5z4XJzS4wCSxU8DB+TscBmQs+xWaF/PKs6m5ZFyqVA1JfXe0ij75LZp91fNhmHk2rIzs6Y/WYueLY+AzyvhycVsXnueGq02KD1ycR85u3Z70119+T+kUdye3X/9SPn/qh4fP/mBkGYwnFSv1TM/cPpU8lXiJ63C1nvbVYxsXnBP360F6cmZFZ5uaIfX0R9eu6my1vMbBArVPp7+45KimsNw/2Y069We4ib1XD/p5eu3i3IhN7pGPY137A0tm7h1GZfzTifU0IuRvt0WIPbIxCyL4htyV/UZ+f2g2Y/lG0i+x4K+sxsdAk9mxxmPfaEw7n+9Rf/80d3knWGfoULtrqcTmJAeRGbW3x1yDqnUTal3qs06K5azfHpZUJb+saPP6lyybpQcKAUndsjI7ut1gjhK4Fr2l+yJpa6oCFN+L1Gc70lgdg4jvzzi2Y9j4fTGGR84a9ic66HWCthhZTpc5Z+vEMlH4WZ/FavBQSvYElfD0WrhHcXGC7neMPsud5N0vD0ILtkLlkZeJOMm+somVXjbdnsTzn81w/dq9Obaq8j6ZbB/qZCnhvBT+91fYc8FbpGPrLoTJuwW5tpA98Lf7L97qNWI+fVXX+46ZatZr9H5K9yvqe1WDEy/L2zcbq6rj7rS7yceXzwYV/A/2tPgf5/3FPQ3nK2EtcRja7uXZH6V+1ZcNkuO04DjQNyOGa3qiOdcnzsYhRkb5/qI3s6PFGflmmed5Sa/aHv2FiYBVo38h9JivWlEqh93GHtoyMhje+H/blqJtCrxwHrchV3ygc1e8D8s2PeM7tVUzTvq2ozeqRK4s+ey+rSGMZqvcDj5u/mUFvuDfhyXyH+42SF6tEfNaPyPvvZKwjDXkpTDkPIzvid7C4J3+5rgPzKHbatTmfBjTS7Gk4dcqwyeu8m0qcSSqFwyKqwKtHV33WOnk+jJZt+sQuV0TsckT0Kc757SjhdC6EMR8k4kS3ee9m069MYvvX7jplD6m4AyWpNazUhgnuwkAzv/RX2m/sCG59P6/Ty6s9GqRE0xJbXW2fcP8IIFIkKqu6NVzganfOBnnotw2HQZuLbnmswrs0Ws06JMl7Ra67/JceCjp+m6Pg1u1J0X71WxN5cDUcsyc5C+OWpxGenV8ejwcpRE55PJENWK8YJRA7lmXl4+RBqOBlNKcNTPd2Z3Td6wtfK9W5sj8uBbb19VbU7ZXJhY5937GR7HmK6xyUz889rqvOKCXodWh8Jeumovq9cpPbWcNVGZXcg/ltTxFCgqgTJeC3J2is9tFx62h6272BLouM1Q32WJVcT9dKG+E/X7fhBUlyTSusn2Rw95nDsx3vkWRZhXrZzsqlbYhmNa4yI345dJY6PNjD+JGNFVoHcOpMvUwnccH8jp4dQHXY2kAbz783C86bN2FIgDa5HO8bGdjuF/ZMeONisf7GbKakJ96XxYypSL7DSk4vzpc+nbYZlhmjXD1sk6OmeQk5wT8PPhqHWvaQlDMX9i/V9VQvO8t6GjTxZzItXLBsIVzhMm1onu7VkJbK9ia4wbD8RXWxvd8Qux52tR99SUPWQnZ0PbVYqGMSe6DpVPk59q0dNv1YfhR3fwnLUFTFT2KLaZO6HWJk8rfIUBfHlSlxOHEct4kQGHGpAnNMjr0aHc8mUDM0ncdqMIZVS/YNa+TV71vWY9FWyOoO3+4xszZUknDo6eQtDcIdFN73rxCh0FR6fTBDL3FTh9Nc/LPTZ8Q4bhc3DCV+fPfj7lcciZt3DDnl6+1u/zPb0dzg8pzWFYggx5boNISfXXYHUp/smzmHSsimv1zZE2/JD+/nz+r7Z+iA7AdCqlEjI7U7Epu5HIdu+zUn0PBjvKDX8hmyii+9Mqw6f0eYbfcnfg1oZ89/6FTb1rSaRY+2qsSwS34RjELGdLomuOxtCAzv2HOYpReCww32ejfGFkNjrqBSimL4a6A8rZ7d+WQk+NU4EW/uqUzRgQJOUji1qrdDCersfEz41IYZXd42wwtMi5CJ/neHchhIun9Mr5PV8fERXZJ05k5RWo2f3AL1rjCTcyV9nXKX3QLeNRUecVhoFTwYHQ7zkMcP1sRG8XSIbllHrE/d4I9n4Lf40mJ8PuW63sSN6YhnmgTY2I0RZJTS7NgVq7fJG/O2LZDyRlAl+6982zu+E74eVDOZIXUIknydi3VAJdEXV2Vbk62Qa53l8Exy3VL2/e2cifS4BfyfAyK5cI345QASjxWMSQfTnyIcrjv7lh+x6fSGGSrs3f/XichzB6dkqBugac8JyxP1MtBCq6NEc38xq8MsZX9PGhUcr9v/F45jXPSzIEfA050f5U6sW2nALkU3gzXdjnfYB7Dbhk5FxZVXi8l0dISmkE3G0wEdjaDMLnonZseCKLGdSm2cOm/J8xmgnb8N2PiYEZN+eme+FTTeGj60PtW5fSLSP6m6atLgFPA0X9neBv3B8oFLWx7+dRxeIGJU4OGuAvS5PdNw/x6yvrd30r744u+mv4+GGqMD71Yo9viUX7Pf9DvjQsGDYPsSYTD5G8tKIsNaGckZXpd7CabW32Fr4uBsPXL0DEfZ8rjAoKmHfCEe95CnYSO2gmiDlAH/4dZ3rT5OIOKrvYKlliGVSH1GPGu8Di3Op4qLIddT3S0Fh/jyC19LF6dPs3ALqO5Vs3vFaDB16f2A3DQ5VeGo506H2DdS67y+J0HyuRrrhM3q5yYNZ6ypDU77cprB/3wJCrr5dyZ+lkcIzdHfMuZ//nPF73gb6gdY2W831WnzWT9sc9vc7XvSgV2LWB5AG/p7Z3SMKx/fZyqFi6paFK7mqKKn9CK6qdaPKBRSH19uqAX75Xoiv3ZVOvE5XDRIgOcMouFWDE9ku8FfEse6NaiW6qbHgYYwZIX3WdMJ9c1uPdeVO3OpbJYNr93vw0ptDbPGgQgwFBLAc1z6J+3WTCJk4Lczflxb7PE3E6r5XzVO7/TA7eThI9TbtB2a9QS5/7ayX7D7+/T9k473zjn0g9NEJqj3udPlSsaN78QCddzbxkp1VKZ8v6uG4n3tYdVYJbt6MBkjRViQccC6mYFNbIJG0ISsqnxCn9FjDGWsaRcHVSvqX+taMWLkqbH3J7HCO/9Tc8qND2xdeZf2l5iWCCGK2rr65I2TzYMGWpw5LirXeib5AOWKTahIfmXYinu4tgseHumSHghoxnC5ViG6LnHh9egxF8igm1By7G9s+3VvCPGcrI/eDQszLrfR73j66nNc+85rVshMd8SPIgseBBXdkz92+U2Ec//o7SaxuLcZWXDGUaXxju6fUJfyolmfkfvSQWFv7g0QYPam56WqPBKV671iYqvlPT7Ldo4sQu++mFLm3z5qFfBN3oiw0G+qH/GCP8nv+zYKyzCN+cXKg8klwu0N7ANU/Mcc8KGLSudUCLNI1wyTYhUMckQaJ/vggXkJFR+fNGMabB1u8LBbvatZTNvDIUtnqMqwzxbxcJv2k0AVF9fB2xndxwwY8LzFZ3+AkVEg1gO3tK5Ht0BqOeLhpYYrXziSeq2QZjcuFiio5lrDZT4+u7/LyA/WHmZSbGyccF92aoqOTqriQ8C7r8ulTgKkGA+ZWjsWQPtwawWP1ZfYuenV8oUdH0OigMOd5CIRSrFdnGMLhTH76kVFYR4a2sA4sfX+9UOSPOgJEVj5b2Zg7PfavMeyLVqeQWEkoX2qthG9ZxCwjzyER7PzxjGLUUozIc8gms+kx3JJuSeWa8270/r57SJQsxOK2tMNJeT0oml/Hy2dhVFNDNcsYLx2jU/X4JuMgsgbuN/9EkjlfTrehKqFNjTWzj3rfjQ0aGmTVQUXVW/FEn49FAuMgrCWWOVfD4YZKH24O+Cz7rZdTfL7CtVer//T2Mbuk0GFvS9zhOCRjaL8tmKJVSdZ0taq6dSqfwf/OkwaG5bvi0yo/Io8wkw7Jeh8yiWymn17FwyhxNB4+396Q9cUZT3edJf24VCb48OBBsPFtK55K6h0Cy5ko294k1AVOGIHkF38ER4dlJfzwFMPrISsYlQh1dNZXZqm2a4bV70bMI6QA3C7+kPUB4qwNJS+AezAx4g3FO5mOQzGZK/9dMkfrMtS7Eo/nWQ0jncyJh8w00zs8n1qLVXv1RTRTljXoQXJi0TbpQ3ZwdhJqizCkiFnrZOa7M4S1ONOyTAAZQOa/zqFwU9TDmrA3W/XWN+PFtsVQqid5QKcndyZJ/xSICCskBzMqnKaJbxqM6wiR8P1UqrdSqAb4e8cjxP4OWR9uiIxQ/1WJu11OlfhOQwpROlKyc6MlYtdHVUCWqzrZotwP+0BJC3Af7MB29XIViuCe72Elhy4LkpxndKcYLrDL12EpJ5VDr77Yw0eVONlgL0pEFr0NdLwbEQl1+dKNHCZuHvmiZusl9TvVu9wi7Rf/3t5Yh2obBKVsLyinNONbpNw/TWG+vBaw1B+/1fvqXu/op6c2SFtnsrX/Fj9+wtA8Ptn0d+3v4Nc3g9n0/ESjE9nePCvHwq+5XgkqtBwN942FjQG7Dj9nsQ3Vh72Js6gP2XSK92dT/0THeRZElMj1tqtBg1bGP36a9RQGst6smDfrfaX8MA2SajXvSYysUH1ZbYui0zZkPg6/yRg52gS5Meutv/YgROqez9A1i4n4x/7hDGuuf4C81hHbspOUjH9/dELHNoyx/mqXybSW5j3gzwNlQVqZVU8Dzk09OJyIx4SNxqX84ej08XIW6HKBhNYePaM/7S9ky3K7E9k3sEAy3ku23ZgbsfwUhovmeKKLGlTEHm5a/vu+Ozc6ifGG2gC62mgoJ39vh79Xe2yqRlywOZ66gfz1FPj9fGd3DbxseXh8PORdsE/WA5hJ62y+MezvyZ6+jNIIB+n5xsBidaIIPU0k+tNtvscpaahZTNeQvR7v1sg+6wWeeGclKtLuLjL+li4V38NQjQhUDerhZrPt2o2Tn35HwcZPGdFXVcZjP/nA+eNNLLzJtJsW97MP10dkUf2qOqGaDa0KeLNdUqnifdcvb7wEP2wOFGZ9PNLn0zJnvUhsWM9XpUqmB/VCbomLb1ElyqltYEqCPQnCfNcxK51S0/P1nu3Kxz0RCmzgpw/wQp/vqcLc9P7x2AZpr2xsRRxBh+iSWZQZaMiORoP4/XrH+vx8ptMit3/xSfzzPaiE66x8SKRaJ655jBHfVEVjfi7OSIubPYbdx31IUDF5S7yMqsn0V9t7mPUnsfVIDTkN+GRWTZvRRZ05SD5afgyeJxcs3TgrZ5zOUQ0J7HL805NVdLQi8x4piJGrX3ZNsbTprx7i4StRZ7TtrkHPRRVhyVr2zszjk3nKn2tGjvP8Zv02Rmgt3zVik8fKkZ8qLaF1X1+yQ90S9cAGH50/7kSizFLEVGXIgmfnnln2tsqKKYWqIfWtacw29GtC66XrgW+fK7YdtptwPuR3RqkFJTtlQiT9mGADPQ/GAz/2x2VW6/bHRyt56+K31xdisqWgRyIJGrYd2TNkm9R0Ya4fLPTQvpvq+A/Dyz08sGzcTKef/QR4hdcVNS+S33F3s/aMpjuXZNb7FSsLbpvD5YTwXXKSbOaVu7kuLJcEz62Rjfnat+CuHg/0Necz7l1tF/3y29bYq+jHp/Nd3hrbQqVksxdJjdr7NIwUxxyxUegyqLiXyEsj92pSk1cAr4tVk8PZejpiKZCB8rEuyIomruD7qrdhzpfEihlDopieGpyKhcF+671XWHtGM29RZciC7F/+0NokYusDTMmILhcX9JNu0MnTN+G0XxxiE13rBzXXUpF9dfmbw58laSScrtj5/t4/r09mz+tz8vpLCWF5QQS7BxmJ+ru+g4qphOWUd2FPDtqE9PyzIK4n5UI8vuEVKUYcMEK/JhpX0eoKi0BLsGJmBA2m3MrANoeM2XESV+I+PbG5z5AgGyayarTeFw5DKXvEl8ZEcErvNTilV//jtdbblDMvfVUWHLay+Px46t1IBCPpmnSTUxqpvjT2Ks0+GyLGrjjWaBdTjeruPQtHhoerMes3yvunU/Ehr46AxjP849Plfrx+QKxLB5siKENeLWd/LOVPqov8lY3nox4hfqp3zB/cNuRIn2dznrUWtyzPktE3ziqy5fBKF+VXyz6Qph4s3zpmzmvpok90jQJUyXsJy1bQVdPzdQ5MUg4Mw7uZutfxqBXm5Zq/WNCgV9d3q0MNoU1XVDFWb6e/ZnEP/SbGuJj1ef9SmWHMfgtbkavrdHWhUQhO/oPY+dpCsi+NLXTvvcOyfvgKuggzFR0V+iVkka66LuSkQF6WpPM9Q8+K44PmgW+CS8jMh98PamJQKdsy6/T3Fdzet5GhUaZQKB/rTvYkDmBP3ryFUJK7QrAnhbHgNxaOsoqoouX2v3xsXFHhiOieA/i372f2D7bdcuZH/d0Aod0NL7NPtdRiY36dWTu76/hOEj3i0vWLTTdaCi6xQUVNiWW2qq15z36ASmjS5oB1nTloOQJuDFRNF2KRv03Ynwa3MQ/r65aK5yFARjoUrlkgz6YTTcxuMC8XDuwVXRnWb3oy3a/MgLSQBqzc4ISG0zz7aRT+mlwkdY+EG/4ZUN7uIQnOn7pjH/ck6ROkW/LHFeFMtmT30Bfhkmy3bZ8wLkbfNFabBZ0afQrb61D6UB/0niq4/M7603BBTXKXhQESSd9tmxSVn+FAwmIzOLSM0xICfacy/3xvK+Fyl6PsaH2wuTp7ifq2uhS6YvvEY4J0RL2DlcN1gUMsdw5Fr5lfDPJVD8RZTzH693sF3TshLnEqNH6BWwaA9KHq5K2S8XNcnmH2m8mufEgZ2+gVQL/ZY5bn0zPrTT38GNJIr1grxw/ijnLhv3pEDbc6h9NOMTy03UmEbY9j7vDS2nloUz9qtvKfuOLR4Oe//IwnOxlCdhpvV+NgdS5WMv/n3+ex0djRl2XyEFVqfNjFaPUUOdWrk4amVJFVNOtrelCTTTXzTQ9/Fmh4ms6zX0RlFaRzWRBfbxs0aVTVQF+tv1g13ifnWxeZDAVybXJ7neWQP9SXCvLp/ZsFFmX/eGe32T4JqUEVzHtzCrZhdiSY/Z5//uHsb7Cjlb4qURqLFKnGvqC1H9BspDC5Zn59TMwOEoY+jH1SuI2Nihfl95yo6WEHxn31XjHfv9ydIXxsA7jPSpyo/tAth/YioSTaefThQygUxbv2v3gh7vIbdvyTOLnJ6NnHquG5juzsS+M/P8E+t+EkJ30OE6y0H38J9vt+8/P9zy/86clVGuiYF/kFTUstpTDerzLbeL2FZOl98GDmbWbZLEjk7+qsIZOke7YrJsOZqNW4xikqDULybBWOW2OeD/7Iblib+wWK0m0b2O6AMGcdoe7XHzBWASwIMei7mrh2keBgfV26+Cs/HT8opxi0wyZh1szX07rbTOhl44Rqq1fUjTJAAHEUcRa8mJyx7Lju0bhsKFVmvdmP7GtB4R0nEjWPT/Lzr9F72v3NflbviLYwOPye5w4OUyiKnbDhQvUL2RwKJaRnf2ogvQYZ8f2LFI73Dy3g49YmFcqyTfgUGMEvPub6DYJqKxRDiGY+NnQjm+bniX78u5p57F8/w99GMsNmWWRjsjukpvawPUYm6iJxHNMefvXd6p9ONx6MNIbyww64nfP9mOwuR5RWjk6XWVwkQ1HEd3NUyAGjAedInnnu54fO/al12NHT/fjTD1TZfEdnaHF1BHcx5FRCwa1j5VQ2pqfKKtX8yz0c08nX0Px7sdD9KOH31w/5+aG4dD6JaIrxDOilvDDy0L7i94O0Bz1vF1h3Tjs0mgQBPJNFx9aFMlQ//oB6inxm08SsZr3f/vxeuvR6SyzT6BWghevZdLEHXL2fjyZGcYQ5ifJplcnlYdGiYJA42+SXXcezesQ/P44uDQ8Ec+6HAvgLc4raa5hx7xq4IF4FphA/LIc/VVqgSSFv5v4d7uFQfccPXB/YmvsvVThK3c6C43W7wWxez+IcNSXcz1lM3/pri6aHb6boaeYWNWnth+PzKH+AxmpOtrxiaGjwE5Dy9A4kiqKn6A1W52iOD+Zeji9H1O69htmPnPmsRBRfvz18Y6ISl30/qFuncIV4OcUkaP9oMn2s2gJGN0vmbpxVyNX0aiPzUwa47oM85Gxpuoh85QO7/t6PUm0+teFoJDpHm2TuR8n/+it4vxwrcTmuLWDLxqZx3RznenaYwKr9iqUpD8PJKjUJ8DK/s8utTbuRFicJdtZpT+Z+VTLdfGhB/1MpljZ81U2LMJF/vDb7/d9welNO4WzkV3Ka5zfMfw/QLz+v8udRjNv3Lfq3PvHu5qMx3+UTKFuzIr9+1aDKhQs0lnOy3gLrhCTUFhy1OlOtCQ+dmOsnKH+lgRezP9yHm41srprySVaHwe6a1B8jmP09EslRnIx/DmAEOdzosDuHSFE7O4anRtGvfmWK8K427F5uwezlY+zG5+4uw8Lcez+9U/38Z/Ny3vhYw2NR8XCzUeETk4J43Ng7//yEH8/+4kvmq6SF84v94cPm7xaOH3Ep4Xy9E+L9+sOiswyg78Oe4bAzs3EUOaAfL905VBVnS8WDD7pcSISaq5h5NYCYfznxvV7v6LaE6y/f/Ysnvqva9v93T4Hxv+8pYK+jwfwlu2R8vY18fdrkNrsX9SpT0kGrUWhOI9vV9qZT1LZqIL78rZhVruKKZd9kb1LjJrNIT72K16ZLEUI9JgmSPGfqlbqFm+uuyWEfjaLX/bMHl7/aIljlJyQnhTXvczwvmB2ELyH0zrCAxG7BwoUmO0L6jBHkIjtiEZdZN1qPtoQ+b+dz4WdA03EXHpEzVinWzVB0LLYWHD5IGulTP7yqcSfAhzy8eGx1r6KE3rVnA+t7vSDRrh9CDgf7Duv+qmFKHn+OyP5IjnD11sh6RyDjY65PaGmcEmKzvO5EopE92saBTcLuqXQv67XHJhq0P2J38zlewnIDcOytiIXrvhNVtA301I0a5q6kwOmXFw7GynEo2RqHpcPFeErBqEZg2+jgCP7qOhmWfXVlmNffcHRKFqE7eIKsl9jvhne59oH0scp2xWubTSwuDbREnJLgO6yraZwqFZXadSSbrsadWFs6gDQBJyc1Lhx+LuwPii7Xio6TNWX8T6axsVnse0aq7zyfvNNccO3IYTnREGLsG0awPJ1X7JrvnY5tSWybf94lYlv71qJvmAgM60FOCCGKgyaHPzz0V+UXQv6UjRC9SVWEq5dGrJey6ZbWtshRYk89sXbJLRv3YURh86fYxM7WjcNO0Z9rbt+HjETYcYSqTgNH4vnRGAnvw9yTvrjIUNuJkCOzkqnu+RGiE87x+PRiZ/Tt/dUctASTcDf8OWOm9hqog3Rk6+10D6n0l33g0w83Wj7XQTgZ07uHw+VYMjcY7tX41C8cWrklZOeNn+qrryCA1Gz3VIW2RFPHVED3/cPG9Z97Sd7PExxhG/s2sc4rKsbH5ayC0qZ/LNnuX5loq6xG4z56kE19fyfCsB4tCuOtRfBDTaohsuOjofVPnS4dHjgCRxcMr9Gj2Lxi2om7dymQ/SwU9sf9VbJ89bZrHsLyi/V6bXVqHasyvF45kHXXSNW0risNpEu1Jtt5PbSl1pUQhU1L7MiSnN5y0gLh17hggT7skvFx2cvQ2MWWAm2U8DvUk71QLt+GrQ/mVwz1GkuwI7gjPo+zTFgo2MN30UxU1E8rU5/E8CEwpxiX74MmXkmy8KDD6osuvYQJVi2VGLIx4iyqmzETSWzJ8IuHHcfXbCSJMrONvGBh9hzEUD+s3MT3+x1rx5h1r51v2WZU1QZzYy3IetOuU1DXsCGnJ1pVIqiWNVpMJiGXP+ucsGD6o5C+txrZ/F5vby/NZH4ysEgba0TTwU7hGl59tgqiHRo368yHLm/vWPLtkyNs8tZgoYRHtrlwRUzpO/8g4325M1zs2o57Vtajz5NnzBVTnNFhZXnmWx4wCWHq0UjzbQ0FbEb8DD0vm5ass9G1RwtmRydZiOttqcHt7ZzIbkhNQZ9kCoD89TZJ2+06UcYaSQYMhsyCZfCueBWWBrzy3iJbQcdMLK6Zi7gFPXmsNnFFnWTlmWetFCxw1/tQ1AXt0eTZb7Jpk0fWF7RuIUBNiGsylYKruaBg++sAL+b1I8sfasCzgSUjklU5TL8lBsTh02e72EQJw9EBm32i2ewBLEE8+ygWJLFt0Tn+KpW7EYfHpn+x8DSc0eS1h9rcvTFiq1N8Cfua0hrp/rbDBitvnfhs/SOaPgud+Z1VCx7NHozpPr7M617Hbrw9jilS98Gd9tQMhXLNDy24mh1iSV69k37baTbi6vQ/AAAA//+kXcm6qrwSfSAHAiIphvTSSRDQrTNBRVCkM4Hk6f8Pz/TO7tDBxi2pZq1VqSqB2m25ScfxoTQQHmedOtoyN0QzlQkc724TqX3glG3vvgsS30349/+wJtyeEPNajxbylQScXt8W7EVDwHiqn8H8jUkEG+sZ0L/hRZZZXIOFdK9ysLFvX+Y0ZH8h+PZkUn3Xucv459j/F/+iedcjdtGXOR10FOhh7tAwj5dTj2ZtHVB3VvR0VP52K1jeZ8SehcaZ4MH1Zw9ki6omJ2ffbUCThpg681upZ1FXQqBnKLDDpyqdHpujA2RdzjhS9idzSrPvSdl8QaRumAz8S9d2DNuoN4lwWB0Q8/TeB6MeAbvpmQefiwI+HA3eY/u8afJW94wQmvxgkdlM5nRS/vAKzamg4/y1is05GoLxX/yP/b2Ivhafki1b3w/YWHPT3HzCwAJ5faURkvDHZMYWl4oWWwV1kfI25zhWrjA6jofN8GvWEg3FEN36fhvNqaggeruVFlCPuhRXKDWnfnhPKFM0QsTMO3OuROKE1i2TIxEyIZgy9T6CmO90GjVTbDZbPBpopU1+NPODXgt10CtKKqgJUZ3ZHb5I0mR0PPYl1sNzwaf5L7TgNCczDs0jS//ln9voZPjEJI/zxd7Re7YI9gWrTCei2BI48ixS/74WAn5lwQinl5ziPOQwzCNoDcD4uJChZbY5hab2gh6pFLsbus2/+/fJAO71LY7M1Eg3ivZoITDQiHWt1vj83m0V2PsBweZg2Zy9zmMJx/hdRyvDSIM59ycGTq8C3X2n2/ANSVSgVblTqNZQzfwK0n2Cl/KWcFCxpznvt52EFE3qyZYqkBI8BS76xNmTHv3jGvGw6cvfeeLLX1Ca5HDcCuDdbCtSyfsbfBpsC2hfvy/YiAMPzWl1DBU1JQunwbbJNWTEcLokz0g5F6SeD3xlIcnI3jTUlv3F+h1iUN/umZrhKUS0m7cjlE+UL/npXrOnnhmwO26MZV/0KeX1Ro1/eIG6c90PP7wAMzH+sJ7fXpytcj1Dqlc11MNals9J8Snh6CUGUcM5rGePswi2Ad9Tv/4+61doui/1YXQtLuLGq9lgGQK8MtMg27PwTefzI7sCjZhNd7t9m9PxwAjknhriUFAxmvbDDCCsbzja6kpnTrcDuYN7Ve6krwqWz4OUKGDtPZvAc6PVQhV9+02mtjG2Ir/gojRdYrSSmiRSvr7JN5tgttQosXSqv5RdMBJlLygXbH+wMREU9DNuXWj+uooGg39HfEcPGrTxUcM4OXs1LxJrBG28b/ebBT98s7fmQnS5PKmzi+KlRjkbasX/BALm6JkSfXoarNhqwrZ91VKueW2B9nvtRbPZ1NF8PFUabN+RTE19nZgTt4cImkhpIkHF2SC9j08G2icHao9Dbc6bJ/eRJNEkEiK/QBNtx9V2xxRMlMz+Q/ObNxr0q0Aic0jTgV60pwJ1fNGXPuYHZ+z4aZDQjFnENx+a8vGgEFjiL85z/y9g4VnpkSBUe+pF3W2Yji7zAe5diXXxNg38VNc9+uEjAbMK0da8thCv3WDBp0sVSMYJyvr5ihf+gHjf6bFK13WMNX8vclZYhaDUB6Eg26MS88nPugLW4/VKXcGZUrbEW/TV9YGsp1oPpiV+/PJ/pJ6ul+H7w98Hul1mXZo6/8cPyuc2x7v7bqz7G0MyuqgvTJ04y9FEossIVf9adl2NdrrpOy9BRd9fI/VumAP74bFvnKyJwBlL6UtQSnCSvU4Ua93W82BtHbnzWB/VzUlOP60Ad/iTsj2N3+JnIPUzW8ErSJxozFQtZYPlS8ryeyP0fM78dRSaWBWDzZca89rPeUAT+OFL6kTuyOe19dRAit071vT7M/+Xr5fzpbv9qw4mX/koUAanhnopefJ5Ar+Ehf9hi+d53e0kAaB4v2/Yw0rIJ6ElsnLp6QXvzEuaz3X6ttAs8aUPLLL4/OMro66H2O3OK8SiVRfDZJx3+GiVHzRn76Vp/u/0WPhjM8zeO7Ngl+xLGhHdzOfcDizogtCmmTJGnK4DAVC/oBn/UCXBwncEZfE3bB8aHvAg37nqWmpm6o/8G0xXe3sCsq7m6Nwnm3y6uZL2jw/aajQOnMy8VUVp5NhnxTXgDssZOoQri+KtuMln8EmF5OPaJuBjgqa0nX1ojMqLvsQY8pmmBx+WeBORFtYmH//KM3TPScFavpOWWaavBiHrPmBHhDmfz4/i/OM7EZKYyzdY3mdQCMKM7aChwfyZhmTpwy7x7ql7plhXQQjbpk9xsPvOwfw9pQraNm1Kncyd+JwUtPqXnwvLLE1mIaVA/+L7KIjBOyTOXSIp0ijOXnLNHnT24Wm8fOy5gl3zsnwxcFyjp1bkA//Kd/kMSq5rkVKfekSq1SGC3/ddH8udnxG01y/fY9PdkoEGOXZ/eIvu/J3FhbzenRTHyt2oW/IP3f41EbLvzZp0qGrS2a+WOWJpW1D7fcV84QOSKv7dHvTHB9vr/L0DPdkNPXjiJphXu4Ghcr3s39xmTT16w2SohyPViKQbz4G1YkWWO/hnqg39ephKQy4hubKCjObYBeyVrCS06A10yWdcaA04o+TjKhEsz5u1dxxC2+0QkaJHXS94rd1ejo0WSZVUBfOif0BS7VSqHXYsZ4+PO8KfIDO8ZxcjEHzt2AOTZhbxdW6ldDpAj2on7Bc8bZqc138FxEHl4yBavfIv3NlJldrt5V++YNfdXwNsfOc42qSXf+9XVe59RQPt03Gy5EvloqeUPPlBH3jd/flwXFs+Ph2WPpmef1bKbf8ZaXBfhcHEFMzQWdgesPn9BHXncSWCzvFcbF59u56q6N1CqM4xeR+vbcA0JFewZ8KX6u9bi1jph3d4SmEQIfK5mbzHeILV32n10xcGUT8xR/3xOTvJtGGx3xNUJLzS++oV8rlfBxncPvof1jZdmdOwXKYQMBJSA9/AHGsNV3C9RHq0tkXN3DgsZWjhDzhcl8d0fj20u/oWxjh6B6rNN7yzXRTuDRubh/WW86+wuoKOyBi9EtlPp5OmjyApmYD1tTCYbMalC+/1kNCdlGgm2eJRQzF5FEQKN+owxqZRQTTnc7Rd2WMwjQ/l9bNP6hJnzL/fR3hCZ36TqE7qzGS1WE4g7JMOR5f+xVmG2gLS4PmhUQvrYFRPsgtf4+FQG1+t4J99z4uaZFMTOJHYe1L+2iqLlMzeIHI9igQJ3rCL5CM68+9qVzOVqbGPncfFRFO/3jawv+RGJNaRhoTK3QBkx14nq/71Dng5aj7IgWHQgHzUYC4NIwGFmzG1kGkPm4W/IUNJJ1JSMcjJg25dcFSB4Vp4uuYS73r040OO/NiYJL5XifIvfy78fXS0lAAh9gkvPb7BgscE9NMDD8v7GHdqLEPzFLfU+B4AjbHpl6gatZSeF/7BhPO1hDtYnHrt7Z536klXVITzL/m65sMc66CSQbwMDXaNe8J/9oVS6fol6gs081udPhKc76cimhf+xEXP8VFnfb9YN5M5H4Ngq6EUBx7+4VFR9scGrdQto8E5dwamoakCRjQpYt9DgVqpep5//IDiqdbNeYnHP36K7byR+LRXzhY08cnA+j45plP7mJZz/Q5ktXqFaIqF8aRwtImo+fnsBurXmwbCnepS91YbiGdiWCJSpndyMJNDyiRnboF5vUf3AnwWvF1V6GOCSfeyQVP+6G4RLPyJ7mTR5gJql+UbycHEAZXHfLxqZq+kyjIq/iG/hmmnxgpq1t1MzUVPYvl+H8OihxExHpXha2xVhsIj1yMxMPcp+elhd0qOVH86zCTzKLkISd0Bu6N4MyeBZI3KV+YxQr94sbnIoKKvcozKDH1yaiZXQRmRfMAuCv8G2im9C4LX7bDPT2wYlVm//86PKI/tWH9fcX+CytIsaqtvM9/88MpPLzhPSZ6On/bpgG1LFrZOR3fgPjuO6L3uEiL/+D+L8v4XP7Df2uthNMkkwXYftT88WC/80EF1ptVkJrUQTELbyEiU/YjiZY7QdFCuhhJ7J5N69t8un398yz2KT/rLv2/ZH18g1Jt7JBbZa+BMSyf45fO0/+Jg8U+GFn5GLeOoIVEq7AJOu41DFP710p//IUjHO00H641YOyrJD//T3YDsXCwM94TsJKywla+O9TS0taHeRiuju/0+zOXf+ZbeNqALHkLzLtAE9UKnEw1fJq3nhU+rQ5zoCx6N088nNC1YqhrYmO0DYqM3VWrVN3L0w4edfXBOoCVxjfP4M9ezdhEkSKRl7r7+NHJ27b0S/Hu1ol4QPnL21o+AyJNsI1FXDbMdNrr7szeqedIj+DqR2WwhJXf8s5ep3jwM5Fb7NbUf5tHks0IM5ZcP+IVHfLPYBzR9ecYLfs7HT9tZsOg3EURmzWlTH9rf32Oz9Lt62r6JA6u5PmJH3b8GphwP5MdnIth5u3SKTaMEhC9fbJBthdj7+JygQ2pM/+ZXMkz9DbfIYusokms6D6ywMgkt/J3iNDGCZXdW8o+v4DSpzLmLXzEsehtZ4rs5iu+Xj+A+lNjXqz4foqPXInwvVGyV3nOYP9XeRzLXEnqu6aHedErlIxx3NnV3oZazQxy6aL9bdvXcP2L6pX45qpmgzkR+as9gsg7QwEWuExyhXbTUpK0C/rDTRevD7ppT92wUkGdBjferd4b+4S2r/irUuLUBYnskZTDlgYH9bB2nk1LV2T9+GLmXPWevRJJgc6dPirnI00mZ9QJ2QTtgJ9zchimY1wXQ3K3pofrT03app6i2Es40CHlRC9t3YyGabh/UdE4tJxkq7z/8Qm9pxgLpoBMD8lAyIt5/sbnRNVmD8u9r4V9+oz+9OceGR1R2MczNcr6QGtNID6aYBhyINP78HRc9XuV9YWUCkLFD1OmHVbDk6zNU8bmi+Hg/BAv+NiCOh9e//Mno0zPkLTdmuuBv84fn0IJPqKV/eDpbF4n9PuPQXT2G8Vz6PXja+ME6FcxcMldiBHlw/pA+qKJAPLehgOR3dImEYqzTaSBLte5IH5H8peLAdvvbCR7kcKHGvXqlzaKXo7RYG9TTl90jQlkQOIWySd1TggeaHM0XzMa1WfbkyTXdqIkMF8pO2Ne3ujkelXwFZbM6/6svLfeZXVXU5AGb4wnyuXtNzj89wtACw+xk/9WA7joD3pH7EEx+hCa4UiZS8/f8H9/3E/9JHc3tgvaHd7XYKcgc1dYgbN2zhRY9lLqG2NXEf70FyJZODeHCHMTw86uBURMg6lp6BVQdEACWhwz73SlCTD2frrDoAdjWVSOQDset9NNXiUxutTl1bu/Ago+JEgR/uTSsbhZ0f6/6n3+PVy3oYfqry2gV7g3+sz/0Ot5vZBVOVj1rj6pSl3hEbpvhnM9yfE22tR58KU50hr5/UgXoY67MpX7VpTxQtxa83QuNpH64B9Q6uyW4n2XDYPw51KTDKwNd6STS81/omj++o9Dcr6n9q4eAOyVqZswB2eT621z0qghq4+NGKrtUJqnFdgKQNxscntg55znVADzFP9C9az6CKW23PhRPFVFfialJldpr0ML/CXrL7sBpeZ3gp18D3bxSCsJ4Rhe1wdRZ+AFN5V0MwXg8YfupHgYWpCH80wst3ZrrRW+rFCRbI5FfTjuM44M1//K5XZVpznV2EMD6HIvoxfN84EJjXOGnV1rN+DG7Pzi3aIm/NEp7jVNslpP6dnBLflXxGdI7wOG1yvA/fBD1xzt4GvlEMwnVdE7eD0DbVrrSHdkJ6RdNaQRQWvCP/3y3uuCCegWd5t7pnvZGPpfgMoVEj4JaKQmetQXD+3Ilq3Lf14t+nyFkK04kTJ6XEhqqEaRWuKP5Um8bz+9pGZ803ymWztuA6Hch/ldvvSofm89HN1D+4W8erI+IDSGK4d3If//i86IX+HCL7zXWRBGn41awIrTkT7K67Wpztk+gwertbqiB2k1OKZEV6OrwiO+LXkqX+IVeykeKpjsaAtbsgh705GBQf/osPVhYM+D5fhbkbZU7PvvVJVOPwd3DzmJ/cyhJMuzmu4D38ftZM8uPe3hktkmjFTIH6fe83PnrowBYiETBr3oQW1mhRieshnm1vxSQ3s83jOkd6qkgyxzbj3ahu5N0Sdkgf65gf6V04WPverLCpSVpOV/t9ZIX/Cm3yJKaCS96eDBnl5FBfZCKRZ9QAnbTrw5a8gVhi74z159JgYPzGKl2uHfmoscoSqK9HNKWXZ8u9bQ7oBtuFn2OD/PC36B13G7Bb2HN4OlI/9+dAvS/7xS0l4bQqFmPwyyPVgv6/P7QP2Q5SHxnVQgXRU5pTh8NYm7BAN5BLxJ1M40Bp3cSguU1D+qJXZKPktdFSA3aNX5sniInRuhGQHyQsKUd+nTYdzdDocJoYvdosmH624QjGhl+RvLRTOr5GxQuGPnuQiTnGtfTZI0uIGtY4V3q1cNU/mkJFI10j0B6CwGnwhRBeS131IL4ZbJJ9Ar4ql+d7u3bmPKp+rZQXqsdDYQ7GsZ9kJYg75PljF5j3SV/YoP6XMdkhUzTFFl4mBDD/Qmb52bpG3EvoyJPiYG92/EezIfc1dBxuxKj7mCE6QTvokcN3TyxyY6sHjs6K2rN0R+2G7PNWaZXK7TFtyu1m3WL5ju8S8CfRopQG3hcElQxg33YVlSXNTtgdXwolT6tA7rjZcD59JYdkDN1xpaK8ny6a3oMzefYUO/tVIg0ytlBjzx5RSJ9WClrjOis1H6UYXsaKsS2e+RCNcIDF/fDg08rSFtUQSCT6TA/8kn6dAUEFTrR/fltpKxbWyWYkbWi2TUW+ffx/Z6B4fZEE1jxdDQffQKn7P6gtrh5BuS87xKEr0c94tnpE9CmFiSYV/2DyDzJ+ZR8ohXSGzfGf7H9ynnq7UDh1+OiwW9fA4u17wme7C5hq2zZMK5wHgO23y52bbzl822Ur4ATSaU7ku2HSbSfEzq+I8B7v/OXwRJKscRcGXvPN+KfzwcSsI7CjWySsTAZnQ0NLt/2TuP9ygtEx9hPkHXfnAaB8EyJYiiF8jtPqJ5qTUfh84JV50fRON2OKY+XfSyNc6TU1Yt6mLvxFCrR319BlL3uBPOqW0voml2XfXMxzmlp6Ssw4dRTXfp7mPNTHBMo2EHE/tnd1t/P0EXQv2oDWyQb09FePUpUPUgf1WJHOVPR7Cvz8zpE8OpgmOmcx2jc0Q01b6w2p3znl2BN2S6SA0ELxLQXXUj9pF38Kam5ej2GcHaHAAfHdZbTboUSSPPkESlTsefT2Q9Py76nimxNJ6v5uGEa4NNrTXI10NDmURnR+tHfVGoTp8i/MgoZHFkx4/B67waSP48CiK50Iuui6RA7nZ8rOJTPgvSnW2XyjdffkV+SMw38fJsP17UlwX00dbr4fz4Uu2BSgskLsDnoYj5J5+cJPAtr1Bn3R/Nn/+ry/rFZGSUfL+uggfFMCWFf/1qPWLsK8NAnhtNq9Ux5aXkA68l28OEt4FpyC7YCqIJ9NAvjDpFokl11hx49tZ22HPoW2RbIQ+VSazO56ewiqwCLHYYI6ejGJ/lyOiH1eV72a1peyl3nMUJ31ntq//xLm1fjcjEsxcaTeylT3x8fIuF9oPtkXA3fQyXFsMrORxp0Oz8XkRBUQPm2WPz7bf7zfzYqQbRSg8rk71hNEKvfHdbHojdZaaURinWnoxZu85RTaO7Q6g6PZHN35b3Zq3cYSq3GyabaBPP3WiSQcRzR6PvX5bNj7BkqzfWEDe8hmgS9FB/Qpquxud3u6znWpBfaa+c39vflw5xplfvQmOeM3pFZm8v78qG8xx4Rn9wfvutg08A1Ozv0OoZTwAzVNYDk8MW2cL+YQjuwQq0NElNfO4RoSvJDrJJX0dGTHrGUrQKS/QcAAP//pF3LtrK8EnwgByIiaYYIiMglUUDEGSAqoCKXBMjTn4X7G/6zM9zLtZWQ7uqq6lzQNZZexJ3jmfJGmWQpXI7MUZwHH3On71ARu292b3y9XSdP4w2HKe9+8a0L2VfD8HR6TCWkq+XoSnYDK3uUmSGBiQarzm004zMWK3vrjIKHBygZGESLCA74LdFD8Lr1RBxVBzSmy08IknfMmH+4n51O2BYh0FX2IFhxNGd9ugQmGHkYs9D3nqj/yN8Qrcthnv/FLRjUoAWgq/zBDietC5hmdY+NlN1XVBLQE4227xSwSseRhVNlO5N/6SLEIVwwfGJrxJrTJCvdt3+xg7waWtbZmwbsRxfTlRHEzqB8QxPaT/Fh1qaJyxEn6xjsDs7E9WVajhdZluGqJg0F5z0GXYckjEJxecTlPL89v18jmTXXL7MraUJj+7wVqFAgIqa8YsFY0laD0ys4k63pLpyhzqYQEtK4dJq4Gqxf25UF6eeNyD66PTiP4mOnrMF/MRXL35YXl0WBZj5A9GYn8EFLCwFmvCBYi9/teLtJR0SXaMkMBaGApvrtDY32DKmcftVAfH3iAiGhs5gXQRbQIG2nTbD0RjqsvrTs1vJThdPO2DHcpTXqdrtnhnhyOWIkv+W0XxbbSknKz53Kc/xSt94c0fK0TmhzkVA5LEjqozGrR7J1d1s+eqAZ8IIVYEiTRh+C7TFT5vpLzOkc8CGcjr6SQiiQ+3vxDsbtxbfQZ/fxydatEj4ly8hE6i2Wibeq+7RnJKjgLV1uxK03csrpUpLgHC8WlM4X0QyPcWFCthbOJF4Xm7KT2CME+5WfiCNGUI54vk+z87UT2Z+NmA9IyKa/+bAv16KdTJEP0GyOiKiLg+1MNfJMUGJZoLLvVemQjwdjPodmh9ei8NUbmU9HpXjQghB5FTidMBU2VKpzpmKyvZfjzGcACdRiW/P7akf42gJwtjuQ6CHqvLPYQ1Xez0ZlnvNynGlJXoO8eCUuUeN32Y7pemNAt+/XzPCUSufapWqgWOUpI9n7y6f34eijS5LeCbGTMB3vaq9CeckOzN1sxnRiwWEAxACT+7056NNbMxOUZNKWXcWXzyc9XUXy6bu90Ln+tsN8G5KyOd594l2NNJiuj4eAWLF5MS/9Psv2HJ6OCrJxTls93PE5HxfIPcuI7a1xr/Nwe+0UxlFGSGUbfHBeYQj6YPQzPzT0cRlsc6hFHdgOtFBnjp9rmwc7qsSQ1Hc6JefagsduwswIzypfH7SHDNJw1JiD27XDN+z7hqYODGav6k7ntcwF5KLZ41l9T/rKA9uAGV/p495o810s8/3Lh8LE8qGvEVf25xoe7r3Fm2vx4WwM+gcoi7qa811qx31tyCivj0u26y+vkpdb1VK+RWQQ97TAOiuoVchedV5TWT25/Ft79QKOvvHACn/QYFjLXxXi61cj5KRR9DosdRnZYZ4wq7+8UTvzr3mpiUzHshvK/mPeTcia6sG2i3XSrnons2EqP9/f+Jxea04dKFktEm89dDoVS3ig7dm64iUttim/rHeArrIcEOfII71NfDeHO7oJc33TdCGN7Abp2/WWbsob8EE8XXJowX+Qw3d1bUeSL0R5xgvcRwDpIByLHMQ6OBDTnbyUV6kCSL+bK6Zp8badkqo+ArYsnaUir/RB/DxzZStLB+ay7VXnNp7PLt/rnGzhWPCR5KIAv3i70NArecTN4o/PbrM4KP/4725nqFiS9w99PDWqDfdRPeP2u2/Sb0ihQmJ9OhDzgx/BmOlUgL0/3bFYPFOdo2eUwcxv2e5WuoiGtJz5fFPgLqf7QEj3diHfR+3M1JwW6ZjcPg2g1D2z/aHfl9O5LBqY55vM/KHk07s34WbzgXagDLyJvacPUql5TA/suqTTexH96gsdU/esTzF7AJzc6oBXU5Q4TE8rQ1npgcgsfS9zCvYmkr/0vWV40yB9nPm8/Hpbdyxn8TodmvPGgCWcdSpEquTwQlEb9MfX2NHl67N4BOXeHVNirNI7mgh55XBRUU/Xi/VNH7jSiHAQMcWrbVakvDnJMlqdzZDg5XTlg5ekNdqPmkPwvqrQyNQgA0SdgWgt2aWiGQqm/N7bEdPtpndY2O5r+M3nfj0c2nFyrwOsqqBn+kk7oOFrfwbU+vMa6vBcpvxpHWLk7L5Pgp+cpvzx3tbKH9552yKY4mu0gGKP2Q8P0PrMiIkML3oSYvirtg+pUCnHrFxi+fp8toO0jt7gGsig2KyNdOW8HAMFWGvw1JJXOi37twZv88IoNL6WTr965isaZ/prtdaH+0p9wOR/JiwxLXcG49jY6Mc3nAEraPreXAH29rFkRNn4bV26QgUOOwTEWbOq7YUwbkAOsjUxsdzpU331YmAqWmN+O6OyNj9fGwarPVM216vhYam2Up0cl+3HuuFDousGxLerQQ5vrQza0XjFcHvPa5pmfjwdFnKNrrH8+oun8XJAJiyjT8DwrZzPZu8PIN/RXcAw4w2tsj2Wr4bVsXDGx1Gdz45dtz4l20piDrPqe4xm/vh7/vJP757U0CXewqoRJeSVyT4e9xT6Q6xPznqMkS20DdOfr2va//ArPiMVHxp/66z1tDNhNCyR5epy0fYrZmbyj88dtpiX/Yrh/KdvGNlhUWfHIp1QtuEbutjvlXRwpVQCFdVvZh/6+RaNi+IjtG5L/HQrmU/KbZBRJKUj2TurdzBFYuNCsO57ugjWYtkyQcIQyr1PzIeoI7FwfWPjcntg+41UtxxDWMEy31+octp+0hESmyJvdaa4di5SybhbHdG981O68JGod0T1BajPYke298xHnb282WDW/ops9y9Tn1zhvUBHQ2yxzB+9M+e/ARuRaMx+VqtyCLZxjubx0sX8PlihWA1kzftBJXUJzi/eIb8EFlMvyU5ns34Dqb93xD4NGeK+myRwIHcTC13WpnTxlEJ4PrMl3hDR451OmwSlycWkw9GsncmTaALHs1Bgag1lyvbyE5Ry/b0Sz/d27VrbVBHMfgkxPipxxFI5yYC8w4ZpzbzP/Xsaa+WYPZdk63uPspv1AKT+WsPILaVgvPevRGmFIWNWwbpgPKWqptixmxGN3Uud0+UgK3P+0FA92cHqHT8bMDN1TbAix5zfA82E41o4zviW8PGnt2a+S9t9pZf8y7gFq7WhMX/ij5TLt7v606cMLwMVrd3onKHhhWxaqv6xnaJdE4NdthwXVhm2fJlnDRTd4o7l/BE5vKtHCQ5fGOifP2WUx0x5f22DHdKkRk2yzA00Zs3IbFIr/EOXg4TOIuZ4w0+rkjtDdETV7XpgZGgewT98W9QO+/GN/vZ9LcDwwifR08RMWXueItiEXkg3s980xJ2rymvpUTI82st2KpWTBOtyaui186KU2zh6o1kfsOwbbZGo4GGCpdZs6ffemO1ohMdQEZWtRl7i+8K5KBbCZq4XJOyyNvjOeIxuYVDi5Y/P2SfZh4fcX9g+uqloxUjwRmt/4Ozn53W6O/d8CnvDdvvq6UxrEUy03exbZu0rLVh3182AGvMUsS3elOn41u4NDG56wWZOKz401egiY4j2ZPsSWDlsL20MqyI80MWhK1E7rl4Ynvuly7C819pB5Hf77/+Fa3gOcklGj41Aow5PzofzSek2GvIvJ50Z2vXg8JmvodoLB+J17in9q0+38Rkzr+zOLT90kai4b3nCy/XzzP/w9f5Qc6KW8qMc3Ch0AYfJlmBb0pyVfj9pcI5hwfanU1GOH/kbQVYaGVGXu6ZlvKkeYAvfhjhlS/V+CFINonv3olOJameuV9OvfjBraCv9N99o9TYdpu0vkb56Gl0Ge9sviXe5lrxblY0GmW++sOjRHk3LnqooUI4e9ua7EURkjpJyfVsJ2R+F1GHn8OojPXrLhHSexNvH5VCA0jc9M6cz5/S7dAuUHBuDaOryWk7ebXgrB3IzGd5mpjMWm7ZT+O5zwbG6zJzO+6bT5hVLDdm1xGxH/XiUIIwmlZDVN+TjdnMSUah6X6bZ6bnsrDqyAU6HCEN+WqLuMYqGHD26G7vWiapPxl0Y0CP3D1i5GijthG0Topdhzxusz1Hwi0ewu8WZns6GmLJ1W9jgxfKD4e++LWmcfRO4Pj4y5f1BSHlOtBrNeorN9UfndYvopr8oJ8w1e2w7+5lJ8i4db2R/uT7TPz94dTZCjC7O1A6q0Qpwu1U7vMne+5TrTYXhsm5DRl7mK53jSQWJHW1mWgUrh+9p08Bnuz4yNT6AUytOIKLNZmmQnx6Y+sTR0PtYH4iv7+Og10JCYaVGKZbe+qFF2dfJ4LzoKLFWiYz6T/Y0lK6dz6VYGt+AqeMrB6BXm2Egz3LwIA2hK1WLqPzJWi4onQlvtnqS2Z9N2ZJkBUqkS0wO6ycP+p9fnSi7EzGT/OOM48XPEcitxUxQcDrleahBlocFs2rHKtn8vuCWjh92MJMTGoL5nM8avTPinPWA885n0s+PZOS7yvQxe70LNMrSjQ6afQxWTE0zWB4uOQbNPqdjnMk18O36TGyy2pdtV2/kn7/IVKGnOvvEgg0X5sQ4YUeW8llvoVYqcqxMlce79TmX5TkfaZ/3T50FSuKCcBZHpnH/GkxLf8AQnw57ojY73vYlLdWfvmL+xcF8fGuXBv3867mepLTv7QrsV3bC4klz9HF1wvjnJxG9lJ/oL18EL1qRvTV+HC5ljQZUuiJmzfV7upwvxabXSUy7FhdoKuV9juZ4+ONnXB37DG47w2bkVtjpnz8/+2XE3r8OiDrmpkLF2F2J9d0fHK67Jci7lN/oNNeXaXVfGWhjLu90ugY9Gg9LXYIm1Qkx+8OqpHAdc7TG2obop0UTjG6iJVCLW2CzX6MPyzFZyN9T6BHja2FnCA5mpxTKIqKoJQen++ndx0vJ2f4aRqXg78hRKvnmwuxWHUv2DgWKFNH6smC5a5FAxqQBoZn3nM1+mfh8JxKcHmVG8IldUPf+cFX5Pp7vuV+wDLj4KTplQ+4J08er7/Q1e9QIe6svCQ60KwdfOQJcTpvqx794MxqLv34SzerkmQ7r9iHD7K+y2f9AQ2EpNmIaPf/VR356py5gPbHxSosLXkfc80G+dwKW5+entb3z0UmNXAovs3KG72OclFlPkZ+/y7OvnoFCrlumq/5QsunSLWCun8S9FV9ncuvRV37v03BipRxIkRTIk2XMMA2+aObHDSzC5EybQ1/zZmysAaKxC4m6j3A5zP0dMLXnjljqEnQmeU/511+hK9wKbbcsfAFWhnmb/SWOBrWoTAjzo0GcoX2l3awHoYsGm4TXcJVOrweuYe4fzfk1pN3ejHI4xIvNXD/1lFot+uM7xOI+Qvy4CkKY/ZHZj64CPl06gFURHYhl1ls0yk8H/sXLrG9p9GkM+Okdb6p6FN7yeadyJm/JvlWP6aqwWhnleHTxyB/fgFvZk8IP341IjR3xPa+5e8Ea8JCfZE7zPrNhIZ0/ZPYX+d/4Zr+IqbfpiTrz8JCVxgwiQvq3iv78l+7LXrOe+5YUPyVN3t+1jOkH6pbTuLEkuEuPKzsYfuCw/ja6QJgpM1tSa1TvvTqURe15Zfp1d+ODeajlP/yy8eajT1cUNRAeHg4LIzXWJwy9CGK6DZnqzHdttv45BqS4Osly+knnekfBXxWMaTuyDurZL1PETneYGeFDMHwO04Bm/4MipD/ROOP1r19I2wHf+PSLv9nPYVZ8YbMeZRNCHjyIqdk+Yj/+43DkMbfFBZ+gHitA3uIx4+OnHbXmSv/8dvM9xmh8XipNHpYJMC37ODqb3i8ThOm0JBZaPvVBFJ8VYMvWKUEjL1l0woKsXmuJba2x+vHX5OefEgsW5798gu9Y3si+kk6lcL050p/f8PMfutOWiJDYu45oM/5M5f1Uw8z/2fw3/54a1YJXLDd4KfVhMA5BoMFCkfbEVtyPPkjsEcFpfAZ48tGo84quCmAFejE9UnI+x7/4Vz+1x9pC4/txl2WXJiLB5CNxtiRhgc7Hu443Z79xZj5vAFKwjoGIc47UQwMXDNbcT/Xbat8+KjDO4o0c+OlcDrfXeoDF5zIw06MeeumyKUJdGk9CGl8vqTGvcZhgXxH37Lfp+Lx0GryH1fWH7y0TxUIE1ZCWdFGtPc6t+hIr2Vn4/NVnZpl3irAj74gRnh98umqPCub+DH7//KhaRiIc9ksNS2XboeGseTkyWEToKk09NB5uhgvPF9nO/tamHKXrzlTm+actbi/6tPQljNbbAfA0651pUJcY5HQx/frDfPaPDbSEiz7z8QOa/ekjoDq3iSv13KGWzDFidb6jsY+CkjoDe6ASLzzmXQ0UzP0/DGLwPJLdQlyV8zT6sDycc/zTd3w1tQmqRAnwsPriki3zrP7/1hTAf68pEOAa4yUtd45Y85eLTjvBYYGqlWha3g8UOexDmdrtO2fcvFwb8fv6ymzfPSHW8KEGkX63zLpkL6cj1qeC3KgvJNys8nLAy1FTUq2yyC3aZu14zWQDnVpRxiN2fGeVFH6EsBV/GP56l2BYNl8VJOmUMx3lPee3eB/CRihistteVpy9Bj+CKBxz2juXFxr97VEENGUpXay6R8Dum0Uu33HuscNhz/n4oB9L3vVSQKdNGAV1/nphUO4rhWxvRG0nP/3a8DSCki5wWwdTPd+vozD1SgyhDdAqFhcLNHAu05GnOB2t4QMg2iuZ5lESt+PeaSpZ/6xLzKmT6rwBZoP3au5E1eHrDJfH9EaVslCZe9FTZ0RCXKEYGyuCZbHVhy5jg8wvsGd27bw5u2/EDC3IJWe7pdOlXTdYNnpvt5jY3XOPxlI8JfJn0I4YPcaUdyd7fANXpSuuiezxiZlHFZnJYsRSJ3xT5phrAT2so0GOi+pbcrV6wt/8kHr6tlNAHQFKOwyYR18RH67ad4D1RgAWE7nn487UQiVBxZXhhfYMarA2MkgyfTJtnO7O9x1bb2QLi5Dp/n2bCrw133CIkzNxbuIq/Vb3YpIzPkzkso54O+4CdwBy9V2iLmmYDvWZY8WVqi0JcCenQx4XgxLupYQZxX3HxXOm5OjbHBxmV8tj2WsnKYfzlp4w/xyF8pvE1EZhWQl4OC7clDLzqMHuaSFiDFC2bWGsVSiunDOyHcd2WsWeAfUpDum4vR8d/vEPBTJzL8Y0e66CUY4PHaye74quzHBfjvbXm+AarXosXphZdtH664L5Ou0Z1txl2n8CaOA+uvN91sUlGPhW8UE+HHSmKc06oIuVFMn4XRi/eCuFJB8a5L7tBdHFUNc7YrFKbse3ykhydvgkPjdHiJET4Ko7T2g6K8cjWLIvMbdkN318hs0RPvXiybaH7T4Vj5sRoAp2Djn4xqucZAMGmARHJfb3vU3Hg2EloCWZSvLzm6LuPKlzT3S9pus2R2n/Gy/Fd51+evGDhsTStGWzUUZMf+Nj56sG1qv2iNepY8t2gzjAot1KRP/WT2c8IekhB99JwcO+vQYdWBsJRXX1YrEQPdrBPDsREAHe7DhK+7JTXuqgiFN2IFnJFGeS9Ee+nooJmBdfv/pQL42HknQXhU4fq06n8hMncAwMndmFYTv0+y6mjUqGimiC3ZajmDg1OIvBJregN/m6fO4k9HmXOd6c+ZlP20wIlXl87ACCx8fjEg8QO+1EYeJOOb+fGDi+n2nxvHR8XJyQ8Mtftuso5lOcoAfshh1QdNOccuzs40OZxl6hY3AGPsJGEhFGNmPE52E7RQ4z5QGLB2bZCjjc0HYYdt6ZM/OLwpKvlncBxMsnwEtHojpnXNfgclJjcpVJHQy8NSvoT/Gbubd0Xw43CEQQXLTGYNc1p2fCNWiuTUcOSJ+csamfkaLpsc8sbuX8629jEbh/vBFLEd2gJ+LxCMFNr8jhceTlAGchgovhL8muOXwDKviVCG2RVswN8xWf9i9ZRnnwifFqutvp9DX3CxAH3WROsn8ACUD2v+l9dBrfSts8TmSv3I6BeMtPgrLepjbT0Aa13EmOriJZo8LOe1boE222JpwbSyfHbt/pbHUwTLjOd6tobf4Npo/BaxhPmws76uc4HY/nVQbv2/TGZcjX+uRaYoKUsDOY84q7slcJzWU4FAfmETNy6lOTU3lzbQuyY4GgM2mvWYoiU850Kzb4dNuXGM31jeySQuXs/gkG+Xo9DmzG77LjxcyZWy3HUrK1W3G1a5JffWHXr/dKh8P0foCxW6p0OYQP3qPbF+DNrIa50ePp1FyQJ1B2z5q57SlMO3cf+KDIHWf3aWM6/YNoGjyXdsxsY3PXmeFsEtjstDVF8W6DODWuOfDLYk9XEdugLrrgRH7dQ2OezwVq21g05rPdS6K+VRJMeJvhzQ8/Zzwre0NcCbJgU8K2feOjGa8jMCFase3pYqXCsnlqypTbR2JcRimY86WB+GxXxNz5X2e8lbSWT+/Dkdn0DgFzbu8chNelIRakI+/P7SID9Oo1Ssnd1+vBa2N4rMKCmIVbBTyRKwO4798wJ0Hr1It+6W+U+1phKu1OwaQ+VV+x8ndOrKunctHx7BA0/xzgZ+xTxL6NkYG8CDHbPxes/Kv3xvObMG3Ox3qjjCEsBdWhQyBsU9H4gAD7JPPZ7t61JT9QQYAyUnvmHq2QD/Ptw+h1rRPi4sWBM9hZLtAncfE73n04/eH/PH8Ef4Va59auLOCMHntyf2R1SZvrI0K6fHwTLV2rfAhXdwzuJF2I5z4HNAinQwew35v/8k+OtxRRfcewcC1Cfdq+H4UyCQeVbL+oKMfAJhG6V7lCtn0zcRYsGKB1IHrEQZdnwGW3ScDaFwPR6eSgsTeNSla/W0T2zwVpO/k439r6DR2icjFzhrtTh4DkS48ft4amfX54DkqAzRLDI6I6PeXLBKH968UO3k3g0zX6VCC0eohfOqQOl7v9A27D+kjc5d0r+VmVVQA4npi7ob4zVNXyjWSnMsn1du6d3/PJWqwq+Js9y2CY67+cKl6BIRELfVCXmv+XLyaa7yu10PoIjXWsmSfusd5VOz+DdNp4JD/QqJwO+8aEzAhObP8Oj+XIFk0IBfdfzHQFNR37jGOlW3UuIZN/Dmgu1x3UvdlTfjJMPu3h+wCeOIy+2919/vzRwbZQMcst2UWj418sxS6rI0l2D8KrcKnHYIepwFz3apRDTDoMpJfXzCTXV8kSbz6k8rEW8FhcnXTcZQPAYRAteg7HXSC2n6WJqL5nWOgHLxW7BBrk6Jszc1RrCAZJOpnQ13lIDrp60defkdbySiSEaNfVquSJhwUQduqL/fKN2cLNQA/1cCGaE6/5c4z6v/FT9Iq7dlhPkgB52s13M9wnnWnQSb/3RVHSLPVvc5KpHHRYxaJmTuhbWWBD/OUEU2ofdL6Ojw/4ultKPB0riF3zMwbnQzNmnuxnSmveuz98ZeqtoQH16/Kt/H2e5hESsWMlUAcf+MMr/iiJOAf6Bg9O/gi6xz6LkcK0K7Pt/aMdxq/sozLtLng9uRbvXIVpKK72L/wRRhys04P0lh0zjIkmPbpyHD6IgpbkKlZqAaXjaTIiUC7QzvUyc3o7ak1Qe2nL1I0SI24UDw3JZyljmbHug7Ywlhry8vfAdi9eB4OdLmXQ94+c6Obnqw/6Y8yUKJMcEk+vio8qoRl4B9ix7acU9WlLRhnaSvgwq+jdcl0YS1XyoPMYxsa6HOJ3ImySWwJ0bW/fzlBmW/PH/4jDV43++z30w5+D/1mWYyleYzh+Osrsi9IHXZrM94/Wyg5PH8sKVvHlJKBsvb3+6lf7faW5CDIW+x9e83FaijW4q/2S4PObcl5u6wncJKtw8zw+gs+vPuBjIFNhvf6iMUsGW7nkr5A4Rj4GVR43E3q4EqNv5523w0oOVODde2J2iUM0PXfPI3y4v8abwXL48L7dEkkgocywihvE36upQs4tNvGXh1u0mvkgmvURwzfL1Neo3vjotKy35JTO3bPOjgv0VcDHgmEP+nTcjAsoU3ohPz0whd+1jFKFFERDm7QcctMywPC7K9n9+MBp9VYhuGcfcr2sns7I4RHLLZLPTOtqIZ0M+f5AapsvqDh8C4dPwiVEfZ2FLD2NlTPi26WRI8U7UqlfhM6Pn6IVcx6ELBbrdKjrm/RXT070VP74WoGaQNHI1s6eaHC2XIMv5SLxaiFNx1gtXQVeuCTO/P3NNfq8IRruEn3rTy8VqwHLSHsrC+Id1yPiW3WQlbs1lWx3iex2uAtjA3ZWPGkD14c+XK9xLOdvLSVe2wxpcfU2JoQ9OmB0Gg1ntcG3B6jTo6e1qp0511/iEZzFZOP1+JKcwVxkzV+90enU8ml533ZKu7n7xCDdx5n1gQ+vAo14uRG6ku/yzIRvsL8x43QrEHU8LYTXKhLwBlRD529tZQDHtzPDevLgk5HICTza9UA3Ry0JOKB0gbbbO6XrzZ4F05NOFchY6DFPKr+tCXoZ8K3uT0ZqJ0b8qAQNRKrNCXke/XQw3tcO6NNzqVL0eckKsHIUKG8Di9JSd9iuVo9QqMWNEaXM+E9PySiMFsxc8Y7T4inZYEfimg72mrXUmHsA+nTYsD07aen6NJxcRHppTb9HTQ7YLSYR5PmiY1vTVNHn3OghQsM2Zur2oqN1WzRHkMqaM0/qgpYZ2s5FM//EjXNqA6YaexsVprsnaX9TON9/swqWeD4nzVsoOpUNYUKzn0F0l+7QSq8CC1A0bZlzl9RW5KptAVXlPdvFj3PLTW9Hf3wWT4ekTMdZn/59Pzk7T31cpLX6x98OO3Qrf/UcPOHzwGJgnfl48V4NgPj+EPPCzHZarIZQeQWL4Y//rzjUidw8aErBhUVbD6JA//TbSt5uW/G1DCJYv/CJ4f1hdOiTym8YVzQntlLaaKo23FTSTL4Rx1vc9MlqUwvdN/sag2+rzvh4dhQ1p+eS2I8vK/vimEfwFt0rhVlvDptwXnOYXkpibOpdK37fzQT+qx7J/lrjdv26th3aTcWSGTMecIurgwKJ7BFtHW1b9tPfM57jhYobPmkbB8Pe0glWcrsqx+reTHAdaYnTeHfl4/lMRLg31of99PTqc6tFEJbfJdGpg/TJiqUcfnxod3oxZ5JKr0LDwb4Tq3yKweRaixgdtuGH3c651q4b+Fgg7LQXXZr7qf2r7z/81T/rXTAel+YAb84jOjHv2na7dlyAWC8vdLVdmOWsH1yIub8l5BBYiHcrFyC+ZxvmXQW9nVaUdxC8HxE7va207Zp1EcL9LpzIdns/6gP5ajHM8YAHt3aC8VcPGq1a0GLWt/1BzmwY1WdA8A0YmqpOamDWT/ix6ys07I/LBDXveMcOg+WgsaXbChTRtNjWMFYtL9JXg2CbZmwbQN8OvVbI4BxrSse3hVre5VEI7W2QSPNZ7cqRnU/az88i+/EVOw85UX3F1lyX/vCiX3ofGeaNzNiP5h5rN5a+fPhOV4aFPOc9lBpGr3tkUNnnWjvcAruApMpalgv5go+eImcoPZUHLGxWi7a+ttxUTuHoEjXPY53vhsWAWJ/t8OaoyWmzh+dDwdg8/X3/t/LrCCgqn3S1/p6d0Xx9ciAn506LsG1Qt0/aCkmXxZXsmGxwsTNMDfWCTRleNyH6PS+8N3eVuAM2g8ES5XyjKEqChbv8SHv1fTaVcW6Z7lP96/TVvRjgWaQqHnT46vxGYgG602aH5Z9/Mut7EKa9znR3v3I6ajk2zHofb25nz5kGRzrC/ZZisifTtpzO2SpHiz5HdBNTSJnW2O7f89lWZ+rDVXtO8D0XD6a79MWnob3FYLJXRjwi39GYbtcP9FFeLjFvop6u96rjo3k+mNMeaod7NQWwskOK+UkaymF4YBPNepj8zU81eTnE93zDzCjs9B4Fq0GO/f6JVywI9QmUpAC2OsfMGu0m7ZzWDRXknQjmL/+ht3rMRTgH5pm4q+WT966UuLB+uaefn6lTb/ewQY/ud2Ysr1uH1s+5R6a8cmKZieasztrLRlMxAAvVxYaPutc9ELBCIridsnZEwrGCr7LwZ3/yEPQXZEvg78uQOOmJ8H44eSa4HnN+fkI5mvFLg1/822a4accskWwUV7sX04rnuvzVb9hEMaICcz68u6iXCfDZUsmhNK1yek+xBIK7WRMvqr103Tm8hp9/03xWr3bi0TDBLisI00/S0A7CRwrhiAlQLm2scrJLaQEXs9OYnztiO87jg6Sxz8R4Y9EZIqPs0LoYMYlWvEMzHr3BjJ909qecFp3VSVUuJy0mVrJtWt7vWQezH80cYXnWZ78EK+XjojO1UZ56x7fKEVLtbRH1eEnbMSmS6A9fDoPVIr48qhS+OBvJtZ2acmo2Xo6iZR2Q+0bo2um09F0UdK7KThJKgu7nvy+PxGBk9pt6Do8Efv64V/SLkm3XboNo4tx+ehlNiJomXPJPiFenF9PHPKpcefZPsXDYb7kYUF0ASe6eZCt+jJbd6Ap+80mIWIspDaguogoVCsGr7pF2YvRdoNMFEzwuH8t2zB9xItuRsP7zd39+K1rIOCSkGRYOLQRfQOfzSWG2c3ICeoosGX7+cDjXF4q3mQuLnX5g5nhz+Ki+b4Z8cBpgxnv15kxecYoUPVLnz1v+9XFwhHNgnImxWS1KVleVi55LKyZuQk7ptOgMCxaxcGSxomml8P5s31CO/Z5pH8tKh8fJqtAOViFxn/YFDav+WCnV6NbMcQU/nfJSNn/8Bi8qvWupOxGKrLU2+9PrVzAu0M5CRK6P5CB5N4eXa6H46cs//5aGz23y+32ylZAc9A869w/y90BcQy/LX7zDj29qL1OZ+wsfC6rG2hDLv/O0s8HvlFqwM6ZG7MO73/P9/GHND/JgPfN7EEpbo+Jp0To9uj3/9C07tFPTrg9POZnFFxBbWFtc/PHv3I62ZBexK2p/ft54eW3xqop7zl/vtwUoDBfs/jz6AV1szApuauGQrdG+g8nbPaw/vocr3S0nj46ZsvSbPTm8kkXQzPoLBcjZsv1CatBwCSRbhoI/2J6rfjnkr96F9mB5f/Vy8I8nEbQhH356TG+/jZHDcuvrVJK6bbuyo9JUfvn9w5fh8JVUyJa2iZUh8svJ9Yv33/siuZH980tRotVsv88e5XjlDwq//NsfLe3nv7xBEQ2L7EaD8aF7pwD1RjSJXcVL3mVe48uwWWMsa69DOiywbwPZyxb78ZPRx4EPhS1MxPVKkvLJMbW//ovngRN0cz2H0fNbYmhXIR2uBZbgp5eH4wW1dLEaIqU2GsT07/aYcsV+5MqP7wV0atGff1NH2pKZ+zUNhtN2F4N4eQVUWX6uaO6nuL9+HJWqvE67zCv++Ddey8UBDaUfyiB5tY7XM78WamsYQNZvV9zyla2P2nh7Q3VhIn01SuCswsGOwUheLV2HbYam9bGRwRG/N2JfFC/tk/htw+P0TJlr1/U/vjmMb3/uLx1aJu1tC7mqTZi3etzSzruuAHljtKHLWB7TbisvIpk/vZxZ3tlqp+NmA7AViEiV7fEQcPHlL9BbxFeK2P2rz/2zNzoMgsV2SfHgA0G9+fP3mDWUm3La1C8BZn3KrIe1T+tiKVtAlkdE8jk/ebcyFshJFP3Pnx07tYtgKzYbdqjWVTAMD9OA2a/Em8Oeo4G3uIL4bFXMNFop6EvPMuXdi79//UnEsiw4AtlLFl3U177lB+mr/fqV83iVgMeLYY5Hy6RfyVOcsThGkXw8zHsQ534od/VvhV6rUKBr7U45ba51BF9Xp8RcuaCPXvi10U/vSauHEwyq6w7w6485yll0usVDEKBZflMy5z8ajS9PlGl9/RD7nbT6eDWd7B+/bXTMxwXybNjmxCSHtBoDNmRhDLOfx8znKyhp0zkqWGxREKM7+3xUr34DmUlDol23Le+PZyVHpCYejZpiF3Bpr9kw80eWKufIodVmXqOu31u2N1cEjRsqRYBgGMj8vvWJmbEGjJ6+BNvnT8pvT/4Ab62VVExzEQ05u8ZI1XWXkOe6dPqZL0OYg0V2OiB9kBP1CEljndl59jO759BTKNfJSLzduwna4W295WSzj35+Uzu8j8kCop1w+/P/qlugFfDjfxoTmrQ/t2KmiPIlJfvBVkqaD/BASbGtiSufCz6d8nUM73g+G7h2JNQLUpaD4tVncthHksMXN92GqroRLBZXJe0OD0f48Sf8nPF89lfeSr6XFlSu4jsfzpO6gOqWPog1vQw+Lj0mw/0unuZ+rxsM1NJttJPwF9en9ttOL/cm/vqfZPbjnGHRr334DOoRv5Vz5QwdeYUw+y3MVKSFPj4V9IZlBxmZ/ZSgy3oSoxv3A+LO/bbvzP9B7hY2Oxy1JH3/+t3/15oC5b/XFGwvhUol52EgQfX9HOTnBZi1KC6Iqt5ZkPHa0llW2o90pOHVh/dH/DK7bWw+nU51Bxs16Sh6XZx2skrriDby0ST+pJk6R+6QKItaSchB3bSIHtkhlz/qzsVLXy3a1fa2zzcvz5CYlgBC/f5zmfdRqUtmnau+5BikCpTdSyTqnZ1auhYkCljoGTGbjdauslObg9h2b7oY9TfqasGL5z1rD2ZnSyXgWRQbwN4joad+MZbs85IbKL99iBXLatBYpGgBmmxYzEgiRefH2zSAYqY+MUK+S4VHtciRqo8OM9j9mbKdQQGkSC4I6fizHXa5qsH1mnt0koIX4he7KBQ38c9EG+vYGRfWZfZotRfTOTNL/oa1jK77q01szyh1LkT3GHGGD7R59S+HfYpKgsK8DJRdFCsd9z3PUBtbK2KEb5xOiH+OMHJ3wuKgOOlk748YKnuB8CzHS5byuavSHCeyK55hytVlKIB6cxNyVvYQcHqWLDjx5oEbsq3RuH3cXHQ+kjXDRe4Fk2dvKsjEeMWi3crQv5fdSoJdWBbMbRYX3j7XvQieY7dMi1YbnS2/hMqnhhyZdgsYGoN3PMGyDFRyOHivkrERibJUWwdyjm8OEk7TU1Xq+Wzt0CdJOoBUyoqDL2uieheWstvpdVTm+KO8xWe+XniuJh9e1ZHsH7uppZliLmBQm4aQw/3EJ3Rp33D+tibB79ZIm8LufcDnvUpso/SD0RGaCg7ZImOm4gyIJ9iRYHldD5ibF5xO7cZrEO1uX2a8F0M5Ju5LhcI8D3i9uzflYN4lCt/ucGNbKB2nZd66gjd5m8R5Hi00bcVjoczX+eAu9FPOL97gK8IY7Znp6992sqsB4KUsMZ7jkw/d5p4jy6/XZHu/Snrj2eNb7tRrzPRyz/U2yHGM7q0UEcOKLTQs03ySa8f12P6zXOhDpjk17Fb8QDeLTm3FPtkLaPSnDxb305dzdvJCUF/aRNS3ZwVDl5jarwaR66J7zNdhjBKk8w267oqsS5b2txBVGS7oZmcWaDLzrbhccNdkqsw+7XRqoga6pNaJZqwNxL1AkWBQ64bsNbRsp0zNBihrJGFZJkYwySs3AnYfAhYbkDjj636O4Gt0F3a6vB7t6G6eqrJh3oKo28MXjZN8FVA+iTEzlsKh/Pv+ZdCc2CGNBzQstYeozPFHpcFetT1OSgxehRti6u1HH44HGoJJ3JhEuSHpbH3DBZrzm2yfg6sPqeqDYiG6YnsJOeUgWO8MktPljkerB4cJD6uGPoWKsl1M9DHa+wBAbfYXD9Op72I4Wcp3Xgp2cYb+7magrE815Yo86dM56DX4rqqePu9v4kyDtVWhbCN33ue5TJnRSgsIv9aW6bJqBqMnLFwoHp5DXOvUB6P48HNIlW5Prp/rPRhyHUJ0Cdca9RLzrvO2dSlM6S0k1nms2uG9KnK5lT4qXguChYbrdtCU95DdGFksXM4t3Irggb7Fk7vYl5z6RQw4DCpy+A48GNtvL6Ku/srEltwmmJZylKAPCRg7qF3IuVyuauSqeoOl57LRe2kvzWuu2gUjenrQp81VbdBvPvjT9gLxHRaWclW1BbO8+RyAzYMaUJ4khd2nYR/0Z3WZozMZW6Jh5KWTIVY2bBdLk9llWeuDIocVLNROYheHXIOeevN9W61okd94VuvCseXVXhnx59Kc0VjduhrJfvFl83mLOkXhWYQldIQY33NVsqjWj4py13fMy5pGH5WDkCP5sL8SW4Gr3nmmCwioxdi9yfqWKohnsDlhi5iNr7STPC7egFIvYtGBETThPh7g83heyG47snK8uKcY5vHS9dS0qKOFj5XNcHuzXT0JDoduKwK+HWuW9WcHDfZujECR9gbzquqMxpNmyVBsmoQ2nlE6kyK9KOinJ2H29zNwCrI9gX3xNWZGFz3g8Zu6SDiaD7p8F08+bc6yvHlLvvDLv5LFXw5y4i8uzDESgqYPWYdoRyePqbVNUy4oz+SHd2RryVznBKUF8KiKSGrbi/I7z89mrld0Wi9bzsW8fKMfvul97CO2d5EFebxQmLdtQr23z1frD18teE06l5Z9B4tLz+nTFRa8U/JYRnUjAtONpxNwfyHI0Ealgkuz2gWrR8CGX/0l5hLbiJ8Uw0WiPJ/NLQvAe00TMlg66o251skLeHhfm2jVaAJdvzUpHV9FawB/z04+rp/6r97+8gNPi2NbTrhxVDik5wovpAG1XSjaMSSHco/FqsCcSxp6gE2PCrGu+TUYb0czge3HYuRqfpNyOidWgbws9uezmwd9CIMWw0tRMCPd227FUEgfMN1Ml+hgl+n0udYVitCo4zHt9IAHuziHrB+3xPkkr5J5F6eW/dV0I7habQPe2bmLWqa4RLu6vT7sZJ3C8roaiGYLTdltTviIhOi0JPvpFiKuOEEI5/h6pwv/sHMm3OgajFqUMe9I+pZF7UlV9MDaM889b3kHqW6DkYoCs69+XQ71sK7BKFYDc1cZbidQ4geUh+BA3NBHvPcy6whJ+7bJwfwm7Vjct50cR4VAvEJ4oym3HguI2UJnltds+YRERZM1tsooyrsb77Nwg6HdJBnDQQdoEO27Lb8UZ6IVbB+cnqNpAKQcr8S3BbscV+sLhd7uFGalaBvwTf07S3gJVHTNEnWBRyiY96Yk+yaadD7Ilgqo3FK2Q1UVtM6EOli2WY3XP7xY56sYyNHVWJq6qjNJw05SLvR4IldiOwGXP3oMZ25EzB6fUE7potMg0R4us1NC0w5Sx0ZBhGtin5wdqjSxCGFEwoup5kYqJ8H2Iog/Qzq/DxOt71FL0XMZCVR4bhs+7g5ttcm65Yu4+pAF64F3BfiK/SW70ez5CE0ByucZcbo+9UeH7XCM5XhZTcT0vqjsNmGowreDDV030eTM+CD9+A4zcPEqp/KkDsocf8Rd9lifvunJh+zsYHzd63XJXg/AMBB9pIBxoI/f3RmA3pqI4OIUpdPuqs+eVUmYen2FvKPbsoOZL7Dtc+j06f6ZEsWmvsK8CWJHTLcbEc5PgbHk9i6CYXyhCo1tnDBjc1vxdtmdcxSlocQI+dJ2uH+/RzQ/L12nY9wO8f04oSk7DnhBXrI+XTevNyCn+lDp+cr0yTivGrTuvJZ4m0fp8Oj5mVD5ZSHtlQSj6fY/0q5ka1me2V4QA5EuxRABkc4EAbsZoA+CDdIkQK7+LHy/4T87Q5euJaTZtfeupEqQW7BT40YMiFfd3TMPo3ZrNIsF9/6G+Nf3n2COScPMOjrW4+P98VEWu4jsTbuympryVI9tpyP7zU23ppvoN/BgdEusUy/V876JU0jVZ8iS4RJzcU08gDzvbAqDKyKWt7s3LPyEPrbGLuc0xIq2xH+yOb/Keu4vZ1f74Zt52LbJ2G0ie7l3fKbTMGndsOwfuEZi9sM3Lp3UgwD+Xpop9dZdPpiOj2FrK5y52rq2prvq2ZDgS0T2rttyrtk9hu6v3mC4XO/1XI8x1sWmT37jj/jhuhOg4cWItfVayuco2IZqirfq73nyOXh/G3hJQsKIOOzz+eHCGyplU2GNbBq+8J870ubggnW1tAL5LoYF1O5tYNbw+iL+3V9OaEhOE1VevcAnfD7e//G/pMtDNLen9x2ZB9Mn/u0aJPO+Kx24vIUV8YBcOhZg+Y5cKA/k3LzrZErNogS5eAPm4FtJSy3/CeVa7Mjf4Z12/GWPFdRdGrIkbGgws6ow4I4Mg12SLOpm9ocj9BDqC9t4uzbgr+cGoOnaC1WSz6cbzuEhg/iVxuQi0TLn4aXsdeVzGtiuL0nAugDFaMEf5nqnJuBXb3tHM2cyFnK+6qYinUK9dv8GEqqnLJmd8ztVtc4t6Nf5ah0Xr4MP4zg8SVDvaTdJdYNhVPuG7ZnZ5/xT9Ros8Zi206Oo+33Y3JW14WVkP67mnPlJFUMsrjbEeFpBx/+uagEHdb1izlFfJ+OL6CWcJWVLR/HC0Ti5mfRP327cASy+6o+FDq+gIz7ZuGgdyGP6jz8M6SlK5pWhChCHUbKMHw6G65CXsPCFpXfBwaLu9WygBY8YUcTIWtazhrb6q8RiTLJkcnp/RveIH/En23z5gs893O7fM9ndj3XX3dbfEpS/6shsObkg2q0eLtLZX0SM5rzNR4OEPSA9vtL1u5GtMcb9jKKNfSG+uN11c/m+pejUuynbFudzPV2x6UDnIEz1vXKtF3wUQB3/3r/1x9mcUgr+7XeG4W+HxDg4G3D/WylYdPIKzdMzpHAtbx4d6cO02kVvaHXmvJjTS24nrQq9ASz7Fh3HexMw9b4KUSrrKfG6QbVGFEsCPHBxJ/vDCpJ5yIiItPZssM2jPlrjdy3YaNlPWCtWes7lm1PCoIcBO1ndLpBvhyFCtnl90fXaULtZX20wiGzA7Pe+477dhOqi35inHEM+HdArheM1RCS8617SbbZKBmfxb8KKhu8WVytbAIu/YxJ+N3MwL36L3r6+H7an63Uym8fWQJEXG2TjpY+gj9pUQl+bnsle/2zRuhZyHyZfIMz6pH4wNG/7Drexz8kuwwYaryi962JZdZgbRlZzc/e1QTzvcvqLn/20WZ3gfFx6v2makrxRpp4A1bJPVRNenFvvudQl/74i287cBmtyUwSwK3mk9UoPAzl6uKW2Cf8UZrnUTGR5Y4q6IyPn336hfx/tAsZLwviT2rbV001H4RjtZRLexzmZT7N0B11OGkzb+WPNwj2mumE/P4seTqz1WuehdhtpTozr3PFJuoUUusd7i4XysetGKTUucFNT/E/PcEqpDb/19tOfY3u5pcjIPxWdP2clp+71z0B2vrlQ/huvelMC2HUXUj1LJIu3/XdGi55k+0LeWNy08xSG5/tCIQyu1jy1Zai7veOw0L3bSV+GbgnJu+HsGHlxMF129IlOtReR/XY68R8+o2V/ErPfljlN2M1Bg091uppP13wcVrOgL3hNNjepzHlqoQxk+EpYP4U8n5+kpvCHHlvmJQcaTLxQbe0UUI953lI3ooZnBK+efZiRPMJANoA46DG6B6yM5777zR9YXi+TF/JPCf+7TgXqr+KHHNHTTuhh6DNQiO3Tw99VCb7NN8PQCoeMLPyjm19UdzUEhc5CxKuEDaPlok7mTyy6wQHxhQ/9+Bg755NSj/7qNsJ92pc4viWMN45+uOtDkk6Lv0OSviYP5ecHEBIcU9Rb6mjr2/XkMcOAmffqwYlBd64xIfNJzadQymM41UGE9XXSW3TxW37+JNn6sZGICz9Hy/plW+sh5KM9yRWAPt0xoHeXsM/XvaDb5xAsfse5nkebx/ozGM+/eMYnh11KqC4Zxz9+MqUr3MPI/gADjw/d5FPiQOYOHcPF7trxZhv6gLruQdH0OgRjXtwbzXFISoxj97Xmxd9E3cVf0yEb7GDBcxGWCyvMZN1sUWr5b3iM/oHZQ7FLZD+pItgn4x/BT1zk//yPRb/hnK/NYCy21ww8yczZPhueweIvRfrFVgFPyeVbcyk/Sj8/j1jOmSaPcZ1nYCp/EQs/dhhMSW0ZUNrCkWxMqU2mXZDG+rcXVCpn2OBTvWlAz76BtPCflI9r4gloqEcg3o3ZfEymAMCweIBn4j5zuvgFUJxmh/mSuU+G+B6+IZyXMwOR0wVz3O+WupPpl6WLPp/E1SUGE7/WxN3fWtSoyiUC9dEmzJjzAQ1+bF20zWqsSJTs7sGUvKNZN244Y+Gi7+bz8UjhddNSZlxXFZrm0/GNfvrcNg5va9yIagNe/wnoWk+T/G2ltvDjD8RRbWrRN0dPuG/AJGfloXfc9g4jGh/agW0OeY1Gsa8o+vEFawgQWvhI+eNfdDYTlTdmGvgg9aW51F1cBXPV5TN0jXAgu22cdFJWhCIyH8WRHAw+5tPzafj63tQt3N6uQa69x0GEKXlbBGvaJZ/W2lDAsb1XFNYFrblcFjEcDp8bI7Fhdrzfd6DZupOTjaPvrW4N4QmEOWtx85iTgH++RgbyMRzJ5ap8kukgcAdl39WS02+TYPEHFNS5pcMOXvqwpm+g3qG/bgJmr09J8OPPiq+rPUUXIFY/WO6oZtr19g/fW319FgDxm8pwc/yzeo2/CrQPYEdjc9hxMT0pAIM2ycS4rkw+jzaKUKwLW/yOI6Oehu5eaddH9CI//3AI+b5CSzzGvBj/8h8eazAcE7xGz2feK0udrHWFb2RHTkXwnp5hD7MpP9gu+H7y8ZQIEtJM5042x+rdUXSuF386W+oVPTfdtHmPFPiqTZkhNUsvTTuNYHg+L+yw7A/2qXrlx//x6N2sekK9YUBB3zfMp77v2sJRIrjduzMLYsVJxBXsY/TRRpOFn0Md8BmNFLa2xon/Ss7BmN1QD0F5QcQuhkMwU+dyAn2yPRLjxypn+6Wj42N7yxjeKa+Esj8ngu3Jz/CzVYp8rJuzBCjMLLbolYA3n/qEtvvqTezwL6gHXkyOfl4ne+Iv+qufXugNv/zLcUqefCT2RwHbzF+UFXaXj+raLPWoqe/MOY5CQvvLnwsrL39RXuqn5Mef/sU/MI2hZqXqK9qCd4zs+wbJcl2ZsAfxhtWd5dbrv8PKRudwj8lGeL+Cl/yKFB29CpNZ4fplcR0/bFjwgd061+hmKb6WcPDfD2KFuWzxbDZcfe8fCbNjoiX957LpdeVdH4j9CXb1uInWGVr4BHMfLwimfeHG8OfJyb/x4qL+vfzyMVjXM8o5JUWLFj6M0etpdvPdbQTgr+uXSmVjBeLjzXxQcEyppi89EBf/BS1+CJb33E6mbt/6AC+vo9PRvXTzaRbusOruDfMWf2De7zoJ2TxBdHayohtPMnLQ66akbDNMWb3E4wt4Q/bBQ1Q8O7bksxDBvkBXN1EL2rPIXPQV+YGFgbyy+r/vN0ZHwjuyUYomn46GfP/5x8QUblU9bJ2jBEVYZxhWpRxMiaU+oTa6E7a6pubD4nfCkLp7dt/dz8mCX2+4njcqC3xf6CbrlTf//GH0Onf1gteglenHplJsed0/P+VyKkWymYOm6w/9voTgEZ6JdY0edSu2SIKEijmxo97sZKdNNC0R/nwqRn1Vz3FPTvCEZiC/fJd43/k2bFh6JuFKewVzqyt3+FrbPxKE9Nv1/S2Z4ZSfFCpUBynn+XA86Xv/TLBcK3k+3j7KGy3zw37xp5mDcumdBiVzGyvm81Udntqi96myjzj/eMN6qcNt7XHz9HbBeIwdF70kX/5P76/MUvznf2FrquoxaC4VvOjSO+8tr63/vufhzEgTj2g4fTUX3k2zJbE8i2jhQxXymX1lScQixI366sMepBv75Uu43j5HOGjfnJj5yeONeV7Wvx3mLFTrQzJ3kGSw5O/Ydslnceg9EdgY/lFYDTiYUTadEEhzzQInmvl4e1YiaBGaqNbJDzQf5Uf007+UXy2/a527t/CDvvjlN+omy17Cv3i68MHF/1zZaDp4jPz8V3b22xJuu6ZgVlSpiP34QiNGITFrS+gm58VieEdmTHmX95yPkhZB3J/3VH4X7+S7+H1oiZc/v7wb9L0ZQvhFNttHxbPmA48UffOBgHiHtElmWVR6TS2tnLhLvGkO89f8+ZX4ufgRzfc6Z+iv2knsl59Y/DcNVMw523vCHg3V5Y21UStt8ke+uJ4uzc0BKz51xJsPz6XXiNvA51rmlN03UzAOMISqt3W3JDZGM2h3ehLBM5jPuF6rdT0rPGngly/yBS+yvrek8GF3BY/sNGHb8d4/YVj4DdZ8zQkkI1FPP7974c/YGpWj6sDPv/jll+ifJf3LX5C97LGAwjWNtE9Zn8lu0Su/fDfaF1nMFr2y8HVN+PFlEj52Ti4Le9uEz/zMSNDttJw2imYAOT/xEu+VZH7G013Pdbqj05WghHfEM6HnvUku47mv59AzNB3TkrBtRRe/3DR7yA7HP2JvRR1xYdAqqM0YEy+xl7rU3amCX/5myR8G/PJ+h+i6y31miPOGrxvfmPV6ucOx38idxafroYRaC/7ITnnodaNMMKPrpZmYma5OFm1vG/h/nSmQxP99pgD324p5of7oZju9CqDtXYHdrG7oqFuKEeClv7i1izdo3FoDRsbdj1jQv1/1ID9UAFe2J2ZAJ6FOby8V4JdSkOhzTuqJ94MEyEieWKxUi4+nL3Lg/Bf+4dXD23fr+BDHUKCHQfbXoEpGlQQpuHS2qPD6bpMxrKongDIajATs0I0GWcVoZzgP4q8eI+Iqf2MwFMGlazg+eA+K+IS+8dZUSpxbPe7GWARjezfo+LmF+ZhsGhO6lxURVxXNbhTXTEDnUXhi5Xzi1pQeTy7QPX8Sb522aM6+CINoIx1LbwLdoK/TElWHNifk8knQfEv6SlN738BrIJ41D2J00qcsfxLH21tIrIvcASRqR7b/KGXwfYrdCHOZyRiwvUrmN3JTqO/4hAXffuWjs/9KWpqp+8UDeufsoN4w+lrEJcEftXJeKX+lclxxibal+UXzVnn4oE1mSwyRHNFkwwajv/f8R3A2rtHcPtYRPLaFSeLIraw58f4WEVHaxH9MPVrmG+Ddiid2rTXK+VkMMrQ2YcsOlvuyhkcY9XDAhz3breSA9/VNjaFywWcGTKSen2RUwPhgm22KXkbTTbi4kJpgEX8ynvWkuVTTVtnTJX9jyBGfBWX8vS8xZt9P+kDIT/DVu2IZj7982lWSq/ff6M686mDXkk6CAvXTKyTbXlwhWsyHFu4bf8QK1mJrSCasoeOfn5PtJTX4OLy8GcwVicnW236Drzm+L5CHN415sYTysdgsHLJ4CHi+s501qJ/UhLNTESp8NNOSj90TYMT7ALNunOtZjK4ZvKSPS2Htb3JuftwnBCiziN/cW07nkp2AKN87Vn/Pe9jmM4hqEGD0tAM0p2xvojjHPQbVbur58rz6Ws7SDzFLqiLWbUsR0ifdse2biXk7Ft0dygoULORmafWxXKdw/Wsd5p8UPZnc3f4C3Ws+4SDTVjkfZaVCuWIoZPe+jRaTWZUiVRQPxFWbyaI5aVpIzmND7robduz3++tkNFTcJ1LNWuUzwk2xgc4apjlHj9lZTYmI6Hx4ZWi+DSsHvS/nEOsaSxFPns8eOMBM38/3nI+BkKfooN4bLNz2djJL9CNBo3kpC1BS54N11kz4hFhmnjUU+eSvr6E2q9KemN9Tn08GdSl4l1vMSIDqgKHHbMO3iBDz7COxRtzYrb6K8p4KrxvnfX77Lvf0cUY2wdOxRNZ2osaCwiM3NzESURDuLXrcriExUrew5s5+p/qI4cB+3496RgrERL6mygbkhP5l/Qing3onuI/8biK1c4G2ijC7L/839NOqQcftsWK+e7jks7rxQfs8Hy+yNW5SPWWHtgI/1zMK0icLls8lbObuTEXm8Xxe5hM9BD5gq3i/rJkPTQrVTn7g3/jzbtuI2rdo7iRMdcx7EiYKAjkR2SatNpb8FZoKknO+JWGe2gmnoxJrV/q4EWs2DNRV91CAYFdd6BQ6ZcAbsdY0J5Bj4h7OZT18tk2/3ObCZCPFL4uLm3slv45PHwuDKqK3MMEdLnr1t+ClXg8nqzWh01n5b/0yRWrfSHKKPTsa38Z6TKGKoZ/TmG0kJ6mlTVs2+mu5R4b+mrbun9d7D50geuzWuwz1h+g8g7ZXbLIplG9OJzNSYBqiA/v7pFM9M1W7gLKdArY1lnO9aTCmsI1dG6+NmiRTcWlnmM9nix6Gdu4+mHSCVtWjyUxjuHBe3W0BuOki4rQys/r6NkU6nCIJlxfpk/AZwQV2WhDTB6ysYKqSCCD0kMzsI/Ks8cFeFziuJolsy/YbzMd0vus/PDwj/dkxtbgYKCNIwOv7tbfG+y5LQfqrDLzuxT9Er3/CG3SDBVTXjQOagzCYIXyJF5ZkntSNqb7NABmHJ20qawpoW/45gPrQJji0lKB3k0BByXlumLsOI6uRnaey3CWx2W5PXnyqhrr8Nx+QypI1Na9jCpe4b4hxkXYJv7d/JuBkXuNW9fN8FJ6hjdD1eGZGmu67+TV/Nfjm9ZoE57hK+JF+T6DGfUvMUow7KoiKCNJ91qgefd16XmOONWfYc2I3AkvGU5MqsHHfL+avPt+OK1L1RKz/25HdfW/UUtZdL2C+vT/mR6rPl945WBMUyWa7gyUmfXIRMPydXZPYa/AteU+vNiQKf7NgMw9o2oR/IQrQxWJ/1l7mHYsDF46lUi54XnIa7B+AkosbkDDHXTf9rf4auCP44PVUxMmI3+87LPuRXh66koyr6qWhFL4H5j7xOp8O9BuCiHtpicc1/6Lp0vz4AVn4Cp8L76PBpdscSe6nn/qFmHYHq80GYlV/d86v8JVgp1VrKvJuCOb4WwG0f5ZOfPrFaPY/UKEu/6hUXuZr1kr5jYTTScODxkTeC8KpRRlRBWIc5JVFnyGU8KJRRshe1K3R+UAG0xoqchAKhEqpRqI227KKn8rm2NFg/wUUp63FQnqz8nmf2Ia22lRH3NJasvopEHqIArehaa6hmp3Xj/fSvzlgvlq86oltFUFj/rlku7y95vN154davgeHxOzjWeNl5KkuOU67vA9FE176PNAdbMjfXVjqoJoPF01SuiXmnX2CJhPlUFvwmPkfiPhkjjRDtNmrzKfs03FDyxSIe2Fk5nsldXQtlk9wUtUh6ZSe61mRnVhFvn1jnv8O+KQXjQ96H7nMFK02H4WPcdfDm7sjsWi1CRdN6DUsAGGWuA1zqvwpNsjPrGXkMoRdn4krjKTPrqHlIyR13UimrV//opokGWFJ++M3n3yd4pHxpU5M68YQ/N0qrBm7R83KzHPQ7fWa8fwJ3IBlpWrDjXYvyg/DesH3qoLNIZaY1wtmt36K3Yz66RNidZ36aOiiXkRbHphkExq7RNoJQfh7Pkqk+pvw91A3+uUpEoa9Obf4xpwy4CDMZHPPM86H8LvcA16FVO2FqpvpsQvhReOM1t/7x5q65BuC4riUOP54TIbdJ6JQZq3PvOPukvfDazODna5Ntgkdw1pf6nuDPsPngl9VkuTcUEQKqtdI7MSvLp9bJyxRlviEXgvHqEcjPUj60SkCqn/mXb5ul943cneSFnz8WnPdBgUccDvS18myENuYagbL7zEXfLmbpakPQe3GG3PXjpyPgzG/wbWeX4a76s8aEVIEbYkfGM3Tt57IpxQgaDSVbN8szSce55E2nuPVcobwGPDdWfORc4y/ZK86bU173AraJJ227MdnecO3PdrU2Y1Z3e6QzNUuu8O9Cijut5rbjcbhVgD9phUx/jZBMh9PUaOP52i14CPKqeWufLToi4VvWJbcNwcR1cH5i8W1dEgmGzwMT8/AWKm8L//UZhEC/UMBntLqETRu2jpwPf61tDkXAZ+fouHA13p3mGvFBvX1mhSwPcwP+lR2OJH6aONDJpYjnV6ZZU0PX6vA+nYfhtPO7/7x/2X8iG+xezKFGo/hla7thR9eOc9uQOHpLrXNYyuqHytIZ6DfU8XssjjWo+083pCaoU7fg8lzekyKCJQmPjL7YqTd+BUvGLqbs6Xa1dMSuhOsEFX88sd2TSPmo3g/jHDpMoVZyWmF+uPOd+BAjITtP6VucQOpNkiPaEtuf36KRqnmIgBLvyQcaZl0ob/RIKevBwnr8ZV8Gr6ngHupIeQ1lRYDZ5PCeTrt6I/f8+jUh1Duphtx9rsuGC3BcmCcbZltSTQE7D7kF0jUqqdS4R/y8fWcSv1u8D3zJfWecy8XDLR7SC+CN83SEmGrCP/i6aUfmfXF1mHUCXu1zJq0JpjwBr3RUYWEmezjBWv1U5iAb2HAiPQ1g/XXdS6/3xMceiOf1uf1CU3r5woDPbfdyDW/gqKPHSws8ZofykaCxnBqhuecdlMtlz7iprJhrrt+81HjWQVcunjE6xWPT+TTCHBQt1uqUbbrJivVGwgFLWDWYandKdGPCALLBka2dxEtZwLif/G8mddZMkdV1es3bPikUG23G8v5Mf7WE7Ob+cZnRcYxutfxcsndWu5ddWsbFv2GV9P6bn1/ekxQbIFO2adPxqfpVtBq5ILRY5Asftyu3lCir8tC09gkEr4Zjd5cNgP54fmojScXITEgzPxsWT7d77YE5VW1iR2Yajce3TLSdaS9mAH6xupLHL9hR6i+8GEt6K/JM4PRNbbMQ69dPYXHvQZ3tH9QTQ7cWjyTstLP2+sbf5b4NM5HftL9oi/ZEp8CsQneBewu84SldjrldIm3YEUfkc6XZx2w4xD48OQ7g3LS+IE0GVoPjVE4zNPbxBqCuRA1J3xfsHgJHWuNBXnplbUvifVJTD6Zc/jW9n+PN1YWvvxNL1mFenTZUhVdpWDyuvT5Dw937++mEwddcNVFjzID5CaflfxYwep6+6Pr6XStuUxtH3nqmrO9ePlLmjoDBRJlepPdauIWW/Q1hP3mTnBcvpNp0a+QT3dCts+7XLPLSSz0hDhnqv9Fw6JH8AWdnZLQtcFK1Or7IUYnflgt927zYDTzzEZMijdsK/Md4kLQXdDnWb9oe8yf3XATLj7A/v0iGxN4x1dTNAKJaIpH0B/WP767j5oIC8HjHgz5WqVQcROYs+iBSS7zERq8UrG+uhmB6ClqDDn9PKgW8TiQAm+39OfNV8yPVnXdc1T2uvS5BcToDhkfglFoYJ3HM32a/ZQP6vPc6mIp3vGqLmtrfOov7bdeqTSYPBkz9TDr4WsX07mkKp/O78TQVHEXYNXv7Vo+lKWEMlFJ2N7dYTSdljpU6/pVEncdjtaEaBqhKLmd2G11oHXX2X4DfnHSKX+ZTjDt/8wKHi+m4cfQxh3H60MK148gLnUX98n3F//+bkeXmZFbBQu+23ohvkVc2yzjP/0IDj0VzHnOFuLidrJhZDphEVvq1B0s/Y32u2dBvON+ssYA1r6abtYZ27kPrRuSeXDQopeItQu/1qD5ewdWWfgixiNu8lZsa0Hff3uLkNeLdjRuwvmnL5b9LCw5bF9ErVH6LFU26+7HD9ASTxd+gYLZos9SQ4l7YPs54ehx/qghsP62I99YQkn/FS8hlHWa//hY14+fzx1w6l5YELeMU79VNMguq5kYbPUO5vcxBlBF6cDCLZWtRX8bsHGJyX7+l3RXrxromftg+WYe+Bg+3RGN+Elpu6yP2TmtWhAKVOORzHzhX8ZyRmwasPosGj7D927A+5EbLAgTLZmqfnuC6/jdElOQDCQtegS0KdsTe39l+RCqNwdCi07LhhnqGYbxDZ9UdZlx6qxADj4XCRZ/Dqu98uX9bpoM1P+tdyzQn2UyPPy50o+XkJCiHl/5nHjnBt6G+TeAxZ4JjdCf/fO3MPJNPac5KVtY8ALLx85BvVkoMcAeXGIGbzeYb4PsoBQOlK7lzynhdhcWWmv4H+as2y3io5SdYKdyRhe/s54uXuiA9Nk2bOcLLl/PHohqzk4fssOznPfmFSnaauPOxDmLLppGO5vhzRWf+e0G8mn2RBGcEK8pLPF25rtZAFc/yMRdqXs+pVeFwm/9u21n1VLX5r325EVNh/na17293Htf9BquK3mDhnWm9npSFirZdNdjx2ZhnEH6/AW0pfXJYtnWTf/tL2JdvWTaROoMrjRghjWZ1Itf4+jP2DYX/ewFM1mpDTpP6W7ZD2Ldi/kxA6lZ6hxcoAz4KVaeP/1GCN2QehKltgBlFN4kqAs1oKur4aBZ3e3YptLFeu6GyAbEeY/FZr6hkfWmAefVWiNGlL2TOZhUF90h9Wl32Lw63t1v+MePiZH9TR21pkZD9pgZZKPUZiDz2jW1ohLHpdftIxhZ20mozOIPw7dd19FH6Yggi9YOuyr9cp4GygmqSD0y+7TZoFG8X2eo37VNwhUJO2nTNi0Yq2oiFmM1GlwaCXrUe2/6fRYuUgiJIj0OnoSQYO0n/KDewt98/vSUNX9uagZbdeiY8bfp8vlaaYsfK52I8aVevlbbSwaavB/x3/ae/uObaPF/iVGMuJ5l5VlAlOw4wfOnDOaF32rS3RLZJjQ+eW/ESx3IXqEM56ZhcSmcTmBYukiF+v4Ipn6SWyhQcCPWEB/rWdb8FookTBb/YYvG4bUZYT+bE1W5tedS9kUh/OIpegwna/5IrxHkLpXYXnxGfNyITgFkLi5YKk4m5ze/yuDv1nfE3lq7YD19ghFtueYy1/0e8/FptCl8LM8mP300KsNY6Iv+Z6lkVmgQTp8MVtlSt+FlCAHtOlWBRW+x7QU3wVghN0RzOWdsN9nrhLvJ+Q2h4G1ZLKU7i5+IiLXv3tyQLXhRMmlBHYO29wVKPaGvvy+hzJBfpDq7LXx3WsYb3RTR/PGhXNp8/QJdujnHZLWtLUau5VMX7H1CRWWzrl+u273hZpMDMYiwDXhtpiGIF3+/+MmV1aeVJmrzxfEIFjoh+JgrELTy6wlsC96Yj3n2bH58l3gbQU36n3+t0J2CQVFka/psS6pr8idhu+MLW4sfIWry89KSwE8/3Sh7j0jfcQhZtIuuP79CBK05XamEvpdElrvdCH5BS2bZTENdpC1n1lo9YYftfuzET5u/Yf9NSzrfbwVfX6laAN1hRLaqEAbzXT0o+nmEJ9vlY2zJ/VIHQLytRub/ZWerP4dPF37PE1+etTXibmNoC38i5v1L83HE3NbTpdvefnXe5f0vn+NInc9Infm5qIoKRa7EMNt/5ZlzvdFSjU7fiHhrHFtzONzfSFRLimE83RJmyPcKRFU50NWpavIpF/MKTs/NFut/JyeXcmwW0DoswlP24B2t7LsD5u0P0wZrczAhWsQwzo7848vdkt+gsPhZDGt6k49igd6wM+wH1q7HAM36/hWh9Hl6/uPbQ3zIYoQFgdD6MBy7cSPiQouDN6FSLfzVUzsqLmincMYKMVrEvfu83OnyL2TD16eahb6nQZe/VAxbren4J7naP77PNhyRpF95aqU1hK4YFpc6nJInCrB3bpxZqW8H8r7XNFSvSIrJeHklM1Pny28/s11Dh4B9s2v625+MjHHf8ZsXhuBdxDXxF/03vI5CC3p1I2z/nbJg2mZ/VF38HSrfdx8+h1ScoX1oHeWEVkj+kyNDX/x6OqZYRDz5fG2tTieDbFmwzn/4D4vfTH/6qx3o3xsG2zlhqTqu867VzRO4NCuZj5s9n15HoUFswHu2PeRTwtavVw9nx+3ZthwffKqlDegLHhKjaNeIWqNPtSy+egz3pzoZdOWioUXvU9kdemu2D7c3vA9jzXDwEKwl/zPCCdiR/vzZvi4SG5Qp9chRHlgw1uvdHV0OesUcOFuIBcsd44MyVPTnN43x7TKqKh8a4thdG3x/87mZv2esR+yRLPFBQj//2vHBQXOPK9CMdyFgrd0U+bjsd/D1M6LoFkAyLfoSeNpuyYK/gegQ10T6pjhQYbRV61XLjQvjCRUsxNGIFv7d/+Iz7fRQzxllmf0v3m0S8dhRWfMbiGtNx/w5IkR3yBGhzKIPuZp2HEyLvoGPmQvEdb/rZPzxvWDnrkmoKHLwFRW3hdisCmLsqmfQpEL9hJ+fXtxej2Rij28PF10xyZU+UovLHRk1Y+vcCPbtV8L5fbjDzihsYi16azacwx223DPZqbOMegQF3nDDps+CjeIAHkDhv9Tz6zS58Lj7MbERgno4v3MTmbcbJmYiyd0vfsPPr9LFZ4R4Z/stMm7jQC7u+o04i3rQnvNRo5L9p9RL/qL8vT9z9ps4mX77scwan0SP2M158vYVzbeNiPzyxfPq/NUQS0aZan/ZOVj8Ngce9vFK7DfvrOEbNqAv64HYF2efzz/9+EmR+4+fz+csreCrfwuc//DWi3YV0AZW9Jc/+fmfgETlyIxHyLohJmBDcI0LzL2b8198X/D9xx+XZl3ZGynhcCbu2jkni7/q6zc2Y+ZiUU3GvXsx/+kDcmo2gXxvzyYs+owk3s35b37v6GNT/bIaEa12WYH6KOxY5PGNJX2fU6sfLs6OeMdrVQ/VUFdI+oiUbBZ/+emtQQNQLrcFz2eLvXzt/9f7QFr/7zMF9+PaZ8HdbAPuYsUEexXu2dkKacczOwnhoMkGVR5iE3D6xzXYTELOHEI/HQ3ClQj6yz0Q7Dya7mNlqQTh/flHohL0+ht97hqk3pqSTbnUFulOuQmJYibEyN9KwEv9e9esqY4xvC4SYp2cjyAX1zd+beWqnu+K2IPBHjNefUS7m6+L5/ZeH4CYuzytm9dcGKpfrm2y/ZAzn3B1GPXBizSG35mU8OrtPdHu06fEtg5qQP/qIQPTfNnE8w6foAm3yEe0TwPiXMwimayLFcNBbTCJh17puHs5xUgR4i1xtqdDN5Zi9gQjMfbEMYU859LkOAAnqacqqmdOs1ct6N9kq5BdLRrd2py3FNrPGdFSPubdd/TXT9jF0JDwWE4Wtwv5AkU4anRtd59u+f8ISr3/MAcTIxDfovBEweY2EFPffer+Ej9D2TOozcxj63a81vkd3vX9QcLv1k+ala1VSLPVgTie9Qrow2sB7UGxydGttkmvKsMF2hF3WHn+tYiW02RAPe86FnRbk0vPJYal91fGbhRIPqFjaKO5u6nM4/06eCbXmwZG3UrMqx8V6k+6KQL/gEUMBfs5P92DBoVljvBLjpZaH+dtiub2sCOGZgj5pGPjgi7XyiPkpOFg5Mom05t9ZxJ//312bGc8Lzr95hoeYeta8v57L9A0Bg6u/dTveJDoLjJHySO27X/4t/D+UsTdKiTWp1rX/WN3yHRcIevffDe5dHXhO/oBcxJlQoPEPw1Ekili/Uif+aDF3wrJx/jEyHYIrHVEXsbv/egn16vlnDaZ4Ui3E3NAVDqal0sOzhEmQuTKCHoosgxU1Rzpc7T1evwaKgX78ZrxZFlywGPuAvBBeWDhvfvy/rG7ZnBNbJMYV9G2+j98tLU2GsWlKEyRM/24daD9e2/IZh8HQb97nnrYeFbA7Ctu6ileVyWMbR9RnotaMOMbNWHFqxPZgComnXV89MCC2STGQXeSaWXgGeTPbiJ+cWQJu030gsYgujLs+lrHtJTb6PMMWrp6FLSbPDDxit4HRidfE9FksNpF0lr6w5/jK0QTKb0QuEcFRq6xnc+/9fO4WjlV/RHX0/vpm6DnjcKcOik5t5vmDgIRlwofy/oOv8c7nF4iIeFx/+zG4uFJv/mg8vApUEdnrYFjEyRYE4qGj7X4fOsXe77h78Pwu/bpgQCqs1kRT1TGZFRLVGmH0pXI7bzv+BSc7hSE9TojO+svt37jpS/7lR2ELUvYMQgVJFY9Zbsx/qtnM/RE6I4vA69GV02ol6nF/wEAAP//pF3LurIwEnwgFiICaZYICMglQfCCO1C8gIhcEiBPPx/nn+XsZn88mqRTXVVJugGcbM22K0c3x+D+0cFuzZQKzDO6Of5GT2RfM0b//p6PY2uDjuMnXblpyJtvFx1B9/Z3Zv6tz+b5fsOXhkvLXP5NxgSW2ta/zCJeqU+c55eroD6v5dIbQ7fLsWTKDe2n1Zl50qczR9HXMbRtHJCt9CrMoXf3BlrwmRzc660bcX4rwHSuEV5vohX/BVsnhelsWmQZX8fWtHzDbDsV2cNtW/bb5PwEW5gsYiKHomE39DWsZb+ksHv8zPnj9BksXUPoU8ZtMpZsKlBHmhfLMz9IZsV+2nA8vhRCtlKYiN050bUl/jCkPucPc8Y9tGcWM7MN03xch+8Z1vXRJftcmzoqvOwn+l6X2ombwkrWl+LYwDNd7ihYJM6nK18L6Fc3M3Pbjc6l07Gb4bT5eAQrfenzvfJs4EpKh27C/F1yadue4ZMIHgnq7FuOn+Epa8VVCLFK3MDkybp7wkA7gg+El/l0KcmIpmwe2Y6EX86dRr2h7a3eEedVi4g/HDIDP173rCjKtOyj3mggPH6XqNr75qiJVgT1Lrwx4im1P+2Gqobm4uWMkPMNjZdo38JdfZ7Z3Q9KxG9tSiFu0ZOucivNp6Bqz9DpmyPV4qOWUznCZ1UN5xsFQ6xz+qwdAUkrVWeemY3l7M3lEbbKriPGXbibE35fZ9X3jjcSvliQjCe1iaFto4DszUDLqaJKAJ+r3FDto0jdLPNfDLjZvIift5yz81p7oztiLtkdyzAfzs9PAIfDqWGeO0pmG3HnjM4HqyRbwsul/20QgS0OJTOozLtpfWwsuJ+8LV5fWZPMWXux4O/3msZ4Taaq2/Uwea7DruztcR4TakB2UTFeS1qSrNn4siD10UAl+fJCy/59oi3NnxSE26Wkl7Cx4DW/RSrOnxMfd3N0hPqBaqyeV3s0euN1BDE8p2x72rt83CbFG923XwfPz9+Dz0m8x+gM1zPZHeS240GNZDRHEyOknRM+3kW9glhMFWJ634vJ1/a9AKcIEEkIj83BRjJGyC0dLGyOPZ//5uNCIMIzU6t8KrTmBi+oTiT/KA6a291HAg1ZDK/OKjXnJN4GYFe2+i8+x/F4LOBt+ndCbhEvp30VHbW/9doWs1pO6qeJIX7oJTnEU1xy6XoMVBqoR7wWXlZHdwcb0Et+xFS5Sc989Fy/h7vfNhTaTZFM0irtYeV9bdrZiV3OxD1TaNJTSGf3WCZjNGqzahhfi1nh0q9Za3wRZab7JrGTi+VwLLwGKN7ZxFIcKf/DJxT1ZU6cxl3n0yeIvH/xyl274Lw8fVKwrc5k+tDvOU/9swrja/Ni5gNvfXF/z3WUipLG9LuAk8/uNPewyQORpHY6mUPrHWoIlRVnQZ055fxa+vf98U3vvPohbp5eVJMt1yKXmzMk8880Ixi8R09HZZjQb/uwAYpuavBvOK58ijiKELr6I9NLb590wmrda3X1S8jjD89/81cHcNI1ruvDaI6G4LhqKooaC5Xplnfrn5wiE1WcBO1h9w+v0IVlDj39xbfnnWKYNWnLtpvIyKWP06dI2M0qPbThrxwdR6Gq4u0Nsi2CbbkpVqoOHZd2xInsT7Lw1UibHCLh/g9fC3FbgRgeU+KSfI/oT0gtWG4pMdI+vvkUBOMNzsFZogK0czLfP2uAVeHq5HBNuE/DHXjKiq1ytgeGTd6KCgbcrF8YlvlcZ5cUQLqXMpVvp2fXY7OtkXFIY3avnHfXrfA2hTbYOniaLSefGYnO2uIKE7d6eEhMricV/vojh+38MSdjDntEcCgx60fGrl/GizLTe9OVhctufvho6Q1jBRQO/N5Np7X4Bt8OrySE28oczpaLITRGE58xeZrzQHcqnFAfktizLzmvhfCGutWwZb5qZf6kXG4tDHPgkdDturLd3UYDTsYssCV/ddMprAull9sDW/IXnxf8hJ97Hchu5j9//tMjhfTgy/7KSpqFs6X1pfrBM159+HCInRot/IztQqonYrguZJR/s6WL8+tqDrvd+Q3B84pIuOBzb+AuRe59iEmwtuekOzwNDPvbR8fC1tj6vSFNN1AUfcRDYaSIfxvJhZ5NL8wvFzORdKkpQPN1wlxJdjkVf9IMs6XObJuLfj5m/vMJCx5jZTXc/bo9e7q67G+sGumDz+Izff/lT5YdJ8FnLlIwJE11Y/iJMK+3r4MHm+9uIt4KjcnAz3IDw1DcGXaGsuvvoltDdT5gKpSMl4yvvwGwW9ox3ZehGw+rfQo6K2e6FsSDv/x+Dz65k9G1+eiT6XXqU/THz3fOT+oa1a8wSh/FF2eANZM1mNOl9mZGwipj/jRd9xiG035DvIHs+NjltgvSZnvAGvllXa9yNULvC9oTc1A7ND8nxYCr0u2Z/oR7N62nnQUq1jBzZavyJ2O/akCFxmO32TX98TM0MlTBtCaef8DJyAk/g3b4XMhuuf3IhkBz4bX/VnQlPVnefpbebPJJe7Agfm+ReCn1DN5hIFBQIuim2ZxkjZaPGzF81zX5lMczrOj8w8LusUE8DJZ3fg9XxtqSz4cmaD0wbx7QySJzPsaxjmF9kxit81tpjrF98eCCEovoxvuSNLs5PcO4TnPiFCj2J7Gwj/AGu1/456oclf12eVffMKpF730+SnKeqS83nRnh66AcOcDzL1+SoK0mNDndTUddHf6YGazChCutl8Gk4i9zhm2JWu0qi9DsXyvamU251K0adfWQX/dse27GZHbvnoEexXxlQXQ8m2MuXT2QAkRoyct7OQsv/ISvrJyJH7q8o0v8oXdgBGw3HF/dKMdMhbrqErJTmrM/7av0CJCaBQviNU34lC9nYL9sheVtIJn9aj+06jGmBWVKUZS8dUYDFCxTZqg3i2+8Q1xrSz7A8+eN87Eopljb5FhkjvlA/khojtH4bBnZEuvhL3eIMljp5QeX4i3I20zSPbjyvmPmGBv+5k9vnZL8y9z4ejXHRS+jI4gP3KmWak5rd6PDPbcfuDq0l4QPY2qh6ie5dMNXMR//8NKCBBY97nRiHkvBn15j/rdDaBw68QhX+XZhyfe97vh1O7aw8FmsAr6bvffQalW6v2RmD/bdZ25aREAwkXB9+XyS6eSiM0SXiZEl/yTTOVftP71I7N1PMOk5zgNI9IPEgvBc8yfbnihiH9miYhg+u+nJqIiCExuJg8rK56GiNsjMBI+5sR2Uix9wgz9+aM7W2Z9tZ2FW226Dp5Xz9LnRKjpqSjNd3nQYfgcGPoNkbCh9baJ3zrReEP75D36V6cn6z09B+P4h7kt0/c0nuUmw6Hmmi68zEptBVWG1T4/sdLnM5q8w8uZvvMReGVYyNt4DIBXUAq+2pc5HW6EGiFomk+01SRb/Y5VBx8UdHX35VnJnGGqofqLLnFd95LxgJwnS80fG8mO/Sza69JXgh7KChW7nl+x10QDlhh4RNy3enO+FfEQrOv7YVfyYfBZuSQqsOTQMl7evP720+QZOtpOJ9drZ+RhdfVk59ObMQrg9zOEdKTG8oD7RSXoVPr1/NIBt8zCoiBpczuZDrzSF2zHDprTjLAymG5yS65fdPY/7cxbONix6iYTkl5XjNtAl8A55SOGJnv70l19qy2ixmBphOV/Cp62dv7+WBNLnimb1w9o/vUL+xRsqWgEdvPFJfLMxER9TOYDzwS7ZzrijjhNy1KG8sRMzbHLtJD/YSADaldOpPvto2jp360/PkG4Yd+X0CVIXUmu8k/PIo25yzxYF+dm1WBS1wFz8CuHP7yPh9WP4U5kkIhR2njCvrUyfud1dR0l1vy56IOnGolBiOJooYtbux5Kp3rgjrPTXh4V2ss6HujIMrTzVO7zOX7dkfhZz9Df/9LP4USLZZjqs98ma7Q1l5MNpDU/UM/6iCltv8mkVvQXo8ZtgOPeB/5f/YdbELdm+vHG5k7n2IFHIji37x+dedTiDc9xnxCweN77w4R6+1b6lVZt3ZU+2saG9JReT22/XJp21C5+gNKmDUd4mfLrY7QheK3+wOFr3bvgo1zPKhMcJC19F4/1VO0pQy0FIhaKUu6E5nGLgylSQ4Ime5vg1vVjZxs+KuYF66Di/GhjQ3O2Z25ybchJp+wae4Asj8Wjy9TPZi2jhl5gXD0D94q+pm2kCWtVViGZG0jN6Xl8W2f+847KeJwuuxfGEle2w5hMbf5YqpkaJldC1+NTd0/O/eFz4uLkZ0xGru+fjiTfCK0nG5rw1tPf7c2S7n6p27Oe5lXa6RWesFYaMBnRd6rpI6paqCx/vXw8zgkaq4iWfbXJGN8OM5MjcMsP9kv/6O753vlH104ndeN5KOjKnV8yMqAhLdrXLGZb1xFMRbLsWj9WI5NPqgVfP7M7n63Inu8a2T2w+rUo2rH0Mi7/HSOVMyZ8+QqeXbjKDfAQ0q1PUo/Z7QrTe+HY5X9rQRqqFBsqN8Zp/jm9t/uevmrWJ/bnOSg+aOGXE3LukW9vpKZZ/2+hOcGa/EJfj9K3mPHkzb86fy/9Pe/iL14UfJ6IhON6fP0rRsv/6P794yS9YK/HSG/f6e/+Nj7iteyvpyogEbUhWO7q+Zb4v5yiIYKM/Wzw6dE5Y78UVqlBXUhStv+b0fSkFDCd/s/hvuFviJwJFJW/ihLnRbf70s+buBCwg3+vmp9R7oFSJRXxDWZX88PQCRFC0J1F5X6NfjbgM12EO/vwJc5AsX/7zA+n7Lmgm6xXprLa2/WP29975oyEQTz1ebh65+GaQ8PB3LsB9RSGdb8HenB/oEsHGq33mf1OSrMUCH6HpVAfPxbBN5k/qVuBeRpHs6vn1X3/Es5mBn9huyuEsX2xY9BYxbU/PxfF4vIF1omuqHfukm0T7doPeKijZf4VrOWloXwEE7oulZcI6thfyGbx1PRJbbHE+1qJU/dOPrtFpHVWniP75BQtf6st5Ju0RRb48swdanTnna4aXupZ7Qk55XU7HwmtRE/6Mxf/C6J8/p1t4xYIRmn/8DT09JuF5ueeynu5wRgfyDrC4+Mks61+RdpZuMgsWPOL1IYj//D1i26mRj6bYyBAqGqffYwk+3Sq+Dhd0sIiRnrpkrm6IoqA8B2x/k/Rc/OlKjxY9+08vTn94s/ghxGjCgzmvjFQAsR8Ji+JylX/JOxuRZ3xWxPt6N39pmmuBiEuP+adYQ30cuwGU865j+2NUJJs//yMZji6LJkn0WRmpMZyN5MTI4veu2TNQ4Zy7FvPjIy5FUznqyEMlJv5IRcTsE++1F10p9LiaU765n/YpLHjBrrl2KBlouYsiZ2+T6/J9PGemCJ+TC2xfnBxEjzCJGsmlmPin+I7G5HqXkZjqJbPY1+6k8mHFoJbuzNJAncq5r0eM5FWxITvyFBO+N23hT7+w/eIvz+E5PcNG7EOqWnWH+B8fKaQ7xxBt992mdWQdBKHfE2vkL0QPv5etzWav08BKqD/JR9VC0NUps40Ooz/9i7LNccf2X0HpFv9Q1RT2uuC1ctp3kyvEIxyUFlOBbAY+auzgwd0pP1R0v0U3/7K1B5yvdbanppmsH5YQgPZc9GS0/XXTozl4cKqFF/HqYZfTXZBL4BQY4akNf90cUi8ACC8J85vK6+gN7WJVhMBmF1RafpNFeQvjOsvZjtnrjjdLL3Yy4YbZ28BJZr3dpDA5ocRMpXHyMSuzFN6v7M3CT93606+66X/+9j99/5dfYJeV26W3VYUmV8hGFFvHK9OjqUuY2vcCdJ68xuudW+Sb8NBX//zTUaj1fD78fja6mq2PP8Nx21ETVxloffKic55kyfBMtpLWdLJD8vXXzMebRkX0c/OBbU3z4k89XGT1icXllCSh5j//6VTDi06Lnz2pDD+hTuczsQU96ab0+nrC3+eN52/Fx3hb6WjZr3iKi9rkwkqjsLnlNVVTf2eKhdS5SDSjDSMR8cvZG+QA8lufkaJ56L4kfswWkaV3ye53L9EwzEoLapHvmL/g8RBsSYrih1FShKK1Oax0PEIV8DVFheGZPJtuKUI3e8vI5v30F/9Lhm98JP/mc9yWav/Pv1Tqx2yO3ngYgcUnjzigI5/nq6eBLnWZ0j/9QU00VGD5eruct7GcT89QRmvD/ZA/v2Bsu/cRPGl6YxaPJppvaBfBch5DhfLm+Bs3PUdLL+WMGELy7v7tD1mIdmRXHRrODaMF6D7GBvOXt+p+pn7I/uGztJw3cbc76eifnxeXq4TJcfoERQ3fhKwksWT1wYrhKGwPeO2uJ87f9bZCQfUUKD2qNRpBXmUwKKeM3U7PyW8fPnrDmxON2cNSl5V4T/lfPFxXg2b2RTFFaPK85U0amv1/5yHT9pCScP69Ef/VQ6WsGtEnafM7+X/+gLqcx/35kcnsDWOg7W9fneGqeSf8en2/IRnO7h9fK0fPNSnox3VDfB/knJoPvUaLP7T4o3U31yfZQIu/+g+PWPB2R+3vfPt5F3A+MwEs1ckcmVg/EpXzzf+9Uaevj1gledrNdynz4Fnqd6yFG7uT+lrGQIyzSvvNt+2mtpYqyLSoJPosW3zUIy7Awnfo+PwdTCr7OUaPcduTfXsmfHrVeq3t5Nlmi54z//AHfs/+SBVr1/t8vHdn+N39K7EbiNFczqYBr4E7//LRPz8kbNyUWQ1Y5toY4lqTVrJOHDOgJRdNVUXZ5rwje2+k3a853GO0nK/SGa92vM3ah/X/3SmQ/vedAndTNFRNjFM+Wff7rHaxtmNHlTr5OvKRDoam7Fi4viKfHeoAI+O1F1nQNX3J7/e1C1e3eTFzcyTluGX7M3rfrjbZnYallkje2WA86YM4wk0wmbTRM2S8d19m/7QjktBHjiCyrgXRbfjkTfPhARiCJNMx0jyTTV36hKZyTGIc+yz/NOvxDN4njrG02Vj+tP9GZw1+8gmrRGiSKUvDAABbEn5J8s/kD0gB+D4r6OZ6S7tmdJ81iAGf6PVbTh3fO0v/qHsTMUulTiKqx3kEvZXeJKC90o3bUWjRvVSA7G7Wyu+tZN+DmbUXguH+RGNaEapm63dK3O2G5b3npWf4SQ4mO4Jbf36+cIw2l0dMJ342Sr5y9pJy5qFKDFPLyqnGrghZXj2Yn0RpSaG4LrXPmoHdJhn7o2dMAtq8zwLBa+Fdsv0uHYGt2pHt/L7sai0JztBp0khXMCt/33+Uv/TSYfF0uXdzy+IjBErcEDt+qsksWE4FtncLiNcFtT/EwmhpK9+JmYFPZTk7YW+jL7I0dtn5cckrV5f/zU8+5dTv5znMYGa3D3vMk9i91Rm5qFbsmW4sWCN6yEcPnq9MIvsb3XaDOPxiQB7ZkeCpTmgsX69eexjYwlz9KvlPkIIYaFGl5CycjbztnvcKnsL3htfbm5GsxdpQwV6xHVVFgfr8hJwReV5Wk13sv1Bf3tU3KN29wSCvP4j/3A7DOfe/WHY/Xj6U/OihMycq26PhnU+DuhcBzYeUBKatd9PWKnXIo9QiYScxzjfV7Ya8TxQTE5c1H3n/VLU3+Yl4pUQzZ60l6n/rj9Uz0v2NcXq+NaV7NHTi98vS22BfQDyLPku/J5oPbRmk8CadiOdHtjbHjfiq0fRjmOyv78H8DCt6RH5+EyiS93tzaksrhVe9vMPXLk6+zuNnr2V4EzLjU26TKcvFFG52PdL3p9zm4vunW6ANs02CVX41Z1Vqj9Bu5YEcvJ74fXvaeloERo7X6jDwefDFI0ztb8sCd6Xx4VpmI8zLu5pdfXPQunq/7dWpMl06PYID/ynUr6G+HxJ68k/LO7PhXUGB+ZcOza5Hk3RKRcgLc4Vfy/jnYvPK0Ms/U4qyW+hPebBqYTvMT/YXv/209QJYpQeFeKt77zPR/1F0LbX38s6iKXt5MAMtDi2Oe/vaJlR2bgUYDr1SsK9eMrWPEwYnqycqWRpLRt43MmyqoCLnWvnyeZPab2CwuRA7lc1ktg9JpPHyeGFR89vmXGc0Qp0ldfhsRYpP12MBgPaHmBjvdZ3M7+gWwHhhJvPc+Wj28fdWq1nW9hSd54c/+ih/wu5wc4gnPsWSMl5KAHlyp+KhzvLJHLc92u3aBq/Td9rNhbZToXNai+02mWWOzQcFUBehTXyRbvh8iC8yysTlHdFx4HyenitZGULzzRyruCXTLopVWMvxkwR3qUI/8afaCj+yB54/5SufQlF7w3itf2y7rHebDbWkflIIF/zxzPkbSW80Tg0sv39l9vKoZvAd5DPZbW9GPn+PHwqCIBXMOkVNwqdRM+DwlHSceIrMqSq1Z3QoPcT8Cp/MYYrFFkgGJtnqt5Bv9OnpasU9ezBn58/dtH8oANa9OrFI21vm2IPcQvVOTPJv/xXzJEJq+zLDZtIm43YgN5XtqMxwxJ75XMlmD/VWf+KnE2+SmfFOAiqvavw6FhuTv9+43RgnibPtsdj4rNLbJwqMT8G27/2+nJT1C7RylwcUXnvc9U4TRmh/2EjE3OxmxMrDrVbv5e3LLjcv6SY8PFxEt2uHVu/q3E36YVBBKQ5bdqxx1dHjuNS+CSKJmDh/JHMQ6ZEm15gtnD7wp3358lBWK0+snAvdH7s9qkHpwGYXqy4R78StCnJjndg2b7u8F55tC1dv+2OOUH06frTvGWzc6w5DMshl43RQgL1/X9kf/nB+wAEckWmQnQpeOY7WlMHQbLZYXWGW13c3eUPQv84Mm9ZQDq6YY1WX/JKuPH3pv+beJEgpbYg97PcJi9hDVeXvd0P2K9IgKj16Ga3vqciwfbkkc3CqZkW/9S7xZM/oprMlAKT2XmaGalb+z0FKBc6Xpxj257c5Kk/9CGUUy8TkSpHMl4OlwnitfqzYK3c+1ttZ1dbtJ8crZSuZU2DORzjY+Y9q1fHX8U2nispt12jMpwM3eaZ1oP6tn/w8vDqmGuMZGeU2IyRagz8NaOWi00mlzPjkCu8eu4qipDvNxBH4O5lQ7AvooUwyMcKNZw6rfqyRqx/3LJDrvSmCfniCZL2OmON8lQzWta6h7cQPOdYnBQ1VfYggL553RszNqqPx7qSr51DTCXnd63zy0ryC696RCGlMBY03TmfET7+Y7d1q5HMcoOyPr+Dz8H3zIeHtG1z9vF/i30ikBLaR9t2daqLDvOL9YX57QB/mgOXr8YfoggfQT/0bP6UgyPtmuNZwPDgeVUU25XwEo4JA7Ua2lX59QncfeAKL0YPsNr8nZ2t5TUGRAxWv3sbJHOXfUVf39nvNrMEUl/5mfgXX08Yl+mXOzEmQrAh9ka3ho/pou6GZty5KY+QRS381i2bgNvSVeadcPTiJaCV7qqBRjtjtTu8JLw/HGs6cpswpkdRxT8pBrbeQYKGa9uVcKOcepDi4kuwGFp9uK5ECWZ8ObDuviqRvDwcBicH5RlGFT/74cS4ZzFal0nrhK+NGOsvgXFuBWfq463jwmntY8uUfXue/WHGMv/li13Ohmz2970Xt87W+5Lbg5ZIvAjhnfUwwnJRktOXVGb2LqGeZfLjwqey0Wc37doOVqZJyWqC0AnF+7TEz45HP5+e2he9OtMhffpQUwCL6+AcXTwvezLvi7KHhq+CFX2WJ+J30EbaPfUP0vLP4Bvq7C+aVVngy2SapaPXE6PT231gzd44/amtThkkqnli9QYWm6t1asI/5j/nP+4HzoyAAGC9fxMp1+qFh1Qo9WtabKrvD1/x9Lrc3cG2o8DSvhGTBhxRmFFtk61w/yeg0uxiedukxK17K3GyjEbSFXzFv6qxkcMUEa+Jc7ulvx/ROKrRQhXyoWpatMEn69d5Qwf/Gd3oVJpYMjuxlwPdpwdzxB2jKHkstUjg6TA+nUzk3TiuBw+sNCegd+DQ5Xxvu02eLZ376mVziV4yYxj1C8rBCM/d+Z6Qd9DVzxlzp+k/oFhAd3BHPivhNhtPlrYKOnYht9XAyGT/YARxOd4ntNi8l/81CflQPKzUgQXUy//hVpTl1Fv3FL+/ZQYxgdZYnZmp84HR6eJWay8WZZtcxSqZm82lUzbhqdPM9O5wRSYiQGrucVmkZm9xSGhHKQd+zbTjezMkde12xS/TFzDGP5mynSgPCa58xaxM80e+uRgH86QGTK0IyPbNXtkHjdWau+P52XHs5NSTtdcVC+zuUFX/lZ3UtR0/ixNLOnMYs0UEO8Y+u43jjs3w+Z4Anw2f7c7GcCS58k+hWSrC026Dv5Vq2kInVh8pi4iHWavcK9s+CLu+qp25Kx3uDfqHjYt5fUpO/n4cjnEV/oKOS6miz7Nd/+PONv27On5OfqZOkrJm9ab7JXJfvG2xO3578zTcXotMbLj29L/znWHIjoQ3qbMKxUMR+PgnzyYZFf5Aga8e8j9BaRDehM3Bj2L0/Fo/dG8ZP6pIDKAOar9PZQKuPILDdH7+UWKurh9NDotqev/1/+DGjyGL5ZZujQX3YItyS6YK1uWo5dY3zcynPYhG98R0kFZtXqvWVFpEwe29L6XyLb6AYOmZ2G0wd1yphVLeRc8MSFhLElKRN4fQiDKPvmOf8TC0V0Ug5YpgdD22WeIXhVoXE0hvBn1XpfYbiOw1sW2hrfybjNUN5lFkknO0pmV4kF2XIJJe48brrphi5KmJOXRAiJcif94o3wru1fWYcrlHJtnVW/c0XhgTWOa8H4a3+6R+4uHs+nvwbQKeJIyk6+vL5XM7uXz7DX6FT+bzuvzPs6cdhe1R8ytlrIgqfOW+ISzI1oX3RxIBK4rOtKYh+fxZiA10984dFtV79wwNYk4GRfctqsxndpvqbL6w+B3e5Y5IZKpokk+224adjMFpnmA/ngFjaLObTEu9adPBGrJDxY/Ji8aytzRPjWdqwki3xoaJJXPT7/V5yhK4qWvI/21nGmvP78VX88W1ML3zwp/ogG7AD7jD/skVojMxbhKTd3SFkno5lT4uVB7FPQmb7qs1pVwUzpIdtxQiEbTcf8tHVjoOUU3Ewj4incRhB3eUDFv1CT+a8yl01UJhGnPMe87H8RDJQ6qjMm9SXOXpB2MIgNk9i37I9Wp8j6wnS88iZ0/qyT7/xmGr+OtuwP34kovCYQswPT7K/yiuzpzkBdHtqArM2lpL/8HduwO0rIHbpWl2/E5oMzM/TJHp+a8xJurr6X34n3qInpdRRAmijrUOlhT9M6XhqIWsmmzmpsPL54cdT1EyjSycPdWg8qO4T9b55obBq17xP0oeEBE3uKK2mX/dDJ+7BgBWXOWP5Mul6jsS/eKPNOFk5/eOP6KJ6ZG/s4m58xEarpYenwbydZiKu5aWlfempI9tHcEBimzgxsqQ6p/O73nfL/iogfygf5nzP30XPPGR4pZZO8Fwekiki7wA9nw8Tw13L/vwYAS18im5csiq5cVDOUORPBa8kq0im43ssNDnLIzqC6iTri7ltIZDPa+KQYGNOerDNIOku88JXN8nQxdkRFj1NZfJ+8anGuoSeguss+qMyF/+mAfPzNllQ2XY+S18zRnP/CzBUdp3MCWxjWPCfmJ+pKqfjYx/DEs9s599tzp3H+Qn//AA+700m8UOg2cdNxuwxPOfjTM8B2HsTMWvxWyb3t2ugaGKfWFq5KfnRqAM4MrrFm6tdd4OgoALq2+X5T59Mq0+MtbzYrkhQ7LbdUB9GAwLkYjpC13b8fWs9iCKs0c15T1Gvr1CqRvRypnL7MtDmF8Qp0kwRs3S7IfnautIa3DbeYvbB+24TngcXdla/Jm811vkUXdwKZPGyJ9Zn5aDR6eCG+nTpRegVPufy1Vbh4ycuIZdSQvPheBjRrJ4PLFx7QtLcpqmAZX8xd3LO+cJPBLTwNRa9kJ1IGrm74BbKhq7MzaqkKvMF8MNjRbxdNJTz7VSk0N6pj2GVK+a01YIKnKC4sGCHRv7bWqUB26Uu427wDDSU/OaqCx+iAntYOTcudxFC6BBe3wK7lH6STFEWaF8qpuHTn6r6GsMPG4jonj4nzVDf3+jHkzVFxkvxh3hzoNqir8hu8N58Shg/wkAkhOePkiRjZmcjkPyakm1z7fzxK31ioI/VkxEp2KGhqh4ZVKfXxPQwN7sJ5ZcWzSqvSXj5/DhXAktH9tgodPl/OW9RE4NRmhlzfoAS+sp/M+wO6Mbc63HP128jhT//jvi7ISwXv6RBzUUidHa+bsednJ2RsXdemN7FCXG2K45w6fs7LvvozYet1enoYF9/xLmGOWLCMaAwkbPOvGCncRq6PxVo389UIrch6beDU8Bq7iMWJmLd8blUXS1ruL28ozv9xTOG0XvfGM5W2+UNTQfw+rohVqeb0/HTJFrwlvFnwd+aD/HmStHijxE3rjGim/htoEW/LfrV5pPv/J6I2W1H9hOu8tEzFEFd+PmilyL+54eiYn2bWdBt9vmsAJbg8yFbFprH8i//CYgLgcGcUeE+Fy5IVcd6ihguXo3JELrK6q9Rv+yPPw2/0YlB68WE7M9n+V++Rz7BHtYyOen+8fEb8BttE2OddHOpelB8+cBIaMmIZwqMgM56RWft05ZTfiwM2Bw7hXn7bYTWX/tdIPMiCsT4BXdfvLFVrZzDlb74A6ucieHDgM1omGR78MNcXfQeLHyfPpv47k+umARazJMnVab71hT5x3uDKVYR276/pt8jA4sAkr8nf3775KyaGYbwqWNl8at/u4sSIb/B0Z9/k0wH69jCPmE3Ynjdupty3ziCFOMr2366yKTcNAD0dY/Z0RHnfNodPVtd8IUlp8MLTVm6C9ARCWviZ7fQ/ONzcnX8Crh7Ij8Z2am7AXtpPdUWvsqfk5kCVdcBXtdd1XX+72orxeaYku1L7fn86RY/O7zt2O4n0KWlZvhWF75LbL/zfFE8hzP68w/FvrB99r61LnSsPxMrnTHicu6OIMGnZu6kv/w/fQBbpKrEPHI3n+2Td4NADXIWKdE1GWv1VkDSqndmHiu/5BG7yOCEqUdnfJNRZ2mRjoh0sIjZr6eyw+G1gIusLW8g66M/8kbp0caLO+ZsM5JszOUOjPM9m2y/2z+6pT+JB37NV3i1+N39whc0MbtJzEXrgz+Wn1SFe5VlZOs0b3+4rLIU9ePIyF42xY6xlTKirbo9Ygl5A2qxMthQ4HPMwiovEFVn7v7z98LquC/5PWY1fLD1IlmlT3xa/D4EDbyX/KKV8+0SRX96nOx+7FDSo5xZ//Ta4r/kfdyZo3Z6hYz95bP1oveRSvOaBYZw9efTtzHAyZ8VO24Syd+EB7cFYzV3RG8yqxQjx7yhrWoeCbGHt0nZJtG1devZzJtu35LLl2sF8LWA3e7fxh9OCe+BCVQjAbis7NuERIg0bst0Bh6ihVL0ILF0RVcRtdE/fCPt/cN8ef/zuejMb7Vxk4q5NylK5i/ZB6gar3fMf0ln8mhoa7BL5Ys315tcdqouFShp8xVVn4R2Y3H9GX/rTR5h8MwHXJm3P7+ffnpUm9PZHiVItXGNeV8f0WyKUwwjf78px+3NXPgrhu+gntlOLSZ/0slYa7NVq5jX+iuZf7pVwOL3EdL422TzlH8zWDI6Uy3YEH/W/EFAaxJnDM9HsRxteXP8d36RJU+MpqQPPFCpahErLWOfT130VJONfyDB3vnks0ZOLrj3N2Pu8CFo3hWFhxb+xA552yW/PKIS/LI5pMJHt3Pxg9cjnK/zg3kZ/vEpXj9EtPgxxLZo3E2BqR5h8UOxOJJ9Pl46aiFvX3A6vdQejWZKA1QQluHf93hE43fSZ3hqvx9dzmOS8SyhFtxHdmLB2np34sJn4VRtXbpB3wHNm8zN4M8ftPA7zNt1z2blFcQvti1omtBv6Jz//HZyv9e4m4+D9URbQ10zv3sVHVtDL6uwJmcq1qcrZ/FNfqLkNprE2z28fOyMewD/zoeW88TJu3kjIplgMutQq8lf/kdOuH6wP7wak+xAtefqRZb8r5ubX7St0UVeHXArCtSc2Pckg/AMv+QP73g9SG/l8Uhbdl32N7e0yNDWW3e7+B1s4Z9yoS76BGuJaHeduGcicnVe0FlBt3K6y+czHAThSmVq/vJpd9qkYCRaSMgxCnMaBFcLFn7MvGlWykEPtqk6o+FKp1A2u/WANq7aIc1j7u56QrxJ5BmSn9D+5ZtuPsqZDa9gkIjxvvSo//NznGsj0IZkWdK58d+dXTwxjz4YGsPStxAXfhdiLJ+fnNVzRh9+yoknssPfeG4w6cOe/OXjf37/wp+xeKDb5bzreINf3ussvNe07MulToG9f14XvwPMOQ54BueMxnjRU3ziU1TA51sC3Yi7b8eIcGzheewqhi889CcrfxZaXqxmhjv6ModBU/S//EqcH+TJtC76J0pZmxPj7Ub+7NhhD53dH/Blia9xxDsb/fmTlhoNfBTvvQvNlLTE29Hv8ntQCkmx9xk23445Jq/R1t4keBDsbT/JbJ+MAjZlNJGdLjSI+4Mea4ufw6zD+uL3PYwtIuSr4Fk7h3w+vSTQ/vgvyW+vbnxpv6P6p/cPrD+W43K+hvq0vxHj0AxJ/9lfYwiP3pFslbWOxJfkAbhk0/7zZ0eCfyL0Xm0QPWz1ZHOpJqwt/t/y/RuT+99LAKOvVGRXh505Vpl/hrX+K9lOm1Q+dbj04FUHGdmvzoI/H65SrP7tt0T9XvOpd4IZ1tvPmYRBM+fjWch0ePlHirtnT8s//wCocrOI7g1u2fl0XaE/f2FjFZA3AU0bFD2SPdUUc2/O5aq1/7/eB5v/faeguxouM7CqoklXzRYO+ylm12o6oOl+OkfwDV8OO4fVG7VidaqhJmtOuy4xuPQu45vWzMWBETTKyXgYugqpGqQkajOBD97mGWvx+ycR4g2bbnoF/huNt3dIwqNuobUm2iMke+fIvB/5dn0QXUYwhRcwex2s+ADDmMKo3xuCw6jLu7q6FjBRbDJPuH/RfGiWPaJ5An3esoE3h3IlQpCrR7q2lG8y/aCVoRsmBX+bX+6P8VNVQcK3NSGCF6MpsqiNMt8LcL1fCnuulK0LW13fk3v5DXP+8coamt6YiTuhXTfD9JXUZfzE14ZVx63dsQBi3yiGTzn7XNqlZ4jerzuNpgb7a1z9ZviqmUUr91aWY1VMNlD0qcled6HkX2+0NG19/DKrvBO/XouPHi61j9h+89l0w6/GBXoYrUjwEE8lezlhA+vKWDPyhT1nllxSuPdCTsJolSd8FBoZHa66SbJ+LeSt2elPVBvxSHz2bMrZPFYWfHC4I9uLZfu99BADMO/sw/bG6WCOahl7MD6fIzvcN5nft5/mBsPdQcxk4tNs+tseg4FvHbsf6jah17esquTXb5kTiFk3B4WSoWg72MTPd77Z35zlTCLcbInZhm4njeFYaflxWlFZdf283+9BBVewvsR2tYRPU/IEbZl/ZpvjLlmXvTOj4b5DePOSHJ+r+foIn/UNEff+bPxx3BsUbixxsIgJRqPxe9RwOdYnslvtpXwIVKWHjTKf2LbrNvlMdZ6CTYc72d43qj/+mk8KzhYmsnMe62SS7qcIInY54LH4vhP29WQb5r6tsbisz2R4OxHWsnnBm1oiHT9K9+XdUxgyky33StXGNQBuhcns37XMe32fHOEl6U863TeZOULkuOhxi+9UwWXD+2wjyyhrLwKd1+e8G2hkGurm/DJIqP3eZZuuLgEIUmCzY1e8zNHk5hHmlrSUC9uLv3FZJMBu2AjEa24VH3/z1YXmEWjk3K2mZMpzuYZDsLpj6bXSk6l5jDastWY5g7VWqEvqPIKhZh8sHFucr+8Pw1hlzZiy/dF7lnyN+jeUn+ObmW/d4Gwd73WYXhkhXpgt7z4a4Yi6QHvTTdDYnJ8VKqFaOmbMTfq2o6ooUyi8+st2B3WLZrE6VVDdqgsLTic1H5qHbCG3KgSqXL39Mr+hCHzldLRq2ns3dER4w06RK4J53/E5/jQzmNo8EFd5QTI/y52APqecE/+nTGYj91MKq+31TPDO/JRciN+V9nH0lCWBICXs+21l1bR2QDu/MPKJwQogkI4nkl8OAm+tqZBBz4WCOZsoN6ci/fboerprzFnwg6/69Ab5JjaJG8ZRMsxaUMCbtHsqn+2PP62+ba2m3NJZWOgnxEv1l6FdaH7ZXlnF5njKPhYQrS9Jqh/WfJK+ex2K97fH9SbUy3V51SmyeC4wc1fxZDxN2zeskOWQ/LwzOjZZqzMcFDEjB+d3MEfL3L3h18sHZtNrhxp+PRxBciKXmdfVyOnu9YuUjGsNFqF/lXOTDCmaTqcfca0ClRMRSxWaRvwyfZNfk7HtBAmSnbLHGl/vTD7QOIa1iQtmGhfJHxJaWKgmG46lqf6Z8ytJj+CirqNjoSdLf+dZ1lrvfWf42kqcPhJTgp2Y3Mnu7Hy76ZLGDWx1nrL9+7JJ+Ed0bCSUk4fVS5b6bOd+VHXP2In4q+WdgpM9Bc2algrOp31djq/tNMLVsd/M+huP61/PkF1fX4aVxCwlt7FcGG2b0ZXitcmCly0iljmT3dd9+3xeb1v4yc6LBenZRJzAuYfbmtY4ze2h7M9VJEF/KToW2ivP57Lh3GBzLg2K7o9POZKNJ8J+9mKqTrcwH6tCscE/5ZSK1X2DenbiGfqReLlVzCkadzeeoSXe/uXXQagOnlbn8pWKrcXyueTLmezz2dEpO5TJ/BuSGH26zYEZprr1x/XtPYJneyIJzqw3x5WkBih5PGey604O593rZAMf3ju8jDefj7vBRrd1XzOnNQM0szvFIL36PbmY394fQ0k6I279OmKGn08+Ww5KwTj9rmxXHYWSb4XpjXaazbBWfSWfp2UhQ+WPOvNQ1HZUS+0b7MLtF09gr0025fkIkqxKJIC0NSehOrjwPksbZm3XZdKYRMDo+5xzEm7ynM/Pfuq1bZZv6fTq6pw/N36BuNV1LNymczkk9GzBMzq7zNE2eU7PsBvRr7JXxArWd39cK/cKrCMOGJbsOmdH6ZTBdKwyomu/pzmmLwfQK02Pf3iej85vrIALxxvzPWss5/G5atBRFWOy3ZmlOY57j0Lyc2/k8Dh0qE+tu6t6+mvAaEX1ZHOAMoB3u74u4z3540G9RaC3F4W4KqL+PLZdhsj3sGPhMxuT2XJ4puw/5zsVbXzjbdC1NrSVUBDjwV7lNNtjpAm/7EDMaDZKqVZWBZJedE+CtsxKSgStgdurt8j2I/f+eH89haVqiEylZX+Pl7vwRJ/t9cB2KowlMzDqlW8CNYm8j5D/zJJTcJb+q95B1zh3VrhGoTjLDC/4LtlTmQK9rzJir4MH5+1S9O9zkRgJ8zrPp1pydQBDykgQnQ6oL3Lcqnp7UtgOK3Iy3o9yhHxTcvG+9stuKljgqX/7yVGKF+IHNj/BK7lO6eF+8DuUjukfHhAzSaNyZIr+Bme/L5hxcl/dnBsaRku+JEHtvcyBn+cMljroxCI/vRQXPod+lrlh+9o3Ox7+h7RrWVsVRoIPxEJAIWHJXW4mCIi4A/RHQEUuCZCnnw/PLGc3SzdIIF1dVR26dckE49O+kMiMZTAev/Mbct/sTEveb4tpUp2Dcr3OFb5v61mr9BLKQskfsSlHH2PeQ6qCxzEr6X3uOoM8K1eF2/5Cw3Mc4ukOeB4gH6VI7rqsGYF6UsGPv5Ug0wqxGhcCInj+I0xtPdbvXkYPP8t7xae9Xsf8L99HgrkS+ZR/jKXf8YnylNCAWmhFzdLc1BEuhzfEVvasfaboVakkLse2WTINGO/PDsL2rYRot2+2U8l7KZBvS9UgAUlZQU5OwgHqiVeqF+ASL/33T4bu2xop+jx4Yx2vfgLzbXZFdHsCg13Frwz/4UmQjIAFW431UWQcEVbwaEagqLoiZuYfqfHzC9ZGPaUQxt1C4/a9+F+Ft1eYYhKjhY1uPJdHYIOcKhZ2HRcN2/4JgIrBAUleaviLVtWR8ugCRoQNT7b9Hil6dxjJD1/G8P58QP7WjHiL96HvwuoBTa+tt3mo6cAuJa/DGnxn7KgHk1EbKB601cSgZhmuxsS1N096vhmlvnGf4zGXFRGg2QhRs/FLMshhqfR1U2OVCXXT/fRI2ywWtgT3FS/xcHbA/XNNiFTMV2PdgcqGHOJCHLQzjcclKB1wFfKRcGaos1mjkiyD+fbA5hbPc1StB5Dup4xquDf8efqLun/4v/vAL6BadzehLTgQo2sI43l7vhCCQaBH+WwOy3MXraBnF4lidbKHNYNRJFc5VdFePrfNUq+1Ddhgudv+OfrEej4jGGaAke7yJ/qrRW4cNItcQjPAr+Y1S0AFcfO84I2vDdQQolA5f4oHte3mVqx7LYFwHbs3Rri3Gv67c0U5x0AhfG0oBRMiTVW29VGzNu4Fk3HQ7Ttn+SOrXtGYTb7lQKK5b+yy7AxmKQ51edDbHmvzXxBP15eRwCd9aVhbo+tA4KNbIS7lAOPsosVruZsDuBffHoJb/Aju8QKhaj1VfOQefbHcVqeGlT0+aKHu6+2M5DWHQFRf1CfSbfjHj2YRInrR/wKwXDLbgdIcW0iojhlbqgwiqOymP+yUdlqsf7HBK4ez7mOPfjXGzm80A1k7lhTpOvTXw4fVP/xD38RTh8X08gS+gKnjXA+uYJUfZQS++f1C0SeqCgayOYfSSjTy5lR+oOtjm/33ejsUO0d3EG5Fa4LP1GLs68ajYVi6rUBSbAn70cEq1ndYcHBcB4B2m/5dQ18+QMkJVYqFlDPmk8glEKY8pK7jkoHt6naEBbl12OEvlTG/s8f8j++V7UwL9rz3prRo1yPZG5/RmAMl7OEzuBBqOt0+Jnt+DOB5Wnh8up40No84q0BjxTn1Er73vyfO90CMxgJ7nw6z8XTKRXibKpXaz+wcr3nqICDL64mERf7yx+969sBwW66I2/LtUkSmCLjcr7DbKCUgdjK3SqL5T8L7QhIvqH2uv/8nssMOW4vSYwu3eESpd3016+XyQfAV9jqSrZMW753XhOBdbC3sXtISrNJgcvD4RW+qRXu14HGeqXDW5RYbEr/E5HKhCF67dk+U4P0ERMy5FErvoaB4m9Oy+EnsQPdIzoTXdHUQo1c1K6PXiTiomm/DjO77hrojtNjvK9Vf+jQUoeRqmGpCrBk8YGUEjmO+YBSZqi+gnFOhp3NfuumxYblZxw4eRbWgpovtQjCZwh8OjjtjO/DO/vZ+Zem2DbLTZSX2WZHKBFRt0mPzZb7B4i8WB5+vwMUJG2z2j89u+gXNvO4M69NtWzgJXIrE3/X2vjPKv/1ZiPIwrMPp2oLwuSKsFrnlM7fuQkA+L5OeuqKOu3b4zoBo/hvtOhgNa0gdHWZ//Ig1aZSbccNDOP3Ve9LCURuo5UwyVKJjsj1PDTAbCJ5imEeIeFv/GqvAGaWSr5mOXWm3+v/8Fk5ENtWFFAwsNfIe5o1/puhr+Uw8ZrqqHOrPgo/UEApqXR4tXLPOxIjfPLpgm4XWwCdG89IhQ5T2Sg+OGrfp7/jZsP0leii4OlDqjQIXs97sN/2hTNhcz4JB5mrXQ3w4lvTIPbx4GdzKgSeTbn3HqmMxRcd9DV6FLlMX3sZmDamqykBkPFlzxzPI37eLIC4PAT29eW/YPg9Dcha+IBHHd9WsOjk9/uXLoL/aoOPuQQLaqpXJ5sc0M4meUFHF/I8a+1wEXxIaKgD0Y1N183tEmyttuafXFImX6y5eVaQhID8lRr3zZwTLVAIC0/NZppqN/wo2JGMO5TsIcfBw8YZPoIbRWfjb+MrR37OiCmFnvRIkCsEO0N/vDY9R2r92w7LjixAWJa/TWL+mvvisXP0XfxSPLgXMgW4HwwME+OPzZ/ZNHFOFl3p/xWiR1GG5deUM73G6Yu+pPxmZZglB54wH7LeSMwgD8zv59FEMaie+Yaw/Pb/5TVS1d8dBqF9SDndASOl5irDBl0vawt3h65O6ckBBpZ33+Je/1p4WMcvnxIQvLjoRpXiDeEmcQIW1p+lUf9EVLLmukx//REDf5gPzSsbB1ecxDdHNG1hdgerHX7DdcLuYBI8lh2+pflHzbiRgWdJJlv2jHmOzvV9Br/W8Do7B9UvN7twa6ylyCKR0CLEO5gtbW0VNlDQFGkZK9Y1HDfbtP39ld06ugPlBmMI777oUcXHgk2/zqf/pKce1+mF+13oN56qe0f6ur/G0N9gBfu9DRZEy3v2F0wIdNLDBWx9MbKx2gTj42bkCRWQ0YqHRxxDsqPFEh7qam7EEegLyV3tCcc1eA/vc9x74hvYdO0NiFYug9iXc+B+R8Skq1jTqQ2CIrUqd7ugUG97X0KfalXpv9PAJ/dw4cBY7TD3tJhhLyo0EtjJqqFn3QUEADkDxv1JLahW+cVPsl6MOGDvz9c9/ocb7BoupuTkj/OLQonhxD8VsMD8F41loqWFzlkE4/7LCNz0AtLMm7C/36JZC5Cw5Wif3wqaf/zl2Zx1bneOBDY9UKFl7kxyaOC7GvR2JEC6hQuSYfxYsdqsHeDj+QM39IWhG7XZ5wJs5vLGGjcRn0HrlUJXePbVYfWo2PmqCv/3fRI8IBfHPHwKb30CIaNvF3L+6B9Avww0dUtvyhdAkJpTWUaNGsutioh3fMuSllqf3gWf+ertZDrSfXk7mt2bFgpzoNTxXwUJP6HbyxU3/ysbMSdh+Zzcg+MuJA2dp00v48vXp3nmuimLFf9hQWw/INBQq+MZmS376cRneOYTv+Hgk/P58b+b8nKfw+4k9pDSfqaA/vTR6vUgGIknDCkxZhqHp6dhLP5dini5vGQZ6OGz5wG9Y6ekqmNW/Dqs4mIpFaz4I+lzo0KuFGkaTQDpA/S/WqdWTDNAOaTVIXMjoD8+ZPrwrCGUT4/yLj81Cv4cDWHJuRjMv+AVRc+kAjBGm9DRoYTwn22yD3/1o0BZ88tPTv/2g505vzLh6Z7/4Rq8JpMa4rjKB9zvtsVcgsxCWyUuk09JO5H1tY8Z2Y/j46R2MCb2D8XYkLTx0wYGe/vLPMDtNGsFCfiCMWquJpxtiGXQfMkeP969WrF6X9fAB8WWLN8Wgn/vO+eEdxX9gDwYTOwhs9Qms3R7qsFitiqATdx9q+H4PRi6MezgaD5f6h+lqCCXZ99AQt8//7wYPSJM+Z/DjU9iIk+H13EWzsh+5Cv/jp+o9EyHQOICN8uYXU5eaKcjmr4mtFTyGemScJ0VPM0QctPcNJVyZQ1nhMkIOVQXmy+e+ypFgr5u/Exjf6TvmcE1PDtYl78hWQB45sPSOEonffRsWRGQEf2V4R2vlgLjf9CH88Tt0Nbvhn/7Y8vvGLx/GHku3Gcp3T6ObX1qMtfDLD4yn3pHRgg9jgcB/10eNw/ZdLgdQj+4I//jt41OlprL5TyTjnzF43bpkBnnBNdToWAqW8MMCOCZhha9zPxnjudmLIPm8d0R+I854/+pD5jG/EnolkT8SS4rAcrl+qXo/zQMbkjaHvvAQqf3eOWzDs0g27PrwTz9sfNcG50l9kd2uNZvV4XlRvpnfN3Y3vcn7qWzDxjrn2FXpMLBrZZUw7UGDnWp6xe2hcggMpLqiwQV+i9XTZBtqRpDQze8bul/8bXyJ0A3v9z6+RFBB9kIkkn3jDb9VYB6zK3ZS2zL4I9z1IMhGl4iSGmz8MeNldrQ/1Acyb2x8JYQfvPVtHrQJsOKEOChfa3nTS2PR518cwd4EKdaAhP1lbh4t2PwwqlIUNwutTp58unojPao59Ufj9uXgRTT7Xz3FFxVSH2T3fRzJbqu3sen5baWt8xeZhG4e5mJQAxik8YlwXfT1yf66ZHA871vssp0KRHXfjvA43xKs7ro/f/1UDxuc4wxildedZo9hSuD1ulbUbri/QrhmeQfLRMZE3vIH1Yo2//mV1ChudTNLkNVwMWYDPX0xZQvzNKKky1XHekW9eDhkzQHS1TzRcOOrwua3g+MlMNEvnpdc90ZYonImj8djGGaFVbNSyauD2Dd/gYnGZfmLrw3vp2YZDYsHzvk0UPUScM0Um/IbokRUsfG+lTHb4h+k8Sgi7lCpTOCuXQnUV+vgePwYvmAyQYTIYfk/vrhcnov8w2vqK9PfMB7ShAPrPLinmReGeGnL3AE/f9MRnJqt1wsjQEnqkPDK4Q6Y9socWJw+Z6wvc8vo4VW2sHSEL/3V16iP7yG8h94Hfb5h77MPH7/lHro+DY7g7f/8e2nz+3560J8jZSKwa3C11QfLhnHQNn9+KznsqM6YcvlUcjb2T7SS5jOsrrlXIfKDFP9t/sN6KDwRprkVYOR8YTzx7BVAIOov6j20LJ6SR1XCb2jeiSx8Y3+24mMHNz+Yakr1BvRanUqI5TpD0iUt2U+fyw5nf8jc5w+2bPVIWb47GsacchkW+p1lsPnzNBsT4i9YK3v553doW33iX31lWz9Ws1NnbHpnhd7ffMdWA0ywysc9D+EU5Wj0iOwTcYlWqEptj209jZvl9MwSON8SHZe7JWdT5j+hsrvcDthf5Mb41jiB/9VXTmk0i3OaIwheCOHT/RT72/vzIKhVg/5t+pv1xw8CbkEY1rL9MrSvyMkU6+/RIBau+jC/s3SFW/0FO92xi5fp2+ZQbfxg02fdwGCU2rAY8B2xUU38Ndv9IblVckKd6TgDlivBDNGshVs9k7G1uJ17RU9kj+pzGhvLPg9T6IDvgAN2pTHN7mr94+PUsYfZWJ+VpsJ96bjY3+o9fFStMlThKmCPiZ9hsvLkAf6aPx/bZdaBZWKZJ52qNaWqJMRs/RhDBON9syeSsI7x0gcvG2qkaMh6e4JNL1YR3M87A/Gbfl26NEj/vzMFh/99pqA4VAYt9GlXrNPzm8NW6wk1rgcVLNL6DsElM2casVUxeopzFV5d50jPGWAGk7detL6eq4QXicb4UXCInFkexl4Q9g3bX2UC09eVwwYXiMXiXvweTv4lxbZO3EGMRaUHRsgvFLnVWFD8R0eID55I1ec1NmY4h29wdqMV7Q6PpukOupzCx6rI9NQBy2fvsuah+H0M2FrLfpge0c2Ub+dZRu/7pBdkT18ROHtbL8Lei4tJ2dsqEOUjQtC/Pv2hHvsUJv7Dwl6Gn/Fi7tVAOdPXEd+QexsW/1rUkPnBgN1yeBbrJKo9/JiPlqyGVBfLs8Q1KG9ji5QdeDMGrZsOjEuqU+OS2EBc364HktOVEImrXw37iKgEdXolKETPG1vv+l8GRst6o52WKazCVg2hhvccOdzL0qfpocwhEfsUB1go4vU5xSXcni912S4ZFuDve/i6yg9sc2UUU7lsZ/h2aY2PhSY10+20JOBNHESAa3+aJbkfeDjiC8Inc8iG7f2M0GxOjAaPa2PM1VdKYQbKlkaGVMdzRYQRBn/fE/Wq+jt8Vo71SpAwnWI9/RazE845fLdPl+qfS+AL3V1eQSSIB+x79SmeLdlFcG5QiT0OWz7vxWqojKS3CdCOIVvPe8wB/yQTBMJjxGa8GN1vvVRtwGTMFRe+AbL4Gz4J6FTMu8B04CMFJ+plUzEwFdgclPe9jdpXggYWP6cIdik2sLU8dv6aq7gC/KrnVBN01Re6eueBpHMv2MhSUMwnozAhDmwXG4HBjHU+wwBKqy5h+yQpw7gLAg9OdNbJUNrusIbuyYTJ8XMlULdPMa3HOgVO5TgUcygHk3t98WB2MoH6L+E6sKIrZeA37ZOISWQx4fYpOTC+hhZx7Z/lM+vtmyC6SHfqqFNgzA37zCB9pBWSgomBhVe+GWSr31LrfWeMlGc5hPL9rmO9/bgF/3pwCJ5N9sSaVMnx5HzUUTFWI8LBlcvBeLKUEFzu+yNa1/QaL3Z4e0P3cH5SW28rNoVzXsE6RyXa+QANa1jo3i6QxP8AAAD//6RdybqyPLO9IAYiIimGdCKdiQIqzgCxARFpEiBXfx72+w3/2RnvRo1Vq9ZaFapO7BC0LKvkG59BMr0L0100mezySgH83yojbtf3GX9ENw3Wv8+a+ZHq8km+eQ0yqtFip3XQoHkXrzzIhGNKp+wx+HyOUgD5k2DmH/czH0TNbEARfiUjL55n41W557ATz4wYxvcTdUnDMDxUO8Fv/bddZtWnApjSu6RIP21LnsiGjSpd88nDOz9NttmtG3Svz4Q4fvop+Y88ROirpGDhGcmIvc1ShO9uvye68xP9XjaUGOLh5JI4jcpsvKxPlror7R87WJ3c9eve9+BzcyuGc3GFaPQAjPArLGnDhLL7FeHNBqXYf7Dg2wpqteM1RSfzmRHf6y8+G1cHAdWuvWLWOq9Q86ZdgupSqYl/72VzssCq4HgXGyruIz2S0NRKMMBr8/f6Jf8Vcw9/eHTcKU+fNqJpg2N/v2RvfyZOz9vDG5LzODNnSn8dv/CjpgZKIdK1S0ve3wInRNcdAiq7nmqO7+lQAZGnG9n32cHkFZ2xmu6LHjezRCIqSLmCxHB44zFW3ubUPGMB+b+LzEh+vZTDa4ctpCVhSUwYx3IqLT6CchJitt+5gTk9Nb1XD5kxM3efP9C4FjSsmqdHjIVwevoMXoWIoq95Y37Y9Xwe6mGGIC1vFFXk50/GVuxhEi8JOUhixqf23UvQnNhMn7BsgQva4xv45pQw6xPTckjDda8M9uFNjPaw4eN3/86hS08rpuHryZwfxsFCf/h+SH61STtZ9VA4Wi+Wha/Kn4/3/oIu7FPjjSwLZrfpbwK8XGYyexysbLIrWYRgJAF+Ob/YHOkRjuCCQ9ghJWLHR/xUIIgngxye866bcZbnoAm1zILnPu1mw3codMV0ZM5wfPIm5Nkbvsu8QrsL952ozvOMjqFwp1FpirxXi+ypfNNNwfZQlhGLq30B4qU+ErNp0ogHSZQj4esGS34rnC14hza31Maw5Ps0hZmG1It+ZGQ7PjsuFO+LujN9THA4af54PzYGWtO9jaXnsp8vSLIczsWjZeSqfKJxtTZasFfWiLlwWfnzENpPiE6RQadkajOKh9sb+Q09kx3afM1p0s4CYK3//MOXWfMjDU6WJ7AF781pIqMEnQwx8TN4lr3d0vgvfim3rDyrBSddZuG+HHZ/zrtykm65gHzzZ+OVe/ARP3FolDAzTwTLU+VPn73fQNRPI53qoOb9s4/ewLXLE/MmdhD7eVmOrpr7wUpg62g9HM85wpptMLwlRcS9ZJjRTpcd8vhBxvlG24bQ7o8pudqZ6/fyDY1IiQ4pccJs5GyGWw7Hu9QQtxE1NKc/rMHLtZ7EFaSrP3fy2kPu/a4wa/he+Ejor0DK/A6Z8bicI769PlP11xecaE9S8FEe1QC04ncnfqT++FwmLwXISXph+XNqTX4JUA+vbVOQvX3SMvb4yiH6rkKPOa6n+gOybha4V1aynezLnGneT9nqjN+I/3DufMFbB62/NGDLeZnT8vuo/5g6XY2/dTdZEbaQMZVbLH5i2vVFa7bQCbQjVlS73YJ/trz+9gG5ltox4lW+dpTLDfd4sJFuTuGmHiEetj0Vjq9NSWt2MkB9tGfKVwXPZmE6PuEs3HbsIPx+fGruygjf1dEjGdq9zRknSgifq1wwcz+23SxeIoAgfd3IYb/7oWbSiQ2otI94kETE+cU7PYFAs2dmbPz4H37AMKY1jV/eB9Gj/ZblcB2c2fF3+aF+9WEjFH5akMMBgky8YHEEm1fL7OIg93vf/KTA3taTXU95HI1fef+E+XnbkUCZX12vr3+FElrtlZhm/UJToU4jKHL4Y46f7rrZ7TKAwk8KvFHXz+zHjqaDKihiGhK8Mhc8iUFLjiWzovpXztLKcaCm80TRdx+XE+Z7A1X2+KZd2pbdfD2kT9hqYvLf95ko1REK+9hi9Z3E5vg8hzZEx+ZBjMu2ilhC/ApO9KKz3fWbdqNaPhTYd/6dKs/kyXtrdVW2Rd5VxKnLvTl6fafA4F+XXTpHHA0LPgDNHyEtvNmN+KW+XqA9aBPbD5sZ8c7TPXV6RA5VXmJdLufzRmROHsRHxOM8yhsF8LPVsHTVnG4traYjxN/nTDe3k5HNJ3GYwXecK1vyhW8eyT1FV1LqOHrd7WhS7Qbg73yDmbdoOq4vCjgaHqg43LE/KrnZQmwLIrHjcLc4g18KNXlsGVYOP85POcLQRWjHrP3dM3mgh9q//CVmU2cjMZ0RYh3fyeEoyj4d0M5A7CtumOEELeLr1rAhfqcC238oj0YmrDyUOXVDzC4QM/anZ8z8+sBcnG58FkEOgaLZw0N7MPxZcFINXS0tYiS2aMZ2K9qDs4tfROuTIhrvoPVqMfUiVjbvLuL3k+7AZitY+HcJb+Zw6J4FuOARFjTH1OeOLrTKdta2xI0lHvGvY9YI62pHlnrxh38tYn3sUHnhG7PwyArYBqsf/fG1z4dW/MmQvsOI2EaloYmHWq/eLkefHX+B7q/RXeyhfFkj3ax7jW/gJoeA368f89106/N690sgDaonHt9cRnyEcoS+yxD99/5/r1iGKXVjYmUfLRu5WQAs/JDsw6op2Y7oLQhdeyc4s5qsbaanomZb7hLDUw4lu6yVAFGpuTB9OMz+lJ6v8h8fwmtjo2ffPcxY2fbha8G3uz/STVJDl6QXcpBa7g9FzEP0xw/P269QfsLRCWDBczxV48vk1Q5RADf5kD1dff0hPx8qME/3mOw3eWJO7FeP8DNOIzOXZ7b4Kb0Zf/yTLPUum1TXdOBsXG4YFWKQ8Qs5KyBe1xfmn24M0UTmGK5YLhb9p0fjqnAxIFoLzN7lfVf5zLaAHqEi98NslpvvY2eAGNorXE8rPRNb5ZpC+X20dLCue3+TyIal3p+VzMxVwaNxigIH1EdzZs52k3bz/mdZiOR9v+BXHzU6OTj/9Il7cY7Z3EmpAIuewFPyfZWz9phD+NN3oIqSySvnLgMw+4rXUeSaNCFAkXKCmEWH82iOXINxu8Q30RJ7FfWVIaeweXh33I+7xuwV6tA//oLh8j77Cz+tkfw8puzwsq8+v3+eqYpoJRC/up0QB57J8H4InLnvLCm/UIgNGpvLkVaU+SavuFQhxA6vPz5Sjp9dWiN3Ci1cgnKLJMEJDXA1alNld3P86XNzKDST0TKLss7n98vuDSca6wtf+pb8lx/faqU3lOwX/OUUBFv500c2HrRMapx3AnoVdsyRs2VW+PNmKamhZph3RldO/k2lf/qc7CPp0zWydvTA+g4WW+pttLm8QoA8rkYsvrwP/yF/1UBzLHq2v2W+L7lx+IQNIh7bRZHrS3/65t7vaiwcrxQNRXiyIUFFhSWe7X3+nuoeqdMjxaLtD/4vnhMLPe78SZzw1Pj9Z71q0MlyBCyp3jrj22uT/NUbgrdEyBq7pRe4JJX7x5+60WwuOVrJqCOajaeO5vXtCYamIiyt9TPqrdVDQfSyzDHZ7tYdT/EUQl2VLv3oHyvjpgINTKkfk+DBG0RPT/uNkrG+EbPxnv6vfn5DFZzZoPw1Xfk/vZd+0z3ZKSxE03VjeLBv3wqF4mr663hO7L/4ZPbzs2wvd6OnemofEdEE5cN/NlKO//B0hYI6mve/wAaa4QBzu5GiWXhEBTzxtSD4M73Nsczri/qnh76vVOdSJGYFXIqVSfRq1M316/aJ0cL/GD7xuJvzOM/BPMcG09RCM9fqxjZAuydXFm8MvvBnUigLPtJbsf/6cy3eE1ji569++Hy87PPtvtZ/dNUq+2jKj26wXfQz24t0nbF741VbnxY92f/xoT89WWjPiJHLfPLnvXao0d1/NewP/0Y9aAE991Dh8nA+mutYnENY2YXFvGOV++PznNpwVsc3I+c2R83zCiEM0vQkhrxtst91W13U+86h5C+eF30wAljhRDxRbLpR2XmBsvg7zFgh6KawMB1Yu+aGqgfoM04cGqLQHX12+fv76eMG262eI9Loutr13rnNYfXVDKIfi7c5a+84h3srPYmrHp1yNqr+Aurlx4lvlFI3fZY7kC8cxIy4h47TpBY8xV7ZI75YHunEcfvMYRIqjd3ao12uW3yo4PDkHmYTCrvpuC4UCLbiifjGsIroVbppUCDIyW4bDeacVBnAubi3zL+/WcQWfY9eGMe4895DNr9WxzfyTpLBbKFGPj1X9KgcE/uEwewRn6Q4qSEYN4yZySXL5jkObPSnN4q+scquogr+w3dmXA9nPltVagDWVx3R4BmXvQM3C0S1dPCkzNeIj9CNsPhxBH9ft4yfpjRXtl9vYPZbX/wXZZzheA92JFrFbTfG++aJDG2FmDuXmE+fuY+VzYNrVE13HWq8c1vA7p3bzLSLoWR3eEngXvcaFo4H2+8P56MHiSLqxBbCX/dPv7hZdWKLvu5m65DU6PSTRtws+r5bJwcNrvVDwWw7at3ipwgoOZ1edLxZLWILPsM2uNpMk6Y6G1eYxmj1kjGuhfBX8rRM3n/1nNnSsjtj8WPU7EZ8upKbIBuf6aWAqdAMst84djfPF3pEf34jfiRbxO4n10GnHz6wgKxRRHM1FUBS2ETXkzeU/a841VAZpxMxDvMta4pzlQK9UESIa5rmSPIqgfvrkBG7dB1zfJp3Ay1+BxW/stONdlQpsPh9LJIOj67naIwBduWG7IdlLmN+1AN0npUr0/fmJ+JjY71hW789hj2Yzfksuh6c3O2ZrsyZmOMt0I7wXWtv4tkrqfun5084renrvss4g91JQ+oR5f/VGxi3PTomvci0tqk5351KCej1XGDZpxt/QjY6gnZPr8RbO4rPg1RtUXALI0I0xey6Pz9yef0/vozkp5BUEJ1OBrGXejD/DnSE+mekeFbO2Nykn5lC390QO1jX73IeZ02tfPmCt3NJ0bzUR7WacY9VYj270YGbDSIcDZIvfu28v+41WJcYEX1v7rIJsWncQhUE7HYJt+YcZHREfcsT5m36xb/YKjNMD9TRiT6ISYf6M/7hIYnr2i9nA33mP7+M+N+TmrHfK1e2trh2mPu4WeYYBpsAJGy8MMB76/fFuUqQ47OMCsuQAWrJ2yPwzrPpfL0K3cKPKSzxTJbn1f0/fo7mSrnQctHrXEMYAMj0WPJR7Ib2QzRENu+I7deS2w350cWw5D+9Ph0Ljb95lP78GqZXisun9rns7rvYCXNy4cXnv/rfBgkmi15Ek/UxHdQJfUcW/44P1rsRkKTsMPEj/jIHHecG/Ol167PM/v/rLzB6mJiGD042V6y7KIaFbbJ/hoey119GoMLutVnitzH5+9wowGe3Im65KbJm9fnO6O/zeJL9Kaf+IcdIPOU5sc+VwUeSehi2vqWx4Pfe+EO5vwvKp9giLAnOc/E3QwG6+NWQw0CkkmPzJaO+9dbM93rJH5zwl8PxpyrE0M9ONJXZOvjHd3xUQkbFFgWQ3Q4+cZ+rkEt/fsWV5Tn748f9JQjrv/hh2amUO+lotwqo0z2lkqr1JddeXYxU6YuX+E7NLmiTJ9r6toZH0TTLSVRfqVqXck3VxR+dhm0Gylz7OdGj5yXi48m0t7fwdqfyOco7WlpGox7Ox4xZ9Rhn/FKuPZD9zcC0bD504+1TyuCFxYctfqTfh4V4RC8sbhb+LvsL3o4oE39ndkhv92z85LEB2XZyyQF2BI0UYgGW90d06/zu/vpVQO/7NTGW/kWjv7xgOyAU02bRU9PCD5AtFAeqNuhj1om6qtHCn5heB/Yy92fdgs1rY3k9NaKiDj28Rv1G/vyddX5l85/fxQzHeP99/zK4WX1i5P5o+bT8XHE3rYCVfj0hvj6/JVW9dJzgQXn94WmIzI1rkwyVeTbS9/YCtzC7M2vxf9citd/Ir4jFnHsYRf3Sj0HOK8MU3fvE31Tm6Qla+AzYiSGRz2ndiTBoDx/nqlCgWXitG5CsW84WvwmNMCYV/F51Qxxlbfsi/94sWA9FSddoszdnY+tX28c1rYm58JXN1zErCB7dgSK5OyKpI0IDKx04y05k789BVs+QluWNLfrMHLOzRMHNsUjXj9wpuXawbJVw3cBu/NbR1MypBk79Mlgq2btO/O0TB51XZoPfmtlFY/ZFI3SC7TB9uCrLebUiiCF7E3IOjJIJueaoI/YDCm3bRZOF9R6+bp1Qih4239DTPYVLbMt4XqG8HL3EamD/MHy6Wfwd6RF7Dgj180fub+xnHCeu96fX2fGwE83xFlHpTy+xwLCHjF0CRNHCt/F78ZOH9v4s4GzEN6I7POfzZiYF+uOnq8VvmPzbuoey3uyJsy1dfxy3z+KvvjAtUlflMMXrABz78yV7MTXRWn/zI/oq43bpF9po85fv98/Cn1ND9f/6aeqCz7h8+r+MbgbTRov/gdWUxN2MrcxA20D9kWDqLt0/fRXra43cyrLnbFc+FXXpx5DDEt9//i0qJir+0zNDuNcpFOrhTTTxejbpNkX9n75l+6pembRmNw2+RA1ptvC/ubSMFsLsJ+Il38uJhZ8Luu62QPy0NbvB/bXKn95l7pUWnL1azVPrNnoy7M1uNrvGPYd1GSBcLvV8av0uga5wBrxthF83PeMGAMZzgaXZ9cz27DQFWvgjCWKoS364X0U4B5VOHpd5Mjtv5Vkgua8jO7SHtzkqxtMA6Zd3RNspT3M4DnKMPkWU/PkxWfVPr1s3xDB7Hv21tdHwH18hmLWL3xb8EtUnrrjU56/Pt6broZZf98Qt9ntTfF9/Aix4QbxNYnRj6N0NVEjBjsTpdO8aHk4ivON8x44lGvzZXz1lVW+7D17pVvCvP/iHT2y3va/5bGzN6s9fJ2f9U2WDSPEbfm/iL/3vIPrzz9B2BwE7fZu+m/LqWcD1OZQ4qdwz4kv/Fa676IY3/eeM/vk3BRJydlj80vnRvFLIIziwYP69TTaudsL2z28yzihBa+Sec1Rqzxmv9Y8VTVZL3v+/OwXb/32n4AvEZUaev7pZeo8pwldxZM41nbu2pHEPMfdWTCdvpeuztBRAcGvEDp/wUo7n7a+H3XQ54M/n2pf0XT4penzSL/GaQ2/y+BMX6uWFTELk+xXNdbGWwBE+JRVybnWS8zsuz0E9dTx3y+zhe5QdwWlazszBGrPhd333UEc3CYvpTkVdIHceHLXWwj95bDM6+2kIF5+9qCg8M386El8EOPKGGuHWNXnkX3LFyYM32+mjH011JdQQqaec7MPGisajd6yhf9ScWW+3NSf9mx7B29gylofvvhuV7c2ANPBTQq7XNqN7I5rRjMeRkNXw5Q3Iro1McquJxb/vjqHAkaCZ7R5LJNXR5ppoNdA4api5ulh82mhVAFch3BEnfUl83CBZBrEWbOKmzdmcZz88Qv6tn8wfFaWkgXsFxYvdPX7LPCz5MPAYKI43zOLFpaSHMRbgezslxCLBJ6vWqiPCM6sd4g+OnfFtYo1QvquRWFU+RxPMTowmO8DEC8XIn8IDkmG9ftyouhfUrCnhFYDkw5Ze7O5TMj+aHJDO1GPGitTd4MZmrSb7omZWbbVRM8xSjaJUzogtbMxOJAi/objpFbHsu+vP9UsToXoJM8GxbGViup5kqNvCJj7PcDSyem6Rwi4l2aelVa4VfjyqziMP2S3LJ/PbgxeCOx0uzM6WfcZWMbVoeiSUuO1XL0Vle9Lg/uvexEtZlI2nflXDazj7JJ1/mr/ZoYeCxAda07X32HdSRGUPnXaCRAJt5/t9Ly2zsM/Uw5+1fDcH8e5ZsF3Bi+xq3+m4dRkUmDe/kLinrYw427YJUlzXINZa8VDvaPiibPe2hkX9dzCnnL4wmuTTke3keMpKz1Y8cKZ1THZu15VT/dUrMMFqiPexv3wwNS2BOFfvxE99vez9D0qUDTYRRuH+nC35ECL23CMqeC/G51X+7FVvkK/MOx+/2XQpiQEFKy0sDceV2RfayVKtd+gRsr5EZbvED6ztdk9sKm/8SX3VKUzn84M5nR9FPBuyHkSbnakQuI3ZLN/Hqqq6mW68KvEnzWiOKCS2Qw4ue3VMy46jWhy85Z5TNWRcfZeK8oq+CI8b+8dnaehTxXZXKrO9+xbN6KHVsH2wkZZr3nfjXIUjlGg6Yul9rbt+raxFWMmXFf4s58WfeS/DaJ9y4qqVHTEUaJL6XeXbf+fLQZ0kkMIiJbtS1rJxmIUKDY1/IftTBxHbfvwZPl8pJjhvk5LbLAI1o48D259EJ+Mf3bCgcg4vgoX50HEurp7g14VC/Nv103GdmyMsn4fO7uWIBnkVY5B5tNxzPV95Tw2the38e7PgVph8lp5DCt1VO+FmNY7+sN44tvLZf0tcp3mdzSjUa0CUfphBP545lvAL0Ea9qSS43yx/NKWNBR9vEzF8LsVo2gZRCM9MT+gshELJ300mKOPtFZD8Oqy6dp/fZqXPzyYJR3nOat02a9WqVI92PMPZuFZUEX6ncWD74apmvBHeHgSrKiB+XrjoV6dehWjLHbq6tXPHBHgpqu09B+K+5E/Ehf1ZQJo6TMQ4nSZzvBTZDPf7qLOL5Z0QveXbBH5TTskfns3yq8lhN/I7hvP5ivrfsc9hHVkJM7P62vHHmklosjGmfIy1bg5D5ihq/1VYoI3IHLtf+Nxi3BLM30OGRunxleEWHbdklwZgzvkhfcN6fb9haX85l3Pgt6AMm82V4UBM/PGlTh54w/lLPPek8MlvaQNk++WU3zFBvN+ujiiwPYQFuybdhD5ujKiT7Fm0CZNutrqxhV18DhjJpwufWDco4O52Fjt1133HwZNlNDuixtwP/3T9NF56EG4hsN0byRnzetHeqke/xZMNbUbFyokhUqqcGWSu0JD1BYbX3m3pKkCX7B6tegWq7H76h2frFXsW6B2uVDp1OCvHMIJGoU66Z3uvks1K3p0NyF5UoCjcr6N+n+Uh9L/YIvdPKJXtuCo9aPeAMWr8Ipv8tm7Q6UFtKlfskU0DcyQwjtWZhPxW+5P+DY+QCT7GUnY0oi6BuYbHJ/myq7sLzHLJN7gwbBCnfZYZX6/nGi35xrTtbTZZPEcFPHJskz/8EBXrYKPj8bKj6iczOvHjJDFCyJGIKZMn6pPWkxDXk5Lsts4hGovD0YJiuTeLT9OyX1aQU8gwD5h1P2OTyYLdKxH1fOLooPjTIb9S5fxb7li5HnTcSmQZWKlkzAqjXzn62EnRtXqu6eYkOhHH+eGIeuPLMb+KZTa7n7UIS/yRYJUcTO5HWwfcLvzg31lTzdnRTQnStQnEXr2jcvaDWUFV54ckqB0tGptuThB6wYXYw833aWLwRP2NW4EYT3zm7PSFGMVlLrC9sHga5qBVwLbLExwrvTXH5LuS/vgIORylHZ8atW/Ajhgm5k14lCzfn0ZACdnhOahfPtX22RP1dhLRUVLvaM5wm6PD1BH6/DRTxnN534O/+qVUpfrMmd/1HmxUGDBQUyun23t2YJqmkY6f5hTNY3UO/vgICx5Th9j3NjrqebdekcPpdeZDF+9n1K+OIjGFd8OHqrm9ISWZR2x62JusgasDp/C2Jwb5JWi0xQdGxrE+407WCz5+lt1LW1M8MueE6m6a+gZgk2nA8BWBz9YabZVPXFUkKY/cH9B5c4HuapyYuQnlbkw2yy4i/BCJti5OfKLRrKjk7r6Jn59V3u9OY6Bib83obIIV9av6EUBcU4q/q9+JDw67vSGxkUSFK8rNv/+nZoEVkOgckZLy/SpG8lF54DH2ZES3dviGvIpHdnxq22hwBvxU6Ov4I/vP5+fPm/07R/Q5bOlEOrv7Zf0lQEs8Ml/WCzQHUyXDMClfuiX1sRtHbaQgyIJKv9bpaIqsYq2SC7ZGR5m+zflnvUGl/n5PduPt5M87qW/+6j+9n15nxNnmkYC/9RXmZ+2ha7lqHoFey4Q5wskyZ5rUHtqT9YPo511k9puoA3iQw46ZV7GM6P17fKu1RiW8OrE54nodzGho3As56NonagXtQZF67FP2qPqN2YuDJMLBfwxY1k+ePx6qroANPfZ0O/aCP62UuFA/k7FmZp5y/g8/Bp/tsDDEa3+c1DuFn6PnTD8tc75eGzlRvEG5koPQkWxsfixFey05YuHWa9HaQ1oFpOxMLKFvlDGO1VrZ7RVEDvFk+6P6Uzx06r0rC+yE+3/nq7y3foFHLt266f0tCthN8eEfnxlPzKth6G42/Zbhk3euY9hQHByT2eHL9sWN3QMK4JITLez6kqnvTkZbKTfw6y6SrF/qGVrqIbuSl2aK85uM0G1vIXFoVnb0Pgdv2HlfRNelVUXzn744Hx2NncLZQ9x0axlpzl4jnvDQSr5/HTQ0J0/97zz4v3yd4+FF1WDY8h97bmX0vsx3RnK75mzrH+atZeg3Zr6lPZrFlxrDnLx1hmcYzN98igyQfGFLpYVPz2Q6GurhcTywWPN0f27aXoHk633pt5oGv4t4l/7pIbI/aX221MvnHx9mBs2F5V66Y6He+HByCIYb5wL8FFi+L6pkJctm7WE/EXrdahZYmp+td/BJ4E/P4ECUzYXPWH98hGBy7tBM2NLTuJYiPmannHMimSGYJt5T2d7VJvefo6c+W3Yj/l0983/6TCzphXZ2+uTz8zo1iD9fItHltZZNO2FMQQa+YnvyevrzO770sK1nHUtplGb9fI1mWL3WDxYveM/WxrZBiusbxJEOV95funTe/ukbrwp9RKshGFF7kAUsL3gzL3oNOPZmOrVl1807/KB/+oZk2i9HYyTTBs7NNJKdtP74FJ/3Bhjv1QVDUGflRBo8g1w5BKv8KSDuINMAXl1ipg8tQ4OuJzFIs5OR7GMpJutd9wLNw1GI2X0sf74dWIq6fKVTHgZ+xOmOJmAfxjvbEYGXTAvwCOeVpDF8VKulanQOpG6eEs/DBhoL7WbBRU5Lcrg/3xk3Jy5tX23rU2lrP8pROzcGxHVP2Q79dJNX6UGD4+pxJtjaZbzD+e6IbnYkM98U+nL8Wmqi6NE2Wvi83g3BqaNwKIY7I6sq43y/3xvInciFhvFLz9j+cjPgTz8bMg+7Of3JCTofPQ2LwhP5IxeOo3ryt/WCX0PJ8vAwK9P5+qCT9jOyEYjoQHYOB+a++1e08HsFyDWYmbnmQflPj4mP7RrX72td9h3J31ufqTeGhXnopm2FQxTiMiH2A80RX/gH+tMDkk7vXc9qpUEL/2NOt2LZPz+iMsJp4ftNNoWpIivax9bpelW9ohE1KxstKzPp/fZ5m398EPDmOTE9eBic7bwXQAxdgYXM77P5+f60cCjYnRnhqPqTyd0YbV7vOzNPCcvmbXR6/vEDLJbNxeTxnOVo+X1cn6rCn5tNJyM3tHd03bVxOe2mbaoM03WDuXtnZpPoqoz+9Mcfn5UOSwtt7V739O10Tz6nYp+Ctks0LOF6h6ak8mw42wmj2+vriLhffBxl0f9UVNe+P8rKUwAndCPivPOr+bVZJCB/6yrE83YSos2mlBF9hT/ibpzZ/xev6CVcMH8bPpoO3Y+C9hJPGL3tF+dxcs9B7T8KFfZp183Dz7HhmVwSdlgD93lh6xKc1/PE8HJLYVbvcgOh8muJu9eeWX8CvVKHtXelofaNS2paqAUaSwnT7oZuitF+pKrxPF7I/X69RPNOqlqVqGnE8DrRI5ELyQx/fCg75btIun8OTwXHH43tar8pB3v85UiNwCMHL53K8X3uMQyutmMP+b7hs5oNDfL4xqFjL+vd5iTyGOwhL1iwHdc+87bchuAjAfPD/TpjmfOiW31oSmb/6Wn7VwZI5a1Pdt7jW/IVDUFd+Az78zem+3A7gredZCzmr9Cf3Niv/vKRmJpp8HEdIwXdR9dc8NPn39F+FX/+DBWW+Gbrw6ddmjLxor92Ee/eVqhe0K4k7tgX/vwNJ1lJlPRK3FHHPj/pc6LML3em4t7Z+vzQxssuwVZg+2v+zIb1RrPBiE5nZl33n7/6mSOrCRRSqevOZ1zcPOE3IgFv990xmq6rRINT71zJLkz3fH6+hwYt+piq1dfuxhsWZdi/+bL74FT6bbEyn2gq1gI76N06W/RvomBlfjFTozMf9R22IL+vCcHNc+t/fl5HgaT5myQbPUL9xq7gn34n+9ePT/H1AXDUGovddW2XDcXOisE7FXu8XfTW/HZbCh9JXebWfMOIbXDT/+UHMdr2x/nufAe06BWsCBexG9YYOdCloU4MtLpEvCInDQ2FsGaW5unmbLdPqu5v9YiPp0ArRe3caOAOqw/z3LRe6uNLVml8apj/tnXETX+roMKVIzy9H49s0R+K0q9CkSz/z9/s93sNJjk6Mq3ODxH/erWDRlsKGNG3ExpeRl9AyS4rqsibphyCftsC1q9HtvMuWbk8e9ai11FBxHizXznfvkOC1mee4C93Xtmc+/s3bK48YMZ4MLK5eYzyP322b287c2rGoYFH9rv8+Y/lH1/8x4enu8gimvM8R+XnNJKDFvyiaTh7EkRWgijKzyoadSXV1L/3a2ney6Qs3XroT996UvWMaNh/HJCtHNOt8+g71rt6rP7pxXA8vKNp3JXCH9/Hz+wEiG5P+KmYb9khB/txivjC/6G9tgSPfPXphucRJWipfyQVHlrXtWqKkWg+PszYfmk3C9qVovm6OjEvdE1T/B2rHEI/asjid3bdkq/oqYsybZ4WixY8TWDb04nt15lb8o+wMhQlWZsLPzazGUylQdG16Yh/xttuttd5D220YVTQ92XJTisWo9CpGwxveTTrp6e0qE2vhPKbsCp5/QELogNKWaAPpc+PphGDO402ccgjzNZrzB2QcLclvjovWybVO0WL/iJOz/1Ofo2KA3WUSViN3APirmNY6oJnxJd1gS961APtO+nMwILD2R8/WD/ELzkMBwnNuRa91X5S18y9qTuTH9ocoz9/78/voHFxCSDmzoroJwEvzLMJlFv9/DEbfXlEn97cQG41jN0MU84GdRxTQFmxpu16rP7Tx6d1LJO8drT/4q2EWKPJavc0X/brWkC9/V7pn18g1k8/hmmOn8STKi0TXeMWo31+GtnCD/kSnwqqPsEb03c4dn39NC9Qe4cznfKzmYl/5/GXn3vtQvgIBBwYpvMGi6FwKxc+b8HCDxnRsY7GTdQJyoo5BX3Lzrub7eZO4bwSNXaN98d/fjQ80PnKrPw1m5OAqgQur63JjFGeo/4Bkg2I9h/8h2eMxmOKFn+IELkuOR29a4AEzc6ZuzLDaM598oaP40SM8M0+ayWlTMD1TZGGea534/J5wdkxg2j0OpR8MvEbStIKJDifN2gS05WFGueXEv9jpeYYuk4DV+X+Wfz5XTTPFzv8wy9mL/76eJjaXHnFXke8j2Lyzior5a9eEU+4xKU03l4YdlbnM2vB+3/5t+hj5mh3bLbha+vAp7Msipb4HoybGYMQxQHTXCeOREezY8jwFDA/lU7dlEy6rcbp8c6KGQZ//dcPaT77DqP9tueT4JQ5DDGqiTf0iTnEtxaQJh5C4roelNNchIYqavOHIjvV0JrLiQHivPku+LPsyvyEGnyGyWIal24lXfw+8IfwhuVc7ZZdFsYFEk21mSvdDX8kZfaG7Up4McfrLtHw+EkxdLX7JrtVdo44tsIQha+7R4iOlzmIIroAwneRmfxZZaPxsGzEr+eI+G0/+/weJyOkAfUW/7Qo56UfpRZIPZMD1Wc0KfUtRNdYEqm0v6y7+p7enuAPxxt7xKt3N0qvWYHnfmqoGHRTOZco65EhERvLXidFTNZOMxxhPmP+UXt/sq4oATzVOgtk527Ol411hHYv4H/8eMpeb6zeLWMinpTFWUNvqEGLXicGiutsll/PHIRuBeyf3joSU1KTlF6YzXXTXPDZ+ONnFLpvkG3EBlXANKGlQkUrPoevyUGr8w1T/od315MRgz7sOeXCLV+mbh1GCPI2I1jaDNn06N1YNoWpIfpdJBH9nV4CukttSYzuvOX/4nnRT4R0ju9vUKCJqoOUkh22QRlN5J6OctptljtE3S+axat+gZnmE7bXqywa/QRSyBXpSFdo/nYMXUD685OZvbUf3Wy0aoX+/Atr5nU5kfVuhPbkMbo5dXk2h7HiKK5zEZf+2IX3LkliWPgenbi6QVW0l3t0WqV7Oi7xPa6yDqPm4SlY+Nxiznvmh3/1dOFDWiSp664BM9tsiHt9jagfZqlCmbIt2KFsi2h6tdsU8m/1ZNqqV0wGy9yuaHPpyV++PABRCWWoWHaZe9eS1TOyQdZxQWG8OHzpN0pIK+onOSz9s3/6B/T2yrAmbLqB3NMZ9Z+ywiD9RsR1zRDhEoQn+qpQ1M0g8QpM1l5xtYezP/2qFwU35js6BQ8D9ftjc0TjDAVxtarPKjuv8L/6cuio101n/gQUGFufXOX3AY3m1rNB6lqFWGSzzobxfgEoSSMQ7bQ5los+KRSxvl3oWKl6NFfn2wiPc1+zpb/F++0jM+ATmyIx98IbDUt/CSlyaWGQT67JU7Ts7j2aLpau57fPxIbXf34Y28XD0Rzl7iKgOoKaXbULQdNumhKIrnuE1+vD4DP3rVmw9MeovPiFvdKnGli7yKXjKdC6zdXXa1hlMiXhxlei+QVd83dexNx7NafzxT6C6uEtXf35QYsfCZcOwkWf3f1R39kW1Iq3J/iKcv+nr3ahsjpnmNnjk2T8vAoLOPmoJlov6+X8quRGrQ+P3T/8ZsejGyNj0D7EWPc0mo3IqGEftRohwo6hcX6TGcrghom3+Cf/8p89m47FSz9sen8vhbLkN317Xs/nlZhRRPTQWPDubS78/giiNn7IjkRm1yz+Fyx+KnMWfGQavo3/9Coi2slfr5bdPn963dTfFE1fQazQEcYz2XfW2RxsdM6Vb146zNneG3Ppf1ZIvreUCttIL8V8dRfQ8Rjv2L9+puKqonL7HX5YCd3SnLNbUfz/7hQo//tOAbVCj+37qOim0yrwYOXoFnP4eO74WlpVSBpfHgvfputP38gX0Ke5HBjB6XKvyhoSiLlssPDDK5MfJfkN08cqScGURzQha9UC90NK9KDc+esz11L1djqf8LizD2i9vtzfCvjtQLcH/OV8legjfNxfxTSj2ZfcjkOMxPCOGdFOJ5Oe0mMIAdI/TJOUoutVheSydNhlzN1K32z+qZkF4qF3mMfP72h+C2dNkdf6yJy10ZbtY+cnaO+LB+K/3Cia4gDZEIzelvnft1OK5JcGkJtrQvLt4eXz6RKkYJ6KB7GFx9DREn1Bsd2Uk30fCR2Xh0ZWnMTRqHgf6nKCc1TD9MlqPB0Ur5P6dVKhLlcRFSLxU/JAbxz0ReKD8uvsmjzMBg2tDveUWL9wiKi1ggT6G6zYnkKC+OW4LiBRqwfZb3e/qFnNAcCrTNdML14vf1RLV4FxUmXiwFvr+tPnCGinBxq5SXYfUY9enkBVBxMfCS2fd8s4vAifgZjmpUZzpMpPtN/er8wvuoM5r6dfDddOvLDbFiXmKDY7C8mr740Zj88btZvVsVCPe2vL/Gl0+fQU4gJOQ2SxXbjT/TEQ9RlO7yQh3oYInKH3dFF9mjJCngc3W7831IG2HEWCrZihwTxVBtJUISA4RnU0sdDQVE2WtszBXIs265cdoCTq9+SCjXc2Nd+Xh0pqGlS+imrUJ58SwyQAIntrXnV0d6pquAWVT5LTZZNNPC1GuCJ/t8SL0M1gnyxlZWwnckBNk01DIsfQxpNDlvM0x17/PGF2nifiHgUDjXq4aiG6opBm482KRuZnDrDnsn+1nA/lWKs3AcKj/satfMKcy2Z4gUm0CJaW9zuKzcFG8FMd4rLhwqcgaEQ0XawNOxwK4nNpaj2Eu/xKDr7WcB5ORYJ8Osx4K1dhN04zNGgvbAd24GphTnHALfUR/xrmaO3RX19sa4biVTvkcIoU3j83nwoOEWrxu12do/HaHI9wu+QVsTr0LTvDPaao3KCMmfpWRXRL2AiC3J+ZfxJPXSOIs7HaRILMzFhQumbzNGowZi5RodFKczi1FFAxEYXozBD98eaPFezs5sLMabf3J/ZFKbxkV2H6y0r8fg1tCO4539OP7G786WjucpgP8GWe98Yd21j1E/qHFbKdmnX8q8tiAp4xY6r89DsalQvDsOodE4+392hSuBetMrq5TpywCUzaKrWxeLaIWP6KRcNaqzwoXpWDZa0dzckTJlmNd0rLPJ5GJg31SYRkpxd4/npuN94Tu4IIa1vykG91xxJHAWiF+M40czX4w/qsX+DB4xPTVz+vm+KN2yJBpmfMrlmRtYImCKDFyYbORYT96WJbI3Ku04yFrLj7/Bi8BFC/EWHuMzlno34qC9Av0glzfaVHm/0xAShGecNIm3mRSLGGYaNujswuynPEy+50VMwu3pC8fLhoLu4vCYyi18mD+p9ozIeNACk07N/nZa906VG805bOqIOuhdwrEIGSYK7oPJpex6BRinD7ILbxVc1xy3YtiE61ZoG+88vxtokuMAQspwOXh6zdfe8CKmfHYNqaDtn3GPwANpYaELIJP7xbv3CAdBRGzH9njj9lb6lXHSRPLNJXesbnWMbwNDoNr95SWXbvfsjRH15ozaybGyH3DfR9nzxm8SfNpsuYxdBo3w+xK2g5V6AT4ClZlBD29vh83ngYktj0WPBgmI+xbQWwtehA3B8Z+WwfuhiailbMZEKdfYfypSm743omgajdTaaE5xTmr8+YPqtmtjkIXFNuJw1j0RvSjjpua4NwPn5Z/HrPWTPNYgO350XFhZuN0bT1B4Dl/JheNnonNr6jQB5KaDmPHZrlk9OivtwkbL/2Un/SjacAu265R3861Yvn/qzVIRhyPFOl6iap2TXA5a1MlV1Gzen5W4WowM6N3bzx1fU5S8RtsjMLyu6/VclqKbNQs73/cKomJGM89D148MsJK1d8Rjz/1Q587+s9XqnPvb/gRwvmR3kRN+oHxOfoekFr+XcjVng4LrM1oQF/Fmf66sKbyW/2QVF+b61jujkp/nzx7AptrMZlp6aiflNaWoz+6tFhfu35+vAYHFClEOH2qT35mN2bHkjx2tBpjF1z7C8eRcnNuRPz91z2GZ+IA7FWxMxWDwkaddXGsC7lmCVuDRmF3MihQPkTr1/xKusrg+VowSNiLPm6zt5CD1V2dWlfJG5Ei0Iy4LKLVNpN448P0FmAuIxk2hmt5S/1A4OIriHeNLe3OUfq+EZwLm3ivyyjFH9cqhHZjB456c4Kdbx+xqhUzxPR4oyVs7O2RCSazmOJ78af+PTT0OWXAsGbdJ1RLAcO2uvHiu0RLbulXtoo3eAb066Wy6dPhgtIm3Ik/v2WRHN8BBmEh3Qk9kqKzHnIFQfVmdUyI+SyOXJ9NcLnq66IdZ+v2Qy5l6PzqwxYMAy+P1KSp+gw1xFzL15s8n4bJmAN84nsAuFZ/h9JZ7atKgyD4QfiQgal4VIBkclWRdlwBw4oisjQiac/S88jNE2T70+zEpkPRYteMm5YMtF7Ig7InqPej3V2cK5pqZfoNIC9Dges1daiH5V9kaLjet4Rr/PPEf271hLOF/Ymcdt0Pa9Z7cGlWxV05rG/aGrLzRMed2dG0fD5JMNfY2SwPI4mc0uyLIU1e/iwS90XC0YX6s9957bm01tsvva9TeKaV7bF0mVCiFW9HZm5woc3fmQk1g4Csa0y2ZY3Rk/iM/SZRHAyKuieG4Nq0dDXQsRsDjgWlHlyZvRsrD/frfDlg/np5Q/RZ+yAtTkNDTmpx76cWvbkP96h6JJn5SdXbAyJjxq2nWV1wl7m8Qi7GMcY9GfTT0YeUf31uH/Iqv1ckdAtw/5vb397j/rp3OYAWegLsg5PTSTfuVSRMr1ssjnlqaP1Gz+Gq/63Jcs3Fw6/V+0SOOArwV8elpP20GGfZMM33/uIJ77YWWxz6tha6OuItoPhw/Vy8ekk1htHtOZ4RftBWWH5vLOSie7+hM3q8GRL5eUj+fN/RzW3bOWd6umb70z4O0f5jzfQmCshhu3HtphfNX45lUMSQ6s8gS5ucT3xozu3gV4vL+bAbdELBbUm6L10GT48+MQ7pqUmf3wCvJhaL+LZHtuwF4WLZ8l9hYzcW88RwfM1C871p+fH4lNAp6QXymPdn4x8Ch7w2I874qpvFvV9q5yRNj+mZB+3GhrvZokBm8JjWyoGJB9t38GurBCJQtJNdP0+KVBtZELfoLmJ7k+8g3nKTowkzeE7p+p+hr9eT4m9W4+RvERisIqE98Q3g975nR+d9feAx2id1+MvvsbamzB3tNuEa6Rp4Z1lgvio2vWyfD2PKDy4FrNdHiWUZtyEwohzYkdBVXM8llc02tFE6+DZOuy69c5goXFPvM6Jyg9f1JVFSahjs7k2E4+vWYZeF1nThdVPjlzvdgUqWjwy+zU9I/mm2RKCtQhZCF5Rf99PCNrRbEnEc7eUt0KVcBrKOW6L7QFN93WkgC2Fjo34EgAPQPC/oHOsrjg8tvstCcZwGU3B7byE4DMP2Enrd0iOmyWHcgE6lobOJ7kxhAn7ce/S+dcfOLvHFTjlx2TuSuCS4zG5wh8/5Fj3NSUZVgejBbwzKfFPq1U//vh9DztOsGd1UdtW8mA+ZsMb107qIfH3Bybks7Ql29lFdSRR7Tn8Ve8zw38fUXIdF1cIUXcgcTmbEP2ef5GN6ME2j7VVfv0/XKyqoWObA2JTdw3ibpHeqpql0mwQHyFbmimtCNv8/ME4rUwrT69PEhjZ3aEhvVZgdvM5ixanXc8LtdkBfGY+i57KLJIPa6lbuBQFcWKbltLo0O7HmxiiZKg7O2eeScjWpx9/sykFJ2dARRuPLDy+UD9xZtjAyuuHOWlZ99xXxBEOr1Aj2/PEp8ko5xKd+GNOHPfy7vnhUZuoGuITcXOrr3vzcMos664v2Nbc25PuBw/Xuii3M50t42WpfuM7LNeeTxddoyfDZbVaWkqUYZLevks4ps4M0XW4qlQUonEkXNIO5rH67XFsVIeH9UsFvFrYZJ2zrGaO16eIuMcz+5PD9M3PFYXTPQ7IyXv1Pz3hwUDzFZbz+XIyCrb8/lTvKImGT1BK29EokoLlbNV4G6Sms4sOGXltSMy9qpfouztiK1FKtZMZT4NSHVVwyaalYkZROewOG0Ceo1yotsavmr9JGP7iNdnO1XxST+OLQldLFVvpi/QyST4K5LNjy4odZ4hr8DhA0+X5L344HN5RCOmc9fjLQ/34uIOE8A/vmKOaEv30E2ThTWUracwmZgdZ9su/eH71bUdPkruComP1h1mkG7VsT4sGbnSOmfP3Vicx0PsA5cwL8DtQWSm2wcShYY+BueVxH0krP2XQ3VLB1uRulDK0JwnP1VkQ3y/6aDKKm4kgmnG8SITSi9k2d83WywISL7ar6DuH5ICqAZ+IG+zd5Kv/bZAiS4mjanak6YfzDp67qcILOI69ODQvCkjwE1lplZlQrZxj4KLTiJcqtJeyNul/3iC22ZdcOrvuV3/BIi+qfvzqRXObLDqyLBZazXeQVkAMGZKAzyI0jfXdhnVXblgUkhAJtz6GlnYTR/q63JJaLp4xwAxdJXFm/oRk0eYF8BFLLL76jge7zwNiO7p/Z2PvJ/Xo8qUFT0PDxqZcoO7Y0B18+RU/bl1STz/+bT0H0VjBijPdCytFt5v5IE5aOvVU2m5n3ZTYouqy8Cct/CwfsF7hJSHH1q4FFpeDqTbNllrFKawpueYVzE39iI3SODvcbpYtcGMdscs7bhyxUNvUjDcvg5FeEvTld8UsjPqM2+99yXK/CVHYPGaMbP24H7v40iLtdt0zj+Tv6fMqveuvHkYCAnKStwI4aFQsmX/17WhaZ98eF32MWXS2JRL+GPD/PBm/rJ1jLDqko/icbciyw0bJ/gEAAP//pJ3J1oI4EIUfiIUISMKSSWYJAk47QERAQIYEyNP3wb+XveulR1HJVPd+FSpZ92Ag82IDEqA6AnTpvw08j1BBZzerU/IJjqv0MDMBuW37iMrPkzVEbt8/kZJKt3RhH2ojeiZzJEqebhHFqGL4ON/OeH9oZJdjdj0GQ2gior1uCCzlm52h+3poaKLCKR0hKOItR7D8rUdbPIHizJsucpQip2v14ZqfPvXLjxAD+tVVGWz6kjgldunq6AiC7JnUxNQnH/BJMhhAukcVsUEoVet5imvYC4KJbM7wIhIeQQ9jWrE+a5/rlFyDfQbFs1r4jEQduv70zj4WOnLEhuP+tQ+4iwE63iM1ZUs6XuFCeo/o86ql61AVGcwil0F2pZBq/maLCtuWFMQbkA7Y98t0xFgYTGR044fOtigYMGX56hd/oj+9czPvMcoe10OF/TKZwa6VZ5/ta1Vbb9Z6l15J7qFjajBa+/zUwiHSngHxvisA4xQ9e5H1NRfZtTWntA5XFn5vL4Wol9ub4gU+LPg6xgdiipkPqBEnPth+H/O7ikSE9W0Rsu9c9N8W7bWf/wLTvn37ojGVYARfwYPTPsh9breoKRekY34oGzv0C4/rAP3xkW1++Dzj2YCerQ7DSbUp5h5ZDOZvfvR//Udcta9//AFCPoIC8vL7N9p4bgMvjVQSBG1l2J/7BkqyU+a4RYbuLj/e0U42Rza+4i7TAHtgBkGATDN9gHnfCCKo1tdx669e69aHo0KDv7vED5+ytjy6OwcfZi74/I9fhrPjAyeTvkg72xj0F97x4ObPfFie9trACvccZm0obXzo5s594jJQSNmOPLb+7Tc98ONh6FbjG6CXbyRA+/sGWMKLRzdecBXLD4tI8lUkupjZh4Mdc9jhOZOv0Wz1sQN+fstuOJDSur2r4nD6ekTTn2ZFmbnwIdMrI7EWE6Sb/hUAPPRHoryEplqcr1XCI+GfWHplg7s+VE//89PHzT+tm/4Amz5BGt9JYPyNL/NgxeSo5M4gDocHC+5S8/JJnzrpEqHCkhL+nSEkPJpqdsrzxhcbhB/ruRhG/RXG0kuYW2QreAHkU5eM9MdH6cce6P7t+7/2QS91BzUsv2wPSjdYoDDdm3TSfQYCvopaorYoiWjDRToMLy+BWML6qdYp96+A13fexpf26ddw9iOQYyIio8z1arxM03g422Xkc5fWdidwt7ZqYv0bL46DhlF39hZc+vLg/14v4edcwjD5uBtPfILpfkEstOUvT7zZPacL0IYcXrLZQNfDfXJXuFAW/njU5egfK3rzoAcZxhr8bb0HaxoWsnToXjnxb7U8zB039OAkqF9/2fgDthetBo3ihcQENI7m5zjMsMdDQUzG+1Ja0HQVN31MrJ79Rr/5AnJAKzzkswSIeFY88RteMP6etaiaE9stQJOmE1HrN4r2eqP48BDhB/HaeF+NdpOIwLl5AbJer7aacF9kUqD0FdIkqFa0l+UVJuvR2PRsRKdr8oWi+2CmTf+ZA4mmiyNedSgi7zq93DZMAg7Kx4f7xwN//F1Mpq/mi5v+X0fXUX/8BP14wMpNRQyAtkpEO8Wa9ueHd9zlhXw7DdKl7fYxFPbaTJDSccNg9G7980M+W7KmxvNY0uHxsjviPXmiYbbPewzv+pjiNg+WgU2fxfjjWT5jqiJdUvdgQRpoLDqyD6gR8Wx7f/qJiYERLaWnJdIWz4n9ST4u/emrzW+g55S00ajvtRFeQu9JvKei0ektRp70rFvdP9j5CBZ1RznIAZ2SV789A7rxQhjutBOxw0sXLfzZ0qHgcRC/i50Zrd/2PcLh9v5gqcCFu7hNmkObxC+ffemju2Z14EAcHSA6LmAPVmbXjzB+URW5svKlWOaM9eenMLvaFv0YdDakn/+Xu/Xtzp9IS+Am6P/0Ldesj/Cn/4jL+rO2nKPvHbqyfiEb79YWM5s4kFu3PZ4uvuMu67r3oGe2PNHhrdfWnKYeLE2OR0f0vqX0sDurkl55Hbq92ps771adgap0eaH7xitmA1/+zZ/lWzzk34+vBZTTdp7V6Qs0HDdNCDdeR/R3GaZ8U7wxnPafNzmxO19bz/fdHW75M6SY7727tEyDgfScDsTSoj6d5sNQQGzjAlkVKgf6eg8dHNdCwWMqVtq65cPELV+28VaHsrGh+/A3XwS7ydL9Yc8W8JC3R+L6+rWie45vxAJUOpEPuRWt2igY0MVkxcvltUS4U+JEcl+GvPF26o50NGJ4vEhHkqlnCFZ+NLOf3sF8cNLpfMJtD0LDtgkC5jJgouAO+qZ6QT89/8uXQISQhaH4WKPlpSgNPBrSg3jqTY4WBbsYXp00+MsH0XiUoXjVGRFzbn6vljCAMTgvdx091+Y+0Fx0DOjvhAcJ+aXQ6CpNIhyyXiA2SxrQVaTSIYiOI1IfyiMi8SgzcIyLL0ozNaQz737uYPMLfnE0JvAlUj1DIbMHJDcPd/jEHtDFnx5ypDuK5q5YA7jxRkwbyA2Ld5JUMFb7Oxa3Ct0LX3uJuHweDVJ9xks3/rce/J34QH53pGAMAjCD2L3If/p93PIzMA+bDJmn7SzmO3sZIVN/riihFzVa8V0Qf/MPyTf9S8dvfvLAb/7Ngker0mXWHArXJPTpe/5sdR8Y+PN3mMZMUv14BdSGK49+fG1FNhsDfZrPyJumQZvB7t1AMwgDpHArcrd8Rga6ICiJdTHWdEQ7t4GubFyIvj9oYP5E7h3qld/hJT5l1fTzU7/8BdqDIsVVcPKgocEn2TI86ay0GSdqzalG9s///vjM9n//+Bm552MMN/9OfvmyVTXKFdrywCNjEm4uEWEF4YF/Of7uMI/aqJ16H17Gh0C80tJT9rXtEfnpSyvaLdWPr0rqo8HI0/ARzKfjAuGP/2lbvmT+5a+G5n32mVMAt7N39/6PTxN1Nji3t48dB3/+eONVYGHOSQz3mMq+tPl72mVFLm394e83PblcU86BgzoXKLzc3mAq4pMIhzntsVjSrFqNUxWLvFSciNu7msvvtLoWt3wOsvihBosrCv2PR/oYZp+UbPwNXlcYkletXjS6Rq8rmO/rjHkMBbpc8sH/5ft8QbS3s1OmtfndD1LcTI/G05Lh/7enAPz3ngJBjWRire7iksetVKVcaS7kJKrndDwqWQesSchJ8qmbiIDr0sPV2hVYVMdnNQ+Popb0Th2J3bWpNkfC2YDgKJzQRTFqSv2jj+Gp0hjklUhw55KMIszlZsKrYDPpKsSpIOC7PRAN1w5dp7O4MetGJXrCONq8FZEGOVxG4jEXS6PKmqmQRcmRWOmlchcpxRkoSbPg9frmh0UwHjHUopkn8mE6aCOYFA9yUBMxG4zHYU232qfS40EQEvLrsHzUWIX+yRWIMTFCtSY2M8OvIkN0374fX61DDkLGPiE53IrgLTm9w32DO3SqnuIwS+c+ATdH/xBLnsdqrAOzAaBQLaL5J23gi5NTisQIDcyVwKroA00qONyLI1GN/FWtZ0prWNuih/TLiQPzYOMaco1oEV1kZbcvgJ2AxovPfimJ54oq/UuG/S1UiGo81WhqnLMq7Z57HZ3E8pgS0eC73/2jdKBYe4tYYICORMVfXvuoouiTyNCtmwc6uhZJaSB1MbRtWSFP2yzoqtSPHLYCXohyoV+XyI3tQ/9kCwTdb9906JLDFXrORInV2UZFiX69wnHHF8TZPTCghWKqcJz3NpIZnKeDeRt82J8QQKZIdu5i0rcs2YZm+4fTO3KxKX0MmPufDJ2+uNSW9z6ypLQ5ruQYOqq2X4KZhb/7y9bScfsaGhhalNGxvq8Zd6oe7FUERH0h7TShYTTOHwbucnZEqfcc0yW92zKUrGtI5PoLwDobkwG265H8fXwBjblHDJ/+AyJ0b6torDNNh+Aq9T6fmPKw3F+BKrWfXser8kyiNQysDG79hxR7XlycYbmBp4NZYSa4+dpyf91V+DbDFn9bDg3rytsYPLuKx5Tl0L/976zp1/eEOAGrBnkDdg7lfGJqZ0rZZ9hBQQ8Dv98dVECDfRUDU/voxF98O1rEfs2kccvx2U+ddxf1in2obnvfy1JPq+mQfC344cN4a38mmmRRlQHz6lm/y67WMDdyHcJ9RWaieru3O52+SiGV+hP5q5ubA+ET1dlJj5QQmfV29HvVNB+ON8xhYKTvYZo8PYbhYBRIjyCfLs62z6wL9hkxHb0b+twfQmib6kJc7rMx5q3WDvP81kRVJjalQh9lYGangcg7bETLVdM84KRBQ04mnw84ru8BlH1j+7yEU1wMKIHF4Gb+wXx10bjjtAJoIjjgOTef2ucKDAe2bmGjXJBVl+6nCgImHzxk9u6eLofkbUnWAzDEhaZUjW0MdfD7/yraCQCrcx3ATpSu6BysGlh52dNh+2pygqRXCvognULQ1l1GFC7p0zH5Uh1cEnIiDkLfYWnzgpNsU14wF96zYTQudQZnqxzwwSomMJXHuoSM0/AELfBGx9XUDQjXYELWOb7Qv/HJy3JKbNxZ0f6YJhh4AucTRSYDXb1mXeEnP3EoT2ym6q2nkINdyrPImpIPXeOuMaDihawPscq5H2cOCsm1c44gXjpqa+gpDJx6ScP8crIqvqdXCEWV7JHblJjS9zPi4DUVL0TWzhuzVR4G0JGgIBc0nrZedZGBN9YriDrsMR3yO4mhNYoc0qGR0VENdvA3nonfZMEwYyeuJbu0YvIsnirgFfGhQupaAVIC9QLo7sZAUeYQItv80db9bUxAXWgtnh/GDdCWqTMYqahC3rrWGpVLB0OX++boeHPbaJnZgYGH3WASR/OWin6uHgcsgz/7VLx1lCYvLob715D83h9GNeg6kDMrRDopo4iKBt/DfTsG5AyANnBnCmqx9T4NQleOgPG2v4nwYnQCyS/3KKLmq/NgUnN7P4fnQ0TZ99mS0Ol2973QLcFy+tolpJ/QRcqHe7uD1bIlPGi5RQyMm2rk7loC7czAxNjW/7lCcyjdbF1CJ5V7pGsUvGZwuJZ7/2DLbzpfYikEqaiHJJjdchjB0/QANvRmaw/d7WLYiGI0b+fvxse1Iq3xLeHrClqfcRpxGLlMEWCVLgsy/T0F3+HVOPAJixvKmI/qrsdPPgu2rhyQfUgUdz6jQwbHLwX4+4wXbYmvHxlU5pT9zQ/aE8WC7/XuECWJxZRck7UUh/Z9RaaIFcrBx22E9B0NGLzmq0bNaByhW7QHfKD2YRiIFXPg1//O4403z6nMksiwO+KnD3lYhTgS4bPLVJI4fh2t03ltYHQ9C74wPO4RMV+dDwNANs/jde6yPxWxJOhBQH7tR0SjuILTSwrQ6eP72pwyjiAq+e2As0OsAu6p3nPIN+4e8/7nQVdeV2soMHcHJXbORfMecAU4LN0dPQ+llE7F0+PAL14Lw2Hc0gJdDrSW93zhqldgrYb9HfKxPiNV+IbRKLCBJwZhw/mf9UxSHMpGBn7xRl35d7Ui85nDELoSUsidr9b7ctbh0FZXdJyK+le7uxCThj2iE53H6i8+fiXHQEq0psN8P9cz0IJlR6zMwANxgswXT43KEXRvtXQ6vb0CmBg3PvRErfry2IFAv2js9nx5Fm3Xr3/te/EOKmCHR1fDB9+dfLzFK7wkrAjUcxmio/e1wHp7OCv4tvobxdCAYATv4wgOfetgnCWGNsV5L0Oe8XriO5cqwq5fZ7ARqjM5Digb1tv5OMNy398IUkJmwGl50sG0yF90MW61Rq9XqMKVt2e/TSwJ9BkXCyDvcYvcVwFdcljv+V/76OByjpZ6VTtgTpjxucNyrbb1ioUdhA1SlWeSUoscShheZEDiwFuGIUmLQgK68EGXxr+lNKlYFk6MMuPdlDYVDtJPCG1DsYmqeJq2Pg6fO+R9xUH+8LyAqV7VHhaavKJT3NcAv9E5FO92+PzFq5Szc3OGO2sx8RzVb5fC15GBF6MXiMp3HuXiudKh/XZGJLNwoou/z2Ko1OnL391vdsQxh0EGuqR/0dG46S4FIbDgvCcRccSuGuZg1+nwtYM6lvbvQlu+plyAJF8QMqJ7PbQM6jsgV05JDHNfVONPT4cy0xA3K+qIjreOBXPZN+inf3uqxQ3UvlxGXMNth7GxvgHsZY8lpq6l0cwXciJd93JHtPmopxw4eSK8JuJE5NlVK77BkQMYblTxgT+0Q+dXaQhvuSUie3u9IKX1QEXWsz/en+YwP/u3IfW3QCE2fdBqRdGd+elVfGBthS5Zlm+HUEwaCte2HSh8nRgYdH1KPOaIXTJndf+nh7W9YVczAu8G7s/dQIyw46ol17kSyDXaEbR6CxjJ9W7A7feQD+YWUD6XO3CU7RuSbe1FV2N/X4F13H9xUQlB2l7U2ocQezeSzO1We3vBMhh2jYu8dHqkKwWWLwrMc4el4rnt09/pnajWzc4f3mdUTSaQYpEcg5woqW5F01MYOrCvphk5OzumQ61IMlzWA0Ce+ei18dNdBJi1gegzHCkruv80EBp66pHjseVcejeDEf7Gq7Wmrjv66TWEOmOckaHqp3RB0uMK8XpuiAvb87DmfhVCQUpKn3Ucg1I+US0YHb3UPxi7eNNXaQYnRpuJbRUnQJ/WVYb992L4hJMkbXlPuQPCUbcwSHY9WM6fRZbOUAjIybcad7msCye+d+kZvy/RRaMkeLDwCUqCNCub0/q3fl/WVUO+XM8a4RPHgrnfZv45qdloaJkxh4TmGGk4nukMpbCATfkcMUBjAaitKwkEk4aQVp1lsCjhPYERvk5E5S0BTGCnBuCp3PfkVJw6+nX1LgGScVHJ+cMzKb6/X7qonOOVGKcbH800ykW4rXd+dZLsalWFdyA92+05f3K9giXdzkPeN2NH0gtzHPaCGnISfzHufoNxMyyXkmfB5jfRSb+FYL2/bzq4Ykn18dV6p6Pb9wG3rU9Y2tYDunSFc+AlpP784kD0ch7hbr8jSJFfZzrvNdqA7rTiv/6jMc5iUNeyiawXx6Zk07/SNv5/8TT6xSNpkJPY312vAMyN9Q5giuANOVWUU3yYi/GnX//85+xcw1zc/AKWdtq1Wn2gNpAVyjsx2IKP6DN+FABdEh/pg1JqEzPsZjCbb408TISjlZqRATc/guyWIxXGvSVCN3tXeJ+m72h9m1kI7MTMkbvE7TAh6RxD6jgdphMLwfz9uiLM5/WEvPtpqoZvdepgiT82sen3VM0rsnXYuPGXuI0qgm5SrQB8PGshyIwGukR+gCHznkSk3edXxSK+MmC+m2ukNvV2og9vlb/+3HgCcJcZdhCI454g5VIhjRI9v4LkvZf8sZ3P6aKWXwy39sGMOO8AJVa21cVTEPGNo53S+y7t4HWSEmQ5601b8P3mgNcNIEzKg0ln8D5hWNuCRwy6O1KORe0d6ipDkBzpJ3epLnsWRoanEZe7bHueblNzeF5ezsZHlnTRTVWEz2u+/sXrzc/pYIsvyA2Y5zDtdnMIG7F8I7nqrulKxNCHKEoY5Mwtl5ItfgBd3r18rhz8gY7uFMOhKxlMH3M7UOKlV9iWX8/nRfymAxO9HbD5CWSzzstdvpoji73q68SfGZQuatP5Yt5NN6KpyWdYR+Ubwi90coRcVtIwYe4jTEUjRDpRd+lIq0CU0DeriBzFprv231CUuuagIOfDFtGYY0YAh7FJtngrpmvyEFZ4auWcGHWmunxw+LKiXbg6URbb1fanByogTq0KWd1DHmhejDFczLFCfg/ragZfB8Ne9lm8U9WxWnfnJYHkfnGRedS06Le+SeKOa//4BtdPjwSEsRIh5NVDtDhdWoJWHBWCykNLSasOMsxO1s7vrp+LNluq04mbHiQPJm0iej4dMOQv+h0fyss1XVLvWIjKKcz8tbtU7pQA1gE305yI8r6eNPxkziL8xVeb/gMAAP//pF3JlrI8t74gByIC2QzpBKRJUBRxBjYIiAiYALn6s6j3G/6zM3RV2QDJ0+1kZ3+t+l8vdXDolRaDdFI4v58OhXocvcdfvlMNr09ao2U+MDfbMH9Mz1WEpvvsYqoe9Fi4Xl8zbPzPjn7d8YPmq1opgJcdNwu/9vNWcgw4U14ScpfK/ou4PatiuOlIIAkY8fVnBNip5xUJDqhFUx5ZBoS+ghh+5X0+CyS1Fc89UPq9HO1ckARWKku+wXQv2vk8Z1KCNsqokk/crP0B92kE25M9Eiu69dW4WW80EOT3hpgXppjLCVYG7MieEidunv6snVwPLfjGNCX8mfRPP6t5tv7LI/LNqt/OEDxozPTxqprzqaUWrCulIzs1NvyxU3MKwKMzXkWOYHbN6WxBWOmr5fsyc6xTq4Z4ON+ZkzlFP8sFHdD+biXEux6EfPo6bomits2X87svFf0MVQp2/7gSZ/wJ1ax+DxSeZ9Fj5rfa9eLf+5sgORBil1o1ToqMIV6fzuy46D3hllwjtIE5JOYmqSqW4K0G0uq5ptKCD4P1xRGw+WlTaVAOaGpwI4Bz+V6JdhRiczzf5iNkPi0JHukmH9fzTgMsxTlztSitRnvZ18vv4ZmRi71HvHynIrqGxZGFJy/i08NalX98j9H5MVWD85tHsC93Gc/p0ffH4Y1SAHYQ8F8+tegTA55f6UnXE1zQxOX0hmpXqrHQTa0/ROvChmLwLSpY37Af03N//MMzLHQv7E+I2yME5fjFm2lCcVtcHg0U08Jfq0PXT7W4d9UTLUO2pynNf/ubRmHJ0yingsXHaF1YcGaTh6cF3yablQWyx/LCwu9ajrutRAzYpTigm2a1ixe9IEJp3j9kZzud/3XNOQPbSBxi8vfosxuYLmT+UBJPac2qd/IvBVFZ3RlWD6982lJvBWtp9WHG7MT9tE+NQFnyR3Itd5DTs7TN5NBD8aJHnWpSGg5o94v27BpOP5Pfg1sJD3U60fln05iRV1wgvI35Mr+MXuBxIikbeTqzcF151RjG+gpVdP4y593V/bjbxS76yPTKXAR1zP/yi2RjtIz8/KGfH8fvCIevnJKgjnb9Bvy7B1f/ZRDt2vhonjJQ/umdbdfvESKvvFTQ5LyXfO3TU2P4jXDx7ZDsJMPgUxSWFP7yJbtVeU450gI19aId7luzjdnZe2H1RjxCgvT36sd4vNmQcD0lWfysqjEwpA6lVZqS232l8bmXh+Av72VYEzpzVJfe7GIjuewYrHVzXvI0xcRUZm5Qef1o3183VN4Ki5wG41PNw25rIym5nGlib6R+ONb7o/JYzzWzy1zo+2+1a6E0nx+66K1+EuTP/KffqATqF/GxfrWqjiOLGMHz5/8UOq7UP71hmVLpj6FvARz0kbLgcivNcbhuJVReqwAvqMaH2zEb4ZgY1b88cNyFkQsLXtM5L2//5Ymv4VQzfVr6dAi76rS0LkfMrEstFl/OKQJ7lwnMQrtLPMZCViMrhgvW8ZTEQ/uyFZDbj4KXekC1+L8MnqaoMLxhWSXq9eEBC98w0wUr/rH62MFyP//50dk9CKBS4SgS8smu5uwnrwd83q1FTkteP39qmsol/eyJD9u+/32SXkR+VFrEXulj3y7zEwXVfGD7S6nFCz4IaBk/VL32njlZZpBBvMM53iytOcRvaNsoe85bhjdrof/94dHiZ4n7uoT8Xz71FuIbw8/ugv7liclOHJfx2PNxdgILDKWrqZScc789EPkBt9XJYXtXk9F2rL8tWssrglco4pzzUD/B7ht/yf5+Opif7TF0Qc3yCz2/frY/j7i01TuUF2aZbevP6OCnqP+WDXGe7pvTLFSXlc+Hnumo31fDSDeD+r57V2J+476fnmciglecana70QfiPYoBzvNoslTsd+aIn6cRIvJRsbTkF7/V5wWKui09ZpB1in75yStB+p5CgptA7LkX3CmS27fyjx+5mfEBZONWkAs5O3z8rXQKH4XqbNc8Dvl0l6ru7+8swqaDtiiTvH/3T1s/glwMu+kIdMJ75nWbXbX99l4LxdW64O3mblTi5a4f/+lpSxEKnzZFVKt548zMW+pjv0fAC5B/jbH0GbPySV4Wiy95LLH23cyHy+66AqvVBnLs3ye08FsB69fSB+VObb45ikbyx/fMbVJuDo9ZzVB2nz7M29Mo37be9oR2xKcYieeBD+/2LkHfFZiEOC38Ba801Ov3iYVjVCxrnHqAKucT0ZY8cf4IRapeCs8n5okZ8Wht9jPE1+NIvPcpiLfQ6ze0jD+6WfKTLYU9QH1byczdBmLemYHswRPWAdsbj8qclxQMFj6lK5HQihrDe1YTR1j6SK12OV/8kZKKzx2zxNr2N0u+CK8hqbG60QNzPrrmDYymIczXvTKf9dPzBmYrCHgurbz/7VMvgI/4ezHPvPnVr1TZDZWv2mA+SmZzbl3pCC6VbOKZt76ajGygMFwHmy15ksmPCdbQ4k+JW2yviC/1OPi21p7d9+1s8lBCIizzkxnJdOjpbX6k6BF/M6JtbjqfaacpSDKjlhw/lrnwe7n6p+82L7Xwebp9tIozsAR/3l7Uz1m4iSC78w8z1yk1p/UWRXAys56q1zzyt1RzS+SxBNElv+2nY2cLst6kbKlXXv0pOnwxiLEcYfnrEHPJi6M/fCNu/53j3/7mUqTshh8J0vunn56nsUCxGfrkQt4654/2m/zpSzy43bf69axwkV+8ZeYu+eV3veVHZRP1Jl7fU9oPG5PXgJc9geHm0JhTEMDwx78EZ3LQT2htHMExPxZWv9Qwt1BZD0WrwzXR1rTJeaiNyt9rZn9uVzScgCooeAwxy55HvR/UsJeg4sIHg/O1/Dmdrray+GMMW77Pp5oGLshJsWFaXOs+T/DaQH/+Y/ED+eye0Q2W/I0YdzPJF/5K//I0KvzpV/GmKyitM43oL5v7f/UctOhtQtpMz+dBfx2B7uwV84kq+ZNlWhng7YETa59JfKnPDWrU9D7xxgvkX1ORtD/+IIFgVtV/9bX4c8GTRrZoxH16hL98dsn70PzMRBvCUPEZhoOcj0u9XFnyG7xd8HDxoyKImlARzToKFc9H0qLl9xMv08u8ewfarEbyT6Iy//6qecoECZVCy5gxX379+BMDipb6OPH9W4PGm/2MlCK1GS2XvKT/PTeepPy2l7/6bDy5ppLBTvfWuJ3Q1pydXeeBLj0FXJPc9jflodUQo+lIX8Vb5yP1bs3/b00B/O81BZGWyczLt79+vjRNBgcVEbomU2yOYWu0MFHNZ8/1c5Uzc3qKKBjkPSOnxK82n+erVaPtijHPTN7xfHNoiR5rSyNRcevi8VaNK/V77i54avAGjWx7PUKqHQbiO5Geb2vHl+SLDy+2Q15vMkq+N2AUx4xklh3zJN8bcM/TPTNPqWly2Q+OKD88Fbxa57+eN3uoEfD+Quvrsml6fPQRTNTwf7PUfPh8r3bB0ltUZLtTQhC9IYRRFu1qskfKkqm8agzyO1cZLkzXFEk9DaCdoiO5zx8dzXZLMgVVyoXYEO7R6DylGuCR68TcJwYShlr1pOC6OuO3vh/49LwKs0JPJ6Bqpe3zzbZ4i6CGTxEPgHKTjWNiKLQPPrRO6tr8xCDXQKhzwer7PuUD3X8BOcMbMytc9/ztPlYr5CJjxKMKRTz9btoN2mz/ZYHbbntaNfsMduJbJL5YX3wqXSYXysyiJM+DQz4KddCigX9kvImnbTwJ426ERDI7Ymw/VzRvcW+hK9xqlqYtNeenMxtQZksNzGgK9FMKOUHJt9eYUQhDxVx7oHAqE4/ZkZCYc/dZ2UjbogMLHUz9Udt0GRQ632BZ9+r4d/dTEX3715pYmo1zQRrNVP159xqrNa3jTsm+Imz1tY1XPbnxaWt8AT7pFDNblK14S/PbIKs3oSIRPTuIe79Vp/DI+mFuP3cxnz/xA5L+mBBz8zAryus2g+T71cjdaat+2tMuhZvMEEXDy0Ji/44kFB1pRrRsv/UZ/tQjOC4QLIpyHY/qLorAvgkY14mHKx5qmQj6y3qQ3XPexVNr8xYew/gk+van8v5dlg0I1VgTv2w/5lz1lyNQw8zp9DQKxHft/YjG8+zR8VCvOJ/zFqPnt+7p+LxD3HrnpgQdz4Cn6pLmzNLNE9LtGOF+507m13wqgKhX3uj8tKdqHI5DAVYlGczAY+BvtU1Qgnuec6KbWRaPj+bbAjKXfZfp6m6OyuqTKIwGMbEbKcnHNhWzv+fPvHpS+wGfZ01dq2uZmt6Oof73mu01EZsr83Y8jGnUOQ2UlYzxuL+C2Yat1yKvfTkkFEFe9qVqgyKZlxv+DErJp/dNAtm05jMjH9VEs1ggCpuxGelLGHo0za+XgKItMDy+3gNnL+EzoN37mNIfncTqlxveCMr7tsEyMV98iETawNCIbyyOxsdkSb7X0CxGIf24qsUFI3ka6OlKBcl37sH/5ac8RbEyx8R5GJd4zua3q+J3YLJI24mcHXhVoOe36YldDa98Go5KCsyXZpK7dYPY+ooGUPL2zLy5y/35+CkzaOHp0VXbFjl7xsiVkV6LDC/jlfrqDcOtTe8krKmVD0LXaYgcThZxOvOd83I2SsRV0WSEamL86/s2g34mFV4PW855FFzrv/lC1/cIxbOXGEcozdBk4XGN4kn3pg78x/1D4l1x6akZShgm+aaT5Ol8zSlKpQbS8h1SSdBiPnGXC1DPu5EqVy3Kpyfel8rA3zIVpFVn8ldSCWg4Ikpc7XaP2ZAOBjyG+Uml5uVXk96qJZrVySeYZ8+qtaOdB1wfTCoeoYlpo6IUiHdLifOSyoqb1+kEXrVSqWKEJZraqxWpYX/q2XXYG70oVUMGyXE6k2B3M/rN1nitwDo0L+ac6GxyaxMZaHO6Mbotlt6SyNAH6D7Gjzj1uaum865fwQXLZxIUghtTYz48YAoTjbnRvY+5MeiAHsR0ibOMB/6cthocH5+MhZ+33o9vhYKye2QDcUukm6OlvzCyZ6tmUe7WaFRmwQJNh4nsy/WB/8g+9KDZazG71r8BDQ9JiaB+n27EIi6NOdzbFOT8fWc7zVv7Q9oZIljzcSBGXjj+HGnpA6Fm67Od6N/zUVn6NFyP7Y4FVf/uv5h0JZy0L2DJl2Y0viv3BvpQxEyvph8fL9klRRF1CXveozznVf/z0Hpoc6LXiR3zDc8COF8VjfhtL1ffhR9gtsMzHRd8nOVDPsIa6TuCz7qDfq7GbRjhohJ9Y+v5KN2VGTnfLiOGzLqY5tiXQMm0NfNyt6jm27dsILytdCymUY+4GxoWvG/Skfloz/LBu5kKIJYERH+YsSm2giSAoY9fqkrdKZ7NXrBAMO0rneLxiYYbGzC6f2dOXGmtV9PdTwVwscTwu8tGfxC60oCjwxhzjAj8NhKbGs2nzxpLdKDxz77hSD6zqSXa5nVDU2SwER5O6eHX6PCKVpPQwSVlG6qqX8OcKclrtPAXnqPHx+f5cG+VjD0i4iVVG3NbcgdUf5WG7BY+pNQsTiDx9EQyTXj2fXfmJ8DnTYIfjbKLt+Z7aJDQH0q6MgchH6Wlu1uRfgviruKG9+Z2g9F3KA08nR8ZH39aLiEZDi0LpKaq5lALVqArikq0B2UxP74yCdDd6P/xCXee2YByzbsR7bk98F/1RgWUcywRc2NRnztvyUI+4BUj9y5C42BPEThhcWX66PCerqy6QI+lN68z49Zc8n4LLdfDYnO+VbxZ7SPY2PaO7UCy/e2fvrpIdonfIDXmqDnIgvMgCkSX8xRNyctoQT5ZT3I9XZx8bo/CiPZL/y7D9179KMuHGxw7PWL2znQ52xwerrzwEf3oL+aPl+yZoeS1X7O/8VUBkzUw5NOTXKRDVs2xufdAuEkSMx/6GrFnlhZI3Zg/4h8/skkX/Qhg1SVJwvZl8uMPe0oz1h5drQatn475N0Kb4/ZKuTZ1PR2CUgHT9NZsJ8U/PjyaV6v6Zfok10cm9yN85VJ5scbE835aLfhxfSByIQMzdV8z2+vu1cAXzz1WJJXmLP0OgJ4b44XVBT9mxRMzVJi5v+ifoN8GtWAhvLcM4l+aBv3pY+WgQI5XmJ6qrekUFLX5uCb7sy3EY3LWCzXD846E16E2p816CiBlXUqCV7WJf4/VQ4MPXnEqBdsC0e6zstCY0hVbxjvnxPRLFJv4jiE+a/6c1vsAiUflwILHRcunj/or4TwIAvM3m84cH9IcKQWrfGKexbs59du8g+X3sGP4+fa0oQ7Asc0VCmS3jlk2c0M9i98T1sTC67fCZp1BzZnNdt59NnmrzQawy6nFUxin/oSyeAW0/DXEklaev1n4H87n9Z5uj4fOX8bbEVJdNpjJx7aacrfwAOmNSB9ku/WHSwEjip/rkfiZSRFX5geGJrtMzD+xfT+/2qZBeXt5k93mNsaUuSL+4z88vyq5GrOlj1rp8JCRvqJxOwLzlMI5GSScPy807umpQOdDusYyPF1zBPBchMXXi2g+0vmUppqNnOPMmHUdZfPXlFhUgjZZE7vIcT+/k9cDlZAS5jShYtLJbySUP1475q0Fv6c/OyzRt6/WFHk3MWZsH9jymQ8F8cLVaP4u8Dqpr3RIiSZfWnNcN5aAYJh6Fi56d7acTIDHIenYfnxk/ryRXwPc+TvGknJH1bix3RFJGXGwWOtXn++TyFPbsusZjm6s5+IgiH9+CMduWOS/U7fDUEhGSAJ2m9HYSPqoinh9Zfj5YP1Mf5cbrJ3Upsvzr6Yu0iky2+uJmQj1+UjP5wByZ1mDl0lPxL/0lQCqpAsWNJvGnzlvA1gdJ4vENW37qVMnTfVV4YS3feCgapn/kqXSF9GtaxtPgvF4gLKdE7LX9BfnTS+1cJLCmRm7W4Pm4HiuFW51W6Iv/DDa1kEBXd1OTJ+JibjtXTNUlclIv/BczuLaHiK0+AWW1cZYDRsuWeDW+x0z2G1rzr9238BeUFyCt1GHPuZWDcAWW0oCCLA/GslTQ4M6RCy9Yakfg1hPVNi7A7GgFvpZZs8WdWlrkv3z6sSzXjYG0FMCWL6Vnj+shg7/wy/zGB37URDvxz/9xc6r8dxPrpPekDOWNsGa7Zli4jsU9rpyI9797fZMXO8eCCmzgdfnXdqPx2Wfok33AzPDXol504+tau9WFVVqY+ynVXMckHHHDwztuvfZwr/q8ASZPA9P6s/JKy1ger88ZttBH49f+z1DdbczZntTVU2tjVrw1ulMrPjX9H/8qmx4VbM/PJov4lVQ/Lu7J8dLhzhF7hVDeXj/6GbhI7GI3xGY62hNyDtf+e/KXN8USx1edHo9WzSdP60BW7FxyQ6b0E8r69FCS+2CWXYlmqOzfVoIs+9med42mizHAnTfWy0LjPfbnP2pWIEqfk0s+2FSCfCdSqjU8U0laf3qqRNfG1izD2GLnkMb36xmpA9lTCx9ded9GNj2n//EE9rH/SD7nQcXjM74Wq4nNO/KqVDtHkvMwfmKdxw/axAfiU3sx49XXI+qI9DZiqlYxg9zDNMnRr/30WGY7Vpzct6nE9yPskucSt/5kzReI/jLN3C4/vT8sBMC6A9VysIlHxBicbZhWFq9jzq+5uMdPW8KgJsSPJWRP2W/fYqyfShRus7DfnwabgZ4bxvEzWWN83T0EtjwV00C473zBU2/D9CejjrdGtHNn3LDmEHuwPu7fkRVX5fQ7wgN8YzQQJtlPgOd7ZiZt32U05U0YXRQZULFIcjR2JXBA7ryVi165xJP93J9kpf5S3CjvOPv/nadIdXigYqahXx2PxgP9av/CubcvA8f9goZYcFrvC2e63yeP7vmn95vns7e314wPqIFP5n5zExz4b9BzeyDRazH+ZBPh98kqeohpVRa9NI0PiZPzfRBWfDRNQUjuRgQ8HlDwtx7mJPKzkd10VsMK+Imnh/eE6MrLH1I0mHFufJzE5DlRGB6Xy6LgtfhQxGdW77oMZvzXt0dIcUQskMenKuRmUGNwstVoGvkNYiue/GBHm1wxrLzGfxBGv1MiS7Hmi1+Nn6Z6kpE2Z5IDC98PmK+kf7x27y+78xtqB0F9UycOwve+zWin30zKP77HDPiBwriwiOSUP9oKvyHX2OByhVEUMgL/7zQOKWhAucUqXSzrYu+7QgSITDtjgTX9NhPm/vGU//0qSW+Sn8Qc89Gw1GmRDvUDzSOwbH782PsmCCK5misAZmFlDD/2zn5Zn69RDRXMDC8cZV+QrigUK7PJvkh5JgchQIoNWCH7JCcmvzZ+CPyMP3gjcW2Mb1+nzZs/PUPQ5HN/+nBm0OPzF7zk8m4oWD0x0da7lpI/JYtRqR3K5YKGufjT17dAOFO/6dfW/VSKKp3bmKyW43nijrxoVEuklVi+eUY8VboLBcq631d8p46/m38ukSTwp+4WXPBnywnAIVlhxuzNJvmA1F9QJvj5kpsk5mxuOQ96KBPhAVjriEBv94RPJ+zv+D5J+brwUr++asbLPt9J0FL1IDsZ6JfT405GF4/oqGMcgqfw2h+wzYq1MWv4L/5MH2e3xZJPDvRj2c7MbdNMKB5hXdi8c7qt88Yeaj50gezQ+xX8y4qJGC+MjP8+c75T770R6CH1GV7tfWqIUo7CoJpXZlPr6d4Go5zhq5aUhOXDjjn18vtBH/XS+Z17Y/zK19B0gzBog/yfhwfVQSufM1osjNb9Nt99wZa+A5f1bbr2aI/1b6QdsxRozafDatzZeflX/GWTYU5a46TQJzZLvMDeZXPTPUk9c/v7i4fo+ccTjOcvhuXLfkW+t1lzYX6kL+pZKwqf7Ku5xrm03vNjCR48Z+rLb2gL8eY8rOomtTV3RWYicMx06VzP4XrraZsl250P+N7RpP5nAGWPIsEkfWLaShcOziWxZEZdbb1+fVySiBwWoFF97URTy3SEhjl655clSn0uRC4kSJt4UE0xT6b8xayTCydKWR6gzeci1hawcMpPMxyOPOxer//fT65HA+eL5CcSPAKjyULnbaqKsPbKfB21znbUS3rJzbtR7QTPyK9+XIXT1VcKkCb7s7+5uMo+6ULzmt/JY7+Ir7g3XxFcSiuaX9pbMS1jVXCZvhKiz/xepmrWilPFRIovTeayZszE0CwzZA4Uj+ao/McG7VVNgJdqfE9n6VOH9Xd3r3Q9SVs0V++CoNeR8TR5tL/XteZAaN4O5Osis34X96xNOH5pw+GrrRuyj5MDsxqlG9FQ80CYC/fZUFkhfkopNcMbnt9ZM5yP/7yYend0JkYVlzHcyuMAhqx8sCveFxzuvg19Dee3GBb8PFVCgCY9Ruamr/RHxK+S0Gj1sQco5v6n3o4pOqYf2f8Oj8UxL70m4D7cWRizb2I+D5JXXjIFaerBd+pvGsLeMgvTvCgbnm9FdsRSJgHTM/ubjU8T1dN9sdpj6Xm1ff8e4soTJUssCDiSs7M7SaAQ7SX2b6vPXO78Du6ZnvzbzygrlF5ioJH+aT8896hYa+9MVydTYll4fSO5yIkCsrwuGMp+EkllKu8g+SU9mzxTz5b5oMitAklxiEUzN+YxqMqOo+c4J4AZzS/UZgxTYi35AeL/p7/8g+ifUdS9ZZuJvAwVhrZK8ual4srZWjRC0yvkyYebtUIUH03lLjxya2+KrsfoZwP0p/+MrleIuVvPLMz1ZT+p7JzBM7GjoiPqprT0gpPwPjty+55Hfe/hOcRWHctITu9MuJN2qUDoPmgM3147f1f2Kblv7xE3LZTLmCuKojz30CPKRH+5d+qHd5fxFTJiKira6D21mhR5Ik+X/I5qpLloBZXuaN+2ivn9i+/IdqS5/bL/ZddOc+oIl8q/gvSt6UOfcZwF9laP2vopiHncpLZReFavo1hqmHr3RwW7SyrGq88leDTehpZnm88L3ykLHqYao08+wPKsA1Voyh4ToIXGmvnO6PB9jKyexVaLtpbRQBBaQl57mnBp4Nm1Io62zKGpV4yg45EaIbvkWnxwPwl/83+xuNSf/J98a/+sdQDmLE6GZVAPz8BUrGwmENT4Hx7skV4laXEwlXKfH44fG5Q1E7C9sg3qnnJk9Sj82NUxBfqjyFtDSjwRiP2fWVX43X3baCTT5gk/dbyN9J4iOArJiWzv1rD//nlLsTh3+8x+VtAGM5XSWMes6J+w0DV0IKntIJlm31jpcK/eo//nL49jx5lAPdAvzG7jB8+b2OjBXNYP0hwCBla9MAAUq1/iLPkrdPdj0T41rqOi7XA+LRqMgqr809idubmuXjqcgvG3ngyPJWjOVzGFqMJsg0Wjabgf/cTbS9hTlvwxWpc/IZqM25gRcJ6Pl0PHUWJ9hSYDSCi+SIeBMDDT6djcfPiWWaXFqhX3JhV3F9o/LZfATS5+JDdTpLR7xTsT2BtwuIvH1j2FPAbuPaVMku4Tpz1z30Gq439xuzwpOaUn+IUYtwemalNXTW7Sx+Ube8eSTYh6k9KMSXqcX14M81M9tUkQVD+9/884ebPvtlHtOTLxHzfN/2wF2Tpz58ur8/VKNRWB7I+r5Z63SGn26FZIbEOGfH8V7v4+e8Az1OSMCfWtiZfjlhG/vsS01X6mfNp+XzwG/iykI1Wvl0PQSK3ylbAAhOu+dSUtvjHL7Str3k+ogxbyrDfYbIDqfEvnVlSZA7q4189bU5rPQD5fVXJ4we7qjOie6Ys9Rc8socX0796V5EdRXwXwyCf9USZ0VIPwL/4GvFFb0fITHac+dJxNgf5ck//6q9EE5XCn3Hed+CKt4aEesHjKVC+HvrDs93b7hAXLryEnVPpi/4q+JSs7RIaGrXscH4ofJh5XQMMvKdtu+J9/1fvXGNk4clZH3v+ubYaoLvWMyeoWP5PLy/+hQRk94ynPzwrt+KO4ETexl3VP6O/eh/+fd6vaqSf97/5TMj8pn2bfI7ev/rEhWRDP/6oieHVmSLb8WUN6ME+2uiV9wHZZZZXzVWzT1X5Y8ZEYw8vp6tlj18X70Qs17+Bz9VzMKD7qi9irfMJ/avPLHk58XD67ql2Tz10f8Uz++O30QpPD6U3PUrCnX3nvI29Dhb/QYKnHcbj4qeU00gF8pdX0mdmdOqpPHnM7RzR5Dk+zEBOkbTw1xmJQ9Ap0PeXLVnyrnw25sMNlrxhWVMRI+b0uxUKn8rmL++p6Hl9yqBQVJ0F8VkzhSuPFFi39gEXl+O158JmmyElM9ZUGLkTT1WmHdX/15oC9X+vKRA2VcKMu8H7ubpCge76cc+CB23y36mXJdg644ElQpX64/H29ZBYbEpmatdrtXkeXpbax/OyT1m88Fl+b22wEisg6aGc+YwMnECJkjddD4KC5uJNH8Bf0Ypo3vWIRGuIPXgMv5QERyzE7PvqB1Bo1jJL7DtOz58TBk+6NlQM0FjRl/o+opdmZMt5Gnc0z4V5BLnHCV23LzfnzlqIQDumJ7ptJLMaBcV1YdxufWak7OWzPZsAXSf1R8yka2PqFC8Mj13xYnZCV/GU1tEJGh1UklxUyef3be2Bck9KEq5/L39K6/SkXJ/bghj2Y/bnwNsJyFBGjZj+NTJH9eZj9B6lLQmNXZBv+pNPgQmTyvAGIfM31u0KyVNgEXIYdvE2M2QJOOAjVafVJmYfa4xgClVgmtOpPU3z7gjGRrwSYtxXZjfeLi5MtTIszoT6k7l5P+CWXa7EeB9qf+hfTQrfe78mOk2tfCy2Rg3O1PkEf85uJaD0YoHxMkWi//ZdP5fqXgP/ERF25I3A52w7PcDZcYGRnWfkvf25BsgjVrmcY3ut6Fz4RxgOismc/edh8viLBPl52h6ZeyhnxBvd8kAIjylGg+3Gs87TBxzc00D89UXLxWS9nLV8uH3Ivn++eW/5zRHY6uvjpL9rfELiq1XTpLxTKa2VarLV7wrNuumTHb9IOSN3g6KZhoxulR/hbM/klRI+a5d4kvbkU0FvhfL3/HKp9fPpw+IBorOXsSB+rv0ZN3cDves5JRYxq5yevHZEfhjsCcZxXM3x/FKUCHBI3Ehrqvn1XnqtJ+Wd+AmfeharXYQSy30QCx4Sn+6hsAJbLg//vn/8fJ0V3Ov3k5HD+oI4fWSlTO5+TQt80bnAlTqFvvjrHW23+XAq5BI9n3JHt6vVIZ5xKAO61K8zs++DZTbrjWRB6E1vFkwnifMniiLVeMxvmv0gyjc7+drAY1e+yPK8Yv6ZqAb7ddgQshJac6qbeSUzuzoSS9fffv+5Gis4uM/x33wcHvQlqJMh1yRQxZxT/Vka60G2FOaw26Wav8zOwF22vevGvOy7TArjDx+Ipm8ZmovQTGFoNYEZ9fnGZyk8adC6+M4cRxh99m5fhlrUxpqitHn2k2TkLZqr/YVgUv7i7n0vWsC19CH29Iri8bu7BH/3j85REVWz/D6KqiweGeYvVFRF2YMC9evnEa8BuZqeneWBGZoRCZUijUercwW0UQufBMa1NedS3wzqU1w/2O5bLzUoT07Rnho3Yvy44/NmkFPQ7reBRAsejWNmCTASdmBueDjEdOV5Ilr5xg/Lu+GejxIRT/CyfR8Luv42pyaROtj8eoLXQdD59JtUJ4ATD7F6lT79cvrrA+708aPCOgw5ra/pEUhryXTlFju+rQENcL7YKjP2xZXPZwASQO2/5HXoWE3AzAx9+RyWQYtiXAfk9NlPPn3f2w7m3WomrrR1+JxJZwoxrBFV5cOjn//wIWmijpH21eY/4V51CkZ6SlFuxeYs6MRFdJO4xEiMGxoOVpfAIPgx/o0MVTS8pwYYyqxhdfX45HP/DCylOmZXRj6milrpIbnQhOYZb6OPwMf+RVO02aVL5lTRnk6udVOjzNJZfApOiGvHvoHyefaw0H6Hnqvfu6Ikr4vJzM+4jicmoVaJp/nJ/Mi69ZPYWClo8edB7P5e8NF+XjKQbsYX88N9XdH9wfcU9Se4TPPsIp5e2V4AD1yTxBnacz4q3wE+uQfMHS5nNH2WNShjtuzbTfND3mQ1OyrFcSWznc8ixNslQ8h/B4lolnypZvfAMpgpYUyX+7DnBlVG9MuJjb/r02zOUnjTULDqbaYHVYfmh9V10OgrlZjz2u65CDsPBDeZ2F7Q9/527s0OXpIX4xUpw3zQlU8G1+emICR7KYgf5JWLHmqb4QmFMuemLbcIRPnKrN1b9ulj/4yUm3gSiAPFnbMnSiP44y9n9gM0iEaxUt2NUuGeFG4+WsmqBXOz9/AUCUE+X3o3geEbroit5Y+eF9b59G9+aFtsmsP2eUthI3NK4yYwzL+aFAr0R0mRp/380ex+FoxFd/q73/lMexUj2fIq4h7KIxf+xsOrjDs6onlrjvJHdSG7iAkVL8gxR9U9zbC/7zJiUrozJ7pxCqDX5/Tf9QkntUa9IhKG79tH3I84CuDAXhXxreLAaSG0Ebign8iiN/pRIqsTSJJhsdBLQr7wWwMnQ3zjSdi/YipO1giWZj8pSuPQ36gfv0bPTlyTcGR5xak3WMp2tRxOk5S1OQ5hTtH66erk+qJ7s1vwDumfrYgVw3Ri4cGTB1TrWqUdv/n99oIr4U9vECxcMZoz6U6Vn+drGIEc8Nm/VgoA2mrMe+19zq3H+FChkAdisfRVzROfBtVSY5MEV9z7v+3Kx5Afw4KQ/kjjcRZvGqgbXSNBElQ519lFU7C5fjNben18/jg9W2SpBxOz/G6Yc0dLFz2S5kOcTShUrOgVjObAqdg+Us8VF54qABadiWlovvjb8LfTwECqt6zrf/GfbA/aH58TMp9EfxTzQEMjzDPxLilGc8oiitKyBRLeFJbPlX64gTccHBYidjR/Z/edIqKbNh1td8p5r86SomvdmmmHPKtmZoIFua+15Dwu51mvA1eBDPkDFdEx9EcrOWZwEmAix/ehNofopGWqvzmZ5MG2fcWl9RTB9o4M5luPAtEGG7Vs3pSAkXsU+dMudG1Yw71j+xfd+7+rbgqqQtOWHFRgPu8NVstjM+2IcdeM5eyp5/jv/lhyVvg09kNDuRvPGK82CPndwdA0yH6CSezP84Bmcf+RkPoTXWa+kNYLl/kZSfvbKsHyCdX9n95FgZ3tSdiGabUxx1FA2858UXjNa3MKmvKkuvF4IbvMGBFFemnDlM4hCc9KWs0N9mrYmdHE/H7TVCw9CgHsHnjHyHuOTd6riiKnQ+ERDOiA5mDqBpQfScFMt+38mZmCDQs/sH3UmaawSXgHxRFk4jlV2f+ccyv+8RHzsv3GH1xyt5AR0icdDkjnf3oIknNQE996aGhDCxD/8J0Z+/ATj37vLn2Vjhu63gpTPn2clQjmZfUm7vYS5NvtydIgxIWBUdcEaEOcBgMRSPqnt8x5zBUF9elgYo7ddz4LuuOiSM0vBJursp/WLnnAczOfmKPvcn/8HWob/ekpV3X38Rid3AzOrW/S5f3xOF7bBrZHsWPhMy05ra5QKo+Z2ZgXQ4OmYB2mkOY3i/5e/sg7+6ba6KiWNgn6CvH2Ew0K0l9sxwyl8Su+2cKM/GvSkmA/HPJpbR5FuOI2YcERn2Ju0HmEzyfOsRQY255Rb7DhszN8XDJD42Lvn1u4WpNLtDsaqiIO2QlMX7DZMp9MfgjdDF3iJ2Fh0wcmneutAnOwq5hDwzuazM3vplS03NL5xz8ml8ftA60kCxOMcjH/oNCm0JqRyMgwfxF7n5QGTF+0KcUxrwajOVFY/Bjxr5trvuDNTf3KRcJSobHz8W6kJ1ieH7Ho/sOn4jzdIN3dLiyhT7cXneIbQEN3OfNcJ+E91N8jOFG9o1LP9X56yF0AYrEtib6frX78qWoN2FTfeIKsREOdzw1MxlwQu7h78fwW2Qrifp6IVykT/3mTpEE3bzJmbGsTbc/XqYCn2bnExYXvT3qb2ktvxiczXQQ9e5yenaJ7ZYi34o3G43JiI8T9OLHL0B96fjq/XFWesIVruH04f7dfA5idYpIZyZV3j/RgqSvdf+JV33T+2J420T+88tq90W8EEVMY6P696NF1P57kWw0nYTXh7JJiPqnx2VXOK3ek/Dhc8/lx31G4iuiEx9swox/dkBIOj+TKnH7/9nklkwYZL10kbnnexiPqv0e4PQ/aMt5yNKnrpoOeSQqWX/Trc6v6WbAXfExn+TLx+Xl73dSTMwfMfqu7XvR+q3o5/3GLizzY5gP78UhNf78TeZrDFg1rKUvhNx8VKgv615z9a6+AdfDeDGPttYw3LVVLMVthochu/ri8H0qGbRZkd4tvqVfb6JjcYnK6J1U8q97HBrsqa7z62btKUOLuBsr3qWMZqsBk4+dSonWHM4r0CfrxkEYzLPqOaMfWzLdO/61hekgrtgvLB+diVdoyHas3ld3rqx9vq9qDpMcHpj/3d3MEJndwiU8+c3cr1xTt28ZC8wtCuvBDPr/U3xHu9+zzn1977xWsnIW4xOIyvrj9UR/gSXlD14f1FjEUdA/IjhJjZhOUPpcvo6v2VxQyK/uuzYG06xMcpfpJLHP2za0vHQdIyw7wSurGmFeFFqHoFcnMUM8FH+NNgJE7rgCXd63sR9oRFxY9wCy6d9B8yJ0TrDFeM1/oIJ9uey2Bu/DIid3hj09LfUOB1kcDt/Yh6/njdGn/8Jhp6nHuWWYmHjyfqCOOa2p8npwCq+baSIl3+rRohmshqYtew2I/8pwP3zZAZB2PeG74mNNv0ido0ZMEmwbK58ALRUTd44fp98+I5vVmtKDQJY6vVXTOJypUR1C7XU8CD/UmL/o5QHRMX1Taa4zTqPtlqMSxRZ/qG+fjp46TP//NQpX8Klr9OgClOkUMJ/XZnw9GfYTg8iA0k7Q14uvd24PmuxeYm5bfarqH0aD+5TkWSc6caYp2U4dytaerp536nX3b2CrfxRXe0lDl07AeAS38TQyT3fg4CGOjZkeFMf/O23i+3OwSFr+/4EsX88/uVCJ5e5dZ0KwdNOXT/oGu2bzByukr898CNsqeajd22YTLmoDoFMGKH3qmedcZtV68x4g+ohMLfz+OhsKTLSSe+Z4Zx5Xlc8s3DOX6pDcW5lnMx1MhF6B7RUiR1PrxpttGgareRoOlu1Xr8z89+KdPrBae/nxczgIYAvOKFSOR+Wy2xgw0xBgv8x0N7Bxh9SJkB0akHTc777tfwepjuES/VK+8H+hJVFVdpATfax+xsE0z2BzKiYQf5Y3Gi3714PocbuzW6ayfV3c5guesb5c8Tu6nwl53SrJNRuZajOY8VQ42YAZrUj7qNWfDtwj++JTY19youOdIAvpZBiFkPu5Men0qHZDWlpfzl418W9WCBPow3ZmViw6f1DVtkf6qdZZ78bpf8rIELXqa3SewYjHcIAtOyCnx5Jssp1Ys2WB9vCOxhWo5S/PylJT0U1fEuJB3xSvZqWFbKSML21CqqC6FNtQ5u+H5Ua/RdHbfGXTRD7Mg7Ip8uN7bBP3x0d7N52oqDN9ASRSpzPWnMxIuVwgQFGjAa/F9qSa03SlooP6bmY5LK375YAWKq9ORfXdUTebePiPKD0ZCzOo+IDo5RaDeWb/FnHSHflI/ZiOf12eF7YSNwbmRWwnYx9uDOEM/9dN89hTUJZs124UkiOf4wW/QFs+cGU9+7cfjfZfByw9F5tLNN2e35y+BSijfeHt6m3yz7W6jMoWChMde9Xgjy/toOWd5YksegwZ9/4qQelcD4k+N2XM6uwDjma7x8Fwf/GV+PcCJ2J6uzrEXsyL1Z1hx78PcI1f7jmoOoHGiGRVvzzz+xxeB/mmoeMx7NArHPlJ5E7yXPCbMZ+8cl3/+hgXX6OYPW3s6wcJPRKvyD2Lk7g0IX9Uj88x3XE3K0iv8fZJvdEabd0xH9krgV+YrWlL72g/x6z4rm8u3JEH8fPrz5Cx9/44K+/Mf6C/PhcKfdYp+l9gfzff4AHLf1+xqy43Jo1dsw/M6yiRenseYYS+S/a6a6aOyPia/PXUL7dM9Z+65ePHxMl/+wzvDX4X5XP26FbSha5H7N9PzzTe61HBxXwojYBr+vN37HTyvs8z05PT5pweQauoS3pyIaQr9i2Yo6j2HeQoTEDe56cKs6z7xlJuRC5F2WKH3qGzx5lt7/fiJ3A6cvr0T7TPsc3SeTzW48XzBxWa9j8eNGQYwHCSTmKopmtNtI9qwfD5936bGn8mR1lAFaY/Xa0fpuZEHCSQQXajiC7X/L09f9AjZz69fxY6HdITCH3WSql6Wc8tvIqV8J0tf2TXuR1x7A9Svxl780df8mNz04C/vD55q4U9AglGh4+u95Jdr1LwO8Qyb4bEjjnE6oTFR3QH14UgX/6/F8zWwgj/9R1dFE/eD47U3YGX5Y0H2PPNWaA6D2iXb9ZJPY3PeaJ0Ch00akudKcP1/epNdPilV1EdnDn//n8mw9GmJIn/+09OLH2P+vF36lIZmBsr6QYlnmE4+XX/nEzhRs6MA78kfBuH/SLuWpWV5ZntBDkBQ0gw5nyUIPogzQUVQRA4JkKvfhe83/Gd7aJVQQDqrV6/udO9e6FRLPbUsUdXFdJ5SJMWRR/blg+Y0ciYNNYmqU+89cows/q6Bel8EFJ/IQWc/PZm8Io1ej7ukFo119oCU3E70p/dPJRLD/apP4MO7WJJvPquFTMJLhk3r8Konbne9wuHROOH2gIeksYqMl2yvOeNDZHtodCyqIet8NcM9vl31B7wPlcRroUJ1SQ1zclPiWPrhv3bTkppQHSzQpcMWK3t11uflIlbgZhqlmtRCTaJu7RtZOQ3hr1/OJ2v+AaLlxNH4piU9k6E05EJIeay6/F/N8+fzDormtqM//Wf5+Zts137pwbV5XxCntoKffrR/c14t7owRYCrbE9bssUdfup7D//m7wJILfdXbBLhc93vq3ibJn4pOHuDTGEf82Op+Tr4av/vpKTS4hL6/mFNdyopWZyN/y/h8GPcOAPMOHk1Wvj/XITgSEy+UWgGKauackbPXv1qPnZL1/94fbY5KThWjMf1hvt9CwKNSYptem34S2McC/vJEOLSVLp93310JoU007DytWz3uvrtKYn/OI5S8HaAl6lwPqvlxJpUopvkizMbye36qvTQv57XDvoNVL6K/+OXrYXuCj4JbsvziYdGaU9jV+ElWvSlf+VsAxtF50yi7KAlPvtVObi9xHfL5LkP/9Dfnxd/wzRCWnvQi9aCdTmd8fmZOLo5WPiA90TZUPwU8Y4Ompz/9jFqfx8wYvpENbKtGJFNzw72A/vgJThr/xgcru7MluEGE0Hkcfvplv/J5A63xOHUvQbPm654OdH1XYfNYHtCK7yVMuTiRSvjr/CGg0RU+1R+PrX5iyWIaVw3O3ztQNRBuufg9yNEv3qC/fE0nDNFqf8eOmtXxmYyF66ToJr0DGjwfQb2ceyWVeypJOPSPPloeDlOgeCQKteXC9Of+pA+w7k/qf15vv8+kowGNJb2o9q3M1T5VkFe9Zc23qfpwzKJJjo4Xmdo322Jj6rgOks98Hm6nZkm6n15tDKFM5Mju2LI9HU/w4yfK5hkk88DtACaj3eOb/bb75Xy+rH2o7leql9w++fknWPkCwW5es8UbNw3q5i7CGtqayVtp+RPCyk7D0cFpdfZ73ufRKMn7VG1r2qd3DY3Y+uDDvNnm31+8S/SzQg9jXzH2/rsLiIlRTyblr+6ZlVQLlBZ/pVhclFw43CIFot6xQ/HdX9HsVUKAVr5NGEzrLNXzeYc2u0OM8Z9ssdmvLhv0wwfnMuvJrGWLAn1GdHwbe43NbHQJYn/eA+ubmDLGKbsSdMmaQzgT2t9x3DTw8vqUiGt+Z6r7rEXgDjx131xXD7WOJiCXdMQeDx9/Eq19us7CFEL5XqxnHvRDCLc4xdirdwraYiaSf3qRvxff+pTKCpGxD1ear/m/6YndAlY+TsBDvk6KNs/Aiu/3cFsd1Xx5XbIIDqa4IcIlr/p/8XQnoyWUHt8ooVfqZ+inH6tFJvpU/t52ULabJqyL/J0s29Ml/U8/vT++rJ1vuw3SOmRg7XxM+4Uo9gYlnkipe+cYWrgwCSUpuyKsLKqUdP54PcmPjuewSyc7pyp9KGhsvBzrKGr1pSxn4YfHZDM5Y87O1TUG5XYfwuNbUHP2mRsNVr2SXkZ1rRk58gP4j9tl1ds3dfeHtA6uN9nGQZA39YJj7YR++9GJ2a2eBLYW23SLRBawbH3iZKwh4dGdf3oMEvqHYcH7hApsUuON5kO3DLDKW9Q9c7L/Ng6vE8wHbu1lIWf6YGj9BrRpt1C81ftkQX9ZtfY9xNhwTiRnf5d9hcSY78gwmZz+1oby/v+qKRD5/11TQI14R51kv84HjKIOSOFrIU1HgX2RcQ7AnMiZYmM4oDlPtxFiubFQ77YNmPiMykCWrENDFUXc1t2CkxA68XXHsRF/9JkiLZbvukexKlKzF8xz1Mnc+x7jENdGL2ZNsCBSuBr1Y67zB5qCAvdbjKnvoj0bZbPaQBNPmBrXIaz79yWrQHo1DhH+qjRnk59VMPzxd2qnc9VPpy6aZFLqYkj4lukL91xK2IrNQp35wTN6Tp8luHbU4HB2Duj9eU4aEMV0qKs9oWbYdHZwwjbDWi40jH7d0EK1KSfYXLhSH6zHzgHq+EO4dZmUL625jyHdjieqZwphbZ7HFty23pVww8npt5eNXcHbO9/CWnhd9O/nuVPQaV9F4TYWu3pi52UAM3s9CddNckJEJwmg25c7qp+1Z0+O6hFQsZtrrOjXJ5spy1o4Pe4KVaxc6bdm3l6h4/IzNqeCsc5qCI/2U5bhq4heaO679gR6GcU4e2ysZHuS/3agYj7Ax7ez6cc9LC9oXceg11vaJPMrkzpQ1eVDde8e+CTe5wE6N0pEb/ZpZCOYkybzt1ikhzJ/sfmKM4KkrDpQj8s7fw5HVwPQeAf76QMni7H5E37rte5x2Z/+rmUhB4e1V81FePrkMHUS8Ed/CHdlkbG5uJMdgDFVhLX1pM/Wso0gu4YKVsdQRfPjjDaIXouE2p9TjaZ9azegPJ4R1gUz7r/o7TcojKMjjut08KdWLlo0PKULVU1b6bd/b7ZBes5x2Fm/x1AGbQHVTbyF4i1uajaj0gHUDTE+WNtPMuiptMBM+Fu4CZ5HNly0IUNpLfjkfRG3+tgdx0aK4+0Du7E1sSmLTwQSMfWpkm6eiPEnR4Cme4rUt3K+Zqe/24Q2LATS17qB2K9vwEyEG9nCU2NDFp8GQPfuTFV+XBCxzvoLuE82hDKn1MksnewSLK2dQ6hCPxelYrBglykiPszyJyEbNXSg2LGa8LpD6plWuNp/cRRibcpO/tTdQAORbmJq3MYxZ+FpDmRbkhXyOgffZDmqxw3Htr62zodsksWy2xRStkg4+PNxMguvC0gWfCnGe8H3lwefvVDJtYQaz0Ncz4X4bNE7vWTUEJmZz2IwaTL3PVtkV9xGf76Jp0aCijYESv/CKO2GtTeXZxN6mpz6K56+LTim8aQHmlO/s+wylc90rrEtJJLfnzYKjzJ7zbm63qCzsswqkBOlwhfpEOtzpQSA+EumYw3gW886UhX5n317x4DN8JdHkt6qEvZuaZNP7uOugIycM759M7knLh0C8Px7Sq2Lltf/8BB1JA5nzXqiwRRjAy3NXqPunvQ9ff90wF2h4KAK/WRZ7kIBuCp67B2nG2IWOgpI5JBKmPUoky6P3xWcPocvxuNc6CzaRuUPL6h2SlUm3s65B18ch4T70E29PNHWAxS9Fpxhqe/7lOh3CJ60w87fTauX/Hr2IGHqnmyPl4oN+2w4QcFLlCpKhn1yr08lOt9ElxBXDepJvvSaxOfpDQdn51YzVu89kK/bnKq5/ZfMPzw0uxL9w5ulI16ITix5Ef6PqPW0POYMTuP9L+RefJ3MT7yNoCiWPT2c0i0aSPM6yWrdT9TrLlouCNFFAuOVzdju/rSevzOJSECEmfqtIjM2+VH1wzPC90TI5w1xAJr7DbAle7M+v9o/CfJq6PBvPYbFEjr447orDfLxk7DKeZawONKInUF7Jv/w++ev/OI5oGEUihbh6t7jIPaimg2xfwfPL1KauNy7n8z7+QRp3huhqHRC/k4OVgwblGn0YQwHxiJZc2C3mDY29ThNJnofW7iJFk/DwVMQb3I6AUX8WtiOyOzTu10J0NwfQJ0/cH2e3CWCdMcrwnJbDUnnfpYGtnqu4eCNPV/cBprzb72l01zU01nb31Hdhl/qqsbXn02mpajQ+ks4VbBPJmEXK3AoNYRNlQ/rweCyBZQPOZNds4nQHP8FAP7t7WGNXS3EZBBSOKszxuZDsvol1fwG/dbfYZWVzMEpOcErdUfi3jsrmTeHovlvfwTM9Of7Y2lBkxw71JV1Pmh7NCZ0jPortgzuTxfOSxLA87kziXwWqb6UoAU//0j2n89DnzspayVO9/tQPIxxQnutDKDy4UT11R8SU3h46Ev9gTr1va8Hwd6eUPCVJuzqzVOf0F5vUV9/HGxxB61flvt6Dkrq1XDsbprOhHy8onpJvZBtm8CnyoXxaHMw5lAW8staojBkyH9PR6xO5KPPb1c7oUplNQ76WdNnjyFAP/u8/DWpP/PgbND3kxnUuSCerbxrgK+ti+HUKi4SWT07MLhLTRBnin5vsTIAf0uVUG73Z31Qm8mBFms1VXUjZIth2RUkTN9ju18EnTVuGaz654Dde9ckyz3vJHAPvhnuRM1f8cpdZxslFQ6L99DPk8YALfz+TIPQf6Gl/StKhKJmIdtilyC26MEkGdckwmZ3TfPxvvY+vGecTD1rtutJJd8J7Qc/JZw/BjlPsZeBGVRNKHJCxIZ9i1/I+zwUrCnLE023JDwh7W4E+CL2FzR5ilZI9ml+h3/qX+szqzpb0mU6fIkkIoMthCoSfBN7oX5d9TkT+NJDDQj3df6txWZXf53+8Y3kxE06+6jfCnjxbFMz2Yo9pbnCI357HbFTQFKPnRR1st9/HhinY7re39nB2f4Sqh8eHhvo/d1CvPUs6vPmwJpYNSRgX9OmwWlw0ETtaJJfp0OCb+NdQcLpIr2QHLIShysf/A7Vt5W2uDpQzWZl8j5vvh1s5qjCoVsm/uihd4PK+e2u9qf6c31UFTQbS0idSxHmgmHZJXS3MsRafi7zmcZDjNLL0FHdQH+JMN4NQYq6GmNn9+AS5rLQgO/Rz7Cpz8BGirQIEtPaYlN+UDa6vKtA799i6gLtEopPLwfko+VQvPrD+eFk5OdPwtm0y54JfOtAXpFu7b348tmnJQRCx5koXvkjq5VKQKcLPmF/sFSdvSbpDvyIGxpqauWTQEliRJbTnSDWWPrSy+MdhPpTkC5aJrT8XcYKur6qqbcXHzoj3ewhvk8CIvObxp84SUthK74WHJwOWs5/76qFkDAdsHo0d/6cyN0GxHprU+1yCtnUhzqBt1V8cfh1NX1IVGlBR4/38bGyH2jeBd3mn78KApvzqcssC3Q4Bfh6PyXJ7BdXDdjW1ah2Pt706f0CDS6pf6Hh67VLWrH9DmihhrN+3wINvONlME03CCUtfurL5+/7QqLN37A6D7w+tOP+CpcJf6mT5rRe/U+JjvGH/30vf7kbygYo/BXUD27xWrOjBTA7X43I3a3yf+uBVn8TCnqlJvOPT6/4h830jBnbv6pJPiScEkqHuK/p28FXZPfKkSqZVOgTi1QLPWeBp9afThFNiV+AS685VVb/sCTfTkJZ6JmEfw4XnyW34g57ye9psMSNP1HsXcEeNj3h772Ud7tdJwC27ir2jc3TZ8etXsgvz16oevFsf8nZZQd/71IKtxV6Jz8+iG4sVKjjrJqcyfkDaGA9qV0mZk4u1yFEOfBe+OMrk0HsFvyZD/BlCZucXT9RKf/8s7o77PyxmcsUBQn9w3qjioy6iVTBw1w1zbILEnYN/yZUnDYKDblWzhdJwYV0ehQKNuKxYiRqHx5SuAdH5N3dz2ehKFO0YQGEJehTMtgboYNDqSCaoeeis0+5NUCU4UNt+BN/eKnBysex1X+rmuTIL0GzpTnkTV/J2YEPJnTSM4vms0H8qd3WmvwmrzsO9fu2n/Bey372H74XTtHZzz/tHMsJwbT5nvZPtsC6fhhr3rafp/gcgvcuG3o6eWk/74x9ii6Ob+BDIBpMwG7Wof7ZEaySIESLkh43EFw2Khk/hZ7P0aHMZP/7NalJN2oi3A0HwNK6mbSZbCPxWymC5Djy3+p/3z4NXs9S1hIY8D++kidlAbtNGFPM+LGeztVBA+VRR9RY+RnbGlEpf49uhvEY//XM6G7Tfo6XmmJ8ONYizRUBMj6K8PV8alH/sG8LFFFPwvEiKUygglRCz2ox5IRtkIxNRHZ7ny0Nmdf9vfqTRRo9LcQmggzNf28EsLGDmKZ/OmVL3pcx1BtdJFFZvvppTskGLYkSUmtNQs3RX6zBPbHvIb9hmG3b2QpBr4IB+27BcuLYYQgqRzuyX/F3u/kLQ/S9RTU2u33BfvsB7SovC19TUuascr7VLz6j9jn6+suYJoGcpx2leEpOOdsfHB6OrVCGe+1Z1MyoXg58dVcP2e7jsTn6u2rIfcfop38ky5PXS+T7RMXmIy/90bjar//iga8l5Iv7WV7AFC6mToy8XNiWXoikqdVx0B3O/oqXDtKenBqyZ232i6TYBbw39YHszheo27HZX+EgOTnOzB1J6LP07yCHc4n1+sH1y5/nRSDMn/nHp/wWO+8BuVvcrdcX/TJ9tHB/TCULO85+9Kd9ixvpF39r+8LI5+vZS9Eab1P7NZ/7KXSWBZYTtOGWbp7JD2/R6Zjl2Fv99+ThN4Fj9L2Gm0Dz8+VlLI3c90tIBEV19Hm/VUBuqmGDvYSv+wWVTJD4bTZS9/Ph/Bkbt82/+O9xOmq6aPpaIB+1r4nDwmr8gZO8E5yT8Uu1JD4mc0bmVP7xNYi/oj6LwU6DeqOKONx9NozN14bIUffEY+cuVrIwbHnQfi32T39hRuJIKLbmF/2nz9gs8WBgc4V1XW794Xk6aNLxPnA0wuKDsR9fy2JFIrvP7ZzPZOYEdMlsFgKbDmj2GIP9x9ld6N8XYTT3kv+SBk4aqU90mn/ll1BCI+0Mwn2XKZmBJzxssO7/4t1+6dM2ktCm3hIOsjpflPQCyD1ebexv9T1bcPsKIczMx4/f9NPrL1rk7BooVPnby/mnufh3aF3PwFZmhP2ynA1BXu+H1ae7MHJUL4ACmb1C8L9Bv9TBPgZvfj3p5dm//eUYbQNIxrAj3JMZvTDjMkYhpCXVm3KTz7dw00jn29bFw9UtkilUVQfW/RGKvi/pLGuMCRC8c7zW1iTzTSwakBuUrrMvdv0sFO0J7t+TR0/XQ6uP0c1vUSwaJY3mWun57MkBIpJ7psdN5NY8FfALwoO8wSrp/5KZM28SCHo7Yqs2MtbtpnmNFyQTG07/rhf9T+ThVR1aaqDlqE/qxtTA2CXvUPb+hn46KlRD3fGiU9UyD/V4NJ8E+ReS4tV/spWfrf8/vslX7Pdo+eGXNzdPjJu41+l5K1sofU9vmnGlzKa08wmYw+0PG3v6qOmf+S7Q/eiuZ3yiOi9Pi5bJn3brYKcsMjSt+hCqDjtCLep+0Bf+8hi2t6rCauvK+YJKxKOAzpj6+r5ICGrfBfj9+0E1th9z2s6zB+b9plDVbGx/Ud9yCKV/3xCAU10v5CZO6D20BvblVu/Z6+vwKOd7g6pHM/Nn/1ReoZocEx/gdvaXiTAeBm43hsKu92oS2hyPVn0mhDU+mJ/Ts5OFfqmoOUuopjsICPoU8wEfdL6tx6UPJAiv+p6A8q1yZvpeILtJ+iSlIv71c3bgJGl47i7hsOo9i1s6AOX2JlPV16/9tNFcA0gWh9Qw/TKfjspHg7t4ehDy99b0uZf0BrBVqNjZv3Q0HMqCSMGN32L37XtJe9dTDeEQf3FoPU4JvYiOAItCP+Hl0bJ8KV9tDOpzTOn1yof6IkebAtVg3nC86lfsT2aLRJq4DqVxb9fTJbZbtOpH9MfvppHU2u/6cJ4PYz3ujDmFLHRMnK/x2gJHv0RoRz70519Hw3ulsEmiAz3dxkO+/HlaBBc4recKD8N6btq1fnyGamky+T/9C+omxiE/LRbiZ/ok0opvIcIPY/X3lw08t7Q9LHvkob1VXxUUHrhNKLI4T0bTe0RwPuyuWF18qWYQEAJcns5UpR5CpGuil3z2QcF+Vqk+X1SbDiQpT0NwnCT/xV8QllGDC9VxVnzbO2jFJ3znW+Y3yXOOkHUnPbVVF9h4xdkAnPiXU1cMkqR7FfiOPHz2KAbRRcJzuOyg8IQHthvMJbMw+C+085QK69pF9gnDoSe9jQqTaa8d6+l7dw04EKsk1AkSf5K/YYSu1v2Pet7E8uXcPV8yLY8VkT2e+a2neAVa9RZ8XPniXHMcL7nHzP7xgfyDTM2Rl0QLf/EnGz4noUXr96HZ4czlc91WG3g8ihMRJ6Hpf/gPhzZUqXHuMZoSyTXgc6cfGqZGW8/4FhHIg2dIpCjxkrbwvxPAfadh5cX1/kcqXhZ6nI/hz5/V//jILx61p3Opiz89LNlHbyIkysYfNHIakJu7V6xyoVCTsFxesqZpMfaHt10vn7chwH2bmTi56spvPyiIfbwR2+ms1bOTnDr4Y0+8vp/KFu/BJEj122bVyz2dtINQSLfc8v7p40PyDFO4fRwTXzKHJHOj+h2QKTPo5a8RfHK5vgLY9OoWe4fY7+klLQqQR0ejxzU+XPQ/jgfQBCds40Jn2yZqdj+8patAgJa/I5Lg8nIJtQZ76wvp0sa//Al2j47OxHgMJrTq8Qc0vD/9tMvmTA6wUFJrFxj6xKm8Jhfa90LVT2Dkwopf//jxbUF8PoovQwJuLg8U+6HJRoFtA3nFv1Dov1U/zZ+d9dMvqQFHEbGHuBRwtJ57arWOm8y70+mFvtvr2oemeia/eBdFwtv7p4d0n3cggB7oURh9nrXPQsYRJFxu6KeH9vzxmWTwVOsdVs43J39J2TlC7+jlkToq3X4izSuFy+6u0HDTTfkkObwGrxNOqIVsLp8eRbbAT6+eJGVTz1zjRaAiXiCfdT15IwQLbS7eQK2HedBnLe4VmIFf1vzIgc1Gnw3QCO8F29NZ8bd2t2lgv8NHrLP6msx3Lgxh0l4uPm6ibz8fYD4B1yclDfq50qd+U17RRcquVNXrv+SfvT8PvU7d8Vv0wudt8CDM75nsjx8vGZv9BeDRlxjnq945HagI6Gz3hCzDpc0X87G2/1z5rIpwh5b61O0ApN2A7W90979r/AZN+tWxcWw3ycqHNuDn3UTm1r3l21K5KpARi6f+oiH/O2tkt1/tj6okIGxa7VUS3DogzcoXpzt6pfIP7w9KgvN56YOd1I13mfomEJ9xt9uAQitM1/eBeuCWaIBZkjKKT0fN3y7LpvzZO3ZEre9pF2cllPPHpV5IOX1MGlf5xePUNry8nk3mpaBPB5W6fzat1/izROQatESg7oexGbXOT//Afq2/Vn3jXf0XP+XzR18mggSAQTqT+e6cdJKuTSfV767ADlfe0Kqnp/s1H4Xjb/Zdiw42Gfo8FbzGl2UyRofyiiznxmFzzP/8JV3a6Kfn0V8+aNnS9x1kZ69SN36L+XwhQ4ye334MqTJq/vbV3iTJ/boUB8A6n23+9h5creIvlNtr1Hc//8cGGWGtS9OeTlc0odHftGFz0dZZa8I+kqK0y3Eman1NOctZC85sFm40VfOniYsViE5EJbOhgU+n7qGhgFeOocnkUV90YY6AzVFI0MpXR8687dC+iUTsGuY6q8tXNv/4SotzU+dtml9RoRAOa7fk2s+at79Cyu1MmiKbS/7p62u+iabUtRmRv/sAtvnLIcmazxuUg3yVasXgsaOnqf/jT9BtO4NIH9HzRdHfWuCOd3XNH72T+fbZnyDpowj7c33qh7DELdiiFYTL5UTYUvR5CCdssvB4slI0zWmzgc9Tw9jIaJkzi5UhPMb7l4bHxwaxZ1SGkuFkNv5j96Ye3vw5kq2ot7D1tr2+e/hSszfSrMCmsx2TlY8Jv/fDnj61iIVFJ4BMrQJrRmz7i/8ZS+nnb00eSfkyk2b68ZuQX/fTpAr5FbZ546z5yyebyqC8g6vqElYuXFmvekMo65ntk/e3cJMl3uchWv091RfLQtv2WzRQ6p2JdQNt82X/dHboh39/Y/6nU8Hw79LK/6h7dGo2Ff53gUzyKJH3RZawVb9AK5/79QjwZ/0r7iTh8kBka6QNmwYyWf+/moLt/64pQFtroQFLhZwV9ZaAnfFk7a1/q8flcDuh+oNFGqZg9fPH3r/QprkRsp+JpvON9mjBcTOdRvdpqhkb3M3vN74FyUtfMhJ58t6UBaxRU0Pblz9r8i7xnhj3nJlva/MVw22sroQ/vff5SNdzcxcaB1R79RajqIky6W5Rjuzu0Okk6D8d2C5HSBNRw1+WXIylMJMMstwOfD9r2qiAmPcfwrVdWy81QztJuaYvGjTo6DPJqxzUpCnDhyAx9NdXcTbglm+JBkk+1Msl7ApIl+0NH7Ok95dsAQ8lH2HC2q359N+xNAD+auJj7Wg88sl6c9l+e+UVau3Um74c7NsGXbbzm8y9E+TbM/U2qE3VK4nB9/OvzDkxisuzGO72TGbzgXMGEFLHou577QWvTi4PrR99KT49nj5pizaGPFMx1lWsJlvhHThwf4SUKoNE/enr7QnyWothQ2EGWsIsL1DKKRG+E5L7tJb3vMQNeY6D/bTUbDh8eVCRrmGsAu3X6wdw3oNC79QOdXYlqgSPP+9GzaNQ19RADwftyb2h3teNkoF9N1eIxBdPdc7w60n+O3Vw64SQOmU85dPXeG1ArD5BKICj6AsqN3eYe5dih/dtJNbabQdpeEchb+VXNIePXEN+1jlhcqImm774NkD2IITIuy/TWS7fO2lfoCvGoWmgaXdLKmTfsRW+Ll+aU+t2DeGUCnus/KliT6tKb0Dyphof/UPVs90lPsGfU4fUDaiW86HlpOiRHm/Y1i3wyfERTJCnOxyiv6ZKFsINGXo8JgMfhNZlt9TpNxDPSA8lfb4lcyMrE/RjKIVcKVnJctD2GwTFWuderL3Yrl1EYCLDlxzP0hmx4lRuIBL0dkVhkU1TMqWSlR0vZGNctjmBGW1QVxdqiCr1U7On9XeCdX9RHGV3f5i+Fx5W+6PKZu2Vap0PBeyrI8Padsa+4BiDBeyjetjpzzTvzKSIwPQSO+T2d2Udx9kaUkU+ciih4VmTtihjILvDh/7sd46HoyEfkfwX9nDYJZN+rSzOe2cfamniXz1FmiNBm+rXcLNlUkL81PIQr3QIW7lb+tPiDg4oz9il9teN9fF0Ljy0dC+DGr3j9WyqqQTbMrwQ+e2Sfrm+fEDv27CnYXqs6+XdZwVo5xMXbofcTthTnU9gKFUYSrVj6/RYyRvoyVkKpbzj0fdKPxWKzY8VMjvqkolXFbLOkyL4XJCATa94ekHhR1O4zx5GPRWHOZPro/igjiwpiJlBMUixoUtY5yjp5+/ePQF/fj1wJpavflRHvwBF6J5U7a+QfOeNUwGpREze6dPq2X6rNOB864DsHqGkj05kd3AmymWdT/VmpBHcAErDabCmb1K0jBfzCqLN59S5NC99YNdvB2L+/RDOVQmbhT7bAd/FPdWkrakLr2u8gcxLU2ptdYVtQR9SNNz3GJ8l6ZYz1PFXcI1ExiEW7YTxQRFDdlAqaqbPpn4H9bWA4c3zVCkfX9ZzcC+kOTH9cD90gT5vOv0E5RrDHOrrNukcRbHk4Blr1KoWLqF4bjxQ4RViZyGbnlT3a4Zsy6voQeYu/niPbQemQrthPP75NZseviQJfXUnslLc0VA920leFDjR4zHs0TTvSAPvKLdC1AxdPxdFkkJY0IiG041PFrf3LbQnRUP1MVHybe7feGS7MsFmf5519sHJBrhj1+PD7qzrS3cLBDgxT6AmNddzeclz5Sycgv2if9bsa+1KyKdKoaoce4jSU+Lt44twx4fpo7Bh5r0Gbt+jRqPe36K5bX3+hz9YHzd6MuxueQWHGUpaLMqU01ZKAZWvI8WmaCcJO8zuC8av9UeVpJ/zRQLHAyd+t9i81xmawDg7aMULqhlfyZ8JYiEcAzmgqnDo6zEyJQs2nj9jv5Dnfjr/TRFYYz8TFn729Wy69xMy+nhDjWUXIFLC+YRw3G7CbczSeh44qYVrbFaE6GTxO/2cE+heH5WUS/TnD2UXBCCcE2u1/1dPbOpVUFHFDfmrVuUMV8crDAgHGDNq960t8Dt4nrYGNUq9r+egvt7RiwwTyTbvGs0v1YmgOa3z3FpRyRfr8tRg8L7i6g/tmj8lHUC3CWaqnFK+njiE2t/6hkkic/UgJThFtvFOsTNmu7qfvnwLRTuO1Hhkbd7/UdCQFH4o9db9PpGdpv3sCfvbtWDdYLCgTzXvsXm8ReusIxzA/opDwnLtzobbjr9C31Uk/L6DC6O/+4/LYFENk70/XfyXAd9FGvDhnNU68/+SExxCssFenr3YVItehJzDAePLxv3klBekAbVRr5Ft/SFsSe29h17XRzZuhWLK534/7hB4D4/EL6VGk6RLL7R+/3DijEO+OMbLQIcpP1HrhVcW/QgtmI/g4/PnmrElc24DkLVvjL4+/+j2WwlKglLykdoxmW2JGFBawrI+n4GmP3oJ4HqP13Pja46D8/5aEI4Sodbx+vnxgwih5dpgF1Ffn879ZUIYIkJTF3g2//Zr89U4amt84G899VzAnvEcefBXj5Gfvzveywz7IUv82e3lHTr6aw3A8m3yDtdGiHilRat/PfdMPuYFtH78JTtZKtl0rHJPGk+CTDiihP3cDh8elJs2UVPwlGSih/oFYz898e347XQWiZIE1nFRqRclJqPsvQ2Rz657rDZGmtDdS7fk46Z/YmtLasbCwmghEhueLLj46oNjL8W/7yUVpPcb/VbedyXzKD3UrM3p+244snp7mfjSoQUxQPsd8gXbDMvCStlqP6F0F7wTxakt6v2YxQ18LMnBh3f17Km9oAEFBpjYuhWXfBFaOUXbavem6v3E+//e73uJUbh9p44/nSqRSHO4Xcg6ISzhz++Dgmg0ZNiZ575euN0YAduPKdbIgNl028EVzdzFxvZVU3pybv0MVj5CnXn2+3HglhbwKfSos2yf9bL7+3rwqdievEq97wdhyQo4ZCmlxn00c2aq9QaorJ0It77PlBzuIdLf5yNWv4uVj5tOT6EAzqS6ip/5IAhQoE3VVr/rk/muSVfYhcgJZTM00NZbvO53PxocrnU9GRKfwqg5Mw3/dlE/m8aSokfyPhLvdgl9od8xA7Fjt5DtHfof/7xDPC06xW6yYfPKB8Bptgr2n+mrH+76O0D+LI7YFLZ6vvI9AluJc6m56Ld8rvmGwGlYNRiChIREbh9D4leM8E9brYW7jxv06PstxcUzSeiwcyLUj4GEndCZ0bxUwtoLcprJgx8kRl9Jcv3HD7yK8jr1tqqG1niB6pW90RebkRLxWmhjY6wsNMfPMt3jzUYKT/Er0ifYaicw2F8dQik5Ppsn9QoNvoShZJZpPe8/lwKWi7LDdpR86rkdKA/hi21J/dwSfZHjMNp3j7Al5eXa1b18TAqwy31C/YOg+MInzUuUgdLTYH/manatj5604mPIuckdjbbUWGBnAqHu/OH8n/38+GE4We+v/v46qQdh3W1xsPqrUTpMpfzYTAd6iuPSX2Z1P0EBskkQWxbGtvFXgxRSg+p/ww5Nmn7mwZ/ISPa1wHr64/+V6qrY0x+H/C3FRQnwECt8kE+pz1Y+AaL+0XGwv1f9C10KAynGJgg3q3201bNc5HV/YyOWa33axdUE7NguNFBhztfvmf6eH1s5r+skmPkrUt9dRy1EB8Qkb+1l/3ou2OqiuV54p7cQEY0Pjauj17/+JBcgniadBk0U6uLpS2P48/EV2x+nZUMYzYbs6p4c8q0po28+R/Fe5eIrVd5bithfH2nyn3SosR5+9v1kvGMe1IO/J9uzGNTLnzpkklbZUwgb992zGyF39CGbgRTqkeRTOWUbOGBxQ9XlgfrleTjtgOzwB5tlHOtCceEWlA/RBwfhWegZp9UxnOtsIe9uCP1lrDcOrPEY9eBsMMFPQwfQkjWkSp9OLoyP2EF07f+rCge//zZLpMjnHfN+9/fnUzw5YL7VHdmaI0mm6tkuIKv17sdHEqZk3Av0ez6Ed1aq/mwLmoE6e62p3cZmzQ/gFgieGcWX7PGqiRXuYsivY07Op41Xi5y4FFKb/IVYvXOi3+VGGkHwIFuqtE/w2WZ0CXDh5o5d0Wj9yT/tSsBTZVML9we2cPrdQIlUAj2ko+LPanUlqHYXiZoZqhhL/SqFJ1paIm1ff7VYi28LAocdQ2TNJaKbeSQgbyKF5td1Zsudcz3kTMX846P1xL7CFQylDLFnlmk/e4vW/eJ38inIgKZM0Eq5fUlX6prA9H7Q9gZcY7si3dedEpa4NwU1CuTkGcdPNhmT3qBr3RLqkYOViI9GV358BxuPLsvprv0YcMnSlhqrPU1kliNQw7XPiZYqSDzej2t88idhZXzH/vIIdimaO4Vivx0TNPDma4ChkXnC5f7ov49RJ0BsFBZO4TrpXRIVDQhB9YcDp5X7RT8nAwzFQad+vkc5M9Bac3nlbRqaRpa33t4LpX/7y/F4//d/pLapQPjn/wEAAP//pF1Jl7Kw0v5BLGSSFEsEZJaoIOIOHBAQkSEB8uu/Q7/3293dXfbpPnZMquoZKoP97pe3Iyt/fOpPb6LJ2+ohdN7mGL7P9XrubdQ9tI4fH4yX3w/dpXxCkZseEQLb6+d++1HU/V2N6F89abdVcVSNRnlge6t2+ZJ1KQHucXZDtvysXHw1gghZkyjUXf0g8THrmjotnI49QXV6hi6ZDLkxSwRefsj++QE1IROJD2Fn/NU7kES+xvgifI2l7QVdLQ3hQAO/7yJGjEsH1u4qYGfIP//8JQRIe1ELnML/eoKroa/1ALxP3lY1IaI2qLgVHI02Zl9N3+dBUTRhfyFsOkE/H4x6glJ4l2SBB8pHAZctWvUMDV5+iNjRtgeUckSixshVEUmdywDG+bfHvp6OjJ2eJ1DTpotoWEYCmt3vSYHnvlnfXvJ//fR0Zw7WehPyGjOZpO/7DNQTZ2K92wVoapwhg5yFAd37Rhyxwb5YwD4PDhvuKeqni7Lj1CY8h/gv37rdxLdwvI099n9Wg6Zlr3nwp2ct2kg9E6XrEU3bR0bKk7nJ/82nOko8decL9WfFrhYUlDcd9z/LYsvKF0HcXDq8w/KnWq6PcwvDZ337qneCaOKazIMT93tjN7bmfv7jI4eR2lT30sgYC+PJKU+ZL+jx+dR60QOthpJPS5pvSsFYElWL1TV+w+nlGhWd+TGDZukmjFnCVx0rTQ1U7qz9w8vpzz8Ug+JCMbJERsz2FML+9XsRLqlYvxCedaieU5XM0mnX98sxIuCcvy32s9M+4vdimgApXIM6nMTQWh9SWNj8w8bya6LFeLRPgA9GVIcHilb++gTtfXRxcBNaNu2e7wJ2n7YLOXNxomlIsAYa4y5YW46CP/7ha4UemO58a1P199eNwF2qRxxkC0ITv7nK28Mu96mVu5oxbRBrQRPbNw36hvd/bq8qCHvN7c8v61c9dYa969g0sM9StFwGXURb3etCIS0xYq8Xd0TxOD2oKyWpP20XVUdyHL2J8rgRn3X3TIM+OSXUzuKpH8msP+F2e7WEIwQZlXG8e3CTkpkeqJD1y8G+ALCP7IXTK48qNuizpaqd3hJBWsR8wb8U1Kft+Nh+9xtEg8K0UKVqOdm8as2Yd+WZbOtBq7FVbst8eZUnHs5aQCjWL2U1Nkuqw+pP0FA9BdUYLN8QRuM0E1H/fPrlFUwxCFve/atXBjlhWYP6ygLsVnXVj7y5VVAbXUMyn30ODQfBW2Br8iK9WxczXzbcosNjkRl+aF6IFpvqxXrO88+vTqI51z4WentmRC9csFTLEnQlyIcLhJ3S+tW8BYVTMr928Yp/vWQc7w4k48Nc/Z171DZMF9E5jc7UOyGEBuH4uKPKTyzCb6KzwVCTZiA9QkZDcu99tvqpYHwupz8/AUmROesgBwEQ4dOue0DSHwFdCBy6q1LP35r0OMHwWDA2tmTf07/6seoPjMvyHk2Nfu1gGc9HqhuDhYYLNwKUi5SEv3V+ptzQOjV4aD+6r74E0bZWn7BH6h1fVjwliT078EqiBzYjRfQJrypHGOl3pJaN/J4kqhNDecMfukNg9iNBKIRNCE8a3344n9/cIkOfbkqsZddHRQvhtSi/IixCudC0nNS4C1CGxjMNVn0z8tzHBH4Oj2TG8r6frv1pAud0b+kh2Uz+8hCI9k+vfWTfraaiM0PYC3cT3xZt8adPuY9By181mVa+sizX6KjyTLljc5AMxtIglNG3vuzpZTHUnHyP4YLSOTdDpDxfPjtKiwLvsydT7cVbPWkXd4Lut7lRm7xkY6nN+Qnt8afTwNa+0VA2wYTg4SchHDKjmq5UmJAkinWIlAAbC362IWo3vUf9i3yOeCHpQjh5J43uueDcL5JZdbDZ2F+My+MQ0bEyYnXFrz+/hy3K6Ucg+vIT3n1sI5/L7B0obo7f//wqYt1+OtpBE2JbqKWItoLCoee9qKimiZNP2l7QgD9wJKzYJoiYrigNSO9nEKr7gmf/8Ow2w42+Ll7t/9TwYSpn6ZRjz6yq1U811j0/PKK3T3BDS6OMAdzM/REfUsOKxL9+hnX5HKivPDc+FR63BYw6ONF9WlIkTPNXB+VEnFCWino9M3Ro4WqbArY3QxV9raEB0FkL1LyhVzRfb++nus2XjDpNtM3nP7909WOww+y5Hw5bsij43HErvub5QO2EV695csD4/mb5wh6FBn/4ftwadT79NAfg9RV/1I2tUzUVnzaAtd8QqpYvsWn1l5Sr1HnhljYXRvDvyKnuNbsQeIkzGso81tCh1xF2uGBCs5xJADMQhDW+O+X0/NMJ0vSzRrby8Mwn42VZ4HyIRv0jf89nK8vXt6mHnt6307nneQUpcKkGnx6KCVW0kj4myIq5DxW41oxN1VcB+XAFUta9hdb+QwBo1A400j92NAVdpkGgPBp8qJ99z5akeKpU1eI/PyVixkft4CfUMj46zZIvwddvV9bRUPPaNsZs1q2uBJ99SPe7OI9Y2XwbqBpTovu1vohOtq//+YVzcVlZWmGagKfCxo/VX5/+9P2qt4nM7FO/4oeG9u9wwLoifPzpPH9lSCA2qSZtQoMMRq8oaENu2GCxGwk5uLqy8lnqYYx7SfWtAf7wS8uuakVrp2whSaqCGrm7Y4tbZLGy+ovUbiXdmNuFb1SueZFw+xC8nmlxVP/599RgmyAX9qYSoxWPyLDi57j61Uo53tW1v9j0U1xuBuCXyxE7Vor/9Ncdnta4obYjCNGourMJvXB6Uft+2bIxOWDur19FpuUoGEyuDXM9Q5AT/vaj0XTw6hg56lTj43M69sOF3kJY/S56XOvPPF7uIYSI3oiUjVU/yO9NobhS9QylTTTl/dpfUj65NuJ4CAo2E4QC1OA8DLkVD9o4KjlFNAAXQOi/DBIuyBb8YUiwrnSNc6APX5nWfoTcIO+HGSkOJyFn9VXKkByf3qRYfo4v3m/S9KffQvXW33P23FQcDF4vhV2ymRF1H+KE9qZCMVbyiFFp62houmsPwoXvdz5yr6xBf/xyXf+KLkl7V7xHrGMndnODlQMfQ3REAYn4Dvfr+EO01quQO5beH14WSE0fd6r/kh8bjrojQ33Za2t9k9FcHy86uHvBDeePbUT8+n2U1a/BfptX6I9PQE2Fidp5J673QKUN/OFxOqZy3x1gdGDtH4TMPUUV2+96ALEVz+GGJXxPcvN5/PMj6UFsf4iNd7FZ73WKqJeMbzbf8OOMwtftjt2ZlD677B81hNvdge5Pj7XfPH24P78JG8229ttGRQ3CmJuxrrcTopIx8egvXv/6AdL9FgBicpOsfCT2B3H6DupFqq44WG5V1KewmH/9trDLO54tb86xYO9QFC5dBGixnnv9zw8JV/2dD1t1XFDovGS68tGcz4HxsDnczliLzbpi6XoC9w//NO7mRfNxv5iIn4Mjfh1Tzhj9w8Sp12Jowu/aP5uXqDTBlkSJBk5y6MVjaJ/hbD4tvK+2T7ToJwvQ3PuUCMawNwj3OxYQz5+O/sOnZd/9ix8yHIaoYn/+1+qf//P/pnT/ihVJiNKQJfuejReJZPA/7SkQ//ueAkgWn9p7pOXSZj9zQM5QUJ/WC5qme9rCKWUjNV5mni/frQSQ/vQH4SZDYj9imTwkvrjuW0ve1UziMkHnkHtj24/uxuyM9wYOldNge5ibfKj7yVMx5WbsXL2Tz7fv2UFfnU7k3e1JRYayOKpVgycaHB3bWLCw6Ep1ex0JVOoesetFBWU3cks4iW7STwbPO8jOlASbShTn03PUZMjE8E39+jwaU9AGMroiZU+t7fmX/wQrqmHaBQX2U+tksFcvc+isnA5kOwI1WLffD6jx2hqnXRv583fPmUh/DiXeWXJffTTnnaK8SrakiKMaTZfw2oHMjJw0zUmPpOBFQqT/fkmIPkHlTyfh1KKPch7oodNCRjYnWUM3bZxDNh37iuFNEUBBy4Huq+wdEQtlBRRH7k1946Siwdq4CvCfuccW7MRoWpvEcHwqAvWs2PaFE9VFiIVoDMWnb+ZzvOxEGA62tM63lY/qcikBIo9hDHzJmL4EA5gBlNi8VkM+ZXTroetVFqhTJ+9orgbZgpFPY/qYfydGHxYewPCMkFos3fjDdmcoqoJtkRpon+Tse6xDwO/lSU1PEfLlUtxLJKRXG1ujNUZjWKsWaCflSt5b5dCLLG/PSuGOE/bTavB/mmKIMC5NS8SYCNH8PI8xtNfnRPgylaKZw8cGLMtNQmScHoy8DqIOxkv0KB42FZoP2rGDawA7nLu+449bo09g2bUmzuov7886GeN/8+/fHrrP/8XzGm/YOpXrOX1OG1RnRk3YlwixZWcsJsi8ZIdTP1v9PEaeCMnX3ZP5daz6RVXqAE64+9BQs19ssu/XFqSsvmIsE5NN9SProLQqIPXVmnMiXtMS9tfDmboZcgzxGtgTHPxKDcXdGEZDRmdHic1KJVtRPxhz8ZtNGNf3Z4pvOPYTT2weDklmhUcF89Vyv8UFXI3tB+8GHvUL17yesEyNg32+tg0Gp+NdJZRswu05pf5iyOtddvtwQ/pPYPhka/ZHBEJ8pZ60uaL5bYc8SApgqikDrqbrsHibEocFtdZ4XoJd2kClxS7WYQ4rhmOboONsZaE0hu98+H6LVN0KHKWeqYrGiF97Xvk5QUFjFaT8kwiOCK6ddOF2diSfXSRngGSxt2Sb7Baj3wv+AFV+BGpw5BYtaFYBmu/NxAGSdTY/TgcREGEdQapdGKx4LoBiebvHbn/QjekMRaa+Kt7F93OcsfkdXmqlgCgIuVOE2VKOk6YqknmlMb8r+wXs8ojm+RyQ6HHRq8kATwaB9QzvJF+rWETOd3XnuCLVrrew+nXKtQSTehY23+iej+fSFGHjnzrqjV/HWI4tr4O09Sqy4SrU947VHoHvQ4ox9u797HNbC8SHadMDnz7ZYICuQCo1P4wPS8Gmvp4cOGpJRw8/S2YLk5InZHwq/NVfNn/L2VJugrnFz8/nhyZSFBnkH+eDL7OMczaLogLLVDvU3VPZp/DZyBArwxzGxJaj0dxvPVh2nRmqUWKy3+HRJCA0KMLufdr4g5diBejvI4Uz92iq6fstMuCM8BVuxZdjLBu6J3//f0yz5OYTQ84LqNrdHa9skQ12JzjQ2LuAGjW37ye7alL1EDcZ9Z3T2Z9ftEhUdRG/2GH+4M871Mfy5Tns6HP3PLLlu91wyLXjjuqnlPbLe0gL1FtiGm5kUrPpIO9k9DtdWuxsrq0xv2ibKFFx1+k9Co9swtoUQCosKvZbwTKm36FOAYTkSnc7Wapmh69idPWdCz5ttWtFOfP8hIfQuPRyMyAf5eMvUf7WV/9Mdk+DhueUrTTlNPMkzZ9cRXGUx93nyXLZnatlv3N5mO3XhtqqoeVi3ToLCns8h6Oz2SA6VG0Az15qaTBzMmIwWh10idmGfKS4+Tw9jivt0XMctEbtT+R265Azbxvq5mllzN1nsuDjlkC9gjv5cyq2Mfr0pCDb/Vk1Rm47HJVg11uEF8RbznzkEpg39xcNjh/dZ5fsMIAxBQZ2vtvGXxbzXkLlITP83l9Dzs6fIUT8qOfrvvGnQfKXPyn9Xh+od3AXg1iubKJGDTVsBM3YT3u1zJThdcpp8FRn9Na/SQNZiU/rejiGFAu/EKIfPoWLVdXVcsPhBO6tCMkmT9JqPhafBC2Yv+I0/KYGI0xS4PeqEA2M24y6U0zPcJsfb2pElyyad/y9BvsjedgLhqs/CxKnQZ5m+xBe0hfNaQEmnN33g9rxjURTmo7Z9sN2QHHsHRnFmyKESktcgqgtITY+JoBo+3XJ9rR7GnOS7nloveGIz7e6r6bzmWZIaQsfR/Xb63+tfanhoC8kFG/+FE14ObdIi4iB/en581kitwGMl/sRhymc0RqPMSjV3g6VdlwMyu9MAh9VNukhLzU2fRpH+cO/tR5ART9dEaiRGrzxs3N0NlxqXwE4XW2yka6sHyLapWC0mzPec9wuWoSwO6Mkyz7UwIOUj3BYNZWBNWp8v3FE+wOD/8R/rPyMPzxG57Ec6ZrfxnS+cQ4Sr71BD/PvhCRnc7vDB8w05IaMR/RR6QTWfCLRXf72k2QxB/Apa7Bp+Hw0nM/fDDgYnzQcMp6NG/1cQ3D/bsMGnnM0y+65+asnZHl3v34Oti4PnBG8qI8VnrWOLYfom08BjmW7qIi3mXW1fNUpfVXbuf81bRvD/qZxeBdvub591FkHEDkM78J3WC2tcynAahOF+sJONyZF71Nw0rSh/+bzcUiecN4MJxqt/HQe1KRQxfyYY3/FO16VTB6ewbYOOb44s9/o8xaIrinRi+ewiJ4/dQiSwuGQVyYc1YbXPrfpJd+Hypp/S/YYjsrN5t4EuX7rz2pvTTBNXh0WZ12tRr2wedA0qyfTt3cqIREcHnW3QQuZuEmj5RR/j3/1lExWBNVv474TMO7hEsrP7WIM6r5Lwe6PIc0vV9OYt0YV/+MzTrPP/Ll6Zs16Di/EvnJTEd1ukAxJ2mxpWM1qP4hBlyGnumQkCVkRMc7/BQqDc096mxfZsH4f0G6Hhf7hDZNMf4ADK5905YNoHAqHhyos7yF4/XXls68OEk8b6S450opKpkFA8sIXWfOPsTM6PuE7//hQWvk8W+MZNo9HSPF1FPp+zh0C0TX/hLxNDhG/8n3kuk6Crd+jy9tKe7Uo7Va8TtYeAGfvFGiX+U7DpCvQ/LrxFsxIskPl9X395VcCxqFtaH44WYaQXS4NPNU+JtL7pUXzHTcxTFFq4h3xh37msyIGPy5JOD1mriLirj7Dnjx1otwW15hc3eEgvqk7usN5XU1mQTN0vygX7HbT159uQpuh93Pln/eqqJYJkRApOsWkuuG6n21H9tB5LEZquNmnonM0g7pz1RIfrveSLSd5qwFYWUQPvLBlo/591tv7iKcQrrPL5m+c19A/XUb3j0bI2aWtArTWM8JcSat4a+PKSrGRa7zfOa98OhFPge1x/fssO+RTRLsMlqGRCJK7z1/8ZChYMhFb5h1Fw3CsUvXWxjd62snXfr4ngoUU4dhTvPBKtUin3xl2ynimmhVBzxocDLDZdAvebz0hZ82jC5V1vER8+nU0WNOQgqUUT5z0v6c/5YdQhrPYCxifcuP/9cn3eyWbye/RUMZ1Bpa7EPw3P8uliIs//hTOubfvJX0xCYzTtPpUeWEw6htE2SgHQmaRfPohffEeZDvphp30q+W/VT8iYYiv9GxVdd/m8aOFT8hpONTsDWNa4Kxv9fQW9hVRZvR9AgCOe3vUa49Xn9Z3fYBNKUfUz4MMrfpQAVmP+nBe42Wkdh2DlHAbshQT6+dXe6vRYMYt4bydi6Y8HzJI7uFp5dPYXxKi6CB0ZU8DxUwQIfd1vauix5F8tyvhm3cJmu3HBvsHsvP5xkg6eOrxj/o9wkjQdudWXeeb6u/DumnqcrtD/KhvRLj2RT7tzW0gl7mqYe9cGMYYLy4Pr/s3xaa2KfolG3YL6F+pC6ccvtUoTN8z/KbTQNcrXY1J2tQx8ES0sW+QlLW/uysrK9+gTsVag/WbZ4YerznA1j45RcvPVXWI2+oQbnVLMJhjFWeVewGHXetHjAVpeYl41/Cp8cm1flKGjfVPvyyC4/fTYbP6AzCp4QauNqKXtg9R3CVbwml1hiZj/GRo/Xvq9JvaYNVPI7DqQ8LSS1hJ5scakGTOOQ2kpUYM/xAH9Hy+U5OiOmdJ5xGk305P/JdPs6yoOhwqr8GHk4/QsN2qJhpKeX0bqvnkrHDDASVQu3/6Kl8eVJtQs61bujNwWy1K3B4h2mgHGtDBYiyto6fiTHuF8Jj3IyGYmQV1sinIhzP9nL3qMlBt+8zRfdO4OZ/Hl1b9MAOosZv1XhjUpAT9K3Th9ix4Rn9G6RNeU/MjM6f5/Swf3zEcF9miuuD0PZ1uvxBkm1DshF/ZGKjKmWgisYS98qL7/KBsTJS03ByyPz2ksscduVdSErDBY7NeYB7R2HLwgaMVYnBK7yAk75zqlvXrl7TrznA8DiUR8tjIJZMNAeLul2Zdr76fHv0vQ94lXLCPH1u08g8ZPJNXwqNU2P2kD3tFRZOK/+KzpxdJG9REmR6E49URzfUpbuC4KFYottY2n45IUyB45h/qbZlp8LtwCtRHlH7w+fI8VIv1IUc4HxwhfOuXpSLGHCzwft4nqqU3nU2GcSOwzifG+6Fk8+JVifoZyyA0l26OpivvKCD7sY1jZg/RLA/XAinCuacr//T/9Aw67Z5n7BJxb0xqMHvwbahGnZHPjRGsLkYfcy+HKP9dEA+mJ8OUXb7UiU07n3svbsASkUUP7U9lpE2YBtfb8KYHZ7Nh5HUxJ2V47x1sHX2IxtEHE4rzcggLlv169sgRB9MMR8IdugCxra0PQPu8wgeimEwcbXNBShJ/santu57l5B2qV/G1I+tsVaveKcGN9x4+JGXA2nm5NhDWxxDn70rzF1fyJpSRrxzKfj75f3oScYtXUS2OTDTxvicr6+eF0xDukPQ+AYeoQY5077/MXHCeGxMtABR/BO4Qte8sauFaCj+sByiuFjbZZLv6T1i/2VPFDHurQxtJKd5zZp+PytnhYa0H4fc49dFw/VQZfFOHp7eQBr5wvCUNMqlj0XP74qtJdx2Aa14eQm5bNGjl7zoEpc5hXN+99WdR+4sX7KTeJ2IH+AWALl1F7f1zn6/xVSNJiiWq4anvl/5cHdHTdC4hfBZA3bgROFBnHRHQJsPglUGy/vQY4WPt24/OUzKBbWQDZ6s+px9b4EB/kvJPHxvTieiKuvpDYdjGIlsc0+EBv+ptuJFPLmPPuQ2gKwUHB+q4Rf/8QX/sBeq8ktEY//SzUisMe4779Bm/FWS0+kc0yIycTcNVcRCjpR9KsjHk84NoIsTW9UfK586qlhhNOhqzzYYoSfM25pN4q5HQDhvsPXHtd+6+jVEh/3iqnXW1Z1bBcQpFLCdIPnj+73hLauCq5hqiEuVoWvEXZbWuhgq/Df1FD9oENBXrVDdp2i8dcJyscDslFMjwzYfF8RVY/bdQORuOz7tD3Kof+aFR8xXgqMsGd4Fm27Rkdr1HP2/0rIb88Abq6Pnd/zdff3zE7588G/70TfDpkrW++f1w/fSZIv7ELxE//Ddf2J7XgB7vE/Zr2vof2c1qJJjr++u/4lV94sUV//CDSKl+ysdwN3nqwI4DPVn5VE3j2VOQdpKv+BlECM3fvWjCKzQC6r8oY6s+KOHPrzFVuEZLzL/PoGykhszK1akY/jGAr3V18O7J2n76HO8tHB97l1wOcZ7P30PAI3mPDGoKNy6fF9hPMjY7ix7EoGPs9llAGcyk/fNn0Pyrj7W6+h14H330XBzyW6n8Xm8UTlfxV02DIpmony4pDmzwkOLAooHcml/sZMnNmFiqyeqf/mY/06hExfImlCz7LbWrcGuMQ6HxasCHJQ6FzEFT9o46tWcwkT8/mdk0fqprvvzp82r6xcyBvIETDu6x4a9+jIf+6pl3NlpjUlsao5WfUOd5l/zPl6Nn2Npa/49Pzf4U1QCvKsPhUYzZrPbhpKhPKQmZ3dzyP36A6qyWsc1U4pOJv97h8hVcvHuXwh/eHOHYGmoorf2DbtyoAMnX3//xhWpIyakDrTxinF3lJ5o3yJjg7FYPcntPzCdY1Sa1OK/3nHXlryfW81ogNGw4esj3e7RU53sJW2nJcVCpHzTPT9mClY9TfORaRIn+uEPyud7I9ncTjSnvXBmkQPext01cg67rB0vGfLy3b01ER5zf0Zb3DYx9jq/IX7y0/VOjruL4hmDvfhlsedcgf34Y3U2fADr5HGA9Sauqxdt3qp5V5YNNisyIlUW2vhX8OGMP9ok/Z/c6/vN/Q+SczsbcPX8xuiJ5jx3W2sb8IOs54rUezPbF6hnwlwxk7bEhsae9ollp7QWhOqDY+vDfaLG/hwUsFhHqrv0JUurXAsSLdMXhTWwZc35jgHZQcmQbUc2X/vzVa2K7az8DG8KKf3AT5U+4oe1StdrWV9ACHCVgfbZIjHqmg9U5Dd2p1VTNG/cdw828uiFzs30/MLTnIdp+XIpXP25RXXcBYwoN6or66LOAGIOy4iV+ZD5G1NC64zbx9JHqavjrZ88sUhWbrUXN5ZDkc1YxC4muJVHrpTx8Vn5/ATyZdaNBGu4NVn7fATS/YApHf3yzKZbTVikfyxBS8zIjcqqCBbSNTsJN7B3REvO/M6RO98Ga2Jz6Jb42R5B/ShRumparqBzM3B9fJSOfPtGiNZIO9/NRxbsLi/tuCHgdZj126G0E7POv05hBnagF9XqGGMu81x28FxtXvRBUfBuYirrrLhkNPgswUnSzBhDDi/7zt5JOHxAm/j6cmvjaL9U5LlXJ+tj4NvV344OiNoH7eJjwOZ82OfX1tISHyd/o630sGZNjZ1D+9LCTj50x6UqfwXfwTLoLzagXf6/fUWGdbf+rF0M+py2Q19XGOsRRz86DAuiaFwcc9O4BLUfpVoDsljm2NTTks2NoMvSLa9I//dT/+aF/eKl1mVD91U+0/dQSkZvN5M+rnw/PkB6p4yy7nAJ/SZG9FTNqFQ8xmmZNcKAYqUbm8E0q4sCiq/03PGI9n145G6oigG9bDjTsnBIt8fFabJ0GFkKWsEC/Wt+Yf34K1WEm/ZLegwlksWMYL9dNNTC3T+ErRAGBqvCY9LDsAQZRMQm32wlsOfBZCTq1MgJlw7NBspgHe+nrUVtW9WjlXxMozfDCx+uNVAvHAwfV5hjQHEWM/eUjeELT0Z1ybatxc5Qt1J0fR4qH0mGLy91K8PWrF/KkjnLCNde78od/jnjl/YGzd/Lf+PDukmz7CS9ZpwybX0TXbVmM1K0zKSP5XsnIC1vESOoOaM2PEOhgITHnJx20jUaIulRfxP78k5tMTuG86hWyjh+Vp3S/4ud6pkEUFVQ+pgHbrGB+v52fGUJk7nDmqp4xDdfF+8Nn7PN24PdrvwQ++21NBI57521BihT5m8cb4+/+Vg3vduvASVFPIbVzVI3vS73q19eGPB/QIPbRviHipQ0O5WmvR+Jff+bPzwzY5Yd6HGOCHlH2oa5tucbMOTtRZYKB6G6XQz/txbyF6428CSdIFRsK0qZ/fmbIdnPZLzvf4eFN+DaUYtHN2WIhDgnEM8gQvGpjrrBggvoUEmxf9cd/+Mca76ESL+seEunQQcFZMt7l3qdn5+fjDqd0HrH72jX+v36mlDXXlU/6PX8dFudvvNiZ9npOrUIEde1vYysr3zlJiKIhDd2SMLvKHGM4fz4huny3oSpQvL7Crlh/+IYdP5+MQbqkLdDz8U5v21Dw52BGJixBuAnlP36rCqDAu3zuws7L9oZ4QL8jbOb7C9+PztdYJO9cqpLw9qntHM4R27SiDDkXDTRAuY1YFRwI8lvHwvtl+eRz8ro3f+sdgiEOaJJmi4dVz/2rz/PjtOfhn5/vSZrBNHPRobPL+z+9JB5bXvvrp4Xb187yybhRuf9tT4H03/cU5NfjnvqdIyHmh3aCHp+PH6L0+EaLuugEFZZhU+Mplf2gbcUjCFuuovYlMP2pLM8TbEsvJYPofo3Z2DgOWm9Vwrh+3CJGLb8B+8XSUE4PWr4cnalUz717xVogG76QKMEZLVhOQzHJup7+8hnUTTetNd5aqrnOUAPdQEJqPBsfjZ/yzqF4r1nYVrU0H251PsABHbqQbWmPRlqbAzR8mVGDO8zR0nMeICExv9RP130tt+V7hAFtXgSRG6nG73IaoK+yIVzOv7qaz1XroF8kI5yT7pPPs6R4ClHeezLUh5+/vH76AokUpyEHtlQNZ/GUqeErtijO36Eh0Z2qgOgpBIeQlfniJn6JwsLXSZPYG1QconeApN1wx/vd4xgtqpiu+6orgRSn/cyYEpUpUO8mkGWfZutLk1MAccKCUCl7zxjOiz9A9ry+qfdQtmj5nKUM3vMUYM/RMOrFtYdc19YT46vhVKRtbBGR7zfGhnB4RuNjiM+KIS+YyOHI+hn7o6709d2mrvlSjMEZwjOSswjTQ0n6ig4LMkEwgxNNTmOZ93zLFnUpRY9simPXM7VRRPjp3BTCi1Y5K9e7dF5ausd/61cE/kEE17ss2MhMLp+Qsy8gOqgy9sq+87txb2dAlGpPPte8jBYJZwUcx+VOwzsnVdNW/hBwH4VByvvezactoAwdc8WimvMd8uVz3mRIvl3N9ftxUZ9vjok6LuyAvfJu50KivgAtp/5Fw4j9+uniBjKEs33AxlAk/nzQzgCzszti193ZlXTWrjESLt49hDqTGDXyTYL4V+YSlUdFP6smr8HZeVpEFCqvWjKvOMJ1tDocekJXzfnjVKKGXSg19XtssPCHPEguyRJWZuBE09OQzwguxR6b/v1rDF3cTWiHjiY1OPyJyAakacW8hAa1L/jsJAsybKzfgA3ucIqmoRoLFG+Jio0nU/r50YYNCF9Hx84iWtVfvKjjW7Mxzo/XfNx72Rm5XnPGeCSGP1nFK1CYNVhUM34Hn+XcM4awMBYicsczYkehDDfQPI9053slW7pZXO8COj9D9EM/g2bSDYCh4oDD7mn67Pp68iCSqSObF7mzJX7NHXqq94g+rejhk1Tpn3A61zXGr9Uz3H9JCg0eztikZ5wvBj3UyGimHw20Mu+nfaryoJXNDttyuSDafU0dTvW1I611Kv3R4CoPae+ywVabOGxp8vMC+rS18bPDu2iCYysrfY2/oXDexmyqmvYOcduX1OPjRzXo3tFC72KYidIoAZsIkWoQvvqC92H79Nnh/ZrQLolH0lHZR991twd8+o8YMgeZ1fROeoIs0Afqr+e82sXXnuoa/3i/mWu/rrubBzK4H+z/thd/9vlehKTJDtS59x9ENvsoBKvbWXjveXLV27LjIK8JbOrZeBOx56kR4bEbMVEeMLKl1HyA9ff4ma7v+QXPnwXbU3DAR2f/RNNXExL4y99nxNx+cdzNHW72EhOmaGVFL3GwgJlVFxyS0WLLPdM0iFtFx2aTmBG5Mt1Sg7KViOLPAfurJ6hsHgbZVsObTdb7FsIUn2vyuV6zaBZwGiP0JFdqT9YuJ3IoFEC+Q022ivWp5lNuTqrKbRkNzlhEA640TtUDc0O+N+fuzwezaKEJqy81AuleTceP1P3VAyIqu8lnKZVr+P4OJ2w4N8lYHjdLV9KKOaHy9KeKhNt0QOErsSiuydGnNTxSNB42e+xtjRubxI9yhFN96ajrqJuKPbzDHV031hEHoe4YPy5YUqQoo0/Pnx2fz1biJnCzfyYZg+XQ09M2k5G44fc0O2klosJ08ZBjDhPGoSFUzKJ4gpnTdHp9IC0XPmUMil2IfKhS9Z0PrZMM6La+CJqV6SafD1rGwelTXrCp9yIaA+hC0Fg0kDGoOrTQi+ko7XOX/ounyWW0Vdqn09KXMpQ+VZuHiP7h30RTNk/TcVIuc21hV7m0Ofk+yfPfeCwN/xBTy48Dfg+3ULKPeySNyv0JYyFL4TZT9/2CwU7BHOsEe3ysVrSc/RieQ9RS0+J2PTubo4729ZHHrnvs8kF4IBmVl1KmbrZ9VI0cGeG/eqdVRsXmg+l3EJuKSD57YvtkmyAZlpCO4egYp2jkrRcgZrcnnHvvJVp4+RajvRBjmv+2gkEPb1jgeOdP9HF5Caz5nKUUNulSYuv0U/JxE+cTVH6aka0ghEj64o8Mfs/dCCjfoGfXaiiQc1l86h5eB3/JwyMo7sbdUl18yGgMpE25VfYzTySZ/arJbh81WNZOwYZwaqKpdVMCnVup2F8k3qAfrXfAnVMNm9QIKv6B5rUe3WfsfrfHfuJvJAAwcoy93kb9+JTbGAYnNtb1M/sxv79KmJ1NTtSTYUb0rEECkniLsK4pQjQK+Bir6Ymtbxtw12rUvgcdvQtxh03+SCraXu0jrPiBtWm4RrOp58p2ksIL9S1jQPUhMgO43dqOav0mRMSgXQ3jW9JxSMCt+PD8DWB/jkICo98a8xhjAO/jDdT41h6aP03XwrfNEmzzp7s/vfxbB7WkYyJH+O03B6HVYc1vfAj4XT+fEslCKU8jeriEL384fjYtkrTfLlzC9MAmWch05Oda+G++2cNbz0XcLESGHP/QVJyZDvF2UPEznVvU17JNgHq5QE0gvPHL71DAldMF7Eu3d0X3w81CwpdTw6mfBoP5SUn+8Iam19Gq5oS7AQyd7RLhfnv3xNroCRSdHlFvrV/MrIRBLS+39h+/YH/xElTk/Pd5/lhnSY3EkX/R2L/bBrl8ZW3riWghr3nABl0ePyI/4uVIuind95Mz5YBY+gqIcvEf/Xz/aTW62b2JvVXUTeOXBSg6OR4OZdevhINZdPC1sgk7y4eySSjdWtmewkO47O866tt0d0ZJnH0Jl5aWT9xLU8Dd54Du8PVUTdI4daC6x5lsOWGH+rDxnnC8iydswqZDQxIINdDHtaEBJ9Kc6N8hhFtXC1gvPjob+4Nfo69VaHQHo9V3QctxwO20jkYqZP2yq9MCurFyqR7akjF+iamBxj+vRO07sWffOG0g/o5XGgzyI2KE6zz0V08P0y0y2LuWzsC/3SPWf+fen4QHk+GG8imUU1fO52OsZRArS4rdc+hG/O/gpkqBlF/ISb8Tavv7z4FCkUIcSmnuz2u+ILJtFLqTRpaznEMJ7PZpSUCQp3zZZkOD8iTo6JU/gUFOgRnCttxE1KZ11NOwSx0Y7HNL+CYx88mVzzEi21pZ78LeR9/c2FlgH5BOLe516X/np/oEKz1q9O5GPRukQWzRMytL/JdfU2BfHNAO3S9UJpuw6WlE5798CiU1qoyWsPIIRrz2qDuvR+Naj1XB3O+wj5opJ/nhCfAOOJPuP1etEj7lFlCczAH5dpKfU1cXjqAk8KKvkVT+1N8DBzHr0YTqN5iNhQdPB5WEDg3fxd6fL2LUQHTyPBooqYv+8QPYpjv6eL5aNnKBkqGxUCRsOXD2h3zSJ7XcFia90qvJuvzw5NBkJLfwFK/n4t1LU6Lz7bQ7iNpBQIz/HSfUHsJHqFzwvhcOptGCF+9P1K3aLesSekvhTz/Yx8Hrp/rHO8AfThE22sjOR+cdZX/jw07qr28gXIUn8M/DE9v6UkTLHz8oL4VM0I7vfHZjvzNCRUPC4fUMelL7TIdq41qEZZeLQfV44SB7FQHO34+qn73Reyqr3qPJdjnks2petb/PJ1xULozFQZhtVWLJIc/eiz/G5BKCOpkvah9vLzZdL0cAOqVtuDl/DF+QnrkF7iZyQ3XFG1q8+0bZ3MgYNrNx8qeJ4xN0OuVbMjr7fTTeLpEHRt2zsP905/wfXkl1e6B2b4UG+9NH+9M9wnH8FYwFQ50p3yQqQrRbEn/Ke9UC+XYxCZhsyedAjgu1FuUNdV9BG/3jmyvfpdZTvPvTeSkGpD82l1B78jtjmC1lAuHi3PHuXVv9Pzw5oEQJ5Q2/79lZuyZA9mIYvhtTMySjKDUwxybBuzf75UVOPws6nW7bf3pqvghiAz9T98Mp293X+vUMwVJNm6gPFUXLNnkqqDS6MhzcyGdsFK0F3nT60DDWh75XcExAucrdeq9M4S/ZXqiBofKA9c3DZ8y1RkAi+WXE0g4XxKrtboBVTx3mh741luZ6MGWr3fThFIjYkK6vhEcr/yYbV2zQIuFzCd/WF6lx8Ox8dh4dQfZTOOB92J2NCXwxVNf5xIfbovWsq/IYnrerRKbt49sv3xIcSPTy9MdnEbtb2wmSy1PHmvEbjYVRFVASp198sD99NUadXcCKZ/SgSn215Ke6Q6kmXMMVv/MZ48fwfwAAAP//pJ3Ltqq8EoUfyIaISIomN7mTqChiTxQRFJFLAuTpz8C1m3/vNPfYYynmUjXnl1AFcs3eDN9Vv12fP1OgmO5DZtiqPmhsg6pCczymCttcoikN+QIkJ9kwk0hJy20kCfJzrIHph++rpT/99dmeT1jZDZuy94fMQSd2XmIvC8123TZAEcpflNm7NOLTajlRuNjDkS5HNHI28wX0029xJ+CIC3U2oQB/G2ZetnLZBfbdQwtRDhhxhQmNoByqP/8sD26BJr12A5DjNSH+O2XtuNw7JkrUxYcKet8gOtz1Qrmv70/mtVcr7c9bnih9Pn7w3TnWPneW3wIxdg7weHxF7coXShHuEV2xYJzrhMlk04G5SPfEU2Kz5G0798t+RhFdNNnLGMrKz0Bqjw3Rz9vYGGSVeDB2iw/Bjb+JOIq2V0Vcilv82d1tvp55ENiTcCWzsTRG03q+AE7XFfO/yPWn+33opK++zqmvb1U+0blW7F0THuzianY785kEOmurUEHCcju+ixvAV+p1FvS+449R88phuz8bzLwk258/30HA7xMd1wvP+P1+aBavF5XoNo5YMeZH5SFoTxaUcy8gD3wdHisc4Hn/pGzb7c2f/yLa8fzi4xZ7i83spwl+3hS/n/OjMvsr5nw/A+dJG8po2XYR0fRz1o5RqxXK7MeJWR0gnQRpH6O9eMvJLDH84bYmjuRFu5jdi/sRDdf6m8jV7rJg/q3j6QA7Q4ZBPywYedAbGjg+OmAcR4O02vORsud8hJ85dUBc2dqW3JEXwsalxwWxwls78wMJw1EeElrk7wIxfmMd/HiB1oxONOWj66E615ds+63mOyt1fgX97lzZkbQuF18+UmHmLbj2QtnvXn0nwq77jMTbbEPUmaetgyaBzsWaS91YCZYAiI2ZweyLAz696F8JZFlMaZOFZjl+6FeVf/7YDZ+awd9q6UGdq0sWXpYsmta+KcKJlibTZeWQjqvIVcFbOweyc+JV2xd+KoKQxZT5z7tR8vMjFpXRMXaEHN6l35qvawfKbXuga7IsjDHxXBPyRO/pUkYmotFNBXBiGjPnnVCDGu04t+WujkRVUO9PzSRJMPHninl2HhtD9wAB3bX3kvz82FRXLxHdxWdMJW2syx6tbhjN+hizw7s0hhd1hd/fk+02vUWjL5QC3JaspsOpPKcDPnwwws/gjtd85aV//i200pJKYNRl54Ghw9k7uMTYVxJi0hJkMFOqMvMe79NBldMdxKebTnTNDwz2TW+LHy9ieP0dEW8+X1VxTFFl+A1i2WeMLeR5fOgSG6eWvoKdqoTnCjM9Lym6fmkbwKwfmF2dFN4VWWjBzy9rF7P3qcnTA8LZoWVutykR9+OGQs02lKjtpPpjs20wyhs1Io8fj2pvpgfb8vhlJBbeqEVpPf34CLt0a8bHoTMseAg7jRwtCNsfLwLnU+6ZaiRiNLHT1/uNL0Y/fykaZfbLN3jIhKf/zVVtAOc0+MQajdEfq0Y6wpl6W+L5C9R2G+ndwaKElLmrtY7Wu9U2gPhNCqaf7cbgvbzJZO18dZjJpxqNRyoHEGGczOOdIOG8owcU66mGlbZrys7Kz1i2EmegLViev/luMhOsS+ATx8t2fFASfadcULMjTv5R+JSG8QLUsLzg485lZfU+LBOwsXog2l2/+PwFp6sSr0OHODTRjM6VDrGifXcZ2R5QzacDESQoPtGChHvjFbHl9JTQnP9mnobK78wnYAklZqEt0JTx5/UKor9wWcgULR0Tl5hIpFMz9/qde+NSOUABf+tYQsfAqMaXJcmqcDvj/FSeoxFtnhK05DL3cvmOnKluLsFrr9SYr3LXaBbKbYCvqfo/Ps2Z8E0mRI7rDXFXK4qGyyulyHfV+qcX0848hQ7qw9WKBNcF93t5LHOodk/MtGN0Q3O8WsD9OOzmO1Mj4rvxWMiz3mKX/dJqGdNWEug3JNOlGNTlGEARgDhMe+L21qGkNGwG0JfrlmgX6+l3A8pr+Ol1bd1HUcfDtSPfloLE9LcmRNPVulYw8yYKnaREvXh4qb/nIXbhGcYQ+KEgT6u6JWEXmBFzjesBvvoqJ9upoGmnW3PvtePhRTQpM/j6+VrvADZXDQvVcYh+ehVtX4nJMA/z9OfvZTjeGqoqjRiNh0y5yT//ZC0OFeeV8yyUmdczTPRNxF4S6QBPWkLuV62MeNIWEhy/Ykjc8bRKh81Gp7BLJ5ERMXDKtefvagjwXBs7fqj+yJdD8Xs+Zh7jRSreLq0O2TU9MHXWg1P90USIT8eJbM9nefaXrwDK5SHGynDhxqhPDwvGFgX0x/t//k3+HplI9O9ubfRb77BD93WnMcfLTTQF/bf+zR+z7eCOfvkFzfuZ7ef5GF/p7gVLq+2YWgwXv9sAT0BDB5OowrLwx0AaCzTzLGILJ9NfxYqwgMV+9SYOtZu5trmcgVwvtrSQ0SLtAZQXDGt7iydsr/3+le4qZeYx+GWHr5QvWqeAOZ4Rz97zqF73aS3zJpuY/ww6NA3JWQSxFx8zXxyMX76FWM/3zA0Hg6+F725ShDzcMrwz1XL65YNnIAgso98F7/ZUUlG8Jg6eEHZ94aiVhWJPH5kECyFNx837nIFsqUeyt1Du89PRHOTzzXmwvdW40cQSQYSk/Ep0YZ3fBi8HGsNv/lWliVPxKTX5j8+ynS2X/LHqtZvirQ191nOk7VQxfMFGUCkzlAUua1e6Hn/nXRjibNOOgu/Vv/zBZn2COFyrQQ5R5uG1okrR0NdJgG6+OtKpf4ZIZKevA2h4ZMyz91E0mpZZgT0xb+YPJFolrm2hYz1NBD8JjrqjcpoUd+lv5vM4H/3x9fv68WRunCb+kEeJDiq+v0go1Kc5fzQmRHtdZuoiKBH/5eOPVajEPipaNAr2BZCh8ztejsqWC9LqqoLxFjI867lyTMLNhLarmDDtmS/a9iURCs/882TW6hmX83znwJMzzOcVL6P7aIdYUXElsMB9FSVH58FSLsmbsNAW9XRIbtMRdN8RmPtIfWM4KvL0ly908Z7wQYivuTzrJzY/Xzqy15OCHfKJYPKq0HBHGxHU/IyoUiz1aLosbt5m5qVYuWpGuvqMQgeFlH1D8eFWaPo86gyO28Ueg7tfoy83vgdwjPZESa1MvJvw6MGPn4uL3YToMcULZD/G5M9/DT8+e6wlnZyoLnC69gMRFA8DCTM8+bPeCODkfyL83S+tsrN75wDTTnjN5w9J2wOsZn64ONAf35hE07mh0fMsvC4ub9Qvd625Ma/PE5nHt5zud6kDGg8XjOY6uP1yhy1IDovw51+NcYVRDJfkQ5gVhjXidyw5gLKPTdezvmve0ZhA+nFWFL07K1399FpEjAhLmNnl7zwOLdu3QbZiPvcKEQ61sliJI8Hc71LKLnvhx/OIsa87PvnPewU/fjPzfX/a24sc5v1EDIMW7bTcShjEnhFm2qGZrjaN50DWZj1RS41w/pLsTjlcIo2QGmXoeyioh2a/Q6zY5XzU+N5S5vxMfn6oKVR/AXDMmvn8UDS6Xz7QGSC2Z3sNrR7ooUJzfSe4GVyd/8UTNDYuXZ3PcvTj+8g74icx75/a4M3nqSvS4pAyc84Pw/LR1mitPYDN57XpH2/7bLM3lk/hvp1m/oXU4qWRYPxs2nERyAko7mGk11O4L4fndUyUQVyu6KZbIT5Esm7Bc2yAbdHea1ez/5CD5/tGW5rq5cB4ePj/7hRI/32ngCdEoHtPlNMBKLkiB0yC9y+va7/OOS/WZ2JcmaeGWjse8HrY1DvYsuNcAXM8TJsc6rjOKGpaoezVZFVDsbWXuJe4GlVDdacwPscn0fae5q/aFh3ArpYW8cRo3U4fa6craRuPdHXev6P+tMEq3MV8z5K3GnCebqIYipczMfVcD+03I14GmT6f0T+xXbJohQZoStdhzua+SKmJ6AuO4fhi+Hp78em7OgC8iBXRjXQT+ODjfIBvpi1wg7UL6jTPPcKqVp+UmVlaDnUeiSDo/ELw0Vv4g3SKLWgvJMMN6zJ/nCwzg+D4+WChUWwuvFZ9BcOpEejruGPRYG46DPs0Lkl4jVJ//GhbC+Lo0FKlMG002KGzQMfgdiXqa+4tkKPUhLtY7IktdSwa3US9QYetL2aV+0DT+HyqMMhXlRleFPrP9zd6wSX3D0xH9dEfmmdKodpHZ+Kfv240hfJ4BT80bRJN0r3sL6vRgVdsrwk5RjbvNE+L4aQ3A/48FREND7oPQEbvC8PW8c17zq6ifBUfFQtEQ/GZSNWjgue6Bcd3rqHhej1WigWXJ9GpjVu2FIUC4BYeiXbf5el4Xw8yBD3ViZpML2M4Mxoj8l7eiH287dNxP+1f8OzhRtR2YC2Fqr7+xpN4yVmNxnznHeGCO4eKh5KWU9QeA9j7+EU7R6va4TtJDejRFTM3P4hGXYVnC/WbmWnazZVPI+k8OAWLGPNJUlq+eD061NPuxe7+iaUDlbcqrMpnRLB+sPzvSA8LcOzQxCsSbvk6zj0TleZ1wIJ7LKPRNFoZebfOI7jIX+kYb94AR2vScLe9hsa008KF/FGPHrnvnkU5hTXkSMejyqyoLXyqfJwYwnChEs/Y9mh62G8HgntlEGIbK2N42UWOSvluzbWTvXZEngGwGTYi07zy0w4hqWtZPFQWcXZSyKdySo8IaemE16nhtcLTP8cQOAuR2I0WR9X1lgEc9R0nYd0+01qvWAaHz2lPbKy0c20dJkor3h7o+DyoPi3dTgKS7w02P4/f1W5xWOZZ27KtUwfRmEVLD5RYlgip3CWnojztlK/0Lonlf4p2eLKLCddrN9feHAU+mJ9PvDnEqs1ILD7LQmlXOtxuaINXSIj9fucaAXJvcUhUPV6k33MB181bXI9/8zVyq0sgs9cpFrRdiZjQqzeYnwd3zvESDZb8smDlKJToyQqiwW+qBWTBrSZ7iFuDfmXSwKRtcuIe2K7k99Lt4GDbEVMHKFAL9vhCx1t1YdbNFKLOOZxeEImNTgW6tNsxWOECXa7xhuGqMI2p4tyDzdawcVNPB2NynrkDZy5XLMw/T/T3/eHbLsl213RGb8V1A4y97vgNi2/LHJvqwJ/xjqm64Zc8ypoDNOthPjR0XWOyoLoBGS46M3prawiXocJy1m9G4k/XZ/l5vrUbtAo05CIuaTvWIB3AOaxXhFwlLRWzIa3g2S9udCE3hi8Ib+Sg2ioeBOM2McaI7zNYvy4BCQ8kLXlkS1Se55/obb7yu4f3yKAwJIEF6m7Dx924aQC/3w/mPpQyGpbRVwdPymSKzt9vxPaWJMqCfa3m9xpSY/oIkQmD5+gkvL11Q/iu+yMIB5QwzYb5vYnQr2D7fC+Zvzr2aFxuKgE0p2qZm60Yn5a1ipVy+0F4XVc7n9cLuUZcekxENettJGZDVMH38A2Y//TI3JL8GqPNe79lZHhU6WQBzeSXOfVYcuHJh0YKd2DKxzsLP8+eD+8MVGQ/Dz3xRSb4NaqnAXi30li81b/+4L2vMVxJYBLz0p+i72v5DuDYdQmLmf5AfHcvEohxe2eheinLsV8MKtzajrLzl5btQAuey4/FpafTeVumI4ufBcQCE5jqF/t08KNTBsmicjHfPM7GWH1RAUtePqnS9U9/evMIQ7wJdaZli000jOFzQn7dSexwQjtjLOVdBVjGHV3ZbhVxdjFEdI3DmthdTVCX87cI9z5d4Twrbmhon6iRNXezwotFpyPReNQJ2u91BR9W2hWNV/FigvNsGgxD9EpHgckDkNewZ49h2vjMvhQyJKb+xqN2PrbfXbiWkbqITOZ9Ti2vOZgT+u1vyz2n5RR3go72Vh+zOT4gWnHuwPeZabSNseEPOe9F9BLPc3/YQ24M2vMgwAVTh6ntQMphW8gNEpQMfu8plWu0utFNWzsHOtdyKIeG716wfck62WrLyF/tHsIAqyl2GK4Pil+zfVYha7IRC/Z5EDVd2CVosa9uzMJPyvs7LgrIlepBzB1mbWeHDsAx2frEugc2n+OxB+k2uZI4aguDSl9lB2IIEjH8VC3XrnE5wDGWVeLE+tPnl+dTUizr5BPP2Wv+cOirFxhXNM9/IvqNmauxklxEhY6GTKPpoiYTBHK5wItVznj38M43eGQ+I7aTjKjXBtuDfGPvid/vaESXtRMAEaQd0YfOiYZytW3QnG+YqTRqOzVBl6M5fxN1r52j4TJUAUS34Eaut4tqjHX0laC49AHTNPPJ+/NumYNXrnvmCdI+nePBDUY7BLKd4/Gw+cgyQj5L8Lq83lB10EMRbvuLQ7zbJfenj5Wo8i8fhY87jsZM2RboNn4ttm0vZjStX3kDO9gPdOjk0udZ+a2hEA4jZk+hT6fsUqiAT/ecJNklSvloUxm5B/XDQvFxKZvu8TzAXpUWJLhXbft9qyEG3Fg9XV6lZ8T3fl8gBdUm0x92aQxxVDugfr9rrBTmh1PnWXvgh5bNtOSy5KNwcQNl1i+ECM/KZzshhd9+Y3qzxWg4JzDIz7tw/8tvQyu9A9R8mpjZ+/W55f5jncgrycupYPUuZ+ZtPcjHkL/+5ctvpmWwOmAX19PzEPG6UyYUFfqKbH/64epJMYqPdxHDavAicSSdA+KX1UR1mrc/9kY3oKl7mMw248nnqolvIIYLaWalx4jh7UVHsdLt/uIfPz50DMNKnoi6UYuULk5tAk1/o+wyFk47WOVc+w7WhJjbd5yO+XGtgnWFBK8+3dpnqmll8GLHPcu+11074vFC5ZMQSjS1UrHs8M6pgOvpjXa7JEHCZ71NUHjlwBz2sX7xKkffm8CZ08oSoutXXstaVurzHQ3WMuNceujU4yMxv8Vz1vOJDuktVbCCvh0fylVYy2kaTGSbRm+Dz/oK5s8noTDm7bidsCwfi3xkSTpt0LiNVQpn96QRqz9aaMLnRyUrH3XN9HWktU3Fkfcvn8/j2W8eqxrKrIuZvzcJH87NWP9+P5WPp7yk3esO6LYdzsx9aaUxvSUiIZj8jmF/9BEVD4YAviSsSbgoL/6UX12QdycPE0uLwJj01aTKgbB+Y+X11Uo+/17YryYXt4fASCf94dzADS8XQqpF3k6Fmex+ep4Zl73Eh22gmXB/bkz6li+M9794fn17t/n/EzRZb5BAQY3502vRdGjgAKMaJwxLV/BZujMXYLxUl51oNMx6MG+Q8aUFw0N8a/nBTia5pMKJhMu2K+k5PZsQKILGDsfcRfy7PLxgg+w7CdFiGQ3jIc6gNVKLTl3jtDycBA9mP0ds7bZFQuU0100iW4iFme4Yg+l/HdDNz+XPv03q6mCifC1bGLbX0J/Oy0QAdRoivFymk9ELTJ7AScU9Xr2EBlVxJ6iQQVcR7y1t+cQ38hWOC6PAYvzG6XRLGg+Iqm0pkjPNnzJ7G8jz+qBISfp07BY7U6mr4c6O8apGHNn7WtFwatApKb4lV5eXDqbbeUt8fI/TbvORJXTQrjL9VhsSjYHtZ2izrFoym1E04quDYVWWEQmvqpOyIjJf6CrOtUrNtEzZ4nXu4JE8YqKKNE3H1/KN4Z1uNboiudT24y2z4ByK5Jf/2hFNU4LGaseIl5KuHA3DXyC2KlZ4/XoNKX3dNKok3wXgwlu+/OHJ9qaib7IXFYKA8dHorsefvqPr8gpo8jeb4jeeDHeaZ4zOuc5h/r04oqVv9JMVZBD1ZUWsaQzQcIgVHRKaecwgA5/vYHrWxl+0BEtLtvXnvy+AuY1Ff/lnvKBwQqsv6ag8+9leTZQGUpQNlKuCHa0yKRHRb/9OdV2jto6DQA7uLwPXjZf7XfTdi8gOnjmxw9UaDWfdD9DScF/EYIsxYo+D2cHD9gLmGCcnXUX8coOO7IX5TFQouT0cMwiMw51W/edSroq9HgC65iHRDvIG9Q/SXJH+jd/slw/m+W4gkJ8LggMra7/S405/foPg5mVwRu76TXbXsGDusJ0Z0mIzwHrRTcz33y4aAqJ2ELrZRIy4W/p9vxh0cFJhT2aeUVKM9keFjzfCDPHjldxMfAvttjohZJS7duh3MUV2MNd6Nc6aL876Rtk0Ssa0sT34nDvVAPx53M21NHcGv5dahwr2LYlZIcfg3/5E5ZNzd/DKQQ9/rKOnBMuvjfCTWUnahPKYwKGa30OxXStdI/vSyMbjipirBW3UbpNW/4sHehsWaX1pxwKc89kg+IbvZe1Hpxu6yK/1zGee5VjuCw+q5yVm5nclpH17cinM+pT84jdLN9ERZn1F1GL/RZO78zEIexpSWPu7dth9Jl0RnkIw51vDGLemIShBdL0x46lv21VzfE5wNvIv8c3Frl3N8wXPhZkS20N++ccrbtZctyVNaUt3WgiQZ9+WqVlx49NDHzIlJK5P5vnhK6M7xIAZt/B0X7KSv5SDqGxO7m+9Es6rjxZAu7nf/njJGEmWg2ZexZzGU41pVebDj29QiX0qg3fqdENu4VTs3qSyz+b4CN+zcyXG4tukky1dOkh3m4DZzP+WzE+9Ds3rgwVwNjhFlZPJj9vihdfvpViO+KoGiky6hqi1VEZTmT4H5bzAwd96G+Z8KW828oFu+rxGg/r+vNBBS2Ty+zxRKFURylx7Er9kTjtmVbqA8/JyZupaxHw8PoUCNGlR43xHX+0oT4dM+eSVQ7ZFOKb8vp/7J39ZjUf9Ufvz908gOrsH2ym67guHepRgX61PbLsh0I53eFc/vkZRExf+lMRNAs7nrhM26/vKfqoBvLeHLyHEFkoqvtROttvsSFRhUZTTHkYHZj/OtLW3Rr/9pei8CZgqLPRyDC/5DumYq8yIHqov2KG6UBadqrH7NULG+Ea7G8z+g3mfelFO13NzgLt1iIgrLnH7WkSuBYvks8SwS6S/9SBH4b5m1qrdGN/ANjI4cb2ndKrKctTaQwZ9Igf4s5w78na+bqHLsXhicYytcr27N9fN6hC47BYrU0r3sHEQWAmQ6HoJ0iG5HOe6SQwzpxQvafdZb6+KzusAK+cLRV95/TFh9stMC9SeT9V2MCE5Oi+qzP6eY34zf/qeAAdA+L+FzrDi449fFM5VJzrRSjQUbFRBWmI61xbXDNbS0wvaRI+YAdau/E6JFsPsR6igNPnsHyUVJe8HZe6BDeV4KWEHkvn1iFp2gzFEqn+Dxd0OcSxgbnTm7iQCuy53+PLSSr/D1eTA6TAw5rEuM7hpYSwHF2tFQnImBl3J1xi4dJ/o5rwp0eQtqgBIHhmY99bWH4S1pKOUvDQWFudryztVvilK8N4T8+yk5fjjt7iNJJz//JkVPNW/9SnH20s6HZWNCtYgD8xoYV+O28mSob2EGbPepewzWYAJ4mjXslvuv9PuNQyyIkrFnbjb5x1xQ91U8lVNd8SXR46mZSfIqHxs5lrxPE9nfWihOOM3Zs58eRCryALqHlxiLb0FYuziC8jR8papIkXR+IoXg/zjFaat3kr+/C48EL99TUdlHNOZX8ZwE50j8dzOTsWovQVo9tsYpa1rdGF1wEDnl0rX0UFBA9tnL2S8wyPbzn572iePG3I+D52pabNLB/clJ0ikWJzv3HtI7F73BbRRuf3p9XSU1x8LxOSaMWfl+Aj9+GlWby8znxMjxrTpqPx4nnX9UGPSy5X34xvEWHmvdhCPcQBMVg0SjLRpR3GYGqW5x4wEYRa0bNQnrHwXeyDODfpoGqTDC/ZPD4ivwsD7I1nXwFb5ijlL9vYH3hAJnHH6sq3Wqekg11cRevl8ovI6bY3+yDdX8MpVT/B+N/Lpm2k3ZebNeNqN8wuNRS0j3O4lvBizwZg0uaJoXctXCrsk4RQdjUq+rJSGYVNf+m/77Lx+fo3on+wUca0XJpjWS5F4nTCiuUYBhnn9kdPM+4d1hVT06K0Sr9+dgXg4gYMMcgBmukcj6n/57OmGO1zNPHV8bhIKJ4FIf/uH2cPthhBaxsx7ipbByXPtwfDcv9k8XuUEVX4F+/Z9EHslFIg2ZWzCrPd++sfoWfzN4bCVHaY/bqdy7Iy5Dul3i/AwgI4G96DkyPKEC/mtN/rzu/Qly1R2XhGa8kdWgepg+uOvKS3NIVDasOqJsXU3nMcvcUDWdZHg+P6Q2/dquFIkZtaa+YZw98fffL1zdJ390dYQnWftQPDFApn94az/8kIh/lNk24T6Je+2zIHPc4zIbc+XRv+QpAGcu3HDm2pD0umi7iYkD1bNDHwK+Gr2g6jKg/mdi7cSNWUeZ1BDtWK27K7S9ew3oUhyjc6/lwuHfX2FP74w+83RPquvv/WGA2tR8g2rPdg8bh0LTkXn0yyLO1D5MiNa0VtRt9CCAPTv8c0cxWtbrqVLCTaPrMNn5rvtzBdruHiBzHY/XkC2A/zxxsu4QunMy4/weustMV8JjdjJGSoQ9PGCF0VupitJ/ASb2d9jNPPEoRx2ACG7uLMe7tAfb5CGi8ysqu3bcbotdDTno5mHSj5L/eTw0xskuKyztskf2QvNvIK5t50Y0eViHCDSpjULqWNHP70BzK0tFtzcdzns47sFvaskv/Xm12j/3IHy0ddMo3xbdlJn1/Co3yfiP3oHrRa+L/7iB9H9Q4y4SYUaFp+Ck9DywR9qt9kBEe2Ubc+vxB/SkVpom18FqvgnFvGPwa5Q+dmCbafTLv3jUft37bF4bT1Suv7ej3/+Cve34bc+a6UjkcDc0/fGx/Ay180dFz7RLk+eDruPrKPQvU3MLDZ1OujVJ0PDe+Jka9hVOestjGb/w0LnXvri66Z14B/tlsrn/FFO0nyg5rSLHX52zwXnal17sD8VPjFvR8pZjLdYmfUt3dz7Wzoc6o0kF5ulxwJHs9qh9wtVlpYBneObV/LhUk5oqTAH77yrgoYjrW5gbMQn8SOY71gvyxvwJBTocn2ZIq6f/QBeR7nDKAIwhpk3o0EzPnjQ4yyly9iP4edftZcXtENXpC+4rJYNcc53O+q9JL8qP73kZa6EetqnFjwUXPydb04Ejbu/39uJxt0YxcvTgdm/EXNT55yV7+8VKs1PqPw5tYgPbd3AzEfInctL1KXOmW46wVWZ6XiDwQkXVKCb3CY35g6I7e5NApvr+oEVYVTblX5Z5T+/RLD3TaK/8dg1UOFxsZnrghhWBefLQ6XLpxBGLA8THbTsqeOKstAfw2EcwNeHJzHfucb7YNiLyncf60R317tykt91/pff5NNklX96+Bw1NZZl/VV2ZXY0kbLHD4o+Yx1RRRkl+fc8tsaklh0fegC1vfoS+7BsjXEXriXgGt5TOYhUPkid/efPGJ71GlfEY6WkvsXZnJ/SceEbAqjfdk0FrtkpFfY+/M5H/s4P1/ePmPzps+Bdt2l3pFUGAS9SYgk4Mn5+Qqne8osEpyLwuyyFBMCTPWIH17GcMjvEMKT3gNhJtvcnuj50kNuFS7xpv0b0x18/Q2ezc10N/rSDfQCPQHz/8ZDpoUs3pVZFax6voaT75JyBr8Rb4p3Djg8OCnT0SUHGXV2sW65vcYzKjMbEzotd+0U3R0Sa7HNmSnmYrn7jM43mgfiHh+hX4/Opw/i5y3/6ajJed0tKt9crmV8zMvjaqwpwz72KlT3UfPz5059//cXLtaNvYmSP127282+ff4xPglZnucDIl6D9judvspmquiOeSZ7RFB2LWpnPNwgZpo3Bhd7JYHcVP3g9579xfl6Yu31T4REgo5vPT/+/OwWb/75TcO6GHSNIEv0xcKMCXUky0sEUQ3+aL5aiHao99rixruW3tQaodLUD06SWR8P+4Tqwftc2M2xxNIb8quewThcTsYxoKKnR0gWqLNkkVil26VjR+xVSpCTEtJ5RK6D3SGGB5TftOEJ+bZ6auXyKdGL3qbqXk/utRbgbFaFwDcq2Sh9WAemm2zCbaU1EcfB+wYY6T6po+6ffB4fTDQTOXFoGvDambZKroNzkNXNaeuDDqLx2cMg50BV2O97IAqNocx0lOm19ynlIK12+3fMj2V/Lbu5P+NCRa2Yelc7toR1W3S6DUhqeRC/8N++SfVRBQTf+b/yMYTo6IohEUIh+P6F22iCxALxKCIU9P5bDIYcDSJL5ocuSfiMuRi6A9pzfw0VFb/QdLgH8j9ky7WM4/lC3PIFw0wf4zYXEmNZlJcEodDq7a3vNX2XGRQT9VJUkEGXJoJFiinBef2Si6cqnpCO3K3TsmiVxFP+d9k1l5DA0Qkes7Cano/nZiyh7UINt4Rjx8R41Fbp/a5fdjxpCTLbON7CsT8I0wW5bdthOjZJ4UFLBefRlJ1KjAnXSNngs8zLlWZxncHjKFrEGmfGR7h4WVN/PCQvKd0znz38B7V1EHFd/lXOVvQluynzH5KDLJX3EUEPStwIdPkUazU3WOuQcO0S2C1/zpz26UARX5NKxzI2o6ZeTCRM7yMQv67CcfOEug3ULcnKQAtUX3eP6Bp2l35iXqMd20OI+ACFsMdEfgcMbyxBrCPrPGQ+X+8kQi9P4kq1kNV9PPCG/w3mAQWCBhwd7r/u8Ns4B9Adnz9SQG3z60s0B2VJ8ImZmJyW3U9mCQ3PfMdfZU0TZY+4vM+xsYubbQ9nHt2WOXopOcW7cZN5r9VFGYtlcqOR5R2NKXk2Apl5NKZJD1jbyITWhD0qHBM+5l0dM8pvyG79t/tHT9UmNF3BN4zcJlSeNqK2pN2VCmNLeugxt73hxBbt6/yRb6qiIBe+XuXkrAWPqW9m1TJryRKHqGFOZzbXOvOKgL9+R9WWuFJUGt1+CDsRFIV4SW4um4LV1oDbQneh7W2/F9324KZ2ke7TrErFltGMNUh/xh5lY1ttubdYetK18ohvGPymN4vML7gwEEpziS1RfvGBAqPVl+umqU8qNlw+gG0eT9i6c0pFVqAKAbEuFvhqNFmOzgFa2ahJQ3paDMtAJWlOl5DbFu7TvqZ7Ikny2MG+TL5/AD3aQ9VLM0vSp+Wz4bjI579iNimN2bnv0SWowsaWQbXB4tMPpENegFIXK/Paw4N093VbooL+/FF6rPeLqm+iynrk9883Hy6+bnhZgSPcVCcVl1w4LUc7lwuRbmrhVkPLCXS3A5v6SOZgiTkdOKuD3zRJ3XRKXw7PDiTwsTw3bPn3PWPvdJANpTku6JPYz4tmjSNB53BNyedKnP20moZrPtD/k8l6F7Sg3lgjIwh5zDenRjpvEA+gWxxULz/eIj2upy9D+NO2JrRdX/vs+VH+oRPz6bZb8pGYLWMvulg72vjB4mV8zlDXPnpnp4s2nh/KUIc21N8NJk/hTv5RNOFbxkWlNFfBR2LAcZcHpip8wPfhUJ8dB4Q/dZeFU3dvp82gr6IVVwdw8TdvxvagceDbNgumO1/Lhonki+As4MExf73bqL6YAV3sJxG0uq4g3Q4IhJF6Ef+Mx7srssJHIELKTssnK/pJChkz5XhIt6ZbRtLheAL6yn9DVY1zzyZ2KAeb9RsKT9PXrnJ8wmvcD233z1XxPX6o2FXL2RLPyIOIf+R6gh6PeWbxDiFNd3SUKjtYR5epaiIaLpguKZrcas41Vnk5fOh5AVlecbNUap9M6ip2N4tUJO1vbZTveo6KCnS8jmnuCxQenahYQnRcqXju5gMY2A7o567VH0cXqjCHE6lxITTJZPGbrsnooXxlu38zBX68rObdX5gSjsg+I3WbblkqyfwVD9W903dQoZb98sja3PlPtfeEP6FQvoOkXnITDvfUHh70k2eCw/sVn1LtyOECuv2PmXBvWtgNSYtgcAorHj1H7/Xv1wmA3ns6CxeHld4vd9gAPITWIaoq9wSuP6nJ7pzqV3tGds3n8YKuffVzSc4VeO3aRUZ6bFtktrzqfSKmbm8j8nJn+3ZOIM8PEUArdicUHrEWclu8ODk/JwhNtn2mzjHxPUqbFRLSTe20FajgqPBbmmRnJ/ZLyndjJc92KIzPkdZEy2n1qsLMAM+xlb5/LqSPCuZt2eC3bnPc3r67hp0dUe+Xy0ZXDSQYr8ckxU3TOrdKRQN3cKPGkcoj4cy3rMrr2Dv6su0XLP2O6g7aVTsTdipeW544nolN91FnQJXHbBJ6cQSS+t3Sc90M/kpsOQ7/1iR96STRuN/cOyEQ+xI+cgzGV21qEh/gtiH29znV6Ru2mLATI5/x8TafmU9xAdg41C0ftwPujNnYzBbSYPue3PnGlF3gOPRP91DbRJGrXHYyny5upcZYYPD2XOUhpp7Hd6ub6a8f/HsFNFIc4lmG3c7xX0VMtJBK0OwvxereZ4HVOK7J9UYyG7yGnoMyR3QnebkTVUW/QrH8YuY6Hsr93qwOo7SFlBnuIKV/ffAnc0DhStNqq/vgAHUCzvxrJtmZk8NV1zvex/WDu6mgZY9SeHHgto5Do2NmW/avMY8VabEZiylZX8kNNdrJgH0vma7ltjCysJWhNnTLVWi7L3jPsCe1Pw57t/Trl7M1qR8mvmTLrhac/7gZJAGXoor/1OxWnTYWCExuY131uJd+JLwlWp8MWS4fSMKZI8KTNrB/xk3lCy957QYAedmdccPL1xyB9XNF+T7fEFMsPenzVr4rCddYTbfc+8NXCaXZot612mFeCbgjOUqlhF00lUd8XhzNZud/QvJ/wnM/8IdbDv/XGHN8/z78vl8GVC5PYy+eWj2p80UFoNIGoy6uOxjI0BMDpzmHnUK7QdA29Bo7NNafKF32j0VC7Cv30bXNN3ZbvQzeDwjZezFXSQzvANsGoAdei5XI58mnvFwXY3vqNF9taRoO3khpQlUJm6rgxo7F+rKdffGU/vdit75MIH9vaEnuON8MzVRp0+hCJdq9940+YX0U4O7AiWj+fGR2+hQ7u6kTp81VHxpBFiwHN8ZPgxBpSfs2mI/qcdglLb98BjRaRDyjQ8ETsg8bTmhqODpJzSph7mvpoSqyFjK5sVbKIni00IV0/wkksTrReN1X5Wfq1AydpErD08XyDzfsTFmu8pBv5diqn26rUQSfLKwuPWsr7la076ODpGSF7AaFBi98BJG+roch8mAbXzHcOc3wm9jv3+YjllQiZZyJi9Wffz+sWJeB8yQYv9i9cssXKf0H7gCfzP0w2ONX2FtqYakrIrPeH02PE8JZhx+JWSdD4vu1zUAYaEZLUucE9xWig2NEN3snqgIZJPGUQbrMlM/PvNR3TMBbhwWSThZe05/Qam5Ucj1tMtiJfGVT46i9FMxyDncUX8+tBKI5QVrlOQusylEPs2yJAXhxYYHhV+pdv8iTImBlpxB/WR0lG5XjqmPteheUvXsNx2jkkSci1nfXYCzqwYuIxfWz7i992YIhhTCzx+ORTvPUnaL7yB8OeCyVtN/SIyKM44e447dvhwz2M4nA/EdOEGnWf4LaAhO8URoDmLZ3nVzZLapHfvyfBP+9AiHZndjmOXsqtUpWUOZ7ixZeiaBja/AprSF/EOMpCSR/h1MmjQHWGkakZUxQ/XjJ4tzMdh/k9ki1OY/C+vjufqT3TaXnbmtBW/RKjSxNx/ma1J692W4a7U3xJf/EctdpEmLYujXZYfB8LtEllndnlVmzrVbe7QfqyR7JNMI+4fZA86G7jZr6Uj1tqbNwCtH7nYvRhsj9tk1pVQptlzMWkLgfyXB6hzOorC99nrV3NegSGV64RfcvEkl0/sIOaGiUxj+kzHTdzRTjhM56I+X68Sn4mXQNQCQrTtz7mghsfAuiTDIixlrbpT6+ib24cGIZg4Fz2Bgs8bV8QVU/PnL2Wg6zICbtiQbaCcoDPS0SJJZ2Jrgd7NJTTwUG02dyYp69e7eh42Qsp/fmLpzdt2kEKGxPmeIIn4tblWNyPlfzLv/7DfCN+UmMAdoxV5tuZyld6YnogPG8NMVfL3FhNbylH5lUfMfQ4R9za3iuo/IvOMgPKdDR2yhEt9yeLhERmRrfFUaw8hniNYRi37fRaXBbytpRtphq3Kxro7dqB08QGC9nG+MUjAXQjNsnWYVfOhwA7ciQcKxZurk/0Kl7rF/ipt2ZqvnoavDjP/SmzrMNv3yNoLI7X+rd/2E0/gs9NOb8pPz2vHk/bdi1G2gIu7TsmxnBS+SDaWSz/9J/XfaB8Do9uQJd16VGebvYpn/2RzNbanhivS2jw0/q4ALKpbwSL7eRP9chu8n3h2wzrW9GfYnAnSJ56hn/6qlurdoFm3kJ2zTNJ+5uCdTRUQ85M1K4j1j3lCm1E3e2XQdelfPiOGZjvxZuE6nJR1jOfQWsuXonbnUk6rlmRo3DDAip+BSsdWKAtlA/PWoq2RsunszCBcjjBgRk4mdCPB8HPn8I6W/6bL1RUA3PIqzI4uiEAbzHNdzaupOybu/sCwU8YC7y+NYa45p6yUy8ysQNjU/Ji7g3IdG4SnfOBj1XgTMqZ7HP8+urfaNpcnhJcHt+CqJ5QcR6C80IrdvWZ66zidlpupCsaw6dC1+rFiaZI0GW0fJgVO5rJ0+B6e51kbFyflEu3Pp1YfchBLOsL27Z9274bFmbo+i0k5him16ank3OUI2st0vFwU40xbXUHvqR6EGuI595r2aOGcifJzFCj7ucXG3Dpa8es8vBqJ2W/05GV9w9iLVIcrc9WQeHqmhZxEiK3f/6vaIQlM1UrK7t9bVigoexGQi+/+13TV4UCcNuSjL627bA+DhKsLzQi7nvVt0PH5Z3cV1/CEkfT2rW4yl4bjeU18+1gkQ47dpEk2Icr5lRVmY6fLGjkMXIt0rUCbru+K28QK4ZG3Pf+zd8KIrW8puGe+Oz1jP78yY8v/XjLkKKP+dPjLGUvLeqK7w7D8mFVzNifCVrP8QPElSSxc/Gc+z15bgDlmbzpZvYrE8+dBiwx/hB/1oN9cLjfkH5e6YSoQ1LOeipBq/KWMD9uRTT2b+eGVLd/0EXSJEY9xksdfe6rAsuKUkTcObbze+GZS7DrL8spM6UJ1n6usj1gyR82vZoDm/KIHBrxavTC0Feg7Y8xi2teRtPM+356hLhLVUkZPlu3n97C8mn95H2/SB2gcZLhMWs2fu+eNw488NlhRpdfyum71FVZjjNEQl1s0aQXbxXStKio/JV1Y/bTgGa+RFciP/mT8swn9FYwm9dTboxjcl+AmGk7plvDppxWzaoDdFM+ZCvHG9RpbCnBd6ww85cfre2PL3xEPz6zXjsxGtpmOIKwtcx/8c1qShkO2Gzm7teuMe2PXQaqfVfZz9/99O+f3tK2YJaduDjGgPJ4z37fxz3B7RS7uz5pUxtH3k9UzmRnsdboSO6lQX/58epaFtNedeRTwz0cZYFhj6mOcin5ZX+e/cKlmv3YJuqcpdKAlFKN2dmi8afX+UX/6UUbAjRKj/0AYdQeZj68K7/XKVkA3mQpXZvKzv/jpVN0stnOXn35dMZbCqGWcJJs6rydbM9L/p7H7eFq8B/Pab7ShxmL68cYLDso0KyHmHF4PKKfHkV84+2IXxg6Wmfa2kTpaztiIf/KURdiNUYk2eZse+GLv/wMu8rQmZY453Loy2cB2X5RMlNfUPTzV8jm7pKQGwtasVlzDNvjuyFzvG/neFfBJC0IC/Zz+85ZXynSjqiYo9QzhkIvQAkG0EjonJtyDB+SjpAV/I+0K+lSFlaiP4iFyJSwRCaZTBAQdQeKCIjIkAD59e/Q31u+3Vv26aaBkNy691ZS5ZFlm7/kyisQ+udnveEnrYd9HRF1uL1HbIPHko/OKYxUJzda7EirEK9mXgTgao8pfuUXJZ9mNTShJeUWtV6LCMifP3eImz3VzqlT0z+/MBLuJnXCcQ9oEx4IPKnshg9vi8RLx/8c2KmpRqrL4OWb37z5k90d+8eiZIvMSQG07PsVW3nv58yGcQuYYacUX361/zeftl64e6JkuVtv/lAF0FR+8eNPH5zBfYT86YeQ+uDWgVpBc/vzN3Dw9MthZRExod4aF2oalTCM91nRgSV4LaE9vwJidtIKJed6o1bjHQ3yI3IIwtl1qWuS3vgbTwWUyZn8+bX0dIm3c8dgq4uG74DBoA5gJk7+n/9Zs+hlJRABolCUV04sLqaYwm7JTvTIPpE/Cx+3U5I2SfChsJd4008BjK9Q+/c9/vIHUL+K+j9/ZUy+jgbD2Xextn+4Bl/Ewqw8YlFDaliI/t/3gzAYhT9+MIzfSyEptOM5fKJybTDxc+LBlu/AeGKUrb+dp8NfYhXU6wuXLX0g8X9+NL6dJwlM3yLooAvXevOPAn8R2rJRxOhcUIQ+51qoaBDC+ycaqAFrGYy3c97+8T9qRaGc7+V3oICRH95EvSSHeP81Fwj/+N/x973lcx6GpXpM2Z3cP/upnncOV8AhPZ+o3WRJvhpulkAZQ4TPcH2B9mvfJLh0K6LuaSjBejLqTp3XMSHK414Py2j1OvjE5o/ersM6zIPpm0p4FCj1k8qMl1clRcrOcBgO4v7NZpNAXjGva4TGkli5uPmT8L6gF/Zi+QjYd4lDGPWvEE3OtR9Wku0g+Lveep1mf1UDMYMunGsi2MIlX7xjl8FDd2RIfe4uw/we7Qzq9SpQ/+RJ+cJzjvfH16h1wWm86SUedvfqQ/j+yxvz0tzbv3wF2V1+tbEMBT/CoaW7DY8UYxufB2x36Il9nql/fLmFsfC1sDe8AkDVgtr/1sOVHvqcTUx4/OUraMSwa6yXR53C03yQ/jse+6PnwfaaCvS0+eF8baa2ors9pYfLrmHjH7446S7D2qxf/SrcWxCGPL4QrvXTeuOLJVwGfcKmZ0r5Ip7FAC71RyJSan/B7B9hqzT1NcO6colq4fADAtitik5tupb+XpOmDu6fIqY+jy+MycO9hfPu2lNvi3f7a+1HoImkjvr5++3Tjc+q2/qnbqpAsIhS8wB3g1Lq1N82X18zThUv6Xzs7pPWWI+efoNvfblSjTuq+fIc1RB+72mDnc2PGYfnZYabn4x2fTgY6x+e3XbBTNY7olut/T6Cm79IvflRg8IYWg6ic8NTjQIvZpsfCHKZyNjTODHuiKHpahLSrY7XhGOy81wEtVzlqLOtJ5LDhYdR432IfLpzcYd3faekvhH/6cvh19RlAoVTUxChvxF/0qSpl8+u8MR/zz9G1zWBm76lejSe4vX8bG9QtiMF4yuawDztpxtEryTBm14De8y+miK4VYT9Y1DkJDo9e+DurwRx0m/0v4Ln6H9+IvVSyQTzvX4VQDstA8YP3wTLIOEb8DE2sN97NCbv3VOHf/kC/9N+6wkzqkGuGg9InF3Fn9h36EEwpBJiCGb1urBjo/BscqknDy82TvW7hHgoXCRu+Zil498eSAlP8KZ3avF2a5t//iZXdQv4yy/C0tN96ldGxeb9PspUIogh1cJVAwyrbITt8lBpID/uYP2m7+7P30dilum50AmOCbf5QI8bfx/KnSZAyq8rtqSFGkQNdjc4eNc7Dop4/vPfbnChpoykrKf10jW3DP75t6kh3vL5Mrvwz//BB61ah7kbQAa0Wmyp9eysfH8brUCp6THAAYi/xoyFblT/+Jzb8d4w88Ve+ZcvQY3eGOvgih6shJWh+0NKwWxzXvWHb9jn8R5MMfgoQEiuW18agAZBZWMHpGbiMJKsJm5S3VJgyi7Txgf3xkoyEYJ9eKT/xfvNb/iLh9SqE1gvPbUeoH/NJb0gd/zDz/7verytd8CIl+uKJgb4Hx6M59fBA5s/QpSjmhiMf9qb3k40sib9MRaEc61DJbpRjBtB9jc/uILBZZqJgi+lMeL3Lv3/9hQo/3tPge4+d9SYz82wLneNg6dxOdMDUhuw/h6eBu6H7kVvDeT8UdyNBQi5XCAzc12Dtw7KDHfVKFErMpr6F2e/AlxjbsAn2peMvYZAgNMsbLVfE5iv9nLn4MVdT9jT89oXy1s4Kk0eEIqUpGdTfS9MKP5wRATjUsfreVwl4J81GXtJZPlMJG8dlIe5Igq8H4f5J3se8Cj/xG5sR/nqUgZhtaKRcE+ssOUJpgbMe86hlrxsc1ZlCvgKzdafAx599o0FAqWzrqCZVUe2nwBw4G8rphKqUjksuzsXgdlS7xhdlzpnPL+f4eul+fhwjhew+o4yg/kdXhGLB99fnvuLAu30dibL52QNeyMJEHjyD0SdsfYNdhovETid+RrtiQfimS9TDcKphVvt7ByMl29dQkF4QHrCzzb+lkV5A8pZaDBCpy6ewfUUQtTzH/p3/6UrPAK+Hz3H7nlfGKOmIls+x8cOIzf3GHNzMwCc3exwHvNSPV/e+db/d/9E8GBfh3WUxRLuc4WjTlm/4lkuFA6qXZnR68s8D53HCSOw0FehJ6KdtnNWeqVen9eCagYvxcQNuwIcJ+FG9T7mc7YTSKY8fXPAp3591fM7L1bYQ3nz+KE57GmyQFX7Wi62Q9bWywFYGdDbVEJ8cdkb0/y+JxAqVot6Pa+N9fReSjgGdUDoJf35SwgyCAqNk9DXXl5bB91HAZ6pkWF8oUfG1Oe3h+rl1uBUpMHAVC4x4YuXf9RzIjmfp2bW4FXj99iq38dh3t4P1mF8JoInBPXcxo0G71/Fx07zM3x2RUoGT2gcSV3OeFidOmlgdE8NND7eSU0fYy+AWHE4JEr7vF7LgVYwE12fKHJz8xdMQAsCHSdo20DA+Iu9MxWX63RqNhH1p8HoFCiEOETs+8p98rsoCdjuh+TXKoLxnaczQDy+E3a8mfG+U4sAGuq6I0LbO7l44BaiPuRqxv592+ZWvckDLjgFiPcUg83ZzoyUK1gjbAJmMPb24hRqE7nQQxy+wGr4gIew3c3oZZ4bQG8X3d5NOK5IYsQpY3qIt/XSpogjB9OgDmp4kGX9Gx9nwIZ1PHQBvPuHiMjkjXMqdOdUib2qoMaLW8B4v/9sOP5uFimykvprtHtz8MzsK7Wj64VNg3p24KPNFIr3tVGvceDe4BSrCfWExzSQy0fz1LN8SeghTo1h+Z7rFH7M5oy1ymzYPDWSDm/2dMCvQmmMqf3MN3B/fE9E3rVxPTvfUFIv/PVBg6hRBtJILq9kuyTCZn1ch/mia4naeUDCfni61qPy8Tr4ayKP/n3/nxP9PFAudx2B+7IO6+0nC0qYcgXiDu+KrUZ7a2HrKBXivfdWqzgCqyKJYUs9X1byKUrOK7QfA6K2mE5ghHXTwRw8H9hl8ciY7p8dOH2PHvn1TliLF1pL4LD3ntTe8G/Gos8BtkoQX/idB9a/52cJf8WR0AJj+Mbc1r/901C0r05x79SPBvpi9CGDlx7i1SdPCHYVkbA2JjKjDhp5wGnbPsaRfgxqp1GlzvBkkXmoHsZ3wa8ebvhNCOVWv1ccr1K2+UHK4GT4DI+3AMTlHRJZz0Y2J/wRQmJwBlKNp1KPT88a1dzUTBqlryafh1Tc9oytNupYJAzLtB8KuBrDiRr95MYLd8QIHAplpsfT7rT1C4odmEWvDFsap8X7e2NunoAr48NICPuo75qD3zt9/uGp/335SwpfP6hg8+JJjG3jB3O9cLdDQVM8GVkswffZqLA/H1j+O34uEXw4yYVm5ccH8/x7j/CU4xR92l/kj9W7LSCMOkTD5OgbA26dEkZ2cMKoOkjxLFowAJ/9PFL9jmZ/jipZgGm9g0iJy2++piEwwdt3THp9lnrOt8RZIR2hRc26PMdTiEtbRSqX40P844Ylf842LFeooj2UVzYbHeOgk5gWPSTOO+4qp+/hb+pU7C9DGy9juDVryZ42duPXYnQCs2z4vH4vZFb6NadFMT2gSIUCEbxchxlf50Ldxhsbodn7bGxL8u99XoEfsNXTBxPuE9umBpKnmjFYF3Bbb1jPpNqf3dgQIN8cr2T5tGY+e686gB39/jB6CNBYfWed4bhXKNq1/Gisy92BytlxZLSXly6et+cH0rGz6fEPH2VQm9Dimh+1okedEznjemgX2KWnYdvTokpBJlsIuvh0FO7xouwFW7krw4pPvVTn6xSQDsoVMqlxx3a8fAq8AnYgb8Sn/MAWZqUN3O5HJqJNYBY/R6Igs5EpVi5v4x8/kHV8wadDGdSEb/QU/rL3Eedw0xTy206gMFQnjG7PZ7zwPonAPjFtHHCLBkTzZ3ewitoAH3Xrk6+iEQowfnYJPYwEsfkN/QCO5phQl7xxvA57bYXxshPxCdJPPG/4D19he8RucG3ZkmFxBWPPaTRIVTkmlx8nQXeoAqy/eq0eDlKlwVO8nXtRO5rPqlfysEqcI423eLGcLjwPW43m2G57J2alChTwN39CpY/iWVq+5r/5vH1vwEvD6wZvSHLwyTePwxRrwQhutwhi/1QMYJaYpsPbkK042J8+gGK/XiF61V+ydmmbk8P4ScAg31OqkdmLmSqZ2R++02DOu3y+6E4Cxx5qNABwiRcfchos3W+G3fPjFa9vCSkQ7JcLdb43NLCJaTb8nhDD5vXkDVOEdFs9yb2HLa622PL+xg/Ij1FB1EK61lOU3Fcgq86KdtKAjAUZzgiRJwrULvrHQL+xMKoD4o/48rREn70byYQbH6HBsXK2fuJNJf+iEdNI1gdGkuerlCcFa9jf8L17h7cEZKelw9YklvlKX89RUU+nBz2OFQ+Wm3SW/vgkEffT2R+v99YB02rIaDecPLYHzieAwNB22Lo0E1t68fBQvze/QjCnAiPq1HUA/MIBzXuJB/Q3qg9ITqlAJL+JAOvjpYdRE65EnAGrF1UPH7DV45Taf3xmi7/w4qCIWrDkjX94EoBGoP6j5OK5uXiaEjy3uleCjUGvlScObs9HjyZ/NtZWGAQAeqElCxecN7wcFJizviHiaTflawZLRQ33B4OirMTGouaPCHzE9EtWDTwHBoNzBZ7m80XIQTkMwnLf2rMZnEENrb74iwGcFMLH4UCWnWAyUbfcAr7FGKHImoDxydJjAZW2vODw90E+Qy9JgKRua+o7I8kHY+ZTpebIVvsysYbO+Ygc5HbwTW1OFI3V02sTPmFsUw8fnWFqPvtC2V3vCim2eMVQ8ZKg+P1dUdt803pRFbqCIJUtpFj1VI/ePa5AUpdvevV/WizouySTd/C41UY93cE4Ua5QfuJNo6ebOxodFn0IRIWd0JddTX9mfG0C7AAPfa91F3da44XQ/2znWIUzq8d3WmpqYCwYI6kX2VJm0IZBrwGqube4nhnJMyVQvYUenu1tWHN806DswyvVrcM7XpPoboMykW5Y007XnC0/mMFFk0R6PB+vgLm6lqm71+dAxsZ51/SmfCLo3wONCObx7c/rm9fUDS+p/vV/4KudPxIsNfTFnqoKbF6E7Zxoi19UF3Z3QN7RMEJ6F/DGj7KBRZ41/+kPsvx2tbHopIN/eIPvX631Z+ftBv/+3xFDEA9//Bc81gPWPgGNx794ocTZC2vP6BgTy0QOiBdVJNfdedzqvPwegMvDGYn28jLIfv4RuPp8Qm/utwHrA+gSkPndgJYbD4xp+f40qE3jhSY/Mxjm60vlIXsMGI19QWImZTm3HSKY8Nnzj9su9hMPU2QXBM66W0+G/L2B5HaqqRnvYL5ezJwolnU6Ys/yCFgX6fGAHhWeSKyF7ax9f9ThxQkieqwF7C9mObSg+AYNWj37DlgUXgo4B+2HrNyp8+fxiW/KH7+wlUKK56vWp7DvvRQHoI4G9j1RXf40aEFKyfXbOYfDQ5WOvf2PnyxRcp7Vd+PfCLBUfdjvYtKCNaxs7J+sk8EUubqpCiITPq33YFj68JSAFvQSWu9oNtbf/iRAa9IJNT+wMthuLkZYxYuE7RyEbAlqJVB2v8Skz42fzUX6sUHDtBSf47Su53QCCG58BM3xZYqXEpSVIvrOhDVgLAZRUIbAhv/UJQrx2ZfEBYyus4MPMa3yeXXmQIW4vP7TjwMqrhIgt/OHHkOy1W7GJx14P3ymh68X17MnfXV4V34rEoh/rsVeTgTwvnYETcO58lm+Kzg4V3xEk9OPDktiPzLlL17bj4nUa5G4BN5XXtnikwU2vt5DeDZj6rBhny/uJwzU/aU/0D99P/+t59L9ZGQ2W8Fgf/p/VTVK9WR/jlmfuQmoPtseFFcfjTmqFh4mYTYQWiiNz7TzJMEh9nvqjdI6jI49PqAVVhY9Po/GsF+V0IZPHTRIuT8P+SyNUiJbQ8HQWmjTsOTX7gYT6ziR/izweZ8sTQsXJbpjx0KtTx9t7MHzQ+jxpqfzFStzqL6Gak/mAShgWe9DJ8PPbJL6ju181lTbBGctPWAsDcRnz3Ut/+YntV8GyKeKrTxg3y+H+Hdd52txWvW/+6OF7wQ2K0OUwjs8Tah0b6z+ESdqwRbvCdPbFmz8zFZR6vDUE/ZBPrsB76j7ZyFjS7yIw6x6nQAbx5SoX+5KsGraWsD3mLzobbl09fy+YBM+5HLGLhv9evyW/g3Cz2oSTn3sY1KcFB3yuyzBweElxGt7dnqw8VdsOmJkrJefoKjHXRYTUbesWMzvbIUxIDJ29QMy/vHJY2Ol1NP5A5sL8VzJs3kvCH+vr/WIzuUKxRVe6NM97Nlc0oGHZVvEFLuPg89T/dNA14pKdJGOl3wdGBXgQ+T2dOPjdUfrTP/zA7ba4Dmbd67HQzG1HkQNcWOsG57BP/7vsjgAy9VH9h/+bfyi82f5NoQg987brrhzaggVl7aQjpz1py+Hzc+o1JnPTtQ/i94w/ZooU43+52I317J8dtdXCtGVUGxuerIb0t0INr2PNeSd/QUfd4WMD2ZEnSCdByaVQwesuyRRUwp0IJrG8FCMF8mom2tKzsDnksLx9dNxafC3mO7mdITsqBYYl1Y5dPt2GhWaZx52reoab88f/fkLGP26T87sNCvhHDQf6uTWl/VuWD7+9B7VNj0owLcb/vkfNEKSGK9+h0J4qLQv9qDmsGldaQEP4WPEOHPsYTFkeoNPQXNx0L217ftrnTqMytabS5JZf0z3CB4zUhFWZNWw/Ok1TRpM8r7xudG7gtGD7XthVzM1g3dH3IONP1ETsBowMkSZLIlRi6397VfPh/nXw84PjzTaLWK88alC5drTC3tPoTRmXXW17Vz5FQf2mYFBqA6dSn77EqM9CPzV9cIVLnN9pd5T0Hyy6X1AhjzHVjc2/vq7KCmQC8oR+bl32ca/Jdgsj5xqfPIZNj3SAp3SYfMfu/yXvnIP3kTwIFBuzZrf8AZMNDxjXI/vYXGinwP/9LD1Vdp8yatW+PP3qLfhy14OMwmWcusipQK3oR9LRv78OyJcPo2/juBWwNna3Te+OA5sDHwIzy7ht/kn1vPj5tvwXrgOks+PV85aRwrVjQ8gDp2cfJRFbgYivDj0IEQ/tvm9D8AHZ0rta7X6s/54NIDJlUOtQFsZfflyCjd+RY3uLIFWwjNSs+iZbde7YBlpPMNejQIkHsa2ni4RmP/4IvbyjOajWN44+FiuPzIW/ndgFi1SOL/GnBal2cc0W8UW8FX9wA4bLvn8vbMRGnvuSE15jow/vw2k0jBRb9ZUYz6H3gpD61b/8R82j/XVBNP85PChzDt/DfhPBx/5w6d4ee5Ys/E1qBN/pri0tEEYSzACFOQL4bJjGLPydiPg1HB3irbxEdr54UD3dksxUhIPiO3xmoLj3fsi9SjIOXXzAMHAy3Ly3Z0DH1g0TcDDXjN8OmV8PaZx8YB1Kj3JubuEhhiL5xYO2s2g9239j39481LtGa3HKzFGKTAU9St5Z0Tr8VCTeQ1WeH1eCnwV54r1c/Bu4P7SHXA+Rd9huV0/D6iMS0QvTfyJV6voJWhUwpl6nb03yHsREeivekm1zd/+Gx+IglnD5+4yG3/4B5ZjaWDUZqJPPjU/Q9Uf3mRJC2Ksz0PWwbRWIT50l9lne3B6/PN/0XV4DSuJhASOr0En63qC8UR0T4H1WQywsXW2WJKvw8PHmbpkpD+vXs7H9aaut5TDxxtpAF1zUYPtQ7vRi/0Qh7F6kwKoBv/Dzi6q8pV/Kh2wbKb/+Sk585WsAxiXKTWWfczmro1NsF1PZuEcD9SbQAi3+UHysq2MMXvNK1QkO0Q719BjJp74VrFOxm6Ln3ksGumrhdndbqlTndacOHXSwo0/4UzYjzH5PXRNDbm7gI17ZxmscdQUZtN63fycYhjPafSA1UE7k3YwjsbaPCcbRGYf/cW7fMun6KBzryoqfd7cehEgXpK71wGBq96yGZ27FYLr1muTXC7xcrkbBXRvWUqDEE1s2fIToFFERPbpvvL/xc+LO5/ojZR3/9/3rK20QsLlYxrCPKgm3OIpxa5R5f/8Su93OlOr/a3+vm1eBXjclZCIvMEZC6S/BM6+3uM/f20UP8cRHsfoSYOcpmzZ/h7i7GVRq9u9fCZlMYT87pbgR6mweMLu7Qa9FSbU11Y7XmpFL1WduDNRr1eSrxtegY2v06haB3/zR2Yg8lVI7V14Yct3dEzwIKcVa7s9qeeU9yTwDPoWrQuvDvS99dqUvexBMXIysCzTTMDv7CVoliYzF7Z4AqFUDxi7j7dP2DmO/ukny7R7MGa7IALgfWzo8TDa9fdYLQqED+NA9QC4uegksIJVDnfUvy9Rve5eQwhHkySIe3dyvWz1L6G9SoDa2fUwMOHYSDAvS0Jf7uNttORua/DZT/6/fNHy6pZCNcRSx+GVjMYWfwkcq1nG6eZXzL31a+XR8O70gBrb4KdG2rTi8UR9S622XppXD7548CM8lB6DGPVrAJ1Lr1GfZzOYioOagF8TejjDx2740//A4tofYn3iDVs+pAMb38PYkD6AcZ9bCL5o60nwPBr1nx6DPdtqwGowZoLtPQUYdE+NjK2FB77RIIRqV2XU8ZuI/fOTHI3D1P8MSs1avWyU+yooVPdeUt2WQaKreQFXfGoeK1hsuUpg8jEfNPy6as56+cGDt++ZNJhaiS33PimBsYdHatVOB1iq59qfv4H9z5AN62sHG9i4PaOWkUzGmty6GQq7PaVGPAwGbfWy/fN7qJ2Dmc03W9HAlk8ja2pbNZ/G6QMe6qbCz01frOJBVGD/3mF6MvEtXvvDFP2LJ7bk+MNsdAAqz0qK0f7Pf9rvDls8ybY9XktorIT1K9j8coqlCOdMfTnNv9+b8PUEc6RbN3jnsz0N7qsDeu4et6Dmdzpahbj0mflDHeCW8kkYkqeBtXrXgC1/gLWGzcMy527/56+i+SD2MY3TyQOt93hu+SUwdDtX58FXcs5//mQ+x87TlGz+IeBHTlOwBpfMUfhrO6EFmN/495dfceOLhbFYnof1++w0MNiDhhr4edfkaxghPNRtRf/81mnTT+BmuTZ2Sz8Fw4KvPSiiiqHfVaJsvjihDl6nIsT2Jfjky4MiBLZ8A9Xs35GNzmfHAbmMFWpv+LP414yH2/vjze+rR8WbJLDlA7C+KIe4XYdZ+9MXaOPXm55RKqA7YYyttc6M5VC5DThwdYhPOyvy2e7sB3B3U/dov80HlvweCMzv6PpfvUHhk5e1WI0xinYWm+6mnMLN36N2cHD9vZL2jfK2bYb1Tc8PuBdD9S9+Pr3BAZueRTC7my3WZNsw9pC+U7hoioiU46kcVjWAgXK09YUonX3xWeI5I+i+6/IvXzUb1RhCOxHSLZ6ZbMNfG15jOFB0qw+G6N9JIH9G44dNi37rWRrnVN3yadTYG7rP6joyIb8foj9+BeZ8vHnwDz/uvNUPc5IHjrLxFyR/7yagjzZ3gHU67Cj279RgV2IpUJL4NzXz9hcvm74A6au7U8fTjIE/9HcOqOEl3vLDPetCY8j+vz0F4H/vKWioy1NzfoOcXZMPAZnzjEhyulf5dLsdOxh7qkAfq5oN7PFoZniN6JPs6wgay/N+KuFZ1xB1clzU8xseNgwzKxyOYsrWL3oj1bziFz6YBZ8v7ywk6qTlF2y73WnYf+N1hWhSU8InIDYWtoAQFlb7oOZPcuPVn/gE7q8bR6A2yufKC2wg3YOIQCbI+cSjUwak663H2rCb/Fn+AQ0A9bAnUi+19Zr/MgcOv+OFCGtwiGf3UWpwxocYG5LcGr9VC1PIgR9P9RKf2N5CcIZBVyb4nmcUzFU7FMDecw62X89TPmvxZQZhcBEJq9UGMKlzCBwijd9qFy3xtF7eCNbC7UKd0HN8wf58OfC+yHd6/H7deHmQmiiGIpnYc6PVYKbgSuDonw7Yv4jq0JEuaGAWGCc0xnyQz3h9P2BhCC52PZmL6VoeOijJVkf1Y3IAgsznBQAN3vq5Xqx4nQ66CTmKKT4k9cFYbWA7IICagtPXc4pX37BCWK4PBxuxdPOXIG1LyAfek273ryci+Qqsmqyh1vZ9+3WrnQL2YEcN+BiN8dyYhbruCoU6Z8Nm1DTPPbTn5kMP0nHr3FpJPaiGMsMmd/vUkz8GBJrHiMfW4WUDfjSXBOJSf2JTNSpjqksxhO1eTxAn3H8GGz0ngE5zTujpHgfGntVDo3ihXGFXOMr5wo1dqby/v5EeyE0D69k3U/hinIq13+KBxRsjHWIO8fjEnAHMz/B4U75Pxqgr97t8mSqmwTsL7vi0pCSf/UsQgADqCpLuh0e8fmvFhC30POx9lrtBWjmM1O35iPAcPz7NG6eBEhxqeljZHNPr7jGDdx5BJP74tF7M53mFqf7cUeeiL8P6rg+VrC/UIdLNedbL7mMSKFXGkeyQNPtjdKEFwOxtEPmY3uJ1dG4N5F8/A31mvA7s/ax60AfPI3Xax5st0kGT1MwmO3Tt9Lsv8u2+gl4IKuxcQBiv5su9wQsff1Farmd/DJ9GBN8myrHX9iIbv/dzD/ur1dDg8H7msy0SCRIzNAhwn3XcMTHydoK8nTPv9NJY5NQs4E7xdtgDXmLMU3eW4NdAI8bSpQKzPU8jfHyymB6r6MPYEz1teJEHjx7Spc5puuttGFXoStZM1wbBDOURNGY7USsTg3q56twMqxQF1IglyejCVDfVZNuXq8XG6JNHDDjIvQ83sn++Y7B6RtTCxlUAmpGv1+uj8nv4dssfzr72ox5/8NoAWWwYPmTJL2b18BqhLLaMHrkkAuszbnuFzgJEbJv/rE4RD+31dsLF3JWstgi7wXDfuBQP16ux7JReUS6t16AL5Ss2hnLVw9fgOQQS62zMW6YX0ha90Hp332zIjz/07/qgt9t8mXJZgObnLtK/+cgU3x5B7qwWRl5E48ljcQCjUWDUhyds8Gsst0Dv+5Zq91COqctpHJTKkMfX2m/qDmNHUYpLfcTuwR1yVq8EwbV3Rmpcc86gvPGA8G1Bgj07sA2WPxRTCpizYPz73IcpSEmpTP7RxvhcifH882gK14FLqMerX2Pl9vcUqi69EeGRBjG75kQCf+NFpUvFiH9OILQqh1LrYpvxMi6hBnPlTrC3UrOeK8801a4wW3r93M6AjVO3wsc+5RD4TtGwUE5cYf/IV2qUQs3W3WvTSI7TUdyF6dZP2ObhRf55GDF6YHx+nSsYQVYgsEtm42c0XQRlOcvpUbl0PtkrxQoEvIgb3li18LDGEJ4SkRK+s332C6/yCA8BmvEpt9yarvCnQy7aazR3n0YuSGctUFD2mLf308Ey7bIbEMTgTeNgHXMazj8e6qHuYVSsfr3nxrJUfyQ1KRaOWs53BiggKrQBLZqOh8XDawfMY8jTV71v8/lbRgJczgeLKHbnsWWstVT9BuYeW9VdzWdiNpqy/Yx26DFs3+ObKiAqCNW2eMcsM9iOqq0vwh27zljGROrB+7imaE7b1R/YjXlQ6uUQrfvOAfTNHB6e4ymgZld/wJy3GlJH7nfAZp8Qn+XHN4L3SfJw4UU4HhQoQLicqoKILfGGkZijrrig77b4IPlrnusPcOHPX2rDmxxv/1+Qh0jnMdqFarxgveShxN0FREQy1rP5k3mA37xFvoHcM6Z5xx64oOu22rGBMeWqNv7hPeGNSmTTrb2mMBZng0Z2bhjkYrkaOBvzG3u3ojT+8AFwkiVjr0Kxv9QUQXjoviVZXXNvjPh5ayGdkgva8HUYqP4y4VVTPSI6SunPbRQWUDwIHDno56+xyq2/KrhubjjEammwwPy2sKO8jK/O0/ZX7ut2UG7sE7ZfyjGezbz3QG9dztgVNcmfeSok0BzfE+Kg+8jZ+LqbQBDRG3Gvoc/Jk7sQYI1CSQ1lqOvl+X0iWJRug+282GrLGioPf29FwzZ/J/UyJUMK3r98RwS3m+pFlpUE/o2vNbVaPY+qZCp5kGpUL5TeZwEtOmUdYEJv6fVi9GffTGD0mSOcnr5STNpjqcFfP7v0yWuXevEc+QG3+EO3hra5+GXLTWVLdcAW0T/xr7MuK8Tj442DT/8efsHzS2Cu5AQ7wVf350ntV6hvdZNQYIhgovkrANe7GBPgNGbNzFLWIS61J3VHXsv5bXzAId2fqOerKGa02PKTtpbi61g82RwdrysUNXsgvZl1w+hJivk3Xtil4BD/vEJPVfnbOWj/6C7GcjHuN3gJ+ZTmTtPUc8oyDQiy5lL/ez6xuSMXBMwzONMgPNs15Y0Eqk1ncNgln26Yn9enBL+Hu4mxjN4DuQhyBO7LbaEJ/S019WnNwZvwfGP3mEpxyz45AmanrtiEXp1vfCkCqfqoqR2Q+7B20r4DVXNrcMC2WrpKkggwKm+UaldwqYVvvZowyU8J9t4XPl7IDwZQQUOCkQpkMPnKI1OOWy926bf7sp7z+hDuqfKm3kNpwCrd3AwUpd8gPv42NfteMx2IViaj9VM/fMpxngP1uLXoiYxHn6a9r8A9yx1kaS4x5qd+0oEVc1ccRFBnq/VRIxgeja326asFU8c9SvDHd93MGuPJkmsBSvBXU+upSsMsJZWnov6eU7cwRYNef0ILTvhdEilxV9DZvyuCPy6k+KQxCpadUingUJ9UMu88Cyz45aC/9Yy949utBRyVHvzs8ggpvkriLgdnG27xDetWZeZzyiJN/hvfQJ0MsBbZV4Cd12rY3vjW+LuJOlgV6/pvPa02EzvQRMyi5iIUYDoDE0Lu4OjYPXxmf93mv/o5RyGizlAba35ybFBc3kfEGxwcBvoRe7jj+YWe90+xXrirnkDu1NpYLw5+Pl1fhQc2fKQH55D96Yvb33jhw3odarqWbq/MGvsiJQAPQPC//7z993q8l4A/51d8GF03pySEJhx/mYP29LrVskvqFDah+iSvoJ8Ye1zqFqYnf6bmYVbi5KJ05d/8o/hUjzVri64CwqLE+PjZeqN8czeCetxYiDjlApbWmjP1JZYSqV7MYaTKmQ4r8LSwzbX5sP4eRQjTlT/ShzHz4A8PwOTGBVKO71/NwsQroKrtMTW6WzKQSjqZ0LlKDYHkfQGzaZ9DBX+9mCj7+8BY1Qw8rKLujE+j8huYci9u4GQPV3waC5MtgVMIYLseoyK1wVR2XQbX2Pax4St6veHtrFi1rFPd/H2G+S9e+rdIQGuDbjVJ37ENDy+a0tNhJMPwqEEIufQGsCvK6eZhzCE0NYej2ZK9DZInhxDsdq8TYie0GBteppAd/C3nCBzAdt0A4Tg/etIYlgrGles6cNsIyjn/jWB5RGYK6W/OMJb7Nl+Z0pjQ9HhKTcN6gi2+cEpuBR7Z37nT1tvqact3ld8jAZWiv1yIU8D+tZuoc1dyn4VV5sDU/e6x9ru0xvo9ZgQ+Zm3G23wdllotehAfc0Dm77EeFgvxs1pwF0D/8F2QboebKgOHUGtxzvm+9tsMKL51R4vR9vXMuDyBBuyv2Nzm78j1swI2PUWm4pvF6w/ZLXx92xNFarHb4i3u/gMAAP//pF3Ltqo8s30gG1xEUjQRELmZqCBiT9CloIhckkCe/gzcX/PvnfYaY2+QqllzzkqqYKrr8Yd3lTBtfEfPR6UyG72sWEmz8gjaPvHJzJ9s+h0/AUhZsSZm/HDtH19D2uMoY7UQddy733Ok5x7fMLxRg25Ja2cBYai55JIkr3CqV9ke3kMj4YUCJGSN6F39ovIESwfpkAvnMZpIO7Vn5g/7tz1qt8cRBcevQubfz1bn+EXbZK1i7XRXc/79uBRO6pYw30INGk/ULP7xu7X80oQInt8alji28Psk2aHY86+KUuNeUWVzH7vRPG0ymAb6YdbN6zvhqGsdhki5sM1JqmzxFKYMOv4mxL2/K/HTx5Dt+jWuiXKtOCGmBn+rOMTokGuI7TcTB49Km7n+ndEwJF0Ci3LsZn3ah+P+PFK427JPLHNnIr7SAory4thh1gn08wd6KG+JxZy97XeTVMsJtJvzgUQRNbvxh8d7+0bpl/o2UhfZCoA6R5uFuvlEjFlnF5bx+0CnbfJEP/2mSy1OyK6y/0Jx1twjysfqTfl7eoRTQNctdK1u0Ha7qDoRbCwMkX78EGdeHDPdYtqgdS00LPNnnk9FaTc//UVXSzMLebFPqHHYJgXZzPtpX81BkY2sLlWyu3/0nDva+qGbcNxQ1WMYjeXTeQEKs4hlcz3js7439ivPodr8fflh+3Zg62xC4uDj0+72EVpAyZwTw39dG4tQHQK0C3ZHEq62lT2ypVobuYg1XNaaVE2utb1CkFcLEqIxsMf88U2QNMz7pQMq272WtB6a+Sfb9PuPqFd/wQt9NXiy8+5EqkmigQzbwkjYDx9Ueis85NxPJ8z3l03IbSmz4N4uT8xafeKq+fktnqnaLDx/c1uw97KB7f65J5b/ZDZfVG32iw+Gn8URDU3U7/XmFN3YOis7RB2rNGH2u/A0LdbVcrBWFH76K3gnfyHNd6ZrrLNWYeb1XYgxP15acJ4KEJOVIpy/TwulfCYk9G92LMLr5p/fRrDyaHMxwdOEwzYt2OaunnPx6UsN5PW9p0v2XqAxFBtNNyXZZKds3vVg+9oDnZ3nhjy99UzrnH1hdJ+ThVfMsjpRtHIBs59DLK/hMT+LiKIFSS/EmeIMTfPvCfpmDKl8rkk8ZvVfoq/bs2BeUkdIcaa21YunnLHMCMxKztHF+ekvLJ+yXcg3C+MK6/YkCAluj4qmageQj8832YZeGY/MxQnIxdZj/sZT7bYuuI46/NixTRHmIW+g18E71imzFy2NB1Kvr7rX5QFx3EiyOQ3fGJSzlTFf6H3484N+/IkE1XYU7LnOapj50D9/YlpkqwWQjxcTZ+ZXk26dNEDfiszPZ1acmGNkJMdTSKybF3XjQtfwv/zNjlmQT0/poUFnOT5Zr7Mm/+XbKnv6MQvjXRr/84eyA26wdCiX+bty/nTUXr9/zDWGAjGRoQBonr7m+JmECFT9rp8460kYTC7ii1bTAC2HDwsexakTpu0WmuHkAbOr5yPk1OlNeM737FXILnHvm14LTty98DvV1khMgTZB7JPqHz+aNIs/oOf3luCnSe2xeRrzrOqHTJEh9d1YXVTHQOXlwnyeHux3dWQvxFbDZp5GsY6FHuIeSdl9zSLIzJyLuN8jugsitj2Mcj4Ul6sKeXuzKd8rX9EvVl4Nz0/XM1uSRjQ8jXGvK5lqYuPakIrXx6xAv+edlKZBQ5TWJUiVe6ejdfiEotGH4796fFBMoxrsdF8j0vaYxOhV5mKxyXqw2EKmK3W7ikWVujLa5O6OufixtIWZnf/5gVRux8ZuAyWQ0fq9fhNXPB2kblBcwL96Zli5PWbyx0QzXrEwmGo0DiUyQULoSEc/NcTwq5e+5g5sk+w2nXoOQQP2ukc/fwIpUbe8wub8OBLHXKKuF9/gDqeumIgTB0Gnu/eaw/vWJ2TGc/GRNnZmJGatYbk+2bEiRnEEdJ6AbdvhlLdfjF8gVJWQn3/YlEhOjVPtvUiorh4VlcWthpl/Euwrp5w2RfWC0iAZ2aTaE/UzfkNzfXTsyp9lPH5yf/+bw/bj91UvVSf35xcwa/YLxCK6aP/waQ9QVWMKgYxWn9bDymUxiO6n34qqMSkiOKy4EqcAo9OeSAg7Fo6mxAJULPYFw3/k3f30KtRiv2Ze9j5XtF5lR0gR3ZPZP8hHHSsLvfnTMZaofrNHf833xrBhFeafrV31WrmS4bNbesz1GEVjeQ2vwBpri4VmfvIxvCkWKKf9hgXV9oA+/+rrQ/7++Jg96i9XRcrdw8Sa/bh5v2SG/palhlG0Df7jA7N/R9YDctE3zco9El7MmHV7u5VaLDoL9atUzHw8qoqp9Pdojl/y8yP5raccHqplEwtdRpu6FrmCVdwxcZeG3/38ldUhaloy68Wqf9bahOb6SQkkQyf8hbeAgPiY/fyMaf9oH7oTqAy3s/825o6/QNq9fBA7LaVYNN78vov1i+EwpPa4uTn/9QPmv+d0r6AMPcvznfnnfBMOq9sVIEOC0XnZm5D1pJDhnb7uVHwPIh8/32wBf72WM6xnAsmfox3ARU8IsZbXOua+6TU/vfmvn0EXQblfsfxlMd+9XTr66+douoLYeubT/NRn8o9vkz39JjG3Ry+BxXFp0sVjy+L2xrEJ9/7T0DGR3khELG2h/MAfu5x2JRLhvHvsffUubOYb1avoZQf+yqilT2UFMZ37GSh0+J4yrO3D8QT7wJiff9bndi5PpX8EenkACVaZ2k3kszL/xdtm9MacKoRRmGInJPMmFTRkGWlRGz+/DEd/RceD6hnBJAuf+Rn30FJ/9DrIO50z5ySPgg1/IZ+30d2x/C2cavl8rQLYHLFDDdeL88lBDYfw1lxY/v7j8SDwsQfvrL/I5uaskFiptmvcr3pLdn+Pld1sdrsA+ikySHza5WgqYgHaeLB//HIpuJ4Uqu5daMTM7KxXrHql5c8/Z2s1TXOFyAcHkg3k7LpSeEV//QLpmYRkD/YLTU4dvEBTqgEvy+P7H3+GH59SEci5kP8gQStFfVCI5SiexDuOYBeQI1Y4OVZLdv4soIBCZs51n3aqPkQAYScKhj1nZ9PVGRydO+eSRea82+jUfF8/vco26k1GjHyb1kD8Pf78i256tkEPrGxe7PgnPKSIlc//4QV50Hcs9vwpw+mjLRnGwwLN+6QSeCahS7zzsEODaHUHzfnFbLIa4nFx38vAGnPLsPPc2urwalv4xP6Zzfgu+BSPNWx31peu/lS5+qdP4Ctb5OynL8RP+qM0fDW5sqJnWSzOu76Ep9k+WFhenHjQsbFA6Ob9Edcq19Xww5/gIjriPk5Le5Alo0VttlxSNPPz6dOKPbzbrUMiflzkfVjsMvQJDjv268eMJ8gCXbaxhHXRVDnPh3UGVlVyQt41RZPQexdZCz8ieHn8CHZqLxh+/Lya/Q42HPzrP73LcVh2/GtTD+GC2Fh3IzccA2+8w40YV/JXwrb7p7/nek3M/WVjj58yKNDplQKtC1HnneY0ATou3i7VZnwemkXyAEn3pB/fqJj+qd2f34eh4bvu58/AjI/4tbe/ldDU7IqeVJSEhJNj07IEjN7txmHe7EeOgf6l8IccQYEoz+6lJ4kM2j71sY6CJGTPW9mAVz7X5Oev8EoeZFDuAcbHux6E46e07vDX6zntDnkmxK/fOeMJweWY5qLR33ukR6s1s8obt8WsN+Hwta/EnPW10IzD68cHyaY6FmG/2sWN3haXiZmJnHTLRvQOpDufE+w8PzbvWZMZc7915t9xyH/9sqbKlHmOmxsrendKoXuQCFdkNeRc2WyPUIvjGiuDX1eUToOpf3Uq/+pFJ9vS3jRyw/gSPy3dWPnk66NxGa8jNZi/tpe/fu9PLx4ueVD964/P8UuXjbWyv3ViuhCpfc8SN/oLR+kelhCEn5j8/FXl6UyPVfP2PbKz/KYbe/fxn150nTiwl+e81n/97n94pTzjAOvvG01+9QDJOTo4oCnPgQTPCcdi9vP/f2cK4H+fKdBc22WRWi1ywaTTFartw2Fe8Nzk7MMfMlSNYrFcOWxC7j2SBMixPtNFVuv2uN6amWGWaGDR1sWCVzvFgtvxMZFz1TztMapv82y4UhBfX1q5+l4ejsbgUpX42Izy5Z/20fRkUGy2DVwSj3yzSOAEW5ttk8teCGKQCLmrnYFZYARxqze2Bal/UBmOHm4u3sUhQuP4Suh41tuQXzLXgfVN2rP14pQK8XKODSA+uoxM1RoN003WUHSAiLiSe60Gf/1OIT+fOLMk7MTKGT1Ng62iP3Kz9m4+4XYykXLKEAmLXTtjknjBo8HzvcOh7UT/faiw2dcZfb+kUkyJfKXIpeqZWsc6CGXlombw+Qw7tjXPq7xjQXmExd6N5y2dWzEa7JLAcF2u8egVd3sYmk4Gf3g7bJsESjiSm0Z1edxzynG/syfrgQo4XM2C7TFWurGO1RRO9eZKrLp5dl+Ur3uAod+SY2UUMUetDDo96W+8OJVfe0wcbEKZlyPWVL1Ck09DBzZ/bcNCLxTxxO7OHfb+PLcgnirUGemGQ7fLj8zEWKm+0VjejZG3b+Z/YivnRahjyAszZ/b3O4Y8MuoJThsa0jvku1wsDNM1bkLhJLQ/W6Tu5ntP2CgLsvaKhd1KT9uC8/D8I15w/Fbiiqse8gvBVLpz11atV5tBvC8FMS+4zSeF2SZ0q+zNgqdU5t3WKhP0jM4WsRswEMtnTNbLyiXrN5NDEXb+Czp13t1wuzrd0ieJA88kCoi5+Mjh+A0vGXyScsRtRisxpXvvuDrvgj3Zckl0NN8cUuOspilbvxdEtMTSGmi06cqcz3IVDxfvqMKZXQ3arNjFHquFT5FcRAr9UnTvRupcrpCfz5wK+fsWQtZOVxQr9UCfvvrqpugoCl3eBoiuHDb3SKQ/BwJWmxguBuq4ng4JetTnC3PSQxdPojYj4/XVCNutJ4yUTeNPQOSlQ6L1ORPjdrg18FdMDnHxAGFfFpzD4mBamKHtzhb7Q6pDjQadueQbhvzpTJFhIlph+at0+as2pkBiqWUz1y+MbrhE87+/71f4EjMrni5vWYbjxjHJQTU/+bTUdjIUi2vN7GPVdD3dnyhqpSNnWEcT+r4l2gJp5h5BslO7cbfRPUietckco/mEjeG2D7DT04a5igJhn173jhH155HynbRCbDwXFrg+v7F1QS6COl91r3u2uyaes4GwWw8wwboCnRSLv9Kemj+tRgsZ30n0onI1/p3aAhZ5/mF+rQRoGjL+gh16Pqika2M+VPqVg40yiZyJssnF8U0foHlyzHB8ynP2MisK41B4VO+PNhLwPL70o41LytygigddSgIQlcXx6m5V6PksEwxN0hCst5Ofi79tR+G13Fpsvf2qaPL/SKIpXfb6xac9bd/mHhb8r6TDCIdqCc9rrfsnZjCyCO/zOfy6RnvZFORcXd75dG/9Fl0Ooz/jUx23YPotqLkQdOK3sOrN5Z8H0fawxHuMPPRU31oL5ePVE7eL74Jrh0MBW3xYks0k95VQuFSCWC08FmT7Phb+tdEhc+4aHo52aYt0KI9QO3lMJ//Ude0kbWQobxkhVuK+Kn5aOg2a3w+HlSUhGh+2iZFceo3dYfVCYv+4trAPeUG1wN6hkZrtXX/Fes22J/dlj12SYEBBtsPi4adorPMi+ocH5keqbN6pkwe3JNuTKDoPFU1XdQ055C3zHt1d8NMyatAu9A5kWxiFPQ27isPrxB22lXgU8yQ/e+D9nR3i96+nPW5eVxUNXO5Y+oJ1vtwfUg35cnkj9kp3chFsVYw2+1fGjtvzpeJe8c7gYvUa8Z3HZI8ShA7IN+/FouKyCZfpUO6h2jQ1sbcT6SYjueyR7JwpW78fWT6ePocrNCUfmbdeh3Z7et8XkJfWhoTtgedipTgJumweG7IlyjsWk8rv6Lux78zyXYLGMy8w6hdLivVQygTHGp9ASW4Rfu8p6bibe3eQ2H79w9Owd3OzgE59Z2zXdCKc8nV5NeRNfMPKIfqEoshPdwjYyyTnJm9yat2iB8TxPJv4OWxs6i52GgoS1OOpaBka5VrqUUDbA3O+5xixheE56P6kT2K2b6jEO2v3ujIcLYI/3tkejyj0wE3tJ2Yb9KnGaBAP9NYCQiJhOELcOtWDX70nujbGbLdEKcSHomSJsSwFf6eSjPzg2uDlOvbiHk1XFc14Qd/q9pJPVnNIjHrx3DIrOZnx1N5ojbRB21Hpsu9E8zn6MngfHGF6Kr+hcKd1jU7G4kmHPHlUY5dPrt5fhEzWxXCIx1C5ZMgKtCPZ8805FPcjL9En/lgYZjzhZuBrq0VxTvHEoh5xJp4OHMzDkgRK4nZj02wWyPqDiGrSnYU9mo4qfAv9TXU7GsVwRk/LGBbrG/Fun50QqWJ6hp3hisx4WY0KIikyjdf6V09j9fS+A0jsuCZhOuxj4VY7GcXjcmT+XE8GILL+D0/8rPS78UK0HsoF25HQ+wZCkI/2QG+afxkOSjnmo3nU0MZje2ZHKQonsLUXyO4uIu7wiLphq7V3hM13TjwJ3G64q5sFmOdXRm5NJ+xBrpe9zsdCZWY/tXn7Fm0Cncx0ukABrThUZxc99ifOcMSsUPZO5IFeiXyi+vPZiqkzQmvlBn1EshVb2XwjXXUon4/Z0+iXNl3aV6q92SkjOCiTeHzbtxYun2nCqD3weEz3EkepH6t0NZ49e7w+Lhk8l1nNNheJ2r3MMwsd4OCzXHP1uGXHZWMsK34hyd4xkGDSLQOp/aR0oNqj6m5LawHaZF5YPvOdprcrgCAdA7JNglM45XpUoOCk5AQztAg5v5FCl795Q/V2+uY8+8zxZTtrrLyOpKNvUaZI2mY6lWa8VoRxScCS3QxLn2SMRz2Y71ln5RaLKM1tcXI/C9g9cESX9S3N+X3358H7cfBYdGj6sP97n3qYNA1hZf8XC7F8VS3cl31A1nzxqlh78Tx4V+6Jmee/JJyaYsb/9RWz8EoyMYbKIUPf6yYjzm4wbU6TqAX9+TmzralwxMZ4cGA56ojZ22pe35crFrDlac3cQ/bMuXciJajvx4V5tdbHIzl2OooP9xLPfNRm2BkCMFFfYSNPzE6p66cJxFuO1Gh0ioZWligYazkmTvrY2qooL0cgN9Th6Y1o3E7BsYe4FypxdvdXPgEcW1iMlwPD+g3lNLvYDvrxQ2/9Z3Xixt4uzN9z5veBrdTxYp5jIHfspCXb2ZMcErg/+ydx7LBEwioZgDZZF7I253us69K7w/Pxh6k2Xv3qramXVH/sz5wFxle1x7+bmUB6CBYz34u7aSl1VPeVe0S/T1cWw87/uuh12F4wv+Agf2nWieprThYUkSGvhot3leG00PeEzHy1/33Pp3pfUnGcXvHkBVKPjDfcyca7POyxGGwP5vxgScpKND6sJQfZOdF5Nv1YTWl0SOGJ8YPg78lBkwPz7hpnt8OrvL7molssSyB/wsfayS47fpW8DJqYPshGq0o0qG/eGEn4StmRYyKGw9+pAVHBH/OcicWi9mkJ4d/6gdHwuoWT9AxNWJv8Tlw3izrx6VcamvUJ/Y7nxuYeyxwYxzohm42hVn1WXbUfvyfeapGgmY806KFcWmL5wg6n57FZAIZ6INFWlPb8/PDTOwxbOwepPg1dOBnWRLzj5xL2Brq1aOYbzNmZEeIDYBMd7agkUdIbYT/jCyze3o7d6/avG5bXSgZLMbcsOiw/YsIf2zUeh/iPbINTZ38tLXqBc//kWNUe86zuQuPo2BwLZi8HtRu7/XBE1ZePZAdEhKPZHVWEF0VIgtS+d9MNFwGa8Z7y816L30dkB4CzomREyc7heKra+7wfOGIklnbheMhpj8I/iRDr2huCz/+f1trxnbiXgaPRN9QUnqy6Uz6s63As17w30v2OsK1qvOOpfUcFmDqXqRwyHKp7vtNRax/ueJzzvT/biwJou/gj4aSgTlh+mcLImzfVd39xPGWHAUOvvRIWFGtejct4A3C68g3ZqSyrKPsejrB0l2e2Nrd0/vsOENnTFdmS805M1uVU/9OX9z+rivmrdFqwyaUnO/p9Ido5DcyzjxEjKG3QFLhrapTlPSBe87E6Ea8TBz7uleDF2CbxoKmXBJJHe6Ba8u7Cx+WvW6z87SdnoaHwmB/0E0WTpqN/fG35eb5dQH2jEzLYn06cLtcW/CBr2G3LzW5ZipWGZr6Ix2H3iCfrFpWA390Ji/pthiLbNPoqFoywjbV6d3z1/jrAiwwxkk1JPsx+Agou9Rnr2Z9nK02zA10lD4bVZKdW/FZcdTQlnLMd3KngGxk7qEsjn0T0FnTjR9cacPQXZX76Oncir8s9jG2LmLnItHxqdhsdkkdzIBs3OuZCTxoVietuhVebYh0K9++uIfnuxCQUJUb0Zm9TdFqvHyR8myNiZZ9YcLDCEyHPN5p3e2xkFJq6hEdNgeojS+IItf33otKn2oVceYcYHZ3gQEJu1t2vfv7TM/3Wxf/FG/GUkXk/vn19eSkYZL0h67L4xN9qAk2/fNs9IY6UdeLzLiwttPgN6+lTDeliXddGxzqJKli6xKJ1bwVsuPHB0vx806kHFc16jZbUGEM+60v9KX8ubOsKq1K58dCM61LfkzV/7MIhuFQazPwLT0uu2f15O1zB8i2ZooXT21wi7wRdl9qeRBrv7bHqzpYx6xOshMiLlUNb3oFMUj3r/yCeiOS3KFK8hnmqXgnmTv4LZv+KiiUcY/YC6BG/7y/stKG6YH46LmC1dluqrdglFGvl2sDfRu6ZuzRdJPYZTOjyRgkj06bNqUzqF4pCS7Do3VYd/dUrzp/b3/vHk3nWGviTrPGfnzTzL6p/9qNCeSbRTqC16iHyaQ4/PK2W6mYbofPO2xN7VUSIrYGX8Mt/Kzk98of9SVK4l+2e2M/NG4luIZVwD0aPbA55icRXgR71xXtNtsmyyacbTgK0fulfZp8+l26uBw8oF8OOeffNJl9ql1RFfpic2V/8VDreh2sVGStPJ/XM9/7poR+eOH8xtn/+BPrpwXBS8oqvnnoAcKZ3slvu9uF4MeW5RzX+sa305FUffM+BDqelycL2sM+X35bpq6ORpizyHVPIpMbOz58jO6mUukHTzaMR/XkLYirbi2DOcfBg9hfIxm2/QqwGWgAjbsvI2b6H4qWk6u/veLFs3HDWHxRZIviyYNbT3bK51uijijvBp9K3ZWNZU6iapcUs//XJx+G5A4SNR0HOq2oh2FcBCjbFESO76a8ax69PQa1aROy1fBM8fy1l+EMHhS4l3seibAbnp6/+y1dfaRZwVbY2+/GL6T7wGk6Z/iE/vjaePpcMUjXSmOt+mpithrr41QvM7VvR/fS0frhCSGHxZ9n9bvash5Ff/8XrGJwAVrO/SSKyUhCLvRFgxgsW6LKJ1IvMa7h8+MQ2M9/kebx3DIG1F5bTxycUeSlSSKLHhuqH/bmbBEp1qNaoZbvxrocTzhd7VNhnm0T52QpZezEDY9/tgPkrJPJx+6174/iNQuZer449ePunC+ZOmWhrhIvqky0sAHnxV1KEMxMp/npIdXvY3xj5zDeGwqitIT5mh398YaKDh394NOvtdTh+iZkC/W7XZGueLzGTt4fo58eS6OhWHcNktQDD4haxd88NGgquu/DTQ8UhSP7hE9quNxtyMN91yM9HPQKGPcSC/lgJYatSjeb6z+w6fcWzn5pCebsSWp0+q4r117eLHFTeyO79scLl/uW/4HBxB+az5iB+z4t8di/pXA86vnvoEfQLhVLdw7IYZv2hR0rQUMGybaj0gjeGit8mVbyLGaoA1xYtJ7kluG6lro0ftguWb8psO97CUB8y7YU0f7L+5f8/P+rTzvd+OUw2d2xfg3YTAFu7GzPmXvf0jGvMN8x3Dmncz/FtbKvThFX+us1zSYDCrDdJbD0PNvvV371nP0goYmHT9nkqwaZRxO6fmlaTMyYemvOZhcUuEOPz/j7+80/3GT8KXk9DgtreSUgm3Yk9rj63Gi3v/Z2YpfGIGUf0rmMnPdOh2aGqsekUgaq/4tkPOc7xf8iAPfIvrfKUVR+0X2lQuMGebTlfomELhyuo7/JCrG5lhook6eY/vN/M/H0g6VWGehs9SIj9TchPOnqBXu8tVrzzD5q2z0MKXXSr8OL+6tAoDdsU7fo/QqXZXxjO/XsPn71QWCDePBZj2chQF8crBtrXOR0Oxx4Ennu8GyOt2nKbBCB11YaEYgy6QQnsANgreDNbvga28t2Wd4hHZWR+bJFwUNA2RXf8cMhuWXSiKS9r2VjI0X1+3rfNzyQ8wp/hx2TrirLqbp0aoHpMT8R8Tqcf/9qjnx5M1Tiuxhcu7/CKjB0VDdyQoJ9URfGyCGmTa+dKrIb6DrvLUVDWb7VqKk66Beu3mrEdUZN4VEu/h9XZjclu9ue+c38AtS1W2Xbt9N1Xm9rs12+h8wZroarVIoJmqXaUz35N89ODt7tQqIphiZRlKuvo8Yk9jF7xoprzNQHNXSizPnPicZFJPcouj4n4cpuIZvafDPUpbv/6A3zrnTjkVqwS75YdbeZfGw1Orx1QXu534U/vGKcPaGwXyGPHG+nsLmf8Y3G99TqarqMHdKfjlfk75xb3e//ygCZUMqzuO2rzcOP0sLXmfCLnHRKUAgWme5hs7tMpFNKuUcH5XI//+Lug3e6f/0fO13PZDUnKKRze55FKz3eeD73QWogO1o1Ox7oNOVpxCir+mMw8G2Gn5KeohrgfVWaZ4yPmhTlkUNu3F9vs/4SYTt+dDpPOL2ytjF1F6eIDYLy2JltLj2cllowXEDbzPewlz0JuBIe7UY/JiRTNn4Zo6pVX+By/MckX8RZN6Tx3lHY6/vnTQrmru8XqtLYfP/+9mvESA5mMmllb5RAqfJdESEUPi+XaKbX7cBP14AY0It74fed8cbYjmLBwKdB52e6tW3jAb2mLZbgV+aT9eRFU7uuE67/OqkS7EykyqvBA9UXqx4qYogfyxYuy3dbe5epX9qJ/fpOlVVI8DC9Zh8tB+POZ3W387/e/q1PO8G2ZVcNul1lGfYt84lxORS6wVziQNk7KjvVlg/75pU2Avjg1tSnun6t38utPzH47mv3QKPnlP1lLj3Unij8ng2uoGTMeqvGU+94e/fp5lnQzbSW4dDpkusKZN2pPe/rh8c+P2tZYr6b1+myCgWBLLk/RhBPIMP3Tw8eudWL5qSyuQGpa/vPTGrGhXJe3HsJC9x+22Fptis7hcSKudthU/Ll6p/r8falRXeVcRLYXgeJh7xf/cz/pcIVIxME/PT8+v7oD14ft01V6Qoi750MJcZyYJHi9ERLflmmrc4SfZCOOTqgw5VYjy9tsyPaYL1D/wVcd/P57ItZqP3XjbpeZv/zG4DbneU7qlaL1zdiTu7VzxDjjFfinwSB2Pu96vRuVDG9sXal6GfaiPxP7iBz7uJ31g/vzQx04PCyX+Xmtx2zup8IUrRriTM2Uz/5ICgv3PNBhXQlbeKJ+wErLDz9/zO7m/gya/UDMvscqHrg/HMF4xoJ5ceWF0yG+JAhfrge8XFULROeZqbAiJMSLTDmh6SGcAkSxPWNDgzoXd+LXv/4sRdd7Uv2L1/LSxcSx4BNympcPoAmoWLaIEKJ/jzrE8xxUTxpa1D/X4R7EzXaJnaek6r+td4VikdUsosgKl6cDcDT7Pf/89Gn79vbGXl6UZL0NpfxLPS/R3bMm0dVjubLFCloMivY+4y9rRsRPrneH62Pt078LreL+G9ccFXX1x+y1bCC+pK4JRyNJiXu9vmzBXJEafjsu2U5lWjViQa66P3wc4qm6/S8ejMuCBnN/8lWx5atr9OnU/7HjKZdyxvABo7k/TTw+qPnUZEcKsz7DU95EaPz5jdL2qjOv/vJKUCpTGG4tnk+myBUnQwdoxjMq/5U+Un5+6lOpPGqaAbc/74cZGP+vMwXG/z5TgItjwLD5qpEwbuKBTuVlz7bB8ZSP4W77AnfoDBaQWxu2WJge6L9ZGb72sflKXXvG9pyfmG/9veb95Jc9Wsp/ISGt1tvjWJqq4V/rF9kFs6ctpbsrHLr8SwIyj/9xv2WhV/1ksW3hfmI6Vo/CkC+Ow+JTmKHWVtsemYvijwT3YxHyQdIxlNuhwyNt/LzdNsse6ns+UuOwt22e6QcVSYI+KHI/hhC9tH8BZIsnWxt4jIenLy/gsIpWFPiN5XTfjy1y70cDJ3J0jfnTuyXg1PO5WEvW0bdamjo4F6Wmj/cjRtP0jOZZTIs1iZzu0o1kfJTw2T7WzDHpq2vb/duC9H46Mye+L3JRtMsIvrtdQxfvIqkYlf0alFJ5UaNI/uxhMEMNrqM+z7rkRIybLnBQ8LIKZlurI5rCyKLA3qrKAoLutlhKjwc88UEwUrVmqG54geHGsxvZBnaX92xJeqQ5fke8efZZn/pxBnesysTlFaq4clQj2CWsou3da8Pxnh7AoMO5xn2D1rHyUiYdJN/wmF91STyslIjDaQw95oZ8003G7akbQbqLmHu3woqL+w7D8nxEZF1EouPaCrW6E51VbNDjA437SbLgLaUHDOGqysd0az6MQSox2XYkt+ki+16Rubc8Yr4PPpoih0bosdAFbp6jJ+RntJWB1V76732m4nt+wepaBGSbaUZOpWSZweRt3gSTqqnYa9kHkFz2Gl7Ed96Ny/VXBn/nyCzyjlI3fa+1idpp5ZH5ckA+bl/o9fv9qcaPmmD95tOitsINsQ9rF40vPl0Nyf82bDfN9xJOkW+CDQuV8jj7Q0wk/IUOV/5kbro4VKOj2C7cyvcOT18yhmO1NDXol5aEjakrxKTsggI9HAXIdlVsw3FAYQLL8yvHlcLKjmcLJ4HK2LZYf8peOLq1/4I9VS/M7F+DEDvjyuF8DrYUdadLp56tQ2vE6+uXeL0OaBgWhgzX5Jri5W6V52PkFLVe6+aBBO9UtdtknuUPanFgh/ncaR8c1AJWjVaS6PrX5dOtmFzpT34kczw7XX9llgq0K1I8LdhDTGEU9IDxXSfrQ5F3vFrlHCK17rBkVW0+vYdLCatue2RzfttTuj0GcImies7PKhxWijPpfGG9KapE2E3jVyrAfL415lxVPe+TuMhQf1EZft1xGrcrtb+C8fQOzOnfcvzVx+MRqX2N6JNWh1iUktnCjFckNqy6Er2rtDAlix3Neh6IZUK8PQh4AAtX/bnja9N7QLhWZLKzFn+2yLQ2gnTYEHJQg/N8jhBk9NUeDTHj2xmJUvcCkMOjTCdTOeeTZXaT7l81h0Xk4cejdzu78I3qB5WmfRMKae9ZCGN+xUDaPB4JP5bG9rNVqJyOZs51prfotskMElavdaU4S/bSXfLcEPx+RtUSavpAx9fyydwn/VbcjKiF3J6diHnfMTSZ8d+k88cuJX+FJ+dicR4sWOD0QZXieAzFw/d7UPVrSMLssUW9d8/v6O0kE9ns+sDm3m1T6KvC1qnuBHU8ppupNC5fmhKnz61Y1J+khXvnFsxqELOZcfUtiD6qwChwDoiHm/0CZAVkEg1mHvOn08ooUhqbkL+FZQ+qWybGcxXHLHpOLGdEUY+I79WURaHc5TOe9fCnhAXbTR4X4p7ZGLi9dqkcDnU+Jgf/H76R4OzsbR6FnwUKjRHR7k+zu54IlKG3k05sHWBSDd/0qUNjyA2xfWohHvp2AX7+jJjb39eVuA45RkXYvTH6/PkVJ0JcAVRvZKZ0X3aj6pYpxIa9p0De61zoNLSAKURlO/oMxKjBdw+nZPXAu2qcxMD7tQyDe5FwI1n7TuSvJoKKmgEdM/ncMboEBzmfRmXFcyJx/3RaFR12x5HN9c9mvJlqo1qHFfGtP6fq/eR6h/3+apHN7vawpzgvArRM05iR1njZ/eFzv0JblR7x0qkWXI0YRdmh/BDL1EncL22gSM74i6wrsYr7e/aSITiterYu8ls38s86NVQ9C8n683fOOVbWGbTvjUa2/kLk39DlL5Cz6cUw2tcxv6xCFfzlJGNViuNctCcp0P+8OqIyaXA+hYHcI2H8vYibzuOhnbHEMCXNQAIp2CKRfx8Uvqu/PdakbVPxbRUvYLdJK+IspofdUh0DQuY0UZ1f500P1ytF0xTc6Cpw53uZl6hH3qIpyK+eCs2ISmhHeJBw152R+JKHZ3y8+5cqVFsJerYODSCKvvjVMCcXxg09EO5Mi/3elyaH2NNt091inV/34feHz+j+WpPiHYTxtMieV7i+7TtZ787PTqztyxWx7OwS935QKtE7Fw/5K+NFrBsMIduzDweK9y45HI7fbpQPYwJJID+YH6ynSqxU1YJ1fiJU5mkb927vLtD15arEJYVdvQ/NwgTaZwsSpEpt86d3SkF/PQNazHjB78mUGDEKTLwK9kXVDfre1VP9JbFwVW4qfjYfGZjS9kNF5xfdcPuLAL2flYUXPcuqMT5nlq45YYf1a9GHg+q2KYIL8mc8NkPVe0Q9/PkkIeGfVnU8vp2ueorhTAJn3q/ehv4eneXkTA67Oqy4tP+26FOjNdu6z7+854PbQxIKj65WoRMr682xhXidfelyVa/CsT1KGhSf44atu3WVDxse1OjsSxLBy+8j/6IunGCOHyo+mdPNeNMgH9sFWYP0iae8WbtGw7I9VU3VEMKtX/KvvhLbOPCOKbh1oPCnE9bItRVcynCjh5afsNPuZtrD4lLvDfLOSnKheZ9PG55EsAwGwTaF7dlvW7dreG8OV5ZJW68aq8VbA8PRvuR0wllIjWeRQb+UPj++afeM8x6S5qux6Lp/5s3fMU2g+ysI22XVx56SQxzAhnsuCY34VskO0wDE/eqwtXu7VMpYmrIxbT2DhFnORL/9+97hpVYlXUghzUdbt1/gMe1Fl4mwY7GUmgesr/2WmY1GxHjLr3d9+y43WCiLvuq9yxVgx+eBHKbO8t79tnfYbWybto1m2ePf3r6DxniA+Xc777rJVil65l7OrtylIT1F1wY5l2XNvHu1EMMpWlvQupLJNvT6RtPJewSGYcOa5dY4CL60KEXkTS26tPRVPKDP4WjM+Ia5OWnhdDYuDsx8lRqrgyXGwzssYX+MjzSnIM18KHT15+4Usi29vUP6y/9qno14nfn/+AiDBdo9XyExUbLp+Cn4XvXL7k5/9Sgfsfq1IJNOC6rfj2BzyxosFK5xz9ar2M+5LoZAZ15bk11G3iGXEyeCV6Dr5If/w9rfBZCu2jMLlZFVwl5lCbyPgcXIJ9ds8YctDJNsDxT6ccyHw/NgIVAin60ncxOPef28Q0g3OZaKQs0pFl4AylMHLEvrIOxOh57DUr6FZNuO27AX912ENuOgzvymq3ilPPdGjVZPrJqjjSZntY1++MGyJ7oicWgsDsft98D8w6avhIQnC+bvg5cna5eL3jkEkATqA8uSW4b8eK+uP/1CQvfWIe72LoC+ta8YlpIRsuYWN4YkmybbP1sb8WHxiuCsHCViV4hXYwnrK7y+9oQNMB5o9K76CxE5uBLrSw6h8hapBtL76NG2/+q20PSHCcXyMxDLrIe4DfEngqsQKfHQalF1GRQUzXyY/PgCr/TvhB7SMifu0xDdMNfz1cebfArvIMxVy+w42r7xm6y7tZ2PK31zhHMQ/7Hw8/et6CNqX+jH7zdUuyCawRw/UVaxvTlloZCJ5sDMJyh3zPKnPwMjvWWMJDdu5eO+dczl/P4Y7uE3nnbS0CDPuioseEdOuLxdLhFyLtGdWM/LMxy31fsFgcgL+pmcLuTxpdQBweWCU6m85ey1fAVokB6YmM/VINihCo7gHe475knp1AlH+DJcT+2d7KqPKdRTvGxRdvwjxOWbbbdcb5T5nu3mhMVkv7px5g/Gm9fXWc8t7PHH/8K/r01Myaw6kRz1aT4zZTP7kzkVN65lA6uwPxLruVTCsfgsF2BIdUN1gk1brVujhOn0OTHzu72I0TubDuy4FGINPcqO+mlIf3yU/fQ4+/Fl3C1a4oXiJXgGixRIugiwhvKg+0p7dATziDXi8aOGhuaaXGGxSkyWxCSJZ3y8QnP4rLHmWSTs+YB7qNhbx51tLtEwPXQZbWztjuUlrcPeT4532Nbhbq4fUjw9ovKFji98werze6jk3pkmWH2xNV+Ui3JRlA4G71ENzHbTGgkJ65Y+1+t/+cqzRZTCNuU7sslq2W4dpej1aFnFjBjBFP7Tq+VGzdluD89wSt3Ig0v0cNlu9zfYo3yqVBhbdMIrxdDj8S3uGjrF5p45ad/Eo4pJsiKyKKnm5N9wqkRjwufVH7BUvb1wYsO3QIpEQ0aUxgmX1mKvGtxOahbEfhOOkVm6MNj1Fo/W59vx5XofQTmxEC/O5qJj0331QvPzYc73HWpnvgfPrxaTAhVjyKmRRuAodxfTZ/2qxn13tMCz6IluArMPebrb6ShfH1xybBAJp7WrHyEKDx1x7/M9HUIvR7R7Hjti9mKJ6Kb/UvAeyx0J4li3H5tWK9D5LAhxrh+eD5zJKZrznQXo/kW888XRSG9XRjXz8bS/nXvMjNX1HvzDv3/+DVE2FpvjHS1fYmx/8UcXkqvGE9YHDz6Z7xPvnVHUo1b3oBx5RZ8gffLvKUAW2KinxPxGo+CLlAcgq/uE5DO/EUV1xQZfpBuKaGVXy5WqmsiPvIj8zXyYU2OeWOZ3DZafCsTDps/meE9sYrf6VE2p6wRg7k2PXT47M1b6TZShz3n5pbq3wTFfm+bDuGh3zPykNLtJg0mH0Nw77FzsV3nTpPsjqug8e9QamnDUDImjjj4ZHburFPMmzfYw5uVp9kPeHS0q8wXZ8Uaohh5Wt/z5M+84C0jAT5o9oYZr8PIXR6pd7y/E0DszkY0opSN2pK77ZnmACoXeiIXOL9GmbhTA7McRny60fDq+iAez34Tfn+0TTWfr0sJzHgC1tlTR8fco7VfyZYiYrXqL7l98bzZBzbzzmqMxIN0LjPi0JvV3f646Nola//lvjnNqu34liwA17Lonv/z46RNoFoGHlcCMwskMeg5oMNZsm33jvDm7UoasVFoy/FqYnZz3tfrjExTifIxFZrQ9ahO+J14KGaKv6WpBfxVnrMXhQ0zHovV+epnsZr6g7oy1Z2js3rJ1Ya07LtIm0u9F47DIOZ8rdrsc8O95mHU9be3xKhegz/GD+3cjxf/qTb80PsxffbV80Hl0RIrT96Qg72c8js2fCouu5LheomXeyXFZGyrZhiRATS7Ei44eiukhY+viEFYi73fRKmmMjLjv66frV6PXwtm7EuYnatlNUrq5wtlfn8mvfo+X1a0A+fMoGPlblLZ4qXcP7rc4Yp60bTphGZYKIc0Qc/uLXwn3ZabgBNylHCWbakw3+uOf/2eRdmv/+Bm8y1tLV0n56Pj4/vbI+bQqXsQB7YYNt14/fkwik48dJ9zTYeZrZFPYTcj9fHkH9tIwOzr8Lx+pasnwq0c7yhPBz2ZzhZjG2ewfrboffzOWoqxwZ/hdN7gD/T/SrqRtWZ5Z/iAWMicsuQERGRIFRdzJIAIiMiRAfv258HmX3+4s3UgIneqq6qTTwsdBQmQndI23IuY4cNN/FFOD2/wN3YBbvJHFGF9Dsz5TBEvDsMi88VXm24H409uk5IBXj4HGP+DPn/LH5ZwyF80XmHBERLJOt3x7lR8/Po8PW/5dS0e24edQ/dEgmRSP2p9VVH96c290J2+tQaDD4bn1SRzOEWPvr9yDWtv31AczM1fd0UPN0R4XBEz9xrq1/CJo1PwT//BzUcfzDAlwRHqsX1U67hK7gydDDonI63RY7vIhg8YhuiEVFF+21NpNhTh5qUjsVnPgL5cq0Ta/i6h6radClBolvPjTTErnznl0tO4uPHz2Aoqjmzeov/U7c5c9tr/eru4MTs3gJ/GO1Jd2mkmuTunAuaxEijzJHdaltaDmnPw9vRm7c0TjQ71qm94n/Yt3zDLK8wcE2veF9R0O6kldwm2P20fA5nCEw2yxugC85EOaVX9KtP3O1PfFDKkZPHQ2a9Wh//kt9NTJlH1e9jSCozTzOAbHVzQeUymDp9KusKkZ9jDPk03Ahu9bWd03Z+5aOTCPhCt2x2fn9bq3zuA3P1XxvJuLpEf8L943P2o12eYfgb9+f0B8vJQp238dHlYHOhCmpOVA4iPXwdVGV8TtHkm6qtOSwDxUt7ssbOSND+qKYNMzGK/P1Ztfe5lXvx3v0Id1n1PCbl4BfvoFi7ZszpOqjACN75WQypKHLf4SeGizCbt/f5eUqYtWQWE3evjibDW6hm9U6JRCQM3g6zJxqyeoRJHJFn93b5k4TQRr/Xjjv6AdBvKN/nRNja0VCUq3sIWsp1j7+bvAPn5Zl6h3ETx5xBNRX2pGa9h00O75PfYlYTC/+9loYR5td2kyzUiXtXnHkMjQxjbIzUiy+2esJLsbhwTypWx9L76uCvsrTzgOWhHb/CWVEatBSr2L058eA6++TqkdhWxYvtdIhpvfQa2XkEWCPZEGnvv8j1qbn8rg81hBv1U9osY72RP6UFJ/9RQC48aMJPA+6RCppMIeqeu6h20m//Ij/vl1/cvObAhgeqf+zsHe/AyLixoXpkTUnXtgFFZQh/ly2/q9dj6gdJkayJ47nmimKXmrJVwI3PCGWvlcpRvfPP3yAXXHr+rRzd8G9JYU2P2eC5Mdo5mHWPzrKYo/1TDmBYthv346JFqfCMyXG1LhOTO+2PlaIxiL+8rDf3zB3csR3fwcOFk8pu4jMMx5+WYINvd+JTLwy2Exdr79w3O6zX8q3JVrBjKRe5M1Jn+mBGZabufKd0g68n+RICIcw3QqJxoMlsiY57xEKBZsIHKx7xnjsncJSu4TEXkcVsCiGws1OzcEvPm5A5PVToeK1D1wTmYezHA7M1DrVfrPz5TmXm8hTmqV+m93SCvdU1c4l6VI/57aMeWX94sov/cp5rNVz+3XOsHAslPyzl6ZtyyVw8PT7vmiPz5Ii8dnhOHhuvxbP2uwe3c//CTTB9lstr99BsI4PRItu0vmbPFLBpsjDKkJNTSImC86aJ7ulAYGH5jLVt+DF29x0KdfDub8abz1x1epveEHU4lpaFv9hnDWIwaUgLaBMeolqj/CAxBg650A5p0HafXFZOtojzps7teQEMvzwT++LWZyik+d9gH0veQd3PQpogtsTVZpawdOWnOmwVZPmSsuC+GmL6k1H8p0EILMBrdY/Gz1Kz5iG77Bpkt6fHpTjXU3vXxo4PQMKbYnGK13yW3hNl5quoYF5kD9UzUbB2+01VdqtgxPG0C3POJjPfs/fRCD3Cqu1AKN6K2TJkNQqHmG/+xqGUbJaAl41C766Re2HF5HCyZl+CTS+bBP+az8u8AYdRI9rJbnSe75IsL55XEYB5WfCm4UW6BAPE/NAV3qbsvXIFxvZ8JHlzFl5YmMv/y++SNVOn4+4gny33TEZqY7bL0r1Ia3d/MkkFPe5vSglwxmnp4jOCe3aLxZDxW8L5qKPVIMNUHcrYNbvY5wc1zUI2zqDj5WkeA/soJ0FZ0jhHc5Q9TX53O94d1FK8Pr+Ku/RdP3bj/gfJ45jB5ROcxahXt4uTcJPb1LBmZ1fTrw208JDgIimf3Gh7W/4LVD0hoJHrHb1Ie/9wN18xp+8w/B3/TAB2M+RIupeg1s8e6OD3YrpWP7vs+/8eBrndZs3vdyAd/Vs0eSaw7RmshJA4u8GbEBhISt68sq4DlQFKrPJw/w3j7h4I7nOuw7plBPn+aaaAf+80az1B2GuZnLFVoPz0Y7pR7NeTiCUD1xpbLhdZVOBji3cDbjFtndatZMMlMLXrpdQp3xpYP1NCod3PL3Vo+o2MxfH+inz6j+4gVGfvWPnx7Dxsqnay09KpgamFBnzByw4Z0I1uYWUBePvMdq/enLMzdMROXEN2AT5Nvf/xHF/orDOhwdA271BGoGLAOD/VFFEO7nP8JcP2bry84sdav3Uu/jHQY+7be+nIN4+tXbovGn//8/ewpk/n/vKaijKqeHxr57LFC+IwjP75x6wmnvLetJPkEaXhqaCJdxmMjl6QLpNtf0gFUpWk1lvECdRR01jtwQNYdJD6HOYxMfXsOHrflYblXOYkHS9v/L5LoIdl/0xug4vj0JmeII+aY06F4MbTA0462EXzH7o0WevSJmdTcZ2iZZsFEJHaDBR3nAx/58QLsjb6Xb82PAPc2BcLJ5MYc1P1qg2DOL6gJ6RysCuwTAKRuoxSd9SvNLiuB6uD6ogR6ngSa15wCWoD+ynsuczWjvd/Bh+xUuPPUzLBpLYvUKrD22gXkHkxLFDYz35I0Db+3SGeViqHJ+kREuXApzrNvGheClvanzcjyPz+thBbnGX6hZC2HNSJP3UBHWPWFiMQ3fOvQtyLpDiQO/Z2ZHbrYM+/haUuTe/rxFa1gH4Bdunsr8YEtwUhrova5fGnxKmC6m3D7gMNQDNjP6riczARm81MjF+hMY6Zof9Qtsb28ZO0dPj/jDqYSwpuBMDW/uBva56RctffIrPWTOK1qDlhXwtH5GGji5VS9JrF6gPp4iesUKHSaUogpKuWPSq98MbJGPxx7GrtsTIe9Lc0n2rgFF6zJR7J6+w2fVvytc/gKeiIFzSvlIyyEsFzDjo+v13rYjWFc/z+aCQ3nZDUPCgwyISPMJlNxXvaz23wnW59XBrrr1gvvsTzqUaV8gUD8vw7IGbgOTRTpjOz+Y6ZKLDwPOjb7HF4EYKV8crAxy2dZr9ONx6Rq2pQ9lNeQw8gojlcy/oYN17AcYv6skWsluZ4DnOfSwh7d9v1WuGDD91hJ1X8cVEE36ytBMbYqEj8dFJD86MWTpOJCaf77YHHahAXygXIgmPWm6moePDuLkzJN3xWGwIiA9gMNHFdnlTTnMhmxU8BCOFd5jFNVfZ7nzsM5jAzvl35fVbN3r8JMUT+p7yGR8MoSJdlKmF1IFZw/EZH6p2vZ87DtLX8/TXu4ghK8TRqrxBBMbhQrysyohIRgCb64rrlAvnw7T5PzOI1pLdgmj8oOQogRXb165P24X3SaT7uuvx9jWR0BlX0GgAd/ObCKJz8NFQSfsoOfssQmfRxiFhYVAu9W4ogcLtfrRh9SvPxGbjfaB4LM67ClSXCHqzc3jvF3GmFqVxw8s7JcZnob2RhZe92v2+/6oSCmZ6z88TGvVtXCIGogU13NNtnrJCmw7eVG9ilk9ma1oQVg6GS4k75uOZtVUcFuv5JNjoxbrFUIYPR6M4var1E3HpyUYPzDAesH/eXNx8DOIH/wZP0Adgz6p9gANQPK/Phw/XIBqsQiGf3i4uHuOunIvp7SoriJk/XKipmh00YyiQwid9RUQULozYMHaJfC02/9R89MCMGplZWtZ1x+pU68hmB3pigDCVxcHPgqYIEVyB26p6OGDNzmM1w5zBlXDVakh4Mmcu9OqwqNtSlgPnrE33+udrv7G+wziGLDb1algx+UNxcLeNtmqdAl05lXGTsBfzGlqXxW8RTPAv/ihEz4TOAyvARvnUgPdR/5Dmtc9C6IKjWey7pWHEIrb/d6lconmKlBLgFywJ2seGqkk9XKhKkusI9WZDSaaH16HXe/o2N/W67SVtLUot2qalMolpSZuQ1Cku4IeZE0clk44Z7C+cRVFfOgytpIlAUelQRQDawGLFM0dcJb3inX33rE1EE4ubGAQYruUx3rudm4FbnlbUktlIHp/dL1UjOMdocEJWq/K1aGBj+PkUyc7lfUqBykC9mnfYv8lxMP2PSz4TBKdRu1THVhE9g+4zLFNdZV7pIwMBQcrh1uo2T7VmkRPn4dryp5IBlSr50lK5a33Y0J2Gx6vcuvzavpZKqp7VgPG/Mwy+Lxlb5rUcTCstTZwQFF9lxZY5xk5XOdCS9i7RUId2DXt/voYLu6Bw7iu/WiZ5LMIxTCXtvhJGT3QzoDzK75iJzvp9ax5lg2feb/Dht9F0dh8pRW+hOJAjxWb2VeJiua3/qmFK2UYa/vpQn+wH9hyc31YqrKbwUjcD8afWQUj+ovhv/ztiWyoV7R7W+owPm2k+G7szYm3f4BOrASiHiXLm+peG3/5Frvvt2yuk+c40F9CAXtedQQzudkqwMUFUK+8f2rGXd4uzHnOxbZbONHafdYRWspxjyBgQkryrSZdn2cHu/hzN2fJmi0oz8874TZ+QJ1BjVXp3B6xgUPgrdPdmDXj0CtklNqWsc7ZNNmJn4jwkkg9rd+X+psfwgdzlrLp4RCY3lQT2+rnUi95yRvQnAYOB15cm4u21wnUobfi/VGtwcLSAAHv1jX43jaqueR5mcBKtz547zjtMN+obkH/e9nyi9mmLOc7X9V3s4aEqnJr9ltfha8qyD27OzawQ23DIWohRtm1NJnUyxm8NNxzyzdytBqhbEN6ajAanes7WsN08TXvdfuiRc4W9kXSm4e/+DH9eR2m4LbKEDTfK3X4rDIZoX4HDvUrw7/nTREXyXDZfxUilzk2x5AdDQAe8ETzqjsDYb0pDdz4CD6+Fc6bbo9SV0N9rTF+LdSbcmwSYHUXD6dScRi+B6iL0PAtjhov8hlmJUYXEPvig0hiROrZCLoWGn/Fk+qO16asVqEP26tUk7keh5oWnOCCX763BQuZ1Dht55bOuUYP1fr11s9QPmA+l3tsPec6WtjFU+HqExVbyh9nrspe4iF3phn2w9duqJPadGAUq0d6xCZfs+qYQMhOzkJj6fVJWfeIoEaSz4qR0qrDRIIrDxPQi6gTajOdplSt4OGkrzQWH7a5BEc5BCWgV4zr3blma+MmMGoOMnbBYampo1U9EK/eh9Tv5J7O5CXIsIjfHD20F1ATtqtX+MnUBiORNqZQw1aH4HPd032gn01J41dHi6pbjf2KHiOBXG4u/NPfMpKlazls+F3CFw52G76LHmOfQlfp636kuqC8olkO1xH6jaz/t76Se2VBYRZNdPXGl9loomNDXogh2QWxyJhx0i8gPa0IW9VjiNauXB7gtN1NEQmtaY6Jkutgy4/0j8dmRJVgZ0M7qGL697qdh3WVq0IjgZPQC1CzellvSgtKLt1TvTi+vQHdMwLT/GggrtoL3ppcjAa0+OuQJphhRJTq6cJutWZsZZLFpCmODFgXDkRazR3B+J0nUXU+8oRzZQo9Fn18G/DgFRPlnSeAKYFkwRDZK3bENNjet7chzwU23Tusqpe6tIkK8l4nKqJkWIidVeAK7D3e85aVirdv18Cz9xSxh7qbNxrPRIVRmFnYKRU+WpNj1EL5m1k0bz45IwXlG6hwPSYL0qZoijpNBVv+/If3veH8WepqWClG8tZ3ysi+LkCHR4okwZ/ScbqVUMu67ojdoJvSsurvPOzRY0asIks0b3zjx68IH0raQFbzXIG3AC0an68c2M7B8rDU8n7D63u9Hj7lCrnHu0VtfqjTJXqAEMaopRj7xZgyhsbHj19gLMyVt4RAP0FvVGpSO7tvOnP61dLayGPUQUCIxuBP0X/5gbyc6F0zkmcxhMMYE+VodWCW/9wEJp3rE0ms9qkgPxb4y1ekzbaavWYZ64/v46czmd4SfAcfOq2bIBEQgdFqVFp1AomJr0+5qhfyRA5IX28HG0FEI6KNqgyHs/ghfFBPYDHhxYJS987RXP/RgWlBLf7wjybSVR/GMH6N8GVfhc1iGQe6jVcF12amtxqhdF6jTv/pHbK6gWGKaPe2NY01IX44swHW4h00oJGWAGN5O7nXFccOXib+S12fPIY5V46zYlVwQDMIFo8m7r2Ejkw/pIvYE/zwW6tjFCAuu5becscxBz/TVJBJPd7SNTg4JQQP7kTRS26H9QYSGcaeukNlnfNszW8uB2Xpg7DrPdxBrF9+D5KaHLCpsGVYZVDxWmwaG5++G5ForrUOzcxwqfnsLG/96Q1z+nJEbpCcfrd8C613l2569LDdp6rMMD4fd/Qg+FO0OsLwgKN4uFHdoyWbnVt/gg2xHWyL4pBu/NiGQzgbNA6cU9RFdy1WHe04YgsUUjTlNCHwD5ws7OafMp2C3R8C3MGCWOfX0hyJ+imBRTOdXuvvABbNNwx4qOsMyZL9BcRcBx0WF+FLdr66DFN08kMQJV2BHfmhgPU+H8R/4/OC/Vwvhv4nQtCmPRr8x6WWtOQhwq42POyW0zQs1VVZYSmUgD55kabrRzuNIFGnFNHnWpssOYei1pF2j5RmzdjrQ04uKOIPR5EfT952n2UJ1eOJ0oB3vWHVCvkECzQgJP/4oJa6LTQbxuN9owG2SNI5VMqN2R/anVTP5pSWoL0KNdlVAZ8yNpgjxGdjJNDrjx4zTs4FPrA9Up1fdU+s1FOsbXyY/gmHCazR5SrCqLrWGMnPe7rIfn6CjeZMP/46TIlvxnAs+QQbx8r2aOcMPSjrucWJG/4NogV3nNo1c0mxxFn1Gs2CC3dpFlCEs4e35qwPgSLMe5yLnwbMXaFVEFzbmR69V+UxchAvqm0/XjjIAh0w7Xyv4ECCFJst2LH5vh2SSC8nGVt+5g9f+cVCWE6tRze+DajWey6sP+aBwILTTSbv+EQD9XYjqSNuejlKOQBqqpLGGcxUStxz9dNfNM8vhineguMJPtDx/I9/deHrNGrJIpzx3/HRsnXDv3/5QHQN01wPluMCMQYQB2+yM6njvWNt40doUnkWzWQfN3B1uTdGpX2MFnnsQ8DOlo9mSTcG9vN70tOM8EV+y2yOmjGGrEhSGr2Te7T5Ay04Cu6RomzZR4tRVxkEZ3cgAEkBGJlv9dDrMaPmO1GiceKdEIZ71FHsgvdADOdogVFeDhgH76meEW0bCD/h+ac/UjJlcwbb7E+jvvone3OouhdgfgMFicBUGDPU6gRAXHloeu29DT/0EijeQSazJAfeov2lBuiatcR+C2+sl40R/fwdJPo5n86J5o6/eCHL21HBKK9TD32w9VXY8FhwLmul8nX7IZpkup4Uwsr6xR+15XvorZXvjNALzxZu+KSP1obiUNWXV4QvxbfyVoXjCvApegX/CXFTz1E+GPD0cUPsisOYvtHpVsJMeZrUlrSxHrq3AcFQAp/+4ntmMevB83zyaCj9uZFQ69EMPmG4J0Jh79NZzr8EXpbrBdve+1gzNngj1N9uQSbx07AND3ht25lGjZLnAWWoScBMuoYIaEUpC3tlhbvv50axer+y/pcvvfdCfvk+EsL5HkLr3afUrdvRYw13ENUZmHfsYo+xVeEPBXzYqKKOX2Tmkv9te1a3+baKb2WyA+10SJ70Q9pX7dSb33eBv3j98VPqPAwdmORzp3tRq8AS7fMQfMoUY9O9/qUSubcdrNv9SPfCx2VzkmkjdJbPSg/SA7NvwD/Qv/Htm/DJZsu4leDn7+3d+Gsu0Tg0MB3xB/vCMRjGdTx32hCuBrUijgOTM42umgk6R11luQ90svoR/vwxToXrsGi07+Hmh6Dl7TwAc7S+h5u/RK1tffJFws9wd9Md7FUJi+b6AkQQeul2LlTepevtJp80f1pdInlns14kQ481+8/8I2J9fYNVmZADpPBuUrd69oDJ10cGWD2kRPSO1r//g5seQDxK5ZR2xV8Pudh7oYXHdTTdXt8YlF/H/uUTjzkv7wI2fEIrf6tqQhb4gJmmOFvv+HFYa6/tITFjRo3Xc2adsfz5sFwlD9sFaupJfrET3PgYtav+yNbvPTYgyzqb3l7Dga0r0isoPYqI/r0dla1hqiBYE03EXm7VA/t0cgeTsT3TwFGOYGQshJBcvIlu+TBdElpDiOxc//mrESHEJjAtrJzM4uIB8e5THxzSZkSLcAiASOrbCHeXS4LdsogBSwBc4eafb33jvFRR/toTVC2+x1Zzl9IuJ48Z+lKO0fb9avrp5F71K3Sirv/yvVVjvK+t+NHTnx9IJqGytRVt5/JfNjMnMnMF/G57K/U6v4CVLDCB9NkzvM0XWDul1uHQ3EVa1FIYzQaQfbjpIXrwjyRiX0vg4IY/1BMdWk/fLFhVUGQqLlzWRrM5UweI7uuALYFU6Vr9nQlUvL2MTX8v1jNi2Qku/OzhtH7yNTEFrgM/vfObb1a/Cx8CGvHk88zf5poc0/bn5+Njxu89qThNJbTzu0DeR3wAS/cEGeSwZmPsta9hIZebA/1G1anlNX+MRjuNgObbm9h06sZboyCrwOaX0ENTcen48ztPagfp38Zv55pvZ5i9uTs9VHUYLVqs6GBmSoNWabQjWkllC4u/eIcNQT16zNGq7sffqPnyXCYlu62P5rc3qasGHBi7YI/UNztdMBb9Q8RMTE7w4ScQb3jApk0PQBrPXyKrXZZOdQ0fP/8GyeX4BvQXb94F8mQuWWDOxvKHoN92V2y4QWVO+VDrctYgizRlt91NItwL2GamhpYSjBFDV2oAixY6tgulrMvkoMygk64UFdW8mP3Pf/vlrwAfxrTLdc/dnFhC92hFkVCtd+uf3t7wCcwrVmNI79kdBx9L8qQDLQ0YW8xFXHUZGNPcxP/NH9a90vXGX/6WrjYjwoZf4+//Ved2oX/bNsRuq38AmrlH/NeqsjlovOrAXUkDssuUpmYH8XXRZvFzIaLA6UBMjDCEX1W26VUkvjd2R6WB8TP9UvPY79O1diId3GfdwY4s7swpNP46sLttfWgEHHgsmVYXJu8io4h//Q1sDR827I9wwKaUlOmcIGCB08cJcbT5r1+5gy1kL8Wmh2C8sLk4WAWcVw9TtwInr//xEfoWEPWLyPIktNqXH7/68TtTsuJPA13zHOHD8WlHomyfVW3hV4+8MvPF5jtpdaALWvIPz2n9jn1g56mA5p+faPhhr214iIMt35Hbt2wh+WsKHDVTnrJ6X5/Uz0V/0P1HVCPmxJf453dQ/xTlHv2oHbddFHFBfOk7QJiWU6VWLrXpUd2t0dx8pVn9+V1vwXsPX+3V6TB971eKXMdN17BSS8hSMuD9lo+FyjpmwOqtEuNMsWoWuc0M7Us9/PMPWR7cZWXTwwjWHhokCd0deCqNnOogOJvr+pR5aJ8lQDS+PTHWva4hZKH4ovuWKl4na5dew80rRiyj74HUL7+DiWwOVH8P0jAfTlvbcNI11KvD1vz5XVD/iAjxolAP7KfHqgPKsOMbIqPBWiba5/aysF2lzFwakybq57pS+qsvbv7cQ6u87kXE93wz5y59ydCn1ZNaz9mMJHInHdQ/PMKnkk3eis55AWOff9C46r9sdfRHAc87PaB38XAA068+Odz8A9Fc/GLLCh4+OGMAsF69+2jSutdFPdzFG4FoN3mrbDQ+DK0oQLvgPQ1z1Z/5f3rr7mmHaJYs2YJntXUQe3ku2OptMazs8x/aCbPh8SwKODA8XRFvej1d2KhVIFhhTD1h7CNq7M8xLLVnj4aaDOkoi9EFbvwDAUkdwdhVgw+rIBHxtVhe0eYvFlCW3lsfD/sd/fxpWC62+OOPjG7+DTD0l4W05qOBQenjBKLbWUWzGnHRVGfAgkgPW2yfrwWYJfWoQ9FMQ7K4L8dbAttt4DPj99iriZf+6h8gLYeJNMqoevTnn2/1QHp45nuPkXC6wJ8fdTiaL48daQDBxpf/zeeoEAnCP/0jk5O8B2BKur7/D5/l6yMaVqVMfvqO9IGQglnJcQfJ/rDxhdchnaxJekAO+QtGgRLVE3tDHxb5xLD3KrufPy/CaSc66De+WRbTGDZNWGNz0wc/v0kTvaLCQSV1Aw1hZf/qKRgfj100s70ZA5bnOtmhXPamYh1jsNVTkVReKaAms2W4+afUdG13YAfxe/nve/KBF0mh0K1QYfaV+qU2mutq3iugS9OEdZ9/eHOozYbmT7P7X72gCT9Q/fEftNWz5k+byKrOSRVa/PLircnpov7jV60s3FLKtdcCRs1eppZ0dv7T52fRMamZRWU03wkxgDmAL/WemuHx9dl2wE9f/erd2/jV/9+eAuF/7yl4E9eif0qzgjURnr2qExvRA/G7dKyRYcHDcF3p3biT9N2nkw10nNXUS0y5nkcOyPDNtnND/LtiI5xKHUoKd8bHJemj2Y5FWztZjoqfJnQiam/nKketE7F7cw+Az09YVLOWhgQ055atF6O0NE4oze2clMHmuFJKMHOPJ3bHv5c353oqAqESU/RJ3XGgJfQq4KfiRLjyXHnLi547uPPImRoM0GH5KrsTwHrWEel6pdEo+5oLUDZfiagZX7aqI9cCjp0E6lZ8VbMWnU6ayjqGg53/qIm3FD6oX16OXe0LwFTwK6fezXzCOGGvYfn4jIN7ZE7YMZbPMLtSxwHwPkhEAoOe8hLvI9BzXEbdmUjR4jwpUbXjYGBX7j02n/SZ146uGOO9I5vDojVPGVwUkpFld5/Nat+hB1BjlxI48qHJ0Kmz4DnOJOr1TE1XYax7eNz1GDu5Z0Vs2JOLqlRFjvfEDuo5A0L8b3z6/uHX7MSTEkwOGBHrcpyKg5ReYNUlNXZkXauX1Ts6wDGGjrpuv2Pj8GoaqHXhRPgIQTBFOa9qx2CgVH+c9zVDtxuCVAwWauzXl8ek9zeEyIkUxA74bdIlO2/3i3klPuTnGiyN0lxg8U5HfOzD2vtqdzeGv/g4nJbN0rORDJU2zanxoq9o3knrCK9jdKB7epPSJc8MC2RgUShO2F8tjDKfwJVFDnaOEgHT06KGitTTHSPpzwTCDUU8/DverC1ek0H0ltiHiZO/sZW6S8rWcZ9BUb888UFOYjBu3wOitCfY7vJ+GPsdt0LCNQWRSVLV7bDyMuSswSU7Hcj1pF7bWZ0eZoR2++doLmd9agBTY4z33+phjo1IOHAdzweMdw01ye/5Hnf5Etk0XxHZd3YCYmtssP7+tgM1Az6Di/L4YKut1nTZ2hzB3WlW6CE/m0xAlZ5oe0ezqZW651Qq3Neq5Y+0IRpeDZMl+znRonW4Ykt1/oaFPwkP5RcPtnFQIvJ1Twb84xyNHk7Wu54Pcs3D2814Ec7X/GHV5tDdCc/n+9/6JtzRtIFOLISNT2gxAU05hONOtfCfPisD29Peh+m1goS/mlvvHBgXkIvVhJrhx/aWUYYP2F6+M9bDj8v6vqgKeGz3Ptqdxdybhxw50Bc0SCgXvdPxI4wWLLumwqb6zet1e75mlPRLZOkvSJcX3e6ftI4BkoXiyFgvrCdYFAcRG2HqgWmxewK/WffEB/T6Y3y4ho3m2HpOH28rG6aDdz393hcbyjx57JhWo2aJVMaW4wjsh3fAT/mJHrHcpkv+ufWwgPRFtCW0vbHIaxf2/g4SWSi+bHacpwoOML9jffekw2pUoQuG9KLgg/Xowba+Re1lcTtqo89fKtJHAYHziiIyv79tvaZUjOHjNJl4PwcW4yW574B5bivqmYViznERWQC4sMPb3YHpPJzlBjxviY9TKdo03wNwENntgdonCaSzFlsQSlWfYX3wXfPjydu5R3GSEb2v53quw64ENiMl9rH8qqf88+zhDX0s1F53RkTHW2ersXTG1HdNKyI4/HMhZmZEcdnuvPH4/vjAsrwAB0Pe1ewhPRzoWkTCTqa49QoEkMFHNhv0OZy/Q1PtAwSrs0UIf1c+w3IALx9u+EOP+d5ifHzne2B6j4gG+uMVTU/ro8PH85PiA6Mem/3phUDf1joiSn2r59IlJRjDxx9hkUwB0QZA4LwECv5TxLFeC0m+QO0EZYo8B5trcw07+LqhADum+Zey8VZa4BwXEjVuHE55rn8+AAmRQZjQT1v8P1zIx+NInwo9g7VUkPPLf1jnQGYynGodUGxLp3jXYO9LCOxA1w87JDPQemvMH3mY6tmVnvnoaC5qUfdQnroardEo1MSpJht26FxRB4++yfJlFmHY1i1Sz58mWi9GZ8H2RGaqv4GefpWlDDV4hTNGfDixTuFiFVi6H+CH2z8Bnc2yhR8rNX74NKxJb1hgkY53isqz4Yk+t1Qa3XqRxQcoDnMdlhV0+M7B6LYooFnaK4RVQGV6+G692b9JD1XNk0/YMiI5nd9OOcPbcpypia5j2juznoD4yDx8dK8GE//gXobKp7awf9/rnmCNsg2vN7+kbjIN9drcFVu1BMNGmgZObMZE0tXc3FNSeq96WLyiEeFHLwxU2c9btD5TTgRer/HbuTfg0ednsUHiPN/og7DjifsOJb/1TtbANcwFiQ8RVoX0RKpvlWzqb6gDKe980FkV4LDssNvCYWoP2I7ac8TuxSuEx8vujaSjhiLmOa0NEzXbemuadTS2STaDYBeecSAKx5pd3kEGt/Eg7gyz4cdH4OPF9/hB6cEjPYkLeEtch2g1C9h6okkB1THW8PE61Yx52qnQlspa8YH4TjR3qXwBRtxu+3DfU0RTMDcgrNoW7Uqvqifuj57g/hRCijd8nEBtWPD0uDnUac7eMAiq2IAnGf+ofT1ezVl7DA+wR38TWj+6Z66IV2ZYs8dAtJtbm/NFRrxCCwDoAdztgf+Nv9u5Kd4fzNact9Zt6seMUjTuA2nL1/cCap+jjZ8rsFIS3KoMyJd9iR0juHjrmqslsO9/AjUup2MkfvdKC6X2nVFzIoq3UnxMQKxUOXXP137jU8kJuEo1b/m4ZvNHNSr4i9/grb699ZmKPDz7gOEgNKBJqnoWtS+DV0TL9mmOuaWe4N+zDsl8IYY3C0afgU+tT9gvrNlchcWwQY5d8i+f0XwKE+1GLjEu9tI+XbTmJkOpXk1STXxSj5hIBnSTQdrmc6hXGWSz2gZXFdvibecReX3K8K33f/iI27EeySCF0Lnvcup8T+lAQzZ0YKqbGzXC6V1PdiXH4B2LGBsk8U2R7coQrOiJqINSIxLQwifaM7362E5PvkeeKccDz+1vOHh3XspUCiAMn3j+8V/Assu3VLfnUz900vr9CE4QKp+XRdiWDyev9k6wfS83om7xN/7yi6lxHA38ZY2WPNr7sLaYji30sut1OXY2wKNg0XDYAY+y8DxqxadTyfIWdMDMABbwh782Pd8Aw2Vmw/bM36hddZPJVMvOIHCmB2kOx/cwli6poKy7JdpdMPHYgGofZllr4r0RyGy0nyqnVp8TxLou3s1lv3/pcO9am2d7WIY52e7ueKgnGxfbelrMGiC4ohzRoDj1Kdu+H0DZesV6l/PeYpNAhWH7arHlcKYp6FfXhsfu8sB/O82s55NvJ/A+GTN2fUsH/NtyL/C9Jx1GOzs1qVv+OYBn+yPGU1KCVQOfEdi3i0lD9hXYch9qBw52GKK/lp8ZkapBBgGudqix36E3NQEnAqC9IsLmQ+8tyn5dwbs67BHgBjP6fLsYwk0PoEn53kzaLykP12EXEvomrclEX97wai9irCMjYoJz58A2n9RPWJvOngcyKGVZQPeBxIbf/P30DXVOmug19nPloMxzd7z/hLrHt697D29XWcVouB3NRfm7XCATtQe2hb4D67panLqtL3qfD/qwnShESpKKD+xUGTHX+rCL4fl6O6Fy4yv/1lcZJhdqBVrkzYZ8UlXhmb+J9GFStLh7AMGG19j3pTObfEuxoMsXR2yFTE+XvOwqSJDgY9cU12jug9CFYlxNGD+vV2/cvoeaCiGiOn9AYKWPggP3nlUIUuEFJmuc7f8DAAD//6Sdy5qyMBKGL8iFgEiKJWc5SVAQdQeKCIrIIQFy9fNg/7Ob3Sx7YXdLUlXf91aoQGxvKqrGScNIYscxjGejDYajtlzkmYzuthr8G71dmBUR1dQ42DXllQj8BevMpbwL8vYS48Owf7KvMFc2mPK4xtqjcb0uC3UDOKI9A+663XWTlJoBCDNysZ6uNh5rpUsPd97AGG+9PBtPMBxhySeBvD3fs4bjdxbQ6nLBTugqGa/hYkY1Ws6ML/We9efGAKN/fXF+NqpqXvwaDGU+YqeUNE9IOFWArWd/AnYdhmyQr1ost6NlUM2aJp3FxUeBWzkfqZ0Ze28YiyRH+w/csHpkpj4eBrBBls/xv/pac7oGJnSXoP35R15rF0Z6KqiqjNdqXl/WBtTyzv/5127sDuMLBaLqUVVKC/1Dp3pEzkF7B7xsO9FY8lf3t/7B5nX29Dbey+1Pv2PT0ISsldGHwH5/mAg+y7HX3vYmQVjJG2zJcdWN+8OnhzruRvLZCWd96OUjh9SjZAd84AzZ4Ctpg1CVmtQg/qCPmniRoF+LBhGWeszlw8OFKl0HgVBLFmLseCAwlLeR3raaknHGOz6ioxU4gdlUrs7N+jtBilF5ZP7ls8BXW6Suwxfd92TuRv2gclDuB5H6os+8eTKdFhXHNMa7AFbRVPF7CdlDfMS4CbdsvL52Mcrf155ap4wwNitngONWzKj7bUZv/Jb0hlxTyKk1WadspE7QICre1jjYVptuXt/vJVC9swJ2yqKOul1OkHqYn7/6nnVU2Pvw4dw4kOeKsu+QlgH6COsheGNbjvrubrlgC2fpp3cRJzymES4uYcGoOBobXU2owftoHLXu5reb3gkjKNrzGdainu/Yt8lX8DGuGhFE/9ZN6+i7+MV5S9CXc6M+CyQNDjH+4t3nea+m9/F0BGWzE4J7YX7QtOhL6PsK08Dry47mlpdAfksNsuolHzV7+eTLomIXWF8/WjSy83qGRS9TbE4mopF+JpDkm5kaamxHU749XGSCgRFJvMwe2TmcL6fvqQ1EZxOw8doMM7CnxAL5slaqcVlP4Dh/xPnhWejzyni1cigCw97rYLENufAi+l6jNhhjN6jm7wHbiJfskLDrsM/G+nltoJ9pTlZTXkRz+ipm+W32Dc387vzP7/D1lFFrB0k3frmvj5yAJYTX9iLqHdJb8FCsM8Xvmx+NwmM7ov6TN/RXP19xc+Sg/ro+tpyJ06fhvRnhGr9jqtXkkDFbm7hf/aC7nVOgaSzy5b2w2w27TocZH16UFrRBxHjnyCTr1ZavIdjaM94Xc+5N4wskCIohWfLnMfrpXVmuAitY+XLfMUkcBdifaICX/Ylm++MVUiJeBKov35+TNP4CnYbuVFGErTdD5HJo4Ut0h4sDYuqZC6Tic0OYmNGBkR+/ENrHgJcz/x2FNm1RHHpXrChOyRa+ZIFefx280zY7fTS3dY9ck8upJZwfXvdqDAXpwJ8Jouc94qMySqB8rC3qbna2/g0vdoOW+kyqQJ+78YXMFKzi1OFdGUbo4+2N4s+f+q+7qrNy1kfZaZKU4sHaeSz+ViIInDJhu7VsxHev5wrOJEkoFkeVDe8stcHfJhN2XP2rM3a8EthkSU2d0C2ymcO3GDGzSPCxdu9seR4CLPXmp6e6ofUmS2bL/eE76okRQ3s9RtyZi+gugDyifScVsOj1oEzNumNJZpKff1zurvl0k0AM8ssv2DNiq9t4dm2Ae/luAum+OkXN88NzoCM6UuO5WrGmOjYlOs+HM92J1l0fKce58NQ3F6oFznE5kXUJ//iXEt+ajB4OsoiaMdTpVesajzXerkG2IQkUx5joTXV9NMCdPmaw3js1GwDNK7ToK6w+D/usPwpbDfhqpVF34R3sol4BWFrLgfDxlUrYXnoXZefRper1JC7x34Ty7XG9UY9+dxUTLvsV3GdepXrdTIjh11yAVgxfitcK6mauIiNa6j81UvFcTbX4zUFLqzRgteRVo/U6pNBthgRbllxXPSm+BPBnvFPPjISOXoDdQBzvMvacjasPseG4kLvuMpv31nmTmwbpdjwqOr2bssHm99tqwDvAHp/4sYkGzs8BHZdDRPP63UbzuhUFNJ6tli58WGeHxyEAY7N5UL9VjGqCuJIgOjmHYG2rDzRfWtf4xSPVr+udvsRrvm3cpCTzwgP4hc8iPvzsA7FSntXU7o4N9Icwpb7/Fr3p4yMAy/JvZBM8VbSZ+30upbL5+Ksv5PFiBIRzG2P3MnidiL7OS1r8Gd0BtBmj9dUHzbwxum+3vD7C0GhoXgUF1R7JmPUnV2nk2i2fNKjWjUfm+1zKhq7XRJR5CfWutqpBmrI3Ntn3oA8L3/7592CdJ6Y3GapbI1oeJ2pEcxjRcnjHUPqKRY/Drlz4cJ3A5lnyC18oIjLFciNRMV9j1cte+lhcHA4VzmoTbGSUZnMmMh/xJZfRZX9Gf3rzbz2enuPN6/upQBrvm/Th1ZU+Xu+hL9+JpATzo2n1idFdDddBGQkXPK2OIzc9hNQtOKzUCSCqr5SLnDrZnqxn9MpmhhwOrsQ9L/7R7SaM9Vna5M4a7xbeP5W2W8N2N83UjPoQLfsVkM+FLtX3j7U+f0/DC3w9OxC21Kv2dni5iN0EL/jxnf7ZxyH0e/TCi/6OBjtO3S03bhDVHpLONlN0W3rQIqPWEi8sXA48LX6ffJf+x4DdIYZAOl5x4Ap8xPLTOgGfO7rkVnifbOGZLno9ph32SqJ7TLUVH4rQs4JtFu6i8cP3FpwVIaIOku6M7Yl0BCHYhUt9dRlr1rOGtHO/zEEuFCZk3G1GgRFvicBD2Y2fVQPoa+x1vKe0jAiSDiKUcK7ofrV3O6Iq/QWZ9cMlvfkI2Qaey90EfBhQvIrMaDTIwZWvxD5Tk89J9/d9Xf0dYoest9Gcs6skkYOVYfvEqoytMrgh0lxCbD69r86+dzWFIXMlqpxrCU32RaxR+2k/i9+su4FstgX4pQaEk+xnx5Ddi+Dsv5Qun/fGvHRqZDy7A917QdBNrbc1UHDNikV/BWhwBn3pH8Eh2Izqmw1WfpWkxW+T6Tzz3s8/wWt1mbFVJlHGvpdyJX8EecBmOl+8+djvOBjXhYUfXN7oi18+AokQF9CDIHuv45zWsPBPwqlxk03J85L/4pmeRUv2Jmt+JdKiBxY+a1WbKGQKbLK4xhbkQjRtgf/Hm6aP1XYzrSIBwiyn1B73is7/+k9LfqOmLVbdJN+bGZApqjhFVxWNSz6U1i+6xWod3rMpvNgt+vXX3NfZioatGifwKDKOOiMnoGbvijV8S47QvVfY2eZTtgTVTipR5ahvonENVxte6/JKpOlldGzlKzc5L18R1ZQ2XfKB9pKB3Ti8v6yVbhNufUA/vzvOxykabbWZ0eKPyLj0cyZxcAQ4DRcSSOY18TbisW8g6h/WEv/2Xz8PQBGdIE69ZzQRfefCg5NC6lZ4rf94mlxx5RGbA8fQ9MdznWxPNTXYd7yXvzi0+CVqf7llrl3gGsDePAvGa3bJpnGYRvALdMKqtRmrhX+G8s+fBntcRwwdnjNa+DKRpqPLOP/1SuCdcBhbduFGE2vCHFZ8qVN1Hs2IT+25kIWBK/FV1t4eq9SNAP3hmFJ1Hz6rmYvmGS31ne79fY7669S2EMOTD+ZlCtIYxUoKK+5yw575DqOJU50UbFY+MT6mYbfxE/UCC/8JOOf66Pr6xnzIYXjSfWHu2GbX2uKvv0Ht0uUyIo9HG+4MGmx9b2k3H99hj9DNwiST+cSbnmuzhaUfu/RXrt3QZm8D9ad9GqyVQMu4HWdekH+DGGNzei+86FnAU+cvOHVxFbXjpj5CoO+PpOQeVUSNYyqiByeGeHfaaowpUi9AaIbPH4/MehgaBY5I06g57l+IBNvQh90nnbEj5oduvCE5hoW3Y0+48/oUXpQGfjwLS6rXjWQ8EXQDVCz9LDWaXPeYwiQVAc0Xf8RmXotBIrWH9+b1kLHONWb0HUYrED/rqSMX0hS/fEq2eit6LMd2AAv/wzF/5KLp4Zg30NfWG+9G1URL/UkQdPqZzAzhat7fFEmu10mKPdepEN1m3wImoyZ/+WzaoW8AcVUGP76ARldbvdAadIKNZf/+9JEciiuGVSlVvN7cEiIBTzRsfpQ6mqfrzQL75ne//jaaoi4MZCM9ZdQ5OGM28Nc5hKgpLBpDy2fjRI8csPeGkXLh/WOUrktQbXynjtY1OpNXg4EkvCrw0s+M+ne0SkDqcELV1LP0Hz9G2vXK6P7s6h5XOlUrXdyeYWU/3SsqGVYOi58NpiMzvXHRg+JPbyrr6RuNkiankIqaSHfZrY5++hu9B+0eIOF+8pjgjxeUSkcLqzel6pri4gj/35kC4X+fKUCvQKXBS5W7KVo/X2Bq54Luvzyg4YDsBkBYOVTR+wH1/uboo3xTxcHQGG7FM5sC1FJxpljdyYyY56kHV0xT7C+93tEZpRZ8jttSJbSRxzRbzeVlPifen+0o48QiJXAQ5zBIkprzegw5B5mFXWrc9l7F+r5ZoW1+VglcjSHqyy8SpFY7WFh5a1U2J9knRVfnCoF0S5tsFK7IBgN/zgGy9YaNlvXpQbIvO3rmDr4+z4rkS9HNlYPxa8ze4HyeK9DXu4HUx5vLBBwYNWw34h1fdw7pJmGeJajS5IbtA55QNx42NzgUgYO1R1Vn7KuLgG5MudBA5CW9I+Fogei9ttgs5uUcuXktYVREmwY48iuycR8z6seNjZ3XQWbzWQ8NmXOYSeaTdtL7TOp9NHmWTX27MNFMEr1E+3VZYacOhWhsJNGHJDrsqLflO2/U1n0K11aSsN16NuteV+0I30tNsXEF6jGCT7Y0zB/A+zFgjK2EtIDs3Nv4skxZGT8nyxeFR2PQ6+v8/XvegLKDSx8bXCByfvQtstNYo8ezfsv68361AruUXGrxQ8bGsNBCCGyjo+auFtD0IeYKHR59ju3r5xnNq8c1hYS7Jlgz8qGbXu/PCLti/GBlvVYrotMhgU5w7tgOVqdoHm+dAUOaVkS+P9toBEcb0fJ88F6sq2w421WB5o0i06AtFI+XSxKghG17rORfP5osZazh93MWn1H0ptX1JoKZhFSN+WGZ5Te/wPKfBcb7r9At+7tFSjBuAlRLWTTDORFhm8xBsOq/ms6Wu2TBRmaJDZzJHcknv0f3V3Mg7Jy31RyfrRx9w6WGlh3+2+/bbS4s5/6S0hs34NWoH0859WPJ0Deo44kkfM5svxzn13u751O47Jw8WIkLpDOWx49TjgVXUqb6BIUnAhD1SCRPUKpNddorkKS8FDAQ7x1XmK8ZLKLlWD/Xpj4HX/kGo6LTgB3uVTTDxtTgvtyroUpemfVVn7ioFzMUkLVfeuy9jQ05z7kDxpFo6F/xrGnri2KdqH0Or3q/uYspbNR0i91bakfz6yE2KM5HF/t0o2XC45C/JDb5K6qU7FRRD20BvNKYqPc96B3bHagG3f2W0p0SDBmbNt8crQ11j/fh+lCNXkQEZF/lCGN171TzmL5u4PBRRZX0eWCsIFEt35DBU/fisqyz5tGSzW5Wgs1XqKO52e1nYFPf4GTqBn3MbgcNEob6YD0pLPrlMxmnJ4fuus+lmzQhIvB92hsiPremN9lV30O2RsVvP3Zz83m84E2Fnir0RDIyiptWatPNnoSbx6ZrlHTbopv09rAadhVjfu7mKJSpELz6iem9F9UciHIwk3XU3tEka7cUjKlH1HKPatVWYAa/WfDBmw9XbELrWYFUsDBVFTWs2MFZZiF9P24gulBXv3iCgziGOElJ0HVr8WqjL/6Kv3iq2DWXXDgEg4uXz3dsFzkAK+14JWtCBUY791KgK3o+lt9nVczCRo+cu+X+9isa39ylBez6AfWGaI7mulwt92/XHHnzuemNuzYzfn+P2v76xroTp98AvXyV7o4M9OH9HTQRd9yOug7dd+OKXm7yTHKe6n0seBOoIoHXYL3wznp8uylWzARGyeKoEl9GfWpGo0aNyX0C8EuuG7M0vQA7f0uM5bLXJ7SWNKBBKFHtYBdsVGXXgHdA7tTEqzqacDwDiHwUYj9YmIhmOzcwbO1FVtqWRMMS/+h4lR7YYnPhTZHaHEHe9gf6MM9HNKZCvYLTduiwLgw9m+LnbEFuhS692Zcuo33bxuC83YZq91hkbOu8Q7iyVU+9Y8IQu66Ko3xl0OPgsYm9Uf7GNcRJsqI+204eC16tBh8+0MiKQyZj213dIpOLbfxwPjvE50iM4ehceOrp1aqaZ03ktr7LGOGxmHazs+osBMI7DRBNzYhxK1UBa2OEAVC6Y0wawlbOyaMM5rNje5MwSyJEg30Itluv1l9h4R7R1ckgmOxr4U1Jc23ElB8K7NSXkQ1rS45BGOcYK84mr0bDLGLYblJGiKo8u3laoQKOanyhirc6dONQay/pso1U7L8vazbf+m5ES7wT0j93Fcd4Owb1oCbBb/9VTrJbgTTXNvY2/VcfoNBFaMtt98sP1WBIXCuBIdR03/tvfZxxHkNWHMNgldFrxeg01OhA+Su2/Kzq5ljacv/2z6Ux9Vm+3guUuGQdQMJCxn71uRvAoAavC2g2z9se4rV0xXgd5dG0tsMQ3ib74CUfRWy/2qwQrdcy/sUn69s2QROcjlg1Du9qzB8PDQq39Yis3Q7Zxi8cA6qy4gMuNb7VWxi5EGComoBPDoeKCdrip71ypv4FjmzEkAvwHjmVSMXrUI1lN99kLgt1fAjfF33acFMpC58TI9LmbFUze356iDerDfZMyWLjbfXNkU5gJttM7rzpG0c9Wvv5lZq3knjk/OyOKK8lig381dn8iMXl/u/XiZ5nhVbsfElfyA2ITnd++UDCt7tx4Aa9jrU3p7HlDX8b4vyaYcUc+IwR6oWoqAQR61EyepPzLWqpKsVXIIu1nvWNJAZoMz9tqmwe56pxCGhA+J6RjfsUs1F26ny76Cu6s4uDPl38YpS1jkfYmNRGn/VD6oIbnOJlP03deFDWAsrXqwI7BaZe//yGrjz1RMWmfttX81G4iDB15xVZqYpasaCsLug0tyV5hu+LN39qJqFlPanN1aTrt1rly+MF3viROEonJHJsw0ZaxVhN6kc0vb9vTVr0F91ZZ6x/Z9eVAGvHnojz3a+mO8/dUNvFm99+6Eblmvdoya/U36A1YuNhnaMM28t0CzvJZqaeRIRgtrEmpVedO3m3BjX0olFNKl6MPcfUh/eYnLHC7jYazvWKIN0cLRws+mLyw1QB+fH1qBfEb70Rsu0Iu3PPExQ/eEaKjV2jibuO2Babe0ZMwRDhfF9N1PEOjjfXpdDCt/juqWPau4h7VPERfH2v0L1yv6Du/gkTuLV5SA0i1h5JG42DulUGajBF6ciDeclvliV2ykTzhPUz1OTLzsupxdp3NeRiMsPtoI7U44ewm5+b1xHmPRfi/WHne9yy/ijRpjtVH5aTbfxlFmHkdRHVhfccTQH3tMC4dA5W8slCszg6M/z0XLBTbTRfqqcE69tKp7uH+UBzKRcuwuX2gA3vSljPb9oWWtdvqLXavxn76uMKPhFOFz3dd/0USA0EttUFWzNUERnh6sM4FyqRyd6PehE+R5QT2ce2vwbUSV4noXCoEVU1u6r6/HHWJE/JRWw/Rl3vTtHU/ul1/0uUisVjECCvVSJsNtBHZLx1FgzH2CIyjH01xp07AtzThWk9666/K4UNmzLdL3pzr7OfHk/9gpFRfadsPO+FFZwU9UTVKtDRZN5NG07XnYUNMxz0yfW2FrodJAcv+gfN3XQhMNeSRi1FNTO6ShQihz4k+E+fCdl2hhff9lj56G1XX6qvCFnQJDRabQSPnk5i+Jff/c9ZjObgy9/ge9mZdAdP1eO/cy3CcEwsUkrpVn9nkZ0A/XAJ1Q+nho23G/RALf+OM9cIPebddA7enxljTSqMJb9OPcjb4EP4r2Gx0SZhIpfiicOmekqrUXuky91bxZn6CRvR+A6H4y9fY+P1wNFQd10LgrV/UVu7QUU1W72ByB9CbDhFqffXs2gAw2+DRm1EOhK4OAbv+31hbVj1+uQ2Zivl5ljgs5Ls2LgO8AUwewr0lz/ofJ0AVOk1Ud+9zt0kXpVWVh6jh3cPc40Yv3r1UPShQS11PneEVW6D2mo2gkYkjv7zqxCTrYkXvZH1h2JYwRVVD2qGNmVEsRnA+gY6zrZ0HU0oN49Ax0uObaXC/9bb/VwtAnRTZqN/Vi7y4sd++jKaP3bTA+6EHcUbrCB+kL1eyjeSjgNkfCoiEt2WOWcycZ7Rbdc3V+8G6b3YYePQp/qoXBPy8ye/eKhmg5Uvud+5Ew7aovCm7Ta9IS2jCrWeu3c1c+9+hex29cHqUn9GN/JcSA1QSHxfyWziw/KGwtv7E8zP14CG4baVEHaDAO/HhGQjaZwAFWh7wnsY+272nucQolv7IQiRM5u3xzREvjsxqnz9vhsfpmrBScIn6lyhYvM9gCPIu5qQSmGhLsRpo0C8ue+x7x4u+lfk78EvHyz+yu34PmVHlLyOWcDHbl7NvLkSQLLVSyBHyoXRTHeOsGKXhuJJYdmMEuRDbl4natty4LHnePQRvFd8AJluMv4e73p0O+gjmVcl6zpnwxHEVZxHHTIq0UazXA4xWznQpV55049vxHmW0f2zi7qpiUZFvsfuhxoRG7yfXkTqdeVjP0FeNF6PZwm9kxH98mfHTqcxBMU6ddTwnt9sztwogUuIQ+zbFy+aWB8lG/HtnjBe/EIfuyPInVD6ZM3bA2JVZF1Ate8B9QWN6X0q1ADdqv5ibVkfmiQRACtoTJ0l//F+X79Ai6acWk+seILSNgSyIgyx/ZH8aJJfjovcJJvJ0FvXaGKBYsNzrflE8LOqolvnfZR3Im/Q3Ulz2GjVd+4XP0TgUelNXSJogNH9EnRpc+74t5MFy3tmX6rX+raabXjd5NYNGmzyYc6ml3kHeEj2Ewft8YqaVFQlOV6LVxwclitYDP4ZANs2LjZ3vVbNp7uWyHLw3dBddafR97PnXKjLnYf1uaqqeeOeR2T5VUE1urmg7uitXelZ7xJC8+yVfTcn7yIt+phGURLq04D2y1yyriItWW+88fjqfGnJf8H87puoC16tgvQ1WDQcApQNSXNtUf/AAVVTKPTZPDEDdsX8ocFyt8MovVAD/FA+6cJjsrGvmuP20rQ36oxbLZtVLw8l+fLSfvWGMefcSr/8STpbbxBL1/pK9phl0n9+5ZVrkPolw2Y9rLoOG0yS+bu2wZpdQPT9EBOAZN8B66v12E1ZtLzntnvF9PB21t1wuEYiVNUloHuy77O5RM8Sfvv5uPgBvjLmI3DdZYWLt6ZHi58w4Of/dM/os+G+YQb66dcuqRs2avd1C2aayTg4Dy36+X3IraNLhKk6VkyzXAG4FsXUaIuk47vLBRDiYqAZu3H6WHyuBXx4X8PWc2dWk9/XNez3VwWrQYz+8isM7TPHzj7tdLbPaxvyPPlQQ991+o/HwKKnAlG7QbfwjBzhLrnTvcUVqDHMJkEyLpc5iSs+Gpf6DWGt2QFA5nqcrlYGIm8jwGf3Y+hTvQ9z1Bf9nl6UirLRwXsJcrL2sZc256oNx5MCoeDp2LiZk96/j50It4PoBMXmce5++hUWvUn1UnXZ/C7TFapY5eBddeLQeDlwAew+/Eg1fzxEnyoKLkgOljOr14+a9Z0sBLDUk8X/P7sxshABP/ZjInI5p7PjUElSOjgX7CuB5g3L8wTDLgJ6WPTUXMqNjerDrQ6k4rbxJvFqN9saKSpe9ANr5km34HOzw2ErSE5HLylIEHneN7g8yhtb/AJB8pl+g5JuLmyK1OL4440BV+cfNEUPdJPhLp1J/zmLGRnTV/7zX9RoPg4bfvny5X1qslme51A+LU5cHWedau/6Vn0erl/+8g/hrkB1clYPOWruyAhm8dlH9I2OPVCCHsuNNm/U79wefv4UK4H5QswkkoDGZzEQ1dI2iAgOZ8EdTmsa845WCc3nUSN59yL4OAdPbzps3z0ivnIj/K4vq2l6sxHcXFhRV7+V0dg9Kg2imy3j3azgjh33qQVlQyqMCU3QRtHMFyx6geqHu579+XPPFg16lz5uN1bD1kKLnwn6n17KJ58g0z1ohDXpf/NrcKlPeOF5Hp9vt+THG7Axbvfd/C7iBF5xcf/T51vXkW7ox3vaPMPVJBy/BmjePln0x4ONCbU1kELA1N0ts/X7EDfIkNwdVtYTyuaBywl6P4Id9bVdwDqh4AN4ydTB/j0uo+n3/3DH0x7j7fHsjcaTk0CvVaC6KARo0i+9D0Mr7anJ8CYaWm4opSQLvmSaOjGbngqvwNmX73/7aVSQnkOzHx38ez6Ts0Pc9hF+rGATzjGjbtbYsD+t7YAv+k3WmUTiYOF5dMcdeo8ecdjLb/HCEXmpL2P0DiT004/x4jc2gz9zIJ+HL134ffTTy7J3uPl/z2906bmHpd7Tn79gLD21sCVyjf1jhVgzhVMI9x4bFOf7XB/WFh9DArFI7Sh5MVYeWwKp/papcyX3jira/oWGctWRzaIPWTkv0/mDaE8ISeOIXM35gpSdb9AsfpzYplHnRP68fELma/rqJpUXNdTVWomVF5yraXyHhrzwwQDdvg+v/+VL/S7nGNfvoeuO3RCip7He4cBCd6/tppCgSD74wS1ssb7E9wr5Ud/S3fNme6RppBIWnozjeZaiQbp/a3j60jdYcayLRv805D99TbVIHarR36Q+Oq/eCfar07cbsTyNMLDbiT68i+SNnbzyYT4ts8WX9dqgfVmAKJMbNZPD1M1XU0rhp192d595gin4kmS930fClck+2hycGwchsd5EWHjqsOQbuKqnB3UyudOnUe8SwKnAqOJsVt3s3FYx4ChU8FG4uD99YUM6eJdAXPj/MH3mi6y9DjZW2dxFdOHbQAa7oxFXb9EUV+IyB3ZPqTVVczVpyfv1Vy9+fKk/H8IS+iZSiPzsWPVd25cjPIki4n1vXbPJeroX9NufcKwyNF7Po4G+s+1h7R5f0PR60xkyOr6D9fZSojGy5+UdxsolS/3PhvCUt1Ce9++AzLOO+NpZSbCsF1VFg0YDR64Aaqm0pMi/fTTeUsH6+R/qlvc8m0dx3aALfrX0ejNNxv94x1IvMc4zI5shHXOwjNWA989q69HtN0shvN8UfBZc8ccfAa208Eqv4/Rhf/pq/O4KasZhG82lZNVwa3dPatHS84SN+xjR4ufJFJRP1iqu9EKKRVL8V//vpLz89W/8sMXe5OwYB4cHybE5BaPHDL9M0aJngve2IdGQX4wVbPOTit1X7+v8tCtq4LTgSKTNIUXcULuvP97qYpFmZJfeNLRxkox8zVBlU3Z4X6RfPJtT4lat0JqSfFLKNfaPU/nrT13QcFifqT+MOJvvPt+gbvX6BjOxrG7UnwdfftdIoIFsUm/KMBmhQnmHnTL4VD2//YYQPN073T2yopo3+22MHO/tBxt4PvXJuH3zH+8iZJ4rNis2gp8eD/jBf0bTyXBfqEo5Cx+6RvOG70ykH4+kquh/2fw45DWcpNoI3mqlsC9V+35bodUJB6X1ZEMPhfKrDzhz4FTN3aF9Aay1mtpWP1V9lh7TpUcsYTeScr3/XqmN0nu5+/Ei9se78yQAHUDivzOD1eHleNP83Sro1BppwDmpkLFF7yFVefbBKc9SNG96v5D0+zon241meEwekwYOnxGCInnoOiv6eAXrlXEkK4GbK0ISvfjlU3xST1JFlLYg8LyrL8IvfHwsv4hDLZd+f/k4owvPkMJTmQdl9eZ1etN7AKu2gAYZ/476scM+kr7O5y9+2/IKM5xmW/zHD/4DAAD//6RdybaqvBJ+IAYiIAlDOulJELCbiQ0CIm0C5On/hfsM7+yO3duFoaq+JklV9XwQ+OW3CXYk0vrMbAQO2l9xonu6R8YMXjlSJCO/02dzHf3qjJUKduVkUpNMfsnCfJjgMzwnCAZNni1tn/KQbLGLpJXPjaIgeZBJ84zXOxbr89iB7J2uCw5oezfGPTdLyhdOW0J++3O4bjr4PsIMo+Ng9NPqB8l6tSzYFL0W/PwB+NuPcKuX6Yvqmw1/syas70VjP7xR/E5P8K+edeJg5lB7twDrvAvZ9NQMHmwEZyL8kef7BXn4BMx3rZLpOdegO0LpCQSLIhrIseMLP798+7GPWF+QZrDpeNXhZQ4qbAKT++N7Pz2CjeEelYs2+jpc9TSZg7JN2CKFHpAyylO87g/wjLkEcIXErXii+GznO4HMHUCHbqlT9etshQAWkXenq19rTG+30yFJqwpbW/YtlyFpEVz9Y+zqu10/O3bkwTK+yeibyjQbW14TlP/rTIH4v88UZH1hU5PHoF/UqeGB+DavVI13CiCwhZKcHC1Idf/y6Cdrn0WAV4UDdc+xmQhpmUZKs9sHNDynlC1hr98hh84B1q+fymCOXJyUZYpSBC+x1i+XivcU+PhGWI3iMBP0+bLAVmA9abQ29We3jCbFGd8CtcNNWLaHrKuBHeciDbPeL2eu0zjI3EeN8aCjfj5kRQWEiWRIGr+nftZvnQnN14zQezdqhpANHoTZGcnU+74+JeWHlw6ubH6hbWjF2TyMlwIG386lbm/aTDxwsQ4/4pzgh1EM2VRfDzpAud8icja3rJXuaQTtz+2IXXKN/GVaPUTN/4jU5w2dMW7iOpiZxzs29qXViwoYaojxXqSu5x0yNvB7BB7xR8LanOxLsaBjBVUmpCRPol3/vdZobZ3bz0Tu/bZsQ86WoLqNDWyEtZUs5+1VheHn1FDr+qVr7zOHg/H58sCH0noZ9DEeF1jC2xEHz8/Jn7WUOTCHuY8f5Y0mS5hyDfyKyQuHWd/3i1f19S6JNoQGdbNlrPCbGxSh4tFMPPo+8zU3AlxquvRpqp3R7DdDDDk+dqjvDRGbwQM6svca30R4dDibGmPrwbMnaVg/7nJjUpPmBF3Wzdg6gL6fMzymsLit89VsG/UtwvcF4vK6x3ZOlZI6+0sKnTStqBNeRMbsnXwBkQo+OCD9tl+2b4Tgxalzsuuzsm8WcSOASrZ4vEcvrRwf0TGGdT0W+HgV2769VIcITFHl0sszIGB67s071M3LAbul1vjUkG4FeLvCgHbbG0xYXZ8LsLsnZyKHeFMSqXmsOW/dSeVplT96MZBgxb9FIhC7K5dPxxogF7cYY4l92AzDcyR/uudCUSfsMhb04+lv/ay8AWx4nQ7x7/vQq0o61h6+zn33uUWMbLfrHh9yPzzMLk2L+LtxL9vr6xbBg9SFZCpHnrF+FwRQ/ZgmEj+Poy9Ep1MB40J74XDwazap4XyBz2ZYyOHxLgy253Y3KO2wjHYC6/sJp7kgO7NokvWhs2XeLo5COXjD9pOZ5VyWs7yJkwOm9m2qWG/x/hN2ot8iaeaWhHTfNIduPidoo/ewny3/Y8KdsttTV+FFNpx1c5A3hn5Z86EAS188CkjI7UHNbdMB5jxptXudwphMl2NoDJO2lYAT4ROh63rMh/1pgq3PddQ/mRIbXIt5ioSFhmyEgQOEz14xjAvjReCL+yRz+vCesPKdDz5P24cx47ytwdx/HKyNX63k0wlLkPqyQsOhKHqq6VENb6IOED9/fJ+9yvMESymxsZpE155OIFUhHfOeqq1rGszevE9w/T0IRE7uD75dmuAqdAqpd6+4nMObTuDLnEskpu3TJ/29ruA+UXtq8M4VzJfqEENJblvqMeRmVaUfY0gHE6Iy/S7lpCrpHZan/krdtr+UbP/ABBjl8KQ42JbJFCaTDI7l+YJDNTSzCZs+lL8tx2F7V/PJcjtiBG/zi0NcarU9nafaXPtq3En7+FyNqU4KC2L2MbGRfZ5sSYiOYGDpGfb0nW+s02Q7yFEoU4+r52SRN9GibMb2ioS0uGfE724FENT0Qa18I5bkXVY8DHjYUfWoVmzkqCTBTfq06d66a2Bh8Koqim4+6PGYj2DayWIN00+zI+/d+PbZSFEgC2GnUJ2/MDaTM9+B2/EaYkOp1hulCpmAHl4rHBx5jjHBdRcoXEtKSFNXZWcs6gDfWZxRZzkiY+LTooLh3mvxr34LehZAKMYnl1rLtvBHQK4qOO/4CDv748Unet0JcObuNX1g+AWTbRkIRteTim33cDKmLtI5kFjpQK/sWSZkxTeopXpClBXfpv64k8H2cEFUq/ylnw78k4OGbk7YKQ+FP7xO1xjY++BEY21SwdbcIwRv7XBDx1PxTui1V2Rwmx8c1ncP29/KBfDAWs8RlN55Mp3OeQV1fZ0NoaaWP3+6aIFLpljYO9QgoXXoxLJ2fOpku9W2BmUQyNB7JguZytPOb5/7bwqr7aYmI+U9MN25TwFIl2Bsazvks1q/nYBdCyb2SD6DAbkelB/7w5kU76Zkf/GXnPIeq8C/Z2u9DSDh6jshKOHKQdi9CFjxFNvCYe3l9HlEcC9YDoLnkBgT75oD1PkFI1B4UkK2w2CB7eGGsPaaT2xSxU8O0XPcUR9cPDDznyKF0BsX6mVXyx+uTl/BTZTusHXl/GRO/G0DZu5ZY1+Pt9l8eF9z6M8UUSuujYTlZNvBo9h8EMCzacyhIUhwVAuVOsclyWaZXVQoz06B7Xa9h0xpFoPHbirxqaZ6yW9vhxyeukHHL1uXkq5b5AtY4xmHQO6S3/v+4w/OZu0dJ8ySAxd5PJHlk9pg6RvzDs+pnSKw567JAp4vHQZR/1jP4U/J/LYx+uE3irOtxOZbNzkKL+MCm27XJIuwJLryFo8BNY+TDaa7ec9hAfUz1uFCk7ZfSX/tNTNSXqTPpm3u3CF7oYJq12eRkaLNlh2Oyi/GxhgZ7ArjBfaB/KGWLL0Z27OskMDh9Kaunatg+xguKgz1g4/RVwrYvK1vEdCVucCOFl+yScp2l9/64eDFfTJ2EUoBfpQ0oj++wr7z9gb3ZdCRJdteGKlexwV6pwFRa78d/NmLmQS2qKDUtZ5jQiWcN8rJKM8YgW5KZustyfB9qSDFIlmyIXAyHbxOOEYrHiWzmcW6EqRLv8Z7lsxFPJryN5RCarhykYzcdTRBwyscNdRnko2PujV3im9PdMVzg8ot5f/4x3n5OD7zhSyCH+FcofJ67Ax2EXpeVkri01A61Mmo3wrrV58JSKwhod1Yn0DAcx02TRiBkYbWsMMGtgg7KLovpI/PCY5EfyGFiV5P75JPwFrvcFhfMiYKaCKy/419JEiPl7GI412FbaNl2Hp0NBuQcVdBFB9TtFxRk1BqeSqg9XuzxnOZTadzU8EkUgjZ7mhQLs8igLJ7rlTs2nkOKNiGA2AHSac3vcDJEmylG7RR2FLzbsBywqbByeq9bf7e7zSoJx2i0rCp93VcML2t6rTrRLdFM1C2bNCGTQ2L1tut9VHy50f0iOEurz40WddrftStBZTXTaEuJ/TZcuszHc6uckMsPwnZYr5L4S8ef3xnBpcQQWET99TpYpIsYxk+wRpviF2PnjFtUBpDJz1V2POTup+FwUXgVNc8tVyPz5ZoOcRQC7Ua/94PNQbYwZeX5vQi3t7JIpdPFVzEglIba5r/x4ec45Sg4voxjVm9yg4MD0ZGvk7JleOnevMwdWsHSeHlzMamdgm0EW5pQK+hMa/5BcqOq7FnRxZgPY4s8Pf56+uWi5ucFvhOjA3i4KUxBv61elwdMxB/v10S9jDejWKVVbPyLwtM7VGDUNOriuqfvizZjn9M0sqvqOMODLTe87oAxcgDeqj8uF9e7DrBxDoN5Hh0F2O6zHQBy0wMjEez8BcFuAR6lU7JNlqEhFq88VQGIh2o/9xGBn0wk/z0xdpXRTQGm25S2JM8oUfuYfrLBuwaGOefCQfFQTYm8nAI4Djq/dN7t9mFUAObLdlGmdzT+7cWoAg3HvXK+54tam5AaH3UMz573T4bxCjJwU/fBYm09nZ1tAji6P3F7i2K2DJfNzcoeYce+8WbN5gudhXs3N4lDBbbjPUcc0BPigT7C4ezWXu1FpxxcaZqP/F9f+BuKrDKukEyOiQ+LeingloxlTTb0HW+rz3wQLwzn5T3bknm3aE+QSnSG6wlvZg1wgY10IpGj/pZbrPxdfint1BO75efXqyVgz7GaGEd9OdLAi+QP6gRtftQNZb9feDBgEiMtkoWlRNXSh6sfO+Dvi4MAcPv7wnuDHNPkyXI2ajnVx2spBS7V6Qk862TPPnblBjNu9MnWT4gKpRCrhqyAYbczxydJOUpPnSqu47Dtiu+KcvtfabIIVovnqqvBcfgMpP34134HXi+VIjirYMPn9Dy56pteLiESEB1e02M+fq6xXCZ4pRqr3mdffJ+TnCv1RAbjX7LmN0+ciAXl5ge/A1LZjc0ObCuN3ZCyvqV38TrXVeM5lzwEv5+y9NffcaIPzYJeRYmJ//xhVUvTAXgTn947p+WKWOGoebKql+pFl2pMcss0mF0DBY0f3mhnwE56AA7k0G9kr3LJSe3BYpIBaTvqoTx6cEdYGMZFMmnnvS0cXYIbh/xhkxmEAIB0pIHGTv0K7/SjSUebzFsUOyTpq1OYGo5zgIw8RCRxq/QL7cb58BijGwijnkKiJ6ZEMo6ShB/vA4GU7SsBr4+bf709+QnKoQHS8ipsQ88JlCaRYCg4IkNV9azLSXSBTKsl9R+z7M/rPEHHbL5UJ9E4trkOVXBw718sOW+J6M56wGR60+yzpNVO5/VoRNB30SEWub9Dibk6lBu24f380f8ruDnDo6bJ8JI0oZs4MIhhXUnTNRbxLEnTChMOJ8PAM1H2yp/9Qoeb84ep27XZCwUjQAwKdvSla9k86e7TAC+9A3hgtu+F7I61SEXdzeMzwJN5qd/imDHeUc0WeyZjE//Gf/8E7Idvruyo5vJUzhD9sisct9koEHJK1qxlIi5cpEtOHvkuykkHQGTavjC7Wijn/6i0VE1GW96caR8AhjjvXRSkkHMp4vyi187MVU2n3Vaw/HB51g1noKxuMlzAdJ4dLB3Oy/l2B4rQZEerktVKZyMRU1rC4qRfMOqKu7L5fllElTx2aaOvzd8ku4aC/qHN8aOeHtnVOCy5U8/3V77zqB7br4o97JtiVh6asY37mDKK78gM79xy5VfdjC8qDZ9zmpurHyYk1f/5c8PoX/5lK/87HHv2RTog/nTT3TvGnHPTupbhsqsDtTjlNFnav1YAD8HGOtpPrGpVk4I7rUKEsg9rv50N9NCWf0J6u82WTk9N8cnBLk5Y6Nz38ZwEU/kjx/aY56yWVU2KfBjjkPCGj8rv5XhFESAHofvtWf2brlAGiH/h/89u+raAiESVWpoeQ2mc9zWclhKO9w/t5Pf9/hi/vQ81sfzt1wbSD7BzS0y7MovWhLjtOfgB8hvbBG76ycHHAPoROGJWsK7NkhBPQLXeKGIVhEQK8F8wkeqfekVvA1D1LIvD6v9p8E4K5JkxkefwPvp6GDNTHDPXPWawgPbRxgHXl/+/B2Yxiz76Uf248/gtLxq1B0U0R/ZzXzC/PokdD98r2XfGQuSv9dlg50+1dgcHVkH68Y9UO886r5Itx8T7vNzgN3tDWY9ODiFnGwjsN7jfRlTEetIWfEdI+HzMFgqexCoT/uMw6Tx2bIPMIRYY2ci98I7mx/124LPzntTfTimxqQZ/hNczEeM8VrPp4NXCNDfdw/q6CoGi0PaP7z7w5Pm5/f8+Fo2qaXfrP8Pg3GjEBGCezn/+MmPb3vFjIxl3soO1DRvS31oFf3w4mm+e/RqQsP0VPbsDDoBhLwpoQlX255WweUEP9k6/3zc3Y3OLVkH39WDkOUuD8moGiSVjSR/4dV/TCZwYDdF/Vgm4bJs7td6WClrPKHh5Mtl44vIkVY/ltpcb5cLr6u6fCrpiQhc2PkDQrMEL4eZUS1/oZJIBbFgaPPrGV3unTUvnhagpapNPQ96gImmvoDFn21smJ6YjVLhB3CRDBERU/X8ZfWvAMmKDWqXfeovn8/KZ8rrnqZt0SdzcbnroOrTCt/jl9BPGbMbOHSzQYZE2rNp5SPwsM5+0aR+7BsuSf7wAevalIOpcSsLjpdDicNzioHQS20Kn07ByOLTa7aI39GCusIKamrRAAbdABcw3Z8y4bAmGLNw3N4gVGZM9+4NZaK9eaeQW4Qr3j+CAxA4wSNwvowdNvzXK6PmV+kg6Q6Y+qt/KvuTdoemfid49YPYBEs1UK63OvjToyzeZTpsretI13zsl5/fwL+qHHvZpAHhvZM6aE/aeW00bzLSLt4Tis6Dw9qXF8q1nuRQjxLjL1+X7dsKwN3Vv9R5v89GF2B7+POzwg1e+lZVxBO0TpGNNk8R9PPjFATyNXZn7GyTW0ln4ahDNUY13hdNDub5es/BoTqriLtNV/bHV63lJKFlM2U9yz3pDlf/kpqitOnHb68Oyo9vb3JOL+ei1DgIEwfhc9py/pQZ1erXDxlVr4ZZjsI8OYqOxAQtiusbw+a5c35+G9WngYJ1P2ABu4NwxKb5Ofosc/IGjpekpNrcvRPy+32pVJzJsmd5ORWxh6BrkoKabdFntBb4C2QeOCJ+jSe60Y0CNhcQErnNnuXSN8EdKOBF/vBfbFHuKUkpBkTM6aOfusiDIJSQhe2uaLLGtZijsMLUsCeUcz9KS24p0ToTYa0HJdGj13pG7YOxUwmbZFz9bkBVNUDi9XwsZ1j2FngOgkqkuu6yBhmpDu3JOGPLYVI5ok9Twy3mntgF79KY2p3twblzr9TtM6NcGjhdYN3xE0YCvIDpeWxTKOtBQg8X5vXz7vyI4ERPFzJaYlryi3OfQCvMPVW3uOyX5MzdwF3kBIrseMnEn57/3psH3bdtaGyLS6rCUthekCQMLps/6Kn+9A4NbrvFmL845KCxdUJqP+8NmBsPQbgL3zZ+DaOVTODcpdCxdYMo/YMa03B688oHSG9sh80MhjnxBnh31S99wEb3hWrbVn/P439xXy7d6N/BBLCHjXn7MeZLpyJQCI8b4uVTkY3i10MwOssH7LbpHbBs+Ag//EVCKPlgYUJnwvBUX9AudBTWMzHg4D2T9jgg6gPMw9kkYGOoFxr429pn5y2TQSYJDd3f0D4TouhbQ98MCAGrvppWPqzITNBW/8Az5mPTnH54TbUBxdmUTrb081vpsxN2Cbv2igQJ5QNEo3UWYzjfYxibxQYbj+HDqo8TICgVkoWvRRdkLLQbB65+FH2UN5ws5+vp7++pHr6qcmnybQdXPKR+5ga+aEhxDtf9BALZ1LDpuOV4MIRxifcHvgW/fAbRNVUpej3njGj9m4dVf6p+eAnEuyI3crq/y9i52qCnSo8JUJZnhi2u2jMxhIsHv84xoqaKrhk/PaTmr/5Y+2eUjPtTooN7gWVy9rpPMirPwQJ14x9Isfpb33qwnn/5oCm6m7Gy2jTyY9sfqQbVLViO/Nv8e/4ds+1+YoncwP1Hcund2wOfzcJRVfjN8vrlWzKbnuLAd/Ui1Fv53Cy+kwi29vZOOEkbkp/f//ucDP3YGiv/9+R1/4Ri+8ob47o/9vOP8N1Y6mw5vOHt59fR/TEP/+lVbIQW1ff71pgtfzSBqT8J1j+pzZaNljegbHMRX/XFTeZL5wS/+k9//spwvTpPcC/7FttzILE2jvgGFnbpE2E4b8rlVAUI3JbdiDWz67Nf/QcdDixsyZIGxCfZkx8/xIE1LWD1957wAVCMhJ1AklY8fVII7+4bhxfd7ulFuwqQ4Cak9lHdgS8TAwgVfz/hE1ftwYJ6+Qb3H9lFQ/EfAAAA//+kXcnWsrCyfSAGIgIJQ/qeRAFRZ4KIokibAHn6s/j+u9adnNmZuyRJdbt2VVLwxKYgqXl4cJ8cEdI3TMgfn2Es6g4Jtx+tJ/M4mvB3OD2ppZgpm3kEWpB4yMdeybn5mHv5G+rm/YTtrKuNVT9edJjVU4bd+DEE63PqBWhUB5VayxgyZpvVXSkdx6SO/bNqdvRUVZGO9wbtv0oXDAKXz1B+vhk2oLQEoxf2Jgwudkj6/hEHtGmeb1Bn3Q3jcWqStlGyENJHOv6rf3TVae8qk1qp6Lvx6Ssp7RKahvzAUVUYAZN3rAebEuAgr35gUVMDwTE61vReM20Q+nW9/vHZW/5l/vEho6LDC8OBc3GH1cgsCOQK1lhL557NuZe8IeW4O1rdZQqYbbZ3WKTSbeOjz/n6ksQWHPf3hUYbHyi0ULzCYJkQej38JlnFd2P/8bE4ypTUIOFzbP7Vc/T0MNZzLEfyX32AetknZCyEOgL2LHnU2fhL/q/esOE17HxtKV/eoeDLR6bo2DyIz2FuDCuEYYbuNDTyvl5vz70vV1bwQvLhaxmHPz7/WuM3+Vqkz5fXZTTBXz5cXUeXMf3wbv63ngLxv/cU4F2joaXsnIFnh4MIQbnN/764QTDWrR7CWlq/NOCXaliWuxpC4SUBIl8yyFannUwYBIpGvcqojblaJB6eXpOCTdJdkmV2DaIkp8sJrSvXDiTT0l7RslnD8X5PwPoZ4waWpiEikkpOvuiOKiqQlDKNzv2Y/JLpfIe6CyMarvKVjUdF8sEaNw2O1E+Tr799kILl1jgEqkEH1lBGHzi0uUa279Wrfgk+kB3NiPrB5WWQk77Zr6tsfcrNbhjD/T2DXVPW1Hi5VsIrp/QOnUW1cNzFA1jt57EA58shQ5fPTsj7JDCP0Fw+Ks7tdhgW59rfQXvlINo/gG2s3dFvoFw/JwRfLAgO8cddYRSnHkXvrxlMPlpXuMz3O5meZy3ZT6fXVZGuronAc9SD9cO9VBhrVUW1svvVk4TrFj5ty0bMNAlrn2Z8hPOoazQKdoeABd9bA3U6qvgpgJENmt6+oSTfKcazRYY1aWgKZnX84fLQb32t1k+F+ZA42P6SAUzfg8zJWVkEtMx0zVgDwy3hFI4yjZXjE6zf0W1lOaTSdv4i69ocyrDCmkXtaP0layWkLhCWQ0HAoW0G9hwuPRzE9I29qj3XaxF/EMyB6+FHZL+GOdyPR2jaFxMHO/OZjMOMdHgJ9RP2LUcxqKrLBZTP48ZpSjs20xRzksmUbps3zgKm6dVbGU+PHep4FSfzJi9Q7sIUZ5XmJHSVQA+v6sPDz/PW2HpSnRmMe96jN+ukBvuiDD9wsYISyYlsBkwSe152xm+O/eX9rVl8klNADfeF//RheaYFB2eJfZCy+mCYRLuFMJqIThi9joxt6wVNd26xqc/NMFBjSEHfnBlVawUP69ynAiR++KKG0hUJ0+a7Do5XpqAh8W02nUBSwg8XFVSPn1owN+U2D3Ssis0efvkSWlQF5O7q1EnEbeTrEI2wr6FPTo1xBIIQtRyM+w5iTfh8kska0hGGt6uH/+xl3bJPaJ4Ih3Ex8WDufkEGjLbd7i3NeT4+Os1UgksGNntx69HbadyOlh+JIrt3crov8RsUU3bG6Odn9T/9afQ6I7uFyWB5F2CW8VVA1Dk3KWPsl8SAvfMLxVf3nc8cBzj40uyU6h+iBXzghiMIpJdDOOlKGH1bQAdt+uCxtRfejA3P7gopjEpqGeQ8EFjOb6WbLikZVOAE80oUBG8PSJH4vQzGDISzDw9tccJFnJ+See8dG3gyVQlv9mbsqzRQoZHiC/UOu1++3CSRgKncfdEupBWYtvVD8xHtsZsKl2FxXwcV9kK4p24Yh4yeVGeVw4EmhNvfhKFba1+UlaryaGSfejbCjdO2GitDc9eFA1OKzwz3QXwghyIPhnnTbwBmeU/DUgkHyvnmHRbAEskHSk9jPT0+LdTT1KHxu4RszZLahvU3eZDcep4YCw6VCvftDmAPbpMSKsVHoLiCEZuxWyXr32OA49M+E5ErurxNXy8X5mmxR5LpNvnU5T0En8MxxPj3HpKV4EcPAuJF2PvOzrCNIRKgvnAjNXZyazAtdOy//ZM1NwKwnKIOysoZEaLM+a9enVA0wTNUDuR1fitJf/5KFbxa+kzRN9frX42dVrGSOaT3Zzrl//zPk3UhEcG3DpZra/vw6/0y6qCFM5Y+P+nyD2QXbETzMMy/MHShs2zvGhR5UB++6CbA0AQammLWGGt7JAU4Lc2OYkG2jL94AS2KPtho36gW0uZ8/ecfN30dtvPTt2cVjljbF3E+C1sfZHktXjRp6yxf8jnRIZq6BQcqcAxm0YMKprDN6TGt7WFtj0UFTLFYKLose2PdV/lR3regICxspWEuzRHB6v4skXjjvGEd+ewKi/YQ0cB6LoDtU1mGgVr6RAdvltPM1QlMXvGK9leWBsLpITR/9k5A81brfZqpMxx2yUoNJFk5w/lVh8k4+Ygl5QUwdi5noA/uDc2L+agZae8+ZMP7S4RodfLVWv0ZjJDdUFw3BCytehLAL6h5rCqanc9K/Rag64gCRk/6rVf6il24y/uUehFfBwTrUylTh7jYtcoHWANDLeB43jlkvGE1IfsqieF8qSRsCFFdL/BaXEG+BhLaNbelHuF+Of7zr7tqnILp8agIHOrDHfGPt1cvaIUtfP3EBrUO9YY5r64ZqL6rRNGTWvVSBvcj1PPkgmTLUYLCmOQrAMbxiP2XLoHVXx78336pv7ytmkHNI/KzPcVEZqfbMPTm9QglN9FptHxe+XpV5xlmc3vFKjp49ZKa5hGqRzxg48cZ9V4e0HhwFvPzh0fY5NgJhPOxd1E3PEZjKbf3ZLNqyaiVotcwg3vlKlfOmYjiOV4+Ox99hp1IEfl9OFKvkQR7CMbbSCNuFNhyk2aiUN9acHjn+GR5SI8RWtS18DP4kXq8XqQ3hOGRUPVrvQADX7GCG17CHrorSW90rgkv6CYjsGz3BCPrYcJ4Z3+p1zZNMJ2e810s6SXG9i2ch8Hz71ew4R/qT3WUsH71Zuh8+4Da64mA+cqaCsKVM7C5trReu/dJB1ocS2gaH5dgFmMvhVpwdfCz5KphPmN1hY8m5ZFUmD4bO+m0/vlbqiEnTJZvktlQxHGN2NSrw6FS9BC+foJDdZd9cipKaPyzN1zgz2BQkm0c84krqOXuq2DxXokv3SqcT0tjHBldwtRWSH3msO1abzbHV/EOHkJ8puZ9DIxV7+464L3AJ7B+P4MtXmdAAdyLmuZjSJjZ8KnCd2qIE3nNggWtfAtj93ZC+2BsjPnK0g9MjZKjvjaYyQe9Kx0eW1qSL9XCYDi7aQ/3Wbvgv/jDJrlqoKdKZxrVMgOrE+k6jD5DQgQLf5IlgJ8jDA8qwWoW3+v9Zm9QsU4R4Y+7pl4+vldABcAXRoP7C+YlubtAC+4Omd+4Togd5RDuA3SlmpMoOZlsTYUV7HqsU1U0SOPUK7xw6IGt75kmPSzFCoIxH6mnesRY5Ffrw+IqjTRABqwXzjq6YFbJD+NzXLPFUgYfkg0Z+ebrDdqi+0B4ec8W2VfLp55eyWIrsp8ecXg7brNFVn+FUvJ50Ji7LmyZTq878L8YUbuU9gFjUkfgIGZvtJ+pODB8KDlAUXel7iKT4B/+65q7SbXwphr7ojQbOHH8D2/4xvjDq3ItjTY+LQ85YPFuv0LI3XOKzyIXzOIkZPLMxSMOEr9hJD9oNjy9hpIGz8ljFGoagSU9x9RmuzyYR01s4cUpemyFpytYnqLEwz9/JKhOnBCCzy0kPnqRfYq0gQr6/Q2X28ehJRt8g2X1d4ZJG9TY/FyqZNTVWIA/zw8oni1Uz4dPt023wT/EbAjr/upbV7Bbix+2N/mv04tT4SlLPihhyi7pHRlUcBSjFaE64JKlCAQXMJMkBLpkZOOQ3nS45QvUSpxDMMGrXihfMBnY4S+zscRdpMPsJn6waYe7fDQ8WsJSpiH1RSUbljKIY+VFlgv9ky8xVtIDf/652PHDoR4v16D4ky/d8HC+1MWLhz9hnjHq1b2x3M65AIp2H1E9ugpg+YimCKv9eEfMCyswF6Ar5FJrMZGUcTSmpO1cKIqXFw5YLwRT2Aci+OXPrWdZCbeeW9kE0tU3SZfa92SW76utPF5LhDjhPSdL/9l9gL4aAYHD8wfIjVwzIDImY7z5lw1fcOBsvUOqDYEOliSLR5jKfoyUMqL5tHfKGRRTeqal3f/yMUeeCCctNNDvGS814wpVhsYjtrFxeRwDkiW1qeyzfiGS+LkHayjbDTDMk4DkeI2DOXovnHLUQIj2u/qXL/NeCeG1SgOKpWVIyCN2M/BK8pLsfz+dzeLEZVC6vyYyfG8NoPltRNAy+IHGzigx0r57KKeLU+OIm8p6LrN2BG5JXSSmwqUevSkq4YY/CIj1FGx4rYApkrINH5zYIitGqPzJQ4vtz7BIr9WWnqeHit3yzSf9dr6wf9YVti/PAfzhQTBil8eR5YlsrOVrDzc8Rk3+zCeLbe942KZPHomg8cGKf3oK1w+YaXTHHGNP/G7/5YtbPGXT6Sne4fV478mBMsvg76s4wj5VO+xQZgVkvbwrWKO6Q7v9yoI1KJUS3CdWYe38VvJV6B4Q1s7nRvjncc9WK/rKwDyxB/nFs5Azi+50udG/+3/5+1qPXAmDmKVECLuo3l/PhxEe5IOMpC2eEft5LSETeBUdqrsB9iF078CQd/5fflWvwSxtF91eNzRmOxiM1H/d5c3/E5G1cr7cZ06EChD1jY8wglkWfib8HvMO7cGHGitOmQzB+Xcn8rWkxvwCdgGHen+nzv6pb2/XNibMznmB5O5bgLXHc6uMr7yixmLf8lmLWaj88Qnp4/UC0488jgCGMUHr5t/W7qh/wIuwC+J2FsvZ8HxdIR+NC7Uf/isgl+I7Q1s0N4773OSTZ8029ONtllxjzICtEmhhDnyPWqerYaySGRyBd5wv1MJuyVbJNI7Qvm5dbj5sAZvk9gO6pqipZQq/jf+wP6Baohgd6lMHVqwf7qDvwR1HMbONxbNEEyYvlGAbKMPQi9nQy2plTyS322CY3dP7rvgeYKS++TwbP2c2K+Tu60jBym/Y1hPL798ioLXPreH/5UPtsJtqJvlLqtjhwUNcr+6D6SIXHygXH4CxtAQJ+1QrUjb9Q0uvdwYjmUEgHrwrdhJpNpZLubwVKPFbj9k27bOPBB68fnKDddh/62XDa6AJ2g99fHU7mA0SpuB7vHVkTcMvW7JQ0cF9DX1atO0L9OdEUeF7jDkirEcnEGRDyqRm4mdq+j5mm31kAEoCTzEqedb1B1uFtnZfqPreP+qFQ9wI4f48Uq248H/x1oUfy39SQ0BDzpIccbIPtYpiAYRgvl6kSt74CezbmBrz10iugFaHL9oJIGTjvXrHyrNNYiImXsyWZT/EgJMKF6tvbGz+8tAoF5TL2Lb2XE238wQHtyNIbrxPsPgvD4Gnrf7o+XvG+bLWKQ9Q8PjS8Pc65Mu4E1Zo141CbdfSgRCFhgvQ25XxJ5tiwDJHnCE7+iPG+5UZROgeHNhnnxiH5xNm89N0Myg2+oVI6P7I2fvqFdARNZ6GliQYPW/OSGmC/kN19DoOvC3cEGxjM6CJ0sFkw3MuvPFjjTWzOCTUSnMOigYf4HT9OWD0uVkFm75ha8NjrH5l5r98x/YYDqZuWu6QramI9Hy7p3cWbB+K9/5B7bHW63mkbx8Yj6ONH57jJetkazqIkyWgpph8wJZfutAt2Q+7r+sK2j9/jHcfjZ6xy7HxZp18JZBqh0zO3azZ+X5zwfg0zzhYwHYHozkWSlqnKvW2/Hmho1zJ2tQkZLn3OFk4JBB4FJsKW9GtB4t5NBr4CY0j4TCKjXGLn3DDN/R4mtyAneISgYT9IHV6W63ni6Xof/GA+l+1T1iyO4kQ7MsCq6425GSTF7zsA7LhYzXow3J4//Ej5B/espPZhmNfYvJ22SeZMLqs8DkKEtorJ8aIfnm8//AjWR7VxOghOIcQP5cSI2RdE7bMM6dcfyFESjOvOVvCwlTKyPxh77XQfMLoOYPb7EMaHU5f9ofn5D/5Bt+bzeaJXkNoCeph209Vs5rdG1jSmP3h2XxsAxlBTl95imb+Y1AjPQhwLswK++rb3+59Z0doDEaHFmV3zlchquAfX7nhAwcwmBxd4H8jRO+iItTzmqgIXo/XHt8e6yFgcuOXUr46d3LYvr9E1tmEp+d1pY4fJQkrbm4m+d2YoYP5/AX9Fo/gMoATmc6dOewDOB7/9In0GAxguv+uW48gzan7Qad8Jfjcw41fIdJroQkT9HsFHD/H1H2/wuEginCGvB7f0NwwFPBzMtrb/OIGO8HZypek7XxIy+pOWDQHg6xCM/3jZ5AE6zUhi7WDUH0IGtavi5jMZVYRJe1PR+qtsQ7my9Uo4NX7XHDAL+ogaEiVld70fjQMVDVZDVPx4SPLE+xiX66X5nv/wLiNE+xJEwPrMHgryKlAqGZPddBdz7vxnz/b5Ae2fHUF11x6EUXwGFi6/A1hglX7j3+pR3Ssqz/+CQeZauXrI3ZTaGhiRKTkjROmzjWEjbKeEB8k3bDcf9cUkvMnJ0r6iofJeN9VKPUPRPY3GAFCFeyCvhcAdkCE8n32NArwOO1HNDynji1B/+Dh3TEmdGgcN2Ga3lYw4hue6lS9BsullN6gMj4TdueFz2fahIWsjIZK//Kj77jjZlDSI6NBmLb1YmKph3JrpIQfmMjIFg//zpMoUzOzMUeaLM/S8kFvkx8NWtiLDArgiP/igfA6HWII0Nhu+ZoTrG6bu3DjFzDa6hMrX00hbLpLi1ieq8Pcz08ObvWBv/yDMYV0x398MeCXqh45DkB4u+UuqoQQ18uLFj4Qcs2juLmd6uF3Sd9wldIbPvsf3piSFY9yo//2+C8/Pbj+mMH9o35v/IDGlrthXcH2/9jclyT4w98QqnxGL04WBYvCpgpseAsl3eAme3ubDTLVJSG8rIuALWX/hvGp0Gjx4FdwWMvrB6CnjKhrlcqGRx8ucL6kR7PsqwY56kkF36i9UdvCZsIvmkGUg7bdeXLndliUi1jBDrdHfK17O5nx8faBU10Qqre+BAZq1Kki3tsHjqIRgHarLwFt+iT0wl/mYDlGQAZdczXpfePfl48YinCL/9g15iVZtW4vypt+IYrKFMyv562EJ7fSsN4lbNj8dQmvw1zj6HCywJZ/mLDveYBqpU1rljuPFX6ri4+42GjBtDjSCug+m6gzXw9gKgLBhxzaplb1RBgWyHblHx9IqrRuNj4qPipN3lhkcRIlYerZlf/4OBoBQczZfj5D2EiJR317u9ZBprCAW72EiJfpMcxP8x7DKJKeODLVXdBxiCNw6nMOY7FdBnagsgkDtfDpHULE1n7ICdzwNf3jd5fEzNC/fO7oakF+2HltBcxX/6QolbGxrbcA7v6V//E5w0pfbgj3Ly6k+vMnDMSJfBX2bkv/2c/SEiOTD0zu//Hn9EArH/BHDWLHfDrG/kce8Z/+EgGBV8Cf+EMKfU9i1KWGw8ZHl+vy33lCQ6dsLi7ZGzYXtSSTHsc1FUV+VTZ+BWvh7p6zMfJU+eAOhIZvaILDC85H4DuVj3XcvQf2raqj8sd/XbB8AH/7+YdPTD841P166Su48e/U2/in+S33H8BJpUtW8E6Sf3iFQzgkU0/9ep4CK4bRtL5o2KHCYF9046E5edsspGLKh9uxe0MmyE8aHJOKrQIY75CPyEL97fxZhY8jVI9BiL3d/ZpMkB1KuSZpiE9BvK/H5MVMENfjSMOrg/JV6wZODj+zgZ+4adh0KaUK1k5zo9Ez64y5Ng4x3OpP2I3yZpjb3w/Jf/UadzDpVg/7HMEff3xsX/KwnJda+PPvqC341th+H8LdxQuxazeUtWJOZTgapKAeLT757J76OwB+VOH0A2M2abcuhrmnFkje6medYkEVNHF5QGM4WcaoHt46vCvtG4eBWiV0yh7tH99Igwu9JaPs1i2Mr9mKtdvrPBD7+b7D3ftl48DNRGMZP94KaqcVcZRfZjCehusKqe8sFLmX0JjdWhQgRcOVOn4Y1N8/vpW/2QPiobQzxjN2Z5gZdozR/cf+7R8e6p1Hfm/3+C8/hxm0Zxy86zaZKo3/QLAvCoza0+uvfjorW70JrbOj1/vELBF8n4sRq7HwYgN/Djc8/Pxic8vPVu8sryCDHqYppy0b36TM4PhaEda3etdSE/GoILM644Kcm2T84xu3fB87KKjZ0iShD9srhBsfuB+2eJjBTon32PW/brB8v+MbsPxnUu1RRWA/CtcQ0rsRI856TfX6e0MZ3vMyw97idQYrbEmE86hqOJV1kS35PHLwdVEsqub3sJ4ZuaXgEqonahVrmAuJL2cw9/QC2+dIzNfSQxUYIqvBeHvheXkEYwhS2Y2pF9/2NXvwp0IOU/6N7eZg1Xt+tBqov62eSKv4CBYAlyP8q5+KHXzUk8vY+3/rKZD+e09BJb9mal1fVTDzYF9Bdol/NPolWbAC913AqNzn1DsaPzB2RrxCfOYpKkOAjP3r+WxhXIs36ildlYzg8AzlKt41GMmlyJZdKOiwN5eFOqdkDJZFeGdKlRzv2PvyUc7nAxDgXplt7IiymVPuoXyg4x9UGlzJN1kmqUOgLE42xeolr1ct7ASw0vqL6kMxBqw6rit8gqREfLP7ArY3gyNcWutK2D7b1aNwb1R4XuqYompiCe36yYS2zClonz3WoXfa5A6fpu4S/hRqBo/4SAc9X/D4WpY7wMb+KMNmZ0pY61kEFnh0K3B7lhz2cfnJWRe6MbhSbkXLlfPYfFq+HGin6Y7RUUKAz9ATgZaoiAY+zwdkRvAuDcVRxHqRuIwHF5zCOLRTsvpvw1gOa81D0KMLVX8lAWRchgx82m0+V/T8GLN4l1rY4GKmxnn55DO3v3DwboMQa8VBqfuWZZzUftkNq9PlNCwh8l3AC/EOmy/dZHzEf3j4DE0bp150AstDRy2wWDvRIkaqsa+fQQmOsAvoqTmESXs+vm34ZLiiPr5dcopl2sOLGC3UxkqUsKPs8DA2/YRqzfrMl882PxwstEVcQ1/JUnPgDe/cI8N6deqGhe19EZ4KYmGtFBTQOy1AEPjFaeujtoy1X3YVHEaVo57rfesZHnoBhIfTCXtKpybkK7xKmMiQUq+WgnxNXl0PkLJnODLaZ7Ka3Q+BKJPu+E6NZ/1+SW4F/vQZGWY/LPKxGMFKX1/s384OY9xDaQCQhg7VlyljjLS3Fr5fg4bg3dUTNnaLDV/v44p1szoHs3w4qEAM4x6J6iIyNrrKLM9XxcD28vvUy1P9IcDNaOvrNPb5GMevDLTK90G9+hAawiezOHkKwmjT33DjkAEBqElrNGnjyMafdVfhMOoc0Tz/m3RgDmdY33BAdteQ1OsSwRle1OFHfqckDPb2PJXQNGWMNc3LGM1EVVWMc6Vivz56NTvJSQGqQPtg7GY96AIS61A/8wpiv6bN18NwuipbJo6d2p7Z+Pvq9u7SXgiBh7lIpsc7e0O0Z3vszOBszJwwIJAt4Rkbl+2tqHqXpLCIxCe1LwdcM6/aalJobWi4MJATPlJX5cneKeq6lQTzz5QR6IvvHvvR/WKsnlMT6XUvJhz4QE3W1+1aQN6eGfUHP2AsFVOkkPfxQ8NBaXLiusEbrpS/YSwdhIS1QSrAi6fecLGbxmQZ7uIKzHSN0fo+dmw9V3qo7ChBRPguFZiPsfIGOzoivOnXMAOxL6Bxvho4weKrHuP1dFU86fiiZ7OPwHzIbyVQ1L2CBF17BE3Dlx8Q4auH/SfOjfUraD1w/L2KJHWrEaXVW4XG+a0SUE7WwPynRpTaO7tU3ykzo7DcI3hp2zfat2ez5pcyHKGd3Bm1D43JmPJse2gDW0Z7fYiSxYj5HtjGRcKqxX7BmByzErxWf4/dsnwy5qhWD8PnrOJwN435mJGfCbtv0JI91CEb5Svi5Oktn0nLxbqxtIWog5zTC+z6ozws+ed1hwi1ObV/88uYuf2TgxvRgxR2bAKWZaMIpiDzqb10NaBm3arg/GIhEjb7n+MjF4sR9/yQ5jekAWvD1lSOI7BocKcfMG/+FCrih8NqMnbDKnt6DEUz66jpHOd63oMHka1AGqgVv5ZgdsQ6ha1dmhhTjtULmMMV7L+cTtbdbjYW63QOIY9eCjWmQknmK4lFkGfpGd/qw2iMfGEVkOhtTv2vrwS959Qj7OBuxIYGT/mavjwBwi7YU2N4FsH6FisCQccaxM4kq+fpFTRw/9jZ1FOxsfUhqhU0zlFIo+hD2eKcNBX6Yj9T63MzgoOsHXVlrFsDu+Yk5/Qosxj+bJmjtq4pweJjb4USCCx0U6NPQIlTpvJFxAtWQaIBgY/UGXpLWlHtorn1niMzB4lelTSk0g+sl6fewMNnrLCe3W2DBeVLhN0DN+glDEdGj7cdB+mpZ9jMvXew9Ll4hatqp4hbu3qgBa+9Ib2NCw4XwQtYub5tiTvsItSKicbIN7t9IOnRF62o/NTrZy+oUPimp219r23eZniF3DGxqT9YJSChFbaA57CKQ2lS6lULhCt8DiMmkEoOO2g1DGG2oDOB2/d+vPEUQHAAOjYMcKoZAk4Bl+slphbvyvX3an0zuYjWN42sPqqZz0kzhNqDYP34+BoMPM86cGMtxRrs1IEFChrhT7j5VEuVPCFmR5H0mYsbRm3Hs+lmX2eI7KQj8ib/dfdNWgjiOMPeQx6M+ULkEXrdvURMg0syn9hJlerbVcfXuIGsjfiPALYxn9iVUy3Z27Hbwx2GLuLhHAwC/rgjHIPBwQZm/ND38SrC709ssJo3AWPcUxXgemhLqs8WMpilRTE8nh0NKdrvyda8MEZli484koI2+BdP4emyIL42Psm6+4IC3stD9Kf/w/dbBgK40YtGuEzAYK6dxRTX3WmgHl1IQu4Q3OUNH+Ho7//fF6uBYqHO9FpVxFgtX59hLakBfbrJIxBkzz9C5kQT1vjxWC8aP8B/8jbF1QfLhufA6x2vOHwpl2G5ONe73Id0RQNfhMHqN4UPmPCF1CLxt56DrEDA0/iUanK3DEtXHEP4rC8Par9YZczD2wiVq7M7YByjki0ddOM//0hxa1UBOx/SBsr6zv+HpyZIIx9G3HrF2L559bIK+htUg13SP33rCsM+yutvzmn0u9bBQNpTD71bf6VWn5nBjJK9q7S2d8QFGBUwG+AdQl98MySKyYstXXENgTUILY3yPAlmI79v8Vk+IUHbPRh5yGkKxXp7K2zDFzMrvkew231O1MT+CpZ7rXDynz/fzhssubmkkPTZGxssf9SHsPRtEO5wjD5f9Vuzy8G9wqHeqWh6pXvWWXFbQl2pTQTVlBpzlMIZunHqUvXc+WxMsdDCNgt9atzoN+jzIiDgpT9WAq7Eyqfy/XYh8IMHNc9WCuZLdLjDMj1b1H9iYMx//j7zLtk//Z9ez0v/hw+odpdhPvJK9YH+EXbUep/P9YDy5x3GOXfB/jfqwbwocIVpXwIa3e5JvarRq/zTX6rdd13Onsu7hHhfiFgLPGvgrxNupXX3edKAO6OBF2/NHdpBIlMcn8aa3c6zDEF8zLC3xX/ykIsM+EdhxFpiOGApNaxDw7p41Dw7abAeeqn5P3zxfQNjrJ3Fhk7cWTTIlo+x8tO1B5t/of4pu9bjNTzM8OLpNxz+ZHGY2kJUoXdrr2jfHi/1qGSYgJFZZxyUg530ot+NcrLNX9bOamd0dqz24JmIAb6lWjuMt2hAQAKaS3X7806W1DXvcK+IBkbr75OMrXm//wcAAP//LJ3JsrI6FIUfiIEISsIQpT2AiYDYzIgNnShdAsnT38L/jlWkQrLXt1ZSbNiuw5IO1nGqOD/cIbQTdcQYHaXgu0rJ8NM7Fpx4JcToKj44YDtl7t+lq6Z+T3zQvv++DPsXn3CBvEz7px+bo2zOq1DaA6+0EA7vxrln1/XjDMw0M9neq0rxle/LHrW3QXj3BL5oi7zU4IHtY+wEq6F/L/4ELi1D2dM1wmBYk4MMF37C+30hV5OkBFeIbTiwJJ0tol6VvIavnhCaq5c8Yd4r1aDX+SFDJ5VVU9P8DfDHH9YlKAg1/TOE8rlTkLR53Mi0JuMXgNh+Ic2u9tVSnym8urqK3dEyFn2QrgBspQf7i60PmSJ+mLTl+thGb9yPz12jwM19PzG7O9WiVsgcg/eKdkiyd73g2Lp+oYwGmd1iyyX//MGiNz+9TZYzyk8wHwcbp925NnlxGa/wntYfCgUn/VxLyfBb/wyvVDuQuX6X4AHpV7Zr1IEIX3JOkND4TIF2G4MeZatGI4pDEC/jP/NrZbz8+VekVDxPxruJ4n9+xzEMvWKucfiCIgu2GIvV3lTqtPHhNigh0v7u52QGbJAgXyU9mhu+IoOmrgzYHfYNs5qVLbjWZh6MwzBixm7tEEUJihPIY71Bqk3agJHTfNTLdlgtfLrrx37pRdidKhWt1E0qJv4YNGjVuGbhZ/Wu5kdVTHoZcQkHdfMl0xrmEFrWhzATpCvBm3WrgGV9Y+9aPMVcPlUFVsXJQp/CPVby+h5ZsIqCA5rvqt7T7F6VsH10F+wHjzWYiUmdbTrLDg7z3fufH4LH1N4xcyy6hBMAJlAW7Y6F/mHup1f33UPx2Y/M3lh3U3RB/tRhcZBZmJtWIo8GGP750d1JB2QsJaZBs9ZjyqkXAvlXn6vZ8TG2sjaZNjeawR4IC62zPE9+fAvOW+/MTBPMvXBf+vAvPwhPQZG01YqcwMK/2Li9w0SOkp0H7Er7UH3GTd/v6rsBEnJq2G6HTKFs21nSitIGFK66Zz+Jpd+z4Z5vzF7yAuEZs6UPyWSwaBmf+f00ZQAivcR4MPPlMOFHgSyaJub37jMQzzgOgZSfDbbnzqGfbiOJoWJHF+xEGqqEZtQNeHt+/vNvQFhVbuhgCx9o3h2rQHircYJ5tv0wtKy3jsCkhlFd+tg7fmA/qFvpqMkOF+zHI/PZtSaYd7BgSC5UIGoacJg1bYzEpwDJ+Ng7ncYv2hVprSNVffj0LdDVlKJlvMWgbpVYjyvtxnyzSno2eOuFx7QXXaNqIsv97eH3fHaRqmgpkY8ng0PYPlvmdYQJYdjmpMOi/GILh7HJ6/MBQlt0I5pWUVm1Dj+Wuqk7PgL591PNslxZ21b3KiTm7GkKDBJHz5oiZSiTj8vnvQO+ZzPBgXwfTK70MwLpTXeZ9TLOfesdW7QdenJAkna/9bS42qGmrMMTe+XOUYwdyO96UbqA8i7syWTftA2oNuqJFtlGD96HgdeQbZ8qc9qxJOIhdhvt21gHRnyQJ7M0jgO8//YgLmgU0/p+s2AnP+V/ejoDDDVwjpqQHd6x0g92Fg8ggmaG1vfHrpKP8YP+9Bppu88uEGMbxXptSAf248Vu70scDqTysZfnyOSvW93p+lQZ+GD2h2DMC5+CDOk+NtPhQkSJhQ/tk1GzZzMk/dyR6X8+dy/HMeDl5dCAw8vDLLE3HEynOeKw+XgbTHNuEMFrdgJI2nfY+NxZ1fbbRwNEoypI4vW5EjA3nrpDzjL209OWiD+JepC1jUyp/NpUg635HOIHX+p1dAnWgNUQjJp8ZmlzNRN1aLfWP79irs+rvs3zSwx35zvFyFuFvRDvbIL88/qgObI+Ffc+ooa2FT+Z48KnECXrEUxvK5dGC++rzzgLwVLfqBJor37U2ZGDuFcy7F/SjZh1NjXwauwUun0Bv1fs76cGr4oj7HW3YzW/ii7XlLV1Ybe3MlRzR46NfgAXQOi/vagathX0MYdjkktA62QP3yt4EbSL2BemcxFT5kUPMEXzCIGWzYjZ5b0QfKZWB1/mOsKL/ySipiaHQW5JDNEmBeNh0OpfHseQ8n4HExlIB/CYrlgoVK+f4ujswA+SVzg4cVOs7/Vf/ePbxW8U5Buk8AoW/WD+K/bAJKDuA9GsFXx4PXMgpsaZIOisjLa+bwfU9tQSdEMKUE3+SnN8FV0JX5bhMaftThXtos8XvEhxpWuvwYm4nqdSV9I7wr+8jutOH+rtaLeomCj+f74cFOXC/vaoqhrHVTf//JC502Jz0NfqBEL16bFDcdsD2vFOgv093tAp/fTVuORfmnDtCa2fz525/F8Oz22c0PX1lf/zF/CS30bsV8F9qS86B+GnthfetQNxUb8I5l07snQKt+YUx+1ZI4pF8MNtRyBaf72HLicBvSw89dNTgJ7lk/3yGLGvThn0/MzBpnp5BePNGim8fkYd+3a171V/FdUwGmqP/cZbWNV3D88TKNjfZbW8y7mQJQgLLFN991kJEd4ve0C50bFDfzaBgkv9DtW6qXD4tEywluhGgn9Rk+HD6170MzEbBy56RZlz++tByfoQLH503L7lkXRWx+//5j/XDCa4CNMz9OKzxxZ9ImL8OsaPh9Fmv3aC9fnrOdBwn2dmkvZK5iUf0Ns0eWNXWZWJuKWbzS8/wihncc/V4C//8RBz1u83EdMnM+Ayf5jnD1n1RamRgdmoEMMCymTJEzSwTZ4SgotejndzS/+NnytLJZgzy95ooFDfdKpyZE5R8ufBWHQvujHmK2CtrxtQv0rrXz2uxnIlPL3c7zdUgPQl+KGGFDxP2MPuRlV6bozzCereLDGfRFkyP6od1H957cIHwRRxe4JFXA5L3ueQqbFnBabdfofdt8mDwXhsr/DHk+GK9f2X5gH85QMs2FzHigPP7373Q+lVzMGozVcDLPklIhbMzVHHXwot2f388hhz0fcMegW4sMPjekqUbl6VMA/uKbaicBfMaIi5tuQ92Fzy4SnmtyvUtCHA3rUJxKSvVxye4k6lP7/BJreA0LqTF7bDegqaUtG7bUY3LuWTO5Lv8n1Ny/qIfr3pG4w81TrIDeuEs+SyCcby1cfwq38eqDg4jZh3cujDK4OchQ4+Cr7MP2B8rBcOj17Si0CKILzkQ8GiJU+f8132hTR7vvDfC/iVerlcT9Ax0y0L5xkGc/Zu93A2CsQOr4vcK4670n48TvVt4JnyUFRXmEbbP7ZXLJrUt0MfQs5uXxZ4Wi74EJEnVB74yoL8++mFXBMP/urDKw5f1XTB+y+YNzGmWnraJmNe7AcdFraKXU05g+nZ3Zf30nxV9gg+tJ/OlFlaHKKI7ehMK5FcBw9cvl2JsZXeE97GLAaDyRzaReRdtb/6trpoPnZu8hHMZR5YmtMjFS/6AehHKBO0+3b+/Z5MfdnvoV29Bd1W255M76YtoawEe/o9vnUy0u1fBpf8n35Gy+hVuWIUbk4OY8ZOfVfjrfFk6O2DiM6mryTz+1HvobJGJ7YrZaln8ZbIgF82V/ailpGsRRrLujlsEzRn2p2w5BZI2u1S6tiNohDMg7bb6z8/5fZ7TuarM9X//P9j5bXmHPnVE/74wBQ3KVnyVAfmBBHmvu2IqKkqX6El2x80rcJ1RXd9c4fnjVpi58Hnfqrd6Ai/6fbM/L+7QrgZ+Ffwfc837G2QDOiMDQOaa/8PbfUmrtj8phKoCuTi0IiZ4ASSBk67I2QeDNNe/fEnx+DOHFDbPd+2WwmA7HRCX78jCa/X0h74m1wwV5Iv1dLvxNEz+kmwiTdFz/8+ZAJLnsf8iCw9iwd01LqD0bDQOk49tVv3Cs/RHbNXFlAwbbRi0Bv8nPBhfXCTSU/ZBp5b985+/lvMjYa2HIsX2oqRifb68Z6wjDbg5+eSKYnaQVueL9pW2yARvk5zkFdGjqOFp9n5PGgQH0aFHcSxMflNJwguPITIldrJbz8N3Fauu/CBawr9lXcAp0TCxpzGCXe8y/AfAAAA//+kXcvWsrAOfSAGAiItQy6CyKXloogzQVFARS5toU9/Ft9/hmd2HgBW06TJTtLsQj/3IGHx4FljRnCi5p05Y1txioLKTfqEGnvpNMg8o5HfZyeDe/i4ok2np/6ykDyBwZeYRL2ku2H5nD5PZcUPRBETXiyE+QpY8T7ir/ZWLK+tFP3lb2TOIGiIFHQC1C+oJErUe2kXSsr+r76Ay3kurYF+dyJQuCwRoWUva0mNXQvVmnnkK2/MYnbZNYG6LL5RfcsOzaSysYVr/YNa9A75WHcd+5fvoc/8HEizfTna+Sp5a/9LspZfgh8Q3yuI1vNQzPfmt8BOEiK61gubNb730N9IFs3NJS+G4+MRwX7PZwTBeOeEB/cTvOSsQkI7nPxZnSMdXlz6JuJavyYzdk245t9k0b9GyjK6nOBa/1zrD0a6PK8s0vq2UFc8ofMxPInLv3qINx3Hgj6SRQdO4WvYOYKqmAFtBXgTmLeuRynYHpg50L9OhUPtcGy6ystdrXmCFBv44BQkq+ocylOU4D1TuoZBeZOrwaZ20I07U7HoQYagBXlGBPKRAFlQh2C9q2xq0ac3bE2rPf31z3FIEztl9nVR4ZR6eO0fT5x/pr0HrbsfYq86ddbaf+3hz24qIt6NLF2M4CUCp3jMFCdIAMufvjNFqhFMAh2IgnSBf/UPapTqULDW2ZVQekPzH74dM3RB8OmfclL1RtIs/bytoWq5xr/4w82mvIF4fPjo0X2l/+r3/7pToP7vOwXTZJf0aKQLYPFotwDsNxfCMULDVL6xDsKqwdS6pZdiUj5RAh9COWADP2E679DrpH1zNaYebIx0uTcrt8lTrPBlZ2Qpk/b2oqnRfp2TycjAZjdJNOG3fLDz0YaCBbg3QXc5WKgNfXdgzekewIdZBzS43pKGq9ZVgFdae9QK79HwswuQQDXvRdSWdTqwmNoQFuvblGLod8PyUSsIwZyqBNrXOiUeZ08YV55ExIuCrKVeqZbVg9thT3g+waS5sIcD8ALqBb1i8Z+empAx846DOroWs9G4rtrUHxkpgsD8948BHYavucaGA7eAJTJRgbjpTKprKh1Gr1Zu4HzJnkhRfuEgYvN0g5VOBPSO/RqQZ6wqO7bpr2jehntra1XxuHKZ9tT9OS+fYDrqAFzCHz1svG1BB7aH8GE+A+yjIkqpkeYBPExBSq30Mw9LCRnSAjGTsVN6b39yXtAEe7M6YyS9FJ8fyikHV7pyvwSOa8niKIrw+9qnuNo+YsDEe6kAVzBu9OZZ3Fro4H7+9odWbDv5o7JcanWJ8Zeam/er6L34mWjfuq1oYF/NlKdC54E/+7HOQCy4eVEWyFj+xHuPvS1+7A8OALs7wEGgf4t5EMoRXrxiR174o/kTuHo9zIhUYnR393xOqRvAx9ZkBFY/MeU7/dqCcfY0JP/aaMXUdgJVvkVE9JhtLfeN8gFsKxa4OJRuyo8HWYbB6Io4N6qbv9zv3Qk0g6fS4Glsh4XXK1fay7KxlR0kzoVNeAMxMkcknunk01Odd7AeWxttZgs1fORhBhvxbmM/mZahY5qiALcwzD95Um6kEQLgCbZIUZ9jymoMe3C294g69dst5j7zCdhk94Ae1c8hlYbn2wTuuIvJlGArZa9ATP7sm5xHv/Dnzy0P4F4oRPSofNtfc9AIsrcQIDU2C4uFPCnhOlZCcXPRgYjywYN7g2KkzP274e+jvtdMFSXYyutryk9P9oBfcT9gV2kCMKun3oGHUo6ouw8qQN4pdeE3d31sD69zQ6qxRpubN7brXL+Z8uNefkC2LXN8g81rvV2aqKDB7R1tmDaBxagrGQiz0FH77SwpVbLnCR5MptN7m578+dvEmXbNAp0sZj4NiziKMlRV4KB/+otO4ghUZ3kjRXZ/RWHpRxFuMvtIkWrDhrxUS9VUbrs46IYSLHgOEPhZ849IZTam3LWyBH4reMTlcbaLzneNPQTdJCG5rr4Ne/0spqF9saX6eDLB8jhcP2otRykO7x9SsEYKIzh+yA9jIgbNEtx/DEZguVHn98DDYCxPB1qEyES92KCgMOIdzCiuiFwsBpi/7a6GcSdZSKq3UcqaXGPgUIoRWo7+yuUnbW/w57+/NDixqRh25c/5+x4HUetzRmE+wuX2mv/ss2Fsc1318wjRHEqVtXzUCwTxgy041s/cp2rrmUBYTgOOpHLgiy/lBMYv7hPW+69hTIttC7O94fzzH32t7wmYUwbI9jPvLRY5q/uT1Re28k71J8cea5CVX48o9GzyeaxtBOe2McjsyFuLtFTo1FXf1JXdX0rV+iXC+SZyHLYhT2cXTR2w/FNBvTOCA2HxXGrsnh/oQ+JqwcHke/BbfRxss58AVnkEGNVySv2E85Qfv84IAkkyqXfo8LDc788MoP2sYpR99Wb78Z4JDKCiktrMw+afvw3z+4V6l/sjXfSL8FTVV7DDaUlUzj/YFeFOVDNqmcGnIG1EGGh6c8Z+8oqtaSM6JmQT8+j9E/Fhbb1GsDmYV6Qmux0gho4/6qO9FTQs/B6QljxKIB1PEdmAnqf8Q/IRylcL0VX+gl/EmwqjPkEYtYcAzLtph4Arba/UPw5ewWp0eqix85mRdG5sMO/G2IQhsEdsP1IfiLI9CeBvPfbyEdI5e6kfVY62IdXZaAPJShYPToWWYldQaPHL6SmCiS8V2D/Og/WJb9oDyq+VYTXbUJ8LRQmhfJ1P2Np/f4B5ppvBb3+7Y7RlO/ArNnL2548w2j62zQBTUYcHc9EpymGTzl/D2MPFHWocIHz0x9cYuBBc8A+18W8sRnHX5mBOTQnbyw3y+fOMoLobPj61l1NpLRKVAvg4BgY19ps85cce79Wu+2I06wXn3DJ6Hf4IhgQi/LPosSPqbqc9bvQoo306C8NeVRskX7D10Mpm/k1LD6sk9PDRHs6AG1nUaqM1xtg/RA5f46mqynEYrfgCNTSbb08YPweTcHfqh+W5tZ5QSqIco+7NmsXPXBGes/aGdoLya5b3sjV38uFl4vLUjwN53UQTnDN0IVr1Iw2LA4lA8P2OKFcXMvw7r4eN3CEBQJC+NifZhUxpX9h1rEfD7rHOYHYqjgTWXt5w1dgtkBElxTr52ek2W9QRSq37xedb6FvLonkyXO0Ze+pN9/t7pT+17E5T7CzoPExmMN/ULpt0ZMtj5S9GdXmAR9qfCTxEL79HY9PBKZ0T7EXrEyE7PW7hODc6Dbt3VtR/8n+B16z+fgO4lpcttDwhx9Yp2lqLt0QnWN2uPrZKcgNLWHsneCCnEpfh9rO+l5bIYCclVwSj3Cvm0ZYIDNHVob6rh9ZsxbEApZtYUpdvOn9OsXKCSxx+6b/9KINnoM3H7IvdGR74rHzZ42+/aLbiFeoFlxtsYqfH+8sSFjSbk1qzaAmxB2kNRukhOepBMXt6PJDM5zvt6oLJ23qojeNjMaun2oHffJ0rb41PSvhH3GtLPfGVt6YfWM3GETwRoAgctbFZ8SgD+yOIiDAXl4J2hZnBKM4OWN/VwcBiLDgAfDWKfft9HJiS4n43fp2R2mWHhm3/9UW4oTwj8kfzUzp44gnePrFBj1aWWlvtXAY7cdObSLHEshn94yvS6tY0sPNY57ziaWIgBHeKdsrvyzmMQAebA6uon0zJwB7iLoDxa/ZpGDl1wb/itVSXm09Is+Lx8dn4Ogxi8qL6Nu0b+jMAglfqHag7ywdLxM2+hJvz2cJ2ut6JVLb57Q+P0askG8X0W7k89yvPg5YULWf8lC7aaj8IRu0AWHKpTAjCpqB2bNfW/JvUTh2Wj0tOTl773B4KpLbO5YTGZ7jzuZO2yV88IgLVOZjLwyWDl2Qj0MAOn3z+HgwZCstIsLGZu4E03X0EzUG/4tNFIICP8+T94VuabCp94K4h7IFQZQn27Ao1LDllPXi83Rd11YU009//v5fFpaihx4aeg6MKQlBRtHl9TMD376SEMj7rK6+Vmc7/AQAA//8sXdnasioUviAPMlPBQ8shc0KzLM+0zE+tHAHh6vdj/76AzIL1TsDiA/QI+lsTImf/zvm8/zg13G7P6znV8gAoG9Zz2OLWQTctuY+sxWWpfvvoEpaTxptlk1wFmFIyYTEPKCDGK8bw+KnLUGgax6C7QWohO+3fYblr7wnFN93UrqV+DWV1CjitbF6Dcr7UKDgbf5wmxeajbJ6NSU4QDMYkJ8cOrnoa8+QTN8vD2rmQNZb047diwjfHhuMiHsjz1YcjP71xDY+77osOQXPzOIz4AOqt6yI3+2zGBTxHH4LuxsgerOc2L5e7DNug8DFsM7X5zWe1TM5n4lovPC7y0blDM1n3L1/gZeS33dqHBlcRMe8ubRgS/RZmyqdAYdN3YElL1Yc5fh3CTdMcimWQAFPpRTKQvz5/1voJw1T2vqFo3w8G09WQAgkRg+hKPY30Bc8uiO12QRY+KIA4pdXCrgR7Yo9f2pAuqx248XMQMuWhFxOjYwSWvfMhj/b9MJav1XdQ4OZCjptU5qx0MwEwRPIQRO0yfkin+5o/3jEJn04LuGqsmesppsR/VrxggcUk7fd511NjwNOkFmFsPToUfsxpvYuESOo6//BiKrtmeE1DCMt8CpB5f5z5lABUwpg1MQk+5tlYUuGw8mXyQoYL/UTyhUwE+S5zURCdG85diqR/+nDZjEe+2Ed/gnTTZcTZmJTzDrC7VkrRgPxA+wD2vqKLqr6mCYVvYRxJ/xpkWNkEI3261OCnx8HmOtvhV6rOBv/4eqn98MDQTx+DRiftAmuhvCDjnt7+H/8gNAyy14uESzRWHiA9qBqyxz8E2IsMH/jlU4eVoyhxTuyvCJxm7QuQHyOP59378ZtPaNX3BdO1owPNwsiQv/IB3c0ChMfd8CVu0WwMRuOlBGv9Y63NRMAz4yEB6QgsrAhTZ3AwG+6vnsIr7QW+FA0WQe8FLXI27tJMkhvWsLJvY9iY1+O4fSuVDZfio6AfnqzjKUD/bLeYNyfBm9Z6Auv4kWD9vgXktahlmJrkRr4uYN42wmDb1gMyEsYNpmclBunXKPGyOzYJ37POhKtfJ/bbnprf74df4DRoH4MNmOWv/IBqn6vEkZ+TR3eD0MKOjRWx7ubgcWyQEtz22y3yszD2+LgOn5kERdhrexfwMdqaMJWVmXhRG49Yf9xsOJHzHDKUXzl96YzB7ANtvKvqQyGGuXeBoZntcDXlRrOoLF7vc6/VVc/fivkw7c/g5x8cCNAvf5DBP71+GK4NWf0eEF6XMzmuz+OHnTPAg2Kewl392nPGXokjmyclQnb97opJLEQMBbWesLD67zk91Fhb9Xn4Jsq9IXORrntUrRL3C9VHSTyZd3UpICT+ZfDH3Y+/6bU9kdxvd8mKR5122z8Znqt9DLh99k2YLhbBqhFNDatYLWjGx2Hon373nz2DMY9vyCx3qcFXf6kJgamH/J7eOCu7U6cqg2ihaz2GnBt1boPQ8jQSVPuFz8U+baEKRj+Ea/3g0AE+AJW3ELS9Uo6jbO0FvfqRn56nr01egQbGRrgts2mcgcImWE5+RnLrhZt6fR/1lnNIzCsImyVjjw4Ca34Ss1y2CXcx6YBgDRbxC4uAn/4HzsnhJNzOyjjLVuVDQJYZHWc6GYtmPmwwUaqi4NKuKnkCOZSOzgarEVSTYbmpIVzcB0VG/s6a5U7FUlPqwUS64C8Al2YW/vA6lKXcG/lggo+64gEJXk0AWPk+RTDKHIt44ZWMy77RXQhSqyK/fGoxr2oNlvZvjyowzmM/QrGCCsQXZPqKnYhUozLMD3WD/Fd/Sfg3/WNaBGiO/PPfWDDiyRNMjVgnOr4ZXj8oogvp82AS80oCb3t9ng/Q25geidGkcerT3Pz5CeRmlcCn4Dow2D9ucyg6cwswNxsRVtGyQXtROCSS//yjMBiuH7I/xWoz7Tw8KVH9iNB+dzQK8ae3v/XnFbZJNRrkdLrpQNHMGzp+tHezfEqZwcbuUrLqKyA1n20Fmb5rQ55nskEOubJe3yD7JDnoLafnSznASRZAyMwvaaZy7bt1c/cSchb6SbAnx6a2eZ72GByEduTzQ/iAWjBjZKSB1DAfxKVW7pmNjlWqg904mx+1bnNz9e+3hpvmcIcRFx7EM8x3sQjT21RHFlpYS+ejR0MNMGg8Hi0WXt7bWBSvE4CjJRd0HA27oM3t+QFMf/0R9N2aI+92sQQ35kb/l08tzxFR5Wz0Oe5FrzW+snjX4TeUdGTE26SZnrHOtBX/8a5O9ISh5FIDKUZRqF7DR7OAh3HQyrOMQmGoI48SVa606v7VwqlNMsCvY0wheIISb3FYJMvX+uugc7YBVv12V8zjRpRh6G8AVs9KBuZB4gyyY5PhW392Vn5ALvj+idk/P4H9qnZhnEIRL4dW/F+fdV3go199jt39JCjr+xLjoLdgkV2dQjPR/kiy1gOfizIHx2I6ohegokdr/rZh6r324TY/DsWYRvUDmpPSEcR91HDS3mpwNsY8bK8Aj/3NaUqobKMMGeWo/vJmHUTi5UV0HB+K5dtkqSr094Y8L+W7YJEaXNTjHCbhb/5ySI1aLaXz8I9fmHfpOric8ICpYMeeGDlPF0Tx5YiM5voaablTPrB/zHQWmq1bqGseAl6jcsN3tfKL1mujVe+4AAWv2Gt26/hqP/5xTPvlMUl8UiDF7wQZgRWM4qscyh//hLUmNgU/qKcD9IehQ6cfnw5dq0NJPx5RuFzTkY/+owY+VFWsvZqZvzdiqEN2VB7kJMctmDtnOADfyVPiRlAt2L6+idDJzxBH/aYyOBgHCH747O33b49rGaTgytwdOcFtn7C6ghR26rPEk3XUPdb0mgy3gr8j5j09ewu41Q+NZcuIzMA6gkUJ+wtY83Pk16488vujgVA6uhu8GdKOL4VZQri8RzcUdkPmrXw0wY6MR4L+qtrjCqAC2JAswTzumUeXtmew4dOGOOon8LgVNbL8y3usNQ9cMmkbQkrOaQjO35hzZy+ZsMmikQTrnui+qO21/lsZWe/7pVm6gZ1/+R+xs77iuy4bXDhdhQaFcvgEfTJ3+s8PhdvxKyVkGHz/h2+Y58muGCI1SOHy7l0UwoswzjersdWgR0/kRTQxmP7cROCXh/spDxr6eh7OMN28a+L7drf2ZVEHNXUngO72aZPMH+CcYaze0MqPQsLYq3ChIxg5ccj37S1ZajkguFuXEK7//7+89wIdmxSr/v23HvLDV/dmgYRf3vG/9QriXQ/XYtkfIht2VRESe6YL2NlbWEPJZjAU/c3R2GaJyYCgOj1xjK7waGQ9KASEz3gDJJEz/7UXtPhua8QuE9tbcvCkYPUXyFnzQxaY5wGku6UljhgP45xtr7q2SPsA6dtoKNginjDoTGkh4X3Ye+L5LJWgiviG+K/tlS+Pz9eH0nC6IbsSh2TZxFsGt7n0QG5EZUCMRj3DfE4VZOjGu2B6Lq3ngKUZuVenANT3/zqYpaGO0Jc0HDcnS4JqID6J4dIBsDbAOUzprcfdr95e2M3VHr83xDD/Th5rUfiBX5VVJMznfSJVO6+S17wP83S/NRagqNPPb+Da2ZwbKrNbBSdTyolnJceEC/q7g047R6Fon/8KDhN4gFc1ldd8RmnmlY+hcKsvyM9yNrLgwB6wvzSErH7OoDVtMQTKViBW4tT/1s+go7eEpDROva1mwTNQ/1qIRbdtmgVkbgenShfXPneLt/zwWeD2svbGjAB7QNmHpZu6+F1rsce8bO/DC/8ckFVhVDCUPGq1N/YNMg6+nfDhPQ7/8HTN8zzpk31l+PNTnu+HI3sF5xQ2fyJF/vVAGm4I/Qe0QeaHXy24ccql9qA1taAgizal9y8fr8JTTw4uZKte/pZQqB4PYhVyl/RCcPXhK94diZ3vDbAbx+kOHSl4hLC4nb1lyEwT5g+fkotb1nzpEyMFUvR0Vzw6JfzdUxeufuXHT8kPf9SAgRHvpDxOlv8AAAD//6Sdy7aqPLOGL4iGiEiKJmeRU1QQsQeKKIjIIQFy9XvgXM1/t77mGs65poGk6n2fSlJZWfOgfUDBt9Ond8eZuhZ8Wi2ler5B7Fd/hIUf/upvOnU6ekDrNL/iHf04bDCEVw0dsj0cvx67hT/XEjx2s0Dyatcjev5ua7T4fRykK71jUb31fv6AsCOd2WQi1/nlt+B9XjfuFBenFB7wvQfIDD/Z7DDxhfomWJPyrsh/9RI4N7cvGUfO1tkg1w1wz+qNzW9+DslL8Qg8+M2DGmHhulN688U//x/Pwbmk1hQCOtPXk5qJ0yLan+8NFIcMiHw6V+4UrRUOtrJ1waa3Lbrho+6NHx+m9qzZJaPmroEi8SVs8+4XDZZhxHC8RBvsHDWks9XzTNADjmmwEdc8Wvwsgf6uZPRSvF7hdDNXDuImaOh9qW8tNzEA+K/9G6vzWtXZ5exqaH2Uzng3VG03htvPAYT2mZLZ1WY0Bqkeg373WrrUM/WZvbICSnvpXVs0ujtiHSqIxf2HmnQrlrNvSgKkS6sPuKan7ufv0aIHcYjtAU0fdW9BxMCkefm1keAVrY0+D26Pl/XBlnrlKC98Cd/rQ1hOrZhxKN/XBjbsYdGLx/iAzmc+WnhEkTHy4Dg4svCCvfqWIgZTR371a6qsY9cVfvH+Wlc6PrSmwoRfvUM4fkKMm91Hn77HzhbXqREv5/JX5bheDQ4svJ+sS/3I2P4TEElCX49qMtE6/jgSBwbX97GtTpAx8NkBit1y720kEJfayllETcGO1DYULmRiohRocLEfFI2mlJvwLloofxcV4fppdhknvwP0OGEneC/+dTA5/T/eU4D+954C/5m21FzbkjtVXTGjUYczNQ/fgrF9/XTQVbUmutu/T9k4RmkAnmhHND+9t2y+s28PddlaFOdnK+sTZW0h1+17rOymdznw3jaFUclXRFY+I5rHooxhpnDBZnORERvTdIbDLrDJ28z8jibWugE/syqqcA3PZtV+1SAJE6bBURsRUel4gvxxTPGepxtGm/s1QsMFToQq9J7NZ8Hx4FZf9qTjg68+m4/6tfVEJ6Ja1NeMBZT2iH5iB7vb9aucIgQEIeHckvl6kcJR6jQN8J0/4vPxBC7p7O4Eh3vhY5tVpT5KXWGg7aQccPphNpq+t8wB3xgfVMPmoE8Wv7TQSyojkNSXlwnFSpzBl7chVdZor0+f7y1FYNV9sHpmYjk6W1GE6g42VmTTZVNlhJb0hvXSb3htdf0pty3Q2kEItv6EwzlbPPJNL1JqJELX9brt5Ijj5A323OMp68MGQPoohyO+xEmN5lN79NDZnj/BqjOc8N18pZt0fr9CrNNL1k3ns2kA83qdXr2gDqdgkhS0mk8d3YWB4bKbJN7gjISE4im+lIPB8hSaZL3CXrUus2/ZOQR2j61HSkfp0chOpoBevE8DVvlbfU78IEBP00vxefMe0dzv9xG8d0EejHyiuHMvDQJMexphRad+OF4+QQNLoZtqfuEy/v45VBCk7SrY3na+Oz/LB6Dj931aPu/YXMpWDI+3i7B3/TYhQ6UZgIy5F94nJo9IppSKvOq4N8W30XR5K2Q53GCkOPAlKyPrR2jBJiA7skXbNGRl7hZAL6YdCBv/Fs7G4PPSIE3qcpfKyqVSkkRQOt0Z66/6EbJ0m59guewLq8hes2lFYgskKbXI6ja+9f55CXjkZ0ZFZNapbHZyPobz7OSBaLyccF4fVo20T7gV3W1POeqV/TiCOj2epBi8t0sDTrfBcrSerPssCNnG2x9gr7USdTLN637jQa0t5vjK0wua5L3Ew+nW6djUwlKfekXIIfcqD4f4Tdz+6Yka5FdLoOorn9HX4selBr3uA3R5+R0rtpqzupDKpOruIrJuqNccSlkvY1W4v7K+mqZIHsuQYHW+TojoyPXgWm4LjHWPd/uJ2BXyuFgkUv8a3CkdugDdYKbUnyfeHdLoJIHHl3e80zmxI+P2Xkt6e52xKQcv1CefajlHHKgERuLo42xJEny51TOQWfdkffbmUriWqCAX10bhvOk8Q+Jqw8Rp7tHso9/sFAaJqdgJQrsUNqcjL2cs3VJ9rb1RM4uPFH1uUkbkdL/Pxn63U9Ac6xnerVjtjqL4jKBq65C69/0nG26FLsHv/dtRdnSHXEoi2K/7jirgC1m/eVw1iMSvha0T0V1yPNoSQNz71I9elNFQPnCy6eRHGuDsok8rklugovROWPkyQ97scQPOOrToMr/0YZ4DHi3rg2o5x9hMojkCV7wlOPlut/o7KPMacBohauXvqRyO9N3CoxFDqnV0dMla9GN0vBsNdYLjIRzP/AB/8Xg32zedddqph5fqcthaHXs0GAxuKE1rm8BKwyHfgejAM3s9gknUdLTB+9iBVyTF1EuMnT5bpNBg//44VJsSTV8P7GIA2V09jJuviyZ5Ws71E+1LTfR9ZqQtVjnI2/hK95EO3aDc0puUOvmHmt9QZ2sh8WJ4h8I32DzMpcvpFjVSMq4O2HCKgc2UFEQOPZzT33qbt7nGg31Nq4DjHnY4kmeYg/uywwCd5T7sx+XuMa2lQjAZx5qRuytzUhBofECdhLpEIbyNcm2caPbJomyOgjhH21qesVI+UzTgKiXwSOaZ6kfvg9j7uJzr/sYBdWrEwukgdwoSOyWgp4eoluQ5sRTmWM3wvuBF9I7K4gVb5/Kh5jWpEEssuUHq9NaoIbZT9q3WmxqOX8KozzoVrYt+q8GxTAjdN+I3nNQA2cCdLgPFGZ+zb7ifl7tEnRfVNf7Ixt3w5SG/GgLWtJNYUnzJXlAdSgGrkTN0k+uJPZiHRgiYnXUd89xXAfxXc/CO24rhMF+lBvrNh2LFPC13oz2VXvYIvlDT+9glkyatBhD0mjDwmm4EPETwiauYanRqsu5YGi9IXO9ApGPG9HGMTh7EXXii+2T1Kud62nu/fEJqU9/qrY7cANRMlbClIlJOvRoVsuuSfhkfh4bIOQRIyJqYXvX7nhH6+HjQV9IzkJNayeaTNuTbs+mOwca1s2y6PxVF2muNRC11G2ejOjxEqWrzmTqv4FOynRf18O3tmSpe8UWsOMINBjfa4SgRSzYS++shP5IUbLSnLJxXODz93vdvfess3hcGOKfbBR8vpw0bdZo4oGQXLuASL+ymb7Y2oM9zCSthjRCL4mcEu/17h/W7bOgbzbck2FzeEvUJRYwK8o78nmfwve0GvXG68w3C9Z3H+0vSMAbnt4QyR9ew9ulW5VDk9wrSizUHmHg86j+cncCTfzK6f5K6G4ocNRBaikRKmR5LkviBB7h4FlQ9Lfu4peQQA9cnDk2K06OkD7Ey5Ck+P37xx53cC35t4y5h2Kq8LquLxFfAP7oNdlh7yViMjBq8J4+xKRiKu56VVwThLVpR/WmSsonSTY34r+IEZBqrkL0MFiBLF2zqgv7ICM4dGyKxs37xOaNz7Y6QrwcVZxUnd/1JuB2QYi/so78KLoNqH0MmGwwbx95m/SqDFE7f/RCIS7ybeC+Ltocxz6l1s1M0Y2PiIeHrXRCp0xfRXLQ0eN8bg9qDvC9nLPCJ/OJUByd9WnSTkTkeBJujQ4QvM1jXCHoN+vGlEPp9quE373hpyyfMJmDsbbcTOZ0HCwDIWzAKnWn8rUav5ZyAxV0ev/wQQ4PBw+78/XSN025SKA9rKSCbs1murfpsQyFWGHsfdA4Fcj4k8gp7W4zzc50R9RkJsC1EGkzbku8arz9W8qKXCLruqNun7N6DcX+U1Ov0B5tNCw4Qen6O7UUvjOUUHlCI+TO9L+vjT48Hhn+lBtM3ZX8JohQStYjJJNxfYVW8vQCMoX/TJDdeqO+JNIMYkf0/fbPpWgdOvWgSwcORu+GTPkdxlzLq9e22ZJ8bO8FaJBa1PB8hMocvC1HG8xiXIs74qryL6HvmBxyc3ls0RU4SwOq1d6i790b992+0X/Z5d1llMsZWNwOcnHLBJpMbt7+sWwvVd+9B0yBsOnJuPAHma3PC+iTqOptSUYDSuC01ooQipjRdhRrLmai34UGfs8/Ygzrdn1g5vF4uOQtL7w3uRoNtXulo5q2Ch6HKgZRPXQjZzrv1yBjIm+oDfyoHfN4cUCJ1DnnuLgkjZ5zWUnbIv3hvGno5Sp2jwOqlfrEx3HJ9yixUQzJuKFWe3JFNuXSI4GTFXMCr7OXOUt6Iv3xJpmPHhfPtiqK/8V10TizHddhoIDrfjhoM+a7g65cGXsa8xj5e64y/1VEOS7wjV1Nzw+m82xFoZvFObVrM3YQoiVErnhNq6bdV1m+XPZUyUyKcW8QN5yR7NkCPikkTCJe7/YN9g9Ih3ZA46Fs2rjveg2LpOjuHu3fWFUc+h+eRGtTW5IZR87NNwVkZT6rttrM+f2OnAjlO99jid05I80c2om0hUcKfydMdVxmfwBK/AvbUhawzPlmM5J4E+Kcv+4yxEe3tTU6qY9+g0TUGHm2IWlBXfwtZc+j2MZhDuNSsaKB/B3WuoLft9fJ9HTS/XHeEcvLu9BzdOMSS89GQF//y50dmX7+0qHxagPXN3QhJ7s0GhK+vGVQbk7Je/oYE3sU5DHjo951wao+B/ClNhe5VhbnjT5+bhuMF1TKeIXlK3s8PYqeVu+67+DUwnWjESiAX3W8+IoiJT+0vOmasz0oNCrHGwcZ6FPoobHYOuPzmGWxXaO4mDrIcGs/nsfqI7Wwi2qGRf+9jFbUQzszseziO2pbEV9FE/OZxVSCYgl2ABo24k7A6KbI9ZyJ2xS2U7+/aTGFPjwbhM+6MRn3XL2TDkcnW+XjluhZQD4t+x1ha7Ze7R3c1+iinY7AJTpw+VUZmgX4slN94SjZzDw66t/em/hS4+uZ0HjzpSc4Btgf52w1X5Lx+653a5bfSl5ulAqg2hoxNburQVB88A9B36d9+lyu9r2XvsOyBGanKi093yk9VBYMb7/BP/7L4lcY/f0I1QT+Xwlo0I+QbLUexQu8hC+WEg5//VLx86uZM8UAqkrOPdftestfccSd4cboTlIPQsr94utt/dlTRh7U7Pr1RkQdyulAlHvNu/jjXSiqDg4fvT25Vzlp4ycGUCy0o4p2ejSdBihFXWybVKFO6dok/iF9FmC58AY38dlv99DJ1vumrGzf5DDKbzy+6+Ct3/jjHGolO1+FgWX+koyKg+O3hoK68LiTWbkyBjlgOVn1Xub/1C8vvY3x8TYiK3FdCoszL5MO0PZpLOYgg/XghDtJvmzGqajnC4/jClroVsuXucQEazHlYF21R/1o18ra3K6fQ3WHyQ2Z8whgt+ivgcLbRh3AvOTA69hbvI3RyWW59C8jR9k2q9atm7NXbEvTB+UpeC/8g+34icrm5qjQbvZH95aOh/RYYd4aTsVFtXqjecm6wSo9nJKDvfQYnKdNgLWgfNnZnIwHTolust6TIaGT7IlS7Vqd28nh2/T15WBDuX4eAueWZ8asMku0lzyvCOWPZESfPT5Br3wN119OsU0VlHNISZ49NIpo6y56Ng2r9WFLT1XZL74PZgKebcsv8znX2MfYKPLSzR28Sx6Fx8zhq8LgdbKpsZTWjS37/05PPzhdYkzubWTKGt0EDXwwWf5SSv/Vh3l6fcqoPhiHnXu1RD4dOybcRiYCt4Uqvt70Z0v62N6Drsj3FlMqMGsHXQpxJXyRc5us0q3YKtqBQbPm7fUdO2XoGlcyngGt2c9fd80sL997/BnwilmhU4ZjKY0FU7FbcvZsepnlA5Bjvg7erfVxWnE4FDBGWqJILu0xY+ASc4kqhl3Jfukz3ew5Z/TqjFk0sd0OvcQN1eDVwfeTX4UT9skIvZ3XFRhc8s3aLaYKavr5gs94/9T5KVxV677ycLnq9Y+luO0IVHQKsrp+3cCjbqgE2X17Ud6dw+fulBFk9E/rzF4yzgxr95qPzYQ3qvk1/gsWPYq12CKNnu+NA3noiVq/TR2fBOxFh2g8RtRe9N6TRyEG5eb2CbXt3OnYCSYLYvpVBe7674VR2To+Us5tiRaqhnLay2cI75L/4x6s2v++78IeAX/Lr/OD4BjIFf+g+QrNbFRVxILzFK2zkd9Od83cVARkgpLp91xEzVrQAZdpawXrxr9OsKgnaJ7Ai3HWK2PjjB1KqlkRwX43bi4d1DfJLZFQrld4lx+/dkp7iyaUWv2vD6TS6BA18faeWxiq9329TQVqZ15xaUWiU67FmItpdhX3QnLnUZbXecgiFL0RWCfHQwgsMxOerZc8PG3T6ug83WHNiG8j0M4Ws51kE18/rQgR+12aUqk4OSnbmAnGVHbtx3iVLby0upfoklvp0JucUjtZYUnPrtR2J1r0tK0/2DoRVaP7xGqDlZw6SH586fZEN+oVU2NZkG42BWLQ//UbNwJnK4as7Aiz6HLvF8YjGhQ9Be85s6hAzdr/me2WBYwpeMPlKi+ZiXB2Ap6aPdd/eZMyX3xZkjlNitZA1dy5WJwJj3JV08SMhO5VtDcv3w4G6Oy575D4aLPo+YIs+FIK7pfx4wB+fYJmUpn/xyjqRUp/UzztFupo+sBdynMssZkQ/vxNcKmJ0zPakGRa+tejBuZvnPoqgnR2eHLxiz/7i3fL8KS6lXbf+redtlZp4yZfuujxKKdRfusfeSBx3tAZ3BvMwXvDCe13xK21EWPgetpP7Ppxn6djLB//o/ngfm5qjHaCqXt1wMPJ5NrM8B0jvYUyOYrdyf/Fua4eBgn98nli7Uwzb6FRh14tnNhSbHf/Hq7PuUf38aIzSwzgQdpcrd058y4Ox6FWa7P07GxKpyuEm1C4Brao7+uoVCX7/v+orDmr68+smyaduCnj5cnfH4PuxYVBb/5fP9Slw+gj2COFAbh4fnSx8DbY+lwd14TCXXUDp5S7o7ljLhG/4FedkhlR+Jdi+2ze0Xp07QbrktwoH8jstqci5PJxt0SaQeVNIci6v4JkVD3qsX2U2y4YSwyBJr4CXfCljT+NuI6IGDTVUprnM5pf+473/pXtxGvXxcd0e0C8eHrK+Kr9H+8LBK6gOFDsJdgd7thxAV/qgwV44s34udA8qQ/Wo5x7ncOx3bwu1LzXE2u15d8fMN2wozCLHttAPZW+F6Aavz7sKVuday76b5JXCMZYMUkj1rRvRWhBRk2xWgfDjHfi8OklasOuCTX30S2a/Bw25TbSh+z296P1cuB5895G+9FrehnQ9pwIqXgcHp63clXNRN/myJ/tAo/z+1pf8afzlE/eQltngsCKSf/x40VPdXL92PdjXpFrOOGT6pm7TCi31FFIvvJBgYyv8+AZNjxlzN/iyrbe1cI6CschsJjyncwToHsfY0dInmkP9WclKsI6wetseS7Z2TeePl0sCn7q/+QxTcbjhx6I3e/5UiqhIcE/WLc93UyeohXzu+g22gZNQn7JzDz//f20ktePDg0bQ/VpkNA8fu3Je+IFUpZcj9rSqLtmzM2Z4C9+EfDce6cbvfsr/+GhAarXj5c3RAPVtJUEVvCx3cyKX2z9e44uBO6dBkcr+9HKDkWsHd9Fz9U/vYOvIn8Pu9z5+fMwUTzc0Nd/5Bn27qqi/3uYd675FghZeRfry8GTdsr7gexaGxX9sulkP1wWYzu1IjdDfliPbZgUs8R5rH63KxjP/BjQdHITdnNgdEy9RAGtNzbHRRqybnKrmAb7XjNrWStXnU3sNfrwv2JR7XRdYP6fys1H3P77R8WujfqEz4hPspHbOxl+94MdfcNTzHbW9eUT3FadSr1u9Fz3ZJ+Dxz/tf/OiXehNyEz+mqnGs0aR+cAz1ECtk+yR12UlOyqFNFp8IMLdAm88NHYDtTY8ISvIuR/ngJqgeIoXaRnHSF/+79IZ72KRZ/AI77zVNFnaIw+7uQ7qpyFn744VUqTUtm+h7NUpWPSZ/vPWrNe4Ntefi+5tP+pAOnQfi53r5F+/Eu9VDMq4ptaqgLJlfSTzMtQ0/P1yOCz//04MLnwynjKgHYKGypw8nFtCw8GVpBYaF4705ZX/Pd1BfPXW/kl52vqfUUJfFm/rd+6pPl4IzUMLfahyA8UVzvUcv6a1/PviXr39+CsilGMjzqJXuYAUKJ4ezuMOPpf5IV+MhkQ8lH9L8tl2FUyL1ufTzf65qP7qZFubCc3A+CO+p75j9fis/3kmt8JKHA3PXh+0DvZ/BetGf7zY4j+jQKpuALvGGyIYdI3KM9vhMxLc7euYXoMU77ae3w37Jz7If5Fds6bdHxobA7SGR5o58qZ3rQ6nHHDj5wP3x3cnlzh74wzRT50HFhZ8bN8C7wsO78R3qJMZjC4se/Pk99pePfzzAK7fyT1+1IPDMpftLYrP1fJVauOteTI++4rDJzIoDJBc+w57ZimxKzdVtOeNVBNNtO3XTZrq1KNwXh7960ehbiibXoz3iXK/sjgrzKMojyzDeVaTqZu6eNGB74xWb54gPCRdcHLSMJ5D5ZGBkayY1bLLoFCz14HDUdlaMoqZ8U2uUdz9+EqFqlK54b3uBPtvGR5Qv1dwGmYgiNB0v1xy5J23G6l5UQmGpD0AWd36wWfzZegXbFyS795XuHuapm6t3EgCfyz11NW3IxnCTJCBejgJWN1zoTr96wHDhTtiYiqCc9deBk9uM+nhZf2zq8VWCjWseAsayXh8z37PheLea5X0kGY+ECOBzEzO88PVuFo25AOnepnT/8B96v/BsKDeZGszzdmZkeu4T9KuPLTwmnBS9CWDxI4t/ervssIcACUcekT7SAlTje2Wh/7SnAP6f3gdpJhA5q6xsfUVitBUOjUhd+vqEs+rkB4nF/pravTG55dtxHVQud8vdLzktZ/eJDIiVWaPO+1y5c29tC6QrvoS1LKhCokbPVM677hCMB3LPxiyta9hHfRVMIDB3FtzzjGJl1Ogu7njERH3VA/cyPOqhnoazMt8EAGm+k9baIEZ3j7SF4vSpAvS6ti5N2tZCK14wCYpb1A23ZR/LJlTjoMPtGI6lpjSgSsqN7i/al41XdgxAOAnLVaWvM5vjz1pBscTNZNx1QjkO5i6AzdkbcIRH3qVm3aZQreZHMI51FBL5pMD28731+Kium3AmAn/6/Tw1GrMNpx2eLdk8Dz122hNDs7eFHLj9vqH2ldPZ+JQ/BdJ6/YG13BbZ7/lCEll3vPtcQn3WXMahTbFeEblyAp1Jn68kWcU3DORhbBfGeCsgaS1G7eMsZINmSC84PmYLG7cYsV6XJwWdNPuNM+gMxPxt7Uiv4KBgb3/ss+G09h2JSpKC1fun6cb4qYrg6AedHvCm0pl6fPTofNzYVKMXj03rdu2BybWY2vo+zL7wuZ8gO3OXhYFuUPflM0HitVUS1Cxm3XQ9CClkZgXYrW5muV4l8vzv+ziD0q391qxg30tHbLPPkQ33em/Beic1WBGxp8+nj1LJuG5u1GIxK8fwvTwfU7xiW6VV168mP0eHryaRRg7f+qxG3xS4ULRxiveKvj7ATYJP1uj4mOVCRnprKuRy0GqqX/ttNqldmCI9uX6wu3/m4fyQeQee6MKC7ntdh3O0kTzo9pJJnaN8Z2PL318Sd7zEWFnNPWKbc1rBaPdfbDy0smR2IcYgvegWq1kuhOz0jmoYOnUfCJeKhd+vtxXRaWACGZn3zsoyVWJg8ecQrPP9W58P/rNA923j0yP9cGgWbzjZXmVvR328vqDZS8sIeuN2/P39pSbmVOj9nErq+RfdFX4/b55pj+18fUMktjsRPvVWwl4wTYwFmUTgsncEbJzjsWPRo32BvI6+BNalnDUt1zRQMkUOkOdb2RR4J2e178UjqfRDmQ2DT2KExuCE/SPX6rT4aLZM5EnDurLX3PnmhT1gaGdCoeJZG8+2jVRtu6bq7jygaWyVGWqHWCQpK8UdfP7Qo9XcEKxZN5zNyWUjIPf169+qOGysHYNHmH+Y1Mm+B9aciE7gs7preO8Kkz6G9JuCcOIxdghSwrVzEQ6ArnyBHwXOERvyqgZbHz84adV1ORrn+SZj5xDR6HrbLXsy3jZSrsaDBqFtMXpOTiNcD4KCsew/s3EY9zYMLNhQ05k41m65UETm6WBjlYQW6o/C1obfGQdM1KYbngE4oGa5jPcYdoilaSXB6zMg6k+Cqs+PzyGXVb+JqJWNBZtbnXOgGCKdet+9Hm6uWldA4X186gYHtZwz/nRCbbpyyRZNWzbx7NUAI6OMIwhOqI84OQYnR1HAfdNn2V8j2wLPTlLsPPGQ9a+V70mFBSfqt/4+3HyuFwuF6ICDrXRx9dEMWiKdP5scmytOKVvAZrX0t8fB3LmrcOpXoybvx7MQbNRV3I3LeoOPeTot43ku8/X7knSD06mzK+xwk5ZpBE6+jbBhh47eDqvvMh/CC1UvyaNj2c2pIXrkX2pZXIfYuP1GcONITe2NM7ORd6UU9BSu2CFJ242H+8mADzU/2HKePZveW08AjdRHiqXnNZxtXI7oyOBJ9ZXTl5PcJi0s+SZgbq+x6fDeepAzgfs3Xk/ZNOhGLm4waPMUfj9f3CCwvIaeQk1gr83QniTpcYoCkNdqOb8SEZCyOZXUuN522TRpjgdkzY1UuW/Scux9aBH3FXMaCY2QDQqvCHDTogdVdbxxBzodXn/z5xcfx3PMzahdXPDbmXI2rtChhv0sNtRXE63j7ULSED60FjVDvdRHZ/QBtb79ojd5/SyZMUg2vOfXlbrPUS6HlDkiSKi9YauJm67fNeoMj1Nyx+6SD6eL2t5Q9L4veyfC1p3HSfPgVMRfrL2nsas/t2KUDYNRrCzxaFr3J1HOppVB3WS46HO8CwJ0VW5vuntu/JKo0Tf5i2fdxT+G047qgeSHkUp1xjHGKnu4QZM9KPmOnagzssoS9OCyPdl8i3dGD30VwyH5PrATWaPOit2kyAdf8+kunrqObsm2Rd1eNOn9pWZLvpE9hDlhj51d0YTkRW+NlF+EY9BOp5U73rlkRCeVOTQwY9kdXEmbkXF+vanXWTs2vep1gbq3OFM7zl5oytkmgsNU69iD7yMkNgFR0L3xjHW1HNkoWEoMWyMmeCd/fTbu1UKEXzz11eRVzjiaTuAf7RarY/zKGNfkEeq9Q4mN7nbvxrBmAKZwe2H9mX3YeLnODjif/E79g2qWw0loBXhajAvWbhSVM9oYNjx37hVb8vbBWHVMJUQ4+45DjHXEkiIHkC43Dbu3bdXNWdjd4OXSIHjltoh6dyob+OVb/ritw4nTUgOmBfYJm5sTTnx0LdDWe2XUr4xN1m83xSjL8iumviU27rizxVYyL1sd6yvjzMgmuNrwVfQ3Vve54i7n73P45TunPDXd2M4rHi3xm6r9oev61z5JfvksOOzeK9YzNnKgbh4tmXz16Y4F3R7g9JB9IsKIs7nW9z2kR3WHw2hdZIR7bDyIhnYgK5ZtMobinQbjw0qDSRwhbPG6sOTr/GhIEaZvfX6rlQI7Nd1TPag3GdPXqgTF5OoBXX6folV5QB5wmHpb6rDxHAujrE48xTFbFe7EiZb4iw9k3q8Oy1NpHFArxcJqstPd6WkFPToV0Ze6ny0tO1ViAG7kKXSHJyVcN72uoaQ/ONS4gNrxvtfkcBw4J4A4mhGdjq8ZSmmNsYHHSN/UbsPD3bQSrD6dfbk5B7gB405O2LjePiFd5o9kcXeE9/zG7OZwpYI8VkNMqmW9dqxTeViHT4k6jfjWZx+dbHAGM8H6tb9m/YBPMdqcK5vGx6foDs4GpxA6e46gjWmHxPk6AgpP556wSpxdIp9s7pcfaMRczx3rlrXwEOcAu8HhWZKQ5wSgVuxSjyz7uE9yf9g+vMSi0S3O2Hw0wEJxPxLq28mA6OWoa3A43Gdsl6qzXEq7E3/5FCuVpXf8WdhJsN6JDbWug1mOu13KoeG1vmFf9B9s3u72CaiSdsN76p6y6cxRDZ3eq4qq26uNpmP+zOF0KhSsb54RG40+duAtAAhA97/FHTV8RrtpG3cNmtz8RR3zPuhMlRiHDlq3D4TjM9F/+l+q3KAlw/np6ux5podfvsC6epf0MUtJLd2UvU395fMpj0ggGW9RwVYxHNDsFOdEsoW9iQPQjXK+dT0Px+lKA757ReF0lKUaIEp7GuyuYtgrLzhJdf40Ca2TAxoPUd/AVttfqKlPrJzuZnpAy3ymwe1YhfMpDx3IQemocVvZ2YYVXA9yPxUYV5ymC4segpsWP6h2Nk/ZPKy+BGSbe1Jf2n66Jd81YCAppu7w6N1pUzcC+lu/22vDqHyIAJb1SY3soXXsI/kS6s7lJRDgMemTtDnlsPLpncyhFqPJ2exSWO7ZpHhIbvqyPgNQDtJMvZ0t6VO/rkQobd7Dx9T4lFROCwMM03UI+JfSZYavR9DUAcbOXgl0tlsLMWT3+Rug88FD/fAWlF88DKCv/Y7V7QRgePLt93w64k9YA7cNYhocbg93vAEyEJ+9ChrwRdmNO264QZcYe3pP0RaxBpWVfLV2BQmf56PeO9fXCfpW0LD+og+26NXol29Jf49yd/DDrwRcRtKgWNoN8au5cyBi4fdP725uvAuw+Cts5ntTn53iniJbnz/YXT6fdf/YyvCqxkAkOy+bOO1kgK5gifrnLMomb0YaIPYVyNKPZ6mpeik0fBJiX+vTrn3I4MA9KSGYC75AoyMdDdlKj0+6i+2VPt9J44FR9l/qpFhz15+9UKDpd9fv58Lc6SCtPMAdAuyMmeXO9GoLaDsZR6rdiOPOTOoteJujQF2wsS6s2S0CEP0Oe2mhZPQc7BpY/AQ5MM8MBcB+DeBuymB9kcBtr9fzS85xWxLuaLrlujWX3ipqw7DbC6tumDQtgNfrlmHd3fv6aB2UBL679Wa5y7V2x8tVsn/6gvrG2mPzSlv2kO1ygWzp8etOcNhWcC9oG4wP6cxY62xqcI75jshcfGSbMT14qJj2OrW2msUobzTcnz7UpNJc9NGsIeV58rFy30jdcDCdFKJgYFhZ3mdfPq8z3Bt0obs8LbNRwi9P3nLPnJr9bLu84h1q6UN3H7x7p2RZj6cTnF1+ClZN1mdEySYHPYzguvy9dzk42ngCb367QQTBjBjr9jy0xepFA+3WLPGnbOT8fvcI21ZjNlvcbKB+q1j4jIuXOw6jagP37Cdqm17ApsWfC5bwXapOYZYxKrrtTy9iI4jfYc/sjYb41eURjAKts9YeF3/5OdnUYeLBZe/v7bAtblwTcLurmLGIYy2ITaxi/FpTVj9Fx0JL/qeaCzxjPz2VT98Pthd/PBaHYvEnNxmrH99gpBCqBAROQIHAC9dwzD1swW23Sklr3n19Puh5Csl8eNLTsWl0Fi97Sm3D1shULDUW7mpYf/mdmKt9J1wlL4ZfvtU6SSv5L3of0NQqKn48M9VlRz/0wGwOOdXLxMuImesnWaHGGptI3DMBR9MB7FdkkabgqDu05suRuXU5kq7VVDZ/DhsOnQpiBKvzvA/ny/dEwLnsNGqZ6i4k4UPk0XPdi9iNW1TS58otYH8rBPqwldWizxD305PB85B3Gc1u2rInzHSw8VmxsI+fqgScaL2oT0JFn+btjUB+Pj4CphfrcDJXSiKv+gNQ/TQbTLh8T/3SHsil8XV4l8N3aPqfvqABSPflnszIQ5WyqQnsOsp+fus3voDrLpa7+PkYLv1qTaR732ekWF0FkGl0wvrK8bqZ24cvecl3eJenekbV44UgKUKHYC0kVTYeQouTPMvXaWyqu4zfybsRvhzk9PzFO5eHXLC3qauNZFu5n4zxRgFwlb5nXBfDyKZ5GxHkfG53HG6rMWx+fms1H0OsaMRiw/vK+j9/oolFm/3lP3X1vQTow0Q2FGKSwI2c3SU+693mFIjST6/Sy+1i65vs5lSI2wy7YGVanU7XmdGCn3BALvHkliPknAPyxX5j197RcohoaCC10iyqj5+iLPJ1GaE458wA7Z95Rrnd5wUwc24wZXm83CtiFQg1WoUxexKdxVu1RnV8ScgncaVuEgaxgic6M+y/qmM3Ln55ewi1avFXut4jDp9++ROr6trO/vS4fHHedJ/ZSjeFolLI29NrJqp9uqN58UuwHEAnqxNuQmqarEYPodoE64/Fo+FgNRYiLOMIrx/KsNuPxgmlH/1O7VVchOweH15oWb/UujqYTY/1WYNvw9nUTOtKZ/f1s4ExFgdsO7Przk/RMZCVhs9htfkYaPzNz1VgiaS9z6XebwNj4X8Go4vfD5m/JTbaI+scrHb7+uf/A1j17SUA0+RYfa4vEfBlH1AT4Xs4jkuvUGWVH6jpSUeXVN+2kjE0M3bFd+DW248YAM7NkAjWeZW97Z3X/Pglxtm66hgOzRP8xrcrpYaRhnk5uNdHETyX5znqUTTD23KOdK8slevdcAngulbSQDrVTvb95YMLfX2wEkYkm2BqUnTDrMfqsj5Zdtzk6JuOBj27aRdOP563jcge7/N3i+jp9nFg96i8QPrxB7bco0HQpyObxJXKVnXiE/TCPVp4zIeNJ/8mIe5a6lgbUjvbHDqrQYHuDmSz+D0aX8ccXp71pYGhme7ifz206GUyNUwN++7sJcisdzuqWMcPYr/5bpTk+4unaPM+iTWk2kbHu9h+uOxzfViwK9WJsIaz0TZ+3EV4Xl489uJ0X06VOkfyF7Ke3ENEyv7Hw0ebfLH1HTdZbz+iCLi925DP7dK4zHx7BD3S2sGe4O0Rm+31wg/xGluUncpplWY3VPPiBp/YvewmtZ8s+PGtfa6t3fmT6Qa6wRPThU+x/tNfY1TKiUp3vpl04zHWYrinQ4hViV3KEXG7g7TMt2GTbl4ZgWvSg9Ru6z/+MJ4flQcLLw9m4ZLoP32AVtWtpfbbeKP5c7o3P56MLws/Isd3KyFjep6weuYOiH9sVA02bPYCVq/jcky1twfXvGmwnSVzOdTZMZEXP0ntQHyi+T5oL5i/6wGbJ9nL2I3XOSHILikNnh1zh3n8nGCWqpIqV0Ut1/W0NtAqMESaE/6QUed0EEDaGZ9gOmfLufvQArQ0aVj4pM/ojdcB/DBW6a4rlXLzPH9O8PxIOJhstJyrd77RH6/WV8aafdkxtxEfRmzpZ125RHXy0x9vxgt/HOXn9iVhjDD22YGyMfXEGOKZmcEs3QM2bjfFLHHr50j9x24XknZIE5AehwgfH9Xg9k/584L39b3++b1wyDknh+Jsx/Syqk/hvG6JCEp+WWFD9Rt38sOnKFuayVP/27JuKC7fCvLtfRvUxXBgG17XT3/1mZ/e7NclmmF4JwHNwKbuxrrzHJCdKgRwOG5KNitY3D7SgGK1YWr248sA7VUj86Iv6MFdv8BfEZvuv5PezdNSg+dE44XD6NR2rfEOlV/+pMpXZxnbX4tK/vEcv/gMLqFXm0dI5x1658dzt3ldPA4ZuAjo9Xjzu1+9B5n3J4cNn+FyvLJrgCTU3HCQ2rM7CpkVw5JfqKWJy/ye6hEqGQ+BLB2QO+X5NoL1mR6DFbRdN/l8QmDz1XsiCExGU8o39Z9+Dfzmmc3cYxWg4bYxA6E6HNG8xEOQ3q1FA/eB3ekkvARg1EmCn59gS3yHq9SdqcL3nTtpldvAVxgnupelXmcbb7BB3I8v7C71F148RwfwV/GA8d5TGckhzoG2xTtopnbIlvF58HrlGbWbT806VUIcHE39Q9K4f+qMKpMj/8UnSdm7Gxz6B3ROtTWZjUfLBppfAPjPfqa/+DNetu5B6rmwpiahfdl1g2GAYlMDK/z8RD99DIhTJKoN0dTNufVs5ZVyOGDbPReo3cXsBfdt6wff46vKhN/6ZwdYeoFsl3sMvPtJ+r3/4HOkSz4OXmjv7bNgWvgnXfi3/LwSF+vP8+SO6nY5pw3figZR03dN6o3R73kEK7Vs//SBBIXK/dWDPvh+SOTLMa7ItSO2O6+eN3GbQWxTa6mnDINYHOSzWEV09442C++dPPDzz4agRU+MxNYq4DZ0t8QjE21y/QEox6GNlZduu8IuuQZ/nyuNfOvGRX9LCrXWhCx+n5TzQYH6YwTL+6fuSJWZB41UR/zQ63dW/sbrVNsuWLX5rmODrUjywpexqxsNmqyLyss7eT5QJ+5VXcBdBEhwjhY2hjdGc/8pIlnLAyFYz+sym0x+fYCwlXiCtGeoz3UpFuAF+jlYl9+2q1S9dGBSzTyQY6NA3VU1BVDswcD2TUyyGbBf/fEzOPBDRpMi5+DV7GLsyd7ZZckeHaA6YpUs9YKO/Oqth68iBdAUMfqtH7T5qj0N4vdRnzgFErTwf2yI3fTjNcu9Hm8SjGk6huwXL+jchwHTLKvbmG+DQF/vttTqBsRmHG1PcJ9uBb0PoxOSPqIj+jhbH+/GYizZRlATGKMLCsS26rL53dknlK7qd6Dzjtrxv3qDZnsFTmXV7+ZErBu5kj82NkLBQfR7F21owHvjfbQKus4IngpssBcv9cgLIx80STDPqUBeN9LqQ3szBZQ+kxeNuGPgzvfBKWCMpQGb5dcpxzase1mzgyLg9q+2rBbeKX15f4V3OiB98XstLP4z4L+P7ZI/Ag6WejgBHr+z2bi9a+BWEk+4PGjQdIdqRAuvwGpwvrpEvO1SdN+eZhzcjkY46tFt/vMf+gO99JltgxReY/OgHo/f4USwp8C9u+1pkiWnbo1Gp0d1IjkBh7XRnVUnPsAnzGOK120RLjyrkn75R58rU/+OSlUgssc+Ead2CMfzow+Qn7832IdQ6P7y/+LvF96Jux8/g/+0p0D+33sKgqM0UONQmhlfcXUAJ1c8BisFfcNp6KYIJJV7E8lZ7uLYdfMJVrN7JbQqPTYX67CQrZlh6l+/RTe3gVCDPos6vsN9V9YWmwP53ezfVG+MwZ2TZ5QC1qwAK+VFdpnraS/YX/crMg9ViMbn3I4gc9ODSPDxyrG7etxWII1JmLBtM7KrmQWRIhpU55U8m4zPkG6VgqkB+loGaldyMAL/vJyDznEF1rPCAMA5n9EAn6qln6QpobYcvtj8CFVI/HrIkc2XmEB8mku2P/IaqlrtirXT1ULjpTo78Hgee9KID7NkBw43yNnRD8Z4rLspKsUcbdbGgRpzsQkJx40vuR3vG+oHitWtW9FJgT3rAzUiAbrWSVtFGpzXGmsMpHJU1jkPz8v2gvfxvsjepnYcId6ZIQ1oVHekv3Uz+poJ4N24VrJZMYGHWGsN6jRIymaGHxqc4+2MDQ20ksW9byHSPjKs39bHbKbxfELxIz0GbYPScOpyzwa73ttYN27fjk0oq+DxrVqanwxH34hnKUah+DGpdmJvl5leYoN2SXtqsnndDXIy5CDVn3PAnn3t9teunUGUnZB6yUXLhGd2PoH0cqygv+aCPs+32Ib6vIuwec7e2RyHHw/UmyFQbeUKIf1kVw3IzYzwLlypbLrBkMDxHn+pEnDrcPLiRJS8CXYUn14ump5xbqB3casC6MdWH5W4nYHvDh4+x6+tPpn+x4Hw0Jf45NsMEXXODXhZtxXdufDtmNl5AfrN3yzxNozS11GRfH1fYSe3bqx6XBsP7p11ow7vCHpvxXcH0WOsYV0yBzTHqnQAC3oLh0Rbl5N88iU4OP9H0rVkLasDwQU5EFBIM0SDyEuCgMo3EwQFRF4mhKz+Hv+7hq6u6k6dVNvnYFmvfx7pLtUgv0Yepbn6Ged3qbko8MiH/mLt8FSlU4VKulOJoWdKvLQ5T8F8fBAzg20shh9+gODpSJfL242nd8NAG6qnH8h+M9es/yQ5bCZ+ZkRpTqNyybYVCJgaUsZXO15KWwthq2ov4n83D8GfnkF1eJwM4prtK1ss7bzAfUq/jKgzx8IMyy3kbG6DrZVXYvmQJVrf4HigG3xI0O/RqgVndfKI98nibDLxYuv+YZ8S7yPzUTwMP9KyBx+JXzqf+HuenScQHI/ssJzx+KufBtlfkrPA/9siti/tBQqE98S7qc9snsurBq19sYjT4XssbhbPQaX1mW7Muc3GxB9WgHnoElL87gH9+g1y6n6JUQ3HeuO29qwVTmeSdHs4/jyq7o70S2wSw1u4EACVqQeu4bK/+/4vGytfnuHOhpLWm2+LROBvG9SFs0+uxrRH81rufMQaL2W7x0bJpmBIIgTysf5lT8poikwfYBzFRJX9J/aWrHILkBWvpdKN/W63qNs7SvaHF9Xf6xCPUjeswCbbgt2IfcKiFe8KdoeMB0pDm3pBZmXq3+MZ023zd8H8IN9b5M7BkSKHp7XIx3WOluO0kLPE/F/WnFvA6ns5EvviqjFTbRGgJDdSQvymzgTxAgXVz+TBrh5f49nmuwLsInoHS7F/itm/Hp9IszKJ7J5Ej1n0tWdtEvIc6DudxsuA+wDOVt/Q0XfW49e01Stcy/TMzkSR4550YgubljqEFG8Tb7o/FqIfHxNMlcgT1mFudOQaHctjbRwXM0ktqHVrYCfpzrKv5g+GBt3twk6SccZKoC0Byj5TTazrF49LS9sERXO9JwZQQ0iPQ1zo5XmymatBhnmBhQnmCxO6vlAWi28yKhAfgyOx1Jdbvxv8zUHS5Jkm1q7Eg/5oOtRF6YGUF0qyrjfcFEVbyWC5ejJGvrdxhLCZZMQZoI35OkKAXq9MUJ7P1cg8333CUdtEbL8qnkJ0u2hBWvXLmns8XCFa7WCBfrq/6Ly7e574JLwApvoNI6dzKvj94UXwiERBZSzt6wn3pwX90zf9rK7HOZtCCWl6eA+6PnTEHNTSBKuRBez0Bxs00CEEyK+h91vyVmL6h6+YmT2JfHoZxV2yFwg3lkF2+PlG/JjlCdxceiTWJtfQvDklCezVwCKGvksxl02aQLRSbUJc9Yz4tu1CePY3xkjcl2NfKmKLLPP0Ccas3HtcT985iPXqSpej62FhF8hGr4O5I0ZtHgTvr6snpOwAASrOn5jvsn6FjmzSmR8/T/GiP6YBfGs4E8uYKsF1lSd6SbFK1dAMUd9swz14RAwURMUwNwy5Q69pVRNT009iOSVzBZ/7dResfnzKf/iBqLIR2yu7Iabuy2nhswLOnGNSCVF/KhM250EPNPhM4+y6polqHznEL1iPeTdLM4g1XAl+TS2ey9gYgOgpJvHerMbhhe0ZObdVRQ72igqxM5PiH57IUdrViMtqugXnmvQEz9Id8YMcNdBjgQN4Ib+WZTXV0N/+FVLVOyFBVQUUpHa5Q9zFP2X00Ycm/OMnl6ezEM102yIXhylJJ8Ubmc4GQHH8UqnqWra3yNdp0PCiYRKIj46+TtUDMGoSWgdGLGYe3WZYgxUG00kGb+oKpdA+WV0wf0ixxysoZ/ik1Gb2YLYZ92QT4H75diRI8jOed87YQRh8nsQM63e2bBjzUbYoW2J8VZzx6Xww4LwPLv/rLcPeYCFXGq90ZsYGU0TWBTienzCTnp7eXJWmCQfLzEiwyrOYqvMjhK3hv8lFnYts1iXNRfdIi9iu1+goWqOhENbdlzibKcF82z4jvRmMP7IXPY7nSUsVdOLM//2jHdESZ26hDtd1Fmj85+GyRW9RKdE1c9ynFQu37H3dDIwbiax5QuIT/G1h74c3ZiebPebPHhb46SldZ39GPTuPYUG1qmzZrrciTHPb9+HmTkdinB51vLAwolA6mcP8UsnR0tjNAN3GkJmjh6sfP/Ir+rsrAV2M1MKb6/03L51Kidj+3as34VvYeui6Z+Lsel5P2ZQqyJClE8EHZ+19q8YL4eI2BjMlr0PU+t47uB7KO3O9xaxnftynQLgcE6KsPCE0KmnaYbqZDN9WecyX7aBAp0UfOn/VOqacSRLauOtN0KqoE1+nd6r/AAAA//+kXcuWsrwSfSAHIiIphshNrgkKKs4EEcELckmAPP1Z2N/wn51hr9XdSpLatfeuUAXfa2az8JV1iKZ8maDl6+IR8jg70aDQw1vp0mXA/Mgi3krPQg0yl12ZczzqXAA7lNFYtm+KmPRFNMPtBIlxNfCqqZ1WmHjbIHkhR3RxfRQtx9ZelSVdRxS2967qiGk3cN9Tm+BYJBFDzjeEDdrfiV7OjU0VdKHgrpHNdP/+QMNuYb/haeMl3hxZqY/H9OMCzXYxlSDJq8aXDRuN52qPJ3HrRuKBnxZQ3lyDGPvm4o2TWapwOpCa0lv/9NhNNUK47sMLMVbdlU+Sm77RaysDs17pVZ/znQ+37XNLvPReen94Hhj8Rsyp3fLhmhgGBFm7pFJKbD59axDlle4ypu5PELU//XJa1YiQmX8NxpEZEOAunpN7wcfkqDRo+hY+2+2LWB+G69eCy/PUsCB42+nEHGTDnO9oEuuvin/SvfbHn8hwX3j8uKwmJWdyz3b6PfJGM2C2zLrsNM9rDdtxPzglCozxRjzXE9EQ7ycbEG0ThheO4U39OrEQXp1UMuulaDj7ag3PXDYwuq2/3tQozlue+RAjuWei9T2+aOBtJJ1ouaby1XTOAYrL4JFQ/u51unxO4S+fY5ns7+kPX1Bvy0Dfcp1HnMqvEiau1rjj0EfUiENDWc6zeCefrqr+rkQZ1K1cYBS/Ra/ZFWmJWntaMbKLBq/PxlBVXEPaz3zdaSdW7mrA6GKzmy7l7aSreqxosS0zc/AFj8X5Wd5MMvvS70lcofrHz2b+zfThUbVUbDZXZA+WylSItXatfPWrssr3OtNnvB/xiqvgm2pCttf2gPiBF7HsjqJKAtlUq3Eh7d7KOZj7ak2nKeW66ZaoU8UNczVEON0o2RUlguMQV1hM1dgsvou//OpvTZqyjjbWL/+T336M528Ww97Md7SDLo34ThoTJXFvPoVUqRA79OoAsDIrstW67zy/MUvAgc+BuNpj307G21SlanzIVEpOGep/eoeTYcXMT2bp4jesY/gM75aQe3dGw279UOHdDhema6Okj6F9siC/BDXBq66vGI9zDDPfZLawqTgv/F0H22HWt3yy0xZ26xKJzntDAl1aVB0q+kRevZ8aIRII7fRw6hgEz2hZOuvtyTI/PvzOuwURQ1MUlzJys4GT+fzqQzS8Mcz6mEL/tKoVW8QnVI7Ditm8Dqvuc7UbuO2+zsy3VLReCzSRZ72Aa1tw+NQo2zfMfInYb6mc71BfRGjkhM7zeKvoc7lkGaz1UGTq5SK046tNJPjU+26eZWDqgro6idAM9zWVOo15nVhwFS2J+2A/vB8bSUvAkBcW213PNZrx9yrb+x0wLBlx1QnbRAL+FLS/eBGS5TaHffjMSBjcqnSU/VKTr+tKo+L5uvF6c3V9gtI/NVpgN0G81VRRGb5XkzhHpunDvJ7Iyx4SIe1xRENhOQXkp+RAvKWQepM4JoCS4+uB5c3qk05nGpXwTJsDcTOva+f1eMIIzxvbafM7EWPwXchthFxc3uqyop/HB0NzUlJiHmnWjrKlZZvjsTti8frOqu69zA7gPPIF88tjwxuHqlT5ShfO/Hl/KDvJIcSqbDBVw592uF8K/OPT+LI5m+36d77bKZuYpQUC548+ev78FhIf8mM7PschU9rMt1kgT6I+vveHRhn9K+BavK746BI93Lz75MAsN+y9QRYMS7kR2LGZ/yOeRSUA2ow9UZVVXHGFlQt4S+WHOUvWRd1ePHcQed8TsR62xkdHFjOw3tstO78j2RvgGgiycXshPF7bCXXG8WPA8eo8ye71frZTzeJEfj03/OdfVf1klhosHCTQ+i1pfM0dVVDm+KPr+LCJpnjr+6B3vsLOOB6q5xA7BUgXpjIsK2o76VYjyYecfag4GoJON8PxAN98cyaavy2853NkFmL+YYXHOb671ZJZcAhKlxix8/G67L6nCrvo+h/fbYSbgeFow47gYxi0fM2GJ+w25MIMYWmma8fLsl/+Z7s6cZAwHu4DmvELp4v+k46hXoSwoY89acUw5BNleJLPjoFJHItZNY6Hrw0efgbEWR+OnN8vlggzX6an5WZMp6ViDT+/jsLytYua9KjHMIxhPeco0xOy0WpAdU0044fOhUfn+bA9OMse1HbQaZV5J/jWAqEjydYeZSVp0Hee3WeQboh4VGxr8EO3Z9vzpm//+HnH1wNeqQ8p5fVuOoHnQ4z3H9uJqORGT1RknwdxjPTE+T3ea8rpEwq0sP0hnRQzscHxhYDZ+32RTqftFELPvNecfwWv06DLQWB9SunPj3i8QYWH8wjx5G9Vb7K47IN4XqqYR+3Lm+Z4+OEZFladzCdHqA+Q3MsEz/wArW6hjBF9qz5FB8y83obC38zrw05uGHhDnG9CVD3HjlnQY2/YLdQ3bOxDzQJ8ffJhL54pmvGExGhs0kHaKE9UH64mw40eteMr3w9oam2TOJux4u+rKj5Rdtk9sBCLUA2CPIZgHr9LrIRJX/3pIX+3osxOTsBbiVwH+OQ8pEjZuHwcDw8XsvKlzHoyR9Ndu3aKeDrvZn/z1XZixGVYhE+ZGNdHz//0/OqbJnj5GD/tdK1LFdLsjZl2d+LqPYrZFfrj15357b4dfHdywY9fMPuT16g9W5sctfPsTeK7L493tDEAKskibrb8etMlPh5QrZjK7E9tU+ZdtjX68Z+AZlY17VcqhUNQuORg7O/eZ2m/nvLUuibmA3rwcX2ICjhevSez5DpP6d2eDvC0/SX5fT7/9oIGwyQ/SNCGurfSqQGw/QQe8+rOahvVj69wdT/RHz+gJzwmP7yja6/0Il4JDx/N+pRZv3goKF/Ix0Js8EbTCRL5UMow49Wsd1Da1dZ3AVX0JGTXLrx0Ux/sDoxzweky916orahTQzxFGl7fqi7iZ48dUORubwSTV6bXfXF9IjsPX8y9ypt0cM46htfxRIg2DOd0blyZI8d5p8TOt1Tnsd8AciRbJyfPcNouHL8y3KxtSDfb777qvZUPkBJRZbguH9WUH8crpNkTs9kfRFw9c1u2B0P96Vv+iy8g4zrCgrW9e8Oj033QCmTTIVg/qkGtHhLoK3ahEmprxFZHP4R761cs8PAjorOfqZhcc4nxdj/o/dICC6xllZFAnk7e6iXSELbXXMFr3RQ4oyyx4WksA1rP/KNjn9oHvk0YS5zHPeX+Uj+BnWocK5e59UHN5vrBu1tQMPZ7VD8XFEv+uNgx/bVUIq4lD4zGi+cyrOrfiJXR7YTsRW7N8Un0QartBrpUCf78idEgoYyk8VXRcVQsvtaakwv46N7xmg5hO9m+IKB7J2TEsIveYzjvCwjTM6XsAK7XK2qygDm+8SY0BjTzeXezD98ZMW79PhqyRHZR3L6ArkeI9ck80BP6+S0Go5PO5PoYQ4BqncRVolU0wvoJlh/dIFs1SKthNX0WYB7bJSPHeNTn54lBPCsqcU8fzZu/v6TMfh2zm/OtnZIPB7Dfnk1+/vV4OHkH9MM/5+k+oqnEuQvz+WUuU79I/PGzT/rI53qAU62m82kBSzk7kyxYZd7IX4atCJ1sYmnVF9GYuPUBmeN1z0yenFNOpikE65naxOzeh7Tfpg9AfifJbPuxnXTI5tnO0/q+xst8Wc71irP640Nsv4jElCf8SmEhqAHLr4+i4vN5QnbWdFiZzxP3Lk4D8F1iXPmbwpuWw66BnTC59PaLZ+MRCGh85A5R2fWYrorq6ENdvUpiLlcB/87fF759lGOx/igtX5ezP7eMOqyc3anlhXyloMYqZ0ao6O2Pn8C8fz99l35nf1/eTseCmF8h0OnjIYhQr7UVCwzG27GfQlk+ykeTDvN9wWHochVmv//nz6bXOZ+guf5Dtg/9gtrmejuhywUf8c//G09ilIEb31dsm52eEfv5mVAfj4wst4Yu6qp3gtZ86OzPz9sZBUZ6vfTIrJf5oEGXIT9K7uyWbXct15IvhlseYxZdvsHcB5x0ICuHK1Ez74Le6+deRNL7hkmgjQ0ahnhbKuLjlmFpsfbTgUZpDtlrzWg5rd5IsJuvBFJi7vAUWZB2vnF4//IxIQdodO4YggynXFkR59431Rz/V+WH74flK27neskBfvzKPj7P7ew3PCFI85KZ7mbpsZ+++PlFaqCb+leSbv48i25HtudN0I6fdRyDc/GWbIuPesrX38usZ6YLVerzWh+Iqdbyxc92c3wJ+s9/lFV3h1hAtTod0dR2MInhlZxvDvbm55Fhrr8wN7bjdLquHvav/sGs8/WiT17QSKj77Mo/fsZEMbGhvQlbEutfSWccnAZ+/rDiCpU3Li9pCQclIlj0jG/Lv0L0VAi/+cwuOI/6xLA7CMbeJ/Y3/CI+PY7xRqzMI/F2l7H96KZWAGpFjW2Vd4GmWO6e6Jdfpu5W6HQhhQDoaCtEU6dnWpvitABttYgJPoz3drpoRaz88bn3+pZONaQl7PkrYj8+WZMwV//qbT99NAVpaIHjPFOicWJ6QjS8/Z/eYyqNHhVfb/s3uocGodx0lnOfM8OFJRgh8a6tWQlq9ZWQLpgF5tH+jfhr5x/QXY+3LL2tvzofjhf5h58My/PsyV89bxDKK7HMSxL9+PYfn0IrcWp/9S/kLZcenf2CdPbrZDiXz4akjlF5/WP9AOV100P8ftgl+tP/Pz/2py9n/upC+b2LdM2evUe/6YrC9vU6EKO4n6r6q2rX3/6xaytYKf/2oMq4OAjEMVZHfTK4YSvFUyqItt0kOpv3BxSJnoktqutq1LYVRbsDzH1yyzb95Qtltz+tMVxy0WPebZnLv3qHnad+yqP2rCJLXa6IU94Jb9B8J8zxcIxlpjqcVcIXQ3TiLVbg9qkoC68U1qFu/P4+GnZG7UNFu4rhx/vmrcTXhGHO71Ti9dDytxwYSF3nFpXmelezbPcimoT6weyU1Ii6sZvDly+eTH9KTiXIW++A1MNVJl46bdI/P1BRnDfZ1ckXTb96+v9zp2Aj/PedgrLoE6Y+VMtbny1rIRWfjcZ0Rt/V5HXDCaGEFMz68K3HR12isGs6h11ek6qvkGFLID5YwHR5V6X9yU6SjSALCfG7okDtMVYwPPb5CoPXMjSKz40M5uX0wWLpWKm4fqxPQHd1j1/a89VyvkMG3Ju3ynb+RY9W+vthKZMwddjPmjTqfZ5boNbnN97sKgV1ax50qNzWEcO1E6FR990EXM8eMOtWTz6mie6Di06YmV5xiYbPfI/17PUV8et+4sNpObrIuhQmM7cXXRfUwWhAm8IjucUft52Om/4EvmiYWAzOgc5xNDSQLFSV3NPzQ+9L/s4hjdyJAi76iKvi+FaiT0zIbuWv06H/9nPvCePEiPdIq97ypfkez1ciuz5969zE1wJE3lBi2Epa8duhP6DbTaqZdz/cOYU3e8vshEK6fCiET2uBATRrrWYqld20q7tKgxe0B6LegsQbEu9RozIDm+wN555OtvXwN8kpAvyWs106+AkOEVabnGiPz7cdysLooFxKhN0eq2c15u23A9mVc2YNy0XbjMfBh+9tf2Z27Z281rS6HDRjrim3AmkbPX684WDgBsvH29cbs/hcwmuZIiyUvRmJ0/o1ARD1S865ISHeaBmg6ZuJhOj7g8f8klBQ9wwRz8vP+vC5YQn6SzIw83ZbRdPqValwnWyfbHMLef25vMtyYuQYv4t7W3HVKQ8w7z/ZezeB8xxqC86NlJL9fX9rJ4gWAEa/jub938y9YMwrrPgtJK75VaOpl9u3HHXqhelzKzSe3C42lJ+jzkyR0IpH7aVEN2lfkV2lfdOJ40FVys9ZJ/ZkXqPh/vFlqAsAonneKhqU5VODy2LXUloSkvJ+ONjwbhDBvE8eLTPnXrAnUw2IP9k55+EZqcju2JHZD4t5E9UuVF6FD4cuH3uzHexVOYAg2piYMn3zAdUbFaKyMRl5IzUVJht8eRuJMnFY4Ht8YV1UKJpvS3aa+q6mkEQiVN9MI7Gw5unkP05viPW6ZVvRb7ze29cFrFJhQdzHtk77ZFNaS+UtXPBVE0reeVWtIva2bOIMc4f9nUsF8MkBEUfdv7xh10MHx/cQ/n3fScobUb7XzZ2Kat2m0zE2LMh8+mRGb2k6vy3hjbpnZRMPTz7ir0bQEHXeeNY0Au8+c1+U5qRqLPAuQ0otWaJQUdsnapNOOrU7d443eyL+oEA0narah3ARp+Qcf300pubhDYOjEnIIuMrFatQNRRtigZ3p225fQ7DXICtuAlO3jsn7x1L1AYVTT9z7857yScolhPV0x7TLufDa1Ttz5dvYSni0Hltv/Hi7BD4eWtGV3WbecBbOVzAVUyTOFatoOB2+IjTWymVk2N04tYLHVRHl8MIc1j2jCUvFpLjUWuNFEBq6OPA2gRWsn4xQdRdR8Vrk6LQbxPnnTzRc3nYMobaySU7eX6/lK+2qzOcNy/JivuBx2Yuwmc4HPJ1Y3E7u4Auy0LYF0/N+UfHTvuig6zcZCQrvy4fgDjFKAqEk6UP2ovfqICeQPF4TBT21opUtpjIYX8fB1ffF2058qhO8jtstMyeU8MmqbQOtL+ecYWOh8AGzJIOtsCpIsI5qvfacbfyLf7a9uLuUny28ADPXRrYl0HvzAZFk6WA5DEutXonF69qAd+wd4qY7HQ3p+Wogo52bnIvakU/+I3/DF1Ux2474Ug2nXi1Qo3kqLq+lVk2acj4BqSad5iXdtfSjKgCvWtKJe7w5+mS22RsdhMSmk9sperNbmyoAlw7srlmsqocmNZCxLSSyzVBS8W17F+XlvaFMzegdDSGyJajyZcx2yxfno9m0ORJXT8JO9iWr2GtqLIiuhkS2JCwRbZ29DERrG6bmidzyW+8t5CqURTo8VEsf0+khI6V0CQtsU0aDpD1kKLttwLDgt9Gg3mIV5I2dsrO9u+kjgsMAUaddmFc933qX6OgJl2kUCeZYbqlk+C6c+MEl29Pxi4YD+9gw7CxKD77z9ibeVT74omUSDd89j4ZfuYBcFQfiO2WGBhoVhrK5py4j3wfRm2X8FOFaKjHbqaunXof8KsDTfuyYl7+P1Visry76Rhudjo+No4/n8izB335yLFdTlR8yCA7Jg7nVOUinI20mGNfnNUanU6cPsvUMlUhMY4bX/QHxzF1i+XLX3syOz33EvMgdfvGARUU7edPrfDigSwH2zCdUJPRwE9FJ1DhzWNB5vc9PlmxYRGOYHt583OuFDU9zyJmd2XnL18YqhO9nMol1fe10XsWOhl6X3iNOQzkf1MMlh/21WRM1047VeJBwLA/1bp7Fo07VIFvdAdzkuiOqfm8QDb5GDWQvloT4dz/lnq360JDkNOOzxYWF8Mh/+Mu8DGTeH9/eG26HN8eCXrKI1mlWI6OscmI8ypJPStjkiEvsQrwiDNveDP0BosQ54+HdFGiq8msGnnK84nUxP29vKAaC7DC/V72o+DTnZ0V3GcXra/Spmvk8SDmcdOaj16d98EXZKesbLpi9JRRxuTWuPz5CfvjWJJ/mCW+1OJKIrN8p02vvBBbGhGwdLnvDurgZaLsIBKZyMfd++Vue8ZTeOvyIZvzEaOYzzE7EVztOT18FX1csXNqnxBuja2TDazzeSOxZuB28bRTCzI+YdfyI7eBuelsOhcWOBM9G85rXysxBHCQT793DFE3fRLXhJfcj85RDlE7TwS/RPOYHr3fNI+1fF6VBB8v1/vjq2Nr1oNhanJI9gcAbgzotIMSuMuM1eK8dfYmwvx+38/5HiNsdf6M4lDTmTItbWuUkGRDavlaUjs8lHw7P7o0aw3owrxVYy0dv94awWlGyk5ZmOtQ7Z4K8vm2JvSWYr1Y3XYDhulKIWnp2tU40OQN0dbbEXG+ctO7hKG4ka4gI3nZPXufN8FTWGuNUDMRXytrnt4OJOuqMtxIf9ffXgMPGOhBtt763bPTIU/7h0Y/PdOrgN9BnzgXLa0/06tDSS7jxzwUXC8q90hd2GOhKatgR2waa3sa3gcttZxLNXoXR7/xBWzxTpgkhQaK+lQBNdhayUxXXfKTb+o1E8zoyc2X43nBwA1n+PV/gn7feWuOBhJyquBP8MHy0Wj8sDIXzNZmqL3R94PMsDskQp7mvmF5N9uUiwGOfrQhOv2o7+dZSRp0viSy6mEVLByuzoNgIFXHK3I0GTdhpcLmrb7YV9LM3rOKuRrGCb2yLxCefKmm0ZXEBFdle3E/6VNYrgN3inuBN3kJEV1JUQ7LKBDzfyK0m2/r6slDLa7bbPnA06Hrr//gW2TnjGrXqVsAw52eiOwTpXS1cDCjUw0gMtZ/0Ibo0GmyGdGTOchtz/lKeNRjtZiLeWTulf/z5cx/WzG/LQZ+Gi9FBv9wVTKv2z2jIovcVIDBtKgqT3wp77SzA9mHt8dCZvT69yBPDoCVPnM540LXX+gDeU9qy9H64o6HebQeUiYcz0zrVSsdbZr5hPaE9MZ5nNRolPVVhuK4Vpt4rxes1kstISYuKaNvhGw2vQn6icRMlWLDs3BvLQhHRWzZ27GqjS8QfdvKGAS1OjMz5cUp5pIK9OpQkEAWGXnbVhvLyCk9mrT9fNNXh1QDsahMW8NWImtzavKGNjgaxElJ6/VES/J+eolM5dR5Xnr6PZr0z6zWO6O/3v3cs/eUDprMxAaJ9G2bqrPYmhw+Fkq+6hF1mfiWK6nZQsmXT0nmKKJ+mp+KimxRVGHn52etf4CZoweOIysMp4b1021DYfySMN2RleAI6qVfFXOpnLGSm7PH1+SWBhX1CrA9/6KPSdyV6KgkjrnZ0f3xKhNCYvjS5FkU63GhgoFyb9kz74Vt63xzA8kNKP48EV+P79HVB1WqRBE54S4eBwBUCGFOiTm3a8uH0iJWnRF90wzojEs2kBTiFsc7cVeyk691atNGxNCyix+86HdX+ESrIRw3ZOjuC2Ms8TGjGN2Yc1cjrxWXyhmNov5h/JkQX3nVdw22BMAarX6adJ4aNLLGg+9Njq9yyc3A2ASFOt/54z8P6iBVUdpj5VDT5+qcfpIeDibmpjHRQXsEJfW/RGQvHuxcNdVepm1JZ0DneO8TPPA+hX5o/vplX/LDNO/D26pJ51jJHf/yAPxcuMdfXvT4Vy80JLoMe0HWfWrqw5mYnl0uZsO0i49Xf+Zv5ONsWhKbc9eIO/fSmZp8kj2pTNoF3rhs6yMoWjfXKxVC8lg/mTdf5ztpaAVCD+VamW0vtn96FLFRJ1rd6tN6/1wv0oJ2HkRsJLf3Q4IAyW73OfG/Ju8VDEkFaJE+6+m6FdjgORxUur/rAztLylY7b61ArcShrVNj6Tcrx5iKhn37VBpA9OuPpZnV2BTrSuuGj/ABD+unnX7yMa74Q4cc//HJn6EO9jBo0oesZ02Yxei0plSfI+8LF/HQ7ejzVixjut9P3x1+9v/Vpj4cXMfzh2zZ1pVEYOp6z7Zwv+dUCAV11meDNKT3woZxWJ/jUsUHc5GC1VOwvBohmMrKg8Bw+uZpSgkZOAZXHRxrN+EXhVYYJu6XZjvMPXSRwS5Ud8dwobnkwViKQ+OPRutzv21Wlu81vfYg7PlA0evuiQD+9FukCRfRs3gSIy35g2j0Xo8ZecEuJSzbgjxuG+mrmW+hTnwzmiIfIYxyGXFnjbc12RWdEXGebRO45b3FlG0k1dAKbkCgfLox0p65livMqUB/TN1HfTcH5ylMy0C/Sm93m/CSEwfhE+vJzovKCHdPeVGILqqi94/WsN1tbeDQoa/mX6S+hjNoE+SdgTrvBgq2gavSTZQJbdPOYffbdalWsD7aCwqFn1yYTUqY+bYC11nPmui9Bv6+N1QF9h+DOtN6r+XQ2jyJwQScz//x47MzzA1pPmz3T6m5oGZVsDNW5eBB9fT8jPucfpSaLI3Ezfc2buhkGxFZOQPRrWHmzH6LBfh9WLLE59gRrLBJl9qNYLD6oNwW5ZsHbkb500e+e6bh+WD4Uj/2ZfHIj4cMqO3RwfhQ7cr/077S320v8l9+CZ1N63Vk4J6g5aRoz57eWx917OYAhxVtiO4uh/ajMK6AJ8hVT9buLhH0dHoAXocr2uYX04fsocvC+Tw9P2/1eH6TjtQRDzy7E2uyfvL9r2QTuoF6I69NdNJgCSOjY5lfmYUtru8HYiKi1dj0Wi3vbvmb+8dMjWPCmhI+F6wrox19262MTzXrRQtbu+Zz7Pi7bwS5lG/wiKjFyBEj73m9dVDP9ysxOKCvW150Fq+fVI/4Tti3/OEcb7ie6oIKorRBTRBB+/gILVt8g5YvLtob5fOGZP+rsIMbWZvl4hvQ1IQmxr6U28HTzmi6eidYO0xa7KGvHL/POD1xN8P685V9+84NjM/Op4o021SFgPp8u1ZRoToyc6fXEA8Wq15d1KyEbyQFWUlR4fb+RM3mz1jMq5qck6mm893/6kk4WeVTci7QBtCDpiGqkOadRKZ9g85lny5Lok9LqrRYQhDeVEfd00X/nC1ASFMwKzr3XcvK1lRkvCBHDEPVb29bQZ0dauhB1SWfh/WvAKLwwIdrrg3hn3U/orq2B+RpgfUJ+bYF2rXU8JPtnynvdFRBdix4z1t1Qtc0xeEMTZCuyxWPT/vSZMksIYqjbD5pkRZchXJzmC5thhvgcjzB/PvOEaqzG4NjIwJrpQAI1/la//QSVyD4WjELVBXGfzH0alhKdbkJa9V5WWT/9RFRZ2f7pI/nHn41HqaGVz08GxNvepfwa6jrPJKuExZhMzJ26G+peF79AjOUZ09VoF01NnGXoMnGRzfiWjm6saIBbPSGqIGC04hcnB9leKMQ6D992zg+NgvKVhxeq5npo9c5s8Lf4RjT5onE+fPeg/PyAaGjkiv38xX2s+8Qyn0uvW7fnGsZX6VBB7SePf7JgQCfd6Ah2bqc/vwmFSSUR99FP1ai/HwbMeoxkt5WC+DuwRfRcnkI8HsWx/eEF2k6bJSOzf0zVd3dC/DgemKnKLuofSxuDW44asdjMH4/RYSE7je0SfNwe0/EgWTGQ2/LOdN1+VgNZ3BIot02EH/3NjqYAvwDFUhlR+VS37dRsWwGW6n1NVNfctJ3SoSuIroXILtuc0tXhdeuk2U/98U99MKEEuAryCktsofP6h2eSUwKzv6sBjeTyOvzFw2g9Ht50fAsdiLvTYfYjVi1VqsiCxh5aFgwt8GnnKJ1cLIqeXYsy1Nuf3/jzi9rzg7bDfaOUG70oDizi6rJtUXDxYbcZ8V9+GlLjm6PtNXsRs0xfqHtjB+DnB+jyTo/4K9ET0N2eYkHd7hAfPfKGTD+FVGTnIvr5qchuRoFYtiRwXotdjmZ/CPdOeIsGy9gbaD4fjCSlzilq0hAOrnAkJ3ZW06kvDPnPD/CLmxNxevuWcJQ+ix9/4OynJxtEJ2Jv6ceb6zOxMvNzFrRh2HLNFJ9/+lsS5DMX3E3voiAdVszI03m2qtOfAA58w8xTQtN1X4jaD/9/z8PX3YUAMp75kmgzXx+T95gpK1g98XIzzyL4OEcXWlk5MpVdynYE7zyA4D9Tcrjnp4glt70NS2/s2M+vn35+nKfzmsyNZVAfHEsJxuhZs+Tsu+16RTUMeCFdWZzwh97rkZRtZv9m9tM0zqXJf6PljQVYUTYi4jkUFpKGk8V8YXDT9YeKCXSfaKTz83ljiJsOxlfh0HfNjh7XeCDDj1/FtoLaUe2/ByjQYBCXGH5KR7akyBfsJ14HTxMNlXYpAFFNZz9/jL/l0AXzEn8wHZ/3We8cDBSIzkA32sf1xkrX6h9eUS6BysU/PyUVXWJpiyEdpZNXoydxJ6Juop3epeeDBTN/wZtCYO3oJ+sELsM2YNv5fFPXbd+Au8UGa8fnpI8znilpkTjM71s9FV5WKsugd8Lf+vQLxa5BrE/Sn1/ZFZkbSxQfEkb0/aT3eNg+QZE/NSFNN7ZdD0cBduljz8zBSttR3+ypYvhCT37nn/3qKbO/TEELK7RK7l7y4/d0enycauRWKP7wl+nu5sh58FUmeTnfOeGPY+P9+I4SpNMKL+jhjQa2OjawfM+VU7x8Vb0SBQLq+dhSWXIs1M98U1b63CDBY2VUnJOHrRgjPVH0kL20T++bEDmZxJlDNaea1gR3YGZmyOxyP1bjZRv6kH6nG5XTXcXH5K4ncA93EXNUhaXT5OYZykcNE+yb21bYWksKJ2jyP/zjs7+PHsNDpsrKXeld9EgM2O7RBYs97tNJqSIDLTvJJOHUplX3rosGLdJuy+x7FnusXR9OygnqnISlV7f9UQL/L3+RzdOqhLTRKKI4TMjWT1/tZO/b4ecf4PXyFaE5/xQ/P4TN+ZXz2+smoRhDQYjwFr0abucQdcjlVLzPs3m/IB0gqaqIOLL58Lh+vHZAt1uNqJ3Ze3TH8gUEwFOyDd62N92e3QDO/r2g75VC9LosDIpmvUsR2b+8sch4Lv/8vTk/V/1bHwpoM5bM+viqT+XjvYBv8gnw5q2U1fgC7Qrj9O0xv5XgjXY4NTBFg8WuM/8dD68bhe/mw//wuDv1doGUPjPID7/GX70lkNcybuZ8O0yROKE40JZ4SvuX94enfl9I5IcPv99X5ngnpMzmvj2cD+CXRMeDrDxQG4WyIHMa52RrOPdoKk/dFbK8MfGZYLUaZaLnyBVrg8WC53gT9i4ZqE20IwThRzSM70+iyFM54EZY7b1pmie0q77uznxo4Nx86C5sI0Gmq1bcIzFzsQWpvpTnePi2I/o2Lsz+Kl2szj0a1Uh7wp1vr4SMY9JyZX4Hf/a/iJ/Hoj6tpLQBckcq+fFRvt3PVz/tCuHikr35+PN/f/4OPrWhJ/zqNZFFRCxueY+mLjkJMFL5RiV/V3FWpI4P382LYz7r7y4wbzX61Q+c2Oz5tNN2DRxLyyKzv56OQ5K+UehknPmXpEw7Udxc/787Bav/vlMQ0OeKaW0qpBPZ7TWI1mlEV8U9raa2Sq9INsOAWUWA9dEOC4D9ESx2u9NDNAVdrcLiQN8suA1lOzzfDUbqcb0juFkdI07L5QGC021FXPJ8o5HcXhiAClf8cXmLBu1UHuBQuRpFm/Ml7Ypul4DB9wVTzdueT6dVm0MSfx38OUVm1FRn5wQL70KIdpcmj6WTNKGBGyaucawjtiiGWGncpsfL1Drr0+JcPKFeHUfmh7cbH+l6r8FCQw4xok+lT74vYrQUeUzbMn1XfI0RRtqgZmRfGDSdn3cBbGXciY49Q5++Nb6i16tLyUXDm4jh6euCF2sphYeUR6ORlG9lfl688TaKN7abzxvyfB8y6yvtUZdHsiTLPnzJdvyqlSAd/Rim3WODIXH3fLoEgYAOjZgz07msvfe+3AJsq9olPvuU0fBo53tcx6pkdqiF7VDW1huMAJ+JnwRy+x0OmgrTPTuRi2Xv0PR14hopoJ3wYmI6Z+/VaYHae18T91l+0YhWiwSdiuWDGQPe8G7x2WaAHnrCSLePq0mRUxtZ9jtj9iSNbX+xDqXSzx6PYwQFr32lD+VvPNgE386dx8+oe6M6/z6ItzlvoomzVw5dt5MJ2clbbxWPuEP9hB/EK04Bn4wFaeAbHDAxdsqZd5vhk8FDnRzK6seaTzTzAM5kGeHBuz8QHY6UovC+vlPRdA/R8FEOJ9AcdiB+fF3pg0mNN1i0fRK1fFkpl/x8gPqkmGyHtk/ExQNocqU3O2Ib30KfaF5fQeGbE7HwcsfXq2OSQbCT3my7OgjR0Ad9iNKduyXBqD/a0bc0CU6F8qCfh/ippiHxXFj7pklMavR85PXkInKdnljuDu+qx/k9kSo9mO8dqXc+nr2gQO/KkIkOAYq4yBNV5gFBTHsVfcrz9hHDYwF73PPtmE5rezJgiOf3GuKHr0/Z96uCtBx6ulnKqB3Wm6+LHMZa4idx1XZljZ9Qn44LvLxs82gib2EBlv3MyMXQmTc6nWHB6ygv6EbDm5Sdim0GVB2Hf+v13U94Ga+u83mM9Zbzq5cDuoBGzu2jjTrEdEPx5K4hxnsY0iFuogRaylK63KILHy+fokNJd3wxN4qrlpvW6wDS+tvj1372kJdHwwa4Cx9ilYc373HBBRls2yNqvzjx4ZonAMy6T3RovDFqFkfxBEp3yfAAF0Dov2DeRj4eTrcJLoeGEfza2Xy1Qd9svbfsL0lP9NDS73dooN/ICtE+r7c+3i9bQUH7lcbSxquioRvuAmppn7LtlUhVpzSJAVWkq8TNZdwOy+dLRVujPrO86znqS64+Ydx/Y/pq4lHv2fgCSG+Xjulq5Xjc+PAcWezQzvOLzHbMr28MObV6Kq+RrH/Xy/Kg3GNHZJo8Zvp0Ly9vcF/CAa9P0SvivSM955niDiPvoYwG6WicQM3thplNvNenU3wL0UbxfGLWJEn70T8tIIvKiODz6z73BVBlUAIhINsX+FVjx0tx8/t/FnsvoiFq1xMkvAEarr9y+2bpfoBxn49k23dOOujh0kcbZYros3tZuiirQ66kr9gl2DgV7TRsLicoj/qVqeuhqoZX+U0QI9eMBVfV5OvpuqqhuxUtHoh9rAZoIYPFlyPmZVWdDl7punDMTJup3jH0RhCuKtIuJ5+ZXrzQR/nsN7CH5kjsx23vTfHmGcLDzl8k8JOG8+/QLqAzLy1ddT6r+uLIfcDdM2U7vrd1vsYcg55/GvrVjmXEr/HG/+0PMRt3GdFWWyaovlsmMbo0Tmn2/Wry4iEDM/lS4D09hjVqbd3HX2knRj1aGRiVz2BgxhIF7ei2Fwmaq/5m9ufIot71C1f2DH/Bznxfe9N83uRQrBhNmFalgz4FV3Q56DWzF0nrcd0PTygUFxGWj6Th/e3m1vDtwi2z24PVrv1jNMHdvBoM460RCTXUNnATdHbcR6/qlS09FS30ImS7ChXRVJ1RAWHi6MRtbgOiyVg2oPaLHTHuOqTjxboWiDy+Z4q8bd5O2NZ9+HyvOvF5lKNnmmqxEr8+GQmOmwwNy2evAv3clsy2s1dFjftRhhUrQ+at3zrvGtGVYFrkDkVJtozqh9/mKDPKgqn9QuS8ePkGvF40xazOif41haW8KQ5PlfmfPkL87hQLoIW/I0FVF3wQ5ShWdtZbY2bx7SPaGt8Grcdly1S2uXFODbOAlfh5Yz6MpddKXveUDXkJWN41UspXxzCDS5n7bOfXj3ZslocGXVVRYoEg7vSpX/gxGmTFYNrhWiOqfhH8y/eGsdV7U1hL6L1ZdlhazLO+jTHFcBg3ApnzA2/PmSz8zhP54f+UGwcNyJgJxDLjpzdKt68EzbcuqOjLzJs6zfSh/dQWHq8kqbh/HvAPr6lY2ked7yo1V+b8h6vPaRvx3dznJljda2LN+esPLxhJMhIX0qSz33qqq2xLSHSr0um1z0Owr6uIrm+bMJ2SMM7gXnlfOmybLuL7Wglhg5c6nr6ntBraVdiBfkKYbfv5njXeXwFQzQQ69WHj8Y/wHCBXIh2P63OvMzE8P2H/cjOyXWWWNw4HV4PFNdWIN36ydni+JBVUqx7p9f3Rqi4AW4L6fqjxZs4nbIYJqJrTiW0VbfSGd+ED5Kv3519+OVgggfDoMTkltzHt12pWyK+XGWPpES3TYZVLGDnFieNpDB4RtUWsgcGjAitqK/KhD14hOMn8XvCyph6f+RY6DdMCr456mY7+Z2/AFzUys6XC51x2bV9pNNiT0/qUelw4uTWUzybGY9tcPJZcOgzb9vTG0v11aHnbtbYcig/2i8dq2lStCsqzuFFOwY8G4V4mKN7h4Y+PDT3ra8QntKDdgidpY18GCtlEv8REbF8Jfeh00IpiRjw95dVkx0sBsGAdidns7YhFlkvRpKw0ogufIXq7UZQpL3gFTIfYSEdpIRmyfqIt83Wf8ukBSQxJ52hkN/os7a9mMf98fjFbfpntiNZFo+yexw/bJnmVUkWOXIhqwcBTm3gVtW5jqQBNRUb2aZTyK28W6HfegxZ7f/wLPcSGUu5bXioou3ODNq82YtYm8aLJ9xcYxbS0mFqmccstrcvRjDd4cX4t5/mxhwQeu1VOHMFdeqPFoxLS0+nMrLiQdVYfbQGV5soguzD96FNY0RiUp7khu/G09WZ+twBsRibTW8dC8/mcQK62E8H7RtLrhbOVYTrbnO3Dp4DGVbUzfvHLHJGsOUevKob0VfTEw4sV/5TLlQrOMn5RJbY/1VCMagi7rnWxVJVfPrA6xyg8LwrmiJdv1Qu7doEKzcnwEi3sdNposQhGHPXE9z+smvnsE6hjRkTNp4Jz+X0r4TbPBghi+9Pel6kZooVudsR+RPd0rHA7wDq6ZnRUtFHn7zVPAPM7Zj++Mh4SGf/tn9ZHByTOfB/OZBiIjWOdC/nKsYDl74mp6D2imW9ZcDQ+hAWp9PTGwEw6sL2tyOZhLWh4vgYNhD0aCb5nBurE9PuEhZcSZiaboR3KryQiu8kDvB59Fo3KqF9/68OC2/fSsou4eUPSeRozSfrxuqS8TLA8jw/meBtFH+kxqSE4W0AMZ3VKW2H1fsIvXktu1+lU+20Ij/d6j6eqPVfj09+dIJvMkjg1KtLBCAMV5DivsJTWKKrXm4eNyuBRsO3GvKCpOt4tuEdKxLSbrKV/+A27/sO8HhXe5E6BD/quOLLcchftGGhCqFzDLaYyWtltWx+eCZr1EwnCo6YP2fEeoi7oMSEZ6ji1pSaHTX9mWGyVpuWKGp9gytcEC798+fRuNjjONiP4oS45tWQsorH47ohb9vE8j3WwlLW/M/E62x68SUkfCexuucCchfNOx+O+mdB58VbpMg0KfeKTIwPcxQ9+bcYtpzeNTaArVxnXRxmjYRMfbGVRmndmlk8h4oomzX2zxIZhw6eIJ8mk/fIZsffKuh1j3towpAMluXzEaLJumxIC+l5RRRtYxbZz/6bV+cPp5Da+LpyqhQ0/PeaS61Fnj8cqA11JZGKfDLVaSbeHrMhVvSGest+hAQKNKrN+mvODqwtL/STATx/qcmaioU73APbcvWptiUI1oABkVGL3Qxxvc/PGr2pIsDawxbST+6o4v1xCqE/nBe5vvE3/8DdXbm/y0z98dUxytBfiCU83uYxEzegACQN6UqHkG71PdqIMLmY50+/ZhIYaCheYctXILswZ6pceXGGLXJ3M+d4blPolQnpLOxZI3erffurK68a0alLb9Xavn6DwLIuYXpzrPJ2kQd5mdkjM5R2nX6/2wk1wv95ZcF4cKz7nK3lztgy8nj9vdIJrDLeiI+x2CNRUSMr9oGTp5cAcNTqkPJFtH54208hOmq4pvVUrgKF1Poxs0QV17QQH9NOTal4zb6DUOYD7ulDi7g+8pfZ6CCF55m+svC6nqO+y2oBswxd0WYypR5OxaVB9D2uqwF1GPD1kg3ymU0UsXq2qevdhsXwsl4hp1tqqxo9hUjjVX4WYmbjjU/Z9aHCR2JpOftlU1FRuGeTEkOnTk4n35OWoKeZDCpgVDkrEvkO1UEZp2LG9L0j6NO/Pb73nGmeHJjdca/Bc/o+0M9lWVgei8AMxEFFJMaQH6YKADTNARLBBwATI0/8Lz/TO7tCRrDRVe3+VVAJClejz7ZmffF7op1eC46Ro6yQqAF0vbMK6sWrdKSyQDNfLNFF9mV+6PoalZHxeH7wX0n3D005s0cIbSPi69KyP9oeT9OqmE6lWJ9IMYdxHaDNNdiAEqzeb94nRwRPePrXNh6VNzfdYoUvBDdjQtjqbAfkJOGvfpSf64vJZlwcH8a7MYWfRj6T1+gjxWlJjWaOGSzycdYirrdvChyQ2TK9JAGHYUmy8ypqNRRbakq2ds6BfneRmbSb3UcLZQ6GXRb8Q9YlslH/9PVniWz4cwqQFyRd8GnDRS2NIvzqw8BfS4YeJxiCza2QZZ566q3SfT+yNRWic3YpEk3nJv4TnX1Irm/GyPkn+uUfD8kr6PcLaPTnk803RLujdjkCvoTsu8ZKrIOiXM8+abObrVRDyyFnLLVUCwXZ5Xyxbcfk+3JyFN5umgF3QKhw8fJzEQmvlXSHsLv5xxvrNecYD9eztX75o02+S/80f1kybCIufJNn3w4Ng5hrFFYny9XerBWDKW5lempuiLfuZ2/H16RhIXrD75X8Bfv7XuzgTewr3msD2kKk4AOfRTCrXz+Jv/enxdco/9sBFqJX1GLudq8Vsn5kz3KnDB3kPl2YWrxsQ5VMR4L1pvxnzR0EUq+3HJmymE2KpsHtA8gqahSdtUCfKYwGf5PigjvTitLZfh0T6FMUDG8ao5bQYiwSYwWnUF/gTG5b88ecnxbXk5P3CYxCvnWrq/+JtusYJaj5oDnJX4foBhYcTaNL7Su7ObkSEH048irTGppic/HimF+kkqgfsUQ3OvjaPF82BRQ/RRS9p0+eem8juuhEbJTHdabPqQrTwxoC/yayfhHtH0OKnyVr5iPEnUFUd4tUgUIVOqjYN2/UF3L5KsB/5Vdz/xmvhuaR+twEaH6/ag3f4ASqjZq9Nv/j6QeWZYtVw+2n1dR7S2TYTrDpVlrPSNU4gsuJE9UPtxFO3ylr48U5NGPbutCkTE5JTblL5cdXZxHmvFzSRcMVmOF7zsZwfHWrX4/GPD9P67kYwr+83jHllij8V/wCY0jnBerWd3TFx7y1w05Dii5kdcyap4ww/fee8qrSZF94Hdn32//Lx9LnHJqiqLAT93tw0f/y5+3QV6Y7GTlt4Wwa2F+l4f9uz+Is5lqGj/sRYTiQ3X1vzPYGFt5Hdok+Gj+gOaP8WBqpyfdePGv8RgO/UiXC/fLXarWT0xKpLzU01oMl7QIeAqhI2rN7J13cmzjDLoYLPix9lxnsfAdiOS5WVtUdIYKEsHZGJsLn4wTFMrsWffrMj6xMzw0AmYoWwDjZrVeqHHC4VfHX5gt1XMLhTzF9PMOYzWeLr3f2bv8WPYGsLgzaanuchl8kBPlj7xJ2F/RDBRnutCDu+pXwW5W2JXJF0VEnugzvEwTZERyM4UTNYn9z5PeAAuY03YR9uIvuu9WMC5frxxoFa1u4go10IXWS/qVt5oM2lnslo0SsBW/gl+d6yBwpt+BJUtoorBLbrwSuOr3jRnw2RdhX38wPYnaYgF0hZZeLCT7Eaulw8KOeiACNlHnbrA88oplkFG90zaYijdz57xMvAKSuElSqo3JEznyUIELdkupRaPogHtwbtFkzU2Oy0eFPQzkZifz5SoxhO7vCrR7BBc4Nxyb/TWmtseGWrHV3u77sffP16iFN3e6oG16mZL2FRwvsQayT6nPJ+FiyLB8fMEbaX+DaxzyOBqV2eMKfntO/DwRUhezdWID6ec0/3mTmiqMNnrAvhnvHHtz7DanPJsT9zbcM84QNieIaKyq2vNDRpLjqs9l6Ew3XvsEkprRkuiLth+5nZf/4LhkdeUrMIT2w+HXEB5H1b4UC4yT3jNyEvoZRTqVvnZj8qQuDB+XWTyeUe32Lhxy8IZTWB0lMQ+Xy23Z/f2vPJiDZFuM1+/C3gHP2rjfmO16Fdn6fffs0Z0f3qx6Ox9X4DY955G0Ae+CcqTyhw5wTsAW7s4eMzLeumU17PBIqYCESCYnbHHXO3oOE8CUDbv9ypRKr3p6cygx7yjbvbvn58ml5uz7knz1iu0HUzPfCe3JD2ZXbpiJv4UmDtrV7RHJd7B13bS0/VHIlovhq6BwfAE1l3ycH91SsgQPsuYPnnm4+KYAZwK0KBOkcjdcc42EbIlwPnj5dPMEkvUZn5KtgsfnT0s3n4+XlqvckTDW6t2nDsDyXZxtuyn2T10cFtXplU1ecvYnfNHX58i2zoOW1m/HJG+CRcjxXkRL1g7ZJW3CqvJ96rRzWfjuHyVsqyf6bypPRrcnJ4kBhhVAkGIR54rnBgnEuOGgv/m0NdzaRfPcibjtgVFv+MKnVsqI6/ST9o/IeHH0/F7uvaz8t+hHpoYhpsMwuxn1+7FZGADeUj5uPSEhNGz+WpvuSXsXanSIrpLsWK5KlsWmu9A54aPAiJd3XPH98c/PwEmQwlasj+1JliN34F6h7klzZ9Sq5D6raqyYScuZ+7dxJIRivV+Ocnx5+eEovRpPaNPvJRjz4F+vlFlN23WnuyWmG3bzVMQinh+u+hkHlJvcufgK+lDjFOWgk/nkk9SW2073EsKpBAPlE1lXqN6dZ56Usl2VS73ns2n/kpBEX8nUnSwB3X6SaBdHfisKqOUj+d/Q8HMi+I1Gom0n/cfVrtvHtwDsRXteuHz+5QwdHbzmTnCkk+KOm4BV2U4FefQNTUTh1slceTbO7Ce1kPQwdio81YHuS3Nux1GIGuY5W6S36amGNfUC/fY6zQqXZnwcI87OXvjqx379Ed3dt3QKW0dYJ159zyrzVuTPGXz92AOyIiWJYAOyt6E7T4YWZfjxl6bKroz28wu7QeUD6ZQ/gxSNHCY03YzBeMU92v0CSmHx3yU3Je9GDrDoXwLODrEp5k1ey7rD3K/C9fUO2IKkT3KOEg5y0ImF5VMfvxMlJlHXl/iqgZxYNWA/OVSyDuRKUXFn8MuWUrNOWTkU3WIXdgtpoddXi1iaf6IF62j0t9C2ZNv2tssIOTWAf2G/941bw1mgL99IyTqmM+7QfPBMt8qDgmc9ZQeXyHUvsaa1yC7+fDIZp0iESVx1bQtD2ltaH/rSfxiB1EL6IcIMfkbwGyLg6bNrcgRBaU7189L58j7haisoxDrEjqQZtbd6dLXqQqhN2TQ9x3B1veLnxo4TmreKzb4IW009CTdayLaH5/dyVwnwkRJnyq/Pcb/eKL3dQftNTPPFj+H2tP64TIvbzMaB/eT1g/HikjoQ6vn/7Df/Wg7y17wVJPIFv1jdm01q8JeppDS/PFn6+X+oMoXElK+lZTkBCDuP3TK7hrLPYXf3t6qrHjF0Y8ZGUIYC99e5b404zGeFeh0fgO48Ol67+3VBH+/KnyhKH/limv/r8zBcJ/nykQqYCC9eal5Jvr9lWCQ9lAld7a9YNRqTo8J72gyX7nugMdiShqcSZRtUqRxjjtKoOOhIw6PIniLz/ZW1RoJw6beOTjr8hhB/J3XAe1+7yj+X0SRUgusx+sy9MpX3/apEAvS+LIOHKDO1x9xZY2W3FD9xUb46mEnQgRrU6kCd8f1KfOjUP+w0oDdqsaNJrCrUSxejuSVzrXOZ0ItEhUWkStM6Js8qZ2gMt4LAmSWc7m3u9n5D4jLyhymiz3GPwTqsyPTt2VqDe8yA06StviiEvRa9xRHeoRatE5Y+M7pWgSn+JDDDpRx8FKozmTYhyBsqlJsNrDp+8OuDVh+AQKQQdB7jffGaloPa58apztVBuz4duJ+6KyyUyjtTZcFwYvWREL+JbO7rC6yhepo5xDHY0TNbKrdRPU3WpHHm2GtaEK8grYzKXUd+SbO+/pLoNP+omwdpaaZhajlAe6aiNsZfBCcyUeR6TTmcPutx+b2bZNGa7TccayHV/7WQvcF0rIuaGBd13ec7X6EwRouNLLO7F7pkabC7xuYUHjxq0QRdktADsKB4K0txfPxXonoOJer8jG9eR8rOSqhKNIn1jnPo02afR8Af3RQPAQOdMVSvLZAjvpD2x1Zyef3tuAgF5yz0DAQa8xxbnqYMByT69a6xpfWmOGYP96knXZ7/JpFe0BvTPeoHvxqffjNqYOWn+rHGNWPmI65aOw8yJbwfGxL/Jpdw1DKbmMPjX5vHHnY1qMCLWzh82ObF2W1wcdknehYHe4KfH6ZiQhrHGSBd+SVGziiqaEQwMEY+cw9PMz/iRopa1yggC/2bjb+x3ssV1RJXMb9I4qawZi6CGNm2/nzl8z5mHw7ScR0lmNGcBOgFpVqkCM/CCeYt4vxDM8THrwytSdPGEq4JOtSjK74gONzKxEFHhEoxZRrVh4TEEL8t0Xlt6iZs4f5yaQSDzqODlMQUxMpduC2e8zrD9ql02bzdLu7+MpeD8oS6/TdNfBOFsltTD59OMWZRVctNsnEG6ViJgCd25ldHJO88ht+pHfiyUc26cc7I7hqBG/Z7K0Wt01LGc+6efXPbmgElAWIC3ax9Ml+swwaD6lpu4n+ey/ughOif0hw9oz3XE7jx7cbE4gqzZ852wrb0MobpeUugP/iMfaKxIIGosRcYknk2mFL6lTRocaq/LRTGuOcXCqhWsw+7HYTO8ub9Fv/sqZe6LvYUQiaJo4Yuf7RfEU7U6eZK/9jhq7JNOm55DxiM2QUoXYYTNJZd0uvX0inONhjWhzdB/wG29PaaWYBPzxBJKnjcQVjavGYPPRIQilIJAc+aZ9LadzxN1r15Nt19X9/GjiF4jRNQm+L2S5dF+EneStzRU1ohdGjF5HGbyay3BwPyCNGS4tYIk/BOxkisfKmAK4fs03tUn9ZCx8nwcg4p5hPxxibdjK/QmE7euA7c3rErN7EdfodTy+sK+85n5ozdMIIdoIwTM6DGjoVuYsHua2xsv6ZHOOnIfILniP8ar5sok66gmehxfGsoY7NldDTaRZuu6wripvRJ4X0YRnfWkpPjovRtGuDaHJuJGMaf+Mx8mudOlCG500m05AQ/rQEqmfLIca29XG/VpGmgHYYYq9Om/7MVQ0B2UFHug+nXcxOxq8CtX5diXMy7SG7vbRC9pLHQdQ53YjNNkugqiWbOrG54h9G+W6hed6k1Il7G/xeB4HFZ3nPiStQD1tCui9Aos3eyqP3KCxgNAOpW15xIF3rd3RPFYPwP5apckSb+ejGXLw4bM64B++jaY86DPAqxtPFUlxGEs/d1kSpHNAWk9RNX465TbaFJucuqb0Ws7UyCI8UyYFk7cXtH5rKirCm9Ck57XY9b/xhFOk6tT2GjfvFedqQnv2LOy+VtB/j3MQie7eG6ki614zpWH3guj4rqhPO6H5GllxQX2dnnCg5onGovN3WS+9HmzHsGzGfaERWNYfNs/S0t21pR7izNgPNnLl9RPKUxPuUOxx5nSBy3Znv0PXjFOxa/FRP138gyx5NWT0UrQ8m8FVxL/vkfNUQuximRfoDy+JGk/ViSlp5Bk+a0KCTfgUtPkXj5JOnIMtOix9Woa5A9fSXTJllYmGlbSJxHt1Ifh2UmJt7KZ8gPD9GKhCkxWj46504OPFHTXv3bOh1X0IwT5+r9SNVcy+0LALqI1+Jt2D69HYrcwR7lVGqFcGdT5P6rWEl+YrwaY4QsMoR0Rk+NyKcP5nypd4NKLXLSoIuW2NeO5W2xaeRs2wZlOzWb+7uAM4dgreJ6mG+t/+xB+xxH5V7Jqpe11DBL5yInWVIneMBlmXatE+Y3e7+6JZttoChTwk1E3Tik3+Kp+hrtc7qh3KkzYdZzOCJX9h/WjZMXOP9gDx13vga4HjmLlZWoq50Y5Y5pOXNrF4I8NzvU6xd9E36Dc+6KqeL6Q9viU0NPi5heqxNuht6yfa3HrpRYxCocGGKuxjJsVWiAwuftJAebwZ+xrCFlb1vqBWzTsur8BVht/3O1ezbT5qGY1AWHjAeZpWiD2NNBGlmS9wOjQCGgSLhRARz6FevJniSSq7VtwlzAzy7e7L5qN7J+BphU9t7k1zBjAJSDSMYbnXWMVzm6ABvJPI4f1B+7AOSp+AIQo82VVszGfWKi3cjNrA5vOoNgxZeQaxd3Hx+eXommA5hif2kHjLerktNci2AlqHPTbieaWVl902QL/8GcrmOR8PejJImzTrsKNe32h2ZU6HzKP/AAAA//+kXcvaqjASfCAWAiIJSy5yh0RB+XUHigioyCWB5OnnwzPL2c3SFUI61VXVSfcDqfknB1TElwAa02dLI6WurIXrIAJLZJ4QnL42mPPrV9wlzx6it1hYIas+RwGiaLSIQLsBsPqVzPDvMR4xuhKVk/X9QcoWQLbGWHDJfkweNN7jmQbhU03Z6z158BPf7tjIpC8nF7fJYJxNC/nY5hlwe+0DYh/cF1HW9e2SjaVAUc8MIqcOSoew21fQks8Ah1M2NeRwUkTIh0GlPzygOQsz+DnSjiwPc7b+5bO7WmKsb+rGYuh5rdXD+ebSh3n9FtPaGB2Cg1/jMLMcMA9vFcEt/OvI5YC6YoHfKIB/r7SjUTmHzSLuI6biID9SSxjiNd6rUrNeTY0UIYkK6cfv9DxLyfOzbIaldkgPL7quUBzwM5dPB7VUe+fpIvDiUzrl4VFWHS+64cIV2TCq0QOBrZvYZIuJP7Cw+5awpA3DRviJVjxokx+fJHWh2ykn3bHanb7vN7WaUOfr/rlBS/4D2Ppc3JBlCBygpKrrfNPL3uJr/gXnrCwIp4c+HR9lzIAe9g/qPzePps+3iwk6mZxQ6rwKQKlAFJDsF5d8g/Gy5rsqgcen7CPBY3ZI0E1n4OVtWrrnTg1GaXNRIPmLJKw/0Wtgv/UhPDkioHPAeVJhBky58QggNeQf5UkDIN+3BrUelQVmBSQ12L5uDsYnyeLbu0JKEMKQIOGk10VX5hBB4bzkSApINMy//A+95EoEp1PT4e9IVfXy/PYrfjVgvLzNSvPTYqDmAEE4fZuQwLjqOvIpk2rFA0GBN3EzE2bPecGPOPTg4X2oKPahP/Dr9rYHm9MiUt29HS3+N3QR1K7FBTvSh6X0up5ptf3IJMDprHQsm6yCvR2BWFz5Jzve0wByMXmhjXWQGjI5hQh/fNLdsQksztnqAXWfBXqrPhhov3T9bz/R8ihvG1LCG1THxzFAW9U9gJUveLA4jhG9x9nVotvwOkNp1mJqi/eY87M+JDBmPMbGmm/m8ARm+NowjO3wpfBvP7x1+NTYmRp3WQfStu0Q/LrVRKSLpgPp724dIPlD0sqPLLD0d1UAk5ubaFnzEzk1cgIlc4kwOulmMZdNVqurfqJIlv2Q3199pz7++h7b3fRJ+aPMR1CIQ4BREqoDW+j1Df+azQ3H5l0AixTRPVz1Eprn79ea44p2UBded7Rb8XZu8EtVVz6HtDdwrSUPj6K28lX82Bj7QUzddwJW/YU+t/Otma/fm/PDT4rO0dLwzLdbmJ+zADvvCPHp2F3f6i/ezGUxOb3sigSKQmWQ3Rb3zVI77x5+xUtNlvrSW/xPGE21fyZ/ZOOApJndQRJgWlYz2fByX8yslEqwxh92tIc09AEPIDReuU/txU35bH1yHb6fhUm2wukv5G7Ttbv49IrQEkLazFmtCCALnwLitzFNxaKOAgjvW0oYS8dwDPN9DU9KktO4Pxqh+JXHG1j5Jg6Vdp01VRACoRQg1M4fqSD5hQpgzS/UYW9QjIAsMkxj8kfU8KkWjBjWHopGF9PwW/bpig8JpE27xd4x/xu+2ngmUMJZTj1v8CxZrfYqFKWiJZCFNJw7Ynra0x5KajvPd7EA/uqgIiU78r2yXbHqGQRZsXWRdm4eKevXW3DP8uBha3jFBbOeOAc//OMedYZ5JxsM1oWQ4WgvbFMqd1sH9i31MHI6tfjtP5iq7wibkTuseq5WwOw0EhHAdC7Y6cBu8HsdkrUpDgu/AlJyKAq1QY1M8vnSNkqlummSkO07aC1yPkXmDz/Riq/N9O1uN/iQxOGnDwF738IONNe+pfqrGHjnZ0zQBPnFf37Ies+UdVrEZ07Aqo+Wu1uUkNbJQBgpOrDY0TPbXYPDiR4WSUnnZ6aJsJNyD0dvbeFTw/sZtuADida84pAF4d8bFo28YAyGoJGuzfsCbiMzsBFC3HC/t4hW931A9Xvj/dfPyC8zwLdFHq0FZl4G/bKfqEt2fKD8uqz753NHW3nJ+NDHSAT1/VDT02hHIZsjWQAHIMk//yUkPz2OyElCot92VncwQg+MeRVT893YzfL3er2Be3qXFLXwYvGXrrdA3il31G/ytzXTofRg8fI0mseZGXL2MC9QLsiN+uaDDawkX1U9sr7G5rLUnG2EbwAPonAic20vvNuGexkWf/yM1I1thcu2rZDWpyrF9mvt63XIjTfE8dbEhhXrobT9KvDHb3DCH0Ux32Pfg5WFUmpE5S6cf37QSQ+bf/pCsqNvBj0J9xTHn/fA9sd7ANb3xYM5VxY/3gQEfnrBW/Xq+vwIevvdHkcsxBZjNjX/8QdkLygUOQ4jWIIPmtRnt/ApCGG1w75jr35dFG7FP7WEFtsFNMtuXiryGutw9VeQeGKvVd/PiXYhSEGsn0PALbWf4dHd77B3KlCz6q0LPDeyRZF9C0P+Svc5pCYr8X5T0WJ6bJ8BHOzmSe2YWg2DZTyCRDcDbG22msVwNpsw8p8ZYtW1CDmKFQZFo4+xr6qfZnD3j0rVr7pLjyu+zfki5PD88jDObf7kS36NFPjj376bCZw8JVvXfn7e/nVVwnnFW1j49vO3/9MJh5iAV3aOsO1e2MDLwg/gUgY7Inzmrun7S5yAld/Qyy09cjYUmQxpFmPqi0VudXMl9tD8SCeifquztbj3SQDzJKdI++l3Y7s/wJrsAXkB/hmW7/nSQ74zaorEPzAQ2wEdvJvnC3YUp7Koae9P4Ken7PPnDYiAihK+WVzQwPH2YJoivwb1OFPq/vQR8ipTC//UlsaH4AvmxlBFzVxY+A8PFsCnHkoQ4bWvYlDwbXlv4YjKhe7hWAJG/NcFzmPt/vRAMd2jFsE/Qy/pXjhV4VeKPg70yMnFjjUE/FOlC4IXqIzYHxuZE9Yqexhm7wsCUpMCupmvAfSsVkHTbmyH+RW/CQyUyx/Ng3No8aPPLkDkyQY72a0rpgc7XH7+H9o1H51v0zM5gONT9Oldt6t0mQtHALaPTByF3pOzHd0GIDbLD7Zk3g/82aP2nx+B7bwqKL3PJlj9FIovlQ4k46zcYAh9QrY7NnF+0o79jy9RR3H0UAqunxYc7l8J28stA2J0Lx3A0OOB/RN5868h0ww2k3tG3RCFYKd99hBkl90bSW1lWEsJF0XrLSejbv34WPwLTe9ffP3eb4yC5KCJ6czIEtpNwQ+nVNX+DLPE0eqfiVZtJFoQ1vU//4Zvwu0J3vP1zs+Kh6TQixyYVhvQNIIjH8eW6zCMNxN1KcqaidSZAgQh39NglHG4mGMsQl57Os7XeORtLfe7eHMq0N87aMNXMgye6puvBPvBqPDZadIOTt6I8J/qzryLLvbphxc0eKaEL+UZVVDJmy8hq3/+T88993/JP34mHcD9AqvAlojycOtiPsrfFuLNXUQiSL8hwV8uwh/+e8bmFPLjTUZwozIH+9/6ARZD/mRgN8s1ddOrM4yP0BCgdQlVagSznorv2Thpxm0pyZqPC/YNEgSDHGXYcHOn4PxUqfAUjQt2xNmxhlmMcwCV94bqdS7yRRXcAO7ca0l12SybxQ1qD94HViDtaGThnCwHUZPz/ICDexE2vJBOKrhY9y92w6hKx8chGeG0HTvsrH52v/pL6qrvENe3VrqQulQhKPKWOlP8Av2qz0C4zRccV67c0K+vJdDhzEbSe+3Lubnruda2JCeKHx9T3tZCB+2gQji9/R3StZ6iwNMtEn7+aTFnFlUgFa8H6iMz4bJmLwEoFe9OLecFOHETWoOmvD5pzPV5EOl9cODKT2hw2dUprx+vPfyjUYkvkVGHX3WwTtpnNYul7ftZ0L95FqAl4uznvxXLY/v0oPj0cvy4jmtfttHT4Tj2jGh3ZzP0net1cHqrmEjB1R9Wv2r8fX96kNfzZJ6aq2DlozRp4rCZP73S7tLnpsa/eP35oUD8ixvSrX4XLT5PGRaNuOBAAZdh5Q85tE7UR8tar+I43LUQQKRhl5if9K1cnwxK9fGKlCEawDI5Cvv50dQpUnEYl6wIYGVFKQ4XIxgkT/e63Q/PwUZtG+apiQLOdmf++FuzLaSbCnuncel+U+Hi53/DNlUNoub20iyufb1A11Z7pL4kJeSHz4NA+9bz1d+oB5YkSw9B71xwLMzbkF0eGxUwuV1r5kBqFmlQArDyBeqw4yWdoyBJNFfcD+gZQjxIhvw5gbisTMKKc5fyZHMRf/UYtN9q/+WrcPcGA+E/fSn66g3aJtUwPoojYOrr3oHJvZi/+Bq4fAYJvInaTI2TcU1Xv0j91R/Wr94OUuRrJ/jMHlskZ7cuJeNByqDG5Bthq56Q4x1x4HC2COF/mjWwuyPXWjqhFke761gsyTvJQeeLD3qLntthkaE4g7MEO6y/ZsRZ8tJuYPWbqaVvrYI8pViHcLcLsf3dycOYgbgCa7zTYFvXfOY1NsGvPuX/8H8hsIdjHLzI5eeXS6+p2u0yO6HYedNm2bLiAF/iM8bHC9oMzDF6FQwJ8Gm8rXd8BIZE4Fo/oVcjtQrq01MJOvA4IsXLXtasRn8Iiv4WYHOwEec5C0+Kab0D6uwSXCwyhDNwtHSDI3zuQpZvdzo8LlmG5NQh6RLCIPrpG8RWPb5on70AHGl/pHj1Y5ZAmTtw/Xg+NUZoFHKoy84v/+GgWl7Dd9WravV3v+N42Fz/1Vtgujn72DTQMeSdorRweisY/32MuZg/ytCDX774fZ+5ccMWiL4E6Lr+fBzEVwIHrbvg+K9qBq67YQXZR20o2oaR9a0VUP38C4zjpBl6LW0juGGahIOV/y5FKq56nETY+8gLWIymqaG/eTjUN7p3OgXXzxv+i993hMDqH80woMuIDX0/NqTakOqHVyu/rcJ5eH5vQJirHr2zJSx+9R6YlvWMDdZf+fKdhRlGS4+wOyi3YSJ1qYDNiYtIaQTUcO+tBlBwjjECLTSssUrHA3yj0iLyRGnI3s9bDrGRijS4zmjgTrfLwNnuTeTLk1G81vXR5pbKhBjtB7DkYl7gWg/HP/9u7gxk/vI/4ts+AyQzdATX+jThlRkXTBT+TFAFrkSWC3r86j8tfLsbAWl/VdNMka9l8ASmkGJRn/jYGEyGvLlF+E57eZgq3aq1tV5O7QnPTe/AfK8elKtNwIvHxfbiohxUhupiNGgE8NPhXP/wFe2Oahb+9JYqpoxRR9HGlK4dWWB/+Y7US3e2JW7uXg7k5LVBn+LoA8m9vyA8eM4DaYeRW+NuXkzt/zpTsP3fZwpgvAvJW8v3YPnNMyesGKlnShMYp/TgwU+e/FG/RUPD8sCs4Dx/9/QUODX4aLx6g41dxxRdYyMd5KiXweVlFET6XK2BKtBM4NV8xkg8smc4zzYiMGthSP0QiWCc3i6Bu8/okMngj5DxbaLDUyADanTbqzVrUl/CW3XYo/U+BSfanmRQU+svDk/HV7rs6LmCEvukRBrBM1zM9Rr005ArIp0tP+U9cQjYDL1JzaM2pgszvASmLXWQWkyXZj4HG0U9Oi4gzPdpuuSpQtRMbm2cknoE3C6sN1SfR4J96FjFEnItB/sgv2PT3tKGts7VgfkhZ6S3mJGKsOkZ/NrSiNd5hKEYZ4EAt63AidArOV9Yv4XwfptGGl9wlkptEInw73gVqZnyIV1OtzyHt4J5dG+PbUptFhJITjsVaZ8Pa+anKOrwdCslao2XVTNLqrwD+2eN3WB4gDlvhRwIh/6Bvf5RDeNTv3kwN/odkl6aZU0cbnsIQyNAk97pQKradwQdhu/k4zGjWCb/KwDyvUpUT+QtHx1qe/BzMHPqynSxiPs+CNqRvybs6LKSjuyLHEDVsMAOLzuw8F531Nc3EEhbG6rFVe1ZwuFM1nsCz03Ig9KHcLfZm9hFXVWwbXchcAAixzi4HfiS/V3h2rvEp+hRCemcPT0PJub5TdHt8Qx50+0SSMLRpuWo7zj7vqQIrP8Ph9VSNSMHNoOZ76Rk994HA1MRjeDnHlyoyb5GKAvZ2wRrfKNtrOohNdM9g1+yrcnikrfFysQ/QetcUWxc/u58/obHE5yOzhl7KXUHltgthK/T11rvnSR8/giJCdveSnDkZimfxO0GAfuVG9TZEWeY1+8PJirGODqPKJ0PkbkH29phOPbDYqDO3irhqMkVjbySgWkcTQ9GAr8hcJxssPX/6pMqJXFFQ1reLL6cowrKHfWQeryDkL/oQYXVHL3xH+blwEybiVDDqoL4o2TWaB+nHKxTZjDKcFMQ0b8yoMu7lgbJrhhYl2o1iFxrQsoHGNaISZ1sZg+ciHDiNf+Q9JXB3UWIMcKb10DdzPK0WjYUHA2nLm1fedJBsp7z984vhy+FdYjA5Mh/ZBeXbKDh1a9hj/EZKc+hGZg2vT24q04BjmbvNXA/ChKAtglDcIMfA5XUYQ/zVp0QSP13yneVQTQrTBYiR+jEpcl/Cpp8imMcbIbYktRGK6WMj3t85K48tKNxKDXDHu7rftjwRWCFAr+nz4tajzKxiKdcenCPNU4jfDs0CzkYLXx+hDOO4vdxYKJ/nSG7sDeqn8bHmu42TWAkLDdqJsPYsFliMtwZ7yPa7Tw7bd1oFNSZP20c3tduaQkuAniKCUTS6fwN2XFjJ1pkpAPpnUwHNEi+KtyzIP7FnyVl4m6EhVN/qFO21FoudJeomYMSGnph1/A/5X6D9uti4DTpJWvZ04cMz7VQIgWf/ZDJ2dGE4Grcsb7b9yHfunWunpRsQpI/jIB+FPwGcfw8431tqCG5358X7fN3ybBjkWs6hVzK4bl4P6mvH7YWs3Q1h8HyRjhwbGGgN1DIcBBGkRon+OQkOMwmFITgQPXbPm3Yd7kfgBFeH9j7LnrKWTF60C3tE3V9vCmmTNwRmAqaRfX5EIfkDTIPtA4vqW4xzeL6JUbQKTcdOc1/4jCF63w5ffFr7N/qKWUlfTpaArWM2lqQW8vpw27gqnkadcdHOjBpf8ygXGsONbn4SBfb+GthGLR7jILtm9MgeapQLl4++aQPCLrstm2hJs4fmq14RfZubsKdm6Uo975COLIkFiBb5jtNwokMDDLSwvYTHgl7hC5n56RFUPd/g7DH/cBV32ihMtwK7CR7zid28XJgSxtGjYzpYGtILYRtbyRIbbiUDlup7uH1MYQ0jNNPMauilUA+XmJq7SLfms9WdYFT1F7pAaCeMy+fFQjBeobvST/FBFz47zfZaGVlUeUVBLA9P/9w2Hyfw4xufQvZdHgSjg7ywJzHcvrhHY7T4moNx7/NCeLv4YGvnyoMefCtdU2y7h9q18eWsz+5eUP7oDpUf0asYFt7rjQu6C41H7suJHybmFAdngP1wG3Hl91Rm0F5etzI9LJ4Sm9x2kJLqF8I6kwcRmT3Jbj87W5YVzKfz02cXrTwJJo0W/cz9Zsgh9t6z2jy2HnWO4JIga4YB/j3vJUfjPDWeDb25BMIl1OQjKCrPwpRxYkW89vKa6hcxSc2v9Le2tI8gnBjVzFFmdYM1UHvdahkQoW0+sE5V669A47hVvvtDz7riJpAxvSIfReeQ/5bL7vU9zjbKm66bdVZgCLuDHxZnz8lOYhg584+tbunOUig1EwovLz8t958jvZhAmMldFY8fVqzGoYlfKQvD23W/Na1Xg7/4d9NOuxT1pJyncd3yrGt+7SZkndxgO5Oiyh6zTeLGDcGYRiXNvUe7n7tnbVEEP91L2pB5ZPOG/M7QxsnIdrq434Yf/Hz8bo79S8ythb4unUwbSeH/vINMwnrQHRe3jiIF8i7YGgUaPylf2QT54QPqvYt4YMLAMc7HIHuOPs30Jv2H41hHHD+2KotoBTcUTsOWTrr64X5LqtMHOt/wjBq0jp4qX1r6DX2JZ+fItR/+IEPzyhJOX29dBgrvoPGd/QdlhzONVTs7I2tt0yG5fMN2X8AAAD//yydybayOhCFH4iBiEiKIZ1IJ0FAxBl4EAEVaRIgT38X/nfIjJDUrq82K1Uo/T4TX+weSr07yYqI3rnTU10sLMSQoVpyO2y3WN/czZoZpafBmh+ovQvf+hxdpEnmhCXGtsYnOTu2Gi/TXZTRw/E45t0v3i9SklFfmzudOd9OQ/tGOFA14jXUrucT2vQq+QMJ3xH7e+Qhku7zQrFclO4vvpBjGHesHsnbbZXXx4G7VKn/8v+2ezgS+mbXD7n+5SKbRowblMicig/vvs5n494GYnUpjvQwINWdWVEqcqzfN9RtJWBjFR8GdPYrhSrn7Bqxh54RZDtk8d/UcKKZvTYlenjYpb75Z+XbXA98+cI3KfaktNaZZNtvsJ4EsK0Ou/7POCu+/OPtEJV//TIfpQZVz1r2Xyn99CzBlxax0AnwqXpEiJc7LQNVUAPylTgjYtPgdYCv3Yuu60Pz7XQzQXy8a7/1dLvfvdW0Q6t+YuO+R/lC+LyDs3lA9MjlOBI27UiQKueeP5f6XZ/eelius3AMrHqVHrGArPPofPag+uG+71cel6D6cho+NMfGXcS178djP8j0OjxYP3T8zUICHs/Uju9Tzd5q0Mrr+/mcerFrtjV1DwxpCnBmeaW+bNoXgeL8ysnmYo76TMdvLO2uAk9Pf9eLPrm2ToDm+XrPAkU1/XtEIVr1Hnt8Zegs/QCHHMG0sSlobUS6HS9B2F/vZPusm74xzVMMCSMG2cTpgBZe3regXypKXsqOMmYrlQfHHEfUizmiL9mleoNdCi2plVhCzJ9LXt5sRcXnzcyo+XguO1h5guw2te+S9vH3RsEji6nSOkE+ZIJgog9ZQupINYlI0qy9knvY44uooWjkYt6Cj1y69M/5gDtZx6HcixtIqNvoZTTn/hQiUSte2DEThdFqf1ugTS8SNTnhkC/ZpXsjLqpK6gyfsJ7a4DzJeqd1WLt/rHp2ntsButfV9Xfky+cMiV8Ffjxp70JTb7/JPoOzEehYTdvSJcd51uCQWzpN73WDpuVrmtAWB/jlD0TaTu7guN941NpYojvO1KqQ03lnal8Vipb80wUgO5ZAH2Ki5qwy9iL89J8uZl0zmbVv8NRzjzFqFbRUzqNCBd6UWO1zMZrGNyaQMhaT9uxa+Y50Y4FS/fYkzUYN+sUJRAV93Q8hoqTccvqO0gQ6Q07xEbP13swDdT998mPsq/10cjoJJRk5+TvLeLrL9VEXEO1PKlbj/lH/4n2/6j2129Zxl7mQCMScSf0tMTf516AP/sdvZD53mr4z4h7gwXkiNszM6LevoLmv8z9TiiOOuAOvvu5gaybF+Bua/bqfFbB6crB/ys18cuJ6gdtVtcgm4nx9V16y9Kev+NjcBDRsdnaLuKFKfOEyLTrTpqaCdMivpL2qx2jqJXEBeO81IuLLV5/KChJotsghTCxaNB66R4YK6XWmSkdoTexnUMF07U++zB+JO0iufoeLJ7T/eIGq2wGA23cXrLTOlPdC3QGkLz3HhlvV0dJckwWVcUKoOZSuLvSfe4q4oUz8tX7Xpw+XaShIprP/zHGBljkKOyjKS4z1W8tcUrFr8num2qpn7P0+ipKtGZQ6R2OdxfIyCvgcljv97d/ipscKYXnJfLH5qvWCyreEPr14JpzcRmiJPe+N7L1Q0N/5YfvSJrAVrxe/+d6Eft6NQvyPz633QXN3pb3Esj5IPdlY4fSPp3/5F+uH+61euhImSVORRcAw4pyOpxOBsRowteVKR0tzLSbEOO2IFeR3aD4RHn68id0KPfPx+RgnSdYmyXc4eWDfjcgqqHom+bDljH53VnaeJJyvHrZr06unjfacgPL5jVrBn6VPp42zwCGajivfeGwO33koyWUwUPflF/3cz1ojR+pfiLGYPHOCdlRDRbu5kpZNeT+M+PiWfclh1E8PWj2+Pk0j9+pJx547LfkSK00FYbJ7+tbp4bjC73nNJ4T7ePeacbVlADu1Mb7qgc6GH+/kbykjvF+q+TKs881TPX/6onV1I94Tawf2G1Pzl+DpolldVF8WXrsjET3dricjGQUwCjHFeP981PPEW4CysZqoYr2ziHAJUUAo/hzsyM8hmlX5G6D6dh5oWsrrPSgpzSC7KVsyuc6+nzcYDXB4PnZEHu3JHU24GvCgxYa4ysFlsxJ/C5h0N/Sl+3ZXk9PLn4CbtZAIferpWyn9S+G9lxoy46zJl7GKOCm8v2rqZ18VTfljCyhcxhs9yd8+GiTeDdG52fGk32epPhARZ6jshw67REN1X2/2GdxIbvjzyh/D0KUhOM0dY1XRWnfdvwA1272DbaF5oekWcgN4ez2j7nXVUw/XMZQt/6V/ox24i0OPHexnMKiRz5CvemvAyhe4JS0wGiGBoHs+rfPRyc2d0Lk2YemyEh93f+d/+RiJfZFTfZd813hQB/CO6kgVvuvrkRWtIjExONDkKfiIt2+NB8veutFHbx3qrSaWAgyx0FFTzho0rvsJ8knZYWxqYbQsNymEk4wsfNKlMprl3T2Gh311/D7eHOrF5sQA8dym95fi71MvXnQ04Zy9BLJN9m00k/zZgoJt3meGctMXwkctXPLmiU+fT9jP0TPkYRDNAvve+HYJ5OSOjq/HmWo8FBGFZynJ2U3b4sOzNupZUv8CeN78u7+3jVifu4cjQj60d7/N8wNrE8dSQL2er1Q9d9XKCy6Rkmw4YdwLLzZuF2GR6Nl9EZTLerSMbsRDBAeNlNcgiea0ufkwCTeTHtL1aiSDTYt+fsKBPsqInaynIkfHU0yN7SOKhmE7JfDSVRuf6lPszuWJGPC8eXfqcNjrl/A+GlA4p4Ie0yjTx29ah6iGZ0lPBdv2Q2SVAjifOPAHvbvU5Gr1MaCxTqlrPLqIcaR0ZLo7/+qVEg2R1fIylyo5Wawcu0s61w7A5Wz5m3V9K++I8GXXgvz83ql0wUeX3f1Gk6sX9tVlcjngquCGDfk16dQ7Pe/7YFs6NKvZJVrEji7wxiEjsOWafhztLwDnWfXqR9buz4/asdAKsBHKj7x1Sl0Ats2Mfzw/OslfB5wdVtgtzQfqqXUKwQVGyW48MTZZkdFA+vctCF+pmdviWvMhvwQl9g+01ZfLpAO8pEXEWJFYvzZWiNHbyxbsWN/CZa96EkBJ7Z4qSSW4s+Rt470GpUhND9a+p+1Y7p2mwFTJOx6tI8oq1KjqHRtRq7i8npNQIqJLMJ7TOl/4/LbOQjjv6E8fRW0hKby+FrfyWR79q0f2+0RZ9UuKCItnHnTfWrAWPF1GYs9o5DVf+pIib9BSPpS3fPT+Mqz3wcllAzpxEHMGxXYvfWsmTp0viSS54yPTQ7Tqr4kkKWr8/oAcJBTmM4CPWxX/+/ndWeTQcCU91Z7qxyWrPwAkRhI+/PxyJ/yKKA+zB/b+0qFnm2upQO5qFbWthLHVX0ohANHEa33qsqt4uaPZ2av4sPLNOEttA07aXH3p0Jb1cr+qC2S5JKz/lE+uoLa5hqxrwWH9STAisLwbELX7i/z8tna39u1Vpdql1uzd89Uv59BaXxOKG9wvYp2GcLQ/NzLfkjIfgu9TgOfxXVF7K7zW+Nq10GrKkToX+7b6/z6BNf7/rWc6F/aE4pKbyWbN98NvfwenGajhl89oOco3E/xY4ejKr/p4UB8N6E3Q+uV+6aKhcC6KZCjO/+eLrTwJZ3qYSeugrh/qU56CUt2+q9/xZWzVW+Ay6Y69TflkkwKfUBrqpvanNL3kCytvIiygZDiP1j5Dt07kYWNlPvYarWWTMb44YKcupgb7xu6cKGdenp/KDt+kwHDnQEATRHus+oQ3k34RkpsCIWwSirlvEe1MsY9RfDH22CwzEi2f058keW7dUk/zt+4OEkWQP710Xv3yrl4q51rC/hhH2L88a33MYCrly0yuhB3u+3q5oEGDfdccqVp9UL5+7w4FknLA+fOhsCX2jDfw3qL43fBZ+iUuvOCfv7404yGfNr7KAydMMb3kkck6Uzu//33vDG6nfibGt/wPAAD//6SdS9uyMA6GfxALAZGGJWcRsEVAxZ0ooigihxbor5+L95vl7GatItAkT3KnBxAjwonn7/18vvytydHAoGjx/3mjjy6I7X1kS/3frb+jYsPXVHNCht6xWnsb63+8iMqjuuv+7kezlLmi8iNm+ZQ/mYya6Tz949l8F5oRHH5HRoLvfEfjb9iUKNDTLdNbneTjvZdCMMufgaVp1ir6PhczDIlwYt7nbKCxq5Tmr39Ddk4m8X7pJ6Hf9fgl/phESHTu+xsa+8AjzsJjp6Ue/7PvxV9nNENe3yDQT1vmtm2AeCZoLpTc/dJ50SvOX8EMs6DkzNhSN1jr1dITzuoV276qc9cUR8mG9aagWPCSb8ffqgKwAWywkOlu1f7lL625PZPg1a6CmWWJjZ52/2S3TWsiDoMnQNgmT6wGey2hF8Wf1c0m1QAYQOe/Gf6Gt05uj7ceEvyNmDWIfdV3ldJC+qtFOoZxVnF8Lam2L7lP1e7BO2anlaDF3rYhnsM7/ksF9a16/CTT9cKD//UnFv/Bw6L/45HoN/irf9XJOFjzotcgbgng6VwawU/E62yzfE5Re7onc6r3JYq6KGS+reqJdOsjE2nbWGLOPOmWJM3CqC47U7FrsxetoXG7Nyqv9khOT5mi4RP1BTxX6YEl/jtLprkqC+BH88CcBPnJKO73pXoWuwZvKrFH0yDs5D/eS3QpCzhvnqRACA6HJZ+vEN+uTAHqjfImafCykvmRlaBdgiCiyq2yuVi+xHRZMyyRXdHT4M+/UEUMSmXB+wRzfHB0+GnfHL8vey2g1e2M1a7FG7L1bMP647PosPVtrFmqng9693ujJHHChddwRHPHt0E6L/tCvCU7H9fr/gVfHmGSGZd9TtfO+IK+pC9mH54Ff3fqOP/xCKppvy6nsbPsQ0a7hC33ZzGNN281V14p7nTeB+x9mPz/9n8WXvaPZy76RfaEXdG4iQIVfAPnzPuIK87rQrn+9T+WNX1DThd+jgYm77F+dI9VnzxKgNXZ3+JZBCFnJ0t7I+qJNv6rP/haalu4ESUi1hFEPpWIpnBbEZXop9fJ4s959v/6pwSjTLbmEpoTFMM9xlJmfJOmD8fyXz1kDW6fcHg2KtBl39/zoo9L/zcCTZy/eJSyjve/1SbUPrMn4a8Lr4DPkW0D18sTOVxOeiLeyb0Awc2exN0tsXb3sZd9gNINI3e1DTjpmyv64+Hh027Rv/6zSSyXKg7vUPNwbm90Sk4H+pR5ysdbfa/hj5dmUwgL/z2psHWHDH+iX8vHu3KM/vV3jfki5+O2DelmicdL/zrM15cIZFQ02nnhg+t8cD8n+Kevm4MyWX/+pC39k4VX6hYbe7tRF5631NdG0Iuyk6KlPqS9gl8JQ7bh/3/7FCj/e07B0Tc1qq5/FZoyc3CRRPQHwxdl3dHXJwgRutc2ne3RssSTPAOU8tZn5mc3We3uo7zB81ZLz+ESI77/PSkoqkCWdSasGuyhvsLH0WqyE8SoGk/yLEBWgEh5W71RM9RXGYCVT+aucYhGT/9l6GE8XBaIs1f9HCUVkfCQU7x5ByUfXu5zhszUDXIYxrYaW3f7QnF0iejXViY0okErQePOj+GcYj4fMI3VX1dLdFS7YzJH1lpEh01+JruZjNZ80VwTzvGHMlN3fsk8WU8PQVb+SGyPViDvvOuM+Mn1CRYLp5qkl2XCqVtdiUnwjU9G2NboyK4Blt224fPrE2DIu2hHHEm3g3Xf/WTAu92JGTVqrEGIWhHGOM/oqocoEffTA+DhyRVem3RnjVtpVjb9rdaZi9+sqj/u1kVfBgozCGLV5HmkQSvZsZi9Pd1zph/VGN2VICCkVnTE5y9WVfO+3ZHw3H+7Ocz2Jbq29UT7rpSs/qjda2Rdiojg49vN5fv9koGaRyZztFTKmQTdiIpL6LFstzeSqSaTAlY7HFk4oSHo6hBk+BWNQbbrukho9sQlSn7MJ9gi3447aKciv3sD2YmjkaxPhnuC+XidiSsmh1zcT2eABLIJz0WKu94/CTOgGn/JlvXnatxKqoI2B/CY/0k/CX8/+hDaDTHY7mWrQdcKBwyJZKRseb+WtIE+VHdOikmmyruuF9LqBTpMJzrVqAn65/0garpdXpj3vbmdhJCjgP35qSTMzkY1NTip4VwcbnhdJ6YlqxoTQUBegTcv+2oxRWxFuC7rvkdz33bT7+LryP66t8X+D9Z8q0BXDYsTEk5ob828I290CeFD9qtfbL1ulagj8fc7UL7jNBnjQO//noc4q+LOR20nufBZdQ4zn6odSLb9bGBoppaQ23TNZfug6mBmo8IsXayS/nHBOrB7TrGAmYUkud8UcPeDK8GNsMtn9LiUEKLKJ347XDkTJNVEw/txIW622nbjYCkUVqZ3plrcWd2Uv8YrDOudTnY8TfNx9TgIK1HRvyzU8l/CpMdegNftrBB3ywZrSjepoqHz+oClVXFH8yHNMkBo0hhu75k1XV1FRTU2c6ZrYd3N+HY5wZPNP7K98g+aHBLZmi+1BglXK8iHbyqE6mVZOLA93Od8OBSoh7OR/shuhXNrJICvSDp3JoUGXtZI150K89a6Ed/z3wknq5WLwm+4IWceD9bwqIsr/MR9RqzzzuDSpejf0JslsKQfhoo/yVSgpmwOzE72L4vvagjR3VnviJ6+dgk1i1WENltkseAXhwnnJA+RckExcwWLJFMElxesvmygvNZIPmWXJkKib8okJHmWM39XXJF59jDZRhkOpmj/ajXKco0FO8HsBgNdClCauMFjHWJr5kmuQLvZG8x4RTQZu9VbhqxKXBZsd6U13yTHhqzbNGR7tL58rKfsCu+j65Lw9K3yOXkHPmx/6bKvDLnko3dQC3S4zIBX2JwsJr1HF+5p+MDQGvXCEPchkAzbxNhENeLjqrnC4XV5sOB1//HxLdxb6L+KT4xUVREr+UaFSL+bzBnEjcW3m6pG9PbC9PKJHEsKmhhg/8EtlmhgVFMc1wDCQ0zZbZQbNLGd7v89L/Ob3XY5D+ibIomYD+Z2dKxGZ33Ami6LOXPlnVf1ll2UgHNZIzi5rypeFEcTGnn/pRtb3VhjYJMMvTbum3m/0EbjOVZfKG2zF342XZ3Mb8MfQUrSiej7oUZMknee6ruELs/v5j+3fHrwrs8BcxOyy+chDnuEbcmhIPlXa1w9LgJItZ6xgvOum7npi9BYmw9zGy4FzPPFftMeoyNLh9u34/pRjSCvlnUYp/cdTTJPbegCpWGPVbfJ56QdZuTHwhUL74RUk3L1bQR+kLBgvyfdWHGGQV6DxHYrjCyONBWQv20ilo3GNuGoXs1IbbDMthh/Ei49HIDqbkSUX5K2Yj7xXv/iK442fTeOxUGB4Vx+iK8Lm3ws8Pm9sf3jSNxNdqx+/cGwtScbf+TI2uVY8DlU4Hl3TLZdrYeKz/3GBM3EO7ZvRz0XLV9vNDbPGtWIg61x5wxULWOvYO5uI/FR6usTGqww/Te+/PK8NP/eH07uj24au1cMJH4ciOW+jWTSqN5obR/vmS9atGr3gR7D3+9PEc2SWQw3EXTpMyCGegyC6VK833/2+6fXwYwehxLkTjeYXylZPq00dEVLPKDT8VAlM1o7IQy7gDBH/OXV+JScEpCiYmJbZmiNEdv5akjfJ2bld25xQ7ldUT5HJrl/38ecM0ZEMHalSR6WYFTyPfRSFLz2Ee565Yl69SDoUAi8wNc0g3y8ciHdiHBSmGvZPOlf9KVCOl1zXO1NlEyXff4CkoU22fYTWP2YsREd464kTrISLOY6yhXsFRWIs9UTa9buy9ke70eJD8eDlU/pal2iSwUFM+nD7iaHZDbIWXpl+0pYcU5orUM2pD5tI7uz5jORbmB/7Rvbbi8mmjezp8B5lV5w1mz1Tgz7pIHVUJS4qs4bTm+I9ar2lN90aAhJ3ocXXOE5WYwQn9uBdP+KPcCPUzp46FPxo6vcIDYNlQTteaxYN4eFat3HJ5XvSYb42AwhqLg6YaG9K0HD3mIJIy+OJMFLZX/yNx5qtSqmGpPsbn2dXxS652OF1+GsdPRlPl1NeT0l5qzfa2t0k2iEcLXO//Qv7/1hA3BY+T5eK42OplP9ef3Tz+A+j9a0yi+R1rbrjoTb56HjqP8pUMvJhel9dK/YHakyLP5AlWO+SajXJyFs9pLA3OD4qliNuh7ox5tYuOjNtHmPJcrHdbnkkxSNj3EXQquDTews3Ofv9MoLuN3rgPhpdkukwxjOf9+nBypRPh4OXQr9IDnEf+yFbrj7hYLeZvZgbsGcv/zjrbXH+MiMIDqiZbxfkL5/jP3LDwJ7m4HAuUHwFwfWqKpmBGN/u7FYSOJg7vf6VROKy0zFdehUz3RzU1Hgblyycw7Paj7dTKxlwoewE0vrgNY0OalZeNhTudzgfHAtK0UfZ1XjjSQ5nTz6wQyt9ozZTt2dOGturEZ4//jSVaB4+dh9N77KK1PAfEyqYHKOcw9LPCbh6qB3sqwaMuRZ/WLe1yksnoIhACn8FZbOwc7iiIQ2bJ1MJ/mir1P4HE9QR9RiQXCf8vnSiYCeukfI7vDYdL/TMb2hYFAElqxup24+/kiBNqf4Qsdu2fvVY1mszgf3iWF1KDv2p9d/+dXWiG/JKK9vs+okvw7z+R5U/NPGLVIr9bO00kjVPwrFRyvTPxOixhWiu/WuRfj86olNnx2f6OC9IeijlGCvuefUuTUFlNWlYuEVidXAq2cKS32y7PZ57+btbmPDlURf5uq7M+fnAEaYpPHMIjwH1nqlCieVW9eKOe0nDKSvNXjg5n1JcIhjvq46RYCgrp5/+UnQSHN2gwfyPkxnr2fH00SjqCXPJzPK6zqgr+4jqn7ReCT6HuKE/v3/oZwltlW3rJt3H6UGWzk+WaiMrBo/a2Qi2Ti98HQa4+BDSTtDuK0LZu04XeLfVoafHveMKPLaGuF7VeB2fwcES1qaz6dNqcMS77C88njHz4E4wq9oDRZaez35yPYHg/3pVLy2+JBPa8Es4d7hMwl2wqsbn/eLjGozHWjl0Tb4q1eACbeObZWmRDO9IR9drXrDPOteBZOeOOGfPbM7K27BMv432PWpy4zqOFeTIX1PUE7zhjgPh6EhD6QQ5E+CCbl75rLXd1jA+tke8UchUzA2maCo6P62/9VHo+GIIki1mdFVPLRoGK8HjKTzz/zL34P5E2ww9K60X+qrEv3Vh1Cqec725bHpeNQEV+BWVhG8vjytnnVnH/7i6fxNLt1wzQxBe49ZRJbn47QkNIWZWindOAejkoq58yDV3B1G1YsG033jjJDcxhOxhvnAfyg2fBgLxyXHleTmo2DFBYj5AVERgghRw/upsKouN6ZzOeYSmTobDqHsEec7/rrOvApvpLI6Ibt/+Zozytq0HWs8Gesy74UP1HDnosrIevr3PlNkBbaK+dr75PSVzB6In7OO59x5VtMDtxRFqvckttY+qkGKNsJmRz5Xhj9Zwidciw2U4WU5G+37Cab9sXtD1V1rYpdlUU2leYcNv2Y5c3qWcrmT9x5aPRwfy593Yw3v28pTF97A3Mm28/Xz+/Fh4REkeH/jarJ59NKqYA7omKxZTvuMnVB67hHzHsE5H89oFaFonmy23wbbXM52Vxn0advg1WyI3TTY4klFUzkRa2/m+XjRLe9fPhETDKjHrXZCn/QE9KZJHE1Hn+pwXp0ubLsxg1wcjsaoST7FVPFkBTHLIyHaTO+Kfu1im0wcHXXYfKuCTvimczY87i5wqf8wo2gzNJaVWMD+cZep9KyfwXTGGxEOiWwQ39qI6DdtfyKw0jmxMFw7yYxPX4yC8V2zZbd4tMS7CJLGLvG6y9xkup26Fj0Peco8+7WtxoMex5BUI6Hywg8odgp/s+S3zPPjTzfmQj/C6z5fyZ/e9bd640LyG3zmLvFrQMhRtdMu4X/1tkVtvQQtvRkhHTrfR7ISPWL0xRvE9LBZ5lTGO0+NEu9HvM3kJOOnfgLsNpFKomV8+Dr2+j/9wl9h3iWjuYp9cN9ni+xvLLEkb0xUtDrdGizkqZ2Pjvc6acR53envlb+q+fjbFrDoI5V45PCFHwh//sVsy+yt/qIHHgoez4bg9q5Y86CjBq7te2KxfVG78fr6xCg9uQeyS44RmoToJYL28IA5R0PvRsn6vWGpR1lonHcWz7WLD79YSIgxjH41r2+9DooRj8S6ZpSPDZttbeEfLDK8Op8GXmFIvJvDrIfVdLP5/mV/+QSVs+ZhjW4XFvA9n05UOuRBMGnUa2HhRYzMhljRfNRnbdETYl5Im7PfoPva63ZUSFiFFaf3+yGDGwklssu6d8d9opfa0PCW2fjl5WPxuY5QXMWZ5Z38yPn1aKvwC4QrFZ6zkI/OhWcAys4m7ZMyNFyzHSA7G1y8StdJNzsn+QSZaRpEX52IxV1nvMIyvlhden5MTM+lmnfxjm6W8ejqatRhLEfKivXlGUi96siAfOXOrudkzbmwH0YkVv2JhbsD4axgtQvPwyWl6yxOObf20wmeliEQJ5dNPr8S1QMzEG0WCIFg0WnOTCQq5hcLQ3xdzldOMECKMyz7gmoNzePdwOIPxHI8sZqocGjAMbOansfz1E3fbsrg86Ix8Vfa0eqtvp2R/3wqDM/0m7MN1bGmjtKFWMHPqfhKFVLYVt8NVeSA8HnnxSMcgrymIg4e6Nc3MKJHUwgMQxYmAzhwRdG1dPFEEKnmR85dMNYMYbQ+5d30vBx89MsQZr68P1vTt9tc4WlZAhXd5llNT8RjeBSXDdNFtE5GInUjfOe2JOGvvaPZ8J4q/NjGXXjNt+P5muko+t5U5vX5xDs3zHX443NBJz+SYYlPaDPVFYXmc+lGOVWXOZ4bC7ee/85H8r720HWVxXyhqJPhm8oYfnfyYGGw/QbDfjhHmt7cHeKJ/TMYjZtiQlA/n/RKLgdrvspVBsExupGAWDWarvFDRgt/ZeeFV7JYK+O/fI/Yw+1bMRZ+qKoY0cjyKeRWL81RocVRHtHfJ/oE48RaADfSZzzhW4km+i1uqDdfQJx2JXc9uvUFOm8+NVvyMc4O80aG8i06xH17KFn0HUMc2sJSD0bWvNQLQOZtj5XXFKLpsWYFHOphXJ7HWO6/y9BfPqLMHzWfHnWRIVV+h//8iZblKkPM5iHT17cmn3zknwDnokan8nq2eAgHG5yBMoady5jPvqF4oCTCmeyMLgzkj1racL2RnBAvTgJepdL8lw/849kK6x4eyPHnS7zb953MPXuVWq/yzXL9tdVH99GGTgxq3ErejGZ9nY0AXRgRu9dVNCYCV7WL16bEkR8xmu2DakI8Gh3xVSXiU+fGLfompkN2Xkk7HuPpCn96tLIEo5NQ+DBR/M09tkv1Fk0742MC4kHOiPlK0fxc5tSmxM2IvR2cZXzPIgCXOVZzYerm6Mp1cMB1mD2NCp8/amODtEt6LLe/cDlbpgH4CdGNfmhgdLPA7AguqnAipnzpkrHvpWJzeTQhbXZICzgTN4LKV6uJ6KXpVOMU7z24F/eObOvkr95SShQ8lp63cf4FU1uNBfwYcvGMCtKNdTLXGl2LGds1jzgY9seqhpW8tdhfPT1fTCWE/Sds/+4v4ZK8W/IH8/HHC3P+bcQU7qtXQ9cW3+dT7ZNRreJlnTLTK2sy76iFpZ/AgmKd5oPYfBpQf1JJ8PCrrHlrY0D5KJVEP99tPmvoYGr0tJygqMdvNBy2ug5tQCJCtntazWW5vsJzLg5kud4/vqjaohXh0uG6NSfGUwf1WBESFk/f+uNBaH1tb1gQYJXMvjH62kFyXEYOhyLgm9Uh0hb+QBwtPSYtHtoM4spd/7f+3jZxqfWv3fkvn+ZSHFMB/asvvriz2DDWPrrXiktvkTvnMixr6rbr3iTu8TJbczvpovr05ono7XqLxsYIQmh2TYbndkMskZ8yAXpRFpjuKu98ltWdiBa+Say4aIJh4bt/PIot49utl/gFR0WnWCWXQzDaGhLRH49PJkNAHNXrGa4HICwKtKajv+MuhYVfEuPQDZz27PWCi51axKdJlPNK85c5zGL+x4+68fuxGiivXCeWbBnBP/+5JctZFH/jDRPF4Anpkdm7Na3e53guYeHT5M++6FAdRzC0G8UX52B0I49q8S//Zvb5yXO69LdQcZXnZVsyrxuxodTg5Ib3Z2/BXNM8BeeXFWThp2gIdLeHORwJOS35lKiLXY8u/Vcne6z/EL1VYMJ7Y85EZ8Em4DqPbO1PL/Zyu5zlpXQCEKe8M8d5vpP5V8dXzWrZkQXGkOTyZtYVuJUPxNy54tZAyWtEq73s0HFnDsGcSrcQhKZYs9A1TTSFm16Hx7R9Enz6+Z28vr1NUCRyY/tk3CJ+LN4+HFPXJLqyfSVT/lKusMuIRldLPSyLqPS0WZ11RupnlkzFXPl//PlfPtxa26AG45ZPVN1XFzRa+YFqqyq/EX3tPNDMTtELwu27INZ5fV/07KvDZUtmLH3HX8V5+Y7Rwn9ovfCJZlusesie7Y3CwtP5IEcxSO+PjNWVJlmTboAHW6y/CK7FsuLjqszQoS8qpguHls+mNBfIA8SZXa6/wfyXv+42sbrUe9uOP9TbC0629mK7jT1X49WfaiCl/MW1ZSf5pJ33N3QT3/bCM7+cLfkrUl6VRNyhoJxZ+83pr3/J7LcrBuMcvF5wqvUHOT5rw6KNNUaadTuvqLZmQcJ/JxvAIIVG9h5yujGTbg0Y7bTFaLtG6K9/oRp3MWHbCzWW+0tfqL6uCFnswVr4rIoy/fPAGlC56+lkxKBs9x1e6seON7fvG55KHtJpOpXBZOp3GQxrIuTRQ5RPF/AzNKwDnYV9wILl9xG6yI1D+c0b/vhjBn96XRhc5a2qMRnJm8+DBHmzzQfRDV7wE+Ibrabsmy/2TUH35BbL99bI5724N9HuLozM8eumGrO3VcMuOOxYmm+b5SypRkcLryZh57Yd1ae6gSjxf/94DX89Fz5Qqy6d14oa0EFH7V8+Raz53lUTK7moKSoQctz5Oef396pVu0BtSDhEPGHpB89otRcdqnnIqehfP0VT5BudlvjBvqwQ1Ol+Bubc0Dcfq1fhq/fNJP3jO81njXRti80XfdbvRzeyN7yQdTuuiLGbtpYkrUoRLfXfPz0cQ62n4AtR9ZevBuyU7UpVPJjsv9d3vFcK9VUjeHVK9GQ41UOpTulwxX98enS89vQXbxYeL1XLNrQzfFAqMuPB7kF/fX0iyDrUMLLot7i7lcpf/GTbLnPz9T6uX3/5Do0i4IidfvEbJtVtsKyKS7He5yGEKyln3mHrWVSucIuW+Lj/u59ZYnmGvHuSYW5stt0Uh2GK/q85BZv/Paegz7cFRYZ+CyY9MFpQfu8rO0SeG8yQtCf02chr5lwS1HWDkNmoCd+ExST6JixPJgDCSp/YqfPjU2uGBTptvZY+H6eue6rXIQay/2Ci34OXxfhGdrVPGY7El3PoeNa+XHjeWoSVV18HE5mVDG6RGTHj7bNqmVlZw9P57rEnRDWa5/0Tw9oaLnS0V0XO3PRrg33CV6xNb6ga2b/3IAmFTruts7M4eZcAoxsd2FbVvnw+Xq8lUvWREdO9WdUk+yAgnL8dsqvUNR+nHT8BtsszOc73a9I2h6mF9qAYJDTedtKtqo0K71vcYpTaftdE0FIQuuxAdijJLZZGJdZqfAoJuaytQEzD3IXhmN/wLZHmoHflZw3nYatQHhz1SpQdvdS2GzdjQeFf+aRZkgeyKDyYrVphPqbbEwWy3oR4Bf616jfKT4F8YRzL/wX0F0oxlO/NmfjPsUeUXBQfPaJVTJy2pvmkWPEID+8dYdjnYzKIyuqNhMOyzsXWVuj7qg8NXBOnZHuvOvB5uH3qTew3b3aq9FsyPqfrDY4q7FjuTuduOJIn1ewh9nC5vH8qnC4UvgcjJORDScBtMxNAv8UDBn6ZOU+P0hVKYlNierLTiSCniibJu5AEjSsG7Oh+C0A/vMNKtK352O8i0KpLp1DVlOaEK+3UQzJ+OZ4bN0VjN5gmADEn5rzDsPvyTyxA2qIRz3rXWPN21bewfZktXheexn/bl1yCaxd3FpDI7cRxeGcQNN6a4PhtB6MnUB+eWjoxzxU5Hzc0S0EYhJZ4SrDhk+9usJqxviVk9UyD+VNkIeqNx5kyl6cVu+3KK0RIOjAnO5bVKJoXX6VlHrFd3QQJZ1Edw3WAgZBOXCXDS1AbQNK1JXZXhHwu2k8Iz8k/0Pl4OqPeQLcMaa35oe3ptQ3Eo7a3kWT7FrMn4lXTeGlKMM9wxuqbSwFnwcEFo88Tgut6qOg1WHq66/dMvGjr8oGYD6yylu2J8eYSH97RaKpxrq2Z957lbgT5psDhPu+pOjMaTCJ/XVdocKQ//0rmX6jF6MWOKjH642BRovQitCwXsXxefn/rUI/unW6xrc/Uqhesu6paXrtny/tD9OGCD8v1yN5iezRfAyog+tJ+JPy+XNQ/FGjUj0gdfDXDPphu3+KNcmGbELs2TD5GxkoAbbJTtit2t2TEZS7D6fHsiLGnb2tc/A/ttVtDIiMhiC72CxOQB606fLIm9zsr2lxXdxYs9jutb2oMcfnY07tXTZwFBCKA8JYRPb/WyVc17QhoZmK2xxrvWGWWtebvA4t50s2yJqI4NbTJPqVCsvdz/vTNcdMdZZfo16m05pRqrTrSLsbCt/rk/HPhrlYOYcBwKc3BoCPUwtGPkj9/5VO3TGuvML3j+Wf11XhDRvtnn8zeSQ+LY0G/wVYgPtm/jFcwCeLXh3UWUqKz0cjllUmu6HJgIt00NEeMMtOH6jiG+OtfHTTykxiDj687gsWXy/mODyns60wl++l962j6awpUlcOXYc3cWNPvcL1CzUyTNg9hrtjg/Sj8nmGAoaCWRU1xpEjaxRKtD5nIZ2VTZkgelJE4v9Tg08kfUpCi05siGjyDOSKrK2w2g0709XfIWXmJehQJecuc5LXi0/V6b+FtrWQK4exb83wnAlIXRui6hV6tnWa6atuSv3EZhiUazrLpQ38ZA+aS7yWg+ats//SC4Eui8tF+9xFc9/Eaa3omJlwpGw/lHxpjRMVvzvdx1yIThTU7vPkRDd3lJCA45xyP/pZ38188c4x1x8KoyLpxrdsevHZLj83P7UQUzYMH8wf7bBc+RcT3cdWAXqxdYuuZFEwlWPGfPbEkOOqd3FKvRNZOK6n2N37NR3tBo9+BroYPCqZ1XFKIXsRnoRPNfKSng4rkQx+x48M+B4u9RuB2rwALPs2T6ZQKisqmEfCqE1d5v9nvXRA1O8XrO98F/IyTEMTLcjZMHI85t7fUR+3W5CQ45++gf73sEpmkexE/0AkfY/XYQ3ZRTWZei8FiTxVm+KliTPQwLPmcCMEbSNpqFBW+igbpiF/gFu4bS7+fXE0vYW6hOYXnxT8hGTUvjiCrXj4LxMPU9YW2MZHXOU+yX+tVMgmlrWvD8XKj0+VQdNTrdi/U2sV1OU9uZVH0UiKgKWbEs7xP0jvXuAeiWQJxvoqKuDr8bDWynYGOqsFyPmVXE13Xb4kE+FsmoyB4DVzu4pbtP7afj3227sHYyCpF6/RSTcr+ncJguzuix/FkTY0UFOBU45ekulUmdGv/bCg+qUGyaBys+XFwKCi9x4nhECkY5hHp/z7XF/0bKyHJIP/0MTEX/em7l1JAdxlmWqrHks/GEArAveKCQYgtLntj0QN+PCbi7G+kGuNV7GpTpkV4nZn76jfUZwVavvFZqAlxTqmmiNAb9zNdm8TLx9d5Bmg58rF83o3JyA73EqwZAnKdGbX4MajkTVLUPxa2H2bNq20wQnQRPXb+/gcAAP//JJ3J0qowEIUfyIXIlLBkUhEwQUF+3IGgAgIyJIQ8/S28T5CqTid9zpdUt6Jk7G55Dkx35gPr1acCU6xnMzDkVkDy59B57F0Os7q9jRgnuJOG5bUEG/hZZ0vbp93W+m7oZQMr0AjUTUKT8+PwmtXHt/+jeAqabNbdPoG50HtEfm6WYbqqEEI8jAOOp6C1OkMPRMgMpaToaccZsxTSqeN98bD/ZkM2Z3dxZbCmgDaG+lctFhUiuP+rD/RKvDeYv5k/ggZ/n/jgyGbFDxE9qL/z6lhsqH7razQPG2w2ep3N0w7VUN+jLdGiNOfv/YH24BU2NvXgg1qszNsUBDoy0Ps9T8O45oua3y4dGce450tfLA1U3GtAz+QtZLNi8hdIHXePTeIZnM1R7cCleefYzI485GICE0meu7U3nf7gi5jfXzAXOo/iSfGrUY1mAQz0ccZ7OO0tJvA+ge0xs6mJg2NGMMkCWBmBhAglJeepjxB47z9nfO7mhPOW7WvoZkCjXnR/hpTldJ1v2VdIrKIJDLYZQIjE9wujpBeG4fzQEPzILaPIJVnGdqkpw7OqYiKFEuYk4osJv8auw4789DIpH/wCZHD5zZ668vbPPvUwXjhYz+tmoO7T9YF4IQE+lEM7sMPiP+DH37zwqk8GiQjPGG7CfU5RWG6tGaQHExaf2EDzZ/vhk9EGL2hPgYP/rp8qHJu2CtTf/t6WXM14dNNSKHd/EXkdJzYsh8Kp4VM4v6ld9l+P7G6fBTiLF9B9i6NqGYHxgLn8lrBh7rhF3EmWYcyKDmlz8674TXJ6uFkKHYX3hlQ8nS4FtKFh0n0oXkL2bjsHhDYssXdg0kAH8Bq1dX38q/dLu4WB2gphhgTplgCqTt8D9MwY04N431a05mkNb+X3hoZoCgCDLfH/63OrIBaXiksN4fiIazLfvj1fuBKLULUbRHGlZwMPhUsATxMJiaJv84qt9QhizdjQvTdwTtf4Az6Qjp6ydD9M71GL4e1unKlnROeBGeM0glNk+/jxtP743CZ5BL9/tUWfcjF6LPqeEPhbxIjwAYkWM9qghKl6QkjeKJPXtcktgllyHdDs+zqYxpOMoLdFH8KU08z5vtrp8EAzCfvIjgcW/nnqOktCQOy5vYARezJR1U9gU1MfHG/SlOoF5efmio2pvQ9DORARrOeDWjEWAIt4ukDx9XTJy98dPXbexQgez+9o3Q8W9mzMZckxyQu7z7gHi5FvdfAShZBmH2tYe/91PuTD2CGxF/eW8HJVE56kOMMWkM1hjO+RCcI6uxJpKRI+16vXlx7mmWiHEwVcr9Iewux8RdsNPlb9uWlfsCkBJQucjZD98lPmqESSrdceh3PyAEmGb4QHhZJN/v0YQzSChDBP6zJSvLJONdzEXXt1i+GML3sVbpOgw85dLjOeSpWp6YF9xnuhbId5oizRjNvtQ+3DKagW5eXIkMTMId+1XjOsnSD86q8bKt6napjOalrDdyc98OoPwZzMTQndd3/He0qsgR1RmMIjmlPqpGfJmvN37wJrwhQpblaHpD7GJUCb9c/LUxMs9jfINQjuokPmaOTWxM/GRmP+Qv/rT275fQnPs2ViDHafqrvunBJco2DE7v2i8XFXdCZsv5GOAzq/s2kowgic/3qd7veXxRqLa+SDa2U1pLmMTTa+Qa1DyaJ3VJ1pWS3Xv8qF+mC01IymSyWJ1XkDzk2qInUQNa+/vgUClfjB6OmFTgNf/RWoUnmDJEisil2bi6ixz4lR5y6b2ZAP/gOsPID+9l/aEq8AirF9/PSzt6TQccCv3vryWeSsyWUIYNIpaGZnb1hgsn2BaO58Et6vmkWfi4zg2L339LQ8pYxRkwggn+oH/TMa0xMuleVr0W7ZUBQ8JW/uNrsFlBfxiPW13vPlZB/gw9m8yRv99SH5yw1ZMfG3pP44bKtxKxxVyFI/RkpYQ04DwAsYcfRBULuNHv3cgQ331dKSWQg4mC5RVMIE6wJF9zAFvPJVF/z8yj1L99VXKo8PMG5uE7VhjrKl+CQmbN7NAxXggwCzaG6rVf0+EPDAnTd0b6mDciht0XIzLG+XBf4BeNkm/t0/w3z3d4Wm2jWiztSkISuoGWlrfSbbSyJ48457LhTV4wW9n7E3CHE1NUDr2PPnJ6vlwtwOXLOthI9fA4F+1l+BJk7qjIh7P1RjeX6n2o/3aIfcCHcAyCUE0ShgQzkFnK1+FUrzZ6aO88HVKGjRCDbhMSdhuFs42x7GFyTl9ktNrEwDgYn0gvV3vGB/c604q2g9QsccXzTqjjz7ylY6Q337gr/1Mqm7BrJWDg+EvUa3hv/66BRcJ6pfG7Oa0SdBqqAdIiQZIOaMcl3XsFM8CA+Wni+2oYwwDzc36hHhmEkS6kXY1O6O+nbrD/O7dWSw8ghCxXvB2YspBLpp0yO+zFPGKmVzhfO3fBFhu/7BrhTxCvFLKhD7+RFB3jY/XoHtwks9trsdXgDWUopYZabe8sjrAO54zelNUgxv+VSfBNaFZFHLu72GpT4WJcxvYUeP46RljFzgDD/jPcC0NF/V1FTIgUQ1/vBh1QvMD1UXqq2Y48ND9S0irbMwXyrdIrWv52F+PXMHYlq6ZMnft5D8XeUI8hMf6drREAjLLnHAzN2Oms3Xrf7ngw0tE3UJ6KsRx+4VPk9KhV3rZIG1njewAO4X+8K7C5fdYX3DpKQlCn1Qa7TO9xlwT1+QHD1ARdtH+YAZnHWaePBrLQYKAvDzx9Y2eFaLyIQeRq1u06gxSsBCX43gqg+wVabXbLbXDh9KXDDqtm8nXPmaq3VULPABX+uMpc+rDlc9ieQyiapfvP/7KWH7ikO26fMaZIavIZjolC9Laa9/InQBm8r9ODAzf87gGl1HRFocrgZyecCSSwGq7lfNI+8C9UD54IGoeyyEiyubD3Uo9ZaelKQLlyI2bagoVMfnzzQPo/bYJeDgnzpqfyaWMdc/JLC1hQHNMGPZDFKkQ3w91AT5bhnOHnTin39Gy+np8f5w9xG8vWOTyPJzCHmcvx04nKsL4bUghAuuDaIdxGdDdgvzAHceqaD9/GUzhzibX8HRB9U5/0PN6q/ZiM8JPCp2QnXCT8PU7awCPr/BgT72yt1aXsZ2AemQRkQymtIbzYZdQR3YLr309SWjx90Sa4rktNh53vyMQ7XUYRmeUkQkRQ+JlV180LLJxMfiQcPumJs2LLTJpH+UmpZkNqb5Pz44oBOYrqqwUXMJ1WTztMVwdlPNBu/0UNJ9YlBrJr1mKlxSTkjU77z6FLU8q9IhXBDby1k263c5At/PXkJilOUe+2sggnEwL2v+mEDsmses7j9HlZ6741Itj3Yngj8SbegxrDYZ98DdBsUGOhiZ6OTtfrzcJ9/bf57FCXVdGPXKjH0VuJ66vdyidXzvAduf6RIut8CBMMfFFgmGAcL5kig9VODlTmDoD4C632yG4TZ40v3i7AeR1pdYy+/HIz5lB8Gb1IP7n1fivUugtZRq/gL0sj/gI1n6jG6OlQkul6/6448//mTDlUeSj89PIR+8Ywk2UVxR77j/eqMBohQ+eq3/xZcv8157ALAIF6QU+QSWAEsJzOVKQkw/bnl7IokDC+B8V35AAUnOAIKPdC3QIHWDx/w7jmBsNxd8IrzjczKTF7BskWAELlq2vCpPB25a99NMZyMcl13gwCFqdcQ2l4O3+DvtAfugB9Ra9dZC63sMHztRRrtQZNkYR3/rrJ6vTFG0OViEb0IErvJs0Otx/+WzZ9xq0KDIp4imLFzmAOtA6/j6JneC3o8PgtiuL2g3jsU6XmROtJ+/8FCrhyJ9RhvwbssTReVxU31Xfww5CY0fP88+jsAFKF/LkYAu3VdTYU0lXPkogXSqwzVfBCigjbTq0bKalzlb1He18uOx1a2Vt6rAvz52iE1XG4iMXa+qxrsJX7bVUi2FsJlBF6M/vI82DWf8LyxBGXopdc8pA2NkGi8tIhPGSTkePH5pkwieDeXz43ce90fLgTk6KxSv7wVSlCoL0NrCpzj6BwAA//+knUnTsswOhn+QCxmUDksEZJZWQMEd4ASIMtjd0L/+K553fVZnaVmlpemkk+sOifUZ6PF46WHRe+h+E0q+vOknAjXNY2quBZsLFJQE/Hdzx+a3aBBxT5WmRijJQ9FlO0M++4MEaRcGZI7fpT9fprcGCz9Y5tQd6tkMjOPffUzt+b5BE7s+n6qHf2W4FD0+i5an9R8/f6be6rQvpIv0ymDJv2jiPvt40TtGuD7cHOudEdSTtswl+NMb1NzfFt+FdynnnfrAJtxIMT38a4QW3hDCn/8dnNyE9fWNiPjBQt3WxVNSF75J0BS6xWSe1RbSZJSx94saf6m3AN5eZpPV8ZH686aP7pBhXfjz95gwbxJQmz9/4bjkF+y90yX4/A4jtSp9V7CrXm8Us8pR2JBAi6U8FzZo8Sf6x7vlv3xyOT/YB0cdJmfLQggUUcJB4/8KfhMvGiz2pyXa7NC8ty0FDOF0p6ZBSc0fPyRBP1TOwvOOhXhJVgpyysuH7o5TEE8H8R6AIcT3P/4//Ok78Lopu7/4UU88LZ7wqkmPjTD7omk0kYC21RBRZy+XPvnjW51WnbG/6GWEO40A6RNl/3ilEHxW2r96N+jA4Us8yCE475aeOcvmjA+P7B9/x/vX12BBHClql7YGdt17UE9vOSshiZ6UOqcrL7iXbHpYnwkOycLDF/73hFRWLfKcDkP9zs9aqRIU3bB/eyU1OaQO2/7xaXt2G4PfL68Evs7Mlh7OTc3MrZ3D/r1X6J+eMs2D1MPu0g50J1nfmqbbjQajaTCsF4XJmR2xSqX3aqR/vG6yK6mCCZ8d6tZvw/iYNnHQUv8RWHhsZZudtSwdK7HX8LP/q9+Fg5x1I9FDtb757NFcK6TxpMRnl738OdSl8k/PoaFQtZwfj5cvWn7fP/swx6gaUNp3GrKo1QfpT6/Q1XlNndtxXdCrtdVh4ygNGWNxNrqlPoM1G3qqe1NWkM9aOKK/8/aTDH9gWelnf/kYXv4fn4u7TgFtMD44vM0un4731gTxk0U4WO6XfrMSW7DuZoMx7x1/Tm/uBhRtptTav758qedHOB2TD/bJ88xHPR0SpRl2DfZQPfHpCX6EAkf40YP7dIc+aUYL8sCY6O5lf+K/+gTuRrGnrrSy4qG8YgeWeIx3Tkv4749vbqzEx/ZTmpZ8Awcol1uRzJ0RDEQOjRa0bkzwH7/8x/MXvoxvS73wr75YeA3dbYKrwX8RikBeRyU+RMmv+HXBXUO+fdvhQPRI/eUXiGA3mBpd6gfEvYcewNunOdZUU66Z538c9dStCA5np+Hd3L7u4GFaYsuV1HpWxTBHm1hch7/COfl8vJkSNG9lxhrQCrGr/Y3QYxocanTQ/eMxcIa4DF/7uq2X+/2rhB/WUhO3Sr3odSboYYJx8mXXetFPcvUc+uvwjk5qzL4rlaHmaHn/9F9RUDnAYxAe1OHDp2D6S1Cg0fsaB+o58OdXNpXQsFkL5WT9jhnCQgkocgp8yP1rvOQ7F5D8tUDQVbR8efEHJF1EPVQ65MVTdkjI/9dToPyP3QergRHsx3+z6LUS8tOy/2HQvfqn2tyDQ6B7FKeGx9l90hRgF02jGbrgYRq7/gvU3z5DNK8yY9ovG82/A1WwO3pnPgeT1CiyQN4Yy+xSsPJXtOCkOccH4awj8Wo3Cuwz/UkdbivFQiKfsB9yhdq4OHI2rLwcUlTp5Km4tc+22buFb3l448Av9YFpmgdoBuyQTRfPw7QbBgdVt/ua+tEpqLn9yY6w6g9rouR1VRPnghKENtkHH3YWjb/3yVFAJlsB7zQ0xjNXPzNY4ZTg+KxYg/x8FgCB3z6JKs75MDqxU8H7+6iwo2QkHoXvbQVr6bSl4etU15PTlTkox/GOH3cuFizMWwuo8NEIhJdln+LzGClefnhhrZBZzXZk2IC7NgHj3uxi3uVYQCxVcwJLe+kgYpSh/mZtw64uXc5tethAchF6Wji3Bk3xV4hAWO8krD8m6lN7RUK00wuOvW0yDES9XDNIHtYDGz4l9UieLAP9/hjDiihOIeVJcFcc3H/D91nYG+zbCwwOMTvTBLJrPI/sEsC7+ho0/YWbgR5PtaS+s/UhnLbOy//pXi0B/V2eYbPOUzQ9R/eOAMYLTsvvp+ZuHSlwGVoDO8E9KGSufHSU7fEn3LDGqgk1BgUkf8+w1pl2TNS7rUGpUiPs1jHhrDs9HXjqG5u6Pyf12Z+9CItP1I/xD3WRy3skjraFtdPerpnj3yTozxeK9Y9u+NK8JiWIx1KmHoR44KkqaWB12y22tShFjLIjAfOz97Fdfu1a6NPUBFezYmyvYiGmkXS8g4JknWxfWTD8huA5qhPid+qGaWiwYaXnyLucS+zkXWNw2zoCatmQUpfXZsGbqDoi+VbusVlwJ+53p0emKHszDNEm7moStkYDx8NZppbO3pwc5KoFZRe41OgzQLMsfxnklonwmdJPPAWBl/29Juu+XiMe+msJZHYR8YFB4lPV2CRQ51qDvUswD6TCax0N74hgu0+SZfZXkaPEKI/kmh6Sge3XigCtLwP5qf0DjW8ye+tPd5GIeBb2/uLfPSrVn4F36upTT6gOS3A1M8aOhmV/koZdoLbupsKH5rfikyY+SrT5ZSaN9fxW8GgVWrC39mKIFnux89PTwGZOgl1xpdZda9gZJD2hdCcPCZoipTjCc9pMOHT41hgFpvWwfH8o5ceczysV9xC4g4hdOLGY341IhxXe5zh6TNjgu0zT4bntUai08c+YzX2Tqe/VMaLX+V0bLPPePXyu0osQ8VjHs99rgH4Ti0Ko57tPvCYBWEUPkeIn3Rgkyq4K2jjmmrriw/anfN+G6JSWKU0K7hSzLD9nxH/eDRvbl+TTm/pbwZEwmdrux/VHQV5F4CW5Th3WWMPvhTqGkFBV4Wtd5wbbHZoWHXFUhZ/kJNfTsPQUPO/VhTyw/x7o534I0HJesKYaH3+WdjcPShISHLjZvhD+4nG6zmxaOltl+KWKH2y7csAhn6ahHt5PX4Hp2CvY7OE10Oh8ckDV2jJUxVmpR7f6SrBy5iNRDf3Excr1S1TtJEZe6e3B543YW8C0w5FiW5lqJvsGoEL/PqnP4Roz8bIC+Hbzk5o0VmMefJwABlXf0H2k7Hz2eLwUeD2vjGwrde33y+eh88/m1LH6Jp7FqrzDudo01NHIjrNGOwWQBesJe+y+N2RD3K3gfD53YdtLT4MncXSHazW+iCC2R2M8hshEFyta4Z2+7uqJmW+AHr9W1NrNZs2/9RSgeZMa2Hq8A5/BwEMlWD0wXc5PsbwfInTWD+Hcge0zSxU8ELZBSi97/+H/3V9QkoCQqbWrmu9f4xHmTCA0s7/7Qcgf02r7bisnXIcHs2AD6U1IqlKh59vYF3N6fHjKefCu2OxSBf3MbH8HOXV7eqCreWBhxEqItzwnyLt+4pGpyrIhb3OldxTs0e+hfu9ofrZb6mNpbfRV2o3g319HvKtH0Z8zms5wux0ybCXJpuDWFDTg4O8XB+CEvvB1xTuqb5sO+/lONsaGMQHGclfhnfTjA2n1QwID26yoc6u/Ppnv1AN0i3Tqu4Xls7OcwtJHGlKTMXdg++W5IU3TKD5UExhTYwdMmVTikhnU/UC0+GKhSnliatGxrfktmbSlLz7Exfx41VNr4Azwdn2j2sdpBnrBNwveY/qhXnc4GROXIFiiUBYKkfri04Noy66Vr0fx9qAP0krFXxgp+hClfOyLMSibGbLkB9SY6ci/Srg9Ar58DGoXvWWwJZ6Bc6AqSW/tl08PUWTw0yQVB82pM5b8IAK/SXb4sdivH67aUU3cE8V2dBY4a0dUbgg7nUJFiQLEmKokcKfLrF75m/h8CgMGp9r6EGG9rYZq85NzaKaRYMd2cz631+wCfMN+2AzbCVHhpJjofE47HE5yUk+H66ij9ZdgbN5/QfG+xOkGbGP/HwAAAP//pJ3Ltqo8s4YviIaIQoomZxEwQcADPXEiCCpySIBc/T9wfc3d28055hhrMXOoet43SZWF5eMx8rncSi0KxEhjWoqwz3/5M3gzm+HHqUA9bagG3w0XyW51XFfTQy3u6tqSPiw4uYTPh8YIVWo3FzrktyLjkRTe1X46N/TVnK9oPA6oVwZ1GxDtons+raT2DO2+f5BTd71k42nzAMVUdER5Ju39evYTDZ66ONIxIKU5mN86B+mgZczsuZdx+bj0mpCNhPh3hPzmcdlg6FcpkHvn92jIairB3PecLbyV8fU493Cq1wJx3HpAbHMQKWi7WSb7+WWaa+tq3+F47D5stzqeOs7jcVTH1/NEpecj9PnhIBVoqs2Eabvl3Y7Frnf1oZUz2Z3IFfWS+gwBRAiY7XU++kJ681ByllqquCsw6/dBEZUlftD1ODScbSvdQOikHYh1LE58UixbRL/4pq8qxZ/L8qzB/X2viTmzAA0dPwvgN9ghThNfTVHJj28gnsDpzJYzhTHbAty465PjbentEB5kTTnONeDZlpZRuGqaepVcYG7f6/HYarqHfHB8FmxDl0+vYBxB3MQ98Ya6NNvr5+nCJb/PTC9aqRrsF3OgGm4C8VJHqvq9LIyo+j5lKlA1rOhAH0vvoUpg+ld/d710MBokh5FIi6/1yeh7v9XgXCWYed698cferx3ozA1luuyW5uzcRiovBa/YAdE/v39shadyaW1j4V+cTcl7aRYSVwGuvrKTrd/oSIFnZKbK39+7mrquTEA3Uk6FXDr7rZeIDUj6LSBm9eZVA/doC9bjpDF9P81oNFv6VDRR2pNdMhoZO+n8DoUzBuwhzSd/WPQFfP76NzMgVziTHlkP3dflTHc2mE+v9dCDKeI7IZrRV9xKvPa3nulsZo+YZ6u6BfHbGywa6RgPr3vqILtqR2K7H9xNyeUvREXrvUlQxZ9qKPjGQf7t6xOXv1/muORz5bm0ncZhsEPDu5Ov4L02Ex2oEfrvw84DcHjNmOfUTz5bJ4uibxt47HK88IqPoZ+j056lzDe82R+3rVVDfsoOywsHLd4g2glwYkbO7N204xMRwhZkNrnMGY5pxq92M6IlX7Mlfvm8NnVAl9VtR7caLdH8i18W3ZyYnxclYrtPGKmtfm/phF2Dr9fQYFDMfUVcqfiaNCupo8wJfAn5eHa2Xol/N3QabE7cyVRNVmIAKKWgIBizrGMq2DUCrpcEK0Pmj9+xGZXU7o60+vHeRRUMJOiGQ9ybl8blCGOo2letYFYiW90ynznMdS5QIMkOTcPVb9Ev//sxOaBpf1Fv//79/VN9+OPukDzRNNWEhZ9P5k+nU15DsKMZMw9WYY7VcYvB/jzXBOeS5NNGIFv03UdrzNna5fxObAM2x8RnB6ZNGa+9Va0s8RPLYTwiFtfyHTZf60SLi96aw92PAmjhhXHbEIbm87eQ4CVpf4zIfeoPr2A7ot7tXGYL6QmNQuEGoN+dBost6NV46A+OAl18xnKLuc95Rm+wvXwS/D7ekmyuxapR3Yen0kIoBD7GUXOFZX3REbeKP4pFcVYf8uFI1XoQ0IBa2YUiuUjE7q6brGfj0isOG5gQa8vNFj7jDZJIeDEnvMfm2hc3CTjXu0fL2rSzsf/zHZiLWibOtBeqMUJ/53/73ZjnQ9c/Hkudg93SPjPTj9U//f/jLy2fku57v81P9OP3dSsXfPJOEoXIuzg/3uq+smMV0NzJa9n/73hqLcFAG7gzqhQXr9vU5l6AGwttXID94jM9GQro7M8gO895VOvee2rQrG8jw1QdO7projOo7GOz3escxzyga1HJBm7hza57x6P5HBV13+ENBUfdLB1WaKA494QwX92P/m9+UbD/rlkgcehaFlv4l69IMKlnc+qS/KyE/u2PeFFyyPrvWIyg7MyG6eM0mXP7hBo1lTriOVm9/fnE/1w457rL4viR+psL/etha2GFuTdPzng//N0RJ68nc9YFrga8rVs0DrPH/L0CVXUnBwOBJL8ZzmD2v764OaNgPp3ITv47oDF138LymiMlepsL2Vwc1z0s8ZVZL6GIpxsNMTyPJ5tZp80LMXm/SWCXDzE5mqrHuUTBgCA+dz/+zuh6gvmn54h5ueTZ2CgnB5wPPNiit7r+3fO7ehSo9N/+Tb80kiN88EnwPL2zud+VkTqii0gVwKzrfWK6anRRdLysVzS2l4fz05M/XkfS34PdlC7YVbiuSzEej+pdA+nadoSsdC+mfK24IFiKT0cdcDyiYH6rXnI1yHmVSPH8qoJWrq9lhZl71Pl6LpkCt+Fyw+HHtaqNWEZXWOafGGGB4pnbtwIt88e8Z/ZBfTKV2r/4/oT8xrlWQgLL38NSE4vox7Ny+e59srvMGhIdVXTRFpQUr3ss+LRMm6ui3/YqO2wuZTZ4QtHDucwq+n2fD3x25CkBi0jdwKXPbDJzeIRQUK1jobI3fW7gcwsrWlKGBeeL2L6KtnA6PmqqqMHIx9w7veFwYoz8/ICpaiwHKtnE7HAQkd8JcxrB9dx+iAAVQOq/VX7GjHI7eqqympgkWX6ez14TQD/Agfx4j9Pq66KjY17Yj9f4tX9oqM7PMdOHzeBPGZok2OUsZr/55PGfM0LwHmzS5attxp/DuoZ4I2lEj1+3bv57fG7gWG8bT8iqqsnwOkle9g85XNUkG37xZPl7MHped+bc774htKeEsVhHDhJx69zAf8cZM7w+jqVLeHGhe4V0WY9/WftOw7O6+C00Pm93iHdhXKBq7e+JJdzPVXd82Pff9zHLPP390zvw8ZIAo/RZVMOfzD0QyO6GBWVAJhXrzEO/35+707nijxsDeYk/dLP4UzNJ6rdyDzuRaK3hVmM5mE9Y9A/bve8k/n7Pfwbkx8rFqHWPHReNdIQy9UNMwy6PZy3OLVgvdUokdkCcOrdtr/RaGrOgincVjVy5Rnd9/6DyWNpovsh7F1yhi6hoik1H38dXg5rcDYlb/AXm6BWtB6MaPqjYQlmNwb2fkXu5clwufspci12jnLvaJGb8kM0frwO7lMuZCaXZ9PnOPahOhqhahQ7iQoZDuJTrA16N0tx9H2qRwzN9K8RJeOXPUbF7wp+01EGautbnuXnTlEUf/fim4j+9VbbvkGE3eXZzso5Fde8mLvE21wYN0ixIyN9FEz4qzjPr6zIsoP98Z/xM131XW3OK0c3AEjNfTylmeX08Q/w0Q9yE52PHq1oPkf0p1uyUHh7VIH9MSb2a4YEs+tWnr7heasAoEjFjoUJ8CM4egKVtyD6zUzTcDlcFCcaqYKT+qPGI1BuGoSYX4iz5c3qozR2kvXdm//yBosgEOAlPjkEzRZOeKlECK8sRpji0TX6hp//0hZtgCXH3JIfoT4kavC7eNP5Sp29+fjKOp8nvNv4oPsG7kZIt+zGePOZeEV6dq3/+z3rMRlBxRRNi7GnkS6E3RlAW2Ujs9PDo6IZJ/42vMYlBtm0vDwtklF4XPj9XI7+qDTAWK3h+vTbmrL6mHr51emOmIbs+PUcnEX568Ke/50Auo5/fSha/JePRUmcoL/U/EkSLHEye8wgHdq3J+ceHWglntPixTOecdUNmfp7IcNiT+e6fxbkwHyMFPcidmencoZ6mdo9WUiyTfdoY5uiaTQC5rWzxqgj1bppTJQSMM4xb796Y041eA0CNEi35A/mtYClXWIWCTXlUXtC82ekuHN/Qs1319OP+fVAkGN6egeW/4pON67xswPKFN97QzqqGn5/J0jwjdo8Fs3MeQ41+/pu28B7/8evei5949XJcf1rZkMN8CHKmBfTSLXxYAHq+NuxQrNNqxC2+IqM3PlT6/E0xf6+sJziYJ2SH/0i36OkG/mJjTxE6NeZrkA3YADdLtuhPPhezakAcLfcwd+oc9/nkbgFKa0fCs9nwufBcR3nZtkuCq8F5/z02Hny8c0CCldd3jXU8bsG7hjsS8JthrjeeroAlts4/P3Owh3RGgRhqFNxb7fODo21hs39rxJVWj4o1d+f5L38Hph1Vy36K1D/7gakShqPZCfMxVD8XJBGnnw3+dTJlhDgq0OK3lf5yHhD+/G22t6ys2jSVjFGM2zXtbf2UvT+76QwY5Tkjx7eAxKUnK2yVFcVs8Ttn5/k+L3eENHIIiNtN9FMB3GVRIM6O7kyxOo5YxZ93yjw1GNEIKCsQZiImSVVFvIvF4wgqOpyovE07fznvWepMripcfuwKjcn01dBnu/GZv433nbjOyxaYY+ksPxk0Y355D0AMzQPeFEXAJ/nUS+h3vmKam282Wrr8/p0nYDg70z8/Fr6CRZh3127dHDvK9p9//Is3nxh2NziwW02W8ejYbF3zf365vv1KGU9j4wp68I5p+X7Lfl+7jvjTr8y4yF9O7fqlQUE0nf38728ZrWaUb/mHEWlemx2LDBdZ26fP9gvv9+LoNuidXjeEpOpSceLoUzDH5LK8e44Q/33P1dcu5PaOB3+emmvxmx8WbNkjnvgn3iprpvpsN1sPkx9e+lN9H+YPO2SrCImk2fXo5y/HiqZxvvCRuujBJZ9KXXfJ1SsI0d96iVcfnw1WU4DNfZs4P78E/izhn152OrHMlvOLKzyGl05cfMN86rrvGYTb0NJ3dD11a/IINdXs70emWVIUT9Zj6wEvjYpZi97ZLPoaKS7ERP8bo26K2llQnwehZUSkGzR/xaxGZdO9qHx7V9mAYurKPP5riLe+v+N5OZ9Q1NCZ2O5zG6thOb+DTE4T4veWmI3pzRZQ5l3bhd8lc4br1YKF5xZe02OpMP6uSnpxjrTn8rUax1ymcDctj4U60JiWX61XCb0ciKYDzsaDGXpq8Q5Lljofsxqr9CWBdXlL7BdP53EORIRi+0mCk8t4rz3MN6w3w5lY9ujH3YSDGY3Vq2VmVG7QbF78G1rGh1xQGmaMdvmMIhRmDI8yj/nhtS8gFc4jMcmHo2l76QrQOj+mVSyYaBLefOkFd5LY3v/zzMWPWfikdHG7CrE57LxsRj/97HhN51PFNEf0kow/sg+yrqNS8Tein7776f0B9rIEqxBs8thLScZSs7XgtrZfxDjslrpATt/+859GpZG79sfnP97A5XjzZ80vcjiWeyD2p5h9bpz1BGrrm+NJ/lyqsfLsAkWs8VkQRPtsfrr7G0Td7LB97635QBx8htV4vzGzQS9/HGmkwSjfblRVjq+Y/ngWBqxT5fop/Ml+fSxge3CYc2Ovbjr33zcopl/h0ZLmmAdC7sJHXDlEX7M5bjtdDRGR1T/ipa8ynsjHbkG0rioxY+1Z9Yufrr7T24Z2eaHzCbWy9/NH2XI+heaj7igoXtUeOW/qjvNX4W/VyohudDNbD3/+8d7jJW6Ixwuzks7TOf/pR0ZIC/50+AZnMLdWuejpvPvnV3/Kd7/wq4p4ZG9FWPQoCaTkbc4rHp/h+8y1ZTyWNxDMwLCsD3L5xbd0Gzzh6Is75u5rN+ZC5oQ//4SRapK62Y/WAtzzPqXyo6678bs93+Dn58A2bBY/ebbgMp2eVHCTZ9VumGDBeDY0ulbKsJq9RGxh2Dszcx6v/vf9ifI77wgrduJjPY6S+v+6U4D+7zsFAXANI4sqHe9jLUf0xUJmkmRj0uLdjcpGXF/ZfoY5Xn6eoe0FgbmuKVZ03HUucPuYsOC+z/gsGhagsQwa8rANXlFDFwwwRjPBmoHeGX9rkaeu1heT7B+R74tvp4yAn6YR2zY7LcqIiqBPKGYagykeNuPzvL2fc5eZBXl2sxCeQJlFA5MdvT+7MSutGkrXBEynpEHzLmxEuE1zRYeB3zm/S0ENYR0GbO/tjnx6qmqBts+AYaGUenPwekmA0tWBXpdL7Tw/XENkoVEmtzInHWObR47GLBsw18mrG9HTu6HPc+MR284qNPUHkqNmL3u0jyzPnI+5LEGWJitiUvfbzVMp3yA8LJ1R+96rpsejGkF69Q/KklGI59F7jbAJiiPZxdvcHP+E0x3WH7FnukrTiunGdoZTYuVYXM1t97b+bBdtyz5m2m4Xohk32RNU3dgTO1dwNco70YPH1kuJ93duuuF4VXogj/OV2OKBmfRQXzVoHr1F/h7Popv41giRkQ4q8z3/a05eJ1noYFoXFk6pZk4b9r3DoDYX9ufFJpoutGuheVCL1tJhbVIQbQWGrd0xq0+wP2pMyeEQn1/EvrVaJRGtsZTghGtiXM96J5Z83sLxfrKo0o86p4hqDdrP3kg77R1X81yDBlEKX+Ydt92yngIBaX6fYuUgutm/+QPTOzPTlG4x7QI3BxJ+HmRPai3m2X211BInnHhuLGWTdL5bUI1Kx0z5aaB15+gJ5IevTPZahLP5z7lGaDjqHZYM52y21y0NIRrHO/Gr/JtRK8cGTK5xW96pTogqCQpRfE22jGAeV3MQmE8ocsEn+1Nam+MfZFQxrsxme/Gv7ub7hM/Iux0arChrHs+tJDyRbbx7KrhdxAf3tRXRofUuzA/dmE/6Wq6Vk7INGRn42PGi/brwOdYW8Zbx4pSFdzUWtndaoGjnb8y9oMDrJOYk6cO26oIkuIKx4jZuLmlrfrXHW4JkeXf6+H4cfzKQJCHZLWwWlLOIvldnDNR5oBvm8/DSzZ/T01vdrDSgk3xrzLaP8Ru5Yukz046/5vTi0dIP/DxioXvY/ibWXBe053jDaqr6JvdDdwtvpTBZOotdNl6a/gkS8RQMLnl3cx87b1S1FwdvR/FYzadLugV3rX9YAHmRzURvAD4+31OprwkfOlvLVbyNrpRedbdjH+dxg+PcZnhVR3nFV6cEwwm5OUnJ2PL5Ij5n6MyiIviqN9W0jo939dnBhmldb8aMs80TKnN6Eluluj+Lmh/A9p6KxG1XBzRN6baA3eOyX+51hdnsiRsJnlmesb3nr7NBNcN+u8w3s1b0439UZCvw8cMBT8S98u+hiBoUFZHG7Lg4ZdxG4axWZuww53B1l2sIfSKvI3PG9SFozfk+eCL8m38vu5jj4X6K4Gl3JRXcRxPTYy6LKGsvm9/6zjY+cQ2IVyghxurdZ1T6uztwfF4PDEdJh6i6xiPava4R0bWVieYL/y61FC8p8SI35azJynB5FzPgT90ZFT2drh7c9WyLU27J8bTzn29Fwk3OzNvTRjPMlocqs0pY4D6SamLLGXezvEM0OniZY5XgO5rSktL5Xd1Mnui6pn7Z58Pc7CV2/NBdDfCmpT/gcdshKpq2BI/nBjFriR/Tn5W0wKLaZwevmtBXiVYN2mHLJFH0tbio0ekN17Vh043g7PlEVkOorPXYZYeBA6ffUQ6R1RUdOeXzrhI1trwTmUPMzHB4xsNQRQEE77+WaOv1tpv0DT9Dek9idpZsHUneCGd064mEV7Zz8ae5XD3RbzzvSJ86djvJFnTmOC35Y/q3/yDlrsNSIWr80WqiJ6iGrtP5/Th3oyg5DWicR8wU9ZA3/e2aw+NYr6mqnv78sRW0m3pCyMXiWv344zGGO9i6aLCbcfYrjmnUyL5wm5jP3bCbpNulRt5YrNh+++q6PqJGj3ZrhRIXDC0b7t9DDpuDMWAYtKqbqqsvghvkEQl60Hzx/H7OwAIeEm+EIKPr9PoG3GgeMXaPtOLfRz/CbY5WzDuMFuKqcjBgP6Mb5uleQct+rSG6/dlM/44Fovt+K4Ea6zLZPzzLXJ/bwgVvjCZanexLzKVnlKBNJRVUlXW/mtPDFoPiKAmxt39/5nw6XV3wBXSgqy8bzKE5LncCJENlxkVP+bjKqgRypRBJYLwP8dwd9gmIX0HGG3o3OikGo4e19swp+1bPau6xh+GgtJyKe6v6bz1uPaWg2/fmjUYidU8lS88rPCKvMEeGljorTtcQm6sF53g6RWhia4vcy+eb95g3W5jYWyLGwWLxOEbb4jf+WA0D359GmxUQWHAmtqhb3Wxoa08ZtruOjmf5YfKiLT319dnVOKPLOwVRclrIo94j7p/nxWPi3UYIeu1MohWN494IvKcsvfIjwaUU+NN0k6/Q7FsgB9lm/pDVeweO91dE1dNUdM23kQp0V8czS1qeoem+CgNo7aXZVNexioduIaBtebfZ0euLmOM+3KrnauBsr+VbNKa2egdVfv2RQxjiahZNW/wXz9c5tfyJS+4T6pXWkZNoN/5M6R9F/CZpxFWGazXtWzVQHC04MjyFdty7+VaCc/CdmdXfT/403bkLUfHEFEp6jIei+oTgC25FktJA6Cvs7hguYVIstYd3HQ/dBtC5YhzzcDAy3if6Wa2SWCDO5dDxmdnfK7Do7TNvyf/cvX57MIX0ifdk9BA7XIiGbOOcM216tRWNZddS1cbak+T9aDN+cncu2lTviO0FbFXTnxEpUDyClBlP0lQTUasniqYpoTK30mz+8ZEmVoDl6owr6sbdXVl4gnmRJWXUMDcjWmtFTow+4PE/Hugm16XzIUy5dHinI0o+fxMzifU1R21ECZzlGRF8vkeItxs5QryrW2LG11vXNOV4VX/5T6dBmrFznm5hJ8lvKp9OWkdviZTA6KEj8bXb1+TKbb6CMU4Cw5la81EptFZdHSKP2Pn8qZbxS8COXzWWBa/0Oz90FZCZGLMj1egSL6dQffhcoVKflJyp6q6FMH8cqRitTV/68U4tPAmzT3tajftyeUerRh0VpvCV0ePfVkCA1C0ep1Tzpd2x7FUitR86Tmnhzz8edLbTi3LRFmNO58xBLY9OuF/y/1QlboKkU2CShyZ9/flw3CnKw58Udkiu644fycdBtuGExEJvzW9U9VjAdV2UDN/Tv2q+xeuF914Pttdu62zYTF0ArhiqxMzf32zuiW9BOwwNOVRvy/zHA4NWEizdhcAcUGtG6PTanZkrrB/V9KdH2o9fyU7DF39UhdsVGSz64g0t3uaAmv3CL5lLV7YRV1PqoR41XvamrTIR1Jcb6QrtwBo6UQ2jYSsOIsSr63bprfCK+cJjyloLQ8zUl8B5/fYlhM7Thu0eToDG6LICtMQL+ln4f+HtHORbtaYbUgfVdDreZph3+5gRjT796XiRJTAd6072Nvpks1a/LMT8+UoOgVZ0/Ld++lVxZn/fbMdb+Ti2kNi5jreXk1NtzkXc/niSvuxuQsNcbgr4uqZP5Ydn+ZKzTSLYSd0Vrxu+5vzkEheqNMHkogpPxGXr00B/vZ9pmUyRz3dGLmybImd0lNVH9TIUVYBFP2LqPpqsMQ7mFX3XXsJ87c27JX4+0eO5O+JJzf2OS8X1rVyOO+/HG3zqXNNCtuK7xL0cK3/cfNuz8tMX5xadO7a6/AH84jsnwWhOj6yI1OSsnohz2bvZeMv3AKKiTszaVSOiX7a9Ir10v8wrW8WfpNvjDdtSKIl2lh8+x0M6wh8x7/SjCgZv8FwYPx4lbjY9zIGgclYp7gheeCwbt+a2Bc+FJ3t8u33ViEF6h/X2cyY/vTrfIngjDuuR7K33A82rYy6B+MWE2L5bZHOKJ0sVjnsFr5Ka8yarcAKB1btUbDniddRpDtxmbaJTtdI6Wj/xHSa3kEgs7i/oHx8uephYpZHxuUlfLSx6lZl8MiqJDncRft872T7O+OV5uiqDpnGGGVKruQu0HPT5q+Jh6E6c73MqwNExKUWpHHO+XVUYNrVDif4V67g/RrxWlvyM594laH5tUwys2hxJUL7brF8vdZFkJsW0uOcJnzaszGH3sBAz7m/WzYfXVfnFI3ZQT3/mojcjYE8ppZt06fcbHPUZYT24MlJHQjfEXBPA/t5yKp/Kzp9vkfiGS3m6YnH3EWPen30HDqZzGRR31/GPbLFGyUZvpmirJtm46XoLstSZ2P67w2j8uJ2hfF3dJ0avNXzeFDn9xU+i7x8PPpzipEB772wzqzSWVmBpWUNyxh1VvbhC0w4PAVhmr7NT3VHE93/Ugqe9t5lnmW62LhEa0YuUO7oKr994uK9CDBJuc3xp0Nj1rzHP0fF5OzBt/aXmPx5e9AzRqTXHTGt7rGxnNSWmfQm6jfbtkh8fY8GgjbnwHgX/Uq+Yt1vV1b/vm9yl//J2eGdzc+1n9Js/tTbuqI3BoJA6R5/4y+95fzIwSNJwIabaftF8vG8taMq/D9HcsfXHZHd1geynHgvoQNCoCtFNvWxaiie1lUyWaiyAp53GzOlMtZtjxRXAY4XD9mKq+5K6dma0qs8+c93d1hylpryrtzlcEZveKR/WUVirbjWXWGx5xvl9bVK1eOCUBOcrqibp+ieh8s8JyOIPxXP8Wgnw+tg1M+vPpuKOGhWgXDuJ+Nwdq3npHAmj535Y4rMsG9HTuMIJl9MyvticWqo26F0HA7ufk6u/rCeAhSewdLj7SPLEjQirl7PGk4a0bPRUo0bmZyPgT4PCqhjutwBu01ixnbcTzEGXlDtcNm6EUaj1fHw73xCW+MXc7Lv1h9GoFWi89M0WfYWme0cCZe+JJXH6mvF5bTkU8FE1CNmIefcWglsOn+eZ0m32+vlnlQeuWPl4ohpF4+re49//R25SWaKp2/uAcnn0iD9UyJ86271DKI4N08O/opuP99GBpiQpC6Iw6SbVvuU//4LlkVtmvJw+odLsGyDVz7/aeR8RVH3meF13GHFfEQCdXp+Z1mu5qsa6TTFsvW1B9jYvsn/8VaGLMIAbeyZ77rkEjTTbzHhXN3/zFq5nxG3TYWYRO+Z68S8A2caJbipvzAb6vkvwOp0NYtbZ4E/bubcgUI/3hW+JyZXrtgHt+QyYFmwns49nB8O+vDm46cwpm9Kd7KCfv0jC0Ijnfb8VUa3LFdFWN2p2Pz2cqNofw6uThEbZVTXE6t2D7E77Zzza9LLsz2rHtGvUZu/XJjyrAUwa0T1xlzVEqgq46+mWLPnVnEthDNX6Qv+orJ0nNK2K76KHryEuaSDHTXTZCOCuzQ8xepehcV+tAzjr1KTzec0yZpVeAffLQ2POoSBZr3jSDPMdDswW9brqfe0QobV+dJnnxud4fis3QPK4Cchey6+IalUfoHCHBmbS66bj82csIIGRLL0smm4u3tWM5KIWyK5Zif7XPAURJPZdp+JY3/3xE9BFj5o6w5msZzOIh63880tdfxXy6ZefnePwYub2gLIxuKaj6ga0WN7IrFBff8MzfCKrYPqSf8bhL7OQeTk96abeLHUqh8sW+E3UWJzIAWpjpEuQip5AN6QZzT7qNQE+Qfxi/uNsxLPvaoaaR3DFs2mWPsfTX4jyoNOxvF3LXcOUSkAnRQmxnL5ox8dDGyrOtrywi+B8+WRPSQRuEFgk025ff4Le1tAyHmT5vmq97D9ZWQ3SP30+u3GVg0DaF57qLI1ne31sYXUIPeKO25M/bvoawGBGRuWv6WcTfl008Id2x9wdOmRidTQlaIpeZQdmaVwMLuEWEpXv6GaJ5zNMZqjucnFY+LT4+V8eKBc5IPvT366aXPJ2fjyKpV3nd1t/FSRwnLfff/F50B5UhMyoDj9/Mea/9Tsx68YO2jzxLtY0V81SayJ+1cZo7G9hrjqf4kG88tb7/FI/PGjvQUKSs+qZfYjYFthf3BNn9yjNVqtfzk8fM+w+3B+P1D8/lBmLPuHrgLzRwuvMOhZZN76dMoRT2xgkej/OFde6l/PjV7KrvDBb/MoC6fs6oHNv9THD9NbA6+z0xE+HfTbPL9iCGKOJClfdreZqqTOBeuvEdvbnadL5JSoQr25bYs89oPkTF1fQ/h6IvvsiyIas1i11+LwIIZtGNAe89NZa9DGLl3w4S4+TBMFJxTh6V4r/nf7AgPv57rL7VU/4UJ09C5b9zEhYjPFkXR0F/fSO++c4/MdbYMefGm9mECpKh7sEO1w//uWT4VDGBbpNzxPT9Z3HpblCyx0mhdN4/7lVY4i3Fvz0vGfkUUWPD6WHE/JyYkyDvfBPhv8HAAD//6RdSZuysNL9QSxkkhRLBGQmUXHAHTggoCJDAuTXfw/93ru7u2/ZT3crQ+rUOaeSKgid2iXe5RqEI5GrxY8/XAj2qpBzXXcbOFm1SeWV0HB2tK0WlvoIi7R10I12k5V/9QlyXM1tRQV8xLDEC8kWv1cufjSD6VpRtimsOmF/+lf40A/x1UkOe9cdItjkbsHcZX1yLdNSeFT6LkZB6FvSRkFHtNRXGOHFEA53+9b++dXMXC3HBM7XvEXjro/YdptbXLypuwigpTPxujDNJ1FwCzieH2uqqMuZsYWf6UfjOjG3XvawEWgbLbwcJ7KbroU1es+phyt1JVyHDOVNU82ejvcrE6t354Pa0SkPmvB5pMxZ3r+8+hQU6PtpMsOyhoRuBHSEyd8cmHF7iJzH3c6EJFWOlHb5q5veYi7DTXgZxBWvQ86nhJUgY63HytP0c06nLIKflJXE/OSJNb0U9QBd56yIF9efbmgHmGHBF6wkPe+mb9SkKOvuEfM8sgrnlnMNnnv7yv7lD/lb1GCEwhfrPPry6ahuz1A3T5eRv9735/dLQ4teojxYZiUGvQzwhsyk7HFV/vi+o5t0jkngXa5ojK6HFsQUNiShthOKC/7BcK4vLH2Vzz+/6wzHvtww/xfOyZwdhTMYvLKZ17lHJC3rH5GlT9Df70f44vG/9YlLuigPr4Efc5c9G7qYd+YWpWCfnhUhtTl2c977AtpkX3vh6yIfru7kaItfSRX1PiIahkELEzs2xJG3LyTFRdbA6Sh5zKLRctLYLRyoN78Tcx/Clst+P8qwwoZIwp3H+fimR6p/yyMlsap74SQdsyNk21BmcXD55tPwSh/rWFtv/vS21ePnRYXGzyhzE1UIm8Vvg4uSFSScwbH6v/z6p7ew69ytcZWVj6UPkkuRkJlcfoTHFlbyBWH5zy96Vr/gL/6YVWoa71ePYaknTD65LHpjcIMfhW2jmiz7WltLSschg6trSYxkvp/wj7A7aqtHtfvjy7zbfhwN6PtukkO/k3n/ODYHOFz7nDkr7Z3P59vjgLpO+ZEtiSo0BRvP0Fpuuiw2Pt9kDmbBXjdBmBLjcP90fL0ZTM1/aSXBC99e6o0HhMuhZ87Yy+jPD4HW+TW0o6pZjY5d1iCoRKNr9ccsekoPM2grkmE5Llj+I+g3rv38qJNsirKEzc2UwT+/rl3FvJ+ZV6BCnmU8rjIaUvseBxCMRkXM2Js5K9qXp0e2cGab3ftbzaHnGaAJekQiTachb2U1RTehMoj/xG4lvbRZg6U+RQyvd7qRys0DDlPlsHC53nlodv/qNWyrCyyc5ccNYKmXEWP1UStK2ywCV84DOn7cAU3xKy/QSwxi5rh87mYHLvNf/iLGn19LlDoFaPGZ4Fy3+fhxSw/23FOII8cNn2EKD3A/ihfi0sKxaLx31T/9T7bitrGGVdmdwWS7HzvL/jYXr45wRnWD1wSv9jyZ3f2v1z/1AxFnpW1zDpLRot0jtkg0GFYlrrdaBj/2/mJ4aznipq2VsJnD11LPfHXt8v/QcsNlj4VvKclPOkJErj/ixLeOj4feALT4Q1jTJsYnYG6LXve6IYt++fe+9J1YZsxe9NHUhzHVFj+AeXEThMrz9Dyg4gEhFm+0zcdwgwMkNRePbMltj6artwZ4uZbNwquuJHS9V1ukhhnQg5swa3ym1YzchzxQhjnv/urV2vXmbBe/pEn66QIa/L/2FMD/3lOQx9sbM6nhdsreL1TU+J8LI/f8bE3G+3peN27qsox3mVVoWokh264+zN5tR87p59uDlf0CFqlYrobjgQKqXvcHsdh2rpj1fmTQr/z3cq5p14243GF9oDefmNWPd1Nl9x9QhqTFevwscw5tpQKGW8Kizwr4JL2NQCcX6cWir7VJ5uTaH6DLbnv8K7maM/r50jUJNhOd4ssmn2ZBqCFQzQd9r53aGhWpseE7SJQ502FMhrOqPqAcz1tiTveqmle/7QGmsf5gbVVYlhyTwtQHejLIsyNbNJHVugX725yoWMkn6ycO6wA25WEmtuK4qM+UvQyFN+5jBfq7NSBWCHpdzCaxQ2yHSnP3TLCv4psR62Ja8yPdzPDq9idCRs/m8q01jvpxf3ZI9LVeyQMqWmtJhgkd0FHrfkkOBboexRirWlby6byJAAj/BAyfHtt81s6pCaWjSYTMLevoobzv0PxSPGI9z0U+b7LUhv365xMzUZn13fvRWcNixoiVr+t8PDx+ZzR80je71vuhotf614A7t4gF1dXi846vdmsoNMQ2a/IOh6CjFN7RISWOJfyqJm7rFl2PzMbCdijQWJSGAMe422AEb5pMsyB/EH0uvY/TJg5Fst6poDzvGgmPgVNNZDW1uj9qDYmZMVtMasCG5xufWXRzlYRzTWugeZ5LEpzeYsg6M32AIGqcllO+T+a18AhQ04JJHtptssai9ASoi9Eke8uI84EoRqPz+PFlIfLDXO6s7weUZx+RsHgwq6++lgON/8R0MgVkjZeDf4Pd3N6oKmqo4vlolyjb6h9CikuRT+UZ10DfH4OE3flYLdfXglcbH8qE+98899WMFO6t8Ot3ozmLo3OLTGVL8AT9y6rdokhBPYsWCV6Icv5L7qpG+H3Dwu9a7ab9cC7AOk4yFXjd5XP4CgzIiy7F025UOU8uag3YCmKqvc9qxzeX7oCQ8uyIiW9Rwn+i10P8LQdiKcI+mRxCzppfRRuSHYI2H82+o6jKhwPbnHdGOMFbEFEXtS+s96t1yP1d6awuBoswMDCsGerQg7R6lFh4JM+qH+i+1ncbvyGkThCab79uRKoBS5+BiaHv1JcC2ndCSVey23Vz2akBaATnzEqMdzd82muhFeeb+g8felymEULHwMTST3xaQ2XXNRz3RwePcjt31J/JA7xutcEqfmQde5zWJUSRYBP7uxf4fN9sbOiK6E72eTt2NMZUQwSVb0LyFbem7n6ydZ7vLixb1vMYbI8HEBtrR7VVUYXNJ1JtOH2CasGjpJvltVqDV6GlV29O8h5v3ilavo9FDIyQoaSKwJZiTtGBVh3PrkUG6f0bE0cLSdhPwXLuHmmUecs5xE4YzY8+kbPFiM3f1rx++iZkL0po4rQt58G3HUGGjcdw75JqtKtzAMr7RJgRzJSPz3YCmO5GS07oA1VbhS9NT10hxPIlCsIpCCUTkiwi+KzFr5w7re6gm/QRmEtSecFLQpE/qg1xasHlU1hKPVxvc0M2Tn4Jp+4+NVDHtk7XcS3wsSSDDL3kWWT7ELrq92n3JeLyTJlRrc7WWJK3jESJKczaYM+SDfO8A3qZd1Tz913VH6NyBPkTisw631/dXJmqBjarRxZe60s4hVbxgVmhNxa9DdmaOt2ZgZ3lkrib7dfq927ToBdRXXJuLs9k8sUnhd8j6ZhVzFbyh0conUKfni3Br2a3Pp7h+bwFJNj5+2TCHvYgytq/k2z7auBy6aHNsQ7JNjjIIR0vJ0BXLKgsmHqeDGvj80C/fpuT7VveJ7z6WWdwgkPJ3HsghrMT5w2U7eXLzEQGzv1xPEMdOzrD07vupvXreoCpHGVixeWuG81oNhB7qA57nl9CyLN1ZmtQ8JkiAz7WsE2PGhpMuWWYl+twUmZ+gFL1L+wPD8YV3jWwCiqJmYYb8METNiK0p2vJQrL/Vr1rZB6oj9+JuJYdo2m/3WV65/AYS3PUh2OOsxo25W4mxF72RQtjUK8vWpAv+HkMhzcPCphxdiLRgL7hfPoigK4JVBZ2Z7FrVvGlhPB1fDNfNFa833/0Eb67zYqRq6CFA7VM5w9fqKyFxJp/8bUHxzy7zCff1prE4Vajj5UR5vUWCceDkJjwcoeMOJ7SVFPQfXp955OIOQ9T76gydgbqJVNjwckuk7YKfyp80fjF02Hao+klTynatMczwTvT7MS//LLED3M0/4amRrVb2KaqwmyXSXx6PZZzipGIWNDjRz7TRgF466VGvK935zQm4QOJWVyQ7W1lcxkNKYX3HuXElNdOwo+4MoAL8oGEUIE1P5Tzsn4/I55qI+wm7LX9v/VqJF3cMVtPIyDBwaLKmH34tEHSA92tlLJIFt98iHerAMJ4/vWoeBCLn7aaAaL9PBEbd4U1nV4JBjEq18Sb7s9qWkVGqs+rRqF76F8hzTKlgO5WpVjTqif6h3dnye0xmnGWjD5+ifpR1j2CX2NesZc2HFE7WSazw+BZDQnfj/pubm7Mo3YTzupSabs8GptsDtOE2n14rEEv7DM5nM513r9SlEH6rn7Efik0H/nV61EkbO9Uz8dV3l+LvaclZdAxbyXypMFlipF15DKLTKvKx2AQAG5f7UIn6DfhXCye0/3qrcntFK9ydlvmRevZVsV5/jVzZTcXAQhW5eE53Jhdv3kcTfh8hIC4AmsSHkfnBrrRPTJPFIpweh/E3b/1sMkbIWfeOhq1KpkVZmgurcbKvab6ldgbkv+uRjhz8arCdDdbuvpNI6enJi0RCXYWsc45y8dgq8oobyjg0q0/Fd13zg7e0S7Fyj1yEulQDyU6FQlhZL2xOtmc0lm72ecbsaUtRv2nf82we6wuxNaFuJKUme8AmwhhvRhMLl9Oegr1QfIJ7v0N4t9tO6Kv+Xhh4e99yUpx1IXv1mKb5zbL58761tDe7w4z31u5msz5q8JldhSy4GnFTu+uR4n9sFmgmTgcP32MYSJHi67RHVWDGuxq9Jy5iN9WKlhDkhSOXmGjY2c/zfJR1sXyD6+JNVYuGum7+UDpqFIsOUqUi1Y1UyjL4sROy35Jfi33Gbi1EjIj2tXhNE6NgZydSYm5X3u5vLnyApQnjchGmv1QoW72gUTRZLbp7m4yf11uIglAJuR+9xKur1MPskR7Eux7QTU5xD0DMaMnO2yroetqw3ZgGp93EsYHg/88fTiA55WEbd6rOZ+Pk1+gdkRrFlzN0Zri6QfrZp5OWNvOek6psRbhMkcGMeR2roYEzBFuX46xEFViwtN2EJGDXjZzquJQze1gpf/4peGqZ8QQP2pgXL4GidpbyifJPh1hXo0GsZZ8vcxTdYDsTMKW+0/YilxGVB+EA9YEI0fzk75VWJO1woKol5Ixu4Q1mL+sYe6YitWU5GL5L/+PRo5Crr8eR8C7ocM8Lsdq+gTWAey9Gvzn+bECCxBFMmLWMZPzSW3NHYoOb5dFb9PLJ+w5AZz0lbTkvyln70s0Qku6Mwv2XyfnJiUZmn9aT5tUotX0uEo3rdedB/5Mh10+bqTpANpReTBv+zOS8Rl6B0A/LV70xTuZnp5qwGqXB8Ru2DEcfPFCtXI8bv/wFI2vtd/AA3U6FlYq55/32qHwx+d9dM+7MXi3BeTNmzO7Updzah8uo23ouizIinfIm1v1gKgoDPaIqmM+t5EUIFl0Bhbpfdfxfh2IUPTHiO0OsdrNXf5KdV+FCP/Td5tTZSL+s13il1Lb0VkPVLCv8htPu7kLWb8OZJjzFcdC77Jutr60hWbsMXF94Y0mqe7qf3hjZvN34SN4RtkqlUjUPsJwJrotg9HtbLr+HD4dW7+3WCP8otKlrXQ3XVirofhKdSwvfOVfvBTez8P9KX7m02rpFbu1rAr3HvLDOUr3hh7mzx3V1yfOp51Min96g69vTidTY5K143X3IhtybkL2yneR7j3CPbHs77MbayGc0X3vnjA6Bp+KXuSl78TdCJnPwm0in5pdAX98WqntKORGsexk2hbREu9fPj1HIYCz7u+Idbw13VQjXurO+zfiS/EzE8XftTbIwfwhcXwfQ/6WhYfmd1aC50ui8qHT8bgOnKolIZ0e+fgWhQiS0usYllcna+41uYCPWDVUmKo557vDVUX0/VDI5vcoKi4/PyWAPBOqSLJfyZU5aujlihUzHuar4oF7K+G7Cz1mq0Xacam5lMjdZFcSBKzo+q7YaHpswcwc/aMi2qHEAYXvPJb+5bf7xrdBuEQRcwbl0/EP3d7Q6nE0ySk4yNZcfK4POPv0gdmi71lhaYAW/syi74ZY048te26obZDosmu7aXfWUjhlL4vdmvscjnksGFDeKoXyq3wNR19mgDaeUhI/bqqkPU5+if7eR5zP+4qvvtcaWZFQ/cNPfihiE2q5jIl/fJyXc46nBor1uiVOVdaI7SZmAE/clhYD/4Tces+AjI0sUeSkHlIKaxZABm9P7nd8rPrbO9khn+ScxZaHk9GnowOHcTLIFn1u1bRNp8d60f+0iV4fa8juZIRY36nMuW1/1vAtWAbu3CCsRXTp86e8HH062YSdhPLDZ2E+iPqiNzESPt+cJ5fxA7F0vLMo7eNOduK8hcBpOAvrG/C/+wXHPLpkv9k43aInREi7wmGb4r3h05ubpT7nOicmW+FErAVr1jbOmC9+Q8UH470/692x1pdZgHUyhKXeI7V/bvHHzd/VlN3JjN6MBWz7l9/qmy8jbfy4BPcuq6Zv8U2XvhOU4cu9D5f4VFGsZxvmlzzN376UykAuygurC3/5tc4x1ZTnU2NYu+2tsWTgQHR4Clj049CaIzXo4aa/riykkskV1zykel6ML7a7eL/uz19CMtdrZmoHHfWrWLRRzD575m2/2JqPYy3APXwcSJAV23B67F8m+JWjsugRlFVrr0INzptGI74APudtUGv6op/JH3/uUNJhdP4mgNVMPOVz2gsOOmu6wW7D+oiU77Yc9eV+mPeNzFyUnOGD4v1YMhv/YjSZ/GVAd3ul5Nu9XD4u+gr+/J/YeQf5aFcPDxVe5xFrnYkJdWtVQ9SXLszYnvtwMmem/vlby/q1QybuUQqt+51ZaGsJEvVVfYYFX9ghm11LhtoK4HMNMgxMGxCVWjbDfvq+qb6+ONbrzz87bvsP2Zx3hcV9topQ4c17ZrfjYA2Pvf2A5JY9Sfz7vDqWk2U2xEAlLIbRxKdbOIzrT0heZJO3YzVK310K3bg9Mitf27n853eN3Usmpnr6JQNZ3R30p//vVmBU47e6YdAPhw8W0jWzunJPbbTwWdwpdNNNC3/S6XA9MEP8XbvP2iVYO+m6xOzHzf6Xn9FjtxuZg5Mwn7IjOqMlH9KVvF3nv5e8TtU/PDTE37oaNrfijOhGA2bK60/CVfxz4KruVowMOOLKGVwZTkEbkcC8JN246K1/+je0LwQ1ZqSZaDPaJQuloen6jbTewYKHdFK4aY23bWyiUNa/f3hVDfu4l+H32Hd4bC5W0l+mcw3j+vRhoX0trbnq8g/wYp0xgow27xf/Q1/8VrKFyggnk/8W8hrWVOOdZjEw/Qg6wYhIPD+NfDxGDobC+NbMElQ/mcp4DqCOViL1otcn5JkqlUj+pA7b+9o76Rq4B5Aplz3WeJeFo/O7ptDM2oOYr0brGgavA1SrJCaG6py6Rd8ftJ1/PLFj1Bz5fJGYA40mr4nBSYPaLFNKCFbSSDz80Kq5P4zpn79K5ea6r8Yd+8yw+NdY28gvTifcC1pwfFQEb3+Q821yEeEv/74WP41dTctDDqpsZhzitJslM7YR6z8DizTCKj7sGu+fvgk0k4YcW8Myu7KJyP6MYyRdH54GtrXaE7Lo/Tm6PDVATuxjLqh+vl6FnQjsoTkkuvm/aiqeY68/N9UBiynck1nPpA8cQb6RIN+c0fR9NQUcrfJMl/UZzt9neoCrmnnEeyRV1UBDbHTaZSmJzM1kjamHVFTLRfznD3XjyMcDGpp7T/XxJoWj4QgjkljosOB72Xd8/f7NWtMKJrOj5ojmP76m1mVL3OP+lMw6skTgjSDg3n064RyT8AZ3oCIzB+GUTId6KKCZ1ce/+OLhY5r/+BHunLRBs1TmR5iPwYs4D8cMmYnnAzpR7JL44ya5TPRXCqW6K4i1vn0qnlyOxj9/y3vsp6Q9uUMPGzVwFnw0O2kVksXfrEUSGuCE02P99f75Zf7m0HQ0n9dnWK3FK4vP6cYSsbkBtOIKMCI6h6otxeiDvDOW8dtLWD6PlzsgkDuHOXsqhbSRlzZ2UT4yy/6uKs4EWwBlMx1xvxe/qPslJxXMX9qQQ8qLZA6L4YZgm+QY9eIPUR0VmT5O13CJ/2vya9RXhHiybcnil1j8fJuptvjreDTuccKX/IF2Wm9Q+rjUVmff3inIphiS0+JHLH5VAH/xn8pIrCjn0hnCX2KwaC+6fLqoufov/+9W76qbJ9wDSPvLhWH1HuSLv1bDUi/B8uL3iT5NCnTFEmPhOqi7PqeNDItfzq7nJ0Ni8I4F+PVuju8C97g4bxwVFr+cBLA5hfNmPUQgXNMbCeSvnUj58bzUL5ITXY9vOWRnqFNY/Gty3o9usvibBhATP+m1kC0kLvis91vlSULvpFc/+OQpDGktsUy13Fz0VlIJf/l/981WqLS+tEHLesPiI5uTodOrMwggYVx5XhHOFzls//IfzgJmdMp4KndATXNLtYaL3eyhkwHGs8qp9nf9Twz47/ooH6svmvN5OoOtpwWJi27sqHbiD2TJu5ZEp32F6MKf0cLHGdYVDfW0Zg+0e+gXLHzxrpuCUDfRosep4gOv3tndHaG/lhUVlvrDP7+DXn4uCc/tKpzm5+8GG2fOieNJ53z0lJ8D41Qe//Cr452Z3mDhd8xZfSfeJEcFw22PNCp/VgZXuPZwwLadjMUff9tJ0X48aEu8U81IIz6Jw7GG22FjsWjhp6xXPzv4ot+D4US4817Ttg1QREwSRek7ZLu58WCpb7GNwu7dgg8zyKI9EE9Gx2ok650GYzd7zJD7GklLPe9ffUM5Jt+quSMlRaMXxcwHNHKm4tdSBrYVOh14/efPHHQQvi8sKe0rnG7he4ZMuWWYD07I+3IXpNo3KLf0UxVzxxa+j06H+5MQ8kuTubgXN10rxwuJEqlA46mqHuBN8pnZkgUVu/CHCHU21cwi1a8a0XRstPblhQS/Y6X64wdIDro726zjGY3h7bZ0e6Y3svi36J+e/vMbHX0593+Rvg6yiuJJnOznhMww2lqTJDMnZpQn+RhCFaHd5jCR4H1Ou6+g8g8s+IG3P/EZzkblOyCBMhCXaqu809c7T79frZFF7tOxROV0FdHCl0lgXrdostr89vf9dDz5JeLPfo6A8JPKSEBcPqvf2fjzP7DYUg1R1TOOcCr2hIXxDne9/nw46HwpMdk+n/eca9DeYP6p/Z+fGE5hlR3AnWebmJck5Wy2vR3seu5Suh0MxIvaj1DM6j0tOPHQj2XBrMmfzGG2O3nhz3XORyixsvurv1Tjwj/gYyUOnXw1sUY1/FINKfeOymrk5cpblh+AU05Y3L2bZFoXQCG9sDWzV/ox4aM0FvD07wNxodet+fw0Ad306oolEn9DvtRT/vEp3G/v+fR9hQJ8uRiRhLn1sn7jBm7RQSHGoocmXT/a6MQhIdEpXiV9dmam9jo1CcFaJnC2TS4yPMzaJ65d7Dhb3hda6rfs2Y2XjstKc4Tbfq0R63nEFl/0rr7oVfz9lZuQD7vCg+mo6CRQrW8yL3ocHkFRs81nY3eyMnYmmKuAUy0KrU784xt/9XPj1Ird4ncbUBfNmhifNV301TeDP33yd718NzfBv/x3h5nwiV0phvZnf2iZaK/l94X3L99ufDUJpaH3z2jxO4gZbspuWm8sA37Hnc9cKlioNUeIIM+NE4k3vtvRSDUpCrciZv79IlXD91WUf/4n1m7PaKm/2CaaCNao9Hzek6FRf/j/t6dA/997CvrPeUuLbcZz3lJLhV4KNWZeToE1TEq4g1IRA3aRZSPh75lT8P11yALL8jqmxL0NXQApC+91lEymOokQed2G+LrmWkOLhBbq+lwQw8qyfHooc6A3w/mA0Ua5It7XkgNNM0aYq6smH8piAvC3py2LqXa2prS9ftDvWXfL9bRhe7XyDNre1ShoQPN+ELCo6fEQMGPr+SE32avRe3P9olp4qqtZOvY2+GvtwBxtQ6pecZQW5Ei8EZuLhcVXz6qF8Pvas80ZM2t8W0amr+g4kPzmG92omHdH2wXTmpByDyEz2auFNXopxDxEXteb9aHVNugckKgSG8Q++cqBWRQyQr6roJOX60W8Riu697c5p1dhHIFdW40qihdUSg7JUa9apyLeaomp5oDOSD9RiuXLyCq+CT0N/dRepew0SHzsrtQGNXjmDF9DFzVlFVNAAnJJ7G03vPPv3kP7LDXzWyA41VAlRq1L6Z4Qa6k5j2ajR8hppIaQPLdz6Xc5aWDE3Y9FTcqSuXGPx7/ny4x9T5LxV4oq2vbHKzu+yzBpPG+JgX6rYcVL7Go2m/Hw9/9UV7+PcNLy/ADPtXMkTncfk+nvfbqWZ5DLPd+HUmWoEXRH540LU37zJml2pv7xlAOxNcdKfiIqd3r/OL5YyCohma9WngLkj4nYlrRCPThqCcdq5vRlktqawH60iO8ua0LygVYjXA1NP6VHg5yjUxd2eWuCbn3lgm3qGefS/nUJ4I3fJyqI70tFt5ogoEd72OPLN//xaUJvERiNDbo6H0z0i50tRqfN08E6bTo+vPCvBnVlNsTSK+CDssxruR/fR6ze9Wf4fd2iM9rixmHB5WtUzPycM/DCrUf843wJ+7JPBbSsHyx2ZW1Ng98ISONlyTZuy9CE03sN/c0a6FPYqWjSn9oOpIv3IcbyvEYIcxv6erMnkdbW4SSdFRlshH+E/LJzNWXv9xHu4icncf58Vs3V800QnkL77/tHJWzOyEHeDa/vZz0f9PooamdEfUa+g5GLW2Saq0nr73S+nIKw9/bTAxXn8Uu5GYwJV+La1sfmoRP/dLFDJUtSA6LXhJm9fskJ+/iUIpV/GP3it9tNlaFiWD6PxbezEnI136tgbwtO8IpO/IPU1QdVK77Mt92laCy04AgS8U0WjqsScedumxBPTMOzr0XVuF3VH7j3H4UEwSNOJkr9Hok39UdyuvqhoUfIAcXmb2I+HnYl7uVNqk/P5MYsN9nzhaPMkI7YotK9sPkUO9sIKYolECt+n0KevZsUJifcMT/5nRKe3AZA+1wbmbd3acdSvh/BVtcSC8uVGg5qXTqQ0VVLosZ5h1N2ayL0CPYBMz7lvmPMP5x1JW+ebK/GNp+Tqs3gMPcXuk4uocV/OS/AqfclVQE/rSnelC2kv4tHR0Vn1pw0EaAF30huUDUfdkGPgVTwIo6tffKJOMuZZmuV4XdpX3N+DDIT2ZpjMPJaTZxLh/QMM3WfuPiL51PVjYAOlwdGzs1B49oBG30v3Yl5M+n5XK0RhSbZIKo4SVhNxy1kqJ0FiVkvxeRsLbMUrV0zYr5iyXzyjt4O0LE90Imd82rWCOxg7gWZOa9wyMd4lc+w4BvzguoVcvs1HlBxnr/MRf3K4qYYYbg91ndi21lszat03oHsZyuy4L017ds2g+82s5if/77W+Os9D13L243h9LirJqlY9gThu0g24/Oe8C8lN5B1IaLjYyd1Q6X0GtJOMiHush5nURxE9Idvmx0+50N2KzDcf35G/FuMOPvOqrc+td8DCzfJOx+Tih0hfFYDs89Cb80PC3ua+LAOzL/FOeLZ7R6g6vEr8ecyso6u1/4OCn7cs/0PMUT78eYg51OfafU7fKvGrzcy0HXHmSV4PzTxvHdgNq4xc7Gy57MovmXE22bHbh2JqzGwPRueebphwWcZt6E32g2edAISiMEhnD+R8dGbKCqJoegs5PEy//JVJTIe7QpCft2WEew4ioljTXY39L+y16u4XBN/OhdoXJv7Qh8Hy2KelTnd1F0OZ5Aj+cac3XrVsUC9A2jGVmDmanNCY9nvBPjsZJmOK73gM6S6iML4kFP5Y9bVHDWnER6+92K+fznknKH6AUP6eZDwZHysMZAP0V9+Zt6qbfO+NbmHxsOMWXg/lFZ3Sp4empW4x+KK1KgvNPOsaWIXEvO99nMxXiUjDL/BZeYharqhV3YlyHd9ywxr9U3G7/fnwRp6k+H3vUKztaoipFgtEIN3NudWoGBNOwsqse4Hic9gmhpAYahLfKXJeDlpS58ARPGsBY9qPK5MAZb4JbZEopDjNG1AvVhbgsUkztlXyXpQ7OmNtejxSSbRZg8U/uQtXb9Qm/RpdhNA6pUT1vXxWfFcUUe4L/N8997rm/D1SmvhXPUf8njeW86fiTmCvHIkeruIl5Db6WBodY4TXGrBo5sfmgGgm/s9/qyCvdX/Pc/uTTDWR0tBTTBgQDPdPpn9uZrLnhvvBskua5m93df5zNanBub59yGWvzGqsZXiHfpeBZ8EzyOplvvPQDPTmVwSH8Jxd7YwuncPzLy3vuPT6bUzUXaSHiz81m9r2IrxB9nO78YMjcw5PVpN85e/sLB9uCE7qptad9fwJOclPvi2lVJEckGn32/+Q9MDbr3mP78arjsR5/PpNJnI7BJGfHZ2+XiNqhqW9cCMx+7UsQduMPTOWSD2rHucreOiAGOyMTuH0S+ZpLwp9LehBiT73IOwTfsmhS8tCfNzW7PYejU3cE+NieAhOHC+5+UHxf0mYETJNhYrf5oH+O09qCLst5ZoNhKGb+7MDKcfDfE1Sh0QoldMLO+WdDSafibYclsRI/ReXBnzkgKx9GzpI2Ny6br9eqCe1Bt59GrT9ZbHb3BTNy1dG7y3Ovs17vQiuQT/+fy+lgAeQOG/bPCdO8Xz1pISPg3I0c5e8ibxzV56pW2Zh8bTpmCBorpdL+i/9u/9YmFZP/MlKjFqz9eQcoPZFd1Ok6xbX7Fg+f1Qhhy/7iO6fo2SzvPSCzShwhl0ft1Q4C+/k/dTMsMqi77sYX5l1L221ww5dVIyI9pb3eSQ3w5dq++WxGc7Qcrg3zVNWR9n4o7yt5v6+SuD3h6W+d/hl/PBP6kIrDsmwTGU8l9ymwwUs8d3yV9O0kOY2EhIUo89onXIi7MEAQL7qxBXlot8bISbA7JWMuZ0LOvm3dNK4XsFn93Wr7Ka1Y+qQquUiOqyNXZToP4M8PZgkYf2HpOx/yaa1j3LB5b345KvAsmAPOp0FpZ5Vc3yB25oTtOR+PS567gQ5wckpQkh9oqvE+a/OgOZG1Oj3d/fD4KvwV5jPVWjnZJ0ykqI0Gv7rii/G13VOXfbgMdhR6m6v6qcOwFqlnMQOe33pWhNov19/OVrWiz4PNmdcdP3d+tKf/Q5VpzPmQPElCdmShvd+tU/VIJrBQaz0P7ajcHgAKCYX6iyexfdzETuwHebWiQzH3k1gqMWUD26pdctbcPJcc4moPeIsD5qzOKnly2gx73/kg1DXjfOZntEf3idtLkfTnqjZLCsLyqVv08yx9b6Bt5weRFrXMkdI7BOtYMlrck//lO+b0tNfKyXfP4M+/N0/UDAPkufAfeb0FmHBs4gzozc6k84HZJh1C4SOAzvxyqcmRuWwEM+s9iBIhzjVTKDdyQnhq/3Qzg/T+cCaPMK2JmMd7Tgj6F733bGvM19S/nOagB73Syoundxxca87eFxOFASBJEVzmx9b2Hh43T+hLzj5U8L4I9vrvWTFs5E9gxY+CoWW10JWaF0Jdri1qHrE0q7qafxAaCuBbq+20k4Wh5/oLpAFrNu9JVzdY7kf/nFTXywxvvkzTC5+zVurOzTDbcLEqDo72fiiTzLW8977XQfGYj2Yvpa+jrhEdyNLrFo/TI7sT4dz/Cm9Y1svbasxs8pHcE4/WKykRoBjbeoMbVeU0MSmA/UMflnHeAUaSs6vtwtVw5JIyIL0wTrDhghJV56Q1sripm5bcyEv7b7DOr33WfOKtiHo+huzvp0NwKq384Xi52wWKMlX5Gty8Ow35x7GaUGBuLLzzKZ57AswL30Dtkze5/P432ZH1rfNrhj1SPhEypUiIeQUyWhv3Bc9Dm6oaeL1+XzwWf3eZlhxdCZyr0KyTQp1g6VZnBc9NSNzy93CEDWIWKZdZrR/LrqJVr4Cpba8ynpAo4y6IuvSEXNqfLeyb2Dxja/CzOCfdvxCTUq5P7OZKEu8XwiIB//8IvYr93L+vf+V4r2x//kZLi/fzMy7duFGcvzm2Y/79Hv5mO2cXja8SW+gV0bje2KUkXT85YBmFfjzsJEsXPl++tVtOh5gp/3gHfRJzC1bX++0t3f51233wAitfGY725ZOPn3OIM/fe5EVsFpF6IjhL4sEIezKB8Fh4qQpcHSlyiGjvuJhFHklikd4llB/HfZCci8mncSo8ctGTydeFp2Uh7MPI93a44j+YMOGeX4JccdH3PpoyLFLBOspuK9YkzxVWiEB6LoL37D+0bWfypVF70j5S/ibFq9hrPF3G/uc/6nn/3KSulhrYr5qDMko+hmP9hyv0iafvcHZH2fMlLKS18e+VNDraofkvHNLh/Tqoj02j5d6XF2poqrQ3nQ/963Wx82iTiNew1OZyvCXPbUkH4i7wOKGvksGl4j7/e97AFJXwWuBO/HR7krbWRrtsF2Z2nHe+kOO7TwadxIqZuI+17wkEnUHbtv8NT9+VXawjfwNUf7fO5CfkSB2p9InBROzpSVHCH3nknMfH4da37ukADog2p69beeNV2CfJlXWxTMHEyLS4Zp9Pp5f52ZtVE/IWeovyGK4Ivft0uV85shAfjVZjmHqUIyOOR3gEeVX4i18H96yXamLqNfyqwksaphPLQl0Gplkz9+0o+7hOqfRr4Sa3keLEyPWNu/vgWetfsr51vRWPpy2CU7yWc3VHD7MvQjWvpWLf7IKIjnDMTXbWQWOxjJVN+2PciHV0Q+VqRUTDk4DTyt7EFCvfLDHukD1gJWeyS7rFs+Fpp5XKP5+GaxYJX58MdfeHO5Md8FJ2EN3vZod440FrL9MZTUn91Csq8SZgz6ORFlfb7BLTtdlt7RQtceraLVw0/aLD8/qn/xH/7ELbH77s3/+QEL//zTV+HQz19R2x6PMua5cVjiT8bA1s2G2JV4q+aHUBWIJ9OZ/MOz8WJ44ARmz5Z4QhNC+9ufv0QMyRlRy8cFH9OjwU54S5NOH04m5B/hxKz8ALxZm9cClvjBfFlfNe00FV6B/2Pe4HT54OmuB+FxKy57VNbWVOOLBue3rmLZipRujs8bGd48qPC0+DfsZkgCWvg6ixY+xZUDblG6P71ZpAFN5vtjOINdnxgLivs+kRZ/FA3GB5HAsppumuaihwWviWFXt3Bq8G6EyC1SFh2vdT7cLhzg8ZFFtpXPrvXPf2vl7EBi/CPWVPBYg2V948HbvtDPfzGAiyQ4zH+hIOkrl5aA3jOio+TsEPcC1dYnvx7YliIzH9Z+oK2LuM1oG0SVNbmvdQMvf2OQOI9PyW9VXw9wOAcDs9yNW43hOb1p4+V8xONcLmdVtitA97Pmsa0HEZ9X95v85//icZUmaMo3vgGv7bfC47XfhJNoRBp89PRJvP01RWPUFCKq9MJgyZIP+POdB9AFQko8jXOL2XfyQdO+3pNNPdNkRnpzQIs+pz/9lFmjOm4ckLq+Z5vxqSfUfx6xdl2ZW4LfdwtJ4nwxNby6JrRt7pY1voVnuw4s48kSd/Ptxu76sSHIDZM9yz1Yf/lV4x87YKnGecg/ueLAoldJ8AhxKFeRHUD4rfbEmuqqGwf3EOhPqVGIvZeCbn2FF8BKHvdYufsOZ0tzaVh7gfRvvfVR08gg9dKJBPYo8O93Hj0oJuuOwZL6kJPNzYRpa3yxclRa1G/s4wP9biEmG/l5trg8DCLa7RuRLP4NGt/CpV0XmFu0lTZ+rtwL0QMUNZT5ZFvw/iitqJZ83CvbhJCFPFBPAqTEORA7rNxE6pW0gD/9uMkvY0fHa6LCu983LFZPCR+z6lHAW7pKxJQ2d2u24r0D+QdOzOF3M5z0obD1+1n1MF/4UccGuUWDfJjoT9fcUFr4LxK+Aibktdrzkcg2wI7iO1ZF8uZDoIc1qN07ZAtedtPgFwB//DykGSC2VbsIvYLwx0i7zO07rJwSlnoCCyCo+D+/tBTTgR0f7qea7HvWIOMQj7Sxqyaf/LQUQTNcgYqiE3RjsHqeUWCHHjPWumeJV22ZrXIjOZ3k5zmk9lITdlOZESPYB1W/4ANC7WlDrHGI8lk0cwpH9bymSnnwkipq6w+MOHJJsuD96Hk0QpJZF/+pN8Sb5wcZ7TJBErY7qx9CsQc1Ggl5XO5X6+2+puYPb0no0MmiW00WwEcmYvFvEqvugYtIX9Y32dn7PaqL/lYAcQ6YeZfrvuO32/4DN8/e4pH0cjI9C71EWzIz5hGh5y2RPRMefvBieDtOuRied49/9Rbjs3P/8KhBZrdnJOpeFzSJ89OAt1wbxFulhqXAubRRNkgbZuyzbch53e/QS/NGcpKbfTIHq0MKZNh+mHX2UT525XTUL6/UWPxZn0+uGBhw2NRfdtTSoRvzyT6D4IgPdmdTnDT3yRsB3wMNK2U9VxOaMYa5SI902jhmN97c1RmZfJ8Qby9skXyJygjcq56ScKOs0fyVLPW/frMdoUkeVA2Ot7VKXE9Zh3NWXT8adfNsyS9zN99OBf7zJyn61tuQZqdu1Jxlc/oqyQ/duEpXGKXtfSJ/fhZbo50DC1+iYPdVN0php8JZqwRKP59t0v/VZ9Y2S/Gf/yDvsmKZLRw4xFesZc9Q0VP4OY8nce/+B43SDt/g1KsOy9CmtIYGpzOc0rNBfyekVvNn1wVQwUVa/C03l2r8VNFBOdyptHl51rRGdwNac0Wp0tZ2zn22E+FYr29sKzSWxeuDXoA5ey05GYBC1hhPTXPvqfTnx4V0lxWy/viIIvFIX1Zc/oUHdI++IxUP/QvJ58ZPIVrPExUh/XQscEIZ8sYR6K98CvzlBboJBT/v8bz4cfPrdBB0r8cqFZf3y61ghdH+eYxpu/hjLX5iQKmOML4NPLd4pGYZan6ahNWqiyseJlOjP8UCE1x8+m4spYcDRwXvmDXmpcVWz64B+kx1FsYHoZqJVn7Adrob1t1CrOaFb8DR4j3b3i5WLn3BOEL3LU1i3Xwxn/wWYUD7SGJeL27+/FH85+fQ1Te7d72yC1S0yvAXa0t9c1R2poqU9XkmODKPVXOxShN2v+ZC4rgYOj4fcg1MOkQk0G5SyLxgtHXsszvzHmVvjVL5ENHjTUMSzMwJxzj2G1RF2e4/+mxrBzu4T57AIlsY0FJPsNe3+ywSnB7H6h9eXbJqy6LAJcmYZCWGPClUQlAf5lPyymtQo+UI2Wv3Cqd+ZjL8+bvW7rbNuZTfH+j3eJgs2u7ScEpeSQ2Ln4oF+8vQEHFxhNxzFbZ1tlD19VVQ//xIqqvLnve/esqiz+m041Uyx2dfRn/6kTBvG4pLPQb96fctbZ7VZKhSBvfUnJjRdTz8/cW7KdOR2EUnWlzwVArRPXYJGat9uNQzHe252bYsmlPPqs06a//yJdn14pFPar3MEq5mTjZx26Cufm9V2HzVgWxZHFVDpHsmaJulxr7UE1rciyN6VNcLVbljh1T/VC0sfgfbRVWMpnjTNqBcT92fn2vxJA1T/aLYjMTT9Mn//Bj489OPkcATbrA3hrHTMqpIKz8U3eH/SDuXdVV5ZgtfEA0RkBRNTnKWIKBiTxQRFJFDAuTq98NcX/Pv7fZ0aghJ1RhvkkrUKX+8e/jwGtq2+0O5+/NTa/zPBcQ/9F3S3g74bz1sqe1f88cjQuD3XMKksYv//AJONKkxVv5yhpfSHP7id708IwbAngdMuFWv8H96pleCeT1jU/SL9Bhb5D9fY9j69rZv//w1e+82RJvNLh+U/hpDIHUOWfyTlP+E99j+rd9h+yYa/XI50bP893nR9nQ0Pb8zoP/PngKZ/997CvaOiAk8H3ouepoL6LjoT+qIgc7Yo4102IvmnWaFRGqq8VUB+IJjajSXup75745HjfUqqafXcz1+jasEBhV1fJBSlvxuxU6Gi0eqMDph0xcer1hXrNN6RVp21HxBlMQKGsW+kH1tb3PmpPsM0HQ9UR0G1+AXtomB+UZBNrKl1F3mtwUwXytCkd1U1ortOUDH6h0SJAyFv6ic9waGXZVq72Zhk9gWAeBC/hL+UZXJtNTeAo+XZWJsGIYx09iJkbDJGqrznFpvk+JGAJbghK8Gc/wJH+obDBKewm/Dn4zeeDYF3C7rOWlfexpDIng6KjD3CVkqvuo5IZOgXI9PFi7VR+vFd/YtoJRDg7zF37cebvZjPWfid6GguHI9n605U7JvXGHvc1X7+e2Ezq7V7z72t8uXLdeLaKJ8yiqq8tZQT7M1ZCCtk8BOY7kffMvVwfpcMbY/s2HQZv9WoSnCLdbtR+4vz6BQAZ3aE3bjwDaYSC8ZRIfDDbsnbUFzejcWEEx6oLpVvxnLYp6XN3xI6OFI9WTJbpYKp9n50pjn1H7wxd0Cdt3dsRkxiVGv3HfwjpeUkNtN8yf7Ocegz1WETQpSPd1fYyAfF/WJE+3u+dv3ri1RQnQaskjKjdmtjjfFs8I3NrYsrZfPs4vAptWOLPpQ1surGe/wUzEOtwmvGs/vUlbo+soOFG9PhsGUU7RAvG9ibFdKxCYFdQVYnxzjtb96MuA6VczC3VJD+jZoiaW7B/fcfWGLz1R/mSSNg2iwgQgfsWCs4tw3zDd+H+5PX5YQ82x40B7lO3ZfreSPBj44IP6+YsjnX48tT/QqlEiU+HB4PvRkEpAfAy12Nxo+cICmsGwE9P1OM95H5NwvF+UYgmN1ZVgtWlyzF11uYKjciwZG/umnyE/vSJK3DtXP0tIzUokAT3GbEi6Y62Tp9ouqpNFzT5ZpbyCeANMB4xpwyGcBmw6zCYBnacCed7wZQ5TLDZrjr4atn7DPt6crCOh3Vy3qv04iIqL7GJA5twYN9OvB3+qvJdwEj7om388CdX/wWAQuV4dE2Jt2vbD4eFe8Y53gQL+O/jwRRYVtHEtEEV6q0X1z8wab9ipQ7zlV/azw1xh+dD9RLTzjnn3EdIJU0/lwI1uPfvmJ3STTpplCub2steRTO4Mrz6nU8kS5H7QbhJCi4UAkazwbI43PHQiUO2HLcBdj5i/JAEVSXvFV2Dv+G0UgA76xPdaDQGe8+jAcJVpr0fsJNyf9URMreL6PL4rJK2JMPW0dEBXLxJYnvPzJGWwJWr3wqbeoH9aXi3tGUC0mtXSr9CfXUyL4bM5JOCusRot0GWSUYOeAT5v4gBaltyvwxtSjt9DhcqL/rEZR9pND76e+ZWRjfzjATV+HouTpBt86dweG6ykMzWXq2FyNQgcCx4vhrNEumbaHKZO9Kd9ivT9V/bjaB6UNz224qC3uZ0F/EnQ9Phh2DKnLlzTuW/kg2zWZrlabzAf5KMNLVGwcFLnLFg2xFgyxzLDHjAsb7yiLgHWZS42EM2thqzxugBXmhltPb+off8mHnZ9IOnWGLGJ/z4/uuf+iGq95iXhyV48c3hDZLaHBlvaXv+HsXBg1ileGJn+9q2KNt9T5trSfju6h3HWnX0ttQFD/6y/3m+r4L/6yNf/Iz8m84hPh38kcbz5n+N7vOo0UqTGYUKsTXPgdo2pDLYPpS15BJvMnbGRkzxZZv5Vwe5IN4diTMvqsZQ8dnucau3Pg52zvpSbQi/OkiestdYtU54YkgTahBIKcj4u8jVFgnS/U/dZjPj7fhxRo9QypSRkwFsWnDhnil6Pm62r2TW6iDgn1h4Zf+hZ8KuhBiS48YtSJzqnPboVi7dDHbP7l03mf7zP0HKoP1WThhGZ8ls7omcFCtTbNk1l7ax50p76lWtUZjInlTkDoYzXUu6ivmvw9X7vTdWwJD69fxNbXIQ+1BbsFG3LmkzsPm8feXuON0FPm7NJ/z3+w9CQv3X5XgsiLKra2+eJPu88kKY+pPNFkUF99H5lWAV9OvlDfjbV+TO/+BP1yaKmh1mNOafVqYMm+Ltmom9iYvj8yQYmrH+H/4n2wrXhUcMeMmqMYGjQyJgu9IvG1ti9I5tOV5xW/ThOq1eOJ0Yug6vDYC4ia5WUwllTfl7COL0IFfE3GZ0IDVFXWgvcJr/rid611WzZdRPVpXyMmRjkBOa86IhNXqwWk+o381x4hKqWeJfeQQx1fvPHhHp/rGQSuQeKvOmIvn8GYQShDqIwgwrfQKZJ5Q1kGT8QJ2NuKncFUYb6BY7UlDn5WmU+RLETwGqwfVt/91icsvt7larfYIYPCN5b+KMcwHciZTMZONCr3ijs4Z9EhXLTOMab3sYmAu1gbbEteZUyTdPLg5XYpNtUTThh5T6USvheFsDOL8ul6YZIEQRAQ2b6H+fSuggzF6H0jzM4yxnKlypTWO1h/esSn7fQFaW48nrqHxEvmiI0myFxFqKUdjFwQuiMAVJNJpoZafp/FwMPrENi48IQDGqxKDRXCOznOxKBCU9a1HHrfXpiIyPkl5DOpmXxTY0qEoZ+NzmxeMWh7Q6B60SCfbOwRYMy9kPDr/FiyW6iC7pc2fiJH8MfFT+5g/mDEtrVI+QLhbYHkM/f48EipT62flsm8ZnyxFtxKNpFcmODqxQ31HsOxn9TxFUH7uWMcREvgL/vlV8n1ZsL0mnNlzb6LICkqeXI4DGYjn2TeMWFqH2eqxYeELdZ0a1B4Og9k92ozn9rn9IyqbfchgnYwEsI0lMKnn0rsvUuDiRG7yihyG40Gvkt8tuo5uUzMB171b0+f+laGQet3oej97rUYHPQAgvfPw4cam4n41LcS6Pbtg4MqDv35dXQlJIaJ8/d7OSPVBsC9bC6EP3CjT8JpnmBWePdPjydbbN0CON0aik0l2Rik3MUl6ns1p8HjOuf0OHsceHx9CRXlMBnzqk/QVjFE8v7YB2NKPr0Mr3250FTJtXx2Uj2AoZ2f2FW3JVp+58yDU6ephH+HUS6kcd+hSDsrNOBSjy27+uPB9rWegrZOrF9UTm+A2bc9dg4vJxcedPNGfTVfsH9ejJ7/fd3ir7304CttPfXa94x8IVfC7fnnM+ZstQ7Em99gm77P/nipGw/Y/D1THNTrHq5PL++C/dLiVa+xsQoG/c9vEEE8f/NF/1lv2Ax1RrXFStlyitIBon3xxHs1Ovj0d7Ay4KlQYW9HwmQu7KiBegjuBF2223qqzoHzT/+4BmuN4TKG0U7qs3WPp17l/d5L1z1qaYudd+ckU9V00V8+wK4+03rSdxsZPFhyMv/OjNHc33W75jX98MHZvHK2+E4EWlsa1H1uTcbSXHqDxKwDtdILMMbpNQF9/gjUPp/7fnmilVletm9sngkxFpOXCmS9xDshlwcz2tycCsWyypEeLtUpZ5EZ3uW38kro3vL1fOmZKcMEhotXvcnY7/EuQa4DlZ6Wvq3baMgIZPIOESXLl2RRRscE6E1CiOxv0Pg6ajKizXuit4uq9ey+MyuIW/VL/WW7Y7OM0jsYUbbg/Lv2b1ShBb3SzXqf6fjKGS8EATAlO+CgceN87c8YydUo4jW+o2GNVyA9Pxtq57jNWVbfAD3d6vXv+anC3wu4zNGN5uv4mcLN3UGUi/b0NuynftJ3vxLax7SjkYoomv700hqviccMkbEFdjq82krAXhDQujcflxK0Mt6EAnsa/sTdSAh9/vawUzLT5x3iFCAH5hVrRr/zZ1LBBCYx8bpnd+/T9ftQNdcGkd+lgRbd82T4Cn1ChHDc54vRbP7TV9thYvmUmscYjLRMsfWy3smcj66FQimd8CG/XvsZW7cQrPjq42BzrnNWNM/7n/4j71XvsWs0SnA8z2cyDVeln23H5aAWXz7Z/elZq1ID5fbNTjh/1pzPDC5Z/t4PxrL1qEl+Oi7IuYVrFf3GS/gMPe5o0+ZCOJc07P/0F1KG64eaAfD19FBvDTwPvkx0/671k5niG/Aqp4XfNR8tw7QFWPUN9voTTgjx9wUyfdMPWR+pybSwTSSv+nONR09/+eDAAV40KJHNwjZm98gi4DcRo7b3g362s9IEweEpdpLkxaZT9JWhqDJE7XrjJsLvG7RoaNmTcI3U1ev8biB0a55qD7lC86o/5ZO0q8Lp5pTok72eIQjZUaWWs0w++YtPq36jzgZqtOx4IwLVGDZUO/oon57BTUDiNBZYrz6veoGxKCBtvRsOZuGVd/e65EDoBUbDY6ca4qqfkNZWBhG5zdjPqeKo0Nz2CU0iKfcXS5UmSCovDqXXKOd/+kN+HlwZY2/2+3lD0Q19RawT2Tn1yfReqgpGDktkWvXCcl/CCm7c5xXOwU1ls8llb/CmdY3Gu7nGe/qWrbLmn1D2k7hf/G2jQmVtf1hPwUCi8YxMeA7lB5+U8I6otN7vygdCQdd4ziZnwDKKtftE/Xf8YVNf1W90PX1OZJqwkyzxl1P//DrVrpplTN1brtCtjtg/fT9+q0cD3+xcrnq1Ysx4kjsYLBNIYt7mfoZTzcE8IkqUgVr99vk+nCG8FiF1b+AY/O/cp/DNNzts351PMhji7Q1I6q5ky8aXMWd6Uil3n0bYXjIn2a7zD7ndJidLPuOcImk5K7tJPFIjIx823V+fAKaH9w2RdhfYvO/r9Vzbpaf+wf2gIevEFOV8af7F32SZnNZBr8H80dM6P5klNtxu1SdEyM51/vk9pxj2KHmHu5WHjM1W79CZQx0NKOrRu9yNBND1SLCf92oy50HA//EmIv8ik4kGl08wTd5A3SEhPblKLAWlfDlkQ14RYsP3xAOvaV+q7+h/fAOl91OFTb5XcxKwp7VbyvhJLVPH/i/IhwaCqdCxvfrt4dhpi/J5blpsj89+5V3lHVpeKvHeCPl8HpzPGf3xN1fYFLnYeZs7bB62TW1F2frzJhQ9WNLHlzqrn6lvNAnQR9xj/GlMI1ke9Bfu4vTOY9sZD2ii8tuUv7myw/tNfGADvX55ZO4yjupuFvVs87qqcA0zh9oCDvou8p/d7tzzKs3ORzcXFtOLZbmiIrUNJahF83GpUEY/QSgtycrQK2WBZnu+h5wvNflor/ffPl6miVX/+6wX5f4DxOXha53vOlvqym7QGcVH7CpdimYfxBBugRuEsrCr6inzWYuM1h1xmDQhW+Ot+Y9P2pKn+zznzoO8xjsc9vM3oX/53K7bOz26j5ixrZkXYHktDoUvomhoAlmF7rNfz6RY13xYeRW4z3ag6u99RNMl9N5IJ6VPJnvKkz99j4TUL0LUup3Pps05RZa00Qk3vZx+1gxTAm7ebuifvp+z1yWERHmqhK9PSTIXJ86DrH90f/6x3u7u0QJ1rWThfJe8fBomeQJDrDKsS9v3Op4ePHoeOoP6K99c9VSKRImrSEdcrZ/vKIvhfT6v5RSSyqe997KUeINZuMDwM+j+JgcQntKBLGdpqRcBhQXsxuODqjdHRYsoiaWy+kEi/vnX1d8CzlOern45maP0l4FQl+5BEapr3wVpfoPswh/pcxd8ExJftApcNbyH6T4M/EHpzfM/fvKXb8bCzhpwwmv+n1+1NNsB9AscvJ9/k1+q3GMB8UGvGB/vlb8IyCpkLKghvc/CK1n++PApjvY4q+iCiJs7IXyDV4vX+J7MqaKqoPAWClP9qq7jW2xgHc/jfJe6ZL7RTIdbHTNs2p6MJnI4Bn/tCYWVL/U7X+HllT9S+y/eu9V3grzkjqvfmOul/SVveLa5Qb3fkcunr2zKsPu1Jr7RIOm3sNYJWucDvn/9bvVLmzO4Qdtiz/h4vvzHX/ealYbyIWzXPRHPEvjvtwi3tX1KfvOhuoGQugVWq2nTj8dqeivKoTZC6YQn9tkKmv43/rHt/e79Unq2hXZecsWmfi2TlR+kSClrBx+qQ4+mgjMapLibiHC746+fNAh5tPJKas3vA5tZp05o97NOFJ/SDSLTtxZAOSWblce/jLni0gnky9Uh46Xa5nTVm7DfXC0ioINfs4ztTPjjUVr7uBhscGLnH09a/QKaCbtJwOXBK1Si8YfGw/XRgUksjF1hw+WzGXCBvMa3kNW3Uz3wm5/zj0/jhjn5PFz9Oxz8ZaLmvfyiOfU/HdpZnbry9FffnjcoRSOZv1Qlj7CfzXEp4BVtX9Q0A1b/G1+7s3mkccZav831jYzYT7j98aw/vlpA0ZQPGpqa/p9+e2j0StUNzzMWfo8d2ryXBynNhTd+stsPMjPi+i8+JBMouwxAuD6wbtUmmtbvh3oI79gykc/mG410FLovHus7ioz5ddQkdKjkS7hln4L962/EV2K4W3nIkPmoRUZG71gvmtz4yz/o2F3c1Z/91aTndTgKjkYPVHDrHrlRqYzVzsOJUho98zAt4W/94sDesT+p3GNCB+6wD3krWnlecRxQcr7caOD4DaNS0clANGLRg4cmn28zOUYH4zVQzWrtlUemDlgnjsO4grdPk3sIMN+EfSj/jlwyWZUTwvY1ulTrsiGfq2BQQQnNBT/3UsgW5f4CuF0eiKqK1PiTeJ1a5flOXthYd6nOaHcoAeP7mUaZidF26S4eUP/ypdoa/+a9RyOEL4cYu0h81UMf74t/PDkUUtQvCvp08uqvCF31Fr87xRNgQQ9Dsv6dxcVDkkIehyFhT4pGHzYhrPoH+7tf4E91sg0BsPghVT7TnCk1d0bF8yb8i5/De+lK9KdnwvX/afM+nuWqqDjyOqSi38dYOqN4r9bUns8U0c3TM+Gqa9XKEySD3W8O/9/6l7sT+8nGiQPjcsmxfT77/fTBlzOEo6rheNNNOXOPwh2sItQpbpu8XvVgA+LNVAmSvqyefxzjwJpGjrrO7dCLYjkLsPJ6wtb1N6YKuwzes20T5ESuP/XMJeh7L3TqbX7GWucwS8FOAx8fB//Z06hiE0TuW8P7e/z7t/6j2LliEdaFax2MPz8eDzzVFfLqt+v7gOfDSgndngyfPG9jCPHguSHlE6/+45vQTSedWvQn5Yv9+FQKvXjPcBReqs9326xFWgoR+eOrhXQ6AcyGMxHg+4PBykU7//FUkly2Dls8Ef7xkFA50iqn+lGVQX52AdUmrzHmuHy1kIfGQpbyNdVr/Ndh5SnYEIY5YZ0n3tHgygr1qg/5e78p2h05uvI7NRfUsFyU16a7U0s823kDCt+gZDvsw5Vn+nOQv9+w7I0z9oty8KmHv9WffsDHu+Ql63oMh4747dJQ9p9o2p1uy9/8xA/MB4jxF7VUVr3/t35Rz5eT84bf8/fEBj/p/RTlyxuacHqHCviXnqE2DaCYtwG1KlWu+65Hg7z6EbK/VE5PJGvKQN/SjHpQy8a9eNipbHMbD3urX1+KtU7JMCAtZMrr4ZPurRC4jnG37jFw0PCZkjfqDWlLA9es6xGEMkDmR/TDs+p3iPayLkHs4p5a4fjJ/xvPr9sB46DeJ7M+PRckP9sABx/7ytb2N3DsTi7JPoOKhC59NrLACSK1TcGtl3J3qyDg7ZwG2/HTj3PhlHB6zYD/eMh8cp1U3kHnrBVYP4hddTUF17y+abCuj1D+olbK7ggUr+1j43dBA2QX4YiDA7dD5MCcAfGiRv/8usG6nhHYKqWK96dvkiy/M6nQyj9C2Sy+Bsm6t4dOr+FMc3Fdf7MfnxKcT63jUNURI80jTxXW3VyyAS3xp7HYD3CopAs+PuSKTSsvlx/lB9G9fJ39eZ8fbvBz7gm1drGQD9uDdEPhXs7pno0vf+X3DuT8p8P7doeNyXPI+c8vhbJ12zLWbPcCrPwOX6xFSugfbzd9y6easDnW5OeoAHYa+uRY9Y9cMM+Gg/7Wm22W3/IZXRYJEuwdiFhvfvnw5/dnO4qpauwu/qw2mYWoTcK/9U7GlFo4y8bmmGAjkpA/Gba0gEsthexWnkW8bI7/X3UK5O3/3lPAu9sTVdXX6C+Kui929DeV1L+djZoqaekguSjWfel+X7OIiSq6ZblHtY8Q5vTn4gxOVvOh+HTp/ZF9rzrKPt8rdjdaz6rQKG/KaSsJ+CD9UjTFDmngKCm/kE/afT+rJ7TAs+Z2RLz0DRrKbXpGnjAtdE/p25iFd2fB+XOwaTgYBiJ6l8ewJOEB78uhQV08nkpkBu8X2SVW7bMyxQDi5PNhMjwvxlxP0x2e+sGl7ng5+I1lNwtE312LNbClZPSOcoiOMgmI4HxpPWmL0cC+OBU4zUwN8Y5q3VHEm0cc7AQvGV73jANL3WOsGrTx2xi3C6S53Ycb2vKMqkTTFTbzFO/5M875Hedx8DnsHWqF350xFjvdBCU+H0NuMAwm/D7PAA7X74SN1/1aD1LhvNE83x/Edwu/ntVEVcFzJTX8BU+NCd98uMMxLM/0jLdOP6ZvJwZRbyys7tC+n+Tua0IpFlfsjEqHBnJq73CD5kpmq5rqd/ga13NucMY2HOx+m5l2BWzf7aiVHk1Ew4RvkeEyhTomH9e0fCgSCpyaUmNT8Tl9zsdFOb8rHzve72DMu+wQyhsnemB711g+y8tWB+S1KQ6m9lsvsup0oIaQ4dyK4lxgWh6haF8ADm5VUE9xfK+g23AvbPu4W38fWgj3ZhcOoqDWwmefqcA11RgKubE1fuNePsP31XXU6DpIhq+wLVB2Ky7YLdFsLBszIyBZS4WdqPii75K9BsVE0kItHE5obrUuRk9sjlhF6dvvfdpwwDXliENpq7AFkl8K8nZyqXPZu8ZUt2KBov0d8OE1J/5imUgFcnqb2N91r4RWleuB0G8u4VY+Z2xybLUDrbs/yVBPNB+bd/5G5vvrhG3/yhJCG1Qi8bVqTHfDG8v8ynhZvVc7at/jxZ/KVm5ht3sn2EWt0W9bYqVw+eV1OKmv0WCnbZ6C/Tk/ye8ksX6Rg+4MF4sTsSmdTgl51nMEj9/2EdZD2hqsXDVs87gfcHL9nvL58j5YKO7UBzUTbURMOm3eiMh3jC1LJT77PONwk7xOJ2xsqw6NojYt0LL8G/KHIEmY9rV4ZY0H2Hp0Qj9ttrsUHs2oEya4es36w62DQHRNqpbqFbHvsshg3rYc1fDHzJfCLTLYxEON9SiT6tHS1DtawlTDlrNwPU39XgVpgYwso5j3xMlyAl1tKaFsP75sHgqFQCFaNtYcrjaYe7ci+Tc8NBw/owbR3hgI7C5CjfdxpBmiJ7wcxbbUkJ7FT5VM7WhXSHDLnnrN/KmpoJ8l6D7VHfs4sfwl39RvoE27p4+Jn+p1vE+whZ9FA+GhG2OyETNAXpdSIwrrnoWr5rGjIsVhIJ/8GeAmAOV3FQ0+n84n+aZuFP4oAg2j5JFMmfLzEA63ajhfbm09h+ibgvQ7hNQiFanZxeEt+FanhoZDuLA5fVgmjIxP8Yl/Ffkg7jYEQNsE4VZeXv30O0Y3+PXTHnsqDlH/qfYc0O9FowcWVWyRdloD41D+sArV1/gI676/TrscsPmzW0Su+zBF6jS41Nj7liHcnq9QaTbyLoQD0voZZ5yOsFKcKM6DT704WT6gQkYFtaMW2GRX4gTwfA2EHb6VMZuym8FDrxm1L8IWsbtaFXAsY5u6vwr80WQ4QK6i5/TQN2M9D3eNU1yVb8L6+V1PAG7TFLbq84hNRJRkaVbmcLKPL3rYiu9kPmRzAEnZXql6+34Zm/auDu1HtMhUqJMxo3t2h42fSVi1nTD/DYUyIM8uXtg8aZeeOWDwchR9Oep09Ng3W26I0WYU3+E87Xo2tlungqO0+VF93qeIbdIBQLKfBT2c66aeqG6+IfCimB77vkXTxdNl9Bt9JazPV/BHx2MBlJFD/8ZbPivLIMubrYvJi495v4uuwKPN+SVTZ/P99Yu0r89gXguL2k77q9ndizLUHJMPxduWq0kW8hFctk1A3R9nsnnxvAxOgfcMuff70U+ZeufALnQem7q7RQs9SA4UQ6dhR99c0JR8lGBXY++E99QZctLwlIdZdwJ8RWzp2W3XZxCZk0o1as7GsK37GIjSdNQs+tofG6KVilQwh+7ls4RomWIOBc6LUucSZcZM96IDbpOPBMGxYuPi6ZnM/X4ONYbnxZ+Cy3KD9Bun2G+VLGFZK9wVjnsl1LOEyK+4W5kiy+Uz+kwuWsKGHTdAXUoW9mi96Qcu0FTYnDwdh6asIeGv/+6lbVPnTVt/8qftAt903lM1OM/JBFIbo3kff6lN6rZvT4YhwXYu9zhf4zWrKs2Dw13DWB9FVDPTv1fAPbG+xnMtGe2ae4O0cBm2rUA05px7L5DBWrvx6jn+XH+9Eoa8aMPe2tf5fIudAaTCCmjQ39412xx3IdTcvQlFyM71/HCeDSihr4XS8B4ScnheStC1ycMPj1TJYiI1BD/vFGx+Hw+D7ZerCYfPsl7PsX2gaZCOE3QgWGSjjXr/sSwK6N11dwJvLk5mut840O8GiZSFvzEGbTHeMPONRA9j7uSsv/IpnLNLRbbWvJ6D3wkD8ER9E+lNHYP9rKSFUfz1OBBxy4hTaZ1S35ILDiZ27qcETAGt+oY0NN0mw7w5vSH4NTVpqGvlA/GXavduQ4VaH2T0c79c3zDUTxxKUvjqJ+kSZpDJjzc+OpzhM78+ROg3PLVwUtIRLe9WO0MWJiQURS/pSQF8B72tOFhLNbXmd957AHtBKv3rf+YPLIAxZmW4sa00n0XJm9D6fmn0CN1kOnfOXRmuhott/7Zj1eMuR6Dx0ofahIj1m26iBcRNIYY8JZ7PniqN5NthY1LLvZ4TUmvBBMcysql32o01q+Zzs1ucxaYHJ558Ruc2lj+El7CTyQajUpRZwAfKhMP9PmLbs9gCvLg5wuHT92vRvYcRPK8Vw4f13o0/fSO96haHzxOnM8ZCNimFc1/oHvNhv1z12xvF+21I8evCJbNw4x2o+CHCWSJSRu7bbYteqNtStfwe17j/tMBor3E4k7hL5o0geaiQHhuMFdtk06qnFdtMehomLyFfUv5eoevCG6Rc4+OU4k8DBZ3u1CvB97eX995C/oYPaFIZc94l3juExD0TurcPdT+pPlblZK2Jah40Mxc4Vg/AaV2FcR7s+23N3iGMsfWmbj4SY84Xw0TiYbSxF/dpssTda4LOfLRYdZSf8TuZHoGApx9q+Ofi33iR1/yLi/FeJWPOcwJsC2P+y9f9VC2fDMybyFFXYZAwf0ABGG0eh0pV79jPMiAAlVM+qx7+1NNpvfuGReYG2+/dw5gXpW1Ruoll6mZpYyyuL6vI+JJzKEzcyyeXKvMA7bgP1gUZJwzLa74huy02t/WbzRK5C2C4s0IdKXzV47UPzN2q17E27Xo0zbDe7TE+Y7KMw1Czz89xIH6IPMUBosbC90YDV/6AqNtNfi8i+RBAp7z0kG3HHVto1MugOQOlGO1erOeJ4MF9/H2pZbzzfvqM+gC9eLzSfaLbaD7kbw5ym+bYr51HTaq0baFTap3abO5zJmx6C33OQhwWZ0dcmXIwyfvtzw15LSh9aohsgRu8r/R22o095bisgOckFNQS3Ws9gVRG0BnLgL2XLRtjtFka9Oev5LhPc5a8SQbJeYfDPn39fHqhUge5PebYruygn4Iv5uE3ugrVx2HoJ3zyC5RPk0CohT75Yto/DopYlqgeZVk/3eycQ8bi3ana3Ad/2SSNA+kto7TYHCd/0gs6wBaBR83MfLFVf56hjMQ+VBz7ZYwdhyKwXCHDrn0fGbmQWVAWtKOhFOrbnElRZEGZJB7Zxvnks+2zHQDyYT2Xf6hr2rj6G6WbjUDEqL2jeVHvBcy66ITZTnVydjzuB5CSzqZh9l7vEssZB6dRxuQlx4963kcPGX12EYe1Ggdo2X+HM8iDusH2s/SNRaUKQI2d06qf7mx2LncJjqldEKInas5fH32DPruYC+Xi9OuHNNjxINh2gPdlxPnD7BoNrPqAoDncJwPaezo6b34BxZp0rMW1/WBW7g8b17uVL07ltqgc9YTcq+DFGOFcDsipMckOsbhn5UOR4aG/GJFVoamXZ72LILf1J7YvwgktoZU6oIjBHZsa17C1vwiqz4X6T09SqLdv4LS2IuB3nEFGa3Yg8JQwvLmPuV/+8t2aH7Hx/BZsupaXM4wC0NUPXw3eJ7oKioiysJrkD2On/nODT5AFdPXv/szbSQGvh1ZiLy2xMXwFpQB0Mm/UX/x1D1u03GDNrvQQxrt+pvhj/vlJ6uqh7y/cV9ch4q0jtp3WrWdSOxz0NF7CMr+G/TCYrAK/7t/U/BG1XpqZt/7544Njaz5/U0aAZiPtaPK673pWh2METeG7RNp83f77Ot4DtMYDrF0+l36IQFWh7N78On811m7rOobsLT1oWLwZmtJrUsGehwM+6HGTk99wzYAzJwUbTNr4pDtrkxJ39EqQmouItvc6RvX5ruLgibh8zfceojOzcZgvdU7EXAZhc67lf/p41PSLDOF+brCVHt+M8YN3263+NZwNRA2iHYIWZJZ2ZG60R36fepD/xjdhmjIw+lRYofxiHai9v03JssZ3pdxSIZT0jYjY47GzwCKkpvjE6Yi/mW0IfHk3sdWj0fj7PChUmvFzMb/5ZOyHFNIlP5OpPTZs+qp9AZ35bPG+3GNjq//uBbq05EsUoqs+U9LSU9b3TQ+v5m2MmYkreZHMLBQ/Jc/mzvnFaApwQNXA15PZMvgA3Afx8GHSf4zdRncA/TpN9OLfrmjRBZ778y9Ebk53tNDHvkHVkzex+SNlPwgX7Q37frehhr3Yyfr/BIqzkYTiQQiSxcq9Fla/EkIb+PVWejFH+VLsUYONkb/cB5ugNd6GnSVMPtF5LUCvcFnXILOv8ccbQO5TA3sglv14npoFGmac6B9PooGBCRjbWMQe0vdsuepxo9wOkYPN7LZBo5eXDgyaXofbeD2HVrN3AEsSHOhjI45oWtuvmNe7RdcrCPItWKoA5JyohOu2JZovr2MKbnG1cMv8sSbDQ51gQxsb++mQ+WxMjx36nPkY3/fPT71Yud7BTc3e4aQ872jiAldFp76YQuV6Eo1hWZi01j150NvgXfqt9EIeEvoop2khxAZ/s3P48/P//MwY6r8GVr5AndegoLH+CTF8XlGGnZ3aJjOuavgbr+F6cjAZ3K+hg3IqhlWf5/Xwp0/mDd2Fn5WvzDkv8HCJBg2HAW2MxcnxXV7HSygn8eAv963Soq7BWTjht5csSIg79KcvHCnU6jHzXQJK+SXhVPhPn7z5XoXjuVTovn35fiXttLey8iT6j6fxVtrJ950QrXwmNlh+/fBo1Y9ke/z9cjqMDx2dBnfAAX5ifylkR9795V9VHcCg2jcU0IXEL2p6n5lNPvF0wKFnkm2QWzV/WY+h4LKZ8eGevfLJM48DXCKiYe3O5H5W6OyAF39qqt4WgY3X3jShkHcFDbXBqdn2JE/yPlq4cJZt0pNaMxfYjNs34bb3U894IjgAjAD1jwlm000ZOfhKXEpNLVANYiInUOTft8R/fmw+skhG9/NJobZxa2r2ktY6Od8fwsG9EpJfQB0BDtwTUW+byUlz3VtnFIxXGa/+FM0aTClwdRbTwh4WY/GkwgI/nLP/+MofXwvt0sXGYZmNe/j6ePCtLg1Wj9eP/6dX14JMGbWsJWUrz+XgjzcarNKMGZ/1GLrqpmFP0Wk9r/4UXUj0ogeBvxnD2EvWv3zCDmqXsMI7hX98A/viVUFTWOwyeSOrB7zPfwvrbFKn/3iLM1CUz17rCqgOBuHf/GWpX6voJ4Q+/Rd///RtINwdfGWB3QvtPhVA8PB3PcPU+7ORBAJ8X223+nu3l+PxUcJ8b47YvgqbejzL9wGO6b4g0vP1MVj4WGttP87bcGcae0b2/LoHG1VlOMlW2jPlksvwp1/VdDnkM7pHhQRMVXG0xlNmO583Esi6JsruPZo3xlWGYUp56m0PfT4hW1mQ0a11rz7R1FPTT8v/AwAA//+kncm2srC2hR+IhtRZNKkEBCQo6MYeKKJYUCZAnv4O/O/pnd7pO9RA1ppzfoHkHz/12LItpk7jr2jlFfjvr3cYq7MkhLHb+pF6tK/96m8Ant3Rp/szOdXzc4dkmIIqxtgYzXqsxMRX1UZ9RbLwrYLplz/RfqI/HmytPPIID0O+E3a/YsQ/lzFX3lBc8P61CZPFK9wryKxPcfR63eo5nR4Aw152adFocsGya7qgSYt1bPaDiYaXlecKos87tbhprDsk5h08j1xFXZMRNv/yV7FNgBreU01Ge0pKUPKjGckrD1/enjUBrseQBprV1p2s7F7olydMUrJk/gZxBF0ZzvTnF4a7Idqw1xwL+8unZcx4JTbS822OjeZYMfKQLtxP3/FuySvU//ICgtzG+GHoCV8+UINqsNxo8zV2bA6pLoLM2hRv0asp6Jq/EYLMxnnhxsUYoe8ZqmBz//E5NrhJd/7xVap/owW1cv+wNZSFAi4+gYvm23FfwVIthEgB9tE/Przyi+h5jx0m4LMfo/iLmpWnVz2JYt9B3eXE6M6OeCSgh8Sh4vr+RPJA0Tr+LFTXfI3NmDcKBrX2gtF+WtizzYCJWag/gX2zlvrVKSkWffRDtPpZXG4cI/jHn/4ckAjzLw1iTl/KYP79HX75pJ9wcKpgnb/0uH7/yrfP0DTxm/54FP3zwAbHf6TYXfnJP75z2lGdTG8hLeaFqQOyw8+DJPeDjvi7J8eIJ+Yr0v6qa8GWt5WBkIc56SroA/bngQPS5ipFHHffFTMeLjJaeQ7pbmRG00+vPl85iQbP+QZ0cmFC79OW0lDBx35+q32oDlm6x+blUxRLEIjibz2ESCNMaD7t5QZsrOuE3xt2wsYKpXDIuCvG2jFB/Gvvpaooi4CDRR8C1v/pHy14cg3GXzb1s2poLzhUG4saN2wl0+Hql1B5vkexpvQ18yAQYe4kQrffxAvELIIY/Xjh3r7drWHVZ8Bn4Usj91EHsz0lV/D8qKO75HAM6O/+cdu7gsPDXUYLVJau8p26o8477RGLqvIMK68jjJv2NSvdtoTHJdxRa/99BsKliVMNps+DyJfBr9ln53/QL7+6juFZ83D9T5748R1pGE+mtq7f/OPhE7tMT3jyJCYcuwZowYqa/eot4nods/mtlRy6DDiNZlE5JWy7HGxtrS/y7Ld9MCn+i0Bq5ruVP6wHM7bfGOqX+aCrPta/PKXS2PgjqntzGR9+sagevx+OGtauKeYs2A2w3i8c3Dw+YOfTbQEoyIkab/vbEz5lHNi1HEZk4zys77q+CVOVXyOBD6qCpHz6VN46fuGA/4414fvg8/N7BEnCp2ffzyX69Rsc9u+kHud6P/34HfWEhVrzKR4yaH3zhPfXeip+4wd1MDdE1Vq3mC2n91DXdNLqBz79N6gOT1j7G8a/fjHg5ojUKcTUkqdXMGnPrIF+kBLsMsiL2U9HAHB4n2gZuRcsSqCD9LuJsSlty2Iyy++A7q9WoCtvCeh6feHSVxkR1vk04vsUwoa/JvRqdR3rV/+svPX9C+v8IbeYffJLiO1FJ1zsRcnivYQc2CuOIlANpZi3f5nz82O0DLZ5MimuzEHvxiG9JPKOsezSmuq+Uoqf366n9pBl6uonIpYJUb/OvxTtGiGkUXfJrNpXriqs6884Cc5lPffL4aVRHj1x+GJWMYdN1CD4CH/YyWXHWjZuWKr2/nCLuI1jWFR2nh4Mn3dH9Z1asgHk6gh/vefQVNtUa+RtXrCux+G1Pqz5mbS89n5oKdm0BuvJhzstqlt8TzicQo7Ne2wd4TaVIRFvFodYN8aR9uvHvzw3n+JXjux9ciNCJQloflRWhTxqC9h3jY3VCOMlAqMPioh19zGZxe9N/Lc+Wi7d25q9tPUh238WIs6Ty+bzyPTfeh4NtEjuf7wZ/fWSSVhmuYhHh56gn98Pt/dt/8i9fIKnV+URCwJcT8gVJjQe54rufAsn0xFXC1xPrYG9MXgFfRPvPggjuhDRugw9VZjzv519oIr//ZmCcMCEKPwrKRZL9SJkh+ve9z6q6sE7mjqE/D2ju3v3Vy/XJoqU7XOpI+4658m8LeNJo1fCUS/RWjaqbPnAl9I3DmN6S2hVL6UmDac7tlorQnM07gm0MRtJDwe3kMRDl8P2lPrYz+NTz6zzfgKBOx+p/vAaa9nt5xywPUTU9VRSTCKvHGHguwO55KbJiIQ7B3lSmUWL+H7342k+exA69UD1ywkSZh+nQdPTRSPCSLb9POAxR5i+NpESf5/FJERNCeaBUyjuv0YtWLHLoVjVbHzwg7hn5d48w1zgMhJ7WUO1KHCmuv8kOBKfN61gD1txfuONKHd7rhnwsGhzffOw072PgbjfVr7G/7Udxc/QsKYnqDLI95uKfS+wLF4RcArTmCzY0RXMlntg6oBYesd7mW8LGsR4QoaRbyPJfHRoDJ9tCFKEHIqb3d0aThz3RO4jsbB3Po9JF550Hoqrt8G7/XsbzDq/rSD9k+uICcKpnoUT0uFkbxWsK7aOWK12HygHrqX7xjTr5e98PIJ5AIWmQdahBQ5CCuUALT38feaA2lJ4Bt7fH+h2mJ6MKZkiwhcJOZEifYuWqQo/8PfiTewmjVrPn3lcVMBlgs1b7wciPpWqWuJnjKNx86kZu7BO3S3iDWMgcz1rWNPB1JtTJKASW5LUf1+QcOkJm8WX9kxV5BxaOdxSo5tR0evvLAcfBV8iP1lgMZQIHYyV9MX7+/tVU02NrtC8Pn90K88omEupntTFggLb2T1HMzl0L/Sbn1gZ+GRSgkeJJGWWCbf+v8kz2zO4F+sSLQoEaOEHEkNWiA12dsarnswvt8CjGy+R9uc5bClct4NEpjy1rVgMpvEiE+Q/3jnexQGwBoJ1R/+qt9cXshw2tQAUQOu/c9eg21PZUVP4PtHo1LUJMMcBmfVpCiaFCo76Fj4v6u9KwpZKZy+AqzoQRel8JC2yYIJlTRO+vlPMmEuQDfEpMSOhRQpj3j3Pob73PfauNEbsVbQhMj/pH929t3LSvw/5BEX7zaLPA1XBsrsdnc1sDwF2ZvoKmGTuBvVxyQUaWfuwb/ZVJWuE+TPeDVeuZ23n2dBw3iviizBizG0bEVJSiDQ47zZFKzjHM0TVeaJY+OsLIrSHCK7H9EStE/bRLJyYDm/lSqnnPHcF08s/HazzRcYmd+DRoA6VqQG+JtjQvteaJVUvwuAM70g6nghjcq3HQM51i81TfSpe0UGPNJP76Hg3YT+RFlnTAX+e26gdZNuaU/R6wfk7fonwaqJg+fUPA2IRG5eurynwfAjbr3ak9lnasrm6QaOu9Uq3Kd8FcxmWE8DRvUbsMTR1uy3jRVOGzylShNMDLa5kRGD8KRnVH7c5mD1Bl5G952N6a/V3MmFnXuBykndEXut1iqGO4QGWFql3w7bE/vAmEDxfOt1xmlgvvJc38NCmBF+Pu20/Pu39E7bfzRFbwf1hUeyKT+A/4iWarWW0+uDP8NVuVN31/l8YvQ0WgZ0tz2RuqpDNmfx+IZMWB7JJeo8tdLPl4Ns9xUiNhZM19Zb+0VSJy8knHRlq33/VB1JlyGlWlk9rKZIkhvi8ZhBJVdlyu20mKL1vEP2u50CssgFuD4ymeTQEi+rGIpJMdiTa2EkJCZW0BOfCdjRktpJM+JyXqJWjLZm4Qag7ob2EUMnoiQM34aw5MJ6dZo1njWRDzbPxuEU2kNDzaQSCy6bcs0LlnsunSDE8N+G5J23gfVcf1AMTs1kUlRfsg+yGL0rXIdbflQYWYTrSTGiHYu1PE1rKk4LNhzkV8/u7O4JNG5cml1eCmi268EAkE6hD+7Ye399djMpncCFTw0sFScv6CfVx+ETsO5ns3W09GXTFL6jdjm4w1eY+giMfC3Tboguav8chh+w+MCJsOQ8xTXWu6lMzazI+A0imFyc74AZfnXq3Mann99eIoRt2c/TcmFay4DkIUXM9j2v/Un96EMHI5EeEAqdF007OeTAnKuLA6HcF+bz2OUS3RMChTbbBovavEi2PnMfupyz+/T4camJQ96MayRSQMEdSHb9pgIsjY5UXedAgt6OWLC1oeNtmBonXJYTNVVjPypcAANnHROLytGZL+sjBVySLyNoJ1eP5IZTwbPotdosJJ5N63gNYnnan3ltoit/nVc+YzvSw3V4stvnGg7b2W8J/+h1bfnpmvY4W3npmXTBTwL66w4NB/+z3u6Duk5bwJ/ofwu5NZAnc46jCX+0O0TQEWs9kiYVoDHYvbOXPcz3tq0ZGJ6lzsM/82ZrT+O8DFT2l2DOuB8Sqermi5pqOePe566sfwByCzYPHnhXUwbLZDTasfgIb+hQHUz6UvLKcjhuqc8OpXtg3NSFkHk8Dl9Z9V8VpjMpYFHBonh71kk33K3zu/oxDQwFr9t5VhP5GFSJ1CUkyNUOc/e4X6bSzXkzy5jTBZVOeCfCsQ5NU3kN03DhbIvHGnExVf9IBWv2B8QH+aqKVHgc36fgl6ptO9RgYzwYWiyuos4wOEn56TF9cg50qJIxeg72PYHlRbG/bS03X/gEbJ+GwLnzKYIIs8MHzpZiwcBmtyW8WD7a76ESdJq3rESm2CJLUWRT/mTSYxeC17sXGL9ST1Jwt9uZ41RTmtni71T9BVzwRh1Y9J7N1s605a20VytYusf08V6h7mtOiSaiK8N9zt7Dpho8NSIWOqLdXaD8u9bmCdIgNquP3UnfeISphf0AztaVbXC82VSbtECYN3mXJoaeHd6WjwTN21EIKZlPl7jJYdPSg1jfVkp7vLxU8k/JMo+ucF8O9miptOi93omzI2xrvWZejRo+U6EICipixuX3Q25pGMmC3Keh2EFRgWZFjB3+vlvSrp9PrG0ZwCEz2z98N2hhgx5CW/mOa9IWC70Sj1pmuweTogwfD4/tHJsWu0Oxd0he01inFWLPUmoGdcmC9YgtnJr31zSAvDrTijVLbW9+uNYLHEW4juZCmV8xa7G9zClff6bGtGzbjlSrNtYbzX9RNL23xvPNfGah9OxGxP+t119/ms7bqCdmEbYDErN9H4OpsouFF4Bl5iKOD4ugE2FW3fc/8vIzgUFz/sH09Or3ILD1Ha/+ItGv97ef61Ofr3oAV3V1s3RJrlpmgNMSPNs/wEQzdsT1C4XAxNuJXGkzONS6hPuQmDUn+LaZCfpZon0KP/5T0Zk3awDlwWow3mVf9H9w5yNDgkDfFfuwl/G/+28WxjTRN1ZG44Wdba/34gn10fCNC3t4Et9N1ing6P5Il67drPz4KdL9V1XrGt1FHz1Zr8V51hYAZxY6D9lhZOAq1c/FuvRMHotjeSBvVLhsfNH/CUEJE0NbE/Zz+ZYA2AuiR3vB/BavV5wcVt3tNxHU+TK/mrMNX51oa3pqqXvbch8CrsKZVD/+KWbGSFET/6tLQNyY2KqQ6a6ZdVdS1dxtGCP8oNXK7Evobz3S/bHzIHlYWyZes6wd/vxfVX7240tBYQ6VqA0zFJqL7y8MvFnlbNCjnhg8Osr3C2NtQbaQLx5gaB2mDmC/6FbROHtF9ZOKiV3cXH9k8L5FWkDZW+0Z8BLEwnfAZbnH/2W8rDyzSPrDevrdsCHbTBNd5eyTc91Nbo4Z8E+wdbIm0yaSi/emDK0ce3fZdH8x83Eyq+w4ijIM6tej+aIPyfuwdet1ZUTC//5oPnBbrTZ2r0PTsb9xWaNkbJ3riqrCYK6UBKDffOZr/UG6Rwf07wmH2c8LhrismoS4yeF3GENv0VCB2eDemuj8oc1TPgdUL6RCosPAGELU+jwHTTgsPQsvx2LE+NfrXb9PL3qXObuMWiwdFCVpim6t+0eKXf9Gg0SBaJPlQjPXbdkDphA12LqxPmBySUM2szwaHKCQB2x9DDiIsXbEuHISAGpSXQRTOylrvOptxFKbQAK/TaHtwA9453R3kRWOBMeFcNu0n46WBWKp4b6Um4oWousLundk4mrLOmn56bJbOSI2n2ybTY/rG6rH8LL+8VPfrfISTwdlUp61uLctJ9OF7Sl2Ki78sWD4bhUD0ChFBx+ViLZkU8+irBVw0PbwmGL4bx4eLUfXYUS/nYFmc0xVJO/KHg8v3Gaz6+QJVgnzNj+t7xHNhQs9dEY70Su7nItQHxOVOQ1Q3T5OFq5NI2yhiQLjJMiyJxFRHcfQHUee4Xr/67Q4WXXlQq0jeAZut4ImcfjtiH+8ri2jmtYOzf4hodMn5oLX+dmeocv9NxJ3x6hd8OssQ760sooY/IfIQ3za8zXKHrW7RLdFouvOPD0TNnNYJu11rHdRs7mlYRXIy1cvrCvXL8IlsUq1f818K5Xz2qK3yIhqmPJrQO9tcybw5j2i57UIR+fbOwGt998vg3mNUlfpEAO5qMJ3zpwzL3jpFyySmxcTC+gh2XSXYb+Y9Gsb2kMHyyHi80zYJmnDxGrSfXliBVfQfO92WUH2OOY6c14KmBs0OVP19FyliYvf8rx+uevevXkb+XQzoiR0p0lp9m8xu6p/hsWwsbPHPHZvS15xqjwCuUZXT15rP3wtc/x429eX3jNq/ssq1x/kPESD5N5n/WJJqsQUlDU9Vj1hqPEvIl9dCIxO3iAW+8BTFyvOprtgVW26n+ArCx27x7Vq7/XQX+itwm6kjo8y3yaQOjQn9Zr7j6GjtmTAKYgTc+mTCHL/4gJyrimg29nmy3EGuG0VwU9TxRUGah31hs9Y/zkjZBhr13W1QUCHdXNHn7s1E+o9e2Ory+dY03GeSRcSLXKFU35REjDP/x58GlLuDTsQH0oNlNqwI5WNuEuG4njUZ/Bkeuufq6ednrHEUxBCkP3/Cu9tlZ/Em72ew8gH689f0x09WP0l//mWyPC1HlfTiqFvLvzw3DmqhIiBiL9/Q8tPXSH5dqBvberF88LHURqY+sHuzimLWX4MIX0nDeNfxu35hIhDQ7599JEp/GZpaI8hUb6oT6tylbS+pypRpnBXUNHgkh0LE1/gIHvvsqcOFD0Quh9KGu9Ie8eNO3mhsvRtAyHwe27e4TYb0tgE1L3GCrd9ZX/ePv4C947YRxbIWMLO6hiClW5EICTkmTEilEq35nsgbO0RCEXoE3lfzTLcHo0x4fdmGEF4+H7ryvPpjhJwJx429JZ9T+UyGwJQydDGefSQa0rFeZiMIf36TSBHX9IusYA6Vm/eMcX0P0T8+51+zjp5XHjH+sSIFLRpqfHa0zhoW92CCHkR05XePfuVRPDrR/Ip11GXFCwLp+etHNFSlt8XuX/yE89a5Y+O9c+oFX+NYy5TEwLgkZTIP/WHQLNI/ohf3NftlHuIILGuZfnrJmk/pftBQ2Ou+jqdHTw7My9DKozCeTTNZ8ttjgG5XtTTnY4+90LwclUJVgMw3Y2bjdlRKAK+OqCW9PmzeHvceupbXHT5E1aVnV/HogaQwmTyYtKDlMLim+uXkFLuzJqJh9ZNqxt0m7A1RgAbxEnLo882LSLuJrBiaIc5BVWKObtk5T8hE3zGk7zMQbj4PbOWrC7BhkakhoLGYDy/+qj3A0LCvyLeesGPrIM0XM6o/i4SNtbLRf3wwEnYnHMwXIXui1Y/SWLvs/j9/mlKHsHeIT2ix7deEytYp12yxWIzEX/PnF0hF5Lmftr76WvfBSwlaxE89d1tPBV3xCsJ8svTzgx6fcNxlFo0df7GGot0taOXTEV+ndU3Us/KEO1/WeN8fkvVp0faqyl/6otZBftVzUbQ5rLxozR8qI4cBmwBv/4x12lbB8piPPJyj4EIQtXI0/vKiOzjJyreGfpIL00PdKLvU5+OGTZ+uiFB2J4ya1/H7rz6RiDsR7/88Bwkx13/QygfwzilYQIutqoI/0ggHgbNDyJpVG8zSHrG9eW8TWuP1bNP37RmRS85bY2NZBDbOgSO1aVf16L2rUEu48wnvVz/L/x8AAAD//6SdydayPLOGD4iBCEiKIZ0NBAgKKs7AB2lskCYBcvT/wvcb7tk+AVkmqbuqrkqqXraZakt8QJyDeOkGMSxmAEeeCZHO1BqTe7FTTbsqiCNFz27E5ipFf3posPPRELKv3NcHWPSbykZ9sJj2yipkaJ+UHebTG0/ne+0tTVo68oe2Mm/cZnbV1xCrhDTq0E2r4+yhRZ/ps9+19dCui8NPn4lTGxqiHDOKSvp6BtPhvoomvM4B8qzZsuDd6Bll52YH66QNiavGFpahcEIIJ8Ulbm6V0bdwnB72u/QYwMKDuK/dAKQpp8xJzQrNTw0q5FzIORgExeo4id0DrGuLMV3Wd9mwPW3dfzz4HqZixK3LdoSXeXdYSqov7gP1bW/+RLJMeLkfa6aajxmFk+oGT//+ioY+m0ygun5hp9IMo1/+hpb6BmW2R/H0jcsnWEOssV0Qh1l3s7QerY8MB4rp69E4fI+ptugz8R4bZg34iGPU1rZMFv6EmHZWRTDgJFG+7C8L7W8OEz0lVJT/wm4e8a0FO3zcCDlHGqc//veLD25r+WGNjnKSgHquy9xhd+FzpPUK3E5rQox662F+ym5PZDfMZL98sa+G1IM7idJA8iyDrx9Jm6CfPh6CQKn7eZRUiCJjZs5zZJn89A4VSDTjVKAxqcV6f70jFDyGXz5kdVUuhOC3OA36hVf8eIM6bPYhs4wms4YLNWxQ0iMmx1uL65lj1sPzLBsB92bf6r1aA+g3a52Qv2yZNSDexH882LgiFU+mq1EQLt4fi76JzIejeD5A8oE/QuTmtvA9HMCSLzBHbfxu9AjWfzyM7N6hg6XFnjeCIr8Wf+Zk4i8+Q3/NndiaFFvsXY2tttbTD/G6pP3HM9BUPw5s359NLL43XEWT0smBoC2PnrN0kGB1uyjBRaAPzN7zLUY/Ho4XvRqi96YFdkSUorBsu1/9AoQs89hu56F6PvZEh0LZLCHYVUHd6pNQ6GKVkn1/rvDU5KOpFUJhkYg672zu52eoLvyOXeqg4wxuREWv50lni33xud9fww05uR+23yoT5nXnqEApPwVqMKn17MxbHfQovy328M4mY1vf0bFRx2UWMba+7VZXNP64LH38iNz9+Llabo0rOVyMZ7bMJs4hvyFGUW2aNUesFH7+iS4OCok/XrfoMXEXf8aZfxSgTOwjlTdjVY/8qFWwrB/tmJVy/uNxktT9EW/b7/n81MQC+tejYtbyf6dc7kbUvBRE7PNB7L6V7RewxF9kt9Nc/OyV2daUz/Ak7uoTIG5jOUbaM33/V39Eo0Shz4WA+fsv5nPd5y3Usm1T2fXVpV64SZA07AmzNk2Z8Z/eyCy5kczzjE48/pUqGEayZfrHq7Ie5x2FI7lUbLvVd9Z4Ox2bn30Gq+KPcH6XUveX35OT4qf19OOBWhNOVIqHCE2TeRXQr35p2PtLNKY88eBbix+qhbsvb2NiirD4U+J3b0DUjv1cXeoRdBMoI2JuevH+40FLvCer5nVESz5L3C4v+cwlkaKTdmbEvWxYNh+vdxu5eLcLAMfQTXk1ipqX8/OSj7/Qkh8LMKSXiBjlXGTDch7URY+WeMWoubcvcvjo8CV7o26s7tTOIeDPzNiSX3L+81e/+uWPB86gmTF039AjwS9+WOo7aMmvqLa0BRxLL2shD8U1u75zxHtY3rCm83tmu1Gf0Y8PaJuto5FDnpvW+ht/n0gXzi6x5OeOD758P/x4GRUy55XR+Swc1OCkXEns5VU9dldU/NaTLDwRDaNHE3grdDUg7Rlh9vjsK2T7UhiIOGn5WO8fOVrOx4/fYW7j1QVlW6Iy3PzV2fejTQnUl+cUiFZ4sWbTaUDr3v6J/vjUrOU6wBmbAln8VyQdjrtcIeZKCabyoqJeyVwXcOCVzF57JpY/jasihpOUuYn2Xd6AzTas3tOReFrY1LPYv09wtWNG+Zm4fHrhuwD9H1EICQWR9/MoqGDq7ZnptvyORjvNToi1zpUiUz9l0ssKRDTkQU4OZ6vs+N81HEHxpF9+T372LKo/fhAu/HlaeCWwa0HYYSOsF56cJHDrbIXsh8hGw45bPXKR8yHeoK8selUH9f83+0D+v+8U3JshYI5YUzyhPgyh+prf5V4ixX3/7Dz0+muOLPlaYsb6uxWiKEQFfdt3qKczPR40K8mPzNLmd83hg230+muPZF90Uz3X7kMA1d7vA7lUPt0cvpgJjqc6wQTbDMvF4yjCnH88qrWvIhpi96+HZsUihr9X3Zqiwh2hk/0P0f3ujLl2zE249k3MdrvrX8Yvf+UJOltYU1gZqUXL9WzD+xG5vlR6TURPhtxDTLqBikFZotbHawFFRfShsic+skHJHQXZ99WakU26tWR+TUIo9lFPdI97eDyLOEe4u70IIUmJhr1pPFGbVzXRhW5EMx+UCprtmAeasB6zcSLmSZ13G4eKRoQyzitVQNW62LL7Dt/rgTyEFrbuwQsGU0Z8tlw/gdWrjYk1WDj7WrXvQSSvWrZtLi3iKGtSdBhTSkdvW0YsHCRAT2MYmBmBj/m6yFKIgJvE+qI4mvfurYAxNd9E35vfbOK8FZGoRweyFyuLS90lVZCXr3DQS39+x4xKPkB8vU7MjAIzEp/+9o0+yzxXN95ZiFVNDBD01ZcFztdFVPgIJ6gG0WB3PUR8Eu1Egsfq1QRzsnphVkqPAGEZGcH5srFrjvPwBP7D9Mk+VQO0LtO4Qd0oJcTLiM35LalcuAeHBzmobVK/Xm98hz7auhS2Ea/5I909oR3UNpAuyYAm6lgi5OnNIbvvKCIeeyhG8zz3ASriQ8R3pzIH/9IfyX0bRR0vBFPX2CNZM9K+2270y42N9uO1J45Vz3g0G7lA2SM5MveQ6tmInnqsss21C8RO/NackGCG66pYEef8qDvmUNVGRikIZI8Tp/segZxg/5o15t3cF2ej46hgwxWYIVK7m83NI0U1jjJaqy2pecVXDQq3ZAgmhWyy7rc+Zy/AwUasAzz5raH/t580LLNeuOYJ+v2+Pc9mJNcnpoCVCWu6aWS3W198J938GTufkIGW9XTOrAaaTWyTUOhG3np6doLKxzvi3M7biI5Dn26Kj/BhttEcst96ACpfNdkv9jCWr1OwElWiBX9X9LRo1rcSnC+zGmjP81wPKyEv4P4KWoLTettJgF8NuFJ4CCQd7fnMrFsF/vcJDPc65tPn/G3h3/lNHqQb5eRWoJ3+zqn6aQ5ofpLag7Dtdapm8MpmN9Rs2F8SiXjDpsT8ZI2BltpjyYjiM2vWwlEFU+YXyv/KndU8Klqoj5t4Iok7xPUU8eQEyvvdEez9XSxOX7tEe4n0zny6O2P+7A6NqtfiN4j0D2CmyZOuuTt/RxJn9eXjnD4FNdC/e7Zf9GpKo15AtWp86br+O+L578ALkDSvJ3qgV9Ycv5AL10O+JluWG930cN5UneWnzfzkS/DHUsaLpryOMjushjFivlooSD2oD+KNlcdFn/EY4oclBmMXOVxSAz+AMPee7M9Zi/WsBlsPiQVYJO7lpfHLeX9Hxnu+ELsWPmja1bcLjKn+Jj7NTMx/9oxumwdz22PcTerHN3/7w3S3zvEgGVOI7nbNgtpN8nruS+0N8uimdI5gsHhUFakm3Sw/YLgqrGlNUAUah9uyfms8hMJbUnUhu1LZ3QjRHBUfBfr1woR/3zNOjxAkURkZ6Utc96WwctXDUJjMC1dXPOrcUZEVtZvl/DXRdNkgEdm5Ui36aqC5TdQcrV5NTBLldavHQC8vwC/xKZib0o34an27K9e/k88seI1db72vAkpe2pG4n+bAv0WTK4Dtc7bcwzzxGYtjAV4py2QXhRfE7WvzhOOvt9kB6Vg2i+sbWc7OJXsnamu6ly0B1riYGKmbCQ1rggpo3avNbF4M1qS4kEDH6jrIXUlHM2+GE3qEpCLb1f8AAAD//6RdSZuyPNP9QSxEphRLJhEBEwScdqKIgogMCZBf/130/Szf3bfsy+4WkhrOOZVUGTXqq/giQbAXAkY+ZYx4cPrkEOZ6wDbHHndDWOkzwKH9YJlOr4DJZKqhmT8rEj6UsZxxW/tA9NePBYQF9rjapT4oQkSJ0RSFPc6mYUFwKTTi7Yq85OdfAGiJN5hN5JT01EAKBHc7Z5uc1cnHuPkuXK+FTFLFuaIR3Y9vbS2NGZ39oC0n9ddXsELXdmlky9FvyU9o8ysSLA9VF4wrCVcowZbIDFKv0SA8aYqqLzbIxiFeKdNr2SNHGzfEWPx7eN3SFohe/mix7472fLJsSSsdJSRRuDGTwbj5DqzcaM+2vppnPA35CWTzEpLd/vdCjX5dA4iFYONqyZ99KnUWHK53TPIN/9ksq5UC9A1eekWll2x0s90NYXlzIdvu59tTHrrxMq9QwWOC3mhWo2oE/Zvr+KsKakIndetACqJDjAS9+WKvMaArepJNyNcBs+PjCS7+lhK3Vzo+0fshRcv3EQPGMeDb6dDof++/y+0o4IKdzSgm2pOCntXJOHbuDIdGOjKs0A3qx4fzBmM8bYi9ZTNnMn2NujbLR2Kp0afkw/cjwLXRBGJn9cemvnxxwHK9B51v2oaz+XMr0BmsjHnK59rxeHy3yGxjjXkkeyb9Hp0MOG9qn9iz0Nu9clRB62Tyxeg02Jwdl17Bn4MvLfEnykSDm4qeNN8So3bjo3m1DKxc8BDxDLzN+lG4xwCMyWS3S0U0HR5PB5nuJqMCEK3stc3FQ53l+AtexDYPAn9GnsR1ZryjORiJIt2hwCtGFXc5g4LujwKOZXwivm+kNn/fYgrP1bfBNCB5x6aCxMhqMkL2n7dXjuHB9gF28CI7bK3KedioDtyn3mUH+5p1U294FLHfqqJqUlnlONjLPZRHs2YnV/K63hGUXvcDIydHobuiyTq/C0gTeU+NYEztwTq3bxBO+4DdMtgkQx7iWJvgdCOhHChJr1/XAvroxgV/Ce6Sf+87M8Vg4TF1gvlTXD3krk4dC8Tqksz8eJ7hu2125LQ/nmx5jvcGpMIVMSJIt1LmD9bDV3BuxMfHlz0EWisiLOKBilq+QR3tl3str2+JOe8l1Cx4BK4YPPaI+JBMC16C8LbjZM93PZ8FfE1Ru64plbw4Twa3PJx0R5s3tJ5qqZzjkuToGe3fxLv/apuP39mFP//djGHfjeMYGxC11KBrlr86Nq7FE/zlK7MZxICXMdOAV9cPuzPR5HP1VihIJ+9NVUILNMaqVetKv9Lwujn5aL3gS7AL/0jcbp2geX74NVSYeFQz79tybaCDiCJlSpiTo8geWy+uQYuqkjy+j132StQvRX/xfB/xfTbVDuo1tqUz8cfXu+xuv4sLg+2FtDpvcDJVt2aEt3IbWbgytYBephdoQTK8l/27ZL2g1B6QyImoEPfvbrjND197JIJCkdvzZAgVO4JxxYEFsrRPplnyLyjcHjyG2faVDK/bvdXmVbQl7qqvg6EtRwv642qNR3x9cvYeCqw7ufb+xzdmBwIH/TwaYC2M3sE0ftI7HMb3lezBckuZO/6IFvuiaPUe+XK9qkXHMAzY03o2GZUk1CIPfY7MgDEKmvfje4O0OP3I1n5v0UwaXMNZPF1w6/pxNipHVQBOjSNxnfu9/PnL2W+hvbXEuq9dPothM0LVcJntd+u0m8tPFKEf2d6WYSGBLZWxP6L9JntQvmsTNMZh5OlnWGZpLHxgYmldQDJcENvrjZb0VrN6I0P9rkioutds6rT1BToH1sR8O14yr7sL/PEBErVuwuloTAKin9wg1vpmo7mwxQvI5i1k4aCagZyalwYV1d0mO/Vw4Q1NzRuAnCGGa+fX9cft1UKP4p6SvSVnaDQfqfgXT5hZz0kwJYIG8D1bEUXv6zfhMvQWXF67pXe3whCNQt+B4PLWMJNiavfCcxfC93F9su38tZCUfrgP1zwlxMGvFx/G2AVUxvrzn/3M2Uo5wTP2CdsntRywqvNa1P28FFNbaYL5Q5Mb1NL5yP7i5Tw93z7avPCZBGvbLjls+AkcOAKxginPxgmJPVrwGNnRucvm+WFV+sw0g/lFMdvzLLHlzPdxwtpw7bqRhI4F8tUhdAzzhfOv+hAeprMnD73RMn6fE6wt07DoOvpJfObESFHkvl/MhdtkT7rXAHhsq2JxnVG7DodND6e97LAQANmdQ/QRLfyQnv0g6bomSnN466HHtlv73lHMphvofXwk2FYae+bEO8FUNWfmrWFAnZgqdDnjuiJ48a959cl7aPOiZJbk0Y4GJ+8EpSCbdNr5QtbP9bZBJ9WldHx+62QK+6aG037tUJ6TiItcKG4Q/l4a2Vnrb8aX2KBdDnxmhq67gWxKTgPkOyd4baXfkj7upqU7VralsnWcUBechhxI2wrL80M31ZddCM2rNalcdFM3+d7gwaERj5jTyEym9NFhtPAB4vp9m4yXvVhp6cc3F/zQ2pOfaS3aWPmOOc1b7BhcPRHOGvvSlXPbZRP+vu5oGKjGdupBQWN6zGKQn48cU/0elf38VDBYldLR+DoQxBa8DsV2KW3xp4XmRX+A+nnwib+X1pzF3fkG9AIVSaO7hcQBCx748DuTwO151rtbrv2zH8+AOZifB6lR7wn640dmMHn9PYcLVl2Gj0ecjWZ3diCJ1IK+FZt0M8xeozabOSf2bmXwdW94PRjhmBNzS5uSFiOVtAfhF7o+T0M3u90r1qMQjbQldsenYD9e9MVf2N5w5mB4bYkPPco9Zv40P+B/8TlTdYPdBK/mY3pMIj1XgzPZTZqV0eQW3XW6qx9Y11a47P1awXDqPzEx0t+er+XVtf0XPxLbbGy+vx58fZnjyvaxUSY8aWQR4m60SGb+UDnP48VFJcs1ZhylEvWvTxxCwLc/OnmTUUoLX0V/eH3PksAeh3GjoX/6Uvndlj2w0kDixi2w6K0E1JuPu4QWfsCcwHlwPhXbWDs/oj1zv9ufPdxPUYN+SaRh/jp/+dTqKcDCv5ixqCgsaVYiCo4tYX7TFWhc3yYHGcyOKNoIXsn5OYq1YVdmdCp2267nzkpDB8QMLC54fBa+UgxilX/Jjq1eGVP2saW3Nf7i1cKHpO7XXOAPf/HzWGbjHz5rNISYF+lWJ1arIAKdC1e2nW494uv46kPo8/6fvjXhdx6i+8EMCCVVVzLt1zb/8oWnzqybFr6knX79lxDXeNgNe1Yu5BZz8UzvQSDmtpCisIgNtvx+2bu/oEGtKxZsq1w2nczaa/vHP9lDls+lJEm8gTHKJIqE4w3x+XN7Q1uHXyzePTfh3xgM8KRJJ+H2MpeTMCMR9vvhyrDc7RFd+K/m9rlBJ7JZBdPXSn1Iu1f0h39LpsmVgtKujIjXPYxkXN9U9x8/s5uj0YnabNWa3Z2ALIfuUH1XNm/YPCyZBeV2tnubWrOu+qNPLsnYJ+M43gzYxkpMX8sdo4W/9/DoGsQsNdp048Iv//AwBQLPYNINyQfj7n1InMAQTO19E8Kj8c8Y/c6FPSWXM4C7Sjt2On9KNOH3CYM14C/lh5Oc9G941trv4sZLfhbL2RzEHlicvDBkOummZgUFuG85oro/PP7pCbDpbwIjz3kMeJBfIkimOsPcm1vEx6/mIkm5pmQvy+duNEKqQSy0A9VujGQ8e30iyPLtg1aKo/J5H+gCGOn9zTCpgo7L9DfqW9zPVPXDB+L0g2/w3Qx3tn/fDt18exmeDlw9M6ylavcPX4pcpCxofN+epWOnASur4z+83qRNM4Mt7L9YqJ1fOb4lzwfzBQL9w7dtYM0i2DvHZ/tt6KFJeNITtNrFpZ/964nGxwe7aPMwZHbRVp+ufzv+/Y9vkCsvTsHMRQJI6XWNWD9aJDwtDBGEzydmEdt1JUfr/UmrmkmmKL5IqK/pK0cL/iPu25myqY3eBYTTXqAKS94BXfAVit9B/C+erY1UEqHkzQ3ruFwlI013tz/+Sb/YPGbi/j6IaKs/DTyqzTWQ+PE5qgIut1j6jSmaVpVaQ9GuY2KytY/UfbszoGR3jYV6Vme9HXJDB+obFGrUJL1UJ+OfnkgFDxn27G0n0MGKc7ZxdJ79xSNASRERvyjiYNHrXPTnPz5BKZ81dgcEa9EhdwAU8FVq9lrPxw3L4/5dTvAbe5Sde8wyt0+SEh/qFN2c+cX2od51rHKGBjVhMJCN0Km8E06/CNZPGtGB70Le/+P/t3fELE26JiO+uREoYieQcP2putk0rRgt/IMFlnQoZ7z0Ib0nqsTsNKcJZ7bUQntlAdnF57CT7MdNga/4bGnTPYpsjFW/gv3T2DOjfDTBbIUVwII3KfecIqiVxDmBcsYV1k5m1U1gH3swbvLEvOL5RYve5YNTuhbDp7eTSNuf2et8RCbz//DyelvWcG0UgbiLP/JaDGa4+BtKnHGws/EnVxXYTjwzoykMW3Th6kMqFh47lYdtMldwbNFZJvYw/2iR8WsVinAvrjHZnW9OIhZua8GC58nmpDrd/LjvDC1CP4FY+8Qsx6rIXDTJL4sZbWYg+ubxG7mywZjhNHo2DG1W/8OfRhUk9mwgQUB/esFO32rlEs+9v/oE3fzKgnPzvfJAOhz9pU2EaVNLPV8gLCKDHTfre/bre+QhLXlgvIrckEuBpYngi3rKdh+WdMv6CiDYp4LOgc07eWOiN/rLt8R6NsnkbI1eX/QG4oHmdn/6h564p4ns5NOZ82iQBMgMK2Deft113F0lmqb30ZFc+iBI5Oz1ieF7NiK2bwIx62fTMHRrCL/EJJtnMHenm6YVbOkzrEKF5qx/S/DZ5TNz9+Ir4eNaTEG/OBIx3lFs96oRaqg38JOFjvvohuywuaEFf9LbRIZsWvg7sPjwIkZMQzT69RiiXdeeiV1v4nLBd7X+3u9cOoXxOqnH20mDRS9kph4fgq9TBjF8xUeLezeAbnq2Qo6mjbJjm5NalWObFQ7aqsIdx8GlKP/8DyrbemG9N092S6tfjLJ3rDN/RbWSZ68hQklx+BIsdwOad5v4pl+ujzXZqsI1m297rdVEpXFJtNl63ZzcLjlyqk5li35cSmwMBDR5s8is5tUm9dQ5Eqwc/crIeN5nYp0lgJZ8T9f714pPSm4qkLjpxP72i79Rewf32zRsLx1sNBJh18NqbWQk5Eep4zJUBjjHZCa4W/kZJye1/sf/Hamp7KXnjQ+dUmTMPbRlIH3MAvT2lRGqfx+/hBfnr4XE4Mkwc267pMdDNsOCx5m94Gs2mmdXX9aD2Eu8HzZxd0G7c64w93Fyu8kiqx4daa5jJdDacjxsHQV8de7ZTssx+sdfFn5DtoddmDDHyRzI1ruGedausan2iimSizFZ9m+yxwOXT/DZ3WfieKuc899eVLQBnzhd4kW55DsAZqEbcfXvN+COdJmhRv7APNWp+Pin117dJmT/9J/EGU5Q3muCxfEiJfxRXQS41lZCtqKtlNxMQUOrhxD9hzd+p1SC29g45FDPiT07JGp0/EotZmTTUv86fe6Q7uKcmMPYIR4/Hh76wwPyon/S6Bam2v0olSQIbnkwFu7bgrWN18w5ncuOF6FzgpepPhgeSzmgm3BydNPdZv/Va/CQjXCRow25Gfo9m1bC6Q17RbeJtQrc5LPgK+1vP0PfzJOlnhKC/N298ShqNGPIuynA0hAzErkh4v09iP70d9p7mb/0yRBTdJ6zDqvD55jQVn63EOlVR/XntEEjvIoR7qAMbBMtwyAPT6Cw2bcj2+ibOvinR//VN33byv7hP5Rbg0vMw3EIZu116+HlkyudF3sfHsPJAkZHIPe/etqB+yH0eTIRK7gU3fQYTgYcpZ1J/HsbJVzRnBzRwbPxcV6dMjaaT1fLbrVK9kv+/hx/Gw0Un3lsGx3KbLww5wRLPCZu77/seRyqi54d+Yv4PO2z6SnYAIs/kvCYVvaE1yWFI73reL3owzNKohwVNveYGb/LYMImviNnCo7MHJU3GmlqXoBEbkQMaesk06cOcvirH72X9xt5d9MQKJQRrNAPYoeQ4T8898dn+AivZoYvOYXMue032fpPTzKF+5V4C17pg+fmBrd7XpFtIxXZdCB3EemS7DCCjAtnmajNaOG/+LMmVTLXK/MEB3MMWBCYRiYRdHeROuH7Uo+R7V9s3ur/35kC5X+fKWirA6Pc63g3k9fNQpN8tpm9fUTBROptiJL13qFo2ildz0nUovPW75g57IJkpBJRULH6rJnnvd7laF2qFjQ5C6jyyo1k/WTmrHeNWhDyDtfBIKGwhfX3KOIVFHskDdEGQxYbnJHf6lTWySZ0IJuwyjbyblPOXa036F4IDyyt8Dv72UqHQWGlQeX9Mp9rmzgnNJjfD7G0JOHTI12l6L3RTLb5SAfOy2QeIc/fdOmdGnazdvzM8K0qg2yfgllKYNoYklN9Z0HyqPg4xk0E+spQyd08F90MwjoGdqQ5cbvnF039nOboHKku5ky+Zjy7bjSwvfMea2ps81E/agIclfmJJ3XjZNxBigWHO9EZjusP72nyNlBolx5WfdO019N4ARiF2xsD85xy2g9zBZqtndhejIds/k5Ki0LHqTF3Sc+n8eS+EXfjgW2aWOlYevhJcP5MCfF0rgb9OjQt0NCgEbeY4ozvzgJFcl0XeHoOK06reb4Acz5vsn8IYjc9UjmF61x2zN1bMp+nr2HBPSsmFouGw6cbzzwY4xVlO0U+2MPO92rgL89hyW+5x6rnXNNAcq4M59dvNs9aIaKqS2Sc4sfLHmf1p6DYkBlxr1svky7DQdSF7xXwWr2niDabQwFda9yJI1zuiGthKqL37yKxbTfZ9vq9ugF6idOGWCr2Am7LaQTnrdexfRIJiGlhKqEhpi+yjcXlFMJnQ0HVj5SYn32c8fVxB6BZ/EZl86IFc/kIejDqnU/Cy1HoOOyWe2vd7svczWuTyJNxNOD3iB2szpmfcCsu3vqlKwxyPFhdN/FrU4Bvuj88TpDxocFtDsLj9yL217PL3jkeLfjcvTM7XoSqmzW36UF4dC88DQbnM3+93+i3la6EoLhN+HaHbkhv/Z7hdHx01I2kHIIfIVitwnc2XbbrER4rxWVh76j2eG/MQhOc/ENd93Ht1pW6zmFliRPZdlNp80P06GE110dihd036X+3XQyKoV1JOFVdNlwUpYWUBhUj35Khft77I3y970DTx3S0e9eY85Uc2SpbRjaWPDDdGHhR1Zi9j2E5V2NfQNYRRuXIahBfefYdXON9o+vd5VVyb1wbUHXrI3NvYRoMgfXAMD/SkHi/wwvxBow37PXUIxuBk25cPzIA+gGNWeGboLnXTndYX+OWhNbH5s1h9251cE9rRmQDJYOkCDNa3h+vP9LEJ0mRRjjtm57Er+dQzuQZ+jCqxZEcl8/H28+O9GuVv5jLdxMadtuZgk4ORzyjlxwMqLzdoaTGlzyua90eef7o4XYpROIR1ygn0Wjxv/exgoeNqr0cFFD/VpvFPtqE1VUgoIPczlQYpBmxe5bNKt46JU0v5YH3mTAJunnUKNu+wo/Nx7aO0Ufbv0io4nXCOyo3KHENgZCfbSVrDS4zkqbswEyHWbYktLce5nAfEUfmeTefHP+EairHxKiQvPijUev34rZi2/E3djNW/Dt4l1tFTIe97flqGzWkpAC27w5NMse5dYHqtPLIrp2MbMrWL0ufqOeSLd3/UBvn1k1f1g8L/PQJaDVrN3hQ0lOheV6C8TtOPcjR94yb0+iX/OJSEda5LxOn34mIDqbh6diXReZ7DzFg+e/porOvwtKXpM0m6VuKcN+UDQvpam/z/OL4EF4ETsdRjuzpXIgOPFaaS0z5c+Ci0p1jlDtjSoxd19rTfVg3sNlaGXNH/ODj1vZOUEfzjoQHVUbdc/R6mBGIFNSNzhm57BzkHm9fEtzzH++dZOvB28cjc4f5HIyt6QtAP9c7sYIg5XOyCV1ohqJgt3oKy/GwezfLvS+dLfHVnueHOwMaVZ/5uRDY88rY3aGK2yvZ942d5Qcv6bX13kbML0LczU9xrYF+jJ9UtC5j2VNpq4FfRIzyX4ySgbcoB9W/nJl73TYJO1eeBuTgG8zbsQ+f0KdI0dY3LsR9rdYlV78vC7WivCfGZGw7foiOPcpLuJG9S7SACn1ToTo4PVh4/w7dnHDVhVN/SImdjpXNP6uLj3LmhmTfPzv+e7LdCNLgvpj9mhrOR8+4wcNWRWbr/j6bm+/qgkon3jPzEu5L2tV6i8q3tv7Lh5zSD1K0d1X8cAOyg8a+b06a47UE22R7s/my/1BN0pP8xVf+ukYRVLGLmEPePZoF9TnD6Sx86G8R0bkZCAqg3gLarePRnvrXrkCbYpSIQSsDcVHfp9DMQsisaymWQ12sfDCNh002i78PSPzckG+2W+KhYof4g19SsNJIo0q2Pi1FL3sEGd0HctfPPefZZnBhacD+Fy+zYZuXvlbe1Y7sJ8kt2XV/uUOHP18SqpsHYiraiXB67d5kp+6MYNp3PQW7xBXzorSyl+c7wVo1MFW7QSyni9TOaPF/YkTbEXWT8TBgE+0vxBpiZv+qdum7M+7vxLEf92SWN/cK1qK33MO3Kj4l+GiAKb5OWBnnNJvv75OI1KdosftBlfkgr4oLWFpkE9Pb6jbl8/quLevNguYQJOPr9Y4BhEFmxiGEbrbZLYK7+kH/8kG/Mi83dKs/AtmKcxPQ7GBryGSblmwm9M5GdzjUaInvWDl9E3vaw6pBiij0VF5TSIb9MNfwCz4tC3/TD7Hd+jJCM0PIHkGd/ref9oPciDsgWk6kJhhqWwe22Mfif5bw9zlGaedl071jM/y6Mybm9XBNpkQDD8qrf6O6//oFUyQEI7jk+sDoVa7LUbmFJxjzRmAHBULO9lQt9A1yKdkcgjJY8JcB51deMe+mvu3ZFs4n+DbnAwvf2r2cB2EO0WPp3RZkW8zpejgDxCCZuDM3m2R2LO6B4zWEmO1QdYNIlnmPYrNmO4OseH+tvm9wrzuFYPe1TubN5SfCs9c0hpuGlZOkCCP4z2BmJNFDPjrJ1odtOXOqt6trxrfhLgJr5Ufsn7+I+iaF5uKu8bBJPnyW2CBp3LcFmuL0V77zPUSg7iSV+XsR88mQzy5EzyLA6iXaJfP6vjHgcMl7LIhVU1K0zCf/Bd+Wef3vzlnAUARj1XjEuvZh0MXNLVKPCjHpgj87kb+nfOlT82OmAj2fQN354CXFmW36LAq4nxcnPaSXnPnvp95NR7kvYN+PLdXP11O24KM36KvqzMw6Fux//ODR3jNsxn1m01eRnVD4DkayXcsc9XV/BMi+95wdkGygcWsbKczhTIkPrYD628+O//nDqT44JddfuxkV4cZY5vVZnDXgFejFzlcqbD6vgN6rqkfa0IxkZydBNrvmdEFdWk1UBmoGC/4okM7VLQv/8Da2fyn6+//BcRRtuq0/nsqc75vsVvelv/WFYEjMnvzLv/wnPnxIsvyHuXQ/l9O4Ne96LUYC8ZxLZ/eu0L/Rwi+o3KzcUipC7Y3a2yvFXIyLYIq/SQpRwzyqrXd9Nt5lt0bON5axkKrr4Lfge7Cv9x3B8YNmc+CfMZROtMdKexq6+XOmGPzs9hqEQvh0nVTfFTQlIiZ4ef9xWU/9s418lmZHnE2bZ6XAdX51bK8WYzkNkoLhKoToz37R9HsHEbzULibO264CTo4ohPY023RWcWPPjW030Anaj3inse2G+72lmnYhGyxaLy/gsnDIofOlE33JdJfxPVX/vf8y/29vj4OxC2FGgohH+U6Df/nS5c+JOMU+Q+zhlCmMVesx66D63ch+EUX0uRoxr1fh8j4PgGofDuz+eWqo/w2tA/h1uWMqZlPA7Npc5hfnMtnotESj9ZMr6O8rjn8iVcsBm8kd1c7rxgJPcdG89jUHffNawiuXR918vk4GSlxLwNK90ThLRbJ0hJFWVGn3ks2KmLbgF9KeeAufbUU3PwHeNiazvWWWUxlzCSJVdMjx/P2Vcx5ZHpKkQ04so5bQTD9cA+2y39DVGpFu7eArgM1Hi2AziW35Lz6NT3ynMjrXwXj7BTG6jBdMSKL3fLrnSgW2/ErwHHbbbKg/N+1v/8j9Dz8u/gATt1K2W96Xv3vVgYNdPUmYMMPmm6KUtHFzt5j99cpyCpzShdt9XeK1ct7Z/VuOBH13OG5IMDSuLe1epP33fLvLteD/4vHluq7ZJt7KycAcVMOx1GIS0tUQ9NrmNwL9ZHdGXttfNgSTj0G8rBqqiY7Rjfm7t9B+b7t0fNyWe6S3uwTW8JTYFu6xLW16v4VQ8VRiyvSXsXUsOmiJX8zqUBpM328zotRvGUZLPBaxerjp7Wm0WfgSmowyfcxh4U/46yp9NsbmKlaeE/eITdEmkNl8bZH9mBWyBWra4h8/dvpg6RO3vmU8MHGEwDJcYjxuTimrEnWhfJ/PmJv6gzcu5A2owr1l5BhE2ZTGyghSkm5ZXC8drmhaCDovTA+rZ+FmU6ko/sOHhv/Ns7HXeQTx3nkQ47tazjgt84iLt+vT0hMDu4+k3fwvvpxjcZOJXrsDFD3fAdk9vo7N0bo/IWmvZVT93D7dpIdvA3SSHInr1of/8tuffdve+x5QYGOIwLJcWslc6GbT9Uf0nj8c81+cZXT32jbAX77zl18z7ufNCS18iKpdpQezqz9quDCJMY8NTfYvf1/3SMWa6BTdcjXN13NF/NKVl9iB9MuWvpbFU2RmuaJ8zN+VoZ/M1Z3scWt0vwUvgF2GFW3Duiu5iZ0Z/DW90fapPZOx3o2uHgT+hoTm2Sj7geAYDtajpGLSVckoWdsZVpLqkG1WInvRGxSUlxdgkal4HS/fsqji1+1O9trnnoyFVtSw5Mu/eLc8r+KBJ5sh1QWaINmuzVRvd7qEf1JlIo7e9huBlnn0RdLCfg/CjGE7rXVm+WTpK8Pr/p+eEmDXt2f+aguUffOcBd/VPVjwgQ+9cmuYM2Yl4sY3cLTz6jWwbTXI5fCLxhTOH55gNxUiNKZ3k+rkmDOyb1dqMvQv862fEveC30Z9Qr/X93SDoFIK4seq1nGPMg9tPj8bi+dQQvP5qhraxp965uzcOuP7LOqhpgeRmfOZdtzZ2xZQd39if/lvvamMFt7E0Qnd3H9lb48/DOUddcT9nqKEasdhRtkU/vO/pL83uzeo+pliaW/JaNKI2kD6S84UFj7OnfwhoNNp/ftvPY/So0bnI1mzTdHgcp2tfwaY47zB5YJnmIbfVO+9ziHhTzOTaXsjF9Cv5khcsej53NhB84ffmbEldkL1k6rAZbxhqugwdpO8Km5w2rc9s5b4N0WCPcK12c8ULse85NfAqsFXHx2dLuHQTUdvVaBfSGuCr1ZYDunzK2jx4bqn65WCErbwH32yWIzrpY3ZeK2+BWS1amC04L+xcZs7dMIxwNpc0WCuntcaHkF8ZLZ7cbK5DJT5Hx48fgYtm07B/oZKan1pxfbG8vyThqTz5sK23yYox91qbIEpvzXbemSbjPfyMyKzwF+qrhK5nJmu3CElbyC2qeuoD7TMA0uLbSou/Gh8YfOOrCQQGDE/Q8b+9KxwK8v7STMvHf3TBxc8iIf+lCaTs5MwiK1bMaePw6S/QeWg/Wl6kaDWxoRfPKBwvNZX+o0EPRhb+yLqH21eUZk6ccZb39YgA21HdYt+O16YSa831s9n9nFNEP+VVgh5vM6ZORgJn1TN0uCMsEDbWL11oytUb1j4A361Q1UOzXN9AcVIETGn2ELzwf9V6HyvT1he8AF7ON0JOuEc0JVjinarrmQLnrPiMDsdHZsv9gNkPLn4DJ9dOTbHoUCmmpX4nKgHe/jxHKOFb7FD3CObWt6lBdt+GAs+aYK+a5xadkWb4GKUR3uJLxFEquRQVcBL72+niRG7mXu24PeMZ74hadPrqFFEKy3hD2NboWL1XWOxaqxMyg6BgpBXbMk1Ly/ZWl41F7Toh2TvXw5dr18MCRFGdlg5jX6nhQdDhDRyMhJMO6Wcbjzx9HVpbuiSz5NpwSewpv2RPVO36npedBW0DFbMH5Y7ZX/8mRd1zSzX/f3lwxmEfH7gIptu5dTKE0A8+RPZbvVLMK8O6e1PD2dukgvLfos9ZOMvY9t9bQW/pfoCIk9ezP3Yr2R4MnMELhkHki419GHhV6iaxCdVd8qv7OtHpMGit7GdajTdp5K/FeTqZUOSFewQS9/iCOnvcCb2Cn589j/dBc5ovGNNw4rNfqWPgWrJj5j5FHTS4t8oM1R5wdtpwH8FpOBvrpd//I5H3U9B8sFfM3vRR5prcq/BQPWa2Ffhm9Fo7gXwi5gxsx2csh+f53/+w/zEmu2pkr81ykDZkb28NxMWMB7D6+Q/yCZ4X4NWFnc1OumXiASjE6LZZnEMetv77HL6cpvTeytAx/fXv/XL/uHLg7xNSeAmXvcXb1SdPjM8TbHFJT+95H/1AiyOmY0mfo5bkKbrgdjJuyhHqhxHgIxYVL5rJ3vMi5MPnR8phNDDp5uliffgBm1IXB7/Eu4PwwVJDU4x0+lkT9jM7tpzuF/YFmFcTl0Qi1C+lTXubpYdsIf1uIO+qs+M7C8Y8fG8v4O5buN/fFJsknMDC/9Y8r2aMH3EovYgX4dystUCafX+nuAj5REV6rDh/C2EBnwCMyM+cCmjFyKP8K7eP+YW2o+P0vMn/dkbM5xARmNOghDNY1IR23KPyah/NwrksZyTnWp43aAGD+Uv3tPdWdACLkhjDtZuZTLr7s1ofKA21eZDAyxIuybpPuH2opnONJMl3iUjL8oKbpe3yAxdSf/01RECrJ6Iq3GEpnyjxdB/lzugUdRks+VdGjhHyCW7rnrYvAuvM/AKHYn77Ots+n6LWf/Tly2D4WRm4boG0ddyLPZxmMnh5m39rRem/fS1J2/pq1Bs5wO+L/lLNo6jv/TBnanqtG42P+AXq9W3qIlTnXgyABNA7L+OryGF1d0e6KKHcWb8IkGP8owQoxySjp6v09JXRz4QU+TrbNx/lBq9ivuJ3R2WldPh0Lfawr+W/aR8PG0Osb7oB5iG5hatV7vbDd4fd6nhz0M55kXu/cUvEs7Fsxs/2zZEFzF4Up5EU9k3ybOBbX7cEsMJzmgUlcYHcvAMsugdaDCamwWrwf/hXppxOSaz5gG58pz53nIP/tkjBdSKRkv9asPnHqrTP37uHd/fZDrW1xpJ5m/AbujapVzYr1ovkFiRnKK8o+/N1gcUJpflTM0vG/dlSxHa39KFfz45m7JfCM3FWdN5vRm7Pj9cF/331BA30AM+Ceup+KuP0fG2rpM5misBDDly2XXDZnu2ruUyW2m9JeHJYglb7Ae1KrtRXZCDRMwPB0ffoUYnt9VnRt05Klw9SHjF/vQ2bmqdBvcCHgwbuE4Gco0sfanPUO11m/io5IWLUHi4YHHRX6YPBCd4rU/lX7wJRiptFS3Sl175l2PeTTSrjL96CMN8P5TzrDWi5rMhIkY2aR29nl4XQF+fEXMu3EAqMrlWF7yMX2+tDPqLZbbAjIjT3vqUqF37mouCwNtQxVIu3TirLwW6KLKIOWM5YMKc9sAM8UDOi37fJ25iQObFF7JzWjcRM2EC2L1zk/lzhW166yMXLfobITH7dYO534vg3YM128ZLj7Pt6eehm91+MZwCl4+6UxioOZdnvPL8oOTCZl3DD+4+WbTLbDDVXoA6GnfsIe7WvL3XWg1qzlzm7WqajdfzmOpda91JWJVuOXvaBqB70pICqZuO/+lRi55E+0gMg3/6mLA7zbh55UUyittPBM/XviVk/3KTeao0DxY+hOHXxBmz1/gGtzTcEF9GDW/qLLDQ6RW8ibNlXdaf240Fi97EsDgYgfinz5zmKCd2UH87zk92ry/5lWwOwhMN9se6QCmTaqlPD7z7lRaG6eLpdHW78o5d91GOlnouHRd7Zson8VD5eO6YY12ickDicIEVfptUXex7jotL/JffsZwGRTJJKGyQcRf2xFnqAeyvXhnlwsDcZ4l5G9my8K/+6gaimP3hUaTqakiLecOzobe/OYDAZCx+KqljUffTtDS9+ozQw6ak8ulboMV/mPlXfx7Pmzt8PueUbR/2vhPP6AzI3BwjPKW2ZLfBV43/f7MP1P99pgAPIqKjMUjduE7HFs7h/cEugfrJJsFPLSRf3ndmipsYzWl3i5HwWJQXh175aEJWodP5t2F72SH25I3nWJ31eI/76fzmI6kfPkR84QyJkiWz9u1aCND3ijnZcDRJyTPSWnfXEzLV72DI8pUC5pl1zHxJRz4G5WNE6CvuWdBkJON+EmpQi15CDDJDN9Zn3UdhmqckgCazJ1uYPQiQkuEp/a34eBbMHkKx3FOIZRkNI0tzeHx8iRjG/LXHXephcEVrZnt9v08m73WMgElfTNzsYwZiZu58tL3XLZavez2Y9F/vq77bELJ1nF82o/r8/vs+tnmoZdCuIJL03UePSbjKxmxel04NGe98tjevz2SO5LuCmumQMXsjQDld6XwH9/lJiZGb17I674MRHndBYZtMKrvxpy02KB9HLN6FB+c2vkVo8z3lLJRvVjC5r12PHtVaJLu36pZ8pXWKYvWKgMdPVCD+KNYNcuaXSzaHZm1Pr6pzINueJuKZnYSmgOcNusbuh1m6ovOZbEsXMdrHLP/UUkl/7b0CfQrX7JiMFWI0DylMvXdn6cPGCf2peY0+q1Rjzn1bZ/OvTSulQG9OfP8gJ+NpKAyIJ0yoCp6azYyiBjbxZ4VBvr2D6fpUcnhaxZY4B6EJ2vzd1lo8hYR5zcEo19ElNgCa2sar1ecZ8KO2Nf7+nr7p/MuYXyYWvJT3jpDzoU56s9/kMFydgNxXpyca3RUtwJdvG7ZZ+zWapY1Xo5EnbxJanZZN/iQBHLZaQQdqeYn83QUAf/u7mzy7nKsTesN3lJZ5adkGrVtkFxB19ZZOrXIv52+7s/72nzjX1Snp9d3Rh/zzaVnQnAQ0xm3TwAd/HGJ/noXN+4fqwatIQ3KO999kNBHJIUuqAzu1oxtMd6Jr2t9+ertp3fV0/xmXmtuWGWMklXzYd5a2ZuFAZfbyM/mZZKk2eZZJ8CRX5WjnnQfJofZJYOvrjJ71rAVTbDzinx4p6r+/FtC2TxrmYWWZ8CuEjvbKFMqCx+kXjEX6xisnvu9ZJr4h6ZV6tsD71QZVb/zLOa7ji/4NTUzH/RqCyWGjB2LuAp1PxWDP9zFUkH3MZebMJzvguL7doCsLnWzydRdMz1iPNEavEcHihEqK6nMBXfnWmV3l23L8KIcLehvZhu0jusmG9zqcYWdKMsOP4ow64QouVFfe4xUJviXdJTcPSeexJo/z0JfzMXN8+H34RHzKJpvrrRXqwyvasajxz4s91AUylVuDhePz1016O0a6YjpHclaoUUrwC1L4OgXGvdXdkr6+mjEs60XhLLCA13LuQP649riot5dkjtyTAA62GLP1PkB8ZFqBcsH9YUkUEzTr3teFtnR2LDmRtpz7sPdhniyKeXk3ynU/vELIH5TiNTObcs6nqoaHfuLM/Kpre2r7XQFTdbph4dN9g9GEpAb1KNT/7LfdlUWsrzQtZ6a2f3fj8yBc4N7vLbIn70fSn0GvEd1JJiPpnpbzaPzewMxJItt4v02m8RDl+kXdt8RszY89UWZoOlU/CpbHckp+YnmVoFf6iHmBusmo/FEucOgGFcOqWObJ2dQA+7o/E99Jmm58RHkPu9tyL5bCxZ5ex5+Luuf2iSvtPGWcrL8CmHeHsBNObmVfbtCoXUL1gGErW8EsH98RXPfCjmBN1Pj4sBoJ8l2dUHHHFb48fwH7vRGyvO+AD8e76qBDcBawep8kPi/2AE7b+mw3WA5nlewXSPysFLJb24lNB9o4Gh26Gwsu6Tvj14cUIX7YfAkR6LfsN7lEQaOfMzuivRsMFrgpMJNLzD4mVin+7l4Lc0iOtLo5LmfCVXQBJbeRGOZP6Jhw+QIqWH1k5nn2Aq5dDEkvWHVkFslqREtRfsOQsi8F5b6zJ+3czqBXqyP9Jb+DzbfzLofRH37MHdiwzF65XdAjfahkWz/tUqb0JiE+Pd//1nsibo8R8Xcps7OTieZfV/RQ0f2O+eH1m03yOsPwrb5bsjevq4TClty0+3P1Jk68fnbztzUNnQ6/G7Oe74TP+9OhQM5utad6pynZvK+2FwjsU8l2++6dUc3lEsA4muTU9dge0ux6gbfRb8mu19Ostx9nC0jcpJhtNw0fXUOjMD4Dl3iJlpQMyVUBb2f3YWGqydm/z4WHROhc/LqMEQkcWGal0ynuRj5ui/wC+eFJMDCycFAz7cG/zS1WbF6X/Wt9s8ANdjKuV4KfzKJ1n5FlJBX+LvHxz9+hvSkBnRvW2nwvFQV6uvGXmM575vOSr8HI7PNyRmBCFL4yRsLuNhPC8thmXz9y4LBVChYu+IF2HUQQlNc78dyZBow+L//sk1lL/GNoObPVX05H5q/VLe/fdWTB5ukVWH4liLOfXzY6odVEsKzZaHCGs4buVW8Rp9tm6Mett6HHlcAoys9myf/Wy+0k8T//EafPjMALPZYbh03CVSmU0Ad/Hayd3svPX0sCcrqJVCs6u+Rb0y7A1+SSGbnrB+vovFHgc+IWFomkBP1L3Cjasz4XhKR7XE54O57AO9zsP38J+nWpNej6mkqqQB4mo2Sfbohwi1BReb6y/kaJj5LpZzPrfF8H7Px49/DbLLNv5mqf8IOSLffKO0S2v6tWciKJLgwDrtl2ibez8o1cFPcPRv7Wbzx1ZIZDIglkj+tjMiqO4ICRmWe2/8Cvm7+qbeiHMThjMZRHTkW70SDZXUJ2uZqdPahfRdHTDc+xOlgV4mHaV9q5Fy+Y20i3aWYkLkjnuWbkV5TJCAq/AZYslSo1Nu25/O4aOCmpRRV3pnajnpea3/foMFP0y2wupaBBYh1rdGr1fbDg11gLZEklu2MflVIL1gXSW4iWvjOGLf49/1v5IRZWfsinK9VysH9aitfb5wl9F3vUc336MgOjjT03V03RDJTFdLozoaz+7Hcn7Agh9KF2/Wx2HsJzfGW7drVJ+O4wYFjVwYrOr9bmk8MUD22b0qPvQ14n46VnOYzdpaYo2PZ2v06qAkKlZsTTb2nGddUJkds4KcF9B2gcnoal32aUssAQqD0ZXd9CJdEd8wIxRewgkxYmKM5YivMdGh/RqQcf+R/mr8VzRhd+AEf54C+TmyV7/jagIfHBNSo8Cpn3w4Nr6uqdPYnRJUXAG81UoPHYe8kvn6x3BFfSiDQy8ji0Q8ai01OCqZNvzIlXRdfW560D4uarY9V/X/kUHm8tyh9Zj1XneetG/lp6xRkKxl+pewXty/4/0q6kS0EcCP8gDrInHJF9M0FAxZvgBorIkgD59fOw5zi3OfZ7dNMvS31LFVWNAY4Pzybcq0M1G7mWg/nzSGlYXrYmf10uLRAM9UCDb3sGxNDsSC0+w4BYfyWMnUBDoFg8HaRR8wHY+6RefvyS7vpNCxbzvo00ON02SG1IxSgWKAfq8Z4iFrsqY9C/5CB6XBaKAytOZyA5JayE6Iqx77UFw7KO4Hh2QnJBZVPPaVdcVDDpIQ2a71KwYwhVOM6tReao3ffMjXcVrMfpQKNuF4UsCw4RtJeNSuaPcgjn5DwPmmd7Nc3FWOvpZbMgFXfinm53r3M9F9TRwRMmX2rrD9qzVGEl/HgJwdhQlZ5d96yFcf9y1/i3mEsRfyO4hb6HI3jKexIJzw7e/P2eTA/f76cTFBpoH79PGlbXR9GDtqsguB921OpdwIZTaU9QX2sup3q3Lda+3hGU8t0Fb62PWdC3N+V/++87JQgJvY0P9cZZXyRPOy7tfvfR0Pcvun6fW4x8ZQ/wGtMzioXTjtGuT2/Qux4feFewvlhuz1sJ5XOSUL+glL01ZUnA+55sqR5zr76Pj3depYk/Y5Td9iE7QpUHg6nKCO4BZtN8/wTwieGqucmUPgJzcTRzsRL03ey3/ZxvvAZuH1H/xweJnzgG9LkQ491DrdiStM0N5LlEsVudLTBfNmUAyW5/xzbjODDxC2yhDki26kc/FQMr9rQVT9C7Ec/FBNt3AnrTN376mC3LPoygp5ECY7mRGFWPkMDoBBZsOhvBnLZX8waLjfylXh+7TAxrxsMXWXPS1is0P9ZDt8Cd4+8YG6ZhSvvvfoHvgH9hD5R2MdEbvkFNu2XY9LbQXLyYHKHufFS0WWvG//jDplr7PBzcW9rSe9rA8HTjsF/OR8AUKYfw9GgU6vCKlTK2KCq0jtFI5DrwQ6auNbwr/mIDH9feoDRNtN998NKNZfJEuzdgJ7xsxIZXUyyPl5GAa7QH1P3e+nDVxzdIdq8n3p1aaE78liOw1bBM+L1y6sdu2FbQTiOT7s590c+xnxvQtS4jNoKM9stTmBwYNNTDNnPdlNej5wJ3yrbGVqA8GW3kLgJ6vTsgLnkYplBZSAS/9XHyMgdsAJoHa11QqM4yUjDlE/CQfV8N3X8UIVw4ZTSgTYTbj7+aZNXP8BfvFLj7giUr8xjSjbPDesGpZp9r6AIHuUBEJfyzXux7tsDrS+KxU368UDxzLPvh0R+ezKr3mCB/s+AaP6aCSRbL4Ho/Vr0pFtOE7RKy5/Ki6Pr20nm7e6x6v3aw0w8onNVTtQCQugT/9D3dKKcJZrfk+sc/WOxexb/1xtz3FI7jLuLg8nZiaq18YwkrOsCrZs5okEs/nI7Xswqzxl+/m3soIZse8kPdMyBRZxEtJjHTs7TnyxpwYh11Nm/6kIerPkEU0Ie5bMG7goJ06ZFiVi9z+vFpdRNnOCGLn06ypAdarRQz+UqhwYRl4gMw6EGOpjY4sQl9nvEPX2gSnB/hGCSNCOtDesQ+tV8mRW6QgDm831c9ZNTEnYMXECgaySuclGIerqkFYsQNNHo7GfjhGyA+v6XO5S6HVHyZN3jnnlfqfoqwngJzsbT60ORIllPNHFhi8TApl5maOy8t2Ea5L8BU3gn16uAbLtJrSMC9+ug0sliXzjsnb+GhUTDdyaHTszifHM37vnQaJbBNRxvh5afvsPm6feqh2G4DjVOEhoDlDsGw92VebfdRhfGmo/3s3LUG6LTkaXqLZTB9Vav9+VU0sulSsOk+XMBJvvNkfglawZxH2sHr2xNxr75BTbnCQ9DQXw2+r/qZpjI9QgHcdnj7hXzdr3wW5Ad7raGUYU/7QIrgPgt0asn3Z0r5eZxUESIT0U2He0k+XA3YSdGLJueXbYrI2iTq+jzSJAuHMzoux7X79Q0HRuyHM2itEh5OaI+mevdM1/WwtNt1INTL9aQf3Zi94KiriOpPe+4XoY4aEFRc+8c3F67rDeX2FALE927BVr9LhfIzRHR76ORiVgQyqbwR3LG1uXn1NOnmDdCFJ2hIJImtei/R7uqkEbkPpZTtJbf98RnsJLcvWKDr5nBdP8T1XwHMzYczIHDDmDr2PgXLTx9UVvjG7v0wgIneixd4J+OD2u7LTSc/4S0lDkCw6oUTY8cLJ6snQT/S8BCe2cKq2fjpd+oDZ0nnh/Hx4Hq+sNF2Sj8Ow8GCDR+khL0vtGfxqebUp/zw6aX5JsWi2nQAzZ0ISLuTC5juS4OguowMe9PulhJD2yEQniYdTWQnhd8RnS14kq88qqvCM4Vpn9/ggIUDqWNXBQwdrVj7lENIQH1uC5J1KIA9zp/kIR+FYrmbSal92sPnp6fBrK19oAzBgSvefFgDZfsIk6+xR8pLOvTs658qePbVD5FDPvuX/3iW9EQ//7V7O2MO83Ef0QCVTr3ejw7W50wmYDObxXAIX86ff7Dqg37yn6IFq9G4I+0N/XpUbJ6D30twIALumpB81WqAjNNNmimFn7KdXTVw9/RajA53v2b3+lmCEKgF4qvg3TPxZZYajC8O1cc9DSfRqip4qANKLYMs/VSLygDuRuUSdfUvGZ8+J3hJ6jPRD0D9xYsW/PyOY/U+Ar5AGwOonShht9wfQvYwbfTn1z5XfaAeNM+C6/vJ+8CsVABy8tIeBgR4d5PqlJF7zEPf7xSqH/W1L5pznWDr6y9sfPslXLRcQFoS1wlZ9SNY/U9Dg7G76r1rxthpnHgIXeCs/OK2+rnHFtYKYRQ3ZZ8uZ+w/IAiUiUzvME6nDso3aG6P5epHb9b9djxw7uIK5yTg2OjNdQ6DkxGgb0qe/dKP3gWqQaiSSV/ccFzxRfvhCXIwbw4O5ge4IVAnb+AJ9ezvsQdT7fMg08rPJk4tHLjGV3wnVRDy6dnJ4ZIVKdFuywJm3zzHUHBODEHpsO+nU7hpf34NDZ5VES6R8O2g1bUBvhLDK8gPP66eeCVwiMOeJafNA2AUiRRl9bb+8Rvw46t+UJ3BjKUuAHY3QxxFfN4vgZV70O4vOjX57h0uI2kdSI84pQ5Ul3pxK68B5PzYUFRUHlt/fsE/f11BVfGUm30E3fgQ0uBclimbCLnA4l4RbNGd2i+7g335iyc7r236pQujElzLXkQb2/DrOdfgTd00k4lxmY7FROl3gKDf9zjgAKn/8isbx3UQp8gLmx2yeQHObhOk2O+6Zl1flNDashjNlUSK0XluB+1mP2Z6g9KlmO5MzeDqF9GQ/0RMfDvjBbivqcURd2+L1R8iar27XFY/fRPy413X1WNRvEn943/6RRvgKXcV0v744SPrIviUsUv99f3zRrV5sOaiKBr6EizVoRABzLwG7w+0ZX/8OyrjIzZj98Ja+8YN8NAAjOSHMxeDTS0RtnNaUFebPsUS8FsIUkXQV3+tqufz7ZVB6XHOEQBNZk7SO8lAw6Q9tVb8rsarzf/O488v7afIPi/wlNsKXvejYHD95m835i72Fyusp48yOzAz1l7mPWmK6QA7A7I37+DIV581U9YcbIQpTyPluu2F6ZHcYBxGEbW6kLHlFB0GuLk1NtJukpkKsR8bGveEPXWOZ6VYLvc6gr/80HTUw3/5fJltbepWGZ+SFQ/hHE5PnFX2wRw4NXV++Shsz1Ybsj4KM+Ba+UiP4bmuf/gE1aRTqZt4IhsrMVdhcHsG9Bd/JlJ+FthL37Vm7QjMZbydOSDv9AUHOEf9tHsJN7DqUwSVfDYHe4qh9jhdcmx1YcrqHD0I5DTFw7/80yBboqWi3WKgaY2HFPrJBXYSelF/E+1DaaniSFv9NhrW5zZd/36pfjTHwfh5yExmcpYFPhmOUH89fk2GRejAX3w7J63czz9+vvqN1D7SqFgkp41BdouvBJjaIWXNt43gARsp4ryTFc4upiXsi2yDi8dh6vsDKLx/+X7JaYx16qFUw7ooKfJOlsn//OHZHTbYu1tdMarNa4L18yFSr/Hjen7Z5AHT79XG5/Q7h6NYvy/qAjch/fndJD2/blCe+ZCitAzM+eOtc0gPHYeEIx1SdjPmVinLysL2mTA2Pe0WQZH2z1++DND6nQ3wneoVtvFbqJ92/NDhOxBf1ImPl7XGSW7gmq/BViZvQqK8Nrz87tEdOxsuKEQ/TQLwDuqKnLb2E0zKaTLgyl9+/gIbjEI6wtfRjBBc+eoPX8EPr2UScOB7ukbtXz7zt1+zIjQLrMdriq3X7m0yLHsRjNds2bTmS3tFyjmw5mtQf4ySdMoUMYL0+Dis/q5RMB1YBKSaXGFHhWY9cf3ZgvMru+DACPN6kh0DgS8XTxi9ezecOxBWUDA+KfXaKDb/+Hvq2wENC3QOZ2Z0OjzxY4aDZwXMNh8+Jdy+kh327wLpKZb1SNvcUhOt/hUY36fsCP0mzohSiu6KjzkPld3SktM+QmygN7f8+cfYT9q8XpTXRoTRSVlwuNwha421BjPXvwtSm2+SjrG3zjp8MURReOyL6edPoyU+45+emiZOirV4M1Q4umhi36tHOPzlR3T1Zptrg+VA/fkN88ovh/jrceDnB+Pp/e2n9f6AITdTGm5mM32aWM+0EL8MjF5vziTlFKng58fYV36plzuLEiDCyMRbZvZsGeGBg9kFAboVtiogbqU3QAdDRp30bvzl94Dw0ac/fjWerlEHG/chYzON6/Dnd6nmoZQoNjZB+ORTc4APjC50NzqPlP7yxfxbk2n08flwelqZBUvr+PPr+XTN3//PPgXqf9cUDCw7451cMrAIm0sL3qf2QTMvmotlJmUOHh+RITLs5p7Ym52oUopehLtqXr2Aw02H9zYQKapQw8g37C5gbB4WmXuuSWe7ezTaiJYZqdfGNpcOz5zWbfmRuseIhouGvUXtq6bG5i6l4XzoBUt7K1NCk5paJlE/rxKOhzKk7vO9BxOaQwLyd+wT8cvz4YLH2YHWPM/YfN6jmnWDx0O6OUOkco7Iptc25sE3qjEZLcgXo66+A5UTGcFWISYmcab9TcMMqURRJqenuv/V4cHcbXB27IxCNFV9gveqPiI+JjvA4mf6ABw8I4zup0c/Z1xYQX8Qb2SA7cMctDmvIMibnDTAX+vElYyD2yunEjBcnHrmJP8CCmxURD5BKZ0K/e5Bc0gAtoNgy75od2mh0h9jatifZO11Vnqq7t1sqi9VUgxm1kDoaQeFunXcmq1ndTk02H3Cpm9MbORDOYH6izuh2bjue1Z8khig8JVg8+h82RSdpwhsv+cU67sEAFoHUQbLrM6pv8vDmqeXtIIqGVN66DrWf9TjJoO4zDx6PmWPcLByroIHXMk0kL8tm5O5FMFgL4hMpzvpZ+tGLwD7JwHbH7ZLp4+09h67PgF5HPi8WNqjG8EzzzlI2X+/YN7dnw74vrOCQP1gs1miaqkmNzMiqkv3pvAaSgu0vhdhXdPrfpaDhwXTk7xHryari9nJLwHQRSPGYUcns9V5PoHuSbKw1/QOmINvnGujdUmIcKitXoztqANY5i/Y2b31Xkx29QRf4feLrRFt6ikvSxkEoFeRqsthyJrxbICFiwsczE+rEIxzl6nZeHZo+LUUNv/WW6jvCPGJ92bd774U5lwR6SS9C6YepQxyl32JhEJf6umCjjqUrjrGRXfbM5YVbIF7Q5XortzpxfQ8wwfoWnrD+r6+hMwIjg/Iv6SAuumhXeexnBMgJMUBfYW7V0jyi0NQRvsHNovkXLOndn1B+WgwbCtn05yO9vYC9by/ItlLxP5jgM4B3GJQGvFO3S+i2cVw40ofJBdbG7B7YzibtIUBDU9a1y8cXBLYFGaN1KA5pRMxdV3bqveITPzNDUU8zhYsxT5AX277YmxbDlCF6sWluj5+0+UYFQ20uxckrxFt+qVRXxaszm2F7UJP6slfUhnGj9mmu8/hVU9xlpfwLQkyEWgUm7P3mBPonLGOwPmSM3blPQ4+0fhCTVw6bB6h1AKqthre39RdytTxcITy/XDG4bY0a/6oz7xWvR1At8O27GcVvwMIwGKijSaY4TTsBh4+2D7CN54ik26mcoAnb3cmilZxabszLxGg+TP8/X/95JEog7kjXVF/0oJ6apFmQG/RLtgmup7ODX7wsFi7V04fH9dM30oXiAahpqfJUcLvJ50u2n1/vxK+e29rgV2GForXY/L3/JJdLjd4kU8+1ePWq8V40VvtXRZ3crnEckFH4XCDo0hLvGPqKZyt2+cC7uNy/MWTors/9ghUEhrR5OM3G+1mr0PuPQoUNfe3OQmyXoKdeyR4N2c4fRnpfNP8YnkTgLZHcyogrmAgcTxZMu+cEq9KGojKNiTDK7TSfj6fBqBOkkPO9qZly1dY5wF7aU8EUyOA+UOhQ+gENUUrPhCUhhW4pn5JTaysvbC6toHiWHd0m7hLPb7DffJ3/wIkHfpp3/dQzTddi/0Zdeb8Nj8ddHbTB3s8oIws91aHv/NZREJTtMJ0FAEfbTmk0a/MpkV1PFhBcUdEYi9p91oiCNpLZOP9IdqGMwdiDh5s70zPQeyGrIhhDE6vsceut3vVo3wdDPjqnAPF9psDQyZfWnhnb0x9UdFTaTKiCMiy96bm5dSGc7lTWvA6cTXWnUAqxttGHYDwql26zbN3P5Wevmi3/fwgop9VxXRTfRFmAS4Qh8ttMYMUEvgqaUV4LpHrGdpr3wWlxDS3iykdFu2BgLaPFexu7qCe3fI5wBd/EzDaSEsxps1kwGwsHLo9RM9wGtSWh3LQXJByNaJ+OdNHor2TrY5NXk8ZU45bEUSbT4F35t0J51CvoVbhxKDuSbLTSeq2L3hK+4U8QfspFr+pPE0xXxwRbMWsZ+fjVGDYRx8c2uOTzW75HaBYXmcELclIhUYxFnD4JCHR3Ko0p+FliPBeSHCNz7E5o9aLIMvcjOo/vDj0ggMit52pd6zuxVBahKhb9RoRGJiLyRa0yKCR8yMO2s0HTFjpeHjNF0iauGzAGl+PkHwVl2LUPBmrH1UGl4fypRg/02Lc9tOkYRapf/d5ig5tC007D/AWBi9zktK6gfKZKtiZYN4zb/8ugfp1GQ6eq+ezXD8xhFUnrPtnpPNHSzIoRE2J9dsnDRf0fVZQK/ocOWzyajaXygLMIPSp27gkpaKfBvCyv+WkCTBjy+u+1bVDU3RIlOu6XqrvW4T2Mz7iCL1JPRmpUsLfeui0H8LlZvct9J/vGxJoNIW/+Aw1RQ/p8S746fIopQDqkuNjJ+fqlK3xHdY0PBHYzIPJ8tl/weumH6k+SDCcPw3M/u5b1CI17TZdz4PdGDZIXH9/nZuTQ/V9GX/7FS6owSUw9gcOQe+rmrQfuEx9j9ccLfRshzN+kQCcefeNJC7tWZvJlw5wzetI8VE9hkuJE6hZuGzwvUplxrSP0ECL9hx19qe8IP1nd4PPwrihRq7NWmLfx01jUrzB0fuUmVO4k3Qoa5NNd8Gn61nrQQ86E0yJsnPHtNXmuIK3/KZQyz6EJu1UIdLE4LTBnto4IZVe+qBw2RdiZK/fxXnV5QX2PTGoLpzzno7V/qEuaBapSRI3/WIQefDZ70QkdXnUL9+wy0HxBhk1hT4Il6TdZ9pw5F1qxsGhmIf34KlVP2UIZk8z5etQa4HyJhN6Tg/TFMWLHmtgq24II9bdZIHrdfD6eGAc9UaQTuyzGWC+lpmwlf+S6aTLwKjOEoHi0Kcz2eIYBMOjwNn52fZfj75bEGZXh/rC3UupuGgObJQbRgK7kpSBeZD/+N1OdTtzuZ4WR/NCg1LrGAJA3NmBoD8FAZG/1c4c3zxDkEF5nT2Va2B2iBxAee3A4+n4UTMnelxgPIscRd1kFkQ4yASasVgTbo0/S97nA3wc6JZuz1gKpzc1jlqd3zkivmuBMVfdq+AceSqR7YHUpDp+VcDfwglH+fKs29JqCLBmNlNnvc89Zl8I4iZ/42v1vrOBDF8OXsmHp5YLEvDjs3D4yDqaHonfjxLX8OovHu4K+ARjFSu6ah7eFbV23006WDSrYNIdHRpUS8amfd4a0Mf3ngiT1NRLn/kPSBq0pfpz2PYiHhULOtltixEyvun8zbUSBAjGNCgA6kegywssTFZR+8xXgBnB7QGlq4Fx+Ki0orXZ4KjLA3wJVyZLOt2Nrw6TcpNSdC4GcxrBLVM1m38g6otaOADpvcBmmUTqnpqPOaXBM4Cde9uR7q0qxaKPFwcIDlxnac3PYhkfE9Kil2/SsNxvwjkRhhxq/rPBYY6+IVNvD6i9JUmmdnM+FLSiRwI4JJjUsTmhnq+g9qAU0yMNfe4RsvQ0ILk9n16IIhcU8+mZxwDWA6GmE3Y1843Zgiufw4Ei5P1Id14Jnd3yQfOKp9PdeOpg5fNEdept2ob7vQPFzc1C6jMvQet+4QS/nugThZxMwA/qQwQ3nX6QGleR2adWG0P/+bnRlQ/2xG4/Img+xyveEmHoB/B0J3hvPZHGhvssFuB8WyhuSosIu61nzkL0XoDLH45k+V7jfrYEO9eMBN2RKizVOo+cPQBJMaFIOgjgp8/+7r/lUDMU3C0fQDVNABLzewlYP3BHEIqNTGzBe7FpVuJOmxNnR4al2IUTvmkJPPhKTrd2pZtjZLHH+hlahV0wmkwoHp4DD3Zwxj88Hk98iaB+SzS8k+IazNLBkmGD3wESo9CrBUvY5VB6Moya8BsC+rknHjSbb4ENa9DrRYr8HPDeUcaW5nhg4I3xqP72SzgcynQAr68IcZhgiksxYKIScTK87o41juwlBctDehFwfB5boqDFrPnoLCPYLzPAkcZTME87gYOJhzKMonafLuoe3QBSgis2OqmtV75lwDMPHRrAgWOrXjzCT/Ha4uRQ7QsGCkeGVwA/f/pxpg/rAg2OTDhiwjtcskm+qR5vpj+9lrK2/hL4CI9P6kY3g/H84MbgA6UEiXfhW8z3y+MI82slrnhkpiPMrQQ6k7sg6dE90mnydg6E+wYiS+Be6fCckgpsBbKjGBZ9yOrAysDk2Ee89c5NMfn2XQbYPwh//HHCsa5CKR6PGFdpzmZtUXgYvAUDac+OpHOWfRs4ZMqI9VftgklwoAy9p/KkzuvkhJK8V2Po3PgHzYybBaRIOydwkd4GjQ4jC78+0xBccHuigX9x+0kmZw/O2qjhqFbfjIz01UBN3+nUvZC+nrlHfYFf8ZJhv99K4WxeTjy0s8laz4sJvmKsHUHlNd8VT8WQXWpjgJ+PcSHK+/U1P+GtDEB2ahD1Vv02JNxHBq1ITtg8PZ6AZct5Aiexs7Een4J0Gvdwxfd8xPir1ozWjMQgbbmARr6n98RU9UX7UqJSz6t5MHfB1tLW/SDiw/mAJRZzBE/vJiKqrH7CRcnaByhY4q54Lqfz8H552o8flksxhj+9BMC329OtdPqaqx6/aGArbxA3rn09+P03gPNHsQmX3k/pPKZXArfb25fM2/1ayvscB7h3exGb+oNPF9n7ZOpuTxE1b21TtKHKDNDYqEfCzd6ai5pPFryXw5UmgDvVM+guA7jOjYdR7csFy78nThU674Nee/Xar3oSAvDSZ2q6b6P/npvDEc6JtaO2N30Ztedl0vhpXyMZLAKbH95Zhuq1v1C8xksmt3kCh+Lj0K2g7cOfHgTvxNSp30w5m/FhnkDpWxv0vbd8McVZfINHWd/SXMd6PUUbo4H7S+vj/CpHIWs9PtAeePtBQuVJq/+wN+DWqCqk3p7HlWfIA1CzjKcH5WyGzBp7pJ5joNL1fINhEnwH4iNpqXdhWj8rrqODFS/wK9S3BWGP60O6FwLEq38BnlxgX2ArDieMx6GoexzohnZLhDM2ACf1P72oqb2+oyddktjISX4On9JjIhtYhKGkZXOnrvGdOvAA0qnV9Va9diohz+lRm0NelioU26VHSj6jYtlonwk8xjJFN9F3TNHwtAjKH2egthJe2PiJjxlc+SY17rc3YI9u38LvWTZoeOFjMJ+ecQy5Q3XFu4Wss292HYGuw0LqDd4hnLrFJ1DbJwqqVv06aXrE/emR6ePTml3P6UXb07OHPXM6s0WHqISfe+pizE57MOtrDVdoFjskbe1HuNwfZwQ1bQ6ogx5J2HvAzYFUcEds7PcsXE4f3wPUGFKKjK9TT5+nWarZHhIah8LYD/u+hjAYqoJa6lZN20VrEYwHw6b2btuay2U6LNDEyxfvLJilzZwSHkifnJIlOz77eSOJMlj3n+oMdsWicMFNLS43gGoFtsWP/wN/6U9I2CdNQfu2WWCUugF6bvdb8Iu3ChXMK5IGszZX/WFoTy7yiRTTZzjrn2+kHQF1yey/xZDenmoFJyI/cXRy+3D2nHCARp3kSOm3p5D+zmN721g0kk9bQFJwTSDpNjriv+G3br3Cu8D6fLwTsuLJdPJjDm7O2pl8q7vaj4/iykOo5i51VWNXT5a9NOAhywNhfbEN5wa34l+82H3csqDd6xTBOxExdgHSikGEuQFtSAg2t+pQDIdUj0EXhim1hAmak7K0BArCR8emXE3pDG39CHWaiWSz8q3FsMYWTuVCqVcf1JBJu4poSQgu1Ej6PpyMRsvV8MoGMgGLsMWdEQeuX16g+Lx59Sxb9hOE8n3Evqg8CmH1L0AslTe8c6dXMdloP6h3TSPU3KpRAa50zmH4WPR1nn1vLkN/1f/8OfO0LdIpoaAC/ckL6A48K/Mv/gdvySAPffwWbHbSRfvjU7veBoJVbW9amT1zHPqcbv7wE3JvKmAr2wwhW/1rQA6eR4/lBMyX/pSz330hk3DOa7LiO9zVkk7D4dL0hINq/Iu/OHh/gTkGsMzAet6Rtqc0XIowvICb0W2pcyvmlLjuqMPw/dhgp5yKsCPoO4F0G8lkDtV7Pe0G3tPGmbtSp0eDuUTB8OdPYXufOIX401OHuFkw2mJSD+f9ZGn7cxNjRLfPmpX9U4R0Zy20HJWpbrl74ADpc6HYS5VtMe780AGlUTRkzJpD2m22WxXwAjCpo9wEczFVb4HxhYvW+HkK583XqMDmEF2we8o5MIzcdAGoulpYn49Gv5AgQerS1D41T1uQLjEhDVBVf/j50aDtdNGDp/M+QUy4hIyFLucBxCpt9UvfbIo2QQOfUjWtesEv1v18/Pgjtsv+G06l1QygKCqe9DyszQkmxQWufjji13gsZeI3g7qox/jsidRcnoBfa7LvNXq0fGMy24tFGBqnjHr32ihGh0zez8/GQVxFISFBEkHVwAb1b+Wrn++XNoPLrFXYqA6DuQz53tFEfmdh9xEqYPRRJ0JFEqtxMw6g54+2f4HK3Tyi8/77ZVP7TvVf/oI6bfsqCNvtX7/3UdTot3oRjw2CR3O5/vA8XNS9c1P5lO2xjXYSo6tfDWSLU7F+Lepi5sMp1tZ4h+RUeRZkTomoruf1zx9gL5Sq4JdfOK36ZxZEd4B8ZHKEXRFJF31MLDipR5WGj+qaEnvwZRhScFv9aKmgw83noGU7Lt5+A7FYriS34LPHIrY+OAPE2pcZuM4vj0ZF/i0Ye3IinKp3u/o3zJyiw6P78WFqpJIK2LPZNJDunIVG4bUzqbgIlqqn8g170OTT5SDohpa/opj6Pz1z319zeGGvgK6DJtP5eNWHn14i075Ww2U5cRdYvj97jFzhmM4YWAFc+ShSV79z1ecW2ArDjh7156dmS1Af4fe7fdJQ1zSTkjh0ICq7kBpKjoHwmuoO3h3Tonp86tKpju3op8ewX40VYImeE9Vejpj61f3SD/zZzDT1a7Ofni2W4vm8gJWvrzn4AsyHfPbgqrepl9z94rkMwAHAre7oq1W3gv/lp5Ip2FDdfdFfPM1g5lQHjJq7bU6Df0hUmi4RxdVza4qP12PR+kEzcLrU77p3xOAIiztW6W8/2KcwXvBOeLzm64Z6ek7JA/786s0trkAXSW0OyWv/wZnAWYWIvt8HsOFAqKs3Ss1i/l7+8V3nmUj1Aiaz0boIR0hQQpXNW44nIDBpTKTNveiHrWLycMfLCi4cZe6nl0I9MLXYo84pHdhSyrwK653q/Olp0mv1TcVWI2JfPqJ6co8Tr4yzC7GDHos5N64UwWGPPnRn7q9gOam29csXkekc2Obg2ycZNs9Bo7vdbWJLtnmJcNLvIt6e8Smcs71bwdV/R49zYIeiukeleoRMJxzdPvu5f2YNbN/djZqSXYVrfkSFZ2W0sUu+AZuBPi3aUTa2RLwVc0F+/GkvBQXWzXQOF8m6LyBSNLDmIx7p8stvne3rk4bPrQkW+1Cr6jJ4X+qlvRK+z+k5h0mppdTroG3++ctJqFywq681kXzj5Oougojuuqhjy2uxOFgZGx872WiHfPaEHeRnz6Ixf3NN/rQsqlYa54YagruvR0HEA6wua038gTgps4tyglfDrREwTkLYXqM8gz89qzbesyenjx/A1W/B+F4m9Z9++p23330YO1brmkQcjyxJ35tz+dAauPceJxo+oZBS9bg5AvckWIQLtAtY/WkCP0HlUfTiEWArPwKrPkd967fFrKtvT5vDCyMbm7nhdCJ19uPn+Ooch5QFZvOCSZc5Kz4W4Wfh7QSu/gQRHF4wu1vHGeDnvweejvvJSOcSnCjX47C8u0W/8mMYPHYVXf2MevVnuJ9ex5bffNMp1pa1D/Sbp8aa7x4fxYFXE17hqHWOg4IPdxtdXvN7dIdkD8y3RCQg3n3Ov3hSzHllL+Dy2cfUyM9STz+C7Klfd4mpsT2mjLXL0YFt9npTT7sOxbIsPYSrH4ft9eAv6ud1+399CsB/1xSc6t2DOtpQFbNzKy210/gXPStnu5+0OHtA6fR8UkyFG5iu8/eiovikES19jPXUnF6W9uJwS/GbLGwobn4FQtd5YXfX7tjsxjqnhXyR4oDvWzBPrRbA/ee9pf7cJ4V0uTx0WMxLRTbXaQyX62t4QL+TW+o3jWIOSXDsIBfLF2wGIAtbvbvwyiVuNqjZXiQwZytnPARSi+Sy6Uzq7O8RUOfoTY3zbUrn5Nk0QA/fEtWbPWVEtspJiWzRQ1p0VotB2e87jY6pS7e7j1uzh3SO4fewK/Ax51/hfEx4GS73boe0m3BO2ZG1kdLw+wDrZwjBIg4T0vxoW9Dd4aOwLlITBPeFz5B2PexCEe+WAPbS60kjw7gyVlV8AsuidantUD4l9yiQYbFVQxzyO64mpn72wG40SmomXzcdNHl/gff97UQ26/ovauNOUPXlD5nmBvTL73kzESG2ZZabE7zUOqSbdV6JtpvBcjqiHL40dMOh/OrZtHRyDj7K9o53F6T0QzUNMazZraJ29mJrzUGjAuPw2NHrBZ37BU3hAN8AGvRUXHdhS991p1l2mFBsHj1TuCfPI+Tq7IwErtv37Fg3uQoETsXBs/2CDk3mAFPyHTA+nzdgVvVhgKcD84hWR02/zFn4AkySBqRMYWPO8hhNMKtyGTsMeYz//DTJDXsY/86HJLYBdLb4jTRr2YKZ29AKHOTGIGJyDGoGtBOBriISjLn9zRz8o85rg/FSqTHPfijRE+ugDhUTo10lhUwonzzEj8cRG/4ipZNZrL1fPA+R7feZs8+RPRD8bmwdR5uXEbJBrSdAjTxf1+9cs4/PO9orzx7YEPOWkSxpj7CI1Joam8ZLRzsbApUXPzHSgoSY85HjciB4ho3tONumC+iZA5pY3FJze63C+Wg9JziL84J1N+5D0of5BLn6eKb+NT/Xc+3yMYQdLxO4XcJCUsxnp0Vp8sBm5jM27fVmgLX5CrGfqm4qMLJV13k2FPu4Vs2hqJwAds2Fo3aefMIpcLAOlU/ZYg/oBJD9MzE2ku1WZBZpXhArLxFsgzIj2oc1Rfc7T7vXzcRGdzHXuuNZBl7jpRipXlu/hfNLhVb16agLD309VVa3QPMqZdQU9yFYuJ37AiG7+GjeS2pIXvcoAneiEgJxrKWt7D4HbbNlgPBp+EoJt8MNBNMmRernbqbCbuJEYGtTQY2HIKZzs7dbsHeHDscRuRZdxDcq9J7egNFZ6kx2Wud7puaiUTe9u8VcdTtezTjRxkF+CVISnzoLfpzRx8fDOPXTel7g8Ly51DlbYj1+CNRVlGUXwntjaNKPILzgAXo8mbIyrmkuOQkkoXXB5l1qwAyW/QMyLvbINYlTxnIJJcA88TWNg8/enKzDKQaMT9Ze7JvAFHn7LEMMaxkBsuHYdMD1BWYcb9Pzlqhs2l/yEh6/9xqbzXthrXTgRcgfiUIYSRuzd3ZJox4LY0tNi2/Dfptk6/mTa/KLV20RhBb4pMGJdLe9CQbsyC/Q+PkFY+4fAAAA//+kXcuWsjywfSAGIgIJQ24CckkQUHEGqAhekEsCydOfRX//8JzR6Vmv1dImVKr23lWpOt6t5VqhBOamPSHabT/lL0aIwIq6Meq2tdky5DkS/GyODfVn+xAsdrOJYfDcZEQyih1fFqd9wZHLDlqK7TdYssUQtbiRRhp1hVMu57xDgHnoS/H1+gBcPooMuHjjUZuP25QfhFqCy5Z1SA22r2EyptcZrPaOvayzU2m7wQJsj2aL+NWtAYuHroZSxF/kt8aHd3YLCjBn7z0a3ssj5aeTIsLt9iwSdrm8gml76hL1bL1K/LiYz2BRczoD/sgBvdvZZVhi5IzqDtszDjUbDTx3dV+7WRtM98mkWtPZ/s3wne6/SH12P86WzPqoriISavLjthyDQM2A3Iwp2tCtAKbveYZQW9Z7Ex9klSIP2zs82+83DZjDSmaPRQ8zUdphc0jpsJy2zh0e7reChvvDktKLUUlggC+PpmnDOVEay4NrvEXzuAH83/omFm1w8Cj09m9/YXqMTih9knpgzW4S4ZQzG+vv3Eq50V8KuLlHHnYtjsrRkHEBFEFGuOQfoR1d0ldQypBBg0qdrMWNPQjMuvkQcbZMML5Gw9Zk6VDRPbp9h6m8DA7cPy+ICA9itdtgueVwo7gyuq/nf3m9mw5WxHGo+eZWOgrd4yVPI45w2KRVOs+XuNbunwBSXFy/wTxbiQ10pmypdf9GwfRRzBpOxvmONEsU2znNnA/M+/aGo087DizKvQ5+P++a6iHRyv7P38qRlKHtQfpydrVyB1iQPKk1WWHJa3CSIbnsNWx9Tnq6bfq9CLed8sHGW61TPuQyAzc1MbG+KQvAD0InKu2oA/x3/udHmt1BKc0HiqLmEiwv5eeAb3Z4YjS1VsCkfGFw59QXip5otrihXpHyhyc84SKC0SXNHVp+ESDg1N06LzHM4FY9lxg/9A/nvhdLYGsbHT4c/Wc6L0+vAp9HGZDte1aCmZRghKzdX4gwpr+S48d9BpN7wvTQfvSUUmsbQkKF/B/emrvUk4EdBwM9CPGFT95VluEhtErqbw5NsOKlTBNGABFrRsznvRt6cNDjF/bYFQd8V1mxJpQyQ/2uJIBfpnsGYindkm95iyySykIN3Olak+1nrlPODoYAm9coUFPG5jDJTHZgKu1TJNXsAObdtJGhhkcJ51/bSqVSQz7Y/TY12d1f+jCv+Ate2yTGtkVvnGsybKA4fx7Y76VfOsuP1wz3kWxTfdyUgAW9BGEhGGdqQqlJWT81ZyVGmx010M5IGar2sSZHYoaLxxJb7EqvL7jiRYxK1+ILzk8IpM3ax6R6TMEALkajPqnQUbu+/MCoaKUHz2t3d/+qngcy+SwEj+pO6SF7fsu/eANVsubOZWy2RPF1G8ZxMWGrjN1//lxNdIORbdUoLY+OTaglToWwO17r4P05Rr1qS/d1vnXp8uWYqjo85Cvzybd+ySw0JuBoTha1lj60drKy9LCbTzdsCwsaRoGYMnwcqws9iOwNlmxZa5QU6U4NI8nabez79l+8xsdqrDnbfkMVJksm0Gw84ZYl1HkBiq4qdQEJhpdgGoWGrmeDAK0UVv/4ZVDoMp2WOy3g5dYbCqXYVAG9yocAzK7ZCVCJDRP7h9MxkDbnXf3nj2gIIhEska2dobT7+aQt9CgVu8ESQKnfzkgMbkdrWkhd/Z0XXJ33L6trPycGrIvU0ihoXDD3IlChTqsBl/sYpQtqWgIrGz1peLy/ylkgvgyvKD/SmEnbkujYF+FsBg6Sev1QTooPQihsToA6jdm242o/wG1KD6lfuuWMg6cKuuBxJ7tGTK35s6kh5O7mRMTy4AdLNtxrMBZmjdix9tu5/Zxm6OyRSZ2I9nzsottLdYl4okGfPwK64i/4K7CJILrMYDl9QAb/8KNKbwdr6zhXEyjsYdC9tPYxevlJD5WxwtRI78+AJRs9105XsiXCubatXeiqCWSPLqKHV1SXK176wEi9i4QO6BEswK96eD68wzVekWGOs7cHl9eJY/uqzOW82TFRW9dL8VwJgDcSG5X4eN3h/TXgLfvGRa2egdKgTfmrAQ/MNUUbjkdqNDwEi7RLY8iVZPWfqcCJ/2FnYByyI875rwOUb4MKmgy+Maq+c9rdtx8dNvvdghTlum/7Rjv68I37G9Yj8mp5TFQdbj6DghQpSQKx0FMfKrFlog3OJjBiptpg/Z06HHWAfYqnCU/s8MFGZ4TDIuBnDklSG7T0vlnaodPKR151hQ/KL7eYtykFOId+hmYgNukynrio3eL8hm1HOpbs+vvEAEzN2rensgcpmPsYrHyI6seTFswXgDL13FYMI5A35S3KOQOnF0VIeJ3adjTXmlDb9j1s3+s5YM4AHciK7kPtC3sFXIs3vepvOg0fsqebivUhEsB991qwOfmHcicU9KNui8r+b//W3xWmNhqBtxG2yxRMGbidS7TiiwPYhZzP4BnuRRxc4AYQyuJaa7C0WWeFsPX/i/baeTJB70t2BeQWEwc+AkNd/VlkLbT0XvD3CH/YvO/ngCx65Km1Mmypf0olzsaTR/78OQ60YBhYwe9IJY7Nkfh7/9Il/R5l+O7bCAmh2fOx+i4VfKful8BPf2gXseUFdLHmYbvftsEff4N92ObUz4s+nWXeIng+6wU+JVMRsMMhgGBTDx5RcOq2c72YEszGwqHReZe2uwOhpuI2V48Gx/ezZM9Hz2Bi3L80MkEX9Bx3OdBkQ8DuErOUVtndh7tjPdNwoQ0gpypONPmc7unekM1gxdsxaGzxS4anvxnY8X3vYAP9F3FEckpntTQ+UI6TDPsCEzlPi5O+zl6400AW7+ncNkcPrHwBwSatynldv2arVkx1OIhgLrLrC3yEJKfGgsNA2rZ6DOevYa/78xt+++zlr/WTFzK9UwYWBm861Og3wu5Vq/kv2HkELuRkYDdz3JT+lqKAdyMVsA9NBJbfOcm1tawFaUe9CMblqd/h/gq+aGNL4sCQhySw0ZwT+p0N3k4L6e4wcR851a9WXC7BzhthGx0I2dbKB3RLZJpgSucbdpTTKSD38zWH5vM5oxJkRz6+bBtBJfqaZDt8k4F9nOaj+See/52XdikUsdOmAVk0zLd9uXBTL8CKXxEIBWPY+lPOlD/9Z/VvnHnfWP7Di3h/P9TDrJaHF2wPH7ji5VNJbnIjaLXyW+2vFCw2BDmDmVk/aXS6uOugSu8Ov9fAI/N3qSxe4yqH47Ny8aO4fi2W9W0BOzj3VJftU8DvrZKDmg82WQANQPK/ou93rdEsRkCno0vTrH5af/FP+epjTnUlQ2DeBMtaU6kk+HCjH7A0QhgDfBlUJL/FX7v04loD/PD1P3yZkj/7bhtjQts99qwdfpxnGP2sDUXFLA1MvOYZjOfUptZTSIM57tqPsvHQBdsf1KaLvMcqMIdaIELpWmDuPx2D9RPv0cl31PJ3rZzkD99gZ7tvBuZG1Ifn9s7Q4h5IwG5yL0CXSCekxuMloNu5i8H6fOrJazHHpi5k6HzcloY41soFNQOBn6J8UWOj7cB8waEIhtkDuB7pIWXjFDBwPRQ93mONc1KZSg084W3hQJqSgK8XNTVrR1R8+Gifkn8WGUJhy3IaruefAyuw//AIdVf8tiON78HH7aHQfbcL2x0qCw+ebscvgcXY8pGRrQnzVzMi+WNDq3O7nQ9I0hiI1/cPX5gc55r06fS//bOY9aFnOHQ0Q7swzwJGxzeCD6xf6J///dNzoHLSf/hWIp3vNFms1eMpMNc+TF8wBbezAHMgJGjelCrnpf8J1Yt1OVAvx5DT2x05f+cJe8NgWf/0kp2UE2ypT6Ek228o/8PT1v07WR+z6cmfnkAW2yz4ZOzpHax4nrpmKw6M47oAf/7EYI89Z+Va+WXYWU/LR1EPJLDrGd6ErUDd09kIft+zLPx7/3zFd9vfOSng3qh2RBPzMCD4rYUgMG2NotDsAZPzFP3xOaQerVdJ3dL1QCaKO6TlZK2pvdMOrPoN0fgyBksX9ne4kR1C3TrbtF0+8hB+1jsN+4P0BWPE416rn9GeusGSBST15Fw7k5uPrW58BD+xBQXcVa1HlrELy2V3Ooyg8+8Z2pqeONA+3d9BlJg2PbhvsRz2z6sJjZLFGFd1mi7Az3r4aNUzPVyOUcq1eNfD7iKPNCB0TIdlc4Xg+PBjaqobr+WFLiV/+gr2V/tmv50sgdebyXRPBLkdAsGModrOEY63Wse7J1ISwDb1az2PnTWSkhPl9PEsery+o5SEKCZwyc8xdn9J2P7jL2v8x7g/sYF1hV9BfVEHur82NeCGekRaPdsJfWwtYeCX33WEivnqqV3rsF0E0Ktw7z466mSRXUqKrzua3E02Ns73K9iyOK3BPaUa4e39kRLr8z3DhtIzkfnPA7LM2xDEapIQ8flt/8NDmmwJiKmbrv1n7/hqU/TV3u+SXjM4QtbZAo38hAT8xsIG1t9IQlyPvPI5uh2B2sW/YXdSxlXvWEQYf8UUP+CyAL53aaL+6cuP5vtIyb2462C4EUCjwR9LEg9dA4vOfNM1HgGmVBcR/vFZW+7Nlt3CXwVFffTIFF6LdLSPSQc+YuojdvlK7Sx0lxf8PLfBqp/1ZUesedVTgYVAfeTB399rS57FaNQ0YPH+G6hKvv89sPexYcCWztfhfP+kODJfBSff7vaCq33hf3q/X+wrcKiVgsbf52HgetVIf/o++aevLGxyQGF5XzJa5tta0u9VhdW5q2nCDZPvunTUYRfc7tR8htZAU/MIIfk9IaHNJQR82VwFIJDzgqNJZW0n9kcRqlIY0lyHQbr9mmrzD1+YLfwNxFfnGV7PWxOBa/sNxv5TM0DbVMHRxrlwnrueD02+odj/fXDLtl9bhqCrmz/9YCCbz3JWBPsRor5z2pQ9Ql+FpzupqFHurwNXytf47/1dOjPhfFv9JGhjv8ZGfkrbLokPAjSv9oZW8+MXvKdHO2urv8c2rUywPJJnBonhhjRQxP0wW24zaqs+hu2DZvPdnr58mORqRA/N+TNM2XBu/vQ06qhvArajWxOY06f9T++cP0NfQycIOQFkcwfkcnZyzd4fErLtXSedu+j0+eff9qq1gHlKrBm2j++EI6REYCaW3Cm/769Au/GqB5JZbXLItu151Wdc8L5Zjg31uyVRay5YuWyu1wwKqCpopWpNuiRLl/+LlyyZ7VRyD039x8ep/Zh/YPoW2ktd8yE4KLgOFv30TOAk9yXZXTUdSPsm9P7p85fg+RzoqoeCPzwB94elnNHJIlAjH4vqu6hpR3lHJfhTbEyPFeTlfL3Xjqa+lgs1iq1rEbYsENq+rxClE2uLssNBgGmFJ2qc7wrgWXiQoXHkJsVwWThLxUVWGcI5EvOrHWw9Hfvwrf86bEevW7nqpwmA39jBYRXOJTNyNv/LDx2cvWfNs1XY4PfpYqqf4cvi93YptDWeUqdtMNjKbHbgZdNN9E8PoGp0ff3bX2iaNzBvmFvDP/3AfUybYQJ+1cFzZQTYUuVhmGU+ILDiP7LbuQOYpZcLQYs+LUW6trTsU/xMSOxBQM+Xeg1W/vKCivs60qC0eMothXVgLt4SPpwWw2I4Un14QZc1Z+0/Wm5Fi68hBeXY2hqJtXhXWf3zd9R+ftthiUY1BKJOPKR0t4TP1+Y1worYDt2/56tFPXnbyLsWUpyc3b5cn+fBWbj3BGjB0PZdYVagOvYKjR7beuihQnv4ZHlHwGGHrFX/cP74B9Xd+taOHvva8G13e3w76mrAffkO1RV/UqdJzta/+DRpvUmRtDRDq9DWg8Pbb7CR3g2LBucoh/IxveNDyEVruYeSDqL4i8k7A0bAHGuDwKqP4BB//WH846er3kjdmBqplCV1Bg+O2SPxg9pyyZP7GSbwciaCri3DjDTvpWhQL2kofbYB24LgDAOheCLNLsXhX/yeNWOLw97ALfunB0eKhk1umIBFwl2EzrD38S2tp4Gn5lGAassibBBPbgl6zi/wqpcjRd7wAu/hx+K/z1PXTJuADLsihmn7y6hTBb7FTxOUYfLJ3ghKn5M1mz+YgEN6M4k8JpYlBb0g/Ol/OHwXFPzTi7iQePQv3ySJ+6Oq3eEnp5EemBaTEyrDT5voeM0HpMyeLzFkp36z6kGL1blmB+H5Yr0Iv+82A7u4IIEHqmL8j49dAj3U1vOFbVaV7fhES6xpiSchWa5BOsNiMNVVfyQ9vf2sG2DXBoZ54pLdr9kE8wmMKhx670BzzS2Dnw52FbwvHx31qx76W/V/7fmCMfVS4xYsjnPU4RAkEAfDxrFWvSCBaFx8tJmrO1iMaTwDT/hahNuiF1D5CBm4RNmFRlfhGzC2LALMXSfD+qrXj4rxkOCf3gQP82KRX6sWUHE/R/yn7y2rPgRTyU3JZmsJ7XL8yvc/vYU65HsItn/5kzW/gINKjYJtsE9VsNrHao9ZwJyNWoPnveX04J6e/E+P0vi7nMjOsLq0f4SmCg9vxcDRav9TocAOvnRVJbuVf0q+KrP/X00B/D9mH2RuQYP6AAMuYQWCRT7L1Lbyiv9G1RPhHB8P9PrLLmCOz10F5KNv00g3nXQbU73TliU4UUsdv3zZ/YQZ2HlZYrve+C0zPUvVRgkxNJe7HeCGUCJwpRtMxK3plbsfezPY38wv+tqfTTmqrj7De01GsgQKbpe8qFRw0F89Woy3a42JUKrgQi8JWeqbVtKb0/jwF/ol0iqjLknsdjIM+0Gnxk9yOV+wWUN2/JbUnZNxmDZ1XMCguB3IAo+JRe8fo4fHtHlR72lr1rxP4hgipbPxowwJIO1xLZqxztO6nr6dgqzKQBJ4EZJ/ulLOYiiq8Lb5xGSwNrCdnlf/Dr/nUkXD7eOXu2nn3uFN4RdqCbvJ4vt3xNTO8jwcHnaBxd8i7eD9WRo4+CSP9A3e1gv+QmmmQaHnLfV+3zvYLXlKtm0VpuxB1Rge/GUmW/eWlBzOugr9YyXhqFFhyrVcy9QjT07YZQ8+cKM8VJDSnYk0/ylazPS1EMij9UBSKZKBzRefgb46JxRJ49ti8mOP4ELnnt467wmmVbGFX9gr1PWvudVNeEPgTgU29emy1o3pv88uKl2HjB7eDdwpZRW046VFLBkri4/efAcPPLu4BFo8iINpeHDczyM2Zn8eJvoUz/BjoXqdo5hZc6fHs9a/woCGuTtbc9NwG4Kmj3B435P1tvj0gV1p6qgRbZ3PUft9gWd6uGL/fVussVRzHz5kx8GmtWuHuamNWTuyl04fvuoFu/S53GGyP2X4gLSlZDhIPTiEc44dBY7Wcgi9HNqz9iPzvooAOV2wBKuZ2zjc7HTAv76ageh3j7AHp7Gd90+8zgPfyKQr3tjiRmnc4Z0tw3Tol0+wPHRUgwJTHR+Ezc+a30KdwR08EnJ8qkPbZfWLQa0sjkQwMxMweux8eP1UdyReUdpOzXbuFPeHMY0Ky7SkZmk6CNR6T4PrNi13ufcyoYfvCIfVTW35kEkdnJF6x3tOuMX8FXMDU62w5RzqcnEj46zq3+BJcesNFi1sZf6zX2zv5k3AtheGNuM9U+j+vRGCcTblDzwOeUWkx3vfsoPLck0Jlhib9QLAvHFnBPdfVUO7xMfWvJfLM9RPTkNNdD4OpAwUBz6SZ0XD/bMeeFB1GVyc2sNG+THBstx9G7aNd6Nud47LZbV/7RfcHerzZm476T1LWl3sCkTi15fzZRt9oMArAxtb7ZcuiyoncMi6Iy7LxBiY/6o/mnVSz2j3UGxrK/zesRYYKqT2azba5QrfI0w/uEbSjnfD0p7ilXPfTFxJ93PJ0H6uIbSnkHAFK8MPbvQ73B37huo/uBvGjTuHQDt9cwIFHKXjj3wZTLWrhTS1HcCi+dGsztdFpT6/BCV/ByCBuSCK9PS2a2u+XL0YdlnDCNUex1ZM8lyE/cb9IKXmnfV3XtVYfHjU/W71VIo+OQTI1EucqGzXvvH2hSDvkhqH58ORTxurQfC43zH050+X2Y6QqlzvJtmpJQZc4haBy0VliAnRy6JmPdqq6n9uSJjJ11p0CSM4oXmD5God+DXnjwKG+njA1s6RrK4LzwI8lYKxrmcoR7TzZHj47UKynW2N85Nx1dWalx2SX9nrb70xfPVVSS+T0AK2LYYGiv3ypuGxMwM+55ccbq0Lp/rUHNLdyTiakOG6xDo/mdZyRF0IRbm64LK8ffjyuS6qhhP1S+1M/gWk3layap2QQQ9HR+RkOiU5HNCqKR0ic91fPdawn10pzjdfMEVx48A2Xc7YHceC359J4MF2PLU0/fz8gHMx7NV9TAsEfXNOu/druIMuuiC6P5TxsJjhVYY7vxKoceK9xSSxK+Bqj4SN6Y9/hjlf51v/IOH3xhvYYW/YcPV/FMfyJ500N7vD57OuqfuahYF3/VHSll3foq3GEzCNt6RXVTDKZHGcM+eeDmwAeyGgeyPD1nwytR6UD9Sgnb6nLTtGVqNcSKfh8LK803kwDz78vpyRxAONS75vqgp2YtJiX3Pqllz6nw+uOhCxbt1xS57q2ivwlR5xlCRDsOzFfQb7086murt5pPNT7xPVjL+AbIPuMjByIxkUbuC8xq8o4P0vl4HSiyPRqnDfSgoAORRuyhmBLNrwkdm1ABbKVk1m47fUrhQJ3D3/jo2f9OWLoM+ydtu8Yprt5kewpLzPYEGrZc3ZGuUcbyoRnjbXnvrDJ0snUh1HOO1jhAPjO5eL5lYVNGRjot49qAHVn28TXnVFJOD08Pju1sZn8MizE3YOqliy33L1oFOHEBsaqVN2cNUczGfbxO5zZ6ZiupvP0C8HiC34qMFiDUsOs8sFIHVRNWs50dn+8+d0v4mfwUzGtwxRCCS8Bz0up+PtQeCKb6gbNmW7LDUv4Cxvz9TQlP2w2mOidSdQIQFEIqd8KTPIkORg/b2w9f0ZnrrtQo8on0/NJ+d8DuFyTSuy/X6XYX0fMSyNdqH62vFjOdDCV/kV22hw3yRl88Wc4aJTjJgdoXJS96Mjq8fZoNf1eev5KNTD05ypFd5+AXfdcwdLN+sx7pXGYidS5rDxnQmHf/4vTr82/GmJhP/2l+OWn4EryQYSDX1up2HtzWbjbUT9x8ErWXdcOlCxA6FB2Y0Ba1CsAuVamWjm9ffffsNNqCNcZtGDL7cyPAOXjjccbDfJwO5xMasr3sD+UGJrpu3R1FDx6nBBl2tL/75vZGFEhPPaF2rqHjKMxZtHw+ajcdrjylTjoo7pld6ARRYuQ+0ghynOwV4G07s+VTBBhxlpditZ7CpfCAyh1VPnprGA7r3HC4i5eaTGV/4Nk/Y8ZpB2vweZp8vL6gLjzgAaEo16zfkTLLeb1oMVLxPBfHTBiBU1BMebccLmEbbpVvP3M7Ti/Q2pwZHyhYIl1M5h7mI7yJRg0JiKlO+LG/jAZLedgsWs4eNn9gTAtCyX9nnPleezqanzcrbt0j9tGcbZdMFGccja8cBrH8rie6JRvK34r3vtfDjezwrVt6meip5qjeDYExcbkkfaZf7eBRimjxv1pKvFFw+zDkZN0iMmtKjtvvWCNP4gCYGt7ADRWPSzdryXG/rnP2Y+3c7gL75GejQMXL9zonmepmP760VA2rfKem9nG6BsOi7lHOk3CTYg8nB4zi7WLn14PqA780OWU/cCkwjrHr63LcH65dwFfZvyGnQlWWcPIC9g0cA/cO4CAzuPok7Zn3/NIIqRqLSy1V/OjgyzNzXpH76ZtpUXgtWfIzgPt4HlTFv7hBcQyfwA2+mtJhnUgHTBkdoOnIeND4Hk9Yjut7tzO3+M6whWf4Q0Nf8MdKaNAPbnJv3zx2ARXn7/h2fJLPhqO8ZV4MAs7S0iBc2Xr/Z1h+4PvCiq6lewcCuM4fmiyYgVt9SaR//kqPrUU2rd9mpJvlsrh+t+UOdsnMCseYoH3bnghPciTblfFx/gx+xJ5Pj4GeaXu02g1sIH4qPG+BA7IYL5w7WQlPvXcvTOiwCaZbzgqG7igCfvdoQbWxqoCectWKyf7oAV75DhwZeUez96B9v4HP/F+5JTyanB6by9Uft52gZcvQoxIPp7JpOex5xH3+mlCidbxZewKYf+zz9QujWRcEmE4ZuYVwjeVRqgOYpenMzrbKq32iXYeknHlNdfVf+zV/Iy9HmY++Cug/b6wdgT6nfJnpc3gwrEZ4rBMy3nJI9FWDe6QH1q6IA/FkeGXjcuNHem8zDD0ZSh2m51bN6Rb83iS79rslp8ML4Yh3bq5bjS6rjLMLokK9Ve1weHrqah1ZqleH1FDYRDXyPhYW2H+XAdYrh+fxy28gdMKx4Cs1fG5H1R7yUTT54Kf5oWrHi1AfQtfntw6J9Pauu9E0hqmQiQCOSL8cZ9W0s05QkEBcuwOaY/MIFHJ0Brtzlh455dwYo3Ouh5yYCG9mpZu9faG92sZJPq2mZbsjrsGohfx+O/80K/nqFr2yNRsXWG69SjbfRSVWC2ZFzxPjkNvQMDPo3UFW9HPsdVYEPAzw12a4z4b4/MBL6uzPmLRy3/47urP8X+0/0Ms7HZSTCxYI+4fnbbOTGiGOQoJ9ggYZIucv1UQTsMiPTJ7jnw+q0TEKQbgKQ5hyVrj2aoGXkKqVmVx3Qen10Pp+2Y4WArRiVfWBZDbk4SYUQC6dg03IGy+J0QxL3Fpc31aoNaQc8VPweAITKqQAkcQPdgKw6M5BaBeBEs7IYNaMfGkxCk5J5TezOClAoA+XBD9tGKr+4DP9YHGzYv401UnZkBR27kQVyVOfp+opEvaqdJYIRExxE5vq05LX0PKMbHp7prP1OW/JYRmpL3/sf3drYJ15/zlhpb9gqWfBc48Bs0dwKeUATLIdRzuHm9KmzGh34YR7dlYFu0Z9LoXziweD7FsCt1HesSuqf0OWU9ZL9biqN+SFPGy9cdShneYOxm53KmYVTBe6xfSF681xo/erz/wyMb43kbFn47eOBbAQ/9+YcpOYs+5F5DqbXyFSJL+azmqCBILmYxJeITO+DxIxvsKMuHk1eFK/jH70JFMVeP0J9hFMs6tVp0G8Z9EidamH8MGu28R/oX3zVGk5DIn90WcHYEkrryAQJ34DUs4FEL8N7jG/UX9WaxB2tfmvNoPvgPH/z+9CGY2ik15zu2yGFvONrtYloY0+LIt6t/grp7nVe+bq38sD5rUk8j1IjYsXa/w1KA3YH9sF/BZ8rW8wZOW/SirrAU5ZiA/qNaUebRPW0nvnhJK8BBU/m/97m861ul+rodrufrlDIGbVWNlrNDhEDfgT98B363dk+tz8+3Fn4zfO3D+88//rWEVwGCX1A5K15hLWfDPGoK02N6JwBZw5BEGUzOVKBoH22C+R1dZMAuRUYep6tkzUIq5CC7nAD1FelaMuX1lSC5CxJS37djwHdj5//5d3yiuTeMsmcQzQfXCY1Xag0L0xMBrngKe/Myl5RM7AUPffukh4MvD8yx4lF7XDqd3teaPkZ3LYLl1ykJ3I9vwH7F/gWdWjniEeUF59d3EoI/Pcvw1pqM3dh5UNwxEzvL1m8H157O8O2jkMTP8gtW/U1W7ulas5S0rUUksc7htt2/yMI3QbDtBGiCV6tF9GFD35JaRXrB/capkXwPdD5/HXiGctFvSb/iaaLmz+4/vUBYipSf67nW9KmjNKoMvSR6eyCwcsSQyISzYNVvmLbkb5fIZugALqavEJYPeYcfvWJadNWfVB19U6rvj90wB8K7gNb3qGN8RDNnr8q9gxVfUccqnXIsrMmBp/PuhiMn+LVsXY+We+8tXvWQgCmKaWt/+NSATgj4NBwS+ChPMpIOapYSx8oJ2BDeIBlO4zCHd1sA4LbscOAWP2u+Q68GnSjINHpbD0D5kp7haRu+aADTMp0BI3dwzd0LeciCwaX26IeAPx0Nm6SOAXtmYgWBiVzsCSc92Cm7d/HHV7GR5LeBZKIAQRu+GVrq262k27koQEFYhfqfZYJZdT0GR2oh6nbBYJFzsM4OIslI0co/5j8+nz+WnAbQk6xbsdbgwlt6JVIL4mBp7pMDP+PDXO1VKSdtujRKy0RGlg6JJSuoLyq3uN7SP31gvMDChIvTeGir3bqy27gyAkpgA8J8/WvxfK8SsOJp6mVMKsf6sPOgZz4YmffHrmXBKDbw9y4EtOzBcWCcyTr0k0NAcxFu2wkDR4Rs5+1xXO4uYF6a3AGrfof4yKa2C2VDBOg5h/Ty3DUlfU5VD8tn2iBFu5zaGe10Fe4vqFv1kgXwv3j7ro7BGg/fA0+628ofgUhNZ96A2Sle4V/8pP5J31uiRsS19zux6OFiM8CPjbry/2CPI+Tuwa6YPh6o53yPjQeMyr/1wij7yuSWxYdSfo4uhJt3spA//Xo2pR5CDO4iUrSm4Esp+T70ni1CXB1dwOL5FkPPiweqW2lf/ovPeymxsZmMVUDuqe3A8muXOBvuebriRx+s+tE/vjYfZSWBKiAyPSjrLDg7iKH2u+OCRqzy0+kh6jFY8TCRdtwb/vAEOL4Awntbrfn8eugiCLzcp/bW9FI6JPsMzt3BoNjNpHTRpksNL44zY0tWcLCAJkng9mi+UXfGr5Z4XSH+2TvS1vVTrMkItpZrYMeF52Dbt1IIj/frBpvdJAdEUgP9Hx9d9bySFu5gwxNKMQ1+UwAW6VV5cpVcNTT/4GWgdrVIINvtRyI7zTHlU6oR8DJURAN83qdbKvQ1PAtoR9HcPjnJjm+kJudJQNL1+x24JxwIVIangd0uCCx23G5k8PLHnp5bEFvia8AmDKujQven6ZJOsgVGdThlHxwxlgFe+lUObwUF2E73scX9NlDhG5y/eL97+BYv1tlHs3eNsVe8qUXzplZhLp8+WL8+hpYdpu0d+nOTUEPy0MCNPPfAPZc41vF7sUaZ2DP4ghjj+3V/aXn0fX+gFbs36l/PeFh8tIzaTX2Mf+c/pXP+yP/4GS3LLrQYWu4h7LKa4T99TUx3cqYGshRT2+lewbief1Dza0dDvP0F0oO1H7jThYgUDtinK//LNLJrbXyou4aPZvWxta3yYthG9N3OSxDWqtJLIzVfl2lgUBtmaDhIw4Hq7/ioxKfuT18n9ebb8REcVBvCQKZkXmQO+i/2Mhg8u4keV31kW96lFwirVKG2ocftbFbEhtBxJTIltznljDQ6XOM/xcZTGybXz014cewZ7RrzO/AurgRwdctVbziZwQ5/xg4QWSHYHz5i+f6Y5AyDKxPJbtXflr/8zMHYZNTV4wyQPz1gxe80EC+bgNMo8WEwHO7UkbO8XVrBfv3hcer99GvK8jlgEDLRJrJEScnA3Y5hdPycqH99ZnxW+qIGqfj64jV/EfCcUAeo5cbFwTFrh5kiiUH34sc4gCko+XPKOvgKis0/PruEkczgK01k6mbelM5XcHX+9G0aaPNh2LagTEBZ7AU0rvjtTz+C/hJ+qaeqfJgdbbtutxT/933jaYCwovkV4/RzC9hwTs/gVEIDGyEuynnrXM/qrmq11T99V/21RpqRfWwEL8u73M20h/CsNQ0RkoVwdtzuVKiJvYjUwPHbnydTE2pWfaUovjYtu/RPX9Os5or9x4Nx6q1I8Qi5Q41MX0oabFQbdmPRE4AD3ZKu8mOECUw6ogZOP4ylus6OyEGAvdB5lqQRSwhLT99Q9Pq+W7ZIfazCYG2VvuK3V5A3Z/h5pw+kTq+klcatKqq19Vv7PofvYZrX8fNpmdn4cTEOg2gJggzKR9iseq5vEbobEAxSDdAVv7ckGvgLOHfpiCMZyOVgfZwRiLpIsBuJr5a/6F6Hm32rI8X/OnxxeViAi6bbGOeiOSxGolXwcnkU5GdKq/4jNDU07ouP/dT8AFJlkQn+9JdXCEcwd3o+q9rpnRNB34nDPFlKA+MSvddq1nPLeDlWYNUHENw/9XbmfvACq16N//SGWaWaB7/SYcBXeiuDefqJHwiy1CGwD9c7JAnx1Uz7qCQ+fFNrPtqbWmXqoSP8bZyHP3wHxMAQqefVeBhLzai0R9JWSP7sTnyOr1emqkl1xk4pkrVvgM3g03AKJE0PPZCK0x6C627rUfOjbqzxYF4IZLgp6b51DL6AAI2w3/sUrXyhnYQPgIBSb8IeP1SrHnDW4ZqPJNK1akrefbsG9lWW4EI7vgGJU2pDBSoDjsT3xCmIfzm0JdbgQwxwy27R7/4v/2dkgdSS669D/+KlKyxqSXkQJ9rtolv03GMZ0A8JHTWyIrTyNb9dPPmra0QYv3/8cuAwLUYYxaqOzapcUtanvQkP6UlAv/v2BzjtvbOqjTOg+ulgBEvfCgjcnsqD+p7SDst799ShI3xM/MdPx1NhIO1gJBsyn+2HxZ6jbmq+alnYZE7T0jsSHMg2wpMaVHxzlvs6UVF63WNTyA/ljpHGhOloXrErW+0wb5NLDfQo/K18zgHDypcgN6lEsXtYgt9Q/NY+a3uF4rP0ShmQDR+YGMf4wKamXLzTKYbC5/YiWr5cLWYZ9Vn+f9UUaP97TcFX9RHd/y7PYT5vlVE13Cyn8S27lYsWrr1yjzikmNSXYZmnqwmjz5pjtjehJV73pq3t8smm8RQ/LPZ2Dx8wyAXCB82+tvz0XHqNXYUnNr7DeeD759eEDze16OEYZ+V26F0Cejxt11kFVjuXxUmG1nB1qckvj5SRZWbwxxcRSa/+bk2fZCHwN5GCbB2LB/Sxdc6wHbseH9CRg8+WLh0EzwJRz7y+LN4KpQebIxFoeFJPFj9sdQR39duj3lBgsJBolrR5fk40qo6oXUaSf+A7Dnf4lnofq+ukXQGP+jnHuDL1YEbTWIFEsADaCe8h4MlpcOAptI5kLs9V2g23PgEXenoR0KZSuSw3wwc/K11nd9kzXwo0zTuTwIYeQNta7BtGNWwpDLFXbKv2d7wBHeZp0FOr+hEwZ9c0gflLyBAc9Tvo26IMYSh5Z2r2w3OYwaHywHkpPOyJgZ+y+/McQ1V+QKwjaT9sD5MXg81RacgcFGrLwnMYgnP0MbEjowVM2kF9Qb876DSw7Ve7lCBzYONlJj2qxRGMyg/IkL1chZrpA4C1D4QPX1MQ0aB3KF8ODVeBd8cdGq97OIwThWfQjHKLjew1tfPf59VINLAVNfthJzlDDWlZdRjj43uYf+C/74e96XXhc7HMubbvlRPRKlW3tsuqoZAouuK9pQTBaJ8dFbpHvSPuuzaCGaRdDYsLs9F8DLOWB25xhpfofMAuvRuABlokwxQ7a2+r2iklx1YIyD5jhvVenYNF1QYIlkKQokW7snRWdr4Oo59QkmXu5KB3l86E4LxyEqn0A9aluQf9DlRot61Mzt6u8dGaYa8QeDvX1pgH+w+0JhjR/IW7YY6LQlQ8uWdYP24dS9z55QiUzVlBouvZLTvA7x12jh1TP92U7Wy1Jx00g6ugjZe8y0kcrxV0+qH6Zy/LSOKXNtw0G3GlOYKtdlA/sCb+gkPezS2v3pIOHup5xBHfmtYWYsmB52tjr72sjZRVoXmHbOu5tPRRWJLHEeVwfL8xWsp2AvNPMM3Nan9E/PFnO3rJ/gPZW22RgtR9OlnHZ649nOaL0d7hJT+9QA72lpFgfXk27fL6BGd4FP0bNexu4Gz0QgRsKw2oGT3LYJbdI4RX7ayiRbsmJX+RIIbXRFmob9d2S/2ihRr59i0CgfUCFD70Xksqs0Y72nd8lr4LgbiI9gj4aEzptWa2Cp/eCWdOOgbTw64Fbd1SfBBfJpf6++MFW5t96ToIIeDvYumgL/UeNnfiATA1O4lweV0Yjs6uM7C7PM/Q8ByRRskja+f4cnVUFuItmWf8GPjdzGqoguVO9f54b7mTPxnMr2aCnfxMSnp8q4Limcfvul5gTV/5VMCHe1zZxfHbzmzgOtRORMJO3mxTXupJBndl7ON8q5tc9OzNXdFquaL3wRPa+SlLjUr4641v7CJb06/xdaDvly/aUuWSzqIQOUDCL4NiKhgt9y8NAuP7i4kmH1gwv79fB8TNd0RQQ+0w8vyZQ8TdO2IF+PBpfPp32EuuQYRGJJwclIlA2zoG63zoM2dBW5zh8VwuNEDmvmSLBEc4X5QIsdrG6c45Xjz46b43Ig2/e8l2+CrD7EMyaroXHvD7/pzAS3ptieg8uDVUs5/D1z71aTDt41RsPaQCKUweNIChMkyeFNXgFtgXnLSl1s6Puha0C728CIh1J53XEgR4uCoLUVT1OAxN8Dz/+Rdq/q73gQpG30HaHRzq2KxomR1JAjDG4YR9vx/L6fXb2+BB8p5edoI8LKrWCqC7E0p2m6IdeCsiBoVDDWgF38ya/uLfej6RtJVNLhrogGDTX25EwNN+GLVOPEPdfR2R2lKpJJuomNWpGiV61N7Xkh0NbsKDJeVUN/dBOeO+J3C//+Ro99rRodda4oOqDTOKsBK2rH/3IRDqvqV6nd7AO5DdEYLTPSQbQWk5Px+fDAob1cGmnjP+E8frHQoZeaJhNzbDa9xuRDiOYYrt33oPxJu0l8IvioDItu2DTyIoCMZvn+Fo4yXlFD1hBr/i8UP9/tzxmQdlAoW6a8ntI+v89+LXClqJGVL96Z1L/r7xHBrTdUGqOwRcKqsig12y2j+LY84qHCI1Q1JMDfQJ2yWb9w7sy2GHza9F26X+rn15nIdGdfBoyyUa9REIz3yz5hCuQXf/kRDQ++wjKVgKzoa8coAr+xh7wPeHravgGA7lVSDcb98Bd0+dCXPhhBH4zjoXo8BsgH/9yWgcf3HJ1ptAYHsCGQ4/Dy9lt+XjQ85OHjmBrWLxnuEeCMrRxO7LvASkaE4ixLfmi319HNpZ9I4N1L1sImzeHgamf646PEb8iMP6VA9z8LypsALSX9c/3o77/cYEcfMeqVlPOlhM/87+4jc2x/xhLZZ70+FGMQ5Y96wxHftJ9YBjmhqi4l1umT9eXtAbhIzateEC6e0eXsCT9iMNQ68s576fc/BVPUQd0t35/LjeM6heZwvbP260y7EW5z/8QfXiVPG/+AaLuXhRl/wOpbgJ7hl8nFiAbatOWj7lag1/Zr3FutD74F887HYXjNiuawA76fwOz5+wIbR8n1J2NIAJimSQ6eGp06Cr3DABT82vqC9Jj4EcMtOEQhKUJHO910BbEc3/np/7isqXXr18VDEnKeF/+KZtWg8Yni2i9+/ybPlXW2flJImE0aeqOQs+lQ1DJorUaTR9mNVWziH5di0NroJrzSKwzsr5XTm0/Lo4pdhJZu0m+DrOwfnYMm1Sazj3VUoRXWaL/pLvHd7H/Y36FbxZs9DIIjC26ZbAtySBdT0x3M7ZHa/rsxbn/D5DhhigiM3zML/wsQZjpy5kQ7K5HULVXnsDfk3s7x5Ha7eTyhc4dmGJDfWTc+kGWK0pGZiRKnoNn/6HtDNZW5ZntvABMRARSTGkE+lMFBB1BjYIiEiTADn6ffG83/Cf7bGoEKiqte4KSZVJAkKC3RGPem9OJ9114C//rF8T7gZtF4rQPXDDDG+1M9fl9g5wG9sHln57p/uccpiVmzKJy9v7D7Nn5F5D+UQCI+u9Z0obcpJhv7Nrsu8kxtmKXgXwDNFk9/FUZCzT0lgJE1dme4fvfP6agxqmMRLpxReCbK2vPQWa18tnpFm9ozm/3gy06GmqrtQWja+yoKo6Oto/fSX23rGBzftS0UD7Wf6i50IIueeQ4NcSLiVjWQA1bQNPeS9FlNs7G+LLfSSv7LOOWJ/BEQkl7Fh4ewDqnV9j/10P+asPP73iBtCbm2F+oEE3Wfoph5tbrBl+r6SM3mC2UMgdh1w++dvn8Vd1ICx2Cs0XPT49DnWArNMc0agl75I3rQvQ9feAuV/eRFzdUw99rHCNJXY6ZkOkRoHiSY1DDsG5R9OfHrfXG4M5z9+5HIjfCHC5HX2CjdGKxrT9zEiguzsJ7tbDn9WSOn/nh997zs15L/5mONfPjO2rDSn5qZgw9LpGmf5XH9p5jNXF/9D5KzvmKH23VNlcoKFKLz/R7JdhAmR97Zb6JnQD4/cCbKfVid2Eoz/c6QGUwbIvxMsyu5teVg5qWHUaM7Rqi+b1zK+w74Uf0Zbx4F4lx3Cu7xkjrxvOxlScPdTrBqW3zKD+qD1PNjyV6sO0p3vm85eQo+KJO4MkteP4dKd+NXAlRaeztDpl/SvPAY7Y9LBMD242e/2r/tM/ZNEL0YSGuwWKV7zo1oq4P5dHLCKqFUAOt5D6o9pArBzWnr74HYzm/Tdr/vQ2O8jnrf8L4FohP1N37O66Ke/N8mFs5pSqxMwfe87j2S1g8VNkN23krPqeol59baaa2HhE2bCZzldwnoeGuaq17Ra9miKJ1DoLrtt1NzfR0fmXn/Xvi3W9Gxg2vLpNRb9GMJdLvIKyTfqUBB8pQVwQ70/0pw+s4CH6422DFEXvf2fiLbuT8xU9ClCh9kzMpBvQ7ASrFJ1xdSFxQgbEX2scg/0cUrIL2l25vj8EC1VWQeloyRWayScuYMM9jBW0N81pI+eaOl/9DXFzX+qmu5zGaH88BuxQZEk2hn2lQOqLBsu2h63Zby4/EXY02BDs7Dj66oprK1uherBLjA6c30cvhaOYJkSbBrfr/aYpQIbTcdHLBZ9zTcj//B+FYOo5rWDtQGcsb+y4twjNrs0V8Dv8w3Kx0zrJQL0IV+FCWDCeiojP+86GF01bvNVVy+TWVs+htmsDj+9pz/nRvBkoK+8HZliaxSXCGgWttvxDKzMPO751Bvqnb5mdBPXyPF3qbWAkJ/JX7/i54qn697n2FHBEVaS16uUtd0z7fDQ05seTBRFvO1qL9QvNRf7sYfHH9Et/v4iTbVCjxb/QldVG0ZReZ+dffPqbvijH568OQPn0O7rKPutsfrharzZ3/8d2fVL4s3/bAVxS44s3MTogEeAAKA+DkaqfVEJd917NsHVWlPL6y7qp3Q8jfJp1guVHI5nMNLAE8tn/EbtB73Lc9mqLtqt4Sy5T80P8Rz696nQQs0Pk1P60oVkLjiUNVJCuRTcKn7kG0Tv4hOAm9kcp7WoYvsqdecl89oeJIA2hW+7RzXmsI/77ahj8V/glQa8JqGf3okdLvDJDSlaoW8YT+sfg0zH2z/5kiWai+rfbiuHrATpW6HeA67ud8RRXQ8cz6aCgc5rfmHOO62zkWen86SMWXvYHNNqfVwBHPRmIn095R/VEd9TkMqT//q//niKqLvWAOA9RNadmvinI21yX9yrDoJxuP8NQi1Mv4I0Kt5JTFD9B6UuF6JXzjsbi08tb775Kqawhxf995ccVSer7SYyv3JhTEnQ1HLXqxK6CYJbTEr/IUJSKtnzzMqfjZLVgaqpA3Geb+9NRCGf0++4Tur59a85/IXv+1Vtmy0bLR1fgMqxOvo2V4T1GfeMfAyjio8XiW7rO/vIv/DgXmVcrKuL9z7hCIqx1sot+Hz5essddmX94h2WUnLrRinbLe332hzjMeKM+/fYG5Oc8JDa59ai1rYmqb9W5E7J7dYizLqih658BscMqzsZX2fYguezG8IeTTKQ/WYQCnD27R/us497hISmEmC924Jrb8dO1F5VP78ikTgI74qsp7f/0BrHsF/fHUJqO8Hr3B/Jcni/ebcMQNiuL4E047dD8YV/tn/43B2z4n7EMGmTZ1cCwXHidKH2nHqJv/2MZBLdyfW7dCvm3bLX4QSHq/s7/L/55MAx+o9wqY1ueXjtMX9qazx0mPSw8hm52fmQyZVcKsFGjDzncd99urC8vjNbvdUJbtC/9uc0eIirywCYv3IjmODCI5bF9RuzveK6pngQP1sp0wumnnGLl9IRbIF5YJm1aky75BkhKdsTNNnY5PQ40QBuSOMQYWsNnaJVfVTm/EOLD2vfHZW8RJV01e+YdNJQ13/0+gV+2HbFy0LJsPPCvAGRef8h+fS84dW2kKHsr9tjdFP2s+vF1o/zVe3+gOv87H/Xsh2vKg61o8vepEuF9gg0zcotk08XOLYTrTMMod5jPHdkV0DscIuaVLMn6pV4iNYaUaH6adoP3UjylEfXhj0d0U/PxZ2i2ypkZm8ZAtP6VBRKr5sysr9b4TRwcPPhKYs/wGYPfL8+T2sveeeFD72zeeSoG5OsGCzbHomyFR9tAqxc5fu5YhXi89o9IUsvnv/rX//nh9fWekv24ukZt9sufQFthx3zfrPjCW1oQNemIxyU/T3888hq5LXOx8okW/5LAkl9xvPweHfdBi57O6coIOk18GV+At/lixP1yJ5umEEZ0HZUEr8ijL4dIzfBWPBQDW3iXP+lrQ4EsDn6LX2zL2WyyQDl6rCFWPxf+shccoCx3OqbnOctYvPZDQIfKYbHzQz6flbsMbze5MFfZbc0xuF5btNRz9scL+eprJ2CsTSB7Q/M7KS0eIsqVNaH8EeYZ/clIAu85W/gjPz0k/7jabsrY8HGVmjXqhY9SwdZfWEt+0vjmsaxbm9xyi+jPgkbDMx5F9U9fkOl19cd0klM4+8c18faGErHHmXqo73FE9Dwn0bQ9IAXtTnlK4lp8+y1ejSOUu9JkdtUKfr9eCIawkm12aTqn61fhsvayJnlsv9Sv2bamHoamlYnbfd/Rb/HjUFk5ZdaWlRFtXHMEd+JrLGUDlHz3ZhrKw1Ww6Kss6sG8Nmib7xP8sU1ucs07aeoW9At9x9XhP57sbtoHcYfJzTY/MvRI2+k+scqA+Xy6zABC3L8J2UUVmpxmdVVI0x/YY+1NHWXvXEab860gu+2rzZZ6JGyVIi3ZrqFHv/+s9BpM2/LY/W6p5rwcr27cV87MbXHifZzccjSlOCX+UauzqZ/CBPinafF6+/KiYSM3GuzbrGRk8SNjRW4F3PMfZk6HGzQ+fxSj1bDb//n9km1DxYLhc0mI9xs20QjmtYU//W89jG82ZOhuoT99ap/LmP/VK/TcF7Dw788f38GQFEhjRpmpHf2W+cIDTJd4ybz2e4NXCij5d4vR4m87TQtahRmiy9L3Ie+6hb+ozJBcLCw8h++ewxGJU8zZ9SBnWbPUG9jG25EcVqrHpd3ZreBZ0IL5h0PAu1vyoaAk9zcjYjh10uuEU5jnr47VyLFN6Xo0RwieYUjc6WNEU36XcjX8ZHcsxRSi5X4Jf7yTOSNbZdOYezL8+aVYc6usTyf5irhuuwyXjzzj8HIa2F7uEs6XfNVWl9sdaksDFjdvoZt1gdboj29rFuHR9L6JM3Ddctld+1mm2Oa9pniGZLLgJZ9R3/hXDPUreONH4H4QRx/Lg4WH0/U91TIpZaWgvN9BRu6/lqC5cf0ZkRqV9OsLfTanfYthDIYvO0TxwZ/ak+LB3ko8tsRf9o/XZLBxqHJToaSy4c8oC5c5MLcH8P4epynop8e48BcB8frQLfq2Mljy7tRyPKahCEu9oOB9K8RXVVD/6UuiGbsu4/b1NyNC9BcWi1Lt5mNoyBAY8Yk5OX+Ui/6Kkf67cLr0l8yplDIMOzsWWRBMAVq3+88M86gjpm++14yCbgXoZq8YXU1gdLMcXB14u/Flyf8FmlXkNFBv1jrBQj//x49k9/DFSG3LjjeDSf/6JbgRXN+cXpt0hi8NAoJ/2Tvb/L7Lfvf72WP7hQ/85UNYq9OF6Jtsymr35ISg3GaTeX/6Kr3OnrrkF/LXb1n8ZgJYl14sGEIdje81jOB+1vw/nqn3CiDPrF5s0UuI7r9RA9L7+yCWdvaz5foDQNZNYJq/+ZhD8N2IYPz2Co5/q6b8yweg70pKZ4V70eZPzy48gHlpjc35laUj0Iy+iXa6oo5HuyxAaniLGSGnXTf/TCf8ux/MGH9GR51gcwWLPkfiZvhs9um3MpSFnxHiPPtoKnssIudoRH+80Jy3oAVQbXeEBMv9Hreic4TUlwwMj0QzRf1kCPCxjmti3lqaTbtJr//4J12J4an76x8iPlU98/KK+VOYbkM4kPcJjxv84vN24iISAlvH5YH25XSXwxgW/kb8EvaIG2HS//Nv128toUG9OBTuEYzEO2hZNB0uTEDFy90wM5LFiDrVTUG5OTTssPQTmIrHEb73rKDS6jCb3faMRCidpV92X69R4zd5oVzVihPy8ZtoUsaHhHKTNVhup2fGpe05QalSIqbFl7s5nvY6VlV3FlkAn9D84zXqnz6yyoCYvxb/x+/+8WCmyOcRNiR22MG8dtlYsG0IuR1Sgj/fJur9Js/VKNN8Yjk/ZDbkca9AR/KW4B3y+WSefil0P2QTo06f/nfpf23/+pn6tCu6SZ91T32fhM0/v8lOxTZQnvsciLb40dk9OUdVfTcy0RFps/E5jiJM40kkJh83fPzrN0o83ZN9plD/Xz1o+XtZBzMm/lRlAiBN3hzp5rVbd7PjrltIlTci5PQVy0FrhQKOya9lQbO+ROOelTXsn683CUz/xnkadQKQ++wzvfC0aL2ZHilswbxgNTgHaNNsjja4ehSSHVpv/TktHhLKwOqp9DrTblQbMUZ//byLEYTl2EirFJZJeXhW55az4TzO4Bu1R+zpu8qmYJXG8Ok9GTP0kPk/PfX/mVOAxP89p2ClhCYzn62W8eNr7cAhUa5MY37RTePpnsN6f3ozR6NTNzyKXw51v3KZ94s/fF59Pkc1vqU/vFGwb47D6xsArtoMC/z2XKZe6ZLqR4RgcB7XZa2wLkGiv2+xGF7TbJ5stVD2v5VNcyLeo1m2uxwJq/bKTPI1ShqJuFKmmanL2wl3xNcXoUKbVGhxsKNlxqkMM6RPZ0P0bp1w9tqnIxr6s0El6dOVPHjKOeDvzJn7Cc1olF2uIC5ULtl//SEb76t5VA7RqLHk3N6i+YfHHs6VFpPTYcvQpH90ABGSgDjfA0N8ZqIAl12ukUNyQNnXXydP2OoewuASoWRPHz9hGU/aNBP4k/vA4zYQnh7zbtoj4z9mJDCjadnP2lPLCccYYHw4KtGIkUStrLgAk2WsmI2Ltz9dp9mGdJLfVHhVyGSd194h8eQzO/mQdxPEPUa1S3JyAIma41uaASw2G+Swfb44Y3SM4YFhxhsiZNHs1sodyMFuyM7drTreS5ce6v0vZriGXzRzN63BcmSdZSG6Z5PdlA0I1/HCjsv9GfKSepBdx4La16PeTWzWKFTx94431+7rj+3mUyHaFFssdX1hTqdPUau+K9nEZNsMzUfuApJyOJHHqrP4/L4RD3VwK/BKqHI+rrNfDsz1PGYbWC7Hl0JbIM7VIp6KWDcJo3VEedCcmW7OfTZF4ttBfiA8ifOQ5657+viunLVjR8xf6SJeTdMVaC0MbE8ElI3VRCWEvyMn9vVXdWP5hBqywu3o+pVszPlsHgL4HKeIEG8V8Sk/cgVelyQnDl6LiNc3ZKDT+Zkwzd19ozG57SW0b1KFuK/K4PxcPiWUflSR4fXq68+Sum4hCVlI1XWll8MoFBidhVVD8O3bmxwJvwLFcb9jV7yO0cxJmcBGdfbE3D9oRHtJOYLXnw/MD4JvNJfE68G/vVYk2MgnX+orx4DoEczkyW8CojvJ14C/SgtLiXmPprnuJMA1/lI12vz8/lg2FrqkuKJC4ZVRk4QrC1X6wyLG/NA7Ls6hsVrGgxGFs248ZYICfXb/4lGxepP9mBGr+n1uiUUvc9av7rEDuLQIceAAfFw16xbEPMvZHt1in790T0Pq6bQjbtEjn+nvqYK4f+vED4J9xMmtusLnKiTEVKex5Oohd9QhsUJ2uH1+5VA/zBSW/EGl6/FdTgfkKxC+mwPBAtIjEag7o1DXgGT25sdZ1eWt+lC78b/x3YVvTbWdV8p27u5V0vv5cwf3sNrirqmKiH0uD4DvoU6J1eh5NsmwGhHJxZDpoVmZrLgXthIi/Uyrj3H2f6fXTQTjLLpUooaYdQfBCuE1fI+40c647FP1TCGR7oh5rrrq+uNvlNSnoITMgfrFJ5xeerBvdkeW+Ck35jg6kAT3N8OOk5bTtj5JsOI6YrvjY+DjPbjHylmXNsRr5ROfv/xaK438IGTvNm5G/fXWgMsTOfi23X99/u0Xj9H1iBjbxPfnHUQzyPNOYvv3V894dzEFKHsfk4Pc3xD32Y5Cbiw12f/kJh+iY6jCh76IfodD2d9tvwbZ2d+ZHQ2t2cWqcgTVvTs4ddVVye1JHNXflFNiraQSDclRP6rR+qexOD8Sf/LsXIJuQwXmXfEl42Kvh8guXiJz7PCx9GBBgFNTUWJbYo7GYFcApNJ3R4koaeX6UfwKUAmV6VY+v82JmNsRPsLRZ3tOXmjc7UQBwmr8kN3K1rJfnB566A60wnH5bDgr2D2GdEzOxBI3V9SbbSwhh8Yaux16mo1Pp2lB+EQylt2Tw6eXlV7R1jpFLD6tNtHQXjZH8Dx3ZH62G0u698MUlvOn4iCwbIyuZoDOZmbiaZymjK5u5gxn3D9Zmpwck4/Y8tTna3PA2RK/431bGMqudD/EP408Gz/fIoVVdDWYxw3b7OqoCGHFUEG30lvgPFxbd9AjPcO1qT3Lia9qCe6/RiXkLKvRS39PNcBuj+lcLXOGYDIcOHWDzXB/svmIUyVEWjGeyD1fR+XMz6KlODTRlnVtbCSGK8f5y/9EN7AWjevzcVZuye/DXLzZZNNPEANkBcaN2X55Rn3alk/Akw/0fg8hGl/a6g78tDthtIxPr7Ec/uot0ZfxYLrYSXAnbUn25CNHU/PZBlBcnYxFUH87Hh/7GpAgPlhqYi+a6kRpYPVrZyow2Szp87QdoU7ojSz1oFvqQYNMl3QsuIf3bDCs8wzfZFUyMwtDc6ymWgQx+Em0Ol923VyrDw2URzyRsO2P0bgqelm5OqgguqnVEb0bCCuglhkxxTvPaJn1AXD3GBOdH3amaPVbGeqfOFGwczebt6+6QMLL3FN1dynQbMu5hWgRukyXi6JkxqFWAP+SFTuswjefInpM1WX82TIeETW/wR1uSfchO3qL+VDhQES7apiILRcK6tCsaeCOy14gycnxJ4SzJ4ov0oM29+HXjfgbjbBJjjY7smpX9mfehSjl94H85bffUm/R6asVzHFbn/fts63gbozAzOaqoU2en0cIXOdMyPQMo/H2dAHC61ome4+H0UTURoBr//OJkezsjie3MIXjRAda8KYtx03b2KAZroaFwjMj8e0O4T+9oLftgMbmDKPy97zsUh/7zRE6C7rAuZIsil/RGKdNCCd/t2b7r8qzcbeNUvi8iE204PAq6+2LFqB9n2s8zlHK+33Mc3T1XhQP2x0g9t3iUZkAGEDnv36xiHmyd31K3K/wp9dYyg3b5/Z1O6ruODbk7pJnN1k1rmBUZ4xnWW1M/rTWPQq90WfRs80jrtPMRoYQJswlv0c0VHoZA99Thw5yv/33f0iAXKPfa1j5U+jvPVjvhjPT+aozpxZpOSz6jmiGYPJN8iodSH3tRfvg2/NxeLEAHGX9Jv4cFmW/Cw4ULcfT6Va9IvrWLEd9T2HKDNkv/EnytiMS5nliWhNsSo4sJVbqLlXJ4Xjss1n1lv0TL/mLnU8k4tPPP8+gqcOHorPzLmdjP1IYV3FKiGFuy3FNNEMtqzhkl5e+9bu99bXQIZo1sn8S7s9u7GDQiPbF0u5govUaD0949abFjAOao4GoufB3v4lxOZJu/tPzlvc8EF3zSbcW1+0VBdWupT9+q7vZiFMMx4dqMgffT5yj2dHgMwsjlVbvHd/8UCkizZcJuSKDl1RNagrF2TBZsA9JNu8kU4PNeMyJT9K3z9U8TWEvdC1z+c0uRzl5XBFBU003UzjyeRk/NE3+hNVBbzMaP5oGzl+vp2v/zaO225McbmZ5oB/mp4gKmjbCg1Umu5R8ZfZKcBVgW8kV0cxLjfqv1AigHZ7Znz4u6aIH0fJ9Zl4lIeqKQpEg4XFJ3IR8yuV6A/hcIcHTqX370/gQNFieF4b1RlwYjSwqTXKamfX79BHF0rpFSzwxI/8cfEnW0hEG53vD/W7ZmyUSfw7y/WtIAmlofH4QrCPo8vnI/MPlmPWGr9vq7RtKLNjIk1ne0pcBwh77RH+cj914coMG2Lu6smw5nst3uZexYJbEXerJqGGYETaeAjOTPPB58HFDGBP5wOJN1HdT2TRH9H3HFjvflvf0DGuMVSPNBxKuhTtn88Po0QP2FZZvVMh6SewLZH6cK+ZCmZRTunefaJNCSxa9EQ1xBPAvfw226yDxbJ9r2Kv7J7EWfcBvMQ7/xZO37H/J/QYEdB7fazpOzoT6pvlqoL+2xnJ+QccrT7yr+DDeSCYkZ3M29ssuYG4b4rFu/IgJOwHAywYgtoweaCrmisLBvb2Yc4/rjm9iT0YPWQ0wsPMWjc39kIN6Vn/EPtpDxresEOBwTgLinx19ybfZDMVY/4j1Mdb+VPSRAFVhndk5rSZ/UI9yAWC+DSyt3h/O4we24SdczxTS88Eca214ImtTryh6EQtNvxPNoSrbN3MXPTO/tygGiaUWI+vG7jbFvbXhODpv5uy2aTnvzs9lpbjAIEfFCnyevDpHOau3OzFEzvn0EvRa/fM3f/lH5HYYqN63+eENJy/O5jJ6/l0fM4PZ582if2DxR/ii4M7scfwuVBaWERYcRymn8HSR4bGWRAy7cx6NqlKGcLg+K2bO9ttvLpKTwG8F7z+9jyb77jmoHDecyqb3ifjw2s4gt+EWc1dXys7+REc0q5cvTZNTY3IkX2dYV2PKjDY6RNKYaRiywu/w6vxKM/4S8ye0tVQyMuxYNmX9R4BO2STEe8OlnDalOAN8w46i1sERH3MpBc/caswejjSb0Pp4RYfBdYhtfFHHraMJ8JyNjviyZvp/+hkVSU2wqq/ijhc/v0JFuR+xIF09ky/6Vln8G95cQ8vfPG7aFVLZP7G9py/x+1AaUOPsQRV5rLtZIacYyl10IEFz0Pnmtq9G6Eg40nbn37p/fpKPToIF5B3N8W/8HclTMf3z84cNz+FbGw1xnFeBpmv3jlX8zk1MQ2p0v6dj20DkDuOmud78WbbLHMTz3SfEvt87Lu3fy15Wp57t12vHn4mKr2jMqgnP5ygvmbTsvdgO+4hYTVpm//zHEs94Qz7XaFTCN4XbbVKZ20okG7YzT9Rn5v1YsOjFf/nEDbKBqqvwjWZVLRvUq61F1bIPEN3wbYDyy7elYn14+iw7hpW66GvyML1HN/3mtIc/ve06713Es9+5hhXbFlh5l2I5Hsvcgm2ZXIn/S5rsj3eoi57CiD+6kjF0k8DSqECCAC/7Pd93BbrpK525L3WHaHC2RKWS5i0t51dlzrYgi/BXP/exskZ9sWrmP17DrPCqZOPidyGls4PlsRgytvdW0haXNmF++54ySneygu4V3FiQ5ZI5Zz/ZgZ4ra2Ii8R2NVv121MXPMn0bNx29+EhDwjxOTN8Ofje6j1+CLoX+Jruo25fSWepaqHvVZbujNHK2GXYKNHzs8GbRW2O40jw1cgqMhShvuuX+pVAHFxnz5f8G01YkJDd0IP5HSH3eFI0IW6wV7PUdT2iq9qINWZpQ5r3qXbapozbc5mVxwStylRD/9p/jXz0mAzw6k+mNEcOwzD0xrsYajax5aCgP2jMJqDfydl+dUzg1NSVGUcB//2c2x5EF5ekb9X98T1PZh86/9z7bzA+vR3/jG8eCUa6JOY1QjNVvWUeiiPp0YwngxcWJuEwzu4mvqIT6oxsQbz5q5rx90Ry03enKNJLdIl4gVULBK9vR0bzYfHIf9gyNnzyYK1PLH09LTxXM0iAGJ99yWvXXCt2KOqTy+YwyqmSzCBVRNsQ+t7eMp2pzROpbSdjh5a67ofZOnrr4A7K73Rxzvr29GEAXJLpZ3z8mV84kB8lvMiquJBNN21y34bEWRRaXuw+i+nUnw7npZSyeL59uivfRE8IyuOGV9XujyVEVgD8+dTODL5/del4+xzfmBeV3qQ+2pZAj0ZldxbG5PojcQ1Weuwu/cDl39pbzF690q10mf6JruKJfpa/ZIU7zjg+1l8Pmdn3ihl0qnyNrTlDltvtB9GXOh+3WsuEBu4o5Sz4euZ1i9I6mN9u7xM5orZ4NOLKS0FHqVcTHPbqqf78nxoLRTbV386C4ehm+vL/vrH+7wxG+15LR7iMofh9VVY8uONrQ0YneGf3jVeN7U+Bi0QfzKTyPSgaFz3wWXSJedXmDZn0yCLlumo4dpmIEJ/BKDPk66ubr9V7ARugjooV83/ElHhHx8zvxjV3J5/2p9CAQe0TMl2lm8+1txKA8FZV4W/dXTupFP8LaqNXl+f9Ef/EMnuePxL2zwG+VJk5gd/rc6Oq6cTrpLx+rbzlhTngwfWkalCcIx0/MsJ/E0eiWio2cwCnxqnLXJo8t01K67cnDaM0faPZsO9zmdcNI+lo12VQnc6sKJeuJ31RGNCvn1obV/nWmguf7GfrjWeRgNWTfJEn5x2fgFaxWjKDPupySezH/1QsWrH5GNjnqDOr2vH5hON1CNJ41S1I/K/HC/ngff+mGob7iwCGHpH4u8RUARDYY5Hm9m/6aybcn0p+JxCxJcbv5+vyEW/eMDUbC8eP35vipwUahs+R33s2lMwlQqPcjuZFjGvXhSnPAvyCOeXPNUf9d1glL+XOgqu06fK1fmzv8isfvjzf7bHhtR7Twb5oXz4s/fqUGgJoHi+0j1pdd8TNriNnvRryxDjPJjZ0AbYN7svgho+vLMLNgOJxUrC48nc3HXwD5lu9Z4DyuZX/eggZn+52Rv/Mdzcqy/vHxgNzLkiHhXfz5dXa1Q7UcJX1ZW98cAmIIysbvnUEq4Hbe3+jmld798dCRp9KfhivZ3bSdz9/JLUbU4kd2aEgVTd8y9tSu1FK2X3g2/9b3HCXIf2F5u/HKP96BGj9+EK08PsxhyQ/qBa46ied33Q2bk5HD2xEDcrjysqwvu/YI2xxreBJksex+68xGgmAFTF+1aTdfQn9W0r28J0EhV9H83b6TPz1I3DWTeV92TxtsdskWPaiUPDW3FoSXU0/0u/ft2Po0iH/+hXlqEZSNI5IjPHwxZR4S8kg6mzv8x4MpbyYT9dVmU8NlV2jMouM6Eye1ipXQ+DjMFGBbcnLwZFj0xB8f4n/9EfVSmG9cXh8omjT0laE0B53pu+TacWFVO/JHCH3yeoqXsjd814Ky/RhMq4mTjadz7UB2nQtm/rwacTXVG7BztOxtbbmZ5Oa/Hh3v1w1z74lrLn7vqtTuIScH43opR/H1CJCxEguyW73KrF6HTgoU5y+6WvQhP2xQoaSn0xGLQPb/9M8f7yQkvBT+DFXeorVuTEv/Se541TUNrPaPM4bi9c4GNjsUeSbSmPcuxY4b+6enSGe9okDMvKP1kcSIltL5nx8c+notqQ+HGsxcxnMd76M7rGLAbPdiijm+zXsOU/8K6EaLAl/KczmBTLAu5NyYBRoFVUsgrs7C0h8T0Cgfgwb6OfkxP/i00RwNawmi6FXitRNty/l5mmb1j78a/kfzxfJaiqB4+Eb5ph3MeR1qVzgMvoPbfKIde14YIAOoR+eF/47DZwUw3HBLDFl1fDFO81BdxQIm9vNw7HhIOYWFr1C28AJuHX3hj7czffLibO0mggYLv6ZTffL4dE80A1H18CDmoreai6O0iPjFnVl7e0Df03mk6lnN7kTTY8mfVRPuys4Jjix9HYxM/ONRlXzZYXXVVbxe/Bua1fOXLfksm94HLVBHdcTkePkcyt5fhQ74ATyXeFG6X5DJDmhV8mB+nlJzFMybB7a9xcx+1rwcs8HJEbrAnenG18wmU2utf/27v/HjmzRqoV/hI9NXp01Jx/dVABJdblhs9DyavfA7oj1Oc+Iov7Ecyy6x/umhP/058N2qhY9YAK7/+l/jKS7AEeuJ6N09Quy7euWAbnlDheFO+HzspwCW+0G8i0n9mZuuiO6r7YBzIkI274htAwuOBTHPZ9NfT/urhT771GP64zx2n4heU1jOB0+HLUFjEtQxeohhQ8Pk+SvbpT+KoPIi8qdvKmmfSFD5QUSysvnyWb8eZOSXUo5XzMn9P16KPkce0fOySdrnHR1BbdbxhtYfW/H7r2kUkA0Pm5pXS44m054lJHkWYT63mpIvPPePtxD3/f57Z7G4ovlgPdidmHk5dfvWhudVO7Hn+qD7fD6+A3XJX7Rb+Df987sG9B4WFx4/4revwf0k6VT+0zNX+qMgOblJwsLdmuxK3716gOBAHhLzOv5XbxZ9gZ/PW2jOFlPCPx6OhWBZxwQ5BoVIlUwqj8Uh+t0Tx4BFr7C/evCv3lZl8z5slv7vENHrVU3i6EmCCRn+pOw+Deo0USUGjtfR7PJIQOtTa5AD7nOfMyon6HJtrsw8qTGnf37LkRyVxbtCRxtG5Rj4RAsSpPRoTk3vCjCX8Fr8KY4W/1+gAskWMd5jYk6X9WeGKbItqtyvfjks/R8UF3xmuCjtbPMXz8v9IDunh27a5q4NcQpr5mx3VfmTb3ICYezH9PvnJ46/UYTleqg4Ma2cPxsrRPYwERKIpzgbD93+rtyQmjLLjpe3XkbZ2/6/5hSs//ecgqynOdtHD56NZ7Kx4H72Zmah9okGWdFjdB4vPf3x8wvR6+z08P1UEnMtsYumi65f1f0uCunmUW147+1PI5Tp7UG08ROY87bTqKp022U/RB5knKC8Vg+uhIl9X5Nsg+6ODVn8aMmBKD/EPv66ArXGIjM+UHJ+0fsUHdxtxWyruEZsLXsjsqLQwEiS22z2nYetXN6/AzmkOo56z9nf4dg/NlS5jBkfuZ3fQQ4DxByxLjo66Lmx/e6SHsMj/vq8ZYqonGJBZoTcUDnaloyRY5sjMQXBzETJeVNwbSpjfq9/2VD5YYXK9vcl+8P1GH2P2TgDLYSIIlAP5Yy9XwinYBzJ/lFvl9//KjAfqgZv9tHgj95esaFe2wXxRXkV8a3Sx7D1RI04z7g3m/t5uMN637c0FPcemi66e0VjYKhYJO7KpNR49JCCtWdHuWOIO1JYwC+RL+S0zSy/iukWQ4wFkZCsCLJ/32fmiZPgFmURT7RyROphLvB2ODndfGixh8q2+zI7pivOd5GEweLDlz3jsfAnR7JkxO2TxU7O5pL14TC0cLw7F7x97N4mW710QLfOW9NR/A7ZMJx+R9Qd8x05SEldjmIt1yBdWUgl51t38+E3iDCdtZCEZ3Ys51P/pbBuAoHst9vRHA5bRYOmft3wM/jN5cjttQSX7SYmjre/onHjtgk8pOhFx/a57zY0rCrY/L5rYqblPqPFdumcuOeOZPnv7c+ks2fk0LRj3lvu/cmOIxE+YmIRgtDXny9Tk4J4wQmWA3cXSfOuyLfnMUzw5kcFk46WXoNrSyr+wEPLNjy5UWSGtcL8kX+jedDXKXiX1iOHhhjRNEYbBUwDd0wP0BbxhtoC6M56zw70JEeN8eYFlGHqEXttL2ulbpmNWPT80vG6rH3pO2mqSM7LwdPmapgzNfJGPZrCkaryzSmly+RYQI3KIrhSnGyzlr0ZgvcFE7x2TuYcDugItJDwX7zy+cbdBKRGveOfPT8R/x50B9xNqmFpMmV/qvy0gst2HRNiknXEfriwVwzNnGnPpFjWRnMUEOyngBX3K2Vtqex6eF/lNwneFxVNdpyJyKmflCqzxUtqFZIE6z1tmRlmxhKP5K5cJklngamRbJTbcETfT48ITueryVYrdkfGW3gTYp6SchTo+QjiKi9YMBSEj96eLfuTnj1mzv8HAAD//6RdS5eyMBL9QSxERBKWvEHABAQRd2ArLxF5JEB+/Rz8Zjm7WXf36aBV9966VSn269B8/rZ7yZlzxl4zaBHvtA4HBydEOM4vmE3n48eCF0HD+DScJbZoYQjlqtz59JdvZDF2Fyl8GzLV48IclnYcYgjfcYgfedTmr3slOzBR3gJ10tDNJzGzGhBOzo4cWfQcxnuki8DwTgFaJdevGYRiBduYROg4IGuYFaWfpbs7t9T2bnSgr8+Ng+feI0Q+S08wHe4mBK3/LrEreqI+C11YSfzhC6h2I5TNwPck2LAeIsALT31BUhYDT5wP2HJaCUwzW3sIjIuEXbuJo9VqegKXt9khgZlGxHCePuDthADyFJzVY4S4Byid/Yp2OwhrijLRha5oU2ylDHnr91kngDvYN3Q4iDhiF7kU5HOmf3+/P0z8IRZA43IF1f38ls+30O0g9/ya1DqecjbX2+66oRt9emKxG40RcmY5Is2bxp+8GBZPDC3I7SydHAcMvaV2bQ1QPamoNutdPlz+JA2OSzVh16wZYOEfWsHhdG4x9m5ZdNjtbBc6z0tL0WKgenFvXQf9Y32lOi9E0YiHJgWecz1iS3mVdefa9xlqpwLTs3CDen9brhsfpCV+vB++x8jKE8iS/EQt4HXeWmdOBVdBkbD+bDmdbXwEHMt40Wh73tGo4wf84Z/2BqK+YHDhwIU7fah7I9LAggdywYbf6Agy5K2LqSHofsSY3t3D2aNZXWRyhPwEq8fHvV6J1vWSixsbx7Q0cj7GyQyeCWNk5r+oZl9UGbDH7UqOtaMxZsUCLylBsGCvJ4Y+qctphl2b6vhk8F60+o6c/eM7btKmfALQbYC/dDY+j6FeE716VsClXIKEvWXqU+EEBN5ri2H1IrfefPqoDVzezo0MMw/ZLx6gqR9GcrwAvNVgpgE78jCpsZ13LG7HHg5pmWKU0DJiKBMdOHSNjc/c344tRecUYItnbPW7oiZCF6Pf541Nm+F6ErN7AUkvBVQzm+fAsrrL4LK/rdSTpKGeWRsE8l+LThQfRTNiM68EcHeYX2TI6tVjSNrHcNMbVBG6iU3KrLrw2hmIXtQC6q2inB0oRWtLcfToBnavHQOekp2GFXTC0XJKCgXuCwfiqPqc2KJQDgH4FyCcpMsIxo1/gVAIBqJ2dGBsvd4t8DH9D1pv8+Kto/pngPH76MmgYXOYu6cTw04oHIpxaunMiJwK/vjB2ttZvVxfcyvncRaT8YpFNolZWMg0ykVsYLdns9hnKzQjecFnKefqjlS1A7+HbNj4MNCZfa0MWN27HZoDdBlW+60rIL14JUXMpN4Yk6MPxeqqYPWq/tUs4vonHBTs03Pj8jrRSg4BtfR1GmPnNBz4g+vASV0PaCWKFS3LVX/AHW1v+KTMHRj7V3k5/uInlJ8SGHWt0QDJOotaVtPUs9n8WUDve4h/fDYX6Z2DW3xTJUDrsFL9G0jcQVOpeszE6F06iyJPF13FfuhX+kr1ZwKPw6mgLtHWfNw7p1SadQ4QufX4mtwWxZIXfzTxheh/OgsfxwyUqVQiWZ3FevS/Gg8BvyCKb88TmB/76wV8zHikjytOwZrzt1jGYHZw3owHsGihFEBVAS7Ws7LV5/CsOCD345Ambmsy1o4zBKpzsOm5P18B2fgT1BpO0PDTDy2UfECYR5A07OZ8FfvrE254SZYBh9Gir24KixTfkXT+3mohXZURXgQ3Jt9jjtg8qdIImyiY0KZX6uFhLAhmUE1RS1UVTOUJpXB3ywJqGc2xJkOxzUymjo72YzDpS/lV3YPheQF2HlcfrIZ27OBjX6vUkfojo8rsCdC1K5O8CxtGK7M04ccvqEPumy2Z3nPQS6uJGp7l5MxJtO28FwcdXm3jDb+/X952h8SL//Hm140QyH/inCZ7OxvIFY8ZOLLLhZ6fZgDWTpYE0H/E3T89v5+jgwhG1aYE6grNf/kCjeFxon7kJ//NL5pnDXYHmeok3WZQd7S54WRvmd4a+C6SrjZvbPjSbOe7zeD7PPbYa4eDPkwLb8Gh+OSbPn2xabnqT8AEwaaGrkr60Hh/AYzpy0Gg+KreupoHEeK6UbH7El513z4qAx7KpsJ2+bW8JVFKC95rX6QvLzHYXKS2Bja9gm0d98PawrsEjy4LsSY4Q0Tua6lBnmZ/KHq+nXp2zFmA6pI4ZB/KpT6/DqojP602xb6yQ2Cm9TDDfYc46vKOGgnILYNfvYQ1tXjo5NQOUNIq/UDdK3mD9RcvXLs/Ywe5JuOfQiHAufnD2Bhetcec6+EBCNO/dOMnb+y44Cl7RTtT5H8vw5pFYQWfVvnFqnO4RRPK+gKeDqlC7xZzBxa/MghJdWyw/emt+vD2nUqamxemdtlJ+Sp0fAFuasBRtbbHnNjvOoZmcwZUvSqdvvKfvIGeKEKcX/5QPuRGIMJx6Vfkh+fbMKcXPYCP6ckhwe/lqP8+hwR+rfmC9ctfXa9e54vQfg8l+RxBmO+HoNvqh+u68Yea03ZMe3ju0R91xP7tDefMkMDi8y72d6PqLeNyN6DnBDUNur9tZnm3pPJut6zYWZtEXxUltWDbCCk2C8fR2eGeN1C7dzGSM50OJGNlDxTFlKm1GDVY9qmZQB4riKq56gz7TV/BC2eFRCZBBaZHwwhox/2AZlK5OtMvHYKbfkSr3ZyGZTs/2PQRVeMdjKbSaQ0gHO0SySYP9PUWBpet55OhYuMbxj3VRK5WV6Gokbp81co/8cffVN09TbYoQRjL/+IhHI3hcLhHLXTFbdfhd3LqCTwwD4+R4uBk0+vz5Szzx8VnOT5t9df8fXIa9Bf6R+17JdRrI81QlgY4YdRzr2EqT1Z2XCYrpu7f9r54KacVOGqHGIl8W9Wkzq4S9NK0Q/tUP7JFmZMCXjG94FNpa9G8NE0G04sfYPuUYG9+gxqC5077Yj+PrHw5HcwCosvMU73qdhGT5VSAcuvzaF6bYTND/AKMitzTcwj6en3n5VOG061Bgnx+RgcJbGuYCrsi74fVsukzeT00Y1ug6DIp3l7MrBYWReKhV5h3+lrd5RamUvXA9kBOOpvZPoHfzzaD4Vr1Vj/RGSjBZUGc287DWktEOcpCfMT+NWjq1ahfrvS4Bgfq3tcumuq+t8Dlvc+p49iGvi/sOZMkr6RE5Ebgze0DznC3Aweq9M/PsOIhHOVkcY/USaNhWCdNiX96FNHo76n/6kkQvi2ZMA5q3uDf/QCA8W2RCp7JsAaDpMHzmr2xwZpc3/BGBK1s7jFmTPOYlw4Q5sYFb/H2rXuj4niAh3dMRE29ep3gfEe4v3E8tuk6DEv8Si9gdLiEYjOqvbW6dz7onlGI4P1ighmOMIHn3kjxGYvdMCWK8IB/5/0Zo1aS9e4yze3Pb/jhVc7u2luTQ3+dqf0lT32RQBXIRXq+U/XtknyG06MHf+fJOa9XOm/4c+SlHx7jWzHoc/8qAzmt4isOS2fyiP32FKiGOkYDunts/fz124wPOSHe1vNomZZjClLN8tB7vKB8PVm8K/e3WaKn3QPnlLI/BYwh5rGlFZXOmiHQoKjChWbeW9Fb4FstuHYo+lev0Id5L+Cyz0rqEiX0lr83TI5dm+noqC3fnLHkPsL0ciqxP1WUkUGJH9BXuB21Nj6aY/ycQb2KT+qfzLVe8YBmCOJ0h0qDV+rDo+FSeJ2DhJ7PEgeWovuTQMOKw8bHd7B8poEDSlEAbDYex+ZffYqArRCy4fU/PNi+H7LWh6IeWXtOoFSLA8a/+myOZlceis7FcXmP8zVCwwwrSUVYF4E6zHu7NGDqKg4Nc7Ub2P5QPaHpkYhqg2zkQi21GqQ1WagVjNzARMlQIOohwCRd6+jf8yLm6dhzrs98fSZ5Cubx7qNZUXcRrU4wgUss19gAPQdWxwQFvL4kixqvZI2mJa5dmMdpTPWOoPwg5XsXeMW4p/HSWNHhM4UBBD46oNb5tDVb90ILZx0CbF53VT5fg1sKjSjQsFmc/ur1I1MRppl7pqcBP3SCvVKC6wQPqNvwaXgPYgLh9PpSs8djNCZBFUtK9xTx2VyPm34jChiXbqX6oz3l61gaEkjXYY+9dtTAGp5d/p9+DYp069FlEZJb2W0QrG8OW7H3FeHn+lzwyRcntjxMT4SDyIfUaR+hx+z9XYIEOBn9k7KTzn5+U8TxFPtbfvHSkGeAkU+AxA0Php+fVyiGSsOPRwD58UFobHvMSlGN1vtl8+fo9lZvfFJ04SPbDfi+dIqtvS0NU1KkIhzSPKLmGJw9ZrDzCJKge1PrMn4H9vq8OEnMHJE6lqF53zl2hX/1nh/6mv55vBMCr3OWb35uFC09nV1gxqaAz/qsD4uQzu3PD0F86A3D7/nli/kOt3viur66NlzBVh+QXfj3zYc5Eh342e8Vqo/rDEav6yuwe91rVL0lrZ6U+VnBY6Q5SAgmN2daGPewzp4+4TJWg14rBQSnUIQYMX3a9JH+gF764lALTi1YD6dJA9fCrLD3aFZAQr+vYBH4Fs15gdv01cmFF06vsFsfx2GZQqH71YuI/2QxW0U32PZcgh09ZyqJRg6JGdz0Eta1IMgpBn89vNrLlRzuperxV7rw8k8f/dNfjhUJcLlqF+pVnZIfjsDoYVE8gx/+b/XXywGt0SLqb5uCWFYXKfiHH6+rPfDL2ycwcdoK46P4jsYylS6QcatB/XfmAknX7jHM4+KOBo4j2/pZBcrBw73RzT9jm7+TgCxniFp+9/AYf7gVkEO1glVHKLc9Aqskb/jx81vAemdqIm9+JdZXtkTzVO5EWK2Ogp9PQdr0SdHDDX/pn8newyTl0gOSbPboafP/1sU4XICQTpftXQb6MHfcWwDwrBn//FVafUcH7DvriD335g6LI/gS+PmDlv/delRF4cO0emT4zD3cfMbDmEKZS8FWbzv1vPlN0N7zV3q6KhdG8GDNx2nNA+z0zzWfHVPk4blyc1SsjZez8LGk8rLf9GAl5mCqvt/Hz1+msWd1OQvgttMdnVWsO7cYbPXJCDpuKKhT3HE0lmJlgU1/0tPxPtVjebc7cKIhIi1VBJ3yB82Bt+/HRfB1/dSkASgBqas52HJbE6z229NA0aVnGvl3QWfPdtfD+OZCUr5dlDOcBw9o5twfdhLU5Z+NX35+Gra9K8rXW3hOoGN5e6x0z0dNqvv1IindQ8TezOxouWu7EQI/hkhQioPezsaTkzquzLcZ8mn7/JoMPlu+wreDSCMWwi+CuZ+E2CzsR/Tdi4ol8xbn//oz0VodpxREwjpt/Q6ST/vbW/nVM0je6tdF/gMjzMex2PzXKjo83skI+NvpQw1dMYbZse4ugFMaUXR011yo7h2Stvylm38e8UV6h5JWghUx/5543abv5fUt7clKVMDYl9otfL0ykf7wahzVLIXxy+dw+NOz8SsIZH/pbQTBsM87qucdtPfHgbzHYPLmZM4cuOE3/fmP/OM6PY9HV1C2//+JFjU49tJP//782/X9OM0gq+Xkl281+b68Hp7QKqGV6LK3OiYroDlaFdp9+iX/xad8K4cz+SqzA9bFdH3pfAIN4oeX7q2kmldwC0uHOtLwHlhS5C0UnM+ZzM9YzfeHe3v54TtV9+lNn2edQWDtvTOaxPzEDk6iZTKOygu1wMkCS/k9OVIl6YhMlX3Z/EPFkG8Lu6ClPk3Del+5DP70y48vyNJIGvS/Wz5wUwvYn3nkj/yhff/8k3r2T7kGDyX5ULNwOn25qSWRN36hHn84AeH8nQQg5aQmvK409Xvz+6CDtAf2xhUM0z897jYjmhXN89ZzbznwuXMJNh/bxe631yHo3mZMhAZE3ryaDwkUiqWiw3YnUgiGVYObv03Rk7/nwo4OBbD/tncVJzv75/dAMH7j988/1AkYv510maBPmCQVjOw/TJLH77PH7o1a+RI9fQIeV2elqWuLYJ11oYPfl0qxroShR3uaFfBFB+2nH7d+BO7gDJvNvD54OS1sZvz6a9TfTUJNJK/d+gNVRZHss3qpToTAu7ZI1NbDgbG3VyCpyVFPFTiFm+vsjLCp0xWHgZx7yxhwGjwswkiV7u+jLzEnu3CG3wTJT3Nmq/81C7gKmoR2A2FsSYqjD1lSI2yAoR96eLb9o9k4b3qeowbMQkeko0PSASvFrf5vPsqm8Cb8PZrrRV1uDngmC8PGJ4s3/qtXqLvZin5+yTpVZgWdBDV4614Py12rEnh6qQY+vSy17gI/lkD1PZ4Qh3rmDV/yucAoqWrCOPlQTzjX+J8+wffa0UA/10sGx6WYsLf1IyfnCmeQKFVB6KtFgA3BEANR+vrYnXWmd+VRS+Wtf0Kd7i9kG14ReMWr+q+/x/aHgwDLY7qnSoKZvj6ulxn88t30Dusv/zb/oUnpM6ZJtCpKYMkd0m2qXx43Ng9FKcrfXc6Rrd9SL5RlMTyHUoj1fjoPawPCYNuTeCelf0xr8uPjrZ+G1lO7YzQtYQEbFxbYETqxplv/Stalo4W4FnLRT1/J2ld84p9emv/2+wZGz1pA5aaPlwDmLYDyh/z0a852O+yC2bAVFMY7mE/DnD7kw/01Y/sIwmg5ZkQCmqTU2NO2OyNbPMNNnyCuOtrDsj/ILlSP1xzbf80NvO1r/ADpWs//9Cfvfwfnp2ex2fh9zUqHEdmSz5iICXKi2f8OLpj5XsfWkyc1S6uHAP6EBBGJKIs3KsWlgS87Eaj1FDDYn4Q3gps/hvFnXAeWN4kFyhIR1AmdOPzyGxh5eKWa5I71SKrBAZTxAv7lx2rUNxckTlNhvadk4/9dIG39XbSe3n00jeEzgf/XTIHwv2cKjrtLQs8gKgEbL7tOMv62uTLh7eYMGwuEl10Qk+/4raLRfc0NpDfRodG1NSN+nbUA3r2nTXZJsHjkrwciuARLg89Ho4yGLLtYson9AJ/X59tbRkHNZE5P9+Sw/8hghkUiwaeqxNSd3jBnbbE0oHjuKmpkxlNfPPl0gaNnXkjB6bLeL6pBoKIQDetH8+iR6eAGkrAKN5LPZ42tpZnF8FQ+enxaYBGtAS+msCSSSl2zurM5zKQEKOUsEUHmVEZEU3NgsYYJ1aO9yYTdIyIgZuiLjXv7YJSaWQbZnzhg1eU+0VTdHQhrqy2waXpPbzx9Agn655Ihtqp5PXubRhCFefh3vjn5e2SwdVBKgNo0OiVzJUDJK3zSjYmrC6pxFCGWuwc1L1YXUQiuPKy9e0W9S08YMXXnCYMru2D168r6KkIrhR/ABIrqpMnn6z4g8LgLEhzon3BYDjQkEqjRgO3+csmXVt7NAJ7xG/vGftzmMPUE5NbjjtFwCr0lzJkPFVpzVP+7X/T5LLIWwmqOaWRDb1jmIQ6g+Egl+nrMO9aZvlRBvL5ehKtE3Zvxd+WAJHx25KZNy9ajSqXf8yGRxkfGjpanQbt9pNiKXcXbw+sA4eEkxfg0CRcwXbwbgpWxQOw05I+t0uUeQ+l297H9WfWaPZv4IX3KGWJ0Hl0w3YfmCXIvzKn3/bTDmF0+gZSd4YSVZmzysVb0FTgP6mD13T2jL0maGbLaaqh97TuwBHVUwXhnd9hK7kpN1uMYA/nPNehZ1Q46OyzRA8YvaY/2yf5Qk6fwGcEUfwWMpYUHzN/pGvxw2kLVuIqGEXx2CCb6wf33PO3NdzWJ339c6pYrHda3XkhQxtqJnhaoRIe/woHSpJIj1oxzFc1DKhKoaXlO+HLs83V1lQwgW9CJdOv5YbHu1AfamyKqft0/fW68XQNLJQ+x/+bDnL+8zgLkhwbji/aoGLtzrv+LP1Jgbto8R7mTmKCXWBPj3bDAa83B7H6YCEst3ps5zjVgmml31J8McSA3X9N228+pd9h6huUy9DBpkIK11zWLFvH2l0Ljb66ILFHmMfhCCrhrlYkgPn7rqezUFvbS8z8AAAD//yyd2dayOgyGL4gDZZCWQ2YQsEVQxDNwYBKZbIFe/V58/74BykrSvE+yVpOFKJnyGufctzmI91NGfpou+lQMMJQTh/OQeLUzf1LbLoLsVPLYG62tJsBBChUHBvhIsrJmsNOIonVpQfXh/YnZ49tHMFQCC6dm7NR8JBm6PEwXAafXexT/3nFmw+c8vvCp2Pu16KTzXuG/qkTV6pYYzFe+A+R+84da5U4fP4UumPDpZT/syq8GzK/7UigV5g6olR+GsdqjaYMdeB0pSqOvMZHDQ4fApDLi41hiU2mkDTzxHxfJf/9/9pIL7JLjl2pmf8hpcTA45W1luy0ecD1zv9aGZsXl2HoersZ65XcmeLpVh4RI1NjelHQOUlXwqX/eZr0ejxICQI467IZDbcwyfVfQD7GN3aV3DdZQGUEjVzhskPeD/bsfDM8zNi4NH89H+aPCd9aKSJmxWS9cBVx4vzc6tpj1y9deYgQekSugUVP5eLXXJlO2eEQiNoNxNaKjDYD5k4kEsZkvX+H2kmtcVdQgb8jmz2KYwAv7JzZxXOY/QVhVpUXgTQ3BOfrzlU8J1OKgw5rmyOOcaGYj93chpFY9a2y2rQgpwzU6YHP5NOOSRP0DCumrxb53VxmfhbMOrPFhU1c9ZcYqC8cHiI8xprbPmnhVgJTAIB8JOtxuj3hR9WsHf3YJEGun0FiTVngB+fU8Yo8/dfVk5MyFXyoJ9FZpTT4/IAoPsl8F1DbPFlsP5ZmDsnrF9HVslfjncOukKIWlU2yIriHwuzj4O49ac/TyF5lXG7n/Qp8e6Tfy14kbGuAJgU9z764CQXkXFUyd5YWuAfNi1prlLO9N/4Fk8p3yufHFFqJOAkhQ6dfY7NOC8vo9Ui8PWPx3n0GhPOK/84wl+SgNPCrXHnHTA8cLSaYVBiJo0D/9TVrhAX8zmNDaeGJOrrxoQlUSRPTF5jROqi55ICrdDJ+TZe+TMiUP6GCjIVJo72OmXlj2Fy9ktTht5D9t6CrmKD/Jkix7gwZ5JsPLzuqIaKo0ps5kQnhxBQmtZeDEYnkCFajO2op1rj+N6+q5GSz21Rmf3sZkjOSSq7DIvIIcgvjtT7rjD7DO55SeobNnS+S/A9iCyieizb0NFsnBDLxwfOJAWnp/PlFRgsjZG/R1Rn3d3519Au3zJKKiBQ2bq9S1wd25OURsdvt48vGjgftqOGFMskO8FLSXgF5IAQ6F3buelzxa5epsrNiDZ9un6+uawqLxc2xZdGJr0nIv+cqNZ1LlDIxr+5YmaHxCEXEfgfmL+OInGJVeRiT/fIvXxf3p8KM1K7UVrmTLiaiD8scjWpOf2BJm7z1c74WKz0m8MtK8ngnsEv+LgGlG7OfvTw3cvYMY6Q5VwdJ/kz28fGxC1vdVzulOC2Y4l6+JWhYNQNf21Sy/cgPh45GF8ZyL8gr86KHRm7WgerbLQf9nr8TWLV+MSAqhudgJNpvgbqy/OHNB6rAX4pLSqX9lUUZw90Yxtne09Gf+Xl7AztNzsk/vU7y4ud7CTZ/QKgjqlq88DhzjhJKuDHb+vGtPs+yWQCPwk4Q+fXzLULnYXwUftaqK5+bCQhhS2yOgtbZ9vcmeg7Lw2WFtmgDojF0dgt3oxFg/FkU8U+VbQOHXvQi7tp+cmM+9DFRpL1LDSB+ADvp8AX988iSpOP72lVcofp4aOLZlMK7DkqewUs7f7X5/2Lzk2Qqd6paipQ1+BuuIOsPDja/pKQh0f31LhgnFNVWxBRIQT9I7DcAfvx2WdBnn4Xu4AM/uKmoe0iWm5881Atwzp4hrs5IJoRu0wCvVmJSaI9dz1Lbbvju4x1qyXPyBrYEOeAuq2L11K5vMS7RX8k8fUDsb0DhED2gCwcYj2oGrUfNa4e5BwjQFo90ij7+OiC5MVx9T61OW+WojGEH+sOMRv3t0jI0DgIA79H+8F8Qr0TkPLnfuRt27UvqNZ3QzfL1dRDd7M2qBUwuF3/DCR2Gk4xL3XgaPyBPoaXnwxhD8iAfLmpp/+def/DQN//yL5hcv5jP4igiMFXySteikkSza1mO1fpjq1V1kywHz9ravM8L+A+XGohXq/s8+OFqj1adSD1yZP/Mq+rZzPM6VM9kgstceO6aK8y3+BTiZxpUGpaX7LKfHBpzG5kST9pnHS9YELrw23Q07ed4ZpCoHF37jUcPuJdAYA7oQgGyX5WRnxPeYrdsgkZOtvenGF+MkJtus+Yd4RrBNVWMxmksCw5AL8fEGRmMVL94MrCRE2JOLtl73KJeh7eYc6i1TM6b1ixqoXAIda2vtjouCjA5GsfomkMdDPKPu3QDHcD9U48u0/tMj6IAhpN7ngvJZKdcQjtHnSwbPdmveM/sBllNvk53ltfmSGoUA/KPvUut3IT5L6G3YFqdN1PwoUkwyV0HgA2CFUzDy8e8vf/plzFH75lIwT+5jgocO3cmrkgyDf/ZAh3s7u9HAc4ecvR/QA1euP1Mju267w+w6hRf7o1A9Z6BeslBS4XRJffxgMPCX6X5oYJKYFtbnMgKLnhYFdEAX4pPWfgDToKjDt5Xu8GnMnPGvfgNC25RYO0Ixn7ts8OAWn6i3eTVn3/s5Ul7BIabO7dDnEy52EcjD94V0Dk3H5SqcG8iN5UDfHrBGpsGdCnneY4hzbFQv9bkYlF5fY4yMBgPanSUI0ChK2B/TD2O094rDuWwXar2eNfirhw7D0TDQdCH2yAdnaQ/Sl5ijclSCnAmPkYPr0glYA4I9kovyzmDcdxZhTzHO556eB3jiao9ikt3z5eSFFby1pMVBdJfiNeA8D0SD/cCnBOF4Fedt7tsoPdHyuqu50PhaoJxyfCPAuxeMATqokFS3jDrnBuTbHKHgH2/b+GoY6ydRVOicwwJHx0LN92LyqMDuYiRYpXNZr1s+ga8AxNQWEr6ev/yrgarSH9DqvsKc5ESdwDR3Gk2D5lqz0fEFeJSK78ZjWU0UHFQw/9ZnslbiwVgP+9YE3044IL55L/HGty1o8ouGsXO32fL7fFLYru0Rm4Kk18tTcVygy8CmgVEhY1WDCAFVGQ8ECg+ZfY+Hyza3ha5oRRjXbFgfEXy6RUfx2zox/tOmLqQvziIAqnj8mQ+o//mD6r9aB2L/bFboOnWIxsArYqKHPwI3vSO9ZZb+r/HU5N/31FmjYDkGGgR/vO++EPb32S63D/4pdIkExmtOWmYKsPzuTew+nhSQebp64Hboa+oMgmbwT8Xx/niBKCDWgJDxparsriCnPjirPv+0dUk56srhj38Bq+w4gM93+3++nW7XvQlPY3tCT+9QM1qeWAXF1vUotrrvON1t8IJC+mjxsYhaQKdIHMDIgww7vVWChT+3BWyWE6TovbfGjU/mP70i66+uwPwmvQqLl1JtfD7VA4YbX2/1UVjdBIMJ6sMDkd731Mvnyv+Vt18LuZnWSMgGUpcVPJiwX3Y2kRqisE5Nggj0i2IjvjcKf15IKysoW9R/+jIfv6GkbPUO6dST7DPuvr2TKZTtXXykAj6X2AD827bLcusPrVs9DaeqsPFFgao/t5bcQc8eKjLzK/ZXXTlXUCuTGnHhILNl7fALfESxQggDP5+dTCOK/uWO9GS5Zs1iw60AnXUOn6bfh63ffYHgPexU+iTQjpfPFbpwfuMZn6JprnsKpEgeXgGgt+9ajyyoAALimqnYVxYC1nRvdXDrH+DNH/Xkj00Kwc4ZqCP70zh9zFsET89HRHj9RIwVvT4F3O3TgFoFMmJ+6OQAnp2TSgaZ+wIWCE4CvBvNCNzy6Rw4MATPqqyRsvW/Fg/8ZIhpUZKfzpJ8PpIFKQyvM1rBZ/aJ/Pm9oHzLAxwY5gRYWtx0+O7Iio3HUIFV/vweELftG2MRJ/6ql8cJHky5paeylsE8FmcVPjSgb/0INrKXGwxw4t8GtcQ9HOcymYgczkcD1756NGbU3Vp5kB8LkSVfGpexPEt//R+0X5w6JvY7jBQeSTrWMrEc10ULJuhJdkhdljnxuunNn/6gr40x2LvHzwTceLHpGRW2Ib5GOEM83v8DAAD//6SdybaCOBCGH4iFTJKwZJbJBMEBd4CI4IAMCZCn74O3l73rtZ4rVytV//9Vknog6XETmnlpdyXYGt8eqdW5S8ZH6z1h5sgTtt6bNpnxXdPUw4b0RLk9Hg2bXwKBobR9Yl+mn2QG28L507voOLnJJAxCAVvboUSxTt9k3g6WooRP7oP40wmBJdmDEjxZIeEcHKqgNUX6BjuaZRQBI0jY0CSdKpjUxjteRs1XN7ca/Okr2x0LNucns4LjCAl2XlEHmBDJPljzPy1ujZmsv/cRkpv3wE7XtIBNjw7B4HIw0WeNt+nDZRG4hGeBWt+7ZI7q4zL9/Bp1mw1JvujdnqHqA49wFyKb7D6mLmxDf8DuQWL9+LwVpVKOkYcxtFgww5lNfzxOx6PYs+uhzICAFINw+onmc3XfK2BXn1IyuQXpvw+mZvBipoz6xAtM+hleKXDeMiXOj2dgPCjwpb8Xsh5XDNgcf5/qyluJcsqPweJZOx9KCcCom3sPDLmkTPCXzwVjj4Ipvts8zCH1qDt90mCq03UPsBjuqSsEbzaL79L44x/W3qoYPW1YC45K/Ebzrmj75dMPFaybeCTf/Oax5aheUqDtcg+be+4azLEpKvD+/Cw0TKNXsuBKkyG83nJsXi5WP6h2V8JP8tUJF29cttYzHsR7/k2d8ZECMsGt/6uHGJtSa9Im9wnMPmqLtU/HB0v7DEMYqchGYK2Ov3j+05OxKK6nkbaFr9Q7Q/rxt2bGd1dThs/JpUZEuXzAjiFCdoTf9f9xe0khqAMvv+axzadBPwzPof49P5E/ZgC2fG1U8LQs8c8PN7PzwBUk/aGgfnGfm7/1bljdmZqnt50vMkQpzIMkR8q+/eTsJG44GBn86ccfAjaPZ+PHE7EXPHEzJ+HyhGxGd2wmh0uwRPyUwadhetRJ3nPA+uzOKSN0vhTj7ghopF7fYNW7FC+VA+j1oWQKH+ArtmPHTRa5VSI4QuuLPcCN/VQphQieMN3iwJj5hq08Dcgo2qD5mY/g50fByveQWuvQpEGXVCobjDfGDa+aw508DHhoShE7LLV76bUKNOnt+2gjlCKjacoNkMPrcdu1Xoxdu4TwvTw9GnHmLWCGUBJQdLqEVj6Rt5ISdgrB+l/+Y6RWZ0755e8f72cLmVOoI41SOzp5waB+4yeU+ceEkUDHZFz7D1DxDge808qonw/xpgITuL8pvjfYFB+h0sE1Hum6/lmXWl+idO1eRNnDrJIhDxwIvSJe9yAlG/OrjFWsZietx1Zz85pBMyYXrHweW89px+YHuBGwx+cLDq5kSJga2RlM9hlGG9t3chqTlFNWPoRv1vPEmINVHxSRpuLgp4cuyrieuXwfqY+v72b22+sE6UVxMR6ClNFuKaIf/yN1fZX+5Zc/v3/T3y/G//If2NgdDYjybL5rPIO0tw/UhRzrecmvCNy+1JLu7oNozovcF2CbWSW2L9KnmbmNAdX5YZyofno2zbRTZ/HPT+5dh++ne3wNYQGjBR/Cg91MVWlrsMt2AKl+bjTMFBdLXf0jme3ey6eNp0IQ7b4XetIKAuYabh3AAaWi4flus6UZTxBKz9jGlgo1UzJHMf29jjZmsk0ofngT2N/KGClqKfaTvDyPUM5qASOnHfMxyi7rPKr9C6PHzgTtIVvO8Nd/Mix46KcbP3Jg54f1Wq/9pNWXwoFnZqpIumy9XDoIcwwF4ggI3HU/mVYeDY61wPCuvNuN9PQJ+elVur9OJBhe1j2C9KyZOJzHoFnznwaNtefJp9K+55dEKX/5AIfaQe17ed+f4e4QV3iXXeVg2o0n/qdH6Mpjk6/dfkRYus6B7v28bqa6PyL1eKQyUcgnzEVopgT2vXKnWDRezfj03SPc9Yds7Xdw+ZCb7xbMgVj88ZIR311D+fNDq37lV94Own3DSCcV32B4Q06BACsSGveqnggSPQzQca8cgdrh1vNFq/zxC8InT5osnx3MwHDMAsTvLY39eBP8BsOJhrX4yBcfvhe1wVWNy+e37gcgJ+GPb9Fda85gVtxigmdT8P/4SX8uggran5NDnYMwA+Yeokq90jtEy1HoGTEHtVZuI6no3t+abLmhwYIcLzZE3V1e5p8eXXkf3ZX3V8OEpxWBxDnHdOUHyczVzIXjW57xVauWfDb56awKqaJSdL1fmqGHlaiu+Zl6gNv3g/Uh8KenyVMOKvDQjFMHOyvU8f2wMYNxJA/rVz/oTq+qfr7u+CP4+d9EDd79wGVXCDMel0SMpQeb6+HkgPX3RKrbNTlribtAe/vUiRQKQzATf+JAKR0sItHXlE87dSsCfb1Wxmb2PhkGwa3h17tliPfp0o/J18jgW7oG6xk3sW95a8uD60xkbBHzBRbZ9n2obRQeGxuRM0m8DRTQf9idTGv/9BsOrwj8+KOlja/88RHvBZRGtKPhqm+W6/UaglV/kVl4yA0ZJSOG3VxTJD+mPRsOfnlWhttx/+Nz+eIWZgm3AWzouWtaNsXBlkDXGBDNkCAxehC2EQRK1GJrmx7yJS54C0aFgLGx36+zpJ/HAgqCy7DHwVtPUjBy0C1Gl2z4wzth81hqsBLTM74fHg82F9an+uNz3qYK85n4Mgc7+T1g9/MYA1J9Pha8AT5H4OSr/Wy6Vg1lP9hQ3fC6ftLOVgwi7ZVhzfzMzTCJu1B9TyeErVE/AaKIXgndiPdwgqmcLNpknKHjd1uyuR1JP+1l8IZrv5yov37W2k8C+zg5UY1b9ziFWaYBOloaDvsdTpjK1HodtnmmBtghRmsnR/DH/65ENpi48jXgUHEmue0YrPnptbV/RQ1rb+QiKsdqezvmLZHjrdmL0tFYYAX2Kdb6MAa9FmwGxevSgfqOlpsksTYTIHpck2VHKzYRGyvgpycNoj+DSXpP9d/zw0UpzKFUv93/m30g/feegloqb9Q/LWbOv47GUflQdaT6jfNYr1ZNAbPntqRYNQY2cDfjCaXLmSf1fRuakvKlEF54q6X7SphyArvgvD0dRAMb5Q2a3831QNSrVweo8eovYJtzjNTss3BEEJIkEObnVoRJ19eI39yaftpvBg2ojSTTfas0eaV/OQUMG6ggbpimnhbyXIOX9m6x3cAsmJvkzQGB6QJ5XLdnxi4H7gjzTBdIUJ7bZokOjgb7frOjmvQ5mmx+KGcw3rI3IuqRS+gbhgrQTAtT7XCaG3a7PGNI7v0NG+jzTsZ7PtUwaSIT4+fkmnO4zgNqtvRItskyguUaH8jWSeSGSKTiWc9PzwXy08KRnp3tXLJd1YBS3ll0Z0lSUuevdwbrYzJjnZ2MhoXHK4TVINfUKLgqmbxX/gayZF7ozunMfIpzLwatFis4KBS579iGtTDK1IjqpJb66Xo6ICjc2ytOfY/vx3uU1cDuSoD9wNrnYsQqDZ6N3sO7KLET3rJ2GYh9boP3QjkHJEh9HioOVahdJWIyPXf3N1hQdaE3+aoGQ3S0K6hI55hanJ70453REo5iY5DF4GHSCjmnAPn66qk/W7tAwoqbrXcAGkDlv1QWFAvHE1vK4qEA6QQsJI1LAZavuI0giWuOsFfg9XOXvBSY3rCJtYGbk1G+exMU9e0B8aZ+M2fT/yywoeURLfNHD+axxUcgR0uB+C9FgGl45uH3kO/xrq8ENorUMKDYmwPWXW4MFs4VLRi/OUBEPvF6cd9fVjLDpdi+JVL+BcUnBE1SXNe7/Tw2y8Z5gkMYJYSf+QebuylSYPHuPOxwcMgXvt10QJb0C9Wj4WlOfczXkFNogCSKBjbgLz/BcG8E1F1/j8mJFB8YcrjWXGVkLE0VCwjtIiBZWhaTJcNOBPXxMCPCXZd82Z6+CjhAu6F+kTvJiKtCBjKcLlR/ci4TXt5pgA//iDB+GIdAUNOQg3OMI6Q+FCtZymCdB7cpX0QiUsTmDXx3Cv3AB76Jih5IVI2e4HuMRiJyMMxZiDoIf/Hld0tlTh/LcDZveHB+nwcWFlwJjEKbx278ahp24r5P0BRJi+RXLudznz065XsiNyS5L5IMhLtyAD7LBzXnFOSDvs4qEId7Qfhr8DCJAK4ZfIzjF+/PQpzM3Z6TgYqNAVunm2/O6dl/QlZXAd5tFqVZvpkTq7puikSKpZPZRQfHgMku3mFvqHQmOiL3BmV8bPFd6Gc2rZ8H4Oeso8kfSMPkcxKp9tvrqefmicn6S+2DXs8gUTPllU/CeScDOQ0A3l2lY7DUc3CE9GXrGKuTBRbrtsiQ9ZeMOg7kWe/dziV8zVeK+EkX2OJcoxbINwUg8ZAQQN+JC+GtBRpZylsRMPGEariXYoW8hA4H3/luiEAKzjL2j2eWMDD1g7I5jzskqLQ2Z76+xDD24YZIzVKyKTglZ9BbUYHvqcqZ37lrRfgSyAbbubMyjllS4Pc03OgellEwh5dDAfbg6aNq/f9pqN4UAPOjTeTGmxNyaV0I2MPJ0eYxfYN5TgYRijo4IIg2tjm7xmRA/2ukeEfRAL6uIWtwf94QGlrnOm93TivDvntcqP7Z8s20txNL2SZ6gp0aRv1yhE2hCqNl06zI3/k8svEM9blD2EfLM59ue9z98g8NOeXbsHDeKMCirwbvL42fz+HNLeDZzTyMo90nmf1RI8De6xhjOjmAFfK2UkYYG9Qrq4bR5fJwwKnjbjjoGiX5+tZmgFdzDhDomiwf8TuQwXHh3kjxxznpgjgXFXM8D9QO6bcfuLZ9grjuexKfom8yIG0S4SW1BpoXitzcmusJwvKEXGrDDpmL8LxlQNGWgFp7HQR9MosiBAelRPK63ll4PHBA+4CMWjP/AGNxRwZ8+cKHuK+Fz3s0rrvu4HLBOxf6uaQOXglGwY4pxr1sDt1XrhWURCIBclgky3f2I5DptYkdohv9cjmEEKLmbeAQKF0zEUs31NLQC2qL6e73e/LwgwwDbb3qE1Djdq8Ak05n7H9yO6C2iQxl/X6wLepBQJG1eoj5jAmcGsrIcqo5yGeVgZrH9tFPH9xa0DkvJsrDsw8mTVM4SA47hFopF835HsUVfIayhnVvsE2BfgsLJPpjR1Sn1fq50CtHnYxqxNrHdBK2PcwavKcyJZu6fASUVuNTqTNtpnabfhPWjFkBI94esJtKfrM4RtGCMHjnSNFyv1/2+/kJ8wN60/AYyub84CECLpX3eNUn4Ht6ihaU5fsOLe+aBtQvm1C9eDjCSO2VZB79bwqWHpo4l5s0p+fGPMP1eXH6yuWk7oZWA51w1f7ezzZRg4CiTQENOuWci9x9seCC6gsOytHqp/25coD6OrSoD88dm9ONU//qETVOkZfMctIvUHfRG23ca5Q3TbEv4HGyHXwQ6nOzKHzx/sUP3tvh1IzyU57gNxZVbGic1S+QLke4rn9EU5ULRteYNPU0ZHu0cYRHPlgelymZ2GU4vAjrllD5g8B0c2Tqe5trwhrmlTAZG4Pu9Z26xo8FoasbC7b7RDCXqY9DqLaBi9f359+T/nAh/WaHdT5S1c+LlzwBkectEoSEBeSZF44yzGlPKucDmjXflCq2m5HUEa/kbISmCHZZ0VFMrx2bommq1OpFF2xu+S5ht3aOoZbdCNXJlvW/eIf3S7nBjoSE/HXfliV81IaC/XEcgiGWaajAZ/FA28GzAcONlYI6fenUOvGOOWvTJQZHPj3TK128fsa9IqubRPpgP87dnJ9u1gDvl2KDluhWJpM3bd9wG3mMahIXmcsH5DUs43NLFuV2AcM5fQ9gjU9sfx09n9f1D2xUbugu77RAaqWu2xrbzqZ7Szg2M2/Nxz99hdQ+S4RMy8+AjLZH7c3rypagqXg1ZO8Eu6/lmFCqpm/lkyYGEgeIGgb0aVLDxW8ofkyeSeXCiGC4OwTU7/Knyfrb1Qd3VgBsIf4TjN1elGEkNAW1M7rLWXe+ZfCU9Qf02t/0RvQO2AI2VugvX7IJLlsRoig/U6/0dmAoj0EKTyX3INvinINBB6ai7hU/Q8uLl4KFywIHuqM20kjLdmzuXKxACYUp2er5MfjVU2Bcth4N2rPTC7pqaDDpvjXes7ALhkp+OdAl5Y0awy0zGbKu5K9eh5v20S/rfVzK15F0bD5vh34et8czOKhNQs1w+wTLcT9VYH1e7FRpBbrrSn+Ocy3SYLtxE3qSlTfUHyeD2lkaJPPW7CuAbg8Bm5f600/RJFew1F4D1pxP3jC3hQUczJ6hZXBKc7paYQisRuGpraaOOeTtS4F3dVSwR61Dw+7pbMDusjlijPvUnPH8kMHnLMQUczsNzG/2ziA6u2e6c18omYTHKP/qFQFrfpyb6QBhHXgnuheVhzm3SucCf5Za1MwpSIb9ZjCUKe9dig5CC1jfuC6cTO5G/ddBNVmaBA7grbuIuHpa7yXx0gwqw+LQHZbEYMZVoUAacC8i5ujaT5ejVcIPaVS8E18fsNbbI4xiV6fZ6ucE3toeYYsED3WBNSZsfixneDiJ7cpk3Vx6Q0sBDHRvorCDApiiPQ0gOuGDAO/csxl1bxea8fTAp5a+8tVvQRiqQrzqgxAsU5+hn95fP38HhpNwIPCSwRC7wcvql611VMBpSPdY4wc3l9R5Kv7ildtPAuheG2GB743/pt5FqtjcXQsZUCTaRLCSdQ8NDV0gjtuQZp/lEZD+YWgqovFMhk37aJh93xqwnJGFbVtfmnkcuSPIBNQhjptQsryCnIfgbqjUB+cRsBupYrU+jQ/sFaME5rfFCvhahDuRvMTJl2LofAgbY8a6d/oGHXdXHGjGywPvrCrPp+7p1bAujzo91U6djMCSI5Cy2wZ7ZWUyaVN46E/v6LfowOaduEewvgQHokxjEPC5nUK4PzUc2TyM2VzjKf3pV2qeaN7PYvPUYJ7fXzi4W1q/VMLrqabbcIPXSctg1uenBrPBQti604mt+fn980fU3EcV+Kb+86laJGCEGds3GK4yccGqt6m141tzqrzFB2v8YNtOSTMceYuD7wMBaHbXPcjHQDdAd3488f6hPJOpGneWUkayjL2ocoJFUcwn5O3tG+/RtMnHwydq4ZrfqBdVb3Mu7o6h3LPjHb1xaoK13nBw9TvU+HxM8+dHYEDfd6IUi5EIC/afUHGDjsCL8MtHgQK/ZTNQ3TSNgJ/amsCzw10JZzWmuSCzPcNaKm44ICGX0J2VLRC/+C31i6XOJ8sTU5hnpkCE+QWD5Xu8RHDpqgQHfYuSlS8YQLSmGXufUWzmzZ4NUHhtTxR9r0LD6BA8QRGbI+JlxwW8U6Qu3B4+DTVnfZMvpbLjYZ/3gNrnRM7nWz9NcPXbSIqrq9kjrmuBJHUadgRd76dBtUMYP+2cWvf0yFa/LcIuE3kcxA3XkO3pocDdRz7jo9LJ/eonK+gtxQGpuLzk1T6arZ8fQkym53w8nINWSXbRDv/06+JtIwei5mnQwzOaWDds4AASzb5gG3YkaOEZiUD/OAap/ZolfbovrN96QMK6XobYsmPYPwaXOtxrytslZqXq5++BzAezMqe8HWU4X2C0+icWLEE4iL96R0peMHv+V196rP70cG5OJ+EwqJcNu+BAUyAgTvJoVUU6xtThEJ88o16v1dVf/+n1xfqmCjxd8YNAbbPLWTagBV60VKfoeJXZwNx1VuC3HrHre8d1fYtHOHM4oFbDm2wSlkWG3E57Yqfp3GYicseBzfX5oac1f3zn55YHR0F0sB/k35w9TG+C9t7EhCZTEEwuffIQWzuVTFF066mNBgN4W2Gilh68kv7EgicchV1M+LsuszlxghRe6+5D93Yz9KzgqhrOszNQ88mP/ZwESqaUkSLj4HlIGva89Aiu6xHBZvMAS90fz2qvpxBrLy5OFkHXSlVi5wlJNuzzRULEh7vj2CGh6pZ8udQHCOHkHdCUc8ec3UgbK30VpTQaPkLOdDJUP39OXYLMXIwOyIC//Lkc6jjnufXez6F+YPwK6beZLve6BLlx8rF+GdYb4+g2gsb1uMWea10ClsycCFd/hdiNJ/3cPRcZTjdLpvYGnti49bIamNJnIOLqR8TY4Sd4OPEtzR3LZIJ98yp4UHpGlrX+j/ahqeEM5xyHTiMGI2B9uN5Ni3DwUaSEYf6QqnX60akenVxzPlhiC5yNUpKq/kj5YL2/2Z+etoUkMWewjREQm3X24TBFzfxw9AiUyZIi+V2FOXOVdWYfePrrekp//CCCmzPdUXPhg5yZdI7VaevwOHCshk1H3oKQEaQgecilZOUDLqz5t4qDZfPNF87EDkxjzqJW5/iMDtrbB6tfx4E37oDQV1EHY6/BSLmPyByzYHsEkntPqfXVz4DOD+UIN5KRUGeTuPks370FTLqjklnezs0U4OH440/4OOknMD7oPlRWP0wN7eP2M21GC1j00yDJftF8+pJsklbeRLj9dGLfnWgjsOo1bN31lDH1tC/hDS9P6uxfElvzRQfuqULRndtpbBGEOlMrXIhIbZtPzlZeoQ72riFTnL36qeYNUVl5CAFsfOQTUy0X8qwtydJF72Di6u0TPp5yRk5t6uVLcFv5bZU2hNvtYsY2jwlB+frpCV8FlTnKe36B/NWJEedcFTAZMG3h53EtkUSqI2CKYEMIiuCGUVN2PUvMQAGnwtbp9VI92UQWBiGnvvu1/rwDxov5ArRuURB8lSobQWuH0J9yme6eiAR0jl5niN3rHjux/gZksPsFYtG1sctXfi7Z91lTXxuV+/E4wM634xk20XNL71V/ChajvrngF5/Iuf7OSbcimCHLyaxH52B55kcHkg5/EdAPKRCH87TAolm+2BeVEnRKy73/6ql46Hyw5Uchgil07mjLKq1haLy1cF3vRBIqxubQCctfPUdSnjwDmhzT9U4Hd0+UwBrzNf8qv3pJtZpjyViIvgE2p+RCxOm1NH/56OdnUw19wTI/NA4YnjlSo/sYJlvrEVSHMqV7tbECpvNJ/fd9hXvlEMxoOrnQDQ7znx8cf/qptZ4+WuOzn07ClYAieql4LwijOc1PtwA51x6Q8slf6wRKe4C+9G7p/lyKeVvhh6smgx1j7Anaj6/LIIp9HbupF/cS5q8pRNVQI3URkDl5YvVUZS7c/fn37vj6FECOw5BeDekZLB/deMNQlWLEPXqup5jUGRzFh0FXHt6Q4DaLAF4Mgeo8zzV/9XgXyBnFUdkkq16WoW7c3tS+dknyDbVbCQbnkWB7Sfig1b+iDKpPUFM/tsJEWg6KA/1ZaCnalQgsxvbg/j1vM+v3fCFCU6hThtOVv/j9V6Uap6aH+ojklYcMbnkXwdofQeolRMmy7y8VFKtlREvBaQl/QacSXunsYHPrLMkYaqcSHg/7Dl8S+DUnGF1EoHvdGXvx+caGz4gM+D5rAS13gs9mMMJwy8P7iMRWAv0Ax/WccsIRGhjnATB8u6V/emr+BEUjJaapQDLuPOqbZzFvS3fMQGBrR7pzkk8ubUNfU75gkxLWbrWGX/ZhAR/VyyfKq72aPz6kUr8WaPA6f5olv0sZaG40pdo1s3qh/Z5cqOntHZfdbt8w0MEBwEabkSpPW5OerKhVe4MfaPDLJ+Rzg9C2Qo0mK19i+mZbA88JPOqZSDPnk/51IWe/eWxf0jDhz7Qmf/535QPJt9lLHGyHWMD+fUTBfPebGuwLQvCqb4PhJFzXc+kuxD8/NZ5E04I63R5+/C9fkLqN4dHpy1UfO4AeOs1XT9f9gzxcbh9Ia/6B70XbETmAWiMU17sGhjTCaHI4qZnlPVyg2OvDek/eLRi3x6leJ80AIkuWYrK2erdws1ATCWE69hOm/QKDt7rB6FAOYCG6V//+Pi6mkAEGpoaA02WefzwjYHI0xD/+Q7XrrDWC+YkXVf2+ZWptnF0vuc2+BBlqaxrKB4exQp4rePH2ETbkyArmlX/+1RcRJRTQcfeQ4fNThPjPb4bSOptz9U/Pb7ow+lAzAjeJ8EFgrce0lbpWyQ/hm1pW8Mylbrym0KzCPZq3n2+zcC5nbR8j/aIpnvWGNfJUQviSD9RNpa6ZnM3LUR/vo4+vST4z2nyaAkqN+aS24zi9IH5zDaZqjant3Opm2O6OqdrCp06tuy6D5ePMT/XHx+3caZK/evMyS5ds8tIwl2+fRLDqi4U61/TB6FoPft8nLWtDaVh0kFKYaVZCg3B8M/Z7fo1aPj6sfm45qRNSV55EA9wuzU9vAvrhHmTRPm3z53fRKOkEzIqQvGH5OkKrvls4LNqdyQ77kw+5Lt8QTrqyZNSAGoOA+BSjR1/2raKuZ1Ia/YnoynOX3HVL4K/qjJdvFmA/XjxJX4vubcXt+bUeysat9db65/fS7/XiCPZoijO7mQ8b/AY/PQjcDQaD/twpMIFp+eO95to/k+EmdSV8Xf0ngcL3DO8qVVCVDmEzz9eEh1vrbhLoCZw53qpsArWs7PFqUJI5tdQnlMKlpeZl2zTTjycWm1uKIBfOzSDIXwW0WqRQX1vezdzywFUiEBd4r4ZtMAW5fwar36P3V1mZC9uADipMN+hxjdflmRcWpLvvifz6eUO/31fKn39c+8WsbzQX8peuxjvL2+TTMZIN+GiKDsFuU7Flv98+4fEq+jjYWzVo5MccqaufQf3zkPTtUh5KdfWLpF9fn/ntOrM9+qjYOqbngC1h4Pz4IhFmKAfzr//y4+dOmuzZrMh2oVbmssOIu8bJZPRmB232umBL6eRm+oyOAe7iMf/l94A9DxDBy9LJWAOnIKB0Xp5ww/uMeorX9GxnZROcb2DzxzvnNT7gcxdoaAm4Jvlmh/b817/79asYkkEHnp8yJM+dM5lD1HsVmD4XmVpAP/aCfI0noAeWgyQV+UD89R8lMYxweGrdYMlFkClijW7UlNd7Iio96MCv3zYcm6M5p9t7pZSWDBHJp6SfkV6H4DtFXyRycEieyvxy/t89BfJ/7ymYtLqkjjZWjNK3XoBd/TzQYuCXoEOq64LjmLrUQbKZzzL4ZorRLzp6HmZqTu14P0L3kw1U08HOnFtvE4Mge24war5eMm9lK1bNXfFFG/79DuYgLn0Yn88ONY9Z1AsxZ4fQbi0XcV0/9rOdjSEM3mNEd5u9l8wgTiMI4C5AW/V+66fE+w7gGWQJmkLHA+zilwtQ2VNCLYkD8/O6fAe4fHyJmtM3bxbyeIUwOlwxdc/rXUT4c87AI2gdbMUZDFoPTqW6PR8tagNeNpkDHkcY7iOMT/oYJ8N1fyyUdmlDnAK+ajp7mHmovfMHDuNwzdlCm8FvddsgsICqH6ptUMOP65pYE69qwOjbK6FPlAs1Snjpx26yDUjqN8YWH0A2f1U1hRzIKWKHw2IuxxBOgCdoS+34MATzK24dyIOwwBY45gHlwNaCTH6EVOtLFoySdxDhMcreWDf5NGHGUivQA3OJvWfV57N48UMoNAWH9YTapiT03aTcMG4w0rtj/vf5vFHH1G+XdUDnEXBg2b8ymm5GJ3ndx48FJUtK6J5ro+BxvX8diI7nmHqX5JlMSrqL4fq8RNDUIFhcXNfwegkFanx3SjL21dvaNtPmhXc2nXom3pQUepEloTl8v9l4GiQCtSyJsCfvzUbcZPsKAmgHiB3SIWEtSWtYnB9Xwr2XHWCPVKxg9ekBgtJ+3XePklZ5DecN1h5J1DA/+naQGdJ93ZbrmV+zC114h+KLonprBNKnvPNAx48j3qcSbR6LOdVAE1SZsLz7moN7hC48ZwrBxosDbE4WM4Pt0oVoE7BHsCSoOcJY0APsy2PVsMj3fIjb0cLmoJGm99oxAlwxdDRKNjhZHlMxAdrlOySR+pTMXtO34J4M66VzwbmZ7rE6gQ2wauxGYQ5m7xplindzrtjl+zpfLBNB2HmvhYbbd5XM/wAAAP//pF1J27K+z/1ALERQGpZMIjK0Coi6AwcERGRogX76/8X9/Jbv7t070JLknJy0yWYHPbyHS0Pnju6QxA6/GkCYM+Kkn5n389SJkL3cwzJbZCpHU2+fSCahTszgZXfjiZ0pfDTMmOOnY9ZeBkEEJxVnvBarV8fhclJW7CJGzGuKX8fv6FaAeTJsKn33OJvISY/V71qVSDAFIvqZ4iVFhHyOeFoqn3Sizox+Bi6ZvVspiN+jB4YpRkf6t3+D0c098rtVTOzl93h3OmAky+AzbLkf1LT7LobmVlzpXKwf0bzNqQH+TTwQLFw/fDJfGwVkXZTwpBibcly9gx68q7ZMX5Z/fG6NpYvt4l/GE+RyUoxLpe7ExmC3VDh3A6WjD+1Js+h3ZRNviq8nHx43/CP64eFkI8Pch/M0IqanLfFG/bfTEJ2imHI1Jh3np0REWikOuPJeodevEuUJEDYesQ/Ocm+tby0wA1OhomrtMs5q/anWqDqw61qFiM6itEFwDe7L/zXRKFSFCGZ9oMR0E8eciSklaHtI3nQTlfTPvhwUbeWamOzyzqb5+tKQelEIseRsHc3+sH/C5eGembe1y4yz2Qzhell1VNrE62w4lF2LXNsPmKvYMW/veY7Bwf0bD+h16qj8bUJQtnK1+KPN58i62nB5OGfi9RmJFvsTEPPCGwsU5kaUHX4VdOIqwNduy/myvrsqSMc97bZS2834YGjqep8MzF1XhcdPdm+A9ssEKt/uDpoS2KTbqKUbpvmBZYqbzouhPRkWC4aYeRPU0ghoW1wIfmxX0VgLvQTNvVgT4txxNr67zIHfgFwqdHFacut9TmHZL6JvkZB9Q5rHavrTOO36+OxN56Rt4Kte92SnZCWaLdMGOMr5h71ogBFXQ+yj75h+qCAn747fVccGr6p27D7Walf1vZvDU6wt5o+1WtLSzWewCslih8fza7KehMu90S8h3rL+KX0oBYi0Kdj9KZdoVAIw4Kl6M63H4oB65aZKsC+cBq8FCbIZn2oKp4JXS9+PNpqD18sGf/PGbOdtRP6Hr8r6tn1jYbAsznWhp2hb3M/Evpm12atQP6FKSx1P0zf36OWtatCs2x9WXOWK+BVogkqHmcT75LuoNz5MQVv5qxJbEeuOVnuvgeZnMypbq180vcpM3N7r/Yg/OVYytosGDb6OazJcG3nH7H2HAQndigo/ZEfiYXf24ZR0ERavZm9OhrGXlLX6NKkcuR3vsT/YsBdPHA/3HzK5fHQ1KIswZ76SfLvBV9In3P0VsMX/ouEdiRsIjCImZvHhXk/Da4zql0aI76ZWtlZypwFBCvdMZ9jh3BouGK1vrw1V9pMSTTvcXeEaXlM8F/6Y9TNaWaDfc5kQYVPwacEzNNHNmRjFWo16Ir5TeNS+T15pLnWDirmDdkMwEvPsypzr4uk//9pZTOomU3xdobtKQHxhk2bjqYwUOH/5esEHfXHeLwY4WJT5ZwFlnZM7NXoqhzPZyeEn4gp6xbBfOS7JauNqzpfLewbxTS4Ev8ay6x9JuFH0W5HS1VC9ER/7VaVElrelJyOrvFl5yneAiidYsuq65JOb91DHnzcJ9NNUzqXbjIq/hpQs+1v+rnJPlSHc3jE+f3RvHUjrGAqBqSRovWM5zp9Cg7WPBGJ7rEKjad4M5ea2iOxXkpRxQTFyWPgPs876d5nNsnvCX7wmOwA++9dcUIetYlFVa6xuiX82im35gM9CQCLutJkIEa6+JPuhBx9peE2QT9WJ7X57A02X01OAv//7wyNqJJ4B6AcaldfVrZyHm5b/8T9mPKO2m5wp1pSH3zIM5zONqPzNj2jhX8w4EiPqh2fqqK9inZPbbvNb9mt1R7Y5jnglvjrem3rxhLLKOuafzzjiNvolYLOtxoL69vHmKP04wO9SxcxDrfHpG8QpujnWnvmfg4bE97pOUZt8znRdgObNRxnuyLzoGnkaaVbKr9dmhOfJLGh15Tz62z/1qLwNYv6+cjbtjif4i3d4RT5+2fwOp416jVWMYbRaNFRt2QP5uQPzns+3Oe25UcOtwlfiLPyWDSvebrV5lbHdOW3LPjcTCc7VdKXqeVeZvLFjH/YHTST779eLuH0SnkB9nbAQvE85ec8XKOqkmcz6fN7dxLUoVRmHinn4rnj8Okc2JOljx27d71DOFm1S1LeNQnDlQUZX6a5A+3NFiSXNTrau8uMdhNewx3C6O51I07UB3qUqSCA0o8kLDzuIb0qfblfJmzNdcjRQMudFbk85y6YuCSWldc2M7S/m1E3j6xRCUj09Etz3TtZ3W2WjRI1j4fUtGqN5tK0nzHFtMqvPu7L1xr5GmVEdyfl+jju+olqvrpxbSJf95DVBtwqS6u7h9PNbR9OPFw4ir8N3eR6dTxNREnins0h01ZPNYb6+DGS6+oPsV8EvGi9h40AMu4CRaZVm4y2In7DEX+Yuv8f91d0CuRV+bG+tftmkqZqvVkH5pOLy/qffN49ReFUUFpzWXcQjeWfAdmVgZtYXoZvDe9TD4WjLbEecoZymU6OA5NcTle+ffTa/a70A6VbFlC/28+NalkLwDm6MGKeu+8fXy4s8YeUhWEu+kFtq8bhbLDxInTdWhqHBo+Ea0e2A/ONLSCulgfn7a+7NBN1q9Md3/F4MvenAhieqqnzPDEA+n+igN3A6WQZ5KKzN5qlPfXh2xhfPtmjz3mWapSjiMSL+Xgk5VybL/pfPzFqAsi/9jpqyTrYWMw7qLhOvmS+iOfimmMor3M0FpRjodIqZr75sb7Yf6eaPXzN9NRfd0vs7QdVk6SxWrV3EbmOVq6PAtwQPom/O9D34yF8LKTGxE5WzP5A7CP1Jp3lEHG8yn26CHD1KqIhi5PEui59AC6cmu5/cevN96ZX6mJMHMfmhR9302mM0asKeGJnbm2zBT/AN+Y0F5ZV7476oCrCH2Gf389L71rmpMzAcShhtpbbkJgtmuI+2hJWTv0bv/Nw94a1NjOCVPqNJUx0f6b6QM33zq6JxsW9QeS3TdfkM0RgcXaz42nEg/m1/4/XUh756DpuAHP/yySlexm2dLI35pBcitjsvvVsDLWUuFy+cdw9TUxf+QYx3aUaD4CUa0OygMnx+2nyc1KFFeLyXWPFb05y8w/YJvdhozJK2Rilpt9xVkq+2Inv7+ijbocxmyO3UoGyxtx7pCkaX7bEmVkM1T2xPUgWbAR+Z1i592L6Lpp7bV4OQNisz/uyUWtE3nYMvjzMu/9aLDkD2zMxKzKXienOQmdcPqmyToJsn45tA0/1K9hdfZMxUB8X2LSfaYQhL+jSvCqz3Y4KLgB35lF9CQ/0NW5ct9t3Ni14BNigl0y7OgGbt8wOw5jQjzkEReG96awpSMxjL8+fm2Fw3IvAgDKikoJzT2PjlytEI31Tsvzskd6eD/8en2d4hhjc3j/muHrs0ZuaT7ztxezq5cFcLnejGcgbsLz+49LTH3Sf/ZN0hPPrw2koO0bZFVo5anifqkk8S4yB5Jr/OmQ3P/LslJnRFN+Xe1YfaeCbMlyXJ62HOMIrDVUqR2bRR5Tc7EUL/rBEDxLAbTx/jiQ5b3LIl3/WGJf7AYE8eWeK52fzlJ1HjWhSKH8v49kBGZPn9QPYshJJZnpYAnP0V24nVq+x3s/lU70l5Y3ilh3yWVt0GFj0Iw1g/uvFMHQVAvAxUL+5pt74btxldL2rHlnw1mvbqQ4QLklOigRF487Kf8KMxp3JJP+U8GSwBG+4KcV9HwRxPH/cO9nZj/9M3Ji16JKAb73nhT1k04Z8lgJy/EQkivCoZobhSdAIqMwI28r/4i5b9wlJSiuWf/qTg20thjl5r3aRI5x52Ymvg7dr6eCzc8Ao2CWmwYKRZNzRLn0fP05pF3yqjyZChAH6/ImYvfL25NKoP4689EZd7LefP4e2oOhFUZpdngw+Hy0/aXndSzvbkqmXygr+K0SVXzGZbLGdPWUnblz0Qhh/bV0Ynqs2gB9cD0wxDj/7iG9zqyac/g7Xd+BFv9V/+iNXXJUdTEos2pL1+JHvR22XjJcwdGLe4Yfup44jD5baBUhBv7Hpbd3+zNVq0P9cUK5d+74linsRwd28OqUnTLmewqKScbTsi9q3nXqM9pxHt5OZFdgt+jv3GSoDU7pEErqJn3Av8HP74mtfHa699nA5HiL59xjz5EWUyXG4KyrreZKdFXxKn77WC8LpR6C/+PMve3WYJ6Pc9Jgf/lGdj+P7E6HnSC2KTxi1H87LKgX48k+3wKy97OR8tWPQnrGwGreMv8RLC5UcJ0zdF6/WOMyconzqdGP7qV06ClxhAjA9d+JLuifNUisjJwowYWrwuq6QtR+gOPWZR8YlMZl0MV42ejkDS1+UajdY6r8BMPhfibB4DH1SMHLj0J5PosftAU9oEI0pf+sBIN6hLHwf9Cfj2UHBxUD/Z+JEc9y++YmX7+KKm+PUVVO3+ytwFj3khbjU0u5XKFn7NB0E3ZrTwG7ptbpPJV5tIQIs+QvynbKI+VxRb0apjQoVoR7rxUdwp1IKrYlGrnGwiD88Bj/ecCt+CmNQMhw36s+9xFe7++A9Vu4/4ouNmjqMpvt58tOTnzArTuzkVoZ3A9f12sKgYb2/0H0ql+jfpQLd2M2b/7C2Sw5mZx+ZjdodnqsG49RvmOE2F+O5Vi+gf/yzWO87pd2PAt7696Fo0fD47pC1QQwTE9PnyjYZwhWZg7W2P1fJYd5NVfzWogveT4FEaMxZ1JgZFP6RLfETdJKw1BVwWayzZrRQ+Gif9CldDMsmiJ2ZPaX1sQVSnI90+MY1GS9gdAdevxz/+PsG9LLanYqqwev9lJov5V4GuEA1cXK5aJ/PTUwS5u4ZUNZYaVnulMwwhujP/+uzR8Kw3AIwLFd4ueuS6pJoEEvliFqxOqjdusz4FRQ5HvEJN64l/eLLgAdF8+4dozrcKDEwRMP+sPYTil36FtXo3sSBcd3zqQ7WHbOdZeHqbdTTtrKsLK2QXeGOToPynf9Nz1eOCfb1u/aw3//IjXFSfb8c8jGxQte0X69Ih5JN03YzQFZJBDu5b8piJ9jVStuuK+ZY+ZJNUWhqykqPL7NWDd632eQtwc+w9c95f2Rv5ZWrR93cD3GbPsJxfQeUiEMYMj8m17vjndg3R6gSM7dTKiCT+tXP4XsIJ81R5L/tXj1BdIGCuuRFL9sbd8V9+OvN8igb3zMN/epLLUOhJnrIS4dhCR+ywxXxs1asG/l2siRatSDarr5sP1kd8swcfbHOWP1uqbApe0O2Rc6/Lzub4zz5JJ8odnduyhXX9yFjEj3tTKqoQkFS7mE70qZdjLVQi7K8fj+ExMDM+vfb+trRdgjeBeymn9jONUAzGMitEiUxxXGuCKt0PDq6Gw7Xj6TuoFTPQFfy7rC/mfM3xHfTu9yGY+D/+732fr8GTuNXxbdLweNrAsRU6XEjFuvvnT/yeooDuSsXkw2qpIU22TtflZ/AGESQferl5kIe6cfgEtTBD+nveyX7OkMkv6xEDq64Bu4hiGHHwjpbaJcvsOhH53T/9cH8wRGbnX9Vs3uv6Cs060DCX5xuXPEWWQHg4ETsaHc368BLa6sIv2Xn4rTsZDbUAq736Y/vNsDE5ujl3sO0pWPLNzqOtX4EazgZldqeJ5pgriqWYoyP+yx/H63Gq0fajH8hlOOjm/Lx9AP74iGedLiVzj+9G7eb0xg7NbfL+7AuMLr6yWM7W2WzCcUQjIwXzdF3g/buLHOh82v2rV3DZcjCiQv8iDpBtxOJHKqGDVuQLX/eRGFhOiu7zr8XSFzud+DvcNhBQjPBma6foL19B4m5ns/00Y2+U5WC5GZM/8UdQpbIX8ySBJNh6bOFnHd8YpxYehyZkBDWu2V/uPAV69XK8nZBdDusRUlj65DNyG1nGmcLgrx5Fp83PikRO7R7q9yGjb4YbtOgXBQi/sPrLJ7Nx7+YKvCw3I97WNjPREoIjyM+Usd1jly2zvmdbtUSV4OF1yfmI1mOibuzu9Fe/yuT0HVRKW3qEvqV5xdmfPpN/dnsW/PGF74W1yl89bt9qRsm9y2v8089ZcN5ZnsSfbwm2fiKQvbNh3kTpBiN6MGbm3/ZbPk2nXFGfsbmiX3KqPVFS2iM432vPzG1RmePC/2G70jCxzm2MqGXaAggsejIyVDofu2Gy1cuvJyRcb53un36mBtsD2z9wnC3rs+AWdFc6MdzwWXHa6189DLfw6r3hL/4t+h1Z4jEf/vR5aaYO3Sz4TNFudwT9XsjMDvU35+0at+Br4UDb637F+TF/+qjP7JIt/LjsvmGiwQrlHnmOattN1+H2/IvPDHtRZQ6BsfKVPit8thvn2OTicIvBnV4+fj+UL1/0iCOMLCiI0V+4Oc6f1oD6/bHYP36UHXQB1vnGJdHp6mejRPO7uvDzf3jP0/euUvLppxOMyD4bQ+943NKiIn/1Ro+fv7WFMsP9sn1Jd5205Bdw6fse07/8FoZDrbz14MoOz31s8vNHLuBbZy8sjcUPjfb1dFTdcNyTqL48u5GGx0Q9PqWU/NXnmJNrldpsggf9s6dPuOIzKqtbh/mSb4wwZz4gM9OZt3+PXv9F+x5WseqTP/yf4PimyN3NFSFr57rcUYkw3OMUE8txXtnonzYzrARrxS5GPZvjPmnpnz7Pgo0j8F6gggXXEyxCwmkqh5BvAdy3siZOdla8Jb+O4WqIJtn7rdLNfqL88zey8K3sh1ue/+EnucxZ5n0vmpmr+RluxL7v3GjuBChge1YyCqd7U9K/7//VN1335HH6py+Izr5k1uf5zaZm1QnApPKK18jrvO/kNr36jcOYBOrK9KRarhp0ilppsW+RjzNbh2gvDncSnGDXyf6BpegxzzZxbCfK+FL/RboPOXPtl5aNQ+70yA+zDXGi1lnqqVxA0zneMrMR3GiqM2uGB/n5RHeGtzn6ImkhuSgntkv4k8/fn3iEpNXvbNEzOnm83iwkPNyIkM3SJ/V12uNlFkSLF3zrhonMCfDniuHttr5w3rY8hROMP7wunzMf8ZUqQL9Mxl3AB2+830btr16B6yt0nP3y3P3/9SnY/t9nCtRw6JiuRr037uptDNcBvdlBFNWOyvrjiER43+mchypqlNUlBnMwZqY7TsDnlcIdOGXkQvRgxOb0Ue4C2oWvDeZH3JeTp1YVrNb3kunxV/D6D13mVVWrHXGwfOrkzc60IDojj+0dcc6GcyXloL7MFdMbQ4nojOQ7eiuGj+lR1tGUi7KvvF5bFYN5MDq5/22Erf3NV4SIbZk1O3M/wsBsjfnt+sY5OSei8lBPmKKCrKJp2NcSUi/CjRhMEyNKUzOBoGQO86WdUk50PFcwdnSN+f3WeKNspwZaLZpOUO4eGT+2N7qpNr5FsCuN3fwI9in4eWARZyhwN5MDLlDJHidmqT+cjdo7qlAUHN/MLsNPxIqhckC0lRE34+7A5WgORniekwjzR2wgeuw3FipPX4X5g6Vl/BymNvyUVU+5LeoROwlBjZJza5OgBsvr06cJiqWnPrEfwpZPL/MjoO1NcIj545E3me/eVpb9IJo34HJNV/4RNsnTIjvRhGwuzGX+leJRKoBOzPVX9URkOY+ZaXqvlvRkb3xFN/2Y3bKH781KTXsUrrIDM4WDa3JyfkqQnCBj+glbHt8UzR2KrfQh5nD6mXNVGRSY0M8Ex8cMjeO6EOGE0I55jNbZfFUOCqSX2CBWcf9mA/EqBfGivNDRaX4l93jbAvZGn5mek3jsKpe5+mNFz8yVZfEBDrcrmn0MhLy+djn98O8JWjltiWZqP2/sr2gDhmkMbFl/J7tPNqMjJTHZuwJ0k2sTZ/u9Y4IlaXh3P6O1K5hOl4L4i30x81K4IL7eN0KGtOgGt+wLBIMt0Gk2u2g6V1KhyOs5wfwm9Xw6nrYWoNEG5tDHYZllQH3UaYZIdve4i+h5siUIpion9ttcmVT9PSpFizvMDpuQl9U+HhJUtUlPe1W3u9kxnA287oXBtIO8Nfn69rlCPnwonQV1uQ5w6QUUS7eQ6Ned6PW7daNBpBwrcnvPocfTzytHjmk5VHm1Z94r2LaRGI8OVduz4P3MMR0h1SSd+a+TtbwPXVnpRw7MrCqz/ClpkgKstjHRJDnjXHUbET1qHtC1zapu1i63Bn2vRYUVdTlXaDyEI2xhfrIDrLbeFNPGAEvWNsRl0T6TpZOxQYNMW4J/76HrXzHS4CJ+XKJ7QYj4q10fAVuphLnSxSb3TpqtbsmcUWH31b2Pp/Y1KJ0pYpSsnuX87aQRKjG/kaMkI073bpdCuVYjKsRHxGf2iXtV8i9rOrx6M1tvyU4Dsqka4ubCu+NG7jdwsCufXKj68fprOFfquFYKvNrtP1kfnJoa5rFOcK6cT3w4O40DVRv3hMisieZP1mDUuxuM1f1Giniz2VsgpUFAcMoTNIqimKrlpJ3Zw0v6aMivuYS6FOfLPCk7WtelOcMv2Zhkv/8Ui90GBuwTa0dR/vzwkQlBgn7q1SJpj42smeddAS49bIl+wpU5nBMiIb+RB7Z76yOaD0F6BPiwhuwqO/Hm7JWlWwXrE12RVou46aA7/A5aR8jxUnvdRcM2uJ/3kSpe/OSjWxsKiFzhzAytwqwfhRvC+3m6k93luyu5Zls12t7AoVt8WfPm9GpEGODX0PTgxh3X5mOjnj43ix1qz+Di4/Buoe26lLmjNpg939wo6KN/YU/QmTkbu10DkVRv2X7KteVe9ZigfOVMhEz+EE23JE/Vt6C6ZH9cDXzkftCgjR9emL+XHJPvt89QCXLzQYy8w+X4eZ0BDJtemf5siMeFZ9xD2nzPxM84zWbOYwDjl1P2XNmiNwXE9dG3ErfMWvFNR0NvncJO9z/saVofNL7rawV7T7nSzePTRHNgX1rFOW+eLAjrwOtf5btH+zBNCZ6/Jpra4pFAt+5y5vpN21H3jV0UHuYHnQ4XNZr2rEpUNckS5rZK0vHd7umiwAkdsivkOutPR8WF00GwmN+NYjmP2MtBWydA36uDXoqbU5duGgmfMXpojP+LJwv+0HZEezSvrsdKvWzCNTOTq4TmHXYoGMfNjjxm3+LzfIsVJe0jjbgHNy7nS34Q4XS82+xit3tE35tBQ63qP3BxywZUh2llwao7SnRU+RdN+bURkX+pU2IKh9acWzq00INMMHSj2P3ktaWg0Mj2uLiczGiWn0oLJXudiH2sKB8vfn2FVLoPdPKCGQ1/9r4S9j7Th+TD5212TmCtj95f/DL5WX25aHZ/WyrdWZtNaTZUaBLO1b942LP2dkd2WOvEMh4Cn0ApGnTeogSL4evtjbt1rqE//MI4rkueF+EI92fsksjIjuUIr7KFZ8SP5FAMPe8fIu2R9Xmt//njmOhnTdE9SV3wX816xpIGLuLXxazz7t7gZa6hQGGquFjrn6Wmb7TLPC+RCrnYmBP5uSFE/c0nJO4U1B8lRQPjI5tEk+eknAqZ2mj1uD0xaMo9m3xzI0IPa0IrsdyYoxjeJBhEbcWcS3Xx5s3+fQfBafbsKFCjXD/3ZgjOhorEe7mKR2sWW+hwSwumRRvXHMn4EcEgF50Zgpp20vGpX1X8rAtyKJtvydk0aJDvpJRgiiNv6pp3AVbQ5+Qh5duO1/2agmPaDsHjRLPhSPd3pE+Plvo0YpzjbyEBOsKJHN7z7NHFP5DS6SI5uB/PnNyyz1Fn9i8SkXfNx4dY9+j4qTqW9arkserdJ5CcG5ss/sbH0yuXVPFkPejK8dtybn3P3h6J9WOO3UveWDjIRxPDW0Ly2I+G1loJwAnTmGbsaEZb37NUE7wH0b/0k3F1/dmAf6lSdihiMJvTcXbVMLg77JUouimu66DffNOfz4L8djB5Kto+Ot9IQ9cNR2Wr1HWPPmI8UxDjt8fXND8Cl+cdnr7neOl9t+2BZZs7uSzxa00DroE82x2z6LfgE8qLSh1nLGPmnVg3vmJkoC3d2sSv3x9ztPztEeG1VbGdf9mZ0oKn4JD0zgyvOfHxz95cgyq0WFV5yVpFBdhxr2b++cizNvqozz8+R2kuOqZ4fMsumL/L/t/3ufIyXbhrT86sh5PxyfuNPbwPyZO5SbXqhpJ5tfJOvxNeZXiNuA28VvtHX1FkJZY5B2c7AYb0PcHtqHo0lfoaWFXaeFq/9UzWYn5Uz5vWxGvAMho3eWrDzPSQeT/Pi+bV4zwju8MtsRN68+btePSRcNum//xp+HQ0hC9fVYt/u9k8drkCpZZ8idN/Iz4Fj42CXvLKoNIq3ZvSwrfR1XYDKjtiGA3Bpe9RyK318nwPc7F/G463Y0LOognRd3VWMFrw/N/z9KN1q6GnqswC41ejJp1kEQ4PK/iPX015ri192dp/eNDFm5MAW98emTNpVTdp3iFRjNEYiWkYLz75dXYF05BtYlK/RL0luDn08uZE7OfSx8dR7xYIlnCnivZg5hgMgoAMuFi0f31u3qTipFKESXiRw2nd8Tl+hMIfnjKjK57ZuN9JLbRpuqcI6m9HTxv9CXr8+OKNVnh8yRdseHhxQMwlP5i/6+aIDFMbWPrM6oy5t7aG+rd6EnI9jHyUHp0PCXEtKuvGt5t8cxTh2UYnfHw5LRoP4lTBvRZEmuZmzadTt3XRDEpLDs15yIZLtC1As7mEC6+ZONVqJwZCU0S35m/l9fvybkDzUzQqHWLsDWp5e8LpABalZX7PuPv8juiQvV3iK08vGr6v+onCCFyWpD7zJrl+YuS06zvewNL72GWiCMtcSHZaHd5dz4QgBlW/X7EQHzM+22+xhvUQuCR7uanHg/ezUdxPeSTWfBtKVm7W/+WTNi1sT+ylW4impD4SFzynmys9d1Rb1wTMHL/txsV/0E6ST3je2C3nutoa0NOVjNfl/PamwBGMf/wlfJnY7Md1K0J5jj4Y4vOm5BzHBvwaLyG7tG9Rd2xPFO7l6UAuQVB6Y0oeR3gZcfIvfo27eoqVxX+WeNl5g7ScubCEK6ar1Zt7jCvLGRGtwGT/vG0Q8yoE6B0VHjGCYxhNSTAkqL5Sj1nzLSj563K4oqN914guhykfg1NeQ6pKJnNjXnvMdfkyH9ynZG9SxDtLOwqwJWNGjPvSq3/1ozZEq0VDO6synxQZzZDU6EYVMpCSoyRvVS+2EzqVstCN4XkVQ8WilgULvxAN100hUBURK6XTofEhUgoHUS7I/nOu+FjGfv3HZ5h/WYjxpm9T9BN+F7YMYfbGNdJqMIJJYOYk4E6C6pgCF62UygcWmDK+ggsLfjFfUyCiR+U1I3lnNXS75BvzftgBqMHYM6N53LKhVJUQ/JxYRCvqHFH+etuwgWXWwmlk3lDHDwvm7vKl0mJ/7ZGEFF7DMn+7AtEb/vA4OlQSc/Y7G82HuwOQePcbcyVXzqaqftuq1nmEGHmo8tn0TpIyfzugwzsuEe/IZoPM+HoggVm9yw8dzzWy19cLPumfsBwUj1GliJKK7O+Edn/4Da/x05NdqGjerGvaExa9gx3i69fk33NfACHhkdnDt/v3/xB+ggfz1+6K//asikEVnimznRvPaKjaLaS7eYUnLwg5swqeo4n5W2I9HIT6onuM8Po4PQVrKj0GVtyqXt+vmH/+Vd64ikpR8QU7I/rif6M5L73FxadARWwfM3EatES5NTMwB6rUnHJx5YNrXz/0A1jm42Uz39Vu7AtiSPPKpJ3Z1MDJoDGzgNLke/FkQ2BVDxIT+KAfMncYxkZ3iXGkTcTU9aAgORQ0sqw3mq7QHOGNTi+mz6aX8X3CKRQXjVAgy6WI4qneUTWKlCXL5wfttjHA4DTDsyl9vemj/XzYKwfKtEF6d3/5OYyR5bOnSKyMr1/baouOwolZcqOa/flKfTDkdJEJPM1cE6/aoCX+MPd0XrpXnRzrL77Q2R1kk45ds4E/PF0//wcAAP//pJ3JtrK8EoYviAGtJAyRTgRMUFBhJoo0ikiTALn6s3B/w392xnvthZCk6n2fSipesfrlQgKyvP3+zc9R+rIKSsFZxBZwmElbZefAjZi5OGh72i8ou1VQMLFNXrkp9cv3tllkuW++eC91zJ+zcjMBff4eaXYw9zXxP7cLKNDTpLsy50zSkbFV/UMTE8Fr1YwFvesqq57Evf58RPMeTy183D8F0uyg8unP/1lX5YC3sxvWs3nSbtBklUB4x9B92ZY+yR/Po3V6jJaxXXTYPxSfRof++PPzKlz9Kb0N1dWcf3xpjQ/U8/Ji1UvtCdaWfsKncbYYm/3RA9Jo1tiQxw2bbjp5Qeu7L356CczbXEMw2x9N6jKPgPlyeF+gH1sXalyPdUaMqtfVzIptNBQbi4kF8G8wB1KM2HG/ywTtuvXAj9/sz1EJ+tISb/CJ2o5exx2uSQanRduS79o3ajLZ3KeqAO3iGqLJ1Pc+kzebVlU4nKCXKJu9XPr7BpoeutNgGYqa5eT2AtcQz/gvXp1YPPzpM5lob5OBS9vC9AZeq578mu3qd3/6igjbT+EvsTpd1Lf5tejPTws+2gxw3OkQr/rPn/bkfYPAtDbUz2bdZ0V1WzbfXt5SezjOPeuX7P7HG7e4MX/6woEuTu44iMk+oqufhCpsZPrzy2OfqpL63ZCUgKuaRnNmxbdf/sSe/qD+6g8HbfWD1BXjTfaL56B8Sk/qx6KQzX7m6X/r0+POJzCl4sMF/teMCbjbos/yZ6/CY5g72N+yli32xl6AZrsmdaOwithjvbt2PpsHsqli6H9bM7QgLcQMu5a+ZUOYxh24te8z3YtUydjK29TvZljbX9+RKf/W9yc6StR5laJJqGDe4EOJw9WPu5HonF8hnDXruPrTHVgkGBpg1fMYDbzZr7xRAiuPJDcR3/tpsHVd8wa1oYY+GybjX4UCVj1PeOPV+TOLwkld+cJfPJ/1sVdVqRgxEZb00AuyXJ9gdgQjtpQt8kUurhaobMIbfvRhwsgTGhcY1w3EzqpnlUUXQnCdwJNUdv7pB/isWw3vFJVA19PMge3cHO5ENNGACy/mPO6IAF9+sKX4u53BRLYV0db1QpazdgXT65YsUPmMV7xfeewfv7A59ME7XnT86S2EAnztigu9mBFk9HndJlrC3JAe5ZPKyDlWcri5nB40cL2HT22J3kC7VB32xQ7U7NTAG9D4cURSaT59Up3W9fq6qTTwwCGa0+1YAM3bbXHQiRswbAw4qKcwfGLdBDUY2Sdof/6e+poo+2P7XjoorHedYOPl+YIrYxU0PApQdTY0v7nImQ7VdCmp1Saw/qL5Nf3x2pWnMIKvIoLnbuox0sVnzRbTaAHwckytYR6zuWr5BBw+N0ZX/h9Ncgtfv3oBDcbk7Pdn7erBjZnv8E7m+IzWilbBLa5aYub1KZvveZxDJji33/w0590JcX/54cdf6PM9OcBnh+0aX3N/3r63iTYv2xDv8Sms1/yBgGJeOSI/vH02dZeDAfjPxyflV6HsJV6vxmbeJA1Ga36h9i01fvqKzNxawy5TJYQ//y8+cGPSZL5ewOrXEH886Ux8miMHRti31IpIWE+8JbpQWk4nbB1fTbTs0pv1N38cIc+yZVN+C3hyrAW7znAx5SHzQri7ODb6wH3m968pMqDHbi1Fm5wBEapVB+1ZjVbeaDPJzZ8hOJ9LDTuPzjanxPIV2AAHQPi/8EFALRa30TI8iu6PFzva69hPdcVCGBxuI96OF5vNH39pgP3SwVrPOWXDzuZa6KuvK5oXrvFn+mEOfHqQpxev1vr5x9t1Iqi/+k803U+WC7HfvLGVm5f+j3+EexlQNA9ffxo9OwDoFCLE3XdGv97VeYLO8NTwlkMOkKsQTeDHU73It2t2Bbqk7fqtiX9+aHk74wXk9kbBDjxX/pA5ywLdyfHp1ubqjIUBjEEwL+td3urWlINDNUHBazJsGGCI5tjIOJg3n4aUQtP0LFNPiZoNdkqdYQjrKSx5T0VUFhF/5ptssIvRU/dvIuOd033A9PMfd+0u4ue6HmSKvfUu15dEk0NbmbPcXBAsXppN3TW+LSLXXODc14hwkq6B6TbLEmBVeSUj14vmEp32r1++xHh9HptukQCLRXpQtNbLvofHpGjreGNTQzRbFsDnMB3yD7Y53jWXtr6fwBsNNj3kc1vTscA5yIEQ04c23TJpzQ+QLC+bXqqrV//Vc8477oz3VwtkpDKl/Ocv6TZKyHpXbGRo2isk+HoS64z9/LP3RWCtJz76Ve9ZULE2W4rOr080faLc/ekduvJ/RkTKt7DVjxvsFIcimpOnp8Cz9tlSq2hmNjVusIAyj+5EPYUdY8E9zaFL6h2ReXHtWwlvjfrTJ54yrscuu6sFi3uc4XStZ9Ji3ufwp1cR3R/YL19o6XD/oK+udYwcnQlpNykfsSukXE9Q0EtQ/qgcdvPCNOkVuBKgyLTo1jsp/rcc7gQI6ORgv3Eakz7v6AUzyiwaPDLEZLwI6K+euNZfwFJ9CuNX/yTKZO+BFKtKDH76HgX50Z/eIQ036uMeUPcAJUZ2rTuBs9KahK3xaog2rQI59eNiv7vdGOmv9zu839onjt08NCf2rQ046xbGxw+xo0Wj3wlEywahetVHy/4sLHCPAxGtfK1nrynTYeyXMjUfscEWeSHFTy9jc61n0UXIFLiuF7Jcj/Uab04OHGM1JnSth00jyHPAPT2XIoy3v/XraXFbqjRrnMafee1YaIvXb9B0N99geJiPO8RK0xLu7Ev9gO8b+Itnf/pquheqBJMOS9jYL/fop7c2RK5NvF/rDcM22VhwzXfUMYdD/ZcffSB2hFeFQ02weGvUtV6IryYBoH+06Panz2ehcXohe4WedhRqSsrKefuDLNehJi9Wj93tw+mnML23IAsgwUjSH4zKm02nllJc/tWLJl5ybr/fj91YMdgQ3EwHhEq6pc8ml+rhvOcL2Iz9Hm8/612SQ+adgPvx57V+/mDtTz+9+jePD+4bmuNan4VtwX/o4bxvo0WylkYVIzOna70NzNZnCiFBqMferop9emqEG0gX+EXsMu96+Rf/VDI+qb36jWkvbF7qNTzM1Pgmgjn94hvh1BR7p9AD8o9n+Ln8wXY6h+airErk/9pToP73noJAQRbhk9LyZ+gnd+AJypHe+ZL0c5yoIbwcvw9ySp+XaDS5SACFeNHorrlQk1yBpcDDKakQOGwe9eJ2/gVyzcPHQX16m3OznudymyNC07s8mHPqjBKELqdiDzIEZGt5LRtpXjV0HYCeMbyJoSw+Bepn8mAO0U2K1WPXJHjvLWlNs8fzBaQ95tDmddr5E7+5uZDM1R7bM1+C4etZJ4ivpzd1rrxXS/wLhWrQ8lfCPbYHxlj1uqjHLefjvYWXaJkvSQUsaXwT+LTPbJEusgWN483C9jt4ZvPmXS8QdUQl4kRyk2WPZwPeVNHx/tS8wPQs3gg89/YOGyevAWyXpDlwyyZHY3+6gP5SewaYz9ENbci9i+YurgIIld5GQsLnkZRa5QSl4giRVlBazxMfFtr6d+oMHyX7/V5Ya2aPpHN9AzR21AAQpyJEGMiQkSGOdXgOni8EyPmStXkoJ8CDtMRBn9772Y3MBMTj64Kd6GDU0ql5JBAyeCYCrXVfvHZnCG/8Wafb8raLhNvGaKEzDDd6rKfnek54UwA5pQ41MtD45IGFHAaH4EuPmLz95rPJcnjeXy0Uh0oDpue4C+ANWW983l82jOh36EHhpCdYPy68P902XgtGmk90r15Hf36+VA9+DoOD/bFGUXMamuQ3nnSfVlM0+eVkqY8+2iKmHg7ZxIop1LS6K8ho7QyT7fIuhxcgq/hw5hM2fbUKaXpQ6aQADfNp8X5bmlqsvYL8tVdjq+YJDC9wwtbpfgFzI6ICPG34oRYu+ojc9/UdFul6zj11lmgQW9mDu1mJ8EFuHv2wWO0dcoqQUANdQD3T73EA2fS5o0n6ALZcksGCXenXNHi3WkSoqrfg8n6pOEAzNinfZoEa79t1z4OrmwsWnAHW2ran+DCP0bK1GwM8tBbhwEUfMLXqJYFY+NRUBw0zlwKoFsStJBKhYN+eVeJJhcct9LH1XnS2FO7dBTeICqy/3b3fbfBlgbm477CnBQsYvrMegGhpIHXSq2MutZBO8KyNPJqluMyGsjMM3hrqHbW5yK0X+uYJzJTJp4f+dGG9J11daPbhQHdese/nMFJekM9jG+fsKbMlrpNgPed9p2el+mbkYs+OtvG+w0FuLtgXrPAwwVjoYsSZLszo5zLcoeW+O7w1WZXNVnwb4MNoBaKtz5tEDDwIduSJZu0bsnlPMwQl+bpBrKa1+R2bgwLniHrY/WqQjbLUqvCTfGWKr3u3X8D7/NI2SbynuZLjbBjxAULG995vvURD2Xk6OO3ABR/6kwQGo/TWuw7GEfsfvQFMebUSfJJGIPfr1GRTuX9aanEn9C9ezK7zvcEPPl3IdK9EQG/b3QSZf8LYFUbWM+VVSBq56xndZTyMJp3rdPB63hSk8dsXW6Q5NdSbtkx4a+xv9ULTM4GXl95R9+sLbE4/yaTSI//BzuFuZrPrlDf4ibQdRpe8yeamfVXwHNUV3b8fkT9PvtpsxlEtsJ4enIx9+fwEu+/lhM1CxdmY6ncBPuvjG7vrrtJujX9wcoYtKnLuXY8b5bIAVbyeqAeEazRpl/kC30qFqJvknc8utadvwIgCqh+XpzkLXh/CnFO+eIvPW3PpZuZqFqfE1BAJz4YXNQksluBBsYFRzcQjDdRChwYNY8GI5oPOQfg9k476Y00i8pv/k3s6Is6rzVoCwbHR5HR0sGW9CnOGxzKH8/aqUWP8tBl5U67dkM05xWjru9ECTt0LVmIRUovC9dxmEA/wLKoU62RXZAt4Bi9Q1neFRvA6gSW1vot6w61I1MVMfKaPtQXY5uZRtM6X2U3vCXirTk6tTDj5C8e1CCbJbiIaFsWoDc+wBb/x24+dkTG7/HSqUn8oxcI09gScuga+P+MR46DZRjM1zotWPusbRW0d9HM/LToEb/OBdXoaMsqfWwTdwkDUH5IqWgrDd+E30zp0DHb7SH5ORwSZ9Z2wNZzbaHhYjxvcfuCG8CJIe2YtwwQP3B5Tw3rDbLE5u4MRvWc4GxIjY5aiTaoqgQqbz4qBdb3r8Ohin0hFdOzHKEhC+H41M1J2GmNDiPsWNuZ6DlxOPvU4PgUVnEWFYsypE5umdr1vuZwcfBiOKJvh8ZurcTHIVM/qPJpKKOrgXsryX/6RbXF6gSwtc+px1xzMMh44UDFOJ/fwzEf0MdoJtPS19tJtTmBQ3JsEhTB3MT5d9V6o30QBz3I8U9t9zWze39sANvr5iZSrs56DbO6WuviNhbSuQIA9Teuk2qOO6cGxLibzHpELT8Jji+PD41l3nm4g+OUu8pq/HTZ3IwnAVW5POOIDq17cWo3BbYsdbLuaCGifNS6ktDOxpzTPfgFB+oJwl3TY5N9uPX1NcIL93PVkric+YrctntTyflOxQ8XJpPNmucPLHQ74l29mQVYCdRhaGwcdmvohCNeOwSENCPyKQz1xdXaBTmMDGoRnPluong5QNE+MBoZlRdKnae9wKx5lvO2Wqv4b71UfUHR8YnO+PhiEtbT0a+9DKxPUV9dC4LgYhy/6NueNcplAjcCEUTh+TIJRQeCeDgk+N4/aZ0d3W/3FX540nUmN+8iBRFFGvFOENJqWWsshMjvtwCfly6dazt025ZV4iMuDDRuujmDAfgsLfNpUvcku0DHg+jxqR7uN2X1srYLf+ZHg3bCRevo4TDetN6uJaKMpRXN91QXYHm5Hah07BNiQbzjwbvwtEZuH+cufBL5a06HWLTT8CbFs0sjTA0g9oCybHlzwT0+afGD10/MWr/qg0H/6tl7qiEgg2W4ZYg+uZq0THRt4x5KLHbHB/aArqQGfu0LG+1usZLOvKDpc9QXiE1c3e3Q3hb/vFYfPirHOZS7cPTiROhznsamUXrp27xuJmv72AeZ1fYGrsVHw/nX6mFOE4gtcXsGJRnCKGfPC2YWYu1T0cAtcc35tvi1YLrWIf3pi6A+JBV/NXaIJH97YdD0cDPgFwZVsCltmc7je0r3qRbrF5G0u8bdEkFctRp/r752ujqD/6Zf8jt9sXPWLKvMBw8bC1/2wPxknDffaGUV6fqlZhS4cQOfDAdvH+muywgkd7flVLazf9yvzDPRFTXh/RBW6gH5qhcMNYjid/v7+MuJCgX7jDfigtjr4irfUgsr2taXmtzBqImnAgMLZVTDahHI23xWYQyFqWmxkVeWT7NY2ELy3D9IV/jYS7llfAf+y4bHu42u9+pUcvFUrp74cH+qxXO+nzWKJYGOz35mkNZQLnJ9GSsBhJ/Z0v9YoLPr90D0AD3NO2TLBInOf1M/WPg+2cWuhxakxEpW9HbUkB8uf/vvpVzbMLw66hY6wZ2hFNPkH6kJPykusR2YFhp++fOt9TLecANnSVnYMyeaaIlV3h3o6PtMccHXcU097S2Cpo0aAgtq9UcNxHWOe13pwl55suj07ei8rciT94g013f7NCPfQTrC+vw6//ApGc54laD9YhSDjKSDCRwi0e3u/0Of3s4DBSbtGFXugowEOKmM3YSTqeVkwNvY+7WdHAgUEQYZRvOY34cEFl43EFy3S6LMxJ52rdCjAQMTBIphgao5DAzdWMiDlMnY1Fd6KCzlFSsjs0AOYr6+AA0ezyLC9bZ2MBTzjYHnqAZK9zaFnic9U1X9aBGOuDMBi50oL7MmdKBYrsW8TOgpgOco22tziJCKnqLpBLdNPNKsDULfi/eHCh9EJ2Pxumnoybpv1CuLriJ3OmgB93E4J7IXZR3wcC2yuH6kANqF/oz+/xsDDrdSpi3h8qF91Rn5+YxuFe+ydjaZfxqmX1E9zibEZ6GLWv8vwBUGpatjJYtUfNz1c4HfT7WjAu109+vxeh8sLnbClCcBc8md1Am4TIWx/sO9Pj/54gekTdvi0zuc13ghQzqIL2rBsW69+NQS/72F/WuyPSNsM4PjVXXqAb9EcT7BLIM+xGm+D3T6jyYtX1a2uQgTstDLn/b0I4C+erfnFp4OsQfDc73ZoY/SGOYkt76kqdY4kf9yObCKBO4E5SVUCefXUL+1+e9H8Tr4T8bVlEV3HRxNORnJQVj3NYkdFMCqNgbDu1NWrfpTg6g+IdOW7njUO14LpV4/fXSSTDvPAgVNlCxjFxqWfrtHFgG/j8ML706FgC0hAAydUHym+ydBk0sgb4Cp3J7qbnTeYdt8kUVd/R7H94vyp7DwDztuzhj7RU2diWTwNeB/3DhnyYWbjLfQ6YE/eRFh8sPopNPet6j5xiKpUUbPZ5DIJ8k/ljI/9y6sJ53shtEnzpIdR5LL25wduJ92k5lUoojmH+kmzz/BEHYT8TFr1HiBSsEEcGD7+tD4ROr3r0cf6/8ubSt1ffttCuWWMBw4C6++jO/3SZH/zU0jFFuNaYtmwM+453L2wRF5Bf+3ZY0NvIDyFOg7tXMnGcBAa9RPxO6y/y9GcjNJQ4Kr/yXKCCEyG/uTgyl/I/C05NtxLWMFV79AtO3EmYf7rBnDsrr3vZ4NRArbTRrxqNWrlfZ3N+6+HgJDKLfa8PgJDny4WwHA5rX6w8YfA+3KwOKYFPaTM8pdPgAp43XE7NJ+Vtp/hxOXwORovGjzlB5D5NkLA0mKLnh95z5ZrpStQzY8xUnHXm+yIToU2DJ1NXR3rtQjcoFN/fsJ43zbmFN24C6wKo0Yg+cbZoq99/yztYiGhuL3r1U8iOBXKk/qWm0fTwzon0GDpQn/xZXpukwB6z1uNzZgP6unuThU8XV2TXrJYNUdZKhRYu+1E//SydafTz/+QKrf3PeGsTQjrzcYnovp8RGt3RQg3E7winisHMHzlYwAr2Snw7u3X5pSEoQDB/rSWZFyzn1Y/C440cqlbBFpN7HxqoX2tKsQaO4vI42LnUNwONXW4oAJ/7yfSbYEAF6bmn3563U8Jdr79wIhG1BuU9geOFDln95J5jiS4SdWU2q52BouzTdf8B3gaKO96vW82zDfN/FGp8ZFaNrDxdILrFVTYm5TAF6lxnmDhzif8eWu9v3Qz8IAqbao/vTWhol3gyt/+3m/2+b0BpSTv8SHMXLB8AqeC8Tv7ECmdPHOZ72UFq7JhdFu9o0zKh+AEVn9COPa8sskZHi9onLiYrnq/Z7wgok0pfRKMxepcT367t6CaeQK2QsVh8i/fdkZ4po6UXPu//CrnqUTX57Ox3BrGn/+wLO1ljqp4fEGUnEcith+nFu9P5a66p/NMbWPbZUvb5jFY/Rd2D2eascftdIMj6hn1Cr+MWlFzHW0clQKjJFNr4nbrXYe0NTFu7w4YxEvggbYxntih98Cc3TS+gR9POPBbi83t8XIDKz8kWnaNTXpZezn//MX2bgzmvLReAh9ahwgf8HY213UlQGHaNPTnP0f57kBQDYpBDQHKjL0F8wVXv439jXw2F843TtDdpIRo4nffT3BnFpALwpGajZ1lU/C4Qzi6CSOP6KvXsq5f/vjaylPu0aJ/Lx5wr4lOD63Fm+3oQg40EKzdIMe5H+OZO0HJqhH2R8/LZO/qudp5mTC1YyXpZ+5TnAA+OLtf/ACSkN0C+HktFpmO+tWf3wlHwOEZbulVzUt/Nj1RhZe8gHirc6Qe7q5SQL2weYrCuDa/b17tYCO16znVKVvje3iD+qDleDvVldl1SuCCGeE7USFDjNyl6Qa1otJpYDzcSHIOrPr7/kb9TWsW8AD++DLdzcqBieb1qao49uwfj+tJHTUSHN/jjE3R2GYUVbEAq93tjK0PjcFy9A4v2Nk3kSJ3kwGalsugLpdSJCu/7mfn5RY/nkKEatLqlQc7cOcoCoL7RQYs6roLaEeZIvEID74497t1jxTHY3xIvtky07gCqx/Fh3X8lOARQ/j2YY1xK3qAmKUmwG2AfPz7PjP3aUPg3p2JbjkjZtMdbwtNu79Wnr4Tf/yq0aSl3yP6RQgwVg0XOGSii93Vn4/3ZnuHglzY+CIe/H7RzcmFehsS6ikNX/ffzSGEWzGS6e7+pox+F3iCc5Kp5Kc/FiXaqOogPC4YX6ugpkPScsCtPULOxo1kf/5v7y/gL74xLRkT0IB4gy8H8ZNNMHoXG0Ft3zhC4t6cx+ikQDu+GUQS+aif+71kQfEThBjdsQ3EkwFyECW3nFqN/2LkM8z3v/H+ra81Hk0Qhoay8rJ7NKrUbQD3UgDGN/luzv0r0eGxEFNqlcGhn5+96Worr131/1gzrGQt9NCnQVB511n/qVEOq8P3/OP1bOgXzgHvb1Qixo5bMDdVVoBLPGso4EtUT2j0FriOL/3x0z//sFSdge2H/WGjYJ1CeHkZHWn7j1UzenQ7qNVtQe01f4xhU7+gxd42mk1WRRNUv3f44IMc28Fcmuz9KRv4indftPpXf/GC19qn4CMRdXJe5rKBNYFVodf4V/+YC/ntgVszMBrl1x2bBW4fgL5KOSIEp6hmQ9JCKJ0vPkV9UmSMxLYEWK08sBd/q1r03GcIVj6GtOir98PqP2B+lQa6XXaLLySXUlJ9n0NEVKp9JNgH/aU1p2HAP//ZbsqLAHuu8BAXjjtzqdVqgvklvNPdVr38e97Ka3/8G4zlYdDB0j1P9CBlcz/AnV/AWokB9XDX+zPs3vlfPHig4zubC2uHfryG7kD4NafPp0/gm5sRGZ7ygw37l3ZSeWwnRPj5+8bPGrDWS8hw4Hc+A/Wx0l5NLuGVN2Wsw4ELWlAFpKnLfTSfJv2mrfkXr/yAsUh7XOBoEpO0Y/Lyp0lYGogaw6O6j+V+9tznCW4J3iCJdC+T/eo3Wu4uiL9M1pq/to621e4N9ZMwzKb63ajKz2+vfCb6rVe4+lPS/b3vscw16ypd8U4x5owp2iBtfjzu6NARTPKzgGCn7CN6che/ZvptcmD3mQy6A9+DP31nHWmMs9RVv7iZ8ONx2eXGUfs6BtGya+QC+GHHY5toXE04rgggsbic2hPhTCq8J1f76RfrePTWQ3e1BN2EC9GsB06/pEd/AcoYE4qvYKqpPtYOTN95Qr35GK6e2gwg1zz9P7221kdy8KDajEQuavuurewLLJTng0ymW6xnMt5Eky5KhsO08bLpx3+wvvZVekwAzKufAU6Z+mTj6cd6djD/gryGI6rTform235utUt1v+H9iXfZmLtdDDmcHuj+xzdWvQ+b58unq39kgy/UDjzW/AaBz4LY7OrhDe4PV59sCvnJxvjph3985laVaTbtkywE0WOHqP/yI3P17x68Lc+SBnBQwYsk1aKt8wGvfsYf8w8f/81P3bbjbCnQ6EEP+Ee68txs5fc6vPVZjdb399nlvtGh/hU4mq7+S9ycpgkqTjhjy1ETfynQ24X0EUpkyfNDL7y23AJiC+4R+/GhZffM4eulNGTyJNYPDbepwJXqFuKrU51N5+vsQu776RHzsAiomRaTpgT1jH/6eAjChQPPr2Lhs6+X9bR/aaF6OJcGWl7t0R+vx5QD4bxHSFh5+nfVU9rK66ip7RNQnQ5p8o+HJiOJ2klQX/DLti21QG4wyZ3usXq+uVv8q0/SJDmrMDsOiGYrr6YBDzhok9eTJnGXg9Vfxlo2ve/YNAeSfecev6BaBQuSveLbE000EyhuSU2Wk+eAhX85J7jfWT5O5L0ZTcd3l0PJsXPs6arQ908zCOEvHm6vplB/ZfziNK2yQorcXQRGUzEE6KF3g13xCfo+8YEKiVMQ6jsv4s/C9XD66Q/qdFICFqWIFO2svp8YX/dtv2Rj9oLl6QvwNgtNthy1voKrH0USORb+3B7zG9xNsYkz4blhfbWFEJYPzaMX2Xv2TG3yAVqmoiItmxKTaZvkAqNx3YM7mZ75473AeyY1NsNFi6iu2o6W3/iAolU/z6U6QRhlFUf1+/4IpueuRBCZrYZd4630/U/vuQkMaaBvlX5aeS54TAslQsJz0XR+ZS7cgSMj7B7fzdnp0grOKtv9/LY/N1VUwLUejg8r3xnU/Nhp/9eeAvDfewrIxOXUcILYZ/xH5iCR0YsGU6n7s2TbFuTVKyXyo6z9sdEUpIacdyXS9TmxBWxaF7ppNSFNeFX1fKbuDVZ7bov31U5gSwLeDiy1lCebdxmYS+r7F9jYtYsgVVMgvg/YBWn0rai5ByWY5SSZoHuBZ3qyLnk9LVAyAHMvDlI/7R185aCwQLN9jDhY+i6b41pWYdC+O+y3XyUawo04AdnZKQSyxjZlYg0TAO/XlbD9d2RzXG4RdJNPgvfN02IL0JkK1v+nhr2YkXgmiQIts3Ox6YdjxoJv1sBKv+mI+eEY0SBKkXo+ZHtsX+C2l1L2VWGT3nqk9o/Kn6X+7MHHZ8Q4mCMdLN/SkcDve/Fwr9XsQcMBWoGU4oP4uZky/+EhbOxziHe3LWVTyHshDDf+i5oeyLKpNIscVGZl4mB5Lhkl9ddVw9mpEadWadaB1JqAe0EiUT/2Yi67726CD3g5YX/gvIw9Nl0Cg5IXyGxkdi3tokOy1jyP2IldGcznUhlgpRshASSdGXsgMYah2M/UwuHM2J1/OsA6JFu6S8UrGyVZvEDm7bf0ToUHY/xevUFeft8Jp8p9xh6VUoDGfUbYCuKGzWakq5BtqwQfJM0AkutvBrjA8kXdWv4y8t2POejq4oMo7Hb1FCZLANM38aj33RT1FKrv09/3/b3vsvviCZL2KZPPI9n7Q9hLDQy5YofTl+nUC7BDVQtq20K1a6BsCoWtpTGry6jXUgxEs+tCCO4bBW/1p+Av3X32AD/xDZKzdJMNIXebINPNBFs4PIIxvj4JtPzNFhv2LcqWLvVbQGR9oN6HKGwqo0YCTVScsVvQ9X37dIIPXrKp987ifoyFwws8RHLH1mFv1yxg4wmE0nuPrcMQRkvXfgXo3td9+c9+ZjTITwkMhQnRgFySbJbgLYbr/KdIKb/mbGbsBd2LrtFgyg1fcl9eAx7dbkH2kWvZAhx37SU0p3hrfLmIBndwU8NJ6RHb6x9/CN1XAcK58ynmgy1rduMwwce6dc3cgy1jD2fxeAuJAYHr+C7gw3KNfA9XpLbO1yfgPUBI3uMLLU4y+P3jVAkw6M8aNnbdpl7U8zWEwafA9KgbdrZ0eNVUZuvi3aM0fZnPrhM4e0cHB+xKzbyTSl0L2e6ChslZ/AXoQIGPfuuRTXF8RuwBtjeN+e0WbSoY9W2o1SfIi7eZqO1wZFPJqwpsbmuMJ88RjGYWOPDs8hyRb7Drx7fgDFq1RyXd3baYjXG5DTQiQwvnoJ788W2b6/q7htjYWSEYpe3zBZtHiLBhaa+ePTpA4NnRfAQZEv0lKS5/6x/N+lMwGb8el2rupMHOGdDs+0aNCwOq6TiYwwpMZX0w4NE9bambb4VoKstGh8HXP+FdRvpofvNYBV19oXhfQVaPUqgt0L2dQooUTmaz5Kov8FCEJ87VY9XTwD7poBtPBcY8sPohnNUGgrqm9F88zFUC5GujYPt8rvxpyXVOk3Ndotvt12LTki13SKg9Uq+rdhElfnjSzgc4Y2N3scBUlsSAabws1A57zhxC1FbQTdKCOvGtZ5SvlkltjEYjnGp39VQa27vWjZKLMczmmj7iOdYe40Gk9kmy6yl0cgOmD7Mnyr0I2VD6fQvkRNFp9i3P5qKqsgBB6Qf0INd93/N1FULwPRlIjAszkslb97QmbWokZUZlMv5cO+CctCbN2hpmLHC2BSy5EuOteSmi+W0cICTCyjCy+Zsx0h1i2J33HbawtQGjNAgu5MGdp+fLpu6XZPdY+zwcVKR+y7CfwrNF4MJHMjUc/W6STjR0SCo8I+adl57y3leF4TQwirmZAcp3IqfKmdNj0z/gbEmNsAWhKtzp+YSf/Sw9XznsXqcdGmarYwQc7g5kh11AkXKKfEb2cwgtPT4gpT6W5miGyw2G0mdPzb1oM6nrphjw2nMhwxwaTIxzM4BWYG3wVo+g2S7fTQdJK38I+JZnf35b9zts0OZI3We13hc9h4bWjfcE3xd720/lWYyBfCQVNnbS3JPOD+6QF5svta+kypZkk78AqMET8ev8Yg+rb6GctRGND+a3p8SO13N/Q7kyKSMSllrrgOUeLtjCE9cPSyLcQXphb8Jzx505x/hegbMtA7yvNmI9S9vrC4TqSaCm67sZuyfPCj7K555udcOOfvMByHfdxPHvHFZ6VwzQGKmNMWdTf1oyNd8AegnpVpdf5pKmqr5x86OELjfPjqROcXW4zn/yebxKf37fx8tm7daKmGsP0bJzxgCEEk6xEwuwXo9OS5DtEoKvT/tVs0DqQ8jzioev2fyNlo71OkiPd3ldzwb4i8fl/I2wc9bjflqkowTBZ90tu+bzBZjGDaZfw6bOWZkjRkYzBr947NPa6KfS/rSwubk+zkj/ZizQNR2cz5WOBDR+/CXVwAvwwu6LpLjYMepfG3W9q2PtvX3XMraufxiq3Yval41Zy/z3AkEppA0+iLsxWtLPlqhdYxt0/wqK/jffwNkNI7p72lYv80h+wSpQg794v3RhAmHX7Ay8NafZ7Hnm5tDy6R67z3sGSBp0F9DsKCOUE45gSVmpwpQ6EWrvccIWteRzKCde8W+8pUyCEHT+m8B5G7BZUk0Jpj0M8UMyWnN+y0IAAWkmGrAjM9vlAE4QRD6PTRc10ffs6pIGqJeQxY7laH6r3qCW3LijGLKyn8KTFMCjG27xVk8Tc/m+LAkSlVypP0ofvw39rtDkkDewHc6qP4TC9NJA1QY0mALkT6VYIi0Yjmd6SZNXzfjJy6GF7IGojSdHo5zqJ1iZXoSUnIn+sPDQUHiFDGjZdZt++brOHcjXVMf7N9PX+KrcoXtJRnxy9pI5vzdZAMNNHVOvxbW5pN8w0Krg8qIWvoxgNmeUq0TrKmyHLotG8147sAlfHr0k9TofyjCBD+Zuaa6iVz2bryaEoRbw2H2cjjULRmUdv+JOb61+MOeGzoa2jj8BbQ0j9pAzFTCvmGmw2GU/hIdtBcpla9JbjwJzCuMzAuv4UiczDLNdPr0HziguEac4wCfJ+WxoTF8UImW2bpJvtOtAs7U1JBy4V8QeyqJC0uxiBKi/9Iy3HwkMCndD1O79zlhg3A1oHfQjNmz6jijPbTzQpEmPd9nzHJXynLpQjuiZaPJS9jQ4egTySgzRssajBSC/gbxKn9h0r0U2yy+Fg+dscrC/rpe50XQCyaIdcTDhwVx2HZkAL+OBqC1ngwVIlQcJKzZ434QE0KBoVRgUaorN/eCzITT0C+xiptJd9j5G87t7rb2dXZtaQcXXlIyqAJh+CGmwVFPWuZ+1D8CLg+iTPc/ZLEXBCaYx12GfxkNNuheMYRORA5KT65Ix3oEJZDYyyUMIlnoqZyuAVeAN2NgxVrOAFBY8W4FCAHnvgRx0ywvK12ki9Tr/2aMdA8D0zKUY4k0/m5/XCXafxKP2ej/w33pjhqPTg+RX/pJ+EwRXf7HmtxQwnptdLX0rBr1cNmvvf/7QgibwOMS8j1PLj6dpQLZVXGwdOCsT49OtgOn9C6i5V0wgrvkHBIWSEl67t9E37m8KbMLghjE8n/sp7J4NcB96jb1W9NlruZfcT0+gxR522eImRxUyN3awc9ntMvbQOQ+UYiUhJbeWbFE1TQI8sDF20rzop+U7t5v09gypdbL0bH6X3uWnb5GAWO0T9zM50A2LK33yexPMZ9cV4KMKvmu+1yOhPBgtbKL4gS9JY4I5jjwDgnIf4P2ffqQhgW5KWuqPbO9LqXBMgIXkAHsfQ/Dpw/Fa+FiWI9KE8tWTZOASkEbHBZteZ9XTMl4lsOYbbNjiNqNk2l/goz8YdGtufJ/5PhogQ7cYb01pNKew2auw+940jLWNbI7mWJxAemwpPlmuDWZTde9QPicH6rXcmy1qfbnDkIsxto9B68+NNgUqeBuUaNL7xNow0wfNMvMQW0ja+rMcFA5scLRF0iW/mXPcaKpaKsJM3fJl90N58FoYNFuMRnl411Oo5IvaPO8baqHgYS5qcg7VKlACIj8Np192MMohLxVbatjffbQAZeo0tns1REDMNIXl+shhGvUV+jyyj/n987eb244GC3Ez6TtSHaaXTCRitLtHSxJxBiy1jEfSDTb+HPPcCTD/vsfe6/ZgLBjSBjaIptQ+Yb6ewp2ogzMiR7pv3gVY3Gt1g8HwPFAnNgD46WP1bMouqizNqqUUbS9aGkUL6cn7C3peTwI1oLhA6rfz+uWX/5vtcyQCrt5gSVOvgpZ+OWD/m6XmslOFO2SeWpL3aeuAMX7nys9vEyFQaT2EBDZ/epUDxepHcPWC3cvBqC3z/ZrvUwGuz6d+t9PAHM+yA0HB7kiKjYxNSyG3oAkbjx7kK1vj4zmBgMYh3pc48ed3DiT405uU/049cVNFBQ8yiPjWve2M8d8cAubn+zW/FGYb8psJMOdxwQeRLf53jX9/7795l4NPVj8Cm2e+oT59ND0NYiUAhEMe/fnVX76DbKdzdPWHYI5PpwIG/XW9H3s7R/RBvgFY9SndGud9z/wrUaHln1O6S08HnwUmWPVUqmM79I8Z47l9B9271FN/wLteUr2LA8M5zOhT26rRArrNHYBuPFA3t5bozx+c92NOd0kRROxRpoVK1OFKvY+8sKVDGw6mT8YhpXy9+6UL+hyGC8h/69+cSkPhIKCFi9Su+kSL+1KtP390WCIOjPJ8dNW0SjB+csZssmDcO9Ay7yG9nBstYo/7QVfJZDpIjA5KNJQedOFj5M9kmPLKH2W6uLDk6I6a/ng3WSDfJhh0gkf9LhLBaG4SCB5vT8CGcyYm48efXkYbxClKxuhj+26h+zBqilY/NJQ7p4UlSAN8EJxLzR5hfFG760aj1qERsvEdwg5WttKQeq+YjAUoILCU/Q1Sqmfx4ycVBL30oMGUvfz5vYkQDErn+IsX4Jd/QKjmAzWsS96PpnULQFB3A/W+VgmmZTpLv++FzX3BACNRdofu3fbx5ym/M0rAYgAynG94l/hqxvhq7XOVlTXGGsvMHy+A7q3TsdfuP/4sjX2ndl9sk8pe6mj85d+uyRfqdc99Jp5dXYDhUhP68wMyv/cU2Bz4DbWPgesvX0AQkBO3wPFB92t6XyQFktm74FWP1kIphYMWLnuOuvnm6H/fg19tVp5Ad6lyBpSnNw6mOanpQSit+sPzbae6R9YRuNjbWn5UWwOGwoKQlNmFP4Xpd1AfgKuwFVTPdT7VOTyfAnvliVw9hDvR0NJjLmPr4OxqRjhFh49NssOGoyRg/vHIxshssilPF3Pp3r0Ez1vpTN3nW2RdUooInFGV0p+fJN/5XkD58mzJbHaiOTdTW0DwEmRqHx85+JoX6qg8T040mHTJ/9PTK18iBDjbSALWN4GN/7kgnn8k9aKSawctQ2mpHarC6ncMDlZOeKEI3C7+8lVxAJuHdcGYv97rqbydLjAN95SIF69gs6l8882PB9gn6d33/PPwF3/JQNWUjebYnoBl7F3UXFMBsPtLHrSzhRQCV16xuE1qweasKtRf9d0cs9yC56Qz0bzyHGHR3gX8+feHGL3XPfruAokaf7Dp2kFWpb4Zw5VXEAGdNj59lGkF5WRw6dYsM3NacpeD8v4AsJtbp2x+j12hylmeUbcQKzA3dSLB5r7uiVaPRi2s8WPDS96ROum56RmB3woETSOTnvQ2k/lw9atFOlDTjVf/anMSOB/MFAfUePhTqQ03le2aBonnpPCHZXoI6xkWhxpO7prftyHeQePuanJNzas/hagoYFdwAXZuvGUKS7hdQGW6Ed3XBu2n0mzvv/HD+4+/76XEtS/AwjcBBysfouRpedCyJYbdNV8oi+2+YCiTFPFa2mVTOEUvbdVb2DnvSc1443kDP16y1dXKZAHQQy097nZ4d/so/bJ7vhsNvBdMD8wH9XguJ6KtfAubrttlY5zBAZDhesMIiC9/WgT/op4P+Eid62U95zocpr/1aezC9h8fe4hKTJ3LxjW/Jty1MA19ine3TbD6bbeCQUFK8n2ZTv/nj1Y/QJ3rO2DLN9q1kOeHE34I4iZbuo8nqI9aHLD3IQlbdsoIoftMHWq689FnvBslUD6/bGxHrZPJZD+fYHrsKOGU7OD/eCoMZeVId49s9Y9SHkNmniOKNS9e+Q0UFOb5q97pTuZsak0LKyxdf3q9J98SCTBoJkr9kd+a4jsyXRi8gpiu36/uVj8BfnzKJ8Rk7WLrDVj5JN7qsmUy4t5CYJlWQf/8xNehOeBFLqUIiJb58d+NA9NWOGDT+zQ9SW/fAj7a9kOG2WvYLJ1vC2wi943t8LaLplC5TL/6AgL9DCKSRJIOu6HWsROrSr3mGw+m/ZTgA7P5nv78VBOiG5ET/xbNJs5uMB1cF6m9O5lTmW0ucK1f0HV+mkuSywEE7XBD4gWW9VSue1S7QZ3oQbIbsyemPUFriyeiMftZCwuUdBh8yI66VdhFlHeEG2zusUT9wRl7IeROyy//khd+m0w09WGA3RVoaLERiIbQHQpobfnw73usPPN/pF1L27I8r/1BDDgpDUPkJAK2CB5ngIqgiBxaoL9+X9zPO/xme+gIsEnWykqaGMgO3TULJz50M1IPDbRFnZNwvp2T4aOcQmjjzZe5qf9JGL0P3p/+QWFuwmw6Xp79H/9kp9PVCORPhs/otWrXf3yKMzFXZk3UToz4S77avOrAWHvHSseiPjyDGT3HGO4vaU3VZ1B0PBi/MXi384oErC66//JnWujMXPJxfpfuGvzZ55+ezv/0q8V+cDDYdcbD+EeRei0i9hSOzrI7BxQod+YPiwKV+fR5dmekpj364z8J+8PrRe9gWJOGbHzhV4u8bJ2wcNp6XBUf9xkt+Ln/1TcPjVE9pbr6qB/E3I5yN3tf741EeBNyeWpVxoeQASpd+8GSXZH88ccW7uClzMYvFlDURw/95MiIbVN7j5TtObjCaccezE2jV1KJ2WWZPT9qxD2/lYDRAyx4L3VsiUcWvb2DHhC1vEXPQWjxrzN4p+S+1JPi5CtOr4dWkpgx/3NVlgHb6PxPH8ZLvUWluesB6lydLflN0M9UUbT759xjUS/thIvXn/unJ1ImXqCajpmDddUUZWI6x0v2l4+iNra+jAjdBU2fb11AONR3PJloTgbLYyu4V3fA+ews9pwt+nHzYMRe9L8FX0Y4Ef1N6zTaJPLxntC/ePqnX2dDzdYmeumcUREerJq3Fgu1tsA982sFrPZ6HApNXOcheSznNZ3KIoQ/Phb08pj807vbl2/Taid/+HD0xRIoD3Z4/XnggIvzFTTbDau//ysbjm2XwmKfzLu7t+4rBrcrUFHdY609k4yLR/SGkKoj2xUXlPDwEafQZlNB7D3ZdDzQtznQca7xesEPddG7tYV/03nr92icndHVb01zYnuVWd2fXv/nH2T3ad2Ai0YU/uUz+Fc/33yc25enR1OekPNJTrJxpsJSjzreyVPoLpyLLIY//XZZHQy8n7trC/ePJxE7XNaRbZ/DG+j6s2V/9dCf5TY9RJoLxEmSY7bUI0awzYuBV4VsclUc7BypceQzoj/dbDqacP6rl7DTYZmzIm47DcRZOrPj3v1248vc5bDwTdo2/QHR280v/sU7uhIuaIx2ufGnz7PNhhVo+mgaBnHt5sTytMAaI58bUCf+h+yla1v9/f/ojqD8p4//q89F6GozOzy6fMHLN9yH74eE/JBY9Fr2FBDrDap9hGc2e/XB1Uu3cZlNEoKGYyb1+uK/xFr0/Ukh5xFop7dU+8Ra124T0ECU5B2eNvqtW/L3B5Tk8SXhbFZVH52rHvi+kVjWn6xOQV+e64s+Rxa85dPxu/TgmZnDrEAcA9o2LwnVURr/1dOsRf+P9RcSpH/1lvnWFD2gZbey6XhiNqnzyke19wvI9nrH2aT6hxoiKX2Q7dOsu4UvxHCLzSfz7idWcfGyXvYCbDZ09Xp9q8nyvhos9SXc3FdaNrdSXIJ3RAPZfcbSmqxg0P5/cwrgf/cUOJansGB+W50USk2O+qfyYXb9fAX9R1vnsFPblGFntNFkZOMV7fG0oSMuy2Qa0vENylPc4vl1h+R3QdEDViKciB3vSz77Gk3BHfclsfUxtMb761OgfS2sMG37baZsumHUWDDWbL/6nZMhVsYVfNfSjx3bWkStP/Ue+tRKh/l0MBImzaKGaCm9idsbLZrKyTehu+MjMaPvKZhr0h6huGU2M9RNWjE7Im+kh0ygunjaWKPXKGc0HawdCS0h4fN+dzhrBEjK8Bm7lvr5dQboZ/og/i/advL8ubWg9GFA9r6ZB+N63XqgGUeLPIldoPkcRw/A7elELO9VoF5YeRhu8Y9iTT+X6D0VD4ziG9gsdsc0maLzpgDlcC9I2Jz3lerDy9aFVF04JP/yZrjKKwjEoGD782fTMbN/ppp7MhAVdolWddtBwGhV6i4J/b3U8Vsglmj/HexlFjtYY0anGraibBLXuL86uslLAz31xwHP32ljyfWqPOrzCQnEa7V9p36qXwEFl58UGetVNTfjbekxyCP2HApU9SvnEwILzJRt5HIfcCq3GlzyRmQXSxYq+vymNaj6JDIfo66bv+sEVrvfSiBuuRutqSpkjFKhiElS0BTxaEQSeuXTi0pnT+jYodXOAEL5Jc7GKCyuCq0Bh69VsuAoJnwMwrqEjV7WGG0nNxu/j18DKpVytqHITYYo8Ubt+7xiclQHnIwtIhhpeSTj6eDzbg7j7K1V8fHEjmfv0amfvhrh5KwccimUTzcfaRMhX4s7Eu5/Xce7uz5CLPsd8a9pkdCbJJagxOKKqrAdu5+4AQ/lzRvTUd1o1VyT8gj8zRNi2PhezV0oHmG99Inv8uLYjSpZldpGL2osjfe04mUAKarAqAhe+rTpyzNNiITtk9m3cdV1pccbdHopK+IqGc54WKcjUouzTMcPsRNlEtMjNM4mYs5av3WKYqwxtNcpxWtHPFVcex5yndCZkO3cZLw/hl2KwqtTkX0hlRlXorpGcZbnbL/4w5yTIQcpyCdifbFZNYY/CaJ0fWyYbSZtNUZBWMPTOwTEvCyaflXoIWzPvoTd+XvIxr7wcjhUUY3Fm5kmYyYhG42yfWZHW5syft8/zpA3NcZaKVdoDsrmCo55bcm+yzzOA3Y3gDzL5V5bWFk//bTrAW+yhK7Pcs4n0uEZKrteY3VfKBk90iLW02JW8WDxLJkOWAAUueCS3Ch1iy7+rLehmxHsIakat3zT6OnuFDK3PCXBiIrE1p+C8CNmqpy6uTfgCA9Uh8TpWZh1ccEMsHKnpYL00BH73AsTni89ZRbqKzQwvxshznGD0ZGPnINu2Nr1Pq6ImcZ918+XDNDhuynJ9oJuaLrXhaArVrRjiZRHVv+2+AjuMWJkV0Gw2OsWo2f1nKngsama7Dl/wKTSL/N7riezw7GNssl7k+SGDhY79TdPW+IXVlcJr/rxW8y6vKrujOQxznhWf66wz0yHYMteo/528IU//2bhvPlYXCjGWDMvWMbXS3jN6OdUKfry/9PhHnoZP83pomkYOlWwJfFB2MotNKinzF1+L+8bAopuTyxY9o3zx+pg6HFKIywIwyPrla9QQI2jE0uSpWcm+Lx8sPb+lm3l4sd7Xdj0sEmkK4vlSq3mo/QawW5oxoj29S32Pd9zWF9XV7IxCpbwrhJjEBtsk91P/Fmz5lxHqMk8MGLLRTaRzh1hw7hPnLW+rvhTJQDJ/fxiwdOcsuns5xF0m+FOws/j2c3q+D6i2YWMPQg3M8nYThiU9e+MV87cBG2vLbPQ9u8Huy6/x2jtGRAJzpOFhq9ag+TuXJhfV4XOd82t+rP4jNH5Fpdkd74riEuzqqGv/auYFTZi10z3+wNK+qvJZmZVQh8Lpz9Vl4gZz3ffjeXdl9a5wj9YX+x55DZO0WLvzFDuh4rrSDSRYT06KuYxzVjb7FztETc+wQ5s0TiEmoa6DbtT7TrX2c9anQCwiToWdrOdSfc3jaGP3jPJPjKymPj8YqBeuiNks3czxjU/hywQ7yx8XQrEEbEbYLfS/OcPiuxqPToyXNPi8CLB/IkrF8LbF+Hp8fMs+X1YPxCJqxDrX/GARvv1MLUjzVNmt7XI217TZrD754Vg6bFcrNh8ANzXoJGt7Flo9rZaCbYaWuyBlt1Bm887hmcyWiQdyTGbEL3Oap7VAl1WGweS8pINFHjGlhl9Klljmfo2Skezw8je9RX/7rMQslu/xhrZ0o6jXeAhkwcNro8tqqb+B0cNK/VtifdBJU/SKYXwuq1I8JEzi4f9MYI2VL4kWF+GhHcXKYLn2fiSgBdxN29zcQSrdn3c/sWz92fVwoK/zLtnN4v/4fPCFxhZ8HNaJa32dx64vc5uwsXnN4T7qmv/w8etv2tge14bZJPtp2AWlt0rV/W+JUbQSskIydbUFj6wTIUzLL6SzlQzz48f27DtLpGVfi0AcdwN2WyfGe+HGK5o/xMbur69trxp8FH6izfML2ULqevumMPhPQtkH5Zva7KESw5D/FAJSYJnN9bDkEL3Wyck+zkkGB9hEYPYYQmHK4mifv9OWsDmusNJq2cJL7pQgL/4+2evr+TXK1paWRmFtXHg82PIXU00DEwybGyt0TklBlqFyZdZ3znopt13FUOqjy7J5bfG50R/m3r2XhdsJ5ku5597Y/x9H4Xl+eMqoD3K6myFISMPxF75BuvTsxxZsL7sk/En3gx9Z+CROKP7DNp9mNqAV5JOtU2TWp8//5XVjcOOQo8sdjPlGBZ8pPN7iLJ2gluNbkXm41/i2sG8PualZvrkg9WdXnR//EL7iU5Awi3eouU8seaOpCTmvSwqmQlFr8uq5TD/OcV8tqwY9K+x+i72XiF+35+PKCgEnzjPYcPnB1wk+K6VHyOBFPL55fkGGNFaYS7EO4tfo80RgjN5YE1NHGum3yGEIBE0Zq4yp5p27WTqDpMltt+7gzXnMcWoU7SKomedJnN2/VI4TCNmBx/FnKdrDVB6qiNa9Ca12O7y1f7wBmvlz0Dy83bU9E7xL2wXay+LF50taIYdqljNggEN0GIB/KdrM9ujNJtXbSvBgqcYPc1DRn1apeAjU/0vnjGlL9Gtb/YUNeswmFZJuQL1pe6xqF7OwfjqcQ2rKadUPCWvbq7dwkZW+o2JoTlBN23S7xkUK97Rx8g+1gzMTGEaovCPDyS9sZ1CcLeHJxV/U4nGp3d+QLX9/oitDjQZaqFSAHWeTzA6dx1NrKHWHK0uFn9dW81ZORkgS+OLebvaseYHPBVkmP2T7b8c86meGwWud6Nne5rKy/s1LvDXXJGw8f1u3NirHHI52VMxzpJurN+dBzvyqJh/ratkJEdXgn1Y3Ikp8a6a3hdNQC3fywRLrorm63p3hO9z2U+YR0Yl0xsrUX9/b9ip7HE3G9M3BqNrX1RKdgc0yYLyQEv8p8q6fgQ84lINBu0OZKMsu46qCTWaLngee3zzJOs7FmLtc1MzDN38Tiivgwh5n/lEZzk4dLxLZRMJX+nCTOvjd6p1X/qUqTaxPVr7FnXW2zekR8kmu28iBH1X7wRwmCoR8zttAj7v3AiZJ3pnpoiZNSn1+NDV5d6yb69wMMmC8EB//Ns/+WFGFX1Mge60F9mwJ8umICgesPEuBdvIGg96th5itMa7Hsva6Vn1FVFGpI/XgV2w/UyGKPIMsFvMiVu+zta44Bsa1bNGXFErEVtJD6p1P5RgqcU3PkoodJFK3YjtzgeOOAot7d/7ey5VAyZUawNNvY5w8cm22bz6li76Plpz8e8vHzQtm4HND4cEn/spmEG2VuhdZhOzvbOXzIq+uoJjIZOYEWEWf6/qGcT20ZC92/2S5u/56ekdkczeLftvkQH6TvFMYheXZzL5VZ3D7RCc6alcTd3Uy+pZk6SrxMzoK1t0yY/hAecr2ZtqmE2afiyRccBbYqHC4OyS+C6UXaOwjX/58bE8Gm/9H75e0I33A+EN+rzfW4aR73V8+5V6tBGiGcu4TrIxciwbGYO3JkHZBsnYP8T0H9/WF3yY9drzIcnrEzEndK/oxdv7SFkhn8qBGHbKzmCA5nhnMusPDxLclmjjqh6x9fcvmFfv3xm+2lum4rMsrUlEcw1R8nMYOXXbSiGt0aOd2qRsN5QPxLC9eYAXui4jm9suk+KOA9DqPRJ3jVcWFxiYkB6VZfYomtH3UjoSKmlXU2Hhc4q84zlk+7uMG+lWZrPbBgravJKKbOfoxOej9JuRhdsnhr/8/xxHuf7H9wLlalS8We69b1BkYlS2QTYfonUD5iWU2f7NHgG3o+0bVmWoMVt9ddlk97EAFZgVcXVTtqb0rtbI+xg7smmyRzfukrUNT+gd5v9yvxs7ZmM0Gr+cWEk/Zi9y82OtN7c+ITaIwfiXP2RX/MIzfbe8v7yvJbpk/pcOU2x1E+quJogPccQf/cO7URwkDUWn3Z2iZtgF0/FSHP/yd7pG0zNb8vWVlnTKjrjHNqvm3pWlP75FUrvvAj6e0/O6iQqPbV+46xp9a5v66WX3zHiGbte7AenR+RaVBBeHCo23i/0AKHhI0UPBmcKuvwcAHEDjv1qNtGSYkrs1xp8516NSW9NftczZ8nwe6Y6TpXT65Ac+mvqgIBfyD+0eCk04TvYYFv9c9IpNR7Mro2DttQTPXQ/8H18dIHCIk63ffHy7UIAekJrtnC/rfn/2dKP+B4821qtJ2MqN9pd/XLb3a/eZmjRFn+vJIvvdIwkmz1ElZGjejiXmowpodh4N2J6RwSx1VaOm5nSl5eSiLfmSE4xraFdwmEyT4PzucmV9PBbQxOZSU5jNbiq21yuMjRwzL9x3qLFfZwMuRgZYGFHzD4818UdzRvqRVfR8OuA/Pk8CPCYW27b6A07VKaKqBAaaclRjqDcHl5l3WnVc3ZQKPL0kIEHpltkYqq8Qlv+PZafLmtPJSVYgXN8Vi4LHlNGKahp6FNsTBqovu93k2EbJ6uWRUpyv1qzo4xWW9yG7MQ3RWFb2GfbLlEava2/VeDsGFMw3dvDvL5/BUZiv//RBP76U1SCuJgm57ith3vQ6Zgo7Fct5rRJ2EPWxmuz6kKMHfQML/vjjq3dr9B8/0txqYkLTAzoglZh3alXqdbkXe0Pahu3QcrNVsowzDK4oUkndOdk/vA08c8uM4DElg+Y+JJQF+p34C5/j54Yss6xbDU/v/oPGtysVaPUhLXEaRLJ+95Hf8PkcE/a8mVo2VLVAwZI3A5YDsa94NCAb1pkPVGH5q2OXsy/B9t3mFIxSD/7sFT6Xt8o2RkGyoe9lGyX344sQ0vzQpF/NHOTWkunVEQKLp+Oqh0TjPQvW1ZjxSJHPSMuKH/vDTxb+kgIMTTsxI3ZW1hitDUOXMzcmm71o8Q77JgBsXZ154SSh4Vj37tKTHi98uevmtEQGwO7ywuJT86zJ7lMBcCcPJIyaVTLnboXB+8YDW/y9G9i2MuFUfmy2XSVJ1Vwr8kAdeayY5b0MJF3vDuhWrZyZt0uXO1H1Kkfny+gzc9HqF730uMwVden6NrSI88kI9bRMyB8/CPg3ygS491Slg6n2SYfifYq0dr7T12p+WePPiet/+bgrd2VGr46dAi1qY8GbLpsvh+1VGztHwavwRtH8GI8KgC3d2FXSu2Qyg65GXR+otEzjsBu/18KHo1Nc8WqXmpa8X6USSCHWqbrkk0Oneum/+HmTzBrxn0F8rewzE6MDE9F8yKGBQO+8f/i9+G8KrsdVGu/yTzbunuCC+Otz8jCLiKt0Lj24trNH3z+Fo7GVnX6tHJ4FsSXn2MkHT1/uDEQxeSC/6ZguyyUc9peEBFt9l63EL79Ch2mP1/p6k9FenQ19UvsvRXjkFvupoQLJQ1kz8tSagP6db/3FVxJ2wjZTHduudRbMNfPV5BNMze0w60+gDtk8N9jqfKe7wh8er4puH/AeayYqUpSzsBO+y73QzIOpLwx2HO9a1Rnie9mthQ50kORbMohIqxHS5DWxvTJIxq4PHtqfHrF6m0/UL/kfErJP8i+/7QvIrvBljr7MAdHRfKRFpG35V6R/+ffUxmTJT0LKnL7aZVz4aQV6CviO469uB9J+fDSaA+6KKot+P+zl1IYFjxnJWynrXXOfg7zZcoxNr0Uzy8oQ3KSs8DwbG85vgVpCcHrG//ynS4LfCKn3Naj4XOayLfofUrSspIgfSTVKQiihb+/sF31W74YlH0f7bDwQY71uOjZsWY7Md+iwx6Cq1pydR/NPH6f9Fm/52FyeNnyHz4d5Xbvuhuf+sNJXYrij34efVlPZeSX8rreBuHaoZbU6VG90+co1+cv/6r17ff/p5bTFldPNx+lnok+YRpQuz6PuN3DRffVr8aqlfjXZVdSjVYk1YqvrQyIpGSohEHdLvsKfFjvalxBOp49E0bqKkvlPD3ZPJvqn7033vs1hgPUBT2t/a6nbL/Rod4eAbOC1Rj97Pj7g92o2LPsc5kD5Vfv2j0/RVbjv+Hh5RwWwer8hRK8VxLT82kPGbx4LDs3LGtdi16K2LhXmVNGlG49hd0WdfA3I+fDsEDu8Rltv/bfFAhz6Acf7oIdejSJmgv/I/tUrGrdqmEmvWyTP5VVDearMzBaOp6D5QRRpz20pYrE6pIir6BXDd23f//RDxNXt+wy7nyaQvSTfMn7qD772HtFtqc9AMHxZs+yOepp09sNDwjZD8dAP10oj7me/CRRnsGt47jYXzOkmzMbAqEpY9HbmZr6VKZMYn4HuVq8F36RkSi+Kq8X4HhK/fucVtw5Rqy94TNE8up1UrNMWiUqW4af2ba2xvJsKdPnDI87h8com/8eEf/qbc73TYNr6mxa4f1yR21izP71w9cePWbbUO+YuVM/gD4eMbSIhquZJubrQXnnKnCU/mM/xNV/uYLos+mTfZHJK0vzhHR2V+9RNw319BBK/Qrbkl5wJy1znRicu+TsPiZmshuyNCuIoQsinl+4YaI/5BqPAW1u8bTYu7DPDYce6ewfK5UCu6A+vNp98QsNQaC4s/JC48OitcXebazi9nZztboPPp/4nnXUQii+JTqc+GGyWUO0zW/Gi59ToT4+H4rLqmduMZz7VQiXptgqEeYL0Qfwo3Bv4q2/5+SkPGm7jK0Sn4E71XTxaY82ppr2yZMc8oTG5PDXpFfHt2fvj/8n0+FxWa7ETDYbPdbjsXjmOELeZSOyFT/CHf39ri57MsHkc+KwO3TKX8qLRxFvXnLPuWaOczzLZeXWeDX/6Q7JRW+JmfvWv/gid4l0YLg4WGrm/XWmfz3mZY7g+WXzxt396t3cJV8miR+RIfmxNWg0/N2G74L2CaEvjf3x/GvVng0Z8VZmx5J+ypiYm/MVHoV75y27lz/HvvMnmcD5XDCdOiM6+San6Mr1qKukm0skaFHJJxRb15WVzht90GYlxPV75iB+xB9Rvll02n601Pr3HA4YCJ8Skbx/Nzpq8AXSTUO0Xbatp7TcNHJOBEaIvzbzCby5061uX5E+fV4VqMrQlHlF4PGPO5AKl8PQrxtxDRxGdV2SGBR/Z7rbbIFna7SRY9AU68viFevtxj0B1fEypWURojEz/+FcfYvv7G2dT88xisNuQk9uQFRajfdPAmF23ZMsc11rO4whL/YMZhxexpnN0nyE4Di6ViQ8ZM/vL9e955MTpig8HByhIdXf9r759aVMTtr6wx7/iOFVzcXQMPfIeDxI0pyoYL21qAEmSK64KqnGWsW8L5DAZxEemjmaLnIQ/fk88aWoy2hb2Cn7CUWT3LvOQgjYu/NUHCPbYoeIuV3u44HVF3NfUBku8t5Hj3FJiJaskmXRiYD0oHyXbrw5jMtv67Yr+/MX0DfoffmrqPSfm++RnU6dvViietS0hPczdNDXxFW1EQ6Dy9RBYasShXjeaUGJ4dCc++81rhejrHJI/fjFpambCe/ekxDC6L+p2F/b/7CnQ/3dPwdt6XRn+onc3zVbug7192ewuH3Q0Zwn10GmVPZgRRk02j27Rw3UUBGb1xcB5pKxcSFzPJMGtBKutbC9GlFQRXfcHo2vD416De58OxBjnrqKRX6TgsOsDt4fym/HVXJSgb3SGZYlPaNi2txQ9ff/N8Ht3S2a3Uc+oc+0nM5m4QzyDiAKTT4wKl7fZzU38y8G6xweMnH4XcLvIDFD2rYVp8/h27Hj5lkg5f3SsLrODWC6FgrYdDm9iVQ1U49FofUizucbw64RkEm5rjLT770y2g1hnY8KGFvDX2JCrOo9Jl4qRBuaB1njy9GVWXVjHENeaQ8y4LLNpfTE0mAJDIFsksYz2meii3V7/sTB9U87wUcWwkieg0/CMLPldvEK9/q16EvwWjrJVzAg2YpGyo1q12dgfjy4Mw8nB17tzTrrLbdZQp+UyXmvyYP09H00xPpLtZqkyxmIzQrUqSnJaq1VHvzc8avoq22DuaquKi/vLG6x1bVDZGTZI1UOtgVNxVtme3I/WPNXIg3z7fDHfE+1K9dK4gQmeLtsEz0/HEvVuwt0RM2YzY9txvB5j3b+POV3XO0D9bT4JQIjdEPNvn2CMFQV96MkgoaVKHf/Y6zd814cVI8phqvqivmPwR1kj+/u3qxppnAo9rXnONvuCVNy8lEcVLj0wnJDjMtTvtIJ0V2dsD55jSaMyaeDiJiP7DhfWdF7u7dbSuiTur1eDKd5mEoi3rcssY42R+uNeBIEv3rFWZGU2oOf6rbVrY2BOUrbo3aR5DoLx/BFylVprAsN2gU0lIRiOWvVtk3SEMuo8LHJ2rca7HpvwDW2VKr/+YvHTwQzhm8R7KhRtk/Qf3fTh3GklwX5/qDgX3RBU39kQ71Y7iYL3TY2Yod/Y7vSus+G4aimgramS8FTowWQqoo1u74fJTOEi83FvPz2YP8qXzul50ymNu3oj5dqsic2MbzXsvrcQfvpzQ5z7qgr6AeYIbGR4ZD+/ouz9exYG6rJwxTZJ8uYzvt1y+O10HTc7oUa83pexuGr5MsiWn6vRi7sYjjmtCOEv2+JnT8hB6bUlEgqWNeFNdUTG/pXTqWVlNZF2V4BH7owq+s9CaqrufeiucUtsxamS3vwee4jxTcGcR1nAq6RswfP6DXkcXyniXm0VaxGLJbF+Y5HNzXIv75Q7DE+YcGv+rCBG4BQTlhSp5tzQdQ+2wfZGnE9vJo38MVrdzuYA/5y9nUjnzdbWk0f4Y3djve3mlCcN7F/HmXhBPqD3ztWuUNleSPXIUIO2cce3vn+dZzo3dOjGn0ZXiCqyTOWiiarRfeVnZIStT7Wy6Tl192MOg3ZViVltr3wacWEDYXuV7KobW6Z/mVhf/JPtCKYW98xxhVa5YpId7Z9d33e6gqR9v1neZ8+5snaUf/5jqMd3RsOoGddnxXDJsxtsRC+vOUa/o/Miu4cSduxoODMK7kHDwvxzRdN4F2zNUe8ulutfmvE3l130XScragknhQ/2Mjt4lUsmlVl4D8ZLbBVo+8tt4uDHetGcChee6uVD6fGV8vGWAgYSeinbV2nBx2/ZYCD0+GG2eNlViqI3Nnz5LWem+PWSKbwWHvLDZ8VILwbZKDefGeWPRqHAHryiLXnFsDv5IttbmZHI1ha9YWwkzgIjLfnS1r+CW3t+0GmezgnXWHOGzPG2eGX3RjUKwy9H3xc54MnDu4xbhlH/i89OUvp8ZGV01Heesyd+7koB24e4QO81tGTn7O2MP0BvILeaDTt4+R3NzmS5YFk+pe0e8m7cztEIb9XM2d/5cM3/xujmhA57Xp266pOrtYJ9iK9U3zSBxdcxN0Bep0DCkH3Q3MSvh64e4guzvyhA/ZWOEuzeKdD69zAr/jQ3sX45RRaLzB/vemlcl3B8KTqxEsu1xk7a1DDuaoXtm+Ca8L94o793GlWrHw1+39l/w3pry1RirLPoznyXAAqsCfkEfdBvWJFD1CtPto02BEmmIOTovRZasnnDkMxtgq9g+lVEPEHtg6GvlBwERUPMViQXzbdtdIZDdrxhd4o3aICmjWAbODfmvZpbMKHqTGG2mpyKID8SeZ1SE+iZ1mTvoSybwZLfsBqGI3NjETjV4rpFd6U8YIWODZ9OLwP0aXocqO4GA+JT+27BPQ8WCygOs36zNWOkHvGHkIPRIj6zESOFSZjE5u2IppLF0R8e0ulq5wmX+pUBWeTpGCxvsuZDcrCBXHYRMW/y3M399QAAHVhkH71qay7axP2zFwo2civeBVsTSrO3SdqQVzXQQxFBqBl7ctZ/FZ9ej5MChSiahETPDP3DnwRlLdnlPzPgdJ8uPQnsiCcXSv7n73/2QzARVD5KXnZGRTyb5A/veBcQE4F1lwmeyIOPvqVhJC/7/awT593i/xI8s43CDPG8sihYer1e93tMlfKLkpf6u9gAYe+SnQNbrtyv6x5iQeiJZV+fiL3z5Ajmj+8ZZqxCbSD20R9eUx69hmw2u/QNNyh/y/cg1AqGnqJHLBnEaPMkG+x3o0HgOBty6Hqt46emE7Qb3QksnA6/YJ4yPwZIf/6C34eOfTfrFDzyZPTb3YeM40NsQ7Yu71hf8HgWtasBvuYG5N4OkzWn33aEi1jIzFziK7WlIEbXxzgT7/klwZQwzQQx8Ex2KrPP0qUfRtDG32zhT5izq3nwoRhmlWpt3lvz0zdaeOQVMIubdcUWf9H3XX4iT5CFbEjeG09P+27FzLXEg347R7NOxnJi4cMSObfI+Q1vJrssLAKr4x/v0aO6l7R/fHCsDDOFy21b0dWtdjIOoxNpVY45nbbrFFG6K1ZgPKQTSfjkW5KhOCNgSXSW79tXy7jgcFlp7TN39ywDrvksAnIJIjxdXrdk2vmVBsq1XTNz/4iqQT5EVxhO8YPYThpXs93EV9h0h4TgMa7RsPO7FTSHefsfH8D6NOsGG75YSMgx4dKqWcHatyy2M3Zx9dO68gG3wH6x4zEZKlq0mY0WfsJsc3Xrpvr+MrWhDkYsz5adyTFqNTBzltGxIR6fcqQKiBwiCa9vlppR7BwV5accerI9PBU0p99yROPurZDb+77J1J+w9qERxC0W5ZJak95vr+AYfkm8cucF42brR+AO2pWY6flVDfx4rWFzPxPmVP4u6bJkLqDTbxYhH411c76VI+3bHSVC8GPirE9EClhdJwwHmWxRB5AAQR6fsVZu72hap7WBmloryCZ4Ot14qAE0Jj3utLYuj2R+hyOAEDYeS0+ba0Yn4aiBEo93tjNWZ2s0v3mPntN9R9zbtuj6dWC10Pj1hGdh98omrWsfMH3PA65PrxPn7zw7rhc+wzZervNvot4N2HxSlXk7weXqKPxipPZJSOebu+TAm+wB8U1JaLbgHe/tX49WzznCzU/fJhPv5jMs/IC5PnaqqWRpjH5lHrKD+Ptmw+bct8ACG5jzfAsds4L1A9qcCiQ8mudg4RMSjJdKY1sX+YES4X2JihkdcGJl32r6aTwGcXWy8CS9AzROLgFt5PKPWddT3/XvIleAm/4Z23Gxssa8GXN4724S2RbXA+KB+tbAMsKCeMcyqfjROxRIyb5b5k8sT2ZSmj60dnuhslzKWcf5/QxlMzAqMQwB88yVBizZvYlpBkU2oUAS4HOOb1T4hq9gnNytgCK/PdL52XzRdA+lBwrZ6scOWFA69lOGK1hQYrIzz3drPEprDMGqdoi76Uo0N4/4CEx4Gxh52LRk+zoaa4FKCdmeJCeQr0IWot8nTYlJDh/EC6e+gsyLgrikCPib6RcMRTegZW6HG0jrMxSawGGg3TDoGUdZR9GCLywMjTIbn/e+RNu/sVJ2MFUTGWgLZiFUxBNrUvG/743f6g5PeDQDyXj0BuBiEIgfRhtL1g9eAZZ2jxc+KFb06O09mKb88MevOr7B6wadqTKSLd1riFeX7QyKaAfE9h928omEygX/sjJYoikfPgfBPQSzlkRiPpsv50fDGf/iJ0WZUiQ85Y0B9koMaT3FLzTd3w8MnD5srE0MsgX/Yn2xL4LbbrbG0+p8RiNlBIvR4ZtMSzxBZj5kuHCCsFMrcQAU5NGZub6+s/7x07tl7alqaEYySlCmSCb+Mqfgd+aTXNQpHPxNwf7h10pwTGBxHJOd9yg48/BrhoUPs72HUDbiU1KjJb4ym2y+1nxVEgXM7ddke73urXczCRimZ+zg/nf/ofFyl1K0iwKZhcKFdlx85Ri6KinIzl0/Eb9g34Bheu9J8HAE/uHsmf/LF7dDVCJ6217P//LDbxL3wQjv1fjn/8zZvzZ//lRAUqQy/i3xcFbdSIE/ewoXPqHoR82Ag1afKV/8rTt7Sg7DZnPBKtbvqLncIUWZ428JyZtfNnx3fQqf9/5OvIvdZ8yY7QiO949Mwk4sK64ORwEt8ZQZjRAuNcrRRqTJd8Sg06vqd7O+9NDsgFmbJk6Y+DpiyGV3h8VPEAb9/YgU7bNFFIt99OWNWnoPtHcsixiu8EKT+2p6xBOrocLt/wAAAP//pF1J1rJMs1wQA5GukiEC0luFgKgzQEVARLqiWf1/eN5veGd3BR6rMiMjIpOsT98toe9L8lHTp5EN8pv703d0gqvrvLBw1tRuP49SAVs8jELwtjsu1W8OcPnwprYf5NpyHUoLrrtiP379KQzn+ORFf3hHPQemcM3ccYGD7z+ptfF5VsoUXdryg3j0GZbDX/2R99mKxdrO1mbjx6jh54VaY+5onP/5+mi1lIXaAxa2zX6vJyr8n4UlOLLl5jewoj5ATLOntkN0EKYF8p2s4rXoqm52V6qAp7TDuL9clHCKfkoExzyc6enxdbs5rA4OtNaLJ46JlrL+04OfpbaIKe/FP3yOYIvnkS3rR0f//JTquryodxSYsi3SVvnnD4jxmwmXFWUjWqvoTQ0nk9z17h44GDT5Q46n91v747fy7Tc3uGjGoRy2/JK3ejr+Ogjc6UytEel3Ssa9xKbdUg9u8ndfVFt9pDW9VXr/+IYehadyEiTiIHxqc4rRVU15PWqtP75M3kF1CCev0ps/fwNzYnTppsAkT5AzMyB/ftuf/gdOvy/jzva6btn4p7TbFTeqRPq37DUigbTxK/p6Gn7Ki89S+osHqtDxXs4+021vM2Y2/cPjh7qeGTg6/pFc3+Y+nAaQfHRbkUf0KRi1nuxHBWamUPGSSzgcQ/8moADEiR4vlzwdP/7TEMeO21Fzrxfa5KLxJtanWh6HY9amTWCaGVqaZU+1OFK7/SuwlD99StLh1aBxw0Op16s7jeqHvvZteXRkYmOPHDXJC6dmZjy0+U+UBGuudUWnJ//0ntk9TulSTW71x//pH95ysRipwPIMS9TxXazj/SnpMHXrYXzcLsdwxdHOQ/yaFfRxfj7d6aRfHbT5jSPDl5q2j39ig7RPJNJ/euzMlT2wPLDkgKfCnXyjLSCGlaV6yOy0/oDusXi5xIeRi5YlXbrKYeEZd/k/P2LZzgd9r+aAhX6I0HY+CYRpkGKZjT5o858siJPPj56Um1BOn/kewJBaEnX4Yu5oPYEgb/qYHvLvy10et7lHi4ww3jHHCW34H/3xeXpyGc1dfQNbYlkm9nbfYtk39SmSNj+BaDjX0nmb9JJcYXt/WzTeWsft8xHO/anD8kVv0CImy03K7++JHJNv3VEJnTGcz5jDQ5koaNMPBii/vUujEz6v3Fh9F2Sj+kytQJG6LC8mA4C0ET3GqxmyKx+z8BT4buOrDVq79YPhBNcv3i/LF62bf4n4rUWKqaKknIQ8Dq3fgFI7fjNp2TiFIZn9LaDhUVY67iOwPngFK2x8yCv3afop/ulHE9Nfupw+TgzMtWWIJXBq+od/yGWyN7E7WNzl0rxqUBk1IlpaW0ja4kd8Zm8gJ0Oa0/m8LJ5cfWiJ600PL1v8SCWTMHje8nNZtDyXR++jjvnL1tx9cZ0KeeT4Pd7LVu5Ow3xIYB8FJWadZxX2Wp/7EhGvKZ6mbUZ7w3MQmfROzU8ruJOThoy01QNqSnGTTjtVM6B8X05U+6SBu+G9IG1+Nd4Fq6It680xJP/LX0buZTnpMNpRjh40RtQN34G2bvUZyTHmyEH6XMo/f0UcV+VC9HhfpyvSDwCvNT8S/2WXGp25S4HQfG7/8jvl//SifmibkX9+svCjhX0G83ItR1YWi266XLQesmfL4T986T9RyQAZ4w+ereyxtq023eDehAXFsC3OzNx6Av+1DPSUCY229S8sdMFOR3XBGMK+/jT/xdvmr7hDelMSJG0WNS74ADVksQRwxceVmoXUlps+/k+PbH56OtzbZ4V0s9Sp43pUG26OZ4H1/qERyRe09oFpPkE+GA/sb/qZnguUSV76K6gC7CtcTtZFBR2JyaZvqTu+PiQXt/4FPR24VzfssBXB7QMWSTi9LafjwRYQaK89cY3UK/eltu1RTrti5Bo5LGnCnyz4iyeX3+eIyrcuB+k1BtTe6sVKj0YDfcnFmFuIuC4Cc1IQm/6OI54PTjqwns7BvcpUGmVmj9iOtWs4srkwIpFzVk67XgCY5OMRrApB+ocH8pbvxFIds9wrT+GG5PH8+Md/F90XGlBT1ibX8yte50cVY7AebELPyxyny+7yBLAmtaZEYtl0Ju2hQJufRU9Vb6a8//gKf3qT4lO2c+lZenjg9ZASO/1M7pimogTm76ljPla3PYHOY0Sbnse79V25M01uDNwaKd70Iumm7f+gXWwJ4/QW/XJhhahAe+45jjlzV7RlXioVxGfgYHHAt7JmCRdBV55z6gUT7TY/O0ZBO3yoEtd5uCiS26CUq8h4u650pddt6Ivmp3hkqKKES2Qdrb/zx/nO0so563/w54/g5FEhd86EhANeFXuifpjc/dN7IHw5gWx+BlrV7U2f49P80NN+6dHEQpvAUbGKjf//yvnGpBjU53QlXvYR0OY/R3D7rQ1VnbHUpvhAdHhIl5mQp+GHTS5vI1m59KHHUvTWJX8WHsi60hEr9Ad3El9WgFgJqZhNtQRNxqV8QvIRHOp5chIOdH/lIJmQ8tcfQNxoNxIqvtyDqlfWKgf1+zNASSVz3KGLFs4fBfWoM4zXyG/9p3l4nB2ZTbvjH3/q+vvyANQyyKYWZc4aFdtsQptfRPXzzJbLz7n0YLktGSW+mMv1T99t/t/IPPRHOYRUUiDlajIyJ7y9taffOWnrZ1Bjd9mFK3e4t2j0vipeeP1T/jQT1WjzN6m9BG04v5/bXpp0cv/wyP3qeaqijV9TRbvxbu9VegsnVd9TZ/TdcBmEPoHYaz7EPJ2LlN64HANm5SOxWbZMByvOFvC0CtEDikR3OXPdKBnhsifu8GrWMVzLHEafdai/1cfZPFUG+vOjt/5W949PvFuyH6E/XdN91r/hTy9SzX+f0im9sqps3mwXr4dmCUc1FDh4zS+bHkVeKxdSOA76xl76r74si3lswMBtSrStfk31uVwgu7AeuRudG/bGpczgurz0P/xE//iui4oQC0kpp6t5FHUgxGioNft8NyS0sOS//gLZCYa2jvupRks9iP/6k5Poui2Q06EfG+ESpsOZu8Zo63/Qe3/Oy8kQGAMqO2Wp4j0BDZ3WK+jJw51q69y6g9MyEZwdLR/Fj6cjPukyH23+LTVq+HVTYdARfvLjQOIeTxq9SccIHmL2IumDd/78twC04tZRv2G8cBTJoZB7gaHjaxjxOgZmg1H5sg+b39RoPfntHSROz/ivnndLffm1SMYO/tf/HVBk9fLm5xPTOk3dtFz1G9xj80oUz7fCSU1L7o//jJUsqh37pzdtpniR43F4o0m/lQ30DO/Sw/Ca3PHMdT08419O8KuOw2V3ieEPj7d4u/7nh8Ve+9n6Fe26Gr/N4936D5s/oi1zqgaQCeqVGtO8bHxJSlBzynfERpXfbfyiksqj9hynr8uhj4ukCZjzVPzT12wfZfpf/5ycamdMm5I9P+FdPk1i1GB3PPS5Ba/It7DsK1dt+m57O/4/MwXA/t8zBeHRqKnxfexdqtxRC9wTGzR5qEy6WjcrAkFXJhqIuO/64uxHoAf3YmS/QbfOTmFmCCfGlZhvOQ9pc+4l0GZpxsuVa8t+6p4S6KezQI5CXYXtjHCNPt2Ox/5ZrdKpeCAfcbMSYUb8fdDAY9yjw3edqWu+juXoxW8WkuZuY95q1HRuL4cWPs3eopgeZ3f2n2cDEt+aqWofD2HzhVsOxfGJiVkdjG7JaOwjxSE53hPhgOaf0hlINp46sfKlL9fd58aB8W5dajgLV06/WWhQI48usaRol66m9lsAQRkS/KV+R/1766EKPQzMmD/bHS5rXsPt8eSIizQRrbfvV4Uw8QheeFjc/mC0CXTIsUfp99DDZax6BrnvScPSbW+XrBTkkywZfUuIGtvafP0pPZTd9061qo26JYiVFs4fLI57OAxhf1q9DN3lqCRKW121hddWDO/UQ+TAy9d14U4KgH4KBaJ/AxdR388y4F7aHU93gHDhirlBw68cxp2yM1LOu+8UsP0TQ12GmcMpRKICZCl29HAfDysbZVIF/OyV9CrGVTdyJ4WRy1J50cckW+mi8WkNp4fCU7Lra3fOIoWRz45cE5V3jHQIWWlEcbsAOdFuQEvhvTMIrINBldd66gZ3vXFwsy4ncqheXUgtvFSy+Isa6p67m7YQ7u5JJZPW41J8WXf67U8sKBlO6MEWlnXmHLGQGuPTEKzgPJz36l6Ce1LE5LjLYncisxQB/jxelIhN7nKaxlUwsuGMRT18uGtJpRtKjjVg3vHEbS6z9yExhRtJSMN3zYUdY0jCc05c6Yzd1anrCDy99olj5m64jsn5Cbpjb7vKuW+4snXoocqSU2pu5zVTDgwQjMgjMZyydGxLUOBtJSPxnnylzUaEKulu9jYldycOqXp7F5B9WoEQ71KjaVjeFSrlKqSvr72ua67lutw/mJia9Gog9jcLLexs+UxO2ekQzmg/94Cdm0g8RnbL5ebde0gt/bt5nPduICfSo++xNqh9eHTaetAdADTLr1F6iqRbh0l1doXPx9T0J1zOx1VS4WBXGZbou01HL/6xkB5nFwtK/9EGw7q1SGxdNKK5atepDg4+iLuwGpfzaehWIuStnMj5QkxdenW9/ZkqiMzqjHd6QtOeX8QYed/bg7i70kpX+O51SFf7RJz543ffIsAGeMv6GfvEUVZWaTgVzfYqYDRXzrqm86eHW4BU4kRWHU57GzDcG08al5/MlktU1Y2808tt1000dX/5Dfg7IXI4TEY3fXdDD7M9C0S9Wx+t39vgQa3pKT3eX490Ph0YAXmQG9R6jnU4xY12g9Ail1HOklibfyesbm++maNQKfk62ejnwzwJGXnwhzFdU/P5BBuWHtdnVITLTlgMWLTxR+xWe2tLephZ9Ev1EyHcrlj/zhPqR0OwuMh3t09edQ3s/LKJ9g3P3fqzXhY6nLk9UZm8Xrt5Wg1AmVpQchVStN7wz0FRBSFm4HVFC1djDlxJSYnNkrUcfKu5wdv/mSNPq7TrrXOgAqoChOXi/A2nnZwz8H2wT6L1ykVbqHqPYTH4G9Wbqg4nNr468PokAX4LD6Pc164D0E6JQY33tt89Oh9vEB2DPXUPTbS9/3vnpC3/iFuEy7pksZ9AUpsDPenE0Ph/+VYfhy3fBZfORsfCfXqFmL2SRpseuwcDd8bmMB+5fPcd12sEvyNUeCf7MuqFh9WiWMoSom71Zlr3jwr65/zDIjiuO11r0UcPTZWIifsmneI0z8AwbwK9v159OvnGjUHCs6qIZRYcWooicdB6/mTUDXziLn4p94g7xxw1rF/jLlOZcKJcdXd8pVdjHaG4ZWiqnRs58pGN5ufrvMhH53qjh6/VhF9zmFWkvuh3FGj8dmmxjXitr3A3iroQuVPJsAsIc7IQ7eyZaCHimIBcM3tq7nbvcjpB4kHQ7kM8071bjsm1zWFuWo0Q4golVU7+CK9pTbC45fMYeIsAf/F6+DFSOuWXXYvuSR6TR4DLcqqflQe/+nUhyq5X0qWUTgKSz3uPGsGAtU4TSxU5WbZ9R40+3SRdZIDRu0hUuxVNuhqffQL+Zy8TW1ULjbUZ7gmqvXTE3O5nLQJDR3g6RFQDbZsT/f0keCYtJta0n8LFz5sc0mk/U9u+Fd00mhaGTvNC6mR+0I3nQ2GgSYtdcuofIpq9R+6AAtQlZuHstbZDdIKDbp0JodxVW4LYasTaODmYfePPOvMYj0g6By9iL7LoruWxtIBlojuxGHZYp2XjXDo0LPGC7KlN5yn3EJvmHgnGh6YN+13TIFH3duQmFmu57udeQVXCXAgu/EM3RxfwkXAeInLd8PHL1iEGrn6+MHuQWq13fqcFRcHuTtRClbVVJekkfdNSJUeJLuvc3mJW4hvGIZrX38O1hEuE1OCgkxNff9LJOzaqtJ0P7r6fk1bVl+cTmff6MPZBxrj0JBNAof8YMa9Lu3KJKZ+Bro8MwVfzsq5qyoyIbjN5+lk+ISrTqQemUi9//CjdV12aAxFBJ1mWIrSdtw7JQzngt17fuq1ejIhklUpexBW6GWLko5K516MoGRVaWb8oILcPCz2xt3NItcEyIDs65tic32y3/uUnUVU8is9BKddwclkQdscLufWSsE7d9zbB0/pFFJt64I7KtcfIqBZp4wt12ovOxwE+00X6ih6r28uLb8nL9l3EyeeVdZWyypcGpovxvBNIOCuWyKK6poiq770VjkfOzuTjznqRZ3af0uF3wgoo9ULGZeOHrRdv8zu7G6Hh6yZpM1GqCWVFYY/fXeJ0844rGrjIiTS2u2rc9jjcJVj9xaZ6az3Qlq+TuPFVeiKfbffbhfVBONOIHNueaHxAnAhin1iUmJoX9tVP12XnqB3xfvzW3WIVKQuf1KnwsOXj0O18AT27x3uUveuS9l9rzeHmf2q8fKNrOL0Yl4Vi7cpR8Ng5HMf05cFsdDbFtG20JT+ttXx/wZscTbkN51WRWDgV1pscvPekjbZEKkk0ryPVf8jWVi74VNCV20ToPBRobuyJhRIFPJ742UK8pk6cTCoupZ7qfcr1R8+epGiMOg7FE9xf0mkLnJ1djaUR1nRBgm394T1Rs3J0Z7FtJLAPvUlUcdVKViGCA8wuzYg283W6rCJkf/UAr4mxQ30etE+gPpdT51oSdx5fVgRLdUqIdXhOaA2IGsNeD2PMC/OpnE+u14IM+nPcv5No3eqhA3tLwFjif3G3zpLFIrsqIuLslXs5pLs2Qt1jMUdUXe/a7x+/ZtKaOgo/hn19iZ/oaXURxU5Qh7NTkEzitCagRmDxLoU0sND1qJA/PdMtx34dYXzG7Ci8r2VZ/fZHFlkvnFJsW0LanCzZA/1QEeq1p6qcqjC9oY0/UXzeo7K3vs4Ism41VJGSWlsfU1qjz2y+R1b0Du5YcsIIXJ29qHYXO3fjowHKn25KFVHTNrw+SvKGB3i4DkG3QOE/gdPagBDZf6C5jm49+LvqSSPbdzo+nFwOhWuI8GpzZsiPZ20ExnzVeDcPTTeVDEzoO792mFFwni60b2p4fjyN6O9UKtfErzy08Rvsz5aLJpFxHPT+TBM5tOUcrsH8YNDRxD+qnMldmzRreIL9uXyJIu6p23DPZAHBzhBVvGKPeilopj/+R86/+dPNVHvp0ned//iWnA67nXCDjxVdx8e9qtzZbhQVrg//S0N1QOXwUtLorz4ShZ+btd9+Dw1aNRPd9PSUu6ipAtM0nv7wUptW14jRtflRzLL90q3u+GbQ/nssifnLL93azZkPzuP8IMcdeaerkLwxyDtywqLjjOnc7W4SmrU8wSKzNpteWBII5C6nJ/d4RbPxPMRgLr8BS+IA63Re5QTyhvoE13K1TmApEiTq84Q5T5/dyf4IFYSPiPmnd5bu0NzACwKWYJOT10Fyiwyapi5G/i0r4fSaGwFSmR6Iox83TyP/BhAWz4a4G9+eqddzcPO/NcXVG8rxwZ8FmWeQQYip9eHg2HYFF/kmYWGrZ1S0jj18Opn/p0dXNDscUMPviMHnt3U1fG+ETd/hwWzHddGUX/IXX+NkanW5GFdXhXt4PBNPEI8dbw6iAgtqX9SNokv4oYotgTMdO2ro9r2cjM0TxjusEF303tqM9mIv5VLv0K3JoC0Dbz3/6WU+EB/acujVBfzjxdvqo5iuRGgalD4PJbU5wS9XK30U4qZnqEXjg7ZaVRcAZ4sTUX8y22335wFNk2jjwwi1Kc4W0L+lS45NqZRtUHQVBLpwxdKuGt2fHp96sH/MC+9eB7PseQ4XsNcyDf90w0p53nBaiatsjRrJPkkn0RksKJPFwCtoApq7X4OBYept79O8aIt/DSbIn3aKeU/r0uHVFhV8/R3Gs22Y7j/9/1efTp27C3t+lwVwzKKA+PzcoOkigy7l/lMglroPy+WqxwbIWapQg8plOVZvS4GHpvwPAAD//6Sdy5aCOBCGH4iFiEiKJXKTmwTBC+4AEQURuSRAnn4O9ixnN8s+p0/bkqTq/78KVRJBlVOl0+woNWxOX546r72G5rrUTHCcR4D9zXxK50HrcmljBz227Vjt5msXOLA6JldsefyUktmLFXSct3eqvL6rbj5sugvYK9PyoRGeaF4BDuCdHyMiSnunW59ZU//2Lxm3a+xunpP++vkpuruG22g6unIF2bsRfXTaKyUzqGbJix4ha8p9o0m/GASmaaDUOIKlCaE3S+DvAwcHkPfRLB0mSaac9yTUO5vs58eQ97B0vJ/Sg7Ye3aQHUw9tMiz6kLzenxOQ1DOocoMsGsPcI2jxTzRZ4v/ompIDxz2/wc6nntF43tsipFIdklnMCjZVL2ME426//+L98NnJHtLnvULKRR8MqXc4odPcbrATSLM23ddOBi851ql5vLjRzF3F6o+PuaLUpZX1cfqfniXtZSqjRW+aKExUhUzqK0ynzdqapTkP7/+eN1EfX7KxkmfsBts+/fl/WarMntrfLkes+ZxrqMZtSPhrlqHJt+cC4SSsqfI9nNKvoSx9dizRp5frykpZXortXz77fd+5HFqAU2OouNiusTZvNoEHQ0MSrH0dzR3iKFZBOTb14n8ubIxq5SKv6kKh+82DuUzAQQJHo0ypobyeJckucQyd5kd0bye+u65PMUFoWj2oqRrRoj9mXrZh7LHxPCjudBQ8QeL76wObFR9rf35jiQ/YTVyznBJrtOTkHSS/9XVJdnBalHMRoYu/RVMqnGpYVV5F3Vy02QzZQ4Tf+nSn0zrtrfYhoao+3+luOV/8RjALMD40wbs9XneDk0sBOiVxTs/9uI6+Tnf25ZNDFay3lswWva1Act/89Fwd0XJrWaDA4FIlvH3cSXqmjsR//ZE6LR41dt9+L3AdzTU+fNWR/fTmj0eRbvn/GJKHEQr37NNo/s4uC4JTDq8XH1Bv5HxtMpS7iuLxqP/5wzm7vSuYy2SPrUUft84VcagwkEYdSlbaog8l1CHLpvvdQ+imiJf6H18l4qq+lewwvlU4B+rWR8G2j77nNhHAbS8ytR7FrHU//dIc7TvdP06lxsZ3G4L20Et6gMhCU/AkgbzEJ8IvemF+G5cZfZt5InxIt92IkaLD0g2SOrrx6hijBUAUModam/wQdcv+lRZe7Au6ve3a6ioFUtawD7XhumL9nr1b2ME2oZ5sSul80zQACa46mSn2EXmKqoAC4+oRVBpcRw1Um8jNmhu9geNqgkW4EQWNfaP7663ryIY4+XbhO794HLEeWw0qLP9BuOoJ3XDYCRK8xhdPVs/Ntpsj7W2h1fZ0WPyVkW7E5Oujne4cibjwXUKqigOalxr1B3+FWFu7GdIzR6NGSCImrI3DBRZ+Sdb0Nqez5ZUO1MG4wodnH6RrjbuJUiAfVXzY7Y6I8bcxlHd5b+DbyDsdqu65JKXjZvI3rdF35G3kI9yth0GKJZ9Or0LtwQ+7kO5nRdfYxlQb2fmsQzKtTK0TgqJ4ycl9fSLsCz4a7/Xy3nLQN9iYghK1n4BWyJJvI3Ycu+lG8dstLi39UvzYLe/QVEYG6+NKom7Ml0sfjzEHbf/N6Y9X98nS63rhU3/6iRVz3qKPu678Ab/rdMovugL3YMipcfl20RT2G10SS7LMBn3PaAInPv30CSlvyywoe2vzcJcDj6q385Z9HxvjBV2tFmQrUtXdICmo4cc7zcfZQs2XSxe+7JdkPOKby6oAcb96ADa+UplSc3mHxYC1hnVHvaTtd9iNoObiiYaf0zUd87t6glewvlB85NdsPnbTUrOSa2qc5kQb+iLMkGzXzGdfp9TICvYhhCAcsH6MBTTsVw6PNnl8JivDQ9qI7FQFdvxkdNEr7qJPTXRx9zn1r/s1oveQBrCrIfdXfUqiKX/cZog+IvPJ4D9Qf5Q1C9aW5FNzlY5pP8zPGlhZX4i0nGfyHXbzH+/68Zuev1wtkEzSkqa3Dto45gzQIwi/2NxEuiZI5atGi76kmn0c0x6e5gin8Zz6zfTJXMYliiJTO02o8rGJ1rW1lsFUaa4PbbKNxpXjgnTiNI4Iy/OufvrGfDYuva6StuPtpY/Y4s/9YT65Gl9lXwvOmWj702P+IHodYYQdmPtfPNc2LvlyaNEHVFHL2J2ax7eQgvdGXvRVUbJ7+AnRPutHatfrHi31ApCd1iLUeCYnNGLuHKKTdauoc0uKblSyVJece3SnRtHYGgvTZToQp3+xoid2N9mNpYJftZ7/O89EnK4t7J98QuD6LLtfPUh+qlyJFbtf+uCqboi4nW9h/FXe0STvnBrxK7f3R2WldNP82IY/vUs4KT2WT/nwLmCoY27Rq9turqqzD/le2JExvH20Jf5b4ktzZv/0gC5iG+AFWOKTjwY9W+obM0GvlxCQbXYUoyqqrRM0dWSSSihLNHvLrNOfPnW3/cZd+tzEICKocXA123R6r2ZdXvjrzw+6Ez5ggpr6aFLD2QXlmPKGA2NtxT638Iz5TjwLFp5IfVwpJd/cEx12oO/xIfTLrunkJR8dm5ounWTZXGppjziusv/08TyRsoWIHRHeJcVQEgPjBCVGBVS50U9J+MqdIbsnD2ov9ZH10V1XqDfLI/WI9EG0k14qkKA5YpXcS42F05lDiZRov/2gjUU6+rI1K1+cnKw6Xc6DA5rNSfSQJYJG4SObaOFlVF06300roW1AqmOL7r9RwaZUyCpo3/wR//Q7vYljLC/7kx4s+EZjdpxesKwvEacPaKNgvUxwP75PNos+nD4ijVH1fjnULWDpa3DOM1jiKX5Q3U3ZYEgSuloWR83t1YmGaHcnMOfBnZqX5l0yAxET9K/w+e0n1gzu5wXhp6+w+nUbtujhEN6SoFL95yfbW/OSnNYhviSiyaWTpPCQ7/kdTRc/xNZTpSJmXzVffmjMHZNHXaG7++aX+ovrCqlYKfBhLPXTxDU7oRPDWl54MNnMSqX1S70DTtyOo/pGqrshVTcVOhnB2q9AZW4/zN/qj+9nz0Fw56W+JPH7g4B3c96w+eQWM0hcU2A7DJOuX33EEP3qhYeac7rxlM0VfPLvRPX8bZXDwfUaMI195v/0+l88+cWjpX5ULvxKAAFuqY/wZ0Jf/smfIFC9O01fUciWeoYgr7g5podPuevoW78pMMi89uMbGgsrpsgXnVewpyyzjuSdWoGc9xk93KYYjQs//flBfMuOcfTzf2A8Hju8e+pq2uv1bZb0bWHQRNg4bKyypyObR24gkrBpWRWhSUG/euyfPyxu8QzK7F6X/SxrlZcPEvLk841AdYmiOUk2vfy+ZwqOe2twf/VGII34xT6EmjZVXfSSfv6H/+WD7cYVQKlyht0+HLt5a3ABfA2uojs7StGA+d0I32accGyOrjYa+/SyXeLXcj5Ebfgqnf77fGydnIlNwrC8c/u18Y/3aGOd9z5a+CqZoEXpHHtHAsld3eHFX6WshPtla1gakCe0aToufgPt9pFCf/X3TXELRuQ9HH2pH5ps+h5MFfhyfuM9vdZobB9nC7YfzfN/fr439tHl/90pWP/3nYLn+nWi1r64dVM4PlsQ37NJg8zW3fWhcivQ7yebZtG57wbbDDKQYh381Wk7sxZQwcOm2K6wuuVCbcKGnaMNM95YSWsnmh8pbaG4yhQ7Qrst+6SJfXS1zyfsD3WVTj29n9B7Xya+WCQK6ox81Uv7LueocbpsEbGLrkVp/kA+OJbdjXT74eCxPttks/XVlD/sVBWa54XzJ9IEjPS7nQhr8rF8EVYkJUruAKpWERBCv4D6Z7P2kRx9XF86vsJykku7BZsWCTWGGZXTbshC5GKvxfgSKZ1wuJAQduPSu9J7Ge509hpBSovu5Y/Batu1g7oW0T0sY+wfyqmb7sRtkXvNLX8zWjSiVWgTiC9rjprBptX60Q5GicrNC++73Cj501YJZKnyOmwO533Za49HJkm7yqB/n/e+FBIEZfXCZoX57vvqlBZWxM79rqtPHf1SXoDt9vLBdnTjo6mJch9NUdziKDVv7ujISQDHjath68FttDmS8YjiUB4Ivw0dd22dtwXw3f1D9dXlGY3k0RfoKzQGTeEhazPe9DrsSPylF1GzOiYl8yxf9nCjUWpu3YoeNzmo32Ggnv7pEDNJkcvn4+3jb03jGVFqrk+SoHJnrHXTM52GIPXQpiEZEWxXR+RwqUNI+0uAFXztyvcxTjzYXsiOWs/HWZuJW4Uw17JLVrNI3IkvCpDbNDtSfI15xjhsJ2gnvWL/aaBTObFP2kJ/HQKsKN8WjcFl0WAvP6QGfhfuulp3Cto0fYYxX4BLo/ycIOg/MSnvWtGNR/Pdw+H1yLA+NkXZ3KMxl6tK5LHdrC9pb8T9CNjCJUlEctSm9SSo6LnaZr7MEaWcJ5wCfCLhRNUtN7ssrpQZeBYYOLarozZu3SmD6O002OLP1TJvuoql4lDVdLfGOza/bbeGQ3LgsDZBg9hm8gsU3tiXKhco2Hj3OB1wfkyoN6Wxu9HXkQPY5mzsGFHEps/TDeB9cI7YVy5+2Ti1wMOWBSNBb85ELLmkPYpu6paIXt0zti9QDAfeU4nEmjuaPseXvxovV4Va40i7gbKDCjdx4LF2KVddz39cEUpJGcnmWCdpc0cNB5GXOf7KJ100PdOriKKbsqV+vWIpe1TDDNt40/vz8bhGlD68EelRvMOWXU3a9/hhIfKsWMP2Jvto9BKICrjH5IjNrQWst/TDklMnxReX3x8/5miCUogK3gmHWpuqw1xALkYP7K7xM5q2l64GX5knf0WpGm02yqeRIXi01NEwpJM0UgW4pJaxt3nQdIBjL0JwzZlPi3esMa0dR5ntYkzVb1Omv/2HjuppQ+3DZJazetMDmFd+48NwarQZXJsDn5YGEc30HS37r4EVFXWcjv0HjVOZ+eBy6YpIISjRVMcncRtn2zXW4fRmgwiNDnVqIJ8baj2aLnUfSs22Sn2uN8yycs7PWVr2G/a7l8emaa2QrfyeJ2wUudX1MF5DGHU7of7gJIj1jqVKv/XyVnrVTZu0DSHX7hFWH7s5ak7FyANV5weZID50rHcUFT67lhDuq7WMUVO+wEMpZH88yDIbqqXXcfjS9vTgRmXar5B9gZ4LVZ/vjb0mJOVWgVcRx1Tz+CcjJ0+sUN1AQNPD5xY1VHnFcE0LCTvKMvulG74X4AfvQANet7QN6bc89PsgoLZead30CrcefNxa8Bshvkds7WcEgkFusXIQBtZNx0e/HfRR8lGxe3SP5jwl8Nn3b7w32FvrvxIHv/X1x8Tou9m5jYBCjc7Yp/uXO6qDXsB1JZo0GO5Xdz69FQU9UKr4feWf3flwkkLQj11Kd2gdobHSrBj4wT9Q/fqxl3n2BcCc1Sph8eeqTbcgfkl35br8/W+GyEp4OXIq0Bu1JHRZZma7tdScD5h6nvfUCDewWXbyhamKULtDaE0OVJ53wXsPAtS33VkCM50JPQxgpWR3DQI5ze+IOmVI3b6EAyAnyC/+tiFm1BaeWaM52J6wGWwcbbwMew/IVUrp4fpSXb4suRfadlqInaR5l5PszB7s+PyJPSYlLnmeeE78zNWX8KvLM2W29g6QY/kitpTlPZt7JGaQM86n+04FlzopT37xwJf285ltutvThOHCFf7smiSd+OtcobU9ArU32V6byM2u4evOu1/8KCdI0gAg9ANq3DMPzWHUheCXtyup+2sZkbetVSjtTwF20mGLlmbwGTqfIxFrmm64v3gIHAc2VoqA10b3ep6RFRxdrJcJV44kcDMpoWGNlfXbQOuUOScEl+cT+0erZvPqY+tQoVuH/dVFYRt56XPzy0/m4+2gdsrXihR13gOfUWppEyRRuDldzBKbcUnTQXrcllE9fIrD63lwWZh9E2QkAiOba/ks54eT1Oim5Q1WPiEtRxTvBbRqjA8+vOY7m85GnaNjp518Sevev//HhH68EezUmyqlyrVREE5uNgmKgHdbdUoJbGzYY+c5HdP5O0w6BEZ0IKM5qJqwl6cR1uRtYSztbowe5UchXe3riSqZXWkkfQ8KylMyUmXRK1PrdQWsjtWIc+aHbqvZ3TLvfef63Qs6973lMn1bZ/wTRzgq0W9/I6spGiJ+ACBA378/JZo2WiIA9aUD3bkrl02dMQrQt2fBf38+vDsNotajeeU1pFvjXTR9HMrDZmtnOM4AlcRNe/jlJ+rf5iAdPTGtUXsLO6zSYHLn+jhx8qKvqC7fJJdsN1sL+uq4Wn5ONNJ4LIBSUzgicoWnzf7+4Ev7nYbo/ubicuKLBuRnagT4dhQv3VhpSiwL+2NNfbpXtZlZz1C2XtlEo1kT2dgmCo+4U2kSUYjllNRqLEJ+ezq++Nh8tNFZmSFkhkKo+8ufjyggwKnngrqLPiPzeBwlek4NvNOTC1vrkwaw6B+qtJuKzafcaGTqiwes3PdNysTnkMGXbD7+VnrPqJudtwJ3TymosZXaiF5blMFWf6W+GLiqxlqx82DnaHefXw8nNl+DJoDsHrp0b0trbZDiRw0FVzzxvskcbdxIpxbp+M776/m8djvxOeToHFkHer5nHhs7LxqRev9w1ElrG02loTuQHZ07mbfKMq/xk1+gC3OdGituV/KrKOZRo2lfX7zHhjuP6ziHb1H52P08qm5S/cSC9KQzHJmHEU0BLgWAJtz74jqyNUHcJ4E03acZH/Zrzh3m/B1CZkkrn3cfSUetY3IBfWA2qcs+QWyo3AwOKVf58k0rXDYlpokelWSTTbHh2XQ+49dyR/fpTwbiy6lJglr+FKnmizdphfplvdD56+vLnUQjZdYxPEGStQp1jx7pvtnJ8kBJeIvmyciX/WvqanQgjrPcaWJlT1tTksT3aGKc5Y3LurAmCHX+nQgfR3E3AodqRBEC8g2YGrHX1YphZk+JCB3/LcnJEDwIjjH4U/ssGEPl10KbV/Om1m9/jXdbBSOnOnlcoqIcDWr5W88LT2SNUsslUhOY8qKvfC4/f9HQfKcWMsY0iuWaujQ6KBc5rZf3+s/4wug7ksnvvGE1iI7ddGBVA10WezSYVC9dn4ec2waSccNOsOPZ7B1WImoPDvj15sOh4bEqYniBbGJtfCF3NvqzCoM+S/6Uh6rG19yuAUvrM7z/bIN0ivcvCy16yxesQ1HO1nUdwilQe7rbXo5sRKQLYfFbPqy5Y0kEL+Zg0XdUL4VG++BpZ6FvW1xwtviF6ekKPOrWekv9c1ekPeNFACmVD1hpU5T+/BJI0vCi8dGuo/GRJ/zv/GBcOUP0KJWeQ7GZcHh3KL5oamUnBoE+NTIpUc3Yt4hmFODDGTvWmXYTtYsXlJ/Ewb6ZGGhc5mEB3s8lVm+3qltmMZlgzdvJL7r1150Lz68RnVa8v308S3f8xIYDXUBzurtFK3fSAtOBvLdHbJa9xEbFCQncAu2KPff7iSZTbeafn/EzcsvS8e4JOmgiJ/trQSTl7EE7wiNrOqwWryDtuOKSAXqGZ2qXTaSNNWc3YHQRwwcu3LhMDIIEKtN5YM08BGyyzTiHSuI6eki/s0ZsEekgxSZgZ7JT1IzPwpMXPUWQ876X384YebT4TbKqnCFtt88zgbsTSf6rs58aeT9TFUCTENlMJiunRO1y4NbqjuKXeWb9okdhHnYqEfOtigQ2GyM69U5CzduTdV/VDx1YXZsPdlfPuBxWBnvBg/DHn/7SJnUjtJBdvRP1e08oJ3yPJfjy24ffLnxg6HMrROe7fiYsfandmqjEQSPmLborJcqW52/BLsMaVaIclU0gr0IwLO+Af+djfJha/KefbNEcUUM2iAPijj1Whq1SfrWrUsBt7mR/iXdLvrwWMA+auvRdadNFv9ag5P3tpw8QH/uH5e7eeKE6pGc09Q8IIPbytS9N73c6D1MzQ7R+N9jAb0VbP1ZNDAd75Kg9oW86R9mtgb3Zzv6MHpgNesy/wD2uj3gfGFk35Hlbg3h/Nfhwfb1c9i7zUQJJHLBHblk04cvlBR1VZ+pdRVOb75+i//Nzwuc4urO5dmPkGuFrOV+Wy+zdFP75V3uIMZoXfQd6lOywoSudRh9R3G95FhrY8vdtRzvt0KBF31D/eTU6fuW8cnn7NBxsd+MTMcdLG6DPF0+a+XhIN90kvkCxmtcy7/eS8rhkAup7M6P7+XOMRi7RCvnbTMusiqqOhrR8BvKy/8lm47RsvlwTDrAmhv7Texml4M5WAk3CmzjaNkSjuUY5SN3NmfCk+rodi9IELtN+4xdNrDKhdlYVyrG1w+7Q9i7ZiWYM0jglhH/ngjaL1Jmh0UdMI87dd/34LPy/9fzTF6oCPJiV6pHxAgpjon1RoOcCle4uDktrpKY1Gg1J8VdgHFOSHM7Vnx/V2E7WxpNzj6E+2ows8Snq7Dm24Lp0YFHndZ2283gb4QLjG6tv78am79wsfCDP6G7hE92LGyUQ3auKf/mgcUyFyKJwMP11SDrUFJ+dLy/fh/qeytDMvyoC1cZMCPpoqTtZAm3RfClcal/SwJ1+emPZX/S3noOmvM0/vWSjVdExgUMV5Odmi5/rCcqeHawMVqE2+hCdvfLnp+V4c9piy9hdS6as4hcs+ZP6Y6O4wjZQWtgdEKHa7Y0i+i2iEYoCH6hHQi/ls6RzkNQGLxrK5SeaLSvzgH6qjpphvEcdjicCS77E6hJfxovW9uh33jB/67X51j/6n34kc+3k2tCdjyLw73Sk9u3eoWnOhxBIa+6oxrmfPz4GT5kKhCn2rey5OeEAnZ2aYsc9oknafGOYrhTh/feZp8PZa3j0XPoU3JfzNZ/9qpbjuKr+1ofF7MsDUQyO+ov/Hr+vTwFXQ9Gw0z/mlCE01qg+uoys6i+NRu1e5jCUJsbuPjsu/r3Q5XvVc9RwVbOczN4IYO/1X3odLZqyr6Vf/s7v4ve0Zb8myGk3OfmSC69Nqh9ayJE13ecv37c7/vy1kyQ5Paimkg5N926Qc2IfwvfGx52829MDww90qo+NUo6yopiw4XkXu9jaaN3Dyy8/P08PKEDR8nxge19q/nA4rqPRK3QHMXe6EqaaBWJKI+tyWvgvwrsPqetZ9n2hl4Cwz4Vm5zI+280S148lVZ7TkVU/P7wZdgO1g6vIvt35JqLVlz/88am3G0i8RE6KQ3N922izZRY+TF/09OUtlTvWfh0LRqn3fAkdmFsTlo3oF4+nUNNSJtNVsYUm2NNr2h7LjZy3Oao/h5buFl7R5U57QsndUKjKX/Roba8uCpRDtqOK+NmVE+b2KsrTfqS6dOVSdv/2OQrt05eQtrK6H8+W3A+yyMowOPTN8e6F3of3kWphRrtp6sMTbJLbnh7CDGv8+toKsOY7xeeqYkpH9SSb29u58fHpbO3TTeXuT/Dcrt/YfXM1moz2GMp9Fa2wH30stH1VZoAO/Ff1x0a6dyM9rjJQny+XSHP5Lae1YxSQTPmBGjS6Le/9Gpks7hLJZ9bRSoVnFyQyt1Z2dJfwGRrv5bGAOt0jf+YvVTqp9beCH588PPlbN6zkgw6UkYSqdb3v6Lu8jDBmyYY6o/7phucrDKE48zrFmcp1ZP5eY3Q4dBgfLjs9Gk9bKwTLniOfe17fXc/7fAYqvVRUO+n3kklM9aHoL2jRx5Y7hvikQ4S+D7IVchVNXDcqf/6Fi49zOXjLO09jmFNfuhieu2Hd688vUj8ZTyWR34cY1PUmI5XNAfr5A0niu47AVTTdlvYvE516K8Heu1HRRMK9B9GqHOnCw9CMknJZ/3xHVU1+lbMcjSeI8ybFWN8nXbVlT07aHbbEH3766Ghb0h9ftXevDyLmWktQUUc63RUiH8397XYBJ6eUqu1w7UafZRLKVtJE7XrK0fyEdwY4UHZ44TuLf7QEkJoSfM7Onh3jxEEE1Wz3y/OSO+rdxwS409PExvnEaf2Pl0vNE+iOZ2JEy8kVJLM1NewXt100uF8ngOPpdcf2URTKUT2tTWg+yZq688HoRhovvEx4vAnlb5478buHBc+ja1G32K06+uMjC1/Buot0baOsggImuor9TVjl5XA300W/DjlNdl6JeAniv/jk3+DrRLyVnTL48ZO9RBV3St0jLy/1FLyPFEvbsCiKkX6/2NQK3JfLlODdoG+VPXCy8E1WbSUPbfpqoLqn8tG3mNhJvtWGT9DiF8fTVgl//vrf5xNmzxhZ9hjRy2HtR31ToOLHF7Cf8Z47veBOgIpaR4R0ma138sb657+xDukaTUKIJLCjpMd6dmTuj0cg2mXgD1x41SbPsRxwTpePv72rO5cJV9eErUflhX97bI501QPb2F9/8SRd/3jp+XwUyfqe9WxaenDAPuZjAr2Yl8zg7BdYWHD8KZv0lK0r0ULTo4jJr97RrvypgStOXV+k1q5jfpPM8Nxu3vjQSl7XLXwZ6HY84nO8Zel47iJPDp4boEaRN928fd4JuO7lttSj0nLh/eYvP+Hljls6+49T89NLNI0njQk/fuNT3aCG+Ri09zmzRSCtvqOnQevSntuBjtS7w2Hbpy0a9Q2RUKxc9/6yHiXZY1OCRQ+S6dodtenN3RLYb+qBaqv+nW4WXoHO306n+kGJy4G0l/bHX7Drrrro579/54EqszKWM9sRCaIpuOII2R1qas5ukXuMjzS19QdbeEqALIn41F/dRzYVuyyDhXdTv95RjTxuqAGeDQZe9Ic2GxkDmQuaNV3Oczl/5WS509UzUuJIY3wPUvvj30SuhPNyh+aVST++aD7eLZtp/9JltJk8nEO6TvuL9iKQ7l86td56G1XPa+PAoidpduQJY4VRtiALhwkrQtlqH3ELEuqhzPzNwpfHn9/QdGsi4jjibtJjKNDgU3Xxj3pH8qMR/L4/jfOtyubEfVbgBNnF5xeeNTlieZGaNXH8LDp73eYdyT0KyvpFXvjApdOT0QvwjBr+V9m1GhGqIgEvl6RFX5oR/fGM3/5am4+DyyIfTrCRRBWfy6Jy2TWsVNhcXsJST/yU88Kb4WYXy+xefU67nlUvZNTwwoonfrspk6seNpKkUvztOre/Z1cL8OkakirSKaJSIo2o5fQNttLTUM7HeUiA4a4h/KL/+0sqOdKwfZv09JFjbd7G9AJ4bj5Lvh5KKgZxDAKTAvL1BYmR1lQqeck/ZHMnX5dxqyZAD+UlE74WtX/Pc/Btbvgc4C/q7jsGv/yDlf4RspG2pigVp31O3agLyi7kR0FehbvRJ7988OnkBHFWev35KW1c9DS87UChp4U/kLq1E7D6ZOvD5WpFrCEWLx80usfqvTh181WMR3i1l2KpJxja9AonDwTX3vz5QWF3DUL5x2PtKwxovKSzBcl9r9CdenlEL38t6uBKJsFuGrwZ4z6xgJjgp9Q4b64dHXHZA/3U3Y/nRnPd7hJZMIWaKs/2udT3BBMSf+r+6iGbzWS+4Jjnb7wLtTKdfvWyvr0KC/8R0LToT1iHakLN3L1rmzKGBC35F/94PbFGnaDZDweMcU87pmlKCP5N8bHb235EFn6M/tedAuG/7xQIqyMmgku6dLo+VQfWtZXT03U1uExsdAWFniBSl3NvaJQu5wyCEgP1gpSV8645h+CcXxRbN35EdCtCIU4GuhDpve1ZP3pDCGodudg5N1/WHzFVpXBd8P7oO99ufuiLITMdg1yeatAN5ihYkPTCcgnBmaNhs/omSEjao38juutO/QkkdBX8mWxPXZdO+WcMQAjJhnwK7oGYGYMOiH5fWF8/pI5UMZrR451f/Atmpta7Dq6kL9sr/uqRVeW4Pfsz1PuXS9XVoGjrfwAAAP//LF3Z1qo6DH4gL0RAGi4ZVQZbBES9EwQFByZbSp/+LP99XiHJN2Q1Sb9Z8FzfM6xQLf1cB/b5rGuoVpNJzinHaL5ZjawRjd5JsPA+wRj99jTv/XlJ3BQGJPZLqH9zxiGWKWmD/rlWN7BrlD3tmnVof61wOaNeUUss9anZKO0ZzhD42Z54y0M9DEN+mZBkPCt2k9Vl0r7qmkLTxREj4vtp2C4/FNo57g0s2bT/3QaxNKAn/CL+gviNAqFfaMpo7MjN8D6ILfa6hPr8FpHN92AIhbEwRQ+f9iQMEnkQe5KdYZm7IXMyQ24m1eZPcJ6biG2rxavhvcgl0N4DsL0KEfrmElB4k/fE9g62BrHQ9zFkYdEzS6fdMLthTkGLbxIxDzveTPp6v9PyyyUjAc5jxNPyOYHtTwu2lVK74drh3uvn8mURcs20YWR5/7uV23dsz1U3Ede8Waw3vetieVnOuWDMSSG/5BnzivksxsdijNHT7B/EqySeCLYEGcj7p/FxbyL5dMtG8A9tzIJDVeZSWkcY6PBQyX6cUf4VQyhp86ZT8OuXv5cUflX4avxEtlLaNNNffp9zbhEjJk7CHvEmXiuNsCkKKyeZw7iSNJRnhOAA6zYn3nCHX7wxzBAF1LtvYoBnZRJnKtSm96ruCWFSLok51Pemf/faAiWuXFHJmmo0Nzs7Bor1inid2QV87tsd2tTWHU/mwkzkw3YzQbTRMfN7wEhyn8cZzEJfkx3bHQXPpgaAnWNO7O5k2+LiowL+6tX+JHyYyqG8ouSdHCnwNbW/JmxDmC52jGd6b4cJdla2rA5byrybaO1pHxqx3ifXgRjqLIQYi3uh//BKfLacBL0fyajdY4vRj8DrZNq41x1qX+sDM6Zhk0sMAYWVlr5JaOGH+M7XNAXFvp3JjnRcUFsrCmR5dCbbblMPjE/LEbVugrA221bCybrqYZhUlxDfjxORvLwe0sa7YCTZjc3fVRehl3IaiLG1ZZvJK60EWQRfPH27bzPvRbrTVd1JWYSkMf/xTQgLWgviyZ6LJn9dGZD03ownjfsJs46aAbLwvrgEXUNcd0pV87tRoSuX+oK/FrsQHaWry7ZXFQ2fxhY79BKp/cd/YsYv00JnsZHJzn8zRB9yaMFLZDaz5I9sj3GkUxQOzfOXz0fS7URSo7t8r8n2quYNn873BbipxIm50eehFeSTwUJrM3Lj6ivvUoqf2sg5J5vFfbCpoVyvMHW/vYR92w7CGyrQzFe4JMbYljm/ewsLLuAUZLdOJMHwtDzDbntZ0n3xNJIG0EUD62rd6Ged6s18LncUbqfjmxJ15TQ8pdNb954TppPCDs388tseHv5qxfzkqSbCfvd3qDhzcOu/CaKs0Vq00rI3I4JpSV8mRbbeUrVh+/eo2D0sawv0Lu/Zlu8je1UcuQP+7O6YVZGqmf/w8atXPL0q1eb3buhh3gwKvU1KZvfbrzTC6Ss9MDpUi7y7ZbcZ+ZpRkx++E54fiQNcrkecoy3OefLtVO0YNB3W00JvhnmezhCU9yO7HW8jmifHtbQt8g540fZuMNcfVUNusc5Y9twUAV/pjgGz1RPmb647MbYvYwN88Towt9n2A53fZ0N7P50n2V1X94D39ZABKwLMQn1LbL6zVmd0jluDBaSUxLi8UgxpY2FGVmJA83uoeric3h3ZHCTSzOtCy1A9kpE5+cZoZo2SO4IoXlPNr5qm5XsEMIXzk7inxTMREPolKrLDFdP0UgdsWZotvDYvn+2sysqliLoLtAMnJqfNyxXT/cYALWYKBMurBj0Lb3WG5AAWy8txhbripTyh3x52xLTUExLaZVL1jG873Gyl/fDFLfN/nYmPubMobKWsJAprM76R8P2t0OygZqf96gsvLdtB33DzKGHeSCdiP+I2mWk9wF/+qd60wTChDerhttQyRvILNN/7el9oG/cVE3M5oYFOzt5AVXdbkOBB8TDrhjpBaa+XVFuHu2Y62jyC1ryUZON/wRb6WExouv3WNKW0GThfnwBK9XsjnlMge7Lr+gwZjzyqH2+hmPvFq9bOKMiJHRly8K2HykDzkPrktk9OySTdK3nttVympRBDMMfnLgJ5mRDiT06A2KctQ1Qd/YHKJ/UuRN+LN2jvDkhIlVUyO8Mpgz+84vBQJaK7Bg7qyk9IvLh/CH5cdht4oFtATFOLhulpeiMsm+qGG087iHmclI3m3dnhX7w7K1QmiA+mieHnv6a6anutXewy4s6nMv++8TRB3YYOy87IDtgfX+srSWWBWLSBKPaRpH9W/kRw87yK75FYC7gtmYylqTg3g+lUNYp3AhGrIsuBW/tuRj+80/lbXXJRGesNvDJtxbboTMX0x0+H9ugye9UEubwwbwUau7eB1SPLbGFKEUCvmh2pTKMWM6LrO+xhjn748Yc/fteIZb3IRjk5aDgqhqzL+E5ZtJBfwQBIfqLhOdXMl91jwE1Yh5pQjxcM5HzIRxYab1RGocUyvcoFL5WrozOi3sklfEcDj66FAU7QVMyq4u3QhW80/+GHBcIwhPzy7y1c236Fe2F2w3R+yQDLJo2JGyncnn3T7zXlIxnMTdbeML+8RY/w4/fktA+HgB3stkU/vSAkPR6SlZe8VHjuXw3zarUQ02UjUt0/3hkxtmaT86t4G3AN9x+MdteuGbdyukCuTkyqqd6mmRxxVSE/3tdU6TZ106PyNcKff1Wde4B4eRoLiDaSzQ7ad93Q9T6qdZtFnEry3RMimicHShstaV2nRiJWbpqB5UpHdnCXQcLTcudo79OQMXu/DAd+lSILRcrzyfa6GQyrvm4yfeJvm4XdfG8EW5599BlRTzunyINRdbIICThnxHhVajArg1v8z1+fnTRwYygpLHzToJO+Oor5GsURop/jRAxv+2lGJH8msPqgJaFBhvxrY7WER2XqdM7342/msK5hFteJuOjW5jMqv1Qzv4VDo1O8Sah2qyyAgiC69u9hIpTtliLntPjiKSZOPjEUWWh092eCPx9LfF/l9YlS5fSgQu9V8V0VfNR++GaXYnUXzP1wDEVNW7pYr1nyBUFThJBwqaBX1+4u1oDRdhliFt57G03X0yDDyAXH6r5tG7qsLzP4t9JjoY1z8dN7A0610RMzC0TDjSEbIf76DS0fzaHhB3TOYKvEEubYedtzC9oOlsvnkvgftUnE4lb14OSKz7zd4yiYN3oLdBjPFouk6RFM6P2IYa+yhBE6nvPJjAYM8pUXxH+tR/SNfC0EGMcNu6RDkEv+JaSo6HuLBC/RJZM9Oxi2sTDxFHpGMucPa0ZpKbnEOB93Q7c13xQNaaFQHWeXRLjqY4TxkCJinsIazd2+pv/8hGWv5IReo2us0eH6ZfYvXv/89UlzCV0GwaNhQ36Z//wE7mf79zfcwyrBGyVBQjvsAj6d28W/+DmoGdA0FdwBfoGE6qfCztk1HxZoicaaVYfDS4zLfjb02qYHPPTykHCVfH5+SebE2BhpwEG8U8jO3zPxuZXYHGwNa57ul3iZX2CYEq4ZmtqykRA6qvm8UpH6+191RwLzYOcCXW9v9NTSAoOynAP2/a56+OkPbpV9NExxdLCg7QCzQ0rcYF6HtEbKRzbInq9uCT8MYQ1Z1AviPKPpF+8QAyJ4JKS+T4HwwyKFojwuibldPMRs+20K2HSfxHjc3HwaVa2FH/9SmYh38C2V2IGHr6zIj6+QEjv7DH5+gmRQmYLdKJFh+TlqbGO9afPzHyn4t0+K9fd4srm8iEew9qr2d+eqmc7vdgFb/Fbx9Li9cn6119off5NfP9dMNSnkf354LsmrEd5wWkC5BcAlnx+CK8T+7f3yHfGGxQYpbyVJ4TJMnG0zuRWzeRYlzB/fwkjfncS4OtwtGEDZEm9bJs1069f0T69ZaGFTKN+FV2rV3nExf1zShp/53INXNDus7AY/WG3rwULY9R/0T5/Er/+C54GPzDmZL/HNoksPf/5r//zdwStit4XVHJksvoa3YWrduIRf/ZDrr58X6TvK1n/9qfXTM/aorw5kqYzoGY77YfoPAAD//6RdybayvBJ9IAYCIglDOpE2QbHBGaAi2NAmkDz9v/B8wzu746PrSKrbe1dRUezzAYpH9kXs6D17HkS1DnmDELWrUAB86wYvWKXWi/B1ZQDZ7lgDvnOc4CPLqcWwtCl//Azv+N5IhlI7vf5+r65JEh+GhoggfzYFdVtzD55PvzS1d+9o2KrRGTA7j0X42vOBlHt0sqb34ayoWuRCirbuNfj5P1QGICJe7q/Bgm8E4PbTlzqPFcoHrTk24KtFJ4z7JgTcL0r/h3+QeNv5Fm/bQQG+alYYr1mVs/F5OqiffEho9PxW+VQuM6/G3lwjTYETICdfFWFK1BHN95MXyEu8Q118t3ThB/3avowZKBASqXeTVE5e7RD/9BAkbe57MBoQhxA2vUe0rCScZauWwCncULprHbNe//K9cMcu1pHv1fxX/83PPsB6V2UW7/xnDKSncEZzX+m1NHu9DI7OW1/qVd9zPSk69XlepaQ/lGPN42qIgXVWnvRRFAIYjxE8gGnTNNgNu2fO57kdIG8MQs1lJpLtdxP7w+e//DqKQDqCJb9g/HoZNWPyvYTmSSuxUZxZzdp7EsJ5OwVE7I7PejzRUwyBtfWpvWqcfmZd6WrWXXN+ehBn1eXtQHtwJeqVa95T6dT40JibCF8r2bfm3L5/oFBd94SJzarvpaPsa8f16Um333Cby5fbfQBvHtTodAFFPk/LzQC+pq4oflcNp1UlT1D4FIjmBHwCmmu28LMXtVdvoWfDlKXQeSsaJnXlWvPs1SJUsxyRb7pm+TCk5RnedwLEu6vyrPkd2wjOkTzRIG+6nH8v7wH6bOfSCB2dejANYqv13groVrpeAskXK/SHL+L3I7Vat8YDXOoVjlbmkc+/uwLffrPDBco6i2+bkwJIXyv4Vy8WPtnAhe8T6Yev1EgLwWdXBov+tO2ZMhx9+GgfAo1mSUsWfjpA9C5CNMu9A354A4DVKiLT48rBpD+aI7zb9gM/ojAI5ioIiQrWSkOPhaMCejzblXZbKWccvCTTYos+BHhjEbrz2n1OOhoM6i1Pa1JidwJ8jOojbAVlTXdu31lsfN4OcHjXFtarfOh/n4eJMVdofuVjMnkXQYcFKR80bWy/5/dHbEJd/LZIzJ2ynuDl5au5ag7UTeW2npbzhNdHaWHnvetzho5pBSPdSKltThX/1UeQOtWN2uaoAsrMLP7hBUI3klCT6ZjKYJUEDMn84Adjd3hUEN/9HVn0k5xWdTPBexHYpHbkTzK/hUGFdmkkVM8vz6C1hOGlLXoIxTgS84UfZdB/zjcCFvuziBcuWAcZo2H69gI+3rY+8KAmUF/aRUv92clQ0S8Fak70HPTmSTVhcL9INFw52/qHn2H76Rmqqxj3M241Uc1P1Qatlvjs3uqRwc9luWt2sffEBZnBGxgQPS78dz1NuQ7ydjTIhx0rzhc8ATbexURseLJ/etsNrK+L/ZN/+KQ9V18ieBEHczPJd7Cdr/6PHwYL/iig1l476qWTE0zvqlvipubUs64K4MYr8sGcbe9IDIHBpYwTU1n0PmRcQhOIjqQc4Ebd1UgQ4D6Xq4uewRbdDYwomfIpPU137fqoLBzemiBQc125gzISP2iGc2+NhWylmhNVw+LvbT2NrVYBxtOJcE/dA+4GUQNzLw4Wf/MDSb67Gby0go3GzYoBRmvWwV1vOkh1Mhf86bULP1r4hZX/+A9MPAJ/enG/8DUb3C6XD/X2LeuZizYOzF5TSt3Ze+TzT38Bl/0BG7fjlU9e44kwGoo39Z6KyafleiV4j5FJ3cHRkun1LHS1W60sHC34bJAP4aBu3iym6N2EOXttFBue7WeMUXQg9dC+hwk4wjIDfwiLXN4O3hku/oyK8/PSj8YwpvCwtwwiXQ2nX/ReCEu5qohsflA/M9WAqupEDmG87vr3IdRVUHSNSQ+GvOL9Tcibn/5IDam71PMvf8eBGVB/0Qf4Ub7LoI9zlWgLvhmFd45ALskv7Ks+BfR33nEenKkXfuJ6fe0jBtNOmqgZmcte2jFtwPDsPtS5Cu+ALfUePm5RjGTEZD5qomYCfA5HUrEqz7l4vN6BlzY9dVrvbvGuAx9VHP01ttRPlPzl72q5z926uowP9XR1f3ogXvAvHwLV06F3/BKMz8cdl5b+x08vpgve4iQwr8efPoAjyp4B0Z6WrWnj/Ut3d215580OCqhW3ZFU5hpbkrZ1VZD6mUp++ia/dq0DxzsSaASENl9P5Qb94RnlOCMuV5fRhv3xvsaoepWAfy6GrsnrsFv0NSHhlzbLoN4cAfUAUnu62ygpqNs4xhc8mvXCb02QEmWkaLPB+VLfXjDsny8iLPhl7u0wU9H7e6H6LfX7daNUOgQ4HOhReNv1hLTAhoW5O2DbE0nSi3bUwe5RRaiv6RoMP37hwZWAgLKVALsUzIRJtYuw+13hfn6qRxesvheVsCy81dMncVWozc206BmPnrvBtgOK5KtI3E0Q9D/8Agfi0ECPxYBv2sMAG6aLFK00vZbtINLBT39UP+ujxX79HOHs1zTcHsZ8zrfuC8R1VpBne6cJLfft648v2QblPQtYdP/D70s9BN0l/ITwZ+9FH82Zpk+T9qThjcbpqemn9FMKmpJ+nhT5yLLkT773tUsLbSLXjgHEB3RUddHD6YXvnwkj5rWBZ2k/Y7eCUU/Xl7yEc7a70/DRikm/dnr9F1/YPfRdz5/mcP/jf0AyuqSTr9MBHt6Rh4PlPBe+/IGLnkVNbLx6EY/PAyiz3ZFoAwPJcEoSB8q1WSEQFkUylbevAC/X7kpUJ2s4e3l7Qfs9n+WpM5jOxycDj8jZUi9p2mBY7Au27suiMW1eFhPT5wtKI0jJmgTrZHhX3QD1iYaIn+1v8tOzYcIyhWj3t1fPv/7gyocGdVcXx5Kse3YA21g4IhlcL/UYnIMDfHiWS51Uk3if5T2EJWu2OL4mGPAMyAcY7tCeSP4cck7Qsof55l7pbsIuZzvBrSC7qxD//JPxy0EFYkgM7LWrOB+rPK60X75as/gQsHEP7kCMFR8XcZ70xHB9CBX3INOf/rB+fypZPZfwTjZ65ub8h9ce4eZN2JJfpKdauDB2ZAutN5d3zyax9rX2Ix/I8GiPCROM0x2epWQm8FiSZGyNrw4LdY6QWHgVmMdtbsMbZyIO/Gv508cQXC4gxVFyzZPJOXIBVIX9JK+Hm+QL3zzDxf9xoLlrwMKqb37fp472yMGo53GoLf1btL5r54SDHjlgVnMPG8+LwdcXBSLQjGJPVqoc8WbRI4Dd7BRqKv23nm+f50eb735OnZf3CojlyUe4c8qErDm6Jsxsewj5YPfY7S0Q8BvZiHD73D5+/AHMnakRyFblARe3prfm84MXcG0dI3za0aM1qe/VAcRIaeivXo2//tCvP+vg6W6Na3p7qebZ1zEWQFOz5mZXUC9wSs1X9uq5EEnyD9/iXz0bD8Um1WaDIuxepkc+yVVa/sWTrVawHtK3IPz0AnKJJxvI5WlD4HkAJQ5G9Qymou11uHlP8R/fIMO0/pe/difpWrPtYJzhx3ogamahVvcL/oVGKBO8C5ovZ9MxluGvn7j03xNGreYMzwU7UV0ibi7F2dGEKvJLjKCWAYaOUgiG8dv89OBgDuXTC6Qf8R8+l4a3O4BnnX6w94IkGZ73vQCX/j02xebRz0aY2+pkSz5aG1XNmeH6gvp/zRSs//dMweMsXSgGftvz5O7H6s7Yl9Rn5rOfXhu1hGx/d6m71QrAjW4qQP+JJ+qEIqrFqZ9EDUT3N/VfOq3nFZgF+JFfT6QE+0PCGdpUkDxfNVEvPs6ZuVnuj1AHCfuPN87l7jpl4Lv+aBhvkVmzxDZC+B2OW5pIg1VP8WoiwN4FD3K750PdxZmTQVE+MyQfcr1fB0LiQED9N3lV37kmrW4pcD+lBvZ2uO9H9fuE0I+b9d/vZdtrGQNQHlO6pWSXTOn6LcB3sEupafiKNW+Gqw0AnA3CVOMD+DscBEDP7gmfbYcFxJZPBVx1iYnddx308jXpHPgsbz72DvM5GJOyleGythdp22nbS8H2KWtHA+9opHtJzTFDH/UW7y7kohLCudWYofbSqy1Sq2HDiRvlEwiiL6H48soAx+PlDvX0NmA/DZp+kGzFVESFnBEviB7w975wfn9HU5tFiSRMmQgd2WxwEIk84B48hJAIVoh9uOz69YTNBO3V4YsDBQ75HK6LFH69e0Km8iomTDLjApSJaVO7PxFrnokTw7elbKlv6FcwnFbBGb5mPaF+0Nh8ztKHDa5yp1JHX337KX7eHHDtMxO74kOzeFLNGQTP0sdI2HDAzmuxgSjnCTqTiFkDOYM73L2CA5L11a6e/HN9hMv5U9vBX4teKtuEc+NF2Kn6bz9dz14DL11b0+1d+SbECPUDhDVJsXv6GEFz2YJU5fuYIbYhfi4nq0yHjW19aYT7GxCH65MAAqUMW/n4Aaz5XM7wVUCCFEEM6ina0gEq5Ftgk67Evstq5QwFJxXxXZ6npPno3Qf6c7BFVfD41HxYpR9o7Y7Scr6Zxdu7aENtI/jUWfxT1EUQwwmgE965jz7h5Xn6wDxUB7TugiCZSLknoKHDlszbR57PM9My4G17iJRclEA7ug3aCOVDRQLkZr1ef5UGsBmel7knlEtFoPjwe3Eo9lhn5K8wHUK4WYccR+5+bRFK3BSUlzVH0GNDTt9nK4Tbg5/R8PJ88mGMgwIGW9TioNi/c2aYlblqNS+g1vgqg6l57Rg8g8sOox3k9fDRuxe8zPZyn3K0A/LVt2R4LOuaaA/jXc+QXCG8b0VALWFX9x9PfSC46ZiH8TWIAq6fuAM/6JZiFJyzekjXIwRe6bfYN5JzPq1u3gTlPGU4uF/k+hef2mE8KuTlwa4e/V47QOFoxGjTYSNZH7xQAct54uAiby2+uzgfeDwXN6xbyWhxy14XmuCylFq9FoHRaBoFnqpxxr4o034yPm8FHkzbwMUhGvKmjGQFru8T+4t/Uqkeglv/+aBWzFYJ0W5pAS0hDtColmrNhnxzAKtub9LoNE5W62PdhjsEAOI3kAMehGWlnWpQE4F3bz5/tp8DyO6TidFGUfm0vi9vkuxoSm7rVWvR9nST4W2T7enuksN66pD5gnF+1PH+WDn1HFQPE7DulGN02k4J2yuVCaRr+KKGzycwVwpCoP5iH73bJ8zZCqJKrS5ZSbfPQUqId6t0WO9XIumhJXOSSIDB7h0fiYGfY95ZXmbCRBIwEhoq5NMxShnMYeQSZasVnD3LggD5KxU0mBDlEymvA1w/hBdaA6PPJyBpIYxiHdGTS/Zggl8qQ1EY19Q31SZnDdofoIygS0/rGiXrjppHaOXplZovP+JjzoIXHK1RxtFTSmripUzVwChwJHhylcxtMVQqbMcNkYNS4e/Jb23wTpe9DJnJk0GyJ12bJd6SubD3QYv7nQIOQacgYaOoYACzY8Pp68/UqvGc83twvasq8T0Cr1Tm46BcVTgqSUM9dnkBfm1EHT7PmU1RvhGs+Y3DCl4MFqMUjIY1pZnCoJeBA7aRZvX09GIxGOPPju6upyCnt5Uag2HQF41fHnqyPL8W7UOdesN0ALN8OshwdZNTNEugs2bnC0pAnp+abltR4Vx9+6kSqbuEDI9zw6fX+TvBoRMrHAVClkw80xA8ykKPptPNBNOX3Vy4GroP4tRO82HxL+iCj/yLp378+cd2SmzsXR0bjHLmQdAj74umdB8DfrBPDKDjSyftq8H5ODMp1YRlW+iJkl0+ldI0wfTd3bErsk09bSNWgIsfnJBGX57FT6XlwsfgjKRf4peI8uYAD7GKcbR2eD1lz3LSilNl0a3rKmDay9l92Vi3oqZzH/txO3QN7O3PhJRSosF4WTheuvVjJIJD2k+v/KzAxf7U/baQk6EsM/iHH0RNWPDHRgCaZYo4uhMvEMWQioCPY47dbv20lnwC/+J9C/eBNX+ajQlZd8kx2vdeQpUj9IGUmgxvI+pz8boTYxBnLkLvVT8D9tktMwW0OOOHCz4BA+RTQawlGhHFe8dno94wmONDjNb+G9bt3TNUuHwfb7cGSlgqOSncmY8DNrbhnU/Pb59BJ/FlNLzsd08r6dNAn53XZL2PvmDkwrGCyHlqNKj7IeBiGMTw2oUxtVZfwAcrLglQhkjBu4jrQJLqMgTai4g0zE6Uj0gkLqy3tU992J/7SQb7AYJn5WP34mwScuiKBt7MO0CyPfQBxcx5qarvvLFRXMZ+PpgOgl+FUbLRXSNn4zfOYMytikzlKkp4F6w+IM9qF3EdLy916dUHftP4iRhdifUSHxMMhWOE76swTkbR4wQ884hTRwao/8UTKNahhc/GW6+5WiYH7dMIWxwI8ZPPbH91wDiaE9XDwgPT7a6W8PJIewKNZY6awO4Ms/rNqP4eW/CFvZpqt1Sx8Kkx7GCaquwFd90rI7NgRXVbka8APdcqKbIlL5l++b5uUkiUdMd6csTNEdb2KcX+5Rbw2XyYHdQjJKKlPiej24qZGoRXiP32+F7qGXAASeAO39ouq9fuxG1YpZ8DtQ82sRjgtwbGalPg4G6rAT/Yt0nVbPTBKA0zznx8bOBeNAQ0h7tPzbzq6sIsPatETq2inu232kCqrWUEMo32w+56fcGtdxmpVxu3YNjddQKuCXfRMDze9VzvVQbwRdDR+oyWGReleanKN/OWz2tByzfvFIa7dE2t0t0FLGg9H77DvR8poxD0MtjPZw1foE7jRJ5q/osH7AENCfWuyofpaxDtWVzf2MjPx1waSxJD8DltsJPFu140Pm8V7r17R73tSbMWe8bgVG9q7Jcft6c7dX+EV4+Y2CIzACNrLz7UiSou+S79w2Ng38wO9l4gAIO+6VJQ8vJAPL6+WbOYXAWobbOUOsIk1cPmEJvwodQXVFU1qNvshtAmFe8D0tRICKhZ9LZaCNfz8v+bfqLRLQSHKezpIzTjepb02x0s/o3YnHQJl8z3sgs6vtLt9bUH42a4OlAZsEK4BVcBUYpL9oe3dPtb8VmtVBHYzy6kfmy9Ax68yAt+DemK8f78saZjtxUANiqFbj/ZzNksTpl2uwx76klzwD+J2ilADeILkpD5TdgnjDO47qOCGoXm9L96CJTx2tEgr92+HZS9qsX5WcdmFT+shc8c4FyopwVv34K5oa0Oa/uS0h3+nPq1z4Dwlx+t0v1a01QdXvDnH6pzpDm/zYMCzXcjUX2jTYCxT23Cdnf9EiVY9/kAjSKFg36Ssbng6VlElQxGElZ4q6ztgKkQqD8+QoT0sc7Hjf1AkEvnM/rhNcq2yUE9sBemzgmTfsaJJ6qX9jYjVk4O4MFuzmCO45jmzbUBjPpSA2938EIKeS2sEQIFztLc0nu+uQdfa24KmMZXF3vn4GaxV7o6w6CNI5wXryeYz/7Khhv6Voiqj7ecxXephKtkraKNdMe5PCjkDted1SG+4MHJxeAIE6wr2D94cv76+a/q228a6nOS83uDOrg9uBniU9/Vw8JvYM5Fi6YLH54E106BeGwYtofW4rO0DT9QPdcYraPSzr+/+Mkix8ReGL/AbBdFChE+tthaM5Gz/FRBTXo9CkKlGAQEtOsUyrsTWvjViw/eaxq03oFHfL+VUz4fTBSq+PQpsDVt9zWLet+EPz6Awm5KZkxXOmzG8xPt3ay2uJZKKljsR3Xienw6vs8i2G/BEW3yB6tp7b8ciGDyRM3yPC/qfhyoPR43tHLBx5qLZdVdnj1dNO+GT07C/amC9yK2iHDjIZDMh79o8medbidvV/N0bWQwh9hFQmuqgBTa+vDLR9hvyGBx+wplOMFsR/VymDgvD14BFv8gTF/n/VDORgf7q+zQ0Em3+VrDlw52q8sVtexic1YJyhm+zSGhZ+s/AAAA//+kXcvWsrAOfSAGgiAtQy6KCNhyE3UGiAgIyKUF+vRn8f1neGZn7qrL2CR776TJ4xaO+GARqNQjT8pQboa/+yB/bij4w+spkbJ3AvraLAnbyY9w6ZePDM/qiWD7LQ2AXk5zAZLBHanKDdd0CqVW+hevnOpBh9nwuhF6TCupHqiSM8HiWMN1nmt6fB4EZ0leJoJZZb+x05ljuOQXTYK+FUikdmdpWPy8gNAxHyma+ZgDAwL1HnrBJ8JGjh7pgBK1hBv/xxsfA8vu5HlK9awJVm8vnS3wV+4Pjbl1U7HyALo6jWWw4XV8za3ZWeLnMYdxG1bUZSFLWfMpY9i0c4jVnd+kLElIB1xVofh4HwrjXz7c8AoC+vfrjOCpqjCMAoyW8/MHfiybkfI7py1RrsFsUEGfVFh1CURzuJ+H+XpqCXQC8UQk/q04//x54zf0+kzCiiDgecrNRRo5fD5HtqdRKCmZ6k3ULp+vcDl7WIZbvtz0Ja3aK49PBNSVe2L9l1fpP//a2bBBu/ioVwwO266RataofRC7apGKBcKrj1R6vMB+WO710IDn51lTQ8WALfnlIgMlDweqZX/Lt1duD6ZhzyH+jz9K93AEr4dsEPmnWQNruHcBPp8OUocWbJuNjUr4ek0r1X+OyZa7eYZwkn8uWjb+tZ+ulbTtviioE10+bNl7wwhbdWg3/ejhrNrZtxQ/izJ8knuJzRmgIzhts+4v8rtLaXxFPdz0MuwI5Sn9bXwfruJORLJfKeH3zz7f+hHSYLPHvDNeAdReRo7kJeuG5Q+/2E5aUCc/Js5sOa4Lr6ukUu8l6YCmtNYhihqVavV7cdb6VDwOnDB5+Bc9unB4AccCldIHWPs+zKFe1oKH4+3rYtc97Nn4ztwAjvtzQuo3MwYhVO7b6+PmRn7BsjfGJFu2np2TRA38NdJ9f9MC6LVzT6OX+q5mp7Qz2De5SVEy6uGkJ2kJ0uc9xli9XqrZvp5M0D1ODlG8HavWCBeR8soPNf3TK35do69QU2th079ksNavJoe3kWBqaPsrm4UmiuDhs3v905eIuoYELPxXRJx0Mh2hUUUL8tIYYyt83tjmTwH0giqi5s5YHdaGEae0dn/CR+wVxmo6iQQD8ckR7nUNwZR/d0cY3TuMzzIhYD4EngpZ2MUUbfrPn94GDmfpvulNH2dUZ9cGWWW9ydwWXMW+bg3Bdep/9FJ3NBwlxsegHLIjtQ5se7d9m01wXQiipzY8h8Leq8Z/+IPZdZ+O8w6vf/eTmk7xABMxDqZ8nLOERK9GGurTVc5gcRcYVi3tx5Y2qXrI39WYrCcpqpZM92V4+DV3alMhDmcdDB70FnHe8Cgy+Kc7JMD/QQk7gvABm37hKaEAMT3NWe2wbplr+LaMC906ZsHq6VYEp+V4w+oM72C97FAEbo6O6TaEbiDXQdfh7nfy8LH4qOHq3+4BHPt9SZ3dLBtUbKUe5v6JUawWjTNmai6BDa9v/Gswxr98G4bHFxklzXPWWyl6UFfTN1UJ0dne9W+FvOnJGJ+1e7jA4thApLxDsrNTLpzm0wEC5RHY1GlPzCEF6U3gc3qG1bDinaVffjLY8Bhax2BJ5++ceTCQ2pm62PyAbozkBu4BUKna8Xw6svcYy30uOmgJujsT98i1wIaPkZBL55T/lDCQM73zcfpZlGFuTk8CX3Jt4OAeTRXd3/sEKtVHxy7fXhywD5gHSbDekCicIZiO37VTdjdjRPKmn/J+eCbwwWcjVovRAyzlQ0spRYkgyBoK2Nrsmr/8Tnh/8avu/PQbuD/f0ab/eOk8eUYG18Plh40G8mCtH2IsuTE+Uc3Y6WBSDstRMY47nxqVYKc98A8xnJerSJRB/A6LLYQFRCXKsK34uGLGeIjh7q3aFLn3ECxaV8iwfkcBzV/XkM3q7Frg5Ew+WT+GkS6jctFhWQn2tr9dDbf8HMHkfrGwU3FdRVIP7GEncwrWtPUOhET1VQXXSY9Y5/XDxt8fSp8Lzp9/A3beWRmM+lKjl/kVh9O/+/2TLSL/8YclLDr57TTvDW+0wy8POgs6XyJSzS74cDl+nAK+b78vdd3wBcb6IJcwh6uPuP3ihQu+VA1Un0OOqhdI2VpIagQ3/Yce+eUc7jc9WVkXLt7w/MmZ8stFAnXGkX/xbn7A1xHmFnpjky8Lxsjz3sCvX36Qt/ObcLrIdvf3eSQ8uMf2/4kNFDX7jq0WPlNGNL+EIw86iiObN6bm1HjyVn/AyOdO7I8vwFG977F12+YCXEOvhI9rdaOmhI8hu/0+jz9/wvqbThX7GPwR9kYdUe+q62B+Jc4DbvEdzd7lGorjYrhgq4cQYUI71p7vaMuXaU2d+TOm+937GcnhKdPwJSscJpDdRYL2V77+1TOMWd/zlrLprXizJ1sqf53h5ROl1Mo1zdn4aw/q253HDi1CYz7Qqys36P0g+/LhOGveykdI911Ft/g/TF7lHZXSiCB9bvqXkAeFDbE+9jQzhw9jUp48IOcPWw+uazoTYBcTsmhv0bN6b8EiOrAG23l4Wz4ziK9llOGmD+JT/u3BrPLMg/Wih9TJao0JjbqzIdeZPDYvyXng3VAxwRbPEO++oDFi/tnAVv21Wz2oTReLVMW2h2BHnc+iVOPOeHnAMNibfLEAjXVkYgy70/VJkZbq6T72fwjenvsXUTb+P0u6NsM0HWVyFqOWTVdf5YDzHUWM18s8zEXQqPLkliXGTWs6fE6tGa7zWtM/+zNrdDj4wRygbrt0bBHP1xxKb4aQYvmiw5KbWMJT3hpoGeXFoC9gWOC+mCM1x3MB5pyqM/x8ekgvOgqqFRBSwHuODvjUhm261qcugbVanLBLD266Pg5KIW/5gmz+yZb8uuiK4aeAnj15SMXN35So+FRkCTqRjT3SGxjSj4mvz7No0Nc+02F1tY/0eD+1xpqdb42STLWHg43fLdlZU2EbTc6Gz1KwZudXDew8DAggrVL9qz88rcJDVTBObBWUj6eUlWhj7elVxiqbgat4izBTxI4jY+XjkEM4X3R6OQt1tQS9ZYLbwT4guNlr4x8PKHaiRE+b/v1PPzTZcNz4h+usj5cVA6wVEvntj104p6gOFPvoXulVN/TN37aePnsWsb7Fc/IDEflXT8zB22XrOmsBXNKxouefRBhx3r0EtniJfUY4QIt4rhV76+a70vpnMHx7JiBsbQ2b7HMeyGACWR7ChCOjeeoA4+qbCjd9hhw+vJbOKJlMyJc+IvLH/QxE03sV2rkfYJQ8vxtf7Dlo6SHEeNMfyZa/Ibterzguh7aafsCyYYwSjI2dLIXz0w+KP72Y7Cf5Vi0bnvjLz0jW1ANYrr4KIfcLmv/qg3Y8RJCE3Bnb7RSAWWsmSf7Tm7f6HVsvpW8ryKwURPbLnC7Oi8pAWt6YuoCE6YQOrwAG/S6if/lsw988tJ1nQWZi/QDNPauGutb6SGyPBWAP8fIvniGw1SsXs3ITWOZfhu9QPw6t9Bw8aE1cgs1HfHAq6s495IWLSsRn17J5MicEO10QUNZ/Y/ZnXxDYbxNv9R7WzNo9gUtunqnuT2BYrr7FwVy43BELA5PNp+BXK9PAc//qq7Pwmdy/egU+38nTWPa3ZA9tbinITvBSZ9PnS+CeE5Hwh7VIF3uuE2hzrKDutFPAFM3zUblw3B6bAJ4rFgtWAZ4tP2Lr+DpWK4/EBO525QPrH6MKp7/zdYMTqFblIlv/6i9/9RVtjh4ODyJPhl83tDH66Vs9eDUb4Fy/ZNNPGsCS920G5aMOaHZH35BpvZQDRH4nxP3pi3/1dhcvEF93/OzMiXG1ZHHpvwjMfMeI67/K/2/3gfS/ewoGjGNqC6YGRCXVAzDuZYYqqk5gISNfwEt7fNC7GByGdUeYDlV0rump6o5MvN6HGuwevyeSIlpVbMWvFc6S4G+TLlanfmdfE/6WxMQ4XRbAPKRDENSRg09yZA/7QbYfYHafBb4+bzb4lQLQwVqUhBrx6VNNfm5mQLFKcStDZeHKjZYOH9o0UzuLtWGNhfdx31zMlUDLx87izIGq9KqrUUdvvWphWePBtVsfVH0XNlviNixk+VcnGBewY6uTDBx4zUWKnRo3FSsr2ZV3ex9jJ3w3znzcNIxVdy1sFmd3WFmFCtn/MYwvHHGGpQouCUwYZxH2w1FFtYtrwiDGKrY5eQEsBrsY6p9CpxkHm5C8pgJBT7nlpPQaGjJJflvQq8aIuqUSVWv2UFwwps5Kj5eaC8nPqEzYdz8To2ZsAf0mfgPXbn4gkUrQWQpT1OGr72V8yZ8aE/DrMUPGEx4brVUZk4PTh7yD3RFH59fIFp4/euB22HbXHl68s8gAG0DkvyBTIf9MMJGkZTTmW8ECKIyJRy/FrQ1nTxp56JKXTC8a1Nl4lgUCV58wqt2kj8NuCt/DKkhUeklvMGXdOnng4rsS1mdwMNbvKvfwtoYctmLOdnjDKEZ4azkDrcG9G0idRr2yt3UT2+XMG+SLNVVpozinyIfnanYsYIFsKp9oIdwzXWLjI0ND8ifq+tmJseld67ArlB7j8ROEM81ALzcEBlTbPbSB//DOEbLcqmgQCAKY3eJpA3MNUnzJ6wmsdFhysNe5D8V9UrAZxVIBTQC++HrrRmMdtGmFZpUX2BzGG6DBsYwBLs+MAHPNqjXkfwnc7IkUTimqNXc/NeQO1vYOYtvP+LWKGQpW+kVyYRThXOtWCZ/FNjvF+TaMldWKYKqvBr2Sk+OsUdiv/77/jKs1Zc3t4wG/2AuozbbZ3Z/S9mAx1TrN+6c5iGf+lAGk+iLGKKXGVMCiU3ijpNi90rNBH3QYYRpmDNv5t3MYEW0VBCa5UUtHP7AKyrvY3s2+0W59iQPbxT63W76+TlWvTth6acQGFO31ihGhebVIih8pSRwFhBsLyZmVpucP46O5Is6HbbUct9ld8TkjZAjfpjHvayeB040QbIRa5swknzk4yckF62dvTAm1ZR6YuU+xFsQkXRLJkWAtPDSMzuo9Hcfh2Cggh1+K9pfM+XkwMBV51Qps/8ZjuH9N2z50Jzzi00ccBkpCL1FckKrY2H11Q8ykeVZCW0rp8xoX4Vhus1pn42Vi7ZQ/wOSnaQZzbZscGPpDOo7nBMJCBAqROdkH/TT/Vqh1IiCH/Plhsx60EWw+H4ncs4Z3qHD4ZJCL3iFhaD8bo8hFj3/xRSXRCaxoPvZKa15DaifSJVxMtYtlOqgqOjw6qxLDauiA3ZwI+W3nL7b/IHBRvy01pE/GmK3bEuB33BtfRe/DZu16iWXdfC1Y16LWoRM3xbB3NI9IzrMY/uIj+FyPE2Fb/F6PfLCHxj6RKK4cGq5ze7Hg2CYW0lqTVI0QyzKc4I6Q/fTC4fqNxxgO/Lckq3FS01HNzhx0I0ulyAqNanloYw0KTinpBb6/xursZQ8q93gl64q2d/6a0UF5NQp6TLIQzE8i9bDI5zN9+uMjXcuXzwF/qb70+H0cDfF39iJ4yGNCnbtbs1n1Dx2Qff6EzWu4VKQ0uB4m2qWk58TVQkETUwRyyDkoluh9WIHGx1AEex2dg7ViLCjmTvmkcoeUnOlgXLxOhzmOb/jSX+4hjXIWQZFLW2r8cDSsUHEgEO/CnczfC3Um2rkuuA/Om57F4FkNdH2OMGbym1rc5If7huibZitNBPXPZpiuvzqBrjx6+JKI2Fk5fCCwxc5E0XGZwbwexA6c1OyNhBNWBzLNn1WBPdAoKgCpOiT3NgSqPWCbMaGaT6+FwO6JI2qH+cCWv/hdijdKL7Sl4STlnqqcg9ce7T2hTukw7HpY/y4DOrA1TZc+6nhI6BzRe/zWBz7P+wSCnPti3EylM0r7wxGuyXBF3SQAQNLXVMCFJVfURuSSrgK7IAirDdOQW+GwzV6KAtUr9UTlB5aTZXSACneAPrN/qvhnUEYwRmVIXbG0GBNnlf/7/QRIu4at5+YiQ8C9PGy0zRyy3Vp4SltZT8I0LhlmvrEIPIn0Tc0NL4xm9R7hM+Ah4Vy1TNlYZxEsmuKFk+VZOWst9hAkarZSfHaVinj2jfy7L5eSHtj03FEXTDDg8Al6s7PGE1vBFk+R/N2dqlmVYg8OSgURn2QhY+drsYfDSibsCqGeLoeKU4HCc9u+ygtjCzrJMzBTYuPLNPTOstkfdu/6gl8bXhmlpF/hSZzeRLgG93A99HEA1cP+i6SsReEfvoD0btyQrAovY00PjAdy9OyxxrevavnthBWOAX6gw9320g6efwXchz+favurzaiS2gHY6/BDsVIzwD5u5EJ78HJsq/1idFt+hPKvSbC6E/hhTimJZEV7B9Te8g37vtwapknxoHhnf5xVAWYHE80p8dECX2PCLT3Cm4t1rK79iw3yL0TQ1yIb58WsDyJfGjlIS49Q45ytw/g9skLe8jU9ap9ztYiXrw79Vk7o0bGdgR31OIN2fnv8O289tIMH/+JtFNQ/hxjvlgcicl163TXPzT92HXh9SLHZ1zZmFM+lsq8ciGSOftnMz3cVfuVg60lK7XQ+fl8q2L11RA2Nk6upK/gchgewUNMRnuHIX+SHAi6nE/bjTxK26kJUKB19ixpOy1WjGo09SN30Ss/DNBuj/TvM4BOJBlGMgEvH37K6kFvPF6y339iY2/exhKK3rGTM124gBA+WvMUrstv8iSjZKZarevfFJ/ZIQiGzlw4+3V1KkS44IU8U2QOh83WwMS7nVKxUtZYTYrZ/+dBYJ7/L4Ls3R3qkLm/QsKo6oK9oxe79MRjMChEP+24wUZddNGcBTCJyYystNb/zXLWF75Z/94uIK/xUI5tGFeRKD8j+0qysb4gdw73bDvTaXU6ABl0IYarPBkVCoYP1qf5KWOTrmXwHXU/3N7qYSk2ilD5qV2TzWdIJ8Hc9/YunrM8g2UOkhiKSas0BwtRfCjhUSMdaz66pGHQhB8+P/UDaYDXYnhstFTIzQVizpj7t95FQQzlKe+zuzkHKmKHb0M7vD6qj/gLY+9Dk4JScfkgyTX5gb/qwYHZbjxSbVR32wnOSgDA+PJoKs7B1v+9lMIyii49Us5zxpA0P6MvvHQLN72mwCFx6gA12RXIWaxXbPY8QXqS3RK/X+ZPSaevRkzquwrj6wWpdjycXUP7nkOX9+Tq/lIUNvNnxFS3oh6t1eEETnjh2xNeclYwJh18u7UhxoK5hPpw+vBVHBahCirX352Ts83gngfGyBvRcHkdjaYw5V6b4mRPpgA/hyFA5Ku9F1NF8OOBw0bh9AXuubKiacg9j6fJL/ocfiXhdn85a/L4NfLpKiqSY641lb64qEKznF7t6Z7PZYsEDduRxpFFUoEGYdz2C77DI8NX+ULYqUanK0jwekPwb63T+dpMFHGOqSbvhmelkOT0kHkwo2rWRsV6yjwcPuGRot/G38c8fZopMjJednY5uy2eQS0uJyE6jOfOxLHVFbH4B2s3G1+jmmxf/42vuS8MpFWeLB5fECbA7HWqwnmKM5D/7mOf+mvIbfgLgjDyMzeoYslEtR2jX7oGG8ekzzEjuLfg9NGck3xI/XO+uYkM/0GV8lMM5XW51V/zjA5q51GB5Cg8ZeDFD/8W3C8MJCJPUxMb2R400sbo/fkPGzd9G6ymaMIfQodopl8Ba2GMAX0ezJwvhDunojOMKy1Y8UvRCGDDEDjJ4y0v27/6wUJ90ePg+IqT44JouAyttOMVpjhg08MCfJX1UpEx7/d1Xg0f6tYBr+ayImAvysITCmIP6XRbUfgbQ+HGum8Hi0t6xMcMwneXJy2XQELDhv7MxB9RFcMP/1HwkE1sO6vEBK6M+4W1SRbV+5RcHuD5mVJWsvbGO8WMFf/55uPw+1ejfCZJrYZuN33IZG//wuhWZd3y6nodwjTiRwCV+nakt0NT5HbKEwC3/kz6CR0cYb3kBa8WOqTHnjTEvXqHCb/bTUI+XyZl3KpCgZvX/AQAA//+kncvSgjgQhR/IhYhImqVyFyRBQNSdKHITUSAB8vRT+M9ydvMAllVJuvucr0M6I+qyevOx2SEHlN0joDx6zrP69NoGus6+xOpdO2GP8zSv1zVlVlvo7mppRQ6QwuCYgpwlzPITEd3ebGL6Rd2FHPNRRsTNCwz5ASU8vb3sP390zbIw4dLERWgkjWD+UA5hX5tliqzB6mjh24U25QYHeH2HA7MJk8reIPUCpnUdEk0RGsRfFZPk8Epj5tFSSugczxCGp/yXr10+DtENXsniSOb6zAcgB1Emw2GB+dR35Vc7HQvg3SKlaSh1nCZrW5RnvU9U8TpqE9JZvDlY6ItHB3w0lEdi//Q3wdVjF45qHNWQXZKADo9jlQzLqs+Q3nKNuGstn+9gOxiOTlD91ffhsV/fYH8JHsRKV7eWKwskbV7V9YyXqvgqx12YV8qiI82sF1HYq9N3ntf+seg4+yEaXkJTmf0E09d6ijq9KLaKd4lMok191051xFQIh+WZLpXrG03FpgmQcS70v/zH3v4ASr2+XvDie61Ljm9pBfpGxsz2Fs+QGtOjgNOyu/z8eSki+QJAFxUhcZE/tUFoEIXDw7wRbBbOzA+mL5r1I15Ncq+NnhfrKHpId6aW0jmZ+YUqn6bjgoruahNOj5WWweFVZr963zY+Oosw4u2OjlN2cKdn+5XlKAKV2fd97g5jmKgIcngzd53jtp50DwPcR5EKrtOW0wH7EdzoeCaeHexDgQTbw0+vsJ1FAm26mST78Q22zd/3pGsZSLA/bhpifhCU4/kVYyRFS4luZr/U3LxJBaXZFWT3bfJkNN+HBaTU8fGg5XN+954BBBdjxcicr4Zffp3rC9n6V4zGPfRfedbrcz1/obEL2gzuEEXsOevDXn56FPSNhNn9Oj0Qr9DlgKbPwyalIjS8141LI6dnsyW//EZ/8Y3v2YHgYvnRxnwtxRvWqlucP9AajUZ1XACHx55Z9zrSpo+LL5vvFu+YKy1NtOpcGwNLdZmlcbAs//SMpRQmM6Oeaez4yhbgsntF0jh4lvN58WXrKfs/fa4NVzo0ivdRRbZ3Ahmx10OvkOwuKmZ+0L0d4ruzgAV+TXio5SYcoA1tSI8IEVPmwcwXtNv8SvqLDgsdJdOi225Bli4n8kiYEnbymk7yzB+Znotj8jG1MFZ+/M57ZOKshxIA556W5FA838mYx5tOFmUvp6L17ZPpFJ8GmPUk2+LHPhwHy6hRq+RANI2FiMuDmAFVV4QOz1bk0yXPHNCjLZ0ZvTvzqo+MeP3+MNtATTmvb/TLJ1SY/a8g95c77JoVwogoPGSzP5J//gbP+aIigY0RurwGLG8PJerm+v6nj1+CGLR9cvYCNPtHzL6vjn8+ijMBDFPBDC9Yh418VG04vPKMbXXBCMX2IZhgDB8Zfz4LNxlzuY0U81sYVK66zTzf3Fr8+Ab7+cWf/wHDpns61LKdTMowxMDr+Z0SGrhtJ+2sFBRS34mtn5KQ3e9FCqlVbdnDfpzC4VdPL+eXTxd2Ssr+/eoGQPy7I9tdMLXUNtwAbCO44+vW3bd9GL0EWGYJY7qy0rRVcjZ89NKljpgM2233vMommnk1FfpE5rxhso+kSJHmm7VxQh/Hq4xm/oTfXtSiSfdzjLB1vtMRdsjl54vXoZkvsfRlym3TNtcacBtbbPvZXRF3+qeIZr3HdJ8TLrqPFBCulIDpF89L1l+1UVEpgU+C3NXadenE8m89yeF7DtzZr99A7c5HvJz1kfSovQ5B6HQEd9nFpShTGpjrFwWX78r1c0NTedZzdFierWSyG5Cga3QJLxuBt5P/3FJFzQsVLwKLt/SE5RTIZn8heK6HvXz+3mQTbV5E5c6zHYrJG9DBmL/JE9wKjb/1vC6HHfMcTS0/Y9rWKA8Ak+0mUbWpCjcR3EAqyE2t45AHmfRFrv/9UiUxK7c7+o4EQnNw2GPmT1O8OpvoQkQZC8pKc7lwaxxY4emG+dsu3U4OVzbM8UPmetp+1Cup//SYBeiBBMdr7+h4W0Z/8fotL3mjWIPRMS8wrwnfjvUWjdv3m+17UXQ/hRJH8ufUGmRfqfPsECMV1j++5JLpnYzlqFIQyz0wm9crbVqezh0MCUnYrGdQJxz6G+qr4kPUuBDKz88vpiQ6/eo16tq974P/ZM3ffq+U3jUhaZHESCPw8ivIVQbiRdwxIjpxMvnUimBraUu87l07ZN65reF3PvE1NrSX0GUA656u6TjztR+/3bgL/4mFoPpo1MSlBIwES6a1aaLRZjvo6FlEZ+LvhiXv7o27Re+Ol8Qtwp22msRdDZc+HaiURZ428+o7+K/3nuzZXQu5U+4ziB8RZvEttZPXw9xF8Ovf0Ef30MTf/v70Dd7pgTv/v4ycfh+yZy1Rd/3jCQjqhGyfbcyF+n7M4GogkRzuohbyfvGKlHm/iGvutZDvXrcbOLJ+ZVr0jJJhlV8uALfDkfjTV+HjgUYUsZOdMW2SpLbfLRYZLJVYYPtbp7n08446aKeuZ/fT+4gE8Z7pgHizY74zfEsuG3kFbHVCxFkwA021c6HwMnnODKkckylut5OS63ZIVJtWLe+L81a+Ka+AGLcHdX/8BnZpscUv5tFwKi/5V7ln1pKuw3n20doLgj9/j+Pg2TKhcFPQYslju438aTkZoUJ0P78jEe5A69Cg3aHOSwnL0qIrB6CmA0sLPkyd+wksaPEC7bMt/zc/R7sNAPNuDtstRYzG8WwH0NCbTlxnh91Bta8qikHckENWqq7Atn0Ep0xOmTXBrhw7uhF/PI8uVlnBpyol3x8fpcL9sklmviaicxb7zBI/WfKBkV+gNaoDc1r0RV3g3io0+ztmF0YdTtahruC2TSfiKHupHa9Xp0LpcYPm9dNbqj2ZiOTsu8XNhlxDHuU0BiSSmjlFUKPVL3/o96XNdjVSW8Y2KxWO2uHPX7udom4wfIrKpQb4vjbV0VtVZr1DvDUl7tCrRSNL+QEzb2l37XjeWxLM/JKRZDzyKXhoF1CTb47Xd9vkXFfTOwzS+kg8arTatEP2/cfXmFcsMB90M6EbVywctud7VVub93eKZr1Pk/BZa8zvDwGqrMllGORt8vd74pbFXz+vM5e1+uePL3WShu+uusewwsMNrz/pp+SE7WupE7FGdlEQog41jQNRLK4J1mudj+9iM8G9ToVZH53RtP40lWy8VUa2P/8u6dBBLdKGWVZrlSvK3gVsC74lau5qZe+NpPvrN1phorjTSjkX82zwnLiV9ER9ocQxKL6iECdMXTRl3jmQj1f9iTfsXob8Y10iVNX1/M2FF7i//gBsxFEgV0mZwn4f71VIl/lAZv3OJ8MdJGj29OMJT7nl2U9P9C9yxdW0mdC4Vvcd3M47lam+rbr8Ej4ucHmAQQ7rouHt8eA1aPV8OGT3cvYhf+JjoQSxtyX2vnknvSAcArk16gPbxVqvDYkLFMQxtJiqcNrSc+3fEUyfMzvYDMJPbZZ38B8ix6JUue00fMBGaFWIFDJK3SHNHzfIp/uGnORpzen4cgWY+RzxElPXuLC4Tkj+Hh02x285vFEg/s4r9pdnKxwvD1lGin/0iNtZY9i+EytA+yNq2MyHEX8y3wF6e1XEantfG93htlUMFlyJmn+Gf/XgR1+cCHZ6UZt8dbr9eDtz8UF2h7PKvsg3zRQrTNQTcZe/HLnLopLtr+YKjYgPneLtC3f208AHL8lE2G8zm+DVYtD4Mr4uIFtvFGIIl1fY5YJmKqIrI0Ycv9RG+9HFf/0Tg+QKmjjkAgqb7Ejc82rhTqepMmHuH9A1MQx3HNOyAlYuEoZPQhA2+e09yUslEojbgqH1Uq6pIGuqQ/Q5fwz8u1HRtK5CPFiay7knffH/u1Ow+e87BT7+bFkE7487VN+7/g8AAAD//6SdydayMBKGL4iFiEiKJZPImCgg6g5wAlRkSIBcfR++v5e967XnKGaoet+nQkrR7E5m/oGc0ejeuAxFJH5Y8op/+bgqvHZ7v148FmnGwMeZhR9Fh/iJX5vToZpFUwX00q0Ev+Ob1/VJPRoq3LhLDO2mV7yvTxLcm3ZD9P0uQdPnKDtgbBOJGHi986fedFJkv0uTOW+9z7+i60hbRxdtCuT147+XXGRQqVNDVXxxYuZaRYo0srqxffPY599XjRuwBOJjcXhH3WQ4conSbZ5R9X1zfUqcCwZ7cK6E6KpWTS1qZjifEp+FzN9yfiJOALALNsS5/5xqLH+/Elb3USbBdRt2U+NgTTlM9zXR5GHKR+9VtXCKp5nyXJ7ziQeWgD7JSyLeL9Y7MSzvGAlJShmJH1CN7iq7g3gAQvTHGszJqpMeNqdYIaHn/vLuaMoAD2fzZD4TfJNbt6cI2Q0OzE/ryRx8ER+2P8ZtfA/Jco+vGX1ANaKQBHT9W74/KtArZGvi8CtDoyu/S2Cd7RHcODOfY3v3gWOrmsR7rs1OWuOogczQn0zr88bk5UEH2CnJm4XJKzSnEiwH3tmuY+buZnW97a8o/Eh9Y9jYVP4oXDIFrOIUMzc+lznfN7IFq8AdiH7qz9Us3KVZzVaiQ64KDfJ1fNlGyLx8Kzx6FeN0WsUfdd52Z+KDso/HgI2WyvOKMMvGTdeaD08G5M09VmfP9uneQR8kF5lD9u37VY00cBXEvqwnhtU/u2F7RxRIWOZ4WR+5+DvDExQtKdktCng3XWtubwP/M5IAbzZ+f9mjGVhnecz3p2v1E2LXgodoCBj8yOO86qgHymra4PXWpf7vWiMLTaNSMFdSXuZ0w9WIsLMrCJazwpyfyQsjslN2WHQcmvenfKcoVmxSonN7qmpJCGpogvFHSFvfci4IKIK+yQNmRL8xH5SyKpTBaCkJ9c7P+SVun0jIdYdZWXIzeRe8Luq5iyOsNBj5/BlEATqK0Y/Ye3jHw/B69VC4lbas16EbyU/tYa07MrETWe9Gy1/u0ST+leldtNyF1ygack3li1HHAn/tXkp7dezbiHlWB/HQ37aCEiS+STc9tWMpObQHIKmkE70Um3j4bbYatJJjMG/a95wpP5KgxnxYVNnnbk5JUSgwaKsHLcJvnU/L+lXyY68z0mwlxGL/cAfJfxskjL77fPNwygIECX/w6nV85uNLpRj2t7NBS7RbzgUffQrB2lrh8+n3rqYgfdwV97qhxPHURz6mnizA8yRLJGh2UM37NnPAs2nOTB2/q2HMWaKQbr/Fkqz1FZfDylHjV9mQ3YY0eaePCsCyvuh06s/dKCOSKfomOjFruqq8HvQBK7WWiZQ3b9JNetU6yu72kMneitZotqRVopDwmdMqRGVH3yKjIAsHjZ2C+73iH75r4U2zHdmVD90U7c28/N7FId4nWcdcqPUW1VlzYuSZX/i80xMbhG5lEadFRz62eR2BOIt7cts9pG7eFSGFWRcvdHqswf89yD0BuWvWzN+rOP/m2y6D/fdT/8U3VKdacgCfQ0Z0WgicycnBhrJje4rm2KrWDg4z9GQ4Z5rxfFfcHNQZXr/mQ0/26cr59ZxFiBjVlzlZ9qumT/8bYRl/Okp1X/Fa8kSAx/3CXIYSNDn9Z4boa9+YKamxSZ/JD6Pd6jQyL4epmthPx2BvOaLFUari0TDfDTgzdMR5hS9zoO/jHU5758Au21KsuPvYCcq5EF7MfVfHfOTzOgVz8iW6bpb+5c3rVsMldL3wthcZn9f8CVC7/ZXEbl9V43SoA0h0dmROYNg+mzZWDY4u2fSFatYN8w+NqNDCnGHnLfq9mnQOhGF3ZPbeVvnsUSggnJ0Tc6GJ/Pl31BpgkxlhhtCw1Lx7BW2c5sLyvUrzUWv0C8RzUZPAjzzUtsmYqVpTjSyovkJMsfW8q8mEFBKIlVJNc4UlJUxhwx7ouY37G+gWVKv7hj7Hdm/+Hi0BSDphxtw/tz7vVuQO6A0e07i4ymm/cUu0c7HGdPba5ZsMnp9/43my2jjvlYMjQrQL3sSv+heaZ7hf4Mw3b6qOB62b/uLzEv/JHkvYn0Qi9hC42xfzuD7nbGh2NUS3cUOHF/bM9WtihXL8xSIJlevO74upv6B8FChFcBC7DgSHKvWjexLru9Gr8e2oT3i07MKw9EzzYX80PvA7lBldPaWgG5b7XOCr+HfKf1qV9y8rx2gndykJmX9F/FvKPfxWOmfeUD47Xro3DZJck0igPXj1OxHiwOo+y1Rp5BBx//O+w0vexng7fPKqezhtgVJk//A6uAvVcK61EpLckIizLZNuPiWRBh/ZUgnOA6nqhf7xQVK2YSRcs2ipMBoW4Kz/ktO3epj0GpFMUUqcMX+3Sczf8Z3eIXUFCwPebEz22+mKOvhCTHTP0k1Jvr4UUNm6JfiRn6pZIatZqTY7TGxSIzRsLcP6i0e0nq43To/Xcw/5CJSZkbfcG7XbjYD6pib4/PXiEcVjDePgdORMrz0a4fxcOn5OiHnZsTObcN/X8Ihcm5nbV9fN5sOQ4dZXN0LSe8OpFBkZIqssJjtNcvxJeygZ0OaQkos68W4mlS4i7bnNmL5bG+ao0BZvreZgsVMTRmYfvZwInsX3wJb57dairAXqQ9QEYvSm1/XP/eECm8OBkZPpv/KJD12pXB7jCW+pTvLRz4ReUdGYE0dvjXyYnRuGPrrvsBxLR3PMSH6AXH5b//LzlPdRjTqr4Mys00PX9+o6g+13JCyScmzOa5w1atkNe3LQ27s5Ctx6wju+Hplxjk2TC7smAmXFN8xOK8cc/+LhVR4UgtcHsxvn3JEVLIJLzFI/m7NG3xF47DAwIy8Nf9ydXhI8NzNl/krTq19mJuXf/iPWUz5VG+9XNnCZWszMVnH4+he1PaQP5BNnqzZ5XT1WF7jKTKF8IEY8f5e7odVWejDLJEU+J66aIlkUcjyx1zueNKXWYBX4A95sgzpn988x+tOHdFq3rT9pSm9AsJzak/v1ueIDVZ5oyGKLCvZBqdh8ogY45yn8t36mIYNRuawEAXdOMFTT5GcZnD+HPbOnzRfNcH5E6NltVGb6Z8/k13MUgfpzDzTbdDt/ZqiTIBCymoSkQf7cNmsb/eYsIi5ynyaLHzcP/ta7du6eFRc3GwdOY/sgO1C3McvWvEHXujDI3UpP/nTbCxLKib2m8ivUzXE6Hz0kztKe5mPo5esSAg+2/ZSR0LkbfHIvrYWmfRYyPB83eW+NeaGEJH3iFXpe88k71bLKa2mNf69kzn/EnQ9IbcUH2W8DKxZltM+UMamvbO+AU4362wqQuj9eyK7wvryH7q0pxWDtiXf9yvHfekRrLvRYUUUX0budzFC9vD3RbFZ3o9lXFOxj+GNkv/n4rD7/in/6cTt3hrl2FKcBo7koWIz6TzVu67CE/JeembMqFL+thasIPApbYqS3vBvl52lEYwAGM7yPbfaZ+PpAcj1/GQ6uq5wx9rYB5bRh2kh4TA0pmFF+pDohiUu6IkqrDxr23ZZZ3yJEkvriAnye9y9ex7e24o0yeOBt1hpGdvTlY5ZqgaplEJH9G2HEKvssoaY3UyznWxTPf8932zUZHodOQQNe3Z7ortlvYuZ4Vf3Lly8ZxViJt9+Yj4o7w8bWQ1o+tWc+BqYoAfG2B2KAuzJ7xfgI4K4si67fstzx8XHxwLAWevA197mIQrOBfdo0f/7H50MT1uil1CWLE+ubj+LxPsKBbn5YbGyNb85EmeGwFz4kvIyBP4pqpv1bL/qp33Tt1/05f/H1b792my54ZbCi5ptYUW9Xs4KQBrvf5YdXyxIeF7+ATrfdGY/Bbd3xp64uwnNnMU3hfjejLLnD6WIHzDpKD38W+ksD/vgGsp9D2aT+3GOQhEwiO6F5oPEvPg58iilafl9MzGOh4ueP4dW+mONFvxYQVcMKr3JV6XrDfLfQPlFPez9qEX0bbgPv8O6SnT2GHV/dCgpr9XD88w/xPz34fb0D+pRcmY9LfEGf2zonPhySaqrNqkfZEKhst61fnBM4Zn/xB5/laex4Bs0HVpuzj8/ftZj3+5ueINw1Fbk+1s94jGWRKlr0+S1+wY6nB7mn6M8Pwb3S8o3u9w1ozWtkNlmRbvCKq4ToOcloaZ+//r/5Cu/vkGArPZmz802Ev3hCbHM5BCq/vhLsLveBWMVPqnrJmj6w/9Y18/b5L588vIJNen6VVHitsDkZzliivfrqmEU1Ox+bJJhhbi8t252Pa9TfYrUGrZMxS0wC+TJfBbTvwCbekYc+l19MQscDK/HqKEp+M3xQqZy2hsN8sXDj6XMcPZCH1CLeYwREf+9dgrxtSZinRxYSn/nNgrk0dSqcoqM/azFv0W++LL2aLksvoedlRLjWQtrHdmpOZ+MnQN9cA+L43Ob8pNMUyV27JgTemjkpufBETEk3+PfI+q6/ZeUTmtQmuDo+MZ+S4mfA63DSmbX4yUmUNQyFRnK6fTtq14tlk0HzToDpqGbVsHnJCnzzxiL6pav4278WzXZ1usVkb3CTr297QYRFnxJ8GixUr3Vdgu6UMdx1ySWfW+zf4RH5Nj2I2485/enNJph/VKiTbzdt389W1cPRZnvt3nYj35YRimjPmZPsxriXHlWg9naVYDUYXnzcp8UFFh7CvOJTV9MNdzMkSVowd69czM2y/7eLfyGanRw4pzYz4P5ZNUQTvhLnaeBraK9WHRV/0z5eO/1nRHYliczRCa547F8K9Iq0A/OktVrN6bEQwX4/TXYwV+ecvsUvBYsKd7pRutSn72dnIFqtgCq/+NXxthBS1Ouly4xwpVZ/+hkwfB5YmPvOHD9xhtG25xnln+7HR+nRYeXf/k/WfjwSi11gLa82i18u8tkqlQYCF73wdvcWOPfw1oD2jW3cjv3VHy/42cNEjwcs+KeXP6/wT4LvuNmS3el8iKejV0uqdU4dvHJT2Z8N2PZgC9aJ4PjS5b1nehGs5/jGvAhrSBpOJfz5C3a2ohOaPP0ZAF/PE3M0UUHzkxsfpT/fDuS96K+Fj/Tgjbgl9k7q/FE4vgXlkRcdCZf5mp34EMFlajDTHrRF3HnPMoTWuWd/nw8zMRyAfqewXeHtkXhWHwbY/uHFkiUer80dT1FhozVtIt+r+FZ6YWhBLIh53OXm6PdOgt49lUjwNOZ46OLTAd7ZvmN6FD99nk7HBN4fo2DO3k38RX9KaPNFO7zt+hOnwVmpkYY8tORL1LGjKQsQ2hpiZ7GcOt7t4A6JPhxJKriT2Vwt4QNMSTbs3p+PfGjT7A5aG6yw8klO8T/eV0JnEkO0RTT3G71Emt4MFP54H1r6IXfB3mXkUJvxsr4ktFajIzHeyhtN67WvwTqyROKE0FWTvnPGP/7HcD+/u+k1sTt8tvOSL3TNFNc5usPT7xK28J14YzjfAm7YMJl1+AQxNbfiE0n+11jyQdYNuLtIyjTKBR2b4OfzlXvRoPSfdzoP6sH/hWiYleP8zkggyRyNrO0iuKWflJDBOXF2Ks4AaaZoJEzsbTxdvnIE1n3pFSi8QzQvJUH1zz8ry/r8y0eKeFIz5kul2Y2K8QFAdYSY0Yld3sdZnqL6srLpGH0Uk81FJsBQlx+8va8ufKYb0YblzW9mTGWR98fboVQvzDSwsrNHvz9cm/Efj/RY+PX5ue0zEItOxEr9o6jxtZ39x8+YP/wmPtF7XaIT60sSWb3WMShKD4KOX/Fr4adzPDsi2t7vPzp+VZdPnt5gVAz2nnn0vFresTi0kCtRTHafOMg3vs9FiJ6ZucSLW/f+82tnCDEzuuum47MiJn/xjpnXamvykRciGquNzcLfMcn/eC5cj9KG7EV1l69F2cGQLm88NdfVCW2ifMjAQWmy8Fi3k62jYqFFrxBDHvcdt+/xRV38GNl/10ksDk7mQcfawx+fRf/470Ze6zQq0babVKfO4EEqZeGJOJ6EHQuUixAzvJ0PNKY3420ogs4qYimDmdPqIRfo7/nJ+iyiyTocNHXJ12yXQNHRu13MsEv5HS+tY+Je6M81LDyOFMZ1a9J6U8vwOus5M9vHyZzfIuvhL16OeiuYHHf7GSk3tMLiJE7VrxmKFDh1MhKcWtyNST1q4K7nx8IXdE7VFxL+xg93f/qn3u1myPzTjljypfV731Y0+ONN+7npEDsTZUSfvZKwwL3s4tadti2iVBgJ2ZUBGofheYejN2bMvbGPP+JeUSDY9B4LlH5l9qfXLMKyf1lUoms13172BUl3HOLf+N6j8Vy+L9BejycSoOXez5N4KpRJCXR2WVM3Fn/31/1Pz7G9WE4V+8sPyftwYZY/ZP+tfxjbVMKPm/GKaZioGYyBYFDJ8a2q/dTRLP/xfSuYdZPP46NRFj9Os7HfmrzRIwflJ11lRNwbPoXz4wCz2AQkt76veK6itIbV3ivxyp18Lp2ZEKApbRQW8nVfvQyU1nD7PiOSSWu16/r6JMKlSZulPnD0+/439rC73eQ/Hh9LiasmyJ9jn+Fko8bdwiOAPhuN3ZZ6w9oo1hhaz2jwhFZVLNInrmF78i08Wr82b9GqHFUwq4bske3ycVNFAvr97J6ut7WOxt4qL7D4efJothJv4+cmQPfdbmTButF9Kf9qoyr79+CP51dTf5sE5Opxwf7NJw10ebvEIxZJ0ov/40PNV/Pp/NS0Pz5toGBDPVx9Dqk/5l9CQS5PB7xZ4v2sbXUBnFnoFr92ydfMVGQlRdaP7YMx5tNVXs0Qk5Yx+7rXujFLnQBVJ5LilzXm3RDvWYvK06gxH487NLp1IyKzfiZU+ixnzOtNL8OfPvQISapRMagAp9v+TEWqfeLhQdIEkKTYLNi5n5xL3RXAFXcH5sS5mo+srSKUUSUgi/7pWrV5yrCsN5INpdZNspYlUJ5mjWG7ozEbHwdPbWj7YtZv+sY0zMtUzUItYS4tTH9937wkGN1vTZvyFqOPFqMGXuRqEd3NaPyPH/3V526BycxxjH8XWPgNcU6jhPhxZgf0cpbe1/MvQe2puVOQtceF5o339NmsiCm0Zor/1V/E43QLoJEiefE7K7+Tk4sNiWcpdIrniX8WXrEdfIjxalf2fDa3YqnOs6DicWV4Hdf0Pfz5fTrazOoklt6eaBs/1jQD14zXXzwD/C7OSHb3g+H3f/HjHRYuOSz671vNufWP/3gf9jPHQN2LcMfXE60lc6zGczlk8HvdU4KR5/oMRipBFIiI2ZL94b/zLa9hu1POS35PENVCTFHciiG7LPpo+PgmBqF65+wvfo7pu6zRoQwcCkctRz2/j616CqUWT1nqxe3ffl/0Ky7Op7U/Hey1jY7qBxMrS1Tzd+z9C6xCCZjN90rFN4cmhVJII2JFx5l3+SwUAOarwcqi36b5h2Zwtr8dnsfoV423deJArs07zFeSxb/vpD8ogpnN7I/3zVnRW0gPZ5v8+aORPu0avVeJToos0Rfe7GZgTPS55P81X+o9HlrWP53cjObj21k/oY+KHdvP4cUf/vhEUD5E+kwQ7yanp6MSWHJK9HTfxaNvzwYAfhZMW/L933hA2G8FKmq72p+Jc8D/6j/6Ue7jaUj2Evzxo4XXoOke5SVa+D3xxv5qzu5ZM1Q6HF8kvBMVjVe/e6JW8gy28O/uSpj2+fMX/+LhP32t33uDZA1GZju/6nEbpc6LGQfB5fOeNCX4fWpScamPjR6cIjCzaCZE0r/VHw9Cm0PE2D//7LxnBWgTpSTMd++Y783fqFYqb4jjOVrOq62jwV89x95J/sILn5H6V8+w/EHJR+kiRdANK51OfsIRl7ojKEW5i5d6qOmv58oWgbccwhncx5+/K8E6Jw7RBccx1y1qxr96Ak0W/jB+4RL91X8xH5stp6b2KtXrwW8WfyT709HrJZQJ3nbhG70/pt4ogJLVJnGb/Q8x62ALcGmShtmL3m299esC4rZ80Wdp1vG/9We73+gfHxtf7+2M6qw9Mf2iTyYbHxcH/V9nCpT/fabgsz1krJjqDeLr67MFQivKsF0MaJSFrwgeKhSWyoch59PJi9Df57sp1CtuZcqIXv4lYkHrnMw5mn8y4lXSkHAlr7v2bkxY3az7jNzU/FNNTjTWaJPft8RVTZbPX7LXYCxbgsWXX+YfkiiZ0orznlkfs+fDONADqmR2wOvjBeJBLxsDLu77jYGJRsfASx3lgIWIOfIt4v2dvEZ1LkOD2Xmv+PSyzxzks4vD9LSPOlpP5zsK4uKDZfP4Nqc7lSmk9tOhst5rlSj01gH4Qw1IaOYn3u+Yj1HZ5hFxnkbRTbz+ABzVVYTFYAx8Pp2MCIr7vKKfI2/ysfbfM3yVbKnpSqibLnqSghduBAppta4mYfZsEOreIfaj/cTjV+xGpJLSIr7A31XvZusLXF+FwdLl80EvnxqcYPXD1Y4lZo9y5Y56u2aUjb9LNzFZnGGzeqXEzBnls8R8T3k8Epccx43gT11otHBNLluCpa9oTooNMsq1h0Gs/rvzRZImBawf1QoPaYxiLgZfGQq9bpjnGQafDatzYFyt1sxJPldEkV5j0MJizayqOebT7RUbQM7PjO0eod3NmPqlIk3kusynEc9JYSkqJk9KCsP2u008CA6qkoZj1B2uqN45Saai2hOIvSejyYot00Bc+leF/dGoxs/XtkAeji+qrqMfr7d+06JtY62JP5KhGtVNNiPt7FQkP6J3PBzlcwmptvQHXfoXTrsiEcH9NRG7XaiEuLnaJDDfNx9iy4cw51Z4smFVGTYLqNDx4ZI5TxCSzRkrs9XHXPpWkYpdXGClOlXdGBt4uUty5zOi3eeYfnFpo9BT7sQn5a2a38LaQc39fqOb85HFbQWugdYlyokzbT6oVTvioOV5iFcA+MNxo3xAl/yKOT/q+fOYrRSlEpSYBGFJ8ymXE1CaZLti2pN3Js+tQ6Oa+flDBXrf5NNjqkWIfCMnO+u8Nr/GJPZgs4NP4pqW3ZROXgEhGBYhut/Hg314XeA6+xYjyuljcvPjHhB5BQ4xK2WVz8v/We02UsyM2UuqKUmJreiQfPBWemzMcX9xD1CtlvcsAq7xdmpONaxzxWa2cd3Gw2hnT3S4TIQR5bxF/efz8tT3MFtUNo87k23aR4b0RvXxKk8qxDVHonAV2isxy5OCZpIoF7jvkztWy8zKR/O+zeD5vVl4cy9f1VSRIoOHSipc+gOpeLGQv9+ncMk9/xw5fSx3rQmhZBA/CC1Tun3VEZL7Xmb7vj7Ew27taqhZJ9Wy35/V5LvTQfWxdCIa5qM5/O1vVxLbv/XXTcJsWIqJRo/p6yHh7zM/NiCFHqIjO5v+2J9Igf6eP2iqsePbXm9QrF4kLPryKx8VLfLUq6aQZTzFqrfhqYB6IHtiDCvLXK/FWITreU6w0OtOLG0F2UC55zCmCWBU//bXCjZ/+/VtTgMRRkU7rJ7E+qURmsXHPYL7VzlSdedu8i6tjzJ82IBYMFz3OZtdNKMxH11mDszl4+/2EgEh3Vz6SQpd00ZxCtX+vmiqp8THbx41aIkfzNZflM/W8PJU+tgQyr3vveLg3T0UWdRlId5cqpHfgwDm1fXKds5Jj/tyuB6QUvgRC8Z+yH8d397hnZAP8/Wfz3mVHww4X5KR2ZuLUY1/+1kpDJPpBnEq/hDCCyq2xhNLXpmac4y9CPl4VbNdbv34ZLwLD531e8d0vuL5XJ0yDEwDieGrW/LJ/s1PNWNbTNFjruK//wPX85iQq/s2zXEKlQuIyR0zUgS4G7k0XkBI1me80Y9JNxnn6xM9fIGy8NKb/pzuPIDogjkLX0wwx2sqiHB9fY+U0a2ZszIHYRvO6Rm/lKrrRm3NU4iYJbN7G3/QrOWOA7lAAoxSztDPowdFvcuFxe5xrsddLY2pqtUpIjuxRPF8X+cFSmZ9zw7SeluxdRbWKJnNPeU1NapRFpgIn94y6MbNpnz0TXSH+b7+MCJ+a9RLiPfKbuoOLFxpvr8OA+0O9ru+kwu7L3cG/hoNHjz7EmfYZt1USX4AcbE2maP3Wjcn4mQjorUnon9svZsrcDW4xJ7FzLX8qVpHYw5KzvyD1bGITal8PimYZwmIfd+9OPvTA/T6VOmqeeaId9rGgM1eIAQ725vJyQE3cDSHmdlzvero834s0eNzumNZcwkaLnqRoLfYeCz066jqrde7RORcZsS3X1LOpfVbhqx4cYbp/RxPz9W3gOSV7IhhZS7vz7Zmqe9htAjuzcIfg6Ngo0FeeXgNPytnhr9T0FW+pcwbAp1zJZJL0NamSvbPg+mPjiBbsPPIGa/fPKr4vXzbyGLSl3jr85z/0ztLfCKnBmOz70/7+9//Y/pJbPyGsOEDq9/jS4y39I3/7U8rag9kN1gWl6bm9IH6kwbES9PR7KNVdFdOFxQQV2g44odbv/SnPgjM28xhN8mWMyLn7R7ZrkaNP3kQP+H79UUMf3rL33giLPmURNjp/Mk79T0UM8XMI6NldtHWaiAD4cw84Gt/lqcoAXGt6eSETaMaXf6rwZac4/Li1pv/pN8uhSW/kD3dv/wpOZUOqhoDMz3sunhQHj9r23GSMD1wsooPuZLB4a1+mWaRiz8hpF/U9tsLeFU9kpifBAKKNPSUHPP65o+N4ZayyxONBfPxiGbUxJr8VV6E4IrRij5+T0NVHuVA1z9brlj1y5q//MXM92fwO191GjQadkHnWOrj4cyvLcyUntkeJJdP6881UGl8Ukh+uIgVO6mVBsfaS1nIayeen7t3CifuDSw8S705pZNRoKDWrv/mf/rYN2s7dPOMZcEXzdnoJAXmVeQx55C7+dz2UgnbIx5ZeMoPaD5vIUOb3ke4c8iZi5fE6MGGe8Us29PMzeN8rwENUkesAyq6f+tfrr4iFdIRmZTL7PIX/5mVfVt/bH63A8ontsGfk41jrqt+gOSqeJOgtV85bxBqUQTxARetc/LnCgYB1tJBYloDez6EPAlAGcORqmpuV/3VAQx9gHTmk1Lt2L3UnO28yq+UV8oj5lh0U/gOyYZp8Nrny/Xj2d/8M686n2OmOQJFWX+psdx+xK6/jkQAuXqLZMcemr8Gdf0Ei0QicbejG9MlXv+NDzGT4mf+iy+94Ep4Wne6yc3VKkFDjlfEnAyGpv0uUpBXf9bMCN5K/O20lYE2ebGlsuBq+fqcDcX2/K4crCzrub+T34zWTtmx3fECOY2/cQam19Z0+7w13b/4LB2eZ7Jrf27c9OiawM6zHBbu9lXFbwOq0UbnAXPNpVtQsznLSHHahjjb0y2eaLQD9HpPBgatUvgrObUe8o4kw5IpqKipUjGCRd8RI1+5/nw6CBnCT7tk+yn7mk2mDg3EpOmIf7sizs9X8wLbsN8Roja9OQbHqwfRUXmxvSG+8/7v+dJ2EIlzOj79MauTJ3J5qjHnk9c+e1vcgLO1OrEQDW+f/uTQgO/XFZmmi0U1O9c4hZO0nMk9qluTaY7Uw/pKBmaKpxOSEgPNEM7JmejJcRPz4nlSQF+tD8R63J5/+VhTd+fDk4r1vcmbTNUocImaWJ42H87XmljAURVNgpX3M+d5V1/+6TVbtWuTm5eqRtmHvDAUpIqp/3PwP33o7jevbryJegbTKISUH/2UM3mztuGd2Gc8meLg83g4YhDC1ZGux7OH1ovfU0SUxExXpWM32+PtoPz5y1jQq3y6SuEISz7A0tS+Yr5rLne47vGL/NPP2/DcQB6rPQkXP9MMpYYBmgnjz+Uq5jxGsQREtkKS7X+52Yxf/wl4s5PI/rXedzN7vwooDdGnazfs0FRmpaJoa11l4bQy0ViiWAERpTGzAEX5XI/zE5TKvOA5Ky7xfC9YBMHtWBK9Ew3EyO88/+0n2pLR8jfb+FYATjMRj4M4xxOvKQD+oTvutSpDcyJubbipzUjf58lE48m6ifBaFQzP2/yDptoKFQAKR2IOy92sQoQ8QBPe0+mdo5g37vXyb77Or/W+4ie109BVTveMqE1gzjv3U6Bh5YSLvw7Q6GaXO1hRc2DOvjh14+uBPmh3ALy8b9lX/CJ2VNm3mDLsbH5502weMuq2lzNFX6T561I/jup7r2PmVN7EaVP0ParWwQerF5qiadM8LyoXzZZoR+xXo0c+Ctza+IQ3iSSanDSKhIpOdMhRqbqql98phTqCiYVhJPoTbWcHcWNcY/RFT3PRr5KiS0bC9tRNUL9+5hkc7czHL7ZvEE/9oYdF37PHBoScf/cGhm/88wi5Tdxn31MgoexjR0SvqwOnnZIEIJQmY+HOPcdzu3na0F1UTuwr8f1lvGWE3XPH9KqzffHZGZYKFp2wsgv6RV8cPZheu4JY5ZxV80CbES3+Hys/xKr5hvsWPcjt8uevYgYQ39GmdxGx6nsTj+ruVihDEzn03utN3M+bUwI/o0R0mjPKR+Z3GB5PM2D7b+WgeZXsMMzHUmP4+d51XHOOM5wjf2ABOrzjxopbBS6K4WLZWn065ibso0SXgP/jA+N2hgucHjYhttt23RDFkbA0p8V42pW4+4GqluDMQfanb+PxGx40dcxnF4+nc5Pzd/eS1MUfU3S4iN105tdGye12988/0Ok7NqouuRUGfz/zKX0j+NOHzJJOn5gH192//MFcvbDjtWSkJXKXI47k7O/NRV/NcNhFb2JfjwIf2fUtorGBF5YPuRuvDcFJEMv4zIxHxEy27H+08BoWjgU3RzhUAEXp5CztRa+b2qmMYDvNFVU8Zcj7b3gx0OJ36Iqis083p1mD+Jpc2d7e+/Hsfm8CfJ99zHbnqeJTKjQOkhRk4xXdVvFo7poD/MVnIs/rmP3OhQbPVnyw3CFnNDNhrkHb9CmxS7WPeeCbKdS7+Yrf7c/N56MqZ8pdmFMsbZ0z4n56laA0JJ+Yd8+L502aCqqAhgLzdCv7SzO4Cwzr4km/5RD58x9/Oc/syXbs8fTH0PYa2LcBZdfOTPI/f6YYKUsZ5gn1J7WuL3Djqkm6ILT8oV3VMpx+9xXZ4yhHf3xqQ4TsQZzUv8dzFzt3ZEl0oH9+hdeb2wE5b//IvNnq89+dyj2cLfXEvO2T+Xzc9x9IxUPMbj9tXJ7/DijqPpgq119qDgfTXe6eDmZiX67JwpeYvBEaPJMwdyOTOtc8gX26iZl33i6MnR2eUK3x58+v53N7R/J2a2kXYnB2NacxOXnbIBV1cj/5adUyYf5As68v7Lqdbz5PnO0HcntKSLTo7+/mN98h2LxMli/xavHrd5i+hwdZ8iOfdBeJf/GTWNF9yGfe1jNSTV+gyv6X+yMVdgV8jaVX3w6u1dBeJBtmpDBi6PsK/cs3gC93oiWvYzV/9SBTovfVZwuP8Zd89Y/PMXu9nvhI1Wepjgbp2J8+WM7cN7DwP6po6ToeptcswWVzHukzPKzyoUldAfU2E6ikCnTJT78CiHB5YFG5m+Z4y+RISVXQFj1F0Hz7HiT12UoPsvdWa/4t8eOARHQryS47Mz6h5R7VcVsmWL7UH3+aXoqo/sUXE+5zN66eF/GPjzBzn1y68fP5ObDdVwazxFHnrMovmlLa6ZrpAgWTra9NC7qlUDy7y5l0XhsGLL//p29idjyOitpn+yveut8UDetQsyB4NgJZ4kHORZ5SEMPhTMIyq/NhIEcJUcUe/43XXHArQruNGJMoeCs567+OjA7slzD3j0dJw9ZC5vG3pZmQ7vg0Dm6KgpsXs93+dfe5mxgNWngmcQT3mUtm5IhAe+XCdn/+B5k4Unot7+m2lE0kHYVTAoLlnJh936+reV+/RPDh82RGLAX5mmD4wN9+2YnPfSdWY5ihhW9gAWIdbR7p1KrltT8QnMSBv+2bEhAz5zsJneL2l48ClSrWSJxIsqrNqglbWOIBMarboxr67Jmo4XHL8WHhS2t/2hmgbnbB0ltJ5uxtIUPRNjQl1tV4V/3xUrXQ5U1A7s5WNT/tHSnIsb53FhTEzEVtjRLwsVozO1wXPntd3zM8QzvB00cIzOm5Mp5gUqYT+3OI4tH5+DJ6XYYt2//xtj9/Pe/FiAXvSIgn3eUSEteGTuzXZY/6g+pH8Lc/zc2t84f4dasR6Mj907+Ijduf8k/fbMQh9MWFB4KcRiGWllsi3ovegyzqN4ycPkY3Js26QNU9ebI/HjhMsYz/6ak/vfK7NKYHB7J/LX7m1k1fp47+/D/Du9qMx6AtD6jSHZedn8vd6dUpC7aPR+oS7bFXc3rZryy0XkFF9n095kNwRjJShwNhcSgf+NoQtBQOb/HC3FuQxou+/aD688iZG8d1zmcXjQBOmNPVbYrN6RySGdCgKlQq1SCfdTI1MOcJEHPr99WSnwo0dONMwiqinCtP7iBltF/MUOJjzv78/rEtGpLmfWbyi1j10DnRRDy5lePRUq69AmUBTNvNDp+pRy3kTTwkQX4N8pkf8wao7Zdsv4plNED6G//5ZZ+fSy5WztQAF0Dov0Jevx7MPtk0HyqSZIDCg8wKvm868ZpKEiTHR7LwiZqvsZ7KfzyM/Omr9tknjiodfh9iZFldjfkVG0pxKQa25It82uEsgIUPEvf5KOLpWkCLsBpt//Smvxmfh1Fd4iUzy3hvTsZZKJT0TDxm1LHU8cc5raH7aMBuSz4Yf5ICED9PFN9+0tfk/ddR4DilFK8bjBd9/2jhlm4VvFnmbzqH+1mZYmQt+TbIRVevD3CLDzrzG97yaUK+AIE7yoy8rK1P3e8J0FDudsR1jCjmxAgMtPgvFuK1heY//vrMDv0/XstPKQR/65f+viONBwuvPDCq8UEMoAH/bWUlALd4u8wA2qP5WioFJLXIGG5GyZ+OyxmVup8GYpvCjQ8wnsXt0rWZuOR08cfwkY+w5Av6E5Woat6+JqkHsnux0O4bk72+5l01j8+W7bTA6qTXdishyW2OTHt3p264vVYA80lr6bTwOkYMS1ON4ZszVzQas/vzb8gdMTG9772bF/6EpCywyKIX86JEuQILX8VCb4I/FLGawqe8nP7GD0nHdxAAOrQJcxd/TcFEGXx6cqTSwvvppLsiKi73Ab8fRIknUkSRuvAHYry0Q8ffFteQNlUxnZTK79bC7FnoqBGHSnmvmFN6nhKYsVMT09U+MfXvaQMm9jHxBnyqhjMXasiFMGCu7+2rhRfI4OCjT6UlP/B69xDQCdQf+eNvnYQzD86yUjFz9HYxfb3CBurH3Sbee+lNONH4ghbexS5jVOasvgceOt6uD0be4ZpT23WfKPWMma5iWffpwe0UuJCxYcvR++6bW4dWfe1CQhe/l4/zQf+gRJsjYhnbEI3itn8Crr4BW+oB1TTcijvcrsu9Zw9D5NQzrhfYhfVMQsVL8sk2TQqbPRDMN7fOnISLLKCF5xJCFBE1QsQ9tKFSsvD1V7z4J1lZ+BGG235A/FRLIpzecCIZ+x1QbylSC11/xkTTRajm5/1aKtVr7TP7gCs0yu97r+in+4uK2dfzZ3HXBNCb9o6Ot+fOn5OWPNGxvTckXOptXHW3ASr86ITRr1vHdOS9je5zrONVddO6fnkedGL8yHYp5uZ8GCMKOJI9Fkd0X/W0FtM/fkZcfAureefS+x8PJ56Q7pDY/E4H9MeDHZ0m+fj5YhsevJIIeYcnPhbh6glj2RByczK3+/7Vi/74r7bFr5gdl95/0hRe6XTdU5OTTMbw5zf/6mH8GN2kzehcKNsfK+zPZqRJsPgVor8OLR/fviOqQiga5MIKP5/ri50ASoUPCd6HtppU9fBRffY6sz2OEBq5JGfwfW5K+tk6GzQP9DnCUu9hzopaaKO9WhlY8njSh/Nl5jKeJdiFvqJLp/ZqthJx6d2GOP5Jj7PJW7/5QD9KBxLKb8L5wr+W3lvnf/X2ces/W3jfUExwfDv5fIK7gW5EeeP1FOodEwNDQB++P+OSbnA1WRo8Aco7YLHFt//yETH8OCRMhVc3O9rXg+P0UJlVnFfxsM5Zq/xfZwrQ/z5TQKGmzJ30uRuzKZpBbcWSnb9a241uj0QodMdi+fbt+cPla83I7tOeNoNBqj5dnUTYf5sLLuc7VPQ6TxkMVxuR/b5ncf9xKkMFeorx+s785TR7U0C0fyiY/2LHF1OFteh26FckYFQz5/C7WcacDgxfLS1m+Wl2kCdJNgm4gzsmKpKD7M51ibGqaM79r50oKtda5vOy8dl1tSog8U/AfGP3jalodgflXA4zwy/PMtkg5Qk6zEVI8PSz8s8u0G04yr8blaXHik+37ezAvHP2xD83KJ8Ufd+g4s1Lgg9dhUZWaQWEP1kk+23ZI3pa7tbui3dP0TI+o166Csy905G9b9/Q7GVOBD/8fTHv0HyqvnCoLGenwiXGNuR8qoeDBsnneCV2Ibz5uDK0Ga5+orHTa/ep2HYjZ+gjFQeiZ/Hs8210nIGePh6Wa+jQZ5rTGd3hsiXWFPnmpJxeKZQXXSD4Vz276V3xBoyZlCRIJTNeezhvIAsjnej6cteIBl0A93a9p0LfLhpKRxaQO1zZBd0HPkrH0VH3ZaUyO19tuuGetS1oWnJmD9S55jQv57DNT/lju9/d9Nc49Snk58yjKh8qc5w9zVav8dMheR+uOj7RhwzKW3swe6Vl/jDweFY5Yh8Sbr24Go8QA2wdV2e4rqNqast9CoWq/phlllM+Ld+vxPXpQqxk+JqjnX8zuLvxiejoGFWjRRsP6i2uiKM3h46fm+qCyospMOtML2gTNuwAl9+MiZ28f3lj3cUGaUfZxaN1L2PWn1oZpp++x3Dgr4o/ykOmvmLtSDTrXub9U+lm5Xm0DoScLyvejh/HgH2yNcluma8Ba4d6e5/WPdvX7Wj2xYx65fHxOPG30RSPhfNR4Pk7nInFm3fXjq+jBPnbtOhyurYa3LNsIC4dRILdH0fj83AX0PooMGZH5TeebsIzUaPyembGawU5D5vvATZHtMUtq94mb3+qBfI93xOL/s4dz2y7RWlRvogDXpXPT+NYo3Q+V1QyzK//EwzZghxrD/q2vS/iRHgpq+x0d9muf18Ql/Qwhf7sKMR9v7R4Mn5aovbspGPUFXU+zutPClu4O4y83a/Jf27QIFUMQha/QisXM+Mxg/tchUx7FyWfeOkXSIlij1hzekdTO80SzNvpjeXdaYPGjTnUcFsbNl5v1SruVTR9VBoEDxL6Q1RNsVDj5YzAkXhq3/L58XpZ4LiBR66r8VdNTAQKAnprxL+3XTyC/S1U1Y1GtpO7opt3gWvB996cmZ3Ipb+MTwOQfwXs3zTbnL5PekHzJeTMyZ5D3L1E6aDAphcYfqOV31gZLhCObj4z40L168/97sHhZ5WMNNW6m9eP9xN+G1fGG/tkIDG+3CO46UpJ5a0TxyO9+A58qh4RV7CtePMoDxeQwN4QI5oNvqaJ9R/SrmRrVRgJP5ALEZAUSyYRARMFHNgBKoIiMiRAnr4P/reXveql56AypOobilQFMOjBhk7Lw6qki8XaRffMaIhha1/e2fnthQznVhPjhp/hFKU3Eb4vy2dGXC3RL78pj8rhxOWHLp1a/MogLxqD4ErpzcmqigRV53mevNxmJS2/sQvkvogZPlxbsyei4KDLR9hjxIva5NJzNQHthyN7bOV9OQZmclf0ehtjqWdPPu3PXFNTMGu2lR4NosbhM8AJnIA9gqgze3F9KYCeXi5twu817TZvb1JGp5GZNpKecxvHEehJ9mC3/RCV43B6+3C5ZwXb7tgYjkXwwehK9Rsx6ygxRzu7U2Q2o4z78/wiN78jBZg1iFgJAg+Ni2vpq/nLA6rWLQ+ZXU81hHJwIJr0rtPej5oBrKGe2OkMORq6o6DBEkenOV+raBjYBaNi0XksmX+Pv9vvFaJr82BY3Yklf+vRC1r6KvG03oecp0N6R/rzZhGtycV2POhjAefd6LM7soWSOU1arW09PlD+cIu0M9enhTp1bsucb63/O//JXLzmeJXKISrDF5rXA3MeflFy7bw5wKkEj/lZ1ZWdT6MB+nvZY7lYf/mY5+MEgfK+46jcvdP+cYL7Olq2Jtv1H8sTlDjH6u/8jud1WU7IvCiwCt2A4JUZIF6+k4MyStKLOfe90FbPz+BDqDKDeJkum8kt1xzV7qKOPQaYTHZ4BAkq2oVIdHOTlNIlkAP43e9n2izK1/szFcAYDZhxw3pKq2ayVT0UXfr94k85WVVzhe+ZfzFc15u5l94wIdkmGp0OWR3+8hMowdHFT0Ov0HQJtAWw6lxT+QUe4nM8whBnPh1Dic99kdoAHT/blqrv44vzAGU10vKuIiT4vNDkCs9KGdZiSiV/1EOhcloNpc1NxENMbyWnee0jifkpOaV9ijr/+mygogcHr47qxIfweg7A7+M3sZea4o33lQkQadmVPFb1Nu0KTVmAroiU7Tx13ievYBFWbRST5Lmt+KjHmYieR5ESqyo5H92XPaC9oRx++FzyUxEFwMx3SIy+11shhauF8v3uwsjqhNtp91rY8HRuJl6dQeOU0K2FeFg+6BgdDiH3L0WkqtfNnmzPgukNLyOVFdFXPGb175L3Mgl8qNKCM9cnrjd5itxBlXVnkgyf2JxC9ypD9MmALpAttK+tbluwP3Y9OXKPoqGo4hf4H+DM9cqoHJpDaMNwVxa4qBZuOHbybgHz/+GBz7OQvrQ9wCitXlhp3bqcCqfu4MfXUis1vMmrHhpSmseRYdKd2knxhQNqlGNGSH3I0JC/hkZtPGtgzk1BvPO4C/C6ChGLkqFGvbvrMzgv7JC558XTHPpsfQZ5wc9sK5cLzoL3N1cToV6RWKBr1L22rq2QofCZtV8wPibBVMHnqhnsvHOBT4QSG+EqMfFoJ2a6qhpjACtu9swLJC1cwcUN4Lh5rtlOuuy9oXJaA9rPArOd1GwQb74rC11fLcfMXj/K1cpAgJD9OrLjsBLC6dTqkbo03m882doX/a4fSmYlRA9fCef3oJPh8XAx0ZSliL438o7+8GIBm4L3FZUBhmcdEWuZDuX1uXk6UEermuHr+Gn7ejgqMP8/Xd1Zyyd92QwQHFZvPNa7hznHSwAP660zPVUvIX/IXo5uH1ZS7p3XYUeNg6FWZtT94RnP0GFSl+f8xq7hPE9zjgekWM0Br9jzharYXCQgHddr4mt63Y7ObVlDoZvzAL/H0RuurdegjWtkhKzqbbiys3MHotfVVC1xwX/8CQljlZPdzTGRWFWmAnFTdMx7bVM0OlMcofWoIKp8czNlWoIyoPvEoD1P3JCtxO0CLbqpZJsz5Hwc3weqGpYfM331/LY89BwfTvujOvM1I5yokvggZJsV87r9o+SYvyp0H6WOmbtO8OqLG2J43KAlRryWy+G8PIkwlq8T2yD94rFL3SbruwhbXPH8gwZNj+9odTdFLJGHEvbQqVcknuyQWRu5M+mYtTUE4pkQZ0+jcKTrRkbC6ZFTdbQY/+N/6Vu3mMblp0nn60crnj+JF7y25XQer3clvMg622Jnj8aLnZ1hHtxBlYf1QoPaYRuk8tHSMdjTsH/qTYBK6KOZT27aqVxaB7RRHY3dH1vDW20/mQFLfD6xPUnWfCy3Y4KUTLwQ0voO4usgHsAUdiWVmv6IpL3qLOAptQyvHsarZMWpGmD+PeJvKWtHrF1fP/1B/HzulS3u1wGCKfDxU5Isc17fBuxiqOlCLwePor6j8N25jPbRZLXTqUoddD8+bmRn7zdeE74UH835lcrxc5lOtWH7cCZkgetm2beT3a0LEHbajqVClZnNy93VEMWigWU3eiMmwsNG5qIbyP5gs/SP/26milPV7zQ0olS+o3DjdMTezH0HQrHKlF8+9+6XqaXvFL+ADtKCYEu9t1z4rrEy608qo7Fq+VDsXHR/X08E34Vv+tNz65+e290fh3RclnWOchEd6e9+8TDbuJCsxCvZ34t9OZGb6yK9aD4YuXcTCcHNz+C5aypc7cXJZLQTAXC8yckvH7ZXq+8kCYs+2XzvpUm35c2BpTk6eN2d1HQqTaUAFw4yZVu5L0dx59nwTqYTI7Me43F09NWZD5KDACuz334iDcLc2rF9Hpw5jdKbgPAkJXSlXkbeX+zoDG3ybXEeKFrJ3npWATM/IcHfw4ePWbyjPzyisUBjND5OQgbbbbAjjnW0POmX78XHUqIqSWI+KHHt/+l/fGSXdjh/mw7VWhUTk5tHk4v6JkK1GCeMSAudD0V1fKHf9UzBZKCf3oUfPzQ3odROXfwdYJVzn5CeNJxl6DoA6T4h80zmlwOkOxc2TLphab16t9Mtdxw4MCr9+Fo7iJ82ADh7PgZJKDlPVnrzd33O2uHhdAj7AZAr5Wxej+Z0Ahyg3/reHc4uGj95dUX+83xn7m26e6Pj+DmkrDpi9LW/iP/4j7JIdoQM33U4edVFg+/OYXPNQyppcU8FlB/tA9mPFkPfqnEn6EBFBEudbXLzQn0U+K/TzMcmNHQf5gDtpyNdWp5drla9NkErDi3Dm3l/7lEzZBQp+EiFGQ+HprIxiM+yYa5TFKg7fxv646dke5U23o9fQfeVCdl8nDqt64dkgdGYCTEbdR92t2uQQPYsQuKpi6rteTU2atNmSyr3pzr8BmaSgdWvMyo0B+TN92uCXRUvsbyQs3TViF8Njp9Ny/S7FofD+Hpe1UVUZRj1Dzv8PX+IHgeB6f7tHQ6L6YRBmAaTmedxw0UMcQO39OCTsOvP5XR+vhZ/evhZxSs+LcnCUVogN6wGzChXk637cAI3YJZkRN5knkVlPeshZrlHp5TeFceouQkblp4WZ6/3iVBBSvDcIbu4eaNPhBcEpt+yOZ7/Pa8ZP4hdjwc+KJFi/PIP/fGXuS+igA7NYUOiXZCU4324DUBS88ms4/UeDid6+PML2MNwrHJ6uXoN68+lJ/683obJdSxY3MBmtvJR25mT1aj1JEz+9Nrtktpg33Iy51ur7ZKuq+DyqDds9xCznx6u4LE4K/RViV07eYdWRp/ueGTWzPe5+Tl2SGWbkZ3pM0bTqd2dQXw+Gyr7FvMm7T5F8NODbF+feasfLzaa9TqZ8cfrfvqH9JNI53w7r9dQBPWYycQzNtt0VS1VGc38kNnSnpntJDBDKarcYjhxBG+444Xxh5fpzJe45Ls1PPPWo0Oii2FHDhSDrwEhM3/joxQ5V5j9GGId9CPioUgzKFoQGRGXHHVacE5QkiiI7c5x1/75HyFV3hj99PzD0jAq1u+B6LOe4a+8s2H7yA70a0puOshfy4e0eYjEazMrHP33h8J21Ex2ONYxmlw3mtRTMdTEOOaZyYHM8Tyvt6+6FUP60x/Xw/VFfn6WWH5jB5X+ZcO269W7ZLtcwj9+T4Vyt0lH6FZXoD5+EMv/lOF4JnL382OoMqlhy8jiqyjRBrlMm/MxXSzGuXd2p7HHnP8EP0Tzno96Ry7npxsO6rEbkOl9fKwshntJQ/eq/Pgknfr+2U7SW6jhxz8WTYTKwV9oB2DTuCSWh3rekeUTq2rQpFTYLwif89kBTe5rTb86vpicdosFbM3LkU7HPPNGx1c6NVvThGF82nmj+SgXED0CAZdDov7Tx5F2v+IxyD9m/8zMFyQodJmp+iJqFWuLYf4+ntzYTsdhqRjorV9bFn+8dzlEa5vCSzY1KpjFMR2j1VZAFVobbOtcX2hiHalRPs8737WvwuM0VTQl33ZvFpuvY8lRqFBkOVZKVfND0cS0b6L43oozd7dm4bRcZQNS1/WS7Wd+8XVf9gQ//uTo9dCyVR4JkNTPFV5Uyt4TZv8GpoWssXjWa3xceAkaVqikSu7IaPrlaz92z5RdrVU4jEuXojl/MJfA6I0Br/74NrGVz60V1+dro4zpdU/uxfPQTk+1PKujYZRE912/Xf/8CiWtBeLo6JtOu3B01J//NrDHq5xGeyhU7GUVsygMYZ/Fu+7nxxBS5bwdJz01oFDGcO57JXEW6a2gyMvF+o9fT2m8NgDdqhUx533Yq2/bdqh6yfd56mmBhnwZA1wZ0Zgh73LvL55EI1owPT9HZn/Qxxwsx04JZuG37K2N0cAvv3gP+jBHn8BLUb5HykzntC1XWrHG6Lgp18R67eOUz/wYfbeqP/NDUg63a3JFpNx/iZ6qUtpND4RhfHwzLIfj2ZPG+nqAc85H/PI/Zsg9lGsqrq4mM5YlDrtMesog3+Mt8wOXevTl7ho0oiEjv/Of6OplgL+tXmy7y+SyapxThK6v77ybYc4v+HjKwbG2jLKLpof04xUVqPItwysPo5JOn3yB7i884bbbL8sO7M8dLdMlYftZX0iG/QxAyLYrOpw/H8QYNJlyMD8ys1YLLRUVaWf98Iu4py4Jx/LWFTDUwZfM+JaOGRVEVB2WFQ2ss9UO49LogC/rO9l2Q8inT/YplOw+qUzryms5ntEd0LTmb+IRcucTL6YJFk+TE1MjJhc7likKWxSMmfr6a07IfMjKNn1e2Q/f5+cJ4J/IndnxVzWbn96Z6zFsu3zjUriQ3RWVZzkkv/goT7fKhgQdXRY4ZoukxBVEWIiz/jx/tlyiY++iGX9m/Y/Rp3wHBzXLzwNFVJz4sMaNDFmXSsxdhTgdfn7oLx/vV7cunM5bs5nfwYuY0wZVOgjPyFGHz9ZmJm4Nry7A71C0eORMf54MTyjAp+iXD+PD2eWjuH7kMNxYiotxezCn2sAY+thCxHhHb68LJqn64TWWjquVN83+KDxui3auz5hImv0hFMWCwfaZ7ISrn3/4JNsrFvflOh2TPlSAf7ILsQzvxbl+fFhKHERvFpmrxhuOkC7ghz/+OBqmVAdf7adfyUZYnMLpneIKWqQrxDYT3vZefAB5JnF/+qwrveEAxfoz4G43Hts+ngwbBHxHOD9HzHzt14Gl/PzcH34P0wP5P/5NhYVlmeyVqsrPD2AmP3/5EO3zu8qj3mBmidR0KI5LGd3FxZYZX70Lp7s21Gq01ihzMrH25npMBmGz7NleuN9DmjUqAN1fDawMn9gbsXaolP1l9yD2zBeGfuru67W9vFNxX8bhuDAGW+3dwx1Ls58rbrlTw56dqj8+0X2+6R1SeqVkg3TJnFTORRTuYvQXf/V6J1B1jh+yBUjT4WE5GE1utaa9+cFoyrNJQRtZfzP9pKxKrr/lAQwLx0T72I433hZ1BL98qulZEPZFwHxgQTyw/SW/lZzQRaJ8J+VLxxn/B6RcG+B3qyNWzhveL27HBG5p4DPPzEI+1Z9OAMW890QLlLxl7Tr/L36NndU2O+IuoPbbnLljtTVXb+wUf/FjJp6Q9rr57ECYJvOPv3VrQS/Una0PVHj72/TnpyHpJI4Ev9HD66J9ncHsNzLDGyY+aJVsw6DZxVyv8zgzPzGFZV/qtF/m1OPHpPPhDskaK+eFbvauXN9hvp8ES3Gf1ofxXKPf+vN44ZhccVYJar0VZm6/b9ohk74yqLvDQM6+3yH+KK4JSAynxJIMweSIRhp4F//EDD6UKbvyms59Pay/850mNbPADMeIYb0cTCqvcuevXuhVAzMpv1uvuQ9XiIfl4oX65+WUwAYf25l/pCVXHPWKrM9xy7LivCr57ZJaaOYz7HjX4nR6fmRfno8nTlEdzfH6sQZFgtWJ2O3WS//8IWFn7PDsZ6Q8jmIMWRx5JNG5V9KLyrDS3MQNMYrgZHLZqA4w80GmwyHnU2lOhVoI7gLHc32qm+uBaL5ekrwE6lHWbRv41eN8+1J6dP25VeBCINOof5ucw13W1Jl/k8vrIqX8ue4ymP1C4i/QuuSaFrj/6mOS8kxHSu42uKJgE9MONq3UJbEF4S5FdMxNlLJNXwug5bQi1vpK+XDUXQzqrVzSRbxKw2n16HP04GNPF1JXmbNeaNSk3Jp0hfSLyeXxG8DKXbjMikcFDd+THoB1YidilugWUgl9JsjyaCDmbumjIZD6QYFaef7Vy4XYAwexDFSyr+pjOP78n6vjZ8Sf89Ew19N+fJ0qahyYTXU4TP/f7AP4H30KEtNi3jUV0fgezATQWqyYie4IDZJeWeBf7yqbUSEdlouoRtLyVDBPXInhlN/3PhpzixHyfn9MHvfWAq0huhAb91XZV8sugexq9ngZSd+02suOgAIJX8jOfWue4PhxhK7iwqVjKfCWks0b4LFf3tnevXfmtDYEB7ZvTSVen6VlpwhrF3ImAN545JmOr1joYGcaHrPHZJ9OTM6v6kr0S+axPAz7Jz4dIBJoxfSDv+O8rj8i2vqWhsVYifloVXIBB/1Q4eG6RpwLUjn3/tke8eqJm3RoDb0BKR4lsivNRdqu5XRAQbbViDvPcPkOYzsBS08xlmQ5aMd33lyVdK9EWBSvYzrem+8dNKWemHEMD+a4uPUNVCs3JYQfHS7p926AjqyAWJveCocXX2goHl8Fuxz3H9R08F2goyerxL/qLa/ti1Mphr14U/iMm7BVWH6H5HWPiX2FEx9W/i1Ct+bqkrt6OfH+HpxFSCSpIfoC83B09LUGAnp5xNKDvuW//5/Ek0SXai6bfXbDFhxv1ZVhX9uFw9v1B+i1Ysn06+OAmHFa3+G59xxmfAKZF1OrYkiGjcuM1fOZ8lt+sOBYuhaG3hjKcayHu7pelD5x+bRF0nG4R3Ch+TwvXi/KftsWgXpRdleyZ1uF8/7oddA/+5Q5pzHnXVldAeW83zMsGgHi36rwkfLoayofz405KbuviJR47tW58Tfh2Ff+GdJh8ol3tDka7tnSQeVTvrPTPD+Nf7e1DzicLoSs6w9i+rKhaCnqOdMHtQ7ZNK0FiPTTQKwtXpXT2gAXVlsMZDOvB9YVeY1WJ22L5Tq8mA1icQGnmAd4/fCwyT+7twBFPE9gUEJU0vt2kaPtlo5El6Qo5JvGwlBq1KDt5pyYfHv+NlBK2Y75lyri7KGeXTia3ztx156BVvJ9fVXq7r1kluWvOc/RIVePO+pgr1/O85i60oLnxTJ/7/Gak0OZBtndupDIt8p0utfCHe18NSfuJcu9sb8dDfT2ioztd3ltNie1GWCF1YyCBcwbjWayl5wFV4ZXFubD9SVXgDozxROIr3BstWzuxdofseLSIu0i/r2iJdgu2238dzi2j3ut3JXXnunK2fTE50tRwLuJb/y+jVLb+ltZQEKl5cR0TKn8lqncgHUcNbIvwGxX68h1YETsgdHp2ZSvKdYKFfd+QIytlfPhbjUiCPZTIfi+1bm4KGiEyDrfkEc6nsLv0fcpXG8FJto9EEvu6aajWrZDWDSNO0Q3KPBBlD8pVVQz9PrVlAJ48eL0l78o2fQA5u5yo0v0YrMzfamV97bxmUmQxvtr2FTI49cjw5eT71HB8BYoVBd3urKFpp0iqg9opaom7ntvQoOZGq46rpqEWXf6NSc97uz1vVYmgnnL+Ui2CUDjfvZk68WiObLCmOC1lnQqrRb2HK+jpmim0hKPI9fkuxemKCmOyzmePmiswyUGObmvaXORbu2k1KWwbrJDzfw8mlB/sXbVetF/VKyYQsZ55X0HuH6dJdmBMnAqPDcLwKNdMnzfPvkozjP/ru8Do9wxLyXXiTnBsFFH5l4ktezowtGUq2WFzMkXgjlkH3qF32dzVXDOsri4/uGHJfl5W/fX6xmutxwzM1j1XiVHsYVQViTMvR2uJQ8kS4OPryAq+4iHXNhajZK9L2sqlC81nEyxvsN2hyranQrVHMTQM0BZ+pj5N5Wjyf6qARy/+x0h/Snno27iDHoc7QjOKims79nSRbaon4mFNS/sjFLNQOHWg92u7xf/rrt7pqzl+5ZoD/70eNW0A0rjcsN8J36iSf/uLTCutcaux7NrSqfym8GRjHvmLd4Hb7RNsUaK5tfEM9WHx8P3xwZXeTC2bXDXstdb0VDwrDvmSzEJJ0ezDHU0hpLF9zrnf/mv9M8T2WxEu5SmI5LRcgkJixXNKsfNKX3B8WNEzFxc9XBsnskLiPZ54eVqf/S69rtYwHlZarS3zVM6tgN6IWGZpeyG1wYSBmMtwqN8uuQUFk46nVElAOQVJa5fJIgpl5sAbcIPbHfbntNRMAeAe/4NCfH1FHHppWvqXrx7bB87gTes5sE9M/6Sra2hkOuDTmGOTzw+oEwZVvVC3HfPA5vju53zXwHtwrUJ0Se/HPb7XQ7R7kNoflqStvh01wnO55fFtsdh5b0t/JbhmKsNfWR+l/JiHVXQO+GD4ODieHyz7n20r1uN7a5Hwxw76XmA5+4gz3zkHM7Hv1B62onESF7IY99tjmHaJwqeXrwsJ1yVMjybW8RMclXCrlj0AarGg0eilePwXls9I9gEd4NWs/4c0rV5hrf+LgjRhLod1yvHgnQYfJIK471l34U4b0RZt8y4NJhTt/smv/tJjMNQcCbe0jPIXFkRXS9MLsbS+wAlOsfEVc3QnLgrBeC4r5rYYeu20y1OM3g1Z4356oBT9jjVIrp+3SXbaKfMG6XPq0NXT+DE6oI05K/zUVMrfA1JLLZ6yw26H5QZD5lJ9wMf7pnkwMPSdix5tiydjuEuQtLquiex/EjM0ZQvDuyT1Yq4cg1hb1VyjljsvMhx3yNvmtqVDzcaJMzX530Ia+vrwrweqLi9luUoOgWF7+MmMmOyaMs/804FtugI0XzvbnY2PgPskLolR59JXufbqQBLbSEwN42GdPSy9R25es6JBbcW8VbY/sUz23TpreSvhR3BM4GQnR79ox30VXAFgqjC9kV8M4dJdgt4Vh+L2VdYoUouFUt9C7eYnFeB2rLis6xRLRYKs8EvTV5qxlkxa8Fk5/nzJFuyhWzl+iZmc9Laafh49z9+62Z9Gw4rwVlATY6c8sy+pvxynTDk51hnbpS8Zv4JFCl9wYn96kgpnRJJRBrTdBYpts+FX36UJb6hpVvYHsevhQy3rR6RTfB6hWNxcuGH33SqImHeZixe0WV7fGJ5sarCKTOtAeJDYuPVdqJtz/vCX68LOWPWJba9frGSA9DIM8XvjViVQ0aS+Z3QhNJRbW3z89n1IjQHd82sK0naQSNFh8oDMenyfniZY/5QMDjtaFH18RjQaOqaqEr2tWKB/VRCRocNhbPf7rB0ICYaU1tK4JOlMGuaRzscK6xBlAtnEpRJ3Y7V8pVAWCecFvSD+MhMbQDumAFer949ar67swxzfifmfD/H8RLm6Di1G+aaAvC29eMFyttFhyfp9k3H1RQC9O93S4eyHdNuv9cLVPlkzTYiYWbdTnkFKxGX+AQV9vjMz8A8bhd4EI6PkpkCzxD/Eko/T/T+8TkHnc+VxTxbstpei8oE6s35TvToo5VCFJQZCkLpSaVV+kDDWQ5d1O0GieDhe/W4qktnkK01Jsb7PHC2pepC2d80wnavbJ1+c5b6kGzdPR5Pxt2c82OHInjYdGXNHkNU+Hfwl9Sk6vTq228YKAmK8vklBLmITJ5PlQx0Yx/Zhiq+Sd/20wb5qyqM1MrseW19A4hdY7aLBBaO1edqQzmmD6KddK8cibSWIXeHA0suktoOm0OiwFAeVax4uwcflpUWAUyHHSFCU6KxutMMFkbmU3lnlt6IdokCiuup86wvFHasay1Qha+Oy+U6aHmq1BE6WfsP8Zv2WHJbCwD0bx3jQk73bd/stgvYSAWlE45NNKqPb/WLX+I9j1Y681NDYWI2EN1nF29I3PoMVFo4zIz9zpu6SIzgva39H39u+0MVLVCxF1yWfV0tHcccCwDBWJJNvN6G4zpb3WEL443YF61vKXkxgF1+vhCttuuQxfAG9F3pBZ6Ya6Qi3IQKrY9EJ/b2Wv7hMzyv45po2ZmWzX0rFrDtg4y+C5+m45ILZ4i6xYZ5cawg+lbnefX3BjF3oV+8aVQDdx1nhkjVI2fmaOzA/fGFPz5RGnsi/sXb9OJmK12rxwESxbAYNvvC/NM7+0RaYYl9tilrYZCh9Q6EmIf1xhwPm4sGHis0sufFsR1wQis4j71ITI1GJX+vUgPNeo7Zj/QVDoPXOxB/BZ2ck5sWDiFEHTqchSNzVKkI+8Y4VMBL54t54h7MibzYAr6Ph0hXZDuWLJO7BJZBTUjo33HINXlloENxM+iAPAsN02MpK4eGPolTKOBNSzfQwD3F5qxvB3PwLsMkvfLYJpaqrb0ufDlXOLmHI9k1aMu5TTigULExFfc+/B0PyX4fYOTwDtHyeDjD9vE4MutWr9Jh1n9wPGZfoqnbvdcvNvEZzXqZmc8HN2szdV2ojvyNUQzPdFDXjawEz6ab+fbOE7OXS5GE517Tx+HkvdaiOCDp8zHIvjlWZdsK2wN8V2bBrC5AIe1904BNgguCH5sNGussF9ZvZZ7q8vNDuqdZq/d0+8GCb5mpdA6sAi4nuyN2ryrlcIqPDuqmXqDlPgtCHqpripwsMPFYN3ra4aSqwLOSBiP9/uXdZ3nKlPn6ySY72OnImoUFdlFvKI/9zhyXkXKG3jk+mL1or+lwGt93hL+RQbRwY6b1pRIxuB/7zvzO6lr2ecp3yD5FiJtlobeNkccTMlNDxnNBKeTfqvHRJBdHQpZ6UbIZD6HEz88fv5qqs2GrYnokzHvvhJY2C/YCMSwYFrO4bidhfahUjZQpcy69g8TdOaGK7p/3v/jg3fly8yESuor4jvAI+Xar1eqMn8yvDgmf1NMuACDXI36OyA+FR7BVwGIvlyTebsnb6/YU/MV/3dE9nxzpUKP5+WD11C7D4VDrAGIaEkYG0nuMhNcA/fSL3dRSOWqd1CFheU/nfc4vs3c/NYUh01Jm3JcjokZ+HOBTGwEVnfOHj530DRCr2zeF7cLlU64SDGaqyVQUr8eQ08v6ipDxzjGd3KLkm/Xbh0WrbOfft7yp6x2A07PkDPuLfdo17STD/PyJA+cL5xVoHdpk8YVObc9avnleFeA67AnefJuUPZOggst1AcSYLFx26bc4q7Q69MT8pMj7xQe6TxFlBnOL9KfvkOLuVOYHQ95y/xILP3xkh038bLuFVC1AcgNx5rdJOuw7L0ddo4akpzuR9/lD8dEm2snEau4GEgP9dYXwfpOJt8dlObqfnCLbuy6wuGjldOwrK4KfXtO/9TvsiTQqoL4djWXvvm9nPl9AbssaC3aL3hwUYe1A1XYP5qt73etdSafgVweHXBUV+NBLQQT9TXJ/foTJRG9xBWmV7JnXLwtvzFYHCvFX1Nlm9mt+/hX6+SmqVVjmePFBRjN+Es/Iek6ZnCeqkeUHdjgtWTskx0eHnDEayP2pY5MHV9eAdFOvWPKxGvOrMqNSvwRWdEKndUlDea3Bk55eFEVl1XIvvmTrWb9SFa8LNGov6wrjOLnMbR8aHyO5sRXn4EZkc86EdhxzW4BuYgJO4msd9nFyDZTiSFO2O0087ZfmKZnfAX0wzRKRyfVlQSE5t5h592lV8nUcD1AlukU05L04A59WP/1HHL7p5j5uGx+8/lLR5QPX3oBRl8PGaiQ8jqgLx25rRNAvizd+LR/bdtDfY6LK6HsiWj5u0nGXcwP2ZhWRbT7v+283pzPUQrSZh0I1iMfYBXXZJP/06nDcWgZasOEy8115rhmnPsz+zt/nr+7JFizKpmbkjJ5mNx8PnTzcCbm5Q9q3A6rg0YYNI72MzU5bbCh0G/mDn0e3R52jQITcj3Un22vhokE0GwPRFad0KXonbzpbhxwk9yCyS/duy6EWCxeCfkrJj+/yX7xvJ8FhuBu3XFwHJ1cR+Llj+6F+l1QrHgmgw7Vle3FppdN1kF5gfaIWw56cPeGRjDnkY3FlmhXu+TidHhWqb/aCbV+B1a6w9j7A5+UazP1YrinN+gMNz2rL9me8QUL2qRKobuuI6Ev/kq5OWBal7SQ6RNsdRzQ2x7FSZ/5I5u976/ThGsrsN5PN6X5of/pNFZ7fI+4VSSgHaqMEtulHx5/EBJPtxVSAQMsOTLevsjfjv/HzZ4l3E8ayv2QnBU6q45DwBW8+nMb+jva5nJPEIhxNR7OO0FbsruwUvOY9PYkeqbnzFpmBTuuWrqSsQbuldKHC7i20LPiUBgh+9SK7JXRl90jGAq28jf/nDw6Tpsrw8xOcZtqU0us9GVCY63krNXbTwQDNhmhDl7h6N+HsP7UCZHf7QvZvkfDRFk4VKHFTYhnOFyREppuhma9h1fA25rRBiQ8rejeYdVAu7dg0Gxn6eKH85dM+cVCEXl2xmv2yEE2ra1CDcyYxs1Zzx7psOGhoebitmOfwjvfc7w6QaeGezfqkHD5s9j+7u010vrS8cW88MZy5PPc9NmPUG/HJWVc4CWd+7ZrScjk2cL8ddHZ5Xpdmfs0w/PmbOKsu6aDv6YBmfotbxV2n38jxXFjD+UJ2ZfVC4z4w8K8eQVyvs0POtfMCLgM2ib/szuFwGNQArW/ngVlw8zj/8Y/f/de+lj/77dYAxvlWEfu7tUOh+uIBHQLQaTnzgT99cNmGTyxNz7C8HaoM0AovM7ZLKUr76Ktb0AkK/tO7EvjVCyxXe1BO9wNij7cugoH7DYuVckSCcJsC4McbxuNu5XJh596uQBtXJRq9bb1B31eDmuTVjmzTV1UO/vs0zwI5qsxKj+d0Qg85Rz/8cu7Wh08mBlEx5YvF9hd/hyS52Fiq/F0qP/8aMX3epTrXgxjefN1UCj6tochBF7PIPL/DqUC711+9CEi454OrNzZkZW2Szef99bizsSi0oTFgUZA0T4zobkK3SkNkr57NVJx87kPdKLsfXoZDZLp30BZPg8z1jHRqV3OfuWj1IKRZPDlV+9u8h+fWsn2pfFqO1E0B32Nz/Pkt5vQUUhnkgMZYUoSknOLHdQFxsAU8knFC/X69zBGQ5MiM5JWaP//w5//P8Ra3Q/XFE/o8lzUWvG8XUs01LWX2P4i9Z0Y7oufHh5mfzutfamnz6CvYLKf9fH+asEsS/azO+hFzc296ov+cHAgPdcis75WYvJ/0Ws1f2Mer0g3Sqes1UM1HsmX6btWgWY8BPO9iSXRafVO+WJsAzKzWeBmv+pQi2RJB0XCNlbVX8OGX32L3lDK9CItUuveqA8VedJl3cAgfhoa5YG4ee1qE5GqOSw5ntE3fOh62p285JbeTob7y1CZbfzp640Wo8/VcP8GjtrylU4H0aj37dz9/nA9rssuA6r5O8OXUeVRauBGEUV4SXKln7/3zc9W3qzH/GZz5VzHePnwdfMJy+o7N8Vc/OJ6iNdm2/qHkqRlSUI6KSYVH15t09pt/fjTZPtGmnVh+m9CuCTvmssvRG571vYLHIJ2Zw+s1r3/r7Q1UpnJH92i4R6YI95NWsH1qKR7dZAes2gdoyM9fn/nMGRwpXZHddxV5k7Rvr+A9O5HFkv0w+e0z90Xq8J3sh3pTMoXlGSwSv2NbzeLptJKiGmR62uGbXi/KyS2lCWa9MJ/vu+X1ISzA3b7lv/UwLPcqVfrAT/D6eiy8nx5Dz/3OIdd11rbDeQv4Fz9kbxUvc7xZ6wEu1bSd+capHWx8X6CjIr+Isy3klLtBbYHviz7bb/U47XX+vsJr4R/Ij0/PfpKNZGncEG+UppBl7i4Bvwoc+u2iAvVat+yU2L2kzHvI35D/6lc3S3iwQLmc2tkf7OBzjiSy0VPCeYTUAUVm7pIZv9FqEm85OlSXgFKsnNJR530CkfwSSdD2rBzJwT4A9YWRnI7mGjWnvSmA5RoPplWu5lWzvoFZj+Ai3T7LYb3ME4j0y0C2sF+V3RgkojLXZ5g3SsG/elipPjHR0msTjnN9WL1dKSP2rG/GPvpcQfxa/wEAAP//pF3LurIwEnwgFnJPWHITuSYoiLoTRAVE5JIAefr5OP8sZzfLszgqpLuqqzrp3HFqnKJ6IQF0YPbTzoi0mhgwy06rP31KVvUiDHOxU3QlS289mfc3Y+Dpw7dhSn4Ah/LqJzMKoha4qd5seGxZPLvYDRS9D08E0P0YCw+zqD18pSGKZws1TYGwwtN2RXdsySKYe5CrKhXLGesvxIFvOqYrfPN3jMSueTJyOHYQbniLoHfZsyUrbzzk9GQlj5ZnbAZ1geC9r0u02uY+EKbHzQTfPjrQAMRT0OZ7l/x/ewq0/72nYC+oV2roUBnYeewJWOfnhaiXcp+vmXMtYBD8ztTCWZ4vuv3p1CDhdtS1xR0jQyHeFeiLGO8f6sli75tmAoUqHAJmsOQTlmJfK2h3xgHAv4EUYRbCF39CGNfHQyDWgu3DRCMNYrO5Fc9P8wqP4KBRU7FKa31MSAbH03rBgeRZbDWiLwdlsiqEH/YdmDmrt0EVfUvqH29BMO+a06yVirDSkMeJNcOnGMP4WC80/HCRNcvwVUFpv8dovsY3a4nSlw+d9t1hW996kC6nViD+cTLGQgvy+fBZCRwO3AVjBBwwR2HwArcgkPE+GKyayfxthTO3HxCnfpyBBu++BY5zohgvjT3M4TD3cNTBkR4O81xvz4+gz9oOBwXxEiE4HkII1mOPrfPHr+ddzavK07xeaTne23pM1tUFYlGN5MUpWU1c6djD/dn7Uu968fMlzr4ncOLzIw7MqGM0PoArUDonwtYP+GBV0SEDn998wuXLH63VlW4dMNzmSdq35w8i5hQdtpXYU2PhnYT96nyEbgxtWnboniwe/szwbl8I9eKjPfRNJvewp6eMmkDPg94+hSUkAELqDk8tp5Yip+p0us9ENLvemi0d99A7PkWM7oaVC1MmQviYBw1J+6UIiIo+SBtdusdo/02tZZKjF1yx6NDAOV4spog3G0iClhP1eBsC6hTdHR79NkBKVebJunxuFehpnOGbbfjW6H1VE85c9sWR+6vy9drZIzSNTqK5jtJcEN63KxwVQrErUQkM8Ob5QBhqE33vXsLY8Ml1OOA3JsC967U0hx6BVxb+0GpHv6HXp4cD3gU/o/evuwfkHsgVPKX+FR8g/wu6cqc00FOrmNrp+GFrPloZPPpb+Ow/Rb2KfUJg+R6+aAXOu2ZSEiD4zXuXRtLpaS1eHPQg4hhBwzZbZVkfcgdaVbls890Zm4XbvYPy7kTQTp8dIPUWaVTTqG9o58p20MPjK9biNa7wTeTzYeL1F4Fyu9sj5X6PghlHDQR7oebI8XF91sSXgQ2Ss29SYyE7wLBz5Hbo+4mokd+GeioP9wpebi8O21dS1PNI37aWPxSVDNIhzNfs67kg624iReRS10xmmQlFuHxoVOzMQfSVKwcf3WOhCPPBsOok5qH+lQiOUumTkGyvtrDKzBaJn+MXrNVKIFy+Zod+CBnDLKpBBhH2XaLMLE7Wi8P5sKCVhE3F4qzlXns66KVGx9lurJKmyCkH/bv8RWs7v5PVXpZGu7y/I7WzQal78XeBgK8iSmRsXZLJRWEK0fNm4EOff8Coa30Db4En05BPKmvlXaOB3t3M6SHbf+p54fd3iPUEkW/CJcN4U0AP7CILiPj2+mGtUyUF8fGHsWnjd7BGQOMg76kujYTbYm2zS0/g81tP+DA3qObnNC40/848bCXVt2b35HZXduQrk5fFn9g8RLAH+NpIGP/ulM3SvUQgGE8ddnyCAePA4msOcmpUne6GRdeo9tVntVIiPy8vwPh5MWGfCRijqy4l8+PpylA6f22kNJ8on+93p4JdeBe3WYdNPbVxngGshD7dk9RIaAWCFt7ttqf6OgUBMefYV8/Sz6WHIt4z8XmMGw2oZKHWasz1JBrOFRpK49FcDwvQ2qc+gxdFOVN/H7jBvLdeDWxelzeN9PfeWuqwIKpf7c5EQf5aT5JJeTXu7Yz66sGyhMN4EWF7KhLy4QqNLazkEbQhqaiVvOKA8bGbwVeS75CUcKxeX6sRayl5nDAK+owt+UfPoF9pZ+w8TXkYXE2cYS+dbXqWn8Ywl7t8VJg+JhhdoAvGlAlEraadQO3JhuDnRO4MpUcAqVHXeiIUe8WGT9MrKOK+j3z23WqFbiy2BDgJGeYtHqCcjSG9b3jFeHq5qg7HUdRNXctG85mpGliTfsv3ndU8nrqqafzMcCRd97VYrYQDMA9betr4b5bAOMN7+FYousgKIO0lS2EqzpCwvBXA+Ld+jbx21HhXaU7sU5+qJLne6U2WuIFdKSYg6+YY54pPE3bsGhsmobjNeRk/YEHniIed4EhU5wCyltdv7MDTPKl4L+engWkyZ8PSy/T/fv9RP73gWystHD54OfmXDxovH3GghC2YfuwdwlDgBSI0hx9Y7rVhak6rmjio2NaDNtAVugvSsCcrmUXOH08EVuJnZMkvqTW2btrA6bbrkMiuMmB/+Cs9PPiPz1jOnBSaxvtGo5+XDaNRLiEc5pdK1qzECYu/3QtezeyBrTeLBlZKIQdyrhuwqXl2vXKnPYRnpB2IsnV51tV5+fCzwBJnsTJba5PJHbwLpUju0EX1OpSxCc8YWUS6B0O+6qMUgmhn9hgjSQKj/YY2+OP3cDyc2R/fwr0wFPhQJW69djdQwRsMKhxeBlrPrRenkDc4EbsSa7d8hg4ccD/h0Lq0gHnP6ArtJskRSCstGO/5y4f1boxpeFuNYboZawFbPz4Q//37DAM/J67WXK9HfMdZF9DnRRihulSQeqLs19Lzoo3QcJ8GPcxtu+WfP8Ihdmt84neUDdf5ncJb4whkHcG7Xsdn0gL1Cm84297/Kg+CC7O43VMzvWg1zRnKQL17puQtqKPFdEEh0HDbJ41q85Mz1Bwa+LWwgfWxVZLu+xtcSJtOw5dAjsDGJy+YkueJOqft3Od+jE11t82Sd77IBvMp/oow4kCI+Os61MuPWSnclfhNPVGtgrH14gxaPvQplmo5WY6SIMJE4016I3OUjBs/an94eeu7OJjOxScEXfo1qc4TsV70T5ZB5eUDajwKVC/ie+cAsfneEcd9tXwU1R8CRxDl1D79TLbVC3c4dBkhr1dWgvk4qyKcVvVDlmNcW/TDOQW422eCt/o44RWtcUD8k+7Ump3A4hN21eGOfGTsDFkVLE7Yy/BYgRWJZrvW5Ctj/V89F+ghBAOQ1hfsBHRGAjl5jI1fOYS7bD1grBOcj03r3wH7BReCYOcNLHZvJ7jfm+FffCaj/eZtSAV3JbIiG/n4rt69puPqQHF+WJNf/nFTYFYWQuJJjCwqrqcSRlnaox8K/UBapvikvXh3psdND0yi0Zzgs1IjsgM/znq99GcGXtu5Ua5LX2AxnIMNc64fcFAtYdD9l09eKfU0y2fCd25d+PnVGY4WXCTLZcdsWH+DAamT1A3rLo1i9Q9fnFAwACvO8QhpM+dEujpLMKrlStQu/Zg0AkXCuj4QUhjwzYkmFGbWOKdxCS+3/EV4P98FI5P0AnrHb4q9mcX5NJzZFQqBFZGds6wWKxLJATvH5WnQSkewCr+rC7GLXjhoBTVZtYXZqpWYMlEjLOa9Sk4ZVL6QYvdTrta3KmQHLE5/RKDhqTUWWnGXXX0vUDN7OWD9iFMDx6MbYWvZKRZT+F2hRhkOieZUc7L8xROdbBvj004IyIO8KrVcdQPvjYKvV+/idPCiMImGQS5YjevsW9jIP58Gm55aJrm+wyyOBuoenXsyV03HAfSsnjhCLVev3rWLYbi3D7TgMQvYlq8waC4Z4T86qRk/KybkOMfBoRqX+Xr9Eh6+7fyHeAEtwzwg+Q6zLhfR5yzWjD1E7/qvftS+7hDMmXDxgf78Vdj1dz9rDdX1qrodSMhcnllC1v14h3fhckX5Yq4W7fcuAqXqEARAdLLG9bzIoM8kjAM3W4bVpMUdqFfuhuqfwvL5cgl6IO+uId7q4WA+zilUNH44U7MdTzmrwLvQ7qlmYFdaaDIel5hoNq8S7IkiC0a/0xq4P1cG3o/4YHWZ8PTBjvA8RlbbDew6/1LQjfKA9T2wwbrY2xyUV/NAcEWHoc++hg+z7p3SaDlXYFm1qVUG3E0b/7/y9d6/VSh9eJ3eJ3YbpsOUNLDK9Bbr7WOumXYPCXyaBoexKzfBtBZQhfX36CGhD+2Ad5260Kh9t+n+wb2t9UH8DnIPLCH2p9eEX+yC5FPdsDWbhbXOVVlAv0ZHbH3FOJ+1Ki+hunR37LwD0/rHX9ksctSTFdFaSwSucBbdAsfXtLMmvT3Z4KKAM5FNpU6mXvB7wIXSi0hXt6tpZJUqdH/6gs2WeIDKKVohd747WN/08Xw+VwhmMR6I8NyFf3ozhpe32GFM38Yg0R7YcIsHJGz6n5w/Bg9P+RSjv3ycTnc9hHWmrmh+XbNkueniCNYLy0h20d+MnSe9BcdTr5DjwUgAEbr1BEMb/miyWl3A4nacAamHBEF4iRN2/HkcrL/Vnhp0qRMamnkGpr4BWOcACRb2vNvAYjdMA7KjwaZ3e+jn+h57ssTV025gPbi8OQdp4FWxcU1FF6aieqdGtN3N8Kf396GWYz/wASDHbQ6all4LGpc3M5fWqHY1eRfESPtYM2DT4YNA2r6szR9o2XJ+vCDcC7NKIxoqCRv2HxX+xAgibdN3TR/mIXiyu4n3XuslIzSqGRbfdMS6b/TDenOfDeTVOQAfQOC/pQF61MnSbXcz/eGj6Z9qwH51QtTzDi7YiZU5mE63PgPmTTLpYXy98vnbeyY0OuGKrdmtBkLe8gofs6xgb6cfGNurTIZ+JUj44EnmQINKL6FO5ZIID+jV4xDxvbb5OQQ0qzSMjzJyofIVNrxbpYHtitCEWz1LHemVBby5e6vQtl2deo7TJKzf66G21acY8a8wWQVv70ILfO+EB8c0WaN88GHrnw6IfeUD45OkUuEtXwJ8PFhBwsjv1kMtPXFETvaEzTFGV7k8HmPszcKBSZF978Dm/1B/44/xXVkrLC77mXrX88oY6cAM/vTFofB3ObkHpx6W3t6mrikNYP3ezt2fviPaxkest9oGyllLEJ/2JBl1LSTQU48p+lQmThibBPjnR6H4oF5rJqdohu7Px/SQWcSiXvl9wWvP3jRQfJyso/a1oXcUY6xveLicFMFXvvXn+qcnAxbZ9x7ig9ZgY5mlpDuf7Qym+x+/1cfWMN9z86RJezThfbL88vn52lSUfzrQ/Xxp8kVu0hMQAwYojtU7WLsbe/3jgz89s0Av6JVQoBfqZScMxsvF6mBbTSHuhjfP6BwMvDrgGmPbvHUbniwZHPAaYOzyZ2vxF9mBv4/0Qfzk8Pmc8koBkpC/0gJ/3wnNWYPg5n9QPUVmLqjtUmpnJPxogos3W29ensJGlh1qzSa0fkkerHDAc4D/9My6Oxs6/Cy0wtbsDNYvBWUDBUYRdcLlBNgeHFeoXumDrG2vAspIIkKxeI0I8se+3vi0BAO+LTjYttXMUYBXKAz9i5qj4gfEivcudK/dHV+4xQnI7uyZ8HiaLzReaVVPlx1ztFDLp2j3QHYy1QHHwz//hBwlVI+YHu/qpr/Q/Cr2OW9wrQunfut5DYbCOu39JMA01jM2R/AeWPs829Bc3xaSn+dfMun21IPTWBo05I/98KFqKP7Vf/QQqJ9kwWJ6h6ljIrqPRmqtSjjJMC+NK9YPqlxPGXfsYPlrFcS2/J1H+rPBsbZi9A1EMV874Nt/9R6CtbLW82e/u6ov3jj96Qnwjd3jSbtPQYj6SXKH1Ul/vUrtq/2nh+qVY+rGz4VIeCVDYDWpGmt/fpXzDqqAtbuvCt2Yb//4KZiDn5L+6Tm8f3CGxZIf7UCNRJvqp0OcLGYrrTBoSh5x68PLafM4r3A/XVZ62C+FNdvVjYPlr1FwgB5WsmLteVVJfv7948e5+YyvP38LiU/nO6y/PIXgFZyPNHsHlTUfPiqBQ5cSvDde9bB0x0wF7pLldNPrjF/PhQ5+rfMmu6P+TsZzpjswCIYzaW9GlK+odFM46soRcRf5BoTk/pHhKh8Dwr/Ujq2+zBw4c9gj8tFR8xlHI1S39aT+pfwkyyh5EBDo3KlXlSCfM3FeYV5a1z9+DsSvjE3QO02Gy9LTB/43VKX2x0eRWfiDwko+BNP94GCbHXYD5XFVaN5xXInoE8qWP3/cu8ka2vSKNce4ieF5tmO8P7wJWO5Vvfld+Y0AMzgmQ6UeRJjF5RcJXNUk61Zvge15sd5/JrD81k+53Q0b0dS+wnx9rV4MC4eXqAF2bT4+ysH8L/5t/ltn6VMFjnfJxgh2v4FWKuZBbMQyNQy9q9nQPGOYZ7ZHLdGLmPCZ3RI8dHPC+v34CUb5cTxB6XG8Y9cWn2BNLRBD7hFJf/kdbPhYwb/1/RzeCAjTNW7gzBV7agLbt5bnd0pBlJUuNX3Eg/FzOG53M54a6iH0HrZ68gp6p82ws+tYPh2mvAVd+mzo/izWgO1VoILpnpnUK/JrTeQx1+GKvz4NwPFtsZeqm+rW38BIfV8GEj/fK+xGdSDAjFxAUlN6gUzxvzQoZp1JneWqUEaVTg0mef/8a7Xa3xKkmUU/sCLZ2fC8ExLsTi3Nyc19tpD4uxN268d29+/DbkHaHg84UvKunr+/6AQOlLuhzb+25s5XVnDLWUDd991i68URXTDeQhWflP25nqV7FsLtheMIlEEithceQbG4ob/3Uc9FMYywOawctttdHSxrAWWo6u8T9Zp3ma/aApy/eoka5+srEf78uKcKVYz4MgVLgxYVLl/foTfHHoEwSh4Hf+L5jhE5hxb/0i8pKL2wwjdZ2mblf44vbeMf7B8vrGYfrknhcJhyan9MJ/iLV1CRFOPi2DzYujTnGdTl7vnnH+b891e7mn4hCTV0bgnIns0yXPFzpOjl8sPSnf74cNdQy0uuNbNvuIAW+Nyxw4ovI6xdub94wP7mbyzdaa40p7wURGpSPpifL7tUn9Vw3Po5SjAbpRLCPJqfNIhf7eYHvSqtoC8Jff7wjGWXFmrj08MeIWe27EKnAhG5XaiBvSVY3cxyIMkfh398vqgOKeDJeu8RcBJUL0txMf/8GBx0MMwXqvbjX7yTBQfuMCar6sJdWTzI+vpeg+XRvle4y/of4krvVf/CRVKh5X9njNoIgcX+qTzc8JC6wtwE619/aOs3UUQSvp6Mw4toW71G9fUHA5YGqg5H9/ulB3ncRqF7Vqc1B7VAO5c/B1Mz0hfc/Ghqnu5G0LHs0kCx6H38l1/ss3s54LzjFiSI92+wNtlpBd+86tGsCt1Wv7kI0nHqqb3Lf4EEpKKDb7v7EG59/PLppnMEvsMMEEn8dWy5PLtY3vwSgoKRJL1KZKRt/Q4E0MPK2Xub+dCNAyUARGtA3idVV7f4I+uqCgnz9UKH+yi8YL19dgERe6X5p1/Q3aiT8TfqKbz6uU/1V/FJ1pOR2X/6Du0SY6wXyx1P6mTIYFu/ozU7NjqB9RWW1Br1TzIZh26E4cPnsfXTqnxatQOB1olB6snaJ2APnq6wcOiNGpLyquc15XxgVicfEXLUAgq2nv9wEBWiSRkK5iiY/vWzyGPTw+tBkBGUyZDjIK0eweZn8nDb7EyNdzOwefOT/vUPg/tnB/o9k2W46VvC+08UrNwqdnBURkoPsWkyqYaTCR7zT8O2nn3qKTj5EKAv79FIe5OEKsIjBX/5u5cffbBw/uSof/rhmRjjsNVfGSy+2YhN3eLZlh8F+LzPAT0c1s6i2t0mcL3I/D/+mqFhy//84/BG1qG3T1WmbvmDAzve9jw1gg8zN86RtPU/fhv+/tU72H9/iTV838UdbP0sajBhqf/1Z8IPrqh+8r7gz9/7p1+ju9pZPcfWK8QK8v/0CNj8IR+gnSzSCHVi0NvHtoV//t1zq0fnHJxtOMzdNhe275M/vIaxd/lQ/3LPEpaR3oRY1hD+01sDavCmJ+scO2a7Ds35HGbgVugH+qj1iE278VaBQhLfeB+N2JqbT/PSDrJ1wFjo+3zzhzlwvNMWb3hlLeH6WOHmz9BQTad8EeuY/OHppDJ1yGdyPF9hStqZrB2zc76ffjN0ylLF0dev/vq3PjTiX7ThsZ7wOYx5GK93nUj7BVqzwhmc9oc/NoscayYzWmGNPi4tu9Mv/6fXhrlSsQns3hqh/jXheNU4svve7IRe56BQ0ayfkXConWTWOb2AydlsEGilI/vXn+y0o4nDJwvBcpS2u0JoeyfcxodUEQD6v/YUaPz/3lPAVxKlkXRZAXvhVYZZ9Rqou6BXPnrJBUKOLoAars8HFBPWQrHd/aj1dt/J+v4AGWTW+MTmPT6w5ZYvOsBIHnCULEYywoaWUEpCHe/7+pUP3+vrCku/xTjMdS+Q1lbg4PlVEiR/wt8wvlNXh/y1rakbrdv9pxecAuX4cbBXmGNCm6tJQPaMFew44JKzKgg6dZclJSGPyhgWy45j7Qwt99//j9O3f8Fob2nUNfE5WUErOQCcqU7GX7syCr1fD8qHqCNBSTi21uYlVgVMr4jpnyFnwf6GoF4ZKUbHVw/GY5qkMJR5jOM0ulrre2pNyN24M2neRxesv7POQavJDjiC/QX0hp+qcB9VCrV2s1GPc/+5Q9W1O4zoz6yl5snzEEHOw1jSm3qWb2oBTnu7preq6PN3Q5OXwsdKhHhacXV3TJMMuh2wkTqOLCAfnGWQ+VyA3eIaJQsQIgg+6yHB5uXyDuav/65gQesR4+fMtnP89xGi2H6h1RENIBlKN0PjgL9EA6NTL6EGGzjYlFDfLrZz9DvygtCPdfqI7xygHot8+I2YS431bA4j3e73PDGVorFC9bAo16qHSDgx8irhj7FGeZwgdl8NfrwAFyzFxZvhKAIHDWSOg3VWeEf7jbyP43purfEjyDEM9NNMdQGL9bj77H3wF4/7bn0Oi+ZJCPqDXWDf0pZknXNEgBw1LT7X5w9b7NC/w2N2umDH48tgtS29VMIcfugFEycX+73Ew0ky39jcLYRNq5j2sNrnClnq+97qdo9ch2R6WVS/P4xEqsYSQSeWHewvRgumdzScwKXnKJKE5p1M+5tRQuf4vv37vO4tSSswB9mk196/18y1QQVekotwlNK1XpcuWkHpN1tLKtvXLDsaLZyv5p5a76WsmfDNe6BnpbJ9vpHz/XhcwfY8aHs8a+nW8gqL2+gQWW7psChSrEPpRTQE/MzMp0J7x5oSjQYujGEaGK2Bo27rgbf1DNZ1OhG47E5n4lyKrB5sWHdQOOodNb/yK1/Unenv9kFzoX7pePlIYU5gquwC7J5/ebLUPWpgkEs+obZxY+NwWjLg5MGRcOjbWOxa6j2UvPZAA+FpBoKcPAj01v5K9dSqc3I6shHI4sBhPxd3gKzok0HdV0t8+FTbHs+GFrA39RK7Z/8EpuokI7jlJ8btc5+TQyMTmC59he3GpzXDX6NQ3BZW+PL9pmyxp4KDy6g32OFLIWGH7M1r1+TO0+BrTcEICi0F0mVvU8u/yMNYafYIz/x5xYaVXer5qKo8BI9rRrTSvCTb3cIurDOxpuiH7Xp+BHMIRocNhF+Pc01uvNfDsf6dydyQSz51dAkhDFGFJD2Q85V8TFXjq7CgGM1DvULG+SA/Kmc0K42f8PsquMLQ1y18lvt3zRa5ieFB9jNyRs8TW/2K9OrtdxGQKstcTYs2LuEhADvEDuUCRsDmVuOta0zdCMr56PyEF3h9+B21+twJll16tNV7pAp4X7S8xX6OasPUQw80uy8hGPXhrYJDKx0ovl6bhCm0LkH0jlMyD66Q0IfAE9h2rUA9B3UWqQZXhKc+FilyR1Kv8s9wtcTIRzIfmQKG6BTHUJsoR81+OQTsfrvd4TFKFiLKqV6PoBBS2Nwlk+ol9NhqnLCubutL8QtDi/aCNcLrgb9Rb6yHetsRzYEc8gU565KazB/90IMDDWYidF0PGLeb7rAqryV22ZoE9KAZqVZHqEdwfN5qlp5nEZaZ22NrSkdAIkOZYUHfI417Th/W7W/1OZRXHBnncWDX0u2hpG73RU5vJ2elCXj4RC2hf/m7XLyPDlU9P5E53D2GnvdEB35md8Hhhn/sinYV3PiPXgq8B8teTU2lVd8X6qDuno+/ry1qycF90ecAS9A53zjT1mI54cNCRGsJLg9HRRB6tNxrsP6hJQ/hCxHvX37S4SWHUPoZLekieM37a9T7kGVVS6NWTIbWNwoHzPaa0hAnTsB3MvNhSecKp9ozsNYevApodTjAf3w0SUHdwF1hnqj+q5JhPr23c+BOY+KHOwEwIvXhwnS+JNQp+8Uau0vXAOQUX3wo8J5J3lFt1cmVOiI5uVHPdiGW4BstLsWVfxz+8ECbzMcbR2Bs69nUcxfuueSLhKU4WGv4kO7qd188qdOLxYaHXgPl59vFdnmtgi1/ZPBK3zOO5IDm03u/uOqh2WZf7Y9TsuHtDM7QcKlr/5J6DR+7KxiHbMCh8+OGyXmxVrnczG2W2kmtCe+JNlyKQUL9J63ZHOzsK3hM4wcnBYtqGg7zCLd4Q8f74ZWsnOMjAGRuwZ51NnJJHLsGFpx8w4UcFsPECojARX6MFG34t4y3vP+HX3cvzpIFqncVmg0asWcna73VJyfoWWKIg/gr57/jWHMQ8v0X76+HYVjee8WFsQ5/FDcNBkt+azmYo19N/U8p16NFxhlknbziaN/rydoXzNYEEQHs4XcIpuDysMFTu6vULa5Tspb94MIKnFyqE6MIFjmWX/BAXg98fO6PSX95a91fvBIF7Z9suXiTqcStC3Es+WMwSyG4wjt/vVJHvPVsttlCoHReBOrU3q2e/+qZx0Q+NPg9gnz+qxdva5ZjRKwXm/7itzlGPi7UwymYS0h1YAclpDY/ELCkKD1t58wBUt1lAkvdOy38As5Af/G0wARcIaRlQh32agI2ZbwOv3w8UJPSq7UoioD+fb9Z12NNWuDP2leMIny97Lt8ylR3BEmj+7Skv6penvJqwjouC7rlaz27j8IHx97LEV8L+cCkRN/mBJkttYtVT/javBF4mB869kL9PCxhk/qwLB8JRZFRJRMf7NU/fkK7AZZMkJMzgc58+dBwSc5M9JS3rBnXSkSzB6tguczhC05D6SAV92myGn4hw1s76/RffQmtVIZpax8QP2fAmtTPb4Rb/CJ2/iTWmpTqDC4HwhHNUnb5NJVdC38fnydLc82SNartFN4CXibchh/0kfb+X76R2YNmMCuu7YKeyAfCmer7jw8caFQuxXtquoCvuwVpvVpU9BLIwBr2htxDN78fiNqfUrC6YyXC6/mc/XueWXg78t/zYuRGTrB6iXmHwr6IyLTFpzB1kgyFfRlhYz+fGbvsEqRad4Jw6D9/gJl0bMAjszA9YNLmCxE4CIAMF+pq9wHMV/Edw5b3YqIKuwtYvybkQLYfDHrY7j6Yv/6v+sM/Ioq3HkzGaocgXhwb73sU1stVOBaQBd+SCNwBbHMZbg2g5WkboOBUYAw/A6cWxRFg+16JjB2B2ilpOstoPZz7pNvqT0i+DKPdkBjD+r3NIWgDGpCXsjfAJD6OKhiPhFF9zSggt3MaQ0O0GFJYcbLYD41/cyXOFBFLZ+L2++Hr9EGErmGXdF7w4SGM918cVE1TLxtegS3+6X7TI5QH1Ie331mgJv3U+fIXb3HrQ4rp6lsLUvYZqKznBVvr6cHmWNjmvDDXoM87lALmhp8eRgyJ1Jfyhq262a9qEq83bNzbDszS0M1QPFsHRP1cAn/1KvwE35lcrrd7/fe+/uIJ601TDXMjP0q1KBKAAMmLZMnnKoTjcWRIFsMlp3uvWv/hRSh472DKXt0JTndXQiyz84H8BwAA//+kXcvWsjASfCAXIgJplgjI3UQFEXegiICKXBIgTz+H75/l7GbJOS5C7K6uqoTuha8rVp8XhPyS3uf75uhBtHvZND1Yr258DN6MAmWcmFnFoT/l/G3BLSwIe3qnyudv657A9md8sCAEVjjlnbKCriNHYpwsr2OlcSv+8JtYZ5Ua7PV8euj2vYXE1nZGt4liK4VoGU7hCPbX73H2HcFhJ5+QV/fzW2pIsfI8vk5Mv7eWv3lKs4Z4Mc14KzhRNsOUgCyL/Ma8wFX9/r6STeRVmYXfstsaUxTj9B+fwwLYFbtFZi7TUPIJ7iKKZufCaljen0q3p1VN7CZH8H1aV2K02ccfNsnS52/Ru37xI0ZzlfEdvi9dwaMwUp9/BKqDP+1y4nX0xafVIJegYnlmBB55OH7PWfPHX8kj17cZO7dmDP7g3NgutbVw3t51U9k+Hj5VMnHNG9kJPPg29IjfjatnY2muFFhF5EUCS9uFG1/6thCORKLbNrYQf1ztCNAjjUmwHTjiLt87cHvtAmbdes2nc+A4cN5sT3j+3MNsFE5lA2673hFtPL0r/ldfC9y7bP/Y36sprSoPNrfrCf/hUy+hgw4yFAeWvLvZn1bEdP7l0+rQPit2p16tuI/cZIEjO8aY7fJYai9HQg6aWPt843yOwBCnbP/UZn+0jhcLTi9xxps0uKB+XxqpYl53V+Koqc9n1Jsa1D2v2SFEosGk3U0EnF474hbXwp8VdY6VypR27P77zGhcsV2k6kRLCH5+OzRJs2+hRzYaxAjONJyiYdegbDWusPoRecVL32ghboMd8ZFcGAwCLKKFfxNdkJyQS8ZaQ++6joklVuuObyEQwGbuyHwka8bm1R9bmNaoYZj2ub/oC4xO8fFK/LPxztjmG7ZwiZSQmeqz84e0kSzYoflLbPVkhr2xbyywfXlN9l+BZlSrNhE87lm8PONwWG+qFm76QSOa2Bkd079zrtLp5ix8/O7PzkG9Q/EW11jSojWaB3HCqm+DxcyrZ3ebz2MI0KhuOmbTzeLBv1+9uqyf6LiqOVNiX4PV+bhmB+V4q2ZLDjB8Pm1It27khBurQB84JCH983PCMQ/bGCAISrZfhjeNvDNMqKXLmhhybFRi+HquFCFftexgyM+M3tk5ge38ezLLFAdjJnELKLlc4z+94vNDqqewP44ds5Jj6HOnaiSoymTFnF7uq6l9bzT0h/8k2QaombZ9DsI+mgle4m3Opm0NVP8AlgAZ4dKV0gRJuR/ZYydcDPpkownJeMxZ8qeP804BeMQ7QgJvdQ7/9BdaaeuRrkKlQW2lDBYIh8WDTrevati+Ax0l7oiItegjTo54mQe7qxa/TMu21Vmdlbf0SJmvPLj/z+9QpMBg6Tuq0JTzwULC4Zex3JZm/1d/fymQ+61hWjVa/niYO+0fny4bcaqGdbw6ov45H8mhuF+6ybJDB21DrBE90lYVXT3b9i+/MDMOarbws+M/veZHj6piITudQTKALn7MuptEK29hckbOHjfzE3KoPBOwlX/pxFEdjspHLiF0bX2J9yZc/I0GfS5Xk1ivaoto/QoaUCRssOC5UnxqiLsIRcbzxyzzWndMwYmC3ONOIQbu+5AfeCmiPVz2xOa/7s/fK4EhL/vjYxnNS1lD3l5yydUsAn8cT+bq75klx67NhqVeqotfiEcvaytubSGBuvdOuEyPX04F3QC0+F1L38C5m2gwn9Hl6efMvlMaDhPZeCCoo0iCunmhudKfR7iPImCQgnvVh+OqVTaqdGLaeNp3zDF5Ca/158z2TdPy+WXjEp0PWcAs3kp8jj69BGrnucT843tmKBRoiX/iHDdrvw9/ZgGP/CLRXgqgm73CvYNnVXe8DQ7MGOlFCEAqR4XoVRV0/IdrrK6d8UVHugN/SAOmKA+nOBMsjwan87v4qFPKLnS1yyP/7xspNZg8mZGwttEI9TcHlh8nzPfVPRvj3k4gP97EZX2Z3yfPjwbKcEaMbPbEGLrTrwQ4Ln1bzpsQLfo+hup4v7OQkTKcPC/WwSK1iDeX4ZBN7+2+ERd8olwov9m8rYQATv6VEM04jP4onbUINmKA2IW9pnD8Tq4OPzr2ZD/YPONNkRYo7W4zC2am8y2ruPXnd1Dh6n07qpOXCL9xIBi6l5PR5KvX4F2FjliKFGYb9a9j8MFSma2/43D+808P6PVk+NCuu3HOA03+q/8e/TbVSOzoiKbj3WNeuHb8zcHYfeBcfguyq/Gr23bVJYUlH8n9M/T+TEYjVZd8JYeT6CM0jrODbhItCVn445grO0EN9GjA+8XP6Jf4BLkWtszf9SnveeebICqHlBBnE/szqk8KoMugscDyYn+AuZn/+D7xpFtsjK+hyJElWjfi3VvIxp/zvCv34ev96cWOr+Kmh8c3zpnbmIY/JuLvjFw4H+kodkY1lQ+7hL/1HRb/t//s7x958a+pZO2LajTIOoElnumkzSbfTLQt0R9eH27mJxvMIQJpTH4J2b/lBI0PQZAQ/MyAhC9nl83t6tCiu3e94RU9XDrx+kzu/84X/vgw/5bbHqiH3nQddK/sh6cw+Ke/LNwo2bDoLVSo5YX4m2fp89K4lbLiGR6zmrOL5u6neEh9lSeGdeXl1+jiByCTtmKLX8vnY/4wUaJUPyyia4b6c7WulT98cCasZYv/WqNrC4wZ2tsPRcdPzn/1kx0ErhmjrKUaeuhTvuTHF40OuAVU9lPEG7eLOxay2xkSW7wRZ+Er9M9/geqSYNnX65ArgpQoRSU9cPmHf+8vXSEy9FumBbEW8mqqHLhEUkhO3Qk4S5UK4LBxE+J/y03FzcrAkFVBzQ6/97ua7VrqAelPgjeJ7Xej1v0k+O2Qwfyx26NxPAWALsJ1ZiQqb4bwwJcEbDfyqNDWQzf/5cdN+ZksTG8sE1I/LSGzYuUf39z2TRkrf/zA9B91Nw4satT985lhIXIkzrH2AxDKDWP7ozz5E2TvAoZvJxDjeeiqsVQDqiz1jZGQQjct5xeqqlodc/Xkjpb4thQVn5+MrAUNCUt+o43kP9j+zUxjtr8PCYr1fUvcs3w3JmvdrOBHoCB73za68XxrziCJvxXls+P629fKLEHvXxdiUnmXbXayGAFcxIzh3F/xMSS99U8fb7j49qfzJCnw5/f84TEv695E7aOW2MFmbTdTY4yBvsWBae/Dky+zHTVYTxsZr3a5YPSLXwDRh6VYysMSDcMaORAXtbvU24/fbTTBgT+88Et6y2ZHiFbgPYsdWeqbMfSv/QzWKtOJuZwXjaShAmzq842uvClBi76fYdnvxT/9GsMtm3S1Sviert+GlM1njo9ooyonFli/vOKCvAMVvLOGN/4n8IcVCRz43eobM15fl7ffmxTAIbA08m+/l/MNuWqtiA7L+06aoXzQM8FfKpvhuZrl815BFe8PxN+VH3+b2Ifkz29kwTno0W/6jKnaBZmJp1NYL8M5mg8y5CLFENl6Ndkfp1Sdsc7Ical/s9TRGKHAtrG6uasZm/dVikS79Bgev5xzbNgOjHka0HH/pVn/EEACs4k/FA7J0ndgLUnw8o0zRaKzDgd7fAqonXmA1afa80VPUFjqAZaNyyucrqerB2WjXZkeaXnFq5+sweKHEdfCjj+kevKBDoonu8Xsm41gRAqkL+fLrgufGH8rzQK7lt6Uc9qiSWqPgP708FZ6NP6w4L96HMQzM8HI/+kD0FAX/MOTCZ8HAY4+EZidKROfx8yi8DxWJ7Jf2ZnBvuW6R3/+4+p2GNA8WTyAy9PNmd3GH87vdmXBS5ttrBTFt2NzncworHWP7af71xiTJ9UQuWcNRX189sfP/l4r/tpE5Licr0yFttz5/CpAnKdcV2N76BNEtTZlXtb7Ps3LSQdZ9CwSbJpfN6VV50B7ORNm7CvIWKbHHnKEx5PYtaVWtMjdWfmFmzcd7bJCvz+96Z3yGqPVbHG2+EPo4eUC09qVVgmVfqII2D1kj+JcoD99p1StGREtdg7VlMS1CWNVF8RQYJ8JrERHRRYdizg62WSz07cioHDMyXFVZuFM+40G+TETSfAU9mGja6ED5uGWM486hTH++edvunnR8t5+DCrpr+U8prv808e9MCa6/FcPjSEK0JB7TYrCrYypWK5NPulr46hqZnEl50acumn7DjS40MInzy58/a3Xgqv07LHYXgV/sserCOEGeuJ3iYaEPz/WufxCZqunOpvLzhFQ93onRHfCrPrnF85R/sP5Z42MSb05EbD4neF+F7wNDu6rVadtvV78nNanuWm0gKvoxK5NNmWTZ48CWvwtsr9gk88f9bv6py92D802ehNVouK9Lw0WXb/gs+kpNSR1byznEUY1ekmvwMZOGPG+N+pPm2UWtXmf/WX/NGPY69b/eadg87/vFMhJcGTPz6rPZjifTCh2HafHtfhA46lX7mA8f2dmRZpezf77TeG3qQ7MngKVj9O5ddA7B52QTK+MXkHnVOlWaUv2Yc2rhigHEYLPLcaSpCyehezUsE+sigRO4GbC/bYtFCmLIiwrhZP1e0vqgeCvzwweucbUwj2Rz6GSEOsJXffib5NCEnoY82CNOy4o5wJuq7tNZVPFiD8lLqi2OZhsN5kDZ/kk1ZBH3jKf0Wu6vhZ+Z8WPpYAZpygJp7N0m6HMNltySGabi1k7fuCDPhUxXAH84bv2FGi+UUtcjudueHmSid7r747sy3hfjff4oYApBwm+ac3e5zFO56U3nUgMbpUdz2xzBfn8EZnud++KxZ7swVsVD0QrchbOF+tiAk+KA9H2llZt1lLTwKUtfJbZ2bHj55d4hMparfFq2j5RvxrLFZJvZsv2re934/IMMD3PxAoKKxwDwTkiVnODWIkEHd8FggXtVDLi4HFXiYdHP0JbNBdiKMNyb77UBNQjypk/5dT4CPNdAGNVPZgRSMt3b+fsCGMRJ8wWdKvje0PNYVd+3kzXNqo/pM/bGcpsu8XvcFZ8anKjBeWz0Uig5VYlDsY9h6ouK+JS2UGiZuxrUFz2o/VasbvpqJ1n9STZDbH2lRJSJU015XzpArYPu5jPReE6UImnK9tJ3ZCN6c1M0CsYFbLDqlyNmecs85b6msRRNfNZeSzfCSNTJkH0uGeT9tYSsObCYPm0XaMxrKcCUq1ziaOlwFkwHXT0Xh1TdlgvHb4QHRJINQxUOWGjEnwnXkHxuJckUOTUoBed52Dx9IHF4OtW1FQsBS2/J1rRb/hg5+8eXriiDFvghJPWtBqa5VYnvuZmxszk5c7F67EhOxzoiMJdXSFfDGpmocPWHyg1Ylg9ujeepPnYbbYxb5Bd9hv8rYVvNd7PcARdc1xGrtuxm532oCnhus1xqW0exvQhawCFFx55fsPYn+TDTpK9x0vCJZ2u/hQBLZVsCH9U6Hnv16UxFMjR5S++lKTM5t1m9tbsTY50/X3dq36K/RneaqqRfdmRkD+3vgbu8afiQj9eUWd4+xrW7evF9uqtrearZq6gcSMZt4+EZ+Ocb0XYWM8LldHp6Y+ZL2sg6vmWuOJ5xzm1pRKuIjoRZ0otX4TbPYKqLiqy6xuN93i6zbDuboi4e/8Szt3BwqB95ZbsM58bc+yzUjaz4EuOxftc/YLzPoeje7aIa4pdNc3P+ai2gq8ybJ9mv19vaYCyfnun4jpTuwEFZgBV1bhEv0JS8V24jsC2nhKWFYoRb169g+pQQAy/k084aE2pw8+875hju6UxJ7vNDDX3Q8yb6yNrmt8konpmFkW/skYT78nqL36JOZGbMSal6AGmwocs+VsJnjpr6iVYfclB8MRqvL72ETw25wGvfs+ll5QaJ2hab154wq++6nmQ6nD8UhOjkj+z4fl4KOAePi888quZjYr8q6F/HDfEl35axX5RMqKoOOVkh1loTPl50tTnScYUlddzNglZukJysB2Yrkozn+JOLsEp5ITtHszv6OqUpTDOdsDcq/o1ytA1PqC44Z2Z75QbvKnuALejUlN1C4TPSiwl4GLkMM+FAxpB6hSQHrbD3G4jVy3GTQ2Sgp9sHz6OYZu10geSSNaZ/9virlf22whMV9IwRGTDx1pMLdiY54iun0e32van8gzX+mwwjNcCGg0stxA7K5d468Q0+PvpBGAu8ws9z4vCcWPeTEVV75yYw26uBjdCAGH5cthxzZSuP/FND9sjOZCdEFfdv3hFZlozg2d9RsvybUIuXNtlHrFpiJ3/SGXbekhs2U9/eAWNpGyPhwOdpiJFc4e3Osxyo7MrHp9oYuI6RdOzYWzBt6y/JqezWutFxDJpaxujdeArtapalwTc34Z8dKoWiTvnyNJeSPh8sR4mRI9AZ752XIWDXcQFPFeeR0f+9tAcRBKFRn51bFfenj5VHqhBpPcY0/pm7c9SeV7BY3McyN/70vpy69GSD8Qr7no3/4LMBO9RSYzs9zkaHbsTFF37xMRvAyl70UaSoNYtm+3s3RgOTFwnyHJdRoKoXldjsdt9oPnOW7zZzL4xerDDoO/0isrPzkVTu6MKaM1lS8hnfPPpUZgJ8FvyxZxbZdUfO7dFV1E+MQ8nKZ+9W6LB/nbziFOGXjbvBDcGuzbu5PC4o5A1n9UH1bEBbEfMO//DS2TCiTP3WxA+TxsjAu9hd3Qo6Mlnm91FRJIc7/HWnfSq30JiKd9WQsx+69SYfPeUwqZyniQMJD/7XJX5DlM+XjD6rSY+S52tbS/4hIkfXmU012Ej/eEzIVH4QHz07jk8TwhTQQibcOEHFnARfHL54mc1h8GAwd9WPvHxYIWbbYxaJF9ng+xl3zT+8g/c7nMmRLNeHbfXsQnMPjwZ/glhxmuei8oQvA/MfoxJ2J/GyASvuWO8XerBfHFXPVT7NiEH77LuOr85AnTHrc2MTuj5bHVeDymKDPZIZN+fzru9BONOSsnTR9+Q5mwfwfrW2fT1YF017abY+hcv2UMo/Vl6Qw20uUTMMueqGhWUpmgt2Xta39zC4LZY6mDgeckHMc54Yv40KP1bS3R6HzJ61p0IquT0Idf+d+j+8E2xTWYyJ+XUHz/TPKK74r/xiII2m4JwdUYkEK5sh8OP0Yh+FAG/pV9mKMI7m6VfHIDDnIrp9NIabbnME/3cacIOghdXfe56hXrph4DkcXLgdXb4CRC7QsXi4GYY/XQuPXD7vGdas8d88o9RAwUjMVb7e4j4XZ5KcHtJZruHOht/9RJ++7Ehe42cuikaExEqMbzSr3cgVW8Fvgc6uxfE6z/ncBslQYGyQ2X+4R/f2JEmqMLXUUmg1ON/+e1Sf7AwEdmYXolYA3V1oGh6T9nvE8T/jV/p99aM8e//zid6xwLmyGBxOARKcCmB+WV/9ycUmBiOst4xU0i7ip8rZilHdOgxX/fPcK6+6/Iv/ui3PxTdIBIpReFqNumQ1K9wehvtGWq9jIjj93M2S9/hXz6wVL/QjN5HX4e7a96IlvzcbPqqZwtO4rTDUtq3aPyMO4BX99sTJ2xQ9/NxJ4JDBJ9ofSpVfDV8ezCl2ScLPhmjo98SSFFsEOt7/yL+5K8ECPZWzB72SjfY+dCj1eP3ZgFlbTYa/lEDTCBj7rP+dPMpzldKdlifmNnzwPjDB/Shj4Cuza2U9aWs1eiwNncE91JZjYVPc4UE4hWLnSTwaX93RxR7vUohcs5diXHzQfdveSX2evwZ8ye66+h69Xq8fvZxxWzupKBrnkt20+1aDWdFr9FjXzpkqX8+i09CCupxahkJf57BEH0ncN0Le2I/Ij+cr9tEgCAcHeb1T2ZMrdJ9oFsJWxbQtOjojwg9bNfqtPDHC5/6uWyVa300WL6sf7AjTVTzy+7Mgm98yni2v3sIpseZuV9T5+OCZ5Du7JjohqrzqReyO5RORFhYREckpLcgRd9hDyz4Oi2fxPCsw9HXFBJ8llk/UWIW8KHPAG8fGe34xrBaEHXZZHr4HwAAAP//LJ1L17IsFIZ/UIPMTHDoOU9BipXNtIOPZlkoqPz6b+n7DZ3IKth73/e1BcqwHvc3SYH15Rphqzz0VOyE3alqA994jwrZ6hPlOizjYZeulZBVT+sBxVZquJuNVyL2Wp+Ako0+IyrwqIimjbwLr9oHwae8CQd1q0zQP+KBgX0lgLB3WQVuvnvlzs/2CpE80h/MJlXww3o8gWnzno4a83dnHMQjEePRaRDcuJaH/ZtOFr0FgfjFBg78sgRMrZGrBneHIhHVBt00VpWATJz0uad3Dkfg6BC2wbfEzldrwrEOaTTve19xfU0OdGvvjhVYK47D5A/6K6ZZr4D8niY8vz/PdAg01QTaE2A06RvNGiHBDwjJjqGWRKymIb8hOCZkhYC7rul0srsjNJw74njW12zxY/PV1NilSgp6gzdH+BdNKjZOoiJtBMIS3oLNAQ1tlITDqvfPEBmxhdFd+VnD5Vw+YJMYD37wJ06G7P0cgLYSOdazFbG60+Obw4nxjoFflJHhdl1X4O6UHrfN9I92EQgr2BUQLesJjBiOrnZT/QYHnaSI4ZJdE1jyw/mf3pmU8udBpMsyermrTTiRQMpgev9hjmVn7vEHXgRmvYAPZfIKp3P4KaHH2BlHslFa4w6pHZj1BnvPflWOciuA0jupUabnELTk/TtDqX2+ONr5Gzqm6qZT27dpYcNs6oJfLkgGJ5o3bMi+Pun97PT+37+XYQmmn66UsEmelHvJqg2nqABQtcHmjf3nvS7YZef/wC2M8zleKjHFsV0u+Y8H61gX41CVE8TarmZ9bDuh0Np7orJADDzMv5yOP2UatFPY6ghq3AQS1vgDeMZn/uZ51ZHhmviB6kdsz7TYbqyprH8TvLhJgsaz14X9Xya/YaH1Mrbd1cbqfqVuLzwFPZRnFQ6NvtYh1GXCKHncrTGdjB8svoPB8yC+0OErnTu1iZt4+b2CmcB+QydbaUu9B+yN/Tec6zM2PR3TTjXvDAzl1Pyvn0I6veDMe/A53TuAZz54QEyTEz6IsgKiI8TVUuNK+OwfKN/ubhKkj9bB9sNQw6E8PBMYXxSZm2zchtM8c0t8cLMqbauX8ZBppnkKsIFaLrpb5naw8tGX2/G3FpPucgSzybzymQcIOY6jCvaZFOAriJ/WJOj1vdRbjj/5lYyamd/gog82FeVkgBvzCNfbn8LRCZagB7iXVVVUwbw+hTV5r+ml3kKSc1z4bjFU8IfgTv4hrgsxFmJ9KY/wsHYN9n2+3vXUPA6T+hedeyTSZyCEs3+68BmbElLjuic8qT/2v/nYRfhVL/MDmlWS8zD8bi2+47UNa7eaeHgufGu6ysSDY7wZsZ+G/ZLPW6ihV8t99UOpWFFZhaPWltgV8QFMj0EO4GCmHyQ1UUSbJf46NYuwk/N3KK6HeZ+WVh25qdXfcOyGUYbXup4W/xkKse8hmMfjp5HuwTTzCPgrfyfu5FpHeW7VKfw7fFNM86ojvfUKOjAYpo7D77cNJ+9ZBguPmXkdqWd+0qp716BsPBstmOJwsuHE+o7bTdTVneqsU6AdGOKYPTwqjcfdGWqdF/FTqKXWUl+haTwGppAI1ePRgjmE6QVgV63relKzvwggvCqwt/fNUOhheISxnErcja51yH66UoFPBALuX3hJe+vTpaCY98PaDyMP+8YYH+DYvh7YMDu3nnniGy48L1X4hjQW+7xgoB5MfJz9D1Nr14UPM7P5k1TzOUIPZ9Lu8idlg3h8aqH7+Q2ur5GKZr0V9vvyUYFDHSdIQt0FDG9Rv8CIUo/f9OYr+KE8mpAFpxqbWu2HAnx+Hpz5ERq6PKOf9fXqgg8VJwaZfKDdty8eMJpawtpvZxH5NgIZZMRDPJufpcfxMMD49dKxO8GX1ZtVrILihxC2qBSJ3mL8BdRm9eZ7VO2KcXtfKZA1nYvU7c8gYq/k0qKvkRyxCAyKuzE14H4atPnKf2A82JMNZj+OtuvBt8SOUxf2h+cHdV70Laar9Eu1UfuVPPrcUzoejONDm9c/G5F2pfxYCQilzyfApmx1gur7v/afHo9Sb6p/uvtBUNmlznwS0yD6e/OQAdQzl18/166e4lB14Y9UK7TRX6D4yb9CATlfl0iLE0oXvQLW+T79tx62T4NDYN/2Bt+bvVh4kwnHJF6hwV/lVIzxk4GC2i1f+N1kK2cXbCqWcPTth3BY754mbLRM52ifbQh/05MCV8E7QB3TjmB7+JAjlMkl5jiUXpbIrfoMsQZqbno6p2Pxop2qeldz8SfW2DjEBTP/4jodbCAVOP8t/gMv+lsOakmFE/d32JPD2xIvrjb7AUQrPwQg/BkD0A7J3FPM25B/Hmap7V2Lsr8qVGY9GbyhdjzdGdRkNxyMs/qCm5e5Q6v8LRWdmdEcJkTJUEtILNhtc3rAxZ/raVGJJR+DPpMD/C8/rDVgg7uzOnFj7wk6/P4UBSaj6vOgtcxQDEabw7+vEvM9GtagfXflGd78lcD7xkTWJG1Wt9nMvvmiX4XfDUcNI2/FdoyaRM7X+wj8pu151gcZYNKWJ2DmJ0hbI4cK8NJLuJGxih3ivamYVqME/O7WYXeuN9J6d9HVRf+pXdzS/hisW6Ceyis/SJYgfOHdYV5IbFO9urAHjrcCyCAWEpkk0b6xqiO81yuXI6SMtOtLgaAjuyk37n+O1SlOFMG3/rxx6zmWZObniXrf7gCObJXQ/mhJOYS6RLCjJZ+iPxjHG4xfb51b625NxLrwVTiY5w8/+HeHsjh9e7D1zzs2lJcuFB0pbBBmkcA+ZTJhxkYNoNhmGXaquwcGEXyj7fdS35C29BO82pjgeecBbH6yhzVYYaaDKnAs7hGHkmnhS+uNYuPrc3ckU2/ULXwMson9aKdYIo39RJ35L0f3dU9G/6B0UGp3I47eqk1mvhCBlJVfju61Xkz0gCLg6d37n1+X+XaU4JxP0aStz+E8vgk31dHhR7/qqSy+7QRLJnzsApcI+X04DiBLOgPH42cVdtdTNWio/BRMPlhyPf5dnGHRt3zfbdOQM/8vhcmo+PhKIRQLb1Rn//9/fQiD/aBFH65xVB0ImIxttVIvl/eOH1rUF6IpR3PhrdwFaU6GW9rb0FbdCesgCsj4AX8JdLY5QGq2qUPxu0cyLIHu/pufrQOMMxzIwcAzvwRLPgNmeQY8rJpMDGuAZdjEoc3qdO759a7swhKYLjakuytG63sKQHeTWo6rb0X53zCpgDsP+u//7o7fowS7e7JB2/u2oF0Rjib8dF+O5/6H1V4T34NUg/O5Opte/EGCb0t8MqVyarDoR7CFyhn1dCqtvts1Klz6ZcQHz4KZUMuW93H7tXqH06bxH3DJP3r8OIuZ15pa+90/2EQ+DIi2cSbQ3Xtz6RdYI8C9BHcHojLJ/IaF8IdY0V5p7PFIb3wwRLukg0O6L9gQH4diur+vR3XRUwr5U4o+a/5yeL7N54oTX5D+ec5bIJ1yH23m+JC+U6/A5si2/JBRux5b+55D/jrLTFzNwhrI+5eCn9m+kObvJvqlfYY0vsdP7EaQFIOcXN7wmZwKBJTtx6Kg2Z1Bvz163AeWUou25RnMTuKGlLBLSD/9UXvhVWwcr1v6kySnXXg4N85GK0bg7gbI2kuKtq/eJpul3ryIDJB2vxVkjOV2BatAu/NgO74oI9bOgzxzdtiNWCTYi7QqjD5k4PuzuaFTVXxlGLueyQvUv8lAao9B/QN+bHreUjBMxQOp33q6snUa5TV/rlACm2PyY+tZX47p6nkGD3J84HtwetKBNkmpPW2x5ZhdHCI1axTA6/F2wcvzWLzqbuknoc/10Ib/8qWH5ZAH/se2JG9fy/DU+1e0fm/9cImHnfQ9rRAjrmINL+2ULvqXrRf+GPZ1BprYt3HaON9iaFtfV+f6jv1ZT3fSCdngN7oVPwT7azjAsf3Bi8uec3/uPd8tNd/9FA0qd7TNhXLw8kpgTs7Md/8DAAD//6RdydKyvBK+IBYCAmmWSACZTFAccAeIKIoiQ4Bc/V+83/bszjJFiqqkh6fnuIdqataegErjFA7rbmdUc9G2S7y5asmfPhwWfEfrQnszz/jaWBqmToC/eHeutXE7PfboiOo8CoZnHDx4f79CBL5vRtQOvn4mj2YxIzUhEd0s/tFkv3QZbpcI6OXtTfHcRkxETXUMaaLSDvd/8bJLgh3CpPWm4vcNE2ASrJ4oSz6G31aBgBZ/g+4ifcPHpL6MqLE0svgLBmLV7zciYIeIjLwj+AeZ7erMci16anQ7WHvrmws0THyat3MRj8KczbB3akrNWurRnz3wp08IHG+QzfciWvxVNA3idLu3M73ucnXJl9LFfq3mizYXkJYSIsLthyupouE/PGRO+GmqP3teP5pxT55H/x733fz7gcxeO3a+fx5oeqafBMySuxRryK3m8DgOkIi7lPzM6sj5Jl6ftUd47CnVGKq+5Srp/vCR6Es8gA8EzX/5ZGqd7RFNf/JCe+wx+onPeDLLxvn/agrk/11TMAwoYMZkooC3FzMEY9OvmRvnWcuP9daAftBaZpax1w52/fW15kkmZpbiBY/0rSqo6IJyeF+EIOa58HtpcZY8KTX9BDfxdRR0ed8b1I1z1DYfXTwCf0sh9S+ShcQr2hiwW5/vBKbomvF1YylwXh9ktvtZY9z5P1FEmnGbqKn91OBzcBQToqLf0iAyC8RLoavVyEw65iE4I37PN67ujumdOXuniHuuSAmoli8tdSpm1ta7QkMphv0gv/u24h/5RtA+We2GhzuweBa3/gvZzb0gX2VKspl3cwG2266pJ81eMN6T5gXIdFY0PAfPmJu7dwF3+7Maev/do/l7zDWtxI+GegF7B7yUrwS+vvxl9IcJHontCFDZekE97K749NRaBYmXIiUv8cBi7unmF5KzsWVXuTfxtLNaERkvNxwU91VXnbjiKUzpvBqQ6Nbt74r0g3Z5njGl5e6IZ2vgJTjO50GphuWA35J5gJuc1DR6Km/MlS4+wruNI1K+Hu+Wy4bzAmkut8wQDQOPntpaMDI2s1B5ppgjhF+wakSHXcCPg679dcvcAbdm+HfWs97AWw30SzqRm1xgNKOTKMPX22nDhO5azJsYzfBI8JHaxmGdTekVAJkH50zOh+yJ5m14cHRcLG83uGOBZ6J/RgiCoiVfMhzj2QojC+Ur2WLBxcCt6HBC1OX/1DisVnjhFw2E0zGjR+Xe4HmsbzVsZf9KjUiasrHaNICmtWqya/kjmZgSOQLd+fgUS9ux6s4X+kPcxm+GxboK+lIfj3pqRP0w709QTejaLX0O8of69jzhLilHQWsjF1GK7SlgxUZ1kC9qP2op9q0dipXdIfODG0YnOY+nCA4JuGfBoKY5ITxOKzUFbAUdWfmXPedw+zhwPZwwM14Pu+rv1fcArmfKBNRbHEirtrUUzXTuLEioUs3z4ZeA7R/eZGrkOehO6dGClMNETZ0cqjn3+xfMb7Gjl0R5ZvPOgAOaD8so1m3OW17ZXqlI83PL3KZr4pEO9kHLHxoaxDTvg4mPT3O1Ofodc3rNzibhm/9AfHQGvbdqicdtrIZw1RPKrGk4LXXCX0OLhWjFsFXG8XhxFszeTp/lu4TGOulrQKPREHHZPwnXOoEullfUCPpl9u7XcHTRXFFKxMFrRTt6jkCjqaC7S0k43/DbGc6v5Ep303nCXCvRE843+UJxL7ElR3kVkXJ0T3Sfp7jir0QYwKn6Fw0z8VlxS51Dvaq2D2Z1tlQNrl7NIPziYWj01RMNYf1yYZUpQHdxX1bjeCc5xBB6zKzUG+dC8nORYy111apexONZ7HykdDwcmHZ7VENT72uAaugHdSi/2WRt9onm3d8XMgwKy7jsPAodLB2Inn8ffIZrcNA+Gt5Q5xoreLQ/XQKSID/pTtjPeLb0ZkSLvhzEyH5X3UdNnpqyq2NqZUpc8UjkBxAfg/GPnl0HpaCjpvjsIN7pGaPTS9TUVbihxmZ8ZqMdPWdQ9JpT59pX1fw6pgo0yjwT7WqpqGs+NxnNH/RkOzcrMZcNUmt1VZT/zj+/9SuB1LxULGzwvf2G0TCq82gdltl1ViVdgrCDXnX3zHJoG3ckaESt2tYhM7bXZ8VKJpz/5JFhcu6zn3gaRcDSrDEqipt47GTHgU8qu8v9CnFvza2l7fA3Yx7LNrH4Fe4FckxVp6TcQjy+dniGm5zWzFdbFrDut07/6EW3onKIu0LY57pbuyp1dvGIu4eQFZqu7Ql153SsvhcCEUjiS2f3SYasS09XF9y+3NDdIckDDrNCkLVOXHZ9lmXG+Vp1QUXPG3Muno/FDr4AqqdSZuuxG7Te0TqDo6+8QVTTZzBbtk5gbxzPbP9F12CoNH9WG6EKB1DgXXXr217Q5xcVmDl4VTsk172s/+GhlSm8ms7XGWC0woIdrvDgc2C53R+/M+x9nYAzooiQklYYVtuDj37wKH5wde3bUCrDNpueWqXAaRxObHO/+9l6k2cDevzQRG0Zypj9lgh7nxuEFomE2kWfL31Id495qSgGzLiXLlqFHabR9mpW3G13AD6Oc7a9m2Mw5HsjR+3liUmU1VYskuAhgzgqKnNv3Sburl06o4Ueg+TIY9tLb5PorErWZDSkJh6rKAr1HPySrLfjJ+velpKgP3lEZ/tXde6nTkDGk0zNS7L0mfhtDbQYPnSTp7idjqJnIFy/Nuxsvb+8L9enHE51zobBLFo+SpPtAilngdofgWdDJo9nFBmTQORwNqsxKUeANwl2g9aNAx5zTz2DJIhPesKTV7H0YVlQmbFGvtFUxtMOkhRAFw4UXwojkCQIRBQr5ZvmjZC0s+3hH0in1GLeHRw+VUvd8ju0LjQr88OfPVEAKkDVv8PWqgK6IRdWzVxa6HDjZLFfBN7ytepDZ6sS9aVCyma/UV5wfqVX5qHNDXFjifk6bkj/rZlxtSN4/nKPkaoeKqbvjKMue5ZL89utCvg3eh/BwoPF8Hv7rUZjdziC1VYiC6OnGczE8jvI3687vbyUX8yY4b9g3tpo0L5mzafX/lOjfbv+UfeFvWA+v9Qv5Hv7yAi9dnyK4qMDB1fv6a6pTC5eiBih5XyDMLd6+8U/RYTE9zi1H6mGmauKIVTrV0fvBXaCqQrLL2iPOGGBpTM0SVwpUNvdztQ9voZ2jKZ4gKGlH9KKzREzcjmOkKbPA1vwre1V4r/QG6w12/jKDY/f3W6Gqa1r5vftB8+TkkZ6ShqB3q1hX02PMhNRpI5HdrpHIZ4/k5rCuFaebGt+jxW/HGIZBd5aJ6+fXLb1zhAP0CHy+bsvLOWrQYaMhGfqn7UW8YMzmvCn34h2afjCrykMnXiixFxdY/nc2yby7MvMFn7Ba60hCiTc92nYPedgrl1kwaJfyUp9fqu5kzwR1OoyDFKpdlXDFJ7A4TMUgz5mCebn5pbDp7oZbHfv3Wrq5qJEW0P6MEMZPtlEtvMBcjfPmZneaDz+Nm9Am45XRJE/v5ht1JHoh1uhMEOlIvoO6rH8w1Oy6p9lxcOnWMOWvS40XMd2IJrRdwYpcAuWhXRsu0YOHXDDLiWaFubtWHnSGfRLMhH9cfaC8XRwO7D7wKS7etVknSUffnCYBIscNw8LrxW0ecHKPiK6Ve0QT/AmIdLFp0iDTaFnXEzz39IXSFg0mVnAvxc3BPo+NCwk6qPljn20IJKtkRnud932dBxrdHBXPXMdY4fHpLHOMLHIZxt3oNn42/QCupnDk4Y0pXiOt7ELCXf9QcztXTVGUzagqzq0zE13BDX0dxvQ7W7qdIdFreLnh+/APa48Iglkg2e3fvowVtcLDePdLeb2c3yhRKIGdQXxFQx+M/6zN5khKCf8W32WlyF2qkE3jXzAPOPuiKQRXYmwyM8o3G4CtF8+E2V12rfTRoMcfPpeL/7NFU+TdYqA7LSSuZn74ZPU32pQomJitDpoaPSibkZz84yYEWsKZkLydFEY3P8DAAD//6RdydayMBJ9IBYCIimWTCIyJAiIuhM/B0BEhgTI0/fBv5e966XngBqoSt17K1Xl//C+9S9eoazy2PVw8Du5C/wCEV/2Fv5BrVkRJg/k3d+VuPqpR1SWiPjD/1h+rKd8vAuH+y8+kr1/vJRz+J0rOEnBkwTM6fIJbrOMtunTJ3tmHDnfPXoXhWzPKCdzgsZowxy0xB/a5N9j/oK3gyF52A5mskCspmDvAB13g7DYQ+/P723VoC6RH5ThqutGATOK/JXLsFjFn5xHmtOi8u6G7AFO8V//MfwVYFj415wNoQkTiz2Cve7d/fgU1GxEFAUk6sbSeAlw2VOf6Hlt53L9WDKvy/6ilEejm+L20YMdpIjgbTnzv64WKeRdemH+QYmQ7JRJD8pHnxlGPMr555HUEGyuEgst8dpx70FdZLT9QPyLN5W8BdWB3XyTyC7qmm4QLvQKQrhf6iSlOp9I4aXA4k+E/17Z3prmXdfD+4uvZOGreY/+ckAyjAHxzOReTupY6/D9rHws/+43j0ENuNNL3Cefhk9BcnXAKtQ/FirNxKfkogBaWykmsTkhn/luX6C7mEaM7GKPTwtfQwNVOhbo35vVX5Yz36v5JjDLgA2iKuop3D7dkWDZGy2eo5sHn6F/MxxIvKPR7uJC/X5lxF+mNcyt/u1BbLM1VbLrs+RwTHrYO8ITd3tv3/E/JqaAzp1OTD6XfLw6hQq7V4cp2kwOlyLfpb/4jkU9WHXMoucrbKcGs3vHm3x+mrdA/XOWWQxusy7p99RlarbtGmYbO6Wkc0AKtPkYMbHgcsinsQ1dZMZ2xpLomeeLv9bglKzC8wUMxBxNb2D+PiOyOwSZNWUFTqHgO4N5ovbhC36WYf28H7CaZnE3TpPlih/VMNhVUnT04yea0B4ohq+gdFMb9I3afKAj7uo4laN+HHokKpGB6wXf8+osU1j+Lx735Viy7vFXqz/8YFThgbMfH1/wO2b7m4Lmrgxd2H/GHdONTObTtPQazb1iZvb3dfPH2IruqPkIHVYqwfRpqzrzv3jjKpGHeuPTXuG9mnNiWn5dMio2FHmFHuLV3aqt6bWPA3iq6PCPH0whRFdYG+yJWzWAbjCdewayIJkUzsco54pIe+iobWN1Wb+EzGLWIseJmDPaSS6tzGoESaw1iqKbl0zFHD21BQ9gMeUBoqfd0QVPqTELUziW87JfatUkziy8NQaXuhoodDqY5CAdg3Jc8DHKg3dD1+4KkuUzbDIVruTHD3jgzwLScue45JxDn1kfrUAvaX9iZImno/FpzwgHycz8Nu7zWTwqMkT2o6AT2mzR1KgfBeIvT7FgXSo+aWtPAdl3BeJ+4z/URO7fFd7grH/xruQ/vHU3mUnlYC7KsZ3XDRjf3QrbVbxLpsT3evjxoaRXZb7wtSccEsyJR5rO4sXNcmE0PyMdj5rtD6uuc+BlPBISPoamY3DMKSrNg0pXbYW6LhSnWDv3tUusciV1M4ufZyi0rGauW9XddM5ogYjzUpizUcN8sj5GjCjeViwhBycfz09F+OFZKqEIfNpbowv8cfBIebo/rWEmK0fNP61E/I7GaCo6rUXd6WkRN9Mla9onZxtEkrRUMeI3mrLmG6BLFIUsPhxvJY1tu1cXPMwWPpZzxfozIeQNYqnxqqy5C6wnoMH12fbzt+X8W7QmyEXxIdviyK1x717OaH8IHHIHZOXzabXv4SBvI2ZE+ujTiSSC+tPThFNdl5+XgWx1s1/klnX35dNe4oVaw/ZEHLg7fKTT3oMiUV22U19z2SrCxoU6qizy03s4Ojcu+mNixbLgfLKGXpmu2rEP9/QQoK8102+rw3ptxphNR8y/8ThXSDqebSx9PxyNK0FXfvGLRcLpU7J3y6/wd4lK4vrf8IdfGlBammEIhab8TkNSg9HSgaJ5e+3GCI8x8HLO6HxgrjWvj6oMkes7zN34FhfT6a+H8W1uycInrZ/egfh7HWDp87dFk9seengI9ZGu/tzBnzdergN/OjNeg8ct/mRyCmIYiMQoqilneRUXWkUhJeYFXmjGttmjon+uMD8PR2uWvYOprapSxEpVZd3IxUul4e9FYrv7q+h+9gQliiLmt/yCpjk7AFi3LCd+nq4S6qjHFJS9ypgZfI7JEm8EOG0D/aeH5jMO7g4q6vnNSP7oS/6hexnkR7un5TnYdUMoaQW6ORKlWmtHOT95+g1OobwmO4H2+ai+PynkfHVgnhpAOR++UMMXbhnxc9qihQ/THz5j++KpJ3KkCxFa+CduSpn4o1OdBBD7y0Dh+9f533BoXajvq5T2zPFzObhHI1xfdsocj8nl/MPrx6SOWVgcTF/2pesZ/YGvUwHFC79Zz9Vm0ZMYsUPbF6fJ8qARDzuCvcPVF2/IN0FuEoNYm9TL56eqzxo4dYu5oHmdAo02q1f2eC855THvztX5CZdXCYu9UT5fdw8Puv6R0TYoq5y9N98G3t7fMhvi9UDjx+gEWPOUUt5f9nnbBPviH3/PuZ6Uo/tITDgevy7x4qDqpvn+TuHrjjEzQtn01/eeKcCi4sp0YzTz2V5jFaXhQ/mnH9cu1QqEdH1P7NJL86ZqnzHEQvxgP7w7f+ulT5Wdb+hij1wihZchS/NM4tsaQWOVqya8yPW28MWvP+62JsDv/x1f4rsbzn/7K9Ivao1Fh/j5+ttqZ9RyU6GnmVbJj8/DaSqAtubQWjTYkwZVKWVsLw+F1eOtA2pKkwee5In7E7pUV6iC14pOcfXNx0XPQeJzG7Pwb8+Sbz9nT7jZs8IC3cXl2H8esrrgZbIdzx9/Lh4zRewmSgQvfWe47j101PlfxnTnvi+lVFxmpYjmlZF7lXSdyr4jjKhyMNwKz5/hdW/QoidilQZp1yjTzgP7Gm1JsPvoaMzXUCFPVFqy9as1p42WY7TNPgYhm8Itx+8w9uDkds+8bheWXBKrHoROuZHbdfMtZzmuzmBYpy3Wrisjkcxgg9FOX38YaYXdos+X9o8fEWfB6+xkvSvAHgZGhkLvJsV8LmdUXZOdXS+3xDa6BWj2+AMjQk3e7Del8+MbLDOhyeVcVjLQ69AkdkHyRHQMeKLpu1II2d/OaNLWpqL99hf9O6o/PeT8w0fMsOpbPl+QFiFwqpbEfLbQICvrMwqZz5hnZ14n5+PxpjXB5s5MMwq7aeHvSm0PjFnl0tT8Y5TCz7/Z1VMt3h/9QYSuXupKR71IJnxHKoghFpfZMEsfk3VrwtrKMJXgTPz1k8nZRq+JiedLIedc/ToK9EvHm3Hz1RPRakdZc4+nmMrNPHeTurrFkF09TmxWffhkCp6irsazy6w/6YMmWssUXNG2WLTe1nyUgQJa/JdSxMekv1nZHV7GX0LCJ/x1ffLXPEF7Gl8qzu4rH+o8UpY+ih8WLPhwrh8iBfb+G4hV3htrkFfXGH56t9V1Bpqvoar/0+9YRC8drz69ACk9PNiuJHvOU1GLIXlBRUEpVH8yylmEYH89Mn/eXkt+QrH7w1N4NA8E9Ra3A+2nhwT76JUPS/xA+vaSE++xe3fzot/BXcwitsu1rz/fx9MdRvM94rSKPwnfnc4zvN0zx8N2XXdrGYMI9lPcsRAN55/elGkluwAuyo3G+yX+qlDsVhgK30umZ/PBWlDIIjHn9TLLTUlj6PyO4dHIZDTYqnxH82dT0NtrEvjkzoMNlPQx8Uby7MavHNi/90/nx7uw+kzsXfju/Oof3mfb2x9Vl/txfc/bH35T0aJXEA/tjuX081/D14Cu3keHT3Uq67DsP8SOau6z1R6pQNKHyTzRpGgqyjaGRe9kp8uFcTaJba8uetxPD0PjfS1U6FK6LW7jYfb7BM+xpm5ni23Dj4XmLLOukHyoQDwLn7rxtp9STWqiFzu7lVNKDdk4sNpdJmKtFKucaC30aI6BMOtkix2XxL5HgvhKqfAyjz/8XMC93z9JKJUtamLrfINznJV0kxhvPjnS5gnjK30t+djvYi8VwOcSXsnFch+o7WktwJJ/IqH3Dvn4REvNbNxemPGkj5w/wqsKnhHUxF3w3Ww8rQja7Q6zsGn2iMZoE6EdnkeyXJ9M6kh1ZG3ud7wyvm33/dQqhafkrTHM/pxT06QzotIjZPjB9UQ+Ih7Dkj9lON2J+RcdDiZU0jPDs4bn8vs2dBkennIgbnF1O/mtXYL1ks/FmrKr8slh9/afXphcdnophtOlh7ucO8S4yJ7Fpf6SIl/ceMyMRGLx7MowLPoyXfIfSU/ExgOrrg0SKEZQTmz36hHOyjP76TF9abwA/X4/RIFvjdBIo/Ysoiu5vaMpX/K1Abj+rv+XL/iXv7V1/YlF97LJx8E1ZZi6qsaaOq+6Uds3I4rHY8a22D3k4+b5PKMlf/bv/kmBcDkD7LV082GSNZpn0f3p+1Q9L12tvIRj7cf3DKuGpIdGmuGUjwZL9brz+aLvgmHEhDjiYbAGL7JaeKjqhNvQntBPr0agQcyM27Usx/rh3qC+qXesdg3yu4wpGbRPNyeGHL0XfeVDQRDmzU9fK+fHwbv/f2cK1v/7TEHurnPmeBx1HCe2jCwBPGblVpl/nfbYI0UVDyxNk64b+MFr0YfuJGaiWOHDTSg8ZE4vk/arLy6bZnp66P61a+I8T63fDfILa8dtcyC7+qqgwXiXDTjjMSJ4ZR27teaUd5inasZyo1/RnGamDYJuZWyv4rM1focmQ0nbmkTvz2M3PJ5bjOKebzCkWdlxp7OoqsVGxLbN9ZP3Wh6OcM0cne1gl5Xthb8jUN7ThoUa3Hh/uYcCeon0QtsNyksO7ipWd49TTKn+dJO1UV8aNCyYTM+Fsz9F+GGiDX5/iR+ge8c3kaxAFt5skiVikTBpvzFReNCeVFv9LXV9pz1F17dj/fd69NJrqP6SgRFJtCzuebEAqdxg4m0QKsdD0GJE09Mdr6htJrO4nu9wq9Yf5h+lYzLX/sdFxbDb49WmsnjTHR4YUX3vkGCTLHUbyuzAn/znEj8OqpK/2FlZl5viSPbqsfH5+iw81ZLRD3Fke1eutfw2AvrcDcyNh+Tz5w2dwWrTmblqY5dzj3Qdes5UZsiXp8VL3bvB/WqX7DiF2O974l/hnN0vzJeax+/7C1jfxS3DjTWjOdg6HvCokjCThsSaVhkV4KQ1DbllkuDPpN6nEF/MF16PdLv0qtya2vQ8H8hFl3TOzWLJEe+wTGeNpQndv1Y2+jupWxb0l74b8Wq8g/LSK0La1ChlA70ECPTT0hux/PAp74MWJrH+ku1NfaNZoIcI9DnN2ZGrbrfuQBRh6ISB2Ce99r+fe9eq9si+FC3r6ffV1wZxMHWqegorJ3hea8D6tSa+d7PQROomRaX/JCQsdIvzLokxrC98wJv5/UkYeF2knrS2YVs1Sq0xS/QITrasEKvglTVtR6OA9O/yR7Z+6Fqzrmnzbz3MlFa8ZB8XUpUqLxl3u5WbS7htPHRJbgXz4Ly2+NRoI+z3c0VLnnXdmLfrBnTN3WKuRGZJ8WElQnT/ELL3/d6fH7JVqPUpWRH3WIloUqv4qq7C+51u5Psp6V/MUFH6CX22v6ZCPvvO7K0utvFg7qpry8F6nE3IJFkivni88FFjKxtE7KuYm7OaDM/b9orC2+SxkHKv5MWZLxMiaottHx89l/vNzYRW2GjMWfz7LSqHG+hNMRBnpf91o2DeWvCHfbn0HZG7eUq7G8CV3HBjrdc++9nXZm63WDEOQTkr7c6EVXeviP6QXL74a4ueTR+S6HL4K7/iCzw4j8v8Lz0Xk2lrYQVkFCzzoWq5+xzkXFSz8G4vz/NkseLMKxCUeI8rEr2TmVR/Kaznz50qu8+aD7fGFjd24dbMC8wtn/FhLSPNbQsaKhuZD+OAaqS9bgkz7fMt57l1NtUVsiqqVOLan2c0x5qhephqQVIny0ijJ5I2ekD0k2laYqq3I/RbJhJXuuOSF2YWqSTWd1i7MY0zebvB8FzTiDhXL+TTNU882PJ5R+yt9c3ZH4oyjXX7lE7yRfd7z/MFNS5EQixVHvzR9N8FmvKjQnZH4ZXwg78NoJrSPVbSA+n6D+cCWpmtyPzQxOVYDEcVPQ5/Jzqsh1fCnjxaKjpbl5HPmFmTnjgeCNfIYsHADS6P1gTac1AKZjsZLVkFZgUn0hTsVifPvA+u2h3WW/3MrFd8R72KUxsS0RxZkJKknAtTiqEYij3bpVVgTUp/1SGyeUHlOZT52DiHAlodKfRpC8dkerwmDBcs7RmJLaWbPvwmwKgdZ2JF8ifvrztd1Lb8tMOFSwaLt8faRIIS7Um+nCcZrmNwA0EwcpYi+YjGO3ao6qrHF0ZK0Haj0z8paK+l17psf7qvx0kFjSoYzJlTh0tmoD4hxhNnXohzqzutHQeUN9/gPzXp/ckf0QxKd8HsPu8FTk8Fn9GWuZTps4D87ttbmWb/lSEzjflQVr/n4x5eE3GZa1kiXo035H/OB5Y6GS4n3DYuyK+rxqy943S0oYILlo96KhwsgvjHazLIJFGib99RfKrtzDvqt4PI3BoHuUyXOlvO6jVxhfM7GSd9dNHcBDY5cLC7yemNHspgFzA722T+JOfPAq6ZrZOjfKqWXl+HVCOjHrK/R+kmk+jfZXXZjzGtPJOLYpG4oKfZkYpdQvPGWdUmXO5xwPa5ZHXsTYgAc7FnxPSkdTmQzdDAeKmveCSxkUyWq/bo5t83dLx2MWoPsipCsKkYZvz06fo/7c9DmtsUGP72bdKQqNB//sAM1L/zOqE8gLUXDLjaRF3C92Vgw9TOiHgZeSFe2F6kEje4EMv5dhbbaa8AMDdtCq5cWNOcZHfI8W0kB/SWEvb5GxqUr6MXcyv0sWizTQroPowSt95BPlWaW4GSi5jEr97Pxwrx+h++2OqbmzXGfDI16XieyEGNR4uO1kb42RMJw7or+eHVFmi9Nc/Eja53zvel7cBnHvDSvHnuZonPDVjRa/uLH/7sdAUFJp1NZvik8ru34s1op41nsocuKUe1ms7avD8JZNvpB8QfUv9Eli5sGZm0OOFhJwHwI/eY7XLP59NRuYHy/FRkvzpji223jQIsEwAL8d/b6hO7qFGe2HtyRuiLJhftArjTCDF8sBifJbc3QZOXln3XseZcxaUDZzM2KA30LxrX1/wJvf56kOVUSckf6/MTjPdTJonPX/7UXDsR1lruMuxoZTe/w8RVz11DiXVKim4S5fcdDploEW9wUz62HaTw5yomW/Z7ND88UYHNHG7Z7nSoy3lYuxgsh52Yft42yaBW17PWU6jI3172OA91lqKoxA1z/lRc8u1wKuAqdhbT0+OuHO9EpUjNTQmjS1/70/oiFsgxZ48Kjz3iky7cZvg978AC359/eMN4FzJbipWsWRsHBy3vi5il8yzXnksFtOAPtp/fu0SufebCzXAI8Z2+9Cfp8Uy157qP8OaaCkm/HZsnGDlz6TScN/nQTIYLoqu96UoPO1R9vEOqubvKwWq1xZxPq8RG9emwotKCb/7ZU1HQB0a7lZvwrrGecC/VA576wPab9KQ72gbejO20a466OBd6lCHLo6/wzcrxpJQOfLZLt6dlfRLstRjAb5b5wcE9YVEpZ3BjToqRdyvR1EfnK8zD+UKV7lzk43j5RvCLv8eLdfSb1zWq4e/02OLpBgZf88huoI0yRHb1y+Xj2dcbZJ7ZgWwPVztfK4Ouq1672rKtfLJ9XnYXG/29Is781zFD00MunmAWxQr3+Sr1JzahKzLeO5mRt5WXk3aL53/2ON3ghXpnVesQWtc/4r7sLGfNuOR0yNhTrm9XfExPro0c5KpMdyXHGp/coDAP1wsJdxeWTMPLUEGUzxTL20+dU6LOLYR/2MNCmDCfiU/BQ/w4LWdS+7Xf+o7qoXwdv1hgScinn4fSgNdqW+K/t+ty7ISDCE4tFHjFT7tSuk7j/T8AAAD//yydy7KyOhCFH4iBgEKaITcRuSRsQdQZKCogILcAefpT+J+hs1TZ6fWtRZJWvmG0YBl5WrGk1yYC0cclsTzzzZiRnVRknc4OdXJ0LVgHIILZv4OVn2Q0G8+NKJsXaUd/PNDZwVih7ZYxgqtpCJfEcng5PNctPd40yWUxSDKSg8alRlWUbLqHco7euomwOGvvbjoxSQUSz3dCrGLrso57idD8ORHxOiKGc4nuJdrv3nfiW1brsoTiu/zzN3vXb4zl3LIEZZmww2+zu6L+ZOcJAE1nfKmHzB2V5WbBykcrf2gp44blBFjZdOQfbzZG/ZLX/4fiSH51Ky+f4KELA7WnaNdN+/2fDLa2HhvIN1O3RAPxwOqd7ViYxquY97cew7i/pMS55LU7+8Yt+lcv4kZ9FIW60RfgcxyT/beCbmF408phkJ7JWj/dTx/gaLoEM1n0jbHoJuvnz1b/a6Tb+Txlchir7Yi09OHOtaBycOYMjfpZULjzOVJMpNgkx0r8nYsxmW8ZmKgIsagMu7S9YD2DpcEmzj/33mVbmvKQvLQOL+mTGqxr3Bcopywgh2BA6RDgiy7XC8V42/4du+Yeyi/gH5WCUfRVXbEIxwXu7l0i+y3bFfPJdhM4bfWaurpwCpldu7ufHyFWO6yzq9A1BvdRFvT4RpT1aCuOQF9LS/ezPxqdpEg5fNTIGzdRXboD+yAOpCt/IVcr1Yvt8je1Pz8xSnb2V8xwVALkUWwS47Yo6awsu/VdHZAwzyVayGpeB1hu65nWPGXd8Cm3AdTjSyCmr7yM5Z2OCVr1l3pNnrL5/B0T9PODSJb2xtrvY7iZxpPqC1nQNGlPQE/9GeHFPzFjWP24PDXugzqF3hS9wE8tVIdxM76/1O6m9CJH61v0B3p6EoqmUBcrdLdO5biVkeayzVmzYYHkTsjU+sak5w4PmmxjeobqWfRTX1WQnL8qMbxN3P32j2yGdkHjaGt3wqfcBCCK+hlv6EtE8/ca6PLG1zLcLqeWTeI08SB8P0fMaWz4X29OmDGsiHcUNrfMB4kbs5Qc2r9jQcvPEKDVb2NhE8rughV8B3VZ54U/FKsQT4cygTZ1PtRd++9CKi0GCddfLKqPIPzsx3MOR7Mi1IthNBpHSCowOM4h+MqCbnBezglswfXGeoetYk6sLw9jw4nE6+Iq7cvaOaFbFnjjmi8gtusiXdHawR2nDc273uBfkaL9xRmeuaOK+LdFLLA3nEiNWnRcYdJLADjfD/Tgzh9jqp96o2x0wuPX6m/m+PQN/vG0sx9vBdOQw8HKkzhd/YYoy9cRfvyyridcjrKdwDv+C0fYW1rIx5DvwNlUD+IPr30oMPlzQrtUxNTUnw82GLY8ypA0d2oE4iEUt2bpQX2THv/7zxj1MnLnBcYtvlA07NOrB58nckexMMtiQX5sQneC2//9LFpfTffOyQVv35cTW/1bACnWJrLySrFYXduDWceI4sQ6s0V4HiOYvUmgSUw01K15C1QoTogaZDFb4s+hhJN5O44Savx0MTJJh0uU7n486vYb1RYhH15Hsr8Zgtus9ays/ZSYmrdb8yO7gjDFmzF5nUd3zkpfRX7tClQ3vArNm3Z3h7qRXvTH6714r2PgZ+9GcOnkaN6d+R59j2+TlBfVMpYirBaEjFtFDgeZT1n5+ZxAHR0df3bKyFih6vefHx9lH6N//V7SDvlEfSxN7Hv/TiJ8yldJV31I2a6765A+7ow+rbY25kFgHqSQiSN3ZVMxqlHqwO3Y8sToqpb908NnF5oE31stnZ0sDmDKFrr6qwoNe3ORf3q7HrE5Mnp92RzSb876jmGtsKXglER+3nuN2FctCBd18135bLnSfVxJ3SuupRIteUlJGBYaGzPZiCGyG5s+jjRBHb2bltI9zgbx3eBlTFqZNSDaOsGSh0/pnF/9Er3jMRzFSZ67lRcs+HxDiXq+1Lj9013kXz73L1+ZiOw1cBzeQCw/2Brslt1BDhbWjH0MozsYLs7Rcpw4uuahxj89XPNM+uvPy1X4C5RfXrcXrMwdpKryZE7NYmLkfeT2Ky/BEXPSuGX+pps++GYDAj8mWvlZiunKFwFEvvjAG2EIXfq6s0QRbZVg3itaVFbv7I68aHPB0i9P5bfeem/O6Mbt0ZfQ8NXkXsFFrVHb2F7cmX/zDjRV9CXW/XVL2VMoX6CHeyA6XbZht+YTkOJsol7SYzYjX/jHj+O86v9UdM7aHwqRYk/9MlZ54MCZ6hwuRk/oRuB7GVn65FBVFFy0OKJaosdltyePlNUd44X6jvj62tGrXs6MLX+7Vj4/a4Sn6lSm07wxLbB6e0vX/VEs77S6ylKm9uRA2rPLfnnFX/tJx1++OdAZXVFu/t3Iul60PdnSFR7VzqZu+DyyCUdfXi7zyPr9RvykXQDwjYXjEntfthTq+w5m7lTUJ6qKtulVi8HuLhnxHP2Sii/7awGa055oe45z2ZrHKgeynIidjA5CK9/Cr15DgR3c6aE8bLgUPMIiP+fhIjC5hQ7OFnWmzacYkwRseIhPG0vNtUvnvjiPkF8fM57Q5o0q8+HryMXVa/VXVTEP7+MObf6aLfGL8OiKx/fWRMPlcqbu9aai7aa3Algem3hcXjdr3c9WhoiNb6M4lpX7Tz/21BmJxbentLFafoTTgKVxIZthzduICv13ISNfBXYono7XBHH7tiMHJUFoVBKyoH25mMQ6Jb7LnNcuQBeFNMSU21fXFxxJ0Cv8CnhTT7Er1scwAml7S7Cw9pvh5wcTLWvGQt0/UX/x73f08wOGuIF0uH93PJq9RSBqdK67+avJI3r6AUdV6+p006dwMlnx0+24kxuzm9+3uQQy6f56j54Ph++gRaAP8RcrR9FBg7LsLGSid0j0Y35KX7t+VqEfuZIeYTEKQUybHOZX8kd/eSdVQ7BRssmGkc9v22653RsbbI2bMZzzHRu6+pyDe5okYn6lmztV7yyT13xjnPrnq1j7IZb3qt0THMGGrf3gJa/+guqiZRTTc6u9QCivPLn12t1Y6ufUwFMeD8TVUsWYMOdlyJyGL/XMzRzOYfLagadOG0Lq7TprrihMECTdo3uonh31qDDBquf0dojScFs7TQScqsXjBgyu+z7fkrcLCq+hZ9dvXKEM9hxwT+1Kji13ZvzqRxHCTUDuvP5Il/kbTcr3yJnEM4TUmISDqMLP77jWh7lzq1o9fLjoj1yqd8PmP8/wZODX2RQr/zIih42y09U31Zp7kbZKyiboZu5Oybqe+WRdErDj8kivX8435gt+3xX+em3IYZaTcEoOtgj9dyLEx1KAWM07HFTCsM4KvmG01QgfQ8tzIbFY7bki/z7b6x2Pma48Hc7H0rFAatLLKMbhw1151YIskjHRlpyGvaS0uWQiLhwnN391zNK+lhzscU5x7H/Y0qN1FretfIhtRadiiStUgfW++BhZfWF88+u+BMn0NhhtdT4d3+l4lfMst0b5e43cKY2tGC5j8yEkjBWWN+kkwpm1F2KQ/s9dzi26Qvn4G6ihL0k6FRuU/PoFjfd1FdLV3wH/nuO1HiW0KAf9/qt3asecYzDXSm14ax3C6ELaju7ivFekguj0aGmi0T+F8zrr8nLGIlH+umXND+XaiR70ECYCmtmHcei3fzg/JMZUeR8HVn+JeSnoUn634SJ4H/4Camt/XrfyQaYwrpTxylNsDPwAQ359zmMRiHXYa2XcKkKZ8MTm/s7pUh/TCOFS1chB3+KUgdOd0M+PkOjFG7O5nCMo2nU2j32U3AFeSQlfM6KE3NrWoDZSPFAVZ/8vb53VentHca8dsLTW98TKivvpOxb9S20sVe5lqGeDvPLfK1yAX2cLGZlPzMhLu3nSSw7Vu6ig0TB9EcsCbYTSiAwabaq4mPBJEGX/UgmjlApFtyj77I6OzbmmTiT03fj0XrISRPhDj7ptuUzI2hhlz9NuzfM41P+909d6qFujFm77cNnp1wQKhlRyXL+3jH8C5v8DAAD//6RdydayPBO8IBYMAmmWyCSTiQIq7MQBAVEBEyBX/x2fd/2v/hvgHEinqnqgGqXrIiFObo8lF03xja6TzPGzbZRm2iR2B1F90rDOqFjSyn84OnWnklllfrf/9Q/+6uHzUz2hRbDDHv3yL5J83QvidPmc4aePiRfqQ7Mo3i7+d7+iX/7KmwwtsCk6k5g2YtEff/7l52zjvZhNg607wfOuRSR4LmYz9yYe9cv5BljXUDmwoFU9eLZui/XgGf7LV6FMvYA5cqE383b9zLSfvmWbytkO89kxFDR9p4VE1L8208t/HkG0thKJahZHK6nufe0vn19F8zP66ZsQfvxPkkxrm7kfDhn87iMh5Lu154DkC0qcMmDe5fVJOZuMM4zaidD36zE39DP2xz++I+Hz3tosKRWKyHCWmPfoSToZ3uWGgBUzRi+ttpebesqMo/U+k6OTrSNlxNsceo29CRleHZ+H16HS/uonf3g2n9TYQ3/9qtErvEFxWV+j+Rg0bHMKj8NPf4x//dR/9e7lMd0p/PV/tHNJ00Vhi4ScPFPJemcN9jw+19SwrqjDJx097PHnyQ9jNAUs+fG1xJGzQ+shjEgwuE/ea0Jew1/9PqqC9cD4Ln5r5Uu+0Tlhz2Z2rq0JcmR6xC9Kt5nX4AtQ4FXwO89qWKxaVeDmXqN/9VN+fWEF/V8zBer/2H3QuxtGgm4ZeL3djwiUes+28TVH/Dt7ErjBa8vsQ3MfZt7ce+00LDILH6uFT5VQUSjR1yLBp3mnPNznPXopY8A8l0f8KRkzNjJTPxGPKAQtj9pUUVC8H2SrHNalsmykDl6+2VH5dkoivmmcFqZ49WIB78Z0UjOrBmP9NYgN2x2ijH/f+lBuDliXijCa1+FYazfCvlTgVy/i6MMyOGT1A6ePXRhRlKejnmfeltnmx7CZKlcJvPilIs4ebZv5gpMjvAwvY9bx7Kdy0gimbpvoQNWAO/bMpyOGh9XYJGh++3zJfU7Q8VYyYhIclkvuDBhp/jkg7toyI3m3qyz0ynSHmMZ9QvTQ6CGEZ9tiJLYezSJU5g3WmcGpePEDLp+Kc46Saf8mZl3l6VhYuwqoRq5sm2ivhj1EpUd3OTJo5c2f6OuJ4xkZCh+okG8kxEyu62CL94lENF2l0wn5ISJ33yFp7bTlrDhfH4W9H5DbM5/SOdjsY8jFs4hnTf5GCzs7AI94PTHr7bvpPK7jFqxtvmdpnB34nLTnC+CvO7MgEcXyvd37P6+wZ8HC3/dfJKtfIF/eH/yW3+UwjUzV0W71ZMRF06ZZQR8tAM4Yk6zovHI1fJQKlP5RksAYrHTSy0Qx0lVUEnev3m1+lOsYkbxfmLm6xA2/nuQMLBEfGfblDk2q/plQ1R8XLNVcSKcqsnR4zvZIvNfzbvfa9VnD6L2PGNafN1rSTwQgpTlmuVn7w0olP1+MUTkRc3xV0fjKCorq+6DT42VKhpGcIIbPxumJ1VVT8xffRs1Un1w3GPM3tT1Ytf6B/4v30U1XGCxViYhDqzf/lqaYwTmoLywsJdpQy94dAdX6hkQhetjcxTKF0zDJZB0IDV+U4NjDFDwFZiW5Mrw/61aHujgrVMJfJeJ4UARk3o5busuuUrocAsOE3BY9rLhru1wFtvz+9/z4s4rsQTCEGHgvMhJ5q+vA7F/PYVLPbxKZjoVkZdVVqDi9dlT6jrjhgpC8wY/zmurFxS5XRNsLork+fdiGdZJNd/S6QNWTgZBIuHL+ek+qEa+WD9WWZYlGT190MJR5YPF9kW2eMw4aO3EN1101DfOtjhd4Gb+58O3NGWaU9jEC5+US/35nET0/1R72n1LCqur0A3ffugQt1yWsFdcqGjbH+maIi5SRzXncN/zThD2EVX0g693at+WTOL/14KL+vGquW8TG66QYinv9knU8C3wZRMs3UK1u2EFta5td55uFPDRzPO420HyfK2MEG24H/OkPO061fZQDdGVIFWLJzVekI6CXMxnMt+A5fMfXoKDf/WVb6Tv+vEMvI3K9U4vbjcOiKaxPin5JUYr10vKi5TK2tUFWBLPAC8xU8uWPgyYT51jYXcCe7mF3gbtadpgrQsenJKnPUFWjwHDbHm2+3zo36Dr3TPyXr9hTcq8E+IRZSq7y/VDOjO06I+VooepJeUeT+m2wbtzoA8/p9jvMx+XYg1QMCZVP9TOdiLEywc5CgTaK0CH6F3+1xD4Unut79G3mtQLHW61QRQh8e1bcoANruw+Zn/X1MGtPvYOlPYbM6exNsxr6XwvhbW1oRXCffqXfHL7JA8q2K1eNxqjJKYhw85n1SopoPnU7AbpkNbONJAv2vOneISJWVNHlZpN0DvRzC89LHBErPrXpYr0VCnLU3ujq+XzwyQjCG0jCU6M014xydFMRwz29iSTYsMYe5xCNUDPdJ9tMP9s0EF5vZC/Kg4TCGVIW7iAGud+t2bUWCeLXfL/Ay/koxOzFqBxJaLz1vrNfzDt+afmK528M92IVsvXrsGlW3KxyaPHKZU6YeM0kXosMpGIqiOUfloF3axnDWycxI81xbdPcGWKUPm9XLLTdi3+R1/SGt+t8Zst5a9PVUevB3F8msnEnI102znKGgwhn9ofX0zrRWmgcaWJR+KuJ2/5agmtbWWwznvHAhRM//8UH8x5tjJgfmhmwuN2yuB/cUnIreYLNMrwIec2//WSOpQJrlxuxQdTK6foxcvDbjjOnDE/leFU46PG9y0mwLIvN8mD2jR++MhtP7TAHX/WGKsuvGd4nvi09u9qBRNHX9LF+1M2z+DqKhqtDibNR76KJXavaSPC1Jp71/OGXcZYgFMQPNvBKRmzWclO35K5m5LjC9oKigw+WGB+xeKs7NM1CUaPIIinxL+lnmMXHTwMfvC9z9oEbjds+bsHQ1xmJrUJslihRWjDxRiRYz9rhT08graFA1lSgzZz9NoGJcPGpFKmflOvBeYGD1hKy8+bAHp9d7wAqogivymrgfHIXDD9+wIpx+CIe52+Ay2tnk/OnKtBourcOwTgf2JrGnk3bT4EhURadkIuepHOEtx7g9SISx73ozTJE7RGpzbEk5llrbD58hBrE7fQkrlTdhikT5QqqRnixSJnygbc0pEhThCeVRkeP5opAjsba22GqJAmflGKajE9dXom3ns8Rp8JD0c/x4jK7VkZOh7xXQeOSzbLROUfzZa3GEKS7I9mPXZOOunRykLe7r8mGvV30lvOVjpoII/LDq1I5L8kE1sbymMv2WTN/334Cad6JLDbXUrpozieBApoVRTtIh/mHx/DOiw0Jply2P/xoVKB18o1cHfM0TAa8d7AqsMCCOG6HBfLJh67DDxJP9DPMNBMtWBVHl0qjN6BvUfUjCOWqoMI+8aNZzJiCLt8es/ia5/b82OUKPKQLYUUi3tMlVcLKsGXDJmWbuPac3cikP+JwxbzDJmqmzDxbcOCOwfyF49+IxeMIUyy/qPh+RtH8428U/XxKSAWOrSwoOUMh8op2veyXP/y0gJ7qO8M5YvaYFccEpkKKCd6I50Z66ROgzPFNliyi3UiCJf58l1Ybsv29PydaAdDqZ48QcVNHfeypKhS9YLLAQj5ix4/vISmeJbKRP2o5lkElwba7xMQ/7tx0ufz+U+HIU1hQJTH/RlJ7BNy8HPpOrS2f0ddS4ZuqB2pkum6Pc7QLDVIxYKFsoIgutJQQsYIKs+xu8Tkqox7Iod7hRmoDpMy6IUB9aXIWbqhXfh0180A+oj2V9/qERiXWMezXx4GEq9e6XOlMN8FUyhMh4XlEy7BELVJ86coI/RGTi40RzeockLj/pA03O8ggvrc52YvKveSwGzx9BmthW3azeB8lQosyGVxs1CJDi6UUIzpRdKIGGXbRlMYnqp+2uGB2dXs09L7VLUTcMsDypH1KNo37C1zEU0ziYxOVsxYXKlRYVZmlv/uGyxuVokM4P1n4Hu/D5+qTHiUZyARH28Se05N6hATfawrc95r3fwAAAP//pF3JlrIwFn4gFjInLJFJJhMERNwBWiiIypAAefo++Peyd7301LGgMnzTTeVuz4PZY66xfhu5YKrxHwdunuPi33hOzusdw326Y0QcvsYgDbc0h+Tkp0j6hpK50rdZ//Y31fWzmiw+j1U4Dq2GjSHtweSsEw/zg/3BR8nOzfV+3Y2ggoeGHrR4l3yq2XVgL/qE7guRH+arcFLh9HolFMWOkaxe3m774YPw3+7wNOc/7c3Dh8oX9PyNjFI4D5s+3+U77DtykSxLNazgcgyvCK5x0ZC/Qm5havk6YpcgDcinBzFUz72LtMd1Mpf4Uspw40O0KvxcLuc/vQfd2I5YD/ljsh4LJMvTLkNUz/8ck92WzIDVrTkQ5UDNTQ/9iaC3si/6m6MG0JNuq3B/Ek4/vg7mZ5wgCPdVQ42Ufw0//QJtvMsJyQ8pmN+TmsNYi8J/fD1/eRLBUm5rfMhjvll6JyugPpshPgqPd7B2Wm1puFRLHLSxHdBtvmFgHBOMkvEVzPEYOP/80fX7yIbV331qeOfVBs3hWjZ9kZ97IKr9k3DRfQKLO0odDNtSQaw82mANR0DAWflz6VHj3J//C4GyX2bs1fHIWMRwDPnrN8b6NamTcT/GMey+F5MA0FmDsEspD3f+E6L6muiJNNu3GSal+N/5Z7mnuMo6iRJ5q39tMh1pUf/GB+3S2xIwsjQxlDxbwrqtIcaGW1XAObnvaTBOfLN+rbmCrXtXt94QfcPSVNneT5boUQKWOdft0Kl/2fuBvg/nHXwOJX7+9Dd5lD0C7Fy+HKhKeIetIdo1y4JfCIx6FOBDfHqaE5uzEB7W7xv7XIUCAZ0VHu5faI+d4T2zHx8D0RVv5DOXzTD+rtI6dUmMUWxFzXySXwh23aFAyXCCyeIlLAOejDQEdHEoyfpQCHTW/EhPmz9d4mxXqexvNX96JaFu89ABREihR/y9l3SUTk+IGAnIa6+jcnl8lRr+5gfFzrNcb5MOf/iFQMkW8CzWYla5zyjhTc8N04KnEOr3o0ONro6Gz6Hc+kvftBIf7JUG83u6QRVCuaLJnQfBOv3dZ+iBy9/mT/RAePU7V3Xb24ht1bcYf4waGfx+/6Y/mlnzjPsvX0CL+n2XdDvspG5+DluB7CWz7yUdkDKrwvuIzQNzNW+EPawVut+Jf8mk6VoBLw490H33mMo557UKEGHHo0UxrWb9+UtqcFd64NSEjb88xkxjGx+fgTBs+hNBelkUMvfBYo7+88LDqIogDtTVL9fWWDigqX5Jf/pq4xdHe0lPjojv1y6gUJxkqLgn499nVvRHAnermFJjfjmDtPEVFKLrjmKg9M1EXSWFqWUoiEgWSLb8w4WXTxMSSbytm38zeg3H2//xnenJFHpnFaHSSXd8tD9hQNNUQXCCzotseNesXtBFUFVvH7TTz5K5BOXHAet76110xhAMW970L785cI7SrOeMteCHF1dDuQSsuDUd5BepQatiHADr0CWF9yw90A0PzMW52i58qGJBhNG8JWsRgCfMd7WDt7yB0SebOWBjLccHp/sm65oCF/ZH7kYdYXTY4o679sc31L8Wp2F2DkoN1T9fwDgqd8mWpxG4RESn+1vcDFOvRr02rfcFO/VqJZs/9eExO3Jo08/D6H4cR7Mcx0ds09sszGv4my8i+FgO1o+564AydwXRcncZZv8JIyga54D+/aW4ZDlcn/DMHI0Y86sb1os0tuBPOFm4sf88k4Vt1wP7E814r5jtwDJscJDc1B471bw2S7B/QvjDc196P8ol+rYR/GiXjX+s0aRhbj3Ba9mP1EoeUSlseRT85YfnP41na1sVm/6r0dbPOEjYdc4L+DnHL+wZB9LMSyuLCi8cQuy/tn6/WWpV8Hp3ntRpwkf5fZ1UFQwXaSTKpj/XSUlUyNHQQ0xjrGG+VTjqG+ULRmK8go/82DvQetQWvRSkKelbKHXgrCcHXzd8+6rOAYHTtwa0ulzs5i2ksaht/ocILxQ1s25nLcxyf0D8EP0Nk/ZOe8AdCwtxm79cQavxYFu/9Id/JPnWOaiiecF+qfMlPR1rGUqS/EBiQesNv1MChGT40CB/Fc30kmMfRqqQE77SzUbY9AX45E+0+UuUCH1d1rDv9m+kQuMUsCKadJVTSwHxJzANg9+nKnAlvtr4mQ9mDQY83P4ebBy1t8nWkDjABvUVo0d2b6ZiesSax+/Sf35hHLMohH9gwGQhELL1Ab4dfB/AH9oBkxveYdDn2hmZaPPnSrCI1suHyI1O1HecE1jzwajg7vi9o4c/hyWDNztUI/p8UStfQ3Pe1ivs/PVNlL97nIzsz+9gKH2fP39mrgL+ZrCV3Bv5+amfvlV70SXY8A5lMC0VztTz3T0TpYrKgGWGlcM4OOs0ya5Ds+UNLXy7RofYdxp+/rwHVZHciVpjLmG2Mevw3f0B1H3KoFxzeW/AJz99aeAfOjD//Okhkp5I2PPuIFbjWEPAHVYiSaeQMf+mrgDV9ycNtcAH4vd+dYF1DxKiPQOhmU9/1hOAbxxTL/RXsHbeJMLoaiY4iNxrKcJc9n94gL12guWcvzkVrqkNf/heysdokNWgf/bYrO/7Yf2c4lajYXdEEKltMqs8eEK5qzRsB3YbfNiduHCYA4tc068NeOHF3eGrsq2N/0/Bwrf5E8D9ucJhGuhBj/i6giuOShzeii9gelEgUALRoxsfgX95azQWJvVw3gfjCBMD+lcAyOt+NcF6sdAqc+c/hP2RnJK1z51KaAPSEGYNhLHbolb//Mk/PLvOUfFbz/g4WTZYND5BcBGaGkm8fSjnoIlGrYyKCJv4OZmUcF8Rrv14RoKP84CPx8BST9btiCSPr9miHQGEaj731Nn89bRL3zycuZX90/dLc/m6sPg4MgJK+B4WrcgcuOl96k5BUc71ZdKV4QIZNUzHbcgt+USwvPkdEa2jZ85u5RbwhMJNrx/bclEdjED3PZvYHTjDnNXPNYe7FydSY1/bjP+tX4vEBQ3PiwHWKn7ngDvfEPUupgHEB3H+8Qs2opUBapcwhmJlOVgX+zaYfaqK6nq5vFB7VEq2bH5B3fIvtNt7p2QRTwMBW/2CaGKCm59/hwTeHPznrnnCyMtzofF5a9g8Qj8ROcfMAKqrJw3R1uvAW7/w5y+wG30i8P56xxoWDzLRoI1YOZVHQQZb/kfDoC9N8Qy5AqAJyWg9d8gcf/nisQkbWqprX/Kvrneg4+0IKqT3IxFRMaQglIYnxpfhU7LZPs/aD2/N7zQkbJZBCweoFNTo7newbM+D4ytccQJ3199+NGBBOp/i79UupbJ/utrt3bfU4h+gpCf9KIP8AyYa7Ht7EC9S28GfX8xbopjE39W1xuXvGQltkSWUFZ4De2aE6E07Pnjmg3+HpXkdsKNrO7AehlMP4D3TsbFcdSB+LbmCi/63UnSdLs3cdscebvuPPL/kE0y/+U9fk4TtthCTz/tQ+jBsrwpRPpQErLzrBngHnkvDFGRswZi6QO46C33N6ZTMxz7s4JYv//B7W+/5CNcWmyh3dx5YpSaZ4dfPEtJa/RrMl/SjwsunT/APPyYx1n2QPdYaG/LWDqFKTF6zH+qL+vGrBdOOtNyvPkSN/vlM5pJiBMenFdGj8DgEUvgyHbjlvfSQSBabiTnkMF/7Lz5a/AJ+9SPtfIplejjd3mx+H0oX/uo/1Rqrw88vqOOd/iF4pkswm11rwHYeArJufPLPTwWt/0ekRpsCvrEVC/IL11Mkkz2jt/y6wvnl7oiCukfDkoPawx72+pY/TGzRdKHQIlXKsV9jrhx//i576R49XB3Evqy5fCDzgp68eVNo1uyS68DQnzxZTi/FnPg2qjXrlGs4NHHQrNxfq8Nf3mPub5dydIXwA7b8Gok72rP5FqUEItvY/NPhy6h+THr4iHufuqugD/Rcviz4G28HG+dhlTxggUqgOQ0iPwhm+3BzIEKfihb81TeXOJPu8I2KBYGlqYdZmpwVGOtdxwio77KnhcVBPR2vFLFbF8zf95uAeupKbCKygnbhTrVmMRtQ2ys1xrxblkHI4g8OfPscLA4zIvh6ifqW93HDvzx+04sbXzls3vJaUAJqkLiro2Z0ywGCLd+mR+HvnMzpMe/AO5UttIDbflgvp2MKloR/4tvX4ANysNQC/vyFndRJs2hHBoHEBa8jf/JewXiX8gK+yxhj3069co1AmkLqZS31H2Y+LEb7/cCmqROMM9tu1k/EuaC6+BABeliaZYm8HrpvekZQN7tgdD/PJ/QWcaX2C80Na9VWhFVRvCg2lhegUukQMHMzw97FfLKRRHYNy2wtf/5yWJWIQHBVrmd6sHWn6c+eZsD8o0z4unAX9v3VH1lYJhgptZ9s+W4HmGO6ZPUOwKSPHddDW3DRP//FTqwhUHwXCkaVVoPxWlaruul5WnAFLKd9a4fqhh+IfwrRjx9y7VffddPeGPhf/rv5A3yVBTFhs31bQZXqxb88XRiPhADjmSlEdN5OIIDkGUJn5zc0+Pn7l1y4sJX8G3b+oGzO2eGZwXjac9S4Cxe23Fz8UU6NO2MXxHvGOyRatW1/EZZdFPZ4mEUMt3ovNWR0HMQwKXWw1YM3P2kN/+o/mz5B0y9/uB9vraLY5pWscS7+q0cATVRXJMyHGtBTERjbCVQOoy7sG1pahgp//nz94YtzUJ7/35kC5X+fKYC7x0iRmi3JsBSGCunl2dPjolml+P5qCLhZyVPreHfKMcsxUcrByWlIk6Vh96DP1O7hVGg+rB/Gft+P+2W7KuruJCwTEw7+ye6Es5Bkw1w6exmeB23E9iSZgPdPcgvuN1Ci9aw+wDp+lRS2+O9Eg061hiUWPx+QKeBKmJ9wyaTsgAGPfRWStR4cNoqxsgKYPQkS4uA9zJmU6rBVHy/yHKqhmdQP1OH0WRVqH+oADUDyvz+2mjT6wACMJUZ4pOaYKLoInql+wLb/uppMVY6iojn2Ax+SXdksl8fRAcsoYuxpbAaL+xYJDHUEEB9qi9nTT/iEvbPKhBf/hpL82RoC+AUu5HE+6oPgvjkCCbxn9Fg9JEC9711U4X36UH96qYzh9ixrz/QKyYnd9GZVH9kMqBfMFFehHpD8Ifgwbnsfu3AtS3LOLh1Mz5JNVqrpgEXjgECXzhLe50qYzOFBrGD0bXmcRkZfzvvkG4GDY2h4vyd2MjfQ5CHEnIId+jcAyr11XTu75I6iuJnY5wyvDjwI75na7l5IlkFSIfRDrqfO5a8smRfJT6iQM8V+ImLwtRdZBM97nJFFu1YBq51XDOPl0mIjv9tsWVfVgOnT77EndBis/Zb5mbiuqM3qGvTPEhfwUX0Q4nM8JHOWH0YwvuyKmk0pDp+lNCCstGeLQxBy5bo0+K5KUmlRw5SMRiqlXaEcQzvG9t1Kk0W2ZB8mXRwjTlbPJRveJxd8AvqkdpG7Ax8euArIkYGw5Uz7knVRpkN7J58p3h+ycn7dP5WiFWFAGJ8hczbrzofGUU6xdUgTQNJTbYDo7JyREr58Nted8oG3e/ZBXLNWbOHfUaud3fFOnfzhmFQTlhEeSO9gJCdPtvA7UYaWI59xppx9k9bOFEN8fa3UhcEHbD9Xwf1ZAmzzBzasj9qqtn7WI/VPbF+u51SOoHFUU7TGwmdYruaXQBFdTezRTA9WL9IrbZA0hn2rFcC6e8Syug/jEM3HsguYQk8h3PF6RD3eT7b34WRQUa/H+uORgPn8ip2d4diY2qzjzNlfRwS7neRj3RakZsmoOMO/tdCQYB73w3r07i08B96HOvElaRb1JOjgpPtfJIv7rFxka/a1Cz1ud1k5D8AOx08Mj1LQYdvkeXN8XN8RsLs9wPv7ng9m7k9d1SCxY+yrfJcwYs1EWw9qg/XdkgBa/V0d2KWrhA9RfTJnv5xCpWfyA1/i27Nc4Qgz6GZXHjtiFDEhFuuP5jiVT0/bflzVx30Fsck7BGr9y/wO+/cH1rxpYwvoesOb2VJrwtTuqNcLPfhOIEBw25/Umd8Jm3N1jKAnVwHeP97Phhy9rFXcvr5j+z0tyXQ1HyN0orFAmvCdA9pzka89tHtMXcXBzdoMT0Nr2pzDhqJUyVLlTIWnr/fGe+0KzbkpcwRnq0/IckpubI6mJoIPPe1JM3qTuRyEvQPlPrrhotCfZRtZfQazrA+oP3KfcnUPwIX73aOgNrmL5XI4wxmQ+6GiaNp/mkVG4wwnwboT/pAyNpad9oRYLUUC/e3egR/+epfPgZzjtTDXF1FjKLfPidRRVzUs1DwC01B0kJbJRbPojamruy3mEbBDkklXff3f++CXngxjJUUutG6VR6+nKW6Y5w4IWOKfS+2zlCSifHee0DbWiaiIuCYDXl1DaffmUAfyvCHsqBSQBTuBtH8gY/MkZBYUykdP/ZPCNRO/41QgplCmtjhcktW7CpZG9puHXh9is8BwB8GPn9yjviSUu6sjhK/ktp15GIN1uGYE+qqVYIQiFiwwlDj4cgSfFqCUwRRUtwhqZn8hi12cTAHypw4qc2kT6fyR2WvnNTwsvvcIAeEilMvx7/WEG1/RQ60mwbw7eQ5Qp+dE1vy+nXt+tAa0Xx+H/lkhHthiBipMuQpt/at8xktVV0Dwvdq0mstrMz3eX6KCWDgh6IrzMH6GVwrMzjlRXQ/Vobfyaw+HaWpwwNnDsHqRe4df9S9BipV/wSJE1w6+6D0hLLrNgD49rQb+6eZT86iEgJaSlMMlqgfqrme/qQ9OYqhpyDv4VN7m4Dd+8IIMk5r2GLCpfE8d4DkjxHb9kZM14vU7/HRMROKoP8qRZUcZxuDNqHE/PMFsoBHB22HlsRejA2PHy0nXFPNUYaPB/vAbL/XFOEbmnN2aySR1C2+pdcVo9eaEHHcPFUq70MO4im8li8w+gu/lluC9IU7mdOA0ArLm/EKgU9tmfj/mEdDvjkdxnLKkjWdWK53UR3h/rTkwqR9eh7xdmkjwOKeRUnDSQSODG/bSdQBjyO1n2HhZj1H5Atu9JIOsjMp2V2sQXNnUI1WHxazb+PK3DgEb93UFrrfdRFZ4aUxykaEPyuSUkF173Zsi95ZiKJxO5Q9fmcBJXx6KqDSRdlDTZur0EMEhHV9oSSJsMqc6QW2bL+p95Ouw7kPowKZ3CcWRaoOloqsMtQ68yKIrALyeuawDZa0KHLvDhrfOpYLw05oUWbrZSJUbW9r+TjNqcrVeirJdh3D3nXXsb+v729r7CBYy2hFNGrmGfIViBfqf2+DrK5zA+va8DnzYoUTvTQ9N1iMLYWncMJoWrU2YZNEUCFerpnn2RSXDoJLhgyGTLNE4JMvSjyP84fmf79WAgQDzQOZWuPG/DqSk53I42aDG5nLiAdMH/IQbX5OddHHYDNn3Kb/9Q0HWoRoGFnYGAatghEhLQgQm1uqZ9t4ZLj0ekqe5foV41qpUKfFNXS5gAaaZwv7cvOkxTTPAhqjwYejffIrSwm5WUKgFMKLLHxn6LirXiHcreC2fDWI/vL35PgJj1GoYfx8uWOf5xMPBv5/JLNufklkRX0CjFTjC8v7E+IfMOnBgbkdziXv/ly+vGHH4cEOHkr83jxwGtBDReuumZsmw6WqSboY0dOJwYD98slX/hQR3f07mqj65sBm30DczjsOcKC4P6+S4p2FTtIB50bzdlRefKU7u36bVgxLCiKYtapa1N2flT+x/epHi6cgPbFk8GXxtd6YHQfBL1u+kO6xfUYb3/MsdBPqu7nC4eJSG6bc218SLCWQ4LolEhwtYemck0E55A8nbfM8Of9I1lbYGLhiSwNKj1dC0xRPQIn4u5nx27BX2t2zEvkQnc3RpwkEx5WRse1w3zO1U+L/9SN1ZIcPyXoo7jAT5StHhjwQs1PYjZPmpoB7V1oGeeHnjq6tIN30+EOPOGWBSeYQL+T8AAAD//6Rdt5KzvBq+IApjkl5KkgETJAyOHTiDbUyQAF39Gbxf+Xen3NmZXRTeJyklVjnGgipCFQgTCRW9RJ+FuhaACe71h0ecCR/fgl7fHImdXBI+WYK1h3k+UZodNT6mt0eNksw2GL42u5DOehMhdM2xuGs/BU+PcEXNYxn94cnXVnYRHPBJYV4Y1uGYnE/HHz+Q+FFa2XDV6iNkN3phcaGt7KXm+zkgFixxOdfjeFYMDNfqluDne1vy+ruCGsH+ThlZbw/F29t3kkqbk8mi0+ghvrIsqv/wOpbfZjbYi+n8wxMSLCfEf3ionaS3zFbtSf8d0K3RMX5LVJYVhXfphkXq2nQzYvsJQePTVC10fZ4QCZTk2Y5cClLAYZrQW3nYZ0smZGfYW48H1rrZw77enYC6TzDSRXQaSl7IiyPKOsvC+m1VtINahwL85vMKll/UGc09QbP/ItFVZe3v/4FG1hwvvDYPh5gdHfDJOaCNp5fhON4VZ34+QCXBVyU2X9YDBcd+MZZ8vWfR2Em0Bbt+FLjKU5UPDzI1cDlnGSGL6oMmUvYinNY3TB9vFhSjutcckHVfJNHjwltedfn8XvpbJa6tWWgc2HdC9/6S/PHR9DzVDnxrY83W43y36HLd5Qjbt5DZmbktx7d/egJ6RCFL495AA9XbHGWdYZFT1pR8wCHuUGwubUKQcMr66gUa+uyPCxIVsY3E9f2Z6DsLKO5/8+Ez5uf5PeWRzHqm7VBwr0BixKP6SeeoLatogAa8grhy16H+Vp2ucLs9SqxuXMPm2/ToIklfSLQU7vdsiFniQseve+I4wxD2edc04PluysgyX5bV7N9R8ilvWNGeYTsdjsYdhhZ7VJ39GcVaJ8FeVU8kFdAb3VB2CUDLkivVI2/Hh6fpC4A12SbBhj8KutfVCJ4LN2frz7Apx197irGJCV5cTzZN5YTCPWojEs16e5SzrwR3dn8x95MGfDjUzR7EVpCx4N2o3bu2JmnzeOMhc+xQNtEzgNtwqPGL3w0+HE9DDcvXccW2sx/7rnJVAkV6W3gweoYm/Wo1cKy/ATt3rEfjKldFlCblnVi18uHDLksCSL5vkbiv3amljjq/JbQ1PJaZtwaxHOCsJZ/HjQU3Pwgno3gNsNpKFltdLiZaQhclILerG66arkDjRiEC+k7JiYrEuJUDU+geHXChUJRHtOh3IpLQEnaUeGsWhUPx1u+IPiNvnh9qNq0H0QGEzjmLirhEU+04d8BhktDltGhLfsdT9dO/zJxMp23yV3xESWYa5MJu+j/92znZkUV0gqKTgu6KXhw4w4NrIqmMLh1anfYPMuNJ1hNx0f30NVmtLmPBHXW5Rft9HbJVL5doVF7lpM/5ANatqfuXx0TbPqdttB+KsWxUAc6qsWIXLVgVy9lvI0Wd+UtSDXv86eUwKi94ST5l2Q2Pz1af+ZcuH+u+nC6nVvjlGXQaO5TxCyI1Eg2lIrvZT1YPBb1hme0Hqs7zaXLMvNFErX+TEJ+ufFivy0Rtdo8PC6bPKht/+psLMqZvkmoZX7V2g+6Yzuco3fuffkblTbtiuX5f0Tio16NGNrnC/MZftzzsmIMuTRPjgZLAHten2ALb6w+zXrpnfGkeHPC974rN/ZXxw7hX0OcVUhZtKhdN2rdzIC+7O8tzd9GOnqB3MOsJFqxXoT3F8rn66Wm8RHxhN6m5yrVZP9HFjK8dfsYUZvxkVmGty2m5MRvdqmSBeV9PDNmO4gZpUfdlhvDt7HrW02j2hyweHn421Fu6VS93zll47ct2VPrRheh8vxGPHL9hN/tZyKpIJ+/hw1E31y9aioFIjMwpQ27t1CsszEAm4eoVFp1ah6AF0wYTQ4+HkL2P7RbeFnvSMf6k884oaoDsiRvmaXoaLi+PNf7p/b88bmjvtqIV14GzNSIR6rRTmv76g4QhrgtaLGsL5vog2LVTe+SSlehh5qV01lvh9+Ffjmjfv0SqHIKy5cpyWSFhGnUW4VtfTrYnG+A3zysx2vZtT7vtkOrNpwJ2wIlZyNRROrjehIH4WLfaweqHJ9TxJDPz8bFa7pxMqmerKyZWuqzLEavigKbzySLr6bFve/bZXrXv5rojc3+H1DmeamjL25Zqg/0oR3MZCXDPiEkC4T6FLH7ENZLQs8Pp7O94Ics5kA90zM4/ts1cfhTAHZ9XtrLjRzvjyQQv3BDmpKsj5xf1vgVNlVIqv4o6G5l7l0AjIaeo0nkxjmvVgdXN3VC+8CY0tadrhwSaXWj3sp/2YISFAPExlzHdSY9/fnlaLTFVjmlYUmV1x2CLsvFXD1O1bS00568//9xyaeq3ui8OlOqf9Nzyw+eZ/vJLPHoHK+t2bjyh59byKL+xBvEsCAbYt37D9hdfaXvoohSmmn4wry5mNsYju6JfvQuOUZZDtPMl0O36wNyLf2y5bPsGGJa0mPk4ayf/qgVAd9qT3rruVnwhkgGqFbGYEy7X9hiPnysc0mdJ/DVSwmlxit9gzOd7tExifOydhaJdzZc86/lXyfe3rQDp1dnhaXeK2p9fRPtXrmEhDFU0BJuh0tlXF6kWjXvOZNuw9N0tTak867fpRXqAk8BHFp/2ZiaFYrSH7CT0xBNPuJDzlSkCL94G/RguCSViaRi8WLTIVkafYvjpW6c6cSrJXYQ0KZdSpH0GncSjXhVsns9Qv3OTanP++6eH7uNioKLLryV/q1cAfZ17VC3kCnGK+z3oyCLMG/iN0/l7UF1tO/xtlg0f9vv6iE4Zu1JowjWa9RfA9G5TZj/FKvzLgwvnWc188ODj2nINrdjEwj8/vHeXM39WFlnfyqHtruX3+KtPrD/KZzEsleYMNJNjuthbfclVT37D2fU7PBXWt50EchRg0mOX4fbYFoO+au+//Jj4+sfhw3tzdeH1UK+4v61QO5HyJaLXLnLo4jrYiH3Wao3GfNDY+vK+ZZ/r87tF9dH2KJrxaILIpxAoloDHZVSEE6+G/Jf/MVcb3XDaXMwz2ObiM99L0fDxhXUFmWX85w/KiZzGCITp6DOLGqz88Z+2ejUuhj6xw+lw9O+KeshdFmzSyJYv+dmC+fuY4/aPYiLRW4QKKo1Wdl3blK8qR3+ZXo4XpRK204bZuf7j89jAa/v70699XixIOKUQ9rJ4OaMqNjwMp2Qq+wlogxrBHxhWtGU2ls0IP71Jdua4Kqfmmk0oDkwdM/2zL8VjcQA060MWhblY9L/8uH+zav7/bTkEmnqHGQ/YKsyf7aiN5h7wUIlYpCrw4bZs9+hXf+bg8KzThk2qw6LsmG+3dSFiM3cBCKgEV9mUjV/xSeG+CTssY5kjmjunAYRCzIhTGoM92HIfAImUI8NvWQqpfg3qH54QK3+I2YTrpwJuLnzx6VYm5ZvV0R2GsrCopmWbkA8LVGmmc/P++pelR/GMZv/IbmeeluNvvUY7GRh/761S/uWnoxO7BOtF0E75a5VDeVmuiVe/BTQ0sqWgOW//+a1iqV/yCpaeHWL0PJGMYyO19Pn7aLhz3Fa6co7RXE8kqMZPxutJe4PGdJmtf3kHiagEv/w+pkprT8XybsD26c9vmbz18hNujeGnL3GrnGlLiTVh2Ed8wCL6cHt4nD4p6vJlxLxjdEaD0q8tVGyIgNF6igru0UxBM58S97b6oimETQ1zvsF+/oN/7kOjLz60ZZEImM/OW4DHucG4n/UYL6toAmf3dShXr0s+dl8z0dO13rJVgvcFP/gX+FvvchdqzPmpme6wswRKn9yXix/+QXY+yVjemW7GNhf1CfP8x9rreOLjolYCcHP4znnTC0nnoQFAqbxhUaDebBao6hVCZ1vSJeI3m3pLNfjxM21Ot97m+919r1u0O5Idf1/DoS/PPsz4TOe8rZWmc+vAS4gtFp13LR9UL9mCcJoEPPtv1JXznrl5PIh9bEZOz8MTQH+rL7rcJQbnz68pabmx9MjKOir2YGaPVJcu4YSVzeNdDsNBo2jWg8yqDmk5KJJew85AJxI+lNwecOhSyM6FzKxEOWRTYEkunNYXzKJpccn4slYoPPyywmh/f7a1/r4FKNpPjLj3eINYFlgT2DQLGVlUHh+yEzyREN9O+P0M7HCMdoOie++lOeu1yF7aygXLenpy6SJYG4jO+g8i3zJmP+Ih8dROFWw9Z8+w2G+Lgb67/OenMP393C6S+YwrXpH1cK3taTq3Lto7bwkjrIl2WdBggK/30Ui84M/i5XuhC289NwgOwxNqqrOyhdPdtpmtO042vg4hBrMkEibrrVxM17ZXYCEkNxbP/n16nu6OjvB2pDM02a2+f+Xg+U5K7N3rWI724fFGNa0QHqtJDfsPIi7E1+DDjLh42wOPNql+5smOHRTNbhvqGLV+i93TT7+10+UxJhA9jAWJuPhG/SfPzpDF31mtTRGaFspJg/DzGkmuyMs5z8sHmPNC4q7Le8iid9CBWnl3CqO8K4feqp+QLW2TMv0jtfSxjq8gQHMgZtK1xXeppk/I9Bj95Ut8CjcREM+vCWHBii8do6n0vXwmJFqNh2LaXzsFNlf1MK/HnO2Jvw8UXlnA6GJIYyQvTssGvFiyiNPGm5AHz+kMjS/Ff/ms+OPfPiUrPDH9zrkvPfDf+Ab7nPPhFjU5co9oS3B2zBHNGncPVe0UxGejW0okektwNnJg9qz3eCXhDs3rzVQe+AI1201twXpoXTqoD6eQ5jxE++Xj83pAOa+fPFE5dCWJv0OZDd4ltyBx++JP/4zLHEc/fqLaRr22zOWJoP9fewq0/95TYNtywaIrGsIhvmhbRGIjZYGQ8+KxX1+P6D59T+xY7a/o+zx0d7S+45x5t4/DRRoJlbaQ0gMhFPySr6/lAGi8L4hbdLbNbWMhQKKfKkKiNi6GSVqK6NJdVLysFTmc0tM7BYu9e6o8Plk4mO/DGd6H4M6wP4TleO1fGLzJK4gnZ33Brld3Ase1rpiTNmiHS8cNUJLjSEf/9m7fsTco+uE0lOyyvLKwxtVuC/llv2Kha48l26WmBNuLQoiZKZtsqt5oi1YVN5gTdCofTTs5oqS82hT0qG3pMzxSUG6nkoTRpBeUNd8aLXupIGZbqby8Xt1BNc0LIyQc83YYXtwCbXFAWJGEAk2NFDxBdpKI3R51E/ZA2jOSbGePXxei8CGf2jOIi/RJrKYt23pjixKCbQBUrR8ZH5gUpmigH0zHp/tsJ7VUArSRki8x4L0LOf4KAYiEnYl/iT27vvmXDrlruycexPdwEFaOBdsp0EkgNO+SP8zSASo9KQWG41YMm3gAst9vWJToU9bu0rUIpddaLJZPz3LkqBLR/PeZv1Bw0dFIeIOrvDnzq3dqvxTn5IJkeWuqffsv4kJQSXBdNGuyssSq5DxAe+ifHSJb/zNjCphnJO80oIvFd7Lv+k109b0UnkjcanpIF1ctgXojCWzdjZ7d5VKdavH6e2LrVdSH08XqnrDDrkLFeBNx8VU8KDj4QMjaSPOSwVXVYOXhLe341UDixgYRVgsnZNvEOLYyES8CetzeD7LaSTHim/WuRqO1BObmpoX4faf4SH8klMqXbsxYXBYBZJ/WJxHG77b7PuUEhOP6iJ+rYp2NPN8MIGvhl3hLbNqjkIcJtLVxoTIcjnyMGlkAfrtzsvL9Mqtogo7aQlI14vfNJZtab5WDJpsB8/Fih8a2LR3YeN1AnOnhheLm5WlAjeyDOd2ntrSJ6gSSw92jy8VdDPlnivdoGOIFwcv1pZwOXnP8tZ8EqWkWk3jwfNgs3h+CHbcreGF1AUpgMtl6cars6RvpInpDnmMtmFjIM90KFgN7F8y2vCPv12S3B6dNjiRzx6M9rr6pqJuGFFFtv1SL4ZEu71C9i4qK+ULOJnF7F4DJtGJWlPvFqIn+BD7PNlhaX9OQnTMqoDJPF5h/wQ35SqyusIvOPtkt7qJdz0dt4BFBheGztNpOv4ELriTYxH2JKu+EVWRBPJYb4nVbXA6hoytoco2IFFPaoMm/jG99zS8acdfX1F5ex6ehP8t8x6J5Pszt80Hf60/mJr2Tsdenv0MPhkqcZZKiwe+PBvD2yrD0akyb9aOTQtSzC1adybR7ez4nKp7sgmpC827rx17bo3LxVLGCF0vOnMapUfWaTPxtzp9isETR1Z2VuWFrfk9btllfGm2rSiEVn/hbThvintFr1N5YWbVyNpjNNoXXDhqG1dOA2A6vDDhamUCc/avNmiD+7kFttBdZF2ITjrKqYhgUJWfOUWtD7tD1GT3wa4tlpHdld6J0fp8I+3RwVScTezer4LCwLsTcx2PYxLjQ4M3ZgoXG4p0NlzQQ0MHne4o2qc0Hfg/eoFwngwV2Cbw3q/aK7vHpyjw3FzlfnMwz9Ktxwvxee+W5/Og+on3EWPEmRss7c/uGiVcKc05bOeyj+Es1eyq2jHgeykblVQVgkHqHh+tObbv9qCjAj+JEnG3S8uluKArcD7ShKk6UrFsl1wlF/q1k8U2e0OgYOAD7cH1RRaoY/42v3i+3CiPrjmbT7jA18GJpTQInPmf1ioU1kFtN2OWTXBD9IA2QfZ8qvKywzOvH+Dyi5i1+2OX0zIohl+oEuOB2zL+lPJuia+WDkaYZXfZ+k02JQxu0daoNcdBCKHi0lZ7wfnqEhbfk0TK7fNR/eCsZucunS7l4g/Y65uy0fqvhkB9QDmZ2Xf/qNVvu19dczW1DY/kpj7JBc05nJI+iwrDsbGx+AVRDSv07vd6Ofjm4x2MO8++JTdqmHRbhx1J/eKyfPbeQGsl6gl9vn+QkrVbtdAfRgAeX5+fyrt92mCRdBN05vJh1ne8dicilQ/tEvREssrEdtNv6/qs/Zj4kVrQT7GuUjbAlYZuFfNk87BQ6G064OmphyB/IN9BFntLfeBV9efWeQB6ZQbzXCrKJaHiALfcDFuwMo6jdXHqD84CcRWuBZ/Uj1e9w9sw9w5fLLhyLY/9Gpd+Q3/xqxeHFDcDTfG5v61d8+rVv5tefPshGdXNz4EKUnNie2Rb0LQsBql2FkDAfCruzRHDgtLtiujTXVTYUzwwDvnsBiYWpb/tOspQ/vg+cGLLR2GMR9a3dzeN7LfhdDiO4O96drFgstV2ingWkxvqZeXJ5L4ebf6G/9pDkQzqbL7XWAiHGX+J8P9uSO+FhQOhdJeRanUWbPp6hgKb4MBC/7BZZVZ/PCdxsTabq51JnQzKpgHhzezI7bdYlvw/3CBIYTBKY1Obi0UIDFFH5mPFrQpNGWgfgM7gs3xlGNvHos4VdY4js6klHNPGk85G3fhtkvX6f7NFluohwXSD6uD1I2/G79YZ3PSbkEDpiOG3pS4FUXRG82KxOWef7fgBN/6xZ6PtXe9gTD8Pl5e+YkXxIOBXRaQDbkWoqJZeNzYl4AbR5bc5k93uPeNZH6LS9mYyswWzlxzkLVHdI58tn+RnNlwBraOH2G6xIFUHTe8wC9PXnPZj79t5OV3o4ym62VZl3gaocVtvi/ff/N6Iy3xV/X591FcodMdKUFeO4Sn3owVJZdG2B99MYzwt6jURR9rEzWRG1N9KBnKn+SXTE/W0IqJ0WERWF4JVNYmELEKvRja3Hws2mXlq6ECtxyvDN3xWDmwuVFnmiQcLhcMjkb3fWUFQVN+a8FZ9PBrMUXSktSkIJgvmeEbUCZl4uGBkLN+M19D5sd0Sc+WFqu0raDD98o/dDZPJpba/v6OneIhLvudfyPj0coZ30iNmic0bTodNSMNeB/k9vvHaKhs4l3Jjhfjf2NOabXOfJ3WQnB1ROi76TNFCPEgs+/p6P8TaiEApP8zd/2+XxerVgk35vuKOiWU5SwCkS013+a38x7tf7HAT9lJKoCaxiadV1ggI8pCQ5J3ExBEIuwc1KPGYOWM1Gv3weUau2MdZf4abk47augHrCctY3nx//n5HTpke2Eh/LYoS1cYX3RXyQ+CaniFvaWUOGuXH/+KlmWwXDaC/XdMnlJefSTRNQsip7OlaFVchrPalB+AYvgr8uzzr/m2Ht+toKzB/IkE1HHOfIzM5rlgPjdvfDt+zcnTA/bH0+fMLNWZt/JivpXPPOGhaJVs+BoQa7T9j5fWLBVrtRqkxBiZhtLABtJ19n4ZQGfPomWo3idXvC591ByLrSbZx5jSDFSxZL5SChHoNRqjYWGYghO4neGSLDnwiJNmY2lcc9he39GbPQE172sAiZBVO8G5j9sLJ2OFZYQrvYa6kMn84e8XH9RIpzXRK3XdzL7oKxj9qPnTDjVYVouXvcU7hsyhAX8/eNnRRoMKHEJetUk0sWpsf5bZE4It62focdtq0Uth95xAj3Ax/NRXGH0/qZksh6+QW3TqaE1OSTY+k0spYtd1kA5mgtmdlWJz7R88qCQ+Y8mbN/hVlXtqMA/bFgWA+DbzF+muGpbz/LEQ8C2rYT5uUEY/g8MJsnVcsTa6phKXOdjt+V2TaYlwPMepwV4qdpp/RSOjp38ZKuji+1HE7u8Ibu/lCIfdjWqLFxc4R6efWJXZtTyVbKIwGMbAVP0tZEXEWXN3x9d0Vcl7nFIK7SJ5R5ssC68NQy+p1iin584O37qfjxD5j0KGMQ/XsxrVcfCudTm9HFow7C/tAZLriF5RESFbnN77sh0KPCu2MUTZes231OLpRy5DNSf77hsHPYEbrVZ40T96QjKuT6GYmkP5Of3qM3aWNA85Y+dLyHLPyqgw1g7VOG5cITipF2lwaN9UoioXmaivmEOoU1v2l0kGFZDgdIqEYOukmwHalt+/RdFwwhwvT+XN7D2vcNH3Ux0vBilVrFgL6znizjA+0YjstxGayfUFF3Iv6mqjlnd9H48RNlvontfjsqd/QkY0DiidmF1D70M8z8h4XZf7BFwWqE+mTWQ8tXO/vfO/z0hLvswx8f7YHHik1V4xlzMZlGAK3wMNV2xj3jREkH9aWRA4u3ihjyuX0I7o5CHLI/2bwnaoSou12xazlt2yYpsyfQvJrIistLNPuvVGvRRmcrvfigYfariHBNJ/HZczNqOdYbXvX78+eHR3Hxrf/4VmxTEX3926tChyW9kcA92uEAWE1+9cL8WloVUvJJtjoOpTPdO2KKJgkP91++8NdfQ4c4Rc/cme8mX9Li27x8V0sk18CVWdN2+NXnjH9U+uweGcv0wEdWqJckGrnRisfHvQa84wJVu/FjDzVaB2CeJ4/5fhIU47N47JEpdxJxBslF03k/vtGouQmLRn4vB6b57h9/G8/FkVOczveEzX6TrCxi84MOVLt48YLM+Fzwb3dW0Fh7EpXvxSUccLWbM+HPnb42EW2pfxkrfVX6CTO9pReKRTFg/Zp1mFn6RW05f5U50mQ7YI5raWXDVqcBtK4XiA0UbCaTZ6dLYeFRVXecUsr9rQCVaj6YuzvYpRyXWQDB5piQ4LxWQtaPUQrahie08eWiHA1leKLDaSoxnN9JKW+9xoCVG3ss0qOwbV79fv9Xj1VBmnKod2oKvW64LE/2ZjiWhprCcYi2zPXWUzFd3ccWvkYuU/5KXT5YwyJFlmVZLNy7BZ/90xW+PquxboRBOeY4Hn79h9EObFuujcYAacomZj0eOup2fhdBdT5bLF0V36LxkSfCol2EFHJTLzl3pTvkzrehUnp02unZtYOaX4UlMbTNMuuux16A3c2Z7/PJSz4lfnnVX+e6ZdbbrIrBVcszaEJ3JOF280TDzZw6mPU3y7Qvacdn8d3C/WF82c070Pbv++c8hDauzxDPlShBn8NuTdpZ/065OQLMfpNgf2hbbpffBnSutYR4B1pO77HwNVlbf6k8CD0aE3xO0WJjXNjBNWpUi83zCNsIWcz2zLBYctRJMD9Swma8KYdI7CukPM0Hs3VstXXGqyfcrpFFsjlPGJhmOKgd92cSip+mnF79dQtG8d4wvBqjlje7b41AzSXmpXYWsr55pHBVPy19RZNVSvHXBpCCk0aizwJlbFKVK1hnGKjqyn0xJrzzwXw7LikmS2577XTs0MznLLva25bHt+selotLyKz1cpkxxAIf1pN0oO0t17Lm87AUFPqphpXHh4e8kpcDlMKjY75UMfSNl7cJXeQhJVfWuqH0HOoK0kze0X4QGefNphI1TbEOzHi+IlSjznvCT59op7zLptw/A/pgO2BRp2J7MEo1AcMXtiT0j2PRvb1zgz56lTD/IbvFr55RKWFEh0lpil+eiMydq+Ksca+cr5RvCkFDMXGvBeb9jH8//qNN/MjRWNVsiy6ttGfRLn6VvzwRatmZz7HyGxpW3D/rMDordmDasxg97VKjOpFHnLRfJexn/Yz4Kq6Zr/Nn+POjkBbP8k+PcXqW8c+//+q77c37u4G997oz8/IGe5DvegA/fex+WJwNt09QIU0xDnjRpOtiLNKgQnUXrKkRK2XBn5GlwDquzmx/ODM+XHVdQnEmvOa8rudvuPca8q/mnnlq3dvD7H/QuRRu9F2fIsRjy3B/+REzQlu3WXzbb8FdpCIhM1+LgXY14HFQM+a1DbFHQ1GeCMa+ZlH45e188VcOeDcKLKpvT3vCcl3BLl61zE2fesF/+ERJYxOLrUgrCww6LbMKTDzUqwW/XvEEE0pdEi0eYagobDPA5RXsSLTYHNC49qetfqqdEGtP2vCxHoundki9Hf7ApwvH9Dwo+uzHcfue3xf/6b+Hm5QseNlNy/PLGcOlFffEn/Un3fRoCz+/clLyVTF2CTdAvzYDI+GotRwluwROWuezg7/wOO26XQrKwZkYLiexpLupodo9nCiJL3DLWKsfOnSsVER1G8n2t38sRZjrgTlCsMqW2edIf/kZ8TOyDn/1hJLjuiHr+pEh9nxPAOmCJ/N491m/E4Qn2vIgoMzqSSFG1KrgvNk/ie+9G87eiZaou+jqM+O6U0smrQIFXKMDKhVdGVbVtBUgacYPCeZ8efys7o2+u7nzW2nnGo3fC75q+WHzYQ58L3x8Zp8OovX8NsdnaZWDEqw1+DRChkGKo5aLom9oP75J4joJO3X77dCvP8yt73C5usQUjNNHpov8dED922zFn34iQeLGaJneDg7sN1pH4vsjzQZjFeUw59d4WV3DcNLXU/PLpzFE9o1PKyF14bbVHNxGdVWyl3VpkODeaxaQ7lGOhsg7dNaTC9maNS1H8Q4D+PX+STyy9TLxedlttRuTJjrar4z3cx4B4sksSLg5n8tBrlSAtLiXzID3MnzP+TiSrNW8gVF1udgmhoR2eNZP20ZGP3wBQ8CYrZBbhxKsdAkez+hG1h26cbnaPztQVmeLnBanKhya/penaDkWVA58HN891n75GxYXDpLsb3r+y/dX4/QtZ38gquzNDmxtxXTWT2Ois3ws6JSdPjaN9I0ByTFsGPno63byyFlAq3Rts3PS3+ypNZ5HHS00TOZ6y7pP1z0huUkKI1lyD/n+WEngLhIR//BGnteD1E3ZdH/1PRyUTPmtD8356rocfvkn3gXFbz4WvayOGMWXpCQ+XixR+8vraJqazLhrXcs/h0uihcaroyPBkz0FFI5wmuwePxf1PeN9esthzsep3Ca23d+tSoFP+5Gw8B6ztinwQlCEpfugSn+v5vuItb1WShGKp/VyV3TOSgIohbIj7qt5hMPN1DqQnTRi4RFZ4ZwnvGFaWYs/PTfJEn2D0cUimecnEm/laoJKtR/M8eU7HxakFeG3HvTzF/35/Dzq49ez57z7/qfff+tphHz0bzvO9ajN6yEkLi4u4sfolMNqE0qULoSynPFkr7y5e2beUD2QdDtU/l9/IvsqlF33CBsI9G2IxXu2D/vdo07BNG8M86fu2cOK2Y3Oj9JEwqh2Wr7cZT7cxkvJyMpi4ZDJ3y3A+dKzmN6Gv/UEOK3v6c+/Z5N51Wpo7ztCr6sxKgdp8TRgjUKfDtfwPusz8wzbD8YYjKTmU8zeAojl9sNs6xDZ/bN4bH95A7N//HiraQXS+bgl51R5oanXVA399Mvsd+0uPi2fKGw0mcUTK7PpUsrvn/8m9sPiLbMdcdDCRpGJzfNLwTwqWlCZ64aFmzO0o6aV019+aAqRHFZn+72FLGALNlN2Nhg38Yx8dZHS1Zrb7fi9uGck7WhGrKP9bmd/04FvuzXN7vWn/AIprxDoOiW2qd9tHnjzGYqmEpi9Oy2zpjWaHPnn4xuP+4tTjHm9FKHu/DU5XLpNwaPzEMDc/1iwo1P580uwE7cGCWY93Jv2MUfvg38nVjjUaHxs1ndInleJrRfrgdeu2p7hFIRLQjKjQ52bSxWc6BThaUfffNpluohOlrhhtqBaaHwNdwFqA2Nm9uzORyTUb1hISGPerBenTWanKDo7PQnSUAspPccGVJ/5HogdlOHgMyFCQ6FvmCmcm4Jua0uDnAkWOS82Mh9ST62B+eGV/OphxEfz+VuPwL17D+Z7e8a3Hhx7kRju6cIZqA9AK1wqZKVJIu8Pne/C9TzX02f5bKcuDCI4rvWIxN/lwKepUiN9fSMRnvMzNIVbZwtHf3sm+eiKfAi0vQU3K/WY4apOIfLzaoKwjL/EEJDY8ofZOrDphIb5O0FEf3n5ZbGS8LS78pLfN2gPZZFGzJNtzR6/iG/hdc0KYvpqWvLjlzXAV6TGi37jZ6MaiC5yXyCx/ewX5Pqhu2iFHwoxtvKz4OfYnt8mTGqGH32dVek36qBaiyusz+0Zo/jbgRxA/FuPyJjXyBhVme+Q/S/v6Kz9hNRV08bizJdTiYwc/q89Bei/9xRsrM2S6maCwtkDNbCvd4QZ5VoLh/DZDzAGULNtvTdCHkQnSzsJ+kSV+2TYknyztjrx4hOzPTHKps8z0DS6Cy4kSO4XzgvHwDr+yg86vNM0HBN5LYCr2QzzjvnFsqyO8z7gV8Dc5XnZdu51fYf0sgTm7OdziNZKF1HciCpzi3hXsnF6VEhO7rNm/2Qhj75kQvE1O9Ex3a/QmDhgQMC7hsUgT7y/kf4M76HyWLh/h9k0oHyL9pcVJ/h5TtoG4lxCW1XKmD3yfcZXq4OENpcyIS6XjGJ5EBadVnzUiRh4Z4Xfcb6bix1eL2L09RCOcWRbsPy8DyxSNT3sz7c9ho+f3fBQqXYoebcmhT6WY+Yk1SUb7qsCNClrQqpMiWZTP7obut8mexL5U1GM0/u+hWW0RcydT0BOx/osgL2AlkQ7xQrHNmmOsCRjwfD7K7V8ozQUgpdFibmUTpw3r9VRwUp5IZ4z341H5CMgwrOY2PvQy+QDOwOInfghifcI7TH/Ch3y9ePE9oiuMqndtTX6cJOw9BIa7UjRdzvffdyx+L088i5svSdQsR5ZWDSnbHTrzFKby0eg0uX2aofO9BvY3L4dCd+tlA0fzTvC9MLzPkZ1aMcdohFIo2XjwxCtinEY533MPo0J9nOJd2o8iHo2HGsWesc6G1cCndSnOA0kVPqkmEpHB8T0xGHr3vjydmG1e9RE45vE3fTho/IS9/A6DSXZh5e2HZf2zUfRk7ypGuoTGksbY9XTXZeQw3gs+h6XDYzvyCFery2zSXyftuiN2AKr0ubCafr1BVhriUDm9qPRv2hP1JafAKvfXcDH3lAbSL1rjT+XrMymbZdeoc6lgJkuN5H8bS6N6uD6g3XEq3J8yrmG5u/DpdoWWQeCYcD1kZrMGx7vYgxvcYrK1+qMp35Ky+/SPvjQLtmbghe97VFuowptx7JjsdhESLwIiobGSjOIMWbE7g47pYNTvLOwcB3Hsg9vqxQefp5gHe8faJ7/e5RuxTuzzbhoORy6LdxvEzBXtN121NLJXeAqfbG40iw0RfvtEwbNT4hZigtOb2h9hPLaecTvmlU4Zks7gsVxqWJ1aH3OPU1OEEDQM/993IVT+jUEXX5sGYnoQQ3HU7K5QnqRgU7dqWxZ9CUDmusH3307zYYeKVuomBxSISdBOe2n5VWnh1TFvZkU4Ve9dy5Uxl7B6v7sc/Hhv86oCEqNuNvTFfVqkOx1P5wsYthSZEvXzSWCM79pzKH8Ek6vat3MHrKhC6JmxajeKwdMU1aJGTn7kIZFN0C4WrrMEAVqvwTlPoEuTibW90OMpj7rFKCldKLf3euO2BL2LnxZQal4OG5DVvLyCGA/cuZ10qeob0GH4VPtMuY4waYYLdZYYD/SAQ+vorGH0/Q5w2Kolyx+ndd80A/9Hsr+aLNLtFFsnq+PZ6DfYkfir+ej4ZSNAqQpdUjg9s9yWuhPC/RDvqbg0T6c8OltoBmvmIHldTjlkQKo2r4Gtt5oDz41ae6jFTI94m7ALPkgqxKoXRFgqSmUcrjBFOje/flhvvgMwsHi1hMW249JJ4WzsmOqWkGdFB7mpBszLo/LCvq3ENOlpRlIiv3nXdf9LmaZCDirs0alsFswRMUnOobT9/A8wmnOjOb5y5d30Twiy1ESqn1Oi/KdX+D8w3Piuqgqp8/T0nR6Xi4xXW0EPi5vpy0q72LF5pPm2dR5Yw16IH1J9F1O9qD590pfbPwHm+s760Z2cqFZ5tr8+zSclCEWtesjMVlBS1SMXls9f+0n0ctd2ew9drXGDp8XW6srEbFffcT7t8l++CkJWvIE/1zlLArkVThuxpECF+oDwdFqh3h0f1tQPnWDrVK/RMMmpBYajceLxdMRUCMv964meW5LR/S2WlFqswquabWi7SV/ZsOW2hil64/DjLqyQi4dky2oyHOxYikPe/ikig/NI7CIfaikrKMXOYfEXKzxUqy+iEvfTIQieGjE9ku1rWQZi0iqriVZHajCv9KHu5At3HLmm/khkgrfIVKjNVl/5Q0f11lqoXqMb1i5CN9wVINkq6vr656Rxs8K3vQfH52aTiNuytflMt5WA1g7WtPeOXF7iIMiRYf+brEVvlScnXBNYVp1R3Jw2TMbn/G7g56EG2ZZcG/rutvlcMdQsWCfuC0tqAwgNeaNCmFJy/6CjkdYmauBWI5B0ehTyYCuVCUWO6csZE55nMA+rgdCxLTORnk7iNAu+zdZH5YHNEzyJMEJlSmd7OunHLr1vOakYIt4hcmzwbkbKVIe34KYMirLaeY/bSrdhKw3msnl9eabaOH2YbHgsSnbyfT6CvBe60mUr+pwWn4bUXM/DiI+wN4e6e0TQOTIlK1Xa7ApqgUJggJRLAe5mS0tfWtAFx5XJH3Zr3IyvdcbvpdNytZHSwg/vF47wK2qoto6WKD2XRw1VJssZNE+/4Zj2j3OcPnCSEdlMfJebp0Kbsa0Iz++mVJJExAYrkZ5JZfZdF+Ovo4HccVycibtcjOqHWhtMRGL7KOSMz1wYHm9HYiF4FMMZKFRzZVRRsKF5IdLJm1c6OaDXbBTniHf3hOsz/hDpaGvy0lf3Ce4JPJEFS+vw0EnYYWmcYrw1nZtW0q/Bui3NR9JKAulPeTnjMKB1Vcsm1utncc3126f9Zc46k21mfaMJPjxvZ3e62wKVxsDrvXixDD6PIvplDfw+x465jhAY7ytJkgelwvDAw/b0XmZd73wvJy41bJsO908VbAWHtKsn5720JwKH9VVu2BRd7btAdyHhPgtsJnlrd2yx6pBUbl6+cS4gmhPbC/laPTFiDlXmoajKWoJwHY3EWdaFyF/CLYC2Jk2JPzEl0zKvboDWHxiOu5Nhy+lD3J+eE78Z0jCqeb4qKz7/kr8l0Rt/uj9IyTsYGD9UlX893tw2HVBxaTSM7p+rxLQvtmeBG9jKJkQ2yKSTsRj4Sv9ZMMpTLBuqHufKuGH2lyuwgrSrXTHStSes7/x+eml86uOwuYrHRQQV2ZHgk78tF2qIwFWy3PIjDAKQjmLFhPcnGjJshnfJ7XRK43VhU5lkUYFbw5FDkfjKlM1/2Ik3uWvgozNI6boAuti+dP38/gwg3bCfI7u4v70NsWn3m6nw/lBUWgd3ySRLAgfm0U5r3mRkXmn2imWh3wUoHAEgYQ5HzPepqGPdocoJGtpMz87F4KFGH37bAXCDvX5kWNIQ3YnbvAuW/rk0xF23/0HC0Y88DtisgRSsSvpe3+t23HXzHp5i/fMvSpi2eYDo9oPD0gHQcbdo5IiQp4G8/DqXvTO2tvD9RiaVH+dv5y5WW1Bud04zH98a3u8bLoIsfqkE+t0N9tRVoQKbo+qxxWqLC4pz0xCZg4KHRxNy9j+jTCqr2nDgkIq2nahre8w4ytZi/sPn6Qqf8Ohf1oMfy9xyVcgWLApcpGtw6LlLHh2EzTLo0Ys57lDnZKZLsLf5YOsFq932cdRaEC1/QwsMIoU8esqF1AcX0wS2Q/PHt38YcBX+wYMp4dVK7bnrkZ3c2X+6iEcBFinUGfyh/7053R+rAA+1SH78XHLQ9Lc0TV9ryi301Uxvp8bBQQ5XjN71rP8CmOg7/AqxM/BeZZTkQRnOHmTywKvClrZ34937dX1B+KbvlKw2W/B99Pt2UGdtIKdbhXWfnp1uXi5JSVn+YmkrA5ZcilX4cQUQ9QzZysSV/W25eCfrUmd/Sm59ottO9zuC4DIWVL6eFgmmlAtiNqPr20zRi2fxxtuIPokGr7fkAu7vgIzmDO3S2QUk0i5o0nVucSoq19Fn+mVAJ2hW8S7lXkxXK3gCuZRPLP8c7qVY1J4AxJeTo9H27e4KMuuiPplsyahL1xatno3KTziRUS86QwFr2DlQ/r1jnToyMPmSy5u9TUmAWaToRSDezXvqKftCzf2wSmn73o46vYxHIij6FM4qfy2RTzYALFd3Snq0/S5/viMrbu1yafbSQCIA+tBfvrhK5zpG8WNpDJ7I5iZTOwwQbKuYRLedsc/vQHlc2HgcFi2GRefioh+/Rs2+1021dujhlZy9SFhaHvFz4/BE2+U+bQvRYP2uToQH7sLOwJI9mRESxEdha+Ll/umQYOffS1UjMZEghN6ldN6Z066n1jzfbx7k0v6oh7+8MJf7a5FExbdBJb0MJixWARIdOrGAGGb7rC8TLKM/fKEvagxFjx4U9Ixumhw8OSSkZ5PRUcWWgdGN9VUz4sO9Xm4juCSLCdiiJ5ry1Y/pvDzI7by6f/qW8tei4qZPhLsgaNoi2a9+de/MnJrEb6WLbPIPOtF99T4EfS3u/rlCYWoFk/pT0/Mfqocl729//MnukpzNOcTg7bfuge8T/m3ZcN8j8QPz376e2llTNIe4tUhZhb3aMrGZ6f/8Dv9vqJ21MPW0dJHbjCD0I3NWSHXwManTtYvv0KjpZ8tYONdZ860Rjab/Re8V9Jh5te8nef3G3m7TUjWHn4hBmttC7nvTHiggWwPR90TkPIFC/NF4YTTXokp7A9PmRkgcbs2Ma0gfxoBW1+mN+L9blsjd93bzK8XbijlF7hCwGnDPAVNGT8drLNeo+ZJAr1Qy75ann04bE/2Hz8Pfvaw9OE8HEnkvOb35CUMaKNMHVnJ/aOc68/VQyMNmD/zGdPLQ4UWZaoTkoZlNr4+zwDeK/HA0m8Stt9iNQCocv0m6/+Rdi7bqvJKFH4gGyIgCU3udwkCIvYAFQERuSRAnv4MXLv5905zDXUpSaia8yuS0kJGpbMUdUIcqilRj3YcUU0xEthHq+Pv1MEeunqn8eBSLCY5oYyAuRmUDi5S/SZaq83uMDy3cyFfqYR3fXyp18IRvB9/8bHzlGpmEV0NtnEZkUd4fQ9LLYwpfKiCTbzDxLk/3gIH85Wg06aHF9daKjC54+IvuAS0E+Vb+9Mr/rBc13xajn0LjbrPERLrIidWslTiuszeLx/lq69mIdA7YUBSQrC7Jq8jBFhAE3H46zAsw82z4DKBgkgP3VOHkGaPv/ivTm2Q06zT4dYFkkGlf6n+8QHnRkOEQF66Y+jvS7AzxwPyVVupF3w+OLAPCwMFD91zmftFG2FALtI2v2H0yzfCgQ2jP/3NBKuExdRQKfnpkx+fgNZxF/qVw+gD1RQ/AeY1/yB71a5gCoNPANypl5H8cUQ6X8qzJx4c/0nQvjPcxcnBLGz3K15eygssUpAkkM2vNfFMz1CXs6WX0HHN5Mdj6LwL7xowr7cPFm9HHXC/+QatXSF383ddq30gOIl0It5LPKnbetvBtTBH5G/+Yt38D8hNPUMqe7nna1TPoxi9xhG5nWjkDLiNmrDWWkBMjmvUJXlnD5j2mY9Oz2cGtt9TwaT1KV5QhSk5wIcBns8iIJm0dU5AiVHCR4NfRAeCWS9QtRNYh06HuezpRWvfTTzYeItPH+kUDff07m8bXhEx/HM1tLfawzDklhhXm1+anXMfwF7Ys774EClt6kPtgEgSYvx4r7j+QlVOROF7Toj2uT9VspyvliDUY4Y/5a6KtvW5g0/IWsRNtt6o6eU7ihu/Qq7qVvnU0kt6fD8vT+LsyzpfZxVakFYGj8v9vgcYi2cNAlYUMLu/aVEf4psP8VpeCLp7Zb755QReBGfvN83wUumVxDv4fLWTP95q2V0ROpVgfC3ZL/4Now+/Ptz4JF6tEwOIqFUa/PHHH5+cFYlpIXQZGT1yIxwW/p614Meb6Hn3ihYrkEoQ1QeLaIt+crv3W8iA9hVUJEWAU8lekCvYZYyD7oylg0PFhTysLkFBsht4D8vheU7Eo9uu+Bf/DnvZaeCOrl98o4xUs4dvxcDNrxNpXCz30Lc7S9grxRspSHYHlhM5VkDN54zcg3LOx3XtW+hXjk1+r/Pve9r98hNeJtOjdJbyDlKlbdCpESq62M4cwh+fZCVzAtN0PaXwADi08Zh0oFAOWnG9iQHS5XHvrht/EPcpd/SP4gfQCTymBPDCmiE55EdAsiza/fwT0eXxqc4/nn5z/ZZsfMPtDllgAE3RLcztT5W77PhuhuU+CtDmL1U67S0WbPEZz2HVubgQJUf48iXexndSf/UAMNnNhfiViYY5vTm+gFVFJtJlkFRmXfsGxoNzJYh/+vkc0+gBSah8kTK39sDmgVLAbbz8cdz1LnnkeITt6UWwiF0W4OwSjvBLbpiosSEO9AGPzs+fIRUyUY7XY94AIeQVkv38OEJ6ABpA5b8p5FEvENWPqmj51k0HK4dLic3LLZ00GyXAz+03Qk8zibCVZcpPz/m92fQDvXLsCE2GPolu7nzKHPOehVbRZlv9IATLLbgV4FYoO2JTRhrWezIV8PWeLaIvIk875sAYkDm/PeQcfDqMP57XMtIHuQr7ykl3Cx3gW97i72SNB6PxkCsYu71KUN9n+bzLWAaEmmShCxA+NbaOZgWhIJ3RNT4V9ezFdIVHEVV/fqOUyVGCeruizd8ElDJHr4F5FbN/+XAlvMXAtgcfn81ssz44eqlAuJAeV3e3rMlldB8Qe+qd6L1OwUHl3RUEDRD9w3Y9a13yDigm441kfn8G06bvRRTNR7Txmnp+We8HNNJsT+ROaMFqXKUSWkcYohBAMzp0ZeQIcsoW/qAt3IDjMSzEIb1gfNx4CmXLVYMSKBoSHMqLy/KeZECESomks7Q9s7eN1wl97khpi7j++RcY1lXhn0Peo2OSSzu48UV/44XDGplsedzGy2f2SAbb/DFgy+e+eHjFdEFyX0GXzHekvxIDbLywB/NQxHiVLgSs8uXawnReap9rvnLOyt2sQKcSwk1/9lumvbUwdjsVaV0iqUyZXB+/fIGBq37y0SS69OML257LD12b742HatgyPv/6WuoId5YCY2OBSIZ9AP54kLsIAjKqmg4br4GgdCuNmPuToh4Ok5tAv7JsvAfiR13ti73CrLj0xExCI+c2ngYe3PeC9Pno0GU24w5ufmurn12GBd4uGuAaiohWgVSdQiEv4I9nec/h7m71nAQQRryjk3ppwIfLX+xPz2LmJSnqnCwxhpjXzwS9tXd+kJUxhkoVWv6ahvut98Hdh9GzQQjdXq9o3vSAqN2Tmmw8LR8Lr9qJtnT9IPWRnnLqJ3oFdDu9kuuPH5hNXcLp0Nk+Oyn2MEWfswfLzJPI5VEh2gWrNIr1vnoiNTbuw6RKUwPzD1jxj5f/6mPgfvBORDO7Xl28cxTAdKa1/2m+ckQ1pgh/+X3Lt5+a9v6xE7Z8jIpu0VyOGrseKJexI9L+XlPaBXwGj89DT/wtf65qu4RQiRoPBePSqeMtOu6A15cnFDldHS3+URrhxqvJaVxNurT0kgEGbXsQ+zytsXy5NrBcyYKnxDcoR3cFA6pLWCC9zRhA9bYK4UEUB8xGl3mYNp4EnLeE/ZcFdu7G4wzABGcLIW5+ubMk1hLUhDFH8iFeKa3lywPe/enyV4/a4qMF5cctRbn7xvkWTzEs9HOPtOq2qIvan2fIVonpw280qBvPL0Fv+r0PHe7tLv1l7SDzcAbimgLJv45eSuI2H2jjbdH4Ww+Bpr+RZdSSyuSdsYMxbjkkR4QBW69XARpZnf/5j+7kRKF4cXeEKNkxGObffO5O0fLjyeook0USv3yFkT+fm2EpU9MHsXopMLPxtJnjDBaWQEpRyg0yWNvHMf3jlU5QioAI7nHT31XkdyCRKNOmVgYVYeHxPHWBSrd6G1CJE/nc5rfn9z3tIXsIAZFYpXDpYh2yv/qJaRAlwmhnQ/HH4zz+hV16uHeNoHzFEulM86XrxpugPbwVPHxO93zxUVzB5mwHvtDAapgHIxVA3d5K4r/U10B3Jmggv52apjJ6G5HhKTpgFpzAp9v62erhHpyYWEf5HX6jP7+z5UdiZ+aHLvhJHPC738RNXzLi+5rwWz7zN17grn33FuAWT7f6JZ/PM/OKf3qUWBOOVPw6Kh14g1uEoVyI0VxyLwFu+RnZ99UA7Fb/AA7nOj6jioOKt3rg//dMAfzvZwqOvDIQ7SRxLvV4hgcxDx/EEz+HYel8noFqO1fk3ArIXcHHaOHtW5mYK04DnYVnn0KDTZ4ETRWOyKumDBi8wUQuLoS8CszqIX5E00HITbphIhWC4Ap4AXmv3ZLTrJBYeFm/Ju5IatAlPYQNvL5QSnxqTPXCU2CB/NCJyGcDnQ5HcE0E7vJiCfr2+kDdg9UJ7ag/8KvPSU0OlTHDpzrfyHNZnvl8+JgzdBKuxIf93XfXwuQNYb3sTXzUkrWe4/mpgaxxGXK6kVu0qvFuFpxQKomcslM+EdsW4DsJVhR25OYutSNo8J7qDjoVi5Av771RAeeS7dGpDDOwfX4Fr5Pi+dw5qtxZU0cB7touIWdNFOpF+uY+qN4TwPvefqu00ZhYPOmPG1L0pM47R15aUDwPClH0yR2WLE0FGMNYJOaUv8HSHDoPnBX9gewwi/NlIMcQNlJhoDykrEqn4tzAHbqGSAbhK6eHpO+Ep7j1Sz5HlUq/QQXh+zpF6OFpUn5gqqyAc7ZciPZKvxGdilsDH255JvcwCdRlpyYaNPWDQmTtAdzxhB8OPEu9SJTXw1SXcPiu8HaePsTRoZtv42mAb7A/+iw6lBFVfbcH6ad+IYc6C1iritOOQVtwSB66fU1YX1hhiAMb3YoH++/71XQsybO3dXXmdi8BMOVQbN+fu5QXLxZMb8+nL2SDTjlpUh2wkxYGuRUjuZOmDAxw0+SL9EnRXE56RwHUl4IjclIVgDnhxIL0XYbofGbGfCT3x05wv+cJyZFc5HNveB58RgFEyl006uVG4+1IyRwg1MsT6OJ+ko7nB94hm0cLXQXMPoTTbYH+vqARGMzY8qCy3O4I+ald02x6SkJwkRKkRbSlixqctt3V9x1SpT2j0rM2tKAdzYfP21rvTqKeC3C7XnSaowash/PSQ8Xc9u0s3F2lvLO3YNv3ok/NSMtZEbE7+CL54lP/oudDc0wtEK6fCZl7yVLH6jTvoHVJT+isbWepxO9Ggpd98CGmVMwRLe77ADrCqvliGWZ0WZfV36MH9oh34BqXXr2khSpHWmSIGYlG4TbHcFufeGcgks/CjU/gkBEbzy/9Ha2nmySJL84LSap7cn74ELxCab+z8fE8qnQppzcLBShESO61Tz5f0NcRomJZ0akGYb6tpxmeP1DyZ0uU6+/YydnmnWNiqJcE9KfHaojGd9whVA5FTaV3HoCVeBYK7GFVh/VQOb/4hNSeWaJFP8iM+KnyDtP2bqvdfPlov/nEvPfuhxnf+hGax9BGeiyUefdWTgX0ZMMn7r6Pc/o0Ph0EXzEn3jHV6jVRlxjUSSBhsTeHmubvjwNM4JlbP8XepVXhQqCUj5tPq7eUH7os3ok9MSqiNFwQrdU1g2C2E8avGm6OCCyeLLg0Hx1DR3/US7fV1ITYIVism16lh4BvgVTHX/SUhkBdBbwrwESfJVJb2NXroGghJBM+EVlq13x25GMr7AOmIMbxiMH6PTeKwEwBJIrF1XR1kv0IDrP/QVZgDO5iDIUDa8q8iVuUhG7xKIFwd22RRvSKDlWhbmdvVYRod64DPXt58wDfh7c/bde/MFVYQNFsO7y4+zxfvqYExfvMEmJVNxEMU2M/IFN+CyKHPaOuUlmFkM+5PZHn3VnlHodzCudrxuJZp3ZOlcAuYJbKM1In60Xndn33cLBXHUmU42psiB8DMJjcMZiwDbb438OXlI0Iofetnv2S8cTdiV/+fs/qsvII95oPkNFKhTsvSq7BF99TYh/02zCjxy4DeCAf/9VrZo5d1saAvzQPEo7Bbdiq4TycTT4ikcYVdNmeFfh9Hq9wVlXcRNcEst8jQnKiivlydZoHGPk4IRYhSF2+6dWB3JQkSBFikH/f05yIy0BlfNzVlbt8inCFpTGqSMu9WV3HcU2hfkko0TXVr6cgNnuo6UtHNJ3o6ujyLgvini/8+UUvdAT3poUvcluQuUR42NpfZaD86h2xudfLXYRef8CHz88oZ85DPrgHqYPb+PmH+uLkVDOiGXZ+PWCazmggZ21ogHZvLeQuogAWZyd0cJx6+jf/X1Bd2t/4IO9l2TUXCiILDob0IlZ5eA80CPUSXJq37k+ylajzsCtCeBcfyD9IFVZnv8XbWcMrh7n0Ursza9xYYXgLNnHrKhhW9jLxwNq3oc+5j8WlXEgUwJ8WEfmZpbish88MjPndg2zzqS4NCANwOWPVZ7+KqK6DEMfwYt1ln6Js5666/pQEbTIG5PpgiqgVOil0Pf+N2bEW6xVdvAyG63tC9n4O1fXifn0hatoISVGp0IOn4B0QL12PLGO+DfRFnhA6wqyhB4GHqHvjYwYr+80R/dIFAMNnMoKq5AFSOnJTl+y9siJ7X1wkF9cTXbP5wgPIGzpSvzu7XvG1bCAnexE6yRarDkKnxlBvI45o19jM14Hpg5/+IVpl3AC1r8zjeHo1d7xrBrVm4fOBwWfazqHp8oNK9EXmITxWrb+/hTTCUdfzcCRmTDz7it2F1dMZrsajQbbvqtEihgfmL/6htHAH8txxI3gJZoycbNABI0xeDF99uyB7i99rC1EP8zV4EEN5EvUv/l/VnmKhWvdDt/19zBJzJeYe8/V6d8cYcHjm0FnlXzVGdhcI7t3+EusV6y7XG2IAwj06If99i9Vxt5sUuBThg2gKPLgz/001MKzKiZjz3aCrdbqlf993LMQD6GdXNKC0pANR1pNcc2fObsThkI4o/xxTsMSFI21WR8W8PJR0td28hXugvIh/ZZaarrKRwIvIGsRROwGsp/YFhTNX1OR3P862/X1A1ekeRJ7grI43mWPgIT3W2L403jArF6cA7BRh5L/4qGaljPeASBEiWlPJ9eyJB15M7R1E2jtY3bUcmxm2fnlEqmaP0SBkr1TsX8qL6O7JqOeJwQ2477MTcaEM6aQ83yXwh0hHni3pdKyiQYKbviHKsXXoqsbsCiuxzInynlJ1PnWNdkxuO4do7yBU17zcWWCveYCkA2dEXXkPRtg8lN6f4VXOB+3MCTBMnt8tHzrDoR3WCn4l5UBQGKzRbKO8AuWb2D60pTdYln3hwO4TBZiPL9ClU2MXoPyaHZIvFw+sGpg7GCXV2T9+bEznRagtOBlpSpDDfV2KK7cD3PIVkPV4HVz8YZ7rL34TnY9Yd42qmYH1Sdn5e4DN/JMelVI45vwHIUx2ERWyVyZ+Ne6ASUEpXQ7himEMExEpQy+5DH4bDLjqZrzl3zL/zSdc+rhExj2rAN2PigbcbzQR5Z0guj7lXXfsbsjHbStBdbrLcgghvHU+4ASFLq6TMKAAewPvDPEJ1oGpQhg4MfU5bmeqK/SU8Rf/iXcnUr4+oVfC6LNbMd3mt6MsqfhXURIMVZehU/XwDRhqhoaXsI/d5e5NKeA/yh6Hv3jBy3cH8G9dJlu+G8YZHRQI2gb+5YP1fn5k4FQrO/w6M140bvkMrLN98qcPBW5/408r+I4OT5THwLkrsSwWJi5vIdkRqrra9DcgZ2PC7aZX1jlqoMBOZ4y/M2sNXKLMIUxcwcLX0/qq50vJxXD34A7+Lns6+dLvz9Ivf2AKvHoYzZvtAePUCMRdxIyOwdWo4Fm4vImRcK98jvu3AlH0OhF3H3nu/HmeexBHOsT7xMpdzCLKgPzQi8SVfQpav2ACKEtHn+iz4NFVVbsGmmfRIGG5/wzY4EQJBi6NN/+VRe1euvog1Ks3kuNdM8zj1yngtOufSBGoAJbH8ZaAyMlOvlCtz4Gim5jBUXQTZB5cLp+zlvKwOGoaCsnx7GJ9TAXYzdXWcLIs6XTKZEM8Zg8DecplcukcYANk1RQR//Vyc1poR1+Yu6uATvzxoeLND8DIn2akF/0ZzAtzNH75AvO5xAxzfHc1yO0ngMwnq0YzfhYzTN3bHTniFOU4ziUIRw0gzBoSqYl23vPwMzUfZJSgzhfViUZ4aPdv5JFYGWhzTB142M06SbZ8Rs7OvYOhuI5IdnLVJbxqBnCtdJcoLFjV5g5TH2hEnPySPfJ15+4Bhr3oNHiNMt1ds/kuQFuYCqTvPka0+TUDLnILkXWKcnfzCyFYz5aJ56EzBmaGJRT3ZbLHVCvjesmGhgfl9Wv6FAiMS4PwVP7Wq7/psYiOw5KIUjtZxGoSQ2XS+dX+/IH/0+cU+bdAaMjdJaeLbIEDTl898KIn9fd9OUXzW9EfYPNT5PJ9qfV6HBwfIoENiCZMoktfD3uGBWcZ5N4foDtfz9cWMgOTI+T6S7TsD4wBntXyROiS9fWyEwcI6ySU8CE053wy6zH4xUskux118fc8SmDTp0SJsre7Zv3AQN+JZWJloeYeakcwQJQ+EDJsno9Wgzso8D4zBH97l4CpTh4evE1cj5cdlela56YP2a7AyBmyMpqc3dr/8QMnV3yX6dCRh+oqtMhmpJJOb1plwH58UjyTkuRTVC+8MF14QEx+5MACqnv7N17uxTSGbr+4BqjEKvf7txGo5PWQVygYxoQ2P6fOyamOf/7QP/BR4lIQbjVsEHtEZp7LQHCWr/DHU+jsKHSe8rIUg9sh2fzvCcyb/oTT9VL4e/NguVyXhixQO6SSU5jMak+ZKYU34ekiSS9e6nIxeE9cfK8gUsQNKj3YFoaPXGIwq1gtXV7ZjQW4QBoyRNV0l0/j9HAt+55YI9xHf/71uj/fMADrUC+O0Tfwd/3uLbkOv3gJN39EtgJNPZ+qVYHkyJxJ8I6T7S59h/DhC7P/aW8amJ9rXwohDrfeJs3NJXGqaPDLsjlxNv3yHSfwAM94uuMt3kX07gwBcEqtQhr78NTDe+Jj6N7dL/EGWrm0CHMLysCMiOX5Sr4+7LaEl334QVZEqs3/XyXYFg3Y+NIxGnpDDH/6ARnvF6zHCcMKZq9wnWZim+pam8CHKLAwcdvRAn/3N6PVKZKX+zysVvsswOYniLn0LPjjZVv8IadwSiN8al87yM+BTJTrl3Xn6sTvQPc5B4hs670CvlVCuXcQ8jM2HOarZKcwYgwWncKJj/AV3QtBuvpvXOmJmm96pAVmUL3J6aP3Qzfwvfc33habmYCFt7GHt29pkkAJOzqeodIKpxhCYu4cKV+R3YUQ5OCG7FtxiGbzQUM4dNRF0h1MKvVz4EH/I7TE/JiHfJ2eQSGIZXLy+Y0fcLYTlqDhx5Pfvl9FPVe3uwaDxcrQnelP7qhcnAeo1CQhNlb5YdOjMeTMJ4MM/fuJyO3br8L3obEkvzwwWPYAOzA6nRFxlJWq6288Tu4k4KPLhZQWYWTB8NV/MQhjdliQ801g8che+FifDXW9S5YPNh6A3IvZDquqlg3c726S/2oFoq4iYqHALYNAbMB/86UoTg54jXJI7P28quTHO7fNNEQjukLZvGsl2OZOhjY+kHfopiVAPdUlsRm85GQ/Kga0lefF3/hKTrl9CKHMjX+8S53PUGl+70e201f0Syq0g+xwnfFeGmZ12lelAXTmesT7Rd3uaUHugXeML0TfM2xOj+Aai/iTacQfpianbSVVwq5r458+Hoj8NUtw2vcP3HvPEaxXaKcw4fcBUTXbi2Y8shhQhyF+t/EEXJvUh7GuCri5xp9offV4B0n48onUiL671qd3AA72TUL2NM75QnsnAdXWuxVdlhCsKzt4cKAFJs/dbEUH/OUYeDulKirWRB3WHcszf/rIwUCiNH8TC6oM2xDU7kfwked9Cq5nfMCD0+juun7tEOxY5+gfd0Kf//inWADR2OLdeRiFSUugdJk1IongOMyHiK5g05f+TPY+5WrZMgCp1AXvdtI13/xrCNqTlvrH3kWA3XgUxM9PjRxYqvnSZcUOVtfhiCQltAAwvqEEAS/fkRqCxzAn5hKITPjO/MfGsxlPFAV4vDNvpJ2eSd2vbO2Jv/FyTiME86X7+PDb4yuxDsDKqXwfMhCk2WHjp8+aZgef/+UjH248fXmVKg+e5eGFdwQecvJ7feOF2750nW48oIDCfrlgaqX3CPOrYMCuKoJNH+3rwXt3PIi2bcu7tzKAPpD5FLBosolcK0bEDccogD//qmVTMNCrtD6AJ2s+sf3KrWf7cmpg5DLY3714Wjc//3/0Ug39eBr3NEgHKvvD+V0U1JtftXmY7WNKXKajA73Urfebb2JL5msYR/h4gOADUswEL25Y8vqgwH3AFni9hhOYbzLHgkf/uhLHZhh1abmkg0+ZzfHXTaPojzdWapyQ04ULBgqGfQvodetV+clu0TIe6hi4TvghtnRY1eXHK3sj3m3fd61nGDgdvIoMT/7W5+lmSYCnruovyKZ1F19vClTR/YFOWzxarCANwE/PeWTowbzx8uM9cT2/ue0ldzmkzQqR0tpEBZ464Mb9PODGD1F2dfSImp/YA3fds9BlOV9UhoeNAcdns2z5/gpI4hfprx7g8/Ig0VmUKv4Xn4hbpumwhEd3BFt95MePKSXpZQfS0yUnCBmZur5uwSpqQ+eQuztccwaPO/zjkbgcEy5aHK/oQCxke6Se2TdYQxGOcLmPeyT767Dpwb127FzbI6bffbd4lO2E9HTN0Y9/fLf1B60VrkSyh9Vd7/oaiBGjsXjO1CYaiWfNYNcZHPn9/9/v+60/Ev/8csO+AnHLZ5gLbZsOt3prL2avOvE2/7m9HgqS89aQ97jPYP7pg60egCznLLibvk+PW30Cs4PYqMMOvFiRewbxv/dv8QruTV3EFZxVd6tfZVC3ppAYj88KMC8Vxs8PEz8yXuoix3IGfvMvbTx6Pc4wBJfaaZAJWLKtvz0L4pe72871eNNF3L9mKKWD4cMtXs2nSpCA20AHmaXODKsjLg00OCohy87XfHmKpwYC6t+J032CevXPgSNu9ycxVm6iCyeWrJjaEBLlKFKXCp2aQFN51D51mIauzDNq4EwrgWzxH6xd9GLEX31MB3Cq6fs7p6K4S30UyEAaGKM8GvC0mJIPzEpTfzwMSFfv7VfRMkV0auSHqO1Uguc7mNxD9fA1KF51l/jXu52vKXOr4MuHDvrx0/GnN30ut7Gg2nn088cAd+wb/fjjkH0aCEzYd+RUN467hNqHh9Vy2JM/vovfPgMPs/fBxCdnOkpN70GNm/0fn8rJVj+BlL0nPoftJFr84RrC04fb+elrmKL1KoMKJP7ioE3PqX/5ETDdbosfcr02wtkTCXHwT7+5uLehBeTeQjg+2hpdlQS2oDSwSozcWCMq2i4LjRVKyDOah7rxG0EwYdchVwtiuuwP0ICsbA/Efs7vYd1/boYA5fCJNHuXqPOeFS04u8FKFLZYa2p8QwU8pEtIFPsdR9/3xCdQ3LPE37E7Nl/JSeAhppVFPG/bUxp96x1MU2mHJDu26ai68fyL18TJPCPCA559ETjwgtL1uPViFA4MnGkpoHzjRe39nGTweGffm3+V6EBbJ4Ubj8KUv1GKN34Hmr53/d5xYU5TDY8g5+s95pgLqte4nQyBmIcBbfwJ4Le6b+DGS9B2f9C/esPb8mef6ZZwaAa+8qAXtAuxzb3zqxca8AzPNfFfPB3weU0b8OOlVnCnOVGlFwaVMR58wHTR8NPHAptCF3nUG/Kp83kWYjeUUGbtxmgMzkUBt3yNtOPeGwgsrgwYRTshTiCdoo039eIrN3wf9KdvRMbhmEBMSwsVRvNwyaZnIJ9CkWiP9zGfHKNqhSsQBGQPMleve2JBsX6vNdJesuzSUHnPcMsnmz+vo189488/AInEOSteWxYezN0Tw3tQAho/FwisukDk5h8pWLd8CT/xtf3VkyJKj0kG50a6Ev/+reo5P1cGTBgnQFt9vZ7O3nOFnjjwGB7Tpv7VE4/b+OHy5IXDgVQmBNpT+SLz3Dv53/9DgYOR2l/OYC1fUgcjJz2Rx2ExIi6i+g4Ku5ghxuhdovV7HhXIXWoWnRZ7HEb6viWw66YFC2zcq8PxMAXg/3qmQPzvZwpK3XYxdM9rvnIHMQHV2U+I64bfYTmPLgNr/AyIW0rvnDbJ8BDOV7Ykvq4GKiMWj0CYVKohTZpKlVTbc+DlFTvTrg+Smn6vuwyetXlEJzfI3e49PjMwgJFsh0px+bzgaoVlXfv4rTGsO+4jYAHnxhskMOKXuti0UMD9rVS+oLXOQB6u1kLfPPf+MbjfXcpm8iyY8mfAfDE1gLJHSROPe07E+Fjw7rS3LgXQLf1JVL8c6NgnsAfJ4eH6jLEYNdXzEz7uNOFJbJXVas5YOgG4h1ojnrAE6vcWai28ePsvOt1kHawwdhPwXmcWxRnWXTqgKBQEyjDotBjLMP+ur4AXATPCbRlm/m70MLF9gXiVytT4q11WGF/YK57zkY3WQHxZ8HG4nhGqnZfa0TunAOkWaCS/aI98fnxlB9pQ4ol3GVlAgjf0hWJIAv8YXBCYjgL1BUUDCpIvzyGah5fVwPQS6Oie616+vmG1g6Z9DZB6WI7qTE05BlGvA/z2k9ldjgL14N7OHHzQ72+6RYEG1i8lIPJHIDWVoxBCU34PxPZOyrCYqeBDP7s+iNSocd4nz8MKMU6vxHg4vbuit9MJJ+XsICMbk/rv/Xo5mygp9xOg4HZLhaJbzvhzSy8Aj1+1En/jpyDGq6my7aP7MMqHqEyiROvtPXlAqc86FrjL4K7MdnaWcmA1oh2NTl0qrWhBzyENOW7uqx9jKQXR6MUTkmKiD0xc3rf+YlpJ7tHTHRjdPWbg2lxVZMKbNdBoGHohKZbaX/aX14DtN5VEtVRdn9NzLupV4lfw7dM90oylrZcO0QeA66tF3rWb1fVRHSuIJeWCPJ+86dKdeAuy7Yv3Rerw7shEQQuOmI2Q6YvnaMrt7wN8wOwhPV2Yej2X2OLalH8Qu8vyYZBMdYTSo+gR4qXenaXthAKqiSlyl2DLoa679Ts7ZbgDH8alkfdOgGZYFNnwKqjNC8+NSA98hpKTQqLP25di2HI0QahjrIHtlLCA8fF4IPLBudIVGVt/2s88I+v1kMHhxcq7vXR4i0S2niKdj9+7ALts0JCsPlp1oX44igC5ig+fycNd1M/BAYQtRjzvJls9BL1UwjYVHsRp2dJdXLnt4WyXJZJenJQv63STwL2YTZQ+LDCQbfyBdWIBMrr7K18+VV/C+GEsyAvAkU5M8Q7Fr8q8kE5zO585ImKYlm3sz9NdVhnOh8YRXtEVaSpUwCruA0H82rKJpG7UVM4Mq0ZkhFQnSWHUdXMHvAcL3euQJ5M0n/q92f3NrzRnq0t+4x/ai0fUxz4Bi1s2O6gEpzPxzdnI16bRCuiK4ZeY+zmtyVIcCni8nUp04scwp6pHLTA9zdCfjxHMyfG5+GJZPjNyKj9GTWvvWYHf/Mj1qkTzySIseNmOjOSnrEd/872NLx4Wq3SnqRYfwit+BP5hulaUnvoUw/XrxMhXktuwjC/BgfEy5JiqxXWYZ+4kgKdkDZh7f9qcvqC8nd0bNkTDQ13P6Rp3MGUc0edK9psPnOhjyB1Y0T+G569KIEySv/tLPh2dYRy1UwuFrnwTJ3tWEbmKfQLXO6OT83wT6EpfIIbPNoyQtsXDMeC+JaSp6hEldfv6q7/uCcTLXibWYNkq9p6RD3tf/RCj8Gc6j/65hLtBMTGH9Ec9X8bJg6Tkjv7+5Zt0ThrHgJUumP7x0Rm0KkN9BWBSAnI612s+jv6tAm8gB8gTllld6LEMxEWdPlu/U3uYGBELQpBrGX5fecddBFMpRTEnCjErgYCl/K74+BVE6ndfraon6y0XMIybllxOajssaWAHUMcnk0hWalJGpRkLZOl2JT5d56G7mkgDHye++IfInNx1fc4KbFK3Iv65ytXZfrEjQN+u9tMmetfjb/0G2PJJ+Baf7vKEr1VU5a+FTvdVoWwZ6jMshjggxYHXKetezABMDDaItNNueR+bzwCCcBqRzov1MG6/B3Y+IyHPtN/ufPxeeGjfuwNRx1keOKd5haAdYIji4XLPvzjPYpiPqoukS1kNM7EPEnzHGSWup7aAfsyyhCuCHHLvrjzQ1VI10ZdbtPUm6MA7rDsstFz4QuYtPdB1SooHUN+nxZcP1BwWJvtCOH0uk89k7Jrj1hJCmHPXDKGD20ZL2rIQXvffM/Jyox7W9jO3kFm7kly+RxLV1TcswY7Sq8/dAmtYvdejAt1gH5Ep9UI+u8Ldg9EeY+JD269neLyFwoUdAPLOzbdeO94o4MCWNjq/Tsd8dc5SB88sSZF1QUs048cnBeraOhjYe0nl3Hk7+7KPXKSujKWSdyWM0H6dnrj1BEXlOntgQfaYA7wrW5LPyEk7+EyBgNzbAeQTU0wheBPfI36jKfSTNfnjlz+RVhVUXXlJTkRuZ179Y5fl9VI6MAO/8TCn00clwslxgI4J9NcCfgb6laUR3kx/IdbDyocpVVcFgtuuINKLK3P6VmEK2OUS+lcGHNQFRe8YWv5lRs7jg4YZt7P00yvEiiZOHXZPi4G6kmrkbEQ2oJQGHSxZ44RO5zqMljaJAniUHmdcZWhxJ+ttF2Av92+kZtx3mCN6UgQmDu7IlWcykBE2DrTp+sBHwmM6q8mTBdxOvxJlPrbumAj7GdTHoEfOV4lVavuGBvn4JKGAvD7D3GoihOM05MQRzT2YvXfFAjroEnr26BlRmwsSMSkCjIwBPoZBahUJls9dQ9CaVMMam8/wuLvuIqJdREsd5ePaiwR8Q2JY5zWinyLjxWNU6ijZ9Mf8/ZQpdG6CQdRYaVXyi3ezsX8R1R06lQY1z0P/bfF4hR9GnYxpbMAvHgHjNdarN/QPYTuwB6eOe/+nB1/8C//mc5gnUGWwu74D5L+ft5ozD58SSt/1SKwwm2q6LISBn9a94Trsbu6MhjCA3rJe/FH9HwAAAP//pF0524I4EP5BFHJJhhIBuUlQULETRARPrgD59fvgt+1WW0shyWTeY8JMO9WN+H2ZilaoN6ptatOYSxRpcJIuEl5vXByzxjC1P7wK41tb00SaZRjdqqQW5j4tfT44HW2m5EzNqbRjNvAbDXQ73+Dqqd6Mib/cOVUrVjeqRdYBMSLXewB6nQZ2OotGI5wjDIfnZ0cW/tvye3tVAGttjToH+2EweH4agEqb6EbQm3akjdjAEL84LMuR6Qs2fkXw9R8WuXn5s51RPhQInSGnpq596zkDJ4VA0SgxpH6fTcV4KQHbcUPcHg7tmCn2BcxQSalv3ZcyDRcoCjPzermzGaDxZBNrLVWTS7ye7fzZKo0Xur9Lk/ryoC18mA/A2WXPoXVx7S/8PEG4z/bE+7Y1G7az8lGmnanRwHa3y3zrqVP0ao4WPeCzaSvaAxIe7wCvzyvJGJsj30B6t11qk9fGYOejo8CjDY9YUIey7WQwOfBNOyTkeRT8djOf96gVK5da+JAilhzXEXrOs0i2yJXiKY02EYz5I6G4HKAed4+5UB1JS4kbXVV/uAqfB8SPS4mnu+gaAqfoPErWSFjiJ6zH6/7JAfhpTBNT6LMpmdAelt/x/Co2dRMbaaPk16tOsqt/r4f0tF9mBzg+PfQnHfHL+iHeAUzIlh3YuPDf9cJHMaftmTE8yMWEx7j01SJB8ovPvWqfgoKY+PSO2fFtO2C4aT8oHPLRuJ82HZq/TkJcVXPZIJxTjKzT+kxNM7jWU2ooOgw7YzU83mHkz/TivJSIjD5eH/DF77ap08B+5r7DGk4Xf4lXHe6bS06xvvpmzGYPDLvao4OIDykblxH2cHc/Ij3H3QqNgnYvVUk8zVhd3ZfZFxd3hgUviLH/rP1pnYH801d4FpraZ6rTf9bL+cWjYGyQGErTAFE0iSQIPEBdGMk5mI9yqYwEVj13yc4D8fNYZrHkqd/p+x1W43DWB8kTzH/5uAZiT+3P45RNOzkzf3wI9zfRjadJczxoy8t9mFeJF89tzu/hs0+bQRIlnM21zPFwWnk52ZanQzwPVd2pwYociN/Pa9S/jS6AteV21AcuW76zFQAa7fUmFldYmbAC7EGTXTTiHqyOfR6fdAZbmWxq2embTZEmRj/8J1jbxwZDo22i9SQ7mBuzsp7e6fEFvKIoWFCX2W/tmCto0ZMDaMlm8fSdCg6q0pJF/9fT65jt0Y+f6GMkxjQszRlmb9yRzXFOkKjjQAY1Lj4Dr9wLNl5OXoEegRRjNWgcf/q9T6DolFiz/anH+3Y4/ulJK6bPetL8VEfrMykHuZjauI/f7+Sn5+jG1cpsROU8KsEqPBD/MelLX6F6BnYqT/TkBXxGH+kwo6NLKRYX/TDv3LGASjXOVJ/Vrh2XIRzoM449nnzTYsOPn92xlGMmTOtFn6UPuBRzRHG4L9vxJqSXv/3RQznOuu0gJmA8yUSXeEeSKTsdPEbeIw4GxR8lxW1A0S8q8Re8YNvn7gM3W46IJZLDMn+10tH3y7nDKykrRn/4fpC7LbU3sWd82brco9qT38M9De5oag+NDK5nBXgeTD2eVCzs0bgZESVHVmdsVZNCUQ75hB8GVGi6wXeGZX+pU0xtRqurv0d3OhdY0D+6z7RMtBD3UVU8L3jAOqXkf/tFcFwk2ZQd5AElcZziIZE3GQOr+sNfLIffsaWx12jg1NyDhM5GzpjsFjoE8WVPDdda+T/9Dc2sF/SnbyffVx5gyXxGrFLSaumFdoG6+D3UJfkznpPX9QVu4TfUv8aY8WV6vQBOGoNsN6t91u33/gUGZ08J0ZS2ZnveGpXTdqXhEb56LRn3ZwlFY+jUssuD312nbg8rS/CpHj1dJmh+pKHXSrNoctwK2Q/v0cKfiL45f7JBEtS/+Bru9KPW3yAUZLQdiE3DW3j++Q8KYpzDk21s98Yfn928yhXRT5VSz9ltm8Jttk8UL+tFbXV01P54NKg+RsdsWJsEgEYnE3dy79azEt0walJhM3CRbcZsz+MZ+LySyPa3P6bsDMDqU4b54/YQM+zvL+pRg3LBawEtfkMOq7OyWvLXHY204RoUG7eC2gs//tM7C9+i1635ztpbXVtg0OowLPOk/AnF5xHCQ8KR2silekJ8nEIWtg6xdqyLh4bWR7gneUTIEY31SF1VR3YT7anV3N9ootwtQilSKmpcH6VBy+crRXmk6fT8NfxMWANXQeRoL3oU5W3N1odnBOdL9BzYwq/69tAoaBca1tJnHoyOe1UY2ro4EHJkRjzVtHFAfu95uuBl9lbuUCoieO3f+Wfk/OB+55Pop0v/O/8jBNJ1xOv71WsXve1BeDhyFHOh4E/FfOVRtZVtss/BbqfWLzj09oSlhhZlBpX59gXHnNWDtH6YbJ5vsgbi15Iw3KSyZd7lmqCs2/iUbNtPy2T3qIHTYY6GWtzEfRpt9rD96nfMcds3YscpNmHxM/As3ywm9lJhomeCPnTxO42h3IczImoYDM1merGfHoDH1h6o+VWsWljWFz59Jy98SGi/ke/hv/fjd0Fr9JZ+05Cx91Vq26exHeigAAiS5xNv40gG23zCRPnp341vvtgMiXGETYbHnz768bUPnPe6P/DfnciYP44VLHhNQtsJEVvOt7q71oia/MH3J6krG+Dfxx3F5Ytkf+dZ6JKJuhkzfH79PSjg37mMEpjeRr/oVzA2rbPkv6DuFdurYBeUO2qYIc/6nvgWiJ+XPvDuILW0y5oS5QEXks24C2tqYq5QQjHSMLerkN87lu+gZj0aNL8iO+a/708Kh9reE2e/1+JJsGcFqjv1MYeih8EeUm+isPyGw7y5H2oq5aGF9s9ttswTv/psyT8wqZmMpyG0kPQ9celP71BdTXcG3c1GAapk7H5+oj+np0uDZsXn8GqvW7FQnS34+RFDIx18X2yiXofxYhyIcTiQltfoq4OFXxCHPL9o2pCiAasa2OLfeb6MNlAoS/4nvn85ollQdry6OereUMbcJ/7jL+m1vBGrQm9/7MzwAYHzkgkOJs5nRrsuYNGrWETajGj2KmZotlNI/Ig32EyiKAL0nEqCq8ppWbCbA3ScUUD97hZl8xd/u58fTCOdu6BFvzbQF68rFgr/nk2EU2S0Xgkq0R/NoR6/3vMC1TkfqVufDcb217MJo3xOqVUh2xA6bazQNZ9tQs4f2x8XvYBq3jSXfCwYD93agHrFyppY/dGvp1PaXWD25h1e5VcPiZuSAWSrJ7/4kZ/6c98OCVCz1OjRC9t2fLiXQrHzs0mN2+fV9o1qJuvXSrdIWLW93z1PvY7enyGl7nkl+e0vX9PoYFL/pYrGVNV7+cc3qLb3IKbpqm9AGpc+kmNWtjMdZu5vvQNsiQZ9HNscmJgRuuUDq+b7vLNAvulnqvHVLeuN58Sjw+WoD0mVPNEkh00CX9ewcTUEpJ4ONxODnXxvw5Lv2zk8jqay1FOIIRekbbJbmKLT+f7FSH37xvytEwvULAhpaq++xhy0Vf5bb3KyT1E9b2elUSa++RKz5UJDWvBibRecQQ1hOvutiPwUJmm4LvzjYox1vilVopJg8ZuQPzBd1RTf5+dhXv6fwOd9pMRnc/fTz3UvHrcFWvxpajtOjwRdLhXYTtOE52X/pRLLHVxmiRK3tSfWKavJVM2Hvvnxa2N8D07wy9/UMMVHO/flJwV1mMXFv93EjLtpIix+Ez2/jjya/M3wgUOgfukWF2rcPdx9DpmTVzRe9LB0MXYi/Pbvck1ext/zdXbOiXM+FfXAhw4H6X3rDquF/0zh9jLD+fniyeJPI3ara1OxTOlJNkga/IVfPP74pb7oI/4X77QU1sTmDnc0olKZYakXEettJPGw3U06aPfqttR7Rn8OtFyGg9mTYVzih5FzB+j5XuWYP603Me+f0v0PX/Fn3l58dpa8auklLg3zWrm2rTV9ZIjWxXVAV//ezsDc5qf/if18W9mMbLDQ139Z5Of3s9QHgHo2FBoyL/XvCeNe8NOruzS4sxEF2kXVD2dpAEHeIrFrLRFCU3TpZuGzf35BufV93D/TumVuoI/qrz7jXLQh7u5Gq8GRSidintICTcrH9OAsN58B/POtZXVwqqCOXZ2YC3//1ffg9pocau+aNxIbWid//ou5thx/Xps2B2Gbv6ihLx3VfnpiqRcSHNmPuJ+Ogqgu8UbSuD/5Y2B+A3S2g4luzNPYTqtnmsN7un6GdfF5MTZdFAc0K4iwat04Y/FrZbjafkLC8v2q57PZPmCILZeG24Cve7V+N8iR7iExtK3dUu7miIqwSp/E9Ku6nrSVtlRnh5Y64b2Ox2u+lmHR58RdV2I2h0HnoWy7rqkm+NRof/UiU9i0lJTP1JgLA2F4Z4cVVpf17NMXxymufnzjUecubDC391mlwXih7tdPW3Y7xSJw+qEkmi72bXcf5Ad0F3Omh9VsG1JjBPqv3kIWv8rvvVUdocp/Vlhs7jYSV8PTgZJL3tRdzks3Z2iA4luFZMFjYzSrtwks2r0HFkpgtLYqe/Ax7znxrMpALRMygE7OBRLx1Sp+F4eoUnPd4Yn9pKzuIulewsIf8Kp/bmu2+MF//p935m5oTpANYMi751KfTNpJeTk87Gf4/vHDUTo7GpDjixI7S6gxuVM6oHWkWsOffy2TvoHJvwVUQ/I2nkw+uIASRT6NcemjiTu7GGnA98QtPhZiv3qJibMQw5Ivx90WHOBL+z5wsLln3yBUFYiGr0H204bFk42HCH77a22TezzjlF3W3r49LvVDAQ3ZVbd+fv/iv63r4VefNVeSScwg1hCT50+ElE/1pHhYv7LZVZ6XH57hqj21bJzPcqq+9ddI7FNwR7PodIsfUIkE2/axnpRP4CHpeXSoM6kdGiGy9V++w5b7yNC0Auwg6Zk4NAniEi18P/j5G+RXH5oP8VCuzd1NHzhwh3rxh/bK5+IRaq+7vTGVX2WA2NKvg4TVKZ4PuxpD/1U6an53R8QL4rVEHy7siZMsek1gWoG2Qw/4V+8eN+v5o1xmgVLs3Ot6uj78CIZMSnEka3vGuAQU4HNNJ7u76PrLXNWLgkcV/vyJfnTa/f/pU7Dm+f+4U2ByL2qhaWpHsFsLRonWg/J9DWgqnE+ndE9doFvf2aHH09IrVLYfieqT3NejnNBEudtOjmW/LowRYu8DFMW3QbmhJu6EtYjheriExN7mR79XigiD8AoGQlZCjSZaIEfJvk2A5dx3EWsORw0+B6xRb51hY/5IJocEW4qGSci/aAomfYCbv62pCysvYyomgVKdj3usYD/1WfHFDmzsjUZ9eRMgdugcC7V2sx/kdrr7zKIxBndDxqFanyVjtEXVQhg8Dj+a8WCIeF1aUliMGdH30GdUVxsOvNfjROxc6tB4XG1KxUeNRYKX2aMx2fl7YP3xhdfP76Zlj2WeiBd+2XJva+sPh0y1IJ45lfocf2LzLjlj6IG7Eu+6XxvjlmsGRYgKIETTx5rhIouQrCUh3b24tT81XhegTv2UxNhVgT8NkKSwkzAM6HnWs+n4dDCoZVaQoN5V9Xx30xxpW0cnZ6vfZKIH0R6i8/1OfDcKY/GW7R2o9eeTuEKhIYkR4QM7aEXM9Kw1WHRaOxAn7xs1bmiox/fqk4BKCm7gXlXAqIQjTt1ly7yk7/bqz7auFFC4wZN4q1JB4yFveKQEZkgSf12xWdxlHry6jUaM17BGbL33ZCRryz308XuOG3m1u6h1RiJibjdfNm3e5wfaf/KYpm9DZ5OQHBKwJo7QcD6MiNXvbw7T9HgRu780MWt4fQbxNsvEED9vg2by/YJOxtgP6t01fNFnNweQFa+oltQoG5kvgZwUxZ2EiU2MVwt6Cvt2+U5Dbad2tlsU/dYXT8fSrccl3iFxBkpcLGVGh807wGHrMOot8T3llypVKuNVErzbTcY83MkDBeOFo4YbmzHTttEH1tdMwlwRb/1uy1UD5NqxIGamGYz2lziHPMYn6gSrC2Jf7ijCdekrYCFnkwlKkWKkxfgzSLk71GP8SHOY+OI2qLukRlMZ7Bu0WhknvFKDfT1tXpYJvSOFxBTwE3Xn8/yB9pqaJNv6q+xvf6INHmiYH0U23N0oB+6dvondrm8tu9yr/eo7P2qaReIDfeetLyLpzlGixXZRM0bUD2yfYUzCqdPqMR66EvK03VGr2A3GVDhlB+njuBlE/2u0wpEme2ic5EA241dtaXi1R4ibjzs83amOe4cp8noWT1fiB4bcsrbamCphnoO570E2Gq3AxTKP/kPCi3IxJhpnL5Dhli7Pp/V0Xq0jRDgDCB7D3TLMdbyox9bfEEt31kY39ImsTimnUO1z/bTTIxZLUBuuHi6r8oL+8lV5fe2I2dabTLQScMCDxCX4vUYZ+75PHTq6qMGr5ImN0R0vy3f7Ch6Etc/8/ljz3Vq5vXtiqKWW9Zl+m9FpJ8TEWJU3n3USDHC8fXMsQX6NRz5tdVAwZxH3dpHrbt0OORrW9hfzAn4y5ranCtmaLuCdTA7GLLGJh6P80oguJZ4xxqmsAC65PeZr9Ytm/LQvAEy9UNtTtXau+FUHubZ5/eWHsQTyQiFImwEitjdY+jFT8CZmDkP0Kdn8tMo9zK03DkrF6nryH6flDhRqBuFCZkS7tYbVxH98sNKoatyYL1Vc562oU7e+WbWAVm0K19pHA3c6XlmLNDcAQ2cbqlFuQp+L1Rewrv1mwYuwpg9PCxRLiXUasE3MJoX3RWTWxnWYFVvIWDSMkXo55UdizseuHncCbuAr+I9BvfWveL7YPkaOuDGo3mp8Nk97SUQzG3PMpfOlZu1xudPwfvDEN5f+l11x99A8aF/iSce7MZ5aSGDINgY1cYd91vWfDzBmnXHoew4as0I2YacRRp15K6DZZycHmsK0aYK7wZjmdRcokI79wOQ+8duxkXPg+dUJs1P3QtOZe85QFSyg5NhcGEsODqAlP2E7HFs2RZXCweC4Hi24V4z+1vvaU40YD0+s5/stMJFetCPdRKubMQXP1lGkYlKpb/Nj3VXiCGpVTAHO49zI+n0eifA6viwSHoprO17vRYn64rWi+qqe0GhaaYqcoJCJl4l5NvKhnyO153OS7R61z6oLl8Lp/d5S/LoWiEVrM4Hky1l4VR5u8TQF6xx++6VF5037LvZER9lGvw/QP6V4uptPHXkc8sjmczmw3kJlCVs6pmRTWHefsp3rgcZ1AcmdhxdPVRQ8YBWLLdU8YrVz3HOzUtZHk3rJITbmVbWW4bZzMAmPo5ZN6HAz1+GDHElQFMeM+g8hhVNul9SNm3c8Hx0qQzQXW7yS7tiYj85bRofrWBDj9E7RHNyvOWCxM6k3BVY8CTdQkDM+XBKgCNWDk74sKOiTI0RJzvHo1G8ZBW+2J44jbAyxMOxqmW0y4XG64HZ8zWqELpusw+PYjdnQWscSDdvdjhDLVuNhf5QaSJ36gZHL+bX04wNqgtZYue7PBlupKaCybSTipu++nnvhswe8LXqiP8RzO5m61yE1eG9pELHZ+DB/xaHQiCT6w8+xuk08clfy9offTNJd/QGbqnriSfEco59p6vzOM/X8uGDtLvJL9MPrQDvoLeVeZ17J4+BEzo45Gt1afzaQxcqFkLobUL/eyw0U75dB7MPRyCapfvFgiMqOkpVgLHe27AbCVacQT/zojOWZ5gHXO2dqN9XOH3utcYCbnwnxAprV087EAULKmZC8f57ibjheR6QX35GSdev6c3OuBxDNR0BOWRb543tVHtUVFMdhJ24vxrydrykSzVdAf/HEttjRwKyTA7V25OKPwprD0Hwjnm5KHxtMI12nTp6ckGN5RH7bGXkC1TnZU//0pawL+2qGWfwcaFar2yW/WA0U9M3RoA6WXouFYoFbNAM+v/YTG8sJVehlZP8AAAD//ySdy7qCIBSFH6hBVirboXm/BZZmNdNuXjJNA5WnP5+doZ8TRPZirV+BI140/RsNtqjWcNAuLVEVWmUcr9IUWX1w/e//jXRNAJogurItlg/6hto4BA8Sl+D2eNb7u9Q6UEd0R9xXFZXc4aYDN1H6/ushb6zgiSxmHFnQuDJnItJ7mP0FHrBioGHzFp6oOejk/37X63EC8lfrmbHCJp8IzOyPng9MR8krmspircFuSWWmXd97NO6i/A6u/1Dwu/ycePdNszuSt7lDnDWP/XGdq6nCjBdm+nAPojGXzBRo2TC8ir3a59TGB1RUxZI26ZYifjW2GvgvMSYY319oPLzFFM7z3pfrfezowlX1YyhgM2F0PtE5M+Wq0gT7K1a866fjspDXQLXszKxBOnfT8pQmoHiaQTx7U2ZDiyUZzFStmfOUHJ9KfYDRodNjtmO3U8lVUlEIlNzAw6wng5W7V/j0zpfMz581xdY0IB/om7nP3UsfSi2s4FGLKovGlcwpVxce6g8eYNHQBM5DKUjAOQQdsfVTq1OsCxjcjxMRsps03isfdwKy1rbEWQ6pPvqpX8OlPFq06catP47niwr50L/xctYDnn1dAV2P45kRPZ70aYr9BIh96ui7uhkRp2Naga4GKlHvU6VPnV2ocCocn93DRkVD3eT4v54D5wHZpH6kAu2jc8VMKcx9luubAwiO4JO9f3HKbxEaFVwbcFliV6tuOj2nAnCdBbPfZX5L62aCX955f4q9Pl2XtyfS5OuOjtdP1XFB4SKSV82Z2XP7RpLYIpSqVhHVExM0PnzbkZHeL7B0Lh7ddF25d9Qt9A4/U+OFRi+XMPDAJHQ1ftqy6Q/lGk7WieJHuvU6boX0DlaPr8w0QhHxTGxTaPfHgPki63wef4QKrl3p4Z5vOWK+/sEyptaZWcoOZ9Nd5GdFrL81Xe3QTf/5BThd0zMJUqVHv2uE60tA5YBlHWsX9zUao0LFi0XN0WihpoBnGRvE4IaHhv1Hrv7H95oXLufscRaBajT812N+ssb55M7thmi6TX3eIDFF/u3QMGft6WiSdT2FnaQ4uKNJE/VOyWTUTEuKRzuWu97ZwQF0Fau47uZ96376+Ku/dfn1ytmfVQC0eBDyPUUZjx83FSyhDKmcra8R159uD6er+cT82+X+lLvhHZ4vZBIycca/wriuUTOkX2ZPo8gHrRwb0OHkUzF5vqLxd3/Wcyxtg4QPF5xZcL/Dicr2Rs9WwvtTQOSmE9t24ytru+dpDfvdZySqsJM4lw6aDIlxnfdS73Kfu8sBQ4qFD7PwFSOhv/tnUI54ZEbofPg3Xq1TmPWL6KJRomGxamOofSsn6l7b8yGJVxhG2vdMHy6LaFLaWEWSaRpsu5rP/vqqhYfcfdEw77CoMj7mm+TXPmJPTtNR1+pTFIiWx7AAH0Dgv9tdulGyLxacCs8nmFcqmud/GfRw82aaGSCfhcUOo5MSb4h/2EXZYItOhYZ8OdJPp/nR4O1pgKZ0I2Jem27ZN+s3Bs1BC8rHVYrmvHVHQZGcmXdtHTRtJhrDsN0ecP70qT821nQAz8EScbSu1mf+4Mnqkbe48LOSz/W/RnXU7zBg1eK93bcauKuTSnQt8/06OG3PM2ewmLU+HvXpVb8Bpgfo//N9uzcsLC9HtKfvO84y3ksORjdXbH5+t5uSRTbBnH+Ypq+C6OXpxh12+mFDdgdN88dhJR/Q+/ww8DD3/wjfvIeJT1fiqqVV9rf8XkCXPn3iYvxB03ofecrsF2e+8omYJbHwV6/EGVopo3k8aKCidcR8mjTZ8OuvVDQVhpHpZVyzlwaI+aHHwjweeJp4Pczjk3b1MMzvX/nnQUxjZhGtj/tWg9URrWklQaVPt9N8ENbRiJgWRld9CpWDCkOMdWZL9KkPLR5FQDmv6NBaIuqu+GZBH38VOj0W20joD6UAtuCYLHaKKPsqknuAi7FssLzZc3/SducDSm33Pvf3Su+Nd1fLoh5YLDr4EH3Kc76A5pDYxB+eejSi48mQf/q2MvtVNGRt4KCZjzEtLSrUXpZjCHpmC0y/V09/QK8gQeflbsWsfdzoU3bXkh8voMOnWGVj93ysxdOleBDnznY+hXnv9+AxH8O+iT86ZcSUFfbKv1j68RUXGQPEfW4TvBvsbvq8/MP/+P73ty4KBnhtdw+mSfeXTkmdyuiaWCHDTtz53LbSM4ySdCFNfazKUV6cRHCXrx2xznaU/fgVYiK9E5J8ZM6Wo5Qi30sZsz3x0M3+QYXL7RUxtfUtPgwp6eFwdrP//CJcXimGk3xfMONmhnyY51vUXtolUw2zQ9Ncr9DEyJl5jReNe/NC4Wsu45l/XfShnNdgLNv6NvOSKpr5hwBf2aqYKdxiPta6k4DnWxNRN1UbTcd3/EFWMq+5KBZDyZ1F1f/4BkvfeY64xbIAUhRScnzLG3/OSwv4jOKTXZQm7X55S2nvk8ec8+cZ8TczY3jawoO4qPx2g1AsDaQuLvGsn2bGT/tdiLwoq5lB9/dy9j8hMnv5QRe74d1NpzV1QFNFffa/o87LcfVE/UVw8NJvbNTzbSlD890hosmrqByHz4GCdFoozIV9r4/FPjRgcTIZbmZ+SptelCF/3Agh+uWpDzI2MbLHMGCRNK9rnfMgYNNdkSC6ltGP16JAKQ08VlKf0eV3t4Cr4K3xe9bL8feBOVKeGta7vNZ5UKuyYrLHEy+6RZsNp7wJlZ+fMnv89blqmB6Y+hIoONUn6t6XSw/EPnZk9i/+PB9RaA6xzQ6BW2Q9eSmebDfNc+ZjSO87ED2ZP0KVLuf2j+1NSuHa5R7RyvTK+61q3yGLxJQ8jlGQ/fuFXp7e5J/XXni3QFtXlpiOmcrXCzULICkEPPOrR0ST5ulJqWgrDL8EWo7F/mxANIEy54n2f36G/7ww54f/vGUJeUjIcjiijXS9A9o5bGRbVFcdNRVYoJRxl23v28iftoExQDhdzTkv1tHkWtUZmb34YNfQ5GhKh0CD5FAmZEcFO1uFX6LJfqll9LWxan88vIdUIaemJL98IyvR86yQrTwSZy0W/r//bfenAMtzftq4XpBAu6QtISlrEAuGK0C8jzPib2DR8fdlTyGYlCWG6ax3w3mTyTB6coyl587UhfJsYPmaGCHx+ovs94sEKoBdpVJ5k2z9KUVdJQ/4HjJMx7j73NTcAql0P1jWMgsNOD3WwB6jTLY/3jTUOw3lj8HG9ct9Z9R04xrtx0ljRAmmcsSfpkaz/uL16SKg3ttTjHrl8yQqfZcZ/yyLGB3bUCdZoU1db4zLDzop2yUxNeHqb1R6uf54PHH2k+1/PDiHSNIKnf382Ne8uAIQ7jhU6Mo84yfz1UNRPZf/+YPhdhL+318AuuNv7geiymcTSka0bsuHpxIZaL9rRnZ5pOeyx+mthqCIz4Rscur35/Pbg7o6CXgoom9XK0vSoF/93pPvtxxaPU1AWscZMx6e0tGvHy0QDrsULyC3ffpdNSEUlpvTVvk2JePZDUNltzGVVpcDmrImOcOgSz5dmbqpr7xNv0Ytu4x4KPCyZFjAIlpO2GU/3smWSgiwket09ks6H9fBu4fU9u//eWDYtKoGwvJ5ZfbLEspfPgRNiS1yCKap5OJFfIK+JAblXW75A02OA/KWWKNKPkWRwOgzhZknYKHqmqgpd4MHq9Z6U+68an/zHWzr/3m4lB2iDWsrgFRMV8Rn3wSxG0Sx0tnN4efP9emR4gY9x/OHkedxmbH2/ZjProCUJGHtclYH9QeRZ0hYFLAH4l2SP5VZT3766DdV2Q1o5g1s6wyb2d8tE/l1Cl0WXpJ3ORy20gDdzQyILn4F/7ta5B+wqZ1iuNlvNJK16ikzb8HinLeErA08dOi2MfEX/rub4vkf3Lm+GMZ3k69/31t+9SD65UL/vqus+OVTgiF/61TYtRjN+ZSpBvf8Yf/INPnoyS9mLsMH7+9S7sz8/g8AAP//pF1J07K8Ev1BLEBAEpZMAjIFRQV3gIgyypAA+fVf8bzbu7tLqizK6jTndJ8eIgSwNXxKk2u4wWg57Vtmjo47hVvvQf00SERZpjCirC3WgDnf1KCepNBdCvE1gD/+C16NCf70SoirWECWr80jsbqmhhvWfsQNpjP9BUPZQoj9jviazdG93sDI0TnZkFWp1ij4L7RIu76B8a4nrHFISnAYf/3eY1zrdB+tkTffcMgt1HMwV507wcVt42A9yZ676mfxAa/X6ROsTedU8z89stx4fOjYk4sfZ5CCT6rdiVaDbuTiMl+gVbI3stdn/uoJAxTMt0Pcsn3oeD6UIfjTh7sxRBnJUdnKr7t1R3t8n1FHKyZwvpQ9cZfsnq0H5xzCZ7mdMOs92oie76MIu7ukB5yZiBH986dp8b8Bv8fDKwuBB+eTfCP+R/hEW0S0K3xqSYdfeWZQYZ/WgveTQ5EXKC3FxZzxcMcvkqRqQJfpN0AYvZ06qPb4bLvcLgHY6wdEG668O1/C9QqYW4mJXjuP6l88nY+cRpRiM9yJv9oStHhiBqwj/SoKP3n6p48FPLA/EdULZtejdR2pr+QLeklfbTlh0YHobMnue0+ACdv6ziFf0JGLG2D3f3rGns/Y4wE8hhqedBkSa+Nb+g9/VLU1d//+6H/2AZXWNQFjtVO1MO5LAWd534MeWWm2fMdLAl8aypHFXasRP4OFlw8M90Shoch0NutfAn0hsZCy+9jaqpADSTbdA1q8ry5FrmlAU7poWACnYFzuLSOCnW+QejF8l8bmMQC7vojc1lIqPhGO/VGzjwyy/FEGs6EIAfRr/0H0F69S/pmGqTyu3ovkx+Osz9bWpdJuT3Q+PDeKm1O+/ONzKxc8wP3lh163XpF7TLKIXLPRhNfjSUKROnt03juZgTa4d6Q8H1Y1PWRe+8NX4gvTO9oaoAxy9Yt4LA/mT9+2Hw+hJJYX5CPR0pf4oUww0c2BKLjTs3/1lT2/QqGMjWjPL2/yzqfI7QribpZw5f70IfQ4n8po4572Iu16IdIkT8+4qA4LKNSfJeD/6uVyMXjS33krhiKDLUDZAt9sQINlr5etd+9QS50fxv/0oKUvaQ1/ZyXZ9e+2osuwFPJffnze+WplQruAzguO5PL5wpHOi2VAu7xckLWf9/ySz8axpPIYwF0P37inskDm8PKRpSjHars+2B428fVM3HYJAcYP8IWSWtkoOGu/bHujrYVy+hsJukdTtPnirf7/egoO/7unwPoUkDiev4Il3YRFOlpzQUz39hjXuhh76XVnWeLJkGQNeremNEncQKzm+KDUFr4ivGXchpNG/kSrmF5v4HgxbOTJEEX0HZVXWQgZik5zPwKi5H0Ae5lUSN8YIxPuvG5DPd93S0yPqmqCIFHgeZ/TUzVjrTDT1grwInLFwo83KOHeYglLMKh4HaUToKx6UYCIRorXX52NW3F6lrDDHoe8Dj/d1RbCHqa6GuJqQ69xxZXxAPFrG5GbrHG0Xev5C97P516DOQb64bM6IWTE14yURRdcEj3dFOz/B+nf7p1ttOBy2LH+gM7foz0K01XWwNHoADJXWIHV5NQNJnOU4q4d0bic31sre9JikkKCH5ewXW/C48W0kaPGXiR81tsXjAepQoE/DvokNDAHtwLeyfs1XLPF+p1FwI04IOrxbAHi4KiGrZ2zRF96yZ0vJHIgHcwN6ad5jqjzkROgDzVAiGAGkMibA0kPtRvS32enEiI2zSHSdhDlhk+2nZpkgbI6a1iw/UlfWZWGsButCwneU11RRa84eBcRE3TQmt35w+QMFHNbIbmq2C5dnukCjMmLsWRvyN0CwXAgA7oQWbbv6atiBCb4uncRaSQ/uQe3ab8AaZ8+oPmCowVWbAqZuBAQUtRjRd+WZgL+ThuiHIWHvgo+tIHRbGe8LpY6HthsskE8/hikijHS6Z1nB7B9OAVlMQnp2n6JBk7KbUUGkeWRHuL7BB88EYgia252UF48hI2S3ZHzVhp3NqrSg61Lh2A2vl02KwLhgHgXJeRruNcX9f0KQToYBiokx462cTjcjtGgBfjjmgKl9TXGUOX0BPnGt4vIp1a5YyfSnHicnLlL+Xg9gFYk+xT2Zkbb+So54LulM/K220Xvm2hcpMdxuBKzXDgdr0EqgTpYRWQa4wSo8zkk8M8/jfzOViteYgW8gx4RQzwqrhBHDgOUwkhRHPW4+r2t+gFfxqKiy9c0KTW78wPuv0ePbH2PG+OTHkwSP+DV6it9fQPTgCQZHKTNuk37/HB12NB6EWI9Lkk1nbZLAB/L5Ye0eJAjfJmVm2yovIibjptGqoSaAr/NnCA7P2vRasSOJhWF+iN6jC3AX6tVk9/PjA3WL1hH7JJVhMzreAqYyjlm8/HiKuCxRD90kqT3uNGTXsvcBl2kzQe1Wn5USuEg82LAQvuhb+9H18LnuEbodDhY0TYWbxuEn95CqVz0dAXgVUAfnTpkpvAGcLccFrneSo1kxz6OpoofIdS22xl5ZViP67cnOdzwlCPVHs7jjicavIeLhAJlOoD9fCcQKvyTqFH4yYhcPwN4TrQ3OZ9fYzQU092QuITSYHkpD3fzqbLB7w0MQeGUHKD79wbML6sTzy5yuh5Fs4UnrAFkxWKub85DLsEgJAMKVvurkzvvOuAO7h+itKuuC5wJbZ69MwtS/CQGVK4vHvyxDxZZWHRdmrUghWCUPaK8NgzIs6q/QBz0CMutq7hc+DFSSNvNwg3flTpBpyuE97XuA2b3Z97r9rtKdDjgwzy+6JRnvys8de1MDNl7j5jE30AWNRpjRpnuYH2SJZenUd2I1ViM/vcMY6Z9Bge/fVRrpqQGVFJGIEHyQePmK9kX/iDK9/fLFL8hP0DxLklEf1hGJAzaft+XilJi2SGj92mSJuCnMwMyEq3UV15OvxAYc4jM762plrwH8HiILxPxIoMbaWMkJYjT0cYD7vVoY1KfgwdBugYN+2sjPN+iGwicl4wC67S5+KcMInyqwUR8o3lm67DfN/xLTjpR/HsD6Ge9lXC7x5Scf9/rSKd35sH1x76IdX+/wfJLeQ1qWXQLdnyv5tiyFMhs+ht5x+kDlhkYPfizj19QkuHZOjgwsxaEUCAUdG6JH8CmvrXkslUE4BI6tvh5y1/kDspRp+1tM0ByxZRoha9Hq6h8CriMYY4HLtfGNS7dBC5OjpGfx6q+XGO7BZfSVtB5kaoMP4rGBCCIVBKUq+yuZhpK0HvCBL0Kla/mZlR54Ag3Ez1DEbtr0CuizMoZR1RXb+h0YisRfi8tiw98p+hbU+YeVG7fH15uiz1S+yVpsJfnividnlNaun4OSPt5IS3dyhHDh1OA6/HZ42l9m9H06/IAPL/oi05CPtC1SvsQ9m34Jk4XbiO9QLcFMbN+iLe+24hOV7uE/NsJMIjJAmZF6Hh4iM0aWdjcorkuqh5ql29GVJ7uPToPK4ET19TIXdpV3y6zffvHV+LCi2BpzacBdzzB8s1pKto30QD4BOzbu1gQrXJNCxidgxLt/hDRF9/n8M+eMZkPdEtwakvmzzsTpKV3QAxHbcEzsOx/eEgW5ZHAY+N9iMYaVYTJGpkwC4IX5tgG0O3E8g70eSdHiL/x9I+/QU+4EMU7327jID9AeWt8pLTcwd0Yv+sh9dKO6L69uMP5KE9ScmQI/u78KcC5LOH1A2tMD7FChT98ehmbGmwkb9z149AAdOPpQtz63LvNZBqttHwAJefPPXa3vH9O//zxKeFvNPvI+EKXbUVkXuw7WKXXL4A3dtORua3BOJVfUIIbHEqiMddhHGX3xoMHzbyAFvGF0oobU2iq0Cd+nlJ3vuewhFgHblDr2Ryt21C00shbI1Kf8BXN6BqlkFECQIzveAar4VQ87PzMROrTKEeatTSVT5+4w+GAYoDFA92kL4AFOTNe7K7YsSCQvF9D7Hs1ZPhHEwfu8SVxznVH1wFl4n8AAAD//yRdSbaCMBA8EAsBlTRLEETGREERd6LIJA5AAuT0/+G/QbCT6qqyB3XY2Qa5XR/L6GO6rQgblvbMWp+bisPuksFgbnLmCvuiGqNgl0FSsQ8tPoVTSdHCxv/x3JVpaUzC3AdnE8ci2g3f03EhnTS4FfqKYGv/Srv6cwmRvb0GxJvzixQlow2X63Bn2Y8/ne7WAFYTUcxNa54T0S86tFqLHvPzSJ5nH9MbNNvTjZmFaaVsksMcVnL3Zm5HdgZfvN4mXO6KRszwMPGv3OBOeVrLilmKf4h6t2htZY4flTquGxIFu0NbLR7pJG+ZMUp17CLkeRkzVlNVTY+Y1eCOW42idJGl/UJ8l8iP+pC4gSilTNtvNuqzngvTb6t122vGZZ57vpDJzvCebef0QQhHHi3p83yV2vF0szfIeD0SXC7MKh2y9b1ETpb1xE+s1ODi+pOgm/XYkw25Mk5/9zlHb50k5vHd8vcz/UIuQMdMfZmi8YDGGIZaxjPfXkTNUX/GwIiZYGX5daqpXFw2yP7kDbN49Yq4fx4bcOY+iPn3QYPT7QdwVmJAUiufNbQt2MhZGyfKj3mO3kyISji+8x1Lsue+Kn7x3L2QS9W7Px9HecVA8k37j9fDzH+UFo4j5qeT107JsQhVuq9zYm+dKJoq45ahmY9TMC5mxAp16kAhjUbstdQbA7hWDsyWQvLDy+EjUgXRt14T5/PIq4/dUoDySEtcnr/3iFvX1lX4vtBZompl1LQmDWEXHEv2wMsMTUqImt99pspCOXv8cBJLtKqeW7JdR2Cw1WUwYSEvGmZvBcGbbuQeQ6i7MjGFYTRG+yBbsArnfZibq8T7aAEdyA8bM699wby/3a2VTnzVdNTu1Jj2PYiouEkLspUM3A5eXIUw+lFItJtaGyOimwGqOjgwY/2a+2I0JoOS10scz/y1/8rnGxIK7UPs6Q7pVDTHL/DxyBh+o6adCi1owK6shJlGGqTS2qxloDT80uXpsUBjt1rLQDq0Y9Znuqa8eu07VWW+SfbPYKz+8T18JxPRo4in/LFzTSQnVKPxTi7QzN9DFMs5Ixtzs0i5a5slarrrnnhj8kHDK1beQKPOIIEg1e0YXfov0oeuJ6aRPdLP9Pla4O4tl5h8myMuV0hBU9us//Vwx1tYob2uF2QjZm01zXgFdmUmZLe0k5mf7Es1yJQH0eqkQaP1amuQ7uVE7EFe8TEgZq6KeGMQ/BkO0cwvNKDu6cKcd7/jlGdwA/GhrQkJN0fvh6dosV7pBBd5xYedlFvq6RzYzMUNnmuw2hvqT2lIV4R5xhSerzLKz2hF36+5L5d55uanr/BavWbpOBnR5p+vmZ+DjqZHtZ1g5u/EckuVT6y2r6Cy1MeLUPTRuN9qHVD6mLAaNxGSIB9M9ZP6DbNLSTCovpW/MC36kMbkUFefn57Oerkg20WXRJOzdjCUiR4w45hrXP6I5hf0Wx2xQH473qgYQwxVTQ5MQ9m65f7TDOF8xAqu0/3LeJ67ovmdj+kb2Y2medc8nMR1hJXiordDryQuDG93zbSt7abTlj8ElDmdTZypaND7M8/3ub1CgTa2Rdq+whsTlqi40uUVNxW/7y9XcEVcYWGInVT+NGsBHqpts6OSV+00pn0N84ZQOuNTOkF1suFAjgdizvluCvyRwtaaFlRSlEX1fXbT9ZeviJX3G2PI5lmHVtcD0UurQYOevQeUPK47ZpCim+MvaBCRL6VLlQ4tu8BbgfjEdCpM7Nny6QNH0CZfJLbw2qKRxo2rYMG32Kz/2smLHQ35Z10l1urZo//z7NuLRvCqqvnMd+sf38GKG+dVl0N9BVb5E53O33s6KA/YwP05LZn2JWfOh+cK4JCfbSwy9d7yNNiUUDnLkfaWf0P8nagZDLWI2flyCzgPNr4JCS8LQopXHk3Zaq7R/yhrKihQGCMouaCaWe4z3e7TSvpuJArWBzvEfRhng0XPolEbO1tgdQgFPox6mf3wmZklRbwr/UMJ+VWMWHQbaNqfw4GqXYwuVDg/PsZY6u1qPTZLhW1xwiJWvRKKdvX4Io4lFhGb/ShIbmFNm5358f79pPtJXTDS5WfOF+9bjX76eUuCqzEF/nrGx3NM3IvfGNx6qSJo0wWYvl8+DR7SlYJOYuexY5WL7ZBlgw1Wc6AMGwrwUT2/Jygu1RGv/ML0JPvgNPDTe6S8ed6krBcuaFL1wNLjNRpM+R6+qvoWBPxyNjEa7bYBSE5yTIg2aOkS2VsBTvcMMws/WjThe7qHA4kPbL5PvMjoS/nxCzzpsZFy29RttV0HmHQvejH4ZVj6aCpkjfzy+xDW0R7eHe2JeelO1SAVowWvIk7o6lXXiH8laeb/+YdpW6UyeupEN4UGN2BX6RCkYnuf53oIvGCz/k/74C0lkKhWSIL6hdtJ4C4GXJQTcbtw7c38uUari3Ynpx17RlPk2jaUh3rBSLBHUQeVO9cEtzEWkoJVz0sVhrDfPRhF2enNx8nc5aBzeU/I99NUzF5+FbQ2r5z9/Lkx1XGNtgEJiH0Gq5qOaez/6437bsBRv85OVL2H7ZEq8mrPh3u3PMKDN2dCcunVsoaWwu8+Y6lZ6Ei+kdMRslzYznh0qfgBjPr3vVjwTauaeJjtf98z63vgEzt/fViuMGNbAhp/z3oKVf24wYqa2XxgoxqvZ/3BrKL0uQguzuEztS3RWhmldPU5NeBGiURMJa8qbonHDUTCmTEfTi369+fcvekSorJLxbu1b6FNavo/v6T9x2ttSoEuQrFDfdR4IlzYTsC0qGYuneMQeLTsqLhpNu3yae5z9YenTmuZc1+/+oWto5R0WnZhO7rH5Ab2bXkggUg6NNWyQ6HMwogR2M6LXWe8ENfJhW0tj/OfvoTPShmps4ZPNWThZe7BkBZ48dlU3rAm1wzM5+DM/Imn3Dmd8b9fZQT23mM/fn4SHiYzD7e3MU77vkNHGYfEmfNVW+JjDFjrTaaJEuHD1t/YUCZGQFXJXLZDfnrLP/ymyFzPuylnvHrcqpK+8s0WidckTFRd2Wf//qVs2JcNeIcVZbrRSt70GtQByaf6TozYlaOxOF+Sfz862FDbE3/+yDdugGhngbQyz8QMXm5U/fh/+v35U2+yKYktX910bS/nuXaXy4LY58Wqoo4VATSfsCfY/Bhc0u6bTO1aY8LIP+KofyBsgjx4WwzvfPJ4F2qlOr8/4n9No2p/+jsLNpw4FY2iIXzuJjA/ljjnNwsNbiXBL//R9bt/zfxpFOH5ypyfH1ONYmRbSJVbB8vBV/eG2nAx6KKeEE0VTY9VuvOF6BrEuI4Mrx07y2/gJFJv9vtlznPh5cP5mmlEn/2LttuWMey0FuNx9sfeyW4lwvwesPAtXW/uvIjBW9tfpsmXIpXLZ26rV8vlGGZ/9ENdAmj2T6gSiKdonO7eCuZ4M3/og3Y6Xj8dqtP9dn5vTcW+koRRLJeM2WSuQUV2AKiHm8VipN+MkbJvifLzesV+72MQY3IFerUPRHduZVTfu0WMHuppj1d9UnvdUdSOgPRXT0fncYyW1WtP1f7ku8zXMEv7iYwY5FvAsfy2TT7zWxHM7vLA9WKuQa3DBwX1tEyp+pKkqhux/Ya0PC7p/rlwU/bM9GQl+CtCSPL2jdGlTgydCgHzqjPxRju77dHYvCdymPn2aOnHHAnH85Hgt9Pz0XpVjVJcYn+eG1MYw4yPsA+ohMdhV1RsvayP8JI+a7bxFr3HrSC5waz/gnH2x8V26ewhO3gBHs4Ca5n2URQYnkb8Hw/xqbD4x+exRO9xJc9+KZwPu/PML56cznoR7V5rl2mzXzKV0yQCvboHZrWxhyaByx200qoi55mv98/WEUHEmsH26qad77Nl/vILPhrZImrn/wsAvxYa2x2/J09+OQpGP3yOJqGOuOrdRHhfni7Z3m7g/fIhmJ8IKDOEXToO0/oK+WFfMryJ1um4sd4Z7OrmQchnY3ii0l39PwAAAP//pF1Ju7K8EvxBLECmhCWTyJggKOIOHFAUkSEB8uu/B8+7vLu79ijHpLuqujqmYWueEGFffrKm13efaGv9ifgxietRC3jnl8+kS/OGEaPfh2DvbQPqvjWjFLnzOYM6v41psPLNlLzxAqzXcYP1SxCk868ePs5son5mTGCImvwA+/3kU6vNh3r5+GQAKz+u/HrueyEtMuhQ6Y6t+pwH06V8JGAodIiNgojBwpIshnc3NOj1lA/1dxjKDlp6dKG7ixTXbF9jBKG+a4igeVEvvbZbXRmE4oLkKENgHJLnBKWrhMkU5RKbNq4eat6GdBSnzbunk37LYTnsJsRTcgN9GsgECvnMcABwARZjy3UAkTMiDKCZUeejidC+PUMiKKQDAp21A9RY3az9ALnuwcPMfvzz80MZu+4jFfz0jn58Gqnwwm0BS7sd8CUVx5Kt/T3Fod2JqI/zo1+4ZtDh2n9DgcyGtb/UCzB+cQtaTK1hzAMkht7y2WFP8Sc2rf2RPz3lv6SsbAvucQMP9WQSxRGMVMj68QmcbSxjc/1d/fLRUg6ya3ml+u1zXvejGVTo1AKpjs9HOW2OiQyKipbUPcz7el7jAcgeftNVLzPGC+ryq0ewkSc7NpbRa4LomufYWPs9/cQ/ROgdVEh3aYvqmUAtBKnwEjGazqAcf/438Lnsjx8FZfOooHjBDBuK91mPvMk5VB0dU2fVn2zvPgT1LiomRWs/ZGmUuNFGJatRKxjEml27z+F3322IGMpu+g0Xm8BrgDBh3dyC2RwH/acf13rCYew8+QT62TPH5rXs6ulSfmNQfLwv/uVvlcwjBGwMj2RY+W/Kj1YFgf10qeHdD6W0+s/wfv9usc+7XEqeZwPCXz2x+nVMhJRl8KtsFdS0Gu2/96olcMbFhnqTaqVLGDUI+mo3UzPwn+mKhx2QzfmEV3616M8Pe1xa6YeHgVh5BxnaaDxQnYRvcG+DboFPWQC4BFhl49pPhvh4s7BP2jrtNc60wdJeM4o9fWTseEUL3KS8QfjVHyFjNT+h/dwQpKR7v5wbUBdQ4tbZit0ygyGTAwIrjhswCm2nn4/4K2gQ3MHq/yol8x+uDLvzcMfuJTyk88kpKrB9HD9oEjYYSGu/BQSK35Hhm3SASR8+BgoKBup4Y2rRlst12Gz9A3bDl2hNSXCTgayIAdVXPhgSLvR/60H/Xrfg0dR+frr/ifR6mpHewcIU1nvn3nEv8cZZh19lp6CJhG/264eBoqpW/aUSMB2M0gZfWZ7XfraUzmUox+CeaDP99fOIxAeO2lIxxlFWG2Aa3VMBf/04fs+b1lpfx//fmQLxf58pCHZgIdo944OpHgoT3CR9HcEL/YDduhgCLfZd6luZXrPS9Fw4wwul5+7m1VVxjgs4GmGEzUxS2HhJtw6ohJeDo+u+TAeWJqJ2HQ4Y5/euAovk8ghcvqQjU3F/B1OGVAfAxvEJMemxZ4vyaMCB93nquqBms7FHCbQIdOiOKjZgD+wVsO4dhFTv+yxHYRB0mLjnOxEGWpfzlpsqrQg7nbqPj8yWatP6qrrrFLrr+08weq+dCq2jJSOFZNd6atJXAfbopaDHO42YdPeHG/jGOcXnp0mCYTSZD/sNa/EuJkM6mOWJg31AO2xHrV73RnVc4BawHM39ZVfP2jP0oZXld2xIkxSwwU9UuLE+J+oKWRbM/q5UgcK/jL/3iw8pfEEbnyIcxVrP2mLjyODNiy317pofMI+dcmiRe0YEEA51/5L2q+fv89Q8RXXf+A+1gbCxfXxd309H9y4DdVc+sH0Cz2C2wd6Gw/12w+FB6NJ5f2Iv2KX6gXDlJ+wFjsQCRPJVpk5/+LCZcM8FEK09UX3Xlmw6H8BlvQslovs+3/ejetUTTYmONXon3qef1Hp5wva4nisD4iaYK3CQgRcMPHZYca4ZzzYNpBI5Yk9clGASi/0AH0f0xs54Dlj7xrubdn5IAJtcIVv0y/E6OHDgQ4PQwPXmMgs29IlmoV56Rf3c9A9/vVskov7usqSDKAdIjezPEdtNzNeksLMLwN57h56P6l0uJz22NbutDzRADiuXZ5G/AMK1h4OWz8vF178d2N8HFxvxfWCM0CCGZ+MmoEkblHqmph/Lz5PgY126RoAdEzWHj+sSUs+wt+nGfYwc8Lf1G5s9axi7ObiCow43ZIF1EiwbN44h3IYpxlU298/HkbVwc40jbMw9S1l47RJYlIpMI0h2YGlqpQBdvw3WeAiAKH5WjHb0Iw6K5sWWPhoHEPG+SXrke6WQujKBXZ/V2PDDIBirWyVrOdog7LZm09NLndh/+emdmFluHvwswI115Clq7CwYEQtcMMjnCDu+vimX/ZIk/BMnT2oyRa4piNoFMkdZ5/etd0m/9+ZFC9PDCfsF3vbj4gYtYHL/pCF6uLUUXp8JYOjzIrJ4p4C1vPCE/KVJ0LOnE+vdBF3g9aDrSMyvN7aULisgLnBDxDiVgsElk6sdPraLvdd5y0hYn0x4dJsbae13YbGIAwgux1bE28Tb1VI6OFDV5bDByWIm9WSA8AaPe9/BTparjN2/5QVu/aqgKQkEi8BNDaH/qXrsWPO3XormJcPH+BRw4G7f/fI2OggXToAINKqQDq/w/YTbROyofUMWmIpUg+CoJ5i66/cb2Q654PVSBWweoAYIWufx6p9mhxQtcsCynUkG2y1J6PZyuKYzvYkJfE6PB5klIbJ+8QW9i4AIU5U6XXz90YHoeA/JxqjtlBSfLoe7k3DBDko8a7JNq4Cdd7pi134XAYtt2MFPmUMEZ9EL5iZUfXDSRp56+NQwuu7HHz4uoyCwyZ8LG7Y3/YGj98YEU6+fEXSfT4UGBhnZzMKq0SLeNWkw3z3GuI3cQC/gTkhejq01XApBhJG466nrd1e2lN4ka7V3qBDvXYd6LTEFuOIpvcjbA2sPndfB0/s8USRLXspKc52Sq/UHqm+aD2PPfZ39Pg8Jl20XjCgWht964d3Y8tagy88nDJZLRdrBlVPy/fALcLhCIyq1nH72TJGDA795r/iRW9PU++tdUN2bPC4MpoP6mkz4vnEzRtP4qOcidEJo7L0jNRcz6Vn8CRxwb9MOTUW5/jbpde1AH/Am9Y/aHiz7pYjhseXfNOjD1lrs+JqDUec2NKDFFrA602PtolsCUZtPH6x4eYP5h2nUO09qOtyfSgiX6NBg1wUWW3algmB0iwNa8CcxIPSEnnCz2Y2kPabflBWV7IN0cyhoNh6PrD7uoQrWfKFbGjTpEpjIhluYuNihN9pP004yYaxxBd7yJQ/WfJ2geLIZAcp334vKXrFBo5QiUbdp3i/LLcr/+Au/2nfJUuJBiOZnTG0QDv1Yv7oE3HdyjSM0AUBuiz5ot6yIqCW31/772rIECr7pIVXJ2nRaMMtBoPQVmplcB9Nj27SwSk4tAkn+CWaRHjkYKKqM/dzcsJl1ia2tn4/mux4Ga/yoMK/EI40+bcLW9ajgFJ8Hwvbbe0q2iXSAZ5CesfFBHhDie30Axr4Yadjf53KOxecLqvk+x8bDc6zltrgD7MdhQsLWPgdzLHxeMITWiHfoAcvvcT1nzPKkJLLfaWzGx32nGaoYoHLchwGDOArBwUF77C4RtOarcNPBzuHe2A9IE8z5IIcwfCFESrAEJTvJVQyLt7ijTqWoJT0dMhHYZ9PGemxL9ex/uwyOXnXBnihSazkoexdmZnfBkf2Y0imSyhu837UCu11QpUMhefLffhgfnzHi5PsJ5rsWYUQSBiYD2BfIQ/6M1ObOW4v4ISE000nFO/ROSuZukhx2TA2od6JhSvbzZYLD5HAEJOa1JA/ZdFThOVYYK86lpq2+2GocaAccSK1VT8L+LsJW5GMc5gNXDqcp0OW8TUaqN+zQfx+ckMH2Onto85JfrH2zXIWq4mEyP7bTD49aOH3DHltpgteZeSOEy6htcaYBJRg2R2GCr83UE777soAFcB+rB+mKqffTY0bOmdDG2w1hrammo63cbOBpl5HqmvCuOzs+5vBTei9qOrVfskfkFDAzS5uGs+hZwxp/2pg49h+/swCeY7ivXjq9RbkRrPtpQnUeJOpv9FtNQ/WWqIu98NS6L1U9/OaPzs9ZoQjjj8WqYZGBUSnaqidzsGxTKEDbdSNsfqHOZsQCH1pNsF4xLx6tzcmxBbiThxQbM/2mbPvlXvC0jQ2c5azt17934UlcTkjeG5uecgKwIfAYodsIeIDVi5DA5LzPsPm40HQEF3MBX+W1wdf7LbAG+DlDMMMbpTu3QvW4V01T01rEE2X41P0QaxcBSE+zRVxluekSfRinHVvtTfXd9AFs8AtZpbcnIlJflwFVXXRQfno4reWkFN5xyMFdVdgUD2IdfOTtq4DsThjdFZoEZompKrw/7O6HbyVz6F5X1/3E1zKUyoUcXg1ksqoSqb5+U5YErIKPsNOwe7pY1rwtqA3vSqHgYM03UmxTDs59I1M82xXrzZ2HIBSHL/a3qdx3+/mygBVfqWu+hmBSjZcD7zP3oFFq4vqPz6aWT9FyP/XltwIX+afPEPOsuh6C/diA0zWTqWkXcd//8jW/c1dqcZsonYL9+wXHJWLoHF18Nql608Blq5+wVcM2Jd1wGdQmZyfsVEqRsiWPO23VK2hB4xKMoMATeFzKN0k+12swPXaPFh6OnEKmX/5z1tWFu1mvaUzTxmLD11PhWg9RAxUtWLjzba1hNYgEa2dYm/2JNbCwJIMG7/Wu7JdYEtDBsKBY8l7999xp6B/+HSYhHd4jdwPlXY9w7I08+AjnjQ3GL6hXj+zZz3rqJaBZQpHi/eeQsuNeUH/1FsaX0GMTUrQcFGGrU8t58YBm2VmEHHMF6tpjYzFWqC+QWq8BO7VfBVR8zBeo5s8J7+ysAcMVbieYY7tBkn861Ezk3je4NcaSrnjSs0ywDrCMvg2aL1JSTrfrbYFzcf8i8fAQwLRz7XW+rE/Jd58LgK3PB2+UJTSoFKdenvnxBYtL3tIyNGi/8FcgQIQfHll6GrOFHDvnh+c/vA5GJLgtlH0+w/qm2bH5Q90GRtIlwaY72OXMv+sG5ifvhvXYHft5EJsciNKYIBV3sdXgPs1/+hWRYwHBOIhNAcNA32HjMOv9vLhB96unfvoILILFMngj0YBk7ivVdNUTMHi8vtjG5dSTT5NmWjqaPrWbi9ELcVUJWurPA2JirdTTT++u60nUo1KCpcpmH8RXu8b6fBCCdv/SE3Bx3yV6vwTE+nRA3A9vkdKEGzBUr2MHa1UUqbs+/4//1njGuzX/BseiIui1648fG4vconXgaGP75B2IW7A5GC4H62f1+dOnFJkFAXF4s7E99FE67pWwAto0fcgUu1HNJAPf4OyPBvZXvTP38jeHTP4+SdcONBg1fZ2ld9k+cfQeRTBvYl3XVvyjYaG9rOWzNXOgZ1FFNJeuZ/if7gH+9LOVZm+Leeye/+pvat2bW8/WJ0Puabyxwas3NrcoayC8Pp/USrNtQJ7izoEKf1jvjRmUfrbzrQ/cvVxQy+XHfo6mL4LS+ar/+Lgf54/sg/nJFCTOdVrPLGxfUG8knkhmNDAWnLcZnHshxtaQv6zOOV1iuPWfBXUQSgNB1ckLrnqHqKAMLdbe6gaS0Dcw7savNS3jSwYf4WMRXrs4aev6DYGfRDqiRw7ackLKJoft+JhxVMZjOSNBb+XgbBhIEqwQzDujqOCh+eRIdhaPzeRyySBZ79Zc/YJeiOEpA+p8vWN84no2ecPGB/kpuFHdUx6AXe3agc7mwyHBK0zWSZ5AIKtOKVEXfqp/6wsLTeaw+e6igIVqlkB0ks7oOMddOcabt6OtepwwsuOs1W8INdNyS2zY1r5cBgr9n14n85oP4iUsRHAa+RPiuuzLxlNbxtC6itLaE/DKKW26EB5VW/jpo3RxxCCBQ5VlNOhtaE0m/8hV53jB2BvqqJ+FcX5qV8GjZIwMg4mMv2Xqju8B4V/tNpXG4ZsBixBCt09WsWna8SZst0NCpttoso1ybgW4z/qZ7lRb7YePKGd/+cOD0zPtV30M+E1t0MisninpcTuIbnEx6FZr6T88ibhSRfJ0M60Buk/4x+fh2WytOXsrBxARk1FHA+dgrScQEKdYpeHZdK013kI4fVFPw7B71myjV0/t/shM9K12SzCTy9oTzTOP2ivez4+nnmmn667CTnaJWb/unzYz4JIqi/blrM9yDL10lnA4k2swLs3SAd6OLZo8qm06fM/jBE9b80v1TXwLyPmt3+Baz1P7FZRg1ucphmznhXgcbFTPh4t0gaT87rGzk8pyuD8YgS87PuJU7N81Y/LLAfln1mgobw9g+kqnGBr6hGhwm8J6UWLwgttOedDcfIXBRpW5BeaVcKR7ZVNarL0S+1ePo7FcZzWGr8sThsWex7r0qBmr+k2h3sI7hx0P8ul0498hFNvQpOd1jjtVms0BCgb2kfxWhnouF6WBPkUl4qLcsMQuCCalFw0do2NxYePKb7A8Ha70vOqf6XbNJtUFdoXj3bRjy0vbclD78J+/eBuHHKqw845Xau8roaeGQSZ4Nb9nvMULZkNipwvYaGeIOM2YgyEbvzZsJdTSYCft+qFJh1xxi/CLbS/JwMhtcxdiT7hTvK+5dHx/bAQf1ymk1yVqy3GnX82fH7TGY1GzS504cHBUie7ezzGd54/swtsnsQlPgMOGNR+gnE4Z9m/XupzcYAjBVxEiGrAMs/EmqxB2hrIl8mda6snr+Q7cd98AY5AO6WAbWxVqd5lig9shQCnZTnA/HVq6zbZzPcN7h8AIzIVI9/TRM790D5p2OrlIEdV3wDzhoMKdfAHUGz5WvflOowmmdgSkekFUj5IwFYA7j0dqqYqV/tVv2Cx22IlLK2AbvoPAfjiQBhp4p4N5y2/w8r0m2NvqtBzr1zMB4pSoKx+/SvY6RMkfHgtd45WkXXssv/o7+vJdzYy3HIJDVO5/9Uj606u//CcSelzSRbDAAW5ClyN213zL3jDIAm3cvKkH7AGQ8k1zYPrHEqPlteulJFR0oFM1I9p1X5bjrm45dfV/qL0MIFha9yHC07t3qX2Gk7WUnizDw62q6Mm56724+jkqm29PjIBuBdJh6lWQPEQO42K3BcKqx+A+Ax6R5L3fy5LyaWEfjB02uODFZsDtQ+0mzofVjzmw2RKhD1a8w94av4wVy0sTClXH1n3Re2nv7Rut6w81uZnSo//Tp/D9Lihu7kEq6IWig8Mtdf/+nxXPY2Dsuy01blAMpqqJW2gsRkh35t4ES5LWyR9fy/dOB6Njxia850uBg8PjYVHDfMUAXlMfqSmsweoHxHCjfQ/U9x5iuuLHDViNt6MB3/EpyW7eCzhcd8S7r/AIfvkHL884wejKvdJq67QZnF9+RSaaOsHmm846XOsRBKRKqkk88MIvf3BoQRaMgc8O8OdvCru9y8h+PixwWlofu5/hUrenCDbA9Q4Lqs32CPokAE+AZBoTbjid2Hw5mM0PL2nI+fk6a6npIGbyFaO7opczTrMWfvzlij719Vuyms0TjIjO6IG/VelkqIiDY5eniGtC01o+TXkAqF2PiRxtD7Dbi3uq0iLf//FzQS4dLD+7LRpmcrVGKSYQ7Cp3wKZ87tI//9M7GBipa/9k86WfSnnfQ49a53fMVj6MQd3bCBfV85MyQTN0bcP5Nl7rQbZ5PnwRgsEMyWYOD2m7YJBDI99s8fW9MRmtmTKBPz3686O06eYCJWoAqpDl1dLVer+UVa/gSE+TflZOowjEqUqoc5OHUvLXM7svDVuIyIyl0+qnQ6c5OLh8DmJPC+7Rar94dw7f6uePJ3/9iQgJM6D6M58g3KIUB416SCdBqCf488ecw1cHYpLWMaz8ysU7uiGArP6muvZH6G369v3yHwAAAP//pJ3J1oI4EIUfiIWIQMKSWSYTJhV3ggPggIAJJE/fB/9e9q5fQDwn1K2b7xZJ/00jOFzshB5o8xxYNRiidgL3GRtDDobvwXyeIbts0Y+XhjN7qT2IhhJhy5wMIJ2eevXHU2xcxsMs1G4HF35DsVa5JZHeBEHUCR3hrZxm/dIPQHIMahy+hD6bD+azAAIgJcqXvGSyHycRlrTMqW+u6mzStt8KHrhyXvIQAEZcojNc8g/qbJLCmr+Xkwjn4SHTnVS6ITsKFx2WVLZxcG+2pXQX+x6GMWEY+UFbssMlcuHtvkkxwuEcThe4m2B6mlyaeAkNyWYMgx+vXPZfrjUrRXvQqqQoqX79mkBkGJyB04OaRvxzCich2BbwHjQe0pifltOt5qMWeufmz2/TNJB0KKaHE96pmRqyOHzJKiiD/cJ7d+CPHy48AuMVlrI5UaJGNe5Ao9Zl8xikhXfC6x5cKDYyG/CTahP44w+7xb8/q73nAjVZZqhLY8fnuvqq8HkoA6SZVVROr2w8g+1sthTZ4mmYH50/QrW4T9jLApzN6sWLweLv0WfrZBb79FOs/fZr+23nhSxoZBs07q0lcit2vzzpAcvp/kDzkJft1LxWL8Dvr4EI/cHny/50mfEPZNTJnQ+6UhlEeJVaiKMgC8Cf31n0hOYrT2rJY+VBeeH11GfjNiNOrh7gwrv+8qqvC9cNXN4XAoqh40O0mgj0rbAgkH5xyOqN/QAnwHxsfOthaPZwesDBbnpqH4FpSXx1yNWFH2F/VwWg/+VR1+giYHSaXgNfHf2X+svXDBh7nLXl2oTAFF18lP1ry/UmZnDpF3Sby2L45f3ZBb/8U8hOBHB9tZyr8zzzhQfjYbbOeqAtPBU7eWq0fMlb1J53nO5iZQ+mfVR44FVv32Tt3FA536/L3SdDkdDT7n4HbNFzaHdsXOoV8W7haYC9mIMM2jvZtPXNFOrXmuJfvyS8HiVAxE1BFz/E5w5XLmyOUkDDbiWXnyXvVBe+8OdHPrUmSKrDdzN2gTqEE+k++o/30p3w3IFJOp8InLni4f3ix3i7D6affuIbAS/AT5eYwJ9eLvW3nDufmFrTXT+IodmzxkrwJnDORxnNUdvwWUprCA9nONDUTKSBLTz5tz9D8qnehvOt9Cvtt94OuK3BfBrYCNEcy/jiDbLFJvlYqUaxcdC8/P+/eo7O2YrIx6oNf/1UlcOIUP+m5OHa0YAO5yz+EO27EVp2GV/pT0+IpmPYTnxyJbjUF0a1VGSs2sUHDaSOgN0nfljTj1dNp8qi59dghNKPfzzCy/7ffrXkA4r/DK7U2pf+kidnMrz3wwZJ556005Jrwnxzw0RV0jT78RNlqhuA7coJwtk5v11IxHVB0eKnZ2mO4eZ/zRRs/numQHx0KnXOz2aYMOhT6G2JQASuFuUsR3m07GEOVIdrb2A3/dFAx9ROdLdS7Exid1uF/W3YoezycbPx+Yw9cOruIkWwJdkYlUCCiThb1KtWWkbkQJegCnYPbLWRCaTy2Y2qZyUGDp5GCiYZbkbY16VFI6vrremz3Ed5cowAu+CQDlwp2gnodeIQ1vr7cG5cV4fnyLyibvMewfS83HLovdhA2PY6hmQbTyL0HbGgrqSus/G1lQ7g5vRnooLd02KbXDlA96Sf0f78NFtRrUgE3vW2RBMSduFkqRmDxIUBjXarspyO2CIwUz4noim4G6hWeARe5bxB788nLJkEzQCC99tHg9gkIblghOAAVINieX9pudxWMfi0dwMb1s3O1t3kq6rIyZvIYkqt+a7oolYuMwNBNGzBps+3nrqp3DeSHEsNJ4myB4RJ/KI77za2XW1mL1iLaIeNwDlnzKtpoCKMAQ49RSz5YXVEACSnIw73bsTXGi0m0AlxjfXd5gvmpzA84M5hG6LG+pOztvpMcD5aZxrZ9rtlj7a2IUqQT8QtdbNechnRBMFu6W27C0JC7m8BGq1Y4R2PyTDX5VuHFYpGbOYWtKanvjKXs6lt7N0S43fzcgGPihQTMjR1SEQSNjD+vHwk32SNj4lHr8B1momaGL+z+RDJBxDfCaaR6BvDOl5VI1w9OUdjv/60zC0/B9gY2Rcj8bDnc5zYL9g8+JFoFxuW8xXVspbsvwfq7E03FNnzGYDuIz6wI8Vh+/e+rXJLQIxvO8Cd4CJCH5EUR3iG7eguc5F4YzJsVBDx7+2dmOpv/bboec0mT5dt6Oeyg4vOkVp+TLANncZyadjWFuevqtWhfXiKSGnBMMzvqE/h/W25eGecsozd0uqg7NvIoVdFWTyBWMnqvkUOtqO3Ea7Xm2sElvUgTU4Ea9YuHYSrgmSEHd/CwBANCNDcu4Mx6EHGDnkJ4VpMZmwb9ZuPoH3eIdPsElujvhmmkukxNFqpoh7OkMW2zb2D1ma6YYPyNpzGmaEVCrhA/cOb82/UHq8AWWqCMXQLzvvXVGlzN2N0TASznJZ6gX7JGSHry96a4jypQMbqnBr3bx/OzJ2v2t4V73h7vBSAf26zBz8320KqcL1YVL0NLljWC4fBsB7445TL8GNXOXaOsd3yrq97DVcnE7tQoRnNTr0Ai23gYR0JX2vajEah2WmBcbboCVetgMHVJYiRFgGfMwG3D81uwUg9mYwlPYqvER7WrY1qYhiAr67oDvP+CnA4y/tw3juKDgW88rH3mORhqUdJu6UwpW52Tazh9/z4KOXUS+qRfwcem2B5HjYOacqnejPowFc3NzRdl++aIgZUaK+HmsD3fWhnDj0VImtQ0OqbBRkPmlqFBlN9jC7b3mIrG7jQ6qs36o0nasejnUXQLlMfrR4l5V/mKlfop4pM2nZjgyk531Jg6sighh64wxzqSg75dgxpmMoo5KzrTfBm65jMxu7GuQLDAtZI+BLJvx1LKtx0Haab/Ey0jeEDbqQKgdPKYRT1xxKM/Ax7OJ2Cgpo3cWOR7cqDgK2Fw6I/UTvZUv+Aph4Z1Hp39/DLoSfDar6tKCofu5LEQ9Jo+01n0pzIK9CRoC6A8pFk6u0c2r4+TdQAll5HspLCB2BbsahgJ6Q1ErrPvZ0nazjA84VlFNv5p51UxW2UnnsyRX1ZgykpCwYvg1/i3XQkFrto1xw6r4uF1lIcDt1HyR8AVS1HKyQ8sxG5Z/HX32j0sbzsu9QT6AxZI/NT9EsefM9nsBF1TC9+gAZ2clgM3VUU0fPqY2YbrdAJWBvmjUbSUQ+n7v6sYAdeJ2zK/XPgI9deoNbsLfWExAOzG9kqOLQcI7EjPz2bDtoYDh9qnXZ+OEfJu4dCexWx+RhnzmHiF2o2HmtqloXC5+v9NMK8+LrUkdV3+7nt60jLdk1EQNbGIX0p4QHuIhkSYHhKSC071mHssTcS3W4bSsev5YJKPSrL7ydgaptAh8l0dHGgX2k5C1Jsa1Z5VhfGytqh3+sdPB96hMOiDDhtt18b3udOovgjRNl4vPM7WPSXXGdjw7mF9TuEldRhX7IKa+af2wMs+kBDoQ7AcDHNXEHxasYBnGpObvrjDq2vAA1A8r9HaWiqavbev+sXTMUupdunPIXPqL1VQL1uVn/1+8Hy/gzjo5jjg3m6huxZyC/A97pFk0PK+ATXlxz6x9eOwF+/kvpzDqZ8LLHXZ+twTJvYBn45M2yq8sOa3x/zBQcgGxib88in8l5c4VrzBxzNwORMe9ovkG4OZ2w9sibjQD4jsJYpweHNcQe2jBnDnx/alopkdc9rIYF7vM4JC3gQfoRHl4LXaGfYVTHPmEisBrq8DxAop65lPz/yFt8O+VYnNeOau2Tyu0OD0b3qQiZofIRsyF8Ug75c/JInwXOKEuqohgvmMP140C3HhiT3b2Btit1FhpFomDh6vENrpnAQVNb1V4rqdpuxlc1tUK0BpBZR5HDeOJUMepdnGLX7rh2TspiAzk0VY296ga9oeSlUqwLj42k4DrPlTylAJOuoT/4BAAD//6RdS9eiPLP9QQxERBKG3ESuCQKizgRvgMg1geTXn8XT7/CbnaGre3VDktq1965QFUNA9PM6rzQRZ6y9fiXn2fS7w9/3cyXbw5sO0xN1Mnii4UB2Z6wkk/sxRKhIyw+fdYslbVeIEdSALNIwNjqfCp1cwlNlIhym48FcxNe7Ub9fe0Mae5snhPXbK9x8LhJR9C8Z5sPdi+AaHwQcs8tAu+euhw+0SNQQwtIfmRuIarq1B4zl7RvMF+yPcN1P8s1HHcx152Ywe51P1CXqky9oyWyIv7FKDRG1eX0fHEFRntsNYms8d+qjFWB9MnwkrHjGvvCK4LrfaKkab+AduEDwA9TDrhUZfEd0GEGmXBOqr+eTSdBzYDZ2Lj48FG3g3hRfQRms8yonX61INosxwJfNgZrl+Ko4aPo7oPQJiFDL35zHkhkpzy7akt03JD4RvUGG17TQaKbHAm9f3XiHBzmQaTC9vhUHKWtg5ygnehgnavJkuDO4Cw2FmhV/gu4rVA1E3W4gc5wMZmPLbg9TP0ekETQ0EKmPM1UyL0/CG12tCPIHG/o3ltPDJaqrPqcXAlAw+1gfLgewfdSeDF5TreO/9efOK2dQ673VIcdywnavjwg3NnxixJyL/102zPqXr//hp5TEMTxwBqjtn+Sq8/Z74W+/sPf+noeFnT4CPJ+e0T/8G9qjocEkPIn0eK2vyd//B77dGyIJ7nH+avZ++i9+sd5PQ/+BPAbonBPScp9Ws0SVGvjn7Emd9pBVczbUBnTKlKDNvoCcL5mClMloBXzEc1XxqQtthfqbEwLq3R8YfcgxHK2qxisfrab2GVsQqOvz5zjIRyMTnb/1J/P+7VW7+MgdOLzKgiyjUla8RvUd2lNxIWrtbYdxkvdvaBtii52HWSXsKOAn8J5nlyY/BwL6I7EE9+Xat2bVO/TN2wb+vH277qcASMC4Aj9DGuP83rn5fNNKTT33qUcLpxDAX/4A5YH2qHuKYz5aNWNwqS8xafzTdWCToM9QE2qIDYyP+XaNP/D3fHSxDhUbd14BfwmvsJ9Usz/7oYpAHPYq2Q5enK/5q4UTNUqqW+Vj/a4WZPBRnj7ko77ifGSuJUFNaCA57y4emOlWy9S6nDWi3qiQdOEQxerVeHF6CDx/4PcdFAE7eCJa2uch6YfZdwBwPgUNw8YHS5LGo9qIEJHkvumTWbz4TzCMYoqLAJb+X36F2fZjUevn99WY+tsG7kE9UU1Hss9WPAHrfmHze9eH5VyeUvjyrAt15ZPEmds2Bfh5oMW+ja/59Ml/BvyCeMEGZ/0fP3kqisR/FO/i2pz+zn93YgH2vIdrSuPOe8LTmWZosUUj4f3Z6eF8vFfYTbds4F7ZybBQznvEd3ZULfRttnBunhGa71aTd5LweMOiFQvsjYyYg3h3Uqi9PhibYjj7U2nbBkyv1MbWblaSFlRTCX7JUiGle8zmfJaKEijEseiR7jrOYt8xIIUzp8ajuVZsZ+olWOLvA4lm4vorXsUwYxIkAqxI/svLXILNfNpjAzmtOXe+9fw7nzSYRXPFuxfcW9vus/J7z98Fc/uGIfMKoiauk3za592GrpSXaD63nc+1Rx9AppEd9tTdx+RP1+3hI1W7VQ+rFc+84wzcqHCotTQfPsUvE8HqlxHqH2opn0/CfAUPxCU0b8yjOQdysfalKb9rvsHDsmzWSVr74YY29OMAwt6BAsrELKm39M7AvUix4dQ4LbaMoAPLEzIDSudDQg0d0KEtTNmBB9hvCaNZWFHMVA82e5fTY1uOPvPvFgPPiTAaXtuN371TOkLA0J7ATzz5875dlUaZhNhDezvZcf0WgCTzKdmIt6qab4Stc1X2Vxy4v9rs1/MDN5+zhP/8k1bHUAS/zyEnwlDq5tA3cgFt3nrYXYY3+ErjNP7xDyKKeTEwXN/RH3+euJelw/z9Xj24IP9FtZ0a8rmJGwmyTOmwO9b68Msq+Q7FCKlotm1WUa7fEIhndMbhK9PA+LItBvtXF9KDC0fw8yJmq5vM8KnrPfWc6efQgotLS6zl/nfgn3a21Vtt79bZlCbYdcjNoL+MJn3Ehmsu2y+5wgfcR6TBBufzcMwjuHW8muxOyTtZ2FZvYAqD+d/+s7ymCG5jlmKELyIYMu3K4Lw5MsKE0DDZ/dld4bP0ZlLnnWjOVuJBOEfxk2Lb9sAvlvwYsCDer/4Qq5jwya8KBPKZRgUpc9otbwE+c6jiIJChT6ywX/2DhRNJfjC/Ge+lB47qAVH7ffyZPHjK5J8e1PgnGhbRdCKovSqMOCgnPh+c+1ORRF+jR9EqVz9qmIF2zT2qHybT5EIYIfDZfHbo1899teIrg/sIChTRJ/CXJL0TsD9fAcZPOfGnah6FP71FyI0F/gz7WlLP1/pM/UbSwRJ3fITweh1W/SyDcTfq9z//gx4/BQP0vL9d4fW7eVAvOZv//AC48gtC/e6YS5/BL+DB3yb4HSe+ufK16/o5nYePvP36MylOSH1uit+KX505+0sqwd1B2SLRjU2fH4qwVWSnCKjbOlbCIrQPoHN7cmrlXeqL088l8Ge/BmrsF4vzTZCNcFNl5r/94Sr/lXBsTYQdQlnCCHsxsG0FG2tvU0sk3ykg/MdXOc4S9j1qDDwHrad3ORIGes+LEmysOMOu9/wkzNPPvXL16wMRvuBZzfKAZWUnjReanxYEmC3rLXSjcManw1T5bNC58cf3abo0OmcnyyFq65oG6S0lqBZyszLgBd8UoxTj4R8/v2yvCbYcv+JTaG88cI00k94m/1FR5VXZsHz+agRF9zMsAPcpnDlzCIxzuVpCaDdwU+xliqrly6ldWQLwhzLCx+LMq/m73/SgESeJOvm7qdguXVL1z58zIlb7tL3uJQBxORN59ZPa8OSnoHgJH2pX2nHYetk9Vf78pr/n44dp+4TjI3+SxrnK5iSNXwKRDK5kntvIn6S7qgBPGQmSThH78x9jWBdNiBjYmLm4c7pZ5ZDG1PvqDIx/z+fI7/e633VOhXanrfNShrUn6DZfmtKM4fCJYloE0PAXZIZQuWieiCD2tIrvoXmH5ft8p5px3iXLWVh69fD4Onj1B0x6sbMGftl9h/2vpQ3L/DME8JF7D/vqfRhmZN8l4BaaR196P1Wc7tbe3U0oYxPvT+Yi1G0EKyfR6RF1dcJ08xwBfVuf6OGhvIc5SMUS1OengzbbtwFYgNMIul50poZ9CcB21Sew2ft85ZPHajmLrqNcp2NJnZf8AGy/uUYA9t6b+joH5hpP60Slep2NcqRgztRcgi89eOCT0JwG8bOrNAhG0175xGdgrvKM4djTDNFD7oC9rIzpKnwBtoj8An9+m4qjnUYmi5wS6TheepBUjx/+y3eTfLFGYApKjRZvhjk/72/3P/5CeHQmwxylt+efX4f0lR9JAS4iJQRGhk29fPuLIw0iVGz0oFqcDD5LrwcHgsoPqPsUx2QctsMdDuMPkl1YHnx2n08IDr0XYOe72/HRpEOsNCy2yThe7ZwfvLO0vx5cQEMs9knDzbEBxWe84D/+PCVpTP75rzY2Er76M29QdjjFOtE/fFZRUIKsxQH2N0EApDMYGfjzW+f9u6/Gffa+wtS/Ifqnx2k20StUusfax6rThuWoF3fg3+acOsyaE8LghMDm+gLUPcMTYF5yKODmxzRqvvJftQTbYwS3z6NA3aNbJSPqlCcsPuSCg997GNrvftcrkTP/8FGJPz5Z9xfqYd9R/2u9K3ZiVwm6n82XusZk+yRr/BmohuUQ5VyV+RqfIjhEa+/99/WTLI9bfFdFRRrJRqkKc4zSWwGUbjyG+6NrJrs4rlqgJWqIhNZ95HPSPhTlYjUL2ranBYzDzbTgttnssX2E92rhoTwrI/UTrEWHsVpcnGgKHTRhrb+01SKaWqSOWXLDtqiLnE2CO0MrdnfUKEA2kPX8SffB9olc2kUlAvLU5NX/pWHiOvmyiw536MZAJrMkkWFrLK4NYe+8sSufMi4VdzmAzjqb2QIHORn35s5SF37fEPZo5Iobx+MItfwYEzWKjpx0ZfD+8zfWmtWpYvxcXEEheSk11UM/MNK+Z3VDhmnFdyn/hd9ZA8kr0mmuHKaBOQckgVVPUSduR3O+EcWB/FasfZWOJ38x0jeD824zkZOdvnw+34c79M/pEx8THQxcr7sS/Irhga3NZzus/oQF/uL9MRmRuVv5wT+/oPO/72qmp5ZAe4MCfFj54/xXD/LLPqPOWe3NEZy2I9x5GSNS+o2GbsVzsKVbjo9+2iT/6mODm/bUvmY+Z4TfIjjv1ImGaPLN+XS/RBA9Sw01Zl3lTPQqBa78FK96ZGDL7VDD1R/GbvP9DbyX2whaITzRrGCuz//qSdbBulC/vFsDK+4zUm8hsFD7klWw6pXs3/k08X4xmfBJroAgC+NQyY6cwWf4n/8Q8gj94fEV4m5UsNkOt4F9jw7759dYPH2Y7ffxysAyhQE2zCkCs6UnnhKT4kXR6j9I/gBrmGaGQO1vXw2D4bgIygdmofvmWySrn7J+RTW/sHv1oorr8ULU6WgDjBf6Gxa5hW/w7OItNctDNTBycB24AZsvUeToWbHgE1hQYeeebKH/qvgtfQSwHECBwy/M+HyOoQz+8Mxwx57Pz/JrKQFwj9QWNFSx/SaK/6t/WWsr+f2ZKPC99H/51a7mEd1r+CniLzbIMFS976QQeMOgU/uzd3I2OiwDf/WBg07FhBrqtYdxMfbUy3p9mN9hYIMVH9HxNlyqJfdzBg/HPEMiOMj5uH+/rsA8hA6OMwir6XxYNHU9nzT77J1E+vPz0fOtres786FPsQPzJjngPz211SqjgNjGEVn9pr/4jqFB9TO1tLszUNG5luv9vBMNuyk22TksejBt0ZlsjCXgE5YfVxifvBZrkoSG+avtDMieGsGPNb8sr3MXwMdjW+HDBdjDwqrTDFpXN7CfhaNPHu+1L1rmUvrH77/ZpRVh7AlbpDQO8zv9dYrhirckCQf2V29LQaOKDg4G6PD6rz62nmfqTtispAkvvQrFOaLx8Rn4rOMw3a/5AKlY7HOqfjYj9Oo3xHjNz396CVJaACLeyxQsdAFPuPNShtMVfyaXKT2oizrESceu4N96rPU1AtT7UC1lN/UQsGBP9eI08j4abu8/vCdbbAYm+aDBA37wrKgpysxfglv7hKt+woG/Nap5rY+tIwv2WNuQzp+vma8Bbf1mU1v1JjtuHAGO1e+E5q01rbPdMPmXz43fN84XinIRCmGi0796nWjSKlKTbVigHW+/Jtfrzxsm4/lDhE/1S+aT20KwB82E4EXYmktZkgxeNEfEmpMuyUyra6l4jnuhMc2mgavrN4mP4EiI0LpqTk/+mP3TY3/5tVuKuIBFfX/9rScXte9DhA0mBAlckZMlnVzp33kzCZL8BXuHGKRElunqR1RsGm/C/69Pgfy/7xSsn5xSX48GMEt8lwHv/gE0EAYnb1W0F+ERMp9wS/uY4/D213lGS481NQ05w7/OAd4BvlGl2VuTB2UbQ0soC6zH8oUvmUfe4LF5lxhflpZ37YUY8Pn5adjD+wfYRd/ZAb/TvKPH9hb5PNLqGThq7dLENx58xtf3FW7oLkKyFh85IWcqgLKzU7K/xK+cPb6psD+z+IoPetgBUkxAUnIRvZGaYlbNH3P/VO7hQyYb2XfMeXib0r7amyY+XPu7SebUE+DldsVU/96/Jlf9qwx/QRpgZH6VfL7mA4LpXmNU/8D3MH0Xo4Vam/yw4V6LYZFq1sCtack02Nu9P3PqFWB9HnLC9ySZvM1JglOeXIh43umc6dmuhetUVWwV34u57eZtDWPJu+DD5tZU//68vxYhTV6um3NAxgyCPNsjvmDsT1t/0PZeWSf48P21gL2lQwue4V1Eoq8HnEXazMAjVmZsndQzWB7fN9x7KdGxfgoP1XYneA4MyZigrskcX9qpkqPsyp+N5k1+rHbmGbUAC79lfV+tmr/fWITtoBVU11icE3GdT/h6WTq97JZ3Mnc49+BbWVJqodcp337jvQNAb9+xGbeGuVXqqYTS7fxGG6Is+dwtbgOmnQ7osf1VgC9rb7QMsgIxfDPywSycN3CuJaWm1NyqCgRbBbqG/yX3ffYCs9DqVzUR3hN1hKc1LAJfkPIVzzYO5fzB5/LhGrA7lx+yP36OOXtfoAPPR5bQg4g9f7vASwS1TUGxdir6nBeqVsN0ed5xiAM6LPr9XcP7+R3h8++NADuewwY+5+yDD6Vr5WygVg1nydtTo6Yyn3epI0JZsxy0WM+110wZaeo9HXSqR4vgT7M/W3AbqR7W1vWd9x0oABa+Cw5AaPIF6HcLDt98Q5R3esrJuh9AtvmJgIfAhgXn+xQcNrQn4qE3km1ORxHUWhBQq7y6vgR1ZAOV5W8iKIeXT9d4UiX5oOPjrhqrKUruT2BK63f7Ty2puk2oSUowKWcaPuJt3vrrd65t74bY7RoZ0CU+CRsbp3d6nWhXzWJTNepyv1hoc3N4Nb2umqNGVRcQ9fUrwRDsNzJg1tbFXnA+VNsDdOG/83tJLp+cnjvNUDM4F2j/riR/2biDAjQLDthI0WloNfKL4EPoEsRu38Jn74voQNBeIAFh9VprEnWv3pKtib2D34JxhHOmdkXYY+98bRPujbUDowHX2D20esJD+a5A4XsO0PxLoUnMgM/qIbiT1WNNk8mXGFSxJUDs1hglo8R3KWw3vx0Om7Psj+8gStUPFQmav50L2PkRIfXj3S0iC8bDnx3dU8BimT7hOX4k831MFFA0kUo+3/vBJ/ZHv0J97oT1/ZaBGLz2VBQrL+rPcWAy1l5roBiwwjlAKZ9P1oFALRZV7ChsTMjDa+9QH8KEBp7V8Tn/nSAQRGvCRj5uOdW7LoPhVgtx4kfLMOXjUYHhtLOo1h1JPs8vYVakIH1g3/uU+aBbDwHWR1aTq7xvkoUOTQ396n5C1fIoOdmQIYbnlGdE/ouna3mz/35Twyh4RZ1sKZWYbBBi0lbIJ//0a4Dy2nzJ5rsjw9jFsgXBDo708L2dTfreP2v4PdKEHqZEN+ckl2Oos3tBzYeBh8ZX3xIMtDylR9v2OBt7o1VFACi1q4tgdjhfUjilNcLue+n4/OIaUUX3aZDv5VOZ7Oqob2Vz+1zoMTQ4H+rD4Qqi0eb4CBtczbesi6By+QjU7Q0t6Resa2vIt/g2TPGwIOMzw6ks3vQh5yrgv3XaeTHtzggOWp2zz0QY8NN2pn6SnXIOAlUBLuEXGjh+9d959/KbR43x6OZz8QQWqIJbhG2kHwHHPbNBGtw3NGiHDDBlfmRAOi0OxkMxgrGSokbtCtzT4wfzvK/eBwjg51di+z6XfApIaoPu/P7QC92JyXz2lDc87I0P2apxwHdB3lzhbj+jNb6DgSbcV6AnayraT/HJZ/1uKP7Wl6iGGwBp9xp7+B6BgY8pCXzGFRIpa77Ami26JolR8IafX34kcnRKBv6HH+cHUnEQpsowTc+7CDV/EAlwghQs0VZTYPvwPHwg86Zio7WL4etxqbC/cbR1PuPhCi7iqUasTy8mAUNyB7BKNXwzt9RcvrhA4CpbL3r8PH7+VBnOE/ZN9qLab66qGSi1A5ytU+KiZ9HAd25jgFpWGT7cbH1Yng/PgvP21JOx3fcV+2aeBQVDi7CtzadkMlA9g/X90WLsR3+upGsDaYM8bJXeOVmyMYWQn4cjxt05MQlCpwbo4UXHQZUGJi/2VQt/twvGpnzz+e4XXgJwyB2MQ1Pc+CPaRDO8mvoBo6/8GhbDP4owdPs9ga4kmSsf8mC/tTW0/YC5YtXhdIWzUL//8Z1p7vUa2uc+xa5rfzmv+2iGF7CF2P9VEZjf/UeElIdrT2wTVB14Dc3felN87qm/+Cdaw+z8TanrbQY++6S1FdafOEb6KCbz9+hmEJRvg97x/sFH9bgR5FI6XKj5iMx827TDDE1yJFjXaqEaY6Md/+ITB+nzksyvcJtB/rQJxgf3B6Y/fpOLwRu7F9KAtvduCGw654iP/bvjzDoukuqIpyTcNeJpmLyPkyrqmU/os/3VAzmJogIidp3wo0bPZNZYEMCv5gHqNk6aT6BySqh1noRNKlvJ9iab6w1fHZDtvhErtkUAAo1uN/Rw3/yGxdJNCA+WlBHh5XnJ/Ck9AR6dWqMXK6zBtLFtqKqjsMUHKasAf0Pwhjd0v1JL/ZwGNn01olqm69JLSkaTH7oihjoKIuoYfsjZiofg6v0eGEuNO1AQxSL4Ccsecf/5zZdjoBBAQSsi4XGyEuarbxEc/OqFj7uzzGd1MtN/638bXgJfjFgf1QlF6crPRjAf62emtPPr+Pd8nNlAFQAB44HGbb6YMxB0e+3LpVLtoy7VVKeZA/W9IGKNjGM1TvGgQdjLV/rcmaXfu75OVLbXU2qp9JtwtSuvwCviG/oCUJoUncoSgN3hQYMwvQ9TznUGnV8U0VO1barxdYpjuPvQHbqQwPDF7dMiqum+E+qK/adaxK2cgcE4mmQnK5c/PCrhadRLsj8EezDraJ5htw4a+4UGB8t38XoY6jhGdelt83EoiAxQe3FXPbADROFKBMcdzOnf78l6PZ7wapoHNDs+B2QT3RgUiTziOximnJ3kkwRvXTKR+c5FPlenA4Jr/kai+CScP73iDuQHvKHvmm+4f+AM4k9NcXqsnIQWEiLQdalKJLhNk6H0jhlY8YCGd6OulsuhrsG4Kfm/9SNaCZ7/3pfFXWIyTT8Y8N4fBrS5LA7g5tnu4euJGD6c713+060HhPkzkVCpLZ+c71yiwf3WPtGjMLmJ2H/DGZwfgUr1aLPwWWjdO+D4EhLA/NhndW4ZgHPP/cdftjRSDHgr63odyVTm7OG97xDaJKQmLQrAM0Hp4bm+20gIrRoQ080kuGyuT5wP2PVnO9Za9QTamJ61TeYP2SMIgEnFALvT2+K7txaVf/kVzTfHGMTmdtFg+IIMrfwyl3iRzrB4HURqGrlR/b0PyA3PxIYIr/m8SzUJ1utNabDdeXmP0KmGn+YjU3OqMkBxr9hwjE22xm86zNe9SOAffxT4xQXiX34Ypl2D0e07+jx/F5ay8ieqrc+zvJhIdrv5ccXe8Az5P7zsqiunyS3b5T8w4Cu0vOlDDz9iVJy53IJ/cB6m+hNQ0do74A8/j9mPmcukuSlo0b2jug8JmGv8RpAPGw37i/pMGvh61eAZfL5oGWudj3/4J7z0GB81qiXS3/4/D1LxL78QXhQM1k/7QQ26PydjSkIIxV+W/umHil2JowD1iVMcyHKWcCv59PBpHQUcrPvJlevaS31+d0iOr2HCiWlHsL8+Q2xbhTuMohNbEIa3DMn1k5vktLzg33nHWF1nMQVqKkFhmjn2hvFTsfzqor3l1zM1g+1sjkPRyFAA3QHt/KEzGdSRpSRCOZGDmVYVfz9LA6z6mOwAtsAyOm8El08ZEtk990Pb3F4G3OyMG9b7hVazNx9sWJWTR+Sc7jhZ3w8qxiGliF86wI/X7A1p9rsTVl2ROR9/IAZbssuxdlUIWPlGDDf3e0P2TdaaiwqvNvTTfiZzODPzn/4S8QlS/H7XPud6imAaRghtjpE+7KKv7MGtpNXY27Njwn+sbyDa2T2RNUv0p77NRshG40Su80bJ6dPeFTAc1e2q91v/Lz9CLRkDjBqb58SJzBYIE+MI7j5+1QaNG8C5jX7UUGifT1KtNP/OfzBoVr69gXerZk8NoIdx0QapF9H7H18xo0Qc2JBGhvrHz52Ga8NY4xYBwa1bMntvPWdO8q7hrYh7rLf9Gcz1tN5GEGqMQLgk/jxXOVHc1kI4HdRjPsdvBYHjkSzYer8qc8mQXyh4J7dkT/2dOc4vicFVDyGwE2p/Nlong5p1KKg3nTRz+h2iFKDN+4S95Jv5jAs+go+dBRCTpTpnG+YEMIxEA+deQobpnPXpn76lvpeggYZ3/a6+svZOzc0u8v/4Lcwj7YyNz6v1+fl4atSN0CzUyBV32D1HQwJtskup1xzNfH2fEW4k3yPf871L2KNdZNXLc49aQeMn0q7AI+jB4lInbnRz1aueeu8FBYmX+cfH68vx4E3WETbPcsz597NXQNPkFQFjw/l8OvYtfOYnm5ovt8sZa6MGxBomaKl+bO0zQOHeUGZGcz3y+SInUAJDJNUYpehTTZS1BeSjiGl4EyMw1oEfwWee2BQtT5PPj6wIoIzOHdXUdOKj+eqeYPUf0E77jNXS7osCOt8PI2AUf9V0HKwAoNiMaDB+S06CJHlDJAwGkn6n3qTmdWjAh6gvaoljOSyvE4qUg7k5Ys2Lw2rx+dOAISEJdo7z6LM8HWMIeutOreK785kTkHGvnEaLup0YDFxu7iVY+TY9InDjfM0/4CJpBr2VPQa0M5MMVGH0whY/Wv6O60UA1PqDMG0OZUL7opThKAw12kqZ+V98/vFjj3q2yesGSDCJmYfd822fc2kXxZBOrCTyR0PVUktBDafP90SxdD2DXaFqzT/+lW87qeK70IPwdCmO9JL9mM+9cfRA3qQIZyDacvZ65xrQgwfD2nPS+C7Y72TIj2xLXR26PtlEJwa390ij6blDJln9F/A+UwV9twrMyRl8RrjGLw21yOYSbG5PMN+vZ7K73q18duVKAMXrKGKrk8Jh1Qc2fHRBR0/fYEnG8VIL6kWt7xjFnWn+6SHInxZBYLbkZDJilwCqnT4IeB8jX/bzJwWoQ1dqC5D4/eoXgq1aQ/znn/AwGwt4+9AzPebCenWdXyE4wtmnN4ThQB7tXlb6yGjQetN3oMs8PBX3xM4E4lxMGNRtC+aTecEOT49c3D4DAr9POf/nL5KdKnjg4rUEWb31ydlfPhgI2eIwc+SKx6Bn/+LZimKzYuWozwr49Jwi5WNXnLS3HspilPzDg1Xf9PCRZxciw4sHxEvtWer76X/IwxQ3ZlVIaAQbyfVouOrjYd576b/zAvZH4LOdnnt74fJUqGPc9GGJlkqAsRYSRDfdmBD4utTAkqwtDZLzOxmH6s3gVnj6FMU5zceN8rIVvz/esT82CeDqEUBwle0X9b57PCyUvQvl5/0I1RcQJFLRP2Ww5jMi6Eprju2+LWTHtA9//l+1VexCA9vrp6T2jp3yeXmeZrAIH0zgJ4zzJfS1HsKHZhNlna22XA5jA8oTCGhY919Aj+pHgYOORfS7BvPANgGUQLXXTRziu5mI++l6h5mYbam9q9VhRpsrU96i5eN8xW/RHtUA3LrThL19zdc7zlgBmt+JGL08LweT/3Vg3MYHHPR1Abi1jSw1448GzUCtzNE7geafnxfWSEhGw4AQftRJw8cqC31RncxMrVnUUUOrpoGv//7fecWBddrxOXedAkpxe1n5bptPbPfIgF1cHtSYWD6MiulbMHqiDzX7A8vp6mdAEewpNcWJD+2ObK8QSTjHbpBlFaveoQBOWS1TXPpSzne/XQmPQIbUP7tV1Q7VewZ//rXWHVHOP7fWAns9ydDsWXvOiYkisCtOAcVeLAyTKnNn39riCZvNTfF59BQiYM+fDhFNL/2xKQCE9X6n08PzMZp8woYFf3FvU+Oum8P4iDcxqPdbHdsCuSdzI5RXqTI3HQ3u5naYyww7kH4zQPWsns25t8UICt9LQC0aXs1hU+gNOOkewr71LoZ50bQY4s1Lw07zDcAifc49NEb5TY+rn82sxsyg1hsH6iwh8tkHP2L4tA7Cv/oIFTZnDfaTskMybXG1njcGBY6fRJC2KBnt+e6A1Q9AkP82Vfd7W/I/fe3jfm/231nqYTNtAOGrH7bqn0JpIrinblkUJlOhZUE67hPszBslYab7lP74IEWaXppL6DstvFy6BamfQE+2WJpkaGgxoVid7Zyn/WT884/00bn/l29fPA5Jr091wgCZM6gQapNuxXfR+KAnmBakYxNBl+8+YtrCZ/nE//yosZvGFm5NeKR6+AkTLjxIA6C1oVTX6ufAg7y5//MD6Vk2+Io3LfjzW/0VPzkLrxrce01ATfG14f03/now/l0l+rplv3x5SbceSJvhRv/0/2wWwRvAZJ11mqozWGw+2OCPn1hiBHw2WpsYEB4/yUMzuD/fx1yB25N4w3/1Ab7qA2AZJwXB2TwmIwJAAmZTZTgYL9ikpYezf3w7hOcOMGlon+CvvpHvK2OQnIXZf34bRccTq1hMFQG82F1Awm+zT9b4tVU2aidEVj45psnpCr14U9HAeg0VX/U2NJYXRILysYdVn9jq9PmdcKiUu+Hf+qFPq+HIs/ZgtpaNA4rXxqToCaVq3juhATebp0aD5BgMs95NGTzjbCCL4xlAcoJmhIp/9ehpNpqES+ePBNP566/vR/1RnfwUms5gUS/hHSf3GwngdX4f8fU4Bz4PynesHs9fExvZeUim201BwB5gSA0DvThZnKO3l+ayo94Q3X2J2aUDt60T05ez1czlWp4spR2MgpREowlb8y+0WXwk0eq3s5mlT3XFW/x80xZMavJjSikJDTXjQBnWXvFvSOE6hVeJP3xc8Vp1TcWkqNgWfFbst6ZOc8aw580/c64Yb+G0eZWIZ7ZdbYvgdoeOyxFi1ZWYc/8NmfJ3vnn+OJmLvdM0pavu/I+PAfKXXw9L4eIcy+PaI7oMYAx3b7pO7uazYd8UuEtHEYej4yXcLLRSDS5NgcTy2vnsEzP0py+RfJwDkyiIKODTVDK11OTBaWfPEcyAKaAtmFC+LPAV/elrel/1667Z1SX0Eokh8XhOB9KL9hvm32KD/S4zfXHz6ktwWJ4u+mi1MPD9A/R/eghr4JNXk34xW9hIRoKWjJlgydM5Uur6fvmrr4L+z/9c9Ta2xCg3x4qB/h8/+fO3mK+2EnjsbIAqBDvOb60igD9/ZI3nfH7cFkedqbghohgBcyr6Xv6rn+HQ3R58fsXVFRrfzEEgE7ec3W9NAB0itnj1E5OvMecIWn4z05DoUfKnr9XNTrvRSy4UAyv6TIaPneBhzQKmv2Sn91Vd+Qy2XKcB8zoDCMZuWRPg3J2KnRL0BMvnHeI0siinhiFDqO10B2N9qBJib+4ykOL+QlGK9IpdTuldfb6n5Z9/NCL5KcO9Vwc4nhgYyNKpDdz8bh3FzaHM1/peo/pF6JCv5Mzmd/XX/vxLHCxwyhdp83Pg5j2+13oCrYYfPfRwreeRrbM3fDEKxgY6cFRwHFoi7yphKGCe0eefvwMWpTUKtdZQgOSPRiomXOce+CiTqIFvRsLM4RABaR2XsKvq99pTpFBgPQiU2vuvWW1nX7ZhrYwRzeZSA0sn3kvIyilH6vamAdYD5w7zSzMhqTh/csbMECndscVUJ48j3zlJUcPKVDu0cbZvc7mBdw+zp+whZTq9/b+/Dz76EWG7lZxqNlotU/9fdwr2//tOwZPII8XLZp+Ty9IygM+8oZZsKcO0y5wZXGG6UE19ucMMIrcGlweSiMyFK5+/W62Ay7WxyRI2rFq/2zAg9TMLSdoDJsxRgQDM7S3Ddm3WgPxUn8HYiDESefvzJSmfAhB5m5ms/W/N8SfEkZQYI6evyur48hqQCNyC7Eh5qnRzPsuuBNVO8JDonR6At3Fng/urM7DbFX6yLNZ5hOb+NxJ4Jy1n9vHdwFrqGdlHv6O5VNbtDSvdsLB+PSA+9xXMwKMbSxrkC0pYsCGBMgalgGq/8fOt0i936NnHK7r5+2Hon140wjH5GjiI1vlij448YXTJerKz7j2Y3ChkEE7OSKbd5TdM/mNpINNvF+oHsZBMFzkfQd92D9R8bC/ZyrMP4SaMc2ygB6vYTVFqGL+vGb368OHPz4vUwDgsWyLsJXHo0PxAYLPsM3xUGBpGoWYIPgNtQ8Pfsa/mvVUy4MeKhNb9Afx832rgdM2e5G0mgC8iOY3qpegajOttD/hP9EX42/cI7d8kMrfP5NrDrnol9GA2hbnY4GxBNVaOFEl7xe/aMhHgZbZqesb3A58uSkvgx5MOqHTGBSyHl6X8rTd2DiePs1PpEejkLke7x7XyeSA1Eayq7EO9/bsEzNr9CAxdWyStD1V/UkA/w+t1L1J/8IZkGY6SAdsfO2N8er1yLky9AzHfTzQ4/GDVV33rAX9+Tdh7tttqBCFsoFyrNnVRLfittvMh1EK2ztI4nPIdLM0UprKy4ONJ0vNtxVsLsBBrpNEeMKcB0CL1q18gDr7h1182vqNA8a1K2M9NI1/kx6EBZDw+iHJ6/szp7daWsnZWQ8rzr5e+FTzBRVkmimP1DahY3CTltc4/8+PzzxzlvalAwBHEh+f5nMyeU6SApVJKXeGEhwXcHQ1C2+qw27xmMHmkh/AVNiY1dB2aC1UjEcbD8UX2sxD620QsnmD/Kuy/9TV/+dhaMNldJuxuHp3JkGz3ULy/DIxop629fokHyv19pv7I5HxS+v0VJufmjVhnXgDLjBht7Hs8UHxafgl7DOAJb8wOyPOjRwkfv8EIN9RsibCZ3Zxek0cB62LS8dG695wFBIrwGdSYpuH7naz9HjLYRr6B2jPeAHZTWAPMLWxQfRilYSS9VqtnwQI01DYm4KebN8Pm/k4wLnUrGblj2uo0tHvsCveqmp5I6qHmmje015Bk0nU/VXioblhLthpgglTaqvwABhIfPzdhJGlGtTsoBQ0drA4k6fAbBpAq2EVTbLYs1wv4TA4mvvTDYWCsH1N4uElHfJxeo8/nRhBg+Vke6N1+TvlMvqQG+4XVRL22pFraU1+D6modsdEFPmeZcQ9At5ECbFlv1ScfY/HWe3sazWykmkzubhqUgKPjW/OaOX+R+/qdTxNi3+PfZCmyDMHtJX5TP6ibhLHbygFi7401b/tY5w/XHsyuxoiduA7zSWnHO1zxmOJTy/OZO74F/vAEwT73O45hCYMmPFJ9v5QJ3xy/d9ncf0ci6DXgA3wJGeyKG0aiKtC80bbbJ+xtJaKarBj52E6tAh/eC5AtQkEyje07AMRLI2pWkznQG51aKF3jFKPXrcrndT3VquQn6nfCiS+BQxCwd9uSHg7dwRw78TsCMddiGvfXbzIqbwXC4xN8qbt5uP5YhqcCcqj4SBmtINlufE1RTSKXZDlGfbIcUPKGW3VJqMf1ZmAVuL2V4OWaWPeFbzV724cM8zb2aKhNgJNXnchwob2LXQ1JPhcvOxFe9d1CvZvmAHFS9gLY6ccvEVjKwJhcLj087CCiMVHHYbybBwiyw4jpAZ9OnOGrrECOZosa6eU4zN72rAA1TnfYuG3SfM1XEmhg8qbW2Sj9EXl284dnOLwuRvUXf/BgIJHaxafyJ/Jxeuhumhpbg3pK2C50JLi/j2+abjyH70R6DcDvnv/IkqUhl3A2yFD/HE/Y+csPcXSX4HX+OGjJHh+wXE2lhtu8kFB95pthCdPQgIpgLDgwYO83YS4V8L0TrvgI73nVPu9m/Q9fdPOY5ZO3SVPYnRwJB9bk+3xM8xReKtoTNVESf87MloAV77HeBju+IDPvgf0yTti5Po18STc8hkcrKLCHeq1aDp+bLL+S6oePodOYs7KMmSI41olGD6caZmmabIgn6NIDXXw+v6OXBobH7oddmr39eXMCImD080A7/THnXIDoDd32/UH76PwymRlwB47NkxIhtt+c0YOXgiCRe8KukAB+Gl0PPBd2J/Xj1yXso40OeByvB5y9gm0yel6XwXyThdjTkWfyQCIR0Kenh228UTl7CHsRfOt5j83yKvlTW7cQ5q5ZIc7V97B8WjcGHz5kREVxkyyY9Qh2wGqwgZqmmqtf0Sva+Zrg8AtO5vQabBEak0LwUU9hspCiaeGMbwQHj6HKFyhdA5hp+Q0Vf/xlECQD/qynRc3y0/sr/xHhuLh7qkejbm4DRWcwlvYu1hF4mwus1hqsed1S+5an1aLG7yfsv8aF+nW4+P/wmZ8jGbuCk1fs1bQyFGVzj7H+8ZLWMEoJeP4dYTO+62ZdfXEP2fVxR7NZYLA8dtoVHO8Uo0LdbxM2CIIB90eJE34+JBUtrCyF37U/ubA4t4QlHS4VZRhT/HRttRr/8LamDaGOeTkDlkxdCf/Oh/PWLFO69TpSm+fYITBZWrK9PbYzOHytzxrv9sDx85FCMBIHo1trDHMwrfh1kAuKB3Yw5+RyadVjHr2wnqUTWEhBWtjbckS90RqTt+nDHoYD/NBcQYSPu8DI4F41VDRKF161Vffp91uVJ0jaA1SxI/reAWmLC3nH3S8nWrmx9lmV2Bhtftt8gC8pBf0DJvgFf121DEGkQYFpBr22xSWZpZc2qtLh/qNoxZd5XV/I79oTB1a9M+kunuLd5fCrqO/+fL7oXhrB870TaGBKebVoulFAEqoZ+cPLRdoNb6ge7Qd1Ji+u1t8l7CwO0fZtSwmLZmqD1zB6CLDqZs6B6TIgHCud4pR8OLMPSQP7Dk00iJWNScJceirzpYnJZs0fzHwtpfrHz8wkjSseXqI3/GT2i9qRNCUMBMSGH95lhGNfGBbyBC3cAf1MQCFW+eySmw3j8N1S/QAKPn/1lwyu9u+CJIzeOW+ruIANFGfsrHyApIcLg5Vyr+nhWqfDvLd6BhfJUzGe7synjxKUyp8+QcAgJg9kHoMPevg4PIutyerkyODxZ7sUh4FmzritGLzf9wU2ufquJnEMCAyj0UHa9d7mna2WNhi+T0BEgxbmkm5ABHO34TR83mjCw1gowVHVR+q20YnPUyjf4e9FHvQ4kMHkxaUgwG3LD+LVZFZsf/hEKvVTC8mhxPzldA0ieFRrSMQz31Q8AE4Ey+lnE/mMX3xOOZXAur5/eJHPxnT5x78wWpx9wvT0TqClY+2Pf+Xz1pBL+DyebhS76mNYJi17wpAbX6Kk+Wdgl+XN1ILfZOzKlzuYd4GRqtZVTGgkDJU/du7eAY7QzCs/NM1dmsgI4th5Y7sbloGL90CEWy140OM9dwZJrKwZFqd+IOM2RSaXF6P4yw/rWE/TbC/kEUP9czjhIFUdn5YJvP/lOyJp1MrnRy8K0O/yDskP062+l1+fwcBpIyS+cwp45D8hMDUcYC2/lMOMgrwB129E/s77sLymRIJ+8rSx/ValZEToXcPokvY0ie+6v93cpggGL98kzZ4pFbOgPir+sS3wyQ5rsPLNVDlfNBnrm7Iy5zqrYijMoKR/+Wm7DwoELvZo4ugQRnwZaxRA+XjF9NBovr+435sHB3upsWl4lrnthokB2U4oDpLgt843tjNoiAKjJgiV5LuxifxPD/plMZvsJk+10r6+C/Yn650MipLGEJ7kBEeAtMOMQO9A+zbl+KCxM1/zTwq6lrlk9xGlnH2MxYEvKr+RnMdONY1tG8DWulwxtgIIxnD2M3h4vEIcnrDGpSX6eErQsAu1NWr95bMULkEYUN0OLc5v9NvC/yPtSrYVxIHoB7kQEEhYMolMJgg47UARARUZEki+vg++Xvau1+88DEkN994KVWBwZYwrIPJJf8dv2ToLD7rki2DcPq8qYPu9TvfJ/LDYnbgFXJ6H2M5uOHdW7RtOwkuhWOO1NU/tvoAGmvgf/hP36V6Hm/W+p9gOb3wu0KqDIXsbBFgHq5/Pn+oEh0LMkcSqks9mqxSwJm+VLnwu4flQOuConI/Us8xbPjJxjmEliyU11ZOaU564JnTVS0Z3KjBrYSqwCd1POVJ/c1f4+HzBCMRldiJr35l7TphcgvcL39F33hmBpGyfMRRMkWKz+dg1t8ln+v0+Wg9l2TOh3ExwTqSSyC7aJl3wqk2Iv2GNNrCm/czXlg1PW4KpcdkSMN9ORQgX+6VOtDZyQUy+KuQpbVEzVTJnyXdXAt7PPTUCce7n612bwF2sQnSVzyof06ghf3xb7ZI+6YK46aB/UEycRmYBJtK5DZTBXcFbdNaTWciTFPZ38UO902XHqfq5q5BEG5tURJD7ubntCHTezpG6VS8lxDTSFE4Ba3ForWnPuE3f4CDdXnhf+lPOxLS8gOR58XEmsF390wPg0R5yBOtbE3xNpZNgMWOfbi25CZi9oQM0nt0Tozc7BLPNghhe5xKSK92HgfDazjL45buzCqqaRdar/PET8ofP9Jdta9b5gOmuURs+aWd0AZY6hGS1xDv6ztwOouhzQ1qi8oAhWHbaeXIarIfvouZe43dQ22oaRevpm7DvRgmhDN/XxT6yfEquQ6sO3U7EPgWyNT+lsQNH6wMo0rsu+fEBQP19g3eisQfMNG4pxOPKW+Kvk093QFJ4Wa831HO5lo96v9GhtD6dqbE6ffvhSYQQooM/4N2QsJr97GMX6Q7VzeiUz/Wc2/DmXP7wbD02WE6hdTNFIpvBLaGXY3WDszTsqf5WmmSs7UMF8Ul1sL0/hwkRyjWDQ7HJsSHoS2/zkq3g85kqf/YzeeTgwIw7OjWbYupJPiMTHDEU6K1OoqCzv1YKG3C5/Pw/H1N0JvApr8JFL1nn84O2AkT87uHXYk+fIvZ98Pf37FH9m28F7UT/9AH+gBKBC/5Gapob/eYURi1g0udJeFguNWMAW3jbJjN19+Mq+MV7sPpuCqpvPCPZSK++hQeyOVDrCk0g4kct/fwZx5jpwQilCMEDzZ7YiU2HC9I42tA6Sw+6lYHaU9hEKZDnk063ReHl9H0GHTTx/vynf5GFn6vOZlMRfoUm37gbQwf6MUvIuFK+OZu1bgBePQG8LYpvPqWBHsPMvnzp8TiRYAhOrq/99B9r2LCEwscqhb3DmwXf7RKW9LcSzBLZk9GZmp68l748i95B0fd97nmGfPXn39jdj0XAne89hNr3otL95vypF72u+cMT6HbzguYKPRtqxC2p/T7a/dgrhzd8pN2OKBc95ZPl0RZGsSH87T/7DHEGf3iJ2kUDZnw/SRDkn3bB74eAry/FBDPPx9iehJJzSe5M+DJASICQqtYP7wKprgg1MSstIq5vK/W4aoMfXwO9uzFMGF9PMfUPxSeYP441aVogWTQ4xkZPlnwK2Z5FSz4GPdleDlBLtfaMVKVc+spW3xYOLLrS+2fn91OQAB+u5oLhhb8BnrfIURf7INoLzBbZPXsGdab5ZA2mLGh1QVoB3+labPXOnM9N+SRw/NxqpM33mNNTeOmgfFdM6m+owYUngQhosbwj8B359cKPBRDEx/efHrbwOxdWymWiOwyHfBz14gZ2KzfEtp8dwBQvsyQWf0IqzgvrT++y7/qXbiNlBYi2dUpoqT5EYrLeB6O+0i7gAFCAnbW4fGdurS9g0bdoEB93gbjwWcD2U4QTa+/1gpHcQnCf8AnvBFkBVC4PDtxeow0OzK0fKIlwuwHvUBRYJ7kTjOFeD7V2lbhofucnzkwjPYFmg0yqXw5pPuwwkGFNjA7vD04INuAyV5pkhAe66KlgUs5PX/vp0dpzf+RTc+pjUIs7gh2dNjnfGFwF4+OwprZlNBbLea6D9NSkNLdc3M/HjqqQy+6LOqHLrGEl1g2sxW6FvYdjWRxRh8DPmz1RHX7LfHKH0IEJqm50u7kZ9XSK9/affqCPeOiZud7FAHoj/emlFlNZJ6m0Pfd/5zPcdT2Dp7VDsV/M335W0BOBbopmUilJCsZDq7Vw4ZPUnNWPRevtRf+th9r1pQt4mScrqLOrinV/dai5cd24f/E2dhgEc5FcWmgDf0Je9PlYfJ31E0gt8qHo1LfBgl8LuOCLhc8+rQUvT5Bw74md8OAEbZEFb1Buri7ajCfZYgsfgngQv9StNxhQmWgFPDs+J807jOpFv0ihYEFM2FKPEL04Y7CpsUiao2la82PMhR8+RskVVnzYPw4QilWpYrQ73vrx4wQMCIp7paGmHBMeFJMD9f20Jh/Rf3KG9rEDa70QsCfJBhfuuptB2OYOtb7qhk8PKVnw+TZH8rQbrXml3XWYonyiRlTvA34XZxkmWepQn4KLteldWIKtyWzqLnhyKjLrDZb8RxHsQCCGqsd+/B+JczXwCfmogaU7znhn3KNklicLQnp6F2STfyqLS9LRhFbtKGTTkz7ghrdlUL6SAREn74P+x8/506moed2afExjhahecwpIKxkGmA7FGoHF/um+TOxcOtYQgmDWNerJJeFDFdiFYhG1wt5FTwHfGEBVG6NoCQBZmzMtO6gwzfYZ1Y/vJ5hcqBUwY9WEdbnN8jmRnjcI+BTiHdvvks0Sr6G+xxTb9vcQzM/6E8M8ajdLvajPeXl1IBz2DqI/fV+4QsOBix6NcV65FrO/QapmeTFgQ2lR3kJ15f/sD6Prg/QL3m3Bdx1BwuEKJEw5Zd2Pj2L/oVnWtNi/FonFjE3hde1nvv9UwKrq76/e089TlxVgipMbDXrjnEzt5VhBfHhF1J76gY+is1v94vtP3wik89xOf/l2wT8JK9yAwPfzfca+193zKTi5LpRut47utLdo/dUz5PuZYcwOz3zYXstCI0crI/NnsvN5e9uo8FpsV9RMUVLT9aVg6s/e9Nsa96LT1UTRe+AQ6BcBn239M8DMzr44lMpdPX6c5d7yKdtRX83SZLqhhmmZ52L8WOo1I5ylEHysc0M9ie6B0GZdCXQ51sm6ETveFblpa8IVMCLKQK2HUxrbWprhDP/qZQv/L6G7dnW88IFkNptzAc9Gvqe2eG0tPr0l+McP96UfJfMLKiqYzk1M46aI+qE3rw38rSebV0bAKfRPaquNMtXb5/ynl8D1PsqJprhu3zaXKdaCrvJwwGWnn1PTPcH7Lttik2hhP9SftIPqQ+3ocp41/eWH0d1DvNPoNxim6qnDb6PXtECb1VJvefvwexgcNKxRBQilkvyzP6Tsud5v8qF1fvou4nCV5/N0vjk/PE6ERf9lu4hdoGJ1d2zrtgfmqYtvcNFDMdY6GrTWU9e1T9UEODUpDHpYWSdlItstvnXigW9+/L0Q85J8zO+X84B+C8jNPEDaBvGeWielgQcjyom6WoP6Fe8yGRbiasL+kzQWeY5Ln7Ta8fG2xF3CqCmmoFbE9E//ZvJGy375n2Jx++FV6ikMamLY0CJ2SjCDndfC7D06P7xZD/o7a+A+Ii5arT/HnL33WvgXTzfxpwAjlSXp77xdUGY15xHQ4T49o+U83vW33J1t8Lpc12TTzBH/06tsvZ9QHZZhvpy/DE/1wcHW7gt5m5wfHVzWT1Fli4Dfrk+ixZviigT7e7D4veKldtBpgO3T9tNzo7i6P36LyrbbJlTX3uqvnojggofm9lC94e2wy/GelJecsEFJoRvdOnq3OilgpvVMNV4+Y6yHslPTRIxXPz3hx9dqaqXDG/z0ih0Q02BY9GFYJDuL/vGLr3NswRObOd2lTw7YcE9ieBOqC5ILBwd/9dXcazj2lFrIZ3kKVuAv3rtTz5lodPpPTyJlfjbryX5tJLgiLxtjnr7B5DidDfJo+8Gey+/JH/7/X3cK1P++U2CIqKb2cSzzWa+lAj6lvUJt+7vLZ2KfS/jB35haI+nBl/DjG25ODcKudPJrQWn2A5DNWEJS/ZhrYrneCTgT+yJGlTqZNm2pwraSbGwnzcHi3EYOYItqhgATQOy/67HoJV+SXcgHY4ekqzL2A0ByCwLF9WiEV3PCl6au6vZ6vGLdCk799JpfDLQfpyJi/cyCyX6tCbjl0xsjz/ED9kn6CQbFI0PdW+AWX7nmBM8ReiKVCU1PHd+9AHKSQ4xG+cNny6AOIOXDJFO+Mrl0Ub8h7DvvgbdXcAo43h5XsF96kSVR/8zZ/jKdwE6yHbw/uss9cNtxYHt/DGSj86yfp8Kt4HE+IQKzR5y362maQJgwmTpT7fMxiuMbCB/lFbtH0+BCs2ptACazwv4e3Wt2naUbfDnugR4MfR1wzkMXKMqwxfmb+T23494F7fS9YLtDJGeNCHywN4ctRq5p1kKzKm24yr9H7HoJ6dn3ZspwvZIcIpEsrzdrEF20XYsYdlbZGMzTdYJQfjgRmuKdXouRcAqhHW3O1MRf0xLStRnCN2oT9L2EUzDWMEdQfB56WgDaBUOehgUcw/iMml2z7jm5EgY8kH7xo8UgmSX3IUFp0xvkJssV4Mu9TLgzpIqsjPMJcEp1pD2ocsO7kA/WIIlJCFfny4beNedSzye6ucAoM0oaTN99wO4vvdTOabFGgokV8JbPVwQypSc4nE5OMvd27UPnE3AilG2Xzw9YCHB9uUoU+yDON/E2TmFhGD7eoQ6C6SsqA0S3SMce/Uo5ewVhC+8H28Zp2XYJOX8fJ/gylQEH9jXLB3mQbyoz8oRMSP1yNqwCHUr244TtFb0lc8+/4e99qWdlVs9ozlt4v80vHHxeCR9xv3agvSId9r3ZrZfzc+EtZ2/quvgTzDI3CaBnJcB7s3iDCWhkALZtQbLe20YtyEiI4Cm56VTPVyYQBrMtoCi1JjWBnHKeeVkLb2gdYMdrNfCFR3NphGeq2EkTr5/X6SaCM3QADc1534/CwWxAIzoXJG9FpW5vu9hf+zZ4UFTkRjIFknqCO+3p4e1y53Jyr8akOdP0RZqiPsE0iMSGSi7NiHNrrlnXVDoMT+s73e+vE+gF995BX/8a2N9sTbD46wAeseNhpNmRNRWzqMPWXk1EqlGS88+GhdrmOnECEP/Uo+KmSLuDgWGPSXuLFkVbwFKKOZES/OTz/QAgfEpYwQG86EkXr3VTGyG+kwf5uvW8uc+RZn+zpU+F5SadIB50bbsev3/+M4KnGML3k6/xXry88vl5mFJtZdolgZYoBnNX7BjMPk9IPg70eqaD+A12NUypyU9y0sXPQFClux5jd5PFwXzxyhuUNl8DB/Mo9NP+eY+hpgkGta53GHRmClpQ2JjiULaVmmmPhoCV/7nhfWkhi98/AYK64DXUC9wTZ9uovMFffNO1ugtIJ/YqYPLmhp1sOIFJbY8xDH1k0u0SD5n2GAaQHi4mvp/CoF/2ZwUjd/0hYh+NydzRawvfb+dO1jic6sXeO8ibxsb6Nn2BGdqGqblq0lHde9nBV3f8GDKhWdGwF7yaXk/2CmSlo/zyRTJZEVnmlWcbtNYPDpjr/pBqV7f/Um9/eAd05foMPtXqTK1kc+bkcht1cJT5gXpHXtWzq7gtbIphRw933QxYdrkKMLls1ghYtpAwdi4L7SQ+GYLUKBOuo0cIlvOnoZdfcxZGhxAs+482BRjq6fa9y7B8yBU1xceuX76gu4GDsh6w5e3DnK/B5QI/XWrQOLjUgJ/3Lwk4WXbBaAVLMIWhJUFdCBq6JXc7YG98CxVMs5na25Hw4ZXMb6gpz5rajdL2NIgTGVKzEbAbzXXPLwfx8rNH6ulFkDA6iBUM9vkT8ef6UpO21RAcXvKOJoF9Dxi6bVSQ9UKGcx1uE14svcpvUn6kehK01vzyDPg7H6JyObQm2Pg2nKvKwbj6ngNaelYGNe99J1PhxAHzrK4EJTOPNPAKAwjp0zHhTqs9bDT3c8CWLQRfQYXYt28mEM/13oZL/KTGGB0Ai9K7C2ymeUiol97x4X0/QDpXBjWQbORDaw6O+stXpvn6Wks+npSTWDPsXJV9z+uj6qjSFKzQNYClxTrzFMNsdhm+fiPPYurEEGSyeKMeXO0Bj4UoA1RkDxpmjzjhq40rganTLRzP6JsPQzMgoDwDD8lxm+bf9/5QQuWVf6h5nyv+ly+5B45EBaenNfd276rHODcQb6/vgFFtnYHVaqNj+3CrLIaIx4DeNQQb3aZJ/vI1qIJl1kPXWfOGcBd2IgDYMw5CzXEdu0Ba+zbijfsB0/HSR3C42gNaf9Nqmb81hCDQux1GbVzzqf6iDrJed7H+VkIuznp4gvkgXsk3DFc1AedtA1bSycY773i2uDXgST26UoD3QnMLZhU8BYh26+ov/rHtszrB6Swf6N62g2COM6WB3LhcqdNpTi2K3Ekh6rYpkdLmw+ml2sQQuM2F+s/HmHeOBBj070VOPeE253P7Vkt4fkYZPl7sbTL/8n0kr0as37CR8M9GRXDxT2zP2rPun/Cgw/Vxf6C+gcOAp/u5gNblmJKpmTQ+RkKBYBI6Dd2lB+NfvLXYAwHNN6/nl+ya4DULCi4ucZz8/FPe2MWN2kYQL3dwbivQDHWO0ffUJ1whr5M27zZnFK+3fT2xeRfBJl69CWKQLjXWfQMPZ1HF+kbb8j6IcxWO9fCkDlpZ/XTcfS/a6UwK7Fxbuny38yy1UFQ7un2BXc+TT+HAh4gFijfB1hK8EBfw44aYbqs7qydFxA2o3miNt6J6tT5GLXfwNSw1ZBsSi3zMpwrv1U7De3UMgklQyAV8vTDFznZnJFJtjiV8Wjai0caD9VSrUamtgy5H2k065xyfzoL6uVdvHKLpYc27j8RgdzYJ3UrrsmYny9ah+v0G1BAZyUlwD0o4AFQgNvkGn3LLb+BkfTjFKVv63DwPnXbYMpeiQdAToSi5D4TkfqA7nav1D58BqTp1FD0eLpi7AjPwfCGdYpfXyeBeDQay7c3H+3tX1uRwaYimaZJBd4ZsWuyGP3/7RboFr3Cq+z5kNH4TBV/FYIpCNwQLHkTU23SA8Vw2QfL6Zthdw6X971GI1D6IY+yPxQqQ7xhOUNwNImGT/wTT4+UTeLEuIWG73bafZTvs4MPQI1ww7x3wBu4zuORr6jzPVc0U/yQDRbqXqErUMmFh2k5gyX8IwEuZs7nJmOpsbQNft1XMqfoEJnyimRK2+ZxqWhU3CbhPRug+2mz5xGYcgfk49GSahROf454X8BMWIxKTg59MaWT78D6KBXaLdgtYf6YEyv2mx9vQTvj8hx/GZ0n1z3AKWt8aBrjwFWomqp6Ion2JoP0OCNo8LcA5P+gZtEG5xchTknwa/XUDAFm1aOr93uJp/2rBVW4pzao6BZNYegx25auhiz0G03hWVLjgE2zUV5pPimmsNF6XAT4LrOznl80u2lyVDo2s1QPMJvpmCqTaB4fdVFlTGZwc2MKLQsNyK/341AQb0b5Qf1v6uZAEsFEKt9xT/TzaNVvVQgTZaeywh45jP1sCHEA4HAS899y4Z4pfyHKo7DDpv+vn4p/b9y8e0f0B7JPxWakItjqJiXz2IzDJD8kFjXecEPd1sZ/f+0MF7V38/MWzfsaau1I7dJ+Rujvn1hRFmKnCaDv0vgU5GLJxtrU+iGLqf1FZs1m8tfAXX9yPv8ziao8RWJ6HeryhFn3tdye45DsaUqPMubt9IajkwoyTx7sPBjAMAkj0s0Vm1Rr64TNmjXpfgTPWRWO/9HISpb98sK/W75wX8NYBIs5Xqvd+EPDo8x3gNKIWG4a+tnh4qgtI5hJgOzCFut9pyIQndt5j3xenYAqBJ8PTnKSILfmNzptHCpt++Q7nck17tvBPsBGuFcZ29QpGZucylIgdYIN/18HIwez8+Bq29oVfL+cPwWPPO8KVUUsGL8Q3YISkJIL82SfTVa0zGHiehU0Pp5zpm8AEe5S/iRT7as6LPmbwKneU7rcAgPbyuq6g4T0Amh9ATdiAwxUkH7ilLoX3YKablw/1TeZRex9YQFzdKx3GCmRIYwHpqY3yN5wCW8Lh6OGedWYRg7HIPCIp20/Ct/XLhI/ss6XGQZ/qebrKKzBfQESR3oz1MOeiBM/5yiQb8fUFsx7DN0jU9YxEc39IOFz3b4is0cbbgB/zWT/bvir4qxS7tRb0HCF9AMndvVPL7jFgQeh1UIjiAWnBwag/eTE4YMmHZCbpNae7KRmggFxliQcvPjXLvPsApoSkH2PTT7FU27CZuIrYKRkBi9e6riltF1KjBwEQ6iArIFpfe7yzaLz0fo9PymfdXchawCHg4/trw1HRZew+hn0ykfJgaoV8T/B+2S+SpNcKmIm1QRxIQ0K6ptNhp4ZXbB7xO6FDdShBQeQ7tdZWHXAvkzpIHxlC8tF8gpkevxlsCrKj+uoz92QziYJKtPiGdRk1OY+32QkcjbNLnvqkA7bgT3UXyzm+iPVzwadaBZJDBslGVWlN7x42oZiWETX8jxW0Pc4mqL6yEYHgHXGidxHRQOUhMsvrV8BGM+4gRaflTkhW19POmlJt9AxGDa8C9RSFeqilGxZTNNurmr1Uc1APijZQJzKDRPo9b5CgTn98l/7yywDCgtpLMYuyuzrA0jQwWq/azGJjiQRYdfc7DfKN3k8H617Ad7Lqf/5h8STrGfjxiWjRM5iEVAfYoNpi28RX0El5c/nDYzH0kmR8cmiDrS7dqalML86yy0GAiVW3RBwvt376vf9+lQ3Y8vVjzf3BLdVYmvbU0CIr/8PT5QupFINbnbfo1UhqvXVDjOH8TcYYiieYKV9Ct/a7AKwKLvEvHmK/HJqAF0VZaLenvSJKe3uAv3i+aovp5y/5VJngpDbbXUzO/Jb1XHvSDHwsMNMgOdoBm5OLDK/Tli/5ugrmKZQ6ODnLrM/FvyfutBMcj+Iev+DL5vxRTSbAb1HEwZ6WwbwXvhJkvelidFQaPufeTYLNdhvj3/lPDe50+IyUirqqvHwTMcg34OHOIHX3PAabfu864Duc19Snn5GzunwOULLvJ2oK/SqfL1l3ghd+jrHVXh2rXfi/klzENbZUZnOpnvsGPsS9QPeXVOUUn84SNKgc0JjF0dKtqn3/9p9MVYt61rdKA9L4CggQV4xzaa1KIDS+DrXJ5INF71LBtstjjO/pIZ+X/AP6Z1vTxybYBrNcuZKmpqlA3cB/JMv/C/DEjvul0c0adJsmKIF/GFRUxAMJBp2JHfyQ5kHvBWkt+j3ksTp6FiPKadMFbJyjQRvuR5/q5Pzks+0jBNos2VHjfNUA3Z5UAsK5DYlKaiefQF5BNfACi+5PYV9PhotduJMcB/tLvmP2PWbQ1IYXdp9GktBQ/iBIb96X6uaOBmwvDSV8XrIX1sdYTViUHn0IALMIyVFX8ySrJ/BGXUL3g7nuqSv0MdwndEXmVepzPvIkgxt50Klf1QLg95OXavbYzXTXPCPAMzkicP9d7ii1jzZvxTloYWRTb9Fv52A+eB+iLvGRFrd66tksph00tvs7qX56iDJ0LcQhdsilz8t6fu+vFbQe0hnJoJ8SsjLkSq2vWYe9D6iDaQsOLtybZIvy5pv3XOyeGVz4wKJnCZwnn5MNtZ5g/IsfA3oNgvL+HkyKJUerp4dkN1C0bmf6w1N/8awrPw3ZfO6e9YffnKKT/vjx1I0OBFnGnnQv3QYwhsipwP61majnby79/NPDfvoU7nahtbEU0/m9zw8PB0IIDBWOhzfF2+oe90K2YvDHN7Ex3d2epQFh8Dsc13/5SLkXJAJf2jTYl/T8D+/BbbXCaPUXLJf1QTFZo0ewVnjznOcLTO7+HevxeQXmKsMFFF9vDz00MQJMfUwnbcm/ONhI9dI7PLGhDtoPtqX9A0w36YIUlDKNOmmz46N0/Q7QmOCWRi1ifPQeNxPWgnUl6/i6y9nGWE9qE8M3PnzZjZPodTb/+N240+ucfJZZm/X10tFdp64CIg3vCAosK7B5yTWLHFS5gP6BqGiV+ZYl7KKuhcS3ZwIunR9Mx9f9rfz0j1WO/F7g564Fuo0KUkk1DobH5XKBZH84UfdeF8mCrwegJUFCVq5Z9dzKt7Ja+k2A9zu9Tni9EQXYnvQvve90KyHPi99AokU3xJqc1Kw/fwhY8PafPvQ18pzADKoJRsobBP3mGKagfKgVdqq8sz6uce9k+wkiquPVIRkbvZKgtRob6m0u3775nsUKAiHR0XMI/Zx7nwlqLX0Vy3pXCV/4BLwfHJuwRS9vg5d8gwv+Qr/4NGnOXgYanFzsDtO7H45pQn54GgkfY1O3/rNUQSTDkfBNijlJL09bsW+NjLetJXHWKmtbDT7mmXrX6FzP10KRoa/3Btns38dkTh6eC9tKsGm02MvvfMAj8U1qoiarBXxRKzVrjmckea3GP6N9PP3hz/VLGoEgPyT/p98u+iOxuJOb0Q9/4a11uPCF79+0UnlcqA9OhrXUC1YwXuGImiyeADs99VBb3h9bH7u06IJ3QHjS7tQNy20+H06VDg9mXVMD7ARrCFLSgGNdqHT/049X+fkEC7faUwvuOj4ZbyuFfD4+cHAP3/2shj1TrvXpgtgqNnNJNaAP4+dVIl5ml4DVc/+G0wX6+KR6BLBG5C4sX6FKndZAySRr6unHn5d4YwV/enb7sSuMKJX7qTUbR1Vvm4naxQME/H18F5CWhfu337yAaQff38TES7zkU7NqnR8+Q/OXQTC0ZRmrz1tvEUmXLEta9EtVv5YiXviBRW9cq2Bv0hNG+3Obs2hXSfB6CN/4JvZDwGyAIPjF42P6npJffQsO4eFA/Th5Wd1L9cmfPrrEu575O9UGOyXuF341JvwkpydQnM5PBJfnDUoSCH/4PKSGnoyhFjY/fI99Ur/zcQpXHby/sxxb+THkLNvhFTDzNydsysuA1XP9hoLUQurrQdMLt8tNh9Wt9egtcrbBoreiX72EGvL6ZTFybhxontMjYqU/JUzRmkrjnnLEhe/PPZciOIGlXkP3ZHUGbPC1CzSd6EbNyjQsvnmjEPJttyHiuWrrOTKiRlOkR4l1Je75NCmqDpf6BWHX0q4lvbsQmOhHa1mvbon+lmZgwRt4r66+yeRbDYFme0H0uM1ca6oSLQR8sHZ4C18NmOogvkG6OuSLf6j13B3uhZw3pzuatahO/vQheUYWqtxgzMc4U97whb57Uh2xs8yW3qpwsl6cKCtTzEnZQFm9Hh829tSXnn/746jDJP08Ke4DXvPo8yTLN8UJdpf8N+qim8JoH21x8LzbQDp/zyk8Y/+DZM+c8jlevuF8Xi4vxLR9xue5utjQvRUnxG7atadmq4cw4SXB1gDMehBLY9Ien0uJH8YR5dPC3/70nDO7cGsaFbEFC54gono71l/kgROo772L1vW46sl76Xu06MOEn/SPReYkkqEgdRD7rymoSSSVMvzDi7tjXEuvry7AJb4Q7XXhoF30WXivtho1SKokE0BTp53QrqWm9Z16nvWnC1yV63FZb9VPp+/owucuHbB9mndANB999MuXSDUTXndQuZ4gnm49jm/atR41N2pgVBxWf/yZnrZoUBf9Bp0hFuuhwZWpLfmPhtp1nYy3vm1g1kvZgucefFz0XXBIPjcCtNsHzMq1cKDKYwPbVvpMiA7iRlt9qy/e2u8VmFs+CDA7ldafPjdYEYmh/VQistYPb8B+9ve5Ri6+qPInGH/x7aeXJMqo5fww6YK2Qy+Id8v6+FTtZZArnUAtFrXJAPJqBZVoFxFx0Y/Yr764+bQ76tefWzIftq0PAJgsehaeZi4dbjBWBB+miFfcAIseGsMfftKVOABLPS9Wp9f4QvP5qnG2jNqA7wcJqR21F06qIIqX2VMbjHz/0DPjXmTAs9SSaPnzkEyupP3P2Qfgv+8UoJF7RJmvFeDf9VuCtqDkVO/DnnfTnEbg1jsGNS3S9MSZDRVah/ZF3dze1Zt7bHUQdTUlig1czm3LYlCryI2a/OJa8/foVdBdKTpF5ikAHzWjb7iORxk7sRzk0vl4YoCztsG4s68959lXAMvoPRoeXpLFZgPHoB0HF5t2IubdTWkdtT8/MOLSnQVzY99aQMRMIq/P9R7MDfEFOHZGQQM9sSzW7coUmqXp0yBzbgnPtoEP6ubqozV0lKVlyMeE3jJn1cw1oxbNVF16G+kamociqUfx5CHQnL+LhrVx83n7ZBUQXvKAhNEV8+HSxG9oJVFMvf6MALN0ZsK1L1yxQRUTsHZ6FDCe3m+KL/3HmjXNH1Q9F/YYJ+2Kc8VoS7ir6y8RBs+rp7KYGs3bjC+6U99KMNXul4AdbRS667Mm4BA9dfiurQuZ7itUk+ADStC9BAGpinVPZuRCR11PeYNDp5FyBm5mCNbMOmDn8LCTTfbkA6gr2yUkb4Sev4/aBMOPVhIxZGMyXUcywNf2tKKBXlyS+VELE6xA86JOkbzzbnk/7bRLLZqbziuZ2EMyoVSpDyTZvZkLn8u5hKgNR6KSm8xZNV0JjNCgoQ2q1KU2GlxAKU6QuqgrQefs1QpK4v6JxNvlXlNF6CSgpGxH/cqMLWadAwZLqG2JePlYveilmwkqOYwQb6OvxbHfxaDSwhif4HFOxq0cxtDZ3DsEr8Kul6zGuGiDak7UYxfUb7imIHC/kRve7nyhb/PmeIMdyCNSxeUqp+Q9ljCwbA3vJMOt53GGq9/7YS9aegVKT2qD/iBzvAV3G3wE/d1A13Fu2LINvZYkMSihuDK/VPeJlnxl89OCwTdNjNe7fcDDUvFhk8kDDuTzPmGnqxuDG6ZnGk6RmTezHrlw9t4MzcdN3XMjBgLI6rZHbA/2XGTmV4Z6Yp7JEM3rngWHJ4MBFiu0qvnbYlm83KOt+qXG+q4smrVxCd/XKsRBWumBGJjZBazDwqFBOH75UOw+Exzb64wg7L7BFEkMrTfXi0Hjw5PV5Ly2V+CqoCu2ttmnnj+Huwtf4nEgnWAfet5eOxcq6bSjYXwd6skIjdvPnqlNTp+At1aUaek63OLt9szy+So9YmCutzP2Ys8JZhpfISi2tYHtwfv207AuXOCqqwO5Oau5Hm/3xNHsEg5YX5kGp9lqiGFhgRRbMfrWPE2XOwDRxcUpOBY5c3SowsuTz+g1SHpNyYk1WgnXWxpcnwFg2fY9wKuiELRRwztg0B0neNgwA++7ZxeMcu0N8H4Wj9hQhgnw+8OINb1TROrcSjvg560bw/TWx9RlW8ab781S/z3/uG34dP1gGRSWkhJpBbtgTJZZDU6bmdTcKQqf1M5ZwcU/EUvSlDN+UGJoXF5PokWPjvOxnpCmGfxEFPs51kNsqZMqbtEW7/tjWbeq7ceQnEefsPWF1y0s9Ax6BF2pu/1cwBwAUALM31sUEN8OmHQQfGi+3m8yA4UkbPU1B3hrXnsiHuarVVV7/wT0oa6Q4qQYzNunWkHwGr50R0KWD1+MYri3Uh+x3WPV92uDROon30DCHzcHDBcjCKGrlzraIPcRzBvn4EKU33Y0H85PwOE8ZRq7Tzo9uF8n6axdJAEnz3tqxuq15sZDKUDbigaqFL3kBGynGxTn2MbhV0isqWg9CZ74xaToOsfJ/M3bE7Byb6IuxnM+lYX8BlZ2y/G+2xE+4cxotUL/qhQju+q/XXFsQdCYFjbqbs4r/hzC3/vQKKgSPiZhfwLyZp4ofilNzl77LQK79GbQgvJDT8aNHMJbbxv0uquMWhSHGKrcf6bU2x6bgBrhXQeo6g5465xWAXPSwwkOUSIQWPAkn3xd72Db3Qh29Xa05igsC+19Vh90lzYoZ6uqV8HlUZDFv0c+F5trCCKzH+n2g3Z8oxySG8xe2kgtqBgJm9J+gGCQGZk2b1Z/oNFn0EVyTG3x/AbsEykN1EmAkSr1fr7Z16QA3NA9/PgM754AmU1QBpaP8Sfuf+tbrh71F2pXz4hT5fMK1a8oOdj81DMfr+8hhde9n1E3/14CXprJW2EXWUFr5/upuVIcbGjlwYRNK/3mn/1916k5Hr4UjYbVc6N6MxAL9RFjLe0AedTXEKIhuBG4uwy8W9FvBRcRA0nTccvpXHMb/uxR8zexNXzDywrkhQPxvgOvfB6ND4SVt/KX+LKzpNnYRVCG7QbN7vedsNYCEKQCq7CN/wEAAP//pJ3Llqq8FoUfiIaISEKTm9xNEBCxJ6gIiMglAfL0Z2Dt5t87zRp7W0VistZcc4V8vQSGQrM14JVpgrX766FPob5MktgONnbuNInmRIhv8Dx+TOxNdga6t8BuYN44cD0D9a7Y7OwE2BVhihVhyT3G5L0P9U0cUIXnjWqWXeUmhZokUeNingH1I1CC5NofEK/3NJrX/Q8207VGO0f+MiJidYBReVzvciwJW8okecDH4aVifO8WMFNo2xCKgUuVnb+LKDw9Eug/8pje1/GvZzZEKMJuR/b3M9CZdKM1lFEFsOt+vGqSpve099zIpHa6c/U5uVY84LJKofip7wETiGP/9j8+rvPbbd9BDbngZmPjZX/BQGFPQJOEC17zA1gUvX6Ac/lAVIN+ly0j0jQov0yKdi7cVmyugAlLPs0RiMtCJ6e+m6Rg72Eib0uHTWm3T0F9DTb4uRnuFSmPbgyj8bIn0KyTbNqoNwKFUnzi9PNAEXvTWZOvR/tGveSsRXNX8zkcjtxMNo04eTPYJ4k0G2NP/Trz9elblgQO/COmpnUPMgJ72ZafyWOLPbyPPCa9UAqAcOWIbAf7rLU0YMId/S4Uyc2zWvcTgdZhJ5P9bj5X4/G8JwAjghHbfkHVb8TQhO1IbLKHipWxguxMEMoXD12v7hsMX9omUkOZjJXEEaPJelYtRIOTr3cH0ohduFcqxyI9oVm5xYANVJikj0INfDyLJ0BPdZHu9Zzd6VG+FDpzhx0B7fvzIbwT2d6Yj6YC1vEi/mU7YFJpysOlx4Aaeo+j+Qo5E8Yo3CDSvOOI+cd4kHLxBal/eHcVI4nUQCK2AY3u37rvVdhp0hekJVXH3a3q1e+hgaoy6FQRjl7/03PyKeEBNTeTUrHw5HEQpzij+gNtdcofBwRUhehoY7VsPaNlpbBYXiXaylneT65id/A1bNhf/po6m+bg6NsK6p2Xks2jjSZYlaaNbf+uZ7/1A2Qf7elhEIpq4KdCkw17l2OvtqdsjQcmnLX0S3W+w2xxdn0NVn1Oj2aoVrNmwRsw5PFEzVX/UVO5JsDduEd8LPZz/9UljgA8cynaXn1eZz0rQmDfNxK1x6KMVv2vgNvDRKRTOY6x87i5gSQXn9QDVVItZfJ4SMytYlIrHcjG6FpwMP6VrA+rygi5JPZPD5ANlHA/HcrEgL/9LnuCzKZU1X3oZuKBHuoP1aevCB/gdZfW9wTOgzckwgbCq+zY2GfaFDGXPUpwXZSA5g/Gsv6elg84L9ll1ZP3bHq0qgA/h9qj+iy++nlZz7jArTLh+6WPvcllGpQZyG803tVrT1H+PIDV3iasSqavszU+wwARmRQepB7rncWA0u18wo7Mvv0itEdRytT4gpXW2zESH1oIDffpYL/OBm8pnp9B0kiak905rQGJFyOHxXaB1L48NDDJhUwg7cUUO3DDvPERqwLEVmH+05dVP5uy35wZPm7h2xss5yrBgCgJfRqfTdYzIzB/9STipFvi0dAwY+mUPlrqJprZz+BbpbLzTit6yFO5mq2nbUKMBozDvVKA6XwXJZDNlwNp/TatZgSEG2yZLFHXue7BEmfSAJYouWNLyHQwR3B9r9g3bcLfBqlaMDn7QOjMFvsd49jg7r8L7N4Cjw+T1q339MgdcLy+oa6/4XrynuIamqq4nvEIBH2xPcWUd0HjrXo3jJjRRC4021TD+a8e6wuawnMfGOv8Xtji37YiOFuHGg1N6/SrbG3hYKdnjDcvOxq7C8f/6VN7LLRs+s3Xqp+woRpC1anR5QZNP9FJfSlmnd3fhQHzMdPJ7ixvo5mL4lKK8q6mmti8q1lMDFM613OACOEPgA/dawMLVBsoWWxbJ15qN3CN91gLpX21vBWrgbeHgaiVX+vqGcdTIg16hUg5e24v9OOowLHTH4SqQVEtetciiJq3sn7+2s/dLBmQf+nvX31fsXPdh1CyFUzdKrvqs6x/a1ipjoYqZyN6tMKxCQYV+RSt+ms+xFACP/3ry/haTffTZMrn+SUQeLwpYPHILdlvL5WFQBYT/VsbeQemp1tQfDOQN1WPlfYKBR9b9H3NpkMLJQBatae63cweubTAh0248t/rfunH5/3OwQd3flP/uWy8eRSzCTyv6z0FW6vIpuzOtXAh9zM9zNnsLd4HlNBqmI59a7H1Xdy7BvSbCyOir7f6IBsHV/p49oe8wDPyBjUsQii3oYjgl2deb8HPBExpNLC3UL4fLA0YsKnUFCP9vKuoCksFXt7aHbFm9wLTrjNMie/vNpEeQtvPr1tfwukWXam+1sPz+vxgWPjPLx9lo/d0uZ8+QzKQ8n5I+UMJ2+5BsL/ux3ZTd6Z0D4M9tWzX6uevGEjyc1BPhMH9K1uwQRU4T6xD/C+eGCFHoPAKF/qrf/l1P0CtWPnnh+zMfvUHjIjcrPU2qWZNdFK41o9EPosz+8WrX/1MsSK8o7VeTWB51ReMxib2WJlfCeD7p43az4NEUxB1PPAzJJFu9RPYd0P4v3gaF3GUTXzn+AAU9hGHs9dVCyfKLXjdRY/ew8HO1vypwY9TSBhP5rGaQvdaQxLfJwTz5gz6X/76OotFfdkwovmazDeIT2qIlVYpq+6nL4t4K+DDL3+8/W8L7X1S08Oa7xYBdDGURE2mP73c/vwPUJsQyc6j1ydJ7lMpk1yAllDa99Mh24UwvW9VbPtt2hOhPUpQgqKBNreHk7E1H8tev96FvnHLjDXn7QR+8QUdL17PpuMrgSZM5t9+7Kk1QB5eQZVRhc4wG7UsEGDA0R6VWWVmfGV/B2juDxdcWvsrY3u+5KF+wSrWMqf3pkc83uB1Siti69+XPsknbQFplT3QJvwyb959iwIMM5LI5nk/62ytDyDelTw1RvucCR2vCz89Rw8fJkbf3353S2+36qltX303RAAJu2n4gN60mu6k7eCWU774eDmJbMLyVYEhx4mrn/ipug+vQLD6Z/Q0Du9sqltcS2TDXzE2PptomgPvz38hPDhzEWsjL5bYrO2oneEczGjQcyjL2xhnoEr6xX6dBHhUhzt9EP7NmHE9l/Kqd7AO969oBPskBoL+MRGzPm+PwVlM4XghOTrrNQWjOygNfLvgRnUubLP2i81AYrJpYf96GzIWGiiGdTRUdPXboun6sSRoWEdKvas1VW1lvwbplRANHx0Ds4U7sATKfRkSHp821fjzG2fznKLlmqz+6Zov1ny01hNbRg2nq6W3X1kUVVcXCKtfJFHNydf9nUZsdxsI3MIbROL7NAGi184NKnSCSLL5b0Sc2nJhtbA7msedVE0bNSQwdpMAAZCqGV+Ary13Crehnr63+uUE7gMgbGWTiC/Nm3X1XkOu6fdIfolyxrTc4n75mR70GoM5vacIViZ9IDmPVZ29I/sBz4f7Du1Kv2FTtpslWfwYGTaj4cUKi9km5B7LDWvS9QPW9SsA/i0NZP+oBrAsaWBIa31LL/pLqpaL77YQ380SK1sWRPNomxOUMEr//KZFfEf5b3+jEFEjYzG6FpLgOCU+yhfF27WUiT+9RqQAG9n2A7wYhgtoqf9gUTT/9Nz+fc9Xf7fNlicz7L96198ISzRPnPwA9gmfqbb6g8wIBQIHefP8qy+EOzynPz2AfW7X9H/1RGd7NpJWvxhwnCjCJZX22JO4xlue30mRt4KwsnkPuNoelzKUJEUwMRqOoz5S6ha/fIyR+GGA3bwvB9Oz6lHzHTcem6aJyNKpypCHikGflUud//IN9oB8An/51mQloAd5ewHLW775cMndiJpLWUWLwvYPeLgrHeELgnpaLdUDrvUi9vFR15d8XxgQZ48tqhNQ9Kx6j4K0serNOt9+tUzIkIB+e2S/+JwND4QacDWSGjsBiKPFPC6lVJ+TAOsmIxWDanWDsVyn+CrIG2+mbT9Iq35Z/fNzNB68YoL+Y63fuBKx4SvCHCbzcqbG+nyzIgFBerbz7q8+IMLrY8LrHpBVDzb9csm2NYSzqVJvuKiMQdv1oS6UN4qcuWFjVG5NCFJOx1bhcn3fUiZJw+xLWHfekPV64KSwPFs6dXq4idb8VULTHRJ6OVc3fWjEuf71J9b+Rsvqqp8N0NZiiA9Vq+sDvLwa+XN/ftE2XUTWZkgf4PXAndA+dBp91VsGPJc5wtomZT2tcG5Ihm8KZPjpl1KY1jPj7R0HWzZF03cThfDStC4+pVio5ijSXMh4uaEGpUhnBdkYMDTdGBttVbM5X3tgoWnH1Az6I6DGsIf7iggjVWPjFa39lQkI/XCmzuoXrOurhI+xDaiKt7Tnz2MvQBXYMbZ06xnt2EtpIXd3R+w+Ax2MiRCn8vW+o2S/5Vg0fb9qAfqze6RHIMHq8y5BCk8P3UAnN7er+fT+FLBqtB01eUnIpmq9vNw8qinZkq8GSFenIthu2oSmZO9ku9XfABR+Rnpc/c9len1jWM3OhB3uU3j0MlcL9HRTJkI3jt4CNtdmvQexQBzh34C119KF1exNWGd9BZaiMQvo7Oh79U8uEc9PrQaZWb/R9HJFncJaWmB5PuhYzbbAG4qtG0vV4TDTn383DIKrSAkqfDIxtdTZ7cUIWPUS2tH3PmLV3g3h904EijyuXvMBCuD9+tQoZkOoT8fkHMDxMuRI8rLSo82m56BfZgb2/Ij00+bhBT9/es0HFDDSvFc8o32kZ53zvA5gv4F+rK3PM12zBakzkVf/htDmwYO1PpOkKBIItZL1Wq49GNF+choDO6hSo2kbHCCcnNqgei+M1YSLNoeJVHv47C/HbMnxLMnHWH+ievXHyLWxp7/1rGyvZ30xu94EbiYd/vTH1ksHGzLbD6lp5zD6HKvmAe9B75PLa/GqRdGHB9hnXIAWJovVwglKIru3MMX+XZk9quqKCO9SatP7PRrAcnVSH36Acyb1WE7Vt+a/Lazz8krEYlCicUlBC/kgDnB6+IhsDky1hdutzyjyq62+fNzb9OsPEuDFWsUKwA/gF1/X/lTEWuFGoCx9pNWvciOWPqwYdvu5wkchUbK/v0/0KaPqWT+up2j4BA6L8KHe2s8ajlUowc+22aPmTdSIZegZAun0ygjfyoW+ztcCZXkXk21zO2XkbZIUTBd4wel6u1l324IBGiwiVE0EHAlPs+igf+4e2NMPJ28+zGMOP577wb98Misu4YHhGwKCJ+/Gxki4lnBQ9y9qfp8g+75ebiIF2nckkNMnnbr7bQJk6S0R5l5ZRDP0DODDpy52TNJ7fWxJBJ5OwRMHwpLry3Nfwp9+wciZTUbvYC9I/W34/vqv0VCnefvrR1Fn4wc9W/19uPovCH40A/z6n/tDEBywvz7fbz4kJVIu2DQfRj/MyVeCR+gSar9PE5sPZHLlNT9SkzefYNb5iwhkdU6w5tteX4Jzn0I/MDXEl68JTBsUxHKsuxa1/VbsyfYdNNCwMMX67tRWZM3HoODqBT831ui1WeYkP3+NAPy8sCUuryV8zB+FDEwwwTyVhgiT+4dH8yXoqlE5HTr48w8Ob7XLWLM/ulBUmj3GRt7pPz9D7u9Qx9bF+3jT0sQCSO5vHrtC32VUkKEJ1/7Uzx/o56sDFrj26/75V2nvQ3iZmU6RgBXAS8XCy6tfTRYVlNHy6x+s/i41v/ukms6XmwHGMRCxN04tW1C6Xtz4iROsrPFpyTU+kF4vHtDslWjelpV4Ahf6UAh/jqJ+MfRPAj1PZDidT3nGzKole0n+XBGYbMBYL9xr+LmAI9oJWcUWdKo7uPbzcKjYhccuolaDcI4Amjw7rSatp8n/d6YA/veZAtvt7n+8oElguwS4txegPtfbWSujPQ8tuHiEGcpLH/rC48HRnjusyPGRrfxgG7gHWKBKMbc688s2hAZX5j/eB5sTlxTgvilKjC9zy77thWjw8foof3zh3cpvBp/TtKNWew08Fij1BGy5dmjkaXc24bRI4YbuAiQqocUIOVMOlF8zJvtL+MyW+zvm9uclTPFBPX4ByUcgSCsvEskxXqrppe8f0u14F1e+oq1PfaEL+2qv6/iQdjedrHw0eLmmmKrv21tnspeK8OPHPkb6W8qmNOsRjPfKQtUXLPrxPWstVNro88c7m3+84a1uiNTfm503MermYH0ecsK3KBrdzUmAYxZdCH/eqWxRk10LfzwqI39f9O132tYwFNwLPmyuTfX37z8effR0nIwBMiQQZMkesRljb9x6vbJ3yzrCh/enBUshHFqw8rFXXq/PlkCZFnAPpQkbJ/kM5vu7gHs3JipWT8dDtd1xrg2PZIjQt0lsT9jJgi3tyo+Jpk1mVTv9jFqAuc+8jleppvc75OGPN6QqS5gRfu+E8Pk0VHpZ+VPTF2cuLKQ5pgZ6nrLtO9zbAHTmbe2xavpWqscSCtdzgTZEmrPpOzsNWHnJ1Go/FWBzeOVgApccLfiqZb2e2wWw05JSXWiuVQX8rQRXniH58ZImrlVTOeKK8cdT62eOzUh682cTH8Xszqby7mg/HgzZWy8rW4oLtOHZWtb31LHrbecVrq5scoqVU95lfzzPeH7cfjzUfuWt1PB2LgJ8/hQILCvP78ebxIfSMbKlp0YNJ8HdU62mIpt2sc1DUTFsNBuPrpryMlDklb9C1WDmvHHyJgNuA9nFyjq/0/4LcoC594x9cNTZDNSbAft3tiFSEZ8ysn4fQDTZiYA7t/QzzvYxOGxoR1bebbTN6MD/8deMMnU8AarIBPKSFYSTDk+P/njognhQV976UI1BdHsAXXBNbD6UqPpujoog+aN0pj8eYOt9iA/bzjli59uIgM7hiduYOL7RdKTfauKbqpF/PNzN1WbV+EwVWw6qr0/k56f8x5dfjK2DXf98qLYH6MC/9XuJLq+Mnr+KJidwytG+qARv3ji9BBQD9liL0alvFfIJ4J37Rmi5vnNvKS68DUF7gQQcq2e07J51J6/8UOwevBYMw9qj/+bHDrvntI2YO9Q2DHpc//GI2VG8SZB7n300rXwnovtskn98L4vu4mj0hAXKPz6tU2MUDQLbxbDdfHb42JxFbyj8IJZflCdoen8dsJzvAZJf7s0gIqfdvclWXQnMhu4RluF7NN2GSAIrD5i83reDR8yXmkJ1+nLr+OaeaKx2ZRRKT+pNoa8vS5vWQNJghTOA1vdMjQOBSsjL2JaWISJ3t71BtT9G1HeNL5uyzwmCH69Vy4Yto+r3m8DjVjniyAvmfswGS4LHcWdQ5WuRbJqe3CQJfnzHnvsqs1417hysraUmqbhvopn2TQ296nZC6zt4jKz8cHiOWULE335Ky6v5+5lqWs4qaidzKYVkg9AibLls9E6f5o+ftnnvSD98Q9GAYAcHenhfzzot9o8avi0a0cPKt56iTAx/PDmqr/y4xpMLAa68e2qZpsuWodNamQeAUrO6cPoXZ3P841Fhp5i/bHoyhci889DI+/Kq9CW15ULaXF8Xah01xvr6cEhBMJhs5R/harom3wBKlxdHnU5Tom7GqrJu+RZf+zHsZ6S9JjiWeUHvKy+SfQLownzcnRHslTpbXiNZgBe3E/Wi5JSxlT8IHMIu1Le96t96d7OrS7XBcrIfbxZU/jXAJlItwHC3mCD2bxvqt30CFmm6J0A4zTbGfT6AoRKCRv7muKPWC7Osq4oDBPD1Kf/4daNPYvOPh3ehO/7HLy9+fDeylUOf7fysSeFuP6F1f/s9jZgnQVdUZLQfw5O3dLs+/80vkTXHB8LuOXSwGICGrZj43o8fKq35Aism7+gkRH4BX5/MImJwinr2ix/nO5Kxf4ylfhwfNx4qXs8TYPsxmIOtIsH27rr4QKZNtQzGLoQr3xV7G1sB04+XfeFPNVq6+KIT0Ec3AKtYwVd9S/X5jXMEUtF4Uut1/3hjpdmPPz6x8pmqagJSbQN7a5c475agZzun0UAtygs+XE21nx9314DT9tSRod131fLjiXGaEvzxrkcN1RNYx49mbT94UyWkzR8v1ijdczQnQwwh+wG4v+dIJwidGqAeLyr2q9jXV95oCz/XC8a6ePXY7nO8+OCQ2RgfdX7jDWgTTDDV1QNGb/HZz5pn8XDlJxLoCIK+6iEXdltTQdsXmKqlOpxSOHF18ad3/vjg5rmLseOYb8bqLpjgBWwh9j5VAKaie/HwxwM3Ch1UX/Dsm998U3zuqDd7J1rD5PyOqeNuevbjRUtLd2IYqQMfTW/LSSAoC43e8P7OBtnacGIpHC505Z9l26btJ6gTi2BVqblqCLV2+OM9+vHjEk0/njh7mATjg/MB40/fZLxfYOdCGtB27hWBzde2sNUVX7YY1iz8eGTHXcOf+tF92bEkn9mIXttP3ZMTz0sgWNIR32v0iCZl8X34VlxAncaOsxFUdgmVryvgH09xexV1Iq/6YOWx89WyRQAChW439HDbfPrZUHUID4aQEO7putH0Kl3uj+d7MY41GDemCWV54Lb4ICQVYGvBDq/ollJDfp36ZXwrRDZ0x6E/3hw7fPMQqsgPqK15R7as8RCk7ueOsdA4PQVByIMPN+8R8x7vbLZ8iQAKWh5x95MRLZ5c8ODgVU9s7c4im+RRj//m/9o/OTZroTrIIwriVZ8NYLLqRyK109P6PR9bTCBzgIDhQMM2m/UJcKoJdQJlqrzkuRpX3htU9xyPFTIM1TCGvQJhJ6b0sdNLr3M8lcjLXo2pIdN3xORvmQI3D6/oDUCp05XvCMDucKf+Mb71Y8bUBdqfIKCnattUw/MUhnD3ojt0Ib7m8duHQWTdKSLq8N2rmvmtmIBes3SyE6XLLx6V8DSoJdkf/D2YVDRN8Iv9D/kcNQbm9+x28KjiENWlu82GPiciQO3FWeuBHSASkwI47GBGfz+vPNEHTHX98MfDI5vgukCeiAO+gX7MlpO4sjy+0UimG+PZVJ0O6MeXRzz/IIw93PwGxDu8oveab5h3YAv88QJjq7IjmguIQMehMhHgNo760rUSsMYDerxpdTVfDnUNhk3J/uaPKCV4/I13Cb+RvijqQYO37tCjzWW2AdPPZgefD7Tgw/n2zT4rzxpmj0hApTK/MrZziAL3W/NELW50Ir57Hydwvvvyj7fHJq51boDhy5GAxQu9pc4MDTDmOn/6ZUsDSYPXsq5pDpcyW+5ucYPQJEeq0zwHLOGkDp7rm4m4o1EDojuJAOdN+sBZjx1vMkOllU+gDelZ2SRen9x9H+iU97EzFgbbFUpQ/vIrmq621vPN9aLA4xMuaNWXmcDyePrjyetaplW/8YBMc3Ws8TDNpl2sCLC+Y4TAdudmHUKnGr6al0j1sUoAxZ1k/viO6/6N+ynd8wT+9CPHLg7gf/mhH3cNRtf34LGsyA1p1U9UWZ9nfi482e2me4rdlUf5Fy+/VcpodE122WflpULDHV/08CFatd6dZfx4l/gYqw9AeWNvg1/8tJLPos+j4sSgRbcvVT1IwI/3CFm/UbA3y4+ogc9nDR7+643moVbZ8It/3FMNsaVQJRJ+3//jIOR/+YWwPF9g/TDvVKP7czTE5Agh/0niX/1QLSmxJSA/cIx9UUwiZkSvDj4Mi8P++n0yKd0PUJiKLxLD9BgxopvBH9/VNHKnH3g7NH78XCTWD6aTHz/7p1exXIY98+VYgNw4Mez2w6tastRBe8OrJ6r720kf+rwR4cqfRjuv/673kiJDirhyJAc9ripWPEoNrPUx2QFsgHmwCwTnV3kkonPu+ra5PjW42WlXrHYzrSZ3OpiwKkeXiBndMbKOD0raIaaIXb6AWWlSwPU2KLJUKdIn6wNCsCW7DCupRP7x2je3W0P2TdLqswxTE3pxN5HpOC36X/218kMpLoraY0yNEYyPAUIbK1D7XfAWXbgVlBq7+8WK2GfpGoh2ZkdExeC9sWuTAS6DdiLptJEy+jB3OTwO8nat91vvlx+hEg0+Riv/ltiB3oKVx47g7uVVrd84Ppza4EM1iXbZKNRS87f+/V4xsu0VFK2cPBSA7tpF6YWOR8WfXtGDiO+XPg40+afP7YYp/VDjFgHOqVsyuYWaLXZU1PCahx1W2+4MpnrcE/jiaozAyuOepiojktMaCMe9bGVTWEgIWBaZsVE8K31OkJdLeCe2ZE+9nT5MT2GBaz2EwI6rvUlr7QQqxiGn7nhS9PFzCGKANsXpj5++MM5D8L4zAFpEoc6WzWL7f/z1zI1IP56TLv7Vt9RzI9TT4029yc+kvVF9swu8n76FWaCcsfZ6th47W6dG3nDNTLVMcvrdY9AE0Ea7mLqNpWfreAa4ETyXvM+3b7Tc21mU3SxzqeE33j++cwfWnmXYqPpar7ryreMkxF+mDxvSp+3Cq6girJ/FkLH3ay+BpskqAoaGselkdS18ZCeT6k/nmy1LGzQgVDBBc/VZ2ELOFO41aVpopgYem8UICqAPhBqjGL2qkS5tDtnAY3q88gEYat8L4COLTIrmh86me5L7UETnL1XkeGSD/vw+wOo/oJ3yGqq53ec5tN+vhYCB/1Sj1Rs+QKEe/Pi9jPhRVEDE9RoSPqdOp3raN+BF5Cc1+KHs5+cJBdJB31hYccNjNXvsocEjIRG2rWnwliweQgg640aN/L3zFtsnw146DQZ1vrzfM7G5lWDV29RC4MrYmn/ARVA0ei07DOhXjxJQHYMnNpi13qOp5j6Q6xfCtDmUEe3yUoQD19doK6zvSPz2508fu9Q1dVY3QIBRuLjYWXnbTNgFIaTjUhLxpaBqrgW/huPrfaJYSM9gl8tK86e/su1XqNju6EJ4uuQWvSSfxWPuMLgga2KEExBs2fIsMgWo/n3BymNU2M7f70TIrGVLHRU6HtkEpwVub4FC4/MX6WT1X0BxphJ6byWYkTN4DXDdv/SoBCYTVp4zmG7pmezSm5FNjlhxIH9aPDa+wrFf6wMT3r/+l57e/hwNw6Xm5Itc3zAKv7r+q4d+fHoEJkOMRi10CKDK6YXAygOf99MrBuiLUmpykHjd6hf+8Yp//gk7JkMOry96plbG5RVDLIXAgpNHrwjDntzbvSh1gdYgaWm7ns5T/5Cc03ImEGd8tPx4z9moX7DNYovx24dP4PshZn/+ItnJnAtW/jAyOuOVLb980BOyxcfEFisWgm75289GEOrVUg7qJIFXxyiSXma18s07KPJB9BcP1vqmg/csuRARXlzAX2rXkIuH9yJ3nd/oVS6gAWwEx6XHtT7up70b/60XsLeAt+zUzN1zl4dEbe2q9nMwVxwMlSNBdPNd2RjPSw0MwdhSPzoX0dBXxQK33MOjKMxoNmykpyl5nXXD3tBEgMkWgCAVzSd133vcz3QpcunjfghVZ+BHQt49RLDmM8KpUqsP7b7NRVs3Dz//r9pKZq6AbfoqqblbTtnKt5/AzL0wga9jmM1HT+ngyvcm0tUo+vlyGBpQnoBPj3X3BtSSXxLsVcyjT+pP/bLxoQCqvarjI77pEb8f0xtM+GRLzV0t9xPapItU8IaHszV+8+Yg++D6PY3Y3desp98HloDifXmMnq6bgdF72zBswwP2uzoHK4/dkBN2b9AE5Eof3BNo/vy8Y424aNA0COFLHhVsVcnR4+VRT+R6Cb5UU6qxZ+vv/61X7BunHZsyx86hELaXVe+2671s9wSY+eVOtXHJ+kHSPQMGD/SiendYMrr6GZAHe0p1fmR9uyPbFCIBZ9jxk6RaquLIgVNSixSXnpCx3WdXQguIkHpnp6raviom8POvla+FMva6tgbYq1GCJtfYM0Z0FIBdfvIpdkOuH2WR2fvW5E9Yb66Sx4IHFwBzen0RUdTSG5ocQFjvdyo9PO6DzkasGfATdibVbqreD/dwE4J6v13P4JNbNDVcmQqVvvlS/6Zv+6lMsA3pOwFUTepJnzqTDyD3vvjUoMdU7ze52oCT6iLsGUUAIUDev95Ps6KEEG+eCrabtw9m4XXuoDaIBbVWP3sxGj2BSqcdqD0fkbe88D2ED+PA/fVHKLc5r+8cSjsk0hZX63pbIMfwg3DCFkWDOd1ssPoBCLLPpvp+CkP8q6893O317j0JHWzGDSBs9cPW+ieXmgDuqVPmub7I0DAgHfYRtqeNFC268xB+epAiRS31+ejZLbxcvjOSX74abbEwilBTQkKxPJkZi7tR+/OP1MG+/cu3P958p451tAAyJVAi1CTfNb7z2gs9wDgjFesIOmz34uMWPsoH/vOjhu84tHCrQ4uu/PWIcXfSAGhsKFWV+tEzP2tuf34gPYsaW+NNC35+q7fGT7YcUwXu3canOv/csO4dvl0YflKBPq/JJ5ufwrUDwqa/0l/9P+m5XwAYjQE2Y3kCs8l6E/z0icEHwFsGYxMCwsIHuSsa86bbkElwe+Kv+NcfYGt9AAztJCE46VY0IAAEoDdVgv3hgnVaujj509tHeP6CRejbB/j1N7J9pfWCPS/mz2+jyDot1RJSiQPP5cYh7rPZR+v+NeVlUE6IrHpyiKNTCt1wU1HfePYVW+ttqM1PiDjpZfZrfWLK4+tzwkep3PV/84derYID19iDyZg3NsifG52iBxSqaW8fNbjZPBTqR5bfT+p3TOAZJz2ZbVcDgu03A5S81KWnSWsiJpxfAoynt7eOj3qDPHox1O3eoG7EvozcrsSH6VRYOLUm32N+WYSydX7rWEvOfTRerxICZg+PVNPQk5HZtty9MJXf9Z2ImycsZmnDbWuH9GlvFX1Oy5Mhtb2Wk5IoNFrW/AvNJbRIsPrty7TED3mNt/hR0BaMcvRZpFLgGqqHvtSz3WdTQAoLnWIpfLFhjdeyo0s6Rfk2Z5NkFoo8TsmCXXf66FO1sBaOm/Uet8Q0q23uX2/QdhhCS5USferex0X6rW+W3U/6bO4URfpWN/bTY4D88uthzh2cYXFgLdyWPgzhrqCK7TE2aeZVgrt44PFxsN2I6blSyv6lyRFfpl9veYUL+tWXSLQmXycSIhJ4NZVIDTm6M/o1pwAmQOfQFowom2f4DH71Nb2t9euu2dUldCNhQbx1jnvS8WYBs3e+wd430T1+8+xKcJgfDnopNdez/R10v3oIK+CVVaN60VvYCFqE5mTRwZzFUyDV9e3y66+C7ud/rvU2Nvgg04dqAd2fPvn5W4sntwK470yAKgS/jF3blaW8+iPrfs6m+3W25YnyG8LzAdDHvOvEX/8MH53twWMprlKovRMbgYTfsuV2bXxoE77Fq58YvbUpQ9DwmokeiRpEv/pa3uyUK71kXN4veZeI8L7jXKwYQPfm5FSk8qpnsOHYDZhGjAwYOmVNgH2zq+UUoQeYX8URx4FBGV2PJEFlp9oYq30VEXNzE4EQdheKYqRWy+UU3+RHMc5//tGAxIcI927t43BcQE/mr9zAzef6pbg5lNna32tkLz/a5C3Yk/5e/bWff4n9GY7ZLGw+NtwUQ7H2E2jVf+ihg2s/j2ztvebxgT800IaDhMOjwbNvxfU5zBL6+Pk7YJZaLZdrBflIfCmkWrh06oCHEoFq+KpFi94fAiAEYI92VV2wQfZyCdY9R6m5f+vVdvJEE9bSENBkKhUwf/lbCZdyzJC8vSpg6YB9g9mlGZGQn1/ZsuhHJH2tFlOV3C22s6O8hpUuf9HG3hb6fAVFB5OH6CJpPBXe7/+Dl2ohbLaCXU1aqyTy/3WmQP7vMwVc7PfU9sa9NyTsqoGq/3yol38kj2RFC8F2P83Uq2UnmyF2BvA8JIwIknDVpyYo1nN+mkdAGzGdwKAz4fbhyGjyJKhPETeEgHXXM7Zk9Q0GWfcW2IguRqJbfrytA+8pODBrJoIRE0YC5RyLN1Vk9P5WOp2VMuHBJCQz+cJeqdju9V3gefc4ogU4937RT18EbvdRxb5heDpTj+9p9YxGwjOjrRh/U0r4+zwsF7Na5P03h9+rqWPtc0Zs3ml+B44iX1I7yFE1DxnNpfBecqhJZC8TqvB0g+8oaVB6UQavzz1lgl9R1bAvzqO3lBA94C13v0Qy1C4jen0nMKFGR2pd/AB6l04dRKWa0qOrcjoZy74Fgny8o85Q3UjIRg/C763LsP+pl4q5mVTD6y0400Qr79605E0DeblriNhlPGh5Mt6Axs8JXp+3H0O3DGFU7RXq2FO3evBaA579TUQzvaWAnbqtAW5ucyIfRwRskcTTICN522Ajkbp+TruMhy0qAyS/r4G+e7/FBkp8FdFj4+X67/NQyIlJVYfu+6/YGxqcJ7GmJyk+rLyflMC4TzRUe2jup5QaHIy5x4K1PPWi5fLuCFScd49246by5uBg5tDe3kp6nIbKm3fo00Epl7ak9GQIqHnreLhD85ZaIer1WdtvJfgYyRmryH72C9tKPrxK80CN82ujt0NnP8D6fWNvc95Wwz6FDXwUW5Oi5aVkoyN4IqwQVqjDn0/ZDvlRAHV5mbDxdtVsK9DUAIWFLdI9FtgP/jcIZBUwgLXnerejGYoc1Icrw4jKWs+sz0EAhc2eZLqmDSMDCwdJES9rzuG+EXvZ/gOQ9DVSa6oKMHhmd5OKnvAY9582IhzVJWgWoYwN5J2jWWNDCjZfLaao6DCYcNcqcIyKL3bOiPZE3kjwt15XnjDU56EveGgo4EWY/vTB7vf35mtgIiGp31HzdEUb4goMGB/gV5+ng9BB7sz09W5jJZom4xGC00wmenRa0aP+uE/he1xzqPe59HPBLe6Gi1FPbbf86BPowA26j31EAs8O9Pl6HSb4SL0PES3OyWikH3N4dk8qVvJzV81P5vNwxgqmt3730ukE8wQeHAkgug82PfN5TQLPh3JCX6cU+pEOUy3HtQ+pJ7l6v+gXaYBZASOsJJmu08tHN2W9KiSsfsJKHx5IaODtGV3RlK28KFmNUvkwV1fsnUqlZ9J+MeX1+0RwyzsRG9JkkNfxUfQQOW/Yv581hGIEsG1M56oPrVMBG1fWcfjcHLw1XgXQc0sLK5t88JZ8TzjobU9nRDfayWNbhor17rQ34dmdVMzQbgUIjtDChrv1qmWPbzF4nxaElXMm92Ocv0xZl1qFZg4nR4s/XBU4Vb6Kr44zVexj3B6QaOERm+v3t3iJ6cJaDov17uRGX76LywHZNgtsa+87mOaP4cLPcxmwY/o+GAw3v8EYuQLFpci8SdWADRI9zLF59q7gO7dDCc/T2aJO8Sor1gbbh7hs9y3Z5RJXdRcHJdDHLw/t8Ui8zzV/l9CdwhP1yMHoKfREDgaFviPz2/KqkXspBdhjP6RqdjS8UXmN9d/+NI5KlS3xQ83lc2MFVH0Xp2o5TzIHDGX/oscTZ0UUfd8xYGAKafZQ3tVomUCBk+O96RHfnJ6Qw6mGenFzkfzI/WgnLIEgy2KaE+GjddGSJ3oKd9Y9poq+NNn8/jqxdLofNWwO7pvNF2uEcDvcXOqwBjAaQSZC3tQcrLeF4E3W+mbEmm+ou53tnh+mKweyPqvJxCbmDRa1CNxvCkQzE489/XwEBYwneKKqvg119puP+tDq1JMtK2POJnGBaPoitoNt3M+fHi2Ab6qC+iYu++EXv/fnO8MH46Tri5cgF2ZpyFMVilU/+p3Ywbjsaux+Xic2ES0V4K1JC5rhi8147tnaQM5ZS4TgemRC98pEKHs4wM7eumfzm94EaJsth5alfYGpt2417LtjiJpzvQGTI8kaVAKyYDcaK6/ZOUIBdYhSbHvjVW+VKxugWN0MalWHxKMZqWM40niHjzHwvGl7ymJ4kj5fwnQxBLNotQ8gOcsBH/LHjk0O35dgPHEnbFwPWjYbhyqEl297x7bpqPoUOJtajNXog1UpfrP5K0BT2rX8icZlU/VMMu8u3DHDplbPe9E03LDx0x9Yi16FN/FtJoKCbGvEzHzqmXchBYyheEOibz6jiRt0GxZbricQbAq2qJsuBrfc/hLoqaRnBfjegHRuYjJs+W/E9hffB3lfHHDwix+U7hP42HE+djehwyar5Xxw3IUuNmcis6lLnRYsyyRi9b3f9SPSHQUuz12Jdmt8Z+vnwdnbXcleNppqaqmLYF7yH2xlSRMtX27kJCLGIbYv11An7zjh4XPbUXy4JDBaDlHTQt08E/xbD0uQtD60B6qjs9199bk/nzmoVpxObeZ2HmvHKw+d835PvY+tMCERTgvs+buDFa4r9KU3VAEe43hL1/VYsacflNCH5EIVIZ4AUx45D4OTIWJf2mTR9ES2CJ0z2GPlCY3o+6ahAFIeBdjDE2LvStl0MLnINYKdHWRL7hQpcMjngrI33UbT+/Qw4S5wGVkGIYiGz7dZ7zpTJLS5+Dd9Rgw3UjjlMY6UbqMPqfdKoRxJlGrZ9wxYaF1LOC7PFuufs86Ey/OE5DX/IXnNV7tGfBuAt+oXdWTD7JfkKqfwu3FtrBtIy9hXQTeYy8adqgU5VEvRWa287h9sGCfisSF9DDAqpoDagjWyku/zDjZ6W9J7JpJqeMbhDXYPy1rT78y++1vM7e9NFCHBiBFjjfg2wXWKsz89R9QyCCQx1C2MAk4A33co5GAb2jGOQvu7sqsCBX6WQaPxGF70xYmVQd4Y5YcefGUBE4wWAb7HOsf2I9kyMmy2RPRVq6ZGvt67ML75FDpA5ijOx6yaiF3G0MkeH3IqyLta91sBc9m8/4tHfNOXsLIsCUkGE6JZ+WzM9b1N66f/2Fwrznpm4alRq3i82DJX7AYFyRypXyccGy7+xZTq0yMkG/7B+nnK1VKmhvuiRz4LGUvmooWebz6pwi6jPu2fyPzFFwIuT66f/V3WQv42noi0xhfGZseE4JK3VDln9+q3/0G0faaI7bmiZ5FQpnDc1wSv+s2jZ/EjwK9ye9NjforBn1786SP9XS3ZcFM9QRIkY6To4pBo6d0oAar49fBR3bfR4ueXDp7qxKEugIo+vw46geXznmNHvRWMnL45gcn1BY9hJDVeu6tCFzh3bUN2eyOvZuPQB7/1Sw+OTvV1vRCw6lV6dPB6qcklvf3Nt/059DoDNC/B5rHc0Z5oOpuf+BXI9nEykOzgxZvKBfqw04I92Srjhk1N0KbwOHkG4c+vpz6/r5gDEWwehFukJmOTvUvhOeQKrCunvT4J0o1A49psqBkoH7BERCzh7Xm6UqxU9376fJsb1OauIUL0efXToZkW2dDue6xo1xuYh3mJZT2xI5pyQuVRTB0bRKk5I7a7aWwLbRH98gvG+jxny9z5IlzzK9UfR7vfMoUX4bpeyIt3UMTG+1JATxJ07Jb0wLoaHRN41R2MFZe63k/fAVPuKzKvemCxUS1B/+N90eRSV2+6zL1B8Wof0ZbHFMznLTXA0wQePmZm2bOE8zrw3LaUeo2dZdOBRQtEn8bEzvWzrcZCLFrop3636knV42/WPYZJ0eukPSOpWjz91EoiD3OcDO4bjLU/QKntxR3WRKeK2IIiBFt7U9LDCFdeaurfAMkLHT/fecCYs3nYUJsMRPUZe9kCXlcXqtKxwuZRN/Sd9TkK4IMyitERfzzGHYUbPMTuQs3ry9G/j+AB4U9/aIMwRcv19WilX77XgHOv+q7kwz89m36/LVjzgw97LGcYPZ6pPrBln4N1/RLYvYRs0U8vH6pZUCORua5OZ1X04U/frvrfo7Ka3aCOdR8f3K1S7Q5v5SadJjelVpaY0eip+wCu+4Pqk3CIpnk8t7/1+FcfLe4t9EXnPTwoqq/Pnoz5zQXj+aBSvA+e1SJM4gMy75EgfrDeOgvWewt++ca82tXKZ74/4CaIBXrEqt5vVXdUYN/PHbXW/bQcItJB83PTiXj1dDCDRgshr9wztHBjwZa23z9gn3YSdWf+GTHN/x9p1662LBMkL4hAEGSakLMIyKCAYiaIKKgcZ4C5+n14v3+zzTY2ENs+VFU33ZONanWf0CMbHhlZ8z8k8+5JXW/aoTF3HB0Wz7nTY2brFX/1nzYUNBz/PmejF+QhGk5dQoTcmtE8xs16yySa1taYirZOr50hX1eRurfArP7hP7/Wd8Hy2Zf9bKXXCTJYXkT4HI9GF9dnDsxU/QX8caHZ4h0qB0y7wDQYKEFTtiU+ZDfRp5asaZl43x1kGPPsHXQ6lqq/eEZ/9sDJdUZs0kcJyZutG+RjIRukfNQd8GAHwTQwWrWibnbwp1/EyevpzXSQaniwVv7jM9V0xlEKDdV+FPc/JxqscJSBvLBPyqKSEDtYPwLYuCf0uEm30RBxdQhNaLfY+os3MaAden/r1Z+FyWPXe2mir266uJCyPVs+3WsAzzefwfbmVF63+PIWggs+UH0w62zKYTMAR4oX1rfXU8/iD7rAS1YoeZLa94St8KoR/kk6vca3N1v8jVUCOgYzmRkrVrzHm4rtzZjq9q1mi46KEH0G1STCZ7Mz/uFfUPsiYEnBMtZvwk6xnEuFveuzqKZjIROY3FGhh1hoq2nLH3xAXnejxmG5Z+xhwyDP6CpgTQ2kiN3y8Y1Wfke9WOpWPhU4SA61L95/wiNaHlYeg+sGHmHlbGdMrUkMnwcTqemoCiLT/qpCMgYX6slV2xOjMH3YqUuP9e68VFMSVi5ctMGkpm5fsqkrMgf+8GwEqI5Ip0ghhCdbIopa5mxc1l27n9MUUAu4j0GU3auAwdra2Fr9bbTS5wIOiTJstLtXP8/vSIf7D6R//jNbzckF7ueq1O/WvT3FMQiQccx5euXPYd/HHxbD656nVDeEvTdM7m8BUV98HNS3Tb+0sSTBQZ8P+M8/Xyp34NDf5ysf7OdnIi/AV/cJ+w5ToyW0v1sIFPEbzKan9dviNQ3/8aN227OxOcIAySOb//Qs7x8+8nqjoPpN1ypRn7IG6ik7Uf1d6Ug4h2wBTrmV+JwUXNaex9CFr9G9sRkpNhNl++HAOC5Pulevck8+deijXUVU6ufBwRuqDHWgkVtMYLR4j+CTn8qdQD9E+csHN76c0LPdluTV96033U6yhERLArz6S89mbQrAImlDk8Qh3tCeJFdZ9UCsmvVSUe7IpfBZog/p3M+eTdrBb5BxcSNSZWGNqLreSlr5D/WL/JrN+niXkf87tFhPiiKbz9djCOkpRHRfij82r3gQ/CPHaCAUtfdpupsJkR++qfn+Gj1F7/kNuqs7ZGuOMZsrddMAr2sMq8ZNjdj81M9wZ2wf1MP+482/3l5gEVBDsTGfsv/Fs0uIV32JTctBtuGzKvoo/8nGQmjQoD98Z6njkxHSKK6s3daZKg14r+k1zYa9EZwpLtYTofm1mpRTcDboIVM1bzQ3pwHU2z2knvoAb7i+X6Bs9TwMpE+oI/Ehr7cTRymlUda6aI52yIW0f894xa8e+/04XbYeRk+UJJ4N+p69LWzXmQBF3V9QB/LVRamwNFgvV/zxx1dsMtSBUOlJNJZS08HeTnRqGk+NifsSLsiUKo5UtuFW04XdVBRrpx/1kxiMKfd3Duy+/ES9Xh4QLT9FiSqU+jgwyxNiwuGUQxw424B31Acbe73NYflCSzX1x2XUu35LuP06CCbT8/vBi44pik+2jw9xblSCf9+EaGleGnWHcJ8J3a1TkTuFJ5yI20PPuxXk6PN9XrBxWORs+LOvd2xEvC8i10O+nKdo2N8LjOOPheisTb6S3z0nWLz6wibPZzISH7pOjU91zghHPQm+adL903d4yT99lWTvnKix2nv5Ri9XKSPjEghn5RJNk4gCdHxggv/la6mtOvSXL4/lrzb+8hMyoYxp1OxD7w9/gmjGNTVyfTaGJTRqyOv7BtsLMaIp4W0ChifnQYeg9Kb+ONigSPecHk8fLVoa/DDhanxT7P+8oZ/em2uA1nrwp5cakwJyIKuHX09VZAMbrnlYAH1yFO+dde/dQ5rPyMFxTsrX/tKPrXKsYfvKMD1Mm181fm57gNdvu6FH+dtlDNKIg8Z9yTgo7LOxnAvxv3x7XvVi9vlINaz8KXCH8BdNS+jV6LELGnpU3Mab4/fyBbijGFtl9jJm9JwmeAuv9xq/XPYd332HKv5kB0tiSdEavwUIS9tTfdiGGel+4x2E3TKTys7D6l/98C7xhSxGrhnCX/5M2FMk9c3So9nIex7uobAEuZBV0WDEM8CvrxE29Weekfzi3dFpclK6p25isAevujB8kwd5PeYXmynTbWjzgOEjzLqx3SPp8pcPqPuTRbbskooHfpqvwc72B7bA42j+07O8XvbR9Pd9hSbtV303NcQQDQ7603eC4eKwhXiVjfrk7VK93iNPcNPdFjbBRgrmRB+qed8VNbTosKx4NoyWSWbrSDOpiQLz25gOsqCDQolCuHbpvbl8JwtUaSEG5cL9vD5oxxh2mf6itvHWq/GJ27NshsQmvfbQ+pk7rTeIjcihBiAz4wcAQHmdbqguIRqR8bIuhR25N17t481qltvyyp8JmvXmv3zh8sqNWvHl7S37z1jAqmevhxnv/aLsXjl4ZX3ETu7sK940XRlWPIjxJw/RUpzEC/i1usOWbffZXIQXgLN7Dyj+BXomeNp8BoGWMtaPF6diaurFssnZAz5mT6dvg4GzAbPhtPZfSL/2f3L0iAdE5OSEormdui+s9sUHea8zpvDTRXkQbsZ68b31s67uC6SHUYtdbbv0k4y6AhmdmFHts7tWszQnb1j4JKSq6Q3VP/xb368etbTRysSnn5b/6q1ZtPdocct1L4rLXbGViw80/5DjwClrOurIJWNk45WxwqWIYWuEd0aJWhZK6vxyIpwWM1uu+Lr9hy9MiQuNYcnJV/Y34p6qA8O9CGe92K16B+E2qRdNn+uvBrG7t9iKqWOMwpkRQKW7p/sNjo1FF9bDqTcJ42suFz0NNWFAl+umpq7LHRFvjW6IskEBoqz9vT4szqZCg99CuPkls9G+vk1l1fex8U24aNTMrITRdnTsyiBXf/YDuXgeqZt7TbTs+y3844d/z88+g2ujtpbONOJ97BGr3ZXQoxrji3DWvJky15bDUhOpXxhztPJRG1b+SAT5vs/a1J7OykVcDvjQF7a3XCbnDHm/3s5a69uwWeIOyE7uqJucsoiey2eJNDQj7Kz8bnyIoQS/Tq3oddXX//RhANv3g8b4VNk/fKkznwsm46Zm4hp56CBn32BbDNl/+Ta6lDcikvRgTM/4nALliwf+08cX+6bnAGpb4INv81n/DSZVeSeqh9f+QtZz3XnZxTfFwqeNfWLiLdRLeD+fOXlfxJYx9N69//hDMB8urB/fv10N7b3JCGt3WtWeXh0Pr1yf8H7cVMbKNyQUucT9199Z3K/gI7jvYmqQ875nonW8Q2Ntl79+gFEF9mH5V1+ej/HlLZ5xa8DfCHu8xqtB/KUrYb6d7UDx/QTNL+/hw0fkIwJ6/8zGpbC59Za3hg2Jy4zlr//V8d4Ra6v+1SbCz0Q0+CwEzHWGJA9ObyX+XYegXv+faZhuAEJyMvFBvaOo8/NnB6ueS1f+27O1H6u4X/0eKEQ+RXP3ZKWiSf06kxM1Hiuqm/nXXwiGaDLYeNC/3F+/N+BrF6Hpsnu/YYqyHB8lPkVD6rUptN+8o4/PsvWW2X7Fil6MIT6KrV2Nf3jeemg9ea/1ZdTZcEdPY8qw/iMxGiPVJ396xqq3LWwqSyFFtsRl1DIQ65n0Y2f4e95JkoKe3a2agw91eHy0ez5bCpIRdBGnA8Ux17OZ+91V+NO7v2v+ZX/6Wl1/dOz1ry+av+k9RLd4/GFz7h8Gqw2X/L/2FAj8/z1TAJ3hU/uJTh57Bl8davmtUG8wUq89cIiHZxbs6R7uvddm47WAYNSO+IA5q+LbgwLIRyohpV5bbOG5toMpam+BMnESY1YjfVFj7BKMEaZsVH7uFqR6Kwa8MWUePxZRDNcsN4gURW1PhBVDCMjPaVpISzTF59RHVnzksZ1Fe0RoeNZBv7T3gN0ufM/abfMFX/LkQLRNy1sSsgthk+w1spCPGC0PVanRU5NoMGPrkdFBaFJ0iR47rI1tU03xOQxAqG/rbtX3weDtn2Yq31+IsZ+xmDWLhhdkkFMSDHc+8ZbSSxs0m9sJm9erjfiRSRLC+exSSyo6b84L5wydbmvBbkPeVXOjBeyQ4hi0+A5JtDy754K4p9Lhg9RvKpbjrw/GICBsZMYrotyurWHz+32p2rXbbPI/zoDexs3B5g/RjOgyDlEdmze8ly0eLVwSpdCeY5Pa8Q9FbGNUADIZY3wUu082n7dWA138/a49urASn/dDCO03NLAFFBCLGzMGdwxOAVqoWW2RyqmQPKIrVRWPq2YOyhR2uo3JfN2r2Syx4xvG80GleZZzEX3wiIBSHklQ6byfCdPpdIE7fWrYqcTFYHKSn8G6mg3VUrvMpja5+cCJQkuPn+nbN8k82YrvhTPGby0zaCU1a43IFPpn/1mgOxUZT0LJ1h7zbB5+RQyur8rre415XyeXWoJcTS/4kp/3bPj0RQDpXZyD5K7qveCsGB1CytOjFmSIl3mfR7H5Pa0ahIaERW19UIvgEmx1K/KW1h8muFwuI3avX81YjBsNoN1/Ttjbc79sTDdNCVaZagSVe4mND6VxgDe2NbZS9DTmrSEM0IzBSH2jq/oRNZ6K2DFi2BSOljHRYx/Aw65FbC+PW0SfAVEhb5MnPRBm9GN/rE30uFl5sM3PP7Rcg5MP4vubkFmXvGh7YRbAV0ruJK7Ptrc1cC0DbyeHP3tW44+DEHZqI2DrGgtouHxjHl1YbeHoPrho0VDjw+GwpNRxLl02JIOew977DUHvfCc01tbb3fxCfKP+eFEievxIOmw77oaPBfsZc3g+mYpoxUogICfqp7BZa8Li7sgsiTKbE5mZIDzTgj48P4tI93YvsDXMDGvC54eWie5kVBUbHav3vI5qozmEYMZbm/r+540mTgkAyu2NUTUuTNZak2kr2+SjYkOsWqNpcf8FsHQ9kHT6Mpg3ySXMFEfYaJQy6+4PlVMa60ID0Y+ufZvQJw+O7j6o4zUPgzxydVLczbDFVnfkexJOuwbOVadga3i7aL491VwRt2VMLcVmGfuKzQIXLDnUzDahx+Jx5uTXc/SoZh21nmZTcEbS+XIOYMMdvOnJTB+E/NUFomZ9sqWRSlvhM/Km+x3hoqGI6hh+b8phS3x2xvxSeQLpp66xaT0cY3qOxRdm5kX0eHXu1YzeyV2OmbLB/i999FP9094wyJGGD7KWoMH+HWxgG7mm6vxNEFv3EaHXuVZxNG/zbBLV8qK09ImJsC27aHnLTY6OxyoitB5/63s/igvq10ywx491tlTO5g2rwkyNi/mq6LF079Dppkaa17Hp6eecneU/f91Pgh6xxQhV5TPMT+w67QuxjdEDxFJ4pKlOX970DasFntPxTAPxF0dzoYEsV2PVUO2dLNVM8owHV74+qPHSNGN5+CkPcX0JsG9EozHfjpsvOLN8x1ZxEiKSFgcHrfFA7SB10FwOkgqFNxzJcjVpNDXCHCoXYCfqdPxc1dteH+DXgYdPD6v02DG855DFdUpTbXplS5k5X9gDM4Ld+BizafolBZinzZn6j/KFSDZMEnQXVaVpFB363rpSgrLXWJOdMFVeJxRaDeUrbfH+x2+ymdhc+O/34fS+GEP6iTuYgibA6jOrDWIXeQcSijLqzPPJY+/jZ4t6Qm1s9GEULZtO4qAQPaD+dFMrca0PaB/kJXVQejcWR7Il0MfiiA+vF/GakE0FNNp9IjLq554Z0n4CXnyX9FgtNtr+DwAAAP//JF3Z1mswFH6gXlRNiUtFzURplbvqr0qpqQnJ05+l596SSPb6phU7D9jzMOSAj1w/9oo5gXIHdufihPRgnQBbtX0Ea4VNxNtdvsVXHPTt9L5mYW6r9/XS/lUQE/dCNAy/YDFfSQl+++O2ztAsAfFUKR7UFMXbfTircrvLgMTcGS8XK0xWrnJMOGVRjZ7pI97ORd95OeqkiYSvhwYW0a1HqDuRR8zNwzLKKg2kt8VCz2NUTeyBcAgOSVrig1i63tKuHgdjuLsSXfBps0RMfIDgcrGQVmanZE2u3zc441eH7K3+WHj5uFDmPwlSj7zIsJ3ENiw/tYdMJ3d02lO5hLET5eiu7q7JOiqcAQvpUyNnf5t1ypryIcVm3uJHKB4ABWnxhtUh7UPuOsrebPGrCq0xKkMo74eEXgdvhOk0mxseqcmhTu8x/ONTLsRGiPXx04u2HFv8Hll+cmvod6EGPCSXErllU03LzRszuKeXnKhP49us7iUvoR+NHjEOQesxguU3BPIZEVMsJH01T68ZBsP1jLRcI/oMBy2Fsh0txJRWVOAs/sqQlOIZL2HVbvX25aC8IhkZ59xKvq/pZsD0Ri3kW+89m9kq1rDFvoTCOSmn78MXMjgDXGAleK0TBWYzwkqKPsQ6mFd9DZpjqIg7FxH38I115hzrGXr5r7c1S3Tm8Oguz441Ir07swbXbvYAvk19ciLNCLb1NmE/3iTkXGGbUG3PyQqJ+TNeHUthSy1I/XZGwsKSM5BprT5uBj7wmIbwm/4li947Mew1ziVOIRuABqvE/fAO2Xn98ChuSw5OWVwTPd8pYJxPux3sgB+S4i6YOv/D53GnOFioAz5ZaBz1UFLHA7KCozHhm9100H+RFC9b/Yz1cOuk/dHTkEWeE5sC982BbX+Q79T7ZuvCG8HOqmJyl68gWdxF95Ue7a94Obadt+Qy9cHGR/+fn0/WK4Q1etrEEadnw7C+f4DMWTpiMq9LaBN+bXj4RH/IUjFm39uoQShLD4vkL/Hd0OYSU+XC9nvc7RaiL+2qcwBUikCcD294fbt6PEjBTSDW6RtO1P36mXyNx5XoX6jq5ESpCJZBpVjaEm+sPy+8cspqjahWc9r+U9ZDuFMCjaB3ek5WJoMaeuPpjuWmVotFs4cMvns1Iw7atdNyuuW2tE/rAh11dGTsUTgl6IyhRMbftZvWPBDe8GYaI8ZGGHr0CfoRrqVth7yhU4Bl+IqVlXt/0Z/XnAFzrChVeOQWRD22nb5mXBAB+8DlyD4ux2RVtvudkwt3CQ/j2/OYLVQpVCqEkfHqpGK6zRKFSNZqvOOUkc3881P+x/O/Vtt6qTuj+l8/6xrnJ3QwBRdu64P3f/mZzddoHwN4UjUUysnRW79xXv/nJ707Jw3zD5YPZVNIQ+nahuA3P3j+exTk1HymhnpxDqELqBDK7wI2zO3EEHjLa4/s9nAGC8jvGXwHSRty7mlN6A61C7AnqyPHfrQBy1azhNTZmcRoks5b08oeYRYFHgqFD1esV7Wiilr6KSq7awlopL56pdy6ht79ZudhM3xjsNuND+QOK2UrDLIOfqdHRjytXz22GJkPX5/WJer99AVL2Vxi8NnJbiivp55hTzBnmGoZRmro4GlFQsCB7nmPkKbWVvHDC4D19Ia5NLO8ZaEihqOXBPhwm+Zk4v3Yha/A7/DLckpvw88OZFLdIC+RzYmXXqkBDBCPJFjnls22yu5ADO9xyLEq05cBTW9p0yfkjPs+mSfjZSjnV1YQXXJpwiq29SFJJOv//DDs9ApmcosRqrNzs6TLzYWzKHyIlk3ZRL/FowYzmAv04G+V1/djqsInOsq4FZ6jN/nqWMmqzSvIQLOcUGLwFD5WVCL0Ve4Fu80rhd0f5ImtHTlv9RXQw7dq35F9ez8S9qs3nfvKyBN3gj5qp7GDN6syUKJxc0Gn7qn+/DRyIqWd2p+fuYv0HoqC9SnYyznbsKeBiE7xNdXnVatmZdMToew3pbe8P04Nh/JuIPPgmPpy8+o73PwCMZCx6nO/eD2UHz7Bey+sfvrpDVYzdkNBNdtmoX6jSid9O3O3j6C3+cUdfPbXhOjHktf7YPi7gx8fWqZx0g+ZM8qwVtaJqKLsARzyZg39KoG42fB0tfPuAvmh3oeQ3Kvmq/OSDKPdOiB/0Vxv+b3v+DyW4eGiNTrttbqEKXUn4o+Fyv77ezESReJw9xng8HxeZGMZDXxoPt5EdNGisBIOAQpR3TDK954MWxxKIceEcKK2XodAyncBOuLzCoi30Eqm7WIQREbLW1VBNuE+rYr/fDuXyZzKVpxVxJXnFeDpOEbQvmsFQZKUN7R2sxJWTj2GbPs+BuRhgUQQilC0U7fgu2CGcJ/rKnFY4QO+7HQTXuwq+unzhh3vKgd3LqyIK+h9wVQORNA/gSxsxYPaUEF5lf/9h4OibPrlLeCt6PXmRy5N8+N3QpQHsrBzbZjY+Rn4psY+lHrr5rGSmCaUdsoNU59IxdKfhhjKDnbJycx51u/i91umA9bRKVWeBdPeuguvckXw3q0SbzkUMYW1KjYoj5S2oWX19wBU6TVymqVXQaAxu9AKdDNcVvQsMCdCFX7GnYdB0C4N1grVVbzUKzBNvyJgMTN5qM0aI6H2ebNVK/AMcXZ7Ec1dpYYtF9VWejxaxDUnTeey9tGDesYVCVGtMy5DexMy1e43fv4DS34wOnj5NndcbXi/yCgy4Cyfj+G0jc+OEoLwnNcPoplOVKxlkLlQOKUKsqXTR2cb3oCNr4m9XeROvOsnBargVMgd7SGhF2dawAnDDmkqu+sE51cVCn8hICblEPuP17uYe274EhdkNLM3dIPHBeUbP6/9+8jBH98O11AsvpdJtyG7mB9iLeUESHj52PDHT276UprZuX9HectbiLebdMDsOTAh+NARqbuo9hZ/65skaQbCy/xJPap4Z1PZ+HNrpUo9+mm0Gjx2WAzPDzxMawxYDI99KpDABP2Ef3lFqI0jOd6sqqC5MmgyFeMhhDrgi7Xi6QXCMAjRB02hTinKOUCk6IBUIakn6qd4BKnO2Ui9/hnNf/+x5XfIGbgGsL/WW2AKrgLxG8tlCz2iBRQ+zr+7hKUT30pVJMvHp0L0nRPr63LOL5DFQ4DFzV8t8a01oVCO1//+rb2q/SIr2ZWgYCRmIpiC9YbfpLtv9VHrXx5FO/jjP4dbm4Im++EOQcJN5MihtRnug7ZAIAoH3Nxnlx26ocTg3XrvIJSTl7cY1HsD/MVbb3Onnoj3cjuw+TOSrfd7g+/HA1VO84liZRuf+TLkYBCLX+Q31gjav+/iQ//duZjvxGii6W4IYZ5HFbmKpavjsro+4JpREvac+SnWvrz4yqNyE6LXasXoDx/LiGTkqIleQcfHZZaVp13jg2U1YKk0LgTPfPkSMzzGyfLLA2D05VDwy0u17CP/8rvwMNcjm6fhysPl02bE8hNh+ukdmE/shOwn6hnTnQzD4hnuwiyTKWjlrDCAWtspCQIXeAPpShdK0zELxUaIdabrkwns6dQRNbFxsfIog0qEjjNx8RJPa7avavlkdDoJPNkuFmoqGcza7o386+FQMFOrZXg/GSX54y/Eo/G9kOF+kfd40y/FvFBx/ukfZMXqdieENYw/vfrTu9N323+JPw5HdDKXoKCeEM7geOVjopvms1j0OhnhIPsaOc8ANPSaYANMRtog7Va0rDWidwgq+xQRXx30ht9diwwevMcT77jra8JsMEyw5SMhtnmh+PaXXIaf88gwoFnofX/rY7IvJps/K+hg7l2gFGFD3Ev78n76C65fJoXiMXcZpyaNDKt04ImW56dJeDm5C4Y4NZBOgxhw11U0wSPlZWT/+NtXxxoKeQyRbd3cQuIqxwAb/v70O2Dh6P/XU6GEoqyhhtxroJ7OJuay1GRsHgMbnh/6ccsHpYI+eBBCJV8d4r//XgXeFUdNgctzDQ93VWuWuzv68BV3KnJvyJ0WO5ou8rU4KESLH6bO/gEAAP//pJ3J0rKwEoYviIVMkmaJgMiY+IED7sABBREZEiBXfwr/szy7s7QKrRLSnX6fl3TLTr+0alspDB+9yOJ/VPPhebTfmEaSEjBqKVd0K0VCcqErOS1W+gkxd3eniVJ6wUAA3eEUvLUl345JnYiOC4oznsk2XD3QV/+YMny0D1CKRZnPn2Z0wbW/Jn6KdRMMxfMwo8aUfWIGD6dTKjcFmAE3VCT2FLBXszZAmyKNmSG7JONe10ZkX98qs586QePf/CiQHz8eeKw3kTV97CdAZKQuO8P07Gh+zg+//IEra8ytkSWpjMp9dmM76kkd254/9B+/JUT28m6DhwqlYLnEXPwBJvUaRpDChuU1fydTa33nH19hTvbW0PDT7/6KylhceP942hS2Lr0lixkouvMpSi4x7IJ3/19/Ydim6T9/ZNG3nEr40oDzasol35vW95rGLeRBvKK63rwDWuK3ixwpcOn3VUScpzI4aLz/rcjmt/6X+EL8+NowIjUOH830coDDdMuYddw+efsSNREskS2z3LwP6tM8OyBDCQr248vipGxTFLVzh3knGAn3dukJlHtzJD8/R7FUMsOi35czbGoyf0q/QNBrBjHcgFm0IMMBLKWmLDLquWR/X/v1j4dmdJy7UbV1A7TLEWHJ25Zdb72SBgSsPRY++uzmRX/AgIlB1Wz/tWhVmT24FmmYcaFKPo/VqYV3Tg/MqDeDNT/fpgq3UibE6ZR9PsGuFdC9u/u0GvE2V5pnYIL3156pGgMPKHK69h+vwfOf8POvDDiZGf3xypJvm7GGgxpHZLvw6pl24R2CvBAJMdZt8K++WOp7Zi/6RdqfhhlqSZZ+fkcin1Rew+95WJ5nlsriZ/14BYVFP/zTQ4ufRWXN3XLJ0ZwULd/Hky13Fnt/Rln/+UXuIf52o5BmoXZPqpA8/IIHvKiCCp0fqcni99Hm8ib7ZHBpzx3b5BvoFqpv6p19KBm2CA0mAZoUBWZ0ZZH+h3/xj9fFtuoI8YvE6ixv3//0JovufGdNI0I9eO/qRE6/9exsn1RHidwRP/rrrP5K7zM6+uPMQn4APhBlK8M4ahMLX49nJy58D5DuWyyI3mPHon12//EEqv7ub/dW76AurZ3a4mkk8o7PWHf7p0GS+i/p5uMl6X/8ieWLf8LN+62Ax0hi+l32d3pzuhBetviiUh+ICWPfEMDUdwJx2VXjI69ve7Bu2Kfcd81E1mTULrOcdlRozI7zZX/XFh649JKv+EyN1kGL3mLnaFOV1DtT8fc8iBVlUj6x+uRClMYOFVaxwcWTHM6o9g2FYCG6JePyeelzbJPf+v3lLxjiwMBlX3uo67IjhoktfYRX+2vAxJu51zZhsSaeF18C5irNAdbpizPie1BOlgGxFqMXIp73JV2fmM0e8Pkr4jGa1eXMVnoFWb8KBBdUQlM/T7Ve8DWmEpV0PjSu0ABR3y7xpEvf0Qcqmn96dxsNIWpXb+ugR0LfkpPbQdAIJrRoODkrEtRbNRl//GKp7wnO75Y1sT6YUfgIR1zXzyzogi5UwZ3UjPlVfu3aaPMVf/UdIee5KfvIbhp4YYuSnx80DnxUIbgCpmtxsvJ/vJP5QsyCw7ouR+tKTfi8BoFFakzR1CV/PWz0fk+S3/7++//b3Pxg5BItX/y1EMrh2VAlNuxkCnX+X356voFVstZ4AdyKVU58eoGAOunH1MKq8mlVxbU1JE9D1vOmONNOoXbSkMot4HI8PUlwVJ2EJekhg9f5uPvH67n+nVp94TvkVz/MY2vv9Q9xI2IvPJen4aWHB3MdKt6OTjfBRj/9q0+X+jXnfXV+gSh2/b947nfy2oBHjdaMvDYo4KFEQrDf6I8q1JPKydi1NvrtV3mf4ZIlcT0jUjslFVSic7bwbbDxJma7VC/5mGNZQ/O2U//xTGVKrzIyCgpY9i7fYGb7zESvIxoWfjQhvr9ca5SH/YWZr69q8Vu7TmHRfwzXRwFRm4UzLH4FMSuB5oNyyWO0+Et44X28fzvP+//Vp0CS/vc7BZ+D27Hgb/tEUx8EL0g7ajNv5cfBvB5OFTrITsUcuF66sRTEGNhLu9Fp+w25FOFIRmX/0nFf7dJk7ifDhlgvpGXeWsfZo/gK8L3TGs/MTpJ+Q5CL3l0FhFhhkIvo2alIvXsOwV1wDoaPrDSwDXcTs+JIKke/Dh0tvIsH4gY7A3FDqu4greoR67dv200JxC06C1+E+VMu0PgeVyO0QXSnGreLnI1naw/vS80o+r4f+VD2EwXhJq7pfW1X1mQxMOGiM43Ou9K1lB3iI2xnf0N54Zgdf9K3CY97uqKtZSqIf1+iD4W/Vkho3GPEd1uOIYk2IdluvSIYvTBw0HtbHYntrb7dtRgnrGds77DkjctkFIfrjO6r7I+2MjiWlJ2aGeFG+5BN+HcuR8R7G9IVvbPNx2/RvP57mNrZDGwsE/TpZmJGBUq73l6UlMoH1DUaPO7Zihj3puJ8nV9NRL3zlWx8bwzG52FqYL8Wlvegz24iWh+9Rsvv0VdzoN3Edk4KO4lauICpKOem11UQb2XMzDAXy7EwpytgriG6nrUyqXEYarBxVhqz0qNutcrnetLcql96MT3HfMz9dwhn6Cix8SPkUl0LJuAha8mOYQdJj9PngPZvuGDuvO2E/1WhAPrzZBJv8t/WpJWNgzyfpcx9rrJk6j+BjQKD/zFTtLVgHM97FQJvOtMh/VbWXBxoBmJbcmIxvE9mdXPMwJj1ggTdUe8m5XPvIdglT+ap2r6TVXZ0NcO5NsR/8XPXp6+vDYItLuaTUeXTu4Hqdz0h28PM+yZxfZjPj4yYndhZQyz8hUhopIhE3Vcph1X+FkHVOoHYeDVas7q+FsCK7MOCWsqSD88xoKzeLzUaOaDpoB0cUB7thoSbOik5kzYZhFsZM7zunx1vQfe1+fWgWMD+NR9Hnt6RGrprqj+f+0QeNt4IIHNG1327QWLLrQxm8YHw+vjXWdNt/7YBTXNG/HtySJ6rVR3CHukG2a2xGPBXVu9Re4pmtsN6yecpcvawxCOW7OXcApxf/iotQpfll5uPWrYLTZQf+JaQq2TxQeoSUdcE9sVrw8gR57kDwI5pwqLiQsqpKtCICuG+Z1vZl4J5b2ABrJO1xhPeHHnfvI0T4k8jx3Jrl8mQjc8ZmKwpxKNZEfDgT+kBVfEey1qo8OHqVrF+nU8FMdu+TXr49hRC92ATq6CGJdFVVID+PJjkqLVpzv1hFYMkVy2JsvW7HMuX2C/W1Mx2f9sgmYfAc6E/JhNGh5udLwOCAFKVvol3nw6I5/QMcE6/B9qt5SaYPrLSguy/bWJ97jbqzKgWIJPmM8PYvya9X9s2OrffJ3HpvlzGyqcj1OlWJFtvs0V8DqITZFqcUeU0sGTSrS5Dp7kd8MoAj4/dZMtoLC8MPztzLOeV18XwuKjAzH2iJV/lc+pRsPt7EqNpZqv3NFMGpW2OxOB76AZf9TR4n6sXc5WxR60QfEVU2mZBlbn+5r/8gZZ4pULKn9ZYtVIB+KYmbHd8427YSnIMp7EpiKurYk4l/dLCn3n7Y8anCfLZfQg1uDltmSlWetK7sMmA6erIMILSGi9z20PFK5ctA0rLTtg0NggPxWH2+XwJWOmwF6hx57PdNVonw03oZaRofs+I6hQJP2dZq3V6DNQ17td8stYohcPSR8bXq5HPI48wPNkjoLqz53yiq+0L2YZdMqe1y3yMncMdhvZE8fTQXuVMDlEPhn3PsfRYLx3FbK9HQyafCb52Dp+Jim34KsRmBGqrbC/2g64t7pj0JVZ6zvY0PCHpUnksj6UiGNG2OvzyH8OeL3FehGWole/Spmr62JfNeE5VmE6Ci9fi69NNufkyIXzJjPl6teddi6UM+ae4xiuoy3JOxbsJNFBitj18lYB+KskBc73Mz+3+AwAA//8knUm6qjAQhRfEQEQk5ZBOQMAEARVnYsMFG9okkNW/D98CVAh1Tv11hBCsLHE1Txz9+sVDn3rBYzkN4eBsUiqDt6hef+qkbxon3NHBr29oeDhvCuMSFKpe3bQTWDMjdMo8E4OJx4Ar23OEmi8dCGn3Iumc5bqAnx+l0VfOeeP6IaSx7bNj73sWt/NVjcKzkhNPqF+rSetchW4UOsNS+BJDHB1ucFunF0rh5lQrf1jFWtQ+bgTv2rU1+L7po+4SlZj3xQr1erXW0DnrUuLKNBJj23khqIumZTupTDs2IqsFXuWM6Zu1kYzDfA/YM1IVPLlVHfTy8v5BF5nJZJc0H8S7cyCjrMGYBUvJTOQ4ymVYFz2e9QgJ59uIaoa9GfA4xFM+5H4pgyPtCDEHmCrRfxYy8k/Rh+xPlzLhtxfFKExOGTFbOxS0LVaAlOLdk9/5jtM382H2X0L0NMzHQPc5TO7Gwr/+27wmJKHl63Vnzt7yKv4qFB+WyB5mP9MtxbqPD/DNKKTPz5ILbpwFwO/7f3riL1v5AByTgGCiXbu5nm+A9atPl8dD2tHZP5E5GU+K5nocj/6RQxfFN7rwQRE/HgCzqQyMNnSPhr8bt2GuN4b1qUeMPPx+bZuvCztud3qg0Mp6wWORHcg5H45i7j+Z5veTQvbr0u6GXC0/4O6Cith1XXfTub+H6PvXLpm5FQ1iV/MxISep38TtpXci1rtcAWVvawz3wR2N73Cpg42d4/9+JJ74b9KS/q8id63dJj99og1XLmz2546/YEnhpVuMWJ+TbQ2MEAwjSAyf/MSq2Fcdb3Ad45Ry/dnkfHP/8P/+GyweoUVhX1/BP0wVC7bpLa+rEvrNzIfE3dBVXuuXqYDsQzNmn1ZH0d69RoONpATMF3aR/L9eJrVsZu6t2GLFo7qi5+060cV7iKzp89AU9MfuATEgKQIaliYG9dWd8aIdTp3QlndTk9y0IftqPAjZw7sa2EbjzHaJXSmZ/NBB/TQv4r8r6OjeMWsk19WHmPTFrSYuDy26iviPBXp6FPwdLq7I4q+QeSoXHVuvkpc2rw/+cw5+zuXl8QWfda2zu+El1hgowQm8xWCz4LqtE+46nqyO6S1m+Fm9xQioLYEt1A07B28j6Qtz/YDpfL9i9NxS0VcRlKAXi4Qe6okEY/c04w3+ZCMzOjOqWHn9xHCM3ze2U/yu6i2mXMGyjZ64gvqBIiVlDboBbwr5qsk5eWSnH/+T0MSjNRHVcdZN0csEr207aEpltDc7ss+JlWwSxO/R96F9Di76XY+8BVT7MK8Hcfr0HXDVqFuwd5+YWYetjIZDHOlooPLIvFGvrel+bR30NuyYprJ6zsWzLjncvqeQbKNxzNnqefHRcEpT5vHiJfh0zz3t2nKL3aQMW+Lh1IBiVNQksOW1NXbNrgVJrP7wOmv2Mw8vNeSdwy/Rv/qA2N+nxzDrkTiavEzagr8l9HG2X+aVz003uNsVQMlNhyqeZVqyxaQMFcZ6pO+zMYlpNSYU/upnjLWvkIIhv3U6YFgbsx+ZydSvPQ1VlYFZ/H7turFfB/GPpxk+d0XADSJ82Bn7hm0Xfl71s9/Bl/kSIeUmCGY/C+EYf2/MemMrV26v5oGOt21A/NjaVh097EyY6w9rbplbrdLEKpyrrsbr6PDqpt/5sOY60OXSTJO+7fwXjK1Ukn2609FyCrIXYlg1iavOe38u/x7KaiNOhAXx3pz1un5AdShbullpej7ih/uA+Ku/mf7iYU5Pr9sVOhxhLI81CUbJ6BWQn9WTbfd/TSCMhhYIX64Rbg9VmTPPkms4jPcF2/39XRDvkB1upvJOidmFQyVWz4OPNm95S85W+MinOlJSMOXqSJXYYsFgnscPnL7thbbqq83HzVj5SFsNnLiXu5x0CXZrtPW3L7xqcZEI92/iMBDFIrgUOBh/fBTLJSP2O9Nzheb+hIov6Ox539jd/3n2RtMtsa+uZI10sS/h6L49YlrWS4wB9Uv4jkGIUXlcBWJnKDbc9ydB19H4FSPaNDaYXyMg296vg3qfuS+wF9uI2PbCCoZLUXsASSQRL3tG3cQ24QcxOTeIfi9sS5A0OKG1FJ6Zc8zHSqzfyRWwqel0nTQfMblieYJNm3o4nnmSGduP/6tfvFzFS8RR18WgmXiinEYni8dRokAd7p7EOr5Va54HNTSFT4du6OXWjRaTdc1QS4eR7x3nqyxLbXDNXUvVF3vmwy70KAye4hPfiC+/ecYDLcWL2Q8Osx9gB+b+zHas1MVSWxYBYzqcxREYih4xRwvPgr6AS+hOlIbNvx+Ik35p0SNYqgSXSSvYKb4ocDky58eTeX+Zyvk59vWB4KLqK3bV7qpWeUXF/EsyoJn/6Y9viH8Pkm5K7YsPKXslzPoobv7enTwbiglSRm77T/79hGoM52e3xzWqp07MfIP626H9zaP5+MC0gKq1XHrO91M3HtO7D5u18iREOhli9cj+POjqaY1buber6Vm8Tr/6wMIbOsTkyp3g5Ro1cXdLK/jNkxAtH5yqNLKC+fg80Piwwr88ghl/bwrJ9e9EuUdkJJxO87VHsFKpCp4SdAdpL8GQyA+WTt6UsHFvaWCdjDXx9qstmlwk+cihrYo31TiKJk/LEE6S35CdZB6S/uDlJvj2ZLIdboq8dS7yaXPIn2e2N9Ux73L6BGh6zEnAFaNb9vNzLd19ejOzTI1c4c1eQd2OB+xht1PFLsVNhZ9/8ImvEzGxfQ9hI9eUu4Rao7YsYojn/0iMj+lbyy9VFPArzolHvi+L5mqNYTyBh1cbukoEzb0MfuvvtL0uVhd868GMSsQCGdsBz6JagzUP38QaH5PF5/6LTq1HWG6+zskg3ocP7P/OMm5tU6rqouYZ0PTIaUNGw6KWpT7W2Rkb7NePhbxwTyBdTgrZz7zCzt71Bk0StrPeXtbYj/4NFRaS2FbVrgETK6cARwrIvNewhYZS5wVU15JjOC+sSmmLhYTcdLdiu2rM8+lGawXCs5wTd+X03WDdkQLD8mgSL1skqH/z1bRJf/sSDugWTNPd1dA8D2Lxpk4nusfCRKfKP7HtdZ11YrTCAuKyKFk2eGXOYXyXUG4KgqUpX+RCuxxvv/mBNNWYJ+M3XsXIqXwglr8Z8rE77x7wjf0HwTVaVuNvvea8hZ6p85nzo3X90x+NHrUtBBemDL2XRExveIyUlZVL//kiqvi7GjdBH8Lf/SHRxZzvTXepfEA20p6QOHxa08b6M6HUN/y/v4gRzfdAZcxkBjdXCVXfR45mXmZncneDQWXPEtnae09CKaPW9OFIR347NVh7oFFMSRFRkP7md2/M/YL/0akG5fjOyPlvv0DM2UwpAi9q2bW1FmjQL6q/mfmBosvdF2NJ1Qie/vVNTPFSOq4aRQ3q0NyJ+YVtLlyhAYqqW8WiZSEl//nY2fspnqzOzMelm98AsSmkcl3XFU/so/rjRxZemVcJRB7OvBdxRZyZZ1dTsD3BPTh92P5xqC1RXmkEx+M2/ukxF7l//qCfPxrzPCvGo01hfzoXbOaDXBkCwwOnaByyzS9IcPVeYxBJccDy/txbveaWGkzdXaby/hwG0+1Wtxrq4h1uI2T/z+PQnMfhVbl5BLxeecXGsBcDs8idd7NeKbrxU8LCgsTdf94MadphVc7ajneNbcIUPf9Y6Hy0oHPccYIunzLMYVdZw5U3E/hmPL8bc91bIoPbA47KW8GCK2lHpXerwJhJR2LH56mr7z0zUTeOOtH/sgaN17qW/us3aT59wt3IC2FJnZD4c17KD32eoUGcliw0qZyIiNrpL49j9u7p5FMGJwWei3XF9hDvunG6Rxy6MDKoEyGcK+aohtDM6T7e+UfRkU9QoLT+XJmRGJALNk9S+JW9mINAsSa9+960ONEDFs15i5ArMsF6FT7I+XJP8+XhmskI37WEOG1fIDHPR3C57nfEnT67XEunTIVrHe1JsjytEL8U5fxcZOHQ+fPJKmtvMbJzWyG++g8AAP//pF3J2qowEn0gFiIiKZZMIjJFARF3gIqAiAwJkKfvj//2snf9ACoWNZxzKqmqu2zUZqkGJedEf9uVOhI80+5AQJ8Noa9RQ4vS0yeUp43g89fjrVrAK5K9exZKvC6q7ZdDJokQsYbQw7ab0bLJqhwyiQ306B5qNIZJGgDwc+nzo+WgZXOqAggN3cRHzk/7Tjl+zT+955/+PfcH9QzW1U9XPVMKpzZTOGiW7ugLSX9n491oG1RpWoixve7KNPvFAvZQFHx7PlK2cGr5hMw9f7GZ6deeX/mDFHyUBBvfVmUr/s/hsds9iShOYTVZi6bIqz5PvZ1UZFP67DmJNyrXD8ronU3D13uiSlNCGuHv2LOPJCpwgx+h6lZ7MKbiTwHdA/dUWfVsevyhBm7R6YIP0e/mkJUv7+1H8MJusZv0/r48DPjL50fOl6p55fOw3ZsF9Te8hVY8lfzpu4RRwUNjXveCtPqLLyeqWc2oLySZb9+Nvw3euP97vyijLCGybd2r5RXXgJzgsvW3cvoI6SGbCtheDZM6z8clJGGXGAA9y7Ajm1M4bqqmQ52BP//0gfXz6xzNy5VqgZ5U81bOFTBos8f+JvpUjPa2AiNEiFpX2vdkvh6NPzxLzSfKQuFPD3RJ3JN9eKr64S0uGkQbs6OKRju0NbJtAIfngSOb8ZFVu2f3i/7yqb8ZZDGkF+4AsjapAfGrrK/mGlAEdzSO1NoUYjj+Pc9ff8G43fY6TcrsKb1+95CueA0tNUwgC9/vh7qfXVzR9BnHKHS0DVU0fOy3mrf4kMhuSyPn2K13OqwE3s3jsN6Z2aN/fHPF42T3kHf9eIotE+pAB5+t+HDSEMRore9Yu+kbZ7oEQfJPD4rMo862qftL4a9fsl0kl63/hwMrIDW2lqnJBvn64YDmiUujFd9P0zs5o54xjyxxlbF55WfobvngV8fxo8+p9LblVX+hWpWX+oqfFLBE6lAvf/9Yt5vD4a8/4vOozR32hF8J3vvK4xXfovk0nQxo8HHE6qN7OzN43QSrXkfPgxL1M10n7K71kHAt2vb9YZyIvOJT7KQHKxN2Xhajn01cqpqzV01hlwuIxdrRly5VGTbDVSnkz7n+0dP9dGZzJnY1rPwMG8hK0ITdsy0L++/i72/quru1blyJe28jH3ECqRrxkXOAizujf/bhxxOOgNtuCV37G057bu429IfA8vcsbarlcGElqswy9jdvb2Bzd1c0WTBMHruo/TnTRUgX5E7Rnuq6p6LlXB+j/+p197AOJw3xEVSc+vb59f0vNyGv4Yw2CrYBWEhXPRQ2xy2izvp8f/0TtNqPsEb4huv7CiT/mOqr/njX5x6dBCiDjUz9KnP+9SNA2ct37CTXzlk+7tKi5bgqw6sesVys4wIV6BHFr7Fks2ceNPC8630d17BD7Z9/MVLUK99G1ahfkQbaR+P86rQd+jVeW5Sy8xsHRV3p4+Kca/kcgkvTS6WFuwlrT9A9dcFmFE6M7OZsAJueB6wfZBNts7xSICZtQJULfVaTHekSut4/V3oyio0+OkQr4X4bQ9Lth16fa5816GobnC9lFQ2JgqkIk4oc7DvpLhv/8Pl7u8mxfXPMkPnLKYcV/2NPLwiaruJNQvSbFNg1VhXsDz/OFfejaz+rJ56v5/CuZLz2A6KwL6aqgZIvT36x1vdpOiQErXwDH762ms25Uj3hnXCIqkPHs3/9jrVe0yMVjGzhx0RBw/UyY2cvWPoYdkEux3l3wPoQX7LdH/57O1xKpgvOssU4SQRWPQU/i8qt2LP7xdLKl7GhfouqOzkbATnnsPWbXb6w+TEMHWiW9iCCEAX6eKnPLvzxRaVUviE9iw5BE75H9PBLK2eGV8eB9MAHrNaBw5a38m3lP7xv31GfTTeubeH27jNseTetWpQjNWGec+aDpBwc/ne3U9CZoWGrfD36WX2LAFf/q1LTRqrDlzU7y6ves9q/Cf/0d/jLJ1upE8PZUFfv9nc8od0oVBP3oc2/fodaBR+dcWER/OkHNIvkY7/9pw+UbwubfB2iNZ4b0EJl/tMbnAG8jwVSSrHPbaJDJTy7fgD3wPvY+J1Nfd5kHwGU/eaO3W3xRktmt09p1cv+W8+d+lD+f3MKhP99pmBmT0wV2Xtk86IxAgfZyKiVTks24uMIiCZzQv2H5oQs8eL13GSdEdEKBzZbxumMGBvWe3/entF4SRTYqNsRGwHbhJRZ+xh0O8XY+uYdG+bgZiNP1zQieFyD5ts3dBHeJxd83AxWP50Xg4dha/X0ONqkml/Jo5OEl3LGh+vMZ1O0P4vAVceCatuvlk2P294EUxKP1HS8OpvYmNagCPmZaukdV9O5xKX4+b4Hf7qH34y1NInhfDh25Nhij03HqtMgf0QnbL4zle3o/BUhe2EHH7PlkRGIHjFwvWFjTL73nhgbxAHteZf6ywv1U+dLT7C+uYLVj8wj+qjSJzyOjPoz+5X9LOnoCSetsOkD9L6iu3daSMlOyrA33dpw0fitIMWRJONTVVtsOdqLBVLXBPQgNUU2jVZjAT0crj76FXK/3HeyAdiXY+o27YSIFvYp2qvDA9+b12udfSwtUmPXBVbMVQPI/aFDr958kZIvk2orflsLdoAT7NTdnLGuu1tQP5Xves4wY4tijWcI9WdNfbrOYi+boEYip9ypquqnfvkOl1K+StaBXqT048xClkto2dclVl4nCw3q2KboSx8KTgO71OdFQwSsdcjLPmFNz16TXKJtJLX4VNasH2z5HMvL0Q6wEj+mcJ4/YbCnrXWi9+H8rpboIvL/7P2UHA4tbYYNwHFHsTe8QZ/LMH7C6VdzWMGDx6bTsxRQF5w8bFUN1w86cnK4B9yHun0191Plfmrotr6K7V/y6ufo0blgW92DzLvXvadojwaQQt/FXt8gnR29idufkfDGXr5R2ajqagHCljHytng15Jl3A7hgHOAD9+4Zy9p7C1qlnGj8ib1wqYPKR7uh6HxO3XvONL+PkVTcqxQrYgDV8Pj5LpgbfCd1Z5r9EtaZCc2F+2J78VVHsO5lhKzoIFHN2nVsno6SCMcrXChuZ9FZrq9MgqePI7J9PUqdtfgxoKTefTEukLra5/lEhosRxnB69hPzXoDqabKphh4VW6rPId+P5/LoE1ndsuF8XtLNGl8Eguuvn0546SA/cDo1DkeTsddZdOEvniSjshCb82IAVmiWH7Edq1iw5234GR0jSzC62exLtgC5yhF/gcRA5DOfB/lTuSn2MqPvW85Shn/xg4VkziY5LUH2HP3mT2Nf6SwOHinsD2lBhCv/YPNtl5QQlqWOnb6wdDbE7wn45xThyNJknaTXRwnH9boM2h7f1WC7Si1Hk/agmr8oaDEfUQIWO92p7eF3trTZ0YDjXp3woUrGfoJsMpDxQpx///PXoydyKMsqi7zR9cBoy1klrN/nb7ZJ7owXnYmivVvPzDjnEc32pY7RJ9z+SOF9DYfffH7GDjh/4+8sx2cE6rQDl902azw/qkUPnmfQtezjj7z3Cn/mEcWo38UbH+nThy3VwbKA2PLgV5tMRKOQl9rf8/pTv31ni5kfAyCNLvjClZcZMdSTBWOOXz4sUeQsxO8n5BHT8fdVbSHK8VDAZvpKZHdRkT71j66VOnOe/c6+d+FwDAcC7+/NpNhYxn4olo0P1ybXqLPXPIfs/GeKms8toUf7LFYLeb4NefV3v/eDQmf3QR/k++2yo/axCjPWvkIN7Fz1qaaYD0bigQPUPV8n6lXSjbHiGQZ/9YH6Xzb2i8POrWwqD4/cT7FTTX/5wabjheqbTGSLHfW2VFy3N6oH0xZNcteepbdEd0Qe3rlOzSJzUdJWnc/I/hTS/CAZSFkWb127d+zZyXkOol/7L3oSVL/qRV88Q9AmKVY/WuQw/3Lt0A+ZCVUsYeeQA0d4NOwthSanUHMGQHIKuNMLsu+vRUWfmqLI0PB7f3+K+34W2x2APMguPSrpTh/FWyeARR9XbMb0WS0cTRZAAz3TY7zL+6lpQgmeEAfYIdkzZKJimWD1c0AisVXYbG0vmjSf1IiIRRPpbaHSXFIUpcd63JQ6Gz8XDrrYKrHuba/OuD8oDbLzuKDmcKTsHcnfAgny9MD5E8Z+IXgS5f3kJFijs9Lz0quzoKhFgWqbhIa/fZMpknETf6SlFtHZszxE0BsSpSqcG0ZBbGpAj/Xe7/a6VEvDoUkKNkuBzdY1QibokiWpPHJWzfgXsiD5ETD7KsYn392xud5QBcHNduipfv0Qw/40wGt5NoQpPmJT/PkVyPlsP/iA+uivHtqwEZv6Lz+EVI6xhiJEt1SXs6oi0SxYcOMMg5SbUGLM4LUanvdmou5nnHQqZb4LQjf+qEGh1afDNzek2o5rMnHeUs38dE/ht8k6rLtSFM4Z3i9oLrIMK2S6VcJFtJ9SXgyICPeuc0btXNfSNTMa7AvXL2ufn9xGXyPZEXkbnJypEe4+8OSh+ZMUHPVdU3kmtHOgEbnYJmwe6KUF03iWPjwgCadbHaWg2naI3dh8Z4P6FH2gJ7Oj5iI31dA/yg7R/JFh59tlaPYtZgKOrw/qPzWl2paaGiHOGe8Enru9TohfTXBxPHnFR2X2U/VTCVzDKnrixq8z/eZA+8NL+GUsXrUEh08Dct1+8Cljs74ggZfAeO05fPTNGtHx8IqgePuM4vlxrkaVGTage/TC+kk6Vaw+DAQ2vvOj2rWqsv7nThN4+nqvO8wubLyU7xQkfZvhO3ZH/ZdtIEVvK/wS7khJ1Qbc2YTG/DpYkx6kZ0eqp/Jd//DYzdTSoXSmIgoQcwjL3iWa23jK5ai+Uh/MX5OxxK9igNdzoZbEXzJ66R2Qy+vTwKq9d3RypXcXjlfuQg/6utHnD4+6lnSnh9dD05cNZ3Hw50+e9whCloyJAJ9MCP1ta5jhv/iKi+CO8W8Q2ZBcFgvqX6pjO0V7NEeP0gWxi2L/UyS6zp/PSyIf9kfzL3/oUyNcXBldrzb25/TrEOzMIsw79saHg30OWW3ueaiUdffPzXLDeSfZCdKQ/qTqPT6j3srfFiR3y8eGrR2rZffwa7TiKarUkqAP4CwLhHLt0nyDxpAlz7YDkdPuJLNzxpa5TU1Ev8KOGkmtsuXzDlO04nuMjcXrZ7uIStiiTe5Lj3lCvaAvtvysOZfa8cGrFn80Yljw6YuNiGz76aafOPj19EuYK/HZkvxcCfJHfMJO6BWIjetKj6tgT1htZFvfRYYUoT88PDVSUU1Nk4mw9Yo34Xv1m80rPoXB0TWqfQ+tM6W+YsCtJD9sFe9NT+EYCxBHoozt4ntk762355EkXHrquLdOZ0sWNnt45Qv2ym2VzQO9t/CHZ8Tt/tyz77njYSJBTrah8HSGyh0blA4TovhxiNhsDBtewnFL8Vo5qiV29x38xZv7gpL94Vd0mJaXv+wf92zSkfOEP7y64suKScgSoK84nxpZ7Yb0jVCLFOMq04N6F6tpobsCuq2r4oPYbNk4NUUKum3IVN9+bhnxXr8zCjyFo5oDPzTQaJ8g1FJEzVmeM/bQX8Kf/9FjMnLZEHhKDHjOvkTAOsqmVudjeD6aAz7yyMzYc9FatL5P6n7bxvnDxygX0xA7nOj3/Ua7deAEp5L6Jj8i8hO/udTs1cxnWe5n2yXYK2jFJ9SVDj1b5Mor4NNXKlbcL0GLiHgDAlWLsPXqmd5uYlFChdjsfWYYlsMO2iKglc+QeZ9SNjjpNKHi41vkeb2EFfWCckKaQFx6kpcmHFLfMkFwYo+6PLYzftzLImKgLdStlj0aslwMQL/PPVnrebY0RMjlKN+0+PAoXZ3R6WzIb527EoOC5SySqCnw68cvxXf7lM35mNrwhCjA5ng8ONMnEXl0E44ptrrgzdqSehZEbCh8wdXPrHtSh4co4kKs7l77/h9fVO87FfvTy8x2D/3FS3RTYJoI+w/6weRqQN1lxMfNl9enG38hUD7WWekFnrP5d+3jv3j30U3foaHV+QhxrtJTLY8+jC79WZTftzbBytTss3FzWhKk87utPx2RoI9vg5zhbV2+vggdc/7iQSpBsAmi8Usnw3LO4S7FPdWm4V0t27PYSsuzTHw58iNGlKRsQDhGInbtembzZH4WuDxrnTrbo9oLyf3YwF3S79TSHo4zJ9HEyTcnLsmw5pPZF7cELCt9k93qX/xaP9GSvnV62LxVh7/xlwECLzpTk6uvGXttRgJuBRVWuXPuzL86K5H+fhhU47+jPsv+vgGKSolw06sJJzGqNWj8c0U93ttktGqNAPLp/qMn77JzpuXZpcDpg4Fvr/bXt2PbLmh9XsJzzzLsqq29wPMkalirlZP++8M/U/w1KHarT7Z0xxuBrBFraj4+255oemMib85lAsN9ZTXXqwFKb/B4xZ/VPMWVCd3nzfkbtzpkwmfSG+gpiOuZQVMnq33h9Rp18n5dTMRnIDdQTsU6h+rUMnpYtk/oqxawq5JDxQqS1OBs/Rgfm/ugs/eoP2V+zz9xckwcRoJrJyLllsz0+I0GtiRdoMi41Bw/+Cqs/zVpWcJ1LzB60j4/h1n5z4J4aK4+231UND32TgnGCjHzb2s6885aWmk+6RHW13ie3udbh2QxarF3Dk/hkti3FDXaR8CHxjeq+XxQNbm4FAe66g9ocsWLLSNvFbdPIwnnQ/qo4a3DFXthyFjP8XwJriXeSUH7JFuO3e4Jwp5ZFOug6kt0mXj5D2+b30sV/uFnKfICiUiBrel8W/4E4NNpQ7EU5mx7dW8L/OGB/bt+hsu29BYY4vS58vVLxSJjieRd+7767eemOnR2qwRK/y5R3TzNjP7Vuz9+KS3+ex19OfKSs3Vj+nhubs7wm1wJeRqZyGeWvmiqbauDh3EcPBR6Cpo7XTWk0s8ksji7a7hkhpWCfdZq8nmHFZo2guCityN3/oq/nc6Ekwgrv6POEEfV/LWUMwhO5NHzR3Ky5YaojZZUuJKPYSN9+byzFPCW+OTv93Yjb1vocB2u1P20qF+uOG4AqXAnWwPjijlNYMv1JyXUOB7BIUOZ2chQysrfuWaaTWSXcOjv/zv5ft/PwXxv0Jh7L2oYbuPMOk1N5JnkQNf8ttau0YL6fb/jqvQm9itLswXnJ0j4CN9fv+xPN3e/4imshp+qImIvLPCWxh32gHOzCbMLwNLh2R8AlWzETZhDMqy7Hn7cujvOUVKI1cKll07c9iQPphpC/RRQ9eUu2eIsTgnD1u6x8Uz1bLnEkwb8c4mwU3+AjQ+wI5D0XbbWC8wm9963CMu0ItK3fDA6HPcNOPt3i039ljiTDboLYenPK1/iwnFnLR0QOQN6tM56xj5RLqL8p5fY9qMrGrcy5NKfP5mvwunnRvoKMlK5O9VO8Apn4gwApzm44X96QFT8FBjRmcPKLbk482M4aADh06KWsP8wZk7nEgas3cj5eWIV6fltArye7InsP77VXFbhBEu8UwhLcp1NYdcS1PhB5c/Lb8yIs+glyAWU9FZHWrhL92QCL04YdiStDGkcXFNpraf4EM0vfcl4XYPN23+ueIVH7IUrA45jfPN3oXrof+bJeiLdTCWfa4nf//kPJLyfEFKKLpprchFByBREzUNAwn/5TV1vQAzhucsWsRcm2cPa4Pe7o4Am3VEE+RJLPXWe+1pfXm59BlYoFg40s82m++vhQ/Pur9RVyacnlnWTpN3D2ZOp27r6Is/ygIpi/6YnO1bY7lu0Nri7a4StOi+ymd+cGkgAj1i7PwmaAi4xpVXPwufC+KGFbFiJcNCnFBu7Ul/9p1h3PQbYkJ+j/pniyoD1PPeKP6Pwn378h/9VVf/1y+5hNrDWR6oKtcjYNewKtI3EdtWLWmf+q6cXW1RoRrOwX6z9twMIc4teV3z47/0bN+nnH6X5u+6K1TTIr7cXVQlREf/H7zjp0fjy1ov67ff+SKTi/k6xQWBBg3J5CZAU5dWfe9FG++Cdn//wFj7hy7uv/+rluXB4sqx63tIdXwTGyLf9QWc4I9a9iyA6hR8f9gehH19twIFE9vXqH1o4t7H4BFqvs48zo6+WmFNT9Itub/+3UyvE4jId0O70EOhBiWp9etxmA1RoKnp8taeKHS6VBqt+Q76WQ9ZM9eVgGJca66U3oa5s0gaJAZypGXLgDHeaFsiMnDPZlMq2munPiyXFjb44vSl+OAt94AMqSENu5bOoWIfIGfmukPjCGq+LCScJGVVw8Nf36Qi7h1nD+JU8jFG46OSGvvYeHdqc/umhY8f0AXDaGv7+ctSzeeGdXFrxrc/rl48+rvwP9J+Vr/mnrYY/eybqU6AKn3+q6VUfFbTq+VQR8vRPL5WgaEUHe7JesEE5KxrKyj3G+COobNUrLZAy/KZ4KimbtXPdgL0xNHrkURPSP/6V1+RM2OEEfZnYtwTezqajyj64sCmXzp08aCQj/JnZTt++MuWPD/nfUD1UfCnLsRQdPiXVWnRirS2fI2nNX2R6nlg/sksvopQ/adgLkzYb7ekiwFo/sG6eLmy5xKICljsyapVvW2fa/jRBb9WLD/muYrN6mQcYxqkmk/etnUm+X3lofvGI3eEZVDtPlxpUPqYe28tp6Fl+kExQboO+8tnkrx7ZEHbvBPuVqOm7k6SWIAjHAz7lJFh/T53kP36smSpj8736WSAG3Jmu+rsz/uXPwVE1fJcAZ2zb3Ak6ADuRDfIf/UR5boCUzyN6z8ni0FNqiqC/T8s/fWJ5Hz8mZLh40OzBp+HylUkLvzx2SCXHeJ37/OZAf78M7LM0z2bzNnVy9+M/K599o6U97bl/9cDNVM0RJomPoUsfPD1mi5yNvoVMuKQ1IfvyZ+nkEosarP0FX2q+sj4afauhcz5rNNcZzbqKyd0fHyaTonSMWvnPhnd1nbET6WNYbA7kidrPNyICz9qQJHvNhRJ4m4ZJXrGFGWPyz54GFk/OEjI9gC99KVhZmhVPXKsF+gp8nD153C/LTjvDL48cGvliiAZ5f86lw1MB8tcfmkVRDkAJCSHydLMyfnMgufSSZu+Pj7GpfIgKPLiiIVLzfegD7yqW7KL4R419pfZ/+i/8jJZRrELcLzv55EMx4gcJNd8M6X1wCEKiMfhFt3Wd2aEu+cN7PkPFmAlpXLbyx32V1NTyXbbykWA/7+Y3NT2uYbNW/CQpWvfN71PxHE7fcO5gRpOAb6sezhzzVSI/f5tUX/nbXE0cD9/cwH4wDWq1G+J1DthX2Pn9Xh7ZVASzKFf0nOKjmrrhcNrIZwj34on6Y52y5VOYAaz4yM92R4HNS23acH/KGNt9Yuv8qz5qsNazf/yKJD9XhJ/ye1LDdFE2qvNOQ5f4e6f/9DRuuADYyc2hCnsb1VzhIYWVT/pzVBgVL71KG86HQ0e4t7j7L99XqHnCvnQOQ3Z8+Yb0x0edO6eHE238Akoz+VCX3NtqQeYSoLsU9T53vYQ9PQ93A6TMe2PcD1W2JPYrQRvN3pCfFQshCasDB6ue7XeLr+rMn88BWvHIqr+PzrjqEVJ+aOe1PmoOT3YJQPmzjvj50PpsVitTgDiRAmyLEtVp9jUKWLbSyy/s2XNYLfBPCXm/GZuCGDjL0ZYsqGiQUrv5PpxlLxFOWvVUrA5kF44XJpRI5m/hWo/iin/snQLpj1n5V8+mlf+gZMI6PU7Kp1pSc4yhhFKkTmS90TDut+I/fGPuWMCm+Fq7gPfpBevCx+35q+hM6EFPW6y9onM2Nd+fBpcyOOLX9EBhO5f5c/+x7DN2Tm/mDPqJDeDE+YlM+1sTzuZJecoaN77pqhdVre1aDQrj7dXf3gY7XOJB4NCqH/myZF3DPz6OFux8sUufD6f90+dcuvHwXz+BXdApkD7G08O+X8z6gMNXJK16IfZTl8+mvXZaoGglByuct/TLgSMC2jI40j9/HzC7A8zoUWNnudjVbjCHJ7oRGvoVFxuh8Mc/ldeYELbGH7/212TdN4K/59HHp700sOp/ZNMNvsM/4x5AwqVFSCVqTmfMzvJnP5+H5w4NwtECpH9OxzW/6Gz7lGQXHR+bhrqp6rKpUOkTMkdI/Y0OqjPum0xDkagvVBn6kS1XpUn+vzMFu/99piBw7jVVDlbiTMd20KDQTZGqtJmy3uMuE3i/TKdq75wzVuCXhMZj1pNiB5G+67eFBG6NQrKd9Ec169E+QNXrmVD/0unVlO8SE64J+vhBf7SqYbISHy7Jh8eY1hht3+cxkUR9x/kL691+7oRNguLhfKDhBQGb7+wWI1Hfcv4O4tKh7F5zgPDPxwf4bvvJas4aEG5EPruiGjEH/Ami5rCluD9RNm4ORQGXWIyod8n1kBb4tvZwpJtfiIcinH50sEHZmmdqsOqk74Jg4EEJkzM1xcvMulFrCFzadf8fm7fZ9NQ6G132hMdms1P7pU6VDvJQ2vlys7llk/nea6j+/H7YSrVSH27f0pTLrLBo/D1tK6aH7QLNsDn5bfnQ9G0Q+xFa7Yu1NE2qRXjtB2gy/ked5/aJGNqb3N7QNNVvmp3XLyOaWjA+2dsvaRlVc7odY3SSPA0rDV/oCzaXBr3eWYudZtugKd+dDXDOG4ZtBXHVLM3hUzrdkpIa4nHM2MtMRDjsowuZaJfoLG42PNQf80fVPuLX2Z/zAONxg8gWvtuqhf3eh50/PWjG+oAt+KQ3+2o57330rAQ0q454BlpscqzShxsK0SNrAGOtwo7y0dAWm2mEvD1XkUmpW30AsH0oPlcRe6yqwok7mAGytqSkHqv0cL7PZozWG2tUSc+8wx6bnpf0RZsJ9/Vu1XQfTiboL/eMn+z1rUbfMGJ4mOsgMMhttHtZgwgWX2s0EbM4E4JArZHpfC7YOuixs1zf2xq6wUqp/l2nfp89L4LURjHWlI9VTb6amLD6O/YM0cl+GbtHCGM1xCZcPog6YE4gCscn1hVYOUz54OFjLj/qsLJE7W/MLKk7STZWPEtx5l7gU5j3HPz5ezXnXBNDrvlHqpwuk0Oub7lGQZbyREjtQ79kgl1L5kAuPks9l+3Cm8PDXvr6ZFFyo+c3xyiANMtNfCjRNZx63rJgtRc2YuWu093vCrA7v3yspu6QseOnW6T8o97WGmrpi6zWE9ijWvpLf2z7Kdtq5uaTvO7U2G1XDP+7pLB7STLWnzMwch/VWrY5J/CXU8b3hBj8AMfZ1+iBSfeQbYyzAjufeVT3fjyavi3YAFth48/NVGefh35IQRgKGVuQ2RlJ2rJB199ji91e/zqLNb0KdL35B7KkFVTjrT3Ecl2Xd2z3kVS13sbTwPjc31ihiaFvT2N/BtV0FZz19xhNnlRo8jNzb9g/JWE1PTjdkHONHanqvaaQAroDjF/I8AGu737JN34NRmi9sZKeI4e97K0Ivl3qProKJZovnh3DM22P2C6fWj87yAzAzuKFHmg7h/2hei3oc4tP+NjfrmjZmMoE1xs7+JvnZ4d+SHo9gS3ZSKZSBn2NjwDh88nw60P40BeQZgL2qJeEX+29bF9AgMueL+qyb6+PakDO4utFdtiHp8MGtKt84Eb68pGId0774BwTtI03UYNeVGcZlQdBl1teU8tzS2eusl36F/9EMPafaqnyV4v+4tc72cfs1/F9CgdxUbHD+gUNh0eqwbg3HLrmE2eKPy8TyqFrycLjnI1Es54g76cXNeFyYCwTEQ/UHx2fp9XWaU+jpYA9fhdq0uDdL4WldnJUcx9qePZbH83CChAIGaa6V0xs6Xf3Fq3x43Ppoaq65WwNsDc7Dp/gRqopCFMTOvuZ+gdLfocMUMQhjfsV1FSmsWfNR5ZQtez2vrQTm3WfOanh1JYBYd6PZ2Q3vob/AAAA//8kncm2gjAQRD/IhQNImiUCImPCoKg7cEBARIYEyNe/g2/pCknSVbfraAc5mE5Ebf1LwTLyFKHTtZYd2NlC9DrSCp3H44bZ7TFpx223faBQ1nV2hKuVjs1GuPzqlWlw3Gnr+6I9iuPBcvFa1N4FPVdBCRzfOvyt5E06EO1lgCoXCjvsDzJix2uwQVLaLfDaet2j8fS6x7/1ZIayvbf8dB82/3oOosOiyaJmhsoyuzKfNaI2HVO1hMsmrejGUq2CJZOykh+Od8DbSrbTPlm/Y2gDDzE7qGk7aMdAgZNhnGi4IoCmTW530kpdekTf705av/NPPhye2UgCzup0FBp6A+STJ9NjxdO6MNgZ0s+fd7ErRrQq3Bq6jZAy3MakHVd37YYKLIm4MEHh66drJNIkI5eo1Toret8eY1htzh5+w7BtmU2zCeoybAiBQNH4i8wzOF6vjrmi2qa0yoYGnn5kMhLunpyqkZPBo9se6NJSNURXd0q38/r//KvlVJEABIw9pj9CS1tRw3PBMnyVqUkiFqPYFDcpzXIBb/L3vu3yWDZR+pRj4sWWEE085h08x6WJJbjZfHrfgvmuJtclJ+tyjdjC+Ci/84HFWKUaR1tnAbt48HH/MdN0Utw0A1fjBZaqLS7G09ONkXHrR7azYjFiYi8s4OB/QywEssx5XBYb9L7cr/T1OJXRcKWhDtEzPhIzdhbasE8tFZpbnxD3NH2cSayl2f/XV4qUt8rp/hHm8Jl2NttX6Jvy6DitYD6vVBYPn2Kcjt4NNql8JxaCPO2uA9WRG+GCGQEL2u/n41zQ5ejEzPWw5qz6HXWR4XwCYldbteAmrSaUjs2HODqteC801QPEMqHE5O/GGarnYErGzXrN9bxrp/ft2qBvPSRY5JRq/FzBBn68duDfPRq//XCBoC6PeMHrthiX+zpHr4spklShIR+SadT/ecuGW4PGOyQxBFuzJLdEL7TXLqQhbKX3An8s3+I8PMortOj7J13p4tsZFYeH6OOfbUbyt8P5JgsWIKr2g9neM267qryb8v5gjMSCb1ywmefQfV8dmKO8c85uorgBfZ2M7CB6sTYsrT6Ez/RO2B4eQdGNRMNgbqKcFhY2Oa+KUkLe9hIRfAKnfX8HN0FeHRZ4m/g4ndfHhv1WehHvkUbRRnGjDIKtXTLVS81CaMadKLOnP8+efFzQ1K7NGtWboiGG5fQtrTu7QV2pzr/BGcqIDxYHdJXOGzoFvV+MQre8oTYgCJdK9XUGsp90uH5JzAgEmcY/8yzwzzjfOi0MhcZv8n0lfWvXZmpS3AoenvEGGnltsyNL3k6zw68cZGP5pCQXlrxD6wQDHM0lRYlpo2Gx10JZX8s75lnvZdo9rZMNfLr2zGx3ldYXJyuBJVsQYuZ31VnzOLqBNt5elAYNa6dmkhq0rpU7Xnm3rzYR/Vui6pZ+8aQIt7ZL1p4O03LXEZxnWsu1iz2g+0EQ2H7W0/tdgQTSCQtED4STM6m+lEP6Ohyo1Dp2+y4f+wS997XF9gn2oqFfnkw08yNTWCM6rF98RQmOFiNm8Mkd5lvF5scHVBb9tpiYvu0kcQWY3WLvqQ1VeTJ/fkF2H1WMBi1u1J+e4uijdZxdvvYGmWU5kZ0XZ2kXJXsDxHX2IFZLpuj7+Z4vUlC/daZXm5cz7rDlwzNb1ZixfsmnL41qWL7aAeeioXDBHsYJeWdbI2pQuu14HfERtt/nA8tVX0QDWocY3ofjlh3B36fjYjHPltSEBTtc5Tcar80lRvkC1ZQ/6gvqF4dljq5fXhHyuB3QXI8rIK+o/OlhO7abMYGjSk9E8QJd+/EB7LZqhpdicHH4l59EyNSsJodgdUWNRc1c2p3jjL5i9xKx4iaI4JZxRFwduDMZWZ1LfKAelh9hkX7zk56g/nBt2QFirPUyNA9QVrlCJcujbWk8MxXexvBlu2prppO0uVMgo68TYjkfNFXvewP+qtZZkGhmOuRhZErrLb3TVnnnqHssTB2G9ePGZv9Pp5k35Zu2/RAHySrf7PNljoKLVhLNBAVxF7QBbFlR6aAvjxpzhdf04ym6+Shjy9FWA8TJ2yV7pQ3S3uozH+7S4YynvCiLCat+CcWrv5Kd5a1SFl7PG7i91Q/Zfzw5/dfL5euQsX313aVDEOg62n0kBW9O7F1MIGZUXtjikpCKFnyoasGGWrMaYnjVtuXtuhbhLrUfuvAun2IQPpMLKHMZ0VkSOJNQrzuI5eQ9P++eMnudDj8/ILM/omn1XFJ0nDPfHTuaEVfsfPrxKnOF7UfjzbqSpB8PPS214P/nZTl5PlO98lIMxH4aaNZb+oLb0A4Wu6mwv4wvOvN5NM77CYk1GWSHRCXa/PTiMJ1DisQLcmgYV6WkTe+RkcR20CYMrRKy6Gvi8TRmEWtGS4Kf/qqW5bZT5tIa4k7YEzfRNY03wlKCu2GembbfA+dzvUIWNRc6AC7TXnGQL4ULXv74EE0/PjNXlUr0Rxlo7Du6ErBn2DIPrkXb+W5voKcfmHM/t9H6VTLdEO6wRleBsHamayNWMNcn0fladug+K3IYa99lVmvQtLPZVYHFYr1khvL5tl31FG1Y12VP9LxfO0OcTTpaf61+1ps+nY5xVspf6S7Rqk3ldvTtbQxSnyyIdpoUvlFPxwzMUFJprY+qNj73/gVUq1SY/TjZ7VBcDRs+mdgQJT74Tid8ZBf1RpjiIb8qDr8yeQUCdj2a54VeTM3wauBeLwSMHp2Ehn4ZmtIqhDtzY2/pMLFfLuDgrXYsFGRz7u/9B0RTvybOTknQUIS+DbHj7PEqsd5a4ztBCT/9mdcfld5yr8InixOmKgK0XRDohtwd34gpp650uhAPunwYuYq3QaKmK2I6BgwRd5k1f16fbmIMVrwK2flBXnzYdlcXvue6YXq+lLX//X9m4YVCgASND/i+QJ26dZjWujpfGa9Rhd5YteSnb+V3XNu/84LF4KNqqyK8mGh+n/k+70O00efZuQITPXa3bmk6MbWmc7+LiBJ0g8YXywFgLw475n+MlUbzKGrgddBMGgy7WzGt0qRDaJgIfia7A2+rly+CooYZ0/I642NmTQng1IiIoi/nf9XmDcBwPN2InqcvjReXkwhn0r6ZxYiR9niHjvCt+b/ftp0rtQrEqXki6rx/QiMIIvr5jXZCPpqKs9xA0jsVFkVLTYd50u/PP4l1XVQpO+Wnjfw1Mom51vnpDKskxP95FVG2ZzTgnW/Ae6tabBe7l3So6qUJanfJWCgaLhqFYnjA7nD2sfxIefrvb+pi75N3q78iviPuJN2l75ypDsiZ4uerAluuQmKvdg3n7uI2oV//NPtROq3utEO27YZUZJGq8V4zFtJv/3+8Jbw8U4JHdxTYo43T4ufn8P6qWyqfhCLte/mbIKmlmChBkWlcMa8TWmKfkF++xNUgGf796tffs89bEiXvbGosGHbQdpevaKDtwcNY9t48mjyUZeBGE8eDZXYaF3tYIE/caMxJzAZxd3Ee/vOPiz6qzvTcDw1i/tVlqSBT3klCheXxEnRYrjaHiIfX8woeKT4TLZhENK3iofvpHZZjJUr5tt+C9Nr6NTs+ylHrm2F3gaNq7omZs9iZ8iitof8aiG48JhfTc49qhNOmYLjVD0XnLVUVTd3QER1aOfrlb+CdafTPm+NDsy/w3pZXDMrr4HxlyB8QPaWSEeVT8FEL6xBmfmKHQJYR961iBb+87yB6G22I3zcDZt4jWiXViMnqXoUhmm6zv4sOu+8ECaHgvMRS/jEKoYeLiBpLtIk256XD5Svq8jnDMdNWztrho1/B1rZ5yHTI+3QUm/YGueyalPNhNfv1qYEsak3m6IKNujnvBGVdZ0Txik7r5zwSCnIXqer1t2J64W0D3Wad4rV32aV8CmEB7dA4RIHsEhVzfwSvml6oHx8GZxhMH0P7zBIWtr5YjOdiniV9xo9/fZ/fT0FWM8/ZrJodF+quEdGjOx6Y3iz3zgii8oD5+9OF16Qtx3t39QcAAP//XJ1fz6q6Esbv96fYWbdmRQSlZd8hIAKVVsQ/mJycoKICIgq0lCbnu5+Ud+VcnGsvTHU68zy/mUzBLFmGeBEV7kV9eH794789Fuf25/jS9otEPVeShy4vmjEFENSKEsj72gsu/ZPOnkXL/DeZXMQWQRUe3PpFdoqbAPWql+UcWpncjb4qgXg9LzqstZUu64ePFttgsYfe3t6RUFmLRhhGDg3FSkJiZvnWVnbxzoXG6SH1gvYW9Xift+VXwTxfKBc+sdN89Kt0+zVK1OGlOBqGt55i/Wjj5hv00QPSzkbEgs8WDEv8kXtSJy3zo6K69BEWDoyf7wMLZb5s7MNiGHk4cUN2a/hkreXwkJwOUg/xmO5IX0HdSDG+sDwFvVYkGzC5WoytzGYVz850kHvI6j1W/KWPuh5tMnB69BUx5X1k806BY34jpuwPiN3JVWH/usHxvEjh0X0DjA+eYlmf7R99pwbbjllZuin60zt3jNxXPWbN3QcQy+jQgyLTPbpPzafkc4YOBHlD5miTGRp0Pm9hohoqQ77vCg718xVOsUZY+I6m8U98WgF9EM+sv4iVaaMDRCKLBAf9W1DlPm3h6D+CMLQKraqxDpvt+sICMR+a7pUFCdioS5tqc6eS/uKpw8Q2VYKy1BUj/4N34p+ILXoPDBx9KHCvjEsyWhRtnIYO4Gu0wfND79pidX32kAY9YKsmjC5sM7n3oN+DlqDwQgXl4UDh4dQfSCLr3+z0kjxl7xhsEz7QeN8deJ2VGsGa/i7EufsosC91yNaZuAEm+eVc1nt5nrxQNvPUBHmQJhQcpjtBl7Gbw8ee12yT12+kHm5JBc8fXjEcinuh6MLfQHypC4Ki0hXMa3e9gZ7PmBpmxeJ+dq03cE2Kp8zXuKBTF/U/8Y7hYS3adV2agPCZw1xnweWetSCBn8/iy7ycfW0aGvxHrzP3bUbNjATTI3BmCWcxWDzE0DlaC98kPBM3qrqGbha7HFpI6+mMHf2LwJZQYTHsFlhNg1fDh/0qG3krsbPQBErvJRvJR1yWpSetGLTuRCG6qznmzlDHdNh6FK5xGpGVqF8Xdh5cFc7tmDJb9PWf/w9hL6eS34p+63kuwC23sebMPqJ/hjww6AQ1jPhoLZoe3yA0X81W8hk/5tUbJ8B3Z5aMjwq0xeUeyP6GR8xokqAeLhYbmKOiJp7DcySIXyljv4S57MIbiq2kgva9f7CfeD3mO9XwT2mOJ42zbpRit/X0nfHdM3++qpqOWnamn/jRHXlCURdn7EHDTe5j/o65csNXeDQmM+Iq3gJ0k+UyN6B1JcSR/nLgu2sLjAUn+GUqh1j2P45Q8N2NjXpE253vCqTdElFF1oPPZOnnP/2gS9Xmgl/NaQpOj6HCs+i5ihW977ExMYI7CWFzang3NRKwNlcDW4rKuQyn6lzCO6NrOpE8m0ck3sPsMrxp4a9KIfD6pkC+ZlfiNTG2edK2e2isFDL2f2x+qsO9PvLtkZf0uwN1gOyfjL+nPejqgY71mcXm1xHidV3M4VX112STcw0N2DVK4K/PO2YyYtrdmP/4ibYMK5uLEPog315f9SGxxdsRQ3wsSr14+j5z0+WyoMVp9oXHqzajZeN9EKVW0QKpN8lezG6onWVwA2NyUpiZ546tVPU0ALPauhFUtRagx/unHP0aMZ3ORMoOz50x39Ieyr0fYz/IMh5bthL3ZTxMvPugf7udjnXf+RZcpLMM1HGbUmF+e9Eq2XQDE/utEkszlOITsMUOYtTEBEUXS4w8GTLMkNSzNeKTVZUDHQUUz2U/jK5fwQO6QbZkJKxiMGjVp4VZ4Pz43bjep5YLnJfB8aQJm4Lf4O4IW2uPCJl7NaJTbz/AI1QPzFdWWTGkvKlglCxLGX/nsV/qAY1XE0IO80J0pxffGyOfQeepC5TJCm9hw4eGqqILmx5BzYKtGiFyWfkTQW9wKEFrAUS8uZ/H3brMd2A/e8xI8EbHgm+9+giz9rjGoJpVorl75RzI/PSjj+iiiyi8RCvtp570UbRx4fmUV6P+EeK21ObGcr14EJydmqYvL3sPIhzkUg8fxcgPDMkDmJ06HlC2wdmFFYp8DFL5XvyZVyUceevox4apa/dGQ57BH/+vFpcNPJmhKv1CFf/0O85149Kpj4T44SGbch8TJ6Lc5sdnegRbKylZHJ42QLMTq4d8kbRkvVrfwNBvXQqn/LuV5zsiob03EHj23cKq4i3EeN+gIBbEg9RflU/tHMJ9MCVetDgiXuz6BH6vfoBnst4PvXw7689MwV9///0vOSDwq6pv2UsOBnQZ737/b1Tgd3pLfyuKOk4W/KJt+sh+/fNnBuHXp6mrT/fvri6zd/vrn78NDc7/rDD41dVd+vq/j/6SX/ifv/4LAAD//wMAEY3N1M7oQADqGcNL \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_0005810b-1b95-4666-a795-08d80e478b83.msgpack.zlib b/docs/cassettes/qa_chat_history_0005810b-1b95-4666-a795-08d80e478b83.msgpack.zlib new file mode 100644 index 0000000000000..17c8ad10a55ba --- /dev/null +++ b/docs/cassettes/qa_chat_history_0005810b-1b95-4666-a795-08d80e478b83.msgpack.zlib @@ -0,0 +1 @@ +eNrsvQdUk1uXMExHREBABEUhFAWRFnqR3kS6IL0lIUAkJDEJvQpIE0VEiiJdOkgV6VVB6RYEBMFClS69f0+C3utbZuabf97516xvLusuTJ6zzz67n/2cszc3KMcdjsUh0CjSQgQKD8dCYHjgCy4uKAcLv+EGx+FDsl3heGe0wxNDA2OTTDcsYojXGY/H4ORERCAYhDAaA0dBEMIwtKuIO1gE7gqFOzggUE64J1C0g9cQ2ocbgcK44bnlQFZW4rJi4oIgcWkJQZCkpISUIEhWWkJaBngiKQ0Gfova2AiCuF3RDnAkAM6Nh3vihf7AJwRxgAiJiopxAyBwFAxNeGbniMa6Qgi4uaEQHFxKgtsvxxkOcQD4GSU5/sQZjcPHPP1bGoshMBgcA+D9iSKmyMkbgREEOcAdkRA8PB+GRqHgRAnE5LvA4RghCBLhDs8+nBVTAsFgkAgYhDAuch2HRhUC8Hg4Ci+E98LA/3E43w0HxwpBnACImAoDgAgVbRFDL0CYKBBYWEJGWLTEUwiHhyBQSDgOJ4SEAPRkY4jjtb8PYCAwFwCJ0E9FxWQfTn76OwwaF5OlB4EZGP8NSggW5hyTBcG6SkmU//4c64bCI1zhMTlqhv+43M/BP5cTFwaDhaVL/wYxzgsFi8lyhCBx8Od/MxmOx3oJwdAAjph00WwYGu2CgMcM/bCzgznaQV0VEO5QA5gpFIn2gDtcFjO3tLRwxV5T0TdzgcIdVWU9jS/rmGmrG7oh9K5YCIGlxaQlJMXFJGSEwMKiwmBhsJA2ykHt6g08DO6NxUnou8MczJ3xJs6meE3jq+ZQVbHLktr6Oh5GYNxlteviog5QfQeooZcexsNJx8BJ3QLhaGmoLnrNDGd4BS5xXU8W5SJjYKeNFzeSBwHUubkjHBTE4MIwB12PK9qi4p5aorK6ACIpTU87lKgxylNG19JV3en6Veh1QwkIUuM38iQlJYVEf1IoJSohI0r4efrLNpBwlBPeOSYTDAbnYuE4DOBd8OBsQGR4N1zQE8AO4V2vclwB4QE6zjDQ+dOEWZ+oAzYZU6+JRQiCxKRBxnAMSExUTAIElpITlZYTFwVp6ZkUqv1cxuSfmmCpCRaCwjkCZqjxy+RzYM5uKBe4Q77aPzX2WoKxA5okkI9FI4GHgLKE0FiEEwIVky5Q/3fDcE8MGgcX+kl0TKG50NXDuCGkrV546HhCRJ+OqfznHl3+EwiNdYKgEN5E0mPqiZ7j4e3p4QBzc3BwdvdwFZX1lhBHQOFuMMeKn1MwWDSBFgIyV1xMhpjY058Dv0w3HxCXqBBYVEgUXI3DYxEwwFMJ8sCgsXghHBwGRDO8V8yQoCvEk+CmCuJgSXEpQHfyIAQKhnRzgBu7QdXRroBx4+RBGCwciYY41HgKYQG1IBGuCEC3xN8/IyUu5okkMLnqHwHwaBc4CheTI0m0DNGG3yGwcAJ+Ag9/opGQlZWt++dAv1ARQGRlxWv+FgoH/50asJgrruofAX6iyBDFFXr+ghZCOMQM8QJf7KQlpCQcZMTEpMSlpMAycElxSVmImIMDHCINg4IdpR2K1TSF1CAwZ7iQMdGEY3LULfRV9LTVKs2FfrdFIQMMcSeJyUGhcSiEo2O2MRwLKCYmH4ZEuzkA8RYLzwZwXVWxiKmQgcnCoI7icEdgCVlRSVkhVSCS/cL2h+U+IQRr4sZyM5ugTpTTSzYdzttHSIg/5CZmnT0FdfeTU3MGPxpbHj0e1P3wXCImWi+Qt48HFBJCcYSVfclr68PG3tXn3tDX7trxBaZFz74rHWyvTKETBuDgvb2N1MbUAZm9veLUch8peMDB3lTjwdpUb6rSwZbNgZ3D0PjE3v71grGlsU4zH5GExoN9nv3F1weUezu9drlTpymr6lbe0DSAH3y0edkXXB+2drxx3fBUK7X4xwRJQVpehZJdZbhK37HHnRdPQFx2hFbY/Jeu1T7hfpBYl2kswO+ct+7B/GIv+U3zHY/WMwsrTHLJ2tMLQz2MdE4D1FtTkYkW4JDKq5jLFdv9j7qcZ8iFoM/0Ps9sPwgfjSuSjh6TDbZFjZjbXr666jczw1LH84i54nySb8eEfWi8ySsKC/1WVnFTqOF6g7JZQRljAhlfcKz4Bj7zjEega0oDPVex2uR2hklAgvVR+8n18Dnaa10Jz9Mdv7PWn6jTG2F45O0bf23gJD6/Rq0twWliPe2APypRVykQXHjeIk73WQYaprrm6/xUuPCYhv1dZH3G8srgOmik7RStSFLZSXm1AJdp7xKaskssRao/2NI5A9wmX/Yy9jEgrsgsNMVff5m+JjCfiBfwD9f6eqUgsZfdYyV0fzzaHPN41Eq5uOo6VWYix6DtehseCTVEDjPEB5tEflBgJQvXNmYe2D2OJrVzY4j93PFwaP6j83rxGNVcyELH09jy7qlP58O/iFqRq+WIreVunPKZ9gnqxFz0Jy0Q3Xy96MSdfWJC8tp5m/6PfiERBllcqaN3Clq+Gc9GDE9Spk4UzqaJi5wsH1B91c5trrpZNn/3cQKMaS+YzzhhoWvEpCLl24ZRWMpFHfMe26jGO8UnyL+8X3g46z/sbavhFlrzwPWhTXq4CE2j4/FC6qjYWizFxftx/tKJgWDpZ5ToosJMuoB1T311n7RayoJ7rap8028Rb6i7jck8Erj5IjwaA5/Ryp/yz7TROcNM9WZuDEO17uOWZuXk/UMyje+IuEOW5zwnbk9RIotWuMY7A3r6LLeivC7FiDIntKKb44akvFtJzSDLa7uO4dlP0kUkl3KpBRLuJJdjMZrhj9Advi7zKxZXrx5Z6Yxgej/rbJ5tbtp/I0AWjJuVHn27tUG1uhHBPLu06XlJTTzEXfzcMS9WrlS+AMMHUiQMhXV41m69OOXBm+xP9BJpfFu8v7U+y6FU440jvfhxwCXzUUvwpKVr2lpDsa4rLItPwGXLHHfPZ1b/9trFUHhN4AVPPp+mhQvc27ro0d2OIMbTHapDpYrzVJbIlHz3/U2tfHzOCytU+cmCVZv1FwXuzIkxE/wYuctO7tO88qkxCh2fSUu1DT/OPpNJzaPXH3gC8xH/sbWaTM91+Ygfk9glBufrNZaBNkcNxu8j9Pfaht435SliofB2Vjvj6bslnx6eeofYW5tU+K7l2brZU/daLTwVLmkCi0umyXa+e566QtyZfEcZc+L0mlzQJmXh6+TEzu8RIqM2wqT3L6ZuZdhnnNs9SsYWLJ25RHF39LFvLVPH2FLohJndzYd2b1ju6ixDNR6mkOJqAlt8pPOjLn8dtSrRB0e9W9bFr5IxxpLx3YxLP9q1vH52avvsYN9oWuTjo08md/2ELm6+eqgvqw1XbAjMUrUr03P/ZIK3T8goe3aZUadOyuurkP1Ivqi7Ph9U1EuzgIaF8odMWbiLCXNGWUArpj+TLq7bz26lShTuyejaNleLHdcZ4eOqi32WEUjNiYbHcQY6y97uGnGQG7va+ZhUv0fWNEuyZ4DxBMtI8si9mVtDoBoeBPmESUJimJTpC1nF6jR9lq6MrZFMEVlLrsL+LWX6GyY+OtJGsI03pmHJAi4TtCKdF+vMbHTvygtouMiUK3SluYBhHxeaTlTvHVn7+k4cdrDWF2X8PKxdwjrvNK284utt8ZA1i3vT59ck0TSjhlTFexElXWdNmjKRhhApDlPogjBLmohHXcvYxh7zpqfSpvTnKqfjxaatXtT0tUz0w/st9BaywSzDOqQZXh68wpccPidENz2KE1hRK2CbvJ1eeLA0QZpEsfS6pH/M++uzoyOPA1A3GOTdcNDt5XdaneTZchVfuzvok1y627/X+NwUkh7z3B+khfJ+NE7zPJsNHdZ4w22aRFGhPXPcWG54i4nNj9Q9Z+qmf8Ryl9ebdZZ7jVtJQS7BW5YG0adQbgFb/ezR8W3DgcMlUUdeJyvc72lfKBplMe8zMUMFsofdCD1ecdSW56VK7HE2Hgncohrmo2319Mv1WbOA8I1n249Egq2V1xgrPW1yLjilFt2F5P8gWaRi1Ljd9IFkNPeyBanhVJE8FmVvQsldPsHUz6SYZmicHaw5t3JkRfapPGfIQMY5nxTmvnI/2RZJcYXJka/nprap1hr9Ax/UWA7o3i0kOfpedLB1AqLooZmU1+ty0Paxk1XlYCegOihE8RwZtQB/jvLexEHTkVnfS1mFJql3oF/vyEuSS64Ikyp5glIQs6Onk1stapXfnQ+NNGywZIeE+jfLOVrlxb/zDhQj0dlo2rVn8+1JjMtleOLTuMde+m5I5HP1tBiTEtOJolGnuSaRfTXSKmcWq+fUHxwMus5yXH2POI+2X8uj8U8Pouua9xD3FeM0niglHT3hE1d41pvrXE9kg+/3GwLk09CwueLWF3y7HVM2WXeELw4YX8LIcpOWRHUyl8t/WNlqj26ypGSjHlu6H70h2gZif89Q2je8/YYWYTr0xDyKAqPqWynHzJGMD96q3lyStAwjidSzNVy74es9ImbDbLpvxf2hv8b7RMhK/oVbT/dac8TMBQqXL+slXjtH3cdKbUf61cby1cxEe6ASa02Q33fc5Mgs+/Q5LfcvLtUNQxy+exBKnQmXIGWRcUz3/fDn38WDS2ELEQz37niOxrApfn8KovwUT75BLh6aMUIjeP2ZUwNSCXzt3T2JrhpLsUd30IYqkSV69P0V3Vsj3ei+s/H3uPhONj++K0GVMC3/+ZrRj/DFyoe0scKrMxPM+NbTVDeoT59MecXAiRnNjji6g8BxCQ/a8tQMpVNwvLN/6eDsV+KpYUuadVkLGvfiRxWIgsX+h0+rfsXbDA3vKyyDOfO353I+TxTlFPMFyz+8GPq+K/c5+DhzLsvA/fScwaWHUEG189Lsoe+mAqsiUmrWHRLOFD/U+A4foDrOv5gNmwwJhYTcOacqcOWCfOhYsDTDWBhNC5Z6pjzsYwlZD4V5w3VaAwn5gV2rrvMVSW08Ug6WipHDl0OXv3jBbcUERz3BD059XsgCR299a4re1ukX7isZgozMV6s/bz9KVe1zzvalG9plOLhgsCyN6SBHsfO+C5fE5dq3HfqJz0Mq3xXA0uLwOZuLkNDFelJKS4ygh/xFy7FvAk2TjrfGV9frnONs2ALThDnxVG4v+ejlj+RV6b1maJCZWl0PEn1nKTgz1WE1lZPS7Dhs/RDWoflp/2u7yKPHZ1LXi2xZzrD0CeNa8DfOrelGiDQ5BFwS39u03hw0+Xhsa+ciM4MJ03UOzmW6XYMTRvA6Gecbb58ZvsMhxJPGves106Va5OrqH9aSPhCxam0KlOFwNKWQj0557HKkviZlsMEwJfw5yU5tYDR1qJD4BhXTEM8DjlT20vraF1sqPDT8O+7bb9rvrdgpbj1E+08m6ChQHYe65T0ItGF6eXpcSs4dZGschsqm0sAq8Mp1/RDJUJZuaJ0VmD2XuDmv2p+VVF99wufU7ua5mqNpWi5lO+6iRzR0Iy0U+k2wPWZsqU63FPM+an27GGtb4qxOS6u0WyuTL9J6JVPYtNgycFzPO8bjtZoyshc1/PjO5dSbM+dPUiYp3vH/Ud0y3HYksXnSoyH3qVHTV/4X5vvLz+dyxpq0cq0m3397ZOBYsf2R3JabyZH6BVysjqWKw1R9dWMt8oMV1r1/87FM17EMdLcIpuhz21udSc9smUKbuW573Owp2/wPBQMJ33ivezfRLZc1dFcHlNFetjUNe5nk8sFYWAe9yeKl6STPxbGzJj8+fGvO34iztVgpVGlP83Ev94eL96dscQJm52sqN3CKpziPRmzT0bxRSvB2nezad2rYzLGTVInk6u7vLk4J6i+ql958lUO9wwnk+AcHuo8sGMo64kMXe4sHh547aKmnReLaBTsMj9An4uU+Bwa+Mqe89npr8eymXHLDA9o4RNGU34cfvvancO8vmUzbdQp9NIjtCffsl2OzaGFBvFYgeV8eR3LeeTMNdtDwgpnmEY/5TnX1NwnYvWvucawczSvIcxYDNIijJzm0/Cvf+cjNyB/lr02N2L5fgwWlQy4K1T1S2UnuVahm1dvmY8iHpNTa+BRRlHhFs57QtUUL1u0EOm1ZHtfKNdS1uXj05ousS2/3ih6/8Y484zzKf35n70UcUn4MXqV0cOyr813SaTfp86LHZ9gtIjZnb4xay/X90DawzpKwqQs4a5v2Ro72Yc8C9fVd+ruYRDsNZWOY0+fuvQtNM/MV6pRZRz2ZmBgf5MUwXnwBD82cyWlB6lo5aMy3sx2X0QAF+D9/EaiQENM7E9O0aGYU1B1vdofG9C5NszbD/m5AtgITA5bsFpt69NNUS52zJzY2yyJsdNV6K3O+HL0gE+3c7TI34YocDKTlbS8VTdiJ4WRZ9i2N+a7gP+Gbc5Wup2LmzY0vvTeWmUsChs++tV4ifVD3Udx603uZ2UM0Z7hb7UNjGC1N2deRWFhAkUo69wkk6oP/6+AYGi26pERcN2diJdMJuFiHT0Ztq8/Mxs4RW/wbPuethuUbG9zTjV0eTfov8+y2h1mYhE+E5zGR6t5uDHS7l03hOsFhyCPr2TeSYEtyLqczm+mj3JxwvYFEb5bwngyKglNlU9lUxsZH6qz/pUteeWzISyqdm5HyoaI7KGmK+hjacHzBdf7bDaEmhpOBc4ldN2/xBYv530eayk8d7dZkiFj3XPhmgWs9N3aZ5U0BrvnVxvq0sg3uZMpb13H9oBOPlgYF5LChOi4l35bYPvgavP/W3eHYTU7mvCWrQe0mvL24yC9N4q56ZX2ruttx51LyBFL3o3K8/VsRr2+CQlvhacrepySer5R/td7YsZ9aRMIK1v2O9K+7NeMzbUhw69dJgHdRnTn+GR93H85L/BY31btuszvaPNIzo7yeEVqRsS+qOsfwfN2la0OtN9eM1WSU4f7twm8MJc14oVMNNjjNSoRXII3R8v2ku6s331obKtGmYkgiwcvjIE1jUyUJ45DQAHrtwZ0utice0jdFmchOVNyf6nmplfxg21HjyEZGyp2Pfdn2E6XkHmU66fXOYmmfKjWeXs8VFn8WGWRYTHUi1z7Kacr9ChemkvGt9Md4xq+e3O+3k9TOtB4EbYGSWjrsOrf0b7xLbHSYT3DOs1uYE4ijZ/FYerOzoPDp9ScBMlFGsZL7O9ZDc68rqSxPsYybc19sHREOUM68W6O0lmWWcpf+pD8o38Rtz/BCNrnL/axXZEjW6CkOirT9O+eWn1LT6S5k+SqrSFU2O4y9TFmTrYBwI86CA9xQXUWpkKoPO34O/HtmfUrp978/Dlsv1nkxaA7nOtIn8wWxgfqq7Xud3Hrr/GABr2MEFfjMs2b1Id+jg1329Afjp75d9ViQqBEwWb8S+eprbJmmOE5lpqun3X7ZK6SdmcFr7O5y4vwqVmvHh3zx42IQfYZZXJeAylElaZ7z12uyhP2sbvGZtalx9+APVrtW+sOuNr/iXnf5/ImpRYui+Fs1T/P8G5Ls5ozQN7TKglzGt5/vT73lL+iNEV5OAWN6KZ3fcB45GUA5WT68dCVbQlisu1RwaAqvnw5ysXqiwbUoBtJxCtSf4nm71UySWGvEqM/rFjE8q9/F9O1DM9JBGxSgCtXdFWb+/M31Fam0rJFB6X3DqtsNWz/2vweiGx/SoSXd7n30Drtv4mTYWhN6srp2u9Vm24mcFyUcUbPzg4pdEUuit5r1qn1L3HZF9EUr37EqwQMH5tp+LgmMRgSDh1Pb0mi2i63qeqZS/LuLd3t+4BqHedD3956N6S2dyqfytzMpmJpZtyneohOf2yP5NJJa98An6ehi/G4ww/Wvr9R88oNVBtP823mkKbgbq2OChReaLJXsLT8YPLnNHb5cmk/rCYk9XVK4YS36rFfd1qsp+vWIwYAlbdxZ8YsVCSYduWwODM5SC7Gb3bdWKRaDabi7keF2nM/8d7aiJAdLC/R8Z7dxpf6vz3qK9RqBrDnjwNQ18fwGM5PcJ1xeNWl4sKqs+4U2O9JKt+lygii3pN+8/v6cX2iHuk5RiPpd52S/geVD9c+BkUc7GzuRUTMad07gU8dcDm5TG0KPure/u5MoJVJG+uA0xd1bzCeO8I3tRbrxKvceg/0IawRF69mbF9Krb7hLZD9toDbE1wayDUn3avalyl5uduNt49CgtUs6HljbzdMuwsQaXE3z2V1VKJT5ALJCK0CGrClt76rHLD9315dcLUaU+/q/5G2vPuKV/i382dLCYxsdgyAjRsYVjoCvzY0HHE3NMfqmSmD0eTCllh46ZubmpbbbY5SorVMD3oZvZ3C6EynW9fbttFUO41p2Jc/PqcZ7D4m/wMkdyS7Sez+mIjzzvZXVtnmV6hm2KLWvuJbn7YzBLOKWiJj1j+Mnq1W6KdZ5RDBVF8TiFxY9NJWUYsKSs9RCkNylM8g++v3J3pARmKjY5JeQYLPYPHW7BdaH69U0175vN3MeZLp/t2D8uBS6MCLUMbn6Q/LLd87piL2oIr+TxaLecTqNlXPI77W3qa8qNr3ItJ9aIPOeBE1R8zF9Jpc4f2bwkjKnsNpCdqyY9ZfbVT/IVB09YPjYLjlBSSZmD58hJ52G8QclIkKCzvdqAiYvKpaO0ipVRbmhKVueIEiWOSJiweWGLUr7uNdhgUvGmlkvexlxtTNsLqlOjO4tyyFnqrfAjlbC1PJjAvdSd4r9256zh4h8xl0e5lBtEo7ePXJ7SZKnmP2dp284k4jWyQAN+oO4EcgEy7X1U2Jul2oyGcOlqpa0yrazPCk+4UN0GnkWhBUcYudhqLVT6mfVPqXl/XAlufNWXMxVkXRcfACfbMe4l1G1bDLbrDrvH/Tc9uxLnAVl93edgUupQv5p5PoYNvBUaBKyIUNlc8XX/Pp7sqs0KTQcA991rmqzNQn6Mh2DvG+I+aKVer/nVmxwSt0iW935ybfjPcMuinyXiy7BLl2+U7MeUEd69Yv+u8fXRMe7I+q00S9XBhiZ4GuMYfHODz8fYC1sd0Fi/pHxej5nJEvuIE77FndFeijlMZAWRJ5ENxTzD7/0YFGtf3S97PlHtVANA8GmjyL9quAo2YXKysfhP3CvxwSYd9va335tJY9RtD21shTfMrEbATuzW/hlnYnqc2tomrknSoov575dmDcv/ZloYXbF98FWb/pjWum86npSX/gsu5OJ0Qpms/h3YMrN7MblFvWC1z10QlkVQz3LNzttYrsft+wYnBVa6cAOUn+/iu6VqsnMRCOLN880m33hHbc8Ah0R9FJ+A1U7d9kUrXD7Pg/D0yAj+5rJ55IBwQ4lfTzFo2l+2UoMqL7RYw+S8KSFr3npBevCRhz8AyOSkygUcetc+2rD7MPBm4yQjTiao1Uena9mJiHHx0el7i0s6o3UXMkKcsplb3YXN7tYbNRXM2YG2mYQaT01YGx4eQhsL+HV3jqdfybcyOzzmyo9hdo8a0rn5ijlhoV8z9UxsdAi9nsTW2865k1no9Muv+Wx2PsmQb/BGrVSqY5yMUzAsK8HXunfvWd2EIT1a2wWCzjWwYAuR+RcQirX2txG0r1d874N2nggYI/laJO85MSGCv5+kuTkuWVf+fkLnivz5MGPWRa6Uq7SO01t0yVyIhS86NT4Jlq4GF5c+Na8+uQ0payTzvj0l5NdaM+3cXuZnoWK2e08uuxpa6zU9YKzJvSssxbNrT5lRvghzERFvcfLRyJBfGORbfwnCmNgTiLczCmpC84pC1oPA+hZ3vKbBd5wsCT9sJVz2o8WVrJ3WmBtsYvnU9GPlIg6B/JmyA1RBfXu5MvTjwzrqY95XN9+vb+aOQc+x2/p+zl1q2Njp0+0gm2xx2T5wqBZS8KZk6Mf98YNyj5QP9FoP5/9fvzaKyoRhk0PgQcrKh1uWeUm4a14nTtbcXmydUOl2hKCHkP4xU8U553DwGrSmaxl0nX7X3qbNm6n1NfzUwygne9brZ3uHBvWUQv/tB6xuoASi2TJsvV6OFjrTGUyRE/q+dq8PWNJYKeZi+ZWQLEV6cHWgF3A3kANxFC6d8DD4hib3cpm70HR0d1YxXcBnrab5aGBYRIBe3uLB5+UN2vnk2rOHvgg8wfQmztjAa8DTOn2OZLAe/uNrQeW/tNKB9uHbxTkJP6VyaGjIBKSf+fOW+DfvvOGOUPwIsBnDBJOvPAgXlB8pIX4cP+81MMRbr99uH/eBxKuqy3QbiAIFg6CoEAQHA6Bw0NQeJAjGgsirg4gEYKgcB5wwg0HCA/BueCEQddwcBDeGQ5AEe7jCAMYBBwGx4HQjiDCpSsC7g53ABHX8MSD8GjQIQbinF9YhUHajiAvYG0HNIoPD3JBoT2I44eggiAcxAv4DsH/HcyvxbFwOAgHJzBBWNcV4olwdXMFJjuACLeHv2EikAFD4ODC1ihrlCbCSRgEFgYZuMOx7gi4B4FgCEhXV08IgwZgAaIhbng0Cu2KdsOBiHflIJwXDg93BWarAVJFowiPDFBwOZAhEoIiXILxWKNUQESJE646AQwEGYHccG4QJNILhEC5o5HuRApRXiAAEwYQnwrqJ24UHO6AI8iHyL0HgVuAcK+f6nAAYZAEpRCuM4H1TQh41eGEpdA4BEGEwNJqzhAEisAFYCFuTs54EL8a2kQeZAZHgOB4EAQpTLikFbsAcobgQFDCXAAxiKBiBwgWwI8FkOGJioXDnFEIQDdEzcNRzhBAaMBz4m0pCAPHEssbAFmD0KhDbuGev6zBBJD1IRwCBzCMw2PdYERBoEHWbmKiYBjeGYFyITIPgh4KgficCOGGRyAR3gQEAM94wuUf4b6fuIQbnnj/SoBy+Mk2HGAEeyhiwlLACM4VkDOgZYK4cAgCXdhfYgYkASLesBJoB9hHOP0+0dUNiUcA4ATNANqAQIGPh8NEVM4AA0gEINGf4IAiiCUpGMC+D8kiCv0n50R+ZAFVEjgl+sPhbTDR6EwItgpAmxyqCAfit4Cgf1OP+AUQ4CZwFGAKBJIBEcE9MUg00eH+oBILh+DQKCJqNOClUEBqeARgV4DJwCEwZyLPgEsBnovA4vB/CgxHJBIgB+DP9e84/2UzRHkR2QasEk64ocX9AxCOYARESEEQDCCGaDUQQL4EPyRq3A0LP7QFHJxQ6vFLBCAYIDooHKSqaQzihwIzHfDOQodEHgJeAAEWp04YdYBj/mHMA4F3/sUhQBgI7g5BuhH9DJATBARDEmKWIwKgjd8dAQGeHNo0Eakr5DqacKkOckfj4b88yOF3D/pFHBBf4CB+8AUCUiAaHK56aE6/OQkS4QIHWXMbE8VF8BNzC0tha2sUWNiaWxAYMCM4MMF3CSLHuUGd0BDkISBAPxATCTiAKUoEaH4x4mJuuF9hVQiHgcMATmB/uBAhfsuD4MJAyAJwA4wc+i4a6wVCu+GRCBTAEzcRvQcweKgPFNodjhQkMM8v/lN4zm6uROMF/OnQHq/CcWg3LKAbOQLpIG2CWaMI5kgspiAiPJQ+/NAoEKjD2iaCvJwgAG8EywQwiQmDdNHAqiZwrCvIFe5KIOzQmVyB4AYAiAuDtAxNhMSFJUG/wqsKIe4drgG4DdzpD1f6KezDkGKNkhAGaSKA7wCjAN1Esg1/C0Iah1YAzD3kgXA7j0C5AVEbiLlYODG0E0gHqEF6AdEF2EMISiCKlBBP4CgcYK7ErYWgr5/xjagKNFF7UCASEcg6nPjL2w6ZBhb7qSBA1kA8gyMdhWAEDcAQv5YCYo0QBkH0CQCVM8QdgSZuRMTNFel1KJurcEckHIYnRFQM5NBnETgihcQIhCc4ohPBxwGasHBHQN8/ycEAJglY1KGYNICtzIsQL10JswhxHvAKNA4P7KBogmkDARKLJ2KEOwLWhSCoBqSCcCVg/ZkowP+Ii0TekXACNSg3VyjgVQTVEMMpQQUEmyI6EdwTDnMjih+k4QlID38YBnE/B4i7BNEJftn0n5EViXYCuMEB4YWAU/tPW5cjrGBGsFjCTKK9EiccfnMEzIeg+Z9TBYmPVbR/S1n+2Ewd4DhAHVD4r8hHtGoCpl/LEqMUhmAmhG0emA2kRb8iAcEOCGkADiREyDSwgHsAhMiBfHx++wry8xM8FMSvLIAIYEJkkjCmR9wOjeHIw5Im4ujhMxWAXicUwUH+RKLxpzQBOEPATxA/TdXPTxhEyM9c3XC/IvtvqRShLokPB/qZJxLUByGaDWHbAvjwIGyVgFUAIZ3IMupvJUPMU34XD84ZSEIOLYzgNoBciY9/bu1/r4FfnkIg4pflHFII2APuZ373j7MISSGESKkjwb8xQDwRPGQPD0ci/8RI+PCHef4BKkwoucSikXBC4nqYmXEDUvybfJYYhQHa/zFfUvp9NmEVbr+/qfJ0wuAJwUoIcFsomgCLAp6CgX8BocIhrsAXYo2hIKEe1BVD2CgB/waeigqL/lXs+T+92FPKyUsH6apvYOiEE3PUkbJ0ljE1MbXD6WHBGp4qlx2uOZqBNb3xmkZiOO0/qiklRf8o9nR1BxvqQYVddIQtNU3NJK7CveDaFjhZczGEmbq4JdID42Z2HWKAVHXRdHR10NNQg1wWNRc2wJiAxdVdpO3ULHXNxZHXVIWFdT2l4V44MQ8PM0s3iMqfxZ7XpEWNsW4IA1kVjCP+urQL/rqwhuY1HUmkiiHS3NQdL6mvednFUFRXAizxG3li4v8XxZ5PxGTB4v+5ak+W/6DaE/zfUu35nynn/JdVaj4Bg8Hi/9NrNSX+dbWa4oRKTVGx/0Kt5hOwqOs/rdaUgUGlYaJQWagMDC4qKQZxdBCVgEEcwQ4QR6ijOFj2v7FaUwIsCZcFS8Acof/X1ZpkTH9WaxLPXvBXm1HM4OP1Uxc1FfmMYt3ZX9E9e8x47sxx1ZhvyTa1pU5RTpUnru15jOtdJgvq5Bhd8dlxnKzXJdF17j4dtWJq03FjfQGlgVa8sbFZksbQ/WznR8rml/1vUzvuWxiX7GvNtVr4bStJj8dYdTpd6o8sFZH9bqWWT1GPZuE4SaYIq6hrH5ySbXqTHtLD28sLXpbJCihQh0E/LLmRkSyJ+btoXl8eKoSsnooJ4a7UKldUIBO9BdOIYqHJiH+v2/sEdvUJeL2tg8OysNlCVY/+ZoqMYnrT07RP1N/TJzgpwoZSVIrmKMkuBPOy85wseR8UcoX1+EvBtGOvFxjfw4JeUHJZlCl8tFGfrrrStH75qLW9ddsZqelLtxbJj74o0apakTqOoWbvVVt02+3OBtnak3HAQpWnTuVSo3V8HorTGand9Tx6KfQx2f3n4/ncsJkqXh36mweP3OgPzO+XU8hTzPo28SFV/PJu3nUJtJaB07030Ip+6IBPp6Uni4hvvsbw8MOXvXvIT14cJpMJWgKDdFAXbefw5fDGlKcc1b23PLDjBp6s/OFjJytaTEQEO4ai5mYpPg8PPv0S3ZKo9rHoB0feaamC59RKOOHVh/X1Cvc7rn+j9H+3a/DM1cg1HPvGCHeZLVdJ3joZehd3eutCJGKY8nvpOFNbx91hz+RdssNDt7co2thS8n/toRt59b9z6KYFhDtCEkSYCnJGHL7V/cp2CQkBkBAR86Bfx2UgD2cE8BLsSsjtCG8DP9OqX2dsPxOw39EJEnNZNwKyP858kIT33L9D+TPxdUMRgiwejXYgvjYCL17/gFEYpI4G6RuY/LPjPEHQdUISB1D2x6IIgCxHYlpOSKgB3tCEd0cPBI6QDQKpE4oAASTaCNy/PK37u7n/5MX/j4M5wpEE8cjGAe3xd0db/8EJEyEDdoW4ELNp18MDrN/Okoiv/b8O+giHEYQsE8jDfx204Q6PE/44wPt5OkRc5h9OjJzhSAxBx3/wAND79ydhf5zY/CKYSKTgb4d5/8Ex3r95OnJ4ekE40XPGEgj6h5MRwX/nBIN4GPE3ZxC/q+uP17d/rm/Cyznh1ZZgrBAv4vmyA5rACgL/VzL/VzL/vzCZz5SV/Bfn8mL/7+TymWKiMv/LUnlpWen/QiqfKf7PM3lpByhEWhYsIyouCXWUERN1BEs4whwlHcUkwVKSUuIS/52ZvCwUCpf+T2XypI5/ZvL4ewY65ODjLxf3Tqj1uCKe2+TXX34TzA1VUVF58mRoBoWUYhYrh17YW7g/b8dgi020G/1W/3yehN8q9wK/MQLshqkfmn/RW2a0tr29ujmf6VcVkNKYNFRXlRRtayJ9wXnrlubd/IZ0OZkTOv7ReupCidZhsUixHi2LlGdp2WQ29+NUvDP9R2PPC+dJszluAVxJvrp+lPMsSaDrTnZUQxOn5C2VDc+8GIuE3OwcAxKB+zqsWQ+Fbq9n1Dg5v6Ldllq3yqLEq9/TK9GUzzUSEGA73UZmekJFoji9yeTOYDZKOsGW0Yxu9v1L6Z6zC7XGMlrw8IpxcqVPZh+snp5klIw1UDHnz41fkCNJnT/SnWoroJ4fLBjyYTr2C8a3fsN46lPv6qsQ9VpaI/+1VGejNOfZTaj2MwZnPy93tsdXKyVZ0OYltoWFIuBQ52HIMNg92e7nlbQ9VVaOGdm/mx3/J9qwb/5jG7akmLQgCCwhKStJ6MYWkwG+SIIJbdhSssAvCSngsZSUmJTUX43ZfzVm/7/emC0m+69tzBb7qzH7bxuzwf/rGrPB//rGbBhEBg53BMvCYGLi0hJQBwkxKbgDzFFGUkYaLCvmKPnfmSDAHIC31P9cY/al3xqzEzp7Ci6VKU/tnUhdf8Bzg6Z5MvVGmDI0VvmyDA8ohISL1xqJadw1ahBKNjW4hxwg6bxWYLq3Y6ekFLBdd+H2TC/wIWVNZm8rdXFUKKlM6WB3d7HRH/jZ39vZK35V1tk5XOR/rfFLY9jarKlwwP4W437AlJIKALYcjecWZuJAPnqZEaaZUfBi70l7oJjixbQRRy4VaHmZ0f2sY8LZbnwRu/ns61Uij/In4kPvjFMMYh8+B7/o87IvqEdytykp0C5M5Wph5xhLQkaKgl8vY9ouoz+GZ4htkoRs8ZU6fYJCA45RxinsRqW52zP6IXno3jbkYia9YSV1aaDmHj31MvkYmnuShQLTvidIb4w86/G5UCzOpjp/d77CR8rYz0bCUzvr3Yizt1Qfq+ZRTwofjiS61MmoSFNqHkUdmsj28Ds/xNqbPo2YRYkl080lL1AGyuVprPnQ6NYwSJ/o8RuGjq1p4h73jBx7PqiMgybekNBZnjmKPb5YMmoa9jgl0ErtexfDXDGas0/z9jG46UToSFVLJIXybL0lZYxi7Gi/3g2xdsa3WlcZPwlX+161WGxN9jtXjjwicXrsKVfzsK5rVI8BFf8pQwZZCcvNwGIpc0Wozs1uCpqYvD42SEJ+YB5e84VuX/wbwyYhCaT2y4aeNt+a5BcKuvVnz/ufo37TQlPKkMBfw/zpWPVjLGc7efAYPa+2C868U2opvV0KP9lfFxnP6+cESoIEPrGEbI1ja56sL/g3exSJc8c/HD7+hH0i8GRHQbPn8QWeE4/Fzq3blODiFeaY+aUyb8duZIIHpBuvsriuxqf5OGgmXX6rY35JloGdOk+U781IwufWLfI3wTHiM8/OQtPOWief2cSxCyW5xDQnVg/I1s04TNPVDzxYmD+iHr1EJ9jufL3524UbKx/HVCpQo6kUVJaiPeQD629qYHS3nOktC+FRx1JvszqI5kNCuymyAmVXLwQvC68O0jwNqvaG896cytc2Z8UdsU293qj6vO6peu36paQyZYb+3hUJqG5SZBGz3cbShM6ctFKGdr2zokxXGL0Lw+yo78dosnRTlETG8/4HIjOzZ4NcnjOABTAShdQn1zDdcVDb8dNBOcuTx8xRcsyc1m9opmv1KJT71/SXTEwCTYtmmqx8b8TIXXaKPeWe3fxA6Uz4lkxD5qgPPZloYXhSusc6mUCHZpuP7hOKsdKU3i933L6jcCngq8nPLKxRfIHqldwUu00Mpl/usZTkijP46Bc+NBGR1PtU7mTgv6hTKc9l9EkCugJNgOuzCw18/nLUFseeYgMaSRG+qlrsfy/ZPsq+68EAjdgzPXCDhU4r/Q4i9BoXwrM4C1tetWVxU+AcvTuEVQofAHYqGb1NprXj6ij27L1v3JbRXSNOiUlut/lrLFT7V/Cu7XSxn9BwNv65YNNF0szRZFuxOV+LFw3ZUV4J1wVvOo1YG/okFp8vYnMnyfU+EDkYtK88IaDpBjrvac3ufWHxlPMn7O1HK160oSrTTp+v54m2hnhQV54tYH5h9uH4fHZsaMs5lRI73iv3up83VzFsscitqbwIOy+vhVfwFbjnEWqwyltdmlUMJa2BV0KlR0UC9TzmMweLdblfLYQ4f5XrDNt+Ok5znSme+XjL8Q5WNugTv8LHpTBrtYAeLfVbjlQr8caq0/NRlFa1zbS5TsgTVes3VAxBRybLYisv9h17EmufuUFXHz14cCd1ohvCEf8a6QTvngj6/Nq6a2L5I+JzTeSXM3eFpXZ2whVemZkFz2GUSi9M0k8s+jDV3ulhLHqT1my3H5f8PnHFC34KD3ne9XhugNyPLrnwxMmPjJ0mEyJK8bHe5b6si9UdESf1Z4RAkzBV62Q7Hu6L2CMBXsdNWoRzPjBjlhhNL4HVhGi9fRJwoJmviYN7m8dO3hE5q3y04HzOFMv4MR0ENS9MgUeyozfwSqpscDolJ0VytaN990x28/i3Njbp1tbHuITkz/0Cd1/whlJ/aCK/6Dx2WRP6USFMw7fjIdNi9wO2rxqk5HKuSobP4RzDu9cnZhuOOb7KjL7Z3aa9okFmS7aHVfL3Mn2EZ7uSH3hp/TXjIkNUm9DF5p5gimFKliTGNqqgc0t6vBJt50/b2ojwg81FBhNDLqUdO8diqNHcNjp4L7BQ01xN3JUk6Os90dAqK4bdPZ/tlG+BjzTTm1FfKKLIuKQQtdjjnnDdZQ5n7XLFipGgoS7KcJfwU8e9cl4udRogPTtGH4wHxwQqVsRbyFQLZxpIB4sWFOyNxCWd5/7spSG6Nbg8MrmhU/7iQynJXfeE8Ij+s+a7gjbpj3iowdBVJIsXj3HBSu4Xqxof+qgkQYa3FJdK1rvH8lZZDT7JQNSRLZbKOb0z5PlLWbBYkmiwfQXXmbivGnjnuTDIQaWWeVa6ZgWkIam8+rak5LmPpLM1RlLMyRtF3PSg5klX7aSJuJNHZVZyxJmykiSjUr9WqG6wPJXp7OvTZeqDSsaPmkWdqaYzF6kkE1Sevv/4AQdbUv+U8rUjp923IjS/Lataggq42tK38rrOhQ0r1LUPvnCeMj/f+X6GYnRfd2nAiQ3MUUDVOru6OcGXdg6q+GBFgHcbnNR0NdGKopL1FGSK5SFpUU/TzceX9c74LRrU85gqn/xBPfdKJDN9g33xZue8N3d7UQlnwxopV2cW8rx7/aTx9QiaE887HppHBJCK31DkHNQoCLeZOE2fGjwatTTrdHloTDP2A6U4yDD57Lp+VMnLcjdSzQ+PDn7wca8tuzbV3xkNd/skfLxhT31vm1vxqpZkTnRxUf7yda6tBj72JHZwZeR3SvE7qmSa0aQqpb1fQ2WGv28cSCtWzHnpnJnlHx/Hvc+teccdWaQ3eczYxZaL3+ZNm3u5rJZE4sKJ6wlXWmPitrZ42W2PScf5cm+8sQvK8nkW+dU/JM75bRzs2PCUv09DP03ku16XNBacUEmWgGr3Bc9y8KlBlvWRCNBQY0jzqlXx+fATFc140jnpxvILn74lM92lW1mvIbmz/fTr2YMzmedAi8toJSNmewa71JXP6y9E3fVBZLB+qpMV9NvxgzaIpPs9quSXqRS+TXt6i0OnpI/kv34/qYf1kjCZXf8ggo5gHCNr6/KWSqt+eCJDxQl1vn7yzKvbmfr6718Fm/ql+lZtziRPa16aKsdFOLyioXbxR/gnv+tRO1MihT7lsihE71xQSyUjZRrBbbuYCe+cnhmILhF+STnLOfwq0HLB+cX9SzSi8EiDe40mVLL57DLHPJanc9/5zU9uz5rh9zAsDxiieRQxt+LQDStkx9ZmyTNhrkHdOxxP++qqSZ4lfJXso70rZo6yjHVOyaT8Os+bIWQHbxM8NtF2pogvuFExEsxq9qbiwg5FtlvYPW+61O4yP1OuzW2q9btHIRcbX58Jt7DMbK/LbS4r6GWqcOJm7C0oCNz6UBYkOL/h/MYd3or/7oIRMNR6vNtyOt6ql1lCooWrlNM19oqYx61RL/MlVB1n1/IblCBGqZhKStIG0fapnyXtqOzObJJA5tkOB89HlZTVuViWorYsybSv5tRMlUKvEyDfnTxlqRhLdb6dejM0r2nOepS3ce+mTPTzY54wtP9UGENmWM/ZdPtXF5ZTTt/1n2X/yKm/PRuM3pt3iUyp2k3gPH1vm5vZPn1N/qv1mCPgn3nk79xU1EUK1cT9K89ScpY/CvefybnJIbybu9tzMbep0OLNu91A3FFm34/v/cvV1UX2t3HzCpG5IoOUKsuiNq+KGyueBdGZV6trfZN0ZwfTrsb+SN44ot8Pe3e7Jy9wj9vwjPVnVFrOp/pgO9tuhq/RgQt3WG+1KDRwQ4Y80kTiahkafHmmnvpSqc2GGX6apGx582lEgzupguzV8KlMV6OzVC1872+2FQSLb6xdq1GQD9hLYUPmBIpwwu2fiLCovPz+yGvlaWzjyj1/w45ApgbUl/cbZyv7zS7t2nBKuYep45LGCw66zDAR2ur00TnJxhPGKSfq/ZcGX+IhnefknUoCbC+M2sE8zDlyXt889Spo0W+s1aT1eL5B6vBnuwaaie7Vm0UK440rK6teLy9Gic9f2Wc47MW26g2qGn25OGWsOxmvq65suX4Wq5k2kaZ4r86LJ/IIxz01WomhMT/qlNc9DWuqFytsZp9/sDMoPpWkY8Iumvzy+M73Od7CO49PUSV8vcOw8bHTx3VJkv8tgGzG097Yj1PWvtKwqSH1CseNbct7G6CpXEr9Gwq9cdaky74GfYIhrB/mdkwoaTkz73RFr5n4SNNl5PpC8CR1A9707CpYEyxStcXjTvPsGROjgq9r+w/nds/fZDVDar/1F/dDPQUzKMpBzD1QWMWkRz3N+Fy1VZlPJ9qkRPrJ8gQ0wp1+nNKl8/pRUo9TMH2+QRZl5q71o+XbuEKB+M4Hj4hgFGPsRF3BljqDH230ZhzEjS9mYesZA9mDK4q8IYxFzPiN/Jur7scQ4LjTiQJchjfHBRhHlcq4Hi7Bh1uGj5tLTH+LbVdd3AnxXidZLfluxTt1TveJjFpL63vclwjokd5N/4zmgqHJbw0Yk836kyGnc6apo3JSfUgb0zXBjq5Da7S9TRq9JVtbXjNz7YbCfXsyFFY0veZKHBN806suYd0WX5rDLX6MRuSdhHU1qolKGHV0htXM5UHaEIo0KO+YhMWcnktcTVfYEIbstOFSHruvhp6iobJjg8KnX4bDHLom+DbBHSGW/SkTmZ0BFOH6b25bqmb3q7l55pZ1sqlwh7ehkCb6ofSCF65lBgUhJrQL4jxPv1oafLMjJf65XvU0/eR96jmBkb4Og/emT8ScChpvGbQ3bz7z8cTLnUldOpXicaQmdzlxwEHBpK05w1tkoc5fLmZj0b/djs2r/rEdtEQxgHxRMfDU1/jgST6W3AsJ7d62e+GybWTPOHe09Cf6aNL5DIQ0HuZ5wJbaFC6PTlAOz8walUfyC1gvKtmkI6Q3buoqv3wWKOivnqPKli36Yzk5JKedqoQqShzz3Z33zFibvbCR0yvlWu/VqpdOUvqSGyElvnK5apwJEUGT1g6raSJltxEk5p8bj5j/YPUWsi61StEij7XCpVPekdRMCuZpcvIc4WqgUtJunGOVXUJzRp59/nYoz/fJ8R981K7xdQ5ymzunRqNv3l2DjHhRhAuRMdzlvyy28jZJ6hbsVQLsrOHzO1T1n1K16BYq+LKHpkSnxUUnzN15bmYISKRtvIzeM64+w0nqv/DI4/n3at+zTNRWWcV8qtfIWR4L7EcVT9/zpvAVUUx8YnCT119t0CGRkXqmPi8XfP4krFtlIo7tHbvk3RkGNk53J5UcMb7rsRbwYfCDFAzzoNzDu9Ekx742VzW9kJ3ctG033n8p4V28f29unft1I/7I2NKjOPpP0mtCORltOZiV9NMfTh70WW9IUHXu8H51PLKyBePk9cwt4LjRL6QdauQymrbpH2XX2HViY6ZzOMy9bbTZpR7s64U297Wj0lS4srosXZxJ2uLthmGepBnjkJt0a3k6vW6z89SKhiJ/NI3xmPVeJ/PF3vTertUby8YkAo/urA25smWhp+gyVC44L8XrofPLE/IFvdWrgt3f1xZgVEWvTRwhNXL/HjHwlkx4Kpmq42axk6PNlemdNdbi/YcaE0+D+PNt37Pe8tDrbVO8Nej1IWSA7gJn+dkjXzbczk9v7TKu2Cmd/jQZdH1Kxgnf71Ff7lBWv1LswHT7R641OjRYj5lGZ3T8TFqyRtRTgK8fuucue3CeedzAVzlJaj/y8dwH1W/f9eLs8zHsfZzqCXvbvXs5She64e15WtLPKKcL3G9vtmq9HVg5llxzKi+vbdHX0dS6ebWWJuL+7eG7F1DRaTk1e8WcyB/7fPvd5MH6g95zMfXH2OiSgl4tDA2YKVAOJE18Tpvr9g3n6GA/7/OAR+PD1t2PLS/UoMsikc98e8KqhuKXZvLkC+E4M+PhkSuft4PobXvkfei2y6lBm8t9mwKLW3XsBeay2ztRupGe8/4HB6TZZ/t364sNptkrlC9InWSq06Zu6b2bnG5hQvZSWNondk4O3NSS3ZL9XmG2uhJH96P5AZdX7651vrwR5SfaZ4MJ0ALmPXRfq9pNb2RqpF93sW/28sevG1IWYuEkHOkHxxvV95GX0J1heqTDEasOZY2vksrmT7TsPP9QMpYagBdzFT53CWkfdgOmVNcw3OUwQSr21Ld8zqCqzu57sX+hfBOj5mJlmvecH6mflyJFDK7e+MQ1ycRLdg+/3PeA7D0NYM6QvXP0qJVEHuNwqsZXPC2/03DbU6kMX2xVUclwFUOyd4Wz8rcDT4VLDcUXPlDaQfcaMBJV48MSx00yF24L31CmqGKXTBQs6alWJ6szzQsWoR7xIWcyEMIrUas+yBBlXv/hS39F5SyXv+4ostDBKnh9uuv9Fui7ZDHfTRKBfD2cdY294IZSD4rVwNOiuDt7utSvNU+btmYzZu3SY4iiB/Xc6TPa076LF2UVZ6TLgjXsDK684vF67dTnEBAxULSF29bketai7CQeHyt9Ig6n7sqYtya1bMDywtWGK6s5W9p23OCIwkE/RA+SUMPKu0CmtbfU5EndhnpbWE75IjjlOIq2AHUmJTchwRf1ZS2fYyf2g9o+JMuzl+xVYgJ/pqB0jcHeyuQ7P5Wxzc/Na0eHpoMn79xONa0qFS8xclHaMl9YpD/+aDr8RQ7rOe6+bbau3q0r3Z44Mp7kr3y6qPlb+UqvqcKnS9GfH+AoIQnuZtFl58586TBDxVN+4r01w/h13Si9l0JLquxiXtP8sIWJn9OGb40n6ljC7smklvmhUj9MpT3j1djr1gF5OVkBRidt1Xc5pLcoFhsOhp+z1XCda52PPTveP2and/98LOLhcWRSqvjXJSMnKxEGx6qdGMZKg8kXKScHL4v5tRxdvL31oTTQUSjKZT7y02W2waXMKq00s1PKfe+MF3WMG25dtb01mKhHqzv9tbJkd9SkbvLbHsvt5WJ/r5F3rx8eD2WFT7DMPyD9gDTQ4EK3JYSuvRgtzcYunOR/2qfMibqKc89upTxy5ZH9iudImZE6/62wMDHDDZpga92kd6dGZW8Y1J8TGdM3Ogh9Xl0p+qhYnM3M9pJvVAr3/Wv2DdyT5FbdXhJcptMw4+e7wuuf2OkeT8+Xxls7yYzdnu1wWStcbji6tSK9M9WwdkaKHDx6bjXlgrHC5kiB2fQXI5hr6zPZWrgVRVkUiHtIZeYOFnPkS/RR5uvtX19M+g5wfc7NOaWnY/siWPnIgC+t/ABf0Y6TAq5pjTpy7XzvfcS7sJNdmJDXt6O9pExEJ0B+WJYvF2djDWrNmFuvhvmcvqreVLVqY8/JKY23e6mmuqvKJ5+gF3J6Xmf1ZOO9/e/B63d/OJBoRPqvWLuMdiMvkci1sj8H5zmxU/vJtY2R6W/kgy49vuU9Iy1xObbuvDhOxH7Cim37NfnwLpfDpVEPus/uWsmjLV8oQ/3OmXeoI1TW6kb751Nufa/h7Kv8Wrm1+jGfydxrDK1nxclSqhDYb8D+GDpRPvlAQKJbk7djxodM8GLm8e2EsnSlByFRAfInqfHHXw9ujle260f63Dy+TP/FPalq4aVLTNDcPEj1JWSujWKAZeS2Fb3LesGAT5m8NGYC/Uzu2+5Ovxcp1fzGHSE6Dlz8kZ2CH5XRVsje4eOrV/tTvszzWg2O+Ji2+KRLF89m3mVL8+aV4rqIzrzxejZn4+SVq2/Ps0os8L7XC314w3DChqWAWnE1u7+4Wohr0GBBKap0wPOTK5+vrVey0F4Miaz6scjKkvwp59S6dMi6fM3TsC9hbwt7Uy+Vf3jKN7tz//PH6KUvM+TZZSaCGGb22NBbJTOD50bbr2z8GM6yk/+OnKBJDKPfzwu5AOH0H2dhriL7wJBcKP7KjvHY2BP1b8u3huqWUpF30wP7NcbkW6NlRKU0Ika3cqdaOhpP8ZP9kPgmMZP8Kv5Epy+61DUrTrpstvZBnvrFshgp+KfiPY+97/CaHx258zp6pWt00f0Gvgbe0i/JXkWMX1XLWERN2xukzd+O+h4VO1hxe5dnKXnr9oCiz72FgcwzO6N0w8/bTYq9K9aT1bOvdbbd0ER73WeQzucsF0mU2f/e5InrjijbWwqEY1gPRp3cZ+Zw693HSEfyMzVaJ3EGzuRPGBc2qTPyLRO2VqNO0zveDctzu3Bfv6It4diH/c8riov1697vGHddko9ubnAG7G8FzIY011azFMNF7fmzvywe3D2661dtsz/p9cXj2M3VhLLNWbsDXdDu2vyjDY/Ng3Svk6n7xQF7ebt3T+9KSrROrClxHpTu9jUebDL8vPbW7Wuq+1d3Yh8r+qsT+6+m2L+aYv/HNcX+9ZcB/vrLAP+//2UAotHJEuhxxUCwCNzhXD1tQ2NAQU4EN3V2xQmCXIEw50YwQUChWDgMYEsZLCoM4td2BcgDHTZzy4G00GgngFJVJNpJkKBb0QsEI4DDXA4l+HdYD63oN+3B/qSB0J6JQglBgYju7ArBApoEBv/Gzk0IUV8OZIJGIwm7AGBuxI9ugBoIXaMgQiUC1oUoOcI6DsBeBvDuhsA5E0QAbI2E/7UHsJEBj2EElg/dEQonVIkJAzZ6GE3hggQZIhwPOyN+2QNhW8CiIEgQGnodDjtsRHVAEwXshDvcqJwInc9eaELLgRsWhHH2wgEeiCRigaGdUAhC5zaIWOwArKZxww2BwRDoArwd9zO2/loDD7B1GK0JbbuESERs4P65N/2pZgAE83ub+F9d9n912f9/6bL/qxHmr0aYvxph/qqU/asR5j/sahcXk5D813bCSPw/1dUuI/u/rBVGTFziv9TVDv43emEkwcB/jlIQKRgEKgqHQ0VlHSBgWUlZuKyErJQE9L+z1NVRBuYo+Z/ratf7+672+wboYdFjhIaYEOFaXpVHUjoxnX2ug6HJUhXKB4JqoM6KIs3zCjH6p0/sLQQ/kHhNX8tGlbr5jmfNtockSqT7TJRLYU0lbeusgfj/CfMBDP76+Hnyc/rj8vrLt9X90/l0G26+fq8vN+MrM0gdXDyh07eukeO2C6ieaSe7iFYxUc9nk9nl9GIyvchCyyWG1FZ3OrwYTYfax4KH4/PJdN/ZsHcoZg6/zgAAXvI3eaQSn80cxoO3SositkYzPxwCMJFDqhgr4kUtqRkcRcekSNn2rZUVlJiMs/jkHJwlKBBKJgRP4LhtmWBjtwLSuwasQC+eaugit52mP0XXkP/To0DwK4SFuVHsBCqOcP/wuDDAERbmrrEKNiJogyB9UbMNu0PWNR7XCXX/8PhhYQYJvvZlhltZDaVD5yvvwJNo7F1yerjsLnpFsCDKcQvca/CEC5PJm+izRQvEawyD5MST49hxtFlp+tYSeOp6FVCGIqJdQcmbPHsX8DlbEPCkDNLaEDCCpAFHcNugILSoDZcCDYYu7UyjJak4tolf+PoU0FqyNdoiYMYzIamApRLqfj9wg5AD8k5AG0+r/bIdigBWFTr1awzb0embRqx6sSlT1Iewr78eQhK47iIXstcP9cqTl2YZ0QpTCoQodyarr2cAv3MY+3/yZXbvvlReISXg+8lsxzPH/B/V2dVeVFYbTurj6f+6liWq9UFOIm12Dj3VR8L4YDPPaWQriu2y8lRj7KLPCc/beD37CwAA//8DAPIqS4DgAwAAiRiGtQ== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_0e89c75f-7ad7-4331-a2fe-57579eb8f840.msgpack.zlib b/docs/cassettes/qa_chat_history_0e89c75f-7ad7-4331-a2fe-57579eb8f840.msgpack.zlib new file mode 100644 index 0000000000000..b529e74f4abd1 --- /dev/null +++ b/docs/cassettes/qa_chat_history_0e89c75f-7ad7-4331-a2fe-57579eb8f840.msgpack.zlib @@ -0,0 +1 @@ +eNrte3k8lG3ftyVREmlRVCZtwowZO1mzJUR2ss1yzsJsZjHGFkXa5WpRVLKEpFKyZSuSq1QokgglS0PIvvee51BX131d7/157s/zPJ/3+Tzv7Y9mzvM4jt++HM3xPQ5nBAIMJolGFcwmUVkAA41lgQ/Mc4czGEAAG2CyotIpAItIw6XZ2zk6pbIZpGYlIotFZ+qpqqLpJASNDlDRJASWRlENRKliiWiWKvidTgb4ZNIwNBz3vbBHiAIFYDLRBICpoAc7GKKApYG8qCzwQcGSFAhQYWgYtBRGJDFZNAYXhqbiYCwiACOjWaAIMDYTYMD40oBEYRwiCUuEUUgEIgvGAPAAA6BiARifZBALRqLyV/5KTgWGpzEobIgYyIjJAqmjyTQq8I8ksWgqDAPA2FQcaBIWjYaDcUig6mzWXygiYGY02H47J1BQJgeUDRr/QUwF5sdm8iX7yZQEioWHUQEAB+D4utHABQwOiQmA01hsBhWagWbCSEyEggpMgUEjA5BpmFwmC6AohKnA/mQxV0gQEhPmhGb6w8wAyNw0JglibfTrashof1nLX4P7dQ1ECQ1jAVgilQSqANkatD0NhmEAaHAqjUOFLTg0CMYCF4NCUsFRJgVNJoOKQ8owSdAwAzQsQGciYE5EiCKdzqChQZsSATIdfCSA/JkwGgNGoeEAMhMkhfUnAzAcCY8nYdlkFgycjiEDFCYMwwXfBpJwJCoBMitlgR+FxgBgFDQVJIQG58GYbAxfGgRsD/cPfaAl0FuVHwwhjwJ4PAAGdSBA5sLoZPAFJDMQBGDZUDgshDukMCgtCQgEIKYkBoxAQ5P/7A00k0mCYof19w5BM6AYpFCgaEJzQV3xoPEgiUisv3GLF/iGbwroFYHOgqsjNOFgJGBo0Fwq+BYFfjJZoBMo4AMeFAYAX4DhQAdzFJwI0UIikGEZRAANhWubgFQakcZkxd35c1beRWOxAEgfzBEaZNO424RgEl0FtBkeCs0sUA0qwDdCXJY/ANDhaDJoqvSFVXE5oB/JJCwaGlf1Y9Ko2Ytqw1lcOvDX4SxIOzjf+HEP7EAhTKxU7blgDlFhKISGDgKZEwQHbUiiksFyAAedQYhLp/PHi38doIPRARKBL5amuPSFxXd+nUNjxt2wRWPtHP9EEs3AEuNuoBkULY3cX98z2FQWiQLEZZja/5Xd4uAf7NQRKBRC+96fCDO5VGzcDb4jCv60GGAxuHAsDaQRl4xMx9Jo/iQgrnnYxweL98FQDLQIXGsyZb+dPYGphrfW8iDquDi5+DBtGSjzIJO9OGe8K8oimGVxQI1pBUdpq2lraKqraSLhKAQSgUKg4JRAlL0tBuFvjfCwcHHVcAC4gJU7U9dNjeRqpu5B5tDZrn5oO/Iefws8BWdrborei3RD2NGdUOpm/to+ph42bupk5z0IhE2QNsBlqnE4rh5stMluGCgdG8wyA2dtpCODTbLTNaHjWX7a/iw/hLmFs7Um2cSe7OYSyNLcb7HX3x5po4HS+EU8NXVNOHJRQi2khg4S+rvzIzbIAJXAIsal6mjqZDIAJh1MMOBIOmgyFpt5OA2MQ+DF7xmLDSHFzvqPEF6bZgbGZFypBYOkAlPThjkCdJgaUk0DhtLSQ2rrqWvBLG2dsk0X2Tj9bQjec2KARRnsCnDzHyGfgSWyqf4ALsv0b4O9FAp20JOQ+GCWwoEgsJYA8EWp4rLd4A4LrRBuZZa7kFlwGoOAppKC+WzjSvlRzwkO4uCwbByOGMihIHWDNdRJGICNxT9YXAJWOIgNKBCcwoxLRWkj7yyO/Ii7LFBX0PNIOBJVBKY+CQumGaQMncZgwZlgwWKQWNy4ZhUKOgjKMQN1lKa6Fmj43WCNxJLZOMCRjTGjUcDIZO4GCypApqFxD4PgYL0AyCQKCXQM/9/Fxs6MS9MEFxf+dQKL5g9QmXEZGny3Ist+ncEAIPqQEn+Q0dDV1S35+0k/SKmDU3TUkA//PIsJ/CoNSo3CLPzrhEUSqeBodtCP6XASLq55G/jgo66F1tLRUUfiUAAei8Lo6OrgkTgNLQ0NTV2kOgaHumtqATcFazsAd+QHYFyGmft+E1sr03w3+K+RBLej81tBXAaVxqSCfSndEWCAnonLwpJpbBxYLRlAOkjLwcQ97oEOVheLwWuhNNBYQAOLx8D3gHXoB7WfcZcGlVr+FigyHfInlVAliJE/KSbA/xNmnTWxFkZJRQ/OrTV9RSEVFK8LWRWnEDTUYW6fltbc/IH427LLuzz2fS/GebUED/1WGcqNnWhDL7lOvu1y3SajarJ3RwGnJmdexfPbcEO/vC23vPvync1vZ9TaRDVfLX9flhrn09hwNnZl1esI2z3wS149NRh3l5MpD3mRGbJeF/MO7DhJ0ozzev8ap6WaZdIcp/m7n8jdrQIRpt+7TyU/Vc073Dw58SnOvSDTJcNOQCmuRubGZfjJlSlPCURFsaOG48wMEdYe32GxoyUZAptvpCYkJy9JmRL2e/HyGOVOIJN0Iaf53ivnildFH8P1AWbDU7ODmye/tL3zLWrZ1mCzpcc3OTM4eKNgyZhc/3yDAyou9v6q6UdnJXpO8qrtrhKM3vRFLjseKJNyf9buwc0DD9ihqLTpZUTTkMBLVx3GNdcOutfRZOU8bFDN4U3hpzp75QQEvn8XFqC2uEW7CAkI/JOt67b/+9YVoGAAHOS2hU1rc0SIAolKZ0MN/uBBdV01dRWYppq2CgyF1AK/aqhp64IvNNV0VGDqWuBXdQ0tTRWYlpaalhb4gPT6U4OHNqbwnwzgaBwajkSqQZ3+R1v2gTaLaP5uAoNmAloaCv/u7P/TOzspEGOHdcGQaRwAt1fNzcPDncJwNtnv6o8B8Ht0gxz3WrtamdmzSbb73H+2Tg2dn53dioozdQhgYYFgBlNjfyAW50ZkORFdWBaODm6YPWp7Na32W3MOoJh7Tf3A6obZj8PYc23pHIK1HcHMnYT3sDdDOrsy7fcBGn62ulR/HTsfK5b6gT86uxqAwOJsOPuskOpBlkhdG5CQlkWQDxXpSA3SsfGgmBH8HDB+9hposvkv4mlq/kc6O0rtX+zsMv9POnvxP3R28P8sNA7Yu0kEEjUuWelfafzZi72an9Nx+X+f0f9lu4MUdbX/6ZsDzf+6zQE0RVcX9Z/YHKQg/3ZvgNPFoLS0MVh1NbyurjpGF9BF43FIsIxjsCgkWv2/dW+goaOjhdRFaur+h/cG68X/2Bs4BbtL3t9X0D03oRw4fjtM4bBDVRn24r3lgia7r66EKZ0TthdpeDY1uCm0/MpAGQq9Nwpzm+AxlvR9uu9ueTvXa11n+/fZMc5BCfATa8Cpedo/eGh+emF4frq2ffA7h9Dc1fXVpXRzecshmVtNt698n+9RHSivnW1PnJ/qG6wsm3RoRA4f+8jLjxm2zmgIHFbyGTi94VHII1O/3kTh1IlvDhXB6hc0tmXiVMy8hW+X8q7PbX29/vv8Oz2cXSLaDP903RLblWeamiIKv7kX1VioWBc6t67YHuDW9Ib5ZVOOtnaUHioj16vSaFx6Wb/E2O056XszxrKPqPFLfVKogufUMzbpX2mA5+1ON/PpKUrseNAjnR0fkyXvqEz3HTZ06h3aZENxOtWy7dX52Pq5jm1TDOkEKfzFTrQBvQ0xcvrWMk2eMU+senuKxF2Twl2xltkX5g2TRLQPKxwXFq95K51zfJO05OtUiXuovkxv2aiNvbF7zVquNPkFV3QIbcStIkfuqo1PlArfcqdN04LQH2EFr5DQ+XLasvYg3r8kwFn4ZtgS3WfVR9bf+6a0DnnO9AyvLCliCkO2Nv5Up/BaRnLVpk2njXu0lNysVAxkJlOIHVtLp9+dPKWVdLh2TqjwmiWuRvoCqu6V1LUojtX48NHGN+PMzuuexbIWH90D3Fcobcj/Bk9Ob22RfZPkLHp19dlM2dxmwFZuSc4sXbr09fyX325pZA45SYqzaZNpL2XCbz4a4dLjGKG9HVgJO+/X1emV8X0vCU8mEqXT2PPGxh/DOLtWBgoSlGfsow81TFUkhazuz6oRbj/1sthbf6OIQ9lWEa8mI48XGkrJB1ky/U+/bJR4avh5SzEg0Uj7dK8b/S3helg/tSHMesfBKxkPHlWIKV4uPblyR8DDBN+YJ6JzYZJa3vFC3hdmLR62yuVtCIhf0Zacb+pg1vZeQVD5qMgKy36v61fsDs/Dk/1qZPovEulGTCc347ddcu/znl27V1m8fSZHf9TtQMtBIx1nC196X6iapPwtvGKZSRArRUh+MOqWTJlBgL2Rr3xI8DCQ9Jhb/riI7ETWv8t40HomULC0s+jGtdgyg5HVNKEg5v1706GKEZvaOgXe7dLdkhEu5kuM6RPaTXmWs/IrofaOp3bk7+ukhTTuBMbPnTMd+iSGsBrcdqfnK2uoY6mBDq/UJ23eZTitUhcpmxUiJrDP2zq/SyUkffqcBFem6aMF70n8sbQCn8bVBPf0oByfVX7nW2svP1URHzd5iq20v1Y/OXZSXAPReFypzZywOpBnfv/DA8vYyobuNzeyxY+Zr07umkcJZpxyFCkr2H5dSX+97/zYXWbd3Xcau5O9GQf3IC8JmGP2uGt8aFOT3O765J3RIemnhi12Qg8VNwfgXlAMsJq/p+mXSLr5UHsSdu3Ojw8fIw/eBUYvTPsL322ixwQeTTGzVosJ6fVs3rA7N+Perm7eyuD2AZv89vtvL/rlm/q2vbmcU5mBV/nQJ5PzSULz/ecKvPbXso6QRCGez62S758/OlSknpc2K1YSfNF6bU9m6Wd1eHqfObZGerWiuWqMB4LQ46i3K0vjYLzkeM7OphdhYVjkMc65rPUv3h/uCI9AbTfQou2/apdpL40M+BTPqzOyPLlXV/T5hHfqw9VTAwpmyIgmuWCMqjPNV2NwkyTb6fm7jy/u7VQtpnXc2i6bn4JYcs5+5w4bk8KdZ+2Oa0W+tBIpFh506Alb9Q4XIH3YqMQjVrDmXYxo8X3ckhc1LgfTUU6CEtuj6R1pDdjcluf2579eNGsauZFOXa7ntiQmyi9Pxjy3o1uqLNBkDy0ow7ySQ4iyPzYuIt2d+TKDQFwVcc7LatMh0/UhL2ttHm7cG914dXPuVC4cAWsu33oiud9cxd5NMHrPm8wrhHO7hx3KImfnbzrCg/RTAvQLlc6m4lOUCAbMwJieJWLRKfXizcO+d9oGJYhjR45qMoNH34S5nhgKj/OrOP9BM4k9plx5wSin6Yze1mF8oDHqg5HZ8u6Gqx6Krjk5NJ8nzjXKBNczKjOrgaVs+cClvdHl7LoJSX2X4k9XJAfnXKM4LQdyuAG3Q6eGbgpblTsff5fUTp7KD9tFNTxvH6ZSFVwX0fz15K0dybZB4X6mPdPb37GPx6RveKIbmXrl8fjVW27N10yMuu22GPafORF9tWntuKmPo9CTBxI5hJjEY/TqNqGYWx/QnO+GxeIDTPGKo/fX+tjVVwxmL11C93W73LIncXf3UmShpqEH7/ltEsCWdLNRrNz/e2pw/Dttx9EzFyyiUAaFqcUyW5xiRiLp1Mm3R+XD78zZpmeW+ovn2snlHENYdikhPzTnGYqrFPZtmJumlPGstycrhPke0ZG4lIDa0PEhf80V78K2G5JSnmlsg5vSVwznSpTbl7l9WyK3RddMo4gVkrlz3fVu64SQ4N/GtEOznm3+ajZ0/OmtMv1t1D6Hbf361ZQ+asCT6AbDi1+bARWs3Wa/iYEjWTuYfaGOa5dNshyPmW67NeZZKm+/r/Bj9IfrG6dNhGc+2Rn03PYmJW3SY10Xcjhje768D5WGWBISU3Go03n64Qr6bUmV8iHHRLvh3CMl3x9i4Eo3EnR2WooOHlZ0GvHvv2/7LnBoU6sQTxR71U7inmwd473opiueL2XmtlJ8r+5Y0Um7SXoz44ez52QFecX6a6wfNBHlnd3ce+B4CLJMfnCZ30T3kdvWRREctRm56+Y9BuanR3vLa6vMkA5iVTr267Qmw6cFDg1t/WxVWsiy7JhgrsrRjWVqJFWdFOmcDkne+/B+761W2XnOqUD2QGGJfVPW+XHTk3efChM/v+vesGZGdPZLjY+BnsCegm05CSnhS59VHm6TFnEK5zYlUNa9nC2VzPs41bK68zTcTZoS+61PN7fetlh7iNAT3ViK8VM2ojtkZ6Dya6uZRvFmp7Ys+3TY+4RTb0ZG8IdjBfGc5HCu44b4/fnLVzpmbwm+Gh8afG3fyicrxj6PlX48Rqm4J/gMvoRYVRAeenVSQuUgfY+XbCnzbbG1SHXfZ1933BWtMb2MysCa0zoXS3ZhSpUNr5upR22b0jnsLLn27DlrQeXKal7MkU8BQw3irifKdTMJnvCN9vvCnhSMauag3rR+9A3st3j04RDplnfj46wJlzDW8Ytb7mvVnbyiWjUW0iC2vWtp2UmT5GfGvxFLLtV+jr3m2uDCs0QHiQ4t3bhpmX5ZBKluVmpN7MQqOXMuu6dW69V17+erEhy1X+PLi893jIVuyhH+7CTXs3QENgk78+mj3hFzIYaQ1+WqNUmf406jN0S9nolcU2GUV6AFfxSffDVRJLD6yKVa5NMq+dLccFVO9bNqkYvuk+aBPLYvYv+Aa78e9fqditiB2cd3di61+5Ah1u5FeeW2ZfkusXG3mxOyBxGKXrAdUZbtnFZizbfWksj71oJvj03WX8xp4UiF+lqOm1i3cjmd1utdTtt2mjZM5BY1rr5+fU3Kl8AvKTcvnBKiKl1OLQ+/0udUYya9TYS7r/7FsYubWJfGJlaFhIzW7w27K0q/LCL69SHzSbd5mIx931xE8D1E0+HnU3qfl3dadOr2vfu8v1kmol+6fvS5Hudi9IhQQJOvbMa0p6rR921wVspFTauBY/EE4TfEHmyliM/T0M60ylsB+U3Bz/q61PYJ6r87vj/tpUJ33vMNelKj79K3XxWb7Cx//sF1e7bj12MtZaoKNn19R/zMiblTmjLRQbtqV2qmZg/E9yGr7F9Zi8tdeZKyYRtNXF9d9ZFJ51My99p0l69g4Bafw5XBZfnflgaWDqf8XqN9/aDad3ETthluYF35uqwCxMmgb0HBoSt9hhxODQqcihlE96UenHLTv2gzXXh5r+ycSiETFZadtNl8ZiW8j40S/qbVaj82FXQYHXJThRTlGamaWH8r2rX3hLHHuJh/otZLy9o12h2+1Xqr7spbHSxLLxdUbnNUX5nn3cuzE3yKerBKUchbrj+n7dFzSeVTk3cEV7+qEC0pj1kvP2P55ZXNR7lJ5/zNvLl0oZOf96zOPJfg4HN2J9JMolrYawyVv+Z4QzZl79LYr4mVA5rfhquCsKJvnTagEo4nl7oeWjqxu+0RY8jhUt1NbVGzccTj8ROxBs2cHZ/RqLmhBFtxJO53SdZJzXw3cnNptmoalYixU96UM1mw8XFdHrXhGi9D6/ukBdwtZvLLwUYnn98ELlXfNW5EsVK/DGViYG4WJ3Y42nvd50nCzFimaf3PmrLv7x0TLZe8d+th5ZINkt6uAUfyjw8NtDOuD9E1JqVnBrY0dpcEB+cEMI5sPO8qbVu02qOO9mZ5cQdT4IW9iqhS5vNjSFHpg8+9ao/ILHcQem396dVLXer1+IRlWjdmu9QmnLfb97YsoWS73HTPF0s0mt/THSgXz2o2iHrVr+ymqbJW6uG3ZWTdriO/t1rPnWq0Hh8hjA4bLB+QCpyT04i5/khx2d2xKN/SiMqQJAf5Qd6VxsM6j1sv4/1y0wGjOeFEsw17y+n7av2bs03ffwB4KU2ttTfZ98Jn98JPfjE42Ce5eftIGc/xTNyRWWk0asWGi5V2PnenzEXlNYj37i8zyCeGqQvWPVPQ+pIyXvw1ChvgCkj25z/kISiSRaVtZ449zOF2pzFzT166cvVSlmV1Xzxvg0tOU8sG2+UvHqWdf76kokopJ/vRqbi8dpOxY5yG692GBI4dp6Nhxy72iNvpd/GFq/deZu45ZzDh+2m8SWplVLkjuVhK5fLuzCEqUWiVN7tlQrl99mZTKmfNSFEzxXnSIe9McMbWl4RhWetJPdhaeW6JqFndadGNLTWnvhY39Ixozi9BPkm3rd+F8sJzNYTne6KGJNuXGshtHDJznciYeEymli6ZHRapip2oHwopE92xRfM3WovkHbJMXUkSQUm5RUn+fcrFj119vtkKRVnNuwu/SLnb7l1dVPBB00jxSWPsbxLtXyK8OY/lqInzJ96Pbp2oqBNV018bZ3WU1jLquFF5ncaUaMoXK2ce0HRhdfZNLQW3/hWUl3LrAlgPlFe9XzdBPnNth+e3mKdyBbUZ8V5lyeVvtibsmtceNAl596jCQhe91Vi2scdx+I3qZ3r9bq2aZSfRNjGbv5Fw5ictx8WRR99sUnZdW2QdNrhsSOvC4XUM3vDUyiqp3leXM/xLiW92iGsNXSyTSBA/Iv3VJnigY0S98d37U6ZGKUHN1hOfIgK2ck3K7sTuCiwdn+4UDZ9f7XvAUof8nDLfnFwkWDvlgmH1PyQWaYeIUtfuThXDzxyzOGu8PoSTw8tY/uLL/Dnjfe9lzCXHpF56sDb7BhvpizENKfvt3pwWHV1PKCxxf7A58GZZ5L2YpQ5rac59eZnTFXZV7IZHG2+Xx3ocT25ziDqA1heIrJM02dy2tKGkzDL+wxDhcNTAsoSx4mx4qKm2L8IzUmlGn5VB20nwdZS1PGU0UVA8O5zlcvbV3gcaugmGqkZTU6uynURP2u7x4tWdqO3kfffX6lDJfuITnuGc7z0YPj0eL4+uv5ZKkpVYvd5eImfDDfvUlBvRHZU74ZrUgndAeIrd61jJ0yGNFmk1r6U8ArpSht9dNjrU+JjktL9hN+1m/nTpp9hrbMMvFfjjEnKTjN+ueSiXx/nMGfqppr0iV4ZqrcoJb5eTN91Fd3ddtim0Ybnl3Mv9gufQzT6ZmVVxz4+03j9OJgmPqDTWz75R/VT5O+ysxRmecjtCQg2+7NLW8umWo3Ar5AX7XS9X7caeHe8PFdhs70HErPHGaonVKx91RjqPuvhMEVvlJ5dkHTX0xdYO5n3DhEsTe4LvdRdJuD117I4wPKPM6xSJ4I5ZSlGKBW7Zvm2yvWS8anb0t8G9bCP2hp7HRd5rssJrL2t9QCQv+20k76mbtZEunCY//KbgHbHy7fYJPO3x2FRmq1xi6OyXC7tlhFVcTTIkRqk6nxKM0C8vtVw7cbdaIeHmoG9i6PPwtuSic1oOSauISQeNI55cVjiSZ3ox5SUPCPVQGG3tjSrsdK4RycuT+l2ZlXrmqC5H99aMaNCHycGkafc74U9NY18I8o687pNM6dAwbojdSdZX29o+N3yv6ZLVu3ChG92upcvzJKqcSDrJ4V8pB2LGHdyXOFUL9H9uso7u4YWmJDi5GxjIXxKVVxjKqabaaoQGZZr2xsNdCBzGM9Yt06BA45PTMfD7gJjj6n1yk2mX0iyfzo1OfoSnrzHydjHcKFQX8XrLlywObS5NfkA8rQsDOy48EUw81hoxYxh6YNSpcDbx0CDNt+rLsQ8WH8aFLysJuRjsj/XqbBgMKDL0zTPYuKqpfEAz7GXSivQ9vAPZnXajqMEo0Y9LDyjFyrp+/xKrVbZT+dBxX7cZ8WteXqk8ZcmUm7Hl+p9PYx5nUcvXO3a6inZScpIvtmtPBcnniTb0WJrl9l2fKA9dNTvZrfOZYptgmzBbP2JZc2B9jDlVWKTvEubWmdvX2qqvSx2aqoRtk6e0Ua525UzLPCALfLXSVN7y4iqQflR418yL1uKoqpAtDVc5+JeHJA5G32qHIVtC88ooD8VxwmvecqPeH9q4szet8pH/+jenBt2T9bmKvcdtd2C/M3qSm1hDfT3qAbJaMz1wUZey6vvh6x90VbZvyhlebXC4syw8dqdw5JfVRDGL8cc3MkIAq/LZipTE1b5CUuyzXTSZRNUvTuJH1p/0lTu11dzlQtEIO0NCSqfEpl7tOaI3efcxSv0+HA1V2o3YNtqRp7tm/cu5r+3z3NGCpdJl2rK28adLpj4uM58hNNwNxkx9E3aJnBYhqxmuHGU43zh6J6He08bOmjdQVGI42Oi13H95Ws+WjzcdNW1HL+eNC12prUwjwIy12koz5mNoukVuKdEdhpGf8zbey9UVqLM+3Rfx9lNvUkmInuJmybxBi8cWw0p5mkm5xmr9UnEWiU3etZUZRwg9dZipQNRI1eWY5UedCdjP7dfq7Z/lCcdnh71O3dA6EpCr73RzBiHDo6f7qKoWDz56n0Rc7YVM9A4cFqknJohlcV6ETwqFVXO30idiZat33le5HBqduUVodw/+7vSeLnvZhgB25VrDLttobZPV94K9l3LGjgwaTd3oYiSFHn9VpBS87F0q770oWTrj3DLprh32VZlivgXPTOmHT+7rSl2f014i2hZz10bz7vEPVXdi9qtwCo6m95VE2v9mTOqSJM8Pn0gq8x4xvO+67bVdRKjw5M3JMxHOdv1SMrjy+cqLuaZT8vOrRQosHAIm1nORViJ47fah6fB6N8VoMZfvJsaMl3mAYJPElY406UJJ8UcNI3lRQm8a2JvrBMabDbFDidoJxYj6t1ORwt0w++9DLUOZheKjLfvmzxFOI59uDzLSj85yNmgUV+kVuv2p2L5hsw7lZYENscTRolB8PQ8YRouo8urq5Mve3O7n0avksq29pb71K0nSAzTNLtTCzAbD3IDXuwtFG6wUa0R7k7Y0cDJ2SqdPJqpjU0Qu9Vk9dh155b9GtU2mpFM8zfKZccTtEfucbaFmT15uET2VYCYKrAv94vWo2sNYz/zTiSS32o+7CLsVLg2xh5x4tVm/91KU90hVP4wsvCPvmd/dBbt7/qu8gfE2WPUQnb1bI3bw4UDMfEpFj47v7Ejlocm5Y6HiNTHPfo+X33whOfWjfNtIo/qt8CmBPDyRRO4yerbBDvU22Dw2fMSWXqwq/NuZfQm58uXp11bPDwciyytEJbXl6yvP8PLq37evo3e+ySLP1t1AItSORaHtXMurlyZe3uA5p+l8LUVy3YdX30/X4gus/LS0vy25eoS7vaVGIXu+Y8Mej/3gPuTEb4O++jtf6yVVLHVMDLY6HCboWLs8IGdYt8+twwo9hchJYOzOF+t/ODstGlDn4jc+uVxcZ2B263jSTde7XK5gv1jftuNqt3uGbdZtCTQQ/ErV3i93pod1dqVn3uMy1VNTD8ZV1z9JtKoY7GqWFBt/E5t0TOBM/LWXCZcefereeG+TCMZg75R7VCc7ILMpDFGfMEHtQHC7Gs4G2iS+fnZRsHNSIHW4t8FR3lVfEWNShS/46D/eTLZ+d/x24bhkXbfJFe7QjPf7omMC52KbqpNmPT+PPSSo97icRSRHsr9efKhsxMBo8HaUFo9XHHWrRQxdDJfgXRqXsPkwURxZXvLBsuTCiMN8l/E6+IqXhJlz53zCxydoro8OzUG/pDfRYkwmyi58fYjyVen5ZjQfcuvRIVxBv5HOme+5EpErmlNnZ5IODRpPzrwpL66dLK/mOJYdLf8+ZT2d29gx+M0A//U7c9qnT36uqXxeUmDhENuUJzzZBvunh9j/Mv5SfO6f4C/daWw+dg0Cxv1AuEF4yZ94RvgCxvEnuA4Bc2byUXLgLOg8DRqgkwAswMe8QYemEIwO9xOQCUHr/oqSRMCs8DAuyBtHo+5kwfypNA5/fGGqCoyJ5oLPaNY/zPnBnAEAMCYAKQHxpaCDSBQ2hY/sg07/fqEEiYElMQGEJ9WT6gQtA4V0ItLYBCKLCVN0R9NgAAuGJiOg40j1XTBQYoCKY8JMaU4QFBEIopNpfN0pbDKLBNoV1BDNpFH5WtNAg2FIZBKLBAoBygpAiEcIBglqBxqRxGCyfoITwRmQVIs4x0VU4w+arAWBFiCUfDUIABUC+kHK/cMkJoy+CLZUgWFBYViQKGgYi28SFoONhdCBEAwTshB0ag5bPFv8gW/dY+EIU4TgnTgWEb4g5MLEXRBA0wwaxQH0v4xBWNgfGkKgViAQTWaDX3CQndAwLBkKHzwJlE0xkIQG34BsKXQWnygF7UeDzidhgTQW5Iq/gaEuCoeDcLmKqF0QURsb2wWuCwjTRYKQumSSPwDzVHDkmwsKVjd3D4SnJxWF8FRQAQd+IjIhkzPZGD6akz9xAeUJ0QCXGEGzFdX4zNg/4aNwJh3AgppgQSctGBRKpd0wAEFAQLRBRRZwxBBSmcZmkUlUUCcFPnkOOLjgDyotECCrQMorqi8aj8imgEryUSVMfjxakECKKATMLhBgBJIADhSbaEhtOJ0Gxi4EFmazaFQahcZexNDCFjDB4GpTyHZU6JUdFdCD2ZPRVCgot3pSTRYAu9DROQTlhUzNZrLRZDIX5B1IIwfyM4bK/QHYNaEu0oYAynwoLD8bOZANQftxF8sDbhE9Cx2P/3Dhn9DHIGtTIppEhbT4EdCKYB7thrkCpF+yDLQ3Ec0EnQ2u/QOQzcD94t8/4MiQUQEqEQ0mMZSE0Ok7FP98uAwE+6b9Azx5IfAX5pGYPz24gGn2ZKshUVgWkUT15ysP+R365L/nz2CzwHQOBhbwxhD2HA7hR/gs2Cz+eT4062dOg4owcP9BXDRUUfgn9pDsoPokwq8Lf2b5LyDnhWE+KSKoAJnEz37+dH4csQAGHay3C2Lxjb6oOV8fXajggJryK9VCBeAHnQPApLEZ4KMelC8wK4gMFfIOHwzBN/hCygMLvEnUBWwSxISAhoDrIEWQkhoCZkMDaTsBDAqMAlCgbFgQngIGEzhBHQGztHeCkM2wH+FssgDLhniAYgKEn6IvZviCCz2pGgiYBQl8BrMLtDtfbPtfnG6+UHrAtQs6QKfrJCobzBIwxhkAP5Ug0UFpyFzQm2APYfwK9QaoTLBG8lsLFNuL8cQPPBrfihjo1gENv7jwR4lfUBpktlgV+JByJkDGw7FQ2mNJP1iBvoXTSfxCDJIiogNJNH4j4jdXMnfBNg4AngxgWVAE09ELjYLE5EvI9zgLqv4EqLGAMjEAPFhkFsVZhNYvmMkcLB1cPvAcWgXlFViKaUwW2EFpUD0FA5LBWoC8Q1B7EuQamAmJAlFd3CgAP+Nw4c4FAElDZVMwYOxCruGH7x/lCooZMpnNF3DRe0SwXOxlEwigBUGPwzg0BpSIilYUMBhgC9GmB3MkAtQ/9VqwhkDVmV/Q+LIwSMyFTYQGVBMI/AiFWgG/1NAXC5zeQluAWEBXJvjeYkBVh1+h0IwfjZZ/Z+QHfuQf2+3PSgFVNgZUZSDDssCtC4YN9VywldGwJH79/KPtQav0FuophJFTgVmZQWg7cAOGA7choKdUFoKOQWBDGbDAAGosIH2AA2cSaeAOIQgN2ZzvVAKbhAP42kAlhbZAGdKA30AW6y11Idms/uhEev++IvLvKyL/viLy7ysi/wuuiKSpI7V0/2vviGj/L7ojov3/3R0RNW3d/wQMNA2F/PtLImgdjC4Yg+poDRQWD35FqeF1dNF4NSRSQ0tNB4f/7wSCamJ08dh/6ZKIkPQfQFD+z0IshxqqHGpFyYyy2FXK1kA/0aHbiu9HX4ueGLVfE23iXyTtf7tQqmj/a9h3b+LXd1+SZUw6iBamK5N2CJyRKxDs2ZowOK0RMjOwo9znwUzsfGUPq3Duc1P7/IOPfV8n5L2mPqVf2FLc/vlrtObE67Hjp7bLo33ETmfxPuG5I3h2qedty+vnjjrciG7DN400vjh6/1xzI6ZID5Was5MtN6krKBAkW8tDaY92aNE1w26y0k5EtnbPij1aa5X3yf5CIzIx0dtYtVkxNn/QfqLOXhPxvFE36EXOVmP5yysbIqoUTI/RH1WoKbJwB2RFNoUucVp/nhkRpbtivdjTt2sGmhUUm7jGPml9p5mX3vZFJu5DNszZhAy33hd95QcMNUbsN1lOH3cI3uXGlYpZqU4fEH2j22ruINQ/o9C7dZfZPoP+5R83yxbV0l98RM+aRuYuI8bsOrBhy7Pzthl1H8tO5Aomq60l3hA4utxFPGO/DawzUlhWsHup0+vIR9VZ8aZre0/2S7OXN+R/Pi15fnPPXVHvzE1r/Du4e784HTLceWmb0zKDjz3BNZc1qeLJ++6QbloNWoxyhYb8W89/TBr6EPD24DmDLqVCb5XY4IH7V2RY7DAh2xVvlN8Gjxm9zd9iun/ar721fksP/UChXsvGGdZ0psWH/K6NmaPR1WNyGd/0p8QXfg/M50WsCQOj4P8AkWe99g== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_1046c92f-21b3-4214-907d-92878d8cba23.msgpack.zlib b/docs/cassettes/qa_chat_history_1046c92f-21b3-4214-907d-92878d8cba23.msgpack.zlib new file mode 100644 index 0000000000000..f09787d2f0f74 --- /dev/null +++ b/docs/cassettes/qa_chat_history_1046c92f-21b3-4214-907d-92878d8cba23.msgpack.zlib @@ -0,0 +1 @@ +eNrtenk41O3bt6JVpVJRwkRFMWOGGYys2ZJ9yx6zfDHMZhaMPe4WhEaLNlu2yJJkSWRrVyRrRKkkyhbKFu/3O7jv7t/9e9/3eY73eY7j+eN1dGjmus7rvM7zc37O87rqOsOzfAEGk0SjrsglUVkAA0dggV+Y8eFZDMCHDTBZf2RSAJYnjZhuYW5tk8ZmkN7s9WSx6Ew1BQUcnYSg0QEqjoQg0CgKvigFgIIHiEQS1YOZjqcROW9ogVIkKp3NklKDOTkpYRWV5GFKKmh5GAaDVpaHYVXQKqrgCEYFBf5GurjIw6QoNCJABsWlWIA/C/6nPjiOiIMjkYpSoAhAJdCgMVd3GoOCg3RL4XFMQBktFZzlCeCIoD89fJvTPWlMFjf/7zYW4AgEgA7qXVLBzfMIINHlYUTAnYxjATkEGpUK8BDg5ngDAB2OI5N8gczFVdzbODqdTCLgoHkFLyaNmgvKswAqC87i0IF/TuewmQADjvMAJbh3zUEjdIwULDggmFQYCoFWRSBv+8OZLByJSgaYTDgZB9qTSefN3/99go4jeINK4EuB4mYuLs7/XYbG5GaY4gjm1n9TiWMQPLkZOAZFGV30+ziDTWWRKAA3S9fin9stTf61nRIChUKoFP5NMZNDJXAz3HFkJlD6t8UAi8GBE2igDm4qMpNAo3mTAO6b766uBHdXPEWD5Is3JxzDk2l+APGIor2jowOFYatjZueNB9wPY/2tjxjbGelZsEmmRx3gKBVFFTRGSRGtCkchkAgUAgU3ohJ1rXxYBCCAwUSb+RKI9p4sG89jLANrK3v8YcUjGCMzYz9LFPOIrpcSkog3I+ItOKZ0Pw9jcw89B5K7o4Ue0taOaXEUQHuZYqnequauRiwly0Mw0Dq2L4mooQggCEQTv6NGSCV/QyTWBFSkbODvSkVaU/1VTRwpeh5eVngvCzSOrP+beRgMBo5cslAZiVZFQj/5y9wgA1QPlic3DYVC3WQATDqYXUBEJggZi80MTwd5CLx4mkUBwQNjfMPc+C8Ki6TrgZzkVhowSPIwRRWYNUCHKSIV0TCUshpSRU0JDTM0tcnVXdrG5t9SsNCGgaMy3UEa6i9TPovgyaZ6A8Qc3X9L9vsQ2cFIQuYzaGRwEAwWnMYgeZCo3NSDlf8yDfjTaUwAvmQ0N9cebrVYN+BGermLiQfn5TS35N9ndNGSEI3hgaOSAnimcyt5meMX4O9HJLCJRE9fPwoSG4BWIuEBNsH97tISOoMG2QIpozC5N1DK+UsTy9TNAeFCwlFIOBJ1j8likAhgpkJ40GkMFpwJEMBqxuJw38hTcP5QmmoooTBKymDsDsFIVAKZTQSs2Xg9GgUkN/MQjM4AyDQcsdwfzgDDQiZRSGBseb+XKiWTm44BF5f9U4BF8waoTG4WhscM5IPfJRgApB/y4S81aCwWW/HvhZZVQSJYrFL536WYwO/WoBQpzLJ/CiypuIFk5vovS8NJRO6bveAXV0WUsjsRTVAEFNF4NBav4k7EYBWJqkQVAIlFoonoAl0DuC6O4AnArXkU5mbpOZjpmBrpltjDf+ci3JzOO0m4WVQak0pyd8+0BhhgYLg5BDKNTQTrLQPIBHVZ6Thw76oSsAS8O0YVCyAxWPAP/DBYyZa1/cncdKhY8w6WE5lQOKkej0R1JaPX8vF++G3snt25VX7pelWBqk+mzR8D+4bPSjTbryQQnKWbyWLIx6v3ao/0y1W46tm26PGTNqab5L1wXphvT9YKPX0jr356RCt0XvMaaX7W9V3loPK7+fnx/qqFyf7GZK2FeZcFV6BbhG2LKZilTY/gxnMGJ0HxqYXu6aobofNzLz3WbcVi7c7mZoSGO115m93/uPspnzMgev+NUHFCB/9X6iONM37lRxV8UCX1bro7JUZ+JuEb5nHftj/giIrm6yV1Wpq9GXO8ok1qUxkIMNz5Rl+Qdk5XQ8o7wF5+196cTbEcd0sPZbhxRXmcs9jrtoxA2EK6d+xxLHlQLq7bcrCm7dy+CDvLB6+iI9N9y+xC+ARKFUZ7R3tiitZNrHqwy+Fh7NbKXFtp3U1nvdc8O/ah8lGOwb0aJtJUYEPkLqvrOsLKCM3X793WD/mvbhQNt7hL78A96Eh69sRWHG59LkhTKy+70qkyZ4Sre7mtp+Mxp3SjauNlt+SFy3sOaG3PajNkyAjrHnv+7YgevYgSO8iedGNhOQIVnGmDIrlsp2zkC7Ovo+VPGnbd3OFk5h8+MOn2ytPvWt2bUKKKf9fQ3trWIhdWS4KM7QWKCMG2P1pBUtyGuk//2/bg2smG+kovZyW962ejpE9Q3flx7b5nmAXhxRdUGOHZr0s74qQFOkRCvxz7YBChHehAvvF8zds01TSPyktRGA5cRrW/7fTwebSQR8I1TST3YVinx4CwVcBuJv38hXXXNsl3Hjh0LadtYwJ/rNlr1YZHAda99UFx/guDct5OJ97W2DOcB18nrs4MBAQsmKdWJBcTku5EK4+9sjkZ3+ms00l5oIbY1nfWcPBjmUPBFANxgnTqscgZESePXyXVUkJ7y/3mzhfvyauq6Z/xfMUVu+6Tt9PiYhyf7MaYk4IJSBa5Az4Uju4vlMzWkN6OqOl52ODS2mnWJ4Td9ja/ml3XIB04E7glR/sLqvOkT7n8Hjt+jq3hnaBp57qScPr7ug3wOeXC9vh46alHkiaRXITtCRGL0h7h2afNzbaJm8Tfln+PjUv9sVtLqLa7ZjirfV1Q4Cy9POq5QFHDU9Jog9bHz2tpa7XCDxdqYXa4HfkS2Fp48cyMYZXQm4zXAdo9mnXHFzinvN3e7rmecDDL/abPI7V3T6x23OkWN7qzI92pUBKmZ557jvvVt+2tCFXgtKV8tmWf1ZHTPt6+45tb0uUxXZ37DygXxykb6hk/zgbiraQyzDV3Ol4EVjELP6ldPh55Mm23c+2+jx/X5eMO3/y6/aiOZm2OFyH50B9DVwXtBXLZXgFsLf/QZ/0+LkO3Nij8kE4Ncf0mqKwnvCK1oLwjcnXR9ud5ndVP2QqDF4IumLlfI2qLf11TolDBbaAmMiwmyvk1f3buGTrVn3p66Fbn7VklFbLtY7dwA8Z9y7jREXovV60m2efWfJpKtOgtw8lPxuuUxTmF7gt7xrTv6a8u6aw2e5OtOpmiuDbVTH2L9yHNh9KitbI3lF+4RPdNxq1bz7FfS2Mr2zPj228rzgiutC+PcxIvUZHtTjj1ePPjsPRMRG104q1txlESioc+bN7dua+mxplfGXPfe1N30XPLYNHVJUdH6EKlipULg7pl2b7Bpyc3XtbbIcA1vSebPXprDXrFhbDs8u6fjn1CGz98c5LIrx21wl3XEOqYGoRfG+VL/XlHfXfxTMvW4sA9ZbMDLK/oZ1nAj2859FzK4TpNesfqb+oR3j7eT1f2eRTu8iJGPDw03vLriunjhJz0CLvROZ2cV4nrM7c1i4cklV7YldSUhT56UeJ4kUHKGjxnINP+qmBDWsyXvMPBh4ZZA2v1g1RuK12jlI2iX1zM/hy0y43gbYfJUVrrdgX/MVjkdYaNn9rciyuGlTjb9Z0ByQN2rjdp11Y4FahOaVuUy215EHC0SBFbK94gUCsTvoOarxoJK0g6IzHOv3Zn6Dqsvbj4KW5I0B/ES7jV4/zfB3rLNetMqSzxKH+BM7pCl0ImWqtqKOWJnhZTgh1mpow1Q31uH4MDyk9kdGerl3WoXBzenr1b5c0LlSlNcf6cd9fK3LaI6fl3Gfk9TM6AEStYM9o4u92yXl+edK7sG6r9uTevhVvbIJU0QeXLfbujxtnBer2bc4RRufQNAbOr+R+pdivtNgSRm5of2A+3ZvE3fw2Q7j4Zuo0c17p17wWNM1sNz1CCj3Iue9NrLiu10jVZFb/qRXxvpjqFIyuItsJxipHHfSXyf1Ec3Whn13dWGmgl3nuUlIJL1+gRPPw4PTNB7PKh6T+aGhbu1m+N2pe7a+Kweuj1J/eOmAjMft0k3aSQ5/syc0jgpbmh54sDulOPCk6kqSIHQxoz9tyJvRp4GZsr2Xjb/pehxIn6h1W3XZNRorb2QqPUtHO7bEt2RF9IF4gPKntvPP9Fvrw5QzTfrXAgYzjuEeO8knWfUqlOlwbw0SnGV3D3PcX9ShLvj5TtiW8NSjJxVmzZUaRmaR3sGX3i4e3B6AGgT/zViFMYfO+13secJ/rn3xHjNO44PCrho544hN3t6a94l3tW6m21+jfviVb+ko6GaLtpJRG8+RMv44L7B07f2SJS1uJ0qxvRgD5hhtjobOp7jmqnsFlntfkfH5jwux9RHhrX+6QON9elfEzXyhe0sdHcM/o0gqsZ7NLy7XUl3sX53VkBO32BdwvRicevWb9G9KXcPbLpi7m/5vZcyVD86Ne45i6U4I+X0vRtWhtclKfRW1UOrXqvfkNmU1ZLUcmq6+YHS4s0vFw/RVJ+etJTx9FsAfPa84UfLB/ernReL9U9HEfXWCUpcvUE3O1jeGOY12Rw8yfvPFxlLmX/Dt2zd/sfNJIenrMNyldYe6I32Y4cNonOv3/ZWqfFQCzmbSOwu36/YMj4eva2bSfyRD8caV4zdrYy8Upp1948zN5Zgyf57B6nLv6PovGYgz47BSfLZuK+3cpSNGwcbkzrOGXdfnMkdrKF8/VGMTY85HRVEF7rfBTcQkLZ/0qccEy6sBaiNhzPJx0j5fN5vbd42C7tF/uksLU/kdS5YZtwfPYW38QgnMm7+oMVRt/ODsmplk7ccMCe7SzSMj7ot7ZUbTfTLaZ1IppWlm5YKZCwjsFaGMR43x9KHCh1Ra2P2u/Mz9y2IlihivOWuurbG+wn35uZpz91K+3/dOSPrM9lafncmLaDw8LWxhW6J9s8Ypz23yrcYPbELeW4VjDfy3vtAn490lnu7mK9oXPRgdNSO6sW/PKsXui0rtdF/5A1svv0tvtdSN1TBEb7fZFtqkSV0kywQgoncZxPCxuzq8Brl11Pt83L7T81N+Yc8XidsVXtabv7j+Qg+Y3WNc8IO26qzvTJ3N1kOPXSg2gC2yiSVIGdfBLQpicxm+/WiCvs3fpJ0PF8tXepg2ZOFUd8jYjC3Q7LSLzbiXmzY71M2rp84lqhgeGoRANUR/i5du3v9NV3JxoDy05kOdS19SlGrW4iJRd8sKwbFN7WYdaxr3t30/NetVgUxlyT2j69Jft2lddltYwyB72hTYLExqPVw04ZQ/VTHfumek5/21bmIW8vWXj1ZKVhYYrjjvPbKGEkK1bLKMUr73nHqrAQeb2Ye2K1DjF3NvTsRVqO+Ibay9uOHZ+eJJBTvFXRWrPrLo187esyX0mYP2qcArSZxAhk7JhtPe91yAd9uOtKE1ZCvzXOHFXZEakSddvPrFqyR9PyRuXF9Y/ir73SvWhUlih5l91G2ahddHFLhqb17QOUlHCVgp61PyfTRtSR2rPp0kHZ928mrudo1I7MGR6/88NooLZhY1DyB7682J6SaG2ZLb7GTO36ykjrPW9m81/fytdPHFHXmSjurSlNkv+l5NGi37k6dESMlEB1zvt+YWFGLlxuWLC2cqXwudMqryJsqWGyn3eQkuv2PLq338HE4vDxU835yj7IhCvFIdM2RbfHZRUbR3zZOUObEkxzs42OhjjHGpWFYfLWxZ/EmNj1VF7ykpvU0Nz81Ta38euDP57MvZY+eZd66OLgvQiJAJfIS2ZllwPPPXMbeWToKN6j9TE+kSXs5cyuO9Y3BjdGCDYdjzn44dcKw4/lKrtX9kfH48+HJr3JlCnVcA6fito4M4csiTsprJdRXtcz0L8VgeET5uubPj0vBN70FxZMrnZtunO05OTI7AG1r20sPYGcL4caZN0uRq0x8fXlW4WtT10flf6ukn/hecMDjE6NBfPsWEzkpsLsxoCRA8hZvd0GQ2b1JPOsHeVWP6rt36ZQjyWqhL+te3qbc3N4ekqJf01uAHU8/urPAg+E0Z4SvdqnMmfLv3ccX3Flg7CkjQv/+U9DO8tim2Mkhht99780Lf00Mhugfa/unQvD6I8NJvNDRmPjsz6hXv4fa45PaxbKVRwK/j6x/2TX1b4WQOh6nHXyKtj8DXHlIDNG1urb/HtXSLdsDn+p3lksqzPTPdgSXtIT493z3RZec9rVxbDuQTGaz63JymPmC9W8i7CWZapY6EB+fPNuydPw6AVDJF9gsGoXv9CvhKbX/O+3V886vI5AD0vlFMep73pg3hWWaRjSseExK/O5eV41IyRbaq2YX5iMqG6sgoqnbolTslkIofrNebMOfqEDV0+Ovq/Rr3p6OZPyJHzw7VMpwo5irUeKI9+mVrhk7xy92r4jNEdnYXaVjZiwdLLGwren82gH+2a/Yq3o3oJV7PriDjnT91u/e1HpdmmbxKSfOx8zKxD7NMTYW3TY1S1xTfzoQVoL4ua7jQ8IY9ort0n32nVtCbQlX4mLNfh0pjUMHnBwY4y7tcuV+NjgwuCTiQf8J0TX6Bge3CF92XZMrFCznK+E8pQ/Ke9y1szEhxriQ0WhserDARXl4m5Dv/prDO9Ovmp46pig8xWns/Ah+aaO8+dY3WaXXulBrQ6N73H6Cl8lLq3n9yxltngW7K4Tux6ULr+Q0D5ZoGGXF8T/dRa5qm78kyNfgNPMk3fI714S9KvTSvqowl9N8o1b/zhlb4EpJyr1/fAR3CTqIOD4cpWJkPkY7NdzNWUk6XPklbGywXWtmk9ZMuLl8FHXn3zJsZOCF7KkyNr7Us8FjE/3K7paqxrFnd1VM747jNSeYr+77m3mE/TcVJHpxSL1vuLIso9uA7OtI3xTY898t0oMC1QU8fcrvrGc3c3u9uzSEio/e6alvti7xZ86c67X1KIQQ1GsKv1qFL6TVEqMPUtNeh34OF3XqrwjavW5n4nBCW7eB5vjGytiNaKi92GlpvasSPZBG+g4hq2uvuLlrFnel1C1DpkboVT5fdW1SE5CwGiEem3b4zHnNq1mS0Tjh+3Nien3ddFRkrdnUGnFeddDbV+sLJQq7Xi5KapeM6mGf6YvgCw5V+OB//GrejIgRs5PiV1gEXZ8Xt3q/OC+y5c4fK7q1l9WJGe/Y/2YX/3M4YEb4Vkds3lWTDWwdt0a9qRvf973zzq7+lf3XuK8Surxu/OZEyB/uEiMGL96dHJ67nbm97yFa6Y6/FYSmrISZSVi1O6XEXaP4kazLX9g+/zDtOVGGIMnTnfGjMnF9dJLOA/JMNaLgIebdq8szmiYM5u84pNysnbMEje0FjNqrdd6PnjsIy5GIX9cdqZJsspQeejBmMNQqNgXth1njB+dfGz+5LuYWGGfiPkpOdHO9alPXtFcdohbyWZp1G37Khrm+2z2e2XR5i0fu97/mJt+odMvknTErMDxgesk5mK3mPLwffyYJHWtsEqV1d32K4fGXpYm/MiGva4rmPMt+ny2MMgof7/LuCFXboy/BOi0Yt0KGT4r2b5+x+GNT28O5DQOPMrn1heMz9dpyeTEbp37JHpDQyH4PldrzfXd0dnRcM/+6RfDBmtPFz0jYDiM4bdJISvcHg2dEWq89vlHQINBx5V4w8lbxEZCSfAxi+Y5vkLlveNPVyecFjQ3SGNX+AojVq0WlN/Par2WeF6/TbIq79KYz3A2/8Gbu9XPP6jCfzOLm5fng1f0T7DksYkZumfePy+NDfrZ8AweCNz2HJZ5mDftO3FLaVtLWFOdSlWf9C7/1YBmrb2RtUwydl7xaD3n8dUHWvdeNCb9ei787MNCeXdtUerll1pSjl4bDUpPqmzZlQITm3Zr3Ou10vzOwclYtR/V4kIvnvIH7gu1irj+A0yBsQ2HNKNFjq8K+r4vaLUtJt7ypHDjqo9zZvsWPoxO2dAyqbnjIw47CnQKK2hkCTHpqD3yaSq29UJDpxB7jDXhXgFSOZ1D7ePxtkLRiJkt3H0L1VMZzk3UXv7c6wgV7ABbRM40mlGbpbWC2DYQVV3789LIQthRRVaUTMjEm8xhfMfVJ/xvaDHm6GIGfZXxA6nmWdQ0/ztZu3sYhXXHzNcckCnUXWvP+VDrNPeg7crKuQOCtwXHVXOc0sduq8qpeNUPBkuYy+DD9glJP+tSnUk/YyhwAoGLMr1gULenT/nVxc4TEmYJt7QSTSL4+1h9oznmd7NWhJuneT/tqX53RfyhsFDg3p96sQamNE2uY83j4E/Edy8ie6oyuBG4burNyimXtjWxMns171nd6gpmb7VnrzjrmdaUhr47ndxvypg/nTA7ZsTyVNYOucl/bMzyh6GPr+JAca8LWhn+bOHTyTqmVMuGy62FKKkdl7+/Ti+7ln49htteCxzf+ljTS7NS9kmKM2mT5tzRYsL9IbPw+uk9zHTZLaXbfdZacLZGThw2upukdblsj/2E0XWPyvqDU1KHwuG/sC8I2Q/QqiM3D8N/Jpa1TBisepDToEu4NDtDfP7cVLm+Tlhm373y8Um23fsPyef2qhQ3HMgeDXt12dwmDl0vnnw/8btKo/Pc1Dzh8i750LaTnfCImbszXcXmPipXRCfbSTJzva1HN2v1D7zcv7FH50MzpqqBhKISt/KdJ1/iYNy77NbGzP9KXb2hm3Ppg/Afc+f5txXP6qLv4FTrKPAjoXOOI6oucoiQsbgF4rXHm9tma073pyXtlD+0zn0OUbfJVFP8/FmNP5Ko1NsuXGbpd5LnhOfDmddPNiR8xhy1klC/PTm46tWtnTQd6jjgP2Q949ehyndpk8t0vHnbV5EQ/YtPxkVjnki/qc6ye7It8lKmuRVtR4qqd2nfgr/+LzXX0US3AIZSu+sv4dHydgpn/pbmjF1LtWahlZe3BxYfUa2hjQoR0VKh3OdMaEgc7a6rcVddkPo+kLLibFdqeqTkZBgnhZSaUGV99sP8tSJjqXQ30fNhJiLo++SCHvnLXyJNY4TZ/Rer6g6o3ScaHP4cG9uMGVV6Z7DrStpA3CnSKkbcD79cz/JdQ9ss9V+3hWT7Jyq8qCiSWM2/cBg9c1XTz/OGmP2U+BWh+953R3zW4x41bLc1HRLdeBRGrN4tLyKZoI4t7040Sth79lmF0MUrHiOp2/2ONb6aG9dqYpUYS9zoVbVYhWv/1fTN/sTUzRELpfPykmkpB9LZErJzLAFrVpP6l90ulAFjq1CzeuTmSxVhMzWJ42Nqz7ba6E+lbrm3aya3JGOitMc248Z4wsQd7tdjx8YO4H+YXJqWd40vivxI8X/tZ+qsnqKVsWJjVemvt/KcY2bf8w4Xz//69nkHdrfqowCdx07v9U2wghrOM4JzkbO0doG4zoidDLjAlvsRJN049SMxcWUV5j7o9uE9YbUZxu3jqSPjMytTx/MMvu15PROx67FgcvTPI6rlOZpnXHz41Bts0AcNtqDmJFRgb4et7nJaEKK7RG35hH+FZaofZTj6iQjOUXsTbK5rIoI3H+BTFuanlPiihPD9my/vicH/CrRhDqut3JgbLL4+gPTyvmTZ1L6zxrXOM03j+FaxXImNuQUhwv7dDga2paXubZoBgi90J+qiJZuyPh3b+X7XW7m7/dpcO5XufRbeH2XwqSJfmn3vyN3+hKvN5nw261DLPBcavzJG2jIN1zt9Y+5SlWfBdVWkgYIp/6cXxhOfSquoNjat8RfrpB+L5jSeUXsxUNMZd3zw06BQDjodqakbONCorMncKxPxzXekKWN2vRpWIERhsgThlmfes4ULH9uTF+Bd0Zf7lXTrlJz5k3xTpWRW4/rnFfSPt+9PYJqvRe5SpXULOs7cz2ikb5RlX9R+zQ1K82k0U99W5xQmnWgwkxzSJ14uprjbuAEwXhA0GLJ8nZbRqZRAUVgR1oOofnLQay7y4qmV0x6uMARmitPnfUfkwOW9+3Az35wbVs1NFpsl/NznOLvZPmpS+2HGQlceZ7z74Opjm463/XrWRWoSmwihilX17I1dIxJyKs+D9Cnt+FP4BRWjsu9yfr3rOjtLhUs+EeJ/rIwIzXNasTD9RGthWuvrKZ3WCq2+O6LIoMxe14XSg6MFo+Lz0R+ntLzXpgs1N7ouzAfy9xa4tttU9Yaezpxq+QWOZE14tL4vSN1Z+30heC6u7/T8eNzCSujfEPx8uvZzN3tgfHz/h7fug//7t26CJ46lAH6mkwHeQwfvYaJTEBcotfSYx4RevQOllt4BoWdqBxobhmMAMBwVhmMySUwWjsqCudMYMN7uoBI4jsr0A6CXDRgLx/RmImC2TADG8gRAKegdDpqgkwACwITR3GHQYysJ8AWIMN4e/iwYiwZb1MBbs6wVATNyh3HAvYk0qgwL5k2l+fHmF0XlYUwcB/yOY/2LzPLmDACAMQHICWhfCs6fRGFTwMVEGPRq+JsmyAwCiQkgnKnOVAOSBwKGQsDMfQGGLwnwgwzGwUxMTOF0GigLGo1js2hUGoXGZsJ4b+QwJofJAijgal0QVRoVGjKnAmowCzKOCj1+STtTdWA8xKEnTlADhBGMzWTjyGQOjET1pZF9eRZSOTBQEx2ET4e6pJsKAEQmhA/Pez/IW9BwzlI4iDA6GQoK9IwJ7m8D6dUDoK1oTBIEIbi1rieORIW8ABnC9vBkwWR1aTaHYHYACQawYDgyAnqcVTwA88QxYXhoLagYBoWYiGOA+hmgMhYvsADBk0oCY8OLPED1xIGggeO8V1IYHWDw2hpArGE06qK3gP8yG2xArBflSEzQYSaLwSbwgKDBnNmKSBSB5UmievOch+EXQeCN8yTYLBKZFAApAH1mQY9+0Ds/bws2i/fuCkkRl9wGQEcYixBDW4EzTAqIMxhlCC4mCbKLsQwziASM97IK2Q66T/L4fSGFTWaRQHEoMmA0cHjw4+I0T5Un6ACZBCK6JA4GgteKQgf5vWgWD/Qlz3n+YMFQQp7y8mHxFZhHOhuIq6C0zWKImDBZBxztt/AoHYCBaQJQQSpAJoMQAf50Mo2XcH9ayQBwTBqVp5oGZikeRI1FAnkFUgbAETx5PoMpBWYuicFk/QUYk2ckaA7oH+VfPF/mDA8vntsgKwHoZZb5DyEmRAKepDyMABrDYw0OxBfKQ17E2QxgkQtMAGrxWIYARgChwwOwwwbWMFk8uJLI8oQvGrkoeAAGMk4PmiUC9H/M+ZFYnssegobBAF8cmc3LMxAnHIxAhmqWOwm0TdaXhANHFjnNU0rBedGgx3SYL40FLGcQ8fcMWjYOrC8ATBZ1AFIKVoPFXRfp9FuSkEneAMxZypoHF5Qn9g6OCGdnKgrhLCUPTthBCQzlLgQ5k433oOHIi4Kg/WBNhHSAS7QgaVlF3mZs5nJZhTPpAAH0hPBnCkH1+xAMQIAlC9QNOrKYuzQGB0Zjs8gkKuiTFE+9Hzi5GA8qzRcgy0POyyotgefJpvDIC+bTIh+tACaNzQBjowaZDjOCaE2F6MhrouApXEQfWCQFibrY0wTh5YEDfYOYCWpSRMBMaOCuNgCDAqMAFMiwxWSigMUNFFBCwAwtbOBKCAxsubzqQHVvcQ8wbQCPP1NpCezFkuJMRSNgBiTwO+goaDfPbIvfipD+IgvAtYs+QK/yJCobrNpgzWUAvNIOmQ5aQ+aA1QU8Q6Ag8CCF6glAZYJ05R0tULyW6hsvFDRe9PBgJYLMWly4nG2LToObLQUIxBqsZwDZHU6AIkAgLW8F1ho4ncTLCVCVJ86XROMdRLzDlcxZxMYKcCcDBBZUUem4xZwlMXkW8ioQC0pEDyjHQZsYgDsY7yVz6CAlQUYtwqQPHmUcqF5SoFVQnQezgsZkgScoDaI2WCAZLJ5GwB1kFwkKDUyHRIG0Ll0UgD/rIs93MgBZQ2VT8GBWQaHhlVMoBBCneEkE+AMENg9+mL4/iB5rsQwylyZ4pwQvCZY5/VdlJdM8QG+YYHmBdBr9xXU1aAc7iLHQSh5feQsWv7mD9IEiv7RUnjesY/TbleXPw5QIMMFw4IHlysdjNaRpeVtelaJDNIGOeXA1eC1argQQD6BrABMGh24aDDA9QEPUYIGBv32FBQfLLwKxfAvgCdjwnITmTHnHoTVAXmxl4s0ujumA9npQoQT5S4n+X2iCchZgnpCWqBocjIBB9zMKm7lc2X+7SkH9SDJM2NI9EQofjkcb6NgC/fCDjkqQFWBJ57lM/TsyvHvK7/AwPcFLyCLDoLQBceUNLx3t/xqB5UyBjFhmzqKFIB+YS/e7f66CLoU4nqXuUH7TwXoiv+geCyCT/9IIffiTnn+KIqBWSwaNDEAX18WbmRSI4t/us7wqDNr+z/uS1u+roV2kgv/W3elBZ0HFCg6mLZ4GyVLBURT4NwgqgKOAX3i9hfJQHyiFDh2UYH6Do0gE8v83ef5Pb/JU9uAYkylm5hYeTEV3Y2VHT9VjNsdcmaYMlL6/zhGirbsdyiCAZWCpyDT6s4sSg/yzyZPii7IwxSO8jRGOBsfs0FYABzByYGLtFUl2ekqOZD86284LZ04+7G3gTiGa6uvijiDtEeZ0G5SSnreKq66jib0S2fYwAmHirwJwmIp+fnaObJzOX02etipIawabZI7VobuzvFS8WV4IfQNbYwxZx4Jsf8yXhTEzOOJtgTRBo9C/maeo9B9o8kxXxKKU/nNdntv/L12emP+WLs//TBvnf1mHZhpWBfM/vUUT/V/XoqkENWgiFf8fWjTTUUjKv23SRCoDKHcCBk9QRKoScKoEd2VVJRUCRlFVWUkRh3LH/Xc2aWKxRCIRTXDH/4ebNFdM/tWkyXu+ZVnVx3YhN1T0y61NPA+LM4353IaIutEhEbC2U9dS4K5JlxfRcvsAOVx/vvLc+LdUEXF39KcNz0q3hPlcdIgohOcM3UgO8kfUMntzPswmSF5SSXZ9cIrQqFCQGDSz3/36duf5/bfsWlsYIhrZH+mZFCmb57b9j274O8JFbmWd+FImlQyYtjxjlF/1TD6a9OJzdKv+mztFe903ahny8dHqrmmcitrkvrFobPvAEQExxa9dMnznOzweppwRfpTiHiQDX5OB7OhJ+ZZyg3z9EdD/XmDzBbLY2+SkFJEc7Z3P9coiolz5rxMktC19VyJkI1hfNPZVW5woM5HZnCFr3XH3Hv5sZFPJq/i4lR0WFivMkCaHtZuG1XX6Bjvf9Mg9fJiRZZaifrjvRz4jdQUl+9DPr6pbWKK398hrnJjoe+++XjLup7pDfNNYceojPpt2YuvQM8k9ARsiPNTODV3koySd+FTt6WQY+NzUJfxUU/2ET1Tk4HEkDTXR4zraTIEnXbuug5jbWOBCf00VTqU/ldvc57n6B3rlFCa3asEjbf/+4RvUi37bGDW2Y/POjW8Vhk+4OB8B9EOfvIP3L1hT5KxYxyVin14XL3/1Vu4FVfn0dYPYGy0Ub5FdR1H3ejNPka4bhK5Y/G81yXSMoBUY6P8FiTJJWw== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_17021822-896a-4513-a17d-1d20b1c5381c.msgpack.zlib b/docs/cassettes/qa_chat_history_17021822-896a-4513-a17d-1d20b1c5381c.msgpack.zlib new file mode 100644 index 0000000000000..49912ef3ee9b7 --- /dev/null +++ b/docs/cassettes/qa_chat_history_17021822-896a-4513-a17d-1d20b1c5381c.msgpack.zlib @@ -0,0 +1 @@ +eNrtewk4VP3ftxQqWSIVkkmbygwzxtjJvu/7lmY5Y4bZzIKxl0qlCNGisiTKmr1CUqGStNja0CKyJCEhec8Z6u6+//f7v57/9TzP9T7v+/5dl+Wc3/f33ZffOJ+zPzcIYLLIdNqSAjKNDTCxeDZ4wUren8sEAjkAi30ghwqwSXRCtr2dk/NFDpP8fCeJzWawtJSVsQwygs4AaFgyAk+nKgchlfEkLFsZ/JtBAXhssnF0AvfFUtswBSrAYmH9AJaCFswrTAFPB2XR2OCFghk5CKDBsDBoK4xEZrHpTC4MSyPA2CQARsGyQRVgHBbAhPG0AZnCgklkPAlGJfuR2DAmQASYAA0PwHgsQ9gwMo2383d2SjAinUnlQMxAQSw2yB1LodOAv7LEY2kwHADj0AigS9h0OgEWTAZN57D/gSMCZkyH2do5g4qygkHdoPWfzJRg/hwWT7NfQsmgWkQYDQAIAIFnGx3cwAwmswCQjM1h0iAKLAtGZiEUlGAKTDoFgFzD4rLYAFUhQgn2J4+5QYqQWTBnLCsAZgxA7qazyJBo/d93Q077h728PYTf90CcsDA2gCfRyKAJkK9B39NhOCaABUnpwTTYQkBDYGxwM6gkDVxlUbEUCmg4ZAyLDC0zQccCDBYC5kyCODIYTDoW9CkJoDDASz9QPgtGZ8KodAJAYYGs8AEUAEYgE4lkPIfChoHkOApAZcFwXPBuEJlApvlBbqUuyKPSmQCMiqWBjLAgHYzFwfG0QcAMuX/YA22B7ir9FAhFlEEBf2BJAHbB9UAIgOdAibCQ6AucASIRAK+DAAr3TxHAslhkKF/Yfx8ELBPKOyoVyiAsF7SPCDoM0oLM/ptQ+IB3eOZDt/wYbLgqQg0ORh9Hh2hp4F0k+JvFBh1PBS+IWAoLAG+AKcAA6xIkhHipIFQiciFjwBTt5hPPJtFZ7MSiP1diMRaPB0D+YF3QIT8mFvqFkhlKoJ+IUDrmgWbQAJ75iXkBAMCAYymg6TkLuxKvgrGjkPFYaF3Zn0WnFSyaDWdzGcA/LudB1sF5Dk8stwOVMLBQtueCdUODIRFoDYTK1RA46EMyjQK2ADgYDL/EHAZvvfr3BQaYESAT+GI7SsxZ2Fz0Ow2dlXjJBou3c/oTSywTT0q8hGVSMeiy3+8zOTQ2mQok5hrZ/6O4xcU/xKkikEiEesmfGLO4NHziJV4gqv60GWAzuXA8HeSRmKmSg6fTA8hA4vMvvr54oi+OqqvmDnY6AxTOk2hDRiE5gAVHw5GIC6SgfB1ZDnaeHApXA29kQjChMmzgSHWUOlpNFaWmCUciVBBIBBJuRPVguasyyPZGrr6MYHt7J4dAJNKUSfMkqaihNX2tyJ6mdhgNoruTtQUKaW3lZIZ2RYaYk9l0Lsk8GOnu78YkOtHd7cg4oieOa+2B0GQQqCrB2jBQOw5YWboWgVaeNv6WzBCUGgXAOpBcyaaOZrbWAWruvqA3AnBm3IAAvLOnmxsK/5t6aurqcJVFDTEqaA0V6KvoZ25QAJofm5R4UQONucwEWAywtICYHNBlbA5rfzaYh8DDe7mLQyDLzuqPFJbKNgZzMrHWlElWgqHUYU4AA4ZSQaFhSIyWiroWWgVmZuNcYLQoxvlvU7DEmQk2YnASwE1+pnwunsShBQCEPKO/TfZaKNnBSELqg1UKB0LA/gHAF7VKLHCHOy6MP7iFcdlCZcHpTD8sjRzKE5tYy8v64NCQYAKeQyCQgoKpKpqhaFUyDuDgieWLW8CuBokBFYJTWYkXUZqqRYsrP/MuD7RVBY5Ugasgr4OlT8aDZQYZw6Az2XAW2KqYZDY38bkSFRsC1ZiuKlJNFQM6Xhvsi3gKhwA4cXDGdCqYmSxtsIkCFDqWcCMEDvYLgEKmksHA8H4uDnNWYrYauPnaPxKw6QEAjZWYi+aFVeXm7xRMAOIPGfEHG7SmpmbN3xP9ZKUKkmigVG/8mYoF/K4NEkVlXftHgkUWF8HVgpCf5HAyIfH5FvDCV0VDBQdgkRqAqgpGVR1DxKigiCgsEg+mKo6IU1UpNjKFG4HTB4A78RIwMdfYw9bAxsKo0h3+eybB7Ri8IZCYS6OzaOAsynECmGBkEvPwFDqHAHZLJpAD8nI08Egs18Br4nFEdQ0sTl1NU0VNBW4I9qGf3H7lXTbUannHnn05UDxpfg1L/OXjlvPxvpaC3/Pz7BN2AfxI8YbRyKOb/KQ4KYV7jralKtQuP7jRMvGadnXaWULqQyWXu6N7Sn+MZJ7a8OHUVMionBbfg/f+gjvzywlFlbXTToO+5MnPyaMc1RC7oLityt2p48DMlxrH15czWtSJTIdJVWaFCfK9nYbwZYGLQypyl95ZoM5ae/UqmskCALw2W/+jhSSmTXaVWXJZqULypnzp8CA+PtERWdWZDcH+gjGf+t6e8Dh1mdhpx7fzxPF1l86IxH3NuqF+OnHdBHU4wVJ4IPrWe3EUM15H4+RR5qH9/Ic/wN+vT1ud5j4y1r1z75Or8S7h+JHpyBpimXPHPkz4h84wbM0bfzl71enTMQf925/ihXrzX2dMO1m17/OGB2TCZ0ga1knJ6TdaIi8+U5WUoI4av3sSlcWJzzreV72pfUfGWF8LlmHzvMO5xs+gCnFMGdlWX15did+gXcdz6FK+ZRJqDFd+Pr5/cmzd8r8/tgJUHECAwrdwYH0eHaZApjE40KD38lLVRKkqwdRQ6kowJJhuSjA0Sl0TvKGG0lCCqWLAP1XRGDUlGAaDwmDACxWfPw166FAK/yUAjiVg4SoqKGji/xzPvtBBEcs7VeCwLACDVvj3hP+fPuFdHByxLg6hqsFGmmibEIIh15ahQrRmagSam2Ap/v6uCIBqTQ9xomJQ6D9GqMavCW+lyrG2DPBTCbHmBnOMHW1IAfYYfyNDTUOchaOZnSPJnWVqRGZrGFsSma4aLr7BANXMwgyHtA1xAHD4EHOSjbqDfyglKNDcxggVqIYAjBhohonfHxPeWU2DoUl2M1XlBBsYUDUwjpo2aiSspjsWbUg388Oi1GwDDF1MjLG4QIPf1FNRV/sPTHgkSuNfm/Dr/49M+Oq/THjw8wo9GJzhZD8yLTFz579yAChYnNm8mk6s/PuK/i87JWSh1P+nHxLU/usOCRCJpibyP3FIyFL5+zOCOgDgMDiMiqaaKpGIwuHVkBiCOg6FQQJqaLSm+n/nGQGP1CBgNYgA7p+cEXKxFDB2QfjEMpKqroIWGq2qoA1+wtXVwIBHsD8fINYj/zhAOLs1P8qvSTqfntv14ln5mtstDfqbdy8Pllwe/njz8gN8m1aoL9VT7plhZtMm7yaNJFHc4MUVgz3zM+P9o9r0By8nptL1o9InNebminsqFNJK6+a/T49GzU2P97fW1b2bj1OqrlE6OuMScacubTJfsRNcxv4I7pvf/2N6fIppIZjFMChCsHw+2x9sN7T9WvHIzeRT0a01GxU6vCQGBpCjEoOrLZNYs0mOldcrbolV9JXUZmOGv4mjzZOFG/pzctnJOfH7BmJXdZcCFTadWDd+Nnfw0pdX6Dif9xst3762blO/6NCRvHNPUgTLTEmvx1DrjU+cpfwFDcMPhzpIusHR+6l273c7D4S9NBG++0jt9oOwy6tXHGrY/x3ZvrGlIlmrKX97XCzLLfT5rbsYuL4nX5mXVlfWD2GHDgtOyCsOzFWf0hIS4hD9UDu9BNMWfjNvW0TcIOFcSW3r3KFtNv18162WB/i9VbMK2wXXYJT1ZjZbUYkGGySye86sCPNL6ke3DG58G/B0L17Za2ltm1rctUqm+YRk2s6ym/y+Z1VHdGPHth0a8o+T6soyv3+EOHZ1rfy5Te3Dx6VvRDofYbiF2Z9g3M3r8tfU/vL4dk4RopLwSVMp0UjipEiBOss10/5Bqlg0a+RUGeklOnuUgesNpa85ZvODRC82ftJrL4djztS2rtWyFMJK8yOTqRXrHLzDo9mJ5uE1usPTRce1LlcPWZa3XLs8tLVQld0S9NC4PwYrNhaCvVR0Wcv7RP2l96kByJXpQX3wwvcvnFNbVr4Im9uU81xt2nO4QU7Gezr+InmKVqkjGnGkcFLWoVRMnrZOvyAzbFRCaddrGdsWP/ymnaWpvaHa6g9z+9eSzvoYlE9mqAck2cie3F/Tgpu8mOmieWalVqCXyfuh7fKpqg4SGh9tMK1dF5y1UKaC6B55HS357sFtaRb8Gg+J4WuWavoK7mjeram9orKRvV5QjU/EpjJ8vCuyd0cEt+1NVjr51saANaSggIAfbwPWxj1YfmrMk+/yxdA7MrUqLZUpZoKf5F82lAaN3BHL30bf0pLyRVfZu9ghNCZTX+fIo0+z5xC3qcYPAys+S9s0YVdsCDZ+q9cVZjneS006/FEQ25rzzbjJzDZOW/jwk6gkD8/v23wfYYcMPoqEIB6zqWsj6VqPBV7sOy2u9MZsaq30o3dlWz21o3Xl9nhVph9lb8ozTa1xoj+wlSg1nThxtTgNfnRPgeIZxbFDJUFCMqtqlqSml7jLHYrVkr6RzGfkn66RlalmFUrGXLG8U9WZ9v4M/VXXq+iKNa34vGfPiT3lK+3nHoUzbxhvNy6+nbVUOn+Z9oPkgA6TMzoagsXP392NPmTlBVdCVx4eu1KMv6FRcyJz09NtG852+hn5mTzKdrsv0lVx9LCjpKLya8Q5Y+tD8LQE9Wx4l770uzFi4KpOXN0StLwEtlbvCjtiq7+Yvn/4+evvyhyu1KctyWPFP3KcoQ0Eva7Qc5THW7NfbBFRS/CJFc0bTn4WcO/LFExAGr2kiotXblg6Mm21alRU4a3bfbFLrpnUDNmwuHvKjQ+rzhQcvXu0UWgoc7P6rspZWdRMtS2h2tvFU7CR/52N/OepOsqD/jeZx5TD3urZOpgnyODrj9c4Z21w79xT9bplX7pO2N5imwfndMSb97+ZQHWcnkOfSJeosG8uOWp3b9XjtcU3+CUkM7isZg8f46mBTd32FGapVJHH8ezluyNlRZE9q2IrG9RN0PS12spPKt2uNC9bWTrVELi2Z8bhvJiQwp0r4Tc/ZH2V0Kq27jawfHjavVLuUEDRc74hj/gjUeVtDEqhE19jUx13Q6veeHuUtK5nweUtnzTPRQ1VE5Oa76qlujAv5Xdoq79XizRXMmPcFpG24d9yZ6dmcMJW+RLdnXvJSaaU6vy26Zt9a5ncyE2HPHS+CJRfNtrCcmE6cNfCq6oywvu7KszVCobqJetmkHFvT35oFr3EN9Bl8s3dofBM0ZNLxlOwYb+xt3dJUqORIm5RZ3W2Hd4z/bZte2qrnd95d30aUdJsp9Y3b0fRl+FhLf1O9CNXwzrMwnEem30TlvTXJxoMhl/jyqc8jak94kppNSZaJ9oOTT8qDe+KrnrQERNfnXHZYTd/k7ZzAmO9dNSOTEmqQHWsruF4cmPKia92S4dKBEnfJ2ZF4LntTXm0UUPmTRGZmUKxjo0J93LydDQYN7vW7HozJ4FgNVWZZ2xu+GoX7tQZQ5pVibg1ebfzDq3R/Bh9/o1sgHyIiNuZg1tR/Y7nnwtJDSOPMaVfzd5twZ2qadcEClcJXqx5aLim5w51LEEh6e2hTV9iBr82Hv2wqil5TYihPWZw0JKzo+VA/meks1f5NUud26Qxsw36gQn37t07MpFml6XyzC+jDEfwrb0j6M+1jJwWO33bYJnwM62HM4URRoyXgRvVz+sPHuvq3aYbER8S+6RpYDK/6e2pBLtbz9n4xneCeVfVuiXPLKE+SJCEFSgvEe0wJZPO3YcdlJ2/necUf2eZE3NW7IIRQrmtdVu4VvYbs3g7uzmb3PSqzZt3bY5uVUzYUbgTf8A3vBdfqdtmMtUhalt7FjctPnwbecNdRiuqYHNgkGblusTjWtduXtBDxpSWrNvFrbonPFxV5VyLejyjOnJrR5nIy5aEPATAedCLT3EruORlaDaOlCEdmVLQ7La7o7KzPWyf8J2pb+ZTaa+b8nMzekJXz7n1zI5sEOodaZCWjx1f+yi9aejozRDd0uFXSj8+oe8cWCUaIB8l4na9T0TxgodheY1n2s3u9WtPlp0K8eKWUr5yhaU+7vxsNxy8w/G+rqm0PXYZ07LCc2u6bKn980TcnmWIDale3tK+tQo3qLkiuj0ycjt9aiRePa3fKHxcA7ZHZkn1vrIr77DDnsaIGeHmOUZW3AbnY2sG+nd1JNmdLH6TX3cb7aZ5xDCx+VR69aXDr2Ul3u4oNRQbNSs1apkOnTD/QNOMyJCLYcvYjYeQGNfIKW0KOx/2UvO2vmRlN2ozBNvHu/2+PPq4+bLVAKG7kRkjzTEZdjlUPB+XNSVBcyC67N2gO7xiTEukzLdqRbl305t30/6r8LBb/GJLc43xrDaK0PaQi022FxjZyRbn+6jeB+iRp19FXMl/eAaVdy7ByPuCzW0X4eNy1pndklQdO/ZZx4Jo/XizJIKia1PGnqXfDsM3PZK0Iq0x6RYKaT/b9HSbdEdJGv+E5phWx6qtLeTSThTjQuTw2CGJvIBwpH/52rCNu7Kmn1kT95lkH1AyeiXYgW3ZphkTXmqE69Z30giw0z/xdKf9h4roqhsj1m4x3lL0bxMyd8NtfLw35QgJaJcWvCwo7yd+a/drLTeP7XDDTb1FsE1xth8JyvoBjXFLxuTe4hpcrxC/qPUoFUYf39PZ1veMJZtdoBBaGEh1kTH2jIucWxmk8+ZiUX39QO+OB8UeCncOVG5s2rqcAySdwMZiOf7w3Sa3N9Et7NfRBDfQ7Ckoo4IApScHc44p/Bj86C1/3/JI3WmZEzrpn58EdouskNLKmgjH6BrcM7rxyT5pt7qd3hNJmx9fLi5pZiuaK12V89HP1LiYZ2f4Vp/kp9wsUXJC2s2af6gCk7Y6Eq0yitlUZLolbDgOL3x26/UuPfkwS4/+LAPdtEblPV+I49L3hVq/2pbBSo/OER7kHrIc8U+abd/0NbUbL3jILedh2gTaKNWCu/qwjItxvFoyInDZxeUJMTar7mLueJ79IhU5K1KwTUqk7oeoyNJvXep73G78qJEzefx62xlZ/2UiIwMcoRMWyjgVyVXweUSoYoBsq2HNjZY3KHvf96KbrcoH9PrPR1SsnVDVo1KkUhKj5nIIy86oJFxpfv5ydouG7/xQySlO83a3Qavy17VympMP8euvW+0190hZo/E6zZZ1zQ0T95U2hFWbu0typXeIUjef+xAxkeq8M2rl6ojxI9NxWlf79pg/5qy0Fvt2RCQ3QvwT7MNdGVnXzqy+EEdPhtn80dbYK+WdzgSvkBpKc37UbPPorAP7aNTh6vgAvZEXqSaPpvfN30kIqB1BwfbX780dkgtjjVQLYLVavr3suXmQks5HerDCyzQ423tWaQ27Y6O+exU1U9qy6ln98aSU72K8/2pZn/UQi9FIPdgz5HZyUColafetnJ7lXl24MsImx3wBj03irrJX2+Yjll2RbgnI4kN+1e0Pn/KMzQRiPChsUq2SgNk3QklmXJWITviRI/Bu5i32fPbyoJ7O86Ev2728vkvt7ZmYHR+KwIwhl8fGqnTauaW5YtcvvV63J3LmiU8+ffmanr7lQiF66UECDzKGrJEyg9Y2/ToPl/ic1ChvTBAsfxw6znj0rOtwrtXdmnePYr5iAfEdMf2HnweS6idsVIeP1GjMTheu0Bc5JUHWs6NcvC55bV2gdW+lfu6x1gT5Aak30rv8nffXc9pVh2d6DzTufmFilOM8qOw7rK7b//SWz8HHwn1ypqOnBr9uUJZ0d38n6zJbrTPqO7TKNY+Tq2e/rKqTYr/kpaxjgcUbNfke47Roq+/C7aqnc52irDvqdOLCS9oaNRMM+imSjughn2bt0Sp+3R9XlGYwQ05AvXCYvX+DX+35lU8t7X9g7Ib3TB43vevdu8khZU1raJpY/TsHQ47MSsr4vqYu2EbtvQdLDieWuXj98Hl2Ct3vVOBRNGg7etWpUmhCz764YbQ8nRtdPiCvUHhK1DObyGClbN9ycmjZsQ7E+t0zx52GIx5uGRy89mr/a8YrpWlNuc12wb0n/Nbl1ciopa86LbqXo7jaU9pB2PSTfTqWqH9hTRS+K7400unNEOLzgYAekxeISVqR8vjkpZM+FSkr+qbysgVzH7PNJ4wEO0VycZ034mhNB3PX6VBpkpgnVTZCkeURIVFjj1pHRXCllrsBefGgZRv5Z9bqLMM1MNbViTU21ujeOtdzhSpfxa3TkX9w53DWkDtfXs/wekGyvmM1pqzSzizn1u70zzUXPPRmfvjEFoQenAjKh6vIdTwxQ6mt+RGyu677m1T2YYHLodIre9VnpZZhM6Wzj25MT7Ux2lvfXbMptBlRHb7KmSZCnzqc0XIVicYGeMSvGRpJuSrWOPK+pmdnuZ5cVvAz8jOHSgcB5T6tLL3g/N14KQUhgYvWR0LExY4FfTgnlMy2WpZycvpxD0t+T5NX7DLbq18yt7xcce3Q2N3BN/tekZ1fCr6fHRe1mbxhHavLkbj6zbd1Pu/FZbOVQscjgMdeccGriw+lCfr7zcc8EWFnJIs9d43MkHn3qXfm4+dA0UyCzk1fijcbcXZOSWj/A7NviuGutEu2eIG7U5P7OFeUT82M7r58dAWHhZflCGwRT61a8/A7fCleZ0+ryqeZpLeCcS/EQ02F6C7zMyPptLefJMX9devHCnNkuOc6N6DTw+0sK59khcoDIkpml7IrT6xykEuoX32hXfd2keWeHWcwsaohr9V1Hii0LjNy7Vo60ThyIKe2GhfRo7c1o8d7341qRbaZ6LcVV625CYEZroj8K7mGAvdXe7aXSJRoXEt/022g9xVxsaHr3W62+x6MblAM/UIwK/LU2Vjbq0543f5Cn2GDd+tvngqVLxHS0IxWtZJP61E7FjpWsOmzLlHAxaRvQPRlmd694bA5R+UoqRfD6a2fy6JePfZZ+fDcjrnKA2uOL+HoiRzflhlAZ4y5dd2wO5Yy3FjfUka+ghCOvRwQGHkS17/esd0Z+2BQ9mrq1PEnRlPP5MVSWkfVXHKMOU2aUbuvRI5cyXm1sjHoY97+7Gwtz9j2e6FyFx59jnhFGdiYrbN+DcHzS83NLvFZMdnwycnoFneJgrYflwDfZTpXX9n51SPTJ2/Hcr49IO0V0bmY6X4hM/2unOueklsDD61g6R/VtXzFrtYmwxju8qp5pxX43oX6nmJ80A0J1isvOFEQvzRv+6z+PNLi/ovYNPUqry9lmA1F/suZEu/dVUcrXiaH2WT0uazs1qS9eXpQ3wfVkxGndyKzkA2bXXo36LsSq7TjWNl7uddfm8xmD80kHfDVFpJtHFuS8w2d+qXv8TZC8oajqQ+nTfxlBsWxcxbM1M9rxaoGtxpnGZanqnscu5WjNrrmYG7FbHNzx3n65+/fp09slNgY9DXE9PrUZ8+S3KdCr6ao0XJpMh+Jb/Cfte53pQ3FRRvX7sdt35sXv++WZUsqW+O5WPLypidC4Z9rLz/+GLxEV7Gy7+v+S9Pi6P3qs0fENgfffIbVzNuKuYkUIEzeN7rse1PtgYgLzmhJ8/Meiqq/YILuywMJ1fzth7wVb1qGfX7W1NAaInAzpv7akxWD8k3GOj36rNLXq5YevnD/1It9lYIV10Ijo8OCtcMV30oNqG3anFHn7HVDGZfg0mETbmDK3z81S/vAuvroihl81MskxUdvG58pyn5zoYet+n29A2mnGI3d00oVE0D6hi5/L2qRUCT6ec4d5X45L/iPD8+qfxAZoaEbXrePbB8JcwmrJwbHDTyvHfqokr6u9+y9TMX8uJq6ztl0+YvzQ1W2O18NTQuEGe69TujwDdQWlNmJ6PeUHfd826A5mjUCZCMcngYvb0WqO05tWV3oOSNvVYcrllBdV3nf5SCrGxa+T7bjEI77ve/dwc7KSxdPlg7nyVy4/9i7LkgyPJwbd699dih+lP1iv1sJhjF8Uh6zhlQhUNaN70cHvXgrX9/kb5N3PSujYnyGT6KY0ObbmmU1iyp7f2lPnrZM9JgMemOX59G4yQmp9wF+VQ77QuFaN6rb3G5hzmJupRTubCvoPLqrUK9QmRuoLEEuCh664zKZ6exD73rnNnVyZM/9wLFgEtBNmnhWff2Cko6yT4gU4fmHo8HeT6Lvo/2FHmxxuuJZ3EJ6erBqq5uX38FIHRHPGOV13tczzVetLETe/yAg2vMou/V5cbAF6tGk+8CTypZtVFJg2CF8/UgJ8bIE6aXg6b2f7N40yNs8aLO5ysqW+7pq5t7s4IiRfX+t2Zay9+UJRYdFHt40QA6dORMPsJozPLUwpjbfibU65A9v5a+ELmut7EypP0k+1cCmU8Sm3TUQS7YHJySyUxmPgoI0901zxacezw1U+Y5s9t0sLhpGVR1ncz+8XHN+q7bP6KqKA403kQOPAkWCx2Y/y16SMDXsvm5dlD0oH6k9XnA/3knBpiklWm9Xg9+xDTGfc6dE08VVfJJF4d9TB8en7iRtT6Jftt/aZBbMIPtZpr2dyZwilxF9llgpNn+TVOJWyJlQte7ALm2W5l4ot958RExez008M9XluBtFf1/nqWJc2TGHG9MqzfsznxHNr9WKevohPQR6tl3DH3DWTp9uWLbsXXIS+ZM86ocD62oRPoZiNS3ozq3W6938fHQAIZCe6mIjvnT2WtGVlDJJWYl8w1tVupO59POOUfHN8/VBoa7SO1bN8B3BDF92PGuk91BHUs9W+mLlaVSHg/RZxpvxz4qc6cvdNatEe8czhepDc8qp0aIBV7K7tK9FltPOZcbYXTRpO7x9k78r9vS9T2bjO2TUlUa4tDKfL8iztrHbzs/Sx27HfqY+intNFVDdu9Jrt5rt7uiUeJf9UwYr7+89umNvldQTA9GUQ3r9P9o+2DOT2O/kfcMvdxhoH+8sLvtsfbRj10f5jdqjUeiNtueb7+a+jL4+f6Q2tAWdtef75gP3B+MODJzsa9niOnhb+Cr/bfXTn4Q8DXzDXobU9R1nfww28BYXaZ08v8Ku9j5MwTg3x8XzBfv7zW2a945Kdl/a3Xpm6Cr8Vk3bRWwp4uO1gaHhqpKzDU1B924b7A+y0hne6rLaxt8n7FbVMeHM+h2U/kg7fm6RJLE2tVyTvs1K//RGUhgfvvhG8VY7J3hY+vjYV01RxlCKG8o69URpg1hMZ3N2FbbOSv3Vm4jU/u/7CwfG7jd9I79OnYmXZ+nJ4j723c/PuvHGp2/8xbDQ9vUe1+MxLaFfh3J1l/i0j/aP95HLonT49y3fpKle2vFoDlgRGT+ztuR1aomexoj2tFTaBldErN75e3PAvlHX6RPCAz3wM+NPs9YZlycEaj8OYB7KtSNh2aH8hT2hsis2jtzPDBpocGgqsj84buloxTqN2XLkcsxQ7FRJpI425QXdZeNhsxwcun/EwTZdOvyCupfCytq77jnLtrp3n4LnrN4rz44wmJebIZS+rpF7WZFWb7VWZn3tk60A/3YRx5SGsNDKuztGQ9WPRE02fiuQR7CqRITWdRdJlaZ8eXeC3buGsaplTvCUd5Pyvii405L5uXet+vO11utPts85PIxZMocfnv9R57CvLjnsy1Roy3yjuPmpmo1Rc0PpKw7UDVbuHPqhHzHJDa+u+zGZ+11W7Vt+8Uz2tyj5eWTPQF3U4ieGpXyWbVvlumH/9Dn4vwzfFB77J/BNDzqHB4ODMHY/wXIQ3PIXHBK+AJH8hc1DwFxYAA8wSaRDj+SgBQYZwAM8+Bz03JUMBAGEX3hONv3vQJYImAURxgVlE+i07WxYAI0ezFtfIFWCsbBc8BrL/gvNT+FMAICxAMgISC4VG0Kmcqg8eCD0APE3TpAaeDILQHjTvGnO0DZQSWcSneNHYrNgih5YOgxgw7AUBPREU3UHDNQYoBFYMCO6M4RkBEIYFDrPdiqHwiaDfgUtxLLoNJ7VdNBhODKFzCaDSoC6AhBgEkJRgtaBTiQzWexf2EaQAtJqESa5CIr8yZO9oNACApNnhh9AgzCDkHF/IWLBGItYTSUYHlSGDamChbF5LmEzOXgIaAihOCEPQQ/eYYuPJ3/CYw1NnWCKEDqUwCbBF5RcINwB4TuNoVUCwPiHNQhK+9NCCBMLBGEpHPAPAuQnLAxPgdKHSAZ1UwwiY8E7oFgqg81jSsX606FHnLAgOhsKxd+gWBeVI0CwXkXkDoiptbXNgtQFgOoiQ8hcCjkAgHkrOPHcBSWru4cnwtubhkR4KyiBC7/AnZDLWRycHx1LWSAE9QfTE+IBbtGHqBVRPGGcX+hTOIsB4EFL8GCQFhwKlZI2DED4ISDeoCELMGQI6EznsClkGmiTAo99MLi4EA8aPQigKEHGK6ouOo/EoYJG8oApLF4+mpJBjkgEzC4IYAaRgWAoN7GQ2XAGHcxdCGvMYdNpdCqdswjBhS1AisHdRpDvaNAtOxqgBbOnYGlQUm72phks4H2hp+8QEhhyNYfFwVIoXFB2EJ0SxKsYGvcn3teAtsgbwjezoHrlVWMw5EPQf9zF9kD4DYj7M4R/Ai+Doo1IWDINsuJnQiuCdaQNcwPIv1UZ6G8SlgUGG9z7B56bSfgtvn+gmSGnAjQSFixiqAihB/hQ/vMQNxBqnP4XdPNC4i/QkVm/IrgAifbmoFSQeDaJTAvgGQ/FHfrNu8+j4LDBcg4FFkDFEHQdDkFQeCI4bB4kAKL6VdOgIUzCfxBWDXUU3kN/SHfQfLLf7xt/VflvGOmFZR4rEmgAhcyrfh45L4/YAJMB9tsFtXhOX7ScZ48m1HBAS3mdaqED8JLOEWDROUzwUguqF5gFxIYGRYeHp+A5fKHkgQXZZNoCvAkS4oeFcO8gR5ATCgGzpoO8nQEmFUYFqFA1LChPBZMJJFBFwMzsnSGQNOxnOhssoLohGaCagN8v1RcrfCGE3jQ0AmZKBq/B6gL9zlPb/regmyy0HnDvgg3QA3oyjQNWCZjjTIBXSpDqoDYULhhNcIYwf+HFQe8BNBbYI3mjBcrtxXziJR6d50Uc9NICnbi48WeLXzAaFLbYFSC0OegrChGOh8oeT/4pCowtnEHmNWKQFQkbRKbzBhFvuFK4C75xBIgUAM+GMpiBXRgUZBZPQ17E2VD394MGC6gTEyCCTWZRnUVk/oKbTMDWweVh2KFdUF2BrZjOYoMTlA71UzAhmewF3DyE1CdDoYEZkKkQ18WDAvArDxde2QAgbWgcKg7MXSg0vPT9o11BOUOhcHgKLkaPBLYLc46fH+hBMOKwYDoTKkRFCyqYDLCFbNOCOZEA2p9mLdhDoO7Ma2g8XZhk1sIhAg31BD9ehkKjgNdqGIsNTmthLEAioDcueNFiQl2H16GwzJ+DlvfKyU8Iyl/H7a9OAXU2JtRlIMeywaMLjgPNXHCU0fFkXv/8Y+xBu7QW+ikEs1OCWRhDgD3wAEYAjyFgpJQWko7px4EqYEEANFhA/kAwnEWigyeEECzkc15Q/ThkAsCzBmop9AXOkAW8AbLYb2kLxWbxxyTS+vcbJv9+w+Tfb5j8+w2T/0vfMMlWVVFT/699xQT5/84rJtlIJAb9/9k7JiiN/wx8NBup8vcvmWiiiAQUAU9Uw+PVcUgNFBJPJKpicOpotLomFo9D/3cCSAmqGuh/7SUTfvRfXjIJd/IJkEWKh08Vu09QZPurx7wUL4lky58wfIppuHejtrqQ88KounTowPcpheclyY+/9mkEocvK8p/c4btlD+Ts9Q5o59TK+9ToCp8aw3FrQudpnB9k5lymja9eNzq9tRgx2qKiGvJD+LxeSWN8dfdFiViRYQXPhoJQRlBIUDiTHaK1Y3eT1Ix1QKic3HE707Nvz5klx9xJhpcBTEXiSn1BPj6xvjTdQyuj0nasOe/40f4uhpRTbcS3rbRVCm9i3iaodkd3QEPxEG42P0XA+fTxMvsg0UeCpze7d0ogSvipm3NzDl46ftciw4h6XeLEe8+r/BaK6F4qKYkq/oDEv+vp2gNf9DISXk1aZkp/6NnqcibDde3mj08cbEQVDze+L10izW+W0avxdQP1g0Galmy0YbpzI2Myr7NjLEfE9WV3VLKgnfABbVZhl3DbhjdfX05pL32gkkBaZz+2c00A6oCL1cb5d+MWw9uSFNzF+64J2g7u6D2/o/KssdT+ym/+9yMIsaUlVyWVI5oYDi59JyYjdcORoYnlezQS0k7qvO4Xfnv+W2MRX4ea1qWtM5PfplvMCpK7ztWcqOnpkA92+PJqIrG/tCF48iy/hXYc6aBR/HHFqZyMhKXR6VtLP5qsbPmAIT4QXuXxeWKvrEdZ1NawiRbJywUd+vjz88lq+fZwLndteFmgeebzXdZBmOZzph1ZXS3+K0Ua9Ry5QoBsQoz+4r8JBW584BNcxsf3vwAMMaVN \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_170403a2-c914-41db-85d8-a2c381da112d.msgpack.zlib b/docs/cassettes/qa_chat_history_170403a2-c914-41db-85d8-a2c381da112d.msgpack.zlib new file mode 100644 index 0000000000000..3000ae003a486 --- /dev/null +++ b/docs/cassettes/qa_chat_history_170403a2-c914-41db-85d8-a2c381da112d.msgpack.zlib @@ -0,0 +1 @@ +eNrte3k8Ve3Xt6GkUpoTyUahcjjnOBwUEpEiY0gZzrCdczhTZzBlCkWDJE2iEJmJVOaxNEmGjBHKVCQRmevd+9Bd933/nud9fp/393ze5/O+P3+w93Wta11r+K51rY9r7YAkN5DFpjDo/OkUOgdk4Qgc6IUdEZDEAo9zQTYnKJEGcsgMYoKZqaVVPJdFad1B5nCYbE1lZRyTosRggnQcRYnAoCm7oZQJZBxHGXpmUkEemwQ8g+j5hr/qhAwNZLNxJJAtowkcPSFDYEB70TnQi4wNtASgsAErHNsV0AfhxQw2BV6tI6MIyLAYVBAm47JBloyPPTRCYxBBKjxEYnIQKkqqCA6XhWfAtHRoFAX9ZXNYII4GvTjjqGwQGuCANCakGkQI80IqIeExBoO6IA3Hk8nbw5lL52kP8/rjWRM4IUPH0XgEeCqD5AiJx3FkgRwWBYRMB9MSQTaBRWEukMtYgjgWgQyyARydCECEXBadDYAeBJDF5LABZxaDBnDIIKDL5TDoDBqDywZ0SZAx2ADMHoDZK8FcmTgWtC3kEjZPBiYLMjWLQwHnXyHfsDx5T3/ZnTcBcBgAlcFwBbhMgEIH/iTtT20hK1HoJBkfH9jKkK8pLJAI22OBtf1vpAy8C0jgQKQ+9j5JZBBHhITq4FuVQIZkDc/8Mwzu4ggEEPIMSCcwiNAG4RkkLwpTESCCzlQcB0yFXE8HeaYNT3UFQSYCR6W4gYnzq8KzcEwmlULAwfPKLmwGPX0BKghYlr9Pp8K4QOBg+4XfN4WE0DVSNvOE8EoHUEoYdSVklgeCzcFR6FQIfwgqDpInkcmbL/x9gokjuEJMEAuxEJ44vzjzdxoGO/yOCY5gavknlrCrw+/gWDQ1TM7v4ywunUOhgeFJemZ/325h8td2KkoolBI2+0+M2Z50QvgdHoRz/7QYcqYngsCAeITHIRMJkJspYHjrqKMjwdkRT9NStYXCTBeNt3M2oaBRXNCIq27hjD9ORTtasM1N7bhUT3WC3j7iPhrTBIHCorEYVRW0qgYCpYRUQimhEHq0I2xbFSbFTM/akeluZmZpfhyFMmDR7chIVYyG40GKnYGpmrqzraWxERplfNDSEGON8thP4TA8yfvdUbYuNixnS4atKQXvbIf3ND6ipMEk0pDuuwBIOq4bhahldPygnYnLAZYHWpUK4szJ1hQDC8NDxq6qto6QNVzxhp6urgQrOxsbNOE38VSxWARyQUI1JEYdCf9k/sQGFaSTOOTweIyqRjILZDOhzAMGJkIm43DZAQkQDsGXz5IWMtBt04O/ILw+QR/CZHixAYuiCKCxgCXIBNBINAZAqWkisZoYNGBoYpWut7CN1T+EYLYVC0dnO0Mw3PcT8kkEMpfuChJT9f4h2IthsEOehMWH8hsC9ICCHkQsSBWebouwmM+9CCP9nPnIQjBYJByd4sXbNryYh3p3Lw93IoFLJJLd3GlIDS+MCgUPcgnO9xeWQBkD3gYSCEFjh8erqGEzF2Z+4i4V0hWJQCERSFQ+nA4IUJjByjAZLA6CDRKgbM/xDG9VpOE84BjTUkGpqqhBht8FJRUClUsELbl4fQYNQiZ7F8BkgVQGjljggYAyLUil0CiQY3i/F04SdniCKrQ47+8EHIYrSGeHJ2F4bkWW/E7BAmH+sBK/2GA0NDSK/jHRT1YqEIkGVq3gz1Rs8HdpUGgaO+/vBAssbiPZ6R4/qREUYnjrVujFUUNNRQ2jgsY4o1Qx0G8NdQyRqI7TUNVAa+DViQTUXT0DhB4Oyv8ISx7+wpP0jxzSNTHSe2iL+B1ICFNeyobm6Qw2neLsnGgJsiDHhKcSqAwuEUqWLDAR4mWheyT8vjpBg4B3VsdiiWpqGkhVJGIvlIZ+cvsDdglwpuUduScT57N7JX+J1DlhPt6PIMeinN6GFCme2bnoVoTMoaiC8QxbLNXe7eNp/CMLsXvGu1zAuogPTroX/aR6tj6U4GgLC8R0nuiJdwtfFbt8/+LkB8TDWGevCelsx+HcqumrY4lzUzTUTNHlmExfLS2tx9uMBQJHN1p54+0VUiUC059vceo1Qws1qkfK25yrmhovEnTZUbvIrvHL2Cge1dvUi7lZ+bUyPF8uo1Zvh6/hXuHswVe18Ygvygl4NY3DLmMO1sKUHxGrup4FLds//IBE2SQnmPwM/ab2IS10E78xEb0tdNN50U46Ryrg0hMibfT2VXfH909lnuto1/eVI7onT1yQLQ0ce/hRfMfRtGl/Aw9H05qXQXw7By9ESaTeO72btLKV0h67K2K1QELaG3FE8Gqn3AAdRMHQsvr1sxe/H24n2K7xlHxpnRWMnfUZ65jzXBf+6N54/eacXU0Tc2iRw6Hx7THg8jsP39xVCa53V7kQf+EQ/abofcbDpaHxBe/Of1xPu1hcohFS8aVFCFmiFWCsWG1WavTd8MUyYkrhqQnGp9o7DxsB5GDUJ+fFpePnudYuR+Ncoz87Wt4P+87Px/fjhyBfmlNOlLEgH99/UoZt/Y/LMJCGB4kwJOYLsFanEzIUOpML11tHj6qpaKgpAhpYDFZdEVBRxaLs/1RVcUAP6PD+yQCBI+IQSCQaLhx+nuiOzgwWDccr3vA4NqiGkfl3UfA/vSg4bG6BO2zupeKup4Ex8SDu9TzERDobs9SP79+Ho7q4WCuBNGOGhyVNDY35deqq/1EUHFThGh9wJSE9jD3dufoWJmRXMzUXvb0ae/FGFoamFmRbtoEehaOuf8CZZa1+2NEdpBkaGeJRhzzMQTzBYz/ZBGvu4kV1O77fRA99XFUJ1GNimPtIv4oCK1V1pgbFxkCF666rS1NXs9AwUSXjNGxxmL0MQxIOrXrIde/hffo4/HHd38RDYlX/90XBbQ21f64m2Ph/pSYo/EtNgKNSGe7QqU8hUejhcTv+mZIhfeGU54V0+MN/HND/srritgrqf3pZofqvKytgEqiu+NeXFQQ1IlENQ9QACQRIVKwaAYVzxqvi8SrOIBKDVkf+d5YVBBU8VMM4g/j/clkhpvOrrLCKNBJNK7oRNDG380IJArF4TUD1W1RwndzFbJs9csJByBahTp1OmaTGjA7i6ov7s+zHrYp/fA/T8ftO+TrgcP7H7GCNDlcD+ts/+hYhkeP3fby/9Ht3TQxEMDcz6+feETXrW3glpn/4W2flKLvQFFoQNlnaOdtp8mP6a0340Mr9Hlor+1zHNUvjxr0dU9a/cSmrznKNk7m9fPxtu6gzIWdnOVZ4xXRWZ5H48633a/0OHq2wwfRavlZQWvc8Lq6JO4eWN0/zJvfiwx60R36l0Las8fgag1jz8c6hVlvvTR+mGpN2GeWzSvxcAgvoolu0rI9EXhAMvdVV4iCJKmA0T41deLNL/5T3nWYT0ZmSUq01q8I+GOd9VPW3Gjy5HbXr3AfMle2kmP1aJ4+9fJUsGWat7d+gW3uGI3Hyxgf/wgdGscP4wNM1zVXRoIbNupE3VNTD2e0k0ZrNsXQt1c3el9uJO1PY/nbxV4uM3x0eiVu+arcH6lFHorLXAYINv+c+6lhrYoz3Z3udQNzkqzrn3Z5Oxtyj1gMNOylfFp3ZHjlha+1ODcmSC0b0B3WvUps5aFjcaDJQSnNZlTxTYqh2I7S6Vd1D2L/CdzVySLes+bVwnDs7V33NbfdXNbptFVjLA/dbEwujdwzsPN1olFYr/umyi0FxZnnY5n0tDP86dgn61sWdYbLjyw6rHjF5r7v9Hi5xhvS0nOqLWXH62jUDgmEImxW2SDBx17YEXNaL6XLS5oq9+qu/Nd/bMCaBu5ss8fVSV3cav1MLp1/kc8DWig7c1Rk6rcq0V7L94Fm12xKc/PMiq245BdyNKklOPGhnuyrKydA8Uz9RLIYj+Jk2cyqQNvLhiAR2MRl8m1AOdA/k+nU5XQ5CssdRwcUYtS8P2pL0Paq8avrmpvlk7zi8vinx9Zb0a2FcYYb8+YhRQWEw4q7SzNIT1ro7BcaWBLmL6ExmR3269ZHDBDLk+QcFU/lNP+bz+1782LBYLTPxkfRmJ2/IMtEfL67R8ynRfZ1HSj2z21RerHZDVgjHti2zqZEs+XmD9xOjwIwvcf2PSPX7JuvTA7w/fl3DTDFFhIRhzxQk1RTGhAZeKPNw+0Y+feVa2FP5Qac14UtaL48nkQaOswNEp4r2MTIw5XZmKzdOZr3wN3461FDz3I7Zm0pAdWzLYLzy/HH+cNYaZzRtsADvWLkBl3/VhuhzVRMpZrA9nZ6MCt88uCsi5k1g/Bp0JVkyQyq2yfHA8nvTmZfuXyIiH6vp+OetcxTbaYPoXc/dWzaYfadj46fX2Zqdmz18jtq4HPvsiNyk+57Pz35Svejkjpi3tz0Co/pq9JlKiFiD8pVfhJI2jGM/jFavnrnW6fsjw3H8I6NfTP1r9ZPP6Yv4ZdeU6tUaqr1ak3mYbX9AvsWu43y1deHhtSW7FfMEtO/EZQzN5Hs0LvYejtxzvFFnp7MjepP+gCJO0thd2yFTnw9DOXh7Wd2umxO5E5LLQsSIN8XLekK3AUBsOfD8LM3yXlHN0O2N+g+s44x233BGFgdL3dPw9dB+2j8n4d1QTWmtISDLnn7aQRQ5eG/F6EHVnhU34x71qNw4spb5Hd3A/1Jxrv4DX2mV5zhm8mhpD25oNBT01m+5JbrWU86p57yD/YrrXz1NuYWsmRN6jtlvdseECM1qC1VfERcqombu3Pww0D5badkShZnWZUeFzANHMs5sM8sZD2qo6bYfedT9fo9js8Bmrlvkq2jKHa/x+9cNLjjzaTvckR9bIn9HOO3++6/Z7uVDnHPk2Ae6jWOvz6XkJhHN29xdcjSi7fidlw0k5xywltseYMYfdohKzlYSk2fcHQbUn0m6JV4KlFaSEHJcUieLzqKogknC5etX+Cx6OHg2x6RBLySXFDzgPkg89HxQ4tFT+6alfrkIqR6Shh6SeainX0Ntk2GlBNAs9cz7yiP/KxYn9/Bnbig2ub64XaFnLVHD2ogd5qB1LvoAX10zJ2WDh4zTK0zRlUK/AgJp9M1lurshv4veTQufSeOpsTrjTZ90Ni4fFlvttcVNNigiHDg7zHp54oSvnMuG19f5ILeOnNYSYPgkOzWf63Ti6LuveNCR/JGe8JSjyeHerr2xvKFtLOtGgcDq3h0+7gl4boRF3BlJ9fU3T7VMx7Pr7ZVWEtWLnSZWh2iVW6MDdWlN+i73SUif1EmBNQVeAHB/mVSg/rp3rFtZ3+YMtHL71U5btnlvLJ1MOHbCeYPC2TGjyxiRaqNrX1eN7sQ+p07raW8wOuzf+fV+81sV7JIz3FVnLE+VnPJSmXL5AIgpv10W2tF7LNtXS32Ve57+7YEn0Qq6FbHsVwD30qTkF0/hENYqobP+/scLmtyfLlLLVanoiLolYH3OR7DMsqLl65uVF9+rbmC+TtIIfaG7iDr+5YDH7bKZjyeN7PIvxM2tsRLXpb0qnPT2CfS0vCFmU2w9MiaxclVebeK0Rq9Tkba9IJ+5nvrR9S8Tvr2oKzO8cqglHzyhvXk4WORz3lilcPnymLturakj3TMVWyQ8akTiA78snsU+OHNjwqo/WyCXq9jFjCLJqdjcuttut9ZJMNpQ29zi2Zd3hUu8PRcFu6A7G4vsZzdJhR5/7d4jecppXcN5fO+08YzLlR3IxulI6mN7MWMvCa13dcOiRGSlJVJrJivog2/bu1Iva6qRYJfX+GMvfYMclSn1wBQywktnuOG+1qVXAk1DXpXOzA/sint55vqfNwvnSVV6A/dpezAZEy3X77alzunX82vnZAK7xZqjTSr6VnZnLEe9uTY4kFvaZabAGBCtYeggqbIeBWLiTyy1F81+CZG8kt+0XGq3fK/xG8NFiv1RfVPbkZEHz6uql1oEpPqwBCO46keAL9orPpYoI36kGdq8u5Cya6fPnqdp00GdIzinwQuPzu4qp+6Rz4tBaQ7Ttw9rn7lzOudq9+vDjHptNFZwc2xf/VfZlwGU5cqLxI8UJumUtiR3Donff/J0esqvZs4n3H+viGzqeqNF108oEfyLbc731RPXO/abJxJFJ06F4tkvW63shFoMX2yMR6dMfsp0WFlU1xNif6TksIhXM/byYPC565KXtSRKJ5d+tvhWbnC3lD8iRlJwgi+I6Bx+NfPtqOUe7Cc56ot0wRo3qDB/q+Nyz9Mh4SxtKtdcQDYes+7i01bBTokPI23hQj4D1opiKovezvXqJnzVPOTpkaWsU5w07U9FVs6Zn16SM2dWxVb/IFqrGHdXgn+lBGmJWn/sEGBZJa+6Uevme01k1+3+lpYGmSTVGyK2hxtvFL2iLPteUlNV52iuTKOXK9IerdG8F/rs7Lpt/dV1l3G5ofQWUVmVi/oZrHf0Tu/woJktX0TzVbM0N61fU8Rek3X+yoqtn4pkGg47lmPSIvjKkce3SuU5XUAeXxpikFThaxezUykmbaXDoe79Qb3eaO5VaWqXz5NnBJdOddF3i6yT2gGrfJcpoSlUYM+IZPIcufj+OJa8ou/SzVpnJdeI8ZrYRaMP0pMPD7g9kCscFKlp3aH7INFj9kGa//LFdapIC9WvT9krP1S4B9p2nfFuKT6E3l2XYfjApbQvPe2JWAdD9NTAeEbq5PCc5JVg06HnUn5F7ABVqnSj6YGoe499OsunvDxf2xNvaJhE5C7Hn2zbr54XfLn5dR+fMiUnSf0I+fLdWfndJJe90zPmxhTfkmrIzBcGWpxu5m8PbFp6RV/M5Gl7bN6wb9GE+5yE5zcM+JxhNeP71Hdvr8Ppb1PdsQdSlNY33+Dfq7LTLY8cLSkV1mdgadzl+Fw19Nv6qE95/Gf78Yuq24f724446M0c2yU2bF946cm0jN5E1MOgt0NF8lqacoB37Qr8UrFyQ4GaI3PikXsLNr7tbd94VMhsNJ2cgJ24NXXkRrnR4GFxEdGqrY8GnVLe4L6MaGsOVE3dfBwjhcci+28FlW/n1/nRSQcrSCWHlPdkMpR21MxteDlQJbXnaoKAy6VJmkVzKGHVCPVUHqZ4OlIld5HnTeb5U/n91RV+XZo+QrfpZ9HXV8i5teV4SG0v2MLU8cw2ihVJXBYcu8Lk28OHSaXTwVdny2s2yge+vf5MvWAoxKhk5oqQVIlfWYHHuOWItfQKNSkXgn1pkeCGUwF5Jm19h2RV0qo9EVwR3/bZ83UKKX1OnYZyUjStsqazsdGSytNrFSgfL0p/nb28NE43dluLlluJYrfxywfyl0MczfRLnU0Xq5DXJWmW1KY6tvFLHMyO2Da8N+VzsqSU0ojLijs2BduG0sfkRkK3nhwCZ8rE0yu9Pb+LvF/6puVGTfKNy9K1e45zShoah7WkciIkK5zuNLdQVST3H6g+1pUxioi0t+m+nV/v49EmWdrwxmpLV3i+eFfcXbGVjzOHSEHMxBb57r1+vjXDofeEVCWUbLHeq8YSpjpwZ3q11NJfX5i4+65vj9eVTH1vv5fege9T36bGolNanZWRirNCSUv8bu9of/WR/Lkn4t60muZbLimj34YDZq1QkrZYf7w6iT0OIq+bhzrV1joNXDgWFFx4PN7BXcF3qtJCyn1fUpO8l4BbqYNKMs7WqbupVS707v1AendwA634rtGppy/85Tozs/Kj5d90vlpaNqFfGRcy7KR9omnxge2uSAu0BFO8EN3uhz5X+/Tb65qaEY1HNjiXhm/UyzWzqLu4XeoTvd6Nc+SZu/iorRMfkqSmFK9ozY6swXW2TM59Vz0WY7CJdm6ihFRToRznEB+U/BX7fIrUOWV23XFt+AbfyETJj05vFkuPP2j53K8RJG41mFXZJ5dcpuhlJEDXskj2qcZqWGKidVMQljL+qwTOpt3zz+/G3Z9cfP3U10OnI7w0ze+7OJQXEmwWdb8sil0zvLskmrREcW7NdtePbTk1PRnS+e3bxG/kO1YfjYs8+aODeoa4uSL26OSGgbQnd4TSS6YwaUcnc3WYN+mkA456jWU+k+0p5db90a7VR/2DJ3AHH3jJfituKQFaHrfdkFnK1cpZYxLY0LEiub1hyaEh2Y9lc7jFY75G4CuXfQrAo5nlbsWM6APXuDOn2zZmPhNStyh7MpwZVL65aSz9fKevUqvDaQtNbMOaRumksqcr79On1lfrlIZVjIs7BH0+uyVsKPPGPuVzV3p/xFaT0HlWUdwlg5IWdQPGL53uzTH4H3JlAHNvHX6dK17CiIldZp9UBJJ9qJpZrivlp8XeyIBXfZhlvhgZasg17PULA07lHVoDkw8+HJx5NbFsqxw3O3L4qHa33okllttnRZW/PXzpM+miJEHdnW5f8KWIr2VJq4f89qPaarPSj0xEXM7efZQd8+H7ieDlMWbd7Y5Tm4XTzZZjDIns1xik451AAcrWc+p9MUu6asyUcNYbd1hg621D5X/gT/Zqrpglv1p64lslQ+v7qKiGaLZI08fCyapBGsKaMamqtOzJTHMHUXlm254xI3xBPPNaTegiewXbJObz3FxHv9aTDTvXFZwIOquhc+u9uHg35v1NtO9OC9uzQt2Fj8KzvkjcVVjG3+0b3Hctu1dEtFPoWHXVBQebq4xDHVkjfp7rhlOvPCX1S2++/E1gi/736MzyLBxrpPvUtrBcn8IzXvwOj/NuC1XbTldXZYiedus2b1MP6nPOjEz+Pm0ge2iQM3KU3/fCXv3QbQyTYLKdIGnm1EHfqrJPRibpZw+IA+QPtAMNNdknT5yYkFGpM0MGvm3yn+6h17o8F2VHmd6e3uIdnuw5hQqeIDVubxt8d8D9W0cNiQoaX+l1C9ZS0b7uNzWeQ5cSzmstlO/Px5d6B9vryfEzeqoWb36hYTs6rD03rlfLmuGvq1Qm9UksOza6ZMe1OW2/CQnBq5/d9fy3n7xVtexrHD4N5WYX917rAmfxk+GdiX3xISy3tM2Eo59yJRtvfL6JHrlCYgaPKttFvLj7+bPNzneReTPbRKeddk9lL157yWTRFiuXelaaBGAeY5g+9Mr/R9PGT0aCWfJaqdFGMXKnD0eDPTMIGtAhpTd61A/dWaDZ9S2bgsPYrVd9vUSI+G6EluWX2HAwPoWkx37RI1W6z0t2jF0xLaZ+nNz9LP/2ZT1E4SP9hNVvHhu0VD0b09vnkWmcvmJoqTHnxw6r9wwbsv6AFjhck3jq+1SDmWFLolZVtU1c367US43YjvH3Kc2HzEqUdjd8M40oyqf43xnW31hH2eHb8VVexLwLpxi8Vb6HJpt8a2aTjyO1y/JmQAS+M//Aukv0+o+DQ8T9Hc3nb+dLlnlIDmyKbqvfd8/pub9zPDPASPqGR7P1kbK5OWnzq743DHL7H0hdLTFKORnoO5UltUFLsNkjqm7PI1P26OS22cFcFy+lNFSJilQmpl/v2kREzpB10aN9pmSyjzi7vWpa3PcIadZny9TueiGXJH2517cNvdGn1xbd3LL6iKRbSNgjn5zTBtE9Y09lrUzuou6bvjl1a1vvMg97R4nYlVOBQnPAje4JL2qXWttnBd/WK897DIb2HN2z2HW8rzbsKKWR/8jSbVRvWem58ZSjFPmBhvCTt16hA0zBd6qpnV6lpJHnr8uevGaJ9zplOrdt0pzsnT30JnbVS+uZz6sbfJpnRuz2+HnjRZccUm0W5Sst6n9tqvzcsaOV78GpMPaP8hJ78jHxQVt+uSU7Py0avf5K51b1+m4j7tDuxEfSecUnfVnCb+rtbUfi8EsenJZ8fOFtv8auoTzhjb76Xz6VGpsrzBBnyB575qoeV5drGCvNqhntqXNRHbvU5LeGLFF/5XO0PrZ58ouiU9XjVcFNT5fmKWqnO0qFPN7xg2kReW3Ty7CaM58fv1310mgjKfV4yTb1sbxbP0Z3n9eeOK/pGhD47oiY6biX/5rVBUejvoa/ReyXE3ttf/WwnFHMU+yniRLT6sHElLzI/X4zKx5f9XxmfNnrdKCQ6ubhV3xmnlI1rPp7V0PQD9gU5ROuwqX77h+rmeKL2i8Y9TFHN+rLjPD1PH6B9oDpsxmVOsHfd7gzn0u0nGnaWXvQZ2CP0aqlAWHxb9d65NXU6oc1sr5vl/p2rTXYVTk9e0J7au7+KdTJYbFKzI4Q89XjvWu7tGPkmqpCq5tPvynBqcvJVpr0n6xGx/Cfk4ozVXqTPzmY9qX1uK8PVWf7V/PTWxUJAy/CNLp2LH/OcDjZte5gY0WSipkaKfxLQzbrzKVAgTZZFcoX8z21mVs61h5wzZHGuL8q+rb7SNBcszElyErafgyw0sktq7hqMer0vbe80tSosGdb39utGxPdx+KqZrpek3YuL6uK8n8fetU/1NRNUJExFVWwrmiyNlsroN/125NXN8zYx6YV/QuTEzLprinJjtVrDgypVOr2lghe3U0VpO+WTRIPtztUA0RcqVu0NLxJvoaoL+A+pbCzsn44aa5rbIa/SWFjtnvGW87eck5AYfbZZPnOYBc6oFaGw4qN7bcyCw8aX3ps9obLtf6T57JXHDJTuC0bah2TePutfI6TNMr/tdrr/JZ9G/gdvq/8MPSt3boT1GpM6xReF/NEmhT1tuPkiNitFDfv8blL/Sv9HbDNpXPvLl+LWL5FnnTwuqTYXOfUo6zVBmNRT+u0O7Tf3XPAbFbcdnNKs9Rfdy3mfGr50uTPtIN54c0n7tmNoiIfXlo+M5tizoiJdEptDJqd3py+DRCgltWLLyKV7klzHVjy9vYSpuJ+g0Sux5G+7MmpQamsJ2PumqPsPU7bkhrDYiZFROWF7N6qI7y+HSCpV27C3KOHcT/VRyN8JG19OjXdzkujrnkzqGD/rNxgTXtip3vDBqcR9/Mru2j3tsd4937dfWR/5LBGrM6tE1unbw5cW3KIMpa9atb7lv9pok6P5ahdX5jXPTmZLYlFGVe4/GGqxdLZzxOd6P09At47J806r1Z4j5QWFvTcLPWp23zGYrnf3Kdtttc0tFon52yUZR/62hgfpZE+pDneHMjsT3h7p2hX2+7MzZudqoX7bA4vfxHmeH6b36UBivSzxyMBGTdlkuaedxQ3Okq5zITlxeSIBx94ILfmkoPJytM29ySASbf+UzbxvmQCK1iOeXey6duN59/7IsGOlwfjRROxsirCnbk3XMTsGuUkmuWzUDk92B/pcu+QZ0qL/BsyPkda9FD2z40Xl04No5VL/CMe1H30E4Qvho3fVC0L2CO2uKvYVDpnxfN10dk3bTe9Cz3AWYtK3ITpG5I6GOcuqnp7qDV6XMM7zYfw5tzjTlWPlpxHOg+ywU9dFzl3Pk9vIODayzXThBujU0Ot6JtPPG1Ev//oWR3p2Objd/3RyXaRwXo6ySbH+tKHFCes+pMt/QfCyj+c9481X1y02Hx3aAWgfOnyCiRf/cb9OjuAuqAD99KNRU5iMQfrRneuMjuy0XMpSeHzx3jdg+Y3k/kDBBRmzp2K+4Dw5pu/1455zTDqAP7Te+1/ur1QZPG/qr1QEfh9LZ1Lpf5GgmOzKWwODppa6B50JOCo/1kLIQVup5OBiRy5WBeCsa4RyoKIxe+zYLgdYBmjUJZ48J/tNMSxSFwa3CsI05w4Nt+qdwx6OSbzdwWPyfjIwB17f9ZKxoBCUgJQSoApxNONAroDDGcABxgbmyCYDHeQBRIB3K/ORN4lOsD2ZHNAmtIxuh7MnQ4PmdJBTcCMiqPD12Oyx+i6AM8v8CUoxIEDC8NlcyHdPQEK3Y1BdQPZAA1H9wQgTky2EqBLX+BNB0EiG+5XdKUz3AF32F0cMugJ4Fggr4GSCe0B4OCLTmj/vysJba1HxlHosBYQjrgkMgdQ0GNY7QJsQAoAcgAcVQm+vkVvB8g4NoCH10KMAdiTRBwL4s+CmHEgJQAOSCDTKZBJAWcGCwDpZBydAI/z7lEBJsji9T3QCSDAoM9rC3rwNIXUsSKDC3QQ1ih0NofFJfAMwQCOcdFIFIFDptBdecoD+Hkj8MZ5FFwOhUrxghlAOnPga0G4EYC3BZfDu5mFqYgLaoOQIqx5E8NbQTNsGmRnkMUzF5sCy8X6aWbIEgDv7hWWHVKfQvp9IY1L5VAgctgzkDdweOhxfprHigwpQKVAFl0ghxzB6xFmQpicF4tn9AXNefpoQK6ENYXttnBPDLkNchwLBGFqq3kXsQGFIzjGb+5R2Q6AHhBCISjAIkMmAj2YVAaLZ/+fUrJAHJtB57FmQMGIh6wG98MCEGRAHIHM01kJMOIAzhQWm/PLYGyekJA4kH60v2j+EzM8e/HUhlAJ9wrDeP0LERsGAY9SESBAwvBQg4PsC+k273EuC5zHApvXA/zTBAABMh0eBPYaWAIKeGglkUNGzAs5T7gdgBCnD88SQebf5twpHPJPDSHBANANR+Xy4gyyEw4gUOHU5EyBZFNwo+CgkXlM85jScC4M+LodcGNwwJ8RRPw9gn4KR4QCG1BAbYeZQtlgftd5OP0WJFSKKwhlG0ueueA4sT1ip3TsGB2ldAxKUMfm8y0cu7DJ2Vw8iYGjzhNC8kN5DOYBLdGBqRXQvM24bF70QYIh2EyQAGlC+COE4Cy/CwCVoJQF8YYUmY9dBssTYHA5VAod0kmGx94dmpz3B53hBkKJGxpTUFkwHplL44EXiqd5PMIzPFOAHiCBC2+jCezzgBus58HMXpjgxTpPlZ+S/YoPuFubBbIhkMA8jX5JrAnvYAPvC6/k7cpbMP/mDOVYOIksLFWcbwY3Av44X36lxPnWbjz4E788LM13lc9vy8MaFI5uFDhZQ6uhI/CnP+GIh5M5G0AAh6HjDTCCBYEOmRO/vQJw+zfPED9zOY/AiqckPGfCS2qWIHW+ZYU3Oz+mC8lLosOn0S8m+35ZE6Izgw4TyrwPIRIl4AiDC8UU+2d8QlkJOm94usHHrzwbWKgJ4JZ12MssHJx8ID3c4YQHeRAKTJ7K9D9bhnfa/G4eNhk6SjwZXDgl4qiekF15wwsJ+q8egC39Uwh4a/h5XkIID1DCgVKK8z9YBR+pOJ6kzhQ4RHAcsuK8ehyQSv3FEX5YqFnAX6Q8FM4fxdBZbESlcmF9fyZVWP79XBIJ8oehmRXgzmDBh4yCEQ1yMMCGFCNAp68lbIjfUygU3TBSeYc1b0sWBU5+ED/MAjYgZMIRzvMV8w+H86Id3gIGCywunsVTDD59cayf+ZOnzM8ul79m0T9OQfjUZsHgg43PgUoXPBdOpRC4GQQKL2f9ymbwKs1578H1kyJgpA+3BEIlHxGyNJTZFXky/FH08DaA8wXEH3RHQF6GEr8HDjYtz4kkLoUI8rSBY4exgAtIA15eWKglYJX/Eq6/F4JwYfenAs/xv1LG/fvDlH9/mPLvHtR/f5jyH/SgJqggsdh/7Zcpqv/vfJmSgEarYf4/+zQFg0T/H/SQxqvT/mETKV6FgMGraWDwKAJWXUMdxIB4VRwRD6qjQRU0CqPy39lESsQSkeh/6tsUQYnfvk2xaqO3GazymbARmbwscKnroNU2X7bIOqVVwL54PpOBMlul4PaMqypjr9JlpL+UbixM2Jp03HG/U79b38vIKV8hs6nEgtMvNOMfSlXM9rntG5Yaf73xvU7H27yaMPd3NW+fdjqU+rl7Tjy80Suc+UM3LTj5VK+vcPItCqYtxABFKra1z3RQvqvkV7zj9C0JEY10CY7vA9tXqpU3+vs3XqvaXp+dq9CoOusjxPel2FvFwIVpY/9o6tOX+viQj1kF2pr8VuF6vinnQzaqJjR+It43PmvldDeUGlsuEl1J6ulaLKJgZ/gdJb21XOhy3AWyWu0XbEB2tWRyeKi/PHixI8h/tYgqoB0lG/IeWG5bGH1cTEZisAwntsjYQu6zxtLrK40Wq1dUD5t5hB97tclFIICrocy9VZByrDj4CcPH0mHzN8LcLdm9jGcc8oA/kKL0efnknuv8E8a18Zr02F5b1lx7rmbQUdJu/twst2jNpC8DV5tLo4Ujy7HBq88xTkYJBj+bi5U1H9hNO/B1k+vUTilXaUwJrdhEF7fXQy99pWzXofCteu820D199ty/EFLDZ2TQlSHYvuKk7LKx7clSAnv1ZY0jI0/u8x4KtAkTMOBXmVpitu9aa7V/X89t1BGT7Mt1KcPHvSc4psohj8UDxMtt+49HzbihDMub9GOSNC0QKheJkmInt+Z3KISeUdoeIXy6gKi5+6X25IoKn3GUjfJKP5/vLMdyTE6+CNlnEOEhbn5Cjl9V2xI1EhY7g/tU+cyZ3z0Fu+jW6QSLi1FA9LuNtFLF4MXeLXiM9EuH+herXmrfPRP63GstcFfCQ2CrZfDeT6YCNkLUo/cHcsW+aQheoZVLvkmYjLmTOtFdIXnYYcNw8OGdHgr9DrsdP4fQ1kSELb+zKnEiqfuBcPuKcNfIT08nmiI2TiB3KDgKmW9JxftoCk7aZVpMv6u16haTuozdr/FutDoK5cjVDJIfrBzA39uRtlT+kcvUtx8VW8Rfxl8hPc3QPDt7+d1sSA7G7rnDupngJsvg4yEl7QV7n75uLV34B+kuSnzWwGI+vv8Fa7TbZw== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_1c8df9d7-6a74-471c-aaef-6c4819ee0cd0.msgpack.zlib b/docs/cassettes/qa_chat_history_1c8df9d7-6a74-471c-aaef-6c4819ee0cd0.msgpack.zlib new file mode 100644 index 0000000000000..fb6d8d5b1c38c --- /dev/null +++ b/docs/cassettes/qa_chat_history_1c8df9d7-6a74-471c-aaef-6c4819ee0cd0.msgpack.zlib @@ -0,0 +1 @@ +eNpteXdUU9v2NR3pRQURqSKIEAid0HuR3psIIQQSShJI6B1ERESMKCUgTTpIFaUZQEHpRTpIlQ5KlyLli17v7937vXf+SMbZa6551llrzr1HRiILfKHeaDgSQVwKR2Cg3mAIhnCDxkYWeEO9fKBozL18TygGhnTONTYyM3/p4w0f54NhMCi0nKgoGAUXQaKgCDBcBIL0FPUVE4V6OkGdneEIV3SuE9I5YNw2iBeOQPlgeOW47exkJaSlhbmlpcWlpe3thbl5PZHOUA9ChBcD9ccA/i8VAHYGA4BAcV4CBIqAIH+tObggvT3Bv2h4ncBoqLQkb0gBDAp2JpQ+TcSYC0OiMdiyf5dTDoZAoCgC7x8K7CvXQDhKmNsZ6uIBxkCLIUgEAvr7ZbHF7lAoCgD2gPtC8//KwlaAUSgPOAT8Ky7qhkYiSgl4DBSBAWACUND/Dhf7oKHeALArAYF9bUQoQlVX1DiA0DcEt5iIpKwIsMIfgMaA4QgPKBoN8AAT6slH/Y43/DOAAkPcCSSAPzPB5v+VXPZPDBKNzTMAQ4zM/kUJ9obAsHlgb09pyep/rnv7IDBwTyi2QN34vx/3J/ifx0mIiImJyFT+ixgdgIBg81zAHmjo238lQzHeAQAIksCBzQbmQ5BIdzgUO27mAHHx8YU7K5pLyaJAcCstCR8/VVVPWWlTkIEUDAyyBkuqIbVdweJShu5qFpoaYCcvVYCYjLiMpJSEuJQsUEYKABQBioiJiAGkgZKywF9X2d/N94AiXDEwbA4IWOgNRaMIQoVG5RNKwvigI3MJc4Z2txd4Eooj9DDHSO8/ErmSq0GYOfadljdcmFtchtsMiuIWB4pLcouB5CRl5aQkuLUNzEvV/zzF/H+OuNLcG4xAuxDGrPm3pAogMB+EO9S5WP1/iqnhl5gInfpVvTfSg7DogfQDIL3hrnAENvvWu/8vDPVHIdFQwJ+isaXWANO/LAjQ1Sj9S9iA357Bvvnfjqn+A0J6u4IR8MDfpWPf/VamX6C/nzPEx9kZ5uvnCQQFSkrAnaA+EJfXf1JQ3shftfwi80Rjc8Rkyv4E/pZGMaFdQIAYEAAUq0NjvOEQghN+9QOF9MYA0FAIYWPABGDHhT3B/r9soCghJiUhTRidPDccAfHwcYaa+ThpID0J4kHLc6O8oR5IsHO9P8CbMBYPuCecMNrfn382HTQ2V4qQXPvfAAzSHUrYngqkfgsDiP8nwhv6i//XO/yHRhIEAjX+b9DfVL8gIJBs/b9RaOg/qxET90TX/jfgD0UOEF3q/zcaAHfGjvMRbhxkIFCIk6QUWMYZ6AR1EhOXlYaAnaUkpMTAYiAwBCpdrq4FUAdDYFCA2W8JYws0bAxVDXTVi80I3Op/GWqCmNSBYCkHJ09FBEpVXNZSBulpo2mp42Tlr2Hgh3aAqolp6iHhUBuwpJkDXF/MA2xkqIn+y1HS0lISEgCxP3Zy0dNBmXtDjC0NJDQdbLy8DRA6QHMbpKynFULL191WC4ySkkVAXdEBbhBvSSs3tIQT0EDa0kUE5C/lpaYKk9a0FHMFeqnKWFrqII2koKhALVN3S1XCNMEYmKKoPDdBv3BCWxT/mAxAMBmAYDFxoJzY3xaT53b+rQFFkX9v1vLcOoQzxQjhESBP8CZBTFDCN9gTagbHQBUNkQjoG2vAP90JMEL9dUwVIJBoBNzFJd8M6k2QKrYY4oH0cSbs8N7QfEJ3TVVtsK9lISAoUEIWLOEiAQEBgU4ANcLe+Tfb/3k599fx8PvUisj/JXCEa9sVK664C0S/L1JzK73BYoXkF2FN80Opny1yLow3Snzn5jape6DIrEGmsfCU6OgseHQXY+W3zxf1QqqzfuN52Pl6X2aTvSXr0d5BpnLYzLDs6WlC5vhXpanzs91l5fP95b5M5fMzxXOuKlj1/Hah0qLoyUHVscLDxU3lsMPzFydcK4S0g/2TG62wgKFdmXeq5bJjpnE+g0BW26dRw+McNQX6VKkebVd1XM/VdoPHq7c7+MMR6GCmofZNlBh6m6y1zJvXIRIAaeuYm11V5xTmYW6sOxIn6eIeI05mVLqD7BjW/n5UZxyFKcA9n3Qle+rpAEdB1lV2zmoTvyxcJutCm4vPTR+Rd3tnD379KZHTm6Gga7pked3+s6SP8lQTvThakX+SUi6mOgiG3huTRwbndqk6/Dg4oJ4K8iFhM0x7VOi/rtb4yqN408hVmueVMvG7u75j5qa9ED+jtIgx6GP72gw3fjsGOnufJGYwhuF4Y/QtZ1YdRyX+1QwshDqSTDOR9rDQWvfNR3Yxom+HZG5xb+v5G3IWGHdVsz6J3U7tf3iHbAK1dQGp9AmllLqsJf35fsHSJRBb3k4veaLd8MxB4WiWjtBQflv0GqSce9o/IyBVBQyWSbr+WtrWUi25cdmxoUMZpmA1R2VcwlGxrWrwjroYoqL5ivTH2vaDEdOmb2CgqMrzyAKpSYFjerqnM59fs8V7uAZNUWECpGGS9m0ezQVqUbsDjSZvf3gdPp9xIzvQvuLUprA8p1Ax/nSTfhq8ezjOcE9mgS2iVWiMJkMgQdGklrITzW8Rg+dcOjUsdUxeoC1gUed5UatNVtT+righD+SsHyXPmyDRcjiBmw4ObmVZu7WtV8OwOVod4h0C3H6W6DmuKB7pBe8Y7K3WCRtMkbH4/iXi8jBTTZNLgvWKHxN1Oic43q97Ltnoicfu7R33LyvrPAuqeHuc0OPXQbM9fXerHIcOL1Ha+Wm4AwWJitzzzCU2YvAXRi4yJuvwnM1FAdzGvY1XkdgJ2jBM/gQ7l+Ie0dxL6xieBouh8OorSpXy8eVPFIdf3zO9bVBaVaa5S6yY7qA4AOn3nRbHL2rNb1CRN9iYNEZD4+P41OvBHAa4t1cjx3KSHl9kKim8otUL9PZ/fMJq5zLp3MWLe7hQmK5fdaLORsUQSha4cW9oSy1fdBBFOXtyIy9CwYOiSt2iySRRNudQaWhuvpcaW1JQe3IoRT1685B5T+z4WfHAuPYukVSzn53l4WiTxIS1Uvupf+7aGTdvTlgDGXCOo9g25uUn4auXgYp3mUZSA/dHTnaKw9d3GdoGV1aqN4qv5pqvkDqtuLQz2M+/9+mm3zPW/LKlmDhBfno1s3IbRILLmyyKcawekt3+AEqXNsuOyC1itjzxGlkdbFZItxd8mRTIC6vDeJJOuRVJPnmRiL8Zw5ow1nDqJLyBeyS3k9ZMKRadFT+9qnxibtr/Lt2xJDcafyX4S+QO47yj57qnjgNDbvYhO5nGyWc9WU7Uq5agGZwzW2BICteHb5G0UvUDQ0HDclOsJKoZyZsdJY9JXuhbprSD5jNaUIhIlG4au+qXn0tPTXdBIacPDKkDRfGV1JFyG41FmH6ArZMb7e22EWgl3R7Iy3Ut4IA8/jKNi+xlyLX2XgooMruU+QFa8KNtRcBqV0eVnuxSG4v7psg1lo2fLOn3WulbienmiosoIgIDOXUDx+L2E/CglCo+Hgt0tIf5wiRn586GyVc14Tfrr2rIyh4JFB83pMnIaaZ0Badv6tgsJqCc7oRprzvvDc1o4t/ueeJv90glwKdzXimNbtuRnDV+Dh/8qv1xaGspPOXpk3kZsRRgsGHECRM7XUnNVqFV2ZqLfzteC72cUykYnEkLzCDhfypOMy1rWEpSJ6DtFsKbYRB7a/+mT7zk4SIkZKqcWufjmVa1a1XfyI47a/NoWmxp35RMGsNNX420L/KBHlMKdojt9Uj6tL34qaSwFQ+hUNHwg+WHE6/mGfTGp26Z5048vHyeRdtAY/kj/NA2O2ZLr7qI4+DylYY4wx9pHWBhln7yjAK3Fmv8l8bU4hCi7UHaos2iu7VkfoVPPnBI4m6xvBovqIf1X9C97PEMwtj7YuvuQCAtp2pITQKPAVgwq3trTzlgKxd//z61wg5ehMkpzXSbh7abzO5tp6bBcrbh07oumrS0HqmfHTPMONWjsxX14beUhhiTyW7O4dF5M1FSo0t8D7pohE4DwQai1nT6J1b0vi7u9xocvWWBbZUtLW5Pj9nVr4Wf3QquCsm9Zdf6GQ1+yS6TkxfHKuJqYM5oez0+I/nkAYt2t+Uzi3ztw0aF9Qa+8VMyUyikiV55/JFvMlnkOrjtR9cZ7Xo9O3rMYTf1lmKZxA83O6r75rLg0dcfcVR06c34KxLj5g7u1lz1sCwtvQPrnqcZ2L14ecYDA93hJU96D0SfvEZ5AYeS3nZnvhSV5eq7tT4Vp96k+GJGAdQ87hYRXlJ9qX3ThOX0p+KYQRvIzrlHglvwXuxESE4AzQ4168fvU4kjckDprnJBbPB722BZRAOODZ8eedYZkn7HQ5UrYUBG5aD7wbbFvX67TTZJWBhgKVNhoxGb0Mp56/Q6hcWy5TjJ1ves8rakW4beXGOHnYFA/Ox8Qcj2h/0Ch3DqkvhvDRsB63c65COsqth9Zng7Hzx5XASUX6RjVw/pWGGs92uV+MS3vm66ot5gc3CTidNoo5ScSnCqXkBnzpgy+InIXFW3DKu5VY9O1RbL19PjL6o/3r3RSKkSh2QMWgBtBJjciz9mL94tf057B/51WcxvbKOtl+PZ2J1CLJ/JOyL9F7kJgkebjWv7Ujtzobos7w32lnrY6TefKE1T2RyOFibA/GKd/WtppA1NV30ix937FdPJJrezqUbvX5MfW/95LRP5/X0+zeaz/gc+uvsb2ZWawzOsssKZ92/lwdeD7ZI4Hql7NQc+u6pjLHOsufa0T1/OpHQPmy7CcaUnlFpjn3s0TmTK/tJnJz6Z6yobBsshJF+9krYqfXjSY1x91Nad9w8rcNJpg3vNH2SSl4jI+8bTzALQ2kh00AdbXhnl4xvMgbq9iW6bj4dLNzsuJAc1tf2QMF+T0q2V3/mW8dKFUYhns/Atm5hd42DzpeAQpk4l4kISfcUQsxV3TLzdmMLmMpFHyt7zkk62nOmfpgcwx9cXRi6rpFykLAE4w5aMbVUXPyVkhjTfX0R88+tnNdRJGF02cRXV1De+VkfzJmFa77yXvYZcr/amuU/mcAWZH57k4ObSkEHmPjAp/k4L/m7TvdMFSt0ZX0r3Aq6oGgv91z5pvlr5OrjZn9V9o9tB7nMVMwiSgXptGBM+NiH0RMOXBpmded5KvlQS+P4HNv2+4KQ8k+xXcSd1+kxY/ajp/mR5pM+A8lwjnTPp+NItx0/8VaNhD19QBHf9VOUvlzj+Ftf0M5zTPXFX51Jje3nTOQ0R0fm5cOrUCFrukpZoIaU5VtZ8rYn59nCQVsmz4mPdJyUz6k0h5LRVGVKZbFWycd3WDq9IxpaScXfYK07VQ1K2EuNov3HByeu7XL8/w6xpt7qzfY79CiqYOftQGGu4ny7rRAMbzRRce8Vja3EAUr+9yKB5sC4m0ITf1dbQ/5qN19CrO0x9NHhSv13UZRlUt9N0lK0keXc6+FFmfuM+uYfNJ7N3DhfR92N4VmL7zzXlgsryimkTZU2+Yi1Lz1nIGXzvBOQk6w9SgHsfM+JALy9gcHc3VxUEHjY53/B50ZB/cTzWyvrwcwTuuizJXLntHRgQGeP82IrNIe4lXQI0ovIgVtWgSoeDh6sX8zX+iZj2qL0ueozTYlU7Ll/6G9WC5RgvVatt66fI65FR5x1M6oVdn8pbUneuI9SCnYZDV8qG7e9bWDAXEzdxajW006S6/4wtxsiG29B8Y+F0LPjsEKov0IAX2gKLHmI3a3AHlt/IJLSEH+VXS5RmOhWQ7L+hKezQQ76wb9UjPlaYjy0MzeSchCqK6q28cBrsongh2brS/KZvQCSpIKLHteQwOTNFAjTiHp0aCWPBkH35IJR5WqvWFKLnEiUfQPbFlm464c5tubibgcPKt9nE62QGVB/MgMzwA+TT6ymOUQ12Hrr21z44ZHqdvLOn6X4OGWusk1BKzCVN1FGhOdXdKjQpep0h8C3lzJ/+3H68WcvygL97QK8Zzzvu+LEyX5W7nwPbzEN2iTKa+unDw7GgxY7++IhWUpeIR8VFFtVH+btXv/xgTy3eYjQ4fZnYcswCHObwgrZq9bFIZ4R8on/gwGThYEjzJuRRbS9RgAxw4N7jLUVma+3MB9+rWBm+VKFhocrPB8Rpq+gu4BgKKymuK/vziS0O7dyoCqz6SG/0pOsJi4XOftricsmpwHPU86qrdszO0xsjOSjY4M/oDKnJ7uQGth+M+VqPyChfHa+El9DEvTme312larHjP9iYOQA5yIpXBCo4hIvlkUopmWX0GeIeoJbfsP04blL+EU18ExoaNthBHfyOs+flhbm9VeBTqgy2n7R4Wn2zIMd1cmM8fU5JJ+rQd6jOi84adzt1rkxUaYg2rU+l5ohXZRSl8VpeZzSdoof75BDnlnt7ff/CCvlDyCoEEOSg4BScILLww3BXNGxUI3KqfAZC190NuetvNDd+03xNz60nv2xBXFd2iWq4hnI53u48uni88/Be0xRwpiaEMiqg6IF5U7kjRxOY5stW5RPRxPYKjc2hE5kECT/lwNI4PODEknFut6z8PqjuETnfFiJnc4Jj53JIL9tJ7X5UTsJS0MZ2KknKfbEEo4S8LtaygDrjpdEk3B5vIJo/uco7mE7JRuHbfDzD9NuWQipBXDzjUpNCjGhlsWAGq4QTq5hQllkm/0MutAVDaIXyhx5l8Ojc+4hYcm3upVvRbusRK+55CiKzy+rX+LPBYEssEduadpUdnSTwSKFvy8ROGufYrKm3fyDFsOXzUfKI+hgY9p6tRcTQ6uErRSIz6AKxv2tVePHCNoXezEcJD0Mu4p5NalrI9mOqscOIu8vK1dPujydbsgIwD+pl3rIUEnv6z00ISC3j6IVl9PlGC05fuEyGLlLpaR7yGyXLcY/sIMsF8oYyppT5vM0oR5wrrY6MroICPz/Tfte+WXbvfRRv69oU/q7hh2SVc8Z3TBejyJ90u7nW7fiFwfJqu8N2AUwWTIWulq7NO1kYnjB2//oX54GKYWss+bpXmZlqPgU35j8vlnSHzc6l5h7NP6yINuoIAe+xrhwfK6DEgWqJ4PNTUFRqqv2tT0MyA0pXLmpFdFynIv35gOxGg5ivYZLN+HRMhu9WmuiqmOisB614G+XcpUrhCZ+K+owDjVPS7yphJxWLxKGNd2EpfT5jXZPnN7KrnR1zDfxiHvrWmw2aLQT2Lz2Kub0VW5H30skaUN4QDloYS0LSpOQ+NpsTsgRKf0m+5rONUCYlfskO4u4l0VfiV7jWYJQQnzjqj5lcBmLa0nnZfzQdrM8Nz2uW9rGa9vUe053tL342rApcj/I7SlW+Tsb5XQKXapPf7/D5qVJGAsjWVGh4FsKo9UjVa8AV6WNQEeLgNjPcFExP6XG+gz0O9ByRiCjYd3DwYo/ikjsS/aYqQ3u2ZKQlnUzMAfbucQq+eiRqd2IqDmYrE2tLPyLTo+nk0BiG8sbNPEsrp9FcHJ3ZGkFemWpgPfSDI+95KkXvPxduljVEatg22L32DWefy+AXmY9K7luqkWWqvVubulGC27WsnPLrhA4pMDPsXzVxVCOrvM5aSC4/9XNRgJu+h7Fp+wczE8d7KWsrt/dRHK/GEZdnsweATnK6OYsm2lQnN7/Qf5thVi79mAMzBj6ifDrPqtwdV53Ysq9CJ+kgBUnpe7l9LLP56Swl4CVO87Svz+SbZzqG5doMIHhcPbIzxo2U5YEpg6DGDV40LIKJa2N2Wb6oYdNo/2qNDmmL0ApT/yYsxdZYbew6/Wz8J2/+ck/aEgulOa7z017lL5OzWj9OsH2pQXo8QFFdtfPtBj8LiUOxAypFONt2Cj8PSajSth8+YPfm9wXAeWVIY2o4H/NGNp8oOROgj4uvPenys42tVgEzUser94ctK5jRh3wrBpJx5YH30vpeavFrTFfpkZgEUCyqGYB3msFpyle4hLAVHQw524d3zGuDgygrVV4OlLoX0U3JUgHlZIpG1fd1suRkrkpPx2aLJsgZLYwpXd7DQJEhvqhXkbfn7NyELlM82h25RDF9V2VjkfcNytKq2Q0J17miSj622tg3W/LQ473XUqKUw1fHyJxYyuDJJXTSdy67pOmJ1HAI6tVozh3XrGvmF+3UPDSqDV/TnARaaJnUbKhWy0aelJ8HXK9YR26wkQWyXr0+50mq0szrAhztp49l1dgn//SF/vt0XdzNlreBP4YVouKCJ5kybnNp6ShIb11sfkJR/vO6Aw05y+xwyXUp0xKu9lDq6hm85v53vhFMSh+/MGzh68UD/ZYqyWsk1SeICkVh29fnQmUipfVt2Utt9aszTnDcTHDOh+bqdOqRifcxIbpFlodG0p8aTqk/Bb1+4oURs3Nxd3ifFH1VaXdR3mG0KTR6tOAy02JJ407bfCTZREuU9oa/0LuagRzmHGnfbfWGfhi9A7voGfi+1L7uS59iLpzwAlQlsGXZZ8ew+AqnMiThY09YT/7kVqdYH4vHlSX20s4PeuC4MhlJgfcg5h0zVMTFEc496+eWe18B/UMSOWAa4rFJnOZst2fA8EMB+1qvVOpOv8/Z0K+JgjfPNVLwWqwvY28HiiofU8CwsmZ+u+tonwWRLeCdwNLNdzDrdeOZCJoW+qnD+/HJdYLP48N0PhSvN6/J6TwPvABUxF2/puRZ2sv9E993j+HuRTtl7StRM7uGApjhUceTsq26Byy9CNhe4bQAcW1mxKN7FZUUGfEJHF+CWXulQ1/y7ur1b77eGRVgK6pKo4Bc0xtrzwkcO7lPG698dr8vh2N1r1uFeNLSq78kjUUlSUTbuCZVhyMU6rHlKRAxlxYIOyNFKA7mCy1odbU64IfieF7JG7OEa1NaX2ObCf3KvDOqlqU9kjqbtelKVl2b/yAGT02vfJZdnARRL3MIryhU/HCNN6q4B7HHMnxEbeyvfwEZbNNn5NAdekAzBOIhCg2mUBps4/HY1JSq7jQhTzMq+PQ2ZH9lS7fP+HtMhNsH+8ft5g4W0DcOYdaDvC12TU7RobsxYSGb3GQL9G+C+SKt7a8IedW8N6bO3FseTS5TyN3KTAgtlL6eE9o++y5M/jBwuJfp58WsC1sDz4uG0+mkRw2etht6GhbiDj+nBYmKZGn43eNMjCG2rEnBhZ1OwO8JOvlqbXIn4FLkINYBC8CyC7CY5dXlgvX9aXaSkyNgctILvP7KJsn5SbJGH0+dpl60MGvxsIPR9uyZZld5eYmsyNmygdKePEwyKvpFm5RP6Ppy066axAeFUdqMD5aVfhlap2oiLTvMd6tfbwMmdBeFMiVORdrjHl/cEDy8AlgVu5XbE2Oyvrx+OBgajRu+trX6g625cCOVziT/viTjYs1dZ+YC4KKk5zoXc1ooPl/yO2jer7/DSlCKURJXHk2fKu6vb4LnP3khcHSn6Cj49OTy+bHruaFCxcM2L/KWLB7xQrN1AJcrnWOYgeAb1vP88olt/dmPaWPwV2Y969M25B1zR7kTNMFrYUrxjWWuGzYCKX2VqGfEpjiZkedrJYPlmGpiga/XtUhrV1pjucnq8bfGwt+KQoKKqLPyDMeXtMvDUz3HbyU4t2hQxUgXNHKUoTyqsUOXHjr2nFbTfV1A35ghpj0aY9K9J1jgZq0csgMO5YdsNfTlXDgaBhbkqWVxKARsLGR2AU93ngXl8+AVyAVwFjcuPYeyzFiHZAi9OXbsmB2Y57KOZ8m9WDl1oKJHGxnyTQ0t962MqtQv+N3iTyEu8v2hD6gF21Il+JVXjkxmi8Kdlz9qbXOyxEwxwsq5fvTJGG22J4Cv8iuM+JXgzhvKPWxywa6UpCHrUet9y4yPZyebv7+HPItDupk1+NtsVHwp3lg+r5iJj1IS+Jlx8n29YuZhPP7K08Yo0PO+yQCn4+MXpTQX9g3zzol//fgiqSlIpN3t3KFt3o3I44cL3tVc1BV83Js0scp0Y/asOMDCJdyvDFTb6C1J21t2S0b8sfCbC+K+fVsyxPEzS5S4tWXbZyBKjecBRy5WfBbkFrb1uLSCxegjq/ClRO7d4duzFsQ1d6ipK2cvU9QdCRaBsqKJbxRdvlG/lUdSHysYW09BofUEeiGvLXa16LZl/+ULt8k1j+rIb2zfOBovCmi7bUmt9SSP4vaNoxuxIJ33d7jj3Op+/YNwfk5KpG3fTjzNTUT0/wDKojHU \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_570d8c68-136e-4ba5-969a-03ba195f6118.msgpack.zlib b/docs/cassettes/qa_chat_history_570d8c68-136e-4ba5-969a-03ba195f6118.msgpack.zlib new file mode 100644 index 0000000000000..a52774e63218c --- /dev/null +++ b/docs/cassettes/qa_chat_history_570d8c68-136e-4ba5-969a-03ba195f6118.msgpack.zlib @@ -0,0 +1 @@ +eNrtfAk4lO3bd9GmkHYlmkgLZsxYxhBlyU5kX0Kz3Mwwm1kwthahkiSVFkURLXbKloQQEi2KlCVJqMgaSd91D556lnf5H+/7Ht97fF8dT5657/u6zutcf+fvGl33oRQfiMWmMOhzUyl0DsTCEznggh1zKIUFeXMhNudwMg3ikBmkJEsLa5tELovSLEfmcJhsDUVFPJOCYjAhOp6CIjJoij4YRSIZz1EEn5lUiC8micAg8V6JugZI0yA2G+8BsaU1EM4B0kQGWIvOARfSRpSNCOMtNASBQZBWQEizGFQIvs1lQyzpIAXEn8dCVCoDocsgbEQYMXwRRDwdYYzAs9kUNgfBY3ARHAYJz9v5q5jph3gw/a+y7IGqCAobYYNneyF2QbDSDDYF1nrnf6QHnUul/uMa4CaHwaC6EfFU6oylHB6TP8idS+d7Fh5DIcF34EFu3ly0u7sZ2U7diadE2a2vb23ga+yhq2YFD/tjigZYnY6n8eUQqAwPN6Apx40FcVgUCEQPHotneXBpQDt4VemAvdIgdCzeXnCxV/rvBu6VDpIOCnL5q0cMKB4oBAaFsAAyfSiQL4LhjsAjzMzMkUyGL8SCSAg8l8OgM2gMLhsBYknnINg8NgeiofbS9WDpdPiWBR3SQFhS8XQ6he4hs5eug+DnA4WI5wAJHFgZLpsLbOchKHQfBtUHYiNoeDoPASQx2SiEDn1GNh2CSGwQUoQXHcTaFw4XhwzxEHgWhMDTSQgmWAOBJ0N4Elj/70aCpfXIeAodtgLkL9eDzEFs1WPYbEfYQxQExEHgqSiEElpJaRuCjGcjCPBcIBgBR5KEZwH5LCCMA4xAcCAimU4BLkW4M1gIiE7G04nwfRqDBFERTIgFbgMTiBCCQZ+2FvLjWwrMsSFDM+NArlHobA6LS+Q7goHYy1VCY4gcMoXuxTceQZh2Av8+fwSXQ6FS/GEBwGYOKEYkhwKUhJfgcvCwlfAo0ozZEDCENe1ieCnwhE0DfoZYfHexKbBerFk3A08gOCw8nQ3rDsynePw6kcalcihgOBwZEA08AXycfswXRQYGUCnAozPDQSD44MEEOTmtFt/pM5bz7VEHoYQthf0GPEsEcADCBgLHgiB4tM10iNiIrY54xi/hUd6GgPxAhoJUgFUGLoL8mFQGi+//WS1ZEJ7NoPNFM0AxEoDXOBSQVyBlIDyRzLcZhTDmINwpLAAVfziMzVcSqAPso/3F8tmc4fuLbzbISoCPHDhf/zKIDScBf6QCggiU4WcNHvgX2DYdcS4Lms4FNoRnAY1mXMCHMAKE0DWwRmwlgJkkDhk5reT0wG0IkHG74KckiPm3Z74UDnnWQqAYAvLBU7n8OgN+wiOIVBia3ClAt60+FDy4M53TfKE0vCfwIoeH8GFwoNkKIv1aQbPKkUBhI7ZitsFCARpMrzqdTr8UCZXiBQG0sea7C64TB0cn1N69dAxqLwCovdN4C9cu7HI2l+DBwFOnBwL9AY7BMsCUnfDorUr8xbhsfvUBxZBsJkQElhD/KCG4u2xHQCgAWUA2MGS6dhksHoLB5VApdGCTNF+8L3g4HQ86wwcCwA3ubVWecR6ZS+MnL6in6XyEn/BdAflBRC68jAZC3w+ElzOdzOyZB/xa55syq9nP+gAQDVKSDZIElmn8U2MNeAV7eF14Jn9V/oTpK3eAsTCIzExV4N/WmW1w+F8hkQSxiSwKAZrNX34uwZJml+XnGihHHwoM1mA2aL2z8YQrHgZzNgKJsAXtDWEMKwKaTMAvl4gg0B74jpjFcv4AG76R8DNzPqhZQ1Ro2jT46fQ9HaCvBx3uRj+F6P/0JhhnCZoJZTqGYAgK4Qh6N43Lnq1PgEqg3/Btg9vvFjZihosAJ/GjzMLD4APs8IUBD0QQFCbfZPqfPcPvNr+6h00GrQQwBRgS8VQe8Cv/9gxA/zUCsKdnlYCXhj9PawjyAQAOgBT3f5gFt1Q8X1N3ClwieA5ZYdo8DuAvPyXCH2a4EvRzKD8Lp1sx6MXGVCoXtncWVGH9jbgeHiAehpY2CF8GC24yW41pIMAINjCMCLqvNeyIXyEUVDecqfxmzV+SRYHBD8hTmckNkJlwhfNjxfwj4Pxqh5eAkwVWl8DiGwZ3XzxrFj/5xsxE6K/942cXhLs2C04+2PkcQF0IXBhKQXIziBQ+Zv1EM3iWxnT0YP6kgDDepQAiC6gmCXgaILsCX4c/SA9/ARgvgHzIFwmiDIDfDw+7lh9EDy6FBPGtgWuHMZMXwAI+LsxwCdjkv5Trr0QQJnZ/Inhu/xka91eO9Q8oC+fgLxQDGMHv/XA3AEMZvn+hFP9hZ7chwxKZIO1hV5IhKty+/kLc2PwOMI1nQBogNCQqDEEgLDBPm1kJQDCJ4kMh8VGY/EeHhMnIL7yAOEv9wNq6vJ/GzUA3HKvpJWH4gdzdYbwAOMybIXDAgFlE/aNXKyCooBXyJQBTuUS4ft251Om4/dxeoP4Fpo8nEhmsWZH8VIZRGibS/LQEQmkgFr54Hr8sSAx4JIWzE+Q1aXr8dM/9+9bABdzhexK+5cHkIJVRqkjQ7wkMeCxM3jHg/yCnIDwNXLiDrgfBaQTRmDCbAMQA3EWj0DOp9e9sG/6V/cA0DDJnhktb85WHZnsEWJUONzIioGwgMO6giU83m59pojMdsz+8xPc1KBmwLCB6bL4OIMXgxkiBpi/5ew7+p7+szn8A+53KYAD2z4Sx9E/azloLvAT8Lg13DWkYUCjA+7A/ZkS7/DKUQfAEiQSGgn1MCrwJAEq1zhFLIgNdo9P/vDPNAMEH7AkJsIMBp0B0moc/hQkjijsVZPtNkCv06S4WfdMLgphIPBVkaPL0rOhMUEv87Qt4rugJYD91JreQsC5/f3wTzgskP+ejcy2AEjrGipY8wBTpYHOlgkOhM/2QbLhBAHBiI0ENeEQnM/nPi359wMQTvYAQ5Mz2PDp5enL6r2MY7Ohr5niihfWfRMKhjr6GZ9GwKjm/3mdx6fD2ITpFz/Lvy808/LmcMgr0H7WsPwlm8+jE6Gv8FM7702QQTB6SyAAyoq+gk4kgzBQounnQzY3o7kagaak6gBajo0RwcjenKGG4kDEXZ+VO8KYquVmx91g4cak8HFFPn6RPY5ojMWpKaiqqykqq6kgMCo3CoDBIPZoj20GZSbHUs3Nj+lpaWu/xxmAMWHQnMlpVRd3NlOJkYIHFuTtYmxkrYcxMrQ1V7DB+RhQOg0c28sU4eNqz3K0ZDhYUgrsTgWfmiFJnkmho3+0IoB0XwJuWsbepk7mnCctPSRXgzh6yHcXAynC3mZeqgxvwhhfBkOflRbRxsrdXIv6inqqaGhI9oyEWrYJDw3/SZ3ODCtE9OOToJGWsGu46YAYAItlQSDLM07nsQ0kgEaFHD1NmvhW5amH6M4dXJe0CSRldbMCiKCCU1ADFYsJdXAWBwWqg1TRUcAhDc5tUvZl1bP4xB7Ns+Fs7kIf6szmfQiRz6V4Q6abeP2Z7MZ6PskhYfwBwSLDLAhsk5IxW0akOSKvpDo803pUzXVpIBssDT6f485eNLuanva+/ny+JyCWRyD6+NLS6v4oy4GJconvuzJQZMgYUQtLY0YnKWEz6zJPZxLsJbEUjMWgkGlMA4wER1BlsDJPB4iDZoFHAm5boZgUa3g8uMi1ljKoyFnh+O0AVIpVLgqy5hF0MGkhNsD8ADJjKwJMK/ZDwxo1KoVFAZPg/Z/lKdJIqmJz/9wEchhdEZ0enqPDjir736wgWBMuHjfgpRkVdXf3uPw+aFaUMhijhlAv/PIoN/aoNRonGzv/7gBkRSRg0jZ3qNzseSSFFN28CF27uGJwyEY1VI0KQKgGDVwb/ETEQHofDoTFokgo6Q88AqQfaK4S05mdgdMoux9065sZ6dxyQv6YS0oKP2uA5ncGmU9zdk60hFghN9E0ilcElAbxkQclAlpWOY3QujqhOJLjjIRwJS1JHq6KRugCJZqX9kXhJMNjyvwg8mDwN8BVzH2+IWDSH/0cQ/P3xg2NVSr+oLVY8tOqWessyse0+BRV2jcm9FVaNuTflc+8fUHP1+fD5ZGXWZP+yfYJZTqK3GjVbA5QZ3R+E5sqFGGkXxsSdPXO5NWONe47QIxPZ4PzWR59j2+4peEQ1V73rqJLaLBJyaovZeFmh8Y1UlWzpZ6U39Kubri+IYGIutoX51q7euk3vTcOxYyl5akPbXmKv3NhweEiZbSinvzD6a5fQxgdZWhelzMMUxYT2s26c/hCnIHZ1asvG+6focohL1ieu4c8J7zMJe6JCu+jUt+z+Lo3d116EeI9JGo5t3HqDe3eiF2cZHx//rvdLd8iPsqm+3pGicZXBvqSlti2Wrhdzl5IPj418qDFbhM6mFhxNlk5/6E2NTivzyLVX0j2Qq+9ytcN9Ho7eYRE5mhlKXuIlZ6r0NkMTp1Owr2dUuvx93cMblQFLtvht8R2c4v7QMnlEcN1+o37P5b6UKZrKqjPXHrjoixQo1XwiRDy9LRMVM4aipy193i+1Rs4UqsA8kzKXCRjb+MEG73BvrogiYoWp1vM1Ol932sVtNG2ka5dwXOJrVoYcastr3r3kc7t4Lc4+WdvZsTEj1newlR80wTl5ezaJuIAI/jtfFm/6t78shmgEiASnyPTXxM3UAGn+lhju+M4YDFoNq4BQxSqpKSBAjYMfKljwE4tVwmJd/kS6OJAf6O2zwpB4Eh6JRivBvGK24bvxv6Djk0ECng1hVaR/c4b/7ZzBdo8V3naPv7KvnrqKuR9Jl7ebiXY3Y+G8jfTxVE9POxREM2P4WdOwSio/mzLuD85gqsw1M/HyQPuZ8Xy5u6zMyV6WWE89XXVdgrGVoYUV2YFtoEfh4HaZuLPscLZuvhDN0NiQgNnttwciEP2MyOZqezz9qT7eRuZ6St6qKEiPqcLU9/jJGWxUcUx1ir2BMtdXR4eGw1qpm6uS8eoOeBVdhqEHXkl1t5eurf4uPMFb5xf10Gqq/zFnSMSg/0XKsOY/oAzq/yOUoegvlAHsSBm+gBRQPCj06Cty/wqjSJ0hAfyajr7zzxX930Y7rir/r2cdqv99rAMeoq6u8l9gHVfR/8g5MBh1LEQk4NAqBGUcXpWExbqrYYgq6ipqOBJRVQ37P8g5CEpqeLwKzh0i/Kc5h7jZT85h42i8Ilsz9s1Yhl/vm1e20gihthPGJDPLlbftDxw58GiT9kS9b88zvZHK+a2s/ILuyxt/jDP2T00+2wyd3f1jsq9+Zzwhbmp8rD/HQ7MCvt4/2RK/Ewzo7h/5YevOPaUVrx/zo2Y/Y3WdsvPU+MsNn/fHT7o9KZmazJH4vNBzJUFMid0vPjAltlIgw0ArVVHvJqJnscn3p36biV9aKZZeIpd2XO4/h0kMR2qWJC3nTnpn1BtsujPwYj3uY6+v7GsttO19aNt8JaEuFXSozDz/PXf1iyY4S2KvZC1hyn6Pkas6/Sw2Nk6eNZdsdLtoZ2wfecD3q0nlorYTF6KZiQsXIdIDEhb2mqGQb9mit7bZPPHHROClxq3nPduotIc+UM9yUb4l8MWdjchGUJdb6dw5eNW+q+mAbUxqfzTl5JLxNbc37ELVkmsSg2gyC7fXNjNDq647n7S33D0xFizsmFcUkCk3KnIHJ79NCHdN9PW1rdpXTXvxnj5lhfUBvEqyW3612UedEAWNbV+NMtJrJ95Kz9VSfTwsoGTzWeHt2oEFrsvWHY5xYgVted2hQhXsDRBgH209ZXTBJUu/pUvugIKY4q2kp18OR21f9Dq0hKHvsOuplISO3eYh0x1++1Z0KY02rz9Milkgvb7/yfy5gVImdx56z7+4B51l/PTVtZrywQRWBOvYtthw4eDT6+60RuxZGCXXnlc2KnrXJo3cnhd+mEcx2UekyFSQfCHTroK4lU0tYp/eJcg7Oz+Nfv36rto9lYtnl015bz45Via5PEieWZXeqE+eB5mZO6wsr7F2FMxTCSR2nSbLdq+e2GrBVbH8xurQfY/yn+vGztpX+5Re7iXjgUGH9RkldVE/TArRkGKn+kyiJP1yIPEggQgXSyuXakb1R0h7LuPSx+ud2+Qd2DnYA+oe8jwXp7y4+aeXD2gUGeaWGa451aAgcM6NgXpxLcrlhOO+xoY2zctNx9LEMlOV5HA3Ko7ef3k/vBa6+7rUc75kZeOZZ1XSq3gOLZdDEgaPlt1e0CxcUUjPGqVKUWUzTfG3h1e9UGkj9BV34vIF447bSuCL732IWrwuXDmZvunC53Qx2SVHeo81vJAxabq3y/ZgjueupiJkSFFgt4jJ6sDOcp5jWIF/7uq9kS1nU5eiJB2cTTafFC08gL14h/SxrFnm9auD5pEjzws7T1/CXa8mmqZtKv0cOHLbr0jzAfLK6dqYx8dfmkm5XhTYcCcwvZ5BP3G/i7z4Q3ER2tfk8l65oP0b7N7nVZ6TKNFSD3Rfd3tdH1YYoaDEu35VkEepbnGxGF28Uf2hb27Ultquc8EtB0w1rtksufDw2pPnrqNtQzIF58SCXI9fEuTWMTEaZ16elGznvYmVz8Bb9KaxglAF855MnBuwviXuPDF1nGS77bL4no89xy1aj8WtfWxmvtJMKMucHtZd12wocd0c33KpdVWuVySh+2R9KjIHc+j7V2ZPafqCoN1mGw+1/TAcnfxyJUP1iB3zbpiUYzw+pd526u1cs1PIaNQ3H3Jazp0ykfw3D1ull2Z66lje33NnUfGdWpm9oor3wtvGE1t9gouIaSmiKqM6YSN1fvKOawaU745tiX7r0NnESnCZ0ymi2d438mCBHc7mFG50OLg7pb7K303vNn1Tr+adm0WjR9nhcWm8Jt0KmcCeS73aJf67mrppMnHHH91uZ7i+6S7m2j810qI+3V7WW3yj+dCo2hI084hQQKNuvusq/VMbu9eRivJ8PluZWMtXq506qVa43vSgVZtAY5r5jbcuAb6FcW2+aytXJ2m4rsK2xdPnxSpVPM9u1PUg+ecOBH9ZfoFXfzqyMRUaKIi6TE5B7XBo+u4y10cz34Ym5va4e5sz/jlZfIOA2pOXn7LQ2qds5bl499ChyyVOzKbx7TdTxQ99mWiV8Xt1dBtX2sKjlvKm7luzZt/htrMCiM8dtsYf3FcNd92pyzyp6bvPh+L04GPVu2wNco7bj+vFxXfDVg25zCHxlmUt/7TAkhFKU+AShKs95W4XkR02a689ErZPUR41VhFvY4dImPDzCbstOinlfl5mn+Zb+zLdDekDD7VsA69jG649qjP323JdO1B4iDkCpYVH5Q5+uDHY1nH3zPv1F/pzjn9ticHcvLl4rsUQu+xC+yrBZdKGgm3+cbuL5754+XmrSdo2xKbIy9szk+KxCQtPhKp+jOqaF4+fcy1ELvDLM9GYZ8MyqYcbKkdlpNbm+NRK3jTetaejEkfidj7K3Oykn6T4IzIFvyiB08pxkPA0XVNZLmhcwqt3CVxcXeH/mBnrP/fOp+pFzU8o9cwS74bcHazYtGcJhpnCJrrIKfMVh0q3hHyLDM2kbF/vbLLlyLuv6JavUi7jB8+Wvz40qb+jybF3iQNJaynp/v4dNht7vM6N+ybc9/jEyCxzWRnknrj3oL2u9LFzL2RttVDKfgyqKG2+0mlSPjLxbk/FmuVDozUfXrUJiC3WLv9Q4VY2f6N1zL1vIR81iayjyYG7mLYfjkQGm9eM1KZkq44ovbp7jOXwtEhcO2X/l+fem6olPx5S6ygbNUyl5qs5t1p2JhQPycVV9CTU89YGMN0cDSfvG5aQpnIH0fKD4oZLx2veBzk5LO+OG7CIkjXDSGEmp6Y27NzCvqq0BFXKrbwg8SzpmStv07eVeeJ1b27H1X1tNH1p/4JgenqY5JqInkOMaRkOtHMTimxRDa3LV87ivbiEv6F5Kbwg4NkNk2QrhmfmczGR0IMiA8bhG1znvKbKqIzdLPOpfX1+4EzNUt1nSdCQw4rseB3eNbsxqZrqscfzj9d0Lqx2ObBg7kioDJtQVHVQl2I8Fp6yIO+80fX5F2QkLmdbmh5nnZMS7hYRv+u6MVA7NyW8rEd386Iqgcutobu+ux4JVxV7ttbVtLXiVZKC7Bt5X1fLyVrJb1WtSzy07BQHO7iC4twiATHz87v8IgW1FavqT6c2FW+/P0A9OGGVGUZ9I70i9/v3kFWuEW9k+28ts7N7IdYauECj5WGzpFFXZ+Qx6zThR6vlhIK7l9VtmGww1C5dPL88kfyta79BwHzdxYZhIatSPhbFy+PiWxcVMcZOpsZRJNB2oWteVGIWknwPrwr0GDy77p1MtnrxTmWx9NIVbXmkqgsFq+sHCqAdB6vKXX5c2skcHzE7s65HtihZ9FBZX0FKyTipGuvSUSSkOTFoJJXOYTcfyJC6VnXrjODE6dDFg+FNWxq/sbkvKfLqT/vvmqe5lVp1WS1d/ClIpv6ia8+SaueF+QI+mUqfy1hHuj4LVyVn3njlSi6ruVhXfoah588Tlky4sGAZ9R0zpKZ0e5YtlWX6uezm/SMUn2z5L7LhHkP+Ot/WWC+4HKCmenfsitG9wLhHbndNjvcFSK/sQa1V9dLeJ/oYNZLBrt3aOWakcZJlEJfH0pAgmgqW9I+d9bhSr6xe3yBOlxnlHuw183M9Fr9Dd2gSNaczZneI/fntz1LzyvGj3TGC32xd7vmnQvK76HJPlNduk/qCjWPbVO5rq5O5sOHlUW5m/rWTqKcSfeO4vmcdFXnfyguXZiE/sSuPfzqp2+644eblGJfq1DzrUiMLff8Sl9aJWDfJr+LuZy6X4XxjKQER7bLGG4axW2SJXV/e6+x/FXj9Qm6DbGHg7fZqwnaVoy6Sj9OupohtYEVNCO5n7vxcab/vxUmZ8/INYVoKL7SVyGJPPhb9eOHs5dYetkLimDcBXdphNdxSZYO/LmQI+dZcCYxVvtnfF1sbFttt7DfmmPnscBGrWO7sovCQVe3h9WkdKjnQgkD066P690PraEFRHZUxW7IXndI6qbizzDCnKDq2Rcp0d47J0prMpmXN1a6fv/p0LrsfuR6fsTz+M3OC6eG4b+Lox1UnhCPWXfDN7775aU3UKdPKqsOjEZckb2hsZjXVqKFOyieezvq+58TGhVudS1/saCGfaHks+w3VozO0fjd56G0B82y2h2LQ96W3bUhzSl8nzDm35M2VN32OZ7zkpVcswu/Ff4zWxL8zPrPBNXPzO3zZaNbj0oMaatnqHZ4OGp3MBRlvzj1JNKs4HDiyLNWUU+njezfMyyN3c5L/xn0/Ak1iKvbEy8+rI1YuNs4rTxpykt8/orxjRw2tumFUtPSbd8QXi/5h9vdHc5J5Rlpdw9ti4/c/3uUREVVFTlFsiFMbyHogciciU3ywrtJgwLqfVyZ5N6jA9bOdsA/jRNX7vjuNbgeF3Zk+bXIVgUrhnXPS5x/OMDW8T7kURrl0SDwMOXKU9LWI1RiWtiAPYuoezlHxxS5/GDJ4qhVzzPrlp3ZlTcG+o6JNr8+qVV5N0Tw0XLyY5DikSbpJOWK5Jt0icHiJcnPP3WeCfs2E08i0q+xzB+p27O05w9FfsfldhJqfxmp5rO7YIvc31YuabnlGvD++eMJGY2zR4NE7hBA1UaHoggBhtp5wVinyhGnbxHFS2knpeXSppavdaQkq8xONV+yX2PSIZ+7bcEsiapjUOByqnXNmtcLiecnFvdkpd9MSsnZ6kNFLNwQZX0aH9hqo7GnNlRJrD7Nlrlil1HjNQu1RX7v4wApIwtPLUCL1KZPT/tEEaWeuVLBytHJxuF8rXrh0XfrCzDfaKijDwPza+YmR50znfHkiEuBWnK9M3DbfQMFb3Otor9IrZ4mTYTd3nTHMWxvG9VqnnY1lHLuMXdA30n5x3wmDA9zsCpR8eEF47SsJsuoq6/iiF6vm2svFlnwLDmrTYliMsvQaP5DnTIz8ePqmZ28g9ZiQwtLd1Yik2otvabUhFftblr3bfG9qQnano5juYqrirUP7x5e2nMmeJ1mEvZH4gFA2qPpi32Y3g0COT29mMNa8cOeFcIk7IWN1Lokb7RKOU2NvfmCtn9AsXCF+JnzpaKWOSViG1JzqoE7rLu9L9/1DrgquG8+9kl4iUvZF9tU6Td47/cYlHktvXTrdyJjqwVyVkXnNGp16r264SvT47SaRfS87ZEbushes7k56fXBKSr83uDtxxPflEpulD644iQWfWmtht7iLvft6P8k59tDosgMZGxId2bZNb33OL/yu3dXwMS/cMtPHVJg+eSOxtbxYWMTr0bpggflPPNYN7xMJzAuN7Nf6EOrsf6nGpPN+/w4dgXAb3xMfQw+Ep1fvel25ISgLtUUwvZIbgSV6T3a5YDQTik+0bis4MJ54J43zOGObQHlD/i3lG/MOl7km7l6POn45FBfmFpy8g2Hf4akeLrx5/l1Cl36roH4QvlpyCEMXSDO/9/3WFchbNrjAUrhb5mF/JudA6FLTG4W1bzwKDgfKV9q1ftaW6XWZm2fL27jknNmdmy85k1+2q8a/KXXxv1AxoLXMSFXscdf65m/LjlX7X2vTfCCbZxc5irkkuP5zX9ru0XeV5ao0l2wXRad8nLnFfbV+6QNBL0hx557qpgYv/nilZmt4mlaVtlPacWl7D6GRyJSFZ26vbRilNncN2rxfK3VM4coretumRwZV2k+jOo+L4INkbyVsXnSv/73IUcOG0Jh1V8WvikUYWT1K3iuxI31qYmHxGtsgc8vGsuctSeQCtc0tLirBYTkr40qmgjZMjV7yM7VgUDcEIUlbVy8W07otM9IRaHzO6IVdumN3A9E4hHW3YMO88s3sIzaXhpjjmm0SX2sTX/egY2+p7FsSPL5Y3tEq/BatbNUCwibrYbmaUw8bcw9drPU9HFKOOq8lL96Vpy2y6fvkVJ4UueNrcs38/lPniwY2r1c0jlo+6J/JaNUoc/+i8cDUyfWE/bhBu1Pcml7V3XPfK91CZZ8/JH70Fd39+erK/uDC18HjCa0PniUvvOQdf/JIm2wC4uOzkimt268PYKpe1JVMVTyJOlm8//v3cxeOVr4Uk20LVFgQenr+8+L4nsytKTnzrkXsJOxv3+n/yctIoH4d44jlU56DqMG+0qa+1Z5uEk6oRo9ywVfnFkmMtMcmXmnW/PiusNy1UP3giXdp85ERikJ+J6QR5U3v21NiV3vEflihGH+1rZuop5VfHpfYIWqQK/41s+9G7ePL/md3Lv6RcGdNy+dHS6yG17Tds9zd5Rtvwjwtqes3slk4Z1dqzkpO+siIvJyY07bIgx8a1V+k1IenLURQ2w23Jxn5eV2WF7mhYOJ2rzw9WzL8jHfxovnJlwcwDanM7rjU7YuWaVlO1lU11TUY5F97eeHVWCel/Q09o7R/h6zEsoWoJ/eLQrvl0F/SXnE3ttQ/OPShOe6Lb3xouZpbbKHC+4bPdxW6Upc9OZgfrO2vXew62DZ1P6lp7zZRn61rQ63qS199lLlpGDWnIZd3GX9Yd6H3SPvSvph44RtPviIba9kud1wL9J+ql1xrks3QQpQGmF8JuBVvM97bRwlWF/M5s45IGslgXTkU832Qd2xUk1O1pM1z4KVbMW9vTXSfnNDZb0PHuN86ivq8Xgg9R7H0l7oFVdJVOjrWuB3Z/8ZVQ54ht5SxZ8m21Q/Rk3UykyOEJ2b3nMonEf3CD8Ibk99/WptdrfJGiq4fnfJZYTdVKyshLGCF2xdMkdSKV58+G2n4IEuDtaK6Xl8qXLfX9LE+Quv48bAdeYdSLtg8r3a7ZuqvnIq3pK/otb2aWu/4xhSdGxmn8WHPUqSZ5qLT3cv3GYp2kU7X52zbQkBemcAt/RFZn1Gi21neFXYepbdAl+WctTrHwK3s3qorm9CSG0LIGYoZESsEDXhm+/29HwlcC8vpF931LpWE+JroPPipXNHB+4DSI5Hzhza0XWGNafTookiL1k/aXTEyHjkYdMdpznes1b1gp4nxjMVmQ6FP+oP0H14MnVtaX/Ip0n2OPBm7LenTyOFLpzF3NPyhshi5CZWmGNR5QVmf4HGMASvP4sWXpxRL4yXxvS1XGs5/OW89HqEmcG/iJip8y0KLo35X1Equl5sQXBcvWPVy2Dc+e2/lsOjxT4cf+t8cYj0uT57qUf54Ma/iUrYz4dDFo8LHzb7uHFsmZBr48RPDGhf8Xea4xUTowwSLmtLhChGbb1fL5OiLtetENMpfY1ZROxN3Zn7fuz0z63R07+OmzTmd94jjPGizrctna5Qr98W+jrWqldIeh4e2vVUaqFu4DHfR0Yhk6NTxUvHKRb8KDcVND0NSeEnPA1OcyvaPi++K6ox51BaMbEyvDR7Td5vMq36a/vyA+RXvksmK7+8jPQZa2sSOvmTq1BeE1+sdvm4+KaTw5rnpwPBj2ZtB34bs4w9D51fQFcnlvfpF3iW4GD3lIvZwvOupT9bdxBLF7WhF5cVJltgPLxW90k8a317UbKe8daI3yqXktmrC1yeXHu38vl1KSupRgdXGb14htZCLomr+06ATb94ki1Ynpq//2tjmVhIsUjIudHCYcq5JnhGOL95xYLg25rqsCZR9QfOiTtAi9tNbUYci35q+1V752eMYlibUVLFWZCDNsOgrtlel/OVIyo9FuIsXT6bFPzhc1nc7xemLX+ymdQSRyvhzWwQaHNStlU8kyH8V1Vp8zmJq8MzE0Xmp0Q3EuNqM+SqNOxKqvPzXJd+I460lmw+78X+1aHbBNOqq9kqDse/yGnRjw10XC0dPxCJX77vRYH7RbPORdhW5HdcX2ij9CNJVP//oDvb29XetGffY+VVbjBFDE8T5tavbHJYdNUY8KjBr35Eq1DNk+EhHz2NlhVOp50C5ZOQBCaNzF+tYCj6rlsc3Zs29df6xX81OAfv+MdXnEapbIi4vzPVwI1j+aG4YWr/t8beCKOwrube7T1VfQle+2bL+mfNu6rer9t0KgSP4UdsHpkO31DeisBECPS1PnaW/By99daPtnZyF2HZnn+uXm68JapwQyup8xDLMvSBuuf9TlCar6sG1AZfVmUV0j3klteiTbfnYZX7hp3EGKkLrNu5UzfdfK/tC00KgJ7xI9Mw40/T992/HNp8W0d24Axl5b+fpI5+XoCnh5zCPMqxSdwSKvBos7qBP1px8uEvU8pVIx45bWnneOfpX/RAh67Y/xNmeXUDVcLwVeHvFvozbFNwD1BdrVxP85ET2/Yy3x/w6hy2Fcl26n10vw5xf8/Joy5DCgm9mMalp74Mb3wS9PX+lETq2Zt7z0k+lNkNWgScEkjKy14ZNtDw9WlP7SOdlbW53/YObiiLLyaWcJL8DvGaUr6SPxNLjHVuTCht0NxFEzCw1qffSao5RSnZM8MgGr4vDvTY9DjjU8TWy13DDtcEI9U118nu+WY+cd6+3WGVx0irpifmXQcP4lIzUyKXO+3mddMIn252n57zerZH4eI90dFxKc8iWV36HBS6cyHP4JH957IdkJfWV5oS1RJSPzrfW95JoLW5+557jx08bLDx9+JaM0KnsCIv+8473tR3nlsRfjt+/tbw9sHlNiqtwgr6p29QNAcXmHQFPuJ1XNmZu3r4yJK9kQVm7f0lcxvCW4vURhWvvapXssAmZW9zwcbjti/X+J/0pO2d+4z20Sr+mFfHv/sb7Xz4etdbu9/Go38ejfh+P+n086vfxqN/Ho34fj/p9POr38ajfx6N+H4/6fTzq/4HjUf9jWwNdMzYHQzHy8cTr2jsao/04aH9dfzu64X/j1kDvz1Zz/pacv3cKv3cKv3cKv3cKv3cKf98pWEHTfAvmTjBTg9OaDvE7DRwvWCD711OpgCjyD2nA/vIARA9iTRMOJRTCjAFWtYFYNAQNosGKTRcTjNpggDIKAbgefOwWMQuvM4dX4TVA2UAef5TSjLOnIWUvXQWFMICJJTAU6M1X2/IXENKfzoLpnQkGLnU6cAAXoDbAXHjzAKCdT7RgsgzQZZo5zxB3UAIQnQ3Slf/VGxyvGXz7tcnCpB2oNT1xttqmjQaLzQSIzwbYENUdSYQjQKTMLgWwBsmk8GsCiCLjwW6GBdNrfkul8qZ9YwW5w3sQGFGZ+OmapbD5GvIRCCbPkAdlmgiyIHcQ7xl1ZijStJv0feAjvDANgGfBOA+qAvRSBcCq4dQGAMma3qwBCgNUhEOD0KHQYKl/kPhZXOTbDigM0IbOpRFAVcGh4cPp7z3m7z3m//095n96Y/NvktDfrwX4/VqA30f8fr8W4N96LQBWBYf9b30tgKrS/zuvBUhSVsKq///1XgAcFov9L70XQP2f3wsAodVw7pA7Xg2HweFVVZQIBDQaT1RTw6viwaUy7n/yjJ4ygUAk/EvvBRAs/Mt7AQJtzRkShsLF3+zFAigCRkucfd7a5NmE7knUxuMkVurbiucUvZY0yCmvOynjLDTZFrI2qNAgIPowT+9xp8yGke/CCQl3zuk9cUisQxf2VFXcLumfuNVWkD6VP77pe+9Ua7BDR90bt7bPx4yPtU8swRZGyUlIGYSbfMxjrmjYmpy65mVO3y3f2JyxnR772le7LO4zvOR6tj95nV7ds6GI5iKXJMjT8pj6ZNCCOQNa+zefuFeRQhDtjvlefUA6uYoQnD/Pcp5PTxJaepPn3dUxMk2Z9sPnRw+FH9TSvBA5xzfBwK6BcDMk1GrjCrSA4MSwhDNiqecyzyqt4woacwcjI5CPY4N7FE2+KrwLcHDQ2yGbqlDVKnfXkTniI3pGdm5Fpf/EumUPM5rT9uwT1jx+Qdp6NFV0a3m2pWnw/Ks43eLqtlrpjQEnFjnXxStx5w7WIEK8RQXF2w5ZHtITPbN89d6D+mom6ZvEFSXDN2p9NPvwRaVW7NLTD2ILOs2jkn0CcF2Sghk3Kjj21/MKl2g0/DBGsC1uVN0XOXba+KqjUPyZ9UGm2qvELGxOqQcOH7A45nokJ3hJ+uaM9Lk7Ik8I1kQTtWU+DhEVdFXVrXTnJh5IziqYXE4f2RpHSie2v+oYyDjGfXlbwQmVZxhV+qEnptBD+fO7S9qXx3aVHdj8+OpG7DrBs5aO83RWrCuKFVzXecXga9f7FXdvCF6w+5SbiCgs+roadz9DiOYdGKp16lUQzWAZk7bXjG4aQkjwpgxvLzuZLfx+ycKnIqmOmLGO7MM1Dz3lZLDP9wjmBdeebapd/5kVMKR9L19/S157btuKk01NpLPQFw+EPhpRgxdc3xhdBc2VXOgnnGv9cEgjVDI5K6poIfJebrtO5qtFd+47L/GPOVyXfLul9BHX5cyA8/rj4c47K1X2NMqbenRErtjd65tsnJO95vF7h5qsFX654qdMnZ2sJSJXGN2SsZRcZT1yw4tX5hw8/KP7wWShYYbzCpvV80uPE/c9c1ipHf8JuprdfTDxQM+zT6+LNjFWSxSJSlxTLayrFsD5P72oOkJZ/TxM5aLj+U/CCyfXbdt3MQCRZezv84S2ptWbFpvipbRvTUWS6qdEdtFQd3kr9/WWsYeiO+N83xl/LH8RTak6NuhAGh4Xbo+/29YZccaFOtYWMrg4yMQPUxRYYu6wvlqyo7krXPJmauWlBy4ubt/tX+tFeD6srt6g7+0gUbWye2FywXNd7FWcJuddgDAxYbIkej5vx7e50/8iRr+2VhG7cM6c/wMvqV9Q \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_6d0a7a73-d151-47d9-9e99-b4f3291c0322.msgpack.zlib b/docs/cassettes/qa_chat_history_6d0a7a73-d151-47d9-9e99-b4f3291c0322.msgpack.zlib new file mode 100644 index 0000000000000..62e443907b73e --- /dev/null +++ b/docs/cassettes/qa_chat_history_6d0a7a73-d151-47d9-9e99-b4f3291c0322.msgpack.zlib @@ -0,0 +1 @@ +eNrtenk8Ve/3LxkaURmSih2aneMcwzGFzBGZhxD2OfYZOJMzOA7JGJUyR7MGmRKaVIpoIKn0KWQoiahMTYbMd++Dz6fP9/P93Xt/9/7u694/7vmDs/eznvWs9V7vtZ6HZ0XnBkMsNoVBFy6k0DkQCyRw4Ad2anQuCwriQmxObA4N4pAZ/tkO9s4uF7ksSosqmcNhsvXV1UEmBc1gQnSQgiYwaOrBWHWIhof8/Sl0Ejsbz/DntzDClCl0JpejrA94eWnqaWiqAZo6WmqAtrYWTg3Q09HS0YXfaOtg4Z+YvXvVAGUawx+iwuLKHCiEg/pTHwr0B1EYjIYyLALRCQzknS+RwaKBiG5lPMiGcFrK4blkCPSH/WkXWp5NZrA5KUV/t7EYJBAgJqx3TkXKFVIohakG+ENEKsiBCggMOh0SIJBSEAhBTBRIpQRDObOzUkpAJpNKIYDIuHoAm0EvhOU5EJ2D4vCZ0D+HC7hsiIUCSbBEyg172AgTa3UHPgwmHcCitXTRmJIQFJsDUuhUiM1GUUHYnhymYPzu7wNMkBAIK0HNBSolZ3Zy0e8yDHbKJTuQYO/8N5Ugi0BOuQSyaDit67+/Z3HpHAoNSsk1c/jncnODfy2nicZi0TpX/6aYzacTUi4RQSobuvW3yRCHxUcRGLCOlPOYHAKDEUiBUlp++PoSiL54mqGroxPo6hiqyTPT07IL8Tfl72ZiiLYs3aCdFiA1IMANDdFsGSHONJyGFgqro6Gjpa2poa2LwqIxaCwai9qlybW1CSRhQmz5PK65kx050AEXYGaqZ4q3drKydyJ7sC3NKBxdcxsiy03X1ZcH0aysrfDY3SGOEJ4QspNsp+MYEEoNDtppZ6YRpI2GzJhaTAuSAQBbxw2m+Bu6aOsy9SjulppcnokJTRfnpGenTQb1PEAtU4YVCdTQ3h1o6mphDuKDTH4zD6OjjcLMWYjDaOlikE/RPDeoEJ3EIadcxGKxeSyIzYSzC4rJgSHjcNnR2TAPoWdPcmkweHCML9jv+ovCq7LNYU6mlFuyKGqAhg7gDDEBDYyGFoDF6WN09DV1ASs7l0KzuWVc/i0Fr7qwQDqbCNPQYp7yuQQylx4I+ReY/Vuy30XIDkcSMZ/FoMIvqQweisGikCj0lPNby/9lGAphMtgQas7olEIPlNNs3UBZmxfOJh5KkNMppf8+o6/PCTFYJJBOCRWYnlIuyBxeaAjPn8D19ycH82gYvVAtTQoe4hKIN+amMFkMxBZEGY2dckEDWzQ3ME/dAhguDAqLQWGwd9gcFoUAZyqCB5PB4qDYEAGuZhx+SosaDQxB0tRQE6utiYNjZwBQ6AQq1x9y5uLNGTSY3GwDgMmCqAzQvywExYLDQqXQKHBsBT/nKiU7JVsbnnz7nwIcRiBEZ6fkaguYgan4XYIFIfoRH/5So6Wnp3fv3wvNq0JE9PQ0y/4uxYZ+twarQWPf/qfAnIoLGHZhyLw0iuKf0qIKP/hq62jjdHTwoK6eFo5I0NEBsRqQjq6GFpGgARI1QZ1iM0uUGUggQyhnAYVTcs337DaxszYr9UD9zkWUPVOwk6Tk0hlsOoVIzHGGWHBgUgoIVAbXH663LCgH1uVksiflhi5Bj4An6mBwIF5LlwjhUaZwJZvX9idzs5FiLdhYonKQcNJJj+W9lRIWCQk+Ii4ZdanXy2QPfOIfLoqwKbitEkR8SxPJwDTLkx5duVolvyZZqLvb+V3u1nxbreYw+xtNTbnDXyP2hU+tPlyK/mQcET7FN8oZqzeOCHA1+hQxPT7+xrgC/kxPhU2/93+3iutq6PP86y/Gz+8FvcP1vr4PIrbNrBnv67PH1SVvzt31+Imn4gvmNnuJd3xHHQ0hdzFLn3G7Mxtao475Bkkpt7/8rL21Onj12rzK25TQw3qfTl11/yZ3jhGqwe+9mlryy23PjvBCxqvhIv1rlxU/JpsZKgeyvKm9WVoij/YEOPNKqV5l/FFbpdSmi2Hn9m0KjPNZva9BRzjs4tuYAZMMmXbVbptiudS28/mSRsvLKypruk4pkZbKL91nKLP4bsCva+5nlq3GMNapeh0axV1WDJBUn9ZagTl9I7JTxvPbhw/Hx612UWuWhlguF009GiO59PHI9vDtzxudZbdk1r0+21o9qE1I8n4whCOtuVWn02GkEi31oGbJzrF83SuJ1mYb4/pj9c7HdvTortXu7X3xmdW+4ptc+ukcHadbLNDzTPsHbtK7xjfU0tPfRdPa/shen1Vfte92rt4zvs9Gb0MDCyupp9nWh7vAwtWm37usFjbeyz5Y/sC+BBf9KrAHZfHILl9r5edLksvHSs1O86QHLj2rXb0x4H2nmYxy5f6heJ8NtIbR4cznGwv275C23FIuf9O7MPcNK45NjPg8ne5f1R/0euFZ/9rcFxbTounVBHHWnjMl3Q8unHmVcOnLO6Zh5ze1pC7vwjvivk1hjybcfVvalqRLWl7rc0z6oX/85NOh84OSIhWfgzJKLhstfvnqUaq+t0krreKOYnq6y45Ww/Z+d055euW1BT+tDq7yIqn4+qWMaby7G3+9fH15/Qd2ubHDM4nB203LyL1WouniPQ/Edi2/LdmfEWxSFvY+qeFEiviqCAZ464+h0texBHGL4m3MKb/MFEOpsMUBO/qxnTGb92REXo66FqCyZ/+kd0xpNHN5tAzqAe7qm9Rk+cleqZy0E2quUascbt3dZHTuTEphK6e/o+mYRKLIlN7+wdhAoZl3a0QreBN+Zda9oq9fPMubeWHU1XOYscj4gs13MLQ5cv3Vr9pvHM1CD0qFVxYdaxf5YYS512dc7zf8XPwBP18jQEzfvZCtmXH4+A+JVNl39qV44x0Hz3psUHnzfeTtKp9F8Y5b8/dArB3xQWHffna8yVbj1rRv1Ls2lGQUb2581LnO/6Z5QMR4Ntk1U/bZ49TVfqFnqGuJHQpq+cvtmBK7Y0PvmqKeWHlrh/drZmKmg8QSDg7v3kVvX/i1uGV70WW2c0fjnazP59VHxNY8OBTZcY7fLLHwsmzdldbKJ1z13gzT47ZuYTZRuCZev7eY5oly/Q/nbvQl/nrVV5O95myNYmlxwMP20Um/y/rj0lr2/N0885CFCZE3Fu9P8hrWYchteYUf2Jds38w69visFG+PUIDiyWZ6+CbwU+fbmKeqsWV/mPejKnZh5aMx2ZLPtp+Chm+JLYE8DvrxJD00UxtLNCa2LfCgV1+RbF379PmPcytiVwCHoJ3fev0VHl8LEH22WE80PlgPjCgSPqU4iYppt+jKwy4T8ermlcR7ndC6v28R7nn+Go9PlcqHN9tQn6ruiTHefm7TjsXHC+619DWCIcCL2ut+svGZ4heH+I96pBgtsQsX8dTD4h82Hfe8wFUXHfv64lwiZ/zGsxOGEok3zcgvJ9BtkWmXmKgfC/ec+6Hm5rx0HbN1r2hveL2ctI0drrIuYr+KXf8LMeeE/Kgs0lkHNmlksYT0zfhbQ+tfqVzl1ea0li1EX4wh+5yvWMc3Szwfu0b67vVG8YQdMbZnAgZ3hFPpAwUHuEuE1aSpFWuwe2yO6nSQdvM4OoUBJm3vSOPdSw11M+qb1owYL09vt3mkdPbVje2Pk2vyd8am5S08tclu5ZOCTReCgkWFpYuEF15uhuRXfzcEri9wPr7ujyhFRp9mc3o8uGNxklDQ5xepSVcVWbftxk6MPwaF28aCAnaEGeqHZJ1ml9y4tzHyclogp/hp9+0tbqVVo3oj+X9svxB9gJrs96JOYiX6mhLGxCji3JNVVocVhwiMivGRjrBU996nJqS0M5P7hTz4qOgTZRtlKvPE094CF8bpqYUq9ZmVaZMipV/4vmp2w18qh8q6s+8uGY0euOoWLQ3xLliux3tlOQgT9b0xPWqo40lnOibHD+wNUCjdLKlu8fqSx/oPdbXRN+tzxUZ68pSntRVTT3idXnyS+KqrfHOO7f6hpyJEOg58pGQ0cE3UafHlhaHrTQ5+CkLvloueOlqzUz89+G7O6+C4plwVrc6G9b/++CpsRfFrmPhSZ0auKeOd1qM+WuVRGB8mF92neu/b+Qo/TECJol/XuciTrmVyCftsFqm2MB+/6W9vSdf5uKjIL+jzzcEufO2xhlexDWHnrlg3/2oy3R+l4m7pXy2ydrFO7OGM52kHdsW14ps2BlB44dgUGZdwbHl/oYjl9bFmy8Oy1LdoH0633UiIFe5us1wlKtk9Okqc5KxUu7lK4tnDCkvj7X4JXRWidreZwu2rPQK/HM3SyDvuGLXr4s22gd7d0p/TXz1q/PirNrhtbOXODycc9uU/Dj6i2fRwzxZTrXd2+rurp0p3uErvFq1eIP/lp9/OMudQHerOvlMrZnJsOkgRV9v62Katl9Y2yG0xmpJEf4oe7uKJ7p+p+TLgKTZRq8JMN1q2V6d7+0p1w4kOjQubJHP8SYylt09rJ/KCG+5slW47yfx2buLGMtH6zrSrnT7mJeU+S5U/PTf0qJ+uicn4erD5XufSc6HvqGWsy1xq+s2H2fiDydNvR1dLrL6WUD8gth4jlSl7ys8waZtSkMKiNubF86N3EgljO6fe3zPdK3vAb1vc5oajJmUd6xjQAK42UKJ2GvSrr+gfGEgMEq1VyLh95FGot9ToUHzuEiv19tHy5jj26Mv2dX35EzjVMLbFxaj7+zvNtq46Vdy+7tu1QZLCUxLo/UjMQihO3+LVM9kRfaHn8ccNrFXjvoJvRae9o/H5K0beUsFnzdsUnkHBVS8kvD1DGweWxQ10Y+oUeMtK9eU1/ZIahy4zSlSvOkb3ieqVRQyXlXeH8cbDi+XHHqt4hAemC4Wr3+e/pVjcY2s8+Z6XU/P6Lsn2WbJofdLx3LMnEke2Dthn7G9dt+2GUeBbDYsEGWbiVNTg+BcRcnX5xidfB1ffdKpZNj19//YbE+Wu+uki12i9vBaTyGrFM6myd46OTrRjWDbrlv+iapPNv6ZPv131svCFaGTW6d3P3bWPXu6gnRy0nhAZvvzS78fNlQabG9zGeUYZ8fkd6dhh7bXT49LNNfLTHzU1zgISclH39Aba9jeZr54o8qsHgzo6SUs97aeL3hE3NO3/qT9SfLeSeFXBslI83Mzt++sbou5LYmti74Oj509STcijkR8HJclfsuxKonJdHzZ1OR0Wr6VlFXf6POztWjUjLCQ0M6N2orb0mr5MrNKTKhOZlXFD5YuXKL8QMlCwOCmamnt/6YzBKndysGv4zav8j5nH91xIqYLklQs2KRZlfpF9+i3cFXPTJmW1OV1S8+MALWGg2LYvqenUBo96s2nVz6xB9eKdu2NumX13wy2rSEuXrK65cP4kyYmQEle98IbO8sacnKUb9Wydj3+t3HlmckwjRI3gPj6GbXqp/bkg3uDBj7Dywp83ut96kRenNxzPCza/WhURyiLUxsUdPKN35oJJevnmQ58fb9ePWfTebcG9wb4VWzhHQ7yenZBcx3ld21P/sy+stWTJudqdhzjGzpXZrZlV7snsa3umyN1RkicPHf7W3R477NGfKe09lrRvxEbp9Ymsbb/slJVQGZ5vfmYkKlN7eiN7SLKP2y72tbzyKpUIuLLdpOHSysrxMI37bUec12xZNv1izdZMoscRjdr904c7ot+Ltezbty458/UfMY4aO1TPHLCJ0H2k6xws/t4mqiS+6/3emmmXnOprFfZ6EgrxylOTV1b1VZ9lEjvP9GbLxI1xlhFLHvGiR9o2HFxVVZHBKg+7/z1KPgtPKaYvtm/pPqrq1Dbs8fSTuP5n9gab7Z340BiOlPcm/T/aPkzI92g5cvOodD0cPdHhZxe08WluqkW/IlNXrYi4QndvtnyfaViPrWEP+vTU58ParSOn7/6Bi8pLnylJ246u2rfQT/TcduPNrF11HdXyBSVlqxZYTrkVf9mZqSjOOoZXo72s1J6JO5d8Urb07eids/fdemKysgwuFDZ2DTvVsRJphzCs+oTzw+PSQAIFdNfklDz5kBj1+p5qg6Fv6O6yRyXH3gx8vNC6ql5Yz2hE1qPzo+n3bq5UhefZg365FWjd5vfihMVHBxfPGBXmCO8KMlQnHIv6caC0+YiYnod+pfdODcu8O/W4fcFGqcu+9NWfw3GOgNPf3Qq/SPXvN87Ctw6XSgpRQ3vVeSrylK/dlS+hpV7PiWjPCakW5vOZRUQ/km2K5iFMxUlDblTeAmyRokpIhpnJsNGVhC/cIFvygY8JV6j7WQX7b+p4fMosmJjaeLxDOMNheZtEa/L9+8fRQSRTxacL10a7oH8Z8cxuj686kVW/36/FoFfmEPaU/iix0SDXFgR40tPfW0/ac+Xv+0T2/nxYyJe3qlipnnCUS5g4dCc9IuzblwOK8VfEFpgW7V1wS0nLj23pWtnafXLHHxTSA9dQMWPD5NE3uPO7zbrAw+Feohrn5AfuK+X6vdHxGv7jzSGnEim/y1lPnXMNGhwyayp9mvWqqlrjG7ZdpwIMN2WP8ro1eEKQaH+xypYj/U7Z1SzZKnzG4UXfH7F6z0QLl0xPSoCekwfIgW7hlefOtGKMqhcGpEaK/WyQ2HRcrmvdwrPHi/aPrQYva0SWevluCy7I3MQ8lFJmVMyULzb4MNWnU3K1LsuvbO2CNZXfkqbrdI5435VBex/ZvPWQdL3bmtrlJ53MbnZ6BG3tf6p4W75FtPXdCjVKXlxyhYzIqeOcfaCb3sxkbC/PXyxBOEbx0Rt2nFT7pyWtZmm8DtTF03Hbx8XVmlxNcEt+xvg90iyhGrjYsH0MGsJ6Ro8buBxNvzTtsfPbxrbmqR+SkaPHJ1ETWh475MeSbyWhuBfw8sSasTiMn/kF8ErWYfSys/kL0srjBiDnxxd/7vH3SJlO+vZg7a8f291tg5VokQP4BcO6uqTVIxllhfvkJNVoiaX9uzoSRnQfPPb2rxfnCLEKlg6vvaGObXk4mWYxpIo7It2nltSx1CJ24KiSOPXedtKlo9nSOV4ti3LwGYMdmTXP2q8Gfh8n4ja7Xqox6S4Qvhufs+jzLvmrXdXOz7J7ufH3+7jn37EUTncoxg0/viin7VlSGCpUrOycn6CiwIu5vgs4lK6Cc1fseSfPAKRGF54Ob78VOZOvs2J7Xavqg4KFUx+CNxqfzfVJ83qYnUwSLx6dWNV3srnGlz7ABd7wbb6rDj1MX2a9yD7Au8MsdzBg60GhKJ+WJi3RfNyz7pvoDzJ6ynjJZqlnu3cp7T7R5Jz1/qw4acHnD+273nuMnpOsKMg+YKP2zqww4fmheifvybow/9dfy46Hd7ovfPghu5Af2VRXPPPg1otKKUrMdPe24wZbz/sojgpve7vJ5azKQ5k18pH7u8O7tzcf3AlpiF2Ut1gwdH8sqmEo+83drPtGx4CqHn5b4ZjKkw8qefYyA8vk1PCjCt3v2OqOo20V4kUT7Py1SpsSpn9dzG/UOBA+0b/Fpv19ZNfQUNzzaZEnhWs81eSflzq3ZkZMvIlAu5yCQoqx5gaO+yWuy0PRTjb1Qm0v8wNfvCBK5j5ZeXXk9iLhr1Lvl5Vs/F4SZj3kpxWAe1iVahZw2j++vvF9twTX8MXyPvYDEk5M2XvCX6utneLBvEsqqXoVMz1J7HM/MKXOCKR9+Z4y3iHhqnPj88CGY1WpiX8ofh67k7OwWHbZyGmWaMRUxibJWydVG29G2/GMgA81t9iTiR0+dfJcX65TPXnlapdHCwjDY0OB6IM1e3w+re6rHlxecrvsyH2jlMIxRnNROC596/SG1CvhlWuHMCnnFitcc/SOT7tQZ9qyP5CkVSIjpVxyeHl/w7ipHatZOCerZ5Ek3rUoXPZgbcJB2YYbpiaMyUUimJ9tzolJFQelsp5rPMsal93yaktg09ej3+9oJqx8UHrb8Ur5a1BB0b/7dY+ZlPnruHcMnwJewOtG4yXXfkipFfcupr3ZH3mzDuuoeHGF380+R7tHn3hSWyeYpn4Do00z92NuURVk1DvXXn9O2gwy+OiWqROj+C/H+kXdKpTrUHs7rfsb0l551SxskizyTnu1SXRy/NFNxqGapCqX5equcSIemY9zrcoWndppl3eRTDJSknwkuk1KRe/tr+oLNorRlcnYx3KhcmkTMjhM8sShsviuLT6SGVsig/UW//pkz8leHb2K/fnJi0fqL7y/AA9WbFFxPLxHpyzsfDm4Klu7hTsJHtHhy/lNf9Fp2PMTvUbT+K0xnnVhpCR8tep1YwlMwtHdhvzevojRibzH6j710mkPBnA7rG8uDmx27tzTuX+Drw4+sqdo07CxD1N96Xm36v6o52JXq5xuyT1+qPyGin6gWBRqLX83cJh1aUHMU6/RqxO0m1G0mVIN70/x30xdl36wf6C3Y8BE+Yes4eH3k1VWyTGNWaovjp4PfbitZSV1Teah+ivBjevfOx1rrRpY4bDttGtIuNT6k5f1cXK7HKUfB7xbuv/GR5lvr4cLH2gbr9/zxSjunNHoltiNxg4XXw74VVBv9c6E95ys4fFevwInbiY1fFmtleFbMTXgHG23QbaL0jI4M9wY4Obzi0VIkKzvWPFa6f4PkiZDJlU4gepWfvLy/UDJ59+Dczc+E3nR/UPofMgKIYupFygizm7F5ER/dwSfNjR1PrPp3i/1iGt2pMGIT1WDG6aY4m0mccduXymxVxqNqu2RfPCyBNfMTyP/Gn79cu0fR45ylTTX3e1Tq+Nm4Cf0B6vyXC9IHHie8OG9EXSv+4yUX99r3/syae+HAyMsGoc6Za9/SpG4F5uVqlzbdNRC8Yq4VsrZwvouzyPG4VWk6C/r86J/ZWbt0PVOG562r16b5bCwJn4qO1Fxi9ipEdMlJ8du9tzpZnSw1x52UHRS8tKbkftotEP6+KG2V1beRyIPnOsDPd6flT/WdZlYUzO9OGcsJaX7YEhlsCf+Yfx3Zh7/nPDM8FfmlguRzBvF0S2j8ZLtfI3XD05eCcGhDJwtbxgQ4ITGX7ZRSJ05fTkuYvxBoeYaEHfI3TwhU3Yp3V3Vb+DrIt6tXLxO56ZYhlx5PvGLDza/pWJBk//CZi8+SzJOMy0p6Z7qvszL3v638jNLR54sn6kexR867RZL/rGxQHmtqK8nn+EQWi3HPe0y7O2/V2VmaIfsKim1x45S57+KjZep86snW3pa9neLae0WLv70+sITh7SOM3If/RW8+7zGIu6H3SpYr5hVc/THF1kJpSU9zGu911n7zOXQMz9irg483Xjg+49n5Gmb4HtefDd+Q8TWxpo2qMPwhxhz89G4Z9ZycrZHR1S8R1f98kksPl/3yn7RNpnmRcrB4nVxocohJ3mUqbNPoyMW6MRMdH2bfB5/9bKx1aKpN2HV65XDt1P4d0bY3ZID5Ts0N1LI3kCnjdn1AJzYw1t8kR/3B6Rpr+yFciTlGJGHPly4hFbUnlpmtWZf2qRFezS2eAJ4JUQ1tL0xxlYwso6x9zvAOXw0M7fxAUVc/9dAnwPuqXF7+UNtdXBSSQj5k8L25PPECztkLEeNDgQFHtFaIlPepZ4XKYPbaqtxInKRMmDqKgy9+tq+5bQt0evU3fyP7V8NclUbBovGy+VHJVx44g01Yc4sT/vgy8FQBZltmTP04Lv0tTBzpVcEaKfvh3yW+2mXt5cv0qXPaWdWXkqR7n3IanZZWfcw1vnrHcMd7ExhI+BA26j5UWzfTzG9FMagTQvbSWnmldahkHvNA1M9LSOHC05eu2boC4gGLOfJ3UzW+vHHQ5WpH1e3di7z3l4CTlIHnXfdYO1I2vRRsbXNc1PbSyvl1s+Beee1Dh2iLiEFvb1lqfwJ1augrTDBITPK3m6iOQif8FXSI2v6aKq6vFRlUJS8q7/K15dIAKWNJ/0N7zyeOjzIB8xrlleHrupjVKSaj5zu2Fvbkv7dN//NC+iWZuPzhLrMeIcFL6wW8Vy9J0RQEmLfhLd6ozV/vWkurt1duCM1I7ZXva9DtuOQYmjN9K7tP5Y7LJGyFa2eMaq+d0LrsPCxK2m3vt47I/vk824f54kkfoBe5DDp5TKbrva+A2+F+GctCRHQdSOTNXyD82pKacuubDl+1K1y1F9/ylBB3PWM966N4h19katmXKIs0s2XJna9V1hg4hh8JnxaezmxvrTo7C+pooQ+kedGuZ1e2sc/KFh1R9RL4z6H/RBBYi0iZOYxmdcOCAn9dy7Bt/7Hl+AEMshRh78zqZDgBkRwY9G6FAxTnrvlYyPX4WHKcxeEyP31HgYXAFkQANIBkM2msDkgnQMQGSxAsDqsBAXS2TwIufIAOCA7kI0GXNkQwCFDsBRyQYcMMCkQAWIDDCKA3MJSoGDIHxCsEcIBOAxgVoNgzrxWNGBNBPjw2v4M+iYOEEhn8ATjs6JqABvkw88g519k5hdnQRDAhhAnkHVpYAiFxqXBk/0B5DrxN02IGQQKG0J7073plhQSGsCiAftgiBVMgXiIwSBga2uHYjJgWdhokMth0Bk0BpcNCC7PATafzYFo8GwzGFUGHXllT4f0AQcqSEduxVS86SaAAHHk7hPWgGAEcNlckErlAxR6MIMaLLCQzgdgTUwYPhP6nG46BPmzEXwE3vMQb2HD+XPh8AeYVCQoyP0mvL4LotccQpZisCkIhPDSZmSQQke8gBnCJZE5wGYzhosB4A5RAIgDgFQ0cmursQUgg2wAj8yFFQNIiP1BFqyfBSvjCAILEch0ChwbQeQhOhmEQYPfC65PASbEEvQ7wFgDDPqst1DIPBtcYKxn5Shs2GE2h8UlCIBgAN5cDQyWwCFT6IEC5wH8LAiC9wIJLodCpYQiCmCfOchtINIAIFiCyxFcyCJS/nNuQ7AjrFmIkaXgETYNxhmOMgIXm4LYxZqHGUYCEFy5IrbD7lNIv0+kcakcCiyORAaOBoiHv84OC1SRYQeoFBjROXE4EIIeFSbM71mzBKDPeS7wRw8OJeKpIB9mr4cFpHNBuApLu8yGiA1s3gMyfguP5hYAThOIDlMBMRmGCAphUhmChPvTShYEshl0gWoGnKV4GDUOBeYVTBkIJJAFPsMpBWcuhcXm/AUYW2AkbA7sH+1fPJ/njAAvgdswKyHkypb9DyE2QgKBpBpAgI0RsAaE8UXyUBBxLgua5QIbQno/5iEACDB0eAgwtXQGNuPhmf4cMmrWyFnBLQDMOHNk1B9i/mOMR+GQ5z2EDQOgYJDKFeQZjBMIEKhIzSJSYNs2B1NA+M0spwVKaWAAA7llB4IZHGg+g/x/z6B54+D6AgGbsVsQpXA1mF11lk6/JQmVEggB3srOAriQPPHY44n29qZj0d7KavCAO5LASO4ikLO5eBIDpM4KwvbDNRHRAU8xRqQ3awgW47LnyyqKzYQIsCeEP1MIqd8GAISGSxasG3ZkNncZLD7A4HKoFDrsk7JAPQ8enI0HnREMUdUQ5zdrzoFH5tIE5IXzaZaPThCbwWXBsdFHTAesEVrTEToKuisECmfRh2ZJQaHPNjsheJFA2DeEmbAmDTRgy4BXdYFYNIAG0RDDZpOJBhc3WEATDVg5uKA00drAfHk1Qere7Bpw2kCkP1NpDuzZkuJN10IDlhT4GXYUtltgtsNvRchilgXw3FkfkOt6Cp0LV2245rIgQWlHTIetofLh6gLvIUgQBJAi9QSis2G6CrYWJF5z9U0QCoYgeni4EiFmzU6cz7ZZp+HF5gIEYw3XM4hKRBGQCBAo80vBtQbFpAhyAlZFBoMpDMFGJNhcqfxZbJwgIhUicJCKygRnc5bCFlgoqEAcJBFJSI7DNrEgIhzvOXOYMCVhRs3CZAFvZXykXtKQWUidh7OCwebAOygDoTZcIFkcgUaICLOLgoQGMKHQEK1zBwXoz7oo8J0KIdbQuTQ8nFVIaATlFAkBwilBEkEhEIErgB+wCIHR48yWQfbcgGCXECTBPKf/qqxUBgn2hg2XF0Sn9V9c10dWcEcYi8wU8FUwYfaJCNMHifzcVDXBaxPr344sf26m/hAbDgcemq98AlYjmuaXFVQpJkITZJuHZ8PHovlKgPAAOQawARRy0mDB6QEbog+Ehf32CISHq80CMX8KEAi4CJxExuwE26EzRJ3tcRKMzr4zge0l0ZEE+UuJxV9ownIOcJ5Q5qgaHo4GkPMZjcuer+y/HaWQRqVNbGDunIiEDxTQBtm2YD94yFYJswIu6QKX6X9HRnBO+R0eNhk+hMwyDEkbGFfB67mt/V8jMJ8piBHzzJm1EOYDe+58989ZyKEQFFhKRPKbCdcTtVn3OBCV+pdG5Muf9PxTFI30YLIYVAg5uM6ezJRhFP92nhVUYdj2f56XjH+fjayiHP63tk8Sk4MUKxSctngGIkuH32Lh3zCoEEiDHwRNh2pIgyiNiWyUcH7DbzFozJ/dn0n/v/fz/37v57/2P2Zr6GE1/3MNkHL/gwZIvf8jDZD/mQ7H/7LmxYu6ejr/r3cvav3XdS9qIr2LGI3/je7FbCyG9m/7FzWx/hgMHqOprYvFEXTxOpAGQQuHJeAweCKoQ9Dy/w/7FwucYe1mgobl1FZhkfmOZW0PeGcy0cB7Eu0oGlguZM3VdSLig6gavk5sR3tPLpWvSzCz8LegMe3+agnW+7Nj2Yy2h+2hyaQ4mLn5MnkODs6OQVisJYvuScZoa+n57qJ4WtrjdIkezrbWGljbXc5WWm7YkJ0UDoNP3snDegS4s4jODA97Cp7oiefb7kHrMf1pGJ6BoBIbqhsgf6ZQYGAM53IEBecIajZDNOczxAA+WiMBMET/vSAaADs5HKY9nco3gFMLphME/wZpkDN8yjXcDZ/GW9Ln+6Ktg3Z52gXYsEI0tOGTiSPZjWLpZLXbNlDbwxcmayDeih8YSHDxdHfXIPwGgraOzj/7ov8y/X/Rqv+CPlMsHsRj9DDamP/pPlPhnr/6TDlOdYnS2OX3Pm3zNNrkqLHrSWrbAs+R2OTmNaaOSe80CZ2rBs8mk49FWJ2tTRBZpVTg3diYdGtx5DVL2o4vkhYTH4n2WU0f6t4wJjYMKK1yqX1xPzmi4KxxRMSgT8ONzfiphBveLux14SxVXFxK0wmHvNvoN43j73rPexpKxibFeafctCZK/Wy0HfeuacHvufLiKdrTrhD3jbBA6Bvu3gYChuOwxsNW/eAmItWaVpQl5JJYBCw5gVoq7vh6TT5h+RKzfveP6+S3Vqm0pa5VE4lOHoyeeic9ZCuuanpmMc+vM0uIcGrh8o/rYiRWRhnqW63GyPt5fV6mlh4iWbw3yHaLVcM6zseVIqUyseuJ8hurgDxeYmVzztUy3oItNa0ppLwkv/52hTWeyYmTHvU1th1Yv10eBgsG+9Y/X2ukyJiSsTbJzYxWEFGNFy5R0TLz1E8ePCDE/XLWihSg8Ao/+jHx50QtFBBafe3OSwNetf0b19vNGW/39RSHEGK66acW68VpBGccb6g8u1HIOP7Y6AzV8dLa8NQrj9YdwN/2jJCfahh4Otj803DzoejBuPvF05dbFVbeSPwqaXV0MY3MkEwIfHbe/rGV3I+26rgM1tPg2xdBhdxaX6HZ//idAEL2WooICf03Ob6Dww== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_71c32048-1a41-465f-a9e2-c4affc332fd9.msgpack.zlib b/docs/cassettes/qa_chat_history_71c32048-1a41-465f-a9e2-c4affc332fd9.msgpack.zlib new file mode 100644 index 0000000000000..b69f9c15ad386 --- /dev/null +++ b/docs/cassettes/qa_chat_history_71c32048-1a41-465f-a9e2-c4affc332fd9.msgpack.zlib @@ -0,0 +1 @@ +eNrsvcmTG2mWJzZz7PwDdPZBsooR3QAigNjIYJJVwS3JrOBSjMjMys7IZjvgDsAZDnekuyMikGzKcloy02FO1K3Neg4zVaqS9TKSRgdpJGuzOc5B/0CbzHTIm/4Lvd9771vcgWCSuVTPmCoXMgJw/5b3ve/ty1/+7iwuyiTP/vnfJVkVF+Gwol/K//4vf1fEX87jsvpvfzuNq0ke/frDe8e/nhfJP25PqmpW7m9spEmahNl5nI2746SazAfdJN+Y5WVVbvQ3+1udzd0O/RmO46za+M0gjxb/8XeTOIxouv/ubz4u46JzgK9e/4e78Sicp9VhmI2HkzDJ8B1/9duD4TCeVa//8aMqvqg2JtU0bYezWZoMQyxy4wKf/MlF89NpeuPLm5vd6+1kSpNvnMeDWfuPN/6YP7z2P8mYHcw2p69f/7s463x81I4z/n7nd8/iUVzExev/zWzz/Py8O87zcRp3h/l049d3Hx+//je9v7mTZ1nMwHr9N6dxPOuEaXIW/4ePZ+OC9th5mJXxcF7EnWcCxpLe+R+LuJwRcOP/5rdlFVbz8i9/M8yj+P/6T7+bxmVJi/m3T35hQPT//LP/6pIpfnM3rOLX/3C/SNpBfy84imcBgXs76O3ub+7tb+0FHz46/l9/1fkwqR7MB2b6zsPo9T+27u7dub3f2722s7+zd3unf3d3f7d30Lt3cLC/u3u/f/vOtYO/Pwzp4Ud5lIySOHr9D5/GUTvobQYfzVOZZXNnf7tHY2CWf0cLrOicOoeEA9Xk9W97/Z2t3tbfmY+PF7P49f9uz+5GQMdblHF1c16NOtd+96vOnXA4iV//+sHD419/koSv/7bX7QVnYZEl5eT/xDmVZQdjFXnaOUjT/LzzpEjGSfb63/zxv5/FxTQpgbhlZ5bT4S9e/3tGYGx2mE/yorq5tv7bo7gg/H79NwINHODv4otZQk+9/ofjeUwQ3PYguLW/tblPu6W9/eaTsFi8NthyL6ODSrLx3/OKzaJe/+00vACC39zd3CSQ3yfYpQsH8ruv/3FtsDnqD/vbo368PezvxIOdeHuzv7e3eW1rJ+5Hm3vx9VF/ezPe/PuLzqzILxadIcPkN48eHh39vc7+jHCVFvw/DBZVXP7m3nE4fv0/t3Z3r8W9eDTs9OLr13qtX9ONef1ve5t/+6sO7znq3F68/l94sM4gL7d36SrefnJEQD9OpgSR/+Oot9ff297Z6u9c6+5e7/f7e+1Pjjbbn9zr/Z0eTOdBwmjLd/dfEsoWBIH/+5/98//3X37wL+4+uXP82dN7Ac711nsf4K8gpWXebMVZK4iS4mYrnFd569Z79CVh9K0PiIqEFgFajAH0rXyMq9YhqCVnN1u/6nx8QACezug2D9K4FQwFm262Ht67GUfj2L6VhdP4Zussic9ndNreg+dJVE1uRvFZMow7/Es7SLKkSsK0Uw7DNL7ZawflhLZz2qnyziipbmZ5Y9giH+RV6Q2aZFF80Q5GORARD1dJlca3Dg8fBU/zc8K7KDigHWf5NJ+XAdOvMviL4DBJf/r+1vUbh/n4gw15pTbPabw4z4vInylLZ20GJuhTZ0oUIm0HTEZp1VVMNHpAlLdatAPCmOmsolNpBRv1YaO4HBbJDLTDG/n2PEmBxjJaGZwT2Q6wg7U0LMaxnTTgSdeDsAwIBej9IuZBCOfTuAiSMqCjzPMUHwJDu3SH6JqFKVaUjzr0n35TBlE8zUta+Hw4wXiA0YdPj9sB/UHXim4zbSgIsyi4HQ4WBx8+pEeBvzx3VtJVxXrji3A6S+OyGxxP4mCWYzt0mgSEIB/xDojIxFlUBoN4kdNgtD9aD0ATnMdp2jkvkooeoAXPkhjLqfKCfwDhXZS8AFo70e5peYM2HQzDjMYKRvQBnWyIHc9wzCMihDI4b5YwdBqUeUq7777Hhx4cLeiQpsET+gi4GTzM6F1aYmemaBI6NOFzCEp+o837GM0z4cCYs6LN8iM/Lcov5/kN2l5BDLJN2wA4pvQNjTdYEMgE/IRN/F2e4Xz3GzhNExNd9PDhkDl48CmRbzya0oUIiji92aLd5xkx1LQVTIp4dLP1XXi+ICUPOizyssyZeNMyaOwFtm8G3whLIgrlxrAsN8pqQec8ieOqO02y7u5euDsa7MZbW5vXrg8H/evxtZ3dwXB4fSfaC8Ot66O9zc3t6+F2f9Drb/U2d4j/9Hd3ws3o+oiY0TWi+CVNA8YwJgxY3GyVk7C/s9v5093B3uDFo4fZ4S/iyadnj9Io/vLJaHhwFP6yuPfi3v2PLz5K88fZxUeflTdbApMZ/ZmHUeBW2KIzohHxO8AnN44QngSIS3dcFkO34RflxiQZT1L6X7a7M7gexptbm9uj61vRYHc43L6+NdrpXdveHW32+tv9a+Fo6/r14W5ve0AsZTSIBnujcOd6FG1HO/FoZ9B9sXK3n+4U40f3fvr+9taN437/q3unGx9/9uzs4OiXefHVdPjZx9XTw73+Fn+fZtHxJ3s92td7Af2TZ9gznX/6ouyChj4w66Wr9SQ7pC/X1m+0bn2wIbuvYVEyBPV5CwQahWd49vksJr7TpR9bK8apSJqgn1mmm4HklclXMa2zt3vR232XaTr8RnfWRPo3T7PVv9jqv9M0/MbyNJBVY+I7RBA7bw2h5kvLw07D8vTtxyvDUVgknVlCEmbUqcJBtzwbN8gFUZ9pTIQ8rdGM9/txn65j49lp6YngJGKk8Z3L38tygyxAsQ/4AsnP+Od9mbfKxyRyt+3H3SqfdXi7L+1n+CdKylkaLvYDumPxDfvVq/dk8A1v9OZMPyfSnoTBGt1surKlbJUkBMy/H0RhcbremGyf2FvV+Az/dDqVvFSMB2v96+1ga5P+76/fWPEkQaNYyJPbu+0A/+/0Vj45KwgNzbP93jWSVuWP6ysfJ4WDWJ99obezQ6L7zi7+2Fv5AknLxEXN87v0+C49vXtt5cN6kDr2dQwrf6weGwSjMxi/1T6hBNlnsWosenc19AYkLMWFPtrDkCuG1cO3qJMm5apTG4TD03GRz7NoH2rHmp7iWwy2n+XVWpcxZH+/QxrmaVIR4kA+GoRFpyI1+vRbJtwMNr//PJP5dLBqHgaS4PObt3bZdflgw11Sw9jCcpENhYEt68ZVOJ6GGRHNgrXkMf1O7O1nSXTzw86D+8fbO5/cv/2r3RqjMD/Q+oIof5xXxwy2m8EoTEu6yskoWPsX7gvcxT86JzE8PyeIVOFhuCA+ezNY+ugv/iL4/Isb7/2REaUCLGZt/aV9ojubl5M1knjnkKDK9Ruv3vsjfubqi/JqO8hIaIOOvbZO4NIvCPtHyZi+vOpvh35/GVwV7k5c4nkyu7ovqw9e0buv3vN2y8SSJEZSXMGZ8/E+awO+NPYmVcKT8GuD/EHQ/4OgT4L+JdgBYcZDi5Do/RA4t/rpeZF6D39Xkb85sE66X4opy5uBB1m5GPPObD4gMjiJo+dVMvV34mY+3tzc5/9YfOWf3jjkVG1b7z5iXTg6B54V+8OwiLxRyvkULLvVUMfN0+925S8Z5A9X/g9Xnq48MNLyZtFafDN4Gv3Ji5Iw5NZ7kA9aP2dEuaha+4G92Szpht28GLfa/AyTC3rgdhGH0bAg4eKQhBD5MqFt4Ld7sjZ67HMWGYz04d7GUw/p6ZYR3nHRE0bX/SDoBfZjoDVeeMp0wH6MmfxlvoEAiZL6qh18p6X0l5fy5gv5XZa4TCPfM6LXF3UJ4cc5yjQfA74wEvI3sMaSGvWWu30HwNRsjpj5DwTpRyRIJ9mPR5FO5pub/d3vSJYYFaxV21AJGLVb7aBVN2vjE54RP/imbfzujNu4Kjys8vDbebT4A4b9l4xh33z9V++KWCfZUzrPDCA4mg/GOT2BXUYxPyNEfZ/hKYsYEA87pfPKz7NA0KEKy1OcQpUH5TTE0bcD0VlD2jcdKY8KIGb0AZ/TaJQME4w2obn4IzofWfCFjNcNnsWjVERbXlARjwgJpmwqcasB/COaN04Jl+jwaNhyys/zR4UbI6fdB7OwJH1bANcO0jgsMjq7fBpMiaGFp3HpTQWoToNRXhCsqzmhNgF/Rm/Rx0VM8EymdLBnWDvA/+Xc4hm9TEAs4nKeVrSPR4TZxSI4gusUpiGajD/ZDx4G5/k8jXA9yiQCfqcpD5ZkHeVFskZMsnYUx8FTvruBuRD0Od++eUW3+ys8VTZnwYIwJF/VgI6IB+wGh3k2rq/meEIXlrdEDMehlNx+/DoMZ0pGME5BAnRijmaIla8lpMtnxMLXaQMEt2noAC/3jhCRtIYkjwiM+QgXjeCYMl6Omd5k/GAB+J3RuRHscQNjnmWEs6NZ6UKehSldcVCWeRl72MB7K7E6XpAd6+Dpw5JPkj4pwtrqqklYgVKx05uWwNjgAHYewyZfBmuy3AlpJTz8BK7jIKQPCamKGJapBMe0Do/oMJ0z+RzOiwLL8ubDtYxiWkc8nPP8DqhtQky45jE+1CvaZ0UqT221ZT4vhoqldGpxN7ifjLtBr+vICJ33W5GRbnDHEIHgSRbvB5YMHMhNhJREr+M2EpgJvVOs5QxErMT9XsiF6AYHmQ5MKBnx8k+z/Dw4B2QJkosg1BOc0QxBCEGJiOAxxr3rU5ngDqJUBGHzOYE9WLuTH98IPo2TIKZrS2dOQl9/nU4BBJzepGFpESGMs5Fz2gZVPJxkyZfzWM48o8Ma4nM5UsJABigxngAHUKc6x/boE+YsVTEfMhjy4Juv/7qawFCOfTNFpb+/+fpf4zu5gTEfCs1f0h0kNZgHn1eKabklqrEi0hLhFMqVYEWFAS/BICD0ykqsmjaejP0Xp0RkEnrcp7jyNQ9FKn6QCgrz43QAHM0xw/WV6+nRB2YfvEeAiwAKfMRZFUR76MFjORe6Dp+FuXcmW+uWsWK1BJr4YpbmzJPtAolvkLDNA+d01xjpE+ByFcA9xdvtBg8rop9FWTlYCS0yTLS+aYMoDCresXJ0oGjjoRInz0/SJaTFMKqEBNoYpB3HPMeFAgKUREdoRQoAw+Rv3z8K1sD+omrSkUXKg+sBodldfBuRLNP8jumn7pAWFoB6zUNlyiQgpSFBY5TQ2tbOkjAIFZF50Gn4IofHMTgjWcZcmhprNouL6CYHa711DAr5gGcVTPJuRpqcxsFJ64jBhcvxq8/+tHtykvW6JyQanrQ+xZ3FdQXIDePmB2n9RHcxBr3yMzy91ufJ5kw2gXKdchYPaSdDe2/AZm8EcZdIFI1NG5ELy2xpXkFbonl5eAhech4Z8Yu0jc2vbSnwJvMp4y1dJWDjQZaDBxPLxYBRAiVsSMue0T5pmSwf/cnTYO0wmddwtO3IVxGnC5Y6shrPkbMYQmYDMaQ5cGmJZ4JZEmdNvqIXZkonu8IxzbSGBAi6WmJ6N5+CqN2NmTXiwEyEXLD29O7dQ+bf5lay36yK5ZdRSASKiQbUv4GciZnc3IcuxMZKOTeQVaRDIALTjJSvwtIFIlL2VH/HIoiIsVyT8aFqgGJpkbMBEHPF6Hu8LGR9EJaE0QaefCZjTKP7t7MwJ4eARNwEB9xYpT/g8FQWm4V0M8PUqh3d4F5ZimSfLtp1sDBpJmgQegmvZMrtn3FFYgMtoyznUyO7hWdhkhrRhshcxGt26MyLwsIJeQnnmMYaeJxPEjr7BNrPdJrjHINhXLBoxKFO9HoZV3O6boM5ccgc0oBwT0FimQtofQSB1RN6jxoCLKtTZzQ9CehYWiWyS4i4qXKJyzMfFhGV8KliLYcu1gJXluVbRiInDoOqJKUoFBlEUhJdhpVgGt17jGtkZCbS8A0zhtA9TyDu5inwFlSe1Ki8SA17O4e4TMecqGIRFwXISYGn4zOBJu3+WXxAO1rmKxJ0wfjhGAifhawOBIKmBdIz2wEXsucqOytnepMGMSuk0wHhn+V9NcJFxIRYQ2VeFVhgKKvy8mDCJcCPIdpCq6HlYQmAuUb7Ork5zs6SIs+gugRrTAwhtX6anCYz9pMrtyEhlUgU4VMa65SVSJeGeOsE9vo5eMAvGoPDL98V4hk0lkBXhiLxhLiCkBk65lku0AXHJu3J8FIQZZ2QBYI2nTBxUUIgkUYrVnf3MTxz1/2g2yVRcCjqIn5+MoCGHroP8P/as3gWM/PjOwAhqVwXIbZP91r1dxxMbXcvWBmAtIB1QbxMEbLYAbBJdzozMo+A90Feke7/y4N2cP/eJ/eerRuFlvG7Mw1PDccyLxyko08ZZe9lZ22SNwekrM3WabUPp3zmTEn2gyZyMvGlOz4B8EivYa8naODlC7x0JW09I7o6p5Bu+ezpgmeMC/RNJ89we4nMgm/qtbLA/+br31raV5BCdxZHfKmIelwA09eO6BCzQCxQxIJonIm5YbjGbMDA3DhwRIzOypr1J1pk4ZQuiCqVqxRsq8ngmDzi4w6yPE3S1Gj2vKwJW0ysCP/sUIglOLVSVuy+iM/xrYrvRkMNjXiD61wszFPmxtYuv0SXCovhGTCBAlzo0yRukILa+4DRfKy2FAaIJQiAF1MAq0l4G1YFidVEFgF11Cvh8+pK21OyRVHgXU3ieQH+OQyuTOgp3lDO1l9mmtNwwRgUxaKF03aWqAwUCtIdK4hTpBIK8SXZVGljnikg6gdoLBYnGd/HLULvNJ2TJFdTFNzhWZxZuigrkK2t2AZq5HZoQwmiGOIPITYzDFmfvfcL0cWc1YhoAOwjYJyEQrTIoaHoovSwVWUAsT6fEY3FPXUvW1lBopOYwvkUhrkqGB1EBRb9+MRJooB1kjWi4EFt0gTmS5iM2AIYE1WdgwmIPFtCmmJdc8SGHlb8wZMjiDAQrQyv4YlTUi+E6NLyCb5B7sgokLZx1EZuqMsJrN6o1W+SnzOROc879HNlbaSYBASeeTJQU78QejALkwIrXhuRaAQhyp5FGytn+5adETR5PE8Yt9RWJgaS0qwYMF9nrpl5L5ZiGYhgF2JJr27HBGqxBsk0px3QreVnSGFrKzuflwJzYy3DSgjcxUL5pcHlbfCWGon2ST7DwDCNFYcbilqvEh4gMmeSwWL7CsRK3PDvcjWs+eNBQpp0ogaQBzeCpiIjKFaEYxWarW3PkFwsG9s8zyAIQ20yOjk4PBGRGehGxlJFopJKHVNZMtR320q6MpJeQ0sAR3EcQUYneLF6Zn4PEA5kbP+ptb6Ogit3n0+Cm8HJycu1i3aweJ4EJFPwn189T9ZPTl49f5nc7L36s+xKW4nylYsrGEi1FxJddCVX6OUr5mCwdaG8Yl+7UuiXeE00R7XwYw14U5SQK195z7G4ixwixmF+q6OMJgom9jjcng+gPwjbsBsntoJ7BZwmpeZU7p9wJV4WHfvJOP6SNv0y6/Re6W8nJ1FO52O+6l0R34WaHmh95XwG0x4wHTSmU80ZyRzfcgC3J6jXDqIab/vkpArnDH7AnnbOB4CfXuAn+kOWgU8yfJKtu1M4OUlpaUkgf7/Qv7MrDWMZFkdrE42LhRXCsighFktQz67oaAilZD1YtEXhQ7pqxIsmF+oEqtR8aI6YztFnWGoljeb0nkpLgq5OE60djpnEXzTG9DgrKTwxKLOzWCGikIVR36Dh2yT0TuQFm7Fg92ORFlI3aZ1neRKx+XuUVMDAdkDXGfQOZ1XE43kaFslXah2EKR6mrfAiQcybqAD5uAOTTZpM8jwyHNi3N/PhkwgAc7hOyC4AYjKV0ZSG+Yzp4dogHoZQPdiDwXjKQrjSNXYsAnOWYFaut8WQS2hN+ioLIeVpsPmToBPs/MSSiyo/JVk3iOaFSu28QtVAmgtWFE2KmuysZKOmoZE4/uHTY77jBK6SPTcSDmRgxzb7SZ0KYePykUQhM4IZYClX2DGiWe1e4XTpnNoN5BMRso4JHg4aOsuvk2JVsKuK+KTS5Kk4ArxLusQalsg84AZmCygAcxKdkWk3JMVEbWkjHVRMImbKyC4KRgnlkCwe4yzqnIPlndzIXXEWXXq/IM+mY1glJ9PgLsS4NJVjWDu4S7yKMIMGr+2DYy6UV7FMw5uCGwXJHJ14RqcaxXUpjE0J7PoYCuysI0zVJSEnuIN2NQkLX+GMxFjmUwxuFuAUUh2f+kh2I+zr4n0TqwEsKsafYVT5crUu7zRYhip2zXKU2Y4V7scxG9NINapSA812cHCX/eK00kzNX7R+u0tztmwvE78Ke6qMmMQnR7yX8fo8NkIvLtNQ6GaG41YSHEdG8xAPYCTykxgYPH8IyzTW4MN6g/pE2DEsCChu08rjUoSApLrhamBokClz28OGViVAh3RCtNzcw91lTYOk1jeg2bqoycs3aBn5NBQghO1/spjB6FaqlZaPeuHhD3/kHAi4qhUW0zgUoKexusvCjPwKdYvNL8QJWZkmAUDBi9cH8SQkyBZsaRYNkZ2jqgDIUs3BG65u1qPuAl2S7FjAKQEKQD0GO+QEWNgCC3QcAd3aymhViSqnBLq2Idf8Ph1iMSf+HyqlF+cfZBBWDSJrBB34siLzS3uLzfrpLZbOsRYzZ5O1M2DtVWT0AraE4wyRVUPCj4diUWT3qCNYMBukxCYBFUPYJFydhkTKNE2Um4tY+goheCNdYlhNmADlSs5Xb6IbPPI+JkjqZIzx/c62mwLMNItxGWCKsJcECBEWHQgZU9wf59cnUFvEk4MnMleMDUzrT8Iij9xqIWa6fP1egOS4o6FVcGsZa1Hpe6Xv3Q3WmOdWBn3VM23Q0yKneK7k0QZxtje9SbDW2zXcXARrFgu8YJslk56/EiD6x3du00jPDv+sH6zdnYfene7t3bBq33yGaz2AmBaUCQu+xgtNAijMZM8O15nSIrwoYwLDy/eBy7v0iSCRa14kgaFkIwsvg055Bn8TS7bi9MpHI52EL4ZGH0yB4ghWMAY8MfTbs+gGn044xKgmCM8QgwX3hLmeHnNnvukDlbdEpNlqfCtmpWM2Uxo6uyc+f8UTGvjgbpuea54Y9sJbpoc8fqckU3HRtwSKs5fPrhs8YTNlzSQHqa4kDSqDKea4sZlEb4+hXXwcB1t3GC1OWsjROWnV14E57/7ysTgOQ0jO4Vdx99t5gRfxcHye75vInLXbCXP+7DRY5HMcOGniFWROTDCJ05lYIYKoCEeV8GkNuifG9c3Xf3XmKBnkDZpxAGuRU0A5Iktsv6Dq1tss0UWQnR89fHrEniGI4xlKh4SesqHr6a6TLL2YiX1cF69/GX7kzFAef46VFINDDfn0JLKN/pIoHtGIITQVJsIm9uNO+NRUZTBhZJVZiCICLd7brDi0stItUQOMVOEmcEEkrIQLuWHaat+1LpylgCNgfCwFKkTwlUn8KJk10pbnIbx8RPHEZhVXw3UN18GwkkBMuyCqQ5Q/IY5yBuEuAoaadevGaKMw0xFW89VPQ7hGcXBijwpJPDsPJEeQ7vbRfACRbmwIJaguwXKItG8zoq6PKFM8nOTe52a963Igk3BWed9yluo6AMtBXsfQGA0KHx0/4oCBT9VmZmD+sJKTLpeDns7lPDVIiXYWnuN3xA/R3KCigjLDsBB/vTVwD/MxfNnWqWGCNi0vkKAwtYJ3l0PfgAUDIk3xmUzB0DchZkP1wsol2oPzcloGa48SDpDpXd/ZXVd0NQfR3+xsbdojOMk4tq0GnkMCz/5SzJsYFTjAzIeOSE+kwBHpCQc4cnBdCPptyEVjGyYmRx/BESrBPWEEVivmtAwxo1Ylm2dGXsF8QHmzVf9ukdAI4cpeLVr2/kl2z3jmNjBHGoortx63hwg2G+83Yp2FKfMZCGbbRDUac/cEjI2ftwZvJSAQiIYQ/sUegqCkyBcerCRkkFJmMGyAtCgxGKiHiOiBj8FuYSbuFz60qd0e06uIJeja7gAQn9QQPcvsSlX50sgO8THJhgl/2KNQmagW5fIaFIfjHkoMAcfFFEJ2QuJeUIYLvvkaJIKo2UFOzEwj7q4RK9Vr/pVTWpj+ySKJy8cMVOM2tUGeYpiDMYHZCinH9Dc8qQ2641+oeDqIo0icFqr/K38AshbhuUbH+EcF+YZ+Z6ZID4kUQvJzKC66GyuuZViuCj1lf39SqvCsARyEy20J/BaXI6rYDFVL4R3yI6ulcw4lMxFtcbEcjGr41+pgUKs+uBBg+KPFZkFfsQNA76uEVKLgTYDgqmYM6SNY2+bT4CHHcjxle0dFDIAd8mtgymKFsQvxCAfuxhmH64iPUiCgqKDb53UZPyKx0QM/XBFqn/gW4a8zJPCyoxatwFEpVThrkIF0AaHPXemSRGScGm98qrtFcYKiM9Pdlv5u2Y7I6oqxQVpoQZ8EMRB7OZsMmXvFhqdzJBTNAJBA7QF7zxA/O4B9dO3g8eP1b77+V76+zUx9Dj3JvZqC2c+C0xVDiKcuAikYOXsKHTFRjCHIdFkp8Z7MOVSD1jufIWKMFgzjfH3dTGJpVW5FZV0gozt5ePSAuEc+ZBW0gxsqjO9BWE4Q7sscNkHKAyxl7L6Vb5xr06m8JUGVyLfcVeVrYoWFl7Lm9RvMh6exMTyhlgnHb9lIYWf8z+aEL+yqM68kqgyYkFIbROAe1VA6bP7JZ3Qy3sE9Vqg/tlB/Mgk+i8PJuoTdDw2eeVKsejxgMKCBXqjLB4GVYD3GZKE6AX+sG2CjQ5ZnHSI1I/ohih3SMyyJ7hdwq+EwUzGia4A8IKi++YwliHTkXJk8nMo9iIvk9c5yepLwm+fHkgfzJMXhiWNcZSAYOCrdDVsRcDcRacyhRSCodI/oHIerztpAVK/UBOeasS3TRPbL7uGq80Ky9HHS2cUuAb0B+zGx6ayIsoFdUw1iVbw4ZC8cj4t4bCPobN6BtR7TCBIqWcRiF6VxfnFXAl8RlCY6C7s4UcWLA7KCB4+PPg3WHiS0Slob+6kfh2fJmCMdjoBaATs49QaYLBzHAIzhmtEwkIgwNYuZ45/iwmZsP1Hxo8DxqanLhsjJExroFeqADpk5yEKjTL/5+q/L5ILEpDHDmfWDWSiqKSK1R3HIGMsWNI5bM0vSHQMnopJunLfvFLUNSlXEibjyAjTGbVyEs0npX8hBXpFoYV7SMAUTkTJHHIZFRj0kfdSY5JMoAqViF7515giPAEGD2iEIo4YEz8BoYsnashmOASmNrKo3lG+ZzgVCy7OLyM/ny3iUQ28vNSqmGMO/xHNJxhOpvGzU5jNi5CzkXrAlgjODFFXZBs0ztElkq5IUj8khl0vQ6gb3cHmnHLEoCxQDj4ElbNMmp4slKjaeahYSLEih5/sUGgUK0XaEwR87RX6EGVtSfkyAEF9Hzeghge/g4dFRsHafhhrk+Wlw8DA4EkoOTUWEBbkGyIlnAKonhaNMZ16eSSa0PIK7q2S/o1miWT7Hfp3HBGtBe3U7hcGH4ZwEGaQ7JZA0BnMb71JN5qX69KwXAIVZhjCpi18DQa0+2smWjF9GZQjaMIH2K2uDY5MUfjFU18gajuzqFKWjRja2VJOi3Ih6gc0rXSNmSbR8SpAV9qsP4LijJGJwMhcc5qhxWB/TTjuaF0wrZBheGx+4GUxCFpIsrm+TFjEMSQJYO1LCt8z/lO9xFDMJTrkLxZFXYdzKSCkiEWBGqs4KWLL8rB+wiOCOIrhygSgEWi1c9ER64pcXr/BJ3U7OAltgBDY45EkNpcV+2Q7o/eDkpODfJSaitHKGXkJr7LBXREIC7Bj1qWkASdBI47Zv6aXdnZqD5Utf1c9iiAJMcEBbJIOidL1pc2RLl5O42iRSh+W8EHedqJw/720uuXY+5Go4AdKuOV5mE/Ey8fBU+FZjUMk28ky6nnmcDXFZZ0B66gQafom6OiQjerZB2M73Jb/sY+SXmUSzpPTtApLTJOkH43kikgAKcRKdjzW+zSqFgxhKniiFTNnbARfMED5usoesmpEPIEWVmn6AezNWNXacm9xVAkwwmywkPF90amOWYVsDzXYPgZwzjYUqjT3fC4QXogrTLBxFIYtAEkNd8367wE5jSsYJHQAlDDtl1kMMG5dNrOOky5+Kkxf+eCKN4vwmkSlOUxPoPEpz8QgoUWZzLpgNvmS5S2QAumLTUJfLIQxYvNVFYJUCLaYDQoS9nDYfkYvVWPYWHuiYmsGCEdeDR89+cRis/SIsZgjl87LO2qr/gkSRmPGI7iLu2DNj5moHvzBRv3waJs2Dsx4Yc+AbzDvlYjqA3Ttg+aKKnSF4KYQfIOb1SMZeIFkeyImK1HklKZiNQCtanThtIPFMsc7YBbJrUnJnNi84EY1zhVgm41Bc2Ewky4N/omOBvVgjeplhs9HWZEGoc0gmYWmmjO2UKtOpS1QiraM4njmzBuNXyYZLCxZ5jnSRCZI4h3Dl5yQ9iJlyaMzj7EE/p4sE5EDkvISZLOg+RpLuYYJKwIv9+A4NaucE0bA2heBByCQkxu1liHBQz5CUat5eI14F0ZU4DGbuFWFvyZl9AkHO9yaGUAxgOMCGNAenFJ3Mi8crK42J9x8y4Tp8d9f2bgcfESCRjtPriMij6fcmRDOX9FZ1/xccsWaLcYkfdsI+QUY+u0vSChKYOUUYVfUhsPUzXTyupRz2rBwJYW+3GanNAfAapJZJAk7ELn1kSpYabc3vsgVaUkjaLgjYKhE4LJchS2d8G9H2xwdIcWKyfGCjsm1a1SNGqhvBUxD8RuYo1oH3NHWD2D6J+Kd1J5FBFiSLCK5owIOsvUY/ObNYAGfjmjiVIuRkZxuKRnAQMoZ4bKiZHPNKLyseShiZSeczYZyNvHKhxjYKB/ngzPwiOEZSq0DQ9b/nJz6DCpSOOiynkIP5qcPraTofJ5r28oQoNom6WKS1ZWC1ckkQEZJHLppY6isshclXhnd6yeMmrjfJrBGsq7YFn4xZ+BpCYgMyBzZ5Kib9GUI33Q+2XZoNCElBuKDxiOn3tZ2UoBoP5mNY9LH7tSOgaz39aCk5Apsx4ApLmzjgJ8jRxAjCEepmssskPUpngy6BNyqO0AyHw7wQm60X3BN4dV80m1ej3qzFkYve1wMeXWZ5I5y/11sdZePtf3VQzTJQ2IUrLAmslq6ZIMC2ePNgy0YC4rEFC42/X+c0TImsV3QGyV4+JPAWLgOxke1rU7TV6DSCDBRWog7F7GWGVm+xT4Ji6K19OSP4EdrBw7vtwNh8JHiGrT6GUvIECz7nUXy+HDSPSPfYsBFIZ7xN2oHxfNkEUURm2GjBfYmDpBsFGg5BXCy0vHfZtli1GIHUx4oN7wefvzxp4ceTluwDmbpJhBxc/PY8ifAB7Qjf240tnuuXJb6l3ZX4GiMRBeOR2D9wIiV58cHHzw750XmU5N7vuHPm91evvpCrqvMRsYxTZDQR/dIDTPw4VY0jA4QkncePrkJqCiGpxAJYXccUTeCXwFFYnWbTOeKZGCpjmr+j2ztp1TxbsRcwxZ4H3p64goUP8X6slcCCS1fJ4ZviQJfxZb/85aOPj445iojvN6JaTLEI58+ReGI6tJcvgwN78/kqoGhW8OqVQWAmLaTOsPzOpjm8OElm1gKgkY6EeLDpA8QaMstlSOk6j9yVEdwhhLpaMa0EVhFeIKABrlyxtc8g3hP1XwQfHT15jOjBhlMfco6ICgtcLRs5y9u5a2NomCLpTqDyVH7UF+lwWB/DkN4CrQwe6Nd4574ADXZN701ZKgfaJiqqzkJxFZk9dqbiS4kjizbeWiuf2nQ5kZklAT0tzkLEpbXmk9gR71KEJyPLxmnNoqfUiGPcvTo/hix11AvCD7G6j2lYVmdDtiFGcFiUlWXkUqZkkkMIBx51g7vz2OBwM7jNRLVZKqZEf5SkhpxD92Gf/RLZ+ZBUwmyJuFqNgCUQOEboA9GoajQK8S8eaXbszUuGFn6ldsblXZow0eYSBH9qs5FUBou4CVx2zNCRFbYas8OIOA9spBoKi7E0BWBKXA63QOzF7JdjjNfc1X2ln/uWjp60JFxBPmN8EqlKwxis9CxnfdJiTZ7DFpY2rBjZOF6+CsaipTIqX4encrsVqPBWeNAUXACkkCvPVMQy+H1JabJyhnxho7hr0Z8iPxCx8aSCOpJ8aiKchZAY5EgyEzuvL67AEFv2pV6pQA9dQg88n4RlCyIs2BJa6pgvgw6sLkXwEAthwuN+JYi1BQxPrVxBDxzzFvGdXPkjd+XpW/nsgCPQWCO0g9xzsKTnnkqstCVun9EhMiaJhTLMynN13wOJr5aOMCiahdCXaB+SrcrioOa81SAjlMoDD7RIIWIhCe2LMjEFfhjxmydgaISSffW2Y4UQhNncOFrxlrMWjGBbAXFty/aqWJ1TcsGtSaWK3aOEgNvrwTMjcppQTkNUNXWmXC2CmrJpkrdrpdjI3xHmLiVvBufsSaUsAyIIWJ1I81IYuvXpIgM05mxDw+lY897nKhj3ND1vuKhnYhhqCYTjFG4m2g5qkvojoSWufZdQchtKgWtXwjwvPg+H9TeY/zysnABjMhEaARFsxplO5xlXW5Jw8KXqS1qL9gYTgaPK6FH+frS8naGbEo5jYhaUDRbo28MFVJ4+7NxGuOPaYbJC3bGmUSmfJOVqjOW3Vj1JlLSO0/mgArK526bn7myp052jZlXpVetd6BBteRzWFUYEXBHP+7vbXgZiRHJgPp7HNiuCo3+Cnd1rVqkuTSkfT6VkbdK6Q6MEcZaxHzOjrp+YlWNaYc0CFRKWRaEkmEp1wClyrCf51JY9pM/gv5zbekxT9hlPCHuRRA+7v/85FL85UnnmcGJUWpfU7twr83V7KXXL+L2cIxS70+KATA44ud6WFANcatvDh1bWEmuRnI2xSahrZW5Us3qSZJQPWV+yxa2mSCFii1pqdc4+8bcynke5lD1TlRNLnGq1PWcESfhnRswVqVF1PH2oZREMIjtcYSOEoQNmSUIo4ASrFTnxK08hHBKcyFRn4oVKaEml2ol5mTCoi8plOpLGeIKHGiuPvysrlgUPOeN7tFgN8P0gGbH1WuwqHOPf2I4fM6DeA4WCRnRYI+sw8dHZVA3l+6xeN7H/iOnU0fWaKQHjKoXebyTDqWDDhJlrJbL/gdFmzI6ykaP9BasuAQKaSxQI17pJjsoYkDfrWC7bjrRcmCQ3oG5gClvDIX7o9JrjuMjhoYm+oB11AxGH5Yx4Hs/O4ieZeGKNmiWtGc/Zj8c8GI3U1uOuTOkcmEFV9sGV0YrpHN2kkEXkE2GSLL/PNgbrg67HPUtAtt3B8fIa9aRxwMZ5J9SOMRc1I8Qabdg8b1xD+ZmB2ASGhp12KknM4fKdNyvfgigoUeaNlXMdJ+xVPVZ2JwZbzGHM6QrR3A3jjyCzJaho8DEjBSEGLyJCx774EduoNyakG6cbcNyGdGEzEwZG083W/TMFICTYmN0nkc38mQm8hHM4431SIc6TIHFUEYOgHR5xqj/L1XeTkiMQFlKsGe7I6Z2CgLd2uwhXmRGbZaVswQVT60T1xoYJtbelqmmHEJWTKNR2zuH8IiyUEyPmc0plkBfjEAHn5SLjhDcCV1TMx1zfiNcsuImIL87xC2RoQS1HTBOvgmwilcu4SEHbFHEopcoj/B5GrE8XVtqNjHgqlVYwI9xZJgIYWb6xVAx0JVOs1ZiLtNGVzmzck1jDxIxmVWw1CTc0bCYdKLGNjftmVNEhk0JcrpXCwVjQXd6G5FHyDoiwbohcZQJhmS3Wa0OqchCKoUKogpZbUveidXm4NWMYmzSmAVtOKSNBeTzmi1DL1NWAEAdW0WlJa9JiQG2twmT+Fs2p7ddjQpaOVpmLpVJbrcqIUg1XigrlRIU1GGmQC2cK41P3Fwo1bzM07UVQWZEjOWF5QiNKCFFMG8Uv7sYr/XQzYHAieOfHIrk6D4JCNBFbz5TkZpqLKvlS6VyG9X10dmk4UFldqSvn7Er1q9GfSaZ8iiQklsWltLNGH9lqerxmOWG1CFsBwlTgaNQb1YJvtWSqUvyisvdEXY20GPjNR+5jJl+eTxBs1XjaMNsoDc9LFxI0ZHmZC1sHL+bwS1spzoOVmFmNUeB2npzaIldrmr6NRDME1pg0V6BDPLX1ZcfWv1g66uhRGg7PzBDU5nm4heC0rcWuvRSz4VWE9sb1vK+mAKONAreBAZzdTMesrsaHQPQsrtrMyOpcrG3tJpBQlYtr5b7Sm01wnlmqsEouWmzCE1jvIaGXSwwzVW/L9VZmJkQCRnN2WJkylwGnR2C3BdNnNul7gtYUEXAu+dxZmRslpogoiqMex8E0zFrRC67Kyn6W2lTugG44e3ao0X43vHWHCAod0dSRfqnUrJTryHryDaInw9heUc7HBE+QGkcQ+vx9ISieCCOwCS50w6LU78LYhsXNS45zYFmZ7eCxOgCIlIiZPpW8EWxHTmWQEE6GM5NLvbAOwsg48uGhVd1UAiYNx8A9yhxFkWEMbrOyUJ7qcgThICPo0sUhN+0G25wmRaP1ep4Ys7X7k/XgnPU27jusFVIGao6xALA0y9Uw45kcvDRjme7qsvpl0NhaISIuZ7vnLYnXUMQv9LCxqWluT3PPfcVugHawoxHMeJhT50IU4zCyprCHfmNUq0Eo94PiTzfjQzUYkUylLXyPkHgnq1/+cu0pKQbtJRmKS+HAh+vHd4ihvr8TnCUFB9jaGCyTFm97EmgOfa06tvT/hZaSJmfGhWdtPuKmpkOiTwf5hZ+H2q6FPINg05YI8bzdKPpoLK9kvElNfN78sAj9CDHNvgYhtfOfxYHXsaTUYipCPPHueHkyI1fZKsA2s9LUp9JsMGMYmcao1pWU09IrZueKiPLC4uV85bLyMr44F4g5TVguV8HUGC4JajrJNCuPJJ04nO4bR1gjBUiiiJCqrmYsk9yybljnkHVaMSIV8UTrLJoLLbORnuOtcmWFTIk6jlNrGETKthOH2hxOhCw3tN9mxa4WiWDvaZdEMOY0HVvST+16Jq6D1BGS6Ap2fDaXISFAytee2Zwbppj7hPhcDthIQWJCZDCzgNXo/6CY1K4HFqg4PeSs3yFbRBnVp0gQCrkgzTP5fF8eqDR9UDQmBAShfvaQsyoe2rf2/RBIUqayCOka7L3gXBGTZoiaWacBO+AEiphOV7TvyAa0T5OnILllKv0bjlYmlQqgG5IJUesUYXF536POpct1lGQR2QobEJzNtxTrK9dt50ri83ojBIatlrczIDY8qzDw6cigauOWsAi5KgLKNVR+2xp2jDc31HxyMbyCmSUjXk8lIGzWaCTufkY3QIN4zA3vbW6KW0zPzUNflQe9srFb8mgZptKBg9atqzYezFLNGjZ1xx9vw0dUdm6Ecq5OC5L8Ujta11XD1rp3z2Khrfuu/LN6Wr3SgMoD/Yo7y/lv+rCdANFXXtot6umZcDyb1WbosNgpbJUxnuFMwqhQw8sA2ZTL3Q9ePgQfkQxp5c2/eqVedJr4V1dLMXlUeRTy3CSDcmPrgmTncj/owYPi/Pwu1N8TM2pHB9BntvEK7qtSUsgSsGmFp7FCwqSXuhTmBrkXiHdR73A1PK3DWjhesy6+GHS3tBpQg+3UglmXrLdP2cpXjyCCM32eKSOsOYtQtEFKoVQmScdRNJNq7q8cV2ZeMqmuhVHYFGWYkZBabTkkKh/ObSy7V28BGTHJcF0NFEw7bbCUrsVcZB51wr5ozpRYmDxkuBZcgW+OMXtq2h3dkbRnV+hY+xyxrT4qwvNMs7GAYzZ31BZ9co0TtOiXZMSRjrBc/ts2bdJoK05gcN2Z2JaBWcUXYmeVGE51MJUlXCxjGz+wxLRsofq2lDeHVkQPpuzZlN5PzVZPXIoF4Tw64VDzkQwkEmOGUbuGRlYhUk/vWeXCz6awnYy1DihdENs2SoTCly+73e6rV3xfXJQM1CX4dkN+Ikw6MBTBJ/zyJVtvLHc/eAjXoG9AUrdw4TkS2IUapueoAjAAmHk7fk6hrR4bxxz3yCsx7nOwXaJebC9lFzCkIgR7lNoYwNRonc0LOg1T81hK2YwTkxyTIUp1HKbOeSiU98MnB4dH+2gQ09wcF/TqEXD6l3zXp++2pGr3tvy1I3/dkSggJHnwyP/19ibxH3gYJG5FTAEcLO8JdAq4pc9tZjlnWyZT7YGAoGiIHUY8qRMrdl1xo68+u7sXepzzDKkkgfrTazZJVEYkGs+5FAEXjhElTpsXeUy67VqgCCaafBq9+uekeHJYDM8B+zk8cFww+XHePF0pPYs0JPHbmPBnDbgpWV4VS2mUzyF5fznnWDrtmqHPsTHzpIUjQEpKOR+42i6cNGWGE8sdVgjbjzguwF5t+iRKVtBnHP90R9/iY9QMG/EPIQxGGlDDJoHoQQ6WwfWRGBlaC4H+thhZSCsksSzG52J2eX4un/gvz4vUvIqAGyMe2OEIfEdctBpUgPVAfME5jM+lfZ43mIDDjWbCI83von3asbfRhktIRW10pR/L45/GC384fc6OR8fA0Xx2MH4JRylDlW6sXfgK2cddmzniz944MddrSiEAPIu53QsXxCCUwGfPC/uZ/7r79HkD3vIWYjns+Ne6gTRl0euEj9GIJX5e5c/xgT+y/O5BXMNIeaTrEMLDyI4CO9sbR5AEIhgXIn92NjdE7zw9YpsVyGYkhe+b19C3SYj3QU0Y3/h3fq/0XxSthaFt3t5C66swXZBIeYeYGK9ffn8Opua/Lb+bF7dhJKigQ0mZTvO2BnQsva2OAFD02onWBt0xh3kMq5N3lPj1srVgmFE+nJdunN2uhkXFwdMFMa6MYYNv1cL0fMYffwto96whJA5YGmSKop8815hj93LjvvaucRmmKDgm+VjoAOMFfvNfq2MBYeHdnGgw03g+tPx5Jr+5l/qEeBz8dcfEnqwdTeYVInjW95WSPDdxKfWr5SIEabZnJgSViacxMZuAC2aBjEq2OqjjXmNOW2JpvC/FT4Jj3/JhI0SYp8A9sdXdCYzF6sDZ24HkYyegimigUfLbXT64wLiunnqm9XvW68KLvyMCsan6w23k2Dqo2C2haa7mbSxc1jBdLwHdTxLLR/qizR3Ebu+Yioum9IFr3GhmGiTjjsksdDUJ8R4nKDJQVOW3lqh6YIcnHbkQBVmMdmuSkvDsvTUcVnpRDEmiZ0lkEGt8D8dSmSLvdOWTqUZtaeSS9mIzBS1R0qBem0AiCTU1mwOhTEwAveWFpULgc65T0lJJirGRGfc1cvUlUFQbmnFAf+0W6Dd+SCsj/379V+aQJMTLFx0VygbzFDuKTk6yjpjRpIwM9KNFKZ9aK528zmTItN2U0YbeATf6csrz5SwOT2vLNTGBCymEszDxgHTLXrWdDGS263h/XTiq5TnIz4F7FigPCeoV/3tPULiWR2PSjDh0HtqE0j/0iO6mpMmX9W60bCoUhVzLnki6ayy9sc4nOXe9MwzZKjvGuMKuN40GEAlw2TYJZbs5ad3zLC0JTSkENX6a2i+uzytbclHcwjgzpIRdLe0EtcUQVOTsQKEXVP7ARZ5JOdi65swR0hytyKMYu2epvhLNJkM2wB3nxSWiLnnwRoHz9yq79/Q2nv28kGo5BC5RW8z66RKQenaSfc6Hj35UcvCiKhqWyZGU8gVuJUvK7BWsFfZmpEImMde+4zCYHD50vr3Q43xwse+HrseRBnaw5WlhBtdmgGIQLP14cfFm+HePLT4hLqpcPQ78qsET87DRzY6PtHy2EulyQIbNAYpT9TxUnYwL1rOFzgaXA4AYU65aHXByBZfA9mms5yAd+0iDDo54J49o/pyY25T1eZESSO7+5I6PhlzHB99rYZbYKHK/0AJrxkZBevsl67KR5ysWd6SE5NvguM9NDwNzZDZsYGknYucR+6jxWfsOJjyEXmjG8jws12noPuTRZkxJAxIyskT+eB9LZzRxXAE0GG5rGTwuNkdrXnqjkQ5hYqrbJpxLPfB8VzAk/XdnGWEAljthpsozWwPqOaZuN01Itb0ykJcBi83qSwD72Tsg38uXLvuvt6kxgMx98yrUJBCxdJlptZ9NKjw54/wdXjWMRLkkL4epNAx4MZ/OTJBPo/mhZGoySryAxYcrBnowWDm1FMThy5bGIzE3JByiU0mLGrbL2wCniINx1Otk84/8Vg35gBB/aPL5w4p+OdUJSLSeJl7HHW3eKrfoJOO4hYVYPwhksYm5+xmbT+DtZdqm9MHrHwKUeImiF+IxN6F6fLteBe4LZ+7HC4/hoDIfYQk0C4yDugL25RqZCqV8MGZ9CScnJy0V5bWrrqW4XXzXfVfS8Gz1HkgjuGwXK2+CL8jLbZhoOFbjfnNenVI7jtD06d274fwjxDGz/IogBVdVyEi76j+Z+iUFBvGIK3rBfkI7IzyA7POFumxMJdwyrtNFvycZd5FzxmeWXQzVn/IvEnTnXFZ1q2zXtLjX39XsylxrzB1API4rRixpasaKq0jN/PC5do5lcZ2zKARHUL/xFMYwUxSSMcxkbilFr5XZSLhCpvqVonqAI7eRiuIfadDjpc7RXpVcPlvIyoYSSHS4U2pMLDuv6jwW8FXymAcoLaUUSrlesdhPY8vc2B/LVA333aTCcwke4tU14+HAK2df8+2HcBgMT1lr0uoaElCpBUW6TflEU/Ks41qSVSx785IvDg4PFVj37LdsXZcMPm49qcWwEDfOOTeMMoMUpWbkWvqJmy5eSlvTmLxAZMKG6A3ryizdf3h47/HBo3vGwcDVwRAHI+vIRKqxtVUn+jkXyxHf0+HB4w/N21jffOavzrpMbCYhfccuZfONsMc7T+7ec12pOK3ALI0IEr60py0t/mx0GMq+kGiwYIGai90lCEPjYNVxbotB1QriinXdBDKElb7DVCXntOunteRjk6ONfbmuCqM5JF6DT2DDjzn4exiTChRJXtd9c3QWEFxI1lZW8BM62Xxg66Ma+CeSPXUmTrGla8pk1WW5paluDuZ8rqccV8Oll4zzyfO6J6aHF1cRqhJbRYhRltW9rlUfc3fZA0mjRQxh0nRItC0JI6jMJTq/Lr/BgiSlwjXuxUtMhy+X+Hw4NklFhf9t5DpLY+1IFWLCjxXgG/SXU8/CkAtmma7B7LUsL6Fovi/YIDuO8eMyptPGxhEwt8/IGKaSkis+MFx2B06lNitg3IVJQ1VsSf7WAYwCndVwwstVKLvVRaWbxRiPCegfHb3FGArF7ovSAusz904YRRJMxKc5KJJ45GLZbfqblk1SqHn9K80pyJiVGDMwpo4oHXZVzDCGJ45uHSRyDFwLoLYkL9a7didcNR8Xp2nulUiAMQKbOeGptnzLwyuO2wDz1vooCpsNtWTAaS3WDwTUDuK08vpowYFK6h1WhKAsc8Z3rDkgUwsBHnx3dfwtZIMTT5T4/UoHNPOPNCxr9j+akOBD7D8LMUE3/D1FBRrj9y8snDie/J3FBRrjOwgMV79dXGC4WpHhJPvzP/9zTHQi0oN8IA9dJkhAu3KSBH77QUQJmvEHEiZkiz+0QLF8s3+fIgUQ+QcXKqB3/0BiBQ31YwoWfKQN4UJR9DuKFyeSjvE9BQwd5XuIGHYXP6iQoaN+dzGjvqzfn6BB8y6JGnz4J98iccD9JEIH/+gJHtZM/D7pQL+V+vk11wQqeXK/oaItPX7k9p20fgC7CkrBvL0N6sBNoRboRxLg7VJ6mSL7ZcNhcyS6jw03bayeLcoztMrC1dwKs+AiYB+UMWv1u8EnSXwuk7KzVyKaxELsTSltimpNRZBOZFplynOmVm07QN/VsRTOkLnns8gVjoiSEmbfrpiz79hARNNWwPwuixGK5Dl/3NZPG5Zwf7LYTzMywe/pQlHM1Lgp49pZo+1WwoKZKaMNU6tN0w1Lbqmpl/H0W+zwLMwwL2ML8dS3W76L0c+yynMbYSaBj5Lv9XsQF+//SFLiwR+kxP+SpMQfUmb7/Uuc/9lIicdvA7UfTJT8kUU18STccYWXpI32OBc0ljYmRCm5CUipKfYkxUmbmiSNNF+6g2wVL4m4HTxU1GCHiVe7RRv3cHxxqPyTKFStx5QUyds3ZYxNQyrzte0tJ9XRtbwZR+ZqNVTp7jsMG4xVVPu4HiLQdiVedAK/3EcZm6rANlPPi1qfSI4cI6DegcRvaOvnjQ1o0PMkQrEuSbj0svWYwzQzhGy9YvYKcnDUFPIIyu2cK+plJIuZvi/incwlKJr2vapvF/f8lmCdWsMpU93NZKtxPVN1lrnKQ5pWX7BULwXSZzlqJQmtb7S54jA3U8mdexHQ71ALwpJvjMuLkLrFBgUJSevRSTb3haNSiO/BNSdi0L5LGDKBM4w7i1rb7ZhunYlTkxanhkrbRF1phSHuQ1uIjAP7OEEf6DJGUDXL6Ow3xspKyQ0fMb+QCgKZLTgRF0UOXznxZp0OzmOCZJEPMIAUt9e+iVzYnv3Y3plz227ZAcYiMD3zkjoIFS9P49gP7mianbgAFWFdFbOlVyVJwQ5gU5qkGLRfhswPAlFRzushy3n73eABnfYZ5HTROWrLrtW/ljJe4qwNuVVFWMqkKJLAgo1cYRZABaiSYDUkBsz0lo91kgy4JQ0pHClXJbQRhxJRQTdLygpYSSHz6cC6RDRyN2wua8Gttww9ZRiC8gkp50hbgaOpF+zvCfis1C24k4h1EFWlYlRHOCQwoIPc2kfzzHQ2/+brv/ZTmQ9cDtCBJr/+a8Spp998/VeHObKVqopkx42NlMc6p3G7Y8K++aCb5Bt0N6pyAyN3Nnc79CevfoMW9aQ4yX4ObWeYxi/xFh7SvOkqQQu2mySwvnElHEc7JwpS8LP+lvDVCxJVgSI3OYh+eXF4ZgGPPR7A7PiA+AHdHHxCIMEH80JG+C7bZJb2zKqbwee9L4JPY1t1jCDNhW/kZDloURPcJZ4CumHpVWUAMeJSIvaeSLXALvxyj+N5gX4lKEl/kn3e/yL4LMy9mdChjFskanTkfnA3TQYSSv1U644c5emZLZdzyFM1CuDzVGHxq+QMfJxEHM7So1/3+1ubO93e5u5mTyt8IGhu6ws6j/mq/T4gFlBKtbKUeFnZnEjWcD+OIyiAePXSafvdzf7u3q437XZzWkKjP3m6H9yT8iIsJ6zanUz6RPuqW2pO4DHlHt+0/e1ur7e9t+etY6d5CFxbZz84WmRxMU6+qhfd4OAbWx1g1Rk/vHP4jK8pBt/9wm9fw8MfZBkpykOMwG2E9m2hyir4RDjsUo8pjPvRnKhW/5q0wMHYe1/Ya41yyl30WQkT9LTZKCfEJza2d0ej3vb1uBNuD/c621G01wmvbW52RsPtcHe7H4db167TONe+CI5IncxMiu4hcu0nCooR+quAbcLa1cg0lJOIFhCVhz5FbwgmbzqPLTqPrV0fL65/0WjgTet46LVtj1lCG4qR9ND0E5He4ba/5F2vqfzSofQ2vwjqbV7Q1QXdViRqhUiXGE0RmPSm1i0qqmvVhZXXvu24oJOBTAVr7SI0LGK2QpquyZfDq0/Xd3Nze3uH4dVnePWIXj0OT8PMx+FP48F4RkgsWVpFRyxTRJ8N4+yIp8yCTipRjPQqv2EJvR5d5etbW31eQk+WQISs3nMDtOzg8JG2Urq0VQdNg9eJAtXbceB126tjf4kCIDrrmNUeErSnhG1nEu5vWja9mQLS+rf3dn0K2NsGyQ+lpatc1E8nnJ5oLqSkCpFuiQ6hP6PfZ0Fvi69inwfY+cIrVIlLruUp9wmVbteKqmJ9nYNa2dQ306vNa/3tbX+xu1/UGjPQbK5k7r5lDwcPtTay30Ze8lGIX91HVQypDuT1pfiWi7q3c23TXwgRIL/eHXMOKbK1b44cK+F70WncC23shqI7pZiyv+3YCBI7WzUO0iPKVatahf4nJn/cI1ZeDSmoG3yUtcKSMI1fyrPfuB69BroeIl0f5STCHc3BkPw6NrSypVI3+5I6pLVejvy6MA/4Nt42pSa+ZRlb29v+MvpE3jQb2gl+KgaBORy5nl+dDwuagbSkDbzQoTfwPhGUejD+ikEOMgLvkzI5DTeI0HRiffYka7XfC4IWUoLvoMBtK9gPWrvb13bk8yQzd7lFn8f6NMy3T+cDFDOMI3zhhLTjzc19/u9P3aOPUAA1+bYnRehs7b+kX+jXn8MigzeecqlsfoY+hiEOn4pEGkA8bdE3r3gI6Hb3CHOqxZPRU1lzczQitPyNDvfzhFf1XeRQN+1MQVGsmO8Jl3eUvnsr9nCVpH3zMdGx3I7gj8FJeU/Ydq/P0rckQn/rykeELMSHn89Ae7v0Y4vffoWVv/fqvQ82JFv+Fv00icPo1nvvfTDIo4XYim+2WkES3WxV+axFT5hHMUAyCtZSdFo+ImILH9o4rh4SI15rwQ/UgSIct9aDmzdvAgGKU/rZ7Cqw5bC6mKrLUyFBtxtG0dpVPH11/YYsU6Kf32UyLjH6VrMVMWJmzYTN+cSW0iWddDh5hCz3tatr4uIqSbBJ86KDWqdTVNSh99evrsujcfndNvqedxQ+pB+F1eSj8IJUJRmVBCqHH0mW0hXGI/vB559fvXK1HdAfX7SDz6+enKzht5OT9atffGEwRr067gV6A3/oG5/LG194b2hg+r2SiC+SJ0mTjpvfuRIl+oDsSB5zHVb0LRITZw+qaXocIlHz86uyVcyc5e7nslqkMX6AAInIb/xM4L/6hUPfG+/Rn3pMBNB7MPoCuiDaa1eRAkYvrXEZAMKNW3YF9lC4IJF0H8iLgzRda01fXHTUNkxXeb1L3B+uiDVj9l27WHeHe9GFaSer7olHyR1v8Cc3g6uTsOy8CC+uvlLMooP2b5v8EJTF8Ka9wLM8XYxIBMa9Pdtyv06TrPui/Jm2Qy5vxuVu69byWKAVNzm9cONFeBbKp3KBFYs65rOwXGRDWldt+mGEaYiJJmdFN4urjWw23UCTO9rGz7c24nJngwbvTKdpZzihE6SH/WXQ9kBBkMcmtEN+awm9+CALz8wX9KN+yt9Eif2G6Z/7ir8Ogwldu5tvJnMttWCexgt6siWWjpsgrz99f+v6DSKxwdpBSicTPFhv3fI+/mAjbMxXzlAy262nU5Lcg4vdWBg/PJhXFWq+gEiCGnSqHCbE2nIquxxdwvH6iqFk7rMxjzUlkaQVXEzTrJSN077Pz8+751vdvBgTI9rc3KBnWwEbm2+2+tutYIIeuJX8DD/x7fziZmsz2Az62/Rfa+WE+AcoRmeSZ7RqKX50s6Xlu+6AzplPO2Yu+wGID9GFmy12I18+g/f4izzJzPO3Ln3hA24mBLzt95D3v3f94HpwnbbSw7+9Ln26FezRv5v8r3noK6AjXr0EugDZtwC+nP//Gu7DpBjCf0M76NF8w4X8Xdxs7QC28vUb3sdUwUVP3lrgb4JmX3+lv7cwCh56lzH6jUH67zTKdrev48hPGGmnu7stY/FP77Kma92tXd2a/Mgru97duyYDyo/vMqKOpkvb0mH67zJGvzFI/zuN4iCl+6mDSvb73WAlozRAxfO9cbxLbuwHG0J2G4R7A5Tb4ysbxFi8X+epkNY4mzdZTJqsmOQt+Y6S9qfQEC4l61gYP9FcpFtskw1tNBf1PVbJFrAz4mBmtQfywRvXq8/806xYVH4HXrXmMAP96fvbWzeCjXWfyW68aSfy8j/NRioSc902IPS+Eeh44J9moaPwS7vM+we/fOMq6fsffZFgu6SgvUgEFbrhbObg2PjijYttPPsdF/7BxjxVSXaD5FejL8cF/ST+ZJEY8XMLKpy64MznsCB04ERM5dY1ZGX+uiYwy1yTXu0J3r7dLYrNPb3MiadrnfR01Z6UzUNN4yps3brLpTI/Qv/kvhhHt4LgL4LgXglfDaydz7SbyHECXXerh+g7fuSAjTX7gWeGgYajRNeCpzZzlQ+NPmBy1D0Qm7oinuw8bMrOd5qyc01e10FbdI8G0kPojgSdlcvcQWe79d5KTSRBPzjiTubUvxWBa0j8PtuHOuKQ7yBqAZJhC428w04aDmKS/KQPiSbdPjGP3Fr5MZBz+SK95VqsK79Df3ZMsEV9MXfMM+g14QIuWrcu+YIXtAo25p/vslCEfnRqoR/1RXIhqLu1728tf/a9YNVwg9XnP8KXrnxx61bjAzuzIxZvpoTvfIDVed4Rp91lx3d8nu8HUrLbPzzv4x/n6BA7h7qhq1Z3zIF1dBnNuhoffK8Tm4YXyXQ+7fCFRVFMtAnqCL3vTJNZWV/LI3k8eMjtv5/K48ZZtPbo4dMjIjBv8dDv4azRN6vDrfbmZXzpeeMp9dl9TI/duvSr70dDwjLulNJWqbEUr+ESze799qMgmnMMdWxPDLHGN+7qpa2f6Npe+t33gpErsywLKjuuXnJ9cW/qr9C69aZvv9cCm8V9O6ZRen11l9Y/bt269Ksf7TrYkMEG1rnPb7mfvx+KazRXYyLz6S3z0/eaxOXI1KdxwUytW+7nJZn0EoG6BnNP76UfRSC6ZQSz91ZIghqXT8LO7NZtE+/brEu9tsrbus7FvblId1HLCklsQWlFNRSIlKblTSQsJdjYZYwsaQJv6wcl2UlcqABb+43jXOIKpbvnOVExDHvf3zTSIp/ESRaehi9IXt4YhINFOE5at27TDwcfPpSVoEZ8LHXQ0YKEg9D03miTZdOpSmMnAXBOK4hK043PEBcEf8Rp2jHZWsN8Jt1Nq1zanCJxY2Gb+I6LcFre4EaH2rjZ64lug3VlcNcni9vpFd0PNmaEOKSCwG6yWqK9RFwlgCVRFFu5PMyGcOwKystXpAwUc2JrbxSYb70vtw1aDGHnw6zZD6YZ3iQDaF9Vk+ViiqrzIz8tyi/n+Q0CbMG98SThTkM7kJijeIqAeBcEuy+wwD3DLf8AptVsfMuJw/qBe+RoPuDC3BJOXwtnPrbRpoMiDk9LaUgsF8wUqERIvZQFbGt6lbSikVFxzgikZVSyoWicE8Zh0q4Zl9QXFZqBZXndN7SxDOH6lMscu2UBV6K8UQ9yVZiYBGRz2HpoIu292GYbyu6mkhBpRNVocw5OkWpLKtfAtEk2odtfzu2doJfD1PY+0w0x4XObM8dixMrlQ0H5Pr9xzX7wUOPsTUuGwLQfTVwAW2pC1taO4vgt7Sl+yMBWp7fTkQhUS2touA1mqOhacc99CIRnuso9DzmUsWyu2oQs2zaDvEDvlA8b/Xn2pYeD7ert4p1tVo+NrjFtTDk/hs+N8ybWTLbBeq2oFiOA0KqYO8IlORIK8xGIE52ntl6TOEwXWOfnJUiST8gNUTQ34VvO91h7za44YYfEDJPSdn+1U3NXOO6VfVEVYb1QPbenLoG3HO9tCy9qsid7espgTXY3QWIhhqd7h9h6zqqZFSSzF5LRu+7nYpqOOPUsUASauw7s7gzaXkaG5DzRgaD8vrdaPySR+06vAJr8nEzH4uoVKmvIa3cGMwC72m+22Mu0j+Y0P7nRMnRbMn5awQYNMkrGtD7MfEu6i3QtvecCjm9DmGmJ3jCWt1xiobjU+PDu7OWyGer85WC5m/scSbXcm4ablpdS2U8rBR+YxjK2sy8CRqXLamVaDTEnRqOZEBYxw1T74jNetnissmi8+35XDWz22ue9/nBUDEI6EcscgTgcA090E9Kk3s1mKL69tCxfrd3Jj28sk9SwuEjO2OcaDmj+/mav2+td39xq3fLi/BHKKeQSOVoD7Jbr3VYhOr9HXsx/FQ8nWfLlXDIv44xu7NAldDR6ftZZp5fsvVTN96dpBFmiWsrs/WnBX3BZTybjWo4QCfEd7lmFSeauH6A5qlipypIUINyX05cLg37oxcstmaQz6iAZ+y/aTsme+KBthzHUBMUBhJ5JcybNC5qB9Jsi5Zb2WanJNtswJSsFn2eONjfyIexxB2vfdso206F1ywvvB/LJKRuRGPse+Fledqsu6N8139E25LZ3PJcMlaI6FuqlqcLJ4m8dfCaDhIEuRVG1MH659FAZzPR42lJyQtpWNrszAaU0qFXBaMTz2/ePgjVIhUSMO1qMmB9cR8LfXXwbkdLU/M4llUoZBNPWVlsoSm3UUUJrWztLQoj+fDV40Gn4Iue8hTPSQuxxHi+l4ZklRihfvNZbx9C2a6FWs3c3jrMdPwB/u/VT9Ei5ccTgw/X71Wd/2kU1Bfn8gw1+qF17+FOTNcz5eyrzSlXk4YQkBMxAw/ysMcRan1elPZxBAm1dAD8b9Ia0a6lNqMVZJJ8wn1dwStdXyNObipraErYNAK5trfsB+VL92gLyQIuOS+cm6b6H9tpa2p72rfeDc2ne6bZoYgzimeZLt6XtWFYRp1y/lmV+L8XPr5jLlk4QolwSM4m/JF8h9U1ZpWnfq8s2ZE0ujs3oucvtkol72XI0Ng9g7endu4frfgai9g7y0hGZEEpJfbmQZly9mai7J+m3em1E0QMy2tZ0K66ykmmTjYWFKIHWnHXgje0AG64GjO3IF/IAwtJtI0SGq3RWNNMpLGqzsaSbSDYj0Kaxan/g4aksfkUHTNcyr10HE7Mggg7hrwiH2u3cnXnFqbxcT8PoWOFZmKRe4maz8T0vinOo6CYmFfMRAxepYJ2UJuMbftC4YNVBuzKj7dkczfPQcCzn7HTXbs20164LRU0fzJKb5d3FoaUh67LQUUOrZfMVjEupqSdiUvBztOxe6t4mRaDQDSZIKrXdovjMQpRexmCnIzfaX2iLb0Fz6YBlFWfmVQjZZbQk+oVcYVQjARyJS6Sd87xIjbyghS/qCcVaojw+k6Nz/DrkihY3W9xssMXSmCFFnE73DqSo39vsbm7t9q9fwrhxw8fCMVem5Wm7K9xl5utg8xY9h17uNje4lZJMA6/ZX53U2/SssNGc0nVvxWDChiVfSfvolqYtfL0hbrOxpeQaI9H40+Q0mYGMGXZOyuW6yf2XKSvRCg1f1AksNXHwIFowlMz4pStvmfIE3aXobEy/ZtPtEnpmXsxygbGpf6QiC/iWTsvSWzvgkg9cToVzriV3WScBBhE1IHUeYYyEF8z8VJrbR0u59w6GYsfCz09cB0z5AD3n1p7Fs5jFD77rEHjL9feUj9I8Bf1pdVLGv++niva7gWvSyG0RPaC+YFNDotWxbEZfB2csTYjl9sipPsirWV798qAd3L/3yb1n68Z+xxe2Y9L8vRcO0tGnfAfvZWdt9FY7muSz9aWumm9/hbRx+83W8wEhwOnqK9VUpNk2SgR34vXa5tT1y/d76caMKKZUQIQflL/gFqhSijyUIiPyoHuswzXhwRU5ClAIUgODvvn6t2ZQw68kEyNa0iVsLus7iUWan0p8g1Nkf0p4cUMzZH2aBJLqSsugURKJaLN6R85vT5StZ6V5jMDhYHmapGmpXZCwG21eZPXUZ4fCJbnwqLBUKahwjm9VRzWmu9DI2iCAxcI8ZZvQ++RSiiBoD07MgAmEgLgiSXXiWXsfMLJpjwwQS0Jd73GjLnsbVusIG8RYK9FRr4TPqyt+0XrRgnlXk3heQIAaBlcm9JRUf5hVpvYD6kR8EE9vAWOltizyAgnv6LMlAg21mQvThNy9WziilEtUOVggUj9JZ1ue+TazwhzbKhp17W1J1Bax8jSdc68rT7l2OGFR8Z1Jh8P4JdKhN0Cxv+3Qf4l8gLW4I/CKGEpTyliroDDCGJq6EIuIc0BI5y+If2hDTtsdGiYtJgdTS4m0LHQFgjjvXrZSrCRZMbvyqbeUs0KpEBJipQaO7dU6Z2MpUe/apElpCyYjb5xY5BwHJPqbVAEZxuIsyUq2wUKAQx9YFv5tDzVMnKLrkBa2KqWQnmV8rl6wRUFLylaIllKLUpxNEy1Pdp536OfK+gUxleklyzdIv9D+KGHCDcvWRlLqyJ1Im4s4pV5vbuZ66I7OBm3xuYjF2nUfIciva3vwWlNvWC+jyG8rUXehAV3Z/sLksY3WxvxcEaMaGMtq3CoqLG2JIqyG865UGLr0tnWIkX0/qYB7udaYoc+rGbSG26/AnFAsdqrYANBaPiCrobzF2sQN/09zg5fsrbYUiMc97+QPbrzFcrT0x2rLgtykgouK1rxQhvUBgAD4eWbr/6i5TqtyagkpBltlGpP4F5K1JX23rSwkI/UxtIzIlj3QxGvzO1feNPEHqXVTjoIrd59z/ZmXaxftYPE8CUgM5j+/ep6sn7x6/jK52Xv1Z9kVUz/wysUVU4RPhG1dxxV694pBEGx8aBuktYMrhX6J18QcpE57rABvig3gylfec6wAcotBPMhvuebOE1vPxe2Y65JqhUOz7Wo+M8XmCkIcIS8iG/CysuBkHH9JW36ZdXqv5JeTKKej0c97VyQUQe2R3PNnBvcOLjCIaKeaS9kOKzk4UNuz81oR8ZZPqnDOcAfUadMMevz0Aj/RH7wGfICqv8+zdQf/k5TWlQT81wv5K7vSMMdjXbQssXOw7EmoFSUk3xCwsys61BCgxQGJrUZ4vy4YKb3JRdvrLeJQGgZPX0hQZ1w0l8pZkG60vKW1A9XOxEziLxpjemINaf4xuI6zYHNFVsCuVlTfsy/qReAKWRV7FFjBckpiHoRneRKxa3aUcEmtdkAXH7Qch1XEY9RJ0Yx06e7N5UUvkik8FVL7ctyBCTdNJnkeGWnFd27y6ZMERpszE7KfmthoZdT7YT5jOr82iIeh9tL2G2QpcUXlAWZGS5Ar19viSCOcjvIpy4HlabD5k6AT7PzEUgqt7hnNC9X5eIU1tbm5bMXUpKgpTEo3asaFJWo5keobsFh2h/mGDlhuSDGfjXOu4/JcKr8lJBKXcFoNUMrD++zbY5R0OO1F+FXcgTe6Y0DUumW+0IaOcFXXK8K8VfxSmKEC5CwZlhuTSadIJ6PWLRnG1XM2MMOATX5NePX9uPSOURRqNIYLoOQP2o3bqFXdalfDu5SG2/DrSTaUAuFhajjTVOtjht7VfGdWbXjjEqtexStXytkQ0SQ34QHzgNzW7gxtSUN0nJQ6dYn4n037abNHtrWqUMXKX2FKUFt+zMJyboR2bd69koCR6GzEh9UFmTwR4uDujbeyZvS2+70dgkqtMJQTIsLZLE1UgmCBmqHCLVnzsuzEM7omUVxXAdjo6deSsoE5arg414LQrCqGZieiJCasAoSzEqG00pI0FDVCYd7x+cQMpaMWUi8wsUW0YQQ2Pn9jIyxXGwmd5Us7Sqscb/ZldeBxzE6HlCh1ao6lHRzc5dBJWmmm7gEUHTXb9QtfjiT2gENXjJjOKECiEd/ec1vGVspWSnVo4I0yyzgyCrqEEkUiu4vl0vONs/BrbdSsVat/nCPdBJUl/MtraghUfnbIdxZDg5UYWhw2jA8CdAiPxHWblMYeZyfyEHOlUr7zlrRnd1kpR3vA1VcAmL8udjC6LYNi49Z3MPHJpVgmHasvSXcl+ZiFcDJPFjP4UEp1wjFmEkLYpfNHzlMNkseltxs4hGtlHLuyWaPuhVxHjc6VRCw2kZFA6TUPN5U32ZGYe9VZhSwLXhg8NZKiWY/6pXVJAkA5fYlhxU1hLIHsCR+GK/AOjCGWURlTRKImJy6frRIAv084V8zRVFeFB4nngVzLmnRkfVoDX/NgQcxSH7N+eosVWa7brXM2ZUYGrKUcfBuA3OE4y2FTsdLIQ/HccJCXI9cwCbqawn45X612y23OdV2lb0vhjsRxxuV+udW5MsfVW+kGj7yPCZ46GV/TfmfbTQEpzRaCdzcbaBEWnVyLOXpRkgRwi35y/LFU9hLI1p/UBh6lUGBdvn7vg8qJTIbMIpbCWJhr3Q7u3Q3WWJirAp9CtL229IqoEi4hjzYYjCVSTVq73q7h6SJYsxjhxWYv+Rv8lQDp3y3sqnets9lDvSk5yxA+8w6KTCfVxvvzGW0AMB3BZjWMOwPWHVq3Pr5zW0MAnh3+Wf9bTea93V6PZJq9veutW3fnoUeGensY54Y14vCMAU8TlAnreyb2LedSRDThOvMuxPRnTFcZqv7JM/B9tkKUkGFHpyO1e3nVhIIzREywVicRHflopJPw3dUAT67hi/BR45gQ17JFERQG5ED5mhKIUuqwClsK4gleUjTaO2veEjE7a+JYMSthn5ny7ThXx9ibv5f4vAcRxV4RWvzB3TatpYmsgBeDldu4u4JNQr70MvpuDgmu0m6HT9irU/M3QFMqUS0dZtzjBsASJR+GhPORvzvmb3c2r3VkA51xEUYwuG28H24NlxnowdYdVndw5aTeWH2bS2rQ28zf7/Suk0pk42U33o/ieNb5sqMccXkZd3/52C7jPIRmHX5F6PB7ERa+LbTWyx29JDH0+4TV+qPXg2rXbicsOmen3OGA7repbAkoTeJ0JibkICpCdN2GoFuK3Y7EM7U1nzn+KoXwXWtz0VY5m0N8mpA1bLCdpBrASIC0TQ4/WUGEv3sx3tYtv3kRq/W18p3d9XrAbyNPdikV9juE+jaHrMe2yLhWxnP+EE9Ej1W8gdQ3ZFIgCUX0lyQCiNUSelNhgvRrvbWZBKhlxyTQVGZnSlUI9N5RGTdbrnH7vgX7KM5KvNFI49AkBrWaSo8obg6De2Xnaaur1MaPLCU1gIbTptl4wGq2zOaH1q9JMyWUQSemwaPG1XDddeIOiKCPOSMFhRLmaUIC3Fks/aqQ6yZD6s4JEnAoEQ1lZkYHW4lwIP6SkFS4c6A8cSjiVkfzAdS+sZFIpCMcijg6R7Suj3htTOjhfW7Wuy4nNgE5cN9WOXGtdYW8zaqogZ5TTY5hEmxAP1g7On7EAaPm2U/V+7N0TA8r03BiKbniXHBEkyHQP/4cvyN/gJYLUULQcBgWEodp3cvDfIyQQhu+4HprqZzmmilxuOJSqg8QZ4DWCGfajgEHZjJfhhr8JmRlD2Fc09KTnGblYjjRuMCyu6Cdz7vDcOMR9KVio3VLfgh613d21bzB98UcdH+zs7Vpj/gN8OfEndXgPyTw7wfNzB4xUlfNXveiNKHVRXEaDlJttQpzRBvq0NhmtwjyRYgwkzD0MIJULT6ZDNmE1gQ1z4yCUkoZTgs5//oTI4BOZW8/LbuRPHfPhCdtYL401FznWqZSUnqpTiO2srBUciaNZzSfzLiJJxAc+XnrKFZ6B21oCHOF2NoRSh/5OoNVg8wVkRmMCBSj5jLM0Br6QeTLv09uYSaZdd1Lwno4tftkOhuxNl3bJqDkk0iiw5ldstqNNIhXokhk54SjSa25korTmngDHBhKeCiHYRdCDUMS4WAQLJggaTywbZG2Mnsor2UPySq/n7x6jeRVpW5fOaML8wUdfsnm8WnMp2mC1myiXr3D1zScYVPNTM0GKfYJBtq0Rdonz29qI1e2CM81lNvHF2kdlLAoRw+JqkEafCgBQDfc6S/Tn7BclVPIIZ5JqXq8BgjTLWtLbrWER9n2SNw8Kw5W9v1RQwEnX5isEM7ivSwr0EgBq7PyrGHD5YRyMx8REyrx4itJkWQ17m+F/II3JfOpIPTtZTveqgrHu4tLbzFxXYA69iHkEV3QEik/X3ktrBSj9YBs9yMEVJGUFBz42Unau0zspqVhR5ehpdhQHIlXI13tzCD7Qgt1NLAknR2IxUeiew9qezehq8tmgjjrnpsAV9ZM8NuGHsvz2iDPZRA6NDoWsV3CL8hWIuNTdJ2nylkMMizOb3YBshQTG9mOrffINLjgIlRscYKolyEBcwDP59rB48fr33z9r8S071k9WcqbF9rnVd5PIf3NgtMV40iQUQQiPHJGeEJnotVDcM2yUl46mXPgMC18PnPJHY2OZ7IN5nu0QLeusq6GNLPJ3w7wh6iATdy2A4mVRaHnk7CccB6jlR+OHjTy6+xbR+at4IG8tc6SWoKiDfAIwUYMwOuYAlkbCOZsnaV0OhHiqIKSeHQR01WLkRrMh6excZBMCOacl2FTXF0kQTbnlpnccE5eSdTEYtLfbMipe9Qm2tj04Df4OctZXiWjxQa85wsHLzqlJ581IHbgYd5jxZjHFmOeTILP4nCybjqh6q3zNE4AA4BUs7M2zmURuIhR1IO+azvrt9pV+DsFCduvszzrEJMY0Q9R7GgBx0qS2FAg8ggYmYqLX3PWcSYavJmxkJuOXBAZD6eiObK4eOHcxZFuK8+PtaPnH/DC9JdmMR228kot6WyKBslCviVH64MnonPdlKRjrE9QyGJPN2A4G0ozAaZIK1eTbC+7RwyRlz+hj5sWhazsYz8mTZsNhuz+12IBsWlPBoNfOB4X8djm1hhrW2A9sNyTLOEYfPEI0ji/uCvJekhXEUMDR4GVdIc0e+JSZGsaVTe30HSlv+mQ7cHjo08buPYgoe2i0CYCDh+HZ8mYY2qPgPUBB5PpLTXFQ5wMYLzIb0k9eEhJF3lu7Fe3+HYFkkOiH6oJg/GQW3ln7A1QeRrB+hN139gsHnlCkzhCubLePeVwYM2509yoMrkg2X/Mh84q+CwUW6NJnNVa5+Id4qwXs7xuADBKY8qSiIoHvzRcQCMQCy4xwdJtORgX4WxS+jRnkFcVminKS34PZ+LLcwQM29uhWKOPGjc7SReg/NJZ3MS+CC8Hm4B2r2UnxQLtOc9MvkhbNsPByqVRyJRuZNpPlK8HsS+eXdRkxhNG7BzG2FLjuGEm1Lmk4Isaz9jHzOfFN6aQy8pmbK48oveHXcI8S5vUkCpJucEwH3i5BLFuwD16p5zzJIsU74CBJ1zFpqwNS+3aupGrnETcc9vFiwkFBdlqO2rlj829eM3YUknEhLUzjdBCIW/JDBC6M8jzU9Nahj5IytJd1PsHD4+OGjf1vr6DLj1Lzb7kkuYzdbZqzIVrW23c88IEI0QbSVdDs2kDkNK2ZJRLZRsefxjOScBGXRY030kGcxtWTbsynbCtmx9NCMCC0C+10rIiYOdI7/OxmjdqQzFUlCRY0ql9ZV1W7CrBL4bLGJHTsRmdp3TU1ya+aRkXN6LSCfNK10j0ktGcEohFWtIHgElREjFcpQERaatlY0w77WheMEmSYXhtjEtmMIkdRXeH2gBviTdj7gvXsWjT/B2sY2PKTqENYhlZ5lCK+8Y1UOpIucqylKHSBSeQkpyduzhzHgfsgGXkLCnzisO3Vh0enznrl/opy3gOAYIrFwhDJRhdOaHrHsUvL17hg7pfm+X8wCgLV06QAkJr/rId0NvBScG/SkRsaYVD0wLaWEntheegUDtCbVpuHytaZNv3xNLuTHNVIWBV/fBhbigQf6hYvbr0CVS775XBcb3paWOHghPx0Us9RDvoSOKUYIH5eW/zLSLMkq4g0gBtzIBnaBe4sbnHwqr0HewwOnVs3HlHjruLPhzLHiKvf6H0Hlwdi3aHu0uzgNPYixQt8Xy0nhueNre8BVrbwPRMK3kPrVvLH3oBhMvuqXq5yzfUsfxebqrGLHVXlakrJHGg1noam65/kLPnici2w0kIBT7WjBlrxRrEsEIRGzaiAXqfRqR68CCmGog1KOTc06nU1HtQxrHa9ca5qf1GiBPMJgtJSRdro7GFS3dsYsbIXZtpTkVpAhy8pG/hyKWrn5eaRNtaiKXLZWs6sYnEdXKEhK26RDubm7OLtywbRDfiAHfayHcsCwU8tPr5i3x4KpGAiAWGW04eKidxmprs2lGah6anJ3bA7lZIP/iSNRMRTolGTkPdvvQGztPS2h7gWgAb1w7Wguah7dMuLZu//QqjWPksnyGsWjt+D+UWcLnSYbyhq9gYb13f6233d66ZTzq8ZcZIrhPf9Gvr6rWkBZ66JPvDpHNPi9O0ns2NNpnvksxtGla2btU7btpyO201VoJLq0D/SHpvolq4OGDawS9s70ygrKkDYUsh8BV7U6dONrs0U+2BO9z2U3tdSykIlHCJNPhJ6pY1kj90lRLyY3QM7hcau/RwrYLYmc0LrsTDxU047ZXTNWF1l1IQ/BPhHTylmvXJ4jF7I02JBA0vkklYfyhjO6VqUxpgJ4nEiC1wxmnpZsj+NgseeQ4dmVDSbIg41pxkdXGmDdkyTkI2h4+eE+UB9iMf3Y+DXxAZi6QihIl6h7Tqx15rqjgXTQtrEwkShswiYhA9hgtnIKA+MG+yEVCPBDccDYu/FV3SkgscCRy5zCQJLsUAllVsS8t2lGLu8TKGykrTyf2HTFYBk7y1vdvBRwROeOh6HVEztEipyZLLpeSbRsAWnFVDz81lqRzbN+HYMkZFu0tpbJ6Kl8vYEViS5/pJLjHSElx7Yo7ycgSlGanN0htSszWhJpM6HRGHn6JoVKm5ufw+e0yl+IMaj2xaprUG4NRc+Th75LeREm5LMx0cPvIIwZv7vL5NUa6dbq/f3yFCUe8k6+pycdiNV7RPXBLvlM2trV9RtdlvN+sCyQ3uoi6EoK6GIAsYa1yQi//JOdo8EK6XEHL5QpvGQ0cizAP5wzB/cRYkvazXQlJwTFEkk/fWqFjpd4tnNUeLgJnOB8q4fsBCbGavnXCWkDqrVO+eX/nQEL/SlazHWpfrUFoUMtE6S+v04mUguXIQDarpztI5jYJq0fKDzUN5Qi+Q9gwwLo+GOhZADz8MJ8qHxDLnyHtHnd4NY0/s4BTY7m3t0/qJzFUgIj2PXDat1NRdymavjLznFb80Oa1JZj00XTX1+hzFYpOh5TZjb2CL28RncQqbABEn9v0FChCh6kgsM+E4+n1tN+X6Uj0E1zT4XQsioA8wkknjFZkYy5UQABLbfvj/Y+9dt+Q4jjTB/3iKnFJ3EzhTlQz38PCIgERqIYqS2ENRPAS71d0il0pUJYAS64KprCIaw8GcPXt2n2TnzP7YR9h/8xa7+2+fZM2+z/wSkVmFwoWUZlaaHqIyMtKv5uZ2+cxsk7ME1OmQNiibmCoDWw4h5qWpqhMv0q6qS+X8gi7UKkTB0j09K3lacrhTMto+09jsaYBdSZh5Tci+RWgdCM28ZY5LtztCoGxECgh4k4hfbMqOiN/12e3iiEwGUqFV2C/JPBAPldO5ZNrRJFlf5k2scxbfn0o6uAMzmu6ZGlv4UKjioqTJmiXJy7kSzQHyWJWW1SVNVWuARdWOm48eIf7yq/skLUVC7C8++eX+IrkdGAoAx0O6o9HBC5Dn4/Xz7Yh5sIokwKg6hfnKDBI+KGczKwjzHElmK1ZnRwdT3Pvwji62MC5WZF+ZMxwrw0Wh2wWnwrBvuhz3F3/4Hhk+9zjH/cXe8dHePv7+5vhIPspU5bs84Rff2Fcy7z2Z9EZLAaOgp7YA5MEeoAfy8R+++FRfujo6Ps+flP/Yp5cvvybXQh9yR65PNNuLXFu2mcd1UKcF9OhqMf1IHTeiGTTknBHem61CKZ0tfqRyDcyeKp4jUgNr8GSx97P0yw8PbG57E+DOugoJAZQB8yPujhIRJpXtxHmpbLQI9COckc1z1vjyt//w8EtESIBVKVY/pfMtqJFSnvb7xYPMxHBOUMn15ctE1OCScs1BCYfHSH/49PhZtthaDJoQo3rgdaktwvRcBV5hJI/LMSLFCBm9d4nLQ2lJKEIBsgqCox/7meroQoEvFn//8HefaTjXDGKpUjcF1xd63HLAJqbzywzBB3O1majd4rKOa7lYK2MmJFR+pWx/8Rv7Wn/zKy6autuqX3KoCMk8NvUJNTvPyxwPTgl9WB9l8qnGelmzomUqT1DzK3+PkqjtXx2ESI6VLeHrckVtKOUn1Wt9MnH5GPNC5HiVBz9xsQNDIeAluC21G6iYcL0m3qU4gc1lFvGYY/rpueqMSmLLxS+v1om85zE9KZgnMz272h4fn6Q7Rm0RAEK+Jpf69fF3pojUnDqrt5BcFacgD2j/mLA0BWJXfL5c8VXaP97Z5qbaXoMU8DcfAglv0ptoAerhTcGsRSAofAnOR6A45HZTF5sFNWpbFnZ/KhezHh+6HYG/wVGxxGb3wXDvG9vdIzhUP4MCKYYbZDRrfySBPdjvgBDdmqiR8GzTcXaSp8JUKJyfz8kObDHV616tIilEVmjXAWjtws7iTkX/H9ckbm/kWN9JrBzFKmFcM2HptlT1+xTcSpaVqOn4LAWHW7M7SCpnxZ4m9TQqIYazcsrni4gSTK5YYcDGzeJAzb8Xi090IGBx5aMs9T5XK+UixQtfYgH0O7KSh4mV4Fs+e4AwFlhCciMfpyXHe58zTDaz0X+W3Qfp0WW1Ots8NziiUv17m8JnjC5XaieQeTCfF2RoS7czWRnyxGp51HpCdrkS/e3F5jgle8dJme9AYjl2wRhQUEeoOgiiKR7v+FWxmT1W06my8X1O73Jt6AxyhGwxvVyXV3dSbri3+CJJ7ik4bot9W+qLzW6RPhUwYdKzrBUc1ZPVYW3qvBdKCJVoDhFVYy0N4XC1oWyRQVu5cFC+dGGSuo+Msh+br+XwxTR9QOLOSpHIuIdLoiwrE3gQu8sI8ZLBI+NF9dRu1LNLB3w5Fj9FMtpPLotMlaLUZ2BPWDtPT6/OkK2esbdb2euttM9PkWz24WXScev5WLmZxIkJfE5oR7t/L75TVNuWOirq78EvRGd5zaTFzeBD0HQJ16ii2WfEZO1MZZ0cgJNc7VTDD4pWr0o+HJ45DVnXGjYPUYRmxDEfwKrQ83Y7UIgeyxZRB/ExVCmIjkTAPX9ytc5x9wBpL7o4ZCPRJqX5rowGsBdk2JEcG6HfdQ0vNjQDjToywomZdyW0erRi+izW/DnVHHdPz09z7SV5pvCcq5z1/RTYrKdyBjSboXp+6+eqlF9p2okrdZ4raJweept5qSyx+MVWApcE5Sg4H52dVd4B10GWw1zFQtdlMj19mIVHGmO5N8nGZi79q6R/TvMkHZ0fQinMKfRPNdsFDNYnWwGYz441avbbg5S0fodRIN7aJuDlUt+sr47OWb7DTAI671MrdlMshcf4G6fkDWwE6azsSDXyagvBJ+QrqfuKnmEKSxwvLRtZogJEJtmJ68z5Gr2jl3LKLo95Eyt7aaph+rFQ+VKLWFhLFsV0fxrz9ftkZa0XrBJ+cyAFUvI9frGbUu4vjh/DeUeTHyLJZ3OsQYXmjLWlMRBpdsEcHtfn8Nv1C+YmUkZkMBWaSJNjpZRV2mWo0g7svro/y2RjoiMuKNRFgl8XhP8EqI/H5Sa8gDa50BDDjWjyJVQDC6m2IIQ2Ja6ZtmdX0atti6eVR2BcvVbrOZmHUHyqDw/cvN0SVwekUUJyypwNd0J9hJubB1AZ/Or0B5WoaJ6NbIMvvqgnaFBa2zdauUzJs9WlYvKk8gf4BNcXwH3bJigmvMYKc1Ie5qMMJpvNKUc6Tuf15faojV6UTBKEhcweh0Jzl9LXlYSpvBwWeY2bOMe0z7xAp0zlttpme1vzaVX6ZkDnjvkgs7wuh+EK8vwS7U027krOrIxmZvbjQcm3zBMRd56JNrfWC1q4PxByj+EXe//puQiQ7yuwaSUc4iwB6aXPZ/fqvdflYTAeHLhHOXfFM64ir9PiMDy+nEWUGJSkLlE6LUT6BoiRSWM1SiQlqb++DulN9UXfIHX9DR3NKvrkBJDr048uzp+/rljWtZrx8RcXq+t8BPPKADknacpabOaSmZfFtWaROZDDj4wB5tdEuDFl1s3TpKwi/dNCRqYgisXmxRmS3AhpHV1cPVnkJeB5V4w+0hAt2DQPZ7npjqvafrtwSxW27+lzUQc2a9e/rwA3lDTSUPuzJ8inyXRtlgdwwwpP6sxOOquwmqTKHW059n5iKfYtofY8K9tPCNlQWEPxlTEJ3ZrFbkpq5ey2QlUP4chnGf5Om/OUdX9pnuFS+23LhIUbQaEjusS1N4ZmmOMLYpYubcWT87LE3zOpFKYtV+n7VCTq2/vSwnrOZtWTTG9e0VpI5m557Q3ukj3gZfDaTM5KY2D+YscQRfHJE/CpSSI0Q9Fe5vT5tA8tDqa5yfcXzGyf/qVpYX9R5bi3zOVTBvTsw9+dWRmTNUuATJID2y1QigJooTTKCUm5QdUpykgGltBCpAErno5zUn0QxaSWYbk5vlOdALcfwWelvU2d5EbP0zFPQY0YL5lLSXLSEazbdqmeWfIupkM5uWKzNaIjD003naPb2MiR38lQGPLf4zMrICMCPxRU1h81fHgu14Ixc/PNi5NlzZRRdlasyyqITPKYbIil4dyPDZgig1Ew2ePyGBdPhSBRGSthMrS3xyer55sCsT6E+ofqq4s/XSmuKSsl1VrRHTI1tN2S+7ZeuO/58bc52/9d5b/3yBI0+YyCmlN2LqWh9Wkut/ckQ1jKfVEzS4QCnWm8QgWpIs/cz2b4/S3YZ1VItGq3AvikskA5RDRD7JBDTmjDkCyf6Ok4W1/uQ5KZijH72YCph8uEO6sfs6l640GBXEVZCaUlE9APun9a8l+hviOup30yDZNgyHrq0k/mpk8lnRYI8dbZX+DKmZWYqqX4U415KNn/ildplgp/pvYQOKa7Bh6aPWkXKG4Gv+tkBGUfq/Di7NRamXJYfVemutLIpccysCN7y9jqhocfpqrqh79jlr/yJe44ZkRXxaOevoa2CqtWelScV7qnt3UTLYOo1KuzuNoAqAc1Ds6ytXkLhZ/Rl3fCkHmdN3f50bHQ+OpZSin3IsMqjhL2TFE8Zu9hbE262vQwnxW2xmbSWYFyu/nWhkMCVhHTJkIAwulyEZCFQlpzrpKC2/i39xbPYQs51MB/y0D8yCypeTky4ywFGtBTWT1L2SYMY9ukkY5Ftg8eoXxcXw0JY7hY/8mIQSd1ep43uS9fwVe4v+gs+k5fRjKTldYsSQoM7yg/azXrtHY7qzFtWrLpSS5ZT9F0c7C5bUH715eIb+5st0y8NYTXFY7bEDxwbt/u75SOkSxbATw1spKeR98tvju+QEhZBo2nJIe5ZrplRJzUUH1CI92F+oi+SxCGbFQmRkloTZ4+Ov/XOt/V/iRYUC8/WXA5P9Uq2Cmw6DXmRWGFaazl4cWqhrRb/jy9X3L/2sgzmpuR8LHOtsybRVt4st1lkmxz8cCcuCfl0rf0HslyapDqzemmKjtSSm9heOvtBG+byyqFB9Ip4O5ebbYrPBlUnBDj3aW+5/lY5N/16vR+wgXMMisQ6Kv5CM2UniLz7yVJ5RCGJZqgL9ZPrTRPYl0cipkJqmnsLA9VpVZBitmT7KmwTLjntQDL6OMz5lIRrkz7yQS/lvnU8s4Bb+6DXK/FPA4J+yjavEjcF0CJzAdG1O7p+uyVBbu/SKkByvrilrkv5wqlAZPAShcI9g+y8I6y7kas+1PImWlLh0hpdQivDk7TqWZH0OfVKn7BF+7zzUvLOkMbhcJ+tcSnBn5vJrlerJ37daDIQlbrSMO04e1FsHhKU6Np/L9dAMbAHZhYE22w9wvvVZtQClRmWhDT+5L8sDm+NFXifYZCv3LNH89xFeWk3a8uwk1JrcOYci4BbIXF8bWhCwrFbVEk9WpaaTxvkNUgSftkt3oKmmfjB2zc3H5EtvFAf0fmrcGMd//u5PKnBwlos7LUcXQhqQhx/BhDu+TiF3V7qxjg7AEF7kcynXuFJgwgm1iWaxoCFIxEqhNmKkNV463lq5vVCUqG6BRtgglpsjHbZk4KULf3fnWM6DVekXKKDs0MSLm1V+x8LtfJ0lhfrHmdVP7ZXJfSYDNVTRgTY+pU19tZSfhytXq5SspmklJKC5WkaICcKyRdRrRd5ooM6Oo7wqZZ7yDN6/NpMbz7Jt5//4nercwtZmLXP700FJWM45/e27DW5uX50QpDEXVlpcmtLkTN2txfuHu5Yl11MDPuq4TqVhLlhA50H8+SxIeIebtnVGxUc/nq27WtWEpqVLJ3zS5DblE16Y+v24AMV6J4MKs9/Ooa8Vvi1VtCaFtLET4TBCbBPm/mG4NMtuUb+xw+kFfjZxUEdnW2KLJjdrhock1mLr5M2QfKrZLyztVrrqzmagNNdoIMzEnF1GauidGyCKTFb65yUGuVQVJD/Y8P75kNEPdXRh7bWOw6YqtPgZJCjPaLlDBMnculyGrGkZusLhf9+WPNF2k5yw4SgnZPDxK/+ohf5aKKbyCl39DNKwrRV0bZhyVe8eDXFyutYbp5/8HV5fnBrz//cu9D/QtgeGHY6m0+ulg9P7O8HXrsc/alnBi/lAW3EgvMnSJq/HZVVzB6FOEyc+LKSi5AYL8AzkB7pTc/98ogHwNabDYKEniSkXlbIlIufrzPErlq05AXTwABUgqAcWyykkiurEhb6/DQEkXYauAGhGXBrJwGgM4CemKAlwVCfqr21CdWrUs4lTW1P6ng+P33y+Xy5ctUvFG5WMGyvqJ+qEKm9Afff786PlBrs0Ktvv8elt8seT74RAE1tRX65cvlnX8mWC+5koFMWp0814yFj3RTMPk6V02uCrdeI5IDg0yoNI3mkNsIPjEgq1SOV0jmxkpTp6prz64uZO9SsUWmsn5ynJIQnGmU0ZPVSYHc4N69c+fXv3vw6cP7d+645db0UCTBvXx5x1/znZfvhFtqFdXAfzr+c+cjInk1vP2+Nv2fQiMCiPqmCTCl5Q9BmZUWAqTajuc53RwS+RyfWiFuDbNTETfJxNN7BWgNIculDv+Tx4BAggTONOZ9YUi1iUNESwLJtY2g5gUyItPGwtj4WqDbZ2VaXHcg3ZRHwHjd82N5XxGq6EP9pQo6WepqfXY+3+A7KPymGR/o8U/BdIZ93UDJopvm6PxKdUk18WndXGSo+Ukbfmqvwi+CB7oT/7BBLfqSMxdZKlKjtPHrONVKTCe2ClA5LY7m2ZRnClfWDeXPsJsWrk+AwX2OgBkB8KeaAJ5s7DkOG/6yByoE03rzd08uf8rByg79gqbX368fiV6wtndpj/3mOR9uN351cTJvWh+ldvf5OImZ81fVKfaN7M83us/fXJ5/o+ieb87Pcn95fLJtD1GfU9kV7DHWDBLhfEN9YWt0eTOqPvFsNj61wW+tkJI7wyuUvcx/QsPW/Ef2NA9b6Oq3xijnAzcGet3Qv12/mDeuj2ajsEbmb6bHeRxCiwhOyINI3Shhf2Omg2oMd6JicYBzm4/7CI/fcNh3NPn8iYq4X6zlYkXiYXtVKy2sv7nIj7fbLt99czuyY5OKOZ2/TA1ae8kjG5aL318cX64T27K3n+szkuauw5WfVo3j2ZzC1v+6RSx4lvsftdzv6qjuW/0eb9rvHWRNULvt0WxGMOYe/RhT0lg4o6KqfyOgN56Xz/l/fqW3S+IDeIRWN9vNlv1+NSGo+vFAwdOiWH4kkkhaNj76RoWT7Q7y03rcVycneP0bDTQ4e1J1EdSyern4JJXoqvoxpO01/Zi3WkWHeXc4yuePv6lfmR+I1xtll47El+rCmB4IffKWy2CDenx+eHXtZPDlNyt1j1UDi0vD268Xn78Q0e0MpGA/NxfIN8/wzZvTWZ+t3+sFVM10z9rDbxB4tt307W4GNyDp+9Hiy+frdb7McDD1wXaztzhuwkJ+eS7iDcSnRPnn35zxwYS/e+EOiFv4KOGZ7z58enWp2PJ798ul+E2CO+/ixuqxnI/InuYx3fkiBXJBbkk+3YTyhRCKk5uLnhX58QkSUiDYS868piJefFkbzDMsGVKdggjaZbdIvpAHxcGtHOdJ0YkpnzP+VG9opR1Ds4vg/HnlzP44gyMw+o+ohKfc4Frgg/4z4xaMuyhFBtcUdJPcW2Xzq/N/nD+2H+Y8Ojrdj1JRppTY8kS0OTl6x4fHqadHx08OUlacUrBIf4dkPVgVM9lm98YUqlvpKAVWysFoFNXq8CkW6GPA0ZKEy1L0h+cbKgOP1oYqRxxAyjYlLPT41CIODC8PsFZKzrfWwcwSPsriq9JnKemAv0/oTPlZFaWlelfBTj1an5w/v5PhtL9iINed7+8s5H+kZIJ1EpPhN+Xb2cGyt0nx01ezl75+f/pw9gu1ydUvH5hu9UiYoqzK0VdnB/TgMP2ymnVebPAw+4dyE7OmjRo2p3X7hxXZTIjGXpu1sXm2Xn27Y/IpfuYF80y/SLEzPNT685f7ZX2NMnYv71wG31KUZkNSFrPVUv3tYt6iHtJ1GRlGxzHeeXnnY57BSWqAlH8BIbRqvLBL5E8a8nRyvjra3Ml2XNFOP3yFyenB2eX52e82x9+uNOVEzq+x96GypJQfAxYn+Ndo0bUcv0xaBY/qavH86fkJ8vaamJtNNcnUD6yQgSmpjm559mA5rTu2RLAVig6K8yJl1zT3YcqanBOf0VGqOVMT8IEFSCbR61qLQbHxxSux2gpF/U2J/2Advan1EmGUiDxCW8lTuDF0hWUA0SDjjwr4TO5J5iNM5qd6xlyDytCE3p9fMNu0gjrNOFXPRZhANlQtbzRM/UFoq2IuF+dTSYL2sYqy07m8TAqTvai8Dto/4E2TArU4H5pcDDVNAOg+V1gheKIaqeq1B+jkq7OHhrGFl+RFaptxNeYV29SxqYQf1NwI7geIWuRGiIWY7Ip0A29Sbl4TLcJjYYPRuy3RArFhz1dma0Idariechyrrr80mY4uWMoNK5sZ0M3r+vu17fcxDLXff79aPMRcfytDPBep4hS2T4qHop//40c10SM7tn5vGYbXZsNa/DurepHsucuXL28/9BzheovxPzTO+6rNuP/Vmcgkadsz7nJrrrT603uY8Hs1qkRfeqb2zZyH7t5XZ141tzlud7ZUbJg47urxCoVlCFbRtZPW2u3lK0Brq59UNfbt+kWK1txPkQ2GRcRplRa/Ovtom+JkRT5anZlREWbSafqkMpP5Iu1XxYGuWye4qLfW6ufvmHq//75kRHGNhddAbDq/XFksO90KaWj0Xz87oTB1hiQFmJna4s+ZSmx18i3G/6er02epfMhqYdWJFE2bku6AYv6kBnPUganWaWfXTAmNA32yfkxT7TFw0ZcXL0zQ1UzSJu8eAexsCM6cZKGu737+SI7JYcqxt7qUD99aB6J2nVpJ5yr6FcfwqzMAPF/QbiwLtk6xKD+H4VlhbOCdxoFSqLPMWGjme03bSSRgimDBwXu5KF8UR7m8/5kiStIT6V66UCeMdQ9oV5KDNY+1tjjt/ytstSlqpNHC0Jf8dvlD8JYvds/0/sJfM9ed56lW0nimnhpWfsYhkHnEGCpinmqW+u5Pzm81MBHqi6I4Sy7tpOwYOuG0ThP4aP0Y6frVjCyTf/kyj+rO11tSIKEUqaLbZj1lyPsVWvMUZp3sRIQUl26kU3xgTEWBnEz9ass7Dyefb0i3kOUIPWgTMYLehiMQF8w2y/IyPqMYzIWV+iJtyoWoq2hC8+qSlJ1SX9gdM8m6eYxyRwbxOJpG0Kw2GMDyzg/SKJ3yIssi1PTRC/5bqrqBFlQJSvyHkaBFB07BrBjY8zVX8JKvVWtlecZXLC9Hp+zpOt+4AGlhV5TPpIxsyO4sIsbE0fOoKpA8wReu1Cd8+C2UbMuwyVAaSy1aYyUr+cuymmSkG6Pz89VbxYk/+PRTW7WP87dwjDIJipyEnDheQ0KRZAC08+hEc+vywNeZcQp2/fL823Vys6Lgg9wmh1rzLSUFv/OrTz79+LMHv/04+ZCRm1/hxRzHGUWyXDHrqT1HtmGAJO58+uCzX6df6/iuntWjy77xnJNF7ZAJPpa+5RX+0e9+mcehr+W0Z2mQNwn/6fClJg90XHuAah7osw/28OBD7WSLe2R6ArMpUQAp1azIRS+g1eSSFscai4A4qCfnOUH6pIwbPa8Jg7m6tN+A351req07n0+SS6VcXDqXUhFcTbQvMuWqmPHZ+QK7KBrpUZ0y41eJSPKSo/5YTgVYZ9+BdSvXrEo7fczEFN8RZ7HFGXA1lAwjJyc2RXX4okDg+vJwi0clPEMF4EMzSIOqCZovj3OCZhwO6ODLbBw4L/xlwZxHGlRyPHdZ72euKWtzxZjdqRi7vPOJVd80OG+VfkwRWiLNrJ6kTAsX9bfI63hMjVjGvrzzC15MOgL9ZvN0P/meD5GEnSQAp/jF5eYaJloDu9KxKpv5D5u17LxOX+Me7oPhrU6YRYlwCWUuZVGNx+1Y6eUdDZ+hGYWJvqyBZNs4m1BGFcO8WV7+66VNWdv4TJb+7x/eog1by+WfNnnJ/rn8ZnV0RKQ09vTRxfH6cQm4zJlBLG2zrV3OpVn2gm1e0g6mbVqLiDE6MXkpWUcR9PTomJuBvG+TIVUhhZOTUfIIlyicdLoo7a41SA55FibDz0LFJQCeKk0wOegdW5v3zciUN9zsXBpt9Wh9okNI+d/mYaCiHctICnZQOZxt/xQPmDL5fJRtOmdm5nkFvuedm1FuIf58dfZnkn++OvthWlV7zA8mAFWr9ZcgAXG2byn9fHX244s/X529tfzz1dmbCEA/acdXiz+6rGl8X5398Y9/1J5E8ZP38FG/v05yoaZaBBd+fidyy1dn70ZwwfTetdCydZx/TKlFSPidiy1fnb0rueWrsx9QcNHNnAktJM43lFqUNN5abGEjbyG3pCm8U8GFjb655DIZ1I8nunx1NpdddM+FGdwguai7lPKK/lVJKlP7/E8Wi//3f/ovLDM68UBpvZLVxcmxVsFYn+WEF/jtOzAp0Zr37mx4D8og6AL4LePeSpIhsOq6POETekz1NtDlmVu7K3teZfLm7MzwrcbXFws4Js0y6JeLfzxeP2e/gEIQcks7/azX7443V6uTSV1sjV0HuiO/myob7S8eCQ08YVpEdn/17Kgk9Ds63qgNfgm/wkcZXZ/Kq6bPHA9ZVuUNLJP/duaSqPta13HrKSrw5AWoMeU33awnBCFrLffE0b7drmrVPntRMquu9K/LdGS/fYU7BDIObjnY4U9rA/G7Npzmi/Z5xkkT6Y9MBD+4kPmrH0i2fPBX2fK/Bdny3Yl5fxYp9S9FtvzyNqv2rgTQH1TEu94Bk9K25SS8e1pqxv5+k5RtVUPTsn4P4ON5cs4jw2LSwrJRQXljWa1E4mT58eOTI0s/dMCwxpxeZ3/xiREjvF9V1kyr/o5QHEYCzQwwdSqKX6lQt54lhK9ib63IFLhNlTheEzYeakwZS/5ZEm5EuVhdEmTmhwN4IgLQLLGeglL2S8ZN66BOoLhZpyJJOY9DFSz2lBkUcCDsWB5vqkT3dYqAR9IoQkZT2b4qlwPuwlnsdSnfBC8xUI6nKkxpYtXndhbORLpM5bnprT5ngJHMe7q4zJWssfYnxMLl2rUsgr4qWRBXzMuZXKMlca2lsbqAhsKCds/ONdUuL51cmJ0TBmA1lRNERVP5rCrOaoMjXIISzY6XjXLTFH45M7Wcpyl6MAcFA2clF7N6aCnJVVSUI64TMgxk9iJXfjB85zpBUlXiPc8CXM5awxq/9CbnfNkK4mXKLCWoJxq7BLUESAMd4oYplx7jdmNOr7OcJm59cXGuCAyRIqw7hRvIWl+cP9IGWIOR4DbWXwTyoaKKS035xxloWzct5BdVMKZQ8fXhl9XSfWQJFej7NaIv6bi32mDcYG4ph4Wz4lSdT7tGJpnYavBnpgw416zRvxGK+U61F2pik/FPSooxkzS9+ysUzV1t2KkmNoOQRjYAWZvLziD1Q5EocIlg458eP0Khb1HFTpB/P8OPCeOR08msXlnyOat5yT3Cm1VlZCq6U51auiWwhspeeT8hAoDrmOry1HOabOU0u6dxVrkk7K83uSJyI9ML4qNjGmKNa0NSQkwgvv39WlOjfYqqbMvF3b+/OkNc+b1czb5O2vOghBE/sBwueEdDtk7MifnpuQZu37baWzyQ/2Id30/LMxvg7y5utM3/D6q5Hp6sv9dOtE0mFpJL+VI03LXoEh9Qdbh5Hkn10GThQhvpR/Xq5Hf+JEqEEvwHKS5te4753RcKXCmD0AHm7+RWFeaRv5Olz19dXZwsqp+9yXJSNnm5Wy4pJglN3Jn+fgOiqxuakt0f3NeL369zKu9X11t0S+fGps2V/ZCalEcNQG9L0EXYlNovNlUqOr1IkI8xMy7WIVgahQLT/Nn66kJLQbOEI/1Mf/BfL/55dX7bYbZaFrKJjcvD/FJTUMgoLc3m5v7ilyfHjxiL87llfnx4fvJdTnD6KcY5K0g5Gefq4p+Ov1OZU4Rx5JKQj/dL15Y6MbvK/tB+LSR6dfsp+GXjo6bDna/0b+R0bZiC/EREo818lJzAr9brIzV73LGf3zhm62trzOE1xxyEOkLf5zHLcf63n99ffMwskRBqd60rR/w7zb4iJzbLDbIxqf7FbRbeOt+aRPdatONds2za6Mc8CeRrvb94+OJsffHk+D9MsysCVZhTod1E15989OkX4NplZPHrRVUnffkD1GVPc3iQX188PFx99tn9XFvkcvGPlEcfMt5dr3mGQ9aD//sruaf9wFLuZQL919tj1hpddQXNzVMRpd4P8fFjF8b1wSoc9gfh6Kg/WA1Nc/D4MKxi8OtVO8iKv30b5G42vOHrxcOnx2dnlmXoU01/9nR5u8qIro2xIoHHWqVbi/Go9X2Wp4Pke/RCde/DWpyaaRa3IWLreYuIRzmJImwfn70OHbvgXZcn8cnZQVJKvlhDPzukq+fTVPEZ83hw8uQclYc1c/jl8QmTybyCkl3z9WJaqvs1anynAt5aVJsoRbnx6ThSoOtNFbrN7GDp/HZeLvtF+C3qUyoGB837eHN4sYY7xk71Lfh8Hj52ylc75eRK/Wz17ers1izHOeG/I5Lv2lL8fv3oyTPhOUyhcHFAc77IREnYPiC4IG8asyQ+Np5/i/HnPjF+V49f7tppMeXXqMKcrtsHn/72/uLm6s7VGEvfcklOiyy/RnXm1Hcu8nx/655R9PGXsDx9KTqfHM/vGKmoeTW+hO5zmzNqPW6dURdUmBK9RaWKazj6c/teZUKULH7+9MXB8caY9gFjVw825wePV5vLvQ9//xSpUhKLZpj6RtQg+fbnGOTD9bOFa8GYfTWUTm/u17m4rSRSui+sZMt9OYi/mBRD0mU6eDApd3S7yxkdbK9ZVB69Prv9UHMpYRtqqbZ1P4twDz6xums4HLmO8BkzBf9KE1kyz3FVKPiW3Fn73p6FXIR11YLXKHaQpTvmMb+fDoxOA/zsYMbPOCekFN7QHXtburU+t0cv9+Qk6/drZAtPBb5TsrLqbqzSdat5CqQ7qfmivuFXqgM3TsbY12QyclP+/bko9w+vVISss+W+RpZdm9ZWzt77jDi35LMP60S1vwEL/kXKKXnLOWh3W3Pwcpta/qvl4i2Sk73uLya82Ms9No2CfKOY1du/m3u/I7q1AQH1r8fn52o8T2EKokgf8NHeh3BD/uzqZPLl5erJxr6SLzXp5K3K2+vP3j87efb+3ofyXw5GjUBv1E7Gc4Oipcnpg7dsnbaDvQ/x71u2JWKF0DPte9Jk/fEtW86WAGk2/z1t0wxsZ6sShbISYlh9h/372arEpqy/27tNx5WZxTUHvjtYHX13wKivg5OT0/cTyWyerbL9BCaovQ//6/8hw9Hn9sqji+rdDx8cAd8Bs+8DiyI7p4G1/EonNxn3mRbOfs1xNzL07oALls8GV/HasS/+6/95w9gtOenHpa3ZkH/2viy5nrs6Hgg618Gjq0s5rOk8/Ww1z3Wp5mGZ57kqaxoteA5b08U62aNOVo/0BTSGxHafX2fdgxP9uSJ4LvZy3P106exrMJFj+NDfR3KT93+uWs0H0vzf+sY6kL9KF/qBJkRVBK8uTj5Ak3/brv7WP5b/27Un8hi7Iv/OzXbyCA09FXVSSf0DYRh/6w+nZ1we2MuH9aGSj/kwZC6lO/Ud4FNqFP9gzy3dHjAwvzhXM+qiWXTO6//fW/zr6cl9uERwKjTV67pqBk1pgqrJE/3f0Qd7vw1hXIYQ95vDNiw73+03i+iXXRf2/SBXUfrAf06a/XaIy2H0h/KXvh8WB3jPXlgcTN8/sNel+QO+L+2nd/jL8jH3cVA6sV8t9FU/pncWs5/kXv7lVA54uxx9vx+8/DKEQ9d2y7EdpV9Vf30c9g9U0YmhLQ/sD/S39G5YyB9xGdp+cSAac9fuH4zLrvGHLixDE6WBZilq9MLH5djLl6L1hjAsWvnYdjr6ZevC4YET0XDY75YDVqmX9tr9cTk04+Ig+GXo/L5zMo7h0HXL1kftxI2xbjU2ftHKqzLx0MispM2w9PLDQfqXZlq1Sw378rCL0qguQtx3vQzDofsw9PsHHLS8rJMOaNeP3eJA10k23j4fag997HV/+nYpP2xl+E1In/BfWSBOp1lGUTBk+GEMC7ccZe2d9N4NhwdRHnZRF7KJ0ouTyQ3R7x9gHvK588u2lWH1/dIHGWZc+iHsy4oOg1vIEozyMqaeP7W9KAq6Ob5bdtqfNK0bPCy9SK7S7tjts1eZtJdBS+vNsm1k97gzOpjYD7IE8tHZOgudYUmFkDHChbQe5NvITrpRNtHt9zpqHaROdxkHWUfpopchygj1g5yeGPhJlnDZd05XUH6s3QqZ6Du20G7ZDof6zbjv5Wc+KsVELyQiK++HRRxkut1+J+/pwsh4vCy89ND3shZdv3TSU+uWnX4c3XKwD4cHQuE9dk52ZGgcp68999J+pz03fXvYcuW9cJJu0Tuh+LCPFVnogZBFxId/QcLkzDjeFyaULubVj8PxT47Pvl0fHZ9dx/KfP3++TO8UU+ADupN+fnp8dvyBujreLV/HrXrr68Qy29z+fdie3nqkf7083vbyGOQMDp1cHsIU+0Gb83IOe9efHPTdspERyLP0yJ78y6nvm2Wnd4z+wOnhbkftP8ppb2WQysGcXjyNHFjlIdJlO7j8QOanFwPmJ+c8tkFP6TDKOY/y0fXKA32MmJ6w227gcLwwm0PhYnJ29VQLA82DW0yH6dPYoujIEWNb9nJnCYcalDXJyR+FBS5DLwvj9ALrDoUfusDv+m4hvESvB15kYSGXnPD+9PFQ/pGLVsYvzxthwF5YmjBg+yQsrWl7GYDT53HgkLB0cof1sg16QehuKQ+XYccea6HXpPBRvVr6MX+UtWoa3V+Zc+yGhXwNVobHi6A3QWefTnR+0tShzNtFHZ/dvMoaRc/OH61N5diy/bLpy0bW40Cb1htD5jEqgUrjY2jT639+VilfHB1fXsco+S1Z5NWj0+PLn78TdnhrVvhXdvSW7KjFdLyIJLGFdCp0OUYZmZzQ6OTcBmUfC/5jnw5VCPAOYogckDa6fREAux6TG4SYVeiMesxUiNSRC+9qBnCaTnmBSAG9vu60HeFJByIfKS+UPkc9C4OIT96diMQ1qOAmUmIngqH8RkRPYTgtBLQYvC66CKnCDeUb/H0oxyk0KqjIw74h3/HjmD/iX6cTxZvtwl6wb+RATt70mKtMxuYau35f2JoeXDnvneuUc3QydGXErukgC0cR5+QUew/xzKlUCP1APjVBfinin3AAZVgqTiqD2Yf4JG0uB1lWkf6i0x95WbygIuHJAUQqvz8q45cNCCqk68+8SHUHQ5CGowrpKixD+RhEDNNVbWUGwj9VBYF0B4mtG0ZVUUQKddgz2Yz0+ZAE0IE3Og4UlJA/kgQasEzRJdRxrYKdUylPFSLpSq6S0Q3K6qJMOyjfVjVHVlnYvg4Yf8sou14vitiqcLnoZfhRHqs430rDUW6wNn08VGk0KsnxuRCNsPyhG8vn9KbsbYCKpTJqkJlJpwP0LBVhVbgOY3sIjSZACet13L3qVV43JeSPuFucnBKnQnivOsQggn17qBTtcQUJ75YNlb13uCAHXShc1cE+goCCiOB68eqvdAgy8Y7vKZHoi7JNLS4y/AOSwadejoBXZRHqy3ioj1VzkwUcF/iSv2gXeEH27VC1B+lF/5HrWnQuISm9i+TGloFGIQx+OpRJaf9yY8lW6lGXYUe8A3qQl7zTDpUNlA7tQ5c71PFiXLLx8rJbcIwc+QG+pvI1ykoqSUpPg47tUM9gK4poY6fO4bi2YJP2Wf6N42DnVQSaBV4YeDxdWFTvycdDNDiU469vi3hkn+wl0G7bh8WBNcZO8tHnR932KBQ0FF5wzSgWbNc+YQxx5BiinDS8O6ZPfMeG0NoQ2GWLEdhLUckMvcW0PiYqtb585It/filB8Z9aAv06OSF9X5SpC/tn+ezps59f/VUvmQoCrolg2hSpRzlwrjsRRicdnqhpqZdjP8i/ckse9KNwFZO+u1ZlebvHo3IF3Cz7emFEOdxy0nGN49NJG/VC4i97ZZbywwZmnF6OlF5TQmrKnZXL4OPhQVSbAbiZE7F6jCoGd3HMH+1OlyZlLmOv41M+36IXG3L1JM1NJunUGPSjiT5/9iOjVSM2q2fPrjsyq2fHy/QOj8367OjWJmf540D+/1+P1Z9Zvu5EeBJSd6K99o1wdBF9hwBVlNbIXiVmuW07+akoy1Cf+3Hggygy1ChX5TjivOlBd/uDyJRNZx+DXC/6rxxdvWldC4Od3CQDtEoZkIgeC097tYjV0fkT1X6DjF5OnojXJyO1/AMRekbfQY0dnMqS8sNO1IJuhCQjqvbQQValXCN6b6Mq9KEOcNABYiAqOesIXcvPAZKE/tEeNjRRBJEM1DoMuXL/QBmALHunarKj/WCAzIWVECFLNPl+kGHLz5UwVPDuVd7T5vC7Ude+V8FsoTaLARczTM0nB7S4QpYe5RPvU5mciPAnIi+qxN4FFQxPNO16AJ8TEQlm8NHRRt7rhSs8cXQQOp3wUXzuhQJ0amq1FtJpwZKdSPhR5SnYxQdlgQsnVN3APssHh8Iz+7FV0UlEmF6HPqpm07XybqOmepGahZMLzQmlOZVQ5B/h3mq0Hmk/9vqpG1UmlTli92VRMABhxhiBTlSNTSpl8A97EP7ldHAyLV1uFftVFBPhW+fjZaeo3ARVitQQrqJqK6K8KmoqNfd4m8qOvKWCrKgAjr91ehHIb2TfaHyX7ZEVl9YxDKd3BbwJuqjyr5OrRTWS6PVVIc99/cGgSpKX4y/SjuosKn6pddz5yUAdiEi7VoeGjFLuM9fj7vMt3BMtZCYh2J571uokVHPDJHWLI+xdjY+pf+1gCCq4eu1HWhZxXNS5CB+NiI8+ScQioC/05X1ItbLtcm2OENlDf6jj20eT3YJrYA3b+EUp6/2hLqCJ8wuhWHACXWnoLn1gY9ASnRvnK6wT8LpWMtFB6EKZilfzlpCJqi9yMNU0qHI8NImuKz/tRc4cMOUGiqlroZeOcCk41fgHoYvWPqVtVM+N6FgjtsJhP8cQ9jHkRBS2fE5NbN0+HE/5kyiGsp9qV1M0m+p48s+gtN7KhsheqjsiqD7nuYBYGGVpQibqjfGiJqreLaxNHQ+iwwhhqlKKdRaFppHDIp2oUK7nSd1hajx08H/swxUhrCGMoDOVyqXRRufT992hMCRStR+6RT4CorrIMsoJ8K2Dsqa+LOEKraebTgg0fdLOpAPSEd4c8t6p/qoWRp4cTCytMcjnzy+RXGqBiYvV6bWOcPt+ebo2bPTVxcmP7wS/WSbZJX0UQcUv5P/JhTjcWiIBGahCNsTfCEWthFT7ffxHZOV9d6AG7QOnTzr+h4/5xT8Kax4eKBMDJ+N3+63+v2kzcoS6ff/UO31Z6VT+wy/kKmhX8xbURhTiP3rVIVdbXeuX/XZDZSLQw9tBDfRuJTeR/B9eavaXQ3ewjPFTWED29dpeCduQ/+P3B8KvD6RnOXryf+lZcPK8//cHS1H0G9VZOxHAhOjlp6IbjOU1fBY+1Kfe9ArzJ0HtWPofGBKHdlU3vy+8DO9FNfKl32mHn2pPwiKakyD3z377YDku0zzUXObUyeu6f/mtske4C0QZUcPlQfj3whr9Aeal0gv+OpR3tW3f8r9y4a5kuupg5wLK0yZuZF87XeFWGaqXeQ43H9wKUvY+AWT6zCLT0nsaZcq/78yAZ1PMGfAzf3d4/uzFTxV6Gxa3A0btfagxeJrr4NNzw0JVsJ3yp/4vcYhHL8qUthB450+vnpyj5Rs40Lw+7W/kNwAm/t0NLR9farPa/LPVs/XF6fnRrItddW/lxd+eHxU+abOrFjzXwL48fzbljZY0QR/T67D3azz58vzZ4u6Dk8vFv138+l4u+CvvHahjeA+hcuUTo6a/Xb+QBvNmCW8SbnS24fTMrfy8BfTTN02jlDJTokSHinuaQ0BGZvXNPzo/Ob+oeZ6yKrAmffk3zUk8iP8hk6CRH9bizs9YT5TfnKwvF6frs6vFB4uj88MrVBySdfyY+Vp+8eKTo7vv6ffv3cPrx48Xd/Xjvap+iX5eSpvnJyefap70DxYn54erk4eX5xeaC0pa++RyfXp3T9874HsHKUR7795Pp+2cn/ENaSVnfrp7b1YtZdL+5sb29+fDu7ddSAX/5NmjWPzD9Qlg7g9OTu6+t/qDksn/KHSy9/V795aPzy80F8pdxjouPviwGh2fLVdHRx9rzgutS6jkeXfv8OT48Nu9/WpS6/ms1kuFFsqvfrl+vLo6ubxbDVX/993qQuhLFkYTDOiyPri8vDh+dHW5vrunA9y7t9xcPdpcXtx1s1/qrv0bBv8vT1eXh09/qyVO7753l5mmNgdytK8O10cHp+coNbDg53syWby+3szHev2K3f3jH+QQvPc332so/tH6H7745KMU5n33+Ojey/e+/uM9245Pzi7PNc3S3e229X8p7vr+Ym9zKkf26d7Way9nE33J/Pg/5FjnPW4ttG7RBx8slA3s7Vo2SzmwtHw3DzUR1d2zq5OT/QX/u7fYu+20UlvPrjZPtxv640/+5vvjo5d/vHbIafn0X2EOiS9MGIRS3ekLQi9vYBKF61mbRm6vPM+6ZLnRR+dHL2zBldN+uBiaZvEf/2PpNf1hXc/fna93GvgS5dqX3x3nateyQfh0st776U0/Obc0I/K+q97cuSM39sZg6Ft31uxt8anr9+j6TXkqHw4uzzUphbCH69mSbMmEj23vCq66z1an6yUTLq03d/eOVhey3/NF3/E77VAIXgsH3H1Pf/XejCZ3c3RlTweYgwzxvRONM65/uHMTrutd5v7mXc9/Zzty79U7sn2baFqCD5H+obpL7upn5DGYbQRqnqUESSJKfbDIby41L8jZpSZnrP786Z2t3z7bcXyZv9GI5e57fKGeYvnZfBH1mwOOf+frx2cy0C81tPODBV5+rxpTZgL6xfHZk18Kt926329o7Hh99G/em26g7NmXx6fr86vLu3MyvuXoJtxRw9eEk9SbvWuWW2fpPZyl9+QsHT7aMQw9UfrKM6TGe4/1zb47frISuth1TeQvl/lHS6Q61bEXclmqov0Rk7jNCDsNOK/y9tcX68uri7P59TDbCyWii9XZk/U2/Xyhj+cN4105SUrzSpE2uk1F4z/d0QV/cAwytctD2NnD9HTeS37d+IqcLYxmc/2LsmUcMEY4e03D126QG7TwqlUp5wl47/VW++XiUCUpin3Ky2+ay+5R4pauySlzheqE2jNhzk+FXYJlbnPo8kPWS/7o6fHJ0d1C3Ns8dtpdxXiQPBu/F6mnNDzvcXd7NzKyV/95Jv/RG0l73vvywS8+/Xjv2n457bfs8Lar9bpjeHW7WUyr7pv39YZTfe59Ta/w4Z3/+X+3RLX/y39h+sj//PnvHn75v11dHP9ff1O7D6tcBt+59zUl5pHmeNv8Z23v//5//tfv95BLdO/+4g9/CK4f9hch7C9i0/tmfzH2XZAnnWs7edgrymvhxi4K1+zkcezks9cXXXCj/Dd99G2Ud9xgH/vY2V9D2wz4xgcvPXnn2RR/5bQz17Z+63d90zZ8M7hOB+mc1wbioG22OgD9Ves8PrRt0+tERv1Ph7dbedBiqL0btB3vdTIxyHB00q2O3zfSSMQAYjfqL3qZt8I+F73r5Fd9aMM+o55jz3Eofn8xDK1+6BTJtuiGoZdncWi7lovi8C76GJ0un77th3Hg12Fo8kfMir06HbF25TyWc/Q6n4a/GQbdEjTZBhdkrK7pdNY6OCxR6PHGMOi6dNOV8NKbzGbUAfrQYPBRpxn7dmj5WmRHvXonuLVtHNOY+ogdizoE+Rh1qdtBF71v9H0MDAs3YHBBIS2LtutlDG3T6Nyi19H2Xne2V6Jru1En0DVR1z+kla/HLbvfSOutLIX8M6gXRYhJ+8U6Vm92gxIPh6Fv8d1eJzx43R6bUaPErNPqdH9b9dkKMTU6PhC6jB49NdijHvN3GGyDtdfFiBEbhDOhK5/H1ZAodMSdzmf0aNKBENrW1rV36t5T6pNxD53vbDp+CLoS8u2IJ0PX2FZGhQ9ba1jG0LW6h9ya0IBAp6PBDkX8oBt5ApVk9IwGmX9IU+lwZhwoyem6qNd40SqITroa7ZSHBnyh6UCdY/p1iBqmoiPWJ1HXZ9Rx9V0T0pw6rPAwjGlnQht7m5cDVbWK8ZZRgVMIvxi/3l/8AX/YDjjf62aNQ2x0EKAU3bxuwCnQyY+6XXHw1of6/GQJetDqCCIEL2iaVnda0yYpLTY6oXRShRwHHNN+1heGimbJPtqyItiMSN45G51TeKCQpe8mFAkmhc9yEHRN0JqwsyFRlxvVk8cBK+BTTsXQkGt5nFzskJAHTrHwBc+l1lRCRtZ9r84zoRKlO7Cw0HOLyBZbDBSMQ85vWvte47x0jTpbd/V+p2H3rWvSYKMSJtttQwB/072SgxzTGIOecnDTXmESRjplDV2I5He6bUJ3yqOi7mTLc6qr5FpMG0wlYpw9W9FJuE7Hw87wk2bAOnS9z0uL53FI424DjiB/I7dItKUYtCXXKtUJq9K1x3kCwUR+MFZFSrg9kwJ5eI+jqkhW3n1DPzSJ7enV4/p21A0PysGic9jWJuJ8jE0+TUoanS42e2jHGDP18JZQihz0aHc+bXPrlJcMCrI1Ym11k0fZ9wH82aWRuLGN6eqQobS2OX1QwsTFL7/rWggIyurAhKqlMhmgB6EqpFK236VLoQsOU+6xbJ26Q0kzcmkpNyFRdJBHcBJqjpdvODt+SlVBmGeXpt8ohQlxYdCNtkfmjj+HmKlqdDpEbrfXZZCFB2vvQp/fiSoTCAf2iSK3mThXtmuHod4cOX+trdSIe88H7a7+eQeJyvg/v+CNL+vqQPDgS3gXh1evYL/NgXCt9cFj23ym3hj7fGNIG6NtIbrpwP+v37eBDAZyQpkJ1tGH0eXBy72DdQodLhx0PpTVBpW6Bkexj3k9h8L2KBPU60Fq40JyOXrFrdi3cqS1edxf1gcu6zgk2lIok0qwTUUqntIaFqcIK3LvdYnrhEFjHWQ++BLckD+CKNWDNw7pFMh51E623gObwvRddBTicEy6xCeEP8bMzGWIadByE7d96Uu4eA/21k2OqQkaZQJegyNsSLwS0NWEG0EKbpUbpvMGCa0FRxY+7Ozo9d5BKPS8MYzZNRE94OURZAAe1o8zgYW3vYhGXW5JPjmXpe4yOqdobWNvbky8qjd5sh1ANj5xWu1ZmFioFlCFjh7s3eMSAuPAunEtRdzuTE7ps9hf7ZAsBsgSnINHRS5c0A4uaZEvVD3pYtNuC5baY0itBtzPPjavOku4qYyLK6d2xteqK1mEKw/yxYEC94lkd7gNR/AhnaoTCQ98aGzTAYNogeHGZqCkOuabRRYLp61R0K68HKESeJuHSjmuSD1kM2PHY4ArHTIqtAO0yn7t2EIVaMF/M+9xu7QuU7MGSJxbB58su/VedaBW27dhjeQoPrRTQhLdprHt3rFuct2kg1U3xstP/hvr1Y8BFIcRyGAgZG+NgDISOURNTvV8tnqSA9Jm1ja2bdY6ddUcFDjwzmpVwdCodbZQr0VvIMd3E2LpqOvhGo4u8VJpE/um5CDXWsznazI2sFQclACJzlYOBGaXaZaZ216FlW50DUQ/HJye3D+9QqFEeDzu1a5POomqkK1ptFRPTLDg84mSUfRsESZHEBZYCMRGaS1mccp0e25zUGrooD4PTUiMVg6vCgvUWdxIdUrRribe+QBRoYd0Su2lvqbatstjGUEqnZ5vzhVygHQ+FG0uNJBMYpbXoTBT5BJNxufbWElC+navfw33sqo+37XsRUQ1pbxxbuSgqNPyHIMoRvLnfJZ5c/DW4TXquhk/DiQBKnzpDk7ky6aKnWEAR26gbU0OPpWDOLhazQmxT4coDjWnT4qGYvnsSu3A7Mk7Qz5orqNmw9tsq0ce/rRWHS9t2GWqIwgKBfWr2STti93CLRSfzoOvyG3is9BtV818jv3gsqEHolmA4AaG2ukBkEsS2isulw6vaPRD/UCkR0imqgxXj9XAZMsl3HUY03lrwfOHnUpKX9ORqHiJJdiaDMLLB5uLiIgQNxplMkkC3dqawdEABaOMCEreVMyAfnvveIGQScJwpoJJvKFFoQo8aFpw9oG3AJhRY3qcfoD8yqslYNFGMxgKQ2pfeenK+jfJkuSharkh8/6dM989fjcjk9D21Dux602WZHF7ycGksDKCvweqNn6wbRXNK074fO+aZDiQax13PBjQ2GQxEbcUVH8Flaqqz7VrdjKLipeaYQcHoXVUHGb20WGE7EDDxm4LkOij3ZTlGiH1oG1deOEaY2uDhq5XaXmiuVF2DckwoSeJ4gyOs5znLqt8tI9ApYbMKoJ2zO8UTlQzNTmKMT1nL+TV9cEO2d4wlTtr3qjrJhQ3JDHRuB2nDTtRGLpq8knRC33IWg8bDA3oTm/JhhQVJ0afbmibdAkLGTaj/QTaN0TtbFCL4EEe29aEMQ8I93LNUEGkNKibFpRuJd3FJG9ykba2mCa3a2weg0niQinBGFRRQOudN3pz7TWHVqT49npK3uE9aHVhwaVtlXoIynJzq/I2hiJJDkl2kdM+uKyxeQi4jhKPS0YQB0EY16CsQWKXlGPlaZNl63FwyVhgTBMCiRtxQilOUzpvcGmFrskSOa0fo8s9Q7KKLhnHRZnq02ZJ48nU4gOcB76Bo4QXMI1nTTFcUNbTJffKZ4zgK2qoBbBtQUsuxWQZHOGxcFAo5ABidvQjtNtyfJt1ezdMnCNx6BJRmLQfqn0h++yRxFuIYUzmQdfCfAMLcQj53HJLIUCD/4tOBq/MAHEYYlVPvrHLuC98bkj8jNLAmI2Ig2knRQpynUv3tMdGYmSDd+Mw0/p2H43Rtrsd0WkPJxRvlx33m1kXd9ylN5CMOVGaJJaLDtmka8eIPekOYd7vuzuJEDRqkyDcIr3Ix83EMEi3D6QZaryvkGzb3sV+25pu18yQnXJuwI8iXGM0p9DsLBIFFhKiXRi3D5SpAfwlSBEkHEXTS3KpUFKTd6El5eCJhpFVuxA6TA3Tb2A9gQnWw1UDJUMvtl5TwCySTwrSVxcoKoAFqJ25fuCwAvakgZOvowwA/jBQedadg7GwzxcKLzWMBMcxDRVrSUm2zJevDamjdqpzQdYZk0LKd93Wu32xnTRjN9ZLUVq2wfH6wlfjzoZUp+9Ke/CmyZ2sjGSgHbbaltjCB2byAh4Ls6LFsQctwL6FG9jEiXoezjhggLylh7CxjZDtc7aqOAa20rNX+TEOI0xiO5qJ9ttsmYYlhBdSA6m9x7H1ZHMDJ1aEkhmhGflmbih7mQivGxtqozCJVNSHQ5iobkJTcyosX8+ItPx6Mt30flpFe98+SqvpZ5iPDdD3tj6xyeuZn3XkMpNnbUMFIYRt674bwT30pgsjbMEUd9wIc4QuVqZCDqtNw5Fz306EH67tGJJ/O/nmmwkXMnfpSLJoY1MEgRb4B7TqI4XqrFTUBMqOZs4KtGtSXddS3oMjqIGFhV5QGkMrU6W8aNdjTDZ2+CvoraYBEx66rqeLQS3GgW6sxNBpxKeaFb1LlDbgqIW+y/diF5uiadMcqgQOP32R+2o3nEgMSfDxOMAchowdP8cQ6CPxdg829Kvi5OOOh7wCxTaYU7jYl7icntIJjAFwannRtWkdiOk6VvrQSzUBSGDjnN4DLoA6W71lwxj72hTAzzYb9D2ABZvWWPhlZTahvlrwHK3Zr+D2aSEVwugLh2c2PMPUhhXBE5Xihmodd8kavqm1jR3shPRS7fI2QTtiZUhfFTXb7YgWuhaeIhfh0CYPKjzpWoniVhd+kedDNHNhPWQKpyahFQMumtc3x44nstW49jRodMFhtlnC7zSMe0uqoNxeDurY+n7HqU6ygi62nDu6aCFc9a64W2j1iklMbCC2dcMtZB41KA0TKT6tBq5cb0dOZPKxstboAHqvmW0MwVDZJigIkFvBf9KapAG/Dphn2UhqLFxWNex2BoAJY0jwoTjohQieiFYpXw8BmKS5Ka+2R5GmcWohdYyQ42rNt23TODwNon26lMYBNhDVFPTDYE4Fg2uQCgxKM8akiRUdwHAE5DJKZx1kMippwIvYgkOiGnngxmzYmKhXkGMc8V3QH3qT2ZOwDo7ewXRSiJYQEDNP+MQtzfwRYKXnE7AZ82bVRldsQIfb5Boe4K5RxZ3HHfgKah2S6eraU/x6tEz7Gn0IcBMKHwNyqoNFAwgHbNMIiiBpppt2SAaQPiROwK3uWnj1ipNT+CrFj4wpE1nB885PeqwIKLDNRKjDilzJ9yBBS2nTSEhF3hoAUikO2jIaropoUmOsBWmR7uEDiHkwvBm5k8DTxWya4QXTxZjwZmMRyEkXDrZsl+7jQNMEncQ4xGMRp82oR7FrGBKF9SH0E5ZhhwVMrHPJv2u32w6RZ4xA7oH8SM6cDJw13mWoiIpmwq/arcsFJr8eF6wx4Zams2gad29HL0ytL8RWtbA+4AiNcNNcMyHoZwZK8qruQ/QFxQBrJf8ds20qG8K9qensvKNFaOymZ5b76CFB0YY2tm4KG0v75c1Bnbwfoyv29e3Xe2rXXBTMkwtkLqFA496YldeWu0oDO5fLZYhTDN5lbXuEtI7m7aRjoQF7NPpHkxH+rGS+Klyo5qvEUYHejQroOshQLsOI1p6DSdc4Px1BWvDWocVk+XXcCjQKftZQKdjBXCL81p43a2WdGQBgiyMQwR0WGMgbzFM2q9iZ0TPvEt3RuHNbKOkQXtTDFN+GTBLTUQ8jdVEYBIFc8D14o71HRZdwOCEFiMMD0dDNWPyi9Y6C++oNWysnPdaNh7SSeejIr7amXJWOKkOEnXtX16SX5InYfaPYhSa6eJf0j9R6bgEkOKGOdntzIVX5kFm8cOt+4ljwfdfY/TVAbp2a9nve1gnTQNROzYJNRwD3TbJuEisT/gQsraVRJw+Hw4XtbbB7E7qFLtg4cvVkg/q3vQ4h3RLdN/Ir+i0Lpq4DoBemOekYMldGfLaOF15RJEA9vM/gw25gWIJQ1MLgSiQiLkIYrWN27HoYs0fvJ1abwfDLrV2AxEgZVpODop8Zqg8EYhezYW1rhF7uVwwoJuPEZLKG2K2g4cX4bXpyhG+hyzZZuWu6rK4WswLtgC6LlzxqEMYM8InLcchIR+jFoRu7rKSBCuHBpULdwapInKsSQK/3TgT0nXMokN3K9tX0MJh2ecLFzjwUY44Int0Ux9uRhkz6a8BRmzahcEQ/doZaHdosDnSArA4J9kp5wlE8B4IHJuIxJpibMDu9EDGHNCzD8uN64diJ9Co2cRALsJ8xC7eKaoOEAWY7mpTet+U0l0HTN99jK0Y/eWNoiOwZlLLwnm0fZTwYcsvb3oMPd31j1gyqDxBcAEK0fWHnEbCHhJbzHj6Eyc7hgmn6bopA7jKNdPCrD41rsuMChB6TZhxHBp6E5PfzMrbsKq4iOhKevM2uQaIZRoA6a9w4rb1D1kdjUY6KQYGHNvHmVjPH2XqOgaEbgMQMpg4M2dRa9hevdI2Fk+CK5O6S3g2ffs3aAtDoB14gA9esnU6ERxoH1Mg4C8Nh7GHiaHl1mvfHB8CqCPouJOdHl9mfs8sg+V47ihgUpQcwzxGXBgMXpgee/itKxvJWrCNe0lzgsHBNg/s44haNQFsH127j9NuKPGnEamN2yoauq/hR7SV0wGPqNZLBS5n9yamjIcy3TS3WRUKeTYitjoQodX2CnjkHSsy77WHJqV6OI1z7NqIAWYLwhybSy0PUC8z6s8mO3YxRQvFo+jJFAhfp70+neEwmAm5BA4T7CNAaPX7wCzfBZ7RRC6AkjyxjgCg18EtNj61CPZufiSlJbNKz1/dQNIildNmsZrRJKQFoe9xahsgZCyqyh67cMcig2ykV/VDdkQqnFw4bqlhJaBwxCD1h5ATl9gWxWjSCkG2N3vW2tJQ4XdvBsEITJJwY21Ezod0ZG1PQcLz7hsLgujYf03ZMQjjNcGHIijSdv3h1Wx+k9tEyKml3vEyREbajVYraWgU2jbFJVhjCNVs3VvzHdSMFkCLqWKQLpWIvtzftj7rhXQ9HWxzT2aKfQnMrLjKKEVYPw2IWpigcPYsBQuLZCGSLESPMEhk6S9slJUPYPHo/sSiJaJlaM6IQPhSyHd6CXbJZZLJMILDCghx5KObeo40RoqMfgaIj3m4+W/jfadKXA98mMSRFCcHdnU0BwYSffuLmE8IHDw+t2cX8kNmbpiyGhCM8qi+2SwK3QbzwKQs7g7Wt32oGPC0ySsn7iV1RjopegF3su/p+imMzpJGHjK7XTx0sP8EkUxORGDtFQJMP4y5hmRykD9A0k3NjpCbS47pF8KwMOcAdFRlTlm5XnjPFC6Yhyu4AxQpoU7HUhI6GSxhPIBXQ9Sk3adjGhYQWZgwK7h3XDGEVboqGclCteFvyJ2Qx0CZTiGJGuFVvGy8i/wPOXxhca6hWSk4M5qMtEJqCDqRLH3wHnKZcmNSawIApcEAcRRRupaZgtjSPyds0JBF57LZMd6ZZ2veBjomOpgOzHvkOkRk+ULt3WTRxPSWnsQN4pgPHNqMu156YM7K/bJtLxkHA7EzwHPIUHJgjBI1xLDLoSAivbxN/BfMKhtM3s5nFNEWKVS5DL1vwdQo+bbuLeBA7HPp6ayxUpQ/ZupVjJG25zAtRMNUWOlM4O2ddIvpk6kNXkyC5r0GtAl20oc3InnTV0n5G10efgy86uLR5tAN0dAb0lOAxKreAxMTRlGfc4rCUIIQ4ce4+wkQslN8SvwHFBcYiXAsAe4RQaK+69uRyDUN9o1U+K5HMQCO80xFjbWTG5YfFpbJgQ0Ik4IrQRODo8RYR3Ma50Go5ZMQY7oiKYbRC5xhu66PP8LEO4gagxKECwdCjZSNtDb5TFkvjvHBmaexqaf3EOe9oQ+qHjHtXs/u4xUk6oiD509hnsuqcijs0uINOike8LUZWg5vjMWxAXbTb0yV23ZMN9UNtQTO7v9FFnwLqp7OT1Rhq7cO4CI5+BbLAdotOkExGcpRcckX1LgdZiKg1GUIJgHdEiSqLMY9HaFx1XIW4IJN1fobk87ljmkK6FFfvu65xkwW21/T+YcAoIgXLLGgoTdtAu83AgJ3sAWQwenTtBGTCLTLuNoX7zfoINBCyD98Y6tlngZd3ViywOWoSDpRObZ8h4sJUYGrz8HmBOCl21YfR92Z3yhvQtb6gIkO64LoIIa/MQPgEbHsjvVS4hYfMKcOI4zG4kG1i0McJSDAnRQO+Kepc0gNndCwcBFo3p2aOXYphroHx0bz/FvcG+8SQtP4sr+ULxdMdVbNOBrMYqKtq0vgGf0D8Kq8yZc7dOPpsQhwo0gSfDd8NsRB1c1WXMqzchIVn8XJjS2ii13CFWROQBRAKjhMwFluRlmNaeAaLuJukgUoAcPT5jAB+0XQHg0rVNtRUxLkMYLrIAbJj9avoHj6ma5KwhnI9ZyRdQavhLiSgyYEFIl5UuC6ElgaXC7yBO5xqFK8bXvRoQq6whsiXZDQEbRgsC6gyYcS+AOUsIi/LupUR0E5vBQkLrg1142zxVcOmCuiT/6hyEAmbczHf6LQoTmh6hGswHYadenTY4V0wsZnyNN2RRAgxwIrJDhDBe5OnunMjcazJO1sb4zszxgcYGSApTLulsEUPP91vpLCmITWAr7UMTgemHVC4Knxf3ulS/E7bE3wYcxR/nTmhwIZkcLlvUXYhV4xxaCdmBWm9NdO+KEgxXYcgxD6LVRa6Tv0zEk6UA0ZFBkhOGCj1TPPioMb1iAq0IPOe8MpY4khHhA70/SySa0iqBDvsgYPl5eLpjm6J66iAGAwa2U0XZWuR6mUMXZ1LYewGJjGg0BWT361vcviD6CegxxIt0lkIGY5GxsU4SvJjnGDLIVXyEFEag2zdGBB1TEYF7h8nm0+fb8fsrrIYSKoCXI0xxpvgFf1YTYdoYsaOYIu60OQIczrIWqbLeVWGBRodhqzqUjwUUZRjwsUJj5HPiE+hmcz1GRFsga4F5aaBklDQsnVfOILzObNLHY+ZN1OupbZMhWkvzGrls9hj4uEMU81Rm2d7oL7TlyxIpIbBYmln+HziWkrWIVn4PlvZGSJZcKMmdVFqZ3gJ1M/Qp5MQWgayoPsixxvuZEc8Wxe77FMPKR6O0ecM3d/xm76B9Uym7TPMFsigwaUUQCOuA4ZBmmukB/d2QAoyIJgreA3IeEdAZpcip+uuGZPfDUOol5EwUwWMJg7hmxJHN/QIS4A+1dKmRlxA7stBSmjjwGwtpIy2y0YFDkZJI8y+R2KmOQ9qs1uETmT2p3zeh6HO5tVnD9wwlOhobGosyUaodIzmRoVa3oehhniZsiqMpKsDjizXDXe24oaQNFMbdP8hunDMBj1KWXHIan3Wn9hMAsJmzJFDXpNKCa2zeDGtDa8lZ1ZXmFIDzXjUgRnN2pjBoC85AOQXfYJakJn0/hbJXDgJ3nptZwY0g60AM3ubwI+aVD1geGbC7NwUT1etUx36bomGijJpqF1aryKZSsZlt13JtNHyuumJecddxSNBdR4b2Rfc4iQ9VYgTeKhQTWPyhd3tRZu0JDQN7mYOlgG+JVZqmnfKcNyxAcQie9mj5qFKEkvbE/vFGJKQgM8w9wzwriQC6qpArm77JNVxjpZLgKRoSajg3KWBqPcTe03h15ONqJjkmBFByRXRN5lGmqS02bwSmwSyV37qtt/E7CIJCi6tlu5HnKKClyixsjhftwg92hUn62wvZliH4pEgNq7ONtHCN06u77uYVGUYIWyYGgWvmwMLVHAziy3IShTOIWFrYuv6rO02fb8rxoAoxBviNpEk7Ca0aDW+eqI3AkSFTQ7N7WHevP+DhgtNgHm4f5mZCVC+Kn0Nw67HtkbgbN/xNFhkOEtvIZm0Y0Ik6kIzTStUkkfVUBGHjlsqNO00hw+32ue/xuz3dS4Znhvn2spgwtuFMFBC3XCqiLDYjq8cYnA77mgC79h7BazmsljeRJCFOR+w1J1l1oOazDiTgX4WmDVovLZA4Ixj8NDbocsMvAHGgv90KfEPosXHDEwdko8X36o5q7cfinI1MrYLipdv++pFue2DvdeZFSt4e1A8mWyToBG8Gidjcb3WQN79VYMQ1+orYftAOgzpOq/GC7gRjKzeu2wDGybBzcR92+ZbwHrGLSPCuvPOTaKHkIbO8LuBaS2HsZKPW9BiGAj/i01ad67pFE2Q4j1jWh96eYnz7HI8/NBOIoBtDzgGxvjjELbjdP+yjEM6GwYGr+K80i/dTVzYPiZ0TTeOFCR9PrHCr+D/6ibgjEr3bUKDjG6wg0JOKvELoYPVhSFNkEgal8w2oQRyVHRMaYuZVME8mkSSgfTXdBU/94jrZmRQghfi0q7QYp3LWawgCndj09WzHSIsseT6eZrmqjJ9qMAYe5c4la0V7xOXQp7z7xmKD92gaiVPhHpolSxx6NpJ+jefMM5CqszlkyF9VZatpKqBWZRkXLB2RATJz3mt2iVyiD+TY7iiJ3nntj2JfcbNbOWAJQOObU+NNzshar7XUxPPuGVL5ZURA+zUXPwx2fPJabsh1kdmgkTPGPSKh/M27SPBSwx9is2UtRKq4UUZG6aL3btpJgoLQ86uSLKBmhkPfb7N2UYlNtSJmCwFRnFF7pw9Y0u2RlQk4UnfInnAS2/BUkXemLE6Oq4GpEYqoTRE4QLprTddVoNzVmQKNMRUxpBuy3xpGLZ6eoeAWTaBGYjT96I6YOt4/mnfzTqagQrM6wt1y/XXLhKDHcZtYuFZVEtzm5Wf6iwSo4JdGbhmZTsMrwrorQksQyWwpDyjmDywOhzLiAxgRWxjrEiVbYYRlhTjdlzsP3Q3RuShePgpJhSDSxdqPXgneVeZR6s0cRYCRZvPxOVr0VSU/4reIKw+p7RmCCcs+R1V1bx99VOm6nIEHlGIZsa7/LbQM4TE6kVwPd8519cv8nHb8UqYt9tq8rz6dUV66hLDIptJSJYznxQ6YkI7O6wMIulzuIgZYph/3JljLSW9qJYzRYrlRXUdbaI0UCVcHml2smuVokHmU3RUDNERxpMv28mPK0udGYuGhNA2hoAg5qr5ZKeLs1/ky4fA3Qi7xoj7b375yMr3OxUdKsEw+sYRAKdqiu2IvO3MfIJBabHOa9Qc82uBBZgbv0FsS0aTEA+kuSTDVKCgTct308yGkUlpUthsuVN4C/otZYarnOK+LQq4WJIbn3XKSE2iq5IfpeTrdUpEgy5UQmcV7jmF4TGNPxPd9LOEwzIKXzdO/jM4uj1senOTgl0v1FKYI59ht7HJIDuRs/VGGGhuajLeOAJh8BrqumanTHy+HWLO/WTxPMU00XfMmFEMX3MzSPEMMleQJwK6pVWmzRliLBFdcQXAVhXJIF7dleLTh0pLpBKsdt6ciKQPjeWrTuqE7ErMSPAmZGsVLSFF+ux9zr1jybcLmEaR+bFGjNI5r+lTk2ZW2YBbJmFtXPqNXM9Qk4hzG7oUfQTRFBclc7qPCeFRPezhfOgbC9DK14pl11YH6TiN/6+wCRUGJhn65mlYXR9zrrGh4JYKYikMWdSqJWgYgfleZQ+v3N/CX8ZpjpJxzOhSV8VRx+uD9XNSKcxRCB9GaKQkry0wE/mXefxnRkkmLiT1VSfnhsQ+VO5ebZ9hWrxiBK2br+h168RUnLCsRVewd3Wqza100Ii/MKWG9ina6lpGoKZsaUkdgB8cxAYdnrEoJrN0BLhuLdhMmhdREgsWMpu4hgI8i4KYV48WVEZsvmIZJvlH++xtsEERJrnD+9M2nlYDHsiuYL2B4xiYjxiN0OopC73DEJjm0ZrsPU/50BVng1VnMDkBxEuTrs8XLGGJLdHL2Adc/xR+yHZj34YdebdqI7L5fjtSHQyf0Pgp1L6r1kgHgVGnln+nbq4Ow+IOV9vSsuBJmFAQuhZZOG4FOFci7sDUVHAozB1qHknO0s6nr4j98n3KmklDYUOHNbNmFd4VIMBaUY88NehOMKJuTc3i4KZzqxPolKEbyDtmxIfxVsZrMsegSTe1IZVrNZSkTpCT5k4sIrosELhpE9eczwTqMPO/DNuzsbRv3A3CFji/mmjL3vkuFAsnLb47ThrvK5HyqAd3Yy7+Qo8mwVMDLfO45LA0+H1Bjg9dnz3tFcwBqxbzTROZvwv2jvq6rkVH0gPuDVl5avShxIg6s2rizhkRvCdD7H2pjAM79dg1WUgDAhHRIq8hRk0TRLus2I9bbuN5YkyKL0hWSoNQHGGLM0QD0Ti4RamCBpx4kTlwZsYxZWfvIjGGQ3DVyehhqvM0tmcbRLmR5OYfM3Cx9X2pVUEab0jHNPrCH6mCeY9A1ol/rinpmNs5cGHIgU5tV7IndaXgAVFwmPBoudDcxF7mLEOe27GYrXlod5i5yPk6F3LBnGKogW1EAUmTcFjaQkuoL/InU48XEajgltzgsn2SoQ6lZIapqXSGQV9g2JZjDQDmkuszFNU2GrOAc5sZFfJu9T01YgTqb2XhGcrTehNgPoLib+lyiXlq2vov6v3gwzKIMZ8jQkdQ2SulxMwgqCp1dL0TEYl3XWSYK8NbiGWYluMqWHZeWXbwPKJke7jWNCIQV0mC+1qIWHRDyTE4MhACENEKTsy0eynID3UHhuCnVt4GXqUKbjEdSs+REHLWDDtnUJWg6Jh5sspVyiIsnStO+JDy83Pw2PptKEmS4UqGxqpki+WCJw4NJkSCZJTb1YnRLMm6q74CU+1QPm3Lcd2OGVfBjmV3u3EC4Q0ec4s8WswdZxdNyTpFF01lEfOsbdLtkJ/b7RxOUNt750p9llo5gaPHIFyuylofGWdhSd8z27Ocek1GVfnsajTTvZtgFqsiYNaaIXLKflbBcTWOzbiUa3IQHVM8Q5zv861djIqpjlK6fTX0C5FslENN4ySndDHHNsy3jSyICDOXDrdl1gi9zyZx7Jt347SUxzC4YPjEPl0bsCXXvAWWKuZSLjW1+ioXvEVTUAgFbLvBfQe5DH473ZNkmNvVp+0ZwikDMCYU+xAR4K3kWDbfDwxl8dJ0mwIpWu9pp6QBoLjYKCIRQWW1KNwMUGnZYmDlsUu0rRBhrrHST33Jk5+stl3wKY2DqIpMMeBztrToiMVhtGEcEtqL2q/wuWYCB4OuN8Rdt1drOYbAx5S7N4X2mc96dBNpPwlNXIchy5GTFLt9E2r0AJhOJe05K4DWMaEzPYFjCRAkbou55LBsMfiJC8dKdHGBU7bnONH77TDYpdX2sxQqu0ZoI7EUA56owhJRk7Ov8IUuY/5ytj8z0bclnzpz4zPMJeTymq6fd1Z0xJwHNiMHOpo5GfXOwp4hWMYAyJ/b31Om5sF3t7fVYds9zJbEKJq3EAGSjkW7kF8gGZYszCAAiF8urB211WzHUkJoZoTjGmtu9dq2HlpWymSuOjeN62IeN98nt7CPfU4JkJCtwF+PHg54ESV7mojUdj1OkNtMvUSFwSEcdOi8r/NL+hJoLzvVzjoySXOrdlPJMWJ5nmlBRCJtFZ36SY76uj5KG3ukDa6yDDELZptxBPQ7xJiDwec1OxKEy1C+VSnG0GZ0TD/NLTgJ5e7HfIGq6Joik1OsRA8hwQxqxPQXdmLddjQoZedFXcgDBooACdwzK1CJCqEgmCvnCD/sUSBpnIDU6lhyb5e30AXOK616lvYFUIqWPkE/q+gjTH7INSutuipClVmVkQgvdNb5UvCxqI0F71VZQUhRGH+BjAU53Nn7Dk7SNgVZOrJuE64Iw/O55KwYc+4KSEmdY85+FEhxdIoA+c8CLPAxgnnEkQEOSKeLsFxLcMEA08bq9gFci8VlVD/MRxoZZY1VTIku2Y7AjLaOeK9ANBF4k2jFK8a0ulZLyLFQLVNAs5jTwPLEHBqBX4458ttMOU2T8gIO2WemqqrfkUmepUuHOAF0WfIYevtRa1Mhnn6SZJaLLLppsGBjQluoXExB9p5ViFg3GAu8XZsBch4SsHcdgSVc7FoXhygZurzP0nVWK+qSWLmgA94NbW9miRwlzjmFgTmc/bCdFpEty+ln2tdmqD2WPrI+WoXiNTeSxV3l6qJWUpcZlMGcc40U4fHZlGl5/+sQgD5Ocx9Ei3BwudHWgOgli3bjsonJEhkA/j9YDE4yL5rLGzpBDhoBpfDu5PqzPhCJGiaumK+CKl2qY75imN8IN7JhwcpNnQdnhKWriXQ1xaev62K7FCbSOciqEMhpAq1Eq7TjEP4ReM6Eqwx7b5KThXYuqs4W28eii3GcXDB9QNwuOWLLisIFLsP8vJX9f1JzcWephKatgfX1/ZcqpLpUTWY38jRCQLpFBjZz1ZvK3mfzOJeYsh+ioOCzLEy2yunEqWrmI0P1ELhW59uZ1q6io8BuyUrKFe6o50lUd1+w8+3AS7FEZgc7utteAqoQ1MqzwC53jsuV11rIT4aM9nCLWTly7DSPC6tAWWK2tpvWIKdg14HnVBH21DJjjNM8uy0r5dJ3SSfcVjjQVun1KusbhH2WVy/u157oQNdtj0DUypa2rDGzpH6cSwEp6JcxcgMxRaVw+6467Y7li0TMDnUAU+nZHHZQEmdl23EKRmboCgWmi+MyEI5W8FYsUA6Jw9zJyASwoxJ8SqFPnRxSWzm6hvZy5t8FXfRdyWnKBHostcoLzHch4xfBNSZlFhKKx0Fvp9+D3ZnI6kvlPII9vGELMB0oRMxdwfI30hBzV9P56cdc6jCDsYhJjAy3zeUmt6rMSKOlApQsWU5ODht+N4BtxpRSndlwIVkidpIa/vSZpf8qSTh2LwlTOpdSzw5WhuTMvdXP+vKzIcVxMo3+OPmY8rl3Fj/L7LPJkQV4ZEMYOAs96F9Ia9jkOjWM+GPuftMSEL7thl3fVbmccm6RnrXsCZYGczAmbzbvXEqonyCExjHlYwmWgATubCQshLWd4WmexWipxebcIinEtxKVqL54b0eKEc8mqo6EbDcJEet9ytmf1lf4fzMnO2b3rqvzBEPDuWYSdiXHlkk+mfyGwkJLxxNrAW6Xo+16qgLgfb7eSotp4gbkJJ7sgrmYECHWWjLJWfqPYAE2iPNrLatBTREMeqaDOAMtNRY228NwNMpX4PoAWQZU5nWMDh+h36VNFXmMnQCinX8cfcsaJw5h9buah2Grbh4PvIOVrKX4gwumesUj4U/P0uXMatc5phiG8QNKWgA4ybpOw02CJn1KxcRt3rE8LG9oElSJ2DXu2ExXJTIWsYy6CoXgG6wGaGENGq44+4Go+4Ob/MKepLEbKYaR6P/rxw7Q0Q1j72fr2bOVMhS2UL3BBzaQRKrE61cDMVNP2Vtcuj1TcVcD4b2Tk1ya0+ba+QT6aV9zPmmwyQ45Uv7sQ99N1qpjNpLAVLrbjfvgrXp79wo6tbZ8P6NoTzU6DahNHuXgS7H5er4djaWk5c711xwc+pzrU+FmA6piY+wVPEgDSby+Y2bgyRgGAmZfs3NruYTmN2M2JM0nCbvdDz7JHMBmZDYbhZHWG86zKvsHL0RPr2T+saXRQF7UnaRFwriWVIq+IwqsZwI9XF+hbkVTliAhCrBMuyYxDFNeNTK0Hz9oKSc2TQ/rwF/X63brxQ5zpkuRG5jNBK6QaX8Mg+2YCu7aTgdW/RtmtBxbqweE0L/8yuQA3Hq4Q6q+Q97jLbXxlO+IZta8+cJMBtYzZH/3dDT3OyZLc7mNMOQF7UgsKNDmx26ox9Eg73AXRxZEfjNqdC4VGtXAMlqcJr2MI5MRwd60o/lXXdgEhhMfxBuMzCuLEAPTy0F02S163cTa+j7hQ33L0ihtmMTOdFa6DO7QuH0Dd9nsxsAQUYwSoDq2zGpCVGwRZ0T0h0qw63BW0ThJaGDqzcRbRIYFtK2WRuk6NvQtY3W6PjsooEd41o+f6BDMJy0CSJ8LdRI2PBHq5xCGJOuDlSDTUXJORSb4iznBOlRCgnDYZDJVkxJpcWTyggEOiQbYosncfDM62wJGchYzG1RTxl34rNhGgKmKYpTq0czSjTCrX0NXXdPMtauRNnLWv+msaglyNyCXKXwCuHSRFWegX8IMWB03v17DtkOVo8rxU4NzTa+uoaGMfIxNO1s5KwA9K+/scygI81QOfUKMG5rFJxtPbwEv7GoohcFLTp6WWQZmqQ8tPS/MHFbKiZ7MJte0qoPPYFIwpFcPW+Q4JOCsLBDjPPEfCNk+HWZC7jL/bunkj9tHuX4duWHKW3Zi/DAJe5s8nf5Aq6CkQ8dIYCrnPZJ19g1D+8gekleMOe+YFJO6ZXmhcr3RsDzrrx1g4QlMdlCGqAluYXSe0Jxr6NDiy9OWcIu1LFE6XxWCo9t8MHxTcrwTptl4W3vnGADpJ2r1rh0oC7Wlf882oYSYowlUZeGYVa3kT3I7I7PSeGshdIkq8FeHtBNd104zMVQBa4w6ZqYLErCW5QRKmYmnpiFHKFpKz09C4tEw70PIkja8zcntDV/ZkOM7aI+svDKWi6Kkypj4JHPKjikrnY+hxgG6nvWEdwRXMhlwHLtSTa8wxeiajG7ayjaA6uzm+qHRLKPzaSot0R8R6BkzmhOojClGy3Lsc7OTVCgpXUfwZi1q24mp9foVKA6JiXHVM0V98RtWlr+ReaPGbmItHYdcnIHEW8h6yCouqQ5WUrmGIbP//3YBeHLzSw4W/IpxgufT+mdBRSFXQ+iYLN83CS7UNznpIa+HTKVGfvYaMH5I2jpEMLYu2xXp0e1jrtvpmhL6WI6BoVqscJmLuQ5oP4wZSd+UHStdqqe9r3trIUPCV6flEDB9eBTCJFishehPMYdlJXwzCUsmW839kKFxbfr2dluCjX3FjrDKgZl9++xyoHcYMmPwPXN3JKrRMuQmp8uMUS4K/CMSsUmYnc+mZiJwILP4nGLVHCDjm0+up6BqJ85F99dFyYvyqumNfS5cdC2Ft7QUVsLzCE9ajnYjZnzHcmz7O73FSyavQAGH+d4xLRSjE1kova+lZ1meCRJ+srq74kIan741i0MoqW4RFFl1MuzYCeJGrmu5bwqgyiJkJmEzBPwaN62nA4lOtAMWby0coSx0JKSNaV7GdpKCrMx/x4rP3dzXrrbhLeolD0PIxYVek7O866MXBmaYZ8HUHLgbzXma8X+QOVw7ySjcom5kFQYzQiHpG8Q92WLhrkv4adqciIoYQ7NdH4VBySNUtcCQdy42gQ8oUj7Zi10jsuTg5OsuF6NltCIxbKU2VRunAScpfa8loZ/X1G4ZyEGI/NilblxA8tY6BXryD0wZDGmyHZlxomFVjBx+xRiLYF7Rrr6IQ1uqM5dC9oWQUaoiEJDDxshlkKCK9WOxh+V2g+4z9q5ck54GFfgH6FbO0R8NCx0NufBpNaieobmhdyGdn0peGHqkeZVNzkn23jVv7Rj3Npm3r93Iuxdg99mnuYVQdp/rz044oMF/CjquvmXe4nC/8pgOSB1gVg+mNx9DzkwSSd8MYmCAHw0QwLSNEUeBcflKfiODKSFKERpNPLVdRm4KL+8psbpKh2MuY6guY3B1FBZReBO0BswPUAR/1H4ZLUG4GB5Y0EKRicEBkkgcq+ByJjvJ0c/lF3xqQNs212gzeJ6yKPiSfN+7HDcFc8TQT+7xlAM4pRmvCggEP4nQMyRVDv8gHfyAHbRjzyjGMWF7+WeK7yNWz03McsZeaRarotoxSoartyVm04XthbUsKg4RAn0eLEP4yrSInBXpIQHXM+6sI9whwwNgXLCIuh0QbRoHANYITUz2PSxi3+Xg4S1tw7I4sYJFzIkIKnHHaoq1gEtUy0p0tb1DHFBkQG+pptA5FLEzCwUrutIJNc0SxoAcWe/YTFJKOburSxJ9WE+GjtjaUk6qdSF7PAdWpGr7Epmh9wZToNGK3WWwluXOB5q0HqYByOL0pDIU3Ps6MNVZeu7cGl+FRdEGStwJkwKa7bHQSanIVGWIDQ5XF5Rn5rwu+ThYAKKdpAOMqJ9Z6u55uQxTbZlg6SXrOHMzzeZIyf8GBmphKm6YAKerFa8qiLMuqdwYTVuDgfoRZyolA4rZpuZ9hZXHzR8sXfGQU902tL2wMjitXLv5lwGkgI6PxKF1KYqH1WdZxHUnd63AhbwA2BqltpQXtKq94ZNR3kySBq6GIsYkDSlQD0CqbYyWm9wBWsMsJBXG7htgpxmwYUkkmZoXVYsjQiLseR9cPm9cZGkuQcBiO6Si0URSDS4l94islJCt/FsMvwYWM5q5YNAaq3Y0lOq6REVnJGSIMaMUmf2JS0uuu7XWVVCi2W9z4kW2QWtswnSjjDp4C9Nzl9mzDZFkABIaEmj4ppa4qIH1tauWMA/+ZvRt4fasgwrm1XY+5EDsoZko2ZC9sDlVcy5kc9jIeD/k+YkNzw7rFw1Ix1VCbzwra1QOmL+cUW0tVR1Tzrz+ngmlY8kjFhg9T3cRS0HnWNp69MbVrb5lvnCjy2EyKMcdHKI+KXg45iVhKigmq1HFPpcH1Lqro/0cQUmjKHv0q3rWGbJC2Cz1lt2Rb2hVdjfaU18tOxZt4y9FgCwj+iGlyMpYaxrvjyFQ7lztvzipcr4270bArCzyfx4pk6nz31jMlMco+NO/jbDZ0S97G2GzMrbWI3fGYokM5kBsm0zG44fgyD5dnFh2bhD+aCaphT/vuh9S+isUoSIgE0Y1zV/X63br9dYi8/Yxf3vp+Qbm/aOL0JUh7d3L0RUnf0Nhulr+H1Si3trma4Trcn7eSMKuFuTtxOx5Q28pa8+v3NcXbRmi0Q7Nfxez2RbU522+hbS+e3g/mshuhbQrmX2L+CnsXS/EV7cIwEJDDDX0CqlPR9Z25cPi7SLSgolux5jKcxvAIxDH0NrhHkEozGJAnNWbG849c968Q3cFbyziYv1Ov29KrT3JP0iVo9QDpm8MDIu1N3e6JC28OznHuuBqx+TIkuoNXWvVbtqFNqRAJhvHEJIQDJ/rfBxdYKaVkiXXddmHwvdYY5FRcV3KJEI1wMWcMbFFMZhqQAmzDaRZHhCDXyk+NH6coaZmC6JldhmY3858s+2sfhBSQ81pm7ndU/Ihkg9gk03Kg2iVF5ANmmVWCXp0wzi5UziO2vPNWhvMt8etyEX3MurrrX3GOygxWgaDPoUDGjNrwrbA92OrcF1g/qEfSm9zjMf+q+L2V8Ut/EAi/1+mdvMXpIgwI+muRYa7GB3+9zrDCRm9Y43sR1N5Zl59QAwCs99bjl1QtWe1KgK8Ee0okkRK4qEFklKiiICajnUaA7mLWF+AGUFYWzWdJ0ue6YZJ9vRALE9kXBQS+/UQCOtCRlmG8B5JFPjdQMg+KzmTBQwExTOLFsWPLFM5x+rJNAGX3NOWybpNycGMnxHMVDLx5iRmVXYLRIVQOxiTDBusNGWfU2i18jzUtZktfxmlhx2pj0oZUCZ7YGEnOREhCR4DC/+VnCFWFgrUAjYVAAtKs/J9DpLsgivl4vucx7LrsSzE+QfC8XMKZ6sZz5gNHLgQ25SQlhvOAOCc76fLSsmAq4mXNhHMrHbFpGE1ERKJWAV0VIl5DA+uSYcML8SaN2NVQoHpbcZS4bntmWh3zGlnLQdixPXD1C1ChXG7MBfIWI5kTiQFzSVCqmICz77JCZEVbsbUutlSQuGVqlrHzHWOaXcyxI1VswG4qzZ79DGHKoVSvywOFqeTM1JtJ4Lx/x97bxkXVbu3DUuK0iLdKIgiMPQMKS2S0iHNkAODdLd0inSDdDdIg5SUSIuUICnd/eIMxrWvfe37ffb9vt8eP+jPWWud66x/rvN/HLB6hT+AAuEYyn9Qo/z5zG8gkmsYmest/K/cw7+4TeDnqf7w0X/iArH94giBTyLrHweDrmFs/k4ke81YwMYF/CMz/3e+ATjkEUyncsH2DXySr/FSYHUbbPDAjB0O+nY15xy/UAn/zUnbK6+P9S+QzOzw434ccLTvHzuXhZXtZzwC+kui4CdiJgw659pPgsM2wpkJ4Gg414EJzL2E73LYboPhBcH1LJwp5peEwFFaOGD0Bz+JF+AcBSwsrH+CQ7Fxwj3Xv8I/wXr967QCEM6BfI0YCeKC2eXrosEr1Qc74MFyDQAJc31/AiJfTSb8jbCgAsYQDYME5/zVLVYYRgUck+tK1FngkPG/OwL3p2GKCA4nCfoNJnhlqDlhWW1YXSm8RuiHWMECBhiRys/3/AGpyQqz9Owcv4bMAhN+WNjH/quk9T8OGR7ew+mjWH/GZL+f/udJ//0gEG5yfj3zP07O70dZ4HTPMISZX8//HuDvG1nZ4LyLf3nR9XL/cRccNRJOaf+rOfZr/Nj/P9btSqXCAEPZ4FU4LL/g+GFm/Yc4wovo2P9OPXwN5wvHqP8JPg2zVDCack4O2CLB2UvgWRu4mMNxuuEqCk4uDIBVoLPCak/gGhXAxv43im7YnuK4xi2CWY8rTQH4h25xwpOTsGJXFljZHpwIBZ5GAcIO28KRA4FwweGC7TVYrA2PCwAgeGrkL5TisJ4CYTCZcA4fGGIwzBKx/+sFmLYGcgF+o5NwwXFWuH7VNP9eIjjOGcc1vBKckA8Go/w/Tvo1Hj8Ijk0Kg9gD/q3j1xCisJPO8HNRMF/y/3gkv1JRLHCnF4aK9M9DAf3PQ/kt3nCExWuoRDbY+eUrqwvbyf9uLX4aZk54ZQbLL48BCK8vAcCyhjBz/H8+zOt4AQiP+4H/Biz99yjhR/T/h+0I4vpJCACnm4ZVoIFgGOfscKT8axGBlzBz/fL0/y4oMI+bi4OFA/g3SwE/YgaEI9lwAn4iK7Gws4M4/+zO1YhgJR5ccNJ2WJ6XDYYM/WseAPDKb1a4PWKBw+oAf9H4wAQd5n7A9SDHT7j1P3vE8WePWK/3wh9WCARDz+SAQ0XBegRigYO1wTJV8DgHpsThlbswtlXgT1Yy2O7ivIbTuaYD4ITrjZ+3sMNrSmEeF6xHIHgNEysrzM288pphpf6Aq0mGxU7/d+b+i5n7QzPDGYBg0wY71gfDF4aXecOBPn6F2NfCD0NHYYWVXMPn6yfW6DXuItwhg7M9w5AL/nBJ/x5X/ZfCDvyF+wBbMeB/Umms7PARwh1ZAGwSOP7JNsKQaTjZYVmjK9mHg6axcMLTS78Gxs7Cfh3vwL44csEwkeFhxP8LSYcVB8GyXnBQe7hR/yc9xAKEsQ9ds8GwcMADK/iHN9BPRoYflfKw6Bu2uKxwSlRYGgKecLmmjvmbHYeFyfBIAhZDAuGImnCI/ms4BOBvPfZ/sFBATpY/zCjwmoPvFwPZbx/h90LBvpXAV4oNxl0EB074t8vEAqvDh/ma1x96flgamKoFwTMN8E/q8MocWIIUCHfArkLxn8TOcLR0FhY2wH/jKPwg9mH7w75ywBC+YJAifw6R888hcv10hFjgV2GB+r8bIAeM3ZAdbmavzSsc+prtN7HjX60rEARDPoJtbTgjEvxIKox46J9sORcQjrXJ+ZN6+69tsgHgSB9s1yTxsKgBPqRfVBlwrMErFxX2UeW/c7d+TSI7LEHEwcH+nyQaTp0A+MXADK+KgzkXv5U/kON39RUcLgSmzLng6LOwVYJDFgK4/goMzPJ3N5btp6n5vxP7/+nE/lKJMFMDH+2/Y428ntK/0bbCE0fwE8usP2EKriXl6ieYjfr3dKv/Oyfzx3EZGPQ3iPM/zCaQ/Xo2r3wH4D9pMpiW+ldOYPh++SO+uQbIveaQhvvR10ALv4GA4Sl6mC5jY/t1UOFP1uEfdAqA/63R/VEQDPOzQID/FEiwsFzb3SstzvLP5vZPBjmYnw2Am96fUDXXNosdFpvCjRZcdwNgsL/wJNd/KxygX6obHslw/mfhuBZ9Vg54NpfjH3cqB+galgW+RNeA1HB+JDYYXMU1lSQ8Bv+H8Pp/O56/maK/DAcG/AWHP4H5okCY8YUxHVwDnP/j6P7OywKP1GHJU3YYbCobfN//hZzkytDCmV65/jcKDfS7PP/HHgEB/9MgYeBk8EjvXyCu/yW7xgHLY8E8chb4ySN4sTvrtfvACaOPhjEjs17XJgPgpy844KfVrr91gIB/Zj1g6OucgP8J9eSfOgJ/w9ULYNlq0E9GI9iXPFjtNMz54QDAvsFdtaZ5ZaZozKEGYAgNNxWNDdjBhhFsrgc2MDCxMGLUNdBlBABYaa5uAVvoQ3/8pm0ItTLXtflxs56uNZiTncY12xisawC2sg57awy1toko0rU0YYJagi10TZj0oebFuvr6YMurVq8biCg0cjKxfExlADaE6NqA8/ShFhZgfRsTqEVEnhkYbMmoCzGxA2fBn4oo0bW0hJjo6/64zmxqDbUouLrfBmxhw2jjaAn+++U8W2uwFaOu0dUdERWyV50QlGCWc7QxhlpQsTCxA5kAJQ6M1ja6JhYQsLU1I0T3qj9ZlrDrdX9esNTVN7tqhNHualg/epYFf7joz3ug1hGZ0rr6sgp/aVLXSt84IlPXypyTvfzP361sLWxMzMER2cJyf3/d9cXfr2NjYmFh4ir9S8PWjhb6EZmGuhBrcPVfHgbbWDky6kOv2ohIAxT9nB8I2MLI5qorV3EeiCvHCmxtCbWwBntnXT1oY2vt9fZqNcC9XdnmV01cjTRdVvLnMk7fIHorcrUyEQ1iViY/RI9KAWz5Q/TYrzYnN4CLmw1IJS6tWCB8/SLFf7sQpYpWuhbWhleLIfpz4bP1jW0tzMAGecL/dsnrfiz51Xh+DMAKCrn6EQK1Z4RamRiZWESkPWr4l8tgB0uoNZjxutMRBaqM8uCXtmBrG0YJkQL49mOE7euIqn+/q8uvb4JaGelamDjBuh7RANs/9k4O9gb6tgYGxnb25gCQEzubiR7YVt+w4voRSyvoj778aMzcOiKDhY216PrKzxXMu5ovACMLgBHAUmttY2Wif7Vhf0yIJdTKhtEarG9rZWLjGDHx2FzX4cdu5btSdj/Y5gE8VCYW+hBbA7CCrZ4I1Pxqja15qCytwBCorsE7B0arq3WBmJibXC0v7G8r+JCtI97+YNeq+fsNNlAzsIV1RPaPy1d/Gv+8wwr8o/0fg/jdzI8zvfX//qafTbH/YKQFcrz7613W4D97w8Jqbl3z9xuum8i88jjMrQscfj7AaGIQMXH/6j/aBuwcYIAu55XV0wX+oHK7CjABehxcHHpsbABDkB64WFiMUVhX3xjMqADbxhHZImoygtISwnkKV80LQ6FmJuDXnxGQtLX1DbX1zPmUnsvrKj13YrMXBrFLOxgIOcpYAgylrIAvn4rqQkxNlZnA5lJQBwXzKyvLyMLFynWlNa/ifEYWJgATCxMLoySbrdQzMyOAg5Sjva2IvLSxmRynqbAQSEhPQl5cVt5Y1VpM2MQGKPLM0EoZqKRtDzYXlxDXY5FxeA7W03d4aizN9dzUCWL38qm0MOtLDiawsCW7pajR1YLq2hjzMfNQXe1hk6uZ4bsWNMYrQWOEixnbTzHjoTKAbQM+pr+qVR6qpzY2lrIWEEeeK/m82k/gq391zcEKJjZgPhmoBXjizdUc2NqZGPApcgAtQSYqYmy29oKC5kBOeZA0h7EuSFWXXQgqbqTLyiFjJqQkKqKr91Lwj0kAcHEwAq7n4cchDdj++d31/7JXVaqMf+oNRlnLH2J3tY4WUGsLE0PDLAWw1ZUMReTpQ6C2BlcWwgqcdbXm8oJqERVAfZC+niGnATuYCwQ0BOsxCl3p3p+t/dIyb3+Yl7d6UANHz6wfkmdh1HEDFZmdMgjtBuwPUmK8ZHmZVGTR0jlDskO2jY//E/yZYLautNstSAdPcXDvgpQRRgYvG4RTQhv0xb8/lx1tblfPUoqz13LMvjyGul+cDRnaRshenq0NCGyaJl4cH26aHU7anC5pu1/Mz1ycHe8uCbgLXKY8CKJj2DhcVbiguDwvO/kS9C3F/XzucoDh8jDN/fx4KdKR24uMNQQU4UKa4xckXOm3sxcnaPfwcbWQRF9w8dpE5jGmHUNTmvjmp/L9z+/lBDeDJJJQ1i6agYyv9j7MsDySHVaNX11AbHsNvq8dgyz1ysFedwaTI07WTCB4RHoE/zUdBVZwtMFCedfD4Czcj9+trSMn7iIS3lawmG115NKZC4vDTPmwGhlIsdFd04NETjDurLtHJgUY6C9X1DmWklj/wl41OWWkcmt8JWTdcoR17v3xvSdyOaW15g9jaxpBbcYOLHnPlTgWkwoEn26s46UUHiPERi5jeiippE9lxQaDHKKYnxZVI4kdn0ZUQpGRiXbK/FHdDnuzno/vbdGs29SndPTqMBqgcTZ7sFsufNL5svtZqBtUM9zVME11WPhZyI1ea1zg2UXJNylxHxNGdHYI+0yKiQwJCKRCGvi6VL/BFRIKUPQm4/liDg1ut+F9BH0qWsFiCSpYa7CbI07iMFUsJgHoKuEATVZ9e7+me+Qyc2g9LDlt7QdDSXrdd8XpfQhfPeF2PcO9EedRIYvTruoy9nhKC9myc+/Z868gnYcHRsjFN/1wwWZOHa2fgtDXLqJ19u9W7qtzWyFMWvLO81JkGZw/XpOWuN1AdectlzvHm9obcor2ww6JA6iCVq9Su0jvdJjzlMYpQXybtymQoy0iC9S+iKQyjUXsGXz3izOLwOJZUL7rfsSgeh4WK/w+BbP1vQ2noSQTaTsxE8GBRTeBy/xuM58vecMGj/egw+t7x/sfyMmGvF8XBjrM63YyYFXWlEgtAlSkj0JVKLuRbq/GzXTiEplV0yROYPLvnhq/Uq4tL80ewdM3Za2VG0VH8utDuL8LfFCafsv+GW6BLOo37olX9g/CS5AQw3HyxNOlFDl1prgzDJIpqp/yq92UWuQYLXeM1sbfu2sUVFg6jhi9IH/fe4w2e7SlYI1jqpksWbA94tUA035Oux8p5FV/s9r67f0umUQqvgPBQLvQi70l6XSrZ8mBGmUf83bGXr+lWZjOl5YWuAf5Ip12WyE8uaSOkYu4ri6q8dbHWfl1lo8GFqwvX42scURmc2Xvk+1KY9enruWQrHGV9Jbfa/Xrrh1+GCYsJpMomIr4VKpQXMjXxG2cFUPwzvOUGZOJ/tpxxi8iiM2oWjIXr8lPE1ycDwhs25zXilUAM2/0BoSQJVRId6eURY5G7tGg9sc/JqTYK1nFJyw9KvL6ZhnnvLwS77srg2Q79n0BFZHqBgQ9NKZwpVKOWh2S7KsWcKb0hpRQ3ebrx5vIakK5dSGpSuY40wNWPcZxYIbviSMZiyAP1PZArUffopkHXQK/6IYMB2EebSTqQx4rNTQ/VJ5Te3cLWX5mZ6ztVnTqFCHn5wj1LoI1sUeAiaFQEquHJHh7CvijRtItjWP5E3fA4c3LdpQRFRNsVRCeUsT4OsqctARPFttpB6Qs2ypL4FNu1YolkK9Aw/s2M+3iFPl3gmh6pNvMl1/LNfEqP7ypR4voXh7JqLFBqVjQo9nh0ib8qiWdEy1OuvTJvF+Vp+BpN4qRqMb8EPY8Uy4DeCqd8TO7fynKSUTR24SDkENcgwuqkXs+Lu7v9OsaTAJ0Gla2VS7pXRe49Rdlgj2ea/AEvkpC6wi0pa1X9gzmIHd5HXEpgjDs2GFcg66cohVjgNoTvf80PJhO39SiEtDy2ftEfK01Gp2b2nj74FbLO8djvIGHzFvNfVKDXeSuB8dfjGIJnz9Zl6THst59J/ak0EpEWvZ2rGVDMYhskbB1rPK+TmPBxPbhZQnXxCIVmZRya9vC5/EuvgHtAEToVmw8S0iYh+GeBvZsgrZx/iC+jfOxz+zaTgCa+PqXS43Lfk8C9vreF5x12Uq+/fPW6VlsvBjvGi1R4ujFx5sYxcreqn33cnZSjNA7OYxP/M7y+riQONV2Js+Xiq9Pi5hk/KNewLSOV4CqYHUoYcV2gg8LuwYzkWxxbPpXNxZ/e31aCFP7Tb+x4YO4S1+j1BdMW2PYxGy9GRjcxy9SNaPKDZI/Usvf7ye55B+oNtv1ilY2earmwztn3y2HsLTNnwb5YtF8omp9NES6qgjqyZL7EiRHcEh7gO2N+DTOi4xMNtHPg3Sirf/GGa7Wrqbo+vpk36J4TEcJF5D0Zn4G8ZqwshVVJpfU4kkExi59Gf4ztySa2cy3yRkKNj7Hpe76rtVKLRa+JtgzYbd1Rt4lj39B7PTpP8f9VAIy6PZvAb3KlZ+WuFz2deKTpvAsNFFY/RDSjca6R0wX59JBsjzd8VmBvbWnZPupfTxp1Yn1B89RMZ7gVe+b4++QUcaN6DsbKRW7jY81sRkzpuZPrerBkeZ81jVCVvd5ys8Ndl17dkvmtXyS0/1ZD1hRyQ8yavR25cmJ1OI+P5kDUXRrHIAAnzLML0Ie3H1h8PgMWXuHPQ0vsHh4ayxtlc8jO1b+kETyViYPkUdkqT1OynZHc+JLdkHS12y4mc9QDDgO+YKhD5Aow+ig4bmMVMAX7eRVAq0NhlYvhMdPMNMJvji2yex7ExB1vKO5kzb44J192VwMZc7h8plT8kcORHxBwtWVGKMp9oMsH/nxKAeBbE4N1ZOtZgdt3u8FGmOqDkvfEbYRMUmYT8072IuUEN5X+UVb8mLt1qNyF3Q+Oj3owQHsWuK80eat4hAYP7KQNTr6Ji4SlM9vo8dCQbt5V3zZ5spJFT+M8zttM5McqQxcO879zES2PNVBsJvcXbeDe3MqS/7WuFaIwQMiobdvZKL07wYZua/cjfcKwjjco1/YBxTcypuNzqFpt2Am2TUIYHvzWDuzhnmm7X2cKuoEumb3C3BFstJ2hLdQEB2ZDQlRtNNq/5YBbWzXsQix2RqS5whSto+3RkLfKTW3EAc+SWC1XxTj14nZObU+PqcZfFScqs+3WqULiIznE24ezJMe1Q2oU0M77hLX6DjXU4Qn5kg3GPQrdmXJboxPZfLodyNK+/ZVpmnzl69OFQU4ZRroB9o9K5cmyiSOaOOD4rSzVd16yHWTWH1GtfiLka7+C1lGf8N+8fpw0rYvKOa3gHc4xpWOP19Ou2O4L+HXjpZriWhpUEcP38TcMOjNyh2AgOwJvJKkWY6tIa5iW9/IaTay2fWzE0bohV9OuMxXmy3Wn6GeHX2J5edW1XicRbVNcNaXMkrJVlpwN++FCmvMPlaBt7qTB+OKEGalMYaQmJ33OX2xwU2l+PChhRCdxbvoEmYB42WbVsifRqu7ndws8HYioDRnSWMXriceEu7FyDu4+GgO+C1UC4RhzZtL2Z8X3hE7H6pjYQDxVZsSub3jTB81x+/ta1+s7ElTeGi+zR73dtY/WlVDnra8U4oQiqRBYWuKeP8uf1XxJwb94vmcyz1/LYxkWvTm2luFsqpye19UIGq8IX5qpUMl98TCdJl2vqNxfHG0cce9lSBtARG8FeEf3P2opcLeAu2EKjInSlK8Kt1WtlnW/aSb02yRj5nGhZcDa/L0NdZA0jN5+nekkRf8su46VliSE4mDiwnMQkecKkSEKciTxW7EsU3PWM4s94QMHtr4TilE3hvMOuU7fiMuMGHFB/og5OYDLCt6UHJfGi3NLxplciJjgK4Ml0HOfxThclGYhLedCINrraeJhG15FRffxivA8gRVtCMRAmixwQV+f59Nn2HuSkTdJCy+Wo5y1j+PseUcYEnE2kNk5Pj4myvBwh7whXbbKmaJD3cTAHGVv1DNSspoduC7B5aLHbGhBR0tINix/QIite/kwYU1Pb1zq48SYuACGcTltdFqd9pppMOgnkfZOA3yZew09ROVjCKWUWnP0uaXVN4fbr+RUy4svNnQM75vu5g2kkQS+NidNWcmm+FsO5nIgtfd7oTch/82VWM3hMRQ2RM/ObXNEkCrWybidIfelnbniIuyV29JaHw8+w7P6jG71ESdzLcNUMC46/qCT5k5g9fyAVFpinlScKlEw0PthhZDAjNtV0ogff1cEEXN4VCquSu54Pttbv7S0v5xNXJz44FBhHnI0Kg+5DkN+T7urGsDyONWxSQqbzKq+COuDbxnIy6+M4fZ/bxRF3ojobc1Ll9ZIkQSqjajcF5GNuE7nu4eRRiN28592zwvF9xCJy448q+Sbco1KgyFNl14VQFvBmN6PafXTs7c6MMKsQ0guW+RnBhqZ69BHH1rgdPh6XpQuNy3MqbCMS31TL9XSffW8bLm+n2V6hQkapNGIMeIpTTMvbRr1Zc4rF6ky4j7YkP1NsG2QBsmB9oHUajVZTkTIJfVcLpXooMxM9HVx2g6xgT32jUvCoxcmQN3VFK6LNS0Onj71ZA3LlzDkozvYb/RZfbr75y+M/cobgL4ENcrX12rlJHYrqyjLQpp2ZW1+2TOv3TceMATcrk8uNiocNOKQwEtHz2q5EStIDjEV6Pr/DReJ2qtCml/Zgtt7dligE2oJieftZ/3E5rgVSbK+28pphGIKOWDX97g4aR4PukxEcSzWumCMTq2tCJoFa6CeCAEKKi9G1x2asND1mwd7jLD7DdpYVG6CuB+PEBmrUPoTDtSnLZYPIntrvDFLZSeyQMkhykgDV56Qbg6bLZUPLcXOhfWNPIMhNG6OOJAJYPkUbXAO7L+zZGn51Bj46vXhzcRfvV9afJxSLiUid3jSl64Hkl0rx1vW1U1n+UJqw1groZNYiZwT8V4vhzkMMWWjnXZ9/Um/vYicGhJuynAe8Yp0049khmbCjtx8HmGKU3n/tX8IeeJx8rP84tf1Dg3PIullTmb90uzDfqO2uTyaqo5IDL3kwRW4wXS14F25PgadSuHrhFM0B4y7WSGieVrS+Vp4HeKpNLlTrBPqAv7oIU0SQoZLQmSgqreqv3LONyyPhGHMqgRyY7S2pBRwp2tEe1WXN0bUuMFFHenv6Arpbiw52TUm4PdjauAZEyPVDO7Nuc8xfxP1ipIfQ+VGFN9FrE5jMe9wFXTD9/GbIs0nSwXa/MjVYvThTs27nM0mIsi28W/bDdWIy8hYaMHv7Bnouhp7ItW/3jUVJ+fYMr9ONly3wAcs3bkEqV1K/9etueMmx/QUQ5Dj14PwVhXVhGcnhARlvLEMqKKuyHnq4Vqzxv8wIdrsqvM/azhLhTeTU6ZJjz3EqCVUOFM99PxWoyQpjsVjAv7YFwyN/6b+m7Vh/dKinuebc9PD6NLLco7anzCTSh27ulaG3JsuhCrSmhjUBNYGWs66kKrm3ri8uF76GlPnaFT1Y0Ug+jTtZjxMoqREq1NM4SoA12cIsN7+uvmgh/Ki2erm+oxfQs/KxZlNtzJ+MRxMA89GjlN0Y7thYomu+9LFT8wQLxjJY3Rjm6ks9T8tLVIklN4/es+cuy3uD7RZLK0ySqmhtrWqQf2mbuz7CgPnEg/Am04xlJ0Q7GpQ94cyl/uMzQd+y7kmq9WZh+gyZaaKaypmiAFJUl5fPWtRK7Pd4zFX9896UlYsg/HMMM+p3A753jPXrkfY1jduKCRPxPhwD9T/pD6/uUxrqr0d69BhCZbItd+jvODMF0/8ULFd3M7zQSEebfM5/2fjMRREEEncHu7M5wR+m4Qq2Ff6OuUjVpTWWbEGQ7k6PRo8aN8rBtgU4pkJ/Gv8W2AcLmKr3oJkPRQFCNPMzpTI9bkXwyEIbB3M7YO2iDurbQzvPdySCsldZ6IFzB9O27tQtXkJh3pEhBlT4A5vr5iGv5lOuzTmKxoiv4ynRnbFLV/XYbMwJpoUYCw+l4+V7BM8QOdl/Z3dKwBLKGGQCzJc2VHuTCwb1BxChfPua+3Nl+6YDa4jeT2HIZFw6HY5MuL4Z7DRgN+9/pctkfPq7SQHvqVveQqvSxKFzyaZt6iKPNHtu9tJqoopqiy7YhERqMOxyocFl4nKR4nK1osQU/WQ96edQ33x9TrXf/M/vFk1mt1ZjdTIFl4aEN0e2BAVNMvtbIZZ+2AUSZ26quymNCG/uaczT79+NuIJjdMTuNlr3XmaZ6UW9oU/LTlKUCEgtfifot64yUHvesGqhAu5zyTbKMOH3/q8Q9ULcsalK6UqBl7uwyImvaRoms+xOqk029x8SZ9ppiskJvcUEK18y1c1p77du2TrZIRPRs3oaxPJRjl5kB6cX72HJsC2rLeQ7lRctrn1yE6YuwwL+Y9BXno9TLwxmeX3fV2cz6s+AEGqvpTnY6jIPukLLyJVk0BjGdFyALT2Se7tr2Nu9notvNfXBz1drLTP+Msuxq9RJIOkqXZ121jU0B34dvl0/9wKrOAHyr+vf2VGrS2EXRxRszK45dLoc5P18yz/AiELpNS2J8lvFWbB/IStnuWtVLLuSVUEEtiUDJRtSpF7OYY8xRw11WvQcAoJ7kTsS5+mcgcsG5+RDThw1nkfLB0AGpoLh/dGO/qHKRyUh7fCi8j7pu5ECDoftScoSiAQ7rxuqU/XVuQ2Uwjz20pQzRIhuXoOMrBwbYt3nEO4znYPLeD4RPA/XST2Q1yO1Fpd3Ry64ldK1cZL2ri44+ythPUfRHvWiOOJzd5sd2PWV33LbvTw721L/FPq5KQfNkqFRvdCDnqIZEl+e87X/fFDGg3oYrwV3Hu2Qi31TAX6irxqyAc+fGm3jS5hcd9QqvokjCNS5g2aEzMK2qpkY2rO4diMF+z5Lj17eFqQYD5ltJyAqDBmPS7HIN0dCZF/1b905gU92RGGlfKOVH8gT0b4wLdpLfoN0XNPn8tdvPeHyI3sOTsJMXS+DbPla6LRx/kJrFQfMGUkBWYhuMqRBb7hSFt46uy5ZIB+v4Lwe0mN+/Uuysks+dDOBh02l9IiUa3z6aWbuhjWI/5Pig2/+ii3qC72M7gRd70MkfhtgKrNCqE+msNwqmaHniB5ClKvcwLv/PQsfKpw7MnlpvkwTz9RFkaz6yaPeI/6XvYlkx3jiIVy5nkrk9mexIdCOI3Xdw477vJ5iZE7LIfD3mhstXp2UTmiV10Z5/UulAcI1Bxo0ArG3Unl+XirDGaGWGCHEv/YColToe/93TzbIvson9zNeTe+P4W47HzpYLLJc6EHD+Su8g3SRAvlPC7jywQY8CPqGtwkFt+CZKLql1qtD8pELEfebOjbH3xtq8hv97ePrPaC4sBywibgK+QO83PxMJbs3HC6AOtkgsj9zxme4yMGUBcHaNVvh/LFpH4D0f44ybzwReLeHmiufEFPbt4T4Hvni2bQM6Ckx7ptaVo71VxlGuVHVp6E7bzphp1TXTXS67e6a9yEh3RKAlhNI5CJZte90vWML4v1e+FqFVVjJ8f6Hnz2YnmWb5Kq3AJy+hYQeXHurcPQzmHKrVWVxyVG4+fZERxlXNIsVyOCbBU2x0lzDh70J57jgTl0wmRn4qEYguFILUrnMepZKo5ffviZ/q5qF8ZyhyjAzSnHMfvXhiipHRbwqxANldkLr+zVUIqgw2hIG1JaaHG1Nk3NYRwt3VoD2XLXZyJBwNRPPcblZyJPhkFGJthQzgorGgDGvHkxL1T3bQXbyJmCUznnuxrN12MoA2fbwg7nEYSN3SmKMqRvHwyO09kpKDDSetA2Y5MWREZ/bglIHqLq5jPQgYZVWWGa6t1J3nVkHasya34fqeNX7K+/oNJ6SHx2UxudKyFr7ENo4YPnmxYJl2uopzKMXlhX6rKn5KX6E5Bcm9KEvkDs4c6Ve1uxn84Fee/OKkU5BB3PT9wBeY8GhnfKJVyO+WBqH/u1h7Ra/KS+1zH7u/3kHRCAmfWhgRl9WNYou2EZszcUajzd+0KA9UDWqKohhOqcV3CAaMFy5S0GAcmjkAgZ04iCmj8W2+7AD85Rlmt54sS5QqF9h7A9/gKlIvbRcP2Y3ax+sl7T/gamId9ZnVdDr89BN5tFN5ewwiJc5bCP+pXMHbsqXa66Lv3Zcod56KWvuN1aAD6B8NTESkmUffBhT4Mv1rBo+rN8fOzXPwpmnQfv89Gk7O8SOqxeK4Oz3VdHKdfCbh5fmJ8Ntq5nYbIdnd6xoHzYk1C+HSTt8DtMCTfHgn/bOmw0OPy5PCynet21eUl9O7eaVd6dxyF6buGGpxncjImzXGU7kWr57gUDORzcgVOTx7jHMgx3Y8hGMEf3qVTeeaw2UE6EkqPvH78OFn3hAzTlF87imXmBJO5br9DcCDELyQ3MfldFxRK/fn+tL6qfIOQ3JNI7zbNrlPhwIOH7Ps56Z12GcOKUeoIzz6sv+LQyD/b56ZjqfdykvUumT7d/arEctfkjS5UYYy/zjVd/laXXatWelMIfqUu8qmnycIRBaM7qnkEUqm7DxFzX7dRPWq/5VwyJ+bxUbuxO/K9GgF+dKw4263crD2jJ0WvpPusw8aR72l4PJcrHN93KJx+ia0uuGvrXxrvIVtGkC5JNb+J6VV31Evf5GYwHqz8pJL2++pIkcb9nXZ03bM7pt4erwjnyHmgBVFfvEN2Od0FkSzISPZG0AGV3VTNjZUtcwHI3b3uys8NR8Sy59KMyyZc1TLlS5bwMjwlMUc5jXApjBs7gdsU+xXBg7hCY0EsowtGU+5A+UDnOQL98lD8Ku7OjBvMb4iJNEb7U4cHHlmaYggpSaBKiMs6o1WGff7UZnXbF997XIEb9WZBO/pmpObH9i2rOnsgECNDYPok5Eab63Nd5HT9Vrp7eW82P93NH6vloodu0dU3br+Kv3NicG+sjmJPmly/4uE3nwbXAiEjS4X6Jhei5Um8ge66HNucCFThKhKpzTk2R1tFqBzrY5XDKG9Z8cO75EVi56mnDko2ja76PpyOrQfZZ2j9fgRyY05HF1abPoQQ1sjsC8YG72PgtJJJCThpg5K0a3HoxZtmgRVKsheKDclJrf6zCCfYNPQt6ADq3dtAlkN/pAy58qhMpxsoavQBZf4fAFXTJq/Y3r0afirNpdarEtN2p4jP6+ybAt7lYt7HxnyiFNs5cDBhyl3LFHIsNJ9C7MWV7zfLjFwcgr2odqo5HW9+HFYRKr3h6+T4aang/ZybOIm5hO+xvZud+IyDuwufmWFTDfH42baYAXFIm3HSiCpobMqDT+vOWe08If5qwjqxRl2p0R5NF9m4uKGE7yd5X5bPa9NivMfBWxuTMosActJwTGdPKU0nIjplfeS32wRytlhsJWQpEXkYMaQ0AQwKKfEg1bm1haScuQ/j2h/YawVHALSmFusqnFCLs8dJAl9EFnXrsAqSa+65cBSKKA33Qvqx/CjcanaEth9y3YgaaUWKoTUptT4Yidf2Fpxqt/uuJwvixSDY2cQ9yQrcNqcGN3TxPhCWsHr0fTr89uJJYcKHfO71nJkXyRzSvS4+erjEDu7Yi++yOzsx7A8VZArJBUqj0JG0Gn2shQYeCBiyKYopoDIwyw8lHXTfD5Xy+WAxLcf3nqfKsoTQYDOUBhKrNM+82Wfku7ptLW5dl0fsHh90G2KbfZF8kyMaLBWmw+Tp1/9d/tja955ad9X2fD70HfXyYeFtZMGg3HissZNVonw0LjPQnH5VPivn3ikbWmsPhTO2GidRfTA+GZ8c7gWORblt7zNClzX8AMIL9aHdx3eM0089lAeG2dJlTW/fo6Mnagk4KpgaeXdHvc0/S3yxnPzwSLFENcU5TwvS1eE8mTf7kg9kTHg3XmDltE2ylrL40ejuWktsvjqPUAcnF6JmxWjTiSfAHH31/hQozbXeaqtihQ/ysUPSkKBJPzbsIOkECw1D66MN3qOR85CQSUOux/QryN2qo2xTXJ8gvamgkI+F1h5JMZP3e+On3LhQlvAiGo/5Kz4BvDVSkz6KO0vrcFS53cZ23hQazKqnlYpS17KbNA7bbbwseekh92osZHbovHUVMqVYTbZRXSb9waYGqyebC/JNZ0NmeAnrHlVMH6onOWj76etyYIJ99OVrU6SUXPJSPlX+BBsf5liBkrq8pCZDZe1m3bUneaPZhrEmAUCi91rP9p8rTjhhz7TLygLKmHU/sWQHp0VpML7zmJaOtsMasIx7JrQpozIWyUxhAOYIw4soLMlbCo1RBB6fUWxWp3Yb5taEPJluuqW2GQJCm7lADEsI1/NOCHF6eSyLMOF6pHMaSdBNwy6Z/z6m5n1/uIdu6YmTD+V5FfVrW2u8i2zC9Q2DjMo3d1PqKewJXSDpEbVy99w9w4hantErudSU81OLokipru951E9V5WqLW2nPZQvftv3M/lRV5ylFgeb5Kw6Tz1gVo2doDkOx98r6LVjJKRYwuPJPRMpZHu17FWfcajz07NPml9w8RtU0SZIbJGYkklUXaKUuRSSJLteSleqSXq7aDaCPg5aCALexxARrPwnZ83dLSSZ4uzH7jD8nm6LqZOyZW9YcMLaXXHUKgQojzXxiaA1QFBdzn6oo+o47/JrLgy3BH/HRkVQvD9P7oUnVJPtb+GwBBsFaUjfPDBVFHYh8fbgfOHOKEchuazcs1QqiQNy5Kb41nb2fIetoPL6NVIhpmaep7i33MvlyNSK7/LFG11MFVWsXUTa18glFmSQsBVnOpmODsQXvMVwD5NDhgWk/A+r5JdQwGbv2RpOPPoWfyB4WUnWNT1rZNVR8TvMxvst44pGZsP76Lfvc+sWbEk61gycLAVNPLh0hOZVaod0vuOURTmsDwqmKn/E9o3ZqESRWWhVLimP8cKra3Kf2qLufxIhzk2yXvvzRJffnGTccZ3X0zNFtHJ4hsKrqOpXxsYzPOuuX06EKja/a7uk541A/iXlMYnVpy1TUB5xIQycKWFFT79J0Lf3jtooGGHH6XMWkd98aalPwee9/5iHSrTEycx2A4ojLC7fhEUc+tFN6nkY41LwyHH3xhc/3Lg3T+vKUG4s7u8E2hpmK6yAfM2TisB6645wBWA1ej2c8AC7qdHJLhfTWjkQyqT9Ejpil2biXiKEn3j3mGWjlVGYeW4LEW0GFjk7o15LMSkeZh4b4gOzj0vcYjqiXKq2WcrdpKrtQJ9H5RN0vL+rWUabk9pjqczvf+OoJlNZeOPB+nDLyaDicxxhPYzOq2R2YV6Fk3mfnSWA7aieVGmKMYxt59M1/GP9AUjJ36ZxJpmVjlm7clTnBID1eT+iURMvk3Qz5eTvvAvOT9kXht9KnqHtnif2z5M2eTqW2xNH8mxZbkym5bOaMVbHZ5Zgz8ni6S/oQP84dvud2FsmBben0ZSP2cWjCZtry5zRxT3BIsuU2um6X0pkPOUH2HHwFtGyK/I9Fsp2xbfBjZmdcD3lDSMB7ZWyiftl8kOI4m+gIN+CZg20q5ahSSXQKrRJjiGzWqTvSjRuXl28Tuz+V1RO8Yvb39HjaGt7IJfj8PfE4VSqVNOLC6mXrIWnyBLF65t1wg3WjwqQcIq5mZ3GKweysjslaJo0acLLnYbuicvnbvHo9lD5Mv9MzvI8rg4Zy0uVE23ZbGIb5a7eGi5UadpQHxoEolLMG5k85S4znBeWG7yQmruGvLVjnRyOvkd+fmvdsUKIUt2EyO5qeqWK38Scf2PzE4e5282Vc1d5jtcWbNRLBz3kQqfXFyhi+zXoYkTQe0ms1Nmi1xeisPxdISnQZBU+++jShP9xoSapPQmO7njp1/7vMk9WgjfMNHZVYugYVs9YUflXESo1+tDdVL2U/V8c3RxEO3niHSfrGWBmfjpHR9nblh4mOMUfalDc8WjPQdslqhi+uvnTtG0ClFheLsnvLh9sJJ9NT645ghSC5N7IPdtpD2xyMZDSBVpNIdlscH9z379pN7LUb1j0/kbnYuJ/aQC+URL2vQzb5HFUHl5ZVu6I3llZGyb3e02412Uj/DTYv+474K8xXAQgTHDyUj/LSI6bm1UkrGV7wLBsUBVrrKiMQn0WenPKLYqoFCxZBcT5ldQwLUhss2DZmlZh0B78v92xxcWag4zXgbzfOf+0SOFl/tsLIXQvlIQwSXKB22EaZbppqvNym8ueMCiZ3Ge9UVMaj5BTBzFlqxC8ha+hB+rD/ZGUgpT/5wdHW2SCaUg/9regVnqzUdtp2561GUnQBShn3/dHHydaXu+hW5nYUB/Lj+z71HxRBU2jCvY6SLJNH/NgscrhuoyIcOZXGxBXkNDpL9086cnq6Xi3MT5V0ZK+dNWjxyxnbM0PCx6IKnVwizW7ox5+c5avXTyogq4PcjHO0WWKxizt8R9F1TPEbe0adZKmeM9Po5U50aJIK781LlMlxEkt+1npQU76OoX9f2xmR/RBZmU9rrFwRd9ubclZHi7eAB50QYwYc6HYiebK+q9xnbeFrOQOlWKg8mZAI2sj63gC5tTnpwRZdzcX3JuMg/OHnd34Ojm+afVmn8EXoQxFm1TiMLNcUaeJkjQeyWl+jIUuy6gQls1flbLv4SLtm3sX2Exe42FthM8Lcp1BhI1rv20DuoRdh1z7vLUscFuRkdWgxlEdNJd0sxMi1q88g/1TNEjH00mty/fP7pDDhXje3eRe+zCOnvEqt+4P3vGQ/NbpdsLkhGSRs0QKdFRsa6cZZdyRaxhp4L872DJqTMO3EOSOog6y9R/obkSV2tiyPIEuByUXgnfxim/2l8x3PecTaiYiXXa/cqBLxJl8RQq0feECyTGuqX91OmarKtiB1P3WMw6KpT53HMz9j2iA0NvlafKHQ9nhdRzc37EbNCk+9gLUkP2qfm6fym/1l28LVWAuHllcz820ty4qbXiuqFDTNh37x7wbX8PGOxcJK+B7cUhsOwkJOS3zxLRmLu2o19GaGGoGI4Msz2vLCFYQwChEfTkmbsqloZV4GPY3LDnSJ/Ev1xEWeJ/d5MBEDa4MeFJ5YyemfvuJWg+z1IH+7d3Ysnqn3gJPQ1Rl5yez1HRO2d+cFUQkoMjR5pd2NmhzHOfhzzJdHuzGETmE6xVyPLvoeVL10xdsomMH6sFVWFGOEOTG3nXqqc7geN4vGQfQxXG8owFi013y5teCujEhvIFTK0igfwDVwR/Qt/fxKn6YwUdPQZjwzcYeQqATKuiDP8/KacDfUuQtki0+9H88QT2vqIFXU98nHnm+yx57zzkijNegS4DRhHHoU8t749GpBJNSW4ajxXsfDk30lhTeTUYObhUln+UaK+0WHLvTYz9AeyTzO3R7scD9pmqb8mvjuRg9RMp2xwZdXvNtVt8Z3+WlL1owwZ+busGRVVSMQKefPnqCfeuwXnnoWH+1q7kY/hmZOIrSKvFvfQjIv3r5JlHzrpcqqf0F9+dlOoO1Z7mKcy2WI763WRO3zbf30YysQEbHLDlfM59D1m5BqZoIjxw/cXwlyw/wmXKOecU1yBQtwdHbtkbMdM5LhjOoNvtiNokIkiKZwP+5bNl67FRxFKSS+tyMBPUkoaBHpfPquGnW9Ahtbeu7jYHPIKwc3uk4sXwMeGuVdNf6YgsBmWXfGr6kuJEA3zwcWBV2rRsGCBI2cEFEtMeplTh1VR1St+iWE7XbrovjODSvkc9H+EuJHQAqKQz9smXuf5e4R7dbo54a68QZjc1mh9Bx+mLo4nuJHxR9prvbVtIKWVG2/bB42N7t0CPd1JNnDaKoQHXyWOPjES69+OSOhFWgFSG/zzCfRQnrQvKElsz33FlGwXB5P60BSCrONZOebXYIDysNPSWLZwNWlMrdnHolNuGJpIFS8cbd27XMhfSSmYLuI4FniF6PkKht+pVluRzv70gyrJo3J0M1FLkWbgaeltqE+pqZFzIRu+ZN4AQgkSKZOIoikPAIRuVH5DpB3zb5Mxbwm6a4Zq2GElDSUH3d3vnRkOAJHLPuMusQfxFPz37cPD43JSY1XzUNIoBA9sD/nXkEzExUmnAtHijM1nTrYK3WmSOsTETEv/aI89CGseSxhknIzrI+OpiRgFz2CubM51q1JIHMsznRnh2UcQYtHpyoFT8ndSSt7jIApfau9w8xiHECHgEjGLAtU1DGvZ2eoFERXJzz1Ut2XNJl85PImz+vD8FrISsQMW0l32526Wa2DHnJ3HBw7HXHbfROECDB3duxJqchQpS2G28wAtmjRrXZnFXTPs/zORbfd96ugEcSXeDxV9eUQ8mLHt6WxFy0+6b2E7Mon47HMq4eoPA7jCpFafW4gKLXXbk50TpwSzmHnYGjqo03AhBYuW47ba7quEbUQpNUSt9qp+1pax5GKztoAuue75s3oKxey2m5ud/mP/SQj7+ftfCuboNFx/Yhws3Q/9Cakdl3bVe2OQ0DMLSZcl/W4ixj37aWHD1MjX7h810zGy9D+5urDkysRDnl6/sGe47IzPxeHN89NUzacIs73eQd+S0WqqRdhi8vZGXaCKvub1AB7/NcLe8Y4EnVvPXyfibm7cLrmq/uezk3rqqBRnFvtJWOrlSww2JauKFrHVK6HbRq/Gy2mXQ+ltUlJFlkknfAUDNqoqi/iYg9pJIRuC/Z67NMRmHxPImaz0GP08QnCmYnris0TI0wDhPfMnODd80J3JJdlT4Gk9Bm0Ubb0xTsFnlvlqYYL8IfnYpOuJep0BrGY3XlxSjq+HMmt9XEj/HxEwztAQebjRvx6unC67j37hTzNTezvQfPoIWbJLTQP9+cKlnykuOzyVauPlz1yuUjNkYp71PY4aWJR1XwYe60AMQVhsyf8OPQFzgKax7Z+q4mc44gM9gJpoTr8fNjDAUuavXQuY2knbujDY8RdKPvUFPgqdShAIilGQ1+OLPdz1P0OHYH7ox4LSrIql5rve+qcbAA06kIveyY69HqTMbguwnWQZ1wBnpoqPfnuadzZDsfKHcVCtWqSYTcEpI7rGzi5X+w+IHlnvLIyRyqzNT/JFShLSBBWaMeo8/oLb+D3pbvFvNA216pSXI19+/dJd1ujsHEMTpDH7ZpwvxXu3ukms5YWoNRUQW3TwP54UFb3bf6cwc1g3BXX6SXBGNsqGH2hjEjHvK9Y1cWiPWUm1c95ZiHDgWIM70kn6VevFh0NkgUUF8p7pKRCs0RNSze/UyygLdi/UfhqwL0Hai2+CF1owBOpLCvvw6ikJb5xurLJffmc/LZw444ZcqUxTumoCH5qJ65oatNbfzF7E4zPHJSX27SVTT11RmDm4TVqiUinhzN7kScQSrnQNg+60HVSazXt+1QKcjglKWiqWCa1B9rAnR4V72PNOt7vOvWdoXxmoIeooTH7fZzUZwozXjP7c6uyT6Wxi01f9+Ah+o48VMw+55+d21p4e+O+yv3l2Tb/syQwUc/71FPt6arLZ8ifkrrRNM67WK2lVOK5s5FXi1E+6n6Ubm6lUFh7GHM+jrKExl/V/WrD8bKdTjhZpqQWQ2XVdJyVDviCyiaVB7dqjFC/ftEaMdvPJXN6PpU43ZV3AsD77uHIzBfVPk1LgVa3mJcLBHRCHBLT09Ehc6glz3eteHen18KWSmwrbnuLbs6indZI5NoOMXJKJuZ7p/KYGAcGF2k77ZY0h3iFvZVqaCbiGIS0fC5u/ZxK17H32h9LmN9yJczv8gTUdBF4gKjfuJggrsqUIRth6wPh9qTxPkIBvnW5p1h4/uRW2Wl12mjdw93cWT9E1BQVj5fSwx5L8lqX33KNhzZ96u1eCd+0j87VZ5SmKzHoafBYOxW1KmjyRpGbVkIurMURXT3wYNRk9F4Y7zRWcePR786avJ9QxhjxwTF7O7Gs8/4podrbKhmtjq8hZjQXUdXG3lxJLOZDywi5ilyK+5FYZytrzMWjIA6jYPNoRK2UG68lVD/FPu1s9FEPX8oX4CdeCL3lRbjp9qSucw4c/CIFw3Lej5/zbWd5PFPL0kFP9nMWyrYXOJb4D3nyxZCBOmjKl4n0Kw5KAT7CTeqn9rdKJFpKuI3YUz47TzxqqkfnG+zUOXn5CR8xBS2fBxQ2xjuOOn3G+dDNSYyJhLnUB+/Z4bB8kVvTC34VcoLRjCcfg0J0arStJF6eVHWI79Tu4/GEDhZTSoxkZyorjJo70gfrvpoKSDpdKeHirpkdQzqdblgnTDLldxjJeuJ+/mWawJb488y29EjFnctV77OeJUlqzIm92wZYbo+jz08KBQVwtH32a511H/Ssm+ZjYiNnxecYo1GaMEsRuns4jWxso9iY8+uK91zscJtb2aM+NNe4/NY3PMAzTRQJLfoAHcArcbc/0NknpXWZ1ggTS9kj6V06rDz6piZSluy61ZN9kUKO8vVy+nlJlJxwVfFCvy/hjrSxsNrbUXKrc3s2xsqd20PoSujqZaKAUT61OKd03Mh500GQtHz/+faTpPTpjiDNmdugJFpP/8yzwvGL8LuzEVBiGhoir7QRVHKKeKf3ylxLwd/mo55ML3GO3zfoFQf25ZaZ6MruMmiX0k5W47IzXAasb7EsBuG/CAPk5EiGcLXxmQva+Yx9Ci1Z15BuIuPMvA15emuOH9VAodHyTkVD9z3J++ve3QmbHIDX+sERxy77km2clDguVbSidUEIhjMuM81E2yyNFRwY0QwJFFt4fjiapAWl3bK7iC5s5z7kxH0QEpINJFtsc7Q1NvlBTXz/ksB9NrtWJwMD+8PzqQecDmUhI/b135m/IOVUjOQ2gjTz9o9v1vD2IiYYdSJL8bYh9sdki3uP+oHwZpneeJ9Spy5T8z6K3oRQjFP3Rey9wWqxkkgQzG0MQ+LUVf8m9ZiS6U2N8vtQwQyX7fMOFCMvhlbNd7QUIW1vH5nLa1paetWd9QyRYreZvHu+azb9tZRW8xFltbTU4D7gUHqPlw7Ak03QYLbDSUmA4LKA8ZIJ8zNfYPeGHZSaBx9v1Iq20FjcjmZvPu19wLGlcxZUm2wvMln8DmjhHMfKG8ND48GwI1VGdk4MoUPNArSeMKSaBdMcKiRwvHN3XYZNo55WelaX/9V4h3YjZUa2SduMyy4dgbdoL6kF19TKqxPvW0Rm/UUYhYKh4TYkMy3cjRw3ZPefYi+fIPSyLuEFSy2F3gbdsvpKPyCqnEqevnJKI8Yzz+RTjKNf35TxYbmSiWCu+p0y2mftRLYpDO5j2+/C34NGeOjccKpvHzDzkeA5hcQsx9ttLT9mUpLoVcFYV5RwJD/Ge320Qh6p45ZfUkPtjzRyqDdaV0zgI2qt7t4UdNM5/U7s+UPaMxsKpwPbSdLHKcXoIzuzRCW4TkwOGGmCU7vlm3WnRlQ49lEhSSrpN7g9ebDLGqdw045n3ezuXyJRLrW3XKRRnmzzxzPWPz8UU5qzNSiv6rupqtJFVey8i1I+FnMhRlUq3LYYQRRpIJWkRxGF3q4xyLpY4BAwy8W/trv02MnwgTEGs9+N47VDa5YNUYDMubdTrjJCnvg8rtW76ozkWEadiBKF5t21Vt2eY+NauWBnLSyShgyCoxfexBJV2JkXLjSt5FYjiaqyt6JpmfFqGZ5yZGdQesol8bKvSdwFdKsIzJ7EirnYqrUsM264jsuI42osSTd3jBLfXP4eK9O2k78n2WpO+xSD7vmh0qpjCoHTo9PTedIENQE20wP1XCJVqZyXuzWmrLVQGoIKF7mC6IjB4jWFR4/7RaO+UOStxEXR4nQh3RuceT3L0GaPqPsu1qAO31en7FM+9nb3di40ngkv+HTSz0Eeg2wUF9mbJCfpE62VZ0jSOGnPQ3YwfVWaWPGuRmguo4VDrW8fAo/obt9KaCOl3Og4gcREN/vTxuPHWyBjZtOyVczFZ411JTVgukcezjf0uU/E6Q0SuIj5FfN99BPfbal2snW4THqv9M1wA4Pbkx5PDrV27FqePCkLQa6IGvTsU3EujTKb7rjbxESTGnMvubn9Cw3yumCQ6D4N/sc9fqaD2jz0HF5N6i+QMl/TZVPv7oZ6R3qr7aeBkwCW6KeEaINda3vLMz6J9ewCyCERmiUEuSk6/NjZJLfPjF+fWGjlgT/dxXWr3xe4U2GvJg29GG5N6tB8uFqP2EtVW1ey/x5byZFkUci4nel7NWe6k+14R49uALimiDDYRWO9fSjrNvWlv5ZiSPVj7YO06GbqRbLvrpNZRklSQGOAwNsW22SEl0A2RECSVMUEWFKGbyWnrc0tCM0MdCOaWVkB+Oi+6n74gsLgU/JZ46znu9+HCxpe+TQbEdGNW7eqyN7el2nOAuOfYITV6wlC454gZyeuTquWiLJUZugpb0TydwhbPJ7+ErRV+xDJJolIf/fFh0f+x1XUNBT8I8MVjBPboUcdZnwrMa7LtDj12Fh2HZPZDwYGNHyVjiRKJdcjS9/G8TSbvElxCCOoIwx8CRI8jweNvzvNbfFDyJurA2xfWOLluSBU38Q+fDaZyiiX6YK2aOC1ylHx0om0CXLieqEYF2AXeYQaHD1x80mepAiTSCaUWSXIm2ZL77vpACtRsKS7t8UbbvYP+9KyyPMkXq3xSpCBAHP/V06UTwpQyDtYN24MZRzi8u91kubbFez3MEzOzH7MROVLyCUFcJBIbXEU4U7bi+GWV8xEAxzfko3UfcptfM83kkqyc7sPSDQvOpp7a6zcgl3HhCCSR/iB2iyD/37LolqdCzbZG6/WtunU9fljKhZct7zh90YDD/C7R47e3r+505p3yrcUGU+P5zJnlQWMDW95xyoUqJ9IJNFNXezvPCe9HHyA0LC0rImbkpAm7wr123fKiXcyx/BUeXtvdCUTDbUbzbXE0TC76ZRUursnlX3gJk1+PNrysSNJqgMJs0Fbk73H2d5XhnzM/gJlHREIyLl6lbBjtY6dYKJLgIqHFFFJ3+wG+hi5RlcmFGEyKGo/+FP02ZE/BdkrksvRtTTlUad47zyUTrQFkHu6J0f19p1eKLkbTd37ubwHNG11yskJG0+cgvyP3zKkIvUwII/PRNQacYkzRNkFirgIIAufHacGN8uOQ7pZZaFP3OfBmBlBIYtWa3Gx9Yo1wEPSSvvS94s5lLeAx3WJG9mTTobkp3h7ebuoCYjfr3wlh6c2VDFRxURvU5S7P38NgGaPf5hYQZPyT7A5WjHhdzmQxSIAV2eov/3se6TDil2ZiWDQhUpZ0i0pWWIv96yxMId4crSFyxJ7hM2O1X6oegL/9AZXDV2CDk3H4+RuXCe9S6Ez9OiOxHFD1J1POx/jHZTRzWP0+KpxFRSS+3SCwnTR6s67hfUEtnSeEjTecJN6lnfh8K4bncKuQ+k9QtOE0sxiRcUNMNjTFVyUp/ZcDz9Q8GvRbshZAnS+IbFkt9EEsrO4e9M35mN6S4J9vgmDXXWSS6jW3gWWT9PxPcLMnOd11qTNn1gegUujU1TrxjQAM50TKkWOhEN8ag5Vb1NYIwYW7WXFZBpu3LFq1g5zXTLgVGI0SjqbS1XBjP3sR49arg8hBG+TRjzuUQj1qyWHAjCx7AtMw6BP1pkEZ084n9XbF6s37+iKWI4T8lfuhGFXjU19bav2vJM38qhIPcnMddltjnztjhFJj+7QipUC2b0Ks5r7WmWySq1hmqjD1k/0St7TMKk6km7yoRDvHtq6NS/L84yTyOMAxAMdSpCM4kxlPh5opouRfbkl7uNNZfv12IAULTqTXqGc7zbkUYKaT4rqfOkKRZJbI4UJWiaS0byrayZL3YQ9OdX0F5pXo46NRITo3d0rPcv80p8C/x8AEkDtv5nb3oVFyWv0vr5PVhC1hit/o6YXmvznl8DP7+Ct+DamUT9KUNUbnZp23+bseJwlyOXgQsP4MVSrnkvg3lYc4TpJiP/q6co3aE7Vjg01CiLYjcGJ7r2g6Vc+qpXN8dyQGV1txtfIOMKzVjIcbPJDwD/4gw1r71b/9Cbnr6qUQV/dSwgU6w7orjVaGCMN41NcvCvqH84neUf4A91rgc6mGZcICrwcIv7roLjd3ZgMndE84DB4NGx2rGiBjhH0GD0Erh9GYRdCdYeu2E5kExBz/Q+lCg/LX/2dmKFNP37+6aGxKJhLwQZGe/q0TklP0uV5g1512WBz5YNhfR6wjj/Wu6fQU+uQQSD07oj16vSNF3OCq55fNOrpFy8Qf/xp2tEH2xXVjaXXEAfAYfPG7vkZ9BPJExeqNy8lcmiOfTfy5Abs51YgQ/BwwCQYOgRrvaPm7WwYS5O3Ioi2dYYxY3EwbQyI5OycWVjn3kawgOhL4E8/snpHK5J9+gLuasCh8jBaFd8jcAJy+zGwxekTIAXjVaCWzZmID2s2mG4aLUwPUomvXink9HmKRGg+eYjdsWwCMgoZB+FyymnElHe1SEaWws8NOvh+VhZAD1a1gNeZI0jGR5vNB+tcwG9V90jmnaUnbtp+oHeFE8VHL2ZjC0IdmjdSEqn9DwAA//+kXcu2srwSfCAGAgIJQ+5y0QQBEWfgBUERuSRAnv4s3N/wn52hy7W3kHRXV1WHZtL6tT4hQPIDj62D3PR0F346IGfZCe/btGQMSdcM5EHbkE35nuJVn4pgK5kPJJObFqzx3gBi+S4qC2NT//BGXe5OSQ9EcMAQXFztFx9IfjH843+NsvJRbB82u2AOHh4B6/5hU7ZeNWUnkELb9BcE2XNgyyOfFvWxKQPq7pxnwO7K04CMf5o025nUpF0V7oE5DHjFl44Nn7Ykyv5wbeguWD4Bk+spUdHYKlSjNjCH6CJZ4PFIJ2wYD6OfdlxVwhW/iXAt6n755moJotddRg8fCP2y/XYNjDvZxQfpIgHqiFsRWs1Vp4Y8SjVz71UElezAsGPd3Xpa64/83JwgRrg79DS1GxcO2uO25sML0J2U8X98qowVO2Za+HJgAhyRmvv9JxirkVWQHp5fjC/nKGDfcovA9rn0BMh8FMyrXwPnJKHU2CYLWJxJdEF2HHMCBXcfLCv/+OMjPKi7fgJX1YEXqdojVT3WBdVuNlFX/UB9vywL9iF7F/bhw0fqzX0ELBsGA/CFu6NHGhT99ij7DlTfD5eIqz8zpZpBIDFnCTvd9hovvc6uMEdviRrvkQbkfEn2YP2ezOBoFTO2kxR6smrSQ7VMQS+dBAJv7ZOj/rsXzXU9RAg3SKO4fZ/M0Y9a51dvKQofTTyi4aiBqtYMakI8McqdLxbYROcPUacLH/Tnx02RuYyzqbOlfb/urwNXPo+9TDfZKKlh+9MjhF10Kx71e3aFS845RGxsgbGjXU+w65CBnXeoxtMhABbMgusbG/LU9ezupAgyPU8pbjgBLOc9suB+q4cU1ePX/OEf4DJoU+edPou53vUpwAfxRNROQzG/6SZFbbzujXW168zWP38MqH/RgJYBjMU8wbaB8r33EHTjsp9P8TH50++4wXrBTqWHYMhfNVq8+baeW+VcgueQdWjq1RKQ56HmYd/IDu5K6xwsUthWcFukBOM7N5v086wqsLWkBT96sYxLtEgQ0O7VoeYYv1lfKh1SvjeXrPlRmETCuFR+/qDlWShYuJtVqXZ6TYiy6tufnwDg4sV4fzPuNbvLsIKaMfm4aP1rsahmssCP3N/R/NJoP27BpgXNBgzUH6ATr3g5wEVhR3y4uRuTXC9pAyY+vVLzor/iJdnvJbiV9h+6IwEwySJ6PMxPe5X6aWkHW3DiJFjKjoCdTkGrXzP5ahtnKt0FWlkzr59ydbICHVuglOrp9jGgytFMX/0rqSbB28ygJ88Au4f1GUrBGAaowxLRuy/tzE4wj+iPj+hrvWU4svbQsMGNHoqPCeY8cfd/+hPV3dZsDxcd/fmZhznIa3LNAwdEu7dG0y0Nah7vy0nVquWGg+Rgsa0buR3waoIpqkDVT0ORQGjAkkfux9OLrddPmcpIhKj3fQv9kF9AB4YuN7Fd8V4wq/4XgeSe21hTn9v6T69dM1Liff6VGHEm0YeonE/UD+UmmC6bc6IGvjvjvWAr5uK+1hP8X+5GvnoV9tOruGRg5XMIrv4JHapjDj9lGNLkKXLm0BuXAfCFvyNKtnvFRPO7HGoX5Pz8unp8A0OEYw1HlN5dM1jW+4dp0jMkF94loEh2FTjlk02Tz+0WTHLnG5AetYTunS+NpyqvCTQq7o5AXmfxtOcGCZxQllE0HkFAV/7583vpyu/MgbtVC0x8UGCv8C4mnU+LD5Md9PB9qJqeDSczBJUciX/1mqffbIGzCmwEX+GVkYsW+eC2CQwCP8/WXFpdiaAwvzrslHcRTM/D6QX5jygheeUT/CK2DlQ35h31flMy5h4TV/FuYUT9meyBhAM+gofdPsMpF5gFH178DN7tYoskBoZ6Obyt14+f0jPTWP1NnGAPV/1LZCPZBuwiK/6vXlNz9ZtoOlQilE5OiWSXaWyRr6cWlherwqe1PrFgS4a//VKJ0LCpRw4Pz4LxRbPQvePRPsrox2fo7pAmxZxJ2xw+3suIg3IzmfNeku/w+GlGfODMLxuOmpuAGO3PtOA3l3pq9I4Hgv4646I9kJi8+UqBp+eJo3tBWeolz3UJ6oPHUdc5uvUs150D3S87ISnpWECGokdgP3Y6DZrv01wU0c7BM/ruscOpX/Zd6z3kqD4jsbFPbAYeqOCu3A/kzdkVGLbfawrRKBrUXvV4txWnQUElvNGCZUrcBosZQTu9J4jX9XOx6HMbQT+uc3zwgl29XdcTUHW0sPt8TDHphOOkrPUMcas/REcCDPgWTybdjZekHyXvIMLzk+4IS/Y9GB4fy4f7WKnp4R0IbGrQxMEGwhzxOTHB8m716OdH4V37giZlUDL++L/ZtG4wnJpcAtX1IKAN2SfBn79DRnJH8Bpm5lo/HOB4i4dNQV/qX72Aa/+EbBr8LJadep6gA0eClK5E/cJ/n5lqhZpNqqUaionhOgO//gMuq3ssBtlzgr5616jf3a719NbEFG4zc0+9Amx6sT3QHMbniVBvjaftZ3y0Cp42Jv7xjbkaQQlX/5oGj8Jg4vJt9+A54IqaSzuAcW+RDnplPmKs7DMwXTRTAX/5/LVg3GyFxwDPmT+t+S4Hy0WLXNX1OJ/6S8kKytXKAAz5EP36AbWgeDsNhLofYLR4dj3Pp1qBChJf+FB8ajDrnWLBmo421dpB6Bfx5nJ/fqY+LQoYbk16h6v/hkDzfQZTurn7YNbNA9UO9wNYVr4LsDIgnO0cPZgQRxzw3JwhmfK4DyaCn4a6+nVE2UYyG7jOymF6f/389Rub5bpy4JQvNv7p+QVxMAUK+VJqvEBbz1cHhHD1s1e+cCvY+/lMIX5FEfZvxCwETwoWkHKvC45/fO5wv2fwp6cuk2gDlpeSA8Ugcal1xRuTxsO3VZZXdaPG4DlgPtzTDH7rpqfmKDrFAkX0ArfqGtFd+7oGn6tzMiBnPwqqV1fj12+6wsI9d6j9mGqx4q8Fts93Tb1bdQeTfR46eXcFHmI20+OteIIVPPPCk9q0SYo/P/A+IBNVpWcEn18/RDwWApLVdjann795TOKACJ2xi/nwYuTw4CcLDh6nO5gN66lAg65M7rGE/UCufgs12TwSZfUzJvoNJ3j46DXVknVmR97UJRRbQ8bWdBrq6RioVznlLkf08VVSM/22IKjj2+GPL1Hgewv0UxGSqaQGE6I49NXspEFCnb1uztf4KoENtG1sNu/UFKvWdUBk3RuKUqlnw/UQI3WyPJ1q3/s1GD4fHsHP5RugFyizevaj1vrxQYzoeADDN/9E0PzmI9XEWC6WGU93+HHKGf/wYvF96gNnL9X0XAtVzerdwQHRfW/hfPXHl1bIGjDP+5Y6XqwH0/2QZNCr6x1inzPs2+86I1nI1TeCum0U416yICTb3Yhu0yUJZuce8crKR5FYUyOYm92rhKeZIBz8+i8X59AAgdgb7FZHkf3Vq1wHBXWQopnsm5waODAuJ7BNNSBYHQj/+pH7NtUYY+57Dy82Ov/4D2DjTkzAkY/v2L4Wdb2olhfKQHp9MV5wY07c0fNhUEsh4dd87/RX5Ktp697o2mNjdDtlk6KnVrTql10w8xXbw/NObf/8v0Eyp1YVtts7dTh3LuZXMt/V1e/EweZumkuTYx4cOwnjB9/2bPS2jxCuegfvwXOu56xsO2h5L5fIH04sfv2Sf3p1Ou37ca2ngOkHtD4BoAI6EmaALp4cwqu7LZg9SQpVnw0CXvOlEA9ZBWF/8z7r92fQbEQ+gpqgbFF2evT16D7cChZVdMS6canMaa3vINflgtpHnxXThAQC1/NzdMd3FptIcXfB3YhvRJ0DpWYKxA44JeKJYnM8xyu+Vn/9TNM8e7V42e8iiHa6+Ievs0wfe2DA0/DnP7LJCyvVkpvix4eKxd9rPlieqx+ub4yYfcvNHh5q4KHp4Zo103s3ha/r5NDbLZiDibtyIezixSHSqpdnBY7p/3OiYPvfJwrGmfBEuCrMfL0vQQnb0twTfp82YOl8X4PZq5sp2oYmYCC4V1BPEKWmcCuKxf0crnCsPg+65z9qTaEfWvDs4gxJ1+XF5rk5SUCMjgj78kYA/cf8NlC47VS0tL1V9PbjrgB1Bzgk505bdzf8TtQ9pAndn9SiZs07kuB7+4DYodeoYMNpSWG5+7wpvvSwoM49uwLRkCK8qxMKBmsZQuCMY0ugxn3rWZRIC8qzcaW7/eECJnzaDiDu8BF9eRmCz+IcF7XBZ5f6p6aLxzv8SFA/hC4ujjrrZwU9ecgtQks9EbbFKM/PELohr2P/wDnmRNW3AfWkOuLDXaliKh9vdxB43Rb7SySbw+tKELidy4aaifg2h65PIrh1Tx414qlnLNR7CU4B3aI5c+Sil6P+Bc3dcU/NV9AErNlZERy7e0+4bViz+XGZfOiNTw07dyQCdsYmrxKv0fBBbbmgdbtsgt87VjC6hyygEQSGZCnciFHYAUZ4KrewxvWEre++6ZkftwPM2PVF91/Pj+dHVhlyLaQ23T/fG8Cy4OvCtycdabhdmoAtttlBVXi+6CGQrHo2P4UG5RxfEGtcpRh4mjdwcawMFyPRg6G0h05+Xh8xej2mMlg8pwphrt0cIshCX0yD44bAioc3zsztPp7uYyLBXSXJSLwejXp71G4LXPcP9Rv/UxB7VhE03/ON+sN9ay74lKVKuxm/FA9LVE/uB1YwPxcDdsyi6hdhr+yhSpQHdSptCOYTr10hCcsPdcJlqtvRfBkwDFod20XgxVs5ql+weLkffLFUu2863zfg1eByxAV2HcyOiu7gZV0e2LzWTza1c7GHD+MeoqVbvjXLnSlVr0/PI30i6fG2FL0XDFrPJXN4udZT8Hhq0PCjDuufzqy3Z9K+YPjcvJBsqe9+fPJJDjlgpFjPraFg54MwQG8UK/J9KF0/P7JOg9vz9Y6tiffBkLSZD8OcFmjRyrr/ZsQr4dTVHdrGGwSmA3xWqrrrznh3FlRArIQf4PBuVMQS0TbZcFISuPGLCMG6XhiVpwVtLpJc0CCIvmDclEujVh47I2FydLawY2/AYBveyJxG22CyklMLLaUPkALUFoyn08yrdjnuKHYvu4DAPPchzNOYHhzL6Bl/f97Bw4+f+NAWeiFKb12CEUwseqTRB1DhekDwdPisU8iE0GT8Zt+By1fUKT5yj3qJhosCtg+JYbt5G2yWBBMC/FINnCQ7NR7qzdhBPIgI+5erXAwH5RBCR73qNJx5Fkyn17hOcRMLuiuqvJ/G59JCAcgTtt4nCVDoeRxc8YN6W71ksxztK4Bvg0z3zhL0SzSWGhCj14T3ItXrbSJCB76lnYbEPKbF1HsVB9M8Caizh3o/lQ0WgfLY7ajrPdV6KU5DBDeTN1BU7UpGsZMQ9b2d73i9nnrqhiqHZ/Fu0IO98c2RmekVRvxVwve9bMfz5N1ygMIhwx5NXgF5mp879C2k0YAKTTHurn0I0afjMFJUrWbQzxzAIpYhLuwKMFSGxwG/9xvsnnc8ICF7RKAPR4wP6usVE5hHPtCBd6J+O2r1dgqMRhXnrKb7RPsUU2rwV5ifLwN5t7c7W8bqOEAoPQ2y6biwGB7+7QrFeacTIQAao3foVvDxDE0y7wzUUw1dQ7BPrZCmiFfjKTwiBax4R/hP3IPlAJYrxM60PvMtffshA58UWlZMsDuLNJ5r2jfywz8+6U4smuBzLdEV9pSvaSbXQzBtm20Gp+7ZUV/LEGOcdfHh8NrIiAiHrJinzo3g4jgZdaLJ7Pn3JajALx+g1TtF/4u/QN9XdGe0esBszRMlpeES8u7SSzHnuzOB+/vBJItiLMHkHMIIJiLcU0c2voCp9vkFVzyjka9XBeMfVIFHt6sx2joLWwwlzAFPqwjxnzhgMwmrKxC/z5Tuh40cz5/q0UAw7L70cHHKeHpfzEot00HBqN7AmqLv1QfN3QfYKXfHejzx2h3eVMlEbFs2gCn05cDN92Bj/NZuMXU40MGi3tqIjdO9njOilxBKhxJb2jZZ63lawhU/sfbK1rdESPUAAUAc2i7fCfRH7TTBrRgd8U45nsw//DoT6YzX9TaXdhpcqKiSgj09COMlZI9QbtL3EUleIwZ0m3UVtH3LwIGH7zGNL+AFxqCV6JUfxGDBAiuB3l+3hHCSa/L3/TwAlD2/2D89j4CNiyICxfWf2NjMoCeXiwPBF9VXoq74QQSkpeCZaBxG0biLJ0Oek3/11Unsfuo/8gskmX9BSqVK5mzsuBB4d9eiJiVzvfS79wJv+Hv5w49xUyoNVPBmQTzV2roR9gqCxlYK8UNBGfvVL/VpgS+Rgu+zX/Z3GcqKFp+orkwgIK7LidDjHx+yGNkjXk41N8C62U9os+7HchsBhH3pOvj6jq71WNP+BdzW8fCvno3RdYuUzK6v1HaMJu48O/Hhsx6vVE9Oxh9/UdCHK4mUc0Y9QrdS4Kt37tg/8II5Qk82wGYKBuzXOy8Yz1Nqwc7SMD1bpRqwO9Qqpd5lKsbTtyzY7JJUuamvJ92dhRtblIfPATjlGHtheSw+Yr6xQNppX4pbaNbLs94jqO+5hkw2M4smfVa+8uxjBzWVNpgj+jQcSM1zh11dlgvW5b0P849r48QiVU8loTbUMOh06nZe1H++MLnDl3LL8c65bHumjbMB4y+gZPO2T4xV+DyBtf6STUF2YPJrc4ArnqKltvdseXSX6Icv1LIWGC83dN6r1HlVOJtFWjDOOrogyJY9/cuXRJoj1ZhMi2IXi+Zym8I9FE4vRJ0Pj4L1/uEvfygmk10vPEYTTE3HpMaU6ebyzpI7XPkRGneQi4m7m3K4h8WCMWc39XINwR0MsK4RXPd3cUhUqpdAQ0i0sQW2TfPV4E00thh9gAFmMExXuCmniUz3ETKWN3YGmGkpWFemIhjjy7WSnZG2aFl/n3++9Qzw4lTQnXMPzdmqpRSO88DjwwlHNT3jQIS7/oSoWZ1rxjalWYKPEi40UWq+GB69lkCuBzpRtVDrt9h2XjAoY7jyGzMQH90xgnGwg1T/XsaYCbc4BZdv9cB2XNvB8lIOC+iCbUmEuH4HK/8UlffRzyl+2wIjcvXu1K4SjR/fZsOzBiGUJ+mCHQ5YxVLuLqLCazmHgzLl+yXfnhpYnPSIOkKY9IQ7PRPopMwg3Lo+g/SeOChPzRYHK5+aitMBASb7AlGcfQi6vs06+MtHaIAbm0PzaammgBK823ulOT6UIoXtxXpjd7cw8It/eKjmkO79l8amy4UzlEPXXbG2m871kD5NC26O3HqipsY1H87yAi+z4+P9Fxng7V60FzTTTYcRnCs21Q/jCgdn9rHtSULBlncjwkOXKtQQ97W5vHJpgDctvNOrxnm1uNs/93AZDQ5xX/oO5qK+LGDl79Q9xhHoveTjwvRbvOk+REswNdvc/dVnsileIiNWTF7gSJWeiPTZsUl6SxD+6vWP/45Hfc9D4ZXpNF3Xc95BTQN7JO6wTs9azH9HqYLX57XHnumZxbY83Qm4J7VLzVQ6gq1Cbhzs4ktAZFTdTbbRoQIAKEt8ueuTSTQVWDD4CA1e63NN7sNbhFPhE8SZWROTGzojmHPZAR+q6RjTjc4r8IcnenKqACte2xAe9n6AfbzV+u+hv6TwtSQfAlFOwWKKjQE1zFn4l5+DVCcDrNMqWvmaUg/m9mSpXvrKccKdvvV8v0U8/N4PCnY7FARz3vArH9prpMaBYE7sGHBQ4K0H9WAj93/8v93cDYzy/GXO18rslOQsbv8+D9rjkEmEgoqs9bdYzNTnQRyMGtUOpRYIllWsJ9IHkwYbmzD6wyfzLopIOIdPNp1e7wXOXDViXWINIJ9kXlSWdy+sxfhbL9v29VK5+r5OBbeKeuXnJbxOLw1xydPr2ZeTBni3/T2RqMr3L/frt+D8YAZGH9Evpuu0aUA5bgykdB3PZru0OfWt05ruJOwW820dEXV61VtsdMu3Hw65hMB1Ej7kT4+Ll2MDD7P0xp40+f0sXi4v8PaU48r3Pcbv+jP60zNsrmIwZbc2AxrxGWGvwAm+a32BX/6TkdthaNgswKOm/vjt4VgJbLKSWwsqHTpk4xQxmGS9z0BoPuI13m1z+zGKO+yP2oz1p6j3W6NzWthvc4Sd9JkHy5HyLyB/E4J//G6RDf8ORBnz2M35Y8+w7TRANtQjNqa4/af31vijTvIYi8mh3gsOqE3p5bbdBPT2cDW4v3026MJ8Zk5qmuXwpXgSdcy0M1tvd0zUnx40G0urJ+XeSz98+ellMN82exdw19Km6NsN/TKfnxBwiSlQPbq2AZMnBcHl1Xyx57Kkn37r116yHZHHdDan8Ogo0PVqFSXcyaunRtwb8OFtNmjLuRX40weJJh3x5bZ9BLNVVXv1uPV5ArLvmTUcL+bws1waGt+LW8+OD6UC7XoCFPvr1NqMCxqguO4T+8WJsW/zAiKgr/lI9+jRFkuYGOiH70Q4vBdzMWQjVNI5XEhsjjqY+Kkk6qOETwRUszInLmqM3+/T/aMNClYdoQZL0jgYG1+up8f7kEN/nnuKoQGCHx+Hs/h9Et6ZaDxmxKtAV1UlEffw2Y+oVS2IQpJRlF1nc3Q2HYHXr3ZCrEykYiRHqQFr/lJd9/igJTpe4PZ8vxMFA6X45Q9MOHajek1uxXApLB8iPX5SF+dZ0Da8KoHNEaqIPFXMGMEgA7cUVNTZHY81YyWngd3+INP1NROAPtk7heRzO6DPWbgBOrfrlOVD3lIL3YaAoV0ngizhYqpt8i6eZ3cX/vQt9r5lZS7141tCc9cQxF7O2LOPEd8hcTlIg2jT9BPaToO6swaf3tNajOcfvp0/yYigSJ89cy8PCPA7eqFGUueYeK9JUavpesZhd/zESxjxjnqRPjIpz3bWzxuj5wB2PIz96fQCy4d3RGi3r5ge6bmMh89RvAOBLSo178WtXoLSdcDHqi6r/2H0y2Bf9vBxFPZ41MKyn2YJImUYrx5OPnHPpqrMXtAoWxff56vO5i936eD6ADjVafRh3fBqQmBslfAvfoZnNbqgOOw1iv20KCaOhYrqetsHRd4uDGh6LC3I1RPC9uuD2bLyc+ggIGDr0e/6qdKAqBD9ElFNbtqYPC31pVTtx6e75fFgM/xsIACD/cX47aNiMkXEgdvjtCWsOizs49z8BO5PE/nt1xqvxACXfNcS/pO9imlo+rtyGsgbI5ao/QDAkMP6/rWRcXohc87fJIVa8/HWemQw8UjhC74ztcd7v83rkbM1BL9v9kb8o//UrJqzCf7yXducZjaz5+go6/5gZB+f5lA/VnwKdJv66twHwzHUrqpf3F3EqigoqiUtxD++xcmWE7BnbPgqPr0cmoZLWAvsOVpwQAmPnZ4KNXM41gFwJSPdHdUq6Jd3w4MiGSdqRb4LtqyOQvXnZ1rfvdMvy8kmP72K1IDtgzF3jhEoEjohCo3CHDbLegJXcHokpk1Uf4LpiQBGnxfhFLVcHWr+qvqmdMeH83ETs8bmXKDhrsJ+O5b9ql/Irz5ge91/8r50DWzLLqToHsbm/LGyFpjCPqGWUvPxHz98l2vHvb+JxehsKgIOsbO+ZY3yxfLhkQgVwt7YKjgfMH5jdeB0M3bUuXtcMeKmrSDa6grdcWYXz8rIKT9/A43r9Y2r/wW+cHEIma9PNqCzLUJvF9R0X4ii+WVmegfjoqWr/lWLYdtsc4jCTMRZLnfBlLggAxJrTtgb02OwXf1RuDGix8//Ai982hLAa6QkQE7fBfnpvwLkFLtlXRTME0sfRgM4oOX0dfptL80LDPTKQmoleOsb/D4I3lTFpM58OgTyewdS4L3zA3ZWf2gGfZWov/xIA9Nh29kliYw8d6SGrxsxa3b7ED5atiBujkKwXf0IoImGRs0gHHuq4SoDuea9yOZRvFb9Ok5wrN4PrG1CuWBudix/fj2iBdkxBr+jC1Z/glxMry4+Tx5cf/4RvRZiGrC5gRxc/VmiXiGNiWz4VyAMJY8PxeFdj+ouWeDmInrUsA5lvO5XC9frxcV3y+L53a4zOFe+eYb2Np6yax6Bs/YldEeIVyzXyGv++GnwhQFgobEY8jKMV+rf4o85XSOpg5WBR6w7qmjSUK+Vn79EMdzF/WjrmxRGp1NNKsl6mIP79Tu4qxSZyGEhMTIVVgc+xX1D8UkYi+GIlBTGVaat/MeraTB9Edw+3kfy2R9kNjvc9aW47WlC2/P8CsYIFhzw0kgi4GUe42V4wxwi/fgk19XvI9/RuwKdaRXi96kDKGeaBrSWKlv9hXc9dcGm+u0P+emz8ablKSjsLsX25DwZS9klh0QvIlI1WyOY8WsfgtU/J1PZrDM53aMCw+rVrnys64fHV0FQU4Xjz7+MWSl6jfzzk4JEesZzdri3YOV3qO90q1gWYXqp8XzL6YHEajC3z4sL1WacMQJ6HouH3HMBfocvWiSsZXMH1ExxiOmTcp2aLkYoiOAzSUq6OxGp/ulfkHyeJ4z0nBWTMHAJVB9Ip/qsz/XCjrUG3Qzy9BjWYz092pfz5w+teBgss3Twf/WfGk+zNOkzCUN19Tvx7n3o+qXScwk6uJSpUdt7MJv2c4CaQO7Uc5QLm3PnEsLI5j5Y56opHjXSOoqTPkqM904NpkDPM7D9+HD1O07BfD56Btx+XIhvJXmt/GipYAY+Z7L5uM940jZTpPz8319/6I+fK4/si63bcgjYLz5KEr2IsHlci/mMXguQWMQIoNNhHWE3d9BKjB0OVNMw1/7KArtZvmI/XlpzuB67Cp5Ft8T7PqT1XNP6pSbU2hB5zbfFPIfcesJsQDM9l8Uvv4H8TQk+FGZSt84hC2GZEoU6H7npl4ssi9A2kEgAa65sdi/uircp+a1nMJ+SfgCKqih01Z9guYbsCuBlxNQSx3cx8o+s+sPjYv374bd/7w23p/5ynvt55YeyimefBiEEASmYIsFXb92xKdxAvMaPD3/8z3KEHeB5mr/ga1lnrDH/t1rxArv9/YX4cYfMbbvZukrvTS3FS8PX09r/AQ7kVQJWPsTeXlnBmzCeqAkOdf3Xf1rrK/Xj9mxOU8GIcvzcUzLKCzUnYV/4iltWD+zIu6oglWYt/+7fyDbx/P4OHVhfHoxduyc10TYegvPntSPbvaeZYkvvBpw9EyA5iZq+sViQQLPJn3hf1xHb/vxg8nkcqCZfz3Gbi1wFR2uHqN/wNpsV9BXhlpAG6+9PFgyKdoqUVW9j+3JIVz+VtXDbCPlff3LlLw3gtYxD8354AKo6IwEOxufV31rqWZ6/IUDuNsAHW5nrwUpOHfB2Xo2EV3UuJraoEbxhCPAP7xYKBQ7S8dDg9fqK1ttdEth1UECgwjj49T/gy9Zq1CesBfPs4hC+N22H9xqf9UtW1AjaupyQbQd5k108S4LsqYx0N0xpvPbzfLBTAh0NUXhnEzuaHKh3uYrkJ7Pjld9Y0q5GBXZf+TdYMP/OQLmTd3jVv6Ywt4v/0/NE8CQh7o6kuUO/2kho5TfmVN9gCrtAKKn/CEHRX0vn+tcPVtq2NdvrtG3A/AnfiF3vXjHd9/IAx0jWqfctjWDrCbkBf34FWvXi2OowA/r1XGGjpVzQ+MZG+uOXF3GLmfDjq9Z6ItZe83dxd1MGquPZQD/9QZ61hcDWbXscrP3DtR/ggmcv+dhY8hEsk/LN1Pi5QLzjTL/448McC/y1vlr1xGOBBxqGFv75D/3Ia5z686Mcz98XzDLuOegUx1/vtyimHx/XhOFOD90NmZPYfSdYlZQjH406tfjjB0l4POBDXEwxw68+hQklJt0r77BeVr8XZAMqiJxiBSzXZZgA8aI73i8SA5PGdT40/LCjWrcnYPBfRxHyumFQ3/Utkw7nlX+u+zGLG6tflBsvwlfMp/S29t+2BLPsp4cJ/fm/x/srV/+PEwXSf58oCJcqwfvodKvH3aLzcBCFlTHmz2KCmZaoFsEN9fd2ELON1Hew8M2JOlJ4MyfHghMEeRch8V5eYsaWyoG2P3ak4bVrPXvQcEE+mj1SzofBJIueSOCkPjWqvQBfDDdlI8JCMrdotpkE6NboWvDSeIOekpDG46E0Wkjt7QujV16BWZ90CyZBNdNgES4B5fZ1Bztf3CLqL59+7F9IgiQ63TCO85bNe954QYDdEIlFK4HlOGd7CKFfYl+6HevpeBURuD50hQbTQY6rjXxvYfQu3/iKTxAsUZ1dYb+cd9jP1IO5POwohJgYPjYn9xkvm3dKIHi2KVHOp6Egs3olgIt9ip1DeS6GnQNFMKlndiiZeWKMOZUF9fDg06A7bBmTnG6CqK40vH4GC/jcLdhOyUh9RZ2D5VlHFZRvrk7RzXjGCzynEdRz6hFO7F79cj9FlgokN8Na2i/FvHf9BgxvARGBuksxfgkqgfpqP9TxMzEeNA1AqAL3i+3QpeYYiUECLEY/SIQTF5CXGSmQXLdX+rc+quNe4Vvlj7QI30k/bV4ugequragWgrkf0jsHgUrbD1GW9xS/UWQoqsXRDw7IO6uJIN8iqE7uF5uCZARisy1cBV8Nh6JhMXvWo5aDeWWuiC1RNlkSn8BoKhuKSGSyKYZiCbTPaCL5cXsVXfzJGvhVEpFwm7wJpiva8HA5nDhqr/HC+LJD8CMmNfYOB6Nnu/mxADNbp8zdbmJBLvrlCnf3UcX6BYD1vc7nK1Tv3Zv67zcq5rndDdAwRozmoJDj+SAZBBrz4UxkW9AD4WEdEIAn94aTILRYV+yOrboJOoFMeoBjgU07DrY7sUH8WWrMpVLzFmC+OiAlGP14niRcgfaetljzwMQGU4QhVOzORdMQnPqxLO1MuZamir2LagVbaaoGBYpdSS1uGszRTrwXaLw0RtNUpwX75mWnUvncY20IhH4Ms8BRZLm1CQc7J1i6R7FAqglvbL1dF8zn194FIzhf0DTWp3rhgvsLyplvkF/+zZ5iOBv51hq04E9yPb+uBw42OEnIezvF9XxAxgI/j+RB9+X70TN27SwYLmWC5PvBqpf4k73gDM+Qevq7rMlpzBYo661GQD9KwQLHNITct5vx/nramCOxdhGIs6onCrDnYtpP6h2eHzoi/E57xctoXkPZVPCd8EH4YhPQ3EjpglRCfBBaYK5CuwHT57Tg4qgmPYOkT2HjiQnGmtLUc1SaidosaUF9poYxZU5nwXl7VtFm9Id+QqEgwu6YKDhAasxGP/Ej+HHTKw1kVTEnlddKMIUn+pevw0ZxB6geupp86clhYruJcwjL7kE2c34wqXF7uCC36w+BR/sGJi9UXYA3xh7J/uHJGPW/pbxeD0Z5pAfr/UXwxJk6qTeTaQohMR3YbNOceorQ1st9ExkKzLsb9lf8nN93ZMB0W/s4MN9LzMjyzSFxhPUM4rQNiABuCZzhCSLRmgRGd/N5gdn0vFFUVCVbRPWUwXYvvrHJhQZYyC3J1feTx0QO7dpchMMt+uUH3dnhw2T8vfNhip7GGn/7YOHZzYKc3g1YpwEXLx+1SOAAzyGRD+tU/k2k8Srw2hAxUpb1gFtVgpu0FdFm8sd4kebTANG31OmjrPqYtWlbwgEJPnn74QEsK14oELoltdWWZ9P+LjQQhG2Cf/Vm4b2TD7OXeSGyMrrFAo53C8Y7o6Wo6J4B/VplC/Ljs6MmKbWasbzS/tZLv/bXYD76QSoZj0NEpkux9Gwk3wjI107DVjd9i3nH6wq8bOo31baxWEycpLVK8+BPhLSdWczl/ZCCjewC6onvNmCNVO7VlqYd3ePTFUzFfdOC7GCeKMr9EnzbDFUwMrUSiXMI4/HkmApM++eO+ubhG3/vg+3AzyTWSMaCEQvfHDXrG/tMehkFp/7tD0SbyiD3tqvjOc/3FTAEesLWKWyK8WSZIriWuopee8nuZ93yHJgZzxRNdRGD0ZV8AyYbQ0KzFkjxOL3wOsX+vMO/9ZrfywGCD+BrcqqykIn3TaRBLT1o1DE0oZ+f6FDC9zVFFN38Z/98KocSaAXaYGcTqv14RpYLqbTtkNKOtFjW+AOZUacUhbkWjOeX5cP4awxIWe93eZj5Xtm5I6SYVEO/qLv7HWKtsqnP2ZEpckH6ghtndfRvkQ7E4yNL4JcTeYyX5WCyzi95tVZ4jd6JX9fLZXNMAclOd+ofbkHM5u65nvEZZeqgVmTDyl+gZu85rKnBuV7r9QCLp8kjJrVGLKq3+x2EUnnCseqa8ZLo2SRHU9WseMDY9313DBCGVYhtlKGA0fvzqu4OI8BebzcFeW6jK8Q3zaWPQ9eay0ZOOxgdygdRvgJik6JoGhzv2xPJ/VMXd41c7GEfChYOVBuYdCTf8I8/bRLFi7/f3HnB68mE1O9sHE9ash5rPWs7jOf8EDDO718gt58fipbqVYwPYvvwDM0Ye8mprpfqE3VQe44GIuLyYksMwhLqaHRoeAZLsOId/4sn7O3sEiwFO3bqqGwzqqlFZk6byOXBd+QXpJQ2CZbcPFawb84Wmco+Xmc+bRtYT6lO8VvpYza3z+W3P9Rr3u9Vke/d3/5j7WgewaLUNw4WoblgXCgemB/k4IOvJhKqJwEIlvF8RZDop4Lak8TiJlazBm5GX6Ir32PLOyh8Rbm6Pr2Edh2MT8UuoXJ0fZz0UgsGBFURHLFxJlyYl+bkDHyrKlrrYe9+sHrWDmUJP3laUuc4ncGcNXsEL4LZUK8WbJMPcuEKCknfEqEqZ5PI3k1U0GRYBLonGDMx6q5A4VqMtTOIguVaX0TYN1sbbXbKx5yjfZD/+AG2Km3HeJeHkrKpXYWAw8j/4qGFdkEHIhuq1gsP5xDC86zHeG8KwCSlkGdQObsBDeN+rluQaHsVPtwCO3mYsdlwPFfBVekRhb5pvXCPewnW/aNmK2mmSOxrCg06xmQ+BHn8xp3BwVCtkr/vxyo8NOAjii+KeOMFxtAILJAupo8E3z30bOXP4Bef3+JgAvE0hwo89+aROpG0jcmbxcZfPd4cFbefS/6QgjdLI0L7qgejM3kL6LREInItvIOxXOxI1csx+FuvaYO0Aa54iANNiIrxvRw48OMre0cAYBwS7ECl6DyymauxmH/1D58rFzucdgOjprkcOC7lY42XwuylazeBIT/tkaSeymD5HIsEJK0hUG/FzyW9ZRDGr5LgU1Ae6mU73pq//eo4OwrEaXutoOK3OxpIoxKP78WGYK1n6Ku+WzZf0Z4HmoY265T+sl6OtzCCcaz12BLdDtCd/ZhgNplXbM2Tb7KtUbUwEo0GycXpFZDsc4mgaeALdfpQYeTtFRbsbFGitqCxmnFl/4L51fwiQG5SQb9T2cJXne6QMgi0XpTDCSqECCW1jpoNVv3SQOqc3tSLxorRmXsuEJpdjng1DEAv+5UE58dpizaKj2qmTnWmZt/6Qv3ju++pK5wlqCZuQ15GacZicTt2UAVdh7UhPoFlNJMQflB6Q1uvfPTbTVMvcOWX1O9P1Jxu0RZCbtMtWN8FEhgu3TaBg3nycKCpS0/o81rB7poqhMflu5id3FsgvLQFXvmCueoZB3CCz7DJZbX5dQx9gG8/9bEmm+diQlAQQc7MkQhJRvu5zmwehJqGf3jBCDTTBMbfaqQ2JyX1YEy8Benx1GCzCzVzshO+UWbrvCX99iCDSb26V9h2aY8tR7JM8S0UDtSXA0KbfeQGWyHsMjB25zPGXI7NXz4rk30i2HOFJ5hR60sgfmkjRfdKrwdu73bgeNIuVPv0STFXkd1Cx6L8qk9qRj6gCJV0+/Qx7vKhIOx2siCqSw3f1/o6XdJNDjetL2P9EChFk18uJYyQVhIBT8RcFJxqUM26F2F8aQTkFucG6CSe++FDMCiha8FzaR6xrgVSMZ0MboHNwl+RbAvPgPz4Y6JoMi2ewtbsPnGcwVCqTniHtQ2gE3q2UJY7G3FtZ8ZLSDMfFIPOI1jZD0BeZq784p/wyH3HE1KERdm0rkw96/0sFpXeU+D04xZrdj0FhFySCHaqqGK/s2lM1bzOfvmHnkUAfvxP/MNnq3JbkwKu9qGWYg1xRaUxIXUD7sevEbge0noODdP5+Q1ocoupny+DlQPNIioSqvIY0DH7hvLnIj7W9SjM2bG8CeiPdaYNlCo2Xdep+Pmo92s9tOLZlLwEoEmz6OV4q4MJa5wGro3OEb4uW5PJfqfAZK8tNNjacr8cd2GoNkN6oY44Xev5kR188LveNw2jfokO4R321lZHItBuwfyJUPLjn/SXDxRafQav+epgrvjTbMdTA9NCd5Ciqke2HB9ZCmtB1JGi3b7FN72akvKLb689NMGSgeMeHgstx34yDj1TlFqDFk+/RAlPAZupu8thMyQXqm/7TUxOZiaCD0xfiLVSGZDwEvryVJwp/em7SYGaAyDqcjREJ7Wf+5cjwdNVU4nnjnq9hEW2h+9FPGIvVo1+OctHH4asTIl8etfFrBu6oZp7fCbPe3At2EbpB5i5eoq9RrABDzoNKXLtmjStpgsQPpGTwgbxMXmt+mCISjGBoWbgP705fjiUQCVtfSIWbcbITx8eCyOnFi7torsdLxyMM63DdtaGwTgkOwfS8+mDnTA7sz89t/IftMXagy0hDV2II83948cTagQejsL2grjSqMy5450BKGN3oJblWkHf8e0Ev1dxoloWx8HkQdUH4aeKsW+evNVhRwhAyy3IPIFNQeV7x8NzUmMaJIJgTknLNYAo5wp72dsyxWW8SqDfbndobnq1oHP3FeHRM1KqbcC2n8wKJvCKdIladmmZC6MJBzdVKyN5jce5WWfwHa0yo9fL+87+9HvkliXWvD6MPyN5Rmr0MCokBze953ULWorNxoU6q5/2feW2Ims+UtGLSF497a9qBV9RYv/9vyW0sz34JOkDcaVvxN+V74NRETL8rAoIeqHqQlmrsIkR7BpzfPOOBk+pBnFuqV1Bnjhq4IukO2xvtIQxfl9FsAnTMzUV16jnkrdTZeVX1Hu8X/1SbyKi6tvDge6Nd1GwBrUh7E+CiYNKTfs/fyzOyh7naz2hQ/R14OovIJgL93o6+1sN6iUNaAAFpaemcN7D86EOSLPLhHq8wb0ELrVeYX9zOgLS14UEe3zSUE3aErBPU6bgdeUt8jHCe7Hc9chVh8PWxVYQvsC8X4wKKrKPsbXi21Kv7+fjXv6M/dJG5vZXL18Ob1Lc+T1jtHyW0NRphjrn0JnkXF985cXzPr3foicjhXcZFMRXBtrICjLnvWOUEL67O7WXMI5/fil0TqNIsayQYLA7voHzfIKrnnf7CRI3hX0j2DT3b129XM6XK6TVucW2nCWxeD/nPgReF1LPVvVi20gtgorf7cjmXHmBUPj7AV6huSG8Fb4KJrbdHZ6Omoq11Q8i2/5UQa0YNTS/i1s9BZmQQ5Ond2xlrgNGX/NTqDFs0/3RVsES46xUR0OIcSCMcr2oLL2D09FQkSC5Sb+Ab+qCvNJ78n7/j6Uzy1ZWB6LwgHiQRkl4pJdGE6T3DTyKNIoiSYDR3wX/HQJJNXt/lVoEU0kOfrIHmfE806s8OhG7cztuyycSp+zVUFI8Yzl9ag61T44UjQ7yTJCkOiQ7u34bv9VPb/0cm3Lul9PlboQwFNUXLY5/LmAB4Ux57TfU2LO6eb0OJYJRrn+x6pTBQD/rBk7EVIbxNfSMz8rbwPss3qiZ5Paw/PqPDTm7H9CO6Wd/GgIbQk7zBqxKZdoM5iFL4fVoPPCpELhhzt+XEMZqNZGDcO79KayNAmrSiNDn0bXNLBySACaXmkPkrevDT25VFXZlesLe3AWlULBTvW76EsTbrFn6dOZkkJQVpBbuz0B+Pos7XHkcjvm970uAGxwYdnqLDb6qDdp5vQcSS5ep+e6dkgyHaA/HcxZi++RkpdTn1UthSyYQ0s31Mn0dmwD58vXRVPpls6x6Bt5MQ8Yrr/GnPDDR5v+x97ZIs8h1DaHl0S/ht/MOkX+H30O8o4+gdgbSHksVrPGEzTdzmsU8ZDHUnTFAdD+jZuG9LwLy6Jzoo52HZcp7M4BvI/1bz+/erJu9ooyorlG0yGYkhofgDsJv1dISKRGYr8OlgLfBUAjD5WTMjykMYcFrlLrHRIukPq2qLZ7RZ7DsiHGe84JJre6wi0fdnzoR2SA/PWOM4lqNppacxU0/0VNucc0Hhd4eBpaOqLv8vf3P10EEvK/8g4BekAD50PIFOdmbsZaXoFmGfSVDtiQC9kzha3xHLUYb/8WW55wbklxzEcRZxVMzDLphNKF7h90iRnSbj/x2L5XBb5oeqFaXcJkvQpAqcu+dsTHmmv8vXxFf6dj9da/l9/fayQf4ch6bHm/GxPb38g8lLjbXeJlK70Tgyo+pOyr2Mu/O6fdgKZQh/uEcI2H+YRGGk/4mTGpEME7xkW28Ez2G2gfrfZ+gfscB9uAY+gyEjgciQaWEW/WrYJvuDLpURNi3zos/epyO4OVV3+h6nqW8xr9iu3RB343PFNa1BW8xbdAiBbW/9GpVwdUf05XHLEJWmzYIofqm2/zjZ7Z8AUHpRdjvlb2/HMRaBqs+JPzYu2D62Gj9i4ZxQoK0j8DcG1ELkVwbBP4Ju/K38TL48EpqH5gSLYrTVPAlxQV2l+4YzZ9jSf7dl18qApipe7vBCWUCxaHeL31qi3tI+XWH1612w68g0g1a88iwpVWn6LvVw0ire2oHgTRs8Q0OxDFwBPc6oN97Nf+r1/e5Nkth9VtKl8Znah5UP9rqK9jZjkAkjz2iT8wZLXxNYoHIyl+WffH9gXLWRGqFPWpYoe9ukJZSt/Ed/6fGQAYfjWfkiRfZnwLme1DdUwv7XCKDn0Z4Fa75TV1dqf6Pjz5Ke+q1CWrm0r/McIykhLpqUgH2J0s8AIET0UfqucYUp8YPZs7zRC1rPxrk4gYxZGnGKAYFKWfOvVfwhow99nedPMzXzzWGWK0sbD3VALCslmwIjb7ADrTUSIyzYFay89NHX94KgBg+g/zffI3bF11Doij/wrI0ZtT9qrlh51ogUOYcRFe+ajA1BOL2PUjU1WSYByniQefFHo3fzBkmw3MDuPJ+aqa9Xa7zkAp++FSgaCia8tPezhCO5yTEx+O6AZWhkwcJL9TUU8fPMj+uBYLDU7BX/a+Dtf/Wm36kmjMcomUInroiL19M2lt/XNjR5nl4eeo3jE+FE0m6ldkwsCpMg1u5RHN0CV4K+WQV4lY/N0aycVfWerW+6Gqbbb4pa098wt6QYINdZg7Bdhe79J7Iarm0t0qH7V9sUe0SFcP4DuwQXLCaUU0b9s2EVUMHyU1XMP7ov3KMev8FDfl8X+vxUE5h69/gqteo9vSVf35JGXMpxnakZg27MM6BW/6eXOE2TFHov+QJrfVr9RML5Z83pb2lBvYWhZWLpTzugPbJB/+rr2aX5eD2MGR6+hMeETvzQvuvHwiPnBljOZ9asPpJiqvCN9gOOgyQXnqQhq9q/9/865XwGX5sfGH1kyDA1Rl7XUeieWgiWVn9EcVB3Tej99NTpbhpH3S4rC82N54r3zwPm6teYYHJeWCdnyBGQNKQ6+4aw5joImGKnw2L9Pu+YDY1MV75ZsQyUVLhx44JLl4KiqacOwUQLM4VoyxUSzqmTwRbXvTQ9AaK/7NU2IPVPyBBZnE53XXLkRFVta1/gbn7i/SNfyB7F/w1VLcyU2mz2MQP5p1Lxp3UHkRCzah9zJPmG0p5DvKrluNVz/vTudK/yuHWq7hQ/9xomvPjHnZqfKIPPbSbz19/gmDlMxQL37GhhvtAcvdOMeHeut7wWg510LfifwAAAP//pF1Lk7KwEv1BLgRE0iwRkLcJgqLuAF+AiDwSIL/+FvNV3dXd3eWUNTNIuk+fczpJd1Ra+O2YeRsKhn24Mte87wzBeQGgXUocyhWtyNi0+o2w6w4eMansdhLjpxTig/4jVva6dpOdu8K2WUsdM+uwyVp6y0PoHdHFUhWm8fCHNzHTBva0la8/habvwR++l/P49qeXc/i/7ijY/u8dBb7aEhYU2tNoC4JM5Yx3b7ZDvOy4m8kN3LczZpiwGM3bd4Xhs+EfFignp5xcIWrgeo5u9JuwY1kHQZmAE7En/fy0nPN6vzUhjB8GrrrwyBlTBBlEdgiZsxHvMY92qxlusSwTzNdKxlb1cVTJznTYKeo6XvW3UAds+xMWe/bKplTVHqA/jgFVreMjG6V1YoIX3H54OzRzNy/PD6LU1nRuYGPMuPVy4LtVTEsUb+P2VT4ceA9OSYyC8nh4n3e1+mQUGLHu33h8Do8RPM21SLo2VDRhdT6h16MwaZfkrj+2D/+FWnn0iP7biDE/2KUObv9ijGzqtJyO/jpF79/NJrnePoxRXFcRfC6wdGSiopxjXjigjNbIXHy8cr6rwxTY1yiIhQ+xz7+nKFf1aVuygJeHjivdrwXb3Gt0ZszIJrNzPcTiLMAbRzmgKVTtUXWs14Ncyssb9f3tqsFwLzQSjM8Ktb/9u4DnxomYRhOLz12pNSoi6o/s6lD0W7V7heBelzlM21Hu6DBlEjpFa4kdplgu+233aNAnmHJ2H86tT+1ol4IrDyPb6bAvi6u/zUHhy+3fxikoufXqPYg75pLD42PzScxXLag7Z9kh4aw7Sn61Cb5eV+xw6/SMM2RYEKOuJgc92hh8bxw0tPyM5ehqxOIPnQWUmEFONwgxf6RX3qp0PYosYFUdU49FCZi1oBPrrOwN8VxNWDWfOSHhL3M67gV9D9Y+XTFjtR/8kbrfHuaMiVRUyi4bEznoUeSmE3OtU2nw24afVOXlxMSmtmlM1jY/oakJPlSw0a+b78uZupfyWWN1iq/lMN9/AbxWlwyXZevFm9JTZhisZUJ1Oq/K+b0zCmDSeo3hud3zMQ3HK8p2V52ERsz55H0siopMdujGX5Nsuj0zD1Z2aJKstkbEdWEaoeiED8PrLu5Yflo5YDOvY0R8OGj8akoNP4oS4nqxlw1paGNFPU0GcW96jKqjOq5Uy3VS4tzSFM0Iu46COlNmzm7qEE3TSFCp83IZhsbo5mEq9PXPT0pmSfdbOeOthtVqa5dUiPqq7DUBVmCys0vnvn2jUX8fZfW7a294LGuzpPmmG8HIVcwO/VXJOv0j6GDlUkzX69M+400ZBvAxwzPJrMnphLn4FejZGwbb/yBG0+qNH4C+lxwLr8cqptnPu6JPeE8Y7qyh5AmIOgSj7mMoQDL48j6Uk3JuyPX0zMvBclIPHrfOITtJ3sfzdMcBJBflzExzo3H+mO8hNK/DmZFd+UbjFE8rWJVZQfztKJeMm1sdimbvUuH6bsoABUD6v6GYXz10Tmcyq2QOn4lcCtAXj/OCV2k8b0fZQ9lHu+IyU+WYHY+hAsk6qNhBwhIaw+NegWNhFUxPD0PJkXLEEN3NlvhQ7v3hXU6eGv3iDss9rw2enl90i2dyp8c6PBvL80bIXMc1MaOuQ7QaUgx+7V+Ir7InHy/n2VKfpw9l7tXKEW9KTwNDuOzw2DynsrlVhwhtNn1JgvAQ8PEPH+TumJDAuu06qfkKnkpz50nMn6MZm+wcJMh/8AqLSWxyYRVtFdA06Akhlx6NURBd1Y9WbPEoe5ExBewKoDiSQbvH7cHHPMw1SAJWUh6vf4g1pafD4/CwifO2ezRddB1DsAtrFk63jTGXj6JB4+MyEdPYVf5EY3RCsS8RKmdRw6cPKYu//MTTz9iVUuqfl7nVtw0eTTxn/dp4jrD2holp/UNGU2Q3IbgfO2VBgD/l2HlNDmwOTuSpfVvezGatK5epMZhV8COSYh6vFEzLEquu2aLpZUW66n6MDdutp8ifcavnf/HAfEGKfWYYvxS+0JvMh+WM7nhtQzjO+ppKwvmLxvU7juDANm/m+uSdTS0iLVzPWKLzSz+W/+oXMgaLHB61VtZU8x9o9/x6WNjIuiEcDE1RldEc2fHcJln/bqaHOvx+D7q5dE0555sJIO/dFfHz4+CPu6hNlNNbMYn+Vx/A+CbAP9WPBOlay/rCuraQb04jIS+5NeZkxwLQTs0HSxYxO/49vRpo0NXCK1EiXGTxx4GtaH6Z1fWrrleu7giPvUqIJtpvPrL9tUK7r/4i5MObbESOKMDpLZvErA5vNGhrp4bdxTSoyPjPqJCjSjCFU7hYzLeMpZsEkCaUT3a4t79uFq9mgeYElsvCTKmc69sLoCwNRvTg6qJ5pbgtqIfLgDmKb9kkKrMHopLqzFhZezTySV/uMBIdZrCkLOeoUmq4ivuReev1CbFzsNNgsMyOEPH5Lv/yBakVe1G1v6YxT/yqQeOoJGQHgxuPie0VcM7lgLKnfojHorlbKH6+HHJOj3E2aO+9qUrvb0D+8G0AgyWK/C0V5j2HnM/35in94RsVlnyaZUNapi55KV1r9eyz220tQEq5QnYyLfxJzKXm73O8FW6HcqxnfaWAfnNY1PI+/l5lt4D9pzCp2t0zPhcPWYBW1OiCZy/eX86KBaFZihj2+cTH8eR4UO2EDQnE1PB5AYan6JEVMN256Z34ljYCONHwJH7h6Nlf/m1r//lgRqDp/+oTlG3xpRtpH5WD+j41MF1DB4t0MxujMAJFX9H/UWl/quNpqX9oxS9rjPR5F/MS1TNa6i2xZ6vLeEf0Wn28zQcJVzs7G1UxKNB5N2RM9x+mz62XksAmbzdkyS9jcmxWoef6d8OTu9yRcrttJGX3bAdmwvxF0/ow1fCdniMdI12N+2caWqp7dlSM0nRTzsI3zNUwUz3i7yQvm6vHKYdhsgR2uP9CRKfeX0Erzx5zem4Z35N6SxF/bw503YtrTkM7y2FH+hCv+l1vzBcaRchJ8QV/dTdCU0o9CgeDmlQ5KG05keC3QvJKJcTY+vYyJWfSgJ+bgBkyGct5lWMH2nuLqMDIzRfM1VaDjQMrDImp++OtOoSoMHNOzNfjEU/l7nqCSRM4zcdnxXk3nQNlzgaRuNbJMCSjfQLy5tZm+91gGXx5fuCf0sJj8RM4N4x3ih5Hb8cW/sdnX+U9yss+ZfF4LPzevTgnZMjWneBD7WZ8M5YnNLiCzZy3HaCNacRYSUxnyw51KcVcjAMMMOEQo/PzFlMroRQ1JUx4Q9Q7mqJfT9Gp/jFm3bZ9Nu8/c6sufBZPtuT7rI2/Mgg3e0vc/bX32fF4VZA8dy5x5DFb+MjO+7c+Li1DNMr514TvOYnwy9t/y95a4VzZhOmJDvZBjIdRC0P0F//Wl47G2D6MAvTzuGdOHtByemzkClyZjcTmup71SGwUWEeuzZzk4nWC4po66oKHQXbKpi/7a/VrQS5mgpHK1nyOqrlCoXM8MueYB7FwOMoPOHo9I0Gqh10/x90Iqwt+Y7leFca4Z4kMo/eTyU5Yr7pptUIzmp8ZZZpGOqMxGQrRHx4FtGHxHHH5hLzv/UyWfEPjWU5lJKWHGy3fM8T8GeotCFpzZlrzPHazKDk6ygQULfFaG+Od7hLYp1eRHb7PQ8a1lr3QUu+ZGQhJR3/7ZW5p76+Yf7lqxvze+YVSjXVOo3w58+cIjQTWzdwQrXp52aZqjsoffrP7FF874cAFBTS3TCgU2trgl98RoFYOBolp2pfVRhlHddGLeE0uAR8ymCOIhp1NrG1Y+1Trrj2i10dNnI2oxq0lFAHabGhJvI3lGOML8Alp2qrHr0/+zqb7z9XQ0Zsjgnu19KfvoLdorpXvUu/fZT9+sfSnt1j8nvN4roZAg3ttncmuPh44t9hPhgCSIyGH54MvlqEGv9WGY6V4juU0FjmF7NB+mDNRM9voH9AVIjQIb0QXlf1GkWel0NiF7OxNyefsp6egHo0vXkVvu+yFUeihvTeIBc2k+L1mzCOY0ricyZVXJX3uNzrEWveg45AyPu4PUQ5daKbk+vJF9A+P3at8I89pfBizHblXkP00p8N2V2bdcC9B2YuPN9EsS8s+mT+a/+rd+/xTuyl4/a7w7NYv4penuz+P97aG1ddb0S78cD63p5sFYt277HjsmNEZn0FAqlPpzLk7+24TPysLFn5PdLle8bHYpBJ4HZ7oggfGyKQG0FdeNcyRfnopWtvTCWbHADxPH83nS77CJO+fxHh2pc8EMRFg7U0nYiPEjD7Krg44rX1kvt1bXHqWyguk5K7SVX6eOb1Q04Levlj4d1l2oD5PdQ3C69ljJR5tY36HboSO9LInB097o3HwTBNtRc8jWqJmHf/uWxnJBqqIPv5cn0/XZU6mPIx04S/lxNeXB3R5+sKoUy1/etxEEx6H3GbHrZKjod+/HLTgARVOxS4eNVNbgRH23b963C/4C8wOfBbdwjuflnq+TS7ymVzhYZW/t7SRUPfSNzg+KU02y4VTQfbRr8yP7m80hmyX/q0HZk99yOihDRskoObO3N2t4tNrk2O08FW6VePYn0P53EJ7mHdEk2LoOO2zFwQuH4jf7q/+pB9aDb6i+8PigJA/LPwRxWaqMP10fpbd3tjrsPfyK9nv+iEb6MktgM34xLwqqY1efx8V0CdUYoOYfjmVc1qgFeE+CTaFwIczb0ZYfzYasTfqq+yinTSi67FQsXSX466JgwBDtO/OLBDT0h/1KHegX3VnYjvI6qZyFyYqP7cBO1SZ2UnVw4rgMVx2f/jbsVB/J+D2VcQcVGl8fpX9CeqVprMrk7/da/3OIhS95or5Ss/Keadoker/IPn3PMOCT+j5lHQsOFJjzOcQeWBmvxCrWPnGw5m/ZtUuZIcdETe6SexogMq09hh5bQv0x6+Q1iQP5tGg6GjEx5Nq3I5nZglnGw3qOvQA66lFKRo+xnSUx+ZfPj0O38JnRb8JAFxFY/r+i7kwmUKAHJV7xBoTrRROv+kF3eYRMN0rBn9+WAeMtqmO8Ad/Up/xy6YHXWzXdBTtHWfo8ARUJgJlix7NJnMr90hw3Zx5B6XtClvIdbhMrUGszXXDp/WhTGGpD5SHaOeLYRDPiJrjQNfiMqWT2L8GIlhXVPp99t0c67dRXt4fiz3PMsZbtQ/RXl/w4nFbcaZ/QINZmt6kXvB5yqGy/vw4govDC7GDXWpwiyEjyeYWdpMWkQQ2gtYSXPsk66d4AtQe+sewnjuIaaAOL/SnNxe+nE2ukLbgjvjHbGpX/mxcbiG4e/wiwc26lcvf19W9um7ITkRix/TaC9BPMR2Ge/Din33Z9fDHPzTncCvHDT5Q5UUf73/r32/uRq7cJW0m7mPrGt0suVf42e8K9/NX6lr3OOiK/f1xsiPCtuPPp5bCzjlcibs9+WiOebaCQ1mtCF70zaiJhqcu+UEsOZZi/tjFpspS2STWbRvEw0X3AuU7cInY5eXN6aKX0GyERxYOKeF8vBYRHKd1/uc3+fQ5j5HkdcHE3BfbozFI7ApenuDTBe8y9h6yGn6dqyz5gbt/fsqfv2Ze3045hSoZYS5dn+zQ7PGN3/qC8jx9KRWKy8efLeOlg3UzTsyM+qqb6Ml9weeVcSr33PIFzXRWKAz0Af9KTrvp58UtPFSCqOKs+7g/VGsPFazeYaXMXxk96X4NGugX3LSqm4le5GjqalXHRPcflfHPz83Xmw3mLib+aL7ElzKd7i4JjPrs95hTitb4NbLbingGvdAoRAs/ZDh6f8tx2z1aZMdrBQs75x5z0bTyv/rDUsmVs+qykQrYP7wjsV7dy58NJ34hadgw5txSBU3UVGug15tBxdxxOBeK0AM/Ce8k8K4NHwsrbGDhb5jXg1IydLis4H45tGzhX+WbFlsLHR9pg8e9X/g0lM+NIpIkIX/1e9DeBwstfho5phVC//hVfDWWKanPvOvVWLNQnbQh/ZqaEy+fa/B4Ww/KSojQHATlCbRDNBNyDkIkbA6bAi1+AYZmUow+SZwIwo11W/Dh4CvrVqQQVYVGdJJH3YYh3wTTPD4Iwend6M/p86os/JgZZG9m/CAPAbxH4f7v96VM1jxwj5cVXYeRH09ucnGgfF7EYdPetvH8KhPnD1/IgzCOpqf1CsDtC4aRNDTx1Hiyjlb8vMZjpN9j6r1OFZDDqWO3JV6YXusYkvCsEHdzl7Kuup2c7SUpBKILTRiP72bK0Z8fkS5+5qgoVgAuhz05L/pj7G/hwt/GiD1+eF1Oimn0IHcHzvbV0vFXzKPyl9/EriItk2L9OEJah5yZ1joqR9+mAXLEyPjH14YlflXj9XMWf2Vv/POPLsR+EPN7bLvedbwanvwq0ZlRr5v59SVvF73OsoXvTnz9zBXT0RS8dS9xtvQfLEDfc068V4PisdpDhL538Ua3ZyMo5+qRPxCoD07lcxaX/DGfI9B2OsHqlc5LPDgWPHkq4TX/8ri7794RDIIUMn8vyHw+78QUforl4OdL9nzeYyFF1S/4MXz4FsZsXI4RpJlbUb74z3NAvyMs+EZrlhVGHwWvGkRySugrUVHXP4Z+9RcfTBMCoxRkpahVS3BKurnWX3/QRk+AoGmvRNuEfTb3kxyAbdoaFV/26E/yBVZb45Tbi18XcHHHoIHzzRvpar+9ZAs/lLbT6dWzqIGNv+mK5wNE5fRkpISI86645OgL1CRme1JQfz13i78yfZhlXlk85ctgV+NgndjuetcR19pvAb5eVWTpB3Xs8rsBWvCPPZ+rKhvGKcrV+6Mv8HHQGzQteANeaJfMLTaXjpvC/Qr/9ONz3JWzVA8y+tUpIYve8fu2R9bf+yPGq951m/HbaKDI3w3TsEkRv/6MEYRGs0nCssLn7yGrUJO/MyzFzpSxQ/Ka4TtMEtMrlSGOP+EJqvNrJIfyZRlzoH4KOK7ImqrD2fN5Pm9bmMt9Q3n1cbgkXoMXxOhX//m1Bi00NQG5I5yi8qT6vWp6CXwP8GTXRS8Oj81YqaXhiXh+6VPHSwQr9Oev2j1J/Kn7ziOcEhYR52OdjL/1ROtflbODYO390VrhBzoYvclCKc7LRS+k4CfRnZmG1mXzUn+VlE4KHj7fdUyN9gJg9KijXDu5HV1n6xUyQtox/0VQN9vCXgAsbhNiLHg+j+uvruiPhNHhUWudtB3fq//y0byc4TCvVA6QLVOMsC+2t9tVORZmgV/S6ZzNufVedsxWmLlqzI05TSMJerId8eL38ulclbr613/yr9EeTd/Ba5GEtSsjODujafHT1ewYAdOqd2nMels7oHuthPmzM/xRue5mKBDX8SZrGZ+W94nynLzZXhgon+5+RuHPv/0Xr/e5fMAuvnqMZIZlbKBdm+gWrzJGpnFlDFuzMeFuvCfiFIbBhTm+17Da2Blb/Eo+XMNpVv/VKwP0bPaDqVAzyx2osrEaYzzSQUPRnspEX6cl79dRR6EDsmHGLtS6ufGwhBT5syEet5epAfU3QkIunon+0qdyjDN3BXkemyQI8L6crO0pAaGKOjr79y4bpfuxgZCfVFpeVkeDElnR4dO1Nln0W9l3aBTU5X1jdvOvPr2lbw3VkSLgqXGMrGffs4ZO3nJH+lHddPMmPupQfZ6Hf/p5HE/aos8cgUWt8PHpx9umqOuPKTs4dmbMJ92v0JIPTLszFs+7PBiVoJKBNq36y8bxiwWlJ2j8wwPeXdJToCijccAf6+t3VLhGVFW4EBANYQVRtlYxLPqNvvbeL+bFcLgiSYz3eNFfmYQDa/WXP7g2ryzjO8fq4bxjGduhuf3zQ5YDtL5ELPrsjOkaTuO/fE36r2oMj2YW1L/nWfzXePwSOYGpkx9Eu2zn7vfnR7bH65UF9gey8ajKqz9/gFnVD5c81H8JKI5gkOdYlRmfvjdBtc6XjFgWqTr+2bg57N+Sz/ZJ1BusjZmsZMfTEyumSX1e+M4KiHwSyJ9/+f1NUwVWP/75zQKaln4yWGNmU2nhl/OmfvZopUgbuvZyWk5E7b3NXz9wy5/20t+YqJqY3pYKayksR2tlPZREu93/+eOj03ZXyI4hkN07YR3PLFzDX3/mWETWMkX3aim0Ob/YEn+IH+xOgyfPbzSrbXfZ4X9+oV15NFnqIiObbFsc0WM4PigtAsefTrah/D93FCj/e0eB3H4bOr4SM+YRlk4Aducxu3n+yt+ceiGc7Ephe6wd0LiNAkDdczn9ErrLrR96lMO+292Zj6K5o49MSyBsyytV78utnDe5qeD0wGcqqe8fGpAJOqqlk4M3KKuMqdk7FpxvoNFjEDOfPsL7FarNc2J2J6hlX0c3HbZylBPDtEs0qat1gFj0MZhv9rU/xt9ng7bR9UuVZNsiagmZDM9ssuln69mGcBzyK4xeumOHgD0RN1Y7TQ2kxMTr1Dkaw1tSH6CdngZzmktqjJvDY4QEn37ktm432XSXAw2yPNwTUnyNbHyBE2xzrWEk6LdCPClpV6BH1AfMHT6FMbm+G4HsOA45e8E3HvODWyMsPa5UjW5S13l8nSB/n3sEv7ZFOaupBcBDs1hORVB/hCkUVPW+AmZX2iXuytNXg00drInTXTGfxGw2FZwpIdvHbdXx8VE1ag/1lrjaNPvj93lIt1k7bwk2tWtMHXAeihzu3pQ9Z5vTnR9p6mRnP7I7Rqk/MWV12oqS2RGsBUfO+WhjyFcZMD2L427g9tFRxDID5s7XuOOnrTUrn5ee4FUy3rIJZk+AY6ueiVvcB0RH7VEDek9noq+Flo9htKJgPRyX6RrrfdYWUwU08i1mG77W8diSPVi+LyFZvJyZr7aKErgSx3EuImN0785VWfVooNLzJ2Szzw8JdBldMwzoWw6GMOboFCkNFUZHLnnrxAr0hT4TPKwDxG1QchB24Z55thr688GuT1B6WoClYMuzUVNOEno4nslcbJz5aFG3B1JggzhvZSqn8mFXyjocNfqp0z2S+mk+IbV5m4T8zI7PY2z3YCWTw/aHnc6FWHRWYBmVznY7X+FTPTS90j+sPf1UlVh+cHW9ojp8xCTI1mU8WVITwoMdJaJtmZ1xOG89JEjXEzl+Cz3mR30HcCxOy12k3EXjOc9M6C76QHdCE6BhnGUPSr3zCdEYNnrNIw2S5XpPV7ePwJnQ7HQ1mmKHkDr7IS7/Rukv35ib840/CPWqAaPduhgpsd1xKyr09baN10w7GX452fytqK/h+qW8tR+IyduuhvG0cvG6rGnGw00CUKwfJjE/m1/HYn8DcNARo1tls0eSyQYKysM54mlat2h6Ph8O5EGvk+MxUvyxVEcdlNpomdVagHi3vxcwPF46wdjdxf3RW0xoJTNxv9Xikv/8NAKXCy2dTvM7Zu8hV5B4cgsSdvOmfG89eQY78ydi6Pee06tiVqqPJcr8Nmjiae7RFfL9ZcdswGfER9Ao1MNOJU78K0p+ZOGMlOHa0dUhAmPwxBtVEK4wy3KlKvn73jogtrNKo81ZLqdAtzyYlNeZERdr2S9vbhE8poNGi1hL0SjI6gz5EzmMlDWNx4cdCNupf8sE/15p1/qH0lK7OraxUgtjOW3OYgJXew94hd13PB2darnlM3EJfpi2MfZyXsDwMz2Sq88958MmLQAe4ecPj7vxnMcm6JfIYoFev7KhStwUSC2fyeGsX8tZd+IWfetlDtgumbM57l6pet9ZPdnvtrgUlbR8ocsal1ToxHXJD8VKR+2p+1JRTF4dD5Jdo77la092lngsx1tmvuBV72oWBBsWM2s9Cio00sDcdp+iKbWIhhZ8w5IVTjEjbVFBqwY+u09I54I0bANYe05FAkZZN5lPB+AFvx0LjI8fj5ckSQAqeUf2P+PL+WbaaMD4XOPhKj2N4Vd9KrjgucZ0LzUd39ZKjgwQIvzVT1k8Cj9fQ+V9JROzefndeB0FDTnAj8ydbk4nlb++UDbaxSOWu+/RhC4fD3buN2KOOTQ+v+pdAMJEdTr6EPjsrKGrUtidRcfvavLncexG6Oqjzfb5EdAk0hKDuRUVZu7FquPG+KTg+F+61Ncqnh7ioUVCWDyxIHxbNG4OyYy0znzgrZ0uhNSqLFWeDia7o5vm89hfrwDx/sFsUj+XjoyDFVXvCAnedw1tnvzYwLfLL8TPFbOb3WWurXBz73QO/GfXez3yoH0rDxJ05B7PYXB6gbDeRQS/5aGjae82YPM+YfrleTBEVw4tsFom0M1eKDr+itaBokyXK9HrzObjtNmv0DYzPsQYw8afN+80hK/ST8TJQwXN0u1DUXTJazo7l5vRr6/tCpxxWBHn/JU5RS+fotqVlj3vtyyby+0lQpudOTJLm0/GUl9GqM/Oh5z9S4em7f2tqGiwdeLkqO7mwKt6dHpnOZ3+8DFI3Gb7SqaAmW2bGXwrfTB636WKWVZ4jHtHL3q0614Z8ef1balvJEBlVZ3IgYyncgjxSwZkRG9Cqr3GJ/EhP1DSi3f83X44GsxptuAl0zPZb72v0dXSFKq68gyIZqlvf7IbCeA8uBbb4fuqpD/vFQHehyIeWx6Uw/t0q7bPJ+NYRbeXQctf/4L3h6nESLV112yubg+W/aJYeOJvx4hyPqGP57xYXDwX03zl6qht3znTFBrF3CJdo1T2TqAr4gTZ9HwmDiLsHRNrOxixlL4fFEVQicR6isutfefcRHfF/TLz140+N8ZLD5n7ScihXjvGH1+A4Wd5zH4FIR/kVxMpxVAgok3h2R/zp9KjP35n4PFT8sNHSKHutJRpktLxOV7diq39qC0shcMNjSxQC9RGjUn809dHoxTePYjarie+dojRsByFlodhzpm2i9vsHz84YJKT/RvxknWhk6PLcEwZubm18RdPEO4zl+2mtYf6bbUy0f1Cbfxd+FEu/HwdNgl8sDA61/IP/9Q/vuYD/LppO5wacB7RnXnWsiPldEgT+NxShRmuhfkUausavLN2oIr7/frDSfk5oJfixDS1PPD+d3IE5c1pihVx/+ymv3prJdzBygQm509+bCEKPJn4KjqVc1XXDjrb8REra9yUc5iTEHylvtGvOB0yQfApgJG1jIrlZKDZKKblDLZpYSVK5bI/MzNA4mnrECvY8pha1dtR2izWMTquXC42p3nZUSJ6zMgkwvsLn1OYbzuX4PV+Y/xo59ew8CVmufuAj/Y1DZTV/Rez+P6qOXMu1wBF4f5DgtaU0c9Tnwpa3i+VKsdCwmmnXhXVvrxxv0nycowvlYxUvFiU5LRHc7065Ojv/ztjG6HxUb1kCJrzlxmise1o0ReKuqw/s/ZHKx47HJiwV44bYj5KxH+/IzzgNP4kYsilxnkVNNJfvWdpx1E3CbXUwDP2XFqMvcTrFiQFjOn1YYb2hbITGldTtJLdmdXBwZjTd0LRGMUpnarha8y4CDRomJ2SQ3//lPMs3lagZYLJ9lSf0eiyqQCR3Qnm3v7G+Wq4PmDhY1gyvizmc/jugSabKzPSjcmFu2dgyCr/gdUJFWjBY4Cf5HHiryeTz6WtNRBekghP0gwZPUrVClZn/cz2/sXn482/jUgZ0o752DPi+eg+HFCg22PxKJyy2ZP8HtXl78Z2Ip9iPtU3jMoNT5npPKxurlf7BzwzbtNEq5VyQqagoWORXNjhjCN/klxtBX/44B4vZdmPl1euikHosks2POI2fqk5VIpiMZcMfUmTIcQgBpG7xF+JeCsWPayxHTI39c6+YHdGovx9vvWXpm/OPvm/+Dpe6y+aL+1NgCaTT8Sywiljf+9v0QsLX9lln+IYY5j3kkG8G7XioWqUQnkVloKFWzXywXN0GVYrSSL6Thm7bspopIRPNWTW6fD2Ry/VNXhF0osYdr7h7PARrqiXmwMLRaRxQSG4gt5+tMTdXB7dzzC7EKiu9OQgVyYaffsqw2O5jWrRh8acEMFTBRcZzM62G8T3n8xD4eQIZP+9jfz3p6duHm6If6slPgb1KkU3Xfzir+Z1iP3ktwVWdk+ZfQwlv0203RWkJwr+4eH0PeAI6bvrkfa//cB5muoF/OFfuGXfbB6NfAXtPjsQ16gP8bxJ2AkiuVmuMT/48XjFVwdOgrXc4tlzowk/XwkG3kZ4pN/YX/i3rLa53hAnjapuOn9HXf1Nj/cy+62Lp1hnKbC7PLJUf86cxtg8gZtqDnm6uoUEhVg1mvDY4snsdEOcUz0CgY0yCzJnZQyU7lbgefmenXnvlqL4GHMo9JVAdrHTZixa+wWI7bLL//CIS7YtBRMiBwfEW2On5N6qCKGp85wlf/Un4nUF2Yp9WPC+v9D85wf88aOdtEylqaabBQeFDni637YxjXhdo217XBNLOoA/186Yw/d+V7Bol59s2q1VDTL3m5C98MyyBY8UqKvrmm6M55PPieamMDaKiGXhsY2HPikaMEWEGZkL1//jE+jXinu27FaPpz1F9I9f09I6xtnvnrJ/+oodX1utFF8ubZGnyDoJ7++G95UytXAHIWGa8YszauzvIUy3ZGY4y/b+vHX6FO5ZwwnJVu94+rHrCx2H1qSHRG74ePTGAj1C404fT+J3f/oascH1lu+b+6N9+IYwnsAlCST7bCMoigPrcNbI7qju+fCJfR08Y28y55qfYs7wpKCkCp7EpxpdzqyFKcgRDen2m195fx0FHY2yS5jWqHnMb3dHga+mhMQJXVT+9hT1qD57H2KEFHE29N9a8ZtfSGd9m5Xj8n3Vy0YsqBiKbtzra18D1z7fSHBO3t14G9T23/riiceZeCG6A7dmyJmbii/O/uJBw58D/copycZqxD0seoPtfi+5HDSuNTCdrxbeGvWQNXbnJ7CVwxwX00UvP4OGPNgazoH98bHNwn8g64onfn1cETGrOM2Qu/HANCs6Z3QnNwIirIzppnn+uv4cvE5qzvyCeUci+FVRRic1MTRglvEl2RiO0fzPzwmuK1ryo+4CWuHrlmnH1C37h20KkFjrhgXSZSr55KiOsvABcpCUgc/kuW+gjVqTmXvviri43Cu5+DnMyMXMaAV2Dv74Itu/mWJQTzJ6tFaqN5XF3x39+QvKG1ceBm0MjSHQsQcul1pCWkNaKkFfgIiPPbGjTOn6/LCrQOXSzLyNoqBh/GABbE4TPC78k1/PpwRwJocs/Lgin/tTEv3xLbwyO9P485Ngqf+kkrMp67Ni6bBl7pYYw7c2vpf90iHAyY/4hk78uRNkCjRyLTzs7Ygv/FuGnbY6MV++b+LhTx8dQX5Q+XJ3/Xnv+Q+4VTuPafe3g5b6EqhvH2UkAEExqKYxC6Lp6JDjymr9Qe0tS17yi24m1eLcvNcVFLeKsIeu68b4930dfTWSP39rhPojK8X73rBD6e9K6bcWQzD2xoly0zbQmF6xg/YZN/BviadpumstCDf/TqxcuPkjaShGcZR3VGqQHM/x6liocnbB5DChgs9fRExQuTBTORS+MUsObITVrf8Sn/k8XvDlCvfp9WNhdBPKKVjunEjDV0YMtfDR+N7uJESHB2dLPnL2PKsViNP1RsjlyYzuL/+S02rP9Oa28nvfDhU1Gk4ZS06Ht7Gs3wmVmD6IdX+afJM/5P5f/cTV8PPH53QPlZsIMbt+qybjX2PoodklB7wWXs9sbLadCaQIDOJM4iWbTsrPg1x5hszdjaoxoOJqAb89rSV+D5wfq0H6wxdmjKHjiwvfVd/ahxJP3K+XE1HtC27d1Sc+9sqMvvX0oZjauCZ+cIoNOvlugfT9SWXxgqd8yuoQTHGL6ctS38ZsJRsJFn+Q2deq5LPzqK6IChZh5GmD0bP2Vin8fpuJ3Qn3buz9PYXQvYjsgG4vf9S+HUUMtwk7hMQ2Rrw60398e83fJ2PW8PUKKHl+6VoIXsacrpRZ4V1KmDaFosFxaCpQd6NGtPWhKqevmuXQPX8d+fMbp1v9fqDbZi0RLOfnTFg3916pqqjDgtckBl1VkwKoepjMVV9fzpdJlNsdzwQ6r351Npr13QH3FhYk2CR5J2FBXE6omSviu89NR+eLqMD+Yk3M9vihQ3CePKDADmR/c3RfXPSmGhvBceFPx6wxfnGBRu+6Y7f7KitHwa8BxluT0YvbuL6ofS4JlGsvo3Mvhxn/+VG4PbbrM5a37t4QSn4w4cJliTzrzEVCqcoaLHqF6JS+yn/1Ie8CCa9lre6a7yS9YF7JK7b4q37fWpcCsqs4Eiw0ix6azBnVSiiQXb2ROmqEWgA3pfmw9CPuSyH8fIV/8fZcCwHntPqlUN/sI9OyzcS5to0ERWkZsD8/uw+mdwJjFZS49JHn/3pjW0DgCpz98R+RXwwFhMOGYcVafQzWPRGGT5cYzL1q+7KnhCto3Z1scs6iY7fo6RqeAw3Jgrd+XwuCgl52MTNbP6GsYYH4AiJ5jG72roTG/jy28Ep4QMeLqcUb0rY1yi+hx/TXdDT6jfKpUX5Yr/Eomqgcrtu0hqNY3unaO3RxbxrbCOS6ATrp+suY+PY7I0PCG+aVgVFKO/klqQt/psOh/hhDPAs1WvASI/l+iSdhelegrp0nXtKh+/PbkBUJOVnqUUw1HKZgT8aXyvWt5My/aTq4mymhvM93pRiJygrwep9g+Vesyj4c0xH2ADXZ3T4zmi4T1eAZOy4jfpBkk4SeNTpPe86CuPdKYenXwH6gAVaO5GT8+ZMoO21NdlKOu062VOGhyoEpUGXPX2X/5x/aPrrQbc4v/hI/V+iKJGPBJoGyvxgDhvvO7JlnPO5onKpcQgt+/OlTNMmvJoSEWIQ5t2wdDx2Ysnr+4ZTtyKlE//Bq8YOW9cqyiWZXCS1+G1Uy+Yy+6zY1kaa/FWI+8bfsUydLYfHfSdLBwd/kZqYhtmERc7C/z6Sk+ITwvU4NcVddkM0PtQ9QsFrrdP3XTwiUSYaTdtiyYC47f1RDKUVGcD3/1deS3e6a8u99K/ciQONhmVKVSteQ2eHRN4S++Y0AQ7HGqqWWPvX2UgE/9r5gAeW1P5y9bBkSWmOqNI9vOQ9BaKrEXAeUSvMq44E8vLZKOwAxGlAyTg74he7t9kD0y3Mw+vHS5CCGWGI6pVo3b5Jv8pcPzK+vb85HekkB38ib7e63W8YzoQmUc1StWdApP4PbrXuCu3g/M82b7G7646+LfmN7TTE6Mb/TEyz1GPNH12XTT99RAKL7RPcObvbnX6PL+aqT3cLH+UMKdXXxJ6lsF0YmLXiIiPt7MGxqcsbSnrdwe5kPYj8Pn3ISpl8NXhV9mfE+HbI/P0LdnGIJq3/9Nrcya0ByOrI9k0t/fJo4B/A/ErOFuuG8vp2Dv/pPFRbrfOAXX4ZePMh4RFsJNY5eUDTiZGBW6m8MfhC/HlxuCcUTORl//RcKIz4NxBLxtPijWoAWP4KQo3iNv2VxTZS/+menNI5nZ5nategvdgnuZjmJu1Oq+idaUV6vTKOpTUZh8cvIrj8LBrs0+/wP7//6VeU8HJ8KSm/+jfnf0spmabObYVA1iQVmJZXM3TUURmOnMXdzWZXclUQK9qOyyG3V9TH704f72Nn/9SMyrgWmBtVZOxLChkM3fIwwUttgxsQ0guJPX4YguFuD2LFlZRMxxH/+wr9+CpODfPzzp7Eqmmo3Ju5vBSWXKFYVKsTjNjIB3rxP//iGv/Sbom16utvsMO6jkrPpPMJuNbyZdtOlkunhHIAZUYf8rec8HC/KP39u8RsMDufJgc9mS//0WTze5FetVl7uEudXrLp28ncFPOpWXvhnZfDSFCJEh5wT753wbOxRpEB6c29Em7Nbx2/RGdA/PX3rtUzaJCwBEpwOxBcbxMfY5CO8NH8iuywrjb+fVSY/ZGKvTMsQ7ylboa0/+YuefRgzLxrhPwAAAP//pF3Htqs8s3wgBmAMSAzJGQkbBzwDBwzYJkqAnv4u9rnDb/YPvXYwoUNVdasbVCxfiDofxpA9DjgHdpW/qCHxePjTr//iOTYvkRyyftePKl/zDv7TF+cgDzSAltXZ4qE2bPWHk9JVkYvj1DKKddNPVC/8EBxn4its4+ccqevZeZC9sFYFE/nyAjW6ztQ7tRMj77vk/dU3yUgJrde0VJ9KKl3Krd65qxcjP67qwzYz6hK/TEcGBA/att/SUEl/A3Oq+wwG7XbE2pd3wr0LlSesbl9M5h0owRrvQfWnV1PtNUjpVD9xAzc9Ceviek8X/u1XoD29U3rYd+9h1A8wAnkhept+NoUzdozL/9JRAP67o+DXzwsNco+lq6irFyUZvwvZTg+lk3C/a7CVUU24byyFdGQBAjNqTFoE9WDOELp3WD8Ngti+wmDxC18Etl7E1GwFvl79WZTk/rffI6EMz2AZ9QDB3Jspda8lHigrZk41v5cOieNRBFP8uHkQTrVCXS3e9o55UQRuirJiUzX1YXmG9x5YFL4o7qZhmIJlZ8A3Nl2kbCa7zOathFXqT0iSbnu2FH58glhADnWzCQ2rWVwlqH1ZjP3lFdfrTcx68JN6Qr2gZiY1ixWqSIkhDuBDK3bGmlqwm8crzozox5ZvwDXAz553jHXrw9Y+Ljm4pscnWY1yG5u2jgH0PPbCmny41rTehyuML+4VAd2Q6662wxlAstg4ZFHCRiXGEszxtjcNpTNYYv2dqI6JYqrNyliwYzMjCBPgb7OBv+ly/fUNbNC3pu5z1sAuiBuo4mWaUfsb9HD7/QiW3vzCD+sJh9p5f1bwxrqLltqqh5aeE03l7EynUSJn6WrpOgI3kmhYv+FXujo6fwFaaKakb+ZXyHj56IDDus+pTmMNsFwzHIjPqki33y8WUWgzeCKCTSOhW8NZ5gQR7ozHDxuF+B1I3SgIOp/3Su3oOw1zvSoerGZvpd7HQeH80W2kOmYUY6OMj+YMLEqAqqI9EbVXU68f+h5BXKsnsivjPlzdB0UQXYaI8A6zU+Y+gwRKdnbA0fvSpvNNeSGwqPiKfbNrwcw7vAZ8s39TdzwN4TSxKYFYPbpYJzIJ50V5RiAb4h21drumXq7VJIE+Pns4kgrLZKnWBlA35yN1F7oH7B17CtgmdeLgy5Z0Fkq1he+PhWigOMBkO41H8N3VInUgdVjvR2RTPLIA7RIrYu33dmjgEHUrRmLvmWw++He4S8mKdRvuhimGYyX3SxLhtFx+4XjHXgAW8/emcYMu6QTsYIZq17o4zLPd/9vb9f3jUdcItF73j08EA23nUTf0rXTUFl+Bi/l5Y2u92sWO/rovQAl3o8bF/YXj2DEJfqQVI0bDpp4m6c3xJ0xUaku3F1v0HfeF+X1jxy9jm0I1CheYraWLY72twLrWogVAtNaoLh+ndOGwkoCyxxG1jbIa5u4V5bDdqxnFcbGE8xi0Jcwf3x6bpObDURFPPRSPQUPNOTOH3SR1HLSDB0KLmg6MBfXOglEmzVR/nC1zGcpHA8Qi+lAv2G89kMYlB0agKfj+s12wil87B4/X0UdLyeqUcJUpqK6ejtR4mHY9sW6W1GKZEhq01SGkhynL4bybGhwJasMmPXcI+BQsoFpYrGxGat8rb4sCqvGnjq1+9BUgu70dGkdGWc990Spg3/VXaqv6Jx1lU/7CvCk7NN9287AQvCEmd3a2eLCv13N2e8LNXzFq1iGl5ZJx0AFfCYf56KU7zcsQzMDXQ+/yNdfrUDAOkLceYDT/zqy75TaBzf1ZYmc9+ybby1IAhYBnNFabY7F6Z2yAzCkUIqzmOozFse5hpk0uRd6xYuR3olBOa97CSDcOwzrLLFC3vyf8B8j1kqJ2mzqNdWzuXmrNrhJnwEpGjEZ2Vg5bvGwhzTuNHKfIYOJd9yK4+S81tVdUM+XyjKCgDgP1+U+WjqIQn+BXvlikUBU93X309ghgRnlqRY2cLvwzTmBbJR8ivVvE+qM3JVA1ziK1OW/b6+hIBizu4IT9zqvS1Xt5OThp0KcmDZtheSWHk+p/Lzdq8YZZMO7RRxD7Z4uakXhlzNpXAty9vxQ7n34ImXkREygm4EZDklpAoKOJoBS6FjbmCy52iyIf4Y+7vql36p4hW5uDB/bc/YhNsl8A3fwbrNuSHRRyGIzX5H6C2URCGqSRABYxSS7wdOkh9XZ4KNb8qH1V7yr9sIM+NF3zSXqCv+fRxtNr+Hd/dCYu9n7D22TleD/CrhJyeuv3bzAmiZJDnsY3wh+3SmfCARF+Fw/gO2BcSg/uL4B2Up3RZV/9wHyzkh4y1RWR1L9zxopC5v7ZN0aiCkjxSRJVjNwHUiT+HdJkJzXQ3p0SagmObYqOvr9ABzQSdUUoDitkVgSFg7yiCecK6H7f7xPu9+UJJ2/7DVZWHhsAX51KONM2gWhdhQzar9SnZsbvwh40C4IcVShSJorZX5OrbBSJTZPHrxqWT1Y8gcQbLmKjYqVzDuZMne5Sg5P4+SkYfjQIqmq0J3/f93vX0ILp9XSk4Ult2Zq3bIWtUw1EfJKoJllezhCC2x4JRP6ay/HqJZBJLULQqyaTiUaSwbFHI44OcWiOct7M0KdZjq83XS+6XSaVkLaVik1JvYOmjI4z+LMf91rSoX1zqgD7VIc4DmExdKA7CpC8zYBA4fxKqYUuDhS+07Tls9XsqZtZ4Ds8XSS5N6em7s1uYHVuTXw15dScC5KW8K48EVEiwxvW6Ho5wctzbGi2PG7FosT9Jh+MMVn+8u1DihTwly9daRCL8fb8nQAOGoyfl2yq181/QNb0AYF53jGGIN+Aow4rmpk/YVhYI0TQe00PpD6+fT3+kiVXxUS+Ub0MH4zM58EB1nW54D/7XS74EsHn+Jyp87v1wyi5ZweCnY9R+7uSdH5zqgjQeOUJg5SA9eoeHLAzXj+UswAOVLlcELwrd4T1ZJuy+5U1A1aasG2JcJ/F6E/aBR49qaROv+8A+aCdB+LrpaIxznO2sn08y//8NR+9grLpd4d//pQ8fsYwViC/QE/fvwmf+e9h0n51o8avMMN+I9CBBrVqwb7OMPXeUB/W1eoJPOjZRItDeGHLFo+gq8gVRdOjK6i2K0rIsgNA16tQpas4GA7M3XeDg7T8DVv8yQCC4xFxr8+YDm8vQjAUnB3GuYPNefc4BmoEmpbwx5ZuZ97PHjwMoEDi1pq6mJ0iQf8aH2gQ86LZXoUxg7fJ2NE494aifc29AFs7LXEochVj8lPMoXocfWq9lV26xWsPlksYIikfk5TS08jJX/Qw0Py6GOZiv3MC704doveG59gnKCol8QZCXR1+anJ9RglgNndBu3zMipXenAbGk3kmB5+4g6CAwwWW8uVElvUap6tb1YrCJUu74TUStlC3kFL19kD1LrsP82+2ZrDFCyKduqe5CPeToVaa6GFjBVUxyxwUoGuuBhG5IK1H9S2twPvMDcZ/+E07hE9Yvz8v6riqOeztQGnAwXVLlPDaNWQnFiKIPVumwYZH+/51fQJAcELAx/mGY4N6B+iHHpNuYWUxvs21gXkf37HXNlO64YUv1EI9xYZ/98P9iJTgX/4OKVnq6ZMVd4AWH1D99W3SBZZKCzd8T//wwBb/A1BtU+yj9vgF7DNolvpFL+Off68PXCDwmMl+i3fncE2e1QXeyFH74yf10nzmE1QiRP7hy1k5Wg28j98Dana7ZlgDpGlQ4CSRWkR2zP3nG2bQumlvWmTurliWHfzCoeYsGl/6yFxm7rSCuxybhD2JUNPoKIwKkVGKvlzA6i4Ql1EtJdenEZ1twP7sv52D6u/6zKV8jhfAypeNfdf1wv1fPFQtMaLxVJxDkby/K3zt3ycaZu4u/cv34M8eDXWbLEIqXYDJ5T3gOI0i9tvTrVD88j285VtAWuWG4O6XVjjSrYnN2bIpdkHzwtfDkpj9i8tniBJ4w69XGrMpPHYt7CvfomZ3/4RL9FkuAEZujLhvnJlzBfIT8K7Kj5rl41R0T6HLoOs/d9i62D0Y//C95YMb4sWsG9jo7+7/8oEcnVxzf+5rQ70ozydZHvpSzGnqj4rpnxuME3lOp5/xzKSNLyE+zJ4DE/xrBmPoPTZ/DIsZz/YK1PLrEI7fO4CVSZODkGQ6zfeJnhLhqmTgPjYH6mjhgc0LnytAyngd43EvhfOkhl/4h99CFs2MZbtjqeKPxWF39/bZ8hr9CJ68mf/DZ2Ap1f34ly+wccrceryXXAvFzqmwZax6KG58Tf3ZUESJUznsj69BW/UdmiTQqhc3fLSwP1dHbF7XS8gQ3H+BsBN21BBtwpamZC0IWK0h6WeCoc1FQODU1ZcNL+3ZmnGzCJrleEeqcGUDrcvkC1+L8MaBCNGwBlOaw1uSW9jel9sWNL1LIE/xbeMnYrqItB6huq8s+g8vlee3A4MntVBjrLopGnGkwOArIepI6omR3287Y19IIXb2aBcuKSotqIv3gEhbvJ66vJrhzVEp/sOv461uDFjVlYakQ/hkNG/yAD4ax6Zx/JjS1X38Ipj69zO9RK0OZg6/ImXDowgu4cq2DicD1PyroKbo1iFp55cA+W+Y0bjV2nTSzKICt1ie/uGldhVX8me/iKdeVixR4N///f9bxtuh+BxMBy5H0uFIFWfWC9C4Q/vWXLC/sDKlc2StcKhGGevybhyGp3rqQfJpGbZt7g3WUKsDJdydNHxWuBWsbG/PUOqjCNvcbLG5Es8t5A/XBw2e96857+dOVLRWy3DwsQ6A8cI5h1tzKuGQXqU0m88imMrHmbq7+BrO3KlQlOi7TuRYrR9zJI85ghgaENtXdAsnN8kvIJwCkcALDGr6jjVFvUq1isSi0UyyjM8ERsr5gd1PFg1zuj4scPUuBTXDIgD7ky8+4eNpcNgX1BEMQh9yICbHEtWDzYNlJ4USlI66ifiY1oBcjXsGHcI5NPy+j2w1/XcO+/4UE2U8meY/PLzxazILVsbYPb2tSoXOC9lv+WvkQzaCg8wyiqxyZsu63izQnKsK7XBYDrMinlrYd65Bg2z6Dr3NmgSYxH8RyH+SYpbzcVXe3VvE7tE2QMvdki8Mk8qm2uNX1dNHbxOYGJZJr3Zusf2kP45gktonfq6SaP7TX4RsNyPqhDyYlsNYKlv++Yf/xx38lNBNMoEGG/4Z0/1tBlUaTmivkHZYPulzBZ9Yjsm6+SNNzpahvrVjul1PBWbQ8ivc9Bm0XOwjWHCUrLDkZZ5qb1tnM/ycEng810ciXdHBZH/vyw++L+rlmVqvlu4jWA/SsL3/vTmVz/EEP/u3hX/uYG9naJUAZvgFkBydfuE6Zckddkh74suOeelUjfwF/Ok3oQCSmgX8yAE1wYw65v7Jlox7rECy8wO1jKAY1lSzHfjqhiuptnzP+CQ+wQR/RqztmJRO/DM+Qu46ffHBerdgHFKPACG3AKn8e2eyw5RlkMT3G312fB/OFvY95ahcYxzHfj50mZlXynt/YxSrp9Zkx1wU4G0RFyRfk08xKlc9gYxvImq8TjaY84XXYHfiHhjL1SXcnkekmB/3iYCz3EwmShfuz/7Q/h5ObPZas1VPRLS393dis3ntTtAoHR0bD/NTs5s5fcESSxM9TM93urJy2xM9jYBs9la37fhOoJrEjDCy37YyaJYFf3dJQIra5OnKq2AEhTQgaqw/Oozurq3AfC4NehuPhLHoKBAoxqcWsaT1mRismQVPcDSwVkgGEPXlzoHKPszUqpAXir/TD0KYTTzWZ6jV89/9b3wDiUg2wvnILxzkD+cHYWxWGW3I8FWGGlr4IA5lODV7IkJdzT2qX0t+mDf+oOZr/sXbwMR0vp5vGkSf+UTdjZ90+1FDUDOjB9YC7RuurXLb4mk30JN7zdPuKBYt2PIZWm+fbzrMUTTLCJLjH58MWV0UCtj0I/IQhm+6Js/+BDd+gE30uRZs4X4i8F70Qb2fCepvqA0eSJkTUSx0vblmnCTCiBUvNG3xudRGOwLv0Yio43YzGIvuIgCQtyXNtnwwm0DO4YbXiNJWB3M534H1hx+3GVneMEjn1oHdTK4Yq9q52GPhmv/xL7RnaxCOR0U9Ktlljak5WzNj+1v4BUMxK9RD+rFYdqrXwJvDU8SH46HYJabUQOFLJ7KXBjFt9/NbhMROE6Je+iiUk9br4aeXjvg4SkkoevLLgv0pdQkNtwEgn/Qyw6bOXrQIcJYuT+cKIa3EAMdODMM5dgIFWuydUD99pkWbpj4BR/DNyI2XQ3MvUK+FA/Y8fJOKKBTuQXiHm16IjYE32erJVwu+FvFNtaJJzKVUeaLUJzjRc787D+suOFfK9aTG2BymT0o3vQMO5mfBtoaNovGidAbs60vUe4iQrdbenSFHugZrG99gRx5JQCyNN411TU3nZ3a5y5s+SfML9wVs6isDfuaPQ7XL9VCsviIdYSnuOGoONs/WasozABPZJ2uitOnGX4/gddrfiSyoEVi7RTbgfl+d/vSTgvmxryiEkx0i8/JgTq0sBrDt7WLTl+OauNWggE1vJ+AZuIPwp8d5Cdfhv5+LV/fmAFgaB6SW8z5cqmPZKmFw57DP5olNr8oV//R7Gm78kG76u/qZfw519O+z/lffkKjCU916t2wdtMiB8/2pYY+S2zAqx6gBH+xl+E8PnEG7n+HlOn9xaKY3QLs2J3C8Xyh2To5ubs9Hg06UIGrdJ7Ee1yIQwY//jkjUv1y9zHlEYNOfHtSS+EO4RsyJoEiW82avfcgWjgp//AXrV2EtxnpdPahaQkR9cn6b4h9/NRIob/WEqNj4hqEG2t6jBn2YIVhfp6dKkYawN/hlSjZ++4d3iGRELlj9Q13B7CWiv/pJPVfH+AtxvWMUT2EP/vxTyZSLird4EY5/+nYm2yuZTBMPs9TqrbrhZey61202sA2kv3oOuqxnP2TkEXvyVr8hw2g09cwP2FHup5uH46OUm6t/GCpQjMYd6/eJG1Z/x5o/vEPtM4uKJV0lD271GtKP2lwsugISsNr5G1u/TmDLtfpIkPHfiKzluwHrq6oU6PhM+qeHzwB1FuDDtqPZhofn/IIDyPm7jnrvEzTng5dH4O7OF7LQuNwmWdgarNzVwX/5ncpPLgMSr7nUCnZyvVQeTeD+8EDYXm0HCK15r8D9SU5ogfwtnL/SyEGsJi4+NAdj2OppEfzLrxv/Mjc+gOB2v9S405WxE0EVzIfnj/BbvWvV826GT7ffUe0PH3HZp4Tg8H0h7jKWKZWSIZezOuOptmNZsXJOAeHGF9F8GaxwZ6vBF1ToumDP7t1wafZEUPqbquDoZ//YHK4sgLLNOURpZj5cFO+bQIzNPZHs3jVHJE0Q/NXzlGZ+mYt8CQM4de8LdSLtnrKfnDpqe8pbjA4hAuSvPrbhf2rI+xIwNPgWvLCypBqmn2EqVX6EImFn6hyv74JO+jmBG7/BXr+balq10godKJo0eCt2Km7+DaW3FyKu4wPzXz2RBTcOW1ehT1fwEir4uCCPOgF7pH/vV56w9sPZ82mku8vpqPzDdw/TxPWC5O3E5aaPbfW/cKrimlP/8q9zct7mfAAaQOW/LDrpT19CcqSd0n/v5+NtHTJ+LoClOrYtGGP8o76u+MWST+cc2g2vUmc8imw1puUONn0LZ/H0qmctWkQ48d87kbatZSy2rwLM8ThRr02U+r1Op1z9y09/+GPtRniCezH18V/9ZPzjk1B4yNi1cwustyWF8C9/G3uBFEs/KU/YS1GA0SWLazFv2Qzs3SWhgX7KTAZWZIH4g14UCTcXzLvsfAdbvMCIRS2gvhdHf3wQhxflUqzWcU8AS4UUn7tNa63BlIPPQzvjWD/N5jyS+atu+Zp8Br9N56OyO8JsSSA50Fhjor8DDWgf9w6bVekM44a/IQjrDH3H4wUsQNv2Smx4yOm8vlipUeQwoBzGdngj9RKSWwnJKctwsHu/GRuZEanaRENslotrivO5dlSOShSJTzIOBP+MEuhG7aKlDFVA8C+oFJpS488eChbjA4KevntT7TI0IdtTcVYfwDCxvRecdN4PHw8y7qpTdBm1lNCb8wXb+0B/+eTPvlTnU684ktxD+vir1/bn8khfTvgCA3IWDfzpddf7q6z/6pMAPz2egMPLr4V0PTvw8Eq6zR74eouPPeQMeaCW9tbYHDStB7b6IHXvr3Jg8dsdYfUcLXyxs/kv/n1hdplj7Pnet1gsuxKh+Ntfifo47tkI+wSqvYQC8lf/Wv2ZU8CengNakLQBy/vg3sH1/eFRb5r7gXbtkfwvHQXwvzsKRLCTkNqpfsourTzDnfbb9vQe2oI9zooE5dm9UKNTo4EJ510Os65stoqKVazfdIJQzLycOs8LZN8mKSyweqaOpFVW6/V4ES+KdC14Il+f5cBk+xxAk6t9JPXjMaS8hAlYPxwfc6nsmosoOBk8GmxPbT+qawIlL4IN4zNs4PXCqEbaFQqcMRAo/PyUdmOPIDnvvjjcr/6wPHdFBDujvxG1U7t0ZtLbUusvJ5PrUxALIn7pBYpCq+Gj+xlSan78k4IA/6QW0ye2loUuqKSCIuKUJ2PE/1YXuF4SAbvPR1LQ4Mo4OE/giL1VftRLuL8fAQYmT3b7JTGXdQ1EqFtlhC9HRAa2PO1q/1WkNw32xq9Yv/4xgVJq7an1+w01S7RcgjgcOuoKrRMK8aJFanMYj0SSs7ZYFS3LYPFezhQ3Z6Fe+8ApoUy4lerj6INZnBOoekSTsGcbqjkbTfOFhzfvY9u5HNmYISmHlBMXko+RCMjnpCbwGnOPrYf8BNhB6U4K8J03DkqrrdcoawnMslynPtOWcFan1xG8DCGmx6/hg+WYKTkoE++N9k9BTKcn7UZYe9TBbvhaCsK6mIPmy2PbFGK1oJz8MmD6HFaKEvkeMhzbEcRnyad+zz7D8jDiL3Tr3xmb/cVji7RlTJiWNvYrtTSbsfpqkB71K9WO3rYJutshkMmIUlNxF3OF6jKq/HP4YGtN32AejqWomq9tb6smooIF9ZODj0I2qSnfPiFJ7bcAT46YYCO1ArCogV7Bu/4oqSV+gnqXK8kTuPoJY5v/7YZxt7RHWB6+Mrb2/X1Y40egKK+Do2E0rGq97i69B/3HDVHcJvt06aPgC0Wwl7bDJEZBi+yw7XE+7qldsqXoe+thgPp6JDgc+yRdjGtcgtteLbD7oFYhStlE4K8te3zoRDmkRbZF1PP+S8Z5dIZl1qIKtPv0grpsB4YFTYIIv6/6SbXy4Zlr8kJ30BzIkZxRzRWTWVACgRQaaJm5dZhvaf4F2U24UTzIB5PJ9sODPRJ8qt/uhrleoHHhb9nPpvrlLYT0s884eOVeFyIMYZvS20wEeXtfCMSNGTJmzwiAUD1grx/XcLrZoALKmDrUTGS+ILJ7iBT31ehIvV62Ldw3VZNrxwtxkeePlK3HqgS+LAlUP34PhXgHvyNM81P/93wHwu/eX3glLCTz2Kc1sYyplR07eGK3SOR6DINGgp/6THC627Xpsl95B5ba/YK9TIPmVDcrVAuKbjTqvI5N13Tnqc3PV6mzw89hCZd+BuqbgxhdHyboxSK6bAtaDcL9fMQYzZUezrorUccM15T9tEcGwU97YftsdCa71toRvp9yRCM1zBl9+doXgqK74zDoduEikrsCpUP7os44TOacSOoRBjmtsHZ4deH45qMLDNfjBbVqv5jLNVUD2F2GkQj3BZgjf9Yh1ARBx2amS4xc4qcC00ecYyPyH+HHF/wcXl+2Rp2LvxREuMp3eOtoS51SacBE4PIF1xI3RK3dbJidwvaAEm5TU7nKHBhfHQz1GRWQVHlkpfv5Vl/gQe01bKqnH2Prsa8gMTyPPtNKD8X4PVnwbBo69jGvmzvVyjQIfsYLDecF1VOTaa1aXxNCMdP7enWEGsJhSjWydF5szsMzFIA6lw09N0QwZ1K6GYzepz3ZHVwnnQ4vFqmbfVF3WXcpC6OEgx+OzNgoDmLRwmeXw/ieWzRydh82NsMhUuut59Va+x9Y9uvegu/+axFme/uQyNdLBuXZvmCNwl+xHqK+ha9jmdGweTTgIwooB6z+eYg7CU82JqT7QiWS5j9/LqZQjWfg3PyFSP15DNfmEn2l0/7sU7P+7NLRuioJvBzlhBrVjYLFsroR8sO8I4LHfgXTFHNV8fX0xjdFFOsZkm8DPb1OiWyX4kBlwWuUbON/HJnCenl2EoJF+q6oXmlsoG9tfqp8AF28+VM6M+74Ve93ocL6p0lSdt41Dnz4Jw8H93IAK7oEFog24LhMJmbT+3drwCC1JkaZc2QE52MCvxGscfDjw3DeAQD/+Uvwa21zF6yKA2/d1JJanodwbUHWwMYwXBylJyUczc5Z4dluIE7eVW6ur/F5gjxSc9KmdlMwWdAatbq1H6plXDusPJUceJ7bAPGnZkyp+05z5S9/i+PpF7IX2qb2n/rd5q93cxa1ZwSJNZlYx7d8YLLgfeEdNZTa98AY5i0fgONI3oioQ18znk2VovW/NwKunRVT+rg3sOevBmL9hNiUvI0SliRP/+JPuhybRwZel11JmDyHJrvNRFS673mPozwI2A7JVwFY48vF5vXhhsTRsAZmVEE0mofOXJyYWPDkJS1GypOBZbG+I9RP6IqOaTGz8RZ3DtyRuiEzvHD10MNfDvf7SUB/+GalJIzgxcQ21nRSskl/ogvY4i92rWPOpr94HunwTQ+hu4Dy+hFz8Ot4g8jKax4mz35wUC6LkMzH1wN0q/nKIcXPghSSdayXU+Q58CFyBxw/d5StbqdxsLAPlFqxPYcMipYH4bXOEDxLlTkzywrgcA8ehP32nMlGqjogHR4x4dvfo5i3+KS847VDu9Nghot8mo+w8rkc+zqa2DydtzOPr/cT8QdSDLOeJxIkC+oQOOftMNuXioN589DxSYTJQKUQ9TC4hwo1rWUJR3W6HqG9u6cEzJ/UXA3+OAI7TndoFe2cTV0aZkBNqU81H0TFqicbY2/1DsefQatXkwtzOJ2iYLPnwaR7mI3q4XjksD8wJSW4fMww/8g3pO7sCkwX//1Uj0Pi02OuzClJ4oWDn4dk0M3+Q4HHyV0dQ8SRaDHHermcrTuogDwgyR2qkAVxmQDB4J8IidEQLlPK95B7aD622euXso9qPKHyNFO0NKKVsutUQPgNRY1Mz+gdrt5P3maCHEpqpaCsGSe/NEje5ZPq87lm81c4N/BjdjU2PKQUUyH7gdKY9xe2jVU02e1beKB8Eo/q6elRjPfzJYBn+wvJmlgvtkZZSVRvVM5keXdxvRZ72wKnZkXUI5zCyNW5WNAxRwejn0/A8Hg/FIWHIPsXL+dVljJle75bBTJn4+FXzqB4szNFafUOFx3pAVjbPaVB2yrhEqyKBT5TE+OAk0ZGLzy/wp00bx1apDSnDV+Bhucs7BhCVPzhC/BOzh/s+1aajscx4KAHAo+6wkEL92eqNKC5PlbqTbLHppsWGNB7XiYCzOA8/MPDT+GbUz9VTEbnfi/I5oMUqDx4pvmHZ8Gbpwp25YPAxudxX4E//FOLOzUcjwt8Qmqyhkhfsy7Ymp0MYE75l7pSZLDVL2cRHvn0TqNO3LH1GuEvmNi3pGa174qllIgFl6IusIeluGbdWoxw2mkS9RlRw8k8nAz421tHGoCNcV/e9whecbaj1lChlEV25kE6jYi6k+8MO2IMgfK8rjy1492arhf3kyvyVOXUiq5WKJiPYYVWgHS0qvGpoEISKqB4lYjGuvMY1tH9SaCza58oETUHyk9QA6+DpdHLOEwhOZthBAsa3Uh3fZb13N69BP7hV4s6Ybj/6s0IHv7Fo1t+ACJvExH88bXFqMuUVnxnKX94bMOTKfma7Qx+vndCf3iCNehlAEv99Nv1NuFcG68jlA0/w9vzSudGx5xyc7QAF7m5Txu+HCGEdZTgxGAr2/JzDlr7ZJOeRm8w28nyhLr4ehDhoB3B2ksyB2SwxjQwzKkgwafQoJQ6e2x6YwqW5rEG21Y1hP/yzRxcsKS4DZWQQB+LucyaValMoNt8Rm8s1qYQt7281MfIWia2XW8CBqk3aVy0cki8qQ5Al84Q23vTCqeBzyL5+DAuZLMHwOynVyrb91Pt87gzOj7LLzx19oVu8aag2a9//uMvt+3zKuJu20Kkl0i884a5DHwSqYwdUhzl75nN7V1L1Jv7rGhspUIxj2GrQfMxFtQ1jzabE/JuVGedfxiXozL8XT/kwUND+0qPzcXV2ApfwvKk9z4GYJDl1VIZS1Psn6IIrOy5HsFFXyfqQJumzGnvEeClJqHeVXPD2Uyzf/mKepr7qQlvf0V5yzfYHjqdTREQ71B1ZILNq/MOaRhlHJy6YYc9Tr+a8+wqFqyyKKaHTzOn84GZMxzy0camd44B3fgB3AWCQ4P5yddsDzMCV+ZgGmv0WrMrs5/wj396J1sumHBWM3Bj0KPa2bTBKnltCZcfSjFOjvVAvTJywP0QDkRN/BuYlAfsQW47A3Vc5xzOpVaMf/mUZt/cT9nweWdwRC6hUSu+zT98p3xRDohUiWNN1b7z4FP6TTRkpcaYsbAWgKCUsZV0I5gjs9mqn5xIoyLgh7EySaOA9r6nD/VIikU/DhfYrhBhv8YtW/6eV7Cv1H/2tV4j96s8RWNFMpenBcN6hWBwSwPsr10Yjuf2rMGNDyIBfPhi+rS2sE2CPBNeP1n10mWCAvsVM+rbpVjTvREkYOltEwfz8zX84R84oxLS2O0/Rf8++Zqy4QvS7TuefXIle0I/EFNU3s6oZq18KpXKqwzs118CJj27i2DDD9SRgnEYS6UP4KucQ2pGv0s9T0EyqmwRAZEHlhcMH0UC/+K/86dvXFp5havtHQjPsmT4Gnw+wjc/KWhnWH24PLs5Ujf7x7F6JOmGR7/wT0/wFa+vl85tczg+Fpka2PfC5UXyHKLXQ6IeDvSa2rWiKXXj+NR+fPN6Vh+5BR/BWlKj+37r6WHYX8XXDjz1NnzOdn5o/eFJGmt6OJBycA2IwucHyWL8A4sDbyV0TmKHLQU1w0jyhwQuiVFSPVarYcPXDdSre0Bz/psxOtKdA0EeW9hWuC+bu5m2QC5vIal/ZRbOU5ARsPHT6YjWKpyET1bC/Z4KFBU0GtjjvEpgJ60WUfxqBNN5m6EnSqqHRKxf2RIO8hEOg9Di+4bHRllyDBj8hG29wX6taZSAAGx6D9npk2WS4/0nQBkFFln2spYunVvmqrEOiNrv4JouNtrlkH92H2y853c4DtnxpIbC7oB/lT6Fk1SmCUCYTWg5SJ+C8uxTKSqzX9jXSh2supM2UF+9MwGsLNnyw3MJl2vp0csWP6gYT4lyWdMv9blFLkgbTQE8MHuk6JV2BQviNgHWXgyofRpqs1vVjwij0/uOD7mdAEJoXsHzNtPTqrmlXjH2E4jPik+N49QAdmRlCZ13b2Fje57sfg3QP3sJbG42Z2VIR+jxfoGNn/Ec5lDOLkr+ATcc4zJgDM7HHsITfGD3kliAZPwZwSraBVizO7MmwSwacP/9HMjcZj2braM2q6zyZhq5yp7R2zf1VNuDE3Ye/AX80+eyaPIJ541zvVjWe4ToaZbYTEJWrMnLucO5awJ6eFwtNpSufFR+19xF3PVRs3V3T3t4YO5IvStJw/VP3+Cq147Gl9ZKBX50IZwVMmHdqLVU4N4wUXbxKGIzFaaQnYYkU735J1CdpzYQPrtRglKDcyQ+L3dADo4cAOO8YzS4+x9GJK+t4DE+hYStSp7+i6d5enriM1eZ9SQKTg61/cYZuH0SzvowZf/4l8a3azqdg3mG9D1V1H+dvuZkm3kmx8rJINLu8Rm+u982Q8reTpxwsj+sG58En2RmSNX0oZ5LQWrBrP4eBLTZb8NHKYH3sZqoHswDm8SHlsG6sXysO8863DbP5VBOqEYDvxoZ/cQuAeGaXOjxODVszdgagU1PJb9xLesBqBYEm31s+ReCLgLiE9zLvUijT+yadOebDoiTW0Y3fG6uiuNLEO+SF/3T8/qply6Ke9YnMtWuNLA1kg0o/sSNr/6MeuFMjUCX466IK+hYr9pB/MI0v/Q0DLRvsfE7C7y5Q4X//Fs0uTCD4fkOcFw9O/aPr/a03ZMPOEdAIqcxh2/yu2K30uNQePjMg396cGgG53q5q8MJbPoAPW960rz9f4iZ4GJPpqRY1zxz4O0rSjhqRd1c+PiegUl8JBse3tXrdj/Q7liBY6I+w9Xpk0RVHUBwSGFjrqn9FsHW40/jnV2xeXpfRkhtDLcTIG0xb/wSInQ9YyPcn8I1XysJxsrFoLocciFxuX0Pwefr0qiPC8b8m5lA0hQIm7tnlc7jXSiVbQ4h/ePP7JmfrT99igal5Q3sOqUQ3l/0SHabHrk+iMBB/NNGtHeBUM9oV2VQosoB+/f5mS6ny9b1VWsdtZk4FWuxFF+oGt8v1gx2BP/8SXMkk3rdrwzpht/hn//elFcyzNfzEoG3kmD6yJXYXJ6amACjtFLsug2p14OzBPA+lhPWUFOEqxbFDljuPCMqwatJdlUcAP4R/+HNuJivRU/A+75VeM20qpfx7HCQz/sjdQ6lUe/uq3dScHEWiKCu72KsWHcCzru1sLcTwnr508fc11fHVkw4sPBuJYENb+BNDwwnEJUenFr8wJb46Ye3cecN2M3NFXFDsa/Xv/yVv5sD1ZdzVk9O/LXgVEtnInZPsZj/9MHro21xaNz9YS4u0x3+xV9tTONaPO9L74+f0hu33FL2E5QLJLv3Qi2fwVA8cSWnhq0p/uP/642LJeVPL/cVURyo6LL5n57t7CWz3l389x3WQfikSHEnsD4e7RPibJZxkv2MYdnuR+1KJfrjn8NSDWxWV6lW0PxxREagKo8QZ6tMlPt+Aeyv/vP3WVxOgK1b/QAs2ywP7ltqpjDHwxcOilWg9+V9ChclLSEYdMAR6Ql8sF53egkNXSz/5fNlxOenrFtVhKNNr1n7AJWgdoIQ8f57DsnoUkURRSvD2des02mZ2h5KTnqnwVYfWavGQUDrQh9HnXhmG15GANrHIzYUTa2pTeJRJu/qif3suatJSL9Efvp1ROZ7ZafiVv+CqR+5SOSvZrgTH1quJr94xhE6fQpWxv0K7c/q4RBeinSahe4Oy3rPbx2N+6LjU1uCFBkmjY/Tu56fxnr6Vy/yi7kr1uZiNfBIPwcy8rSq51hcCJjDPsJhoDnpb9MD//I79SLMwHoRExHe5IKRTl2sQSwLXdw65lKMOCMZ6PS4HWH/4kaMY3tko/XbP//wC5G+Cy4EbNNtJtPugZH2+pikOi4Ebv5AhLtJzeXwAgj86aVobUk6PbsZqVt9ZuOj9cDc85yr3SHS6evccenf84MqzTVE259atC+w3OFZLHq05nWQjsxXWzCAiqF1sb8mA0vHges9Sujmr+Yqno8iSH54JrU6TGzl6eyojOMCqmPjNBDW2Rx0j/eVujgXwt/Yh1+g5eCCdanCqYBAocBdXh2obVi9uc7SU/nLz0jy1Bcj9+Z9VDMUvtFeOGjmpt9L4Pt0txWxYZuuwaur4JlVChnnszbshE9Wgf5Znoji/J6sK8yTBOlEEA3u+4Wtf3zK+NQcDk6pVrATbBSo6gHC0fd4Cxl20xFMbk7Rsum96zwyBYqikyG5Z5968nbJqA59nmDzW3zN+UtGS4kO/YjRYC0D++MDTSXssPsKYdpd8JFTq1v/wb4IGFuU+hvsx2+j09wYoTkNl2eiiHd/Ip22d8EstZ4A7B8qiZoWU73VUyPYfa977HM5K6hFHwYYCM1wYHOJOU/v5wjRngupNcinYsNDRH25/pnaUs6H44PLHHjhjkeqPZIlXbLseoJzcbpu9ZxHvfZc/YRVmK0ECD4FS65kd1CcVAUNd7kNVwO/OPhZPu/txBYy12IfWzB5r/Z2f/e0/dP7obuPUV2VZio0IkTwdIWMwCu+gyUPHkTZe0NKhHr0wMYHiaJ/2ZHsmisJFzaDEt6LLCBT0cpmO53ZqObp5Yn/6g0jbI4SHP35S8POSetp4yfyht+36yEh9W/m8Q+PYU/Wq2IhRu2p1b6p6V0KnbDXk98RSusrJspQ/9jaRh9P5lvFRl+e+OZODfwK3nZZiZ+LYqS7P/x+C65HGuijm7K55wVA+DkhAudv9eLb6w646rHDzuPiheJzmvo/vRmbYoTSwaIPDVy45IiDeqq2+L6e/vQ5JP/eS70+HuUTGk7Y0pC/fIv5266NIu7Lmag7sgzdHx/5HzoK1P/uKLC/RUuNxCnDpebfIyxjxaWOc7rVMxGqGe6LHGPcKme2fJxBgd0KILVzJTBneauSWNefT3UwmPUyZpIDb3fLpVEJjFQ4wQzCz2vXIZ6p87AeBJar2uVwwzhL/HCq5qGCb60EaOfGVbHQK+fB9yl50hsDbzb6d62CPJE0JH3IKWWC6lnwWa+IokHRBlqkca8YR39H1KQWw3bEtwg2nJqRVAw5c/4sPwGOiLNpEGNQT6PSNsC8lzH2Bf+bLq4w92rW+3si5+vBXD0ZllCzCw+H0Q0VQrIgBRQ/rka05iAbIhAlsJIGhoOfU7KZ9yQD8u/fB6lcc2VkPoYrxMEoY4f1RrpvLtoX7s5OT3ghPJv0cJpGuQubGr0t7VTPxmHOYLByBnXtxDPnpk5KlYP8jLqvORdLnmga3LvtiIPdnrKZK/oTrPpe+LufoZ+6g6WWzRnjkO7tlI21PAP5VNywNag0nXbhqkBi2+r2809BD2UgwAcf3LD/cPc1uY0HBNxL4tAoQYo5Ne/jEbx4mqNx3CvDvBo/Cx6RVdAHS7NhKSfjCXtneCE1l+4pO3B5Ih+87wXjk9GwaTkFBnwpXoPzGBfD4uXBEcavkeDYHBpAn/hQwXasP2itP2ax2vR2gdrudMUvnfQ18+fOgWkvy1S/8q05M3AT4PddF4Q24zLMDXFmuDRdiEhzPdcsnwQNSol0xtZHnNJ1feuc+vneX/juld9w8dDHUz5DaFFrUHGxRvL7DltBJYg/xChcRFxAuF4PHA0BU2vGzYEC2mAxcX5DuFjdcpsFPP1qbNyAGK5ZKwWwLYYT9rDSp8s6cXcYgDzAerO/pbM73GaQ3iWFhkvCTIKrUwBcMiJyOw04HN3YOMFIzM84InOWskdlijAwZQvj1ywNn+7gOlCZyxO+XNK4YHNR9YBXzAnlUWMM41vmIOyrfYjgkLTDHCXJRd21YozmOR3Z+Gf/n5ICIoZzNVAp1Z6qeeIuWEdnBbD7s18VKzoQaqyXtXjHrG7BcscGdkb3mo5nfjX4m7ZONM4cvRB1OubwALBPdrgLwKwNewWY9yomwiuthhV4tIVOrD2wKYZP85+9kGxXUl097ob5qUgK9DoWoKnqBrCcVLbK12/PMDo7l2J5TOcSIuNcEQnnuTn1/iLB/2PpSraW1YHgA7kQEElYMsuYICjiThAVFJEhCeTp7+H775LDAgjd1VVF6G6bZ0l9W7+kM8xMA6r7asQ2mBGgV5FZ0C2WAAnFBjRUuyQLjJoqwWmXdQH71lX7h1/Y0kwMxiXTYtXaXwbqC5VRTIJ7FeCNfgJ6MD0b7IwZIyCerR5jNtgF49fXCb6U6UORcz4Uo3N61CA47hJU+2XScDOoW1hYWKO+YgvmHDKjheVUdjhh6hvwrIklGDA5xol5vQzs4sAQgH7cUKPeEc7M4S2B9XkI2989sFAzaiEHOx1xfyYNOwzHZa90VkARy37paHrCCbKgqJH8g/lA3rXoKKolyNh8uw2nTqVL61SDD2o/C+P073ngZ1aoH6ksWPA0J0qhX8jKDR4BfWpavH8V0hnt7NgNGKfCCPLsbeCTte2apVXjXBE2dwEbEFnmkiCqQHWWRaorKg2ISp4WLD/KjAOUjCZ/fa4CpAelQmp4PvLuGwYhvKgHhR6Kdx3Mrw+67fE2m6guvvWGR86vVAav1GjOW5uLSRRZULu6A3Y+CwOEAXZSLyl/ke/kfzn/HD8thJaZ47ByhqbfD4kDxoeUUVcEYcEsGskQdZsLtk8fE0hkO5ZADPsXjQSqgyl0MgNsxnUOMPh+g/mOHQvmKWFk10FzEJzT5Qkfy3vC9l0PC/YmaIHgUTTUNSsd8LxPINibLxcHcooCLsmTBWpXSagzHnbFUp4DGWb4FlBDuJ8GLgsyBMGnFelBLg7BnJG6Voea3TBimZeKN6tXALcuAC2JXJjL3Ti28L6/ithP9h2fr7onwYh8N1Q/JA8+S5fYULmTwX94yNP9Loafu2vjNN+9h97NLQM62yGmEf7eg7lNPAMgOxTIT6xTMIdOZeysu7fF/rCtTErCd6mu642kOtEDMkxRCGW3DDHqPns+/zovAx/hUSF2bPyAH161AsMHf+CgOykFPWyXE/wuqwvish3ngG81iDp4wWh6Lc23SO0ervFFQC5mnJWDQuCcLgo2e6UCJJw/OXikDaVon9TBol+vBoyAfMMH3TC5oNa7J3jK1oJLRd8Nc+uHGxAVhkcjO5HAkO63MTwMAkSQMDnlYia8YXSfJmrkddfw3/H2hM/AEJH8uE6cf0dNVrdbdqTapR9N/rPFHA637Ihe6/oS41hCIDwrCXvwgziLb6CGL/MWoY2m6UE/ZLOk/uUXMKlecAceY3XO+hBNkmQCkUh2q6zrR/VvNTQcR0OrHPzNQDbacAvG94XfYMx8RGSPd8XyvYQyVGdFxHqf1mlvPlMXouEHsOYtyrC0aSPtcfH1qVmPyjAdRqGF8koRH+HWA3PRpjdwgFNErS8dAi7VRwL7I1Tw/T5xc+KNFqqZtTUQRfku/eVqN0Kvum2oWx7qYRYDRf6rr9i2t/dh7qLWAAnwc6qdZ5KOJ+GkAOHglxhVzBzYMHU9qM7fF9VuDwPwUksziBekYdNp/JT73WTAbeHekaCYn4KdkvEGzriC6PNwSUHiw7TA10habNvrF5JLwdDetBybSLMZB3N0jxM1BNsAMaRV4GNWLAOf5huRxW0EvuInApzf9kRG+jgw1IcMYlKV2IEnnP7xFUgOW0yD4fcyZ3Q+haq97qa5mvavWHB9coGr1hNFbvkbpta3NqrrmF+KrH2VLlHFLZjurfZvvRtyrJ4afIr4SUjpzSnhzPXhjJCJhGuoDYsptTUIn78Ze1LsFiueVWAjNB0ObMlslvvb+B/P8BnUzQJKTVCnuXYRf6VRsMNR08KXbOioWuOfb5wqA9DSc+oaLEqF666X4XDXRWoRa27+8ANIAr8hOVM/KZ9UEgLnuegEbtS44EabQ0h2RoR9Ipz44vdNoqancqHWWh+/X+OUwXfCJ2pqpVvw7T1uoZR/CXU20WQScVinvNBGR9KZq8E8RLcN3I3Jk4bS68vZdVfLYOU3aJd1v2KG/keBwqN9k81avxkSfwr0gwqQxUGkmFa8h/DCANZYGnKC+jyElRKdsT2jd8rR86zA/fJ2sPMdUPO9B6yEJbzIa0eRuKBRd4SQkNZCsrM5DvORx63qZ0tG7V3jD/T3/ShgFl8lPbz27sAMp4j/8Jd077PDGTw9Q1U4B8WKNxs+yYlqwNrRNRy4QR8w13YSuK+EGm32SW3OHc1quOYrjdp1ilu9OJlixXpCzVcamfx4mghUz5OHLT/PTHb87Ue45h+BtAr5Pz6qf2yZ4pbzYQn3vwpu8c6gxqt6pfzcEwPcbsaZ+lDx+b/73b4+H7LEjhZIipLH8NJ2nIa1oJm7jBwseHzJjJa/iw/4rKY+JHGR01ChYbCk5tzDPIi/FLvm0Vzg46dANbxRxMvLqZgndwehFaaEhokYFtz8LdofX8b+hncNkwfUg7OnOOS5c81CDHaPBazxhqSdvwRzvzmNUDGrC9o2GwjG8TO+4c2JF5wZwg9MWWPncMVvjBb8NQdwyBP4IDtvbchVp+O7yWv43YGZrP85NSQsEgPazWjhO7VPxcwLy4Vh8zJpRLkLmLekivp3v4f2EAKRxd0GCGhMsfFTfpwmUfyE6j3VaJCiN5h2s1VCg5Yx9t59zbmXXHuwxi8+VJlaTEL7S5RmNgOiPmuPizpefFV7Vw41pWATrPVUgz46Rfh8ZJM5RnBnwWtvO9gVwViwvuorsPI5+qf/Vn4jwfJsPEkXuwTMOFdjgJdQo+mKf4vzPcfgGckHtOjPK2fvJn+C39G7Yf8XmcEilO0GPrXPiMMlNRv2x99/tTmge9EyPk+nswW3UNmSbVGfCmbHUvWPj9lt4KVL08+uOiUPH+Pxrgdzy/c1XOsPdp3NsSHFsZfgMy03NKf5q1lMiTwhfYUydgJmDMt6HmRbbyRz8dgB8jwxCd5vzw/GN8/h9FKcFtjZYUTtoHAacXuPXOUnzgjb6Q4HfLv1nD99Rq1r+Bz+3ifI3eKMte17AOOfPtsDA1F9u3YJ/1ifDk7z06UVaoJmevxeuXISgpqarszWDcS6o8ZqDGiE4NvsFuPrACMJRLL93NqAXc/rFJf6e6WO58UFU8PRBzQ+fZHQ6Fkza5dDBmMNbbFOXm0z/47YAas+pD4MpXQqtYMMDHaqafJTfoCfJdOHf3zWfr5Kk2m7swGKOVHRPN6sho92fVIvUXaleNX3pDjWEugyp8J/9ZJdWMeU715e/tcj33NvQbshFjUOX7Dyd7tVXqz08aNTRDA+c6eEHj1iJL3eYTN9WFyCvf308GHyv6CT3lYNr1ckEnme3GD1O3zl8qttjFPh+T+flQ70TtTceaWsOF5usMVMpueTzQe+8jcoPN5v7MoGGX5J3iO4NcYzxceIBG+gfhSgnE4dRr1eg7mY5Roc+5OMveJpN5JnX0eYbYMRH4ziWJDgIm+g1Oy9f/Ew726zo3bthlKTXw3AAeCWWmyKHocfYTuw6hhmsBtfHxr++QMrX4CHLHGosX3iYqlKx4AvhX4QkMIBLG7zcqH3pTmRZWaagnGUc+AUZrnqka1JwFKGoEiiLZH7fjLZU7or0KBVjMTfcDUJY2kI0y48U9+jAx/VXI+hycWWOoR4w0QeSghW/YG10e6GvlLuJTDEfU5tuoCAVKWjwcCUUrKAJFj/EYY1GI6Kh7E720NHsiKDxD6oRKroGXASjhUYrRqS3n59G5raZansCzVGFbhaprjX/BF+XT+mUXieOdEjIMN0mgPqt/lYzHKialDFsU69b3nn//K1PGtPHM03BbCq/FXAqpU32SQzBnPd0Qo+gkOLzaj9FCO/vjLof7svDrd3bWCScTIgTEKbmqefli6iJ3Rg9cPoffi8G95ueAjm65nR0JDyYapa96ToDurQcnG2BXtRbVS3P6/EP/ATwVSzpoZLkGgIBHexGPbZq1YqBZ+xfhc2KQstgMClOOdEKMc45bGyD4Fx0Vy6+gecLhqMwWOXJtRY/RtuBn0LCX45hA27d0C6utcgfTv+qteCZvQfvxaKc5zhu5ZVwbSf4kx53Dcytfq3zr9BtOlgdIhbWq5+xnzVdQGOUDMw3jyLYgmLmwbWY2qm0S7oowpYcHGKCamONqT8tj+68Dz0HVJXPj5PG71TjemBsfVUhKG3jIDA8SFkNHSfTrBkxpbAWv5xxL1cN4Uwjk9q7PcumW6RmXZQigmMmYuQmPPOHI+uHsLs5RPqHzqvYXiaBLCYo4eTkWqDsJnFEewDa4s29ncBP/y+5fADzTPxJmdI13iswMrPqfs+t+CfHvq9FZUeUPjku7EQR4jHR4ERvcWp8FigpGiRGGN/Kg7F7h6wCt5u2nntiXMvxBVP1Wla3oifT9diLtwA/quXptP0KXWvrfQPH7BO+oHTeifBP/2n34UqZbngCfufyBGRsdIXM1MPo/o6JRXZy5e+YQyMMrj4jwN1E/oKliHbS8rqt2B9vFkDE88o+9OLNLaCjneffaP841O6IE3mbH+WUgFTG5PlE57TYSxUAqznvlnx5zOw3fGGYP4tU/wwD3LAAv3mQ/80n9GC86Bg5+06R/r8Rn98Nd2F12KBvji0SEXQMnmi8xxGwqmhmkzFlCgE+MB/Oox6mEom9wXfh3Z+++HgbhYm3x2aE1j9ZOzXfhes+ZEBcBFHtGmr3bCchS6D8fEQY5+BSzB79+EE++NGIfQgjs30KbcJXP0jokClB1S5GW/4p48/q18gHnneQu6FCPtJIKT0dRUIOL6ZQZ3Vv9v7/t4AnbAleG3bX0h/fpmphxyJP00zmbXToUpexx8NdJeaVDhIOUwuNxGNxWwHuyU83tRDmq9TCOPOXNb9UBBJakbtFR/5hhkyPC5cR8y9RsFuyE8dJGnSY920wDBqu7MG073TEuF+e/P5pAIGNlGIaVptnGEZb4kCyeL90+d8mWCw9oy5GthRH+uUzONpA57ad6RWaJiNwCkcYeGEOn60PG343/XezbAhJ7Z30/FTnCqYq6b353eBeSqPPqyPWYGjNf/n77m21DOs90Rd/eCx9P0Q9GVuYlt3tJRf60yBv+u3pgbcq+a45gN8LO2E9tZYFPw/AAAA//+kXUnTsswO/UEslLHDEgGRsVsBp50gIiAiUwP967/iebd3d9cUVV1NcpKcE5K/fG+tL6iRf6Syfwc3jN6StqOhY+xX/eLXozW/wZI+DQm7yD1Gudo1RJt3u2irW1H4hx/jlufXjqvCyNEaH9b4nzLGa2+srvX/Gv8KNF8Xr4ZpUX4ju4lmyY7KjP/yrxEU2htM2lCscHX+wxJR3GgJC8dEQj0lxI1DoZxT/l6DJzwtsj8dU7bUtjVCgkaLkD1gNm/r3xGeuvUke6doGCsbRYH3lLlYPkRB+c//uSTAmDu6z3L057UDSBz35PD2YqP/to8GBtfYrfzIhS072t9Qtm1e4yybp0hcin5B95670QCZtjdle4pBiS8Ntelt18nHL8ogtPIKn05S7TFGlgw1P2FHTMX4RPSblxPcWk+ku66nbDFiTkcr/lA3OQxGf6yPDXIndUeMgZ47up+2LiIXPaZO3NF10s/upirOLsDC4z13//izlZ+gu2GvlsN6vwhvkoxaktUZ7H5tGsjq1zLK4+vG/vHth039wv7KB/2zj794FDKz/sfvQRo6mOy2ttQtU/Ny5VXfGeXzvSzZua01OGHPx5vV/6ZcOCt//kB20gXQeBcPGUiXl0e9jV11q961qEZ4MMextz/GctHFEe1E1f1XX/Qx3DjYBcsLf+ztNvmt8RuBXD7/nX9a4wHswfWJ65thMpdbvwbe9O/EIscwYdLm68t25cfkRJXYGwzvakNk1G9qtGTP1vjeAoUipLbnn9ctbN2IjNnVsTRtom6RnHelaiBhei8BewtKbQGESJPG5Wq9klk/cCb6y7eDMI3QEqhuDr1sT1jcSohRKisWWvWGcTzXVjlp56qAXTC9yEGJKzZ/xbAG65zVZNXzum12MmOwFPNBD1sJoZHd9woIbkXH5cu+5awVVYrcmJ2pnXVyNEWfbIRnyI04mkNt3WeaZ2jUb3dqmhu7Y/HXB8BjGVBPUPKIvcKlRo3Sh9QwRtat+oOG/vD20mpnj4Y79oD5WzyxwKFdKdjj64HyTbv620Mxlup65WB/fl//9D/jn32goTqOitTX5TQddBOGLemJFqVftmzZD4NMx7UDz7C8VZ+QlPPxjKmm01fX5ZekBfWtVWTn8p7Xbtq9BX980sEsWDmj8MeBk95VuuZLyWIGjYC+Lr/FS86dPDY43kOxeetDV3ssp2L5LRC24YHoa33Yk+GzhW9ArXG4vzBakCrHsDnS+J/+SYdXtkB/vgf4GvTHbsYdrdA7e8vEEt3Qm61DqUN+eqnjKZpLNFnO7wi5ZC1r/rhPprlZanDTs0+0qnhGzLEgB3pGz1EgXI2W/iNp8Bm1dWtW6LJ/fIEqfB7Eq4cmYvklatA181ssl1julgddQlj5P8yt9ZzoIz9Eddh6Y/eXP0rbiQO7b1P6D79tI8kg8RaRavLzx+as1mLVEgN7nbl0jNb4bMMQPl2y73OKWHoZe9Ds8DFWobPv+G6nCnA5CDHeings51HYV6CcXhfictEtYehZNuofn3HfOlbE/+nND0Wp//KTcnHUc4XaezFjWeXSpF70pQA7e1K6Z+c6GW583wLWrwWWr+E7WULtVqnoKvbE7eKPt/xqz4SE3xQrfhFvxt23Vl7vMV35vbJjIlguiEfVIgYZvgmtLnYt69K6VXDjseSjaQgUfwCf+FGZIxo0dwB8LAjFnLeJpuazaWHVmzH4Y7vm+78LauhDxMsmJxEj4tFGZhf3NGi4JZlbLu3Ryu8T8/w7J3MRxqbcZEVNta9Dum7V82DVV4j/1c1oDoPAUrJbyqgxhxobNbHJoGryE73NQ+Mtl/sM8CjSDHN//KaYRsr/01HAb/93S0F2lVTqDJbdsTBvK6CS5lKb35bGnP9wCu0ul4ifFns2P6SzAM2x7tdFInm06ELaAyutkjrQutFS/8oQPug3EOu+A2OWX52Absq6HmtG747NdKjBZWNETP+NE1H2fhdQvTSgrlG6HZPq+ajCwbtS0twVb/iWV1eugzDD/Ob1iZrh6GSAvNOJ6O9G8hhvcBoaor2P+ZYaxnC7TY3Kua+KkjNc2VzEpwq48/GyLjoR0bieF4F2vWF+l0cl+2DzAS9jNrC8v1VstsZoCw32W5LuOjEZ8t09Q6p0KFe8a9lyv8sAXXfWyEGx52gw7KSGk6YB8cUZDJqfPQ6OdS4ST3i/2fJlxgWqNjxTPRcM1kRvJAF7HSYsmF1t9E79AMS325Eagtl7E6VjAx6yH5Tkyj2ZzSTqwbFPd6Lz2odNTZCDij9VR/20+KBF0defXvTlRSwatl43CIMNlfD5YvF4CLoFX1UO4UPTkOx2XaL+7/0qjcN1DFiFmnd0PKJiKVzq2E85Yj6VOXRWWpsa4cVORPF58oHfVBO9WLcPYl4qCxD7YoDbAHmMCYtlwdT2hFo3vjEmuXFrFFzjipwTle9m6okcnD+SNW5iozKGe3HslXQrbXFasQdaDo8mRPyAKfFDt+rmIEgrxEvTPH6v2sCm+ixNsD4fQZMN71cHD10J8vxDyfx5lEM0NybshWFPjOsIbCxUogCn5TG53dq47DkSuShwHm+6tyzGaIiWHLKrouIJhNHrq7jJQf09jtRWZdMQXp+lgC/PFKIj2TKGb/lykUPvKdFD85JMx7xrYbgjj+w2360x5+nvBqqXBSTwaGsworQheqWqQYPDWWX0yiUaNI8SRrY5+uVgnFgDD9VtiJPZX4MJn58OupgvxLtfWTIWUyGAl19/xDWpl4jftq+RnTTGWD5zlQ19+qqQRdAeLxkVu0W67i31iqqYBqd3Z0z6ITwC3p64P3tBNJO6EcbN6Ux8IlbJ9EpyCzmR6VHjwH2NKlC6i7JLDxL+caobzXUQ6hupT3TqmzcDLTiWOAj0usDTe7PpGgW5PdLvNaW6w3bJ9iVMmqqaDSba6ed0s3KNdbCdo05d0/G8XwG4BueuuKN8eu7RPErigu4SvxArsW2Pp5twC2pfvkfUpuuYHGWfos6qOGKQ54Et/REJyPruHBJ03OAtBaNb1Hs/ExfxrKOFxVUNG+vcktt4LhKqixcdwv1eJwfyDrxeE18m8MmHo77k2R3bhrmkrvZNPPc+o2l31+0//yTeU2XlrwUlRvRhHqi55ZeEdeVHhwu5uSs+tSW93ksNNY83UIe7tsb8NLCPclt0iNPkdrJI18BESSIiYrN3gWZHNl31Xj9nSmIiGbQ/8TbI76czChFBxsDHqICT6G7IPtcFRhdBa8G9uScsPYWzt0Am3SCpwp54rNklAseda2AC2f7ddzkdfHEC3jJ7upsJM6jpZhh5sXbFwzyN3uJLtxF5T3wdh8EdELscXUB09j3yuEWBNxnPlbIs9Df+Ow996YagkHc2j8MoDuUiI9WCfLliLIaPoZuTMgfobtyG6G1jlvzFVnNQbl+f+MdnhdqNKY1o2mQnSpqg9lh/4l24+5t+3FiLHrEuzzVQn1tM08NiRBNLdQ1tNutirgAH3paWTgXpc5nw8JJ9gwnrmKY+vx+IXRx3yfSSeR11r4mjWha3rK/2fIOqbvcZZYf7eLOksAmmQcypJagcY5ZXpwg/ZplgEWvdpL49DS3TLcOTxjXJYm+OR8hOFoflyko9lkVsVHcOFemKj2zs+U74h0/mQybRdGq9HgRVEKkz9DbqjWhzUYovvVF89eZusgSlRiv+0LuYOd0cdntd/czjk9i3dluyg/1Lkfa03tQxTlLX/n0feugt4nr4FU3TQ16gR5t1LKV8jJbNgR/V6ivFFBs7WjLh89bAjEYgenIU0GQ8Xw8lEHbi+LuPCpo/ykkAv8syshcfZtR8/HVA+EBb4l4Hv2sO/maCR/H3Uz75dPNPuB6B7e0cz+FA2VCsiwqb+9ITR/OrhKL5XUPTI5Vo97EtKd/UmvJn37oeayW/r9AEzaRMxD8bH49N9b5ACSl+1CGX/wAAAP//pF1Ll7I8s/1BDERAUgy5idxMEBB1Bl4BEQETIL/+LPp5h9/sjHt1N0nqsveupOpS0YMmYPAmHRMrL77FlN+2Kiz7z46nwCik4lD6wNf3GhO7z5LZlmvhnz9YpSMEv6Z9AVCz1fEYFxpvmS+0UIukodKtcItf+hhDGM8ZZrp+bi2KzrcUehtrVKFHM5l3Bz2EnIXvRQLuKm52CkAeEM52rzOzpuyl36EVnnTxh5817/FNRdVgYsy/lw6x+aZRaOQXJ1trz4uxOwghtLtzT/ZZsiqmcuPVaL+OPsR4nA8WvyvVAOPD32NBRHo12o18/YcPtrNYW/WxCl1YHdBAvG19RqNnlAJMd68m9kjiYH685+cyxkRi/vOMgylQrzlKD5+Ihc62qoZ6E5WoUk5PrAhbJehl1PiwEx4RWeypmn3rV8OU4hQP/XNnzReD6ZA+RZ1d5rsWTNp5iIDpyo4kp9LlLC0eM1riN7u/qhm1iRZIi+SXE1MQ1H7KVsdczdu8YXoC337W2vMdNu3BZX4grqrfpTxTuKyHF/E67hYMkxOGMI7uhJy/diG2cyRo9DtbZPs1q2QMPz2GM9evdJVDXUz3eoMh/so2wavHcXmUaaaQP1ZrnMvAKmrHACiLqyuxhrgvpkEway33r8sjfseoeHrOx41gHGq2xN9kLqTcBaXamyRLSBH0magCwBzvmXHrp2To8YQ191s7dBq+M3pfR6wjKRtE5rFL289//k7BtZkNKk+mzF2XMKsnSpmifIopX0eSNl52d8xW06ef2q+KwUvWBTFME1fTtLRtPaaHI/HpyKwptZ+Rts0uBtb0yOuHKtCvsO0DC/Po2/a/epxGKD+/M9uuN0o1nbVn+y9ew4K3Z3SMUuhuzuY//Ccf/TuqXOOKx5NxD35nre3Q7RgqdMI7Uq2/Zz9DvyEJmVfSTzHcj3sTLf7NLnKn9VMTPXT1HA9ndhxftcXr7zVDfp+UWAkuM+L77coHLMPArivbRSNvPzYiXTcxfSe3VY9ao4R03ZhsN8KIBp9xEy5V9mQGL3nAp0ovNXDOO6oleHkE2KyuMKVaTVz6ygr6WwUqfHixoW81sfn0tjYCfF6WQrtAfPTT8JZbuXKtK71r+qufT29nhlWeXhf/dgPu0y+FI7qcMW+efkE1cV1CozUlnixGEx4LqyeY5ZI/qLyvlv2PNbF1v1QRd1UxJ/P3jLp8UOj611rVn/+CoHlf/J52dcLde9Ogm36V/uJzNc1+gCFUvYntxiyqOA/3Iggqb5nu3r7W+Df2ZHVwrzTDNwdJlyo3//En4m3LikePOIVhHXhUbXpq8Sk9dmpahQax9qMbSLF9SSEP9px5kuIlsrrZnNVEvYXMCca8mIc8UeFeXVe4l3dmMH9wkUGVFze8fpoSGsLPcsvZoVcsr8tDMEvHZcxEjAhzkW71E1vFEtKq44vor9Wj+uND6DAedSw5ghOs1bkSYDqd3gzfu7kYXcWU4GQ6EbH2ANZEvjBCusyFjth7KGbRFAdozuKTXLitJTR1mwYsqBW2fVVmNc7HRkDie2wpzwuv6Hm4lcCZP8HCH9/8F1rwhNN3VeFnTL5o8sMwgyW/01l+XND87XgJdAabRGq1R7/FHuByYIw54K36+Zn6LZp1uSPkRupqVDbzHe5DuyKhErTVwK++CeKUdbT03+tqtPM4h9y/V3jWDb2XvDi6wl6yZKL7vsvHMCwi8K2cMO9lfPqZM7EE9cD3dPiuimI8HdIY6LO2sLJJLLQ2c+uOgB5y5sVEtT65Z52XEtDE9uy252x/Nx3IHOwTbzN5iLvFt4GTBkeiX/nDmoP9ttVyI67wnE4mn3cHNwTr3q1xu+DFwU1yERgut8RYFXrw56/AIa6osP6J6KeeriZ4yudGn2ej4wO90hKOO7DYdV7t+FRuKUVB8GmIMZEkGFllNJAd5pAFz063Bv4gJkraXUDC+uPwHwtWAiidYVBv19tc2ttrEZ7k6xL3Yx6raYwLXSXOd0X57amhrhxLEf7wzE51D8V8ji7KX76hSrDiwU/dI4BGGiumL+fH7rdi/OO7jLyfm2p6ne4N8Hv6ZFsy6H275AfIFJUQq3l2xU/dcwFqfs3Y4fwYEc0D4qDMWeX4Bfu04sUP5err8dSJkYVRNe9v+gjC1T6yoPWeaLzHro7c4ztlBW9fBf/p+xg+xfPNFvyYyCzZ5nCoR4GZl1NlTd/VKoWSJznbFtq6Ys8xUYCb44PZr0PUjz9ZuqJq0DEWUmXqh/lIAZyb7FJpPgn9/McXjdhvyT7brKrfn37wF18dSbuj+aBOIVBpd8Taws9+GZxzdRJuLd3c1SKp//De1NRHcsjCqKdTkqaAysuR7bPkkfAutwEt+8Ni13n14/WWSsjcvjWyVZMaDfVr3yB1b/gsEGYJDdTIGgjQpiNuPj0r2l2CDlbbJic7/xhW9HBxQvS9SzOOL5UcTOgJDpovcY6P2nmT/LpXmWssiV22D5gfzPvvW9T2d7ciV1ewA3k0buXSVGFpylZpwfiiT7xc6fLpytq80B//h2tZcqxJGS1o/PVSuJDTj7arWeZLfhVBfM8tbcM37+fVTqOIzoJN4WFsEPvxp6+d9fSEx5h8+R+eVJf8jfk51RIuzJMI9bFMFnz17LnNnBAt8ZeYQtgkv1q7S2j5fZbphw0fKjZetZvXSix4S3ovC3mjwulpJmS7emwLfmNWBwvep6JqxGhO9lMOyL7FzEkLhDoBRTWQkFJGglqqqPpxQ/jCuCYWLq/FWDB7AMRiCzc9/xasDMEFO1keAivzJhi6g4QhhbNBHFgGC294lqEO6cBI8j39s+d/eoDxl7/kZPI1rZ8PxAqttpi8mxiiz9x+/+HnXzusQpUZ/Ynh3YdxeqliE169Yy6PBJ8Fn4ZnA/KGang+KGUxJVnkaj/63ZPhlL2Dsd23wp++RHB/5P0kOOIZ5j09E+dB24TnqyqGKrrviV08WMX76mduPKEN2baYjJ6e+68Iiz8wLOdiP1Lj3sDH24gs2ORmMa/scYA7HoCqqyJKftq5juG82zTLYPYJjUMtpcCuV5cFpaZbU2FoABtA5L8AG7bbMf21D5JxnahYvSt7gznt+4bm1KUNyjP9TZz/+DJ//ulzzKDZXE0IbBNqDw7E28ln1CH+jjapMJrkQQSTz1NyTVWBhxfmU5/y0q31TOOHx4y5dXa4bNQ3BUK9/9F3f7SKsTr9SrTol5iqOyPgOj6PYPzol9km+yX9Hh46sgcVyLZjVcDt8uuCQcaGrv0hteaVrQyQVqsDXmvhNulUrMUo0TWXeQs/o0jbZ+DedZsVDB8t6dy/RC0w2oxk0uRzeRcb5R8fYHj90tHcfPsYPkj8sgMvk0B+bRDAKFsvhhd8NBr6KkRLfCG+7fUWk/yDAydxPuJ59zSs8WbaKkDheiTUqpvF3zjMkZGWSxOq37ZfL/qiVuvjAa9PwWuJNyEsbZ3PzN+4YzGNv05Aj/a1Jc403YtZa6M7WpGqY3pRdEUv3y4h8EB4MPfprZPpds9c+OPb5p3J1fw5oRyJht6wJT720/thqOjRIYc45cflDJMHRgvep1p32BedKV3pP730j1/MoRJR7XIa73i1PUj94CaxCPPu+2WhL5/QfIxxB9UbE+ZW2suayqfQofi7tsnusqHJ9GKvUhPLrUqwkhvFODjfHO2iClN+VrWexc+uQXMtXalyUp7BLN7DDg1Icwmhz8aa+t6/g7tGZ2Y2Zl0sesIdLfiOENc/BbJbvBpwzatF9ia7VWxp5KC6um0yv9zukZqdX8sVLoqx5MlOLzU2igBlcrLgiepPn7irqP8cWeDxqWerGgNQaXtkvmkKaCoERQXfqZ4U8mKz4M+tBFn8ujL31hnW+ou76E+fISF9o346bZUSqXvLJ4v9cF6Gy2Dmx9v473xeM32ida0zltyeNzS+aBvCOlR6Eh7Xm4S3Z5FC/tDWxJPv32rKTm2Oxv3ryrxi3fDJSSxFG88p/qff/6iyWjTonLFt/H5Zv6Rch8DUPGBOYu2C+aZ+zjAn+x7Lvc9QV1mVri3fQxa9OOCetxk29L5cUXAEKaHklZmA3YvCrIfxrcbvyTC1RV+g/BPf+0UPnuFkyk8qV1vKu6sXZyAyplDUmGJPb3KZ/8Vj4j6qFLEFb//hD2LuhrU10zh01EwqMR0X/M4V04v+8Vk3WHFrUIVlMLvDblg+h7if8l6ZQYiVI32/KrOfD+oGQ7/PNbzZyQof//h8U/KJqskuTLj22Axg3G8bQsT4Y01OEqgo7UydhL4s8798rWaHMSRbiis0NdHJBJijPSk+lZ5QtdtjsDyFk60YnrkUJu2APgQqFt7X2394H0TxhqgmZTj5/XblACs858xa9mfWhbpEW9vQ2XbhN7JiejGKA2T808tHdCAqlA24bPs1rQKdLpUJ9UdNiQ/GiIbl56qHU5ekI5mt39M4XFGQixkrkveccHt3CNG0Ttol3+jJ9BviAQTVPDPzEJfWv/wh63jDQs8/W3Pg660GB/CW+sKlmCa9ciHZTTtG8qy2qC+7d5hg92G73md83txaF5CRGfRbrB0+ka09w1HjF1ou9Z4+aA4qLHya6XvrWww3M1TBusYiwcU0oSk7PXO1fPoesS8hqWZ1ewvVVJhNqoXHpb6EaYYmt43JLf8FFf1VSABFmCx2PndiP/7pH+zderSZJiGZFf9pwrtxC3Ifj8+CsmK54qroPuZGvwt+l50+a/XxmbAHvp2sP76nwUHwsHKzn2hMI9vU3PuU4vVdyoJx0ePA27ouyRe9r01FUYdiXq2oHOf7nq9qR0DL+pl5jayKS/u7A1nt7oknd7d+3I6nJ5TwyP/hy396w7r4CFgLl+y3XX/jP3tiDyFC/34O/mi8Fz1u0/PkIFNARmoQy9g2i34pZ2h18K/E9FbrhH54kIGNYYO1cg57ya3dFIA0u0W/f6Nh63bLE4dWZs6SrybxZqVQ7LYbFhRdUtA8ZT70/UnHaOGr8rxZnhhlmc7c4/sZcHUZS+6/spgteuFfvG6RhK4S5eT24YP2snTYn7IaP1+XVVK9NlwAYpWU2aoRc8kZIh+W+gFWmx5bfHN2cnhvDgMjOdTJ+JAUE2Lh4+DD258tbl08+58+ZiUuVLOkDhIs+ZuRYaUWTDz+VPXQ1xoz8I5VzOwUAXbjOv5X75xXh+MM/nGMSOIcPskYId4gXtkVyz6XW8D10ygCnGeXbI/2MenL1rbRnz9syfCsfkv9E05BHJE/Pbos7rsQhXX3oO/FvxkKNzVoAipp2+Ks+IsX8Cr7GK+8vkRzdVcBOnZXyW7LwmQSb0EGmpwlxNzuXwGl7qD/+QPxdtu6n5Z6JJrl8EY89/BOOP/cRpA/GVCIxz++sG3gFEQRcdKiQByHeQgbLvtYPul7Pp7ra46KGTNC2kseTKf42CDHTHbEMx92Irb7FgBp2MFSYn2C+bqaMTpOd5c5juBY/J4g+oefmC27czKvDrcR6OuYkF0rM86EeSOit/K8EtNyRDTGvBph4XM4vKV50JqDH8M1g4n4t8evmj7Z7CDDqRsSb5ommJd8qjXSXBHdlMEaYVZVGB+bG3GEqK+mzjtdYYlfGDHzZdFT6c2AdfGLX6ZJKyacviqk69oky/lZI34UZ61KPvc/fb4f67tbw7EkZzrK9s/i66su/OFbEq46LxjvsW6C+8wdrKzFKpi+0iNWF32aruizCeZjd2mgqKOBBKJYWgued2HRZ+ja3euWLMyTBAHyc+KF8rYfXrTFIHy6EwuN/pQs9Sgf2VjY/PlHMNavfQ1Z7e//4RfZ0jbOZpTiA9PXp98/voDG1fWw6KfranY/+xRuXifRjWJ31rjdyA28HqXOdvJ6CmgUvnw4CeyNn9u67T8Jnin6/1wpWP/vKwVk4D7brU5pMSu3EAA1JsGyhNvkd7zENXj6JSIhMn7W2Fy+HYTZe8/Mx+dajWuFupDz80jlq0E5D1Z+Bmp/Tymnj74anfe6RXev+eFa6r1+EsynqfnG7YxXSsgSWqwOufbOqzPNdcGw6jQrXU2ZihtzLgazpjFTGtUp7hXZ/VTRmn/skiLrK2fMDxHl9Hc9zOBE4Y0K4zUrft2nF+H6m17MjNVjxSX+LcE7u5QF6++4vEA8XsETO4ds88mthqd2vcMmUnOsiHfMJ7PPRJiE4UaSsaiKmdFhhrfJVYI7+W3Rda2OsJ5wR7wtItYkln4G5dXeEP8WjqgtzUsDA+4m4meFkVAfLiqq57tOV9e8roYjaRW4pgdG7Ku6tsZDEJ21m/RxmddslIAKm9yGjby/Myydf2gkS4n9+Rpcgj9JZ/Hr1R8gPik+s1wjsiZ24E/tHBmE7P1yjWjGzBrWlrsj2+24L/hHkgZUB6QmYVodlsmujyesupiR/QE76Me/Vg3vM7fx+pt/Eu4P/ijS/rmlLLh8g/51OQAM2TlikRy9Au47QQd897QZfhQqf+dj16KbW75JAEeDL+vJQf95AUn8y9B/hWyFITysUyog9xP8AgVUiL7bC569Y90Pe9GNYeoHBYv+QUrmzdeKF0knYKasp0tIPtSwzfOCBejdFvwVRwM63TWHGc6x5pxujTO6bqnHnOin8ulzjR2tuD9+xEylX9L+xr2LioaEzJE/qKDjp3+i1yW+0bEXJTSW5qWGfg5yRvQDT/jwCwf5FKxexDx1GI0qFV3Ax59CwvF4LUbpNDiodh49cdYrxZrP5WOAgyXdiF9EG2uYxGMLcvuRcN4dr3wax+msbpi7Zeli/+3cJD5EpxKTkIGXSPdDfYdpyyhFjetaI0pRhqqDioh9uAzF7GXxCLZRr5l5WW4VOgGIMJzdGt/1Ne6ndJ/GWrZyCbl9Cj3h1igPwAzZp6p3SpYSdRxrgiY88fREh4KHj5MKq7g6MHzjcs+l5xfQYt90w5tVMFib17zSk++FBbrkI/npxLm29yWLuaum7sfyePBBHo9HGjmO2E/623fRsn94NDdPi8oHp4W87w9UfaYNmrL4kGlsSndkH80GEq2kbJFc7r7ELQ/rgKuHWUGn5KdjSeQXNIWB+AQ6fjZUCDO5eGnSt0XEoHviHa8nNK0NPYJZMA/E9g9ZMp239I7e4WEgefZccRriQUD7eHNd/JNZ4+m4rrX7Sbow11duwVQf9FTbXN0nI1Ik96Nf2So40utFXE0wilE3WYT2ZCMxP1WgKpWbLcCpv9+ZlWV5MnwPXAISCgmz6WmdzO+WCCi+tHeSyvIOTej+01Uj7FyydRWrkEq2nlFrKTZF7bPmQwVM2VzThOFNd+MBlXpyh+HQnZb497K4tJQI/uwRe4JaUfzrRHCmqSWGT+XqRc/iDF25bv6+N+GB4jloc2wT4kXDvWIELg1KjvAjePG3yRSys7q2/B3TBzdIxkuyOcPPvnLiqfQYjBsQOng2V4Pk3RH4HOJagEmgN7K9eNtiCLHha8mPBmwnNtuA13IfoWU/SfitBz5L/e4KOfE2eKX/lORLTjgC/vhcmfX0X8V07n8Nwjs/Zv7b1i2pWF3OkDyWTngNm6spfrlnkOJpTexXR4tRo6SGUMh6Oj0fQ0L/9i/yohKrkVXztkLnCBHn7rDd1kZoeuk2wHc0fGI80VTMfZdGSN6sd8x7H1L+a+FTw0TIE6N80NC0XUcAEB4TtmOlXMzt1hvQPXO2y5wTnc/RRaCw+5oW26ryp6Lbi1Wi1XPUsGb7lwX7NyOq45VFR93XglHY758g6887O6u5U0wrsgaUrA7LZOKjXXA8JrG2xEcsTmhM5uNpD6h7lA7tB09Ihrj/qch+XQb8yZSymq/vqNEUKcgYWYtz/4NTNWvql+rMvy8l8IvfPwGt1ojs1U2G5uDK7kgf3YmFxBLQvNuecvj2h4gs+Y535/JBkYZuAtlOXA1aWXqBdnrBQGz/h4r5Z0agXctXQczJvllieqvO0HKK8Myvl5765cGBsm0OJNze9+hfvjoysSAF+eTW/MY7F8SfD8RK6SmYb+cfRZE5HjE9ma41xViXtLNVySQ4PbxiJo9nqs6r8c2K72AF83XDZtV9NheKpDWx1tnqQJGS1gFJDdcvxml3jBBxw5w5XHhxTs8ugPXe3tguST9VS0ngQPZub8yaPkY1PfHujq45B/rZ2ojT6oUiWPAGzdfTx5qEbBWCvQn85RZ/2fdro7bhLz/iYjaKybBdB/GVc8FlKu2TDnZpB5v59iZ41Kdk+Fv/6jlrhIitWMzHyo7RM7lfmTmQdzJfjFuLYBUw+pvBs2hvH31U9ecfhtMpCcYzFlNtpUUpydfHMuDsnSnQpkSgmnU0CnGtND4oWfZgweMqW+xObxSuX6tl/mTsOWXuu0VOKmRsmx+tfu5PKQWnuFakaNzWmp47JwQ7sD9kP6Vv9O0+lQgH4lTMUCMdSe7hNkA37WIsrDQBtUt8BMPITeZMzTYZI6fI4DWdJKw41nu5MmG18OlQSqVPdimG8OjnYCk7E7dJeEimt327w13wbrjv06b4Bu91BkE0hcTKO9xPpnDPIbupwj+8xf7i1ep08JmhDm80Y728a+wjpoSQuUD8htwa9e33g9vRV6vRzCtFXeyNZo2PAqYuLxX10Z+wSG5pNZ5azUXe2aeMhF5ZsW3BQSMhJOSwrFd+38or6HovLnhw3beK922AjxJlbiSK/C/fI/6TXWb49FT93N2gq+WxGdg+iInF8S2hYI7PH/Emrw7m/Fk8UU1WN7y6LreiV+fIRIfY8Yjd5J/qHz543Nqc/Pv7l2p8avq5iOlPeakFx3UK6FWOEVWO7jco261Hkd14b0oHpUhYJQxP1O+bL1Z/t5mzYZGk+G4tEA+6gXNvHypIF9UOv5rCQjxQDAeF/dEhHtPeFX9dDoL2uwlvZmb3sWLi+k1hDl6MHfOjVfGVqyuakT3WLFjiIe27pWTal1tiP2jWz8pol1rjfhALYd9X4xlDhorAx8TLoSv4ZgYBtKmLmb6jJzQFby1Vv30SseB9pmiKKrvR0pO5xrP5TSrWRKsatsIqIK7kzNawIUIMJho55f4l7CfHbATYvwKXuStyD+Y6n03ErM+dCil2+jmJNjHAymPMteWPteBnFQnf8EOcfP9Lxrr4iQivwzVFaf/hU+QFI2C925Jd9GysRauZ/+wbq34VBwx64i9iR4/FMdlbNXM9Cc6SeWE6hZCPPyucUQjNiQU7vEtEA70F6Iy4IHZeKslPqzobOstkWGalnAzmr7qqL2pmmD35qeCav3dQIM0Z83fF1WJrOtwRuzQtCw7VgU9/fKpnnojFlQ3FuHLCCDYyuVO0EpDFv/mGou575MxYzne9rzY+rC7WHc/+y+TTfNvHYLrCiQUvkfOWFV7+x3cI2a2pxQ7Xjwvx0Frssg2OaLjkcwu36C0QPLVpxc/RCAC9FDFf0rbF+nANMrS7lj3lWaYW4yVXW6RMlxvxFz7GZOflaq7ynchh+Z4ptHkEcJQdnBWXoOdLfNowY+3j55vr/O/7waytI+Wj7CZfPTAyyEgfk119tIJ5iIorlMy+E9IxipiyETC8UyPAyIgZGnedStF+uGAS5ghbozeRM6qsnjCPN4+Ar2l9hQdfPYhtuH4yYWlcehWuLLLfztdqzK6ChO7XJiauwSaLv7/PWbvMWcv2pmcFciR9AJ5r60PM5ymzxvjxqUE/X2Lit79L/4cn4ZsbK1wpYhZMw9CqoA3KmdJifhVTjF0JHXunZNiZGmu8H9wONe4bEZtVvJqOTmLCQ2Fn4tryzuq66VhChPWC3Eyvsiazv4tgbaOGbV8Ot/g7+4ZAx/dmwW9C/81WFwqfUX3gDXQhn9+YuJAprUnyj/LqR/PX3//xHfOzeNEh1u4wWOee5c+04dOBmaraWE+XXB5D1S/xqgQ5NyM8L/Gv27+GUt0wf0t0wRirqUuHGJoqW7Gw0Sc+e1YSwoH3KbEeUoh+h2XSYzM1PX4eP1oxfAURQz1c18Q53tJg+FnhCEW32v7ZK+d3N6vh2b9EtnWVKqH2057hPZYVc/LvnPDxfutgl5l39g+/qgKP//g1XsX+uR9PCChqt935j48Vy3qvf3gci494quZcTTOw+ndHgsKqk6kzBoro7kAYcd+7asZJp8NedH/scYxx/+dvCi3NBHP7trbmCoGDwts2ZyT2lf5rTPpVW/Iny4hS8n/4/49vBFnSB8PtbCjgHT2Pjot9z5vMGuBc6SKz05dZSOvbVMKjVx2yxEM+7mxUg6v0E+ZZlhcTmuoaOiMqSCi8XYu+JNmETZ6HWFvsldb5rEMpBzLRnfLSz7vt4wwLnsdTy58V9caigT++knVqWrTzMvcGrUqDhJO26n8x8kL0Pk4PrFQ3XrAhsVQ4ZKLJ9gfcoHm/qyg8+0qk8n09JvNqG13R9pfreKwKO1j0lAy0o6syPYhjPj30qdSGeiUxAk+r50hWdUjnHSfuPtqgWXU9jFxBspnfb6WAZ/Hah1Fe5tZsCkBz2UIJfW4bJFjwwPw7Rk9tPYXdwp/UZOh8tYYR9ojZPXkkTK3nOzzejNPJXvr8BlJ4h997sJn+kL/B8IdHjeG+wv/wZv3bNOhMY5XK69kqxmeXKtBaqk0I0kfEzK4y4XS8pQyvNIH/pgMGWPQAyhPh1s/zUnInVXLGv2126rteKyTUs0DE79Xnif7pF6JbhwuefFU8Tb5U8VZqiPlsNdUYHv0zOp4djSL2uwTT2nAj1EsoYVaHli6cgRjC6zF3bC/cpmXuJGSq1rqPf+fF3tkXo3kTn7FWD7eEr4jpwy36CMROJpcP3wOSQFUODd2sSwmxh3HLULg1TbZt4qlgLUZn8HerNyNHyiuaSYEEX4c+GW52Pe/v7r1BueJ+MYSNhSY3KVOofO9K2Gr0g+mlhwIc5Y2I86x4FVOwknyUXbwt8dalxGe1cGfwf8AIvn42yTTeNqLqia3DrHq1sXqmZHcQ5HvCtsFQI34+qRj8UTgyr/8eEroXBxusbdwQcs3r/vfx4hIkn17J3vSqYBLYM0fJjhn4Bb+rNdXBfUA9+obspms1Orp5X8Opv94X/wus39XUhs3CN3GjskMxLvYPa7iPmG+/PJnvwiD96TF4XVKp+HEIXAjM15O4AbGqLrtaJuxwvKLiVqn6ySYHSaPn55PhFDuVGJimqNXacqXbDdY9S3ZVDum+MkmAvCqZLrfeBoOShLmvbcZ5kpcAaTHTv/NCU3uMRJh6qjBXMb9ovCTTGSw8nvEclRuL7w+3HJyMdswZpCGY17dNCQOwlPlb61Gtl/0FwV5NZLvpvUTCenmFiL0b4uyfTiE9oW3RP/3CRKSQcX0F6I+ZS2Wd2MHasF0bKlnd4ufzU/ZjD4oJ0+0WLl3B3ISG6JfBxi5MQs7Stxqkru9QGUmcSkQpEf++5v/4325/Hq1JV7wBclBK5rVrtsR/r4O0KvfEafwimJ6i06DlfNhpPVdF/9tYJtwPacgsVReT2bOKZfL49caI/jsnI38cFNjVkc+cT7ZZ8I4dIb5uPsTNxrCY5QPukPH5OWyXequ+itZRpi3xevn/hMt06+WA13iN5/V5SgbnLuZqPxYOnvtHgPjTyXOYxeeDPe7yo+rOWC81x4CJbHuzq0bFfGZgxVuF+Et+rN1oo2wWPI2V36yh8WQKJrQdcYnBa4JmnxxKdDHXPXM2VWKx70sVIFf8L/NjuSnGQt9GYGqvHV65710v34u7j47fFDNM7U3V7fqshGCMPGaPyT5QT623PMoJQxJ7R7tf9853BNSNLv7IeVNN6edm/62POW+aWVP2jhTQTO+I5dt3DpZ8ZsKIvTNNFFGyZu92NdV9jK5YhpWMfouei44yEolhaW4ggXjU//giCcw7Dr4H039CYXcG24LlWNSHgwp9IR5ZrNas5/3LOatsynaY16uLxefr5Q5LfiC74KoUTB7aCDXfdcjst2BWkk8uTxD36Zakr44m01l4u7CrY5+Za1FKxtc1ztW+7T/MF70KVZ66jdBQaxLB2/cHTX/4ebEX2v3pOeHRzJUjkwringfb4vJPVuFvP9PnfbTon/62fD8t+XXTL3qhivaK2iz44ZUMw2EXQVUrT3YpvTsahOfWQYXdGsS4naRilLUeo7P1kgnZ3g7VGksjhT/+phxdz2Kvy0WAZf3Mb4Yqmfz5ibU/fdmKfzqat0PggJDtTeaUr1c1RytN+svPLGifNpdMrijw0dQNXgtFWY3eyamRvN5hYkfaJ5ny7CsBWj0N4v9uMWfj/diB5ZsPYm8Vq+euuxPRWh5kYn+aN58TbzQ1Ygx7Ej76XSJtvkEMBz/r2F561gGdnl0Eu24+LV2KvvxnCvczxIl/oLwL5GT4jVsXpJiv6SrJMr42+0wCTToH7JyEU/Fd1q9163XAboveoLLih+H9OByoyHe4n6WeXNHAVJNsP3dW/W4YTPV5Do8s/QWy9Xs0Ywumje/sj+8O25VwR969Qwv+hn6Qq/IM4uiXTK+K2hrutR5qTSZ/mG82dfGXL8FQaf+Pb09mfaxhwaN/+nzCOTSABDaIxDlt5WTWXaB/+0nX27QtlnglbBY8zh4vck3G3poyWPg/ca7eNpDzCV//xZ9tEx8SmnijDvj3yLCmvPJihMuYQ4PsG7kMlw5RuXYwLHoVu01jh6Z8LDttsT9iul6TcIfyEmD91YjL6bEY81DxAZv5ZeFTYj/ZWeH81WfYJfw8rWF1CUTIv6pG+fQx+vWHXTrAj31HvAWPj6ej1qBxPhNyqwetGCoURdqcJJjtRUXnoxtNKni9n7A/+xm3FzmDe2Zv6cr5kv/0y3BKD+zQKg9ryDdKiXISbLA2pVs05VYXg2G5GTv69quf4061wUFJTkXtegnGCj4K4rlcYXHx38+OKw261DYQy9vTZD61Xgbf5nVidu/rSLptGxfGgy9QoWIsGKyk7P74GtsfBd0SpzyV4PemNjOK7Gnx1dqItaU+h1GCcMGFMcSQZ+j8x2+D6Q9vu+8s/qtvLX3hfUBjq1yZLr7u1tQezyKo25uPxeNPrxjPPhLsLHNDLPt2tMTb7FPE3OOJBH98f1WuS9CF85Vu1gLinJtRi1CQBGSnCq+eORQ90eCpCnFEvuHT9spmNMAvZXtdszl/rS62DGexp8roq33/Gg6lNovlg4TjYHL6imRFVQ9CSRxqdsnMN9ITmafQYrH/KtGs5WmIlnoF0ZXtJvgY0xCpZjthhi/WPZmOz0IC265zcintZ/HreenCKj28cWfkTsBJll8R0o0t5f1pXbFht2/gTx+iUdf3U31wU7jDxcPKBrvWJ7y7MSgf1OGHsZH64Xfb1/DoFYd4pSegn89XEio0ocPa6jta0w7/IpSk+PKvfvYl3V5Em6v/xJrq3XrGgQLCJYmotKm4RdvZt9X3ebLJviFlwKHf+bDvWpX5l3bN5woj+rd/RO/ac//HL9C//PKXb4/fL0X3eXNi7segyZ/eoF3seEvsCUXJdGtBhH5ff6l0MVgw1i6N4G+/HF3R0ETPMMPh+WXE/n6uFr8EJEMLfiDp2UcLHj6m2g0dDZKvp50lOwbyYYr3Dq3fQlktQ+tG9B0tH8+CUqFFP8gR3giU7QKdFzxbac8/PYbs8q0ccGnfnbW/8w3tmPXjJ27P8KffaqLy5P/45cbz0ZKf6mVOYNfB8v/Z9vp7JuMmk0vozbRi5EWuRcsKIwclSx/EI7LT0/bsReh3wQPzpdczGb9nzUHureF0Pa/Oxfi7bRtgNHsx81dY1eJvPsqc4EnF7weCeeJfEf3VM/VrQot/+k/3eDqsWPDp95XYJawuxp0Y9s+oprKxbfjqYUI3qztOuMWeDmhuX/7Vs/pp655reDorG8v5C4Lfnz78/7lSIP3vKwXnw8wZeRW7Ygjr9xmqNN4xvTaO/fe2D1z0bTwDr0VxqOba3uVwdOKR6Vt8tPjmfRA1ndwSvGneZfKTXvwOO+Wdk/B8iK05X7kNiMnLJ/68sZI5WBcUnhxUYr/NM59vVdRp/SPcUyUscTXpqT/CTzjZLDxnj4R79IXBieUL8TUyIvr2Q1t9lAFlriHShNH0QOHTCSu8ullpz4Lt0qhzPq/pq7OzhCecCcDSy9KCQnujWdxDBMEpb8n2TS8Vr6xLA2T6vfC8NH7/BU0WwpMLKjG+n6yYfxK46jc1Q+JYq6H/rWPXhW+bSFT24VdNw901YfI9IEQyRTR03XyH1/a+xUoRvIr5dmcxMsj9wcJbEFtzcnk+kflqXnglmSIfFdq1MN0eO7a9xkMxFu2tBvpxIrZVo83ivmGq9o+Xyex56qsxusUufEY7YO4aX5PZcqtWIwX0JLTDA5/cTSep+8P2gcdLsi7GITqKQH5zT0hz/CScZ5oNo2LtyG6mRTGnLHqCy28Fbs2sqObPJ7SRsxlrFhSWxfm1uY7gb5cS4Uk89ZwoaQPLeTM3VI1i8rwsVPZl0xGXHSn/kQuO0W5/rsnjKuySifLR1GKc/wi5vj7Jr7Noiw5oWzLPla79XIlXE3al+CbBuDtUUyEXDkrZscZLvLTGm7Ct4Zp9e+ZmB6MQE/S+A4Uyor9P866mhlQxGphssXB/r6vJKOJZk+7njG76h5mMvd6VKAlVytzHjBCLK+iQx+8fzPG6K8bvNb4i8yY8GSk+O2sd2zRVd7WWE3fnGAG38t2ImrwVmCsULzSpSYSBffID8c4XVs2zzmp47TYMrw5KmozRLXdR9VF3xPqc/MVfyBmxTXhgJ6UsKhbGmxjJ3ick1on5iaQQO4N1sg7++Rv/pimo8bujJJT8uRjlfA/omx6Xxlb5g38/GYrAXOMX/ariLRhXjuBAMYBOHvtCTNpuNq/wfKYq20XJnjerJszhvl8aqa6zC5rg62LYos+ZkTj6BNMqbWNUfiliQZhPFkPmQV0Z++7BgndaBzzavjJtLd8Cpp+n1urkVSTAcr5YvdyqYHyyMoVspTUkiORDMO0Bh3CWQ86sX6QEk5pWpVZ+zw5Z7LefrM0yivwWMmKLboDkQ2qkf3+PivdJ6Zl29pQ/f8Hznnz7MVlGj8L9EeH5bMrB7170PkqLX008MEw+a7vJWUrsJomFtZy0KJ4HGJ7Bhvjwsyo5sA+RpuzmM3MdigvOj69RG0sEmEsrH/FdMJQI3/gDC49bUs3e5aPDYz1RKrdqkXDxvnfQyeAfFoy7qep+oIiwxEO6Kd0y4a397QBzsowKNZuAK9lGRKtMvxO3CIxi3ZOnDp/h6tPpqLaoe2zcDuV0FrGkQt7PppF0mqPuLlj6pGoyNW4RAbeHlGUo3Se8bzct0tVTSoIumZKfomMJzoeRk12E9X6q5wrDz+IbKmwODqJFRKJNzlWd7KrLs6JxmIiwMTXM9GlsE958vjW43G/I7tLt+aBvt7EWGNCS0DPsag19I4FcOCeiV6ZrzaYaNFAhCdguOiOLRtBeAe63CDfnRk3G/DHHyFxXGUaueU9m4TSc4XmlG+ZXWbS8QnauoBtJSoXMcBIxykwX1h83Y3Hvepzr/GKjLNs0ZJf2es8NY3K1t/+dmaF9vsnvqVQuUiYP4yeq3WQI698ZlabvsLAXazT3j1GEfZ13bBuyTcHI5qMgPd2kbA9dkvw+Z6eGUaqA2LpyLuZ5lS72+WqZ/1FuPR+Eb4eyLpxIID7qYn5lOtWijr+YW0S4YupPcxHvbh4WTIMnVDzaMRqje0xM9vbQpEiRq9mdUDKjbr1gniVFVZ+7eMN0rH3QrFYvU3M2c03X/fZSjT5en+F0tGeCyTpJfkZZzvDw0Y+q23PJqTQuAgRKv+zy02/BWHzMWJuviUYzSf4l8+3qtqqh/B8AAAD//6Rdy7aqPLN9IBsiICma3AQETBC8YA+8ICgiYALJ05/B2l/z7532HttFIDVrzlmVlHIkdqKde948SYai9erOfOuE+jmfdPD9dBHB7sW1R/0rW/BZxAF57E4fmyqqAXrU7O749CG/cMxQF0F9WE/EFKevLftEzZD1GEtiuuejGOiLV7AtwysxayGHv+DUqTDdBBCPXH41dR4NgPVEJ+J8874Xz9+zVEM9vDHchangWWU0OjsUiPjvJ0XssxhU7S1pWxZpw7L+vIJvAzdwFebUTZhK11WVwBjJexK0/Iamcol85O3POV5PaVWP9KWVcMp+DfOEWaKfJ2gA50blWLT7AP0OZWGhOrl67N6FQoyXwIrBzpcn3AGfR1cfg+vf+rBCDmXBmtFRwWjyBzHSxzHkOtk6ml7GNyou4Vnw4zKU0G4XfMkuXWzSgcS7K/DfPSXblaaHk23IvqaZQc7C8rWofy9eR3/xTkJzGEU7X+SFyptNscwtre9jF1qoTsU4l7DiXkiv7Qj7T/CjykY3itXbtBNtt7vdWd7+4voPn6EmAWLBh9r2ZFbdiKqTg5h92CuIGrewAX6RUnKu0U+M8/Oh5ioEVmq0E6M/VpbW2kPIbmTLe9FPB4Bvu5f/8Kb47IpDg7bu2LDgcrNDful6DfxH+car8XpBY+W+B4DoVNBFmLp2c9TVCoYfxVRv9bfgX9RyOC22DQuUk53SJDRKqL65S0v0XfW/zipOcODtSBLr+S3Y8/es4FUXnC7P5FCMZnRL4NPBkkW7eo+o6n6NdWs9V8Ty1G865/8G5vxM/+HzjGd6J/s7rJZLc/799AR1+5yY/26u9iAHSavP/JAEbWsX0soOWtg90jszAvuD6OaVnUAv3wnztXkUoKq3AfLFo2D4kTUpNSVXhd2LPagaaWYq+1sxwDpzLlh2Fnk4jdvSQZW9cPHf+id0c2VkJPzxh8e1cjq9KDSSKdFdunink4MDCUqfO8x/LygaoaIGOptXjrWLZtvjrl9l8Dtf1lSgRWbzVWEAzPmIBJusQoPdmoDG8OwSr5aNeixoHqPrWTaZ3xVUDHgduLCT54vq5nyofORtA54scuYFeZnSUDJy6J9flR1L6VKz32Ya9EtVfKm2qW4pPSpC/tv/VHm4KJymzHD10Fy0zIB6JcT1bd5hVGhCPAWV6B+fV24kotL3oSJuWQ0AKPjKth+rKkRSfU+6s1ifiV9+sKA/1buCZGZHknXCrNm0Xlng1WGO+dne9mO90ynsVKtj0fm6DGd+6qJ8+/0St8V5Pz1JU0FTuku67IlXcPnbLpApD+UfP0pHzckH7aWW+qxHVvbEkGHo46vwSOS/XrUwEeRgX+9PrN0lO/xBT2XonwbGq+K2Tr9vhCvopQ6z8GrtU74+f7q/9898loM9jbHqItuzngRLkiuEfjlGYO6TkkT27pXy5/lqrW36OWG93m56LqUqQDAGLZvzg+g5eTtw7bnMLK/YpjTaeC6yfenJwhOeQoHbZwz9aq8ST09MW8HtM9H2x9OPah8xFpNxsDjIEQqxpuYL+7uODKxv8/mMIxkbm85uspZLeIXhnLzqsTHeI1ytzGSXARHEbS87gM6dGzFr2gr++TguzHhE4XzeI5ENV4rIdV+yKNH2iJsS1rT68AKqPn60nha7ONarzhzJcbmJel64cQfsjVysstisByXjHVgPXhIXx4Ogbl+eYKzihJGOf9LuelA7+J2LNZmPKxX80PoleI/6QshTl+phscgpSt5zaxjzX+FIsBZo9Dif6lgOhj3I4RugexCTbYpsCOkfn86lZ0dm/VCPx3MeITKxJ9meX9f+frt/EkjDoiabExpsqhivk96vUnV+Hq+Q+4cqQfTWviRco33NzycSoRXRjgSv942Y4zGH69I18Tp5s6LLTZYg6dgvqbT21iFdVfECfTI5YMQOpPBXmrhCn/NhSWwjUmpuvBsVmut1QW4ELxFnYazp1j09ku3MF6c//Si/thEVZ0mpx9f1NkBxORkkam4OmiS9z+G9egqC3/tUTAbGzjw4ZkPw4yb68RIeGxgfe8T8pXVNxRFvc4i768BuQbBJZd1bu7C08jueRCEX3DPjXBeLzZZslsFFTOHb0uDvefxc0FpU0lTBrIdmflfYc7xkyEXNi3hqVfTMrz4yWs63HgVtWxdNGZATVJYYMZ/xmXI1iuB4UUdmjY/Obu69AFSb6USrNTqnYjI3Lsx8lxnou6qnSHQafM6nJds6s2WlZ6aK/vZ/yJJ7P31XboOU7Tti5n5zCgWrpgENU+9gsXGVehi1qoRltk1pf5QXRfvHT/70KlmVXt1JhLwA36YH25Ov33N7jwFJx2PwX34bPoYEvyEiZHM9X2q+S5nzpz9Y5hvPlN+7tkW3ZLBInMmrYuTn7oXuL8mmrR8g1LpRYsBlRSUWBImFZEL9OzgDr1gYwz3lLMzU+VBwR9GjrNGf3oCgN69kZ5RLMYSnXf7HJ4l7cHZ2E8+DIz+baknCR7co6FhdI9hSo6GjzFY1u2vTHf745Kwn0j//Be3tVUW2SQc9LbAAePZPhtfnB0mFqXsUpOM5oOqcb4a1sluAtzfeFLzulc56HcNj5TvE/C63oZDX8y0J8/w6J7KzejpSZMHMN2c++w15rowvPXvnYs5HlmAzPqEalR7LlSLuafOQXLBuUNLx1rehsLbb4E9PE39/pf3Ym7oEDY0XbDvrcf5OWAbejl0osMWjGKzLdwGfTAqIOxWlzW3cnmDGP+Y8cFYPKOEUul1hUt/f0JpJ76MLM//F8lTuiunF+2i+Fek74+dz1l+TDAdJvJkLeNf/tn6ggnJVz2zm2wXPjXQBLfCQOW9LRazdSIs1w98Ns9EiCycG6Qk1k7pk4WlrC/kivAhtp+5DSHKUUg4m5Mh7tW8WljAV43LTcZjxl+G4cwupWR8HdD66nPmnE655QMMBzfl3NsKdsH3zzQCK9NhhKRjUdBC/vIEathMhT9VL+Ts2uM6LNp39nrDnLBrwevYTmKkPp37SdkUJ932lMhuKLJ283pJhYCVm50Ax0mGhWPNl8OaGTvS6DSem0w59hnFJ3uw2FP/8rlF+AtmcjXUxfm+/ES17kZLAqGN73j+DZtW/Ewmt7SiE/zxUGqx+e/anDwer2sVo9vfYDo0iFLgnGtzWC4v5Yf206cRK9c+/Io7S9z1zWsbRDYqBYHFr+qZ6lRTqFgOxp7YTvIs+Vzi6nzdz1t4lHDbu7QC/s+cQa9bz7I9/6Nfuiqui3PZT3uEMBZn2oZ/L26hXMNUVoPQdY/UaYCRuw+WKGr/cEnsQWdhtHz1FOXcN5u+vuB8v+zyB6K1+mZ+rhRBWyEb4LWVC/vB8/N2qEpA6FCR7tM+UJ7uPD9/1NWKH0g5rrtVfC5yfdyb+NaDi5/iuD7P/Nft7PBytcg1//hQjxSClY53yXB9yB7Pz0Td68Yi/FXwPvcw272+UKgu2i6BTFjuyOd0Hm+tbJ9e4/9WJqQ9yP/uXgK5OKVP9p2yQnJZjqdNWi6lED2EvU/dTwnNuubTY+4u4cy86UH/PHTF0YyWm79AnsBjRrFfGqu/+/NdvUpssICe9EAf1ctCfF2dDrreQ2wLB0Ydz+vlgMbUBEvHmOw/C07Yzfj0Qz3K1+fPn2PVKE3uCMcawk58P5uSkT0XWbzPtuag2LMBSbPMi9hKUvJc1C5Ri7KdEP8VAv08NL4vPJ+znznIVkTZn5PT72L9+vnXgrFWcbbHPUn6U2wpm/xN3an63OdgeBa1pcrzYe03BYlfqQGsQYdZi7EJxWH5PMOQuJr7gVEzD3bBQGrqU2M5X6alKooOmb497YgS2h+Q/P/v6XcjE78prOAXnBYZbc7IwWKNT/HxNDmC6TcCsfqeEk65hGZXbC6WuvYx66UyP1Z+/988P4tMoYTBrp2QujiO03pJcRWurvZB4GttC3CQY4dwOnH7IXROjynRA5v59ZGc1e4a/Rxf60J5PIVXZcW7RbfIFkld6RP/y7fCq8gxaUwsJXp+kkL0v5gsed6ySzc4bQuHtnxE86nZNolW7+efXIAk+Adu86brv1K3XwaVyJHayPxc0TtugQXL8jDAM+7fNvP03gma7FYRojwMS/Wh2Wmbs25l/RfbqXtQ+4LDtyGX5ZYJ/F162dpPVhXmp/Kv5cU18Tb8u94ywwStmf61EhxtmJLgv9H58jzxD1VlFWFNKXcz4D2iMJ48El2WcUjC+LqhFlrFk/p68lTIOnpq8yT8/sp8OC7ieLJOFeb8PefZiEWhg5Kyg4z7tV/2Fa7/eXtN1olfh6B5WJ+36nVsMzMyv5RlP0axn8Hq1IoLP+ABZiloqvfS+5ixpNcjL2GCbxo2KScONpJa5tv6nD2b/4A4JZhXzSgOl4i8/16jy/uG3qGFbIrG4LEh0Tpx6KpZyDmfoP7QODKWn3T6WYY4Hsjuo734KTpUK129nkiC43lJuWXQBc32Awqg+6r/6AeBw+aCqHxRoFE3wQoO/VomXezvBklpq9Tn///ELRC3DOOjF2Jhs+zNu9kr5qAGCurky5wuZ4EcFyTDzG5brh0UoKWXQweAjlXaYVeKHgybRZr6L17vGCjmuiIMeq+uaZcV8i8nRdwZNXVoZrq6Psz01fpqg31A7JPiIOP0pY3FFq1QJ2XauBw1msgc92LyvzHCmVcjm/w+z/03VuX4z/Zr+8C/fRr3kCHnzrjvNRehCwkU21WOv/TgUrrGiQl52aI7vA/wGTJhT92o9HM85RrNfR6y3rIRi99zH6BWDT/VLngjuHMcDbOm5wNPeaNH0Rm6l7T+PirjysbRf2Pzd//QRu5wfrJgccg/g/eA6CY/T3uar6yGGjfXMZr517cftMrBgYCsbv637OhRxtD7909vRDs23LM/+t1rkGcMn0y1kMJ4ulJO0wYp+Lfrp8qzdP7/2n3/359f8/T6b/d1iIL5+16g9bVi4vjipWMq3CL12Bw/LO1ULhxlvYIUvwZ9fIsbjvcNIOlpHigp/b0/5dM9hED5ht0vO0XR/4SuITiwoG3sJcb68RqBs4zOW6j7ruVGoCdzr/keiRnOEcD6HOwzXWqXC7oJw9ZgKH9QL2lFdltN/8fbHR2hXn+KUh/LH+qeH7Fvd1T9V6e9wM+sBX+2dU/BTlDXg3+ibWYMVhMo47Qc9LxOD2c6rS2d/1AB4QEHHNP8IYedkhLQ6MLKLbS7o5+dzRNirn7+fL6TvNb+im/kcSPgobTHeU72D4nIwGC4MUbPbb+Co8eXF7F+39jRG7qDxPPSJYXOvlvidv2BpZXcW/Iab+KpKfQeFn7K/+lf/x590mybP2X+c8alcg3YzI4Vcmo7VIlx+ZHgHhs+u2elRTK+BljBtFY+ER/leTItdlqB5fVhv38IeiVcFUOYvh9yMIumH/LJqYCuuH+b+fK3nP5Xclb05/BjeR6Lv7fs6gMIrDSxPRRlOfeK2f/kQT+/N1mbpd33654/+1VPEI36Wf/4yhub2Qnx9NC1wD6cXXZVsSPnXcXztTx+Gi3QePPmFF+LLtU4sr/gWg832AOz92tPZb7bHrXHLEZZoj9HV2hc8sso7SLBekjl/1/SL2hHN+Z34mg/pe4zcWW8YR+ZRzxCruEkWsC23V+Ypd0NIgffLkLo0MrJr36nN01xIsL0+C6zpgd2vZryAJJUo283+5BS+Aw1eKvaxet08a/6Hl0YbPcjtUGxqUZ6nUl9/1Qs5tTivJbs1F3ofFArO9ldaT/lou3D9gkzMdyAX41PWDn9+AjPjVg6nzTGXtKLwDfJYHrx+5fFc0j31k5PQt+6FmP0xmPkju1Q7Vv8WuyxeH313JH98d+pM34KNVWd//mP9g64otbVzvzBTFKeUcc8cYVqZOsOPVZOOmaUlaPbLWPi+TClfnw4HmPMTHttLm3ba9WKBBmfCPKPf1XziXgWnjDVYvqm/cHwUuxYekWuTUDMWiJtdnOifPpUoOsqL9DdlvvtXz6TCZkrKC68GUOhwJv5+UYjpMaUBzPyeBe1v7IV6NyXog4vCwlCPEf+p3l37/7QUKP+7pUB73xUsx2Ks2X2VSgitPJsZzFJDlj3fACfGSvr6nY+puE1hAvbJC6n2WBk9zfk9hk8hPRkxf8+ak9WVQ25OG+K9mt6e523K8POrzW48p3XN4VRSPe23MuYbu7eHc2bKetP4BnGbR2GLMMQjrOhDouOuWhS0dB0MVhZZ5HC58YLudk0AeHcy2G6VbPppqWAVCX16MFI1EH7tl/HSk9XtSPxn1qTTXpECTf7ZCpWbBwrHusuu8Pl8Mrw0dvea40N3giTrjgzToUpF/pZLWE5OQvJuOyAeQ7ZAy7TJSDCdAFXqNa7gRVyCZZ526ZhfKEe70+LNbMA54s/icgJsT2/i7KMxnLg7XeF4zD5sI1K5Hq/m7Qp9/foQS4hFPYVBZoC+ybYMH5Nr2gfLZ6ZT94IZRthFnyKOJeDNEdG62e+EWI91BJPlnVmYmu9w4Ok+guZLCQntzEn5EGw1dMmqAxZZr4RTl1wcqF+3nvivR1Xz+vFUdabwGzF3xQqNLBgd0C62i3U5/Kb/nl97qi0jLCX2eF2pDpjX+sBMpa36qb3u70C0u8t23Vmz39rPl1F726+xoiWrnhUo7OAUev48O01NpxSiWULaGl0vcVBPz8/aQetjOFF0dEgo7EtuoMzplsQ+P0fB1ctLhfo1d52HyEynQdglDD9U4iY1W8TRgmmIRRuGxc46pby2fQPwaq2wTY9Ue8SIc/34+2DiwXHZ00XUnmDysi/9TqIqxvBtDLCMjS1uhPnop/hsUhBXdmJmvzSFsq6SBPH62pBwsQrtn7+0I1htlSteJo7STxfCOzgNUkju+n4UIpe8O9ptSEXhO/7SMVzIC+j3ygsriWYUQ+ZtYtSEdcG22++jEH5jD9pqxCpx88snFe/Dx0EFOiEW7eWuGKv6EEOqfD7EOEReL667dwTbMv4Svx2dGSKmKzS35I6hbD4Fl36/DthpOJBDuYrRv/0tS86OefjOasoVasFoPw903Vq3sFvtQw4/v9ywi8YvaGLbVQu+NyJavYJ7OPp6Yi0Xr3PBfC38hVMuYqo/btmD7MLYs4VKxhGe2loimziqEauehQNB3KtYtdWh4EG0jWA8JmfmqSUN2e4Tu/rfeg3EevutxkoJ+WRYLBgiGfHRbK6wtTijYtMpaDxWAUZWmXV4eUjGULBx4SCDfzpiLg3TFq9330JZNohOej/UQ73S58uhN0ey75dPNAIrIzh82RqPm2tXTybsVX0N2GUmHrt0KJLE0A0INlRfTmUo6Dvm6Jvtf1j87jchbiUekNFIAnNznnXmL8MI4d3BYBlTSiT+4vPu7FRmjOdB8Izu6B++Ed91X4jO60fP0+JEq89eC9nALgE8pvOCNtxHop+aFUXOF0qSemps0xkf9W2yWRFLLH62eARPA/7i3yn6oOboNbUwel5NNrJc97+FH1bwPWYZsefnHS5dfQID/A0hCzsKp6u06lCHvz6Wh9joG6z6GSxxuqF6uMnq8fNcGeDcKoYn9ZSFXWQZsr4t2ph43vIg5OHIMCIL44hXV+qnXHXOHA63pcVshdj2SFedCkfNWJLAkZ71pLZqDH94sul3llC0zZjpcu5XzGjssp9wMvlw7+MdXmcXmCVTMcBtOtTsGp5JTb/F2UAaPWUkzC91L4YtuSLoxIuuc27bvFREBO3IDbbrY10MU3Q00OeRjfiwDp1+2h/uLlpObsJmfBZUlr4SyN9HS2XuF2JqZW+APmcbgjdSF4qbm93h8m1uFPxY9CPB1wNqmQXEPRKzEOqXWfC5M/m/fDA/zz+8s1a+SL/L/tmg3qruzPw2KORa+XT0beKt2Na35lsK+mcD5+CwYftb6RVcUbUc/Ik2VE9uij1gpI2IaT3HzbDh4Tdo1hrAaRuxYM139XgosAXzvzP3pVYh/+6wC25zGfBSD9p0cjWt0zRvoWNJYgKNqjGXJKf52PUxTNFo+muKHoT0xDiYF3syMiTDIE8WMW7h0maK1jfas2I7Et3svPjb3+CnT052TdXW0tkCima8wbz/BYJ2m+kEyeESEfJ4PARXr3GpSwv3TcIpt8S0eP0yONXpOOPtox/Wr+KO+LZCDIdKKsRrbjsfV31D8OH1scXy7uWIbxYD/of/kc0tOIUbnxnXpEgV43rCsHoElOzm+KS4JC3K+4GR8NmkNb+xxIHLXVdZVKwPNqvlEusvhAhFcXtPJ3K/XxHfs5rtPsWQ8nsyRhCcOoc4rlqLUQ70UZvjDS9ULxBM26gZQufPlrjP6Y3Gz6vtELqzD57an5L+8ZF19HgaJOwsp5huv1YF7UINEixA9OIBmQGn6f5iDo6tlJduhDUvcXJm29dH8btfXydEHwmjad9Uf/n1ALcyyYkRNHEvxhWeG43YHjc7pUJiQy4tWDWs2ePycXpe24alqxKvqE6e33T4Wp9S+3h4i4Ftnohzv+sgHoOW/ONfUkBe6FWblMr4ndm0t3cDuqkPc35fUjh+XmWrf6ylQTa5swx/d5zmqB+uPiMJacLxw9cNJF96x+vh/kNclV2O6PK7ILv57//mfK5R0wPKvX2dzvxLQwh2TxYxoYSUlQjgUlLAcn7xCn766gHsTvAmt+6shWKLYhluJIpZFA2vgj5XXgN/+GzvLDl99+R9B/P6PJANGbmYlresRY8YGCNy/6vpfv07gF5pNjEa2+jZJd9HYMbjnaLEN1NxXR4i/dyxA35F4+O//V1mecqig1Mh8dZGDrXX9bS3s1fKs6rN4HmCEzuzzbtuT49Tg9yLjhh2LKtWtP1tQDG8Mqzm67CXRydxwGmyPSHe2Kd/7/MPT4kh7q2YloqrQd76JdvOeCdulXZA4S+jzL6vSTHzhSv6vKhNfKs+i37mP0AW1vEPP9KpOIRYa6UTwYuZD05rdBmhPcnHmU/G86zadwmN37lsc6X/4QFYljoyu9n/xHi55jn6rMaIXY432n+VtA4gT1aYpZn8rnl5OPp/eEX1Pr6hYVcYJ3C+i5KZtrft+Zj0FpSkmpiPz54tS5VxgjbPXmSj9cdwOj0JRyQkW9xYdtrzbFwfQLzQgk5e1iMaxXuuS37ukGh5VdAQmF0Ldy4QcbxmbQ/2Yp3ApEwq2YUbtabHc9Eh79h+6ajJn4Iz5mig7F8eABpA5b8pgrFCo1R77t/6mfPeP2tqSRZFZngLmb9PJTGp8bJC7eXXYbmbW+Bq2zB0DwyHJKvUFMqppye4HGBDnK741GzO93okbS+UfdBYj+Nt38DLjShzhfmo6YzncKSxz/KqeQjxbJmshcW3J15VP8MuDp6gp0/fJuZ+yML22+xeUDWvCqPwroZMGDP+NWfErOQu0qsNmxaaWKbM4tGmpva5lNHf/gjcIu+5+XxGiDn6nljlcajHblsP8H6+J7ZrRzOU6TRWsE7i6z++9ZVo6eqLB7MYkdZuSBOevbTPy95ifWNhxFttKP/wgPm31br4ecN3gGKLv1TRV1XNHbVIINjxilnv7hlO389iRBJDE+WkevfjG9YA7yTpiXN6vmrxxNNLf5tRRfJv/A0n53kAtF0HAcHtPbDFoRjvUJJyoqJvqoLOfAK+xQrm72XWrXhzCn/8fhMis5iuWTGCJ/ya7Of8STe78q57v1WMk/IY9ePYLlQUOMgkuCkMe9iWqo/ez8/E3IuToDa5PB0dWfPFiLG5rydyP92Bmhsgzul0Cse7cjRQ+qIJ8b/ftudGu1ro/jteMaOZVogfxKpEcVEScsheuP9xZyMBBNmR7H5mnYoizmR4U/NJHI3f+ulpshwdFO1HJzml4R+fBNe64vli9SEch2k+gnPKLWIHrl9LT+sp/e0HEt/CZfj7hlftT18RV+Vve/xROsDT7B0qO65e0/b7AZiszZnYevKzO/Rad//46zrNnX7qyfsK9yQfiF9wVsz8lCJwZXd+H1wI0uoWZBfYs9t976ZKsNMyxCSMidFMRzTm4U2GPQoKSg8vzx7/4k+R8WPWK7t0uhTnBYjnmVEx87vV6UlGjRzcnpjBww/nfMmRNcg58X93LWTLUhgo5LZHInu5D9nv6Uegb/ItVRbUTX/vH22Q8jvoc36w54sd9ieI54zqeUtJjBu+SyDulCMdV0+OGN7cF0A/jzPxj2zTC/vU5EgzpAcLXz+GhJUcpX96cIoqbvc3N76jA38XxPvTm394fqiTI7Pn/fdNg9sA5iI+s0uc+v24tOkAMx6xIFD6dDoat9N65gNYsx8R4gnmJURtVrHEpnLKKc6vWm2UO3Lcbz79NPjZgIRTMob3t07QIE/8v/Uy55z7xer9uHX/9rvLfYR+5prGMOsnLJLoWgxP6ytrMsI92QTFveDK8XqCwSg++J6ccD315rXS2uoTkZn/FCJZMuef3q/KY1QLwa07oCLMWIQ+bipu9NGBZLuc/MU31/N1gma+SYL2/E5/yzWvIBfojJfmz+zZUvYDCBQ7JV6ilcWwPNSJft/WAbFXZie+Jlw02DyzDQvG9lOLWm4xZO+fz3yyuc58p1T1vdJExGbKq5/y6hDA4xuemGFjHo6GGEo4NPKLOdG4LLqRLHPtqSGJBCcHFV8l7X04142Mp6VhhkPymW9liFrln1/SrtwfhtMQ7vE0bo6CB3k+//72xKxMx3b3wu8TDE47Yj2MPzYXEcJICiEl7qYpe3pwNB+KLuZ4OZ3W4W/Wq/D1Fx/2h/f8xe1MN+PNi05nLS5E/CwTuNyXKi131b3g4fbYaPe7fKXX7facfme/CLaP6MFsc+Wmwn4tT+iq33bEeS9lIfZxTdcbdyopUvmz4G4Asrbe5tqMx03IReH4sNwUr5lvWEL2eX+HKCAUg1NUtrA+FUC0EzpVu/NNsOqZumDTxTDrO7sWyXQPAGtbA6ujbxdTe71ckd7cE7Y5kV0v1N3OB92HjKVMcXp22qsu/OX7oy9tClrbvqXR7fJGpff+2fOb3hvawt4npHRqV7TJh1vqxtbCf3zu88TTfGqS74mR3b5CYD9oUOE/GTHWul1PkrbJ/vYr20X5Lv3yo5XD+1JsqRT8VoVYJpWr68jp2BZvRnuSaOvAdy9tiV3il0018qrA117enz4X1MjfFqzoTaILkhtCFAMfwB4t+d9+mk7OTwW26UJixUOI2CJ8a9DEEmUk0ef4eI8SpM/ApvSYQMqP76GBu0NUKrjghfjdDy/YfgoPy5umrFm8CAIYydKhqX942v2h2+aAstimsvt4pdMm9yNwvvsGK8tPFw7usc7AEPGLZFq4s8ex70rY7fuU7Wb9PH2xUaH9pcgwOuoc8fBMS1SP6ysj7/hdDAMoLYSLu8I2az6lvKyoC6XbxyykadPP+peC5V6XrKi6jZAsZeWAvCkDkv35lWo7xnB92je8DrdVIV7vutWCKkPMmP3QibvrK7rh54ltZ34ucN+2IOj1Qj/7XC/+8fcZz/FkHiubB23tQp6WPjm+fw8kqPhS8LJ6wcxcvoeC5IOjm7cIk2M8zxn0bvcDene3hLh1dkejti4bTd+HBsHZ6lsI/mgXqH6sEnZ3xrOYxCVZoNwUGwoX3AruliZAcHlemLkihRDMDRMtSr2YPv/8wz8/dMcklzj9ISwm1WpeSDn6J6rw6IlmfsAhTjqKPzMfH+7K0QLZWcXEPclaOtw0owUyvd7EuJdpPUFia2BEa5925dJFHJdeh/7yLWb5uR5NraWazsmWuHW9S3l07yhaJcOCGTo/hqMmwwJMiQFd+6izxe/pYwjjxeIvv6KWb4xEV9acMlsMcijeW5MDKu89wYvg0Mv3+61EO+n+oL9nZvXzehpgznJPa3cZFYgoO0CzXiLkfInC8WzBgG4DDQh+2GYtz/GJ3kdJY6eZ38z+xBUS+2zj1cz3pvH6CLRZX9Pn7E9yVgr480PITg6/xSDe2jymIb0Tf2sl/ZxfY5TYR5v5mnGvR3sxJf/i5w+Phjf9WhALU2fJ3TvMfN7jqFpMW4Jlx0DcOawidIfDCS9/T68fX5dUg/3CHGf/LEhXi9PhCg9/9MhlcWzEZD5UC533iqDTiiDBtfLrwE3SOLP5okQie/4ATdPpQEzZf/RcWlTRetZjVDvpD5sbi9ABaUUcEsXPlWBHul/8w7d981gg+j4+S+1u9F9igPHrBTtcMTJ+yz3bYIWF3Os/MbzK4MKCy8dP//xKNPsBzPC6CjEdXyq0cJUn5bMekFXnPGqzH4v5PZlvFbhHFfz5txryKnukn/3iL54IfiE9FGadZ4jVwYbt5PWi/qd/uiG02Bwfgo/y1v3nZ/3F/3fGB3CruYhku7/it7j4LnzWp2I+xSv98WNpnb+aPcHJCffii5cxUvHFJeSD4ppvLhuuczh4zM56xR5T/1XBWxwkWrZLmg4baVTRpHOH4FARSFTP1NEPjfTCS8mwiu7QZhHYoyGzOFESId+TEcOz+u3Yrvjc/vDZham9c+bO9RBFLe4uRC85/eNf9bj8qjmkfShjde3laKq0/AVC28XsAcu1GJZfNUO1foyw+t6dxYxHd5Rk7ZHsnT1DYn+H9s/fYKTZbkOxvJMMvGjy8Cjnp36SF0eA3f6bsq3svGoeU8PQFHdZzfUFq17ZuiwjpVzvCJnrM+NQb3M4tingpdVsCqEoCsDV8zgLlNcq7JdkcUdWvV+S4CWpxT//dFmhO+aOCnX7p6dCbnpsg14q4tQwK1Q77pWEif8sxkcugn9+xLG4iJ6heonh29yfhFByFRNm8xGVlkrEuPdVOMXvpINT+7bwArJdOOtqA6xi3LPcyEYxsLW4ogUvCXNvpd2vpDAwtM1H+dLZr0+/mX5xwVwk5z9/LqTnXRH/W4/HzTTl/iupoKqNlG22v60tPkvzBDN/ZEQDNtejYkBP7EjM7866oPN+QZ2+C1m46jc2/XmnBB7KIWDZ61H14125GXBdaws8sI2J5JEo2Rp9TxHx1q8ypc9G7oDlSU2sR+im3JKCucV8EdFlG6WhVDhbB9XPZm4xfBj1pDzBBVt8NpTPfHl6jTmG4Oa1dOGgpuCnoeS6rHTXOV/diyEwqw6xyGOMROYOrdzz4QV//N6Qc7me7JffaHszmoi5bZx0yneeAeVrG+AhPJOet2RN4U/fKmzxTccPnxrkD0WK3912rAdfzy3QdX2JX4/yaosHxJae9tJI8NPtazau3BYS3hjEnfUWR2bx0ljtb2Z8uYvRW2/vcHyxH11ea1608u6Z66uELvDr/snm2fTbE4THyCPpMPq1iJIAEF32C+aZ9qd4Tfkb4JUrLp0uel6I5ithtEONTpXltah5kj9kzakki8TEMlOev3YH9Meft3RwZ32vlnAatvs//EjHb7NrQAoXKe6VW9T/DriJ//lFf/t3GGDZaeu7neDF5ov6GX8NuMonRt/b3zccYZAaaJuwoGpXRemfXwutdCAsyBIhvsbqSNE7cG2yXeKg/xUHO4LF42fRj1rikLX2ZQFKZvb4bz1fIvrmH39zb8eVTRvnBVAt7zbm28OvYDreV3ruuWe2O/O+HhvTanRRWd+5HmzWinzelfDHL8M6K2x+PKcdUs9xixfyPBikVQIftPdV+VfPVVbOYAFtgz1eV+pJTGoTtdpcL5zzf56Obw0fYIzyFdkl7aaWg8jE0AXFEqv+lorOil8daJpHqM4G2vP7/Vih1u+fzLZoF/JSQREi7c8mjxkvpWMVRPrNGkty87dhOOWLhfHPb/Amn9UTmvYZvKRxIi4em/5N4l0F5/vihldz/mEo26v/8MXRHL/gN03J0cynWIjfUtFeVEi0B9n1f/W9dPJ310jDz/2DbaQboJ9uawuQJXfH7JnPC1hHB7SwIaJV21D0j8++atoSsl3YSFGU5QLSNnlS/dCz/l+8px7OmOfufunsB7fIGZQV8deeJuZ6jYacvbtkUfw8oomY0KBRPpUs7KxXwd9e1vy/bilQ/3dLwVcPUuKvydLmt68awY2iFYuw+inG4apJcNN4RKwWLYqBHO8LmHghM+NWOUJczuZBL+PdnFJp3be36O3C8wJ7vLC+dSrG78cAi2xTQkJpPkUfTwmou2NKzMY0Ba3TvaUfQyZI1G7e/Q9ruQHbvZGwkxk+699rXXGUro2IPG67ZyGWQa8hGn5S5suzBJ8uxhXeBX7Q9c+uit+1KWK41ZsPHa6NXo/RNzgA10aTmcRJ0dSYKNMcE7vEafShEM55bPTLof2w8Lxp7GmTvh3IJ8kie5Jf+ymLyXV9VHctHvP3MxwPOaLoAqlDdvnBt6WVfT5BPs/y2/nv0R5O9BJAJ9kD/eHHOWWiQREcHrGLp3z9qoc2ugygaQ9Cvx0f7dGt59nHm8WW2aoppzTgrISkkCcW9TSvP4/9Ba8/ZoYYmaokHYffV9U+hpGx0zHYIvE9PUo4LNELq05e17/e/F3/nocuKToXwpDLA2jZxSWefLTqaRf3B/Brj9P6uen+SjCu9ricAqyZFOzv09qegK/PJ3xE8dy1354l2EXGm2VpeET84rcWPEn1xj9FwajbVG4GqfJ+Esd7XO0hqtsAqDy8yc0nXspR/8x1Uw5SZq3cM/rJLsTwnU4bFuLdJRT73HbRGMgKXoTy2eZ1ejGABtGIpeHZ2+O+lTLtulkcKNDjqufvpz3CXs03jNhftWD36+01l7Bruvb6rub3ixnokU0r4u/2tG9PtRNDvg+u9CMfq56qdSahfajGJAi/70KMhi9D/DHWWNvtHFtxD1KsZTfmkig3Xv3P8BsfxFsJiWG3IpwMnwaQjH+VRucnxLooVSid4sBs1O+Kibx8Dpm9L5hBNW5zbbJfCC9swozS19ETRRcD3lZ4Jp75mC1GQ9a088EoqfrUu2K8j1MDWiVzsl1MWSHaD34hO4jfzF0d+nqURuug47dFMF8cfv14R/oCiloLiZMeBjSOi9BCq7fL2E7aKYh12mDBfe5iNt16qr+7uD7Bcd2lbPtZDSlN2G8E9mp0vDgf9HA83yp3OX3z1XyR94B+ZcI0OLR7j/6qVZBOSm+MkPeNRyJ6XNXD9Xb1AdDmRPzT41V0yeuZoVE5DQxfo66Y8BIwnMRJI5b7jIqhcgGguNwfdDGqTTim8seH96IPKVLIB/2yje1A7tIRf6N12U+f8ojBMbcL4haTUyvXw8ZA4WADfrnXpeDt3bsjtYp6UsTSIRy/78sBKR/vgvWLfivYpdoM+subIbtkZi/s9uHDRkQj2TyNm2B2e/ahhu6Jp31PBV/KDxnlk2yxYDx865d5vxzQ4IcLFo3NB3F3/5hLgocnHQ+dIsTDjQ5of9pLeP27zLMMv98G2TLPsboC3vOxZBooGztmTvJZp+L0eJzQ6i5JZIcfSsGOq8nVh/3OI1vnDOm/+JDL7Zpt0KcSoz+1snawi5E4pDv238LCHKbJTImNjk49kW+1gOgTYiqa5dSPwDuO5DIyGZ6QlXK+zCP0u1FExTFe16/YGTPAnJjEILdaDF6yqOARbWJG7JTU8gUHWGM2OtMK/Xj9W8y3KdwyarPt4xDY0+a+BvA6QXEf3/uU58NggJi+OZWMtZ1Kv3Pc6m7memwbJO+eNoFWoUFLCJY8uRHjOblFqHPDA9sYMtgjvw6qxsvDiZgLIwjpe4hb/YbjM9UdlAmx0rIOvRLtSrCy+tZTaKkN8sfTgNV1s0UCt+EI90E+4qd07Wsq6lMM76zYY2oth/BnpMKAiJQjubdnG8lpyg+wul33LNo/rII/46r9iy+qVqkIOV8mWJ/xk/lzPNLbvT+g47kJGG7PNRLzfkFJIU0sDLSo56K+x9A8DhOmMX0V3H8BR8b5dWRWLt+KMVwWDUK3hc18def8Ww/42YDJdnnvkUBSW4F8OHbMF4OVcofrdzhJvxtLP0ctHavoHEDjrN35fW7qcbTfCdyluyC7KyY9X8mCIiNkCywX+Rr9vOFFwao6/y//Fr/k6dzRnK8Jfl8W9r/nvbbWjWyK2zPk2Vdv4b43PHIenbhWcmN0YMYjDDAuC6FkWqUpRRrQSXIrNC1/3whNrZGQe3XV0nGz/JYQrmMZa3O8lMtXNZ/CVS2WPeOTYMZ7ncBmH3wIqb22nmTETuv7410wL9LD8PeUIQfT3wm8j7w4XbWBvUBNEhhkF0YBkkhZy3CaFmfiuKKrBd+JBrz9SJlRPvya901bImdnHEhk/XaCK8Ee68P29WWHlfVLuSKUDPiv9si2+pxqvjRfIxSMXsgmTT7zqe8Qo8vO2BLX8d+pkIrmgLS1O+Bp7pR/6++sQ9gCFy9zIKE4jm4GpqvEZKd5y5Br8puvgmVDGNlncf/zQ7eByQ4QHrUsC/kpXhiapt0I7eBh2+J7Olco/+Qn4gyhlU5tjgw43Zwl1h7JC4l+tZXQ0hkbdgkWSvjbflUN4ut7R7zQrnthzbM1keX9MNMNteB0ly8A3daIbBY7JESyPRhIubsZ2yw0Uvw9j6ZzQ2Fbc6qLUTX6EvaVH5LiXGDErdFztQBrXxaFePzLvxbM+xejtVyh6XiPW8gnodEJ2W4xFTBU8Kh/lAVnL0ylUx3F/9YTyHhENFllVwhX3oZYH1NGo3CLVgsVNSUXOT6FU/KM7kjvssu/9/erg72m74LOmrtmWzQm3in++/6Yc9mrVw6bu9iDy8jmfJiy44izPzwlfhquxPfrfDm4+WpHDBZrgv6kNNbbLV0QzA6fQiAtGMBd7NfMGcKqmBrYB3p2+7kkgvGRimj7nbu0lyWzF+1k0zTVDnDfWx5dXCthj07zVNFvCluMwE3DccSaj5LYqJmbxlYq3/3E0YRwNsRfN1uhLAbLQvbqzCi/B6EQTtQPiI2XiLgPZwqndHMxwHkqL7zIEwuJkiED1O22os1C7WwuE5GhOR9RdY6fcao8B33weyB4n6/Q0OHlC2lZ4TK7SRY219ufC1chDSQ45WfB7UdbQdDUHv0u770Qq83NQV7gx6x43dKe7vchQGxtK2YnnVELRFcyWlvqntlqZoZKRCIf7XexoLL57NJ/3wtOZInpNQpSauPpCi1tjiRyFvNsxOWgok9+QVgkndHzi7U66fP+pBC+MjFc26cBUgk3kkyiL35l8tE05dr/6DLub7bA5yuFJi1rqn6UqR/7RQxQfVWOX+jb2mwzjliXIm9DV9+qCunu1UiolSPBtsexny86Vzhax56NpfQQCb64tQOsv/P+HtufPR1qLv/pGfzemcf+VzsMA/kdEqoYfF/PfLsCUVweuCrqcZZg2hU+UEUs+OPDdLFuYGQUk/CaaCG74kqCbnU/Y/UZy2L+fQmNAzLoWOx5P/EeR6jypC97WA3Yo/RIY/BUq2Xecm3aw7gIDbRfjy1VAuNT8BcoEboriYnhGktCXA8bCxLuDgzrl7YY3mRXoZ1a5oxYeiPo1r53kLvDSAhLqnD8VBUAl5uYBGPHi24fPkd9xmd2/z/SrqRbWRiJ/iAWAiIplsg8SRSc3g4UmURkSID8+j749bJ3vX/HR6Zb995Kqnzx5rPSkQcQt3wW1pda0RlrUAgGnHAoF5KCFkPKHVj5FNlsmZGK3vIp0eka8+H2pfWM2Tt1Uq7sLOPTuY0q+i3qO7oVOMLaJc7ZLNz663qRcsL+YTVbrteWwPUlHcgu44qYrvoKBF1tcHDTVUbCs3pUcNAO+CQPacWKl87BUyki6tZl7k+5u4tgjR/4Fw96jdUqwCHkqOUOOpq75/cO3ZCG4cJPWG+HxyKuVcN87MFL9/ngKTzggjTxx5cq+lJLT/mo2p3cLrzoz2UvaeBV0x6v8xv37VbowHxNOk6nyIinrA8l1IxciFX1YiEh20kEinvRULs/mKnYN20Jx+dmomHS9v30KTsO+WTrkdnNhZgVLx9+/BPbV19FW7M/lCDjxMTu/Wb1VAIxV+gDXkQqPkW18k3+pxfDOdpv+0Hly1ru4iTE7j6R+ja4x0fFj1XAVrCZ0mkKF++nx8P+byj0ea98B/id73N8HtjEhLr86SlyENfGSTW5yKB70Zvuk3LH3qeZlb/9T12vJfGQifECVfX5IzBuAsZPnK7CuZHrcK4Si83mH45Q1rY13a/xf/jpk+UWH8INdtR04rvWgRUf6UG2X/pkZ/4dVv0Q8vdSQ/OGO0ag269byHNNz5bsABFwanumyXh7o+F8+StBOiszVr9X1jPe20RIdDmLOr3H6fTmWgb64gPDNiN2NV08o4Ou13oavpPcny+HbwPd8aPSEHvvip5PQw1kOO5oVolFuhwLpsL7sHkTIT8P8VJ4Gw4lLHiTZdWjH08MHoAv/UhNUa/j6W7fRbn/5Dl+3b5aL1A2EOQ9S4tsaOuheb/dqvKzLiOqXvZaz+vAPAXZxCUzfefxjz/KH2QXIadtAp194l0HKx7gNXOuT56hiPL78dawdtvt+iFxRQKasu/xIRQ1XzxeiQMbkafUI0mpf9f/D1U4ufR5YG/EFucvgT/JjLF32Ak9c58GL/dYkAmQPkuHt1td4RN+BiL5N1v/Pnol+6d3D4/6Ho8rXgHVSj6cnqWBmHvrWpTw77WX9M3W6feaa8r9fanJbFVzP4/vGZQNvy+o9uR1fUyqQUaNdfqGzHIe6XTdXUrguLInX9PAiH6cYfqnRzXufOiXMN5M0G8cBXsvTkw/g5OJ6IWSeMU3J/3xNdhl5EWEBn30ib71BFgWjnSvfDfxcNA87YcP2K1LVedfOM3grzoav+/xh58eLuqLgA9TXVb/9PrxK9r08H6YMTHXJwy/+K/ddn/9yi8iwEE3YFP1vGra1KWByq+8EGFwUr2f48sE142/9pqWOjYX81oFZecV4e7mHiuWTg6Ab4cjDXYM9ZN9L0JIZVOh2NmSuPmY96s8nNULVWe/jmfiihpMwSHBVrbn0RLV3wSZr0UnYJ5bNH/yZwgr/8L4kY9o/uENF2Rr4eiFR4RFnxA4jFuCVvE9m6EmI/ekRdRf+dkQHVQAzt9vqVPXZsy+11Zbn/g02C2Q6f/zJ2z7ouFu5QdjuIEA3bavIGSF6cVL6KAEpXT4w0kg/sWL67pn8Ic9YF2YLX+N52f4jeefH+c70YTyI66otoh2vx2XQwn117uGH8PK9R4HmEfr+Qyn3Hkiqor5VVHTycIxutT9yscTuIiCSbVv5OpTyslHyGyOoyrvOP4gWeYAt8Pyxob12KDlvBWvSHbZN2RRLKCl8LYAB2KRUO4mj20X53RH1l48/Iuv8zJNMupTcsL4pNnon376JJlO/es9qro0BQ4aK/7+d/xKOxrwTIyGyHvy8GnpLAMYB+2MV7xbj9t0V4I/eNDzJTzHLDzJJZxymuNDTU+/7zuDsG91evtzjGq5DLu1MHUj0+Cddf2gA/Lgb/cS6f7bbf1lr3IhdA5XUvU0nnXxwUMN9w3D4bYT5Yr9lSb5xx88o3+h5UDRgPDNuBNuKlA6H+PToFT74khE22xX/atPsH18RyLmLUbLvU4z6JUpoWqUfKqFRTRE7YuTsGMkejWnkSKCNwGj6SNK/GmH3KNyNR8lPn++T8a+xXBHbjzfCcGe2bfp7m6A7Ifn9XxpPWuXOJMzq07pfc+cnoxkZ8G2fQF1/UvB5q4dJ7T6cdT7I1bMvP3fHaFmYxB0vS/9P/3bOueUbCWE+vIb+9bP36EWVxY/fu6ABO2VvqrnHM8/Pbv9Sh9sFjenp7ZhBiCTXg250Hbj7ZuOxk9PEHm8mUyYbrsjog/uRb3wmMfsbLUB2sR3HSdXg/pjhXkLqPJWcEB6Lp19xRQh3FcpQVNUx8M8xgA6U4JQwNxOH1JuiRTpvJlpWLkjWn78s8eyhld8SYUyVQGBqh0I6+Jcn263bQI/PirfbD9FeK8/0GMIQnxWd1U6HY0p+bdf9ziB6k1wS+QmclR6uxZuRbMruoM9NkC2vl5V9OcPsDprCYBxQFPxDEP5/Tfz4bKeny+/2z8gVL1//l7P7J2zIDGgQdgT8q4m5PAWmAMnkOW221ULd+M0NDguR++aO6dLVBfJz8/B/mE7xUt6lGp4ce4fNpZ0SZmyVpn74dEeJ49qUq4ND1xtqr/xxGs8PyKk53dqIqWvSvQWCXL5jKMaUjf+ctb1CMR7lYa7ok5S5nebBq1+D8WTwLH5sfWuaJJGjPXh8KmGnjtyaMUfMjf7As354UDAFlsTX1GNero5WhY8hjCkq95Dq96L0AsWkTq++ohZ8VdM8o+fGcuMVj/61iFd8pSQ//FfYbOIYAqKSMPtK0dUzM4ErfoiZIIRVXW7D0Tg0PikZqbL/kS6sQGkl3ca/H3/2MyFogTr31PjXpbsp+dBq9Ueq+E0xVQCLkeebqV41VP6wj1zAoeL3oTc35umQ9x3C1rr6+NA18V+PqRTAKt/SIMJpqpjX5VTVj5KnTGd4tnxw0bm1G5tDJh9dRqe5Pyff7lfytpfFtI7sD8bHlFu6q6fjoZ0h9emMajmpDETDX1ofnqPQE+Sfrk8NOm3flR9+rIvPLbaVTHufIVVPfLiOck8gmwTXmHrnTvWXrygBd2RtX/5jCmeA26ns01ABK5uquFUJSESdK3B637ul/vaoebky0d6SM6tP6PgpCrr95NJpiUam4MTSZSFCfVvKWGTd6nlX35i9cuUmDWdJv3mG6tuMLPh81QXhc+5J5maP4xGzn0MUHG6Qfiz1PfU77YN3L/FBatRYvcTjGoNW/4cYwuhJp4whglVZSiGnWZaiF3fngbodW2w6ZKvPwq36gp/Y/+h9sjn6Rwsbga65CjY4opXzNIaLNTy4hHb3iChwtem5l8815X3GU3f6TKA+/o0VMXWzq/c4DlBu9P2WEWm329/++1owERI+Fz81b+qUT2eNvjHl8fGftYIaGzTf+u7+sO7QkUuDUv29mmTcRr6KDKlhkBztGw3QbSbDq1Jz4Nfxu8+kM9gdu7nn79Inl9K5FUfUUfcEDT5fDiAYKTuP744kel4hNcNvULxzhf+7PhWDbpwoVhLcr6aT7CR0T+8GTcB4n/6Uj/mOcln30h/fgQ0rrXFe1AOjA1/Bxn4az5TQyAZYrI3i8pm6bhwBuWAfvk6Ofr0KlWdPE/nzBAcVJ+eM7W/LIvpEFdEViz0DvfmNteX76GVYPcZc3zYzeIv3hFwraahvqm+4zlKywhodtHwj6/ODCfLT0+HSzS82fzHpxyK2BNj3HOsIuf1JrR0TR7YealWJbjyLUMXB0Z6+XBV3O9d5QornlLzOc4p9ZOTpoxLHYegJ0XM9GeyQFHfBGxkj06fUfCnQWSEZ2qtfitVYGegX3zU0Lj0o9BGyb/1WvOlMeuFvQiN90qw3kSZT4T5lKPXpjZoNqMyndFTNZRfvuCTA0tpPLYlPJ7NTLpCejI2ZFINGbOOK1/t+hFnVwOswnTCDUHbdIbpqcKwfe1Dhi5GP8m1pIFNlBc21/jF8u7Oo3vrLaTQmwObn5chkIMHLcOf37uujwSXOPnDmtyJcb+9LzkoGuVDedVnbFSi5F++QEP7Qp82f5cAjWru/fi4zxKh9375ICKt8zvo2yOnrPkkGhwXwth9gQnky1sK+U8s6It18zTEpmhLJmWwevFZH3KwJbUNi3P0RZPFP7pfvmHNJ4JO0MVu5Q/kwarHG9aPWzrAdnJKnJmNrQsrXoH9/fOxXXwbtvq3VzguayPTFR+nv7fcoe1X/lAs63w/66Z8BdPNXaw6uZoK0gtJCiaDgBOib9Ph5zcr/QREQIpfTWPgL2jNB5JPf3jHH2y9O5ii1wU7a36HPUejRf6YfX7xDI2rv42KchNRFb5evGwNsjZa507ULcJTxaqlSJTHN1XxvhlZPOxqWsJEh5CU+WwxPoYTLyOhKciSHlp/EqVIgkk2F2ygzYSmNzZLkOJPSDj5YfQ//xb0Dnxq3e1DtSRbSfrnt/zFr13cS4OdAb/bPKmz+mvLig/IvQQ6zbRI+qe3/68rBbv/faVAkYcT3c+3SWdsdlpI0dTT140/p7xijSoqevwMi8hpeqIvRxl8/XOm/rJvfQKYqvCOdI86/evkT995E+3+uv4S3rdOxubDUVvQe+xPBIxqRsst3jToFIkckbi9jLqufR/RK2ru4SadtXRYhF0Lx763qGtIHpuG8BnBaMkLNutdmY7Xwm5g+haEBvsvRZOoTh6wncbCJX1d0uUv2tWQnBaB7GyBq5jf7Y+K594vBOWnR9zd40eDTJTMhHGHGU0RH3jQIPlIg7tjV8vfXjCgiFcJpH1VxJu2cUfJ1+eJyEGH2GmyOwh2noydunbjbbEbEwjlc0tkzvbY7JpPEQl2JpPhhPuKdgMsYJ4Njxq3dpv2luZK6GVrLda3F8RG3ro5IOimhtVTiauFPUIH9Iz29GC6DqMZ0TkkjmoecuMo6JNddWf42PmdZnxz8pcZT4GSbfEULpqms+Venwzlae4iGhjVzKiH5CMMhuvjw2wuev/lNhFy4ulGbb5fdLZobQDtqf5Q43N8+TXpryGEsTdTB7t6L86bgyMRt97TU/eSfXIMRwL7MT2QKWqKiuWPhEOniISh8BGv/lLx3zv66PERmzmc46nT7iJkL+QQvvhzY1Fw2xYkoW+o9sb7dLnVYEFpNWa4CTWoJmE/tJCcJgEHRukzlhEd0H48Pqn/jrWU91TnDDFtUqKUpRaP7Z0/w0C7kgan46laxxPCZksx3q+Wz5yfDw/I0NWhriqL6CsTU4V+2MSk5+iIpmYbXeETOzmZQy+q2Gl/WV+1QIpvcp6yKeIvLfRtz/ChveRxNZ07AuL+u8Ne39j6JHdYkyvTAazVwSVd8LwnCoG7uo6viIeosluEpYXidf1jpkRTrtQyKbFxHnE10ydPINnv3iThL0wfs62RwfWV3kOxTu1UuIeoBt6RdQJqvWUz+wYtZHTtiCXojT9p3UaGjA7qb7wVY3PiyLkUEXp4tWoqbpuiloVY67C3vHR/ehjbHDpB4EPheJR74ropj7C0e4UT+pRoCmUt3LSWibHLL63+XeTBA+/ILmTR9C8b7Kq8wlVeVByeY6Gfnpc/FWpb9EN+sb76YAnxWe4Hsfo334x73TiQY+lN9fDUVqy6kgSVu5Kn7rwL/MkSXB4cerboc8uNjHWct4DzKkKsFt4tptnmjwMZOTzGvH3Uha81i4jbrVcCLrFViet+A0PqPWwQN/VHQh8hwJDIq+Sr0yWlhaos+vNA7U46+1OeLw8wpK8Xcvy714d+1qbfelNnxat1/3XSyXYyekbywJi1lxL0IcuHDD39+ms7LAm+R3st9/NYK2MCa5CWa2a42UceY+dgbJEiVkXY5ydIJwJugPrTkafX7KPH25hMHlx7UyLw5G7xUlWD/G89+ecDxct0FAP5q2KRSP3zrc9Jz+eQrYUcn0V2TOctay04RVOD1XPyrpbDggnanayGLNNO8Oev7Z/hWVwjwnJeSqk9HUVgV8sIF6Xh2VJYygMZLZPDXW2F8fIh6lU5IKmge+QzNgebGwFH3IqE8XfHH/ynMEHYFRPe37hrunDDh0Mysh54f9Haaon6i4cKpF2IkjRJPH/tM6/oug9E4n1f//0+sLFI8d4LuGpOk4sGjhN+KN7HRybqx5uExMt0IkpWk5Tt/hwDfKrF1NofL4xd5b9G3hVaSAS/CCsmKAcLbRB3C/O3bcajstsCKkdpoDhlJKVDIh9BjQNM5o1ToPnTeWe0eyABW7xx8afHBVT4dJ8t9aK1CkhMUwctNrnQw2wEPu/sXyL8yY8DvWbtN2Upk0pgyjWmZkcXf4LbtwR7YB/q+nPTL3zaO/DeeV+sGfBGUzmMCWR9daTOYa2CwrUWB0qcJ2ROwYtnq92KYL7Q34p3j36x04+IbiOzqZ1G93iJe7+D/nQJaJyq53gGP9RQKcRD+DfxvD75RD7K+UMg2HmSV0xvsmOgc3bosIF2DWL5Y5/BGOUyNtHjhIbzEbXyNW5cvJ/voj7/8MTvmB/uwoH0cx53D3jY5xRnL8+MF+miWXAfPJEePrHsDzkeHsCKIcDuCJw/f7pUROv84HgsJL1jo9bCZtttqX4IoRpOZjXAOar89RV0q3fLuPUQGT4Odg+fa7+0D/m8Wzr6CC+13KaD/mfJ8DWKK+EVemWC6ccyHAymYau/fH32OJ1LcF5ViA1+89bbjIXZPz4xb1wb/Yt/fwQErCovjjGo18KiRnWlOBundHw6SS5d2tMOqwar2FzO1h2GrV5ii9epzoxzkEAtdx62BMfWt2tkgQdpOmxf0rIiM5ZC+JPLN7b5r+VPk/MKgHuytRyOWvqfYjfed2t8WwvRb/xxI7UZbPLzcd1Pgz9Xr8sdHHq1MD6ie98PHo7Quh/wkSs9tCiKAigpOjNkhdSlv/VAeiQa1DSahg3o62pI274eIcoSK6V9+oxAjvlDOGXhN12u4mihV6fTEMjX12fXNM4g2FcP+ycS9EOB9w/pKn6O1FhM3Rc3fQFgtLOMjb3NEFPdA4cUebun5tyU/vIMSg0qCHWq7dUn6gQ3bxWJrLduqd3ow3SXCLxsUyXzPrWYwLdHBy5D9iXo+D1Xy+vLPyAy6zcOuFOE5tfb5ZBFwgnjohniYY/4uxQ994DdJ87i4VzuW5Cy9BoWUqj6W1OL72BcOj0EKdV14YdnyXiuKZbMWp+uI1/DgI4d3nevRP+2d7jCm9/saKDWN0YMzEuKQLp57b1XoznknADYaampOoqzP33O3BUKej+EiqBbuiCYZYtMdNyvVVBaf47cewDecDHoYcsdEP0U8RUl0lpVYyue1qpEmgql9hrpD/+mOill2O+FDB+QYjOer9UOubvKpFr6EtJ+23v1v/h8MEwRsZ3j14BGYNjhg1kfs7eYofnYh2Tuy0af7zirkZT9XUMu9fuYhdY0yenxdMbOc2Bx9/UjHir3bmAtfV3iJQLHQ8l4B2ztjwKb7ZvFo+fpqWGczmW84guP0Mgxqk7Lxmf6u5JgS/kX3dNC9dtX8Xyg90lOaNjxO39iQu7Aixy32Dydg2oy7qoM5tY8EZ5bSjaeL7oDVxq1WOPFyme7ra3Bit/hJhu8lPztq0ZZ7GUkHMoj1AsHyUGjJSa/9U6nUilkeHGejf/ph3lz8OAOmkUdZAZISGBW4fQfAAAA//+kXUmXsjAW/UEsRAQSlswzCQKi7kQRBREZEiC/vg/19bJ3vaxTZYHJG+69L3mvjxSs8cdkw6cVUrhpUAnntKeazK9XCB/HS//n/0yoa+ECpvK4UHsJJINebNpAQew7HFBbNeYuK3JYHc0D/rOPqQUgh5Z716l+uynplLVHH8rCISPSFl/J/PqFMBq1I9X4ODQWg3g3uFiGvVX0M7ZMiTfD7X2wi6ylJnxx7IAoyQTrXN+CJVjFBCLj+KIXK/+waYv34EXLD8VHrqk/XIc4YE7OjaIveBh0w5vgY+c9eWSzXx+K2npDOmiYepqig8WWrjlkPBuoxWVftiDuSoAkPj5oJrIRLD5rZpDpP4DAuYEp/b6KDAraIFGrUuRiLr6TCgNnNhEknWXsi8FVoUXnH3YzxRmE7mHwUJXfAtploj3wi/Me/56/4fVfuiyhMcoXL3RwIk8i+wnW1ZWE48vDzrHk6wlNhEh28j7i6DyVBdsjb6PcPqWqQ4//+BesvZuJVrTQmuEUjX/2gm+x8agZq76unMD5Tr3LQ61HvnF7OJzaDAeA/zB6nHH/l++JEkny8NGO7h0KkylSn7ywMafs5cuHDF2wDzAP2CTm4T+8+ou+Qk2duc8hIr2LjWaxCz4nzwaGvLQSbumNYNFUg4OZPgCsB3utXuZwk0yS8k1teQfBcsqWHn54RaJ448Nb/rjB6nQ7o0W9yGDtuymWeCCs2H58lHR9gKkEW37A3isMC0HNwxKeTuENq42RFuwRd6qy8TnqJ4FW7x/uqEJYdQa++xdQkxJsJQ3ZTjHim0/Ql/IMlRTvAfZvgBVjaVS6fNKMHrvb+GcyfucZnvXoQm8n2xtW//Be4dsme2qgNBvoc1rv8FQJb6q+3CGdf4aVQ/+kPrAqNwIYfdXN//yNBsfJroXv45RBgX+KiMvSU81Ood+D5nmSaVDe2uJnBpwMgTSkSNg7r4Bqh50ISjpfqG9ePbAmQ9vBmwY+aBmaNZg/3l0GPbndCdy/XsYSFzcCs/1TprYiimwqhkEH1vCRqJtBbRBgddPhPYE1PX/0JmUbf5Yjc9Fx9Hjm6XpJDROepQLTv/VhKdV6hQejTvPzzIo/fAce4nSkOW/ggP24QwKuRH6Q4ThWwyyGsP3Lb4Rkx1+9gPtOhb0OLKoHh6n+h48umYCx2ZwOxSKTSAWpaZnUd3JlmPlE7oAmcgq1Xju1EKLMXQEcnwnWltw3FjyuSNnFT5U6Ju3AWMVOCbWfNSF+wy+LzIn6P/6kg8UHvA56GYLkauJw/9KC/QeGPFT63YK40orSzf8zYPRpQVF2/A3kT78Ak1zgsB8OAZNco4G70XJowMtmMOPuTeAs5S32VDkHbF32LkhGgUfVwn+MFem/GDb9PsFqMH2GxfJFEZpaPaDdPtADMkhxomzxjMTFaSrW7Kq5ynt/HGmIclrPf/jY2O8Aqg+nArATOLeQS5wjtkotTOfFOYaKSOIW38TkFSxmIIjw6owt9nehzvYyN+sK45cBb/bCCK7yEVggu2ItwH296isTgZiQjcGb+jD+6TPcS/SwDmaT7VsQ58r8qwlZtHsIyGQus/KHp5uNX4+m85CBSkRCrUv4rtn9GOiQr9DwZ//FvA3CAaFkvjE20YWtMbqHEB8bkbzKvV3Ms3sO4SzdOGoo3o7NnCVWMKawxdrQrMaP810Vqk73pGbA1cNiyRb/h+fJHhQD62F1U8Fkiyu1z4uU0q6acxA+hjf5zXs5WPr9PoHDKALqiF218V9NUKCo6WjTj8B8z6M33I3Bc+PbHpjEIzVBTsMYB7zcBExyVhuepfiJLae+DZ/5sV1ReVIerVxvA4aaA4HuEORY5aeXMd9PvAozYsq4R1iq+0e4zRbe8K++KI4xm5fb5S8/4OOZEwoSP9/hn76FmPmMwWxcbRFu8Y16EyyNGUnzCMTeEajBhcOGr1SkGFsxPsfad+jfe/Mf3iVDNIt1j2cRQSpMFNuv16eYbyLQwTKeJuovxWIshGahJFllSVWT/4HVb3czsG3RI7LsQ7Ao0o4D7yRXsBYchYG0hOflB5Q1qpG7ayy5cXMlg5QBjTJqDrO5IcKzfXHx8dtyQb9OmQ8vJrfb8Pkz2Pia/6cfUbu5R8W0z+dOWel2ZIvEi9GDaq+C4JkyVEY3qR5P8duFssEp1OfcGVDz48rAe7s2TuL2Wi8P11P/xVsVdB37x191QBqK3qZTUL9XVvDkXIcm3DAC5kNjBdqUPMiy8eG1rosLPFnxShbyIMb4h08dq75QdImNYe90RgbYdBvQtl8BOwWSCydp8ajGWSdGKFMJ3Hm2itHuUYFlfhxHeJueGRqXevrDT6FsS1KM1Wf6SllcLyP4098cfkgCltCmU3bfww4H8pyyNXdiX3bE85m0EcTDor6XEljDV0Lp8hyNTjlfVFjfa0BRtaPpz/JnGT6Ot546W+P/STte4b/9Db9rYcxiqTcg5MFKXXJlAbHwUYZ/ePu/+u7zuMqpGdypPnGR8cd/5Wsa5/Syjw2DF+bIhp+XoGO8IN4g10RqQX3SQxoNCW+smx4J2irxyOFlw5QQloRQH6TxL17WrNwdOfDsNbrpd2pKtnwNqGtX2FGuZ0YSOLh/74e+8ygGC+t+HbwpSUi3eGwsfBf7ECi8QQSsasNqrBcZfo1TR31S/QJ2TFSihEch/ccX5/Pk2n96EVaLzCnE8enGcM+9NRzuTiZYdwO7w3F4rETiPh/GekVKgCqXJY0ika8XeVeoUDuOhPzxyzl8aInyEiSFSI17K+Z+ucf/8CrxX496tZU1A9qR2dgKXmjg38pP3LiAiyZH5WoiZWIL/QxaRHF1kwlgkSq5jheTXl4/rWB6a8t/9oaNi6EOv85pc+CLRoMAR76AXa1fC1TC59S2IoPt8/XRgBrGBS6X4Rd8Io4nsI0vEsZu0LKJ/cwOSkefo67of4LViM8yPOoKQcrmn2vayy44PMUDdc9ykc5HK0HQlTmEXubJZf1wfsbAm3YnsvrraaCbXvhP/2SHU8GYkvoqIONQEeAf4DB51kmAbrqe6RZf0uXobUw0y57UOqVtPYsRssGs9DbizkhJ2Y/LYvCnr2vAj8B6/lgN9Owmp4668Gz7uYX1/QWoUbGkWO+l94ZH8rRIaf40Nj1cTYUb36LBubmn8y55cpBJTkDEpvmla2Q8ZjiaNkNwmGlAqyAvYSM8b9ghez1YvtdzBv7wnb3pS3OvxwIksaLhIGvf9fjiTBn8QGUhoaBTuni5y//pw9hUaA56sCyV8kyaC9ZAeGW/tv9kIKDmQNHxMm16EuWhmIyHf/ya53jAyXfnxmi0eo3BFsMIodIrC3XiKxwO3PzhlCjrEkTIGhlCu1tyYHOminE5NMXCScEdbvwKm0zh2NqFOIcb36CbvdWL+FZbcBnTFs1cHYMN/97BQ6RHavGVGWz5XlUWyyknMTE+w5/eAK+E29NQ+9aM/OQ8gZ+plbb6yDllb3EWFctEMta/ziNgD9XejsCGOzQEcjf0K/d2FaYpI0Zzp/zVPxDsju0XR5bXgbFk9l3KZXn+4/+MtasswPdvgtjFXj2w74vLYS+rDXXIAQV0vK0JfAlAIdw0nQIiGdCGDTVvSNZe6ab/zjfwEDsJe+9jk7Jzt9rQhyjDbgZfw1e6qiaUjlFO9qdErZfv9Zn9+//+9HgEy9EDaBvcscNmkw7FQug9hJfx2OKwkp7F/HEXEcrPr0mmVzmnrHi/33+/p9v+grnL0gzuMuKS3aYfLZenaMMgvTd/+1ePngp5aDhJRuBTM4olO907qDqNQ8Nm76SrhY+icshcFV+QtWx6p9cD25Y9pFCsB4fwGq6Avxsy1pA31rNxRbL8md4vapSKXuytwL9AIDUAGxV/SX/qkYdglQcT6/J0YdMfH9jiD5HX7crMroQcnBP7TP3XahSz3mciTEYppI+tfrKA6fIG6zMYUV9KTrr0+2GGnn5taXTYMTaN9StRKquk2OFKDOYdH3PwB5oHPe5cjQ3OcxJgckwtsgTxXP/pwxDYK0SrpiqMjYWxwuhAF8IX32PKyOE3wk0/xUGD/HS//nIfbvZOk/JyTJdT1v3T42l4xMPAIiddlfIpuWSngJStsHLf8Ln/PrFXXLqUCjBu/sUb9JWWYMHFfoTOKYvJq+nnghbHQwU6xc8JvDhaPbykzwX+6Y/6hhfGQrzo0IHNk2a+fBzWyAhjOFj9SDe9IphXIXDBdnkB28WkpfvcuPng9uosrEYNGH5/63WxtDOxI2U/zAcaN0CyKmHD89Yw7+qshD93LTf/51Lmw2D+sweyX76ucXDmiwCNchqof7K9eiXvbwgnm7/99/nP9Qj/2Tfe9JzDuigugFZk4HDjpxN//vhAz+4naveJEvT3KH/DAc4B9S/qMNRpWfawPkBA5o1fdjv+AqEO+pAGHPkyhoSIyKHfGFgFnQuElkAe2DZ8UfV2BOm/ePksz5jQM88X01GcfADjQ7Dl6wMjsFIrxTlaLg4b/pUuHo9XeH06H3RIXmp9CC+/FQ7ataGqM58H9mHfHDDJCv7wyHYVvfDhlj/wtn/GhudEZcP/G3/rg3nuL+Gfnk+U16NPx6t/2/QCsJLDRzfT9S9e2b9dh3V/3Q/LFfUmvD61iJ62+ifZ8K88dD9GrcKNU7abfQ7k/c4lvCzc2DKpbFV+7mjjkm+srX7U25BTqhg7Yqca/K7+cKAxhgIx9QXBhidMaIFEw+iMlILdrNiEPgyzf/43VpVcQk+6T/SppTNrmht/gfKQNojb8CfTWySDq1FvXZfXKRh99Sr86avUKYOs+OPX/9eRAvl/HymI8M+jxhn5xvoprzO86VxFQyWfB/atwlwy58sPR8azDfprNrYQuLVMrc8nYVOzXy+KG4CYeqXhDaOTdjZMF+9M5sOzNpi5nCEoo/MR7R7WYWDBVpIv7vsPmcvru1hgGvgAidMJrf7WIurbwDtc0LGlpdZewPY+K0RqCbA+gShYDx33Fqf9q6KBlOZgPKzlDGKq77At5Thgwi02FVLkJ+oH+yplyxS58NPvHCLudqeAol91AW90WrEjFvtiatw3p2SlIxEJazhd3bbtYBxdMvx0t1vjPlZHeEgOR6J4Myg6iet0OP4Iw+ZoSfU690iAdjOPRLSfBVsc/sLBkvN0HO7GbFhuDPTQu27rKThfQNLHkIFoSfcYK8/YYJzyUKHiB3dUKxEeyPDQ7spTV480fFQqW53QIX/7gYSX3BvrWkguqJzKp8fAzQfmq3OmJOUoI37/btmyRuIMlSH2qKUXQ0H2vR5DCdII41AsUoIeXxGeOHMmylU51Ot8LjP5cV135LU4d2Mm/CoA9fdJqIF3r2J1U8GFej0HNMm5Fxix92ihoQwxWn7hYKy6b15gDY4hNuYsCGbwVnLIzU8Hu7lKWc/pEYJ8t8sQP5SqcVh2+w7oR6Gh7jlYADWlTaLbrQ1SFGdnLJG1hPCXyNvgBrE11saQBSgkWoV+/ns/zGEEOaBk/Y3q+bMLWDPeXKg7p5ZMlvcOyI0Gb7hi54zt2EiCeW8XJqzetU3ts2AU/973rDwogWMvD+yV3xqAw6YmXJIgNt/HBwecT/PA8QOp6WqfPBFy41fETn3ii1ELOASX8LxDQt182KyV7Sg30FQQ0VoRLG/dTaDwQi3V6EmtWSGJMXAC50n66u7UTNhJJuTf5w/2w/uVrZR5OnS+bxNx0PwAdqlnAhOu4DC+/qpilW4VD+VATimOQ2ZQc3lCmB6YTXZNqAL+8oxb5WxFJ+ycjhFbvKgJIQrmlYaptQM0IYcc1kSbsPP+jQErXe8O+K82Ud1yfoD87e/92SpI0Id0GDKW+Lv62r8Iue9xWjn6roTBSxYQey3+QFby64Ersxs6fJQarEMXVLAC5h21iqcOy1n13vBXooAGGTcVrDkyBOqhdYnI7HkYgXKPAYn1EmOBagEzIn+ElS7oFGdDyChsPB7s59ueiNzpWizWoWn//Be79hOweZmLEupdmRIljdya/7oAGUDmv4yAD4YBvobhsV6FRSTwBjZIespsY7xfP3cFXwWdOu/fdoQhkDqY3mcfa0+3KdjZO85KtYwhDeRSZNM7m1fJWM9XqqLQNtaaP8lgtrOtMXuggE4vChOePvWNLJo5G0y4XWwwRUcLh4fFqGcYLqG8X/M7WiP9BthoVQLQPgRQp0OSMS8n/g0d8zGjHUbPdBKESlBsJdOp1ZthLdy8/g3uWWpTPfOagPyGswvzkZOxy5tmsa7aDUGaHnmsYkFjh794anwsmfC3tQ/YUaOyvPdtjZAfScEC5j0BVkAqGtSvqSZR+7bhZA85Vs14F6xVmiWKpWcx1VsX1Et5fBGoJrsaTZPyKbrqzlfg85g6tHSaF6wfcR6h7Qge1tblwMbKN1UYqElA1cLq68U73ToIWT3REJV2Pe/U+gZvWy9t71zcjLFZoQ1rh8jUdvwo5TtFarYu74SIJVcXs21ujcoLKafG5v/MduscHJtKwq4kPOvFvso6vOvnJ9bRKNR9uDQurFtRReyM+mAmznCB3YUk1IabxDaucwxOFp/jJzKUgirDHCvJwF1pxE9ZsZ7BMQdcvBo0CBt92E/RPldU1ObU74SkWFT3ygPHfM5EfLBXMR8sJ4ePDlrULTmjWNMTFOFm3xiv8bdYwhgkMGL4TqOXWYHlhm49XOQxoE5mD4w9xPENP2af4bA4D8EyVZMARPfkU61a1fRgfH89/NAfpsfF2bo4JJWsOJV4ok5xq1O23LIOWLA64qz76cUsamwEDfZvSGyjMDhk1a+HVtQ5hLvqCqDfledBMzMbe+XbSIebYojwavMHsnptPbDS1e5Q2193OCjrmzGfV8+Gsjw/sPecPsXiU6mBecR4NP3KYfizd+gfLxq+3sVv/Xs9ZR78vV95i3ZsECa1BVkz/aht8l7B2vhbwnnsAbatXVCs1FoamHfJSnbkcQJzdYdvOLGvRF7lz68F4/pKoE5NHZ9IbRc8FiYdYullY+PQvWvm9PMIj6/1guBposVvuuwuUFYqDjtc47PV1q83OGK8p+5lH7Glay8Q5nXT4+v+iWpGNe0OO116YDMkRn2QQ+ENT/67xOjU2rWwOxg2qJ1RxhgyB9DpbLXw2N4rrOplXY+nqY3hepoc7OPjeVifWafDwORSGhATBf/wzbYeWPejO1hMnRDZAPSHxvx6Hqb+sB/B/nsosaGKYkqFnWTLlSoW2LPu74GZJb1DxrGEmoUyGvVQFzd43U8a3fJB2lV00sH1dWCo4/g0YMHj7MPquqNEVPxDyj625MLPVauw34BXSs5IEyE//e7UDR642EfM7WAafUyM35QVnR1IPSyk2KeXoh/q6XEfVkj524vI4LrWP1EJKohPP5Fs+CNY2JnaIPnGR+w0qWvwGx6QhY9MkDKudbr5UwahiPdooadqYPx8D//F59KhqBhn+9xD4L5k7EatFeyt7Uhhuj880fpNlYGO65wAJbQM7IqDUi/0sLiKYd0E6vrJVAzXm1BB3Tm3aFw8Ph3Wt2ErZ+VJCX8Qe/AzxDlTcLWbsc9KbThErwUqW76k6iUOAZOfVIdLjBHqnyVjzJTQBSzTfaT3NRMKKmy3HKhk/qjGoMRG6XhpwDe61qi6UHsYgoNgwjMdE/oYeFqvtYNKKLcSxsb7sbL11NgqbPYP9Bdf0pWj9w6SWC0xQtw52Mt5PsPvfuvC8RbuAd0933foX2pC2Nb48fCHZ85JyWP0I2zrOlHmAFfKjP3oW7BVmq45qEKUELDWXzYeQmWW0YNcCR/MmP3DT4szHBA46Fq9hPUwg6YP8r94PKz2SRMhuD1fZIfRLh3zdxMCgmyBBmvtgL98CPXsa6F6+z5jzBUlTDtTp87lYw3r9fswwdmTHjgQXR6w9ayp4GQJOXU2PDAnq9Urv+vboHqk39i44SOY799HHJbDGyztzRllz1UldBinFUzf39jCDYtTbax0sE0FWoGnvNdtVu7IhnJ6l8rjnedk14ie0ftWd4e7Z7dR1KOfLt9fs8WTeEXvU9Yai56/IZy+s4HV1/5ar+q8+EofmSeKbtETrOdKvsHfubkT+W3X6WpdTm+4oLQl0rfL03XDq9KS8wrFYJ8Zk//wbFjiWMThVXOC0WkvDVQbycf+EObp+uhHF8KuWtBKPx2Y+5+Sw9EAHMW0OzAmneYRvoAcUXOh+3S5eDsBxJ+eEqFI5IFdjmoIXxd9R6ShcNh+wx9QEjWLhp2hFTNcEwTs98HauuK0w892vDcEPHzi6G5PBakRL0PKX15Yd+C37iSvdyE4seu/z/OpxJtKvIoIR2rvpvvJtkVYnuQOu4dPXyzSqt1F0Rh00lmZBOYxXUJ4m5QCCfF7YHMX9y4c2EXF14SvwPKK9Azw1zjGj88gG6OAvAq+jtcYb3yxpt3JT+CYWiY1g5kyKp1mArIkMYl0bSijKXcP4esQWvi+G7N6kJ9fHUR5IpF9J/UDc38j98dP8LlvlGDc8BRcE24bHKTbwxJnfgadS85RVTpyNVWv8VskYiJi9/QSgsVlVgi5L5jJS6s91q/k1UOS9xG2ADCHPVSTDvbPl4zDyztKl5KTXPDx8vvG5651x3NNA9HuZFL3hcWBipW8QinaG+jLWceAnb3rCqtJUKg+mzrgr6UpQDVRanSIynvKVLvSITbCFOdPKwz4TKhKeN0OoIh+EqVLZnai8nxkLvXPtc72X3gy4VLUFnbcQx1Qxr6CbOl5jMND8gNTo/KV8rUXnnAv9gaMU046PDZvCSPr2hff812P4VaspsVd4tIRnkECXlWbUxMmezBk0eLDuM8PNNAe13T+uoDAh4Z/ZO+qYtF3r44H2pj3VM3gyRCmYj8C1t9sHHwCbyBVMPGSXiAeKZXGpcPf83aOLaBDk7oBJaFRwWm8BxQlS1cz9XqpoHK+AGyQYJ8OF/XZAHwaRERDEaTL+Kt0JWvoj2pLe2Jj4aoEHrJZRPLDpWDe26kNhyRN//BYPW3x4A8vYg0YtUGTWknkmEMWYcCUwBRLdQ65UxlQLbT9YryElbkVjWWa5M/OaPU7L8KTdOtIJdr3DZ9LCCq+d6fR/fM1xgdYeWXjl9Sd57BeLrfuDs3vIcHh14qGg3C7mEAKzDc1vwMZSNWaM1QtZFPffHVgfu00GVbCJdvyaZquUSq1wMqWPZH5JgMz/c2r8rjOOxw21KvZ1bV1sOFhGm74ZXXJw4b7UHhjOw+d4XDdP+5wy+9kdR4TazLvqEruVAPqw7NdLPbYv+U+D3q01oe2WB9n1kM+VBeyPMpuIL/h6YOuUbfG2v0UjJH/yuGranIEC6FhzFZeoQK0S4S1TvsFK75lMZw4aaamdxvA4KeVoBS+xBHA80qwnKcLhGZ6t4loc/u6O00kgV93KrC3V3nAVE56w+vk9VjN25itmz1B8S24WK1VMMyYCA18e78eMVW8pOu9cJJ/9qFFx7D44wNgCXiN8H96ytc/veE3M1L6x2/mP73lnh1t7KqTWguIxG8Yah8Zm98BDbP7MXnFP2yNibd48LPHvoJ+fWj/4b8V+bsb+MPTmmbOwfLW1QTc6zJEIqhAOv3h200PQrJ+SY21fk0XCECLqIrPrrEXhI6HoFZFqn68Y8osFYpgy1+En2IwLGv1SqBv2x51guhrjNDSZ3jN7JzMm70tz2vsQ3zldYxPAgLCHx7DwvyhiB5+BS2ex1wR7+iCdbWLg/lYVbKinn8DNRcjCpbda9sf+5dT5+0nxXw1JhmELv796SPBJL7HBgrMj0hm5JYxU3wUlL/4EA2uky7i/mHCxuBr/AHbrOcRe/YfnsF6Uz7Z3P/2mfx4ZzlODjtWN6u/3v/yDWHLcwq6UVNH+IEioeqwqPXsjSyG+Pt90j/7WtRYTZSzyL5EltE8dPfjTgXb88l6rxEbteWJIJ594U9/Kja+T6RTWFoUK9yPrXe3nOGW76mlxV6x5PPYQJcPBiLPPwPsQRkhEIZgQayYDMZextuEPpfV2DkqgrH9fSt7V1gR8fDxi+GRGhXkSr7Aj2a3AHIwTm9Irfd5wz9tPfl0aYG0XHMCnuQejJ2yNAofXzk0K/Ml7dRvJYINL2KtOK2MXqavCkel0Wi20H0xcsF0lwsp8f89n1b2foR7pU83fh3Vy+Ak3R8fp4HoZmD9NnwJUbINVuG+dbB0aVUq0da/x3q+QmOf51EH3RexsfYou5rt1oSD58c6UOOVzOCPz0ufdpuHImvqwNOzGivxoc0JdE/HgIpsSMAjrCt0sElUsAheRPAXD4OD/qpnAVw48DoWMVY/3pKu2W4ewTQfLhRbv2TY8omqmL5I8bk+8enC+mcD5n2YYG9+FcEXyBH3j2+QptsaFQ+eCf70ilR4qPXPCCoZtltj5UcJBoOUsqZDDO4TWWzdqNk++XVyMeoD9eTHO5gL1yXgazOe7JwUFQvHmyu05Lb/0/OMabocbjA1Q54+vbtpHKSTSODVFg7YMptXMP743U3a+CBFaiGwWUDaW1baVqOWan1TlpBdBr7BE1KNLxhj3lJcwKZPoIOvWwHjjXAFu/1Oxab6+hZLvxXjtvfHzt/6WSTMoHt1KY0es2cs9CD5MC+0lCiGOhbLWdUq+LqoO6rl512xdlf5Bom+7jY+itP5FmQ5/O5dFQEv9oFM6saHcDFdfJGIGuyjy4vAIscC2Z38tl5u4G3KG5+mxR9en1iZAT1STvRPb5/Ln59DAhUVjdMeDnSI36IsvyMH0e3zbD17Kvzj9wbzXCC40tmFhvKLicItN7YKTxVBwYUBNU4NSvmDhTOQ2sqJJrvVCpYi12yoZN0NZ/5nYj96kFxgssDHur18BmZEOgEZkyn1zoVsrKcGqXB340yMtFZkw3PnhKDd9TbVdS4Llge9x+ATJAaNKq0slgzKN5h540Rq0uNgST5fE94U/4VKFmjGPjM7GVbx94l4I/8Ys5qJFzBjciF/9rx2r0pQ+rnrsJFdx6If6AIBH+oLNUSyZ2TXJC1UrdCmp/CZGKwd7BsQuLtJ//jVX74BNE15lGSeafA/58v90/P5KS6G8cGbF9A9LjdqwXdpsD++neVcSKN0fBfswH1yuB7OK+kb8PqLTy3Yvg+Nmt3C5khfZWgYD4z1SJdZ/5c/2l1nY8sLbsVS5N42aGBucHCXuIK68FEC5Zq/sb+nAljOn/cbmtIsIeEQSSnd/B1OJ/5ODbpfjEUGh1UKf1m+8dnXMF6elwaCWv/To7OCekt6gTvYUvLe+3uwvLN5VlZl9yIpzc/pvnWeCGx8gapX2a3nHuc3aIDpR42vrAbSDgAE87rtEbe/C8VwUc/tX/7C6n7/TcnJ+5rQdSKXiJv+xpbbvYefB+3+1YvY9BNsiJTrgwi7pznMr50n/+nzBH6taVg3fU55GF5MxKaOi3/7G7QtR+18eKVk0PsKuN2BUbS8rLS5icMM9657w9Fmv+N9u8W7ZCAnr1y4BvQs/EK4neLAwbxdSVNktf/T2xAUHAcsazSvsKgIv3HKU7rpubP8h2c4FrwCZqXTDf7FQ1SqS7rYSdDCeOa+VJUzLdir73lVTO6hYe3Jj/U/PlGVvwNSWj8Fs3S8tH/rgb3LNQLrzmM9eAa3F/3T19jNXC/KqigvwtzhB1Z+esiwB9wT6zrHB7MmWR3QvTRCgpcawQJTw4V9ffWo1Ul+zf7wunV9KNTcEM4UcTqBn+Z8IXCrHy1Hz43/+Ao1uG2QV9fG8E9P3LpSvIYlUZEpApJTuul36TTcAhcegDVgHaRBwXbPd/mPP//Vd1j8SJp/+pm3f5L6r54BkWP2GH8nGwib3AseUxehetPfliu3H//2GxtN69aMtP1dqr8FR82dk9bLavs53K/ZnUzPm8mmP744tlxCN70omNHHjaFiPTOyrpJarzdhgXDLZxRB88N6PJmzzEfwgot3PgysL0YIEjA8qG+NPptV+XqDwkckaN7deIMxhAT4mPqIKPSrGbxdvn1QpI8TtuRZr3mw//BAOPAnnLwjv+bdR3mD+4Pa0POmZyy71z0BR98A6PUo3WER6jlXllxQEP881ow9j4dZ/tMTkt36MdZB79/gkiYfGvZXq1iu1/sImOz4SLjHJKXi1cwguD1ef/UCNnf1rQN1mf+wfe1KRjT5W0JNaj3q/unJ3m6YYa4/FbLkghSs2lfgYB1edRzoXZH+w2enz+uG1U83BMOlFkd4c7oOlc+AFcuf3mXF1vTnL2CWhKUFH1aVOPqe9oxFTqFCeficifKYfwaLsHeX/+Lh4FouY8b310H1aEAc7SBkU1jsM3lm8YAOQfQNmMiGGM49zbBdJHK9KPu4gsGQ2kiIUBaMmXfUlWv7AjTEP7f+8z9l4ytEAl6fbvUGUxG40iTiAki9xjxDwH9ggQz3KA/4DU9B4TJgpHTpbxilY9wq9zacsNtGY/BezA8PrSW84VK3knp5PTe+tu3nNRKmdBbOu60+aFTYeHCSsbQvwYel+/Oo306w7j4nrYLlegg2fOAULIskH2ZKssO+Ss4pyyXIK+dB9fFji/dLFZ/gP/xl+TlM6e3ci2CLHzjgecVoNr0T1MLXxH6gPMHspJ0Jr5mZ03yrZ4wU/hKo/r4JDZ7kbsyHZxv/08/cLn+xWSdG+1dvxt4yPowldbZ6UOA8kURiiwmGPa/wRTpCNWAYAU/Pbgy58SPi8K9e+XnFNrQFkiJxnsNheq11/vd5IqxkVxNJ9UQYLcc9VudDyhYZ7FZw0XKOWknnDEvcyjzY6nVUQ3dSsOnH2f/XkQLwv48UONh5UFv6OQbDasHDt1yd6VkXq4Hts0cHs/awInDolWANXCDDDopPGoPOMNb7Oo0wdqUdaffJG0yumDTggN4qRsXlXK/uoeoU/zgxrJ+KNp3cGeXgIw1nNMiPe7Dwo2Erbua22GyzXzF381WFvl0fqEZvabCO1lIqi35B+JGPEpiTHt3AwVW+2PPffbCeT+IFHiYQYVuvnUA4FUam7G/LF3VjTetlL6s3cKGujmQjpMXkircG4hcf4r/vOx+m1Aer6yWI7t87Y5KuFwhtwzTxNeQawN777wwZVm44uOySYW6NVwbn06phvEt+Q7WX5RwGUW9g/A7MdM+dUxly7HjD3ih6RqfbVg+bE9apzhksILX5NOHY/UZsMUJrJml1pRjdjhFZWri0J+vLheMZF1Qn76Bej+/lDs87tUJ7bjvlL/y+IhQoT8lBP+N6rfpDAz5dZGPtKQ31TCt+hpK8ljhci+N2x1YyofplFBv3a2KMx+aRwRukmAahcgvW+eNBwGZTQcuYuAP9ma8bHM9RQZ1zpw1rSopW3gnikRbb38/yE3BwH1xuOAIlS6c6RTnUfuc3Ar5fGLP5XXLw93yP+TmbjcznoK0ZKnkkgj0s6jLF8JndJmo0ZpuOKPV9eE4uGU4s3avnoPplsL3kHfG7canHV9xfoCc2gFr0PBRzamu2ghd8pd5O3KU0y6pMeYxPHW2T4tL5gKpVUU0Q4bAqcTrH5ZhANfwyGj6GuViufTwqx59nYOt4mcHKfzpTHtZ0T73Lc0yXVzW9oXFMIxyxrjKmzu1KWXdVhq3XMg2zWxkIVmsz4SQMQ7aYV9+G2dMLqBNYYtA+1MGG8cpCis5SV6+3q51A+XT60mhf/xjhhYcL9R6ccAjfVbEkSzUC5dJSpKDnu1it0gthOewW7H1/uNi/pFYA1C9rxAnYqWfjrcZKUL1bjPX7M2CXYWxhwaU6kryeB9M57zPof7CLOBxUwRhIfQ+U0TZxtISfetzxbgmetOnonXv82DR9Tivc2StFBL5Ow9pUR7KTLe5GdmjX1bPmVoJy+X1/WOPdgk2PW57B4VkkaJ+mcjH99rGr3MiaUoPkWbC4z2sCIc5PFCf7gq1q4nJ/9ost3uKDBTTMhHCb2P6d6Tdgdu1mIHPKD5J36oExRlcf7gZyQoe1j+vFvOq2slP8ljDfGur1yTkCZMHs4RxEY7qAfLtFnz16HCfPT7EOqnuDHyOtsBlFZjBljVYpjgh7ehtVbRCirFThmeEVVUYfAdZ1ZISDdj9js5tNg3mnnw+T0PhQLYLeMK6vmwinQ/mk5tO3A2LFgSgbETsQyOfAWG+qycG/9VWDk26w5vi+w06NU7Tbv3dbfAtsuLZ8Tc9N+Kjn/draMH18LghmdwGMcChtKIVOhBRVMutV0k8lnMa4xmEuHtO57jUeClSgOPxNLltezohg0bwuGPtdk3apGJCtI96VunX5HtYMxiIMAW/gM4zJsKjVjODeO+WIS99NMb7z4g7t/YkhHjolWN1D1yv3O5cSobS/xuhss0xbWzxTLUPneo7LJoH1O69Iyy9HMDcuTERrdK6kqpvVWO7s2QEnflHqFskjZc185+EiUI1i/b4LurEqe8gnuyfW+rcClmK/8hBcYEkL/p3Ue9AAW55aFdFT/xSC1TrolRxP+w/F76Apvtv+yOR+s7BWLVowL8WLl9vETKlvhLhgpleJW5eLFwLXqh7W5DaFsB/sJ1G+rVOz9Cs2cLecRTR+lTJY/uLzuBdH+uBWo/j1zaEDLFg9rI9fPRCKke8V8m00+tjXP8AecYtAQ04SuhqXlk2nn9zA8/AKcKTzKBjNK69CMzmo2NldpIDtip8NVEhPRBhGE+wj8ybDzT8INA3ZWNU3p0OBZRbiX8onmNt738MPthEO3mg05oWvfaii7kBzTh1SdrC5EiqXhlJfWsp0vPspgkMRauhlIS1YE0905ZjnY6qj7luwZ5DG8KrrH3J4yHhgg44Q2PI5vlSvs8Fu7bWDN913qIYrBOY2yy/g98Ipkq8H2WCJunAwj84BmpOnVXSS5jXQV49vBJ7FZIyDN1d/+Q59T6Fj8OxrcFBcuW22p/gLVu57VqHdewcaiXkHJu+j58rFnhxs0XOQrtf0hGDSEwFxl3gKxv4tCbBypwob47o1wruJiSyEMMIu6SxGP1ziA3K/WBS/thiDwL2DGhQO2NSCoV4bKVWh2eYnrD8n3ljebd6CwHV66gsJTokBH3cw39UcJ1xjGsvVM1zlUVY2WV+dwtb5o8E//8ZhpjiM6ffFBVdUY6z9nt4wvbBYQgm5R7Rc7RF8m/ezgqpYmTg7P49/9hGCv3ytnYM6IMcM+lCtmxLf9d8rXfd1KMP67DdY1e2uXqKTA6Gxgw98LouqnryPv+XLucTB7nQs/uI7PId7mTrLClIKIquHSLrGZOHdAow9a0U49B+07R8B5Pq6vaGzC3fYpPrCqEfedwiN1xfjayezVT5cL9BI8yO1vdwOeK4NXCi0joUu4qcL5nY/cOJRuBnUI2wdSD8eOTifZg3j58Uq6K54mcqNLwSsPR7HYKFbSbNhckr178VND+9GHuHHyhvsKccPGy0kqrBVex0juQ0A67g5UeA7FPFxTLqBvkQdAmPHPWiwN+ph2aZrQsEIa2oejUOxOP0jluep/GL1N2gGv9knlJB/JMDESz2+lcSEzfuu41iYJ7ZYliTA9XkQ0Z+/88FSXmByYjES/KtcrOOBNyHLoUVjKXTr5ROxG3SLfUjt0filrH2EDWgTO6XRm6zF/MmXBhbFpaK26oz1En6qO7w9Mh2x4nUfFusA79JtDj/YOHyiennc8hxWz9FHU/O7G7OFRB0oVZrTqEoOrLvDEw/9uTC3/XcHoWs7EX7r3iaz/QgBJb83hLfjK6MmV1/T2UkiEYZv+4qt311j/OMSv2GZZxibT781yN4PWkD2bwVBR/3UixnvBVjHIqbhw3+m6/01d9D21x6tM2enE754Mbxbux/d8lvA/gMAAP//pF3JlrIwFn4gFiIguSyRSSYTBAfcgSMgIkMC5On7UH8ve9fLOlWWQG6+KeHGT/aAFj2N5SYt0JiR2oVVSnRGslcUyMZt4yNdKSxmh6+85CBascq0i42F5ueh5fnU6HodAqZbRZlP1hxkcNxTlfLk+AmW+WhonlIjFrTWM58zPQQIgmpFyHD6dswXkwJodtoS096f89kBXsN77gkJLcTy2UpTH2nBZTmH52gHs3L6UEhIc/tXL6MxWBFcsCJQMNwx4SFzK/Snx3Dz8/j0VTsL5GNQkn1JypwZa/UBeV3fiBn8IjTRzpFAURtglhqezDmhSQXL99GBN3rAqD9WgLG0Y/Z72pfLfHZRU/prRpBw7fp1gnqY9JNP9D/hPJziBuZuKzJ8+05JfwpUH4TGfjDf6B7J9KlFis7lYLLAvNxMjufzDamny5fO8vQJehEbDRwKhdLV2Qv4ejNnsTo8zZIZF1lHs1J2Bjjx/cD2p5/djeN+OVuV3nMqGnjF2fXV1LD6PHSsxad11z4FIsJkZJh5otHn89evI+hJIeJAvcPCP5IB7NGJuLfMLKCTKWYQCM83I6vY68YHFVqI5/y+dEEipoQqz/2rb/II8bEbS9PEaMF7YrXdvvt9mAtoTSMgu0eud3N43mAozY7gSjwEpRQ3RQFe8jsRWzsO5RSM/QM9Q+oQotEqnyIJtcvZ2w7xEysP/vGfGoaMgserbtpcIwAlrB/MTywU9JLydKHb0R6Lh6pJRnPWjtAnuk8ifrujia/yI9rzNiS7tfAqpyf4BnTzYU3/9Ni8vxUxWmWRRU58/+iajzaG4HyEGkvnPOY8tT4AXtKdiPfZi4h308HRLm/+poob7wLW/UIJRMHLmL4J3W4trTY39GmIg+UFz2c+VhaqXplA8N01col55IgWP4AnIzcCOlSlqK0b/cvsq/kxx1v3GrXnMR2IdUJ9N6f944WaaTcRstTDfEDzqF3i7EhcvB87/js9Hn/1RuxO3wWzcwIBbd66yI54+iVz+K0jWK+GPdFXuzmgaC9XkCawY/n1VZYTSbex9sjer8WvoYCyZ6rCqfAiZp/Y2px4HRvq7QYJWfRZN4n7lP7pOSrthzZvP7s0hfuU/kjahEFC344aQX7ygz884VxcdyHw2d2SnefjcvG7jvyeKcF8ezFNacEv4LTtWBCU74STb/aA47ylxF+9GzSrUTxDLhwMtu1Myvn43Y1IQDUnht7Z+bxaH8/qS1Uc5iRNgsZeeoVwOwQf5ix6a+LprQe1VXR2u+26YHzldYbKSCUMn09lPm3TTkDIMhTmj5cPGqyrYcGI+ZkZQlWZc5m9Gk3Tl7fiveuAuLe6FLKG7gcWZuF7wTML4D0Ea4qCcptMm0PYo+x+NigsfM83265AO0VosXa0X/k0XqR6I77CJ9mv1peON5epAewlFK+vph2I3baP/803fzMJ+fL51z98vRsiNke1cfE/PkqNQAlml90y6ASn/OdfR0m5+DAaUc92X+9njmwjOXDowh15hMwuZ8N6z+r0iUZisbLgf/MBuXclwsL5ZOaS+35aiMZtzoLubpf/8pWve/Op5K7XAV/1Dxd4hbbEs+ZnN2E/EEB/vzPiKdeokwN3K2jOdqtTflPLgJZZ0yDhLXvEkTeQMP4dlH96xyumzKSbqTnDI5oksu1MjPi0ti2kDFegzc2fOd0KSgt7as8LXkJAv5uNC7uOtXg1uk4piv1ahzHpNeat60M5ljfrhY71esZrDGdzRvtVBVMiPllkeoDaze9ogfOBmtlxVAfz43l6QJGUA/Hjbf0vn0D7R/9h+11vJpOluyMYrsHZ3/Uuz0tXQ+93p9pl33J+6pwbCM3uwf7yn/lCN736zlnFTBB3uUhFW1e9XKB0vBTXkl2nUwvkcZQwP++qYDwENwM1F9jQkRqfhL0VXwBY93sSfrWHOR+QOsN9e9ixv/nzW/wjsurjiQVfZ5uzoprpn1+gy6uNZaOr5Q2A/zzmVOk6GM/jqUap/phpQYuuHMSHPWpcOsWkEV6HrhXObwG9/SQh4eVq5P1RE2eQtt6TEDgJJlOKyQLYoAdtPCnMB1sWH4iSwGY6q/3uGw3BC4IJZOZXp30uxd7oa5u3ITKTqZukKap0Rpoc6VgWP2oyQLCZYVWmQOwpXps09hQf2dHmQQu9s5OpcV8P9B5/AQuiQxv0qRXq8F1bF+aE3ieY1KdhoMX/kECLcnMuPlUDvc2XJU+Nm+MrpykKTOVKtuc2Nodg7G8QX6MPCZyuD8bsMmd/epD+tIPNxyYjD+i53DATay/O88c+RUNcbOi6JzqaVp0Rw9cS1gTPSC6HP73YEqXEU/U95r/d/C7+8J44d3xAo/F0AKzpdWDZ8b4tRbaRLLDkucZytDY4P7+MB0Kim7FQuP/QOOydDGj0vTCvvyjmpGjnCFQTnfG6PMV8ruJbinoa2ixb8HDB3x708+nBboTSgH8IieDgxG8WRrVZPj+XvIDL+fMhxN8lySTXig/uzwmpdvp9usnplccmqWqT4Ekpk8bnm3p5heX6T7/NrnsatSWfIs45j9FkaiRT24I7+I9P+tV+K0IxhwLRlU4u+/VMHbTgPztvfruAp1yRoB0Nh9lPaWk6dE0r2FyPe2K67zqvu2j9QL/B2P5X79y6ZgRf+l2JGfNjMMVT06OJ6Rm7y6sqYc2oCnBrXMLu/fqdTL1CDUhsdf53fex1jWrt7/MkNO5B+8dfC77Qz5++kO2iVpHoZ4ycvY7/5dnq/uXKxBGniXfy3dURO4aYXPDVNccNDzEsfEtlofeCSQmSFk3NaDOs1h1n+P3OkFTbNvOLzOyk8447CHMXLflXlq+dqsfQeg0mZvZwk+lWFDUIGGpMZR4i9fyCVL23uUDwNxsD/gzyCJpf7lNlZw75n/9FdiwUzN7N8XKw7DVUk4NDMehVFwxTONeaVr87Kv7p1UUPIFSjDI9uKi2v0PghaCc7+6e/5PMmmNVJDc+4M447zjIZL5tV8ZZuVsMr4WhvN3DUxBvL9m1Rzv56/wD14J5JZoYs6R+2Hmm7d2QxzG9N1//hy1mX3rT488t/fLHgMdnNbdR1Uub04FmRi4uFL4dOV48oP7kByy4w5v32elfVhV9wF2pqMBfCABBGjYunq1CY0+7ahKoQooJ+Ld4mTH2dlH/5sJdMZsedU2DA0MclCQnFAU3z3wOdqvD4V39mn1utC+eSmVSiz5LT3a87wzs8Xph3CiDpxceKIn4WbLIz0XKwmKrrGzTvzlTLKxJMgpAV6g9yzHYLXk3pLcnUizIHRL/GVd5nwsaARV8Rc/F/DJ2uCorFx5vt01u1+HkigH+JQxJssh0fg03RaL8w6Yn7NtxgfAIX0INcKrJdv4tg2hwsCuf9KSC74pAgdrJ2IlBtXxI/j/R8wHGKYc+bkGE33SbyfTU5WpUEAn4dkR6MsnN7Qb5tJUJKnHZ9RqgLVl+3WPzcxGCc5x3A5276lJ5PZiJutl6NFjxi3kY7LfqsxKgYDhfmhwfI13QbPbT1YasRX6StyVb2s4C/vNep0lMw/iTDUjXtdWKXJY+Yze61bAkYEUvUtO+oLKEY3bVNwoxT7uQze0bqX/7Jwt/QoL98Rvubv9YpQ91s3EsLxrWHWXAZUzTlt+mFDqcfZZY61ObcJlGjVSm9MN3azsnv3uQtrM/V+Z8eYc1l06LsUB6pwOwqX/KsFt3bq0CMj2gG8+9xbOGaPCQqLPqHyXddR/2qPWO4+6uco/2+Beu6OxEruG8SSrb7GU78+6aotZ7Jd7edZw1H8RWj3Gr+4ZlaUtnHcjyGy/03Gco+xo/sHxcajOdDF6LES3csaV86YumdRZCMd0T5PCj5FBt3CTaCxuhqycNbQXvV0Gd0JMFvG5j969f10MJrZIclz5uCg+qg+ignLGw8s+zSUA3R9coCZrTBchD57nT+r99c/MU/vbhNep35uzLpxvpWtLCVqoIdNoqTNM7xZ0HwtI7kaS9dM1TSSFA8zzlGvfzIxzRMY7g0W4l4wjowJylVpb98Hiusy4K10ys3yAx3R57GbWV2Xn0OYRI7jW6WvGe2qRSr8hMOWCuJmUwqk50/fUtn77pHf3ylyrcHMDeujmg6Vt4LuUe/pkNJymRsEXJB+lUZs70BysWf6mgvr+9kp4kJH//yzktXBsxa+Gjx9w4MU+jj9ObH/B9fLPjEAvV+M2f7scWw+CWskGnNGddZhArlmRBcoq1JpVRXtUaPE+ZWCkp+jvYp4OHZBE+y/c1nMqaN+jeeltIQNFGeOLCnu5n8reeweIYaZR/9x55qdszHP37cesKJBNZYdMv6lAWFWlzY1sZbc/0m4wP98c8uWhf898fnNX9VLKi8NZrzHhqYxluPZ3KUc25tj83feFGZaEPObomXoe0jqDH6Wy/NMITgPR8m5keqoWbRm9BWkr/kpxjNnnag8Oc/xtftW85vZ47ULKlTKh3loaSiFRfwWtkXKv54mkzdDADR+4zoGJyM/+ZD+/QWMRJhIxfJaiNChKwPib7onNAm7So4SKnJ3B0yOm6s54e2pjEwo3cmc1lfo9rkfJ7M9O2gm4desSDbACGETYU5iY/9DKt0rxPCoyngZbBJIfsR9Z8+5tpupgCepZOkOKKuxV6sg+oHHY3639OkbNzDX75FdnJho+VnAbq+iUleeSfe/+76DB/vvcarRjDz+hAyFS3jw9zBenWjnlTSH79jmcmH7mc87rqGsbgj0TEjAbXSyNWGrdMwu8+eaEjk6wh67O/pqrnH+fSgIf1b78PofZZ4v++D29/1sa1sf5M5krY9IE21mKF3n3988peXs7/8d1lfchF3yEjMZfz6MD05f3nMv7xlrZdfAZFQ+ZAgt1wk7rLY/efnjg3hwZgoJoWq9Rus4H3UccZuBvJ7RImTL694Cbt0hF1UMiov603Dtv7FMOy/yyuWNyf4XfDD2ki/OmNLvo7EcJVQ7f/ZUgD/e0tB4TQ+c0q+Luc7WY/Q7fwjLbGBOjbr5Qjnxylj+0156aajkDlwueQl231uQzJfHnqGqH/Zsm178/icjL2j7mbJI3qLH8n4OL5DEFbaj+gbi3TjNbqqAOF4Iu5R7LthNeuzZrxQjeXN8EI9yktXQ9fszAyvLAL29d8vOIZkJIF66IL+VQQ1OL/5S8zwy7ppOxxFJGn+jni88tF837gRMPM6MfcoGnw8G5MAumfPbP+WAU13B4Xq7Xd06Ogeqnx6dwGFxmsumGZty3/85ofw+ipPcpnjfSCeinUF1v00sH0nV/kgeWWK8rvW0FWsaHmXB3cBLpdrSadAfZWMCKUDr+ErYVlzXXOS9TsG8O9XvP7p14Dlx1+P5lQJyV5yx/zrnHVR8y3ImFG3Lp+KLRzhIGaMGUHpoFHG+wY15LQjnvelZm+7hQjfc5xSTSsH3lvut4c1ODExVytaztduCFEaPXsSXH0Z0fGFDNQPakx8En26LgoJAD6QiP5a+s6nYM0fqKo8INbvMvP+ZRgZWPfLwIj1/aLJnuoKkXXXMSuKipxTuAoQr28VcQ6Fh6ZLMDvqNZAFvJGrrTmOkCtq0ZqXv/Ep568SUdCEzZ7Zh43ZSeY5H+FxmjHz2T5Dc9Y1Z/S4j+/leZsJ338B4PCgH2acxJiP5OA9oDo/n1Q5i7tu/HJVgqkjFdOv2tI4/qiH2kO3bLqe9E83PO/vs1Y97gGesqAvm52EM2jWuslSdO7QXPriDb5TF2ONxVskXcS1BOvjbs+2yrDmk7O89ZztiEl2x1rOf9+b0KLlfun0rl/JvDNHR4O1bJOQWVLCFdRmyH7RJ3EeqVdOjH5UlKlfgwXhZhfMnGYAJEtS+ltXtUlXVXoEbsVP4tvrvcluQVIg0kY+26uu0/EfFVR1tVudifWD7dIibA5BLHWfeOvKCaZsk4dgXVoNS37/CSYnm3ztevZ1gsezX/4EdEhBh6dPLNhXwVikSqGuz+mI34M8mbO9D1xIXpLMdIrFro/XxxSKeNsxc6B9xz2zMFZPKp1ZYG2yjh+N0dAemyAnnrpy87FIVUE9fSKLWM46ybnpdkf4bOWZwkmz0SCCC6i+h2TpB2KjQX7lAtyJTohpTqzsMm1jQW5ULjGa1gpmbd+GYIt2T+eSvLt54AcRPqGbEcuNViXzymaEtJ2PVDttk3xCeyUGawviX70Fw+sY9eCe92dyw4WbjOJPwSh7hozEjX0yx2eQVlqJrA87misLiao1uhqNjzsSuoUcjFsrecFlyzJic10v2x9zHXjvqy27vfABNVWdqWh6SiY2LuKl680JGoBwPjGXXFtzkvRLg9ScUaL3mPAJqi5CUXlWaeMJXzQ/nZZCy4I1c0brxnv+qhX08ymn/KFMHROppYJiqkvE1fV8vHePBtWvz52FL65zdjcMBZRVvFqu9xJQOS4LmD4vkZF1lphjnwYZqseKsGem6MF405QKwqd1IThrfTRelr6YbwWOzNkXSdnpk1wBvmIghK3UfKT219B+r+zMtqaqcbp52SqYzoctjfp42Y4vbmg374QYSRU7GNPxXsBcfyMMYVGWsz14KupRzei4tq7LrsFEhDQeG8q3U4vocfy1qE8+La71/t6x46YKlTizDiyrL4dEoq+VopxOcYfHEdfBdA4EgJMKIrFQI5TN+tUacDj3G7ad4jRv0VmLVbEZ3sTaZX0wi3ZQoXKfa8upozqSf1RQkLbBd+ZBJpbzz9ZqVEmPA7FNM865hL0IXTtpZCS59zl/pZOhWdrxSfZuoOVDm5S1ZkJkMh2eEuKwEl1U6SOjRS4OiHKaCWgzXm64/nIjkMZLL8Lf98tJcEQz7o8j/ARrxj9pNQeN8FydYcvWI1YWPlrntSQiVT9itnvfLsF4O1IHbu9zRlx+XiUzXreAng9RY8fl/rqrhgqwSCfTeURCOUqXXEKHW/77x4ezFA8C8Cs0BHevF+qfy7nLzup5wexNaUedElFgk3MlzuYZlOOm4iPs9p74rz445Tj8Gz9CfGM59siNzzDiEVP4/dqcD3aDEbHqBqPcv3Wv1XO+wc+nIQn8zbqcDqPqoj/+ZiX9lT9vFVqw+7gJO7DlZJ+v/y608kljYijnmzkHTaCjm3dBzDKzNRqfQVTDWqc6XsVKUkqKl6nwWROf+LFz59O1eGEwFBTTrtblkuL+NkLexAesbUq5HEqlthA2X5zownPi82VpOzficc22+nNv1vQlL2cHVh6Jrtolb6X4A5COjwfz68uUzPbe7VFYzW+8aqokp46pFkjbiz45ak1kzkv9Q918R+JXYCfTgm9gjOqKWLkTdTw/vimq91hiuLCbZFZ+Rwfut94mzpcX5ngyxEz9XJe3bDyzRI1Ct6DhA/4R4ylaZs/s1odS4T/i/JsfxRQCZ13K/vh8kF+JAKdTEmPVXpvJPOFzA0/PFdkyP7pF78Tgx41Mgkb3zHHmQQSnXbX+qw+T89fLAssTXsx5pL9u3KB6hKPzupLs+S4Q28T3x9/8oPUP43w2pZuAtK7Qseivf+UgxqIOpI0mold8Trrwu8rQAbKcGQp6J9OIi1itRO9EeaF8+XJ9LQSbDBM/dT5lfxCKWjvgISSpJ3z5/HC+NZyG+MKwJwrd8IPxBSutObCwwk3ATtFNQnJUnnB7Xo6mkC2lgXTvPLCo7hs+u4ebApIqB8SzvzLqyRce6I+/dmltcnmWnwB2xBxia9In509W36BTXwm7mb3Z8aRALWTFV8NqN9+TUaZWCkqiOszO2NIiLT7d4DQLbwortSjHdDwV6Hxe9Ne6qhc+TwtwbpZPtjzmOasS2QDveXiQ7f4U8vl2DQSIdoJO+dlozEHW4xGs9TkkRtFCzi/j1YdDfzWWejDRXG/fGWzmNmW713abSOOFRdCu/C8x7XA2Z3HZklMSuiGEr6Jy7N7XCjJRjcnue3OTgZhXQ3XCXUrswj8m8/seSeDWoUvcG9GTSZEd4a9+6d94dn/4F3+eARXdNe3GbZVFIJ6OR7Z3g3u+/t6ERk2F4E0R3hhmO+MjhulTiFg+BXU+3J1xRnzV+sz3IjGfLkZ9BvF0PjIjukbdMN+sVpMR+mJR3Msl/25PI/wk50nMuXoiJleTpDXbxiJxa0fB7Gav9k8f0I+Y94inX7eA3clX8Tj9ZrMfbzEFE39yKsbRLug9ySugzcftX/2U9NoVM9KF2WFedF/axbQfVwt+12ULQbgPeHjYCppxetnEaz0IhkX/o9XQKsQ/O34yMVxRKHB7X/C54Ew4t0ekv50DC8TDhvPa7wTU3LcV2U3DI6D3q/eC0z0WiH06+nyOytCFRb/TasGLsWmrFiYitsx83vVy/ON7WcIyC+LjL+HnKM7AC5QDluWB5aNabc7Izo0TvlphYc6/j3hGTOA3hg9kzsfrmDuqHmQ7tr/UX7ObfgoFayvsmfuzdXNaL10e0HPnYGm2ZDTHV1SA3BQZM9grzuX0676AHewvLmKhSuZQ4LWqUsMkRm1fOaW+/4DYdxS82t+nfN6vP5m6OQoFlj83s5S2zehq33zlEvN6Z3nbw0vX2J5eiXPnWcdqvxSgfn3vezXsDmiCqpEg69XPone4yVsqPmAM7xviyM/MnK9BpYP1bc9ky+XQnPblrQXlXZd04xmrgH/bJkI/wQoI+XlFTq/dJ1SROEXMG6prSdPu2wCuN1cqoeeYTEKeYmjNGci+uAV8TKPbEXVzsfQFEJHJ/+pNP/OGPnq0D6ZolA1QeS9iuZHFrrNXUahttXdNtllQoMmy9Ao6ZX/Bci+/g/ESPUa0+AUq1AiVb0uFGSWp7DPsX/edyF+1CpXpxMTTJ6vkq+F+RtNOEsjip7sxfrwztGtlE9eL/pt6PwYtVB8tI7ekKCdcxhjF33FHnC/mwTRsjaN2nV4qsay1ktNJ7ipo1CGj6zmfuvEZ5AbMQnUiz5L+ur/xQ263ebJzyU9dfx2jFiR1HeBjGK3RSOmmgOjejnTz5x+65O3+ez6OuzvkI/18RgjVW0vCYLc118v1/el54kX3Gc336/aFJPY4kP0nznLuhHKBdne/XvQUmG39frlapc+METm7IK7+sA7O0XqQ22BNJbsHBwddLP1M7J++MZfxjQGMp0NXWXII6G1jUPBDwSF+ELG85vgwAzZf4TL/c84fyspC29gdyNP4Snl7ebgpmH3csr0/7nLeptsH8LdwYsGV1WjWXS6C46RbdqfDjNh5TCrkAQwM1yjvutP40OG59d/sj49bJX5b2rMvMxZyqy+nfXlsNDQ/B6zq2TaQpkubImd1v2Bp0U+9goMQFr/L7E7X0FS+kQOVdDuQU8pyPiTC7bU5i7rGAvUg8ineFTMcrf2d7P7qaSc5GYyzj4m9bZxcWuVWDWptXIg3VQzxKlnpcIA0Z8d5DvI+Fhof/vxhpB9kxOktGuG4+rhkT2q145lYKIteW9NmJ0j5YAxZBuhiZ1S114P5q1laoXuWewQnRDancL0xQD9PDbHsbJePofkrkHEvUqq5SyTaK4avxZ/7TFH9qcsuyCJX+zzLLwlr3CPunF3pL08h+9stQrL9PNw292N/Zcv6WcAWPQ3mo9qT20oNk0lDiQi9jUQsp1uh/JcfdfNLx5LVJ7wXX/1NTZXHRJz5V6NWsx4PoNk5Y8EozR2TKjEC41TYhMgrh8v7B53/5Tnmdjp2HfMEEX2+xUDBLWSzMZGeobLbhf/807wXJh8t4030hrtdv3vmKcr1AyfWxckSuvCrun6kt+X6JXNoeXuERQ/hSR1GPomgC6jfHEKy48PG5DQhD5D1Eqj4hmfQbxCd//CEPb4vv+OPdK2AL5l3fIyjnTn/+SlpXj+ZuVkl3XzYiD0I7eFFfwveMUfyDfAOVU7+xpuhn1mjj7d+MPL2nmWTbt6xdlesFVXUCdAw0Z8OXLtg5uPuXPL9Vy2W7pWAGTaW97ZpJsCukC+0XU65GZ+GJSEj2XukubfnYHSaXwXf6ReTLQxFzuNCsNCpWLHlZyPhqkdi5F3rHfEOxpZP619VwwEzTpd8jvcKdkeg6fbBtp286vqm7VtY8I0K27IyP0628ZUlf8JyH88BX/TlH78QB++KbtLPVYQu1/7JzDb5JNPmoivw+YkRXZ+OLZrXaH0Ez6so84Lvz2TpHWZAzHkS2zaHbgj7IYJC1T1y6ePYnFm7xVo2f84Ef19t91vNZgj3l61iJRAMPhkWUTex9pDp58aapI9P9xbwdr9siQA7+V7Gqwt2nUt0o66ahPefUlQHCjtyMs2b2Yfm+4W0676jqp69zdoePAXwGxtUXrk9rzJNVuAjFw7bJUFgjrtnnqkLXtLT79MEbW5EAEPfzZijVZqP0y2N4forRaY3eFPOO1OxUDg/hD+/zIede5vR3+8da4cC9kjXKgrOBmHml6Jg8p/6DUzn6zKjaOOultD40CaENboW89Jk0SnpN+yw+7Itl41kbQxZChMnB+IRI0pGv1dUQDACVeiryPmfXv6EfrbMPwcNyff3UrW9NFFhPpOc7x/1jCqdnwm2rnHZnnZxBN1RnFhWwysZomxbw3FSbbxpaJ3MxXFv/eljZhVvGtBl/qky3U/MX++Ljp4fvqgOYqOQtGy/OXfOQQRKrlxZUifEHM9XliGtLI5/+ScXhV/gQJDTFX1903rJr1yKbrJesp033vK5FL0MzCoS2G238/mIJ9uCmAcNlT+3suSjByni16Ul16JvxvXlEaO+/JokyH3ouHi5qqB1L525QqjmYyw0rrroCyyl2i6ZOY0Kbcnf2N4+2YHoSd4L1r2zIeFe2+T8xSrjTx+TnXPqkmbxX2jx1yyscYhUu5T8xa/tybWmXTC/tUyHZttaxE4Z4kP87QBq6bA0jn8eeJ9ufhEM6qWhjTrdEI9CIkBu1C4jH1pxfi8sS2s0/Uw8PQy42CSbBq1xblJx8dPTfNtZ//IAIq9qPr/veYTu1qAz75uYqDqGfq2azpcxp/+dyhn3FwyzVBvMJps5+D3u3aj+0vS38DFJZlX3I+RtvwZe0zxP5qpVRvi90jO5JobTjTWXe1h1F8C3JQ+apNc5BaNBm798LGB/etdu+gA/HKHOZ8/FPciUTBhZG7UcvjepRbfrccDlQA2+pu+t9VePzFUnHkzb4Sb95etENw7QsSWfhBW6nNhf/jh270OFlERx2JFfqmDJ9zGM/c1ibnLVkwmXWYiWPHPJ43Z8LXkvAS3+EIu/S8z7VypL6kN3bIweH9UctThy4CCmDCsZwWgU9Q9F5jH5MNcTdmgy94cQVe5kYNWL2nJsuJLB9xFbeOpvn2D6pC8dyLHakgO4y0FXwcH6e37EU1Zl2Y5ybYBbbjjlWpYhPv60Ci14QjwrNAJe3m0MO1W80XlZD5Dz449C2txTptu9GjTH0Ki0Ajd3suBjwNeV0MPZbVuiP7Wmm/LRqDTf7/yli/SBS78PHNFSb8xZ9PKgxVgBIsOX2DRHuViQfoZu5x6ZvuRvo/gbsbbkt+Tw3fZ5xy+3I+hBumO3Ap9LeWdSFTVee2H7U13kf+sDQNp4YqHZm+UgxNZjYz2bH52n11D2UxK+/uUl4Y2L+eg+06ULsJ8wc/L8YKRYOcK9SAnLwJzMuTy6Ifz5x03vlXwUfm4LZzB+7G9+0c+2FEGt9QtNYmNCUzbuHuh+ozZx3/Y9/+cnFz9Edo5amY2B9hEgcf79yzt5m3o3dXdyVZLJ+2/CROz46lMsXuwvD55PuzjWvO3HICY2UDku+S8QP1lhZX9lJlPystW0TXgne2ecAm6vUgybtu3Ytqw/5sxe2g2QyCNC9O/UTWFfSPD390HCnsFkT7QG8l2tyV501znPxOH4l29iJbnq+UxKp/7jN+Y9lTqZLSl1AF3TMyObzMvn8DFncKxCwo7huuILn9cQszlb/ESY/xQZC+gfnkZfm3NRThs4/pQVXtEK53PPjzGk0b3/yxvzfq2X8WbR40RfWToaD49Ogr/5OO53l068jrkF6sM8ELd6ZYjLeW2haynemXdRNpwLUlnAvcgk4v7xbTSuDHgHB5sE7mZE4zvVMjR48QdLowWIe2ZrqKPqvplz1CZz8aMVGMomJmZsHPjYvo8G5FH0IdtNbHGWiZ8z/OW5etB3ydT7UYFWfhzj1/RDfPjdpllb/DOVAB9A4L+98ZYs+U6jiiP9MvN6J0m94A0Sqtojrl6yZFr4SltdwGXZ2Tku6ycbF22NADHr8b6g+aU9lH/rdWI/Z+ZY3/0YqnTMSbZbN+bMfN1Yuljay+fFJW8fK+BhPBPng5VgWMdTpRbh6c2C7YMnUxj2FrwbARF7a17yf883Hp4PZqjnS/BvvWzJm3Epe5/gE2Ve9ceXxDeyD//85eGXK33SJV/t/tZXwXzUe7LkE2iplwq6tlDp5VzP+TzKVFcXfCHknKh8Kt5aobI8lVimNrScyu2k/ullPAvnsuPTT+nVd7oqqKQ9t2gujkYDyvVzp0r7WiO+f9ARvc3DlXjn+8CXfKMBeLmwzPey4/xyPMPqAoz5z3fBh8e9m2G83TpCPt6aj4f1WYRTsZyycREvZb861/RPL5HwpH3QiOazC+0qwPSRtgRN7KI8EF2z4+KXtibHu+UgliXfCnI/5tOy/qot+oT4L2Ams5+HhybtniExQsHLZ806P2BzA0x2l+CdT1qM1U05pIx5eyPo+tb/6ZAIRU/5gj9swQMNNDklQbj5Bq/rmDaw8Ckzztc378nkhnAGM8Li3SmCv+enLc8fq4t+HOPTvUHZcfNiz3OSoZmEeY3izz1Yxv9u0oYZBdobjws9LfpzrOpYgcPWGJd8LzZnJ/sKoMPdpxu5epu/fPRryC74RgKqW4H8UGQLskrZEFvKd0j0+vUMS77FsBaKAX+TJoOXj3/01fCm5MJwGRf9NeFRl2pE4axkiK8anz0aJPG+INWIqHGmtEvYKuC3IC/+ry4F2v/eUvBK1xJtuhUqeaQdQzTI94r5/bYOqJJKtfrSdZUR7BxR//koEji8V1mUS+uOv1aKjsr9BVPuW7eEs8lRQDBjjexlXzJ57ek+7IzzCcvqGgW/Nni3mimlH2bfX0k5qEc/g4tm3AhxMl7ybewfoZ1uGiONv0v4ctAx0H3ak+O+Krtx84wL+HCnoO932ZtFV/oNnM3IIuH7oueSkkqVKknfmhbD/VDyrchvaLTnFyPDyuj69ryZIXGcK9UepO94uVjUV+30JLi/GR9lpxlhrDpCvLNqdNI7tG8wXZ8Ow6eIm/3TPisbaKIfPbXDlIxi1Pjw6UaRbI9nnPAV1TNtz4OcGF8Q0VfY7A34e77yPDnBbKTxiG4kifHHyT7Jcj8vbSVcVbbDYpkPBat6+AlmS1HY5klf7n890BlXdAqCjA98cEX0O99+7MhaPZkjt0+hz52O4FvdmTNdzgq8oVQmftXhYI7cKlV3xvFEHsHQ8dGorjqI6/LF9t3Nz+fPMY1QrWxNZtNLYzavy9tC2tLyLejLXzAr63YE++UKzDc2BPG1GBvqih4iOp3Le84P8qRCwswVXlcvI+GXraGjKrUwuf3s3qwuaPuCG4r3zHrreTCH8dbVXo/2SCF6BZwez9cCPnnjk+PmkyejnR0a+BsvC6WhOZ4cJ0RlLvyY0TVSMP3ONIbMQU9mRMqU8E01HuEaDSae7u93Oca+28J3DwEJ5gzziUFbwMZSC4bhbeZSax9C6K6mgKVra6B5SJsW3QXRY+Z06svleWZoKxgTMZ2F4lT4nWFf6hMJOuuM5v1aLqDJThYeXRHKn3o0Us2wnIpY09tJ5kt8cUC4YpsZsq50404Zejh0lo1fWvQKpmgaAFSmrolVHZtu3Ib9C13Z+c723A3KAebHA9wOTJwWTpdPvfMGaIt1QTz5PeTTWRV0mFiGCf6CgdZS2TswTopNvKDQg0mV+AuyQsnwFB1NJO333gMyNdyRw199/ux9D4f+0VJ1vG4Qky4fEXkv5UO5uS7K8eMWxmqdf2IW3odfOYtFctbaQi6wLPGx7Jt8cwNl+4xIaB7KZAwCLYROyh9s22ws86c8qkwNyrtKv99JzsdtWBUwqtWF1qLzCyYeHRttnoWAmHT7DMZhxC5g/zsz56z3wXcfrgGZUvbBed7++DST2dDqr3JlumiHiGXQq6iKUED5+iKb1LvpL2g2e04ia57N/qx3KvjusybGKxaSyXjolSaSi8lMGEgwsg4/FPU5BsSxvUvHdfU+ouvqM2HBKNJudq2boZ4Ll7Pcz9/leCrUDNDs7KkweS++zHcXvVwWMvc39+UoHowZ0nbpGhFs7JIHh3WjTgoJqELSCE15JwmwS9MdM/WgN8cysQy4elGHX6vc6ujzsPdBEbQrFpPcS+RZuKZIz44B1g4G5nPmPntI7plDXHh9g14KAwf07Bzg1fJ9o22SWfVJ+2Ph0ulvaA8BwP7EEaaeEnVisY5fkA02wurp6+e88fcpcqks09f7Mud8fTGxtjPlCk/j55PMJ9EA6Cf/QUwYmDlnMGaaoj18ZjdFj+YFX+EPL/Bezc0/PEGxJ/l0tbl8TL5vwxGwVA9sD6dfyd6qckbrbgC2PZf3ZHwUgfP3/5mdaH3CO7Vs0Qh2jSs/koI5M7IRvNh/EZOUOJleh7RF7mPYk2C3O5r9pgJRHdX6wkxB4d1UuY8CWRt44xWqxIBbrWjB0xw75korP5H4e6SgCq+IYKNISy5sbAPe+25ghrIWA958jxg5ZRUt94MC/lu5FH7Q2XRz927/8BFM5sgUsustmA590KJOVAkL8HqFxqOtg7bgK73Er6ob5Ic3IvzqPsydXmk+f2QvgyrFCuUfzTdlvJNi0OzGo0g8iPxrsKsP+1AQ8GbqY5OrnwzAlJHI/Gu3ykffHmPNsKwK3/wVMyc7w74abK4GcW35mND+3pzB+9Uy5uKqzMeh3WJorCswbEt1wGPlWECpyikJfa3qGr95p5ph3z28uvtKx8WboW6OyVomnjdUnEcfRhFIikUn5mrdwK6bFCV47ohXNDRn1+fDUkMQj+T2mR4lj/M9XY7Tbcn2m02oj323gXp1Htm+crXgU2cNhdpzj0S/dgeTJjkXwerZ0lhqvppDS+P5D8+wIpyMRPJXkgrNZufRaaXtShZly9nZzMMk2Iw1YvtQA/hwqyD4MbHy9xL7FO2aYiK4fqJkbgjHaMTfG9vZicOXRqstilKF/s0fcw7UW4Wu/qRSIRgCTkU7LBBSxydxveCNup05KLBLsx2xymBVsscwSHBKO0p26fVkUmXUbxq5NU9mHHDWcXN8pGAU4g9Tc6Wb8+7thmrzivfEmUlp8nRbtciqtld86BEu+dUgEWj0y4hF9wr/x2dLvZL98Lt2//BmVWslO+y8KJmvW8UFCTILf9aDbg5nVdJhWw8WVYrbsezF6OVruyA4EPOj+UHPFVT946d1uR3N+RUUIkjRW2S2pd0RnWsl3WzPdUbcJMvzaWUPAsTy8cis5swXCS/FgI506TgNpKPuu5BUeR4CFki3az7d89QA6alXzBmcLOHfeqpBLw/zP75gZ8frN7ksITw9e8fsjepgaF5x8EnWKneTXtigwvPtB8ydXKv748u/+mI7OA75eC5PBnxwfsQv52Pw0fqcY7S5Dw+2+06XhN3IYdRYGp+Z+dHagI5TnGlddOqZ797k4Cc/tqO28C1xoncW/OERmi+2yvzmVKHp/r4JYISzhFGziZN5rpUMLXqGWXxprDcaSId7g7ZY2FcHTvG+t4AksMcrepHyUafIgMuaLnIYX9HkRniGy1nSsWI/9VIKU8dS6+hhEGP7sJI/vkPctNZ4c/cgn2xYxeh0STwS3rBc0hH/IvjjW1OVfuZ0SS0FTHOnEeMzRQn/fQUJTD9viXe4OuZ0IJcbgvjy/sdHtC0a42++Efsdipzn8oDBf2SUOeHdNmfNWxVwckuL2S/xHczH1a5S/UH3mPsZi4DP312hNg088Wo25W6qtasEPTqt6OQKAR9DXanVIR2e9CeXMhrLJDSQZrceXuW/HHEhFzAU8uFG/NEcu/mr4Bb2+FTi9fXhmbLMsiP4zykhi540//S71helSXQD9UHfim4NkmffmKl0VVkx93RE2U36YvlTx2gMf7RBwbw7UTndvvNxFeQjMsJRYlY2bZO52OoibJ9xj98Lf/Gl/gCvQ5c8rU+a9HWdP+BpZA5WiptYMv4eMETubJHwD09Pm3GGkFqEYJSqeT+021BVIqdj2yBQ+WQi1YD5pqQkqzpsTiQRX0h6GhXZjtrGnCvoesjyh0EFZByCBsnvFuxtTOhnFX3N34Kf8Kr6HTu/qcyn7kBrhBUbiPdXD3h8UTBu6EUhl5Yteu7koKBtNOb4za8bo2PbqA/9cqW14ibd2AhtDW/zEf7j++r+fj2078NaL/VW5eOfv6mvscBMhAHN/kpSYBNiQrXPpyrHbPJd1bn/dsSvpbgb/eadaYrk3sn2KrdoRj02Nv5aGzF8K5ZMwy6s4L4xO2JdbN0cxejlaqg8uuQKvY76go0YxtLVie58DNSrVwWDnKwc/KueYsKXHdXoT2/Pv/xrTn5zV8AfDI9YRuEns4MFA5oN4XSMT9dg7c4rFVm232KE731Af41/hMNzL7Jwrt1yUqcrRl7yY1S0rlEyq50+okN/axf/gJLBmeZW3eq/mJDi15bj7nQQtO4h3khwXbbQzHk1g5etbiS03V8+wdI14juPJjM9yk36DPQQBeUlourl9ummYVtEqLReMbPXgx6MAv+GoFCJsZ3dqd18kxWqCjL4dHWbl/e9lcYAeV6vSRAd52ByfU+C4RJGRI/c1pzj98OF9Ph94Gf+Q5zrdweWLhNH5t7IpxvrOr+hjJsWnW9RgrryQUcone2b2If5+6c3BO1Y3GPm2k99adRZOXD8jSt2Fp2fOfHo1qDD7awTZ3DUfEwBz2jd4oHt3JVrin9+Vc/XGSPf7SNn+h0LaoaGMxXgXSZT8q1r+PWvnCQI39A8E1ps1oows6CSv6hzTDNGCz7TPz33T5/qE9qz7Ur7drOZJJb2pzfH/PHmC76mYO0loBs5sMz1qoh9TcamxgyvuOb0ebBdJNunjpjZZ9eNi35H+bZ5Mt9Af9fvjGhiKSaJuTbK9ni+vuCNApmqUvQsuwg2Nci56y337wWMjtsGBWPlsDit5o4fB7VACz4zX6svJTeTXQ3HFd0xe5mfLJONSrMP6YYR32qT8W4dGi02ivuyBL7NZZ43MfoQvvmXX8zDY6igOJCWijdh7KbV6iXA2YwtYt9fvJynSdPhsKcfXJK9bc7CuzdQzUKHkOY1duwcOg3a33cN2R8MigaEXxaqVh0hRDOdfDbSbIThqRTMO+RjyfxIycC/2Ft2UeICze9w/9isnkuXLPtYmsv4juj1aI4suD4/CftIaxWuO9UhmB/t/E+vQrOxPbLv5qQcb/XL/Q9pV7OlLM9sL8iBgEiKIQICAiYI+DcTVAREFEggufqz6OcdfrMz7NWtLaaya+9dlQqyVmsJg6/b3fQKI4BZj+N3q56Cv9frWfHCWLHiqZom7hV6z7uBeGUudUPlHmJ93i94Yfo2UpDHY7jbRMKLa3yvptVjw9ezXieeOIpueCydC9q40pHgzL2gfo5fSCTdY7vj1s1G7aqGaPYXqGbQIBknXcT6Ax465vswCugWJxdYjMJlm872Kp7mjxztbX9uRFmSgP/KwoC/93c8QbM+Pn609XKRaWzzPZxFX8avC2yiCZjlzCWIvOAnrTguTGYX7SfpS/lWoJ3fe2zjtWU3olQtwNhvjyzwmiYR3qLxtPuqzPcr7XkQcvKhNfrUfktss05F/7AhBhudHba9+7/sR5XYRr4DZxbhhHY93S9/aFU2L6yXh1XAV5cMYK5j0fXVnRB3e/aAPz6d8RtFfbOzf+C4bEkV5bDvRtVtDO30k7eMyAPOhlXtzJPtpPy/eJXpoUHt0jzQn3Epg9GL4ghx7Cd/+Slokd7UWlMMJzJY8ij6pklyWKyfV4xmf0ec6JKjmd+QfOcLwb3FuoXvG1O8Pkcd+sMr7Xj5UuY97ELQq6vbMG7HgkUfrAYjX9w1sDwtY8H8+QfJ5yeURZeakMPNzLicr014hd6DCrWzO94Z1xI8cctoPeP1tBhOIyhuvWfBxwyTdspMD7BSD3Q+Ky+4n3c+3FLvSPKo6BDbSCiH72LzI8Gszzne9w78ukrC8MGNJUIW5mBmtwNV1AegvkpCA+KQLTC9sa01LmmoQXjiJTNe5zgZM04ucHw8QuY9bj9LeMfRRmGDQvJPry4Ew9opdI05/tqqjbnSQ1FTd/YHy27849vpsneZfz+erLG1PzUc32r9ly//1nsBrvlYMqtw6mxc+JOv53tuMfcb7apVp1Utyk/sR2GRSolYrtkP3UrtRoL3/hB0neEYUH48zsj5c8jkdJnYoB38ie1NQ+7Gx+d9g/yIM4yuMq5mvRqjtHzGWI9XP2v2qwoQRX4kuXWwMtYjHMOaX3qqzf7g9Dm+jD99T8zBbZMv9NdybRl4R2VufZPxWPKLhnrzRv70FLeSzEGzf8Ee3naJ+pXTckiM4ECT8gsVP+yIidJktaKrcSFnvRwUDzTrPbz47eJArGs1RRy1d/KsH4013Lo8hVeZIua+m1j0fvu9IbouDuxau0Yl/T1fGl6fxFV/p67rDGxo83oyx54qJB6fVoPyzfds1+46ayDK0KK1rZZks4n9apIotqHcTTFGJjMyvpI9708PEP/pH/7j89X6tMOdL+TsX76a9T6zVv5HiOhmPHT5dz7/w/+xOy8NeAsS4vXqtc9kp49SmPM18dKqzvpVOFCUv49btn+jPUJnp06haOyePG7sHQjHCiKolYWO1+3rIUa6PxrgeynQ9fy84kRXI2zHQ0s1E90yDrtcg9lv+udn8zg7hLq02HNiXcY+4fHCTGHh1z+ytd+/QJSb83zIE/0ITixLTJ6/kZB8sy3c0OolJvVRX7Q+v0d0PH6b6mdd9BtIxzic9e8GiWl3cv7x+cAXcjJsvh8F3c3+zcL3tKi4/tpc9FeeeMQ63KRk3A1f+18+tdzVPpjGVakgVJ08rO96BfWvOzXRnz4MsPwUI9z0HGa8pa+rXGSsRPECSraks35JBa/qVfjHd2a+13b864sSnLf7xPGn6TrR35f5um6UhLl8aqz+jHYlork/MVJIJBvbbHroxteOiD37aaOjDzdtuxgvJLxt2oSbiBbaiR/udLLuLBi26S6Eg1ibJFDsbSVdE3RCJaE35jzXeUb3ccf/8Rvb2x6qGT8fsK5+H7qKVTXrj46DYZy0LTGe5QmN7vEK/9b3vZ5ki5P3pZmnMIZkB30xH9GLTDR9PyNG8VPp+A3UCyL570k89/e2OFi8Rl8h7TCrlasYiTL5cPWFRvnsZ7KXEff6rM/++HM2KUaU6rN+pmL4drNfpEZwbha/2V9KhQRqGGniM5rszKcmmGxFS+HPnyxTDSFl9j9g3m9k14lNNxzvdqNzZxkRhyK56365htFcT2FuXNiVlDeFD6J4HJlZxI+Mp0vSaB6VV/Op2w0SI76PKI6/LvvzX8efZNT64Wgk5E9vTkq1eejle9wTwq1z1a9Nqwe4dpj5z+JWcXv8qlDoL4s4h8Wr6ipZ/f35uVQ+SnHGB3Tl6NY1PV2Qs9lNUrvzYfab//RcwLvK/6GO6g7xHraBptq8NvBB8+ftIjMT/iEzoTjfD8RbHM1skqJlrLVBvWTGMqs74Z/kEzxO8Yvql0sjhL6wKfhnd0OXTbLJ+jnf/atv4H35ycoKdg48Ld7R8ba5JSO5/lL4wx/bwUEnXcDhEKwzE3NVToNpuWwXcEnfD6w8Vwck0mB3gXZTeCwnm3XHhU8VYPFTpcXsl70fS+e2FgdFo/qt6rIJTUhCz+7cs6136JJpY6xH4DV2/vEvOlzaFqQ7PFi+DxcJl0sZNFU5uCT8zC0jh9XiAlhXb8wqDx4at5bL0V/9zTvbscXHbnR0XqcjXRTtsVOOtG3BSZWAbTiXsqGQ+pum6Chh4W3jZfyuJidtKYVXqmy2ZjVtb44PkblssLTXejTtL1IIs9/Gtq2qBH/5CFV2GTN3bF7VyF+uDa4l18ztMhxwSwlDgO+k4hVzSTLXPxaAtov27/NUQ2D4OZxpdMbTVTYS2ULc1Gd9ilFlvMQ06lsPPfpTwkwWh2IyH169JuiFyc48h0Iyv+Kkz/UIdpeWUzfX2yi63A8j218ujpioaavg7Ms7CUPJ7zrsLiL0OEUvcjgF32os0fOBfBzZLOKN1o33jz+iM5sasqlGFAy2op1g/Q4Utr+9ZcGbVFMBDa8vISPOE14EPwlq6hns/tYv2ahQKUR1fBgpqO47473zePzTC6a6elTTd1A9MH65TFy3OKKxlGVPO40jJkbkp5006/l/eu1vfSb72pWQZqZG7H1tVcqdTybcX++Ubc+fypoOzTdFNF3ZeNJ5FQycVx58j45Nm6oSQWOUEofa4K9//EZc6jtHfcIXf3wuUUY8X0z780/EOxBlvmEjiGFdTYe5vhFaf/Vf9FP5j+Abe1uimy9CUr1fQvaKFKJRDoocLpOUYlX7voJp/zgV0BnEpKtTyQIRwdTo77vBiFV7WHzQW25Q9esp2ckUqoEo7xZeSaMQ/1lo1VS7QtOj4uzgyX2uOx6/Th7M+YkZjq50Q1raEbq6qsPwYyIdTdfv6C+eZ36nZ7zceJL+5ycfpO8tY8egNxBy76u5HupZU0flC5SX15m5gd93o22apd6ULiKubCwRM8PCgJMTqGyjJlNA++odwx/+RaNVJnO85NqGeCae2nVtzX50+5c/iH/Ot13bMUMDky8TOmbKsRsIvmE0PLWSYLfbZKte3qV/+oHgxnW71ezXgzKMX7ad+RmdSKBpY1q82W6uH3BF++VwVUaZmFraWKNzk2INf5YxM09nK5vO8a+BUcQ/5igfBc18Av9/WgoU6X+3FMRbJ2T+1qTJKGlmAd6zutOluxOCplwb4aX3Lkvx0cnGpaVSsMpoYtdjf6r4tBUAjf7cUYFrPRlg8FMU8uGOx3fLqulX3C6woR5jxnFjdNzLmpv2LJKIOPa5DsZ81H0Yq4mxXSA5lQLkZ8M1jhzmh8Ey6B21BKjewd9gRKXjKecc1tvAIn+/52XqFaCn+oP4S3cbSPSZ1SBxJWF+G7TVNFV5iIKBz3dZv9pM4I0LqNmXJaZDH6Ah63wTfa7xkWrRp6m4VIy53hy6BdmpcoRkRdpJYH43CbPFskO0hCyFb/OWaWRcso593wcFpUvHoWuFKmJkpVpCrzy/WEWfr/Wm3pnCjQpGV8MiSkSIxYhO3/WB7f3mJ0bmNrleH/WaufcpFuKsRan+ZWqHNeUQWu2RvCTIvzSmYjS3GaU0T9GKnUpa3iQpoBtlYSP5LOnEdfajmD7bo6q9fmlFDjIXSIBKPXTMywsxNqsxYI+s60HiUkLswVwHP0/PFWRdsIX5ZbjNg+g0CTl51DFcG2tE7+9dCuoR58w98G8gCn+cW4DSB7Os/QWJMDhJqHjUI8NgzHcp83cIadM+iZMuhNVLl9SBYEIfKtrOQPIywCnwTWSw7ZEU1jcLx1JX81EimbeULeavcg/2L2PBwsV1SPrz3bBBmPLAwvXUBmMRPxyo83HLoihwK3nvPC/gsJaQICbParxriwd83GpFR1kegu7pZiVcE0tnmKdTML133kV77N4FCbLhjnho1DHaruINCz8EhPiwgiLptbSJfUtHa54SEaKXHBXEn7Ik6PX+6kC7BJscO90T4revKVgCregIC13Urd3/kKOuKNtbpMnGK8kjmEijMXO7PCRtRXY28IQfyd7a8IqR7xiBJq8L5qT1q+NStdLQ/qXtyWZ18LIVtmsV1iczJu5NeqLhezrYemUENh77t9kpa2koIQf8ITY7OxU/GQdb17/hgdnO4iVEdCwcZPKTj5Wi6hJ+2385OgQKZT7tBerFuMNI97WR7e/lp+O3/Ysvf+GdMu/AmBjj8PaAUm8puS5rJsT98LugdlXesazWqjUVt02ot+tdxfbp4yb607Xz0WNQEoY9s8lE3Ow5+KSwSEIMG63c1auHveNu8MrP7E7+zcZ3XysVBi7JwfdeRzZYtvQk27h/VHTaXTRQlO0WV0o1dpN5Fid98TNdsu+MtxCPtR7CtNpq5CAsqWuno02h1H/03+sncl8A3K/tmp2/pyBY7Ve4BvmAOqo+9ziQ89Na0byLkpIN/1rW+MmvHEp3lNmBf6uAlQ9hQ7BxJ6ouPKkSXnUtwEPpd47PfSJ54dCi/ro5Exf9ykR4W8MAJ7vmLGzkLuO/um1AbRuDqve0tYSwohBc+6fNeDAmXyn/xYCM1Z04fSlb4+mEMXK1UmDotydLcHmtwt31anJB12M2fRbrB/g9HJkzjp6YaBEqMIz1ieXPR4MGVG0McM8BIQH93rpR269atJBsmTi9Z1XjGAQXxMKTR2yKlsG4LH2sO4lsM0Ot+4QbPYyoJMc9c5+/C2qYev/B8fM4UuXaXLJp8TwVaKOSO373b5z1t5wXYPqM48994kJU/SGF43rxY6GdKh379AFHudQS5qTjM2nVrMphWrka88bIFooaxhQWT2eeWfKWujFagAdbb3vA6uLUJky8XhRuKTPJhhSeKEm59cHClo7rEIedtI0iT4vDtsb6TbTZJP+8AubnobCeWmtU17BAzRZ8vKjxUA2HqG3RGfs2w+z8CMZ025bAaX8gxjLpMlEcUkW3oybG0o9tMu6KpIDp/ZDw8NyvEd1omQl/v4dv7XfytBlG7UnbHV3jYxxMgEcJ4Giu2MZXrW48XStfP5x4N3dB+8nqhIsG3GO5Y3/rwwUaTKiDzYc4ncaqqVL33pr7zwfb9ssnatffDdXf5/ZLSGNryRiH8QN9FPohWJLzbvSmyYCTWC4xen8spPx2pwK+7SlhbnlVg/Hr7WqU66uBeGflW01idZLQsBwcYtX3IRD9O4zQZxEtmbHLvUSoUatBfJ4t0MJKgsl5fWz0qY7zqY5BF32wu/xgD9KO7XbIqPiLyjYsr9sn2fuXVdBdnk4E7CHd2fnAdxZjhjELkDPHCv1iscL5bb6N1jnSdcVvwXRSBw12F45w1O6QxdKVB+h8tTfE4auyEgv6jCDX5WGu4TqCiaUIIS6LBwkWysX6acU9BbN495TdtmM1748c2YSZs6SNuyELxwJGN+yJmSateIfwMKDpFIuRT0X/8NFepTc5IXsktx3lFI9IrBuZGA/rnPDFZ/ODDGKD/OX/4W6+Wv1CholgvTt2PS9/C2Q+tieGL6QS/WflpOjveRd1vkmEet7HKCu3iARBanbUcbsRumr3IOH+YiVjbz8dzV9tLFw992Y2euHwQ+yyAUbUZtsNq4XlA6RBy3zp0ljDJfnlKMo0l+0a94OGgOc9an0nIEY2332u+WMIysbOsLzLJWssjsKA+rismYkUKROtsrfBWK4w2V0yGbHtL8jhUsGb4eoiZd/hFJTw0qnL/L06n9K5Lmog/XDG1XfLs5E+swbdSR1Q1fdX1VROLUf3avhgdN6qFTcbX9K4f39QfXMqkvFtc6wjZTiR61lEmWgfzwVq10FFhe8HojflrIE9Ao2F3X3seNKuH3CkwYP8rc849msJyWdFx3Dgqeh/Ykr1HaZ7DDW8E6qvJA0K6ydh3nwKa1AGArBdKFfiV27WcbzmETr/mMs2C8XouGmsHvC5RkfMnf07YCdc1KiLvjuWqcceicUEISjx8GImykshLmUXgh6+FPydVB2JwlcfqGbxDTdzPhWNpYIWFZuKWKmZzfyh7eH9JBv69/3zS5r1EJnvA/HCtYKEFXfq+rjeZoTckjrr+yACuDuHI3O8Sa7GQcxTwe4nTOywfVjilT18pFwLkwTF5ItxUoSP7nWtkEA9hmLc3SwNzlt6p/yzOVQD3UYxPMyNx2zpc0jGUZwwzPjH9kBu2RCkAUaBf/lgtLQ79LbehwaWztv/i69AHq83DeQOv/Aw89OJTZ45l4gI1reLbbe64+0DHZA4stDJxmxa5Xm/OhxRTtUXvXb8Ea19IEvSM+PzkqtpWK0BLZ+qQW7Xr579ytQroauCB9nm/j3gWnE8QXR/7am+Xbw7/uniEjGJnomJZT8b9JX1g89tnWHOL6dA3PsHQAhmwlwPxqDtm32B1PvPIt5RryoeXA4XfeeiHi+X7GRNC61odE2/q2TzDmw0jv0kgRl8Nnjp7hLBmXps14F/+xC8Q30yzPgI1un5ZkH5G0U/xy/Meoau0SkPOM6K8V8+WBt3M5Hszu4BvZ2IqvP/n0zDwWC+HgivtkvdoqadX1D4mgc5q6+HmI5R5oAyfO+YDwu7U2BANTz59Cb2srYt2UsvXA2Op/qPb3Tjc/w06OVsRwyn283i63jpoD9+7O/VT9Z931cFbZsLJ570U7LJcXgJens22Zzvu9Vf/o2C+e7VVU6rf9/HzG/xaoU1QV2RlPo2y2VmR8qExuSUjJAQYGQ/sK0lXT67Cyy3DBFn0aoVb5ZlD3IUv8lOSecpIE/vh35POSabyafd0P6+ESwkRyabbLuxJM1XMWwTC+Oe3qxOLKL9CMYq+xBs1h/R8rJc6H7yfbK//boSrWNDdixVLKTfr+LKfQ9QzKfQN8AaMcTnvQEyyY64i07XarptFy0Ki71HTmn9qsRZu5xAq+MbwT+9r7hpLB9ANiJj9u45ZNPnHpjadtgisp/5Ar8opqfv9sqCEOUZdIxBpYBfl5T47q4N+EF4JxgGPJHgenMyfnz8mr/nYfj1xNnqNZeAZj1JF3jaZpNpYAzlNUN4tcppN2kCYnj61xMx+rdZKRstMXSfvjNmiOKZjIaDVSU8+Tda3qdPMFWnR4+Omzon+225sGYsCWFydwkxF4EZrMzf1YRYNgRJLhHrJtmLHf2+2gYskuW9NbkRkuChjhHVV3srk/b3LIbrTnkwohxWQvBHOKLusn/Rqczf3UC9Z48W6LtnO+NeJpxN6xjIUDfkqsqj4M3rGgI0nY6lm5NnQz+oLTJfOSKW0Q/dMPMfcB/sw7DbLKqZ/8/6Td2TTD2GaDLXL45wt35hveHcEvpH0+Dx2XBm14aZia/rnaDKgBDrscQV16/dDaVL26F6Z2yF+HWLEM34QvzH85SxpvRzlFlGhds1tSyxotoNoW66ss1X/IJ+kXYAUd4tmIc+u2AkkiaB4aWEavotR3zPVADjptRYOgu7E/7x3YNb5A7LZ342LZvLRd9dW5+YrnrO5GMyGmh3CCvmG7dvMGRkCWjWY4y01zZgjTUuoDm/I+LW9C0mukHpf/rittSSfrq8WkgzWtI+sI4VYzf5BrLeK8xbFywTnbwqkfImCtk3l6ITmhMbeiJLX/bcPV7zFJBjCs/PqqWKhfKMD8XCQZeFFVN+3b3QqM0l6zk+8JqdeTKWnovh9EUH3KuxqOrn+KlRm/prYo5DJQYxag/gTfQjhGoi+WyH4qarhXf98yMQ/6oqR8nNumN4qpfsO/Nl8DOyIkRb34Nxdws0uCzUF17fLRSIweEjLA+Vy5zAsYJVfSAxYigryAath+r3F+9j6c+dYfOp8+PGP6FXqB3IrF/Q9Cb1CH5sXgnJmzzgw5I0cOlKfY6PMmPi9e3B5KlPfNonaEjniyDW4lFTtNu3Qij12v7jc8SVj5Lov1/VgGX3kZg584EvetYOqnO+JbZ7ERmboqaAJZnv4p5Qlw3DagIt3YV7rMvOPIT4oUnwctyRqtsyzuiNXUL4yy9zPkpWT2vRQBV3V4ZrvO/GGb9At9ILi+GxRixdGQBaZH2o1LafavQis4E//Pc2XiE6vPByeKp0RcfofQ3GGwpN2F1/PnHuUh+M9dW/IdouamZ5hzcas+qk/e0Pduq9qmKl8aohGOMX84bXu2Jn7ZKiaxw7jOx+y2yUy/sNPfN1R/XxUSf8bt3mi/B2Nmmf2UuIRPQGTPHiSUJXq8XXXH850hZHl8SbnZoNirRR/lsP5rnWeCRfCS5OkWCd4CigJ+NqgxS6PjNsqQq4XrgcFqdfhflmpybj7Xqs0dOUFrjW779s+tO3Os9GLICYaOrjuSWjG3/0D6/neFIhGjVOJycHi9qXs6HJi2ZL5XeLsiFWxQMuXnClIFdpNtyWcajy9zUjR9p7Fn9Ek6+LtA7I7C9WNOqdxx/e4dV9ilG/v2cR2Fcx4k8WuclIwsLUiVpWWCTtLxjdQp/9PSthXoLtZML7a4xaShqyQ6fcGg/mwQdLrFfMqsk1Y8uk7EHcxZe4s38xWmgFaHNPCqqezrIlzN/VQOyh3LE47eTuDz+1WsNnZrWrRScu+pnDsXk77PREbzGVUzHC+3HkzCusT8KLNqJw8JdPqi5OXjYePLmARFa+jLSBNOOlkeopDVc0sfYqGqPT9wRuuI+ZoVjF3EydNjDrAbZlzrWb+VMLr5IHxN9FpSWe78GEQ3udGEm8e0fr6GHAcOtzcj2/84qXqnKDvqt6LJg0ZaOFloCclCZk1udV/fRS/qcPmdXUDmLL5EehWt9eWNoNG2sarzcVlnhXMofQNhlD2buhJxdvqrrf0OpF38f/+Ot571fonz79aYIwb8bzn2mnN5C3afunj6vxtfkpYO1jB38W72VCFQnZCMvhhQSnzg3G6zBweKTVnW1KfBDjd8xvaPZL8UKSoRoV29Jg6T6ubKt1B8T725Vq2eniEjPprEwRV6WBP79jjz4p6q1lqgE9PQjevQ5UTLnaxpBmfUk1MRqdNAbWBYqCrKg8ZW4mydlkwp9faBRc6Xo1qx7Qd6+ebU6rfYYALFv7ONwg15k/jra5VmG6FStmnkIqxtIjGC0lrWP2o7TQFNAlX//51bupNyyRaT6HaFQ5s+2VZw3SfHETnkuouHFFNW323NAV7yfwem3VHUfblqMm0lwqFl4rZv8SI+zOU7zWlt11q93HBPXTT+yUJcXsz8c3fY4fHMV9jOb9PEKMGOCqC3uLXQyJg/W6lsw47hcJ11egQt1IgsSH+tt9//z9Q5tNGPEVzXp4n0P4mvmNnb9j3onDhRXrP72NlbJG/XXye/jtU52EKXMFn/099E0XDEv42CQiu+Qp9FetYWRtzC1Y5vUGauFfSVjTqRNruPz+/MG5HtFkEx/upZYQt2CWUkV/+dNEdZo+qHpgBIncDn1N7sIXM5xhZ8mOdW/gYdxMZj9AzgbL6jzNoKHHttZCrqZlE92QeAUYr27SU9DIvdToUrknPJbrKOlH3J5gL11KFsT3JBEz/wYl23m4/nCc9EtL7WGxnVKy0Qy3aslccnqayoL8+Wm8hOyE9lHA6LT/mGjVZpcSyNA0ZBsXhaDkXTpwHL8S7Wb9MaJ0KvWaZgEtD4ssmMTqIcEqcxn+4uqN+OU8tjorQ5PsWsUNxiaOcn3ebwyP+3MiPYfWh+JbDFTS5yFHkRvVaPbnSLD/aJlUrF4PyPfIwUvkjuKrreYR9nO9ZVMwPeubYW/8+WPsgatDJVXDrUFzfYQ50WlAg72v8z8/gfnZ4oe+fz/PfiBz9nKZ9Y+GRn96lGzn/TLnwxoKu7SoeO7NRGyH4gIu7NbMmoez8Pi1rLUwwHesvbBc9cYdTDhm3W7ga3brRA/rGzpfnQ1d1Pkr4w+Zmf/267RQim7cfOQT2q3sHC/y1S74w+c/PoEVvjIrWneF8+fXE1+UPeok7t5gMCMZK/bZDpS//NEuFzbz1jGqqH43ThAd3YYE/ckKGKK1ovX9BdFJdTfdd/k9S5C4lffPLxhnvo3W5eeItZgamXyJtiV8hmykYsb/frp8f9BUl5w8kuAkPp+9FsHyqRkMJ1e/G8fDh4P0zClzVHdIpqt80f75pU42xMEUqyjXlI2Tsf1qXyV//gTajN2Wmadb2dEjSA7MepAd322WiCxbx3Du6hNxrNcPTeF5bil+8xduJl/LhnfoKjA65zt+feyf6LfJs4HVfNGmfNLibHVtPA98UlrE+/Ofs8400cL2MTM/m6lif3hy+CYGXoqxTz6rHTORHlYKVg+vPBBwnxotXfsSMzPzg8bpGPbQL9YR827vVvCod3I4abzA36efCi7/1iPC9XlH5a1Zdv/w4d4lSzpO+4/gchL+gLz9JXHU10IMw7V4gEG0Dwven0qMpxW0aI1MYFjKOqs5rp8eXFbpjjkPfK9G/14o+qyv2e6o+Ym4420OrEUBM1eYWLyEJIU5fpgrV141BhQX6GaGA7lK+64a3lOC4YLtjmV8hbPJ478Y/elRGcdD8N3sNVP7psDwK124idx+7BS2/ckmflz0FYcTztezP8+M3J8yLhVqDnM8E/ep9t0/Pujt1TPZ0H0247tmoIrmNV1uowGx8+Wrwk4Xb/ytLl4n7kyoEKMBSOBER8FCjEZN2y7WBL8G05K4fcjhmaOObT62Lwak6w2qjJ1Ntp3eiv6vPrXs3hJxynzK+jiMczQ6xzvWfjbthOn96r/6JfEMbW8pNBxUba4PEW8dZxVdFaUGqZcumO/uvECwm3774y9Y/hyrjsu/icMfPj1fZtX1aXG0Ed/EBlVAb7IJd+UI3/Xy+q8eM5w/2g9Kl8tknz408UPh3te4cZuwOeNf23/L/A8P55YqLennehu4HDJy726rhKlRq6LZv6F/+D3zqR7y/dph7h/f8H5LD/zYuDJbX2VonPORXgeqQk6kkCqmvFIf6k9vspg3O8Tzh5sD5G+C+eItuulc3ylkQe5joUx1Mo1HGdBAHYNZ65gJ0XHVQaBZL7bV7guLbYNpAWXVbNi/fEcs1MKoO2+Cb2WWcAvfKeja6szIJfx1/WV7W6BVemso+F87kMvwfoF2ZIDXf/Xo7+ng6LD5JsSqPkL8Fp9dq90H405wbVwFV399CHzdYhK8gzxp//gXLBeCmffjsxvvJ6NBaNW8mfNEWyT30t38f7UUyP+7pQA/ooztb+e6mq57GkHxCxV2949+J67cCHXsDZTZQpOzjvUHDuVz47DHwqyFUPKrDZvOdLG0ePho5B/XRAUqPeKAJMRUDk4Kv7i64KmcMkFP9ksD6Kov2VcA2bCDsdTx5bajq2Uki2+OwxHy0n2zzeW+Ef2WVyqq1uxLwqUZo/Gqpz94yrKgqCgB8fC9GQFe9pkEH7oJ+JNpBepAPbItBL+5S2gXweFaCarheCPG/ucpcIYnIViousUY6Uoor57E0uamCBperxiZ2T0lXv1MA/E2zznUDfKIPy7rin2vxggr25OJsY+qZFr6lxN8j8c1C3W/qARcvAVcv/yEl+fvqRJ9h2Lwz4+c4eNeqoZ1ATk8w8ZnYbBuk3FrLwHQ1imJd3u71evyJhc4fDGmWjN3flfjwYRojANii+JT8acxRnBooi0LP4lIeqc3cqApP5NtdngFPHzvRgh7tsbaJcTZmLBohIQzF0/cTua7EoMWxv53oe/xsc3aa+f91IqHBds1Ly9h8RRgtHkcZBYA2ibfU7DONRelS3aZfotguLq+As/VbsuId9iK7xN3MXLlfCDeKRLByKdXrMtNuSN2DTxrwy/+wcqUKypudpuJq66OUG2tDfNG10jG55ErsIR5kN1ZGsWUvwcV3rE40tELw0r0ZG8g594nVPC93LGLv6Qo888BM27ZkP3yeBi1w/UlqLiJXzVtTb0EJ9gysvHnQS9cMSPwcyun60kyAs628g1J7y3BbG6Mm3KkUtjWPKLgtT8xhh81hfn9iTe+cDB910iD9JMxOvjHXzeZSJRw3mUP4te4TTgoUwvwygC3UzQm01LaP7TbIfPYfAV10C2v8gi3XHKJpcsbofCNM0J8W8yDZ46tGLdHvUWdo2bE0+NfRpf22YaLru7I0zstA75+aAYwp1CYx9OP1Z2mbw9ndS8Ru2FBxnkcPuBdOx+sNLvA6nnR1aDl/oOR6gTBGC4PD5RsXy0JvCurGEkWOep2Ss1cfjMSiVS7Hi6FkpCNJx+76bkynaX9KzRmnmqSdf1upf3FD/GXrbBo3P9CkIb1jzmTi5PhS4MUOj62LEyPY/Z4ukkPdOsCC8H5Ir59LH9wHmlH1Z3UZSImrgTGT31i2J2HgHMnUZGrbQbijENRDfN1ybq1uu+oRI5GIj35y4Yg3NnEu1wMIe2EeYFH/iiJL9C+mt+/1eb9Rw6QSJ0IR4whC353Yoj2kAzxYXEBeu4LdhcLJRt3flUDkkOfuO+UdOObfSIQ+1QmYT2pVt/MFqzAy57hxeRaVP6FNpTR6YoVzAxr6g+ohteZaXT9Wi0Tzimnelt0B1q9z4bFm668oI94csrGadNJ4q1SWBzVD7uO4zeZekPXED4+DLyenl3Xf+9rDn5aJnisfziZ1rvkBGSxiphd70er7+XpAs+d3hD3+vGDeT9z0I/jkjk8eiS0Wd0WaxFuKsxvawspynm0IdtZa6r7x181gCo5sPI3Lgl04zF3uffF3/8j28XQBBzeYqELW16y/XTe/MXjD5yzMpfEFCTYd3xp8MjzktmhXSLx3B4iPXO2I/GEtUsEszQAa9EOVN6bRqIo7BDqnzG0WZ4hMxPhnWPYfvor2SzXTcVKdMzBXaIlC/SfWynfRoxr6Xv6YVn/smyoVm2N6gqWLPDs7O/7d9BqwRhe88pMlJP9UoGm45mFqTEPDmx3ISyXhxXDdRFm/G//eO/myLafwRPiyr0Qxtf+SrDY3dB4fYsC5Gy7Y9tp/+mmrSkX6E3DFI/n9TRLvk2jXxtlz3a+1XRjfN0CJObnSf6tx/L3PGmWsdOZM+WlaJ6XwwUC7i2p7L8fgeD24fEvPsTIpmBy4GaC2q0xI0tmV2NSFVgvo/RKQsEyi62Z1cBz124I4QsvkZa/8wkyO1+z62v1TCYYrBJB+ynwac6n3DzcYsjEgfz9fSbIPjEg/R1V3PrV0E3P7lqg6IVMrM2nBvt+7GP0/SzuxOUStTg8o0K/xfSG1em3sOq//HN6SBXVF/tVwgm5P1ASspDqvDiICey+B+wxSlVxXwWiufwieL3K+WKYSiSilLgBt6yQiROokcX5+VqjXds6LBrNZ8Jjsf/BaZcoeNLNk+CNF1FY4bhkRvh6WdO2y09Q7aKcGI3HxZT/hAF+FKnEXShtwEFZ/yAh3yPBt0OQ9HM+03/e9cfcy+5diee6bYFffnsqeY+xmk6aoLDI+Jr94XN7VaYQ8s9yRazlIFlj/Mjsv/1I/vBPMcOtpz03QUD8xbOypnx65MhJmgbLN+irwbx8FZCjZU6CpddblMd2rqf9IidBKp//xRu6x2RPzy96TwaScR/k/pKR23l1rTgPlyfQmdb/W2++25sepPSTEG9EmRgrvx3h/kwsjGb+Mq1xm2tx7MfMODkqokyzOYxstvAWiwMS5lHE4OCNitdNKATr+YMCE/RISLPvLcEj0/iHl/uiW4jx2agFfH9qw3LeBIF8dPoUytzWydYvbDTHV4G64J6xy2l5TOhyV2M4W6+Qau8+RNPl7V5AersEw4yPf/iPtkPdkbCpJ2t8+n6M0jdXqR56lhi/9TEEnmwL4l3niwe++wjr0RgF5PyiesZ294zCZlhEjDRlUdFrUCnIfFJGmyk30cj2axsS9CrnfDhb+O0P/g8AAP//pF3JtqpMs3wgB2IDlQzppJdSQMQZoCKdSFMF1NPfxT7f8J/d4Vl7HUXIjIyILDJBLvclNSbfZ4Q5HwleQWvg+CvjYLmxwQa0+DLWlnmdssIqU2TGq8SS6Q794EqUgzw3LCql78ohdfP0gcnVleqP2GMHZeNr4D+FPfltiRsQetrFgM1dRNBkW+rimkEOZl3dvLluHcQKTlBQW34TD0D/sZb2u+6gPPZPfE53P5UNoW9DsIeCSta2LoeffmnFLH8RMq18hbkul0Nx3V7IN7bqnpTTQ4KsuUn0X3y620cGMx0srKStro6wsTwkDZ+IbL7Kt1yyss8QkOfy93zYcgzvC7JIHntLffiqy4B5EzEZ7UkzfzJ12qWwQc5RvVLdikI07bZ6C/bDCDxxc8jTmbfSEEHd3//F10FNzQTioTpQdz6/2WThI4GDoW+8Jdo81RkuNx/2/rooB9qfw5bTd4JSHam32yzvlA1LRMQulTyyg/rYdw+n5+BSeiE+b/sUdS50AjpV0wXjJNd7dnK2hcA18QdL90pMlyhzFKRacPK66Yb6f99/ESPZO7BjhRZKMk/4w6e6MiLGTpK3EcrtJcJunX5UpmwSDcYaZBxuz6NDl63rgzGffYznXEX76HOxxWvw+1DnVvF9PyRiJfzxJ9oUUkkKY3HhkT7O1EulsZzgaiWIK7MY6+Z3Kdv39gvwKU0BS/MuDuZ3MMUQN6TGXmiJiG33lSI8flNEQzHhVHbLK0Uwl9ald3M/MkK/04JKmw/IEcR1UO3e9lEgbVqqOs4mmLZS4QFj4URPDdaCuVnmjXhr9z9qfS9dPy7vwwuqut5jl3Uy+72TgIN1T4bHHOcVDPER54Dcb0/N5vvpl8c9jMUvN2tYPbdSOcVHXKC8lH3s1O4JHWqjamCvjIiqKz9fLPnaiM6Um9haxEmdfrvkCLd7ecdSMsnosJ2jI/yoLXsd3Hd99cdvkle28d4pNtGUfVwBmZ1z87hUObHdHx5zU46pKjoxY8u3NMG6OJd/8TBl3lFAjn1YqHdP0pRkSKsgepZXKm0aru/Y9pigimgDvTpKlv7lv1i6Xo1t1jzUVX+Ff9+P5T/+V8TOBLdR17AUe03fb6uLIq58mkqxp/cH2J8K9KkyF2vz6PVLnVQDcockxKqdgTPw48NEYtpfsbWURTpT/VPAPitU6m1zK91lk2TDmZiMXptB6ZdhXZRA3dT02u1JDWbq+zpSgo2Dpaoj6fRuPY73ElXCboqUYNl+ziHsU3f2dvPZKDk+SzOgnCx423g890uk/QQkFvs9xpuID9r1/4PqNID1ST30ZK8vCZLKAWF9ze95mXa2UPcXhyaW5zhzsQQZWpKrhvUpdh2G/dwWVOP++dMj6pi97Rf0/MYl7WTkwbgbvAKiIK2wueI/W/kIau52vF7P2M9+wemwuZcv/MfnpzX++cfrHmElseV+jXcJKQ/uifFj1oI//gt31nGEY7lRLvCOc/TdCLMnPLZGwD3ErEPr36n2qOS0XfFZmPuMYGnhqTPRMCtQyScaPU9Br078pTsClx+4VR9/S7K9GB08imahzvaZ92ORCBFQvvoSWOvb7H62GgB5L1RaqqSfYF1MdThlhsct2cQYL1khCk5lS09F+OxZIXUtJOHtSqNJPZSTW5QuvHER4HM0L+lU8KUEWJIQ4avw0y/WrgVwFnu7+iVav3fPbQf0dK6wXd9XPBi+e/Td6xG1HDfqh6G/20CVa4rPceX0Ez9eTfBCm5C48UdnUkQR0Mpf8ekPP1d9hOZhkqj/2I0qwYNDQM6PCb2s+TA93hcd8lpMMXa+UI7KpGzQ5qk59FY7Yzm6R0uAZ15F2BV5BU0r/xPehvz8L975+vb6w3tvVxl7NPGtpvArXyPfOsTlz4Jj8aeHqXUXfbRkrhKKzVPpyKEOaV+92TaBdEM8widvL90/tswTx+D2JJNoXtQ/PIPnL57/+Q3LQoQBLc/zmdrLYY+G4pR2gOXoTDUnefS9ou0q3tkniTfUO8Imf/rqgL1YxXqdmIzdVHEBDXHu6hdlwQLzkAvnqy5SdfN7phOrpwGYkZUec/T1Lc9EjeH1Mh5UegzOWp/ohLA3ttQ05SWdli9WkKNfFnKpLnnJtkrWHbccV2OFZRvU7ZE1wT//Q7wF6oR3t0HAZ23Gyl/9eyDfhYNgU2rZS4t+i7wcISR1gE/fsWWjr584ZEB3pUYSuensF6D/5QfZxxvZ+avHEJdLRs+NZqujEmTkD3/XenBjc/yIOGi0kiOHfIuc1od3h6olNLHTdF36j3/0FldRY54O6eA+X9qf3qTyfLumy77MW2h8QfS86bst222shij7XS38cRRIifu4eujLS2/sb18xW/20FnUB1+HM1nHw5/f98++Ms1D1g/vTV/0+9DRMArVctoN4hLhOA+pW9y5dFClrgInZ00NW8e6H7KMd4esc1kHykews+1dQiOZ2ULA/V0M5vbWdDXm9TckmtEQ21vxz9WMMTAAQQO+/3Umj6ysTnYsuYijj88pPpt/OP/7xrz8+5LC3TisUONqN8OaWMkYX0eVvxeaOcQMkZdSSNPHv96hiPqbTn56q6FhiZ7suIoL7sIcSojP2pkIP5uP3fvzjJ2QSD37aRF/WwK1fFmwsb75kO+HWQpxzATbv5F6OzddKgGRBjvVF+Kbs8a0BDKvJ/+pXMD72J42fhjam53vO9cPDOvt/eELQtuDRckKjAF/btejj7k3lMvDk8pdvWDfBUPe4zn3gx8iksqhE6LDiN7xPceP1ttv2Kz9wRf612VLJMW994xd4g543JyKVKDUBHdTsBacg21CtKqpy8b83DbCy1cg+db6I+N+njn6F5lB1ZgbisuSXiac3LrxxA4+SNS4/gJ6lMuFE2pbDz7fcPz21+qVPh8UsysER+fKfnzGe5u2Cllf+/od/U3PtBngfszthopCqpBb3CeBDP3jIOnAqU5ZfwUepkGBr5vmgzh67CEjS/qhvscBZl58swIc739t85x+bcCkTCHb9Bf/h9WiZPxsC/thTd3qJ/c9VhQJSuZioti0+5fTzLQ8QP9v0j09SLBcvpCeTjSNIGnVscH4BOb0PWDZTA834YjUwfqsj1eyrVbJCKjqUdVVKVSf3GfltMoFf/Vlqe/4HMcW2B74xniL9q38cFor9P39AEa+LulhB3cCKlx7nUM85Yj14gfz+GthLpXN/gNgE4MTqRD1n3LFpGUIbnPOM6Fl87VQKXQbg3/QUW2aXprT4yS8RC/WOOuHuENBVT/Eq3t+xXYldORfJEsJ9F/RYj39Dz7beyUNUaisqW7wbTLX7bMBLQx+rhYPKeandCjl2cabPP/7lbq8Z/AKq4HOkXNRpzV/0lceALMuY9dTHmENftGnp2TyLKhk0s0GMaxUcThs3pVnrZkLg6DfvmIa/dbEfzeA5di7FC25UuvJzVPvz7U+Poukn5BLUP+Dpn56fCywvULLD3WP1fGZsKV4Ket38Ddk71hlNND/rsIU7wdpjg9VlYMoemSSZ6Bk/5IA1smyC9TqIVC7zjdPyznNB5cR71FvoqA5bjm9APWOGV75fzr6TbND6/MnVbr1yUXleR8rr8cTqHZLyHx+d6yajhnVBPY3Zq0DI+hVU3m7ebAHrRFA5IY9i+zWUs6VmCkTueet9V30yvccUADbroovZvqvlcOj3gDZKjdUmvzjjO5gSKPcsx5L7kdWlvr0rKN6qjuVazNO/egR3/Xmjf/i9bC+4O1J0flH54WrOQr/TJHLlLFIp2qUOc2UHgGl5gs/OK+nZz1Q1mElyWP0Lt9zxN1WAitKS2uvUx+ExVzrUbaRQ+24e0l3EXXxxc1Fu5E/Pziev0SEAjsOntT8w/IRWgvmiUupugkt5+CnrFNkd59N3JZ3Seam15p8emMRn1U+771igP/2Bp2x0lt35xomOvVuwvMlROr2bKQfEhCPVH2MZsK3xmVBeqj7VFqVUGX7FAxh6e6cWmEnQW9fSFi/VzsFqIYho2EqdC9F1GckszrxTv63I/vOnsAHhgIa63AyH1Z/y+G93DMb6Az7yfdPHxuQvaNpdtARW/YWtFb9IAVYD+1v4pr5d3NJpsZSXyLan0Ns35ZGNVA4TWPm7t3Ow4UzvzaODLdwINuxwSdnC0uEfPpyb14ExNkwXUfFbnpoPo3QY+GwPe3fXUrtqI5W+hf0G+TctxU8TtumwNc4tGGbgrX4ncoYs+bygVCn9p0/X+MuRFakFgcT8pcsQZRW6I0eklvPpnaHgbkd06canJ9Y3AzFffV8E/c7J9L255s4wBBsJhsbZ/KdHlq8hwd2DtZ/kMGfeOk0Hv+jnkG7tb5G6ufnwCPGPbKfs7Bysn3b5wyfvcHaKlBaGrv/pLfrXT1ho0Xew5XXJmyv7G5DfUkXi2Aq2J5rwTqetmyyCc2aInrb7yGHUfsVIuUoKuU4NVmfITtzf52M3lFJEl4uigIq5u8fu5zidlhAp/+LhZWbHYOaPzwbc2p28ILziYBgg3MNcdAE9R8qkzrqpdKiX74QIqz6cfrKaw/3c8fgk/mjAcLBfXzm9SPRtSa3T//ULzKVzserotTMXt9FFq9+N9c13YHTIbYLOvdf960/MqiyRf36cjeXK6etu46M/v0Y1KwtN9NC4cDeW7zplxVH3mWuH6O5tHGxC2TqzZX5sgErJMX4ohbMsMT3CfbkV3mQTAx3wbubQS+d3WIfTtZ9OPA5hfz1p3tdRuX62+oWDWy55OEqyum8LSc9BuPMqobDO/3G9zeYPj7AS4YT90w+rP0CVW77yzvtyRKlJQrJZkmPZFN6zhdv9c6fO5mExNpif5s+/85at1jtLdPGzPz31rz7Me+URo/RQdPR0VqSU4NRTwJCNjghbr/7jj55ov7Y1xSk2GVPGLIbV/1r7Dbo6byNJQL/s8yT7OmnR5Apu+I8f99vigcb6smn++gP4D2+n96eMITzoNna+2lGl2fio/p4f/uPPsztcI/ETzjM+iWGC/uO/oYvxKe0Jmn3h5sE5lHXCzSPppxrd9+D+2ER+51Bb/YSfJKqHt4VxJdXBEO2TAVSulKgChypguv1xYXuYCOGW+ZQOO/bSYabE8uimP6MBymd83N+iN/lu3K1DYv01CKsf+O/3T/g32nD67I3V33kFUzxEgEIq1H9+QDoXG01B2/0zW/WMGLA6eNpCWL0bMjTV7CwudEeQ37WBr7F5Xv0xVYG31cnYEOP1yMb5tkd7hSLqieMUEFfVExR4ygtrq/81/+E7USxGlab5BbQwPE2AjX0mzM4ydYzuhSL+f44U7P/3kYKPFive7vmZg+GxjYEvqm9C3a5u+6ncUgl+fbHQU/ksy/6tPxS0dFFBpe5UM2baGw4iIlvU+spcP7YHowDrMH4oHq5pOa+LhVD4+gBWxd/HmQ6p4KH0Zur4+t62jDGtFMSpyG/Y+kqLSk8/vgLrQD/U8+5F/7vzhg47H98xLs56/4NA0aHqQaPRKVYczvoIg/D3+e6mtNEkosoHzdRcKusnLpiVpBhAmD9P0m8mQOzU6wVsL5XsTY1upgt1lwU8sn9SyTd1lanWcQCpJXusyOiHJkvJjkCVKadnt07Y3HFHDXrVPFF3027KqXqBDzzP9t6R2lk5daK5wDODADvxblMO3+fPFpLb60iVfleX7KuHHbj7jU7lUGXqRJ5iDMcfP5IvvR7TkQVTKOZulxJmzU0/BHIkwfFRvbDrk63TPrf+BIsShlTyzzwaRjF1wcDCHtvxXnN2e244IozV2Dv+rKif9aTKwX7HOT3DQ1MPUveQ4LLP72TSLk807cA6Alm4jkqabfSEc9MInrU00Hd2Lh32NvYNkN7ICTc3OF00RvfwS3vd22+vSr9YM8tAml4S9jbRDrHmFEeArtEWG8jt2fr7EnicdzVWz1TuF85NQ3jcDhyVJMdWhx3iLyjaDRb2xX2gzo978YJrNPoeNUNuvb/cBdLnpSXcqR9TYl0lgnz91VH5sT0Fi7r0BTzGn0GE6jAypnW2B8QGirOwu/bz/fDJwdueCmxSrUlZWecSeMa5pefmTdNl59oEjvw62P32PqlLgbUJJefXDxvGLWDz4/j0gLPNDz7rzaNnpZ7sUXZ7Lh6vqr3KbAtCeGl7j+ycXGUz5kMdgsZ707NUXZ1FXcBcW7oV1su7HdDMqEx4VZst1v4kRbWxMpTu/IOHtPkv/iYCs80D1k8PbR20woUg5VWIJaJKiLjTtEFjeROwMu5+6Rzd8w7SU/3zDiffRKMk/Nb4GEeCIqKo0yNXFzhaXYuxcMnW2VbaAI9dZJCJqBLbbZgCULklIsibrZ5tisXbBlHEqPb7RSgoGsuHTzhesU5jTl3c5SygjSlUXq/sgn6pxlwTe9XD1C3ai7OIfVCAZj5rat20Y8+6Gvx1UHTj/e5Sh5YH7mKYFXrBp0Nao2VjX2zUscsDm/XplLLr77lAwb11jzf0B1uvlwgVnC2PT7ZtsOwG8QXwcHlsVRurn8TsraMv2hk4TRaWsrP9TkC51B6+M8wC1uj1RdzIqkEdk8oqY5U1wNm43ogY5XY/Z/G5ECKiWtj4YcxmMXwr0KN3QXhVddTlfF0XxaN9R7WxlPoxjP0cvs6U01P9stisI6+DIZA8rLOIqsMuWym7Jj3Jxo5rh+VGvUE7Adf0L55YdZobaJxJJeQYjkE3nbc6PHahgW9Gu1XZRg0T9GO/G/XMdErJx5MyscoeXyy9LIrYXv0k4Nw/OZk0+1uyg2raYHz5E1Xf62DeJN9mcN0XHNW/tzpl9+9lQU1m+NgOD3o513tRQx2rW2wy89CzQu9fsJWGG8Xt2Q6mdAsKUqV+R5aaD4I5ibcJ3MRjTHF3vaPp/r5oIvYGi9xOdajONo8KxJRwJnN0SstJK18Z+N4vooZ1u/cs0Y8vZOHsjF2hOgcTj5AGwlw+178fyvl7i1+CfOwtrO98ud9tOeMCsYgoee4The3MdRPAxWszrNWN6ZDLNdzAkLqCtx5Jdb5p+y0QVUjkDWu9Yt+vEQMmnEANetmxMYh7Ezgl0PDpVqN0rCIf4FM1Ilm2R9TPx7DeA8jrW0SOyxw2noINFBCWNOpDBS3lOBE09s6ZtHej6fu6CQZkUepTu921iBjXpUFleGnJGq9o3gTiAkOxnnIejWvPaJ3t4ZkdLXr6Pb/rkQmyAQ9LiMy7LWPkdXkLSDGLnSdeXoq6qyM7AuCllGZVmTvLbbIJEn+GQpCyY/3YcUcdWrSrsOypNCV8/yCw5/c/UvbjN138yTyizxBfqC0sGpvE1LbBuXtXfHoWAZutZA/imu/Yck6HlM7q5IokkE0svWw/OBzLawvmvXt6hzOW04UMHw+Ocq57s3SaEFGXMgc0uz2+ozNJaWrAgiSzOXmf97ZF6/eZ4EdhRLVdPTDyVy/mZG6xq/2+jOYNM0HJS43scXzqf/ix9+GbqTXpmyUpmdRJMYyB0v/VDzQfuMyHjn1bT2xTGS0/8qzA/r54IpDDHAzPbTLBJSI7Km2sTcCGk+ghjOWYOj4Xp/MYnQD5EaVYlTmiMrl/hnCJpq03r/yANES1kd/4LtbfscuGk9ITtM13ureww4y6wZ02sAiXGEdlZKCpeb9D4ISziZVUWBwWt09dkKZMoudXsUfkidMGNvFywW5e1yo9loUPPyeR8ZkUL5X65rrb1G8A41e4TUcJjBCkq3zwlvs+X7+/HEB8OC7hX5sTmrjnKYLnWXkS1Iw66g/qZfn7PKruZkipbqs2+rIuxW40JGp3cDcxEnMhwu5UD8F0/YwD4q/jizoFsdK9Ox0BlqLERLA3aUne3oeI/iasqD9zDVuoKyzwDTieWoGC2XDLLQBuuffe/p5yKflS4wXRbTOvu2cjxrqTVYB5b59U/bDEGdd6hC5N12NNnZ4pddqjAFgX9tjV6EYdWCYr4r3mBKqdBowY7owOAj0RsbOZgH0frZsh72uEZHu5nh36rT8cJLdSIcuOF8o2fwkZ2nUBxbIv2+n8OEi+KMgfiUqeZZaTojauaG75CXv2M0ZTLebrv5sPta6n1FnIOVTEckhtchDPi7okl0hHA8OWV6zP+7cJdhOS4lkih6fXqNNL0gv++NuV2PiGW0Rs/9khdXqcSY2rnTrdcmsDW6lzsKu0cnkYq4/9d7/I4a+eqImvida9mcj3jjXEPaQR4FeGOnb2I3FGtBxzYc0XbNyxxmaPHwaoK8fDpmpVAZEC54iuZO68LWdJARdIsvbHt+jpXLj9aPDxCxbB8wh/l8eAdSe5gNsmmL1kWj4r/+0IEh6lR9WUi9n8h4fXF7/B+uE29GRyCxOlN1sn4DZSut864Qsh69JgxUHnlG5VZ0F/9+9Mnl2aF+/GBgu/zh4o7affbYPaROYWTRg3ruZwjzezxdDzRnpuU5nNl9jUQJF+MVYd7loSrudNuJDcxBfFkoNZFq42rPFCmMNde24S9z5U/UajBm9JaFj1Apxi5e0th53LpjBPKigqT8YnVrzKpaTRRfir18Xj+CvZw3gMf/iDr49tHZAXHXX4qXmFceGti7z6LoIRSTx9L+czIglFAhzm6oLlejuUs5pYLxAnzsWn27tWl8pTfHgNi+/xhaimCxpO8b/8lj0VBzO/w4D0w/7lLYjrUnayqxiOPHtQbx8njL2/zgSH4iQStpshWFLvmAs/9nUIysYynelu4/IPsWDrW5LbgPGlpUAZfg9U3Q6D83P4xIfnyZHoafuQGGvrhwc5tEcPSKU7gy2jFk7SNfqnf+aJMxWQclRSa73eed65IQzl/en1+ZCz6fp56pCckzfGizel01VaNhC+7NIzVrznOvGRIPhg09uYyZlxzfseQp1JPfbxBhySTd8KvgGvUjmT+p4allCA+1ZkLLu6UHbhRd6LPyeWqbwVynJR/ERCq94hwYq/wzU3TZSJ2tfj0PcW9G99fYvbuxxotL3HaH0+IfyCA/OWz65whj1aF5OJhkZNakNJBdWvxPhWmP9+P5XtKyDW+Tts9L6w6j84AlfoDTkY4RwMrpwkgJshxqdfKfbsbjoNKrLXgTre/hks0vJbR0CDhh93qWPTEbIIPc+PvbdDSZkuH898IYuOPsaxV/cMlDmEAqKSmoHV9/10OijwqmULq+rhoRIl2Da8mtsm1uu754wbP16PVB4dnEqHLFj15iQaFwuo7cO+nN0HZGjbtg+vG7gmGK+PmwRM8HpsGuYHjV48g3jdhAYO3kvAxtdBXOCM0wM5jN456Ex/I8CYCCaNnrcPW7aOwyF9K0pYp/e5Z6Te6MjEfEDPXNaXg6F6C/Cf36ofzcZhO01pwbiLeI2/dzDdPq8jCl7uBZ/td86W5XxyIdxcQ2xPyyel+8rJhS7IDt52cL+sr05zdVz5tPfjRC8dhQAB+Juo8q6D5LNl2/06OMhIIUe2DhV4fUcFujIe6TnKu35piGrC6bu5kePDouk0POUBbBpGZHs8z/0UvdsB3O+bYeWwp8GY3Tnhj0+QjfQ6oHHhGPnLF7LyJ2dpznEspCf3QuP5NPRsU2FbQLP9odZdshnTO1FA5rewqIyQri5fijPIQ8L9xfOqN/sO9an7JCjebfqpEqc9UvJMwHi9Hrarhgk1Dnemr/gmpwepkxLxF+wYlVw3YBOfmhE0Id4Rvtr8yuV61SJQ4uTjLSdeQ11K+wt8INTxzWkEZ6jE4x7VnCJg5YmO6aJd1xbi7TRR6y6PKbksBvnT6zRdyFR+4tghwvN5LVa9VKdzeigj4BLlTD0plvulIHIkmvcqoJasR8FUbFD0x0/xfeXb017U3X98VNrrePV3vgpk9e2Fz/t3VC63q2fDKb4R0q984c8/EO9nrqfyY1Ogf/xzZLghS4rCfp97D/2v3hB2n779uGFBBerxy3vLaYtUuil+FYyqtqNu2waMPPB65GQ3NFR/3Bv2EnpLB/fuEmwE0bMcpTSr0MoXyNbDVfAPn+67aVqPWMrqbgqFPYpPXUalTNcYsS9HDWrO0DxWTutrB1MeilRZcmrVqpjStKU5It1gjOWHNCmV7aL6iyePd06HgHo/JwRn+yHebvW3lhgz6c/PIZfMMIKDZU4KrPUMny+vQmVNo+ronSGVukI1Br/3PvagRsc7lQpzTDvvMh/RIvgxNbEzlaPPk4I3jeFLjh/9ixZvDhVQzHz3zx9hsybtxfv+tPWEF4iIgGMrCD3cjJ6Tt+ks5Xgk8K62GTmi0+RMOzRfQJjr7+oPVCVN9CmDIfUEqsuJ4cxpdKzAxZqD1VUPUMNacgSzucGFtTn2c7v7bGDlS1iOJAMNvtSF6F21Zxzs5ixdrBllgh+NFKu/eaeSx+Tmgn5x3tSSJUmdzp/+CLjpPCK+nqqzHN3nWr9FgWLf+7AxP6hHeJwa6sG+8dM5OyQEjjJ6Y0M8+yotv6dGsA9hTe0XPNloCmOCVn+LnvPXL2CzenShZe2Rnvp8CX4nYZ1qwRWM3E9+yxaZPWMQfm8NO970VVc+Y4OeGzesn9MLWv0ADaWiGWJrlHaIhHj2oFdXi/maG+XkFM8F4ltu4vvnrJbckj1a8LZG4e1/Ud+zj+ESiMcqx9bKb6fP68fBzTvb1DXbUzDd37EON1GIvd371Tjz+djGEJ05jyaZsAv++CXM3S+k1h6d+uH3cj2w7/WZnrOcpCsf1P/4H01WvF8u0zL947+eHdfq/Nq3e8Qlj4bi4tz0U/aaOrTznTN1uvnoTLLyOUId4pg0zqNVyckXdWTkaktm93R0Jic/uigdy5Es/PJZ71cjgU0vLjmKxpENoXxO4DC3CdXurZXuj/0C4t/9iU92V05/9XnNN2ys/HfN2sufHsH658GcGT/2F+DlvKTxyk8ZqeKcN95TQVXxJ6ukOV9iGAv4UCdjfDlyu2+MarhORMiPUzrgXFDQNp7Gf/pyem93+3/xe06qFI1cOEjIeO8HKo9rC7R9XgqYlkTGeLrwarvLBg2t/gc+XT+dOm1Q0ImFWzvkV4mGsxzcTYIiUdhh4+Bd2Gg/zAm8r2pjFTPq0LupVoifaxtfg+2nZw/D0lEkHnfUmM82G0WffyF8N2bqZKRe/Tk5Q+ntfaOOy5Z0KDbFAD+1IqSh92u/83mSC/CwKdZuw8FZ3t6PwLNWBoJacnb4+XawhT+/zw1/2NlZgmaCdik3WFr9mxkCn6C/ej4Jp7NKKs++wGVf3LFFNmdnUpSrL97H9uzlreH1Q/TxLlC5H4SlyX4GtGkcDaL1iPztm8nOYa/+YlRrtwFjDkflcMtlEF6ifMfyY911/tmjC+rZZU/vqx6hsdGFArfceuxWv30wICR7sNil5K3+PBqX0NygQX3P9Ox/RnVWBc6D6yuvcVj+mDq/o3Ux6DXaUu3XPYIFX/cuzF10ovKW/zh0rY+gS1eG5S980vl2DBIQp0WhTtfL7JA1fAjP09km45Df+rx53yN4iacPPYmZ68xaGiXwHB0PY87K0+Wvftj0V5PDyvfY9Udi5O9dhcZU01MqKrEOxBZqj3aOXDKubF+wkwXTOwZWX7KdZrf/8O80fo79OERRA4/zyyVzovHqqi+af/XWWf2W1lZcH/78nlW/OvRjaARcwz96Q94d2QyBrf/T79vVX10OzicT13qANVY15aCVrxd6wd9iHeWXTnvUtmgu8gXLpmIFyzpLFQlyKWF3aDw0gXCsUAVB4IHW2cFetPMJtEm5UmXmGrQIw0uCW3Qf8Yq3aKLPavrrZ5BcsT7pFL3nUJTjRCP7PlTYITMqm9eme07er/CdUq72JPSnl9d8cg69Ngn/9PHZK311MZeQiOe7I2M3+9oqfRiyJr5Gq6fql7rBwbKkFpQ2vHt//Kt40/AFa/6TjbcuIhjDPBE+VSXSF4lITwoihyInYPMP/53pquAjet60PVZuvKv+1n4H5Fwe0aiMvmxCQCZQjnWG13wLRsLxwj/+53ATn06frQN//gxh/WikCzlnkqAcL2ccH4ydwyrjbSKPCF+svHlc/ocvqz+r8p3as/TrN9ClfYn1OdTLyZeKdaoB/VBbOCJnQtAsYtvnN2x+HFQuWyd7wU3XWq96dL46N7efDuLnXFOXVLraTGMoQIfeJ8JfthVjp18O6yIe7AmhCIiqnb+HUyy98T8/Kr/vB+B+oOJMaeV+8qQ8h6xW8H96d9VfEIpwotaAFIeNjU7QssRovf9DOt/u/AX5URRRQ/TCvtP9gAM1Lz9e8JicYMpexxZVlYeo94q+QbXyaXGtz1j9jCVa/V3pL1+9Dbm5zuQWJxut/Q/s6uMtmK+PpwJvbd9TTfw+nENsbi+wFM8TVvled1b8loRE/FzIAV8t9q9/dh+786p/eJXp3U4QtxcxwXKnPtEa7x0Y20qj7+TiOazVXWkdSRZTb7pzbI6OygQfLVFIpo+7tNe78QJtSRXCrtwt7d2f6AF8Av/P7wpYdeIbSMaL889v/9Gb84KLfrDIVFlByVlKJsBRLnSvxm852CmCmcPiexI1Uj8o9y+6I3C7QUjvv8sSMCjTF1r5Bpk6J3OmGSQNmbTtsVG7skrAURRgSjTjs1K0AdW70YfJ737U0x/ffrrknxjQw/axjuNTudajFp2+cKPKQ3wGQyppA1z1Q4M9L5KcQ9M4OlTD7Yn/nvckl1kL30yusZpyRzR1orSIS/HBWLE2cfk1uqyFv/tp4KuFDtNpq6AivDjeJDm2s3+SfBJXfuDB2h/864/B3PUh+d49JVj5cARUPVFq1O5HZbrtmCge2w4rV3RVh/s71qBHj5iu/kc/gDA1f/0XbLyvs7Pia4K2slxh8336lPN7f3Fh8tsftaVtUtYrf4PrJrlifUy36eDKfgJ1pu2oydSSrf7whFgXbbF1U/fOWOyLFqowOHmb5P5Da/8lh2uUqASZVHYOUndVRBc/K+wKNWXDn9+19hvwxfRiNn22KgBVDYq1stuVbF9lNihx1mOHo/t1ceMpEXj5sHjzSwnVwVTqAlY/kZ610iunduP4APKjIdsK43RhgzWJ+8LI1/6zrxI6XCpQpD4mx7uhl7s//rK3T1eveBytvlsHasHKX7FNDnO6xFRyxfi07ckGfDOd//yaWMwjqh2KT8lwKwyCH8U5vT5FKfiLL0hu2fHPT2SEudDA6i+Qen6zcrlcxwaML4ewsb2IDgtaLgf9vlmwhvsJLeN56OB224R49ZcQW/WLAA+Ppx74bdqR4eNCsLnL3nDpQ2eed1r0T++F7/qD2lRyCU/sY02aPsjTPz3z/zpScPjfRwoujeeSPS/IaNgcdQ4u7hdRKYM+nVmguCJvpSU1jtvRGfNP+oJvlnU06nefYP607gBSftWp4waNSrBwJNCGy+BN9qFjS6SaGrzts4Q93b+kC4zcBsC2a/LzqmdPnv23gSg9ZVQPbRJQ+uE1oJ/thkqq9w2+X3d8IfnkvTFOWrmchKe8F73VnNcPudjP4ZM30esWfD3xfLmhJfjhGHY67cme/+xKFoSnDDBdW/JDyPrpfPdt6KhcYrtCDfot7gWEYh/bNNgdMVuqc9rCFu8qbAbvJZ2lt6cLQeHfCcTfb9m/L5scjEj8Yed47NkiPW8Lun7mA5W4S6GOuTDZ6PsLKxyRLijZdfQ84DcRkPnx/QVMyawY/NiXqfSNTXUofjsJ7ldqY+dtG2i+/MQKCuRV9PSrLv10czcK6s+Z5wnOuWAEC9MAfQCixy1mixYhwTGA752wvrk1aJKSs4luD7shYrOOKUobKQNt76l/v7+sisnUIFUGgqXDYVeS7FoNUPx6RmYxFtno73kBPbNtTa237KdTJRYNPI8Xm75aRXOYE78KsBK6kCPzPHW+L5qAslLDZMrASWee9DbI7Xoq16cndbxE5UYM26NG+Fn30WIOUQhGHYc0TNsynUpblXju2lKcHi6SyhJKYjAPN9uDed0xvf95F6Feshs+Kd8oZV68vESk5kd6uh60npWLXoE5SDI+Kw/GCOuzBbTt/oDNVxSmdLGiApEoDqj644x0moIpRsksJeRgOBc0dVupBfUqmTRW0x+bnM7gYG/m66Cqq+VQ+XaxxVj0Lx67R0I/eS81AW/QD97SRZTNwxyZgvp+Rt4S7O3gcDtPtkifikTEYTv3A0nOA5xcMmPvh7tyUWcnBG7YHjA+VCVj3vZGoNgntofcQFe/+ey+EJ59hpUuomiZ718XHrdnQPFN8dh0C2RN3GyJTJaKVOnUn/gNPHaNj6WqJmyufx4nbLXf1vuoOe9MKVISeHnL0TvqPzOdp5gPQf3me2pwVasuBbsMcOwON8JZZan+3knhbe2qqakslH05jr3JIZvgBzl2Scam36JFUATOiRzhaPW7Nb5E6RjVFDdD50yvdhFAdI2UnguTlk1LegJT/O0J7xUVYpkaKvxZFwDb0C5oUj1zQOqNK6hVZoe099n2BYfd9KDKJmvVeSfICZzcYcaWcLOc4dUKAto8zgcsXzcnxMR35cO4v4b4ykcnh2S9nIivYz5gx/Y9daoucAFKhpAmx/MZMfc4ZDCLc4ONe1v3s+RABsbuc8BexdXlEl30Do5h+KX6ih+Le5Z81J9fHin8y71k7YBiCMTv29vBswjmeCt74vuZnVbLoHKoaj03KEbjm55npqC9kBgx8t6eSLVjVbPl2dMK/T2vs63cAyrfYhvU86xgRdiJwZR+agK/i8sR9rj75fLy1/hUvk/sTjTul+TwWdBSwwnrO30q53OLXsDCIiBiOiw9u50nU/wi5UhdiMEhRn+0hep5eXgsKvJgJq82g2y7MbHGbjidZCHQRUPndCyZ2rVkv7OcCDefpYQ/0iiYv+WbgEbMErupHPZTfa9zMU5kBxtafCiHD15MWOuDx9pvzlgXCC1MTLhQ73NOEGOw19Bpbh3sfZqv89ix/fqW3qTS9+mOyjna1D76w2fj2e/TeTvJLiSVmXsz0fds+uyfCTLfpoHPlWWU7DDNneDvOUxPH6svqXXoQmRte4eaN+Olfp6Jd4Gr1XDU9pSdynL754J9Jz2238OU1p9WG5AbdQmp82mbss9hR6CFLfE2T6dwGOalRLQs+UUf30OWTnPyaWEbaB3GtAjV4dYkBKaDxVObZ3nP7PsxRNcybKmBt4WzPF8fSUi275Z62vDsl0vIOtFtZtFLe28K5tzYL0A29c27sykqZzPZKVAvrxvpkuNWXZ7z0oFdVTV9yQcn6JPd/BLvsX7zNruAqXN4b7SjUD54bKWMod9mHxUoXbYXenZVms7zwrkoPltXbDax5sy3a7yAQVUT/9WnJbyJEwS3+OnNywchsjteNfHFBh9Ln/sUTNc48+EWhi5Vk+rhkI1nA2y4IsNYpZTRamsfgc3lhD1tEMuW/3UuZNqvwsqeaeUkC6nO14cL9Tbh/YKmD15sccUvjJvgyWjzvhyRelVM6tzQ3C8u6wu4llHrCfJmKJdte+Lgay8RlqjslExcRAFBeXxQ55wPfbfmg9j5VkfPDhYZ4SU3R5I8HAkHzauc+Zv3Qo+WxFTbRUbatTdDEo6Ngrw1P8op4a6mePt4OoHb46dOdnRR0F/9XfGEDUxuBRBI/cKSd7KCGvA7QtfJLXDqvLmeqLMa/vEP7FpTXQ7PXeADfgo2lS76JyXyZZdA2XQDxs1gq7No2QracssG28a2CqZRsrm/eoulNIqD/o/vMM8yiKg2QlqdNSmHXW1H9ORdeEaTHf9CR/4ieeXFhGDsLp2CdkFdU295SWwIF6TDr/UDjN+qXi5ETV+C+nF6bJW7spwzSY1BKFOeqrsjRvsbzjMRhIdBzyj1UlrMbYKuraNQqao99hevoHRJQq092aTN4x5wSCDfl7dr753atn2qw5abNlidLlXQnq9YEza3jUeW7c8rmVVdBogXvf+rx2j2slQHHk8EJ1Uh9GV3pg3oN4lRba037VtZJX8VvTBeJr//jEecoE56RlhtGpNx84guaMAPjRqTVaqLdn2EoB/TFDvmgNIOCc8Itro3EZ5cpXKxJRVEWYpPOFvxb8wGfoAc/B093XgxGLA9LyKXBiX9q8fTwF9z5LDHzfvS29zTPz5x6ZWGzJNBGMsmOwQNVzfvszf1npjLJwZ3tEysDxe9p4Q8Xmi9v57wev/YnD1yDe3Fr0AWModsMfqjCbfDwFGJtNuUZdlEoHWp6+23xRhQ8L8AT/LjsWHOKuOIDhqabpGCjUl8BtNibFyhOwWTxwu3n8qWgnnIvXISEcZ5QkQ/xgV8IunnMZotbN7l1YCu6dUke9Xngr46bvco4guDylrY9UyhgQSmobfY7BJAKz/XkW6aPHV3ZoUYf6338C6Bo1ZY30rGVMsDDsUFERJNY8Pwhj1o0UnDVn9K0KQkPw1IlARkSBMJ7a6T2f3VH2958Mip+CiuEJhfDrvbSu67h6Z4cAqXK5bb09thbp3sgSNFS47XU52yK7v6gMy7780GejmMwUZHdIp/VOajkzplt1MECQ1PZHKPChtyOtjAadMOywM/BcMHCyaM8h1h+XAb1ZH6ki6ufNzj0lZNOSHaLHCvAFNb3PFBR7KjjZz+tsOaI07qWKZVCM9MrKnaNC0bZiNWwCpm/5+eIRbvt3AOlj05yPb6lvw6WPrHb75Y40TkLEZd6yAEl4iGU7FXF+O4H5A/vTWKd5tZnarqdIT+bRf0/JuZM/PpNYePMldk3+/kYNbzygaKGs+7lVChhZfcAoZ7VlF3FPSU8fejAEadhNhQpp7Nej6YkFR2Ts8N5Ggxt19A+7c8UN0vin6+XS+T+Eq7BSvxwJVsG6jCn75aB8lbaL8ReB90dxt4neqsU8Y864IyfLCwMi3DqoeCFro432HfSsZ+3op4+svvtV4qzqwurIXNJ7h7YaPlQR8aow5u+uLIZnj+1KUD3ROWbnnjE2iR82NNykHiGhKWEw6jqeouAMCp4AX1o0jZ1BbRPz6nBQ3rR07/7OHDp1fqxh4KSCHdQxCfM8VylhRsEm0h/NNf+GycT2uLqzpC9zpKWM53X7bqo+Tveqiibc1+53pTg260D7G2L89oWlKDQ1uSLljq2dkZ5uTTgX0feqqufGbOuVETilzZUpkOv35Jq30EaZgqVPEvh/J71TsAo3MJtlWHqbQ3kguKNtEHO89q50yi9vXhqHQB1r7Bu/zyvZKL0rxNvEnZpeoy23n7F4/Y/Z5EtWaB7fIRs2HFtzQYa/o4om8hPrD703dq/6cX/N/mhnXRzINpO/MFmIbW0kwxCucvP1F9emfY/t4CNJNX/oJMd2/0WVnf8l++fYm9wd4+f5Tjmq+AiTqu+LuUC4sdEwQ9ybA206xnaDPpsLjuFT/CetdPBrb3MI+tii9SSpzRTQ8mXFtLIezUNeVibK0JvXe96XFXtymJUY/6P/zGWikHu7GX9uKzlk+r/lHZ/MwfEZpuoULXepJOl6P+f6RdybaCOBD9IBeCIimWyCRjgoCIO0FFQESBhOHr++DrZe96+Y7viGS4de+tpMpHxoX3mDKuw3SMNSH5ix8JTwx1fq7MCbhPh8kh33GIvvFtQorDubgm0cJ3qiIBDck3dp8D5EzGfeZAAYPS7Vqu5mmqygI289pg6n19d8abAQ0M7WZgdnwT1Tm/TRxIjzjHK4kKTmfHiYyGq53hbcR36cSGN0DK5Xt2t3s+Ha77x4R++EO08hmOO1ra6IJXFbP2IS27J+QZkL1yJKagJekYJ4oMEr8leMHTRQ9lsrh6fwuC74nZTud4KwgH+Y4oF1x6p7uDW0CduSaLecNv26dDrqJ/tzu8RVOdDmFnbSD1hJAlPz2eXXIDPEUriHwM33ODNUrFBR8ItnI8z3N85eAQOOTHr9rtEv/BzLmMecv6oJbbxVC6osBIeW/bSXA7Aabt90K3d61oFz5vwO3DP5iZPhWHX0uHCURJtliGpBjNxL1q4PK4wZwjDQ7Vj+scoszpmbq9F+VMDKIg00EKFZN74EwvGfkoMHqf2OnRSYeMFjL6DkzA8ydN1eFmdiuIOOJhJOpTOB+NYvU3/kcLNg7D61MHa2RbxOLFyunv4QCAOfu88P+TOh2CMIOaxJgRxZIc9ls/i37G3VwcZ+bXGaD8cM5wu88qh+2JrsHE6h3T/eNx5oKHXoAhXFK8u9ZeyPp9af70LV7wFy18M/vFU7xer020+B8mVOVsMvVynto5jj5X5Naz9OO37Ve2NRs1z6Zmqv412vmaZROcbmuZuNb5Es5P53AFxQ5Tuj03ejn56C4i9pRWeDCyF5rl55AjozcCOjdveW5Ea8BI+hYGFeqkcuaq3QUoW6XnZT01bfcNgghx/P5MenVdt0OeBQXga1KSeIkPv/eHJV4T83RYqd13bX7//AZ3T0/zWKZd9Lc/L68bCRl5tB3UO0NhVtN6aJLLfCP57gsxIl42Tq1VBQhlBMlyRHKX9vvX0ZZ6NrxIqny+5cRPhryzSPJhDmp1dXwpZQ3h2xiZJ2V12JtXabkVO9h0He5jtMznChZ8psELfecx68YOfvvF+ghROJ7ujxgq+ZoTb7ffp/zrJLnIMO0dfj0tpx36brQlXGQqUYKPOg/q8xoDOhGXeKuPO3PR45MBIY8HpiE47STUVg3Co3AJMSQcDhxvZnDspIw5+j1Dg7J3E0gf9ZtoR7f+zW+CKluNcC0tt5w9TS5AmESergaBqs22EFaw+BVsaQiH6DvKN9IP37L6WMzjCj4VlO3NIJ6dquX2HQwFuuu2Rmdbd9p5Ip8a9Apx7MeP52LME/jxV+Net04eCF8MzQOOdC1D3E4fPlstvawPdFB4pLJZ3WNY9DLehp7cdleKDZSubJ4p6w9uuWw/d9Iyn0RTrfu84DsHs7IuqFSYpJ3fbp+J8p4KePEv03ZZ/8gTOsIeY9mpE3lmClqeT2RDvZSDJ0kJujRdgmeu/YTDN7hG6PJ23nQH8V5lF2a6oj8bBnGe6+uCV40BJOhe7FoV13bmhhOFTp98mhdS6XRx+A5g36dP4qD2pXZatFuhSgw3DAfs5TBvqUrQHMSJKWyVpsPlnXFiUfEXQjomIppsvQ366VfFkfOw//EVV1QV4kihP/cHWbThcIs4Oi58tFvrKkZ3oejYoUNVOW65wIfH0miLePLaoeitdiBFJmKq/zTbzfbiBVBU2wvR0WdA7wszMby+CU9fqy1JxYu0NtDa2dtMIamecj9/8advTRA+5Ti8tiJwm8pk192VC1k+an94RTtpRdHw0WMFZFe8sb2608PR4o4d3BLHoavbOluqIpkaIEtQyWm1Zel88gQTjuh6wIO2CdXp0Tk5/PTIdh42JfuKJwE20ktkRyJ5aHp0ag6DsTsTuU8FND303P/z7/nl+xgSXgrizSBjtjzW6uima1uM1teJ2DYXtwPfLPEmbwZG9qdiHu33GP35YSfQYrVTolgBMvrzwufCdiNxpgzDW47pxqPHkIm6l6HiLD2YPGdDycqXqaDF72CqF9rO336FwNXJCX2GebbPQwx4etdMi64vZ8jS5Irc3jHZz18YwkTAQHSupdKyv+fXxdsgY7dyl6qku3n0Tk8OrTN2p6sQnHL4JKwRH8y8YFAOhTqr2buCxS8m7nRq0zniwitQXzVx7hvPcLy/lRpeB9lj9rM3w230tCZwdlOOc1M7ttPv/RZ9QtJlfdPRbr7wYPaF/OLpvGvt/OevLFfXlJQKtVWBHKYu8dhlVVJ/XyiSz7Yy5fHHULe78yCiddbfmae/p3R6v6c7WvgWFvP8iQbQLA1O5xdP9ie3SqeGlh0YuNCW5znldvM1r+h1KxBzmnSrMqtKqCibhsp05oKzyY4VhUX/MlPPnvM0J6qNonUykUP6XaWdc7N8IOT2YHFgxeFWfg6F9PO/FI8Pyrm5fCbYHR8q5ZuzrS5+WgelGmhMDzXHGamuDpL0iHKyZ53VLn41QO2Ntz/8Gdtz6MMH54/F72rDabO2I/AP4xMv8UwdJq4qoHl+awzuqnIWv9WF16tKFzwG1C/5G/Q5qZhoN585fdU0X2ROxUBwWD7CH36I50Q7Mee5Fp0hxZEBi59Nlt+n9vL0oH/4HJ/OERoRHm3ptKUcsSq/mQclusvoFMUubYukDjs9bTHC12tJJTst28EZAhH8rZjTYzQnTve5ix1A082L36OlXXwRYziU2xL/9N38dEiCkklr8ZYfaTudh6iCUJj1Pz9kmLiugGchlmwvSAKinH7u0AmemK4Ojxj9+aUJpgp+L3zsI+AThvxaP+n74AxoPA5mA943rJi6+EVsd3xxsPHOyd/481ldf9FrGzDKb3GLxldmBtBlwYocmkIIO9o/Ysgv+4FO9jtyeJPiBmAYQrJf8H/wjgcDuMa5Ma+kSjj5EfrCuyrsP/0w+Kvl1vijvdGTfxzRtJfapQqTMzPsoRBRFIoaitW9xAy1zcuFP3CQdvcncW2pc77kGSmATp5LDsd3P0+JlIgw3FebJd9TlSMnxxOkh9LE28U//ek7dNrrB4aj8zAveFeg6Sa+8M+fmmZtl8MpGFO85DdnbrU6ikBX7xPD8lEoe/tZBxDshQ1RF/05bsR3jW6y3lFpeb8//KVPluFbSYuw/5ToC0u+iyWv9RkNiXcEWJNtRTerkzH3fcUPwA+3BxYMP1MnPVGqn16hFRW/6ZjOBwUpROcxV2tyOv7G97E+AlGE1E+ZNT4Ccbm5TfaLP9vNjWtC8nJHvLtxDpqj536ATty6ePBF1Pa3+QtoyY8xCxWknZxuCtB4qiqiBZdenZ0RYWRvgh1T7DfnUKHe1/D01hZthcejHJwv4RDZy0dmX9qkHDnjs4Fasz8YvOkeUs+jGboXzpPgdfRFdL3/VkAP64apvfKae/s9xoDfwY1ZF1ksP97puZHq00ZiB+W8LqdpJbuSIj4lou+Iirpbsf+KU3WJMEgrOvf3fJtDMNw0ut4625a+3vcCCoLWeBVCW46IjxIwnZ1CLvSYl5QXLhq8tdTBW+k6qYt++0K5og758fvu518seuTnh7YDj3YULfNP1wufm+6vIBB/+lQgWh/O8RvJEvB1j3kb753eV68RLPk+Jj9YVfZPdI9Qkx94vEkTt51igNVPLxE1QKeye40KhvrxGNnCL9KhiMsEOs17EGPZ75yV9TGs7z5hf3hC+0cErMzZkg+2wkGMNwOkj+pNsEQTdYYEyYA7bfuLp3/+BIgZshd+tWunqhZisM53C28W/3HQzUsNm4fasb1BtyWbrHuBWHO2MO2/rK0jFtxh4WPsNM0GGsPvJUf6vnTpbskf9EGZB//rSIHw30cKpvHm4aEax5RJ5aNBh5O9Yp7RyO0s+1UHm1PZYMhsFA7XKcUo4fcWC1IfqVN7hQisPLoytdBDdY5nfoNKwf7SzpXzeZZicFEQSRNxBrV3Bun+VsAgVx5f0nI3d30tBMBxaYiRLm3Kr3+lAlzPzZXFh8pBI1X0BiS9XhNyvunOl+OXwvsNOeNPrTktfd2+BnDXQiE2OcXlkO6WwsyraU0c+zrNk2gcGiCk8gkZ3BpNbmIG6A2liDnjwDlVsXJqqJHgs3jbik4XM89F6bQ0I6/Vypl9lhXINZ8SnuPTNpzRKRfhXd1TLCgSDWe1vggwRUfCVJ+uUkqHpVCml5nkdA/leb73BwWweXaZEjr9PAtz4kLzXGM68fVpHqfHXoDHpQuJPonbdlYvRIPqFDeYG9ZJOpWNiIE7eyeG9VO/nNq5mEAUZmIk0678nAY5kkRMn3j48ka7DYY3B77sIcxVN4qoa0t3aMLMJuo7ujmj/3jn8EydGzEhHVv2iEwTxFZ4MPltJ85k0iYHTlpTKgSnVJ0O7+NdzOwqZ+cmUNK5ifKrlLjZCnMlrso+JI68E3XbICbuv+rMb48BeHNSkWT3wul43a0UuAzCnnlcbDq9OX9MiNv4wzw3ejvjLcN09/t9D9sYwnGpzw5pfy3IviBROEh3JkPjWzc6CPU17RmjVyjH3mBGFXrl2JyDGvJtiYiWJc+yL8V7AB+9HgjuOccZIXjEcAk7lYXJpUO0HqMKulF8ErvmsUqHxKiR/e1OLGzHXThz0DfQbHYbOuhuV07+tRahS80D3qIvRhO+hLXkZV+baFs+DadJDhXwt7ZN7HCa5sGaqAKKVu+ZbCoM9eb8NEGPuRZzyqNUp2qwfLi76peo2yevjp797MA94y2WrjerHD/HO4fWKgqId34bKb+zOEDlFTqm3CK/7OR1UsEuNs8YbHpx6M0uvlLFtzdipBdu7r7fXQTF63khSjyvZtY8nQ28QHjSsfeKdFLsmwtGqSTskNnncrinIsD08bZ4NOONM5jCc1q/D/6NnfdcNs9n+rnD5+MGzHsOljootfRFzqXTmBfaX2cejCKXsO6e2H6fT3PvsFxDZtCO9CZXTji/Xq6I0CNfTr3aaTo+vt0GdYb6IQdm6in/uO8TyL7oREd4MWfcKi8RfuPrwg7m8VwJLny6k0VIs3uH4+WSG9Jvf0Up0tW2s9saXH8MSaQ8SoeeL2gD5nYgJB1UT53d+VbB7vC4MYWZ+/a3vtHLEyfiduc57QfNjNEXtT1Rx9tjpityvEpK1ua4FqTnPDhcQ9FZ0dUFvzx1liRdgNvQ3mnViI7KscapIZqnAU/JNkqHGHwZ3lWWMks/2c72C/oVXo+uXKpWtOGUeEkCzpAtR5xYkQ5aI8RAseERa/9F5eB9/Bo4/VIxT3GqdHosjVYauomJeyT2PJ1WIobi6rgE396zOtaQrOB8Vlv6NFiG2igBH6ajmRCtumE018L6irzL+UYOpXwt59jrTJSu3ZCcOc5B3GEMqNRFtGRYNsr5U73XBqRrHDJjxtLMvFq04aG9eTwcaexM23Oaw6c7W8SJbVoOw6lLRE/Z7aiQ3W+oqT1eg6AnB2ahvG+ndamKYENh0HVEQmdyblGzu0bnnh0OwqR+5tpfQbjeJET+4Vf8vibIUs2MOU/xG85hm2aIr8sdcdazWY6oWuUIHR2JGS8dhd0JEwEkpAR0LrvOGfVt4ULRbAzm1Gej5F312gB3zRWSLePdweoiw3rpe2SpR66dfnidkDePNy/RKId9qNpSs0EbJm/PgzMWrlSgo/3eEEOmDZr2m+ILj/hSM8uAUp0Eweckg+MsFo63NRrbXemiWniXTPm2eji+1dyQpqOdELUuWDicPwMHw3vomcrFeTvr75eLLkwjtJCoXPJJ+xDB89Y+s5JED7sdTwIQLPjSmWxLddh0lQBE364xr3/ckiXNiwL6CpjsV6sTGtpVuUEHGcfEMz9JO9xM8w6sT0aiI85XP+6ni2DBE+Ll1uCMa+4NwL0EwmTHXyj3a2VAuBSGdjr+iuZdn2VwymQdz/rcz30nTxE8HPVCzOCUOlNd7Ux0/dwdRtaHrTOoByRD5OAX0/RTHb49Ob9L4ST5GEuVsfQSv0cIbfyUKdV7cIbYRAXy196H2TfrMM9cnK5QcvcZOYgqjwYz8A2o1kTAgjDnLfXfuw40GuS0aeqm/JgXUYBL823ZQfmYKn8a5BhqJPrMXD5vLq1rIj/Yd8SKIzaPvpE30uhcCdsPql6OVri2EceyLwkcAadT8WxtBG0p4PahvdX5LRsF4CIJSbD16HKkzxck3m0a5ujSph36OaXifd0uVZFYNs8fxcJIu0ozcTfqrhyZlVHxeh2PRD0aXpqXbZeA/YhN8sPPaXBaE2FpeBD7e3s4k74TltoXzYc5sY3LQSO2AcNsi2zfr32HfbhNBFxk3Nleoy+H5qGnQBrIMTm2ljtP5/mrLbcdU2KsXAfNQ+4PcLyJJdNtYTkFqtcZLPGCDp02oM/LhDtqpNOV+dcGl+NR7kTAr9LG+dOS00pL+3xpVCXQk20086Dx6YSG99QT+YP7svlISSHe9i2j/T7eOX94X8mJTC6YKC2frx4xrNyNSpRpmFqafV6B1CnixMjB752mC+5XeHt0T+xQ1tX+PIYNKOFBZ65XZeG0yZjwwzN2ifp4HqJIbdB7vXkTxzd2KeOsoZDe8BSZyougstdLE6QjMp7EXZ+eTk/5woayG27sbBwvajew6xc+xUSZ+fX25TR2+VLYbfNilvIw0BxUbgIthisGOojqWIqxD5dbcMf86dKk05qxeLfir5huo22iTuEQGXAy+4SZx3KRKF5lila08oi67Jfh0momrL7yniWesEJDoL8K1DylpRd78Cxf/D6ooVD7hhkobsrRKU4Bip8TJobVPNN6fNwatPALvK3e8zxtfO2ObpN9ZV6bsbBzi30hueu7u+CTOQ/lQ16hlxadmbJdQ9uXkVuBt9uYzEmwps6bVR5J2UWviOIYcjtreWzD5n26MGOzc1N+rpMV4LNiMNmY9XY8ctYVxqbymOkZo0o9IcawvdzWTA+cjdPTdBbQx1Uievk+36jzMn2SSstGeDu/9u2Pf6CF3/zhJ12XqgDWR+QJET6lMwlCsvnhFzsAEkDtvzzHoR3F7xTALrbPzOIzIe12ytVG2+M1p6JtdGW3WncxUoajykiR8O2yH0UhesKaeNfbp5ywO5hSemcNbljmlHSTvUUUh4eIwiVKnI1cCDYsfzO8lvqyb3etC/dHfCZYK2V167MsF83qUVBpGd+BO5YRWsYDC9ldmtnmzHzoc9HH4sH/hOPjW3EweKymE156vR42avy33gLrcSg3F3E0pUMgH1h2RUd1FvcHGfIzMSgEGxXxwfOLke8d1AXfVXV4o9MG3R/RmRxgt3Pmk3EyYPbNAwtXHFfStXX6IgnJy62Iz0WdhBYrSC+wQJ8L/vemrDXwOjwws2/o1I5PnWYAw/dMtK3qlVvxygco2ys68bp2105UclcQfA1/4dN9OzXrqUPHYusu9w2ncKLDJ4cdJRsiZ13lTC2tOZD0ak2s7/Mwz16+uiItuzO8chsv7InDK/Ax2Zt25mlK6bJ/0S/+BhLNy26H+VpMyIsn8qtcq1SbnhXUe95m+xZd2+1+/P7Lp5XQ8dDy+++i7l8OLHiO7jytYTJhk0ousRrzqS742iFb/hBiD0+uZbWwTWANt4zoY3gv59pQAhDkK6FwJDbablZ5DHr4XBFnwfexkK8adGf+Skj3FNI//F3wAaM7SREj+OEiWZH2TNvtBjT+4ot7PVMmb15FOJqXSQTl0AnM6b3PzLb35ciB0VgkOZZ9Ov3iFTSXPdGvzRT+8Fh625cI3xzlEY7GavRBRk+HmOuPWrLbJcp/6wOP7r5qqRlNPnw/PBDrqOvzQKOLAa20soj1bqty+H7HWPrhy4mcJtTNlZ2D6r8Eohf9o51V2cTwnWvMyOAa8xgcZhAXfYRHy9mH43AjGDWUiynUrTvPirDTwNtxJjFt30P9ok+k5T4Z8X1o0mmO9ALO531L7Mt9F7bsYnW//UTf0xCHlGmZBtFNjpnTJKsfvt4hSNMYS7Wnh1tLexYSUr47up1fz/bz02+FNFDiL3jDfcrCB1PcGeSHL/Po7SokfdwnuWf8K+ysqVZQo40+kX0wQyqjtQIuXj/pKvg1oiicBCQlM9kx2B7aUeYiF3gyPpjcvqNwyEEIIKTKm2m7g+rMykPhJI7dv8wxpuc839Y1Rs7LOGJlz12cMaMvEfYJs+hr86qdQYjGCHbB9stU8zM6iz9CYZpWFjncUb98/+DD+tSr5G89NFFzhXsVykR5jh2a9fdSWPW5pMC577dtfv9fvMoL8RxlnY43HgA9hntPuYU/ddfVpkHdKDxZal8DNL2DC4AcHjdM//J22Lq7SwxLvGEGl79KttttRVj0F16RPaeyb/GwxVVZ3cj+1H/naWsPGpA6/uLiLcdoqorNHXIsDWzfDIY6ikdXgTzSCO09g0PdnX+60pHRiHjkgdphsOQV8AbRmPEptu248FWUF6+QaWyg6ixeJR/VeaHhqXoPKr0LTgLadT3T7JF4YW+8HEVcv3OOEdvw0znnYgOS3HjioW+tuXvlUQBLfMMg+y91dFhuwH3nNcTzUK7OxSaZkNDXLlPQt3X62S06SMvNAYs/vNufLhXweeCw/RUixC4xzuHc2RbdLHj56cVNgdKT5VF4aeFMW5wI6LERj8R15RwN8WkpTHpTYrYvN1643YynAp7180sMdSeFFdru4acv8bpI+LLvrk0FW60848E7XtBgbJgGxfZsM+JC2I6TIJhowV889zxG42WiK/DszYXZXzVPv+qxC+C+Iw1FK5eUU0vpBqmvLsbSMv706Q1fdOJRjGHB0/EaVhEs/J5WfBa1431oKtB1WcQ33HtoHjnVh2rtCXjXn1unzQIvQxC/fNJJ1HS2SksDNNUHGQ+qpKQ02wgaCNbqSxSOM1WmXoiBvhum40H0wrD/8eNjwbvMko3c6Y3VLkBH1kUsOb+VlnPNNABWr70//jTY/bGBx0Y4EvU6ze2wyfd3sCt/JHajCWHvgFNA+Dj1zArvXdkfOSuB/qHd2cKPw/FzfzbwouTdv0Vhr46rKFBg37cjUTfsHQ65/+Xgll5loix8fLYn20ePCw3xjP2vM9kMcahXu4DobxuhSXvdJ8iLd0j2/XpQJ8NrMdy9vCa2C2weQZ8FaeHjdP1+P8p+nT4Nidt2MrGLZERNcr40aGcPNjteTmju9qFqQm/wFnEem+jnB1UAr8Bm5Fm/0VyQMwWW3C0KJW+Vr+tBXm6xfno6bnZmO7mr40o6fPWaneSrUi7+SoZycdMQV0135Zjohityt++OeR9+E9KSP30hA2ZQfr9aOWMbXnL4EMthKsveaOT31wrdn6ZFP4OH014bUhuF1d0lh0tXhr0x1hl8kKLibRMUIdNTa4JjFJuLf6e13BudOOkEkUj0V52HX8ffuUiOholo9ebUTtG2NFGAxD0tl/mZn8yiUOUdz7LP01/8EE9Ev/gkl8XbYdLwXa4s8BIdrI85z2bZmWK5qjCLvGtY0jGYXPQl0JJDVtTlyOUnDMdztmb+4j/+4rUkE84i+3LTh0wRdgZk2fVIpzuylsY0VvHTj9jqz47DHuJlA9qbA+Zdmvtv/XwhXOrFH/RHm86E9/2f/0N+41kNlgmwG/YNcVf5CY2nODDgurrOP75bju5NFsWDevKYeio/5Xz9NonI188d5vrzO53MSPRBHlcDHZ4IO5sWJ+IPX4h2jTpn6j/X+y/+MjK9vHa3+DM//3jx+04OT16lD/sgfBFX9nV1ulW+AESw04WfV+pnS1EEvef3eFW2TTq8qXhFqTAxyqXopc5f9gSAfdPQYFxV8ziOHw0t/jXxs05zhq1X+HC77DRykKgWbg4HdhcnfXKYnJDDPOgWjhBLMosdWyS2Y7rXTTid6idRP8li2/FfE0ndOcF8QpxyS52VgO7qyvnz9+aRc3wgx0TBSYd3bbfL5CsM2TX/m+8p6WkEi/5iNueq6rDLzAT014kR9dbEqONfNw4t+pI+5WODvkfUuTDGQ0arxR+dn6agQCWAzeSH/p2H9AEKxPSRU2HM98740FITibppsId8tR1u+/ZzELd+x8JZS+YhhkQRT/wuJqTKWoeuFFzD65mfSJQl+5LjHFbD8Ch//ulOndLi7qKLtR4pHITTPN2qRET9KVeZMX6LdGJboUKjtmrxqhKDcuDXmiEp2SdnGrV4dXrrB/sXv/HOrjhn7LzThPzk5hO8zcdwfkSyLbk7pSHeLXTRqB/9HKTbJiKH9hbPY9KeRdCbb0Y0YJHK/GJn/PgkUZf34ebKLsC6Fw1zr1aZtr/5F8PWxsMkhjMtU5bAatKfhPhvxdn8/N2toYRUkLylMevVCkTpg59MOTe2Otg53sD4CnPmdLyINk2t3UEoeUTc2xiF47ZZ1+ieCDNRL47Yvqp9n6DuHqyYtqy/ZX3YwN/vF7bgedofuf0VdavXvDy/cKZwKdS8+PFM7zSunb16MqWFL/3499w3o8z98iMsXvjKT68CucKNXeVrHU7HpwSQK/6dmYveGposxFI8hAE5vPkXGs/nVwJOtkFMwfTYTtHxeAftUByIOiwJ1YO0MXdqKL7w0ryhHPk+V35+JTOTTYdm+nrZ8F5zb3Kfju+QlXE9wQ11PLtxceP88hdSrgT3xU/j52kMRAzDrroTvU6w+udnHrlGYocau2jMV+f4lx9j1tq8l0ySPAHdE3Emji7F7RycmxU42qsmB5vyIfv5Q3q8aYnJsrasPpKfw+4SYmbVmlNS9n1NKHy/Vabeb4U63c7YENfftqXjSz+3488v/+WbFHV+OqwRRU20g4eMjxrVnZmzhALaUd+z62T2Za98NEPcxmcTsyU+0WYtUvEXn+azrbS8GlcCfM7XJ5E1TioHy41iaU5ITbc0vDq8zGUuPHfcGY8bTQr7+WLYEO0bm50+eEy/P/744+eqtc/VmV0s+os3xKwsN50uHH+Fxf/E0y0a2pEzKAD/4Wpm3S83ddFzNuwrPSau8nHQog8r8I32QRwfVeVM20ZEeliumCf5csmFsxEAZ9IjfsKLqYy2uShpWcboXz7K3RyGn//JDrK/D3lRa6o/vfLHTz3PEeFzLROm3UczHF7hsJGsft8xF3YZWviavTOJqxGrP7fqcJ1CDL5MECGll8+9vi2wVJcNYid+uKK5UMBHSqP2RDOlbfidD19t983DJ5aWeDMPeTL8xR9T8tbpXzxf+BFdi19x7uRHXYmLf0KUN1+o75v+VcCKwKPfUH6p7BHJpqQ9LwluPkmcTsFHlyGpC51Y+W36219Q3ZFKnKyVU+5Gr/YPP8n+eavLWd+HOVrylcxLyTmkez9ZwR2KE9Nvd76df3q4ZLsI79RjVE5N7WaQHNM3fT3Rcf7hH9hyS4jHS0+1rR9DgS5N0zL9Vctp532SCu1zeBDlel+qEGfyVWrwuaWw8IONiTcF0g75gVy/ah72N9IGSLwaFI9Hn5adIrfw85OI5jcv9NMHoO2Nkng0mMppn3EJHLv0vcSzKp2LjT9Iy3jjodP8efKEuytwnSORfRV+UPexQEHM+CZ//uIcDGyDymNypGtbuKtzjt0rFH414o0uTXNfHj6mtOhBgmXh2C78rQN9a+Vs3yVntXYT00dmdSuWfEvoDL98jxP6OXOXfPink8UYNJgrpgfly5mszIphwXs8oa+j9q4afEG55J9/AAAA//+kXcm2qjy3fSAaIlVCk0pqCQqi9gARAZEyAfL0d7DP1/x7t3nGPnuQnaxizrmStZDLDLy+Xj+DD+cNq4GA3jydVv0cAHRJtUBeS4Ny3+FcgqNuntGprgawWqbykJMkVZGCX/xIm0uawiF5hMSn329GSXSCwOY3REy15Orh3t5D8A5iE+mzrnq0rsUWVnflRl5nUHoD+BmMBAr9hDcZl+M2BqH0/7pSIP7vKwXlO4jxUdHtaNHlbADkGWlEU49D/Q0VyYBC3QoYGitLp3JGGN6r/EgSfPhGdL3nC/z7/87hpkQ0+nWTlOHkjN3p2NLtU3ETLxiThbSf8Ry39/FhgMNHronqXL7j6KOHBqXtySN0/y5Rp5G3D1eMGKKnsV5v6Wba0IVaF0i1pAL6Xr8cxMy9wjxLE53gpNTkolZ8dKqzVceHULJB8f4YwVHHanRMt3cMde2QI/NSaCO9m5a2N0ZvAsZWYTRrWh5AQ+Yd4g7ZrZ57Zu3gxSsrdFtrPC5GWQhAu4gHjNUjihZb9ksgQmNGyj1gdVpelwKCqyviDX7hOKvvBwMPJ9Ihuzx8ojWCLxN6CbTJI/0u+nov4hz+gHfDjDmr+hp6rxwqI0+xEHEPnSj9BcrnuJiIbvttth0/5wK2Wh6Tq+ZeonUkYgwZNjvjpfg9x+7pRp3cCJ2OFN897rO/RwPSm5thrtZZUEtfhgN3odnQ6SVewOaazgRLMaqRJz9QROvPp4NFLgXEbL5sNiUb34EqNTSSA8cHi5ClIWgeokruWiaDX4pwBV2DD7DoZR2dirUZwHtjUnT+WREl7cvH8HMVOpQDKmXU8C4JZMOLhZWTmYAujXkFOhFd8fJVXYCvrvKASmQpCLmHa7R8kWXA89D0yGIpp9PfkrKwAMsBabkCvLVrn9zeK3oj2o0NdCwMzV4SM3qkj+KRznO5arLZYR5px88LLB9guFBkSE28ydYBzUGew693Ff9+TkkjOTkoclUmii4yOg6fyiQrvS8jY/s+ovVeYxf+RE7C7Dnps4UY5wLm9jNHqmHM+mLcQAmGAx8FE8nKev1WhgavKDiSs8k/darQYwyjavACObKXaAveRQiHu1ki73LaVQvUB0DnRhKsl1gYx++1T6TD51Aj9H1YHv9Zeihc3i9KrGPy0QelueRyy7I+MYo2BtswIROSO/NDFkKKvvhPKZByyCjEKSppXOuDvcH37WEE7/NTH+nRejTQ/KU5cZ/eoC8HOkCYPasRb79fMy66oDKHaZhVokffsZ5u85f5szdiSUIZjfyQbZBZtztxlLubDb9W6eRHMBF8uH+XrAn4cQLdIN2JhVDp/V7BMMB7nvDEOvDxuLoz0KQ/e70vBcm25xMnwOY/HJaUOAbdAT+vMA+xiXw3ivX1yusPyHFGTPyFZJQerbCBLZUB8rP6XY83dBz+7AFdM7Ud51LaGJl1PQft/jxi/puF8HqsD8RKu++40eM7B4/zIw6a87h4I046BWqddEboq5cREcPFlN3PycFXp+boxA3XBpq1eENqH+X6Si4CFjdBKnEXfdZoO7ZvF9girvAUunvgK7xQHI9ThM6fcAbbyxlc+JFZK+AN71Mv4Swb4OvAAjmlIenToz4kUD/ZNrKl0tD5twE1YPuuT5zP5Tpir+hLyHFmHAj2a6PfcuJKqRdLFyXGTax/5n6lYF9fwDJ+pU+S/4Tw/VCkAL4iPdsitFPmaJzwYZDafRaV1EAmMPbGW18LHOdWw/LEBDbRW0mtj3ElptBoH2tAxfuXTnicW/jMHC7gwnahk+rnCsTxNUao6JHOR43VwYZyH2I577ye8Mf1gc3XHGaf8Jct9Q55WFHyiLPHi1ny7Q3UNx+T91W/eJN5KVrQKpcOnUNFy5Z+DR7wculK4g6MUrMHAQ7Scd4h/avx9GUcBBY8BmYgJ72UdexstJQ//jYQg38N3mq+HRbq1VSQv3iwjefLJB9v0XG/ovTKaKwojSyUUCO+tSkZ1xqMCV9DmQS9L9vRXB4/V/l+tEZif2LbW28bLsCeL5CJYO0tGee00K6bL1Hq95hhKUkhXNzkTcz+ZXqsm3ImZNvMIAF7tsaGKWNOFkytQtZnaqJVt2YJNPe2DaTVPY8rN6gpJLpzIuZdUSnLfRVJbp/CRGIxDqMlAUMKN0EoA+FXspRewIbhe2JzZIvdFm0dUxZQGepH8FbtKVu2c8NAqo4x8ki40klh7hU8Zc83MfyCr7crt/ny7YRQMFzzq7cKA2eD3T+QX135eq1XI4HPJ58FzJZ8Mtq3kw+5WuwwdyyfHlXVlfvbf6SsP5uuImOE4GbjhJyl3AGLrs0PEJhcQ1TjGdHVKM8YdpjvsHzotYxG0/aAsow2EqjeB9Abkge451O8da2o0+c0XkF45xA65w/obWhrUsiCoEWKG6FocVPGgO5XGoMPjMZsHM92CQupaLBQri99u3THBWSlbJDT8CZgmvTHBApzfxVdW0RfxK/cQeBrgChK3kcLut2uMFZLiO6p7GdDeQAFwC1w8WHPR9tCLpps3X8d8pKfQheraSZZ+lg55oD2yFY14wXpjV2eKJ730bciX66QFQUPqWSePUz1jJFYq4yQW98TupI8NyAoxhUF9Harp90/gBhUd6R/3MKbJNFbID6MMkFrJnnTkz8V0AB+RC5kPnvbIdFZAHwF4MNj672NJGsgRyBlkJ+tNV0N7NqgEPeSxUa0bM1Ocwm7VbmRkGPV7LjjOXC5DCXuY9XytoGULkSOn5NcViL9H/47MoJINHoLwQQHPYe4O3/RSZmPdDMLYYB3Q3gHW18MlL7XmZNQn3VYxqWYbTegaFDsfu2/7x/1W5XIyjQZ6OHcmvoLPqiCbakNRHl1pww/nP2V9IvuJVQ/G7tocwUoQnPGW5bM0aJe5gnu+JRYGtNR2kwnBa5pOAfidCgABX7kyql8XfBaW0jfgoZAKH1O+b98QBVcd1A7KC65wvBGu8BdJbnSLZZ4SLAp7extgsNtOwXH4Y3AAt6dAZk4UIkiJAo9vn8NBx6HzUdnXD6zTSakFH5f9YFc5nSNdvxWwO9ZJEQ7tJ2+Wnw/wMM7mYLjWuP6r0YCb6FNiL/HY96k2Af964rwwl2SiGoXLIDym1yJscdvegdjA0hJMszB5k63M+p98FLANeCWT0NpeCtykLqCEBx9ZtYn4txdWI/xiA9T/qX//HnHW8TXvj8w0dbYpNO9CIjBfGywzcze5eFyfeNkx8Ns2I2pMC3c4V++OBqdUPzFQ5Iff3O9rFKxgUTOTbTnz5o2a4Eh3aaVGFehGylzkzqQ3GNnx6tmRp8ry8hVxXEY9uNLpzH/2sC+nyh4sldAydguwJkfR/zrltqjf/jAtOXj7t8kW753kYVCyhoEPTbHWy/x3uLeHdGO5z/ZvOcr0WjTFTfCoIF+ZYEEI/MRIhM2PF1k+dnA1GlfAcfN69j8+Xf6ZR9/+H481lyiQRC9Y2JR9lP3qLv6UKiuLxREJ4lun0eUwPX29oi73U2d3+MR3PEhOnFnqJPscQnlO3+9I++S2tHKa58Q7nwHnbueZovWAA6OFfL/+33BPscwpEgkxnlc9OVWaw24f+yUuMXcZyv4WCXcZKwRq0+Xemmc4wNW2eOFkO97Hr0H4ga1CzgQ0011uj5fYQvBu9Qwn7PXscc6DIFdUA2vN74ecfYYcjhdTjLRjqTy6Kl3WViPyYjBH978yxeqfcLINywrY793kYPcax0wWwAwrscEXEFTVSZyT1ysb18p7UQZiHeUTXYNVpF2wj9+ZIU1iPZL0hqo5cMn4LID560nc9Agx++M3j6SvUvQGYM//pdBrP7hcwUGOITojL1rTXMQ58B1ugXT2QxGdj5DE8Q3RUd7/gB01p+SNMz+i+TV9T5SN8wE2HLuDwuzxkZUhZ0J3tH5gU5N14P1plQMZFBaIIfHXL2Z+IvhWqZjQFtJHVltW64QojlAaoaden3HBQZVjgVkLtw4Lnt8gO3JcrGcP3KP7vgQnLDUEg3bQjSd6FcDn+GuEPeMxHqtHnvzFeHuYEkI/Kij2echbfKkoVdAnZHjv9EV/OHVk8x+6ZIrX0XWznBGxvc20ZVclknOIVTQe/dfPLAr+4fXAuCOYdagwlYgo0zSjodZfR9FmsDjPf/s+IvoS12gFBLWr0h68ttxvikVhJV+YpGZ851Hx1xuoV+ZLDGzm12vqEsDMdPMCJ2u5ZThe4cH4EUvdY/3y1987/74Jm45vfEWj94EoKCvgLTb28rWnlkHWHLDHHDcY6DU0NoGdFOwBfrnUUX/4fkdH3lEekcUZyKWpvhn4EP80iKOCkslR3B+EnTBbjaUUr+A+4Nf0P59QC9AmqCnsF4glAc1Wp20kWDIEWW/YnAacby9rtJ1bXGwvOTJG1VYmvKe74i/yIo35goOAFvAkVyQ7dXU8gMDwNvRJxod7vWWPNYWYoAnYib2oo/lK2JlTtK/eN79t23y3gaJcgeYHfjJW/7wnK7JORbt7jMu+/nKbPZuiO8w54h49aBBBl8Q8ntRjeYQdDGYDlVNjAJkI5VEn4Hpl3sgnV5BNpDcFWCYHBgU8EI5YoNqe76VRKQYa+gttmyUMFTxFQ+7fc0hKBM4bIpCkkbKPPJyHhAU31EL+vPvBuj+fWC352zHn63emCYIwBfGCTILoxyn5apKwHWGBaH4VUWzJrs5fHKnBLn1JP/pMabodWGNlH58ZNTjFlf+i1/n9tVm61Z+BHk53M9YvsWvbAufNgbJmj2IBz6Ox+NsxTBWK0iMmp6j7WWEBfjVWEZnOq+UCMLDh60SdYFsEZd2Jxwl0sH9uMEijL+R9LnCwanbG/Wn5iEbLvVkwh98LcTVDzPobrXWgveyYuJdTp96CaCcSnIoC8Te/X+uD/YC8+9hw+z2FTIiyL0EjoltEpdXo3rze0OACLQxQdfHHaxSduTgBRA845v7zcY//p9Laxz081n3Fkn/BZL87nNi9ptPeTfMJODEgxZIQk311XkzrdQ8gIoCRX6NO78y4HR2R+Kw+mtca0Am+McfTHB/e5toJyXko27AIrMdM5o9ntc/PE+sn7Dq/R8+BkxK/+E3HD3lAqo5CLHwiTtv/b1+Jug9q/7jYwDz15MN43snEq8aIrB+F7sA7w2m5Bzeeo9wfnWFhZNZ6C9/Eq8DE4w7OUaNetq8PX80cPEGKWCvCkfn6QobECdxgdLpaFIK358Q+hnkdr1B9ZZeFF34Vppq1zNEnVzjawOFVy6RYmplQB1+L/mt2QOLKx+O63aOFlh8ew2d3K30lp2//ekP6CKXOtjIJ25hOEOfuI/urc9OOglwuSwC0cIrptspZH34+WEXaeHvVs9Cppp/eCwYXy8Q4XmJBWhbyRCI7T4YSh5eLGCtKvrTV7LFSp0YrPjMIL+bbEAPmZ+AC5hx0Cv3IaJMWDJylZoaMjnd0Nkd38r7+RPLKO1okZhXARvj9Eb+7X6lGxWEEjznuCLZo7D0xdGSEBi9+gum3d/pmB9bcD6kHnG/+Scj4DKxELs9Il7jR9li8xIHsi16Y5iKmzdzbLPJSdc15GqLfbRczBzC99lKkf1+qZQzGzeBS1i8iHuPa9qzNsNBQee54NMxx2yPX81fPAh65oXHLf6J0l+8xyPEH7A+45kDZ/f4C2i8GdGffglTVxKQhY1CX//2s74FmGhnQR633+smyPG8ccj9rra+ATGxofsVRqSrtjWSMT82YNcH8Nfv22h+1XcF7voIiSd8jXa+E8KLaAr/zpMKGh3+9E98+OpKtrpCkQJbSK1dXzJq+vxdWkDXNEH63/r+9IWAfO94hZGX/cN7h8ZG5Ex1I5qO/seURyuaAggKOo7t6LiQQY+CeCS8gGl+3AsQ3llEbgJkdRLWVwGuR/+MnPfpO9JP9a3gOYgxeu36wnYH7AaCU+Ugf9cn1y0LAzm5Vj+iuB3nza9JXaSdv2LgV1y92Wk0QZ2cE0xjJGZTK8kK7O18JueZ8wCrvgcXvtnwiA+zGWXrdK4k+Jod/y8eZoITpljSBr9DPg5sj3dOQgmLXJeRw2y3aLspzwVIem2SYKZcNJlqX8LMIA5RkT3uV0KTFMbdIcascOjrbTmYBnz8XjXRDgDTBbxLc+8qQZBmTctIc6UN4B/f9NExiugBpwU4gOZHTMqI9drsg1J3fvVvfdvzVy1/+jcyvgMdp3P/CyHVOQVZS0GiTaZ2AwshEog9HrOaSrhv4KpxN+S0jpHhY3t3gWQ6kJxVoaH/4lPpmHcSlMJaL6deHWDASyqysivVh8valVL50rvAURuNrv6z1yT+miAUWNoPzL+P4srQqFYsh0oVrYB4DGwfzSU4lOUxmkXaSUBBP4GYCBdgZr635M/fidpzv11P4xPYJeaRKLVrjPMfn9Fic0TBpzroy63Lr396IzKm51hTmSQxyFtWR0pxvdJ//GTnx8Fnx9Pbwg4Y3Mx6wEx8jerlF3gB2PUIYsqWRrnWtTZY6cwJy6mPvM31ogcc0GARZxzretuW8wanSc+DA3/0vPU6dQpUT4WAtGBB2Ta0cgrRt7gjZ/P5aNI24QrhsQ2Qu+NJ7tgLAfxK3oDXJrZAE0EcwjZ5ftGpWPV6+fv3O8Hv4LfHa3bSHxjc+J8VyFZq6MdVOjXQCUrjL//RLn31G9zzPUmAJmTHkxomcDYZGEivI19viOdMaFzFASEd0HHuDe8BvaAviOcpvE4rx+Hg+fDwsBwUGh3ahxHANaFtIA1mALZDdqsAuhxCoklPVE9Wzz1kjfFEvJz6D9iAZkOY13sz9tTcrzx8hxSKX2YhNps9KQYMYeH4bm7IvWxNvez4Rb7XNESOl9mAht3UwIw/qQSZgzfSm1sz0IVKh+6yMUf9Q71jsFVLjReyaDU9MvMGLU5DeDw5F287Ze/2T58LuBeXR//wvmBgi+x2B9ZurCv5j1+Mxe3s4UPicVL/OX8wtbmI0qxiB7iE+QsFs2ODjb08UjigziJ+goz6qzZDB5NuaJCqE9Nb71MoyX/nveul3my+HU7c4yUyHf4B6HYMQhAHOotXjY8jPDOX//CekohzNEuXawHcoriS843vsvVdZTb4wz/aYR8EmyF+AsHDPhBbOrpg2fmTRI6VTIK77NeUJqEgpxeFC8jYRGApDh8DlNl8Jn/8j9cF3YbH5XxDe/0novYcDrL8pWnAMDjzuGBOJ3hUFAezH6X15jwIr5Iqeh6WBqasl2TjB4guckiUhfDe98p7KZBtZGAeNSZYxsWtwLm/BrueW477+gz4XijGXGGUNTnH/QR1vlQw2fXL7aUcUrDrX0hhzi2lv+NUirteTa541CP+aD1auLjxG392fE/COpWg8CokvOz1uFW+Wr74l38N83eJ1u/vNkHVsF+oaE+uzv1n32DY6xHsiB/OepV3PR9pvdPo05wJJaDrI8Hs6G+URJOUSpFk1ChrPpI+ttWf4LtMJCQVk5G7aSkg+kYqciLn6P32/QN3Prz/2RNd7K13pfOCf0i/WZ632qFa/ekFwc7f63XeHwG+0dXEsg31cT3mBvMXf/FBYN/j2jNiB3vLvSIveeb19KfvKuryRcmjUjO2rKYY7OeNFFkoPao09hXE90EMuk2Uop0fKNBjHiU5cVkZrau2pNBZ1CmQGpHLxuuzucJn5nGY3cK1JkdWe8DrtHroT//6ly/Cpz385c/oH5+qIynC4OEo2bLz4b/6Lz7Wy50ux8u2yUt/DvEf/uCGCRlQDMo7+uMLNGqsAez8KwCorjzqq1ED1DRMkV2uL2+hrb9BBAWCbsVa16vz5hrgaK8EFePPidZukf0/fooeZuvXLPf5cfDiBtaud1/oWhtp9Wc/wZ+esFxU/Qqlu3IOpAenR9SHDgfj4UICprvw+vwJHFve9SD8c975OO36svSHL3Y85NUXiiAwwpANlr2+Ol28dgDOPRSQt+Ot7ZScJJj+bEqK9jR4i2dOJuzo6BFHTZh6bu0ugXs9bY9/KuVZLExSL1Yusip11Jcdv8B3XNMAJMaR0icfdFLACypy1KQYV3/vesIRJkHB+HMyrg9eLVzHnx3wv0Afl13PANGHSsRwoaBv36MNpb0+j6lq/2rcASuVNvctkl2vzAhMuFK6tIVGvEfx06esO7vw/3OlQPrfVwrMkTsRRF8iaPRgDKEaVYdAZJsT2BaRn2Dk+Yg4usaMk/EAHDjoMCLvLtHq5SrUPnx+LZP4vaNFk13N5j4xPQkG7tPqFMxnSRx/aYpO4tMcOdSnGmSYyUOP48XMaJA7LPTIgRD11yn091qdGNZrzZPTcjIAbjYPw3Q4P5A5EBXQZyCn0vULbXIfNDXbgJSYsPwNK5ZUbsjoMv1KOFZKgSWGyUdSgKcAo5faB6Iu9oB6cNnk+tJPyHviSz0PnVzBfHuIxBqPCaU3BBV4d9EPGaFOvE2iSgEpw1T4YEZuhsOFDIAJrAsyogeK5tONDUDc2Rtyl+Tprd9DJkmTKvXBxhztekmbsoBTRuXgaOCB0uBpClD/mDkxpdGKVvyyFMiUfRaEkgHr8StSKO/7h3nvOkUYvEoMf4eixuCa4WgJkNpBKJosUbW5APTR3GyZMrBCasCfo+lS/li4XTUFeVskZlPvzRWMqFYSTY5kOnvsLMCw1gjSEhvV68Q5Cuz87UscXewpzdplgWJGVXK6KiRboYVjePrKxn6rMM3IilJOyvJxCjaNd+qlvoMYBKGVBMu0PfS1iQGG4eMxovdcCCNJ4aOC7lPTyWnOajqn/WuBmJ3OJO46Dmxrc4eQyW0NXfnqGy1OKtiQ+aRusJUnSrevZfjQ1J0LsojLZ4SklQbv6FfvnU8P+iIJXQqr+Bujs8IzdL14A4bFq1KRbjjDSLNckSAHHy4JmuDmUSyJHRgN7oKsk3XI5vm2PoA2nlOk5/pGt8WqGsDU9yfeWuOod8KYC5Dw9gepJOUpkcJHBeNt4zAnjb+InmtmgWy4ysg/EHtc4kfWSmD5HJEhNDCa5OoTy3p4m4k6XfRoHj5KI7tPRUcZoC3dGKsf4KJuX0xa75j9209qPmvk/1wFHJn3Z4LvtHmiwBqHbIGCY0DoSb/gKngWOE7l5wqNulyI+UFsNHl+qwAjawdkTE7trcc+k+ASJxgL35sCpmimMQTjZcbzsZLqjaTWQyrCQMGgSW7ZgvDKHMRVdUjwaVh98dKQkzXvhpC/hCKlw2qn0DueeWTSh6GPVVpBSNfhQ8zt86CTgaMWXlL2QILhnESbSY0AoiNX4WXu9YwNxA8Hgk7PkNkL3Ejps37AIUZ3EtjxRHtxDAO58OmVmHeZjMM3HxlpjA4zUfmmjVbJUxrA8UoQVKTR6uVQaRo8d5cTysuYjVoGihh6hXtD+j1dMiye5hjWHKDEn4oKzGAQBJgN+EVc9gAi/Bff3j8pC/p+4SJsyfEGf9YQEesM52h9jWsKOV4LiMb0ORiMDnTQBa1PTmm/1usypBVscqkPBL+Zs6njZg1wwStAp61+gqWstQqKq+4Q1yjHiLbPJoF//i2N2t3bUH/V5OvpFiCFPWXRslRDKNSIu5DzQbO95SnZPoxOXIT+4sWmOsMA46swovO8l5xGWmLo8eIRY3iwx6X3vqW0/a4WXqdLndGkgcX+tslC/rfj9PG01AL0v9yK7H67Z33v2y4UiqknzoHv9lewbAUfr3TACyef9CXWAAeDMbeRqkhOtrVr8wABZ/jo5mp+zXP6FMNW/FX4qwqMPufq04ef4XQipujk44r3u+izM4kBS8ETrIWySnCFukPsmal1ck+NFhoKEhC6NWE29oIcQ/o4TMQcjCrazibeYDsUJnJvG6ILqO0OzJfhQFzt49DtCKACo/Q+YnrJiLekybETz3YqEffgdtG6Ha4QuCVKA1DdKe3IcPfhqVAYgjim9ZZBX1rgzZcV+cz5Rec1ljZ4aMt899c6W+Sqj4Enfen+Ct71NoBkCRadeyIB+Tz0yUn3QRPWECE/mom3vPVrAF/8PkXQl8769rX8AMpBDJD9Ydl/+QYY+vANoJ363nKrJvcvXpGz8Rj1FZaO9u/7sZ47YPw2eQCWOMbEXSqDzp9SE+DRHBikab7rLU/+dIUuE7rB4acpIy9WcgIbPhVQQDUjIoS/p3/2hqz+/qH4a/k+jCL7hnxi6+NR4bVclrrjE3lCYdbcyZ408LaVEKkT1MA22R9fXj+ZifxDndPtCW8BnNfaxW5NKF2gtiqw53UX+bzZZjh9KxWsz3ZEbFmXo/50gwEcAdgCin1t3ALWESAhfkbup8jTV/xCGvD1sNsHg+RZzzlGCBvnBYMNHABYg6LlwDJdKVIfzqaPxyD34Ss+aAH7i1mwBp/PBhlwKf7WS2fiDj4A0b3DCwMsyovgoYBB7YPgBzuLUiAtkyxzjo9XvXH1ZZ7FQmqtfXb9zNTe0mPBhFxTnIi/bvsgB+M6wYccHlF2N5ZxbIxakOv7csfb6eOO1BOPLIiv0kiMxlOizezyBHLEtLEAgOXRRMp9aRBfBQpGQ63p3/qzW56g6+0V6hs4BQqAkcUgl/e/9aKK1QK5u6sTfeLqcVs3d4MVYcx/9ki9zRakU/m1iSVGv2yRZqGChzP/Q/4Zz3Tb8lqDlSOHAbOnvzG17Bz+2a+pTD1YaZzlUO8uGzGTX1gvk2cGkhkJSrDqDyZazmrCgooXfKSu35NHc7O3odkWDjoftE7fYtvb4AAFDyVjukuqobCBbBtqpLLSaWRRo5nwrQ0xUiCWR/JanQTSt3lH9tIZ3pI/L1c5PbYentbNGLlLhiT4m4QUM892jbqrHtnwJSEHC01xrDdUVDbwQFKR3X7BenMn42/9KJBu1rh1gGXkoYFmwMCDXdNXe8nhb/Dzf/s7+/enDz5WBYk3e3U2VdUYwBwxzb/9HCcQMlBtLZsE1uhm29EcIYwO3404j+JC10jJSqmEgoAcs3bpsPsPOGROTzxn8/XtCV8BrGelQLb0zCP8sV0W3s6piFdb8PXdPhe5Yl9vosnMK6MuunVQS7CG9GDFOu5ZRYGM8Cv/zjOiHDZKOaCPACXNUtY4YFUJnmTRQSomQrTOcjGAmhMpbg6BrI/XTA+AxPo+0rde1Kn4Fa7wokkSpubvXZMvMQw4HuI3efsg8AjZBwNk/QGjU2srNdWzuoDOkXj4UPqst77LyofaJzaJXb1Zb3pOrxQYt/cB842ueOzBH65/eAjX27EB9J76DWD7fG8vZdl0DpNrK+9/fwB50/yXr+Vaq8LgUPqxjgGSBRDOw4Z5dWMANqJIkmu0zzKWb3Y2n1mzhb/NrfDsTD6gWFoH0TLjmKCFivokzUIpoSh8ItNUxppEEq2gxyglstq5pJuMkuaPjwQyb3wzgquCgdw4ZsTNzHXc8v5pwmg0U2KPNhct3MdPABqDAjkrFnX6WtVYMpd7QbyvoHg4W00N8okzILX/VdmOh1g5Sm9jwJrrEC1UBTFgTaEj+1x6b015pYXwRCEJtntDN3wyIazmq01sYAC6/vqYhdze/czF9/u4dOPRlW4uBgF/st7R2vuK/YeXMSffuqjPmSSA5H5NiOOcPbpFr7oCt+uoYr6dFYDHsHDBH/7SuP0K8l/8LjQPEesgd94y6ZdQBn28Dxa56ZSbCpuBqi0A5GxfI6M7nofZ77IQo2OrkfaCnIB7JeToGZZEX+UtKMFsxDJKjvfTuKDnNQBJFiiYJ+492u0tBK5yR+j0vRyzyfl2Glw+w7LzKY5unTkJ0L19E2TvT7IWVRw2aK7GGcUHMR9pb5YBZI5ihVmhgdl2XH0XXNPvDamS2IJ/8RHfS4XcuzKpiWJpsZwO6IEZ/i3RbVrM/wMAAP//pF3Ltqo8s30gGyIiKZpcFLkmKIrYE0QEROSSAHn6M1j7a/6909xjr7WUpGrWnLNCJYPyNt+IPx0qd/xF13iHo+UIi7Xuk94OrDOgU3zHEsHUnZJskGAvjVuiTfddOGXRqQGru0xEC0TMx/LGL6BouvxX79DC73K0xC8zobVQN2xXFL6CmDM8GKVb/5IhQpab1UQTSG309/3owONKVeJ85LfLXZBm0LuVjb/fOE+W/G1AMO0dsV4bbvB4B9I/Pfy8rAOXnnhb/6s3Kr3onP+on0INYb7E592Ycf0y/+KZ6J4wcE5HewYi5TmL5TuEY7KPBVjqG/G3+0NC5SauQapbxjxplxrTXzwVQ2AR9bMMHj01MgX9ou7ZoxvEcmLHbwDuY2iIq9k2H0vfTaG4Xgy83ituOA/K7gzX808j//j44/ecEbrsb8w2hpXBg6TIEXNRSVN4WMlEPF2FQ6av/uqJscnUnQx0CnO6bXo9GXebTwaJZV3IflUq3aRFs4iO+u5LDjVX3U3QyREKrfxEAhXaZGo7KYPx3YzM/bU3Y/x4lQPZhcVYOV+Z269vDwuyYrRZJHffZB53a7qTy+cTu8Z3hX6pZ5uwescOOTSzVg5B+GrAD24qFfw7NdguPmQQ6veaHFv9nUzG243RuhQzPCnlF3Ef7im8DtGZ+RtaJ3NrqwV4xrkh+pkzo71+BRORzstIJL9Q93N/Kx26++1HByk+hvPLah04ujQgB6/3yznLNBkJxgsRtbKviON6R3dHWz2zcGU1Bm/jT49eh8uZJfMqRlOfvwMUykSkK7jYRkM3ZC9PqbPCfBM+jN7rswgdD98PbmlZJk3VoxmOtn7GYnXQjG3MfBW2VMyIL8XHZDxjV4dAzWrmq9sM8WTKWwVw/WFHFhnubB+HGMrLraXNaxO6Ez2/HGgc87tMNdi6XGG/AqbUWjH/d9RCfseb+G+/8SZtQpefDCJAyyqbhbfHGE7eJTrDou+wkp55MopRmiG5thM8NePNndATm2B+hgezf1C4Q5v5LTyCaE/c+fUxuHeazvBXz1X0SEq2Q4GqPGY7Y3jTf8I+UNfF7vcbrH98bGzEQUWI+5wRD1F3KNswA9R8GP6O7cFgix8Ef/ztHx7iVBPgrhgu0yX3yAW9cnWkda893i36aJKvUooWP4d2H18tu+Xzwd2iDXMFRU5G5DcSSCVMLGTr2FjqeQFuTl9/fkAyGjsjA3el5wR/y2s4/bTgrOBGS/CFfiVj+Itv3A53dvg8NZe/R4dC9w4ZM7XbL5mTOnLgSajMjgv+jwEuLrIQcIWZC19Y/J4czGQ5MtLEYjLPJ24pSr47kE8XiN087r8NMkKtw3VeXdC0zTyKQkACUe2PV/I2HihS3Fahjfj9JN2wFXsIQ+f6Lx7GlX7vAV3MGzsu9Xte8A/ueq7QyYizZB4etEfpTWqx8L6GHUWWtULhtxvI0T/56E//otAqTkwVRnnR46P0l7/M3G4e3UjXK5AXP4+4XjoYvYHLMxibr8AOdCr4+PU8Afq1uSHuOcEJ3Y6ViORfZeHrbT12o3qXU1ScUESOs7pcBLHvZFj7my99V6vcGAN1m6Ml3/FK63/GnCZ1AHJS3ohrH/ty9s163EW+TYh5O4/GBM4vAFN9hcx6vKdwSrUTRguf+/OLUL9ejnAs/HThW+tlfVkDxL2ExIS2QU2L80zpp1FgmPwG49/+rdFYslsYMIPLiRWDjJKCuB8pN2blaT/A9e81US/+mDRzoa/goCCbkb3iJtvXZ7YUyZwr5h/fr+4vH9Hqnu3Z8UrGbvJ6afWnj+jGvw0u+/NT+crnxO0vkltl5U8AO7R1/JHo1539U9Qof/Uba71tiOiAddicTjpVym/YzevTjAErp4LorCpK/ozrBsiVNItfaCOmHp1IdodwYqryWQb7+m9R2eNzQ9vzkyULHjxAkbYOLR2rQ9yeGwzRVdzT+w90lznnoFZmLTwtv28hPu9bgOh6uDJvDO58LPWkhnN5dojzDVRDDNCtgPapqhgpcxMOnToC6jzjiyUN7HIzndairIiuR7+9VvDx7bczShzhTNKvk6NJsiqAevcpiL+hZiJS+aVDK3s+sydjV7bCKRTQY/18MdNq+3K0b4oH3pht8CieD92ihzHaoc5jRqVdOxEYxbLjKGeM7sZsNI+7VP+tN/O9yEfISLoUDPp4EnWFjkhc/EyUFcaDeNFtNOZBmc5QeveKmUJfu7P8eTbQ7aD889e7P78MjPc+Zf/47rO+p8CErCTW430KR/++y+GbbX5kD2PjziN5FShlIqPFY5pQi+vbHrLnclHM6Y3DKf5t9uj+ElaLv+yF/AFBgd7rq0fwQItywu/fCFFc6BTWrCn5p7pg9Ic31maZ2sbtrgIQY5Fo/eHW9YtehEvgDczkcWUMkrJRQb5EGnPq+4V3oYyKP38Gr+Ww7niDrw78+Td/emh+hQ8VtvG2waKqtcnwErXVHz7/8+Pno5LOANZTprV99Yy5HT+j3O+r758/6Q6F01l//iL7i8/J994XlG1Pb7LUo2REpdrAks94VycbRAP0KsA18jOJ9a9tTNe1YKFKNkUq/F66IezLkoJu/U54OL5f5fxSZu/PH8DbrJyTmso3HfqvM7J/+FC9ygp9oHTYQfOzcoo2XoAW/5yQQ+PwBS8pYub7Sxwvo+7EYBuhPco2eJvgE5/Rs6FwDNuIeDedlP18S0wwEvGCp8NtzUdCdyvQmzKl42N7MmY/NQukWTIifoU23S9466mSfdIjO6cjT8ZuZzXwp9dgflYGV+TTA8r+xP7lCy8IMqGw1wEj+rxyhVNZzMof31A3X9MYh9KukebWO7yhphGOGpUl1L1PjIa9aHTtT1B15TUXLwwLP+brnWzCUUdfrDybeTlSbejKn37U1GW2RfVwG5Ay+mN2kJN//BwkJIlLva3C6bG1KgjX35kdKyM3JjnPL39+PUWC8gj5vEM6sgd+IFjTft0fX4BYNX9kL37k5eLc7gyoCwfiN+kbjSrRa/TH7/ZJNBvTuJ4DhLBAiMudqvvXzxHDISLH7fqTjAfjYoKnzOJS7798gHOGIXQxofL5uUwV3VYV5G3EyEGTVu7vKf7O6LydiqVflaNJzpsIsssQ02npX3F3ViUENBuJaiK32449K1BfZTMWu8c7mcb2XMDiX5PjblWjkUS3QL4pxTJFKxNdvkfhLJd0PeCSraXFP/jNsPg9dJ2Up453SdNCOjgT3n7jPOTjjczI1aeSTqb+SiYA8QG+8vZYttE+fLzLqqcs+EXrvth2HLZRBttIuhPvMLruSONTD+eg15gTWpT3c+Gs0OJnLPXulAh56eT/9Oj6pxUGH4J7iuDtMPxZDU3yfdCBwvadP4nVXQpj/EXPGH0vqyuVv0HutoHtxLvufv1RZZZ2HWPe2oMgfnT4tguP4fyrnxgaFlHmasIvnAhfLqr4VA98E391ONZb74I2oaKy/fvKy6lvMg9ZY71j1tNdLsJCDxG6UBmIWR3exifISL77yyfVI3453wByQL2aEluoDnz7F/8L/rHok+Tuwj9khaNy868/ML7i3QpUY16mKEelMVnORwU9DK94HRHGGSlfGSTTTmCH2zro/vWDUPBrSdDyqGQ3cqFAW9Mm9hE74aZzGxHmSXJJUhVvd5hOWxGKoj3QuUbqn5/fwLNHR7xSo9blj9MYKdjZYuZry5GFLpBGZIeuTrRbzsr/9M/lQgmupSuanflQQXQV9uRMd4b7T88FeTQRbcGPmZ53Mzog4jJ9qQd//Yl/etP+jVEyfr29AEu/CktfvuFs0GkD3V44EcNQVuVH4gfnz0/GovxCJYdtloIbj3dGpnafTNGrKpTT9WkwHw3fbuKXMFPEu6AxjDqzZH96qbSHmhhdoZW8G2oL6u9sEWsDB7Sxrqn0p6cpJ+nQzYGtP5SovaXET898uehMH1FZxAl5LnqWi5IQK3/reUbrhI9//c2/9TZf6BzyUzC34B8oEK9eXV0+6HULeO5eTGsVLeEF4Xu06MFlf9qEffdepewMAbB0FyfObEtVIXyOMdkfEjcZ3/GjQSRuruQy8xLNIXcDoHydkb9+0LT0C2Thglsq7/Mu6X/R8/GH58xF3ORb27L0XZDsf3/9A4Oj0RLAuA6/P31r/Ba/SFmXQoZRGs/lpLT3GhY+zvzLZez4kCz9cD0PiH8wnO4f3qq282GaJfUuC5I2R1Gc61Teep9uytzfCB39jhia881gG3zBYJ48nUWz/nGnynEF8BJvYNZv3iaTrY/m/2tKAfrfRwrctfRhh+Pd5JNt5gEUZaExLW9kNN7qRAX3ed8yj6zSciQ/yNBWvwnMeDjIGMwmANgBOjDfEip33KyQCc3tZuFR2mpcyIpdLYefaI/XM7PQ9Eh+DxSZ14KOJ0b5VPVpBKosMjpiPCR9Of0qeGkPxParKUlmDkGORIa/eF3d/KT/Gq4IpF3VzHtsIjQ29TpFPzn6kOPdUw06z88Gtu/uRHcTPnKheyd7KDpSYcnZl+7oBW2Lpn2UEGfDYoP6j16EMNK/zO+4zSfhc0rh2rsB2ddCnMy37jbKzSO/M/Mo34wp1MUcDo4i0nET5SF/axZFy+9j0cKDy9b3ZoYkdH/ETrrU4E78MMFaRSGzCs00Nsh6Smi42MtdrtLBHW7NJka7HxMwN7hazu4HN4DLx4yVoXy443zyKniuG4GZp1dWsuNTTGWY2h/DwvOb8Hm3SZUhWO5GJbsb75PmCeBtswdRFeHZTZ30cECg9p4dDOmTsHO39sAjWCcuEkfU2bndw2UjcLpaX97hsBV5g/pD9WDn8ZK4I490FQpIEXvpG50z31RbZdlPuu3f227AwVmAzbflREXmGNIMEh0+MRzJ+XWXed1u1iY4UjQxK/w5yTg2YYaEm7Vn12TTJNMTCmFH9J4QdfB5OE37WEeHbSNimrGZj523imVr2APT+KV3eeSYBfRhm9Ob0O7LreQXAB9u3fHGPArGCM64UgxVudNvPX0T7gRFCn+fl9DTr2uOm0MOT+nLiB/erKRr6+AC8TAUTO8MOxSizRwo43o3MydK02RwtxbAMSuOzEhGo9u8H7ODZOykRK1bzPlr648QFg7H42U6cY5o/1hKGKWrIriE82POU2hf947miqCUA7UhhmEqZrKPx3MpBlcrg9e+9ujIx203dNJ5aTHqN+IJsd6JdiAHcKttShE4Nf9ttGcO6oZVzKcbD83q7SCDrNwFchTaqpzo5tXIl2eV0PIj/LppVX8spOOCMecQhd2sNVIMryZBdL4raika460HWv1WdLuibTJvPlq7rqQkZPp8191e2G1aqOdkoqeH5JRcfq8j8Jtfj/vHRuT9Hz6wd7RiDtlt+bAtIoCboRbs1J9/SUceTx3yBzZxOw8bl5Lb3IJSax7R03XZTYMAB0D4v1fX6GCcQ4bf05X3QeGJ8NRPZ8qDnV1OOT7sIVCNAf/Q1LtN8aUUnaZjQDz+oe4UrLQICa3CyS1bbpfvNuwM2DQIMfy4MervZAMcUuIz/e54yfx+XnK4PnY7pjmnPOzJ8xjDVQpTev3RQ7kd865BG0lyqMSTqpzi2sDQDs+JYbG/oj52zB7UfXFmhmduwtlaEwqKCiaWjmuEKHb9SvaNusYP33WQEG3kM1Se0jLdQGI47wpiwc6sGuY0yselVvyWlQOMGl4HVDW29nI30fetdrjxTdOd/NhJkfEufELCdDBY8dxT2Kw6jielP/Ktt0sKWO0GD0tPPCH+WC6G8S7rnu6/X68ct98ew/5namxfzptwUt9BpbSnW42n7N67jd/TFrbZa03FnTkavEmfGTzfNaMjyZdBo889VU6RtCL++HkaE3pLKgwXl+BNg6ZwvEh9CtrJ9WlML3LXzZEmgOmIR0bYcEDcWH8dtHXagO3XFSknxXkvF7f0hN2pt0fcyEeQb9vkQMhtLBC/3j+jnAtxTMVqtQ83lWCs4P35tni8nMNwziBU5SV/mD3cg7L9ZWOurN/riqmXaUILvjeQTgZilllqJUvbtyrXfXMkoUZ33ZCEuxGwaz3o2L5qd1Ccn4XwOleoCBZ3R2sOIyXV5pId1lblzi+hi9FbVpdTwvXWHX41a8Hyl0G658JwpxKhCtrdV8EXN+JoTnFfyJ+g65hlf/blzPcqVjoCL+J8RZkPcirXAPn9TA7+00P99gU1/OH/Xz4KbXpt/63Pq/eqcnx+uhnVm6/ODCf6GLMQvhw5fUqUYKS6HX1pQf5vv6XZntCYb/0VTDTvSco/2OjhvS4A2zgnKsZDyK1tUClYaGxiLfEy9nWQK7nnqLRYv1o+rZAtorGR5uWIACn/8FPZznJDyGF/6ujWNCwU5PWbHL7u25jEUFXBpR3GwqEueZNqkgPHiHT0LUbE6B/efYUWPkGOhuIYPAsfFlCk5iwWn8dutuKfDBMtetqle5GP9+Mlh+8c6CSRrqybb/sdIHQSn3SlEDnp3yy7QC8NNTsm9TacvJe8h9mVCLP3UYVqIfc8RFI5x++H1JbjvL/lsP9II1HRh3LGzbaCsNoPTLMzz+jPVbD/Fx/313pC4+n1aHdNU7+IGhlV1z7XB7xzUK6TZMylZNS5XinD51ETu3M0Pj4/5YhOopewM3KvxiQEMCOYmh/93U97Pv/q3AL32GI8Vc+zweHlWwDuxSU3s9uG9S+TciDWSyL6t/iikUeOCt3HqBd+8HHneHxiuN/ICUtrunP56h3EEN3qHds/9E84VDvtoWhj2pKTvwxuVuVZR+0r6TD//VQ+dzLkcBdqgR1tnKD53doVSN+Ty4xG9Mrh+9BlQC+5YJbC83AKndqBxwlubN9Lq3DIr0IP3RDpxJ7wEfWWOZrKfnkL6PTy1HAzbVsZffbly9/x5uXy4PVIZf23irF8UguXc7OoladCZeJstZYPr2cfwUuLEdOU/sv7PDxHYOytlpHN5PJ2Xjs90jWqMfu4n/j4xx+991Gi/HjR3TmStyqwODaY709rzmRnnJWsMmKMsdWUv7/6es7SmUT3y5UP7laFf3//TD4V4qufpYO4KvZ02nc3zs9qAjDstzPzDnLEGTl/YtgUZYN3zoeHY3V9nhGGa09s7aKhaaVPBejPZUqQZTch1wnO4H7zTwv/zI0BJnOFFr5Ixf19w6dpH6jK3ip9dizZPhHGJkmRBY87lhvlY/wX78gDYkl9FG6qnR3Lf3jhbYSUT6s3o4i0UBMTP5NyyvIoR+5bzLGIn6jspyGWYRMlKaaDrPNlelSP9rMOdBPRLJzbmyoBEnclO6dro2QfBwXoFIsSng6OmPDLRjZBVhKBKufDppuClR1BejJVZnTVvaS/OnegIBwxe78xQqrefBnaolaIPsllxwW3UUE4SAPTvq3SsZVqtsrJB4O4cXkNR8uU9uBrbU9sOOjuPz4Wn743+tbTnzsnpY1hb35CcrxIbcKH40lA82XjYOGoZwZd8A6CokjYHgwc8v2+b8E0Jp0cx80QNvDeFnB4PTL89Yup5LF3H6FL9x3Zo2CH+mT0a1jf9ozh0T51wslRVmBmP5Htj5s5bD9fYkI3uTM59OmZ89Wli9DrWZrs8P7E5Z8+QQt/IFYsgztq+ltSys2qJQe72ZT8rIYruIY4Ig6c066/y+yB5PhC2UlPbUOIy0YAnJM307ycGX/5CUWZa5gBx3y+ONEF7Kju6Fu3eDgb44vKxSreLC2kM5oOeCUi3tGEWXMzhpPL7hE8g2vMHOUw8tZaH3v0+eo+0/xZQ21ffhpAvU4Z3q6a8pd6uqXQ32QTQ5kWdaWDDikKTpiWhtUJj3UlwqIfKK8KEfHdAUWoPF7Hf3xyNLozKKl0UEkUGFVCLxnSZVWSN8ysVlUy4l3Yo4UvEJKFx2SOxytG0zO8UgWIWwrvoLFQh9UPudfGDY3nW6kDU142UaXtG83zfG3hUCcv+t2fcnc0TycZBZf0Sgx+DxDLLSmC9ZGf2XHBy94N00USXzBG4Cx6dYcsZMjPIzEfR8cdp42Vg4auGQY/IOUYpk2GdHFfMUd7Q/IvPsbWsonV8rvBrWQfwFmZCdlP6yaZz8qukGdfsJnunpg71b/CQn/5S9b6M/mn94YxTJjHxoiP1+WtaJMhH38zG/Hh3lkNnA6/LzGl79SN6cbV4W89PfF7cocS8UoRd48d8YdSNuaV0nsg3Jw9OZiylVDOygz6STfIIeyTcKnHArxvZUVs/yuGw4K3YDvZa9EvTUit/FRAlRHtH//mu0eswlhOX+Jkn1/ClNuzQLMrE6YXyZOPf3xUIjrHu5O15UxoMwyxYB7ocrA7HDdtFIM5WR9iomtWzqfDG4NsGyfifdGr66eNVYB+fLVEJ58977NiqoBVBaFdRz/L81QYiQc9+uOzbgtk0wP9bglxVjejFP78gUq6h4u+lsJZ+HIRXnkfM2fGy13gdWMhzbE84sfNw+X7uxbJf89vLfy6J6u7A/FlbAhGr9bt8+UIuZRdgiVfpXIw5nlG4WB8mVHMZjeFL0eUF32Bt/IuNHrf4ipY+Rkv36cs+YwfHpBMfDA/fU5hvZcfNcouAyK2wH7JRFRUwdWQd0RPpHsyb4IeEF4XCtNeXp5Mpue1YF0cneBBLtAEE16hRyid8Da+u4h3zl6HIK/ehLyvTtiuztYKdlf5QA6nqehm7/nSkXYwNKKvXw6ipWvskWvXFjN0XzLmm+QJ8tqTnizrm/E//ZTw/kkc5RCgeU29FQSqNvzjm6yXKwrRtVkTfPzsjW7c3yL4jheLuGMeJ/SPD/BT7pAEicFySZxpAsI/l4puEnfNId85MCT4wsxlRsUEh7JXxn5v0OnMniVLPmUN5M7Ikk9psiWPqw6XjciZ1kxfTnWvMmFco/lPnxn0j//IHi6Ybu3LrsemJcIvVXSCt+4lmZL1VYfH/ScTbdtoiL/j4xnmWE3oTgpa1Nev2IHLkezwquESn8uzTIF3fcKeT1YZoyFZKjxn0WSHsEcJrW6jA91kz4zAZUxottf/xR8z85aWfPy8TUUiKif2SpX5Zw5r2PUnWtNivbKT2RN3Flryix1TbBhbtlEj9IPzi/iaYvPtWaoCWQoC909PlxwZmgUpERu28EG0ybT8ooTnTcT+4nPO2AegluaQaUwVkyHdfh5//J/ZaOqNWT4zGTZ8XuPNj346Ho7QApNuKyr3WV1yfxWvQDgKX6pcj1I3FUYXQHRJGobrynFn8flQd37T9cwUY51Pf37MI1efC38A1AWOMsLyfQgV+w3iTXUwoRsuOgmf63nB04sA0zl+k9M7IcYo7/ADWT/U4YbLpTHHzVChRT/S6XnchcP3HAYQouPASF5ErnBV3rIyK4c3c56h2P3yK/QQWBeb6D2/d+yWTLqie9WG/Onrcf68zyg3NhXd1tM3bH6VH6Blv9nBhy5kgYEtNPamQfTxgozm5GxWID7XAXNOr+WipvEoQYCeV+Iem6vBntE+AjuqOqJeK9MVxtHY//EVvL1ITjJq9OCAZ21zKlrYN/r2p1NlqY/E2ME1FIfx3Cu/+zTh0RCnsukP5gzqSlfxOsoCY8SmJcjGujqzbIQDnw8ZDgCpXxPP2+jJedr+VGhv1GJ4fdESEfX6MoXz/iCH4MXQMLUbET2lD6OzSlve93VcwCMYVPZ8DJohqM4pV5y7cSGHP/+q0CwZ2rwz8OqRPI3fPUtq0CU1Y7rm/5KxqbcpsConTK+Dq8urxzmXg1O4x/I9Wycjf+5aeGH/h2tfe4eDHPg5qsm5IsT9blDz8E4rVFe3jjmsO7vCuYr3SjAkBIva7cynRjRl+egHI+63uxJN3vfdg/5oEG1uiuoO2yIDdLTsDztPcllyFooVancfhVk8qTpKAkOHIHUlmkriC1EOQQH5CbUY2ElK+Jh3LboG2oGo7as2xu+tKSA4OBLzgbjdnE87D03m+Yqb3cp2qaF4M/g52Mwuiij88wv//E0qLvVp8mM9A5owg+5+EjN+4iR6IGTbL1amLeHttVymyDbbJyH39VRWhWZJgM9uQsjmKbrcXm1lwDSsmdEYUsJvZd6Ar5gXphvplo92W/ZQ/zIRrzxxs0wR2dRob35DWh2Oh0R4ylYmu28hZ17WUrc1WxRBhlcnttfO2JXI6m6hVHRN4titnYhLPslWsvmQ/e76NsZzFZiw8H2WXuomqT6HlQqfh6Sxm5paSGBbmQJoxw3bX1CS0Iquenn5fyqq0iXki16RFzwkz/Z9c8fFHwO4pTcsZevSaLW1uELvZkb/+G73u3wEFK23AbMN8ijZ9ql7cBjSihDgFPXyI/Bg8b+Ihx6f5LfSdzlIcpYy42ZJBjeHaw931TuR7CbF3TiFqxGWfGa4uTzCxe/ew/c1hUwlmlbOxyQ1wfvFFxIJs5zM8vkrAZHPBpV9t+VD6NQWLOtBxW8/hYN2b1Z/fshf/S6pvfcxtJ8Zk2U9jV4KntFffaGrjJ3RhK9BoFyvVsCerHkbo1LDapm66rJjUF26ceGL8pUeHWLGm204MflqolqmPrEO4xDy9T2fwcfPBzvsClSOi3+xu0qnlKIaBXy8dNsHYnN1ZbfPihvD9fLW4eGXlN5r0TOExtLOkHzrEzv06Yz6Pz3Sqy9C7HSuQ9qS+xkOzlqkc55/jN/iz6KBZz05yNrDHcBPLqhnc0fw6u0bk/RNH39+PbHexbEUBv1Sw8duWuLlu5TPtzVkCMqqXPQEMabded1D4ngU94b360YQLxiFx9WbOEZdhmNWTPXferN9ZXYh67KGyob8OjIL/C3a0FOvg5HYLe0Xvtyjc1MjXNcGsVg9JEO2kxporUfH1L1zLDdm/o4UkSAHy3b7S6hazvBPX9lp+EXjgmdoqV/L2dQDmuYkq/77/Id+SDblN5NQJqUqi47y1q1XZ3UFu3MvMCu8Xsq5l/SLohWPiu7U91DyP/9Y76Qzlreag5axCBe4voOUHZgiuFwWLzqI7SElmXGiSe98d4Ucr1Y72ofquuxWR/EsH9smJMelHzDvdecM1deFP77GueDmOvidqDD/ntBkrB2eKfHrlxLnlxrlHNJHAE/5/cPyRf8Y9JVjCk4bdEQ7KE450VOlI+GDHbqBKivpy1Yt5aimOrlm+61LgSj97qsNmIphwFAvFnRGZ+m3J/bqtUvGemVegJf3NR0n3enmnRGvgNwHwqx99ui6Xr/EKC4EyhY/t5sktDORo+sX5l7f53BwZrdAf89b/Pnpx5NjgqpXMYtuh6/B330HsGnFPdkP3dxN4m4Q4Y//mJsP7eZj2KdyGb4A75Z+Vb/+qVgRDvKAZeNYoe2Ch8pb3GhUPE+nZN5RwQN1parM3+c4/OcvL3yVeMWq5NO5ljO5vTc6MbIsQJOZ/y7ysj7Meg5BuOynCttjumbm+1nwf37yLphluvWCDI0GwS0qfXpmeL8v+HjU5Bb++pOLfgt5F+1MWBXUo3zxJ8Zpoy6veP4Kpq53Vbl8PwwXbbk5df/hBo8iVIE5rEP8V//HMakf8DvvMXvJB60cifgrYDeaN6Z+n6X7lx+gPM0T0U8CLwu2Zw7qtvmF3OTHpRvvyYQVEUWc7Ynrun14GUUo/f5Mbncvd+efQnt0e2JO/tUPKbhGf345cc7owWlX38S//hP9LP7ywgdyCINdilHll4h7mov/6vufvktGN9dkWPIVT3kj8+F7qD0Ij/AmzjOMumnpJ0JHVi+iNjulpLxYxSg5+Yz85SubtY8Ff9/XB9KVvwUvkK71Gvvrfy1+soUyd1LZ4TTpJZcdafznB7yDa53MHw4O3Mvrk9gRzUPWSO8ZnSJ5xQ7oq5cTDh4iPHL9yQ7n4O0u9VlUxkaecb/w//GFLxLq/ZOC6aXz3Ta4Wim6/aI1Meey63iNEgBpcz3R9dVTwp9cFVih3w0hr6dg8XH9szwkbxuXXJZ+xuz76xH2JYjkdpHasPevuaks+UC07iWgJhkPNTh4q5NFD3WzdkkoWl83MXO1e91l7ge3qMP6hyrcLro/f1/Zb50j8Wq15h/B9i3EguOXOSElbiM/Yg/++kv6NlLQAOd4BvlXH4i+XtnhJFftEv+VxZLFj6jEop4hzmWBkfv6VHLXkkXZulg63WT7m7GslwD3Jm2oFN1u5V/9hmPbhkS15W25+F8iROcnZfY1HTre62kMAOVz+fwnGuVHjP/6lcR4rudkVi7IQn9+6OVKSbnkXwqloI74Vwq2Qc+iLQOse7pMUei6hd9Jf/4pVfzpheZY0c//ryMF8L+PFHzlN2MmfmxLFl9BRaOQ3Zk92R1iNbYB0vfrwdz0s3cn6Hf0379tP6nC6S6fRjgk6okFXfopf41ptRAJ5dP/Yq6U0yCUIxo+xgfDURHdOZ5QBKeTyYhV0G84nT7L4Lx97TNVYUFHs4ju4axJIcueL7sbB8XB6JtdXYxWmelyfKprtN6OE7tGuO0ayVWXU4rMofxq/pLR36w9pO7YkWj0NPPx8L5ZcN0pKVMfmu1y+f2wdoFzccilDN7u0NDjGQYt79kxYo7bp26UA9tJMdH7De/47aPNKEVEpHQdu+WcvBsKH1+tib0WX+GsrdwC6VGm0ZUZIpcNZS2j9b40saD4Ivr46NeCEUc3vJm6Qyls0lcrN2sImZferFD4Pb859CZ0TJ+NrTEk1jOGp9GGtNj9cDK94CmgVTgUzAyrb8nP30AEq5a3zGJF4U53f+6V775mRIvGKqR2mu6R+NirxDHmDvEqS2u0zrMUl2dDDecfvcTgKggTB922Rj8ctxXIP3xi+m9uy/GFqxESdXVn+EZvHVdxeYGXqLUsPLe60d2DjIIWPis62dcjn06staDRqi2x033VzfdDeobT7L6Jk2lGMrt0NJUMPX+MWNxKBvXVeKBllyO7rb/vbjz4q7OsF80HA/Lf4SRFToVeqtliSIQ756+IYxBffopB+VndNM9pjzRYzcxwO6/csE+mI+8CESFX9R1O208QKWZA9/TBpjWaoJ96YK1b083qlSf8dwo8mG7rM661OuXsDZKJoqxOMXp6B74ZdRbDrukQrpd8+Gkw5eDd4idGm4vojsfTPpfNNs0piC03uv7neXBJpIL4X2+TdGY2nuGdliodvt4m5KG86yFhXwMnznfn9oXlVLBaN1vitCWEkwa7YjdN6Zv26ap1xzYtWvTx9ZqYxmCgrS40Hvi/gBPLv2XJuPI9D15+UzDXvuruhiN1eUs5WxOtVs1wALG1QN0NR+ZKvxyNT+fUgqvsMNFt6qPeuTxmRI7XgQp205W8u3YXOHlPSpxB+rp89mZzrSWyyo51PfC+ZPtI6T+RRVw0KgY3TrsauiZSmYqT07I/yIO5oh7zZmMK+xfuRxQ27ZaZiqG5w1idHIU2qs7cVl0u+OBIBEJmm+zzrEL9M9vGsOQP85pKC7nsT2fFbq2CqaHOS/pypRlO3ovijXkz+Sz/xhpQJhsEm2HiDl2dezCpjUKer8LphsBqHrDsDzkMbGd8fPRuFOXuvpkPQucOdqKbaL6sHxStstroSwlGKMYqIMcUP5L5V3UAiWc6VBxJHY7C5ikifMA2ldTNIZz+4tc7F4T95du49XwVfbrfCUvpTnfHUY1z0M2B0NVpNyfj+eU84JR6OTtfLwdjkz6mGJZ4ZSp90W6SlX2kbFZOi9cWb0KeqnsTpsf9TrdlWfEZHW0ASGSXaNci59P3QR/oZvYR8ZN6ZYxyIThQGuqNHfvDyp0v7WkFv3YqyPGmDCVdNfQB1tN5MCIdv8Z8J14ParwrifdzDZdejl0Ea3eTYCQMQjgH9hyDaZ2+VEYribONhFdwTS4T3Rh6atC6My2gbWaTo5LL5Xi5D3vIuyFlVrrTjfGTTb1S3I4aUxvj2I3nlx7DwGSLadWs8/ldVqM0DpbBIt9Su+EnzqJsHrY5IRWKu59YPz3YQyOwf8+XVCkFOs0vLHu1yQWJm6O8e5sx8ztLQ8OFvgA81bRo+bxt0NxeIw+uSTQxO7Zid5wnhyJ//NjEs90dGozLpwJu+QdGHrhCs8MEgCwVVsTbSlFJOTzOQAVcs+PpbXZTZWwDiFqu0mLBx/7cyCKcjwZjJEkXS3/zCOA9ORpx9zNHo76WG3kni8KC18fuZ2L3AYKoTsvPW6Gwy376H54Qo4m6pBelyoRTinM6bROdi6uL1cLEpYbdCVpxXmN7BRar3wxbjyLshXzcg5zdBvwXjxQehQi/Y/DD6+vXcIUxoxS8u1gRXUoczrX1tQDTCr/EOQltOPr+WCnS3e+JuXnaaOy9QFVYURnEWOrD5ifKItodPzbD3D2XPwG/PcVNhZSYv+1cdp6fZGDFgUfIZE3lbNdeDqeyEIl6TNOkH36/CAWnJifabusY00jtGpL4TImtKGZHy+9agoj9MEv69Ig4JCBCgRaKK6a3cAqPmQdnX98Tqyp7NJXpJoVUvDZYGKLQncPVuoftpdGYpRsWnzUh2aNb6xPiJXZVjgF7quAdfx2Vptux3Cz8RFnyB4uP5a18wy4t5Y3cDoPJzuWkhKiQDaFARNW+N3e6hYEOSnd5UOFhTkZzG1MMH03eEH/j5Am/B1GvzOd3SPQpfqM5WYvSLjxFBcOy0xj02NcUcrFSmf0rL+WCb4+/fMPcz2ejEaV+D59NQskRsNFVga6AtNusaoKN4Gx8RfcrIS2+zYulLSdjZD8y8E+rjKnP/ezOZ3wo4AerhPlnSviopKcVLPi2xF/I+fc2x6C7nyeeIJzCIT3GOZRjOLC/+sHbxGr+8Acv9TCcLub9gnC2+tBfuHWTRVVEoH/MHm8Ga5v0vRerQNUVolJVeqg9fV0KF1hf/tWD6dzuRVhv54nss2FG40VcPeRfc0uo2Ic7xPRV0CrrLCyIb4vvkuMPyZC1i1a4frb3rkndrICu4jNeYdEOu1Y6rSDekhvd0aEq54siC6jHJ5Xh14WiUSupB//4zmCQcLITx4STnu3xpgp+Bi/KSVLaTPPJ4/A9JfPtdxxhb7g18+X1oVv4nwPRMTgys9KXQc27tIfTerizJd74eBtTD92m9wfP7d0LZ6t7C6jdQUm0oZ3c6d27WF7ikR29VRzOPUpMEI+7I8GHw7Zjj8M7BuccpMwl088Y77lWKcLklMxbbT1XmBwLwK/Fnnj4avNZ/H49OLs7hUpHCRvCOv/sYaaDSI6P+wUN9uneyuNj7dDJXt7C2hq0licxYv/ig0lTNUM1CgZxH1nKR72/z9BfPxEzz8qHj5aEAxRXU8Be/qN1KV1TjIKNeydHzJ9lXx9Q8Y9vYuuhJ3yVH1cg0aNMhcZi3W/LrPmvflHFOzeIT/5qheq1QomdiTnihXRrYNXOP6ycKUODPpSzsqNNwLT3Mzb4P37UHExii6ulc6+ZAtqVxYtKsXLteOutZ5hHefynD0b3yxvwdP6kw27S3THf0ALw+zH81Rd3Rso9g/B0KYj2PT+T6cQKB8SUX6mybWX+a0y1hWLDerwD651MJ8M1wX3TjjluGnVCqtUmKMP8ZkZQJsYg6T8KWpt3//B/2W8RMvHis8jnG847Xc/g7oo3gvNisWTSfgTD+n7IwXtKnCd9aSF5E2+IHW7dcFC5baLoeD4yZ5COxvb8zB9o+zUtuhteb4NfuhJAQvGHyvVu6rh3MyQoNy6iaJYoqr9nskLPZ8zwZz4fk9rQIwoHJr3YHq25QT8+iEgLXxXDQ+Qn1Nqcz3I7t5gqGWo4qy6VBeLl2C183un4vQlUZd1oazpFdlGO3e0Qgf/KI7x7RqibeTM9YAjsG22USu02j26vwj5IT+SSZ3vE1i9jr3RYnIg+GzeXw2cI0OsWr5lzTnp3PCpl9YdPxNLSr8t5azzA76iMm2de8tHZ2jFaaWFCTMV4GyxfWgqXe5aQ/XtM0LTEMygj/uES02s3a8fl4qddtCJ6fKNGF+JHgx5uKTCjdcdyYgynUL6wTNxdoJfTUp+Q9G5togfmcrFBfx9hiW8q3azRWPBLB/92lPEqPpnuduH/yhraNdGI4xvjKSdntN1QThVJysrJOr491MQ7j1gltGh221cjm2K3p7nv04Q356cJiXncsIWvlDzpOwuBZ9/JHuqr0UmHQw/vchPhla7TjutCjsHy7w3Rk7F3p8K+VIr1oCE5HD9OKAyvUVLUGJXEN7KBN/QR1ki4/S5k4avG9DJxJP+t33HUnG7UtsSEhV+To+oo5agdYh126evGSEzX5UzDo7Xc4o2wsKV1yVbaNMOCh2yJ33LKrqkJGTsdKJfXXUK/fKLKX/zMVt6G0wVyAdafS0tuw6cMZ9L/dLiLvxpv3sKbz+/AkCAYTy4h5SCg4e/nN5dfivkD0XIKuXJGEnp8/uHBkt+jXIqBTlL5ovBJTKv5H//1bVErO3qIKULvi8vMQlJcHh3HDGIsErq6QBJ2PH/AbqnHZK+tVDTevYaCVnoRnk9rOWS6ZTso6GIg3h29jekgtyn4lqexa2yM7lSsqz2oQ1ES812bBq/ltwqXo34hR+sWLfnnSvD9/N6MOId1UifdyYFa2Cr/9n/65EYPP8n0mbPoSVpeXiqo2meZWhaM7nTYP1boBl1E/qvH1s4EFtwdXGwFi7NcEVbAxapg5qH4hcv+13/6EJePi8fH36YRUfnyZHLY5g6ab9uggYf7FpiVntVQ8IroAqvmUrCLQ/ykw59jBkkcUHLQbCPhi55CnowiLJp2Z/zKdJPBxr+aRH13IRoLS6/RPVYR3dKtnHwMR7HgYQkv8poVEY0nbWfCrsc2XvsPx5204JwpjXN+080n6zs+hpdAuayThNgadhN+/sYiKI0Usnsmqmh7JG2B9mcpZnfxxsKBMTNFX91piKPefcQvmzQG/jttmXFuC4O7Rqn/fT8cmk/bHf295aDG65tlfV+cfW/zAx1Xs8KwiJOSmod+4b/Vm3iv0QxnnSozuJU1s2jBk8FrrBGuxPKJrX5/5XiisQUHOBrs2CRhMo3VyYLvUReZVrlvl+eCV4C2jneUo3ow+hoMHS3xTdfdbd19Fj6Dtjzol/qAjOl6nz0UsQ5jBdXHUDSWIzu9Hc/MWPwmfqOyB1oiqey28DnR6n4CtJ9byZbJ3i5fNzyHRxLUWPwmXTLnZpL97S9WdpNubDN8bP/4OZ72tDY6uXNqeK0yE3+V/FH226Wl9B41manwHtx5f5F7mL79ni35hBgJ3hT5FtaYgY8hH0/uOwd9BzIxvsuRmMs8xgrsN3tC13HXzeV6wsrCT8lffI1NJ8Ww7SAiaeEN5ay2RQNJ9TwzfDqPJXs+nzEg7XPHwaLHG1Z5Kuzuo87uh43vis3JNeFQjZTZi17pkernMI/SSNffnxYu/FgGZW5GkkWp2k27X5fJbfIxiZ28RZc1K8EC+nQzpi3PPz6ObgzvWzsTDeTQHZVx26MEFyemdyp16da+q394h1fuO+uo294aJF4O3f+Rdi5LysJaFH4gBnKThCE3EbkkCKg4A0UEWrkmQJ7+FP5neGZn2FVWdxt21l7rS0iQtOXfzQ9ainRfnth9YRv8+Bzk6kdCzfvkmTMUUhfyrOlJ9h6IOQmDUkKyu97Qjl9hvMzSqoF92wGsBQGKhW/2yWC7pjlNOa+K2d/XcWB9eBRbvuk9ulsHCPjskGNNGb8Di55tCrc8gPVmrUCf7zgFfIU0psHUdGbv9a8ewvvDoml9OZnCg76cf/7dXAQQz4M5FjClex1rNtpgvCAh6L2imgabH+I33qniyD/TwKNZPm55TyFQCakH5qc3o+GkwI//EKivxUP9DROeh5+DW+LjxhOeaIzl/cbXqG84M1hG5WSpx9skYn225Xg9phr3y+uE+AMBU+SzEp7X0/tfnpuLp1LC3SlPqFUWFpuMzFUAaNvyx4Pz6c9YM3XrnxSLkT6Mjf8k4IvHEgn6fPAWrUt7+BrjAIHPIDD2/B5E6FRGR/Uiw94U9b4I0KMs8NGQ7Xj5M5QM6jW6oiGANZvi49WHh7Rx6abf9fTLL1ahnbC2nu7xEhwiR3nNMsL205QY7f5UCOPj54DWLQ9P3GLx8Bo/Bnx0q7MnbP8/vO8sg2qJX4O5Nv4iaJSoIJwZruYCcJsppklvSMD44i3qs+agAe869e7hPec/beWAMLG/aKms7eD2zZ9ueZlufjBXblPrQ05F89YfKNhOTRmhPIc82hdiyVbZBORf3tMCPjTnIjGsH6/b8hqXz+ZpcGHHv3f0MD8rc+xOp1lRWyXGp8s4s+X1lS0ot7DAbq48PHYzchcImAWosx8I/OM1mGT8z6+Z925y071yM1OK5IvBqHLrRvAHUhObfN3E5LD6Gngpe5ka8HCpF4d3Injxvjuqx/m+Xt+hJ0MEvBNG+Ol5G29B8H5peHrk2zFnpKoM4D6zAGGke2wB91SEsf3isEnWKGfpaywUeSWABkVyNNn3pqSA2u2Ezfs0mKOYRyuUNFOnzvHsx/ORARdKLBqxq4w6mDZeCkEhm9SR/JF1p9yw1Mu0yvQIrDhmQd+scOyfDdUraw9Ir80PMNB9jZGgyV7n2zcDlq9K/vV3xkJpKMDDK+9IrIIj43/6cPOEleq3m+399Apo+hcRpisKWykvK/BptjHZcy1g87oYBG68nYZ0iszFLK4a7HFWYeN09M2RL2X7Nz6IHcRjPjd6mcIHt1oYV68lX8KZaiC/iF+89Qtzm482eNyIivZksmresgIRfHe5SpRbR+v1OH5GwGvXHWmSswfGa2zIaiTcferu4noYHRlFyo+Hm4+ZN9dEXcVfvkMzfE/msngRB0vxo1HP1aRcvJzjVT1dwoQeiZTFk7eKFtj6D/V+fOaXH3L6Z1Ld1lRznrr3VU1NUhBp63ds/ggOCO0FEkWoFrB4rwuCrRu+qebt+oHAJg9hYOCRCPczG9hqnlogt1xBve749KikKR/Ad2JAvbod2XSZcguqwzVDc7WX8kGsOwR4juSIbv15Cg6Zo0RwemN/63+LmUwfOEl+gdOHVgzrn2Wl//j2fOU0k9/bdARDm2j08NMfMIkfKCW9joP79JeT24UoP35BreX7GtaneUAwCjSLnl7PqqZcibf1r2eGD9/u682G6CKFZZ2P0bjtvLse5QfYeBjZ/XjYeglL+D6gAc0g7vJFO34UKJPDdhaYE4L1aLU23Pgb2fWjm68Tggbwb9mTuk/nBeaJnVeY/ZkmGa8fMSY7YGTgkhgPeuw6EcxHxhx47ReNon39ieeLsK9+eo1a/6SAuf/kltLjtKLJC4gxDbighcKbO/74Xi788vzRkFoEtvFfz8r4Ad+5OhBxFluT7S1NhF+lpgRc+ciTPHPQoNxYIXXujZSPhuj6YPkSC9tYv8eMu2Q9THKlIorRODl5TxcE76csRDupSYc5uHXaL9+Rt0Vsc0k/sgxOIEgoMro5J1pwv8K5MiJqTSrPSH3qCLidnCcStPDF5iXeZzCLPpCIjTHFs7udcvbTRztwypqpe9uFYcsJaLpPf/GapYIL80r36CFezVgY57BVI1x4+KReLSYMFleAjFteNOsuMmuFc3VVY17KN95ugX88actjSCheN49ENwFCnPQp9vqvkX+2/w8e2eBTS+dKNr75rodBFzF8vNLenPJcjABJ45Dwwzuo+eXZiXD1kIq4v/lqsu5P5cBle8HrIhPy82O+etNFh7r37D2sO+Bm//z1z7+tClck+23+YJcHszmf6rKEkjAyfKKJna/mZdfAOwoL/OifmTlfqrSH16J54OvJ5835j70K5cHAm+yvcTSQEvbcP/4i8EcfbPrMwyjvKT1atvsvP4Hl8vbQ+3qqBhZwQQ8TXd9hyxWxufkjA7jshojkc3L+4y2qAMaavnYuBctuoBX88W/8PE+M8pna/ngFUrbx/q2/QldYLmQbf/CP99qj/KW//C5uPFs14+KEfdWwGYmve+vHP/CLKtNWH+9RLd22x3fpb2VbXhVV4FMXnzIlyUfEK1c47NoLNm6BCsZv7fPgZoWYnr+RmtNKvvVwti1InaArzffZ9Cz1z21epFn2erwGzPPBsjPu1A3O0CM/P/yeTQVJhvzJGSszDoafimwXJTreOGtp9Y8vBZ936c2NfyHbKT0m2dU2Mxf8RC70gmOP9jT5xMyIuMdvvQKtl2R7pciQI2iLnYWPbc7ijd9m+/CF0q0e9EHgrL8ZpojH9ORvp0j+eOq5zS1yKy56Pp9l7QNP70Km5saXp9tCfGh5QogdiaFhBUedU0e6+QvtHg/S8aBYcB8vE/XD5eyt1Zhe/6+LD9T/vaVAlniDnhGezKVhqqKc7fuHntSR9/qYLgmAawLpsYPXeIV7jahqbgF6+yofxtYbm9V1fTg0yPx3vsiHZVVef11KPUdn5vJcKheIVN1huxwcjxmZ3ILOHc/0qR3egEbxI4KJV/7h05pajLTnhww/qhPTx347yIZ+7RHGldcQKNBzPPaUrFBaDzr19483G509jUCUll+sN2wE48nMH1A47Uy0L7crKniFjVAyDQub680dlgREESxGI8eGnHn1zEliAeW7qVGvcqJhnre3kLuzibF/sFaPTs/dCI4WWZEUXL/xUnKrDQ9myWODOkO9qn1JoJTPJj1yul0zT4ZXqJnRHpt/h551e+5NVJhnkLrLk8WLft2WlIVEQTv8LmImO94ID0rB0ByjZz55B/cBPdEbUL3X+oEWhx0H0KHuqA5hztbb9xzC3SeQqEmJOyw3pwpVrkgV7OpiM/R8/RiVdqKYcHYYesuQ6hzc9Y89No9EGUZUfX1oa2zBh7p1GJEzvlf01RSIWifzMOZt7cJTYs/UWS5/oB9DnwfdWcf0YuddTk5ScIWSKnFEPfF6PanqvVfwpH7x4ULTeg3dSwT5b2jjq5FJYH1VF02Zbn1AWLV32SjclRnmUlnQo2Yd6/E0HCNlOX6PaOUeCmsT5IXQMkUBVcsy1EsL7xDwD2ITWJFlWCutc2EtBgnhPjUe6KVPrwCd9x2JXASGbns+6kc6nrEdi6230qZZofBID/R4P4rD+GUZVHyjHjCamOaxoXE0aE/rSs1dtyG+QJHh8wUfaPnu/WH48rsVGhnj0TI30JuD5Yig+YgZduWpZp2wW2bYUT7EwbXTY6EdLiJk192B+lKoM6ZJcwtfezmjutQDttybyIfv7HXFrhyaTDwf3hlIvecLyZN3yVc1ShrFyrwVOzvrMEhPMfTV8O529NDOab5wot6qNQyv9JQceUB60IhqpiklRq94Z7ZwMnp4/UY1WTIN5uOFUBt+CzPEh9O7y2c05gnkUWVTM3oP5mzGXgn3xapjfSoe3gLeb7JrYXmmaIxwvRZK54Idlvf0cKHyQOGu/kDlokJUZmACqxW+GxXcZZXso8Mhp1STRvh8cQ+qFXoA5nVCPdw/oE6v9XJk9JaUV1XOBA0Hp2Dx5rHuZaDglqPmMiseTQXfhYiTe6Js4yNk29096vcBkOJyjK3G9G5gnBkfvOlRPuzyvAH3el/gTPiabBbuygoRObcYyWrBpipUIez3z4A+/m7noX9zPgQ/PXCrj+WtxtQ18PK3Ngj8oaieNn0A9jllSKWHHeueJdHAm+ErWoc/r17XcyhD380mJF0LsV4DpBewfdUYdd7jLybH8VzCTzknKP9EtbdI1X6FvTpiev2EUrwI5bOFQjsfkKDzKaBvb6dAgBMVqXOsm3z+zp292BYW2fUY1SzrtBAq/MxhA6VbRAlRD/jd3cSXw01ms32lVwjMLSJ0qemR0v/TILEnl4C1jOL1cTnY0PrUK1quCoyZA9sSRlfyxSgotYEXmf1RX/c4RdO30E1BabctXl71h5139jH7de8TmBzjmiyc4ucr68cRvmQrw8FD0GPJ9NMWPvvqQX/1M0ZrHkLBW0xkVX8dWPN6shW2oxZRBsJyOjSaAdeP5dCn+lcyVhwkDsLLTUHqPp9z9qufJTNOpOftOBbhMhN4QWKDlm8EzbmnZIbC7mhQgzpePYc4T+DkRQHVfEcdRpqSEU73Itj0fK2Xd+daP73F4fQKhtW3ngns3u2ZBvOsb8dBzS1c89Khx/J29Fi3nw31O+KQnqQy8boq6y2wdw4qNp3LkK+37z2CXlwQ6qj2xWTxZU5Vckt8ah/1Np8B6HswB9Cld0G3GC3XxlD9dzJt8wuajEulArQnFGGM30U+xzWIoHvyKZGt4FMvHNn3kEelTZ/z/DbZH9BsdYInF/E03JtLdlF8YA/cis2mUPIuSrMrrEw+JfCBq3wWLXdVXmcnx3HruWy2v3UBm3N2xTr39OP1Ei2JOp+og9w/bJmzBnEKMt5/YSNpRpMJY05gpaw3NH/Gp7eA7D7C8uvdkDN8/lifpvsQFnl+x+5l2Q6Ktf0Ejt4HUcv0t4uHzJxXLoHWUE8MKkYf1Y6D6LQOaGeeiqFTx0sJG8BdqKYsQT4FmIvgn3SPaCDdNSYOnAahYtjbXVLT37DAWCewJvYVa+/jxKgjhKXaX9eQSI9erIdncoPAv84TDRSjZAuPzjzophyRUruh/Ne/oXe0CT6Wt6/JxD9zhL7xHqgvMp1Jv/7K3O/h3/gMfxXggP4sJXoSioaxud718NdPkCfs8qlRK03VxEamFr+7e+tIWw5W+e5Cj/UsxvOn+4gQH/UWcf2kmZNPowxGS/TF2neeBvoWNEf99V/z4nre7J/ydP/nJBdsNK8BsBa3lnJZ3YZ6VsG833xRT/pA6OaPAPtjsgWvf0VN3UvSxFO8fFw11asKO5l7qVnUpCl0BzAiFlmeObs8SP/1t0AxNMA/vcGBygo5aqHyPiyZxdlwG0/qETWKJ9V6E+i/rxNhRaTkBGjhDC8qeCN2JNnw4WBTAaV4aDja/NNadJOx/xAYU9v5SKxJLnEIn0Gd4VPO/3msXEcDfi9yjNNisb3e3XcF1GVLouE9e+bDG6YuPEXRjHYpK+I5vA4J6C7hmaK/18ucj3fvAWdVP1LjKwOTiv6ugXvk7LDtHp18fpywAffddtDmy2zMUdBJCx/F44nT8+uTL+UkQCDpvkWzbB/Xw68eb4+sonqfQpM+GG8pQnoyqX94r95wl9oIpFfzRWRePjChGSdl/wZWin0jX73VfJ0aYA6WQMDDNmPBG8UIvovjFY1rd47na3m0Ib61PbaW/d5k2ty2MLxdO4pvCAHpYckhWDl8oMGmd+OtYz7s39eQ2qe+jdkujxsorUedHu6PzlxOlftQ5uTsUEMzAGPKo27hVu9E7cywXuHeIXBUOg+f3vXBlF5OYsPDS2EEnlA1TJ6qZPA3HwsR4Hzi1UsParm/ImgaxiCi3TuDmGs6wv6qHiy/z791eqNOY9omc19tBYUCHagpKO6wXP76CKq7r0zkyRNyVqk3Hl4ofSNxMo9g/igVp27+AqNrS9l03LkPYEWagJ2+uuTLOtx58Kvv4xVcB5ba2lXNd11O7T8m5bPFvgk02JunRs/lXpm/cxe6Z45u/a326LzeenhDfkWD3fM1TLv7qYfxun5IzIuKubw7w4JvQb9ipOg4Z3rl9HDLL4T0Nh6k0iwRROW2xWDH6no8qHEBOuiH2L+qVbxkTxf9+gfZW9dDzcfed9ulvy+wISTesASlkkKj+4jYmVoh3upbgy6sCDZxPnjz8EYrhNxxTzUumeLNPzlQEhPzN5/NqbQNB6585Pz6vSfEJyWB5O76//ziUtSGAwSdtwnX23SY0RhfYf18JlTzNOSRZ3hGUJGQRmZzfg5k2t5BGNQUoSYy7zWJC9WHXJEp//zXpLwOjTrOBGFtgkHNCjxayubPkXDfnzzpy0srPOTDgqQnOXqiDk8NPBYDRfKy/rH5RQYL9rsS40JDGuvA6fkB9uuzInXT26p8vl14EpcJB8NuB1jy5RG8vOsK5TmMBspvlVi2uxu28vUeb/7Zhzk6PbBTqh9vvJ2/FmgO2pW64cQAI/hG4Jme/n717LGjOTdKkd/v9OK7XU6EoBlhDKca61Y5xbMWmA2oz+SGdWUGgOVxGELl9IWosjo/XtbhLALp/dxROxYdb9N7CG67wwvjbiX1Ty9AE/tX7PuJMSxa/Hn81x8bJy/vuaAkcPOr9IDrdGB2lH5AR8Vw88+eufToKYLj2Vrpr35o5PuRcuDzBR/jVByW7z0y4OtvSLE1THdzLU66r76lR4ode7ywRWPGB+Ta54Vxyrj8HcIqgafCnPBpcPi4g7E+woeEnvgAhbamv/lYPPkco7/Xzlx2+FlBq595elXzb01vQZrA/eDo+BCHnTdnFLjQPmeMrEgYzbVNRwWqTAT4IKPUnIe3vUIl4DlqPx3HFLY8o05H00P833ACLM/aCExx7iFVEksw/fhAntIHEqP1NqzJKfDhm4wpmZ/NBEhM91dAblefbvocz2NEZlD0KCfrpt/rNp6qUFGT+mm1sH9+p5FojE/n9pCLF13woTV+eKyFETIX1XqPcO8cVYxqhQ6THOgr3AujjpFFd/VwusAMHrcb8RDs6dafew0un/REzzzx62X3ffdgoouLFDmsGdslZgNvmlZTW+ZvHv3kNVT/hG9EzfXW1//0mNaZh7jbqOWzEFWzsuT8CdvpWxrGXz+Ng/ZDfVlY8sUFRQj4TLGx1br7ePgWmvXzT/QABWeYb2dqKyu8H7C3llE+XW9GCCfu4+Nj+PjmtMWlDQ/bxU7WmHRg/gtjDe7afk9qTx7MRQ70GeKj2VJEB4517zmzwMYTUPUc85xpr6aEj854UketLx7zTnMFD8RmGAlSsT2PJYFvvL8i2L0rc33eOh9u/ujXn7zlGxnGL7+Q3XguPObX/hXuWbij8d+uZ1T78KWanoYX1vnzOCzeyEWA+7oKdZ6S7Um2MxbQHBWB/upz89dX8ImaBL++J1L3Tf221KvzfCOp8L7mkq4rUipTTAnvFG48PpUPBwfLDLDHyas3cB34wLdgXpHaN2+TpRN04UOLCmr32ZetsLU+sj6MEnWW9Q9Mzz5zwKYvSIXvMKb62apAo7gXejDkU05bJ7TUn374ye4M1t7vDCi9XzskHsob2/JpC+75XGJ8jLG32MlagmK93KlJesWcwwNFwJmcGcmfnRCv+nB4gM2P4yB8vodJ5tUGrm/JRqx6uNvvf2uqE64LPQWAB3PsfR245QdqZJ88X+TgtEJLhjzVhniq15guVzWuTg0+CXrDaP8eFEjB28HaswnAwjx1BEe2ULJavp+P9vWbAJp8T8R5sMuwgOxMlLAeO+odduawjMtz3peP7w2BQ2UOc1ma1j+9bX7PWz7sV0jL3QmbgZLV08GzM4DOoMP6jfMZ/ennVj9o9p1nTbubtELxqVjUPpQSoOriNf/y7MV3T7mwzS/4SdKE4sDAXl82ewdufALb0vgd1tAMIpgPToELo34NrHVSGx5afSE794692fJA+fOrG9851wstdBlKOrIwVlwUM77bNcqWr7DDuYdhjaRTArfx/ellTA7LIYO5kb2wXnxHsHTTHkJq5ye0BOvkjZddjUBXP8544zs5e1hzpJ739A8j8zubv/6hvi33TnVy8Ov1RNUr/LPLC7ZV+VuPi9+L+yrSUhrWn6c33n3mw+BtjNjWUmdYcvGqwcejfVL9u/drNl5aDRRik1PP2NcDi8UHAps/p3Y5tN68csaqXllfU+1RPuN1Z4ejiqpywMa58E2RDvwKmNY7RCbjAbD38DDgRJlL0eBqnnR1eaQkH/sPsdbrwVp0fwbQxI+M1Ncy10ts9ImyT14qUsKJsemhuT7QdVfG1s6T2djvIxm8vq+U/vK/5L7aUj1H7IMgrHSw/ImZBg+HhKf49KLekvBGCOcscalzWi+AiKHDQ6R0Lb1vvGO+ltgC7Ps5UieAds6CcS7g5IUB+rteT94K783npwdILhLbJC92d+DmfzFWviQfUsFyYfIWapSJlgmIXPk9lC7HHVmeNozJpI8iPPD3BR/Wl+z1Tb9YyvDWMEaPGwXs7UkyCCp+pLd9djU7jRkN3N0FCeuhHHjEVpYSHiNlxX73Nsz5oMYPKAjOAScO6HP2pA6CMnpp9DAqDqNNeRNBB1FIgxropkCLkwwM6yGRQObCfPUf7wfcC0TH6IbLXDhVxgNIc6yTuewDQLp4MeA2/mQpvj7Y34cKwed4fSBxPh2BQK+LDIm/+jj4Fm9z5hxl22I5/tHz+TKZo3NmDzg5gkfRg6eAlXvegLhC/S//sZUt/Khseo/U4PauV3FntWDjsfgwaw4Qfv76Y7II/frHejD0Bs4gOFJdz6Z4Xg+ZCIXrxaTXo+7kfJqYCLwf8RU7G39kf8CxoMSX5qZHFpO2vAp361eiBh8Cc14AaWFjfBMcqH8aIzwf8v/6hSfjKKa/fPrLYwYf5uZcaoQDjfGXYGcml3y5SR8LmmElonVXevHgyXwCJWfaYVS+y3jd/KS68XCy6vUYT+pfUME43jVoL5W8N3FPoVScFhDqHE8C+PlLcPtwFdU3vkV9o6zUXdvuaSBzc85y4NuAOviE9aX1a6k0WwTewE5/fpGxa2QhePvACuPXvjAXEE4fJdo9PvgYXI85P3e9CN/Z80rGjRfwP95W6I8H+fFCyTjBCqyfbctwAHj2j69v/BwJ60s2xzH6rPDx6Le9PFkV02qaXfhYvBzb40PKe75OCByuBcZW/TqBbjy9ORXko4q48KPVoqSEq/oU5Qe1P+Etn2xTTOGzcB8IHRNtYHwnNZC5fwfCW8seELVOR2hiwMjwJ5gmv+kNnOY0oI96Nczl8HArOBykgGqSBYH4EUYFlo+/G+LEgsZTOzx54JqnCXuDtObU7x8JgI6qkPmoEHMZwoVT0yx6o+8+E83leb9qin0wGEbrwm39jjrKj79pbo282buxVCX16FN8mbh8KaXK+pd3trzAxrmKRMill+2UkneYE6l7tFDtQoC1kCKTsVO+wkIvHth7b2/Zb3oGr5lSU+8cr2A+mXkBi/v3jjf9HVjXAgXk20VvwRTo5r/1meXCjoR/3F1v/QR7GwQj6/7Nv403EmjLyUrz87yCuVBNW93yMv7xqzVuuwTeSlAiaepsMJYpsH/+Gak20Yf1szsb4FOuCfVWc417bzg94N9DirAnixUbnmKIVNV97RF/SN24aWyigB/PMl/MBWSYfB4YQyZSJ+YuNaVnIIJrIr3/+b0PXk4peFlrTr1mWQfmg/ABr6isKbp6lE0cWVqw9XPUpPg+LNt6k/Lr1+4lsfJ1/joy3Pg8gu1zGeahXxU4VCImmx57krqYH7D5f3wR/lKTZbsdB8911iLxj91y6XudLfU+xwWqFhd4S9gUPpjTyqX4mRG2TH2wgoNZ8Ygzv7M3/fzNXHYOuTiaDCahvLTgmsk1tTxpX4/746eB2/wk8nD6Y8wSy+bHb39819t4rf2P7//WABZA6b9TWJ6VEQgss6dB3+imUEqVDbf1PiI+rFu9nrR9BbtXgKgbDU3MmHxr5E2fiCrfdmzEf14Ct/VJfNktEvv1J7WzX5hqJ0Otu1157398E5t7ra+3+UOATC8q3fyoOfOh3cIzqP+wrl0fbNX2UwF9N53oPSGHfGmYoACUXAfsvsrGGxVjHcGuL/bU7tQjE0PzEP745sbL3zmBG/3EF77Hp+8fn884wT7YeDQSg6DNSTELBqxIdkOLT+AweugYQuj/KRhLb5JPyqyPUL/HAt54Uf7zQ8pWfxgfLtyw4uWUwdJosx9PZMvurrdQ8k761p8/8ea/LOUdXe/0QMXUG6ANegDfVCFiNUnxnCaeD8qQz5Cs9fawMmOWfzwA+7NbmXOUHV14a+cKHwN2zGfHHQoIeRdSqzY6th7Hc6Vu/oii6r4z2bPwLbgvJRXxuOnNXtz5LaCufkJAFiuwGrX6AFseJiXvBMNyGddI/fG26z2X6vnOf7XfegJ+mIZRM0dISzg2V4QPo9KyZc91BF61a4P2f/bBfCLnE8GoUb5E1vrPsFxt5ALr0AtIDGMnnvQDKuBX787Y+T6ErV+0pTq4NsbmO1XyHu3eKZA12aS3jU81i1/xsJK5G0Zp8MrnUMIuvLGkwn5ancFflEZX+Msjj9NQDUsI+yvY1uPo1j8BPSp+Bs3HmWHtMz5NYcuzIHOFJ0bZRctX0ZlFePXHmvzF08nk18luoXVoBTI/yme+bM/7p5/4sfpLvq3fVLCc0J3istx6kF5Ectb1L4q0oWRL0hfuPz/yFRfRJJ9gsWH7hhEtEHjlK1EeszJVKKC/vL2egYr+ny0FEv+/txSgCg3UsMOvt45Sl8I26XfUB8WQzyr8JrB0PyW1CjuOZ/fmZBBUekLzHXqaEyM8Ug7fXEUDqgu2ugm8wqTd9Ug+V9/frq1E+ZgzRUtLC7CGLRdBSb46iD04BUyq9hL3ev53oYYz+vGM44wHxsGUqK1rLmDs612VSQ4c7KvKPEy8PazQ8w0HB+1LNVszShGY0gqQIuT0mpiakkLCmI1qfa/XvKzIFhzF+wt97l0BWFaqHPx045dwIfeuZ61aXDieHgndDn6LV1ZnijJV5xBj9pVzNoA7D6TpvWD38feJ2cV2DDmOhxSJcLvBRrrhBpwf9YM6xUUwyfneVHBxXiuSJ8GJWUU8BSZs1tEo7KZ4PTXIgsV8n6mrPHS2fGw5AUOgXLHZ7LdILysa7E9DQfaROeZsKaYPrHgQESpVeT32Il+CluQxPvkNyYkwyC1IOFAhtX09PRaOZAROlndIlpk1zPbL/MDLMepx8BpxPO8OgQOPSBiw0yl/HgteIIGk1xayi5Pb0MlcWcHMoTfqjrnPPknfGnAteJve3QLm4/dKIygHmCNC5D7BfD9WNjy47g5rrn1kK/IXF+7G9Y1P351Vj4/kUqilt5uQXEAH8CehliGZpID6VF/M76QYPUSLLOPzePdqcacmvvrpyLbr16jNqZxuGtRr7olEJdC82fyTPlBdQYPKY1/VUz/kPlgfqYR1YzzFC2iyHuIO+ug2oHP9G18lSHWFenU1e0xrniX4jQf+C2dvVZbZgHcaCdTY+YAtx9tOho32DMnMD0m8dPG203IN9/T45MOY3Hd7FyKSIWyURwOs1HqIgC5rjDXGTkz42PNVtcHNQE9Nqwa2SGMIh24+4kOHt7fUMq6BWqin2Dtd3jGjRltAV3t4RD6pt2HexleJDK9CgvQ55XMvwhLAzGopvt7mmtS5Pqqt8pGIYADPW714cuFRdQacTPAOyDjxD/iQ5C82lscxn9PPoYHfv+gPfZXj2WPZcRfC+5JF9HhU+Xop7csM6Ylw6DP6nrcitma76tsn9BC5Khi11VDgIQYJ9t9fzNZzfX4oNH7FRL1cjh5zT7kGjX1Ekcz6+7DMlcaD33hj5S+px9vOimCUHjMyG541SKfqTkDK7gess0kBs/rKNZi3vEZtpY7zyXuhAqbBvCNcRkRz/Sy9AW+pq6B3wgnmKNVOAzQ7NrEVSWU9yVaQgsQbR3w5cJbJuvOrh89MMzF+wrLefm6B8dp2wR7F2hsbpbKhklwUFHomAl01Hnk45F6C0TqX8fyhfxxUkpuCQtMZ6qVTGg5+XjCidhauA91lZgr486HBDkvseHU9nMGD6+zIeopLrxf3DIGyMQ3y07cZnNMCSoKypyiJzub8+kshGD9ThMaBk82+l+UPeLw5io/sxLM5oi8IrDkbiHiqdCZcLI8DfFwyfN5FPSOP672CzvUvwCY6gJjh9mxDJnUGUi3ZBwJcnz60C9vCLg7fw68+oYILE+ugLcx2nLVS9c5Qp/re33tTGRpE7V/fK+G5O2/OsqsrkC5zTD1F/dSLm82iGgsrj5i9DGDiFqTBFzYqbEhnuWbD0sjyNl8JT109Xiew06CaK2eyn9c1n7X2wsF7cLoT1tY9mMP564DP25yodr9k9bLeLAK7myBgb81pPVxgbMDsbL3ooZl6c5nWbgZ3b/ZJbx9FQNRAQLAi6p2ax+PLZHv3Zv2eNypqqQSMvy0NLO7Zk/B3dDL575WGIEDxH9Yf9Z+3pFkTypxe3ajFK1dvee6rK/QO6xO7H6vJ58zbEUgvckWTx9nw1uLiJrA13jU+yAVjk+nnBM7nR0l17lIDostJA7ezEbEbew0j0rlaYatqNr2x2RloyUsKBJwv/RvPCZcyApPxZ1JUxR9z9QX9A7MpMtCatVYteW+3gt4wXuhDVeaadudbr4yvzKd4bHY1a0Y47rE3+IiXDs2w3Nd4BY+iOODD4jb57CS4AF/47TEaTYUN+6fMQW11eWyd4z+2XIJZVsNsYmjfXFKPgcd7hgyhEi23TDGXUjI5CF57CfWToQ0i6oMHHM53jZqf49/wJxRxCF1kACTfbjJbjfvegmQSAhqYd1KPCxgJmBryosblZA+0OYAC/p2+HHYGKsbUcXsf+tu2H7595oDNL7iC7fsiqfVk0I29pUFjOnpolz6NYW6U3lKMv9XGLn+dPVqcOg0GCS6oOXw2hNr7GtD38oXcrc4z+e3zII9kh5qrwrwxaQcO8EKLsXtwMZslTEZ4tQcLyV28xMs1QhU4XK81RugMQLd9f/D+EweMrcPBFBT1fIVPXlhxJJ3Ter12Ia/+nXc2xk0H4yn4jgikVMmpVUxHc32q2QrDp2dg7bq/5OT6GhSgSquBT1Q5sh5gP4WzAnTsOWSql092G2GRvHdkT+PEXBT1nvzmLzX1KGDLp/F7hZuyI9l743YQqY3nPax5lXqaL9aj8UUrvC9phM/cIJntcUIOeB5eKXZ3iW8S1B8esLsWLQ1i0QH8A1xHKDa5SRgxWkCLdF3B8llXqss4MmnbX6/w1iQF/tcvX7ehgQz/TdjQ3Eu8BGgqleF7lbF5dvitHy7u7+/R7e957CldQ3gsVQc7ZX40SfJ5KXBvyjZ+GGfRpHv3ZcOinGqKHZXmlOcUHly61N709JNPjnlKwHyIIA4OL62Wbu6lhR5cKNXFOWbz92wUYH1k0qZv+rCs5dKrx/0VU+8cNvV6s/98NdUQxv7npZgj951nWCffF/U/J5stabi7wuvL8Khl3oKYZvndUVYNJ+hO1BLMvN+G8L2/JGjrb+aa3GwHmBenpIfuL8kX79610DRNi3jj5QkIbtoWbH6AhKXi1iJH7y2MH0lED9Ap66U6oAa8uAyiOp2sXFhmM1W254+WFzx748+PFZePjm4Cthm/HM7jzz+h5Qwe5uygqgXjUT8gwZRXcy0XXABEWY7WN0zMhbRQ/OkrDh5xHS8VYiUky0VC/FAmA8uZ1oOtn1EfXxpvpeg0Q3pRKuwxo86nm98R8DeHNj6YcuQJsPaKn55R56b/1XMdtyKs965Lj8Jf5k1WVkRQ/7v0ZHE1mU2O83HgCbVv1AjvE1hnf/2oq6XPiD93e3O6xJcRksTeY7SrAzZGe18BWz7Am2HzllPvfn56g/2/Kvbm0o8isDy1J3bTvvbmyaQcrMxDh91VOrMZqFwFIzHLqGngDeGBIVKMct9i/zu9a7Ko5awaLz7Ax2tZgnXnEwNm8zzik3eYveVimRxw/pBGD0DaMeIW7xDap/qOTRwbbH4czBGySZnIrfVkRoelUUAWvUakpL1p/uYDmJT2hlQuF+JxEP4SwJj4wc7Pb5/zudkP3utI0eF+rqlWzCPkCEsoeo9rvA4q8kHZ/wcAAP//pF1Jl7I8t/1BDgQUEob0IE2CYIMzQERBpE2A/Pq7qOcdfrM7rFVVgslp9t7nJCeaqNrEj4Hd3WcPYsWlSH40ckWNPL3BxRhuZMEvAbCP/OzhW6eYGpAXM1J3fgQ2PE2mnanpLLihVDL3zCCH5Lpmo/fVoJQ0rk3R4IXZzLOuhF/O+PzzJ0F7PaW///+Lxxn7ogeCz6fwomg9jcP60SMEh10nEw7IiPG3IdhuFdPqLb8YGTsbRQi5x1qQxjxe9ZEv7R7ePiVPbVsJBpppUQ4S7zoj8YAO8eju1B76b63Fbuj4G76UUnCKPA9ryHOzWd/tIum+s1ZqW48H+zlVKf3ha3JobnbWbfhb+sqcQIuaevGaYBfCvduZaL6JfMxaTo/gx4Y2tm1lGsb1qfrylbkZNl0sDYTfTn2sFZXJ4sp7MBexFcHitkf4VEKPLT7mRvj9PukfnsoW62Eb8OGtPmkrjnn0IXKtNLAyp6Zo2sPyzYgEWv98oCdDu2fzrvA4yRZEBVvPeKjm7tH6EGYvHuuV4Q9Cudg5PCWpgM2HI218Gfrwy1kfAqwWVHNDJwj+nu+hqgBzNl1cqFWXA1lLW2Njh0EI+yQ84/wSoGERMyj94SNsLUOnzz6UCjiVR52G97LTVyr9OODnT4it2xVna9VnBWzElKN/eHHZLUiDoxQAjMf6VS2Ib7ZcfLOxMSd7fYLrE4GPOubYvj9tsPwukgROyyHBgXc5A/Z6hx/ZeSg5dmJLi9cIKBAq+6nGKA+4eB6brJZO/MAh+b2q8Xo/ZIm0vS86zkc1FrLvEMHgOJ+IB9dEZ8b74MLz53nFirDNuzVLugNu6CTY0+5fffzZzxIc6F7B2qf6sRGZYSQuna/S0+wVw/yQeWvr1L5T72l53qI0XQ3xnZvpbW1DbzxKswFdm4VEdqdCXy6CeoHbMTf6F/82feIGYHi50GTj61t8gMCWpny7RUPx5uDyUYBu5jF18rICy6Z3iE/usFI1PumDYJ4SB7zt94C1ndBWREyVEpTycqPeVyXxfKiURjb6fMWasnQevV+0GnrnnYoR73+H9ax8OajdvRir0QeDP3z250/koNRONdsCsKBfiB6NN3uaX1w/giX9oX/5kgpy1YODYYfU1Q2ZjdmUu//hVQbzYTq/OgVKvHXCyjwv+vy7/UJomUTG/q1jwyhfGwu0R6+lf3rACoqbC3le6QjY8v+qK2sCRRaV2JFaHiz2uxbk0FMbaifXKOOfZdVD1bFGao8TZauBIATl5caj7nEHbOHCZITuEqz09I5e+t96y/mLj6gNhoGt0ZJr8HzMAny6WmY8do8SwQ3PIqlLYjZ/nZHACLYmNh41jOd3fVrhuDce9FHCga3yvXf+8XW45fc/vgj49ZtSRCf7Tw9o4WW5rGR32MmgMZL3EV6d7kBaw7HiMaJ3CApVv5Ejzq8D23VPVzwtfEJPhSCyZT652yAFO8Aah/aMfp89lJ5ZFiJBzzH441NwfqkhcXz9NLAL40NYjbuGGlE4AhoKWQ8Nd/7Sv/y0xMWZA/Jh1qiyWyxPSC6/FT6G/EFxeFyr1f4+IzFIXycCUOBVG/5wQTwqr3/4exH9yoWyCR8EbPY+xVgx4PN9PdG/+Lp8vzEHN39Fi5AqwxxuQpMZixf8nat5YJ/DUfinH6mdbGXURQcO2jWrN/ygx0tcPAR4ik4etsuQH6guyQLYRb+FCONnFzdwv9bS3WjPNPo2CjgsxbeBzpF0RBQvXbyyxxfCcB8W2Dw0XTahkzMeH80PYJ8YvT4zbiawOzYG4eb9ytgkuT1IHruKPDf/nMl17eGJ3AjhbqsOGDjZEvRCcb/l5w9YztbnAncHN0dknZVsMWrdB4vzXLHFsA4EynsKaJ6VTpIys70lTwIJHq8/C7u68WRraiABQvl3xtt6Vn/xCjKj8NHHGceMFYJtgb98coWOUi3l9FLA4ZOE2DR3tffjaWdBO1Mx1sYYDgs/TQowfG+l2uHox/PnclTAe1Uwkv788bRPBGign0oDkOTxPBgHF9ZtWdPENKeYzWGlyM3zrWOz91t99n0jBPH0GIksVoO3qsdLA8+8vKPOpq9Muh+PcMMbFNV0yCbfslf4usCMWhzRvNm/ighu+RJJuymJWVsvJbxMnIOVJImHNYShK6tGGG43OqvZgaedIS8dUqkbmEzvJ7DXpJ/unah+WOVsic3YFf/0V+u4P1ZkRx+9lLzPHb3+5g9b72HqQlsfXez/rIlNSXi4wLPE5Wj0Iy9m8pFI0ve3XZQ8V+Gw/k6PGogHA2ILdmbcFeezBGV9m0UfJ9+MkX6WoPV9uFQLf7ha/vLRW58wRtKgD1MVjDfAR2KAAPdWK/aNBQ3uYy2gp/hn69PrleegK30ZYzg0w/zHj8qwfOAcFEO8iP7gQPeW6DgcjtbAkry8QU0MKbXL8Dos/IXcAOVrSt1gtNih4dMc8u3BRNRXnJjdgcfBe5F8yTKDzzCrSvD50zuwQ1acLa9j5oI64e5/eBdIgwV8abMv/Ke3rPwwt6L3tD9YPeJVH7WftcI/PULb+xlg+8NrBBtepkaj3gYmDewDO6Wc6V8+7wW99aE0BwO2ZbfXyVNOZ7DU9wr/7d+f3gCO9J4SrrXbasMTWwvHJ6ZWwJJ4/L6HBETKfKXhzo0yFipKK6/84YEtjYd656qr889/rYO78Z/mJUndmJbUwfm1+suPkKj7J9ZuVjAs80lzAKjzCltSoOi8zi5Qtj57QBG14mqO03cKOUVxsXaKFe8gH5t/+Y3qiRVWvUpoC5/mM0FkWA19qYL6Blutqqh1KKV44g/nHRhzKGPTv/rDerRlTlL2tKYoTq1hKJ0zB+mrF6h2fT3Y8urU9C8+ENCXfrzajrODGv2kGx8e9S1eIFiH3vMPr1d8dEg+8Ov4C7VhUOks06ICyqtYo5+rWwM7/YQSJtPLJ4KiV4wqV32Fj2v5pqb31PTDU/UiyF9vOVp0LR8Y/+Vc+Le/yqYfjhJlO+h81gVrQX2rZjHxc6BW8IlvsehuetvpKE08E7FlvRywOLmiydxjLmiw4Sf+6z9dsOUf+g8vvMZFAJGtKPQPLzJdkjmYtllNQPPtvD89STpUyxMtmWEx7hudWzg2NCJ8EMXVWroWgiI3TBQtnyPgcwe6MF1P4savFrZebZgAtEhH7HZJDDZ+4MMszEXqXzgtPmx6o1zeZoOIwfuaMfLWd3Ce+m1QwkPX2Wmpin/6XXB3k4y4Hk6g2Wjzn36QLcFv9KGDI5ueFJvT26M0WxCRBNHcSxV2SCKQwN0a78gBgZmN2rvbwdvJiP/0NzCxV5/D8NQ/qOXO+2y+PX8CnO3RwwV032BWpbIFWSQ5GF3xUV+CJCrkBw15IunDMiyStkMgF88c2uVc661/eur2POplv5G1f/UNc78YGPNTH68KFTgozXhA8wOimPVVf4NiXMfUXG0vY2b528HUcxvqTZUZz1u9CWx6H3be+zeYgEoVYLR6ReSD/QWTUXs+mL3y949vrxdRnP/Wm6oz+FSL9YEarFRL+MMfgD5VPYRCKKV/9RKPXZgcwU3/QL/m9ssWWHk5CJkB/tlLVSTrLOkJhPQcfShbPiPm4Li3Hv/eZ1FyroXvOz4ivp56j/Ww0yBLE4PqJ85gy2f/JvLYuW9sF1ntHdAkH2F9ezjY1M9FtqSufgFq7zv0GaQ6Y0oxE7n2W4Y3/FMdfoGmyYprvrAf2fkwT/bRgkqbvKiNQAjY6XMe5T99/3C+C/r6S6oLtMu9g00j7TIqATOS/Mygf3q9Pn6AGMHgw51pxL3KeF3r3oLht3Q3PGRWi6/0O4g+/kAVORhiBvJuBZdT/KTOfTdWDIVdDR88Ijg4NrXOzr+TBG/tXNJ8sXV9Bear+Jd//FLnvaUKxguImjH44yP6/K7VVSa30sEvbtbj+eoqhTw864pe9fMumzb9AmiP+oP11+mUraEqK8C9pTp2e0iqpbBrCBXxKWLjTnvApj3NpdLxzsiTbhFYzabOIfWdACvLvQazdpc1yYuviFrTKfLmSztAOE+tTtV91IPZPGpbi8X7jHVVfA9L++FzaJ2Pb/ynd277LcBkevpYqzVLX+RHUR42/EatxbjG88PuLVDoxZdail4BNsVqAsM4JdRXgcY2+7WA+exaMuWdMEyd8YD/8NAffp3c9ChAcT6cqfN4umBMArTVC9aYOub49tYbkXuY3KsLtRyAdHb67UoQH5GOnXeCvEHO0gbW2ND+q4cdLbWAG38iB+c1sLUw50buuv0Zq0pYx3/+AW+fD49Pl9d5GN40NmDzixMkj6cTWx3ZX8ELKx+sNtKUEWMpG2Co2hntDqoAmO/oAoTZk6d/+PztqqsLXcEKseXtLLZu9VP5Dx94cD16pDrn81/+oM75mLL5075S0L++NyIu9JHNpyZ14XnXHulWrwEkvZcEGMNhTze9HdByNwpg9/ZrIlxJVi0fnluh66IXWfLK1Ld8BP/qTWR9pk9v3XG7Aqi/WcR6qcagU3hwk9akybB6/TqAQ2AIYUw5gP/0u1mPQvRnrxht9Y5p2T8dqar8iJ4JHw5kq5+C61nZk+Vw/1XjX/2l962JmkL3iUfjfNIgKD49kfPuNiwPL/r8fwYfHPj/3VLwPs09OdSRqzP9sq9B+UIaVfL0MSwCWkqZpL1NNcVlQzssM5GNXkL0Un1LfUXOswWWJlqI4xBhc5cyAgN8kalmNr9qdX7GDjb8scfuwZg8Nt+9Bn4+iUNd7fypxuc9QFC0s4bwP67Kpt7zFEjTdqTXmH7jIRJhAtVu12B9f8PZrMOUQD/yVYyy+yce1e+TAL8TFfQx80If7uY1hKqBb+RWibK+mmvnQLP/lUT6e76crhYcLO6AAz+866xhBZKiRlXoFcXneI1OkwOkRFmwPlfQWx9T4sC2QBwqX0LL1vvrHgJlxxLEGa2kT7L+6kH/JgHV++qQjYYtRqArPiPWd+01/tKPdpOLr7zHp89w0JdQ6jhotf2NKpKiZNNDVgRJGcQZgfOhA7U2c77cZbs74XZwylZpv10sp9x8ImpDPUyHKncgmHuMPaEfvNVZq1w+f6mDrcuPeGx6pzVUOqjix/3CvEn1WwmsrPlhTeTf1RpfvRYWoith3+e0Ye2kwAA/T7+gLpl/8dikSwqrV2VQi9Nnb3g2XwkGVwPRuOKTir5OaiGHx9ojsjqqgJ/2zfrv+5oGjDyWmfcGni6Oii/FofFIMmo7+SV6L3I8MJjNYow0MK9dva3XPaMcUlcI552NbbGW2TaFpZTh4AvoeGB5zFqvLMD3eLLRDALBW9TrV4Ofw2dFNMtzfVWNnwu+R89Gz/Po6TPg8htMpOJLTVm0PKKdIwEspc2R9audhvWhfFu4Oo8H9oO4yJaWjx14Q8OPKpmztaIcMgOWp9Wk5o/Tt99nLuzzENN7suQDq+OrBeNQAljrZn2Yg0tXQ0tHD1SLvcYOlb1roHY3K+oc38LQj/WrhiMtLoQvEhqvfz+fbpmO/Yab4/l6dxpQfdKJCMfF9bqn0xEAU7Ei4jrz3jzMVQkfn9Wj1uPaetOih6Mc/PqKuv5ezdaAd1y4v41vHNdVxJjKCQk85JihVcFtRsS+LcBA3ZyIq28MvBnMifx91i9qXA5by41cOLBzWI5Aq74zkgXn214dcUuVb9BmSy3jWWpPlotkIb1Xy3eX70DjKZSeBL4Da+objiwPJcFKWVfe7K6WBjd7oHYRhAOVvicLjtwxInv3qGXc6Vlts4a1Be0axc+WodtBcPfJk2KFXLJ5mIcPNNtbQea3wyqWrpoBjDuNcZDvpJidyDmEz+3ixnsd9V5Lct2HhTf2+OwSvVqt89WFPJl3WFkcyEb+vCtB7doj1WejzFgehzno3qZGFu5YZ+sneEJI136P7SNIthI3uMHjY39D/Em12KqnxU5Ko+eT2omwxNORSC1UxxJgDTe+vp55twBnpDkIeGuYlU26JMC5pQU1Hz2fLf4xcOHbV0dqJaPGeF5UW+DdphKJq00ZKVTZhV4nZdjc7INZyj0EwogRWc3mN3TpefjA/XI+4by1ttqr169QbzUV23Eq6/Pu2hO4+Qv98+fD4F5r6AAhw94v/unjM0lT2OcRxs6TPNgabKekp1yqsbPI72x2bNbIw4m80IEEIlu9Qnchy84N9b1npW/xz5VzLw1QcQ64bByk7SLFclVwQAUt5tPoOEqHNbrTIN+l8eQfAwdWH6JQ52QO2eKL0Q0+ouKI3vRtAEbGxYDHyTnTbf/0sdUFAutn9MP2JRj18nHXJOBdNknrQLRKeBy6HAr75IQt8svYn/1LosGft8EHbTzf+kKBPAMdYWzvZasKZ0e+1FZGLT00Y+F5nCHQ7omArydagkUKVQWqu0XeSsD5wKh7l2D9endYZ7fGW8N+ceUooCk12LfL1svotPBoP1RscHFVzc8kSuUzyBNqkDUdxi9OjzCMHUT/8tPqxaIgSdMpo84nj8FykUYXrux8oc7huOidNzb9dpayIbtGGePeWOIdvKD2ifYj5mL2fHYr1PqwoOd98wEDou0Krn6qbP7oxPykqQhagz9g9956ek/xPgQ9kzH5UA1582c83ODzuFVs20bTZ7oADV6hHWG7U2p97r+mIt+afYCdNX9680/8XuCQ1zZFsNtXy8g/C2lMlTvhEbwNc58rR3k3vGPqaPexou7hmsLr+TNg+9fVA33JnyNUxkCnJvlo3hJlM4LKcidETIa1+tbrroCox09sFs9aH6ViLOEF9U9y54JiGC9qsoK2fB7IzAOvYsoL1fB74DmMb9jK5mKUFRBG7xY7D/My9F8yhvDUygk1LtPRmxZN/0ga5BjqWr/U12VNV1A/wx9113OREROuBYC6X2PdLWb9t2vCWravS0zdw+nN1o9utJCx4wtJn/PVW0Ix7wFN+xGbjPMrtodOCs/XB79R1oqxzb9ko49bbBuBBhZvYgIE5nyhjxMW2XI1+A90dumMdey7+vrDUivq+8eEeL2347Wsw1YGya3DCg+GalUN6sAvL5lI3vIX9R9HCDmHCtSpTNGjDX9sYBw/Q3J08sabOmUZpfLgX6kHEtNb4wKv8H1+9djY8s8cc18FMmc642AvDBULSNYcz0hxaLremLc8LXyBo51rGIfHn0cmKlgwCqUb9aZ4YKwrdQvUH3tPcvBrs/VNOgjawuewd16vOgl4xYXCchexvj+nFWNaFYG2XFwajGmsj4k3JlC0Hw1GZ+ExzH6cp3/2jYuSqGBGpWPBl0cx1cVbD2qt6SXoXJcjovOl83qKD6HEP9oLRufopAvi+kql/V6zqLpvPmw1fm4LYKIDxOulzAhztF7++nuRcOzbxevYiBAqtxfDWnpx2XKouwv8ZZcfTZPzXJFkdHeQ2q+FYtogNvtuGALt0R3JKs4+IzelukCtkz20LxmoWHT8IXjSqww1n/GXLbyeKTCATwntwJ1jA9OqEIx5PaLD6RXEG96FktEqDeJS4x6zYjVSIGlHm2qvhs9YJreNdFi6hVrPXfCH/zh5+qiYnEtmxbwiLBq0boaKg/zK6/Pt/ZCAKc8Zmjz9rbOel47AmDURHWTyi9fCRwX88s2KLaJ7MeM/YwK9S1HgwE/LgT6aoYFiovibfT7AuvdEB0bKT8fW9n3mtSkEcTErH80bHuVVF32gcmMWdRZZjbkfzTWIcZdS0zg84yVf6h7eX41J9lmee3MlVgp8nYqA6q9zq1P/fmtkgQveOMh+Eivm5+zI1s1SsXlJejD+aK4AeZfesPXcTdlqOedNQlNP2DyI72zWfrMBsJzKSLpXQkZ6a2tpa3oPW7VusRn151RWdktC5PfS6eMbeSl44DMkvCxaOktX14DfSnti43J4D2sRZD30oPfEVrAzvMMlc1dgz3eAlv2beOS0O0GgGRig3QusYPp1sAdyAh9IOC69PqfD9wORKh4xXrTKm6LwPEKaXh+Iu96e8fxN7gqUb9aCHd20quE0+Qa4NrCl1sPbVbMNbA563TGjqV1NOrNR6EJZ/+TU3OLryuLOgZ+PwRN24l22KIKoQWL6Ln3xDRvWujJXePUThb7Md+VN3DS4MPOs7ZaX7lutW36TNOONcGDt/GwV+zLfGkx5aq+Asd74aa288RkyvKHNuNG0EHTij4B1MilAGLOsgHBAAvWPnuitOIYOkPXgRJrH1dG5+0Ed5TREGfYTVfYaeFMcecOXREpuZtafea2AGhQY1q9nfZg5Oea2lsoUa+kRxGNUuik4LHsD4/5ixGxv+rW4+S/2zocTWHbnsAT6Ppv+4rne1qbagF+l/8jvWXvZWlfBfATT3GyzAN/eeLRpCcOIA9Td/Jne5rWGVxH3iPvb7xcqOXnLhziwwjUbNMFroGQWOZnpImerG9Ut9LvvhKCjMtYtmlcCusII37WFDOvSqjn0O6AQ8Vd82XQK1o3PtiF1fkcbzH6EEdjwJ331xwuYQJpeYCt8UtJFzUOfrZ+UwOfb0XEeWYHH13wiwCwsY3zngl01/vE773ezEFd9FV1ov30O+1PyQ/CeHIaxqGYJVrZgUv/mqWzF19MF5mF5xJGZF3/748JpvX3I8sobtrbZw4Ux0iOq4FHQZ5uFR+gi0mJF6sxhjW+JALX7eKKJk1s6x+e2AK9iKWPNfK9sOh52K9Tu5ITN2Cp1oqc3CJXlSjCGWB6ICaYIeF3MY8W/gmr4KacdTIPbiv1GNPXFHscbOCGio/UxfKvVmK0ZeLCYySEBlk6/pTODKocUe7evzg5B7UaQru2eIonQaikuCpKl/vjAzt2th7XNzi7cDUKDT5HWDuvhFDlQN3gLP4ILqjb8XsDq8L6T+bskgJk9TcGWP6hChUhfy0rPgQ/nloaDc9Tb5930oX51HtQ7Hzq2xcMauj8N/fGBeCa558OiVkL69H7nivmPGUKxr980eG8tAH+fL/bNGzGuncGca33zpzdQo0bmcMgzO4X3Q51ge73rGVsGgsCpiwbqveNPtZrgGwK73SEkdKml0yUJZ7jxLxw018ewGEelhMNpfOFLgZRtinyWwOzbyqhQF1B1+3ragT+8fO6ZC+Y38hJgtxDhmLSjx8JMKeBxTxpqx6+FjUbIpzA9ogk7nSkD0lGwAm2fOQg6VlvNj7t7hCfoxti4TMl2S5Juwckufv/Wc1YfBwTjRv1SpXyRbJ2/1IBWe9X/8IzHvgVr5PSzzhT1xMq4O/e7gReKa+o6Zzue3ru0B/EZISSgXxfPVNo78CV8XSJcfkhvuKdUwIuITcLNJ0lf0m3w1c1Pvlhp0kJfmmjfgzfXfrGG3/d4TnyxAc+weqJmi6frpWcFnFno0mvnfRhbhsaHNthO7W1zj9gNni14OX8sahgTYuynqFAWHtBH+798/5vfPsi/w4fM+8hlK36lPThHfImdwFW8OeMFDpTFL6fOk6GKv0i1A9Fvl2E7qD/6Pz2At54PjH3yrIhX6A581RpP5i/4xFN/60qIvolF8XwUq3HjC6B5fg2qm1quL8bRKSX/dxuoxa48WF/J6sqP4BYgrspuVTd8HA3eUPcjPPdpAPUf8w7OTorp336x5/O9wsfhyJOlZFbGToMgQZoDQnYz8bz1vLU0dKy7Y9vQHxn5oamQNjyD68tBHbg//LWme4LR2N3isRIHBXBWwWH3eDuwperWm5Qcavkv3+lEC80epNKikS64kOq7rQfY8BlNwbRm66UHBZTkWaU623sxuzbvCJi9xNAuV35ghHz3gUA7jvhcdpDRM60MwGfiDe1KojJB/8qFdGl2OnU+77aaZe+RAmEMENb2Q14t333vwk2fw/jmLgN7yf0Rcouek2NA5mqRQdtL32fzQu9XbgEeT4ID8if8/NML1946CnDjc9gyfjVbjmTt5fy5+2Dcy6dKmNYwh/Vn/FL9e/bBvB+iD9z4HY6v8ytm5+9jhpu+RD3tBrMpMI4SsHeJh31BRBkt2LmGf3wfZVEwsL1p1FAdg5ZqUtGAiX7cG3Rh4VFLvEoVud/Lm2y3LaDPJiXxmgXni6xcSgMXVu3GfC3bq3QVPzLiyefjbfmygVt8pWpvzuAnkcCHmz5Ilf4VgZl88e0PfxKeeb+MaoLewN7rOoxG5ax3h+riQKfdMaw/JAes7IzWP75D06CQN3vqZnkxhRd1YanG7WS3jZQLoUOLLEjA4ovpBX49xcVOkuOMVSdvldR7eqb3SBir+bDse8AtF0pVaBbspwdOC5+e+cJOlPfV+FJf5E8foYZ02g1VtZMSiWWNiO1np3hjNLTSP73N0LPaW7p9XfzpUWTOHMSWnbkqUqz8WiSg554Nl1AsQCTTPdnDS5QxbCY93PybngUz/eODJezZHmNX8wOwKHvZBZ8cujiZ2IFNu4edQ8EoMc5zevDmw3LooS2zLzVFbsmWTV/9x7fd92RUvDeSFlQnxhFeDEtAkzwNYR4GX4pUYc4YRpcVVvVAibSs2sBgWK7wJrkO1k07BOJyWB2oGsENR3Rg2XznYQn+9GC/9TCYfuX8gdsEEuqv3iX7e3+QV2lJlZfQgn/4VdfCherY5jOKzaSFSeQpSF6cQKe/k2WB5HAMcbLpDcz2+BUe06jD5u4pVMv3xEownGyRat8BMXZEhgUv8eLQpDIfHhsv5Ahf3gPiU6Gd2WqauxZs/Aw15AfYdK93Gx6+s//8u342qfSXrx7PywH0ATwYEuiPO3Js82M1n4q5lr3u61AdVQZbV3nZ+vdyEc2vQB84zp58KYAvCVXY7/X59ByS7VbVkoiHRxrP6zMi4GCbJxpkSx2Pf/qWeV1PaL+f38Of/gI9uOrU9+nExhoFI/AvT52GpqPq7N25DWTlVFPrsMu2/P1LYRq0Ji6W3NQPEFkpfNRUQpMlHqr5/egksPFvIrXSXmfc3ZRgfBQDHPhink33+ekAMOsded3MnC2BT4U/fkWtLZ8LYxYXf3yTXLd4vQL33QIkcTp+HO1LtTbGxYXPkJuxiZJGn9jH6OHkanDTD0dv0YecAyPX7LHXqmq8Cntl/dNTCWw9ypYAuwg27HalRlxq3rLxReiqzRmJ0+MKGP9++fBWE4/cqvAO5lrnUsiY9EJSs8c6l2hlCM9xblE9LcSYPjslkovvfk9Vt5Y8TtyOED2OvrNdBJ4xdgPe8V/8PMW4yJhc7XxQ+UNORPsoxawf3o1sKbcFgQxW+tR4CpG35234vxrmo3xzYVPpGjV19aMz8zPn8obHcDCMR8D8e1H/1QuoKrmEzbu3iuDzeNCoD8VYX7Sb5MNH5H0JhNdPtUjhSYNmontIOpzeYBR+5AK39aInuWo3fcqRIEfmB061szYQr/BcwGXSgi3jCbJp8sybLBgIUtfh72D6ntgH7pN9hZ0J2xljx7MEwzY60lMy/7Ll96puMntoNYKaVbFV5JYZPr10Refrfao6UX/e4JA3NnpAqcpoV/ASjJvWoydHq73xz55X4nYYC5dpmNPPO4VOF1nYrKwuHhN/aaC6t0OMbyYEpM0eDvy4xoeG5QvFbPalCEZgDmkqn6xhjPp4hEv5sKlJnlO28XcX3kSBp/bpNcXDUmIiXc6ltbUklYwhTYjg1x0P9NKVs75wBy7/p/+Z8TcDLLPqGYiz8iKHA/kMS6BXBM6OAckocI+KuKfyI8OdVWCFRu+BP05T/hef0XF9L+Avv4FLC1Ya3K5zTDd96R8+8tR1YPP1QhB0hoDHblAt4E/vgF0RPOiptb1s8aiqyH/xXrGuAmO7+X2UZj4QqeK+lGyhH+3yt3/UbgGNhzzPmz//oa8Njyw7tHOh0u1U+scnmDpI0Z8eT/UHz+kss8Wd1J/My5++xJbGc0ZASsPEycn04n/1IWblmJ5Ds9J/xv28k9lycannHb7e+hAuEUiD3iTrtQnZBL+zIFkyUzDa8BXNQsGSL+jq0vzWywOh2XWFQYQa7NjEA6zarQnsss5AR5spFQf30qaXF9M2mBp6602dN33lyXDg6arHitVP4FKaHJq/gZPNb5w0QDMC8FcvAFzw/I7wjvYvstv4L3vZXAjTytKxyr+7YdNvODhPHxEtLqkGtrwvEpxLE/+rjy75unCQLTeXeoGR6UsikRzk3x1P1Z4IHm24KoH92/xRbX5M1fqnt8PhcyIyrL9gjU5fB4bAKfEfvp52D1yAvS6IdKv36MsofHpZ29s8PUXNw9v4/Ef+ZbcftVjaV6x+kgQQe34h0XnvAU2ywALZ99pjNEQ3xlai1BDO0KbO0+2ydosHsh2XZ/yYHjxbz/t4hkIGAFZf0TNmShnPUL4lBs5v3Hbr7AFrcFsvbKQn32M/5QTB8+3qqDR/ECyi9HChv9d7qm94rtviFfy8Pi90SIQlG61m8uWtPoi2aeeM/D1vLcme6lefsFGHEREF67mj9rMrvaWJDv0f3kPPPVDi9TmlBag/j4g+rZ0fk7pOd+DHA0xPiTZloxHKKSxER6KW7s3VKq73BC7JaGPfS0i2JqMLpe37kx3sXtWy1Wvh9WIqWFceAlj99TtD/qQT7HqtCjZ9V4P5UXhi/Gq+A52vu1Qy5ZdDPTm+6rSM0xky9vP/1Vuney30UKCGQDd8ma11HUH4FN0rgblnDSwzX83/65YC4X+3FHjxw8GnszgPXcVdaljr1xv1+OePUcWrHFm5piENTpMHVooxgj5+vOhDUtdqum9dw3305Mho7L1sci/lBapbTWzvHVt9adppBVNSOkTeusioe8p2EF4aA3Gpu3gklm8CHBu5pmp9GFnL0V6B0cVwaTzsRDY5vgOhO+YxDmWlG4guFRasfrcdkn2Pi9tvklnwJZ4lItdWCdZj2qWSc99V+PRCbsw/qd9CYjYZkfxIzkZ+RxAYv7c7xuZJ1VepUlYYLZRS9eN8K3rFtQuOT/LA9k13PMF4VQa862+B8PPxWc2exCRonZoztohvsDUPlBWSd8OoFxqBt+y/uAfF7Ubw6ZYRnaHuJsF+kT7YEg85WyBvOVLJz4DiZgjjxdbfNQxBs2Dscw+vr25lIqf0qVOzhA1YPfN4g3kkifj0zDi9bX73EEoqfaOVSW9vwXmQ/K0XVlLzoLfGSfLhl6chtqT92xvtnXcReW+YsLp/3DyKij6B8eRy2EsOXTZ3nHWB95OlYfwINH0B7zWCdBEOVInNRe+6W+TCw/1yoPf2srJxN6UCpMZcU//57cDCVdgF0Y8P0OdOrmAmZ4jgVXp52NlZJOuP6TuVmw5CihC/H9ZPlBBRyjuZap/vL544XkHQzdIEa/k7ivlpNRP5E/gJdfaiUbGDJDXQgOqVbu/ncaRPLUnezzURLbGvGA2vRGK3ZkCK+jpWY78sSNYczkSSN++rITgooVR6jxm7p+rmLb/TYAGk+g5V1yvwuuajQDg0LiLCcn3FLLb9GY6imSJ5wEDvnrdmhboFY3r2P5P+8CxhB5XuFGPHkJZsBb8wlw/FJyR7Q83ZmsdTA1WSS9S8plU87uFLgS+aJWRxjXpge19soXgQ9hj7p5++7IteEB2Tm8iRjyOPKUQuxbzpINaPrQpWzjvMkCu+KXL7IfImFKi+rP7Ob2r37zzu7uebAA9WBLFqsi/b7D+B31CKyPA4w2FKXEkD3EzP20WSJ33xPdTCfTQtRJ7iOZ77R3yRUm9UMMpEqZr4ctX29uk+UnV69NlYfuwLWITbD2s+CXWGPpIB3W8oETKoLpg8qCVyksoxVh6p6bFni3cwrO5PqmnOM1uOVw/BJ3NkdFz503Ag6uMDLOdz28aBKAN/TY8lZC15E2AaP+8ri1cBxhexRJ/teYsoKAX0u7XHOEu9atmrcgR2nHLGl268VIs9eC04ieEH3wLDAfPJlQpwLeseK85rV9FsOkNZvAyIostcxqxbfwKUuIuySdp6PHsSOMIdb/nYXrum+ve+37q7UteM7jELVI6DvOyfqf1L3mxePhIE7iGZqZ28w2pVh4cEzUORoR2NuoGVV+4CX02zUtOYs4E5NdpBz/MY1R87pAviJmEPbGFY3e01IPhTlMo/Q3zgk6RG1ZSVSgEeYuMiedf2+jrYvSPdxO6C0/NQZktLZk0W8M3GGpNUnYsHuYdNaWTUrmzd47NsnuFxz2GsFDcekG9gEbikN4y11e5ZJ7V3A45PW8Mq11NvTiNXgsbdvyMh/pz15dckPdx9h4IGZh7oiwe1VM6e3zM1SXr1qA1HDh7zvsDu5l9s4D6pVA7HBw6O9VVfDGHN5Zuw88nhFR6GJcHqCMPdWaS4LhpAkNLcjgd2x1SRh6yar9foAgdDSbD1/jx18njlKXzazpewNQ4Yj69tAy7scyc0OhJ9PZ+nTZLaWgYmYOnzp1YleKCNRxZ0rTL605oUDM+jSJ0kVmJe+J5GkEPkYKu6xtkawKIG0tnB1MB1kc0veiQgRJ8CcYb7zVj8+vRy82EVPVntAJboJM6wIuUdB0K5Z5RfMwTN6+1L2F06gqkT6xL+Fnkk3S46x33w8H0AkP+mT20yAZd/ixXKrxhQ2yAoW+7ET4FfcAG11sON9a0ENLimZk/2fiXFS309S7BMuYJmt0cJlvo4RsCOWkj1QtqxhdyjBH6AeESzeCq85ebs82PwGirCjWo7zPb3W0Ac2w+MpArF8/slIRh4xxLnB+ESs99h4WTxRBasNn3lLeP1xcExRm/qVoOvC+GXRbCMOxNreqgO808uFRmPaUutuQ+y+XhyELx8ihwbsTvorCSpD8ErzGnQxH1GF75vwTW5XpH8wDibZt1AsNo3ETafJoh/HPFKCNego+50Sqsu3AbT3N0Jk74NTmDuF9GHDpgarEnSz2Pdj11Ac6YtPkHTBms26rn8aD+Y6v42azUlcw58jtrosPnvHJTKEeJz4VMPKXc2nxVdgt7j02DTP5ps5neNL6MnWxD/Db7VetXfLgyodca+/YyHtZA1Hxak1vB2kwSbqVhEENiqgx91JumL8q4VGV1kD/vB+hvGl3AtwT7UOupkXsaWc8sVcM1OX2zM0S8eQwAd6dAVE5LCU8tY8ZU4+LjnFxwfW5VxZnSuIXtlZ6weQcCWpyeFMFomSpUpsLMFNOoO/sV7n7PjmDw0wgHe6yZqXQwCiGXMFjx6TYWdoybG2xSEI6zI5479yzpVpPtcnX/rbVh3Alb6dkKYCPKANed5jqfvc4ngq6lXcjAIiucLd9XgJbw12D0UJFuL8tJCr37qiCtfX4/pvyKVNI574pvblDE93/UIauPPoYbbTsN3qE4+uEe7mkBR6qrxD58p772EvUO/ZCSWCwFu/kbNYZgA0ZkYwbZuPMSXg6PP1+mI4ELs6N/7cJp9aMFmz9QlMGSshacSdmy9YGe0tGqKE3kHl9pfcED4H9v85yjHEUqw+fd5aeQeYcKFFb3vt1OC5LlHYK1Sifr2k1ULOOUpiGdxkxREYWiv0+xDxbhcaeAmMiPn3oWgHKQHGthjHdg98Ur45acQsV8O42mwtlOIpvEmMx1oNRa/x03qW00hTw/rGX0+4xzsoa5Qe+iUQej1qICJNu3RqD6Kauy3Fk9hlEfqVJodC2dunwMrPz+wU2m/bCDmG0EHTwjtL1CPV2HxCQj7UqABW47VWJFdKqXJuce2IH3jzZ6do1wLDj45o6rPT3eYgd1xVxoOp1VvZqdPwZ8/qhIxvNlAqgRvs0DI0codwP2+mivbSmVRk0+Bvvrh+N9++Z8QgF/lmh/43VUCqXKtylh5Hts/e0ZA3H+z2TitSN7wMhICo2WzHE4hvIK3hf/ifUvFWyidxOiD9SS/DX33ebp/+Jjcg3AAs8wOLViT4ol2fit4s1o+NwmIx9isTnM8nn6lJrN2fGO7et9iJlFvBryMzhi31KyIkWUJNAJgY+dXG4wV78H9w0/Y+jWrtyjP/Ab4PXgQ0DS3mF2q9QLMVp3QUjbIW0k+NzAbdgY9YR7ES25/mn/+cGLZC1BB6I//+In3ZJLebu8L/fQKsa526A8v3cDVaCKqquc2Xvwf50M9URCNfSnWWcSOAnxaVo+8De+sxtGB8ILDnsw252fLH56TeUmnRnDnwNjDL4HFO/aona84pjW6IrjUaKF6ueP0WrkLLmS/viGzeav1kWPLKM/xbqJ/+X8OL5Eh1/vrRJ3DIsWLV40f6E1xh/ELnrzDqJMeXoPkSO/xfgXznGY1UC/1AxvfjN/Wr3JkzRFMsvwMIVvCxzGEgblo6LjFu1HixJ20j+iCVu7LMuqL1wRq14wi4aG8qqnKdkQK3yTEf3h+AadLApmDjxjVMs/ag9IKAE3+i2ab/Wy3XkEAODtDh/dlZG09vkNg0sCi51QB8eDUCMI48hOM90rofaxWyyFqdAubyckdZliDHN6Omk3YfoHeCGtQQLDmiGo00Qf+4A/cv/1f7xdtGJ/WxYDvN1KxtzQwJpqAEulRqzusfG8Z6znvsEIlsRPElXMFZu0xj8AfXyvVu/JcraR6/svHf/zLI07iQbDa6XZqotc97ss7PTCzXMexGDPWru7VkLfvi7f4HnODIufQtxoRG19Vq9jTkBtwSPX9H59ly0MYZnDM2wLf3VXf+EZSQFfUZbRXjlo8Bz2fAtseX3Q72VytYChduPvsbtirHeIxGj4JGJt9TW2S2Iz7W+8Du2IkxceO/eEReLFyg/raW2OHjf8A9lwN7B5ooK/iVqLxILljj5BymNA5lKT5qrWkDNRcZ0EaETj/ppmALd+u70knkN+LD8QJM65YIic5TMvP/g9PVLzyHjX4ly/dZGhidvHyAvIO/GJ7w4vz7sLt4PlTNaiHMAfTL5BmmETOhMPTUR1mSwQ93CtfgOSlxvoq3887KNecQ/2HPsbjnMY1JHUM6MkS3YHZjzSH6bX5oN+p3+vjyV1z8HLrlMzb+y+Px86Hv2+i0ZuiTGxiF3cH4x2iWLcnPRO458zB+XlA1H7qyKPyb2xhd+4LauwrD/CeErny970LsJlUT7YMxVJCUZE8aorKj5H35SuAfXLASKxenTcu3X2GbfUJyZi9uaG9m5kgWvuni68uNw+rM3ccVEkhUT3GDVveb2eUNr5OVeAcMrpEYQiCQrthxVJvOpWryw7WWd3TINO+FeE/zgdqWRVg/TrRuA0vqQUe6GSgaxCJXneJzg78w3/m08wyYq27HXxgf0+ECTQes6ayl3EuS1Qr17O32jEM4V1wrziISsdjTDuv8qTtIXXG5TKwdecqoG8Vhabw3LN18VdLMpCsYec8BdWg/27JX36mp4Msx+QThUQO1eBHtd/7qNfXaUbyq7g+kRyVrc5+B1EAf3+vys2ejSziCljio4r2C+Q3vH+SgEmxRb3meqjonVsMWfzSExKTVxWvdTpbf/GaWuODVMtp9yphfAHl/5F2LkvLwkgYviAXIgoJSwRETiYIfIo7goqAyMkEkqufwn+Ws5u1ZUGRTud9n07SlJP3K+5mv6rBX3cLFz7wHNrZPmTqMp/prDVr8C2qPwnMcvJZTnUq5vQ1Jh12WrvBxmHtiLmMnwkY/5SOHRc9wa45CX76gSr5ZJh890IBlMPUZNnrZAIuHaLVv/VXb6FTCfQoM7h9FCEz0KshkyRm+tPjbOFR/vfTpC2o1nVEX/I2HT7mWor+/d9b5gNvPKUGx14NmX9xSrOrb10DfzzpWL1kwkOjUFVWcIitHNnxt42MHNz6pfHBTqqBWPSE9vOHcRGXJvMmWYeFTyaMtdNNTAAWQOm/+UOB4IQ+LVodN0r1T/+oWE+pRFFk0sFXZCj6K13GXxr+xcvPb5vo68b8ZjQSJMqno7tl/Z3dy+YB1zfFwxFI1HjCIufg4WdnqjXfe8Wp7uvgBayS2XE5+8w/iwQG5+qCdS9KxL94PhXsiYS/MnyuPBQLKLGxx16vF+Zs+g5VjynP0Pt+AIQXgZ3Dcso8bPyB5yD0NqVwKWzhg3Vp48nYZzKUumqLtG1bm8KRdR1+9Uii8stxxeSccA0Wvokq6Wqa0rcxUmgO4sz2C//p1vtNBA9W2GMdVWKYjPodgJVknNk+/8Nk+ulVr0k2P17i8w+Pe7jwHObWJDN59gEc0rKnbG/prOJtnEL409PJst5OhfoNlE2sGFT2/l4DT7c8+ukfKi96f6rac62dnl3Fjp3sxZN9t201ri+Iyv3fjczP9HWBc5ZgZnTvE6HbyNCh220kpFy1w0BP8NEAb1W77Lz4ZUH3t0JrxOZBV3+eqGY/3RkQnNdvuhqlPZnhJOeQtjzAgftyxChdLe/3Piy3lhLz481lqIPYpdPuMZqvIlcMsPhFtDPkfLmLT7Xh3CgK3SjDDXzC4fyAaBUtWzzOY9VTm8lwboDC3FU0E0p104DVLlUYPh+WxiTmFMHosz3hE1BK8D02Av74LXPhk/isWqcriHYeZI7rT/6Qb5QEwvAgML4/CkHnK62B1L22eMkHAwPZpobR873DJrA9fwvT4gGP58+ebtLqDmbvmciQS48Ns4h2jLcSNYtf/KN1ICn+6NJAguQtN8w+seWWzfC73BpFJrQqEaqmn9//x5eH0wkoFyNr/z3vESIDbO1v0cLWwzqSHFL/+I4Hs6a///Sa6O3Wy+Edaz4z8++G0MDTDS0Y75z57t8bfMuusGAkBzpGbVVWAqZFDpmih/hyYhmY/XQywOLHaIvVqzmhY2WAtf4BzD+ew4H9/NPCxxkm2TDQ3/NCUM/YD62vKe76dwdSeT0gGIaTSa+BXqiGGSsMYa0SC69u4I8/IfipKk4cxYa/9QUs+YgjdZ9ry/dmOIFVPDPS27Dh6IzWyVAP05NNoxLod/J7fjUlZ6NX1zfgIcUiZTwVK2kH7bqkzIpJJ/o0TBE8oXeL9e+j8fmhUjlYX5HBEPK+A2UYB/AEBvDjS0IEfNfAa7490M/4nocR7jsb/oHKxt5PH6E72YFlfUcFd3cmF7eXp+4O9wP2RnaMhfuaZdg8jSet1M1AePgG4Y+P0PVBEuasW6sHXPzlwp+9im8jz4BtXftou+jn0XnqLQwlkuJD78rxT1+AoFhZeOE34Bc/qhZPJxxHq9afNdolIEpsD+8znZD/5tdDOdFurKyY03zXQBoWO7bwYp/rXtLCYyf/UfWZnQjfKrWlfSxwQ/K5sQl387gFT/O2Rx94/DM3c3vzwKLHmbmec5P3ZvaA8i3o/vH4zSM599rjk3VILPn7nz+y5b5GlI0QLHqqUQ1JvrMjNg1zW32fKgwdoiOAzvJAHfC4/OJ38T+U8BV59RAg9GI//jS7YdhqxpF7i56DYP404dI4IyZofpSp+KdPwdF0mJHdNZ8aEdRBvtEZnf5cO54e/CRD9wGuiAbtxZ9Tnluw75lDZyLOAz/NvQ29BK3xXr0fyJyp4gHlPqpxcAg9vyfObGsXSrcM+ztnacTysaGlXE4/XgD49bIxoKPaN+ahQ1yJ58QucB9cLXbILon/7bNOAl9yCvFhPPmVsENgw/abzixwXy2YC2+7+tWnFj68F9N747Q/voBm9f4m4m88U/UsPi+q5vBtimj1TmCvX1c/vQime+W2cPFbLGKdEbMsSEaA1skf2+fWVP2LJwczRCczQkAMVyiBexcRhm+fTcxqs6BqqYbDP17JjvN0AdbLUlhIPrSirzlOYW9JGN+J8R6mbQUQuGvmg2qRSggn+K4CYvQbKmdOJehxa/cQaBqkXHrHZKsKksOlHobK40sn/KriDFwY58yvtswfgblaGsfEAxKL3hQ352D8188clYbMYXG3gB+OOkNHYhPeuesQTiPaM/wcvHguu9aGt+sjYTi/wGGAQJXg86/YstNm8wXCcmIKsRx7zL/cdMH3aEzU7/vA2UE5NxVf6ktQe54B2y/xNK/fxx7e06BAiVQ15lT2lKq0PoNfvSamy/gDY7NLWdwVc8WeRvHQRHg/MUubNgMnVpeqC3/98QMwN+FxB++DViE1unBCb3C/0tYCZcyZ2sIXK6dbQRNPClL1SzN8f7z6GPWQioN6MqVBdnaQ+HeCT35h+BvDVgw1zdYxEk6XkB+fgVMwx2g3tbo/+9DLoH7QSnb0g8swFZKeqqfJOdH1og835/3Cf09Biv0tmHzhnapW829F8+OrhJ8SWEK/fppYv16wEBusy+DHZz1nZy31IxcBbc1r5hss9jlS3RwGJx5RTsNnPOnncwKYxeufHvdnN0xbJSigha/V0TTpob824PrXjcx4JG215HOqSUSNmHE1q4XfzkiTGpmxX/2v8565rIarWEEa9PZirshqhNpq7LDFJncQhy6EYP+JX7R8L/1awLbytCWfYn1mlpjcT6vD6u/kYG/WG3/EbRFq6RGF2NaHp1j4D//xMsS1lFXv936JyYW34Ml9gGkNnwao/vDiD+mD/OMfch/WFKRbl7BLDCTtfRt32LnO5W++9WDxz8zMjSr+5Ve4A9cVlSBa+eOlQDKkt+sDKa99Ab6uqAy41BeZf3hkZOGzMjhPuxvbL/N/aqxgB9wcYRb4lMdUTq4OXOYvVf1LQLimjhf4BjJF89AIMT/T7gJY+vpgf3M/gqX+Uf/4BFoR1A6CJNCGf9L1izTVDgaR+MkDhq8xZAlSxkXveTpUiPzBwVZOyMyaR/NvfQxamQ78ngcQLuNLldoDZD42YPV/bSnY/u8tBboaHqjK6z7+bnevVHVVBtjx0Lgmd9XQ0uRNLjNjJzaCVha6wL8dxczyolXcNYoSQu4fEMNsow/f++P6ANnJf1JxmCVzRserB75r+cyCVfOu3gY5eRCdtRjJ8t9bULZbdiErqEc7Iy+GYf2ELZzU3cxCd/scxiEdW1gTacD66E+AeTwzoIlti3KzogOzu0uiGs/1DeuPjzPM84rkUFnPIzPnuzBnGn8d+NLklE5yWJAp25gh3KV7lW72sIxFV2QUPo/VkTmUdjGTdH+EqT2WmLDsBUT0SVqgXesQWx+0H6YtSBzou3GGvQvbxSzLrxEs5XvBTklZxrM3PEpo4NOEveV7im2vGlCncU/XSdCZgr6CEuSXrGZedQzEtLqfVVhfSYN9neZkel1dHRbt80SlU3TwN0d/6uEnKWrsPV8wppPPLMCM2wVbOTMGPnZGrVnP6IWN8owJfyhch7goOVrp6EVEcugNkEUJwoGFv7HY5UEIjm8A0WpQdV+eOymF43qtIe4Z3+UU4LyC5yGVWKxsjtV83WgyKF9jxM729+pP3Arkf7/rZJ+alN3jFAZhXKNN7YKhu5bTSnPl8YIvxTo2p+obPGA2hotk8qRhNpUsBxU4Guxgl8EvvmztVsgQB+sAx5ODqhSm19xn92C6VvN4DBzg5vpE527fktn+DhFoT+7AgtOHmFO28UOghxcXu1ljVNukJwjO6yLG2fDcx/RVFym8E91m0fZj+HNwsVSojlsFH4dbNIh2V+7g1PsOs6bllKvLUQB9oem0Ll9P0Oq3lgNRbvdobK6WL1ZzAWGKdxsqAlkzBUrkAtpbNGP3NQzV/LGzC8QOFszYfkqzT9e1BZ9MPuDlNmsiylvFwfww9/i4nY/mZLARQaSGZ7z/OJGYDXLwwFYCPfa5ohK6efkTxBzcqPpRJsFGxkMNjrueuQKLoelCp4HpnDo409cXk0nyCwH/2ufs5G4dIMzbikO+VwH2hCf54ukFSCVlOTA8Em+YKpnu4K06Vcxg+Dv0c3FerXf3oGXh5xYMPHzvIjiNL0aZnTcVf5p5sSWhZzGbVsDnXajX2n0qV0h5ctmnkhJDSPbCoGd+k32ep9SDH9st2UF5UjJFNE/gCT4Idu/PM9nUJZZBvjkwCtcBI0LRtRJ49C2hu8JKc3Y1TwL3y3uPD3tYEloMQQSi9L7H+/3LHPiwz2TwdnY7nGWAV0s8RFCVyHJvud2LOTB1XfNk32O64mKze32IA8VGO7Ngbo9EUsYmhfrnucK6EQRCknf3Bg5764KPt6WXxdfYBlDlRsuMbxlVs1GzGjhHgrBvUkNs7k13gadb4mOM/gMAAP//JF3d1qogEH0gLzQzwEsToxQV0zK7Ky3LsvxF4enP6jtvwIKZvfcsZvZsz8n8ZZpArMgefNO5T/ofX/7yPWhjp+K7PgeQWMp+NFRjDcUpPAOEmeOw+K54yeSzYwjLyaq4T3cQdsV28/2tQun/zgOnA1ik6BvQjjEduJVUmzuBtx1J+K5+Mjr1+ozMZbnLOVkeVdqA3dpGCr25ozjfaSJeZpshU99fWRBiTJfnLrCRoqZ2iA4EJMI6XjVIjsOdBWYIKi7C1Q219zcOxbTew58hsIG64+I13mIll2OhwxwcWnAejcfUYf7LJzP/eL8vc7frho223aHDdnK53x+vUIQh0f7whztj0lZj2nxb4J82EVsvVNJpvb5CsFC8dDSX0VPOpVodAHk5D+aoRYVbcnZCdAythtu/+xK9c84QUayC0aAHnTy0iY++5x3hsW06ctnp6Q6J+PtiNzKUV2nluISPweGc2EtEJxiIFEHBNqEpW3HlpjuHZs3gmpMz8KgepFFvpmFAOHn2Ie2dyPBgU3oR2z7XDpzF+uIg4A7NuPx7n9L72uhxGwaOBc7hsA8OsXnpY4/7wXpOBvypPfSy22zUmsGCwqBihzouyxDBWpECj4WO9sN85ekqPHRy5d0VNFAl4zYkoJrZ+5UjfV2boZhHH/bG+VEiXOA6XN6fm27EL3hBnuuYzGYQ42mzG2PoWLAM9/tsqgTrDztzRaEMlL5sqVigS4k+Rb9k/o26Uptj8ULdy6/5ev2oullRsxRcQNCPFTZuVd9MSFt906P6w5MDnuuj5aAO30xGzZeE0kligLzxo3E7ywBtzbnwkOakCdvcKJbicuQveHva0Sjv2xqKgwKiVTsomx8/ulhsl+cSXmV0+DlBe918Wix0tL0JMqoN6q6jQizH/MNX12prPBSr2kdP95qMjw6kUg7C0JGXs2A0GyqT/si+EfTVLGRXdWlU/YvuNfNy6BcjMu9awsHd+x+PzCVm+yupzk/0Vb4mC4pDncyD9Y3g1rzvWRA3PhSR9yjN9HE6Mbvo3t1whGsPxKZqcHI+WMkcsIcF285Vxok76rVViEXQ6dweQwPbbSJT69ajSwF3jOr3Fg6j5/XoUYGcbVo7gpKWQw8leRbhkvixHDjMDbhZWgdONZ9Qmd+PGkrt1ud2sE3lBHivoLi0T7+p8xDP+NDE8BdfbJt4M+6MuNHgH147fc07WaaDj25eDsI52dBuMlWnBD59HjnVBJNThGtrdYq1JtSMAlX9KVEvq2Flv8PlbOyl3NQngebo3HAK96Gcto3w0DkYO07NVwLn9jgDlOk0HUPV/CR/+sas3+cVi+T8+NmxbAAK1pPO7XeaXeeLyJ5wUXAcgtsD0w5FR4KokW04yWQmZ/v1eSHUlphT0L0xd71nBMUR03AW5xTPWuPqKPJu42g2s4nF6ra0TJe7FtuCiFynSdl+kRJ/VE5dMkGJyQxMM/gmnEb0Z2zsLC9oyCIUCgYrzKvlykFbLVIYedMhEcuXd0Dgqx/4Vs1XkPeH7onsw+XO/vTvNI3r1Ny/3rvw4PZaJfEiKEFm74vR4ADJP/5CY9VTzvaDC/XHaP9KZuCGvw4lzM1ccRD2WjV8AFrK6bZ95Mg9fbqw954CD/XRIshGiRm+NsSTMr0OOby88xtbH5QHllOciv/6YduQQbbXTRPDcDep//WHcDGo0fyuT9y/EguKWJwjpKP4ydan/RtOGV4RoI5C555Lp6sUZkDQfX93+E7+dtVneCbIZxUIiwJEVJ6ZEkOfHD8cu+Z4nQZXAdDl1OJ+9HnA6QFFiIbwoDK8RDGWk53lSAT3BfMtLCmf4puAuvztrsu0J50K5wn++H4ErVC7KQuSJ7otvHL8gKhO5sq81WhRbjruAG/ZdeDu6ci19WI0Xsy79mZkAJQs7ZJ7TwtWkkDvi/RmF7OjN9bJ+DHuBM2ONobIewo6kx1wVr6d2qH245PxyuiI+tCg3LPJJ5mvu9xGl9Mm/53PxtrBOemo86KGBVsluU6hxXOUVoMywuTNpJR7w0LjoxmY837U3bQnrxpZ5OKPy2jZJ41VRrkZt8sv97dNlYj3M/kiERQLvgk+Rzr/6i30x5f4rMFE7HJbmD+9ya1s/E21JeoFOdltwQlWhkRIvbj86dEff+VUlMh4wXz+tRTj1Vb2v/iBqzV5cnuty45v6vuEjlX14LvF2ZZ/eh5l1ZqM7aJY0XlxyQma+wzzNbtDOvfm44vG3riNb2WTYa0a/Bx5eRCwCOgtnXfHq/MPAAD//6RdSdOyPLP+QSxkkoQl82yCoKg7UERBRIYEyK8/xf28y293llZZDqS7r6GhG47HhCEINCHs8PxyABvNE2F22KfrqR7ecBFPGt2uR70awyWBj4YzcbTtCWWKcmwgvXED1r67LGWtMGbAYG5P2rTowYymd7V3OoFiT7i9wbRnpbOf1mhPsy1flrU1Y9XY7zO0bvg+7lp4AryMImwxmwzs8PCuYMNfrO/LnTne2/NbLWD5pY7WSMVK4jWHW/5jN50VMIalwcH5sj0d0hXWsIYcRWA09gsRd1M6jJ1vW1BX7m9s/+7fkLnv9Q7n+nKnvnF5hW9b4UR4IPYNm/dUqcdeecYAHtgOR4iMxZxJV0Px+leJ0+XBwv4Pv9rx8CGdagn13PcxhH/1UZvVE1t//DKD/YsPsYfSw7AOlNwhYvcPvreXJmQRBwx4DR8zdRLvmc7lha5//JXq7/fPHF3b42Bd1xMOPm0UClgDCfw5UUqRhl4pc35lBngSY7rx7z/8E+GrpBNZN77APGGXgYtWGvhQVjc2abZOlOfPuGHXekqs/9PrxifwsKvSkv2C4hpBzVsZEv2sSCdFPHVwqwfY6iclpGZ8z0AXMAtdPNtLhe/yzUEnlD2Sb83M1mQ9JvDygXus7YwmpVBAMcDfrKTeaY3AP/0asp2Gg/zcgT7/pgp0OOOBwzWN62WLDyVU5pG8cQ4GOnhBBQ6nvUNjIxrZZJYhAdVaBETiL4u58Z033Oo12V2vdTF9F3r9i2fqrYpZr3Or8oo/rjfEB0lZLGI6R2CvW+9NfxgFPxZ1BLPX+ULNsP8Vq2rqb/V8gS0RXPIcGHNoA6JdjqijD169MCvuQOflD7S+jzhlaWQrUN7XET6c3kYh9uNXhjdSnrCTCHrIV/SGFP05Q8Jz2REQttuJiimcPhQRhtj056doAzBx9Pho5lg9RgUk6GXRqL480jG+XhXon7GF9oeuKdbsJKww1pMCa2n2KSZuF5/gxXp8EW1MMZw5uetlLrz7RLkaVjjzA2zhEP1iwmlIT8cx0WZgYDyj3Xlvhfy1eyfqlq/UCLrLIF3h/gTgYdlR/bFNtUC/cwsendph1Cm3mjlLF/35ITTMLGxOVXNvwCqsPBHKsGZsmUcHNiVOcPgB0Jy2+IADXSqMNn2x0nTmILlM81YvhXD64w/bedDbaZqKsRyTDpoTw2RRQg10D2SfgJyLOtV3F75YtXB/hfW5DamDfg5YcrRTlMcjnw780/im0/A8nfYmDI7Yq8w4XIq6n+F4tZ7Y3eJlw+MSKgABfHhVWr0ohS3Dt4Y1NE2XaRiFwOfgPbs2W75Ow4ymvvrHV8xIfIRLbp9LaOu2itj2el1YxsM//X6gVleTNv0o0J5Rh1bOeaVThpADf7n6og4W8oIyh7awvEsv6sVRHVJjRRAOT1Oi/jMai1myxE7Z9DY1PzZXj2SbovQXX6GjfwG7vvpWWctDiXuTvYt/9UFkFsYPq1FT0gZhCRqju+KrNLpbvX4mf+eJ7ePBroXpc7zDh1kuNPy9xpomDwWBVy3fsb7pe5IbPYFnY5GRwNlySELBmmESuDusKWJgzommETX6lAl25K4H7JizDm71HB+Ob1BP71looKq6LpGGW1Kv9XntoJmgM/YI8dN5i2ewnQeCUeEOC+etPFyTvkHKLOFiWQP4Fje+RbWjWQ0r+p0bKAQtw2ZCk2I0f1oGd4tf4r/8oMGaGOpTZV/s7NwfW0p09NS6P9/In34aF6mewSURfzhIxV+9eKXwVm7eS6VP3S9Cehb5CIjvU4sj9XlKGWYmD6ZakOhhUaX0p4/7O2wIBOTPf1uf5ukNv5GKqJUuTTgdM5FA9B4hPY0trud3f5ChjegZ6y7vpcL5qVyVP3zrpq8cztqxlBXI3zX62PQ6e/DeqHTm7krg7fYBDM12DJPA3lFUZEvxj5+O2xMUMP6+GLuY52R71r1EHBeP6Xjmj+WfnqKmKZeDZDp7WS1u2QWVh9VPRf+pZzBtE+mfX8eKJfCUK5vpHx8uRu1WrQA51yu9zy/RnB5zOO/LdEDkneRGKmznCQ76KhKAb0I9660+A/VVHei2DZP1IfdFf34r9i4DKMbdXK5g82/Jsvk5ooN/K/Q/cKKuv5rpahYx949vR8h718tfPOaSZBN26lxARHwpoVC5A/X7B607uxYM+HtXEhI3/2Fhp5ID/Ws3/PH1YmrPngPnhZQ4lK9aIeaPpYRaMs7YtLdFTEuitFC+mgqSL0OR/vFrkMnKSHYWHerJSU6VstUTAgb+WEiJUZfgT7+ZglnXW73mAbeMPeL8FofgMXAiCNUw/dPXYP720ggr9IqxN+koXbQrakBeHWeKh5+TTrSLNXXj40Q6m84g/ulnTT58yT4FvjmdZKMBz+PDwnqZEcbSal6BXzcOvkVnGZA8OgTglQYMCcJeZcwP3gk0q1Ai3OQwQCxTm/eadSFUnw7vYfpJzVuJTuMP401fs70mVNC/GzN2EZcxNhvxHTK4qltLok5bN6lO//z4Yol26agdS0VpuhBTHx4Sk1RYrWBsDgYNH/7VXCsndUD3dTtsZuc3WBj9jPD4MFfCpKxLV3nb9e5pnzfWe2Km4lZ//vwoeng7fUHK/WrA94sk+O/1zA40+dcv6Da+tp0vBJ8wfVJHAbhe7H4c93MMBaxfH/th/fMLrZM5I7LF/zoEQgzPi1zj8F6TLb6u3D//bquv5ub3ISir8EjAEj2LydznJZSy6ElD6xSxzT8JoKf+CDlx2cJW9GQBbMb2ROTDZAIpOHT8XhgdG6OXEA9rL8mZkhfVCzvcSwtX+asp0P3sIfbJzwfL/ciVoINxhsMBucP8QHb2F99I3E2snuXb660i2MtoLQcOkIonI2yV5osjfMpC1lAa/fMbg+frXqyR/hHhqQQc4QalMoVjJo7QqrQQY/7bgL9+C5BV7kjEvGKAr70igYWDXBrpMzKbMMp68Ie/ery2YJS5ZIQHK3xQ5GhcvdT9kQBhtGzUZP0KxmdOMuDyCYf+/Kxpf3VP4M//QU8IzKkSNVn9HRe0+dEdoJdoNwLlmOyodboQcyqZcYKbn0qk6PiuZw/uNHiT8yM2viZLqdGNb7g78QoOsPUZWGVWJzWLP2TDu3LoNj8O2vxOxNrV+w0MOEoHRe/6Q3/+0nzRlDc0obfp41Ea6DkJNXD7xDq+s7ORjtfuHQM1DcO/elj392sbwOT4O2NDUFxT6rlKA+4F5jj61tJABj0RoV69W2qe0XEgwio7wNiDjOLbFdaEPoorNCUa/etnre0nQfCwbFPULjEcNn83gmM65NiORy6cGlEZ//kLjmDkxfz43R3451db4Q3Xyym95TB5xhN1hfJdsPr+PsGtf0Dt3901BfPbekChnUadVvaKvnq9eAXsjYWajzxk6+m4i2ANbIO0m385D4xdt0kdV9Q7iT4IR3Mv/uOH7kPoayZmOPjrj6Cf5ZeDGN44DSStaGJ8cLVw/pQlAc83mv71f5ZBqR24f4khDhZOq4VHmLTqhsc4YmejYPtzd93f5Otx06+HQvgRw1KD8NkQwfUEtuRghZA51QPbl7EZZvOwb/78GrQi1Jmrfk2uUGjBhazTe63nYL8tTh4Ptz+/uO5Pxx2CXPLZITX5jexPf4Nr3G+LV9PF7JtOqqCdKhbW32/fFE1/7OEzHy7URopWr8uPz//xl8uUeBs+c+Svv4hWzZfrOZW4GYSX7o5DYa+HVOmmBOLn4tHs6TyGv/4HfMlDj12yq00q4SEBP85eaBiNr3Td+DvY/BSMtvpLdeUq7iP8UhB8L+kwX4IThF7J1RjHGgFzXmcc3PxZwhfbSu0t/lSEmwH7bs0PKxGGVtn8U+zmWAmHV4U7qHkzw4cbEQDNpdaAoz89MLbPQjo6j2MAZ+0Q0ce4mIDpSixC234Z1OksaJIEgBEqx3hHg3oSa6KWcQI+hh1RPT4+i9Xp5TfUlxjj5JwezaVJ/LfindcY4yjnUgrUOFC386PW5k9t+Wv8+S+Ia/WAzYfGs8AHrgvW+NouhPo65fDcnw9YT4dzMWu3aobo4ulUn0cQrsgac7hznjIOyldtjn4R5VCO7jscI3MPhutV89TX5FCMtno+mxVXwrunv/EhbGqw1RsF+uN8Q7vh1xZL6NfKPz8D3nZ06MObaECaejv81x8Zt36DWt3lBCfyYQyX22PqwIY3f3wq3fzvEyQiX5Av2dXhuvHlP71LtvzY/HCeh/A259Twzitg5+m2/v1/itO8YYsKbzM4DjlPMf+1GDv6OFPOBpOJsFu3R0yMuoRbPFNzL3zreRdOLTzl3ow9afwObOuHA0HPK6zh+QTW44Pk8OxGKkXzaBWMvbgTGO/SRNH18QZE7EkET+LjRPXjNd4+79PC51n2aVm/h4FM0C0BvTQW3fR2wT4H+P+bUiD/71sKoiBm2OPcwFwubcaBWTVLGhUXK50XMeigd3zuiTCc62ESkspRSViZNAl/lC0ferCg9KAy1drRCYnsVm/YKocLPujZvl6l/TDv+/t1T4P+7BWzJxUG4Hf5Ey1Jsh8o8I+OGs63Bu3o/DN/3SzHUFcnh5Zsl4IlTEAEv5e7hw9afTOHVzJzanQoBULMugtZ9TRKGB3uAjasS1mQu1hU0H7yDM0PnqWkaw4VrFerwf6i/8BIkGsBb7iqhH4HkS0foCKoiKFAkXXTavZ6ylfIEcnGwf37KKb14VwBv3YX0n+tFMzr43qCE1e1OLzfMGNPO2z284xfhGkqGjqCXAcmx5Bh5/57p3PGjoaqKw9MtQ+ozNmzQqSkYZJRJ+cQI+L+ECjVrVLRcnzuwzG9EAgf7ngjS3ZeirW4n3qYLNWClMHz2Az99g48V1DJrip2YHyNzxg2XpNgd+fmjMTnnwbv+YUj4FI9h+UScSOQTq6KJLW618vB9U6Q/4wU++xGQtKHaQRl/VoTzlgstoTPOoP8+WPT1NbaYlzFuYUgKzmqNak1rIJM3vB76CfC8fp2n3aE3oAPlx7t+dhka+zJClxqqOFS+OJh+ar+CrnjLqUWf38VM8clHpSt90zRVOfDvMYdAtE2iFfPMlKP9QQ8aFdGSg9WI6azOvMW7N/wQZG9ew3zqSE54OSuIucfNWpWWo8OEi+OMK6KJ5trpU7Uv3i5cMkOEOwlGwSkN4r0wBmm5fdUQH9DEtaPz1tIza9zh1j0HFpKeDDnHfe7Q+OwAgTu+SGkjujl0DeckKhYdAF7HpscNuF6wu5BRvUqPhsFfN2Ix6b6slL+osVvteZgRk/9JAPSX/cxAFVyw06J62J8p3wMvRc9YLsyV3PeffQItvXAI+nodsO423mWErnWguPiAocltMEM7fb0pp5nvtnUwtpTG2xpFFGvTH++9CXQjooHPmhvwOa/80outUSNdLIASwJDVB96UmHTNyowhXZTgvrICmoEIk7ZvhJ5WIcHiXr+91esj8dR2YG2e9B7UhE2n0IngFEQcYinDUnZ/lRqAJ+nlOLf+RAuod3c1chRXXoA5RksF81plKfofmlYMjJ8unlO1B4Sg9rNvi8YQbqm3lXJx9rL/gK2sS5IbONM/RFehtnrixYmJMREKIssXZF71sAtfKnYOCQeY/uJS0CqkxjrF7AWS+QsGuTeloof/t036SO+iHB63SpsiYZRkMdRu6p9a/X0aqppyJx7zENQ3wt8gOkSshg6FsRjNmAveLzq5fM+9PAnS3vUnk9XsCJg3mHdZRyhnzhnbIsXwCeFiZ0Lkeql9SMD3q7PD7ImbipabW164DVCTg/erxtm73jk/sv/b1WzZY2nFiy5M5Plunbbk3FDACVF4TGyo5fJ0kYnMEXvA1G5iQJifH0LJq/0gQ/wRAqmkBEBkGYLRgbt07WbLwaMThYib6VUi45r3o06neoJTXvpUk+HqTNg4/UuIVS9pQxCOYJJzgjGvxPddlUet3r+NrHnCY7JFG8IYPVbj0holA3irlWueq6kkjF5LsNqfOOrutUDJNSYN1fjppwgPosqYhaqQ6JHQwP5XeXTA4pbwEZ28iBoZ5ca0LmFE7PuFrTFe0TLpU3Sebn3OTCsuCfLnTcGwR+QvM8eUUOd8tCxRbBvGeifjyP2QakVW30IFCQ8dtQNb4+CPKTrDLEYOPTA43u4xvTawKx6H6kJp7Zm0zb4ecm9Dz7GozwsuaFbMHp0JxwMyhgugt31Sk1miXBLmxRjfeoRlKRepZ7FhmHJu9sdZg+PUvccaOnvQ9R1b60/mSg01Ib5r157zc5C59unDJfW73tgBKSmQUeCcH6nfKIap/yEPuWtYEuO9mj/fTkWEd+xVs+v8ZKAG/QwWmWLq2df1jj1EcwLvc63ZzjuPvFb5a6HCTuZJ267dScHeEJQI+Gb+iZ9ORoP6/JBUBcU35ABaogArzLGj90zNdnxLBCY+5qBEYXQnLPdu1KTfCHY2OJlPUylBW/XL8a+ILi1RAqvBK1a3Ejt4aqgihdV4A//qya16vYehwE4Mzxg96j8ws4vuxE+Si/BiBd/A3s8ngn4BmedWqtgsGYRbxxccmvG4eWtmER8nlsFVCeEdq19BszMPz28Qe2DkbO+zdl71CU0DvxMVMNXQgrgcVskM2pot+H179KSGM6qnVI3Tnu2CEllwS1+yW5svuZcv0wNeIK27f7zXcZIod3hUsshvjq5D74Tq+/qdDwPCL+wWs9LHMtwMesDRkI3sjHTfARv1FLxQdCf6RTY5wCG7Ntiz//VYMnW3QxrueyQWB48sEajdIfLVDk0u5BLvfGBFoLYUsgqy9tTr7nfKW0LBqTQsKqX9b6z4C3BIda3eGepuo/BDNUf/qt/U25cr/CvfphzuwekX1YZ1uXnSrXv6xX+Xb8/PKKIHeJ6WR8oh791a9lGUmayZ8kCyK/9BZt8d0rnNPhWsDe+Txp8nnPIXvu4U7ObIhPpHFTFauQxB/h386bZo/jUq+x2FZAD7keUje+MzWn/VrJHQLHH30W2So7SQq78tVR75qf09a1fb9iqT0QRz+NwPF9ZBX47rCJue80UL3rDhIv3+DlMS9p5ZeDAKAh9avd1VdDnEYyK4V4lbJpZbC68bFTQ9+6YRpEog3cMvREax+BBYPYazTdyxxOwMyT/q190WN0WppaSENm4rOYSPtdOra/hE+vHSizGJb7KsK1/POF/QBi6d/VwYL0GN2ocT/V/1wdUVxM76aiGs3qxKsDTRECMsb25Yi+JoY/4FMmeWBdrLjgcXFI+w3qS3GqWBHkA8a67kNcF4nq6fu8ReJRBgpZLMKar/NJm6B0/NY3QQwqZAlYOLhftioQ7fzVn2p1jSDx0oUiKvXQ5pPIdcpYqUl8QvvXyeYnZvvKLFClT8y6GY23dgT3yMXpl5yVdh3UO1D/8MCVeTJeW1gT6hpFRcwe1ghnapYSV2Fk0H2drWO+iFcGekg821/AxkF8AW0V25SNN1EkqhvE2trBvoxPN++xTM5NxLeDPj4Ja3fm0xccNQU4oS2p30Ailo3+SIV7FnLwPx2HYBp8aqiL6Ag5qHYadG4/GnnvrHtbymgMkptcWbvUOe7spDFfxCdG2fBvh8Kxww9qvAdrLrngnq727gYn1YIWNnccUCV9c/5oTbUD9AjaqzcuhmE9L9obekKaEtrKYzovZzdBmcYBTeRjN2ZfjRM0e8Q0x7mQBoTl9W2gJe0p9do0Z3fQEyKYTIvsOKOncgG7bUNfuiOquK1sN3nvDWfx88MEvQsAsHvCw/2UvpBowr3uD/WSYlo2BfcH4hstlt0PwvP9S6tSmbooxjDXVA+39Xz1a+CG/Ant2vH/nI+RCLAP7litUe1l9vR7SZ6Q8RXOlxr5/DuxYRyXUa0minv0hbHxPgwhrQJ7Uvn04c8qFqwy5o/BDUpxM9cSskwXv0luhPs2ygr3GqlIr/1yi/RwRRv7iF+B9jg1k+4XYb09FSc3xTqSjZwPet/Ye7NvgiaNYOTD+T//drh+Mb9OyDkv4HE4gm64mdo/eBwzT1+ihETR7JAsHyMbzzlTg9BVuZDLna8qgX+XQ/rU3HJ3nNiTC8LVAXRQZNoPuxX5hAhDozzuN+tLDDPmsPbbwm/cBNt3cDudd2HF/eEbjb1UDSr6vWDUeMMdI55qUpovuwVsx3bGbbLuwE8gbcJINGQ0v7JkM+PqqzpUt0Sgo4LaLt3orUnM+Yj11pGLjwxufO96wET0mRmRXV+DEKwMJ61/LtlkdpRLF85u6p7Nd8BRNIwARvVJ//cTpcMxOGUi+v9cf3puzOjcz/E6yji9n3wx5v5QN2LK9h4t8XdJhujFZnZrfhZqQ1Gy5Hh4n2HhtgvEaveslOKoQ9GN7xUbimmDd+CtM9a7At77iQmJouQPBbRSoGyeHmuQFIZDrKpEW9xtloyf1GbjBAGPTeK/F7A/+G3qFy1PjmLbmwkqzh7wRUjQ/NGGgr/21h/d0p6BHqI9slfbMgkbOb/pEooDcxbSC9ijG+I/PfC00lJDveIiv8O2krOxbDeKVz//lxyfvbiX4WtqKnUfupZ0/6BXgBf5GHqERmOLD0jjV3o8mYX/5md1+JcSR/kZzk7jFauZVDCONTIhs+mbiZeMN7OfKYe2hnes116kIWiWNcPg4HIaRoiyH/U62CLhehGK85J4F6u7E0TTodLZ26jQrGB8ajEn4SZdrfij/9DMN32JbfFg/3uENLTw1dqdzPXtWUkHjGCXYXHJpixddgfKJYPJ5dQJYVlO4Q1393umBG9eBbXwJSv13IEqt383pVhgjrPxLSU0r6upVu0VXYFyaDHuHXg9XcX8q4d/v9w34CZkt/GZoJzsdm/unD7Z860EtoIUoT7YrPi1lBpSPjUFTjQtBt4hGDzF8B9ju32b4aykwYFUnNfXguy0mIek2fDMo1h7GHJLugixlw5t/14s8+mMGuW5bfLIvo0GSlYsDduE2VSw6zgVBICzhNNgx4bb8mlpaj2pyKnoyuYswzPMvRJDfWzE9Hl/pIPASiJSkF2qqffZ2vVz5tIec8E7/8tdcWnq/wj++oYb6CPofV4zgUSKXYhJ45nJI5xJmU4Yw0r3RJHK1L6GsnwjGL/yol+/ccTA63DTqHvchW9HpdIdAM20avo5GTe73GsKvi3jsiYbESDc/NXBX2Yl6IW7AWLurBbG9TV3byzyYOrXL4RMWIhrq4VVMrZ9mMGwHDh8CFBUbnnp//B/xq+Yycfs8Zeetwb96yAA0EmhDxcZ6fmsLRnhZ+8fnJ9U5Div2Xo1aD4+Qhm/TBrO67QqYVTdF+zHgi9ExD5ySvC4JDZoRD582y9e/78Pmlg/TapLgH//Y8GVYvvOxB3P7BDQsGn4g0pTHf/yMRlfOAKuhvXJYC3FLTSV1h2V3dT0gn2YL/+mHeRfKMZzZ44p/03wu1rxz37Aa5RLfpIdpCn/+QRpGL3yBI8fG5eEbym2AM7U3fSH+llO8Nx5cTj0zSGpKvr8Y3mx/T7X8sy+WS0sSyBHBRso7Fk2qvHgH/OHhAUu2SfA5yKERjDWO0OMSzjOOMsU4xi72Z/RLicFeMkx6qSa7VrqFxMhjCLnr+YLDt+iki299EQzVS0hkASnhON9TC3LC9Uc6NzqENAmSAN6glSP+swfhKqerBnvfvGL7MwZgdmM7/9OfiNmaky43/V2q0Um74QO2rFoC9HVXN71PtXYy003vlXDzXyjSOStdvsG1gfxoMXo/ef3w558pD7eh2FwPsjm+q+b6h6f//MNVj+oG1i+oEJ51ZkqdnwaVmT2vW346m15/GpArp4I+UNyypc2SWeUIR3H4/EYpvwsrCLj1dETS2a//6Um49DGmqZt/woVZ0Qy8i/pFBKRVuMqKnCn69FyJqtW38E8/Qq5cYmyxb2v++Sd//hcO30ZXN14MMsAdQUlNzY+BRND1pPpI8ZDscnM678I5gd5pmjGeLt9h/V22GQSovKLndG0Yladnr/C765Ne4etn/ukFeG4v8rYYhk//8h9sfiSSlf2Uzidu2vyvE8Kec8XFPN8LB9T6B2L3UuubvxHnquG+X9RA1hguq6mW8Hatc1Jk9DZ0XJMmqlccShyQi8FYfMYzIGibOttNEdj4l6JseEYx8QPAhg+ZQZXlM5k3vcSUF7RALyY+Dr7SKZ1rclv/4ce2Zqdgydy/IYhRg97QzQqWBq+7Yldair19zNdrf817YI9jSw8mBWGPSHqC4GG8yHwN80FKm5sGMvN8xkF/GsKlm+UEVLfuS4OvgwrwtM0WVpi+N//ZB5Jzv/LQzkITI111TXFoPQO04q6i3j4+1WxsRw3y+8AmTERCMfvHXwLt6NIRTvgF5iopRg65nYewc6H85icsCJ5n84etodoXbGJDqSSSpKG+m0bGnhJcAbjDkWp3jGuCT8ABt+5n0WTj67Q8nq19/eIUbH32wKyTOp3hxkeReLtOjO1PnxOcK1eim76v+/7zusKb0L1wOWvHlNxNc1SWPrMo7l60mKLKh/Bx4BjVr0vPZnWGDgh/QMAud1JS0q+3Cibf4UUY3xM28Yl/h/2+DLG5r77mqt8KAvn3Xd6ech3B+MfvQZUh7B6sGfSSMySQk8mZHlQFF8s30JN//DHy9AcbfdnjoEfaHdoRv2cdt+0rqTlx3KbM7Nlq5Hr3d71JVVzu9dy8ZAg2fYnNnftJt6G3uYKE547I2pwCdqR8o0jxbiaq6iK26m0R/PN7OjNY60V4ego0cvFAPSf/bX5r4kE85hV2nc+u7s28SqC11yHWNj939KRUAwmxcxyUh7JgySVIYM8sF9+voZEuoT2WEO9mncwf10gl5+dx8M4fENULrg9ZNeoybKvXFx92r2lY1h9XwVBxT2TXO2k4u2bTwM3vpc7mR0h/fLgujuN//O+gxAGUEaqo/kR6AZRzyMEqOwHEUXg3Gch0BHl60PCfn7ZsfEY1dINRIzCOtcBbwxX8+RFhqRFzybtqhcsjv2PcmkWxXA8MQv3rEuq5h6Bg1fNlqeFvL2A8EFT3OjNjyKHPQrWXeUjnrO0UQGwnoJ6ndyl7ypEFp+NlQEyfqTlfWhnBCSAFG16ehfOZgw207w3c9CAd/uq/ehskB2PCfQDBJ2aB7CbL2FxueUH3p9KAkesshO/Opw1PK+7Pr9jwxy/Ycyjg3/vpPRKKYe0yboW2+NaxGRbvdOFtQwONXdqkfz2Eeqzdfgb3iT4J35MsnJvXr4fYYwNRBvBLSfGz5r/6gA08fmtqC791G0QvkfWYtuGf3w7aeThic8vvsQa6DJX980W3/la4Gt/rVdnqKfVZPqRTN8/xn39LrSkcAdEiC8LvY1tzCj1W06Qu5j13Ds9E+AzTQLTPQ4YckC802/zC35WPTnDD2798A2t/TTpYGbscffqXDXjoPwNo+2mMo81f6dzf1ENd/dyRuvEhCc6apSZ8zyGFqiaY565poC4dD9RI3Jpt18cAeOUs7Iu/T7oO29SYDV/pP3405ckbbv4rRUr5CVk673m48+aAhm+prsnQehq87U5HbKjTpVgPVdbB76To2Fx3Rbp+fSn788NpePZAOgN46aG1NyFRPs9544t9AJe4OxGhsmhKkAt60CeTT5Rx0cFyadUGGkeUYM9UU1OyvjCHcmilNH4Wx82/LzII8A4jydpxA03VHwf7/T3882tMarALhFUVhTjhXkJI/vwW2Wo+9Ji6/LDVOw5s/ACbNnPAn78HQNZ0VD/XxGTg/G7+/DVs7rz3sPCD6YB/+LL1W5arBt+KbasN2vVKDBhB1wxwcl9htPnjU0MwDzGsAuyTtzysw2cet1vsTtia/LWgR//Q/Pl/SDX8PCR6+y7h99DIOKg6pf7rfylLf7Jodu8+Jh13nx4C53Ii4nNbHLAtvQDyhXPQeFI/NQPnRYap3rZoqz+FcBP8BmKPitgzocAWdkzfwCvPA7Ur4ZwOY3QWoXeiM8V0cdLxHJm5aqeGiGRFWrd+5cWDRmlZuJwXqfjnp9ylp436wR2Gvt/5PcicQSfC7cOFS3eJDbXxOhcngbCac7q4kWK41Qsnbns1R9ccm3/+rLlTbCbZwmtVo+/Jxg+YLuZr07eA974dmdR9ErLNPwa8AM1tio1UfzY+De37y8Vo+ZxNVg1Ko+IP/OLE/eTgz4+Fuc1r9LT5XeOGD/BPzyKzsbd6bSSqt/DSP/5Ck0yBUFpCTDe9Msy0eyTwnqoKkk5nO51nY6jAFk9488tMvgHVGy6Z/Kdv1PrPvwTcBwfk80QiW/zBkUEiCRq2y0Is/vHJ+/dSYCQ7GhB1zfhXb//8AzBv/VKwZLCmj6i32TpEvqf89X+HjMB0+l40AlsFX/74i0li6idg639Q/c6/h3/+2v/nloL9/76l4OSjkhpHSw5HPuhiUJc3hbqvMjLXV75Uqt57LQ39+jQsb+JvO0C/C/XuwE35MRA9mHuuufGVgi2W663AqLZBoPF3xxbLGxSgX9MTRTkJ06VNjESF6PAjcNfjemrMOYPxfYpQmZMhnVGtdsBgnkQfu3cZsrCAjULkA6OOk8/pVOz7FdoXmFKksKqYr+wuAu7dnbAxZkewVE8EgcHqH9l181LT9WC0IAh6Bc2WL4HppH4RMOK3Tt1e6NLxtWcr+BwMnRrRz2JLTp7O3//HOMs1wHRU8dArnQC9vukOLKPaXWGjYAfrIwtM9mQPEfDSNr7nY3n1olOE4DKZGHvBWygIP+kOqCvRQgKe45SyzBCh88A7wsKnWrPoq8UQ3OiLrLelZWvQdDIcO6shS1l/AFOclSgF/2M01PauOWdv6a581iMh87Hiw2XyQh5+Q17AlkrbesG3NoJWVO+R2pCbuSrFpwI4HSG2wmrblf6lnvLQrAMSXMcAkqwqV7idB5IuspCuT+fTQkQGSLVSheD3vaQQ8li9UafNLsNclsxQZUEg2A3mNB15f8eBkxcLGO/8Oh3nQZZBIUQ9LpclAOuS1qXqPHsPO69VHObB0k9wd8sr8nnc03raV3WiaAfYYYufFnP1zqSDd7ckNNT6kc2XtjXgsJMkatNRGtbke0vgt8o4JLXHbzrZx8aDux9LEBSXL2OIoRXmrp/j8BOcQ9o8YgVwrJCpVvfhILyJjuBvMS2M/KMxzKRIKyhrrUEUdGb1x73jCsrYfaHjWZTC6WRbV3irW0C6h87A+rWiGCYeCMgE3B6QizvM0PxtLcz9B9bkoJYI7Dknx1YL9FQcB8bvKfUsfAsen3AVd34D37YhY3N+KPUSl5ICB/K6Uz0PVTbY608ERa1gBA4yKCh/219hUV+uFInnkE2pUkH1gSIFG50+hDPtjAyMUj0hYfDEmqYXl4efVxUgQQe7YToOLYFYl3oisikFM3e7BJD5+EDDnXyo153dNbAQvZRGVfKreyU38t1fvp/xPBcknW9vWJfcQthbsU3+/FwiuOesnAb2fQD/4u8N8oSi3WNiq0r3d0hOyZtamPLhqgphAAs+1ckcTTJYylS7q8ZLvJNd95KKBZ3ub/CN1pKietrVdAaBBrb8QZyptCZDzFnhcu8f2IjyoBaH9h1A7vA94S0fwhlV2FL0X6TiVLjVdVdWWQDOYmZj/3Lfp0tPiAd/4Teh7gtqw6o/JwtiXegpynkJzIdcvUKDdyp8sOpLPceCGEAhLwPCPEczefROKnirdxN15dcw0Ob9bqDcBC+yXd96/d1ABo1ne8Heixi1VGnRCDL1aaLfpz2Gq5aIifqr+oT+nfds+MABvLY3cfC5pub6kIsWOMslw9ZcbpDScdlfvh325Hll64nXLHU0mzsCCd8UFCu1Aq7uQrETYz2VpCVswYNXXZpLhxrQy34aoXTbAvtusHC9+I4MbOXjkwHULVgegRf9i+dkMauBZeusqJc6/ZL9Hdb1ogtaBOLAyQisXjVjmmsS1ThQm7p9i0J2O+xH8Hlst5JVgWzO12UhEBFRJ2sZKSYl42yp3/I50CA13ulf/YMVcDjqXocZkGZcDdBmTKSHw32XUs/nHVg6xzf1L/yrWENqxfD1zg2M821W+Nq/CHAi6YA6+aCb/KUlBrh6dGux7m02RcZdA+xuePjfeSp7q4POSznQKEFlOp9SI4cbHiDRyeNiqx8xePEupuh5lcGsqxGCqrsuZBWubjpr4GeB+VQsRGb5Z5jr4BjB+u09qeWGqdkp+6gDrxWr5NF04zCveqUpV873sfMCTbEwwbbgM8Z36l0vTjrqqoWgt+p3In94arL1ELSwl8c9DsDSsF+JbwpEd9NBpAlP6dqsIdnvb6pFz3jb61LczV6tLtWTat2op4KbNzn4kXmHNfOTDbOaxQocvx7Y4lcaRo/ZKxzPfIWkYHeot3qtQfqIV/x3XiNXvBv1fjtp+DR/m3pa+98IrxzRaEDybpgKAUbg8vH2iLlWUJC0v7yhba0t9rf4YNPPf4PPs5ewVkeS+Q/v/a9V4KvNnYr57/t18NTRVb7lIf05dQ89yi4IkKIBf/wCygnv0Gcu8OEM3ayHp52pYy8YzJBQ33Ogd//2ZF4yBGZFelXwfhtX6ugiTUk4/Ty4BPmNHsTaZ7MzxhxMCmKT3fTQ0vUuznflUzUvUnUP15xUTZ3Bg9dLslPu/EBcb8dD57GKiBxBbPb1t8pgKp0jXPjjO+1ChFq523Y34+39020EEF4SWcD+p7JqlvEnTe2+boADjarh1yzPMpiIONPt/fXYpLcSdl87QHxY3Rh55ctbicKzhg8rMk0eD8msHiVTxkbuTDWh+htCMS0LpPhKlY7n693an/xvjESKd+lkud6sJLu4ocg/vmvC/5IKRPfkR5bxvD0FpK2iekneJta/92nodg+bQPzZaWSXHVNz1jl6Uo4f+qDW/N1uCWSqDP0uFxFc39Mm6d4eiAtWE54ORfrvej7icodUP1sZAbXRQ4kjFO1EdwJtX2QltLtJokauvcy1VKcE9koTbp/fDGvmbIMf7zTa8PBes1sQBhB/9At+KgNiPzHgETzI5Zfq3/thYJ1aZ/CsKSdqy+q3Xm4jg/B+8wFSxfwejoOfalDhxS+Z6+hizssSNDCZtIpqgkIZ437XFpq/vYmWEOzryeS0u8o8scA+2BlsJYo9wyjgEHYx+jI2c3ILjycjpkZUXcxVf34caO9/FQ1F8RrSw6xVMCbml7wUXa4JT5pI0a9iSJhwM+ulKxcHvrNzSkMbTWw9728r9Cqq44OGZrbS3eUOnUg4YG2J3+n69PYatBV0wdb7ohWrKDWl7ET3Avswz4pVu86xio0lJbJspQXb784VJGcUYss9aWzRfnwFbuLa4XDH5eHKwS6GvM6PONQ9vZCsDzCAwBUF1hS/D1lTHEoYBRDRR+ITc84+22KbKHTJsvHXSS6ODfxR0mFs1kpBh5PQwh/1F/Ie1nmYfi/pBLTnsN0AGEDnv2I7vep1LbwWvuJqJrtn6tXM864cdPeQ/8fHpkkjBORjdKPh3dvVY0XjXIV4280+62U9B/pzBskuabBzYu+CeEXXgTgXFGyWmRWy3ZiJEKK5wrjr7VB0vZ0I4iJf8OF52YRSSw241RdqREfIlu8l5UBjjxw+JFipGzXpM3jv7YYGBejNmTn7UflFno+T7wmGozvxDgy/64ss3+EL5tdadmB7vdlVxKS7sRTBxofQfOa8eraynwIrx9xRvc5e5ur4XQCPp5tBLTqAgninsAJhy8sUHR7FsPjjKMPl3j2QIKvfYWWlI8Jp220MCibXc7y6rSwmoKH22zfSmZlmAOfUzuhh6o2QzfDjgX0vT/SP3/CXsTJUqyy2fCpFMH3PMg/Ka90STsOTOW14qCRTkVDkMRL+xScwL8kBcc8kKpazt0LAPaUrRTvPDef2AXl4SyOfOgG3pNPSfAm88SBDrzxUAdkjkcDvK/nSSNKMUNrqO5zmF4fDdQ5raY0XT73mbY/tGH3Mjvd3EIzfACDh7RsFAZUUATHxNIqOglnzPRyDv+uHNaWc2cb3SlXguAQ7fEWL6XKJZCiN9wF7eq2bU82LBkzTg0i2eglmBTKklr3hYHswgu3GKWcFmWcmFH/VLJy2/6dK3Eix83hgxvjbkkN6VzRs7cPPMHd93UP5YwXUSaWbOfN4z8H8ZozUk7h2IEWv9/C3yhmRHv4npfZgjfvTNLb4WP6SgpXECsDVO7XY7vf3YvxJyX3vVMWEhp08DWyxjJP0ZJxGXfx4h0v1qMX960D5v/hi9GoQA9JxAtTb9ML8uQ4BuNR8iTOKn8X8A7qmHj+ngYCLpqZMlqsRHvbXmGJz7EK6I30C9l7/o394Q0tieXDbsYDPpzoENDmPBGhxNFGc5RVbedIgSO+yRjc+V893dO7AfsQePjyrvljrz12B9xtZafTLh5rBPMuUT/QMiLrxr0GoCIKlewjpIYO/lIB2j+AqmhU+aF6TLnaADfg4Xju0Uz5GIb1P1w6S9t1iX7bpwGKziWC2Weq267zZ2nJrBZVa5nB40R4p2/Q3DM1fSI2NX/GD5Z/Ahkdob7/u5rrjwhzoVz5EapV+WPsuKwtmY50Tbotfca2SBO6H43OLH5yun30nKqn+/iHYiP3wO3sKB2CDEqRc2rr4pDulg/EjNunN3jfhIphPB2x4haPdfnsqGR8V8GLjg5qhZNdrxD8g3PCUHp7Uqpd1jHjIf7QbDfxlHdbMyC2IJvlKdctyB156rSXMhs9CQxByYDlEu//i73DgvyklpIjg401Nir1tFzy6hhbY4gEjq0kBeT92K2y7JEPSq7n+w0s15tQY2/QyAzbmbiJvepSiLBYBofatApREBb2o9lj/lmdpwPzGnXFoPzxzhoe4g3U0TvSAzNdAXY2JMNWrH84//pXNj9svg3S5+liPVFrMgccrQHcaF23nX8xbfINNv1DToOYgeV7MqQejt5BA2zBkQltF6jAvL4y7ogeL++QceNOMO0ViIResnfkK1K9IxMFPdOsl548OrJ9KTpRrYA1L9dGgWr+QSPUQ3IZFLm4NFGvpQP/471IrsgHNrt2mGlSFOdrPd6Big6UEVAJKt/MQFfkoP2gs8Ga6RI7Rwte68khB5asY5X4d//wK1Gx6WzLvygydNd6R0T9nNTXOjw78xb/WeFXRe6fwDTd8oOZNxsN0DkoHTIslUOe6A8WSYbru28tpQjtz7Ew6vZrrH9/Cnvx2Gc9HZg69tU2pzZNDumz8XWFjrlBfdzrA/vyUIVRaxNy0qX9l6pVg/dgSDQvYFqscznfA/MMBm8LNHNiWf4AW3AW7Qd+Ckbs9PbDsjimSe19gNGqguE2d8NEe/uaBprcihj86djQZs4V9HoGGVL8zLBrtejoMpfCKoeC/XziwhzZc4wzIsH59Otxd9seaNH3bQGyeAlyu2sdcf6dfr1z9GOP8J37raSVxDMWjCvA/PV/uZqIYT9XHaIfSYbl9+3ifkBPArjx/wLL2PwIuR7OmKP88htXaByM8JvWM1OxrDL8GFgG0QbVih37ddOOLsfL3++3T2obDLfw/0q6lS1kYif4gFiIKKZbI+2WC4gN3oIiAijwSIL9+Dv3Ncnaz7GN3i0nq1r23YhU9/vFLpo/dtuqtR94jIMHx7/Mj5pplCnmbbplrO0vXPz/FyvsZWXgDK23Rz3EN3cT8P37WTbeflaLxdJsows66GxuaYmibi0NM+TAbv0GffVUorQcJsW7Fa+UNAFfNUajYRa4xj34VgmPde6Kvv6+KD+8jgCaeDPY4EqWj2338Adm5YGJHNq/onWUnZfn7P/7f8YU/qnhQEmbrllfxQ7C7gDkXJdtfBmbw6oxmlN/sx7JearXgmQivV34jZtl/jT+/ETnGNyWBv/OC5fMkaIlfZsnhDk374HREXwYBvTz6Npgy9XCCJf6YUZaqMYBoK+ApRxcL6ftRPX7v9xbILt8SU//OxpSObYkGn6XMjTM1GKXLZ1S/+aNjoWXf4zk5pR+062xCgsVvGPqVUcD7wd908xo+2bQPNwlkR11lDn+e+fT7yhdovg/483Pi2YLpCPPb2TBrvNnVeD8rM5JXukFVDUdo0109HS34So4L/6bEt0wl6WSLBT96CeZ4PBRwPr5fDA/xJfs97xpFf3xqu+j/tb8Za7TEHx2VPEIsco4j+gW4oGM6VbxvtXREfLhUdD7s3zyPDm2I0uS5JrrzJcGw4DtSIZKZvvb2Cz+YBODeaC76ru6mh6+FyrxRZqr8QDRmZostaFg5sN3ix87YfQlo8X+wuuo6ND6yMFf4XXPJM/3c0DNsuhTkTrwQ6+aESD5HiQnOJTmToxtE2frQ0R7Y0NVYuT7W1fi4vU4wbnDP9gcl5vPvmIdwh3PDXNjQbi7ie/qnb5k/rzM+PmJ2gWy5Y2k4t4Mxobkb4bAtE6If9haiSVTr8FGKlFjq92ywee/XEA3Nmq7FJw+mpNi7yiULV0xLpwr9qm1fo1gSUqIZTz+YlVRPAN93NtH76J39/vB6/y0FZoTHmzH2uO9BWEs7olXnmo+9Qz6otk4he8zWOeb1I9nCI9pMdEuIGXRbVUn/+A25W/Y945G+M1Fpb326lsMXn655q/3xe3J0vLQatjfbBQHLjJnd5dRNq32/6JNgIqY95N0srXYfdckXLCjYDkkyFihqGo2zix5cjFG6F7OqPQ8GC706QqOisHmz8Ge8eZADn3bds0F//iU2FNsYddss4aq1ExbMmnP+3H5LZa4Hi+29Z1GNq+fNhTFu9ou/bcSd+DRMZKDxTL/ESo05t/y7AgftzQIath0Xs1MBT1xigqfmYQxCuMsVy6KEOR99H7zJswnhXMnAdn96RCQTqKfVbkc0Ad5xa4z6HV0Jc7Bal5qx/qtn3DTBYvv9e29w2m9tAEx+tKjONeLmm2uqemsMFvxuLKZOdBKgwoa73Hk6VdIhv2koTR5r4vAIVeNw2UmouMoHDL+DijZs3s1/fJng51jw4eGIM3LkTCXu66Isgws7F3I7Lhm+PCdjEjxJR/JtZbIQ6++MLnoWFn8di4ufxI/XrQv2Y5QWfv8KuKvnAAfdFZhWZYeYrvlagXHzzVlQFN9qdq+zrQz+kLLQy+us/r5vAMWP9Fjytyaf6/bzge8r+i75zDZ6pP0kSNrVne3N/p2NR/2t/+EN0fPzF/3lb7TwP/LnT9PTBA38ra9lNzTrK9eaIZayimDNK/78CReNW/9Mq1534ikpkw+EU1DT37t/VP3O/KWw+NW4XOJrPgtdDuEjPA47ZbftmKPuQ7S8P1XRxQrWNcQulL9Ko2BpDE3X++UDf/WkP79+6PhGQtS4yDSx97Tjj2a+g/larlgas9hND9MOUXqDM7PIyq9mdaA6rG9oaZl+HtCM7UsB5K1q7NlLuTHb1rR0+QlLXDtBHEzvcKyhsEOTxbeq4cM5ihb8Sc90/ej2iFvjJVXsQqiXetgVsSuSffSo2p5KauxX4nDxJNgI3pYt6x2Ise+7UCt7mxhjf0KTLlUnKH8vDUsccLDktxPcDpcNlkQ95X0dH3LVzU0fo6VeOJ4uW/inx5J79cz++Ljy3KtXvL3KUzXH7bOAzZCcFn7Bu3ku0gge0Xoizva7Df78cLQeHI2OT7ut/u1P99jvmLH2vXiMSSzBB+UGla/iK+bW/BMR1cFhCQ+CmH8lHAKUV42eyqsWb/ajWwI9hwFLffI16NdRRAWBjP+td4M/O1v9qx+Y6joOfqGt1/LmdhTwFG5KPmuXWlKc8yZnwebUd3zx29F0tz5YKcQ5oPVsUNBFs2AXMXCrQS5xiha9Tcfp/QuoEwQRWupfLPwFUzbWB6yjGzFncmU+CSZdWfzg0X0wsvgtY7dbb2Gpz+LtNh469rLyFEJaDFiOLyFn/OKLIB7nMwk2uDDm4iBH8Kefd+eVycXwdozQkk/pSlB+xnyWDzP6w9edsx6MRQ+eQLb5lR6E6Ii6V5AksORPYob7Bv2WeiY6CsNAjG7Q4lmkPVZw4DxI6J2lit+rZoY//rlXtlHXz4ouwf7rhuxuaQTx4Z0KyuK3Y7Rzd/EIXmsjIUojrNZPAfX+7jqiY7p/swDNu2BGz7sNSR9viPWYlHj4q8depcfpT++j1tIDDc4k45gTdTb4IfAuf/UrkmaoDcZxuGvIkXcB0V2r4vRPXy5+Bm0Wf212s6JBi9+Nf7g6dPN9cLbqKrlvaAd7sVv8uxxOQkPYfS9vKo6nrvnzu7A6rRrEW9eeQeNJSg7OZ+Z02JbNP3/q+Yybrmfl2KDmPDK6sbOwGm/iRoC1q7b47+e5CFZHdL8FiP5iZ+563wUFtAgPmC71velDJAn+9KC7+OdS9hUwWvI3Fm1IEPcONwyfJroQwzH9ePSEZZBU0J7YTngOxpIfa/jTx8IK82oOZ0WCRV+z1Nd6NK7jpoAH8Ssq82yHxMUfRv/PlQLlf18p+KrnkoUy7w32Ef0WqSDYTMufLZpPtyhSj3lKmL3Xk4pXwSyo/T4S2KV8tQZX9uOoTjddxbO03Xb9KrnWYN0OOXFfsVatkWT5wPJsgaD+2s2E8AjW51WJRVwvszFONAfdTtZMsy9+NVXRxwU5iwyWGFYQjN/Hp4dnThU6DXWaTX3OfNiy1Qa3wvbNH21URuBp8gevBWHIuHJ3XfDvnkfV6GsZc7UjLsSxY9PKQEXGfWmFle0MjFj3MQm4JJkXZClPm3mqw3nP6iECS9CB7Ea7ysacYwXdA+lAnGdJMzrXzQcF9t6i4DbYGM325sN3RDdmfj8G4sv6AVt9GuJkXR7MXd3f0YpFFCua9ammpjkWMJrIZpr+TOPRvHsjvO2LSdzf8dKNJwImvEl4xfDdRh3fqHhGhwf/MGs7NtWMNFlD2Lk6+OUrKGjYLjRhc0woMfed2833Pb6DFhVX3F0VoxpHYbTV7YE7FO5KbjRh5Z5A8NKI6FM1ZeMuikQ1JHRHoZhwPG7J3kbRlFjszFzHmPz5rim58bwujeFwNnnd4fO3nvtZ93E2ftyTAuaMU2L/0Keaw9vJBzxlBvE/zKqGRq0vqjTtbWbptxlxue/u0NCXz5YRdtncHOgHYmePyH5cZq3oWOgBNjuNSlm1ieccKhPybu7oN1vpAb8HggSHdD9SZVrnQU8fpQhW/kZ40pFlrFsUpeohu2vkKmtSMJkvsUYHuZ2Y/mzWaKwP6iwXFtFI8B1/aJpvMEJynTU6rcCL11J1G2GK3BZvB89Gs1YFKYqbrKKznL6q+XKzRqUVnjUeYyFA1WXWYJnbWTEvfZyq2ealpEIjEeJD+zKmJ+tO8oHUa+I16wpNOpZ6ebNxQ3IofZWzDR8T6DcXha7uQ4KmzGMf9L17CtG9ukX8HkgiLKOvmTV3ccyz2BjRGM0H5vvsHMz1YtnNdruUmOWGz5ufWSv2M6yJ2eh7Xs22giEdP5QEbbrthse0OirlRfixPUtjznsp7SFvwjUx/WGN5qN9TFcn7xsw7firK2Y9vBQUJJkU+qBdblHdavT5KBbzV1OVzfvAHNVjtVhaW+/KeWluC+jc2mWHTNVR5wmhD+aR35j9CHW0dvzwBBCuTEIce5dJ6T4BJU7xzJy9v8r4q3036HFev3EtSHY1eQ8/hONv5xPX84t4tt9ZjvjomCSYDw3qk2+Rw3kYdHKT6281oOCpo0+MMDHJo6pGb72qIQDmM33Zv97esy2cV88fbp7tOqDW95vAFSlrYnwOqJquqvQBd7+60G2QvI05da8Aek49uj3qMR92jhhBQMsb8ZrXivcSOD6Qi//6t9+jG8SCcnPcG5YFbcpmf4uXxu21yuyrM/z9/xoEuDyJ9u3KbH6MrIXXSU9J8JTlarxflBa2antgZhI61UzHcwqqrgREl6Ugm++/AcPZyijRuxwMbsvn9g/v2O5+C9GsGCFAeMh/jNTOORvnLEyRYIkpnru5CBplPJ7U+uzf/+K1m98bisEebmeshEnRjVd76VqSk4hoUtMZ0+pKBFhtPZ3Zx85A4pc8T//Oi3dRmphT89kgs/v1zP+ensa0b7iriuKksL2TDTGjXtJAa2Y/PAU86cYvuZ6gdVZPZvW7GjXHd5KCDluFGMHyralK7Ur0BtEjJEumeDqe5RSOB7CJz743Y06UWIe3PmL2eFwa9A9ffVT79HPBY9BVqX6CWICI+dNaMHg71Rgi5+SRy/H6RLzAtwQteMiM/jIibs0xhnguHabB7R5P7/OpRY7Vt3j93KQZs/Csoc+27Sn9VnU3WvZ7aSztFcTHn3c2jOxmQhbsG7oR6zAbr1tjhuX8MYeTGlEZ9Bw4ljMS7Ne0GpxPZ6JZdUUqnwhBXJW0O1rr9xOxt1sWc4UPCkjqj7D05tRx7/cvrIr+INDN+uFxEVJBRxodHKJTWa+m1V0DGJqyJNaek6zfuH4LB8lEhJz9vupTQxxB0oyc7PruznmuPwBu4hgQvD3kHWO9LMJT+Vh07eauIW3Xro4sJgVYJrDuJgfBFn1Ka4WV9I1ipk7OHdbOOJHbRWmyHlk1Rp/qRMiuu6wzLlb2HRzvWLA9vmnBRIZfCw/t5S6vn+NJ7JUGxMqIsVS+2mBKPMVW5HTHibPpaMXyXKSopLuBhNX9g/iCP+iXfG3ibvg6G15PTVPt+qUzL+qrblT9Bb9eloeLn/bj4/I8SnLCPtN2isZ72s0YBaUdEXN2SjQzv4hU/fT+4JnKZcX4XmyU24ufSIA8iKlkdSlazj/lJWXxOJWHC8wb8UrSXaVWLGLjVg1g8Nn+AGHGZ1sJUW+mHbN3DRjzz00wMO4+SdA3asUSzVJAMt4nojVOn7HMFBPYFN8nCYwT6fomS2f0/H4xlX76LxgrH11QkL1KZiutn73iOxdhvVx5kRUZo354SiMImA7MHt/nmCZ90Mpm1/XEk2unGpVQ9hXj0NzwWg2P8fw8gKAseMustzEH81pmCiLHuiNhENvVP/z4i9fd9Sdw1q7QB60L02bOPjfi8b5rRJgNUybh+D1Vs1+uNTR36R6vnmJmzH/rlbXtj+2Erx4M2iOp4SbOARYuBaA++z4EuBS/I7E3lYOGWD5+1Hs3/ZjrP7/dwI9MgpRKNiERLfn0O0pYvvDGY/sPvsfT7hI08KvvB3a+bs2Yw/aeooW/saA3aoOPXDyqQrkHtsNTF9O1/N2qT9PW8IY+r8F85VEN++JoULkDOxhKr6KwO/yuzO5uj2oUk+3SCPajsl2/0vhkWWcRhrudMPuZfqvxdrvZaMFb5nYFyuhl3ZdQr6YL298fXTz3ZVTCe0w13E/FbPDbJC3fKr8JzDKOUcyNoe/hYdoCw/U2DKZELEJkxanOcOI1ceemLYA70zXtd/hQ0XW4PcGjT4+EMMGKp+Mc+bDyXxHB3iQbje4ZW9C/9YMZ8WRXY+zKLWRVqRLNdC0+L8+HWLr2/+HvJET7ErqKGMxP31nGt++XrrwtR8SoOmkG/20nH8LV78bCHT50Cz4IUJXhnt2tNounG2pb1PZUZUT+fFCv5QWGV5HXWPKTHxoSscDw1Eofz79ok01fc7qoi56g6nHt8TG72R+Q14pAtKtFsyb5NjmCzFuTfSGvgzEnAwURyR+85deuG19Z3sr3+XQlmpFsEEPTQYAiPPVYvGwKYzhV0hFEUpoMf1rHmL9+7QNqyAffs7dUTWR4tcof3nnPvR5PtyE+gvDVdGLzftONA7V9kIvPi7nNTTaKrYwwHMhnzcxo7ozZt/MjXK/elZkvMzP4Lv1I//jTTqV1N69Gw4X6VX8W/uHy+XLbj7BiR0rIU0TB+Beff3rJyX8RH88XqYA81U1mcq2I+bqYC6gTesRX54aDaWQHE3AVHlm+PQjVrMq9jha+iylVX8E8PhUb1sJRYvvMrThHlf5B//QQrJ2Ab4I8ROvCtsnOEMtq+LSfO2jlUWDhA+vG7/uKTJVm+cTIEId8fp/2OqjWfiLGRltlXN1/juBlusf+9IqEjZUEeTKJZH9/BPE61QcXStQ75MmEd8YfH6+BSdy6xFW3bTUMVeGCempnLKrqz+Chp/pwd48ZsfTbkc/Y3YoouY4aiZB5QotecsFwqjXRu1kLuPQFQbnenyJd9x8hG9W1K8EtkTXiPypqsN92cpVgPOzYubwZ2dQEaITVo3CIOZ4dPkuxMqK3fIyxWmjXbr5x24Zcun2Il59qPmXVnKpsJ2yYaSW0m+g9xugNkoehy4B/K+lnwjuxO0I6vOn6qTyc4CeFWwzHwTAGgmTtj69iwY3LYDKWKxdiAJjhVV8jGpr6BXaTnTB/uJ3itKHWBWl2xsle6LRuoyepAqvJuCz5DVfznr5BFQ9RT/kzqAzuD40Imy7e4dF0LTR9MaGysxrfxEarqWPrQingdr76hBT1LxjZDC0sr2P5cHgYPEzMEnoz6dhhyvyKvmplOYbxjuzXz9+SX2cbJo39/vh1PAg7yVd+ZyOiXMrenHLXkyCQvRMdrV2V0dHITuC6jUx8xU2C4rKK+n/n3TpNZTCVV26DFpVXog/Otxs7mjQQvFubYIF/46+DWYkkJ/Dp2rta1dTpqYLEJE3otkgNY7PsJ1r2H7MOXyv+ux9TeGqFT8LBbLJZmJ+mMmdqyPTH4RWPPwEJ6O+8OqOrV2KysjF6Z+0L8+P2FxT71p+RcH3v8Ow/mkWfFzXIAj8wrRgIHy+rpEcZW9lMS42dMSrCiyJhHXKG5VwLplWbnGC6fziz1dPNGJuNXCprul5jYS6GrKukl/nHh7G4W5cZ8wTThV+hZBiqu43EJX+D+jKBiuFll6VO/9iia2R09NXuqDG1w9KNACSPmGcs8sZu7RaO/Vcju0X/dXku9hB+uE0M23tnM4NIhPZxACrwW8vneGUl6EbJgxkQXoPx+dsWyOqPZ/KXP/74raKuDj3DRzWqxs+lP6IYpSndPE5eNasaLcH9RB1WzVNgDB/HikDrggM+Hy5Zt/gVDXoJ3Yl5284PZm06zsuVggMdkt2um3Z1rKnJKfSZd3i/gjm/7RT1EGordlny+WbhT8DPd4+m9UtDk3vAo7K8TvBF1FCzqX8JEJW8MWwV3A0v8SBB/UEGcwfP5lLqPgUIrqueLH4Tn9S+P4LeuTEhqhcb/BRxCtehN1kamtD9nupMAajbM42ep6A/guQiIy17zLvdL5u1E2jgHH3xH5/nBwldlkFqMjMO1Q5xzXrocJ8vVxJa1gv17WkvQjfdRKw8KhqMv/IRIts4p/gd7cR4sg1PUXL1dSS2c/jGc2VrPiTjt8dDM74z3r1cBRF7KEj4wGXQHVV1BH6dGEboUcSjEk7+v/w4Hn91N28/YwML/6Lios/5Hz9E5ckn19Etq3mw5BkqZBd4O+c4+Pd+ix/ELNz3f3olBAN3L+ao9yefxLyK/vCY+R/2rsbJUmokB2t9yX9lxs/iaQuW8rDJt9ic0ZSHvq/4u4KQ/D39uvZTaPkfnpEDrL/GkLye0rZjXUi0rTQa05lNPdoovc7CIP5Uw3CORnSb8JnZwl7qZrj4//wYPPUrDbFP9LqjeaQdsZTS6Fhb3SVY/BJibUe3+q7V2/HP38HjHO5iaqhBj/70jbjZxoiq2qeAxe/CM9ZO1Whvcx1Vm6Ilzqd4BYOq8AYaYxuRwM6OAc/iYIT1JA507vJ7MJ2FnQlY3YRE+17zbHw8VBushj6pulAE7qatAHs7dNje2rvV2G6Y9uf/sD/9z524KZTiBzn9i28mnlYmTL4YsuNJcLJRybRS9TZZRwgN/Xhej7cCludnrt1c4/FSygD64ykzvUgqNJ9AzoH174nhffOL/+mZnKCCedbRMfirHRqwpg8nevX8GGN0PJaoNNSZ7D+llm2Kaa7h6rP94i+JHc9z6CG0vjkdpaYL5mycXeWV+TZdL/H8p9cRLTihf3r/Nzi7BAlwepLn4atl02S2AvJ+ocLIIb5nE23bWvXFe47nh5TyiXuHHPVC/iE7O5+yoUiJLlM+21jQtCbgu0OUw1uOYhbZl7aaa4EvXRapzhyWiBV7N074lx+Yvl4ho++MskT1PXLZo+zGgB5OrxnM43Qj7lGP0fSYNkfg7fj5F89//iq0ldQyF6NDPI4do6h8vWu6LVbQ1Quey1KnLFdSptJgcaI1cH4WB3b8e36KAwnd2fWJ57v6iEeveI9oiVfiBOsrmp5xWEPNr3uyPz+Tjmtxn/7lCzrV/Qf1eHWvUVq7NbFQtjM2f3zG35WE2RZoAaXjIwHrzBo8T9Uhkxa9gRb/kQT+BvGBI12H7nC/M+1q4QzVJtVRXrcr4nBiIulTuHc4CtcvLXZKwfnzymZ0yHKNhejtBP/0li/mOds/66H63GqB/uX75bzPxrx9bRq08z9H4ifY5pLsHxSUH7cJifdEReNzfxsVyII1ZbWzjqcY93ckSa+KmTfLMlhpjiV63LKMBaUjdAt++orH12uih90+5lfZSGAv+xdiXiowRnt70SCDLGL633rSS5OA67YyMYfrORjoSkxheskHtr8kUtDSWFi6xj4V5gi/XTYdPFX488ewJE8hmjRtEkEP2BF/DrMdSw9jayPtLhTEmi69MVonkLYlts/Uuti/jG5SFQNfZ68FP5qOO/hb/uErc/BVQ1K8slKQU+MvnxcGKzRfh0t2EknYZXfUWXjWYRjEFYkTU+MzvroYofLi4494t6rpcX/nsOALFe7v2ejfu2P+x9coJ8olbni8yZH7HFRiPG6uMeXprUQXPX8NCNPemKVNDNDc8EAVpPBgfPfuBxa9RGeFuXzWVq2PfsnbXvyVJuBOXBRA3WV8TJnp1VgaWwXkx/tHYV7fsrm7POx/ePbnt4y0UzA8QyGmIr/7wUjsqy2rdr4jbqDm3bxNXpFavWcD140+oLkgPw0tfJdu9XBfrVHw1OAudipVQvNezVf4CGDekIW3nq9l21Vy/cAfvu9UalabLMUhMmZxR04NCrKxPVkiEKaLdIr3Z4NPU3MBJcdHFmw+UcAnD/sA7UfCoxBs4mF9zU/oG8GOHfzzq+LvfBTVUqwzoiXSqmsgFTQ08d+WLfyxYu5m14PIHnfmlSOt+O6Q5MpH978k7FjBuXja2ODbYk/+9nst9nMDD9MU2H7Bk/q+ayRQAWwSyjwMRgGMI3z3Kw8LqvLjXHlfCvT6nTZYUto2m5JPJP2LF/zn540uLuFxXx0YPiMjW49qk0OaHJYppuox5jGjKXItyyB2Vl3j8Z+/drg+8Cimdrbw8QYt/gz7w+v1Z7sM6vSigniXnY/WySeRAELVxNzR9aU4vkvRcn6JsbttOrbUq9Df+d3T1yUbPU/T0ESvKfvTc3y4IeGPL9PKf7OAFVUVwuS9geFLAXzi10KCmmqM6Kvg2PUtFDqYQlsx+2Nesnln9y0q7webGbIldlOTBi76PeSKWF/adqNVmfhfvSZYya2x6LsWFscEbzf8nEl/foRe5BNGi5/1+2KHwlufMQvntRz3xH7aCpEcmRZwg7iXgPiwvlUJFevnqxuw5eTwV0/YL34tv2hRov7tZ4AeWrzOKiVRqjERWLDSwoqvitqFqBo6DB0rEMukHtCS39ji9//Tc398GX9Mf6nv2a4PO+P+WZ7nlo1J+c3hye832mwrI+aq5N7hrx6yd8cTl6rf66J+b+KJ3Yz9xH/7tJvhlbn2H1+p+pUoXGCzNyNiUeJVUy27pz8/Zzm/z+6TleWsukNyZZdHWKL5aQw14vR0p6r2SBETb6MJ46+pqZS2Mp+sZqWh6shDYpF3m7H34GJY6nd0hBtk8/Mg/tePPYbdPuNXJ5VgqR9RtPjF0xJP0M5GhhUrHRAzDntA5zYISSiQM+JJK2qgNJs9CfvAR9TJ7RKYVQ64H79iNbGzHaE//e8/Kmzw5N43SrlrQ2a9Cosv8euiDPOczudNzbn12CXodZMlsvCTgFtzFkKHyisJLxGJx7Ny7YF96Jm4FrtxLkcmhbP0vjCDKJdsrHx+UfdsNzOsye+KP7xWQbm8umMoKy+e7Z1yhNLCOla7zbc6C/l9C97m1jGiuRjxjkVHtb8ER4K377KaemRtER1IQozqG6L+vC9cdcFfElx3trF+a74EqzirMaiXbTa9q14HufaXQZ9vqfurF6OTRrcUtLNoNPnuckKLviE+eepofozfRn25HiH5ore4J4QuuLtq/y/fzZ/DZEJwVf/pE8TNLprV17WOyMU5OPHsuNADQuGDPbqNUxX+Dtno230Q82ohruaLL6To9NNDRg5fLRZvtFT+8uOf3o0HabUtYalf4JGeJ2OapKz822+6vd3HbITfPkXuT3oRK/C0TtJOoMNNbXOmK8xF01UVPmh3v8h/9QzO1sfKVdoULsTrk9GYapxiZak3slxVPDSX5FIA3BOL5cO46oYidfT/q0sB+t9XCrJXFrNdk+wDenrFBUgHoWcuFx/ZeLtGjZomfk70RlOqX6J5PsxC3DCfC33AsNY3INxlk+nDfp2xn3NUYNWqNfOkdBdL9MRtCAI9JHZW9N2Eb7wBpbW3VBLSa8bntVqg6jYbRGvSvqPCLizAjaBgKXHNYKqfT4pk/xdiZDdhxjPwbXRAl5rtwNHR8CpkER1+aoJ5G3XZEP3oFporjkggrCAe++VbCNNaE5n7KMas/xSNCS9P0nEJ0BkskHEJRV3ozDwUXjAfviyB5se3RG+PPuqz201Awg8U4l2yXTDJIb+AuF49sdocHjG/1OOsYn0tEcu2PnzsdCLALBwaQm7yIZjO20qHY9S8mSUmYtwPzXBCgyw8iCelr3hCTI2g8eKKiugsBMz7ZREIwvj+2w+DfYzoCBOhnOyNmPDpflB7GcxeZi4JjWAtr3YnVaPHAwm1sl0+7xmg8Q4VbY7O0HXFp/TRtvU3eDuRj8HPwx4QPhEdK/49N6bLrepR0JUv4m6LqpodKHx4eaLOLvz67cbnbuzh6OwwO6nqrpuyca1D1R4TYl26Opvw+lkoSp5gEvrJ02h/liCA0Y0PciiiL5+zORJU1+3PzERnweijYyBCJncPZj9qEo+D9DzC71bbZHdIZM6dkxEh+ShfGW5f2BgpEjX4jWrKtLGc0Hi04xDtdWqQvV/vs7GslRa9ze2N7TPf5xzwwVZr54TJDRkoY884vkN79Q/M2xy8YFjWD2lmiyhvoyCTokeioIcZ5zQXIoOL310zos9RkEnoPMRqasmpANelZ2IfVAHxyut9+FxuCTE27y4bhrovwM0OKhY7K67GaV346pd4G7bfL7NH7SM7wf3CYjzmuO5a8qa2khT3hlypu4/pcTB9eEdvgxjnk4KaQXpGKK70jAS/chOMRzsLUUTOV6anehFz348BZL8LMb1u9oj7dNTVk9pmVL1fLTTlwU9E5/OOMfclVdkU8hyDoXsO/dTfVTBZsr9dbnGay6zXo9GjzaFEr9f+QvCx5QFPPrO9SrOPyrBxGGOqD70O0YRlrEo8CViPRwHUTElpIW5r3upDrcHL0q4s3Gt6NSbh00VI1gjbOeGE/p2PYIcCZt/wPaZVdtlCEB+veLCxknEpv0dgR0HDtJfHjGVEFoWKxGu6GcNoiU+7BO8yrynaUIFPY/P1QYjONbNy/qumrxLe0ZyeRPJ82gHq27qksMPjhxy/Vy3j+O320KQtY/4UOMZUG0iE+HNXCN5I1BilQXFht+IRbUOJ82kFWxs95HfOHHv35VzStwl6esqOGSR/o+w76yIkg+Yy65B71Ri69V0JVeVKhzQ2DH42Rh94T1viOy/eFcfXxkSaDIg9i/jDxwt0Epqm+sz2mr/hVDp1PlSPsCThm1qxdHplBWo6z2TB6kzi2T6yCyqfSyPzhNsBPX+2R5DvekKMTlD4tL60LZyMYvw7H9lsm+sENthrKYzTOmC0z30QfoJCGeu9bPgVLwVMWVSJt83NoPeu2xK6O3wIvkvImMgzScEfXyuidVVdTdtubuSPhQw8FZGDxlrxG3jcLI/o/HDl85rgBBVOHrLgsmMGtzWooYYWM0tFpTHCJ3ThVf/WeP2AFxqlQsPq43U9Mee11fkajFD7i19ie2u5m95XvUTqao2Zo49+PCYjCpFwRyZxVuRZcU3Z1uiz+w40fSa4ms21b0KgjzrB8y/OuBS1p3/77SXPis9lPl/gYGs1uRfBteMnITuhkDzPLBBW92wuc+UEOVJPhOTEDDZTSSXAj5PB7mf3i/p5NinK5vnJwkRJgzEwnB4hWSfM2cl6Vee+teSbMCJaJNcdv2C7RUv+YI5YVsHffkP/+ynMByzx4S7dZniePx3BJ7rm7+NDOMK4yX909VR5NZ6zDoOHi5Zd8mxj9JudpkCA7x0LBRX4UD7yRDHNUiXeAdvZfKmWiVu91BC9xm42ieufANvheyEGKF1Xy+sIq77bXEgkbk3OsVY3apyHjJgtDtCSv0bVGgufBHvZ4xvYUAWiBijTH+Kx23jZ6wRB6p1x/d4dggmpLISd1b2JfwhtPvlVC5CCcySeI3+McTKOPvqJN5lZOxajIX5uPjB/jJxostYGP9ruIvk5iGum+xYghoYkBe8yrpl2LoVq1MsckBlkCK+WeJam+81Xvj0ZsLpf+2gyNt4HvY7mnvme+ep+0k8+KdkgcFwo8I3HKohseHigsVMhB5wXn9ZFd6f2SaRvhZjxoTlBak9HYjfqbIzmkCyNd22HBCe4VVxZv2v44zvacb3jfPerMOJow4lTPJSs5/E+AW44J+KfhJvR/eRGAbRCexaWj++CT8wHU5ZUvJZOU8cb0XSRLNsYK8vv/zRWFTIyekLO9U/oWNrwBL3muiThct64Z65CSAgcmU/c2uj55neHdfVqmW7oQzA+sjhCk/2ecbF5gNGA3xwhjKSSuOXQGe3FGUFNKuQQ73YJqjl8dXdU4jhgvoe8TMpHSUQL/pKQK0Mwni44h9Pg28yfZanqwS+OsLmbV7ZP4yqgy/8D28wFyjsnDnjZdDk6W9sPhSLYVNP3FkiyfR9c/LX8Ihhm3jSwbzSD/PEpnmvmDKG6veKkqmc0/Z2Hlf8gLOxXOhIP16ZGkvYusPgVpaXrL9bR9c7eLNQjmU/OszjB6vuy/v3+/NDNCJrftCU+a2RjuLr5Bb7Ry2RGRqOYP4wiVEW+DUnUpGHHv/vPCOJquTV+f8qIi22owO44ZHgbDBs+G/e8RS7Vz8zaBHJcJ6YHsK9wQgEFfjfUh/eMPqPO8Jj4S0lN1Eo4eE/j3/vNv20owEH/WMQ8H1G85BMfLfjJtH3zNTrtcipgfixdCIosRRJbox52cJmwKpjrqifVLQT1+zWZXax7Pkv2FKpLfiVaVE3dsHZHigp/2xHz1uC4X7X2CO7rvmau5xZds3srKdxqNJHAmupqqkruwyXrEfGbAfPpsw18tHGinh3mueymwKxasCOvoXPpv6vxS9IePrv3sPDNIZii30cBtfbfzBRTjn43/9qCKN8Ett+vWzS+m3WkfG+NRQ5SfULj7a3XaNN/eqYjFhm9xW6zStrdlVbnU8o5sXcJ3ISXQ0xyt7PxA4YAlZtuiPNu18E7+lEFpJX+wnzJr398GhhaTXitbfugj4YvBeyWCQuGbWtM/gqLsmC2CpX1vou5oDf3f/lGr7ZrYwwM0sN5dt7EGcMx6Ffo7sP7JfwHAAD//6Rdy5ayTJB8IBciIJUskZvcCwEVd6CIgohcqoB6+jn09y9nVrPsYzcNVZmREZFYiQna2cdeyPJDIaffa0Pk0/ehzbxQRSBrXUj4Hr9jpj2WBt1T80m2Q3WK2WdajxG5vetg910u/fT4GR7M4iMOuNfEqsfx2SZwT1olSJifouXciCHqb+WRJg52q5lNvgfQqftgazp5zCq08o2ytVb8bFgb314imAf1Sb1H6Gt8HHg8Kqawp/hcFW61ZLcOSsHoqPNZ6ngyw6xAK5/DvrfR3EVXwYTTb5uOXTsSNn1xNMjBtX9RQyTffHFOkycr7XruJDogNm+E+PK3HljZ6kM/bbxfDVMw2ARL9OYK38Xh4XjhOGq/z2nF80llwdQcH1h/bA7571f+RGTlsRwAGZd4fCybRLKuQkGqjzb17W7/nuCy/VGyKbQdY/5JUtDP7W/BgiOhH/ZFo8MrMn1swnBk7HauB2n/vAsrvzIYIdNlA9/BH/HKX+P6jz9d3+KD3p5ZoP3xUYQiISXzYXvVlujUhqg1BB37CVZ6YeVrf/lL//JhsfpsgZv/fgSCmOxy9jVuDZqHaf3WcXRGy5/e3ZVHFytldMx/vrgAqK9uoXZNg3zZRT9u7/bli6r8+5yz5qQGMHtRQgT0GPN5xR/UNacMHzj+E0+NLQN63p8/rA7WFi1kKjYAF9PAPtkr/Rx8P7VcxMGOtJ7Wa8xkag3d6UGDSrUNtNzjWyey/Fpg/51b+bDU0STr7WPGOOAP66xVIwD14DywWh38eOGTygFxA2+aonxc8WPvwS262Nj+Ga/8X70ck/ZBTXY9VrOiiBtojhEOVjzXpgDQJBU780JkM5BidjpzLVifxSU/zprdIdRPEvAnGIh0eMzaqn8sFGk1JW3yqvLlchQBBs6xCH+JT6zd71IPLtXWJOsJIxp18TQAtzXLwH6fxXUw0Ost3xa+oP7pK2tMC5UO4s2ok+quaz1/u33eoKnukWz7Cx8vpf2+IMV97bGiHviV7+t3WPUuWc6DH8/yvGnQ1keEzBxvxMM80I10edoZPT+7OZ8gjQJkHpQn1jJFYbvEFgu4RF+JyBfuyuhfvZXG6kp1ftC16cDqC3jDy13xVO8Xfafq8Bfv3DnK8yl8yhP84Yfws5WcNypuQJw9leS7Sa9sKY4vFbyfPlDz/tyzMeZfBMZB/FJtO04Vk76olU5newxqfG/y5dOk2d/6YofMp3ynfzgP7ebiSjblMe1JrjggNVjRadHiBxuil2DCfeec8aqnXbajrxatfgZVhMfdnfn4GMCbfTx8VN/3fp63twhB2o9k+3KCivzVF3xifrD8cs3l3eA+IZvxPT2KyTlfzN+pkHdD15PZfdf/8cPp9wKsQZ1WRDhhAqcTDchOJMd8Jx6LBtb6ie30qbE5U507aB1qsBo+l6oJfnYJmwUbwXYT1PH08W/Znz6j/hpvQy2pHcTG5oMPaKbVXHBCB6F4FALJH1FPMISBrFEPgk0VTtUcfMcGvEem0hWvNKqmDw6t+hMHRDi4k30wU7jeYpMGr/fBnfNK0+H6Yzn1hcMHzaliW0gyLR1nFXlVy5XvS3R33IXqx+SltXtN9eTDxZWImH0Mxg/k3EL1CN5/ejWePrmWwDNyPGr41qWfx8vSwHLCjPSrnmDfxeHQ4ajOVM32rTt0F3FB/knwSM4LV5ddjfmOhJ/j08PbM1zmP6uN7KgyR113d9Rm2EWq7PfF+6++9PPXPUnwtcI9tdJ4V/X71MpgukBCD5WUVD/ZatdZtL8XWXb92L++Q1bun/6lxIpb63m34iMkIjfhb/t59ixQhg4SkZ/wodIGNODNzgRyVWIc9XZULdkpvECVGK9VP7grfkYT6MSJqVltdDY/pXuKXLJVaFAexX7mf/vLXz1f/ZcOTX/+RcsLJNhr69ik/EpUCBUP4wxve7R0bjzAXpsCqjM/ZdPqh0EBvEv/6tmqXwAG2/4QmQsUxLjgpYBwnQ90jeeK0PYwwYo/9IgefjwqyrSRFOuYkY62N3fZ3w+e/Mc/vW/37qfd2SSwM58c+aC4qJbmrKmgZbcTVm7iqZ/fB6mE7vSkwYaVSKPBxyKomKI+QBsrqcY4MjrYXBSTFsaZaYP/G034yW8pWG7Fs59/9naCx3GUqXe4LdpyDk0HgeWmVHXirmeHfB/BPDdn6v7tPx++LzAPy4/s3V6M536DdbgKg4XVW7H9h88oDElNLYcPXWE9WAKG9wLUWuRdPwuypYDOpwX17fHTE9FaSpDZiWB35TfTbYH3XtA4nx63eFuNNxg7sDM/CbZcf1lPYSIXoElTUGPVH/Pl1g/y1a/vOBS7q7YUx5+KGocQMia47El0KkNQ9yJQnAyXmOYkdcA2bj/6/JSHatJ2Y4fkCxYpZgWqqFKb9/1aT8nG7k2NmQEppbVeUa32LDQf1CUC9dUu2IXMcJfVfwMibY8Uh1Ltfrs2f4O42bxpMKGKLZOtFrDdMrzq0x8aKXdd0NG1HLKT7he23j9BJUwejX1vV03txgj//BsinbwGjTYnXiSFf9+xe+rB/b0fRYb+/LvzAw6I+8PT/jVFwY7dvi77q1fO8HUCROjMlr969GkFn1rGb5cPg6s4f/iODyv/3c3ElWDr7wk+Rs9Sm53zrCJcOTccbI9uLy3yaQH5meyxXb1ZPv3x922tN//yp0viV4NiFH2oNnUvje1TJf3zjwicrSPi1v0EcbmpBDFDZ7OeqiFM0t4i/BTQavJGpZRXvokLbuTdPz4F1VJWGBtxXM395mhKpjUlAdA609ibP2comU208mlHexVfg4C5XzZY40lVLZzv6398Gx8GZ5sPBIEKE6c6q3/21Zbt9yfCXPUt/vO/ljvQYh8kvkq9ke/64ZHnIYD7Fahe7GyNhRzbgNEcANurHzvPUavCi9cOVDW5bUzeJyuF+ngJiHDz7oy91vE0RauW9M/foBu1LUB77KZgjrvOXcpP4CFWzDL1Xk2pDfanu0trvP7hqcZEfSYyVzTu2l8Qcgo/2MBHCm7YfylbxjZqWaCm9zUcfJuqWoLzwqN78LDwn177+1xu36IUgC84OaO1svnzq4PNrzPj2VJ+Cqz1kVr8XWGC6vQSZCaLsG18z//4LrTGTg+y1W+c/tajGq49dtKHHs8/kvPIbzph9ZMLtry/+I1cNg2kVOKjO3+b3QIrP6CrH1bNj2WztvCz9RXWDcsn/dIk8P5K7+Ct7RO0KPukhb/6KNF2705OctZhYeBS5XdKYj4OdB4iOo9US1mjUVsXAhQmrrb6hUqOlNos5F6+I5Jdw1/8a3PDQmXs8NjZlF938KSlQLskfVGP312rSXwf3vIZec3KLw/5fH0qBQxC/cUrf3Jn07t1qLj0CZnFVujpHYecvOpHsqx8mGF69QCVi0G9fjkydn2dExBNTyPLXFnxkl4HDxQSnrBhwurvFc8NiHb3DqavP/f/6nn5JBeq0qfRC8fXzgNun2+C/Vc08/nyPbfAv4zd2n+ZNTYEE6CBs6xg9df6Sf/JKjxuRxsrg7f5pzf2j1HkqPkakn4qHF+CV5dc8V+8z9MeSlj9PqwuU6Ute+NqovK7eVHbO7j9lMVyINGdzqgj3vWVv2xbsIhyJvuiavL53M0miMrrhT2mGfluzTfkxuEVH7HCobFjUy1Vw7mn2oZvGTPGkZf8086jjtn1aHwOXQFdIJnUjNNvzrxNH0orPtC1H8HmDt/XwTMpwqpfW9oYn38mZGBEVFnXi+kb5smBzKU4eHjEZczWQxiM0fynD1h4C/U/fwfrvsO79Py8q4hvpuuqn0N39/h4q7DYsNV/LxDpw+kOF3GZyZCcFG15dd0G6sD38PFIhXjpi3cmLwotAtHeWjkRL8MdykzjqFoHbdz+6XNOSHqq2vc3Gx92W8Jav6kmlTs299PZgqtALGxpn6XvuExQoZcLRI3N8mPLs/11oG3HU8AywerZM84L8OZEwNjPRfZ3P2h67CIC7Y+ufnvFwe/Fn/Chkrg//VDIsSdUVL/WfUW2VDAhmCORzOFrccfC/fFQx4qIj1um5D+b5jVazpWN9SRnFRvubwnqy/NKzWQ9ta237x60UIZ49WMqqntj8IdXVDkGc/zn58BR1WxsRUe/WuzMWE+x+mT/6jcLlqX9p6+tI/r007xrHXjeDg49Gk6psTlNE8hSq8AG1Th3UfqOSN2bR1R38Dpo8tPdwW1NdeV7db4coXXQh6uEYI6YGgvzu+H++BQ9miKuVv/ujr4uTala0odLHSIq8OyySyAKcVstnwMk6Ln1DvSofSOX3cWmlTrOO+KnV5+0qQF3g166Xf7lfzwH3oHIazz960/NmaoWcj/t82D5Xst4ObQ4RHzn8RTj0dYYBDcdHvXM1v6C3gu2lbWAxwdPjz0RekKOtgNTYzzwX7xM80nX4R9ehpjmJIlftbz6b/iPD42tnwfg2r0SCP2/wbO/N6zxR8R+SLUBRXKBIP2NFPt5yuhf/26tL9ifOVf701fySRANHDsn1x3c3WP4wx/qB0NULXeyK+GPH9n7c4/oO5vfMAn3H45WPCP7u+3B6t/SU5N0eT+I5gSrHqTmJZ7ZpI9h8ff/6JrvbH4W01vefisDG1hniD42WgZrfwX/9U/m6mwHYL5Kjurf+JDvtPJ5h9OGaVgPDjJanOfbQfdj49DgxPp8/MPbQWi+VJ0rK5/Hi1RDfv98ibwz2mpc9+Mf3zuWjyweV74njVp8+uOrLjs/E1X+/7xSAP/HKQVIHqgWuoXb17o2SR9nPdh7x2E0+UdXh0053QJ+md75+OSuBWx+1x91DzPTJuf6ScA+sx810+LUT98r6tDz0FbYq/tDvH5je5DyC0kI07IdIvt0rtEtjiPCNUmtzZtdxsNQXzhsTs49X/a+q0Ag3im9vw56vqDjO4RTL1wDmd2KnFXyToLHsEuo+hANtux9TYXh5EtYW5zSneLEseCQkmOwn7K8mh66mMLPUm/B1np885nbFBMk+9cGa7dLxZo+dBYI86Gk2hdpMZuUC8BJ03nsqD/RncB5cEghqYUtcn0gusF5DX8/G/2mi2niDRG8BOCoxbNf3JeD5sD9fCI4fad63H64+Q2/UTiRtQZV/N6UA8TePARjNR3ZeGFpDRV+Z2S9334eykiR6/bGqLqXv2i8GW6GPm+kEbFRX/FMtMTaS9EY0sDb2rnAFZ9E3lNewYE6eatksnSwXhcZH69A83F3+amgm/gRLPJXZxN/LkH+CfIWO3uyQXTZnVOgTm8EvNh82czpQ4uO+82XHn9mwBYrqADkfarRx/Zpon4w7Qt6RyGjXmEe+vE8qhMSc0/DT/j28YhLl4DapTku2M9hiy+2EqhdllOFdY+euuOSwgFTiUzTQuPRC9INzNP2io11igQLth8HfvAwqL1DdUw47pzsx48gEDlcZneqSUVkxA4pkX0hiMcx24f78ZsnNDilZTV3t6cDjWL1OK85z2X2aCTwurKK6trJdbvknUTojJsX1g0d8tE97BJYb5Ee0bmPJ3NbDyC66kIYKEbF1PnRoDDobGz3w7EnsdEqkJc7FRvcUOSLI99rEL5IDH4PXo2F5dfw0L/CBCuB5Vd8h88DvOqdhA/SzmPs9AjewNXXLba36RKzO3+tofgmNQ049Z13F+OSQQLPL8bKAaEZlHsKp353JVLOu9Xwuk8AvkJFqkj4ka/rc5HFNsywPu0rtlw5rCC15TfY9MySdU1P3hBHnkYEHjh3SpsXwOlEOsLf/J4NX8/X4cZnXiBrUdAAD0Dwv89aeths+4Oh0QMXvyoWcn0H27NvBOsLqozwOzUDnj086u83G3fQxhnkc7yTsZ4FeT/fwhkg7a5PeuRYqXX8zsng6jsnGrxFFfEk/xLYPD2Ej/6VoonEVYbCJJ7JXEwdYl/2K+D3vqSBpd/5irSiaqEVP7Auf4Vq6tB7gW9zMUhi8x0jbTmq6DSmHL5NGeqHmvQEUqmc8DXe5xrT5NmTt+G4pcYX8W5N/EcNQ9r9yELT1u2OTxaCeGub4B2qZTWf8ZUH5P5UavW7JZ5pzwN6Pb2IZudOi0noxANYH04LbGd31Vitu5NkT0ZLtY433aWceh79Lq2Pj6fDgObP8/BG0sFl1BUWlXFeUXqw5g8OsPXIJ/kyF/J6PewKWltNy+3bQNPuPepV+6WiF5RIoElVhN1Slaue760NCGZt4li8tBWLqCrJJ6F60/Xv+1nYitL+Y331QLzqTj54aZZBfhkSGsQvrmJyMxGYd8UDG5L/dV+6l2fg3wadHvywrZh/700gcThRjRx7tlSBH/ztP/W1KKjYI/hxMIlajc0wl+OZ31cmVGkIdN1PxmrxbAH7rK9E3Tb3eOgPUwsX2Cok225eaHztvLcU5PhIXWn8VPPu8lPQinf4oB16NKPr/o3uKb6Sb/VTKq6NIgletSBh/yyplZBIlEPrflGrrgdEu/3Ywpw7BVkubtIvZVcoANP9RG87z3FJvzETEGTIcfKker6s+SC9sS0SmDoJLcas1pAN6Rnj+3PnzpppNODWIk9Pkhn1i4+PKUgHm9E1/vph1mwHNtvMI7RGZT/kSyDCgoqGVLv8g8ba3CYIU0GnB8HFiHJdLkGC/W2wj95WPLf8WYVTHB3/wyvZm1TQEpKRYJHWJmK8ycCkjyvNIsWMl9ctIHCzrZp6+51SUePsLbDfA8GqI0j9LHuiCp4gX3BQ94k7V52rItvtED7+drY2S6eeQP8kPDYWZ2HDtzjcZddzEnzM/bM7i1JoycZj1rAfd89YqPJWBDto6mC7pEHP3vZQQn00D+T9ED+MdSeHQ/452OA/vBpOs6LIp83mhI9TZqGpQ90CMtZ1asWHi8Y2ueOAOn9KbK31cOEiKwGZv2f0qRxyNPvPooOT8HoHvM0/KmYtjYnaIQnw+Q9fxSJKUHfvLthv+q4albb2oPpxN1rQMK4W97O9o1KzG2rehZbNlsfzf/cbiNl5csePbziS19z2+OhPX23WUhuA3ByVKud1Utdfvu8pp+AkVON4sZqDicgGpGB/mJV4uXFgAvUbgr3H9ZtPY6+UcpHgDitV5KG/eovg4kTUuvlFNdux16EfPA0ibIlaLZ9gidBIOA0bmqXEy75uLTgPnI1vp+zCKJoXDyZtnRi48p02+tzu0Gh6Qi+vsNQaLlIucr4tdoEUKU2+3NMqhGpX1kGM5NkdL697AGy+T/jgb99oiY1WlS5G0webZ/BBPzfeD/AebiU9rPi6uALjAKXjDeteesln/tsQeIbRlepctR58+HDXN1LyhGze4hv1N/4XwI9mhHp15GgN/4t5ICcar3wFVfPUFJ6kpOcPxvuh7ednpBbg6DUJyvLwzafPT93IItt8gmU7pesM+M0iaabe0Cwjmct20WYBpvY92QahmH+vlbDA8fN8UePQ9Wwu0zSSbtlwIMJm2+bTcqM1ooI0YhVEpx8VqW0gOF93hDEJ2HSZq7ss0MsXG7fLpVrYfqMDj9UndYtN00+Pr5/98Q1qLtM7ZvmtusC8OYzU2pPBHfR71yJ0nidqdiPR/vAU3mbdUvf2eKDFtl0PEc14Eg4VWjxH8keFv+cP9OrBptvLDuDzujbB9qtz1aRdEg6esaeQ7U22e26I+ATWehdsvWOdT0MxiGCo5p4G6jRU066ZQtmP4nOQ7OSsH4ox9tDKv7AhwSHmtsQD6dMuZ2rTi15RP+Te//iHYCR5tdwnK4Pb9F6/JRQSjWllEKI3dkV6HKae/fEzMfpK+ppPTs/kRiSglemHKg3YaIek4A0bCZkELL/V/l3vF06I2sqPIJI9is0fnlL3US4uq/CSAF/vUqqYXNz3TX6NZDulUXBJi7lvL3KmwEfI7AC6IsqHP34e888CO59hdkdivzbyiKQMqwar0HJ2ts4+M1QFO53RxmTly9A/B57q7xNlk/H+O1UivJPNIk3Vv3zfPztKVe6+1aa0vDsokBQPJyenRj167nh47lWRHmmbuVwZni9ATmNM9ZKtx0n+Yh5ltzgPvo3rafOCGwe2FbenKk0tbSeSXwOPOtTxITdHRMsyqeXnoaswvsRDxV7YD//0Bv7D+/kUQIaa4ONT0+blitErmCiaHmdqXZleLdWNTZCapo7xqgeWT1by6D3kJQG38PuaHoHbr/lNE5pKrO4pF6B9YETUNatDtTwPLADQmx3hfx/ox9NZ9faR092pvfM6bRZGrpR/hjlR55Yo+fIo9jr4Fb8Q9POreNqcQoICSfWC+vexkXAySx2Kox3TAwpqd9cmlgpfsj9jX91f4ymzB1Oyv1cTqyv+U3bY69L1PK4hxd8Y1Re1gzGdS6zeD5k7pyIlksiLQbDl6qvGhvZy+acP4jSI4oEeOR6NQbdgNx8VxNu25kHXJq9gIz/DfKLTs0VJJV7/6n1P7dFPUOS0d5q065CoblRa2IV+jrUg9dg0dHEB559Y4gMXH3ru7pws+ag2EZkOB7Xi7WS/wK3mKHVGauTce+RbeD2DiJDbKGtD92tSyF3Vxnit5ySVEh6SmJrBn/5kYpKK6N6mbcCnxVzRyaynf3jgr3qEUs8v0VrPyWWORjYJoeUhZyocfHwtHJpD2G4gfgyAo4doILLyTTkJ5wc+VPZbm83DTULF5tUGzdiGaBbbeIJxjJpAfIQLG+miT9Jkvl844N1LztQPVeFi1D1V4FlWy+tmErg/W5NG1pnGf3x9Xzr1GWNWKi7nR3MLRkhG6kehUQlFX+h7/5Phf/jEZm9ppKqwAhJf8oO2pKQJYaomG6tdc1vxJw+Aqb8ee+eEuR1n3qY/fMPaOcbVXEpjiJLl7RIOGZ62i/JQQa/dwSVs3e9lb+4C9Pnww+ofqDHXcl8J5Z/EIuInPmpzn3kB6gL1jb3srvf/+LFpt0/sucXYE/P2KZBDpAHrk/OrmJI5pvTSSouq4u6SD6s/geaNNpLN1T1Vsx79AojkV08dcxjypbilCWo0MwmSlqdVd0x0gp7K0STsKWJtqctDLQ+ZZ9JD+CLx18SDCuwUP7Eaqkq/SLuRR57/u1ItlMSYRK+vB1b/7KgR761cWGIrQ6jOa+x1Ru6y8YrVfWI3KT3mzRDTV/NOgd7CPfbHxs9Xfaai0NcH7Pf6C01KmLbgmJaLb5qU5MzjFE9W8+lL7cg+aUy2/Qnd92DQx/Sa3H530xtIvzmPbe9Sun/4AifN5OnKB6sxvWSD5J+9DT7aY4R+YfYGqQ/cG3YTrdYmIVQ8mUhPLvjzd9j7ZXfI5xSN6vYj7qfNd+vAeeBtepxtzV0eh8CCZF9tsFvOVzQ/XNzAq7ld6fUKOOd/jcT/1R8iDt+DO0n5aKFTeSnIbl2feXl1K3/UD1R/0jofY8ci0F2YHrCOb9bZ2aoqH85LgT0s1IzW4sOB3mhs6nydT7WoflyArVgqtaql0Kam6gLQ/dajTzFItDlZqjc8EbwCTuDMeMy27xrcWuIpLi4lot7lsc5GVRTqKwfbXarACODg6PEaT3Y/tGk7ABY/DdXZHLlLhmwRtq55JXztqowbplcEO/mp/sM7loIN//wNNxALd0ne9xCESTIo5nMV8ffJSmHzO/+oz26bfFj6fiMMm8eL2kl/71f+FsGN3St8THqbkT99vuZfMKp7IZ7F+ycA8zLwqx60ev6kSxtYdP0ULNaZ5t8mv4bAZfi06u9CIzxKAzS/rxXVaZoxVsmyhBLV/mE/XE7ulOO9CMV5PuLOHLx83f/grx5jlypJTHT1BvAXL9m5q2I2FbYIkyT7xBLeVTWs9RRuG/lOD20Txgt+TTxa/TZqKcutX7QOE2DGN6F+ol0Qu1CSQOibQzCt/sdaf0yg+7uDQ/8Wx7PwNjaQa5+MyEHTVosjJzUUQa1Sm9PTnrU6DaSNVs5E3j4bNqn5rvkvnvBxz8bNLuOg+Z4pWZj6cYejp6TgnhiQk87J7nT9cOKfX4LNS6/kTJP3ATBnPeg8M7l4iV7fAG41T7HJQccmUewVQF3EEyZe2n4c5SBEZ68Tg11hfTQipF4puZdYpUqx31Xz5dspIMlaELDVb2yN93SXOUWvKe4fPaJyMw0S7fhLQOHr5kvqnUKQt1pHtcVR1kGuGxVd2qdErew8adNBRHew5jLAye9jM17rjgTtjbe6+qO6y/3xnes12lKjTvxeOJmtDh2nDAFLgyVf87FG5bEdsJbKQz/R2xwAP70qrHyMwh1SS1BRcD7vsO0GJKa3p2fC9Px7nrLIJ3E5e3L7IBlWfsU5ni8sbKS7oNwJf3gdtKk7ntK/+CIsUn8r/7k3kns5qbS4jbI7nG2lk5SD9fqnt0dk7BzgL7gmLa9Td1n5Iuous06N3H/ny/bZcWh/Cnx88IRTPI21RBA/hEeaJLnTL/t0buCpN16wyWuLrfko/fGR4GuPEWN3666gFc+CZR+MPbGy7A0rf6OOLUer37P34M8f1b2Uz+nJbE20+tvYXbpTPlyeXxP+8PrfevFaXaPRN85EPEiuu/iDlKBTwRTq5mPJWGckIZKPv3Mg5Xzfs7QeOOgBikCi4i3nGTmWaFJ+OHj52zdj73NsAnc9tdR6bH13/0kRQfkzrv/4CuLVQy0C+yYqVg+HczydBT2Q1Gv8omoWtGwWRijBQEpP/cESESvkrAAhHLh/fH9Z+QNqgq9PtpMkabW0T3XwwiXCOBs0xEfbzEK6p9PV3y3Y3ELHgetZCcWTlGnTxugstJ7TRh/jVu85YcCZtOJXsH0EOB+rauf9+U3E7gKmrfj9hr/4fqx+9U7gnAREXgrw6u/kdamTBdlSodC/+GJ69ilhVyVn6oiJ4bYXOVLhJ2y32NZesjtvrlRCF3L2Vv9Sjifin2vYmt9TAEb0iZmKlQZe6yAij3er/lemYSRf5vsRhzu36acw3fFy0vAKdTIiueR8RyU6tYhQR5vtanz/HgCOb2/I5qf3OdlaPgHe0/l//GFu+Yci6X7nEUZKbcUPK5NWPzZIM/KNl4zmF5ieJxUbr0V1l2/jL3CdDi+Kx+01XkrIMrhX6E3XzzX+Ve8i0MjuiE2Bu7ks92FCq94m/JMK2l8/Aa16hlS3i8aGlR9K1sEdsLH2Lla/QYcsHFzqp/fAnZ+PvQr5O32SMyhpvFOkspFT6T0Fn+pdoHaINgla/bPVb0X9/LcfbdjqwfZg+/lSdhcFccVw/eeXLM5MFCnXvhnZvW4d6jneKRDPpzt632mLK2ADqTAcjx5ZHGEdPCGlFuhNRrC5HCx3LqiSgBOM+R/eajPupQi2Fb8n29YzYzJc0uaP72CDlDvEdtOPSE+99v7Vh188b+7gK6OIFSWy8l16iYZ/ekOr3oM7/uEpPuoVEYwE9b+WPyvwHJMx2Ll8ok378/MC38OP4L98Zk9hHoA5ZkaDJNZy4c8/jx8EsCssb8SWg65AkPtHfHR2dTyNN8+BsUtkqn092yUkpwR+lnLDiZBTdxE7S0QGUnvq3HHlLqfw9ZaPl90YSKvfy/+ahYNL4KJAds9vNPS10YoTPs7Bbt2/flIum39+Y/xFVTzdXgdPzu5Yx/Zvh9ByPUkqrG9NY2dU3H/Xl67yOqhhV4f9SISxhEcd6TQws19FkC+aKOSeKtX98ov++m0o8d4Hwv82DLFz0bb//LOj9ury1n0wC3bX1qEeEX79jKrS/OvPkXkjvtzJNQsFTMO+4WPwfOXfyawX4D77Oz5uidrz10fboKvbcNgZvjFbkstI/j3vZ+3FcTWpBnD5Ig6mHKf9eBbnC+A6ccnL7C3GyoSoAF0+knnz/DHWhudF1trtDutDOfSLa08h6PdQoWGS8G7f5M8QEtX9ka0YcG5jxtcWts30pueym/oJ7xiBuoiNYDaAVMx/iyKy9OOZTMNN1BZTSDNIJiDYFh+Y/fkT0i0+RcF6wnUl0N9UyNhqFXoZ24lNR3JOQd+pb4zrtx3vkOdsYAy9kCa/zw99j+eZl9PThOmh0Wv08eVDI5dVIuDgdRC06WhIzd/zYWc6TazLdy9HrsTCp86mHPPZ8K27ZMmHIxGXbNGWyLWmv34KYaueEnIfFnGtRxgb77qne0AE3QX1Tjj1PSE6e0sN7mmGYO1n5RN7yhlc1J+KFdO4xf/6rze9LwIh6X+MXE23QIPbRGQ5ZENP+d4CiLUGY23tB4znPMikUsEyeSsR0iZwzhzIyThQd7IajTw8jiAkFUdqSP5Rm6tD6cE3mVoyT7+6/5iHmwjNiVgEvfa/fI1fBX0+3ICvz23V92YeNWBo3SVgyvtb/eN/aS8BmVY+sXyylgdv5Nq1P/iq5mmoFeSFU0TdnXdnC36JPLq7toK1YpL7QT1/J/BvRKcGPu7RcjPFN0RVtsH+HK6nQBGuBrhYEc5t7hiTR6yW8kNWPvj2DO/avKkuBTzOXYj9dGfkbFTKBlZ/AxvKW8opDKcC3vRsU2/V81PPOypwH3Qne8e8o2V0OkWevbLDwdWdq955FROs9Zr60yvUVvywkEGTEgfs16HlyXvNv/7LzbuU2nxEs44cvSH0QC3UT6XeLGhnqxeyXz//0yvoLx5ju9nE7GBJC+yunbPyrV3MTPsSwNqP/fNn2cwcP0PVsKg0wILQz5l78mA3g736+5w7DdMvWgd5vQhb8aZPpziDpfA21NzQfOUr9xD99XdxlQkVKdAnQX/1O17rHWdcbRGyITsH+9ujd//6ff+vVwrk//2VghhvdIqVlPbjxPWJFCmRTeC84RAhmjzA2N17atbuVpuND3VAhbtIL3D4suX8oBycbreF7PrDXqOVyHlgkPs52DTnMWbx+UrAxMsS/PQHX/WXaa8DtzsjHPzQx6U3f8ygJ8odK8n5xBi39xX4SIpP7+oSuoPg9S1EtyPBwSUj+VQIIQ/P41Yk29vw1mZtTjMwL5s3dqveyxl5/BT4tNQIoJPPMTPqeQAivs3gTgLkzpqsh2DPhYfND+7zb7KYnfT8dk8i5d1PI+ne9sCTmwvWdiq3zsK0s/1Dpbdgyhshpo/Tr0PXYrTxEe4sXpbsKAGcZ51aLXT91OvlW+7w9oANJZHReKxvDQguetPDmbOriamWKm1yrSLLNyhj5npeAhm7eMG+qnUksNZr4U4eEXWPuamNPwgvIG1EjSZKUMesyWQFnZUtI/KdV+L5ICx3eXFKMeCHXaX13KurwQnK97/no5+NqUK5KZ1gw28RG8/yQweNj3ysJY9jzvC7KNFWykzqEN5no3w73+G54QJ6UuOILZqkdMjRc4c6Y1q7TMC3DTwv1yuZOm2opqlHOrC0ibFJ50s1b1EoQSgaZ3wL0zLuy226ASWpOerbZ7uqZ6EBmO+OTl3YJvkyfzZ3NFzeP2zL369LOZ11EgzAcKDuhWp5dYu1njIwB8tj56E5ncKNbDuf3fqtmyBmebWEEumcb8Cb1rdabmPUyV2NLaxOkZDPiSYE/9bvTKICLQ9hEyJ9pin2y2PjTjGNFaTkSxW05VeL+ed890Dcvl3SBI+AzfsmiSRLaAWsucxH/67nn/gHNmbxUvXr+oHrhjusPtZXBibTlWC304Rgu1W2Gr119wQG+x4RedmI1bjX3HDfPvoSG6+g1WYnsgCsu38ImrGO+qnxMh76H+sxxhvIZ0JPJXjTW6HHiW/iYfmcFMgU8qWKWL7YLwgnIgfZdYMdcoyrpeTbAfZe88ae/Rv7ISrW9XhoKdazPuiZmuUpSspNQfbDOhom+Nw5CD7LE3upqSImBQeylbywoO58O8bTQZoW+Wle1IBloaaxb3l4o+L56Klxa8OcSZ/BggzsmZorHozFfdLhUiYXatk7k03nh5NB835n1P7Mm3ya1lmstZC2+NmKDVrj7y05aR+S6XFj+YLuSIKDHk7YhMORzRXeh9Btzrtg6Z6NtjwGJ4PNkPTYyqtXRUdFMkFtvQXfSzPVauYzCXYPfsF6c0I95V7vWm5I3FJ1aycVVYZBgSR9NsEY3HrtK6O9itQ2WLBOPCOn14/zhuL21emh7iEeum0OcC2ViOpl8UTE3F4nMIKZYH+3U5iwlw8RyviTg3FvOGiZ51FB97buqWl1zJ3rfHQgNviBWpvuEzPpJoZA75OHD4uO0RLANoL5MUs4MA6fipXkLMFTy27U0z+etsTpRZXC28hj7xI3aPSIHIAvhxEuRq9DvapOG0gGOhAS21Y/G5+vBZM8fQJp+P3QvKXdBU2fmATbu3xkk/wqQ/nwbjG+NrfZnXKRZDDcnt+Ad5EWz0qzrqc3AVa0y6xNT+sUyQfHvlJD5RliTT/pso74CePj5qgJUmAPsI+niDruquo+eFP/y29cyg+X3aK9tFd2+xNW0HzMGf3dRbTo7YmesurmfsttuIEXCh/4ppEGLXvupMCi5CXZRMY9niNtluCafGdsRQ7R1uuJiM5KTItDPiLiWW0Ni96dqNv4AlrGZRf+1Rd68PKLJshxXCKW1jG+nBMvZ893p4ARH3ZUCd5lP8l7dUAN/I5BfblAT993PwLnPETU988FYpe+rhEd5heRVnzse9R66HhpC+y5x2tM3YpMsLuCSwt+i9CM9/lbOt4rgxpH9/Mf/tdC1mKTMwtt4GIrhXU9iCgKv54d/XuN3Kj4UF85tdocGriA6FU3NEPlUeu80lVB714tEbVRZDMjZrP/XG8yNoMHYcOpOwSwM3sNB7vX4k6isjMhuN4UjA/8Lf5NXJWge3L5YGuheTXr83mQi0ufB/LGad0FjGL6+31qn/lnLEzklYG48TWsNZ9nv2SvWoeGnFoCMxchVtvQov3WO+LoGV+qMdyUCliXSxaw3/2IuCgadDg31YEe50/Z0ysMG1hS8YoVudZy0l4vNbzvjUS2Yav0P/BfDfwCWQ72bP2Wm2NGKeyHrxBsrKjP5276LaCHGcKq/sri5cq4Ad6//kQ2vX5Hk/xqQyi/SU7V5YnihY/SCKVFblDv9+x7Ip0URbad7w5b3nWJWcneqVxLyYlqWtH0tI/VAayuKbF9OmI0bwsaSdRoHoRXhRdbHtY+g1YrGX5gy4gn8+2mkDJIqHbyDr2Qo2RA+WQ+qXIQv/H8Opk8wNf0go++OTBhc6wBpCe+k9elqtDMD3sFLnI64Lzqh3w8lKEKqimeiWRAkA/CznYQLqKe4gO/zz+i/bmAJb+KdT2VfrLyX4Jq59cR6X4T2RBFtQnGNWqw9elrxg6z+Eb1xXSxQnkrpopulih+RW9q8i3nzo2dlLAXlZSIeXXoySH1gz88o4cKvJ6I0bn54xfUH907I5rB1VBRzAXsWCA2Dn5hopLLFhyU77n69H66wOHqE+qtfHHOf5wHD3PjYEPol3x62IRfD96uA07WRJcsGZZg+zM31LcanC+9ExXy+MgS7EEfxgO+KRzyplKhMbRDxbjwW8L8PKp0fT40fhv3Dj/No9g+89ucbFhg/u0f9T/Si7GDHStyTdCED/nXyJfMObSQPXWDnlb+Ra4MCIxY3VH3VzwqNtC5RWGJGhr4F48N6bcdgP74iqqbTIoX8drpoPmTQgDff/myYYGOTrPUUTc1Eja9easBon/XQRN64/bX5HhH8VO+kcnxSfWHV5AN1p1GVWv1uy3tEtTQegr4aFEYTbTDhAYDvwjnTLia88JKYG6iBR9ReqrYzxdFkJEaYCOaIzZpbWnBylepjZOYTePrvsDNdbSAN/Q8nnff+g1Ky0lUl7VUm2TGB3/8hBbmk+bDJ7VTuO9+Kl7/Hk0aPb5B3cU2iTtXdXelEW1k4KyKxr/7kQ1+fyrgF2xlgqRHi+ZmllR0rMiOLL2MEdsgPgGrymYy1z3k861+Z/JTPZ5WfqvEy3G0OcjRbsRH/vd2KTfeLPSH9/Y+OmsEqxovX7j6Hsxnzu65M1dzf/U/oL5qMWZHTQY4TfXge6ZXxl7hKfuvHs8PV1tw97sg//HtyfZwfGp/egNduTDF1u3QV/TGqxL8Nv2e7JrI7nfX3iv+5e9Z8h9slISkRepyLcnuV+F4UvxgASkuAmoq555Nv/dHkQR3/8a28XqjKfEcBcxdcsDqH38Pc7hLzQlHAbLbbT8F/WUBEpCZevfdEk/addThc83lf/xtnjyfg6lp+DWfcjSflv0dzkPeUu11LCvmenoC17ccUnd/u/dTfk5NwPdtRf3mN8dE2JFaWq9H9uPQusvXvHhAygPGeteMfW8Ixw6RD+JpYD5xPgsDn4DHp1/qWa7G1vi7QL9EFT54Oe9ObPYkwBh56/VPueAZ7wjo57sEf3pufo3ygqLYP+LzQ1bz+QdhIi85v9aX41brDcuZJDExLxjv36U2sFmXYMUnbMSmjpatbnvQ/AYbPycR3PbnOjVa+Th+rvg2WFiakNH5NT0mp8DlVr0FKz/F3s5I+396z5qnkKaC7vc/trVbuB+jgAhrflCPoxZwB7PEDuFHtOqB6I9vY3f76mK28eZCngf3Rn6Ic12Bz5USko3C4SD8LtX86x8h6FkZYyydcEUe1j6FI76TQHnc4nxZ8QIJo7/Fh7c9IXZ+TgPaZvRJuNCuYlLXjwze6t2nKvgHjQkNl8FmahaMPxF15/dG5KH/eB5+IrqP52y6hPLwGFKs9jJmU3wVa3CWeRNMfpHEPf5WChxdX8YBHw45LTgBgGtPNcamJKFBPE2OvOqvoCHxwJZ3HZryn765d/IuJr2T3SE4vW9Yf9LJXR6Dmv1XX8zeqkbNkkQpxF8r2Pe1pJGv+x5gkOlIxHCo82kBdIcvX9yx18ilO+J9XMKaX9janWZGNJKZEjGkV8D2VxPNf/vR1rsQu7pTVrNjZimSt5+RcJfLvZqeQmEh+fxUAlj5rPCUvAJUbTNQkzM37tvreRH4zc7F3vNq5VxgKQUyAkaIkL/jnnXz0UNM/LZ45WtVdztPHlCjfmATprdG//Ro8uzPBJQwc+nGm+/QnO8aTdb/v3B1KSH/8empYR73FYkf7zf8THekx6fw6cddLgNsB/VLPeEb9BO+WRza+j+Lavq7zb/CoEgoelyeq3+Qu+SO8/s/vO1Tg0Pd5vJ0gPtcGoyv+0YjxadN0FP4cRjHdaKR7DWYcKq5GLujvstH8YUnhPuziu22baqp/CgevNTphHPBq9z22XchtOZzDpiAU/SLy5YX1+elxa+J3aXdgo7sXJSx0mleP9Xd9QK73UGgZnWn+dhPXxMELqdkLI+mu+DudYHfjk+w3eXvmF209XgDiR3J9nwN3eXvfkes7Ai3195s4ro3L9+3S0ZQ4wvsp6shJ6/1iGrOuXYXT/gUyMg8TPPty8m555MRkKRfRL3Q3buNg50OXSfti1f9h7r64KVoNwQnbBXcNx48wVLhvH9uCW/c/Hjm7VKVW79zg523EbRRyd03nAR2okFr/WIiM2WC4Z6H1NCkUmNIjS10K46H4AKHIxpPy76AnzhH1PrapB/2j1qBjb/1aFAopjbCLbXgq/ECtVSMXRqyYn1FWSdYlfsOjWLWpn94S2Z4fdzl/D+kncvWsrAOhi/IgYhIwxABORUpivLhTFAQEJRDC/Tq98J/D/dsD10iS9OYvHlSmj/7iYJOXZHlen3bgPRErysjRBMPXJ8+fn0Bo6lbosHxhafrW26RYmDJz5nlYy4ELAf8/VzYHv8J4fBcTvWMDCkn1uHgJAIXlxatAVfi3SqvHCe7MBUqhFei5musT8fSb396gU5ptFkGNwkU3O8qZuafWCS8mu82/Orzw6pgiA7JWYBFL1JJqXf60GZ1D4FDXwR7WYPmeZmd+v4MB9I1pwqPeddUyAj/dv5GBgmzv+PHQH1drnypcfxy8g+aC0pWxT5d4k9TDOoF2k0RMH9e191XaYMclnqSkb2V4dGrvRWM2FGp9BSsZCxuT0BLPeo3ca3qfObIR6dKDImzPoyIUmk/I+PV68RNWkcf6Qr3INc37x/PmNxvF0N7Clzid0bK+YyvFKVW4JM9vN768Cyz9KdH/HkWhnBcu7qNVDRJBBcw47EuNwGg5h4Q77N/oWk+lDP8WeWdbt9txMf9V6GAQtul2/DYh5+g+g0SMFy2l29/ev859S2sv8aKWFf1E86T9rEheY57dt+Fpc5/PG3hFf5u0z/C8XOqPnDtbx+67R5z2cfubgRP3d6Y8d2GIRtP6/lX7zN9W7l89Lvn/PM/FnzeBR9/PCzux4qc0mijz+hwS6E5AiHHVFST8ZbILsQ4tZj7RD7aVq/M+PFWRnqn7+aX9XJ/PI9ZJ1Z0M3M0H/Ejnn0kLg85vZVPhaxzMhA7Uda4m9Ng3CGLfemqvh4TrtUOKAufJK5ERP5PL5bXg7XYHzirnOXUmvxhEy0JXwlf4iFYs3FhWbTZ8WmfxyrQKfpjrvE0Sv53ISla4oWPfvyoXScruRq9HXPN7tPx4ylyf/UCMb31AU/rZ3OG3a3dsb2xWYXDKJTRj+9RsUxJ2FvD+vzTL/73kf5hqnnRB4nmZe0v+SqcN5tXgIosL1n0Wr3L+WKqJljfJv3xVD7BLXbhkXFGjPWb4vk44Rh1kuOSw3jv0YwK9a7Ez9uBGaW64UO3L3xwjMFfeBktudElM9LbTc90Uz1jHhh3FR6dFzCLzzckUmk/onvAgCJ2uiV0qdfl7UDWlHtb0sn6409Dch9yfzWvzW4TjzHAbmMwf5qum7Ie3zsX/fKVgwSs8+fjkcOvXjMW3vtuav0JcdF5/usyPsKR2+yO/hp/T6zCWOtj34gC3BIcEzN+n7Hw4xmXenvwd8v95leGK0is6uzPU1SW3F/bLpSa7bB4LLRkThJNQ+qpw//ye399uDHiguYQNwtULsQ78YOSpmmYyiyqj3nHKsj0+EYe13XB2+m+DF59zivmiHsWTu5DEH68n1mOIPGqjVZL/BwIcV+P+z/+gpb4RpZ4Us46vRtwxQfsr3T/W9JHYkU/3uB3J/8vnL/CsQDYFytyeChF2LWadkF93v2xvZ3kaA43BiDyIi3zrkQu+xu/1KAVF+zL1OLdsFV29x//JmFz2fHpC3EE4XmnE20YO85JYNe7dNNpfpffAX/8rJCRGGQDBeuVLSf4Jnf4uvenv/DJcLKqU60kr0FlJpvEktub9R19UY+Y0yZaMv5Rd0RLP4C4IctC3nSbO9yPo0JLz1ax+H7wCyrKsSXayzyXE6d+Dec9WvvbE9O68fqRVjC/V5TeDi+Nb9W+1+Bc5YQtA0S7uV91AgSbZUuCmeJueit5pSzxnfZ/6bObXsVeQm5S7+isdC4XN7F8gUKGG3P1e8EXnlyAfhf+WLh8H0QCtVYOf0Hts4VXc93vRTC/u3zRn14ydfD4wNIPYnu+xeWc3aYZnlpyXfSAgcd7QzUID0JPDC35/PxJlR8X9cVOi7/2qfPKlfN+t/ZBuWfop+fge4wsuqs3bjnV06yBJ94bZlEqhROCl4tOt2Qm/oTkkBWDHQGLy4R4iqolG48qHhJf4+bXf0Jsu3qK/+oFJ4jzZDy1zjKy2PaZNwkzn1T9awJcucH87kbRfLykT3BP2YvYR9Pr5qfizkDmfGbxuzOQMG5frXLZn7bEiQer3CyfR3l5aMkhduvuk/ZbEQw63pjbBBEe7ebhI7D7gWnpn45nU5JiQMN5S7xW2SScRGwFCw8kniwJyVxa9IkW/yTuFl/196KvQLb1gelrt+jGTDdmhGGpHQqY9WHRR8ifRZEd8mxA3LxhG3a5+GUqT3P9xyNk4qrvfzyyf25jcXekMmcmRnoyGkKqok3vnRi+lt9kQl1twnoMKMPan9FNciZ76Hp7tv7GJk3Jm8t5pXDXF/zv3gvQ9nLvPdAr5eBP64dUdmF9n+VfP8fZ9Eo49MfIhOahVD+eWrJXcLtDF4DpszYKSnawtfmnP6ig785YfCTkAsI6C5f6AMrxdbt9UBY8R/p3YkU5Ge+vAMFj1RAsP2w+3WMkIvHSP1m28Ey+600PNd/4wIhSXBMaxk8NknsZ+Jttdw75U9iu5F3/3tKJFbdynN83Fb7TuyS//pvQPBIfLpJ9ZOmJHEKu1fuVsi69P38XxGoyW0YfQR64PZV3oa5vvtp6RMkx3ZHTbBBOz17hKou92W2pv7nuV8KPl5HD5/AuR9n0ZfTe5z/+qZZi+ChytK5tlZzUjYP5wdZGQE0cMHeLN3is0DmGH589oJOLOV83JoiPgi72mjF7k72t2M5ZJ1Zc53jYKate2n8KkTjHV4z5eq9J//gm0b9XPN9rqQYkpA1VUJhx7rBAA5u4LcPGbsSt14kyWIe/iNLD/tD1XxpWIElRuvQnDuGcTRcPrXu1IbahdZhBphmQbBSTLHyd/+uvGlW3J05ZVXz49YPPIbHonIT7sPezVobinBVM6/t1OR6G3epfv/Snx6c/kWswX761P/Et7qYn3qjKos/9X307FqJaKz9+c+/eH32Mi4snx3x1Wf6PTTeMD1VSfv2A4wWJ5SS4Sv2r3+jiv93cvQQZVuz0ZTYOg27WZbuFxhmejCy8eVSCwYeF1xJ9ZYrJpPVYUlTZ1shZn9uSlxJ48Mgm9t/rqza7oF9/UzthXvY/nsnfbfsvvvevEcyf3mI4i+TwY0UXEWpXL5jT7Xq957f2+eP37KAYpi5qjxuVK6vvF36S6XSpzxR+dGYqOOc3H9N+LaDYIhFVyFZAU344A5xNd/S3bDY68Xj7rGDJT2w/XPOQ4m6q4bnRZKbhuAhpJEcjuvFPQPZ825Ujm682qt9ZzA5BRfmwCdxlkKtfMd8ZN/ifvf+PLQWS8L+3FJxXYsnU43et9/fymgO6VJTZ3/LUTZ4EEmRqlTFPO+vJtjfjAoJti5kZdRMf6xfyIH/ZEft7VpM+nfRCRtp9okT3kk057hxPhLG3ObGW91+r6SKh/nQYiYc1D02tiy87fJnudIzPX8Sv9SUH7+GnTLffLecpfbtAmPggrvHIkwkg6BER0zVTmVMiPujIA42LJnOivwZPO4dV4MIyaGA3t+WoRIGhxEcs+iuBeJw6390dheH1QTRBOPEJslsE99B1qfh1m3DOTMsDavIN2c/Kups27zxWdlXr0TX+5Jy9onsuL8+FEfeohMkoncoIzLO3JW4XXzpWG44J9adQyXHzRJz1F8kHoLnOTrJdJeyVhhQV+/5IcECNkNsSEkASH7UvzF+BM+5/bVCHzcw8wbeSMbzqPfLeUC/3S/gcK6sc/vqzxDRbTcNuxydbscNvT8wgY2Wvbf9sGJ/nhBD8UdFWuJeF7DdJ4vPtW+u6I7MlMCRJJHr4ikrqrO4BXPa5zvSn+wq5oFQGUFKumCMUZzwb9jFA+fz5smCx9zA7yhNeYdkwLfrWfHqvHxEk2bQlPtbnZEh5LiptGIgkmK5mQt0z8kEObwVVyFrFU/fsPeCXPGbOqsrw/LD7AobiDOSADKozdIAR7M8kU8VSH2hgl+kMqHiYVCpfVTJql2eNJMO8MrOR9FJMT1iFc1VZhITimPSHo72CVxqO/sp1ePl1dWlEaF/ZzCI45VN2P17QAaOU7D2tS2jMnqL8DmhI67pW9W1EnheZzIvmz2irj5V1suEhh8bif2oyvMdNi9JNpvjy4o/9pN9yyJqjSpztJ9R5UaQyLP7MsMhu6JPd2gqOvnX3t+rU4THDmgTS6y8meMQzH4uSfNBGg4ZZ17RAE2gnAB+3HdGF7NWJH0vzoDaHjGmD9OYzuskSvJ63mPaBmyTcr9sYrXeSzwh7CLiPcTAjVWyA2FK1x+L52VCw/04N3c7bSv9m+P0Bnsw+8VA/6NN7fb2gMPx70NEcQjw7yYmum/vuRHBmR/j7W+99JLtUuIiU8/y50yDvVYv4wmSiUSamqqRuVDCy83Kd182+BVV8A9MPloFGdZBN+MUX4+aHZUvrmwazR1tfOX0/3bDvtjm8r8KL4Uht+PR9OYXsjUedea7tY77jk6vk4rmi6/DZlZMv/tUgsY3BtDEd9OkmKGdUFG9MEv01J4NbT5FiNHFJn1OoonE1zrayoSyiwlEuENfGzoObYdTEBq3R6Rkx47d+DIdpXi7r7SI5Lkc6rsIs5Gl+eMrlfi36K9Wqu/EaNxXYamf6io+1Uozk8wes8q4zolQG+pqFUUNWNgfi5ulneQqeaCg9rh7MRWHBp0kXzmBbErCDeT8iKuCXqTS3eEVMJXzrpZQFZ0hr68zcTyuFfN18JFAe4Y1YbsITWqymQkF04xItd+46Xxv5BbrRn5n2zV94Lm/JB13107IrfDnY0RTfT7hKfeJv0KrnwzexL9B9q4Ccp6hDfZxNLfAsdgjRSyX5mK+XqCS83/tibdT62Mb2GfTxIZB9exR1+ujeJgjT80KsVXkr+T19Vb94RbcEw/L7IIC3sr4yFa/Fbvit1zs3Vv/yybjcHx6FHbCUzGI45hSn6BY+TsT+q0XM6s33AkZxvlKeGarOy09kwiY2N8TYH658Mj/HEW3t/R+zboJVcsAbgMVfKH8WNZ7/vo8PKCTZUwbnfcjDwy4A1j9kopb1PRnnB6qAh+qBWbH8QWNtIAHy7bz1Qfc0LL6swFTSpnmzg2eIYS2v4xmG3Lkw3Z2OeAI++6BxwWS3aeWi0elMCczcIkQLsYq235FSUDo8Md91eDdNLIyU9p735MhSWi72j6AsAoPpH22X1GfUmMAeB0LMv3dQCuEVU9glksZus+SU4+Xb1/CWthaVvuWpnJ+Pwx30+vhHzPsLutFaJg9EeNgzNzUqPBdiqIFifiTimMZFX/aIq/LJUANyvmdTOUq4WE4lSJi/Fa8tHo8MfUA/LYMs5qDtWtdIcnkjKZy58q3SB9zL+S9eL/kk5zTVugjtBXwkHpuefPuJvI/cPLQdwfdxSsa7mq6Q7J9C5ovKV58Mvq9BDZvIv5/0Szf6aKXJ29urZeeHHqPJs9L2nx44eCnSv4cUx3Ax25O/c+QV4k4iPJGpKDWxtf267FfpKQBBoi6dx3TAvaRoMcyOyYiXP2jI99YrVTQPRcwDY9anbOv1u+xszsRfY6kb+mqIIbcPK3Y42G3I97s9VRhedraWhYM+q+KeokQSib9ex1oonlhFwb/ubOIe335J1TyTILxsRkJWT70clPc9R7LHVWah9Tnk/WX0lQAFJkWnT6lXk34rIPuwkM5Sm5ZcYMYdESY8yJJP+Uj26/Pu6r42xFbEqmOzbHtISPUtUw/8kkzlcJrBX+lAm2uqIaG/tiu4OZ5Ax+jzSgpR7jVA49/TXx/P33D0N4IAI5spIfHqiZgOQ7XMYiyZw+5lx5O7F0BmCVd2/M512OpuUYF+YQZTe13j4zAetJ1RBFdfqS952C/2AK957nzE+RHNcnG7I8cxbMqaxgm393XrwuOh7QeeRjoS/CG6gOyHoT8N4Tb5xT9YBZVPyDtZZsceBQ2aqeRMS25jOEV+IELoNiFdN8TouMrVHBn0c2OusTnom1+8Mmh7Y3pmqFiM1ESCJf8Sh892SOVxMpULfB9USbpryZ3VRgXp3ovk+t1C8i2MWIXiZUjMVa6j3t99aCHvNcu/mvcjn+1y9OTZ9xUqfJ0Xn8fk6qFLh112PKNeX177UNXOh6nR5xWy49kpoPhu92xvxhpqx68ggRnQiuCzbHZDGUsSnItnxo7R/hiOrZNXykMaJ8reiYWF9TIbUQozlRwCYTmVCeEAVn2k/LMHv+ohKJQJHon0s1JO6+3TRLUgH6h8SnZJSx4vV959zhadH8pfOV+F2xNwd0N0Da2pb4KvPYNVyRHb+/6xnFxngp8+Y77UTN1/AAAA//+kncmyozqzhR+IgQFjlAzpwYAlDG5ngDvANqaRAD39DXad4T+7w4rY5QAplfmtlULipXMs1eMX+7i35aBjZXlQYb/atlhmFOfSX35beIW5TdxUvTrjD3o0Q8pwaCU5D+FB4WFHGTnhm5lLu/Rsqks9I1upGNF4PaeBpqZ5idXtbsvp9+5f4B5OZ2audTH8q+9oqadUs8oz4k1dnzTp+vaJaQgs5LnTXcC++S7RNZRVQ13zBMLFKydHX7TGRP19kFV+C2LPvwOf2Zxm8LgXMn1BH1bMN7LLpi30FXEB6fkUr5/3f7yy6JtwlrfhDHv9cmQJne1q4ERu0MJ3FAW3e9ov8YtcT8jYNigUvuRPE22d+w7LxbAKe5VgHaTOy2lzje/VGFVTrP3GJN4p3ZmErDnZLWgVQiw8REEqTSw/gHEPdNzU3LfGsvIayB98zWzKW+sr98xWx/TSssBhFZ/eO8mFzcvcM0u66um88ClkouEzF9Az5dfTM9NynNZ0Q581GvZWq6JqDApmPIfKGvoNjiEWFIOd71GUz0FQ9EiaBo3YO7Xk43uXHWCsFQ3LVCSdWFakRUs8MJLew04chJqCerZuC2+k6XQ7/QpkbYhGgq+Kq1/NE+GPR2m2t8RqnJ6xAux6OxBHyhzEN2asahc7X1rKbZTOR3MTITPanEh4leduNNcPHwmJ/SLOqkhQjxRvhu/04izYPN75FEdGpi3ri+yS6psPmy37bG60PDB94dPxmHwuMK8cRDzXotV0LysRrpHMaHOcLx2vwlMPt1a5EivsQj71Lf0AS3Z3QrIZ8skprAx1Aw6J4x2iahSFkwzzaeVR8OoPn+oaJfC3/vTqo+azKTyDv/nC6pEL4fh9HFW4RiIj2/Pe4Vx5xDEAb5N/9b03SyHZ3G9pS/TwBh3Pum0Ca0FwmbfhYzh58Gm0JV7Jg0sKHx9Q+Zpx93VyKYnOJz6vImS8/C/BuvephkNLDrBa6QUpqjDo/vQFciVyw2vz3VTT9aypEE3sxIKq/PF/+f16P5pY/UVJzhujGtVHYs9s/5Om9D/+XPTVzIJfOlXf+ANSgG/MKY3pbzxlFCeE4XlT52l/NecYxKk4YP4oas507pew17MjcR7Ouxv+4vu8Su94XNZXv+htCD6mTcfHyKpe2G0+aKkfxP5YeiWXwqaEm6aumLmpUc5oDwL8tscnXeeNE0pgLlsElvo/Hct72ndIl4GsiE8IjnxrsOuXirCplMxb4nvq7nWEFr1L//i2C2w5hj89dSZhgeavYejIQFeLkM/R+dMDAWRlKWGUik4qLvGrhT/UsO0Y7NJReVomLPWAmFIkd3NpqyNaeJBq96VZ5jq7CJFjbbAMr+dw3IiVCg+22pJgtR2qRV+e0FsiEcHXoLIWHm/R9h6dSNhunYqtYDtDenl0dN+guRuL6HFA2W/uCDalEk0d6mrQmZYRd7rIfCp4I8JZ3cbsPLz1btnjKMP3/or+xXOXrUoffT2lY7sVM7p5y+YPuO7dw/A6D9a02X4/cAqZQVenbF2N2e1wAFnSJ7rZqnc026ZtQ8XHM9OX+WJqMQvakcGeBeLO4POoHGrNlmKEkYKKvL+v/Dt8G74c3E6LfP7e/QyOTNgvvJsunwDEjTbE84/YdoXQLJMIwFhPPnPkg11JkwUJXAQ4M/PIfGv037seURFyhu1HmE5jpt6hRdeWhUW24e2ykRRJsbjCqB8ivpaeC4+Zasl0KZzCwfbK5199plxZu+l8UrMWmabxZo4LXz6ccCyCF0oCs1Y8WbBccf+N38JbVYeRFf/VG3a2Hl7OY2/XQ1OL3396lfNDe0Lkax+Ycw8//C8fwieUhkXfb5b8RUZ4x33KEkfcoP4tzDX4R35YyGsfcg9dfaitrUkc19yGazL34z++MOlsd1Jpx6a26GMSkClGXXUVMrR56fvlYN4w5LwyTWD9cvdqLfFw7ObyBMK9eLPsdfKqiR9XomrHy81MJ+HZzVnpm3/8RcLHU+WfYT/6WjkUQGiZ7PMlnmckyO+MPLoVDf/5Rd26aMgjUu1qDuOjip7oMhN7bVy7uaBmBpu5rOknPL/CXqFtj77XTGB+7yloOuyI8G+8jkZb57OD8R3J7Xwgdr/qq99pNbnAY/VGFv8wpUngilBmxYktfkq6/vOjjq1oseKLRIteolMCTe/e6HElrrtpPbUjui9X7RrjdEublZPa8GwuER17q+Rza9cqbGtRwetolXXzsFcCNHF44c2ff0X034xyuAd0fY71VHY2QwnVOkvo5CVGJT7N/gIDVBf6fv0iNMtba4ZRz2wMT+dXTYWp19ofTzmjb6ZyHm7ljeTWJTmc6y4c9WG2ocT2nrnTmHdDeM9ESH798c9fRKNQ7BOgVeGz9OUO6ZI/MBr1i80S9a5a07soRthGvUWOOL5UQ0hQAAbKLYan7l0xoy1NwGHTsahY+bn4Vz+fclwzj5MGjRd6Pf3T/04wz0u+mmcYa1Wjv+X9Fz0G6sLnVFu3d6sr9u8Rmrlfsf3C51NfuIpWXLBK/vwunmd2Aqp+AeZZDy99P/dURPje7WmelC8+IyfRVfW1Vxd/NahmU2j8Pz/snz887Z9tgoA3CS5tFYWfyFtnaJOrJgnPSZj/8R5cs8HD5UTjasl/JxiCYPlqMiDpaE43Ad1JnrBINmvO3c+YaBWUT+LIh7rjreO18E1CH6tgRdXwi54tCsrLllnfhFX9gb1nVVG9F/2tY5zOydfF6OupHbFco+qGKNdK1Ja/F54U+YnGlJilNv+0gfkleaLF3y3hej+bzFK3P76MjwoJUISF550j3vDIVJVIvDNb2kE4PZq3iebfasD1/uLzufFMrP3pW/sgY6Scm4sPW/kYkkhTWDc91jZFO2v3o7OtImtmFe/BzDhlbj2b3aQkrguyXNnMDCKhm6q76kKJ3T2LJP9j9X/8+OdHL36H9U8/oI3zJd52c82l8yEzUSuGIj0NemKxLypLzZvinNkuu4fspAuN+ujPmAVvGuV84WW4teqV2GukpNO81QqUoUTAsr9/Wr8QZRFUnbljGB0HPjltZ8NHvlxIGmms6r+D9kG3qqnY9lL9uvGq5hRd08eeLfoGTR13XFh4CKNXr+Wc418Ap+v7yoKFH6f1uhNQ8qNH4n2ynE8XLZ8RcumJQrVs8cWSKGvn6eoRPHVONYtNc4c/3t0ZVM1nUTMO4DXPPfOeI69YkB4FtOhhqvWnXTW+zk4Ct+vFJdg/yhY97i8qGCclIBcqSVbzHaQaFj+ZONmg8/UnaUZVhJPDttVatf7xrZLedBbFQZ7OeWNg5Kl6za4Xg1Xju933kBpSwNxfGS1+XHMAKZZXeFNcxZRqvqSi9VybeD1pTi77ytVGysAKsruuL+H4+YoZJHonEPLSXtb4vRZUfW7UBwkH4vJpI+FGFaZbxILQ+Kb8kCUBKqSbRnAtX7ouSG/w5x+TrVjO4WShxlWNuVHJ9rW9cXbaHgNY+jF08Qdy1q+VGUh1v7Ktd1p3srN5l9q0vcokbNamtTba1lTrw++IV9lc5DPRX6O2+MfEkwfKhzjaZghX05MqgWtZ85JPVbkdD/Qt9798tLLzDGgHEdt/90E43DalrrHvuV945oT++Bx5TbmnjYB/+VxzrUfNTFfMPrX9f/2HxZ8j29Z//ue3/fGHZOOu65d8htDHM4gr7Cwkzff76Y93iFFu3jlH66OJ3kf5tfDdO53JHJj/9ORWpoe0n7cZBXPE4Z+fGdJLdE/Upd9BVy/LzOf3RlDR2s4LGk/HTzoeJQooEMYdiQ+ihSYlshVoXlFPAnH3Qvymfkuk9GRL1a9KFzH4ajT6tS1yrHdi+OeXwITwedG3xJqctnLhWuwynEUdQ9O5nHoNMJEoX/Re/3xUIyz+ELsr36miL2U8wb7Y2sxlkfiPt9S0cD4swI8h7/DF7OH89VsSnL+oGw6td4J8tF2Wrt9lxemlsCFBUUPIAR/zaX3osr/8Qr/D+9lxe+8AC0D0vz7V6C18MHyNYzq9W7jDMHVfZszaoxM/af6EsLBiEoSGl0/V91KDx2YPi/G9DYfa4yrokSAyZ3nfz5QIFJL64xFPysNcXPoDaC6cIwsk71m9rtZNh/Ee58zcn6t0+IbnEa02KmYOnCbe+/x9gTrIFGIG0b0a//jEVlSZhRdIufSnd5d4YuR8kFP+SZoZCf1BY8F91vOmnpVILW5nH8t5jtLpG55ndJExJuZB2qbrxqhmZKaVwsLh21WsdUgLdBY5Vnaw4/PZPbraXz/Hs8lk8UdwCVAyntYENweh+utvwbT+FCxC/c4andY/oWV+aXtTXhWTrPcJHSzzxKxFL42bc12C/VZj4hTnX7r0Q2xQPBpT+XLM0kFJlk9UFj8iinopH6OfeoffunTxft/zqu/Ib4Tr2YvwL2MdH528aUH4RoxEU6uHon+iOlg5qOT8Pagdt98s+8uf/553yX8xmgQ5waMU7v/ymQrfsPywUKzO3VTETazGmabgjXxi3aTTQoS//+8tv7fEJ4XrY32kn11lVeMg1D2crt/r4pcZaE6+GMOynpm7Q03+++vX7V9pSvmGdBbfJdsnpME7JYbq2+l6vvmi2g5VQvDXVNFk3Z+9dp97jwpf2HTz6ZYnoAUxJ/ePX1hsmV+ojYaRY9L8neoc29qfHsR4o1ljs1kJYB0GmwQ3xagaA98yeBz74R8v8Y/0O4Gs+qu//J1z9xJ/YNvcOZ3KjZP2hzxStMKor+TfejwV4xPAXa3wcu1N+s+/WuYbcy/9WuX0OmUowI/Vor+Kf7+3ETzRZvfxalr87K5kqK3QxOJN0Kzl90pQnSpgVvJd82mJX/V9hi3ZGTRL+V+/GFrFx9qf33jy1Qx5fRCxXSf4neSWUY2W9UYWPYRoN3xatPj5zPtkiA/rynLR0i/HXN1u+bCM519/5K9fjAZnFQpQ5LLE/Jr7ociPN1sN1s8zc/zPmLNV8Cvh/7OlQPrfWwrK40HA65VS8UlS4gju+a5l0ebxQ1ykWgHKRV5R5bjfI+4cUY2QYhWMjGs9ld23XKOxjTA7iQ9s9b1S27Dt8pqqB/llTWV7cOF7ne8kMB5X9DxuULbp68eNCgTtOQ/u9xn1sv5mmLoW/91eigJ4PnXMzvYa6vBZLaCu9zWxukcZTujk3aGXXI95U/pE70tdHeAUOCkeszrNuXN93+Gekxb31d1MJ9vZ2RDol4lEFUxp00/6SdMvfkaMQUcdZ58k0ZiDftSYrrtqtt0aA/8gh9ikV7vF9pHVUWsT2rvBvprz1PHhTFlPfGMnhr3t+h/1PEyYjrXKwvEoG6X2nd4Osb7HdcXVDYrVvnqumBt6y67FDctgGT+68Z6vfEyicdTepSER4ywfw+VIk4vW1WLMYm5U4fzt1RZ02+vxJplzawqybQyqsUZYm16XjtZePoK9S14YgXrv2m14e0K7QVf8S2YUzkEVLbuI3Ji4biykjUmvCggj5OT+G/acDTq6gFacDBbVdWfNG3ob1fM165e7Ar1w/Pt7kyRX5l3wuRuDp6PCKNQjCWL8rcad08uQpHaMJdvLu35wiwymwzMnF3HivJucnsLaxh9GCl52k+9GT7h0rwezYxjQjDMHo0O5OhDzoVtVt7I3PsQn/UN0hTnp7GaNAGUzmVgRHkc0ySsOSBP9hp2O8s6SrvTVw9c9ZYR8XsvBstL00b59YhPrWz9CfisPT4iPrs/cSjPCeZyrC2yPvktuHT+l0xElJQTHYSJbuE7peL7uRCDOzOh5JgKfSuoAyM9QIdbtgsNub0sB8Le5xaXg8aoR+5kC8+4TwdXYhP3s5SJcINjiqcyVdEjI19e27c2l4jEDxMLeM9XVlT3Ibnop1XyploPcT4LFCE4h/RsvFJj7Yfl3kcuQGRGYb2wzN91UKW/TsQfMJJvg43JX9OHT+nBenU5kezvf8xmyLUaPa/0m91mr0fTdWLP2U+MIq3feVlTQdgU8Lq3HvPNL52u38G0o9eNMXJEeq1a5GvNq1oea7XqxtOjrHgigRZ1ESH+n6dw+DRF5w7XA4yM/5F2QGr52l6o1ncNwyJlxV0tQN4eB1m897KZMebraeJoDjLrkF47i2NdQiP2RXOjb7MRLFUVq0+pHQiSt4b37zgDx97LFoqy5NVRjU6NJLRxm8zet5pN9u0MRZD4VKd1V0/tWxbCsP3IKvVVO/Q06gRgnIrFK3evGjXRUNIHlCTPb5JZzfDyL8Dp6Hv42L+DtCrMWfWb1RKLjcuqFN7QYqs8rJeRcsXS23eVur/4JuDdKJWTuYwMoU4M9we/Dio8nayPD/f6jdLrcMZqMw6VUw9ruyfn80pEcT0iGZAOXZf2sq+l19F2IQaEsvIXHcMztTQI0awQSuKcMzZfCdqG4jy3bJZm/3K20acBKzh0hcr7mdLtTAujI2iL6Wqkt+i6+M5QkTynvHmYoZbAHzREvL+L13Tef3tdNBux6HvC42Yl5nxyKJzrdqjPZmUKdz5YUmMgJ7AMxusJCHHnVB9zb9s2clfTuaicdZShTLmMupz1qIYX+bz7IzRTsVHpdNgCrORjZ9vVq+Fxcry2q10OD1zMR0LCzEhdln35HZeN6y9nl7QJcLl7ODNnwwpm9jAQay9+R1Hy+l+vVqKi2cFkxIxn7bli+wQRKHZMk+idIp/Qx66jYkZKZzzpPu0gPRfRwgxd9uuanm/DuUvz9PbNWs5fKpA5ruEuvNQkE+x3yT7OLYWtQk+mOUoT8cuswysljj4UfKTmjB8WHFreUOfJ77sYvupdI4uaeuXr/QfzhoTs8xuXIGyRKnD33k6g5S0sLhPecz7fqYoJ6TFdU2kla11w+ggv7w3AkkXgX0n4FPxnESGTM1RFOx5WeziAM5YnmU2Nz8S+fhpWPWZJ9pyXejwWw505m2x2uuvZWXXSE3pFJvOGioSmzpBl9bpstMwl30XjfPNq1il2TuMFvzH9HZa1AFIBIbst6nll/V+DifCU8CmmBpPaDC0WUYh3zy2tnyZdPUKibxr9gob4YXDqnRqSV6d0khjev01HpziXwPdqQIL4xa3m+O3KecKOdbVDEc/yYkbn5fHD3ifRqXPKjNpm6xCLh1PI5cZQGLfWI2VpfovZTQgyBmQ7E6cpnPo1DlsF6RkfMdh8HTYfvcQbYrVyChWasZv6grnoeOMbD+bkP3yTXe20ytZRYEJ+qMZ7ZHYTcHJlxIV4+/5LrB30K6Ij3zQ/hNIqCD2/ptsHS+aBY8+w+MdqbhJHImB7duA02KtxutyvzxSnlIo2eqrYF6MmtMQVrhjOtodOnEktnJ+7EZ9oA4GCtMFd8UIuVQ3JCWxB6/HlbPzSgEynUuzd9iK31JvoXH6fnqiB63X2rOdkdMtivjBfBmelaE/ncD6gIDx+G3R1BX0H8YIANmbByNNt8Fku/BytyI6z/0pc175GKN5K07ohZU4fz3BVNNDfRiRyy/Q1N4XfzRF269xn+kRJNiR9eoI9thDUfYevXa5qtflfUZ7p4SvN5hb8tKH1qYeXpFN1S/wREp5dHDP+nVMNX2itIbxud3RUVV6Ov8+XusqEmToJZ1cvRLoBO3cZU4FGfz1viZUDzd0HCHRs5TRylBZYpErNKQpZ4PKnwgs1A3/7etXijXPzNvfT4Hy9Uk700hu65fGCeZe/DwUJui+JVdiDbhW+49kiwZu5nnU6y4VksPeq6+jyfZILdYp32RfIq0cezDOY0Oqt+TTAIIPM3MKPZZt0/vvqlmY3XL7h2NA9fGexKV2Rb/xNY62jOS2SS+MrIVJ/Q5ClFtHn9bj+GMwbVOJhlCXY4XPFUrJ+InnEqAmVNQHTh5qWT+VZb1TCLL/Mzf0Z0qTdArhEn5uM+V/NdVH2UfO8z28lTV03P0/kAPxS1JPVWejjuhK2Ohlm+UPG5bavhuG4a1bnfZUZWXcvn48wT+Pj1luhG6FT81icKpNXJYxEdC2tu7N8Bgm+yWfjnZbXXdV1DM+5F4p3Pcjr08v4E2iPMmYWux1w6dF4DM2ozFlHVreaRbko1Oawi3ItNg/hJuMxg7cwWF4Jn5fIcZDZkJ6/ColgwNLY1O8Efz5gbI1wstsnXxEhmzL3DsRtXttOAm51CYplsWHig/mg3UYiImzmHbrDDfa05vLDoSIPSGj9l3MBNUloWvU3VGiXTnYFMRkbH8HMPWZD1Kug2PRGb3LjFKa4aFGzGB1nixRqdc0vR9BUe/+rpGnajC5tDf2D5xem71rilF5i/755sPdbwceF5WOKJef7BTpctcO5ffsDTEi+T7j5jLWnyGPP+3fLRaHYXWHXxlxnII11PvlcZ7e4tY+HlIFrz+6IpUH536sLXoSUt/Kr+xZcvpjWa38dIR3/xEUJ3tuY8/GXQHXYfZsZtYzVOXnxAGbsPI5efYvFxDRn43Xj+l9/E/dLi08rvE9NqbKxRKWId6e1KZCQNbumvV0MM+5+zxsKm9K2pyOsL2nffG54f97mbdoEmw7Z9uMwPetzJ4q++w2n6uMS43Cmf/vL/E04mIdsC5YORQ4yk4K0TD7ywmsX3/IFY4C19nS9uOI8qCUA5gcV8riYVzbSNDVKZfwm5mW04rm8sRoJX92SJX9T/0h1W8CD4zA0yH62R131AcS6I6Jq0Q2MdlCbsjx1nfptfwtEC09fWk35lnhwYaG7kyURi3Z2w8uNCN8WiW0P3/bXEK49h1bPlq4Xbq/RppSI3Xz9sowbXVTyKJpJw/nn+nrDwH+a+/Ep/MgQuzPWckCDu5e7v/dHZk2oqPlYPNPvGI0D71WrFfNquqsnSfjFqyTvanb9R1M1bQi5qunm/iW5ku3C0lEsC2mObkz/+HBvnAFr3YRGxbttPNR2ng69tDvRAorvc8PEob59IoIWIpeT7qmZLQQqS/N4msT6n1XR5Tnftkd9e7F/9kLUXVgup5cyT10o6Tet4hKlRNSw6bArH89WRAT2SM3O6yeN8b1gJJGh9wNL3IvHh0JEWYba26Rj6xGJFrF6QJ5gu0ePvj8/RWlc0lqkS1s5madHrD04Q4tAgOnm9rHaIhYvK95sNsx+rFR/+9J131S6Uf9ZNx45IDqCu05pEQWVVIg6nEyzjh+fs0objw1EoROvxS6xzbufcfUzCv/we9lOF+o6+KXqsnoTs1d+z41renOC9JF+y3XHU72GQ0XgaA2ZT7WhNToF66PerNTN8boXylas9LHoa+200dvNJ7z4bW25i4orxpxp9+33Rlvlm3tmnaFxftQzhQFKwbAQSGs32aaKfNShU66Omm98XSUX6StOp9hkGxE+mSeH360osBNIvndeJFoNME0Si3wZZvTmHs7L4DxSOnyPn+uWjo9Nc1swXHkc+PE/n01/8kki8vvKBJ5sDsOvScqc7PZ1I2Rcgb1PG/Hr97MYDk3T4QejT39beWH0FEwVlxTy2RWVsTd/paQLjP5XonG6qZn37xujPj5HMuct/3004Ar3MJjHp7pnPe0U/qNoda0t9JN0kNrsTzJ8fZs5HXbaMr8enJnF9z5zSei/5P561ezHO7B4f7FBi352K3izKWOjNX6uv7NsT+L52yC3fWOEAl9JGGRFtYrzoi7PiXrZaVbfnpSUSo/4vPotob+Pp5jb5ZOSQwNMUDnRzMWnOJP3RQtMKnG3RtK76k9f1yDiqHfNmckcjqVcYWevTGm9eL59P0hz2yGtrk8WCLeXMUnMdFp6gE/bTkK/8yoTyo7jEsIIb4t5POUBAioSFX+vVcTimIqA3NgkWAqOSVM0oIVV+HvGmifFFP8qbPz/BzL77ji/Ph1ojOGL1XlvWcM5qgOV92YkRFfXvQ3MBUY7uWIjnNBxvX+kJ4uN0pFrpHNLxoeiZlj5Uk4qKZPCpdsSl/hoj2yaHKByLU56htR19aE+TIRyTQ1FC9m07FgRPJ52ep8cBVXucYpmRDM3dd6jRvPFFcl7iuZ+9VITYvt1Jv5xTMuVBEMON6S/y8JSqmrRPdlLkgnHi16BVTBjhAMegcFnkBlPH/JV9gkXv0q6AXUdfb0pRLEwt81aKhaQv22XA41WOm/h3yWlMl4shlMbH9I83bWLdETxKTOzI6flQR0agzVj8Et3dU2v0uBWBMuxeLDDiOWXH8fmE70XUyW5XfSu6Dq9PlFYHj4RWU3R08Sdg7Tol8XZZz38WbxXEib2cqnhX8z9+hFoSe2bcjgTNzgWfQN7uGdl6z1f6rz4dg0nFkllVfOrl/UFb1hPTNzsx/aRpo6JGK67MufCEs2l7r9HiJzH/6UA17vXzDJ73mIkBxYPToFg18B3bL7Nk+52PB6bpYIfsiuX364K49tEENftVX+by9SEdT+HxA8NrH7N89/yli15uwHpzRnbYkKsZxaYM+vk1Elx/t+kYU+kDopToVHlcHCRt1I/yx+8suNdWyK9deodGu1+ZvfhL43WEO1S7GdNndgz5tPAirKYoYX78U9Jhr+YujMJnZAQVVjp4o1JoWRpvqTZZv2rcSDcVcnLbk7D/btKeRo0C45k2xDD75YqNtrDV1UlxCMnhldK24hTtds6XYdHaVczI9Qa97++Rue9lCwt/UBv9DoeSBMd5Ffbklt9hc2xm5pnSrxtQcvsgckmOC2+3IZODuwkbaxsxw0RySlWhaf/8LYw6tezmE2xaNDo7kwTVhoc02RUZuhfzzMICdhWLZOcCpF/uXj7KQzi8b12invN9Q3blAf3zN9D0k3JiH7MCzSdXcRWlvXjsX75i7XpGN0ltqcyvTrrOQKrVXlmvmHOuVh1/2Nv6z88heiW6uby9OjO4/mQRO/fviI1iUMJu532ZdW5DpJLnvtcgOf8IsU8zmrTpC398TazXpFuS9klOwKZRwPKzPSNWmZ8LoFBM2W0bSN3iHyfwx0vOR/3w4c+v/NOP0S+PLFGPTyPq3zki4cIzf+sZgiObsCB2X6v5ovsT0SJyWcC1mA/OiWE0wdFgN6bpqL899yO0jYDoauHLuexQBEs8sGtz5FW/kW4KWvwEym/y0sJxCoDyS1Tiv13fmsVfXygn5j7Ybkr2YU8PUQPHu9gwS04jzr2hjKBUTwFZ+gU5U0q7hbjN/T+/gsvnxOkB5/cSg2FvwyF9zCb8+T9/fjWFM/3AqDUJ5eX9VNGu9THcbo8rnWCn5POf/rimMP7HQ9Z08dGzGy5sGZ9w8V8D9VMIHXH6q9F1D4/ftdvdtYj/40LFJP3c/vE2cdvLhv/zV5+n7EIhu8n8v/px7ygeedx21JKWUx26+k68fPRTaZ0qI0jPsmOOfOqsadPLDSz+x8J7Wjqz1zaBzPw9sKrPVr5e9Bly2S+kCL1pPvo6KuEtvnKS0OLLZ18bsEo6eiV6sPGWlnBpgpDrI9urP71a/D0Bqn2UkkyYUEcXvwy8i11gbZnPdbPiKlxPxQnr7vNYTfn+Y4J/4iGJnuHVmm4vRQV5JVrslN0/3XpnaRQ+ryMm5LPi1XRcRRlK9/MKb8yfnvKVeXr+1RsS7gQlHSQlxn/zS19lNPLZfQsfFO5wxXZ91FSf2W0wQo/4zOJWP3dT12cA3+t4/6ufaPp0eYmyk1Mxk3Ysn5Z8hELlhtk2559q8TMi6Pfa+k8/dHwINjNYGH2wsvD/7ByK++b6UzKi37V3PkaIZnCedikJE79E82ZULuo72GFmxhtS9VvPN9Xq/ZGY14luOOEDYCj184y1b1ig6RkavapxHDD/gVHKos0qgYwsl7b003LITi5GwN9nDdePV8wXP31EnqC75B/vuK+fC80176iyue5SvnViVf08s3Hxc1XE36cqgCjQT8TcxHNV14kzo0wfK5LLmoj4ptn7mlOur8w8JkY3lvIQod0rODE9c+t0ZNk1QOwqnJmpSxPqF78ZOaV0ZV7p1tYE1bpHzu15IX691rufOZwySPfjiqVJbaViHt10+GYUWMSnbzd/8viJ9m2zYsautUP5k1+e6O/5H55iVZPtCwKshrBiIeyaUHpo1wzp01rDHAwS8nLITmip7//5r/zl4D89gG9n0wzpoo/gWMYDscBgITdyv4V218d0lQZaztaH4gL4dryzrfc00gkFG3m5pepK3yvJqVjP9hFszfZJdrvD01r8bn/5JNViR+/Xp2wc4xa5rAtZIJSixf703BLvDL8PDz7Ou+dBVZP7+58f1oRl84TV+G6wcAwdSwzLpoTj60SY6To2H4NLG0BU8pyqVV6HIz5jAWHP1UkUP3cpr0x6QcVNjAiOD7bVQwbyXz+Imc9jipb+3awt/glxyteB//Prr/qzJ9F15XHxj7/wPQVCPmMfztp3U6CzIzRsdzbLkDdgmrDEJyE9cZF8uWQYRuvgsoSnPmfI62pIH4pJrlv7GrZeH7ror58Zysc8Z3/9l/kQNsTnRdUN7kwo3D3+oUJmfv70Wab++RMEyiiUTLYxIZXHkLnELPNJeeBsoyoZYTjbD9WE98EB6lcR4PFIqnxIj7z962/h+XlM+Xyf/AQdi7OJJVWwu3/1femfUVnvXdRfh+DzV98oR8HAJ3rsRvThokhvHzimi99Tg/t8t2Q7vd1u8WdrgEqZmIfiIBdlsjKh/TyOZFviVdq+3h+6ebV2Sgp+OXbjUq+0xb9ixpIPRXWtlBAbjU0i8utDfmgLE9xhJP/5ncFrMIHjQGdRhllKH4JS/qevxOvUsdd3J2p/fEOQtc/nyvDiP7+JGH3qWON33Td/vETs37rvpsYFF9m7+MXsSjVRmxmdrr6fwYbpQfsMf96o3OFLQ51tkyqtpsVPQNkh+hKXlnYqDbbRgGHlDu3Fxl/uxekSWMaHhfLjzaeHYZ0g3H9dZpy/u26dFtUI5eHyJDaR3+HYXvc9fMfmu/iFYVUZZZ39xRf90x/r6/f3QUe5I/TXreuci134Ue/+JWb3++ZrTZkequriH2A06F3e//nd/58tBfL/3lJghOzGnFO/hMD910NZJ3ssiY2bixaYT9iZuc986Y5DWTAKcTME5osF0lOtxjQ9l/Ar54JtT/CypltgfAC9pDNzgqS2Rm3lljB335a4/k7LG5xtZxStPw3ZbSeten/nk6ruRIMxayJzOmTJbwRsFLtlf51p9bHimapozybBZ1HKx0eSfeDerS3mbtQPYq9EjYE3c4aZsMu74X3/jvx6tDPma5NucXIEQO3kKPSZ97Qbcufoajm6OmRbnVrE90LiaupZm6nyJutqNpcltPFmg3h5tOpG73Nr0O8n7knwq0/WlL/6DAm8uJHC/HqIi86jR9OMDbxK15t8/HkLEL0PPvGii27JkfxtYfqtLDp/qGTNUzS18F0zxuwtUIu6xd2G8PPDxLpKuBrdfqtDbShPdv17PlrVM5w/e4v476Hg/C3VOmzjU8Xc8lmFs3U7CKp022jE55lQMX3KY+iqu0+2hXjKx/rkYyR/eYk3OuxSXnQ5gPj1ZKLneJtS+vjCcnBvSlXevNMpXK2em+lwsukr4X7I9V3bAAv6HdsnRxNN6ldVId9VPoWieqbjYPsClAYWiWl8WUejesSas7MlkmzVV/ebjLTUVm/PplJ3/XXTJ1cBjApyYp6/VS6uYyyoZjaWBB+9XcVVN35q+L41mBG5es7wHCVgnckPz8lD6OYhfp8Qm55HltSPpJLL031Em1uuE7Jev8IBZRQjhVUW8ZD0QD+U0QhmrEiMWOjAaep2Pjhc0chVv/shH/OoRjaLlrusHy3nKY1rjUs3wpb5r0bV+4wod28psYry1I0uL0/Ixaxg9j7bpZNbbny0UtaUuAmbeHtkfgwRVkOiC26UjlH5Am2ZP2al6Qax32Plo54hTEL9eajksdPGf/N9zpwX4v0v9tWGvmS8WfWbcLy59gif3aVjxsj0iqOpLdCWoh5D/7DRdAcQkTH+Ypxd8AuNbx891dOqQOTCM6Gb1DRSgfeVTRtJ99G8V28xeCaYBDdWb/GkeFxgF54TDPbjZs1rNOGVRm5vOl5WHzQ5hnYC+Ap7YqpaWE1HLAbQ9VmCQdnQro/KH8ArPa1ZcMEvzs6XigLdzpxO8nbMB79mLvi7JydmcPmg8XMWAuTtxhexxVHq5rd7S1TnrgUkemuj1Y9nxVZdr/tSbuYBH7+7xlTXnnsknjUjTq9PoHDrJ4FOkftMudoaPkrwcU+y4/FRdcopMbVT+jiQiBj7qu8rx9aK82Vg+rgmaB79nY8GEhnEb6VXxca0SmCvfr7LQf96ylmzT+D7jWMqjGKVzt+kskFY7zxioo0c0pF8CnRIpma5uzPga825tuBnu4YR2a0Q7ezHE2Vz/yOnZX2OU1BlsHrcbTws+Y7/HqsA9k4jUe05QDhoQU8hOX0Iru7TNeSlEGF03MsD8xw5TOda4Ip2Iv2PxMdmtdwljEo4VMJIwly9WNPmef0AnvCDhc+OddPsgwiqTXyqzLDJm8QuVGg/6QXP5DCl/YUXBfzFh2vyIefP49dF60Be/cvPdH9aDn68XAjmhvauGn81Blp2G2UWdsvNaHtdyTb+r8yJ532bqodUrP/Gj21Lxanm/aluwHcLgbj97m31F/MRAD7iNSPi0e0mxV25KHk8ryydSJIOI24w8nclJ/o3GNAvd24uOu7Fgfn7Vu+ao3U3AQeXMznKV6ua50MGgCJ8pvUGq3wQ9aJFf/UhSIIkL7Z4FqE7hEe2u9rbqsOV0YCKDEL87Zl2/a4QatVDzZ0Fzuh3UqW3JbjtYBNjbwaoNY+oUWMtX//Vj1B+IJygbK1umbXbtOFoW50KaVgalPXrb77EbwxC+0yI+9lK3bgP9ARtt5q65BsRseOaybDUB2JFfs9p+Awp3LSVS/u1ZvGGOPmMlvrDjGq35xM/r+8g7vqIFWobLvH/1DUxyw2qWpZejWol25A/6w8hb1Pt+OHafv7Fn52Fdjfv398EsHHfkSh7jKjZLFv8RFRvyUl3nYofXqECzhkdmSXcKZoOAWnQSyu2xApsLR1fjVCits4trIWlyucf8iPtnBcViYwD4X/rF1bUwiRaaxXncfa6o63ztMiWj4eOOr92hvX08zCislxRq3984NfRD22C1q0ao8kvyB4zg5n2DGiJDx/cu0modOoHNL6NBMPbyQtidoZnTeLRbNGqDzYkCBut6rvVIYPCaiziKHuFzx+qXmBf71YEn6yLNV/2qgujlbVUWZMw5c4+juGzbQ0S3p5lPlriK9L2U3NjTh5wi9fUpDBpbCA2P727cYtVGcQdjei47TMuoZKUUK/mgmzNoa3muz71muTHAiHCDnVDf9UiZCS2y67v91DNjjMH8NrfSzz9mNvNFdskaux+RzxWq2fXfsLtqK6fjxUx2m5vLfV9RCe/FUm4jBe/GroKuo9fLOofNZpWJ/XfesfWprRz2bdRgqTulFOG0XILNSoCaPaSScwxX1tzVCsRKLBTSDZdS8TD7iei1dux8TMb7XDa05UPYnqO6E0bfrxP7IMCu/QTM7xexSlfY4WCnPgV8bv0g8bnlSvQcDPAghNuraFp/BnMtB/Y3/EGNI8RhoJsGVYlU0pZ+QIVUvfwwrN16dG8O3dPNNeVRKzz9LCmPslVFTfai5F0fU3pMj4gRO2RimVS5H0Rjr7qmPGJeftDW42DrQOU3cllbv78heMQljGcytEjV3XEnYheRqKRyBTo6tx/QnZoBozue70mj6jvU3r6Fcq6OJYX5g5Cmfbbubprm9M5pKXpHNDI70mpDYH+YkamrvhX4g1Wo8MrZLtR96016EOA2q5QSChdwpTe6/IAX75ymKu772rerj8l7J1Wolvtdqpm8dmMIN2QhjdfMbZ4onwo+uPB0D4auaRUOINBgJRcpDu1xqRxnnB2PESFRAm4vOuvT0gfcUfuvL+n45J/YRKX7xUKgaWDG69BhcvvztznXu+mgxIHoHItY7q7mvm0UqsAtddPxVy5WqU/qk46FNNykcQur9Fkn7oDVEmAiV/pInr/xXfgxEfMUWp068wURBjxbsvCm+BVfPvRDpu1phT4I1ePfOqsfQJ8TBkVpHGH5N25eoJBR5WQ7cpOR1NYnUB9ZzEdHSx1/cIv2iHGLvOsrZWvjRrX6scuXiQ6OkYoQRy7mnU8HshWQ4j/4/9vMml0XuJ5Eqc9wHN9Jiz41bI1j/zhwuex14m981DKKuf9gd9T9YjzvDI+XTce/hsvEtnGGQ12tz+Anq9CnNvc7SQybDEw5ROwIEO/ik5OfEBmuV8TLziM1RTs7ARukg5st/Pf1nzbxCdwzpvj3/ylfLe6AFhXTyA6HFlI6zyMQSsri5n+99fRr6bpm6Q9bRg54ycfaVYrAKHwo2rdhJWo6s4dXP07MyfEtJteD9oAGYUJa5+pS/n82LhAw5/PDuJ4rMZiHbhQH38BVeb0yafit6NgHc8HFqqHI+JfNX6i3/57YJaq/yr+KPmMsrWyZclWNbo5dbsAHcbfm4Rj8eRcUCIVGboqULT+DogLkSr8vR8jr2sTjvv9r0Z/PGTCOa84dueDZotrBVdfu7OGrbCtIZL6lBhNQas5dasAjp65o0NoHysm8SfWhlyVmbXwwzxFmwZ+q0eMZUdQu+kQeA166wSI+Vq+crxqkfmnJ5gbmUG4bgDfQSInjlfL+PVnUsnIGf2UHaZ3k0/vOxvhGR6/tD2ss3zcXwMVjEPX4OO0FzhrhlAEXzwg4jmXj7WMv4q25+xCQl3YoClU7pFqbNc+LYd4y+d0tR1h0bOYz2WbL3x0h1YJB2JyX0Bz9/zIm35/cJh74K984f/D5k+fnrtctvgf7yqfz4boC58xWboH6GG7Btk+f5Y17w25hW2CFSrMb72Tu/mpa2qYaMQ3z2K18JetVdvIItl83KVTE24KtORnjL4ydMNK7Xy4HEKdYPxW+Hdc56o6OvGK2ZNnWdM6H1xURlZKEb1M6WhTTYT6/Hrg3wpzNC71FV307MTsZHinoz/IAmSv14sqiz5e8m0AIP5cph+DzJpX7vYA+OxFJFxv/WpELyMGFTY10dtjHvIn3s2w6Gu8EftVSmNiHeCmewELPlef/4zYV6Bxgh0V379q+f5ccf94lIShubXku76hcHvFCcEwemh9jcMSgOkuMR+O2f2r99VzuCz12On4oCQzCK/aJ/n7q4aU6D6F7VsrWVjs2pxu83OE0BQEmMVHgXftZt9o32eUs6N5W+fzKUv++QOE5Eelm4PhcoE/nlj4jE8aPR60JX8xszO+4ahWggvv6LHHY7nOEY27pIU+kiZGDDwserhsEMedx0z54ebilNgUDjpKSQQ24v/0e+jzPfmrJ/1ED6Z6fnkVNrM5rt5U3Zgw/0yfzoWsh6IlLltCFp7JFr7jf3qEvsf8X32hRuUf4OLdwyUfOSH3z2oPunuKiA1vMx0i6ZehbXyoWLH9GvzfeIHLtySU5LibTip20c5Ob/TDL7M1NkXZaIu+IpYAYjgf9PWI/FWY0Tmbx26yqtHUlnhm+rbP0DQZ+RO2tbMj4VeG/yPtSraV5Zn1BTEAQUkY0vckKIo4A0QFVKRJgFz9Wez3G/6zM9xrdxhS9TSVVDVUGlRdMYsS0ftrpwJiaFYPxcKe6D999vkeTWXzJ4gCVA0IbeqGsJFslerH7MkWqzJ75VzQFSl85QTrRXy1wHf8Hn3b+BdsfC6Hj37v/sOn/rzsbHi8vvwNv/VkXbcjB1aqqdSVcFB8Rq0nsHXhharMPiUb/q6Q2pFMtVd5HuYiteM//MOoP5Fh8wdCsPElInzzV7Cm1hjDTf/QqKoOBck+TxvgdFdRV7+eG+FipDqMA9vA5sPBBovFeYV1KjEifddmIMPa6fK+uyOK92wAZNT6EWZcfKL3A26H/mN0JVx3o4LD6+qC+c41GbjfjDMNy0Yt2PtWEhh9zzKNtkbI8/73quCb1oSaBdTY5hd1YDXNFCf9pAz/8v/DEbcS1s1oBBsEHRiPqUWOXUmGdfm5nPxs2jfO87tZrOhhCtAVoxj/5Us6Rq4AQ3rtsY/4t7E4yHD//BVsCPljmIdimEFXmdcNz9uChfJYASDbZ6r9qN18NfUO5T89aL+jINjRXdQBohOOHDB0gmU5yD4IT51I9b/9zcHjCLtxeOFw81fmX8qf4KBmA/VP/prMHDwS+B1UmTqxdmomHh8RFMDHw6p45Jtx//tVsmMKV6ptfsLGV+WDej6k5PB+R1vXNk2HNnzfEFR2h2Apz9cRlr+jTs00vYLZOn1qGKbFEy1LZLGVIfqBmZc+ESDZMdl1nTvDzR8js82fwPr7nBDIH0OAfi/HTeimH5RorHNqnp1LIuqH9gRdLamwxT2LhESxH4JE8TvqbPt3AjV+ws2Pwe6aqGyd2dWG+5OIaZAwtVi/rzcB1jDw1DTyQzLX+s2ESRaK2HloYbK7TyuCc5eWRDyzVzJ9HROCXyT+CKjlNWDR9JihxM8LOW/5dWRMreFhLit62vCKvZUo/af/hU0Pkr/9LR4GCSlG0RgTubo5fOE2pEVY3oIpOL9bJXtKOySZFjHWyO1kaEyfI2IbX2eCwp0B9UmEnVC0im29VcUy/YGaSeA3I1bkfC855oU6fB82c9gHp3/4WO1O3cB2ei8fRCJd0T45/IdXUP75Mjkkzrlgr+/zBKXL8KCRl2TFIgfD5+/zUvXIj2xVDqz654/MkJ2LvhQaYeuyNtA//GBfOavB4/QLNj2XGPU9cAR4Ic2fv3QZ1g9ZMzjN4g/j/EaC+QTZE7ZLt275AA1rgswK/vkBf3pipQe/AqlYL9RUXiNj3RSIIPIqhRwugQGkaLrOkDyKFX1zSwPCH9/d9ifWDF0E4+UxpTC0oEbLLEaF/OevYmoXODrVWwnRs85w96tsjEfJSWbxnvTwD/8NTbGG+dRFTzB46Y6a371dCLdzlsKDSkKkau/GWN7bJcrNP8LBSTcMgdDTHprCbo918fFJKLLlFOKDDLD5NG6A/vlZ3i2eqL+XdIMlJGvhptfplQ+dgoJoERSp5U7ksPFvdk/fELp760298f0dlm1/QO3865C88WWG71UMujDU8eXbQjZt8QY2vk0tcEHBMpImVHZ29qP25fhpNnxZYRThL2noTi/m5w3I4OsodxrsLZawXmUqfPZdjn3WvQsa6pYIdr/Spo/4UrHlqb1yhcwtoCblK4NpDn86DKi+UKvu1mLxOK1VyqqsqelMQzKrT9n800/U0/E7IefLe923IeERDFcczLlj9Mqf/6rOt75Z//Djz18MOK9uRN7WzvBxGgL0epVCQ2cqt/BG1BbtD5AlpEa7Cq4WHDa/ImKSK+gqlDR5R70t/w1z0sTyIKEV698wT5Zvv/sAMz0R6sUGHzCzIBnIZ+GMpuOnL8ZNf4KWn0ucBW7AWKVJHJDJOcdHxesTOp17X1aupKH+ph92PNNEsOkHbKy1X4zHad4rx6W/Y/dntsVaD+YKpWTxEfd1Xsn8ic8i8Cbjim0wmMEk7MEJflXQUT9CW18Y6NfQ75GDXaFumvl2zs7QkuFK//Q/rTQeQt9xe2zdJBBs+SMDmx5HS1rKTb/3wf5f/rMa4BebX6UrnIQdqt7uYTCnhEKIJ2QTyV93YP35ugxPzdGk/kM6B3PAHWJY7hSJIuk1GOwQf7o//5xI/jluumpJCUzdTsBqw6vDptdS+ByfFJ8ttWmI2zWyIhbmhK0G9MUqZW4rr1dJJXx30431p/9agPz8Ss2wqgErnSaFp3tnovd4EYqpOWg+PPXnA/X2r9F4O8jw5SuNIhqEcpX0vrCMcOMrpFyvBzDaIOjhepsu2Fcu3+LP/5aTKEvJzp+9RHS7Zg83vCATOuiFtPElWLL8gsOyeRb0dOZsEOk3F+fS8QqWA3zuFfxgHZFSIhefPRmf4E8//q3HCrydDrf6AnU6gpJZS6bssPlZ1K1r2szX9ibAif6eWD2BazJs+gD85d/ij2+XBnn++YXkhoIfWIyjKEIO1T2SfiEb1o1fgeLbFwR63xdjD7utFG6XrjRyDl2xY9HrDJuSm9Bu49NEMvKPPCPskV0rXYz1wVoOTN17QOct/lZ1qipo+LWAjXmJAlaWtxRu/iU6lIJYEHrQS+UXCT8aPZYlYWbxyWG54yWytsoVrNZZmCFLZQuj+75l65bPgZN9NYq7W20sm34HycA/aXgKOfaH//I3chWKSsdp5u7inaXNf8Wbv9uMCo+eoN2TLxHCSmc7t/3acDglKvWB3TbjJy5FuD+PLTXPb3kYkXiz4W9/K7BBd3UyPe8zgXfr1CN69oNhBdPUw3WBCS1GD7G/9VM2fxubSdAP8/SMY2gsKcSG9ngm84P89nB7fmyNl3Oxvb8cJEJYUeQ7yTDXnpzDz1x69K8e+eevKG382Aa5WJqx6DoM/553y1f+8M//KN6r/Z8e83yiwlT78NgfLqxgLI8I/H5PMfqNjp6sg3l9ytTGMrWd42kQ5atGYD3zNqFbvYKBpa5gK38g/fNbxzK5lVAwZ52qUnsdaLI7yHDzOze+2TQzDJMTlFT9SdiYfAFjp3a7krw30B4tXDIm2tOEuitH1Jaz0VgOsNvD4XvgN730KYbvu3/CbPY7rDJ7LWZHf+vgz2+yBF8LBF2qdNhV9hUHYXkzVhLta5nWUY2zS5IYpL9FTxh2yY6AQt4bzPvsUmWrj5F34SfBnMm7FVqr3v355YMgvJkIn0cSU6dXYrAUCiAwbwqRyOZ9bgj3jkpFcrn+z18e2NFiFcgD+YX9ge2b5ZdDEwbtesCBIH+CJSfLPz2L2PlgBstfPu3ANkjTfX3AuulFQITrmwZzqTIx8+MVDlK4Yj+/twkjSJwhNkyBYvMmJ2SKpxR+I18hoqXHxrKk2hN+zOpF7fcQFxLqa3jY9Bb+878IOKZn+LI7HbuWCRvqgiEF16JqyKcTlWaG0juEWvpSqI94K5hhWJzgS8zO9GhsE9l62zbh3Yp7bK77Z0GT3SL/vwYfSP/7SEE0mAG2y0YDU6KBDvJ5hugju1vG6OuLqbQd6amZNxOje8Py4ZeDIy1R/GhWavotLJ9TgRa/MYeulLMcJCZPCeR1arDMF2V4178/JJCpAdS2wQnq33FE/NbYZsrKOoe2I+fYW5MFzF0ZZtBh3xu1uucnWVZ9RyBBmYYzpbKK3dq3W6PjX0rDbxYUKzX1FirXfYft4j2AEe0WE8qf0iTim4kJG/sQwjitCnRQ4jhhNrBDWQR5g1W5m4tu2T2Rsuw+AY38hWvofck7mIiSgu3srAZLmIgQNrv9hSJd/wXTr+s/4FAAFUfv35J8/9ajqVWOqkM5B+u+93t4F+4SNqKL18ychFJw7JFEXWPQWdfeH2eZ9wZA2jI5b7NizRZGgx1gbZpSY6bcWVXmwnCodbTaYk67SwUyrw+xIcivZpU5ZwbufM0J7G5VMbcWMmF8+z6QEFyj4f7aBgsE93Elv+7sFWw52AS8nM8OzY/p2axl2IRKQ50Ju7yiBmQNmhK+4cNGnyl2AiK/uacMffSkppZZBmOCcYaaoXo01x6nYJGsAsHJ393IHLbK0DeO6UNhcGTEbubNmMbt/N/7OnTYTM+hQS3pssKjdPxSY0I4IPc46SDH1wU1iiYBYzK+PvAxAw8H09sLZid5lQpKuB361dm9WX+r0wJb3GVYi4R5mEs5zqDNyJnqb54ls+TmJfzksUfxPu2bKafzSXnv35SiIjqCZfd+qVDSM556T8sZVj4TW9g/Hh62UvsasOJ03UpgrkcWY+ewf/9PzgYNW2C0k7UySQcScaegLgjigc1xt0I4mgQtAwLBGCTRLNvjYSRvPjwb0/3B+2C5SyV1Rz001rKFJTw+riaS+Vdq/D0vuFv1AW/P07DlfAvhup5DtBTxD4za7xJCV7wRtD8epoJp0qGEV8hihC84NdbrAjP5YVmY8G9YJGuvvW2YauYJG7mOGNn2BxRx+8MefMFifI9whanotFi9nnKjLR8WB+Tsp1GDTj+2itxQgXiqRKpt8SvU3gnxh99oEH4n4eGruwhB4Hx5cmxHI2G8l5jwoXEB2e2r67BO2ZBBWCUDDmU2JethAjawrORAdcoBQEOtRFC63bZGyqelWO5JvgfHMlRRnTV5MIsThvCony5Erp1hGB06+CDkT0caPjyv+ft7ctw0AVEevduI9aBnIMiXGpvz3WfLxNge2oFW4XK7PLhAZyZKU+sc1hybgbXa62flashfalzYZJBrnUJY//zz3/omQ3JGmexpxxfqdWQbq3vnexC8GEeEgf8as+PASg7zkpGnukMB2Xqjwl8/DGQXOqRZtNsywn1w7FADykMy8MpHhZUV+li1mAF2fljZ8CB3Pn0EDDass+sc1mYqEuakT7BU9Zwq3DCYCHLmrSAJB1PQ7OTLBjZ9ssy+HMM5syQc7Q112PESX0NSvXfY+mhB8v2lkg1v55tJ9i+pGmb24jroFTjEdr+MAa2FrSuKWQEkLUcGvoLxFOWIYIy9ygNgWtaOg09fFLB3HPZJPydPHYrT90m9fI/ZEgwxB8Mhk6lN9CxgK+RdeHweQyT3b2os4u9YQmbECbXHFzNmvlJMaH1ggvVlsABTY3+WhUWuEUwH2+i/p0sJdz0LqKFKWwkwOLXg6mgDNU9WX+Rb/EFa+xVVJZk1LG65Fa7xb8XeQ3w3c2KuezhalkDdVGoMcumTJxStnqP4SN1izpw4+4sfshtVwWBCIZvgVVcdtqR7OyxTZ//3+87lGwfzUiEkT1lXkuVdCcXiNXsbCq3zoA5UPsn4fuEV7BcNEe4+hmB1LZIDuW4nairTo1i4by0otsn7hE63MJB010bwPdQ89V+ZNNB+9WqYkaEiPN3bgCVO78Pzr6wI/xlwwpRfJwOrt65kV1o8YwmNRWWv7D16FqPj1vhcqgEHvwEqUpgZzOHEDmSwemFDz4bgzUtuDA/z+EBANMZhnKPD8yCPdYbVoYyN9RflNhStjsPJT2mMhQyqqZCseWEcMDis9vILwW+pEqwVscekV+hVwCifPk0PSljQZv8QoJAHjAyhgoepct57WAYHiP3aGZotvlI4KvMPO3dTBeLKch9+8pNH0TP3mpHrexu2/GRREwROMrcxs+FbHSLq2eTGJu1z4aC/m2MyqztkrDsZ6PIlK0qMduk8bHiNwDS3PL5+zpeEsbDsIC6likbx5BdjNkZ7WADi4u19Gov5On1AMQGL+ur0CgZ8rm243T3B+A1BMXBW3Sl/+RRe4Gqwq9z78FVUIRLdW8AIL2gq3N/MgfoO3hqff3sRyp/KxNoCJbZoqw6Vx6Qt2HcjBIQ7GTL4E75XqjawTuZdCU7wkz8UIn+tVzJ1YSfLG/5jLxhxM9fK2wdb/sCoDL5snqrfHu5dv8WuzPdJ/8IuAX15tui1Y3Myis+BwOC1cH/5tWDDboGQjqaHssfl0xCNBgQYQjnhUH/Nxiw/shl4me0ili81Wz6WFEMh9xgNrPsLzGbotnD6fRrEfophkD/8PgU+9+99MeUO9rL+JEccvBxrWIDpxuBGUorm8KU2i+l5Z3n8rIjaTrFjG55VYDbVcTtlDJNeGZ8+OE4XQKOwcgeB01kOL5dThv3xkhpkaQSibPuFBlDfJdMA5gq6YkEQ+Ehj8tviCWicqFP8mm7N+s5PKnxk3Id60tEZ1mez3SruEhVHniYBEsZqpYj486M+/xKN9bdkZyXwpAK7y3oCy1u3BXjSg5z6FmFgugqsh+u58ai958VmVlCXQ2mKFxzjNSzWaNRdSMwqpdFk1wZz0ngERjlxRLZIAuaPK9Zw4zdUD4W+WeZrWsONP+JAaeSiMzycgZf4Yji08MjY7lE/4RbPSBSfxXbL6fmB00i/iC9Hm5Fo9F0IxuJOkXz+JMyS7jPgrsuE7W0/zpQrVXC9iydsU/pi1DuFLZghuFAnuL2bhQxSCiM7nrD2idxEMNzYB9akfynWm85YRIRV8GDCjcbh69nMEfIz+EiNFCkH9k0mcacQmYz5ngbdNymEjb/Dt/qLqE3ViA0r5H2w65cA//HfbjtLDpszh0j9Id9iRW6wh082Vag+rs9idY9Jrqz354Tdl1Q10+ManCERzy36FteULbLQr2BZe4DYKS2LKTOPvtK+Rkw1dbtBKz6HEb6qd4x9RQfFGL+yGJDqu0O3h7M0REIuB7Lu7RPAx62xotb6wHv6UBHfFWnRy5yzHkCWnnD4dteEMn6fgtNv71I9+oCBtQP4wFxFHPU3/Nr4hQlQbFXU1bibMVnLNwYcfAd0wy8mqeZlhfrEVCTv6miYiYP34MwyH99v8ostkpWE0FOsnKyz/wSj+m5X2avckp73Y9j8F3+cciQr5Qq2oCBwYbGsd7ILvKwZXrCBMCSpT1GAn826xT/c+Au1Sl3fbj08kTKU2Kd2LNFkzT5ODjb+RY1c3/ovKEEOLkU6ktd3IydztDwVU7iuG/9dwDqfHzGIhccJ1ZQDjBUWqMFVVa5/P1/s/p4vyl2TJvY3BLtrtkC4Xssb9tzCYMLAEwj/9p/24j7D3348TCazsLbxwTU23Kf8Fx/9rp4Gpo1mBS/siMlyPFfFQG/nFqjbMHL0LmBB8nFRoWwuPTZmUrIxrAcEdumo0itU7EKqhW8mY+ET4dDWFEAy7bYHf/zpJHu/giU0E+APf0ysqjtiLC9xV0IjqT/YwFZcMLX8qtBh7xvWwiRoFuMwiFBMKg3JYRkP4rN5Pf/Fu3e/9mxsbmQP2m7ssfFQzWbZRgDDyLstaD7zZkB+0cmGQSxJ5C9+Nz4EoaLuIxrebzUbdyWI4TROX3TI9xRQ9zNlwF8lFfsGN4L5dRAITCqQ4+gma4C9Qq1UAmNxyDIo1Fg4HppwEILpv3xB3loLfRWuWA+ttFnccdjDyLjeseaaHlgq5y1DU0p0JHP0bayyJ4iwfRFMXZn3k2V4EhUQmrrYLBMBzCHFpbzxbfpYc47N6yHu4IlyJWm/2pKsItdUUO+lmbD0zRnM06kPCG0gUu5BBKZERC3Iz+YFHcZmMIikFxyUmquNzdfRH+buu+TgNeYJ1r/PLFnH88pBnweUsJ4KQevy6geu3pASKcz3zSq/uRo6Zl9Q933Gyaze3Bo+JmNBsjpzwRI6J/Knn0h9apek96a7DcymGLARG59k+sXHFFZfO0Pi08DNv/gvrV1Hepd/sFFQlxaOF8Ghcayhgn0LI4S6JVZoTU0+GD1WfIC6mvofHrA//QaJmLbUiC6/ZlWdiwpxcLhi+7J7B3Nz+8iA3500isvxA+bs8esg/bkHaqRvLmDeffkoQ5BsRzCfa8PS6llBz08sHE22bizsVPjAf8kHBAL+NnwQTEXQ8KK68Ze+oAnNRMAb3y/2j7ld7PZe0MGMf79pJKZps6aHmYNl2eMtH9RgFapD+m/9Va2tg9V77sXD9xX0RN5r7jC/XkMFSp20SHwI00Av2FCho7xMavdLGFDl1+3B/ZbHOBqvJGCmoQtge1/ULt4BWHttsuFtuD2wpflzsIaxWirJzH5EmNQ8YG1Sp4pP+I76d+8CxNkBOpxroyFw4x8sUIYRkt+9w+gFUDNVwGth+VgSGvnk1YwbfihP5eeRZcsna/zldLDxUbQVtIrxD48/3kukwb0/g1GcMAc5/lnQSFXfxsq1Qwt7tyJUezyCZpKFeoaNZksY12XUrO+1icHmL9FLYY5sNXr1rExarxFJu+fB8nl5BMBfUOEInMdiNuBgA/MWB3/54F++gZfqPiOeFzNjNW3flq+r9CZdnHXJCjRNhZ8VjfQfH6NacAYB6Q9k2rVWs5ZZFsJqckeaQVVJaJfYHXjvqoH8xDoZWAJ2NrSVHaO6+3YZU2N9VbZ8RtXT8ZsszWWfg1L4rP/w8R8/v74OFRIykwVzIT0Q9D2Y0tNUtkbfpdYeJKZCqbHxuTHnixWa7tn8x+cZrxAVopf2xs/T0SnYbLJZ3vfqitOLfdz4b+2DLd/h0wAMQPO/7KuMTDPsAPoKIdZDwW/+9JD857cEi+CzSQl+7r/8d1Q6v9i9dSTst/1GwCjugq7sZQj7sjmQ30XOjfVT6aW8xTcOu/RVzFq556Clu9toEOWXzNTXTHiSRUwdvz8Oyyresn98G73CfFiay5zB59zmOLCeFSOHiZnwQkMDwS3/zi6vtjBfrZBGnawUC5M9ATYrb2HLv36HFR4vBNRjkpEt/g0mbpcxrsPOw87pwBJyXYQMCECMqIO7b8LoLo2B0O9t6o7Lc6sNzAjeXieV/vl5DM/DCu0LOGInzLOm+/OjNv1BVSl4NKwxwz0cej2ijin7jME8qGQ4ezJFYDckq3IIc/i1bYNufDFZHkF6hkjYQ3wMLrtmEVLjA7Uwem16ex+wOHzXoJr8kVDxYwy7hqvOkGroSi3btcByzRYOAvHqkZkcnoBxB+UDfKJ0CGzr9StYN0JYuN9NLwbGZE6cCLwsgRRj/lUsD05WlUeqpdRKd4Ox3najCDb/k8zv0StYxuUtHBr8Qaj7DcU6WPca9P0Z0nLZuq5Ml9aFQbyTaNjduGTUrYqTa2aqiH9Nh4Ys9Efg4q3HTX8VySibdipv+RctYTIM9HEMRfhem4IGfGwG8+062ZB/5T2N1DU11vkZnuA+SDokDHESrMrF9uH6eh/Q2qNL8Gs/lgn/+L8VinUz48PvKRcNn6MT6FGy6qvgyqB4pDhcLz+w+S8ZAM6bx8FiiYDF4VQf7s1rpu7HaIrpKJ9G+fi4mDhEMd/Mp4iMIKHSi/7ht/jZejVWFvLRcnkagZgSg4MbX0SH2E+SmT/FIgxerb/55RGQE/+XwdtaAGyOyAvWj1iM8APdK8X3SmJMJu0J3siZUg0672T9LfEZBmpvUFOMlmGuF1VWtv+PXmJwGAg3Zy1Q76cGWyPtjKWiZQs2PxdBsR2GZVmfHOT525PMWqsb60dX58OA/ZwGjxw0Y7UmIlyui0vLB5AHmg4mARs+Ylse1WSH1oMAgP/CNJgTCzBP9EWgvIQzrfLi+V8+edbLFVfRsnVZ1Y4yxOWuooZlO4BclVcGJfeR0GjXvgdGlkmUW3V1URpLuCCbv6Q49XCi+v1F2T98Sz6998+/HB57UP/zm4OPFCbd6yJWkNAX/Ivf4OcL5gpfRRnS45b/V6sOZrkvXwcalPuGzT0Qn8DnDxRx8tku2J8/9ud3q2F7b6an3tewMVUHJ9HlN/S0TIR/7ye6cqLxe3Cr+pfvNz1bJsOAghPI98GTcB8/TmYzlAQQW/WZhgFxGiE5Xn14b5qZsOCtN1Oq0BKex3eNrUdCmjUfFx12Ajmh+XqSg5kpmv3v+0b58sAali35889wqqB9Mna484GOZw+70jYL/oBBCqVveKe3shMZMfRbBza9hrFsL0lL0/cZ+nAesBo0/iB+0KRD6+bFZJyugrGcrdYGf5/HPmXnguSWn4JwyGVqB700iAwnsjJIpoKjA3OSndLIGcyhKmHfhDWg/OKtwAiYhBYtnYwNa0P5Ul9dIkVe2HS3wBXhfgpEtNKwB+tRKipQ3kaeJqpkB0QPovI//wTsjULEqnMGkp7zZKvHFMxZTxmEPGdRd/MzJmWuOrDVW1BTH+em/72bFN6XlKHn6/4d1sc5NOFnDUfqxL+tK02Cemhrgo11GvZsyMVUh5Z1PCDOnN9sTo4PH2Zq11FHxL9h6m6WD9W46JAcBe3AMIxngBZ+pCYEqOjX7+RDzbPv1OHLl7Fe64qT//Gh1+o1izefUzB3oo+elonBVk9BsOvnD3WOGUkWSvZPSOfggubEyIqpHwsdNgP84UhPQLDeu3H/T59i69iCxbCyPVQgsWnoR/UwKZmV//mdNNj8vnnjp0B7GSoNpHYZWHF8PuF8MDga7Y1nQ93cc4FbPQKk2HXJWoXdZZDn7o8WcPGKDd9dZY2HlTTBWx+W8gsIkJ5I/8d3lrVyfch4M0TCoa+TRTpKFTwJRkfSs1sU0sk4jGDzx8n+cgPB6H0/LWzV2cU35z6xKaJe/o9vH8XgNnT685UrEhfuiaD+loCpJdVB6D1HivDrUbBmfxWgN6sDdY+HKJlvTW7ChSzNxscTxvxXr8IlHzMchVXXkI3vytdutOjtz4/e6m+wa3iequINDfSxZ/WfX4aEM/saS5hw27jU9IuN5T6zcRttAevZnbGdXRXjLx7BcfIdqqfmwyDqkJyU2nnIZAfGT7E6u2MPqybScISUpiAxHmfoOZcdjvylakZOBzk86vGFImhGCW2T/ix/7HxFzfgoDAY4j8A4LQt6CsRz8+fXwiciAd72X9Ppk9VBbviZZG9DBJj26BAYXcMkwnW3/OEDgaJOyd/XxuLzhxmoRrrH0eTxwXij4hmY0lH/089gEZQ1VnZP6fmn18GUvisEqRZeMVJfrcGOpc6BKetLsg+B1BCinlzIk/uNIscA4GcpZQwtN/JopL384K/+CN7nusVGT8/Bmt0G92+/YZUOC1uwYbdw9+0dImuP1Rgu/FTDX9kLNIzDIXm9dSTCt9HeN7wpNv+Dj+GGV+hwcX8G+cNDrnuq2Lp+YUAf+23Mltp3hLX8VMzMm3JYcvUd+/Wh3PzSyYUOrSMcHIFVbPqqVNTXlSI+1Llm9go9VTY9g6CFR/BBVP7AkYkctZeHC2Z/uOrQkXN1q49ww8yW0oaX2Q+wcWyHYgmMPlZwAK5Y06VTMBsezuVJ+RFsatk7eG/rA8K1SNEKelKMotnrsNaKD3bvXQnWZ4hrkO1Kmyyu+WP0fvMyub7EClXn35fNlT+58qZP0f7buonUJn36rz5sbu+3d6KaU9zL40uWARXG+uc/J0rf/tW7ht1Ve0Co5XpL+sxtguXrzhUMSHegwbDng7HfukpbgmH81VOMv/qUslfkP78RDLTauuAuPO2peubbYI4n4QmnapypvumHza/I/19dCvb/+0jBnP8UaqCpT9YoyQQoGaJEFNC6w4zcOITeRXlgUygVMN41FcHy7Jr0ZDa4WWbvuFecODbopfoUYFrHRw00wD2RMguSMbNo5aA0mx7hhWs8kC7VMuXWn1TsaU1RjKdrHsupOGikQW0yzO886OBp/9BouOQTmM33vgMvcbmQobE+YMau8pQDnkTbrYuGUW1UnvK5ahus3+GxeIYcNKG9E69of3tts4UNKEBCfA3N1udTjM1cytCToh4H1SNtlv7yWhUNe4yGUrFPFhtVHQRBeMV38uIARfdFhEScHaydzTZo/GSu4CPtIpx1/mEgl5Bw8uoVb6wvwRHM5PKt4OmKRIzuxGYLSPIK8rnlEOXTPYthLe0QxnHWYvtrILbUl76F5WDtEesai90WdGoVrR8v1B+mExguIO4hn/c1teL8nUx1ct7D67LcaVAtbUDi+ylUxspHaIj9X7E849cedPtttjUVjWDOY8NWfomq0uLDbgl7qbs9vMgFxUjegYA0+sDJV/lW06DqomQRdqAFu881pzoPmmJmsdop+9UwqfotXwN7XLEPjr3Sot96PifLwD4E7gJAIrAQyVitJW1BzVodH8+mGYj508yg/Do7RM4fd2Pqk9KESiLE1OjjaJj1gxCCktPP2Lh1bjAPATGBJftPavIX25C+t1IFt2WJMRp/5iDZ+pNAj7o8Wo/ngc0sdnsg7ZYVfatCB91sHD6y6xl3rP7uY8HOi/ABL5FdqLP1l1wS/rSHz1Nq4sC5hYyaII8BlZ8dWrz7z5ivXa9CldwNaoDL2Kyf3oQQl/YX+0btG9Pn5+oQt2RCg2FtjTv5xwzLs29iu/7sEsaacwsnYMfYr9iDrfvlNoLDXffJelj0gJ2o9gFi/tRwYt+cZncl+hlK0+RgXzxPYEb9XCvUqSSMhOEAFowuAjyZ0g6JXuon7H5CJRRUvEfrZXkXbPdxPvJF5n0kGKttsN6KS2DXB4DN7CA3FANxVcZQNpAwKGibanSdoXgrAqwfg52xxroaK5no3IicL/0w0c9S81+4v9OS05OkWz43GbbP4YYNjUkJU99fH1RaVGBfXpxCyv3TrDybFlM/kqSGnfo/18z6bOttNuu85DWE9h4R6fNBgM3FU4bhyyLYK1A/rG9vPcv9/atSVR7qYMwCP4fm+DOo9hF9tgrmrMoYRpA6peuzRcgKDn7bOMMej74Jk7CYwvv34uPzKz0bBMsHEY5h2mFDtfEwToe9CxfL+lHrHaWMAe49wmv3hWQchfuwwN06Q+rqJ/RhigYIlhcRFhU9kt9c7dhyNpN+/1wfN9Q2vzGYv7ZqKjhXFmpxFCfiJfxAmRhjSqMHlcDC9toJPtI+wjr/24F1NGdROeiTQKNL7g+TxAsQnuzapgEVm4Cl4u6k4MvJRbJR98FP/2Qn4HSyS+3gVyc0dp4tHAMWYUPpTDBLe5uDzHJKjA65ytjkixUMeH+lTpQ2YAkeJINgAA46nJZjMG75VF5ZIuKovbjFeIHvD/zIuYNRd9HATK47F/4A5hHkAt+Yv6+TKn+Qv6MGbzyMdffWexi8lRM53/RjsuyfuIMHUS6wedOXhPUcPYPfqXpT7xKp28/7PfyBiKe6VP0Aa/GpB8XzuSeHg2kH852Tq63JXkhPeGvcztXQldtXKGC1HOdgqerrLKOYCwk8vA/gB2bZhrtK8HG6rccyPQYX7tLQomnURwHx2lem1OyjU3TL2+B3N3MByrh+UjvK+GYi/G4F965UcRpcBUCNbVCDz0pIVQbi4hcOsQuLZ73Hal6jYTHM+wk48y2jYebrYOEL5IL2NWNqGSEtSHQMfFCjHU9d6Wo2q+bFsdJFxorEiBlAbJ5GCy/1/kkT+/ZtmFM9OGjXAJC9mSQNDdOhAh8nTZH8svfBch2ETi6w6NDok65sze63HObvrKSZT+uCmgfzA/3ssSP28koC9hbcHuTBM8BeYTGwfo4qUeLvgWFfvLfD+NCmf/GGU/rsCqYfmw9MhueKdkKuBxOvkBIG0rrHvrXTC1HTvyEsBVEgc8V3xnpyXE5efqf4Dx+HGbe4/MN/tF/lwGCHM6+D+AvYP3xZjvvwCbd4QC/L+xTse/BSWP+OA0XhzwHLYwAiPM+Zj1jiG4AmxxeEcwvPtLoTG6yK/qvBoawo4RDzArYA9gTKcHlge3mxYJmdEEFpx1aMxdcC/vAOuifEERmCDkxp0KugFASBRovdNosrFzrw0qeMpOe7TZYnKkOYkY/3Lx8TW1HPSpkYiMgB3zTLqPgrSJLSxWUPf83T7pf0L3+QndezZpT2iINOdNDwycwzxvRkiRWV6tW/55kzm6qw/8wvrBoJMVr6uqE/fCGH14jYaoz3PfSsE0VcrPhDK+1tCNEjkXF4ed8DNvg3H7b24uJrrXLNeNwagaWkTamaADYs+LQgJeIMSm36dAvqWFszyGPn0qTLafC7nvY5PBhHjO2feWvm5GK28PZsLKx10qVh1UF3gSI0KhI13Rn+4hVej+aEDTue2c9XkC5HZyITJmkeY4pBqsOhUXjsB+IIpl/8M6GcEQ1x4zNi7GadbFgJ4he7haAVC97davC6Vw8c/vALsNjp2n/5V1WlR7FIur5dzKQCNuV92KwuuHLQu/AP+rde9Bi+TkpB+RK7/Tlni5I/RVgOQ0L90KeMWPnz/wAAAP//pF3J1qowtn4gBgICCUN66UwQsJsBKgIi0iRAnv4u/lN3VrMauxYqSb5uJzsavKTb/njb0IP1eruNMHicQxrSuxls8/MJUxs+aaAYd0b1nvKwp7cW30ZZq2ezSFvoLaVOi5FXa0L9pwhPnsfRsCkVMN6OkaM++VOIeP6TDs2zLitYh+GBcG2gJWKpzAhAJ2X0+JbvOYt7EipXUN5ozPQ5WXY76MPjJGXYl85STUbt/FQei+MQ4Sl5+QLR3oLGh1+o/Qjeg7DfQQ4Eljdi6wObnBI6FnDZf3c0fBpiPX8YlmDslA7ZWzOrl7qYOXDkdEp2+cFOemXZGTI6rAPd9G4yPC5vEdyEN4fdvnUTQc06Xhm0fqVWurdz1pzKFFB0utCbfMM5UbWc/4cHHM/PNTXFewtP9aenPtH+7m4uWsV03m9qbut1uUYVgUl8jaknLhOgVFxFaDzCLaV8qcHMhi1y1tERWxm9Bwx+3k/VxFRHq9Nk5oLmGw92XnZFov3Sgz3+aCGUkBoToQ7HYM21q6OqeejjsPmd6m4372awP/cPiuRTH0w7Q5dgIdwwDo0LrJkX9g7MCgQILMKbOfinalauh+uCZL0GybaeXHhJhRxjN/yCYUd7EUbYv9Eji2wgfN5LD7f3SZ1D2IFp04MAKScdG7t1rJmj5Rq4hPNMDfmisjU9kBhs842oMQeG37i7FdAfshO13hfeHMeonaHMxWeqJWsB5iHSn3DzI/TsQd0UT49dCc+g+lBt6W7J/HxnPNzWA4lSZwfmPTcb4Dw6GgKm7QeL0fgNZLQ+UFTTJVmcWDGgNQ4myew6ZSM50yewPnxDnfTkBqton1NAhOFEg710S6anl5cgGa3j9v3vgFrytgWl3j9xcKjqmrFPH4PHk1oYXTghWNp23fST8qF4vdhgv/EVeDhdhlM/6pMFowcPuTOe8bHQP8PMrx2n/MMb8WAmM4W1D4f1M6E//ThqPKjAps+oUyRqQnvTX5XznezwpgeHxU1eF/giQYGtMAtY3yKgQX5AHJk2v7VANjmwQ26H4765gEFDUvPHH/Raeedk2vhSvRVHF+s/bUxm/2zf4CewLXyYjh4QltBS4LJcAJHkd2vOYmYYIAuqgIiVZAAhYoEIsPmsiPzdtWwZs76AZNIDQr+SXvMJ1KI/fMC2x/p86QZmgFNDSnrY7eZhiV9arL6JtzXObLLgxwushTfLf9Jw31BzdNPOgrpX+Pgezc7Ay/rgALMfXex9xTkgR2Fx1W9NVOzDH0hY048NxGKVYCs8nc31KMi+IrkjQnvnkedremijP71OxHynJPT1kBC8gupGlJd9TPbdFV0g9yodGsokqhc0CE+IlERHcLC1fP8VQQ+tKXzS54Znc2cqGcyKEODQwx+TnWWfA+nTdCneHQxTwMKpVFtnBtgjj8Gc7/FthtBREBI+rybvpHeUqZtexJpZNIydviAEm9+l+mkJ2CT/hhH27fre8PodTBevSP/WH9ZiFLC9UhwzeNmdHCL1qcLG1+66QvEmzGSO0bDxR9lACYQNWk5LAPYl5/MgObE9Dk8nJR/TZ9f/8TmZReTW//Q6XaQayV9x3vyMG8Gm/N2p93hXYJVoaCiO/ptpuJz25sSzSQLb9yF4rA9srapTpG7zFQFu0dh8cyGBdUKv2B2/SSCGpJr/9ApS8/wczNFw5sEl+ClE5GKaL0Xj+mC6UYyDoSqThVYX/0+PY6O692xKGpcDocbdya6Ol6QzzdvlH366RuyCsV6rBn6M5w4fq6AFzLzJHGjnISRS33bJHEDPgi1yBXp95gabReZE0D44FKOV2WCJX26kgORkUBOEZ7Col+MTvmlk42TvlzX7lVX2h9+ozIZPsvnPRv3VZD7uorIftvnX/q0f+tz0GtWXSFELPrnT40siAzmyulC7BWVoGZImX7WmQv/0tX37LPmajkUMozX06VXozYQf1vcMD1enQgu81cO6XNxtfpcJPYJ8YbM3vy4g+Nz3aL/58TkLKJG1M8/hgyrgvLoI80V9F9cf1Q0RmexWyQR+Un7rcvCo6hWo5QzrQtrTINXjgRHaFFtj1j2a8phL5q7rMqW6+5d//EUTnEYA/QyRCJemrWenfXAQfHoTB5HvJWQ/3g2ADjiizrGfgg+fvXtY3PcT+UTulYnHJBLBoHUrDY0XS+ivmh0g17sdUoadlq/F52hBnO0Wsp47UrMziDr1MVcDdQThDBb7KKfwzPsDtu6BG+x51+9Byk0SDXidJrN+Rgi+90qA6vF0S9br6dvDy5k7Ya++XwbqcHYET6qkYftJ12Fxzx8D9CLY7hZ+hsGS7DIJXr6ooN481zkb3KCA91Vx8DGJvEAoQ1TCbz2quMPm54/fm7/3hU1TlereCIMIRNf1iaC2DvWEo6GC+By51A912fxSUeHBlk9RBA7dMBHrHsKY8oDIuuAC3nZPhhoejg8CcUSH+VtwHajTaMVHtSgGknqMg7dGQPgwXbRhHS1JBFYAEyJd0ckcbs9nCiW0i9FnPXhs1Pbe1t9sPSC1W99gmR6PJ2zuvofmX2uaS0+I9qdHycK+X3N9577yp68Q2/IkPtk3CsigPGx+2ATr4VUSKFuZTeRYObD94fDL4OP4lElZiaeE/zmf2x+eITFrtGCNty5g8KvXaH7HZT79UHKDmu0iej1al2TLAzqwDnOLT6cXlw+3Sh7h9eddCWucMBeOR6kCS+nMaPf5/IZxy6fgrgpWUjgwZPPLZEiNlo7STHxYtQjzaQbd8XvEwSVgjHVy24Nl/9lR/Xlf8s+PeRkwHmigRi9aOW9xvKQelgpRo29EsH7HHQSb/yToehgA7U1j/cu7yIWpOlushkpwF2sPqk8Pm7EPr/Vwv3+a1FgleWCOUY7qNl5kTp0XW0dj8KFTPy4UkeN5KC8mr8HbHmFy2fz0T/7VBH549UwkZr4ZC8TbDKubWdLD0RJz6hgd2Y4gWEhQmjonuneLgTN2Ivn12mmYd1dQwWhFPhE9C7K22kkKbN6Ipzp0xID4H2eE06smZJrVIxNb0l1UvmpkGlxSf2Ap70fKDF81kh1vqCldX08AYvolO7Hv6nmSZx86jbZgb+N31l7ehqqZLxW7D64C81UnKXg8t7uXh2kFy05tn+DhODuK3oWcd/LucQG+p0c0wBOuF/ViF9CwXR1bZikN89tlEjAKW9j8pwvE9fKRoHe1zhgNipqMWtopYKqeAUXkEuYgOOIbRK+TggNL5YLl/PM6ODdcio1ruKsJV/Eu4Ga0Jx+P+Tnzk7lQ9+L5SN1VGYLFQZcexnYeUTt0qmFM5LVV/vIdJgdb44sPdeGml7EZS2K+fd5AdXyekUweQTCnz7JTNj6hyL/QevlYsQFvptnRf/7DSOQI0qi74fyD3WTZt/OoHs/RGe2n448t4GSt4M+vn263li1QUGbo5LeBfFtq13Q3nX3AzXNMr/cRgBG5txB6S6Vj7e15NZvwXfwbT8T7dz3YN0eLgydvutNw5B/1vM1nCFQvxkFtO2wd8m8Gr5WUUD9T3snf+MD6UcT44C+cSX9ln/3xAaF8+c1n+j6FsiddSuqnXy9h/Xde1TG9J9gbfWaOB7oaUFkexcavDlu7EzH+8ixskmZO1pmGItj0PNmtlw9b25NLYHxdT6gb5XKYxBxx4CjsbHwQejP/l6+8dvmXCLmumbx/PmaKdsnu//wCDS91Acn4mMmXlToT5kEJwZbvoHX/1Wpql24KN/7DBpIKNl5MaADwsTokBuVQLzchImq5yBySx0Kr93/5GRlfM+oenMHY3//n7/cbts0Q5/PShCFMeF+iZvR55utNfHSwoxD95clstt27BneuCIl6nap6y9cdwO1++T/8EG+5SVTuyQ3YcPdrMp0EjodkalqMTGlISBp6HSzXx33L41tz+c2AwMQXDVTJ3ZBP03vmYcKT7QhR2g2bnn7+06NWvVZguZ+HG7weQEhkDt7Bco2lGwyxUOFQ3n+Tv/wOqIOiUIPbGtHvYZ9CozgIqBYlZs4Hl7uAvj06iNvlQ74A0mRQwuWEnUPogn1vR0+VpHcHF5sfHD1eITDkDZ8axU1L+D9/Ii2vH+Esc1+Pwlm/qC+TLtgCep3MT+XlgMf36lM0Xq8m3cehAcY2lLGZh7I5i/t3p2556D9/wQb/5MLNT5Fqq48sJyVDcMvzqP15NcmaW0oBAf8+4njD69UFLw4qKO/RPkH7gdx3ywht+WtjFF6znG3+W/nDP/9lT/nf+Ci0C75IgesadH96aXqfz5sfAAnhyvYJN/+G7M0/T/wth3B/tg2ylIKW7w+HdwbqRq3o6yePCb33mgVpNxn/9NKKpcZV3sX5R4+EjTmj67WA9XgtqM9/nWCrv/XQrR8e2o6LDKIidRYUvs+IhtVFzlfeqFJw2AmQGg+m1H95JPRjtGx+o0yW8VbMcDaJh9iWTy2plfewQ6NJyvhaDVNq5R2UVe9FtWpS6nHa90/ogjejwVXKh7VU5lA9Jc8zUZBG8rHsfiG8KpxKnTOH2b45dRdoXpeRPlU3SabDvjPgX/2rwjqrl0n63mC7hN8tf9ols/JWR/DHB7qt4Xrd8hmV2XZBUxt+h2HTc2oJDk/qNsUhWEse+zCWteLf/JwfmVX80y9olwfJGu3WSq0/lUq9h8MNCziXPhzbNcXolaN6zY1mhdHS03/5G58WGQfnHN8Q/c3ngRmnoQEf08iwk8X/9OsT4vwdUjMkQtDpZwf9vS/qK91cL/ZxSdXmlR8xvrBqIPrBaMDVLb4Ijmqa/6u//tWTbjw4M/IYk+dfHowGLDoJ/+cfUARD6m96dSlezQwDO67IvqX2QO7bdax/9V/9pBg1/1cv3fQC1oL5OyzjLV1hKj35DY/KeqsPGDC86yZ1vuGnXnYqeUIk0/Zv/uerRC1D5RM3JYLSmDm9avfbP3237+Rv8Nn4DESLneJDcXoPq37wG3gclwa7eZWwb+ZnKzRsX8eHDT/X/kJGOeWohE33BOr2wqpOdbOkwweinOq1kg9bvcYTqYsUkkwDIwT+3OlHnf2Q5uzKBf1fPkr9JxQH9uc/wVhU+I8PyfPkleqWZ6PhUJnDnMSipHz1M9zqzQ5Ymt0phv/qy/KLr8eMl50/PYTDIpSCeTfvV5jKGqa3P3x2tNxQEv1wIOyrCsk/vLse5BDtbvyUrK+LH0KNak8kReBuLtF1UdSt3kaY5tB685ei4veiSHWhW8DcD/kNkjR3sK3k4cBTThLhhk/0PL3lYapvjxakIa4oRlY+DLvp7IK14Q6If3d6vV/kSYT79P2l1zv3yxfTnbt/eO3FyhcwGlvi/9SlQP7vWwrIlblE5a7nZJ3PqwYO1QUgfqyVYTiScwOF7FSTQecH1vOcSVQNp3v6PNxFNn+85wwHY9BpKBz1hJ34kwV/PHdA7eU814ux+KHcLj3Gus4fBqG5KBHkLmaOtZYYYF0UNIJPsUm43eU9sPXmd5BD85PmqiECBo6lCPv3b0H8dSmHNTqAi7LvdhPVJTcIpqAtMyA3b53IY1aDVW4fBWQSFyDO3+4imyB3g7PyvaH90dmDRREHAqOsSLGW6UFAl0vow1JGGMF4mc3FzbMCfhPo4Mtv3gVzcHUyxbYeM7Wbk5537q8P5eR9G3Dchko+kWxNoVV5MmlriAHjtOsT2LL9xP58HOteap6cZN7sBz04ggVGCys3CBuUk5k/V8linS8QJrNjIe5za3Ki3FdL/XRShg/XXZk3XytMldjtRIrC/FZPIUxCmM1rRP/e30IqM1KXsibYLr1vMk2EdGBdK4S10K6ChfP8Hl4aUqO9+lzNVbqyBtqJ5+GUpT+z3wnlDU7HcaSaefNN0Ro9CWCdlNQc7m0+95chhPE1xTRpgjRYgH3sYXm2PGyvPTEX/iYqsHudXRzwj7vJJiop4MakM379gmMwW9fgAriTc5mAa3OM3LZGUXepNOnhDbxhbli9XX1j19iKapRMu9bJ4KhYiHpLOiSsNfsQ0F14pi7rQb7ejBrCE0Me9dOjluyNHHSgmPwKW/cPBvPtulZqdYIWLp6Nlu9xPY9w+c13enhGSc6O2TsG12tlYE8oPsmSZJoDu4D0+NAKi7kmrdpAfNsVZNeRX7JYetXBSnR8bMTLAOiMAIK7M7HQTpAsNi2tG8F5ADtUm+2PrerH1aB4hyGZtW9eL24eF/D80RUclJ8WLN/f3ZVvx+KKz/EuqEW0jxUQZy8bm+KYgfX5zGJI12uIj0ebDcsKgAVe++lKpIeXDoxqp1SNbeNGPg2xg0VFZwfW3OVCxPl3YMzLxRGWVvvG7vSuBlLtEkN9XKYLYsuZDiv5Uh7sZNHH5oGYTNzBJVXhl5exVpvhwJ7u0u7S3aGh1rbeRv+MFfh5Pzh8ZFyXrM7128JULHUcqK9sYOWX8ar4sA1qF8/FnEFyzsA7Lx16VF3LJICOCuzeg0YW/sED4uVjCxxpPWA73g0D+110CwaOnxP1e4pq4tryCuePO1D7Kifm5NxzDlyLx4Fux+xN9kOzr1qeNRF+m7+MxAcfVltj+6t0aBlNQ/8Jm+u9wnYBeDZOpCihq3wP1L9c7ibJnQ4CIakwPUiNP6wT53aw4ecUHw+nJv/URUiAp0oI42PX1HOA1afy/d0YKU/FMV90Me0gy793siu9oBZ+a9nKD95ysZFffsMqBzcEzXbdGhn6ClgPXLmqt9VxqPe9VeZsXc0UYvVQEXYgJlgQdyLq5WTZGF+LpF70nxxDUxPfhJmtx97eD6aAD5sfxl7pD/PRvrXg0lYrNtJPbjJP7p7wEispeadaAxbQuylMItnEOnN+OYt9k1PunZFj73kp61/yPmmwyuovNo8VC1YhERuQt+RDRPP6Yev+LDhwHDKBiNmjr5nZPypoec5E0u/7xha4Ay5wdu8ca0Pg1IKKHhaQJe9FnUmSTapZRgoCb5WpP+4Uc8y6WFK2+UZRWq8DI1y2AmalDxrJ+MfW9yz7QDe5Fh+SvZMLPyeF8P4TezTgZDFn/Jti+FXN7VTILzUX+3ouIDzXBj1Y1iUfP1+tVNNfv6cW59/B+sDzTR0aTqLmgdRskZ5rBgfl/sFH7ZaDcRifGrSPJKdGp3oBO5JzC/iHdcJmmLzBwI2DA88fU6HW51aadI2W8Q8/aVC4dTArNyoqnNYQGoipZpJLrzRbI0eKZKGwc/GBpQxehteeerlLzIaFeqbWLClQ+5tfJvW1pYDKz6VYh5EdzHwSX+SPnBnYI47EZmkyfJWkXUwv4uPCJsTdCeS2dlbCsSvz39n+zOD7bRukDiLJl0BJCdz3C9ye9wnWwZ1amKfKZStxOgP5XMNMDiZlh92fGCbN+xiN6u683c2sAA6w4RWVKuniGbFjxcx14GUEZ0PksX8wm2HlFIWH1ryPceCLx2T9fscZPFJwwMcvSZP1HXAFoLmDsU0qPlgcX3HgOTkOVKvLKCEc+iJ42+sBxqNY56vk3UdIROjRsxMzNt3btgIVFJ6kXWqcr/URcoCu5xBr50M9zFX666F6uk8Yf9SsJuaj06DkpC96aIVTwLhP5sJ4PfZoefCMzb5iNOAD0InsbmxnzvFURXDx4gU7X7/Ku9tAeBiMzkwE2O6Txb4+nor6WBA+vQ0nX23i3iSmgojQ5mTXi/eIOPUHphynhnHI13G7y/scQEINeLsOK06fI5jmKiTkrIn5yF2zDOY3PaTu/flMFun6K2B8vWCkOG0J6Ft8jIAdOIDN0/GXL3TPOf/wHz0+qTlKYDSU4AB7ejwdp4GZOIpVdeudeZvexjDn/ekGk8cc0vtzi2ilqOrhblQ1rIPha67VLjeUDW8RtP2ZTYH+Gf+zXuBoDTyQIks1pa9NhiFRc/ryJQfepH1GFPjQahb7AQe/khMSKelpMOHDL4T1aLzIPojdekky15E+VyvAJ+duJ4NmGRconEYNH4K4G2Y+qyOlRsOExNro8hUudQaFE9Gwm2wnk039VsHH7f2hh9asB2Ze3kgNnwrGR96p6lmsV/K33ukRDmWylmLQAJGzYtSokxgsCs1mGDYXFXEHURno/jBdoDrbDsUfVanH7pjPUEmIgZOfndfjLFdPuCiRTs9e2Saj8IYIgpxDOBT6TzDWl87/ex61C5CCWQ+EG8xOH0yPstabi7CTHHB7t0/q2ME5mFSlHIExjhl9XpeGzcySCiUKVkCqxnzXk5vHT3BXLjFh6scc/sb7j4/J3uUeQDDCQwmET/rEf3ywfD6FC17Ir6krjaq5ILsf4aDxKzbIIpmdc/dE8MeHhzM6sfUoFBmQX05CvedFq5duZ3LwJ4MQ1U3Am2v3G2JAdu+RHniZz6evAEuwrT+aviMnIF+iEkXJHhesdXvARst9P9WnVwo0BOwBVoreFgBB0VLL8d/5jMieANI7O+o/gQiW415b4YmFHtkV+mlg67YFwq+3Eje/6GB+sFJU43OpUSz2azIP40WDtKxUpKpuE7DP9VkCPH4V9Kd/h+VxdtRsXzfYlB/ef+b3r3NURCCL2VK7UQbll5UQhSYNW50rbYHXBABVd+MJluR9MuB9l1zRcghWxmRVuynBC7dIuR8ObFX43QVUwMQURVKRC7V7y2B38m40GBI1GYVzJKpria74cB7O9Xx6aTdwKKuRes2X1aP9TGMIjrGAuPYrDMsfP22/hzqLs52S8uwRntp0tzXWCwLxqn2ekGO3I41ootU8t1476KSdTqPjcjX//BBUfXemwdV553/8B41ya7xZTwNYaCHx8I9f/vBzGYBkQFf5HMgu61uTxZfv5U9/UoyyNVhAeGmgSDOZOpdzVFNHqJ9/+pM+jLEdtv+fwsdpPmGTu26Xg77yFkS33kZ7iDUgZurpqerXr0V1X/wFK2eYItzZYYEfXQdNRlO7g4KpffEpXePk2z9iDfrgUKKdsoY5FeUgU9qKE3Fo3eqcEXtY4S2WbWrm4MVm9nV64PFDjS0cGmAPMisEvpycUHN3R3M0dncIhcvP3vCSy2dxCHr4O9gTNjmeB+v68p7KtXgdqFcYZ/Zrv3GnvvlPjP3XLauX6ljx8MB7Pj5IBwcIpepnEATPFvHb89fGrSr455+sz00LBOt84eSX/G6pLzR7NrtS6Cjf4v0jIwq3PnnLKYLL0HbYWxYazCg3M4hvakF2eTMNi3omBrzFwCZrvAxs2vBBlm79hRrcWCXsA08IYjFF+L6L+HxF3CBCQNsR+16oDhMKWaeuz9sBZxkr2MbXDbySlcPHXIcDPU2uD4NQpnTTn8N6PXA3+Me3IdCjhAa+psC//+9pr2OyF/tfBXfP5Eu9XAFDS8KqgbJ4jTb+tgYBa1EMmqp40NOO6dtFWbMCd6W9R9CjpKZpaDxBDoOYBtf6Y872Zwoh4vfbqc6lSNZDYIUw/D7Y5icNc7nIxgUe952F3fcJ/Ue/P+q2pAEYhmQ6mmMI/uaLkz38moqyeYPSQitsXZd/66GHR/jxKA7C3UDaMhfh3HIKkrv4B9YGswJGrv8g4KZ5gXA9NDFwfDDho8OX9WLpfa9M7Gdg2yvbfHKrOoO/uI/Q9Q28esH5uYR6jqs/PA2YXx96aPhZTaTm9d786SyBZ7msiLsNY708Fr5QFVv74YMbzgnltNcTlvtMw39+fx/Jdak8cHHH+h7V+fprbjw4nPbJP3xcEviMoR8bZ+wo7mTOCQx9qNurgEMv7gH9/YQMspS3CTBOtCYDvyBoCgXGepK3bLKUUwcdm+uw4YckIKt+HWGnDTMRwfWZ0A+8h/BrFk9abHxOiiKfoSk8MQ0bIcnJpV9b6A4yoahkzlCq7lyp0oU//OmLZDGRY8DohH9IUE1gsn4AEgzyr4vmbLv4ihaSCL/fpqGn8MjX5KpNT9hobkvd370biHhIQlVk+g0JyLaC5XecFFhHuw81KWdtd353K/zbYGo4Fm/OuCrSPz+Hzfv6DZYpvBXwhNps+/+4nsnPd+C9UEtsuTP3Tz+DYDchql2YVM8s9DLYz1efajQpa6YFeQQE0/hSOwhBsh6F9AZvezOgZhOk5vJV7QL6t+WHQJIP5jyyFsJHf+Xpn58ef7nagbUWBap//DKZdItr4cZPSAzf7/rnXVwDnhlNyCeuDoDREI7g9ewCbBfPkym+ymiGUa1LFCFqJuv714WgzIUH4pOfM4wBVgt4IGOBxmVH2I/zjE6N4BwgsRH3wxQ9UkPRO2vE5vls5mL6rv0/f4s4Hgmbvpgd1d0XJ3wwosN2GpSL4UVrH4gPLJf947frQcuo5mYDYNnpyilFDfY0cAhLyCEIQ2i89hH1h6AHy+ifoDolXrYdSZDA0pb6qP46S8UfMNKBsUz3YWU7yhbAT8GmrzvgHOb9lm8E7PmbeQTzfOgJT/afreQiz1CEsUnNw0kLZl3St64HSELzlj/t11fSqr/hyKgVcFG+anFmgV/cRajqf8+gJ18qgpp2Kta+Kh987i0ppSSt34RVfFezszNrqgA/GXUb2LARhFYBU/KFGIt9nBMs3zPopL1O//KHefwGzd/4Yad7T2zaD48VholwxkGhzMN8WiGBf/N/81/BUhR6rz5vIaJ2XH3Z3/uD3Mm6YFzop1oc+CVUz6d7gY+pZDIWXJoY8rF+xS6P78lY1UEJt7yBJpRrTLb73nqwVFcV+06rgcX57FPYNNGIdlZrBnx96Vy4b4wO7bsQ1pRNwvPf/G/2hRnQ8w8hGIbNjRbadDT3EtAleJzAjI9WeWYsGrz+L89B8iB82JaPEgjeN0i15YCBcIrmTrWus4NAexcAi+S6AofPY6E4rsZg+VqXJ8BmSbF+xpegN5sZwqg2JfLPfx7mkwGtZ51RJ3y/B3Zdz53arNCm1tc6mwsRdi1ENOuIkvaWOcEdcyFfVTtCl7lnBC7DTdn06aYHL+xPL0LenzP6GOdLQDd9AV+YW9GYyb7JwhcgwBBYu/lVlM+/GrXQNPoZ7dJLniy6WPTQW0yb+pHd5svmN8BPS+8UeypKhEXmW1XiDibaq+AM1rBVKpjQNsfHy0Ew1waDp1J9s4V017OdsOUSulD0igYxcVQYUe6KA0+AjVg7mGXOxmm9wSiYAQ6MEx3md3fm4Hwqj/S2cE5OWTwjeD7lBQ3Qu66X986VwPGcHqnP5m7Yxvvy934Jo+8yF4AKO/njtDUOmDPVUzAtF7jlS0Tc/Cy4G5wFd+NOQ6sox8Ge5s8GbvodG5lss798EeBvLxApnr8DyV50hMt2qhxzD2MQgSiIkOeviEiHDJi9TdwMKt+0RLObBaCvdrn2py9xNnRkWBnPR8o8yDscusLXbCpxx4MNfzY9YdV7cCx5yCnem5oZ7hk5YStS7urL3bqifest3wzh9bgQHIRHic236N1Ae019+nR8u97XUhHC/Up07H3ewPy4qVcCeckC6ubrL/hpX2WG5+OqEpjJfrD6yzUDjy/i8MG5vYOlBQiCWegSano2zQf0C1zYj+OA1IfySdZ+XQl06LbxxuG1WlBovKrGJ+GQEpRusu6E7qa8U7vHB2p/ApYmyQ1mZdxRHc9RvYSCEf/xKzVNrzWnbg8M4A3NFR9klrOZi7wnDB+Whv29VNUrLyor2PK/v7w7Wb+5l/3lF0gAIx7YHokxSB5rSFqV1cm/vO0ElpH+6THBZNoIFdv4/elLcx3N3IVa++GxaannhGx+7C9vR+SuPAC7FBUP8z06YqMpP8lvBcCBn0VtsYuSmv3or0CwWL8RAuJiblsS4hGQ3tpRR3GPwTgywoENL7HH797DvOETsCbEqEFSPmevCUXwa0cTtbZ8dEH3lwbcARA0i8/cZFS7X8BLAC5RMgYBb2Elg9f5i1D1iVfwa0tvhH95mAV1PWCHn2apW/77D3/X0vgacMv7yC4Id3WvxbH1N5+R0O8fYMmywIdkOgpE+oljPrLbOEOxue4I08wjWLyLq8G5TgvqvhTTnBO/dSCKaETds57V4+PwCOGGZ9jbTTeTScBT4FafQpV4aIbV61Gh/PlN78dxYAZh+IT+jf22+gHJl2/lIpiOy4QEUvEmSy25Alv+RfaO0LD5QPgemgMFSHU7ChjHeAM2529C9fGcgfmQaxcV8qO5+Rkz2Qe+JqnyI7Jw8rw24C//lcVhzelfPWv4Lejyj588yzcH8pdvFWrn48vILcPyZCsHwyZVqQ3wAJZurhwIW6Pf/NgpGFPO346wFi018ycMWCbGPdj0PQ079Zh38JwoYHinGTXd4ABmjDoNsEuXEm50cvOvXgdbJFKU0LeWC+LvFSu64V5pxnlC3V+4VoJ/eZLeWwewiOee+/OfBOaXifWbnvnzi9gd7Mew+DvqQ/EJTmgeqzjY70AI4fQWGcVfXh9oai0l5GPzSkTfhjWJtD4DW15Kds9VC8jd4yUYjXH9zz+t3a+OlSN3v6FWOx3ryXvcIIx7OFFbkMp6FTU/htv40G2+mWzLR1WznUXEtvW75V8R+Ftff/NF3EH5At+B9qSPJpDyznJ/TyhxtomPaa6Zwv1mdRCPHwUfK35kzKzDBj4UoUD7ZN8m67KqK4zYu6SPLT+lAvcQ4VaPoY9o/rGB7HVRBRFIsT90pJ7//HtuZYQkhamYk1ChC9zyM+qIWhIsMv9BMHxKGBccrtj8glL0z/8Y/e9pihd7r0BipDkODsE1WEuydvB1YgYCYqoFm969AV+vJrRO+3mYJdAY0HVeOv37/SQYLage5SJBs/dTzYkI+xaMKrbwX/650GLm1TQNffwqW5qTt5pWUH7EFtrzMp+sjX5q/vAOXYavEyxB22XQvSURIp+b9Vcv7P/4mTTGazBXQZIjuNV38aY3Wc/Ttwj74mjiI303Nd34TPme5zO1b/qUtJXkOxDF9Ytqj/GdL5xn9CrgIpvq0ZnU1KytBmYCPaNFfV2SWZc87a8ehO1Lr4PZcCqoPrarcddLUQXrV0Q9/MlyiJH++YLpoiUpDLVwj++vz4mxeph59fENOZzehi6ZNTV5wq2+iJb3yzenv3rYltcQ5VwsNR30doUPZV8Q7mlcATnEDx+eXpaBqh1IhmXLx9RUTc7Y2vLdEc9cCFQ2NVveJwR0RiyEFwsBJPFYzmd1cEblcnJs7F0fe9Y2+r0Ff/XqK+n0fH56CYFDdyCobro9Y+ithCCZLYt6fgKTqUrBDFE++9g6P86M8FxA/vJLfPzjP395ZeD2QZAeHnoVrLWiNephMVLEfwQTCLwqt3DLU+ixhy2j5f3EwaKW9zTc9NYSXUwHsvGgY/s1mom45V9waplE7Y3P+ICffcih9Umk9MCCNWzX6n/aUqD89y0F+C7NZLb9Mlnf+i0Dr5UiVHh9MbDv7zvCYbRrerg+32AOYJmpRhIqtHiEbcKedxPCcjYoDa2kZ/P1LItwcQODqM59z1ZaiB3Y7fcEB2w1A+HEzZYqdecHRqqpggUYtQHBz57psX41jIjkJMGQjCW99ktgduopFqEXDHuM4TLmK7pvx/zKPaLH1H0Aque+BIRglrHD8mhg3EvpIDncKBJ+vm7OzQJ4OCbuHslW0wxzmZxWVdEWG+N+X4PxOhqGaie7IykfP4mx6/unwfrTAfzcjwEQSqZwiseqEwGTpg/LJz5b8GHMOs6VSgCd6wcGTJUpxHZo8SaBsFxhvTQuxjh06mUoayhDWzSpN9d70JdfMEMuung03J8Wc7UN1oCb3DrYSdYqafqWuFAuHUCk9eEPtMxhA3TtGROh+Pr1vDO33S09zKgtP6/BPD9HHsqeOOGjFGCT/0VnCOn9dUS7VeDBao11qrhZUpPIr9/molz8BmqmKWCsqnndfdzQArC9n6gF4TER9HszKq73udOAhDMb/cjVwC30fjSKDtYwixe8glxJ7zRIoJnshdCo4Cv2NewbLxoQ1s296r5ghW/3paz7OrsjmCIFUOOHfvm086EEn3T/I4L5fuR94QoQFD5+oP0Kp3p9geQC47d2pBdiYLY+qrhUDp2MsUsHF4iS5WSwuPg9DafpyMTl9Y0A4QoDn5/akM/qdzCgfnILfOZtMWf8+pHg09Lv1JjuA2Avd55hqRQDDqdpYr3ZthfwmFiAdYy4pJ5Q34DKkBKqORdas+9diuA7IjJ2DkfICLc7ZepDAjHh9uPA1iR4alBOIY+1WySZYwC7G7wQj6P4k2hDf+1zHupvvSRreD5ud90Nhmxm8Iqfyqkwxb4LUwVG0MeH7WLE9aq+ethUXIHRs+UA3UsHF+6uUUm1U/nJmS3CFP5G2pBZrPi8T5u1ge/9HBJeWnxAP+qgyYH9YNjuL3PS4e3u84RDCwKorob1PoUFuL/MIzbO465eMpxI6hz0X1RV+BKMl9273RmFMBPFflY5lQftotIdzbB1rXpzLZvvTdF2vwAb5JMHS+lwPLQkH9Jww4PN+MwweZRfur3PfL6TtYefuz1h61eswzKfVwNyi5Fg1DWffMljq4RyaQGyj+13QKKiJKoSGge0u15/AYG46aEUHyLsi6KYLPKv8tV8Z19wwD5LzSz25eDW+QWf3tWPMaBBEe6+sMduplK2DnoJVXQwQ3qwPI9N4ExE8HhIB2r3tQ5mbK0pTAWIcRjYYzJz0d6Bs3b/oJMYGWz22EtTBDufkTBUr2GeaD7DWdUAtZnC6qV0RBE+3NSiAVDtYR2usg+tk0QJU/MoX69p0ClC7JpUD6Ip+Yene01bsW+MWj27DtfD79Md0MdJXibdvZ7K33qix1N9rNvHC7lwzbUWa2l8MFc1lg2YdB3BoSMpbCz2XQy9w6ghMavOwdq+lAImoXlFfJYGQFxx4QCmcxzGVcwlxA1+IbzVoYoD8x4yMup2CKLQ8Qng6DdZiuHnwOhdx1tX2D5Zzd9K1L/fY596J9mT5qrJhw5gpDKmsPU+WQUMY5YSCJ5VvST6UQOakAY0dW9pTZ4BacHDmSR6FO5TztTZFuHX1D70ceC/9ZoXjwqSQ0bxUfwUw/yM3i5ksnbCcXKgeZeRi6Sk6CCgR+qqbIZ7LoTGoxOpKUcTeDR4LKDpR0dEgvIQsA0voSuGM413Z9NkveddYNjEDfZ5vE/6qChHld4fR3oUVxKsD2m7S28NQxxk8ncY//iNE1hETTWf8+m1+KmSXL0nDWNcBUydjyJ4VbqFVHnR8xlfRRdqZKeT6+w+gm0+V/AYWQK108INViDPvupVU4B2prBLxmiJCeyi1KFB0OB8EUpYgkE7JVhPdyxheXS5wMzeff7wZxitwfbBce+7KNj4Z6bCbVZM0L+R/GOfgMWxeFPYtda39wcHmrekgsZX3WM716VgjIhzAcT5/jCy3qnZth4q4en2+mFHPK752jx0XrXTNUG84g81rbdTaFmREgR/1bB1qSElzN6LiA/RWCbspOoKXKO2x+EycGx8Rj8Xwj26bniu5tv4bJlBpNHXiXMT1nt6CkrUZ9goRSGfs6WO1JvcOPQcnexhNnZuAQ124BA/3y+AXflR/IffJsTvYD03F/4Pb9D+YsYBZVSNQK9MmMCweCb/5gvSHx7Vt/W/GmocAcFBIjU72ibr2moa/NMHdiCf8kUvFkv9CLxG8yHDJh/+XBHcpl7Gnuj5we/U7Gew/7xk9N7GY9nXkw+tMB1w3uskX5TdpVER62vCUn1KyPZ8tdEfIbXyMg/m57FYoTAMKlFW6ZPMs6Rn4DEtAXV0cTApsLwQlKR+4kO/BMHGrwbIKYqx7+9rc95doCPHb+NIhi8eh7mmAYL905aoYdzFfDFfPwKFqN6TVT9+gyXfuT14HCqOHvJiZdt4ikBWckC+sf02x6dyk6CgekfCysYEgvyrXLW9lD5FzZUBSlXWwp9OMvqnB5YTNztqOp8i7F+PrrmSR3aDRwBs9I4z05yv54UHJ8Kv+PV2cEBgG7VQz5sb6Y2xHKbQOY8wy98d1nGOARuE36jcz7crfvF3KaG7MHHgo75i8jXmDrDFlHpQNkqHwON5ZbOz+D68SYuGwMvqTVYfxQjmqROiMW8ZWKd5geqTCj+0x84E1nblYjjKuYW9SizZyp3fHYyH8xHfzL4dfnXkIqBcfUT1h38Ga9CgGG58h30jVuuJJHqm/unNQ2zr5uyJww2ejueKemd7NNkBPlogcWNLD9v3MSOjLqj7XKJepHg1m69RCC+/XCflT9NMIQL1CCP1+SRwfzoF3+5elLBir21LQRrmwoOcRrj/PGR8hJdTze7NvYN37+XTEAppzS6E8rC9VD72fsw2SdA4Ebxb4xHjVUhBQ1crg6Gsv+mf3puH33OFa/kgNKBfrRZ+GeFA9mYi9Vz6DbojJ8Sw/+EdtQAUQOu/RpTmy+DnM/xNZU/EMvHNOalnXwVzrKFG2P2C1YieLtgvd4cGbK2DWTRNDobxklLr+UL5YninSv3T0wUU+IGF2W5UoOZZ+PBdr2CxQsNXk1B8UOv3s0z+2H0s2M83jHbv7Zlo33Vwwysifu1gmL/7s6POjtNgU7C3i8yctgALyTEqDxUHJi64dZB71QZ1+7gz16t67SHZqyoO9jMf0Pjir3/8hzd8NscANzE4Lo2NHz/TTdZvmEnKL84aMpvNEfC3W/+EL9XzadDkRbBtMYrhjbuaWBejijGlHxuFvsyIgOdeqompGRyk6RghcbuEhNVHLoJ/69nC18PQ6TgZwXURf2jY+F9QF16DT4t/0TsNP2wlBz8Em3+gfh7IJrP8HIK4bSN6LKUPYDpxCJAOKybK8WeBxQGJC5tAdulx/Qb1aA6dAi/PSEH7t3bJyWvrmrJi5UW9zc8s1WvXgcODufRoH91hCRy5AMuvi2nk13qwD+wg+scH2BD1Wkh6OCvcUGDyMJCQr/tMuUBueGIEmm4a5vrGjL/5vY3nnq27s60oenS+4Id0K+s5/GkiXGh4pj4SUnMkrnSDmqkLOKxqKaB50hO4pA6m9nz4JL3MmAtr4b3DdhtMgFnH8gKWUN4hxZQo68TZteCmr6izYj0X//jywbtnxIKnOCzaFEYgPAwbX3+KodMlOkLvwjgCH6GT//NDPQp5wtDDA+ISDs8//sFGHi9s5nvTgSJ5v5H/S41gnxg1gouZ2dT+NqSeTxmZgcrGlcBdwerZY1ujxMaNce7ftGDv66ICjZAbkfL0x5xVvHoD1Gs9aoFLxtjTYCu88ZpJKhUa+XpMgAOksA6xXnpeQMSbTtRrxs6InXAwsA3/Va+iAcbbeuhE04Qqbo7L//vXoo3htn4Iu7RqvsaBPMOMZQa2U3wZ2I82BIBdIWMzGDrz3/f7szFSu79EycLIy4LcnduR+rFuh2O3+Xci5khd42QDojWnJzi4F52inH8EY2VUIryK35bi/dFlwp8/fFWmhVF5r9hiB+Sm7Ntoh7UaDwHd9DX4eOGPyGd7DMbjIBdwVJBPPvYBswWcW17hgUOxps2PnOVtW8rui6swiiOZLZn0VeD36Q9E/D/SrmRLQV2LfhAD6ROGdALSBQEVZ2CDgIg0CZCvfwvrvtmd3WGtWlbFk2SfvfdJcjLHrqdD34SwQ9UOl7lw8ZYmnlnQQfccwojXCna6eq1co2xCd7f9JkQdHhZAb10IefSewbiExx7cj8LuT58Mw4NbodaOT6IekwRs+i2GCZ05ZL8Cm85vxzTB5ncgf//MjbkVRBaG/uiR4Gt0CXWHtodx/jXCvMj6gSZfq/3p3ZB/jS5g349bBEe8PWype5O34R+Gj8EckdZLRU2nsG/B6C9TCKbdrvgSeM/hkc35EG58CWsf3YKZRiak7z3Rm4agc37+SLhMw/bCtYhccLqFN2JfjnPyPdm6CidOepJYPEfGjPejCg4TDNCW78F0ZEQL2hnaY7aYxhr/9KMAOB352Y4FQyh0PdxeQEShI3UGncKqUd7OtQ45d6q89eYoDDAQG5F7Ke7p9BtvvIwXYm98a8Zr5yiapZ6IWe5LWjfHrbGjCGLy0/tLA7sWlo1dbXq3rFeHi6Ai3/AR754lHIirMaKsOpjFkN9rdJl3lg6/F+8VctFxX89XjSlBn7saMa7Zzlh2r46HN0+viZ0KFV1+eOo7j4T88IvNdntevoHPQky/vhiTa6osKI0yJfpNbJLZOGXjnx7dO1btTd6ViwH0MouY3O7grQNzq2A3SykyOmIl87OVUtgdGBj2bVUWY5lcVxkfp5lolzZOWOFWlortpBrmsU7A946vI8x8hiD/kZ2Gj1nPpRKNaxpyYmyDeQmPndJ+wvT3/evGyiUGRufCQy7S38PMqcVZfvAhDXmsIzD89Gv/3V51M9aL92VfUazsgVqS0MT7mrZqguFrDQ+YmpI10HL1V5Dcqw/56WGaZiCDh+1ImDsfrQS3z/WmOPNrQbp/msCKbd2H5qRyaHxk3DAGDBdBK3p2yDp6dTFv+gpey/KBkP6NvCElXitv4wmV4xkak/IQfZh9djJeN3zD5eA4sDsceHRQLFzMeC1dxTjlKfH5/Qus58+Grw7jkM1fo6SbnQeUzLhH+qc7gx8fg/ntjPEuw4VB5fS28Utpj2flmdVUXwoL6DvHQll22CXEt4H8y7d4J+36epz0ZwejY7c1ostRvYLnjv/5O2i/Mw/FCqU0h7PCaihIT6TY9osOUo5BIX9/OcU232fIzCjAYGbiml9h5Cu389Yr/Hhn6dQyygOQ5pOGwPLCYeltlP3hK3qkUzJ/XqYItTGqkNFULMDFVkKiFgEhF/OnYZ1LT4Wbn4SVK3jVPz4Pb+C9YG5bj7NbGzy0Gzcm3ov3qLAYcyelh1REDofGZMn8Olas/elF9A/XbXrrIMN6pjoxHsyxYB2L6eDpuJbhcqEGWNLLKYRqwgOy4c+wQumWS8dvRJB65/uCymmaAdM/D8SDjpPMxEl7yPTDgajxyA6rpV9YJeAvOnJ3YZ9gX6l4uOkz5Mf6XOPXpWwge30/kbZjLaNndsdM3vxO4vc4r6fDpctlIb+seCcEHZjHrdEZk897svekJZmHcwxhtKJbKHwzN8G351eGj5TU4dKkw9Dcg7n6rS+yvxgfbxllp5Iren+RQ5y4iTArF15xTPaGvJlZ68pxbjwc2d4OBQtLG56Eqsy+qxEZW379agSKf3yti98FnWdW0eF4kVhkXZQGzMvrdIOvj6Vv/vOdTouePyAK5y+5FN+mmNpuiuEP7+IjDmvq4UsMqaQff36yJ5wXNoTyCp9IF+vXwAq3roSbP4ucvfGpZ3EVMYxRCYkjaqEn18YUwc2PC5dND7GDqs+wvK4v9FtP+Dr5D/gVu4U4xv1kzDtjjhSqLCFm0HAYBMV6WPDc9GbI75iPQR+37AyVOKgwczTdYbXWLoUp+eyR00mfYhUubwZ+2ExC+8lZvYnh1AyQ3ruEwqZv2PnR8CC31iH87af53qgjVBhj/eV348/PHPbCGYVewg3fDY/BvT4hovsO/Me/2vARaeoxT/BkcDz07W9AbBcMCc1cxYTcMVUwWK96sTwX9wzOWDHR3p10jz+IhwZu/hs+Ol+cELMWS2izxjmcC9Opuf2LacBBslJkIyugs9GllbIn8nWLamXQsdJdWKSmH87c+e1NzZvt/lk/snChI/3kj60xbUTCvJvo4l7M7qdHQ6V+mnS9XCIVCqeGwyBwX5QG7C0GaZn75PDkmHoOT0EJyFOL8A/PCZKPMfQKFhKn359rekxiF2bMySCB7/qUjd2ihRr/qXEHr9VPL0H4uZ/eCF0uX6PNps6X4/fiEj8Jn2DJ4zJStvkKJeqewVpdfB6+PJdDG18uCJxfrbLhxaZnVSooV6WX37uLHAqj6xt07m8qgEudheL2/5a92FfytfdS4nSSXbBsy4zQ89wVU8mAycLZTwak6WOH3MONFvjhtQ2UDuyEd8CTAB+qSaXISl4Qd3qawzIGfg6qIEVo3ylk6PgzmiHDt2f84o1j8YbEyP78B+Gb9cU0n2QdwIhxcQuoOay0E3sYq2cDmXk6gHHj19AOTAaLd2hs8fEgPHTZ1hgk9ej8849oNTjE3lduTX7rS7RnhLR1XyYl8V46sMaMJb4o1AM9P8QcfLK2C+Uj+ykWqNvxTw9s9RwD8GxsjlL3UiOkFQtL8S8fvZNXH8JLV9HF/oAWkrl6oeAKtGFRHmIIS6NKSeiM/PDTe2Djs6FYuFrCdrVSwuwmUKSKTktL2ZNaqL2MMhQehWVQOzm08JjdvyS88KNBxYY08DTKbbjzs7M3I9xbcFvP+JMKFVjCqpJ/+QJ594cAprr2VbDTxjvxoy8C871kzzIrJ9+fn2T0gYIs6HnOuvkTL693uIyRfvU3ezqDZNn2C/SU1EdOdp7ByI9gBHM7rD/9b+Cg9yLIHc8KsgV79uaEfloYWZUdVt/wm3zPtM9BKX3fyKg9HQibvwmf6oslh+R5Hbjb8DXhpqfJXfSQt+pJVcIboiUJ93JKNz9hlTc8Jf5JM+iI19L5+XnoF885jbK//fwX3/G1kx34PMsKhkxkJuubxjp85HlFvGwveOSko9tP7xCjdz7GeKAXFZ7xziTICWhN+1vgwp++Taz4U+BPNVg/Po4ZmgqUtgqKQBFMOjIFL0t67+jegPs8v0KI7mrC54Sz4Gd7pTCdrzzAhFatEkfIJjrYXvWKYz5X6udxQWouCMa4Uy6Pv/qCL/axh61b5P78UqKhgoDpt354XL/C3Qlek3k87UJQ91cRhV5pG/w0TS2ow88nfG31kFUND7EslBhi/v7qiv7m6ynkWXkIF/MxgPnTHGOoSBFHfGrhelQrGimxmcgYjHTeXomdHbh9HgUnPHuz3s2RstWDkBeeF29t5qAH/NXMkedmpTGfEs1XGg844fd+V71VDbUIsM3UIs/wQUI8/IxAWxxt5Gzr/fvJchO2w+6IhbRfkjFfhhj4V/eO3FXcJ8vxpJ5hfh4IltP24I2mtrg/fkxushGDrR7wUBYf7PD61i50fYIiBfe7bBPvjN/GVl/OfnwAIWmVvOW75CLc/EbiZOcIbPlHh+6jLpAl+e9h+38pRG9VQHGfizX+gkGER6d9IwvrhM6tMPPKxodxTZ8ZoCen9H/8i5hmXg/LQWUf8Modi61RRWlMX/Ox/vzUjR+5yXKmfabAV58iB0dXj/7wnloTIJ63qJQqV66DoY89oh21Khmea1lB3JlSKHbSJyHA1HzIhLxIbL0Wip8+/+0fPHskStaZT0JgX1UvBNleMDom2pl//KX/prrx80OgAAQdeceTmbAzq6hgq5eRPYHVMLevsge0voW481UPcPdsa6QstRYWVfFtzIwCfDmViU/U5UDribXpKNMOeShoj1bN2c0nhKdol29+0rD5dcKfngjHrZ6xfJdY/k9HCsC/HylYRnWH+yDx6VSwlgq+o/sO2ePMFJi8vjPU03VH/NO9A3MwH1flXsCE5IKC6Wzc/RTm30olmj61Sa8obxZMBbFDIF2ZeinjtYFUmSA6oIsFOP7xzKAVVgTt26TyKAxdBrQltfF8uWQJDR6WCmfhdiSFqE8evSzJA6jO4Y6MCpVgKmO5BRMbd8SK0xNYM0/XQdtBiNAHfcGy0HiE9pin4c4bTnRedCuF9vf7JuFdo4DmYxJDoQ9vSMucqliGBFUQwf5KtBq39XxVnBQG6PhC/gh0j72/7Q4ctYaGLeH8Yl4nsYEnQzTR/UzvdRMeDy4QhXTAPVuXHlYL8QGYarki66FyxqDHvAMzTZGJmT7tev1sD2HkasMR/3VwjOUuGBnk8+mALKk5eHR/iX0lvBVzyNw/De2PK3sG8HWziaYc9Jr2XJfCEngu0TDOvSUMpxF+uhtC90VVDfZ701hI+wihk/WlxYqyWoarCT2soOBqrIoysXBWRRddW/JOur26bLfS1guWvKNvCN0RdCAz8ReTWRzAeNbVBj7LXCUnGV6KldTqAz7tB0sME7tJp5ZvXja8k4WQ/S68KXIsHhRvUUJpfEYJdeswhLeT+iIHkOXDMiR2CTO/opjxxngYr4p6hrdeiENa+nW9mtg4Q+Nm3YhXaGO9mqE8AuHKL+FS3PhivqMkhvBxGkmQ8sBYcug14P5580g9YH7oIs3S4bK/iejO5sSbIe+ZwNcrJgQ9bQfi4YMDXmPkIVOUz2D0p1sG6zINUH57nkCnvw8i/AZrQrwxosZSPK4dLKB9CgTNDYbVeQUtCGL1SIJ3WlLKPipfiR05CtmNG5EzgStIwRiSfQjqemlmNVMc/GGwcNM5sGz3uGGdOReUDKtNhSUPXTl4Dn7InqsGTOfvvLXIYCBSBzR5c6PcIzCU4Qczv/V7i1RVyehju0XYz8bQ7DoMm34aiXmR+AKv6wnCQ2yZyLY+EhitV5kr3xrOaH/r1YJWBasDKblIaL+PNcp+tCVThthX8XzKOUBaSeN34Sc9EW1chHoYKsJDaX+JkRY/1WRVi/kBVzo6yLNJB5Z1uDtwX1YHYvnCoV6fWTqCW5ysxLl9em852f0IIpNFSONlMsyi4ciQ3bUJshfFBlNpCx3wpf0er/Rp0NFUQA8P2ngljtXeDYJeRg7ORJWIF8SRQQ1uuwU0CX6oHOaR0t/4mkYE6LiNj3aLH0Mps7SQ3fbbdrI2g3xcp8QyHB8s9eSpYGCCgBgI34e1KHgfEm2tQq5g2GTxkrcsyTNHw0MXj/WcoV0OyhjtcCVf4TC2PJ/B45F5YE4tQTLJTe5ColCChV17GGifSjrsEzPDi6C6xSwtHx22S3Un6mGroB2K+gZjoQvIvgrsBJPaeUDKSWvIE25MxrhZsfLDhwAfz3QS+kWFN5pRdFg4OozbfoX9EAfIFz9a8tVHF8OxWU7hp8SvrQ1JKILP3O2Jxl6gt4zMsoIB2e9QOitest5ayYHbGWNkn/SqWNOJdcDxCB8kPBUkWU+RG8LXjohY6mK//q0X5RnpJ7Lfvu+6JkEKtvUSDsy+T7bvq8KAE754N2W6QRPm6m+3oDziv1BFqYc1B75haxAv5gRv1nQgw4ntEnKKstlYSF4yELYgQPqrHwdK70YJVukQIiQ+ooQu2ech4zqPfnhssDL8Qhg2nxbzSm8A6nRW9os3cbIXKWYlhCI0jBKSh6CX9bK/4xgEc14jw/X4gZBnmMI2+xyJ1WeltybcguH+wGhIZT7D8B5uwwqf9o0lec/WyfiN3w2cvMuNWHoFwPBN4vNvPjArK6k3d3ntwMw9EBLmYjHQ8CCm4IcfyAq/w/Lqgx7e8vsHL++lMZovXBwwO2OKAix8KM48V4e+ZO/DcKQTXcDt1sLJ3S1bvItiBmyT//AEi5px9uZMdiHo65uBhUWYvKVcjRACuUzRQYifYDFMWMEOGA0K71oCsH66tjA9OTY67TrDWIPdairCh8uQj2M6zLv11ShtDk/IeBsMXRit1KF9vM8hYyGrWD/rQYV7PpXRPj6t9bfTkzN4v4bn7/P1EjkhC8u8YEOI0nlYRkZaoW08D2TL77/1EIJ7wWy3MszOG13uCJXrkRVJujNCOst0j2GPdkoo96xRrHf2w/zwDHkdb3oUd78jXmxCTHJMwaLwkwo8LyiJLWyaVCxUDOuu0kPCn0SD7g7uCh6CfcA7ztQSvtsJLJwWqUEeWxkJBX4TKVt+J6o3SAaFJh7BDx9PdZOB9cFbHcSJ+kYWq1XGXLduCONPVKHM+crDPCedo8jmQ8YyX1bDqi4jC1FjSrhf2DOY4+tuhctDzYhNWFTPfmisYOM/RAX2i+JHmUdQy9QCRQ/lRsfxonWgsOUYGUtxoGu0nLrf+v/bv3/4BgwmIJ7H1cN8x4MMK2ndYwlk8jC5K1MCzl4PmIYX35jXiuvhF5YR2YdcByZgdb68R4VNECZ0mLV68KEEpCs6aHhvfJ6qL8PGP+XEIqhI1jfxeniszgfkRNzsdeBUzH/7e36vJR3pm+rQTROMvJjciu9Tdla44UP4dYfCW1MhyuD0MD10MAa7Hjf8A9fP8EWIzbih83ixgxe0IswEnAuWJXUteLQNCfMEgWSsmqGCYLfLcf90GmP51non53hnheKjGYc5fSSs0i/WDrfRJSkWzvbPUGI6B9n6a2eMeE9YeCSKiS5b/EnwCFUgCueBaBfoD513Ppzh8P5OyCFTZsxiXjCQxmZOIl0XCtz13g266RETo263NPb6riC+nRTkdW5WrB+bewA6P0birvmHLpTPTMgl15FowSTR5eJ2pixaqMcLSQcDy6PUwfzxLsKh0PyBx6VngeTOf5Hl4mMynHM1gx9NdMh1mw8WL7kJs9oE+C4pvDfSN9Chn48U7dNHT2m73ZpRX7eURNdyrht9L8XwXbAT+eEJPedOBh+ROJHY4V50Jqs4gzReDHLR3KkmDwY74Ju898i4KtEwJ7a6KnIl+KFY2gnFzUVs4aBwFdFvQVmQbf/CkDtDEni09xbeGXSY0Vsbys1eLub9Lk7hy7ioeKq9bli996tXxo9zJWHfc/XsUhrBKanjUDCml7fqbOXDV/PQMIXFvZiV4Bwqt9pwkKNUaKBgSpqfngh5goqCsMpmsAxCRAzXO9e/fABJf9aRkz+OdFa1Uwizm/wIWV+qjdkmlxAkkiCEy4d9JUu7u4sy5cCKgbRDA1sZMIQvOVqJVwe6N1ZB9FD+5mNhmnrNVNsCqvNyiD1gllJNNs9/esBQ7K+3tp/QhDjuZSyIVmksgquNsOSwGU6fY11QThUjwOeXB7E+3zOlzUPKIOt0L/IUtJou6jdIYa/jCfO3bz2s3SF1oTS8MOYe2gKG8nKBcDmH25FpfjuiFC0M/MqeH/Indjfg+OTmsM9eD+LxzzdYlcfJB+LO5YiaGmbx//iVKrkm99dAYlCw8G7Mj3A5fHbG2tdNC2Txq4TwLHPeHx/j9sU+5CJG89iepjIYP5WJ9oOrJPTYqDPc+C56jDSgs55bEP7iqxxhVayedVTBgnMjpNZiDwv/uORw5yjcth+fxthYSwOfviSjfda8h0X97lNI3m8Z+coD1p/LUtxgpfMJsancF6s+BAzs0vsdmfX7NKzMk8qSiYcFi+4o0NESbvNffFzG18BMwSeTV1DFKOgwAqzqRy7kUzkLl8ypklmKBAycryuGS63LYA7eZxYG9n4kKst8KS0miQG+9Jjxjx/N9T6W/9aXrZkrWGaQxfBEtls7aKFgHd5eBMZRcYm/br1T/V3m/OGx8jkaySoHX1UaOn1BGnu5eXNxWl3l8bWqkC8PU7ES4ewoT6wClOM0MJbzQcuUn/7TZiEuOl71KnhaOw0d7KUqluc8lhANwEC2dF9qUhg4B1eDPRLTCS7JYu3YGMpvPyLnmxHXS7TmGbzKq4ECM1EHFkfVCrKTmZLC44x68R4lDw+MfQyTt/EAy5i2PjQS+UP2y05LhMBaIeylmEWaf6uNifKRBQ+xaaJDYVgGabO4BK8vsEPAP/cAZ33eQTz4OTK+3DtZ2cs3A+D4OYSyF6Fk8jkggzMrDFs8oLEc+xsPd2s0knAMIB09Xuzh8OQBjuNHPUwFG+pAQY8prLmXOQgUpg40rpcJIUEz6Gpi7ww2foeXj8MNmPXxA2x6CLmVDuk4Id8CpzlWCHIuGmD5582FPz1tb/i3nsKhgnS+jeSwd1Jj9T5qqujT+YnHfv1S+uikFbKYVYjr8er25Nv5T49ifuN/v/mFxA46oon38/Z+TBQrUmt1yGWsj0F2O/wAV68v0E8PzWf1u+nvZut12ingY0c0BfGDaMgGZQhocv+Kf34FR88rmLioa2GqG1PY8fobjMWAS0jJdCIpc78DfAqHUk4Qq2N6szowo4PXwuJUhwSd8rhedbYPYafkXQirlk2mtnO3+d4ff/yQLt/mlSrsrkk2/fcC9MB2Okz9tiX685Umk8qqsZLgMN30+TqszM4sFSk5SWGz6VN8f9AWcgFC//DTo95giKOEJ0FyDWuqHNVUEao8xu/8U4GNv7AwKFWRqFO2LxauTRnoBU2DzCUPjJk2aQrrrtSJaU5T/dtv4MmHC9n8E28aGWmGKKiW7fPvZONrGHbp8072W7y+cpM70E5YFs8HfK7n9qWrsiWDDtOPdfPGL8gfP/+GINgMHmaHnQXvOzqE1c1+bwc2xRIeD2uHl9c+KyYs5iKopCwniGWsmhXzAsIjQhiPSNbquS5QJAu9f/vTX5P5cUuo8fm08X8wkKM5O8r1cmRwx0HPmJ8OzOFgJ0XI1ObiUVJOOtj4eciK8pnSV720Cp1tbXtlofO+J/jB8Cw0OfnpsylFXQz5uxlgbsNPKiWeA5/7/Uw8nETJmk7QgYdpasne+iZF82YAhNrE+Si8vnrvT499JumEup8eb501lJ5YB+jPzzs9162k17go/bJOPUTi+QakzNSQtT++DVK9o0jJX2ePGDQbi6mZnRw81FoPd8/vvhBcj7oKOlsx8TiJBdN0NmXwbdIihKkg0A6ckvW3/9ChWXW6QKZvwfmo//T/h5KULzq4u04e8U6NmszX21GFb9gY6Jjpdo19psh/+YeYWlDTBaZPFY7j+0nCNcqNRT1ADCtp3hPX6HtA91PYgnXeXZHxqk9bP/jego9dxCCvtfPtkZL7GRwvRYPvdz2q2c3fUrqwH5B6k3dDK37ZCDD9u8brcrPqAb28DJ6edUt0ev0atNl1IwAvyCJjEKuB6rc8g5/3VGI5SHzQIynxYe+WAgb++DSwSLMK/uL1y69LtMY5vASFRxyNaFR4SROEm/5G2eZ3jGMw5XCnHYYQYOmVjKMwM0pBQUnC4ykdhLN0VBXOng9kG2/9+chlBfNs7YnJ3BVAnWTG8Pj8XEO+jd/FKrlDB+7HTWVtenxxpHv+xx/z4PoZ1pWynXLt8ywUqj01ZiYq2j+/Vit393q1FnWErJA90B9fik0jA+gR20TnqlcyKaXYw/k8AnIoR8dYqmE8w9cYe6Hw0z+oS0N44LeSxaZfpyA7MPBa+XXYnvNo8/dWDH7+iC8xK1jbj2VBYLQV8WziUE548pYCzwcBBWJ5AORdRhYQjh1EWsIf6bw/v2/i5cSM+NOEXkHUSor+8M6Mrj5dfuPb/Bpke8l7mMtBz+DmT6P9pvfmbG4xJHP5JHk4S0b/WQ86/HRWs/khKKEnQT7DS3D1/vjWhvfRb75CZgxuQJC5qwNPhmwix/nm9aL1ow6Ol2tD7M0vlLXvJ/r51SFJFMvjVnbJlPv1jZBtNrd66Yu9Bbf4E4PlMvrHl+vLPJLgTJVhKR7HTvrhKcuVHzoffYeBZ6JLGKRiOoxT1qXwdmMHFK9U9Bb5LfLwiAKMfv7s8CxZH6DkVIe711jR5W0nJTS//oDfJ+5WEOMumTKNrRxZkdIkNGUhhDtj8+dP3C3BmaerkHm7d+L1wameK/kpgud9iJA5LN4ff/nzgzVB7RPqjv0Nqq7sh/18fxfkZZYQSjY+Iz8QzELYBwoEaI8/WPTiji6fwfHhhvdYvntaveGJAzn2oCMjYcWEju8phPXp2oXS5lfPw6mCf/5Q0C+Tgft6bMDnTUpifvbPZFSyo/sbH9FeezFZzeCmguYdtaHQehNdXvQrwpvSauGW3+pJePImFK2gJ+H285whIYf8YLGBsv390ZZzF1QRL+MlfpbJHF+FFW58jjj4bNV8cn5ZMAkeDDG4VzPQ3UFfwecwxsh/IZ2u63pi4LguEN83Pk8PgzdD9vGMkab2B28xrSKExVuWEJpjGWCb2VVQu99foYhvWsIX1oEHlhKPmCNR5s3fYyiCbb+F+Aj2w9xJdIabP0bU4WQDztsaH1rm6UWMnx/wW9/dJfSRGuZ6svE/FpaTWxPXnwDgvY96VvpcrMheuAXDTNZ5hrJ/NEOohtVAlTmCyq3WHOJ33CdZOCL54JmFLnFsP/Rm3F5cWDMpRQ6VgmHdXZizfGEqPwQeWgfM7PwSssdQJwFjRGC9P0ADG64/ElV8JPUSCHkLnm/BIgfudC/WUIAlPH2mGwq2+kqfT5kO09rByDHGppjLbz1C3VqzUN5PXTF/xJMFJf6WoAcSHY+fr40PL/W7Cxn3pHlzpIU6lAdNC+dv7NZDw75XmDv5DgWfo1Hw/eTwUDg8LfLj6xSpNwvk2dyHc2qYCd9c5kYJtK5FG18FZDCeIVSF437jc3cwiV6ZK8o+eRJz8/+HcXvl62B7T+TsDzNYgNWFYOPzGNrY95asPvKyql4S5JSTCeaRjyMIz3VFTHfe/JADcsBawZVsfntBlfdZh5GkxX/zM3qDMkJzmf3NXzzUQvDpI+id3T1CWz6mvFBAyIBUIpb5vhZrnAwjfGRYCPnvyBYz+XA87J7qOVy5SkvWy/OJQbcKBBfrdfBmhjQh7N1KICYR9oC7C17287fJz6+nKZ/00EuohqX8zhlr7T2gtP09osu7qZ4+bibKm/5F4XB+FVRBrw4ubMhh0ax3tL+1iwOnc6Rh7vxyPLLV/+D5GjpEtUKfrpVSmoqqnhJin3cNXYR+0SUEuyvR1P5rrC94yP/8sK3eU38PZpRDNRMplvYOa8zfm8aD/bRc0d5ATUJKbWh+flYICs2vebfRGWhoB5Fk3Fn2/vJrfLsov/ragO1nKysd1z6Qczi1yXRtxAqcqviMjONSeKN/KXWFC1qZGJveHRevamHcvChS1X1K58CyQnBdmxB5zXxIuO5VM9AesxRpfMoMq+Md/Z+fQOzNPyAG5zuwazgHIfNo/+qNPdz4I7GiozgQ5X1WFe9VKJjvM9WYvbOW/vQIUos79eglahyF/eh046OvYl6NSf/xL8yeeMlY76dLCi/DsvmG73JYjp4Z/vIdMgb/TKcEzyKUAu+GpV0ze91r/JqwAfYlXOmzBpPuyyZos/cROU/wML4sziugDHeABd7Qh+WVHmNldY2W6PUHeXO4zA9lCfqJ+Cg8Ueo1owirbDAx089zQs74Yf7hnS5fbwNVqyVSgOhF4Wu5GwVvH9ZK+X7pC6luag/Lb3yO3i4ouHZavbSdy8J4d7ugS0jJ1nid5yEvTvNfvVYQ5GMKgQEDFKYck4w5bayfnsVi6x4N8j4DHvp6yaDgMI+AXE+Or2x6E6nLo/Rm9JVFmIF4xotFX8ZWn7nBWXgccdtnpUGrAqpypD+9P3+UvIV6q3+VBxJba1Ms+vTK5RORjngZwjmhuVczcIsXcWIxSJaRO5Xw3eRhKCmvla7Wp3nAyu3vaO+LVsLbX88B02it5GDsz1t8pAiew2ONpedBBUIRvs5KFOgm5uomoys7CBYo07ex+X82/fnv4F65c7iDjWewj0hioOCxLsl+eASZqoWhOockgCodNn6H/9ORAvjvRwru0WMl6vkheVOe3TA04jkkZuYMNeZSpoNe4wbkMHMlmGeG56FUOywJpFeZLJm88yEE/QO59sJ4CwEKBHg69xhWB2ys+2WtQHyML8hwoh7M7KtzYXhkvkjjhTpZucqyYFJ/ATkYkQRG/r7vwPtpBuTZUB2s8cvpIKNdZNy++RsY94Gdw3PbP4k6DF6xykhq4QTfGtnfH9OwgOmYwlVKX2TPaWbCj7PqQFbyhE0CnQZaOLoJpLt5/d3irsdAWXL4DOqGWHWZJetdoTeou3sp7Jfz3uOUguTg2a12uB7gCSzTW2pg8ElydJDNe0Hl2aygRxuJqAHYFzQdnUp+Lp89sl4u6/WLhDPQvPoblu80THBrvqAcFO6b7JPuUq/ibLGQbykT7t7PoZ4mqqkKYNkChd9X4U0XxbzJeqW/MXO+OfX8vIUifDJJQFRzEbeHOHYjrLGLkOtbwbCeyCGD6dGekCYFHzCHoHEhDIYMBTvdooK0HmdIWnBENlY/9XJ6EhVUcm8gf9gZVKiuWg7vbBnjtfjy9WBfrinEh8Qljn/jh1EZBAwPRynGuzb9JiMJkwYEj8ct5E4M9CbrMzBwKHcc8sfBp4S+4oei3g0LBZ9nZGCHXSyIfW0iiJ0Sj54/rQ5XTyYYvtI5offhJMI6yNsQHhapXkumWeXR9y8EaRIZ5tSvS1hwmky815Olc3JTt7669IyCTVUuD49voY3DGdltefboLuoaGFx4jJn5VIO1pFUD9c7aIU01VG9ljOIGaqF8Ib1m9nQOHdDB++IXeNd7bEKliyyC5PKy0IGpXsOsfl0fZK6cEi+DmrFqi+YrH1ptFKeQwDSKQg4X+DCIYQCQrD5XZUo3Z3woi1lczNr1XcJJf9oIWW8xWY4PDkOQH3xihjE34JTdrTAHzwQPCDiAnszcBxNffvAylBZdP1zgw/FRtJhyYZasDO8xUB8yntjSxfRm7hmLipuRUyiTi+wNYevl8HJ/VMiZOMMTSPl1oHGqFrQXjaVe2zGKlHOpLsSqWDJMh76qdo/IpsR/0u+AP/oNw9MusZHrAy+ZzVtjgWZQJ6Qfb59idT6vTrEt7kpUQdjX/E6ztl7n8ZG4p8fTWy3XD8FbHjD+Xpa6WMrhGwNm3dcbXjy84eM+VMARRSaOhWyDSr44AlfWY4I+B9tY8Pkmgh8+2HdFT1jVeLnKUxVuWNh+/kiXVVauxDmgy9AbxponYQuOe+6J69gqaxpwpQm7OeeJtSMXQPcmY4G3oryJmVDoEbWcRfhuPinShPHljUEWpbDqlpXo1r6n1JHfDpQID3F1diJjUc9NJ8vtfsT8+/ei7eX9kDMzbrHUXeDQy1zeA3CTSPg6PXiAr+61h6fd0cZMUMz1dP0subzhGTEduTGWy6XOQXyMLiisOh2sls0w0P90VyxebNdbKp+IQAuCAnnHGxkot5Q32MnnAvm6UQ9/eJ0WWkyc9rQMyzBxPoxaaBOvc7thEbkbFL7+q8dDEe8T8ta+JnQGO0Qql43FmjVzCV04c+ig7gU6fyehgpp7E5F/6z7DOPvhGYYo3JMwWydj5uxDBFQLjsSvGI+uE3DPkpOdB+Lmne8NvbJj4Tlq98RDoKOLKPQ+eLqLRhwXIEDzwpbh40xexBtOfY2TW+uAt/zFKBy880DbhhX/4svo8w18ZVuMgKECJYA/fAqD7SFOLRLJQTaVYu2j0wPQe6aFdBcY3uQGTAaPNfsmFq2VoaTsxMBdkO7R9cN2w5jHZQd7rMMt/qbHVuNNBCLpPsQskmBY3dp2IAC3AznD5rRdd5xV+bjbXYmZKd9k7fdFBEmPnBDqolawki23gL9fR+Ly+gRIJmsRXJy8JsgEN7DeVHVVEGR93HxVXM9v2MtAus4V8p4M9vAHjS68BzjE3MLrxuxEAQO335NbkKvel9tNLDivS4rhXsbDKirnCF6ZhsNrlbrFYumuDA9PB6N9UDjFjKw2Byy170jt3WZ7lQXkwOfrBdk0u3q4DmUWdnJaIJ1tdh6NWzhCNWhzzDUHLVl+8b5G7xlzHdd76+dGG9jiKUTow5hguhtaD+8Cf0AoP5oG9wg9Ft6q54g0W3bBEn93MuA4xyDHRIkMWiZKC/FeSZA6iTnFtVZn8IefJoKLgUvat7L/2e+RBurRezHbEZtE11VkelFXEMFuZODnTET09UKGScVMBAHLF8SgWgcWBrs9iOouCsWL3RvLeXfEMOT1A5aYSquFh6d2UsEZMvKqNK7X2/vFKg/c+cQ5tnW9lKI4yvgTRehx+2be4juqCofPuw7r50kx1v2l6OHn+RCQ13812gs+VZVOUJuwFPQPoNzS3aBwqT/4k9pj3R+vnxZq9v8AAAD//6RdS7d7vtd/QQZFVWKoKOqSKK3qDFVFVV0S5NU/y/n+hv/ZMzyrqz0kO/tzSbK3e8Re8Kmipbw4iRzC/Z6UPvhkZNfSAKJTUOIkzI4RC3nDhg2f7LYCW2yg9XkcQTNoE5GX+OOuIrZDWA7jjrpnWLjrcx41kFZ9TCT8Teq5KK4OrB53E6u+adWr25cIFqmeEEmoD/pUuFwLNMc6UFzeuIHFadxAtxRjNH/5Mhtvq9dCZysBZ5XOwubb/UPkaPVu+LhMYjS9f1cVqkDz0HubT1pxfQ5mGyF0eBdGtNZIFqFoyS3i3JPnzkLo5kBydUZ40wQZ0UOLl+MHjHFw5ZV6+stP2Xq503/8aHte5fM9uH/5Aqyzm6RA2e86svhzyVai768gQqNNT506ZsSpsQ0rtTpTR5cjl+6vMP7Dd8Q5AcoWEMo5HMVriJ8V+2YjbSdPfljrSq3LYusbHpgSalyJcK78Y+yilzJsSNxQI+f5iK5gucIncFRqz/s5WvuwGmGhQw7He69x1+ahqPJyMkaa2B93mOLVCaC1PxJq7Ctf3/JpBcfvIlFPqTGbi/KXwCNAb6y1e85dnlkWgm1+sF6zY8RQl3R/fIJM3xjo694DGthXs0P126UCK5JK7hC2yxPb5wsfzc39yMOvKGLq3n8c+wURqyAEXYF2ilZFrN06kf/xeX/ael/W7yCFC1YvtGg4K2LfinbgeVRNnLZ8my37V9LCCBGbtEF40RcD7jSYP3pCzUGwamZc0/WPbxN4jZJsja3IAMsT/JBSXom75kmY/PEDIh1PssvOISfCReBv6BcoKVtORmLDBHnuFi9NNjvyKoLwCV9EE5E8rO1lSRW/Vmps914+zH6dVsApuyM2Ls87GN/g0PzxOzIWYa0v3+o8Akl6fZBobIXPFsB6KLiqTa1zLrFp43/A+/YPbOtZES3rHXmgb053JIuaD/a2PDmgkNQC44LfMyILYQ+6Jjhi68370X4XlK2icJ+YQCoStgjfHIG9JDbYjNrO/cvvilJtfEpMRDYPasjDWhYTjMNOGcZWfnaQluKemodHVDNFDRu4y9eF2mH2jla37zy42xfqP/5B0tPeBpOXjlSzaBuxz/FtHHw71ailyHswM2zI8KLVHVqsk68vw21o4aX92mT3yNuM/QRHhosWn5GYfNWMefbEgeTZ76ku6rG+9B87gKZ+8yna9IOIpO24KgykP/2WrZX4dqCaP1d6LDod7D9fzYHvmygT+XXl2cov1ayUxr3D9vtnA1Y9jomCEz9ByiqOw+y7qgT6d8wTaDxsfdJ4xwSHaDtyuvENpv0+PPj4GKLv0Ncus2+eAaEUf/Ef/rLwmHVw2skSKjqVH/69bx5f99iHtV/T/YsrQdByFjWf0U9vg+MTQlw6Bj3eipiR/a4uARLVP/5XuyxEgwG0Sv2gxZJ7RsNj1EM9ETvUbPFEho4aUAWqh9YdXuv15F1y8JfPWyUohjWdpgKMBSdjg7+7LhuDzIE6ARr5p28y9xRC2ec16kR2Wq9ucLzCH96/EUWyVc+ZwBfSbzANfArZA8yDELSKtD5cBP7y2+XxbaB3Pu2wcaZvRnJXgwrHsQFBPy3d2Z9/HLzSzqR2HHrZFMWyAa3OjnGMTu+aXYuDATZ9Qz1NekerPrZ/ZuVMn5x/1uduDbXD5bk62JbuRyD4Q8SDczMI9NyLN7bezl0MLNUfSHlZ54w6vpqDQ5wPFD9yM+JH96bBqfgCbDxLRR+H7uyAuO1eCHizyWb9kHgQHa4qVjf8m18XY4SK8xY3vY/c+etJnLyND/az6AbmXXuO4b5aHcS3fa/Ppnys4HqI39S+LidAN3z+5wfYnzIC1Gq6FSiCf6IWmLpsaWHXyBu/QJJB1Jq/xDABc/mSiICC1v15tqrBw3G/RwJAUT1xIDWBEXI11QUkZTNwDg4sSO8heC/SaG6aRwjfFLuIzB5i88f62EqVdwrVRcqx1axuPNBv5ULt4Shn670nElBVOaTaKP5cFjXfHO7Bx6JqFMUb/peFfJk8EaP6qdbLUAFNDu/XBZ8DRWasvU8FkNwjw+qG/3TT06Dgxy9W+bEeZtHgVbDxSayb1HDnlzitEMNQQvnOELPJzH8z3PH2mT7BvhnmgzwY0DR/BtZxuAdjEV045RnXHsX80cnm7g4c4Gg9ILy3YH1VxX0D2gwORD4cJNZIN02FqF9atOScnc1y8K0gf/VOVN/4R3dxV6RsV/yof8978E8f/L3f3/OxjY/ByE0v1MnPIWDUdEJA50tN/Yp9ozJXuREegfcmye1JBsI42YNQ0GaiGEivf6/l1R3WOrT+8g0b6/3dBJvfQpjf5dESnfsebn4E6lLu5tINTwC/Yx8yvDik07DlCaxnmdGT/gkjRoGqQnz5bLfMQ5ZNzUt3wM1dAUV4u6V4edAGnhTRpO40YJe8VNmEfN0vGH362WXs0BhQjR8JRUcsRr9P78dy8YYG9b+vWV/M7wBh+WodquJ8YAuYHjHktTuPuOXoDVstiSt8/i6URreLBtZvDhp4lH8+PiuTzpbkFjvwZr8MojzDrdHM9MmhAqIXyixK6qnyqAzxqRDQDS9jTd+sDP/8BHr6XutsZqllQvV5NOn558nZn58AZ0O6U6O5nthye33Vf/ECge9m5HGLeJgK6QFjIN1ccmpqA367i4B/6Btna/9sJKDqvYAt1+QzIjmfGUZC6WEs3slA/vTPy3832Iw7IfsZDiqhdBwqMvSlB2barTnY+D+B4+CBjS9ryh++bX5bxuK0aICeOy8C3i8erGG0ICjZUYCPm3/BlGRE4F6XCn462crmQ2kg+ba2O6o9u/cwiWucQHovPvjPj1smdtag1nURIrdvz1j9Fq9/+Yei/X1mcyExDeJDeaOaQjyX75QrkqMrxvhYCizb9DCCm9+G+Dd3jNa57jUotJ8fGZe7UM8SlK7wJSGGMbu9o3GXHCS4fC+AZFn4ySh7pzkUIsGkT0GH+sQbdgpZaX/QrDU2YB7BKtz0Jz3H8DTMYn8z4D/8lbSjO2dBlson3ZawF69LTWzfWSEnuQo11qNZs+fwlCA/6Rr2ye5dzyToRJAg5JJDFWn6ePWGCmb5GqA/P0gECSnh4o4p9uRkqsnvJTvgUosfpFyAkYmNN7VgwwuKYHJ2//GvZee15AelVp93ySID4TkPGz9hw0yzWlXINwyQOAjWwLpeJUokVB4+NmMRrfXvMcLH3S+wFcA+IliMCDQf2ZeqT66viRb3MTwx+U1k/XSL2AvU8p9+RVS8k3pal48JylD6Dw+mAPxE6JZ8jF2UVlHnu7YEk2OlUysI3sNy2ts9vLn+l5ruRWLrfS/Gf/ND5kf4Bpu+8cD9mVdYO+zfOvOIpcJC0op/+WdSsm8CEbGeWEt5iY0bnwAn33xirxVisM5x2EAQ1QUB4vj9Gx8HXp6zQwPR7/UfdzuoYBZ6FYlODvTl/IxMUOnBSO+XxXaFdGUNfC4oI9lwcwZxW+9y4x+/iCW7BMzkKYXQOLcXat+eaJA5PSvke8zziOP1A1iubz5QvGlk1D5frtEqP48qtM7f7VrL46XPr9yUwPecPsn6cJRs3fiKvOEh1q7fX80yeW2Vc5i35D3rKVu+9GHDrLUrfDXNLFs829Zku3mVZD1oerT86ZNtfMlu743R1EnIBBsfoX55Re4M7VqCzH3PWBuP7qZXtUR5RIcvtnYNy6h980w5/yw1RfeLGa2p7SVQWjN34y9H0NfHIQF5EDzJ6ixR/c9P2BvMIL2bGnX7UmUDbvGF//KDuOGprO3fA/3zowVfqgNYgPhGN/+AreGoibD8WBfyfj3f9Qrdlwmn08qh68YfppDrUgCs9Id2mz+4bvwJnua2p1ioArb5UyGcJudGVSu4DHOgStp2pPaHj6V6q5nlHGWo6p2A1fxK9dEKIwRXaBmE53yVCdGScNDwJBtrILEGmslyA1bYJX9+CvvnR7nfwqCaKdu1mNpe+ucX/9t/YJselenhx6ODD/yBBud7CGA0MQRG8ZKtf/7ghF1Mev79jUjnxzIEz6eO0Zt93LV86BuTklLsmXSMZr8OK2gX8EEfm55iXN0m8JS/z2i3ve+IQGPDTV//8//YelZFOLn7hHqXi6vvZWcooOHJNur9+azTXtnzoH2/VqoGNg/E8uH+xx/x5nf/GL3zsPSnAxJC6+IuvfNL4OFzuFOnFMAwFElgQiVPLWp8X18wuyfFhEtRKNhVp/fwfQT+KF/XtKfmxqeZfJs6OPfZkzo21gamGd4sXwXypipMH8NiwL0Kt/0h6oVmB6iipg1cDo6H3VoF0fa8orzpB/znv9Go+RYgHbUvNQ1TBJu/yYFkIQk+O0a1+Z+K98ffkHiB48Be84/AsKQ62W3+x0i7tYAnJVz/+K07u0O8HUHWM3oshSibyMxWiC/fntTL3Y+Ep37uILRaDhsvJ6np5hcocnkMN36XAmrA87aeMpeqM9pFm59ng/PLIegA9S5bhSvXg9ktT7gIngro/vjvzcVfrL5ei7sGGc9Dg1p3ijY/YrDljwNHpmbUO8moXm3NbkH30Atqfx2cbX7UdgQvl+kfvxD+/I5qH3sYr6U+/PmVULgYNeEyBbur/Dyr0HhoCnkfDsGwgNOggbDRZFQMrliT9mXz8q12IvrnR67a9WnC685cqR6v50zsg2cO/+bTWyXojr6rylASqEZkayn0ZSg/K9y3xpFe8rMzEO2cylA5nj/Y2x347VpmV4HNTyB7w/hmAxSSK7C/7E52n06tGd/jFLx4Gf7To+ySraXyOy8W1ozGiFb+zBfQV278v/GYCKcjIApx8vf3sLyR4sh3eJPJulQLW4u3FcP9ikT0NJA+TMEhb2BkzDU2XjsxWkHK1j8/kt4WsdIX/TEgePiAO5H5txUN8m3qYYcHD6N1sHX22PMqeAheg77d663/BE+JYaWLKsWDgMGo7x0O3n7rEc3GIkUD//I9kH0+6C//13z6kkw4idUXn7ty+ctHKuy8+416kvbL1uV6uv7xcawxXcrY8eBUMDOEz6bH2mjMs2cDX/Iu/tufA5tet+H7xsvYSq8ZYPxFmBX+ik7Y+AheRr3a2OpYx5jsLtZeX13tIEHNusXUnGKSseTkVvAnblUpRMqBv8/BWgcW9azG0Uly/xlQ64wdRovYR9QDRf6nfzFyAhRt/kMDGvn5wGrpyjqJw2cIG/X++vf9VQlnR/nTK3/z1TRLN8I/P8vqXm933vSHYmd9hXUu+WQzPhQSdLymRKBWQcbsKqqUv/3io7jXo/UPP+JfpuFjd2vYOG3lYLLRg/hc9Fm97Mw8hsWbM/D52r6zRXq6V7j5vWTja253axTnz1/92/9hGx6G8NcUMT6rsjDQ/tN6iqpeOaw/eHEY98I9gGzkJ/IbBlbT+EtUaPXSAavJs9Gnpe1lsOtAu+0fB8NqPEoJdorJ0WMc8QMbpWOubPyaGmyo9HUhDfrHF5fX81jvX7HDA5QcdYz5Yx/948+Dp2nY4JGosx/+8eAoD/4/fSw8BJuHqXTOt/248yD+6Zfy03+I9Lg+BhLtfQ1W4+n35xeyxfJPBhwIvqB3dPlGzHxi8re/uvmFBVt97n6FkW2k1BVHy12426LB/8+RAuV/HymoHycOiQlo6jWW3zm8BXZIH63rsnk7eCWDTx7S2889D7yV31tYY9El/MpwxFjnJGDv6YjqsbawWT7XHByW4kxgp3yidffhbDAXEUCgnT/1uMjnADB/8rBnCeeMrT+JwIr2Az2vllOvd4nZUBascCtcd2LMgKkG5NPtjtaiPGfr12gleOPhQM/7rNfJMuUqHD++hG2te4L+lVMiF+6rJcr9odb8l5MqePkaCFXkhgDtYzcHLGoDbKiFn7F9kMlQ4Ym+AU9Zz2918eD4wRIS3vYysOU68zJ6LzJFSaiyOUy9HvrT44S4mDvqE1hsAnsgONg572y91jg7hqEbVYhZ3celg9LKMATHJzU1/xax5ecQuKvPmLpGcNZ5rU54mGp7G/G+YDBeKJscnC7el9rJ6TSQYv3K0GWPCNtxCbLJWpIVvsojQPvsNOo0td+5svzaJwLCVR9m9wkaaALtgN0QlO5K7q0Dqx02iXwSRLZa8SWAMhUifCQzyciBazhYxA8bgR2s6nWHMQS85DREGNpX9G+8I7Mx6LVz54yG+6SApSqWRJKv+3qOUrmXfU5z8PFT2+50HX4I6stpxHfCpGzqKo0oVZpMVNWcIWPqpQmgd1Av9I52UGfjcLhC/8n3+Fgs+3oZrJ0sZyvUiTKJn2gl5HqFUnrYUa16zO7sL74DwacIqV7yWsSC54sDDg5q7HxmL1uocIaSGVQK4bh3CJb0QHl4mElB0aV/19OV82ZY7xoT65NMs/FzlVaoRKAgH7F6u4sfnzrYsHdMTysqhvXSBR54jaqJTdE6DvsylQkQ7lFK9S7n6lE8cwGsHDHEHigGfc7UWwnOxaHGjk3Uen9+IwkaMPGxn0xqxnu5H8AsKUyMxCJlwrJMsazQ3MD+nI317zL+SpgihLbxuA/7z+5bwvGiNtQ5FNLQGX7QwbfqiIT/tWd38fTehP2bi/CxPO2z1ewHG3YhqbDvPo9AbM0nAlIsuxhjoEUjXKwE6t64x3r9ABFA7r84R+Lt824UIs8XrEW7OpqBEGq7fu9diLRWjjt3ioaUGvMu1eSLX3/2utiDb8V90fzhrIGWUxzANjp6BDwexB2TxFPh0EKP+prpZMs5S1o4DJ8TOiT8NRN2qkAUERYMa1DkGXnty1LZ4pnAo3lxl5v6c2DD6hjxOb4MtJq3wprbeT4Ha099HZeZU3bEmIny4L6gP1LbhA/lc8YvfVcPLdfbK2ThzkV/8TOfzVcCb44cUZOiO5jHr6TJxrsYEWdHvT4dLJWDxVf18fWubRbycIj/1gN2+EyvSVyDEBxm60F66epk6+XSa/CeOgZZyIwiwT0lKaj72Kb26W3VLDndHfCXH9ZoV2dsf5h6+B1/HBJxMwL2PBmiHMX2i6pjLgwzsn8pZJ1/ps7EjGjR7EcMgzFd/ssXsRsYik3PHTYqPhkW9YQ18FKfJXaP73kYi93NAc98vtFnUO7drvzlnAwxh/ApfqbZvMjnEOJlumHVoOEwxZw8A9K3C9bYj2S9FV9CZRtvrDNDqVeDszSImGZQjbjKMAX3d688JC6g3vd1jRb5FHYQqBqP8Wu2mFAonQO7StLo0ya/ejnN/QwNT/epZnYDYG+tQLCYwYmed0Wl92+TlvI71SdqQT1mE7WmBvT37VbfkbpgEfLIVo53RceGLH4zevKtGL6F5op9yZd1dmNMhJS2PVVhNmZLcbiVkP++X9jgPpBRz69VZRRzjW7raegXKl3BcW8dsOeS2WWXFwzAaBLrv3h+Y72AD6IR7ATfb7Z6XVXBx5T9tu97gyhO51ESno2GbTGb2foXb9VvZ2PfaKRsqt5f7TCCqsT47Dl6J57FAJofV6QmS37uKDFOg4HVJvgkZ182t7+5Vygv/pBgwWv0eXZlAK8fPcB2vV/Z2qfXFebv4Ur1+SXWsyiMV+it04/abEyifsM7cL55HvbNc5XReD1VID7cXlj9cN+BiYoUAuZTD2/TkU3beoPZRAxs2O9TtDdgqkL8TSS0/811RPELBXJ4sVvs/hCrSb9oHBx7kCGJsqWmh3rKIWXLjnCKmerTYU4JvAVOiB2l+7HJzAMZaGuaIcFPPxkpikIFCaok6r3yPBrVw2MrZMVz2AtAPCyj6ASgdN576n1/n2Eev7MKy7nNkDDMQT3b9mmEXHK4Y3svnodpcjVP2T1BgD2zeQNqH4YELK9Qpere4GvyXd3g0Em2SjiT7BhTL2NwuGOvooGUXKMRLcCGqpR2SJKv94EFDp8oaZjV6FDYDNAs8zU4R8oLu1QZAFVlTgWx8TaxbQelPqtVJSrR3G29xZNrvci5yivxzXbx5ZcTMH0OBw+M7vpBK89yxu7n9wq/dt7Tc+gJ+o9anwbweuyS8krO0ZJ95QDuivKG75LKgelg2RC+8XumerL0Efs+ShNWvNxTu6ijbNmbKQftT3Ehy9SWW9WavALJTxOwG4GnPt7HmwzU6v3Bx1CQ2JIeviKwZYIRkLtaXwr/m0OaxiP17edOp40ue1uv8hgj//sbxpz72iDIxZjqAovdoTU6BNru4uBjor2yv/wP64fFIXkwBrCm+1WE2/knxE83rl73Q5RCo3072K6mZiDdfIXQIyalSA1ClwltbsK/8XykeNJn5oeyzJgzUO1bF9HCssmBV6G/UTOL02j0LJbC7XP09Qlfr7nrFTDtiEuxtDIwDqFkw06znmgebAGQy6XS4F88OK0s1+zm9AY8yJmAfXW41KzQ4/If/ypy91t3Ny12oLzLCDVxs5WSe1cVXKJIQJfR/UYjPWQhnAQ3QuAZ8oxdXnwAjho9YT+zY3fBv7sHfCn+butRylr2kGxYmpWOTfrSslUKOQkOpb8jn/g71GxU9QBqd7lA4+6tu3vLV67g4e8RtgpuZXO0lLzCnWOIpq1RhUDd2VO8lf6w+eYeNfXRRYPn8/BBi/9+ZKvf3GV4btYvdZ4TH7HfuPSAO3NHassfTRd2JDTgmkSE6v2xq9kv+toQntSJvsB7dFl0hgaIXoKI5PoYgT98gfGBa9Dc1QiIYBdySmJ4OX1O4imj0Zk3oZscYjJfG8klT3GtgGYRDuOzJgF2Y4AHFv6t5F0s+2GOiYEUZ6cV2HtNLVgNdUhgt+wT9OqtfFhayZHAH76cJXoGy+4+yJBehzNSHpwFhBd65uBO7gnGvZXXsySGMfSeW+Mr8bKrl0IpHWU5pwrWdhnYxq8TYdgmzb/5n9/qAUETqAf8xzeXV9iZ0DaGEXWXp5nxB1uAcMuXFG1NnseuzTV4deoIHVilR2KAfQJPseyQyfvOEetjvYD26+Pj87dt6vW3HsLN8pKws/Fp+n54Cax/l4Kq+qdxqfSVDBgKd5m6O6jV4mJogcIn7XnLhzBicfaKwfzzn/iPX/7pCRAG7zcSj/pXJ+XL02Cf/XpqNXnNFkfjTbDxR8Kukj6sL/aU4ZY/SX0Yc8DWww4C1dY7ZN2+WUTO0EzhNbMT+rxjHE2fw+KBVi8WeiZIZ/vYZisshzin+II1d/x+Wg0kZEzIit7rsNBsX4B411vU5Eeb8XDBCai5OseOZr6jydRRArKV0xGMls6lfL1fgXi8r+RQ7r1s+dS6BqvXsUXr2Wf6nN7dEV7Myw/JVloCli0AgdwTZaTwhTGsr31XAu1+eVBDSMRh8dIkhMLC7vgEPqJLGTc30OWuPDWzchjW6uzyIJE+AeFv3zVaibqDYEa0xNaTb4Z52Y8QCl/5RdHhbtTzhcQV4NfXEaNqJsMcJcUVNHyrYu15muulL1oDHvMvJEseHwErDa8E6lMaqKqpsjv+6UfD60JSOn6drVfvbkLK2I5akXbV2bY+ACTPHXU1+IvmXpE8+A1vFXaN4OeOjhtoyp8e/ft93uBNQ5GA9SL7E/zqrCJeAEeBV5BspIXL4tUvoWl2J2o3RyOj5VQEMCaZgtVAqIbZZ78cCl/phY/nbq3XsP3JMLWrgewup5ktmn25wnDrPIFP59Wd//RlGPNnaha40YnD9QSMGXci/Gn12JganQ2mdIhJh8jEmI8eGvjjd8dMq3QmdFIKHmfvhvjl93bpzelNqFWiip0jDNw/PIf7ct+h/r0/DUvYb72Yaar9w/tP92rTP/2P3bcLaqZ/Q0exnRsmE9LO7hrA3gSJLdwQWw21nk2eN//4E7pemjRjaQ5imGtlgc/NzNzhL1/x1m1HtYbbRwReUxlamfegPnMMtt6kkw06P69p6MIhW5+iXMmbfkPQTOdhIqIUwIZvVHKdkZ1N0c+TYGzUJmnnaj8M/fHQgPqVtmT0vbc7113eQexdRIr3xdVlD4vlEMhjQJEjXdyp2ecyxFrzInD3rnVi3C/tnx4h+fd3qud3r0FYeGWAXf9b1uyx+AiqVf0hdY0T9x/ff2hgwrqpZ+4KtvtU0ds4UnPLBx1fhStEIX5R880dBiahqQX8hDUkkNserHf8S8GEKU+P5kF2Z1AMIrTUUEJi0yZgVF4Xfn/8vgt83up4r/S0UYj8ccP2A0dgwTf/CtbkQugxlYJtfTKkaPv8QC07FdxZEW1VUf3JRUqe31h3qOz88DijG2H90R6E+6VIwSmWHCJeFxaRQjA8ONPyhBZ5nPRV7PaGAl/lj9rvcGDTph/hWdY+SPq44bByXNjLt08abPgvZ394fdjwl0gb357T6zc9KETc/a1HfQ2rVyivUS9QpAkHl9UPOT0016REQgYGfX7Q0oNW71KKOsuMfuapH+HzyPPUZorGGOOkFiq8wSGpORrR8vroPZilRSIAwh1YxHTkgb+nFVXx/VLvRX/XAtwyRph2/dQMBMcGhtlTo7qgWBHDXkWgRwxKi8ZA2TRYOwlE8o1R9xlewXKyHioYjqfzpnevYC6OSwVfpqsTDoGfPtUHHcnisCfoMLJBZ6+llKAqJR3i7fcnW9TiUYENDwjneQFginyMgfRGHT3h3RjN/ddR5Sxca6q/ymoYDvWngOmy47Bz62HWg/iIIPwJJq6+E64bAdkynI2HgZNjVwKS1R0Ht+9jU++IPkbp2sPzjtgYl7KYsdwENthNz4Ea7fTK6HT7630eUmr2W6Fk6IrcH7/e8Kmu2fltSoB/9l+0n5NqmJXXQ4R/699qch1MW7xA4X5JsW2YhC3Oow/B7xuI9MyLtT7Pn3MKvuPAoYN/LvVKuakS2LGYYlcbCjD/8T/OVwR8rsKPvp46JML5FX8IfOUwm29Z2cmbXkH8aR0Ba4dbD5mezqTX7x2baXCsoGgdb4gbFJ7NF1KUQBKLFhvqFbq0mFcZIr/9YDuSoM74SCrhurKBeunDisQmf6awuwx/fqPCaOwmJvCf/ofimQJGLl3iQVgcGqo6fh0N74eX/vNnkHAd6166nysAb8inm36MVi0emj88wfYt9nWxYXoLNfuq01hW7YgaMNQUV/8lhLv0x0EAiz1C0Aj+P325NsxtweeRPqjz3n8GdvJxLMPdycBuyrdssdKqgcf8A7EZPdnwy2vag/zy5Kkb98LArgWDysJeN6xqaqozWfrEcNMPZO+Ta70cHmMJwlRQsDMmQ02H+JCDv/h/WukZTGAUTdhVgYKWdzm7g+ULV+gUIkf2TV6D8U8/bOuH6q39BiPw7FCeuWeGt+etP6pVxxBZQKP+Y1Iyau2xCYOWos0PaaJ1NaQQ3h+nFGsP7wxGvkpn+P1+SiRVU1OvUijKsKk5QI0cX/7yLQcNk6NEiU6FTqqzK4Lt99F3i78lh7IDPqS7E9F682DiZjVVpiHMqF3vQ8A+8W2Ff3zteD0nNXH7RIR0Nzv4LDvawLe/uYP7tnapRm4ErOtDs+XNj0TVd6L15KVBCLf4pfaL81zpi/Y8/Bh2hp+9kg2LdzzN8JYWBB83Pr84dx+CV7zaSKDym60IwK0Kw8VH/LPvs1m2rP7PP6DmXN3refMPweZ/EzEgIJqXkpvh/khWbHGHLlvyqExgU4wQ22nvDXM2ui1wJCrSzd8ZJsVIYxiYSkSdl+27G34k//TOjN8a++fnqbXTUz8Lv9molmb1733UYLhE0wMUNmQdj3AG4QtQbev9/Z0uOnW1gQODBS4jDF3pS9Uo/dWUdldySKJ1j+Tga2V7AU8yPOpXh+rj/NbnYtBDyFdSS9F04Wt2Xe4V/EREpLZ3NsEQOHwKXxfzQ63v0WFs/D3VP/9x86eew9w30/inT6jxWPRhrYutWepkZPTRG2E9/flTYh5FiPXHbuhocK7++BVqZ1bpayzGIlg7mVFrVX71+uZ1Cf756Tjq72yZln3/58dSXL3UaD+phwDolR1TbJGDW887SYYL8WNqPXmjJtrVCuGQaz2Zkhrr65zOBayN14ns3O8OzM/+FkDxeFvpsd9/h23+Vtk1gid+1i5ye6ZOPbzecgFn79zUefkpiDAspyN9nMxOX9zbqwNENQUkxWUWUb7ezX98CMnCZwHsJiYOrA51jU9UPrIpPXx5uOEv4T9TFc0jmsrD5g9RXN2oyy91ZkK2Zw3Z9B9jn0Q2wRTEMpFtog6za/kJbAzxhOTN72Fql+Zgiy+KGoNkA+u0FM4Hvtrwto2Ife05mIuHkGJy8QH5iy8QeFfCgHUb5jJsZzDMgkFPkRS543D4NFDYFzJ1Idyxia3R9c9PptYJft3JWoIVbHhOuNy1hs0vsKHh9SE1XNPLZsMPemXzJ/78ZMC2+YExfzli9EsmRkUQcQqQTy6ShEtVL398LThGMz4pzlaFz0tSyJKO0D8/9E+fwRt/b+lRSPyar3uJA9v+EnUVv4/mzd8Dv+VMqD+Jn2x6AlcEf3iG0v2XTc6jCpSN/6E9Pk/RqL/7CtRN/8F/fGA1j5cU/uXTP39z47sG1LSupHgUBXfZP48ObOvugrX0W9VUBsde/vPfc1+jYO6/mvqPz//To7YCRwh35IzdSxy7//j9pmeoTm+dvpR76kHaVx42gmgFAyphC4Kln5G8jIM+hPsgh2YvPGjStu5/+PZVJHu7E3cDwmh/JOg/8YfwFS8Nq7ibAnh13hESrlozDBs+yUe/a7He2kcm7j6cA7/7MyCLXGVgrrtr9+cnE/C5jaCt1mcD6G51qJfvbxm5SPcCIj08U8TrH32pGvf6Tz+chvaVMQ4fA+ivg0HmQNBq4W89lrK0pzZXdOA3enMFt/9PVeEH2Py95DbY9DgS3aHVl9Gby798jf2uOjGBrFMPh1zt6Q0LwB03vFCwHWhYXeabTov8p8Ft/4las5W49Gn97H/7P9Ek42jZ4lF5LcGJ5uxjRNPsHGVl1/Er1r41F1F6aSu46T3qHc2LLm58FWz5Ecnb/hSTPtkMs+rK/cPvJb791D/9gPUnSIZ5wlkl89pkUhTzGCyk1AwoaHqODd6iOo2zewwtKoTYSGIHTFu+V5T6eaBoB4eaHQ+YyMYl8rD7zlt9tRV+hLxkN1gPz67Oat1AYFsPpIsk6JLyXV5BpzsW1V6g0pkWhgE0xVSlf/tX9I/fhcJNxtvn7iSmjQj3Sz4RpXbRViXccJSksCJ62iTxn96GbJJG+ixveb2uWgTBCZB6yzdYJ+o4zNAryis+KpdrNLXo4IAqTSfEPdsyW3kya8rZCXp8t0whmnya2HCLf3ynhga2/cYOdpWs4bNEf4weDxaBaWKZ2Nj0KfkszxA0Bn/CVzLfI/brbzHc/BbqjaPMyIs9JXAuQI3eU1vqTAQZVF4zzrAeNTUY8vWHwBp1AjXUa67PKz56EHm7ksz5d3ZJBN4rxKEtY9chMZv9NOb++ZeWkN2HJenWFnC1eCBzdSrZbDjwCq7X/YydMh/ZOlPtCrP8KaOhMz7RAkbO/OeP68NWlUa52RL0EnEh7d9+Y2yzGd5OaEbzh4+zf+Nb5OZA9eR70GfuWW9Vnc1o0xs8W1qBNACFfIOtszCBlef2Ibx9koBG43x0hT//mlC/p/YdXN1xkY/h/6dKwYH/30cKjGnEGLXnazQpKKvArZZUenvPH1BfricDft3BJvzHWYf5fqYcaB+ZSoh9NNne7a4rvO3lFtu7S1CL8WzygLuW/Qbxrb6cw7EH52Btt951QzYqV3AFl1zIsanlWrbU+lhA9Rvn5EBtgTHpNjTwOhsHWiT3kz6PnKLB7C1nqH6tj2zNkwLJDJ1W6u2jhFGt/jUAcNvdvOVUuXTVqwaugnfHJxuHuugdew2OCZeS8twDnXrAcQ5raKr4fEaeTudyXWEO+Rd5D5CPGJV7FWYtCzDqqn22XqY0BNnbHyiO3U892VoVKuc4drG1loNO7MMrBRYMbtgu5tKd+iQpYH/9/RA/l9+MlGU3y25dJmT+Knw9t7ttCxFZK2nUn6YL5905gI/iJZE+9oXteuDpCvNlulGEtyoNs19fgbbueiJ+6GdYrDGT4cmNjtSUihYw7rrzIDYtA8F90TDC99iGaRy1WLt08jB8xzMHdb1LqeflSrRSWZBgaokftDsUHVi9mx/D79EjeCs0oy969FChMRFMVtlkWU96UEJlHCHNDn2TjeFz38Nzwzz08tS2nnf72gAuzBj23srFZWL+KWDk5Xt8Xch1mMdjaSon8kjoqeIifb57KYTBh7yoiVUjGk3x2kFH1wjiDIOrGd3vNfCq9AOBa0Sj1XykHfydaYPAk7tka5btHFCdX0d6zNsdWzgbtyDw1Qqr/DsGa+tdTNjZjocE/Tm6qxA5EjQZk+jxDd/RPJzOKtSRwSM5To7ZmkqPRH4Yhwkta1lH40fXEggUZaZnNW8jVsWlChs5v6EK9lXGZPQeZblyn9T/wJkR1FxmmNfBFT8eK9riVVDh8/DWsJ/vXvpKlVJS3LU/k/0jsdy9eldtZZUtD1uPxNLFvXfWgLsoD+oTItZTYSQ8bDyPYVw12cCnnThDXP9EbIZffpjzi1zK9sld0Lpcp2F5JF0Fe+LzhDXNLmPjfQ2UVkEWdhPOAry34iuoRLch0nAW9R++OFeo3RIJazjV632lXkYl4L4yWkD408l3fa+77f2RNFw1fVnLplWCXdjTE+p4NpqleYWh2jdofrkELMTgRvjgggfN8zWrZ13dlcDonB51J+xl81mzEfQa+YLNT/MYBGJw5N96FgSpjNYDmWflbz5t8VoAGvk6gt5J2WEt/YwR5Qa/lKQsM9Bs6g5b9q3nQI/GAz697hXrP3jV4MBfDPxsiD6wks0Izip6YhyiZ7QO7jjC3+ppGCunh7s2LRfI6igdkTReXTDffrUNVv79xc8l/AzzI4Ep/MyTgW243aqqggD9zQdVW/rNhvN67qEiXmxq1YmsM8I5EPgl+VD/tSwDfcqrAaLjfUJjtl7AsrTzdrxFrMkvc7/Z2mkjArdaVimWTniYC9vvwQzlHTnwpy+jN/Mcw+dgHqkhHnp9WcVVUt6DhPHD0ONhmd4JBwGtKLYV6R6tr3c8QlG4C9SxNG9Yhi7loevwGbZkox5m2ZVF+HSjEsnJYmRsfUjS4a7xA1a3+SMHMq9KLH0p9otEipj5OzvQGXSZzNv7jp2nyUqTXRuqXhCrh52yymCXx3d8nu1dvV7uOgc/VaDTk3ts6jl87joIcxxSh3s6GftJdaok4P6m3jEvhyV4eyOoT/BEb+7RqFmQPjR43LsxtqbbbZiXu6PCUr1kSC6dAEySiCoYuwcPSXup0WduOwAj7ZBLTw+mDPP3cMvh80QBNg3hFJGXzxKFD+ycgM/9ydbJ6EXgPqIca9bwcrd2uB48Tl+HOlceulOJrBB6jXTBuSXUGdnyIZD405G6gae5glcENrz6/IzNzrbr5V3CHihf3sLGbsBgdl2xg++SndAudj/DchCSBmpN9aPu7bgbqMsNJry0j44Ie3Oq5625N1wCYlGjrQfQd1Tl4bEjN3zkDodo1XzqgFbcrdQ47nE0Xxq9gceXfabRKvfR+rtdGujd1hJrWz4iDyBf5d9UDXgb/2G+xsIsN/TuoH2RzMOiOkkFrclpsBt2sJ7/8sm7vfb0TKM3W77eCMGtuKb4mCYdGLOj5IDsLWXYCbOHu/7lf/bNX9TzBbFm3xvo4f5hQ2pX9zlibmjmB9zELVpO2tFd7NaCEM5aSo+F83Ep36YxrOtyj+3l9c7WYGYedL7EoGg2MZh/J44DO0G9otXrLu7QiOMsTy6q0Bx+RzAv/XSFZbe7kzF9JMPashcBUqMEW34ENfnmUSEn7yUm0m+rinE6jzZIW9OivhM82ZobsgS/N/+KjWBXZrOEo1kBH/NGwN4UMqpbOIbGVvjqOFrlsCxyxsPJqVeMV/nAln3YiVC0fyFWPzFym+B69JQtfnGxTmJGm7LIYQ7F7akug852wNpOXEcNOex+qs7XZdpK7gRXanrowtj7iDsojvkD57VbZPP7gmxgn/g3tbf8PB0nbqvqoY40LZ0ZLPQ+muA6mwfEro/JnR3AI8ilJsY+8k33a7+uATxcBoZxtFb1XAWJB5uj9cOeLUxuz8c1D1TUvWhMqTSM9ulnQwt8Pkg+PEvAggnGIBtjgWpu942YYT5SALXBQrzDH939h7kiuF6EO3qnfg62QqkaDOsVYN/Jzuzf+9Z4otgYieuyUFFnxd/xN2rcdj8wcuibAMc61DjgRoFNG9+T+ddzoMeQn6PVhk4Kz/11IYeOMvcX7DMNzKdVQ9yN03RB3IEUGt+nTK0ehvWQLocGooIzsar3X7BcI5uD1fhJqMGFYj1/dCeBcaYpGHEXwth7agIYHbbCX076ZmPhbIVaVfSkehvbUXfkCw0cp49Dsaa7Lmu3RgLLrYX4fF2NWugHNkP7sbewnXI162qxlOCjGRG9HkLfnV2X6/742b98sGZFb0PbTU3yU3Mz2p+0OYdNFjdYPQtfd34r/Sr7cjhjNE0jW4o7bysH+/TFftCedeF3GgzoXF4Un+Her+eCr0L4Dq8GDvIHzFhgOASkZVVR63DY10u/uxvgIwY/avrfwe3++NT0yw16fj64iH7OqQejWNepf9bmgf08NMPgeEjw2eyf+oK/QQ+6I9gTLvQ+YHveQlkOiU4f98fgkvbcmrBc6xr9vvSXLb7RyZBo9hEb+FcMax0zCZJDwKEydU8Zv+kD+El0C60nIxlWiZIRxpZ2J7CkOmA7RZaAXUxbT073l9EqUjRoXy8VtZ9eCljYrgXMF3rD3j6S2HJhsgmM54EQTscq47lvR+Dqpz/s3o6vev48EgJfyWtCcgfF+qdHDw12AuGwvU5oWAL/l0L1bMjkMMndsH7q5xXiehDpMd9ODKfcgmBefRu07+FaL2wmHGyvpUvdbT0vw+crwuHD61hN1UO00GlNYJQC6Y9P6KvhHTwoHfkDde3uPKzknnjg9vVFatZxVTPDvCTK81PmFJ+/es3qtk/BIbzW2BLDb8a+WhJDYqnixl9FNvv2jcD2lKYUNeCrL0tQIdCbqCOH+8N1ae8mImxFZUUKHFZ3zG5RDl+LmKK1n7n6dxdmoni3uaSXZEfr5ZGUFRTtIURXPtRrgdevKRRDGWH04gR3taGWAPBQHGqlLZ+xSx+l8LADV7JT+wtbU4EkUAStg/b7kq9pO+4lQDLioXEXHN2lsvwUpJngUlUpuno8DwcRtsSICa/+Kn2RpKVUtvW58ftiIGfPEKEURDJa3ouQrZV5qODx0TZU08TjIMwK3PpBzwrG7btm5Be2DWTj/UqNJBnB+qe3DMirFBfKEDFxBbP8CV8VNkJ/GpbVKQKo3VKJQKVI9OkTnGSge28BHxerd9cuWSvIv14DEj53UV+CfaTCr3QbyKFRYrb0SZLDSgc54nnrPky5GxLwcG2NiGwswWpFJpFnKO1oLp6GmmSrX4BJXe3/I+1K1pTllfAFsRARSFgyCQiYICjqDhAREJEhAXL158H+lv/urLvbFpKqd6ikih5W/j/H7DiA71j06L2zxn68SPcODsZtS9VddEgF/yqelTPwDby/caqx3dinVrnkcYK2h8cmJdxVMGGkXUbqXhvUr897g5aOCnwYXjQdm3CSobe0B3yeLiCltrTeOomiCc1+eqx2cewNPz6Gra28A7O53lrYM4uSBXZl1DnSNYE62Rho24OaEY6Yyd9+Wvx2NkiuTFAmqZZhS9qpxpbjawR/eHDDSZ/O7bLtZHlthHm8uVrfJKVhwrUVKzZROqf0sGitkmf9HVsk3qTjW9qUQDENdb1CYES74bqESirPAv39/XTfnyz4MlBExHOyNcZDK69zbzJC/fpVeKs+S+D6vvGPf1Ph4LqwSMqYWoFKvFHKriFUt/ODurPkRJNwd1owp86Lht2U9/OnBIH8jtwQ217qVWv88EA7qxu6+h1poweJA6v96ULE+7urhvcAdXAprxra1gcHCJxGJ5jKTKCeha1+C7m7Kff+Mybyyo9+evaHb3/8eNbjmQOPjfVBfLApokkYKvjDK8S/qjId94fBBU8Y8Ej2j2W6KOlTh55iVlg77PJ+9vexANb9gcCxjbzldnl10vFU8/RqpaXHoupegl/+1ZexAb98ABZ/lKgh7Q+9kIinBBqhnRK4lZ/VGB/OFnhlS464oxZE4/i6QZjdBweHqz8w0fnj/+kHz0/2gBWPl6x8rCUiw9l7gen1OWdKkLkRYSv//K7xBbxy11Kk9Wm//jwHJ4PTqPncZGw5vvEAO2+/DiY4z9HUfCNTWf0f1DgfrVpSJxWgGT3OVMM677WHfubhL55//tCi2IzA1nF8ihK2qegyZgis+peMIBSrSbeNHHL5xkTf+SWCubsFOYy64U6xbZyr5VBGzs8voPau4PuBukWtpFugofmUXo1lyBMLFir0sNcDv580t07AeF4I1e9+5E0pxoVkl4NL7318rwT9+HGhAXIbu4p5MljWmgN0p3dBUTtWKdlt5Q441T2iT3mnG9QXr4685g9qsRcPFrhFIVA+go3NmfA97XLowmwkhNognAC53vUG/vBNlntkTCAv0HoqySDKyl+H21K1YFu0Ft6ftB2Yq+lggrkmIzWTDYtYMR99ud/cEIEdjQER91sL7tsdw/vFMo2Rao8FnIzTCX+HF42WZ30YgNSLBJ8EO6rotpQSSKSQw/ZgO2nXi1oMx+VaYMs+bQBraCnCQ4pVspEHwRs/klaDVc/S41gc0u1tD1x4wf6XutJDZfOlMs7roLPgD0+mlf9ChqYS34WBRKO/HiG1TucTNiK0i2Z/Zjm8bi1G8V15se/zwxVSiiYDZ1XspjOZ10FrgEeI7TPHYw3tRHjqN0dsJ3MRLRYtOMVeW587n3IP+JDfQygVc034/XrP7AqzBGrzZybbY2JXPOUTBNfPp2ZPXtFkqLsCaqaEVn5SsfEXvxcl97BFXn3ENsoiwp/eNIltRjsLDjn8iNd+7TJSsqWOEg7U2v5LrXBR+znOdjf4HoyRGqHaeV/vNVsQX/wtGb6vb/X7vjB8Lme6Nx8XNqnyF8Kiui8Yc3kYCd+waeC4A3t69PjKG47Og8Bhbq/U87EE2LQ7mNBRA0iNq8r66Tz61o8PUWdzmnomLGyRr9dSw5aHHI9wydeEaTh1+Gh9x6odT2UGuWgrU03s9X4X1namXCIcYKNQqDeG092FVVXuyMlLKzZ1A25BTEmE5isvMarMpwy6hkpoNLzsaj7efAQbzPMrXx17oh8/DuDJO8P6ZBXplLWOsFvxjf78BWINWyiFln9AzNpqKdlbYyinRieR6bb4HqH1p/n5yVS78hJ4P9cRGs7+MGNvtPRoUuu0harxulC9vgJGT/FkwWdJvnT9/1XPlLwBV90DRDqpTvSnb3u7eSHRat9Ve9oRGfz4MbaR2rNbObpwqs48xdvB739+L5y/75K6X1vvh9OukWFi82/s0dEBfG31ZxgSef/zU9MZaLIF1Ne0o+YHvj0qPNd8tOqNKK99T7QKdIYbjnH42F4iMCec5MMJ9Q/SnBBIZ2IKA9i3W0YmuMfR2MCygIlPE3rkTC/980ca+LoSedPvqibx+EnGX5wivrs4xjYaJl8Ru3KLgIWbflHmMQb90bUwyicbML76xL/3QV1BmhmBWyuEsZYv1CYEgWnzyib4SGGAXV03jKVW/BpUS9dSe2Mevdm6NyW8HqM92SWzGlH9mAaQD9wM21+yT9lJEQaAg1hFoCiLiBzf9gAV7LrU7StlPbK6uNC+PREa3UABi0dgA9ffJ4Ke6dHul3/YS5bJ/IJaxOoizwHKoUXPK17Sic9NoHvCQLaxP0bjw5YWAN9zTjU7B/3wimZHUYAw0oO0n9NvwkkIevlOo9azttKRTQ0HVXDVSS2Q3GBv64OgcIh1bGyjMZogKRt44K5XuvJhg7Kohj+8R99brbKZc+UGaPnzTnZCaEd8s3klv+f5ez8/fxvqCfdY+aMA2OTWOVj9VwS/r0M1sUB1QfDWKIFI1Xv+SeIzaPXmQ7XgeABsc4pD4AqHPY530ckg9fcbwrcQfvHqb1WzEGvLD69p7KOZUcyrIaDxdsL4rmhgsoSs/eU7BETr6S330CHAHRpp9V+HaK2/tODy6DskrHpk3sxGKN2p0xKYKZ9+yzl2/ad3fddIov7MUhneoHoib+6ZeDOZ0zOUrvj2x2fm3/vvzv2XvJbLNWXmZOiw9hFDkrU9eMs50C248gPyq8csFm3hL58h5XyU0p9ehRadT6u/bqX09g4cpRwDh4a68OpHE4smWPU7PXCBxZgXovwPr5yxvBujUr94eHYij0i5YvRbKzuV8G6CEWMl2Hvs2iAT0CN3Xv2ol7F8rKMLy9y94v1r2oPuHqpEQW0R4mD1kyfjPgnwGdUi1XjJSoUf3ySX544aOAPGUjy2E4CZrK96+1otaV46kJmxQ1Ufud60g+QMtkyBqD7qN2OJl5lXxAB22LjXZT/A2zkA7BYTrKb3pR/3grPAuHMIRpNFwbJfu4DGl+eNLOKYeD9/WP7lEwsG1R9+y97ILdSpJ5Yux89C5J8+tRm5RfN1Ow1K1h4Ov3pPNdypS4AGCaBqfP8as8q7DhyEl4/jyourRZnfMYipUSHuU47VcpbYALV2uNDzur47JfVcGEvhk2r4WHjryWL+52dQR3sEXlt0yg1EJxdRvMh3QOCr48CvfuhgvIlmi0IBVneu/7fePz/wnJ1mIm2jizHE8FZA53kb6M8/rpPN3oJrvqIHMFxZ+x54FXJuRLCr5gqYR54PgHTsfSJpHasWd7mUPz+V7o3HYEy7EJIfX0HblW+u+VKF8uFZkE3n8MZ82GgBWOsb2NhnrbH4HMfBQBr3NOqcuppVXncV6So6aPoo536CpsjBJufe5OeXz0bDn8GPT1nxPWA//xk6OYVUPX6MaOE77MLvvdwTUHIyI4cycuF3Z+7oTThzbBY24CYptyEmk5K3/bix7y2U7+F6Na1997NFeR6GaltTz9V0MKh12sEgrgnVZStKl9XfhR8FBH/+MDmpSvfzw7EVqOgfHxL6+Yst5/OqKA3EBAR2rvz0cDW95M0EbkbFo80oBxG93IcOaiZACCZ13Y+0xwn41bN+9bH5kTsm3NWBTfdm+1q7UB0EePSlBz7ky7X6dF4gwMOlTwnw8Z2xg3PTlVlrYiIs0acn0mWTQxycVZprPajG1/EU/+Gh6fKaMdWZ1ML2RW5I4IZH/+NfwOeybPWfHTD1e01X8il74edd0Rib3CGDZvQ8Y6ctaT8pZ3aGBSkhdqXwDCbqtg2ETYZwWF1DY5l2GQefo2fgtX6X9he6QOm9fUvUAEPgrevlgOP7kxBw4z5sdt+JqmBrb2LrG18A25y1UGqiXUpmLzVW/mO34oqv2LiqUT8vxdCAQuW8n/775/eKUtfQX71uucbXRnZqy6COI8CKds7Igy3bQOyf1Qv71Qfk1e9BvEA4Y0CpZ8G1/ohRdtAiQbpsMljtowuhzcsA/CloA8izkCG2yYd0QKlhwfwVT2jZWBlb/ZsEqhMWiVJVRzaddo0IabybyEbKHbBd1xd+uFqlTy5f0oVLXqayxita/VZjYFWV/19HCrb/faSgzvMPAd2ypJ+TlhRwo1pXqi7Xh0Ep+HByJbwY1S5OlrJJqgKgPiqRzIWKq+lhGxO8eNENsaEVK7b77BbYie8WfUSLq2Z22snwYNU2NspIZIzlwIcoEmaMZDfqp5vqyVCBnkvV47WP5jrIB6ilfkQvg/Y1ZsjhTn47pxkfwBOxMdu2HXSOc0T39uELaKk0A+S2jwPiTbiPJglHpiLo3Ju67fvIhMFnCZw9biAi87qUcvdzAc1JuaNqKt5sqa8CgZ/CcalavGeDtvoXwm9PT1hLF9xvT3uRk7u62GP71knG6JfvAaIDrrD96ThAos3TgodDWJD3IfgyquaHGL7Hwke73X7ft8t8XiByyA1NN9lkfLffq2AXVhesXkaFTWLit1B4fWNsiGRfTd9XcFZ6ITSoCpjQD/v0mUHLFN/U2i13RkeVh/D99SZSxfu7N+2H2VeeuJKxUwguYPexC2TzvVOxOsZ1ylKzHeSPkABqj9/BGLfyTYWXXTRhn/tOKbHH3Q3ePo2D5hc6RDttIwXg2+w6ulccxKb5dh8gtK8bqhvZGbCknIiypy5H8e22iYYv5hqQRZ8NYvouioY6uWWypY9XfJ+2oB9JdlqUvdc02NIHYHyt+ODDBNc7qqlDxkbyMWKY82mJzefT7EeIXxkMn9eMYsOQqulofwI4jAlDm7rZeMski65owGptpM7N1cTpfAG/7tmmyRTIHi10RsBT3EpU55OXUbjl8wy+vW/R3ApJP5T7eIL3jysi6UwomAvujeB3nxUITGgwWNvktQxPypHsTOm5lhO0HDYyIOh+uQve2JMMync+e2IdZQnohusAgdTSDhX2LTcY6e8THGijIaXkUsa2W6mGu3VWKIeNF1guT/2m7LfphO2sbKJlt7/p8BVpO4q+jRb1O5D7sLmXNTYi7u5NTfuF8hNoNtUty4nozVvO0L2d99QUD7U33wvCgXgt6Rz5dpuOz2Sqlc/IAWzsXw2Y9sFbhpPrEyJfG7kn8i534BI2IVYPT85YkrDiFczphGrQTqN5uM3CRrLPBeIg//GG07BxoQh9G+Xtza7Yb3/cs1eHj3yh99vWVm8KTjavv/WcleeuhScFhtRdNDsa3Ou4wPf3MBG9So9AGHVNAH1+RWTHHbl0GLuzqKQL2lJ8CqyKmlSeoJJGHpIoX675ZDOBxJdzBIRLzyblOydwVoUzYqPne8uW3BtwK14RDrM5qWhkyjnQjvKA0URko9c2c6A88kal2qWnYMbNsYWvjRAi8amY/WQDdwD8xrhh55mcvAHtywYCDmzI+6UZ3qdf+gSU+cugBqeIRrvGI/iO8pNaD/vDZu+hWVBMzw7Fgfvs54exIOhieY+tg1R6s5A5qrzvTleqp9OrYp9jVMDW7wdqOc55bWz9RLD4opEe3HtgzJXqlPByzBtqvsgumkYFnGHpBCFOQ7VImfxNdRgnsYKNjPrVzO8PHZDvZk6jzGxSdn4oBWxn0cG3zb0zluFShGDdX9hqu1c0b6pnDdTWs/CR+qAi9fHoQgYXjJ3SNKsZstwCg1/y1F+42pjF19D98h3F8WmTEgfTBIiyKqHPO/UjdtfUCZZ80GG1OyjREo+RCMf73SPv9P1Np+Sqh0pcTgqZ9gevZwRb+Q8P6J07lNFSF1UNa0tvscEpN4+2OzGG++19wkfX/zIiq4YFRZr2WIMdYcv+OYogE3ofuUqtgm2kDjqAd13HBxca/aT3DwjLzV2nnjncq6l2hEHW7sYeW1CVGLU4M4DeM99S3dg4KdsY0lrS/HbYOz0GMGlhKMO6XxBVg8PcLzRIY9DkiUdg/a2rZbi0IVRUl1E1ZibgS+S18C12b6SkQuUtYXPWQaxIF6q6+qlf8/OvpfGCXd6xo8llkgnewTiv+DQCtvNFHZSbVKeGTtVK2Ps4Bzv7BunzA8Rq4U6wlM9Z86FeZTcG2TEBQf3xyLDjprm3VHZbwva+iZB4npS//Azpa6LY2i0SYI7/ECDW1St+NNG2mpSXWSieuW2pfSqLaLBXC2nDMZvMjgz7CS++KY6Gk6DPhvN6pg8JD6FaG9gqe977CpenAJ9YpfgqfhdjCjyMJMcUDnTdTz0Lb4Eon08Zpset17IpO21jyLZjgvX+e+yXAqQdQEQ50GBbmx47CEsHjcOTx/uFYWPsd5oAprAjGK/5fo6l8Axr5XDDzm1/reaT4qsAOcMNq8/1CMsiax0UdPjGTqd01RofKjyXuzvV5VfBWCGjCTT3okbyedAACfCjhfdAtOn5M5qRoGdHDoZZb2C10B/9jGsHAi1FEfaD497YfWIngenz8MFYdvb9MAmvQfGSN8JrfksXPdtDmFr+A+9PDYwGkyjyL54JeEl+NGug5OES1ussvOFiTMf0OECQXj/4IJ8uBnGO3fD3+fpj96pm45EI4JGvFFC8iunw2jol7K4oR8XKB+aNwKkyLuWY6klpg3nRvgSu+It97TKz+bHnRMj8NMWWvCkYI0WBwNLrJ7JBxrNnCQ4DxVtLmHpQyazIYegqyU3fUePVLv30sL0FPhV0QdxEZG+62JcCfoX4STbSezEm09NC8NDCBLunq2Ps3mGbQ/PZIMLK6AamFf+h94g+qH4+635IxcUHLeJlnF/hh02S1SCpy8w9PcdrCX/e2DJc4xkjvrFTdvPkGCZlt6crnkXLYKIS1t+Pip3DtAP99XXJ4eOjqthAipqy/jMLCuKHaR2ksmeLPAzNH197KK80muenNMBy2Wf0Wn4tY2o3RQyLj/ZEnxV/p3h/E6AI0drIulEY7Z8mBxPc7FBhNrf1eQ8BBJy0wf6w2Rnjq7ggYHcIUC9U1ehNPsb5L9/eZ6D35O2pGcyd1EW7JLWiAUGlA3HNeRjbcNPP6l2WgZKevF88VOMFPFXYlE9K9d35znY76VQobpXneN8OOG2HKC9AoiwPbItW3s8bfo7h/iYfST3yZjSfvmMDzVZFBCqca0xwcy7gbluXaJvLhjfdhzEBW7l8073/rvrleO5qON/DCP34/jwEPgcEDkKqdkMAduv7hL2mtb/4+a1nDq4BrLC3XW4R9Y6zBctGMTC+gQUsymQWMM5Kj6KDyYO5fk250l2MAMmL9olWPM5gvYkbJKOR76fn5RLAhy8pqBn7xBuypETK14hC6hSc0i/qjehSqRx5Alh/S+ckL8Mf36WqvTb4PT7XQR9OGGKnS3bG8LYWHZjVd6EekMT11pG6SKPhJgiu+DVQsUngUAYpEbtk583JOmt4hkJPrUpab2Vnbg2s45YSBYRONQu5SWDacwZFifFhi+F8SthcLzHGwVuNJlP6ZPCG+wjbTMwrdj1uVJh+zIx0K7/66RcZnp2Upo7GoiFBl5ui7m2JHrACI/J6eJ2cC81EnULowIoHFpx6c8ToCm1AcrXoYAI+mHrdEqbMb6ADB/t7JLtjF3n0m4463NyN119+mYIImjDg2zO2KvTpJzvfJfCp+Beanu0ipa9UWCDmVEJ/+oK/D+8EEruesQmaIBr6BkLpVF325GOIDZieGieA9flIQ7NP9Pf/iXAqsaaITt+Bu+XAC4nfGG8OecrmNAp/+EP9Yr5G007TGqU3kECmgQWM3mgDYSTsNMSJUAJkKE78T08QQGzfmJzzUQDFKZLIbkqXdGqgmijwlevYeISFUc5Z64C6nxANtkMMvs2kQUWo+JrqKJPZ+F6sVjHVfYL917kDXyvWfEWjkYD9H1773X6Qw+XW0aMWGYBX+JKD1+PNxT89NDfTAQLNozm68VRgXRZ7C+ho+8AHyuv9+6T4OqwuPY/meQE9e95iAfrOwtP997rtaQSPxY8PYi+WmpRK6aGAkct/Mc6Y6s3WMYvhtM6XQ2czAayVtqoSDOiMJO6gR8KUD/yPj6DCBqd+iGc5hoEXX6hVL2dvvCClgMPV0akLY9tj0uGzQH5GHyS09gi6zx6UUIt3OzS9nLoa6uzigi9rLWyWpw4wejws4ub1eCHp05TsDy9XPKexNNvGT3+CvoXZ2gjzFi23qziBrf24YeezV6JlZ58JWPUZotHz7i0fVNzA0YIJ1udjYszQgjXI+01Jf3xjlMc5U1a9g+19xtJh6icXQvHIYR2XGuP5k2PByS4u2BiFJRper9KCbea8fnrE+4u/+cByaui7KJ2z2hLhIL58fBMK02iLjWxB5xE6VDs8Jm/44dPx3XsUVc9XNAWejeBBxz396fNlUTMBnhVlJtfuvER0rh0Hvvx5Ty2E+WoJzMGE7Sw7ZJMx1eCDrOUgRfSFtvbhAPhfvM91MpCd3h094dhqq6nHmfTwHXWwVU+WDv0X4qnm9l+2tMtFBZ8RArry837WW/MGbyV5Ybs+hj1z/IsAt+L1ivX2zHtzwUAL+Qqo2ByMq8fGMc8AeA4GUaxd4I2//Lf6GzQuslfP0OmkK2u8ILgSzsEJDy70Tp1J/fpr9pNYzqViby9n7Az3OpqOwdmFGf/gqNOFdTSJpVTK+1d8xLZxYemSFdsYfr77MzWPa2+A7Nsh+LBcjeLrtUlns6/PinDHMeLrWwfmdtuss4+jF/35I/NsNAnk2+VDjbtiRfPbKDJI3JNL8fPdGKvNCxXjJPHU3p/VSuBOfAkkdhbRZqvn/bJ91wM0OIIJQL3VL4WpNkr4vGQUyaNt7DRN0GGsyRx6v7TKmDjvlfzpkZ9eYKzYibC67nQSS9KdLa+3WEo//0c/WSQlxdJM8FncZWzNagTG7zVuoPU410Suhk8/6cWQADLuSgLFMugXhpozkCXuQfFzFNnk+bwPnaqUCV3zP787typsrtcYfXn3ki6RktxgdHOCNd9H0SdWikkRclMhm+fb8n56GpbfPkP8pbj2o3jbLSAqmoDuQ17wvtxD5uD78rmhjzmPxleSPwSu+IV9ZsWArv4N3MC3hL01n89CIzVQH+CJfMMPZZNbPmN59X+IFLlVOqvj/QzWfEuGhTO9CS+mCdl5m+Ix2mPw974tVeewI5pTT7othPDI2S7itY/XTw88ddCZhBe2pzRMGa9WCIanoidw2Ow8QvevCSTRIaCaXCEw3+ESwsLyCup89o90VbHuH78+7hQC5lLf+8Bdj89fT6UaLfa44hNWKXUVbYxW/euDNHsi6tDoYUw7wwqgbXUVEnN/l047jznguZEJts356E2kDXzY358fIlFer9Z4ycH5rX/+xTvSfFe+XgSXTJ3W9fMImxwqs7rQfTvQiAmWLUABMkIxMp7VNJzuPMy8w4Yorn8AM3VA/JdfjJ4uEbWs2VfkM9rRNV6NKUs6tM5GPuDbeXqAxQSzDxvFhIT1pm+QG/ZEeSNJBTU50BlTnQS5EpuWj6TjOqiwk1AJf/paNzZtNGmCvQ4ygAM+X08m2/3eX7A8LbpP9S2YhigvoU+KhLoJOKd/31fbUYH0XjwA9hYu1g9vqIGSAZCVr4DV70FKbRrGNDgDhD89ZsT7u0HM7pr/+UdHdZrSpeJ19bdf8S+fLbp4Xxu7y1v0PQhZP1FX9ZV13saK/23Pstn15YrYjBon2lTDj2+w8ZRQ7acfGb2Z4NC5T3zwi8kgzu0cQrFaHGqOfJ32liX5MLeOkHwLiHu2mRIZfPebnqrPoQM0OIsQqifxQjVcY0aTUiTQj80UY+da9HP4aWW4uWuvv3gVPOtuwU8oVKufU6/xXCfg3ccc1t/lkdFJvyFwUrgQuwHP92xjzAkwU7y6NOgK2IrXgHnyenHEOnnTz985fvg7TbPHwqhlSQiatoPp/sMOnpCktwHW6Hfk/9P3dDMlIgSta2A0n8aegOshXyscCt2fAwxkB39usBDKMzZNuE/516s0leuyHhlM2KtavjnXgC0qjtRKVRsMdr5J5OvpQTC63vl0qt+6/tN/RFqPepBmmBKxSvSAAF++R0IzTDdF6kQRx9L88YaKshoePpsT9sGu81irfzm4+qWor/ulotPEJVDILYUamX83Ji5OIKzKPMB+bZ2MKSNqC8pe6Mj8rlPW3txtDuW7lVP3fCDR3LntGdabc4Nvl2hOf/ENL8eswbZxVKvvNXxkMIimC9k9N0u/5qMYHi0uQZv3Yekn/AlLCOzA/OPrk//ehODTByVJMCDR0uy+HBjY9031nf8xxr7qE2ilh5geLicjmibhS6RgF4/UNqUNWBqimNDLloweDJr1vXBvAllD6Y7MKz8g+ei68pqvsXNrPUNA47uDdXa6U/91dtmgfKXkLx7UrRZUrLM0Ea7+JpkGx63mA7ib4ISXgRrenv35y7CD0KTPFy+yNjV6ATTaZyKyUheAQbLpwPlDVew2+cjY/q35YPXzUORNUjrIs6fLzyKVyWfln8QEEgI7wR7x/hNcKhKAnQt//uVh5Wtkq4kWlF9lTo92GUestNIWQvnuY1eQj+ls7yQHMpq32JDuPWD+PA5g9QcJ3z3dSoAyZ4GgMywy//xZeye5MNyFJ6ol9RYIET+W8H2dGmyzoxgxpUYmgCLmyKSduHRY8w2oNU8jyudFo9/3Af2cZEjen4D351/jJIspnrQ9GEufW6DUGCcy45qC+dyrvLLxqIymVV8y69RN8Ld+3nPxo36zPGtJ5MSCBnEwR6vfVUDp3NlESB58uuIvgivfx54X+2wOz24GDrYdEpiKJ28pw8SCm7aI8fN6taLlvLQ8eLvZhvAccD3WKRkHs+P1iM2QzNGY1ZYM+UeL8DMLhmr63voMpNkD0euKH+1tl3MwAkNLj+a+MxahalVwmO4n7FyiUzrvi2WCoi4fqP44E4+AF9DBgeoWmdOFVsthvp7/9sf+E2yrtR50hp+vfUYqnz+8ZcprATJPDPAzGVSvtfPNDQ6I6PTnz44a6Hgg7Q8hec/vS/Q9gJP101vU4i9jP70tWZW013NPBu47Rb2BdB7ub+IRmy/j5PWSXZk/fkMDM3+nfVNIEP7yQ5hOr559HdRAAc6EiOvzTBlxWui7nE5/fhALKz1XQisJyZm7xb1Qf28ZnJ4AFEDrv/BMliV6ecsycGe4PIaO+mPZVd9qKFX5Vg4vNNZmZXwxWUrodaZB9XqTRJ8Q1zqMizclJWx/JS1VVcqe71a88tk2VZMAPMq+pir3cI1JOxAVhjl/wvvmTdO5dBcTWKkXk2/ufqNZyFRd0eD7QS2HpR5Z8zHIAtCgr2KAaGoFkAGG6i91xI9p7EzjFIKVv+MfPyE72FtgrWfQMD2SX77rlBWvybT6taPemgn03vRD/vCgzi4OzD82QNsvLhkLk0cDr05ZoTIpbbby3VxJTQMjOspvNoWFI4O+5TK6mi/R/L3GNbQecY1tadeDGUm1BSYBW/RY+Nu//AW2qDwiOl6XdODihIO4GB3qeVIREVb6EyS9d8BHO6l61t2LGJYK5lHNblO/4oOqZJdAx9dXtfHGZbJFqTSAQMbzF0bLE8kOWP0yasnZGI3O/eVCchZvGO2ACrrKLgowNmShpk36aNGOfA5X/os4K0Q9u49lCMS7K5NIMBfjD1/OptOO89w565WdoJS7utxT9aJfe6Zezjm8FVVEf/XIkXy886/esvoTdj8nkTjADBQM7z9OCeY9f/fh2803aMPy0FvszcmFr8Qc8K/+SO5SMShtmUZ4red57CEQHnzztMO/+kR1SSdB2Q/KhGAxX9Mh0kQRmo9URc3Vkfs1HxJQaweN+t1kRnPoPWqY8onx58dQ79a1yjm539Fp5S9f76GZMFMGjV7N+WjQh7MO5pPqK7qK39CYtsqrBoutmNjXxHc0P663Dp6fkUpxp9/6peJdFeJ3Q6m9id7RrOFDDE09aPFhaVrGtvWVB91d3JEu1Ek0VqpaKh+xPpAZzO3qb5vqb/1Xf4nr582mFGHTCB5pn8nsTewhxJCM8ZX67OtGxGTmGTiAk6i16sPh59cdM6LSI6XU++klRX4VOQ13u2O6sNKcIMdOAG2E4BZN+2CU/5/BB5Lw30cKXonwpE4aj4BoXnID8bOYqGu1qJ8OSuEr8bOcsH+Sfe8bLyQTI6JqCGjfnE2vLDlDVEk78t5/ZIM8MzGAcd2/0DyhQzWJzSsB7jvMMbrewn40NXyDccbdsHkXz+vst1cGi+5FiGDjki27PZABEcQnjYZd2dO8rs+AWG+CU+9x6fl7eOggqKc7DZ3eBHNYnpCyt7cPMo6ynr5fbBoU8QAqbHC7gi3De2uCBxMxtXcM92yb3BJA9fKIjwKlbP5mCgc+xWjTA98G0XQtClFxhuMFe2ev9YawGXPY8meCNcnYeeTtegEshEOGXc5SUmaBgkDapikS8+CQDkZ2aZT5IggIJSHx6Pl6X6CY6Yg6w2phSvzGgZTIN8QemGfsKdlnKKrJi3BBvovGM61rxbPWWd/LhfZf3vQTcNI6g/qOtY3oXetEsKnuC8V12HgTskYZrO8P7zlzMWZJmFz4fiQPbOcBZrPQpw3ce4uOvSPxjKkJIATiQarwQZbe/Vjs7yIExY5H2Sg7jF83Pdw1zUg9baN7dJZvEwyW/USRA7Zglr0UwceFHKhxKjy2HLdlCx0uVrGK7++eHrShhE7wbvFlHCqDpkgIlcdG+VJ16EmVNe8rhHLn29R/fLfeLIYlD63hWGKU1rLB3mruw9D3z/SyxXU1o2iZAD6jluKyi3sG1XQB1zMXEqB8xWgJ5kyEWmMo2FwuuJ/ei5pAEPYEvZfL2ljQu7RAC8CRmlF6jfrfeqWJ2WKfAw8wfZtKBdnalWFbXDq2HDTHhK8YyGiuD49o7j52Ds1lGLEr8qd03tSeA+K7wYgcS3q6i5O0A1VZpWQMeM1Y8BE3cKxCkWrR2+rn2rRUeC0aFYFoU6TMbPkCEinfYXyJ8mg5eKdags3pQtX2+THm7J2EcMHtF1vyeOpnxT5mwEbnI4lt0WE7kyEVrJ+3Hplw+50gmTL0Mx/go6e6xnLpg7MChyUknFip0Xj/tipUNeShOe+//TCUlwC8tWXCzv1jRDu7JhM8+AqjCG9PHpOVk7ARBjWl53k4VJMbGqGSeJ8ZyeO+jZaTF0zwqqQiyY2H7i3yKciU3abTKWrBUk3vMjdhYBx8IobrrN6p03XgX00PP0jlpDszr3RIzozHlmz2PWl00EK5Qza19y6ppvoILJAVQYuPzbVgxO0sE9Yh76M6vixgNG5arFC7VbClXj7V0o0+gdtaLfHJ7/tosj6yC+VqdLFXtjWbTvYEFVBs+b/46aTRMOWeExecRl/Fo3PXZHJ9mASMQupXTDDiHOy9SSdb92CyyY5POnR2WwN7T/KNWuFQDcrx1D0QE5u++mr7hyNtPvGVsP1cgtE6lCY8T6cMa3cjiaZxIAtEmU/I6e1YFWs9eQHmNtpjzzgRj3xAxSmljXpSDa9NNAib0JWPZQIIaK1bNZFNCBUoJipWC7jvmRi7HRRDTkKi2MaMVLunDsDd7am5+6Q9g4LuKyhDhGpucgH9M/IQpHM2Y/95qqNuE/g1dLZBj8O21/r+rnUybJStgm1dWre1I1pwgppODxmfeuz391/MpfQofb10KdFJhd9jYiBOtZx04GEQQGWjDXi/WY+Mb2OxBteTNlJ/798ZGwRPgMugb6n5Vopq2o2zDq/iyaHPfvuJGOZv4dpFAxNeT8p0lubnGehSX2MTLado5jbKBC7MfZNB+c5skU+3HBrR80aa+DWmf9+fcJ8PierLlQ38zYVwawQmzdbnnZ9AjcH1TSbsbEkaTXMWDMAYipFqEzr0k7BVO/j+6h5a5AvsqRahXC4vt5li9wjSuXqfMsgfgEJgw7/ZDz+ggc4fbJTJvl/GVoCw3vhXIo4lA4yusxe/nLih+opPu1m+LbC9whJtel+LtgXuE9klc4EdObA89nycCZyF95nuDy6oJly8yDo7WaP5xr6lwz3UOgUcC4W6x71XsfRuL4Cj8QN72jcHJEtHJNe2n+M1f3js5G0R/IQvjRC6PYLprj/PYHN3T/iwPQnRtNHTENI5nyk61oCNfjCJyuMyHCj+HwAAAP//pF3JtrI8sH0gBtInDOl7EwXsZoKKgoA0CZCnv4vz/Xd2Z3d4lh5UUtm1965Q9a1Xqz8Uigp/gtCjVbAOw2KLGr81fvcQ4CObif31PcLXNckwsh6faLniOoZpkHHYaKQlWk9hLMMdfHlU19MP2+IRaWN5o0RpuiNjvF7U8Ds0FQ0uu30uPNepB8ccVNi8+O9q4nbCCizqONg8SFuXk2q8g/yFr6QPo4M1e+ebDtdf8cDeJRwZrQcWwr4jDONpVirW1EMJtXPtUp9TYmvpxWXWlJ8vb+v1HZb4m8paMCU1WVtrtRaATi6kY6bjsxQeonV+yR8wJvsfeR2MNSWqlDXw1+8hRtfKGtZeesZwxf2PSB9FALNxS0fw5IoS4713Bo0nT2cgBmAm3aeY2Xyt+hVa798TAeDolnQ+hD6kXq9hU1rqvHVFTwZbvkarP9iMbc0Q4e/kxNTvDi1YTunCqW4Z+mg9B9d0Pq+hCT/BYhGuS8ZhRbfZhPz3PWBjl43pqOK2gAWQT/jCwl81F8pBBK2EbGoBzcn5RggP4Pt1GiT87dfqREP4sbuUXsYDycddd7nDlPkrxh9jrqjrqAmYue+dWs5iAgJDnwcfVktE0djbmsvb9QlOEQgoPv3e1aRuIwOi32VFS+77EZP7qQOTY6/4MfxGtvy44A4v3OrQ6Pbgo4l/6kiTfoGDk/tgWSxmDoJ/eOd+wyNg9zkg8Bc8noQf8Dj0RpRctT/+5WuhMQgHJ/1op+frTa08+1TTPngncMuXOH1KdTQV3ySB3xcn0KBTvHwxXlcOuq29orm4q2x4n/cu3O2sF1peGa0GadEOMDPOMtrtZ8ims3ngtVVwIxpfL79oGLyvCT4Jf8N/+DC6j7KHA4YIH/OFWAsZiis8rN5MdpC+0zHSex/qb+6Hg7ATInpIbRFu3xdxOI6sOZ1FCNdRF6htn7Jq4oQ6Aa+1EvA/vNxbtQnAB23PdN7DYeavJoS9bc3b7Nml+q5RYcIN3xAYHklKCuFnQk6FET2r07FinfE7wPX3fFDzgJqc4nri1Mks79h/fU75FOBJhBXfuxv+mvly7goOhmnAcOAf7Gqsr3YDdd8XyM4GNP39fd7XVUpqavIzEvc73oeH/trS6NPZoBZ3d1/d8gF1Cy5MheF77ZTg2EvYHSeWT3x3I4A3Y4FoJv+pRo1SEx5SpSevnXcE0oWIPdz2K1EUFaZTbSNdBVK2ILm2y1REN9mEW76lpjKKVRMYuqslaB2RqE5LNbrtGkLhvovxxjeHOaY+BIvmHrE5S0E02/WcwHkJGJmr7BwNh7blgUyahkZ/+9MKfV29cLODY++BLf6A/Qa+Ff2LXZ3bV0vCWby6pMkT+2fbAOKdP0HoHlqBYuSW0eyuUQf8qJCwr79Nixd3if/HJ6lxvWcpc8x5O5KHMorf174aUbuc4T1xKZlH06/orbzcYWWsGg3XS5avd3QUYQWamUCf5ul8CNoVHJ6rgu1L+2TLYXh1ABy8M7XWlR9mU3ub6ha/NMb6PCzfZ8DDh1daODqpScW/eqWGrbIWRKKt/6cHOKjXb4OIWjtFJOHPM1y6G0K9cMRs+YhqDbuHl2C/JQWYpVSLgS0cHWxXlmPNkXhtVBXO2+AYnYGJv9I7nMbznoa+Ukf/8Ok70wwHzvkXDTATZ2g46YtoO1Uflm+XZ+offwnfOyeXDi0VYfERdPSXb9edA2zYtsNC/eCMh4kpK681OxRStLpVPtOgLsHZAtZmGZ0BC+cogzAlGpEZCyxGrNdBPdacgrgOJJue7RD8iAHGaOfJOVW94fqnd9B6QE3K9oPQ/N0PfHPOP2u8ma8zfLa7CqlyFOX/+NDH7lPqftkF/Pt73Nvylv+OFmuIZoI9r6UbHzJygeLfCl9HdiHcSrcuBZ7FawKgPVKbbkiXffA+aO5KSuoPrTEsezrd4cY/6XEc/Gh9tcYMD8dTggMSsZxVWpFAV0hkHO2dbzSdUoVT5ocIaXx3WTW77eqDjf9hW8uTQbq2rQl6/vymJmnSagXqs1D1ujKIcH+noN/yHTyLa0xWcQXW8vbzGXze+gsfvVLNa0u8XeFuaWXEV2MUSWLqz3/6lTpyoFurtg+3Jsu1Sm2ykoh5h2iGx7lpqa8emohZdov+rk83/lpJohKr//Lzbb2orDNwGEPfzTz8kuo5/9sf0Bo/EzU+KIqW13A2YRpsJaLzyuXEN0UZ1pM3EmE570Bvd1cX9LYxY5OTvHy9X4czVJIfoAHi4TAnRQ7BD2btH99I//APbvqaSJcwBm/PvBeQj5Jw2598SlXtJsL7RAoa0McuX1ZxhkDfH78UNcYlWlG4H+GEoYENybcBX+yBCh1dZjSQo4Wx8LuIikZSRF10csBMqzKDplYHON/Wa/3jV+/pLmH9afbRXN4OBbTewxNxl+s6zDw8JOB9TTyMye01rOZpkKF/aDvqsfA3dGR355SvffHRelnaYTmAgIPirbBw9m21nDyyUwPZif8RhSu8iHQHzwTv5rlHStidohmtIQ8PMXrjPz0/e+VnOxIGrzTdlS6j3OP4hH3j53Q/1a9oxofdFb4/7w774lQP6zcr/vEZGvluDtYfN4kg1rfZsZDnUrrwEoR78DwQ5Xv+AmZM4QH67tnDe+l6YpI60Q+kYvumeDdfGLurefyHb0gADA7kUiyulrprQxTEw2p2rx7/dz2sa5ZWUT/dd//0iVOsv3/7ETi6yqi58dX12po11HbWSH3brob1nD2v//hI9cveEV1ZEMJ2fz1QO34XEXNM+QqNxtD+4ZF4JglS79nPo5nN3SsWTEHxl2+wdbL2qcBeO10uTPvzh++RuH7WOzQ8SUJLPAw5K42PDfac2VE3yvt0ocKkwn2GhC3//KK1XZICimr8pgl/74d13MkyfKKIovVYJnlNq+4MG/qTiCiFc7Tw3XEEaVvZSBkLH6zvPur/9i/a5XVaEXa8JaB1QUq9/JzlrPCaHgL70SEmWH1EUqgU8GrJIu62/Mnc9yiDNxedMDr9Oovt36MLgmMnYfM+VBHNb3gFxvhRcSxfvuzf69/bS8Ye6Tjwvf1KHdpu9kYAkCZaUW18NNc9Z9SQlhDMzl7MAJ/sUsJyza/Yb/bdPz2DPXWKolX5KDVoqvqB4ztVKkbbsYaHFPRk3i/n9M9/UPeuSQnZ/MJFj+sVvHp+xDoviVa37WeoSGeOvOn4HAhOyru2M38Z4RV5if70nhZZRU2N9/cbLbub0kHofCS8v/1Itc73C4F3JQvJbut1LfBXelW+UnzEsXVsh/mA/RpWTaHj0Dtmw8ztjmcIO2Ei/McGjF389QOX10XG4eT4uQQKdAWi1AX0VKy/dDGck/+nb0n1wBnY8PwKwEAtJHpyx5Ym7gjko0NIT917TdfKC67/8MCzPjtrajwsg9wwUqJuftOvN6Kzuvmp1HnaQj7LZmZDy0kTAqQ4z9ndHlfYBPOPRpfPG6zubebV7XpEO7t7a/3Ta8K7CDGS95o1w/Hrq/Na6hjxxmkQq8kptWtgNNh77e4pJYpD4KWs9a2R/jrMgEMJkBweY++jnMB8aucPDNOIUd+eftX4hTdZVe8Dj7jxyVvkXPsj5A9XQI22vEQTN9xnaJ7PBHFyVeaLcJ4bsGj2Ee+NmKXjzkwTqLXnmiJPt6q13eZ0Dcsroti47tk6huETrja7o50swooUX5HAzW/CRtnkrO6mtYfZnBaEPaXaIjYELlR3mURtI1esKRI1Hfzx94jnQ7DFow3VwjQIQJdjNIeyd/+nt/E5aQdGF9GF3HCTyQ4LfbVmnmVqbNcX9G+9+SZ3n9DPPns0Az/KpQtXcuq2/vg6FzgfA61E2nAZLtTffZJI7k+BDMlHU7FHWz+StPpnw3UJmi2fDtaKSWoCFrOUBkcniWYhj3nIDblMxo7KEQu/Cq9u/gF2Y/swTPekceFC1IjG9MdSxgovhsU3v2JjHLpoNrAZw0ukQrQ8zaqaH/A+gpcb/cgSD1G6VtLFhEmMMuqJ9jeaiz2Q4SWDCT7locIm4TzX2qNL3tglJ3PzI37kLx8ibl/njOzzRgRPoPrkZ19egLbt9w7PxnmgG55E3cb/oQYfGQLOp6rW3AsRZGLrYecwPSK2+dd/eI5U75hV64/78n/7BXvru6o2PW6DXSndSdMXGiNybyAtklXnr16QMiRiW9nwkARj0YFZDIYRSJl5Qq/JYwPtFk4GPwxzGtiTZQmNh1VwkJsJm2UgsvkQ0FWVtqHNPmM/i0xZDtXP6b78xQfb/IhO/SkrJotiSdaSfVMbntGcEPlsv9nUDg8EA9cKaKTpazotSdXD3CsPRMgOz2F+BY0Pihvr0SKUwsBMYzorf/5/OBZmLu0WWMBPIt5wcD98wGwVjwZs+RDbg7xWTK9poyqZ7qM//fOHp1DiZ4a4fr8N2v0+M/iZPIWs+FtGhLS6r1X26YT9WDlGS57rq/IlIaDOymGL97FxhTfDKLFfRqCau2ntVK6TShqmuwZIu0g+w7OlWBh5elXR/Fk2cLStiki4HfK2vlx9bW7khB6VUYsm8R3asGv8jprG9w3W6DpCsOUDaiWrBMYNL7Wm8QXCHrIKvrUCC7j5D2jOfVStQz7Uf3oYfXdnLiLujodQK6WWGvVLryTnkl7h0msNduHpHTHjI69/+gipOzIOc32Na3AyBf5fvmJHoyKamGguTrbvw67S7QxCSRSxw1ohGif308Odg0fyr15VvYoYjB7n4yD/EMZ+s+5q5psr6F89ZLXscIbH88oo2vjYqlw7Fx6es0L/9PDsProOXN0XIiy7t/mmJ2J4TWyIxodOrTkKWQeFuxbj2Ey4nP3dX3xm+nZkJ4nW77NJQLOLQ2zeTzuwtpdnBx9Tfvynp9lWL/mnBzMS+NafPwoLFEEyB/4hXXcOc8GuylcEvrFmrWCOITyfHzne/Ea2bP4ZNAJk082PzZdHl/ngd/JiHO/UNvqnH6UV5dhW8BBNf/UJY/kN5LDVH9bVIBysHteenqqxHqTo+Ym1R88rdMufAzm01hV0/JkQ9ip7i7jC8IRyAhW0U58RG4s9U7X3nX+RXULdaDnM81MDn9igCdAisNXLRu00/rbBkaFlSVKk+FAZpgM2Nz96/sNL8XAl2PWwCaSY7RFcD7lPo5/z/qdHgYRPR+peV5MJp2f0hC0JCRkMXWZE9w8lTO34T79SQKVFOEAznHR8Zi2plq52Ggjlq06tNH+w5c1mokkHb6ZGHWj5+AqaEN7LREDvU3llE7CjBp7c9YYtwQqjOaN+CB3qykROWfxXj1NhFsceDnbOZI26PRO46VlUb/xxvbZhrRpBbON9eKmtVZdJqM5BpFD3cJAjlszhBz6OrJ7Wm8XAwuEyhI/XPsLhs6gYee33ED5brcL4+aQRrd/vHnq62hCOxi3rNz6pXdAj2wYbHMHCX9s7PNDqgsRLmKb83hp1cHy+ABHk1Y3Y7SsjyDO6ELTp0fHsTra6+RdkN/dC1DLt3iml6fpIQ1U0TNo7SGBWDwSxAacWyXJiqp5KbojWILb++btrIzvUXsbfwG4RvMOl3zXU3vy6MUnCAorvKMah8pDy9Sl/ZPmPXwWWkw6z1bQ2VM5NSePjsYn665K50GjvId4G7bDFiwcIs1BSsREPUb6+Lq8CPouTgB3LMtiGRy60ohnTaO6slK+vdg1ommz9gbv3MGevhwhXqa8Qm+91tCbo3sMQGSZS2+MxZ5v/qgkr6nA8qR1YWvxp4GHkdjSu1D5dQO+N8HYpH9Tf+PN6PH2Sf/6/cX6ZG7/6EfA4LjU1YCMPqy43Idz8bmp7I0nJm2v6v3of6bZ4YTHbx//qJcZzCKp//O4v3jY/bCCSA2R4XqWWWOliRELwe3ewap460Y4PL6LJGY1g+AqPDX8NxkgaNBCE3Jfqr4WvFh+EK5y+woEWRzW2VthpZ4is4Eav0m6ulnY4xQC1YoGW+lVW0x9f/v8cKZD+7yMFYfeA1K+E2JqPAGSgDohDuvN7ihZ1h21YCHVBrcv5zJazg59wjhVEY4zqdD00jxEG3fyiyJTzfOmupgnXolmQwsOJLRbby2DskgQH4TXJ2fPmufIslQTxku8MkqjfZHVOzh6NTOdn1QnANdiFpU1z2DQ5UV8ZgXqYidgyLZgvu1/OwULPSnp+PB8Vq03hA+9lp1PHsldr2Bf7DLqpkpAlGrmUtVM3w3cfBtiWczqw5kKh2jNfxfuAvgf6sdweaGrFEW4qzmxR+h+EkXydcIgrL+f77ZRcavBfovTJia3ccwqBzckVvjJmWetXzu8KaYWIAH3+VuSN3kh7qh8Zx/4nAXPYPkSg3X9fMktMZ8zxS1kzMxJRSzqoKZsMRYe5Xt7IOC03sFppWmq5/rKRsmu+FRmlzoTiIO2JOHuLNe1SYYbR9ZNRQ9ZKMAP+NcIu7VKiyQdkrRr/XuGDaj12sG2CNYA0AYpo/jAy6skiTpcf4Oy1OnbVOR3WN/rF0MoKDUfp1aoEw28htLPzjephHURTe2mv8IuYQ6MF3KJF+31d6P1cSJZXL6RjvedluMUPdtWlA6MgTASml9jHeXohOXva1ucvfnCQjkv+y+31A43eOlNDatZhORY+B7d4wIibm2GyHpoJbo290htrMraC8BaCWxN62BpOVsRX+7YB6yISGuLPai2osGdINTvERf2coyY7fBrwzqYjjqrsEM11ldswWSZATauxcmY/XiFwlHTF7u9lDWuO36qKzTrA2c57Wwt/IjpAj0RC8FAqUQs4sYT8u66wc9uONMi6PkMmahZ9IsXIx49iXrWlWHvsn8KXxZhe6bC2j3uMlaMF1jv2DlBq0gXxN6lmA/h9e9g8+ze2t8/jSyX/gPHxEPE+sp1o7j97FxKzxX/rP6yuphRwn4gZDtGeVCRI9iUczZ1BdtNBA9OHlKp2L5uB4l86shkfZR3KB9jgp42DYTF8LYHL5eah4aetgAmnRwHtW9fi05j2Vv9Ca6Y96bKgKaDvqivqFe2srEzo/RyH0SoLtglzhyVYl9aoWvxVhrBVTEZ2zu2Xr2Fy52GNzZQ6xYlZ81zubLAu7Eb3PdcNS3NNQyiMlotEew/BXKK6gLIOjkT+lP4gYfepg+VSFNTCNwfM5+3whfZ9GtQV7ncwjePcw3vZ6zTYfQ/pCF5ZqKXLmpL20z3SxVnpE7bPosNJ/h7S+dg8QnheghSxNtuDEfBrpgHh+6H2TbIZQ54xQ3X+fKi+bLPhvfWcwWN757B3PG9PpXbPD+iemU1de1+wpTcTAtznm2DLnq2UqIFYQpzk+394tVj+U4Sjn22Nrfd5NHf7/RmAwx1g42Qk22ASq4cm3mvU/q7QWrqpjNW3Le/RM5TObPpOTwI91Lg4Aod9vqqvgsC6jgH1dDsB1HmMBbBeyKKm6H+jNa/VFX4UusNGfzIr9jPLGsRac6GB1PbR3FQBhOZPepA3D875r7hdekg+rw5HOj3kRCn1Qps/3h+eFvm8iJ8GXo7WSFRbrdlCLsYZppL9JruQmtaiZRmC6kkxKSp9ic1xs7uCftpO/XtfwxK/+/qsPtVSppe+vbJF7osOrkVVUIQUI51v6kbhp6akVtGfI0LfMQd3/fVB00R/Wku66ASA0xRgPHBBtCZHY5tJfHOwkU92KiRz48K0NWLseE6bLnKfdeBx8Fta7JWSEb58XOE7+0FqNlGVz5FmZPB8TFTq6kfDku60356aoRjN2/ow7peVcLk8iz2/84yI3NSPC5/f6ER230QaVpN7m7DlLga1ur4BYyt3PtD7pCYMJDWYo3YuwBZv1Kp/y0BrUyuB6PYN6s9xH803/BJB4IsLdVTtzdZCealwiekJnX9Psp2y9ziYxZgR/seWnGSHvlaXxFaIwh3NaL4eriqYP1FEkb/HYIvXFZyPGcb+ubyAeY6aGL5oKyO5edyG5XO7mnD1IgX7ivdJ/+HnGag37PQQgDXcjs1ueIZDXb7/t191x+yw/wv1QfzKrq09w0ogcrtqFvGSAQL3l4U0MO9xNFfyswMgty5EEttgmC/f4gn2sg6wW4Y4XbTfelVxyzvYeek4l4zg8IRbPqVBOrkDu9PtKcHjaGAD3ZyUfSzUwcPeNujj93OimYqMwCt4JAQK8ylde2nx4V9+dcaEB+S7X3rgW2NBw0/0Hda3EkJ4eqcSNenrk89H6HcQnpovamPbqqj50Gpwn3NK6hR9rGXLZ6Dvehubunpk7OjGMuQbzqXxQ9in0nBxCNReO4ad+NYMa4XCVU28ratIIdXp1hht1cxgZ2P3Ls7RWCJlhg1qYxx80ns+eeszg9d5edOIHRdA2n2OYPWbL2jtvZ215PZawo5DDwLyE1+RQrnIUtexL7atY5lufCEGsfY2sUd+Vs4ORVDCJO5UGrZPmjOcQ/SH5xS3GgM/f5U5tf41Txo2QcSGZAkOIDG0gOKDZaRicmiuMGsWDuOQfqz5grkEkLVOENj2PxN6ksFpuiTUJ/mLsUUnIlyP3Ik6/CGPml3wq0Fimk/sbfg6K6/vAT4pW5B4e48DgU/uAOQm2uO4eGXVIuj9E1qv2ML7OWkBE3rQb43Bj9hW5jRa8CInwHnOECe6egTT0f2skOxTnRojVMFabbN8tR14I9DoBhgqYpl/+e0fvk7azkqk03KKCftyQjRKL+66zda7Iu77nAcGfysHZfCZqb7mWsXgT+Xg72m9cWA4frWeGn8FrWL79NyzBcy2xhON9/Qrjt7cJSdcgDh4FR1KzeFxYdPGV1V5eOU0rBmzfrWV3sHGB2lYCCPY+KsNwyvZ0yi07S2/thw8fuwZ42o3Vew830Youwn/h0fpKEe6r6XwadN9QOKcfyhjpw7XyxvHeI+tyWRKB7XvdSRw+5vfPV8HkA9uteHhz1prdLD/8ByH57i3ZsBfRlXH441a0pFWrLLeCTwWP4maV5Faa4E4HzYWyMkOjWk0C9HxAADQ7/S53a9uD3sZAnXnEFG4q2y+fLMnTGFhU/ewnwbGZVcO/vFxA7QeWEvkNvD+5RB1XjrNGcjwE9rKa6BIKNp/fBqyi3VCs+YIw2z8SgIOqzNh18dtugkGUy0d16W6pS7R6nZdDU6xg4li5u90pO85hG0qxn/xGi27zHJhGt9GqqfbbNvzHF9BEUKI1Gd4SOf0AEJ4mbU7kQ5GNow1ChGs7E+OOCTH1hI8Shss0jXERpNN6XKj0x2YO6wj3jqWubC9DhPvPNItPob11OgrlKIZkIK/F9X8QVsXNJYrBMpFazHPN59wWbRkK0GBfI2TYAR/98fZkzCaVeE6/91vBK69nK96dr3CcaoiqruNySTnocyw5JeKhq/yZ/3Dqz8+Yzx0lK/dvivh63470nB41dVyyf0Ens/9A2V57Od8/97NwFTklXruXKezD3eiunO8mCx4YsMf31JqO90TR/vinHG/twiPZmRSsy1dsOzXYJuFev4gWL+clB8+yR1+f9cvErf1Xna/d6JZyqhQV3bHYT0f7BD+5HbE+LKDbD42fQEbrsY4eX30YW1l8wBuw/OEdsblyVhFLB2CwTewu+2vdfdcn9C2MaV+pNYR/VgpB0grRXhbf2vEx378pxfQxn/mJw5lyAzZonf21COexkcOStHUUKdMlZwq2aSChmswdZG4y0eOf8fa3/tNEgQVEUNig/OwUGz2fpazo2ur0LqxiHrGfaj6TY/B1HOeRM2fz2E2O8gB295T9COZnrLyFh1g1kgpDjqoWfMTH2L4CCnZ8LjKWVRsQ17WDODwIBRWVyodDxNTfxLx9yT5kjmTCq+GayMhu4xg+pqQAxvfxUGfCGCxfeUJh+4uYucxviMWrVuXhXe84Hv7UK05V7QZrkW9IBV/1mhOG1tX//jNxu8GER2HA8yW+o6fj7JPiRR6PYj37x3efv/wK2+/EIbXcU8fudGw+aW4MWTweMQBpmXOjOBQgPO59Wkgq3w0HGfAAZtTK4rOUlstHHf5gNc9P1K8HJn1T6/cvxDhR5kd2PhQXmdVKrUK7Xz7y36QEziw5T80J+971NnbrE5qFgN1gokHw2sb3NaxcsQ6Vt+MiCG7wtP7KNGAO5qWsOk/gB77Dw14rbKWi1OsYLrsKFo8Ils/tHwg9Lj0b78EkaQ/XQLbW3jHgdSGFtseroOT7w/YMYiSTztu5MEO8wlRrrs8ZVl+hHCG6pGGB6XMRzvd95A+woIARXmli6L7W9ccfEd07QxLnEQC4Zbf0fyXP3JHv0NJvOZECi5w+ONP8F3PDfnI8zqsFhfWkNtNHXpfRhqxr3UIYVEiBVuauqbsZR/4v/yPvYO+SyfQH3g1rAKClk2v06clIsg30MWZtvi5xHHrCMNJeGE3ixiY5B6fwT26Wxir39UiuXrlwLBXdYo69xnNklDUUIhjE1+4L2bLLtVWGE4qj0B6QTlBcG/Cvkre2/3qLRZ4ylmtiXQhzZa/aVRsg5qcjmD7KAc5q6exgeWramgo5cdo0Z/KNordf5MFKsVA/uKvwihG0P4aYC5qFcE88kpqO7I8rE5CV5jFe0Z149Bbi+unOvyRMMK+WjhgW68GFr1wwn96qknB7GoVp/zIh/PKYdJ21wYavXFGyzODm76cOc1UoEdRw3hrUXaqCErVW9B8QoYlavxvBdpLY9SVnUs+Ob4zquXukRH1HIcW+12WQgNzmlFnTDI2PWw0/+kFMqQXlHbL+0agzzk9NuHSsnUV7yZUzuGBmjLV8mkZDRvSttXIjzvEjI/awYfGHSWke4SYzemXI2Av7Rr0mZdLRIdLl8GqvvPkzbo4Zb73HKHNCYjq91IYqMV+LvzTg6jhg5xPQSbDznr/UO993xG5AP2jOZkTkT+/Z1nP9lOLPpqAkVFdAC3sNwdvZ+tBuER4RKvX8jwU3veeGug6W6NQ9iGgFxFRs2MzmAv1egXiIOwJ2PT+3En8FWx6EnfvyIlWu1PGP/6NjzP3zdcInn34VrQ9td/8ic3X73sGraJvHcNgnq5c4MJ/+dm795donuLBhlcxsGk0/uxBaqdy1fZXb08Nx16i6TDvEOi15UyNJt0Gz5hw0zupj3ht6fJf+Ag6qO96jzwa+LTYfqk+cPN3aHwSF9aqu89BUQfvh301P1RMynYmfOiWRhp1ZtWy8W0gvqOCTPKBbPx6QvB5Oh9xRLMSsBPduaCTRZUM7embjxbXPeGn7k2izUnLmLRrbMB9Dz52lcJJJbiLeHgWP+K+0Y/vaDCe70zzWLuSmbLZGj8oz8D3dzlQf+C9SqxQOKstOm2N7NMxnboLP0LiKQ8E5cKLhOU8x/A86vqmf7cju9c6AXwR9HT/933dFa7wcvQMan5C8o/PwexdOfjPv6Rnp+/B5gfikKevqv9+hBh+a8ukkZW/wdpKEMK8vK/ok7+jfKbxDUI/fZfYdarTwPaFc/5f/+mAhvFZ/1zw6IeC+uG3rGZR1DNg3fiS5tE1AdLe5QutJemI9ee7B6PfwgRyYdfhaMOTrxmENbwsOiVCw23X39YrXoUj9drdkE/VpPnwES4WdSAWh7VAYggW06ipF1wXNqfN8fzPvzIuI44WsZ9W1Qi9jsyRfMnnukpdUKqBSwOSlfn4xzc4qtY0qH7Mmt8ImXKkzYdtlroLlssc8WDjz+jTRFYqcnyUAak5LoSrg71F/vS7k/kl9kxKt66h1IQdF/lIuZ9/+bhPAh9u+4ssozZH/QX4H8VQ7YE+xSWyljtFHGBefKS35CxXq1DK+h9e0+i0A2DxH/sC2E9OQGzSDoOg6HoM0JTF+EoKIZpS99bD/bQ9tRmgQw6k/hTDa94ohI2tBBgb4hmcCr/GqPQvjLkPpIPA+lRoaX8HsB6aQYedL0nkVu7iaFJO0QqVeXBRG1wXsDBDV+GfngpjSdj8vn4Eu92s42u7atHiMtOF6AIycqFcw+ib/J7wHaKcfEpeSDd/0FRn6UPIqjpniwp63IDNj8bxzs7yqbHMA+zQ/o7/9vcff1T7FMdEuWdPttJ3DAG5mh52lyIb5ryu5T8/DYequ6/mh3LJIPVmBa2xyKW0tC4ruOskwagO9hEvRMcE9g9Zw+G4KGk3StsRipeEiSQcZ7a2n9qF8aP/Uf0lVcOU5CekbfyGSBUnRov57FYI7yrDZrKP00E6xRnQ+hnj+MvSiqm7PoGbf05U9gjBPH2Cg+qj+x67Xahb8/huekg/R4pNVqTpHCQz0bJjP1J3dAGbG3n/gX/+1p9/MQfa/amexNnG55WZA2vNhYCAWNfN70wt/oPKDkqGF/7nx/MlLkGowWC7n3w6teazBPo9UAkoOq4iL+V3hVUg/ghxvp980n7rHeJWdJDY+adhsZgjw+/tE+P9ftDS1UrzD+y7zv7LJ3/64PBP3/tbfYYkBzBC5zm11Pn2bb4ieM/+7c8t/zJB6pkNjXpghCSCFnWrwInAVt469YTjDCRx8Dn4ps8LkV+8CMZarjgQpcjd+H8B1pva23/+DfX3e2RNkTevIFno1oVpGPL52Jx8teKxTG738y+l79u1gVxfGTQq+yBa3lftCrd8gi5C4kazk3aHPzzBYf7kBpLX6wy7K4gpPp1OYNr2k/bn3/5mIFf/9PXmF+BogShfyVsm0E0FjdQRdgcxTMpQs+y8w37LknSrV7ngOK5v/Pf7/n7PH56RZv9ZrJHEcQ8X77Riz7dQzuS+L9WWHMfND9mxt+0vBQS5O9L4xl+tlY9uPPQ7xcL7MTOGSefDGRAPPFBtf3Zg+uOvX272iXa42ikPXi4Pe+Z90ScWufxfPG18FfFyjof59rUyNbTOPd5rTQPWqJEg3OpDmz9dM+J2ZQ17OWdEOE1OxQJvOWt2ltpk3vBk+ZBOBksx9zi4Zxz7q0doVvZJsKc7XcRe9lVUq4D/0Yt2iFPWXZ482PAAKdzxEy06f3A1IHTSf/y83acIIC3+EtmtztFP6pmrzclhpfo3+gDhPuu69ldvMXc52d7vyOAmAJHqWDXYcnOuHJSjr0m4p1hZDO6OPnR+Hwu7j+djWF/K+w4ed/FKLQGO0ejD3aYPXhe83/TKSuJ7CTb/BYkrM6vV/B187RR7GO2XRozGBHgN4L6Jj4SXTtN50yPgfDxjGucBqLphH3yg2Hx22PpyJ2tuPnwHhTic/vl7y8Y3gB6mb+xk14+1HU80Yer5jB72+DuMLDq5MINIpK4J/GgcpLnRps/w/sffRy5QQ7Vl5EuKovwxqp70j3ab247azDvk//xLoZn3GPnxvfqntzY+i/fzManEsK3GP76E41e0PUJmH3hl868IL/nfYcYwLsDGV9Hqq+Yg3nHRwCw++pu/VFfzt+quUIwgT77+dUmHdupW2KBvjM1PcAWTv1Yd1ELxjX0sCdGy49YQmq9zi4Pw1lZrnBijJrnPidrXzzufL1g8wBPUNcKRlQ5sGBWkYri7kGr+mSn7TooM+GOFiDkvUsSy+cND6W3K2Cz5U8rg7haCWKsviINOmE7IBSoUmyajQdt3+bwL0B1W1P5SVEQN2PS4DDN4iOht03tj0AUN9AJUYRd6b7D88UVJvOc4/ETOwMBv6mHu8C0NWMOz7s/v9qsuxC+gCtUSe0kG//RRvK0Hg72fwM0vQ2tU8fm4vR9U1DrQwMyNnKn97Q7FJXFpxA7FwJh+IqC8JxMOmlO91SuBrrH3XOA/f+ePPyqb34htb19YS3V9cmDotkFYB/QB1H245l8+/ldfnX+yQWD2fs0U9cs9Zw4zO7jp8z8/1fqrB0Oc3PbUarM9m4gx+FA0Ugvjc3/LB8BxpbLxT9TdP2YqKdlXBioIOaIpdZGOvXSC0GG7Gsn9q44EYjxEcHWvCY2/vA/o/R5BBV9oTj0nL9l0dGcbbvka8d1zYit8RQ08L3FHH0oN0+Gv3vxFi4MNDgs5U0/+5//VpUD+v48UyF4yorfNn6slc2UfCkjd0eh6PllMnC+Fesz9E70JNMiF5gV6yN53j+7fZc5W87HNrm1zmzqeN6aMO3ZnmBXPhajdXqpYJvlXYOi8g90Vtmlv3H0dFpFzxka6s3KG9+4dJrtzRNHuYuRT+ZNtaIqVR23lpA+Lc8gy8LTLB3YGhoZ5GmwIx/gpUWNqHtU04rWArzhfEU9sBNYyNXwgaPaORn5uWnz1rBBkzksh66M6DqwSqzPkX42LXSFi+ZzL3Aq1KvKJdClKi723xrEO5vZYp69+WEvhLgPaPz3qf5Oi6tHrtkKUpQJiQROm83rrG6jdRAd7ELU5zWd0BvpIJyQkT5NN3EdB4PdWZep/tIjNj+CawNTYD9T6VJYl3B/1AWLZuWL3NumpYApJCbGUrejnrEI+vHfFB5zS7xubr1VLh/JZcTD2d5jsAqurxoaVscb6s4jm82dhtV/IMnyt1hnru7s2kMi732H/IjXZXccpnaO7XUD5JfkYg8AaZsdjKvCNXkPVjPuUidPJhjtvOhJFEJDFUA9reCCvNzXnhx+tlyjk4C18l9QKym/FFAuc1VdZhjgjh2vaP3L1vM2KwThvlQzMkSqYWjx7O7JbBDqwZ/vwwVMtU/o8Us4id2uFMAr1H1pdumNrvZJCXd1IJ2z7Pr8jyw7Q3EqmSMQiYGh8rJCyq0SRaE3paprPRjVFn8d6lroRU1qSqGHaldi7fGpA3fpVw1f5CSm+rkk0T/vzDAva6DggNczJpLUm5Pz7lXTHqIyW6+/Fq9vnIa6+uPl6t1QObPGJfXiFw4q4d6i6Yi4SziBN2r8VroDCfnWxXolftnpRqcM3sAPsDoNQrW1X2FA6/gLs6YTli/+DMgz0tsL2gVaWiBuJgIFPCBKEfTsMIiaqYvoXD0fWPhmkkdsaxDVNTGblKFbkdBZLyOkxptYae2DpNWmFd3KysCk2OFotS5rhy8Y/HBSlmQtwaUNo37jL33pXy+/0O8ADcRD+iz9eicxaW8H9QKQl2FktBKa78++7HVFOuRrRfv/6QOUju2gGKLNmynUr9EV1j64FKS1aCaEP85NXki3ewaq89jzMJk2j9pzewS9/OQUorGOJUXP3B4nxX1ezb/CC08/PY/MUaTUUK1ukIXsG1niROxEWy6PE2NcsRmvgqvBrxwUNa4NYbMUHTltd0JA1L3E0yr6P4KN1LHxMssyi9+Bmwm2/EMEz2opNlTb+228u/PzA7O/CTq2WakVzJTpseghVD78sMrG55/1osQffBzLaZkO9XWZNsc0R9X4yDSRdCj2a2/upgXl0Damnd6iSatn+wKp9BkS66gWbxnh2oTKIAqo4Q4wWUccI4vknUDchBRgreLwCZN7PqIFnPZfue9jAY/a6krrsz9baWw8Vesn5PzydpjWO4dHkYrx/OW6+mIrogr47GjhWb3bEHu7YABNfL/Qk7L2BmbZ6AI54vmAv59Nodjygwsvpa2Mr03Qw72BfAjNwJuz71qla7+93qD0jTsdWIyzpmvvnD+zO6ZM6w/RjbbM3Gu3+QCHdVw8lZc/+VYJEPgAcCD+7Emb6WlWgPR1q54eHte6GYwePMmfSCMEimie04+DH6hrqDt+ZETuZdbVZX4Dap73KRiMsz6B/nY+oq6x5mH783GmdE34xWrRuYOVdv8MsO3SIbfEqQRDaahKQjhqH4wJmhQglJG5yRGoLAov+nKXW9PF039Y7ANP7MBXAv28lkvuvBzNaIx4WYTZTPTlYwxydOhVu78fhHX+ixXcNDlKAJqqXJh54AR/+yx/S5VOzLT+GUP3EO4zq43uYoZOvABXegFhr3AFRXg4PP0pX0Isa1Yw+voCDI9tvjWgrki6CpJtaEQkQW/n1bE2Zf8vU79kD2DiXWsV+X5+D8Y4OND4pQ7rAONfhZylSGjx/QT5OaAcBRNoRLYdoilb8PZcqhDOHTZe+wDpnzgEU1sAwwsgCs9zJK3w8Zh1H8Y6rFjeTZJjH4Yy9u/WyRjFlMyAvrcG6L4ZsOeL3GdanPtgG51jVmrtaBoMpORNB8Ey2MuqZcGRti0N2rdPhHqd3cA5PGhIdU2DDVAkEjB83p6gp9+kaNb8V9j+jxYGznnLmX0IeZNNOo95tiCN2D476Hx4Stuce6TrdeBds59lwvou4fLStawZjCQjYC6A5/OU7eD/dM2qb+11FlLLVAf8bKNoFll9JqN/8n3Esac5NbrVUn9KGt4Y3MHq42cBOHMlglqontDtXjUVzMoUwktEPh9/VjKZstA9Q1g4f7IAiTRf/ezxrKzoF+LUItJpLx+y0j81e2J5vr2HoIzGDysAL1AdqXVHTVhO4oqmgf/9P5gU85YC7YdSj8WMtyQUfYNH5D/zovna0PC9CATFZT2R9/MR0UaQHB3ZCOFBHGV75+t4CuX7GX+oeviewjqfDB4qfscLxBe6rOTNZos59lKKdBR6M+RK4gxHkD1QnY1ktR/zLoD6gNw0FhRvG7LvXYbc/ExyprQHmR7gUwLitPPVmaQbErLxQxU0d4yisf1HnP+8uKKLXD4GzF0RsW28oa8kHiWarp+LdyUIgOr8CaXZ0iOY//nHNtT3FWVkB9nCiOzzmZYefaXNmc/UwdVBYP7at36taLm9FhX5iHKgvuySlzaSG0N89f0R7bU9J37lMhCg7CjQs6gSMu3yBUB9qHslycmEdPnEiiPK3QP3xUjP2az6+dg52PXZ/PGT9j1sPMF/mjGZPrFer2JxEeDNpv62XXUns9CBwX1xfOA47peoY4M9QgNkNgdrhqvWRrxngryDAziHXhxVZ9gqs4WrT0+HtpKsCoQ5d8SZiN96bYOSU0v/DUyLB+2aRxdiGry77j2/MmQkOiuLiBO/7rkkZtx5kzeX2I7VAU1b8ei5jLQlfCKMr3+Rjq9Qc7NgoI039PaMJiTqB/DWsqJ2BsVpW7mpCx//01MzvYcq/hx1Ut3xCdXeqKlaqMwQOJzP60p58vpoP8wohphIZzkadMxETWT0T20Ba+mnydfWPRJvet4wmf/lw468wy3qAmlX8DMQRjBW+QrXBOFSNXHBoNUJM5hPi+vEMlh6eG+0aihnGCw3B0ueNDiHaHQkP+iUiUNoj8LaJTkQhSvMtn3zgae47bOZIByKyvxAur1XE4c4IrOUuX131vco6DlNbsJaLHRFIP/0Rh1DeugCwKIRv4AaEP3mixaggn+Hvd87RaO/rfPpJwISXhmpk6j/GIMyIxmB1A51iQ86rpfZgAo0j5DZ84Cv2s6936PjhhXy9/fKnBz5wQyukOPdPOovJvYHB91liR/A+rGmDeITevdzT0LiSaMracoRacv3Qky3rlfR4H66aWp1kqvtiz5bHUR6BCIYEaS+nyec7nyJ4P80tmbf1GvyLKUKBDw/UaoRjyhSLnbennC84NGJ7WPLX/gljI7gRbtajiD2sPla+av2lTlnIOV2Xzyh7qd3TW+oG+Xw/Rfyf/qKmefQtcV5AoRYzUal7WF7pz0mfBDj/Q9qVNC3LM+sfxEIEJM0SAQEBExmcduCNKIjIkAD59V/h8y7P7qwtrBRJ9zV06Jb6lmw7v/Eng09nUNvMpdwvHS4JX+UOSaycyL3sZLOPBilQ5908YFlxX2W/+os9FOiTzayTc/a5K0UYFjzDCk1e8VRW2yNU55SR4NkkCx6NI4xfIyVBOGzR7B62GC38i3LwtGz8C9IW3Mg8kkPYHboJn6cEiuL9/acPR1+63VXx+pJwV37qf/kNxbSzyF5WxmwsXooIwbs12cF2h5ISm3hotp8xsXWY/BHpSoDWdi8RPz0MfBo9v4GzPF2Y5zxP/o/fgxGGMlbb4wbNO8XyIBDqmaLEqhH38a0FQ2BH5gmoisf0WERwM3ca82sDzNllKfzikxyYvsmYH4y5ZuiuwMi83fjjbn+ylt7oQNXp6ZfjBlvLHIJ9uPCvMJtDNSvgrrxGOs+Fl02rz32E94k1xIr6ouNF9qygaPiMBy9F/J/+/KvpyBxjWpc8uUwG6i5vlab8amXTyB4jepltzdxTyU0W1VRQXbnh9HXcK6g3etXeyK+M0fe3evHJrecX3D71h+w2b7UcfVUzkLF3Bjp93R3qwtWmhrLRTmS/q33ErsqqgLq5Rkwf7k3Gkvu9gjBZd8RRd7r5HgepRmGmIqIfD9t4fXVZBMn9PjHH6EY0Ju+dAWpo21gf6LkctrE+w3SpBrpGzR1NcBTqn59AzBshJlu7OkA4mCKV7u6a92b8yeHkZxe8CU+neBpbEaN6dhoWJMbcLfEVoJvpaFQs8r7sT85ZRA2nCnZwcip79giv2i6UB4pg/JrMJ6qETmPTELMSlG7mjOiw6EuqYqXr5rJ/9j9+iJX+y/0h/esjiD+HJxYXPkvL/kuh+pMi+uDCuZz8yrbA3R5b4jzd5UosGw3tp+dkdaf782qWa3iY8pkYxiVAM8RR9MtfzAkuyqKHCgkuf8aH/cOPdk4E1MxCRGdNLhA37DgHqXVt9tCurJtJvaLQXhRKgvIxdOwyhTVansdaKzLOV8pfAzMPHLKzlKLj1ysWVHT9uMwVshyNBjFVjYzhizmQjmjBF10zq0Skq20f+ZNxNr1/+tvQtF0nfllUw+dcR2zBg3hqU0uE05YadOrCnk9PJoqa2Y0X5r7kj9lD1XlI6y4hFeky+LIqrBS5AjUZMVmSjWXeYbS9jSLzldaKpcVvQXvXtNlPv67/RCOHYzIHzNTtHk219pTU80efiDGnu5Jj/x0A9MaVYdFmiA430UKHobzSccm/w6XMbCgKcqbv48cz6c/f+fH1Re/50y4+U7TwB+Zdc2yuy2q77C95YkcoL0t8qAXyt/kBy28cmPy0zFqWr/2NRZqsI5Y3UgLsoA8sUG+VP/sur6At5JwYK7X0p/aPYBTX8tJGrj7E87oIbbDSXiP60IR8zG7sirRWEKjD7XvXFzujRRTbDh1L6Y2m7Xz0oGCy8Z//Rt75Mou2npkvDHXX+JelpOgFAQAUQOu/iRY8nYyz7yH6OOhkaGln0uV8oat5nUjGPLukyXGagejwJYHaRfH0lW4S+KNRYPTZiGj6+S/1NJzYwcZRtuCxBd9GcNkSz5nMrp4H2+gSUjTFB9TwB0vU9vLKyC8f/OMn7df8EFu4GR13T98WFj1NcLMWzPnTrxr0sA5f5oFQc46/cYpsgfQYJZaNpuyxy9EbXXyy21mePxu6doWSNRExdPdpjm6VSz9+TIzbpfHHdr4LapVrPiF1vvFZonxreAfpm65fj7Scw9tLAESOOxaoD5dLHJ/vP3+JWJtsl41/rSvBeG2dRS/lJUdpWGj0knnM8VcWl8dbdwbrVlkkc7OXOa8CI4JFPzFsdiafQ+1PQfI1sZlJkIo+uXuYoeNqRgiJknjA1+gFCz9ku/XBKaXa9hK43I9bcrk0+1LE+Kr++BWz8R2XbB63Ly0L3JEKk+Z2otGr1r/z7Xt5lY2nhqTI30cm89+/Eh4TJfScVR2LY5zycfd+WXAyCcYqnmvOPvOJggTmm4rjbdVNrbYa4T45B4IPYR3//DrYScmFbb9pYvLVZbDQbg0W+en53GWRsKGPVc2MSjRjWltfF/3lrxoXeyPJpiHJdbU5sC2zj536Xz4PZJ8wQ8dvtLwfFSFNuhL7boT+e+Ue0p9fyvTnxs3mb76lmiAFO3b1bJmPOIIczLLChKTrJONXRS7gHcwKFbham7MVKQbgEZtM9zYHs99Msvrzh3FTiBVqfS+ZYf8WOXFj/Mrm6njvVcCV8J9fXB6is7bkI7b7SqE/SqdEALbDMtv5N7UcPsYhh/3bOlDxFq+6eXeJa3BXEiz5gfpT1dr6T+/hcnwqZfN7nuy9mZFtfcg2rapdYeUsXXZqrc3mv01TgISJQox6KhC1eFGB2vmUts5nw7l7erY/PYLV9eeYzSWrbDgOFDGLrV+c/z2vKdqGdYcr/9Sa08VoC/BXTUCO5/vgz8pta0FuuR7xnEHovqhpdHXlsHDRA2Y3hdj1YAPvjAXuY+4YdvYN5KqnE7xVGS8Kwz3CJx+XfmbkEFP/W3ngb+8HdgtNx5w+z7sIkm0ysujTeKqCh4QWvGGG/UUmXT/nI5z2is9wFW7LedCYoQ5Pc4vH4Wx2ss88DIb+DFmgNEeTf51ohjWJIzrZt60pXVy3hiYQlvW9L3G/6E/YSbRlu807LdnGXvew8D3m7OHV8eQWBWD3S5cnlZziQZluGOJ3YrB/+BuK6xyZ1VnEKu4Nf/rhtV49K3LIV9vyH56Dna6Z2ZsFX/YfAN8fAt045T7m6UGsQSs3lOnn+2DO9fvWQyQXJ7Y/aq/4n3/0MO3x52chVmXyC375G4ffTVb/3h/ZJsCMrGDL/DZPB2O1K+ksohWaKk9oUb1BOTG6fczZ6oaj3/rJ46VvY/HnL620RGSnPA7NMfSrO5DtQCivWd+xxT/R1nZSMmOlmr54uSgR4ks7pgNVxZK13slV1Vv7Yv5n6OKpH5oG7aXPjS3+dCcaEY5+egLXx0dojknZictAuxLL6q7w6Sowjhpy7oRsH7TnHNeh/g/v/c8m4d3XOqZoeKgO05N3kk3tJsHwzE2D9t7R7qYw9ApA65bQyX680cgKtULXzagyh9vQ9R/4JKCs85751/uGD+lmc4TTtjeYQWQv44N58NTTdMNslztON66nL4BZDQ5zF7+Q77QWw/HtPsjRW01oEl5TAIFbwcKX9W6UzsK/908hMeaSZvsVBUFIMdmv2TfjsHq3cPWDz3IlJPGn60doIfkjF2b126CUinWkovB9EPAzcttyGiJRUp8nO2Z2vovjAZ+OHpyMe0Os16DEbFOVihbXdoPH125CdEUTAxSnWRHnnYxoMDaChbpHNhL/WVUZLyB14WUeY6Z7vMl++IWO782OvtGdZ+0SD6pw8wSGt7TOOBT5EfnxpafywifHje9VIL9ujOgleN3cy68jiE95w/Tk1vLx5OQiGA7G//yLySlHD3Z68sSl4Ki8XfS8qneawzKAuZxayGuI3/2J7e+144uLXw6SvWVs2+3MbC39aVcghvPC3+Y0lk0mnyrov0qIf/W+0d9kEggS3mG53FmI135xhZ3rXhZ/Q+++rlXMaPymAyNDuc1+fgEI7vXK3EL9llM4IQvOdZtj9b0M4vsL0gaOdXhlNvb0WN6UHv3pAeac3p+sh6r0VCdVCmYNyi6e/bdeoZX7kDFa9OG/ePM940sOYnIoZT/SMGxXusX+/gzLn/cJ8356FAvb5lkyISzO2s6ZLVyPqz2f63fY//CSODdNjX/8Sdv3ismygK/N/nMVUw1H45e4TveK52R6nQEJuGNuSVJTCuWbB4+pM7GykY1sdo9+BZd60BhJ12LGpfFx/+kJupqdP8SNFqfoHRgRC3r+RPNqOl//+VM/v3h8tvmMlKsZYaQZctYrrh5oy+9sF+UvPuIwjtTFr/m3nim9uf2/80HqiJRTCryB03g8kS3SpaxJz29DddPDjRkievBpPGAdCde5Y667T+PvkJwNUDAlhEwoyZjUcRUt9S1MQ5abc1vhHKJ9cmKXxe8aeFlh+OWjUzfsOYds7mE8SiHzq13esdw9jBBtzCdeLfXH3iCmAmR7BqreR8iGb6Lb2tWcLHLqnkXW73fOHZ7nQ0DiYLtCzdYrEo0dpviHn/yfHv353frx8IzbYePfEVo3hMSEhTFff65nCGrjTFdD+YwHpxxd9fd/jqE9zFkyWkU7urJADE17d5PlKyMK7yFmLk0/5pStBB11u8T9+XMdZdh9wZLvfvW5kg7ZX4Q2orFii5+A5tlWXkgh9zXWGnmOx/m6T1HKnC/BbX/mfO26C77sOlzu6zYeL7db/q9+96t3SSB6IlLbKWOeLIG/6EUdbTCn9PGya3+WjJcK4xNXC/9HfForX7wBx8+YfXxMJk/u9xo9/C5Y6j0F6sP6GsGZBSp7rLIQ/fgcdFzJGNGiFvWJleT/ry4Fm//7SgG27RavZ/8df7N7ekThla2ZPrmPjkWPAmB/2TzZXl5Dxk/ONgdjQFfar52Jz05p2mhfyW+MOo2U621Szaq37xWq2rEQD9kJYfXB0wmvCnrv+lY9UogPQkLIBvto5vtGBWatOV0aopmjI90s8P9cnaXRKJrs/ue8QHwIKzq8T6NPd2RQ0B5mkR2UT1uy8SRasL/MOl69hmM2G3j12oie4ONodQm5lC9fEZD6c6GykJmoK/M+QmQjbQjurT1vV8mhhv2tjCgn4qecz05vweWTdcRNBLkbx3tdgxU0nO222scfrLVuayftpJGDFLzMWStOZ0hilxGPHc1svjXvHElU1Yl+REbJP/ykoPIW53TjfARz5mMqgOOKK2ae8smc3W/rgjPQiGod1U1xXAZB3BXpjMcuP/tjnJoUPo/giMXwFHTDV717cH2NJst2l1c35pdgaXxViViawifqn2FWgDpGH2I9OM36nuqClp6LiK6xrpfrzW4fwOuRnTGS6x7xqHYN8Lati+UqqfgYq+cetFVBmSchhXeTeTjCN6lClq2I5/cZ6yj4h/hJZd1X4vnGgkKJJj0kx6OmIvrVJQrt8dCR0/x+dhxxUkOx01/Mryjm4+mAAILKGRg5txL66E+/hwIPJqbDdxuvKVVndHH7E33j+8mcN921AWW61LjQ/I1f/ZmuALd45zG/HoxShBWyNg90XkpmddkNJ9FMkfA822QL4amj7OVeISv53/KV5188Lx0UIEhvPtEfNyubUzBauHiJjWlvfXn/frg6xK16xfA1dHMm16MF20PaYRkf3h2XBUNBFQOXHY9ayps4NXu4fI4eyccij6dHdRgRl/sv8aTnveSmcXBh3eUK3bzsbSbr+tjDY/tJiWkH51L0xiYF2P1tmSFo63Lwq7sFf3BdES8aE19OM2TB3g5H4lnRnE3vnjWITzef7E/frpsYGlWQ133APFHt0ZRKOICrFWCSimqA5K/NXSWGZUImKrZ8DB/iFcoqPxLXDMVyVq9PUesN3GAp817l2H2e6mrojye2999v/p3PcaQJfHdl2+Yt8D6YQEKmMffDa3UJ0WyvJ0Xz/YKwVNro5fic3Dv4O7xMeyUaGtrPcEYWPlbEnNMESWYyvrS/gNxIsG3nkvNze4db7HjM4o+dOT3zP/vf/jkgBfG0e60SNX6wGvPx1nAu538C9MVGwHO8j7tpNUg2fJlSkuz7+sSvx+SckeMcMLFUapv8vcEVrJUUqPLchv54CJ8iEnK7JO722HSstq0ZLnP1R/5ym/lzmRcSULRfZjm5HR+vJ3bfGK5S4e7vcUCj3LEXaKsXZYe7g2K+pUxF63C8LPnB8Yff+udXN2IUSsdunMk4ays7UbEQu280D7jDcE7dgnle91pmRd5fkMuKwvzM2sXUXm9UeKBEZ7GvE3O0vxFot4oistsHjT89BcOAW530xAlwiIZoA7Z6thWB5a0kojE7/4kQrosr2Tuf3B+D7jTDOTqEJHhmmf9xRqtVP16iEW8IWVcq/tbWfvnOOIFurn1ra4O+lwxmf77Hcor1GGtFuz2z/dn8oN798wMo1oFLiMrNWGri4YW0qO6YuSa3ct74XQ9yRYBt7dsBjdW1EDTXYA4zj9jyma4rPcpXq4YZbkL8iVxnCpm9vhGn23+z+dhnCSR1OdPiqKVofFh/KdDa+6PaZmvzdeekCfqdx13t+kgOLCmBil8C4p5LYnYLXmkn80+iq1G/mMNh9/dCElV0cjXDpJsmIgaweWxS5pykFxrOz6SGwyy7ZFe/GrMzn6qNniPdMmsqwkxC/dtGexhFQphXmzzbWxHkff2m9691zfjmOhzROD4jOvPkmnHNrkQ4uCudGX/+05/mu3oGfbZuzByqyuSKzzw4/Gkis3nvmfPDOx3BqfyImG9tZU4X/J7Vjw+UhSizSrY7tQlMnh0xd9v/mdM0OgFE7Pogh3bfdHM8fEYVDumR4Jdxz6aJPV3YS48zlsui9+eRyC1MYHr05atzOV6a/Ijcvf5mJnsvX+Hs/HFzjkiIVVM58fkPJgMm5th4o5lhNpj0q8Na6FN2eHR2OSWH2xnO65zjNZDOHG+I31Ej7TWyT+ViaRRMI1WnosTcPOhjlmbIhueQ5wse4WyWFXxH2uQVzLw8NL9f4gP0/arE6edjm5N6C+5qPd8o8TT6zia/SizApb7MPl1ts6k5mAa8/vgbd2Tb8aGj1hWsauNRmWlbPg7o7UGr+ZRhOfbK8c/UAT6P00Sc6/BAo1iCDoV2VHD3KDaoKSuFAt2UBdmhNe64WNkNPO6zT+wpfPIxKdoZOkk9kf8BAAD//6Rdy7aqMBL9IAfykoQhbxEwQVHEGSAiKCKPJJCv78W5PexZD8+666qQeuy9q1JlNW5tLUEfVdp1VnycV5fzsJx22wrSV59Q7yuJDbdxcIY/fvrS8Jr84rn4RSlkd2UkYuac49XeR01SwxjffZ3k8y87+GC8Fj6RDCfnS3HwBPAsWECzfNMBvrAyg8z9+dQQ2irgm2OgwsfLndb8HfI5wxfvH14xL7euYbFajmBxphHrbefE3MpjHXrfd0YLYboOiyUGFTwvvYndUf4MS+xqBGzspqF7qr34XD7aERRLraA7CeKAEyAv//K5sd84+aiGvgqWusZYH8+EE8Wxe9jd3RT7wT4BZCKRpz1+hwf1+A4HrM8aBtb8ji8n2vGeHyplJ5RXRA3rvd7afsIMWpf0QfEZmTlJa5Sq3g4FaPjL76SLztqyvz2I4u0+/J99C8l9i61ApwEPtZ0Pd1+hp/q0KxteRjKDWMEemk5fw/p7fkCTi0WLLFSDXrg5LmR3daT7RvXiZXtxWig7VfsvfvOD9VPhHblXjKfgHMt+1OnwWYARO4euGEanuEg78mWIxgBN+dTeMwYPdl3iw9iC4Uc8b4SWLxdE2pcBF7fHxoZead2xnQRavhxkNwFtPKY4eWy/8fKy32+t9tMa6xsWNeLleL9AQZBibBI7iPn4FWp47W4HjKQdyecMFz7Ybj4Rtb5w4UxJsw4cH1uBbAfgWFz9NClIpqahngdKawnLVoA3dThSXE8sn+18CbXzVXxi/HH1ZsXLFVjxEAKX0z0QDr2RaOedY9Bb2JFgqp09gsTXBlIKipkv+4OGAKfzHYey+xn46O3fUOreNVJWvLz6R63l58OI3d6swDgJla7h/GSTP//u7foywkubnUg7T1JOrlmmwgsGIZmLagqWRzKZqiXQN3ZehDYz8TwCdEPhSAPmwpmnlQgMSu1iWzuQZtRiKYOJczqiOR+FeOmPggTDffBDO1ks8tG+ags8DdsbaVd75x+lquCpUb9UD19tzEH4qMEMDR8fbGbEsq5ue/je9T1ius0aniK4gft5n2C/WoxGalPFA/L7CHHwPchBV5f3Dj6TYqL+jj2GOfA7D9SPzqZ3lPXNMktBB0tkMvS9SjVnn6eug/p2af/wBZgv05jA50WAOGTxLubqM0zg9bJZJ316NGb6N/Lh8Dm/UTfZfTP+prWlQXokSPnkx/y3qe4qqP2sJp0ReQMD59dGW/EBvd76H58tJLhw2X44WSrd4fJ1nTphfXmFFP5cwDIX4gJXfEM2r3YP+MOK1xKMGtL97bE0PBqUEW7CYsHmHI8xZeLLBMed3yJhf2rBHx9R69CMqXekSUPvoreBj56jP/+3FlLgFBIj9ld8aQ7svVxUsPI1fJDvX8DPbu4CKhp3un84DVi2R73UcsfdY0+6yM10GkUI4zBpqFsaz2HOr3wdPOthGoy30OLfsJHAJgkuOCxbKV+wMtjwXT4VMtN0sFY8QsDxIcXY/f7YsLgw3airfyOwxb3FYDuF8LKbL+Q9jikY5noJgfQ4r1PCbC2nktwIoA71mIZo3+UzbM0WCuH0oPkPWg2frg5Rh7w1qffNXhZzLATBaGkqdi0bD8vLHlv4rA6YPPeLMiwmkitN3XQiEQ/tO2ZUhAXs5P6IlLrthn94deerLWEADGD5tsUFAiLl+B+eun0ZgnltBlh/ZKyppfmQQHSTIXp5QhILTy0N4eH+OuMj+WgBH7+wAoV5PdPQLQOL7eliwiHuOMb+xwkol7QSWPZrg4PH88hZ8E57OB3Hao1/yzql5rkAkL931HsZczAzMzLhd/lcMLq9s7xP80MEb/SiIu2iqPFnU50UbfgaEnae12c+1o61gL98fgi2piU/Gr3WCrbb0z/8Mm+n1FQdlluI7Ai3SGqADJzS9kKPTvsEK58ooXzzbxgtz8WaFklH8NQo33/5Yr7GSgbxvOup6+wu+af4bQqw4keKHDcd+P5wbsGqR2ATxSafLbq31cd1yYiKAf57PgbTV8z//KdZZLnLYDj166DkzAwEBxpMKwqLUz9/h4MExskG54t7RMy07Jxt9233p3+QlY83vL88E+DWYfanl8QLo+83hM+gRj/lqA8s3ik9DJ3shiYtbwImMtWHV+spodn4iPl4HtUaGtr7RP15CMBgeyP6d37XJfjk7HrJdWDq2yuS8P4X/A6skWDd0x81SsceBEMQEnjfLzKCACbxVK1z282d7WMfXK8WV4bChumzqnBZzk0ww1BYJ79JkOLAuA/zQxJarUq6mCj3hQUsDEymcVycqfk9lYDP0LPh/pzp1P0gL+fx5Ph/fIP6N5/FbCQ61JB0jlB/cHvO5OBSadksfLC99VaJkx7cv/xGj4XTWONrbivo79SSnEm5H0Z2/ZW77AeuREb4wWdFCUyw8jFqgPzdLGFJJGCk44aa142Ssz88Yo6+S8QhVfh021cdVLJJp04P3/m3SPwUGlWPUJPLL+v1iPwa7qfxjAMeRsPcLl2vPmz/R43u0OdL9VALIE7uj1of7WmJxU8qYRiRHt1rb9f848/50ZP/9Idh+lZPFdyZgej13Qg5OYV6Ak+f346a2cIAc2qgAukRYXwZ+2pgSaa6kJxVQPXUb5pRC3dn9Xs7GeT7JmuJXCsRlHx9wkF1WYbx8jUEmGR+9d/4FZbeoq72Qg2hU+LZ7AwI+qQ5oC3aGjHLcUrguKQInxIl5/0gtCr8vHYGrn7rrmIzbwuY8SLB6e4A43e9effQAJvqH54b4906FRA0Lj7EyArkWlY9uAH6d8VabBiDjf2GGG9mas5xmMtltF3geMMFddb3T2D8RLvZWltC7s48zFe1LyH5Aop99+Ray2a/L+HhKTAciB+dy9G5liDeKwY968OJL7b5XYCJkYkd99bkDDlnF/jjJsOHthYB/bPf/TaxcHDBOhc6t6q1qN5H1LI/LhDUT8r+8ArWG64PS92zVlvxP5H3OuTL94hKeAXvgboJc2Nh9Sf4x9dl/VAFo3h7n4Fk7kuMta6z5sQ4vOHZLAvqKpXJRRf3JXyC5wsHc/Bu+MrP1MctC4i4iW5BBxYIYedIEjXy8ZIv12q3gfFzanFwklgzHzebTDWimdK/980eP67DNR7iP/4sI8UrISf6nl5kcG9I+uqSP35DD3riBMJVIDpQP45IXelFwFwchhJmhxaRuWvaYfmLT0d1p2AcYTKsi+jtv3iOXpElx7SrqA284ryneo0Ogdik71Rb8TI+XgqHc3WzO8PLvTyiAu27Vd+zV/9USvKW16mD44Xb0Pf2e2pEj7jhf7+3H7KCGNkegh8KYKu6zl2me7pVg8n0riaU2s1MjyH3hqVNFR8EXRGjU7aHvNO/G6TelvZBrd3RWKeoTQTuP9yia36JqYEKFbKheuAwOFsNG4kH4RzIb8L5doync+ybf/mVopLnOa0emqoi1+7/vq8hDG979TRoN7yXu1s83cSnBJ67Ef/z3z/+AwPtuSes3HoBa8c3gvri3qkhhBbncaj60LZbi1Rt5+SiKF86+OTpTC1vawUit8YSDF5SoWkWyoC0KVsDkrWjh1QJB2DTMoK+flBWfqznPJl4BctNmOB79ngH/GZsBJBZZ0aiPzwKdYdB4atiGoLqBVjMT2+QBbeKbJS9FbPV3v/pk8LHsGKh53OnfX5ShC1JmIN/eH7+mgl2j/VpmKtIUcDf8/zx7e6lHFvwp1+Zvx4Hs3JjujZ/9QT7vbS3uK6e3lBvd98//p4PDytv4ekYGdQjPzOg2BlHuBMWgt2jJ+bdlJ99uPorWuSzbs3bVoF/ej71Vz2QHqyXAiMtr5FWveSBDS9fgifZO1DXj1nD3eKwTs2SVv8N/GbBSuPCQtFkGjxLoxnlwSjhS69yaqqvl0XX8wCyU7f0j1/M0hAqUPSOyVqv2A6jH/ES6O3iUv/eVM1EgaJCp3twoj3Ghbd/fDXE7r/ziIXscCNwxZtUp8o5Hm1cjkDLhhwJn4fMqfA41OpDSDD5rPq5nEHXBe13n9MgiUL+c2o5gTe2WflkNQYMuhlSo3IMkSS4bsOWqJTA7Xv2qRf5z2AuH173x0+pnRw+wbI7mwxo5/eA44MBcsroYQMTJBxxYjiAL0Gf1uC481qaaq8qXmzzMKoRmGfsFGXdfN/nooJ/7+P4TWDAyujjgWbjz2h5S0nDtac6quZH6NC0/8QDeWhPG6Q2QtR0HBJITWow8I5NBwfmZolHvdq58KrdNDTttxgs5929gI9nCRDjex6z3yUkKvnuKOqP1T5gPZ/7P/0BLTctDGY0vCq44u0/fgr4bvu8gJWfo949uYGY5o0C5eMn+dOXwYQX7w2LqbLo9YqNYfa1F4SXU72h7mP7zXu8Nf1//IFdZx5PhnAf4Rpv/9nz/FZOCVzrVdiw/JG3f/lbfrs52hQLjuftcXDhWReGVY+HDfWSiGhBItUY87cZj/LwraE9hB0NjqYSLJsWZtC5uozi+8OKRXzOe7DmW9JK+6WZwzkLwWEILMJFfP/LbwXUDkaPXdw81n8/h1qOlg4ftvYjn/dF10KpGmLszYplMTzaPvT8PsHGzPkwe4fdsgt616ZmOr8BE+Xt+V98Pzyn2XrBUCBwF9Y3Gm5uGzCXWt6B3Dl21L/QzmLG5XXR1vix6jnOsHzbywV29aL+4yM8OvfCHz/Aulg1DW8/8wisxERIPpl+PGu8ZfBP778n1p5L/+pxkfmh7hxngeA1fQRVN3vS4FRccnb7KiGUn3hPQy7bDTu5bQV2UCzxmo/4coqPJRQ4qonYxN9gyc0fg6u9EfbMYdOl4iUF0vWmUwQbGVBGjQ2s4TWj9k8WAjpdnRFS0bpj/5zIYD59mACr6CIi5nuStUzdzYd/+iEK41fMf23nwnzrUBxgI+DL7VKHcNXb6R5hjXNxthm8tOkJR4NpNMJTi5AGBV2iT+PGYh7IZ1eLjOVAVAkogOa/5xlWLheIIkx7MOfFOYJHszJwruanhitnhKCq3G70eLauzWyobNGUcx9hFHsO5yV7ExWFqUdvph9awj55+/CVhRCj7ObyrnmzUUuF5kr1fTyvLeM3HR5f+EYPYZ6AMbAHAo2Aqf/wPCuaGMJVD8OOqPcW/dMjCMFHtJi9M/zLh6sejWCxbQcSOb8IVA1VsD1I31Uv+3lQ+P1eRLi8p2b0b1kNlRk5iK/+Oa746t/7Py7ay5pDeY7Aqq9RtDzPASPekMDyfrOw5z1/A5m6pw9WfyeCejlwrqtyrwXWR6crPuNTFTFVW/Ugej69i2CeGQ7Ban9EqjIK+tGYbCi1cCbAuZkDM3MvU8Um8xAvz4dhWfGztsZPHB/FmDPxdAzhOnsd31c9mk352fvT67Av7aphES0FwUNjxzg+/8KYb+J+A7+VZGLjlWiAZqAzwf30vFM9+wSAe8mGge8TRWhpxT6e77UPtelucuxMtxGwe/15Q9u9XVG7pU3DYOV66qrP4mPnC4D0X5/8/X666nlxR7wmgSBvd9Qx7/mw4OcDqdH1EKKt184xm82lh6CrNRxAweBy/ntGwNyfOdLqasj73ZD20CrdDbbXfC79dGmE38f7+Q8/sewX9mCtr2Fr5S9kfV7AjeOHgI048XnqcvLHL+gfvvln/2pzabApTt2wZNeo1f7qTZFejoC83qdKu5mZjNRC2PFp5Y//V0uB+r9bCmZFeOC90+0D2liXCHpp2NDrFGjWqEZCAb8HI6WeV00B0XgKdxfv+CGb2/HULHTc+8B5hVca1utucwVHtTpWFwPbRZ5YbOx5COZN8sA4dhK+ZIJzgWVgftD7Z8k5O/xoDf0fYtS1o1fDti4U4N4PC3rPKs7J+EYKCI9IwYdc4WB6h14Pt49rR4Py+AILv0c+VJmMiQ2sdFjUIRq1v8+XRN3hErCif59HJC1q47levBKKhcSQwIE8dJ2gSvAwk5HA48PhfHw8bKjYNx1p7EEAb1+XShWYQLCjVnpDKttRoSWNPj418QcQXwg2UL/mBIGruIYCJGTQzO4KqWFDgqlAugnv1AwJm9oN58HaVRkJU4xdN9haDLRCAYugzpG8iwbOnAMNYblUPem9Ls2Zj5QIlpP5o0Yfu0P3SGZVfY/NgUBR/OWTEPo6/NwbhN1P946XucAJIBfBx2c3+AVjE6kZbGvrSuqL5ccLS9eSVDMV2HtVOFjfnwfzi37DR9XBsYAz1sGFSQ01YYMsPj0f3t/zUeOavwHzFQVBCQkCtf1YiGeXaOlud77tsb40r2YsNvMCjZno+LbzgoGxktfaLrw5qHrwyiK3xHGBat8CGmyO9rDoJLBB4Zo5PkQKz7t7uHvDD20wtZVc4XzzKt9QdAWK5slygRCelQxuN9eeHvNH2IjVqEdwV4sedda7MGP9Vi/qaBgCYqr7BNPm7CsAj8eQHuvHMadGfE/AVpF7JA+Rn88jOmRwH5EnDn5Xkwu7WrhAq0UHogwebeZQl0yo9uKRlKojgPVvHXjbsEWz3jQBv2v5BViYuFj3JcCnU7hJ4SmaEvKZc62hc/woYKlVPRFtvhv47ZiHMHrjMw7ko8WlKXI3ULxJM0WHK2um27JRYL00OrZhswtYoCoRcGN0x7g8ypwon7QC4TaE2LHie7BIHSY74SD02KmGIvjlZzmC2beK8Z2m4sDu9dxCBpIbWSQ+WZNa+m+o3eQHxrejbPHz7Sxoy1Oq6H7s+mFeFkPaZoGJ0fy0nHjGxQbBl1qp2Nw1U8z1zymEnfKqsf7N9UGS5TSFP9p8aDh9PD4/TLmA9n4MkZwzb/gpqZ/Bq0MHHHiVNswvJEvwa71S7Drda5j3nvaG2XftypunQ7A+Xw2cNrxg/ZYUnOr4HoLm/rIwHq+7ZhYU34RpUDm4eH6+a5e018PiW5X4OU/3Zk4ySYKhijTsaKBsuH/NbJgKdIvqS9AP7MkWEwpAIniP9C/gFD8SFdrXBB+ILg7kqNo+zJLqhI0YvOMRrree13iI3b3+agjqwgjIm2RD3cp7WzPKNj4gVRJSmzTysCin6A3cHcnxftMFgBWXnQR9gSzU0Icm5tsm6aHfEEYNDvbWwmx8hrtCdKkLdbdZ7TcBzkAu1FcraBG7tlJNK+QCu0BxA3p8ZhmM82OFMXvswNc3zh5wfLIurhq2+ewSMdV2XPSxW3ZNw9Q3zGDwQhLGjZjGkwZ9ST0MpMehMh04ORSBCrFPDxgrYtYsne22IPbpkxpC8AXj8gYE0jBB/+LzZF/ECD69eqCrv8ZT3W4VMBmrxKM6dizILvRAGCMVvVEuDOOicqL9Dlbz56/DLKqmDS05DGhZXtc41G8vwLTvMnZQk+U0Op17YP8Qxuv7GBYFpzU0N6ON/V0EY74Y1zdUe/mIeAxwLrPTIwXwI94JROIHTJuLCaGUJRLdM2Ww+EsrTEBdAeGTza31fNI35DeppfabJ5zy+7WH6/etg5MOwUw2RgWsKPTo4cb4wMsglgBorhcc+JNuLfskICA1KSAAiXoud+DSAWceE+xKkTNwHdxDIAFhh+RHesiXUUGCWhbml4jL8IiXr+6WcJKsDXo/uBQsP4ZaINmJSHainsQCP3NBPQ6TTh+iiACdt9cSvLUmoAeo3yyeiLH7ly8ROH7WxQUtOqvDwSJokz/WXW1nlAAzRhY+MEUKFoXtN/AoH02cX8WXxaQM2vCi4h+S9rrRzG9F76E4JTPFm6sK5uciv3fpWO/Jt/J+w7S5+BAIB6lH4HY0LB5YZwQ31e2Nw798eTxkKay5ZSBQsm2+nBe7hYVmltT6NnPMX7+LCwtXz7Eh5t+BTuLDA0NvMerRNAp49MlaUARVTuQNCwPWpksPy5P5xcE5KvNlCF0B7l9hhQ/r++G7bemDeMQ1EYS1pc1prRqmQe2gBfNDI26TQIfb8NZS0wBeszgwqBU7HAOcvbosZ5HPBM1NUUqDzDEacYqMUuuUpsbYEq/D8kYohHC43rGNGoGzcKNkoKubF0aXz4lzvDtX2t0yfXz4MDHgETi/4fl9fGD31pl8rtWtBJ0XulI9TGA8u5lWAtW+BtR0rW5dfZmPME0pXON/w9f7ghUE3S3GQaWZ6yDF5QJJdQnpw5+GYLGkIIFBNIpIcoNnMKul38K2sGJ6uEeXNf/Eyb//b8C8izm3rh10ojDGp2fgNLPY+j7Y+6hAPdSLgV3HOdTmKckRc5K8YVd9RvAG6Y5aw3BqRqWCZ/jnL+j3WFu2xsAEPbemtR83bNht2aUg3BGIza01NfxxiBd4/h0LjJspDRhvAYPZyTwRGel7wG5sTmBeVgmO+kAHNMzPZ3hJaUuDfjI5MVjgw81FrHF4/LQBTU9xAs35Dqmu8Zrz4X7Z/OUH7Fr5htONnLwhMicbu1raDrwU8wWaUg4IW/HHotuWB3vD+iEQVxtrel48pCoHUadpyI4DT0F+hseZmtiz05AzT1BcmJ3qM4Ly8ZfTDy8yKHcXDR+babLmSy91sHZ1SINCfAEirbeE7nc9oKc0dnKinKIWTrXg4lyZ7Hy5KDaDqnTFOGymfcPF50MACpNt7DwAADwb4hIiQl1sHQMaL2KEO3iFlNBjeQy5WBdeAS08uviUcJuzaFEIgB/5jj2onwZubk8JALvblYDpY8UMmayF01dyyE5KpZg0FbLBGv9pYFQQfP3r2YbJlgp/8awZ79VcaSq+BURWq2D4NYJXQ5YlV3rY6+dApJdD+3de1DoPeGBiCk3wAiZA0tmrm6F9XWq45jfCdo2ZS0fV9tR3bfjUxVEdzM9y28OcmdlfyYHznOZveGhRj61rTvkgHq4CvN11nczH4B1Pz4uONDlMVLLtpxQsj8hpVXlz2WCv7MjA7fz+BmEzAoqFj2pxczhloPzqHRKXQcuJ4KQIrvEVLdtg4lw7lDW8XUwDu2rVWvO+0Gp1zU+k1yN5YB9z6eDUXVy64qOG/34FA9PB2JFtKsp8rku91r7MKlDbVTaXTeNU/vNv9LnG8SLv0gK2k3XFhj5YMX87xQU2wHCx1cfzwIKWXcCZ0IKa+tBx7uxPndYmrxjtsirm8+Ot69By0J7q6/sTz9Gm/suXGImaMIys4i2Ua0Gj2eqvXdzuzN2KB0hdNUNOhcdjgcWpelDzGPw4dR73DoRkXHfH62ewnFy7hfeLHtIEMAdMkSBFgJ6TCMlXvWt4BXIIHqL+xvu48gJRIX4GrX2uoU6tTsH8rr0OTk9LJXnIymB890ul7R63/RofxaEVnCiEfjMyohrVLaf3bZxBUMsxxb/HzqIXJ9vAUbFksriWB5ZDESh/eB9tf49dMJRyLIEfMmqy++oCeL83SwlL12ypA3UjEF9Mz7T0W3v4KGrUWvPjG95FHdFTB9qhV2wM4WInTyTfOi/nhnaKNCW7GWi5Dz1gOFM66ApjgaOqqeKlQE4Ny6T6opcQ7IG0be4+rGpdILuvJ1ps5TvathC/9BhdB76gi53AYEEK1iVer5xAWmAW1BFalmEEi0esBaZadaB5Ib74GAnKonzFV0GksXOCpfZdG5pVriIm5qZFVj785y/odR8++VxuPE8LolDAxtLsLXnF09oejwV25E4PJv8trreGjz7d370OzI3gVfAc4xwZ+7zJCe7tBErgohAxAbm1fE1UQ2OXS+QjBBqfs3aLgGaIBRKBog/Cn/8yUbpRi/ITZ52vquCU4yvV+/hljZkyt3Dfkuoffpvh21yg8JEmvN+w0BKLRM7Ayi9oiEQHyGP+MEF+NxOkGU7fcEl+KOCh1m8iGCBu3n/8VT4nEKPyeh64JpaV+sePwvbjWWJ79iSoz/eZSD/lDYgwp2htQeZIflW/ZnrZegYzTY9ppII6Z6wEFRB6afwX/z9dejBhtMVn0gzDaZimyChgXZtbcrkPV77MbB+B+EorGo5HD4ift0fgFAgmqlpLH2bV81tQ38wNkVY8uzjQqrS/86qerRb/w0uWj1yMZvGSy5/npfjDF3TvVftBvKOtBy/H45sMSNfA3BeGD++0OuJ9EnmxMLTABuwuXOjxui6S9CfaAeNx53hvsnbgVx6bcLlIFXbjyhzEAnk6pOEF4VutHIZ//IaBy41if0qsKZVkE0zGxaLP8bob5lVP0BxMTv/yG/+IlxLaKUH0+FkXmdzrrQuryRSwV+iIT+ZbdGFbGDH1HSbz2Wo1D06uZP2XX54VpgABCITmj2o70Nu6uGm1j3/5Yc5aOdTu7+qIXZzW+cKrfQHCOFTpOeF9/o9vPcrqRctGXPgYPr4CnArJpnjlY2zvMl2rvrVAZKAMzRyfN28w9Qagrj6UYH4jb4T+gxACX86X09evcOH+OpZU/ySbeI1HPbyVlU7tUyxay9kLO5VJl5QeRC8ZZmljhnDaJHvE3rwCk2L6GaCb5Ey9uJqG8euq7C+/YWfnVc2YZHOimULoYHwSb8FcJNsM/C7Gmxpt0ObMnNoNfFm1TP/4HkvS3Rn8euODNu2HWyzslAxIn4uMNv0U57PVaSFcPkJN9Sau4rmR9LcGinUwPE6/gN2KOQXWTAJ8vB3DYPg8ixKWQdXS20H5DsycyAbydbGmmiv3eElTx4dXB/doDgYLTEEnKmAPxxcO88c+kOE+KaG5JwbV6WBY7FUvERRvCUPdrTuCRQrSDPgxohiBhwC4oiU2PMLJxFXV6PF0JBsb+o+R4Os2KPNpRIcU0i45Yasa5oC0PUrVNmniFY+5Afvo6hs4MkrW/G8ObOWnUHpeROpUAwx4IuYuPO/pnR5uHc+nT6QvcO+PD/qHHxc82hmI4mOE9a1lNlJeH0to2aOLZKNyufyXL1a8Qy8PnlgsIfP5n/39nc8CaSqANnid8Z//9evfUDQkRq2Dha15c/E30IFjQsbf1csFiUATxC/aoDW+8C4q2fJnj2RLtF28CHMagr0TPui9Vi6NeDUlBlOtPlD92Wr5qI2wBz03JiJnlccnAZm2ph7kgICzpjfStQ1V+LjrLxzDhg8LzCNVjWIcUUPi+4Etbz5C80FM6t0j1MyjYiSamt1CpBCdBaRQjzW8qxWi5Wma41nWzQtcPx97nw7HknsJetBP1kD4HJ9zxiFYQOiFO2oLgZLPsu5f4HgzRLp/pL98fmV6pvXu60ePSAuGhd9SFz7K+kVEwPScFnncaamiH+g9iM4NXYxrC7NvHSPQ6FvAhceD/ePXscTPzfSu9R6G5roIqdAtPoe9COHtRXdIfXVqTqNv1gE7DY80atvSYgdJ8YAdh4hIP2YP8+PtmUBiwo46D5Dzf/hq5Y9EVKtqYELPFUgMY0uP2w8eKMyTDFxi+qXB9mHnU7zZvAGtpRP13iluWPigEliqpP6HX+kf/xMnaUHj8eEA8ThuTIjexz2Rbl0NFjndK2BkkomuclcFRE73KrT80MXJ4K0lmn6W4IcZJ0TLaxosvMKluunlhgB/qoJ/fNIj5EODeWqaqd14EvzTV/YyC3Lxctn0qhmOOj1UkQDmFnoMPO5VjfUHrwLW2guBW1duqQnzIwDvR5FCFGMHm4J1DOTolHXwbE4ZNfd5x99Fv5PAii8p9kUpp6ueCGMdV2Tl54MwtNwGz4M+Up3kr5jXt0sIK60WEfw9uoY93cXW/vSHm1oNA0kujglGUTCwm1VNPFWjd4bOMF7okWgkntY1hxCPOFy/3wOjRKAON0iu8DpPyVre6noliVCNqHGlNMsE0QaWp6qjYXRt4394XrfzEfsjAzGP75kCvvfXnYbC59fw7+fSwZzqN3r4eteAd9+CwP1AnkiRUgbmcqP7UHoKEvnDR1JY2y4kn0uA/+nN/VBIwDXRjepz8Gp49M16KN8kiNjQVHx62V4GkYdtalysN1i61K2gux9v1Jgsl/PnLleAAq4WNTxggWlqjRJ8kBVij1csXgRlX8P7uz7iYz8d+Vwgz4QrvyFaIY6cmsap0MJfCKiJ+a9ZPi2KAA8vb+ovERjGseM+nG9STnUV1DEP99kFPmlNqMuUz/BPT1/5AfnLH9y63yu4VcSehmfNDWZY+yMMCQFo51XLsPLhCJ7glOJ0ZCzmzb04qzMXSux3VcaXwLd1lbvSmywcjM1ffQO+v42PliYO8tU/hD+9GntXHQWMd1wAyyd5UewcRb70HiKgSqqFHsPj0Cx314lgEZgZuiyDDOR8bRk5yGjExpu3McuU+Q3jdqqp6+fbofsuKoMrX0Rjoe2b6cX0FILz9YzYLSnAn54KLunUUvcYPMH8ab0Fnk2akboDY/AvP5obYmMUHk/BEqLQg1eZUsKKvLK+4/5hw4MffulFAmk8ghYWYD4JGQ3T6Rss2j7dwOZiWPRoTX3+q0w9gb++afGfXr3Wa1y4j8Ynjl5Az+fze1Oq8+byILt3erXYUaQqaMTGxYg7QkA8EizwUzZH7Mz5oxnj886F5pxDGqx4irLvI9sRUQrpkT0QXyCNBNC5xgMffw9k0T89+fM0EF3rWYAhW+lAVZsCEZ8BaFjkKwI09vcFH81H3/SCEyGocbFCSpKSgDuPUwfuVhXg8qvFAZ9/jwK6R3SjwfGh53Pb6dIffiMz5S4nQ+UucPwkOrVQg+Ne3kWlCs63M5FMxVgXAc669rzo01q/+vDxWSw2KAI9o/FuiAOm+PD8rx6UJFENRury8h++Nu+D/6entKAo9IIaT+sTc+t+qjX/iCaK0ukcyFJwVeBuf3VX/XYc+GAVEJ4WfP/D13xGtuTDAxxHtKSxz99bF0ow9NCO4vF4z2fkbhBk2eWKfZkBPi3eQYFGcxepxxTWLG3nJmBzvTV0v0RBMP/l42evE4r2YhQI+okwQBXhTPWXq/FZL6EKfx+rpUYGPtZYkhmqf/qLuQwhYAefeTD9TRvynKdds9hKkO0WKWlwoEcPi/u3sw83QP5Qe+Ur3L+eXU2r5ZKu9bN8+UTo/KcfUAvl2GJ/+DE0yQ4fHukl5vz+6KFrjumKR6/W7Jhipq38HIG79oqZcW1VQAxrS/WpLTmPrbMKbzmVCd/nJB/9txLtVj5AfTuVwZJ04QbIhQRocGObgc6/RwlP7XSje1EfYr5v7gJsysbEOHPkoRcj3EPlkGwxRloyzAoxU+1PjzWtuBvGsGPZn55G2FqPWtyN1cJQDTXq4XTKGWUgBSu/RnNrucESKqEL/un5ujfzRd2mnao9ro9/etWv8fUWSlKyQxUHr4bci+MZsLt0oeh2nXn37tVKPczjSP2uUsHiREENM72OqGcqY05F/mDQiVD8jw/Om85XoPqREYJE68CsCv4bSCBRCHsPVTPmcB7Bqm9jMwN+s/B76kGjywV8+ClizrMhL+DOlR20GKAbpjWfaKveghorRsGiHU4m8B6kQaP7+ATsr14o2ReR+gdFCcZnsV4Z/OgqUZwubOafe/C0+70OVz0UDFw/nSKAVOyR2Q2ahq31SADnW06A5+jxnz4O+pvVE1ho34H86SEtt25UF6w6mIXa1+HBR1+61mf4XHteDT/eK8RrfORsJ8EIfu/NHS164w2TS7QMWhD5ZDnFviUErXL50xtWPegySLEUjnC3u/r4cNX5UAt5FELeJV9q55bI56eunyE8yAn9q3ctOAkzYMhIp1bCMWBrvVhresOmp7V+vPiltS4RPXp4j6Nvs1ihlf1fLQXgf7cU9HtUIuEstDEDI+9VN7wfaDBF34DRjRhC6X5WqSP5fbBUSD9r183+Sve5W1qcjNBV58xdJenpETNtHayyp/2DHr4ksEQHzwTKiLv48Dr6gWgULx0iIor0sC7N4PL3J4Hk1zxoYHAtJ7RqPNhZlU2TB1wGHj5+/u6rSiYO5NkLOJNhAdyUIXrdn6N8DuJ6A93HHBJabf+6MpACJ/3uYOs1jzHP+kGAzdG0CcROkbNr3khwKpYDPiRJF/BeCBDch8qNLMtuvcV5KC5wY8EaZ7Pu58LuxSN4twaDutfoZLFHcnrDON4u+KhoVs6KaE6hbls7Ql4/dfikv7mH0glCxOMyzfmLaxEoyLGnenK3YhZJkgC//azSo7TUnB3urwre6nHCz7L85vT1nFNNv94h9h+PFtDq5CBYb8+QYir58YK2Xg8apQipbnxIPvMXgjBlCsDW/tbypTGiDezb+IUt9fPK5+fUqzCJ5IKAh8eb6QuLCt6Lm4mRtEecevkYgf0BX9DWBxaXUBG18PthkOq/W8Lnw25zgWA4GrRQ1t3YZVMQ+ORzQvGTSHyB9x8ElhU22D+864GlqtLCBD9TbJ6sPGaM3WsobkORmsduyDn8LCpMN1+V8P2tBctc32o4mkjG+9+mtpZfPKlgu3wkup63tbj2GULDQz7iqa8G84+fTHj23Dc9mA+Ly7ulRtCq4xYf3a2S0/1bOcPvZ4E4eCoNYFo2elC9aRPaOJk48B9pTEDVusNeWYTWlEDD0xrKfFwatsDJFJaLmhVChP3v5stJeEoR+B3MCB+VNI6Xwe8zsGPoRxFyb9bE+wzCp3WJsD86u4Z6+y4FMbGk1Z/cnDpBMMLgdzljnZy/A89YqMOhtCd8NcbKEu/Vp4f3reOtu86NgBttSWCP6gK793YGvP6cWlXaqzLppi0elm2/DpLaKDb1livLue00NbTkZMToWWYWsXdZBR/6dsY6VLN4ib7RRlNqM6cHLsKBU1BFMI+sBw5be+ZzxS1b233rLxG5rQCiDnO5zdFwJ6y4Xhp+3tRn7VT0BT78dkPDtW25UZWvdcfWMxoCcqkMQRO3SKS68r438w4qKcSAeBSrHsxnsz4g2Lz5AYFS4wHjuupD4/4+0uAxWQO3798UdiFy6NFC34Gnya2ENLg/iNw8KsAO0ydTleuQIPARRGtZf592ewwt2anjpllecVeAv/efjj6zxjw4Ie0r+1syvTYTGHbX80VzBmjRyD1hwJ/yy/77fOo4jwgwr3NCeBNchrFu1xbXLdKDJ/6FdK/OosWFmxGBj33NsO4kz4Al7RjCJPYLqn/a1uLB2jV4CAEhHRVowEX2SaAuCXtcelUL5iOWffhbyaIRPjTO4Q2NMC19AUkhQmB6vksVjvFbpQF13GbZH7ivrb+HmlNc579uYgKchBdCtMZpQCP+UiGTE47dM6V8XpRND6wp+lLdPVHAvjauYKymgLpDYwOuKn4Gf5p3x+gR78CI1b5TkXUneH3fzXhJgh68wS/FR1FeLBa8f4o6/raAaJGR8eXzeyFt38KCejfQczZxQYC35NbhY2So/J895rlZUhtUWsPOE7hAxW1jim63rhmBvm3B33nj+PvJl5903cAdET402jpqw1tcnsFXFUycONM08Cn9jvAtdRnOzXSKu14fEXy1zoT18dFZnIIugj3RajLmR8qp+/4yGJl7H81t2AyLdfIjmJ+TBzW8vWbxIr0k0JXlEzbu/iun2hDb2nXn3ui+rlnAbodLAnP0u2P99juDZVyWXjsf9zVFXQUHqldSDazpvN6KG4XhfX2FOlBuMKHuzYkG3vQzgx5oBiL0Uz/Mmu2YUB+ZSVGrjkGTvZ4SnEdhS51EjDnXQ7WH+2t7J7K1HMCy7c0aVF/wRO9As2MxzY8lxIzuaeASFAwHqvTwFJzvNNS5Pyx+Fo8QevCAdWnzCxaveSKQ5NIDSVlgAKbf8xZurE2NNpdvmpMaw37XXZQ9zr8/YRiq7BRq1v37xsfqQHLW4yjVlC3NCFu6Ll7qKazVZ32PadD7Vz7u0cvTVJ6LaMnVh8VxNEswotIJ45vWWqN2tSCUEk3Fge/rgXC/FCMoP1+PmpvhE4/+VSRwq7MJ73N3E4x1Ryq4KbqGplTAQY+2XqdewyjEVjB9B6JFjw2IyhJhvBeXgbSnXQXuyxKSmpFzvpCTBCEj3Yy0h6UFUzx0b0ir4o2kzUuJWUKVEJJ7eyHq753GizrsCihr6gljpz/n7If3CkwTSaLB1TAtUWMHdye8hwZ729syjKLmRjDT4oQM7f1jLfuHbAIhVEr8mF9zzqP+qmiS3u7ocSnqYJ5Nf4QfT3/QILzqzXxW7TOUo4NPvTzJODu25Rn0P/imJmlOfHaWF4O8ljJsMrLERINnHZhV+cBWd54alpyrBPgq3lPTGpRg+W1/G2hFu4aGzyYamMk9H17fxonAstuCcXoyCO1TOlN3fkoWe75OGwAbE1H39KziRREECBGRRQKDPszFiAYKxGzaU0dfh98qzUYH408DCOCMNj/r+8vAiuewLdOQL+froYDbMRTQnGWM0yn9kp2CzxfsqoHcdAd4arXgl5zR6SJUw0xl8wxDuarwX3xf438IUv85Y0PXg4ahA8rWIdgGkYrRCiZdSAm8462Gfmf9m4/dmRNYmqJJLXZ/WizmcQUWScdYP9xewXynJ0GTtLuFrbvTA9bZkanpPLDRp9W+8QLvLwgj6Rjj7L5vA54Vug/6p/KkluaazR8+09T3ZaF+drs2i8NQDUPvfkWsuArNeIgeFXxoHNBgPX8u+/cN6KzapoHvV8ESBEyHfrls/87fWsJThIBBNYSxx5pmnh6PEbzBkKKt+7EsfjnUo7ZLvDdhn9YN5BacL2B9XmzCyrFY+qgIzEW7oalWc4vlwSmE3lh22AVuF0/eDZ2BYTd7bFRgsZgYqDXYt5uC7j/dK2YKKzfQtwlAfRpe4ynKdR3Ou9Cmp7hBfIqopQJyjhIaABxA47/dBR5TE1Ed/FTxTv3vZs+5OWxUWFZvn2I7M8Fq36oqfvyZ+scrz5fnkPp/+JH+5Y9ZmmkNy6NkoSV9HnNZmdaW1tX+/+ERX0wlePlVLt5zlVvsrkcCfKGkQ2QOy+CPL4D3sr2hj9eYwcI8XmpB1Z+wfpwMPvZjF/3lD7T0x5PVH3shgn/+82ffi0nOHljtGYldcwP8nss93GjOD//53wIuBlNt3SQrPgksOtmDpH76paFha5+AOOlHCaz+Tu56Z8fLp3ogiIXM/8MzFrulXg3nzN7RvWHuGna/FAT69ghoUFt2vlzNHYTB54dRN5QonneZd4HSVzdp6KlFwHG0E2B08yKaJ6dTw/znYdyxczzRY6kUzbI7GCn8LUFK95rs5sI5CM7gMFsKOoUPDdCvvqwtjPxDHfv4yhm/SCZc4yHp4o8fsO2p6+FWUCW6+tOwiFFUq4mx3iYElTYMJFVCWM7wSE/NYOZi6CcQ4vN2i4942PE1Hmyg9YHroEZ+y7nSbEwwu3cJ23m1B/KBsg7uDvyJ9+g38FlNigoS1cqwE9uNNW4/YwVv4anBlmW0ATXaZFT3tHvgVDddwLoDJRDTq4Wy72YP+qi0IfSrwMIrvhkWDkMbZEF5xCH0koZvGD9DdOEzxUIdBjImBtGOxvuD98+9HojHcriAQm3pH1+Mp2FzT2E6HWWyGSUtn97obcM1XmKnNaWBV9rhrH4v/yHtTLYeUqIo/EAGIUKVoZ5EU4KIzEhEkEZXhXr6u/jv8M7uC1gsp9n7O9WkAkHmu9amR3cpIHPQe6JXytGh+71Xil9N3eN+1Vt8xzoujB+Ognkcq5TPvIgRf1OM0P1ZT/3yOQsV1HKxQevzHPpK3in8dlRc4zHRyNGzG6iXTxYv6NGBTnU6HXzKcEI2l7/6ydOwv+kxJAvPLqfHl36XmgCd1/x/a9Q6QBu6inFFDs2/+dgmxxPcZexMtn45lpYlb/oEz12l56N8tfcgu+8D4p5IXs9t56lQTdKUxEO0LjGwxxKyufRCZsVr+bK+D5zDBZDTzTKdyTzKDHAntyKmVY0aDgqXgZFznog9G+WfH5VYYWhRuAhhPxBbCeCqf/1NH/zpnc717mjjAcMtjgfID5VP1jNbIsrd2wJ8bYVFluXdwHRSBBY8+eKGNDZTtP1cPUtwKqYd8YPztZ9ahA4iV3EzBpXW5LO3EF90diTCPC/rOc8Xl72w/j9UjLkX/cDJ+YBu6T7+e2bbfFSjhwxW/40sJIAIf+13BVf9T1RaVP1vwHEH5/YIfc5UZUpvb+cHxu55xJx/DCP8eJM7tA7x06eZeIq4JPBMeLvGOkIqUnNWvRwC+DJ+X/zjPwpgN//fHPeIOPDRgkUXwkqqFkZGx4bJ6HQPhAxQ4iTIvA+aRs2gFqESHFzkW4hzetRIGJ7Z/LXmk+YsSuZN4Krv3ugoLYiu/RvC+3XfEiN8Uofw4D1s/YkkmfOiE40ZFSD3I/kVj6KcXGaRgVv+q9yuBqOz7tKB55+D/NYYenx5dyq0rVuFTkN3rGkesraEwGAjM2jQqrfJIMo3c0d8zpOdUbm36nro1Ye4DVvlU2/qqaTGRorsvsD5eN8tmdTFoCDyRH9gZrg2hJMsdOSUKDGlm9+yZvlFlGFswEJ/siuJSjNgaTorYAm+KQPtzvn5NCadRr8xcxdLNmww4/dfbdr0YiadE6KYL7fHJ3xdL27oP/icoqCeqrj7wTbSL8RHYN+3tnZK4Zm9vXzBF/fa8nh/C/Gk3gDZ+smfH1j5if8Nd+4ab5YI62Y+4hkfDG1ov7IJ77vviA+q99XmcVBEeA/KnriPNIjYgmlZmB0dD3m7Qo8mRrr7YPXLyA0SrI3xbE9wqtuJ+JLwqsfmOulSm1oRMcAkRsPKk8AbJTkydE/JufmZfeD7a5SYrnqk3/xAEXsGkg2lzHHMehiuPAzj2+EIRrN9TCD4lRHyjqcULKaeQRB4ukPi5/5Xr/V2EELojkTldOrg3OxdeEOShDQmWZzpmRoQPu2Ljyqe1fJp5oQBgvNJQlpMOgffXScDr+fQIzS5ffRu6U0G99Yf/F0aWc6ab82m54jv7r89Nu6nH3yjOCeqmts9x4Z1KDWBdybe6rfnLFQYsVWG0JdWf/i5t3kIY/FwRDeTNvV46rNOXPU5Ul57lW78CoTF400cMWyj4WOBBIw3y0TKEnHaryBSBzEn333zpdZ0YHmsw3gnWP5euQ50/lRTARVU2cgW3DCfRPBMQIwKxa8N99PPl33JgMrmKFr9XD2q0UWFqIsN5KpaprGkm2OJpsvFB68ijoZrKpcgDE+tv7t4FzDvRVBCI2tkcgNnXE8dWrdQlPTiU8M1++UYgxI+b+MZuUX0cqgZ9Ad4SeIz8bmKAViub5N43g8v/x3EIVjjt4OScHiQG2f6Ees0rwPU8kODfKVt6NSbbgZPicls/U/Dy3e9yMTyC+Kv/Y5eMbJhLM8SstiA1cbLeGfAtVN7cuyPwKH1a1zAsFMUvBvNzNl4HXhMJsTXwkXRtICzCNnoXBJdO1dgtjU1lbAsRmv9zCM6vgCGp+tDwdzKp6aazwY4WIjDr6QtNeIZwh24Nfcgp+55dMbm6BwA2fNvciTPHGz6FPZH7Ytf4m5fD0qQmnDlC75kEBtsfBDEh+/RJ7c6qSc2K3xxXSKw8RZn5QcJKM9VQbTQt+m+V4oMgrFSkFVeEe2sr6ZCrTp/8OZXNr8E48dR2fRo9GGaKpYWBgc+y4ljNFnVqIrnWivQqh8des20AMrMyUBuxhMH60lXgEeucOSx5jfWO5zAQxvfSNSPj5ys9QxK9+Plj3fNtVZjePrxOvISN3f4uQ0m6XcDht+jKYhW/beHVNZj8vhxCByO8NbAm9YqyDilSr9nC9aFq55BPueV2nLVP8lWX4h+9GINK+bxAHH9u/lLeZYdVg6sDzwppozM57w4rfgsK6jFn4/Pb/q6kwcXPscsRhZplpza1i+Dw/4qoyNn4ny5u1oK2YSpt/hcTymxGHiOmBzPAS36H7GPAbi37oDi0m1ruumZeSq1dQvdiY4yG2C45QNd+f6MjY8MrSLMkJ5O175Lo6wEnwj0OPzcy2jlgXsoDK+3LzzVtsaO5CxQZ088MmR3l88Zu8h/+lRGlRLNQsDG8ELkEPm5LUTzWk+AHViNz++G9+o/lULKj13uTzc2irArXBnw+wQnJIO4BXMB/QaYCxuRJE3UiDbRyfzjcezKo7Dym5nDuzIrHGp9quG6KFngSfJATDgcKAVS94GG5okEZbZZ818el0J9GUzi3tbBa3zsMKz6r4DByqP/3k/QlxexpSrS2Kd+MiGVzZg4uuD3NFWjBuo2Jj4XxAsdgXXYQ2qlIT70hf+vfxAUq/AlOpz7qX1AE+bGLkVydKgcepkXZpsn+IflEkRL9xVDaL6KAEvmLo0oargB0u6UIuv9U/L2cxvusC4yi+jWt+7pLMU/qM5s6Uvza46mro4DsM5rkJwR3ZkFOGUwVeaJeOe9mLPVvFTSTl5Gf3oF73wZL9UC6JdPffhIg5z6znoKG1/csHCMDTpv+nPTbzZBO4eUZ88XUSjtiNMRA8xpbhQwYT41seqHDP7qIdJEiIW1PlAntSH4cVdv5SHzytcDFxbGSSWrPul7aZdAaEiJidl04vvBfLgsUA5tgKEV9/0S8XO11UcsTNPYr/wqk5T5EqLbPpHAhIWLCiVGyNGJSxyNNvpDFFHSqvgwkFL786/GXrWRf/hNDm2mGwNWv0oegSICandBAdBPMYin3Ow1XxCET2a5+gcuV/p50OYOrrwDOcI1rRtrvWjDKCUVQ+PoRFSvaApUwS58cjgMYD6+xeJPP5hEMPrl2QcnsM5/kCdFjTMsw3uAJnEQkdOmBtPaf2BjvRB+FdNcz2ctSKRlTDwiaxPux1p8/sDx8p6Ik1eaxlJZtLf4QEjyvZ6aDZmA/JoVEsfZHvTgjEuQNNVz4zX9pOVpAdf8wpxiBRp9p10IVx6Ax5UHDs/UY2C2+yR4T7sk5w1HGyRJe8abngLLR/MSsMUbgu2j3ng8VOd9SfxI+YK2Ynd3sPXDZN1iy3WH2YWJSa8EVezPWXmyC4VHUZGt/k1A5huw8lCiRrSvScdqrvR4xBxykxeO6BpfYI9jmWTds3XwUv1U+Dz9fBJllyxa+NAV4Un0LB8WkaKxSpMzwIrON2Sn554OS9qy4KvJe4TcFxtN3HOfwvx6ycmZu5lRyw0oAUHDB0Q15zanPHhjSbo7l02va7TFvSrWs+2jVQ9HPdTUvbTWE+LPs+8sl3elSuv3I3vcoXqKrGsBE1EoEUJnveZX/gBwGCa+uL7/IsFMhbcfthA6RHcwb/qR59wAqWr+6+k1c0IYhnbrA+Z3cmYude5wPygyklH1WnkehCDeAQv5O6w47HjWJ+kXfi1/OWsgXx7n/iNs9VRnPpgurDLEUAwhWePH75d292Ig+L4YH3TEoPM4HA+AiybsU5Y8wWygeZCq8SCQrb9ND8/7gPTnCsj29HbtN427zVeJqbluTmVSYYnJrjXx1n631Vtpe35/u1aUjnrPwkGUNQxKX6d8ZSsDXHkH8hvSg6Xo0Q+6dn5Zed/OmYQXDaWV7yLbrL+g3SEjBVPcjCj92mO9rDcqwkPQpUh1R7Ge3gIy4cavQXI+94ujDjIwjFL0+93h1k/3Rgqh3hccMRBzBos/3YstXpDSVXpErxDE0ucAZ4RGU3SWZdYw/NW7E/4ePizAnvC7A6tp75hfOq2fbe2UgSRnH0ht4LMfsPCQYaHyKjmVhz34m1dKHy9DGhcTun5fB6rPB+BdxdoazbnBhafrU0Hy/nbTJsksQ3i1gjcyD8DW2H6R75Adrw05LrLkbDwPcPuSRUbNJw6P97a58T20zVN+X90qwcNhlvXiy3V+L/Mf2Bfm6I8HqY7ImTAmfBz7hWjOaPULmM8d3Oa903F4gikzZvV/LSmA/72kIEtJ6H9jOaZzb5cT3PE2ItFZ1BzslykLFmcwSC73Qc7tx0yFF+njkaP42kfkyiQxPIVcS/TFFev5w1w+EDGM6+8mz4sm1e0yMeHuAHksECl5lb0JdndbRTcpOYKFq7gOCrpl44nWdF0FeGdhy1YCOUnpFQzH+JKBMi45dBIeP2cSxBDCJCswUR6Pxunr51WGIe9ekat9FTD7htKB5+FTEHPncXQyxlsIQy7RMLMz1oOv7zOGXLmfkZV93j01zdKXUN3tsFhLr3p6cN8JsjfRQ7ao1PnClmcdlqfjTJCb26CNbtkHuiBlkUyXRKMf+AghmvYvH9x1WWuvOkoAxaLs89UKxF8/PYEZ1RMMnO5C5/TAZVA10itRM1eoKdx1HaDhr0VOfxej6RkoJeTVU+qzVreA8VX1GRRUn0UOZ75ywn9fJswZ0mPp8+xyItqBLN20VkOupQ/9WKMpkJ5ec0bx6Wnm0/WBfbC05USsXO9q+kiuUFSnrEFHPXr1C349WeB3rIUU3S2j+X2QU/g7xwye3GJPySiqd7j4ZU3u84fNBzr2IdSra4xrjbeifwAAAP//JF3JtqowEPwgFyIiCUuQmWCCIA47QURmGRIgX/+O9/0BabqrqtMn1fvrtnhC2c3uxN6vB32S73gF9uOISKRWDM1TzhvldD/HjJipjrjwG2kHWD2yV/P2ovXEogt4rp5P6/dDj/Yd217kTWGoxFBv8jBUQZof2IpnynN7QevH9QvYulnAzNKcyzUIvBAow1yT0zSF5aRt4ivQv0VK7OfO0cdFDCrlhGz+yxcDjVpSSfA9nQNCsv0BUeqrHkRI+VB5kM4JF7aBBGfZfmH5o2doGpxuBtyJaiyv+z1a7d6XwMAHxAx6dCJOzFqCphRPxPmM33KhkxOAIBsQrfrfyJexUYDK+VEQ4w5EsOI095XcnFWS9HVe7tz9SZT3bHukENYy6pzf4gupCV/EDqY02b0urINq6TW0i6Qg4VHiSbAKnYBot1hCXHbuR0iKccfUg3xE68Mv7/Dk6wohWWYkIh/6DfjQs0hQq5sDf0+uCp8V7DFIwYFzQdcqZYmKG9394kmv6bLZ3mQRMRRP55IObd4o3yvFRDM/W32KLy8ZCPtRYoaeq8P89gNJEfZUYn5sOwkNIlmCtbSszPwOWvk/viWpX8QjlxiJi6TKyvPxTcm9doWI7p1PAOMLujCrkaA+PBtawNS1GPHUb5F0w3QuoA+vGwo9pyjno188lcFPGjp/bD1Zp6KUYczSD0mgaaNOHoJMqVv8xoePFugzfbMciuLeYzpab2hZfrvmdtGXEK06tVHpNegI9bZzyOU80YHrXSzCxQ62xBHfXbSqz7mHVX4wyXGIBsS6QpUVn6GUypUASr4zGw+K329Hd30k8f7F2wx+49XA+9nyEe8428Dt3iPMv3zL3y7g4AorU5KYU7uXZL1MaqEUppAyy31Z+pwlyRN66tVneCOGOv9U0ai8xrDHa7p6Q6dEeQe3GObEOoky6Kvlt+e6F2yWfWuc8GN9COD7UHTkeLhaYPk06RHqyXMmWi5TMEU5F0B0MSTiS0nL50gsLMWay5ScUifVOdF2IXxoM2PuM2fJpHE9U9h8TdnRwDRahsBT4VuqMnKyLblcr1WEQXysNHaJiVsuIKhzuO5mh703WpOsvThYcCRyQQV19y7ZK2RX8FIvF/ZaVKT/5xszfVzxOhTTUHTBNoel+unosip9ssTBFILr/kZoH6eaLtyi7g7da+gyq7Q3w3yQnxDeaMWJ9fYx+MNPRXpqJrNHzgeGbk4BYLz6xBFpD/jx9wpTyWqdaSHUE/4yJBkW5dcmuhqPw3J4hCIEyjll7o+fxOBWFkB/Zg3djFLDZ9AkKxxVYSLkeJ8QX18xBNXlOxErGHAyvU74KY0HNWHX5vsYvpo8UlgVy4PoqzeWXFzXjZKvtxwrXhcP1G7SEOiqXRKy0axITKcwhFmzFZnLjaFcx/7kwMIUU+Z7u16fBGKP0PTHG3HMnQC4it4N2M3ljBfz80Y8vlpYzi7pg5jN3UUz+ZgWvEXnBv/hq3iLgxFq036hcp78zw8V6DKqiQm+I1/Rz7VAlFiGGWeOzsXhPCrhcHCZeztdOV8/VgPLPfeJaga07B/m0YECmj+/K9ER8Zu57UCjYIkdlfyhL3P13MBlm07kdBmWhG3TDkLVG0Tmmh5IuNSfenmJ7wM9mI8Xp6d2NeBuecvEffAWsEBOINSl6EwsF+vDmnVxJcfLdktnrfpE86tSqayAV0VUp2z11dplK3CM4cPsWpj46BuWAGNa3IhrFBVaDbEX4N1/ZHT13UxfQyxiaASzRoKuomi62dsNGMT3F8vSnJf8vHuH8OIHDYmpIUacW6uvDDcqEGd2nmiotacKN0L9e5Vlf6PZM58y/N6bgukHN4yWbXGWwA2Ob1q/PZWvWTVCaFSkIwgrOFkexaM/COmjx4r34PoiEJvKS233TF9AjxYzcFd4QiZnlr/VEH8MJYbF5uiR02kcSoq2Hwmq7jQS1H76cunyoAI/PMYy6mxe/+XLTy/8/Q+07KRBgtuRI4Lw200WrwrH38hQYxYILTQ3yeSAOLYzOnn7O1oj4buCuvXff/U+/PBfkn/xwpsSb/koHywZ8jXuCP7pq3GqKh8Wm82FYSFehmWSQg8W1tyQWyQW0fo9YVleETWp0mh1tCIhOCrKuzzR8jzkw/elOw0c7t2GWNhUolneXUP44wumhVPOuVc87/APv6wbqxAXTvYTHgzTYda753xJQ91Qjlc9JxpcynJ1r6cRiCd2ZkaKWdS9A62AqCxs5gOq6js6SzKMPuET728FG0ZhfGOYChbE0t4nfG9iNwW18NTIkcggopRIK9i0CWBHNH/175u5F0jH3ZucJMwjmkiVA1V7d8frgYFy7bz+AnNkAqKHCwT8kT+u+5bnEbmCsNHn1i86xXyWR9psTzHf/+oHvuVsJXpun/U5a6YQ/vCVbnlel3TsTQ9+SKkxt1qnkk/asAJKJ87Qg4zl8mi8AHjgemdI3zjlDG/nANZiELPMypdk5ZU7/uELhv3dR4sNvRxGkUOJ6+Alma16Piq/+LKwyvacInAIIU39K0PtxxsmKD4MeYt/xqqBPIOlOeIARubWxzuss2S2q3Kj6PiECcJ0AH96T9m4dcCc6DuBiiYbSYbLWDK9/SKwPvzhCUUkKuR0AhSthpykcFb15Kdv7jo3vUCEg9DGdBspeike5sMTtL39IGYgHflsCnIB7bulMTxKFt9T8SEepBa3Pz3sD8vrwnowf9ML0XftPlnFCDjA2OY7RjxDjr7F7VHAQL9tsOTXkj5LblzAw/seM4Mmis4ziArQRaeQnI6wi7hRTRj87w/qu8hpZy2jwi53k6HUyNEUvRAGQS+V7BVsDX13s7cQxuFZPYEcrxF3qHQBTYhHuhmfH8DF4UFhfWCQfog0ReMrDyxlc5EzdkRhpfNvVWewMKSQ+I/8pS83MRAV6bkldOeFZ9BCyX2CL3qozHonS0T9zUsAsVKd2KsJWjDew/QKMs+OKZa0DZ/VRlzBYco1hg7vK/p/vlegvIiX+0YifJAvArk96+zUBC1fVMlxYMYJJpqM1rKLe8MBztExmO819jDCxJXldvdsKQQ0R+vZP/fwj3/NnZ7qUyAA9T8+nKRXDJbL71XZ9RT5WGhPAui8YFzBckk/dFFIN8x1evi5oH0TYnmXN5hPX/kOxKfMmfq51oAHq0zBqIoTVealK2m6HGVglFFGbDdYhnnW+hwmcHdjtiLX+oyLnyvBh96IaTXVwAOxvMKhTTg9iPOdL2PYVJDNl5SRLKuiSdu8rvJP72EarGT4388+9EGnuy2ywZw7XQgP57Bn+E7kaOGOXIDu2LjYcfouok5yvEO1wCnx4qEcmPcFPfzrRzFYIeLW5dopV/92xIehzTlP3qcA0oO1xyO0d2iJXV+FZAN9hh6qh9b8kt3/+hFyFMMZLLZeCuCnT2kdSAXnze+K4ccfDC2xzvd//HqyO5/gv/xS7QaCPrxVzNzAOlpk736Rf/3WHz4NkzNLPWj9kNLd6dpyPlhdBhua6cQK0oFz8yxbcNO8FnbaCAaa6/wrQoWImJhvLwfzdvu5K2G/2VLxp8e6WStyeDj6AvFCcUYT6lsZZA7RiFVox0jotGBVKBsU+jGSAiybqVxhsVE9PBUKSdr6MI/grx85rLcKzWfdsaB7d17kVttWNP3pS+EVC1gcF7P81dMVGp/EozLa98l0h/R4oBP/MjswazRXPIVSbo0eMfp8iloI1iNwJidgBtY+0bLNPoEyPGqHXlTnrq8vzjKZRz892SBh4MdC7eD5Wh7oH74t4uJ1YPy5UNW/8zP/g6/g/mhVvJuTiv8MSw0w0uFGFc8LyrX68jss94tPlyr9cn6XJwovvXnGbN/vAS9SOYN2u6gEHYJoWG9xQGH30RTmDdI5WqTR3PzVCzP6zZr858NbMLsYplWE1i7YFsDTgiuL7K4Cq7VQD5Kqdgn+2m5CnejjwF0uLMxs2uE3wpsdJf5cxZ9epcli3EoV7vRNwMhN4lFLITtCU7pNVPG63cDNZC8pleKleFEPLVhel7aHHjPV/9/zDwAA//+kXcu2qjAS/SAGICIphrxBwETBB87AowioyCMB8vW98PawZz28a90jkKpU7b0rqZoX/vHLn2xLxt4a0/h4BLveNSxcuUYyJ2DpWtM3IYtWl4m3a3ts4fxp9szwX6twl92/OiT+1LKde6/ycXXtXQRnesYrazpYXA8vb+RJUDLXXa+s8f6wTahFc2SBIlrhWv37UBXTAyVu+fCSaQ/HPXSXXmL2Ys/vgb8BdpGhYfb6a61+Urf4Z0+8OQvHpM/N3Yx+eMWNxGc4h87aR9G9SNgpiA98hY2rCWFVeGyHxH01ql16g+768alqmBeLR9fBVdcQZexvh98dP3SHG7SHa8aiEhk5p/M3AgsTTEJwPiE/bDwVvG93pNLyftT5FGcYZv9InNvjwaeVpclg6OIB//x/GiCYUXWbRdqY0x3NmdbISn+HlF1++tJdlHz0ak2NectE5h8/hlaVEnIsJd2aiyB9o/t8sMmrmtNw7L6FAtv3JiZ51904I86gotbeKcRYe9AN1d+bgi2WKzydm7Gbt/HJRuvTR6RzcXS6f/z5nfgyI+Nul68P3fUOXaUv91LvZd6m+6OOXPvlkPCqt+GU1QKG7+phES+ao6qv1rs3WvY/CVZosJb91ao/fKY3p67i4q0QoB+GHSEoihG/JShDP30lhOO3+4YtU6DY7pb8nhBrFh0z03Z1OdDVe+t2sn85zPBnridcFd4hnP9KPfvpLXSzkTD/x8dvfvDC4v1uJ7Jx4gD5Q++x+E03iOJbseSfLieBv38kczkXvbbffFO2W11FvuiB7k/PI3E37a1ZuhV3NHbnhkUpX1WDin2A9JuIlJ9WMRoX/RKwugySWOI9vRqHEg4+wyxsX3ol60tXnWHc6+TPO/1Z0uq5O8NLSg1231dDyBa8CE3fhsxBCsnlS+UFSI02IjOX+M0XvQStn6sL85tbhCYpfNg/fLXoe0Y3lHd1hE8uDnjq/bU17KJ2KSF8CTPkvYnWvnyotYSlDkmztWxxhAeMppfTMi+qWqsfrvERnplEcO1FO/7LT0hqqzPbdrKVzNqhOCLp+4noTFdv62tfOh01dnijn0Q2c7Yhmxia+OCz7RpriL4uegwLXsUzfVsVL69bCb1ZtmMmUfOcVnR0NeLO9198Sfh4b01Qri4i3st758y+5kfoN2bOLOKQaq70C/6nr/z0wK8UPlz04/N2sK9Qnav9Hcrz34uQ7fuUTzXusfrTn6MqqJZGToTCoi8wg7UHNCz68Q+PMrx1y2TcXzsZtjxocRUe55D3252u6idTZb66d5C86Hmg6eOV+Hn914309KU/vYNZ18sOoR1OIojuZUKC89bvxkqVI9D2fylxJr9PWHQdbPTDR/75biRTfkK98klLl4VT7eYr8YsC5Gq9xhb+wLk2Fj7Kss8bC+bLqFbrUvd/+hG5P8q5++m7cILWwuITsQWPXRskf7uGWedkjei5CWW43oU9W/h7R0XjOkJurEP82Pn7ZFDzdQpjm97ZTx+e2Bq7EK6cjG0zs02aSAEFfvwqKHKX16En3tH8LUd8DKjPp+mU3oB5uKIyil1rPBw/AQpD40KccfNFo96yDImP15eKZTBV7COBCVrfM+aZBU0W/aFBi95BuW9cUa0lTQuX01ZlO8k2LL4SIlldUeHGTM08huPfJPqqkAhHFlYi65pGK1wQu7XBvOZrJJP52bzBk4SSHuxIT75vE8eg+gUmu8fBtKa36e5h0ZdZoH3UZLrY3hEt67/o7zEfVRBL9Sp8CWWJVi36Y5ui8lTldPTnbcWnbJPBos9RdCV91yRCeFbjCAeLnrXr+Lce7iiOooDh74vmo9fcamgNmuPf/uZ2AW9E26NJUj+qcnbbBzMUomSS48Advv7p/e3QTsxDlVxNxepe/tOXB++khR3VHz3YBxrSyc5NtPrbr5euBvmBbO/Rrfrpi0gJN1csoKDmVN4HBTpN1ooFi569GqzeBV9gFaV99uTT+jXOaFSdP6qebkb43/oCjIiEp2Fa+Gx5BH4sNOYOuh9OUT5kyJPMFJd6aYRswQ9o4xjxYq9nONuCbcOfgT6DBETOp297T9H5TV1Gvp9bzr+928M2EBAzOmZa/O793dAPH3PmnrsZTqnw42+UlqKWt+fbBsD7cJ2OrLGQ/NMPulX1ILj0rW7tbaMRaT1lhLyWK2rK+8+ExX7/9nP/04exlZQkWvksaSe0KVGpuTozT7xG/Np1GBQZvdkPT6w14f5Gr9U5ZGHXAZ8nNJXopx/+6gtDdRVsdTTXGxx35VCNo5P42ie3Kszh1qKB6LaApO5RkB/foq8yC9Bp9DqyzQ494huy2YM6tR4zn+Ej51aP77/6EdvWVRhWm+Srgiu+DiykLEb/6l/2oQ+ZuXp9E74e5D00o8NJsOBfFgz9Xv02yZMFJ3W58tawGkCqDBJ+xp01ltJTR5QIAv5e+Yd/l3iuxIr/ZPlUu8n6DlYJv/irf80klBtra0P1NS/MsCM9X6FIUmAbAMJiYKv5++dfv+ebz1BMpkX/hCt7XX/6RfjDt+pRiTQKw60MxxLM/Y+/LfFt0Ydn9Q4R3cWMvPq+oj5RCpDf2CBE2DecMrwMWrECga7clWdJVy+4gyner2zRB0KmCec31Jp/Y7vbZelKXMYpJDGu8Sl1O2t6id8G1Mx7EkPNVtav3gYRuf2xDC9dLeTJbLUhfCr0uT4/LKZeRfe/z2uTlA8emAW6Ch0hdqCFyTxJ+1g7TGvvH76kwv4Ya70xrgl+jypf8HagLvo4O0pzWK2arr2jnigl2W4kyukSjyGW9zvmXaY5HP/aPwUdppVHtZt/C0e4XGOYkuJChe+5Q/PttdEh/todcce/mI9Dgd6wPr1E4ng45x2lY63dAs1iuyUeNFLzfkP0V2/JfeRyNXvv2/6X/ymibObzrispkKMa4HUZx3xIrvEbxFZZ0495CPn4SGYfcrTZseioOPzLWC2jRb8h4Tk8d+xXz1z0Lraj4aUaG382tYsqhezw92f/9PxZY1WgMm+rXS3+1neAUuW0YoEcsI5Kt+b209+IPu5RTk13c0MHUW9YcN42XR1swxIurNDITSebpDWD0v7hM3IbbqbVO4j0YHRGgjeyb/zw+B36frJIer4bOS9PBwyLHk4cYTB5b/qbGQYv8Nh2frvdfC+kI7oF5obYVexY427KG40idCJRu/1204Ntzyg4bB6E9DfGJ/GLfNgUxoOF52wTsqCMs1/9kRDzwyp2mN7tv/q31Z2uC96VMULD+w9PzeVa8cP0bmDUxRf5p08207rZLPU9jOLvTx8szz9+gNdLvpKlW3FDi30Z3taffFKa0/mXHzHgcYP6YGuVKO9im4XhJk2Wep6J8rtbsoAONZ+dT/MPHxHrnFzQZF86E0SitOwsdir6V785uLJKZxudULUS7P9v8IH2v48UoKN6wRDkh7x/Hn15o1bWjllPPbZGw410OG9yg7mbh9rxYi5H1ahLhRn935rznoyudlpXa+K/2hUfuZUUanl2CXNvl79qMKqiAbuTIuJeRCHvr+a2VvetrpDwu2vyXsuXU/7n/Yc5clMljAReAcm+Jux6KfdoEoSwQMV8vGIlomk+ft5riuadtKXqrl93bXDjMtxvwZ4YUl+j8WrsXUU1hi9xrlWUSNEzUGFXHiUSrMmmY4HgCaq59nVyexxMzkXjEkN8Px5ZNHo7a1Twt4B1d/HJ9iFBPkmv3EQaiteMbIWly4HMS+2mpBk5jP1fMiSxIUPzWvtYLc/f6ltu3DOEAmFYRcQIR2dPG3W+v77E+WMdp+Lz7cLTenj0ecmxJffTUwG1umrEHvUgWa371Qi0lp90VM/rsC8vKobc/qN4tJdG0UPyecN3Y6XMdJJvPiWxIWmNPN2J/syuVe/GVgG5vMze61HVDZvxaYJwyywWSburRZ+nTaG6+22IS+eW5zN+8Tvkr7QkjiqVfJ60Zwrhn2dgrQ29av6937dpGpanPeMs3pMYPpIvMe8+hJakHj8pFPP5SnZb3e7GozQEyEiygCRPK7W4wg6yVsPqwfTn36OaJUfrQUPug+mz4VSjFcZ7SG/Cg3bCVkimrz/5yBFfNQtvc84ZPa1ANephT6XcjjqWvcSlBEA1Fj0OKOHt7iPBx9z7JNsWSsiKJUndLnebYNLIIXdoCtC2Ssl2p9Tq6L7zJMCWNFIxe/n5jOv9HbaXdo2RsBXyl9x+9xBktwvRj7JZ0czuxo25Lkaq0T8eTjYN96iLIpedVO2I+FPa+PB33fz82U8+Dk0F5PyVBQmF7T0ZDScutJtLXcriM8op+aRH0Lb5QIKTEFTy7/nXIhiZS0YFDQFcfdCfCsb8+FhOoUlHG+0O4ptYt3XaDevhs4fN3jphxb+6aJaD+A6N3Wd0Ct1VOGp5XGiGlffEuklzN28OWgT8YADb1i7r+lT0xt/vE9zIj4TvrL2vbRUhx8MhvVmLvVVRjQ+EBct61uIzjjVDUlwsNwyqwfo2KWTG/UhMbrZoWHfZCNa3jtmFv3OL/3WbAvxTqrEFAYQDS0sdRUx9EscHD61KeZK1Y1V75OhisxonNPaaEwkqI6Vq5FMbtYX6t2UFvj2ODX8FcIlhuzmFeFzswenJvmvK35QRX/h7JrTKjhlqUVOQsxfvOHuMtwyWWR3EUBQ7Wevl4abJ6bNh+myH3fDX+hLkr7dKCPZWvBPFgKJkP37I32577kbIPgH4Jz7gjTI+K366VCrs+F/JSEdmPoSa2WqHmwdM1916aeTJj2irjBbb0aVkJ2iZuYHL0yAeGB6aX/cp0Jw/tKdoOBuILfES+CKBhpqq51NkDO9/+8HX97tkvIXeGbC9K9j2MZ3zVrceAPcwi0m4opuE/uLdnyr3JDBwX7EHK1Xg01tn2+T2l49iQRV4WntGoou5QlyVKIb5vjROzO2+m+3ocEfFc+Z4k3dBMmT1/NZiscvINtk7ySgH0QwH7aVQtZWkrlePz1h7Wvbl933W9Bj1GtIbPKjUTXU1Zia30aW7V8z1yIf3YlGMWo/blJnbkvIqUPd3Ldj2Vyydhau1/N4eTYF0YDdp/wjnlb96w117nJf4UXfTki+08mO+sLj4A89ea3WZrVcS+3FWrAmtsz28/uaE2e7l2E2nc92Ds7u0hKyHV8JhAzeYNGega14wq++nG0aLvYi/nxzUPw6+oD7udcnOpO0RTfhJgEOOavJb/2mJlyi3lDfb6V3YrTazbQJcKoNeusO3GmfDCcAz9RPZPTdSNzW+M6JBVxKmy7tXyO3uYMNgJBYz76eZ91XevaHtHi2VPt1kjQNv37BXMxf30t6tZsl64o0hqS75/X8uCFcMf21zZOfbRatY4453dWZPkQXvDlk8QOgGUm1JeC5TPZ/hepXROhNVYjo3lPMxX/Xqks+oXFyccPr6mwC6XrBxM4mY8/w1jdrT+vOY4Wp5x+Vv7CJwJ4uFUXhJxgO7q5tu8G94ds4k56t3FoHyl7XM308vPqpJlKHVuwH62voin+v7eg9bL/awCOZ6KTmsAZAFBjMeo2dNWa2+YbqFF6rpjdMt/l5DhN8aXdnyMR8N+2uq4Go587BVVM3rXt1Qi9qCLPur409p8jUhXItU7OIU8ctt9v/9PdXefwkt4qn5+TsLN5PLJ3pUGtTI/M5s/PU6Gk9eDfG96IlL2ggN+au2NS+eE1zo26CaoweioJfum3jYfXf8Kd982F/dEgtLfBy313eMrg+4kP1x01TDPrz3cHPVO3G2y7nq/HMcITmEFxbhz8g5Oz/PWnnuLnh1OOh8/XGSGg3lKJLwNiNOLb+wtU+82pNrkoTJv/Vjymvzw0MJTw61Dyd5vLCoYzs0lpcZwzqIMmJcnmpI6/s6/uEjYr4/Dp9NT+oR33fRkh+UauxnMVKfyWpNHHujJtMvX6ycUGeRclW6/qzsU1itzYAYC37pIn0fQ3mOP1T74343FnEnwBIPqCb3eijHrH8jh34xVtTDEw2HyHRRFuOY6Hs5t8YDHbLf/sKjX7NuLC9+D69d7tDxWQzhNOZPRS0Oux35++N+xWETgKpd05Bs3ZWerI4nhJdbtiazjjfe0Sp3VNBaf0s/HwzW+H5WZ3D+NnvmgfHhg/y1U+3sFScSTuUzn//CPxMcQbKpVN26ahYLqUaLv2FeaJH1i0/w2pknZn9ejjW+7t0d0qFwWHKj72r8250owEclC/6dci5378Vftxfi3g5TNTXOtEfbZnoRwj8T6us//N6skULZqTQuOT3KJwl+3z+5Wl59G7cdwX+NIW23WWStzMYq0NcLeuKIuormT62oCD4KIcfR2ic8K/VUc+5eg8VS8xIps/oauh5scgF7h4bztX+j/CgDMVv+h7r5UQhgw7yc8scvPnonSQW6yjwWHObQmv+2qo7ki1CwbSDEyRjeGv0XrxjuYUbDx9kpkOxBJM782PIJu8ERfb2LTb+VStDP3pCVsGf59Prko3+5qOAll5xKF+MRjuHftQTPNE/4664UNLnjoYHn6sJpfRb0Toa0OGuiKFpYngzWMYchAO2ahcTQbAv1zXuqQTKRi1d6e0TcnYMz9GNwor/vmz/12kTnr3kggdgK3eBQmFFzinW2ay9iRRUcSujQPwIS4c8eNe4hM8FI6pKY6GJxDsrhDv4Jv4iRENoNxE+XW58Gp9B9DcSXeLpJo8+B6a+KW7TtkwbtDoJNAq5LFiOeUWqbAofMO98Fa9JQ2MKlaxAJv4GZyM07UeBvex5JBC/FassU/1tf2qiXAfXuvijU4pBa7Ko5icW/fn6D146vKEg7vZIuwjlGamXs6NpZb7ppOCgzqtJ+s+AxMfmXD+vgbTEiQoCoHV3v6HUPLfyamxzx9IFbqNLNAc8o26JxjdkiGSdvuuDXpPvlD2WAPUtnU+Ijlds7UqL7EUMsy8n8IH4M7j4MB/axeD55c2HCU5o7tvsbUcjlpngjRTjp//jJWP9NoF1HlRLnlM38u+AfiHfvMwlDcd3xNnhKIEm5STfJ+ZDP6NTcofraHnPapF2ep++1Q7+f6fpj1uFsbQ81nL2Ngx/na4M4KNc77GZqsjDtGeJyGy53GpOMeEZzDHlWbhTIX1rLwuHqoRVaxzFa8DrzYqJb//wT3DQhp1OxlNyseQ9fj0lUsHaTNQZ/lxZi8c8kwYG9Qt64yh3Ehzlg2TtxPp7kQIdYjFus7KWQv+7DHKG9Ossk3GMb9eIz3oPWbr7Mn0SKphp8F8z3OLOHg85Je+j7HtaBbjKcRhJnCn3fAdn+lXhZfagm2NAZ2LlYMeNyl8JJg3ejXUk24fieKpwdT38FHMLtm5noj6FZwZYE1Dq+CE6tEtX13ySglCavRcIjaCTfSwBsLV2X/VTxIas9DMnzvGN+1MWJBBnzQTLLM/Gy9hWO6/DboAV/MptJQTVv070AT0mzlnhk5kX4eJvQnA4liUZvsKaffX/7yzs/u4p3RMbwuGcBFrtYQXNmVyMSNLbF415GYb/wG3Boh7HQb3reu/umgPzY1mSxT8g1dD2j7sYx2b0dabHXQ/3xbVrH87Wbys1aQldiGlQehW83tOFkooVPMZK9/GRuXm0GSDYc4m21waL9uDPRrbkCXa+/fjfjOl34axSQiClePr+fk4mCzngw69bpnXxS6ghW73tN4XH0ESUNP/7iFSOl9klYqO2P2tSXL8rOD4lPY+boqDhcXxS9AhVN8/Mzgvm5qMy6SXG34s9nA+ZyxNOy3tt8tvEAaLsZEDHv+Z3PhtNgtfxgDU957XVzMhm3f/hL9oiHZvxCdySKmkV8GUv5dGtdAcZt+CA7vXl1c/Q80x++xcqyf4dDFLjIf/uIJRu56hY9Zvn+XU0I4od8So73M/puyMii0TCWQSZZC1tltvB7FLbdnPATQN0nG8xX/GzRm3/y4dLtQxK3XENz7nUNmOtAZ1YU+CH9Nm38w+MUlvUcbyE5wnVyXHreXGnHFUpvaoSzF7ODSgqnUjlKv+/H3PqyZArgsYcpvF6ZkRBcTdjZSxqyBIOF30TKGzkQYnTQ8mLJ90k3dv3mCFVaPOm/9dLyAmvbTVVR+Ra+qukxYorYujHYTvT+qkkUixTwK5Rx8cyu3ajgZwGTZod46o8OGh2y8tHCByj67mnOHGbeNJG9E2p5K4oGqwvTTSckAS7L3M2X/NUqjoglygvVDWfvOPSo+sYPFu4vZ77azFoJpvN9E7ubNGsquH4DQfMNpn/ntJr908GFY12JLDjb524K4Bqo4niRmNcdvt3on4sYDuH5RvTXu+jmT70r4ezRgen2/RbyrD4q6sL/MVzME59uLRZgCl8T/elH03Zz3cOnSmUqfvQhH4V7nKENsQX2Z0uvZQhLc0T0pW+Y/bjew1HeJjGMapcTb93TjnrHgaKF/5G2pU1VL/ZE5npTkL8nZN3skOsZbgo2ybY5nUJ6VrcunDdXgxhka3bypxZ1QKv2hI/4/ezG84ancCXp9O/91w5DApALSf/pO5y4qQ5p9Dowx5al/J++Jtz0Fbk466f1799hxDgJnItrrZf4hyo13zFn53+SgV3GEnosjyRoadPx/F3F6HuhMbGGdLKuY6akUOitg9eBdbXmTUwpNHZhsmuyd/LVsn/h7Ht/P37a8WLaxCA3/Z1sk5uWTKvPp4T5bj7pa24Qp+LjWsOCn+l6ySfcfEtnaLPnkVghKpNRspVUXfAu2y34Vc6cvxjxg5kRz5mGrmaKACgVViFunWNa9cpu1LU6PxuL3tBV7CkffbRtPjv8voCSTEmMjgiaWPynd3ylSjHV4SB9STi9vGT9EsoYHqLiskPe8u59GO4YYuZIVOy2LpJW/kdBSzxku7nQu0Hlhaq1mV+zcNGv+h//Eu/SCY+DkIaNmkQprINXQCIzCtGS//fIM6cVlnLD7Vah8Go0315fyM7X1hbf2WRGR+noMF+9DHzqsKKgWPxm7IcXaczqGnbcnln6F8u8HaSPCqVTfrFmr8OQdoNSoE6wZxZ1vYfmZX1VJWp6QuI9SWbdLM7An58Sy6vgG9LnSTf/PS/xmMn5EMsunL/Rl+UL3hqbt+/Ci15ynMqHLGfXEhfIqAOfeetvUw3lZi1D9GAdM8bCyedU8wEeDDX0flG31tQfZBVWzlYnO5oN4VehcYveU1/+9Lp86nZHHQWBt2X+7GRo1PKshPh+PrIlXvDJ+jbL4E7bYrvTnXTy+7kx1YX/MlzcPSQXSReoIu4exL9uazTl79MbRnXfsavU4lDJHFJDc0pKElrjHE47e7hBDXeGhXSLEWOpJv34Lx6jz6qqyvWkg3C7vrAY77750okgUneHWqaSFK9Q/dOnlviLQUmiSu7HMdXSof8jWCsW/tI0bxU+m4mY24ePpgC9RvDfp2S5VWrw7tbeWmT5MWXmWb8ueEa3NWQHVypfIM37eDRjBJfzl5Yo+6KZytEMr920WvT+C+qtMNvDP3yGhMxib8vBIPR1TiKGhmQO8lQCXHOX+c/7OZlKWT+rQdYyDN1qg3gbLEcS0X69rLeZ8LeuUEiF2KJa6z+rkXyCRvVP+o6ZmeUt8fnaItVQH4v+23fD5e8k/Nbzn///0xOc3Tamin/r0fcpdXeIHmfEdL8mXedJZxkuGX3hDbFfnK9eRa8Wz5ETvODD+V22JeDjmzLLm30uHQYzhW/qmD+9gM/1rRzhp/cbmiEn3F/v3zDT2mP3XlT4qFtaCzOrRKr87L/4G1r0L+KBveO/fA/5a4rZokfm66y+KeCZeGBOuwfU71uzhEPo2yTelphPcyHHkB+bmvxtdbtalfJGhr4I12yJ5xWP9P0e2MXT8Gbhz+NpPeig69zEN/wZ0ehfrjOI9/Uaz2dL5OO+NQv42XONVk3IDjt1BCH8fjA96qt85U7QQJ2HIbGZKlcDdoMz/PT2vpsTtPChAg4gpcxw1VM1vu7VHf6u6pn98NaSn2IYWzfBshfvUJ+KKIClfkQlN1O7+VUcfRhbO2Ghx5WQm83lqOJjdmb4dsL5BJv3qC78gtnwRPkr1MBHcAkOP36Lvj9+UvnnLUb7i8wZO3+PgOTriplisUKz6R4orMFxye5AAovtA1VBjzFe428doWq5uyzAPlUCZp4tEQ3muyg1K5WO5ETP+4Rdbmrw07OZ/ekO4XhcnVtot+mbnf56h0vJvG9RFmctFhq+Scbbtl7wlpFite3Mii36MroW/khC66NbqzZcBmMl1wNWXs8K0Q0pKGIfNye7a0vCcRNnKvrzBZ1EOT7lSz7NIDPannnOelN9N5yZwNzAYf7JOuRfd5Ja2MWhwEh3EhCvIVFgyT/MGvK1xUlACkAreVjy4yFkHc4x6vFdZ9axfFTj1Uht+OkNp7dd88F4hS3qImu/1LduyWD3zR4N5Swy//UhXFrwioZr7c5+eEBa+AOs1kbPjORkhlOkmzVU39uabUP7nnS8LCS4KWKJayVdrtTkVqC9aHmg0mP3DsclH0LpHA8Y3dgK9eHjravkU7/ZLx/9/HHz+35bileczqKmQPI87shBsyvEicd1tJmOG2YHf401R8/0/eN7zCBRU42mny2jXN8Bszay1fXkAwFqZHz+8Sk+OsRqoHiKITFqR09Wv3oY+zzCpb45W5ylmvzTE7Gi7x6If+zS1X54bOZmwPljWqdIP/h7cnClb0WLWJzBnW6M/c2V242paLSaO60e/62n/PSHpf6yPJ/wFT21Acipr5BffpnXUSFpFzC3ZNHL0fipuwi+lz7+fV/YL3xPs/yHS9V3+Q1/fAvktGqIlZYfa8EPZyj07kPMWawRG44ZgEsm+OkHOV34N+K6a5Po85aS5f0ztOjvzGzHC2qp9JyBOEpMJ7MJQr6sP7oP7ptZN1Wo/v395tHWLCwUklerT0jRA+c9scftLRmfR19S3sW8DHIXUquxd+9ZW2dCyrzAFcO+yvS31uObzuJ3rSTfWrjVqIb9hflC8UkGh9E9/OKvXV1fHb/8VQ1YV2JTR/9gtOApAfTDUyePj5Ukk4aWhP5BEzECrbIGUWzSf9/rLHyfZy83gz9k2b/15ZO/DhS01DvJts+bpV5VpODswpiF37OaTztzL6A3uX2Idx8PFj1K26P2tLoHFsKyDefTWqVo0d+pNhd6JY1qIqG9KmKcC3qfv3WzOcMlK3Y//pWMyt4uYVmfX727m4zXaol33oqFkT8ldNwoJpQf/UVO9tgkE/HTHpZ6E0aC3ifs8le1sOPujKWFn0uZiWxYvVdHenwkczhJb7tA4kMf8LwO67xfebaKVEN54LnM3WQtCIdFP81r5pWyXcn2Dm6Q0of2j59P9Di2mhLdjiwXtvecHRND15RBnPGp3cmIoot1/3+OFKjS/z5S8L60b9r39qZiXys5wqbWXRZ/2yCca8A9lNF7zbDoPK1xWzxVSNt5zQLJiKsx/ui+hkAJmL59DNbg6Utjunsc43rYdta8s8MWbm9rQz+83Ib8LFQurOO0ZFg3zY4+wgjDUEwr5mWfO5plixzh07EV073ORvNMpBQuWmqSdLzuw2Y4PE0NublF16tFwrqdGhWEpfEtFM2jGzVhsOH7KjgzVbW35lN4sYE/tlcSbPpNyPGmMeFwvREST8Tpav8VNOjOJJkdGl4l35dxTGHVGHeyvaV1x71xymC4Vkes/pEwH60kK1V7vP0RZ3ML+bxyVRWiq/Fi+vSUk7l8ntzf9xDndHiGPGkyDBeSfKjSqM9kStuvD/7pEzD/eXohXoi7FLSPQ4kplJDTOxWPkCZhTRXVPndzhvoMlOWWiPHe0Hzw8+Me9ZXo0m8kivm4FaW9tuPAiLNlakK//c0GsRli5qULMXdA8VW18U74sn131hAkHoDk2DlJxm3JqeGLMXreV4QsN6x4v6wvtOWpZIZIQ8Q1+yGgB+5bdnSFezflRXQH2NANC+/ubM33g+4DnoIDIUdLT7i3D2XYPtuCEFGEbsis4A4sqV60hNeMRrILe8Q23w3D6VoPpz9VcJFkhyUxu6HIv81l2ENZtQ6zrTNNOHxpDGxaJ1R83io0YwPF0PfBg4WYXzvG5t0N8vGvI5ittIQVxp8MyluqibOr6nCUUriD8iB7ulkHXcfHoe/RV3qpxOrjOp9+66G8H0sjbclI5uizfaP5+wlpufVY9TnrvITPDkvMaLiVDMGZl6Dps0d2cp904ze/9KAQfmbbW3zh0/DZmVCJT5XZcKuqeYqjEfCzv2ApLpyk1xHNUCSWPYmaM1RzcyhvsJmfHl5rNk64fDurSPzaDrkSv8zHxT+hUlyPGfTTJdPebHwoxmfJ9LOy72ZH1EvtfFCWRviHbT4N3twAvwAQQO+/nDnWzuSFuP5SM7CfZkUCOxsQb40AQHm8LSy8kzSZNPmqgFgoPeYrreVMNOJM1PaRwfbHVZawYbkFl7bjmkW39YCaSJ5ndFvFBZVh9+mm+dqOoIq0oWNxMUK+kQIBmRfesa2yinPu7fgdGlGo6SRHLpLq0Jwhw+6AkVB04eiX6h7ZRTdSlBHeTX9wjdX6bJjMfmx8PktfRQKhUytiPLHHx8tJPSMLzAyryaiiBo+C/PNPciXmqprtojsDoZVD9BVJkjm7ZTqcr+zKyNEqcu4NOwkqUR0oi7ddMrR7yQf+WksEL42ux6wPMbByjJjuNPT3e8eN/b0S5vrMTujwDCLAT9Qy1wgazu11W8Kf3WdM72RScb/V7sj/Gyvi8S7oZJiiGAaxa/75w0govaPFPpTyKsuptrsGoPiFTExi1An/87Gg+vj8Zb79/XJe5tkeLufzikTv8phPWaWY8DnKPuYhEjk9hRcXno/IZPndjcPv+35PYYdfnG5e6rfqw2wQ4PKaGe6UvrL63SnVQaqyLdlF97mbT18p1rKb8MQCSVnFn0KK4Xt2NyQ4tYy/a3QotaPemsx4Om7CWsMEWOxLi05m1XTppwLuV/9Gy5g9c1YYJ0nz//AfI+rhmfOmebbQNL1N1ymX0chacw/GrAfsoOjM6pVd+4a3P89k+1K/HR2eJkY7/OF4Zxze/J89IMxDOoI2Jn05f5dbdBuXGTT9s+qa+j28dSFitmd3+bSvA+W3XymaDJVPrKxjiGF0SP69tt348tV0fTkfV8yd6cViK11xYRtuU2Iq6xWa5dfe1eLhGLJIz/RwtA+mr7qbSqKacGBWnwfNHb11iJi3OzYh3xwcHVYpXOjGq1w0+tXnBm9tVFn4oRbif+Fcam1EdhTu0joZ1t+ghIw3QMI0bsPx7WDpl1+J57Comj0ZMHzqvcnS8TqGX+1Un8Gt8A6PwtqxRnh2NtL0/EhfHoqtIYyzERVZvqNqn5y66e+aHzd2dvaJZwkb6xvG8Yj+2gci/t/9kzTrODxCxyqL1t9IRPMnfjTQFFuFuM/6yZd8HsAv/ji6zdH7k8wS/PabNqMnH6fq6qvVdrySs+XFCceXxx49TrmDH9pm6sastyKIB+XAHv7HTT7r6+GsGeXuD7+NwOdTZokNKuL6w6x68FEz1e4Z3PlwJHhdvKo5v2z2P7yA17eP3i3xK/3tT8rds2sNzDAKTQzwgTnv9NmN5qlUYAJ8pt8l/o6znkRAz73Mwu6mI5pvjjpMEJ3J5W0pnJalsgdo9yIxV65trQ6CVIC6VkxyyP+kfIBs56IFnxCvXCDpfC1n8ME+kMz9s61Z+o6Spn1uTxKNhr3MlpZqOJu3DeXuzq6GJN9m8PT9FQkkY+46yRhi5Ea+SMzb4V0x84/acDBzk3jh10jG+58zg/z36bFWNd+cnYXOhmX/U/VvK3RMqNNltvcpZCFURseh2bjKayriZRqjm/DnX9vC99yK//Jn4wYHE+QX0YnhPlbJJOO98nsei3a86sbLKurR0b83eHPk35D6ydaF9bczsaiDYPEnrHRA+H0j0SFP+JRcKUa1+/KX+PtBw8u4pcj0N2vit5NgTd4zxZAH/ZZ5J/MVjprwsmGJx3h1HzY5lyz9DvscqcRPxDMf/6othZu0GZgXfp/5nBBRhsWetL9uR8QXf0Fq2uV4hR6mJb82RgDqdfckQeAc81nahnt4IDUiZCywNeHtNYbF/xh52UeLay+n0A6NuiUkOln5tDcLX4trLlJtXq3C/vbKXMgcdFwGT+mJbHS6juReSmi5cutweb8edUK2pi1iLOGX/OVDuQs0utleWDhHH3lW79vT0rfb9iv+LV8UKsX2SPiLN8/ovUfttDsT/N5b1TpnrwbYHLnMqOU0nDInk5AxmwEecNsm8+WVF3DfixYzgqUJCDbQHopRPRGdBLyauFyPoHuOTic/AIuviuAGwQVTul7wHZ+/oQDdZTP+sx8L6uiIqjU7Mv+j9wlNZv8ND1ex2WlFMWLfWrbhVdop2UUfKexV792iV4JrjCbv042GusGw+3t8mDnkOR9/+/NGUE1L6xXk03GFTBi+Z4Psup2NVpv6O6PLWUVUuOrPqtZvR1NzN0+JWJtXbvFCb9qN8Gcygvn3E07GYbxBkicuFVqvtIYVcV1wq2jHrB16duPPPvwRXrHSLEfa9l2jgu+Ge7qJxEdC1XPcAmvfMxUVHFrzVZNmZPGVQRtR6JLxtWU10qHDBKNLbTH5T3Xh8roCc9pYQv/8xblfLwyfLDnnhbkxkSl/H4QIJremXYDvgO76GXPUHBK5+D6zpZFtQqI1e3bz+2xF0G5SRkX5eLbmR3uvYWhETHBrnHL+CaI7svp3wYw+59XPH2CbWdHCZ2pexybTYb1xgQWX+xpNkBcxuq2kNwsCvOLz39yqKoTigenp1w6lg0dmVHNN+4cf/uHxs2J5FO0H3I2NqEig308FXjMq5vySDz4s8YGl9veLpn3xOEJRmk/c9lczkb5acYdDU52JLwpdPjo0CuDmlQrzziLu1jt41dAJ6ZrgWzPx0cGbEYar6hG/XQdoXM+K8stveDbKozXVVj+iqR9vZGv1TfL5xTtv/zHx7CWfZHyuA4zEgyMSf+9YaN2r1xFE01TI1qveaBwOXxNZzjNhzl1W0Rzg5ojScGMRcta3iF41mJGUjyt2EYTKGrNolDSTZQJd7f4u+b/9PKzXJgn60kJjXN1qtPgTcZd8M4bXcda8wgQWvrpdtz5ZlgIOqSoS6VlhzaTY3//xAayZLRr3ATqr5PJQaH8hCA0y3qtLY9uESrhH3UwEr0ELP6LC7nTN2YEoAlxlecfIj59Efp3BufnsFv5z66YIMwzmQ7NJvO87a4CL1MMJ5R0JpVVdTdE+yBCCpdH++GXdJLJihknSNbL8Hh9AVRvYwSUnwbgvEDcf21jND0JLhdO2CvkPv+jD7sjSKibJ2AinBm60doh3CN/dyAVz/uFvRv5er7xej0WBEFQXPKfHPOflcitH7v8KKn0jkVM4bBQI1e1E9NVJt+bO241o/ZSWrm/yEDJRXPuoucp7Ephvp2Lf2ldAe6s52Rn+K2FGiSUU2svsu330ROOn6k3IkHxivmAYfJVZ60UPMDbMp3SbjB/72v7yJ4kmgeazI/olqtJVQQXdXLqSrXctGtNzRvyPHv3wMaBtZkRUMw4uGlnDXGRkAMxWS9rRMdUp8Df+sF2uRsn82mwDmPCd4s0ttat+de5d2LnTjpnOda64H3gKDKN+Y969bq3hDaiGemhPzHf7IpzFxpwhYkykK66+uzE9XGuIYXaYqWhlNwuhJsDRwD4JJeEdfp9DIqHE1t/El/a0mu+kFhTxekiJ835aIT8Xjgqb2nSJcwqP+dQNso+OgikTneyLf/kKfHAP/wEAAP//pF1Ls7IwEv1BLkRAEpa8QV5BUMSdICIg8kyA/PopvF/VbGY3y1ulV5J0us853XT7HLCP0bpcrha8Zm+OaDboKD7NqvaLd/673/o5nI7HHKZ3GmBuL3NgxakRgsa674nH3x7RYse0AANbn5HjKCYd64G/gONabY1ihdrBV3cNBRu/fLyT9646QiXAYuqEiGgDYh18aLwAQnXhNzxAwZg2KIS8WO6IMRgGYLldU8Lby7j4OwJ6dSq3Ybv7E5cjLewaMJAQaBC9ujOSr9XWpcwydvC5Zgqx+O0Vjs2/wfm7XhD62i9n0uvnCpJVTvxRU4Jo2PCI0LbXs88+JzVahfjRgkkJGaLvA0pp19xDQErxhSytEtVe7kYW7LKsI6phchS/v3cJsjDwSGI/Fzp11wt/5JYwRm796cF6f5ouxPhyQgZbFmD6lPIOjpe3SzY+QFfq1Qpsz8aCZNYQ1PU6ai08PT7hn94y5k9vBRvew0FS3VK8IphA9vkZiXQBpvO7/4C/PXq8vuHk0Puha46eaUkEWe9jNT3KCwu39SHzh083/gMZ9wL8wwNuRchjbwg0nie8/9gFWEpnMeC2P0R6NF612FQsIYneH+J0976i8vvc//QbdILjDGZuLkrhfOpK1B280pm3eA83PuMzA4rVulzf+RHnVYYs+7mAif/EEBwr00PSNNfVsiftKogNnxL5DFC6/p7PG8GbKNWRHZbrJQkhspIFb/zEocdlbaBzSQKkMVyrjk8lsyETQYQuYaGnc/otc+hy18hnHn4ZEWg5JegYOBFFDxZnW68Gr3pv//SwTX+QHzATB9cXHxI3kP3+BOFOTzPkPTFT0VE4r3DjIz5//1pg8bxV+t0fpBSW7mC0L1kY233oC6/wXa1sBQXYHD5vf9/vWkqjkyhBLrVl4m96yLrpYcL7JnVImVIAplVILiBEypOYhBmdfm/xCXyN3QcZnyutug2fgQW0AUmkdYgWZFo82OIr8e5iScfUgAI8vduCpMNHiWZyyjBQ67tJogO3U2f1vL/86ZF5hHx13fQAcCDtQn54fkW59aeX+nPpi//4Zanta18AhKTb/iRgMXrLVzY988cPYBRWX/9Io+1+WeUOfByoose+mUB3DQ8G3Pg1Qfd26zu0F4Ifn0L6A36rDS/EYOOjvnBcdbrQqGFgPZIMWSJfpPPA1eXvPIgc7T7DtACvALfcSf2Q5KG61HV4AXNyefhQcxY6h9WlgYtvAh8wO8OhwZJiMILmjtdhKiIiS+OmX/gKQeyjBENwuWO46btE1kqH0kJZFBgM4xcp6utZLTvmVIL96ZDjwdSzaruPPdzb7tn/ZDMCy5qgRvjpXaoWEUo3PVDAjTUjnYhpuumVNnSqUPuLN0vO8SWkr9Ld9J06ol1zDqE250//W6OZzqHxaISzzEAiP89wIKsVP+BoSA4KP9MOrNQbJdgvS+azGq/TDR8JsJEeBj7mV98B+iG0wabfIsT7jsN+10ASFTnTyKk4sdHS0dUADVs8yFa5rM7Pd1NAk2QHsvFxMKcNCoD9epjEklYnxRtfAnNwkjGbQkSZtDEDUPvzGz1sR3YY9pKOIMgYSqTpWzlESwIL3sSHgtRsP1B6aU4MWN/pSuyCS4cFiKoCJzvz/uwPB8DWoO80CnI3/0vZ9D0C1NxGosE4psvUti4M9DpCwZK/qxlonQGtp/tE7kvVq0U+8xlM0lgkJ3W0UsqKbg7iFkro5nRyyg6fcvfDN0TaCUc6rUJwgUZ5eCD9dPiqiwk5BeJpVYn3GnJnbVh+BcMNzP5BsqWBakliQ28KL/gXz+fP6VvDDc8Q9bSLI3qMrtugDPOJ4cZ36fHCN9Aa+xuStueddmsTA2Q9Fn9vfZto9s9jJqBA0ZG56a84ZN8xzAnL/vx7uvCfePfTG3FXqoMzaWa0wsOpeBIjpX7EfsNXD6MyvmD21Y9bMq9QoC5GDvLYKlRprrMNLLqDifS7soLf/YZZThPkuOzsEI1/YXDeoxl5TAFA45ct+9MrkVWdJkpP/VYCHN0L4ur7O6Bk1TO40IxDUvY4gFXgxAT+9geYejb89BNhvJohsc/0HB2a11IDvzdVImVFOczr61ODsjqHRL86TMpe7bcg2q/E3PjW5U+vBjmX2ei67TcrcJIrRsvsEztNVZU988sI9FccEOP5javF9b+ugG7B508Pmd+cspXkLphoclClc/OBCbyQk+Lt10pLt3yI+8ObZOPLYA412wUACjZBr62kwpTKFsI3HxGDLSW6vP1TDhC7legms+Kwev6A0E1eL0xnNXYWyJlbPFQTpGPpDNb0Ifcww174wwPOcgi6EFZnRSAy4KZ0hUGOgWqYd+SLzhjNm54NB4vpSHbuS4c8lp0C1/f8Ifrh40XMtxoloNmCj5ft+/0vn4UPUv3nj6c4GPHP/xC1TXXKxYXH/9PrPFNM15lLDfCWLgh50E8A+8tH/enxts6kK6CXVjzb0pWc7awY6DJcYuFnz/rN7yuaCPZFkD67rURRnAbcefIIYZnficPwx2i2tKcGHzVScHtjr9FipVvXU28cibPp6VNQKzzMv8PT52o0g3HjY8KWf/ChcuuGJRKiFare9YjkLf+17Bi5FH/26FLAgZ9e99ML/YMJQqd/RkkJDsG68a/xU61nLi/hDsRPopiZRdeQSXbQGbQemXltOz9+KTjapyLawzoM9KJnAXyMSYpFv34O04aXYfN6ukiR24J2RD4VcNNX0Y/vbf65AIwbA2Iur5WuO0eaIcWJhPlAr+imbwmiB68pUS7VqfrLjxwKn8d44iltnO4O/+LlvORyxQqc5UPxm7+Jml4+6qYHP2Dtr2+83MZy+NmPuD+be7/d+MqSdN4OZC/LQU+2WtUfPhPz01iSPGsXgM+Ja8OHEZpIzeE1wtb1nP3yFUQ9j1HEGVRe4TfrMbIw7lJ6rZYMTHbubXz3AZbJeG0lZk7s0zb9gA7XTP+zf6QXXz9dmPDYgjeOTtv+rw5mnKiF12HO0W2zh2EZLhdoo+8D2WN2c+aC4x7Q5bCx5ScHur76uIGCvJeJP+2kYWkyQ+J//uu05cOm29SM8DpeaqLv46KaM60uwF8+7RxqA8fIUwAzjELkhO+4Wte52x23/IJ/DKBdUfi9CvD0+IYEbfmUP7zy0xvmA6I//u/Cjd/89Mp0uQ1x/FufD9sYDmt2LXh4vHh3zMh3DTBvTvFFD47+D69Qmvk2Dzv0yP1jIV0olu1HBnP5ffJp1Fjq9nwh9Pkdt+Wz+LTbzh8MzVITtenXdByS0IaKrJ8xzeEhHYKQLWGs5Edk3+p6oKVQt+Jt+l792SmrdM3RuA0u4NNNj5IrGku0gA9fm5DB3J/0pw/DUR8Sf+XxJaV2cxnBT9+7DNcSfB+MkQBHKGviT3z0T49+1eze544eoeuy3Cy436+vX74umn546zsUJfGeHLvpqYELdROLvrg7I2f94QUSCQly3ttg7cgJtv3BPo7veyMdjtE14dtzy/3yFeraOU0JL9Lh6hv+w6bL2M8NvIkqIral5M4y9nwNN39P/AeGYGG3rvP/T0nB4X+XFJyHeMTFcBSdQXQqBjr5ARItzh7pvH8vLbwbhwPRG3yhqxqSEO6h0hHtyJbq3D9SBg4okv2mCbJ0ofxnBbpxkdBpNxdbletqwFJibLxr2/OwCmuzQsTnD+K83G6g48Lb8Hsvn5gbWWmgz1vLw/qSIZKSmAOd9B5YqLPIQJJQncHU9p0Bm5YxiZeVERjk5lSCi2XkuE3bC1iJAke4S6LeX4cYUmrHcia+2aOH59vcOM3b1hXIBIyE1Lfrqys7Oz540PFNjHpW6GdZSQIpN0YoeLbHlGKmK6CSyA7Sj7WRrrmWZce5JZZPtfOhorG1rnB+6wpSKI6j9Yu+q9DSSEV6XDfVqD8yG670yBFtT9xopkS6wPleJsjMoq0qM2gDmMxGhkwnFtLuvKszeNu1IZHvtQWIK7QuzPvw6oPBBuri3kob7O8TJb6Y1MMS7NZABOPVQs63rlQaiM4K8mQK8Y5fX/T3/4HtBwUOq9py6rdDC3gOkYScfH+oFuldsfD45j2fM+3nMGeqOoNnK0GiumzlLPEoMXAg4o1cvp42zJmRrFDCsUL0uDYGfD7Pu3/rObEFIMe338O3qZjIkqgA8H13bOHh0SvIcvJmoFGOZmAN8ULsbPdyRuoVq9i88AOZ50M3zFwcFGJ49d3NHp/q0luTAM52H+OFdziw7X8Oz6En+bFv6inJLu9RvEvKnvzWg6vT3odtFBdIejOxQ1Fa+8A22gdxx90TLJfGzoHBbY3vhTPrUO0z8bB72iWR2dCLJuC1W6Pmw4zU1DTonEiFL+6Kocb9pxqHyX+kBVAZW0PWXNeU7Do2gZf9p8ccc+iiKRmAAl2w6sQ75Gq17KNkhDdtpshEZFBn+LICOKNviow8/1bUu35YmE33Dpk4fqjYc61EcMP+jtCOsunM2B4EwUtsyEkCprqMk9vCUlIEvJ+JMSydK2GRxJXrHxXmHK1P851BowGZDxTt6czV5IXgcBIQUviodqbdsmgwaG8F/hTZkU6FWFyEz/MpE2s9hym99WG8t0Zb9meFvtQ10/rwd55EPeID3fYbw/CSQH9/NAtnjXkQQId8CDGaAKajdFkeMFiDJ4nluXLo9ZvaUCgrg2ggTgcqNnsXZM+ngVwr1wbic14CC23GRFvOTDVeQ1YBx5aoeEdNqWLiu+LDU4o4/AlCp5rNZ3oRPOodkJUeLEpT/1kI2++jmxMLEUbTw4brePOQPAkUtDsp1ERu5/fE9gXkrLfHg4dKV/vIUqO3g9PCyUBcPkVy0gRESe+dEyiikCNerAG6VKKLgXo++ER+zp+K7iYnge79iYhj9G+6KrFtwJii2af2rA2E/7Y96ETh6s9XVhu4uPZtoTQHiSiOIkWc1goC8A6NhQ9J8HTGLH/ZkLEyw+cEHFVc2661sL8TSiQ+eFVzd7u0cCzdBd1GthjmLL/ZUM6R5R9vtzla2CpYxX3/bMjJkXyHeozvwv0QsMi8mBp9l/lqA3wVImIbpKvWZnlaMJwaHXnhGYE5/5aliNA2S/p5LzcI1+2g3gQV7tStMfn4njFsfPhF7iWLnYXZLRBSPRf8OEm6aN2DuIBhilbsGL1MKXSWVgwH8YOXZyxWRDE7Cz6Nd4xjtfOief8+tqD3W4vkzfaepPqhI6TX9Em233cmQlgJfBe1x815EiN6ipQQsJdMR1IjhXRtlqv9tx/ofrw6swkmHgZHoSKKwqrDwZpcCNPq8yWnZR9XqyU5LfDGLEVPdvd0VkMMXWj4zZ44y+HrzEeuDMG+ziRiRU+SrhFVsPjR+YTklimrI6nUBja3SMPzuf+CpUjoDLpDvifS6vDRV28nDapvdedT4xaBLT4GgOZ1Q15v/glWI19Y8XxSWX95xs9qbWJ5hf2TpjhWWTlawkIz4BMfVr9x2lhd9qd9CUYl8Elot0na7+S5EY341Pmsb+rRPMkLC4GbKcie3rkz+5rJw8urM4mhsu903VeBBUN1OCGfoZyKJYYPjlXfEKROsxbR563gobPsVAy5rhtmZCIN8HFlIqmUe3XhtPkhird+wczgTulUbinVL5BUPD8PXko1Oyzhdn7oEsy1OrU6LI7gUIToxGsiLV+a0YJKCSOiubWZzjKb7EAzPxbk2F1fjblh76Dth4VPP04M5rI3DMhmmkP0XjhXDG6SWjBe8YrQVRjTlWn2DOB0K0WoSLS0ufOvFrpv7oRBJNcOrqJg8zfh0z9aR76iXrIygLn1LJFglkWzZ795INhu5393QvCzpwC+n0uBvHa6RywEgg2V+dYiLe78aHEuPYTl3VeR/vOPzG7ZAfzZJAZneoL5VJ1HkSnWCunb/V1ZGvgwriKPIDPgKoLd7w5u/vOHZ6r57OkZPL4N8eevwBJq8ygWNTkjvz3oVVerCQS3Jrz7VRW6KfWTz1YCkZkkmuzXQG9fL4YrG9gkxEqhTiF4ZWDuQ4eceu8NSNJwJZhf1Q7ZMGno2iXAgqH93COjYd/qaD31AprF9CJSYVrD4XSZZ6gf7iySbtXqYJYmPtzO5w/fURIyNhyPy8PfO12bzheOT2B05XTi3A0nnZkWx6BvnKu/uHRXrf5WdVpFikGcq1kOK5pCW9gPIevv6q4FC/bzXLhltwwpjGlGeCfzDcQ7nxB5lNZ0Oc2uBe4n38INS0FKHURyYXekAQ67jkRzxCyucDs8T3h+gWGgDtdJ0OzMxN/ZclktmA0U8YnwiygLw1A8CBovZlPaIYmtTw7389eS7sfEPkwCmPSv3/ytV3phrlqY3XEHuGd5Iei1pym1okSDE/0+MQACVpfEC1tY3VmI+fMsg3mq7g8Y+UFKvEeQVLQARxaq1eOMrIiVVBZZnxrA3VtD+uRp6twDkMANbxAvzw4pPauJBFdRl9BpNMYIg0dYw5+92vfkq65tJllwSs+SD0leq3/2f3m7DrJtYESrhOMAHk3viXd5/a5WRxGVHx73165DEXMIQguY75Lg1WcO6jJ2+xb0sxaSC4BFNE7gNkNQiYgYI7D+4j3ALjlhUZ+Ow1zOrQFzIFnkLJxZdSxqE0Pin0J8q/OvQ2q5zyHVuh7JQm47nCSX65///P298PK1Ebd4gCRJYChd02U8TnblIY2zczCXFi7h8Ww9tslD75TE+rTCczSrJM6cQzoPfPOA0WFpEULt2aF4yUqgP4WOWHfwTcmbH1k4PnoTH7/vvCLFTQ/BLbtmxBqTVu3GSWthmTwoMvaJRdfL7V2KQu+4mMPxw6F8jnKYmIpLlHvoqSPRKh+0w3j3Oaa9RmubWbawrY/Iz+pcbXhBgKJkWMjnjC79gj6UYHSgLXKDrlcpb5w06J7NGNmjrA2cgY8h3GeaQUJwTMF00UoB6p7FEkWqlmhRDLuFtWtciWpX87AgvtHg8S14/m6fK5Q7HNkMcilg8Cwqb+fHtwCgYCUarQ26mP76gF36eeHjh1mc3hB0H7prDYknyWo6N5cqELVatckJuT2Y8S6HUHJlF9kcParLKyQN/BZnzmcmnQOLvGcfoDclhTiRrDms2xcrrOE6EHQGasW1ZirBhQY79EKHj4M/kV0DztmffSZ8LhW+nK8xPNOxQZp46EHrNI4BGf7mYjHWUjrf83UGfGvYSOd0zlnrpYcwnGodvTj5PayuzvhgpYDDLJWbgZ4iO4RCWFdID5MTWHe7oQBvw+cwnJyFbvi7PP7wt/2epWppti4bG75BTvyFDolrwxI00Y1w3h4+FY32og0b/3Qj9iL4gI0fxQged3lBOjVwNJZTagCFfBiEMvc7rGcalIK70E2Sozzomj2rgY1vEB0dH8M6pfH4h0+YsP8MK53ODLCN/oGkHVSqMZXcGmTfREV53VmAg73mQy8dW6Tbnhbh7ootmNpPwWfLXou4fG0y2I230IdTXQ5/fOf2tEYUPe+KOlnnpRa5A7MgxcjSYfVcKYEPuz/jSMq7asnvpwY+1uOZpJFcq3N8PbjwdBC+mz2VYBG6UwyxV9yJo91IRVrNUGCCHjr6w7u8Ag1Q3l2VSDgZI6qUTAkNyVaRmzGoovvZroWHdd4R8yEhdZpmhwXXt8ygE5Y8Or6/Bg93YaghtB40urLnngGSy2RI7ervQGzmzcKlP2ob39urGx/C0P4mHnGnuqw2f6OBNdveAjNLms76s7PhD/96ZZqrUx4eHn/2t/mLiI6Bsgo38aAQLSl5MEn1zMKbuM2ynN47pz/TpIBJ7LyI/1v/J88LsMUPhI5modJr31rgeubfxEwnOHSxhgIovAlLvCTmVEq4YvzdT6Rp7gToGNgzPLaTSkwWmMNoVyoPc/pQiDJAeWCPl8wF+b0sN3xSRytRmO39fmn193plq8tmr6D+uArylrABq5mOLNzwOrLvDnVWvD9kYItfyAb7A1hs6lxgmnoTUatXkXbFtZlhT+IcLydpHSb1dGIFU+hT/1Ac+mEMbD8QdHU/Ee0rzcO8RRvgdPUJmemUDfMxPIyw3719LG7xqmMLZwbSdXdC8skzBtp75wd8RfEHw+TQgOXmtTkku0NLEJtCQPutlHd57N7Imwxbna3iUUIPJjtirsQGh53nllB+KQn+jDRT5336aqE0lSuyT7IG1o7zRthrAyFOlTTRDK9EA/sIez7PVNMw3ew0B+LRuqEbIo46cnFSQsBMCnGUXFdne3cLoXQQRn/Xl1Sl7LsPheV0zzF1s1Rd9KmtYbP4MjIeYU9Hr1NCMJ2IiKF1Dioqyf0MRRP7xImZwBk2/w+e/EyIK++v6QJaWoCVDe0//06MYQx++gGxPzFfLd7tchE82/kgjSS2yjSXIYAXNNabvddgtptAgJu+ROxP5Q7r29Yl6MHHjmja/Q1oo6Us+OlJkvORhh8fBpxup8Q4C+fox2fEDV9hMHV9OjlbV4TNfvGurPq0teXxImz4Bbc8sVNcDmMDKys6+rFcIXWmdjoDMX99iak6F0BnJsV//si1tGzo0uguAV88mGhIJRcsn3dVwg1fIdfkX8P0usIaLm+ydeHp38NoyasNg6MZbfHirq5v25OAx8g63j2cGWDvm86gPAr3jW/IKavEiiHKLykhd92saLvhY5iCfeFzG/9cpaUKYavUE0rz/WGYQrnCgPi70i8j70P/zo+13xZxBhs4VJFNCw5LkSL9cmbS8cLNDyjBqUR6WfLOt2/rGcr7EROPuFa0HiZXAYeTsUdul3zA8lXECzxd3TMKV7kFvftGDbSbWiT+/H1ElMSyDcuZBP5xi499FQWJuKzbeFC7s6slqpwAiIaw83f5bRrIRWEesFDR8Kd/dHkoJmCvwAfyLnWZrur9FECBBsefHlfN2i2DYCkrB+8bTRim1OWUP3xzMV6FQx6zLUCFfBkiS4dJ/d0H+JwfLDrBQKjmvegpcGWISVRxyoe1xEsNt3hCTkyuA9auy0S8JwlPfvFxTtPXDnDpkUHaFs/xQ54FqB1q7w9fjg3ZtYLaeyZSOIGq5Fvix9Ew5xMJNntkjL01ivdzraDnVy7p8nkPBTxpeY6PNhWcZT3gRlg1RiY2ZeZ03kkPA/jazJPX0ZTUBT1DDF0BHogdHzk6dlD2f/qtz58cJlo2Pg4OJx4Rr2F8sMR2F8Dj2kpIXqN6mG+Z/BAzIp1IvNvzKlHMty3aU0qJzx6v0fwZ9/nv/PAoAg3Qw5vXADiUIT5K4OuQvh1XqBuxRDw//KqjTJ2dsMV3YoC7pK4iGC/gvT8byDbIqVr8QyMA0eB3SD8612HdV4kNrdPBQQo4ArAG8zkG1n3ByPY8uZq9jxiCslgnf7rc/Kilpj8Ly5kmW59UKz2Mk9bD5bwkSOfCQd340gNaIeQx6J7ecPQODIYMV0GfuhlwyNcuJHHja/56D7fBH2ZnCxF3GcgDJgaljKhm8L/xaXknnx3kxu5LTqvbD/OqoRqkrvYgUkowXV5cZoFULCrkuk8vPRy1bD7mRQTxFv8p/bwOCuAc8Uwc5Xz+4xOCpLsxudW56SzBTgjhJw/OKK7nEvzuB6gvOULeeIwdKnwfDLy+VYag8xtUC2EVF/asyaNTRU6UZucLBhuewDQ4OHTVhVT601vvt7pO1/OZ3/3DnwE9DvMbWcVf/NdADIaxB+ABzqoUoJ/+N2VbV6Rx3dV4jw66OohzkoDgbs3k9GHOTht4afinf//dH8+88FCV+YFs/pjOjhwXYNP3/OXb8kO76QkgHvPYPziTSFeO2g+QfR8qco8lo34N7z4e9ad5x1A9xnRJTCOHb1YXiT6Y+vCHh8t5CrDHJbo6puq9hnlxhkRXQaf+7ANu/AGhTe9Z5P0uAU/z0vg45fOImgufw1VTFp8fnYuzirslBrng8kgLA3Eg5jLncKni1J+38/zz3z9+ZVDZqA5dbRqwwdyED1k3AfxhehtcMMf59HlXnE1PwAK/7ynyqVkMq8JkLdwt6Q3ToL3Rw4G/QeHtsSLxVIaoaxls74s/X4YvIFN1+FN1xmJpZYHP8cy6+aOv9tMvkQS3d/W8jxiAH7+35lqj7KsFPhhB/PR73u1VYuAlhO+8mZHJM6FDyyJpAdCkkbj7g5GuuhBJ4iE5EyR9BWZ7xUiogfj9XIjm5y2gx7fRQu9ilESZDq66bGQO7oS6QPpyL354kgWWgnQfviU3XUt8rCF6xRPGef0eqDXEOdCyvEA2I3mbfwoNIcs6Fhl1hSm+XrIS2DlSfZ6Z5YERmGcoyN7r+sNblDBSUsLASkQSjLrg0G5YVnHTpzCJzSKa5XOdCD++4q17JpqySPVhbMOZoOuUpDRfcQ7zs+4Sr8ZzNavrbhsUlygIxWaRzv3eesBNr97iwWPY9M8ehFfXRec38dOVme8K0NSYIT88+ONTYMs3/fSUau2TzwWaa1Bu9pwMW3y0Ab87VD/8PCyhXI2wKmGHh+FGVEzeVw1affXe/KGpLkVmzXCBubmdz+qsW/wAm96IbK1lHPr90AfE4zCik8IsEXWvoIfm3Tr4R1XW04MkuQFUzHOC8SVsqikEtxx2bkL8XdYXKq2zAwuvp/JL7AkY6hxFDgs3POvvGVClq/eNVjhGkkxizqvSkXO5C1QWm8fB6vDp4AqFK0qXu4FfcxkOrWv2I7gnD96fmf5bETfcSiBf8YpnmMGItp9PA3dFVxOjuK3qvJqXBg5H++0tz2qpZsn/+HCzbw9+3E6l74ebwUPpj5teJ6oLJw+JUEymTZB886JOkM0VcDg08cInDliuZmmIG/725/FVqnjTY8AvP3dK57dKo/q9wo4NEfF8napE/YAREJ5V/NbJm4o8WTmATLG9UjiyRTV5t+wCpqgXkGS6iC7D9MgFeLgCIl27YDiE1V0Dz1aB/pzCkhLRGVg4nvgLUjRYqmu8EkMQZLlAJ6Gu1fbHt+a3ECJNMUi64vzJwylqBaRN4QB+fPqXv8DciS3oql1xJmx6PSZOZ0WU/xYtpE+1wvCBz874fOcx2PJRmN8drGre8DPc8Bnm5owfqCxnEKphm6PL22yiv/jTbvPhfvpAUVgw/unJW/y/0bm5DOGPP/rCpxqredGuifjRhQQfNQGBbXzZCC3n4fvMpZqdZRp3DHySQcGwFCYw7aMAixv+3fZDAZPPUx6a1l1Bty1fij9IrGEgydqf3sbxCmOINpkN5C62UG35yxVmu9344yvO3/N+8vBM0BZPMHzeZyGa7hjpluHTMXlZtbjp+ej0io/OvI6yBcdHa5JnK3jRuHQnCM8nmUWnid7pwBsnA+IrH6HzM34Os68h/qe/ElTmZYXTXS6BZk4WYqR7PlrkPGYg9DTgE37iVXpIcwOI+72H5GAPItKYBSuaJz/Es70HdG7OeSgMZH/DfCZ/wCojkYfhwSZIFafdsKZyZfzyT/6eTSHF8aPFADj9ileK2WjkI7WEr/7ob3qFUK3vQXj8xdvHImAwj0/d/eULkPYxkDOjgfb/V5cC9n+XFMwHLsC8r1sRzXHkQp2VIqI6R1St12fHQFnoTeKGSaCuotav8GU+dRKF453OUC1qUWD2kHiDY1SzyvsGBM4cE+NSMurMpMcdWKSMIgSQk46XQJcg0Jgaea9nkS4dIyhQcmLJ32MiDN351Y/whO4pefHus8Ln69SC2dhxyKPTlBIrvBvw6o0sniXHrBZvz4dwOH1bn3bNa1iEnsngrTyccPaV12gezIAR8+NpRbLtdWA9p8IOHl4FRvE3stSJ67wanE/Bk2TS3aiWRRgtODS3xgdmeh7WG7OWUBZaE0OPPaWjzrU1rNJjjtCcydHsuSSEz+bT+etDr6MVH7wSqrbeoJN/Diti4A+Gx0m+EpN59+q6rQfe0jggcrB1ZVjfjxoe2gaik0DYAd+/ayI65BT4ZFZHh34+cQzEbscSifelCOPPIsH3ofv4c97LlHDhuRaF685Bun806LK7nQros0GDxfVmOEuSARuezcnCQn7y1OV052soBycRycF3RzHPaAycK3xAZlMWUfdu1wY2Yh8TlM2L02L4UQTWT01iK5M00Md67OHhq3791SRpRFtIJPDJwRWhq9jQ+byXG5E3aIZO5ftV0aN+zsWpiAK8385/AfXXgvnDlonbhVeAv21bCzcAYuSkw66idca08KqaF7xK1kwXZT3tBIktO59TrQ5MoCY2VNvkSEy6V51Vfu8bEFLf9BmmylX6nhVD/B4aERmOvjjLmhAsMMSUiO3a1VBnmZbBQ+W/kFEEj3T230MNw2SC+NuUUsQ9/IKBJuRCn4FWCMa1FTTYndHFx6fzAJb+lfgwzkmP3LtYUyIOZ0t08tomSqqwETWAFIuaa3TEjNOaDqTvITyRUCUWONKhn26KJByvxRM9z36kzt9UXeEpMl0fIMlI1wpGJRzcMUSvi2+na+6tFjwrl4F4rcWDUV/SAMbrPSV6rQXOrByOGMpZzCD9Op5Vmt7sQuj4mkFeQk1ATbU0RGB1IzIA7NNFn4YCzgOaMCBzrS720szwWFiSv35PC1jy81vYq7bZEGcynGqqUiHjC/7yRuZ0tatF4uEKfJ3h8WF/68G6pl4AjXA9k9NTMcDKXMIcjobrk4xAnI7RwNhgyr4v4uws1eGGiJth9cwp0oPkBdad52ZwfVQMsWNxGuiNCwwRRBHCO3LkqhUf9AK6pNnh/Tvk6NxnQi84ja4iFEW+Q2njFoC3Lgu6tXSbjWeINiQOaJCv6G46um2ewAkTgcj75gS2+3SBsftBeN1lI8BNVIeCkzc2UsFuFy27m1yKrnKQiZG6YzUrh2WE2XqhRDcABFPUugkYHEskSH+yKr3Tmw23++Hvr/VSkc9Q9fDuv154TywEVtZ8xNB/y29i2pcuWvv9MYDbffY5YZ3SpdC6FXo2/frj4b5Ea1RfevByuZKotWmAlTthDM7s541MYfXSuZ0tA45PYqAT6yFKhSrbQb1YfCy2QpWuq15l4uskPTDDNQNd3lGw/uzdD+BsqtT6CjxMZDtDcnzR05lGQSh+LhHFX4Vcqjmo9jv4bK0dOd33CV2I/FLgXp717X4bFFtD2W6zm0JkSe2nWgbOT2CYEIhvJ3BR17dqJKBrtira/Mql+FtGAZh07YvkeqzTWdWKGRoK6IgVf4k6Y/aGwUVfA+SfH2JKq+oEBbmnL/+9nr7qysVyDDvBOhEvODzB9PacjAfOGhM/DQ5p/0ad9Fs/8RSWcWb/y/Nwu/9EFQddPTRnH4OHZkUo3z6/RPg+wqG5NkiNdOLMheK6ACV3GXOMxYBFBHsW2serTs4n5jLMp2dxgfjk6kgx1lM6gfprb6/cUKJ2SgkIf5kgzI/OShC/a50Fd8UKvflDiXximKrP/FcPxfhs4IGFVTU7QesDoz+fkP3Bb0oaIezBt8pKZI21Qtnzder/7vcThIo6vwHLQnSHsb9bvE6dv0cUANGfPQxO0QvgpL3xAjO9B6Rs9jz7amFANBoLcnFjqviVvW2xeN0HpPBOV9F3x8zidj4Tc0NqynInPMKa4gnDzLci5vPeNcelCXZIX94rWCrJucDIDS/EqvfYmZAVSnDPPBuEHHyPFnZHErgvFtY/YE5w1i5tc5jS7EFUEjUOxp+jApf91UFqdsrAdL2wELK31xXPt1xJF1UYengLRozMi/2uZo7aLSTp7KMTeXyGmb+lJZh8i/EE7eNTWmewhUp9Tom/V2VnGdmWh0qRR8R13KBaxjAxIO+ejgTxrliNoM0F8NqxH+T0qlhNrMbMovu2LshKQREtQg9zoOk2h2Qh5CvMC6ENj3p38It7HFSEGKENn8L5jrL6dqckSQsoFtDpkKRNOKWl7/VAE/YKsRbjVDE5cmN4rp8GLuMCVeOu91YgIGfG++yWbjVKsyW6Xl4hacAooqceheB3Xtrp7qRD3HYaNCuqE3k8HMAkgj0D8jHIiDwIx4GclXcCqHy8Etd7Muroiw8Mucmy0P1dT9WaD2IvUG4qkM9x72pmc/8CaK3ORIkLMszffVbDo8xMCD1eU4WZHd9ApY5S4lpgiqhgflhwgOFI9IfPgWlNviNcGNIh93UI6XwvSh4QS8vRlXR1tSSj2UNLMRKiMnPnrNllhFA+k9A/6nE80NgY+x9eRDZjFGCu8dkXHzW54xkdvYHSeFbEzZ6RLvX3av7qHQR29jHxneesimuERwv2zKvBR+8iDTP1FAj3IE38o2HJ6lzjuw9TnuX8vWgeq/UVR4y4L6+OTxx8jKZQBTVk3N2HnHKBAXQFOIb9asxEVtCebvgtAPB6SIg/oZczv+jVhgbDj8RJnl1EcQp2wuaf/BsO4bBext1FoGreE68VqmjNeHEFjPiIkCobnwqv+1gDm3/0Jd2oKkqMhwVPbXwmKBrVlBG/xwTuvLZBpyWkAM+tl8DRqQckbXiWKQ/boLFPoSMZWR+6ivZsQOm+Dsg7f9torR8vA9yYfY1FT5erdVwXW9z1jxpJH1aOWG4YbNi09zNB1aOryK0/5NCrxieJzsSk5Jw4PhCXJ0Faniq00+nMQP+tvgl68CWYANJjuNk3UXN6jebbVClw+G5nftq6ZAgXKYdhnJ/QaT7mA307xxDwmfJGqAveYJ3dOBTPxGiRdkNVRCJNnMHxfvu7fwPG9zgBXFg0SGoeO2ccPlkMk1k5+CvGxsA+wqCBgXl+EO8+3wHZT1MJwFKXeK15PIxT/i7gi0Gq3xnjk87SlEjHqJNColrhR10frhPAa0w15PjbULtY73MgrPiExwhzKa1lr/zhX6KqN4tOF5Y+YPOk2N+T90dd2EfewC9nhUgbDKDiuhgfoHopFnIvXTSMtnx0oZR4MbKypxnN3/2lBvqRS5HS0X5Yz6UU/n6f6JgT1D9+hMMg8qc909JFVHQXaPb7gvTPg0vX1ZlnyO/xmRjA3tPl5D13gH8dOqKzh9rpuPtiiAnlRGIXj2BYj6eTD8s1cIjP5W60PKezBEpb6JHyLb/q5q8smPfEJEi+aNXqF+dETGOcbfapV2zyCjA0kFEgucBCumr7ZwPJ6xvjUnobDutO9wJsfOWHHym3ymCEtcZcUHjcRhZx5MHDoEsPWDx80mE269QCTSDc8bG93cAgXKQMvsbRxvSzZygB/DmAsJQCdHbzKZoa6ljCrU5ypH72F0B3VGCEL5oX4npsl86TkLQw/pQ6kjlNVecTVSzQ7cuGeAW8p+t64SBMopAjbj0TFZd5ooAfHxKUy5DWzftugHp1EnTCbaouWYgekBjVCWdXxQKHzf9DCLQn8qEUReSqJdss0tZHycke09G4jrZAnGNDtODT02XNRQVyPnMgaFmtYb2LmQuUe8cTSXhVw8Q6tgYeJAYY3msy4EWUR2hJlYoMuAGwHx/Qla1L0BYfNn/YwimZbwhlN0Anb88HkLfiBdcff3LGj3tZYSGOO6S9Eoa2tTiNMLrGJdJiFqudKh0ViFh8QQ6fZtWiDEwPeX5+kbtbxuooKUce/vigBt+tMwv3r/AXL09LGNG1S4sc5oe496ldtSnd8McPL/gcQnrE9QfoQhQptd/R6ubgm31J4C8+nl6R7fS5WbPQW08Wcj6C63TvKJnhyh9M5BfOUs3BY14Bd8oSdNLJQGetXRqhq4+av2znydJZbsTby0nwdJ+PdN1zZQO91bEw11IVHFLGYcCo6rV/5DlrWByXz8HGl5Ex3w50zq/3FmC/KZGLvQUMYwuNn7/C3A8fL0XwAFJ/WwjqmN2AS3pkgIQci3hi9RlIXKYrOJrIJj7HycM0PZZZ1Bb+QCJlRyua7JcZTr7NYKjzr7RVH3YDdt+z4FNDfg+LAR8FbCW/8NcFQmdpxgMLN3yO5zvR6Y+/QxQfxp+/rJbnV8XwrMQDZhhIU7pTzQTW7zpEVxKQdDqV3Ay3+IyUg2A4oxcyNfSM3Yt4Y78fsPzmGthGQkBUz3s744YfYTimI26gDtX3UxEEuDftkti3WNlasncP8IsfP3++noRzDyZBWJFJPb7C5TQWcG3GEdl5qaSHpLJyeJXfeyInn5aSH3+OrdUkepfI6RLcZEm819GAx8PaDIu3n0ORXbvdH/9malt6wG8vPsjpYtoAR/7KQherHTLUIovWnbG3wGbvfvXZM6BVupcBM5BK5Icfp15MMYzPzHU7IlWdD0Zgw9RrfXwkD71aFulYwlF4aphGuRZxy/G8A6rnBuT8w0OiMLXAPLc9cc7nDoyFdS6Eb8LsicMMUjpUu6MGtRxpxB/DScW67/bgja0RZWEyq7P6UBpBHIpt0E2qATpoVQDVyGF8Xv5w1fIiUwIOZ0Mj3uUsq5ycIxaKbfrG4qQyYNzsDcb51P/wOMVzMvNiO6QWFk6FDZbdWF0AJz0cpIstTtdDJecwvZ5MooD7DnwjRzXEnz5mLKcinfz6ZENf0DHuIVrThbsfNTDr9/IPnywm67ngK8cmOX0PAcCtMdrC5i/xD8/Tbz0zUFEcCcnl/lmN5pGB8MHfT6jqmv2wyjj04QU06cYXXDCvu1QAwxQlyN9/n3RN2hcPmHVdkH9NvtFinJkEXq8eIR6DmIh8PvkFfEJJIve3qAB24/vilRzO5Pd53LrHHBhnH+K1o/aAuaGyxXcCvkh99BWgrcIkIPV6H68+EOgg5mwBZ7l5EDsY7Yh+k9yFGx5D9pTvnH77PuxpqxPr2zUV7Zxcg6x+EZCywEylF++VQ3h7TJjvOejM0XrKoDbfCnQSpYdDa6+w4canfRYba7QIy2n94WukhZdvtHCHwhV3H8XEt03/meVzK8C6b19Isj9ZRPnLB4Izb7HkUordQEJ4kWB2UbeSCfs9LMfyMUPLzA7ESc03XZRAL2Hiq8vGb5FDK35YgfOU/uJHReh4Z+Ey829yOYNVXV5FwIsQGE8kFeWsUsm4t4LFCRXSZdUH8zWHEhg/3p74XXtJlz0IL5AP4YUYjbACvOlf8IjrHjd3Vk/X6GrZYONf/lKPWkqe95wH4bSXkXqRhnRsWEEAm75IFM/dpfS22LNo0NsNGa2vResptlhw5Fren4SCG0gLvxKULolP/ESR1OXQHH1wAXVKUt9P6QyYpYSU8glx6loDtdLdDIjXwx0DW++j9RA3LNz4jg8vHR0whxgJJO+pRM44semS8GUIt3hBXlZRO9Spshy24rvCt7NJh7Z69T4EQk+QK5OJrpasFdtgMYv8+Ny48S3hkjNPco4vn2jSUKHAdrhb/sFCfkp8SShhBVYDWZ3Qq2NQ7SHYnhfdBRIPc7qzBAjVUcTr1bZSeurNALzlB/F/zz9fTtwIRyjdyWYfKbUfwiz8/Kmq7KKBe75qHxikazZ7ExwipTT/8x+QQD8FkSauIBjLl8++cJQewPXRwvvnIPnHDb/Sb16VcI0USDRu/3YoKz5dWDxUn+h+sQxLyXUNtMz84G96FZ03/gC4Xs19INh3dfMHPkhVZUTas+PTubalBDq3PiEyNbZZ1sKjhexhbYnCcrxDHuuxBUJr/Ie0a9lWEAeCH8RCQCRhibxEHokCKu4AFQEVeSSBfP0cvLOc3ayvVyFJV1VXQ/ebOl+tBLTK2ggWQfVB4qIvSC07AQyPbwMbodDy2dS2AbxG/oEGMk3raXWAAXhd0hu+Y9Dko/5tI2Dfdjca2ElVMyI/hp9+o3ahsJpFodLBOMIK+jbIyaVd2WfqSjYADUFUmexadgocpeqENif5E3PBxBlo0ddD8+tY8/E2Xg1owfKCvevHyediZVp//Gp6XuyzmsjDz4+l+0X/LPpQ+O031SNv8umBz2c4JW6NH4Ism3xooQVij6yQ0CyvkRYgP4PF30Sr0OjAzy8E2Q2VaCXIss+UWynDKytqvO8cMX83vveGaSIH1OvfmEsWLnVYfOgBScNbBrxKMgFGUztj49A+68l6bWXYH5ZG3As/TrIFZ+BcB3PZj9ScQzqqsNqfToufZvdzlRpE81xwIepZG+tZVlcdFFoJ09Dy7J6Zmdeo+uQG2G5udj5lr0SEs/U+Uss7a/nsCIoDVeOQk2+y87gsxNdZ/eH3Xpub/lePAETMCMXhCoLF75Y1yQLBj684X/JDmDJdwulWGMBgh0ahtZ9Gp97xW8ST8D4b8EitFgeLnmYHlr3h+JRfOHwfvH6etP3wh9eJemj6eVXpTFv8ISLk366fdtnZAvX7uaVmci372U6uUD3ERUTzlzqYXPROKXR6+Y631vKKyKdhsoaqt0yExX/n5q1KoN4D5+9+mXJrZbDUp7Df+LRn6MNUCG7K9JdPs1XSC//6E0RlYFbHSAf6lfX4dnnIMYVF5/3wnl63oe2vJbN7w4Vfl/zsEovbjzFA7aB88RIvnIGrl8HHa07/1pOLhCAw+6VJT7Jk+Ww9aAns1o8QY21jmfNv/QNRtIgyOd9+Jtd7CjjpI6T5aQb4W7TPoDTKM40EqTKprltn0GuuTh9f8d7z77HPQPHeA7pb00f+80/Aos/I1DXRbz90YNvvF+nWo5+TUAIIdlRIKOovB0DX0fIAG0DkvwhM5m5xaNzuiz/YWkBNUhmJ7ybJF3wjkEiCiV1kL4Ogy2sGv/shRxv/cwXiJxEKuPAT3Z6TVz7lo1CCaUSMKBZm8bS/srd2HdiMsS338Uw1iuDeqJxFv716LuwTAge6fhItzeaefZUn03ZB3hD47XuTYRsW4KnMGL2Da1UPAakHWObvGm930MnHJd8EC37Qn1/14zN1OpqbJd/z8ynfL85lUH2IlJ73nDTvicAVqQzs4YmYk15nEOr9xkGSc9FN8edv7w67E/VeZMun6zYw4Gr9Pix6sczn0N7NkDZisdQnVnwK+amF3bDusPd4JPmILqSC3bY3qDVkQ7/UNyEIwqLGV12knJ4EQ4UPlK4JdyPblD8TncEzfnqEuqXlT7dSSEE3W4w6fIvyCZyiFlqTKmHchZwPa3eowMp+hYteRPnQmNyC0xgwbI0sBjwI5/bPT3V6CYEJG9YAoTTo2ORSADjGzwrObn5FdXIt6zk+6e7f+U4298yfWaooYMEHuhW3p7z9zkkBpbZZujieePzjF1XqvCPJrujoz6fjLoC6XH6xjss0Zjf9lED1BH26feBtPrZerGpHxZMp1ivVHNOCe9pnm+z+9OL8vk5v8MNrY70Mdva20zKIGIbYjsUKTNY+G+BFcRC1BUHqf9evBe03wBE5HeP1YRx16K6VGt/E9lu3dugVsG5WA7be/sPkuE87uOhR7LrTxZ+WfBzeLQVSjNLIZ94lNmA+fFdUV52lC/gHZHD2KxP7xqbjw7J/Wr/K+e/85nTf4cPv/NFg4W8+rmsLKMLi+X/gIR8M2mQQPx8Y8bHZ1y3zE+vHXzS0ywGQZLMMVrDGJ/3VV5kp5Ckwt+aV2pOr1dPKI4p6q9iTmqMvxkSoSAQPQ/mgeN3J9ZSd9QTKjoLpbqlHsNQnDey/9wO2XUxyrt3lCj6+r3LxH8z+V+8Cv/qDK9RDTGqjVeArMnSiZXts8ub8ScD88i/UocW1HsobT2AVXetfPSofl3rf/+pSsP7vRwq29yykzpGd8hHl6A0u4KAQSOLKpCWxCvhqS58W/dKIe9K3d63VtzY9TTKvJ3VXuRoTYEmtKdTMqZ7oAWyyN0OTVwzxfNfUFHwno0bSzd7FQ/n9pvBAyJEAee+C+bSuOpi+izXa3IpLPE3HuwI3862mcXWb4+F7cyC4IFphfImMnnzr8QyvbK2h13g55+PpEdyh6RAdb8lD6md8N0Rt1sIDArjYxdKViVBbBfMRfZqVlvP2s7uDWMu22N3Vy1ucJhvAkXsZ1V1u8knddS7cq/oNZ1XT+5O9flWgmU4nuitPT3/e+q0Ov5ulMUdzPeTTxYcZ9G82wtuthn2eBtoZTtBJsLlcfyfXmxncMj+k2yLd1uK4/Q6g7IKEKMO0j+fT7oN+64ERLuV+Ip2VQjB4A3U6fQAzOucV4NxgFLmBEY/tbUpg7+ctknrlzcf9YDGNbvwt3n71d074NKQw1tIt1q3k3c+Dns7wIH4x1uvrySRalQXLU/hH7L2QGY9suB8AtFMZSWLpg9oynynkix9kfTM/np/h0QHRDFb0d31j0nwV8NZTgZonKawHsxkYHCRrxnirr/n0hJWnmafzF5vmJo1nF/JOEwpA0Zp9Dr6s2a6g1opiIbEExO/Nezlrw17hOC/qb807mVignZ8pDayDZrJho543BzIckSiGvc+7/eGs1WL4pPjTTPWQ3mAA8uc6R2V+GJfz2HnwkF9tnAVCD2ahEGdoXi8TtZShzSe+3xIA0nWJzSFf+Yw9AxEeClZQnEQin3bNqQCmmYqIZ51eDy9JLP7O47ZInz1ZbbUUfJzghm8orDknOk2glhQPxMt2jFlM5kw7JyqgQaiaJtvdv8Xf9+sfJcqJfXoiKFrCC+vnXK2nXksKaBdHizrK7Qy6M75Xv3jDybhp+2VWVQW/1BmpnR7EmA2bOdHWe12kgQAcMFuvkahH8pDxTipMky/7B5796YAttFIAKStuaLYiZ2Rqnntf2u2sAKKk6KiTWGs+0P1R1+ainXG4Qrt+ruZjt9q4LaDnJAtrdnH0DA7d40heukT5ggd3qF6GhpTbjuTcv9RMs3YyJBqFXk9GlUew1KFPd9vp4/O3gVQQrAqTekqp5xLf7wfYrwUBG7gp/emW4kJNjquW+vr3A9jt0SLY7i5XJDyLnvP+/X2rd/sUYFQfD3w2WfuG39e2x8Zl3NXTGKVvuOARTk869hkjxzc8sG6HzX6q6tFFvITsNFxoCk0nHxzyEgDnOqOW31v55N8zF+44F7DzeuJ6etJbBsUKr+keeWpMjWOhw0xbMSTWTgum03AMYDRoW5RuschZvXF1wO6ZgXfdt86nUNMiwORIwnryPvW8WUEI0NG/I82v+5qNR4IAmijEuw0oY/rqcgNuuKxi6xSDmD4lMIPkFIl0v+Ah3WyCVI2V8Y4NdF3n3/YwvGHEDghnX+XRk+v1QqBB/JlI9fXbz1ZvutprJT6wf1mSB+XwJbAdmowiOVRMXog7Bk+5FePzLW395X1ZQfvm0xPJiXXhs3R+GfCQWBNFxGI1teTiDXvdCpbGZ1JN17JaQv9qORjtLtTkCiIp3M/DHjV+38Q0ctfFb/1pQGPR7MjrmAAvewO0du19PXWvtoVG+Eko/iqJybPnlML2dXAwIpkTD9r5noFEWkdoMuKGk8eJRECTswQjoyp8Eh3SALYAmxRXVOjHZHdoYX0WMBKnUPO5/nBaiLrrh+7Bel9LwXtbQN7mGBvsA3ryDK8WnDeBi/U9PwFRz+oG2q8aIfD1Sc4J62ZYh8Sm27xGOXPZWoSrMaF0a8QNGIAMEGRR7pN+p0F/iqpUh/tVBine71c52Vu9AZwp7mno130/76JbB1VUZNTf8Njk5tVMoH48ZGSdX97xvO6fFlziBy/xzOd5h7Lfeabx9XEB/FOUmbZxO4CIPq7NJZ4UUN5xQdbOoYmH+nxMoBNZDQ4NnOfTSu5VuLU9CxuRktTsaogyvMPSwLkezyZ3FbeBVc8OCPAH63khYgbImDbUPr0LU4yerxZcE2jgwD90YH7uQAvVPV8Ttu1QzLQciNBmHsUGRl5Ov8exhIkkRctb47tcPBheBY84otTZHxW/Xz0mA6bZbYVdHVeAoI0RQHZPDWrGvpTPzBIrEKhTSe3yCjgfZTeAdtjm2FM8r1/iMQXL5zFipAXcOa0ZRHtpTy3Nf/UkGr8FEKtwTW25f9dsZvUdgvq2pQEAKRidzTqF79y4Y8yDJh6PWTvAThYNauUa/+kNVX2DN8T2s7F6Pqm1AJ2NdsZo9WzjqQjbDG5fQ4XvYsr9vt1sWqi0zg07TyPKWYUqHSx6gN6iYWtK97kVIE2bGjv0UZhzc4kiyIJ7iPzv0/KnDV4nkIxZg3f99xSzxr8XPzxAki/YPkfHsoA1C670sZzv4YGxCqppROS22zzzcWr21h+fBAf0qlkRxfcfXuHQ2vC6s16vARZX/Yixl7gm89kRgtjBPt0qkZmLXlu1YO1lPvYv+OpPx5MfwdKNHlSf+9lk65c3gP1dvtMw008LnoMDXCXOm7x2jw8fkm8iwAC/ntharyWTH+L5DJuKDHSnsHXPCslzYV8ZW4zFnoMBJFYFkR+U+FgNJphi1ZThvmQJ/cO/8Kp1kE7iiNH5GyzxdDDg3n9G2OvGueawvCtAXlsrvL/cvZrPF2lpJL8HZNpEp5ilN4hgFKQ1qmNfivmKSqVGAtHB2boPfbbbHoLN48QC6t4FUFPR8zpoKFNMvbitOXdqqwLvclXQMHm+8zG+nFzVac0nSkHjcjEm89L3Qf2izelr98MKbQO46DkiU2niLBsjGf7w6vRsrKVrwTUAaBohdRzttHRBQAz2wbyi3qInZ/mIG+BIEGFErENNb9uigYRfKiTc5mfNunVbwP4+iDi4XlYm3+6HAUj00mHdfPB4akdJVr+23FBjZ1d8PkhCBw/aWUUycnpzxgfBAoW/a8h8qgY+zUBU4Ur8WvShlgoYdC07AN3pNtjz907PN+cTURc+RVPvb30ZHwQHKLcC0mh95DVJmwW7j/s7da9S5Q+3QDbgcZpM/MO30aGHMyC6hOnu7b398e1KkTY2xw0S7Moz5+oVKMDjaxs727sTT9WVF+BRm3e8W/Q482OdaB8pb8j61rtgHe4nFzqHMaSL3q+nQA4FsBYRJ/VZevRLPKZwy84mETOXxOzbxURd9BA2hfHLR+uxGf74LeV2X4+74NtBpb6qhChrlk/P71qAzWFeo1UoRPmkm+gM3nvni5GhHPl8cEtV+zjoRsNH8uLslhkM9N/z6Y/Px+cjVaD5ie74x4czeR3P0EgDidp2MvrT85GqoLgaR+rD3el3/RCu9jeb4icd6vkNMxmQ/E5/fJ9PpyvVf/ofsfPE4slejyV4SdON7pxDk8/SJidwYrsbdedD2k+ZMkTwPN2P1Kx4a87nSh/gOx48bLvCOh54vi9hd/xsqfu5paAZiq8F92ePY9OweDxn+xiBaf/e4kA5EjAbdS7DTNMY3V9EPZfS69aDd6SvycIP9ZIvFZBdxwe+CC/Ydz88SL/MxLf5bXC+P10V9dFkEoJOvuYzYIGsbNauQyrAGGeS7rmbvmw7fNUrs5+PpllAPdRCbLSukBOTle8ff5LLdtr58j6hFXiphY4Yk0eTMO8K4bnAmAbS59xPW75ncCxWDRLPd8tk2tdtQHqREQJ6PPtjoectrLjzwgsfx6Rjs6ONO/1DZEeTev66OQfwy5ccltCFv14ldAZiYTRvzJ7PL0+Hu4tqks9DruvpPW0z+I1tmbrkTfIpP2mN+sP7R6le++m1DQWA5OxBlEUPjq9abH96CRev067nrGKetlwvRvXHqWdRmFyN+9LmT59Mrxq28HXccOxPXV9THPg6NMJXgi5HszFplD9b4HHJxsnqrOdic9c7yNWTRepl/3m+GRGUh8edupqpxDMmOIF71bjhMJPcftgLwRvaipgRLjdVPhqpkcHy0XDs9lD2x3WmIvjyoUTYEd5i9iiKFlzQWFE75F3cCLp4//Elvtj5lA/2W+gA8x0ZbZCXxYNQ9y7U4OWI5p1tcNYZuwbcXJwicSAPPuX10kWiIRusj4HBRUk3PO1y3q7xvixeOZ9uGYHR+l0RQjInZ0Gm6OBq6iH24tZcHkGzPcDPjwybfmrWc+3Z1eY23q9LPEp1z3HrgAUP0RRnDiePeVWq3F9vqI4ibg7Hq3BWT1XaUv2Jspjc2KuDjeEhonj1y+Qb5xhoC37TLbgdTM4ONgTm3UhQucT7BIyAAGAoNeoveOOPMitcoO1FAQckrnxO4mMJHzerJM2LPU3iqM95Qx/KGmnXbsXZKeY6XPIrGoZG7k+hmc2wv6Qlzk7QyfnW2h3A1xYbfE/vx3jkPUu1O3v6dJdf3vmQ9roAr1WYUH3ql0EMu0gGafZYITWZtHppftrBWcMHauBG96eRfkVQOU+M1ucqzuecbxCg7HbGlhj65s8fgQzvBKJE5zNYzssZJoHeYSNART2FZjRr+1UK6e53/pCVD/Aj2Bgb27wAc3fHKrymK486RbjKZ1y3EbRfT0T1m/oCdBBuGbh8VgPheTfXIxyqAapKbJCV5h39NpGfBKzj7kR35jswZ7Tx0C9/wPv7MosY5c4b1KCWyHxUqprcNTUDgnveU1eiNR+ejS/A7zs3qOGqrj99pZcHM2OaqYsHoWd61r9BuqI6/csXRpUfoHrIDtSyt0E8lI5KoP7BF+wK6OmPtSDqcDWeKZLe5pMPimcmcPl9pJX8FK+rkHZQud0h3naSH0tjlDbAyKstWj/keokv673Rr9D++/3pFTNX2/FJwOGaFvGsSl0ESujusfu+vQFD3oXAcIw5YYs/M5D7LGgLvmPjcpnA+Ha1CEoHaiz5cplzOUgqGK43CdXBqsrZo0g6mHe1Q33S3frFnyqBf8hysl7yf7LgC1DOXovd6fDuh+Sa3sFTO9qYStt9z5V+1QGz6DQcPve+z+xNKcNtdD3jZIlXNhRPB3ad5GF79/iAvjLdBl5TzaP66jv0oyg4M3hZ3fMv3+Hf7dPQDmKPqUVJ2DM0OhkA6nTC4f0xg/Ea10Qrz8DFhj6VPbtbrQw0p57R25ozsPiJBfwmj5Du7PwYsxM6NdCRBIR/+Tndn64q3LLExP7CR1OzuTfwkO42aB00b9C+JPEO0Unc4n2qqf4ceSqDqZIN2HaSlc+6ZDNDeowwUhY9MJv66MEl3pCmNHjx45Yul0N0Ri9BRP4P3zdXKIpLo+oNHw6PmEE1tE16VwwtHjwbQLVS0w1aseBc888wqKp3iSlRmnbLJ7K7DRt/Tg40fnDV72/oe4bL91FTU86c36aDofXj6UZTmUqcS8cNhAsf4EAu9rV8cFsF5rl6I1OE7yZb/DVQZ9qF+kJ0yEX1Swqw5Kek1RQ/53N0kWEpTOoP/3NasfMZ0k8YIK6YEyDrt99BNdyZeLdidj7V1rGC0T1JqW+7ti/fQxlqcDy2WH8rej74+r0CPCoi6qyFTT648ikC7GiKCDTD0f/5gfD392ROX+Ddv1bB5hd/+LTbgalK7gYI8OdJBFQ29dR8IwfQUDPodtGXHAe+Ab8vsx/FJX8gv//3XkFBi4Cq+YLHSEutp4HDwPia0zErCQzGCuEA09ak88vQf/GD5sUPGRX7EMFJV85/+Djck3G5fxwQcSAr0J003dFWz4uC98uwVq4PeQZxcCqw3wyTz5J6XUHWnHTqg1bxx81qZmCQnJmwm/riP79QHctoou7p3ADW7UZD7T5PAaMB+/0aPRuoPq5T8udHPbfl5Q2jebOiZgdxvxGO9fkvPz9Mve7LQgEZXPw4bK++W1NOosqCe5keaaDDtudq3RVw2/cPGp7Pfc7++NtdKeSW+Kzm8necAX42d2w8ZGoufgiCrLno2PVq25d8cu7+8Fdc4meYWtGFSz5PBLkewQgeNwF+prSgmXp65XNmagxszXnEVvNK4wF5DwLWd21C8iMczen5XQmq+KpNGqrUi8Uf36eTleLoMn5q8tqyM9w9vZDuo9UYz24WQKhppP3T72PgKujPb0TA6H2++FnwnKLlkbVxMKdffg4vSY93L/EQ/+Xfbda9fv4P4HF9EAB0iYHtOLr28+KPgg0sX3Q5D/6EpdYCRZm86bV9DXzKhD2BGy6qaP7GH3/Ma+P851cdVt+hnp873sJPIjnY8Ohozi1pA+A0xpWaTs1qXnxbApz5a5ClXpH/4XdXVzIal/snO/pWYSHHNTU2r7PJIPpYIPNvt9/95/O8W2Z7L/khyIkcj332msHCH+S6Ns49v0JlBkZebilOp8gc1C+5g99+/OlhULpniIxSIuvPqjenqdk62npLSrJ65J7/+z11qR9gcx+6YEKjwqDT6FeaL/4V21aZqtrx54rD20Pn0qIHYOe3JrYC78nnbJ8jsCLEIYIdiPlaOk6CFj7hUnJ6QJNZ06aCUyX72BWUWz4N1c2CC77R3eBGnNPcFeGrrXwEVSfmg71pZTiFnz12EusCWG1+PNW86wlNe3j2l/wo0QSzf6P2Khn+/NXlFrL+mxAFNC0g5k1OwbL/9CFt97V4PgcqWBeJjj6LPzCvmsGBea7csH8AMmDGqnFh4DdXWqRjBabbq0Bg6G5HjDelA/7qK7vX/oR316CvX/tCj6A0xSX1xaQGrLVjD8J7t8K7VYZ7Pvgdgor/3FFLNpg/h2gIwOLPoM/CR+vRsWaQX0IV+/K+5Rx/iwh8UYURj5+9326OagceTSrRxyPvzDGaixKGyBnwfhkwwfOVsQzqq1LsSPsqn9E5LsEVyiJGfCP15LT7BFDSDhd6fJ+Rz+Xvi8EDWNVL/PvxcFoG5z5JVxDlkUw5t/NbAJrGMVGRVxs+iErGQHafvzRsI71maKU0gB4P+Fef68cxOjRw8aeRIlETsG5d3n/5EVKjG/Cn42s3wx+fKdioYqZ45lm7SmWJvXte92t9YqJm5a6LcWUbOWNH9wx73QlosHGenOvY8DTdaTd4r1d1PRmpl8E/fV5fJZ/HBzKDU3t6YXu8yPlQm9SF7tVYUVzZVczq90mEy/pSFJ4A52kgJfB4CkeMXPleD6+0DmBy1FoajHdscj9yzrA9CuqvXsXb5FsIMBle7uKv+OYYvPd3aDvJjqLII5x9PPaGR3KTqVH0Riy+wFX9W++DKX3NUWaJBw1x9olwXj05h+VZBZs4KtDmNoem3HzODErKR8Q7fNU4UaUq0pb6D433Ybs0aTA89aTfOd4KuzYmeiwFYMk3sRcIPZ/oxAnsy67DuFZ3+Yil0oHL/hBJWe39yQd9Cox9E+DQrTVOndN6hg9TXh7x8z/LYPWy1KC1fWDf+yQ52eZNCZ/ePONgbzOfax6EsI2TI8aLvptSOUo3vMl2dHt8Pfl8z80BTut8WvC46ifTaO9QzEBF+OK/fl6UFXDhM+pVagnoTr+JADYfDTWBtwVTcRsUGFtrcRkUm/IJV5oC7W4zkn8AAAD//6RdSdtzTLD+QVkYo9sSbQrSnSDTDpkQD0F307/+XHm/szy7s3ehqtTtrqGr+K9eOkp7rMKTfL7/+KmTrXn69aHvexPZK4aW8b2+SyGxHQubXW+Uv/j8C4u1z8kuUj9gcU0HmkTUGQsv8Q4on4xH5mkXPshxVMxs/XLDB9dZxCSZw1v5Lz6Fal+dyW070f/lU3+55hNLi1i5XOjogl9+6p/8QOR3UMPvV4v+q1fO9V+IoX4Oe4LNCZWrbwzc/OEJeRKhlT/8e0H1E0dsJ8WPeL1NtgF++EDs+dmMkzB1DId9qDPniNg4JJ39AMifflOS9g1YRk1ywC+/z358KlON69EyDpb4sOCAF7T++55++MSiVTXQ/Mt3mvF6PjASPhvEUzcv4P69ueDtdsJAJkYWwl/9hOCFGmAdw3kDJTr5//t+6qM6g5+/sTgvarSO+vsK3xFfmXeCRyEUuf+C+iaXrAyrbfO5X4MKKMoG/eM7aPg08v9vSoH+f7cU1C9EWLDIBVp3XhhCvDoaXmi1Ngw+LwlETnqh6mfI4mnnzF/oebcLS1vbQMvTNEKohLrL0PltlSutpxysGHzpati44e5dcsGBmBpxbsqumTZj8AKkVSO2PxlyueSsodByKaCaCZAQrdi/wPj3YMzLjnm5cs9I4SLYi+ziLIznq6JQeD4fDOKcmV2qSZyG4PJWCIkuDxavy7y8zPgReFT17hjxyhsSONlVi9dDPQB6ufUduF73Ld2QVw2m+/x6QIttPSyBYyOW7EgSWJyuKjkGnJdLNYMWuvYjxo27f8bUV3YvSAr1RILacbMlQE4Hks6/4k265U2PjeYBl3aTkcj6RDFzLrsNFNGrYo9zusloVi1nqG3UC1YcfcqE/T0ezP2qIew2+r1c39PrakZK9kcVqUXx3Le7HBBunajRjW+0vHR188tfP7GkR3nDg+fwgtu8eBO3liYxv6tEh+d6LEmwwbtSM4P+bJxOBie2ObiNKMO9BeX1mdI/FwYjd0kNYXbbylj37AmJrwTOsMy7L4sz7VXyMEkxbJ7EYdZRgyWPv5MB31q6J1bsWWBxadrCsUpbhsdbna3XOPrCInMibGyPFmDTNDmwPh4c4nXRbeSbMajB2ka/U1RSHa/JjaaQldcXedS3HvGbkW2AX+Hs12X0ReJTJjKwJ7qn2vLOR06HTQH9ezGw+BB1aFkjPMHf/ejSkhLxKR4prKmsk0e5/YLFUG4W4MPpzfxnBcpZ9E0CQ+/yJPtmL8ecvrIeGHR9MrSTx4ajh2UASU8LsrNvKuJk8l7QG5eJuNLaxqu5lgU8KLFGsLNHSKjuKYXO0djT2tq9BXd2JILmabtju/ZqirHqhhd8v7SSmp+gK8fMizmwjzUirqKvaKU3u4Pn/b2kaq3y3y74/gxPkt6SewjsUiWteMBLdGjoWtrPcSrr7GDqSYmpifJ8FPvXHUPHTbcES497w/MDdOHYHW4kGAFBi6q/VyiuQYbFZVbLNbiHKvjZhwUjYIi/nGsFi8tSk0QCPlDkZlElI2tP7OgiFfGOXwz4or+QCMdDPC0K6uDShQM13OO9pG75uEKDQYUFoOxGcboBCh/GNsCgGABYj5tqhYll3MjudfvEvLlYV5OWzpl48mKNGh+yA6zSNmSk3QyAB21qgLWrBTaMuyqGVukwvF0/lOAsUZH4nMsH/NmTEDySZpGfVgV6J+/JSV5e4xKgqIO1gRDxknjK5mBzDM15TXR2WQNpnDsLVOCnX8rtmAIxLvcr/NpGR5IiVMopm2kEG7tP2H3wn2g54/AAQ3VT0c0//w2v+x4euuKLu2cFsmV68Q7SjxNjubvZYtGomcB+2Ga45hQD4V+/HTw32sLiPTo3IvPiFbx9pSOu/2+KBFYdSFo5Iqnxd2sWfCtDYHuBh5XddWiYxO4cMDmu/+kPzV30SIxHc5Swmb79cUw+hwLG/xYffLd1TAOOc0hwecHqipxSnsV3AyeZFFgalyQTS2HmUG4mjzzDxRz5XspV03skCs2iYEGLqylneKdRhTUZ7JqldhMMT+1UMMfavcESp1IORWeYVFIuR8E1e6mgrU4Owxs9HefNah3g6RL4zJ30i2CNbk1AYhWgQFXDeJpFDeE4aCXbuYku1vPyfADP3dvMRZIJpvI+6BBG59+u1LaJ1yQuom3rOGeCYPYFtJslDBootnRz8vtShP0QGja4F8Rz9Knk4wlX4Pd8qj16lq0KSyPYo9eGhC71R57sdhX4FpPL0ovTgaW0nQ0sds6J6u4slcsSHWqz2vGBamvwHCe4/VRQzR832mZPpfzPHzaacaDGZZFHto22LpTYAzAsxdeY58VDBZirb+b87M+d5YBNpKYW2Sc5Q5xveAi65y5iydoH8WKgGUNdSt4kDAM5W9/u8wwv58Flp7UNxUwllJrt5EQkLPMOrSCqom0mRQcSPN8SYLvmAw0uvye8tW9qvHbFlkLYBCpWr8NVcKU/+CayXZtc3/sFMTN45Sa9yRa5LeO9eQ+J1UM9dy60mfZ9tj4v/GFmn6giFnBrsNY1kEGWnE28KbdfsVzckgL7/ex+Viib+UOOV1O73j4Y7nZOqaH9/QqYdN2x0+c4oE/yt/XhI418LFerki1ZcpJh1uUr85I4KZlzsTfwA3ZvCptSQZN28Drwp8CA7JUXLed4V7UgFkePYFn6A8N7r3NwNR8WS85VHc8xsK5ms000ZpmthbTqzSPYTlbEivv1XYqeyRzOf85McP+5jsz5PFzoe+JNRSE2DT9EX9/4J68vqx/Em5JtjGbsLZK5+ycaMNELmMqzQryPJseztGwqiCChVM6ep1JcP5YBu7ELWbDBQ8lu5xrC8rRYJHwEoRDxr8WiYNcvsZfaAHRWwBeMQjsQ/4r2gr+cQwWbST0TQlsST2d2aOGxKDKGNOsL1kCWqHE++S012giCaUu/Lpjvjo77Nrtlf86vpSqVYEUeYI2y5bkNOezvr5WaIbAz+R//8UYxscCpolLu+EWHjvckVKP0CJbOm1R4h2Bg++a1HX/4cQa187hig7dTTJsbOUAV2x2Lfc2PRZpdDAhSvmO+41qZogq9AFXYZSzEeQzmbYpCGNxXQeyLmgJuvJIIqqcvIzst/cbic84eEFulwVBiZIB70dKZUfX6kP30yuP1pokUXG6IU023F8EBKlxozq8jCQCdUH+ErgvLEO8IHqU5m/OvkYNNUPvYOHh2M79YnpjHvXQiKCrUUcyx1Rm1q7kstPNjM/yT97g3T4yk7j2jLMcFIH+Jyu5JzmJx6okMXIMkzHuOqJHpb7HRgLYh1heLxlRhaQg3xgHirmcgW7tn44IPalVi//6X6+F8qoGOhfHT9zdbn9Ugw+iYbTB1Z6uU965/AI3uvEmypSSb7y2xoJarDUM+bTJx7y4TjJzXQiofRg337b0FtT0pSBA6TCzb8FXAUzR9iLe77ppF1YcVpKRRcD3/PbO1D74F3IaOxQgeWbMU5OKDRxr67FS1ctZvukcE2qO0JYEUbAHL+2MPo4PXM1KOOyDPdOmgEZsJc7+eEq/RwldoAi9kPoD7WPxthxyC66yxZD29x/mcLj2s6vdI1frwKdeWtLXJy/X7j29l//H/bN9kxC5Mp/zlhzr40w8JWiWI/8Pbx4mFWEELBFx9jC9Y1OZMpfzzFvM//zMu8QUv5tCOy+v7laFeLy2JoocMpoj1/pZ/+JM8PS/KeB4cc/PHbwlOrRdavOGNTbKWNjZTbMfy73qIe+TQ5c499A1kjcJPEOt09uQjYBVPDuAZZD2LDaKImde3BH50rhDnckpK3qKtC//xDZcIBym8PmJjlYMvFcGfAEu4Cc6gcdSaJUOfCCG/byFQTunnFw/RZvHPR32by0dB/J++hCWgBd+hDRnqjDBThsPqwNh6EYZPki5GQ3tTKBmjz7x0QwV7H+yHiaU+YmFpHONVl7BhAMh+p6ouCWKZlV6hylWDYc/6APG0HAMK8T8AAAD//yyd2/pyQBTGL8hBSGYc2iVRM4qos5TskmxmjLn679H/uwCPGOtd7/tbGacMYzdTrPkTuzHcKocO75PVpZ8ODyTAXXrdUWOKazBHj08OxFoS8PbmO5UoX/RJk1dthQOSEH/O7a8L96b3wX7z1C2ey/EZtC+QIbmv3v64cdsrfA7QITXcfjkzBibA28UciMoFnZPqtguAJDjWrz4rUhvXK7jM4emvX4oFNWzVOOUWNpLqGDLZtGs4H2lEdy0SwWjeuhZadm9hc4w2fMrGrIX20F3wgUp1+FXyrwNW0Zlh/zb14Szcz0Rb/BB5V4kMWKd1HRBjm+FffdAO7CGEm7LFZtIyzvPWdEEg7ddYJ7bbcz+IO/haE4yxkAxW3zZ3Ey7H00hZGb10Pp1MaAzDkd7HJ6zYiskZfG6iDzbUUvKZWR3v8PMt9kgN+qGa/MJ0tfdm5ZPvONSc+XZ/gONTV7C5K3FK61zXoRCHIdbdU+JPZbdVYGNOHU696paK5L014RUdKRLnlx3yb2gS7eOMMg2mdR8yM9oE0DwpR4xezTaVxGoj//SEIneVVT89hCoVJHxYtUX69fdRDQ4Pu6I77K45/ybQBjPadIs+0XDKxrgD5+N+j2/JMFnD635zgQqTGHubugkpgV0NL1VpU3e6Wz5T8sKGcEFCRylH4bDSjQhubv6GgLizLOkxDwLcGuKFep914s+Ln4NLfWAn6nSfdebDVnUKtggu+sfyN3vARzhl+Lz4zz5ETQ7XxdHGDk5yn+g3aVYPsgEIzdjZmmOWPEBpSzYNY3HLySjxFr4N5P3Vwyxqkw2vF1khyuKHht3XDqB4fT3pkaouZ50viJDMHxMf3yNL+e20aaDsdypSdYX288q86z/+gcRydQBkM83zL6+hKfWrcKqPqQi858Iz3IsU8m0jDDArd1+yxm4ChrVTyoCxWETw2w6AY9WNof9QKT5KnIPZPvFWe+TuatnYvPrlVxNq2kv809+p4OoDzDOICIRisuxC1JeQzqsDNT9EDMl+q3vQBreSrPz3JyXzvUSQvq8XjMShDFmyKs+gIvqA1osfmJ9iV4KHW4fYTEwHsCX/wXxQELWd3Ey5l8Ea3nxzja1N3vrTaUtUyOvyhDhsglRSVe8Ozu0loubCg75BnUewULIKOy0F6VcHyIZJZb2p9dhtAXluQhUUZwfhoxVF1UAInQG7zS7Kp1MeTldbb+Ct/FToXTIfsMaLD9DNXA2psCPV+Hueb3u5QBrXTxarP3dbZXPhUfP4KHq2O4wR2OvwRCM50/yRqDcFLPVHvdyvfZaokwoWf4/1IuGArLS8gWzyMiJIyjX9XortBJf7gd7zyQql283qfn4ao1YRrJkHUqemqrAiE/MCMLO5U8HveN58TDA1z/MVsjvMUDYf3haP2lMHzbV9IIUGPWv45THuDzNaLf2WgYY7WmWbCra9w6Vn4WmH4PBc20R+Q6WnwsaLfv3jz48MQo9LIAzDFgmyr4G+7f27ShpUkCIPzJRvG3kAt8PxiHGfOYCjs2FDeTYC3Mtya9EfX0ui4Ipv42Dzbr+nBF4vooKfcb4Khypx79AxD6+/fMaabS2CyugOdJ86W6s9bYkCzh9XQLU1XFPmJXOp8Tf5UL0T9HTwxNsD1tvPFbt1I/DBVFXh5/fQmrgNoEWkiuBBhJZIUtJXc58k7vKhjBv1K63kM1tHAbznbwO77n0DaOpuTdi9Xg+iHT5iNUehPcGx+1Dsb+CUzlljN/BjJx6a72nUs9AENljOT8rJtYC88Dp1WX/s32M5nILoIENhlzsYCx2rWvfk11Ad6z3dvd2h6utvN4FfHlvWo/rxRyCUvUixf14Qe30V4bchKdZfHvSprKoPcEWYIl2rc2sq+PyA4p4ERFnyJh2q/RmoF82grqou/ZLVKizlh0FTuG+tqQ8uNmCfeIXixU+v15/Khb/1W3bqTOn7MA2w7y1GZiguepRGEbRPKSGM7I/+3HyPsgqo9yUyiE1/uq2OMbgf3gk9lJJnseunaODyvOAMczf85UOgl6eZ2uWwS9nQhZHmPco3NsaqtPhQGQF40mjG5lqMAQWvrwlWmjGje+1BPrqUo58/p96td/jCBw+wlU8igft9Gc7ktq+B/z0FZKPn20r61ZNYKylSd9dD9Xc/UtJk2Fp41CCBS6NuaN3TV8+GdLBvR/K3Huad3C0qPZ4CXIVOSjTro1r19djHm0U/ifIUrXSI7rEMl3xEj++7DyY1Lu7A7YoM+8cYWr/8AUzlvGwc/qVg8AvP3Sx6jPWVBXq+iUIZLL+POhQr4bjmTQPeLy1erq/hk3tvYvDtwifVR1b5s6Q1ATRJMFLXTgtfug53CPq3beHArR/9xK87An95wx7OB6BmnSaAI2tHnL3OSs9/+RBcXAn76/1YzVbaIjhfwYta4y0L60PyrIFJXxZR+p3lz4F1NeF8KAVqnOILYNnuIYBBDxD2d55fTfKwbqF5Wk/YeT3SVBreXwh+vJovvGR8mVUD0KrzqNclUThdFB4DY/dkNE0C4vOcDSoo1sER+3FX+Zw4x6sqz1ZA+u6hgE5rlRZkSpn+9JuvPyJxIffKx5/fmlc+nEErhyLday8DkBrXOTwdphV9jIba82AKJ3XhtSh/Co4/v8leh6+htOnBKi8V/2ySEqTuYf9/PvC5fnX4l/8WXsfekTnD0/0iYxcZTcqcU1uCYgyuVGcTANPRRoE61q1Bb4s+Te9+iuEtFOO/+vnxWNXV6x2R5jUKpaDO41/9ILD5enwqTNSquz7piDp6a4uNOZlAYzQRkkSmVwtvccHCB1FfQdDTTbT8BTfUPYouThtOp22jwt/5zU9K+CA8wF2laFUi4Kwdiy1+GBx4j7H3zSpAbydWQ4E6jCivUAB/9bD0B2xuyN7q3vDpQVeaHHqUnU3IXLq8df5x3vR4RoU/y10M4VF3juQjIeyLT73R4el+DUkcWjxluhwNWjHYJip3UsTlLmkFeJ4ve+pDyn2KzoYDhFD9IAiL2V/fTqzRnBe7IAUZTTj1wdOB5JmaGL1fU8qPb6eG+VldXrmsYTW9p2KANL3ndFuyHtCX3Nrg2z85aRbeOJgsOPzx0wheabrw6QOUV12FXVXNLZI1dg2O6TlBU2GjdMn/NeRCuV3mT6o1xfRaw5GZ5ZJPbyDfOjqCbHIzjEH9TafkXZsgTl4BtW4ft5cqaTK1avdRyQY5HeBkvUG/eQH1jvXTmgs7ieC2F/c0lk3g0xCRXN3QpsdWsvPTUUPq/Tffot5m3QPGvGsJS8e4UzwKtiWq8fcK29NWwsfHmFg0FUoEbOPhk1bYKGCUMrmFUtKfKLbnmrNk1QUAJEVB6NLf//yM9xkmvNe5789XLJoAFpscO6+nWZEc+crveqmhd204mLLRwIA1EnUFvQ2ZMLtn2LVnQL21/fXn78a+QwP2E9HO4rDwmIKoW+czUnca3WruCp+AUhFHGrcPiZPdUxfV85zsEbQk4M+T4aoQ4UDHVyEcwfQdAwHmg4oWvZc5c/u9DNH94dOtxR5ACuo2+st7XqzUPrfOzgQO3/5Oj/vjqmq1/hbDzlAaqi/zARo0zNT23/GMvc967Q/qadJhsf0GdOm3fdfuuivUx/xGrSE/cnltey7MiVMTrfx8LX7lT/1P37KF75KnWJZgu9YjaiTVGLIxOZiwkmUfO+947McfPzhN05fqz16vxA0PM7C1zJ5I3OOcJwbQ4dVrR+o/llegGTZUDRYgp/vk5lXze56vqlwdG7rPZiUcl3kRfF4iAR+WfsaCWXxAAbzOSH1ei3DiYRzDV3F60kuZNeFgP9c2zEG/fLgka/m4qspIKwbHxIYGO2smTxXCpwuf+CFH97BWc9sFy3yGGuv9Z/FPag6lq/TB7sKXZrnLhN/9x4dHO1eT0OMcKoLuU38llylVMv0OvGxzwvrILH+98BstOfR4me/V/TLvRGq2IQzx3BEqrq6/ZIO//wAAAP//pH1Jr4Mwtua+fkWptlGJIQSbtyPMYTIBQojUagVCEiCE0QYs9X9vkVv9Fq3e9freqyi+tr/p+JxvSfxn88nGg6CxojJp11++Ahq1gzFQ93lC5HOdgBU/Vgh3eyFApl+OYPn5O9XTU1Cq4eYvbwSMENx9uPnX6+GbKtBl9x8s+N8lalv5lUjC9XNDsl/gauNL/J/e/OW17IbfMHOo48ODVWfLktYtON13Ojny/BusdXwRJWavaSiJe1ld+Rfrw8h7RyjQPhXFC9RbqE3sgLb7TKVTyRSQ3qIObXgNup/+1vjWJvK8dzJSIqYHU5fdCFI+k7OoUCjB5of6QhYbDpUuMJd++XFsUJNOTBuNv3yPGGoFtoqjUYBOI9TI2BECZnLmMBSj5kLQIkGKAdoGy2qbn7jTjKFzwn0CE79byNGvqLruLl0C6P3BEOV1aehimgDCkxpLSI7TF6Xv4FT89CkW57MxvH/5S8RYAd4Nowl4gh4ynOvmhPww0od9PrshPNepRZwKgmqkfr2Dmsru8SqTkS4OsFKw4YXPHj5jNd+4voG1limbfxID+j08S6AcCoGoB08Z+Gjwiv+vLgWH/3dJwVA5X+LK9RFgpT1rkC32PGbC5pT18CCk8FSLBM/djaO0CXY+rMzHlYRzfKB0meda6uBxIo7ksJTQnWyBb8Zy+F7uKnWxrlcW9sZM/FlagEoMdJzho+gDZNT+KfpWVdTAoL62ePlqlsqFo6NBYZ5PJL4eXGdVaevCG70uSNbcMCK4RgZs7uwX49vxNSyhm9hwtKiDEBJew3jeuRbsHcFFpsWv6hx8JwFytsH4h5Hf0ym+fTBsj/CNVFOynXm81SGw5fON+KKU0kXCLoRBUZfoYU6PYX5cLhACgBX/I/pMNZXrmYWSnX7Q9dpr6qpYtQW/7G1CXvCqwHJ/EgUcRntFJ9sraXezSgwdJn6TkMMrXYkr30UjvpzJ8d0jdf4WqwYfjHVFwbgqYH99eyOkbdPj5RSe6KTvIgWGQc0QlyXnanWlPgX1IQmRGqztMH4LUYPsu7SQrbsawAC/A+iT983f110+rN/63MOPG32QAY+UErYrY/iehDNS/PuhItVWhX5nrwymvpGqpBKuBcy+ryspiscZ0MtO9EGawAOxJvuWzRbD2PCC+QVpQfFVKa7eMvSqviPKHB4r+vt7tn5mCHFe40zpeblLLOPmSLcW4T/rObwuHDEaeAZ4ukg25JvHHgWZvYsWtznNcP6QN14jM1EXv7VdGDBGh9lmn0YkPEsYZrOOiCpwSbWoMKxhItZHFNcnQskwPBLoFAxA/m3msiV0BAMObaQR3VARmOXXYoAeivdtvbZZiEemB+L96hN1f9PVtcF+Cl7PK0Jm8cIVvd+YAuaXkSKU72/OfId7H5w//gWdGJ2oeLCmBlDnyCNbB7eK3vAjhOI6f8gxl9ZhG8mRw+N6LpAxJoO6nKadJmZ9ckLG0PnRjIJ3DU7iK8J8dO6cMSWnBrJHp0TO0nqAXR1zPQyDwWM2+cZ0FqBuSehRx1i0vv32UsG5w4FjbshccqVaMl4P4FkbfeTepciZlMUp4HJI5a0rwtZ4yd2q3LkyJNrZA3RtbvYL6goPkZU7b2fmbwtm5OFlk0g/3yiVT1YBGTOqkdG1ZTSu9nsEXdpEmFF1cVi75e1Kur06RNmT3RaZlQZkkEt9KNdvsGhRsYPEeO0Ryi0t466ZpUE9yygyzVwAK0q+LszKu+j3fDcAMi9JD0enkfyFbVR1QQUogX9bY6QzrVDhJ+xFiEEbo8tjfGXj7vgqwKoFFYpMyVYJzx9E+JTbCalPNVWXamfKv/NOzv6xGObdmxbQ56wdsijfDXgryoWwXo5IadTemUFHVigJ2ys/k4voxBlFAPZ9tEeWB7uh4+5QA2cN+0hPIhrRMbkV8BvN+rbe1FknrtTgWTi1yGnWKpvt474Fh6+6zU4eQrqwhIFg2/8+DLklW1dtteG052Pkvhc9WjmpYn/3DTl6TJPN8SCP0jdadWQ4J3N7JbcGgLHN5Le/IxJHgQFawXDxeuF2lPQMtSQe3wzMNLvNgiP7Hfzc2Bver841avt9OkNrqXl05Ro4zEs036XcUgof5MNEyZDsS9Bea524tyGj6+xbPCQdOyMH4WlY81pzJSc2b8g0rFNEj2xfwzlVXf/97pEzTd/UgpFP75jPLQbM7PUQiiaHdaL6RupQQVgTqCD+TMwuOahD0aH80DnqE7M1P2aLUx9jIU9fH2IHZKB4rlwMEqmKkdd9H5RI0bkEs53siRp7HphwccqhW1Lo7+OrDPYGiWe4/X+Iuz1qp9wragV4qgTkVus5onaktDCL8QfP5tbVRj9eBFG8oMUXcueotvEgYwl73xuxB+42LFyjutAG5RvptyNUJ72TfDA9U4kYQuMP9POJZWj4tUOMGuhgPtltCE2lmoj9YlA2XzWvhFYRwG1W2YXS+8dowL15nYgtamdnlN0sBBhQDqdOcFAXzXyvUkY+JsnXWarwxax7KTzIF58T/W2QDNphoOhm4FP9fABLHX9iqJ0OhT9s+406XGJAtPMgssDOyZbAvoyCrvcYoTosolVUP64E6ErRqcvCYXWMxYLu9XDzD5f5RCm6OTsYsQdj+76584fff9/3HHIRmRv0EvMhuaJjVt2iDc9SibM1Bpn5eysGwsYdaIIpEtl2DGfZWwmG46hreFfZOOvP6bGGTnJwiL5/8WC8VmIBumDQMDUDr1qumWxA6bMgvJzvzrAIjLkDJPZc5E1yD/q9DXKg8juHuOvRAjORQk06FrxK7NheVNqGfAtP7iMlx1N4AjMGtxZALRTRiRt4dfowXQp3mSCS03A3In47f+AsKCbSmUaO1lx7hiBMSx/Pmb3L2vZS3WH1lQoUKGodYUBQDB9j8sHl2bCdBYzaC2z8hmi3SI8WH7YKBK0YoJNEr3Qm0t2Ay7B3EWp2/rDi4zUGd8OpNjw5qN1FNwWQP5bKb79HJ8L0q9eQUeSGuPUTO7MnqiHcGVFCTpmbqeScaXcY1L5J7HQ/VVO1Qwqc9myMUruC1eiJagDLs+ugUOabLZKxA7jpUBK+E29gU5GfYf7oFSzYby2btflrw64JWhKJ5kTnOzzbkJv9gZyEqzEsBWZkmNadT+wJhZQ+Y6eBrQZYLIm1RHFnfGz4OjU2QaZaZjQ0rBK22oFFJ0lTHR7xuQ1bLrijC3q0YBEvsi+Vb44SSxhaZ8izGw/JV94kXJZGvSGYFjwfhZxoe72q5h+/mcTWIKelYqO5kLcSg7k8Iy9LfGddNdEWj0xi+xz3tCm937YSF4N9oKvN6YAfmYIH8sF9kiueV2dygdfDxH0bxBbWG6XvxFUA0JsrscLOcCjBggVvV8kknpUq6r543AOofL5X3Awdzlqbt1PxKfcT8U4mT8nl6YVwUW9bY0dlrJbMriwozIeeKMo+rBYqtLWYjmTncXgQhmXDD3G9iabPnZuELqtXv2D6PHbb+q507F7r1thMU1G8pqbaVVILoeGsN6QNNUvXcTevsPoyBZ6Z2QcbP/Zh2PiVL+WqTen86Qr4nkeNnMfXrVqSrNlKmKBGno6jOfPj9JqlSSszpL9NfSAOKyjwYFQ+kW1RBH945kH0Il6u9qA1wriBh9Fa//Y3HUujh9ZbIwRJFxMs83CT4U6NVYQmEw4Lp8++dBxfKXHlRlRnVddlaKkVQF7kj9Fc3RcfmuZgI68WOmfxlt0O6tVVReZwGQFd4GeGo1p6xDohz5mj17WHelCd/bVoNbqa/pSDWOKr7T7xs+VUWiKY06OLXAsDiunXq2HzKlz02z/TCHMF1rtvgLk4ZobZlNL+b389vYNLP5zYyVCN+hD53U6uFpacRSgpjwTPwqWja/Rh3N/5Rj/8mpl0nIEuwC9xivFA6ZMKL8B9Egu/JMXI9lhlDUCO2Z0ow6NS133fpnD6Shw50oMR8RIsRPCFCcS9FxsDxxlJAI/jcCCy+eSqxRy4HpilEPl/+Mzfnyvc59+SOO/UztZIH30YHCSX6HKXAHzJlULcLVvjvIW9qeSjH2Vw5YuV2M4lHFaf6VnIKTJCMVhfKm0lEUMmBxbyk8vsrLtcFSWHSd5EufkDmHfHVw4vN+Qhue6PKn8bwhzu4O2I7l7cDEt/t2posPsUyVx3ixYZJRqY7ucXOQYTUSfpRmzwOpHB16zkEw2wfdyByp5F/5A3cbY4aCjFjZ8g15AjZ03lbRAG3FlEtg4+2B9f7gpP1wtAblMcN7zf1yDr4xM5//g0OhQQovtabhZdR5c6nmJ4tYIEKc26o3gNjgGwMwdgEl0KtWuFyJY+9QjxPpTMgXel8g7rQITI7FWumt7zLYV1IEAkZ3YREW3KE3AspBp5Z++VtUQKDZgyKSIGXQJnLglnwD5/s6ToZYGOg/+wQV2N2G87EqtUE7YuOYXjI4NodFhwcSxgBNkL8iEc6aJ+2Vl6z1jzJY+lEa1UuZZi1Js//VrRsMleID8oI/IoplGLjRcvumWbIat95IAGmmzAUB9zXzznbbSKVWhLP7123fg/H0x6Dvq8YtE2Wg6s1Std4TsNJ/Lju5N3HnbgmYRnZDUxpmPLpQmMAxthYMdxtc44Y6HkXQV/vfkOnTPLSGFIBQGFwxNk+KvVGG58DjlBZmfkKosjTMzQQijLvhVREl6DfBMnyNDJ1mjy6kLwuJXU36GnXrGPjq7Saf1omFfizpkV3GCgFiWLbCplGc3q1wtu/A95xUKzYeMbYMMndPmcmWoSGLT74bm/+vfD0PPPfQLFdf34GEKX9s3UxjAhLEMe5iRVuNAPLbwsbU3UW8eoeOMn8MuGLnGtUR2ml/6I//SomaTu5m+kFlx8a++vL43P5mcixIBP+yNyqluSrQ+xz+EV1OgPP+lBI7U4PNI3simo1IW8CATFJ6vxfJ1edMPfUEyfaoe7SDlug7bCFxQnR/ZZ/xk5szYTCzyL6xFZ5ysGtKqyGjDf3ibK2bDVkRFuGNaq+yXZO+0z4pwohPTVZbjfJ21Ek0tQwsMCBKKZXVt1eJcXsDAnhLzGljNuSYAvumWfIV8MYLQ42xOFdP+UiT727rAkIDPAsuQLsnA+Vxv/TuCeUw4+n3MwG3bFq5W42R2QcRB0wHKVdf/pU2KiUslYAeo2dK/gRpDj5dF6cKkA2K4R/I0fqcvBvlpwaRqfuN7tpb48DG0gXN4ynja/5He/AXeOZ3Jk8imiHj8XP7/Hp03+cdomKndgFe++v+mXbJxmuwSPZWcTLW4ssECl5MHu7Bz81Rs0uh4fJwg91S4JqgPDGVm3t+Dv9+1NL68PZCUQ3eeSmNe+dhqFNQJ4ON8W5HSv0Wl/99/j61nkx0f2WIUGNHwyIivRhmhySJDvmxCkfu2t/ECEm3cXB0lskf45MwPxeCH/6Quik/QBaQmW9uJ0bYp96D7Z1pf222zm9jLcoXGunv6bgmLA8DDff3jpr2vkVfSjnxRovoy3z1TVKSNWvr8Ds5dUfxfHmsNu+gRqRxb7xC6+w1wZUQqFnbn3F922nEUzuxnSnetvb+r2tIefewMW56Kj6vzUHU7WDAi0Z6UgV6oR3fQBhtVDAyguSFItC9/a8PvO7+RYdSVdrg0XAktN7yQ+ewBMiJ5jCJ+nnFjtA4J5wIohmdLMEa3hZBXbmSQDUSO9v/k1Gdb6WwntF3357PvxzGorvihQldkXQrFcDiMKugbULe+Q077v6Pop9wEUdvoeubdOHWbZjUJY868XkmVtrlY8RikwzW4rsS60zS/68tBfLy4yFdkcuI1/wNyWFqTq6Dhwm/4V0etu4vl2CqP1riQ8DFTujQzxo0SrDToIe9FoMTOZ+UC8oUtgHz+1DU8K+tMf8AmPybZ/ZZUQcUrAz2876nttWH7rUZXji3hiLYHxEFY54MJuT7xCS8AsHzUbHs/LlTjKAUW0eIShVISflTxqx63oTQEW6JaT4x+81lL5svdeYNPHOOEf8jA93KGBgsAeiGFixeGK6itA5+TzRMPSG8w3w9vB0k9TYp9zK5t5LDVg7vmdj1dji0R6uwVJvXv4TMG7lN41WoN9iUyfUdKdsz5hKUinPX6jjf+qa3U5tjCQRR9Z7++ajc+9mgAmZlNkVO9x6P1BV35+K3Eekq4u1l77228ETXod0d0OtCDUcY77cN7TlV3jEZiouWEmlpVhjRcjgcods0jf9MA06OUqpW8uJ6GYkYxk9auULrU5+2tSZtHof6YCruedgPzlptPhUOclYFUpxmLiPJy//XsKNYnouJMjOjhKAqPTK8cbHwYLYozyd17QRXS/2TSFYgJmJTSRjL77bNPz7u9+x/vn+qE0IKUP4kFZ/GfYnKJNX1hgNRH/47MO3plYg4/zpybHjx5n/A8PiV8YyHi/XgNlT9IdyEsUEKNgA+fgLakobPwbhWvkDezasyO8lfj0Hz5P9n0JJHCnRI/Db0a/5imHmx9IHIS9TZ8f7D/9wXIGoWTDpwPgmw9SUUoiqnnf9M8/vnRQBaw2fy3x/GxmX4iSsurtjFOA1gfa1pUHVj9/C9zmN0NC4V5lM1ltCNS9PiIl3Erw10jT4IWfj8RwHKaix5c7gzdWV+IwtlXt3/xThvTBtciRHYP2ZqWGYFrxnhiIryjde7sAgkQryGPza/CsHDBQprLx1+ryzsa+FCH8Gt7Z56Zrp64oIS54JsEZed1Hr5Z5YDRQVxjj3Q7I1bifeQXqNhiRo38FdehixoDXYZoxkEUwrD+/W7dnhyQ10ClVEt6APz/2pxcxdnEBPH0XI2/jA0syqxCIHyNATly5Knd/EhncDVkhKDniimaBPYJoPwpE9pohI+1a1eB3H6q4YZxmewkqbfmHzyoIVbRna/lA3rNMjv5xN4zt0avFgcoG8qXuFM1hJ4e/87/5L7uotY9MC8kbvP/4Bf7Wtx7wOjMjfwgDp9/btIAmIiIeTcagrLEeS2Asok4UMDXDPPgXC3RBp/3x+wlFYwrHWo6JjCkGy6D380//ISO72XTPyVYPv0X7JcakM3Q1xtsOFiZB5LQGM9j7HuShyxWevzfvcsUxIC//Gw9dh57BM4UIBB25BjtKKcsuxY//EZMXKCWPZTZgN7wbn/sGUbTcowMLl0QzSbrpaZbyKisFxyPx594Io9dqdyOMToOE5307Od3Ct9YfX8uZSq04OxVdeOXz1a/IuYqWJw52f/6sGUrfYfXYCP/8SyJLWlEtwe5VSNqRx395wyJykfvz44mF86Ca26PXgA2vyR8fLhq3hx/N55C6MK4zvibY//IiUkjdKZvFndf88hBfPPqSuvRiVMPblTF90T9Wzmg8KgzsiXWJxQUlmD2/s0Frq2ciiwlHh6CONHCb0wIZJi7VaQ/fhXRvypO/815nsJRfexTh08mRo7grIO6IUnht5wcJtvuoN9yPLO6PRCa/PGFek0IE67fJiZV7t2xuon4n0rtwIaluDtk6RCwWtzxs84t8BystY4OYO8Qkv7zflFb7Q7pFFh5mGSg6VLjpKdSuRYh8ez05fEteK9yx8Rk5jW5Q/vI9N9LG9/FuygqHvVZiDr6MjZGtvNj/5D89FO7kpr+M7b6n/c8f8Gf6cqJNv5TwfBRzvA0rHubxcPPhlq9hMbYXZ3qMfA3R691icYEo4gQG/ec8/vCHJtxQ/ukfdRD4iIxH2gKnw9LG32yVtoW3Ah17H58rMk7twlE1JCZmDphLma3rpDgI4F05ATGCSq7okt/nn9+w5SsndT/rsITH29iQtGoMdXbcFsNRfXlEsXZWNh/MPIY2/Yb4E8dMtWR9YEAHlgRpCiLVujOxAZPQGsjZbg4ZTtYX/vFRtK2/Sjb+DhkpQ3/5ED0gfoS7iLVRxI/WgKPP2QJjrcTTrjvXzs8Pgxj0MVKGZ5bN7MhZsMy1CZlCOKlLUREBmqUYYToISbYMwSIAMQwKlL+XT7bt7/qXd/jLxicXZvbuwEpc14dJwG9dnNcY5o9WITHj6RnZ/GNYsqVGTuY7zCbVMtkfHyNaFi/RMHnKKm55hL/2zgC677ETIOVDZtuvIZ11U8//vr957TVn/ZRnH5poEonrWzEd9x+Zl7b7EJmoLKMZnVEPTlf3jkKJZ4dpfp1EuPklvrTlqz98he2z58hJpiewGPGSSJvfseH9h87yaG15m3tByU55gtlYSQ3TU1j7h1Keos2PWaGfky8yrju92ubZ++Dh08XfvwEFm369g3q5qRv/IhFOOeSD2ko0v0rcd0VzA8qSy+UeuvOdAxZwbTCQ9Mj6+ZnR2sM5hnK6P/jz7FnOenjffsWT+oZ3Kuhplt7hNTMscuzWACy/+/MFha0rty5Fow5SHxStlxA3habKs4ZYQ4WeR+Tr6eyQxyIYEOj1FSnJq1LnZDrakLt/jZ9+cvbD8IhB05bwpy+dJZWyEnLTXSAnNwno/O2PPtjyPpLdmEdEZekQAG+Jd/7iymE1H6trA78RaIjqXatsPX1UDNP1UuEle7+d5Xl4Gf+nS8E//vnP/7EVCPyraR/FZysMmIpl+vd/lwr8+/64/5tl+V9hwb/weH8V//qv/5Qg/Ksb2qab/ufU1sV3/Nd//ZNjWe4/5Qb/mtrp/vm/fvSP7QP/1z/+NwAAAP//AwDZ63Zs8FUIAOE8WcY= \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_820244ae-74b4-4593-b392-822979dd91b8.msgpack.zlib b/docs/cassettes/qa_chat_history_820244ae-74b4-4593-b392-822979dd91b8.msgpack.zlib new file mode 100644 index 0000000000000..207999417ad2c --- /dev/null +++ b/docs/cassettes/qa_chat_history_820244ae-74b4-4593-b392-822979dd91b8.msgpack.zlib @@ -0,0 +1 @@ +eNrsvclzHGmWJzZz7PwDdPaJZBWB7ogAAhtJMMkqkCCTyAKXIpDJyk5ksz3CPSKc8HCPdPcAEMmmLKclMx3mRN3arOfQqlKVrJeRZnSQxsbaTEcd9A+0yUyHvOm/0Pu9977FPQJccqmeMVUuJBDh/i3ve9/bl7/83VlclEme/cu/T7IqLsJBRb+U//1f/q6Iv5rFZfXf/nYSV+M8+vXH945/PSuSf9oaV9W03F1bS5M0CbPzOBt1R0k1nvW7Sb42zcuqXNtY39jsrO906M9wFGfV2m/6eTT/P343jsOIpvvv/vbTMi46e/jq9X/cj4fhLK0Ow2w0GIdJhu/4q9/uDQbxtHr9T59U8UW1Nq4maTucTtNkEGKRaxf45E8ump9O0ptf3Vrv3mgnE5p87TzuT9t/vPbH/OH1/1nG7GC2GX39+t/FWefTo3ac8ffbv3saD+MiLl7/b2ab5+fn3VGej9K4O8gna7/ef3T8+m96f3s3z7KYgfX6b0/jeNoJ0+Qs/o+fTkcF7bFzkJXxYFbEnacCxpLe+Z+KuJwScOP/5rdlFVaz8i9/M8ij+P/6P383icuSFvM/PP6FAdH/8y/+q0um+M1+WMWv//F+kbSDjWvBUTwNCNxbQW9nd/3aLn3y8cPj//VXnY+T6sGsb6bvHESv/6m1f+3und3ezvXt3e1rd7Y39nd2d3p7vXt7e7s7O/c37ty9vvcPhyE9/DCPkmESR6//8VkctYPeevDJLJVZ1rd3t3o0Bmb5d7TAis6pc0g4UI1f/7a3sb3Z2/x78/HxfBq//t/t2d0M6HiLMq5uzaph5/rvftW5Gw7G8etfPzg4/vVnSfj673rdXnAWFllSjv8TzqksOxiryNPOXprm553HRTJKstd/88f/YRoXk6QE4padaU6HP3/9HxiBsdlBPs6L6tbK6m+P4oLw+/XfCjRwgL+LL6YJPfX6H49nMUFwy4Pg5u7m+i7tlvb2m8/CYv7aYMu9jA4qyUb/wCs2i3r9d5PwAgh+a2d9nUB+n2CXzh3I91//08r2VnSjN9yMbkTXo+GN9SgeXou3w0F/M4zC4XDj2rXtzai/OVj/h4vOtMgv5p0Bw+Q3Dw+Ojv5BZ39KuEoL/h/78youf3PvOBy9/l9aOzvX4148HHR68Y3rvdav6ca8/pv1v/tVh7ccde7MX/97HqvTz8utnY2dzp3HRwTz42RCAPlPR71rG9e2tjc3tq53r6/fuNbrtT87Wm9/dq93/e/1YDoPEqDtOt/df00oWxAE/u9/8S//33/90b/af3z3+PMn9wKc6+0PPsJfQUrLvNWKs1YQJcWtVjir8tbtD+hLwujbHxEVCS0CtBgD6Fv5GFetQ1BLzm61ftX5dI8APJnSbe6ncSsYCDbdah3cuxVHo9i+lYWT+FbrLInPp3Ta3oPnSVSNb0XxWTKIO/xLO0iypErCtFMOwjS+1WsH5Zi2c9qp8s4wqW5leWPYIu/nVekNmmRRfNEOhjkQEQ9XSZXGtw8PHwZP8nPCuyjYox1n+SSflQHTrzL4i+AwSX/64eaNm4f56KM1eaU2z2k8P8+LyJ8pS6dtBiboU2dCFCJtB0xGadVVTDS6T5S3mrcDwpjJtKJTaQVr9WGjuBwUyRS0wxv5zixJgcYyWhmcE9kOsIOVNCxGsZ004ElXg7AMCAXo/SLmQQjn07gIkjKgo8zzFB8CQ7t0h+iahSlWlA879J9+UwZRPMlLWvhsMMZ4gNHHT47bAf1B14puM20oCLMouBP253sfH9CjQGCeOyvpqmK98UU4maZx2Q2Ox3EwzbEdOk0CQpAPeQdEZOIsKoN+PM9pMNofrQegCc7jNO2cF0lFD9CCp0mM5VR5wT+A8M5LXgCtnWj3pLxJmw4GYUZjBUP6gE42xI6nOOYhEUIZnDdLGDoJyjyl3Xc/4EMPjuZ0SJPgMX0E3AwOMnqXltiZKpqEDk34HIKS32jzPoazTDgw5qxos/zIT4vyq1l+k7ZXEINs0zYAjgl9Q+P15wQyAT9hE3+XZzjf3QZO08REFz18OGQOHjwj8o1HU7oQQRGnt1q0+zwjhpq2gnERD2+1vgvPF6TkQQdFXpY5E29aBo09x/bN4GthSUShXBuU5VpZzemcx3FcdSdJ1t25Fu4M+zvx5ub69RuD/saN+Pr2Tn8wuLEdXQvDzRvDa+vrWzfCrY1+b2Ozt75N/GdjZztcj24MiRldJ4pf0jRgDCPCgPmtVjkON7Z3On+607/Wf/HwIDv8RTx+dvYwjeKvHg8He0fhL4t7L+7d//TikzR/lF188nl5qyUwmdKfeRgFboUtOiMaEb8DfHLjCOFJgLh0x2UxcBt+Ua6Nk9E4pf9lu9v9G2G8vrm+NbxBbGFnMNi6sTnc7l3f2hmu9za2Nq6Hw80bNwY7va3+1nBj2I/614bh9o0o2oq24+F2v/ti6W6fbRejh/d++uHW5s3jjY2v752uffr507O9o1/mxdeTweefVk8Or21s8vdpFh1/dq1H+/ogoH/yDHum809flF3Q0AdmvXS1HmeH9OXK6s3W7Y/WZPc1LEoGoD7vgEDD8AzPPp/GxHe69GNryTgVSRP0M8t0U5C8Mvk6pnX2di56O+8zTYff6E6bSP/maTY3LjY33msafmNxGsiqMfEdIoidd4ZQ86XFYSdhefru45XhMCySzjQhCTPqVGG/W56NGuSCqM8kJkKe1mjGhxvxBl3HxrOT0hPBScZI47uXv5flBlmAYh/xBZKf8c+HMm+Vj0jkbtuPu1U+7fB2X9rP8E+UlNM0nO8GdMfim/arVx/I4Gve6M2Zfk6kPQmDFbrZdGVL2SpJCJh/N4jC4nS1Mdkusbeq8Rn+6XQqeakY9Vc2brSDzXX6f2P15pInCRrFXJ7c2mkH+H+7t/TJaUFoaJ7d6F0naVX+uLH0cVI4iPXZF3rb2yS6b+/gj2tLXyBpmbioeX6HHt+hp3euL31YD1LHvoFh5Y/lY4NgdPqjd9onlCD7LFaNRe8sh16fhKW40Ed7GHLJsHr4FnXSpFx2av1wcDoq8lkW7ULtWNFTfIfBdrO8WukyhuzudkjDPE0qQhzIR/2w6FSkRp++ZcL1YP37zzOeTfrL5mEgCT6/eWuXXZeP1twlNYwtLOfZQBjYom5chaNJmBHRLFhLHtHvxN5+lkS3Pu48uH+8tf3Z/Tu/2qkxCvMDrS+I8kd5dcxguxUMw7Skq5wMg5V/5b7AXfyjcxLD83OCSBUehnPis7eChY/+4i+CL768+cEfGVEqwGJWVl/aJ7rTWTleIYl3BgmqXL356oM/4meuviivtoOMhDbo2CurBC79grB/mIzoy6v+duj3l8FV4e7EJZ4n06u7svrgFb376gNvt0wsSWIkxRWcOR/tsjbgS2NvUiU8Cb82yB8E/T8I+iToX4IdEGY8tAiJ3g+Ac8ufnhWp9/B3FfmbA+uku6WYsrwZeJClizHvTGd9IoPjOHpeJRN/J27m4/X1Xf6PxVf+6Y1DTtS29f4j1oWjc+BZsTsIi8gbpZxNwLJbDXXcPP1+V/6SQf5w5f9w5enKAyMtbxatxTeDp9GfvCgJQ25/APmg9XNGlIuqtRvYm82SbtjNi1Grzc8wuaAH7hRxGA0KEi4OSQiRLxPaBn67J2ujx75gkcFIH+5tPHVAT7eM8I6LnjC67gZBL7AfA63xwhOmA/ZjzOQv8w0ESJTUV+3gOy1lY3Epb76Q32WJizTyAyN6fVmXEH6co0zzEeALIyF/A2ssqVHvuNv3AEzN5oiZ/0CQfkSCdJL9eBTpZLa+vrHzHckSo4K1ahsqAaN2qx206mZtfMIz4gfftI3fnXEbV4WHVR5+J4/mf8Cw/5Ix7Ntv/up9Eeske0LnmQEER7P+KKcnsMso5meEqO8yPGURfeJhp3Re+XkWCDpUYXmKU6jyoJyEOPp2IDprSPumI+VRAcSMPuBzGg6TQYLRxjQXf0TnIwu+kPG6wdN4mIpoywsq4iEhwYRNJW41gH9E88Yp4RIdHg1bTvh5/qhwY+S0+2AalqRvC+DaQRqHRUZnl0+CCTG08DQuvakA1UkwzAuCdTUj1CbgT+kt+riICZ7JhA72DGsH+L+aWTyjlwmIRVzO0or28ZAwu5gHR3CdwjREk/Enu8FBcJ7P0gjXo0wi4Hea8mBJ1lFeJGvEJCtHcRw84bsbmAtBn/Ptm1V0u7/GU2VzFiwIQ/JVDeiIeMBucJhno/pqjsd0YXlLxHAcSsntx6+DcKpkBOMUJEAn5mgGWPlKQrp8Rix8lTZAcJuEDvBy7wgRSWtI8ojAmA9x0QiOKePliOlNxg8WgN8ZnRvBHjcw5lmGODualS7kWZjSFQdlmZWxhw28txKr4wXZsfaeHJR8kvRJEdZWV43DCpSKnd60BMYGB7DzGDb5MliR5Y5JK+Hhx3AdByF9SEhVxLBMJTimVXhEB+mMyedgVhRYljcfrmUU0zriwYznd0BtE2LCNY/xoV7RPitSeWqrLfNZMVAspVOLu8H9ZNQNel1HRui834mMdIO7hggEj7N4N7BkYE9uIqQkeh23kcBM6J1iLWcgYiXu91wuRDfYy3RgQsmIl3+a5efBOSBLkJwHoZ7glGYIQghKRASPMe6+T2WCu4hSEYTNZwT2YOVufnwzeBYnQUzXls6chL6NVToFEHB6k4alRYQwzkbOaRtU8WCcJV/NYjnzjA5rgM/lSAkDGaDEeAIcQJ3qHNujT5izVMVswGDIg2+/+etqDEM59s0Ulf7+9pt/i+/kBsZ8KDR/SXeQ1GAefFYppuWWqMaKSAuEUyhXghUVBrwEg4DQKyuxatp4MvJfnBCRSehxn+LK1zwUqfhBKijMj9MBcDTHFNdXrqdHH5h98B4BLgIo8BFnVRDtoQeP5VzoOnwe5t6ZbK5axorVEmjii2maM0+2CyS+QcI2D5zTXWOkT4DLVQD3FG+3GxxURD+LsnKwElpkmGh90wZRGFS8Y+XoQNHGQyVOnp+kS0iLYVQJCbQxSDuOeYYLBQQoiY7QihQAhsnfuX8UrID9RdW4I4uUB1cDQrN9fBuRLNP8jumn7pAWFoB6zUJlyiQgpSFBY5jQ2lbOkjAIFZF50En4IofHMTgjWcZcmhprNouL6CYHK71VDAr5gGcVTPJuRpqcxsFJ64jBhcvxq8//tHtykvW6JyQanrSe4c7iugLkhnHzg7R+orsYg175GZ5e2eDJZkw2gXKdchoPaCcDe2/AZm8GcZdIFI1NG5ELy2xpVkFbonl5eAhech4Z8Yu0jc2vbCrwxrMJ4y1dJWDjXpaDBxPLxYBRAiVsQMue0j5pmSwf/cmTYOUwmdVwtO3IVxGnc5Y6shrPkbMYQGYDMaQ5cGmJZ4JZEmdNvqYXpkonu8IxzbSGBAi6WmK6n09A1PZjZo04MBMhF6w82d8/ZP5tbiX7zapYfhmGRKCYaED968uZmMnNfehCbKyUcwNZRToEIjDNSPkqLFwgImVP9HcsgogYyzUZH6oGKJYWORsAMVeMvsfLQtb7YUkYbeDJZzLCNLp/OwtzcghIxE1wwI1V+gMOTmWxWUg3M0yt2tEN7pWlSPbpvF0HC5Nmggahl/BKptz+GVckNtAyynI2MbJbeBYmqRFtiMxFvGaHzrwoLJyQl3COaayBx/k4obNPoP1MJjnOMRjEBYtGHOpEr5dxNaPr1p8Rh8whDQj3FCSWuYDWRxBYPaH3qCHAsjp1RtOTgI6lVSK7hIibKhe4PPNhEVEJnyrWcuhizXFlWb5lJHLiMKhKUopCkUEkJdFlUAmm0b3HuEZGZiIN3zBjCN3zBOJungJvQeVJjcqL1LC3c4jLdMyJKhZxUYCcFHg6PhNo0u6fxnu0o0W+IkEXjB+OgfBZyOpAIGhaID2zHXAhe66ys3KqN6kfs0I66RP+Wd5XI1xETIg1VOZVgQWGsiovDyZcAvwYoi20GloelgCYa7Svk5vj7Cwp8gyqS7DCxBBS67PkNJmyn1y5DQmpRKIIn9JYp6xEujTEWyew18/BA37RGBx+8a4Qz6CxBLoyFIknxBWEzNAxT3OBLjg2aU+Gl4Io64QsELTphImLEgKJNFqxuruL4Zm77gbdLomCA1EX8fPjPjT00H2A/1eextOYmR/fAQhJ5aoIsRt0r1V/x8HUdveClQFIC1gXxMsUIYsdAJt0pzMj8wh4H+QV6f6/3GsH9+99du/pqlFoGb87k/DUcCzzwl46fMYoey87a5O82SdlbbpKqz2Y8JkzJdkNmsjJxJfu+BjAI72GvZ6ggZcv8NKVtPWM6OqcQrrls6cLnjEu0DedPMPtJTILvqnXygL/229+a2lfQQrdWRzxpSLqcQFMXzmiQ8wCsUARC6JxxuaG4RqzAQNz48ARMTota9afaJ6FE7ogqlQuU7CtJoNj8oiPO8jyNElTo9nzssZsMbEi/NNDIZbg1EpZsfsiPse3Kr4bDTU04g2uczE3T5kbW7v8El0qLIZnwAQKcKFP47hBCmrvA0azkdpSGCCWIABeTAGsJuFtWBUkVhNZBNRRr4TPqyttT8kWRYF3NY5nBfjnILgypqd4Qzlbf5lpTsI5Y1AUixZO21mgMlAoSHesIE6RSijEl2RTpY15poCoH6CxWJxkfB83Cb3TdEaSXE1RcIdncWbhoixBtrZiG6iR26ENJYhiiD+E2MwwZH323s9FF3NWI6IBsI+AcRIK0SIHhqKL0sNWlT7E+nxKNBb31L1sZQWJTmIK51MY5qpgdBAVWPTjEyeJAtZJ1oiCB7VJE5gvYTJiC2BMVHUGJiDybAlpinXNIRt6WPEHT44gwkC0MryGJ05JvRCiS8sn+Aa5I6NA2sZRG7mhLieweqNWv3F+zkTmPO/Qz5W1kWISEHjmyUBN/ULowTRMCqx4ZUiiEYQoexZtrJztW3ZG0OTRLGHcUluZGEhKs2LAfJW5Zua9WIplIIJdiCW9uh0TqMUaJNOcdkC3lp8hha2t7HxWCsyNtQwrIXAXc+WXBpe3wFtqJNon+QwDwzSWHG4oar1KeIDIjEkGi+1LECtxw7/P1bDmjwcJadKJGkAe3AyaioygWBGOVGi2tj1DcrFsbPM8gyAMtcno5ODwRESmoBsZSxWJSip1TGXJUN9tK+nKSHoNLQEcxnEEGZ3gxeqZ+T1AOJCx/afW+joMruw/Hwe3gpOTlysX7WD+PAlIpuA/v36erJ6cvHr+MrnVe/Vn2ZW2EuUrF1cwkGovJLroSq7Qy1fMwWDrQnnFvnal0C/xmmiOauHHGvCmKCFXvvaeY3EXOUSMw/xWRxlNFIztcbg970F/ELZhN05sBfcKOE1KzancP+FKvCw69pNR/BVt+mXW6b3S305OopzOx3zVuyK+CzU90PrK2RSmPWA6aEynmjGSOb7lAG5PUK8dRDXe9slJFc4Y/IA97ZwPAD+9wE/0hywDn2T4JFt1p3ByktLSkkD+fqF/Z1caxjIsjtYmGhcLK4RlUUIslqCeXdHREErJerBoi8KHdNWIF00u1AlUqfnQHDGdo8+w1Eoazeg9lZYEXZ0mWjscM4m/aIzpcVZSeGJQZmexQkQhC6O+QcO3SeidyAs2Y8HuxyItpG7SOs/yJGLz9zCpgIHtgK4z6B3OqohHszQskq/VOghTPExb4UWCmDdRAfJRByabNBnneWQ4sG9v5sMnEQDmcJ2QXQDEZCqjKQ3yKdPDlX48CKF6sAeD8ZSFcKVr7FgE5izArFxtiyGX0Jr0VRZCytNg/SdBJ9j+iSUXVX5Ksm4QzQqV2nmFqoE0F6womhQ12VnJRk1DI3H84yfHfMcJXCV7biQcyMCObfbjOhXCxuUjiUJmBDPAUq6wbUSz2r3C6dI5tRvIJyJkHRM8HDR0ll8nxapgVxXxSaXJE3EEeJd0gTUskHnADcwWUADmJDoj025Iiona0oY6qJhEzJSRXRSMEsohWTzGWdQ5B8s7uZG74iy69H5Bnk1HsEqOJ8E+xLg0lWNY2dsnXkWYQYPX9sExF8qrWKbhTcGNgmSOTjylU43iuhTGpgR2fQwEdtYRpuqSkBPcQbuahIWvcEpiLPMpBjcLcAqpjk99JLsR9nXxvonVABYV488wqny5XJd3GixDFbtmOcpsxwr3o5iNaaQaVamBZjvY22e/OK00U/MXrd/u0pwt28vEr8KeKiMm8ckR72W8Po+N0IvLNBC6meG4lQTHkdE8xAMYifwkBgbPH8IyjTX4sN6gPhF2DAsCitu08rgUISCpbrgaGBpkytz2sKFVCdAhnRAtN/dwZ1HTIKn1DWi2Kmry4g1aRD4NBQhh+x/PpzC6lWql5aOee/jDHzkHAq5qhcU0DgXoaazusjAjv0LdYvMLcUJWpkkAUPDi9X48DgmyBVuaRUNk56gqALJUc/CGq5v1qLtAlyQ7FnBKgAJQj8EOOQEWtsACHUdAt7YyWlWiyimBrm3INb9Ph1jMiP+HSunF+QcZhFWDyBpB+76syPzS3mKzfnqLpXOsxczZZO0MWHsVGb2ALeEoQ2TVgPDjQCyK7B51BAtmg5TYJKBiCJuEq9OQSJmmiXJzEUtfIQRvpEsMqwkToFzJ+fJNdIOH3scESZ2MMX6js+WmADPNYlwGmCLsJQFChEUHQsYE98f59QnUFvHk4InMFSMD0/qTsMgjt1qImS5fvxcgOe5oaBXcWsZaVPpe6Xv7wQrz3Mqgr3qmDXpa5BTPlTzaIM72pjcJ1mq7hpvzYMVigRdss2DS81cCRP/07h0a6enhn20EK/uz0LvTvWs3rdo3m+Ja9yGmBWXCgq/xQpMACjPZ08NVprQIL8qYwPDyfeDyLn0iSOSaF0lgKNnIwsugU57C38SSrTi98uFQJ+GLodEHE6A4ghWMAU8M/fYsusGzMYcY1QThKWKw4J4w19Nj7sw3faDylog0W41vyax0zGZKQ2evic9f8YQG3ttv03PNE8NeeMv0kMfvlGQqLvqWQHH28tl1g8dspqyZ5CDVlaRBZTDFHDc2k+jtMbSLj2Nv8y6jxUkLOTonrfo6MOf+Lx+J4zCE5Bx+HXffzgu8iIfj83zXROas3EmY82enwTyf4cBJE68gc2KCcZxOxQoRREU4rIRPa9A9Ma5vv/mrM0fJIG/QjH1Yi5wCyhFZYvsFVbfeZokuguz88ODJEXuGII5nKB0SesqGrqe7SrL0fCr2cV28/mX4kTNDefw5VlIMDjXg05PINvpLonhEI4bQVJgIm9iPO+FTU5XBhJFVZiGKCLR4b7Pi0MpKt0QNMFKFm8AFkbASLuSGaat917pwFgKOgPGxFKgQwVcm8aNkVkhbnoXw8hHFE5tVXA1WNVwHw0oCMe2CqA5R/oQ4yhmEuwgYatatG6ONwkxHWM1XPw3hGsXBiT0qJPHsPJAcQbrbR7M+RLqRIZSgugTLAdK+zYi6PqJM8WCce5+b9a7KgYzDaeV9y1mqqwAsB3kdQ2M0KHx0/JADBp6pzczA/KCSky4Xg57O5Tw1SIl2Fp7jd8QP0dygooIyg7AQf701cA/yEXzZ1qlhgjYtL5CgMLWCdxdD34AFfSJN8ZlMwdA3IWYD9cLKJboG5+WkDFYeJhwg07uxvbOq6GoOYmO9s7luj+Ak49i2GngOCTy7CzFvYlTgADMfOiI9kQJHpCfs48jBdSHotyEXjWyYmBx9BEeoBPeEEVitmNMyxIxalWyWGXkF8wHlzVb9u0VCI4Qre7Vo2bsn2T3jmVvDHGkortx63B4i2Gy835B1FqbMZyCYbRPVaMzdYzA2ft4avJWAQCAaQPgXewiCkiJfeLCSkEFKmcGwAdKixGCgHiKiBz4Gu4WZuF/40CZ2e0yvIpaga7sDQHxSQ/QssytV5UsjO8THJBsm/GGPQmWiWpTLa1AcjnsgMQQcF1MI2QmJe0EZLvjma5AIomb7OTEzjbi7TqxUr/nXTmlh+ieLJC4fM1CN29QGeYphDsYEZiukHNPf8KQ26I5/oeJJP44icVqo/q/8AchahOcaHeMfFeQb+p2ZIj0kUgjJz6G46G4uuZZhuSz0lP39SanCswZwEC63JfBbXI6oYjNQLYV3yI8sl845lMxEtMXFYjCq4V/Lg0Gt+uBCgOGPFpsFfcUOAL2vElKJgjcBgquaMaQPYW2bTYIDjuV4wvaOihgAO+RXwJTFCmMX4hEO3I0zDtcRH6VAQFFBt8/rMn5EYqN7frgi1D7xLcJfZ0jgZUctWoGjUqpw1iAD6QJCn7vSJYnIODXe+ER3i+IERWequy393bIdkdUVY4O00II+CWIg9nI2GTL3ig1P50gomgEggdoD9p4hfrYP++jK3qNHq99+8298fZuZ+gx6kns1BbOfBqdLhhBPXQRSMHT2FDpiohgDkOmyUuI9nnGoBq13NkXEGC0Yxvn6upnE0qrcisq6QEZ38vDoAXGPfMAqaAc3VBjfg7AcI9yXOWyClAdYyth9K98416ZTeUuCKpFvuavK18QKCy9lzevXnw1OY2N4Qi0Tjt+ykcLO+J/NCF/YVWdeSVQZMCGlNojAPaqhdNj848/pZLyDe6RQf2Sh/ngcfB6H41UJux8YPPOkWPV4wGBAA71Qlw8CK8F6jMlCdQL+WDfARocszzpEaob0QxQ7pGdYEt0v4FbDYaZiRNcAeUBQffMZSxDp0LkyeTiVexAXyeud5vQk4TfPjyX3Z0mKwxPHuMpAMHBUuhu2IuBuItKYQ4tAUOke0TkOlp21gaheqTHONWNbponsl93DVeeFZOnjpLOLXQJ6A/ZjYtNZEWUDu6YaxKp4ccheOBoV8chG0Nm8A2s9phEkVLKIxS5K4/xiXwJfEZQmOgu7OFHFiwOyggePjp4FKw8SWiWtjf3Uj8KzZMSRDkdArYAdnHoDTBaOYwDGcM1oGEhEmJrFzPFPcGEztp+o+FHg+NTUZUPk5AkN9Ap1QIfMHGShUabffvPXZXJBYtKI4cz6wTQU1RSR2sM4ZIxlCxrHrZkl6Y6BE1FJN87bd4raBqUq4kRceQEa4zYqwum49C9kP69ItDAvaZiCiUiZIQ7DIqMekj5qTPJJFIFSsQvfOnOER4CgQe0QhFFDgmdgNLFkbdkMx4CURlbVG8q3TOcCoeXZReTn82U8yqG3lxoVU4zgX+K5JOOJVF42avMZMXIWci/YEsGZQYqqbIPmGdokslVJisfkkMsFaHWDe7i8E45YlAWKgcfAErZpk9PFEhUbTzULCRak0PN9Co0ChWg7wuCPnSI/wowtKT8mQIivo2b0kMC3d3B0FKzcp6H6eX4a7B0ER0LJoamIsCDXADnxDED1pHCU6dTLM8mElkdwd5XsdzRLNMvn2K/zmGAtaK9upzD4OJyRIIN0pwSSRn9m412q8axUn571AqAwywAmdfFrIKjVRzvZkvHLqAxBGybQfm1tcGySwi+G6hpZw5FdnaJ01MjGlmpSlBtRL7B5pWvELImWTwmywn71ARx3lEQMTuaCgxw1Dutj2mmHs4JphQzDa+MDN4NJyEKSxfVt0iIGIUkAK0dK+Bb5n/I9jmImwSl3oTjyKoxbGSlFJAJMSdVZAkuWn/UDFhHcUQRXLhCFQKuFi55IT/zy4hU+qdvJWWALjMAGhzypobTYr9oBvR+cnBT8u8RElFbO0EtojR32ikhIgB2jPjUNIAkaadz2Lb20u1NzsHzpq/pZDFCACQ5oi2RQlG40bY5s6XISV5tE6rCcFeKuE5Xz5731BdfOx1wNJ0DaNcfLrCNeJh6cCt9qDCrZRp5J1zOPsyEu6/RJTx1Dwy9RV4dkRM82CNv5ruSXfYr8MpNolpS+XUBymiT9YDRLRBJAIU6i87HGt1mlsB9DyROlkCl7O+CCGcLHTfaQVTPyPqSoUtMPcG9GqsaOcpO7SoAJpuO5hOeLTm3MMmxroNnuIZBzqrFQpbHne4HwQlRhmoWjKGQRSGKoa95vF9hpTMk4oT2ghGGnzHqIYeOyiXWcdPlTcfLCH0+kUZzfJDLFaWoCnYdpLh4BJcpszgWzwZcsd4kMQFdsEupyOYQBi7e6CKxSoMV0QIiwl9PmI3KxGovewj0dUzNYMOJq8PDpLw6DlV+ExRShfF7WWVv1X5AoEjMe0l3EHXtqzFzt4Bcm6pdPw6R5cNYDYw58g3mnnE/6sHsHLF9UsTMEL4TwA8S8HsnYCyTLAzlRkTqvJAWzEWhFqxOnDSSeCdYZu0B2TUruTGcFJ6JxrhDLZByKC5uJZHnwT3QssBdrRC8zbDbamiwIdQ7JJCzNlLGdUmU6dYlKpHUUx1Nn1mD8KtlwacEiz5EuMkYS5wCu/JykBzFTDox5nD3o53SRgByInJcwkzndx0jSPUxQCXixH9+hQe2cIBrWphA8CJmExLi9DBEO6hmQUs3ba8SrILoSh8HMvSLsLTmzTyDI+d7EEIo+DAfYkObglKKTefF4ZaUx8f5DJlyH7+7KtTvBJwRIpOP0OiLyaPq9CdHMJb1V3f8FR6zZYlzihx2zT5CRz+6StIIEZk4RRlV9CGz9TBePaymHPStHQtjbbUZqcwC8BqllkoATsUsfmZKlRlvzu2yBlhSStgsCtkoEDstlyNIZ30G0/fEeUpyYLO/ZqGybVvWQkepm8AQEv5E5inXgPU3dILZPIv5p3UlkkAXJIoIrGvAga6/RT84sFsDZuCZOpQg52dmGohEchIwhHhtqJse80suKhxJGZtL5TBhnI69cqLGNwkE+ODO/CI6R1CoQdP3v+YnPoAKlow6LKeRgfurwepLORommvTwmik2iLhZpbRlYrVwSRITkkYsmlvoKC2HyleGdXvK4ietNMmsE66ptwSdjFr6GkNiAzL5NnopJf4bQTfeDbZdmA0JSEC5oPGL6fW0nJajGg9kIFn3sfuUI6FpPP1pIjsBmDLjC0iYO+AlyNDGCcIS6mewySY/S2aBL4I2KIzTDwSAvxGbrBfcEXt0XzebVqDdrceSi9/WAR5dZ3gjn7/WWR9l4+18eVLMIFHbhCksCq6VrJgiwJd482LKRgHhswULj79Y5DVMi6xWdQrKXDwm8hctAbGT72hRtNToNIQOFlahDMXuZodVb7JOgGHprV84IfoR2cLDfDozNR4Jn2OpjKCVPMOdzHsbni0HziHSPDRuBdMbbpB0Yz5dNEEVkho0W3JU4SLpRoOEQxMVCy3uXbYtVixFIfazY8G7wxcuTFn48ack+kKmbRMjBxW/Pkwgf0I7wvd3Y/Ll+WeJb2l2JrzESUTAeif0DJ1KSFx98+vSQH51FSe79jjtnfn/16ku5qjofEcs4RUYT0S89wMSPU9U4MkBI0nn86CqkphCSSiyA1XVM0QR+CRyF1Wk2nSOeiaEyovk7ur2TVs2zFXsBU+x54O2JK1j4EO/HWgksuHSVHL4pDnQZX/bLXz789OiYo4j4fiOqxRSLcP4ciSemQ3v5MtizN5+vAopmBa9eGQRm0kLqDMvvbJrDi+Nkai0AGulIiAebPkCsIbNchpSu89BdGcEdQqirFdNKYBXhBQIa4MoVW/sU4j1R/3nwydHjR4gebDj1IeeIqDDH1bKRs7ydfRtDwxRJdwKVp/KjvkiHw/oYhvQWaGXwQL/GO/cFaLBrem/KUjnQNlFRdRqKq8jssTMRX0ocWbTx1lr51KbLicwsCehpcRYiLq01n8SOeJciPBlZNk5rFj2lRhzj7tX5MWSpo14QfojVfUzDsjobsg0xgsOirCwjlzIl4xxCOPCoG+zPYoPDzeA2E9VmqZgS/WGSGnIO3Yd99gtk52NSCbMF4mo1ApZA4BihD0SjqtEoxL94pNmxNy8ZWviV2hkXd2nCRJtLEPypzUZSGSziJnDZMUNHVthqzA4j4jywkWooLMbSFIAJcTncArEXs1+OMV5zV3eVfu5aOnrSknAF+YzxSaQqDWOw0rOc9UmLNXkOW1jYsGJk43j5KhiLlsqofB2eyO1WoMJb4UFTcAGQQq48UxHL4HclpcnKGfKFjeKuRX+K/EDExpMK6kjyzEQ4CyExyJFkJnZeX1yCIbbsS71SgR66hB54PgnLFkRYsCW01DFfBh1YXYrgAAthwuN+JYi1BQxPrFxBDxzzFvGdXPkjd+XpW/lsjyPQWCO0g9xzsKTnnkistCVun9MhMiaJhTLMynN13wOJr5aOMCiahdCXaB+SrcrioOa81SAjlMoDD7RIIWIhCe3zMjEFfhjxmydgaISSffW2Y4UQhNncOFzylrMWDGFbAXFty/aqWJ1TcsGtSaWK3aOEgFurwVMjcppQTkNUNXWmXC6CmrJpkrdrpdjI3xHmLiVvBufsSaUsAyIIWJ1Is1IYuvXpIgM05mxDw+lY897lKhj3ND1vMK9nYhhqCYTjFG4m2g5qkvojoSWufZdQchtKgWtXwjwvPg+H9TeZ/xxUToAxmQiNgAg240wms4yrLUk4+EL1Ja1Fe5OJwFFl9Ch/P1reztBNCccxMQvKBgv07eECKk8OOncQ7rhymCxRd6xpVMonSbkaY/mtVU8SJa3jdD6ogGzutum525vqdOeoWVV61XoXOkRbHId1hSEBV8TzjZ0tLwMxIjkwH81imxXB0T/B9s51q1SXppSPp1KyNmndoVGCOMvYj5lR10/MyjGtsGaBCgnLolASTKU64AQ51uN8Ysse0mfwX85sPaYJ+4zHhL1Ioofd3/8cit8MqTwzODEqrUtqd+6V+bqzkLpl/F7OEYrdaXFAJgecXG9LigEute3hQytribVIzsbYJNS1MjOqWT1JMsoHrC/Z4lYTpBCxRS21OucG8bcynkW5lD1TlRNLnGi1PWcESfhnRswlqVF1PD3QsggGkR2usBHC0AGzJCEUcILVipz4lacQDglOZKoz8UIltKRS7cS8TBjUReUyHUljPMFDjZXH35UVy4IDzvgezpcDfDdIhmy9FrsKx/g3tuPHDKj3QKGgER3WyDpIfHQ2VUP5PqvXTew/Yjp1dL1mSsC4SqF3G8lwKtgwYeZaiex/YLQZsaNs6Gh/wapLgIDmEgXCtW6SozIG5M06lou2Iy0XJskNqBuYwtZwiB86veY4LnJ4YKIvaEfdQMRhOSOex7Oz+EkmnlijZklrxnP24xEPRiO19bgrUzoHZlCVfXBltGI6RzcpZBH5RJgky99gG4P1QdfjniUg2+7geHGNetI4YOO8E2rHmIuaEWKNNmyeN66h/MxAbAJDw047kSTmcPHOm5VvQhSUKPPGyrmOE/aqHiu7E4Mt5jBmdIVo7obxR5DZElQ0+JiSghCDFxGhY1/8kG3Ua2PSjdM1OG5DurCZCQOj6aar/pkCEBJszO6TyGb+TAVewjmc8T6pEOdJkDiqiEHQDo841Z/l6v2k5AiEuRRrhjtycrcg4K3cKcJlZsRmWSlbcMHUOlG9sWFC7W2qatohROUkCrWdczi/CAvl2Ij5nFIZ5MUoRMB5Oc844Y3AFRWzEdc34jULbiLii3P8AhlaUMsR08SrIJtI5TIuUtA2RRxKqfIIv4cR69O5lXYjI55KpRXMCHeWiQBGlm8sFQNdyRRrNeYibXSlMxv3JNYwMaNZFVtNwg0Nm0kHSmxj474ZVXTIpBCXa6VwMBZ0l7cheZS8AyKsayJXmUBYZov12pCqHIRiqBCqoOWW1L1oXR5uzRjGJo1pwJZTykhQHo34ItQydTUgxIFVdFrSmrQYUFurMJm/RXNq+/WYkKWjVeZiqdRWqzKiVMOVokI5UWENRhrkwpnC+NT9hULNWwxNexFUVuRITlie0IgSQhTTRvGLu/FKP90MGJwI3vmxSK7Og6AQTcTWMyW5meaiSr5UOpNhfR+dXRoOVFZX6so5u1L9avRnkimfIgmJZXEp7azRR7aaHq9ZTlgtwlaAMBU4GvVGteBbLZmqFL+o7D1RVyMtBn7zofuYyZfnEwRbNZ42zDZMw/PShQQNWF7mwtbBixn80laK82AlZlZjFLiTJ6e2yNWKpm8j0QyBNSbNFegQT2x92ZH1L5aOOnqUhsMzMwS1eR5uIThta7FrL8RseBWhvXE976spwGijwG1gAGc30zGrq/EAiJ7FVZsZWZ2Lta3dBBKqcnGt3Fd6swnOM0sVVslFi014Aus9JPRyiWGm6m253srMhEjAaM4OK1PmMuD0COy2YPrMJn1P0JogAs4lnzsrc6PEFBFFcdTjOJiGWSt6wVVZ2c9Sm8od0E1nzw412u+mt+4QQaFDmjrSL5WalXIdWU++SfRkENsryvmY4AlS4whCn78vBMUTYQQ2wYVuWJT6XRjbsLhZyXEOLCuzHTxWBwCREjHTp5I3gu3IqfQTwslwanKp59ZBGBlHPjy0qptKwKThGLhHmaMoMozBbVYWylNdjiAcZARdujjkJt1gi9OkaLRezxNjNnd+shqcs97GfYe1QkpfzTEWAJZmuRpmPJODl2Ys011dVL8MGlsrRMTlbK95S+I1FPELPWxsapLb07zmvmI3QDvY1ghmPMypcyGKcRhZU9jDRmNUq0Eo94PiTzfjYzUYkUylLXyPkHgnq1/8cuUJKQbtBRmKS+HAh+vHd4ihfmM7OEsKDrC1MVgmLd72JNAc+lp1bOn/Cy0lTc6MC8/afMRNTYdEn/bzCz8PtV0LeQbBpi0R4nm7UfTRWF7JeJOa+Lz5QRH6EWKafQ1Cauc/iwOvY0mpxVSEeOLd0eJkRq6yVYBtZqWpT6XZYMYwMolRrSspJ6VXzM4VEeWFxYv5ymXlZXxxLhBzmrBcrIKpMVwS1HSSaVYeSTpxONk1jrBGCpBEESFVXc1YJrll1bDOAeu0YkQq4rHWWTQXWmYjPcdb5dIKmRJ1HKfWMIiUbScOtTmcCFluaL/Nil0tEsHe0y6JYMxpOrakn9r1TFwHqSMk0RXs+GwuQ0KAlK89tTk3TDF3CfG5HLCRgsSEyGBmAavR/0ExqV0PLFBxesBZvwO2iDKqT5AgFHJBmqfy+a48UGn6oGhMCAhC/ewBZ1Uc2Ld2/RBIUqayCOka7L3gXBGTZoiaWacBO+AEiphOV7TryAa0T5OnILllKv0bjlYmlQqga5IJUesUYXF516POpct1lGQR2QobEJzNtxTrK9dt50ris3ojBIatlrczIDY8qzDw6cigauOWsAi5KgLKFVR+2xx0jDc31HxyMbyCmSVDXk8lIGzWaCTufkY3QIN4zA3vra+LW0zPzUNflQe9srGb8mgZptKBg9atqzYezFLNGjZ1xx9vzUdUdm6Ecq5OC5L8Ujta11XD1rp3T2Ohrbuu/LN6Wr3SgMoD/Yo7i/lv+rCdANFXXtot6umZcDyb1WbosNgpbJUxnuFMwqhQw8sA2ZTL3Q1eHoCPSIa08uZfvVIvOk38q6ulmDyqPAp5bpJBubF1QbJzuRv04EFxfn4X6u+JGbWjA+gz23gF91UpKWQJ2LTC01ghYdJLXQpzg9wLxLuod7gcntZhLRyvWRdfDLqbWg2owXZqwawL1tsnbOWrRxDBmT7LlBHWnEUo2iClUCqTpOMomkk191eOKzMrmVTXwihsijLMSEitthwSlQ9nNpbdq7eAjJhksKoGCqadNlhK12IuMo86Zl80Z0rMTR4yXAuuwDfHmD0x7Y7uStqzK3SsfY7YVh8V4Xmm2VjAMZs7aos+ucYJWvRLMuJIR1gs/22bNmm0FScwuO5MbMvArOILsbNKDKc6mMoSLpaRjR9YYFq2UH1byptDK6IHU/ZsSu+nZqsnLsWCcB6dcKD5SAYSiTHDqF1DI6sQqaf3rHLhZxPYTkZaB5QuiG0bJULhy5fdbvfVK74vLkoG6hJ8uyE/ESYdGIrgE375kq03lrvvHcA16BuQ1C1ceI4EdqGG6TmqAPQBZt6On1Noq8fGMcc98kqM+xxsl6gX20vZBQypCMEepTYGMDVap7OCTsPUPJZSNqPEJMdkiFIdhalzHgrl/fjx3uHRLhrENDfHBb16BJyNS77boO82pWr3lvy1LX/dlSggJHnwyP/11jrxH3gYJG5FTAEcLO8JdAq4hc9tZjlnWyYT7YGAoGiIHUY8qRMrdl1xo68NdnfP9ThnGVJJAvWn12ySqIxINJ5zKQIuHCNKnDYv8ph027VAEUw0+TR69c9J8eSwGJ4D9nN44Lhg8qO8ebpSehZpSOK3MeHPGnBTsrwqltIon0Hy/mrGsXTaNUOfY2PmSQtHgJSUctZ3tV04acoMJ5Y7rBC2H3FcgL3a9EmUrKDPOP7prr7Fx6gZNuIfQhiMNKCGTQLRgxwsg+sjMTK0FgL9HTGykFZIYlmMz8Xs8vxcPvFfnhWpeRUBN0Y8sMMR+I64aDWoAOuB+IJzGJ9L+zxvMAGHG82ER5rfRfu0Y2+hDZeQitroSj8Wxz+N5/5w+pwdj46Bo/nsYPwSjlKGKt1YO/AVso+7NnPEn71xYq7XlEIAeBpzuxcuiEEogc+eF/Yz/3X36fMGvOUtxHLY8a93A2nKotcJH6MRS/y8yp/jA39k+d2DuIaR8kg3IISHkR0FdrY3jiAJRDAuRP7sbG6I3nt6xDYrkM1ICt83r2HDJiHeBzVhfOPf+b3Sf1G0Foa2eXsTra/CdE4i5V1iYrx++f05mJr/tvxuXtyCkaCCDiVlOs3bGtCx8LY6AkDRaydaG3TbHOYxrE7eUeLXy9aCYYb5YFa6cXa6GhYVB0/mxLgyhg2+VQvT8yl//BbQXrOGkDhgaZApin7yXGOO3cuN+9q7zmWYouCY5GOhA4wX+M1/rY4FhIX7OdFgpvF8aPnzTH5zL20Q4nHw110Te7JyNJ5ViOBZ3VVK8tzEpdSvlosQpNmemhBUJp7GxGwCLpgFMirZ6qCOe404bYml8Q0pfhIc+5YPGyHCPAXuic3udmAsVnvO3g4kHzkBVUQDjZLf6vLBBcZ19cQzrd+zXhde/F0RiE3VH24jx9ZBxW4JTXM1b2PhsobpegnofpJYPtQXbe4gdnvXVFw0pQ9c40YzUz8ZdUxmoatJiPc4QZGBoiq/tUTVAzs86ciFKMhitFuTlIRn763hsNKLYkASPUsi/VjjeziWyhR5pyufTDRqSyOXtBebKWiJkgb12gQSSaip2RwIZWIC6C0vLBUCn3OdkpZKUoyNzLivkasvgaLa0IwD+mu3QL/xQ1oZ+XfrvzKHJCFevuioUNafpdhRdHKSdcSMJmVkoB/NS/nUWunkdSZDpu2mjDbwDrjRl1OeL6dxeFpbrokJnEshnLmJB6Rb9qrtZCCzXcf768JRLc9Bfg7cs0B5SFCv+N97gsK1PBqTZsSh89AmlP6hR3Q3JU2+rHejZVOhKORa9kTSXWPpjXU+zrnrnWHIVtkxxhV2vWk0gEiAi7ZJKNvNSeueZ2lJaEohqPHT1H5xfV7ZkoviFsaZISXsamknqC2GoCJnBwq9oPIHLvJMysHWNWeOkOZoRR7F2D1L9ZVoNhmyAe46Ly4RdcmDNwqcv1fZvae38eznhVTLIXCJ2mLWT5eA1LOT7As+fPSjkoMXVdGwTI6klC9wK1lSZq9grbA3IxUyibn2HYfB5PCh8+2FHueDi30/dD2ONLCDLU9zM7g2AxSDYOnHi4s3w797bPEJcVHl6nHgVw2emIeNbnZ8pOWzlUiXAzJsDlCcqueh6mRcsJ4tdDa4HADEmHLV6oCTK7gAtmexnoN07CMNOjjinTyk+XNibhPW50VKILn7s7s+GnIdH3yvhVlio8j9QgusGRsF6e2XrMtGni9Z3JESkrfBcZebHgbmyGzYwMJOxM4j9lHjs/YdTHgIvdCM5XlQrtLQG5BHmzElDUjIyBL5430sndHEcQXQYLjNRfC42ByteemNRjqEialum3Au9cDzXcGQ9N/dRYQBWO6GmSrPbA2o55i63TQh1fbKQF4GLDarLwDsZ++BfC9fuuy/3rrGADL3zatQk0DE0mWm1X42qfDkjPN3eNUwEuWSvBym0jDgxWwyNUE+jeaHkqnJKPECFh+uGOjBYOnUUhCHL1saD8XckHCITiUtatgubwOcIg7GUa+TzT/yWzXkfUL8gcnnDyv65VQnINF6kngdd7R5q9yik4zjFuZi/SCQxSbm7mdsPoG3l2mb0gevfwhQ4iWKXojH3ITq8e16FbgvnLkfLzyCg8p8hCXQLDAO6grYl2tkKpTywZj1JZycnLRUlNeuupbidvFd931Jw9PleyCN4LJdLL0JviAvt2Gs4ViN+815dUrtOELTp3fvh/MPEcfM8iuCFFxVISPtqv9k4pcU6MdDrugF+wntjPAAss+X6rIxlXDLuE4X/Z5k3EXOGZ9ZdjFUf8K/SNCdc1nVrbJd0+Jef1ezK3OtEXcA8TiuGLGkqRkrriI188Pn2jmWxXXOohAcQf3GUxjDTFFIxjCTuaUUvVZmI+EKmepXiuoBjtxGKop/pEGPFzpHe1Vy+WwhKxtKINHhTqkxsey8qvNYwFfJYx6gtJRSKOV6xWI/iS1zY38sUzXcd5MKzyV4iFfXjId9r5x9zbcfwmEwOGWtSatrSEClFhTpNuUTTcmzjmtJVrHszUu+2Ds8VGDds9+ydV0y+Lj1pBbDQtw459wwyvRTlJqRa+knbrp4KW1NY/ICkQkbojesK7N0/+Dw3qO9h/eMg4GrgyEORtaRiVRja6uO9XMuliO+p8O9Rx+bt7G+2dRfnXWZ2ExC+o5dyuYbYY93H+/fc12pOK3ALI0IEr60py0t/mx0GMq+kGgwZ4Gai90lCEPjYNVRbotB1QriinXdBDKElb7DVCXntOsnteRjk6ONfbmuCsMZJF6DT2DDjzj4exCTChRJXtd9c3QWEFxI1lZW8BM62Xxg66Ma+CeSPXUmTrGFa8pk1WW5paluDuZ8rqccV4OFl4zzyfO6J6aHF1cRqhJbRYhRltW9rlUfc3fZA0mjRQxh0nRItC0JI6jMJDq/Lr/BgiSlwjXuxUtMhy+X+Hw4MklFhf9t5DpLY+1IFWLCjxXgG/SXU8/CgAtmma7B7LUsL6Fovi/YIDuO8dMyptPGxhEwt8vIGKaSkis+MFx2B06lNktg3IVJQ1VsSf7WAYwCndVwwstVKLvVRaWbxRiPCOifHL3DGArF7ovSAutz904YRRJMxKfZL5J46GLZbfqblk1SqHn9K80pyJiVGDMwpo4oHXZVzDCGJ45u7SdyDFwLoLYkL9a7didcNR8Xp2nulUiAMQKbOeGptnzLwyuO2wDz1vooCps1tWTAaS3WDwTU9uO08vpowYFK6h1WhKAsc8Z3rTkgUwsBHnx/dfwdZIMTT5T4/UoHNPOPNCxr9j+akOBD7D8LMUE3/D1FBRrj9y8snDie/J3FBRrjOwgMV98uLjBcrchwkv35n/85JjoR6UE+kIcuEySgXTlJAr/9IKIEzfgDCROyxR9aoFi82b9PkQKI/IMLFdC7fyCxgob6MQULPtKGcKEo+h3FixNJx/ieAoaO8j1EDLuLH1TI0FG/u5hRX9bvT9CgeRdEDT78k7dIHHA/idDBP3qChzUTf0g60G+lfn7NNYFKntxvqGhLjx+5fSetH8CuglIw726D2nNTqAX6oQR4u5Repsh+2XDYHInuY8NNG6tni/IMrbJwNbfCLDgP2AdlzFob3eCzJD6XSdnZKxFNYiH2ppQ2RbWmIkgnMq0y5TlTq7YdoO/qSApnyNyzaeQKR0RJCbNvV8zZd20gomkrYH6XxQhF8pw/buunDUu4P1nspxmZ4Pd0rihmatyUce2s0XYrYcHMlNGGqdWm6YYlt9TUy3j6Fjs8CzPMy9hCPPHtlu9j9LOs8txGmEngo+R7/R7Exfs/kpS49wcp8b8kKfGHlNl+/xLnfzZS4vG7QO0HEyV/ZFFNPAl3XeElaaM9ygWNpY0JUUpuAlJqij1JcdKmJkkjzZfuIFvFSyJuBweKGuww8Wq3aOMeji8OlX8Shar1mJIiebumjLFpSGW+tr3lpDq6ljfjyFythirdfQdhg7GKah/XQwTarsSLTuCX+yhjUxXYZup5UetjyZFjBNQ7kPgNbf28sT4Nep5EKNYlCZdeth5zmGaGkK1XzF5BDo6aQB5BuZ1zRb2MZDHT90W8k7kERdO+l/Xt4p7fEqxTazhlqruZbDWuZ6rOMld5SNPqC5bqpUD6NEetJKH1jTZXHOZmKrlzLwL6HWpBWPKNcXkRUrfYoCAhaT06yea+cFQK8T245kQM2nUJQyZwhnFnXmu7HdOtM3Fq0uLUUGmbqCutMMR9aAuRcWAfJ+gDXUYIqmYZnf3GWFkpueFD5hdSQSCzBSfiosjhKyferNPBeUyQLPI+BpDi9to3kQvbsx/bO3Nu2y07wFgEpqdeUgeh4uVpHLvBXU2zExegIqyrYrbwqiQp2AFsSpMUg/bLkPlBICrKeT1kOW+/Gzyg0z6DnC46R23ZtfrXUsZLnLUht6oIS5kURRJYsJErzAKoAFUSrAbEgJne8rGOkz63pCGFI+WqhDbiUCIq6GZJWQErKWQ+HViViEbuhs1lLbj1lqGnDENQPiHlHGkrcDT1gv09AZ+VugV3E7EOoqpUjOoIhwQGdJBb+WSWmc7m337z134q857LAdrT5Nd/izj19Ntv/uowR7ZSVZHsuLaW8ljnNG53RNg363eTfI3uRlWuYeTO+k6H/uTVr9GiHhcn2c+h7QzS+CXewkOaN10laMF2iwTWN66E42hnREEKftbfEr56QaIqUOQWB9EvLg7PzOGxxwOYHR8QP6Cbg08IJPhgVsgI32WbzNKeWnUz+KL3ZfAstlXHCNJc+EZOloMWNcFd4imgG5ZeVQYQIy4lYu+JVAvswi/3KJ4V6FeCkvQn2RcbXwafh7k3EzqUcYtEjY7cDfbTpC+h1E+07shRnp7ZcjmHPFWjAD5PFRa/Ss7Ax0nE4Sw9+nV3Y3N9u9tb31nvaYUPBM1tfknnMVu23wfEAkqpVpYSLyubE8ka7sdxBAUQr1467UZ3fWPn2o437VZzWkKjP3myG9yT8iIsJyzbnUz6WPuqW2pO4DHlHt+0/a1ur7d17Zq3ju3mIXBtnd3gaJ7FxSj5ul50g4NvbHWAZWd8cPfwKV9TDL7zpd++hoffyzJSlAcYgdsI7dpClVXwmXDYhR5TGPeTGVGtjevSAgdjX/vSXmuUU+6iz0qYoKfNWjkmPrG2tTMc9rZuxJ1wa3CtsxVF1zrh9fX1znCwFe5sbcTh5vUbNM71L4MjUiczk6J7iFz7sYJiiP4qYJuwdjUyDeUkojlE5YFP0RuCyZvOY5POY3PHx4sbXzYaeNM6Dry27TFLaAMxkh6afiLSO9z2l9z3msovHEpv/cug3uYFXV3QbUWiVoh0idEUgUlvat2iorpWXVh67duOCzoZyFSw1i5CgyJmK6Tpmnw5vDbo+q6vb21tM7w2GF49olePwtMw83H4WdwfTQmJJUur6IhliuizYZwd8ZRZ0EkliqFe5Tcsodejq3xjc3ODl9CTJRAhq/fcAC3bO3yorZQubdVB0+B1okD1dhx43fbq2F2gAIjOOma1hwTtCWHbmYT7m5ZNb6aAtP6tazs+BextgeSH0tJVLuqzMacnmgspqUKkW6JD6M/o92nQ2+SruMEDbH/pFarEJdfylLuESndqRVWxvs5erWzqm+nV+vWNrS1/sTtf1hoz0GyuZO6uZQ97B1ob2W8jL/koxK/uoyqGVAfy+lK85aJe276+7i+ECJBf7445hxTZ2jVHjpXwveg07oU2dkPRnVJM2W87NoLE9maNg/SIctWqVqH/ickf94iVV0MK6gYfZa2wJEzjl/LsN65Hr4Guh0jXJzmJcEczMCS/jg2tbKHUza6kDmmtlyO/LswDvo13TKmJtyxjc2vLX8YGkTfNhnaCn4pBYA5HrudX5+OCZiAtaQ0vdOgNvE8EpR6Mv2SQvYzA+7hMTsM1IjSdWJ89yVrtD4KghZTguyhw2wp2g9bO1vVt+TzJzF1u0eexPg3z7ZNZH8UM4whfOCHteH19l//7U/foQxRATd72pAidrd2X9Av9+nNYZPDGEy6Vzc/QxzDE4VORSAOIpy365hUPAd3uHmFONX88fCJrbo5GhJa/0eF+nvCqvosc6qadKiiKJfM95vKO0ndvyR6ukrRvPiY6ltsR/DE4Ke8x2+71WfqWROi3rnxIyEJ8+PkUtLdLP7b47VdY+QevPvhoTbLlb9NP4ziMbn/wwUf9PJqLrfhWqxUk0a1WlU9b9IR5FAMkw2AlRaflIyK28KGN4uqAGPFKC36gDhThuLUa3Lp1CwhQnNLPZleBLYfVxVRdngoJut0wilau4umrqzdlmRL9/D6TcYnRd5qtiBEzayZszie2lC7ppIPxQ2S5r1xdERdXSYJNmhcd1DqdoKIOvb96dVUejcvvttEPvKPwIf0wrMafhBekKsmoJFA5/EiylK4wHtkNvvji6pWr7YD++LIdfHH15GQFv52crF798kuDMerVcS/QG/hD3/hC3vjSe0MD0++VRHyRPEmadNz8zpUo0QdkR/KY67Cib5GYOH1QTdLjEImaX1yVrWLmLHc/l9U8jfEDBEhEfuNnAv/VLx363vyA/tRjIoDeg9EX0AXRXrmKFDB6aYXLABBu3LYrsIfCBYmk+0Be7KXpSmvy4qKjtmG6yqtd4v5wRawYs+/Kxao73IsuTDtZdU88Su54gz+5FVwdh2XnRXhx9ZViFh20f9vkh6AsBrfsBZ7m6XxIIjDu7dmm+3WSZN0X5c+0HXJ5Ky53WrcXxwKtuMXphWsvwrNQPpULrFjUMZ+F5Twb0Lpq0w8iTENMNDkrullcrWXTyRqa3NE2fr65FpfbazR4ZzJJO4MxnSA97C+DtgcKgjw2oR3yW0voxUdZeGa+oB/1U/4mSuw3TP/cV/x1GIzp2t16M5lrqQXzNJ7Tky2xdNwCef3ph5s3bhKJDVb2UjqZ4MFq67b38UdrYWO+coqS2W49nZLkHlzsxsL44f6sqlDzBUQS1KBT5TAh1pZT2eXoEo5Xlwwlc5+NeKwJiSSt4GKSZqVsnPZ9fn7ePd/s5sWIGNH6+ho92wrY2HyrtbHVCsbogVvJz/AT38kvbrXWg/VgY4v+ay2dEP8AxehM8oxWLcWPbrW0fNdd0DnzacfMZT8A8SG6cKvFbuTLZ/Aef5EnmXn+9qUvfMTNhIC3Gz3k/V+7sXcjuEFb6eHfXpc+3Qyu0b/r/K956GugI169BLoA2VsAX87+fw33QVIM4L+hHfRovsFc/i5utbYBW/n6De9jquCiJ2/N8TdBc0N/pb83MQoeep8xNhqDbLzXKFvdDR1HfsJI292dLRmLf3qfNV3vbu7o1uRHXtmN7rXrMqD8+D4j6mi6tE0dZuN9xthoDLLxnUZxkNL91EEl+/1usJJRGqDi+d443iU39qM1IbsNwr0Gyu3xlTViLN6vs1RIa5zNmiwmTZZM8o58R0n7E2gIl5J1LIyfaC7SLbbJhtaai/oeq2QL2BlxMLPaPfngjevVZ/55ViwqvwOvWnOYgf70w63Nm8Haqs9k1960E3n5n2cjFYm5bhsQet8IdDzwz7PQYfiVXeb9vV++cZX0/Y++SLBdUtBeJIIK3XA6dXBsfPHGxTae/Y4L/2htlqoku0byq9GX44J+En+ySIz4uQUVTl1w5nNYEDpwIqZy6xqyMn9dE5hlrnGv9gRv3+4WxeaeXObE07WOe7pqT8rmoSZxFbZu73OpzE/QP3lDjKObQfAXQXCvhK8G1s6n2k3kOIGuu9lD9B0/ssfGmt3AM8NAw1Gia8FTm7nKB0YfMDnqHohNXRFPdh40Zee7Tdm5Jq/roC26R33pIXRXgs7KRe6gs93+YKkmkqAfHHEnc+pvReAaEn/I9qGOOOQ7iFqAZNhCI++wk4b9mCQ/6UOiSbePzSO3l34M5Fy8SO+4FuvK79CfHRNsUV/MXfMMek24gIvW7Uu+4AUtg43557ssFKEfnVroR32RXAhqv/b97cXPvhesGm6w+vxH+NKVL27dbnxgZ3bE4s2U8L0PsDrPO+K0u+z4js/z3UBKdvuH53384xwdYudQN3TZ6o45sI4uo1lX44PvdWKT8CKZzCYdvrAoiok2QR2h951JMi3ra3kojwcH3P77iTxunEUrDw+eHBGBeYeHfg9njb5ZHW61NyvjS88bT6nP7lN67PalX30/GhKWcaeUtkqNpXgNl2h277cfBdGcY6hje2KINb5xVy9t/UTX9tLvvheMXJllWVDZcfWS64t7U3+F1u03ffu9Ftgs7tsxjdLrq7u0/nHr9qVf/WjXwYYMNrDOfX7b/fz9UFyjuRoTmU9vm5++1yQuR6Y+jQtmat12Py/IpJcI1DWYe3ov/SgC0W0jmH2wRBLUuHwSdqa375h432Zd6pVl3tZVLu7NRbqLWlZIYgtKK6qhQKQ0LW8iYSnBxi5jZEETeFc/KMlO4kIF2NpvHOcSVyjdPc+JimHY+/6mkeb5OE6y8DR8QfLyWj/sz8NR0rp9h37Y+/hAVoIa8bHUQUcLEg5C03ujTZZNpyqNnQTAOa0gKk03PkNcEPwRp2nHZGsN8ql0N61yaXOKxI25beI7KsJJeZMbHWrjZq8nug3WlcFdnyxup1d0P1qbEuKQCgK7yXKJ9hJxlQCWRFFs5fIwG8CxKygvX5EyUMyIrb1RYL79odw2aDGEnQdZsx9MM7xJBtC+qibLxRRV50d+WpRfzfKbBNiCe+NJwp2GdiAxR/EUAfEuCHZXYIF7hlv+EUyr2ei2E4f1A/fI0azPhbklnL4Wznxso037RRyeltKQWC6YKVCJkHopC9jW9CppRSOj4pwRSMuoZEPROCeMw6RdMy6pLyo0A8vyum9oYxnC9QmXOXbLAq5EeaMe5LIwMQnI5rD10ETae7HNNpTdTSUh0oiq0eYcnCLVllSuvmmTbEK3v5rZO0Evh6ntfaYbYsLnNmeOxYiVi4eC8n1+45rd4EDj7E1LhsC0H01cAFtqQtZWjuL4He0pfsjAZqe33ZEIVEtraLg1ZqjoWnHPfQiEZ7rKPQ85lLFsrtqELNs2g7xA75QPG/15dqWHg+3q7eKdbVaPja4xbUw5P4bPjfMmVky2wWqtqBYjgNCqmDvCJTkSCvMhiBOdp7ZekzhMF1jn5yVIkk/IDVE0N+Et53usvWaXnLBDYoZJabu/2qm5Kxz3yr6oirBeqJ7bU5fAW473toUXNdmTPT1lsCK7GyOxEMPTvUNsPWfVTAuS2QvJ6F31czFNR5x6FigCzV0HdncGbS8jQ3Ke6EBQft9brR+SyH2nlwBNfk4mI3H1CpU15LU7hRmAXe23Wuxl2kVzmp/cbBm6LRk/rWCNBhkmI1ofZr4t3UW6lt5zAcd3Icy0RG8Yy1susVBcanx4f/Zy2Qx1/rK32M19hqRa7k3DTctLqeynlYL3TGMZ29kXAaPSZbUyrYaYE6PRTAiLmGGqG+IzXrR4LLNovP9+lw1s9rrBe/3hqBiEdCKWOQJxOAae6CakSb2bzVB8e2lZvlq5mx/fXCSpYXGRnLHPNezT/BvrvW6vd2N9s3Xbi/NHKKeQS+Ro9bFbrndbhej8Hnkx/1U8GGfJVzPJvIwzurEDl9DR6PlZZ51esvdCNd+fphFkiWohs/enBX/BZT2ZjGs5QiTEd7hnFSaZuX6A5qhipSoLUoBwX05fLgz6oRcvt2SSzqj9ZOS/aDsle+KDth3GUGMUBxB6Js2ZNC9oCtJvipRb2melJttsw5SsFHyeOtrcyIewxx2svO2UbaZD67YX3g/kk1M2IjH23fezvOxWXdC/a76jbcht73guGSpFdSzUS1OFk8XfOvhMBgkDXYqiamH8cuGhMpjq8bSl5IS0rWx2ZwJKaVCrgtGI53fuHwUrkAqJGHe0GDE/uIqEv318G5HS1PzOJZVKGQTT1lZbKEpt1GFCa1s5S0KI/nw1eNBJ+CLnvIUz0kLscR4vpOGZJUYoX7zSW8XQtmuhVrN3N46zHT8Cf7v9U/RIuXnE4MP1+9Xnf9pFNQX5/KM1fqhde/iZyRrm/D2VeaUq8mBMEgJmoGF+1hhiZYNXpT2cQQJtXQA/G/SmtGupTajFWSSfMJ9VcErXV8jTm4qa2hK2DQCubK76AflS/doCck+LjkvnJum+h/baWtqe9q33g3Np3uu2aGIM4plmC7el7VhWEadcv5Zlfi/Fz6+Yy5ZOEKJcEjOJvyRfI/VNWaVp36vLNmRNLo7N6NnndsnEvWw5GpsHsPJkf/9w1c9A1N5BXjoiE0IpqS8X0oyrNxN19yT9Vq+NKHpARtuabslVVjJtsrGwECXQmrMOvLEdYMPlgLEd+UIeQFi6bYTIcJXOimY6hUVtNpZ0E8lmBNo0Vu0PPDiVxS/pgOla5rXrYGIWRNAh/BXhULuduzOvOJWX62kYHSs8C5PUS9xsNr7nRXEOFd3EpGI+YuAiFayT0mR8ww8aF6w6aFdmtD2boXkeGo7lnJ3u2q2Z9tp1oajpg1lws7y/OLQwZF0WOmpotWy+gnEpNfVETAp+jpbdC93bpAgUusEESaW2WxSfmYvSyxjsdORG+wtt8S1oLh2wrOLMvAohu4yWRL+QK4xqJIAjcYm0c54XqZEXtPBFPaFYS5THZ3J0jl+HXNHiVoubDbZYGjOkiNPp3oMUbfTWu+ubOxs3LmHcuOEj4ZhL0/K03RXuMvN1sHmLngMvd5sb3EpJpr7X7K9O6m16VthoTum6t2IwYcOSr6R9dEvTFr7eELfZ2FJyjZFo/Cw5TaYgY4adk3K5anL/ZcpKtELDF3UCS00cPIgWDCQzfuHKW6Y8RncpOhvTr9l0u4SemRfTXGBs6h+pyAK+pdOy9NYOuOQDl1PhnGvJXdZJgEFEDUidRxgj4QUzP5XmdtFS7oO9gdix8PNj1wFTPkDPuZWn8TRm8YPvOgTecvUD5aM0T0F/Wp2U8e/7qaIb3cA1aeS2iB5QX7CpIdHqWDajr4MzlibEcnvkVB/k1TSvfrnXDu7f++ze01Vjv+ML2zFp/t4Le+nwGd/Be9lZG73Vjsb5dHWhq+a7XyFt3H6r9bxPCHC6/Eo1FWm2jRLBHXu9tjl1/fL9XroxI4opFRDhB+UvuAWqlCIPpciIPOge63BNeHBFjgIUgtTAoG+/+a0Z1PArycSIFnQJm8v6XmKR5qcS3+AU2Z8SXtzUDFmfJoGkutIyaJREItq03pHz7Ymy9aw0jxE4HCxPkzQttQsSdqPNi6ye+vRQuCQXHhWWKgUVzvGt6qjGdBcaWRsEsJibp2wTep9cShEE7cGJGTCBEBBXJKlOPGvvA0Y27ZEBYkmo6z1u1GVvw2odYYMYayU66pXweXXFL1ovWjDvahzPCghQg+DKmJ6S6g/TytR+QJ2Ij+LJbWCs1JZFXiDhHX22QKChNnNhmpC7dwtHlHKJKgcLROon6WzLU99mVphjW0ajrr8ridokVp6mM+515SnXDicsKr436XAYv0A69AYo9rcd+i+QD7AWdwReEUNpShlrFRRGGENT52IRcQ4I6fwF8Q9tyGm7A8OkxeRgaimRloWuQBDn3ctWipUkK2ZXPvWWclYoFUJCrNTAsb1aZ2wsJepdmzQpbcFk5I0Ti5zhgER/kyogg1icJVnJNlgIcOgDy8K/7aGGiVN0HdLCVqUU0rOMz9ULtihoSdkS0VJqUYqzaazlyc7zDv1cWb8gpjK9ZPkG6RfaHyVMuGHZylBKHbkTaXMRp9Trzc1cD93R2aAtPhexWLvuIwT5VW0PXmvqDetlFPltJeouNKAr21+YPLbR2pifK2JUA2NZjVtFhaUtUYTVcN6VCkOX3rYOMbLvJxVwL9caM/R5NYPWcPslmBOKxU4VGwBaywdkNZS3WJu44f95bvCCvdWWAvG45938wc13WI6W/lhuWZCbVHBR0ZoXyrA+ABAAP89s/R8112lVTi0hxWCrTGMS/0KytqTvtpWFZKQ+hpYR2bIHmnhtfufKmyb+ILVuymFwZf851595uXLRDubPk4DEYP7z6+fJ6smr5y+TW71Xf5ZdMfUDr1xcMUX4RNjWdVyhd68YBMHGB7ZBWju4UuiXeE3MQeq0xwrwptgArnztPccKILcYxIP8lmvuPLb1XNyOuS6pVjg0265mU1NsriDEEfIisgEvKwtORvFXtOWXWaf3Sn45iXI6Gv28d0VCEdQeyT1/pnDv4AKDiHaqmZTtsJKDA7U9O68VEW/5pApnDHdAnTbNoMdPL/AT/cFrwAeo+vs8W3XwP0lpXUnAf72Qv7IrDXM81kXLEjsHy56EWlFC8g0BO7uiQw0AWhyQ2GqE9+uCkdKbXLS93iIOpWHw9IUEdcZFM6mcBelGy1taO1DtTMwk/qIxpifWkOYfg+s4CzZXZAXsakX1PfuiXgSukFWxR4EVLKck5kF4licRu2aHCZfUagd08UHLcVhFPEKdFM1Il+7eXF70IpnAUyG1L0cdmHDTZJznkZFWfOcmnz5JYLQ5MyH7qYmNVka9H+RTpvMr/XgQai9tv0GWEldUHmBmtAC5crUtjjTC6SifsBxYngbrPwk6wfZPLKXQ6p7RrFCdj1dYU5uby1ZMTYqawqR0o2ZcWKCWY6m+AYtld5Cv6YDlmhTzWTvnOi7PpfJbQiJxCadVH6U8vM/eHqOkw2kvwq/jDrzRHQOi1m3zhTZ0hKu6XhHmneKXwgwVIKfJoFwbjztFOh62bsswrp6zgRkGbPJrwqvvx6W3jaJQozFcACV/0G7cRq3qVrsa3qU03IZfT7KBFAgPU8OZJlofM/Su5nuzasMbF1j1Ml65VM6GiCa5CQ+YB+S2dmdoSxqi46TUqUvE/2zaT5s9sq1VhSpW/gpTgtryYxaWcyO0a/PupQSMRGcjPiwvyOSJEHv7N9/JmtHb2uhtE1RqhaGcEBFOp2miEgQL1AwVbsmal2UnntI1ieK6CsBGT7+WlA3MUcPFuRaEZlUxNDsRJTFhFSCclgillZakoagRCvOOzyemKB01l3qBiS2iDSOw8fkbG2G53EjoLF/aUVrleLMvqwOPYnY6pESpU3Ms7WBvn0MnaaWZugdQdNRs1y98OZTYAw5dMWI6owCJRnx7z20ZWylbKdWhgTfKLOPIKOgSShSJ7C6WS883zsKvtVGzVq3+cY50E1SW8C+vqSFQ+ekh31kMDVZiaHHYMD4I0CE8EtdtUhp7nJ3IQ8ylSvn2O9KenUWlHO0Bl18BYP6q2MHotvSLtdvfwcQnl2KRdCy/JN2l5GMawsk8nk/hQynVCceYSQhhl84fOU81SB6X3m7gEK6VcezKZo26F3IdNTpXErHYREYCpdc83FTeZEdi7lVnFbIseGHw1EiKZj3ql9YlCQDl9CWGFTeFsQSyJ3wYrsA7MIZYRmVMEYmanLh8tkoA/D7hXDFDU10VHiSeB3Ita9KR9Wn1fc2DBTFLfcz66S1WZLlut87ZlBkZsJZy8G0AcoejLIdNxUojB+K54SAvR65hEnQ1hf1yvlrtltuc67pK35bCHYnjjMv9cqtzZY7Lt9INHnofEzx1Mr6mG50tNwWkNFsI3t1soEVYdHIt5uhFSRLALfrJ8cdS2UsgW39SG3iUQoF1+fq9DyonMhkyi1gKY2GudTu4tx+ssDBXBT6FaHtt6RVRJVxCHm0wGEukmrR2tV3D03mwYjHCi81e8Df4KwHSv1/YVe96Z72HelNyliF85h0UmU6qtQ9nU9oAYDqEzWoQd/qsO7Ruf3r3joYAPD38s423msx7O70eyTTXrt1o3d6fhR4Z6l3DODetEYdnDHiaoExY3zOxbzmXIqIJV5l3IaY/Y7rKUPVPnoHvsxWihAw7Oh2p3curJhScImKCtTqJ6MiHQ52E764GeHINX4SPGseEuJYtiqAwIAfK15RAlFKHVdhSEE/wkqLR3lnzlojZWRPHklkJ+8yU78a5Osbe/L3E52sQUewVocXv7bdpLU1kBbwYrNzG3RVsEvKll9F3c0hwlXY7fMxenZq/AZpSiWrpMOMeNwCWKPkwJJyP/P0xf6uzfr0jG+iMijCCwW3tw3BzsMhA9zbvsrqDKyf1xurbXFCD3mX+jU7vBqlENl527cMojqedrzrKEReXsf/LR3YZ5yE06/BrQoffi7DwttBaL3f0ksTQ7xNW649eD6pduZOw6JydcocDut+msiWgNI7TqZiQg6gI0XUbgm4pdjsSz9TWfOb4qxTCd63NRVvlbA7xaULWsMF2kmoAIwHSNjn8ZAkR/u7FeFu3/eZFrNbXynd2V+sBv4082YVU2O8Q6tscsh7bIuNaGc/5QzwRPVbxBlLfgEmBJBTRX5IIIFZL6E2FCdKv9dZmEqCWHZNAU5mdKVUh0HtHZdxsucbt+xbsozgr8UYjjUOTGNRqKj2iuDkM7pWdp62uUhs/spDUABpOm2bjAavZMpsfWr8izZRQBp2YBo8aV4NV14k7III+4owUFEqYpQkJcGex9KtCrpsMqTsnSMChRDSUmRkdbCXCgfhLQlLhzoHyxKGIWx3N+lD7RkYikY5wKOLoHNG6PuK1MaGH97lZ76qc2BjkwH1b5cS1VhXyNquiBnpONTmGSbAB/WDl6PghB4yaZ5+p92fhmA4q03BiIbniXHBEkyHQP/4cvyN/gJYLUULQcBAWEodp3cuDfISQQhu+4HprqZzmmilxuOJCqg8Qp4/WCGfajgEHZjJfBhr8JmTlGsK4JqUnOU3L+WCscYFld047n3UH4dpD6EvFWuu2/BD0bmzvqHmD74s56I31zua6PeI3wJ8Td5aD/5DAvxs0M3vESF01e92L0oRWF8Vp2E+11SrMEW2oQyOb3SLIFyHCTMLQwwhStfhkMmQTWhPULDMKSillOC3k/OtPjAA6lb39tOxG8tw9E560hvnSUHOda5lKSemlOg3ZysJSyZk0ntF8MuMmHkNw5Oeto1jpHbShAcwVYmtHKH3k6wxWDTJXRGYwIlCMmsswQ2voB5Ev/z65hZlk1lUvCetgYvfJdDZibbq2TUDJJ5FEhzO7ZLUbaRCvRJHIzglHk1pzJRWnNfEGODCQ8FAOwy6EGoYkwsEgWDBB0nhg2yJtafZQXsseklV+P3n1OsmrSt2+dkYX5gs6/ILN41nMp2mC1myiXr3D1yScYlPNTM0GKfYJBtq0Rdonz29qI1e2CM81lNvHF2kdlLAoRw+JqkEafCgBQDfd6S/Sn7BcllPIIZ5JqXq8BgjTLWtLbrWER9n2SNw8Kw6W9v1RQwEnX5isEM7ivSwr0EgBy7PyrGHD5YRyMx8REyrx4itJkWQ17m+F/II3JfOpIPT2sh3vVIXj/cWld5i4LkAd+xDyiC5oiZSfr7wWVorRekC2+xECqkhKCvb87CTtXSZ209Kwo8vQUmwojsSrka52ZpB9oYU6GliSzg7E4iPRvQe1vZvQ1UUzQZx1z02AK2sm+G1Nj+V5bZDnMggdGh2L2C7hF2QrkfEpus5T5TQGGRbnN7sAWYqJjWzH1ntkGlxwESq2OEHUy5CA2Yfnc2Xv0aPVb7/5N2La96yeLOXNCu3zKu+nkP6mwemScSTIKAIRHjojPKEz0eoBuGZZKS8dzzhwmBY+m7rkjkbHM9kG8z1aoFtXWVdDmtnk7wb4Q1TAJm7bgcTKotDzcViOOY/Ryg9HDxr5dfatI/NW8EDeWmVJLUHRBniEYCMG4HVMgawNBHO2zlI6nQhxVEFJPLqI6arFSPVng9PYOEjGBHPOy7Apri6SIJtxy0xuOCevJGpiMelvNuTUPWoTbWx68Bv8nOU0r5LhfA3e87mDF53S488bENvzMO+RYswjizGPx8HncTheNZ1Q9dZ5GieAAUCq2Vkb57IIXMQo6kHftZ31W+0q/J2ChO3XWZ51iEkM6YcodrSAYyVJbCgQeQSMTMXFrznrOBMN3sxYyE2HLoiMh1PRHFlcvHDu4ki3lefH2tHzD3hh+kuzmA5beaWWdDZFg2Qh35Kj9cET0bluQtIx1icoZLGnGzCcDaUZA1OklatJtpfdI4bIy5/Qx02LQlb2sR+Tps0GQ3b/a7GA2LQng8EvHI2KeGRza4y1LbAeWO5JlnAMvngEaZxf7EuyHtJVxNDAUWAl3SHNnrgU2ZpG1fVNNF3ZWHfI9uDR0bMGrj1IaLsotImAw0fhWTLimNojYH3AwWR6S03xECcDGC/yO1IPHlLSRZ4b+9Vtvl2B5JDoh2rCYDzkVt4ZewNUnkaw/ljdNzaLR57QJI5Qrqx3TzkcWHPuNDeqTC5I9h/xobMKPg3F1mgSZ7XWuXiHOOvFLK8bAIzSmLIkouLBLw3n0AjEgktMsHRbDkZFOB2XPs3p51WFZorykt/DmfjyDAHD9nYo1uijxs1O0gUov3QWN7EvwsvBJqDda9lJsUB7zjOTL9KWzXCwcmkUMqUbmfYT5etB7ItnFzWZ8YQRO4cxttQ4bpgJdS4p+KLGM/Yx83nxjSnksrIZmyuP6P1hlzDP0iY1pEpSbjDMB14uQKwbcI/eCec8ySLFO2DgCVexKWvDUru2buQqJxH33HbxYkJBQbbajlr5Y3MvXjO2VBIxYe1MI7RQyDsyA4Tu9PP81LSWoQ+SsnQX9f7ewdFR46be13fQpWeh2Zdc0nyqzlaNuXBtq417XphghGgj6WpoNm0AUtqWjHKpbMPjj8MZCdioy4LmO0l/ZsOqaVemE7Z186MJAVgQ+qVWWlYE7BzpfT5W80ZtKIaKkgRLOrWvrcuKXSX4xXAZI3I6NqPzlI762sQ3LePiRlQ6YV7pGoleMppTArFIS/oAMClKIoarNCAibbVsjGmnHc4KJkkyDK+NcckMJrGj6O5QG+Ad8WbEfeE6Fm2av4N1rE3YKbRGLCPLHEpx37gGSh0pV1mUMlS64ARSkrNzF2fO44AdsIycJWVecfjWssPjM2f9Uj9lGc8hQHDlAmGoBKMrJ3Tdo/jlxSt8UPdrs5wfGGXhyglSQGjNX7UDejs4KfhXiYgtrXBoWkAbK6m98BwUakeoTcvtY0WLbPueWNqdaa4qBKyqHz7MDQXiDxWrl5c+gWr3vTI4bjQ9bexQcCI+eqmHaAcdSZwSLDA/762/Q4RZ0hVE6qONGfAM7QLX1q+xsCp9BzuMTh0bd96R4+6iD8eih8jrXyi9B5fHot3l7tIs4DT2IkVLPB+t54anzS1ugdbWNz3TSt5D6/bih14A4aJ7ql7u8g11LL+Xm6oxS91VZeoKSRyotZ7Gpusf5OxZIrLtYBxCgY81Y8ZasfoxrFDEho1ogN6nEakePIipBmINCjn3dCo19R6UcaR2vVFuar8R4gTT8VxS0sXaaGzh0h2bmDFy16aaU1GaAAcv6Vs4cunq56Um0bYWYuly2ZpObCJxnRwhYcsu0fb6+vTiHcsG0Y3Yw5028h3LQgEPrX7+Ih+cSiQgYoHhlpOHynGcpia7dpjmoenpiR2wuxXSD75kzUSEU6KRk1C3L72B87S0tge4FsDGtYO1oHlo+7RLy+a3X2EUK5/mU4RVa8fvgdwCLlc6iNd0FWujzRvXelsb29fNJx3eMmMk14lv+rV19VrSAk9dkv1h0rknxWlaz+ZGm8z3SeY2DStbt+sdN225nbYaK8GlVaB/KL03US1cHDDt4Be2dyZQ1tSBsKUQ+Iq9qVMnm12aqfbAHW77qb2upRQESrhEGvwkdcsayR+6Sgn5MToG9wuNXXq4VkHsTGcFV+Lh4iac9srpmrC6SykI/onwDp5Szfpk8Zi9kaZEgoYXySSsP5SxnVK1KQ2wk0RixBY447R0M2R/mwWPPIeOTChpNkAca06yujjTBmwZJyGbw0fPifIA+5GP7sfBz4mMRVIRwkS9Q1r1Y681VZyLpoW1iQQJQ2YRMYgew4UzEFAfmDfZCKhHghuOhsXfii5pyQWOBI5cZpIEl6IPyyq2pWU7SjH3eBlDZaXp5P5DJquASd7KtTvBJwROeOh6HVEztEipyZLLpeSbRsAWnFVDz81kqRzbN+bYMkZFu0tpbJ6Kl8vYEViS5/pJLjHSElx7Yo7ycgSlGanN0htSszWhJpM6HRGHn6JoVKm5ufw+e0yl+IMaj2xaprUG4NRc+Th75HeQEm5LM+0dPvQIwZv7vL5LUa7tbm9jY5sIRb2TrKvLxWE3XtE+cUm8Vza3tn5F1Wa/3awLJDe4i7oQgroagixgrHFBLv4n52jzQLheQsjlC20aDx2JMA/kD8P8xVmQ9LJeC0nBMUWRTN5bo2Kl3y2e1RwtAmY6Hyjj+gELsZm9dsJpQuqsUr17fuVDQ/xKV7Iea12sQ2lRyETrLKzTi5eB5MpBNKimO01nNAqqRcsPNg/lMb1A2jPAuDga6lgAPfwwnCgfEMucIe8ddXrXjD2xg1Ngu7e1T+snMleBiPQ8ctm0UlN3IZu9MvKeV/zS5LQmmfXQdNXU63MUi02GltuMvb4tbhOfxSlsAkSc2PcXKECEqiOxzITj6Pe13ZSrC/UQXNPg9y2IgD7ASCaNl2RiLFZCAEj+P/bedUuO40gT/I+nyCl1N4EzVclwDw+PCEikFqIoiT0UxUOwW90tcqlEVQIosS6YyiqiMRzM2bNn90l2zuyPfYT9N2+xu//2Sdbs+8wvEZlVKFxIaWal6SEqIyP9am5ul8/McvnhTc4SUKdD2qBsYqoMbDmEmJemqk68SLuqLpXzC7pQqxAFS/f0rORpyeFOyWj7TGOzpwF2JWHmNSH7FqF1IDTzljku3e4IgbIRKSDgTSJ+sSk7In7XZ7eLIzIZSIVWYb8k80A8VE7nkmlHk2R9mTexzll8fyrp4A7MaLpnamzhQ6GKi5Ima5YkL+dKNAfIY1VaVpc0Va0BFlU7bj56hPjLr+6TtBQJsb/45Jf7i+R2YCgAHA/pjkYHL0Cej9fPtyPmwSqSAKPqFOYrM0j4oJzNrCDMcySZrVidHR1Mce/DO7rYwrhYkX1lznCsDBeFbhecCsO+6XLcX/zhe2T43OMc9xd7x0d7+/j7m+Mj+ShTle/yhF98Y1/JvPdk0hstBYyCntoCkAd7gB7Ix3/44lN96ero+Dx/Uv5jn16+/JpcC33IHbk+0Wwvcm3ZZh7XQZ0W0KOrxfQjddyIZtCQc0Z4b7YKpXS2+JHKNTB7qniOSA2swZPF3s/SLz88sLntTYA76yokBFAGzI+4O0pEmFS2E+elstEi0I9wRjbPWePL3/7Dwy8RIQFWpVj9lM63oEZKedrvFw8yE8M5QSXXly8TUYNLyjUHJRweI/3h0+Nn2WJrMWhCjOqB16W2CNNzFXiFkTwux4gUI2T03iUuD6UloQgFyCoIjn7sZ6qjCwW+WPz9w999puFcM4ilSt0UXF/occsBm5jOLzMEH8zVZqJ2i8s6ruVirYyZkFD5lbL9xW/sa/3Nr7ho6m6rfsmhIiTz2NQn1Ow8L3M8OCX0YX2Uyaca62XNipapPEHNr/w9SqK2f3UQIjlWtoSvyxW1oZSfVK/1ycTlY8wLkeNVHvzExQ4MhYCX4LbUbqBiwvWaeJfiBDaXWcRjjumn56ozKoktF7+8Wifynsf0pGCezPTsant8fJLuGLVFAAj5mlzq18ffmSJSc+qs3kJyVZyCPKD9Y8LSFIhd8flyxVdp/3hnm5tqew1SwN98CCS8SW+iBaiHNwWzFoGg8CU4H4HikNtNXWwW1KhtWdj9qVzMenzodgT+BkfFEpvdB8O9b2x3j+BQ/QwKpBhukNGs/ZEE9mC/A0J0a6JGwrNNx9lJngpToXB+Pic7sMVUr3u1iqQQWaFdB6C1CzuLOxX9f1yTuL2RY30nsXIUq4RxzYSl21LV71NwK1lWoqbjsxQcbs3uIKmcFXua1NOohBjOyimfLyJKMLlihQEbN4sDNf9eLD7RgYDFlY+y1PtcrZSLFC98iQXQ78hKHiZWgm/57AHCWGAJyY18nJYc733OMNnMRv9Zdh+kR5fV6mzz3OCISvXvbQqfMbpcqZ1A5sF8XpChLd3OZGXIE6vlUesJ2eVK9LcXm+OU7B0nZb4DieXYBWNAQR2h6iCIpni841fFZvZYTafKxvc5vcu1oTPIEbLF9HJdXt1JueHe4oskuafguC32bakvNrtF+lTAhEnPslZwVE9Wh7Wp814oIVSiOURUjbU0hMPVhrJFBm3lwkH50oVJ6j4yyn5svpbDF9P0AYk7K0Ui4x4uibKsTOBB7C4jxEsGj4wX1VO7Uc8uHfDlWPwUyWg/uSwyVYpSn4E9Ye08Pb06Q7Z6xt5uZa+30j4/RbLZh5dJx63nY+VmEicm8DmhHe3+vfhOUW1b6qiovwe/EJ3lNZMWN4MPQdMlXKOKZp8Rk7UzlXVyAE5ytVMNPyhavSr5cHjmNGRda9g8RBGaEcd8AKtCz9vtQCF6LFtEHcTHUKUgOhIB9/zJ1TrH3QOkvejikI1Em5TmuzIawF6QYUdybIR+1zW82NAMNOrICCdm3pXQ6tGK6bNY8+dUc9w9PT/NtZfkmcJzrnLW91Ngs57KGdBshur5rZ+rUn6laSeu1HmuoHF66G3mpbLE4hdbCVwSlKPgfHR2VnkHXAdZDnMVC12XyfT0YRYeaYzl3iQbm7n0r5L+Oc2TdHR+CKUwp9A/1WwXMFifbAVgPjvWqNlvD1LS+h1GgXhrm4CXS32zvjo6Z/kOMwnovE+t2E2xFB7jb5ySN7ARpLOyI9XIqy0En5CvpO4reoYpLHG8tGxkiQoQmWQnrjPna/SOXsopuzzmTazspamG6cdC5UstYmEtWRTT/WnM1++TlbVesEr4zYEUSMn3+MVuSrm/OH4M5x1Nfogkn82xBhWaM9aWxkCk2QVzeFyfw2/XL5ibSBmRwVRoIk2OlVJWaZehSjuw++r+LJONiY64oFAXCX5dEP4ToD4el5vwAtrkQkMMN6LJl1ANLKTaghDalLhm2p5dRa+2LZ5WHoFx9Vqt52QeQvGpPjxw83ZLXB2QRgnJKXM23An1EW5uHkBl8KvTH1Sionk2sg2++KKeoEFpbd9o5TIlz1aXismTyh/gE1xfAPdtm6CY8BorzEl5mI8ymGw2pxzpOJ3Xl9ujNnpRMkkQFjJ7HArNXUpfVxKm8nJY5DVu4hzTPvMCnTKV22qb7W3Np1XpmwGdO+aDzPK6HIYryPNLtDfZuCs5szKamdmPByXfMk9E3Hkm2txaL2jh/kDIPYZf7P2n5yJAvq/AppVwiLMEpJc+n92r916Xh8F4cOAe5dwVz7iKvE6Lw/D4chZRYlCSukTptBDpGyBGJo3VKJGUpP76OqQ31Rd9g9T1N3Q0q+iTE0CuTz+6OH/+umJZ12rGx19crK7zEcwrA+ScpClrsZlLZl4W15pF5kAOPzIGmF8T4caUWTdPk7KK9E8LGZmCKBabF2dIciOkdXRx9WSRl4DnXTH6SEO0YNM8nOWmO65q++3CLVXYvqfPRR3YrF3/vgLcUNJIQ+3PniCfJtO1WR7ADSs8qTM76azCapIqd7Tl2PuJpdi3hNrzrGw/IWRDYQ3FV8YkdGsWuymplbPbClU9hCOfZfg7bc5T1v2leYZL7bctExZuBIWO6BLX3hiaYY4viFm6tBVPzssSf8+kUpi2XKXvU5Gob+9LC+s5m1VPMr15RWshmbvltTe4S/aAl8FrMzkrjYH5ix1DFMUnT8CnJonQDEV7mdPn0z60OJjmJt9fMLN9+pemhf1FlePeMpdPGdCzD393ZmVM1iwBMkkObLdAKQqghdIoJyTlBlWnKCMZWEILkQaseDrOSfVBFJNahuXm+E51Atx+BJ+V9jZ1khs9T8c8BTVivGQuJclJR7Bu26V6Zsm7mA7l5IrN1oiOPDTddI5uYyNHfidDYch/j8+sgIwI/FBQWX/U8OG5XAvGzM03L06WNVNG2VmxLqsgMsljsiGWhnM/NmCKDEbBZI/LY1w8FYJEZayEydDeHp+snm8KxPoQ6h+qry7+dKW4pqyUVGtFd8jU0HZL7tt64b7nx9/mbP93lf/eI0vQ5DMKak7ZuZSG1qe53N6TDGEp90XNLBEKdKbxChWkijxzP5vh97dgn1Uh0ardCuCTygLlENEMsUMOOaENQ7J8oqfjbH25D0lmKsbsZwOmHi4T7qx+zKbqjQcFchVlJZSWTEA/6P5pyX+F+o64nvbJNEyCIeupSz+Zmz6VdFogxFtnf4ErZ1ZiqpbiTzXmoWT/K16lWSr8mdpD4JjuGnho9qRdoLgZ/K6TEZR9rMKLs1NrZcph9V2Z6kojlx7LwI7sLWOrGx5+mKqqH/6OWf7Kl7jjmBFdFY96+hraKqxa6VFxXume3tZNtAyiUq/O4moDoB7UODjL1uYtFH5GX94JQ+Z13tzlR8dC46tnKaXciwyrOErYM0XxmL2HsTXpatPDfFbYGptJZwXK7eZbGw4JWEVMmwgBCKfLRUAWCmnNuUoKbuPf3ls8hy3kUAP/LQPxI7Ok5uXIjLMUaEBPZfUsZZswjG2TRjoW2T54hPJxfTUkjOFi/ScjBp3U6Xne5L58BV/h/qKz6Dt9GclMVlqzJCkwvKP8rNWs09rtrMa0acmmJ7lkPUXTzcHmtgXtX18ivrmz3TLx1hBeVzhuQ/DAuX27v1M6RrJsBfDUyEp6Hn23+O74AiFlGTSekhzmmumWEXFSQ/UJjXQX6iP6LkEYslGZGCWhNXn66Pxf63xX+5NgQb38ZMHl/FSrYKfAoteYF4UVprGWhxerGtJu+fP0fsn9ayPPaG5Gwsc62zJvFm3hyXaXSbLNxQNz4p6US9/SeyTLqUGqN6ebquxIKb2F4a23E7xtLqsUHkingLt7tdmu8GRQcUKMd5f6nudjkX/Xq9P7CRcwy6xAoK/mIzRTeorMv5cklUMYlmiCvlg/tdI8iXVxKGYmqKaxszxUlVoFKWZPsqfCMuGe1wIso4/PmEtFuDLtJxP8WuZTyzsHvLkPcr0W8zgk7KNo8yJxXwAlMh8YUbun67NXFuz+IqUGKOuLW+a+nCuUBkwCK10g2D/IwjvKuhux7k8hZ6YtHSKl1SG8OjhNp5odQZ9Xq/gFX7jPNy8t6wxtFAr71RKfGvi9meR6sXbu14EiC1mtIw3ThrcXweIpTY2m8f92ARgDd2BiTbTB3i+8V21CKVCZaUFM70vyw+b40lSJ9xkK/co1fzzHVZSTdr+6CDcltQ5jyrkEsBUWx9eGLigUt0WR1KtppfG8QVaDJO2T3eopaJ6NH7Bxc/sR2cYD/R2ZtwYz3v27k8ufHiSgzcpSx9GFpCLE8WMM7ZKLX9TtrWKAswcUuB/JdO4VmjCAbGJZrmkIUDASqU6YqQxVjbeWr25WJygZolO0CSakycZsmzkpQN3e+9Uxotd4RcopOjQzIOXWXrHzuVwnS2N9seZ1Uvlnc11Kg81UNWFMjKlTXW9nJeHL1erlKimbSUopLVSSogFyrpB0GdF2mSsyoKvvCJtmvYM0r8+nxfDum3j//Sd6tzK3mIld//TSUFQyjn96b8Nam5fnRysMRdSVlSa3uhA1a3N/4e7linXVwcy4rxKqW0mUEzrQfTxLEh8i5u2eUbFRzeWrb9e2YimpUcneNbsMuUXVpD++bgMyXIniwaz28KtrxG+JV28JoW0tRfhMEJgE+7yZbwwy2ZZv7HP4QF6Nn1UQ2NXZosiO2eGiyTWZufgyZR8ot0rKO1evubKaqw002QkyMCcVU5u5JkbLIpAWv7nKQa1VBkkN9T8+vGc2QNxfGXlsY7HriK0+BUoKMdovUsIwdS6XIqsZR26yulz05481X6TlLDtICNo9PUj86iN+lYsqvoGUfkM3ryhEXxllH5Z4xYNfX6y0hunm/QdXl+cHv/78y70P9S+A4YVhq7f56GL1/Mzyduixz9mXcmL8UhbcSiwwd4qo8dtVXcHoUYTLzIkrK7kAgf0COAPtld783CuDfAxosdkoSOBJRuZtiUi5+PE+S+SqTUNePAEESCkAxrHJSiK5siJtrcNDSxRhq4EbEJYFs3IaADoL6IkBXhYI+anaU59YtS7hVNbU/qSC4/ffL5fLly9T8UblYgXL+or6oQqZ0h98//3q+ECtzQq1+v57WH6z5PngEwXU1Fboly+Xd/6ZYL3kSgYyaXXyXDMWPtJNweTrXDW5Ktx6jUgODDKh0jSaQ24j+MSArFI5XiGZGytNnaquPbu6kL1LxRaZyvrJcUpCcKZRRk9WJwVyg3v3zp1f/+7Bpw/v37njllvTQ5EE9/LlHX/Nd16+E26pVVQD/+n4z52PiOTV8Pb72vR/Co0IIOqbJsCUlj8EZVZaCJBqO57ndHNI5HN8aoW4NcxORdwkE0/vFaA1hCyXOvxPHgMCCRI405j3hSHVJg4RLQkk1zaCmhfIiEwbC2Pja4Fun5Vpcd2BdFMeAeN1z4/lfUWoog/1lyroZKmr9dn5fIPvoPCbZnygxz8F0xn2dQMli26ao/Mr1SXVxKd1c5Gh5idt+Km9Cr8IHuhO/MMGtehLzlxkqUiN0sav41QrMZ3YKkDltDiaZ1OeKVxZN5Q/w25auD4BBvc5AmYEwJ9qAniysec4bPjLHqgQTOvN3z25/CkHKzv0C5pef79+JHrB2t6lPfab53y43fjVxcm8aX2U2t3n4yRmzl9Vp9g3sj/f6D5/c3n+jaJ7vjk/y/3l8cm2PUR9TmVXsMdYM0iE8w31ha3R5c2o+sSz2fjUBr+1QkruDK9Q9jL/CQ1b8x/Z0zxsoavfGqOcD9wY6HVD/3b9Yt64PpqNwhqZv5ke53EILSI4IQ8idaOE/Y2ZDqox3ImKxQHObT7uIzx+w2Hf0eTzJyrifrGWixWJh+1VrbSw/uYiP95uu3z3ze3Ijk0q5nT+MjVo7SWPbFgufn9xfLlObMvefq7PSJq7Dld+WjWOZ3MKW//rFrHgWe5/1HK/q6O6b/V7vGm/d5A1Qe22R7MZwZh79GNMSWPhjIqq/o2A3nhePuf/+ZXeLokP4BFa3Ww3W/b71YSg6scDBU+LYvmRSCJp2fjoGxVOtjvIT+txX52c4PVvNNDg7EnVRVDL6uXik1Siq+rHkLbX9GPeahUd5t3hKJ8//qZ+ZX4gXm+UXToSX6oLY3og9MlbLoMN6vH54dW1k8GX36zUPVYNLC4Nb79efP5CRLczkIL93Fwg3zzDN29OZ322fq8XUDXTPWsPv0Hg2XbTt7sZ3ICk70eLL5+v1/kyw8HUB9vN3uK4CQv55bmINxCfEuWff3PGBxP+7oU7IG7ho4Rnvvvw6dWlYsvv3S+X4jcJ7ryLG6vHcj4ie5rHdOeLFMgFuSX5dBPKF0IoTm4uelbkxydISIFgLznzmop48WVtMM+wZEh1CiJol90i+UIeFAe3cpwnRSemfM74U72hlXYMzS6C8+eVM/vjDI7A6D+iEp5yg2uBD/rPjFsw7qIUGVxT0E1yb5XNr87/cf7Yfpjz6Oh0P0pFmVJiyxPR5uToHR8ep54eHT85SFlxSsEi/R2S9WBVzGSb3RtTqG6loxRYKQejUVSrw6dYoI8BR0sSLkvRH55vqAw8WhuqHHEAKduUsNDjU4s4MLw8wFopOd9aBzNL+CiLr0qfpaQD/j6hM+VnVZSW6l0FO/VofXL+/E6G0/6KgVx3vr+zkP+RkgnWSUyG35RvZwfL3ibFT1/NXvr6/enD2S/UJle/fGC61SNhirIqR1+dHdCDw/TLatZ5scHD7B/KTcyaNmrYnNbtH1ZkMyEae23WxubZevXtjsmn+JkXzDP9IsXO8FDrz1/ul/U1yti9vHMZfEtRmg1JWcxWS/W3i3mLekjXZWQYHcd45+Wdj3kGJ6kBUv4FhNCq8cIukT9pyNPJ+epocyfbcUU7/fAVJqcHZ5fnZ7/bHH+70pQTOb/G3ofKklJ+DFic4F+jRddy/DJpFTyqq8Xzp+cnyNtrYm421SRTP7BCBqakOrrl2YPltO7YEsFWKDoozouUXdPchylrck58Rkep5kxNwAcWIJlEr2stBsXGF6/EaisU9Tcl/oN19KbWS4RRIvIIbSVP4cbQFZYBRIOMPyrgM7knmY8wmZ/qGXMNKkMTen9+wWzTCuo041Q9F2EC2VC1vNEw9QehrYq5XJxPJQnaxyrKTufyMilM9qLyOmj/gDdNCtTifGhyMdQ0AaD7XGGF4IlqpKrXHqCTr84eGsYWXpIXqW3G1ZhXbFPHphJ+UHMjuB8gapEbIRZisivSDbxJuXlNtAiPhQ1G77ZEC8SGPV+ZrQl1qOF6ynGsuv7SZDq6YCk3rGxmQDev6+/Xtt/HMNR+//1q8RBz/a0M8VykilPYPikein7+jx/VRI/s2Pq9ZRhemw1r8e+s6kWy5y5fvrz90HOE6y3G/9A476s24/5XZyKTpG3PuMutudLqT+9hwu/VqBJ96ZnaN3MeuntfnXnV3Oa43dlSsWHiuKvHKxSWIVhF105aa7eXrwCtrX5S1di36xcpWnM/RTYYFhGnVVr86uyjbYqTFflodWZGRZhJp+mTykzmi7RfFQe6bp3got5aq5+/Y+r9/vuSEcU1Fl4Dsen8cmWx7HQrpKHRf/3shMLUGZIUYGZqiz9nKrHVybcY/5+uTp+l8iGrhVUnUjRtSroDivmTGsxRB6Zap51dMyU0DvTJ+jFNtcfARV9evDBBVzNJm7x7BLCzIThzkoW6vvv5IzkmhynH3upSPnxrHYjadWolnavoVxzDr84A8HxBu7Es2DrFovwchmeFsYF3GgdKoc4yY6GZ7zVtJ5GAKYIFB+/lonxRHOXy/meKKElPpHvpQp0w1j2gXUkO1jzW2uK0/6+w1aaokUYLQ1/y2+UPwVu+2D3T+wt/zVx3nqdaSeOZempY+RmHQOYRY6iIeapZ6rs/Ob/VwESoL4riLLm0k7Jj6ITTOk3go/VjpOtXM7JM/uXLPKo7X29JgYRSpIpum/WUIe9XaM1TmHWyExFSXLqRTvGBMRUFcjL1qy3vPJx8viHdQpYj9KBNxAh6G45AXDDbLMvL+IxiMBdW6ou0KReirqIJzatLUnZKfWF3zCTr5jHKHRnE42gaQbPaYADLOz9Io3TKiyyLUNNHL/hvqeoGWlAlKPEfRoIWHTgFs2Jgz9dcwUu+Vq2V5RlfsbwcnbKn63zjAqSFXVE+kzKyIbuziBgTR8+jqkDyBF+4Up/w4bdQsi3DJkNpLLVojZWs5C/LapKRbozOz1dvFSf+4NNPbdU+zt/CMcokKHIScuJ4DQlFkgHQzqMTza3LA19nxinY9cvzb9fJzYqCD3KbHGrNt5QU/M6vPvn0488e/Pbj5ENGbn6FF3McZxTJcsWsp/Yc2YYBkrjz6YPPfp1+reO7elaPLvvGc04WtUMm+Fj6llf4R7/7ZR6HvpbTnqVB3iT8p8OXmjzQce0Bqnmgzz7Yw4MPtZMt7pHpCcymRAGkVLMiF72AVpNLWhxrLALioJ6c5wTpkzJu9LwmDObq0n4Dfneu6bXufD5JLpVycelcSkVwNdG+yJSrYsZn5wvsomikR3XKjF8lIslLjvpjORVgnX0H1q1csyrt9DETU3xHnMUWZ8DVUDKMnJzYFNXhiwKB68vDLR6V8AwVgA/NIA2qJmi+PM4JmnE4oIMvs3HgvPCXBXMeaVDJ8dxlvZ+5pqzNFWN2p2Ls8s4nVn3T4LxV+jFFaIk0s3qSMi1c1N8ir+MxNWIZ+/LOL3gx6Qj0m83T/eR7PkQSdpIAnOIXl5trmGgN7ErHqmzmP2zWsvM6fY17uA+GtzphFiXCJZS5lEU1HrdjpZd3NHyGZhQm+rIGkm3jbEIZVQzzZnn5r5c2ZW3jM1n6v394izZsLZd/2uQl++fym9XREZHS2NNHF8frxyXgMmcGsbTNtnY5l2bZC7Z5STuYtmktIsboxOSlZB1F0NOjY24G8r5NhlSFFE5ORskjXKJw0umitLvWIDnkWZgMPwsVlwB4qjTB5KB3bG3eNyNT3nCzc2m01aP1iQ4h5X+bh4GKdiwjKdhB5XC2/VM8YMrk81G26ZyZmecV+J53bka5hfjz1dmfSf756uyHaVXtMT+YAFSt1l+CBMTZvqX089XZjy/+fHX21vLPV2dvIgD9pB1fLf7osqbxfXX2xz/+UXsSxU/ew0f9/jrJhZpqEVz4+Z3ILV+dvRvBBdN710LL1nH+MaUWIeF3LrZ8dfau5Javzn5AwUU3cya0kDjfUGpR0nhrsYWNvIXckqbwTgUXNvrmkstkUD+e6PLV2Vx20T0XZnCD5KLuUsor+lclqUzt8z9ZLP7f/+m/sMzoxAOl9UpWFyfHWgVjfZYTXuC378CkRGveu7PhPSiDoAvgt4x7K0mGwKrr8oRP6DHV20CXZ27trux5lcmbszPDtxpfXyzgmDTLoF8u/vF4/Zz9AgpByC3t9LNevzveXK1OJnWxNXYd6I78bqpstL94JDTwhGkR2f3Vs6OS0O/oeKM2+CX8Ch9ldH0qr5o+czxkWZU3sEz+25lLou5rXcetp6jAkxegxpTfdLOeEISstdwTR/t2u6pV++xFyay60r8u05H99hXuEMg4uOVghz+tDcTv2nCaL9rnGSdNpD8yEfzgQuavfiDZ8sFfZcv/FmTLdyfm/Vmk1L8U2fLL26zauxJAf1AR73oHTErblpPw7mmpGfv7TVK2VQ1Ny/o9gI/nyTmPDItJC8tGBeWNZbUSiZPlx49Pjiz90AHDGnN6nf3FJ0aM8H5VWTOt+jtCcRgJNDPA1KkofqVC3XqWEL6KvbUiU+A2VeJ4Tdh4qDFlLPlnSbgR5WJ1SZCZHw7giQhAs8R6CkrZLxk3rYM6geJmnYok5TwOVbDYU2ZQwIGwY3m8qRLd1ykCHkmjCBlNZfuqXA64C2ex16V8E7zEQDmeqjCliVWf21k4E+kyleemt/qcAUYy7+niMleyxtqfEAuXa9eyCPqqZEFcMS9nco2WxLWWxuoCGgoL2j0711S7vHRyYXZOGIDVVE4QFU3ls6o4qw2OcAlKNDteNspNU/jlzNRynqbowRwUDJyVXMzqoaUkV1FRjrhOyDCQ2Ytc+cHwnesESVWJ9zwLcDlrDWv80puc82UriJcps5SgnmjsEtQSIA10iBumXHqM2405vc5ymrj1xcW5IjBEirDuFG4ga31x/kgbYA1GgttYfxHIh4oqLjXlH2egbd20kF9UwZhCxdeHX1ZL95ElVKDv14i+pOPeaoNxg7mlHBbOilN1Pu0amWRiq8GfmTLgXLNG/0Yo5jvVXqiJTcY/KSnGTNL07q9QNHe1Yaea2AxCGtkAZG0uO4PUD0WiwCWCjX96/AiFvkUVO0H+/Qw/JoxHTiezemXJ56zmJfcIb1aVkanoTnVq6ZbAGip75f2ECACuY6rLU89pspXT7J7GWeWSsL/e5IrIjUwviI+OaYg1rg1JCTGB+Pb3a02N9imqsi0Xd//+6gxx5fdyNfs6ac+DEkb8wHK44B0N2ToxJ+an5xq4fdtqb/FA/ot1fD8tz2yAv7u40Tb/P6jmeniy/l470TaZWEgu5UvRcNeiS3xA1eHmeSTVQ5OFC22kH9Wrk9/5kygRSvAfpLi07Tnmd18ocKUMQgeYv5NbVZhH/k6WPn91dXGyqH72JstJ2eTlbrmkmCQ0cWf6+w2Irm5oSnZ/cF8vfr/OqbxfXW/RLZ0bmzZX9kNqUh41AL0tQRdhU2q/2FSp6PQiQT7GzLhYh2BpFApM82frqwstBc0SjvQz/cF/vfjn1flth9lqWcgmNi4P80tNQSGjtDSbm/uLX54cP2IszueW+fHh+cl3OcHppxjnrCDlZJyri386/k5lThHGkUtCPt4vXVvqxOwq+0P7tZDo1e2n4JeNj5oOd77Sv5HTtWEK8hMRjTbzUXICv1qvj9Tsccd+fuOYra+tMYfXHHMQ6gh9n8csx/nffn5/8TGzREKo3bWuHPHvNPuKnNgsN8jGpPoXt1l463xrEt1r0Y53zbJpox/zJJCv9f7i4Yuz9cWT4/8wza4IVGFOhXYTXX/y0adfgGuXkcWvF1Wd9OUPUJc9zeFBfn3x8HD12Wf3c22Ry8U/Uh59yHh3veYZDlkP/u+v5J72A0u5lwn0X2+PWWt01RU0N09FlHo/xMePXRjXB6tw2B+Eo6P+YDU0zcHjw7CKwa9X7SAr/vZtkLvZ8IavFw+fHp+dWZahTzX92dPl7SojujbGigQea5VuLcaj1vdZng6S79EL1b0Pa3Fqplnchoit5y0iHuUkirB9fPY6dOyCd12exCdnB0kp+WIN/eyQrp5PU8VnzOPByZNzVB7WzOGXxydMJvMKSnbN14tpqe7XqPGdCnhrUW2iFOXGp+NIga43Veg2s4Ol89t5uewX4beoT6kYHDTv483hxRruGDvVt+DzefjYKV/tlJMr9bPVt6uzW7Mc54T/jki+a0vx+/WjJ8+E5zCFwsUBzfkiEyVh+4DggrxpzJL42Hj+Lcaf+8T4XT1+uWunxZRfowpzum4ffPrb+4ubqztXYyx9yyU5LbL8GtWZU9+5yPP9rXtG0cdfwvL0peh8cjy/Y6Si5tX4ErrPbc6o9bh1Rl1QYUr0FpUqruHoz+17lQlRsvj50xcHxxtj2geMXT3YnB88Xm0u9z78/VOkSkksmmHqG1GD5NufY5AP188WrgVj9tVQOr25X+fitpJI6b6wki335SD+YlIMSZfp4MGk3NHtLmd0sL1mUXn0+uz2Q82lhG2opdrW/SzCPfjE6q7hcOQ6wmfMFPwrTWTJPMdVoeBbcmfte3sWchHWVQteo9hBlu6Yx/x+OjA6DfCzgxk/45yQUnhDd+xt6db63B693JOTrN+vkS08FfhOycqqu7FK163mKZDupOaL+oZfqQ7cOBljX5PJyE359+ei3D+8UhGyzpb7Gll2bVpbOXvvM+Lcks8+rBPV/gYs+Bcpp+Qt56Ddbc3By21q+a+Wi7dITva6v5jwYi/32DQK8o1iVm//bu79jujWBgTUvx6fn6vxPIUpiCJ9wEd7H8IN+bOrk8mXl6snG/tKvtSkk7cqb68/e//s5Nn7ex/KfzkYNQK9UTsZzw2KlianD96yddoO9j7Ev2/ZlogVQs+070mT9ce3bDlbAqTZ/Pe0TTOwna1KFMpKiGH1HfbvZ6sSm7L+bu82HVdmFtcc+O5gdfTdAaO+Dk5OTt9PJLN5tsr2E5ig9j78r/+HDEef2yuPLqp3P3xwBHwHzL4PLIrsnAbW8iud3GTcZ1o4+zXH3cjQuwMuWD4bXMVrx774r//nDWO35KQfl7ZmQ/7Z+7Lkeu7qeCDoXAePri7lsKbz9LPVPNelmodlnueqrGm04DlsTRfrZI86WT3SF9AYEtt9fp11D07054rgudjLcffTpbOvwUSO4UN/H8lN3v+5ajUfSPN/6xvrQP4qXegHmhBVEby6OPkATf5tu/pb/1j+b9eeyGPsivw7N9vJIzT0VNRJJfUPhGH8rT+cnnF5YC8f1odKPubDkLmU7tR3gE+pUfyDPbd0e8DA/OJczaiLZtE5r/9/b/Gvpyf34RLBqdBUr+uqGTSlCaomT/R/Rx/s/TaEcRlC3G8O27DsfLffLKJfdl3Y94NcRekD/zlp9tshLofRH8pf+n5YHOA9e2FxMH3/wF6X5g/4vrSf3uEvy8fcx0HpxH610Ff9mN5ZzH6Se/mXUzng7XL0/X7w8ssQDl3bLcd2lH5V/fVx2D9QRSeGtjywP9Df0rthIX/EZWj7xYFozF27fzAuu8YfurAMTZQGmqWo0Qsfl2MvX4rWG8KwaOVj2+nol60LhwdORMNhv1sOWKVe2mv3x+XQjIuD4Jeh8/vOyTiGQ9ctWx+1EzfGutXY+EUrr8rEQyOzkjbD0ssPB+lfmmnVLjXsy8MuSqO6CHHf9TIMh+7D0O8fcNDysk46oF0/dosDXSfZePt8qD30sdf96dul/LCV4TchfcJ/ZYE4nWYZRcGQ4YcxLNxylLV30ns3HB5EedhFXcgmSi9OJjdEv3+Aecjnzi/bVobV90sfZJhx6YewLys6DG4hSzDKy5h6/tT2oijo5vhu2Wl/0rRu8LD0IrlKu2O3z15l0l4GLa03y7aR3ePO6GBiP8gSyEdn6yx0hiUVQsYIF9J6kG8jO+lG2US33+uodZA63WUcZB2li16GKCPUD3J6YuAnWcJl3zldQfmxditkou/YQrtlOxzqN+O+l5/5qBQTvZCIrLwfFnGQ6Xb7nbynCyPj8bLw0kPfy1p0/dJJT61bdvpxdMvBPhweCIX32DnZkaFxnL723Ev7nfbc9O1hy5X3wkm6Re+E4sM+VmShB0IWER/+BQmTM+N4X5hQuphXPw7HPzk++3Z9dHx2Hct//vz5Mr1TTIEP6E76+enx2fEH6up4t3wdt+qtrxPLbHP792F7euuR/vXyeNvLY5AzOHRyeQhT7Adtzss57F1/ctB3y0ZGIM/SI3vyL6e+b5ad3jH6A6eHux21/yinvZVBKgdzevE0cmCVh0iX7eDyA5mfXgyYn5zz2AY9pcMo5zzKR9crD/QxYnrCbruBw/HCbA6Fi8nZ1VMtDDQPbjEdpk9ji6IjR4xt2cudJRxqUNYkJ38UFrgMvSyM0wusOxR+6AK/67uF8BK9HniRhYVccsL708dD+UcuWhm/PG+EAXthacKA7ZOwtKbtZQBOn8eBQ8LSyR3WyzboBaG7pTxchh17rIVek8JH9Wrpx/xR1qppdH9lzrEbFvI1WBkeL4LeBJ19OtH5SVOHMm8XdXx28yprFD07f7Q2lWPL9sumLxtZjwNtWm8MmceoBCqNj6FNr//5WaV8cXR8eR2j5LdkkVePTo8vf/5O2OGtWeFf2dFbsqMW0/EiksQW0qnQ5RhlZHJCo5NzG5R9LPiPfTpUIcA7iCFyQNro9kUA7HpMbhBiVqEz6jFTIVJHLryrGcBpOuUFIgX0+rrTdoQnHYh8pLxQ+hz1LAwiPnl3IhLXoIKbSImdCIbyGxE9heG0ENBi8LroIqQKN5Rv8PehHKfQqKAiD/uGfMePY/6If51OFG+2C3vBvpEDOXnTY64yGZtr7Pp9YWt6cOW8d65TztHJ0JURu6aDLBxFnJNT7D3EM6dSIfQD+dQE+aWIf8IBlGGpOKkMZh/ik7S5HGRZRfqLTn/kZfGCioQnBxCp/P6ojF82IKiQrj/zItUdDEEajiqkq7AM5WMQMUxXtZUZCP9UFQTSHSS2bhhVRREp1GHPZDPS50MSQAfe6DhQUEL+SBJowDJFl1DHtQp2TqU8VYikK7lKRjcoq4sy7aB8W9UcWWVh+zpg/C2j7Hq9KGKrwuWil+FHeazifCsNR7nB2vTxUKXRqCTH50I0wvKHbiyf05uytwEqlsqoQWYmnQ7Qs1SEVeE6jO0hNJoAJazXcfeqV3ndlJA/4m5xckqcCuG96hCDCPbtoVK0xxUkvFs2VPbe4YIcdKFwVQf7CAIKIoLrxau/0iHIxDu+p0SiL8o2tbjI8A9IBp96OQJelUWoL+OhPlbNTRZwXOBL/qJd4AXZt0PVHqQX/Ueua9G5hKT0LpIbWwYahTD46VAmpf3LjSVbqUddhh3xDuhBXvJOO1Q2UDq0D13uUMeLccnGy8tuwTFy5Af4msrXKCupJCk9DTq2Qz2DrSiijZ06h+Pagk3aZ/k3joOdVxFoFnhh4PF0YVG9Jx8P0eBQjr++LeKRfbKXQLttHxYH1hg7yUefH3Xbo1DQUHjBNaNYsF37hDHEkWOIctLw7pg+8R0bQmtDYJctRmAvRSUz9BbT+pio1PrykS/++aUExX9qCfTr5IT0fVGmLuyf5bOnz35+9Ve9ZCoIuCaCaVOkHuXAue5EGJ10eKKmpV6O/SD/yi150I/CVUz67lqV5e0ej8oVcLPs64UR5XDLScc1jk8nbdQLib/slVnKDxuYcXo5UnpNCakpd1Yug4+HB1FtBuBmTsTqMaoY3MUxf7Q7XZqUuYy9jk/5fItebMjVkzQ3maRTY9CPJvr82Y+MVo3YrJ49u+7IrJ4dL9M7PDbrs6Nbm5zljwP5/389Vn9m+boT4UlI3Yn22jfC0UX0HQJUUVoje5WY5bbt5KeiLEN97seBD6LIUKNcleOI86YH3e0PIlM2nX0Mcr3ov3J09aZ1LQx2cpMM0CplQCJ6LDzt1SJWR+dPVPsNMno5eSJen4zU8g9E6Bl9BzV2cCpLyg87UQu6EZKMqNpDB1mVco3ovY2q0Ic6wEEHiIGo5KwjdC0/B0gS+kd72NBEEUQyUOsw5Mr9A2UAsuydqsmO9oMBMhdWQoQs0eT7QYYtP1fCUMG7V3lPm8PvRl37XgWzhdosBlzMMDWfHNDiCll6lE+8T2VyIsKfiLyoEnsXVDA80bTrAXxORCSYwUdHG3mvF67wxNFB6HTCR/G5FwrQqanVWkinBUt2IuFHladgFx+UBS6cUHUD+ywfHArP7MdWRScRYXod+qiaTdfKu42a6kVqFk4uNCeU5lRCkX+Ee6vReqT92OunblSZVOaI3ZdFwQCEGWMEOlE1NqmUwT/sQfiX08HJtHS5VexXUUyEb52Pl52ichNUKVJDuIqqrYjyqqip1NzjbSo78pYKsqICOP7W6UUgv5F9o/FdtkdWXFrHMJzeFfAm6KLKv06uFtVIotdXhTz39QeDKklejr9IO6qzqPil1nHnJwN1ICLtWh0aMkq5z1yPu8+3cE+0kJmEYHvuWauTUM0Nk9QtjrB3NT6m/rWDIajg6rUfaVnEcVHnInw0Ij76JBGLgL7Ql/ch1cq2y7U5QmQP/aGObx9NdguugTVs4xelrPeHuoAmzi+EYsEJdKWhu/SBjUFLdG6cr7BOwOtayUQHoQtlKl7NW0Imqr7IwVTToMrx0CS6rvy0FzlzwJQbKKauhV46wqXgVOMfhC5a+5S2UT03omON2AqH/RxD2MeQE1HY8jk1sXX7cDzlT6IYyn6qXU3RbKrjyT+D0norGyJ7qe6IoPqc5wJiYZSlCZmoN8aLmqh6t7A2dTyIDiOEqUop1lkUmkYOi3SiQrmeJ3WHqfHQwf+xD1eEsIYwgs5UKpdGG51P33eHwpBI1X7oFvkIiOoiyygnwLcOypr6soQrtJ5uOiHQ9Ek7kw5IR3hzyHun+qtaGHlyMLG0xiCfP79EcqkFJi5Wp9c6wu375enasNFXFyc/vhP8Zplkl/RRBBW/kP8nF+Jwa4kEZKAK2RB/IxS1ElLt9/EfkZX33YEatA+cPun4Hz7mF/8orHl4oEwMnIzf7bf6/6bNyBHq9v1T7/RlpVP5D7+Qq6BdzVtQG1GI/+hVh1xtda1f9tsNlYlAD28HNdC7ldxE8n94qdlfDt3BMsZPYQHZ12t7JWxD/o/fHwi/PpCe5ejJ/6Vnwcnz/t8fLEXRb1Rn7UQAE6KXn4puMJbX8Fn4UJ960yvMnwS1Y+l/YEgc2lXd/L7wMrwX1ciXfqcdfqo9CYtoToLcP/vtg+W4TPNQc5lTJ6/r/uW3yh7hLhBlRA2XB+HfC2v0B5iXSi/461De1bZ9y//KhbuS6aqDnQsoT5u4kX3tdIVbZahe5jncfHArSNn7BJDpM4tMS+9plCn/vjMDnk0xZ8DP/N3h+bMXP1XobVjcDhi196HG4Gmug0/PDQtVwXbKn/q/xCEevShT2kLgnT+9enKOlm/gQPP6tL+R3wCY+Hc3tHx8qc1q889Wz9YXp+dHsy521b2VF397flT4pM2uWvBcA/vy/NmUN1rSBH1Mr8Per/Hky/Nni7sPTi4X/3bx63u54K+8d6CO4T2EypVPjJr+dv1CGsybJbxJuNHZhtMzt/LzFtBP3zSNUspMiRIdKu5pDgEZmdU3/+j85Pyi5nnKqsCa9OXfNCfxIP6HTIJGfliLOz9jPVF+c7K+XJyuz64WHyyOzg+vUHFI1vFj5mv5xYtPju6+p9+/dw+vHz9e3NWP96r6Jfp5KW2en5x8qnnSP1icnB+uTh5enl9oLihp7ZPL9endPX3vgO8dpBDtvXs/nbZzfsY3pJWc+enuvVm1lEn7mxvb358P7952IRX8k2ePYvEP1yeAuT84Obn73uoPSib/o9DJ3tfv3Vs+Pr/QXCh3Geu4+ODDanR8tlwdHX2sOS+0LqGS5929w5Pjw2/39qtJreezWi8VWii/+uX68erq5PJuNVT933erC6EvWRhNMKDL+uDy8uL40dXl+u6eDnDv3nJz9WhzeXHXzX6pu/ZvGPy/PF1dHj79rZY4vfveXWaa2hzI0b46XB8dnJ6j1MCCn+/JZPH6ejMf6/UrdvePf5BD8N7ffK+h+Efrf/jik49SmPfd46N7L9/7+o/3bDs+Obs81zRLd7fb1v+luOv7i73NqRzZp3tbr72cTfQl8+P/kGOd97i10LpFH3ywUDawt2vZLOXA0vLdPNREVHfPrk5O9hf8795i77bTSm09u9o83W7ojz/5m++Pj17+8dohp+XTf4U5JL4wYRBKdacvCL28gUkUrmdtGrm98jzrkuVGH50fvbAFV0774WJomsV//I+l1/SHdT1/d77eaeBLlGtffnecq13LBuHTyXrvpzf95NzSjMj7rnpz547c2BuDoW/dWbO3xaeu36PrN+WpfDi4PNekFMIermdLsiUTPra9K7jqPludrpdMuLTe3N07Wl3Ifs8XfcfvtEMheC0ccPc9/dV7M5rczdGVPR1gDjLE9040zrj+4c5NuK53mfubdz3/ne3IvVfvyPZtomkJPkT6h+ouuaufkcdgthGoeZYSJIko9cEiv7nUvCBnl5qcsfrzp3e2fvtsx/Fl/kYjlrvv8YV6iuVn80XUbw44/p2vH5/JQL/U0M4PFnj5vWpMmQnoF8dnT34p3Hbrfr+hseP10b95b7qBsmdfHp+uz68u787J+Jajm3BHDV8TTlJv9q5Zbp2l93CW3pOzdPhoxzD0ROkrz5Aa7z3WN/vu+MlK6GLXNZG/XOYfLZHqVMdeyGWpivZHTOI2I+w04LzK219frC+vLs7m18NsL5SILlZnT9bb9POFPp43jHflJCnNK0Xa6DYVjf90Rxf8wTHI1C4PYWcP09N5L/l14ytytjCazfUvypZxwBjh7DUNX7tBbtDCq1alnCfgvddb7ZeLQ5WkKPYpL79pLrtHiVu6JqfMFaoTas+EOT8VdgmWuc2hyw9ZL/mjp8cnR3cLcW/z2Gl3FeNB8mz8XqSe0vC8x93t3cjIXv3nmfxHbyTtee/LB7/49OO9a/vltN+yw9uu1uuO4dXtZjGtum/e1xtO9bn3Nb3Ch3f+5//dEtX+L/+F6SP/8+e/e/jl/3Z1cfx//U3tPqxyGXzn3teUmEea423zn7W9//v/+V+/30Mu0b37iz/8Ibh+2F+EsL+ITe+b/cXYd0GedK7t5GGvKK+FG7soXLOTx7GTz15fdMGN8t/00bdR3nGDfexjZ38NbTPgGx+89OSdZ1P8ldPOXNv6rd/1TdvwzeA6HaRzXhuIg7bZ6gD0V63z+NC2Ta8TGfU/Hd5u5UGLofZu0Ha818nEIMPRSbc6ft9IIxEDiN2ov+hl3gr7XPSuk1/1oQ37jHqOPceh+P3FMLT6oVMk26Ibhl6exaHtWi6Kw7voY3S6fPq2H8aBX4ehyR8xK/bqdMTalfNYztHrfBr+Zhh0S9BkG1yQsbqm01nr4LBEoccbw6Dr0k1XwktvMptRB+hDg8FHnWbs26Hla5Ed9eqd4Na2cUxj6iN2LOoQ5GPUpW4HXfS+0fcxMCzcgMEFhbQs2q6XMbRNo3OLXkfbe93ZXomu7UadQNdEXf+QVr4et+x+I623shTyz6BeFCEm7RfrWL3ZDUo8HIa+xXd7nfDgdXtsRo0Ss06r0/1t1WcrxNTo+EDoMnr01GCPeszfYbAN1l4XI0ZsEM6ErnweV0Oi0BF3Op/Ro0kHQmhbW9feqXtPqU/GPXS+s+n4IehKyLcjngxdY1sZFT5srWEZQ9fqHnJrQgMCnY4GOxTxg27kCVSS0TMaZP4hTaXDmXGgJKfrol7jRasgOulqtFMeGvCFpgN1junXIWqYio5Yn0Rdn1HH1XdNSHPqsMLDMKadCW3sbV4OVNUqxltGBU4h/GL8en/xB/xhO+B8r5s1DrHRQYBSdPO6AadAJz/qdsXBWx/q85Ml6EGrI4gQvKBpWt1pTZuktNjohNJJFXIccEz7WV8YKpol+2jLimAzInnnbHRO4YFClr6bUCSYFD7LQdA1QWvCzoZEXW5UTx4HrIBPORVDQ67lcXKxQ0IeOMXCFzyXWlMJGVn3vTrPhEqU7sDCQs8tIltsMVAwDjm/ae17jfPSNeps3dX7nYbdt65Jg41KmGy3DQH8TfdKDnJMYwx6ysFNe4VJGOmUNXQhkt/ptgndKY+KupMtz6mukmsxbTCViHH2bEUn4TodDzvDT5oB69D1Pi8tnschjbsNOIL8jdwi0ZZi0JZcq1QnrErXHucJBBP5wVgVKeH2TArk4T2OqiJZefcN/dAktqdXj+vbUTc8KAeLzmFbm4jzMTb5NClpdLrY7KEdY8zUw1tCKXLQo935tM2tU14yKMjWiLXVTR5l3wfwZ5dG4sY2pqtDhtLa5vRBCRMXv/yuayEgKKsDE6qWymSAHoSqkErZfpcuhS44TLnHsnXqDiXNyKWl3IRE0UEewUmoOV6+4ez4KVUFYZ5dmn6jFCbEhUE32h6ZO/4cYqaq0ekQud1el0EWHqy9C31+J6pMIBzYJ4rcZuJc2a4dhnpz5Py1tlIj7j0ftLv65x0kKuP//II3vqyrA8GDL+FdHF69gv02B8K11gePbfOZemPs840hbYy2heimA/+/ft8GMhjICWUmWEcfRpcHL/cO1il0uHDQ+VBWG1TqGhzFPub1HArbo0xQrwepjQvJ5egVt2LfypHW5nF/WR+4rOOQaEuhTCrBNhWpeEprWJwirMi91yWuEwaNdZD54EtwQ/4IolQP3jikUyDnUTvZeg9sCtN30VGIwzHpEp8Q/hgzM5chpkHLTdz2pS/h4j3YWzc5piZolAl4DY6wIfFKQFcTbgQpuFVumM4bJLQWHFn4sLOj13sHodDzxjBm10T0gJdHkAF4WD/OBBbe9iIadbkl+eRclrrL6JyitY29uTHxqt7kyXYA2fjEabVnYWKhWkAVOnqwd49LCIwD68a1FHG7Mzmlz2J/tUOyGCBLcA4eFblwQTu4pEW+UPWki027LVhqjyG1GnA/+9i86izhpjIurpzaGV+rrmQRrjzIFwcK3CeS3eE2HMGHdKpOJDzwobFNBwyiBYYbm4GS6phvFlksnLZGQbvycoRK4G0eKuW4IvWQzYwdjwGudMio0A7QKvu1YwtVoAX/zbzH7dK6TM0aIHFuHXyy7NZ71YFabd+GNZKj+NBOCUl0m8a2e8e6yXWTDlbdGC8/+W+sVz8GUBxGIIOBkL01AspI5BA1OdXz2epJDkibWdvYtlnr1FVzUODAO6tVBUOj1tlCvRa9gRzfTYilo66Hazi6xEulTeybkoNcazGfr8nYwFJxUAIkOls5EJhdpllmbnsVVrrRNRD9cHB6cv/0CoUS4fG4V7s+6SSqQram0VI9McGCzydKRtGzRZgcQVhgIRAbpbWYxSnT7bnNQamhg/o8NCExWjm8KixQZ3Ej1SlFu5p45wNEhR7SKbWX+ppq2y6PZQSpdHq+OVfIAdL5ULS50EAyiVleh8JMkUs0GZ9vYyUJ6du9/jXcy6r6fNeyFxHVlPLGuZGDok7LcwyiGMmf81nmzcFbh9eo62b8OJAEqPClOziRL5sqdoYBHLmBtjU5+FQO4uBqNSfEPh2iONScPikaiuWzK7UDsyfvDPmguY6aDW+zrR55+NNadby0YZepjiAoFNSvZpO0L3YLt1B8Og++IreJz0K3XTXzOfaDy4YeiGYBghsYaqcHQC5JaK+4XDq8otEP9QORHiGZqjJcPVYDky2XcNdhTOetBc8fdiopfU1HouIllmBrMggvH2wuIiJC3GiUySQJdGtrBkcDFIwyIih5UzED+u294wVCJgnDmQom8YYWhSrwoGnB2QfeAmBGjelx+gHyK6+WgEUbzWAoDKl95aUr698kS5KHquWGzPt3znz3+N2MTELbU+/ErjdZksXtJQeTwsoI/h6o2vjBtlU0rzjh871rkuFArnXc8WBAY5PFRNxSUP0VVKqqPteu2cksKl5qhh0chNZRcZjZR4cRsgMNG7stQKKPdlOWa4TUg7Z14YVrjK0NGrpepeWJ5kbZNSTDhJ4kijM4znKeu6zy0T4ClRoyqwjaMb9TOFHN1OQoxvScvZBX1wc7ZHvDVO6seaOum1DckMRE43acNuxEYeiqySdFL/Qhaz1sMDSgO70lG1JUnBh9uqFt0iUsZNiM9hNo3xC1s0Etggd5bFsTxjwg3Ms1QwWR0qBuWlC6lXQXk7zJRdraYprcrrF5DCaJC6UEY1BFAa133ujNtdccWpHi2+speYf3oNWFBZe2VeohKMvNrcrbGIokOSTZRU774LLG5iHgOko8LhlBHARhXIOyBoldUo6Vp02WrcfBJWOBMU0IJG7ECaU4Tem8waUVuiZL5LR+jC73DMkqumQcF2WqT5sljSdTiw9wHvgGjhJewDSeNcVwQVlPl9wrnzGCr6ihFsC2BS25FJNlcITHwkGhkAOI2dGP0G7L8W3W7d0wcY7EoUtEYdJ+qPaF7LNHEm8hhjGZB10L8w0sxCHkc8sthQAN/i86GbwyA8RhiFU9+cYu477wuSHxM0oDYzYiDqadFCnIdS7d0x4biZEN3o3DTOvbfTRG2+52RKc9nFC8XXbcb2Zd3HGX3kAy5kRpklguOmSTrh0j9qQ7hHm/7+4kQtCoTYJwi/QiHzcTwyDdPpBmqPG+QrJtexf7bWu6XTNDdsq5AT+KcI3RnEKzs0gUWEiIdmHcPlCmBvCXIEWQcBRNL8mlQklN3oWWlIMnGkZW7ULoMDVMv4H1BCZYD1cNlAy92HpNAbNIPilIX12gqAAWoHbm+oHDCtiTBk6+jjIA+MNA5Vl3DsbCPl8ovNQwEhzHNFSsJSXZMl++NqSO2qnOBVlnTAop33Vb7/bFdtKM3VgvRWnZBsfrC1+NOxtSnb4r7cGbJneyMpKBdthqW2ILH5jJC3gszIoWxx60APsWbmATJ+p5OOOAAfKWHsLGNkK2z9mq4hjYSs9e5cc4jDCJ7Wgm2m+zZRqWEF5IDaT2HsfWk80NnFgRSmaEZuSbuaHsZSK8bmyojcIkUlEfDmGiuglNzamwfD0j0vLryXTT+2kV7X37KK2mn2E+NkDf2/rEJq9nftaRy0yetQ0VhBC2rftuBPfQmy6MsAVT3HEjzBG6WJkKOaw2DUfOfTsRfri2Y0j+7eSbbyZcyNylI8mijU0RBFrgH9CqjxSqs1JREyg7mjkr0K5JdV1LeQ+OoAYWFnpBaQytTJXyol2PMdnY4a+gt5oGTHjoup4uBrUYB7qxEkOnEZ9qVvQuUdqAoxb6Lt+LXWyKpk1zqBI4/PRF7qvdcCIxJMHH4wBzGDJ2/BxDoI/E2z3Y0K+Kk487HvIKFNtgTuFiX+JyekonMAbAqeVF16Z1IKbrWOlDL9UEIIGNc3oPuADqbPWWDWPsa1MAP9ts0PcAFmxaY+GXldmE+mrBc7Rmv4Lbp4VUCKMvHJ7Z8AxTG1YET1SKG6p13CVr+KbWNnawE9JLtcvbBO2IlSF9VdRstyNa6Fp4ilyEQ5s8qPCkayWKW134RZ4P0cyF9ZApnJqEVgy4aF7fHDueyFbj2tOg0QWH2WYJv9Mw7i2pgnJ7Oahj6/sdpzrJCrrYcu7oooVw1bvibqHVKyYxsYHY1g23kHnUoDRMpPi0GrhyvR05kcnHylqjA+i9ZrYxBENlm6AgQG4F/0lrkgb8OmCeZSOpsXBZ1bDbGQAmjCHBh+KgFyJ4IlqlfD0EYJLmprzaHkWaxqmF1DFCjqs137ZN4/A0iPbpUhoH2EBUU9APgzkVDK5BKjAozRiTJlZ0AMMRkMsonXWQyaikAS9iCw6JauSBG7NhY6JeQY5xxHdBf+hNZk/COjh6B9NJIVpCQMw84RO3NPNHgJWeT8BmzJtVG12xAR1uk2t4gLtGFXced+ArqHVIpqtrT/Hr0TLta/QhwE0ofAzIqQ4WDSAcsE0jKIKkmW7aIRlA+pA4Abe6a+HVK05O4asUPzKmTGQFzzs/6bEioMA2E6EOK3Il34MELaVNIyEVeWsASKU4aMtouCqiSY2xFqRFuocPIObB8GbkTgJPF7NphhdMF2PCm41FICddONiyXbqPA00TdBLjEI9FnDajHsWuYUgU1ofQT1iGHRYwsc4l/67dbjtEnjECuQfyIzlzMnDWeJehIiqaCb9qty4XmPx6XLDGhFuazqJp3L0dvTC1vhBb1cL6gCM0wk1zzYSgnxkoyau6D9EXFAOslfx3zLapbAj3pqaz844WobGbnlnuo4cERRva2LopbCztlzcHdfJ+jK7Y17df76ldc1EwTy6QuYQCjXtjVl5b7ioN7FwulyFOMXiXte0R0jqat5OOhQbs0egfTUb4s5L5qnChmq8SRwV6Nyqg6yBDuQwjWnsOJl3j/HQEacFbhxaT5ddxK9Ao+FlDpWAHc4nwW3verJV1ZgCALY5ABHdYYCBvME/ZrGJnRs+8S3RH485toaRDeFEPU3wbMklMRz2M1EVhEARywffgjfYeFV3C4YQUIA4PREM3Y/GL1jsK7qs3bK2c9Fg3HtJK5qEjv9qaclU6qgwRdu5dXZNekidi941iF5ro4l3SP1LruQWQ4IQ62u3NhVTlQ2bxwq37iWPB911j99cAuXVq2u95WydMA1E7NQs2HQHcN8m6SaxM+BOwtJZGnTwcDhe2t8HuTegWumDjyNWTDerf9jqEdEt038iv6LcsmLoOgF6Y5qRjyFwZ8dk6XnhFkQD18D6DD7uBYQlCUQuDK5GIuAhhtI7ZsethzB69n1htBsMvt3YBEiNlWE0Oin5mqD4QiF3MhrWtEXq5XzGgmIwTk8kaYreChhfjt+nJEb6FLttk5a7psrpazAq0A7osXvKoQRgzwCcuxyEjHaEXh27sspIGKoQHlwp1B6sica5KAL3eOxHQd86hQHYr21fTw2Da5QkXO/NQjDkieHZTHG9HGjLprwFHbdqEwhH92BlqdWizONABsjok2CvlCUfxHAgemIjHmGBuwuz0QsQc0rAMy4/rhWMn0qvYxEEswH7GLNwqqg0SBpjtaFJ635bTXAZN33yPrRj95I2hIbJnUMrCe7Z9lPFgyC1vew8+3PWNWTOoPkBwAQjR9oWdR8AeElrOe/gQJjuHC6bpuykCucs00sGvPjSuyY4LEHpMmnEcGXgSkt/Py9iyq7iK6Eh48ja7BolmGAHqrHHjtPYOWR+NRTkqBgUe2sSbW80cZ+s5BoZuABIzmDowZFNr2V+80jUWToIrkrtLejd8+jVrC0CjH3iBDFyzdjoRHmkcUCPjLAyHsYeJo+XVad4fHwCrIui7kJwfXWZ/zi6D5HvtKGJQlB7APEdcGgxcmB54+q8oGctbsY54SXOBw8I1De7jiFs0Am0dXLuN028r8qQRq43ZKRu6ruJHtZfQAY+p10gGL2X2J6eOhjDfNrVYFwl5NiG2OhKi1PUJeuYcKDHvtoclp3o5jnDt24gCZAnCH5pILw9RLzDrzyY7djNGCcWj6csUCVykvz+d4jGZCLgFDRDuI0Br9PjBL9wEn9FGLYCSPLKMAaLUwC81PbYK9Wx+JqYksUnPXt9D0SCW0mWzmtEmpQSg7XFrGSJnLKjIHrpyxyCDbqdU9EN1RyqcXjhsqGIloXHEIPSEkROU2xfEatEIQrY1etfb0lLidG0HwwpNkHBibEfNhHZnbExBw/HuGwqD69p8TNsxCeE0w4UhK9J0/uLVbX2Q2kfLqKTd8TJFRtiOVilqaxXYNMYmWWEI12zdWPEf140UQIqoY5EulIq93N60P+qGdz0cbXFMZ4t+Cs2tuMgoRlg9DItZmKJw9CwGCIlnI5AtRowwS2ToLG2XlAxh8+j9xKIkomVqzYhC+FDIdngLdslmkckygcAKC3LkoZh7jzZGiI5+BIqOeLv5bOF/p0lfDnybxJAUJQR3dzYFBBN++ombTwgfPDy0ZhfzQ2ZvmrIYEo7wqL7YLgncBvHCpyzsDNa2fqsZ8LTIKCXvJ3ZFOSp6AXax7+r7KY7NkEYeMrpeP3Ww/ASTTE1EYuwUAU0+jLuEZXKQPkDTTM6NkZpIj+sWwbMy5AB3VGRMWbpdec4UL5iGKLsDFCugTcVSEzoaLmE8gVRA16fcpGEbFxJamDEouHdcM4RVuCkaykG14m3Jn5DFQJtMIYoZ4Va9bbyI/A84f2FwraFaKTkxmI+2QGgKOpAuffAdcJpyYVJrAgOmwAFxFFG4lZqC2dI8Jm/TkETksdsy3Zlmad8HOiY6mg7MeuQ7RGb4QO3eZdHE9ZScxg7gmQ4c24y6XHtizsj+sm0uGQcBszPBc8hTcGCOEDTGscigIyG8vk38FcwrGE7fzGYW0xQpVrkMvWzB1yn4tO0u4kHscOjrrbFQlT5k61aOkbTlMi9EwVRb6Ezh7Jx1ieiTqQ9dTYLkvga1CnTRhjYje9JVS/sZXR99Dr7o4NLm0Q7Q0RnQU4LHqNwCEhNHU55xi8NSghDixLn7CBOxUH5L/AYUFxiLcC0A7BFCob3q2pPLNQz1jVb5rEQyA43wTkeMtZEZlx8Wl8qCDQmRgCtCE4Gjx1tEcBvnQqvlkBFjuCMqhtEKnWO4rY8+w8c6iBuAEocKBEOPlo20NfhOWSyN88KZpbGrpfUT57yjDakfMu5dze7jFifpiILkT2OfyapzKu7Q4A46KR7xthhZDW6Ox7ABddFuT5fYdU821A+1Bc3s/kYXfQqon85OVmOotQ/jIjj6FcgC2y06QTIZyVFyyRXVuxxkIaLWZAglAN4RJaosxjweoXHVcRXigkzW+RmSz+eOaQrpUly977rGTRbYXtP7hwGjiBQss6ChNG0D7TYDA3ayB5DB6NG1E5AJt8i42xTuN+sj0EDIPnxjqGefBV7eWbHA5qhJOFA6tX2GiAtTganNw+cF4qTYVR9G35vdKW9A1/qCigzpgusihLwyA+ETsO2N9FLhFh4ypwwjjsfgQraJQR8nIMGcFA34pqhzSQ+c0bFwEGjdnJo5dimGuQbGR/P+W9wb7BND0vqzvJYvFE93VM06GcxioK6qSeMb/AHxq7zKlDl34+izCXGgSBN8Nnw3xELUzVVdyrByExaexcuNLaGJXsMVZk1AFkAoOE7AWGxFWo5p4Rks4m6SBioBwNHnMwL4RdMdDCpV21BTEecygOkiB8iO1a+ie/iYrknCGsr1nJF0Ba2Gu5CAJgcWiHhR4boQWhpcLvAG7nCqUbxueNGjCbnCGiJfktEQtGGwLKDKhBH7ApSziLws61ZGQDu9FSQsuDbUjbPFVw2bKqBP/qPKQSRszsV8o9OiOKHpEa7BdBh26tFhh3fBxGbK03RHEiHEACsmO0AE702e6s6NxLEm72xtjO/MGB9gZICkMO2WwhY9/HS/kcKahtQAvtYyOB2YdkDhqvB9eadL8TttT/BhzFH8deaEAhuSweW+RdmFXDHGoZ2YFaT11kz7oiDFdB2CEPssVlnoOvXPSDhRDhgVGSA5YaDUM82LgxrXIyrQgsx7witjiSMdETrQ97NIriGpEuywBw6Wl4unO7olrqMCYjBoZDddlK1FqpcxdHUuhbEbmMSAQldMfre+yeEPop+AHku0SGchZDgaGRfjKMmPcYIth1TJQ0RpDLJ1Y0DUMRkVuH+cbD59vh2zu8piIKkKcDXGGG+CV/RjNR2iiRk7gi3qQpMjzOkga5ku51UZFmh0GLKqS/FQRFGOCRcnPEY+Iz6FZjLXZ0SwBboWlJsGSkJBy9Z94QjO58wudTxm3ky5ltoyFaa9MKuVz2KPiYczTDVHbZ7tgfpOX7IgkRoGi6Wd4fOJaylZh2Th+2xlZ4hkwY2a1EWpneElUD9Dn05CaBnIgu6LHG+4kx3xbF3ssk89pHg4Rp8zdH/Hb/oG1jOZts8wWyCDBpdSAI24DhgGaa6RHtzbASnIgGCu4DUg4x0BmV2KnK67Zkx+NwyhXkbCTBUwmjiEb0oc3dAjLAH6VEubGnEBuS8HKaGNA7O1kDLaLhsVOBgljTD7HomZ5jyozW4ROpHZn/J5H4Y6m1efPXDDUKKjsamxJBuh0jGaGxVqeR+GGuJlyqowkq4OOLJcN9zZihtC0kxt0P2H6MIxG/QoZcUhq/VZf2IzCQibMUcOeU0qJbTO4sW0NryWnFldYUoNNONRB2Y0a2MGg77kAJBf9AlqQWbS+1skc+EkeOu1nRnQDLYCzOxtAj9qUvWA4ZkJs3NTPF21TnXouyUaKsqkoXZpvYpkKhmX3XYl00bL66Yn5h13FY8E1XlsZF9wi5P0VCFO4KFCNY3JF3a3F23SktA0uJs5WAb4llipad4pw3HHBhCL7GWPmocqSSxtT+wXY0hCAj7D3DPAu5IIqKsCubrtk1THOVouAZKiJaGCc5cGot5P7DWFX082omKSY0YEJVdE32QaaZLSZvNKbBLIXvmp234Ts4skKLi0WrofcYoKXqLEyuJ83SL0aFecrLO9mGEdikeC2Lg620QL3zi5vu9iUpVhhLBhahS8bg4sUMHNLLYgK1E4h4Stia3rs7bb9P2uGAOiEG+I20SSsJvQotX46oneCBAVNjk0t4d58/4PGi40Aebh/mVmJkD5qvQ1DLse2xqBs33H02CR4Sy9hWTSjgmRqAvNNK1QSR5VQ0UcOm6p0LTTHD7cap//GrPf17lkeG6cayuDCW8XwkAJdcOpIsJiO75yiMHtuKMJvGPvFbCay2J5E0EW5nzAUneWWQ9qMuNMBvpZYNag8doCgTOOwUNvhy4z8AYYC/7TpcQ/iBYfMzB1SD5efKvmrN5+KMrVyNguKF6+7asX5bYP9l5nVqzg7UHxZLJNgkbwapyMxfVaA3n3Vw1CXKuvhO0D6TCk67waL+BGMLJ677INbJgENxP3bZtvAesZt4wI6847N4keQho6w+8GprUcxko+bkGLYSD8LzZp3bmmUzRBiveMaX3o5SXOs8vx8EM7iQC2PeAYGOOPQ9iO0/3LMg7pbBgYvIrzSr90N3Fh+5jQNd04UpD0+cQKv4L/q5uAMyrdtwkNMrrBDgo5qcQvhA5WF4Y0QSJpXDLbhBLIUdExpS1mUgXzaBJJBtJf01X83COum5FBCV6IS7tCi3UuZ7GCKNyNTVfPdoiwxJLr52maq8r0oQJj7F3iVLZWvE9cCnnOv2coPnSDqpU8EeqhVbLEoWsn6d98wjgLqTKXT4b0VVm2kqoGZlGSccHaEREkP+e1apfIIf5MjuGKnuSd2/Yk9hk3s5UDlgw4tj013uyEqPleT00845YtlVdGDLBTc/HHZM8np+2GWB+ZCRI9Y9ArHs7btI8ELzH0KTZT1kqohhdlbJgudu+mmSgsDDm7IskGamY89Pk2ZxuV2FAnYrIUGMUVuXP2jC3ZGlGRhCd9i+QBL70FSxV5Y8bq6LgakBqphNIQhQukt950WQ3OWZEp0BBTGUO6LfOlYdjq6R0CZtkEZiBO34vqgK3j+ad9N+toBiowry/ULddfu0gMdhi3iYVnUS3NbVZ+qrNIjAp2ZeCale0wvCqgtyawDJXAkvKMYvLA6nAsIzKAFbGNsSJVthlGWFKM23Gx/9DdGJGH4uGnmFAMLl2o9eCd5F1lHq3SxFkIFG0+E5evRVNR/it6g7D6nNKaIZyw5HdUVfP21U+ZqssReEQhmhnv8ttCzxASqxfB9XznXF+/yMdtxyth3m6ryfPq1xXpqUsMi2wmIVnOfFLoiAnt7LAyiKTP4SJmiGH+cWeOtZT0olrOFCmWF9V1tInSQJVweaTZya5VigaZT9FRMURHGE++bCc/rix1ZiwaEkLbGAKCmKvmk50uzn6RLx8CdyPsGiPuv/nlIyvf71R0qATD6BtHAJyqKbYj8rYz8wkGpcU6r1FzzK8FFmBu/AaxLRlNQjyQ5pIMU4GCNi3fTTMbRialSWGz5U7hLei3lBmucor7tijgYklufNYpIzWJrkp+lJKv1ykRDbpQCZ1VuOcUhsc0/kx0088SDssofN04+c/g6Paw6c1NCna9UEthjnyG3cYmg+xEztYbYaC5qcl44wiEwWuo65qdMvH5dog595PF8xTTRN8xY0YxfM3NIMUzyFxBngjollaZNmeIsUR0xRUAW1Ukg3h1V4pPHyotkUqw2nlzIpI+NJavOqkTsisxI8GbkK1VtIQU6bP3OfeOJd8uYBpF5scaMUrnvKZPTZpZZQNumYS1cek3cj1DTSLObehS9BFEU1yUzOk+JoRH9bCH86FvLEArXyuWXVsdpOM0/r/CJlQYmGTom6dhdX3MucaGglsqiKUwZFGrlqBhBOZ7lT28cn8LfxmnOUrGMaNLXRVHHa8P1s9JpTBHIXwYoZGSvLbATORf5vGfGSWZuJDUV52cGxL7ULl7tX2GafGKEbRuvqLXrRNTccKyFl3B3tWpNrfSQSP+wpQa2qdoq2sZgZqypSV1AH5wEBt0eMaimMzSEeC6tWAzaV5ESSxYyGziGgrwLApiXj1aUBmx+YplmOQf7bO3wQZFmOQO70/beFoNeCC7gvUGjmNgPmI0QqunLPQOQ2CaR2uy9zzlQ1ecDVadweQEEC9Nuj5fsIQltkQvYx9w/VP4IduNfRt25N2qjcjm++1IdTB8QuOnUPuuWiMdBEadWv6durk6DIs7XG1Ly4InYUJB6Fpk4bgV4FyJuANTU8GhMHeoeSQ5SzufviL2y/cpayYNhQ0d1syaVXhXgABrRT3y1KA7wYi6NTWLg5vOrU6gU4ZuIO+YER/GWxmvyRyDJt3UhlSu1VCSOkFOmjuxiOiyQOCmTVxzPhOow8z/MmzPxtK+cTcIW+D8aqIte+e7UCyctPjuOGm8r0TKox7cjbn4Cz2aBE8NtMzjksPS4PcFOT50ffa0VzAHrFrMN01k/i7YO+rruhYdSQ+4N2TlqdGHEiPqzKqJO2dE8J4MsfelMg7s1GPXZCENCEREi7yGGDVNEO2yYj9uuY3niTEpviBZKQ1CcYQtzhANROPgFqUKGnDiRebAmRnHlJ29i8QYDsFVJ6OHqc7T2J5tEOVGkpt/zMDF1velVgVpvCEd0+gLf6QK5j0CWSf+uaakY27nwIUhBzq1Xcme1JWCB0TBYcKj5UJzE3uZswx5bsdituah3WHmIufrXMgFc4qhBrYRBSRNwmFpCy2hvsifTD1eRKCCW3KDy/ZJhjqUkhmmptIZBn2BYVuONQCYS67PUFTbaMwCzm1mVMi71ffUiBGov5WFZyhP602A+QiKv6XLJeapaeu/qPeDD8sgxnyOCB1BZa+UEjODoKrU0fVORCTedZFhrgxvIZZhWo6rYNl5ZdnB84iS7eFa04hAXCUJ7mshYtENJcfgyEAIQEQrODHT7qUgP9QdGIKfWnkbeJUquMV0KD1HQshZM+ycQVWComPmySpXKYuwdK444UPKz8/BY+u3oSRJhisZGquSLZYLnjg0mBAJklFuVydGsyTrrvoKTLVD+bQtx3U7ZlwFO5bd7cYJhDd4zC3yaDF3nF00JesUXTSVRcyztkm3Q35ut3M4QW3vnSv1WWrlBI4eg3C5Kmt9ZJyFJX3PbM9y6jUZVeWzq9FM926CWayKgFlrhsgp+1kFx9U4NuNSrslBdEzxDHG+z7d2MSqmOkrp9tXQL0SyUQ41jZOc0sUc2zDfNrIgIsxcOtyWWSP0PpvEsW/ejdNSHsPgguET+3RtwJZc8xZYqphLudTU6qtc8BZNQSEUsO0G9x3kMvjtdE+SYW5Xn7ZnCKcMwJhQ7ENEgLeSY9l8PzCUxUvTbQqkaL2nnZIGgOJio4hEBJXVonAzQKVli4GVxy7RtkKEucZKP/UlT36y2nbBpzQOoioyxYDP2dKiIxaH0YZxSGgvar/C55oJHAy63hB33V6t5RgCH1Pu3hTaZz7r0U2k/SQ0cR2GLEdOUuz2TajRA2A6lbTnrABax4TO9ASOJUCQuC3mksOyxeAnLhwr0cUFTtme40Tvt8Ngl1bbz1Ko7BqhjcRSDHiiCktETc6+whe6jPnL2f7MRN+WfOrMjc8wl5DLa7p+3lnREXMe2Iwc6GjmZNQ7C3uGYBkDIH9uf0+Zmgff3d5Wh233MFsSo2jeQgRIOhbtQn6BZFiyMIMAIH65sHbUVrMdSwmhmRGOa6y51WvbemhZKZO56tw0rot53Hyf3MI+9jklQEK2An89ejjgRZTsaSJS2/U4QW4z9RIVBodw0KHzvs4v6UugvexUO+vIJM2t2k0lx4jleaYFEYm0VXTqJznq6/oobeyRNrjKMsQsmG3GEdDvEGMOBp/X7EgQLkP5VqUYQ5vRMf00t+AklLsf8wWqomuKTE6xEj2EBDOoEdNf2Il129GglJ0XdSEPGCgCJHDPrEAlKoSCYK6cI/ywR4GkcQJSq2PJvV3eQhc4r7TqWdoXQCla+gT9rKKPMPkh16y06qoIVWZVRiK80FnnS8HHojYWvFdlBSFFYfwFMhbkcGfvOzhJ2xRk6ci6TbgiDM/nkrNizLkrICV1jjn7USDF0SkC5D8LsMDHCOYRRwY4IJ0uwnItwQUDTBur2wdwLRaXUf0wH2lklDVWMSW6ZDsCM9o64r0C0UTgTaIVrxjT6lotIcdCtUwBzWJOA8sTc2gEfjnmyG8z5TRNygs4ZJ+Zqqp+RyZ5li4d4gTQZclj6O1HrU2FePpJklkusuimwYKNCW2hcjEF2XtWIWLdYCzwdm0GyHlIwN51BJZwsWtdHKJk6PI+S9dZrahLYuWCDng3tL2ZJXKUOOcUBuZw9sN2WkS2LKefaV+bofZY+sj6aBWK19xIFneVq4taSV1mUAZzzjVShMdnU6bl/a9DAPo4zX0QLcLB5UZbA6KXLNqNyyYmS2QA+P9gMTjJvGgub+gEOWgElMK7k+vP+kAkapi4Yr4KqnSpjvmKYX4j3MiGBSs3dR6cEZauJtLVFJ++rovtUphI5yCrQiCnCbQSrdKOQ/hH4DkTrjLsvUlOFtq5qDpbbB+LLsZxcsH0AXG75IgtKwoXuAzz81b2/0nNxZ2lEpq2BtbX91+qkOpSNZndyNMIAekWGdjMVW8qe5/N41xiyn6IgoLPsjDZKqcTp6qZjwzVQ+BanW9nWruKjgK7JSspV7ijnidR3X3BzrcDL8USmR3s6G57CahCUCvPArvcOS5XXmshPxky2sMtZuXIsdM8LqwCZYnZ2m5ag5yCXQeeU0XYU8uMMU7z7LaslEvfJZ1wW+FAW6XXq6xvEPZZXr24X3uiA123PQJRK1vassbMkvpxLgWkoF/GyA3EFJXC7bvqtDuWLxIxO9QBTKVnc9hBSZyVbccpGJmhKxSYLo7LQDhawVuxQDkkDnMnIxPAjkrwKYU+dXJIbeXoGtrLmX8XdNF3JacpE+ix1CovMN+FjF8E15iUWUgoHge9nX4Pdmciqy+V8wj28IYtwHSgEDF3BcvfSEPMXU3npx9zqcMMxiImMTLcNpeb3KoyI42WClCyZDk5OWz43QC2GVNKdWbDhWSJ2Elq+NNnlv6rJOHYvSRM6VxKPTtYGZIz91Y/68vPhhTHyTT64+RjyufeWfwss88mRxbgkQ1h4Cz0oH8hrWGT69Qw4o+5+01LQPi2G3Z9V+VyyrlFetayJ1gazMGYvNm8cymhfoIQGseUjyVYAhK4s5GwENZ2hqd5FqOlFptzi6QQ30pUovrivR0pRjybqDoSst0kRKz3KWd/Wl/h/82c7Jjdu67OEwwN55pJ2JUcWyb5ZPIbCgstHU+sBbhdjrbrqQqA9/l6Ky2miRuQk3iyC+ZiQoRYa8kkZ+k/ggXYIM6vtawGNUUw6JkO4gy01FjYbA/D0ShfgesDZBlQmdcxOnyEfpc2VeQxdgKIdv5x9C1rnDiE1e9qHoatunk88A5WspbiDy6Y6hWPhD89S5czq13nmGIYxg8oaQHgJOs6DTcJmvQpFRO3ecfysLyhSVAlYte4YzNdlchYxDLqKhSCb7AaoIU1aLji7Aei7g9u8gt7ksZupBhGov+vHztARzeMvZ+tZ89WylDYQvUGH9hAEqkSr18NxEw9ZW9x6fZMxV0NhPdOTnJpTptr5xPop33N+aTBJjvkSPmzD303WauO2UgCU+luN+6Dt+rt3Svo1Nry/YyiPdXoNKA2eZSDL8Xm6/l2NJaSljvXX3Nw6HOuT4WbDaiKjbFX8CANJPH6jpmBJ2MYCJh9zc6t5RKa34zZkDSfJOx2P/gkcwCbkdlsFEZabzjPquwfvBA9vZL5x5ZGA3lRd5IWCeNaUin6jiiwngn0cH2FuhVNWYKEKMAy7ZrEMEx51cjQfvygpZzYND2sA39dr9utFzvMmS5FbmA2E7hCpv0xDLZjKrhrOx1Y9W+Y0XJsrR4QQv/yK5MDcOvhDqn6DnmPt9TGU74jmlnz5gszGVjPkP3d09Hc75gszeU2wpAXtCOxoECbH7uhHkeDvMNdHFkQ+c2o0blUaFQDy2hxmvQyjkxGBHvTjuZfdWETGE58EG8wMq8sQgxMLwfRZbfodRNr6/uED/UtS6O0YRI701npMrhD4/YN3GWzGwNDRDFKgOrYMqsJUbFFnBHRHyrBrsNZReMkoYGpNxNvERkW0LZaGqXr2NC3jNXp+uyggB7hWT9+okMwn7QIIH0u1EnY8ESon0MYkqwPVoJMR8k5FZngL+YE61AJCcJhk8lUTUqkxZHJCwY4JBpgiyZz883obAsYyVnMbFBNGXfhs2IbAaYqilGqRzNLN8Ksfg1ddU0z165G2shZ/6azqiXI3YBcpvAJ4NJFVpyBfgkzYHXc/HoN2w5VjirHTw3ONb26hoYy8jE27WzlrAD0rLyzz6EgzFM59AkxbmgWn2w8vQW8sKuhFAYvOXlaZhmYpT609Lwwc1gpJ3oym1zTqg4+g0nBkF49bJHjkICzskCM88R/IGT7dJgJucv8u6WTP24f5fp15IYpb9mJ8cMk7G3ydPoDrYKSDh0jgamc90jW2TcM7SN7SF4x5rxjUkzqluWFyvVGw/Ksv3aAhScw2UEZoia4hdF5QnOuoUOLL09bwi3WskTpfFUIjm7zwfBNyfFOmGbjbe2dYwCkn6jVu3agLNSW/j3bhBJijiZQlYVjVrWSP8ntjMxK462F0CWqwF8d0k50XTvNxFAFrDHqmJkuSMBalhMoZSaemoYcoWgpPT8JiUfDvA8hS9rwNie3N3xlQ47voD2y8spYLoqSKmPik8wpO6asdD6GGgfoetYT3hFcyWTAcexKNb3CFKNrMrppK9sAqrOb64dGs4zOp6m0RH9EoGfMaE6gMqYYLcuxz81OUqGkdB3Bm7WobSem1utXoDgkJsZVzxT1xW9YWf5G5o0au4m1dBxycQYSbyHrIau4pDpYSeUahsz+/9sF4MnNLzlY8CvGCZ5P658FFYVcDaFjsnzfJLhQ3+Skh7weMpUa+dlrwPghaesQwdi6bFekR7ePuW6na0roYzkGhmqxwmUu5jqg/TBmJH1Tdqx0qZ72vu6thQwJX52WQ8D04VEIk2CxFqI/xRyWlfDNJCyZbDX3Q4bGtenb220JNvYVO8IqB2b27bPLgd5hyIzB98zdkahGy5CbnC4zRrko8I9IxCZhdj6bmonAgczic4pVc4CMbz65noKqnTgX3V8XJS/Kq6Y39rlw0bUU3tJSWAnPIzxpOdqNmPEdy7Ht7/QWL5m8AgUc5nvHtFCMTmSh9L6WnmV5Jkj4yeruigtpfPrWLA6hpLpFUGTVybBjJ4gbua7lvimAKouQmYTNEPBr3LSeDiQ60Q5YvLVwhLLQkZA2pnkZ20kKsjL/HSs+d3Nfu9qGt6iXPAwhFxd6Tc7yro9eGJhhngVTc+BuNOdpxv9B5nDtJKNwi7qRVRjMCIWkbxD3ZIuFuy7hp2lzIipiDM12fRQGJY9Q1QJD3rnYBD6gSPlkL3aNyJKDk6+7XIyW0YrEsJXaVG2cBpyk9L2WhH5eU7tlIAch8mOXunEByVvrFOjJPzBlMKTJdmTGiYZVMXL4FWMsgnlFu/oiDm2pzlwK2RdCRqmKQEAOGyOXQYIq1o/FHpbbDbrP2LtyTXoaVOAfoFs5R380LHQ05MKn1aB6huaG3oV0fip5YeiR5lU2OSfZe9e8tWPc22TevnYj716A3Wef5hZC2X2uPzvhgAb/Kei4+pZ5i8P9ymM6IHWAWT2Y3nwMOTNJJH0ziIEBfjRAANM2RhwFxuUr+Y0MpoQoRWg08dR2GbkpvLynxOoqHY65jKG6jMHVUVhE4U3QGjA/QBH8UftltAThYnhgQQtFJgYHSCJxrILLmewkRz+XX/CpAW3bXKPN4HnKouBL8n3vctwUzBFDP7nHUw7glGa8KiAQ/CRCz5BUOfyDdPADdtCOPaMYx4Tt5Z8pvo9YPTcxyxl7pVmsimrHKBmu3paYTRe2F9ayqDhECPR5sAzhK9MiclakhwRcz7izjnCHDA+AccEi6nZAtGkcAFgjNDHZ97CIfZeDh7e0DcvixAoWMSciqMQdqynWAi5RLSvR1fYOcUCRAb2lmkLnUMTOLBSs6Eon1DRLGANyZL1jM0kp5eyuLkn0YT0ZOmJrSzmp1oXs8RxYkartS2SG3htMgUYrdpfBWpY7H2jSepgGIIvTk8pQcO/rwFRn6blza3wVFkUbKHEnTApotsdCJ6UiU5UhNjhcXVCemfO65ONgAYh2kg4won5mqbvn5TJMtWWCpZes48zNNJsjJf8bGKiFqbhhApyuVryqIM66pHJjNG0NBupHnKmUDChmm5r3FVYeN3+wdMVDTnXb0PbCyuC0cu3mXwaQAjo+EofWpSgeVp9lEded3LUCF/ICYGuU2lJe0Kr2hk9GeTNJGrgaihiTNKRAPQCptjFabnIHaA2zkFQYu2+AnWbAhiWRZGpeVC2OCImw531w+bxxkaW5BAGL7ZCKRhNJNbiU3COyUkK28m8x/BpYzGjmgkFrrNrRUKrrEhWdkZAhxoxSZPYnLi257tZaV0GJZr/NiRfZBq2xCdONMurgLUzPXWbPNkSSAUhoSKDhm1riogbW165awjz4m9G3hduzDiqYV9v5kAOxh2aiZEP2wuZUzbmQzWEj4/2Q5yc2PDusXzQgHVcJvfGsrFE5YP5yRrW1VHVMOfP6eyaUjiWPWGD0PN1FLAWdY2nr0RtXt/qW+cKNLofJoBx3cIj6pODhmJeEqaCYrEYV+1weUOuujvZzBCWNouzRr+pZZ8gKYbPUW3ZHvqFV2d1oT3217Fi0jb8UAbKM6IeUIitjrWm8P4ZAuXO1/+KkyvnavBsBs7LI/3mkTKbOf2MxUx6j4E//NsJmR7/sbYTNythaj9wZiyUymAOxbTIZjx+CI/t0cWLZuUH4o5mkFv68635I6a9QhIqATBjVNH9dr9ut11uLzNvH/O2l5xuY948uQleGtHcvR1ec/A2F6Wr5f1CJemubrxGuy/l5Iwm7WpC3E7PnDb2lrD2/cl9ftGWIRjs0/13MZltQn7f5FtL67uH9aCK7FdKuZPYt4qewd70QX90iAAsNMdTQK6Q+HVnblQ+Lt4tICya6HWMqz20Aj0AcQ2uHewShMIsBcVZvbjj3zHnzDt0VvLGIi/U7/b4ptfYk/yBVjlIPmL4xMCzW3tzpkrTw7uQc64KrHZMjS6o3dK1Vu2kX2pACmWwcQ0hCMHyu83F0gZlWSpZc12UfCt9jjUVGxXUpkwjVABdzxsQWxWCqASXMNpBmeUAMfqX40PhxhpqaLYiW2WVgfjvzzbaz+kFIDTWnbeZ2T8mHSD6ATTYpD6JVXkA2aJZZJejRDePkTuE4as83a20w3x63Ihfdy6ivt/YZ76DEaBkM+hQOaMysCdsC34+twnWB+Yd+KL3NMR77r4rbXxW38AOJ/H+Z2s1fkCLCjKS7FhnuYnT43+sMJ2T0jjWyH03lmXn1ATEIzH5vOXZB1Z7VqgjwRrSjSBIpiYcWSEqJIgJqOtZpDOQuYn0BZgRhbdV0nix5phsm2dMDsTyRcVFI7NdDIKwLGWUZwnskUeB3AyH7rORMFjAQFM8sWhQ/skzlHKsn0wRcck9bJus2JQczfkYwU8nEm5OYVdktEBVC7WBMMmyw0pR9TqHVyvNQ12a2/GWUHnakPiplQJnsgYWd5ESEJHgMLPxXcoZYWShQC9hUACwozcr3OUiyC66Ui+9zHsuux7IQ5x8Ix88pnK1mPGM2cOBCbFNCWm44A4Bzvp8uKyUDriZe2kQws9oVk4bVREgkYhXQUSXmMTy4Jh0yvBBr3oxVCQWmtxlLhee2Z6LdMaedtRyIEdcPU7cIFcbtwlwgYzmSOZEUNJcIqYoJPPsmJ0RWuBlT62ZLCYVXqmodM9c5pt3JEDdWzQbgrtrs0cccqhRK/bI4WJxOzki1nQjm/2PvreOq6ta2UQUBEZEUVKQllFzAgkU3SKMgjeSiYdHdICECAtIpIN3dSHe3lHR398G1MJ797Ge/59vvOf99/qE/15xzzDHGPe4ac9zXxQCtV/gDKBCGofwHNcqfz/wGIrmBkblZwv/KPfyL2wR2nuqPGP0nLhDjL44Q2CQy/HEw6AbG5u9EsjeMBYwsoD925v/ONwCDPILaVBbouoFN8g1eCrRugxGWmDHBQN+u5xz4C5Xw35y0vY76GP4CycwEO+4HhKF9/1i5AAbGn/kI6182Cn4iZkKhc27iJBhsI4yZAIaGc5OYQMNL2CqHrjYoXhDMzsKYYn5pCAylBQilP/hJvADjKAAAGP4Eh2JkhkWuf4V/gvb612kFEIwD+QYxkpUF6pdvigavTR/0gAfgBgASGvr+BES+nkzYG6FJBZQhGgoJzvyrWwxQjAoYJte1qgNgkPG/OwKLp6GGCAYnyfobTPDaUTNDd7WhdaWwGqEfagVNGKBEKj/f8wekJgPU0zMBfw0ZAFV+aNrH9Kuk9T8OGZbew+ijGH7mZL+f/udJ//0gCOZyfj3zP07O70cBMLpnKMLMr+d/D/D3jQyMMN7Fv7zoRtx/3AVDjYRR2v9qjukGP/b/D7ldm1QoYCgjrAoH8AuOH+rWf6gjrIiO6e/UwzdwvjCM+p/g01BPBaUpZwZChQRjL4Ht2sDUHIbTDTNRMHJhemgFOgO09gRmUekZmf5G0Q1dU8Ab3CKo97i2FPT/0C1m2OYktNgVAC3bgxGhwLZRQNDDtjDkQBBMcVigaw2aa8PyAnpW2NbIXyjFoT0FQWEyYRw+UMRgqCdi+tcLUGsNYqH/jU7CAsNZYflV0/xbRDCcM+ANvBKMkA8Ko/w/TvoNHj8rDJsUCrEH+lvHbyBEoSedYeeioLHk//FIfm1FAWBBLxQV6Z+Hwvo/D+W3esMQFm+gEhmh55evvS50Jf87Wfx0zMywygzAr4gBBKsvoYfuGkLd8f/5MG/yBRAs7wf9G7D036OEHdH/H5YjK8tPQgAY3TS0Ao0VinHOBEPKv1ERWAkzy69I/++KAo24WYAAIOhvngJ2xAwEQ7Jhpv+JrARgYmJl/rM71yOClniwwEjbofu8jFBk6F/zQA+r/GaA+SMADFYH9IvGB6ro0PADZgeBP+HW/+wR8M8eMdyshT+8ECsUPRMIg4qC9ogVAANrg+5UwfIcqBGHVe5C2VZBP1nJoKuL+QZO54YOgBlmN37ewgSrKYVGXNAescJqmBgYoGHmddQMLfWnv55kaO70f2fuv5i5PywzjAEIOm3QY31QfGFYmTcM6ONXin2j/FB0FAZoyTVsvn5ijd7gLsICMhjbMxS54I+Q9O951X+p7KBfuA9QiYH+k0ljYIKNEBbI0kMnAfhPvhGKTMPMBN01utZ9GGgagBm2vfRrYEwAppt8B/rFkQWKiQxLI/5faDq0OAi66wUDtYc59X+yQwAQlH3ohg0GAIQlVrAPb6w/GRl+VMpDs2+ocBlglKjQbQjYhssNdczf/Dg0TYZlEtAcEgRD1IRB9N/AIYB+27H/A0GBmAF/uFHQDQffLway3zHCb0FBv5XAJMUI5S6CASf8WzEBoHX40Fjz5kPPD08DNbWssJ0G2Cd1WGUOdIMUBAvArlPxn8TOMLR0AICR/r8JFH4Q+zD+4V+BUIQvKKTIn0Nk/nOILD8DIQDsKjRR/3cDBELZDZlgbvbGvcKgrxl/Ezv+1buCWKHIR9ClDWNEgh1JhRIP/ZMvZwHBsDaZf1Jv/7VNRnoY0gfjDUk8NGuADekXVQYMa/A6RIV+VPnvwq1fk8gE3SACApn+k0bDqBPofzEww6rioMHFb+MPAv6uvoLBhUCNOQsMfRYqJRhkIT3LX4GBAX8PYxl/upr/O7H/n07sL5MIdTWw0f471sibKf0bbSts4wh2YpnhJ0zBjaZc/wT1Uf+ebvV/F2T+OC4Dhf5mZf4PswliupnN69gB9E+WDGql/pUTGLZe/shvbgBybzikYXH0DdDCbyBg2BY91JYxMv46qPAn6/APOgX6/63T/VEQDI2zWOn/UyIBANz43WsrDvhnd/sngxw0zqaHud6fUDU3PosJmpvCnBbMdtNDYX9hm1z/rXKw/jLdsEyG+T8rx43qMwBhu7nAf1ypQNYbWBaYiG4AqWH8SIxQuIobKklYDv4P6fX/djx/c0V/GQ4U+AsGfwKNRUFQ5wtlOrgBOP/H0f2dlwWWqUM3T5mgsKmMsHX/F3KSa0cLY3pl+d8YNNbf5fk/1ggr6D8NEgpOBsv0/gXi+l9214DQfSxoRA6AnTyCFbsz3IQPzFD6aCgzMsNNbTI97PQFEHZa7eZbByvoz10PKPo6M/3/hHryTx2BveH6BdDdatafjEbQL3nQ2mlo8AOkh36Du25N9dpNkRhDtMFGJGxEJJZgW0sasLEmWFtb30SXRkNbg4aenoHk+hawiRbkx29qOhBzYw3LHzdraliAmZlInFL1wBraYHOLwGQ9iIVlUI6GqT4txBRsoqFPqwUxztXQ0gKbXrd600BQtq69vik1kTZYx0jDEpyhBTExAWtZ6kNMgjIMwWBTGg0jfWtwCuypoDwNU1MjfS2NH9fpDCwgJlnX91uCTSxpLO1MwX+/nGFlATan0dC9viOoSOq6E7widNJ2lnoQEyIALROIlj7PlsbCUkPfxAhsYUFjpHHdnxRT6PXKPy+YamgZXjdCY309rB89S4E9nPPnPRCLoC8SGlpSMn9pUsNcSy/oi4a5MTNT4Z+/m1uZWOobg4NS+aX//rqbi79fx0gLANCy5P+lYQs7E62gLzoaRhbg0r88DLY0t6PRgly3EfSZPufn/BiBTXQtr7tyneexsqSZgy1MISYWYI+U6wctrSzck6+lAe5sTTW+buJ6pIlSYj/FOHXrUbLAtWSCqoXM9X+oHpEM2PSH6jFdL042ehY2BhCRsIRsFv/Ni2T/rSDyZc01TCx0roUh+FPwqVp6ViaGYO0M/n8r8sofIr8ez48BmEOMrn80gtjQQMz1dfVNgj6/qP6Xy2BbU4gFmOam00FZCjSvwWZWYAtLGhGBLNjyo4Gu66CSf7+qC29ugpjrapjo20O7HlQNXT829rY22lpW2tp61jbG9Kz2TIz6mmArLZ2im0dMzSE/+vKjMWOLoCQGJvqcmys/JZhxPV/0NAB6GnpAuYWlub7W9YL9MSGmEHNLGguwlpW5vqVd0Bi1sYbtj9XKeW3sfrDN07MT6ZtoGVlpg2WsNAUgxtcytmAnMjUHG0E0tCtsacyv5WKkb6x/LV7o3+awIVsEJf9g1yr7+w2WEEOwiUVQ6o/L139q/rzDHPyj/R+D+N3MjzO9Vf/+pp9NMf1gpAUBK/56lwX4z94AGIwtyv5+w00TX64jDmOLLNufD9DoaweNPbv+j5qOpjYLMwOIQZuRXltLR1tDG6ShBb4Wmwaz1o9vi1q5/EI0/BpaemAaGegyDkoVUJTklRDhz5C5bp4fAjHUBwd/uw2vpqalo6ZpzKlvrSmlJad5vZDA2i8ZFJSUFI3N3/BKyhtqgnX4WG1lXorJiwhIW+lLiCrSAFgYWK6tJgMTiAZAS08LoAXQiJho8782s9QC25tbMElaa2kr6FnK6slZCsm8VtDkY3gJFJEUs3kFsHjJb3DdYU1JbU1pOwlTG10xKV0BRX0dJWkB+jfyFtKiYCYDCVYTQ5CUmogl46trgWpY6nHSsRNdr2H965nhvFE0mmtFo4GpGeNPNWMn0oYuA07av5pVdqKXlpamUiZGduzX+nm9nsDX/2oYg2X0LcGckhAT8Nin6zmwstbX5mQA02ppi9uIitAz2grTs4pfd5dZyFbNhF7GxBYkrmQsoGvwWtNAmknDSPCPSQACgTT0N/Pw45AGdP387vp/2asSBZo/7QaNlOkPtbuWownEwkRfRydFBmx+rUNBGVpGECvtaw9hDk65lvlrXsWgIpAWq5amzo+DrtfZAz2QlYbv2vb+bO2XlUn+4V6SNSHadm4pPzTPRLf5FiK8KaHf3VvQP/CykWID7hylKUtn8lUHkhsvMD5S1zzWDZKRxs4XTvRJ8HmK+fIwfvqLlLzNQePtFCZt/E3DyZOtq9OleJfxKtqcudqrk6VpeeCHq8vcrcJxcNX5WbzL5ZHLxV4P99X50dbelbIik51Z5Zut3dLzI/BBzcO96yeEj2ulLqcTr8736IaoqJQGXi9ZCFygYCIZ9Lf2bXFZBL6+FUAeNui5othz1tL7dceYZmXFcktcJ0tC4sDTX3Dn4ntiqsmKFH02cb29TQI5xY6Y0OrYY9K6ClXHfrTPKMfvArVZI0O4mVq+wF1EVYxWz0lJcVVgulJJ+UxtHknUxzjf/ZqujbXVnndAQbr8iBINIhX1JNTxvl/m7VP+LHraiAVGHwL5h60Wz3omBstNR8JvsZsdNFs3HKjcYrqvZ6UDqXpsc8c/LhYHPZm+jwYP58CUe+NWwCvlmayFL9y1b7P4tZ3vYZgTatXHJYbVCe90g8rUIHaBe3G3JB1xrJAOVgaE7XS3FVXCRqWq9rYc79+1iRSSEqiIVCkZoaH21+JL8uDHLChrqZ++lLh9pgecZrllaQoa6p1aWzpVWA996YzHdBqDXVjrP4sluf5RI9t+1r6M9gHSkLd4w2eWUFbd9reuG2slCUoyIxcxlBne3+ysSDtRHjJVncZmWXcxqRuKWnKZHbC6vTnFxPgk5tfqcPjIfO6pTLWe2sGzrWdeEebtel/j4np2M54nsB0R1g9dMEfOWUTVyaAfjaa+NpQ0zK78SozdfbzJRLrkMEQ5qGgD4t2SietpTvyWNAkMS4tuaYkyAlV+nTfHGDejH6b2D8Y0JV68I9Hu19NiCK93YUS5Ij+Soyun+qh3fjv5NKUTvTZKEcWCCFH7pJ0iJFxrIi2c2CavmOZLXLoMFvHaoLVlz1RHsk14y+u6kbqmJjNX582RdqwUI8u0z3Tt9jkVz720yOKSIuPdoyYlcEgV8ylnoo54zxU4DongmU0TgEwa7SSD35W5RzGHrLpwZDDTMbKUVhE3gkIWk+/kadHhQ4wUzIMN0Qq4/C59+AU/YAYsn6a/FDYkYWj7EIMcu/G1rjrXjJJA/uLZK4RP1mEm2Ljr+ruRCDTYCNHIbJ7PKaKdcd3uf3YLkafa0fApPSvWJXzvgyAx1lP85bmBfi5NgcExqa54uzalRKIMheqAZ1wmzy12zk+gZ9mLuUK5DGGrzftpmyr6DAtSkbxlODmejdFiDGP5IYn+5U/STCZ2YwjnQ24NVXx7TfcqytGoUMDzlHYzvU9NRKo9XNt1YCnCRD89KdRcD3F0l7O+Oe7ZRdGI3ueYwCDB6qUUwUJGiXds4EHfRj8VihCCNKxP8k+DxxTvLsa83UNQmSYN0FYx5HIBBS5vOUKShzpnvlvjZ811PHFYqvQr4/dBsenWqXDi5mtUO8P92qAa2mehHLe6MzZK0xn/REslLsoeRBzPmyiMZ4A0U0Eg0hW3OjvU3IedMxG3452W4B8/lZ/bEajNZmWPGFbxXcCAnz0+7oIoqS22SS/OHBAvX1nPDxpjWN0QdQusPcUJFW2IM4OLdzzsvSUToMi09aQuxr06iyiz19DAM1Y3WBkJXylLEEk40ng+CzcK+y3XYX6onLLFgwYLpJLXX4LKevrjNrCzZenmzcizaoUObKvjqUDJDkFEyWgxbc7kDaBPOFzyTZ+kxu220li6CBMP5voTdtSjcIs5N1r0ZvQntJWYWDOevs0dfSIwfDRChH6rahzvTExiLtF95yHB+48CuePau3aT5fD32sJejVsoSHathrh9837SbH8g3uyXdHui/+w9ojn3knaYweNsme5EfVO8eKT3ZA0eJtyDtfmFbQVtU/wHoiHL42i9EXlP0enwhDbEzJd1s97BGRXWpQYAci4eY7Hyv/q8kT53//Nz2ilxj87npE/lpb719CQR8r96L/wBoWH33d7MxzqrN4ijAUYU8f2b9rftRsj3C1ojpRx31dMMF8BFFc/4plGJZBM8U6QWIZc9/mkG0gL9HkrZRcuKwYXYJewxfRtvcjp3GOnoXC7MMsvYlsw4O1r9DykzwiT1+wfs+l60C5qS1pBFPccYIVltKKtZkSCkEvDWknOLTQHfKY6K2jMIr9jG9uScJO8HPj5ud6yHx0GdUhCu1D1mtG3lqfFk+Vwws9f+ECdN3Y9Z6S2jXKHspOKqaJXVaA87HjLhc+OZYuCED8q6EsrQZRTJ0oZTolOvXvUyRoR62XMUgwy4HW9nOxyifMLS2nP8bq57vZ99Y17elUVCltnFJipNjvJyK1pZGuGd8ghVoT7PdumWPIr+0DkFwhjsQIrPrDyFWxGzF5wtJex6zVGeN7FluL6Us+mX2prt6nevPqpJavHDZCmiMpqgpUUaFhe1iT5ym514q67tIVDMmOwdOs3y0TmqhR5kAs56LQDkUyXPCUHI4J06g9d3mos1dea0eumHQ/VUL+zIpTuQ2g8T8m079P4LNiyfpbqmSpEup10TQilptFmv7dnDw9Tps00jIqYtmajOkVK+rya5T9fWSGb4MSTuO7Y4hWjQFjs7u07Ww9F02+JtkISkMpn0Ze9uPhtSLoyXzDL8KOcAjzpzz7FICSgUPfJEeLWUew/sfetNhc3ZoQUnhdiJhdvxYf+OHXs2Zj/5sa8kuKqeWCU3Jv1IyVUSB4A6+HVPsG0LPLiHLczN+WW1yYAoZBPTastWWepFiBjT3bdC1YOgI4niRqkylQDg4Xq1TM+0o1ADo2U+FiPLjGXkw2XH+9T2al58PbiV1Pw50vikIu0BPtFVuvRGlffnKh8dhuxPAQ5CfACowXnMwm+K/KavhLcGJvfYxwLBC3DeTPdoHy9x5M/dJhAzlNjJmKSwKBSHV7h/igMpMGjg1ia6/8LIyBdbJ+X5UyoK6bXmSk35fCkfNfdK136OvJUxfPvBCtEi7yZhnHSa0TVPwfyzO8UtT/yzOrCC0ntfH1fhACMledbGlOiUk0W870VfvmpL1RvFoc/pxFdMO/hEv1Xm9zVrjQLjondxHUNPnlLKj2WIPWhPf7cLJ+pdyeelBb2TeielUPpaRp/h7PKliaKoW193rOer5dWQlaseohankAm2txhiyk2ZJM7SNOEFVInOulwI5uJSvR+BUGAkaxoMntKuJ6Vbe3o+fzBG1ZKW2Sp874v2h6gXcE/hv3iD64J3zF88oJy2AT97HLJS6PFCsbVjnGU4UCe28Nji0PlEEqstV7w5rNNtyuO9SeJaL1ZQuUNTZTbb0zeexzJ07TQVicUS3xO1Oa8dnGj2Ks/ZcGAsPXjIjzK78t5cT9Ouopqua7/2+ZxgvJeFuCxroVuaBMWZUSIir4SGyGDAOvljrSN1HnNqIXc5lKjejX6qK1uVDC6M+IoFIhLGaSOfFwTywDGvGkSDirLvCaBqjEla/3vMKUwfFVURL15wvCDZNlyV6XofG8MuPOdLjfPWtJd2Oqb8OzNPVpOH5ihN8OayJ5LlXhPpcPVEZ2qeiZbsGEsADf+qofVTLnj7py/Q2HlVjmRUz+5oI+cwjR9wRGo81dRrkeK/KFaioBYjbKCbztsBmFzGxJ/DfxqhT8YrIj/Y70XiaTE3TUTDe+8MiqND3OZU65PYoDiQ3Sp9vqoEFmkuKJCYGvBHuOjKyydt1r+cl0x2O3McZzpd1L36+hbxtnl0rvM3lQkF97uxchSjH0awZntW5nhrON5o0/KP4L4Tzm6t7BwNGnl8lmL6sf0WcuD9mfpMSR/5jbum5VMC61kt8lIOFWYfhUeIH2TJx96XNq49LQxNm6nxjjKiRpc+pQQEIFcSN0+cuzIje3Bz4d2xYnHbY3j9xMnO8XQlUC2AIsslIlyaxC5/l70HBdmQ6WHqbecd0g4VthE1rthefoKi5aDA8p5kfr3PyfECT9M8t+38HZHKvn67G5o05kerJ0UpmCNUsFszvMebruIJTz53V5WbK6RFGSV1df31nKPSsNYuiGUZ0ZF3eJiSmCsab40uTtmM3dxg54PbPkPRy/30kcJdMn31WIqHuH1JwirjhyQvGZdGCbs/t30MaVzd/eg7Opj0LDKsbvhdWR/K+nojfqIwK/qwOxPKI7WHz4mTvhP0yufmhU1OxC0UyKX5KxDmOVj62z8hdEZSdczWN9oHEl6n/sSbeojdK/ndJ2wI8FGFeQ2SR0+PI06XdDb8Q9yLP+/1JiBRea1udreeRbs0tD0FHu8oR3Bsnqg560+57ozZcp6dVD9+r+askZsW5fhaAuF7scPT/JJ5q/rQStznyzWOwkTV00BhSxOeQSb8cWGvY6Menc8mJrgeq6sMaak7e9jD0VF3MO56REk94XtuD9J6uexMtxC/O/ti7WHDsE3tpDwaA5zaJXkDv1qixuPlOLaKcASNglq+Ils73KIeTxT/wmhllxG01rfiPNnzqoMh0SsPjysSZQin7LrvOz1uqDcSevJ0NljKmUvpvdYqcAbp5GSPn2E/W8rofFFXeR2xlVacqMCp0KlCdHYW4twfSDcSc7ivmZDLzYdtTMB69VWQd/pYOJOZsc9WfbPUeZPkkCsuRCqNzfaeCuEU3dSJqaoKmnopAsVaS9PMfgfFrXA/gfyrnZCg+12en+ZtG8PMjEBt4FKeft1p6YvdsQOj59y0vUZBktpLGAd7yac55i8mkKYi+KR7zsS7ecqV71S6MZ6J85Tx7FWUyeT27js7b+t+fiHfml5ceXahTkAuPbLSuYyz3aLbXs+coOHA5yS7ZW8GJkA+XRVLtpeJLKosff5ibTevaSkERDa/PIqkx4xFjLJXBDiRrFbFaNwTb1QOpVCZ1iE537cbOFKq7zZ/SxRLxXwgNd4bE8c374oV5Gq/Uyy1eBaAoddTLnRRzb/WJnYPYaGnLhmxkO7gmKTcNQ5y8XLSqnhHxOgult6Wo1SS9dX6NF01xNnRx+p2nsixFnHSFgfmZwm3s8OB5Z3AXBEypVc0zif6+FtyG+EsUzH43i23htY+CvhtbaEuVO/zpBFiDIUkCggoHsDFMGsKNZxdxMrUHR36ID0mobLeQvfTDeOrZJ1MJMwN8C3YHRQrXVKQuoe6M7HObqvsjd9U3by75XzIc1qWBCLgupy3y7ydp7y5Yl2S7ag08X431/mLmTBorB+V/2SMY46+2gQjpEUr0/HssbPuEF5XOgDcOkYHsq6fG4sf/L7xfE+SccetWcoibisa4fwY3b26sw0xGBGVa01/uZOXi9rdw++Tql6vk3I7K25whbTLiZYPzkpL11v/oK04NiMjA/iundcaLnsnUoGKeU+rDgIJOwUrls7XuIl22CxWw86OwluKUtu3XzRcjlwRi+wuBE1mkGUyZ7JK6Q/XZ+ByVulT9F1lHrHH62SNR/onj69F1NXUUIEcqzPi2pAtvs9FIAeNarw8trC3zWBhQDhr/gJINehQters98FO1CTrpCBE1Kx+RfqpsqLNI1A+UYkVbz8KUEnhPfTqtjlDFl0tlkWFhgvcXBSXT9YoBVfLJi/88gO8iqN6lCc19qg50gT6JcMZVWgjhgjnHazJwuUaixzjleKh68aPzfSNjh1ZvyBtS0ZKTtaPnHPHKXRHA1/dCSLRWcS7fXqwjFlhdnQxKOKMVNfykuTlMt4OqAexifD9c6Wn3obcwW7ilF2keEiXjkvJ+u8QD+WOktWu0HwTd8sy+gtq56arBGZ7uuHrprnyQpaQXGokcj44722W1uzFTyVArhIU4W1CGg4ffWXrHrZUfmjGFRfr+Dmr+My717Ak1658lO5WC4ro4Hx+p/70Bwa2jS0GYj0ASTAEFaGmSqqQferQ4ghAetChLPCloYTQBIXzDQX4VF1XcPE0VX6tMl65b9SYGTlTIPhzfK09EK6Y4IvC4ce6bwTswBcYZ4cUy4nwzTtnnKcWu6OcrybL5B0J4py4Y1sW4AgY+pbJmc3jqXZBn2/ZSTSmnUoei3TgN/msUvjHiUzsZR+z8sh4cV1Wb7Wjlz6IetVAskIw4eBO8tl1nKsxmccP/bnMXvr3NfnvxjUF5vrcZTiPBIkF9pwSFmWLtrAJzmVfkwa2OxYNv0YZCZR1mtvj4Z7yiKZ7apbnE2Ift/Xok2rKRt4hJV7IcGoZb3Se+qj2JDNurXOQeZ2HyNXq2lKP0xyG04XqVJyw/u0Wzm+X58gu5EDD7xf0aI+kFrWdj8ctH+riI4CYtlPiXJxja7qMKmQgkO5ZRdavGbgcjuIqIYVDpDLOe/QHuXdGqDvV4Z5pxnrV5c9OeKrfDh+myReM9EsmslAtKgcjTt6631YkViqvzlBCquG2f3owZ3GIDs+gxmXBuV5sc3tpY45Pds2Sd/KWNIloHr//Pfy+p/1M8FW7b5k+lvJLYX9AQR/wEC7mJ95PUnyNxFXGOcfhaO1YwKj0vGPUHxDASYXhfFnnNPdQoHVC5qJc0tcdx96MuCLbktNFjYtAds0cj1iMfVB7Cw8lIktYPMm0HCA/tqpYFy5/dX4AcH6J2lkcrbn30UAn14AQnrIysG/Vgn1pL1UWKBtL8LykSznkPhrdLs/HMvS29zSfZ/gz4FYPLQMbWT+dzKt/qk9uwp9szYiR8t7r4BlhaRqVY8GPYic7313P6qfJA87iKNGhX42iGPVkaN17rgxcxoO4n2JTnB+yvf0UHUGQPk68iTJcIJ0g9oXKrstAyzypFpgnvkZjzbfiFTGtJzXU/up8oQ7MEB2g0jbSWz3AM0bj8IRT6h5R/OqoGDZFfPiojTRBODGnUbfZbgta/eaUcAfYNo1brvI9ccc3JEWunO+BWejfU4UHvcK17g3hlKt34GIZGsfv2tkc0m1vBCr0CM/3WOUVfGULo4jCLvXv2esGqvuVwg2DtU8d6TgOl5PKdJ/2+rvH+Skr1bkfyyeO8sVbFNqr3BJubWkucNrlNVtAfHHWnY4l+uJ0rwNBeN/MlON929ElFd8YUUyeBKrsgLCdpqkZNVCJtqTmagnJEqnii72K1UEvDdLt00nnr3hg8JkWdSxenqTq0dK0KAWNWe9I7tdXGEYW7g9fJ26Oxa28KUDd3+uQfu7IViERkOo8cW9QweUC68n7Fi1ubgi/m+zUtE9FZ5mU4JtO573l8JZFew561F75eD1TnHTWvFSCtESdZe3Pq049bQW1iblcM5RVb05iKKlwnbZ08664Flyc4R1PYr7K5zapnQ8oR2kMrPo7twq2vEneA1x0eLeR2H+5XEzasosYWJfAPz9Bzj/kq0oPfD6IpCvh1PaxjyXuseMeo1H45otIQpygviNnIiUX5hHt97Iyx2sjTXjs5+O1SEx9XcFPeJOGqkBlUbubFWL762nxhQ48916S7+E47YaGni8ioT+tC2zeupgpcoiGoy876FtTRsM0gmAoxaaycD4O0ZccaTpwuXXr1tVVckxbQYH44JetLylynq4vTbxeTkemu75nzOOVFogSJyJdnaICbbGcC7/hn4vhkbAuHC4sjal7NBEWwWuwuN6Of7/6PFk2R8O4U8pyMAF34pMKFtnZ2kjk6UgPoY4OCYF4JkHsVC/dnkCn7ka/cOt6sjv1xTj6g6VxfhHMWhLiMiWWlWDdFyg94E0t2yTW7tA7wO4VyXWK/bQR23mPwtquR5jOWYtN3Pw01ZiYpx6fpA4pp2/ZAclQ4lvDT+Tuhm2WNN6+u7dyyBG2rdGGgbs58XjPYy1YMyCgcHu7zrZn1V4Iia4tstYvyWSlx5UgPiFpN7HWuZoAZdmeVS2tKgNNlY6rB8I0HY3Fyiw752jMNW36vmTqcmHVZlCwng4u29zBy0aKLI6MP9XAchP/3MKpBZ37aA2V5sDfE+XK6GCS3N2KHaDJzcjyPbhClPhLL4OfPF/30W3WhlT7jmeqXD2YagirAd5xT/sdZPrICK5WcvFBhlzxAmonLfCT+SCrgWDISzouWhRcToFwO1SmVWXNGVUmd65tsXvTzgR3+7JlvnKm4r25qP7cyOnIyWR38faWXs+DQnksQFr+GtrdUCGecwGgf4mviH/VxWbx9iiJHteXiaR6IK14tBd5vMnSzn2UXPCp8ItZfbDHh+6zCTAKHYstvId7xdaWxxDnhL9izQIGx9bQO0nR9Oa5+sygggvOvEebpZPnLWoH97U0A1UxfSI3ctSTRLhiz6vayx/ee56xBA8OXNqps1M4x9RLUqrvuMhMmRTlJNJiq8VxSbacXjJQILZjedSp2GHfkqp25Hp1UPpw2+Xy6KpByO2YG4Idc9GrebSxo5DPFXb77WEMw4bjJaIjSu0d9bcas1kHJVozcsafA0oJOljgM8hpCO/pgVsjKLreTvnjHd0f4xyMZIwV85jutMpNozw0w12KKCxaxT4JGSF+m7uhy2UYPeY18UiFrybbM2r6INy92iGcuoL1hS6bBdlX+to282p18+AX7lKBHClvuOkeqZK9/2raH+Opr7YQku4PKTZ3/mQL73if68Hq7eEwkgGLOcU6yz1T9/eYG77sVZK3a8eW7wu5FERCJqdi2jFW+7RqP2Rk9GD0rX3u+ujQb+wlFfGo87sucnBnPDLOmSoZgaEc3yIkUMB7ujQKYiWqkemHuvhttTPSYZySviqLc0B8S75rDEzVhn6LfPNUqSnrOJIhLzHT1/t9ap8Mp9Et/gV6tAMIk5AIRYJNkTIWprUGR5v5GBWWELvOvRG2pZF4hbTgMweMeLb0unceNA02jkiNJd66gpyZL2dMhjDyKZLSvh24TczXjggsvYg3ffYyQTxAxGcNohnF7Y6UERPAAIn/XIaVK+/aboUXFpedhxcIqjdoCQkYveBv9ZarFTKFbHInCvdwEdYMycBRZYolPpbAlFpLt01Du+TCbPBQaxLfZ56pi0XZO1yDtBw6v3eL0+U7POJNJ3dUMczjLJfnq899xDSguB96jMXW+TFelQshuvzd7vJlhD4SYNY3DJvyS6dWXceYbA/7sK7VUhX3s14vZQ60aC7eHcDtFJGLxFvNe3gEHBgROU6EdRFNlBPOe+K63wCv/HcGOcLWsg00J1BjpXaxCb/vvEdpH9/DM1uK4Lx11R8xSpWzEDK1QoxdvypYusTbFemAu6JWQ6+raQJULVhDnU9fz7N8B+EwAirCL+FgBj/czlHQ5SC4VcdZF4yFoKd0sSvdliJJZD2C/szRaueW2pZ4JEZITpRSEd7QAZiuf8tzzuQUuQCN93tVuK3jm4ktAlJM0iOhJbwVi0UB75dDD+SkOvFD3fWHCIA+FRuREXTD5vZPCh6KPh/ct5CXHUy1ns+t3RRKcDct1nIunyTQo2wMkot7utBQpcmltBu+IR2cJGIfGLXqf4QqsYqGcmo42oUeNeaLICfs3rdpi7iVNsqQOl2zh7EnO64JBkqPVuswqSLFfD1eK/0AGlDw71sZoiW9QrHoyny8r81vpQ2W5D88fZN5p80BX7tjQHVWrQgp/u1FOpI9ATLr06HEJ9PwckRJOwUadyrVOztaZSPzxvNMjxyaOtFNUPWQ6oislwPMbO6NkNpaOmg1S6Yiql3maDexa6wUvT92jMegJMz9qDj6/q3gNE04L0e74SJbfUqUh6EJVU8JF/qR3VlC36WxkHTtJCqkXrSjSboJrYgu5v3GFCNjGWYZksDbdVfGzdC6p9pIgjQdb3g7cUf8u0yBwvMu3hHvjnbHOVeNmeqzTZHMzTYKlFd3HnfFzgVdWOc2nm/XhH6Mnw3OIRfuTNUFEHy0th2xdapQ07K2rcDOs1rfTsk4UP/aZutR+Trjmfakqw5Jc8UqAqDJ6ZunVxEjLXC7dfdygT/wzojAbldBXuKQ0ojaUW6pkgui/3qaFVMzryOZqUgM3uSibQBFRz3EFvK9rqqeY2+G7BPVaHqFlPv+vHyMg+ad6fHVZmpmby/txkLk1KN88rCaccu5Q7PY0i09rsKPM33HNi6hPELPfOKLAWKLEqOd3asCqf6vdgKcKhEnCeTeU3Gg6X2a2ERccKjJu3BqzXjOsiBQrvY6UAW4u8D/xZt8/Qik/sxB7uRp6gZqFGRjIKcrB5/weekb+wCpTrp54q0uLF/0EWuSuIV336lHpk3WliLt7OatOJgmMPTWcLRdcF3q9h1foB1P3m8Unx2aNBqxRGjdlll0MvKX4jrTzpOooDD7JNU6fqwkYJpeyCkJKtuxPH+ge2yPDBbRrUXVqRd7tRfPLt00HvYwdy8bMdp2/6V6PhvhUSw3ieUU4MX6s8KQnBbEht2o5Scsx+uJHfBGYyeY4sekBG2HQ2lt9LiNojV3u3R09tHvhOOHHjX6f1nYS3tHH6Gwg8hzkZBGq8SZQ1UxeefOxZCLXm260O43A61mJ+16eF3aCzf5XSnyCV09cAZDYhJ9XOdGj5eKYjVyH4tmbwsrWwK5F57Jh1S8gQtdK68WLFHq3CODJvgpQ8qV/IutK7vKYQaF0AXcVIf++U8bhQRva41bjRay5J24J8SlZY7EF9T0dlgdpRHe6jMUrm2d+J98/Ea1jVel9nQiYOBcY0K9x5sUh9D6jX9tUSbx6gD8yQB37Qc1HlaHTK+CAcMsyhRe1LNZJwozJZcPK8dUPJwivnxFTp+TulqFHtMSYjOSFgt5IK5wKvkYeZeeKPKHTEWlmwczitc7lKM/YUdXr0WD35XOak6gsH90NUTaj23X/eWI7d2cWZaC17B156pjpsd7nRAEnEItuSL7wDD7r53fOJsZZ8LvNx7bkem8KLAlNzCTVhR5WLDXfdjvEsCyzdelmfp9EdH9hKMsYeKIYQwSbiXRlk2gdx4EvA66HJld0HxO17e3nO/3Gx4gqmJbd6ZWR+510Ni5Yp4TYBcHBklpXiIuiKH4dgd9tLGQl0AVd5+bw1CUYTl1QGqwsQwQSGVBO5jbsRK6eJzTuUKBcTDuUOVu8iTQqDZ2zaQtEHtXplxn+JGAiumChYdcoFp3DPWwe3rCCGOB0CSZfd8ZYs+8MuI2Orf4iIJan1VW2+rB0yfzNdU4t7k1PvH11wUuHAQgXThY9vQub3pvHMa2tmyZXEh7DgUwnuF11i2bQFgsHR9E0ByRpnQWmNBXGSAFnjH56nv437Ee2W82N3a13f02h4cPXMeYFvgQaBvAd5fABgNXjFvT6ZjqqyMEpcJokWRG1Q/pa/iRv6JIi8fioA4tUVM1PSkNEpeJDwkpi927Rr9gxid7ndjf5Y7h67Qc0r3QdHQ/SXC7RYoEN53r+L5LrJYWrNpLaHbkP8DD1PLx/fx8LWNafchTlV1ljEyhSe/FQ9ukhIhaWeuEB6OgNAx79VKtFNOqBJej2pM4pMUX6m+0IkaYRwkdiQJ2MSsRrd4nvCwavlwV4apnDptRV6TTSS5+ePdd6fOhVgL6nbjpT0fhxVM8uOT4+Y6NHhqMasaWDoMYyKWnLFs5Kplv7C44CmttsbsHcuXyGJ7e3fw+9Ip1Kiwv3QVhIC5HnXrHnn+qLMr0FaoStXb5lKty/P1ZugOzgESPBHvsyZc8I4SDtZgsHoEs8ds4D3vUq4D4FwNItg447JfhV3d1vsqaKGjl9fbqPNs/ojLLWMfpsZYZRr9z4KEABMWsaozxZD/cfT298V6NIB15mmNop8KuZ/K4sobBM5RCt/L88W4b64XRlxEWrEIBlBaZxkUWJrU110gSthMmyRJke6v5Tv6mbxG0uXxuYsFGvpGS5tJBIaP1GU8lrCtyJeseLXG4czuRVzJ1exc97kmQB7TEm9QuOoWJR62uWTRcnqNzx1vx4rscjavVyEeTEZTWKsdg5h6/qWtkI+NLtVG5WhmSVCksvbPM8a0oKO4Bbqfuaj2XtvAsfh/xEsfHhVpHkmO8XHdJnFwGTLmd21ccmWiUT2SRnfSf9w1ptH4wc+oVByksPZyyZ3c7ssO5p75vJRgz9+oe4ozjgQaZAvv75dMG7m8nolcH4QpDRY5phCmHR1fU2G8tJgg30HnK4TUcXt/aQtoJdzVPZSRAiU1IX0HEWjRs8xmK1eN6wCd/efLqHCRoXQM4VnQt8HQfXZiwGmQ8xZjsQiURwtugOv0mxuW5RK/tlpGu95YwBslx1xPgYc33dahyGd7B59PG2hbr99CMFEqO7Ef5WAsEUgic5PR3JsOPo1s+SY0Xz1JtpB9e7jOvLqXGZeBF3rPVijDnGBk38nxtP/flrb5QbSPaBIFu0LL5spl9vBytCuaa0Af/XR6se7Q05yecNlsqJy/nRaU9CTTDjOZwCVmYQz7aY3J34si42/aBmF86iT/i8jFpOktIROeII5FjBssUMyOcL8VTUtsb1uxt3EVKY5xlnjZs+VYcnUieYojZ/r7z7MvbxDVfO+0jC7mTj9FacNLnm0V6nniE3JqzlwMeW8mUHwDdg9EFx5BZOY/2Fu8scIb9qxKj2v3xsTcWeOt6Z8n0FbcxDQ5C62SfYIaWzNY88R/8YvpSnhO5fy1ACnJle2lzOcxcabNvKMJcRXbVcdj2TaCBsyLluwSxTt9i5mIS0Yfq4KxpXD6CAu8oG1KqBMMx1Nza7MbIYhlhvdCd1jiNkZZzbRnC55+jg2XqbWIVNrZvlwi9LnjnIgspSAdSolE2vnFgDpJOWcJuEl4SoWZXfsxowYEHLtUVppJq9bfTnWLcTyoWjqGPt71qoYrBI+/s/aTLksvxBs5OokQg8Cta44x2JfqEtGSTEkHmpY3Otg2n0Kf9EX8Lp0+3gEtwufs2EzTOpl6LWGqRZyg0jbW1nULSlPeIRRmWGuIJKgcvfdi5HfEa/FxU8mor+C1tjeEJdp4LQDYuNZJX1Jp7x6jhbE9w27e8ApLrqVSsrgYtEyFsn5NKT3mGmgL7nrMtu2HHp9+xCn4s218qx5GjYpd+tPTAQm2gl8k8F2lr0zEPVFMKmH5Y+zCiZa4zy9vYknTW+Y5KNP8LtNwQAO3Bk8lQ1qSQcqs+NY6G3O3pZ1/jS6LeajJ6xKvsN0kFqTuOrN5mUMrx3RNssSUph/A9H4oIyjRHbl4vc26oYJ+OxM9Ta2nIHk3grkkoX9DbJ9xZrDerrZZG56p9//qNJ7dTo7XOq+YYlRIkyhelZCUWzB/Kp4DkbLklAIuHkYtYD7ywVbm4kfkxv5fx1krcDaowiHw80tE4jQNUOAVOxXk7cE0518LR7AifrC0ubKDshUbZt7BYxExXrsLNUNzmoIm127skoB8f905zOCYrJEy97Z8hB0a3qqXxqjy6p9NjG5hXk8VnX1PPEm9uwcG/Wm397FTB28BxIE94seVN27ZVpXpOaBFiWTgqcbU9ahQ5G1warp2Yyfwpg8GiLTm1/V2WpcnncdQjQzyDU2yF7Y5CqoSBt/xq1I9owCeDm7NIT4t7tYZfnqszvfavr5fJE42i3YwfzpTdG3Ak7TarnfXo8RL3nW6IA3X3ZB2/DPKVO5uve9n6IUNqoxPhHT4/5j3C3OjU+/6i1i1sdUj56RGz3+oJIZq25o22orUWyM+dDhUmNwsdOSC2PiWnKcSnqY0nxx87H9eUOoi0CCkwW+Jyw/XMi+A6DeY3NITzms6SCrFzNMV3Xwqlhco/7ssPyHR2cDjWszkY6RStYYW0JO/XLSP4P1MpS1RM2D/s2WKjQrjPtjDO0judS35GQ3ai4vQEL2oyV+vbJY5l0oFd1wvc+McDU+XYgWhjEjOJ+bdYxJzOgxkrLgYqo8pHPuZxlZHrwUlGHPSeOdqroPBeZH3vzlEyXW4mZdXjedvgdlz0GC4gQB5BDmHdLN85uZnozT2v2tOciThgfOCU8+WAnxGdaxxEUhsvQ6j9tWa7bNai17pKWs52I5/KA95ppzxXjkAy7OY8htGXQaivdDgVmfy8bSuER+7XTLGrrzCONRptkUMUVvE32qx07yLiRPsXOuMa6WYo0a+dze7YXJZVL2St4rxFanFKpbfZsammz05yOTeauT20bKrKI8b5TK7+3NbWt+m+ZLek5dxqXT930mNtFxYAR3cxwCWWRlBFhawTn8uJw5gt96SFYlJwui82VGveRZ4U2bF0qWnrXPUzkqRqovCbIf9XKob0uaeoJtyp3Y+GDqQTuyjSfZDe+pbZssYHXTibPDYjRTGuUlJL391Q0bwcY2v2AuZ6n6Zyi9s96LOe+aw34904PlLJE4WSKmeOtaY9E9T8aJoc67KbItcmv+5gixnB8OIbo8XO3pxMtQZIU/7rdOerWbWdfLTtUQhA1Rdicj9eixFuZi/6zrdG9k2nyVdta6i9PU5kTyY8493PyScYt6qyP+zsi2H6PF0vWMaRxy9VpeAXjsFHjmyX4vA5WkQdsjpozHxdLisjtXinPfhxp+1klcKnt/14OHFSrfHcU5Gp93EI3Jv4B+X5iZDhkqmZRvtkUZIwUiTu1DmOYWSOc1/NoV7tLgiwxnPppvUdOGRtn+oJxUxldNxWLZVrPmQvX2vuaP8UhjocEGF2uGyLsKaUP7fezqdsc6zC1Y9Yxuy1bndfDRD/rPrO3UM8tr5JHABN9SvwSAGVXFG/H0vKa+HrCdr/8lgHyNWVgdTQgBFmiYE31x5JZpqyTpjL+3rko5DiJgXO6IAaeZSIFwkeW4pLVn5U8kgG4mgPTh2vfouWVCDDh8kqiu4BhxZGncr1Wuez/OaAWPr2ktLHW3dZDTpeRFiXYhhfwOH2p7UMUIQCqDkC7pVYZJI3FVjJZstg5bKVdy3lAB+ov3IkUqA2Z2qTcXa9rKqYtdurXtrrrjGgR24LXx+edRPzUDn9KLHcytE11oyVjYiP49zJVyBc/mniy8vJ9CgpS6X1DzuSQ3ci85MxsnA/Mi71j7cn6kZ6Hb4DVOwmvdM1jA0/8cC/asKN8T6KjNipENwjN5IAs+0r67j4hovp1FANHlcbACYItbpr3yV5KI8gFHqYdHvrnTS9/3jG4kVIHnh1stAA3I/g8tPimJ6yOYNwubFEhjTxI5vfxc6mfTS5jN2ZLoQt+Har1NLZTq2o8eoDDmf+dibeafQIpYtj9ZemjDmb9Z7t1COb5eHmiQcqyM9Oh0eNZ7KLxrbE6OUUvfoYbmH7EdMRrfBHP0pfanQ5wqteP3Yr9agSlgUq4z8IoGNwoHqgakPxTVn1GC7lzgEKXQf9clRt80L9nPAcPf53GyoBzDSNIYDMZ6SiZRfrvQUuvbdBrPVyAUfiV4PxJvtGO9mN/R3nLHSRB057x9FbeZRw048Cnw19lOz1a2/xSnz1vRCu2FmnUzW+Xp389QtXjqYIEErgJiEJIll5ItabXh0PEKtvlxpnQpGHPFAw2DfoZOeNTvMC10fnJf7qjdHV9y1WqvKWV7FyeS90Q4IKTd6gXMXMYJDXB0PkuRakV1aV1xErJrkXA2gdcSd7fKirctYpfYZvf5xVi1gTpetu8Q/jma2R0SF0luMgVEUisr2VlKTfBVBGyb2bxVVZ8MX5ieYFvZXCPodFTA96j0tVNkuQIOFIrsJFUykmGPl8bq6wkq2Vp4c98pg7nX4xB5WEHrnyfA4PywaMh0DX1ZhYa7KH8Yn0Xe7S05W8EI+MLYNC3pRGWm3dBCzCcLvG2pOYYqe7aWrdhJeLVGd3UCfrWUi3S+ni9f2mIsjOtl2HSNVmACpbrBdnzgBW50j9FjDXdGXNrSglYkAIH0qyH8nyNgvhQzSFzjXwPDy7cK8I0RzGzpoUjSsnM3agwxzWNjKmfGiBrihv15HeJVnbvaEKLI18FeedahU1N1fJfcMI/U7Cnbnsu5yhCmXL1SfvML7OjuyIGn2z7TT5Bj8VfAaWfFOyrOZUzLb/zOVUt08ZQWXBX3Qkx8VXPwOJzBOxPXK41RcwaPPBzbDlLmT40O9ot21zRi75sj4pbihr0OpeiZGTGaNjvYrA2XFClNKjV8kVTt2l22yZhtr6lvbuahJh+DqUq6qX117/kuZA6CJ667tobvgx97KBNqN4Vl9b5tRQxUPzYQqP8rXMIDEP2fDtkatOmp1K5C0XtmOdi8YkwKper2R51vvoeQlaN/O1lA4L0HkXaWTdA6XOkQF51/E7EPfcaRmWYemh77bjSIC1vJVjX/FHxULEtKfFGRWCaDxW1S4Rk+vJ77kZMqiMSbqLzpg0gECnTJ5qX8ZZgunoHPZ4J+QYK9XzueLX5mqCaUq65ATB1BuN6klMpukDnKyvc9uEe2Lp2TCXHymiMhBWLRadLrGsB98DkGnmPO+ocrdNG6PDKx7f3TofU5TKqbOkzEUQ7y/g1Q2hjeiaoLpyYb6XfGWX9H13F6+98tzkfmJWhGlKcWNVdIK1BFMY5GAKBxfnpaiiBPvVe+LWFs9YNQmVLsoJt9U7x62HvsW+qY6espEFr5I1H11mjN2u5NG3iTTd2jxzLbHpnTmrfDUbK8WixUE1jmPe8zZE/QDP/e24eLrSF/OW4EPpHZHJVKSPSufPHE6Y5we+jQptz6uFsy4sfBx4KE/S+uCYx93y2ForV5IhWK6O5w0YyfEwM/T+dyDBwxpBn8Wkwq0g79UIz8W5oR3VI+pXGonBCLWFbjrjp1V9xPYt86YVvF/5pah4I7w5uVT38OPlcGWJhLqRzZ7ozybtOw3mPRg/KNDiY/ULVnGvrZ2zYTV98oBg8sWKTPJqr6OmM2eWKFOqb3fWueWMVoAz57MSaXTl2ki9ZyyUrvgjBANhR4RmlpyU4xtU6jiEBA+5jdYJnFIOUHNLa7W62bfGM4e+cGEuccmezGtT4VrSTaKfVxDu7nx0Vn2m3e33AiN6Lg4fRUJCeY7P6DK4r0cGArcuZd4dU1T12OngUFUQyAxgtBm/PUTFJazurOpHFm6Kta9LA6KC1FlHlvrm9a0VfOMpNH40FuvxiXG3WjRvHJmMVWJiQ4euz+rRt1RPXZtOacInRMTsbnu1e5sdipF1BzFoZq6OH/rkgpBtH905tKmxGGvXzVPz/ljW4u+ql8dodYwLgTyx2etNDcymtcTFqRFoZCUAIzPTE24jtlJEeMPrS1+5+nDyXeF9EKkS+5p8HuDSTrb86Dnwg8kSc6OWHYEtLga3J5aG5+hnuZ3m6RbM+dGMbRWWZ4TTtY5ytEtEz5I7uHd6+Q7kpof3PM5Kzf2Xll6Z1E1Kh7Mq86YtqhCA3zyeuJtLt9KyPCnHxHsb76Wrj6545jJZ0hpxgBleNMOWHyG8bO08lWqX9bTEUqEj/Oeat6POAYkx3OWpxO+w2QZYWnIMx0yT8gpZmIn73goO4m8yBHu8/dwPH2JyOuaM0v3F0icMclrVQyACv5dbDhCj1tJKwVzVwE55mC3XQzirmnpmWDFHi9J7aCT+4KnBG1xnXJ2B/vctuE91ZVeU3WimuZe8esm/BmQIz7Cd6NFWV7pH7e6qn+XKE6eobWJ4Tid11s8yktLKhuM9M68hqZneMAeE56UomJooHsvlnLyUD0azdhZP+3CYaYvdWXyf0BVVdcVHbm9vlhB9BI0WZ3qLvxtS55aoUfXKnM++TvFq1VHvhBoj2gSOS2Wn2nupeEDxo9OQSZQ87uN6CDWjKhzVcSZEdLOTcBZlKf2JNHvoaokcbafqlItkvHLVK5vjtqqQh3gbCzZ3S1PRrLaPvgY+dGl/VYneAC80X+fO/DzrfoGy/ivKB05cxqhoHhcXp0Zb7h3vcvd2ZjKu7mPeQhSIb8l/0/IItzGxiJE8CpmqNcmsZXY9p3H/RZYDAo2ZSMEJ7v3WIoIErJLzFK/Ih05ZG4/Vbagjc+8QMs2amN6uGm6IdeAkIT8wvuNdYd93yGsTOhjpj+IhJ9EoUYM/u7A07H7GBLE8NV56H0v1+Y7/UyHqx4dBUuLDVg/TRTq3DcOkt0ayhO267uJ4DdDiZHirfJWkUtWsHShJWli+bbuQoaFhmd83qkZ9+8HjFT3h4iApNe6hr9WBbJWTKABCSwnkvqIU3UTVdrQnIWdnqJkF8noeS2Ic6bFsHmG1hgW1xeAmVbqVuqtP8jqbL91SUq1tbqstRSnacHeSfZ6hvU/xIbKtlZxAKiL3e9IzRGRDsTUBKWY+Bakt3PFIjK1mt41El5N8btzpgMqjlntCzxA+PFpDRqVmwsL29X0XtB2zx0Ujhq/XcvgJ1xW9J4PEzZMTDkccp6t8X0LZc7qw25pwNz2KoRE7I73sYyxlLfpGhpMfXLPoOf9HvPNSXAnLGkITcRsTQeDscpn4/jsKsUU1gj39e8965ZewuTtwc3XodoDJEU3h7WOy8hM++GA8wlW0MZbNL9GZIwf3IQsGWCzRqyagu4QIq+HmZMdEz5rPA6II+Ia5RPJE1yVbzykvji6cPouhpkvKQ47LKve+GqbeW2x5EojeLOLXMhy8p6EaJ3z8vECCgO6oxY52BO7RUqgvBfA04aRkV8xSsQsvo3HEair5pSwPHIB85pjWY+rCkmU09140/l4hzoepHdxE7RKmREKpEmJnvGKe1KS+4Mlm4z6Qg9wdh9xL9FKeymvHMoOoQnv/0DF+Up1r86uAhQsHuo0zzs4+FyvaseoDw0V5L8Oina1YEirww7Bylsa56Nzi2j1tBbLyOlru9ReDnW4RM0S7ah+r5b6zFwh3WhWzCA2bI6CvoZqPcaXzxqazpaXmXpII7XAuiDkG5GkF+kbKf0VUO/U1iNIUTYqY+FDDFUVr24KjVbKPUlIsKpFNu0Va/ogkJ8WIU48StdOtbOQ0cmCnb/xldThygzBdpkIsHdbUEF3KXGEY+tmwDtqFvUvK+EyNoEcqOeZ67zFZ+CXR7oyErH7lIF0i/kT/IwfStL5E7kc71QRdZxnrGs74gol0F7bzdOGXTmphIUiM5H7KpHcJZcBKdgTSzy04BXJjHTSHrYxm+/Ro8CuUD0kuX0s17thIhOZub68QHb7mMukMIEm1wsiPAFjttcWJDvXx+SaLVQ2fZXzplY0VHzmSmERt2UjxhLCXC6jFm0wKTIUgorm0jzlftjv2L7ILem+HXHVQ4ExcYGCeVJCcZfa/KfRbuF+yWPoF8NZltk99SQi4MB4iIOZECAT2qk89tQ/jEiZTOF27F2E3VWBaWFCmsB95awR4+xsaH7ppjQnJvM/lu9eeTLQEpWtwQHNzEloz2cF7bPmvdq2msFWtDD7UR2mCUMMp4o7SmHTmotWLnkhxxQXkuvaUhr5Nsw9uMjp61MWzHIDOFx79IIz7/SPqgxIeQiqqyLPOOQOV8He3lrSpgrfN5WZLRhIxFqiqiXSKcjNWMN+QP02bZZCo6L+alSDte+ljtAnKNc9/546LM/DApvS0I9D4AFltnf6YZLVNgvJTWSZQ58EGrlkNLckX9GQKs4d2Hs3mtierc/QtRt4UblJY2ZYIzuOcF/OpKKvjHC3f8xtiA0jGEark1h/yHJB3TlkDonLrvTLkqaZ6h/pkXkQ9XEX90LIkJD6ih85vjX+xYoyZvEL7vV2DkNdkGm4xsJII3VG+hSh+JfJdE/EH9q3QU/Vkb6T8aS/9TtArIzC4E4lDFW3Jdh01ycufFkFczVBXy1kKJFAii9xYQ2+0LcLGSeQ9RV5iLXT7yivJleDgAcDxEniS2180pFZL1G140jVuMv9ofU1UoztYSit781nel3CedZAF2yVl3IyaC4X9vkZz4x6vMA0hWZXgR6RzMoWg4CV43ZKQ1B1tI3Pcw0WHlmBWjGNqtDk891Zfs9LjUEXrejh9zT5Gqf8HCED3v9E/xrzZzTIMl43Odsq+ySfrOskg1PmFmeTeVz1dSe7CjVZ0UjZiPLJjo8GlfOpYea7aihb77gDJ9ZkwTTK/3aSjolBRvqspRBebS3nIMQhTxsmuyo7BRiWTDa/H+Gbh5Zzl4uHsZnC1jhssTfCL50YyGqjuW0IeVvepekjMVMFzGjH/6Ot85nPkw0rRA7z+1Eej3crLM6qW+haavDF4GWozuJXREbKKV3n/pdfwXz/Sfcnsekv+PWDww/m//lvprxEWf0H2m7kwxtDDN8T7cM8SmZ9zJlTPG3Tqek28sbzENJzjMwrlKCC7WhADankKIP3UD8SIrr947pO7Dp9i0X+IeMFm110KOGvwJfprpce8VvAKaUf0IXqFg3xW93YIAexSqvw2Y/DzdVqgk7Jm9D20DuLnRymj4VWazLFawxgzy51RkclXQvxHnHNzi1aK1CgW2TWJEUzD4Urhr348c4dVw+IfYbl/mFqdVQk3DaXonK90og/OiHrWchmtBXKicllMBt9FRvPPTz2cgxjQs6xJoIAJxJ2FGvXXa6DDLzrkLIX0w+cAKQnstMIlWT3PXf9oKopqLxrwWlRs/udvQX4nNebkN+dUHuQaduw2sbAzE+Ov/0APdUlH76d1U7dToz+9T/RfWucU80v9rx4u+ovPg9WnSLrLPwrfdjQWPSChMrg8sHT7acG4fY0zMr++hT/YXldj9RhL1WmkF7Pio43YJm00SHd5j7fHjgTzKxIUBb20BwnbzAm4+dlS1DvdjoTD810Nw6k7g75uZ6wW18GY2/gwq3Klhcybm1cwnT4vG76aaLCkyFk1vKfDAUm3N2HO4dEZrL8dS2W+JzXTvNU3mH6zlqhjUijMiQylYlLgCKhr9YmYG0Hv5rMa3ZaJXkTnJKu6mYOaoszCAr6JldhN/i+r//WvoJjkjtrXrwSbp6sx897J1fh7zxji94sv9c/l3CwKW6HmFYgV1/ucPsezC8bjeyPea/1Gw32dCnBjnxVumpNVjTv+1kGJ/A3Di3/t/+qdhsSWBMUtChZ/76N9VXYU/b3uwvINsXlgzHlGMxpJabvoaqh3urK1MJiC7AWwL/ERq+tX2027arABp48Qj/a7Clhz+1D165cmCyO9yCdrABdW48XH6mP7DMbicLPR0r9Y2pK824Q48+Eo5i6Vn/YQzN912YLqihti7vVbzA99dYNc/G0ZZju28B9BQ031k+nm4JndjBvhDMVWNFhwUseuvTji/NffmWvGkjHAzVVg8/Q1Fnr3k9GfxUaHvkQvti/Muhp+2qT94ykaT8aKHdJfiGpx86Vr/8Hz7mSzx7ZpqcU85dJ1wxC4NhxPrkl2MzdjaoljA4ufpIp6MOL+/nAXfVraVFj04GiF1QhzetaJ9cFqPD6vyITcGT/ELYO2W87XhzYtz0yvVRFNi5+F/nQ8MlPwfvH0Sg81+uMnvt+9cl45KEOxvmxE4xuORbM6KOqfvg13tK1aQXdsSAN7wHDuh3wkRtPCK+Yenti1yDkTjyHwrXBnf/55/NIrhuv81tiD9k3F1+/NG6Gkb/Do/Yqu9/ex8M8PdFl0CSYdNSVcu4j+87uMx2WNPrE2k/s4lOj607YausvuF9Mr/fB2/fFaRX0IlAXWL+P9Y7duFLzJpD/+E/DFL6qroT9RdfG3Cx8Z0SDeI4L7+sHnRxeWIM6NT+57dMunjfCmsHODAsvpjqFefbAGfRnv2c5olgnVZ9tDjeMjCV722mAslmaEa/vGdjN/x1OThTIcfbdZ9LFSUSm4ylDXssrs89MKxM7BMuSnTCR7KuN8moPRVw+vQmVhbRXVmN4PmXqO4h3ZP95yxRHooGr1W//L34peOL/BBYvKH2/io6bfehDDFLOL/rGqNn1O+O/8iblq2mrReyHQ7eXOSAFmMF9+aQiXp7RnxLmKvDukL6z+1nLLtPF95VT5dcvDcI4ae16GoNqUoTaqBzu6k2Dx80LzbGoEVU2YpzplN9fxG6AK3yI2nM8uFzaKlqpimOE/fYL6+BvUCDFqEPu+9QLOxCtGS7wTY/rIBoVcEsB22+KP93EmWRIG+b5LmH481cHorjaJ2rXaREgpKf/p/3Z+3Oj7vDl03FltUzRmGxnzLlcD5qymDMxMIOysZquYpTuvQQRTh4rn8zse5qeSQVUpDvnTj8OOlBLUzf6CI+1iLBNFZP/xBzyaj2veh22jQNP2FjsOzT2YmOzrINhuzPS6YfF0fsUUIql94m2EUmPp5xpKq/7KTLtSEIsfGxutPhe6+Dlk0HmnS/DweU52Lb4avelE/j8/l2mvupvKxAiR9sMSMeM5DsQpa2Zw7hsLyyO9G8Nej87I2Mc6ldZFY4zEVaI//0t06yyhCYfiGx7WvMHrbPYCKfzKNvzxP4pQwcfF7ylul0ZM/w0hUhY/AAcoUhKvfCMXtl8//Y/fRFVfzY/OLMC5FA5LNw/Of396cRXkDV1txU0w6ZqCYbTllgVUO/x3nuVJLzD/hVo1vk6fHi5OWJJo6U8jHlcjOidIxPIs1Hx+rO0RVpbdYgjkT9zf+q2NHqEjMq96Jzk/2d8HCJfHQPzfZjRmWm4f0BfRQMgs/mLqYjlFu4d7YRfeXivebpURaXs4k9O6Hzi1vHkFcqeuGPZPc8XJ9yj8e20ImlvxT5vZEHtxjFePdEZ03eYRstV6x8xT9DLm1epUouf+FBIcv1veqY8fhUA9zXjtXE9/vL2Epf7QHqslooPVZ+DeZ535KKe8/ZW7VFn4FbsO9y3/NQmPAKnnGAuX8BKMvdxEkPA8W+YDTrW5H9ozKv2dScJFrwyJcOyVqpIdvNKPu465ZvCfflgmr13fX/YSvJXcpsJ913WLn1+eSTNXzGsNkc/KqVhBIPYZnpPM6Lgo7SJ4P/2aWA+GOLtDo8PvADsWVKGLmIgyGZmjJWOxWyXB5NpIgYA8HniV4NSYk4VzpmfbIwb5zfFc4/wMRVTNVPnrHxd6GSHdXXssZhZG0/g7pmr4SCzaKkWfc7/j6R8/IJbzfRiCkh5H+PN7i7+uxp1Tn8G7rEPmBNt1J8rj8/xPL2j3XuPS09A0dNU7g/j99xuM+zovQL0XCQuxqnNxmccgUYlLti+uQ8Askdagn+hASHpJ0Wxr8Qr95fPFZVrVLLwQ7p004anF24CHOHJV9Sf5zPyKPKe9lo1I94cjM6O9UW1qxQb0M9uAGJVuVfOfn7Ci7EN29lAhvrYzEzbrq8ms+S52/Dqnq388U3dHBQ2g1Bks8YW3f3pwn1OMDG29X3jGHs3Xo1sjw28wSUN5l/POfNjoURuIKuOuC8bR3enqprjldBzfW774naWeyQ4Jsu+94ms7suGvvvpObSAelLcMYWNiLBy3TcVTOz9AdixbEjbJPZ+65nX+04/EWPJfSjI0IxMXV/L84x+g0BQ6PB7ZwXha3ShEqQ160XvMvdbrmBbutVF0176zP143gVKnkL9ox+xiZXfzwuvQMl/485v5G5WiDu8jzxnRMz2e/q6fXTYN/lY7NZ9/31xD6uteMa3NHmg+HW/zdpk34cmbd7G4xrcS0vvwYlrZJfk/Hrj4XVxA9QuKAzaUf/Vr/aknYxKKVfuPh47lzokXnpjBn56wn/wZzFJwVOB48k2202TSUbdUGmBWF9OVIFXVfNgcRvj3eQyhN4YP4gWoerkloRD3FY+uw21Lot8ZfzKL8vl6jjBk9guT4NS0Bqv03wyVVCI6JUedC0qs+Wp6SSv6PkU7YxxfNxnlfGeRPz4gjVaKUVv7NXObtjeGMjGwylfiju1Zmedse31HgPtrhjtBSPlyP0xIrNIm+hjivM8zJ4JDrAxM14/bfNwoWgZkaCayz/3kjw9gVOB3xY7JseTcGm8rFGDXJId53QZ/eu5PXzE7tnbBtPBlWOYtWNjrkHdh3M0QsKHEnHc7xB5hAsDYN8WPg5AEs+9XmtJOvo6RL+gBF7X3+09vEG1e+8H4Og0Udaq6JqbhSZzfc+sNuM+zv3yv+nNi1fDq7IyuKlnrJOXXhWjRP2zhMQYXyCkE0p8vJJgyAY2nUgpReFo/iDa3VTXR3c/cZseiJQ7tamOOnp4PZ9KEdP07oapNTqWvHuzDnVmzS/70u6zMIkT//N7UJPwAfzxio38+XU+MolHHa/VgYWZP+fhMXg8Vy8OBaPbbMCa3ICOKfhohafLtOPMtkvzFP9FJMVX84jctbHQhoPxiSHm/C9fwz69anhMGTK1QgqLnac/++APrX5X/V5/oSgs2aOkPB9UqNPGPB+SSuiykleLxTYWAlsE7ld4RzJuox4fto6uG/NKUy8bkgVjDozS4ueUr9Es/V2bvPzyfj45FwTwGmGkf2+TjzqEJ6t11TkesKtV4SJmPXjv/xMhevsTTB6EStuHqyDR761XCX3wt/ol5Pe/RXNRrFz3lT0+MQ7zu/ubRatwrGZaWfJ+PTbE8aTAx2KEJ9Pgfn1rmTXjLKqOafrN7hqk0Hfb81FPAkU0PsMyvKOrzVz6T5/38/7NRsPmfNwoaV9lQiLwprodzUEAtbEK6St41GsP1DwD50shMmAw035+PEiJXYgzftnk+q/x+g23pPBmGj8rZJx9NSB8oxfJYvfmsgWSiVXvfE+unCvnvvd3WkHxzFUP6NLvuix8SUn/5CouHdVN19/0pUbXd98TIep9Xk1tFAC58gdjNJ8qn8qWfIRMvH+afftD1oDYp+nzdIzGd45gPxOoTdI69jm7N6VdNuy99ozI53xieo2s3RfevgJYn6uH291RR3fm7WRV65DIPoV/Fns8LQNjeXHK4zrybX9JRgFd9/LFgW/2CwZN2CbymRCMBAYtP2fNkw3qiR6Lf07Ji0nzP0LOlG6KZk8xZVKx8lDaHD9Nz8RP3fmKeYXZUn7nbuOOzagcy7Kq1hOX4t+3aM0FvODX3kO3m+oP4RAUMqmv3dPx0y4bFVNjALXFHSLuW0DzFlaDGr3pHglmHvBUv8gh6dUHE9pa+kqxpJG/O5UCcwEbGsOe/BrTkOxE39+t8uuzSHqKnVjGcgB+PymOMtpsftVhgHNbdXBHPBX2VHtl1U9UBbzivoXbvFXPHyuS873IN3h674u1aVjpa3Nsa3sd3Sg4d1hBrBoVu6f4Z4aH+FAF/HcsD8OFl0P9L2pW0Kcsz6x/kQkQlxZJZxgTBcQeKCIjIkAD59d9FP+/y7M6yF93apKruoUIVomaXziqzb3/Ph1zrjV9y6ScIoMX5FotCppXb6jfMQCTrg79I/Kb91R8iGB/Bg+Go3urT49pE0nA0W2aGflTyiPcFhNO3/zuPjp9frg/Ssc2Z7gi9N23TMAe1PdVMW9GJ/65SpcGF+iohXbIMElfjCowavuRxPbno+7NaDap9lOBNrZTpeISsQPeNnBM3er3L2XohH/ZNRvB+iZ/Z18aL3J92Mi2CQo2FzL43YDlnm/KD+IgnY/dW4CFEHQlaWS9FvrcrcNS4xNvC/HQsPAkJ6PJ8IR6e+nQ2Y7OHZ+EW9KO+WzSiVlLgs2teRGlTF7EZ31wI7TTFm41YdV3Z3nO4xF6Hd+6beFyZ3oU8vy9Xopl41Q19Y/Twu0WAN/7X1LnnJScooi7CHFdcp2Qo8Np4fhJmTN1vOc+ilnuFXDEyfyof56engWDfMrrMEvbm+fWpIHV1DwvfsUEDiY6CbNOjxax7cfB6nCUunObsxFSKtXSSFLVGzZC+iXE31VQozAmgozuDJVL57Ya1KGPolG1E53YXllPf+BSNuyVOjPJV8vD9k5apaZz4w07jS374aDgdNXLqTblkVH62cNhFmBzy175jz+B5gsatVHZODnxBcHkEntMHc9a7pJv4UeuhfJ5HckiqHaLe6EhgvMyGKR3OOX8eHhkSupvETKn2umlaKwryv+FIzPVdLUXrA0s+blUsUpulU/YrJHh3tsc8ulPTad0Sij6b14Ed6CyX845BBBdpMzB79N5xL4PQym37exIcrZKSl2OUQHHXNGbmG4f35FnfoPiediQbZFOfOvLMkN/BhbiiV3m9RbYJDL2rsL987g8sDWGm7op4lazw0T7tLJSm5R1vPSv1BhLdRfRltCbWV9t4Q3FgF9Sqz4B4n3MVs59VaEhRP2emnp5KKXTKXMsrE0p2sPtvOjVtdYPPw5Rof6QZ51ibRjjQvUq3R+GI+nv3vEHWbxUKmaaWzFnfCrhLgka3UhegvqW+jbpbH7JndpRjHtVrDQ3YDOh8aTs0Z6v5BtJWODEvPC1vdmSHBI73mBJ737GYj4WU7Y/sWTAlt2v0oQJ+gKo1FYv/8ttTrzfg7blj/vtL9KV+ueCc4jX++r9byoXBjkC9iTdGxFzvtvOhK5DTuzKWfdVOGzcJMCgtvFlwOKoep66Od1gtQvpZeXdvWrcHCp60P9CdYM/pXDhKBHtlDBjRvB+aZO9aAToqH3YLt0U6outLAhIlJfGceuazEYw18vr6iKch9ePZvM8n1CvBlalfc6/PvchqeBisZfjM8nj6VmUhe7/bnlhaCeUQ1OAi5RIhYgt2FLM4VjIIRkXD2wnVaBRUwYJ4uptEKaRMpz54LUz218Rjs8n42DzUHD759CamQk8Lnl9y+K7fLVEN3+fi562PkJnuCotYGNO28TY9nJL5SEz3d47noZgUSMvbjSzPW5+CGmyQ75VELCyEMXdX/bhfa06IuamKHoNzUsDRbzRiRfcnH/jVq9B6le9Y6J42aNIC/YY+xaOjHwnb+nZYqTfEtd+PaF517EZtklbIcdw3Mfw78miJakCIXRO6L89qSm+b8IJ+a1gRnL0O8fSHz2dlchne7syOs8e+QmRXX/H+5u/iEVocomN1MpnzvE6cS2xDwVk7dxLGBnCmX5IaNmrK8VrzfrzWkesCbIyQnIl645MDmi+v5NeP7ix4dxxr+3F/HNYnpo0KStnCZ4AU5Et3f/UK/7IerE0/YTk7PmN+6TwAbx4t8qz8TB+MDuXI2kkO8a57kQ+Ze9CkbL19/MU3/wW14MJGnlLmrajWcfHz3UnzMrtrtU81TqtUk8B+Zy+i/BqB98V6r6H12euJVttO17/riwLapSfsVLuAxklm1p4EPZAlvtLpTHAiMZy/mYriJ+fO3Gnor36qxTnyasiZgS6d8mM+4nrMJwoY1PZS0/Gs9V2RreZEun0OAf41z15naCPWaDgeWoJ1e5+OZti5QFFukng/FSlz5lKTg1HTmFW0x+7TtFUCX+ucEN9fbdESXxrQ/MXo6J7O/B9fG/3kRrfR94Dmv/hc6ineO06gc7v+RfD5NDpb+E/MT+bXl6X9qSDPcGIpT1i4Q+6AfebbOORse5wusumsdeZ07Ybz1FZ8KDQBM9d3cMdjKwGY7I/J/OZs8km3shHEWdOZ/kOqPiukKuD1SFS8SPp4iPQxgZtLZmJscV3ypOgSRNyywsKDPOJpmqNcftpwxOJHMZA4FHsFtLjYEkPvNTTZo/IAK1Mo3ckh8HEKzzmSfNgTs5qT5QaXRPfL88SSXam6EJ2nCr0Ofcp8LQ71GVH7AkM0CsQ+CXE8dIUnwugOmB1QVvLRwfoDZelpZomqC+lgHcPTH17R7dZSUvEv/2WVARZXd90TxqMa/fFtpuLDEE/sXkZoe9ZexLNUMx1fh0FCVOxKCkXy8Xg0lK10x9n93/Mc9vmnlS8Uq398u6RRlIYQ6M2dmNYy4+L73YvSUl+IZqlCN6auWcNjMmNGjvjsLedzgs+TG1Rwvno3pKtxBR8/EolTntV47vWniwrSbqggpmHXFdWthXTQv3QfWJk+FutJkX9pdiJaL+YxtVfdBVjtV8TOGEfjZxtmcBjvITvIqqrPbTuI0n3ZkqG95kvMdsuWFIsVwDzhRsqtTJ0ZbufIIda289PvZRorWPKfmA+z4HM7RQ9g3tkhinLfpONlL4owZfOeOQ6U+ijYTQ/Ns3qy09Q55TaSjjawY7HCXDU+3rgd7hQdxFlheCiiriWngw+Zuq6ZfzNmb665ZKNYf2M6iaXIKf/QB/rTA/xjd/q02jYAxFEvTHslER92ST/C/rI0idfjKeWv1wsk5ykeyB+ei7XV1GBmzY8Q/aKnQq9gEVnOYv9x74jEwck0oOXvQBek1ec4e2oovxo5OX8+I2fnj2eA08gfop+jH2eAPxLsMGZ4vAS1PjjFF8O3ugUkUONjydxVNf/x44WvFWgqDt8TzNvCI078Urymlu8XCM72l8pJz9B45psVyF5kkOD8FmP2NoQRcrOOmD+2UjwYd9OWV1xISBqefuVYerMAXfDbk8DKlhtBQZWA7IUGbSV7o8/GwVuBTnYv9scHl/N/gJ1lGrFeZqWPxd5IJEGnO6Lnt0pf+NRtN1ZWSg8HyL1ZLRYHuDiqTJV7xRPOSpejhc8w49ZSPnTaF5Y3qbd4vj7ffIzPpgjPdDUQB5/qjjrH4yzvTklFMFF/5ai9jEq+arQnJh3S+B8ex+9KxcLUOR2/hc0IN1h5dLKrMf3UWdugMUc6WfRZytP3ukWrsdMwXN4C57O0WcnbalsytbRtb7rnigB357td6v+vo5dLg9GiX+n66lflpKpqC2m1q4l6bd10qvb7CtHz5ch8sXH4dmi/Efzxk5mFJ29ah7cQVVUtULTkfzsUew324fdI42xT8z89I+c6spl23m74bMZB/4evdKtdTt7cbdMT6pryhMfN29Q3eN0l0CNj+uPP3Rb/Lj20k4YJdvTE45Zq5Kj8+Iz4ulV7E963BWpxLPzjA/NrZbXodVGPxFz8gjnQ/BqubUKZv1WGdLbmXwW6PF7YddWs0KDFOwUsyxvxfQi4PjLPTkDzfjvmelPLu6XeyNmUfxnZ6Qof9S0SUFC3G3I4qghxTe99tMQTM9Oo76bZUwV0MMsNs82p8aZekDA0h+RH3DE4dQv+YEgk/0C33n7Sp7S7iDC9IcJM8xw+SfyhQR/oKyzV5wL98UO0nvojCefxlc5zHS1TalcC3f20m17zT53BOZ5qdkTxE81x5xZIEOYDsRf+MRkdKlAZ92/iqroQd/Ydzcj0nkemRVGTTr0wY5gshKjs4VnnWnjsJZU8Pfr4ypo3LW+Jy0kgZHgTuYU+D85Fk1UkCkz/2J43mpdeAblYHYjv8ZU3NG2fwEp+/hjZRMibSy1tQbbuBeXKkenD7n1P0KK36cYm726Qb4EB7kG7MZPlU9xf78kMAq0izIt5i4b32a7Rkr/M243ca+n5NYMoXx50XvgUPeuTCG3bPZkeTE+PIa1ywavJe/msyPsZL6yg62ew8efVhvr0rbocXY96wYzr4VjOCqwMdH8fpYVvTF0PlZlANKsKriQl8yjvUwNimjRM3636dFy+H3IObcwMVLf6vFpffYjSrUc8gRf65J32OSRbjWF+b4d03v548qenWfBO6o5LTjjKUdm7LN55Yjz+1bfXuOvxuHHe3V89RueurXBDg6kctPsoyT9uX0nY6t+Y+9eTJR8GsqWNzm8p35dohS6KQ0jg/apuMj+WBNvOj9mtDvOSVaxuUZRcZKbc1s9yHoWDhNpEvBOHe1o3jkcnhN0x8Mn79My72SsfiZQedy65L3yN79qmgp16s8nrxlQ+BfzXQr+er8xNSVO2n9MlRJ+ve6SzV01lr1jPEworUFig5GnH5UaR5Mv++mLua006BoWiwMvyAxIkPeGjy3MM1YNtiF6Nh256sW6WjtYxYraAmnjR+76Uo+XGff3J9ekEL/jH/42IYW+k2WqFKuG+o7KSo/Irie0JlvrAlNWx1/l6yDT0ruMflXyoOr7oOSmtpJoYvSl39HqGDOTHHAUbc4/jyXnQCyz+34LfGt++ar+CIpC7xR9L9cGYcxecZv3Bs3398vGp3Ub4y3d92C354wyWBIm+JwdZfev0sGsz9Od3BFbWeXRKwofcryIHi9+N55X5ColwoEil83u0vOlEZleedrbFLote2hJY8qNVBGK8kw3/03voNMzLjCjrjbrfYAF6dtPEPPduIzHNtVC2nflPH1iIX7cmhfA4NnhtZ9jrvf3bQoH42uPW5GnMhHyZgXMWW7xa/IWqlo8X1B/Zh653eo7483B6yPb78SL+67eOp3jMfLQyVyU5bK08na07rtGf/lP21lwOciXVcFlTsuRrrHNnfctRPoQnRrxYiMf4HIho4bcYybbYUUrnGV2RBLi3ayHloY0lqHOv/ofX0yGsahT52oFZ0V1GLDebAl7RZs/0V9DGfM0zCTQTq7hfvl+/950d+lZJQDu6e8dMHTcz/OGfbV42ZfenP+b36Uqw2MreP/8gLEORvKZz+x8eWQU9E+vGjt520Tt/+glPT3fX1c3+ECFaiy86Nd0nZeeXi+HJ25H8xfvsVIoLAz4EWH4nVrfRX9MMXmrpeHKYw0f+uEbQFJHBLLkOPCSnaYL2yhwQhbxYOq6b6CSvEwWTYxxZXDxtR0WqXXtg+n7S4jFPHiH8Lt8Z76ELkXiWAxeJyUVhxM6ox4JWe6Bneywpb+Oq5Ndt0IOH3xlRcL/orfKYw+qQTbgRkB1P3Hj66DyePJq5x6L7msir0KLfWTZJF28+dLAC4cJOFBGH8d5w2/Cfv3ZolDqmK9+YgXwth7naL4+5/RIaoLvTQJ4vg8fzxsha9Mc3j8FpG4+h7EbIpM+BuW/XScfMXrZycue0+K8LhHzP7v5L1cfiD351/sffPUUfiF9fRX1wfrEI4fTpmXd/nLz+cSGXv58ps/IsZivBbeHornZU3gc73msvo0Zpvmytu58G1K+b5AJncljjMfk4JUWCg+GW7W+03JX7ZesS3KTo9uNYfJmVN3i2r6GFr9P99XHU5+HhJ5BxZUOT9Ot7lK+dB1r4EhaC9cHr7ztN+odnWKGfcj7O6wvKo2BF+aIP2e4qYZTZl8s/f3gkWyeB10U/0k7gmjf99Sdc5ddQ9BS2HTeYKkLbn74Lv2vTv9+He/WMiNNo+3Iq+Y7uW6P5sEBK3/H8WuEGbfaHDc5ZbaQz3yuVnN2chB3yrexNx84x4DjKEzGsLIkFOt8NtOgfFgt1w7k6yqP0198ZBG2dbisxjQBLfc5sne/iRf8rqLbk86IneTrtDqsbNG6t/sPvWVZ05a9esTT7DuWkCqf/+h+uXb29ybgHLmo2Uc68VMv1XsrGUF7Oj2iW0HZzlbo7oJG9Z/Z97aPR1tQeCtAytvA/nXevewhg0y9xgmUGRt7eLMm+f3PivZKy44PhnlDeWsveYTh7PEx/GszWA8jj9qq6ST1oBURmd6VoqQ/j/BsLaeHXzNrpozd99qYI92/Tkr/8nO/ojiG7ixUdTeeRziQXKMrSy0ynxQ+j1vyuIZHwgejDc13W0cue//wYYjw3TTyoB7cAy89zoqx+rFz6I5V8OPhrutYvZcrr97iCk2V1GLCfp1PtQYh+1kyJ0Z0vcePyxofrCUsML/22aSX/RDB22YaKdrb4RdOuBv2YUGaFc+5N4gb1yDEyxA7fpuimj8lvSIzlcPErPoiGyq1F+sU4sWu+feosn5cZwFEdMALKhObFz9pbb9VjSz/Io/gkASz8b6lvqByvvePCH//T1u8D2siVVMHv3TrEza88nf7y868fIysI64teCCXxajds0fPlNM1JgXSpWv3XPySTUsAST8uW1rJkiNwbiK7eh2mf4apPllGIUjsXD9peDKaPAkKupOjRiyhro/CGXVLN//5/ZR7XMX8bMKPFXyf+tafxEDv7CE45WHQTT2vOHwLV/vgunnN59Oql3kOvSm+ixNuIi39+MBFRwIJ4ddebpZ8D2eqKGcY/S59mzxHhzx836fmK6C3dXKTpGXX//M++OvIe/vojiuk8YtZnQ4E27bjG21WTIaaO8oxq2l2ZbvzmchK1X4gcufPIAelTzBa8Rv1x+OC1Ol7TWToNl3/xaznHOJ1Wmbn64/sk+F2vXattnBDM0N7hbXrFaGq2dwn69XjFteI0aDQm4kNnKC2xvsmtm8qvjgEdfjcKdi3EE9qfdvCPT5DjRR+9/c9C82Ht4nzxg7lSCRra6JaMxRmZ8Z//tdtHUUrsldigcYg2PnoejgcS1B9FF+9q5ELzsAhddetN3LmdmMD9HUuYh5IVT+nOv4D5kF/sTz+1X27dYFewBKNFr/9k71qjxR/HKyF00gmyfQ+B8lSZGbmat8nKVoOFD5DgWJkxtY0+REp8KBc/R0m7g/QS4H5qMLnrNeGi+Ny3UPm7iajd89GNd2N8ILH1DPznz7KkqSIk3Hc98SP4pmNwu4fodg4d8oen3DXvD1mPJCD6K3DTMS2bCn537i580iinrbrJkS3aJrHvlRS37zFcyWLTisRobL9b+BJGX5+6TE2XLXrW3apR1/oZczc3rPN0cx//+g+U9bJV/tPXhm/6REV0XGZodBeQcKuzIP+G5VR7QoQWP4quopXU8bLsd8isxIy4bcTRfFcTF9aD0jL3YjBvWMlv8c+PZBpyjHjomvEhx42+w8LzaaClnypCLeYXli7+sXia9BvYJyTRanfP//o5ifz/uFGw+79vFGRXfCSmViZxn6BjBYgEmLl8+/Zmfz2e5GJEH+YJrRfzIvJm+JivmZnB96lP0RpyaOMkwJvv78bnWIo0oDUm9DMPaTneQRuRgkuKxbTtOLs0AqDwoKrMk8iU0qVdDK7/2uD17yWmbP3yFGTZucqi7ZvGQ6dHAuDXoSLmCEXHFUk1ID5knHmWd++o+ytr0DEP8NciX48e4kyA4+b3INbbacr5nhY+fE55jDdXa9lLEe+Wd0rrgphdfdJHgdcZssi0Y1ZNcflOo1UF4byryZP50E3fpeM7/74uwVXvx+N7oxlAjMgjir/Ly7m06xU87jaje6Vp077L+wxdDXck6m1zQSyd+nm507mhnhRddD52hQJlPzksUN47fWShO8JedBViba/blKtn6sOnFTqmNM2IxpU212BaJ4NpIL3LWbnXFxhaFtLNB1UdJ0NhyLMPd2Ijf07HSEsu6PbY3Og22TE03N7yDh3efsv0ed7qFLyHAkXr18QZN2PMimNSoavbpXgjT6t0UNJIgq5/pSyIX0d9nl/2A4aTErGHGZ+82SGNBB3aFcznO+YNKFzl6Dr6DZ19buq/M4tE+TOVLTFlei/7sQ0ygK3dkeC71zyhteWTdNJdk2n9VUt5VzgapIeyI4HwYXxUdlUOm73wY3a10svJqC8hopfJxlBtj+lveeCQdzBR2J++3jLOqYeoFTVmtzWN5xykCyRt/yV/f39W57WIdKTfmHE4iyl9n345fE4XhfhIQ+nYTNsT7OuiZvbbCDwOzvcBuRVEeMS/fTlvf1ELL32j0WkXqJ7QLHfOtMJ+kmjv7ONadqZGfmvWlgqASLm1w4MEelUMePl+OgfqntCtt3w8N0+PT679apGeJV9ioePAaZD0IXyj2cbb9/qasp+nG9Js6Ctih6mRCpKk9dKtj16MyNDrQ7K9P5DkZzeMPuyC5r0StvL3vu2Jv1qL3dA/n4Vk0caiQsoO6Yxm1MKdBQ0x3kcbTbe33yN+3p6xtPmcy/kvX4JuZdPJEXZo4hBZ66Q9qex+Eff6/FoHEry/jU5rdIrK+SsWIki7vmT+W3l1PLm2BkjFzcOb5SbL6B6WqZcWA2a0Q15SYdvMoG52EYXzfufx1ftS/eUv0Y0AdLY8L+SwLKObRzF149EYJKhlH9GtdCnLeadVvvQx4xcdbfSJ55sWUunZXXq8Z4GZzvX+WyMRppmcr/oJzfbRi+Cu4Yh4zrouJ/mrh7J9cB9M3V1I3G8d1wBvyBVib759OnPpU8BGUoB4H3bhDKh7ATmwnsx53JY7Zb8J0HGzYQyvtmLMXq+mh7cqVfR9dQ+6yPe6C99oldL5cA30viuwgJ4p+tC5PDzTqSoHBX0bKcDbhL1Lfq1/t31otSnRf5d1yrI3RGA5lkTfg6/r2/VL16D/rhJmh9lPnzbjtZBGaX6Qv/MfC7LSoG0PHvHW01yOP+okMOu/G9N3p11HV9WQA4iziffjbqOz763RYHM6PpnJkrc+P+tPBUWLa+KWJxVxNhiJXEW2TudpX5b8pj4vMHYDYr6LMj5L99aFx/2sMSXKvZQfxMCG/Cz2xGjeq5IrqHvA4fgNKbceBZ+FbT7K+flhYUBaGv/VH2jO+QojUvXltD2cc/iLr2uy6fQxkZoboM/5RH+k99E82ohKmRq+mGfZAp+b8FMDypoz0YXrM57Nd7UCJ9RvVNK5k053KfPhaeIvU2r57Q12/FaQFu1/DG+/SjkbhyIEtj64xCq2D7TUs2w/qc+U7t6HCc1k3GtI4YVGiBH+urG13jPkVvphjpiI6QTkZEu+eAPaVqKe8rJ7RojkO2C69fp20yfPQ/nTih0jyuPRcY2ue7RtuitzBFaj31ivCqhWVY7HikrxkKklBQU7NrP8H9Wbu/xxwc+tCk/XgxYLjrfc+S7eOouHw6EcoRNqsMspoNclHzgb/ASN3fVMjM1UppRORoGk3/GBf0lreZPu7jHcmXrGs73HHTP11oXtLprwbK93OnWN13KD4OsRf8tyNGMujyh9vp40yLWw3F7wHALO+hUzbx8xHcc2eIBcaiFTte8B1Ws5ENDRwSuinnaoo/ZReMDvdnhjOcuZNyX7Jd718sT+4oudtkIEoSVSDDT+6bOZo1HyqmnH1CHqu/G2yi5wvLUmc5ER6cL6WT+g7GuRKFGiIuFTNTd43WeB2OE74GP4U0YZ3xSFvYa4jBd8xyifn0+md43Lp057t/Cj9/1fvY+Z3oYVfIzdnnhH/1rOW8Oq/s4XzyrT4s0rpQkiY34hr9to6FxsXuH+cpU+RNWGKW7zax2h12/ZWnDnuJvQ5niTV5fzmvydf++/NRu0N7js5PmNPvsPq4VdZV/oFFAST8GOGSiZdIW+vtKot1KSnsB3zwbxyCDxAW3uN9h6Yoz3xyuUnz6zeri/UsRM7Rny0Z5KEYRtaBFj2vpoOl27HnXW+8ccFnxSejXPGQiNHv3FQ8zL3yzBEq/40z0/fHoQpYFqJVvs6m0nNGW6ZcBfvKu74O1NEEyz3BrenWnb75WPz+5nID83KjwVR9pNSvKmcHt0JhVgdYrHLL9SOGqF8g+PJs94U1CC1YYFxvnjzbrjN+gilBdC4muIZuJnLsSZNxGSnV1vLIgvoqppKfvD38lapnrawSZhutgP5VdvbzWkg7VlRtoX5chCtJJO99BlF08tvZ4ePza85dEmlz7oUpajYEbXUTvTvZi/+PgYhEa+r0KHBFlidlMxhiMYef1hduTcOi5sAINXfT/LHjGDi+ehDtE3UdcU+I7pTLZXkTQb6oqK9gwx9+F3Q8w/nYhD2LGbHmQvghx/HbwZ1994jpGHQd4PmCjX9YGLxyoIpVECRoV6z8uZo0sPbP0aqdAOSid+d4EPXnWPiO/uJH1Yr6QblBfDY4+7yOMfEnJfvlz7iCj7472c+3XSSHXdh3SOUsbH14vmKDBFndn6RtE3f89PVN4NlRc++XmEpQafUxEzcx5Q+bu9ZQkJx+L7rx7RGHk+WvgsFr2D3/H1S8CInzuNNmvd8ETpNq4AZ+jIFBqInL3eugXJO4gpLyynW+q/iw6eVdHvKHWIOf59hdLD+Ubn6FynAwrNizycPh4hWRp3HJ/CCk6ufiF+e486JohDgpyQdMTpHrI3BDtmQXqpfboVH4M3B3duwfY9W8QIm9zrE6lJUNiPObPNpI5bMrU+UqojxrM/5ilPR1QhbNd7ph2OesnHdieASICS6PkI+Hx/yjMIKgpwv4IjEt5in4GWCgbzHqEU9z58fSQC3uPurP9iLojDDeGMrvDmDy+bjZJBzPOO2GurQVSd1wLsMH+Qwxo5JfflqIIoxQ1eB6z2hpfiLPyhuyx4AOWfngE/j7ZM21Zcn91fV4GolA1emXjX9YmU34BnKx0LgFg59i8eSkl6zBl2NLObxCGaIaNmwbw4K/XBQpMI7rt9YEFtLdQYjSbAoTERRuMQ6rNhxw85fF7vTItunUch+FawCW4erT1V18Vl9gH0mtYQ47o7d1O0Fhb9VucYeeOrEy+9LsFrXcRsuRNZTuHvO4K1cWfittW2Y+PhYINYHw/EOERTx7rqUQNJZpGKF/ODZnp1RKiaR0qUk+bz6dEOFBVGJBDr7Q9xt86Owh/fJYHyvnnTb7A09KbsS3e9zdBc0MpH8mPnEi3dHsp+D5cQOiK2SzxeOAsulQ0gb37kD98nLTBmKRNIQ+uUS94/vWK9tJ64YWzo29PWs+CafzCeFvwSJMntkahcz8RROrLwKUOUHmwzLFurlq16Z++GlvhhuDTUuFeeuxYpZX9m9sWKEa/0TQOJt+xdvZgfTosBKdJrNAPiKXnr9Xf5Y8OCT+R0cd8pP75ZAUt8Euxon+7bTPscBun0PwAAAP//pJ3J1rI8lIUviIEISMKQvjdBQMUZKCKgIk0C5Opr8X5/zWpWQ5drCULOOXs/J01PgNoQtjiX9wyH9/ogkG3ndDeTJ4ALCZW/+gDIye1C+MoKjLF6EwFrTSLAdJdhxJJTOUyiPV6g27QyPa2ymPyYYkRQbcgZO1eNC6ZcPN3hGq42kqyr9vc+VzBSjUPc8/IApP/IF6BFPiOiOr3Z7Pn7XK7nake10/sVrIFBLsD8PgTs7+sZ0PLFx1CMLztsj9FsTPeoUcGmh9F7yzez+ph7qNE5xHi6dAZxT0YMn7edg0Qaq0yIfLDC8pq3SAq/12Q+s5iDVnMu0KJPSzFfwrYGpt+viDM+x2HS14g/FJf1iVWO5Vs9O/DACR4+NhazZmv0pj1sJo9SQ/iYxtpMHg/+9OVJb5tgRmmZAUR8iwiB+WWz2fkC/GmtQNEzOQT/9Nsacjca7MS7wVpD6cE94+6oFe8xWEZtLmFl6zvE+OujWMxPGUH6CzLqAiwGZH8aKnhQChEdLsLNaCvx3EMzmiUkV7tTs2pnKYc0jh20PxX9NrvzFsnjiT9j7di9wZ+egJznnrFeyGPB3noSQV0SC/LnF1mgXnPI3tGdekK1Y+NYZjLYBfUbLdv7oRek2YfjIVg3v+AFcwgpko/3C0ENf1WKlQZOBJ9G5B13Uqoliz9kLlQfH4y95GMUTAg1HdqEvxElk9picZOXrliH5EhIfy3AxntmSH9ehkPPt8DeG7WLvG2DSJME3cB+/gg1fAzujVQHNyhosPv87+9v/mxbUZHC89IeibBIOSMHNesgL5Y3ivkHHoZndZOh51UjtvTqPEx1+LWhNGhfbBzHrNniMYfRke7QtMqV8cejII0jhz7K3GoWpXt3MFtZgPgR18b6uXcu2B/zgKpNmIGuSNz5Hy/CfJUWq748SmC7JMXGqfE3PoB6kN7uD7KGs1osgZVLUNl2VNDjkm/+fc/rToXDNDAYz5l3COSD4yF4hhCQzPBkOLf9lRrHURoWjR8zqCcWpNYbmM2sn0wZbvUQzQVsgo1nxDBg/I3e7sUzmQdr/ijHNXphu+/eRpvVS6wMQK6RIt21QRxqOZT7/LFQ7erUSU+WsD4IaqCjvi+8ZPnA4wXe9c7893vbFMkUfNS1ROKszE0bQhr+1Wc8bvmFctahOrzIVcOaQNpknA57CDfmgnNfHIMpvaw1PA+lg/WuOSfsZOslHE/CmaLuozN2gFEpB6yzqfcb2mCWZZ0opmhF1AmUomDZWwrhiZ4NjKl2HeaCXnVYz+mIk+9AG5LnBx1CfzyiGY1lsnCaGP7xNeoHqlz8qy9b/SXfoWRsTO4PFXym9ws7Q5mAsaPD/DeeUb3V/+VCXj3Y/A55K0tZzKKnmwoDzMGh0bXFGte1DGWpjrCzk1o2u7Pc/6tndvhDhrA/NZVCjeJAlGY3NOx7O236jEmocbWfQevol8tXY/ZpvPE3Wh2GTH7cLQktGT0mGx/q/vI3taGQGkv/i0w4rAtP0W0gBTkUZg3rlyVRfYFusYY76QK74WfQ03Hom7l931q41a9/PJK/j3kMG4gias+OBoRi7XyovzifHM6BN+z1Yzj/8RUiRUVbMPGd/8cvsKyfBxIW5/I/v50vj2YN9L0PvztWYhNKPhg3PgijR2BT9LwoYHVEt1I4vE+wGd8OBpsuYg+O9eAgdvwlgGW6XQHurdzIzz7OxeRS2wR1/g5ptrNdtqjCjgPn+jWSe4M/ySi21D24j59Dj77KN3TjQ6DNRI0sUvRmtHTUDMbLheCNJxdz8GIXOKXhm8Zi6Q1LckOmfCkXgSKnao1XvQAfymE/YLwxr7EqpBamt27GzlvwjIGz3MvfeKd4urjBHGs/H777LkP7AB4L1r8FCMup/v3LJz/fvfawGXd3HPqAA7NzffnwRN2ZHORTF7DFZB8YOJBHjfBpjeU870MofBIH9VZsB/QI5hB2wPYxQn1U7MNyzIEA2Yqk0RqMAc1EAK8shFRb+SM49L1cwrd8t/Atn3wgtHaR/fkRbAZek4yy1F3+9CdF6BsMk2+bJjRakGA3/F4LwRHVWsFzahDQanXDRuVjA8u+mIiL4iLZeG8K9zMFG48ph/kGtz0Zh+MJm+FCktmd1w76cbHtQdz5YDHC4gNV+ajSe8uHAyWJLIE/3ohI4LJVGK/ZX75GH8hwsjy63AfJ1TzSzW8ly9/9rYn9xAHTq4TQAMcyDX2N2iAwE/6v/jQwa+hz0/9rqL6267EDkfb9YqyfUq+hFx0HaqmrlvAvPtpYSnFA7eVo//Hm8o8/YPvZ6sUcPxACofDGOHz0ajKLjcJBw41q6snI2PoDOQ/fKD9SLOU96DaeALK1lcheCqWCnmzQw0P04bFGFGiwdF8RuFwXhq0ATslPtNvLH//FbtjGzfSuuhj0ycyoGj8+w2Q1t/qPJ1J/GZ4GMUg0wudOPlCcvxRjrZP5ouA8j7DLdlrBE8HVoUFUDWt18DbonVS6vD+2JcVlRtg0lmiUdennYt05Nc3ad3cCrZrbU5TabsLsO+gPL16c0E45OAnfalSGcyr0RLwAfhgPlasCqosqcu7XcGCpyEfw5oIIe/L1NLCrLhIgStFClqHXGtEubjEQ3gRt/QgBELzU6B/f1EGmBocdpyGldIMZjZzQJcuO80Kw6S0kzM4LzPCkjrD1bjLF30Vj4sYLwYzG9i//G5se92FI5Qg7kikFSy4x4Z+ePLyJC5bt//7lcyRt+nl2bkYFszPnEPZR1WDj8zzI5z6nBn9VkiXeGSnknlGOLeHlNjNnDCt0W49h31f2A8M0vMNLyQTqzOLX+N2HiwTJ1SPYO1vqf/z+7/1qW379ILZfYd6TLzXFpzgwqZFcMLd3Ez+nxChGeFIJ/EwLT7ONt4taEveK6UchxV8xSBY3zRG4kb1OVlC07J++zuzLhKh7bAH7BYEJSv4GKGIz2uLnmcHzvfjgsFJkQIsZfMA+tXxSp4YM/vGCwgmsf/xsyiXGw2lwBOp7+JVQ01JGWRPs99bPQMn6CBYCrSM+02N9rcBffQWw4hMaP26esQymuZ16Y2F6/L0mg9TJnEJ7O43TOpUELOeFZH/1DOvb9Tc+GEKpgQb27GNUzIolXqAc3jMcmLnaCAaJiDK8P1vHuYuAcP3NKaz7/IDW16VNSDNmPSQX5qJXtq7Gsvl9KEtVRHXiFsmSS0CAqfDk0a5RUjAPVXsHf/XzNGEHLPvUiyAohY6Gt8kKlhvAGQx9f6EOXrridxQVCf44Ldn4+DNZIL77MBSWmqri58dWN8ptGD08e4sfY2CWUft//py6IzokS/mtOOVqrD7pn1e7WW8Ps4V/vN19aW4i/H6iDWNTiugVaixZ4HE7dRGxOzrwY20Q001KZeNvCBpdmzDTCis5apIQa/UJNcwqSx3+/Z98GXbBVu98sOX3f/qHwNBCYG67K7W+P4lt470GyqEGWPvOQzBOUvGBYve7En48DwPztz1bhbf8oponKs1YpI2vnO84warxvrCNn7lQo+t2TPbrESxJdpfl6LCI2HC1X8A4a6kUpxJMbBfTPMzGgD9g1N8vbAy1lohCd41AXDvyfzyfa9/Vdurdk8hnQNj43t0jcNf5K3XyfWCsciZt4J43yT4XX2ANtHj9x99PW/9kQfziggGMGFu1Roz5IDNZ+RpXjdrP79cg+2i9KN2i3BFISsPYO9cLhB7d+qWr1oD54SAEonGtECvxlZHND0E5FDiyP7ZZ8U+f6TG9YAsLDVt/P9GEjphSfN1xKFn/+mWbfsYb3xo65ffS//L/Vg9BMSXZXQKb/kLAdlOw3Z8k8ydXo+UBD8PcfvT1X//UvckVIztFVBWn4k18eYXHgvlBNYNuKGcazOzWdBR1GbjTX77djwGWd633f/wZn9+cl7BV71SoOnefPjjt27R/evWnlDkN5HBsJudacrJZ5TERnq2e7FcFlmDTI0S0s32yRu9vDzd9Tp3NH/Ms/89fEM7dVWCywYGH2boE2AyJN/CC35aw1esfdoZXNsw00md57Pxp4xWvor+aYwRH7pch3jlfkjHqBx9uPJJmz+dnW7GRc/94c//X37+jY/z/2aPg8H/PKNjlOqb6M3wZHbv3UE7CV02tm98A9pSkDnqSjihGQgIWe04RrL7im2LJdRnjqD7Dhy5g8m76q/HRuCSG6+v7I5/ucE/mXfozYfAQNFQN59iY+oiH0OrOJ+o2wiNZjk+0wsO3krD+IfIwNXttVtxtrW2pvjv2FuedDFLeYWjHx1WxkFytIYf2DjkkYVks2XYOKTqcB8Sv9jos1qVQYZrbb7K2lWjMhz6/w5iXI/LVfNAMxhm58GNva5aqD2PTdfeqFdPwIVXb4ft3PzOc2GLjJJW4gK2GHgHaTxJ5l6s7rM4hyMCr6QLsU7RPFop0DnL+SGngvnK2cv2uBunv4eCHHpcJ43ZtDGNeimgowjphoxu7kKILpaYTZoxpXpXD39epsRfWybDsi/Wu7JOpoUg/HodFZl4PP1dFI+wIjWKx8A0BGjlHtErgCJZEuc6KZI4lzqNHDUhcdSp8eJyKPTdqQOelpxqmSRtTI/QdgylL1SlRfuswfp8FMDz1KINWKlyR0A/SQJQ7kEGNiz31fnuJjb+BdOAdaHeaPS59MD2MJYf88UCpq/6Mpi5n7w4hyTuM/Txs5osCfZh/vj62RMNhi3DhCJxpNlJVFXdgssWLCmG1tjSYz3qxBCfDhwjQD3aKo2isyHyYYPuMtv+biOfsLIF4dnOyF580mP0T6xXgtnuK9+knmU5dfIEfm9cx0q+WIaJRQ4oIeIyfbugFq2iNIxTeOUfV3zQVM/XEEbp7RySr4AzFfKdhC+ZJX+gRf2vG0K9JFUWCMQ6K0jTm6DCm4Ge0HeEv79+wqLbVw0G4qNvzyprxe/mF0OLEFpGi9xNhNuQV7lX028Ynl7BPadRQXkcVu8bDYkwU5grwLNTxEwmMLWUmCOD8yywi7GxcsGoENvy+KxOnhTYDJkXLDKlhfqjRP+NiClfkQkb9gXqvxgtWwfU/0NrvLthWSn+Y2ofdyxZ96Fgl7wJ8daHiFIPNOXZuRQ5WCCReXm/pBvKlAUy/JOYV9pw9ap4bY1hOy6rv5tZvaHAwbgkT1ShW1mTXkgP4tA0985CDd+sUkv2qvcBqdy9J+fnkhhgcrWas7YKHkX2K6F88//ZjwkFv3ydk3VtWwd52FcJcHc/4REd3EJWz9wGcho1/+WX9xFwJL2i4I0WPuYS6QZ6Cr+JdqN1qE1sHxdKhe7uESLk4QrLM9Ajlp710uABi0dDR3Xbh/FEXm2NnJYw5JITTUJ+puywqY6w9RnCf71MaZP0LMMmJbTjvkxrru7fU0CfNOFhdLJfshcfPIIKmzhCNV5OaRHDZOjQGDw3BP2MLHfNkVR9ZDLbni16mLjEyb+l7arOWmpkhBgw/3itsv3VN8WGemrm4vmIIjumAneRlBwALQPS/BK4nX6nNYETrnf8Y81f2bal5OSdyWuaUzUH98MHFAx/sms8xoKmfx3AsvlesquKTreVDtxX3sO15IDn37f/kJnwU9g7tg4Ymw6t/IBCDrMHBMw2b5UJdFfrm7YrdW6UNe9qZvvJx2yf2fF01+Ls0xuDmDW80v0WT8dj6cZCq44BtGE/BzGidKsJ3PaBdM522XXQ9FV6Xh0joqSrZ+i6hChHnvAhPoj4YzW2PD1WpHWwo7ggYwrUPrcf4plngCWzZx/EMoMwWbE6oDZjRDxnQr2VCuC3/L6rb1KCd8wVB86M1wpOzTLjlY7T3rwuYlD0eIUG3hR5TIAF2c7oI9nKTU2dY38ki39w7HEM+wbdwHIzu4VmCfPXvOtWK0wnsfwIj8mCxFh1g1wPmpquuDGEi0uPoxwGrdusdCvPPpcFzTsD42s6NbN+zRZ3IeQdrH/cpXC+cQpQT/oK5S40LfLvDix6h9xpm6u0IBO5nT2AonZIZ79Uc7k+KjdH+Jhqvn1qU2xk8AQLzWU+E0lBlRRgrSk8WuhQEdkupoOrxIAvddjXVc02CaLfnMMrLESz7OF/l77s2sd+5RjGD+HqB5b77YRVz6kDiY9fDsWxnjEH9YyvSdiEcrbFGTInNYo2PVQfxGOmImxXMBN06u/C1zzqq7VVuq8feDIPvHuMtXtianaQ7WC1UYRuRrpgfnsVD4SSZ2Hs5LzB+f90H6mVrkkP1aoz24R0F+IveGPurfgWTdvm6QIvZkyIGfsO6+PwHiFzo0+O0Cmzhg2jb5etJMDJ2HmDrxes3Yj8hWatuxbJ/xz7s37FBtfPRAnNdrxLUp7NLA4M1zbx7+x+oy2dK7e5xDijaVxI8XeGA/ZPxapaHfOqBwLOKzNcqN5i336sAr+sF25zpJazaySXc7oeMqD82Wz2ywbdxPRzXcVLQQ3c2laMLQuyrsjxMgrG7yJeokCmSi4fB7jkW4HmNUsKNg2qseniBMJ79nEj7xwLoPcc8zDlRxvahq4MlaS4t9FicIenZHhum84YtW5Pl0ILXWPLmpVsN3dLWieQuBZuNsZvh/shPFKV5xcazmttwCdh+i8eFsSSUfDjJkoiPu0YfNn22yvDeB5v+0Av+Gog8fAbbmpavoRd/euTwDJpyO9VAbzY9ksFPIvyIcj3EzRS+2g6G4nxEfF6sxhK+xh40b/wjyyh9kvlVHEywOMYO7fOLlqyfnagDYAg7rG/1dRVc/aPsaqnEEbw4YB3scQW9/Mqp1wDzL34usORqERsxSgwWtbQFB+GQo8NrUhv+WopI3h+Fidqf3XeYv0ethj+6m4nUCEpC7FdlK1YbHpC4SmKz3KvorkBl8XHo3v1gmcv2Dr/Kyv+L9/Guhzpsm9yn/s/3kvac3ErA3Z8hkZW3aqzvBWSQTRlCS44HxnSlXsF31K/o7S1JwMZ9TiDPkE5g5fTNch17H/S7U4R18eA08y59mXCqopCGb29u2OvIuVCyS0B2rXcrBEH8qTDBFUDLZacHq7hOEViDkeFAHkpjja9uClXghqQwji1jBX2bMvhNPEZXZBg82D0lMMe5Ta0nZxsLUX459I/AQMsy82w+RKcY2LtcpbZbtYylbXL/q080jb26IILf3UH7kx/YQJxXLFbIUhDKrkvVWA+BWG07835BdqBB2QoJK8IQQZjHERJz7daQCpEeWJ+WR1ztPwCbVigASh+Eaos8FvNlinvlL58Kx9oHZK2vEnyH7IA9qI/B+K1cGTw+Vw8bF7MYZnZ++TCNOZ6qA4jAAl3HhQZbczTo2jcZHwLKZHQpMXm7731D1vopyXnKTxS73Zysw9jU0FAim9p4Jgk77twWXs7B/Pe8gsnKJBlq6GdTLd/7g6AkKQKHU2/gMIjGhAjtr4dZmyM0q+KOMd3RK/DnT6yHGiZ7+eaWsDrBGYdvLxpomm+U7U5eSPlKtTEHvwuEFTlL2EtCrmBeAQSgy1dK7fdxSH7UHCLwp5fDN6UJU8DW8SkfKTYUyQiYK+UScJ6HFxmaD0xW7RQTaAjumdo9PhXrWl9lcDOCmKrv08dYTuZSwt1XFaiHq2Ox5uIzA5MQaNSSXudi/B61SvFPBUed+KkaLG2LUoanXCdFVvXJWhqu/C8/BFnlF/zEnWRolalBsxplA39/tzLUrs2ZwF7bGWt/11UoMM3A5epNySf0Il45XRBC4ohCRoRTHcPr72hjy0zegN74jgeZVH+wuYfAGJCt38FvW/NoXgM3YQe9TIHj9At655dXsdSuFwLrimK86W/A3CC+gJ/x6ZCk7V8G0cOSA+ev6tPLn58kAKrwc7ycsd1qR7a2r5sEi9caY3WXvppB6VwIm+rJ0K5KZjabS0ggh8s3RZfOLMTVD205aEYRregBElq9D7FMi+sFHzmlYfN3rnPoPJoPOhx4NyG3kB+hZN8B1bndAYz3Tp/h9R4+KfIOXDPd0q8OpbP4IGtlUsbGbY+l4ARzfNvF+2HmFteHeZnecHp/lgn7VL8MArN8kGnTB92l52f5+41fOFD3HmgnMTJh3l2/qOVnZVhO5uEOb6FRbWssHsU/vb/3bJF0m39l796z4Vaf6HVEI/vFO6UDZdfpVLc8a9iDr2lDqqUexqeKY0uQ9wIUxpqS02VXG7P3zSQQ5EJHsWjrDR8d2hQ+HwlAW/0KNr8gwHuwPLfx2gRkNG0J/spjgtEtpgldrM6FaUtP1O8vNtv/7nIFX12ukTkxVzZt+hLSVDRQNd24ZL4uwgcuajMi9t07ydpTLwfB+LWwboMXYF6cuiD7rB7256gY5l3RS0CLihaH1eQVy34sOPCnNwHzzGYdF6eEhyavEGsLu9j8gQoPz8ih53d8D+gxVlWw1UcC1J2WzN9KlSEc1YlAiNaCuOoxgsHNDGhZ+w82X0EZH4I0PeMoyl1jIIkog3YNEDqlWlewG+dWMNv1V+r82hdYy1kr4SWUd+i3u0/BdL/MM9j8ONUfecuW9hcisOUHAr9KDFal2f+rH9g6ahCwTxn8zUiYsHEVroB9jr0K/fzQo5m8AZhuGu3BqRJkGt7Fig1sajmY7borDhxjKogq3krIBj2hW/yxKRA1GR71/IC89ho0y76QS3C3khCrZ2mf0DfrZogI2WGn96um5xRBAu7royBxEk7DIJkQQfdNz1S3z00w1xCacC2cMz6e9vbABi26KFisQ2qZB3MQxqsdw/LANBrYDzL84wPFa46p7ceasTr3MYXqTtLp7beXQOMSsPmRvKEeF9Fm9uQoVtJTeMW2H78Mso03sD0fxGVCZ6yOPvjQ8W4ICbvow0ZjrFalryWXFgYzhnmrDwBlgk9VjtRgvAY7HsTKWtIgM5tgPIxzqrjv6Uz1O3KK6f6bfRgUpU26gryNueirDn5s1JK/+ji9fSeC52FVqX95Ibbf9AOACvPxMWRqw2/5FV4tEtJjX0/BItgPBApuldB3GfNg0ozv/McbiIK/Oht/FpUAFiRCVaW2iqU7SyPY8dqDBntGh/pdQh3iMdaxmo4im2vMariTloQIfqwFglgbK9j0K+H7/DXMGHsddLlvQ5TetgA7Zw9JWj14obfAtI1ZTvchsBZcYXTAu2bTOyocP/sXJsv0Cbb48mHRyQbexhOYrEuiQjcOC3zhqmhbM4svML2OPdalMw4m2tcqSNzCRxiNMCELedzB3fwRatkvr2A56Ps/3kGDomyDubj+or94xO4hyZOpwYauRHnRYbTf7cE/P68oo0t1/mk33ctdRqgqlUP9W3BjDD+mVeY04YWWVOsSUiZ1Ju+D+4otHlvN4G7nzN+cU48oF/Lg10eQk6Pzb8X+LTiAtY3mHNbHX4Z9ygXDX76AnNFyGFcH3Kzi3vAVuIAG+xdFMJa9y0ylclITW9Y5YJP1yzN540P4uNX3qUdPE1yN9EQze8LNjKGOoCAGBfaTkxXQNFmg+HmaK934DlhT5rRw07tk0mOuGDt/6KH0fcubPkHFQpoKKX98zSpXt5m38Qrd/hFg5+wFhjCMQyUfs4SQZSrfwUpvkQ7hwUi3eGuHdf4dKtghwIi0XY/HtaeD69kmaNjibznpyQeelt2BKIM7MMIpnAwaxzYQtMKqIMM41PC8kzP03t6feIxdVWlJn2Bst60xv8a4hdflKaJFXXGwVq+PKqOf4uFAwBdAd4wQsPlJ+gS1x2jlxSEILiSiSAu+zepGZAW0pxLacfojmR+CnUFPzjx6i32peGu/Tw174p+wEz+rYO78pgNvrZmpQc4yYCyfPrDKHgbZbXx5zYrIh49ifGC08YDZm+cWbvoXceJXbug9dwQ41tZArVpfkxcfZBxwC/uHJA3XBcVHM5LTE7pi7enIxVhXDx2EQHrjaMuvi1x3Pri2zwiJGX4U1LxjTt7qD5k62U0W/iupkDrCnYxb/v7TyzDm4xUfxzkCQi5ec3BMGgnN10o2qKhmMZQc+7blh2MgV4NFIEtrFZurHQ/7nwdcWAenB9as/tGQ3C95mfeCAzVTxQQzOSsRtOL7nWq33zHguUX14SCkKtX0NkhWtM3A2fzMJMT5Ifl7P+B6Ngl+XBMG1v6shvB0/sxI6eQuWY4HhwN1/tuhjZcnRPH4CupDO9A7MgmYfp8Y/Y1PbBqrOHSmokcH67N14NUwShiqXxX4zu5ML3TimnnP29Ef/8DPfWon85epEaBhG28dm12zvrtkhJY4Mao9AGTdQTkJMP51Nj5Cqhb813jxUHNdRo+bv1w/99IFWz5Cwme/uVu/6ZW783NoWD+thn6OvQ7NuCk3vtkP4zTkNYwXSSR//mIbL63UV9WRPiBVk9VVaCoL3/mAhFOWFEuQ/HSos/0dHwsKDIaPYQzG2/FO5lgPGSv0sQZC7/NEzHZJs4ToHUNDqiMkp3Qd6DOQbDje0R4pl2lvDEO7/PND//j4UrrnCyw/sYPKjVesf/7CLcwfDe+n2vjH+6690pBdbU3Biog4Q2PJn4Q+i9ogYTzXEJ3GG2kfAwAjed45GGGvpNrlZiTiR64/SnO5v7cZBd9ijH4+/6c/sBfaYzGfD1kIHbVRiVRmc7Amcfg5bH4I+zQLGU862EG3I4Qwcs5BP5pIPpyFbKTRqIjB/mntyn96NuC1JGFd/b0DvfyYG9+UC6INhQRP4PGmaiTQZNPbMnwROaV//mXeI6eGxk5tNh7kFjRNDhB8dDOkt6BvwVgs9V3hzPCOYjHpwOr1Xwi3/EudVboOqw6UDB6zE6H+ydjSgK5IYPN7eOP7xXgvBxv6j9N74zfawBdKp8I/PqfNhIB/PHarH3jTs8HMe0MLgnkqkXgJlmAiUSXAfX8UqIdSCpbuGWVw98sWHMq+baziz/pAe5ep1CTRtmu8eyDwbZ8+G29zG7HQxwrS9vj+118Y64tygYGIF7KHVwWMpuLH8NBkFc0pFzR0EOdWOZorj4QeL8USx4oNViusMLKNS7Bcb/UMdekb440nsumR5hJIS76geC9bwUwpV4KNp9HrXN2b+Y83np72nTojPwys+BwzeVlsF5HNf/zr9/zxGLb5+bFQKh1aw6Wn1qEBBWMnS4IVUS54O1kpYAf9cpFLFhPy7X11EP947McWdLzxY/bXz1K+v+5OeLVGAV8gr5Xhu8pRB4ZzseWDGnqSiij+OsxYb9YqQygvC5Iel95g48B05a//FKyNBdbe83vAui6jVhVdApYc5lFJcA2otRSNsbrNx4WcxR2Q2HFGMH+NlwCB9jQRGwbKlstd7cCjf76oh2TSzPdgIDD1R4M6SxSz5aEl9b/64m36Z/9Xr/GcF9RnpsKoYnYm/FFlxtuetIxvjo9tRtk1/+OzDc0zbVV+A5YR3PjYYllLrUjjeSZ7x+kMdugeJvjjU5u+MaarEvT/xp9dN2qxlBknAHdviVh3XmqzCIZ4ARP8pVgH3pKsWX3joHSiFt78WDNHh/YCp1r/EXF7n4vMtA4m/mIRCriTQeBZtv/xcmdYrYSUhiopmz9BvW5nwXi+Ly4oFp9HBzcywDQHbxP81VPN7MRhfhWLDRnXHDde/moWf1ZNyLkpT597+R0Q2B1K0Izn/F+/cjnpRQs2vvEvvucLf7/Le3uE5HUtfsVaZSiVpfE6Y7u3DmwYcQLlHQgQooEaFFOT1UQ53KVwm+EvD+QtKQjK88Ui/c//JQx/j3dw/WEbceO2J/X+Zcvwr5/bGpAGzNTtGWrnIKd6ee/BzO49B2V3EHEYCIOxhuMyQjbOM36sPGRj9NN5JW++Cw67m5wsfJldoLFkT6ytFzb0LX+LAPXDK3XmCg7sr5+zPZ/Nn6BmCXzv8jd+cN65TbHO1Y1XaLYrsD/UbbHC7nCHu3vuU+znYzM+ItzJPws2aM9bJFhj0+Xg0Zz5f/2b73rROtjO2UKR/ePBsvWT4TFIHAJRJRisLp8dyCNbJIdt/LL0c0hFtBM5pJyww/54tLJre0CAdToZc2PsORmc33dqbv3Gv34INA0XYi170GFJmvJfvkLTr3KMsVA6Xb6Epxd1tb0WrJoDVAielksya/CaNd2/72A8WyY9L4URLPFu34HjQ2tJ/5vdYOZVQ/7/7FEg/98zCh4O+BHw/prN+vY+KQwp9ihOS2p0h4MfQpC3gKL4dwTr8xBCUNySkXrPR9GMcrHeYaq+H9RJo3Ugj9ucQ6elORH5a8+WNHNbWAVcTMRL3Q/UlMEK9DS00P4mtMaiZa4Nfdn1ST5fKZiu+TGDs14sFOMWMpK1Bx3er/kdO/muGZbdG0dAYSeDHpn9Bss84w4UvvshUh72gIwWgJDNlkvqZ2szQejGDFaioNHwFD/B3EaLqUSEmGhFaWKMgqPUMHyIOrVnL0+W6Y1m6L/UHl/enTisSQRN+PRCExtxbQzLWZbmw3hMJ2xEHp8s86WowSOJAurEvxdbno9fDHk99fD9pHyTtW+3+Um1cCGiFQugf+U4B2db9TBScd3MhW1D6LppjR3tRoK5ISqv9NIKqB16t6SXxqsKq/1bxb57RYxt0SM7oRxRM7u2YNZms1Pqoj5gD6A1YCQo/cMs6Ads1unVIK/2EMvAXa6kviLLIEq7qsr0oz+MGpQH7Hkpq4P6dgdsUufEls/xiqBWXgHV1zQNpqh7dXJ92kFqskcyzN94L8vlRb8hOf3cilkXcwkax9sZH0d+AkT4cB+Y0OMZmyfaM1YdEIH6XXKpxpwREPA8tdBWvxb1RVsFbBd1NjS+soKPpD43jPNugnys8z16OggY8/LoVPkRfSfCXxlfrLfXI4eeInDUfgkfg0iiKgHZLj9E8DgpYabMVqgK9YoDZzgGi3Hw7/AgSAb1oyka5uwhRHDamwHivgML2JKZAvidbYM6FbwY7L38Rvi2Sx3jerc0q9VKleyEUkR+/c8CexIxE6SDZWI1eAwNUwpxhHvx5lIn5XUmOH3Gwe92TrwV7WW2wFaK5MTJQ0KfR9UY5KIbwelVJhjZeZOspu6mcDx7IrbMyRkY//ldgHeXUvyocz2ZsalJUMvSC4Jc4gfrnAUmbH8JnAAdUECfXObDxAoCHPyqYzJah+cIZPyxyY4Oe2O6PF66cgGOi8N72QdMS6NtDeKoUu16EYopPZYj1A6nbYZE6ID5cIn1Xf6SVJpJWmCw822RlaINFyJ73LOYJDbUUFI5H+3ViAzrjB0VLvXFwqZ3+wWj2IkS/MEnJcuZWkDQ8HGFqzGGSJK0IVh6yJnQPd0NfLKPh20O2azDRbr21M72EDD4mGpo6ryO/fNJZfQgzXeo9J8dGmopSRjS/Qt8k7Ejyh2/GmK/7jI4DK8XvnX8h73CR7fC5FEs2Mg+U0IIMVsluXCUhgelS9ZXE9yhdkhU6hjOGay2U62w3x0VbAu7umEHaS4B95i3NWQQGuPhkusyR1tE85fSJuwr+i487/CNpOZeYquRfhAcv/yZHp/tAbz/4j/WM4VQzciLeecoK9yLhUuPJ580qxr/ssMKLAlv4y0Y2DOxlctaWGh9dXOzqt77Ane8ryEpcl/J3OWmDxegu1jNCyeZTw6s4aDMPr42ZytZEtbXMOKi718+HtbDPjHh8LYd6p9PFRit1y2H/Jgl2NCCrJkPaYvA3/uy12It5rqrcuXVrQO2ags1e9dreDAkcUNY2eya+QqQDthn9yWrea3AsuUD5f3NRhxI1xObTw5fwYX+PtS2LdrQ9aVKyi1FEw1LKx9mCLAKnF1XIr6DizHtu7qDKokCWjxOOhMLdIigHpgttgeZDjPfdRKM7g+DuvdrwOZl/7lAehQ5dDj632aGwFEhfcktGvh3lVD4eFdQvZdfRJ73bljfcZ8Bd+V91BWsSOZkkSEYv7mE/UcVFEvPNRJopGtMvcV3B+ERwYu81TtsAnkcVse0fGiFRkyDqOyCZRcULszlj0H4ixUOo/UcWvkdApOsFrcUqx8BHk69Z/8bv/M0JjFU8E+mzsNvh9Vzduu/eFhPRpuwfXMk4PC2n4hRuR+W9HghQFCrH+LZgzXLyWtt5YVOBi34t1osbvPkYK2kD+q0+5KtAxQF+cslGB93B3UQlc+rhWKYXbF9q8xiyYPch1s8kLXSqoBq8bB17IQSO/fnw1iKMa3g6Xk8YbwoU0FT0etgm0RXikP3mIj2p7Jh64A9WcOpHubDjFxZUZ0M6y/qsOWmX2wQPoo3Nt63LphV7EdQ6FuGw50sD0snnnvwfaRvIofRtRmDtOfgp3or2I8LKSF+BATgjaVIndQrilloriV4LXdK1UFNGtZdLjNM+fCNoykewHx9nWQFnQMDm9X0Geb+2bYgvzQl4T6m3qyLDKLDOXwE9PiiOVvM3JRB9P60VPuksTEFl7gCIBnvOCzkW7Oc450LDBsmOAjaMyMdrHhYcaTCzppoBou87AM+v+mB+teND8bqFfvwONRn7LLhZwzNqEWKoDohxq/sFfyr31yg2FTd5zuDvNMIwasARaSoZWCMzjtUD/Jnx5DE1iqZEhxW8FN9FWydAzj8ou7XwQJKPAJx8g1GsX+PoOLGiqZefAKs9m42MMhyp0bA4oRZj1GVhey8Emj54cBs7pMBKN5SbBdnI+FfD64Ga9sJOEwGbFChLyBoLO9LkcRTsByO1xF2z98FG0brsOWaH3NoD7VHTceJ2Agbl8gg/wDslMs5mNkr78Ausu409L7vhtG4zeGniQqqTvGwrUH+kIMv+z7iu/0NzJueArGgWtg63MKAecHDh88rmLB6ep0L0rdLdVAG/U7tWOoLlhUcgSwEdxzUEktGL5LSf9czHsYnWXPT6qF52rkUNatfjPjBqeAoHzn06a2oqTsZ6NCusx9am0uWzPsPMxU75m18fCi/YrW4toO1cnlQ3RhvwaJf8hh2rxJQU1+wsWCA/+VT8vf8qZ/eQijR30r1wjkycnlmrTzO9Q391b81vUk+HGLRRpK+M5vFDU49JByRsNfI6ZYvbRWcnviElGLtEsYOOISvG3IJXZRjITxTAuGc9iuRX4pZLF95iaDgdR6aFVEyqK2mEWjKbZc5PVwZyc1jd9j0KZodx2Pi7xnzEB7PHtWfD9zQJ6wv8AIsFx/nSWiGNB562HwaQq0bDRm7L7+7LM9WSmPl9jWmnEoumE7aB7vHWAJ9/MYraMrEIUsh24OwXB6RnFP8QtPHujfsELcdeKpmu+ktO2CNpdyBW7096hVtDNa/+Enl35eq5VECVL6tsoK+mUm9jrfZjPW7CfvHXsBagXfGT0/HEnr5UcA2+amMvT6dAG3f1WlWMFAwzH06CJ8fn3wet8l4K8+PAONRaqnW6rLRJayb5b2JH5ueDNmyfQ9O8/dGBDv8sHmLN5gfxRy7n927WcCj12FERpO6V3kdmAFfH5gc9wjxgXprVpJmJRQYSdH6fNBmbfrTCEeSXKl11yyD/5ttPO+/dyTKvxrMYreT4Cm7rNhIJ7OZ42huIT6VGO3eBiioGqQyDFp0pse2DA0W3g4deH/zkWoYGcYCxNKFD/dqI7bn0mI5XIoZrPzxRu0xWpqF7m822O6fBpNiFww+3jW8kpiR9BjIzTynDQTGs79QY3ichmV3VDnIwsOd6khqkonvo7vy/vIePXt+1Qy8+qhgcxUsGrb8wCbYzjGcYO4Q+LUbwP7G06MuThTT4RyIadz0spzFPuG367E4OGfwpt88fP7U34GZzxsPCXXPGD3PSzHxfVbCfocVdFCUJnlZr8SHU0NMjLnZNcbbR77I2lU+IGm5LQaR4lqCbe4L2MHyPPT3sYxld1EiapNfBRhZXhDWgv7C9sCkhGI1rYDNh0caf0KViZtfgd+P/sN29CyCPmuCEKpvf8BhcDeH9fnMeJh0c/LPH7Byn9pK3l11iuVQBOthX9jACe8MG41D2U+/xJHcXPMOo/kqsFntuBwEUCvRl7/2gOajpv97vp4a7YfuzV4RHHh8/JcPV4UjPojuUkV6O5zYfBrjGj40ycS3o/8dVsyNMpSuRYhNzjo2a/Sk6V+8/+mRZMsnLnwkcYB9WVqTjgZfGfaOcEKglpJiLegiKcsid1t9b4uFtbOumB55od3vOzRrBncX2DnZTK+CtTZUonwG1XPr4pNCbbBvHWEFJrxTBJ62xvb6JY6hdpUO1GuYktDdqOtw8+M0+VGPiX96u4tsHtv81A+jMBY1zGnHYY30CRuzZ2vCk2qHW/13DYZ0PYWHe1bQm6IYCS/vPy0EoHlv/q4CS0vnHNLXw6Gh+oHJ8sk8G7prPiFhe78T//x8AD3uOWycRBjMQI2qf/p3F+fvYp3ZpMKrIl4wfhvbrpKvVIbGMzwQyJwn+/NL8HMqRQRiS2qo49QVnHURUbVevGBes0sL3OvBoq6cGMY6NAH50yOERDwCP9XGEPJ780ofuak2+3tPCEjbTseFVP6MkV5OK+xuYUq9XZsAOqiPTe98GEXj2yqW5gMv//SP+jZeCfvzd3Fz/RJVhT9j5UY1BlT+fMlFkILiz18D9a75WB/1e7CQ/hvCmBtdHF/Rdg68JYfQV20VB55iJdP54HPwmx4tqofP1FhkeVnBpgc3HkAAu26n7lwJiQhv7jNGN/8LpMiKqI6OBZvHIJP/vsd/PKUfmmAE4s5/Y/P8ggmRxqsum/0vIOuo340lsxaiPJzDj8jyzmto3QIVnub3DWvt9BrYPXj0ELX0Q23+kxTCvo9D+Fev3U3fkL/Pm78hrb7gYLn3ZISxoFsbzzgkhIpqB3uHPyG4VLQY9H1xgcazu6BmtYKmYc/ChifVDOmf/xP++M8Wn+jziPeASMQU/vQE9R35PEyo8ULA1+KFHIqhD4ipq6mC7kZNrRCuwff6jFOlbkOF4vyHwTx8VgFu9WnzO6SZJfabwad3ZepOlZvQn8zPsFC/vy2/Ls1cZaUpY7TMGM0lMVi77Ynw9JBJj7fbLVjBY1iB2YbbjPzXPenux3MIx69wpg5mh2RyPqwF9CW1ZOWzB1iVVlbl6zH1EJi1yKCPiLOhjP0fVi/We/iU26mNb2VPsJN6oJgOmdZC8rgs//zlpDwJD+dpjZEYla9gKbz2Ai2rjWjuyPtm3Zt2Duli9EjpZ9NYrEaFsC9PCf5u+ZYOn58N+fV2wIFxHpKv8nl94CP3e4zTEgeLqWYrNL6SgqaHEBsr1DUeXsU8pUEii81kwb0NtTV7EeXwdYcFv4ocvp4/nx4r1y8oleZQUTJWYIc+pIaqHrWheVJcXGpKX4xccMsFXAUSeSnUZosChRaqAsQ03931ho2jVkE+/1BsymEL2INYvIza6UPteKc1Yt1YIbTlARMx3xnDHKkkArYDNNRm0TSwhYv6berqAyNOuhVL/SQ2EHfum6zaS0q2368VtaUI4x+pGbu9ni48+K1IltL6NsRzdjNsrlmHnUvBkmXOvPRPX9KMs/iGuV0rwyybC6yHn/8h7Uq2lIWx8AOxEBBIWCLzmCAgUjtwQFFEhgTI0/fBv5e962WdKquK5OabEnKDaj5Vyw1Yls/o4XydGvrj23S5nDFS/aX5ilRSYKbmFo1IxVXjGMSK2imviqbm4WHMtp7ywNn1N6wt1GQ8bNwRfq6rjsMy/QZzKEyZsvkVmjmoC9irmzqo1BxC3GrdNr9fmTCMTXPrE30eVvlP9mGkfY5U5wuVEdUrbBi2jY23/JYtxX0SYeIKu83fugGvdl9X/dWbT9kuZfil1FApYh87m94hduMTJaksDWttf2Tk6XyfoB4lSKvDx2iW8m3H8F6cfNJsz7N6zn6Ftyg/UY2+GjZrUXYB88nGdMN3gypcISmbvsaBlVzBfBLeLdTgjqcOSuvgh89gVdecaoplN0xoLAKHofEQtKUsXdu9W8CYp/3P3xrzYVFuCkdbRAPrTzDYT3/5mqnhwFlfKXv11QWy3bfHehtqgAX7Qwms7Yh88EGnYD9u7wQ3tT0iFUl5Sq/biayH9rToYad8mtluF16+yylPJOfUVizpJhc+nOKFUaBcBrHg3u4/fnRHKAWjrbU6vILnQj37GQ2KRhcfctM5wvjTHMC+N2ZJHe/uESOJx2BIIgOBZMoONNnwd7Wh+LvV2SexBr2Az8g5hx6XVER043hYOecZy529S5Fip5YhRGXkQiOvRVwVvAf2dtuZUIjWEnvHT938419u5y5IvrhN1f342VN5jm75akCUZX/7hzc+CRFjtpYlQFokHtvNVRx+6xlufp7GuWU1/O3o8PB7Mg2ciEtksDT7u8G5ao5Ua/uFrTR5dsrmb6lrGaSazs3h9tNjiKq6Vg0vJD+hIoc8DYxTkIqjxbifX0G7Gb+b6SYHCOYDp1Mti+2GTn1KAGWji0+pkwAqeH8t5FMSY/SlF0C94OSDh+Kv9Jc/fD/Z+wJPt4SSXR6K4B8eXP9oRGBZaqlgVgoBC9Bc6h7pkZHEe4vgVy/o8QeMsTf9Hu6r5krAwx+aMaxkBG+hJBFlBrUxd1qhA5Elexps9b9/tLWoeun5TF7w/GbTe8xWcMB9gmS3PafzjhxeMFwuAaqeEquWJtIQMLqsxE5iHZvpNz/u+d4RQaiblMD9XQFPbzoRAZ8O6f7YlxxUi6VCKqm4lOTXfobfrGt//hCwEyMarIzYodad5dVyF2gL/poTowZV/EY4ZSP8+U+01N4x7bbnAezzZ9Kbbh4G5ZRnTzUaTIkwS6yNyXqkLjzYzumX3wxrdI8zmB9uFTXYCA1Sb/2qIXUn6n+u12H2ogsB2vCe0Npb3jAr1y6Gd5Zgqp3fHKNu95LU3+cPDL2CZU8CEzqvo0q1jlTDbFQSB9K8Sci8ff1B99IEJ9GSsUtPn5RoJMjhlkfjasvzxe35gfi4pxTP2Br2PrEyqIRyh3GkhtXCPy4F2CkfgyhvemLrtt8B52aRqB62Q/XLa0Ftdjn+5fO0N2YFfrgjJrvt82xh7fqPT90t/xa+2t8M5Yrj0DY/1aRCsYWjqFZIuIVvMH72lQSOxYqJ5NWflO3i2lTvMj2SacP7VWZTLP/yL93aKwFDFXcBy3INsBZ1Y7P5pwt86qJIdfOsgbWA+xySwJmp4YcPNk+2c4PFBzyoty5/wVx0nav81u/GD8YsEi+D6/A40Wh/cYbl5XAr+Mt6n6IOGwP/LW4ZDKBxQ6IoDdWW3/aw+aIQR7vVq5ZDlCMgdLGO0dWQ03m51ro6+O2drEgyKuGveyjA46cbDWUqA7r5Q6gO2gWbW72vfvLt4TBwLbXfFIFp7J6lGnX7Pfrlj2wWshae3+1MQ8N+gkWfUQG3+aV+vnUt+8pW+NuPIWwNdfYbT/j6HiESIRSCbvQaG5wvykgtzduny212/N/6RnweGmx93j8ivJZuj03HmdkqjJoGPunSYW9/qZtXExS9Iqtna7vjPDXmx33M4bb/Ri/fo8nmL+RzNeaSD4HF+5B2lnwn/+rpQHrGJgSFDA5p3FB0JRqbc7ZbwQxBQYPQtaufHodb3kZdfREN+n24PZzceUfRanHNHBWnFv4F0Mb3SB3T6RKvLTSr2qLape2q+eendC7GODr66Ie3SN3qCTsZ/2RzDVAMabEY2P369sBOrNWhd1EyBF/8AMgtv8wwPjx2aF5MtVpfkcfBbbzQkmp8w/4aE8JE50taFeARLKjxkKyXX+dfPjrvHGGGFrfU1FAy0aA/P/fbb9DFJQr+je+Wt+AfXs5q93C3lsATYqX0TueSbHc8aNDHB9ncVX3ZH29Q9ZCE5ohuXTejjIAfP2lewIb5NaY6LCOhxFpd/IFFXoQRKDca0iCftYAPjziHp9sYbv4IGmtCDP63H4y9i9uki5yns3qxWglveZSxp7mm/9Of9iO4NYwZsvvjA8L56RjMnEafoOzWOw2XGlcsynMdRmyGWDdGOVhC2R/Vb9VY2C1DHyx/3VcCWqiYRDkdNcBKSwiV4W06OLJnI/jht+pKAt3806XqHtYcqsXjdiechp/DMkbaDQZ6udBo3ZGG5g/XhVX1nEiPnrRhRwtyynRQamztrkIzJ1hf1T8hOFPPz+7GBCo+hN/K6qhlTp9hPVcQgjR/JBhnb7sSLa18Qs9ER6Lu5Hpgqh60/9anqfd7RnWM639+LWyrS8qgIZfAMU4pPU3+Y6C5AmOw5T/0l/+vobIm/8+JAvC/TxQUH2mlwVizlHFkQooY5AsBeho0ZDeFGvwM/YtwApQCUvCKD1qqGfQksMFYrefnAh/fnCKuXTFg7PVVwHoZQhpVaJeuN0eS5PZI5S2xOw1zBnsEwdOl1L2E8UDWUePU95EMCBieCEgP/kw4lEyhgfi0AKtNWIDtRTus9/VhYJN0acE+yR400NNhGO3724anfOdtn8/Z8qLyBX66qUO7eLdvVrmMMvh6ijaNKnU7IxyfJTicqwjjVxaxudkXT9CRllALpSwl9juB6twIEIdk0QLheW9cKN6LHCeR9GHr6qAOAJ9csDZc3mye+3mFRXyriXAL/WEZSOhDa0/v2PROeTP5eSXCKtmdEJfLUtOJazCCnX218KGqE4MoNyrBRCspNdXXDOaAHEJV2tshRX/3sVouRYxg2KQu4uWkbdbDs3/BQicvaip7DfAXhZfUVyW80Ht5aGAe75oL17/4ju8ocYZWfQsc0NbJQHzXvII+cmtNLdZ464u0FOnqCI8EnM7dAUcVuqfr/Id9sCIQk3c/34OFCAkCk8T+qLvYh2CxxnVDtINAQ1e9B0w3uwvkhs6ipnFbABsOmQLdVvhgO2haQJep96Fkvhk17K2CC15xoe6NK7VvHgoWHr59ldNchN35nBhrkmMC/qRWInxUv5rluz54cCi9EwH12geLRDGC1wtAZHfyrYb1UIlhfYMJNi5elzJTvSMAWFpg3b90gKU3DgL/xD1oyD5DRX718AWKg118ncAaCMQFv+dBb/hqlv3xZoKwObo4PJQbY42SDYMRxtQ53PZgja+FAljTQ4wUdUm3W0M6WDVdRPFte1m9Tu4IguN9T+28Mln3uW234N95HylRHaeD+Ty+YBJd163Lg5suS/l3gacoWbF7+4gBMZ2vKMPjGOJ0F36GsV/3BMx78KD+8MzTcWr6ET7FzsVG7gjDunEvtLhRQwtaNgg3rRhqL9WhZgyNZjzgPwVe+dMDH+y7Ve356tuDB+0LepCntpqmtyHBcdAxWlTvnRKgPLidNBKVou/9/qv3HupX506tsXaa1Q7NEsLdxcHOWX0OrB7eM/CspEKtFGQpO/ClCe5/znZr1O1ZraJ1uUFdep//W9+7sKjhY28P2Cj/doAem6yHa/BsqCfdjUG8v3sdrkiO0bquA1v9s6DB6dPNFPkn02ARdy3A+Bpbaj4GO2BnQ0TAcnllGy9nmB/qOwFWijwED2XD6HxNefW8GiO1GLTTUXzVkiqbXkw9co0B1c3uBiP1+8K/+acVbkXgXO4+NcVxZUxTy1zxRwpolNhfNqeyOELpENl0u4IvZZehU0Bik4J6ufY2xlv110KHiwekRtY8LL5qhVvfMRv7tb3fHJ58gyx4LNg070M6+a6sQw2vEnbywk1F8egiaOd+iqbImpt5/zVuoCsfHtaLQ86+K3qTH95s9e2y+cZ3PlzwmdGwb5Pg3/p9vRtAhCnf3hZoGgKXbcfTpLsnm8oRz7L4ZCb2ffNYMQUavrrz9ivZ+c7Wt81zbYhUfMDae1SbeTCQDfm7z37PWzEsuR1UlMOLHMdSZ9v/G8LQH0NqHowwnR31FsJF2Q8U6eRs/Ftvo31cySm5HVKR1EUOou9nRxGpZWP1ajWGhg5bIlgaZsOJRjFEJ2tP3f60S1ed/3BQqFiGbZg/U6aQLgdDmXnUjOrXMN+TY6amb7/81fswPz9+CJnrmdT7Xs7N+lSSf/iKLYENweyoeQg1WP3RkO9MwMu1geBvPDTm44C/J385/K03+yXeApYpiwZ++GIq7gLIb3zn+o6pLWZ4oGE9xvDNniE1B54HbDS1EuYaUqkRCUM1n8K5VXup7rD5/aPpfAqlFtwvuku6/nSvlt3N1aFW+g52lMvDYJ0wInjG8x+N7ecDkFdXlpDy6pnAXa03+/laiZAzaoCPmcI1FH7OPjQ/5IhybvmA2XnGLaRpICJl+quMecc8BRbXR4ON91EF44vEsbq+nDtatK4GUzp3L+ijGtHAyUwmhuk5h3/SS6LeLInDyolmDPV8EdHnaklVZ9v5EybZJcMXN3kAdkmSDChvdUeAPxtAcLssg8M78Kjx1/BDF5ADgjdEKNpdL5it458fyydPsmjyMZ8DY0GV/1uvajqYxvIN5ouq0PCFz6/xXTGr5X0YOKtOSunyCV6Ahya88FlK3e7bscXPUxGCndITvrYDRsY15mFxjhTEP4bWWLiPG0NWxxjByJ2Mue+0AvblOmIv3gVsUl/ZDBtklvjuO/LQBmVXQ+jkKrbj4TK84nOjgbfBUeyVCa2+/VXl4ev9ANimpAJDKK883PCCrENwY1MFcxs282na+H01OsXrtjPFpYdmU3Uasm+sFzT12sCZOCZsZXNTw+jrI7K+727Fhs6OYfTk3zQGl79qcQ89hG9Wh0T61UvIhxz48cMhCoWK1sk5BOOgYVwRa2rm7/siAbe2IyLY795Y1GX3An+c9KCVf+DB+j3yIdz4FC0ftU+pkDxK1Twf/miYChdGeb2ywftkFRhdwFCtH791oVM/Z2qM0nZis33bMDw9QtQNJknXcJwUsPEPtdwLAev0jVvAX/Ae5fEAhykN2gT+fS4Y4yNpGxK5tQ7D4uLSy0u7DVQhdQ4Pa1xT5M5fMD75twbG9fakOgQlm08fLpQzvPuj+C27wShn5wt8mvwHJ/iqB2NXKzk8ikZNhOVRg3GW0pfqLMMftsWMDlTiVRMWnhZR/8YdwOpcSgJlNk40T+KczWshJXDNTw31l9d3uyUc1LA9Ji66jfyzYfi22nDTV9gdrQ9YqNW9gDfPKeLBNBpf/Bci2Ga9gD35hNjKvNVXk0FqiWS+Z2MxjZMLI5+WaD4+YDD7V0WCP/7x0zPPvv0+LKBcIIFaaTYO393Q85BPmgf2LlJjzGhv5xAz06Ub3zfM15kL8RyEiGvymE37fuxl6GQqEq1RT5fBKVdYgkZHjXy5p7NcB0g5CXtC/dfx3UzSYyzAfUFnxBxWDEuStTWsaxuSn14UDo9DCZtqOwF7wZExd06zKmRSP9STTwR8k0mwlfN6GKm+Ghew3V70Ak4y84Tjz1c2C8DgVDkTXYxG/jnMewwlyH+fOlHLIjPIuBbirx6xQa6Wsd7D6gbl7+lGDx1nAHGplA5oZLiio8Sdq2VvgARa6VehtsVuQ9915wR8B4yJ3AftQDa9AGJRT8jjPtQBGZ56DRfre8X+nZ+MJd6pLUzoMcXan+sFfKQrPuztyaGBRpZ0IpegA8eHCqiWHl/p2ixlB7utS1LIdy/G7Pho//gKsYBrh/U5zqZ6ywMdb3qX/cOvD7P3FCtKBhae6jn0/nKNHurH0CwzrGNIG5FQ/RK+2MJVWQ3LhHPQW/Nfwyy2dwju90KgvodsYy9bwQVe/+oHLdReGNZ0N7YwbJFJf3g1f9+ZAtrRcrbx5I2xoGasaLv8hN5TvrLO1Q6z+sNfpDh2sI7tZMI8S56//48tBzIicPnuTOw5oxvsWz+O4T+/EbWnQLi79goN+5RStzUEYz1mRQdQVdXYVsNpGCX5OMPd+9Rj2+PC5pXKIoGvnexhHO/Ow/RuZQS/6/DExu01sTl8axx09/UdV/0XNcMHKTx80K7AZVGgdIxn+QW99s+k5tt5B4scHPKf/kKKZRQGyx79BcCob2lwzorqu9ve2V8TTsQB/OsHslMIDzY+R9AQvtX82Z8KGO7ziSjSxTF4fTJ09SOXNRH+gqVimSJryke8vjBqV8qIHnEvyZKKM+JO2a1aw/ScQefPvNKoPQbV+ohFHWBmu2SuNSdY8J+JwFt76fSSEq0Z52Mfgp8/8B/Dkc3j2HMgOe8P2D1TKVigPfSQkyYPoyaf2XL8JrX6NWYV63LvseUM/0LITrJGrfb7BGurnGew1Qc+GIadTq3EveBO1J84HE6HQDyAxVdHUkB0lvY2W8P0nsOb+2fTc2SZbOZ7tYPqs0ywMZE8mO3JUUB6NAXqugdqsOtsXIDOAQ2JSiuDrnOGFXrqPqeBeN6zNb7GCuBPt+v2TgkbyJ2bW7gTtSe2DRsNc2Oy8leP2I2ktJnB5y+GPQn+aJiJYsokZIwwHW4GdQxjDYg7PnT4ZDREz0Q+GHs8XhT4eUBEXf+SNeSZfp8/fsM//bScbrUJ0+voEEU5HCoqyMkML8Ca/uEhOXiZDt9aq//mK53+jr4P5WdrUs0pJoPx4ieGS56d6IlYBzAHHpIUVQ5GJL60lTHnChTwds4Xejiem4r47zsPec4oaED7D6NnscqBvh7JT/8O3V3WCeTe2QUpu+kMZiZ+C2j+wRPN3o4ViKXX2FCFdredrKRpR8rnBcqKlmNPau+MANcUYWtLMsbXCwX9nZkiOEXxijU1fIC1WZJeEU+jhqtMXgGD2nv+Nx4/fGSiLXTwpjvXbT23xlr9yaVCS/e86dEjWI6ikP/0NpmF+cnGl3fiQKAcMurUj3O1Vp8LUjZ/Qsqwfxs0aTUX7h6cio0N/0cxKHNwzJQ9UYjrG1Mi16K6+R0Ef/Xdh1t/Z+3vhg9/Vjisxi2Ufn6POh/HB/s8FG+QXEQOaz4/BkN0HnWw+RPUBckOrDKrJFgnJw1x/ukVTG53yeB1am1qWEVqrHuy5PCzGz0iW0e9YcFY6HAkJSS84BQNIw/5qew8YSUzFt7paB0YBLsrOFOcazNjM5Y18D2LTyR2QQ1mN3q94IbP9JCuHRgegDfBUTzUZHFO8TAvebgqZ/vB42AeDlW/6RVYvJ7Wb/1tfbm7EJb1aNDkEppMSCbVBhjON3y0ZjH9l79sfIae+UkL1q6EF+WrlTHV8qdQTUMmvOCjejF60KgajOvu2wHKDRPiSdkNcypzBHwlNSC7WiLbm7ovXfXmNcV4Zz3BjK67FXZDeEAgkxPA8mVeYUYEjh6YeGjWOXhl8BvdU8Ip6jFdTKwp6jbeFPFnlc0fw0MwKKSBIrnYG+T5CDNYm28Tf16jVa3MU3x4rVOI+BJ/AsbU+QKh7N5w8r67KXnsaQk2vsfBfYmbBU5XHfzpdKVmcb8xVg/TCgREYhrs+qpaiC7Y0K53KenF97NapkDNYC+8RxycMykdYTIlEHbXFh+3+aDyvmsBUqMDabXha6xmLRVwmuAfvd8PfTATJmsKV+4iHEWgAv37XvrKgk/s3/pkFW55uOWTiLfN90BpscT/8he3UuxgiVuqwX1tX7E9pXm18G4BlSYIbojPzT9jdeKWg0OZe2j3yia2jjvWqdzQW5t/yxhLDTmDnFwecPQR382KmqkH4T6baO5tJ/ytyn+CJ6pVIiXGoxl+f9/G3kK4/SOpJuPdwJ9/QuumX9l8rXjAgIOocR4pGHdh8QToWej05F4I2/RT+5svtG58wG9+Ad6CTMcm3elgPxwuCuD3E6VmztyAf+qOBD/Pvx22w5f2y+9ieNsfB8RsRw9mx9N1iES5ILP95Qz6QYqoxBpv4op36mpi402E6711qSe1O8D+Hp9M/fp2i+3t+dbX4avB4B5mVF+iY9OLRw1B4I8X7HuoDWYsy7yyKMJAy81ffqE9dEAtDgbaP+I2HdAFveRGbhOqEckEMxyACM52w5OiUlpjjU0/g086tFhn3Tlg/XnPgXO4v1LjXsrG66YHGoBHEtKDu73z2ueuArfvo26xH8bDCE8F+OmVTb9VW17Dg59/KMXx1iyHh1fCz7PakZetxGzh+MH86Ufs14I9DODd2TAuknzzT6dKOH3PJeQ0H6H5uw8GuvGTckdJSC0ezZs/G55gwFChmARJtTwq9wW3vAQpW37Cn0LpBZv5PBHhrgvs+10fIny+dzGZfT4MwCHqyL988hyBONiHBJuQuYFJyJYfsv2rnbeuIHeajGGRLgk4SzASFR8bRxtWLJQVEQrfR0w9zCVVX1++K0iNXCZ/ox6k++uz66CghC7Ov4cw4E9lVcDpmj6w1UQGY5s/hL/8M4qsuFn9911U2tmdaPLL4+O3JSrC/hjiiCavZlL0gwkVbVmwv5Z89UgcYwRa+ZY2fwjZT59ALvu+8CFjevpbb0CBXE31s6ami0SdUM6lzKGX79yCdcsTIRgE66ePwDLDLoHP70mlW/7H5lIsM+DvLZ+o/LtLZ9pFCSg/9yuRoyYEGx7oMMlu2S8/qZb0XOrKVfn6hEXCkP7z25fmW9GAWNG/vB1ExT0nu83P7JNQbmG8Ix12SR2lwnj+2mB52UckVK34L29XNv+EtaohzYiu+xV6+vlOvdMxN0b9XiO161KLOnvnls5bngpiudxRrNZdw9QY2vC+f2rYrpqyInAX1uDtxwVGtvw2Zu7s8PAazNsljc7fMMmLQuCiJzP2n6XGlg94mnA98BFFti8aZH/qV7DpV7Rs+c5SnUbyrz4CUBwD5v3lIYyZlSMJ8n01Mzxr8EveEAfFaQHE95PwHx7+8iQB3lcEFbHb//K538/ranO4uzSqHCOQL+Hrpj4DN8ZG19bNJIpFAfMsfhJmPh2wpJxRwqtuY4p6hNi6b6L2l+dR97r0YFZPxaoIus3hsCFZQMrn0kFlPHbkbWkYsHY5dOqml7Hm4WXLI4cRlBOzUeG1XrUCN+Rlvv3YhBbtq1kMhlblCE/ebzxT5gWgBMeOu2Bn73DVauzTC/wj+Lvtj4TVPN5dF4LjdU/a83EO5sYExS/vx14xCcbC6RaEVdNHZCbSCyzrQVfglO8k7E0fa1gU3TPBhdO+tEQ5GJaXv/Nh3Vy/VDs+4NYFyw/BJX+dybrAuhkz3zKh3+s29p2bOtA85C7gV+8GOMjNPNa7EB5v7wiH39kGAnqGN3BL1hOS1c9fwFYQcrA9xi4umWdUP/8AJfPDtrwsazY/sOEtuVD/hle23p7cE9Zt+SbisRyGeUAy/y8v0ExUNIxGVg2ti3JH3JZHk0/+p8juaeRotEuKYB1cAGGQvPVfvhbs1d7vQe3sFuxIextsv79WwkKW8eGMPmyx/QbBk6dYZF+Yu4Dd1DaG3RWIZB2Bk07RkXOBWFQC2vKolPk68GEP5BNFdXjZvma++tPDRuUisOXtCqRTY9IDSOqB2fGfCYv4UtNt/wyM6LqbIcmbE7Wt8VmNYiG48MPMPfZsZ2Lj3Esr1D6KQbf9i1SUWaXAZAcDxE5HP12Ctvd/+gg7uO5TVmTm1gUIuRseXVOW76qXXOHXB98/Nz3llbPOwQVJOk2sCjczYYuuPp+vhnrmkw3TMTY4lf/W+rY+a7ZE168Esbx/Irn2MoOpxl8CVVspqba8eTAvD6kG2TvoqPuIPMC+6amExucOqeMqImNJuLzA6zbX+BRM92axm2WFNCwrIvHPOlj995mHHXkRABpA5b8aueY+fUiPV6l6qX7G1r54p7OiwgxSzFzsR/VcEaWveiifjjL+5dcrZgzCa7C+sWE8SLWMXHmDjNN8bNvPqBHMSzOCHWkxtTK/MNidJxoQmHKnNrc4gKn79wVs44nRwL7BWBpqCOuLkePgFubVL38HW96Ky5PabfUWPcGmD3A0urOxWLbWq58Hh8j7bXbN6tXC1uXOCkmmRQdD+DyrGnyuUocj6eBU4+kQir/fjz6ukoNZnlrtp3dpuDf66rfeYR6KGDtzSRpW7/9qiEazwE7192jm50cP1a+0C7B/WB3j57/UxpkXND+rcaBqr3fgtQMeUh1DBVNr9qXy8wNRa1+rhR2PCHZZVFM/tl/BYjB7Vrf6wnbf2imTeMGEPH/WKbpYmjGJZZ7/9svQXqgcwPzv66naOFjwzz82qnGM1UZ+JfSsXB5Bl9wWE1RL4dE7yet0IUIZgse86AR4gdeIytGy4V9a9DiXD7tm0fpDD9/w0VPDaw7G/CJFDHrf4umGx8NiO/sR3r+ziW8OnasljNIWCuMlxBaDbbXshqcIewBOBGz+fSpYDFV76QMyl1OTrpK308GUvgN6fD9f4LdfD375Zreu+42PVvL/nCiA//tEgcksEXGZ4KVrf/ZmaA2spRYVu2q1VF+CU+7k1A7P4TAL7I2gnGZv6s/IHNgWUsKml0pq9hGXvosSmCBpUg3BvFGb9S8ubKXxziqZPbUeFmkQfPiudz4Cgn4E5BzfFYC8T0MOsuk06yq0GeTN3Z5qRtAY00jcENZdUGDNzXNGJllaoQ5uI5mdl9dQMywR1JdDi7VC8cAiVyCE9XbLMEeCb7qkwtFUt79HTnojDkRRdzmMTrOGL81pSAl+yJmicOmN2vt+YsvntvBqIEAZyX3IGEmyZw4/8CVgvLZxMOHnS4f+M0hxdMBXth5fYwKSKuXIzlEwm9u/UoHcPg7x7fIhw/xmkS8O0+tBbXb8VOvzpBdw965Falw/A1t2n16CagS+VIOVHQgj0UL1kNUJEQ5+V827QCpgdl5ONCwg38yjZddw2a0rxSTyhtWaNKjeb7OE/eSuGotSZE+4f1Ue9m2QNKQo3RIePoNN0m8gVqPAphBO8fOKowuXgeWed7yiDeIDa5e0a1a7KXrYZvaBulU7g9l93HOQx3FEjxfoBwu+lCXIzO6BQL8XGvI6fGeYDo6FzXe1VOSsXTnY89KC9pdcBdMU72y4j9KV2v75Emzz70K3rz3qn+/vgVVEfcJkrU5YlyfPWI6uPMPgyVs4eKZN+gqVXIN2dj1Tc+efwYxaoQTKtaUUnYTFYJJyHNX8b//G5lA9huWe16Iq7BSG3WeBquWscBz0ratBzWv8HkYUP3j4svUYa1oQBLNZLTfYa1FNjYfmN8L7GT+Be4EIB/1eGEYSFDm831YJRyy7DEtXVb4SzKWGnUuuspUPFBdm71NM9bDcp/NT8Z9Q7u8SdTRBr6Zz9rjA6tbvKSIvCrr2exEBL9kEBxGNUwap2oHF/V4w7iuzEuJO7aFszT2+4lIG1JbkGuqL0ZLnidnVahmXFlzV6oxedgqGRX6aIpQLcKOG6rrGnFNUAM70TuTIm7tgGl53AhuDmYhT3XVYekd5guep3m79uR+NuXQjF5YqdKm2xLqxXnfPfPcxgEWj+syGceULDjYJ+CPiIewaws11raA1zdDiREY1O1x9AxfhnWDzqa/DtMbBE1gf5lDvetgNk/icX4oTpxD10t9cLdudM/IrfQU4flrXdG05QwOIi3mKT/tjJQR/nwR+VXPAwbBXK3pBSw+vRhAR/qCcDFolcaYscX/DVnuVU5rMGQ8V603wfWm7lNl3bMNnY56wLRgwJXGnQ3XDA+rz2pdNkya4an17Q6rdxtsw54XCg3zmIDaCowH6sxIm8O8WHIhYAmysgav0MDLOEjX2+ZquQnEt4Gsda6zX56+xQFIn8Dx9A6qPoEonIMUtLAXrgs0qFoJ54KAIm2t2p4YmTcZi81EC3ZfzxFHvfYMJjZcc6l8lQd97txjz/Tr50HV3I5GHEDQk9VcNHk/SAXuXw55NhxenQFV8l9j/O5bDO/x+S7jz/zRqxc4yUM72LnDfVR21lMNrIPNzuYHbfniS5XYqqlVEbxPol+yM7c42hlm9H3VVd88CoX1lpvtOM3IoQ0XDyJY+7FcvkOSzS5PP+RAI3XA1f/iAozM7GEJWOBAKKXqhp3pHKTlEc6eyZCTUq3DfzN/QkODpZmhEjq9RujoUSODaxw3N2I6x5UE/GdzmnyzHxTbGd2OE6nEyMoofupCyG4g52PLr/Jvv6nvgvjkU7sikLue807HqDqHqTIJII138DPN9+piQysQg+yXdV2NO7QLu/h4nHGb+Z5il2O9gacUFjaDdD+0qkBw4UeCgnZXeUnps5BYe3HqhOrD31bR81RnA58ITpZLGgKmik0j7159HNaUSGnLI/Bi23YKpwbkUzGCVOyj1HU+gzn+qpSVsVbuVf+CNf5pFr+wX/FPTnKgEiAE5omJUdvwQEE6iocH8o5RAop0e1OIPfDX54lyq3RI72Iguu3SWYr1Xy139xMHHitPlx0cXI/MwQsYA5oQqLvieG4o4Q8LNrx7AJZZMrJfvNCUhDmMopOEL2+kcBGz4BhAeBS3HEZ9ZqXDqfBueHp5A+vkzBPOzd1/wUyk2Rq9VqWii5SIs8gzi9K6VxvL3uWXw0xxKQo/Wq2J40V7q6+2+6cYnA1O9zv/hPVrpc2TUDBOkBH/Jl+yabwsY/OttGKe9gA+ceEnnNeZCKDiRgTHnl8MaSlIPd8xcqC5k+jBPIHfBKuo3RI6XvmH78tor5ad5IAXZ+UD/YFj/6g0JI8bG9F6TC/Rea4aWYDeni3abYrDhPZm1IDB+/KZcl789NpXCZ/vHzdXANaYuRgVyg42/TPDR8wER4/41lrdLTGixucO+8WRgIY49Q3T2bqiw45mRlng2fDyrhgiZzDXfB/3ksB69Pdr5qc3Y9RTEUBmpiU3C1+n097nlQDh0Pja9sUzHgeNFqC7agx6Pix201TdvAbmcD4Rt9TUyJ1LgXQURUSm4gp4muxzC8BmQdJ8n6dZTS4eA42K81SNjBp63vunHmXr8eQ7ma8+7cPfXnBB4j09jPp8yHw7AvxC5Lrl0Ba/I/scf89O6VuzuwEQZYv2DFBcYAauSOIfP07PEmlxNbP1+ghFQdrwgCdbVsK1XCJXB79HGF8Madzq3nek/4Pumnyi/Jy08KEzZznKtwfTD+0c0ZgRc0tRYL14ygg1vkRA5f+noHaoLcJPGpYfcD4dFIzSE37fVY+uv1homaUMJ6ei62HzoPSMXuRhVHpcqtqNZYWNRTfNPPyBeLppgSnaHUv3pj+uRzYxEwpGDVB4NajiSFYhdWV/U7h23pFrisWGAZRlQUu+L5iV+Bov5iAuw4SOKyX4Illq+9/DGmR7e9F06f/CzhW2FM6SUkpmuVwtqEM4nSsav8whWL/c6mH/+aupzf3Wz8ZUJq8i80oMTNeliqcILCkH0xMZdU4IxdyVF8bzuhh1+FA3m7AIXWLvVpbbxvg00G0Uf2rqiEr7l7w27L3WvbvVO5pcVscXpMwgcp0UUpzclJWwQNZhMo41xkJJhMMabrRzv9z8Ch3of/PSmsu/+OnqI/UtK3442AkhYRqMzewRz7s4KiP8wodGmT7b1a4LD04ywA6yRkYNyX+Egv3QcquLdmJzsUIJ70Js4sF9htZhLkoOPI79wKAxpSkkAdLgcnh7Voa0FonZVXqCWp3Xja4+N/MfjYCTeKNnf8xNgS1cUv/qj7uibxkTPriSXiZgi8l11tiQ7rwAFOiv4p5dpxe1vwOvPEXpwIqym/gxv8HUNGjJP+6aakx1vA+2WtD98adZJnlfIWHWljq8JbP6dcG2u+Z0iEnwrhs43F05uU+FwkpGxUjiMsLp1e+qrgVqRq8Xr8DvUR+o3xmyw7AJDePxqAjW6ADXrN5ZceKtrTN13YQ+82AyJIr+UHTVu2pqyfuUTRfraJf3pEVH5DCs8npTD5kdSMLUErOBauYjqrXcFczc684+/yHxyzYFueA6CudDoGVgjGEspcH94Rfqt3uZCKELIrX+77R3oIOD3tfkCZl+61ApJAvbscOMArhuOiGZYM9pfulFRBrfHaSxwBv0PAAAA//+kXcu2qjAS/SAHIiIphgiIvEwUEHEmqAiIPBMgX9+Lc3vYsx7edR73mFTt2ntXUjFMq0RjLMSY23qMRnG3EtFaalqmTahAPN0QB5zwGxOif5qAw3pdye717JAYMlRUX3xSIR/rM3l3wlwMTIkeaKlvtPOi3J0XvvK3/nSMPj7iH2qv0G3TnpiK2dAx4ZOooH/plpAyCd15t8yQOeQeJm51qDve+WOMFv2Id398KhXKl/LHp9b+oXfHVBZNVLo/myy/rxgD7x0j3a90pm0HqWPxZpaRpo1ATH/UE+aFnbfDhtbSvfzcoBkM25PjQt6yvTc9CxaaWQt6M0TM1neyS1dqm8Pm7RnkHbzkhBePJgLfHsoFbzWdH+DsKX98+QTvSR9fznhW7q2TMzWwBHceqhuAD0LCtCs3g7GdL6WiFGlFDCGWu2nklQlPJCh46909PkU0oCDpnxd7fe6oqzXmG8o7uwXkDy/nQdVe6Na0PXPbF9MnhHsPfZIzYU6THt3prNUO+DYrmSf4X30YT3G1e9JAI3qmarz/PMz0H7/2FvzqP1ySgbL3hnhddtP5RFsVlvxn56My6vwa6BLgZ3kg+HjBCdsKqglrQ/inBwo+zhaFZ+JghlXpVvBDvHnB2nx8iD2tdu7MNCVGf3rkINaH5d3KOIOkxgE51laB+lxNMVpLXUvH/nzvaGWkFAVN3jGVsGvC+3dSIw5nm91ftR3w4vEJoZh1ynRf/wR0JrEoN8YD0d3aHgI63W0Lto/twFShUfm8VvQR5Xa2I97k9+gf/q+/ucjIXl53LMMnSda//Zb5PqfuTCbkA7W9EzmFvNGn0o/iPzwm7rAdOD9eo1n+vh8Mb9evIJmqepkyK94cYiWnv5k7BwMkCTMsi/c1os/rBtD24l/p2L6MYhQbQYadpHNmal+R93/87rv6GMSar++ER/dnDmmUKszeZ6XbGuLuLD94odEaJ1B8rx/pBVjVXFz2J8z5Yw49+Y+/G9GWduyZpDK6/JY7hJHTd/3zIWNY+AgzbtsoGCVV7ZXQxIju6PeR8HVetVD1nDK7etBu1L/NDMlmxHRmKEiq3pZHuAZfGU8ptO4Yb86eEkDzJqcJ0YDqatPCn5/wpw8WPH/Amig7Znud5U6P4+MF1b7ZsSP7aMHQC3dBTvXIZgsfLEaNPQy43OWM2Wej4v1yukGGY7Ni5Jf0Lt+JSP3jk+zwNVx38Ii4gj/+ogz5D42PaZeBmGgNwdW9dPs9ealIFJ33gv95x/FeK2HBKxbr57jov/zggHJ7Hoihfio+746sR6YmKbR1lhMmeWtV6Ne89sMfP+j9ps7AFxOB/dU7vhO5itKzbNA17odk4ScUHl/liIWvcOPT+nP34WhbNUnXRh4Mb25qILQZJ1Z4moPBPyQmekUrTqVI0Dn1FgfaPEU63X33ajD7RvZQttEWM91bTlC3wzWC6L75ElVoMsS6fA6VoWgu5NNlfUfbZxCj5MN7PF6tsqPTOmpl/3Z5E/fba+5Y9jyDTpV8Ks5SxicknUu4x6XFnjRnBc27J8iLH8H2D9h1w6AqDhTznjKd6I07ES9OUYGxw47BveTtcb0Rwfh8UnJrPr7bp2WbQxakDnOdaCrGpLa9f/V/+X7EDVMtQbCXd4HZO3fH+PDA0OwMjx1u2ahz5c17WPgmcYj5Snj2kyJZuhzvhLSCw2f1udwB3GVPoumigdjvfPBhLTQu0YqVFjC9X078Zs+Q7v7iDz3VUQkSGBd/acv7a15YiqEKA3F+afTPHwD5bdtU1LwxmMzn1EN3/WXES688mZWsimELscNeUnQoms8yY3PRS8upiYLP5aWgf3qeHSsrSOY7bDFcP+6GOQs//KefTVQNix5Qg+01cCVZlUEkOiuHhY+NsfIv/93VAW1pAgCK+HvgyZueHRMudxOd3YazU7766kPmSfnf30PRUXkUU+qcYnQszy8SuBedD3IdvWAwcmDqMzgnXNWfKVwabUOI/5qLwVazEfh3kzPzE1Z6v+TLrlz1KhXFtnJ/wrYq4YlEhdmv2k74aKUhekXAMQhdV4yRJUmIPlFCpx/9Bf/9/OcVZY6W9/qiZ2NwiGQT53UpXPo98gfAu12z0yYcdFpMvwqhTxyx1K5KPsEq99D04xO9qsvMpdoMAU1vU2eGJgOq1bsZIYMfRYadi1lQq9IrJF0Od6ZeP50+LfgBJ3t8M7V8CUl7vNeRTMtIp7+wlLpxa+80+MiP8h//449UbeEtRSGGN/QFb7yqgm+/aplx31ZoCDZ3A+3ca0E8s/I6Qe9QDDB4MnHzvuGTmEsV+KOA6A8dPCT/5D6CtNZvRH/gkyuQk24BjcN88Q+uBeedG6K1GX9YfDgvJw3fdxXIDCaxThpNeL/c8HjZD4m4zUHl46qDM3oruxMVx3bDeeLHEcTOLSFGe3ol/Pw7n5UFn4nhBqU+36MPRb2sZAyHac7nKoxqEHNXYYcoq5Px8zBfcB3cK3HpOUwWvQbQ7SqN2dljlfR+dKTQmu2REe+Q8GmPixAkIPgvP/VJc41ajqMI2MIn9dGYDyqsXeXBHHS3kvnIuATNYX2lMjFXyfJ1DYIm67CSrgQ+S52WwnptXoh+3rz0ea244247xi0jmTZ0PH2hCpbRicRNg8AdT1kxgyUZBnPE+xv1+3WoAcphZLekPHfTqtuXSLynhN0Xv2nSL9EZ+Vp5IUZ/onwqNpMD1hkoOVn7JPnz21BRvjnli79HieTJiJANZvb5eUr4e9+2SMNzyqzHKS9mYpkyDKj1/8WL6Bt1LDvxd0s5sE837NzdGS1/HzFXqRuMbF+rAL92T7zAWaEximcBCdlxICen7hF9fUcDPuv1k6g77Zdk9m0RQn0a453TbYvpJosrCG5wYUcdx8Ew8sqAQ1gH//yj+bWZVShvZUv++gGT4p4ycK++wwxenYJNFKvWP7xN3Oge8C6XI4ib58hcdgZ3W54nTVn4HOXrz0qf/VaRZHz4Ggzff2LSW64+/vM/rf1L55tjuI+B9MWL7f1pQNMfv1j6JeRu7DQ0nbXMUs7y7FK52Zy6Zb9GZfHDsdCcxIL+9ZeWeKZi857QUk8pEtKVROWrhPi4Jy8NbfguwKuDpOob6bvMxE2yN/6+utAd09dZQjXdrig6RTaa0WnKYNFnxH3JZTd9rcrc/XDkEhxummBWMhqjzb518OaWjW6/uakaSh51TJKlv7D4bxSMT5EyMq/Fbl7qIUJC4RCP7q6ctzP4qFNln+zRUymYdB7CXZq/XsRyNFFnjnSYdxp7u1RZ/DNxalwD5kiy8aY09ER8suyhHNF9IrhQv8k8vx8zLHqLnMQhCYZb2KTQ3X9rZtOvnNT8eJDgmFOD2eLqU4yrZA7hurNERuJt0439xsigJN+aNi+Sc/487CO02voeOZV2zH8HvxDRib4HhrM7R6M6j/MfX6PdSzY6AZ8/IhzCNiC6p1/c4Y9/GKo4EOucDHovnG75H9+k28OPJCJNWQ0z3adEu3tfvUfz1IK6e6R089hRPpKT66CLWI7MPhm06IP3iJWBtROdpl3RLfXroSz1g13seMXp+nQa4Xh1bNxHhdLVYXrJ/vxqvPkars569ixRPL1mLLqr719/xUF/enp/Kx58dId5/ssfmv35TyU6m0oWvBxmfJNLQmtV1OCWGhNzLxZzv0v8oPiGIuKuBaJvs5Urw7Kf7Nh/2mD689Mr+dZgWPwK5j/2vnLE7IOlbK3qY7JKR9SFukmWfmgwi9L9BbKqbWgbDGqyfU91ixb/dPHrk6I7PQQB3CMlzMPxxMf9TnvsFj1NjEpYd6wYBRnurnYi6r68J/zCeYaS3Tzg+fHlyShsdRkWPo53Nf8W9FaMvSLfqzMxxbbS5+HsxbKq0p78+f1jfZDPaIkPYi18v3X8fKXIEv0SY/HXeXwQ5O3SP2CRcwO9fz8HS26f04P+tsGx41iWJESEPKOrTB2Chf974MS/LTmuXzyhX3zS0K5634mxcs76FE+4hj9+Z+ZDmMzhfk8VoFPIjrGydmmJYhMM4vtLP2cKFr/8DCEbI2K52pMvnzeHwTe2dKVLrBtvaytDSPP3uIxetcuRzVYwn585OR0J/m9/6o8PkuD1CJrGvXgKt10fZ8NWD7aLPwm914tU2h1TNBefoZWP28SnU3a10OK/4L9+FZ2UJ134Lcr+/Dr6ecCuaFw96JW/fLbB3gRUcXwBFv+PaQwFAdsc63n3FH1j0bM0oWTi/h8f+8dPZwh1S5l0o2DJwp9bfNli6HFwpjuvq/WJ/TRht6wXLohu65v6audwuUsZuakbLRB24jlS7JT77MDJUefji0ko0nqfjks9mJm/DlEnDBtiba9H9K8/uDdXN2KUiV204+6kIsUIL+TIPnkw0sQ/o88xGLD8bqdgIt759a8fpHV2lcw/uQz/9CsVvMOU1OoszfB/nChQ/veJgvSd1MzTxzeabv40QjeYR4Zb/15MRTQLsLXEZSpHdy1G7iUytBcXmFOETjCZNz7C+prY7DQvZyL9a2zC5y5YTFV9LdjEaqNCqHxrvIHriHhy1l9KerreifluLTScfl0O3z6V8a4t8mTaLo5dfTy/2E27fTjrtDGHKzVUPBMIA26R2oIH1zA7bQwV9VtfWcmNaYt0osomqYP87kG3GWd6N4SVzp+nmwAZRAdm0AfSWadJGWrNGhO3+1T6PLbnVvn7+bVGLvr8WUMG7ZRYBKcMJ9vJpCt0FWiKP4f7uqiHuT/DenXk5PiOMs5VOK4g+hRfvMP5jfeWnczQslAip+KpBZvn41xBZM4dnXQccppbp2wnrNQOZ8E7DMb5dk6h9U2NqTmy9PnwO2dKSVmH+9VjTLicn1UIvmFPsGsxPm5+cggHGQtMM7Hc1cfqYygUXQk5MnIIRkPb9ag6/+5E9yZWMGHjy2BcvyviWdk3YW8uC+Dqqwc5KOttwW7254GO19Rke3LcBX2Xaw/kO8cH/iJLXjoERxVWzEvY273E3fRu5xfkNcvw1P/SYGrGNt6lSR4RR3h8ddrHsgbHXVmS0NGTZAJwfBianhI7DUtEZemSL+9IfLFivvRkSvsmAqdKbyS0q7aYjI1tgr6ciXVsrw74b7oL4P9+TzpsPlM32xtzhFc62PiXhddims+CARd5DIlt3YZg3rw+K+X7Fd7kbPHKnV/pwZKFm2uw/Tkk3fwVpxTY+zng9cHE7tiYHUDQnFbMHlyF85a1K3RaHXRyETqSzHsUO2ivFAXR51l0J72XHIgzdCXee2qDeXdZZVDGs0P25HgP+Bfda3Sx0h1T+xcvep2VDiqDQKL7IcAdiy9zCMdffiXm4RYHPBIDEUzvohMj5oB+4eZmQnepQ5IYwimZuiqvUEOKB76efK0b+mIFIF2OHlburO7GX5JFivt+nPDcXfqCit7dg4dSICrUKEdsY2Uv5RCZEbHdTkbjw2up3K/2lB2Uve6WYxT0aOfoGtnfo5s+mIqvrS+BPDBdO+xdYUfTBwzZzaHSTFx36sQjRcJdPtG5f+VoWu1ZDXFRv4jRFS/9X7wA+b6ZHU+bbiy3kgzahDDu6adDY9NreKc2IifkmkXJvLW/JZyE4U1H7X7nfSJfJHhGWcqc5HwL+KfhGsxp1S/lhbg97c4GfLaRi8WTBDr1inmG2qc+iTdm7Y5t86pAHqlFdCk7u4z72Vk5bN8d2wPTEjZt7RFUTfEY9q6mK8CR+CiOvZY4nn5I+IdcQvDo5ctMSz52fbZZP9C92bqYndd+8bcfQHJdZScNCfq/f5uHuiYXbJeIMzqK8PzAmbzL8w1N6sqzUNeGK+Z1LeWjEJYiGjzcUUHDNpou9FTB6fzbY+W8p3wukkDbOZPkMrdsm4A6VhjC3GwLvF7yj/H88JCDuySR03wqeG9Kkwhq4cW4/thjQfXkjdE5nXbMrcLR5bmi5vKqOC4d/vKd0Me1MHYf/AixtDEtdwxuYY12m14j78iri7HcjpKc6sqGnE6ioU9xy0RAorRh3jFgLuVYNWCz0ybiOU6vj1/VlmD7kF94dduHQfu9JB48X2uZOb6cuzN/DniX/fKBecf1PuDrqAll85Gq7OVdTV04KYMK30fcEUOXxo7t12OohElxp9+y+PExfH8rGINt/O//65xM0xDPVjd27HdeMq1+Jwkmkt+IpYo62qpHr0SvT54zk//UZJi764ye8fVNyDH9ubP6NA1IhJZR+dPqnXBqbxkc1ZqSg7XcwbI3eAbZ7QrmcbpH04HkAmqnu0VsyTyhsTcUAx0dzWdY+myTmeSuBOqqddlRCcJurh+1hJAob5gtpyaaA57nys87x8QtWzsQJsNZoRO6yRhinAT8vry71P2+G4KHTc1nXjczFN529VeP+XhvRk25H2dg5tmvgxGOxzOMbziQS7qrknplGRro7+TM3Pz8dMfDuMzMeEkzpaQJusmRtvk26+5rcsoPT04FN0yVVh57vN7PakL5c/CA7jKPOKf9jk+I7yKk8CLFimE5Cb9STQZ9emfkVIKM6GjMMXiHEpHrvd7yOeuZCn58vhFDfFG9bD6HFqhaRVQOpKiYhVGmsP3kMrHX6O3SvbMJUWKtGbOiZ+6O5/6ugb8ZH8RWAp1vfs4xRho6z+TsLe+C3fSnhg6f3Pm33jXfv0Ng636H16yWAq5cyxKwOVFmZ5u6mEFtM2gmUVzwneq8alRJkY/jhan6odfn9f0aQtjQCH+TT6YPygsATUUrkgWfi5Hc3RyufnvC0G8Pbk1Wn1np916FRb/e/8MHhaaajYvfV0diuTq0stiFHnMfSVfMUopM+YfEls7t95H0RVk8YMFnKttenYzusZf+6jdR6ybXO/wKLNiVExB8CuRuJvCtdt6vc/7Vd3a1yhZ+Wbxl9+3XRlPG9Qd6HK+YeT+7c2eFXijUJ2lH7p3K9T55j56y1Dtc3aoNb1a3egSNiSt2tFnezbd3K8F0fe6Ic8mf3eSFkYZ+nh8zR3/RYHC9g4meUZ7+7Qfi8Tau0GpVfJihlro7XbeBD5fbtCbaJnMCzsSTBi9DfeOVoXyTsewhQsr7oeBc3lOXxaYyQ8PmirjxZPC/75ek/WzS8VgRNJE68xUS/Ty8OqA7qray+kAXSXfpNgaBT44ODpr3zo6u5qjvRiHsBXA/ryfxuhbzfjXkPvzsgjCvjj7BtPJKTzmTj0auGJpkEfgWWr/mgWnVWKNe2wsrpRaOP6Zi/xWM15kb4LdhxQ7RJHMKwajCjroZzaJoCoa/eu9ZkYHl8qN2k1tVM4q3n5Ec69jqRuV7j5BSH2uCV0gP5jzQDMAhdMQ2vbyYhMsoKOresbHyrU+u8H0UFShpI2D/a+buOO9whI73a8xU0TsFQgCyBNTeC0yvdtMyNs6vUHq63f/WN5i7DHvoPUUqFcv+3I2P2QIoRf9EnOZ91bn0CXyl+sYT0z89KirHCiPIn0HP9tu9lYyRqbaATU4ZyQ+DPtyOGwy58dPwtokUd2J+uwJbyTNGsPDj43GvCX/5h1ebU9ONW3+zgkPtfOl6qd8c5p0MSYMRFfwjTZj3fD1gpjUiByR4nG4M6wy18bkSU7DKgCewkaGm1oGYx+ESlOFZTcGnRKKLbO5oH88q1NQ54KlNLx2Pt+dKWfKVee/JSWhQf1dI15UnO92Z1U2KkZxhnzqYso6bfF7bo6e8vSAhJ2GzDobrRdHgQCeVHFZdg2YtMH3IZvhg8aHm+jQpVQ7fx6Nb1isphiUf5N9v7zM9UU/6mCVPCpfHxyJGYl/5/PrZPdTK06Wr09rj//hoGVwkplpHjuavuHvBu3B1ZkTuJxjL48tE6017ZS56OAU34s6DOvqWdAtX1d06hzqEBa/ZvvqpunirtgbcA29kSaA7aD4T7kA2kpjtUe6586+f2j++wfaFcebzurzLMNbtiLd/9UcbfgD9Sqdsf3O95fEnTYV7s3HJ4VjWxfgpaIvSauXQfCvqiRjtiIiWeMNCVM/ulH7KERY8wJJoQDc8ur6EPzwOntvWpSfzm8KC38Tc5xXvQjf2QdHXzsKv8oCWtM6BMpRQsuAvPV1yDUCoDeITCP/lIwg322DOuVzmIG65rDzbhDLvkntIfIfSCkmBcCXaYWp4/3bHEg6Uq+wwz9+EzXchheScXYg67nM+7S93ivTTbU/wzJVkKOBuyt0LOXR1Fm0uxiffUcb3armDWqxcrgIBhFB/Ir4m93wg/s+CaTMciPvhfTI/d48XeuzqhplOiZOpD+8iVHqU0+G8p2jhM0v+hSp7xdgpePjYxKhxawuD/brzafxKKTocd3fi0lh3+WRWKzhsn90fP+HjlzAVpA1p8e2cTPq0N68WdG20osrchh13fhFGQVrvyWEb2DpXso+lbHzXIXqbqmi84XsFvxv1yEG7+UV/3DsieNxYsXeYf/gUiK8MIIylZX00xK/UkVH+vPRUmC6Syy6/TIRHalXE9g9Hnd1W5QxPI11muHCz2DbpM5X96wcTAieSzB9n50CaZBGzE54h2uSTiF77ICJ2E/XJkONG+su/f3pndO6bGrS8tNjL/Hk6Tad9JptZkjN36kc+VsNkKsE2Rn/1qOhc9nMQtXWBQiB9ESee9gBvx+5MD+1zMlf33kEhGr9YyD9RMUvl0Qfn0q6J8+JVwX/qWkPjdEuY511FPhzeR0DRuv+wRwLNgg+B/4enxDxJqT5/O0FGl+8KsLL7GsWc6H6oCPh1Z2qxg6J/eDlF9dF/Efen5sk0J1ItO4MxM80+3Aq+qmUDNppoMKezEZpgOlBZPAk2uTjVphtSMFN4lJsLli5nT++f1zFGo5JaxGvV2q3Tp1EB8/GWilJjudNwoVi2RflArN7IuvlJnxI4G/6korz+6GO22T5gN8OOvQSVd+PjZ8T/9LVWPhhqLjvH+dO/Cz62SRm73xVaBcuJx4efozE8Wy+UK5lEPIkcuFA4dg9ThgZi1Z9LQpd8gy3/2sTKI7Pg9XtvKgs/ZjjwNDT5+8BSfqrbEUMO1t1ckz6CUD1Uy/tAcjd+bGMFmyw6suO+I914UE0T+PFWYVj03vL7DNiU5E5Xgadx4XmVYlSmXco08bXivbdJDdTzfE95og46T0CR4flZnfFG3d+LPqOFBy+AK/vj/9TYfc6gON8vs95vu6Ol7ZzReRJfRNfZD7WLv4LGYBOzk/pFLjtOkQrbKvIp/GzXFbtDn6OlHpOTsz66DV91PuwFd00n8Rq5fL7DC0l9vqZZUvyC/pj0mXzrPy0OUWfo4ps9ahC2jzMzyHkKhkvQSfCST96Ct30yis6ggtsKe/bHt6dX3uQw12pG9s+tjCa/2j2Q74kFlX1M0Hw5kRy0RK/Ifid9kwHxKYJ3n/0IWWZO8nzWV+BZ4TKjJlEDrilGj7B3VllAlbKY3KkI0ZZOI3P9W9z1q8AqZdCiBk/NuE54ydVeudr7lHRpJSbUFfUcmLFSMTqJAurE8/SQt7V7Jd71tgpG7ZfgP/yiaK+cA34NGg/da9Vi9qjJfPigNES/n+4zFd31hF80pwI3bQwqWbjsBqI7Kiz1hVi25Ab9H14dIiMi10B+IqYCWe1yJZfY8aMeefU1XzXoZl+xm7qv0XQ67QWw77FG3O02SXjze6jobz0JtjZdg3Bi/PEXLNlSF/DX/WLBuXq0y4ldwx0NbeoVim6E2LtR6Bqp7VpA2nhj1mN1QPPsvJcO0n7G65Oz17fOIQv//BNar4Q9b97n8wxbSyBY8lgdDA/xYwGeX5S5o+boY355SkjdWzZ5LHxwS62rgNRXvMa78Dyh7mA+UjgFkUP3KO/1bk+eOVr8TWblUdXN16alEImRwvbDOuPb3Pv28MdXVH49B+K3A1m21tOFmNPlmIgLHwZyD6/sNfNnIp43l1iRvnKJJQndO54tL8UkKzUglpa1BTP1SoTbczkxbuptx4PjT4Y//XeUzFfBz2ES7pb1oXIRtsni5/TK7ORPuopxW/BCTiXkyu6RGav84y76XpYXv4V437eRTLvTK/rTi+x+FJuguQSF/If3p65xB53Pa7+XRyP36VrZRnqnH54UYf+UE1u/fruZYhmD94gD8qhqyZ1k03HgvTn5eNMYbjdaVNbAPgFe9K4VCH9+6pIfWG40I+DnMAhBicecnWRtE/TZMt3WIRVjiz+nT6P6wJB3r4YYjp4E077jMWI740Usj9VJb4VxhK7JocPCPt92cy7VEZzy7kzUwzlC83RyQ6juK4UW61vPB/nKfLgmx45uH3aLBu2e13/6ADdN5CXio5YqmKQUk8P1KOhUk8ocLfHLtLk5JXL9qGW0xCvR6cVPRDiTGtJ1LWA0EVX/42fK4a7U7LT4P3SIzBj0eN7gOqgO7nbJT2WpP0u9qPVpXu7Ed/rzxnSG7vqM7zNAtX2reIMED212s1CCbVQtIfWEuv6kfFVgqlPTja6XfPSJ2yP8CgnzvdpE//T9O7vLBN+9tz4az+QB1jBoZF+bcTFNhSEivdJ7ZvajXmw1xetB+IZ7ctuggI/zq/xX72l/aKxgiDfLq3i4sJn21Ji78BcH3ttVQmxDeLl/+khZ65FMpzkrO7YpHAv98cPFrwkmsalkGOx3zjzzB3yYCk+EVp57LCx+8niymhYt/gM7YUEqqLu3nH/4EL76g7vwNQH96XWpVIeOHzJwUKj8aoJLvg+2xZvjf/s5bW6fju0FPqLv5AdMH9OnPt8Oe6ysno7HvIjlaN6PSQXT2mzoWtSMgrfXvQ+Pa+5S+TT0+pz465d8ruIWi/ThBFz1bQs1yHsQPNhiMfvdvQKzmUyiFru0GG9PkcKrlU2ytwDz2dg1ZxC6VUrUNqj5os/lP/zE23VzKraLfwufnY3xykmfRe83QwyXmB6Ih4ogGD6ZXEN/3C43AJOo4NXLC//4D5XqzyXYsMFr0YFX9798SkZr9XZA/KxqdooPe7TbCN0LzsjT8E38Ve6fX4X0nbYnbmZ/C9bs+QhX0m2ZeqwYnz7XlYneRCsZvt6Gol/0G1JgpxLPUCKX7r6Ghmb+ChnWR6Yv9SxUPm7jLnpu6njaDhZ6+FxjZlorBXuZbrs8IP9m5mbu9D++BcZHn6m4MWM+5YLlwIJX2OXRtvsXHwvfZu+OV0v/Z7MC5fM8Eb0spG4ayTrandmIKbyORTF1SaUCp+SEuS373T/9iUKxImT9AcTiz+0FH7dz2X6JR17v8lkpyO9IaRN+9bkxfjNSdMUhR3WtJEOsNhr89YPY/N4k7VK/UTPoT+YGesvH6PodwSSaR0xy8N05lr0KDry8k+PP9ZNRdw7SbubLjM8PXF3msp8FFxZlDI/94S+fWsBI9JmJlGsxjlFCUZC2e8wvfpAsfmGm/OGjL++xOw5KLYKQlxLdLf4af84rA31vXc7sOQ4W/7HN4DLFI57DFei9U8oYVdunSnOvNvm84NWfHiaHP3wofb8FzrWKaMEyM7gmZQi/ZkyYtruiBUkPqz+/lCoi/RVjPBkeupBj+K9/NN6eKwo7/fHDz6U/J8BTfaDTN76zA0NWMr1uPfztB1NX5yyY1CJ/oaOj+swLPN71I5oALX419V/9FQ2L3wVrj74wetf7YvNzyAMt/TS8PYqyPh7PvxUY7T2iq/1D1P/FR6GFF6rovyqYdXc2wN91/R8/5PNgNj7cmM+Ztj+bLi+51ctq9iSMtHbm1nLqtjAKRkkWvd41ix8Gf/0gLKi8mO7WbgVfelGYlT1XCT9+JBmtVweOd550cbl8S15yOlRfRhZ/ciSrZgbFd47ErtuHTq1+I8Bqi0xayQFGs6TdY7CfQYi3s5knPY7xDPFrc8CPxQ/566/8+flEe7i+O9pbbeHb4ZH+4nfpLp/nDN1mnhf+eEj+8vePjy7x+gzm7tBncNuuX3R7rX/utFnXKuR2/MCbT+/w2eM3CZz48iA6f9XBSO56hiJz7PBcnHbd9BRmHxb/D6NH4hbifE19dJxXNu3ohqMmVj8a6Os2ZU75UYtZsdAL+nGW2OK38OmQj6Ey7iebOPfqXCz134MhuzrEuk4M8TvBPWTX14t+rp9DtyX7kwjdpQ3/9UOmcXMtAQ/dlbgyjZMxCXmtaOHdJe8sMQORY8sEv40qclr03F9+oer7mDB41whVf+sBl4axk/6rEuZpQAGGY44lcvgko2rUpbLUN6Ll5OuO1+WNwL/6476AJJwkv1wWlUdCjDEoOj4LkfO3P8Sp3F9CnSCWd8FRaPA6vvGkjJCnyjfB8MjC71A/oh3808d/ftQMZ9L+6VE8nsIGsZvdPJC1c0S8Gb4kmENzNNB+PA/s+HPnZLQvfY8Wf5+cZO2azN9L4O0+yqpiaqeQrr6Y8gyj6wzEsrBRTH4Covy+GAI7VDuVD+NXeoHdpRcWSU3t8vA7AQTB+Ylnn08BJbku/z8nCjbC/z5SUN9UYHaaWd18qZwSdJ6emN5BoU+RSTMgxJKJWeEDn4LgKsKW+h077D9ZMCluP4KhOyVTE8Eu+KcPHmBdnh0xvS/o/CKDhnSbjXTeTh93EtmzgnwtB0S1djjZxn7zgIteO0zXz647HfdTqGSERcyd9xJiRRqLkifRBwZjXwZdRZocOud7JhaxpGRCt1OGTvHBwqKR6wV7HNVa0avt8pByFwejbk8jCHJ/Y1h/iAk1MwA0O8UDi7tLqM/ZR3Cgnxodjztccv698x6Ch9GS4A5bRN11g9GY6zlF+aotOG1bA47FRyc2q0fObimq4FUd9kR9AwTDWvU0yJ4WJ8da+fAJPB5BtGuv7O/rpYmQAJ8Hn/F4Pn+LIVJaAYXXlDEjvffdePrgGrJUjZh6Znc0zoMuwOX6TQiOV5U+HlZnUHzV6pnzrr5ocsbMUm7VKyPkYgyozR+KB25uczy9Nh6anNWpQrJmNeT2lSY+CMNZUsIw9MnpdnijdjyrZ5Trps3Ikhtc+exEhB4r5188iNtx8mCusom94lXljiDZIqRrHWOmdG4xl4HoQ83VgJ36Wx3wi/jAqHhZJYmsVkymq2pp4BMVU7RxC531cl/v9kq+xWnrPRCfg7pCUtOOxJirEs1KAjGSnteRtvZ9KMZ1JfXAx9dIlePdQjVFNpVfJZTsONBnwKRNbfztHzkOVAn6PiQr0B4Qkuvveg3ou9Aocs84Z4ezuOH9uvMzyHC1w7J9HzpWRnUK+3dFmLOjhr51Q58CnreIuAYyOR3Tt4OG/fVBvOl1Q1ypkhbC6OcR8tsIxaQ97BioM5+IhcuGcw+3ESrelz2zn9EqGPi2M0C12JrOaIX1/uIGPRBZXFoQQcV5PzUa2I3FiNXnvOuD9SyDkZOGYB67yUYQ0xwhLz7TNuZK0E9oLSDhxVS85to2mZr+aypJLkTskIhdwLfr+Qw93ylk/yq+XQ/QtZBmzyuxnlaB5uFzeaDDKXbZIb2++dc6eJV8iZiEaZY7wfjWZ22dH246I61sdKNTWTLc0VzglRzv3eFzcvq//WLmZO8TocGjqiz7S6xtbrvTj5caFF25Z151ubptvX9V0G1eDkXDznR5c761CJv7kVj+yUq203MeoQmKF90ea5VvVPodEerGFdGd3NJ5c0w1ZEsbk7hJP3TTJ1yPaEVqhH+Ia4jXJ+MBOPy25PouS3dI60qDVDsZxJglz6WOvzZA67/ADu+3jeb3K5OUWzTbxLWmOZn6aLZgSl5XQsRuw1t+lEekSYbFrGc/J3ysjRVsUW8xnO46PihHDdB1uq7Zvjo2fPz9Vh7a77cOOd0lq+POq5dQcSmAqAc9R7N1DbGSl8PEHPkkBb3vHCyYxZNFd3ogB8x+oxd0or8iR+u4CfpeUyn4SLzjzU64uvNXrVM4i3gg+2i9rHd6fYGNgw1xz5ZdTOlwFOB2kypGFGXmtEHUQaPiGThXnQHNelm3aD46Os3e8YDGqmwBffPQJZcFH7hFfy+YLT/Dq7uAOLv2oiOv75VMq/N+KHjAFRNGnV/wZEVDMrHDR4XiHezJEh+FEG2HGNbbrUs88q2TWrzUObo/c595klclEw2vGmz1ZKbjQdf4/AlUC2Lfwix1W60YezPPUHLoc6I11sndlGiXwfZNJ1z3Zy/gv9urROHXNomhGfuEy9tyRrdbqTAnDBt9GB6HGIG4eVB+Eb7uVJj6COrxlzO9H1Z8VF+RhS7RIBFPuKjdPGSOgEqxfmJBi+pu3n3PKXidr2CpcdOES6uCKqmuS+yEuy9nlLkyel9mtlgOhM/rc1LDhDWJYaw7HdPkrEXPbntnqpJMyxGbR4UG8AIW49JG0/W4MZXJkxNieoHAuXNtzkicXp8Fv5SkftxqH61O8Z7oR/YOuD82InjYtZn1uZ75OE/fVnGK+MaOhseKsTtOBsRTvsRXvnWnrnxXspF/fPqZJOTy7/Uiw0lYZnUUBiq+n3A9ywP7tUT/4BC11ustQCB/N8SLtt9kpNbPA1kRIjxJ0sjZTrjnoLVtR0iYfN0BrEsOf/GMsd4WLL7pnkxPW0RMslyq0RUkgV5pI7Hly9cdk/c1QvcBN8wNz2mwjHzEUMaxR8h73bjT53xdwYtnLxYu+7kJHB+DsA/KYQIeFZNUCCIkprgm5iFYu0Ox/wB8R+mA16K3L/qVjDP4If1L0c60EF3qF9x702PmlNQFHW9KCLanIbqz2b4YH7fsDOne+DFn1zR80sO7Cup3yxnWLaaPbnbOgR3PjER/8e4+XxH6BvMFbz9K7zLKBwpX4yMQ7VFyl1/7lQXjxaPLpZO1OxX7BlCb1jXxXsOZT8gveijjh4f5ka2D/n25pdAbgkTUzcyDsne9EH79uyOOfIqTSTlqKxD2l5JoLr2g2TrPMTz7tcjMfIs7vjVSBx3NhDDvkRV8aIrPC12O+gdDLiuoYYH5+stPcpQaic+fbCjh6b06/HnIR31U1isJhE5V2SPmSjLTF5zBOVgmuTXE1ofQJz7Smgyz66HhbpfN7gwp9R5kbxVywqv468jTjlZ/6/evXoO/v9jMzANV5+dtPcNsnTNyVC82Ggr7pgH3vTc5Co7RbfTwoinAXzr5xyeveuKDuSkTKhekTPj4tiMQS90gptVGwShGWgibeFXjV23SYqDhU0Xt8E6J3Q3L0IytViuorT9EfbsqH6lxinff75Azq+wtfdyT1oJnamsk6IcXauHpAMx8hZn2Ok3FID0mrDT78kRR9WvcclOuQlR/S5Htb5e6G6cZMHrWqcb0csuD6ZlvWuDh+04/RvLrplMxiorxeWxwe3j90CQHsg83x86IJ2yIPuLYVZFzO9yIFqiU/8WfkqG7gYVfZydDro0ZqFdtjdd21nS0Wl8E0OT9nZltJBVzMqklMjI/pqDGBz5/1SwFYfBlYtj1t+Bu+KDo+by8MdpPaUeTyapQysItlfw3KQSkyBg9Guayv3xjO+XpoEsQfpgflMrCx1QVvTUjZsmUl8XUJ8kK4Ym98FpRZrQQfwf++OX7vbZdrpnbEv1aPDFtfLR6G4bTC/JLqzP93o5dj2Ndg3h8vJkHd5785ZPyKoQjVVDZ8knk6xi22aciB9GNOqYrSAZ5IpT2641R8NMi0TfSLaKDM2buEr+VdPb4jj7v1SeZjiSa4ffIHszd+1YymceGguwrTyzEI3aputo8QCBag9H+RPUx3K9rSOZ8wPR+PgXL+vuKfU9jKp/vRcL13cNATQaITrln6NM2a0oYx2+K+yW/xnJ3jJB+S0WmjSup4GPROfC1vvQfHk8xOvXwco4tM61nE/D7xRfg811dqYZ6E4mfW7MCNfTc5TmC/F99g/05Mejmp1N98sPyIb/meNELT8sVh889hs3uyRmxM7vYRJrXy0fzTpiXRPeOn07BDNeLcsFdIGruBB6KYNPwFK/TYouGUk1iVPT0hdf2fEbT0QGAPiwIcwpiJEs+Rej0m95Em85vPpF0khBsegULVDET0S8FDbpH8GPEtOdkipRchJuFCVHnBPSxarwRwNkTEu3dPpk9Tcgg98eMJBtYFUw9iTlEqScxsuDzXNyrFpG0vNFV6Vqou6yvImT91iHed6gKdlb7FE538sXFPW4SPqc9htDa+3SqujiZ6oG34DWqTs6b7anrJ7QVgLzXlGnTeY24eGh7FN5YQ+wQymB82fkDZjtWCBGPv4D+rT/cXj2tdbQppjXKHUgpfmCRCGqynYOshKNw2xIyvyw+/1bu+e/zMp1nv2TszgIFJS8s2vh20o2/InxA8MuOWEG+3on9l2N0eF9TtpdCLWhKNGWyPJ0oW/h6MCC8l2GSKpvoq8FxJ5fdq396ZH8+vgputYdake6rO17Hhl7MaRd7YP60D/5IYZ786UFwDo5J1LBddyw9MQvU+ZVS1D6Frr9KaAVa937T3oWGD6VOW0hfmc5i5B6LGVW4Qqbn/oh5g8Ad29PnBWRHXWY5jaGzU/R+oIVfEOd81wO2ep41hX0/6jBsm4MuGv21h4842cQs7CufXndZlYknq3Sz/6hJv5o0CZxQfJK9JJ3RLJe2BPb9FdNNu+KIJU4igbbzvuyw2ZFkeL4SAeL5NjLX1ncFlwFX8J3VnOE+QN2XHT4aeK5MiPV8dC79F49xGDF/7Kek125vjDx5HeKPVYfFxBxHlOP1eU8Otn8p5oc4Apyr5cjDPGRoFIvfiJ7yPWCJJHy6ebwpEaDU+P3plUDcrL8YvtxaM3PIcj45GkvBbIKEedIocHaRBRWyU5oym9VnNLHATJGxEi54qxaT20sxUYEMiUt3znbV8WM1P2CFooa4zUoNpj4JAOoyXfhg/UKT9Jg8UA5JiGVR7QLa1XEkV/5noAB3HlTqZjfD0bCu5Gr7l45uBSOFFvYRI7tNps+vIZTQsj4sJcHHHWXLeKHteFKWS7FFMqDbKUcJbxymxnsRDfpHfEE62j2xLuij0+DttmCR/E4OP8sKhrXxFdCerhT8QlhEPKQeRY+6pPhKd7uCJpv8oUAp2+xgq04yyelGUnbmWJLzbacjESMl/+M37HCxFHdab9UIUrKy6aRmH8TP4FQgIFHA687rEDVvuxAej21Nf7dwy+d2SgAW/Uip0/NkPBMlR/Ha39MN3e06utmOjvIRMoLnpd6MXlHMsv+sLKy4kqKP2/MF4CFqLhY6LesmDoaElv0ipjR8i2GIVyJa+Cx7quFO79HuHCt5nm6Zc/DUTlDWogx6KQdEz1ozmSt9OUYo/zZ0Q39+Ms/2PgJzu7myI/jbpF3qMbTYpMws7A1nVlp7UEC8Ifh4TV3+84UR0leu4/yJ2mQxxi0YVE9Z/CcpGdpv5cAmva3xJr2+0diTykFnJ1szd9MuR+b75L/xY+ZbWoxq9DEVMcBn4u7MGs15FMToJ40dwVneJlTV32c5et6uzM4SGlB1M83g9/9h6dyWldWBIPxAXsg54RIIghyjAop3gIjCwgOQBPL0u/Df79Az0/1VTbVvUdyem5Jdb4fvP74x/4nPgYVFs9f1RI9xt/KVWZhyDRpLVWF/+QgBt1CXwr9dfMFe1bzbJb0mJ2h9njGOxg9tWdDkT9WTupCatmeU49FRFShP+5iiRyyANZ/18FHMCzX/RGtgN59B2MSdSsS2wC1dqi6G7nnXY8/5zsPcnJ0UDmLlU8RjA3F5r8Pfvl35RbC+xGiSdoWqQe1sqNen1HgB663DEZNgS4ah7f75Ey9r1tIwUXBg5B5S7BqsDj4lOefqdIMWztrIavnKm7TVz1ITPnBZWYFx1msJiPFmkzhcAI6uwC7CH9K1DA1LpehfMBEmxd9VL+xV5OznL6j1dycAE0Dsv+3Q39bW1kTTscX2T8CStaZ1nQ8y390UzTnP3//n5W8q8T+S3iwwj0ePxv5GG0jSTjUM7rZN83ORJbL+mAXdNI0zvoHO57IqHJ/woNxe1E5bM2Cn3XCGAjY+tILXpBRaEdrwW4MnjV/qo2QguI9g1QP+8Ql6DWcLOvvlECtdYfClzWzpx3Ox76S3dim1MAaF7L/p3jV2g3wS0Vuflc6LtdR68GXlo3A5SwU1TZuV3LQ1DbBG3eEYNHXAVr6mLW8+ULcYaPBtQy+E70y708C8i8nCA8eAv7ztW1eZs7AdFtDreU/3uNgOyzaYJZCU2MV+mnpo7FR8BgJtBcLueQS+WR4SqOnSme4WYZssZ+9A9N7oqnhRDuIwfZ8nBd5T80ONNM/LWXnXX9hPBNOgzx6c97d4A1a/jaMgJS1/vOZef+FMxl4VmyU3HK8G209yJPPB3QyjWGoErPonopo1gI1BeAYbeHOwdb70iBfBt4a1yHPqWbdumOvHywFPZHvYteszEPhz/t+voHGq+dScgKPhUDFo+LeNgFqMxxHKdZ/GOjMcIIEnSOGr4mnMs1vbzhKXC61q7hkN9/FcTvWD2nBvzin9ly9/8woluSDgdz+RlS0QjGpJ90dgIilSvgd4EeUYe90blMs+zHvgBMjH4WMxOANWakNZ1y1qGZWIlnrejGArjYTeo+0NzLO2D6FMDgN2e19F7LHW1p6aj4yjbfRJllBVJBDPU00d0X4hXvqJoiuyHeFQqaOBFlesaaJfkJ8ek8lqdwbcRUVArbe0AzML3QbmS8ZiIXPp8G0PraG/IlvHwWV+gaXYwk5NHdvERarI7Vifeguu9426xvHDV97h6P3hxIlEjnW5zuMCx4U3ZPtqp2TYPyzrl5eJVvnCMNmJVcOXLyG8+24SMEk063/8Cf/0yRK7WjTE63/5D/14DFTUzKXxLeCIRI67wN39UsU8vkUrL3xrcPAqTt7NbJVz2X/OUEOJE/PtUWlnLa9s2BiyQIRFCRFDnsrgIZxVvEeXF2JUBT5Q/JOF0TlRk/H9jCQNq2OAUXZrB15FLx8KkRLibNX7R/5MMWTWW8D+i+St7D7zDmiHsf3HL6fPOzhAKqiEcF/AybjmYRiQpVx5c10uz0KMAU9SSN2TiFrZK69fYH0vFg1KtWj5aTQsXd8ILo2jGZXa6mfhkdUZdog9l+Txhwvtp++D+ZoT6vZLDn5+rCrtJZmH3BjBPUUf6t8HAzEmWGx9kTjTkL2fiO+WxIev8itTf7hc0My2rNPzZtxTa29cS96nKIUXz0R0d+86RJpcecJm2r6o+bVou8Qkt2F4Exvydzi5CYuqToLpHp0IjbY6+PiiuYH5U7fWvPQZJg7D/wAAAP//pJ3J2rIwEoUvyIXIlLBEZgETBFTcASICIjIkQK6+H76/l73rvQOQyqlTb4VEhvhJOGzw2wsxnaGu8uZfsKF1mK0kTXN540NkVk7usK7BLgWPZxniwlrONb1Vw+6vn0OfGHMZ+6tPWYheJL4OO33pmlmDt8HIcLodqzdWYCyA74kYcafOHEhPVKI0Jy6k13q8seUkr7ECfpWBWE7LYdmrhqbc0JIheLBv2dpYAQ+354Hv4aGue1JwAUyuGJKDUp0BE+1vCrhBU6kFb4a+ZjuiwX4oPXxUzCdYVGY3f3pAN16YMTf1DEDvTEYc/+6HGUU/BHey79PiwQGweoZnwFf1qaml+BL44+/w7kUKWnWxzUiu3AvwvqcZRleJ16cgG25wV/gHxIt7H3Bd3CXQ+sgGmVv68cb86rlgi0965BRPXxo1SmAzPGWqTXoINn8SwlzDBlrEWPsvrzaC9khVzXuBuT//ciitRUg3XqgvSoAaEHw7RuYFfhkZP8yH+692R71EDK/2I8OFLrMIPYdiyPh3pLpw889INmesr4LYhjA6Lz3V5bWJFnDqLHikQYtuR2vV5934M2BZRAFWT0/IFrGG/B8/pZ6CwDDdzddO/seTE0wY0fqHBo+7X4zNY27pay4eemg5c4CfnvaN5j7UQ9APfkXvE3lmc7WWHGxheMLI3aX1IBixAziZ3Kmd4Wc9LbonQzskGBuDVtZNI9kxYG+ZJ2N7ueoET6cS7qj+I99UuWWzBQAPnSOL0eq5dTZHe1n8x3tP2wqtWeFBCA+n8IJd8n5n05hlEKL5c9x4WzMs2/8B6RoX2Hm8PtGyNyYOHgQkEak8fb0pPn8KCG8xxoZbZNlcL2kAzQLt//SOzYad90DLrQUbyH6AeRs/8NMFG+vyakRCwXUi3OYXWqZHC9bqsrSAf68uRfRp1ovw8VKgXM2Buny41otKpvnf89R3+yWaPPpogDl0+V+/I1vlrh6hCZ8Behb3HPRnsQ/hvnM4rN1+U7Rq/UUDYTF+8EuaP2Am4Dgq5tOq8NGQAWP7VJbhuC7lP/+z9TNyeG4SB4nlUkXUYD8C27f5RVv/g004l2SoW52GE/X81LfrTRT9kBVY20sMrGUiln/1GoFqP+l//w9vxXPFqrFzBrblO+CnxQlJyacCf3oKYCOeCEeUNpvPj0cLX5eZ4n9+5HtaHLj1Z4l0TlSdu5H3CseIZNg6GLZH5sAJYZlrN6rh371ePvzRBWrdStQk6Seb4fFc/vFLbLb80TtsfFX6mz9/z4c1t7IAZd8E+K+/+cdDYeoVMpmP115nL1Xg4f57U6n/k9l2zOzbhXoS9aimn/fwVd06BP/PkoLD/15SUF+oR40vjrP5t+1LOS23M5ITvqvHT7OW8CEqAVZFOkWL2f56aHCXM3WzZ16zh0scmO+alfCXC2FLacgp5D99TA4mGOp1DD4zIOpKEbk2p2wNnFJTkHW8I2W/J4za5rFQ3KgOyOO509i3rkNHwSp40uPhTvX1/uqIDMqiwVaBOX2NklMMuBHc6Dk0ST1J0XuFs1FmhNf1qzdGk8fBRT1U9HQRrjWL6l8FXcPYkODt7VWc/ilhj3hzOynY1adKGyt4UvoMQVohNhdCy8EhcAr8uox1xq7AX2GHaglrg9hE1Iv7GV60vsdGesE6Cy7yDWavQMLq7raA4e//xIVf8Xl9Hxk9t48dUAa0HfuVNRHValGEpj5RrJ3Gg87ai5ookw0cauuaMEydIBtQxI8nPaoW8dZjlzfgelAdrN2iXmexknbwuctPVDVJoM/BsS6VoftgbKfCAdBYCTvovRMH4+ZyzthVt2bwTYcGY313idZj/Cqhsm2Da7aCNUxVUZcQYmAiSLWvvt0/Ly49Z5Am6PvhB04XCJXGD2jgm+9sHULQwxfwTeoMnFK33L1vAGcUH6xX0rFeOxDcoOb/PBz3dBz6Vni5UCLTjfDB8vWm2R93sHCkFDF4bQZKJTGEX9odENg5fDQLaXSDtzD3qI/aiE1m++7+xofqu0+XrVNeioCrJZsaPW7YchePOTjd0YmeZSrX8zGqLIVZ3wm7+oXog/l6OkDzB4+6DgXZaCWgAZev9SSi7wjeHEi/EqL6ldLzfWQ689OC5xdVqLCDO+wtxX17qwpeRew8rDxbv14eguHsDdi98qK+3i+vEdpR8cTn8ShFE76aHbR6PUF3vs7r5apdYrlHnEmv3mAPg4hqFw53F2FLjU71YRjiFNoTmAgLBkdf4ysoQGHJANurP2bMi6sZRk5yoI63WPUcXXwOBsUco8S5oGH9enGo/HyIcTh1aj0D7zvD9UQdAh7XkJEIaqHSDmuJhEtwydYJ3WUo1sKFmutHGBYndFXw4e6ALB63A7QUlnVPxfeDao/eBfwpClPlTFyd+vuyGZbYf7vQpeWFJHnLDfNbSh1QRvYDSSQvo6lWbx28E3Yh8ji0YI2S4035i0fv/D0Cgau1GRiJ8MNnXeDAkishBOfwpCGFJQ/AQGHk8HZ8iUR42BIoT9aPA4q1nrErPu6AUWkOIO+gC8bsdYsW/rIrQOxNI36olaovUT5pYDBOOTZ7QvV1X5mNUp/CBz3Wv6e3HO9qrJy1sfx3/yuCDQ/58Fdh9DCOw8KpOADjKgn0/GT7urxaBw0OgVvQs1k8atoXEQ8rlEb0PC2H6E/PoHkKCnwJY3v7vZGTM2s7SfqI9YyXGl4DTh7rhO/aTzShJ24kU6cUyT5mA81TXMBDvyLyHNy3Pvs3zwGJYKfUmYFc015OOWjVxw6fJp2rK70wVpjCwwdvpj+a9+bDBeevE2G0I0+drqdHD3wSjFg/xd9s5oLWkFcntLcU70XLu5QSOBoqw7hZrt5sy6SHy9bSDi0fMvZ+NDK8ifITa+bVAJOSHV1FfrkeRYpgeouqewHYnic+zfXIlsQUSniKfhICqJDY7xXvAhiH9ElNmL+9pc6fPXjd1pCetvHhmSIlUJn8F43671ov/qFLYPo5HDA+mSRbSxk3UL64A5ntYtSpdv7sAJbjN4JHp2W/l+0EQGpCi+rSAYDZ7WIRRvDiYktlS7YYYdOAnfC2qXrAV53CvVDCVsFvpCydAhbwCSBMb4+IuuglZCx+PEbAj3/7cgdHfdVbRKCeVjr1nde3Hp9XtgK3f6to/z0mgBUD34H0melE4mTFY8/wXMK2iJ+0KAbLW742r4KP/bxRVzkZGfsoeqgkR9Si/cudoyX/PUWQ/lKTULbf6SNLFRmA+FmhSRKrekFD0CopE24Uo3EFk9VEq1LMN5WqpUz1WQq8Ek7KArG7aHdv21e6AvHBWah/3O/ALJZ2Cs3LFGB/lWj9EwbagoNw3mE1iWSvc+EFKvVrHPARFCCb46MKFWFRMnzi5KfOmbWewH22kxGswAMQGl4suFjpBXv85QzY5TQnCtrnGS7eYRotcXp34K2XITYHdAOrQM88EHyjRf3lZTNWRjOvjCsQsB3Pp2E+VSUnn5XmQ+/tTvfm/LPvZaGsUnLoCda5QHpXIGsCD8fg7HrzJH1iMOXigxo+q7aWoQNhJylPqvqfn/6DtWfBTB6fVEP5cXtr64vAGnoy+ek/wKZdAgLYFrcnSV3nq8/vGvsQ9S+XcGb+zrpj1qiQn+0PPpbVMWNnzt6B7fPoMxZe1FEvbuHTPjZYf0mLTv/ufwhdBeNnymWrujYpqG8kp2Z8+kQMCkoDtvxDmlN0YtOuPCDQGcYP7WEbZbOwiwPF82GMH7dv5TFtaUVo0AgQMLvHgav2FoLKhF5Ufac8m4isEJi5UUfP+v2sE2W8JkB6hld6Tkd9WPBi9HDJuRon6avTWfOzfBh8/C82lvYzdBDUHLQMt6GabargYI7PEYLhFSI2kr33m0yzgeCiadRbUzOaq8i7wYpGPBIU/ZPNwGQj9IrsSqR7kXqkSPsUoqduo8H9XqJZTM4FvCxvgro1brN+PR9uUBAVD2N+j4YZTySFygvtsGoiJyI0fFigV6YTNbD+ASyfw1QBQh5jk/PzbC2dpAPkcS5R6x/leiZLncjH9CyQ3LPAQN69Pirmi8zocDnFbAX85IP4TghFeVZFk5PqULnLc4QDvlMB/5O0HD5VnaPaTuG9TnJOLZzT3URV78rVC73BGQhZ7VDUP+46jd9ZJ0/1baReZiK2nitG4GGcJ6yHWeMt/AeUwOdpgQ7C1dCXbHnxMreXHaxVy7delm7Y/cUrNtSRY+uxKkvFyr9XMsBEztih5ERw6GdEpLTohzKkDwK250dK75BH5JXkJbD22g8tZ4NFm5/l/81fJ7dGNrtdLgIxTimiD93wWHV6awA9jzb2sPCpVxy8d0qE0w89qdIcUYZNAvH3Smmgf/V6ma1ZVIIQH6hZ3nceJScOweu3NbEFhhtgTstVyhaP1LfoEK3rD97Alp+wsflBNor+DqbGLqSmoyUeI5PiyCTAF+rwHgHrsYtb5Uv7A9qZbVSPH0QbeKuBjzU4rRFZl10Ih4czkQPw/YFV97sGKy5yKGb7wptfeqUBuwEFUUTHGlh6+4WQhOeZYv7VstFLHhoo3e6L0Z2b9IXIygjGd84TUdG+jHG2N8M/PXfUtP3n5+DruWpIGK5RNr5rjIDm9iNabl6gf0tBWiEKtQc1VP+sL9Pbb4HXp3fqRI4d8cHtpsGSWilWTx+xprrSq5B30YzE+0uop6Wroaxm8gV9jOGeLXH4REAvdzd6DEDGJiMcW7A7VB01hOnCVu5eNXCLZzR7B5gxqcsD2En7JzloAOjzFp/ASRZG3Qhv5x7MkgvnOnuhhQVavZSzEsIAojv1xZKLfofulML893ljM1cnNv3p8eY3aOzo1+FfPfDGioK9YxnX7KxdVHh/3gKqitgcuG2+g/XgjoQNtpyt/DmdwXxV8n/+YuqixVEG8bjgwmkNj6VF7UOT93SUlb4HGI5VJBdDTFCdVSpjylciMCjxjUBN1FgP2/cNqtN9W8J81cCqoiGHMRmLzV9TjzY/hCDdv09IvO0p2P5/BeLtgTCm3ZmxVtsn4B3vMdVH8vIW/sSVMC69Evsf4EarYAbc3/Vg8/LL68W2kAzIiEJ8Pn4XfZFouSqnB+qoAzLd436yLcIoEL5YTfWbPn/Qt4GjdQzx5u+G5awXBaz1qUdjOdy81UCO/M/v9vW0LXEREx44xa2iWqy30Xr9iRUw6AVgfNNZvaaRrv35f+x/BysauvnTwpPSZTgBWa2zQ7fjYHL0W6rW7spWeZYcWF5NERsSt8t+gXnaTk4nBZqXxK+XOH05UK1EDd/j4A2Wwc4KsPlL+pePxj/9NRpuoOk4tGyWRq2SA+Y7+JmO9bCdLFNBW5ADxDqBHzoWgp38N99NKZ/rFYRjCMVnuqNnZ7ewpWC6A52Wxdg7qj4Y7WDpYfGUBzQ+OOW/enHmmwM+cek1G5ejP0N+Z5t/8cqW8WeVf36O2mpW11OKmxVWdlpTx3qvEXPVicC9kBZU4/bHaCk7doOXpy2jQ/RIhlUv/BXQr5X81WPeqhlZB+jZPCDAvRfG5n1z2xBVj8+V3kSzs44EtO2CKVZ4u/6rZ+DbLCf6Vx/NbhlCISjWGLH0dNDn3ZJrYPM71LAiKevSXZArW/6kt/Bd//MHoMhkH/tTOHhkUt8iPByvLmH/4puyDnoIsi3faBmvWu8KPi+aja38lejs6XoNZMuLITbYaba+kTHCkhrplh/smgTybQe3egYJW304LWWlQsGqBYwe4DHM+EIT+C7hBUm2VNZEM7Ie5olT0mzqE9CNAPhgOadH7AZ71dv0MQB1d3oiUI5smORLJEMsxho95agF8+Zf4ab3BPzYHK0Rp8bAQbKKBG81PHaZpH/8gp53OGTLuL8UilRSnuLLqGfzLZUN+JuEFZ92RwmsjvRDYOl5gxo45b3VPn1cGLDt5FrLh2DlXmMF+Zd/3OK/zf7lv7Izerp9nxHv5Dbww10BNZ3qxaaxDgt4tb4rmZX9u54lzi/gfZkNej7av2y6q3oODTvt0J/fnO1A6sGnkmXCPEPPltlvIPzekYHPjTuDsbd0C34vv+umF3t9+g47CB/ynhJx4J7DnHNqD3eRHaNJpukw9EXGg280cKgZ9iX4xy8+guhtfvJdL2tbWOLfePEgbuu5pm4MDp9VIcCzH97agSQG7ryPqH+f5mH5HRof7sPdQM+8uOpk4GEr/0z4wk6032fTVXvc/vIL4oz6GbG6Dl14g3cF+8rs1PSIAQ9l8/QjCnzxYKyycwjUStboSXaXjNpnL4FbGUN9GzOdbtcP379dSa2PNendpS5aMPDNjA6nTAfs89BiuB8eOf7mtputZgR3UI+qCIXc/p3NqW9V4GkeTYx9yLMleDsrfFdwxggWUsR+5W+Ud61hUe3AS1FnGXwF7/IaUXM3NoCJfe/CbX5R/RtcGK2H3IBnpf388bKM7NSwgps/xlb4rr35k88t2EupgtqCZoxddTSDwTv5NHVollXe5JVwLyQFRsPPi6jkPwPJt/kUdZ/pki1Mzhz4+FVky+csmtX9uAPH3bZj1aZv1LxnPnwsyoaYMy0a9Hetwbtz2xNl08P5eV54hT/6b3oWHas+ZHbFKcnLt7AajoeMnIToBsezruE//WJI9RzI4VdEdSu+bSdlrRDWikuwYcKTN4PHPMPoyotUvW+7oviPdwI/UZ6ggxJJ+jxJ0w0e8K2nrvIbvXWXPyr4vQxX6nLSq+Y2vgHfTbbg89E+RYexDnMofacWa7FuZcLpJnZ/9TbV6gvO+DTzIZwi2SWQOxkeV4JOhWXSO6i6siqbS9Bp8FAsPja9wa6nm3NOoaPetY03/WqyT70emIrLyO67VmB+fSuoQLZkWOu7WZ+BIo1Q98uKoiWYPaLBRw9FY3fG9veQeeuzb0PgekZB74exGXqaRhpEfO7/8yMsLQYfKHjOqaZ+kmih/cLBWg1cau97KWOZGMegdPvv1nb3h3VvofZfvX7qoeO1UCtTZXfsI3qEBDOu9k4pHA2NoUMaLDU5WxyRl0LQkJhQ31tPUZrCYo1fNN2eZ0fMslJSCy74lBZ9PU94vv3Lr+cy6qJvvX84UqO5KppvtQKWUCXaHy/DxrvDYP6oSwu2/EKtAsc65RN5B+Fw+1FXW9ps4UQzgDQ0bQSdlz1w2qNwQXuNET12s6x323yC/Rg4f37Sk7f6Qywy0ce3NzaGQ2CeZnh1HQ19WqGt5/LzNKBe7Q702Jc3fV4XlYOrNiVInIzVW56PVIOqK+3IY78c2GI12Spr5pAh6PAC+ONJYPlG3HZ/TnaAg6n+1YtYy2Q09D/JzeH7uztS81WajGr2IkPpGVxpet7TYUnv7Sg70mqhWXglm/4/Crjx6i2fid7GZwMw54pPMbpqtRDVv42fcyZ+nUwSLapn+tBHvEtPD8RHqywyS/6K9peaz0DzmsP4McAf30EW/wUL3LvG3/fJH+/o7O2sdGPgM+xzJ0NfQue7g8PdQbRYglmn95nbQfTTToQ8gDSsxk3jwSgWLT3h4B1N/f0ew9AoS/o658Uwul0sg7x1jtjiYj6bD83gAuQceWymwaXmwGNeoRbZBTrcHif9j8/DPz5mvN51NL+XYNu/aLKpVe3VYb30mQXJ93ykls3eNTsYigzDDkZU5USDCbfBEeHlZ0Ekq++qnm257QDRGMImQd9oyeofD1MPatiud2FN/P7QQ2KvL+wEoj6sgmDP4KT5InY/cauvDZ41RTTgGbucZtfCR/FC2APSb/6qBtO1TQO45Q+M++Mvms56kcOr7oZkkZBQE/v0caDOZTzhwXBjgp/eeLjxFPo8fhdvuB4ConTR26NpPR0zaVcqCP7AISLCmyCwQu4VA8nidYzvjNZT63qy3NvclT7Kj6CTAy47OL9327kH8bcm7gMVYBpvANt8DYdJi9ccvvD6pogvm4iKVekrowS+VLV2TTa/l8SHD98a6OkL7/Wi858SUrW3qJEnoJ691lYBd845bP8+QvSvHjO46EzW3umyua2aXtr7ZUKvnJ9HyxEcw798gD2jND3OMnYlkA9NQc+NGzASOKUKJxUkaLHOabbsx/n2x4vwMzr0w3gWeASvQXOlRRP2gP2MiihbfY5RMbT63DisgmiV4JYfrtlqvUQLPoXigZEscMOyGIMGYCba9LH5tX/9py0eyP73Pg4Hcjj1UOiVHh8DowZLoigVwJGI/3grGBOnjJViup+pyncqY8PtIv/jyxu/jZb+fr/B9JeYRClZ4K2Wvhgwp05ALx5XsKleuxY8ZSCh+TqaYNZPaQj1Et7orb+9s7mvXAPO131OlPH4+OP/IghZ1qB9sxz0Rm6cFtx6EeIjUUm0wm3JDDdKt7/rAXzG8QZ0+1rd+Bz1qOKtBKL+6VKcMlU//Pn78aEZVA+8MppHtoRK8hjuSEoIGpYryRGslOj+V996bKFlrvzxYI+/TIy9Lz0ERSzmVL3VTzY/fyIHb9bzhOTkprLpk9orFMJK2vplV53XyrQH3715x1bifNnybj8FTBL/RqSN9y31WjbARi8P49/7PZDf08tB8u3FP//Klk+KV3DuPjE1g9WoZ477aiItjY5wWz0wfPulUh5l9cKGPGkRbTUhkbd4xmc+6aN1b1kN2DmdTpPTuwIzolwA9ngvYnURuewrrKMhb/UrdcxLoa+67K3wyPnp1p8pB5rKlf+vvuzU1PLYOqUNCE6LTkCAeH2k9FlBNRMvhEJrGOYJi/FfPw2JvWLW379+mfgRZvRiLz4jfao0//RY/Vz22Qg8uoKys3okzPkcretZiYGB0oSevp9v1o/BNIPtfhBsqmIYvRarAH/uAeHxe61Je+4dmbOeBraWqfIWpRNc+KlEmW79RbY8DqAFm15gPzgnw9LEEQH3+Hak2D30ESu0Uw+i++FOTwkh9YrHEir/+NJrH+is13Lur14lIDMJWP76BURbEPV8ooCNx63/+qMqSXJ968eEYL2OLs6aGnrTln8VHb2POHUdW+fez8yFvH5WSVmwqmZHDDiwfj0PyZtertFnf/vHB92t3zLLZ6UD3FvuMOofgrccfDdRyAdV2P6ZdFih1iVQpfeFgJGVbOu/tgAtBcD4oTfeusUf3PoB1Gi6Mlr7Sqjgnc01/avffu9ySSGx5xfG/MsCNPcfOfjjidrUlfV8tRQNqODGyP7VJx774wPNpa3o6XPVa76Nbgjc3XtBWBRCj+2fPxHkpkewQzjiMcl/hvB5UW2apm1TD09iVPDuXgvs1tMxYqgxDBh6ZUDYeEds1rzShYHHKvqnz+tOTEqoNncd7UYVgCkd6vn/2qWA/99LCqxQYxQHwByINh4SmEyVTa3oGIPu4Xg+GGtTQzPYjRG72kIFd29tprYvX6NZPl04xbuaCAknUkXTaYkKOArXDCNBvLBVXbseaqPkYvfa6/UyPTICHzYnY7UACVuUfO6VnxwgcvhkKGKXvTtC5u4NqmbVS2dGcbHgV7cf+FTdKJhiCZRy5uGJmj+RROPsHFdYqdoOib/dFVDuN5bw7I0H8jugWzS/EryDcDEBVT9W6zFD8n04eqjDWvN+sDkKpRZOp1OGQGnd9dEmvA/vnithLwxvYA2PGZTroPUx7oLRG7c9dyCXUoGw1ZrqOSlEDWqfh4KN8Mp5pF3XAsbhzULcfnhn62d7yyI21hdF4jXcNvYpG5CFVoUOcOYY0zu3g1Io2FR9BmO25v6zgZRUAdXCSRrIyc5EmfgnjaLPc6iXudAc+PqpLj2hcx4tBdAbhXe7EaPKuLDVLPtQFt+/Eglf75AxHH5EuDbygPV6+OqLn5wNKANgY/t1zYblVQY57NzrA3WakjFm2WMAykBsqCd4hj7n33GGRM1y6ivufZjTh7HCrN8kueCPw3zv3o1I17XfWkZUH1W9QKCiSYPjh23Xc8aVmiIV7YT1W/zVRzqSHOyuUkVPxyjP1s7zLfgt/BajeLqwOb8NCDj6p0WrYk/R+ow+Dbws554apXLM+Gt5qGDHNERoSz/1fOD1G1jvd4P6i9HU7LLXiKKa4p0Iu0mr13zpUwDDilIHCwBQXvQr0CjyB4H3rs/WtNYScN33L6o3jh0JMZ1E+S9+dVE8eqyd7g1oinJHrTjcNio2SwSXR3rBTvijEauLfQMfTJnQwUdxvXyuvQEe3OpgP1TcepUf+xgsj+RCM3P/1OlTkRCwT8DHHr26kXD9cDeoq2+P2tf7NVsjp4aytCKC1UBZh9nhkQ8G5XekVmxmUfcaMx/KUkFIL5lPj3X9ToN2MB9xRCbG+qYJc3hFuUjVjJrsO9CxgF7qaFiTrw8wz4Ljwnq63+k2Ht4sVB0C6TmUqYvEWZ8M/SLvrxP/ol5U14D15/dNUcuzS1H2+ui9si4abBTxg0SKK7C+UZXD0/hrsTfAYJg9bxdA+54zii6x6C1nFFXK4+I4GP3kYWDkVhjwiJsZoz3xBqEwjwFsTaclu+3z0yV9QJDVcoUkq/llixisCAZCHaCdk4re6GSZBVT+UmNHbHV9FdBbg5s+4UA9i6zfe1oH+R8WsZvaei2U/iVQdKVIqKWe0DAfPsdZUW8AIrjXXMCoP1ZACV4V4k5ZrK++IKhwaK4c4bGX6cvlcLbAyRVaqhkhi/rKEEW4xQMRmryq/+mHZEYlVjP6AYs6/Thw4YMCm8bnOHA5mFWYTKVNwNXos94uHAKQtuPRQQfpsJRa1Cu/A04Rl0dyPf+mIYBS7sQ0Kum5Zsz+JSCN7jHGL2XVp7IpVmibHcP6JVDB/HB09He/hKWL7dHXcd9Iphaq2PgJ74g4qi7C82XB1NKrTp8fwqmBrem2WA/BOZp+52uojITrsP8KjOhwaHkZ7tX0jq3BdTZ98Vr4ehFILewBffoYXQkZ9ytQc3/I0Xr5aTdQ7707UuJXobM7l8fwnu8keqITBvMCrBwWpL6Spdpb0YFuu0Io1/JG09P9xJj5+RnAPUxfrH8NFTBXezvKoE4cPSWHXz1qgq4COTVt1FRHuybPaGrA1V4temZpA9YbDGa46Q/VVEkaxufpC8FN+YQUL0sYTbbBd3Abb4w4mGQMH5sYBj/lR/3b6TnM/PhYgU7FBfsXqclWE5dEkTpQUtfNAn16+WcfOJfTGXEvzOmj9eR6wGVViN3GdL152QWO8izWitqT4oDl0DutHMNepOZL/oJVfh41pXq2DVnA/hEt+7uZQH0ZV6y/bxHb9qLn4f3zGonInWqd8PZDg2QofzQdLjlYbaqFCtGEAwk3PVzCoEvknA1X7PvePWP+eZ+DaffJqN1hABj6pQR+qOXjY2paEcsycwfLInfxdSGdTjhxhkpqtQ4Kn3DyFl5LffjqzhQ7A//TD5nb5SBZ5jd2XHatifiqWjil+wy7QsMPlHCpCPcMQ6yjYoomGN4gfIXeDSOeG4ZZlcZGXIfvk+rCN2LLoVdbRWkowLYFCRgHE4py3sonelTFsW4SKrUwilqRIux7EX/iwxCuZR/iszU8wTxCLwDUFHIkyEFVr+TTl3DLD1Qf3iUY9QdCUCoTguSucj16y90V3NvAplEiMbZq7hr8XR8a4+Oir4oud+B2MEq0NqQcRjDEEEbnqsB/+rt8I6eUAy95bnqU6Ou9yCAgQ/XDx0tnReRMzjkUzn2Evd9XyeaZ8blsebsHRelhF41RXjv/nrcufBkbzsZZBsnJHtF8skUw7Fe/geX+RbGvnQMwS9qJg8p9R8nqqmrGU76xZL5RXjRT5oDN+2sSwucRQfqndyy00hk8IxVS3/eEbCq1rIe8lUT4il2irxhOOfj2+xUdyBVFTBqWVH5HokeDAa3DDNcGQuqaB3S4Uhk0WRmv4DeOX2rXey1bXTTIkGLnh1YUPIZ1uZkj9IUiJ5wYftlnmJ0KjjDFZD/4n3pNXJGHvq98qUOxxqbN30CbP+7JtyKHbBw4EELlN1OcNmbvjRfj0sJP/loIV4+xtwyZEsJv9VSpztwIkN7pS2n1zzz+m//ruBx6+FzTmrBEitiyt3ROmZCPEbf5gZG49Q024mGh7nDJGVH0tVNy3ib4dI91j5eJ20DxJbz+9M+b3Kd4gxl8xNRmBdX//BvY4psez14bTQTcOKig4U22348Og8tGeCTwjhhdUo/JdD/K0SibaD4WH7aq9LYDFz4ssOaqasTd9Hj981ME280nYl3givCCUoNaF4UMbFCJAbyAOyDpHuv6ammfHO7ZGZLd/EqidScfVXjwQIEtC7zBtDtoPuADav3pPVuUSfaBY6RH6twtGk3fxrXgxBs/JNpfreYewqmFnXt/UA09y2i6T2UKud1VoE+g39n4RcdRiev7QHZLXdST/NNXiL/rkxykO/DmdzJbykj4jjr79cAYs98pZF853PS5BMt8dlpoxS+fzOFRBMuu5CE8QzmnduhVGRvz001pmk+CnVLFNY2kew7lOrnim/DU9Em7HTT4bekDSe/wNKxEfRJIsfvb/P7eW3JlcgHamx02nUMKZmniK9jH3yNh9WB76/Mr8iB5wRJjeVijmV5ALJfirFBL/h22o+kDQ5Gawcb//GAbjgW891WJ5NTWh2kcdzxspM5HO+khRt0h2FXwO6xn6nt2wNiYCD2UXVpSh72gPjeks8Dji95Ys75WvXx3Bx9ufhH736mJ5pNSIKlT9g80r0/LW5soEeHwSztqxL1d/8zxo0LEtzw9ecdTNP2KGw/SXf6mvnae/+U7KMxP6c9v6sLmX2WehCMBujBn7OSHBAo3z0Kw1pW6Y/52VOXum1GNjC0jWgY42ZfkA4Ljt6lXEJjznx+kjyHAYJbFxIeoip/YXtOOrUPJWTCBdCS7yrgAJp9hC+T8XVJ8GkNv2fyFvM1Hwh8+hM2yGPhK1V9nHNqDD1a7UAlcUKSjTa8iaitrD+8JKfGxKUc2GVIZwkVRL/QUJ7+6/6v/ZLSXsIckxVv+/MMWn1j7PllE303PA9lQCfZW0niLUz5kmbpygLXVVGv6Ek0Ih0E4UrwzRo9e+n0OLs/PD5+WQ16v1lcOgDx7b+wU8OcV34+AoH77Nvhc9YNO3aYJFcEXRGoEZ3vgbzCZ4fjUOozs26Ve3/LLAdAvrlhLspZt+TmF7tHS0Fo9Jq+XH/sbMLVApcfgLmXUGhcLvH6aS3XNY8M4FqgA7Y7bY7+XhGhF1t2AjT/u8MW3VY+vfVVWChdcsZ2ZVTQPqeNAc/35RPlhga2yo8zQjC0VI3UxvRm+hxR2xWfF2uES1ey3IhVeVs3EerK9RVELhxbC51OmJ5nmNVvVRwr5PB9pscxmxO/kkwYRIjmS6pT3FizPNwUaioN1HT+2szWrHSxyesWW0ZJ6tvVjBb9+2lLzSlP2l79BWZEGu9dnDkbHtnkQvW4F1nrcgnbH72/w1WGKJFz8ImojGMB9m88UDR9Rb39hbIAtv5Gxyu/Rcn9cXegF/IE6v92BseEjy7BZ3T21qFp5M5HeI+DNj4jxwyvAon35FtjT26cnY7x5y7fRDMDFuomUTBRqetw2nt4dLifSPQfo9QNeK1g9m4bqq3Wuh5y9Sijsji96T04OWE3/pQJtN7nUeWQaWC+vYIYjTDA+bn5sDeK9AeuY+9A4at/6xis64IbbEg69PnhrJ7s5IJIREGIed9kver8htO8Fo067auDwvIgFzIFb0fP7UeibPnGw9A6UAM2vwRyFSwNnIuX4GOz2Nbl15wr8jcdZSbzoc/D1GX703R6f34+dR4/96P/Vw4RvDgd9tMBSwJt0k/7q7XpdXkIIwOfz3sYHApJ8aviv/pT8CrPZEr8rtNrIJwcrIB5975+7v3qNwF3W1Iw/WS4M+tnANogdMLOntEI5tW2Krkuiz2o3aNDUwY7aIO7AAq9lp2x8CNuvSovolg9Aso9tmufg4hHhF7vwPBg5OfBe5zHvJLn/9NI6l2RgzvfM/c0HasG7FjGzeiV/+Y0sXPsCW723g0XduPjI+WW0WKp4g8KhmihOmqSmblQRCI29c26GamKTn5gWjGcQbvPz7M3NKQvg72R8N/18e8uRW3howfuHqgnzMzp8ZBFqcZJQHRqxt1Ytp8GaQz7FJBGHsb2zUBJuJ4siJ028eX7oN/D5zHvqab7OtnpIBO1t12Jj0rmIfby8AH/xdlbrJWNxLK9w09/NP1gZ1wy3BBjX20qtDiG2dAevAxt/IuIWr1/DNTnoXW2EdvNLjIiiyz3sJ5NhvfvY0eoDlSjSBGOKD67vLdE6VNIVpBZ18euWLRv/giFxBYps5c7Y7x7KsJ9ERPNZUNjPdN+yrOwPDhG2+F/QXPSgndQ9fpvXcZjxQaqg0kwAa+ZNGlbxOM0g/XgxdhYO18sX85z8Lg437EfNzFhjGIUcVo8L9TvXqP/VQxsvo9rlx7I5xlSGLl9p1OrrSie9UIqQ5iTA6P4bMtq7rx7cj8KIEVxDr3U+AYGvswyx/xL6euOJJbTp/rPxrscwrfYzhhvPwedNH8djsRRQa1GC+nHvevPO3TVgy+ekaohaHza+ALfrQ7ysoY1X/GKQX40TPrZJ6f0eN9ACO3zsN/+FhtWmbgjJY/zRjX/VbO/vZzi9+QAbL8x564DXEp7eY4avJ+295Ye78+cXaPF5ejU7Oj8LNs03wY56oNE/Xrjsi57iI169xSWS+I/fGUvJResjW1Pl1+WIbq98DLOtnyq4JF+eqszwo0P1Vvw//4Hxlw1s3upLefOD2E14fphTgEXg+CIjs5uY4DAJQakIryIiuz9+cumFHOa8Sahbdz+wVAHooVMpZ+yA64FtPCGEiSFE2IL3KvvNX0Bgr7Ej9cpJydi8SLESjaKJC7ItKXv5pg8d/dsiOA0uYHV1CsFzvJ02/XoNy65xeqCLj4a+tvp6sdT5BjnZLOhfvl19343lWK0s6h7fgb7A8LYD2ttrqCsrczYXez6G315Z0VJUbdbHj08p2pGfUhNZXzZt8Qr/5o9jhjRafu+ugvP41NGoLE/GZCoQqILbHTG1/HoUXI0W+jsPUbereu9fPvx1BcK2ALaaYv9KZalMCfbku+DR/JInckzNCzaPvg34HS/cIHZSHjvslXvzXz1po52K5KHQh2180Z8/p15pCd6y+Udg83xKjq/WHw7807wBLitDIoReFTFt4RCMXnFBj7vFB6A99iIwKvGBb9XUZXNW5jM8DBeTfJyDzP7yO8jZ70rDKH6B8Tp4Dsxo7xBe1giYJz27Aez/MJEN+cdI1qcJLMvQw7rVsWHLDzm8MlnCWPqOHruFFx+m50DeeIYRTdQUG6BltrvpB58Nf89viyd6gfljWMVX34JTfz6j3RR9InohJwe29bRikz7iYd74unyOzx1V45sfcWcxMuDicT1+0GnbCH8vq1KfHFKq8/VUr6L3iuUw+F7+/O/A8HGMwe6FKPZnQQF//Bq4is8hqCwKm2rbNcDB/pn4fKguNRHQT4Na6yc023jZ+ggdHtYx/8He595487rEMnQ67Uj9Lf+stbP34YmVGQ0vvygaftbjJosClcjWj8jmnxDzstOpx388Szg98xBs9TuSWobZQsqBQN/ff8nu/hui9ZN2MrSGWKWqVvnevNUHwu1KJOpHTcDWN+oLuH96FbU+Eohm/3up4B/v1dPF3nY9PJXgj7/96eUW7ze49SvIlInCQBJ35qH2utcY6/YnY19nFf/85uaPn/pyaHcyTJBbkkUpX2wll1cIF2H/JGK85N76O6blP7+k5+G53nhUp2x+Ax+5dg8mBwexYj0qlXobb+aO2XcF3ozyzb8+olU9Zzzc/A19xq+dJ7hRT/7xw++tq6LxMluhbFfNEVsJ1bw1ql8GuF1HiV5V510vNjuo8u1YlGjspXs057caAU7DJj6J30CfLo1XAuPOvM1vVWza/JIyn82cWmVy8KhSNw3cHaIT4dUTqee7NDigKeP9xvMMxm08U+5y74HPNVkiZr8UHgbvXCCwWXqwze8EDscKU3XjvRN4pdvGSVGF/+Ynm5clBmmSOGTd4mFxn3P8179Awpp2gOXsXsm7K6jwSVRPrDW4cwpRUD5pMt3pwDiZWLCW5R324+NFZ2dmBLAczjfs2r98WIre1eAvFb+o7ELJY60ghfAbgwc947UZZvNLfGhU8oMeq72VCd5pceFbMzy08WRvznCEoBjbEvYZu2erfVJy+OmPCfWuwzyM1zO6yVx8NKkHTSNaVOepgubO+WjdrRIgz+jTQr05eRQ9vxf2l8+AgbddDd/JRZ+/0i6FQxRjenEfK5jHAuXQc2KNHNoXNzBtgT6U8Ryj/Z4mw3KsxRCm9++Ez+/WYGzaGQWcuT1PgDe5Hrf1/6DXAkRWh0bZ5ic6KehXg/TydjDS0bynoLisLnXm+Rdt41/BotxT9IxHAyxcJbbwg8mHulv+5obhOCoWWXbUe+/6aJ1rFUL1V97JoeE6/Y+vQKiOFGsOZRHBgbiCv+ct/EqH8UncJyCB04i9XDb09Vc/e6jKNSScseP0cTz7Mtj6gdjcm50+Dzc+l8H77mCjLeyaH+9aCa+u/6IWmLLoZ1WsgOqd3FGb77OM+pVGlDu8lX/1qj5SVZplrHA8fjxyyuZ3+93BLb7oxTBewwxgUUKJf9kYpYcim6XFQWDLF2hJzkxfPtfK+ue3g9kJAeGaD4GdEHypsdry8Bev4lb/UmfNDmCI4O+/8bJu+WC5ZvwI1WmdkfShp5rS/neDi91e/stbHfdSKmUgN0h5b7t8b7wZllzVkNnLR32R1kMsH0x/pBvfjuZu9jlgft87fBLq3zDF3QKhfPCv5K8/tcyiEoLfSL4IKHMAlvJbFvB0vuyxx/EzI0dJ7MDW38Sn/UOPfsWVX//iierXSWWCeKh2kHDHfOOzKjtIqxKDLb9jlQ5hvcg/fYaNqiRI9md94PZClkCwEwlVNz7J1ku6++s/o8PYv9maPQIexrfmhV8BMP/q1VIxu/iB4zxK60PcLTulLAMPtRflT09qFyK+4fGp25aUBchzZDrfLn88CzCW9FC27FHF8bOxB6F8ppwyFFG61V+FN2/xCZ9jfKJJ86Q12eJF2sf9jLWzz7I54zoNNiFLEGfhoz5+giGQ7Y+WUn/Tw3FaLyPUjotCj1LQ1psfuoGtHqN+Hy46yy9xAlcq8GjvHD91f1BPGsRzFFD9r9/TAaGFgXX/ofXxmryNj43wLPY6xv1+B5ZjPYfK3/xU8Edh4zVINLDxMwKvphCt/lMX4Z5T73/93Xr2F92CyW2IqJuts7cg4w3hlj+oL/gXb37ZVir/P0sKhP+9pOC6ahJSkmDWJ8WLVcDRr0ZNWxcHmjyuInw+64LUO3SNWJd5IZTj+5kIWacBus9JDIe1K+nRfr3r1SI+D61lsbD+Ow46owVbIY3LmZyhU9eri1WiOOTKoUOz79mU3d+8ku9VFZ/Z4z+kXcu2qjyzfSAaIiopmtxFwAQFEXvgFRC5JkCe/h+s/TVP7zTX2GNtFqFq1pwzlVRWzOdB6EHyvYlK417wBpKVZziXb52cp9vs9UZeufC6tSo77g1ruZj9WaPSU95Mq49qNlTtWCr1Z7gQQ5WXWSqj6coxdGsqlQRl42mzTeC72V+wsjo9w5H77TJbpYqYMRo55+qjukPyUc/kKRl9xt3BkVHI84S4deigX31850BX+IQV5rbhZL7o0mvTlkxtb2k35/khhv3PKolvw+hNh+YUwRabFTuuQeKjR453mLfijxg7Z2WMLElUuFvRgZnM/PC6baZEacUvYfrmEmZV9gxEaJ7Tln5EhA1+yIoIrGcWM8+zvoitJc0BZ5dj4jFuhvM2PrSIrOgFIxJtvGlzO5iwF9YNsXotL3jx0rZKe/s7Va+uu5ElgQq/9mXiOXcaY+79JoaVAl9mfl7EmCKoTTiHxYU5NeSIo3SK4VBgm2H+noxqOt9cFHyVHRbulYTY5eu1wPL9geyHbhtOnXingEYEdPNW3ILzqyOizfFH6RgGGHHSuAFKxFQgWnoY+YjX4ha02hvw5tRrBW9kowQ4byj+OmONuH1jEmrfRwmvv+sL5/ErWWaxKxLTxXkbcv06S8oNdZho1UboWF5vY9huxid9b5w8G3/d2IP5ABsXpff2JnE+VRBfr9dl/TUujU0eI+xHy0V99aHor60RQRftUzw/X5tuBq63IF0jj5xVPvJx0Dctut/3HzpuhCGcSsEW4PENSzwrH9Ub6uM3QJ/DL2OeeX51o9ee7rKL4w3RXuRnTLvQBhS9K2COdGozvsnLAO7FZunirvdonjaWCW96b4hv25YxEay9gT7OLzwe0C+bLtehhTFJIvLwdkE3SnfnDdWmPC5dz6PB6prqsK6WLtRofe/aa+XN4B9Fi0VSf8s4PL81lEEk0/IhPbpJg1lfba48YzqHweNkHqmS7voXOZyMfTFfdu8ajJu1Xrrqy6yv0swBRb/u8PYn9RlfvRsHsiK9MsMlAxoieNtKcm+3xEQzK0oz2fQwodFgLr5KHZdj6Q3FW2J0naUbNFUf10WBBBXeFleG5pVATbQLXg0xo0kL+eXr1TA0KaLTvOqLfrPBOrrWU0QiM829yfKDCObfRsaSHLbFOA2frWI+BJvtp6jhNF3nquL5qUOVm/L2JrsL2mU8AcPTBj84b/c0QWjTA5ZZj/l0KrIEvW61ygJ7mS24fD9F3zdb5sr7ns9m9aCwbbFFbEkuM3o+73w0cz2iZX6RPVr9di78hs1I64Msh3WyqWwkB/Ahp+BIir5JQkkRjEkiphUMy60nSxdqfMLMOFM35MdOK8HvFwlyTcqOyl2WwynZJoQE32c4ZEeeAjJFi/jF7KFpe1+naNgvXZ7b9I6+YuYk0Bjdno7YTYopr9cmzMRleH1GWdbxqyopZ70MiHdjF2NjZMxFDhFjvFN7JxwbZT/D85QZ7AiOUXA4uVvAt+2KqPf1h0/pJwnAAuFO/OBjGJtECCIFUPlm7ubyzvj7o/nwPjgeHq0OjGnWUA9RsWwW1F9i9Pa7EtEpkRNyGHZFNlYrYiKJ7gu61c8654bEHfAkW2X2axQKln4sFQnfocYnWTOzcZ6eGCUf/cz8I4WCvtBNhPPhWlOZiFk4r91rD+bVs8lffk2XrH7Cgn8Umj3v5lvp3xHaUCD+E1Q0c/+lw9tiG0Y+PC/G2WF3SHvXZoZxlIz6W2oVypvqyfa7AnmzZnxM5a6hNTNha3vj8u/AI7DZPb/svZHa8hN+lltRSbE2BtOvsoi8gMmY3o5j1yViIwPbrTEjeXMsuKIMAjzC68ycuMm9aRqfNkTuacT8cajDKaVIl+vIBSzmwNFIo4sPiVC2lFV6iCaCDzniB94Tosy3cGySTALHOBrE3V8E3ttIlmRnZpjYYpV2fLa6AB7hZSZ2atbFZrj6LTptkwLP2+zA2WmcUsh7xSV6+Hhx/ijUt9K76ZdoomUYY4uHBNSYjYQo3qujdoxapB11xOynHBaj3t8rkD+oIvvm/jOm829P0fYi9VjRFJLN37euQyHc9kzr4syQ4qjCf3hAMOCXN5x/pEe26A/EVd6hMVUf3QEvGGR2NNLIGJgUYGXV/Hy6fvKnMV85faPbZ5nFKFt9MSfvwAFdnE1Cfqzg3DQfIP/xD/FVHAtaL9cb30J0IN7EvmhmPJnRZ7ev8OpRbMKRuXTc/a3fUl+zEZ8cgLC+CMTVXxyNqZGY8I5pyVTnqRfclbtWfv3823Jq7J31492M0VJf6e1a5cV8PB4S6Fo5JZ70DdD804UedbpX449oFR6H3a6G5F5v2fVRmtm8T5kATaK/qTyT1ujTdTXKm2R2sMjMDxqF2K2gc4Sa7CH+FPMXkTdKsDVTeNdXY/hWyojg9dKY+lPFbMG7WrFbQyV+oyz1UQptNIfvAzO6svIm4b6rYIWfKeYLfo/puprRShwE4im/uqBa/dBlefUSKC/6IuST95SRFx4+zNkZEqLndwawfH88vcje4+tUcf/4BHlGeznjTf+W4CEFJ/aHZ/1SP6H72nvmqN+Zf+l8SeGVNCGxzR83Jm9y7ghuNWXmqxgKauwfCVSOrRPTTHWPxdLHh7XXf+iccK2YyrH0lZu2uuJuqbdT3Hg+bJ1zuHyfvOMvXZXB7PIXfddDWcyH0Ylg97nH7Hz3f7yFq9SiqJkQs3pNL8RXeUxQbZcF3m6PHto0xmwCuUJAnO2x43/rCR8bM7J/aY3BnU+8fC/1zSx9mSC2C10fHc81Y/r3Q7LxwX93NKHZIFjaXcN6+MkmFOE5Znoc2OHUP7xc1j3bxzv0uBtTdm1EqI7yhfhZSMJRfqzfwCPBZge1r0Mu9SkFw3HG5QaTgXN1Kz/RPoh8dsXG6NWIhTbM5QOzs6F8C75O146yuhBO+RDcM7ZRxjMAqt5Mz52DNzED6bD3hJnZwrw3pMOoxiDXfUV8ZkRoKqSXhFprb+J68iJvqutdAKbta8xKyx4x53ualbiOTeLLaNOxbG5LeJmhTBY9UfSW1cSw1M9/PzM18Cgq56CnYuL+unkNogyU9Da5r7wczYf8av/j5+S1+RjMkLiLvtevy0z8FYsJTqRF71/TYIlmez6WmxeAsrqbJFaTABpA5b+Fz+FnDL9PYJHjGdUhlR/jrHT6oaYL/hb8o2oVXBVnWPTDO6Q+1VT4y4ewnF6cv8RXJSvlqSP2/Veg7o8/X4ijEe2WX72m6YcSnGt5x8rnu+nYrUVPtPAPZjyro/fOnpcSKu9JmX32Ld4/tGBGq9h/M7skWTaF4RSh+qAQcnyzvpj1kyHCgU0Ts1pL88TjrFZ//HXhX7+u+eNTlRbqzIXW8fpveSjlU2m4eLUFnE2j7L9hxPjHvK7YeQPrmxECSajoTgiWQQwr7ww7khfMDtjHm24irVHP9yPlp9O34+arAVCtuSNE0Mvij38oT+X9Ibd0VaOxcMUt+u10l6jwcI3pki2WQ1XOdHW8F1mPT6oA7usEbL+1pbB0tZxCyFyBmKtM83h2QCIs+URisZK7wZvUp3IsfiL2Zcvv/vAWaRHXyMFOhLAh0jZASMsm5hzkNOvs38lUTvF9IuZwPXH+1aQK0LgDokdFvJzgK0cU2+l50Ws14oryFZRiW4rMOyRrNN/QpUYtSgiJjzbp2CZZi6B8g4SYblyEYxhv5//0mxA9EK9XK4zS6zzQ8fejHseuBrC2tphdq12HxuemPSOIzzpR5Y9TbEIyjWCbfU4u7l1AfeGCDOn3apP98fg1/unbukMa3WqZwvudvlVBoY8rcThlRrvoN7ggssX8W5tofmjWG8r53BNDXjNviqggoVGObba/oZnP/lnRga78E7tLvR1uLKENkI1lTLxRv6C5cQcJdFV+01Lb2HxM0+YMXxM/6a7mR2N2To4Of3pMjgojXKefIEBKZ3fkL74mdnrM6K9eaatBzgZPKHx0fBOHEPkWeuxuOj6IgutQOX2ZBd2csYTy431FN/uT0S36N4Y850/mM0PkfLwcYxBWKKIiD7lHcY1lCIFdiXE6Wd1kviqKDD16MBJhhubX2xKh7F4d3mk5D+sEvWVkb743ol2rdcf+8FyQ6IXZdlR4bfFVauj76Moe52V26xLf0Hqyyayg7oox373OO62rNLxy4qM3bqdzAkZr5uwcFVI47WgKMv3dfRJO70UsTvUbWfk4MlW7t5yubrMDc5gfmF+fnG7tDscWpuqmsGOhQ0ZH/IwgccIXnvswQ4M43yr5bz3Nw+uZTdbkn//qB65vGS7mQwSxnCp7jxBzyDreW8yEMJ2+tDm//ZCr2/kJyNgki963+HgbVi0sZ+6Ip+522bjgKfrDy0Px/IZ9o+kt5J6RYNRsDK9f/WoXbLYJyWEbfTKa+vysfK8/l5hPu+bN+nQT/vQDW/Cl4BWtXYDfcb+8zz2b4DluleR2XlrgeZlN0SeyganelTkBzN4/vJFKufzj513nfJ6CXPUZJ46WKajLpcyEYluJWOp0rVvOggLoz/uWObP28rq3pWCw7O6EpeB14SOuUxcW/4ZZ/eZYdFX7jYFBsMboqP1CnnjIRQctiIie8E/X/9XP2k8kPIrituudPpghVfWaOQb7FdN+yxPlaFoNBRsCbyq98QxRwxGttezxl1+5rNlHRK9Dl4T1ehmESR/B6x9e87v0lJEcXY5k4Td8vpXmc7c2dx8qrrJlkOcTqOyALLMD2Vcer8LI+dNrDPsvna+lfZf/5RfeKmFuzMkwb+EjdSu6nbWXwRKPu2AeqoFYk2JwvtsILqy3k4X//LU52TQR0nPp/KcPujFKBxOQWyfsejxaXv8dtjos8coy62B2fVTvJVmRyIPK598HjZOJHDmMlDNpVsM+bK02ybfSNfYI6fG7KEf8qdBDOp+IT48Nn66jHKOi1SghW9sIFz2ZgDOGP4Zfo1e0Wjqf4SX/LLp7TOtsDjzdVo7utmGL32XMwzoxwdo4B+Ik36Kgy3pB4973JFplH6OP0q8NmfrY0l2uqcV0I3MPDM5rZkfCnI0IFBEeNPeIQRU/YwO9SPCXf9aiV3l0fW/httJkOhQ6hHPD7xWUt2JH1/t2zka9j0pYb7mFZ/395r2hyC4s/Jfe8fdT1CthFwMO9yvapq+yGGOl9qESLl8svdXWY3/+mlRuSxJnn2M4hZ37hp9TnBn5vZJibvG7RUs+4klKZsRPvVAiqzrcmUEupceY8Rsh25+3zLyakzFb1tOGL7sS5n2SqhsL3rXw0/sVu/xyi0vo8zUhutxdct3xKlziM4DSW73x9JjzjC96V36XgcLMw0vIxhE3JSLb3YVZ9nHoOJ2TGs6/LaXd7qpkc6EdKNxIwf6Lt0YxdDj+VIe8Fn02m1ozw89DAtOqzbMbA6VXlfvDxOS6PxmFuI1xgha/iKin4on46rySd9zOVOJm0GTL81r0cz5nFjJ+DWfnmc9oqW90218ag//l9y84JcwOtxmfBNGd5VBCJh2+6xxx7fMJYJOMzj+/Ys52cfSXz1Rc/JvZR90MXUAprstHFTImmQI8Vo+AGCdNDumf/8TloCQquobF3CGDgvzZVXSJ72xc4h89yMoidk+vfH7cb7l8x4VDHMM58j++jFSvFJi+O0VojpW7AFLXAV2+vzHn7tYFOlfCH7/suvPtjZXdSqfMdy/LINd5av/xI6vYRdlG2il3dAvyB2Ufrnf8MlcpnLswpcUSv7JlPU20+J//va96uPdI/cgucXcnja/dV7tF61sgs8hpwmy850kCN98z8M4gRbbEVyUv+pAyydU4j01TBXn1EMgx2jSIPnjbo8WfJxjP524+TkqEWHox2PL9+GhZnxgWfs3stNNDFpx29r96dV7efyw3VwHFu9OBGFdR7cZu+PbIN+obnqZ8j6YBDAmQdpuYWepuuNlqZQ1A1T2JtE3F581ra6PF/6Cbr4/4+HzfTNgO1cS8Y/3x5oAJKlr0FzFl69XxNGyDrUOkmM4/8WUseO7AoieIRfK1MXzgJACmQcLS/UVAQzBooixmpCEkb4Zunl5IRn/5+MeH5ku3SQC5bcJ06eWEY9tMKSInL2D6k+WoJ+PhjGK2v1PpTw/0TvWWj5WR4T8+/A8/jgp/Uynt8nDxC2WoLnW2tHAqHhePaYL++MOf/zRGNZHQPz+slV/GGK13NlzA/zL/Vr2y1mqDHAyvuBOyUXvUB8nWBiikjGmnVsyols7BTjSfJ2JJHKOZ2sxHK229J/syDvj0rdazstTzpXlyY4z72Uxhc1IcOsQRLVjTv0XUS7lJjq0penzjhaZyq4McrxRv1ZVe6AR/9ZJdb+jMxfb8xrC/fTyGi9X93/eCr6tPzJ/vyBMHn9rgITkkuqFYBf/zywWDS1i+eykaX3FbQ2EOweIX70J2wE6J1M464OngXTn/qIcKCVJ/IbexY2j8BX0Prx++MW8IDtl4LF8R6IpiYFR0cTbmuW3+6Xt2OHgl58Obm7K67XJmpoNeSK26SZEzD5jsJ/NZjGJ0SyH4rnZ4NXRWNt/Zbwvdp+PMG/U16tQHfaJ1e1wRnOdbbzSrN0CHNi8s0iPw7vI16r/9KLa/RTtvPBGtRYYeP/7xofFshRgkZgbspuU8Ywvf//PXiXOZH8akRd4ZeWQWyb5b5R6X+jOFhd9i0QqO3vp7C5dBH/cTO38/LFz4VYAWPGV+KxqdNKqolPfCpqEr/quK+vm+2bDEP7GXQRCDFnkBJHg/M+umhAa/HOcn3EUxYvuXdjDGlTDF0Oduxw6uxtDI1ycVOV9nzdSPLBj9x7BmtGq+PrMjZx+yMpcwxKPpsot1zTseSIMK/kgV3PwUDW3c17XewXo+EpzKyy1Yz6qC0zYtiHX17ILbj7ZFQ6wTKrHTGUlx0qjoaNkxOR4qlS/1Qoc/PF9fnlIxKhsXw/vXNXQyoerGRd8q7ozv7JgWLzTk2XnhE8aff3Ps1nZg1sDz94uZrSgVfN46T7l9BeO//SuejD8T9h7MeEiCwBvtsmlh8eewnEET8od8osgarwfM9psxHPxfqkOdUx0PhX4Px2A5EvFPHxpRV/RuFdeAA6oS8galmEvc3+XFH2CPJX+5dDnk8Kd/BUeaslqMTqly3xIVf4pnEv7xa0i0956cvbUT8s81HdHif/3Dt2p3WwN8DO7Q9e+cdvNvHcpI9SqBQm5lfF70kPy3f/l6bTRjDuPhjf7274yutD3xeq9LUOLhzCy0+xrj11Eq0A4twbkRe+jv70dilRrkcDtvEavo20V3aoQYPRyUTfhz3YImUU6rw9Bk8+UZtTDrxZ0K3s0Px356v+GTR5jhgIpGy9hF+Oc/aYPhZf3ZCv/zjysN+2j4pwe024Q549es3jpdC7KROOTPb2HNKRJh/ZNULF9uNGPSRcuV+OlemXv8dMX82Z1zpbjZDbM7XSvEr6OUQK5CQA7uJuWcrniKvN29/+NnaNp/Wh8QA4kdp8Hq1ubZE0BidoCVNcR8ereQyIv+J3g/pnw6djgCS87XRG9/ViFpxscGUhaA5yX/OnMwKUh1GFCZ9RTxSbRa9JTYh7n7b+vN9IN8FH8+Jrl2K92T3mnqKwvfJ2Gjed7o1A9Ai5+9tGSxgvft5w0vcZyJcyo6VNXd8ITF/8fCUDJEeXASYeQfmxG8c7z5s75StHonR6a7zjbr7jW4cvw4tAxfxDbktohEGa+OD3aImdL1a7cVoNpUR+amL7ObvAvcEazHI/05e4omtYvuf3qG/MMT56TqihDNBV326z3qtcuttt9zwtRjNBRjo7k1Wva7CbmZMuf3UysgJZBXzFx5FzRviz5Fi5/M/PRRZrO4c6r/1y0F2/+7paDP04ho/rgKuRHVPox4s2bG7vPrOLStCGueH4lvzULGaPbSwdlv1mxvWSaf2qsWKbL1zZk1XN5dN1lrHXhfe3jzbIpwFtK9Ayo7nYkr/U7GdHtrLgTKJSQG/amcJeykK2RmItF89EXsKrsq0ADOLLwYecg8R59RN41HcsLeG02fsKNoK14jZnGSovF4GEvooueDjkJfeJS+vABWhtLT3hiUkH8kOYL3xtSZZ0ohmk4K6uXrsbWIHQ19t/x+pdAMvoxgvzKm83KRU7sVdZIoxcOb4xvcd8WwG7E0Tp9sco1ORigpLHJ81Y4hsvX+DM2jzIjzbSmnDT24YFe/H/2tz3ExPE9eAIeNecTQdV9juNS3HuwwDGg37EZjGgSlhs+PHthBVKWQauXrDb9Un5iLRcJ/8dnMdzh0ENvD71zwrS37sioEVxbbzwOapuViWdn65VjZfnJOo3K4g9IkLyol52s2R2EQQXj6WETfpTqfCe8iyFJG6aeLWoNjtrLl/Yh9PO8IhM35uzvD+5MBDu/HKxrFZAPwtz6v4HNBo+zUOjzW1QcXrL9k7a2pIhA87UM0u3uGNJwdGwK7/5LHpdiHY1F+UgXezws7tvtbx0q7D2DnxBYziybJJsjOwiKZFbyLrjGfxtEB2AtvCc90bDkHIo1ynOhnylm/zvhtmb2yJ5XJ3IxvMrZuhho+SH9TwHNb/MWXom1wTvxg03UN7CMfqiZtaTOjT0cvYv1G6heiZZrbt5sY3s7wm6M1Ft6Raaz7qfTlrGR7ohZG0bFtb5twQqFLvPeLZ3PiPF3omvuB3AubGny/DUSg8y9i2kM+ZvPqvp2BsNudHdBlNsbbxxhR/VgRZuf7Q/YLwi1Ag38x2bf8a8wnef+UV1d40Pmgtx3PpukJWiPPRF1N1453iVCi1Ll/mR7uu3BS0zlSeN96ePXyhm4k8JDBamKX2HLWo5HvWwlZ+0UCSa7U0fsMNkR7d7vk32TUkmucIaFyyPRx3fH+mB172Dp0hzfgK9n8epzt1STaa6bei6Fj/P2SoUsfJv0dZLeYV/dxhCHR90QXU6kYythfWgqsK/GNbYEaczq9EfC5Z1a7bjNe2v0Z7mksk4P09rPhs+q3gPL8STf9tvJGUl8dKDboQNFdrjt2MbkJh8EWccmEdzfy1/cMvawpxLHvZiEO9rdGc9FreHvOVpwz+GHUr/uOhPtd5I36dRegS8ceWERKtpBvq1cmwT4y6zppaBZS4oC1VynBu+Fu9Gy9D/7iB0stMIMv74tEudKZyXhqfKfTzUcB6gSmZvTXTSuDRNA/kh/dPqwNn4/CPUJOcNjh0SStMcSHRkA3kqd4fffmbg6BybC9GwE7VNUuHFfu6ozILlkT7+ZuMrozJlfZhJZNfFFGRS9GEMA9bHaMvKqcTzuvsWVUbUaiVseb19y5QCFdWSEhtm6G86BwHai2OlLp+piy0bRTAcH3ri0tSRqfdHDfyH1QRMfdvTZ+mTUG0M6eRlzLLcMhO9Mc3GQgzPZCUmw+khzLyVjEtHg8Zt4/7pIMLyc3mX7Q3WKONVmFOWUFZnPbhVMm9yoU+e5Bt3fVCMX4G9TK5WXvmXuMKq9vXTlHP4iPGDbrivPWGxykS17ETKQgzq3Mj+S/fHQs/9Ax+lRrpfy9L1Qq7zeD47mm6HOmD6LbSlPwyKtTdPCfA97ZxSEbXS8TgQjpBw8cuoK6oZTAkm+4EOIh67+hYcIx9Ufy0IiB1sGYB+CSJGCH61n3pq48j0iyxZLCR+IerycdKwueM73u2uXWhy5BTSt7TNedAs1481PRgFXKzNvKR/PuggOomqTFreWW2aTOMCO5KUO219ePjL9zVKEEsMHIbzSLSTo4LVhTjYl5lTvE10mSg4CamhkXQw/nqByeMJTNgz2HQg4n8v5h0KKdzTRXMvns/tYu8LzlxCA48KapCVsUFFeEUXfboeH1jCjcesnF0z0tun63LWW01GtiWDfBGG877MPQxU+i8d3Hm9fTowRyHvckOwdBIc2Ptwrr2H9gIJuVNx9o+5QNce9RlFg5Gj/GzUflyz+RW9/J4Qz2rYTHWK7xCvu28T7d8ida6ieLdserMfzVEyHVK6LnVWNw7XXCcvYaUkZ88Dx6FO4xkPY24oDOgSEaJ0NAtfgViNOvXLSR16EE4rqKiUa6thg1xinMs9qzv/o7f93kjYJSvRC/sLEx35ITVgKm1ixCw2DM+bSvYVWFDjGvr7gYf1o5wpdICXFvzx+f4wFhdP3CgXhO9TX4qroAcnNa/+GB9xP4tkK36L3HkheSbkzT+A5lUgRk765W3rQf/HqbO3HAtP4QeAN6xS2YDRWw8Lkl3fRyHyCffsBpl1g656vzFSOfVheCd1u9mC9+p8L2oypYafSvNzPuqugdjRXLhOVUA8lqGe7WBRMDpKKbk40jQN2HMv48XltvPH6QDgsPJtY6Qny8F6WP5o2eMP2XYTQQ8SvI6+YtMnXhR1Nw795AOtMl969HPJ6oFZb9pmqY2+djOB7OBxcybCZ4I59zNA3D+w1iiYCi8WZn436ZHPcKDpS50+yFUuf0JjI5vRLz3I6oH9bJHR5haBESV1I3t79MlMerGJIwMGKPH6U+RQ8TUmJ4TwEx6mqycl7JOjMKpUZTW8d3tNR3PGZ0X2xUQYW/+GDuT7kZ9NbQ6I8/Ea3diby51DcKIj4dyX5Q5KKvxDBQkgELBG/rXzfzWO5B/Z5k5sXqB/EdaK6isJtNiAfPYoxPty2QDXsznwWMD287DWDBL7p79XMxX96fEZ1XpMbCvTyjaby7PqqcsWAEET2UYm1WZWm6m8Q3hwOXLHeSUGH9BrqZBo/PsuKNyN8vf18kTtl0MhsTQsV7YUCujvg37VRY8IH2bdYa80YuIqRR+fnH38J/eNOpj57o517y6Dl79X/8k/3l85wqgw0uUjty3FXXcLpA8oSd310pvbS9MW6u9x7VUX1iF2V3RkP48gD++PqBOGrIBcuakWmYAdvPjuaJ8oC2qBzeQKeFH8626efo+fY1vNmvDwWVv1oEtDlfyLE9v72pyY4qgu9Tw5IjqB5H+jdWMj3rKNTjjdPP+WPCNYAHefnQefROt6l89VcdnVfRw+C/g0/hsS4/dCPlUzeOm3H7D096va55H+YjVm6PjUV313Pu9f5X6pHWbGdmn5ctwuDwSxHd/FQ8Z6ejMVXLLOOm3XrktCt6zs3jLIN/+W2XfEk8tjq/MMTvKKY77gV/fDuHXDk1+LtmkzF9fu0d0Eo6MuMsaCHtx6aC29rFxKB3Oes9NReh/OUXvJZLifM+mreoRucVlVbB3PFEpT7Sf2LDEvQEg++DMIKofNZMa0Q17KO7u0WN4Od03ro/NPtxLKJydRDw6IliMe8aSwd/kgfmrvzaG9a7Y46Q66fMk54/g3prXEH3uo/kmPI8m8v8DNC7dkDM94537Vc69cr7Np5ZmDox4kbf1vDIAxfnq0gxpufJO4MhWh4eDaJ0vMve/r/8Fm1kZusJ/yrEqmLG69Op4/NeVUVFuKgySco05HRTlSWKch4SmxhvPgsiwsh6RROxtyN0PY1rCsvz6Za93pzaz7GCOFQr4h4Pq6Llwugr+ugMJNsUWcH1pJD/+Awz6vztzfOhOUO8jnTymO6XovUfpgNLPjPtnhodR49bAm25OeF18cZhk+FcAtLZLjFejuFtoFi/IZv1zcKvrmG/2i2D0KLYoafLRcp4WtY6uH2vEkehRdFZe6uCftUb5FbcjUVvCCPyj8vswvhjo7VQ1hTyUqmY43ysbv28bisgbTay4xl32SxuXRkd6r1DZ/+3Dhd9uEWhXyREnwLN21j7YwXWcjH+Uv87mrlSqRiP+53Op9+nmELztQXv3g1YXvQMFUTuy3/P93Y1dF1cGYEyPpZb/ehyyiAY8zOs1ucj7rn6MfhRufWgHuuApTsYjMnBkYxWwtcbFvzq6IpaMvinc8UWvOWl0xoVwPt+WWYf04JOn4JCkf5udINmv9hIp8KHRKtKvDkRu+DjY/VEgtYXDEdung33/FNBH2YEr4eL2o3ePnEgFrua7d3Vy5iuMUqAy4KEpeyod3PZqGcQxu6CYf52fB4aOEOfJxG7serbMe9+yOGqfGeCq4Z3Y3BgKVrWi1nqXuEsUSsfFdJRJFZS7flUJWUFEczdv3jh5fFWQSruVbbvt5UxXHWowYlFmZ1Pv0/H//SEPKAvVaKwD0fjryWKig1VDk2UVbbpv//WnxFbL8MpftRUXo3Bh5x3qY7WDr7LqNNcm/J+v5zadX8gp4/nielZr2freF24yvfhOhSx8h3yYDW78lwYPyxFg1/wR3igoAZQk+PyfK6bgyvfrI9Ojm99ixgQaYY93rUER66eSc5MHWickjGCtVfRreQ7hQMdDyzD3ReNs3yLYa61kLhhs+6mpDRFObF2Ep3s7pkNv76IYY9RS+VucMO2vyg5krUgWJ6XcGYe5y1cy7OIZY9Y3hRyt0dW3hzYIdb3Ri8vgylDtmYUNunUTfHhA8oZfz/szz/oT1Mvo3Z7WDpBTnc0rXdWDuNZ+tF+ugSIreR7D9639Yh5N49onDesh3teCwT77QpVmStUSHjpZ7Zf7Z2Of9zJ/eff7GL9Z8yr2HjCn37dm7IQLn6QDs/yExJn0XvjS/ZSyAzTYlalmh3dsTlSRPO0JtpayA12aCUfyHm53Wvr7vnQrHcm+qv/pFzfsj++Ax8rHYhd+244C86sokM0T1RIXydeP8Z1DRPbO2zP6pbzfZmaKOTSB29j72TwhN1UWDvywBa91v3zs/7+f9ujJS83szPL2069MPXrlMWcOLELof9JiOqJYjfX/lZAPq90irRT43H3fcRAy3NDnBUesrnqagoWtB/mHdV1N7ykqwtCeP3SSXE2Hb9B/kR/8YffUen1t99kAuwfG3Y4bK3wH76ZcfIjTu1a3hj4JxWK/UknZdEkIfUfvoNGZ4PxpilcY8IoO6P1cXsjl591M8b0cIhALHdAPNxZaM6e6wjS73hh6bn8GEOGcxFV+j5f9PC+kx7qgm++nuIvJylvcvJWYZ71Hk/++Mp6kb1jpdMcm7x+Y9nNJNmc/+kZLAxOyEe/jQB3T4HZ62rv0WN7KaFM8ZeYWF51f+uH/vJpGoU1mt24VqHbuwNWho3LRTH7lOg0Cf6/es1rS9NR+cInsr9G+2x6XGwBZEk2GMnHJGy06KgDs1CHl3zmY14PJiS37e+Pj3hDOpxLiJpnRNREyDmPvHeiLP4Mi799ZHDNS5+gq8WHOElw9vjuGP/nL4bd2eTjs98B6G6+Y9pw67xecr0zROprw/a3ZuONDRYWJZzmDO/VyFhXSV/+8Vm8Wfjr9C0uFbr/6pa5x8OrG+dzJiL+ijK6GlfImy71qVeE+nKiQmHWaL6NYQ3G4dHRNWsDj/8e3hM+bnJjenz/hX/+HnqTeUcOK8sIp5gqEjTvLWfXQVmOQPFdoNxGJyd3a36G/OHfE+QwR6Gddjp4rXFPHPjzh135qmezfNIrudCCjL1CzUPD4k+AU7/gj1/z+dg+SmRiu2B6cLWXFuvFj0kym4Lymrs/fIUFX+nGUA1UXpTMhgA1Ajss/tzUrJetKSGJ2XndTsW8/0YUhFStiKq7B69vTcsHw3iZGN7xIRSbHACFhp9S6cgtvjmtDw76beIPw776XurrdYsqnhiL3mHe0AWRDon0Wfykk+CNG+MiwOIX0Vl3Cj64RrGF+1q5YLFotuGw1FuFd6uJacWKevxp/UwkQKwTd8FPcZZPESI8xXTt/d7GFGibJ1zUvYHncO9lcvsLRRSTHpPzYyqy0Tyq5z8/hKmn3br4Yt1pZZw7KksPK9cY/upnXMUKBUsp+fA9O0+Iu7ihKyPH3nSbnmf5VT8mLHnU5DW6TPe/ekv0dTt1M9s7ElI2zMXVkX8571XRhd8cr+m2Ibtivv6OMoKtJbDbOpiyic+fFPZXQsmBe2M4Yd2pgYXHjODtcc5mO/HOIGi0YNbqdi+WfAKgm69KkoU/LXouQVenvjH7lIzFRxbsFJ3fssD+9PGomKELp8cqxfNgpR1f+Dfq5f7KiAdCMd/M9Imi9EGIty1qg76mQEL3TgGKFr02PZsjhe9yZOa05qjrx4NtQ0woZj5dyx29EuOJlvdnhlzdjUn4rMzdHz8j4woZvco3KRorV8BbpVCM2Z90GfrDTWJ4s7Sk/fkjnrA64ElIzkWZdDDDR7y8mDW4sjddjkML9fqcsH23vRXjwi1Ai5C91MOcz2+yeUI9Bj1Rx81k9HdEa9Q8qoz4XNUM/nQCCmf8+2DplIxdD4Uro8b5HwAAAP//pF3LlrK8En0gBgIiCUNucoegIOIMUBEQkUsC5OnPwv6G/+wMe3W3QlKp2ntXpaolf/x4qefZgzv2TYmvs7juQu+kShdj1okZkDlaRhtjsU2MCPmX+hPhhesLWMfNilz11bjzRcp1uPE7vB+EwzA3NyGFkr/qxH+fI8oFn6KC/ZNrNv+Ruwu7W1nI0oNC5O4suvyBrIm04TtkbvouHWNRBLUX4oA4+177Ph/F+MdPy0y7RqvKZu2BbT8nzIyPN52uveiAVcneyBN3MF9PInqIa5KdiCLSz1YSJ0PpoCU3zApWNZAs/IaCb4g34rcVpmuZNCu83bkjURVJiuYfv5KZ8xU5d22tyaeeV+mnF3OhEgK8U70Rbvo8BsQeXLwY+x6yzCFGJi8ZYH7K8wx/eoN3Ntt6MVxYgFE2hKA+YSOnZMgMuH5xhwzj8QXjTw+vml1LdCcs81k72A+ISbjFv/IZLeMyBiDQty42vGDmHy4NK/hNDhnyEb64SxBdZuiMWkt++PyM9/4IG1gpyI1Kd+CmY61C+7noeLpZq7tqSqMD3/B3SDvVTzrS5xSCoaIWsY7et56eB3kV78PHIhZGb4BJemdAfspmEky4BHSCQnbwXeFIMiWLtPabOSls1+lL3D4+RgSeywxUpwER1zAwmDd7/OEZ9MMTtHmFMcTergyk8fpy5+GUdHBIF4Icu2HpxkdEoM7OhNlN3+QvXi3/9Ca88SPw839Qt409cl8kiBZS+iI07wIhtj09AH3j1yo13F4Oli0fsuxs2IuQWXd/67u8do0A/uzdtB/a9IpqLI6OHgbpNys1SnYpC7Xd8YF0avEuhcyrhX1StUTpmne0prUaQMV7q+jIIjOiFDkr2E/6I1hHudXmXC1UUEzfEzJMhtbToWAC0U2THAVrbdS/fB2wvWIiF+f61oYf/ooEm5IjRxYXz91JlboRxsFucV71ph9hWLhXDgV22UdUZizmx/+JvF5FsOmbIdCHLEIutFZAqlRtwenZE6IYAxNt+JmB3wRkaJsWtNn/KwQmanTyBKjK6XqZdelSZc+gfKU0x28nrSA4Bhg3xnynK34LDWQMjNBPj54OBe/BhPnKwSo+9/ls7+8yZClQAmC1R5fG7J75Wz+jKQ7aKoGuBBi2I37fc7/e9JZR/OmZn4CE0bzpPVA7OjekfT9s3du4KmARDYeAxfg9rGdHbX+fj/zx+tLWu3xswJbfRergyi49EteAu5GxMaMPek02/CVt+TzivV2ibXr4/MOTAYczTlv56SaC03zeY5Gqv65efgmXg/4KsJl/8/UTwh62NNOQCT0pwpt+K6qeF6Bjnoz1dyW7Ge65tELP+GRqHNhGQF33bxdZc7zlF/Zt8offf/h4sfksAyFRO6L5DOdu+eDkl59Gmx6T79V0EKQbsDh0exTblZCuxvB88BXMLJFbL6sziOB25leMDxPUqnf+7qG3BzGSJWUFy5YvBOM9+/z2O59QSQJQTMOJBHbpRKvLBQ1wUBYSba+cosUdXpkks+cdQqVM6/ElkxbaSpHhij8alKvAyxNr5ZxjJt117pbfkaFJXgtS1mAGy3h/P2AWPD38429b/syB4FM6REs7X1tSRhD+8FL+jg/aIINrAr8E3YkswgXQ0/qsgC6MGklrRxgogST4v0oKDv9dUuDvmpDop8Os0eVgdVB2moFE8RoPrIXuMqjraxnU1q4dyHeSRSjL+5gcC71zR+75lKGMIptYmXjKKT8+1YOs7bog+n4fdH2n5xWMY33Cq2QsYME1acGFZRjMRwjkgxpeQnB1xSSQ8qMyjJf50EHgPA0iq1+HLnovnaG4T1ZkpU2Vk0XatxDIEyEa0xKwZpfZgdILswErnS4D9eJbA/kbw2Lw3DH1TNZTKMEnG2P+UNyiQXW8HmhFsuLdUVwApRx0oL9rQyLXshktHs/J8HKcDfSILBns411TAKUiFPOm1m/P/2nhrj2LyH4d7YiPgJRBNmIbzISjqy3MNkv6MGCA8Wc3aNPygitsvM4hDhvwoCuz2wxEbu2Qa0VQwxK+6lA/nlSkBAuKlqfAWPCYkoEEn9aqcQ4iETyr9BUIPs9pC1izGDp2k5J8eIZgLZ3Sk9CK1oARTY3OkCq6dBGOZ+JHzEInXupDuOwmB7kPddU6d0cCELQwIcd7t2r0IaUW7F3hQzSnDofPKzIC2PuPhQQtqw3con474Z2GCkmDTnRH8vAx3OvPAIML/6rnbHUYYAtqEPDne5KvvfxtgNPREAVUjrX5zncr5BAw8WFbL85zrQ4W664lzhAq7trfRgNO18wIKKxhPcuS18B2ClmkDJZL1/BEWWBH851YaaPmvH+xYmhH6327+6RqRH/FMTyHRk0M4XSi831OHdg1O4SC8aQO9FrfCygk2CJ2rXLgi523DnUGnXADjW02yXVNYLO3Gszrwbme+++lg8Y3zVFy4HJKR/7SwcqOKHL7+BtVZd1j6BBF2G5lm9FqvVEg9ts8Gq+IL/kCRgVLjavL5NiQF8XVuC/AHq0EabtlH61yHJZS5a0VUiod1XOYxyssOc7B5zJZ6Zh+4gruDS0NWEcwXXZ/zRt4CgINC69qTxe9GTuIlMeM4Z1p3QVNTxFKX0FBiseqdCbCVxB11cEEZQ855y90gaJxdHqkfRPNXbfngQ39cgHgywMgQz3MoPWnV8Dl5wqsBFTBrpQVhKxUamh3sWEA2XxIsOgO35oUwprAsVQV5NHPtkDJV4aXyXGDlT92dKIrZcX6xtREu7h7d76QKwPxN3wT73Ht6nVlcAIYRmRJYCLPna3ZZmFyhiaJoYG11TpkK7wOxwBZAbrWIzfdGMgwAot80UV03xYKD3bNOCPN2hk1D3k7hSW3d5CiCtkw7u9jAC33LCL/+dhmXy+KLLHZ0SNOWcXubPHnAtJ12lQ80NekcdUZ+ouVE4TvD0o9OmLBZawHOQXpSBe+FzLALeobk/fzmxPzFgqwDJ46pnZqa7PxjjJw77ER0GvgRAsOpRFI37oNSLZAl9r8wQPSa2RJchS0iOWy0oDkbgMMHuxVm8vDKMJt9BJmjm8QzdyZm8Xrct3jdWe/NXpj4xKqlmCj+OuF+bxdmYXXhm2RWYrvmoLPEwPvXTUYcJgF8x0NMUzi6oThLAsuaYSQh6AVjwHtjiylrTJ1QBoHMQBXGmgLqsJEun3Yish+v42qRdvsKofweJd/TTAdxMsMC/Y1I7V/J8NS1JYDLKMtUBBGXU3R6WiAJghizDJaVlMK9VkK2g/A4uXlavOlCTM4hIccodxh6uV74dTt1tiHaHc+pByj7GfAqOwJg8HA+Xp5WTqsFjUmyuV2oWuU3Hpx4ZMAC1oQ1BQE9wBcGHwJxk+u0wmnnQwO6jwS7X7H+bgmTgjVOUSYE9TKnUM1C8Exizik7dIYLC8ph3BbX2Jr0ByWr+ZawL+tF6LNV8/lNZ6s0OpZn1ze4jdfq86q4KvmI+J/Tqu7WuOhggxPPsR/7tth7sPcgnHcf5FhnN5gDl9TBrPLMyS2Hz0BHVWe+dkX3gs7h1LzYfLQ3dd5MB/TYqBtfK3Aha8t4j/aNJrLye1hRF/eL/7W1JO3LhzjkAZZWbEaXVyxEa+7ZUQ/ex3lU+qB86B8ERJuH3ctr8oDfuJORKqtnYeRk11B/O4DG9n8hdfoockbqBt7LzhwDh5WIxcLmCR6jk6+f4zW8n42oPJNeCLLO9EdfQmmsGCFDULOjLtaR2iA+Wv5KJTbfT3cXlUHh1UViHaRoIbFpW7gvo9svMbwEw1qbTqAHK82Mrb4QJc0Zw+HusbBVWi7fOw5XoQ3m7th/qAldB8fIh5ekKui4/nzddeLx1bwOpgBMnWnrXupCx7gcdfOeCm3qtBf/EvvM4fMhmXo3/5EnJkQHT7nYVJlMApAPR1Q0LJ1ve5pksLkpFVI/WZEm/sCZnCIMwcFxt3UeKPLMWwH3KNjfq7oWL2tAO6D4I3k8W7kiy4RC5L8swSS7jZu2wVSd2jn3CY6w+0GUrTWA17MOCQ2u4zu7I5cDFvUGwhl6W0Y1Bo5wKthhgr37oDFeUsQUIU5BsBu+vy3v+BWOzrx9aat8f3wNUDeoDzgx72REzW8n2H8hE7A/ezT/U4q8K/7OeCnrxstqqnHMFJXBxng6Q2jwVwEbv2YIbG/s+ayRHgJMO8OB+TYiILZYO4iUAVTIZZyqlwaty8GHrxKI0rS3PNh0MNOyhYBEadT22jkSgFDUJ5UzL1fBmV3uuzBR7L2GLhWHM2+xKY/f488GpwBfYSOAeSFWZCVWWM03R5VLCC6QGRE3Z0S3CkNzK5aFjRzJLv75hSlMBLaYyA1QNO4196Nob+Ob6Jo15rOVch28P0ov0jr9jfaaXGRwLwDB2IJXKpNwI0FSUXOgrzQasB8NKwQshHfEIWIM1jwNUj+1k+MiaHt43FtwFjKCvEPcpevpdN5sAzuOtE76gPyKOoEHNR1DCAcTnTdm5UMLc2ciFqtXb0gcOYhSe93dCx0S9vTMMzAYl2PxHhfWbeLnmID/aRTUEBv/DBftKGBBbAo8u/5TPGeJhlQD4P7i+favFNxCWSZiwOBF4aItoXCitvPyLxlNOqMpzrDytJ1ZAnFpabNagVAFLZZiJcbR9cpNCC4N0cNqcO9ipaDb45gw8PEFMydu+YgEiBnd0+iqIySd+VOKsGUVRlRmdMhX+G3tGBxiQWkr6FX07/44SkhXkqz1sZ3XuuQMmqH/AbU262Nqwp1lr0E6+Vig/Gi1a0EJmfCzGl/HvpwTGXQcG2Ggtvp4VJbUnh4LR0LyWrY5XjfSg5kn86R+JHnAT7VFx0qzUlC6Cie6LzT5UDa7BMvFR/X49taPCiVVo9pwpmUu+mGBRjhtBDnFR80PCXPBg43o0P+c9nRUcTDGap8uUfHJkzrUZ6HBO5JrJLjW5VqXOGTA88fcMFsYbHaZBZfD7qcdCL26+HSFfJ2Boc7NZD/6eN6aZQDCxfGlZEd01WbEF4aUEQrRvZ+14JlUNIENvPrRR4fv9WmuDIZcG34dvu+e/1pg0AEQwjy3/mKRtF8s4C/nBOcF3un3l/ry+Pv+4/5WQU0Lm8J5MBuIGYgf+iiYnsFI/m+N7ymgnlH2AYs+5cU8AcOUPIohhgOl8+B6NFddGdf93XIPq1jwIvxUdujpyVD42j1KJg0c+AOn1qABz3hA0lvjIGHajVCY/EDvFyLr7ZgPS7Ex14w0a3Ohej7rZLw8Oy+NnL2HKtNcb5LDsaHPyFN0x75HEK7hfeSIX94fP3UigdlPdGCpdJJTU8g6CBurRO6nMg9+sV78Yfv0bTINUHvrTPh2sfIFz5vuu1nC/rSuWH2PHDu++YKBWRu+oFYE4u0da+cMvHWnlPkbviHviLD+9tPrFM+IoUgJrDrVQs5nWrkHE2fHVw4iWKaaCpYCqtm4COKADKzQampd+BicFCCinj3JwT0ZCv9D+8TVXrG+RY/MvjQ+iTgTokIltj2i0NkqyuyPVGKNr7x+Plj5J0iL+fXAT4go6c5UpQpcum2/hID5pL8vo/XTp4M0SJr6L6egTYVVg3hIlcRQnn4zr8LDKH0iE4AHUOXbvGSEQ9U+fTIX1OFjjsnZOHeUFKSqoU90MZVV2hGIkd+eGcyv2oBlTaoSLDx0UXvuTPsJqtAyBh5QDxTSCDVJ4b88DQbvt4pBGp0CCRDvNRLYzkPMO0kkQS3+ZP3Xf4QYVBeo0ACXDkQ77wTQEaLbfCPbYPVevANdA/mO9i3+9VdYhXy4CTgO4Z376UtDNokOt4UiXHmBTpacDCA5/kHgnxFGTghFlWo0rQm0fPQaItzK7DYAE5F6vWcRGvHUR0e8B4RfTm+3fkyL730nEaV3KrvVpCdjxYYx9eJFN0OufSHP75xVeHXXimHpQhgC5eAsTA2+G89//SLn78OmnSia3oHDYxEByGXN/c5jY+SBZD+1om/DtKwnM59A8ZvJpFjdpBzduO34CKYZyTzo6NRjM+BtO/wjuiN0gFS9Pvsp1cE/EdpKF1WQf3Hn7b4z90akYGP5aQjq1IUl78/PQH++Dx7Kv2aDs43BBteJF7j9y7el2MFPk8mR+6D3bv0GtYNhNevSfznQ3fnu33GMJyMdtvfBPzwB7BeBh9UG5+Yre/Bgwx9R8gU/DdY9J3FwpO/7wJh+37cs/JZungqxhHjT/m680+WlJzfI3HvX1JT84F4OPdXGHx8q3Dned63kLLRCekPyYuoriqeJORpi5J0fblLQ3kWWpbVbnhKpdzpUKpSi04DstnUrqebk8wgAuMNHenc1/PFZj3QN/ye6POoDtOSjw787j0bqQOvUzbcUtT550rwXK9eThjjNEsqQJdgtLN9ja10YkARzZhYZF9FtNg5DHzWzECs+j24S5PBBHzjskKOo6SUXhPoQcrIHf76N2NYtflqQcM6M+R4tnaUvjKhhE5VdkjG2Ur7KN7Dv/jpDN96WLWaE374BfNYnegAiCODIetW4t0NMZoWXk5AKdYdbjZ/vFrnSwI3vYB4EtxK8vgXLy3W5RhQiXXAnLt+Bdk7KvFuuzWBtflpgVbxTigQzRqsEJ5VeJnDEvn58TW04uMwQja8coFEHQNQ8LliqFt5gtT756VRoFAIyaEREZmGA+19Ni/AJwPVH96dy7JPoc1vXX3Odz6fEKd68CRlIDgEUjjMPccLkO7alRgteGgbHmDB56HxRBmsYcNX8lky5MIjsSN83O8WL356DsZ0PWi9NnQBdKY7/vNna+gOAcgyGxNtsRdtvUyv+JDd+ztRL5fv9vzPEUTq7GD4879nkzAgvq4SMr1k7xLKsZYofUWF+OfMpOv9PHSHh2p4xIWcPiy/+CAko4WSFjDugBXdgZ2n7ogG4dPd+J4DH0DNib0V/034MXfSH34KFhINh5llwXVHxyB/+ocal/ezDt2Vl4gSf2ZAGiHlgVeyBnpm6a1e4vtNhrLncETd9I+F+qkOobA2xLolZo5X4Y7BDhcmOcN4BGsHNQx6J7nj3Y8PtwNIYecUHAZXirWRNI8EWmiXEuPmagO/+TvQ9k4ZHAXWdOcyti141SabKOOYaCNXzhjmrSMj1YlLsPnDDjL0EwX19TPSRbDCWYQ3/4RMM31Fq/hY/vQJ4j7Us7voTdNJF6veoUDPIrps51Pc9F1cMy0CK+SVDGx6VlBLbE+/G9+GzGEPiL5+iTb89OD3o/oSlZmrejp5Nwg+xX0k/nrOtXVqziUoobkS33hRdyTCS4ST5CkEkYtTzxWjYlH67AriqB8/Wpp4wOJD6xJyLV+axkaCZMCHXKk/vkJxL39bYN57j3jfhdXoy5NasLcrE+/MB6BjqJ5DaGnHiSg9+UZruFNEkH8u5I8f9tb5HgOCjBKpcppSElPXA7/z00i94C78/tbBq5N4RL1/FG1OQWnAutMY/DFTJafmLRWhrEkd0ez06y40KrFkn4MI2ZpT1TOXdQZYQ75Dxiczc+CZQgzb90PduijpYNFTLf3pb5g3Tm/6w3dAuwUP4roWG63ylMtw07cwgEXlrtN1OUvHnNth4QWynL7kIv7ZB35N+3tNv4fKAidmd0QucwsGblt/+El8PRg2/Xu06q6FRhuaGIaWTnn/I3riXj3o5LTh/7XLExEmz+cVmeVLc4cRtmcgxLQOaMJ9Nvxj9+BZsldicZNG2Tc7NQAFcY4eYdQNH2zG6w+PITO/t/XUCnEHpfrMkGDs35s+eRVh9/1OAaWenq9R0YcA4HFPHCfLo3l6nQOYFUYUvK6cW/cSfuqABs8Llh7+BUzUZTKonCodA/5QRPTnX5d1/8RCFUMwcmduhd1xvZKjnr6j+TIfelAI8nPDM209XwpsgI1/B4fSl2r6+OoN+OnrP343v9l3AxnRS4hS8Wy9VtmxhXN/gX/nY+7aWwUr5anglOzVCPdiKMDNXxAT4O1WtEhECF57Dy+bvc3cWZrhll8I+NMZb4PrkscvPiAjuqju8jxeC/DDt8eD/x2W10PmoeyPO6TK+0obL6HOg3s/GsFqnaZ61RaBhRve3/SbxO2tcSml7xmmPz0l6nL3WIIFyCORNXXKF13bsbBCAo8MMXhE7O47MOL44SlxE9RoC95TC87dsm7PD3POeXOMdFLiNHi9Bl/j9OOpAj892V+XJqdYBAX0r9yMNv6ozSH7PEPmwAGiqmxQL2YStsBPojY4VGEItvPYAKnNz8T2Zd3d4r0sbXh04lbmPcwu9Zk/f4n8rNHGnrRnaDDGgaDpfI2WwSyh5HP8AelMcXfnndpWP/sKNrw2DJu9/+EHfbAhoOojDKB9ST4oEA8dmL54Xx6Egpl//J8uQ5bxUL4eIfrF6/nnX7132RB0aIJhir/rGarLk8EHRC4DfjdQhRseCViLi+is4bkCj914QCa+NtHSPs8OjE/VBemMlg3tnp112Hr2Fc/KUab0yqN/eoWvH+9/8Q4iMdshixeGnB62wVbP6fJBW6vEfJ0eivCLT7grr3NEh6tawQlyLXH58gbW8ktjCFnDwMt0TIeNLxnweJ8b4vIHGE2xClnIWcYFw/tbG7YLUx3ETWMSe78z6O/zJS0uZfRYP8uwpq6NwVo4drDlT1zel+EKNjy+6UVjveD7gxH/+M9HVfN9IYgxfPU6QL/z2u9WVgC7z15HQfq8aeNbCUSoqpGB6TfRtKV5eQzcV48rCaKXltPrXWch3CkeualLqVEaphkAMiFBN37Nmm75B+gMh4YcPw8a4Z+/m+49/un9YLHpLMKTMN7J/dSptBPNiYcEuDoGsTfTP76ZnRMYHPalVK/uXVuhMz0xXr/0VK+76DvDFkXDHz5nS8MIIKHxmYRlc6opKFIHZvkkkGMkD8MvPkvMqtiYE5eonjUsVPDkRQ+06UPRaNVlAxHrXInsn5Z8nbT3CM+PMsXdvp9zvN/tOxC0TIJFplai7pJcCvjTH394c6J+avzwG3msn9Owpo3nQeWzjsQ/ITlfL3IegvHVusj2PkrNl/fMALfa0hEyHwB0/n6YIbyh09RIJ26gmz4HkMBy6PgcjvnizU0GnZJ5IIe7MdFMtit30lC4P71U26tNx8PL8TZs8dGO1ij4xLBO0xvRLr2c/+lbw4WJkeLvnHzP3yYLHM93bdt/EBHvwCWAs/QL8Z+plHeizz/gZbJcomkak79QyfRwrSHEc37YDz1XH2TICL33p1/QE8uo4inwNGTqte3yVQQhQNz4Iqq8gGiUEV/Bi0x8PGx8fmI6KQBiPLjIEjhBm9RXWUrvyLdQcMCvaDZOiP/lEwOwtnLNPXx7hfZjqolnZ9dhe78EVJri/vRBt3UTsHUF25XoKKaLNn5KS5CGVRaQ8aFfsOlp//TMhX33FK83p4HypV7xHl+3K5w2n8Atv418Q+SGtbxnOvQFySeXz/4CSOE2oVi3d5ao+zCMVnHIGPDsBhtzzTfX/uxr8+8oXo5HbdHdfss/NyHS50jWWIO5iOA50Hvwh39vVmfBSQoU9FvvBael/NPbkHodUjqZX+cBz69uIo9mmaPGsvUUHl67JpjRZLrzpheAVt7zRGGZKccV+13h/Gk14kl6nC+//PT/U1Ig/ndJwSmUPGLauqOtXniYYSbxT+IH4zzQdHfHh7SVO2RdiwZ0mlm0cLGISAyYnuvJ5s+pJLzqkHj7g51PficYkLenFIOnXmt0SkwI2K0Kd268PaB6te8hY70rDF5VldPilgdg9A5RsGpPycUHsShgytxbcuX7NJ9FelhhlSciQuzkAcovVX8Ilm9FVISSnBgyw4JoHWRkHVnkLjibdUlAQUxUmpfRcpkkCzYmMLAI5wsgt1tpAcuXWKT6EzdML1tlpPix32Oa1VuKl0s6KCAvRg+h7vN5kMMZigM54Z10BsNwmgUVPkKeRUFpHuql7hkeSlWJ8YGKeU0PU8fALlQ0pEdRPKz9M++hYbQlUV7fziWN6sbg4wIO2YaI6PqsfBk+s+EVlDENXNwqr0I6C+yZOJUo18vL22NIv48qYI201+bK+uoA5ltjm/mRgOUuhqG0cy9yICzaR6Pfwprh/W7ZxOqmIZ+qXRXC/DP4SJ/KWzQtj6sAbTLuMdil+4iiMghFznMW/KqznC7begBrniLi1c0rXwqh1eHv+0KLfQH8AVIF1yc6Bawm9nSOP2wMe+PuIsc/O2Cu83v2W2+kiCKOhvU6BVBuUBQADcgaH2THAjgOUxNLzZZhyr9tBRW2/QRgcXba6psnC95vWRhwwflNl9O+x3CuvkZQbfu17K4jD75Jlf2t56Jwjg5r9zTgCsHXMM3u0MIPS6/It+dzPu8NoEM7RUeC3rHmLh+djSENXyvm7Lc4LOvJKUFGYY2ZyAvoehQlBnCf9I4uoilH81J/BeipVwF5H8rm+OI9AmhrpYxk+dFq6xialqjdvnJQuzcBzE3bBbDi2/bf/jFjGoLnI8/w207MmpbNTYe5Wr+Rl+5u9ZpcvyqMwuQY7F7ie1jJVtXqMh8GOfK1zGeFkVnIH9WI6PxKo+koy7KEwsHE3MWQAS+kZSth83hB2vPp04VcdA82tbUSR77K+Sq9PslvfZAqCQNYXHCIQYj9idiL/x3Gk56EcKxUGAiFEoF+oquzezt9g+tXex/K64dkEMQt3ezPcUcxv7UAptE9YOehBislQwlLPnwF5RjJw9Lcvw8YMIlLgtCa8vkp1Q4QQ9HG/GOZc0K5MQYp7R/IAL7i0lboO8gnmUpcfPco+SRfFmQW3mNRFG7uGgp6C7UjMJHWVoAuXQUeEPrbXWzxatWs3zYqUOvGQ6dFPdEZHFIMT2sCkGZ3R22aumMhMZWoEme6eu7KR3YHxVCwkWIxTU4DdhkloWAdouingzbOk1oKF5MAEEDvv9yIHVdHSl/o3QPnAC2Cstsu75IY6PCVfgo889msUbvsHLDZJ1LcQovo1NNUBDv+EazvInfXAM8iwLwh/n0+PWtNBovdcQ4k9vzURoWReWm+Q5kYhuHVvHTMMiDs3COxRFAPY9he9b/3kY+Zns/pKgbwiySKTCFStf1d/6zQZk4HvPkHl/oqckRj91BwOVbRQK9z4oAHNJ7EqNyJTtVHNeDl9EmQz5537vrt2LN0v6UhcfcqqKmAXjx8R2YdTK+wAYMCmhm8HKkNltq1AP0W8gzfh95G1nXYUzKwsQz1T+8QN+R7Svml76ClEEzMMzRqKtU0g+l3fiH7ymXRyCuFAy9zC4hjC37E//bDudARr65c51Rycw+y6JUQ1WzfdLHS6AxWNhaRLLyedD54mQq/A3oiZMpcPQweG8LHMMCAQLPPt5uBKcyPyZnIqmyAxbvNJeCAlaBLg6VhwjQMJdUzbsRVtlnuRXFygNj0KtHDVh321uWSSBxwks0/nYYlY24QcM1nxgfp8HIpz10zeH00Otn2O6fZvRDgNcYWchP8yZf0lJ+hVZt3ogR8CWbhIvaQuYQeMfRmoEvSFBWU8zVGuib2YD1W9xWM2cv+ndeIY4ndQzY6heR2PkCNlu4sSndURsSVPnVN2btuAQKbEyrkowposdD05w8DoUeeu/8wdgtRDhUsRjsIyI3jdHCdXAOhJtXp96k1MpxZmcP8ntbDfAuXFMbukUFH3GbaultvBnQeY4HMNX/ni7uV6AVGzgfjCQ4DVfaCCvN2VND57XdaX0+OAEJ2jknOG1LURYb8AJ/o1hFNOdv5Gj2vD9jVK0Tm13bzWTZfJWxqZ8XCobuAmVuLCraCC/F0ZZx63/lKAN9SqqJzaxs55x99AzL7t4k8+Vht5zsc4RPxaSA0VzJ0wo2kcOys3baeDp17+5DB5Ax4cqw+Pl0kThCgY3o9SlsuqJfm/iqgVR/vyGE0reZ5krSQvI0n8ovYqPmzVztgnkOIgntm5hMXci3kprLcbpnX0WizRgzv3NtCthBeh3VYTQZ++3NEFFEM8vlzMFtYX+EFGf1cDIvUY0NU79o7IM3nCoj54CC4WtoDuVAUoimmX1Vk/PmGAtOvhuUEngXU12dErFus1E1wdzPIst2OHPffl9ZFS8EALzGXADt85M6dZQbwsM1GZ9Fhr81K8tXhho+QkXivegyXlwCZ8/1J3EFDOVtfuw7i7q4jVxlZd7ge7R7qn84hJyYe6FQO7gofa1Bj8Svhulf0Ydv/G49hInzBcnaeBri5VoiU19fS+HaUGNE8nElAg6aOZlFdUpgN2hocnkk5zEzveSC/6S66fk7BQH74b7EmEZmRoIP9wBYqdKboEdBXKw2TvsgZaJRFQ/bKSNEM+pMluXTlif56TW5/99sSLnvyDOp4oNrAVbUhGf5A8FqevqAXZDmVptSct/dXBp6JT1Aa49wglh14wxrjpwrNh6YFzWWhdLbZIAYaK4wkTT98Tr5a2cBWhF/iZpIYkcPFmsGsnK5B53WO+/3hIQPrZ3LOdqRe9YHJYO+9A+Q1ZKUzMFoLMnQbZNI/42ieKq+DxSI8kBEpV5dzbGOGLvNmkKLeinxSWrWEpHAxhvJRpbyniB709zyLnNqm9eKmQQJIYWNkjmtOl6j5PsDrvkZ4/QwfbRqdIBbfZ+e69Q8Io9nenayf/QfMcVAohTFgQZ5pV+JcOmNY6uAl/Pw7nv1Z1tbQ1D3Q1o89sda3CWbLWliYc5EWNIdwrTHYgQx2SqEQc82P+cKbxWa/ygOpnssCatJXCkQ7Swhq+a2Ly/rupXspasT0pqzG3mSMEF6TE1JHpXbpClJPrE4FE/AwXQcCeNhDPQlz4m3+jO9uLAYVMWggLe+RDm2pPqSgxAlmsa/XHStYKZxg6BHlgZx6wwcN/BbdPfjuj61GmXWFkE9SFRnoc6sXtz45UiJ5F6L4cekuGcky6KXCAy9uUW8lxMcHjEWzxuz5mkTr0nvtobmUkAQOH2mkbG4GLFThgBxuMsF4fnQdfO4WGxmXZxItwrvQYZnLXAAvydddjeWewOL6YYjqRII2Z2Y4Q2tUfeI8fC5a4Zms4GzzE6bGXRzWDpcWdItIw3uimHQfnmfxh3d/539Yi+rEgMonOlGHYzMMc3CroO6lDyQf2GkgdhOL8ADmEukbP+jjs6PDe4xuxGIuisvfrrEueWLoI8tvrIj9Xo0ZFs25Q+6y7/N19LJU0G6DjEsVHcAWDy34fNyyYNn8wVqIogVPoSyj8zkrwUKFKgTvtxCihIwiHWXzW8LRWEK08cV6qnb9GZbaSyO+7xCKH59ZBK7GH/FeWwkleQRDKPbzERV3cKV9wbQiWNlExOIa9fm8+TeYFcWMiqsJAb7MirfNmv1gHqXGQH0mi+FJeDBEfTZMNG23EPbNMxOQ/LV4d+GfnAWXEk34SwerHp7TguHrVfkoKFkdsCWrlrAkk4g8X/ajtQ2/MghGpkBKk2RRXy56szVa1onHyAeX4Fe2wpGbuaBKtFM+y6WN4So+pH/2OqsND1+P6Rlw1reI5iaQVShqYYSyDW+yw2eufvg14Dd8R8OzIEi3h2ATpbtrGneZOAuyJTCQ3B1qdyTiVRQdPkDIIm6f44MYFxKQlAXP2+8XZj6q0Bz6A/Lwh+QtV1QhNB+KRsK0YOqRIDcDZ4a5kJ9/7yrrZUCb4D358b81a/MePg3Q4X3y3rtD6QoCOGCnJ9p6vmhszx0FoC+ViVyeWgNJrxI8bP4hOFBx62C6VCH8/Twzjp3jiq9LeFJTh5hj3dFlcoUS/vCaeduxdV/Puw4kTxcG3YluEwS/sypxwvVLjnsh1ojVyys8vgohWK45Gdb6WDvwkj/PZMO70ehajQg3/Iysw62iEy/cE1Hs1yNmp/KQY3rVkj++8eOfeGZmGbbfRiQXdXnWn7VtZhg8kxY3n66oaRrbARx2pzsxvcenHgV8ZiXr65fE8RKvXi69lf7iLwr4wR/2erXvwP4zVgQtEcmnBLIjfL3PBnF52g0rE58Y6IzxGcljFdXz62xjkA3KirlkHw+rYWz4vk13yF58u153/JEHQ8I+/z6P9lgyfvweqUZvDiyU/AKW9MliqYtW2sRy0QgbviXW/mW4a5T3WNzD/BMcEr0dlg5EPRx33YIFv+nyCXiYAdiwbOT6xZRPkaecYULjW7A6+ltbj3vFk+Rn6SP5+enA/LZiC77d90yOsj4N33cs8xK1lR0WvL3k/s4HNLjmiOEW33qMgzOsx2+GPHVlwYr7WwWLleuRLnohXeLcYqFcn0208YmBClHSwI1vBoysptFsJmYAj9cGoF88JtHgOUCuQxOvfXqIZigdH/B2I2eChlXV1pkRVGin/hFp/E6OuDcoWwi+JwFZLRcMc6E0gjSzKoe8s8vU39PTKeHL2bVEjreSaVEiCbg+XyHxOnvOF14rA7DxlwAkCtTwj38o3IsGM5HPNV1mP4X1sN2CzVlL437vs0u3xqxWcKpniY4sSIOSw5LogGHdOUsCVz2ziTGBjzat32qEsiKmmNmFRURFt3TgtSsUZNRTMLBL/RJgxTctMVzm6+JHuiRSQpMb8jo7zOnm/yXanAbyp3fBIxvCa75ciXHnzi5NrxIDPlHeBTv50LrbuKYGOg9c4Is3H7X5piy8tPlTpHcXS1uY2Zfhpm+g97I0wxpgQQQTeVdI3X2f9XwXdE88M/CCkrk7RO8qVUuw+SPMbnir++HtyS4x0S+VTOdPG4XQ+qKS+GEz5evzEZ4l6/L8YG4vsG7PlU/5x3exaDwQHc0EBTANKg7pXZO7C/f+qge+qI5EKacvXQYQjFB7OZS47MUeZin3uj//DaSPNnD3ZDoD3f4sgXhTdW0B8wnCryU0CL1rXls/9T0R90vzxAc6WEOv6FtJMyhylJbS6pK05Sr4isQrMVDa1pOqKxjI5T3DhyuX5eR6VDoJXF67ADyjRBvSWp5Bl7gGsittpWSvX2WoLp5KimrPu/gxTJ1ocVvjeubM1yO4vEf4LtSIoEsQaJs+2f3iC/GNJAa0uugttOS5IvHZqnO6RvND0td7RNRi70X7xZo6eP+oBtLMuYtmQzuLcNe2I5EpnMEMDOwcrjOQSfB15GF/ssNQ8sb+ioWNn2KnBirY+HCwHFJ/2PSPEdTv1iXIRi86n9HXAPNFC9ExJUu0xPQlg8ivr0TlrfOw3JmjLJmHkKD758pGM7o+S0BF9oTMfZsMjbIyKth3Aw6aS1WCxXMECDZ+RjKkMXWb7OQVXmWIyEM8DhteOhnwKMB+45da/ft70VOykTh3pspn9d3120RzAfPbeZibE7vC+C4ORK6OnYZ/elWixyyJUa9r+9c2/PgEgz3yFOXlTuH4FA/a8WCS4PPiN38j82KUBQrRe/rRNv3DAqFBADHTO6Ur+OQeuMi9E7C+d3TXwxliUCBnh+Sy/uTLUWP/nh8dX0ffXcUXDGG792YSpA9bW6Tg5kBVOJ2wYAfjsPrCqfzxTaLcq12+bnoNxNVVCVZBRtGmhybQNwUtELd4JIamHkBkeRZ6Oq7s8l64rDDMnuyGZ9p6LjXVEmvqKSRePqq2qCZTgE3PI67oty7dfbME5txJC5pPB4efniU+QpYN2t//260A//CD1kYWYM3E9OCbvZ8xA72MziM/G3B1So9Y+jmIWDNBHhBP3IUUEB3zRRNfKvwmZYbygMHal2VsD3ReZCM7rt4/vHcG2qASYi5Y1BYtYbZ40B6R5t4E+hWlTwzY9GESdfHifPncixJAzGsbPnvkc7p19TBU9oMHq0TuvKRXHfKfSxBE80uJ2Gq2eMi69B5w3vzW1ucjDcH92F8xfT598NtfKbyVHUIndh76t6vqoEj6laBO4SI8NmsL37Q0yL1fTnTVBz4Dz0HXiX+zC3fJspYBguy+gqJwdI3d8BV0g8HHfDDkORlzyoJa9wrix/6dLqXoJtB48R7xm77KacgcM2iKCGDSh698tVBRgSyJJ3IE56VexPOZh/cXh1AAPZF+df+eQizLBjIXnLn/9BQH1uinHxJrkirwi/euxPPD+nv+3dGTAsjIB43E7JOHqurdiXb5LNGGF8XDn57AksrF17Zr4CNh9mjDay6JbS2GoSuu+Ct5HFj3izxL4sPM8V2F14h3H8gBm38kSNKsemV27QNOA/clnvmUXWH/zM+wmdcukKxgGb72YLZwwn2CXEBaOtHtcJi6bWIpOj2jufh6PTRO+Zeg3HBqWsqtAYn02kpGRx1QsruJwAi3rkPdfgLrS9Y9KcptH4PuHeZzNHUeyHSGITp7fEWjec4KsBRPSvwbb0afSHTHHx/c8iu3GrsItdDZuzkeAHMDU+TZIexBQ1GQtF6+XtuyhVcF5IG48bP1ibauEIbBouAoxpSY6ksWR4RlLDCXlzuz8T2DH6EOkXJ+LtGMP0P7p9f/+NI+reVVYsVFRd6qjHSd6duDXMjtAx4UsUtF2FXwlHEWMrTOz2c/0HhQ8ucX0YJGi6jPnGMpFo81XsrpC9aH7otw01+RzsZsvrifowAgoSgQDjcVzISvLWg6J4cYnebUixScHCh93xLx87RzCZOdV2isNN344Qes5VHQwef8KIj6vAwR3d7vL/74H+uV//yX8Duvylt719PrNVhwwxNIqw5uvtj8OYO8NXvEKYrXz/4aWCBrh8zPCdfL+ZZ08Jfvc1jXdFlNKCB4vjwrqPxHVa+P4d399hsZ486ia/Vw40PTmAzx2lNUUzxnCdziCe6uhU6xLr8E8IzaM9GaxXJ/5xvWcx7jfRrIdJ3yE4Q//cCZl289iPIlFvdcnKLHRR+Gma2LrRH9505++t56sb4PaEvxFLBszEb0szIrfJPV2/RZRWNDR3XA7cldNj1NrVmAjwL4nZ/zizo1a7NBAkuYNiTP++NA8wiegdAXciDMpgXobZUT6aEFTCDVuKbrkxcK0bY7DeVweEdzt3VVsQzxTfQtnizE8Drw3FE7mJMLpuMvH7bhK2I6nERnBJwStCLz3fDpo57W6fqAJzVzSNCPr3ytkDtD6fuRMD93h5wm56sKK/OtbPg5r1ekvEPx5h0LdDQfPeifKB2hLzF7f6U9zdePKafSN5qmzf9kYL59Ty2YMuGODL7kKJ0OIoR3fLxgcFm/2pL7t0bMPtEhqNvIouvlZXeQ6ANE7qbfYvQ9yuLmbwPmnn3yOZnyEDKleUEOB0X609Phpdodg3Xz9+QwlYzUCjYkP3uYnSBcpY3vYbDs+4iQ62pJlzjT8KG/4XodLlQF54we8GscE5cddL+EKtwGNzLvb06sU9lK7aJPKHgKbV4R6cjCw668ocewP9fzhzuz0tMeL+h5HSdtFhyy8W/yRBtf15aoS4Lf+SS//OzXjU8NPIU7b8MHpkvRcDNgdxN3yC24qzYXyriVFOguOtliNayPotVhWjgDMfoZ1oR3HAFo1XH3hwfbIPMfYNNrkLeGT7DxExkG5ZiQa+P7GkHaIYEvHp2JvvHN7Xk8KISNToLj8KILutWtNMjRAQUZKuhchM0Dqv2QB0LMHCmn22X/s2/iPvX/kXYlW8ry3PqCGIioZDOkk54EQSmdiQ0CItIkQK7+LHy/4T87Y11VSLKfbqcxfBGc8xE69bBb+idyNpNgtGDpT2Cp8EPEjMhI4fPxX3TcvlZLvX23EF3vItF5m/yXN50kKjD9HTr++FlfRcQoZEyXH3Tp71Lr/7WkAP3vJQUgrO7MsW+2wT9tNgK9RX/sOuIccS+7N+A9ywlvMVP8afXny8Bv4pMdo5eRzP5t6OHYfneUYqvo6NTEOTpcLJW47+aPc7yJGmX9Djnxoqw2BkvBMXpWPMHfvLn5s8oNS/G/eU3sUPpm01n4qiDPfMP0wzvx+Vc4XBVTGENyEbodmhSCC1SMbkM8krU+v922Z5iHTUgcobB9aQySo2KI0wU3YsFKTrroiuSysjDa/bFs6Ee5gjccfeIUK9sYn+cSo5SvbzjfBEJJ33QLcOGqSW5bpULTJ9+I8F3trsQ/m3E31aBF4BSeRjSYO/TSo+sVqrNnEGNNzUQ6aokMc72+EiLODm/p9tTCw/voTNOB+wN8iAq5qPTEajkrOThlrqzfy9224rQqO0wOARQbP2P7u+eXHGeHG6yxWuKd3OhcZNfNFj77fKLrzUDKydzZFbq+QpuY3qsrx9kTR9Ae1wfxpc0hG1nrmrCJMkZcfIpLJpbKERL6JGxP2qs/7nffLXrYlYC3+dPNeiZpKdTJK2PeKGho3hz8Wibp9sBOy/enVO8EAHXMiCbr3OinWEgBGbzA607JDG4Xrwcy2/lBnJikfHwGrQDn0TBofHtb3VhN9wheG2FgjtXXRk+vngfv4ngkJ9V2y1GiuyOc8mZFg/g6JT2tvTOYzxEx6xh13eSHmqXo1ufCdKVblf03jI6KWBoabpUDL6fhthyUdOQhwXJAjNF93GLoIltk3ucxZvOjVXslgMEg5ksc0biZt6p8mcmaeQHqkyk8KAXo909AvGOX857FTi3bksOJXV2GbvRoguGj5wM5KEXAp3fuWXCWNJ+FRr7r6tbuLMARChgR54ZPkpfG8JGHDwvEoTXoiyoOoCs/Ed0p8mx+F2OPjtaD4tnSi2zu+DeAEKGJOGJBuo3rpxTdNtc3nrXZLif/q0ZK+Edr4jefp8/97lbDlRIdK2UiZpSo7RHEr+FibjS5P0Sh3KJDYJnEuKJ3wkh3vqL34fhlj2L35T157iUYhHjEQ26cOn7MNboyN/OVrn7PH+/GWfG+5Zd4Gc14v/XrI3SNHeNRs+SO9kYeKF9ME7afhwTN7t8uBufgpWwJZcr5TbcC3MTzazkIU/SnzuEO3G6ZTtuefvwpT84RKjThjbe02PDR3BcYDKtOsRSoEZ/682wpl0x/U+kYdeXkKxsJrB245PxgfTIVzn4E1by0JJkf74xvV9sU7uzz/NVjRp1yypXoY7bsWa60bH0sqApfihjOu2+I5sP+McKqdVLiVMw0uHD7emB7/ps5JrjZEF3kLax9/cl8/7VHvRffVFkgvkRl6SXzaTxVApC7bJJ9fdUN3tD4BoZRxXhnnFYLvvkWgDWWLLru7uXozKkFzL6nGP2ZUsdklXowlAnGqwcxS26k7yvwp1gS9/A+lNPhO4mgeVe2LFlwyomcAMOZaX9EF5oqaQ4rnwIK+YX54aFA3PZygGdYGeTv7dJu9j4jBkkNU7x1g8rvD9y/QeLe13h+nx8dx5tzq+Sf+Uh31/3nv3r84T8eg79y5LOIIe7jO31P4QFN/Vm2tnVSZpSxYjYmWJEcCReXMt3d38tZCoMtsPNTY9ZWErKuoo8WCtlfKD9X0IzPhQjWGR4s23ziZHPtUSGvRAez46WS/DEXi7McHIc3s/td6Vc3kVayca33xP6TVDR5im7K07pJmH8XSTYqJBdB2gVPvNpD2c17Xwl+40XHv9oux1A6V7C3VxL+Fs5j4S9Dhumv6VlcrbXs+8NP4167xB5d3ZeCvmqV/X7UWHSwvoi7q/SKqr+TiJ9qUPNBLq4V/NlrnzhngruBuBzA1LlKzM3fzl/w1kLGxE90Jzp7f92BLAFc55iifrPj07GgOtyfZwPvROftj7naUlg/dUzCcOyNUdQ5BnU8b9l5V3TJ7Ku0AFmrRmZzeBhsbfAYBAJ7/OEXFfHt8QNySpqI7a3PJ+NJY0TwCYqKbl470o3ajlpoGU9yOlyXUzGibwM0j21m5ke88KmVI7XIDlhSJNkY89tLBmHyQyyQ2uy+Rn+pYH9WXlh4uYMxmBDloL3eK9z21DZE41LpoCAhZS53vv5E1x8V+umwZWYnNtnQV3Oq/Jlrm1iM+8kkJHsMUWRt8HzZ92h4ZhcJrkmYEzM/Uj4/Hs5D/vG9cUX75e7MOEZ7Z9wz05woHya37wG95y3Z372unIWJqxB29ERUpxaT+TxbDwSfVct8/UCSoYDwhn71fTwczGSqIsNRvqfepmBfFc4F9QWw/VyfxCQvO5kO+8lEd/4hJNgoDqLvdPuAvjEJnoR4QPW5IDkcAtMkT1bE/ni71Sb68bVenMqMfje9BX6ZP8izXL2SOZluMjQyrYjKdk3J29KGf59nZMrLhd+uSHucH8RbTYfsh+9g7VyZhaKFOONsXUNr7TDdzLebzzpuLbviQsLU5sJ8ZsVtAcGuXxErGCfOpOd8A8rvH+It+MQ3bHeGw946MPdysvy1LmYODG2i4SyvGn9UNnm8W/QL8+A1d6y4vwTwoqNGcLfczatkL1MJVCYR9b07+PMduwWM9iNZxtdJxJh4/b/f90/fXXCjwuaIdaK9iI/G0VJTRUlgS+LHvumGnZyYyLG9B8PtpeymsjIFcLfHgunBe5Pxc6A08vZ+/ZD9u9WMDV8uMtkK15iuT+3Eh3eum7A5BjqJAosaE99/JfBOpYxH5tqlhELhBpFuR1g8VnI2W5nogJcc9+x5IQ6fqptxBbtxA+bkz28yRmWQo+Xvs9CL5mx6kkMFX7vPme1YfTn/vaMbJHak4lGvb92cupdo18h9RfT1OeSjLaQpaOzs4uZb3IxxlB0d7frPiVkV3xpdb+y3EAAziL5rnG6zipotbGxsUdntwoxJmxkged2PTMf7S8L/zsoWsghfiHfKNC65fHzAFp0xCR7em/eG1hWovcoKXj1W73Js9b0E8rfCbF8rz4TbQt7ATb5+sdgerYTqTzeCo9A1bOE3fyqOWEVWDyGWJ1qgUdvVJiiXlcrw8xL54v709VAsxyZT75esnK+xeZWT5mnj2Yjdjm/Q1KKku/vMuGRlNqVtdwXfKRDd0Mvbn0c1sZQosRAz2eaZTYIdwE/PEbLVP4glolGAWGoaIXiVZtOdJS2snyomQSSzbArujo5qvRzJHsJ9Nn9W7xbaeXtj5PUsOy5yMYJZXGsUXasxGY/MqdA2OvdEN2K3nDoHOTDoSUl+32fSU35AKXs3YhA/QuPYShJIjwCYtilOxrSLkwaK2h8ps3s165tLVEFOZ5sFRw8nzE9uJhqmeM3Cp3Hp+vc362HIDx4JFBXxyT3pDSz8wLwcT+XgKZ4FoqM9mJlUj2R+pWKLHt5bZ2Zq3n74dEOUPz90+36+/aEf5wqO7m2m0773+VourrX8wquS2Qu+z6OaWeBtXhEz5sc+G6PSLH78T+ef/m0u5/ofHnMPSf73wp4iaMUVM3c699nsi3UAc7lJsT3fwBhbbFk/f4Vzzbp2w4qZVxByv2DqwXIR//H1/r26E7W5EGPTzhcH1jfVI9lkL0uk7dJCHklPxKVOmLV/yrKp/VUBUa+pmnE7/WJoDeTh+hj5pYSDogbdeJ+INSRDOTO4pWgOWmvRZ1U2dTlqYXzcLLLvlMyfZq30YLo2Ix3HXdVNQzOpPz/DgmqQUa9+mQMtlXu8lu9Nws+qcgY4jh65CfkdTXPYndGD1wEJFCUvf3oFZmfNKWo+K/+nL1EsRyaJrmmetW9vDMBFaY15hRNjpuYJQHFWJ2LfvyIam+lgKbvTp6CbpLZ8dhgDCYTWvTBjpE63rh23Qo/wY2FlbeTlHB4rB73VVCD6661n0qA+IxQULMBCmGodHatEVMx8/DBX09/GJJ7yUaF+1BPHCPpsSmSao/PBmAjOL4ExT2I8/vQZcS5s7Li7elzhModrYl0iO5vKKhDQijicnU34JuPKTI8/viCqb83+ACs7h88nt9kDS2U5608tVp736bn4NeSz6enIkNA7Wephbcw3T5fk0b4l5G/Vx938aB0KW5KpVErHb9a1+HyGD8kbcg9V36DbkxfBpy18jBqx4OP5iQKwOGgkbDk26Ootz5uFf7C05oYhLX4SpAL3TJW+r4Szj/eART+SMMmbhfB0Ch3sNaatdMpHJfjbIlW5crLf2/uM19ejJHfG1mYm+iRoAikKwNn+vZlfH0004QF6CHCusscqaNHsq3WBprklzIxeZTYRFwlISYQts5lb+8PjE5vQdXbKLKmsDN5eo0bxrKNL9Mt6QNP07uQNM+8xUzPrteCZCbBJsw0FYdDKOej7Br2l1KBztX4lo4jRA8WnuP3nv6Zpqrzd9nN+Ek/z/9C4H15LC/tD8U7T977IZ8BgH/07+ellHqAs/4evDz3Fy8VOWwwFhpwdM3Prz9c4uAJYc0lM5W9EY5jZHiAYu//4DHeWBe/d0SZPudiXXF1PVN4m55E4n1XBpwWf0DQ3BM/K1sjEpZ6QHNfZ4sctYx5ujwdafj8Vb+La5z3B//QCUc+XJ5q0cybAvlAuxPs8omyzsSdBwZ/tiq4/Xun3PzyW/ohLLDOChLmf+xZu0/lOgmq48t6amhQCdZCIvpyvM+GdCGhvKxJ9p9eZM22/paB6l5ntQw8yVu6+DszxpsPz1rFK8d6/l4N4e4VZTXLgCz+dEe3vHHNBS42JhqwCZYInOxyfqOtypVIhjqOaOQWp/Wkc3g8gH3sggfFX8/GcyAIK//qaGaJgJBPC5xHQPIu/fMQYL+VuK4/b75WupLjlP/wG0TEezDihbzcyyT3KWEdv9qvHjeiLorz4NTqq6aVkh+O+hdDoN3j3XJdo/DNAR1PU7Ogmlt4GY8spCk7mhGTvtY9kblE7wyN8W8xWbqRs7Q5Z6LGrjows/pU1ckyBpjGhOzU2jS5/lzmIX81lhuev/fmC9/THV5SuoONDRk6jMqSHmPSJF2dtOsQ6ukufhLi7rYYYMisJCtl9EpuDYPRSMZmwqbIHfVm3APV/mVigVkUWc8zAyT7XHuUQReaG+bdjmG06PfKUbXoVmROvNry58q2Efnppbs9yQjv/O4MNzrIkPl0nLD07Hgqa4UjL+bFPJn+tFugWX3zmHk9t1kd+oAKvxT/mMVyhSRYOM0KrkREnJJkxbfVjD6Xve//ypxFv8BFdCvVCQsFKkp4LcIPHu3qTYA57f4q0+Qo/P8Yeq33J7xf2gGfCG+ZgyDl/7oYjes6zTOURq2gu2zmG3rDWJLyXm3L46UW/zgs8KvCXdRs2XdHb+rPIMv+WXbI1wPFwO7BHs9PKTU8sB2S//vzL6/jR1AsUPvoLI+vii/jjW1+hjso/to+9rbHkQ9EPf7AU5jGfw7w/o8XfsfsPD2/NtoG1FD5Ytv3QbJanVQCZhV+/+kiea4IKWPwy8cW/pOTasPUgHuOQTmHw7kZteEu7fmXpRB3dsmyAf2uIkHX5T78t+YkiYq0m5vMYo9noVrH8d5JmfHS1b0kdNo3wVo8C+Y1vfyoFCzVK37CnGlhoZA9HArmsrUVfVsaoGE0Fhlph4h1Q41e7z7tA2veq0d35/faHunLGH38StXKP2a/e0JInsuPhUCVMGVsBRvNGWOzGr+SfX77OeCaOpB+6RZ/Vin1wL4TUcdZ1q6iRYXo1Fa0XfcHDz4HKS37F9M22K+fG6M+yvXM2xP1u5/L7UR0VCXvA5Do8HGP84e+iNynaT64/yklJ0eLvmLbvO04recJIrLU9I3swus0rLHXUu6aCJx5fs7VW3TAs+QWxUtVJpvdWr4Etd0UzPgdIXsZTJoktEPy8jD5v4iwC0+EOFVf20NGd4lIUTVbBTHkTo1lPXFW+rvCAt/qty+iin5Sdv1yq6/knYxTbuUGSQa4YsCeV8yqUI2De/UoCa6N2Yl/4VOalmOCSC3bCnsNg7X78NPWrPJk286mHUnZu7AlxUU7CM3yAR44ncuvvLBnWSh4oiz5iITMaxNaE55A67Z0O61rh0/5FzJ+/JurXjfx2aNIeDroZ4mr5Pb3vLS3iVeOxo3UYEYvyUJaJK59wbY2yPymbEOBsiw6WNKUwptw+q/JSj7QlWWsw93PawvuYDizQbAPx6xHpsMZ6SdzkhDOGs8sDfaL8yK5L/rDobRPKk6/TzfCtDHr6Zil8kvzMfnqXpf2KokAr9sTyVZGPH/fQ7MTYSKlgWMSffnq7xD5m5rGSkzEmOpVpGfvE97QSDfXo6iA1gUjsv+/dH4ztRUSPon4xLbhVJb9NTIDLVw8IUcHmY64WvXJvPj0JaWKj2SJcRgeWVMS654U/lWeTAo52AbFwlKBhHf+JkImXiuhLHkUfsYOheILPjAxphnhdTZay6A38rmTVHx/HPodbeZVIqI/nX37oAIK5w7wSRP9fvvBnbmxaKFsjWfRpjRZ9yyx/PPHJHQwPnfTvmS38nEnciR5KZy27+FuhNSjfkwJ+ea95E0/+L1+Tibs9seO4QclYHPMjwtUWsdNF7rtBU7MHSpV1wgyOrYxv/0YZ4DrGjFxIs/iXxFROn3Ym6v2CuhlXpQnscMfMYfF5udX9kCNt/ab/+gF8StRGmbbtH1Pr72x8iYJayD/jkW4WPT54b7dG1ytJqHg4VNm4H74tIsleINaaG/60QmYLOZnXFH3MPWe3iYH8fqdnvHXIKuOHY9j+0/ehXO/KYbOcd3zok5yi4PXin5dWzEr4oBesMKPhnHTns/y6rTy8Xt+Dcl7yINRfrYZgPaX+ePj4AVryJHak1bIXunwG8PkOQFeNvu3GSVZmqPXXSLnq38vmyNQauCONJFz0c8+vqIdBiEaWbhPNn6K1bKGbkyVsX8qm0SlBG6CzZPiLvvhko3Z6p//8phaDnk3VzT+jTZCt6GZ7S9D881u/PCVe9NLXPC5bGO/LFlnDYn4vpVsJ2lm+4Q2Hhz8bCw8u+ou4Y+MnMz63EiipAFiyxqsvuXx7g342bXIpHMFo84cUQJ6vFKr0/M1/+lo+7M0D5j/9tH/ZFnDRYHS+rEM0JTEz5Z1cA/MsdOzm9HTJ0Ulo3zRf+OifX1AEuDKtn6EcJ0syEVKnx9IvOP7rz0HSPf3lIrRvOS96CH7jYb15wnuvuAqQR/OLOUv+wjE5YLgw/YiV3FiX9IlX0e99EkM9awlbRbmsbFSc/Kv3xrmeathsLyEWO/OTjc37LMo5HW1m7l8EjQiVHqheNv/8CWfm3NfoJp+/7C5Ix2zWNtoIcR2fiLq5FEu/TTOhp9Yfs7RQM8Ql/0IJ3CRCclaUnbbf9tD/mRXzp82yRRYFzU+/Y+Vebrp5z8UGIBxTukvfQ8a+wuWKFnzEv/xv0qpbAEs/B4tJJWRNytcqCLrgEa18YvTjP3iJwhfzY/YpR38+bGWrEFIqmtrAmRUXBeDL7kwlNzob0wbfAKQHBsrPnZ7NJlMAPaQqYoaI9WztTa4ImRu8SfpJTpzt9a6CNG2WU9tKveMZzA9FzHWF6cf9ZMx/U0R//pIteW/GO/3swKVXI2KIuEim8K7MoFwUlWDUT/6YJO4ZjBuX8YLf/ljv4vaXt5G0NJDfZdUEP71On+bqwQdJuANYB6EjwVYx0cD2VAe5r2JyOLM0odE2p5CVl90yvwX/5SsrCS38w5Y8oPv1axAdIh2v6Hzwm+p9V5WnWjnkCB+CmFPnjqJ8hA/Tkuezo9rGHcFz05AqXhRnk70OKOj3d4AFfpOSfkj9G1Dp2TFdmz8/v9X/+kFsD+E7Get78oD782osp3Y35dJfctCSNxH1ulM6ZnhvD+6Pj0g0GzAXj5uNjP568U2wVztI/LxiB5b5SBKn4z6HYznD8ny//hgaIz/QkQycErv5Oomk284IjvA3UBQcH8ZQgxtDtfqLmXvd236DDdzsrLdw/dfPEg8rgyr/nyUF8L+XFAg31Wd78NZ85rv3CH2UEtreI+jYKeA9GNM7Y+7b/EOjL3kWxCdSMhfMoeTva4SRWmw05r1ll3NJRrKM/gSXqBf6KHnMDg5skPIlPj2QbCTqToZa2h6JOTa9T9+TOiugswajAeX+ICSGo1w0IWX687rcvSNOOdTjaiT2Wer83s9RDe1f+yFhLrBuLKZjjy5vwSGh8PX9sRGaAJxEm5gpKXo5c1ET4LvWZrafPeim290/yqIi+lSYnpU/lUVH4dmbCWZT2iWNsvICiOJbTo5PJUDrcn9qgL/Djrn3sspY/eEVio2wpagA8BudhgJc5yGnUnh8JexRJBi0Gsl4dckdY7xkCoY/oiR4tM6XbujDy4i+tygg3vTus4pbo6g02+jKguDmJqOFgwjegsyYeYltf07T+xENx4tDLG1FjYGqugjPq3WlsyHTcohDu4HrsY2J8x4o5+lmcFBjdD2xw9cGDbOOdISkNiH2oatRN60ZgIo3mLIuf/njDfEHkvYHRJzbMCd9X+kp6B7qmS6Nn44/mVShEJ4dc6KgyMbbwdOBPMeSGOXBRdMq06n8Yd0Or7pcM+YXh7OMi+cfMa2ZldNqG80gb07hcve10UmPnT9C9kkx8zefzJ/rnZMiFDcvcr79Gcb0PQcAvqu/me7vY873f+4DlE92pyMYdjc59lWCx+b5Zp4r/5VTao6BcnBuPt1djNofhtMhVU7R28azkLVGlzzpA3RRNFhUnzs0mZ9jDl/4S/DutNXQ+iG/JWjxX8BsabPm8yEXTZCdziB6kW3QV0pwjeQXPOgqO+XJWKFRVyLX3xPXpFIy4q0co+MXP8hv/o9Z+pZQrj0NRtyTnY30IQMY0yej74dQlz1JnTNIGX4S9TAE/DdfkDQFPjPszOqmQWG6XBYkJb7z1n1pZcYO3GTVI1pErY6jsIvgQ2PAc7d/+zPxD56iiZ5KcOeFSferF+1Q+oTEpxLxSq5T+TodS1wL3e+uYGTCYNMNCz/fddZnnXgE9rj3bP/69t300Qt9ZZ3qlKmby9UfBzfSlU+9yojXXh1/1PK2ltn2bBCPjwn61ROs1k+R8uZgdT3Gjogat4qY4wf7bnj+IQEi6RYTfZmv3zl3TdAKxybGrTb98ZnIAfTXS0vHc/FC0/b+2sKc3q7E0G6rZS3/WQQNe0e67beJPx+y83LXbgQYLe+nx1gVQdldUpLBwSnH0XRatEURI4/v6WRMD+9cKc66qVkknvf++hlHjvJSR5fo3JLQpC/LIDuFXYi3v+6S6kbPFrQ56Oyk8gA1Jymz0OHt3HDkbf9Q3wnQwMqjJ6a229aYLNjc0HPZFKBxQsrf+CAriBHteuuDZrtpW3j9lWu2vz/vJZ2+dYOW+qbzc5zQcJSPEtDbtSfWJu/56HR0RJoQZswKj1pCp0oXYVK8FbH67uxTXBsPqCDgTGtJYnAHugKtFgf73PpqNr/ouYIwP/8RXD49NCdZ38tpuE2YVfp34/vDi+NLVoiZc7mbM2OjK7/xxl4LnEn3twTR+KIkOM1royXU0JXo9kLM6CcTjYYUFqCR8oDFIi7Lyfu7CMgp24GK6v1iTNnJGGHjbwu6WfCazaeLhOTklOH3/XnvBt6ozS5xxQNLL+tDstn/abddd05bPKfX2h/nDwYoGlEkKr0oZdvWrQ76Ntix0BTu2Xe8D6k8crcgfpr1/lS1XYQ00VGZie4qEqOJOOi7Fe7Mzyex5Cc21AjthYjYq02c8Y7sbsit0pFpf5c+m+76QVfoeH6S0BSUbPiLk1q5bhuT7b2vhMYPmDdki1DSyo8HxDq5lVFdJ2fM0rXub8QWRrBXhkDhNJ/86X06jqC14hvnPZb8ZtezFKh8l7EY2zpf+/YnQp5wDJkjGn/Z2H2pB3tdvhIcn1bJnLseoFVhCuzypB1qSwPV0EnZlkqrl1DOqMokFBukJf7H6vwpHUIZmmPUEL2UczTIUQywK7ozbt4DRcOP326pfiYOHfxkPnWlCPG0E8m+dj3EyU2I0C2nIzFnzks+hXEMfXQkdBN0bcZt2Z7RwrdY6rut/9qciiPM7SMg5JGuy8kl1zN6a58S9+VMje5oggP74zZhf7GW+rzQD4XShW1M7F2Rcb71kIkmoQRm2NMazVKgUti5JwXv7ruk3MCplcA4Io9oz+vDGHeX3INFH9DvjkmcThaMsJ3rA57jaGPQ6pLmyHpEIrE9aeIzT5Esy32zZo6wDYx3N3y28FdULjnIcuw3z0uqgvwSHoz8+VMyXVbNiJK6KPC0fE4jyauRqzQeOSIeGdP5mnjwq28yd/tkNpAD8DKXenTbqBubV+yh8ltsmD1rTcJ3SmUBXJs9Iem6MGbRrQQ5HosNUY2/KmtDdABlF8bND/8M9l5akF6TLfro8+hogrUjOM7fhf34nBaIC4C2RoSh/RjGj49/9cGs1Uvo+NQ2KUSDsyFOqTucp0cUwZ8drYmblJ0xeWK+7DKIcxYWybfjnWqN0KLmQh6vY5n1X6oUaNrNLv2IPc64+7nraPhMAp6LfVP2jWmacMv7kdi5xpJWTZ41WvTHgk/LQaq7IpUf/RTSWRo/5eQEUgv3lobE3ue1QSNJr5W/gxKS4/f+4VPZ2AWYOv5j+KMK2Q8PQA1vB4ab56djsL1RlCqrK+6lRuS9pmwbcO32icXj3PCZRACwZsgnnitvuuFB4IouD6396YtScs4rgHz2LRJI8bvjullX8PWihGUVMrrRSLL2V694pJd7OZ304w3om9pM51aKJuu6r37vi64+asEnjZwkpEZrh4RdUvt8PZwLsOXIJ3hY82wgy6ryab1+kL3KAz6BEehwemGDbkK/KenNikdIn3JAnLaEbHrtXQzVOdSIvzwPh3ZKQcfSH9MeWEvWvs0ieEhWQ6y9NyfjoscUVZRkop63B2MWwc1B7KSY+M/MKfsVca+yl7EzcV18LOcdHmV4KGeX6OJbNabf82XPbKRSf2r4VxgvAaIn26ebRKIZn8JrBPdzf2RGPd8zccFfeT+vXlTITojXb6HywDm0IpbWp3fWM9B0JE3YZ8H+I2azoElXqCX5yAzJjjp6+5qtssxnvEbtJhmJderhp4/I1s8zFtxekjKsVZOcDzpB84tGNez17ZV+idGj+Yu2BVQtlrHSf2djiI7zDOioPeiqyM2OiuAWIBJHY0ZqC0kPG71Fv/GzSl8xunTzdpRj+86IFbehP6fOJCjq62YSEqTQsQ9DDnql3paYa8dL+NiYNVzGNsfCelUkLJ+vR+Sv9IgZbN7xadEvqO8vJcGou2dD430ruOyWlrEj+8movMCBRb9TelpFBt+tqwKk3fbL9ISpxmjmGxUpI90ys1K+5VimxRV2PDpiRA8s4/3fTkfx4Kk4FU4vPj2IeEWX2bizoFXmbFxNKJYltXCYvhoro5UCh8JTsJZdVI2azJXU12B3nYNRNm3QKH/8ApptfGVeco2zzfDcVnA8vwucG39VMu/PZSFft625zMdbQr+P9gELfmHl9piyuaRvXUZx+8KoQka5cZjqKMR6usSPao6+C54o+GVdyY+PmSRzGc6Z0GJ8eB7QgqczrP6uNTOUmRvjg1YF7JXvloTC6ppMfF2pkPdzSgwKQTLRAijkzlxReDYrf4pl54xe0y0grkRfXb+8P1nFa7wsUTxzFpibCqTH+0Sn1XVMljtIPfi+WiCaSIJkuoZBgIi7XhHbfKFkJOokKz+/V5jX0B9fgW3BDsGM5zGb/Ebfj5HSnL5vEvZJgcbRVBvYm4c/LKaflz/3D2GLdmJ3oILjWkYVJn2LFn3N/HkKO0kvUwp2E8ckZNxMOD2HDyQZskBCi6+7afEj6IQ/IS7W043PuauD8pK9lnnWrkimw21O0ZdGexJmwoymhV+VLFBl4slo6/e50DUgZmFKN6yfurE+ZDr0+HgiT/XUIjq8ru0SrDxZHEd/fv+R8hYkYyvgw8Fco6nxvjXIQkvppJZ7xL3XFKBiucvVd9Ah++f37QJa4u4HzRDdWgeAKZuJWTTzf99f+PY3ftnMLp8ClYFUE8cLZd7sLrmjhMiiLLjf/zp+/NCFX+FBDo9qLOna1Dz0h6uUaI28M6b9dxuD+flYVNTjQzY4diyBVng2sSD/drW7fc2w6HM8m+MtmT9H4qAsVwdyFo1N9r3azfk33/7zVyuiXaHH6YmFm0eNptguRYi+o8aSYJq7fn1LRlTI4sBMxb35332MVcBPK2fW26u6rvQOpgI1uzKX7fpyijZVowRfzjC6R5q/+a7kCHVkubemPLiLX1tO0Zo/K+ZaOwXN/SWzfvxFss0nM6iu9uLOWA5GJtgX+SSFxQyXWbsT1fl7+fNaTK9wvBUhcbahla3fp+MM02n+I/vzd/TnzFipcLf6jN1lN0Bs+Gw9YPXZY3/z36abByHvwe6+DrH+crnjnVxs4W8NK/om7tofVE1+gBS8b1SoW2Z0RnU+o+5guGTRs3xU1zsLvtapIb/3N/nPS4GWeqQbli67iJvCU3bDidFdRZuySfLRUb7WX0N08zr4861sJDCDw0zUHY2QKLvr285OowvTXiTtqIFUATbTFpNn3gXJHD6M7c8f4h2ShYQPXmuBQFUT7wRyMob8iXI5WnkjMS/xx2/X4uMKu1ecMTekMxquoRnAfivvl/zC4ptOxfPv/7MgsYnfEk5FZN5kSnly2yZN0q1muT+wgAUFqOVY05eFXv4jJyrRLTToYndDj+TOif8br4tfeHL1ym8seClrzpbxhmCiIV7bwsinozjpaMMPPvHqaGfMB/p8wJJ3LPnPze+djs7Q26rIElx7aPTQewvrNxbxdbW3jXnlrgWwpVPO9CxKuvFaiiPMl3VEK9sR0PBce/pvvElqPYOsr7RERsrncmfGu87Lb9RqsVJnb5WuFv4ajuJOhUHPCNuzZ1ryXm8LuTA3Ou7CvZpJf6gVfvkIZXct65a8o0Cvee2SXrNTf96vdxUY+u5AvA8r/JnvhhHNcclImDu6MTXzKkZxttTj5akb00oRa9B3H4mOQ5jzHo7n8ad32D5wVH/cWwGF+FaadNvo7/Jdy+15c3kYLd5p5eyPsqs8YO/XW2KoUdGNXiTe0OK3mG6RdzJ2u0iE4aDGdLXg2dRE+zP8XSLK3GX+MbGF+afHCMm7PmOFrRxh2o0uuVb7QzlXXw0ru+J7JvuHUHfNZWdEsORZeBIqnfPmpEpy3+k1Lebomwzl/t7C5k/ZMEON9LJCwSWAMfSlf3ptbI9GIEtq7pBLVt348FzrKgrh3tFdsN0nNdK+AIs+ptOpEo1P4v0B5KplMQPXHh9x1mN5Cm5AD43ZdV3/tyyJc8iIxyU/GP3kjP/lAfaw2SV8+GwdxImE6Prw6Djz2K1GS72wnz/vleDdIt55hIXtEWWznI43UKONw5zPNs0+gjw+lCl4AOVqVJTD1c7Pu2vOPgu/6IlYpu0ZUpJERM+jKOFPu5FBW+cKXW+/RbbkO6oyp48rcc+ljfrbwVNlw8Mz3aWUZONmkijavlYnsh+OxPgebvMRzheY2HPJw4bprC16zNMwbw51ybWLYsK1bnxGbj71+6P/auU/5zsz1d4sXrTPzjL+jlty8pJP9/Pv8LrfLuy0/P35IbAavdgjZqbgWHzDlMyC7V+s0Dpv62TE2JGQUPclC0/fWzZGzu4BUeYI7JDtvHIS1mv156fobsZlMqavoEKluGwiXzVTNleXR4Hugm2QXx48I+0rAN30KnPJTs749+6cZfJ2E7z7YotP2lMtFPQHLtuXDxNJabTLAX+XJe3pcZeN46HSf/VOtMbsysbMsgD1u73IlnwPbbtv7YEWOZhki19f8M+E2Z/1H36X/XjoVWiMb4/hOh/KYV3sIjiePwVd9AIa4fMUQMlSh2knvBzk3pimctg4J2J/NZ+Lk7Rr0FU2NLqJNcmfBuWjgt7lDXE+xccYLzs/Qp6maWzRe9n7dvdTubMZXfz3iY/RZHuAl1NC8Wk1+q106U150a9EFxFJZvMt31BXGjqW/g8AAP//pF1Ll7I8s/1BDkREUgwREJBLgoC3GaAiICKXBMivP4t+3uE3O8NevboVUtm1966kStukJXd+0gibPj+Tu32z3LEytz2QvfvGZ8suowk9xBj4nuzYvq9+iHo8TGB9SAbsfb51N95N2oPULndZ7p689P0xE6RTr8K5tdVKkbgnGyKpSJlrpNwda8GTgbKpIJoxQtoP/V4GISUX5l3CKB13EKooVw2TZXeo3NFIUwwbIhiMSK4acTmRPdQr2ot2JLC40O0CETXZ2sSKyc9LFz/LkX80POBxe5f1GT1HDb77qsfjChOXZ5vDCuXytmJ+zS00vsspRr/XT8OTxNpyiZcEgt+8x6Nw+7iLP6yCGOZ7cmpJ5PKxyEe04DP543u/hInmn/9Cd2SXpBP+Djm6CrVG8EfYd/N3OmOAT/ygSmjbXJRWOwrRb3djB/ModT/uzJVygepB9Mj8uRzHqx4WPrnowaabDKNolJ3YOUyD+sSFcpcFaOH7TMuDMRom+ynAJ/BqYng26oRiyijETh4zDQUfNAmjipXWA0Ien+eA2rjsAwhT22I3XbuU4jcmDmJacmP62yzSf36EUBUT09hHj+i0v612hWeXdN6kQ9l/wcugvBYrYl3eQvqHP+jVmxHTVqnjTn98bvGb2HnJt/O9kTzY4e6z6I/yn58LQ0d/7PiiHe+XZuWgn/KYpjuY0KxG1xp9E9lc9nPWzYau1rCsL3Ge7FM2tqrEwNgyCG+1llPOkp8nV60nk5QEX774R4UchM+cEbnfunOdzqGy2fva3/spxxNvZZDOkkq8yGL60I96q3DLfhBz1U0u/yQ3DHPpdEx3UcWn68bPQBgIIXg+T90kB+EKpGf1XPzsVzpHq2cNTXEVCbZfm3T89H4M0eTJeJp3arr4FfW/922J77rkd8c2Ye30Z+Z29TFd9MHl3/t6OEpV8tP3XsPDpCnTDzVO2/65ktEfH7vfdVPnVXhrIHv2Ip7CHXbHtBMuYJ5+HfG93xpRi5rP3cLHCRZfajdJaioCWWUDhoXPb25JasP2HYXkXz0Ary4GOlrNi/n+asenxS+FZ2iKRI01vZxI+NJAtn86caRx7GZsKwlqf22O//jL1Pv3WVZqNWdE2E8RfyRR84+PeAv+LfpQg8fm9iFHZXfgQxMcEqBj8mL+g3fR+PqpFLXeimD22KOSoWKaFY/RiEqLnp3Mbbp0EWprdmiEgNfVAAVA+r/9maO/euTxQlk0Nc67VsxdZbOHG0VoWvgUSleWzMhdvKb//OeVeyd4rXaJvvgjIURSnpLwJH/59Hy85n9483AjjqYzjBXMJ2cmOD9LXf987205Le8l2x/ufNG7vQo3qUXEL49Xd6z2qQyv4+vJ9CtcuvHnuY1sxF6AP0s+/lzZr5GL1p/IYcHT79HBANKzftJKtX6I75TeBGd18Yn2QLt/9TnoS3ag0fSd0znQqSpL7Y8T3KtIH119KORjGG/ZbfETZ/oLMdrfxB5vk65MJ1AaWz7FZU5nQvZofLpzA7/b+U354s9O+fCUkGkoCXGGA9XHg2n0f/UXRrZu2fH+Eycw3PuRubu6KNmv7eY//CSHV7zhUz5cJOisgRLjE904w7FIYdyZ5rK+H8TzrWgDt5wHvZJL4I4ll57o8/meiePe1XL6hW8HaSO6ER+EkPN2LmPl8KgngsUN4+xw3T8VxWHeoh+PHY9e9RM2qxz/8w/mTvCTXbC2R+buR9+leX1XQRCLlu4sye6WkbyZMkzWneClHvw+w+KXvJDOnLR6R3T9bjzAwivAQj2/0T8/4ai0Dl78qHL2VUVAf/w+20UJmiLSJehyWrqObMVMZ7qlXVBubHY0e1tNxM39coVIK0bi7uDExxdYMrjz3aKCcsz0X6skNdjmKiPeHQxXlJilgpw0QAzja7vCZn1oIfz6GXOwLLj//N+XOHe0e6VNObd4O4Iy9hJG0Vi7fbNq/qsvhtwUOZ2xEKMFr2i5z9bpjGv3+f/qUqD87yMFP9ef6Oe4RuUsrSoDnaZzxTxcfBAlzaaQpWlEzFrMtqE3JRHiTtixU9dvuumg3TxkWRGmcsizaHJ/JoDuPoEclvZH800NHBg67YwlGsnpzz9OrfJzpIppPokiunfkBIpGzogbUl7O0lOOgaaSwg7eyopGyTJkYJnUk7i+ld30bLUnHKe5oo2Q3qJiO8gVXB43nfj7k5puWnHbyCi4FrTLxFPJbaxnSI+KnFmVr6NBHO8UhGN4p4p17dPxt3vOoJzknnjJyPiIfs0IEf5iYnUnrRN36vkG6iYyGd5qc9Sv/VO+e1gj0BOCKeKV1ThQKIZAdDRinVt9nij+Q0+Ivt5y9yPmigaSsmMUcct0eR6HPZJ+7IrL6vmJRqfXcgXXd5nZpV66fedUI8Cn/NHZdtKSPd+/HsSybahAjpnOEkUCNKDsx06XWC25q0IGrrmc2rn8Wj7yOUvQNogl4t9anI5XO87kd9SfyXnMe33S2A1A2pOc2Q/NSecaJA/1e0Vn2iXu9O4rnwzUfULOrD5u0HhEzgg/YgAzfD1wOazCVvasTUTnx+ORztzZyxBd1msM+nXP+aWdRrS+NpicNKPitfGYquWUqce8Uk7QPNYnW9GSOqbrfuPyId3en2Dko0vOx3VajlV5yuFyviwlkNnTxy69BAiNzx8zsCm6Y5c+QzDN6MUsV5j0+WmqMXyuDx2vQXuX8+V5a//9vz0OMZ+uPCkgp6s386Ncd7e5/vbgql0VrFCkobk7NRTZmW0zN2Z9OftfL0TW6zKRY8hPfNT47wLCI5uIUT8uaDxxq4C7etTxKO3lqPND7aaIa7kkOmxMfQT0NeEOxYH5x4fUze1bGWFCtombnuTu2HtPFWREN+SYQNNx4ZvlyFzJD3aIj25E6YEWf/GEE7vu0jn4nQCU5z4n6qMa0in7URWkh4OJv3x/sXQzE9LWM4gb/tR0+hZlA791c8UQtzoSI/f+hK0FFnkIB6zPe/RoQNbmls7DsHPp9nmW0EbzPlQezIKPPta0dTifI7b/1L9yfn3Li/Ih6QvP4jzyYfu+Z3AKUEC88VCWE9SDB8mGP5mjvsyoPTkbTWaqsqKD9952k/WpniB3wZt+vd3PHR/YaBRFxC45jJ9XOmrCyob9Hc1sPwy0q4vuICDDDiP8Sosf53uz0BQ1aJJlfbyOCl0vo9PguhTt4m00nPyxArd8CyTkdOLUDlMRNNx9iP9Bq4j/sqBSwnOnsyUe0EykEEvfo+oTklRXd84+jwalF3/G293nhia5Qiv58G44u9Lzu+Q/cC7AqlVA198uL0dpaTxF1i/vX7xMe6LNwOOiJqYjHUrerytBfr+2RzqVn6Cb5ZMpw8mILaaC3uuTXC33KL5xg+nrZ6SDe3xgeCr3K159x2O0PV2OMUofYGN4CJhPrbhuoDIdixya+9dl/QuZ8PnWDuZH/VDOo/R6yrn5bJn9JWk0yBUCoFKg4t0UBp1QX7Qc0O20wjAbTsdXgZKhAXGRfo1xTqfC51ipuFstozo/+hxlGgBXtAexTsD0MRbURFk+j+1vSY/mGosVSPeTzo5mm+qjXv0M9D2HR7o90I8+uwdPAKurB2ZLj1YfBNo8UbU9Azu8wkc0qU9Xg34ungxfqr4c720kI7n7UFy8nqI7/9RkhMdLfBHz6eByPJhNjZj98Zf8EJVUfzxs+SFdrkzVPd5x2VsVaBykFG8TXXDHfDQMCPdZx/aK4kSiPY4zNG0WEMdqbtGI2UcDO+8o85xccDkLKxOJLCPL8yB30vMbBRZvj3Tb3zN3XLlNALFkbv7w1501r2vRMxAJMzZsjbjyzCXldR8Tmp3qCvWxsQOk7PmHuWJwS7nzuidQe1ikSiM7utCllxD8GxypIPQ7/rE3RwcCgah42puhzvVdstxiLwV2GD/rdHbCMVS059jjYN4ynaejX8gL/pDj/nvWezGWLuARWcQ8csuU5/obg/q+I+Y/WO1ywzEKKGVyI9rYV+hX0P1NEcnZxgIapW6sDKilmDxEglVccR42pEXhrJoUPUHpent3z9H1GXbEtmfa9WR6BrKWVDFJ7O5ZTpdSEdGaVC2x1vXU0cvz1oCmFROzns7OrRd8heTnnYn1JQHvwdUF8Dy9YyZWbrz/fLQZsJx4mF+IFomaYspw48iiyGuscjBOtwz+1t+0hLob1s4DYN0YBTGvJisb+efFKMPiSA6fBEXzbeQJKod1xvbXq1mOr1dSI1wbA3Fu4lcf1wqMKNxPEl2B5UTMcLwC6VGeE/vnvt12+3xIsNKeFjGVr6rPReeLf/FC9CQ+L98nyJSTnb+Y/kyTbr6HzwzeaTPhwndUnQ9vS5ILD3sEr+xSnzdZ1SJPGhC+7D44GikmAfTilxGv1SQ+WYdnCL7RtGQvbu/d9MnlBF71uWTnbJnFJbQ3A8LP7OAiOq+jbiOZKqDmfljIVczpwq+UPSUnYufmMe2L0K0geX9MvMXSqI/yLRRg+h4FZnbps6MHvIt3A57vZMGLdFo7jxVY19uZqavl1heZLiHUFaVUYAXu+krQNXnVnVxmZOe7y6+urQF4fcUOzTOJZuMx1dBKu5EditNPX/jcbdfCjLDUYkunxW/SlOR8dshZHh46+6JBhonKDttrhoF4ua1XqDwvjV6X/Db+7h8N/E0Z4uJ11/ikNJcnajN/GRxVXTmt/feo3LriwlRyblM6NVqi3PRzz2xrELtfssxW5pJwIMb9lLj8ZPYNaopBZn/xP9/3/QoSQxbxHERhNAe35on0bheww7Zy+GTFMoCJrxqGax9wWrqZARZvThjBTUxn0DoTtpLIiPmN7x23V5SCLbQq5iqopeidxVier4lG8OtnRGMZCQLSr72EJz8Gl5sZC9FxT47E997bkgnibmlUeoyYz1YNnzw5lsB1dSBOYwf6dL9QEbhybYmHi8OSD7YNetXXksopz/kQsaUxtK+NxHz5QsntQcFQbTXGsKAeomlXvQoIrmuD/cU3r9sryCbNjuyQh4U7O6EUyst+wlJmbLsxRT8RqBSqVFn5Lp9c207kYft50jrcbxEXj5mGftrKXp4nc6fV/YnBfZ1TounqmI7betXCQd6XGPaXoy4+BDmGk/GLiUGMho/1RSuUu+rqBE/rPqX7zq5hCpWM+Su/49XB2tzQ8VM0mNuHEI1quOqRtFlHVLk3b5erdTqiyLmJDPvJvpzXxjiC9px73MToE43Ta9cst9Ztcq3Cqz6AiZ4QzpqJp+gs8AHqAcOPYZ2oC56OrhfMEHQCIftrtkP9SFRbXpO6ZcfiIPPRvCYmMC+7/cefNlnVoJ8jV8TEisTn4OiOsKkLg25zN3S7Iz21y2A0Qhvh8tGbOdjdoFMbi13ht+WTuPSGOPpnheicQjpxJacgMp5RudZKzre3kSL/bKwYNs4/NHoPJ5Bbgd1o08dROqe63MJZkD1m9fdM/0rH8akIe08k7kOo0hGvjxTMpF4x82IDmnlyAQjvBabT41WV87IesuTvLaL/vd9LPSXKpu0zcthWLZoOWoDlIlMGPJsGi6Zz4VWgGqz745eL3slt5aeBTR4bXUX97xZg2MyjSuxS111ag4QharcO/nSpoE8CYQZa4hmPCGo+p8JDAt7XR+I+t0402eJj9Zfv6Lg+3N3NOWTyH9/HMtw6NARDG8O13QjMvFt2OZWvo4MWvKEKLoJopIPaoN4fWxLazmIx+eFKfjR+QLSJtZxLyXul7GfjQVz8pd0cIoHCte4yQnT353KyuTToFFQ6U81l0MfAcxtt4zKgMjp/FjyebwhTO2BLPnC5Mn49GFcXxuxFz46bUqpl6XdzqFDf9K5XJ8mE42azIWSQpsVi+IlQDg0hhq22+vyWsQFiVL7xqWGIz5piSnA8mzFzk/GTTu8MZSj1t3u6bSOC2lNLR5jMISemOn7ROIAqK2n7PjHvI6rdbL1jE6ZOXbPHgh9zMvcNitFKJc4NySmXloMKf3xMFSRb3zSlbUJsvRN20LePjiINt/Ll4N/pZs/LiMueWMC2uaXktdUyNFfuWMi38smZLVw+brMVowsK91yi2uPxiBa+0IDmvHx2LNRvN40oUhXr9VthOWCFPl/J7QbjsQa6Qoahb1d56CjlsVOYgcZb1xfFxkBfcd+SPaNWOu/TTkYziZ9MzWq5Wy5KAZIeNiavb6eWzdq/5/DHXyWpeEQ//7hr4Q/Psv3l6A7+cWr++AuL5WFe/ALnifayo7I9rK/lP/22tVYWw+HjW9JlvKXyHZodc0jb6lPDp0px2jDFGxftXSFtpQsKYmuH5+8HuXOV+RXs57Sl84J3s7metH94oucZL6eDPqggXpMef67mQZ9bzdPQwv8JEWBEbL6YFereaUOcy4a69EqCG6pCFpD9PJvprPB2BBrBmx1viPHhO9sXeEvnPbt2p6KbAj9zdqfh6BIXolIfVw9aITHyYqYf9U/JvNNn9Yd3xGyjQ8rXk9sCfu6PxDTFiHN3evXy/fbmeALZSPlbyCWQVDnCjTOdu17/bGRFONwx3lE8leN7bHKlSrr+L7901D+8Q2XZL1guVgYSvpYWwllxN3gF3qMc5fu33S368p//wf72V0T7M8HC4daxt5DLYBh3m7m9bqXzwBsbtflbpZtF/07MiS6Kc1huyfFHkA7er7zBYbYsZrvMjha+FKAl31KZeRjNQhsYMHTqefFfqMve52+xSwYmM7w+XqN+XgZ7/ekP43mZ0Gy+ClHe7WWN6c/LN+r7VO7R9xwc2b77Funf88I9/1wXPVtH05SJhrx83rDSg6VEw5f3XbYNMU7OWae/kxf++35OrvRuk6K3gLZCc2WnRc/28p21SFLqAq+Tauvy4uICoJGLFHp9Qn/6DZqnF5OXFVKXncyqhV37XdNVlPsd34EBcrQ9mAx7GUbMXtU9pPSWMWM9t9G4/bxF1DxxTHv9+kbzhWk2al05Im6ykbrmu/3kcvo8nUnzPIxR/7N5Dtma3fB20eNz4axblO57n8T8t8RvdOz/9BsWHlGHxp29suVFnzHNMd96XxSKAeOpydnrmkvuVOWPFWybJGV249N0WPw5FEBQEtvstXSavZ8GXFEf9F+8XdPdMoiAnunnj6+f2nqE/ixgtn893bKd75oNHz3o6Hbz5HzeuMgBfJLOJMibPmW7Ls3A3w0t2UfBuxxdAA2mrytgxK1aH692lkE5tITutjfoaKt5KtQbHeHP/Db4mD08+T8/qNyEOmc6ucH+kPjMOm5ane/k0Ua65HrEfliPkverQEMZKlWmtVXNm20tNnAyLhbxUlp0ix5sQCexxQ5AL/q0D64VKPKtJAav1HRZ7xX4Z3PF7HRdufwrn0yFFLLBbKM7ltvHPsoR+aY/qtwHIeL357pG3nWVEKdQQ7fzTh/40xdMb6tTKh5oaUBjOhPbL/4rbx+fBL4b+sBjkuOI72sJoxtxI6w0cquPDlwr+PP/QkvTXPaKViE87bGjO6vxEU+UEZRWSFxib+6d3ur9TtzF0fNIlaD8RTM96558iueUkIqaS4Wlc5B0MDp2u6zXHWOFPUPG64oGlyeU86mlMzKWwQaA8KbrN+VYo0U/YcVIlq43ph2j+9g/yW0Ia50WSRbDZw0yI4N04sPqdkzQwrfZpfDUSHhPmwtIez8nVmombhsrA8jnuFuxw+ZTIv4WGhl8j/pM/fad3rv+UKFWqkqC9yeHT1O2MmCTfM5YWfzhxa+10eK3Eiybp//4vKlhjAvL2qTc6psbnDK6ZUft8+WTQPOn8ufX7hZ/gJdbCtD9Xi7mr7ufisEtz+BzfenE1e5VR9u3MiP2PhyYeeA+2l0iI4YsNXqSiu7H5VfUBUC0WVluGb706aB/1D+/m8JHVMux2lwFEK3ThyrPMUl5cO5luAwsoH2vn/hkb/a2sr/vZqLmTR/NU6PdoB6hJUv8utM5/EqwQfqP7A+2zvnOffdo8cfxb1+8+VwkcSwveuefX9M+Lo/kz58lWvHYo/Fzrk0I75uUaJa1iXrt8KV/+5npv3pV8vp4uimtrdvE/gVC9Of/QPpY2QxT5Kf8/ihmpJOLhcdeFFM27J8O2mjvmdmX9aucH5fH7c+fpbXyzd0hs3UN4u+akj0d4/IfvypPw5tp623T8UkoCxAOKcbXVdl1owOvapdd5HjR93XZd8nxid5pO/3n70Xu6aksfg5Rw/sx4vHuUctIH+/kcJSbaN7A8ybf7cOLCs2TIRrD3YZm3uzJPkkP5UbcuyGa0zph6rTLUqbW6Qwbbvls2Y86HSr9CYs+ofM4SS5N9AuGfKsdyPEiXxCXkh/AI9YkXOuzwDmebzUU08knpjnl3dj3ZJZDOWJ4Vcxixy+JHaDKubzI4Wp+9Lk4FgJCpFJxbpA7/+fnMHW9osJhv4qGis2N8qKnNTn2xOn+/G/FN9qW8t+7++fng9ZpDV35r5hvvQls+ZYaGrtqbe1O/bWN/+oZ9N0whIQe9U/YraoTOc6Bng7nwqiVPz6iJ/Gma/IguSB8WNfM9MEot5WVO5D88Jnti+9j8cMXMMsmiZj6sO+4+PNH5MHHZMbyfcdNOVZK6AchcQJWuFxv3k+FqzEm1oHfosHY8xGW+hFT927Cp6+2kyA8//R//nIT6jYF0Yo+dHOxw3RKzPuMWCb3VPhlWsdh+DkgXocdcaKJuXPsOxR9XN8ixA72S5elY/1Xf2J/9Zw5ypwV/Ng7IPgzaekf3spKcVaZ9T5WaDxYmwRuuvaiWzGrS371YhGwWC7RmWhpr38UGd1jFRP3jY7ph3Q7E5Jd+6PiukuiEeQk+OdPeUx1O+G3u8zgwdfEO6OL3bE+3DVQB7/AC59AU1vtYiCXxma3E+w6vrdWImjM2tGKFbisQd/Ku3DlyHR1b7qO+wWS0HhaDwzv9C5a9IUA/gcfMHrCo+zpYDfw8vMni5f3P19en0y+8Z1F7NO2TnkfPG/w56db3u7o/vFhdHnXGdE4PfFRnUZTsV7xRMVtdU6FULd7KHeyy45GJ7j9Ei/y7L4i5lZrOx0PW12UvSskFNBRi2bfFE2IQv7FO6fv0bR/CQEkwyAv+VF0+fv8zdEsmCHb0+4dzV35VWErKBUzdx+c8s0tC8B194A31o5Es95PIix6kK5+4rlk70OSAXy8DEuBoEabwS5M5aZfe7zJw0IfTWljIFebI7bfbryI72TJ3tXBnRAjIR7f/PHLFbMvLCLHqevtnyAi3fpMzDh7Jl/WW4D7SJ9/+JG23/UqQPuP8CanpR7y56eg/SAZLFuf5Y43rtMg4f6piVfKMhr6a3v543fMe/HN0kVLluBXDj/iLPVRHtayAMv+Zo/j49b91efQ5fwb6EpQP+nsVqsaLfUi4jv5s+THR2MDQYFAyKO5uJN7PHvyFDaE4F6OO4Epsg12X2XEvw9CyvfXtIC4E3fEqG96ubkUbw1u5Bj91Rf1OdGONyTdIx2Pp0uZ9vsosuFxlXX6vRmDW5WRIILche+l/ll0Yxg9ZhS/aoXoiz8rLH4BrJhzIeopFbt+PbghxOM+ZBrtXD4fuSigaO38iFr/Pvr09/lLPYd4X/C6pQtJDjWMJzymz7c7iVOdw5/e5WPP0kV/1Yo+euOfH1p+aHsw0QNyRqxgBRE7uJvxX/1Mf6Zy+Rd/SlN/D5i/X7tujrw6gCU/scM7ElMa90KGblgwmRrcgq73V58A/tWfXqGSjvm6GRcL5k1u0/WesqjpDSTrhy1T7w87mk7kcPunB3RL67sZW2GhCK0uEzcW1qhXp9EA6ZxKzOSPMe3H1xnDst/YrbYKffxeX7GsetkeK9225OOtaRvoE60mbi7paSNLbw1MpId0t/+eXYZ1x0Gfbi6I+bL3qfi3XnZweRNdQ1a3WTezDLmZtUyP8a9kB+Rh2bzcauaYnzCaNNXJYS8Gm6UeWevT7xy3Mt+5IdMjV0/nUm4L4HbYMvdQiGiO4eT8f44UiML/PlIQHkyPOQeNRqMgaznYr/JB19aRcxrP8ghvZWnsgs9mOq51iYJeBBO7n/tLOU8HDlArryPluFKiAQYnRt48PPD4aVg5tXlygz21GVPPe7Wb7bRO5FceBcQ0rpU7ZqPiwFhOjB1dwSxFIK0B9zAwmeO5a7c3pQKg/LiUOOu32M3xPM+wO7g6+fv9XMR2DkqsLI2DrYMr0FdagTCLEXMatymnqcw85A6zy6z43aQc7y1AtV8UmA69i4a0czT0vYdnKgffupyFfMyU+tStyFHaBGgjCkcBtN8+YgZfd4gWkMbwqz8bGqi3tGO/z0lE8do06U6kIh9ZIRXQi68fltD3p3+ofaWQUM7odlgFEfcwH9Hltzsx36lbPjKrzpTqrFTMekwh51c5iJUfkzosiydPb87kLUD2oyHlo3ZIKaVZjJYLBbRIBMGle3FloM1VUIhl+iOfvoezJL/buCSnzcwRB4na6JwVN6Lut6PLnmnXgzALETEGbee2tpKJSL9hHc+3IYmmxpYFZGZBx3Cl7hB9fI4xSGecMes0/1yeO2MGeLF8dN2/Ie65FwHlz2pkGNQymq/zx4O4bl7EjFdc74VbbII7oS/lTaeizdrFMcz7QGWHM8n1X+qNhSJlo0BSe73RmbPNbPDf6op5q/sQ9deHagDXNgPzdlPjjnn4NKHKxgMLAtcqN775uoHJGkLckCyzAeXVE75WuaXjZjO43ctKC7hHusLwHE/u9DnaN/l5/OTETYcHmj21CtFhG+6Z9yXA+ZflFAnvtUGMJB71cYt9D703QU6cKY3cXumXWSxrMMi5U2zOW7+ioHO0pSOsFF41Rt8iU9pS5uukTsc7yQKYSC0z7bA+RU1JjgbM0Xwmvr6fS0Z+YwDyZpczM67e3SyUWxn5b9kn++3JTrfYqCTYXbSQWInwQsPvcjKUUnUNPPaf5ciLMBSQAf4Sg13Ncr6oJ0NRft6JGebqzXlwzk2kzRcHi3nZRXPi/2Z0ckXKHNpz1PPxiJHiyCPzH8W3mxP/Pa9b70GZfWKMj6GXPKFQGkru64px/ji1N9RsiwfeSJWkT3my95RmdyyZHz8T3l/unYOegxgxbGt1ysPan8EhuU4iohpoa23fPfimtcdbJzW6TYswoL4SS7y0M3Z/jyowQDeEFzmE/bOk0/EmgygeDrgUy7GbtCu/KKtWs4jfqR/OnzvFg2l7kMmJ60LXTGeDQqG09N/fT+SxAnjcmx27/i6uu/W3uILNCXVUevnY3WSXnSjbNzEm+/mn6+M3u89QWOOGneZf6bLiyQ1w99ZEpZW9lGzKew42in9LfPqRYHtDg/r7/kos1BYRtw+qCmZ6z5hXb7p0bqumBqmpVSo94kbnXA88sIxWXvBgjH5C1oaA1O0ym6rY6OPlgjGy5IJj6A8Xnc+bnQQPy67IDd3P6fRd7Z7g9HBm5jjafKK5J8IwVheWvZ41GlC5V8G6uoS49Jd0o+xvG7QSjA0xe1svx9F1b4h5F5sYFK3dcV04WDGjjcFUqeqjWe1hRAU5+8x6tTdUM+nRwvn7PFPxXt/SafW65GgvkQf+9B+c9kk256A5bMbfx7Tcc+9PMZx3q5Z5Rix27Nu7M8qEhjAzHl9RI6VlBtPWkpk9BgYXJS+ksHqZDvOTj9CNwWq55W4fTlhaXZqI8febQhIzjexJbvOCFAcHdKwruPKw1wmHILDl0GsqrCS8SadNa+ewPA+F3dToo7SDFaoP4OBVhYdyOAVNg67YMRhm16c7xoemgJn2J6Kuoy7l+SkWFSOoQyy0bJ/OFo9ymD5PAQ8vf4foXk41+Ps9/Cqn20z7YZRftDnSHT6H7gR4FADO2pbtHUnvxsu9dJTTZe6YZxdOtL3gvAbrXBzZ3/rMHA0aVO7+S8xOZuVUSr69m53Xkx369Qs1u9+eKp9r8yOkNpbGfF74RF+RfgkWNlk32tOkwoWv1xh9vjoS2+Mlh19ziZhV3CV3/C2NmTNlOxD7Kv7KiW8vAhrWg0n06jG4vP94AfqugjVTj5kdcWlpJBle6/fSOCxyJ/P9NdC3POsLXiq8d4+3FnwQjux4RGo5v+nGgPX98CK+c9u63e1lBsCewoNdT/NRZ0xVRQVF1xmL9If5FmeJChIyz3RXzssgHWmQ4XibEQ6aI9JZvLUBXe/Gnpjztij5ir4CyJTNwAg2Tc74mnsQFvmTuCvxprdy/ohByz89ZclhLJf9kSGDMI1peRh2Q+qNOYyW1xMtjpplMN5ThboTdUa+Jf3DR2MbJ5uI+GjTdHSmeER8V2+I+tSv0bz67ltIIVTJX/4fHtq7UW5kmAhWunPXz0W7QtrzcGH4Rkref7dmjP6ed1Vl+4hLVz9EaXFAxHVjraOm1Y3Qlccn8fybHo298TJlZ7vXcfnytXS0vaFF7LYHRqT60A3ble4AxG7DHOFW68MtajMUpPLSttn6ouXeYI8ax3SJmhYdH+Wlkbe4N1K8OWaCPuZnrkJ1XldMQ6KQ8kb0DVDXW0yOt3SD2KF1M7iV8GG4vAnpb7i4BbwVajHHl6xo5vdVBaQfrrj8HeZ0pK+0Rg9SuVRynG05FVMzo0c5fDG6HqRy1mpHkGfn8aTK/pJH48eYsYLE4ULuVx6kvHm+VqjZuSXljuPyXtukNfgIZOZ1j7Gbo2b3hDN1n+Rvfcax3wlocxUVDKc55n3Lp1g5YupjqOATUWUryJDrrYDn+pvrgzgQgMNKvBOntNJuxrs5QNeWWWy/Wkpwmrp9wvcenPFs+h+XXXBeoS74HVkqnXvEVxN4IIaLpYWygvNb0XmgeG8R/yZJQTx3pCeqWJjgesmnvNYlkIN8XxI91tKFPzQ9fF5kT//e/3yL0x4C7XMitrcTEdfDTtqdd4eUkCSq0r53A4CHeToz05425TjwcoTL44KJ4TVPnb/Tp4PEe64RN58cPk4id9CjqkTiSmePj8dEl+F6oA86f/encqCHIISntreZIXxP0TjyC4YF/5gPJEkHN3Yxcp3bF6O10aGP/jnVsDY/zl98uZvxnsiw6fAbDws/ndhka7syXRGsHFaHbvvAhyc6IX5mnpmO6bTNsn57OqOMSm967+ZnsHOArEnP1O97U07Ddgdo/ZJUktx/StoWsV1AV7pPcsichzvL+fkCwePtU+Ww+nTztwsLxAR6JRreOOmgbPUWvskuxfN8u7j80T8BPNAiZtkwuk1f+zlaDq8R+6yU5ezeTjflaKEer9fsok8rOa8VWXlIZP9xDTSO/SSA5n73eG0dIz4z6dzsXCf5EnxEfTQs+Aj65fVhbtGOvF/iFxY9Q3fokrkzTvPxXz7YqQ8tEozOWAaxmAGVls+fNNXEoL2fCG8Pa0WnmpHdkPc2rsyU3k8+nYPUBHH4PfA8rIxOhAFV8JqnDzHWlaFv7Pg2S+75Uv3xjW58jd8avc3DiOGSJPq8C9cm+uPHji990+73uYvoUN9mYgutmE6mORegNFeNLfm+2/7l38DVJGJtM1r+ex8Lv8XbLZY5tXhUKIc02zAjECc0RpdohIgAI/7ADrpw+x5vsD4wRMxVI5VzvS562AThhxzF+JPy18teJjxuQrKfHNoNTfsLYCWYG7JPD3tdkJfG7YdIx7inib4cafRHULfpl2Ct+vJmLoqV4kS/F/vbr1vemAak50LCXGjbchYfPkD+Xp3ZHpbZruHVV2FD0jPugsu9nJLDqkFe7tvkElfvkl/l2wXkKkwIbpW+nDV1/QSy5ykzjq9hmfXravJhOCDiL3xhvomarRx9cUWI+HI7xqAUwakKShzr2LjzidsXGAY8EfeemOl8frb13/Mw/H7hdPvesfZPT9IVng7ppKkYQ3FPEd5uM9pNMocQXs79QtT+o5XiXo5UxaGflKk8f0WjamJJ9C5OQovH9HWn8vLs0Xm/WESHYqUvWOLBZB0joq1czd1q7V2DcKNyEt0C1k0bOzSVx/bgsmCz8fXJCpAAT2kMqLL19VTwH2kI96P4ZEQ8bTmfn96Iupv/plORfbqB2q8erdDPZ0f1UUQzm3YhkKGqyV3ajHyu33cPoO4ULCRmlg79IDVIe2eI6Go/dMPCf8B6si/DVr0qF/6/6DfJJ6l09tCk7d4zwt3ujZV6nnWufGUZnt/9zIxK1VL+s+wLlCkQoj/XuJyVe5egeG2YVOnUA+dtt/LQgi/Eeb4uKasLJ0Oprpa42VFd51sqJwh1053tf7x1+1XcAQRZt2I2+h7dkQiyAKodEyorSYZmn0kAaiJWWLhyo+POMgvdyjOTZQs/m9b17aYc741DNEu6pptzNKroePJK5qjJzx1Ssga06DFGmnvjslofV1BfPwGxKvrhE92j+D99kazlqJ9u7wbilBa0d/VzyViySWCj9CKzdzlLebfZFkj8EJH49S3vuGyGqhJthB97HZ/vjtXOOYbXd9tQUUdZOg/5ykS3lR7S+X58o1H21y1a4gPv2HWOxsK2MFx+6IR7KeRl9Rq/FWpiZ0e0cSj5wEf5CXMdtIRQmUffw5AnipTb9z8/As0/SZpRlOgPDC/plv4WvgxOSraEyLuHOx4TV4bbSnrj3UNHLh/MeYT1qbSY6Zq6u61OJEQMpTnZo91Qtn/xPhbOjzaLH8LOe+eC3p58Iot+QdOHVCM4oXYnJKszdx7WpIZbVyhLfBQp48uVCm2OHeLQPkJD3NgYdvxZUXT0G87Famf88Tlibc4C738/SYV19xWYtvCBH3pVJqqy+UAM68ZTNgV1DuvlvJE+oS4dhu0Ecnz0fKxszF/Xw1MW4G1aI5UORZjShN08+MsvSz6Kti99VUMZdneGK+x344JfoOjxjYXw3CEWb1UAOdC/VGiabznagVbDH/7bezvnHV7ZGbwkuqVj8Lm7Y4I8DY731iHmQ+jdsbo7CaLNqmK6ffqgMS0v8t/+YJfeLktWqO8K3DF8M3t4f0p2lW8xuoehycixXafjpngk6JXtOqqMzyqaH3oigYeOBmle6ZsvvYJVmMLVi3iWXPGftvvNSF6dLRLuj1I6iMJe/G89mG3p43kpWdzMPMIKwYFLL+rdAMGzHKYaQunOSm7NsLq0JZ73Rykak/u5Qi9NWOFKebTp9Kdvl3Y7mAPR0NSHtELfbmzpH14v8SRBMMozncwMdGrcrqq8WdUHuvk0KB1CiT/hZrt3CpsyTodkHXrS/Lmn5Ex7W5+fweQoPK5csviLJQ168/mHd3j7mELU+4+l0fydj/ibBlY0Ei/XFCIVJeZR07qjlSuLv6dHzI6wEU3Yv4eooaQmR3TJ9PGknRzQ+W7L9IrcU7aOih74g/+ItfgXo462gPaPKKfS5brRudbeVcSe4gPzy3HT/eGnXMn4yvRmu+r4TbnOcK4/Jru80IdPxZSP8HmeZ2bn+jea8yagcHLWLyqtLnY6nuxNDtFG/DHSuMKCl2qsxNTb0kj3JTQGl98FLM8PmSrqORrxN65h0QPswMx7t/CnBt7FvHT1Cgqdvz6DBqfmPjES2Y+OVsFThSHpM3K/frJyLiQxgb4re8yZMKWjjtaAzJhGZNHnZfWy4/lPHzK9rkzE1lFLodwlbywch70+jfdEgjU+FswktIlGb2Mn6DXzD5Wsn6f3vO/Df/z16jsl+qdPW5kTZi943mpGnMDmEDd/+rgc3/ula50fmvi7+qwjKgrIQHjj3Yh76Sx3vA/DDM+4fLB9gU98/I1Zgha/FK+EDZSjaOgyrK3nnR3k7oTmPrlTOb3cLKJFnZ6K/C7W8Od3+Ogbo15fxzLQy5Pg4/tE+ZRJTQhx2hdU5qPaCaOr3yDPyZZuptRKhU06afDnF6r5LHa9lJZP6Lt3z/aXrZ8iAN2Qv+askvvCH0djKZlOSb5l2sWjfCxsgtFakDtmPAsdTS5dz7s/v/o49arOU9mZIRilmRnG1tYHIStChMuHTHBt8XLa+7OqiHbL8W6nV92MDs2M6kC2KF/ZDV/8S4ywNZvsuNONrtsevxpI335ilzTKF38+TJQlfnAQ9iFa9vMIIWKAy87rdXZThRn0971g6tlfRbOyBQmqWuAkPFW/7vfn75+adMJo3tK0h8/Vg5+WJez6G7OOn24s3/3pbSwWFervk9ND68cK8WJm8Xnx99AvXjEs4HMd8fSWxdDf5ZqRnbp15612T0DKnTvxKjotR6xu7Z8/uNQj6nSah0chR8TKmS6WwV/+1FAVx08qnRhBPDM8R9503pup5nDUN6b+qOGpJhoznrBJB13vbFmlns0O+mpTTus6SBB/uxhvE+HFaWDdKnQrrQsei10Q9SNuLuALt4K54SOK+MK/QUyPNq6+M476tS71sDpMMdnLqlU2xMtVeGniivz5aXMB6QX5gcvo5H81tG3SWwFkqGtyCPOcU/IpTDiPP4F2i/4YUTwVSkVTlxanVepOfPsUYJtaDP9w+UHz7To2Cis8jRwb0XLHOgwyZdlvDI/+NRJeQ+NA/ssHKihbtDxPUKHFnyOu/5VTId++n5D5yMRrZI38J29PWPmrt+xzpqR9Pfjqnz/Gnrg8lUI5JDVa6iPMDC4DGgy/yv78BOakqxb9/n5e/EBm+psi7Z81Df70KDks+2XJhxXkRqFT/vK1iB+G/AYWHHdMR/dfOYfvdSV7Ln5g+Y03Za8+QINz2h2HeceSjvewS9D1bu7pqsre6fzcMO3ffp1WYt6N++/mgo5bI8OrbHt0//D5j09gcd5qJa263Pzz64nDix51wmwlMGjBBovG1XDFv/zRrFcGs3chKqnyUC8QnK2auP1FdxmilSj3/Q3RSbL23W/9uwoQWaX9zy8YF76NdsX3jOWQqunmFhwK+A7pSPmC//10+7VQl7eMPCP3wr/fZXDJ+iWrDEd3pxvH03cG4ZVRZkrWEE33zU3+55ea6RC6UyihTBb3Zsr8rV9Gf/4E2o/dgWmXpOjoGQQTFj3Izp8mjXia7kK4dtWFmPq7RZN3bRxQP/Mb15Mjp8PHs0QYzesDv79Gy/tD9Kphu7sHdHORw3R7r20bHFLoxP7zn9NO09DKcDDTvvupZH94cvpFKl7zsY++2yPTkOKVIpZO78zl8JhqOd45AtNS7YvG6ez10K92AbOTT8PnoDczuMhzjn8vJ+bzpt2NCFfXI90ctKL7hw+PLlrTcfK/fN5EXgvks3QJld4rPgz3/Akqkb/M/XxLPl620KAd0oBhIe30+rx72XDbxkdmPvGjHJ1HLiqLvmbHs+xE/IEPGbAGuUzbYqLPBUQxLPHDrE1pl6NLcY4SzRvIXfC7cvhMEYYbNjqWzlucTvbchuhPj25wOLi/vS9r8i8Ght/xyoo2zdeI4dBfDOKEeV/OcMHZbvHnmZo5UzoLuZTBEs/Eekl9948P2r50JXvqpwu+yyoqaVbR9SEYELvefhIcFf7Bv/Jmd/zBuAQhGoC4ZnDmyzHbUZYPqx3B70HThdk4ZfDKUMf2X8PhA1KU/yPtSrqV5ZntD2IAopBiSCe9xAPYzQQ7QESaBJJffxc+7/Cb3eFZHqVJZdfeO0lVgyrdt5dGgy0ffutTYv+WsFMWcz4kUVKgyTncYrWzSc9Nr6t/65fY09WdJZNo3KjL+hD2lCSvyPpZqpB5mUAD1/dCTq/a9cdf4tXnUPVs1c0Mfvj0eJlVP2TPg42YkehEBq3J57gvJ/gq4uXfesx4+qgdlC5b4V12V3mHol2gMv06x+aCf+3wLYsfHmLbLNV0WNbbwGWQ41t/Xad0s283aPFvyA+/Fz41QLFTHOr++IbXiR4EiX6htrbO0bTkI60ONzI+4qdUUfmVBVB/BpMmrPERK+5uAVC8ccyEN+/nU30jkIdFEHN5rtN5OqwAjcTRqaUklPOebRwEqvWiW/UmWHQbzgKUVWPQf/kOW6iFSXPeOL6Wecqs+EZAU9cnis9R1w/n7VVA6+zaEAi+drgqo9sZ2olCrPzWo7/HP0cD45tiq/pw3gkfv1Vvo37Dca1fONt0QwRMaWMcvsMibX/8C0SBU/N2ePTT7ag3CK2bN3UeaItWg3Qz/19bClb/e0tBfN/ndHc91dV82ZE9PLtIprfgEPT8wvRIi72RUJurq7ynwx+D8mE49C6YNedycbHB6E03loR7gCb2cU30RKWHHZA4n8vRyaBLqnM8l3POydF+qQB99cW7CiAffZhKLT5ffbIW9yv+LeJogqJ039Q43ww+bFm1QZVCvzgSzQRNFy3r4LFaemM+S0AsehvTUon4hMMPMUL2oOoT9bA50C2EHWdN5u/h71JxosaJwaeh82Q4wQPjmG80i1Lcl1BePIlmzVXmJLpcYmTmtwx79SML+ds8FVA3yMPBJNYV/V70Cda2t8L6bl+lsxicj/A9HBQaacGz4nD2lt5K7BiLp+9SmK5HCQSne0Hjw06qRuUJBTyiJqBRqLTptLVFALR1Suxd3271Or/xGf6+cUzUJqchq6Y/E/ZTEmKbPz8Ve+jTHv6a/ZZGn5SngzPoBZBsKZyY/71CFr39CaKBKrF6juJ8Sul+gpRRN56ZnVZT0oUtTEN3Ju/pvs3bS+91m4pFT+o3Ly+lyRzGyLj/rWgIaJt+j6FSqC7KRHqeOyEcL24gw2Ptbyn2/rb8+4j7BLmrYsTecc/Dic2vRFs1pY/tGljeRt+4g7W5qgi/2m3OL9pmgmprGdSbXD2dHgcmgwi6j08naeJz8R438E74gUxeFFV8wDsdObchJZztVj09ByJBeXAKqX7Nx7wrknFS/y4vTviVd9W8NbUSnHBLsRG0pJqZbO4hKKyCKLOkh4xuV1ckvbc4pjV1+7lAGwLbmu0JeG3Hp+izyWD5fexNrzicvwpSIfvklIzBoetnE/ESTn5+x0EdtykDeW6XbeQQt/N+SmdR2t3V61/uUVu7SmEvXlYTXAvJxZa2MrjMDGeC5CqMMRMOLZ+2B61FvbPJsaclXU5E+2TDWdv4+OEdxZApd1UH6jxl6rHsY/XH+TvAabOTsN3QMGcsie7wrp1PLDd+aA3s2degFsGd4uoI4RSJf3eUbl8tDr0LrShOhQL1vlwvVUf0VMKVP8D5KafY8FaHfn6sTUe0u6dKzWON837w1+ovfnAgttwiydBFII1KR53ZjdPxS8IMeja1NMoOU35/uOkAZOsCjcD5Ira9ix2cJtKTjS/1OU+wK4HebR4x+KcxZMxJN8hVjRE70/isxqqfTM1a33wi4YOeSg/2siGMfBt757POJZ+bZ7gX9xIHHO2q5fdbdZl/+A9SqefRFMeQh90N67z9S8fkTzgDOQ1PeuOCnE9+UNWAVlGA3XeG++lNP3vgu2yFo3reWEOzWLA8FgcaC7NrkVUX2VDuj5dYjqluzcMfquF1oipRXmsxZYwworXP/o9U75NusaYvz+jDH4zQaTZ6ib83BITD5kMv0/RN50HXVBQf7ksVgUffD9+bwiDIyjSe6i5OZ8VPj4CF9Z7a9W6yhmE1n+Hhaw12L58gXOYzA+0widRh+3tKmvVVUHhkVDG7KhaS5dNkQ+5bCtGCQ1eNsJEcWAeGi0NNv1csyYfn73p4K4xNyODNBY3bK5Hu5pPxi8cOnJO8LInJiNPv9FLhXhQltSO7RPyx/dtrubOdsMctP+XUWhp7CO1IVjtTT2WZ/kXaZ4psWuTIzHl0YzFsP8MFG6LSVLREhwJcEYk01Dq3kr8NnxTpe+zilfal+Vit2xrVFYg09Oz89/4dtBYojRVWmal8tF8bINl0olGmIz4mrR+BKP6taVw/o5z95o/3bg50+xk9zi/Mi2B67S445v4VTZc3f8Iq3/p0O+8+S5Wd1RO9SZTF00mZF8lnNNqlkXfUD6ymn5LLdilU9Hngf+Mhdo+jaum+Rp25KHnzOP+dIWSeSFbB+x5yZv/d/8UHn+gczg5cTdj0SkyxSO1qSqtnrJX77IIjTnOLKtRq4OG3BsZM8FJJ7E5HyO1CoZfX+pHOMFolgvbzjI9LPmXm3zWBnP/h3//nHO9SHbLusInboBr7+dFfnmj/QmasitqnH4ZpSND3I9ywyyRiMXjsn9o1Idd4M3eCVf/yz/EuVcup5HXKML7dURrRiGjs+cdnsIcBYo8SsuG3dcibc7eH16u0sJtVPOWlxHS45s8VdsLN3mLsdKmR37YO3U/mI2UJ33Vw9FM5njXzyFnj7Qms46SkevR6WfO2L45Q+fsC643H+Fx0XIdgv99gV5DbkIGsdJDi7wHH178wHZZ8pnXepaPu2X9X/KG0LbBztyOSd5+q+ahyAkLOFPrD5/YizxEUH3GNLXGUrCm55/ZvPuIf/slmtPXUhxGGOBAelTUX871ATto08eoKQzWa568Mq71Y4FD0BouwxC60bBAKHGar0794Q7cE78jpRW7piHMWwGo45/h6Wl8qxiLxCBpdqiAt4838nelBRj4p9iaU86kK2qUqR2rFaOEvsxK3hZokQUL1o7NBhKo2g4kuFp4gLL1bDzwBJzY2sdJEnNOB3QlQTg4YN7vB4mxv6v/wcvfsBT49ms0Tvt2moQVrwnB1cIYMysLW8DZ42miJryfqw1u+nDo6pET06xhO1isi6nuI0Hx+u2eQ3i6OYcHHH/6j7Vj3OGrq2ZoeQZCg7M02RIs8i0/f+hABS7dP7F3kd86/u32s7ad9iE8vouXUv+UEjFHYU9yUz4pcwkpG5oNQ0syFiSa6U2xI0atc8uFi4bcdgFHJFXWnJOGEhy8d7mnr4vPHwCk78CEAxBID22x+L3/Xnsbde4V1Lxr6IdKpBM+n61M9f9QheTe3BLhR/1Hnco752hQSG5KbKpOvSKKU0O3qDNhbHQmaAt9ikZc+wXvXh3h+tyHipaSaqK0+1xjA+fKW9qtubV7kG97lq6/FhywJIJWhpLovvqvh6+xbrXjeCZkWvsKjSHpC+Sfuyefsv3tSTRcdiuag03/xGYmXAmY6+NjMW8caQfBjpA+vIxE+5qdiRdUXCMiN/caHs012Ysgnz3PM3uuPxQaseIgbSCbN/CqsaZWDgMKN9Ucd/5ihaSU6LQQXN401Yf3MZ8XPMwTv/vQvvtZW7l3hPNRrGs27B598vCGwdh0hZkfhZs2wPyQgJ9cjNaD9hpxtPxNU1kjjlcAeOV9KaGtdrsdkBe9N313CXoJ9FWd4J/Y56iLoVLStpz3G16fT820olqrUnF9YP9Vazo5FaCLLh23cTQfU/7v+Xjsa8ZpvasQoKWL1h0/v2j1yvtVjQa3E/RFH7/xlcVO42jC+wcCZuBtDysQoAXfeJRjPTwvJx9c+0P7S74uGh1rp++Gq1eqPP9Gm1CtSuiyCS37Z0TjXx2qCP/+KpKo4Y8f7sKp9iB+AV+WpWJ9X53R+pNMZzg154zjzNcRFuTbVy3c60ky7ShY/PGtT9Vgb0ZMnj5zQz8RQFSgp2YC2QjOTgwSlutBSKwyFdBL1MgbOs4luG2ync8NmQTu08pf6n33Xj+yxvkP9fss44p3Bv49rKoEYfHDMw/CeDucNfgKKPj31ms+rZ5dTdtY+0mxja9fq1XTe4BI9KyPB4TvaovXbrRuQzRFRa+HnzDf+Gi2cnh72mTZZ03d13cDhVJ2wfp0MtBbn4wa+NDDiDk6rvv7xm+u9EOJHjj00Fa9IRV4XHmIpN7d89cNjaXpiamnhmXP2qTzw9+H+XzxMRbxRURisGY1P1zwnBbKXqnPVH9WFRuo7Lm6uqCb2QP9Cs8h/81+roviNA95crEV/Zb/rY+PH/8pzOMFhdGysn+Om78V6b2oLn6b6OXb6NcjbEr3qIsL2PMY9e1/rAUXDNcNWUEA4KOPFQ1reL6e2qjKfqfMqQS5Ki8bi089XxaQHsCMep3/NYPZssPUaaJR7cSturXSmSeIgMxVCrNcdyadHG0tKfLV0HOXITJn42mUg59Ecr+adW0lKkRdAJUONxfO469nR/qpIK2UZY+GopO3yfbDCBrAzWeueyA67Ir0aEHaW+T2zaRWo734f0qsfh+FcsrRA7PpnY2c6RyHHyTNQLff0+ukRaywewR16RYhIO7nPdFwNcQnHNK+xt+A/X/gIak7BebmfsZ+TUnJAOFV3/OPz0xL/yuV+OmLzGhj9Eu86Mi/SDePLbKc//gsn3klE4k+3YvA4P9FHUOdYvYhuKl20okPL59S+1EbeLviszn1BsM4UGk40K0pUKVeb7qa0tyZl321Aeq6lRR9/KiLu3Q4uZcNoKN6e/Vhe1SNQpf4QWPLbHL1EG4A8GNVZfe0nOA0SrLeFG0usmDhXdD9D6bZq6bbMbj0v9W5pHHj4o8fJWldTVFYRPHCZ4t1xZvlUKpUOWNcRUers1TN/1QKELBAXv8Tu5WjXdkC3uxoH79OCB8NHRh/ZOVI/jI79MPSnAKj5l+PduQ77SRn/PIizgJBzk4zhZGoaoIW/4u0PPxd9hOZh0mlyWY0WwUNIwHhurnS/zIfp8tg78HxrOcbhB6rRnEwBCTc7pId3OFZjtPFVuD3rI440xUTTwv/Uh2vc/ot35X24//A+XtWujCaltU1l4Wvk885w9fVhU/70MPVPWoJYEZmZ1tzMjqzfGe3rBxevkAskJsr1EefyReSxNqaHG5m0parOgmdw+57nf34DY0QdELvtdjRgaxkN5TZfmpQcd9QOr5e+N+1VrYTy9RoP7xXhUzJ9HMDx2cLO++pxfrA0BjaSosUvKlIG8/BUd3+ORi3he8sn/p4G4G5RxTxcTnnC1TrD/e5eqH4ZwiU/0QnheGyp5xlsKWyLTRQ6e0b29f5ZcdEsuo0oSW9s8kJAnYz8Cf75H9ohtSa8Ogwq3tkzNn/574KSCNZqQKkfsBZ9mcE2kJF3irefseVj4mwl5EL3R93rMcrnpATnNz+IfBaM8JeP4Vyxgu4aO7BGMy3ID3+XfHDg8/lylKCxK4msnyIK2wQeHapZ5uGw6br8H//ofamm7jyt8yG63e2f3qTGfPjLmVw9W2gSVYvj6SNWrXi2MlR8/3z8Ck3ISXT5i9FH0R84Ee9nvvhpLepSqcNF4OD05/f98+/cnVr3Q/R1Fv0+9DS7plbFxEHbwPmdpzSqT13OTL1ogGvFLUZ++eiH4mVv4BOudeoJRyNk8j0tNU8cTJzMS1W6h70K4PkWcyJkvsbHt3Jb/BgX02iy6XJkoovQXssMvFv4yfRdJZsf//rxoZAAFUDqvz8cWqM0tA9E8UTKOWVapBxK4YRxAyTn1Ndt7fc8lvYc8+mnp2o6VjgUb3q14IEMFRx3OJ5KJ503n9Pmx0/IpK2TvDl+eAOHnjHssodS8ZV6aOH8lFLsncipGpuPfwVSpE/sMPWT88vnDeD6zfOXv9LxIm9tZRraM92dnlI/XPxd8sMTgsRSQWy7VOn6BJFPL6d4qtigkP1vvmHHA9eS8fuZgDIuhe4184jWC37DY3tu4j6I2n7hB5Gm3AWR6qF36JukxAK6HcIjqTW9SelgFXfYpoVA7bqsK5Z8DjZgU7SJnIcfRJLPzUHf0g6pNXMXScX1W2jbBy7jUYBLxZtIGcApcoNIGm2r4Zv40U9PLX7pLeRnfnxCqCnVPz9j3M4iQ+z+fPzDv6n56wZ4bIoT4ZqaW+StyVfA636Ikb+WLG6yb6kcc/WK/VlR0ndxWR2BXNsvTXyehuzbIAZKtkpi4TN/+YQrg0C66vf4h9ej730DSJVNT6PprvXfyFJLyI1yorZYvqrpm/gxIGUO6I9PUmyUd+RcpwAf4dpYY4OfezDy04ANL3fRjPfLKeZPvaF28OdXvNTLDhVdnVMrfCacfIVCVRZ/lgZx8kLcDIJBadybRn/5T8JqKf/zB0ztj1nMT98NLHgZSyGNww120jsYj4+L41zf9Ws4ewCSVm9pHI4rPrEhCyDczYjutPvKotAVAMnBybHvdXlOy69x17D6XtEwW61TuugpxcLyCQe11lVzeWUZnFZpj53zd+i5uJxXpnpbU8NXonR6R7cG4jxLsFWGqJrZO6pRGJQ7evvxr0j8K+CbUhPvjubempb5iz7GmBLGxqKnCcYS+iChpTtvp1lksL0Gcak1cTYJUU6LNirUNHQO8SbPvqjdEFrAbewiihluLLrwc/RO5sNPj6Lpqz51eH9BoT89P5fYYFDx9Snm73nHOSvvJrofEoHIob9DE33uHBDhRLB9EbDFBm7KyCPXie7wxUh5Yxge+Pe1Ro3qKYStEt4YqiYlpjGjozWIktKAtcMcL3y/mpPwKqBl/Mlf0MYVsxTFQeb9csPWCa7VPz46v5uCuv4e9fTM7yVC/rekhig8OAN/S1A1oZji4D5Us28VJhyjnRh/Fn0yPcYcAARvhy9zcLKqYd3LgATzja3muQ/HRzpdoZL5E+vRy7DY+/CooXxYDjbe2jP/5SM4ObcD/eE3E/e421C0u1PjEtkho59p0qRq1qh+XOUhj4wQgNvPK96F92vPv55lw0yu68W/iKqVcrBUqCmtaCBqbjVc5tqBd3s0aXDy1vnqKO0TTdibB/LTs/M2bhxIQZLwdlkfGL5qq8O8tyiNhHRfrb/mCpC1khL6qPVtPrO33fzTA5N2q/tp9RlL9NMfeCrGkK12B0kLgxXDhvBE+fRopicgrm6ocxmrlIvua0LPykqozczK4vh+HsB12hP1wbumvf9XBdq+XoXYKlUNDaLeRXD8YyOZtVkJ3w//GPz8KexCNqDhXQnDevGnYuXTbdLx/YIEJYmXYHdKGJpWe/sKi/7C/oJfpAS/AfmQPWgSlId8Yr5517i4zWK5qTZ8pEZ2hYW/x6sQu+H0EC4diHAg2A0ylnPG8+EfPuya+5pzPkx7zUxahXoXtwo5JFwGOVq1NKjbo0Ufqiyg5GDn+OaBmA+iu2vB9dJ48TtROBTX1x0qi9J/+nSJvyfyj1ZJ4Op9czYcixqdUKhRP3z14VBKhw3ad+Mt1t4HF/HEeuxV5yQZ9CH8PcNhSAUdhiYU/tMj7OPqcIphWU8KeTiLYdPB9/gNSbesb5F3c0jgkuEvEadiF679r73/4VO83oXl0njIcX56i/7WExgt+w5ExdHjuQ4+Kfmy+qiNrRrEmgePfBKjK1PDHUd0K8rHkNPgfkbmn26Sv6nB1gzFVvr9Po4yPUeU7U0TLCydYn7anfOJZcj8Fw93r9iks7K5NRC9oylOsz+cDgNkMsxll9Ld0Zys2fHMDvXGiRB10YfT17CecNp1Ct5qX5pynMrLkdO9Th++3ob9b73AY12ErdB5h3N5GCO0+N3YET4Dp8MzIGjXx92/9YnZMnTyz48LsFGH/bsTEvTzayyv9tFE100EJ5d9aMSa0JKLKMjQKRZC7EHVhrPvvQKA2nxifDHLkLEz3cCJHcp4CoiL1ng1S+juKCvswPavn7YKzkD+29rxJ7SkfvZ7JsHhqcf4eC3efVvqzhPUk2IRCpsMsSgWhB8eYfOIr/yfflj8AWoengvvPLENyj2SEYFdN1VTxrcWDqfXiYbCxed88F7Nz7+LmWj3ITvuk+Knp/7lh1k2L2eUr8uObnemnhOcxya4htsRVYzfP/4Ya8FdfFOcY49zcyzOsPhfy3qDY83iUVfRt3jdiPy+tmiK1Cj7x497sbyg8b0Xmt/6AP7h7fR4VWfI1k6Aw4+9sWgxXurf+OEff56j4e+ovbJ5xlstu6L/+G8WYbzNe4LmRD3EsMsMh0jzSPrpjU4yRF8+ke8usxc/4atr1vrhY1zr73Q4ytcBLGmpSgXrOuVO8IpAXE+ESGze5sOK3x2YKfFjKvQ7NEB1O2/kw/FBPkIkhuTs3Ad18QP/Pf+Ev2MA25fsLv7OPZ3OwxFQRtX3zw/I51KwTSTKt2LRM1rK3+ktULP60ZChqeeQRdBtwHi8Xfx39naLP2aZ8PA7A7vaedmysTvISDYporE2TimJLOeK0ti8Y3vxv+YfvhPT59Rsmm9KSze2VRCCHeFBUVjj8VSa2v9nS4H8v7cUzElhxRzWE6fSarNRVPdxodGE254ZRNRhkBKJ7rrrk/f4shHQI2xeVPe+bz6vuCDBSx5DGpuF1I/b0O3gvpmf1Jm9wppJ/8jQPCqAre3nlbP1J3CQKRZbfK82LV/So6wdvnqKw0vJLJpFlxYOL/6igVeU+Xezc2PIU3rG9nhzUReNpQl3qbDp3p/MUJJw91QLw0c4to4BmrIsC2BaDxGNhYuUzu+mbOH41VTyeUqAeBs5JajfwozX1s7t58MnIfB3v9+oHZuOxTeq18IfTlbY3qMvmtuikCB0ohd1teOVM5u3NtRha1NXTwQ+0XhIQL7zdazd3aKa4/HMQCqmDIc9E1Iib5RAjRt5Q/Xy0SynKqQGisJ0qL++Mz4Nm/EMxFtJ5HNDSjj2yTPTPPd+JxvR/YSkKRobvml7w97X1tEgt0yC5+mcUe9zU0N6GcMIkqZbY0MQLCRZXTShrSweY82zjznvuXSGKjw/qWEZtiW9d74Nx87GZErTezg16AIQ9/svjeHqhoPdoASIfB7odeNV4fQtmwZqLD6JMr1xPoNIZTg8RT+WQt/M2XWyCqDbm4hjz5DDab5sjnANSwFvg6jnbP7ejoDsbY29ghuIxatwD+Ehlegynpx6f5cChYezj5OgTCp2NVgD03S7xsQspGqyD3YEqXEmRPp2IyLX/T5AcZ986XZytum834QllH838/c5Z973mkDWThQXl6W3q3D5ewIRDi9sbJIm57hfektflIb605vm/LnqCORXIaDeY9im3B5WOjqx5Iv93Smt+P6jxdAm9Qsb8v3S8718ZWi/FKVXcrm3WH4vzjA53Z5op5ttTd/ZDmAZPxrs9b+QX/LCAzv3KxxN2Kso3dgePBIiYv3GVnzZZndG/qNbx5vl+jP39wxe7QFh9xjYOVMLaQ+bok5xfDoLfc+KZ4NC9FZwGIfffIpPOoH90aex2LycfNhW3wnexbsncI9MixvvlMHLT1rsPqUCMfcqDb/nJfIp0/maxZYO35OoEIY8v2entozFpeQv9S6bM3q5tZJAhHcJtsRJStkqF0y0nuVb/FL/0p51+GlrB5PE1I3rfc6336qEbndrqD7ApmdqAQnsb9dXXHbrrmdV1Z2hl6w9XuZDOEeZfkfuy7tgg402msifxuCrW3bMivfF4pLrEFW3d26s2ENb8aga7/BMF5toRfx8XnraI1nzXZyoMc95rOMj8Oob43195xVHr8Nem9+iS00663zqxO8A7bQqiPZ9Bv1kjvdE7W80wNsSYc7DRhBA70814dcqTCfCzDNS3/KXGqwX+68/JE9oUPSguhgHy/3FBP7MDca7YzVyKqwzB1jXFmQ1Oe+c+48DQZc1elPn8MzSmVyNBv5eYknyZ0x5dwqpA5/g7OLb/CemrDrYMnr1WkbDVJt6CsL+rI3R7rvcH0XsdpqvkFTGnUyt/amm930TwO35dqmj5Xo+40Es4DM6nBpe8+7ZcDKOCIvWHw5VwUn5cXvLkD3fvljXdut+8u38CvdJT6nfukshYjqYCK3EDVmjOk3ZpRavcI/hSI2TdUKTdNdt7fyZjuQuXLKUvyrUodCYJqIuvfZm7xUXEMb+kVotPyF+EzclYg97hw3B3lWzZ+QeUDG/0d3fd/3v/lW6q3ys07WRr6tinYGqnEZy221MvhrjVQniXOQ4UpETUntYLaf0pEf8XOrRf1CyJmjrkTzu7o+257/vSxcPUds/rDjhf+Ee2MeysGMUKB9fZbKBZ8oQQecWofkbvBmIoXegRvBmiLsmV+FPmip6r3oTzevds0SHI05ILfnvvutoekbKK8xoaDdtOJRrM0bB1nsTUa2uIZfOGoPLLbHoNun2aDo7IAPfewHdKn3T0198vTJpTbTKYJwW2UNG6+hIYz6nprU2yyCBS2znNLv/PdB0+As61LcPg6zDDeuJOJwd2JV+heN3N+WUOl8GqazmhB73n5xhq92gyWn3dDemdjUx+RrA7dz94V0yLYVvm2V3qFghbCfqOiTBnx5p6fkVYmMaklQm018L+kl+xoqpGuE86HMCTJHseJV0EyJ/cdpC7ek9PoftkJPNDDJiD2cXd9LhG85Arjb02+lAd5tuTMemFGUQu12LbffYpiNXuQcFrQIiM/D67/ouJxC9qzPpU+ua8ps4PYHJcY+dh9ij+epFR5g1t/69n5Bp9e0Jl0OskMmwZj7Or04CZ6+uaKw9BIs99pqDTqlyoU52OYeTdT4MqJRCgnUzINb8l41nAGoLsbLs0aDhmREUZ0GE42KLrVHfoAYtfCZe8Yigrn7uVSD284zzbnTz2ZrFPWyyl48dZrJ8jndRoHJ1o9NQ/pNDmjt5A0mX7PHudKutwQXmgH8iJo42+i0drE2XwXQ5ArbIWwwJMT7FD+9jqe+fKTGwNUBgVBFBL88JF/xKIKBqTlCj7vLeuk8MVkliUntbIjTsvCpA8YNcsbEdX/x714QCnfTrAbsrNlhzOmoDImejoOYr8XNZ1bwNHE9pTCafFHxQhLnTVPys6EHpm2o+fK4ESog21DhpsTX8+MEY4W+8MXwJERU+DUTfYCYCGo8Vq1aX+4+fUL3bXxE9lfs72ptdj7fd496Tw8sTQHjFa+zsG8Gi+vVlanc4KzQIctzPanMq4WMeNbw1XjpvkT8U6DujM5lPWhySx2wMsDpw5zdfefd4XFuU29WE3eQU5Dz87BPNGkedOgy8ao7ex0hb8iGOtvkZTT3sI22JZxqTQ55PPJFM7UxpSMTtllkMKUcHdYarx5/7iub9UG4zpEwZECbhxppZ1CXKb74FraDnvLHHZWNrBmQ0HxLn71pRQVqX4Q+/UvlZGAGss/RN+DrBKXsFia0t8UyI69to9Wi1DaRb3cWW25CeVrdzq9rl+Yhj17f5XAowAIkeC14KS6tkhCQ0an/vWNZyPV011Z8H7nQ0aOyhKB8+G+8OQXbcEfldjynPor8OPm/rG++Pxsuac1uVUVOsMd094jP/h78Gfwk4+HPHfMjKeUCOmNhE2L/0XOqDrETicahxnDx3PblO4R0t+Zt661caNk3ROCDU8j5WWfXq5fG9rZGFTxO2u9oO5fORB5qdxoTGHAw++XWrQ3t9HXFsFllFnoXvgf7RPXwcAyOdV+XLAfNQfsj67P+hdcPkAKLjfUuxa4t59+Nzo3UvYjG57RY+37WgmI6Bvev2zmePrZ5qOy0n8NH2m3J75w+wkrwjvhfiOx26x82Bz9/zjX3p/M1Z7KhX2MeRQk+4j3rKIFchn/d7bMaHoZo3SLn+uz9cwNtiZshikAqWxbJ+snM+i+8zdPSOsX+lMWcZm3RQLvE95p3U5bNsZgX89JN1kHOLFX4uAVppG8K2LaQ8YR9QzT8UE3nfVvlPPylynnC6W/I/X/QVxJm1ptY6ofl3iT+gbarTMOsMax50JQFbefJ4NV7dfuiLsAbkvQ54e7wFaCJ6a0KxP1XU6e5Wz7bGcIbytm7jesEX9ia3AFbf6+Nf/mCOkMhwMId4t3G0Jf+G3wZZphjE/LTeVZKydwuITGnA97UK/Xj9rFtIQkWnxv3bo0HCXQnWVJoYq5Vqde/4JWvulBkUp6eqYtHY6egwBTMphoJUI/rb7FG337cxkDzn3/t1bmF1jdY0Kd6XcN50QQZ7eEixZNSvcMiklqHra23TeK1CNT58s9Z2o+zEYgHbcOjE14A4k2UctIBCrngRQM6clmwyZ65G6l1LwPvphHXlqvUsnFCJcq2TaVjubhYLxYujgi7ZeE+03pqH59CgJzPkGD5zlbOoO5do488Jtpf8z1/sL4IyONY02hkD6uXnyQS+O3j4pw/p+rYrlXRrujjUeRwOKlpOiTEvxMfQKKq5t81JI9RXqLG7y9Xs2kOLlvcVd/jw5iSQtjqYSB7wdt69epIPM2i/ePxzlYNF77Aj//j6Zp+equ+KCzLMG+bR5PF88fmdoRot44N1Yyms7tzjGP0dLyl1213HyWHZgib5WkrDl9eELKuTAm7b1Z5a5P2wuN4LE5JXUYKj7PPkvLHfeyjsOcOL/kej0waT2m2fc4y68ZN+pxqydU2yKX5/P7uebKweIA9ZGZ9H+OPsmygNlH8PkyhH2+JSZo4OKPU0UuNgdz27S2kEVxycCArONOdB95pg/yelRP3Kc84XfITplTK8cxLCR0Gx5Z+eItrfd90TcDkBp84VIs17A/HaO9uqizaYPjb1gBb/wlR/+G/pY2hNl9XSMC6++tSUsGP948u/+Rdfoj6dZqXv0MI3iXoQhXwKkklAf+8aYcPQ534mCmx+fJYe8pMRSvJ6f9WceMvpj1/Nx9Um+d0vkZv+W81ZV8dQRPI9Xt18r2+/JtrDyZYcfFvZSv5ffEOj4t32vOnnlbQP4DAeKF34Skjm65r9499pJ3Xpa5MPTE39Q4X91ePd/9NbX8+J6e7uG4jD8DpqrasndOfZx3SuUB+jnNktPu/TdcUBNxFshcijntTifv75K915d8P4Jh2t2XGFAETcOGQMth7i81/21Oa79KW4asuedLh1QLRQRbjFs17Oha8JxFtLZM6nNqRTZdXQP/N1zChF1Uiufg1vu5VpWLlpSnjJMgiHZ0P1dXu0nuirOPCi9YiDjXPj1EyHAeWn40xUY6orbqxNGfJTNtPAXOt8pQcdQXjtFP/0+iDdPRvSKjVj5n4Jn0JtyjSfyA9qpjutH2r+OKNlvhHPCj45sd/mE/QG8Zgp7toaLlafwVi+aLyBuFpOaZdL30ndIa3outbKrR8CetPrgI1HVVo8xVWADkFvUf3B27TVzU38j+8agj32nYuMDD2a45ku+JqO343QKbt7eyezoX7Qj38sVR443vFtz/kFPZlWn7ZCLKujlo8DDQL04/8ek72Qt+qGgDZUL7LazFM+Jf7rDNh/1TgMk3dFhnY6w+YsqBQPjos4K9oaGj8L8dZN23BovuUGZXUm4HGJL/bzz/jZFrG3KreIdqdrjTB67vCVvYp8do75oKrKYcQ2LVbWcK+LjZoF+YPafyvdmjSpl0C5dZgIysvKZ1XSHFBuL5Xa8/7FRy3gAJUj0Hg9i0k45aQjcPvLHzhY50k1Tuk2UW0NamoKyj0dwqcWo/NNf1D/Xracd++NB+afLVOH+qRqCQuu6E9iFdmvvu1/ftn9r7ewpc0fa9p5fQDzqzpiV9j/hT9+jlCeHfGOhat+cOJX/PO7cEAmt2KZvZPBF3QXJwKyqpUv+PXPb4wFbvY9N9OBgH6Snhj/VSeLU+c7gWvO/qKntxXL2MYEYOQcL/wwnF7X9gzX7yam2fK+uC3UDlzHS0IxnBxEL3kRwH7axnQ3XEjObo55BKU9O/QekSZl6FJO//iv6yvvdBm/5sf3aNzUTc9KV28Qi9KI+pa4CTkyXgB1R09kmHBb0as/Oiia3Q+Bw7BGXHJbHXUVH8im4C/Ot/kWwMmeMZkHZZMSh2oJCFf7QrfRxu/lKGegmfWA8UPcd+lMjxsbPU7ehE3S1dX4XnkRXF13h3eVwRA3jnIEmpiV9ELV2prL6eFtniVU1JUHM6XX5hktXf0e1GJnxRp6JG9QGx4IEWZE80VPCOiXL/j2Y+Ts+1zJEKxNhZrbtsiHKh3spaHnQLc336uGv3x/h1ekGtg6yMjq38ciQ9eN9sKhtu4s/qp4p60/dkP6RZ9xoRVKtC67FbZLYW/9HwAAAP//pF3LurKwDn0gBwICDUNuIgK2Kog6A0QEVOTSAn3687H/MzyzM99boE2TtVbShO3hJoDb+h750/v68GMF6I+/5Ynz6kbvLK9QNRwFFuwyP6Q7tI+R1uxGRoLuY01xbQRo9PyImV45d706/N2yfof0ZeinTrr6zFYn0WPEVHYbf1Iv+xlOrdnTlfw9+PK8+67UPz10Z6+JL61etg73hmnEvn6/f/s/o2K2JMoLN+BMS9Qj9IMXkwCWEkPj8Tpr5b0IcHFOD35/6mkAn/ULES9IHla/63wdkqT/kMioDV/aoX2E2mrqCdm0cTjIrRmp2uZ0I/ggmtUSDwL0d77ybL1NqT7/BFUzpo5sn67IWRpNHowXVuFk0VNoXdxU1Hm7iVnKarBmYR15UL36D3nIGx5Oq12bw+aqrph3n28hv/JPALJhbtlOuRX+gE7jGXhhiMSnxSvldWMlcKbUWPyFwYXz/neDhQ/S17Myrer62niwtpSKWePdR5NpfRKwfiEhpI2KdFq+B7bZ4Uk3WqyiSYM8Qouez7IhtlH/NG4OULu84Z4+DGuESC5BlD87DI9zx3mktgUEwqAT02Fyx/7yAZAlZyrMF5nPntm2sPgPdnipUtf86fsBIec/fcGnu0SgkN2SAdPUlyueWZ4D1TgpmD/TLOXu6ZRpf3qBhbefkOYR/iyDIR22c+efP+8/7ohU356JJ1z21oglMJHpxGty6O845bvKLdBcfs9YWfQ4QTkWI9iBc2T7tf1BY4pzG7ZfTslffmSkVS0ADXud/kz15S+DcCLtMuQ23QRvy5JErzgrh11h0G7bPf0hramLPqeTsfBBGW32cJS05vx5MdvJzhY3w5pq12pnEPsRuHzwfoau3bbTwA7BKqg2Vj6OIJh6jqH5Cd3Ld4UEvnBMqXaQTTQveona/wqN5U1M/eFgnm5a/fRdYvWfE5rTFelR/Mkkouu+zptU04//4mdqfxqLX1wq/MMjW+c+caa7ygqaqRNI8Dwp/kxfYCPL1DwqXL+7dPxNgasOO/lA4i0RU359rV3Ev+fvf/VcAuIM+b0/EPtILTTbb7MEZO9q4iHDqUZ1MD8oVvxy4WvInzw1nrXsW1+IZ4qoGo/HIAGzOOaYbt1zyB1574BpDh8WhOoYvposkkCFtUOV5+9tcT156VDY3xCvDlxL6XK+YaOPL0LG1Q2N4VaqAVPZJJkdG2j64mMNZk0JM2Crp8zkSgxU1bfMmyuj4wsfRn/ruRXlvpuWeIUUvrqwYI/PS4aqqmHxv/gTJ161zKLvkZt/ELPM/ha+SfrqNae+K8TvhKpb7E2HQGA6Xpc0SKdWfHsIvt6e7Pv5Es52vAyGnMye+fv87kuVw45AvwebOErjpPRC7rJqyoeQih+65+Pon2dIfiomeDIUa3o2oqrhQLkTNyge3ci528JlyGx2vqoHND4kH4DddzdGIiLwSffKHlbCgGgW7KTul0qP4C++/+nP6W8MD2cwjpszI4kBFl/4KazfckC295hWPy/pcliHO5+OdR5W0qJH/r0PrrZfI9wc9KaB57vUmXtKQi6sTlsKlq9H7DT2czi+FmWtDmuVyoOZdtMq1nX0Zree7G+jUfXoZprAs3Ik2DObqj+tHmewQG3Y4r/TqXwaN9CD84lYQrDlHHJrRIv+wAywUmswvnYBpsk+hBxz3Ze0GTmgOPcHWfAs4uczNH/2RBzbVRb/oM+arIqY4Hvgh+/slTVgi0qyxDvPF4srltAkjy6W4OX5kvAsBG2rdye8WvJDQ/stVPjTqz+ZYoZzHOgJFOkwsr2pvqzpu1YBeV3WkuA3HvmwxHsg9Sn98+/+cCN6C+033RLCgimd1hdK0X6+1H98tOKjdTzCNjq2zFknQ1VfUy2BbZWfiSmb+sLfzRjOn2bD9rJfhazjcEO1oq7/4gtiozA3MJHOwOP79kPTdT5kMCuSTTfDzvBF72eY2qRta2It+ej+fTBsgK+7JzfbvFXzs6xdOMY+I8GMRT4/y94Dra57ckCjhKbj771SzZ/V4XVdhMsNl20JZ41HzPoN2OJ0j85wO75qqi7647jky7QF3xJ9ZOeqlzbHG3zM3Z1uwtypNnZ+zdCZvnv8DXOn6z6hJ0GYuTXZNsWUzn/6+eKPqTYGbsqblYeBd/2NuY72CnkcqrKqjnXBbiHWw8l+HHXYPgWZ2F2nh/MJ+hIm8jNoseSr5u9uKGGeRpWYYqT5s3SrC8hWdCaHdTWiKbbgA6mOo0XvSP3p9MkyFdxZYXZb135n8in6y1/j+r0J0fTnn5/JuGfnCyq6Nu2VlULWxonS46tIudxVzv9VUrD53yUFPYkdivqV6bMWdjrUcwVsG9otmn7vMtC887NiuLgPiK1WKIGdn7Xs+F69qhFvsx7mQnGYVc41Z03ftHDTpQGLod1yHihXgPh+XBF9uBz9EeGLCSIzE9qkJOuGo/D9AL1MOdP1gHG2fys2lLe1xvaXKapqbZlgf71LT+IizwjndmNImhd9TOZmbOWPPb0BKsT1G3NXv6B5XZEbzMZ1oNOYi3zuezGD56vIyXYWeDedBxPD4WrUZB+3jf8TNvNR3V4zjx31gHD+KPwChLtSkS2tp47HBrRq9lolVC6nr9WSGNfw8rWWuJLR8fF7F0vktw+Z6Q0tQ6a9dA8NclSTx+Mb8kk3cwwho2sqIu1nzY9AySDFK4M57uMQUgltdailnbe8j+tP4mWoASnem9lqd+wmaRhU5LHaxptOrsK+N49LVZe+wmoPDZp3/roA4WpuiZM7n+XabgYoWRpnTA3mnCb2mMGlk2xiVQWE3wnLNnyMhpLAf4tWX2tCA6poSXQ8WOtq+J3aBG3ws2Y7xzl140ouKaQM9izCqYUmI8lLuHvhRGf9i62xFywVhbejT8d866fTJkQeqPy7IzvkutbAHpWqXQrBpBv/c0ZzLS2Q06wj9kD7qpusW20rgpkxkl7CddhLLs6g7rY7vHKvz3CuPGqr4l2/ENdiFzS/ojnXPkMjs+CzSLzn7tPD+nY0ifM48HDIhkCFQ/GRCdH3cTeYTkzRi9kntptlx+dnQW9QYNYPijTxhHjTFw1cJGHHQv/34+NobGTwb4ZBDs3RQ9QUjo6Wi2WI4fFWu3F/Ckt4CKsZb9qlSn6TKLV61U8BRtXbCzfbx+ho+1hZ03V6ntKe3w4jSBtzXLoetNWM5fT4JxmT3bKfU5deJPDUzw4rnWWG9TXsz2hjmpwYKWUd3++vETzIPWSOJpFqlPWXrSmit6Xqo6/9MdGUFRwFeiYH/0tD3si4UI8HauOi7BV/cp05BkHI13gTMLebG76PYB31Atsd1l8+b+vjCEFinegyR53/1rmJ1zzOa3YYxt6io3a7oa4nTzqOWVZNHxTlUBe7LV2Fyr4TuvaYaYMc12yrPdpuPPNShaTbJMwIRSX8bFufApX4ZxGTasS7aJcox8ID4ha3OZ0RaQq0Cvqcuf56g7piWOfw9Isb2yG3sUbqnGJI/Rsnu6VKlNK1JyHrOm2If7xslxIJOwEpeEQkefS231eFkWi8z34keGDMZ4cGAcxRFrFTmB+6+dxnGXjD4010KX93vIAgguX8EutdvqtJeXw+8C6aDzMW/8F/NaZq2/1W9GNF12omdZqBJD+fWL1kpcUlczprobkMakmgSlmmrM5o7e8L5m8vli/a0jVCG2pqbHlexbuI3JBsfiJiz3MS0nrteiCSh0FMj2rWrFy3Klz4UaGiic7VP/t8dGlODJTf0vEQvj7ol4xbYuT5GE6BinJwBzOkG3E9d2N4H11t3VKF4c9RRdTsJE/1X/UF87AsrLFrbxkcmOcSXQ8I4h8aOtrx1u+Ivu1P1mSUY67uAnSnm/hzqaYtflKQhbomu4MTpXMsXDJN76c98cRKqgbXmSOYiusbi7dDUU37XG2AReqROQc79fnjJDXoGPbev+fVbuccYaPXNjtvMeKT+HsnaBiiFzEfX8mfRmtyITjUT6z6nsRnvzwkKI3gv/5kqu4FVXO1ODI9E3urP7L2hq56GDCdYqt6+xE9wufacuZ2N4FzyVSOsPPzluBDIaCvLNcCii7nnP6CZu1PkvGewTL4jDW3KP05scdcO7N9zuJznaXTR3wVwF/Zl2zFOgpZYnsUBnLYMOPwLbpRPDY3VByKhnmXrPSn68GvlYvAGua9kzzlzRx+tFnN79g+lGM4T4XUgid+PJytcMw5XV0ceBrrLW0+ZB1O0WT+W292vL09qxW2p1zTJHrH2m03V/yF7/NGFQ2JuJpBu9/1I8UoIRvCzLFg/ixs7AKVwyskB02x0/HykFvA569LjMsySIBUQ//nf7EUCqgblvXWfL8mZKd/xnCy7f68ZNkCRsJ76lO6SBZXLGXEF9+MM1BVGdiVU3IY7no4rHMvACpNH6JzavNZu6crZQpljuGdH9GY/mZP23ePC3E/5PkXH11UcGfHvKqa/HF/SkvYvfIRr0V/sMZmEgXopTha4qvP53udeyhKjuk//NHa8rHWpu7yZc7N1nhvpMERmSxSqWid85CfQpqgZb2Za8td957X10aN8RlhKX/M1Sj3r0Cbrrnxz9+NZcfOqvVautJoqmlR7dtI8OjuObGEuQ2/5XYtoWyGkuTaXUSDj3mk/chsEieNPxatR36GPCp95nd50fWzvs2BUK8j+rJ/c7vZS0gLPI3saFNbHGF1BD96cqIfILR+9fTTIVZPDl0lSp++jXIZLBR7MTuIO7Wij0DJUfaCBL9uW1T1ILQYLevNjEQEqzuKyIE/f7LtNaeab3Nnqn1IBnJA+6qahnt1A50SmTnhg6BNRo83rb0fdksjvRNiZ9ctke5zg1mJgqs/e/3DZ+xAdxv0LtgZkFJaORbeqK3a2kYeCEK2JtbjXFXdxz3I6oxzTGHxt/x3KwR4S21HsLjnaDZV34TL9UjJ01Su/usosA+ceS8y51xnYUttUfpnX3vqYfT+GCRHTfyLyTIFggvCKgEUisOWkVVUVpO9Uo5Q4SoltjZrfnfwhwR+Bp6pxJkejjGqZC29g02SSgXE/IsywkU+S8wUd8Cp+DjNGu14xYx501ajaZwKlBv3Gr/0t4CozaQGgHgtFaSUVrPueTeoNo2Lh2C0/WFk0xHkxHCJffDtjsWwb5F15RssHqM2XOzpqN6LcEOngV6suV67LhRCIbH94m/mj6VTiMVwj+dhpGGf664N9+K0IfuxsriUqb2OjiY1yUG7Zv/Oq+rJzwbLnfGzJr/kHupJ5FD+Vqb0H94uN/YXr7N55tMo1gFKCvFG1dESw1aAdY52kukwhy6NrQ/FGeAc0C85nFew3NpoEnTbCCrbdo+3zxNRnP/hAzPZXMLR+N09UC51T+X4ZFn9+wcSHKW9QWz3niD+h9fPm7NFv5mso8367bZaflmpeIxARJ+j1/RIo1+B7HpJ89/CZj4D1r0TsWjx9Gflncywi/OBjks8nkY2naHk1R2PIjwQR9FA0TjLHcOdaVecxZf8D+/RsctNzp7HAMPn2nCC3wqzmJKrNmRsoxIjzIeqF+TC1JLo9sGKlVjpJtdWM6QiEOaPmRq2VnE7I8e4SGTP29HqgyGKIA/uH+Z84obTQ9KY8OTaBatS1loMb+cMPkMrU3XZ9tnAngxGGTfEdHLkj/Zm64B+iS7snp5EPsbDVUd6zG22l5KRTx68ZQhun5JZ3X3u5nX3iqCKXi+qzYpRzfxpY9gFS5FCZ9bdaO6C/F88wM7eSecPcyV4MWeZ8Vf3IZfcPgDDiIt//mf8nW8uugmnnu31tkR/+E7b9flM9reXGE43xaIQ6M8VMcad5wvXgxKDFV9d/HkceDoG6BegMqh8sk2jno8SDRvo9VEisfgZuhE1ZAQSej88NtRMR8kMCzhHfoafISr5b7WBFRzIh1FpWb951G6JikKvIKT8PVGjWz6AdvV1YiNE0BiLI8D9egtxzaPS56o3n8GRlIjsL5PQsepzdmBfPEPmCINq0VOys4Gdp4kc/GNZjc4+KdDp8BbJbnS33bz3tjbYUmYSr8u+4YK3EqioI7Ddgn83Yjw5yJFQtMRP3E3ZvBHQnz8O8hz7NJenDxRhQZmxGgvOb1vNVeP7ecXMvPh1s3WVYvjnL+mehx/llACscU/JjpOJU7e/j6h8LV3nupuApul7jcGPP2fy9/ff+80stFG4Jngd71M+3XbHBjZ9jQmu9jT8JFJXKKYaa8TnQcLZUPwEBPo7IXtvmngbqFsK/utzIQ5nRThNqZKDFOsNi/Su6AZH6FX05rsH2R9PYTqP2jH5Z4/Rzf+G3N60Evz9/p//7f/wwUG2eoL5bw7H9bGzoRbalDigZf6ke6MHbqmfyAXZYsdHaFv4kdEkD0mn/mDlVx0WPkZRuP2Eo2r/aiQWTw+v+PlT9Wk6nJEVX1xmHK9GKKorXdJySTPJAetWyP2f8kGCoets73i1v+DvGgXEwMy+laE/DaG8dOGLGHmko1ONm6hRIb4KhAT4IqKhZY8WrXjf469O7G4K7+YNRFV/sHO/UdF4IdUINIoZ1cKiriajqRKou92OkfT38OfwljV/+IPZ259qjfx8FsBq1RxL40P2h1PwBWQxNcU8/vX/7AUg7A2WzFxEXEeEottLEBd94hVOvVE56MqkmpmLfx/oeqzBLc0TMfDl5s/i4zTCV+wwFlaRjcbj/hGof/YSbKnrT/l2e5TDiGpUVfveZx7rSzgw12XHItfT1rZWpWrH6g8rqPqkI8p+KoTKMWQR7w58XPwdJPdbRSxUtryt17qHlu8heifianzcVQEyJcXEQ+CnovJxS8C9m7KdfPtW/RAEZ1CDj8L2RdJ1XBezEUrdSeiqnMtu6nexCZL8eDJy8M1UGI2N+k8feA7nGI3k2tpgDHGLZ2fH0p7+1gW84vXArLwsOX9e1h7qX/OKrpzi/If/ChT1w5mY5ej/6TMBEn3EsTKc0nBa7Bn+7Ek5vOZq3B1CE879UWcZrDYdvRaXBlTf84gdorfP2vHlgiubMbP4L6r4NwmP8OvmA8PmRkMD6+QZQKB7XNW/s8X8tO8RYd8E07H8+Gw4RwBL/GJGtTpVkl9uEziUxhfz2x5b9DZXOhTtusRmOXbdPLqrCBoJMwziMmjDVVIXHA/tWTDQGc3r7hej4UI0vInJD/20p9Ci1dB/mIn2W8RluZfAv1nGH78LeTFsckgumwudsb6tJkaeJpJfDw1rF/3jT4eDLqP60B6oMhpg1d6moGgqc5vOblGnCz46ozP24z//lzJ2LAtkhNOVvD7XT8cT26QQdceKZLfvy2dlf9BhUlSZ+KtAq+jRayhg/j6y3SWOwwm34KJisA2WbnvMKRhpAwfs6cx2ykM3H6VC0va6ov7juy3tfFM+kT4iQShu/vbD+4u/JFrw49hsxV6hOPoxO0Rba/64vAUvNid2iI/vsE+sHuB46G06LXyXucqoAmPymVaLPY/v2pChIfhFnHKIKr7fP2NIcFIQL+6NVLD8ANBLdK649bjv80g2PE1RXZOYs2LxJV6U8BffrPgXVFL4+RXwlncJ/uZPH/Fe+LUw8Twgu5Id+BhNi//xppTpY5Z1o5JnEUix2RDdEz8df5X3GmVCesKDuEsqntFjAr0/y3S9PffWj13lFSx87U/fROx3KyQtiocDy99lFf79Pyx4nJjb0ao2YjuqaJYvKoUYB/70EX8lfOOdyPahESJ+yvSlZB5VLKjfWlpV5+QME88CysV97M9dAyvoe65TYTQVzpbvB0V0t1gOJgPRPz612+QiW/xBt9mFVa8t+I3skZFXIz8nAtjCtaJSMJCUB3zQVYHmChasuUc/kcwNmnGGWTw6fTgOReCgXCxCsqucezXH7iNCR6E/Y+nt/KpxVpMMfaLdm0L1tapB92RXXfRmss3Te8i/TeP9wzcPjyZosQ8Ksv/Y0I8nlT593K4x0IIvJQT5x6Jd5ZnIMa4Sc9OpTnu5/2FQus/E9sMpTf/wkGrfLjdipUc1HV4HfEZtOafkoB8La1jKHODHycLfhhNn1SdxYHuQJaosJQ1U1UIHXYJzx3xPrMPRns4u3K9JyLaND4jCEI5w6GqVeRZ3U2GKDmd4D7sr8SzepJ8/Ped+E01a0DdJVYevPTQeLgEz5fs2lUJvN4J1V2Pi/uH5U/BdQX4vXHbRBCnszZ2dwUrd32i37SmaCnGrwqJXsD1OHGuad1PzpxfTjfN4hKMgNzrskG6RI32zdDaFmw2heXYw6O9zxc8KqmGWryqd/PcmHC6lKMBiX+ysf7E/yR3P4A9fBJeL3PFZHYN//kysaopYqdsqepP2wfBYfqx5+R7Ve5kCsRZ7m16/wgTP1ykzbt8qnBtuRFrVN1uWuEkc0nJ+03/6ndHgEG3+9GeR6Qmd8fUU9qvVo0EHw3gyoqXMYt+oiVE8SBFzx5fXTfk6OcM6PG7J1YpH/g/PrF/+h+399p1OgeiWaO6Qy3S/yq3R5Q0GrmdPKo1OEI5bcsjRtswP5CBdFT6vr68CFfd18qdXh9Om1HUkH+oYCzYqq/H+uP7TR8hB/3ZoDP3qDAPlR1wPQsHH7eMcA9bdEzMvuhtuFj0GTFnF+E3rUze9fo0OoPQOiXGUhDQZ5Q88/fJGvEPVoVmXvALqQ3Mge1u1EeuFXwOLfkX8huoWv0amqbnhU6eju3UsieRFiQSsFGx/eM3dP3zxxT8drwqz9CfrIwM873eFkEtap/O2tXrohNj+i6eVYB03Klr0Vrb/nOSK3baipy7nnfnL3TLhfq1nUAwjZvqSz5kcOq3QbpOJZCfFq3QAc3+Dv+cf0z4OReWjl9qf/mVqemhx/6LM//SrtTV71fh4vkfw2MdmhnwNfL6O+ag9N0VF9Iu4T2dpfwfYXZWMHfzv0kXZr44QFccXO7l5Z3GTtxGs9X2OFR7W4UhlOwFHzN94Q5t6Gbx8OkJbjinzFn5PESkKtML+gTjIoWgI9m6ChEM+Ed2xMt5Hk5yrOHbjP/7gz45pO2BQfif4cvetHm/IDAv/Y+dkc0n/xYs0TiSih9ummq/BQ0Cjrz5od1xKfusRndGemRVVxqr649MrqPtKojftliy9TdoeoHAXPlpaKbv1Xgy/Q1fhuVMMa87HZ4P2ov7DPFFoN5rcruGPH7rxqbIWfTqHP/19GyHZH7T3t0ZyYWAqvM2rP8vrbYk20aPFr2zzTtsuEj2wdbWm3QFGNC98GypWVWy/lLBTudv2QAm/kUC+7pFY/3YOsmdVoGMm9j4/ZW4Mr0u5ImT72/DBlp4xhPG+p6MmRr5IN3kDi35MjOH6S2debzwg7ffBcDmbFd+FHQVzUH2y2Gc1gWkkWifOnD4u1wmNrxeS4NWvZ4bp/uQPK2cvoyjcr//Lr8LA0GF8qRU5vIvWb14HwYS3sT0QN5SpNW+PtxVUirNhplvU4VSdnBkinbmYe2Mcjqa8Xs6/4jJyK0c+J1JXolaeC7zwCWv+i++nYY+x4PgGF1D2UsE+XC/M07hcUdw6CVAx2pAlf5dyHe0oWvQYunm7Jp+k4a3CUf9WOLkFJaf2yi9BS3rMom6+dvOznkboD2QZ7H12QkpHEWB3Vp541Y2ZNZf63ACTuUTT6t2m3J3iFdpeLh2WtrGOxu6w6gGrBhAnf5y7YfiO50V83xFz4S/Du8pcqARbxULT+em/543m1cMSjtSUDl+vQPEgRMxLQ+JP0db8oEg6fv7xdz41rYRcM5fZobgKHXX1UwvXTXhf9O+ntaxfgdTePbOD89e16qRIYMjxgKF+P0J2CukNnVX/RTyPd/7wvCYNwOb7ZeTmv62+FAz8p9+xwOpXvBuKl6T5pgmMlL81n4bveNTu0gmId8lMn577KFcXfQpryzAo5r+uDbTi4Uy5+tukffdalbDwQeK/tx2fpld9A63cW+SxHV8he+Z3GwJiYSxc5jkcaw1a+BWzT3S/WvnDog+iPCp8YnWmg5b83AcNdDpSzf/icJ53lqr6irXHa4SGhU+kuvagq37Jr1rp4Dpq9MfXmFF937xvxVWEFvvFQpf6aET4YcIe6ynZV68rH7g/e3/5A7YveZHO6BJmMJFL9i9fLf6ujxi2Q0YYRmVTTdP3GUHuwaIPXvfh/FE/PVyM4484S36JT1GnA3SuyJzDp0Sz6jf6P7yqvzPln14HqbgiWH6/dmheX38l5Oe0ZzjUJYtWHnVQrIYOroez4n+Gr1mCXkQ3lunYQfMJ/wLURsSjwLHg9y4v8P9VUiD/75ICTguEp209+32/WgvI78w1s4y3ns6XsK5hFP0Cq5mLwonuUhO92vuexXGILP5Osgh+nR2zYOtFFr/N4geRbYIozbKCc6T0N3Sh4kg8vx/8cZ6dFTT4XONkc9lU1L0sVd4HkmA0W2rVtLASQNP0hEXuO0j53r3cYEW9FXEd10q7NmhX4GFywKyK910/PxIH5my2iD+guJqMnRrB2+4M4rxvS9WHtYugvAiE2Hb6TWfj1XyQlh1Nsv3Uh+5neekHhDY7sUdggk974XFDq1XlLSGw7ibbzxw0zyLF6vK+81C8TMhTZ4eVg0PD8eIq8lLF5THs9YCoWb0+8B7tHQmNrxHOpypewcna7ZkDL2qNTd0E8H6ndypEm0vIx9VUgPyOHsQZik03ZuHThWPp/PB6I9y6EUeeCWM9RUzX4s5ijdsAtPB1sHaefmFnro6R9sxihoWKOp2YXm86fOK78vd+6XCwDjnM2WiRYJweHU/EjQ13d1MQVxQZGqKycWF1OJbMFnCMJkdxb3ASyECFh5WGs5+eV+p0zEr2eEkG4qfmGGv9/adjqfcra/n9TFnfPzbBDf3xCdFTDsvfk+c38buprnITro7tLl2/d12fggvQ5GXP/vZjrKYpVqVr4ZNTIY4VF7eaDXXYvgjhbViN84wBpOB9oYJ8vqEhVvMS9qvtnuFm9pfxZmYJV0hVYhnvIqRQ5AlYYjmSfRN6aOy0dQwn6prs6e6HdNis7QhWBy8n/uMbVMO7lmYUIojY/ZEpIafnQw+D98roWG77iq/XOw/sqfbw2t0f0nHoKqrZ08cjQT+k1ZSn8xmujuP+s7dRfucOVHNrsP0lmNKByy8bCsV94fHCq4rb+v0GzCUtIbwXqlE5GRmEerjDEO331Vjt6Ig2Cg9JcLScTjo8QkCrxzgzR7h7FhUiuYHV4fbBfGffEUtLk2qXnGQEm4XEKX39CgiPSkosP9A404/+DJ4ip1R7SS/E9+7jBjtyvjLTjq8WV6RWBvc1NVjbSSLi4/o0rxd7ZGe2eYQ8bJUPLPvDtmXuVVzaLbM8uWuyYJP/EK/iudb+1s+OOA/Z60czlcZrkz7Ooh9OSde3qFgxhOcgT/3RHoczuu93DQmOxrYTa/xyQYTniYp+yHz+/L5z+CXUI8t54qOd3lzY/O47QlbvpbFzXphaua13JAo6Fr6LPC1ho0whiZ5t3Q0rnq7gPUaEpGZ0sGaUP24QBNaTYTQZ/liOsoAOO2ki5BjO6XAYbibyGBmIfyBFNZDxVGpBzze4/EQvPr9buUXTFK2Irt0CazY2UgD74aPQcv54XIBLR2HjtgwLx+mcjuP9aMMPBQkzw5OXioq5VWF7jkq2P5h9+O97nj5UJOjwC02deSuhtrwT2TuHZfnt4wfm+f1h+2JXo9mNjxnMWpkSu1ODipdxEoMO1pH4P76kmEPFAWFMZUqNQ5U2XgU3OBr1nZBuKaFobCKhSiYpIUhOqtHouyP6amNEHrPnIxHGmWrHk/Ri2zz7VV0irh0I0SpiXvzVq+lzbD240M2I0aBdu3lN/CO82nRPSFfQarzkRFeTIrfpFFyNrnktt9o0Y7dltvvu0+kshCWsRwNRqF+Xbia+GynqbjMwZ4uY1cjHF4ZJxwnBdeMgaay9Ee3ILWXWL/jx6cRTHR2vKSKOcN0vjftXLlqZTGHGsFcrypSnDNU8b6nSXHs0qucygGT8LBL2y6kEfPEKuG7BJjmaXn4fnPc6bJQfYXYkCukY7U4epDGX8PoZ2NXovkJPs9qnxMz0Mab8+T1gxBqmErL6/fw/fwhImCq2narKGqdkFLRskPfsohdrNBm7s40Gj9fMH/utxZ+n0dHYWb0ts7JYONOXcQTdWwaFCOKzG1f3bYaw7YXUCWa9kpb9AidkmFnbzgppcVhj4LneUVXSK4sfoQZAzLaJdVofwt6etuU/ez88d1E6NZGlIitqI2Kc5rs/C9EtgVpwJ7K/x3HYnG79EfYH+0fwCCOahmwnw3e4ucxWFdPaLOcb/s6X2fE0HbVrkMH34epYenh9xQ6bMoODsruTPUx3NAuXm4zQOg4YVrwN4pcB2YDr+cu2bTtWHyE6JpqXv+/4xCWHT3qKM6TBeGb+m43d/GOJihzh3TK8v+/Dceg6inyvYCSoX2I3HXckR3JnISy/rgWiVt3aUF4kQtv4W1TtS/XGv3jJDq2545LxKj4gR6sTswbc8p/tQ4SMXumJ3euMT5geCy1bmQe2Fb9ba7aUNUb9Xu/J8bPH3XgN0hZhWyeYv53P8r5ODlbUROQEDrOGx/2ka8cTvNn+HkspT4rfSq2+G8K2ayevxmpSYlSsHpyYHVPC2U9UqsbIwMTa829a/J3Py212iLfCrT/RHTqii1Lk/+LzTPym/nsfZhg5sfj6p5rwzD4b5njG2afG5gJw/dCMbfOk6fpGBgmYOUbklA1BNRGmHJEL9EHccxKk45gca5iOecmMnxF3m9XKaeCSX4ulfomjbr/TPPR7Kjd2P9iHkAvbTAJT+Sa4+b13qFnfhx6eWc7pg9oN51jpctSmEiWkipqqLeTWVJf9obUcKWhq48FDcOnWhEgPyxfwb52AcF8ZxAtl7g+TL5413TdHtp3lTde9fjSHyDTWxGwTm9M1qQq4Xdc28/RNxsedyEYoY/vKznYUWzPOhR41edIQ073Jfh9ux0TzyaAxYzpA1Z/u9ajtA+lFjOmQdX3knlpYq1HGzivpzHt88UqIMmlkGHHT4tKsN2C9zYIRS9v5vCd9BudnQbF6c9RwUs2PC1JjpnhDte8CyQ1JxZbqU3n3uPJ5+lgz9Or9xpxHMFTc3UWyalwdjwRZSKs52wkBSLujxa5jvOo4UmwPkY9BmJt85rBWQzOHX7F/MW8V/KwplKISLfZJ9ME0/PbhPTI0stzAYvgQrNnttxK6/JKE4ctvCil9vUrttCoxcX9fl0/uaR2rztoN2fb6ln02HIMevkPiLv7Kshb8FmkF3X6JnZZ6x0+rLf2HL71dG/gSeMut0/lss32x36L5Zt5zyLvAZ9ud31kUijgBq31IzMF7yR9OPNQRXO4ber3SNqVCu521Bd9h+f2wUP+RkIR2xVkmQbRruiFpaxc+02dDjOBedtxa3yQQ2ujAlvOJZj855yB91SsjG0Hu6N26rxAcnTcV/RO1FnyeIL176cz8dpsAFEDrv5StmvtZaftoRf7iF789lq4rnXDE6NXhiv2Ka4zcU3ij6s28pYKd3jyovuuQHWav40PxQEeQL/i+4Ec9FKpZEdQg8yu6XuLbvLnNDSKFZGAk7aBiibi2oWuSG1ZL5VeNP/VSg1bu3nR+vuZ0TrYcQwhBxh542IUiZidd666yy7LifqqmPnFkaNapS2ffslLhLagSWvgKXRm+GY6bWpRQtjpeiJ2tlZRfp0gC737csfQn8qpf398UXX7HmPizlVRTdzuo6DjnIn1f3ze/9+qogVNIDoxsxrgbtxwXMFxoQszr9RCKGd2q6JfkJrHls4zmnmseCG18YPj0GlK+dFZBjcUQpZduDsdDuC/gN3KR2PqlTieBXHWgjrAi1ttx+GhPw4z+9nueG59TnC+3uIZxS9e8Fzq6TLNHdD7a5Kh2z4reDAWrH2c/EafZ6ha39amBnCh7tpVWSSdk2m+5lVt6xA6+h5Sb2uigp7bd/fNP0+dUNiAQwydOILyqSdK6GoX63SfB1hN86rFdBL+j8SAu6XI+4otZgvcrCV01o4cELpAVUpuLRhzh0ljcNu4yrJ9GQoLDWfZH5bTPEBQfEa/na+HT8/sJ6LEuNIYv3zGdhoyoKHUqyoyuf/HRLWYVauGmsL0tf8O+dBwThCTYk1ucDenU28oIm9/JIr6Xz9YMnj5qymd9wnGSPq0pu40j2PHJXdbXDplxtkfYjZWO0djWfv9YlQFY7bAixEKOxdnqfoYl3hKDzTXnvmhgLSkym52KzdT1sZc0EPTTZjnfRcdPX9mBefAI83LuVFM+fl2VVWWPV2gyrOnzWf/jPxRQHXB+bu8RGNcAE11LDj5LCqP/+32S132zSOJLSQ97teQQOCur+bOPUE99WsyPW8V221SG8gIh++Mf4+9dUMjOLMCr7WkbSn/+iuceo3N4cNM22Z5XMBUCJafjc9tJDT3foPoOPtnVtthNiN4zhOumIvEYfi3aToKHFvxGrLe95UOfYBXKtBqoOoHhz9O7K4DON5fFwsX1ObcEG9bPfc7cvAnDJb5+QPSdN9u1ooXmFTZHzfeSjh2c1yvkZvgu0Y17Jo7k4xWNyVFUIbmEDq1X67c/6dspAjmpOmbFuymdM1egICR4T7Zl2Vcjbtcy+uMrunL+WczUZAc292X2qyH2/hTJjwJdHRwQ9xy3ads/9SPQDUsIAX2FRq/OGtTJbUGBRTVn6/XORXXYvNjVHiJ/un72MhjaHZh+R7vqx5V9/GffbL/O3tZ/AAAA//+kncvSsjAShi+IhZzTLBE8cA6CoO5EUQEBOSRArn6K75/l7GZpWWUJSXe/79OQHp7nSwdPU5qC2W55k75/QaCa5+mK3WfZldNdfXsAk6gFH7tLXNa+UhG84UOphze7eCLDEEC5yDYZ7FByx8GcQy3c5smfP0HzUdVVaIzjkR4CV3Ln7BIakOt2RK15Htmff0Z44vbBUpYsJgVyQ/Bb6pPb5rE3yUd1FlXIHjM9wDd02Y2JB7A97hvA1XdLmlL+APK3/gY8t/marDm+c1iWscMWdO94Sl7HAomXDlPbgl82ilDu4EA6M+CE3RkxV/g9wLndXbrdFyd3ZD4XwpjUKVl6eot/+dQ4SM9CmUiVdSmp1lwnFOwM/N948bzLFT24KKHu5+eX/Gf3jSCePxRjyx7j2rktHoTb8+lfPabvSK5gJ5nvQHk+btmcT9QCS2cWdagb9VNpNSG6mV0UwCPB/cozOIjhcKU+2Vlo1eMR3G54IBJyA7YQKVeRalg4+NNnw119B2j1x8Gie4vLUsrvYNUHpFU2ZzRXfttCGxgPco1S549PDEAKRw825bnt2/fO19EjEkJcr/EgsCAvkM0d7QDsQHRbKWg9CHi1x4fB35mkMQIRrfUpEOc2K4fSohEqGwFTE4cvtPKFAnkpJPTk3YxeODEUgaUjj+o35dDPR/VjwYlrI2zzX4aYxD536DJYsGeHkjlyCyLAU6Whzlo/6d96/ekz1whdk7nC5wHH19SQv3o81yfjDuHFZfhIUM1mARweEOHW54c4Ui7NeJNR30bnYGPt+4ylFHboklZXvIMrQjM+BBzg2o2x7siTOaFzH0AvTxUOJpUyltKY107EMchy0N7x2JundXSmqa1vARK3LxJ1h6xhZ9MEGVAO1ie2oN3crPX6YjSLWlmBshguPa76cLYjSYT+6oREdj8Ka1rrzcFmMy9EijsrW2hRGNqG3moaQ2zGbKcrLVr9CzaLixKv+XhS7jtVpd7wU0oy8MkdhlsBRNAfGpq/+NeCAIlPd+XS9vOl7iwkevRGQkcOXbJv+hrlfeBiZ/VH5HI5nCE6j1qw2d9fjBbJTYSVXwVTIux6iURf0D53XcP+y4zidvXHiBwqEetdHPczObIQ0XZUCRlEny3OVSFwfgBPL3pzMqfNnQTomOxVbMR+mw3sqZ7hzY2IiLeDU04VU8/q6k/pU01PjMQn84wSZarxbrOtzblLvw4czMSgzwZfsyk4F5H24HQfY8+n8TBntwNY2apSVz62/O2/VR8Ex8vkZkPf2hy0VAfq3sX8b//koG0vPg7apUdzUupXyMMyx9aq16vftx1g3n8G7Kx6kBXJSYTzg+Opc5/XUyii6qBauuLRXcP/ymXfurxqGzcINqbWuMyTHA/8IycQSbJ9JNqXK/dPr+jGNLiLdF1nQWefkf7xZWWRrPRPH+Ptmm8FZ2Ou/O9Y//GvctkWOg+OombUGvuOfUXod3+8LtDIrl3fqu5qFGGnIDPjv2xpxsUC+Qwnclrr/3LyfxW6pOcQP/rQQJMSbQFOhrDFR1zsYskVtwQdONWl29V/r+vloWkz2PQ02mq/3n8Lxi9X4CPCIfq3n1zUx4F6bF1TMpMgRCvfpIdvupTLvnHPEPdi6L+QrPbj4zotkChdQbSAWvEC7/wKfzzJd5pdPJe+dYV+FAjefY7PjFQbP0Q7ET3IF19mt9dPXgjOLTqS98pH/8XPH0+x27hjs8QNB4C9S1d+uUUrL5CRMstHmrfERlL0C3moP15PX9fXNWb1I0nVPDyl+MDfOnc8hnkNa77CT83exlImbuq//RAoMpXZdA+fLXqwpiVa6abx7I9yhESNKn+8xWWyI1Woc0kXyIJyYouS8c6/+LX5hmfz9tEE4KISBzzv8GhZ/RHyW+GED/vNbC7pZnK0fZHX2ExNnDEC0xvk5JBgq5gu8cpfVAi39Q3bwxMz8hJ/BoTLQ8D7S3MzxY/SFeCoTkkxI0Lflsupgl0aW4Ek7V029NrmDI8yeWMbpYYr/fHdclFtImwOXDllUdqpgLn3mm/tcuqAE6GULy9qA1MRr6VVAFk6i9hhp6ScDowsiJGrhK3Vv/WvxvcQOYjcyrO+5gxUDcD5LRe6v5SSO6zxiop+FrDnKp9suegT0TzN3Pzja2y/XSxNW14zEZ+WW5KX+NFhcxssmgjN11zsS8j99T/o6xV8yzmRtQkcVX9RvE81No1dGfzpZXwkyhfNZ0kIoeLvCg0mFaOl7kP1H38/ltySUdnZVLLXBM+A93ocT3/162E0Fj1KxwHN3rYi8PJ2DT6L0sck9ljXIGSVQJP82vR//Yg/Hoq39iCay81UA+DV4Yad3gzKxX/GHEg3Ha2/56Hl7UsBXDLU0W0iP0zy8rgBBYJBsZnHl4yJi9XBzdIqfHzrrBzzu7L84yfGUv1Y/Rf/6Gy6a/w7jIZQcYhxzKTmAz6M3fg8Vf/uHyuSa7bW0yvoSPFogOjbJW+509W/foWHNTNbkN0WAJO2pY+r35ckPpW1umypE3yuza8f7uGzU1d9QKZkNnr+hhMLLjVXYQs3wGZps0s1RXp9CPjp3RUPP+/8xwcDmGatHBc/NWB72Tn0sbeY2708kYDXnD/40B4/Jov7m/iPb3lX7PVTqwgpjPvACfjV309//b3OrWq68q5yoaURgaQoF3zMFi8j7Pd9g6/gJ/b6qGTsFV1TFJ2pRk3Z12NBNQ/3P34QdLXWl0N8mFTtFst3ItzP35K+TvIO/e3PlZ+YvIStB4QHpcfbbU7N+fN6GPAo8YMa2D3GTGvCRfMep4YaVHpm0zT5ICdWa+DAf/YxUyTTgWNyVLGNrqW5+rFAw/sroreDn6GZY+Ch1X/g/RpvrRvquio77ivgeU9g82EdzKp9pCe2OtAyoosCgVn37oQ7tCobfl/roQbn6IKN7rFnrRLZ3J9fJ+0nK9iwy0JL+9jvMSBP4ZIx+yhYf3wGH/Xf4s7hHOlga5s99lxJzwQLOgfES4vx/p7W5fQydjraR0FO7ef1ElOHbznIUX2hRtkI2eyPUwRNIbyClc+X0x+fXPs9hKXHUzzd1daDXDcDbH9rLm7gOxlIslpKD8K06duBk3gkf6vvv/7EtDGnVHM2L4GI8A1NIdgfcmTuQguf134iTQiqUUS7JVD7PS2H8OrpfzwJ7/TLd9Xz/QGyU17hPz62PKzzA37v7IePnVSt/ZJp0rxH3ATiXgvNOVyit2IbGWDb4rpsIIPLoUuan+kxW4Zs+tApBQi9H0Ft8Tbnezc4sOrhYApgMce0+llaIdYNxh4Os8kNLR2sz6+i20qJyveBb0KkHsff6t8jd5HvqAPb4z/URlfTHLfH+wHuolv85Ud3PiL7DrqztIG2OCtOTIoFtvKuw177lcrlj1+L2qgEWnNS4uGGnw5a+9cB9652TNj72hmtPAavvM2dS1+/ahs717HF7SW0mF8nBQseCfVo+kVzii46uk/Eo3/r09vM8tDKG7G5bbbZjKdbAbO+S+n9Tqu+E9K5U/22sclsJe9+KqZJ/L8eKVD+9yMF/vF+JvO2OLK50XsOBUfXpIa/eZh1IPwAhMeiEjV5LPGoLngBteZ5ela+33JSu8cEOWCDWu28NZdndBtUZQOf4Lo365JFW+Us/thjj938fO9nY2iv6DHNBd3OTeH+LmfZAGbNEj4uJTF/tyf2wKuaDbXht4tnJah1OD+DNtD4wXCnnSGIQI7xm8h0l5bDEr04KJv1bHYzmWNqyd0Oka3gB1OKtzEfSPQKSiA9sNvLhrt8jcaA5aR8g43xRiZ5arC2UDKLOttvYg4b+LTwu8sFPrUCyVh1wjoKfSck3dzheAZuGNDH3Q3YqTs+noxcv0PjGTJR7hfNHevjlYPAMDtspMMnXn7deAApmix6Da3JXHjGh2DMzYmIcb0e/Ir8B3SsJGQh/s0cwusHNGMf9VQvtS9iU/SsQTTPMX2ZyymerHXWbp5jj0j+7Z31V5lVmuFcd9hfLCGbbpsOYHd2EiKfN0tWqB1XI5rxBAdRGmXT7adM4GW0wFYr4pIpxWmCX5Jjau4rhmjCX0LElMqg0Sb1euZydx1dnyed3p6L5/7yO1eAf6QBER7bHxtNVNVoOop3bNJ3EhPkewv4Ht/gy8lU0Xx6bVPIrlZKrtcqz/ruUcvwC/uJbNLIRvTp6m+4BWSzPsUUxctLOu4A7fgO460txhN4HcDE2zrGgaSiRQpsEfqqZdQZmG8OgbfXQfnAgI2zxTPKvbcH7YU6Ce/46xOxp3d2wJDMih6uTxMtfTE8gNMNFXtc+SzpZlRapBUJR031y7FxycNBu03WBpuv39Vk1yo34NmkKtlQ/ZcxWAc5RBc/w3rnjiZrkv6Mmu3LC/otvEum+HwA270o0m0kXGO2ofvwbz2CmTOneHIfQQiwi1448O/bkm9kWUVPoe8CLh4lt1Vme1GrrVtis9kdXb73vzv5bGgiDU67h9n/pPmheQxcugu/Z7R8DWqAaC01doNYj1nWqql6jlKDmu+32jO3bUXAXYICvX+a2XQ7WysCqXO6P8aduai/DoAqYkXm51Stgyk+3AZ32y0Nrq/eHC7sYIAoHD261bgP+41r2+FekwvV0xuXVWkQttq63kQWLB11j8l9o5sp3qjPXqpbDvG9gyuKRIqXb5JNxuthqI+dZeBzDzSbBCMnKPkKPGGv39XtMdgphL1zwPvgGpfLdxtfobxBSoPd+IiXTJzeAJOywQcIPdb+ki8B/iIv+CIPNSJSyQztOlEH7/z9JRvtOQvBT02Oeuz27ZfH/LKQaKZxEGXt4rZLdAFAz7uHj7shM0n8fB80sxhSckWZGJNht7QwMuGCjXuaselsHlNFz7lyfT95ZksBGwO1Un4jP/GrunSC4axweyvGwa4d0WyGTgAbsUdBQe9vNjfp00JfPcwxbr5qTNLvJoK/+D2Ct4slStCCPKPw6GEOT4jWi/2Gh10nAfdbUFmVL0lXay+0cbYFvexezu0A7/PnHKDYKcrR+9x1uOcWH8ifk9kvRl4E0FebkcybpC4n0qgVRJuHiU/b4oiEpluIJkWLRT1P25ZiU/4KqO+VEigNqkpCOL+GXNr/Aqn2SDx+BE8HLSZnbO58bPKB1Fzhd1cL6ulTzsaLfn+gQEZANn7W9JMfLTrwT8Ol+zVfDMX3ekeYrwhN1+sj0jfoEOnGdbCDY2TTy8vfsJOqnBpo1kvevaudWuV8js135pnLPmgBnS75QA9lg8rx+Snf//IltlHnzvLmN8Fj1HPq8YlYLtrtM2hMxSJe48edr8W70hLB0ym+VLor3I65Aee+vAbnZW+Zwzk9RdqoxB3Fy/uAZj7kCNrD/MZb3S3dZRsqHexdvaEHpgxozGIVgI/yF9Uv9cHlJTU1ILU2Jv2rd6UQ7lRt3S94Z0aVuTyykUPfkjSByBQPMU883cGrTnsabM0t4zvuLWo3OxxoXvu4ZELV5fCYHm0g7nrBnLm1hfEqpgx7J2WJ2dPVCwD06oPLmRuyxSmTA3z2mxh7IjeXgztLOaz/n24lVSpn3YlCraflLag9N+oXnxM9NHJUw3/fT+Fud4dngT/BUpofd5GUwYPO2FPCnatbP9fHkEPZs/7hbZ/bMeM+5wEJJ/VMXe5pu7NXjC1qf3lJLbE6m3Nb+QRaDdeE6a3pLkq2XNeD9xn19PqDWOj6NQSP8EFEKZfZ/JP7CJ3eBl7XC9wpxVUEQ3Vo8aG94ZJlnQ/wyQshqM7vOvtl7fUNH/cwkPlRPs3pMQln9IWvSb3bja71xXqjoIsibG8rai69/Gyhlw9AfVX9mcyskwCG3xvh8Egt1F6OfYduhWsTsVIik33yj6FZVdngP33zd73a2S+Lf/lq3vFSpa76iFqh+SnZIdFT+MQtxvrpOfbkBGOhivwUYWMe03LiWm8HyVfi/30ez2rxQMYcXbC71i0y3HsetOLC0Z20ldEo60IO/vF6puGT97NZfMYtOiSJSVTn0iImBHOkvV9HHePxV5XLtu54lFwCBx8q3uwX3h7fkNjemV5Dc9tLcne/oiHsXuRTN0d3YdV0gMP98aCPfRGVk9/2ATqeJ5lu9fDUD8eneQYuT374eBkENolJ28HI3s+AT6TenO6yxqlDlRVksS0FMVyHDpwU/MV2uTMy/i4VqfaXb8L0jFl9sHENaCd21G8TIxsv3S8A4dtf8PabhOh3DVwdstlghL+TMWZHRRsAiiihhv7Xcq93q344i4G86ol5sZmjtUQVieTnAZvn9wZA/YwZzoO5ztiqjyC5eA59LEcct3F+UrW9zgSqhweLLc/WkIGLHTuQ0D3MmKBYOoxdp1N9c9ZLXqoqEfW/xcPBG92yidOEUPnq3yvWD8+onOLXWEB6OTF6WIrWnHNTITC/nSFQmL4O2rBDC1IeKDX4k5nxa/1Ha30jzMlSk+V7aiErS0Pq9nJhTuctGpAySBERrodrzJTiNqHvYl4CKTtWjM3vwELippUDOBdjORbkYgD/lVvCZVZtzpv7Xka3wrbpTv/9XOL/9oY6XyJMHfqwXEbN2xWU6fQgJ68wEH//zJbymblNwEmp6Yo5tDnc6+FCw9NzLGeyz0UU9tYBe43xZct8IwvI03uk3sVt++X1dkKkN+8D3W6SQz+RODG0RsulVQ8/TdZs/QXBIG4xHknsLmonVqh62VfSkX2ZTcG7q0H63BasU4NmjKWKDIPibalfeHY/ufQaAGGxF/DO8ulH88vuivTsCBk0T0ZfZ+OKsHUAY5+0Epu+ulLByIpnIIfW5DZp+s3BDr0b9b9z0ktyXxuwcS4J/dN/7fEYWTAah/xPX7Jpd4nv8MK9S717fzD5X+dGMHKjhn05hZIKwRxqXZde8Ho/zcVv5ivEhupjX2kXNAVitg4mwQHdvaWDKeR7/wx666rUSGfKpk0UyUh9woUeK+HXT+4sPYAptUHdXpvKqV2RAU2vGQ7M2c1mzrUJAH5t6LHJd+XS+FMKT7vnSJumF7d/eg8LNQtyiTy2ZUbX+IZgnfWLtfcHTUW4vpWMjZbwzrItBUTfBbjeaVwR3NEVrvJtgZl7ZoR7Zggt71EV0fbK7bF1ep0ZC27Ik7XmecH3v/VqZFkGDvTvX342ybpfEKqbMljmUeyn6aVwsNZ3bCCRmtNe1Rwk77wjvjBhF1PxMLX/8u0RThGb7n5codDSJaJdvKAXcvo4IC0Pdey+n3E2J8tPVAVTzmlmH6796k8Bjq+0Isv7xZczXzcqypByw6u+QOwpFip4R2491S4TYxa6+xqS6dAEjMu2SLBkPQJDtyNsviq7/NvP6HheZHxUzb5n0G4JOK/NkSz3NEPMvsshyuO0pge7kGJSvvYBWvMt9fCklIuEk1yVLxuHKN/ILn/OxuTV+C2beB1ohvjtqczRuh7YUKxvOfv3r679+TFdLAa2nL7vQfu2vI5PC1ezQexPPDx3uA+W2CtRKdoXGR6CjPCeakJMy7S9g/q5fjB2o/Wg93mT//lV+nwmTUbUXwHQeMmCd1/SZv/8I39RF4qpbsds1ZdK/lQj7F2N3iV/13/y5A3dF3hi7LJpKzh/J5cMhVv201ILb3TifjL2Q+7YT8q8XWDyozEQ875j069PZVSO95cvHvGnZLAJCkRSqCn2ghebq6+zqH5Cd0RrEyMWJTmsNTPZ3qnH5dht08rm0eoHsZlkszvvn+oEXgJJIKjyli3y8SyC3kg6dqvrDtHVf6nBlkwBxyHq9mu90YJUtKnzkLZZ+/LyAjnHXU9PDeeyGc5PQK9571KXuBc2WZtTDmp87ylOdFaunYTpTw+RcfSqviKRfUVPdNQIO++GbD5c9gu8yn1C1PD96f/iXVOiuKbGZ3bYOLTdOvhCCVe/qbF2U8sPZC1BSZ33J0Ozfx8NmDty/edf2z8/O2TSBh/i/wAAAP//pF1Jd7MwEvxBHMwucWQ3myUMXvDNeMGAMWaRAP36eTjf3OY2x7wkTpDU1VXVqLt55YPplyL46dEggxhMNDxk0K+6kgzr+aL+dUrgej7oPo7uOdEsuQCdsQjofcZHMD2FSwcMfbxTc42Hd7OAE5iU+IKjSHv1IyV7DtxTdcbRu39Zw1XqDtC9zies060Gli07nZTTq2hw+OKzcA61CWkr3lI9xE0+sfdL1lY8JLOwv/Xs6mQN4DJwov789XPxYBgqTF9Ioz7TkTWfD5MJmPfQ/vgpHT5yBDeYtUgxQcp60bMTdV0vtBTXJhzsfuJ+/gh2yMsMR04c3B8+0WgSlPDr3JcF9LU2/vGrGdwejVq7b/HveQn5eNOfnyBLQAaUnRQVfKi3pds8StNZZDYPoyN3XPnvuV/KjyPCeyrPCEPU9+2NfgcAsveI3v7NBDMXHU9qzB/v1Nycoop/DzkH9rudgoSPy6z5VZCHKtuVgX3je1/9kUT/x2fo5tbP6oInCANroNvH/MznV9Hc4LsaPkQRkJAvJ8VHMA+8gpqVR6t2yO8dXPcT7wqhZvRyu1/h9WPtiUpvbTg5cXMFsQkeiIO7d0+/imND7VGrdOdFKWBR0SKwAbcrNd/7Nic/vaeokvcXL2RpwgFuwHzAzRzPgE0gHqD2aFQkl6PIqP241WDFV5xex+3qL+1vP/1HbRnpYFFcH0Ht492pm1yUiubtcoB8fwD0qFOtX37+2S9+lGTZhywZ0wGm/NfF+uZQ9Ix73QgEPrTwrQxXPRrYHQT3LKJb6flgw+E8yFA/ZBJFHKDWBMqDB51qvbLhKud04O+vBG5DNUf0p5dvDj/BQC47NO8vb2vUw1EGww79+Ss5y1PfA8+7BrC7u3trPN2uYMVD9HIvnfXTL5oTBwbW3cy2hJ9+PKHLiXpk41mLhO8PWHy0+5rPEzYnZ28AP3x97vLtim9uAQC4mohcZiOdVn8E/PStDh73fkybSIZjfEHUn85pyDZWp4J6+ZSEt85LT0FeL9pTjGq6l4SvxYQ4kuHVt3JsLbZpCfdQPcEHVm+rnmysrkdIhat+RSP3FMJZnOcIVuN4Qd9rQvplDy4qNOFdInTN9wvXjiqoZUNAvJXY1jTMiIdEE2Xs7Nx7OhdgNiHprpR6QqKBucze/I8/Y9z4W2siXzeCepmN2HMstx8X4Vj89Bjp66xmQ7F2Cfrxy1W/s+nd6wfIzQ+Fei14WIwStvz0KFGuOz2cg44kYCupWyI8OpvNzd0MwOG8HDFWdTudE7IrIa3HkMBpCvppNr0AlmKx++lpa3iNe1O7re8CyyAX8+4XP7/zGIY07cegaxKw8j+aSvrCaGWaPAxou8P6cHiDua0dAs9NRvD5FJs9a+4VB95XMcCO0qvhMl5ipK16nPrvsxySdk5sdReJH6JWa5fE+GJNUDh/X0SwMrkf2q3mwe0yEeqMOARSrQYBXPM5EUwjBbOZmSLUL0JAvXO7y9Wd1jUq429fjPjRC/nynWVw3KUc/vnNPz8WXNOPR61Wl61hzT/we2Q+/fGRxfiID1hrISJCm32rJbab6OdfU3z+kmpK1MmFV/QkOHw2E5hmIgbwNNgJdkwjZdO+uZbg/pI/1H1MSrr0r1iENBcJRXa7A3M3lS2cFctb+R4PhrMnxVB7JDpGS01TdlDkFr7KVKHhXruy1f9of37UP7zeudsHKPBFpYiJ72pwVMGDyy04058fPz2FfQdrhzOxLyAh/a7+v7r6mejinky2nF1FVC8vEWPrOn7ycYqL4E8/MC5/Mdbce+6334hfArGix+03AfMbKKv/+MhH3B4bsPJzant+U41xKF3hvlMFGmaGE44P4j3gC5Y93kpPjrFPfyvBqtfwrrd6NknqSQfDdjIx9r4pm67oE4Ej6j5oUJUqnAYK0M+fJdqhSqtJPfQN4N9qS7E1mkxY+Sfke9Mgm0JH/Xw+WS2UbbSlrkVrazK0nQgfaV8gMTmE4XTUW/svHnGYIDADd7zChFfPGIObVJEubZOfH4/9+xJZvPdtE2gcwoZo3vad5v6WHKCS7BusP12rYjhFEeTEJkFtOxuh4MleAm7rHGjo322LT5/vAma39TpEUVyr/pr7C4x5vaJpmsi52KVFApPbiUdqcJPS5RS7LkTs/sXOx2XhUD367IeHNHp+RLae1wXqlyIm8D3R6vPzu/3jpkE//v7TfyA99TG1MUnSwYmbTOP7XiCAx2X4px8CjdPotvc21qLk6hUK/mmmplpnjCoY8/BN4hT7U1JX83F5idr6PDgKeA8sDoY1bJejTgOMwnC2WcX9/DEcD4c3a+W7JAL20gsi+DeTLc/XXf2tL/lQK+6Zf3+WMN49AyQGys2ah7Y0YXbjXOozB/br5ctSOyfcmxSnAwYDSe+mGlwFQkRxe7CWcn/ooNhMN/zndzlLdvrxZRqseFFul2CACipLbBZXN5y/O13V1voQ3jYRymlyLkt1xUtsuSDrF20iBfhE54UseZtYf/luZ0CDuogfq/GHl6tfTYPKafOpyMANWKMiUi+Zw5D693MB1noFdR0tzJdGuRLVDAhHPXmM2Pr3Ze3cCwai3jcFjBn6APbmMaXbdXCE2EcshufX/rjiBWNLNuuN9v3iBKkKznMxkNT2l6/Jmm9D2t2IqoA5jMmy+tmL628bWGs+olt5FvKmj0ACvG+vk03jb8OZGWoJOldFNOIuRT8bI9Th6q8SZScWKVnrhT99S46H15D/+elr/Q9HhtZU0wJyW6kOhUVPc2ilvJJnzb+f36aBNbxP3fLz84i61uPm1Z9Wuut3T73tHFuztT/yP38L/35eUFBj/upzNPwehJ4et69EM6vkhe36XFXj8sgG0EWHFwHFnaU0k0GjevpU49vKx7+Pq1hCI+UHety5a1+VvdQCQiUTh625yd9Q27ugbIszdS53zWLu0TupUt/VOFrz2xymr8eP3yBhrW9Mt9z24AOoHpmertUvVLQ5eLMDk/AufPSrnzRAyl/32HbhoyJcwhMo9W2ND2ffyHl7jGpwsx8Qu3xfrDzPc8HqjyDKoGr96nfwp58t338yNnwmBIPjJUfKdhHDjmd8AuVEmomw6r8RpuYBfo+zj43ioluz70wqtFrvi//wulHJAVCTS9b90/Op371dGNWpQ+a13rU0SkK03XZERFMqO+WL6/puZ5Jd8bYW/H7RtU8HxAFR9IcHkmJm4ITsG3aW8NZP1ypaILY8ik+RW1vst74/vZK/qV+xr7KzYQ35A47FMmL8Gu/wOZ622Pxs9ozpQiCC1R9BwpeifNq1FYLvKx8gaa2vsAP+qnDVE0jKKjmlK1/UykDKSbee90EwH4O6DeWcRpkZhnXmxvqPPyD+zURAk0wMAKfrKva2w6tnNu8sEGQxo+mz/vbTs4AupDUN6U8PDj/8TncTIwpYfv5+y6uElh62S9Sxec2f8OzRBQEbi+k0E85TaweaWA/MRz9zhSpD43HNcPimfi+N0dj9/AkkaqUV/umtYpJUiksiW7/8olpXjxHN/nzYuLEPRP3lb3M67cFQ8YdaPVqLQaOqbFPyq0//P68UqP/7lYLr8eRQBGcxbKojiOAzeDpInR2nn57lWYZ4d0A0rKxNT3bfUASXnZzSzC6NatrGVQyH59OmziuzUnKuRhcEMz6g8qO92ZTOiCil5ebYGyK3l3xDdeFEixBf9rKTs/ZykSGOpIk6W+5ZfVxwOcDlZonUMpETjtLQEyjH2hMHm5cZTsp916jZEHv0bDV6Pk9Sg6C5FxkR2diFc379tFAbsopsYlKEY7296hBIxm8W8xcsm20sau72+8W4uR8YKdC9gZI/QYpy52xNijboUO37BnvahoaME+MHzIfyQzYj9PLxID5F8ET5HpuNiq3h2tgIvMaYx9aCLuEcWbdEVT/cFy3D2WNzoE0PWIFeQSz8dGxmnLsekeZGrZO1rZZcP8dw7O09euBOSttXcNC1fEgzIpP1VqhfxiU8UtIQZoQknUm5HyB9cgs1nfqZz1B525p9ghW2GmlnkdDYThDsdxz2sKD0lEb3Ei7x40W94rtJx2DY8ZB7mAR7Yo3TSdoqNvxCtaa+Unbp1MjTBA83bFAzf9J8Jjp3gDo2LHo15Es+fDeXh3pXwYC0e+tXS1j2Hsjbc4Q0mc+sBT/BAlMP9vhklhIgVM5K+BpLiwb3uLJopY48NE86oo8vEPvp3n8gFO66ibON+WbTdt9GsNiINhKXjqXTtbEjKKvjHkdJJIej15QupE9a0bB7bNJlpt4D9u8xwaGgbKxJmLoOCioxsNFeO8D4PF5gYkw+9TbaMVy04tKCw+0RY4PzNz3VXCMGpTtneNfqS7XMqNRB9pEeRJsvcto9tlCGS3x74eBAZEb9MivXSa8yEZ/yp5oFnuMhPb8htk8br5/QO0hUQxJmvNMThZHDwzhoX/5FqGt9zXRU67jWiM3bONuBT7r+Px3c6a5Euu4thIvqhzFohV2NnX2lAzG0jBb6pXfBqKy7fmHC14MnVTqim6pte/F8mBN4vg2U+gnjK+rHbxmMJdfhdb3DOTuGKhTbYCZsOek9PTIrghw7SuT1ParWQuWsUNXqtSFSGx7AvJn33MZ/KQENbZFP/8XLeMfYgKFSMYTlK2wmh8c+uMGqsUhZw+RzKqitO8eKKuts017jFWprzYnNtVgnkANkJNqzs3JRVZIH0OtPjn3lIfbz95BmkObsTA1R/KR9NxWJJt+thKJoJHnvv/JGFXuJ0FA0mmo+ZFMEwjw6ot6FBluGlxlA5+E7+Lh/jtb7RP0ORp56wOs7pD29ueMB8s6WUbPhSkDe94yH2/x6p5axNhZXPx8etsKDob5/idbgNzyBiUOO1HrexnRmeG7gVghiisHlBToq5TUMlCagpkjnaqnc4AEvzjIgnqERjFG6M8HnpSHs3pdrOHFheYVdk3sUi6e1BNfYCHqnKiLcF5z6aYSlq6nVjPBuyfJ02udLpBRs2VMsnL1wHiIvhrJkHrCxC7xq3u+vDXya9Yh1g5ytOY+mBX5PAiW0eXn9cmZHXm1gtw7GiKtwSZrbAyxZ42F/z89VbzM2wI6UFLue5eTdRmpNSPT2S4Pu2zImFnwJjaT8krkybDaztWQTnmMfR9ng9bMEDzfwFfQIXw9LVInnFB4gX1kGKU4lrMjMKRFMdcGmEcnv+VKss4675uIhLvpe+7neJia8MRpQJN0qNjjKQYThlUo4FOER9OI0xnCffgbqx0qZTnv1scBUFR3s8AG2FrnydWBZD45uzcqv/vD66aYdkR4LAew65bxSvztAXePTVrNwSmIQ6+cT4rYxX7U62MbQuF4MaltBEy4PxTDBL151BgtruLodgXlb5zQUzKpnSvbNAPtceOrERRBOY3jn4CErbWo9LqdqeIHC05pETfGuN2jO3NAMYDm9QhrszhFbXBu6sH63AO/MA6tGS94lYMV/tMmcKGStNyBIY2TSNb6r5aH4Jny9sxs9Fseo7zanqAObSzZQV/VdNhwvJv9bbxwWQZDPDhEQtOHkI06T9V7Em3sCmweRsJdnOiOH2/YBfS88Yzd5vtjwW6/HqB8x4iSrF8hi3rSTKhwxDvduuu7nCexmuMcOj0zAmmSOtMxMt9gy3Xs1W7KTwDszDuS04jMzOX2A/gsE2CnPTU5/+TLy5AMNjiNgPXoMCEofPCAums1wmVGnQ6JmOX1gElqzdSYi4He3L42G+znvjPMhgoenwq2ztmA412+xAe124bFfd7PVd5ubDXnnbCJ10XmwuMfXAqVqX+BorA1G1s8H6/kh0sbZMlHTZQ+oroNRHx23bEJOMWnD824T9cz8dLYuLVEPcYhwFMolmE94nX29EW1qdDe7mnypzGADMxHfD+EUdp/U4rW34hVk3sRBOMGqiYH76nrqkXVWVhANJ/iek1Ui2C6YsQ+hOpZjjk2BN1MWH28ezMzihPcaitPZ4UYIvFOq4W0fv9NlI1Y2JEtp0RDeq5xVoFsgqziXmnlVhcwMpVZtkq9Nd2b2ydkvH6m7zQdbsTEyZtcmB6ePf0Sck5CqFYwsg4syCnR3b7/9/Ln3N/g7z3oYxtVyGBdXpUIK0LvEHGNoJxYg9oYIR3HigPlDLh7MhsTDUb1t06XzwfLH327yxqhYp19cMDtuhe2T7vRCcVkC+JSvKd5iGfSEev4JSjvujHGQWPlcSy+kCXfTJEWI7VxY+RRc+RyB9MFbHY4tHV7A2SKTGgvpUon7FmjDtaI+DV75omZQh+F1lLC537o9a7MDp73n2EPz4e2l84fsPcj7xR3vId6lg675HtDcRqPh0BZgzJw8+PEpaj2LV9g63cuEcZT71GivAZjvZj9BvpwXumv1pFr5XKzKC69gM3sk1RerkQfEXiB0HYfJlu57T+BlUzywq5hrI/FLwMPwbKqEN7woXeRlnjTuPj+pG4J7z5L+XcNWICZGVTVW46QUNpSqtKCBxTWMmRFfays/whnWXtYo70wEn7JvYzt6yukyj6gB1ckpyWjsIWvvO+sKtLoI8dZ6yGx5fLMEDnkpk80g3BmNjwcPurpe0KykEaDgGdjQsjDFu3OsV3PEqgesHtgnINrz4RSR5AAvPtzSYI0vOh7HBrxqwBFZ+OqhkA9ro93ylZLXuXmHU7MdWuB3+oyDB3atcb9PGq2BVxHxVuBa05ROhXabzB1iCXdio5RzOgiEKyUcn256elbWwVgOfSMe9tt+kET3Cqvk+iZvOkXhvHl9kSxL+oE6mahYY6krB1XawTOOAOwqwmr2gDEXr401+5e1nC23haku2Yg/6e9+ZBxS4SBYN4rfjxks4nBx4TdPLnTlH9UswdsD6BZ6YnPbKNaULlar2ustHg9rRkgO8K3CNPq22MBRma/5dtL26XtAk7F0jMVOn4GI3HrqVYvVT9ygi7CcUkgjhauredqedVgkgUtdxYTpdB9qGUZdGlP/uTvny8dKXRXcKx3JxfeZTs/yKYNffCg1qVm3y04BvOzUlPpkG1Tsdag6cPSBToT0ssl7xO0IeKKuoDjcN/ki9rcA6EWPqf8eP2ChnnHQ1v3H1ke1mPi+ZyIUB1vDHt1ZOQu96wLb8D7Tv+crn3cVgP1ww48VP1b9NoAgbyE+oLcDWFO+OLDmK/LH961NFoMW9xEO84H1Q/P1TKgVp4mGWS+ySdndeNh1x8PKHy/9cuavCxSHQ4Tv3nDrJ/guAojO+wthnwXmy0OOXCDfjQQH+NL0DIyaDKpTrdNnZmQp2TTLQSv555nwxUFlrDHcBsbq6YzDMqrD5R1VnmzhRcfe9diFRE6zBCr1kCLgyiRkzXyf4NMtFOy4ulLNgvsqoLnnGbbUAVeL17MIPlpRxVYM7+FiSGoLjp+1E3DR2H3/SgmBv/XeHo9C/h7UewPgy2xwRMvPOvhgCqBmqjo2U7/Ip0aWF2ieTIQKBotwGTZkgPX3KOOw2rJ0KbhhgtYri3B+Ibt+ePJBCa9HW/yXL2Zrd4Ozx4r1fK7lDfY0YerRG9aDaKyWh6eIcEjbgt6fJWBLyDIefnMjwMa5cUL6eMgdrE6nme4UllsTWm+Fu563xcFBLNJ5YwQLXPUIjQ+1WLEk3Hrw8xUarKsH31osLj/A8eM5SPqisPrFI9zyioGdK2yqyUzuBDzw4URdveCsORPKA/DL4EJOxsfrf3oKAoA2GO0mx5Lay0WFmpmXZAMuBmDH8ljCpMoO2L+HWs/8fSmCRZi/ePfo9Vy6xuoJrPoYn25SB6asaB9QcviJ/vjv5J8tDiptHiPxLo5gdKjqwbdV+zSvwk84CYWiKkl1PaBgl+s9cR3FhI+v7WOnuOgpNcNNC2fycYkSC6QaHN/pIDyMFTa+91c/Z07uAXckDwRstQ1nffkW8EOSmOqz2uSTPsZXSG9mg9F306XfALIS7LLogdOg5sNv0Y4cvIrPhTQrf2M//2PVE3h3jlbL9224AN4+AG/N5xFMi1+Vyu4QJ/S25lvWvN46KE52Qo/FPgM//Q/q71km0vmMrU42xlZtlesGqaZ0S6ki7TggfkCJXt/jNex+etyyyA6xZ2FY4uV61+EuQw/sXU7bcPlYuQunz7WmOKkf/dQ3cadZ36SmUSibYM74MYPfNDOIYJvrreWYutAKmzf1iSWCJflcrj88oT/+tVjju4W9HgA0eUEKfngGM1T7NH4YkzW9lCaB56w6oMVpWbiEZkRAXuzeSFnxkF2fJIB6/c5peFle+XjY7hrI05OFje5WVwzg/QkGeQep9Vlu6cimWNfeULjT7dK/rXHKIqJUj53/x8fYqicA7ziMhm09hgOsKwT9qDEQXfnuOPmxCjeX60AjUtk//QvhyccBdeO7Z/GLohKwzUOEoC9+rUkhcgSwn5lEMoqF1T+83uwtkQbgovbsrLY8/E78TA9LeLaW92B3UGm7J7ZWfGNuV3XwrQQFjvzlmE7bfYE0M3FNdA9HJR0jvr3+Pb8exEbOtHe3wNjDhNq6/83n065JILfnADVgaoTsWlS2WpofjVpsd7MGXxxv0Pf8Mw77l/j3fe2y+9qYlIUIGNidbz89iGhurn7I80bAzmI83lplVC15oRGgoeeRFHftlrfp7A7QjdyU7nrHCpfQ8lsYaOWJRh7l+tkhGoKv184gQFCe4YQsIoNVnyLZvaU/vS2CL18RvNUsFM5WVi1ANa8JtVJNAaSgE4St9blQ3Ryv4SLvH5n6ncQZr02g2Zg5aQB1xHhq75qS/eFlsVelle/uAH3xTgBWPb5TTTCFy4d1MRCrzQnvPL7+538Y8gmT9+ovzt9qGwGOfVy01PBrMd5vPNjOaYZx5gzWtD6vPKSXPbY+4mSxJlEi2HXnAzWi7cym6PFqgHMyHtgPLvPKp0wXGjDJySySDZha7VnD4TmkePUz8r6x9IdGn3ChNvcdq4m7ntCPr9BztyPVtATtDcbz5rXiXZGuevMK39PcYaM/M9COUaJC38Yh9Z/7MBQcunhaNbk1XfE7Z/HhiYD7Fl1q3fKpXzzYqnCiCSTq7jwAqrl+DPXhznC033ugyxNfhrv5zlDzST/5dPyIrWY8zjtsXl5+KlXqKMKUe5mEn6NDyH7PV7H5he3iVq78063hIrAv3clyCMapVa8qX7KFbnfcN52e9X7RgvlRkWKSaD9xwfsBV7+U0E/R9wsIPAQj7yKSVJn1/Odvak+4jSnaHrx82vcdhNxFSKmv3i8V04S8hPLx6q/6XLf4xv0QuOoTNN2sziLve8yD60H6IGn1A0TDK67gx2dLcimrJXFVDug4TnAcxK98ugo8hN/pXf750WIxblzYc7ZHPQjltJ3K+gCWw9rVZvVfp3Q/RuuVOobmKHT6+dAW3A8PqK7Gx1wCj12g5u0xQpsA0eqr1lkDf3jzO5+go/0B8n55x+gabIFweqQQGEl6/Xe+lOx1hbedUlHzo73B4tb3+udf02ddmatfvriw4YsHtQ1vSEl3/d5+fi2222WfLnj63mBU+l9sBe0HTJKzQQAcu5ZQMZHy72c4xxC+I4Oe13zBkpznQY74lgjFMVr1294Fh9hHP36bLu7xO0EcCRPRgNJWDJEDB6TPA1CbBao1w2tYw7d1ULET3045IeKphcF5mOjugCs2PKsD//Nf6e4cF9UXXsMGEvvcoGW/bfq5do8u/PKLRv17eO/X/Cz//BsEL33fjx/OUKH9eA//9eN3NxGK7VX/6QFrgu/WU+FLb37+ZD742zz6y18/fJieh5cOYntfYvNa6+HMdJ2HqulbSNUVMR/zK+2gamYJPpRXL10OdzsD7laVf3yECeVkNZA+xwrVTlRYP/9DVd0t/vHz/M04d+Uv3Uz1942yRewPHhCWc0gdwXmsXRZhBtYWKysfCNI1H4hgrT/gYHMn+TS9PlfgvhsJqbOxZzPTPRGGOTrinSIhRn75+BmQA1r1UbUw58JBmevvZD6X+3S2tqILKomD2JpiFravbrlpQz5tad6VLJxS5tVw9RMIdwlrtnTX1+Ov/rFIS5vOP/2b2iymURxwuTg/kkUD9wmv+dOxWNz4IrBhqSK5Wqxq/h7yP/+LXI8jAM1GKkxtxX+krfx9dqgawCFPv0hj+RIyc0xNbeWXFG99DtDHHQxw9aOpaX/jcJ4+wg1+Olug/uDX1ayX8gQ/I1vW+tKzYokWR5A79jIZV77KmuVKwHJLHWwm7refvSO8QmNCqx6zVbD65Qn85ReURS/AkqEswf0+hD98ZozuktuvXrXyz3fIFG/q4M3XzjiYnXfPjiZvwqi8yhRtxKYauOsD/fxdIleEsgXTuoDnG6HY308a6N6j3wDcvCuKxHsBZtyvrxTEPiJcbxoWi097G0iOOOEfPora47mAnx6W7fLVT02WnP70j1fMDVjzQaSyXnxQJ76J6yDnd6OeD2cFvaWtbE3b2SfQSZyELB8lCZfBaDsIpIQh8Nq9rOVwww9wYbsb+Z3PxXCbEhrQiOidPd9sKQo90npFHUm3bCQwE108wThqs1UfBeE89K/pDx885z6xcfWXwRO1BcX8YZ/zW10t4HZGNuGiubRY6389kIpdhz5G7fYtT0cCn/DwXPVKmS7WOLaAqNecLGJ/B93noE+KVSiEaJ0G+rG/bDzInYITuiSSlzI7vSfQOSUjdcj8tebJz1SV3vQGbaNNk07L5RaDEq2vPNsmq5bigQ5g1WfUttwlZQ8UcHDV4xhpclG9Jy+HitR3J4ylI7KmXohuP78RB9/OYdKyDuaGrczRy366g2HV6xr75Pyf37b6k+bP/8bBUahS5uuCB7+wPyJha00pWdcb7qz5zz/rx0CTH7Af3x1OUiNjZCfzDXyE1wA7jhOkYhfIBD7CLMBrI5aevHetC3/1FtXUdTbdtWsNdWxZSNpx33y6I/2krX4kNcVeA5TPswmsfhjWJ4lWrIqyEsr7iOC13tIvhigM8OhGFk4azgQsFtQGBmcy/epb1fTFQQJa7RxS86Ms4bB8dyYUuHaHPSSe+pm8DhMU4vuM1OggWjQ8oxoa1zbGUZqaVdd9jwkcG1VE8/YLrMXSHhlEaX1b8d4CUy/YD+1w2xk0jI4fMOlD+tAAB+CKPzYbBfdb/K1P8HveSHM9+KtHrPsB+PswyFB1Tw8y8/y4vmJjXrVdCHKM+DNLp0w3dXBEdo6fg+bkzFUPmVbJUYivKLlZ808f2HDxcXCakmoxpKX75Re8azfHfuVzBPbh5klR9THyRdswD7ivyw1b4acDBNOh0PDO3iBhPV9rfZcHcLQv2O74MGTjqStA/eVP+MFJVT+91D6Cj7p/Yjc93fPp+wCmyu8eXyJIYQ+G5ny/wgc+najB7beWEEBQKrub19Hdaeez6RVmED7dfYe3pWhW/YpH2vZ5+CLpcFrSOb99S3jZ5QJ1ttaUz0XgZzDlpj02JGH1+1e8lQy1puGFjP2YD9cYrH4+0VT13S9edBmgED9nNB+Lc0XUjDfhDWUGvZGqBnMeAh6GqU1W/0nK58yN3f+rSwH4368U1BfvRb1y3laTamEZiGqgU7xxQDiPZu/BebkTinbXa8W+A3TBLGx4ani8mg7zVpfhBKhDjfO3ztlj33Ew/+YGkrmTkUrTMzip6OwaaPM1/Hx66l8Cumz/JkJ/IGz2PsMJSpIqEDG5EDAc8WWArnNSaTihSz6Zj/kA9lpH1xJ9HNLvAxAYbZaG2sZ665kKGxtYt6XGfv9xLOo8tQFuiu2ZSIfPlkmhGHrw6D8/SPWzErAoDBfQvLgc24Z/qOjrPKjQ6cQP3Wp6YM3a0/DgrG8wdpLzBbDNfJpU51Hv6bbrLxUbdPEGTazdiEbWRhq7qyyCUVSvCFh3Gg6Pe0ugLPQd3nVzns5CrAYQzc2BRp+bU/HeRpvAid97dCtmTj7k5XECbRGbGCWWzubHA7WwTEWCpG1z6WfChhv8vgqNmg/zWQ2X7hCp9dB9qBVETT+nplBokf3ksKmEWUWFGunwyl9v2PDjPJy+G9WEar4zqPc4NmDwp40HtaVxsUMn2n95oBRQUYaS8AwUFpnTQw3ScbjQyx3lYO73rwmexhjQbN3PYdZ1ogFQYjIbBz6kj6CcYHk+8dgu1cUa44/KQW2pXbzfK0bavZLNaW3cvlD0TINw+RxsBLap7NB7vF9vWd53vMJteYy9IGbp4voZB/x736PD+nlMWFCmqvpAqb6XhpwNSBThfnNdyKUP7VS4XEy4zupqkTzOvDWFps5poXafSRXabThzpunBttQd+mjOtP+mvjBAdGEzDpsSh99dOrUwAZf1BuvbY5LqJ542CxpPkXs6hvQWfnWoJ4+IboXCAoIQLwHY769XbL8avN56WRs1PbkCTVDfM8aG6AHvu+hIBJwe0pllUw1vgVKQbvQ4RuHpFsNTay7YOkxJyhtAPsFroZ7IvC0kMDDZRFD/kCPGL8fMRSKvt863x4mwQXizr4K0FmoXq6CYfndg2bknBB384jB+aRWbLf7Jq1xtv0mtfbp8+e3nGj/ULtUkXIS5vcFrIIkEFrxhCRZ/5iEqZo6wKOv6qZ3nbkPEPKH6NtX7ob6+OdgUUUbephVabHveJLC5RCHqzK3EhqLreHjamBzdvs9SSkXd5eGWtS+aKl+St+I14uApWb6IeKUS0rkxSwjhHGDEyRVg1+EkAiXmUurzEqrG2zNSYeIrDpmfflAxbTnqEBF7h9RY/wAYQOe/9N/HgE1w9qs91k90BBM47DsgqwrD8ce6VYuzwScoKB+EnRJ+rBqWVx2+9/2O+qQP+ine2i18sLu47mfFxrY/Z3Cy0JXc1vgU/VNug2OCJTJ89JrNW7Hk4Lk3JorFfdKPj4fbwgmTlOK4ECxWK7SB58XSUHm+qmCMuEkHqQOk3WKioOfhdL3CgX+/6bYGYvU32ATmcU/x61WFQ/Q2VE2PBx/xkain0i15IQg2+hF9QOyCaceCGIyPIMDG7T5atDDrE7ShJSMJDNtKWvywhGE9lgiKtyWciq4T4Vk+6OSuuCGbsupmwuvpatFdtResSZ3jVtvIUoNUcyuB1i+5BVabDyDAUiib6mhsoGC4FeH4obCW9msvmoxWC/lQ3dn00eUDLIXzDonqMluLag81tD6JRB47EeTd/vQaIGgSl/rt0wXTLT0H4B4+EuoqKq7mDr48WKMW0f35a+fTXnageuJTD//Wg3lvqVW/x/hDuAO2mXQKDgGMvW2G+M+SVr/zrewcc6IBfb+s74nTMw2Z7E291pjDGV/UGkb6RqbGpnHY4G2ESRlv2RY/ZUMAtMmUCS7uFBA+CcqeiIfvDchHBRHQEhbOVZaetKVeKur2S90zMwQZSHt4+p3vnF69ZweT7/dFdTs0cwbU/AbJ2JsowQ8GJkncEdV+VQ0Nc85aB6noSFvEosFeEqnpiC9qA0v2DrA/5TtAd0V0grHykZDEJr0Sj/n7Cq9jhmm+edbWorz6BpTF1qZ+/3lbc/O+P1RiZCMOcojy4bOdCnhZth+yQdMMFgshEzrcYcQ3xu9S6r03HZxOpMBBbg9sEeSi1Solc7Cfcku+DHpcaFzcPEnZhYM129PXBNlS09/npyy8mpn2tcoaY3TYh2Me2AfAb05PvN1tX9WSUTqAze0TI+nw+bDvafJMqFu5QrqHl6Rj/+wCkO4fNnbMZ8jYnXwhxF5d0DSI3H4uPxcOXvsuImV8Eqo539sFdBzexPHBmvLlulUGkC5cRZTbSc2HfHp4UK6UD/XYS7LW/KZD5RlhiulutG7uDfJgzW+o/NI+nfTdp4ZBO0zYpIBa5H0LWqhwsKe+GMZsmPYbWTE13cP7jzP3bN0P5Z48ntgblKRvu3wR1W3imfh5iuWQhS+z1rxt8Fmf36jmykomMFnRle51OU0ZCnYlmM0xIdUgOGwy+MmD6YEL0AYd9tacAi2GnGtH+LhlyOrJxct+8Yxx7a+N9e9fGZ5rq6bbNH3nS1TdEWQX5iGpwzJglOgQCnkj0HBjVWtrfeOhSYX8xWnvlNXKl04AXKmCBFhs0uEi32po+IinW9u89kyPlPUWhR9SxwRRRY/rLMCIMyvqHfinNZGLeIJX6iXUOVQaG+Web+E2VR1sSfcgH5+v2NSaK0T4TkrdkkIacEB/cA5xOKcIl4M8ZGoQkPPK/175klfLQ/P2nYqDdSLdcJlvV3hfIkBx+24rIkvl9Ze/qX7+4PR7SYIJpJjoNHS+zGIzCF1VP4EN0SZih3N7P+vwOE4WjcozVw2GPy1aFBU2Ob7rnvW//LpzJ4ZPN+1ajQ73yiDB7Zce720NFqFrE/jjL0punhmLkhDCV5RS6t9RzoZKqiHUCmtEyuHK0sWsIxEgd99j3bcssMSsILA3+JCadf61lkLkSjgf7kfsCftrShb7yAEF5QqhMRTYtJ4veHatkEYf3QbS6zzIoCGPA9o0wjudhoiPYNnxKvY1fEolg6q1mk38gMP0eLcWzD0JiOaiw1YxXFKm1YcWpCO5IJ4StaJJmonwtbUa9NlVZiop/KUA5bGZCY/3z3Qy4wnC3WyUNMa9l47ioMpAPROAxOss9mt+SSBy055sYiiAZXu+nGBk3zm6s+u7RZwdXn7P88NzRp1GU2FJzjr+4/tjJ9VwGoeBbukGABrzbqc99cnFLnTTikndFkLD4nq83W2scMlvSwyNGBukWt4tYLfki2AxvFK8PT7XLlBeKgP5/N2jmd4v6ZCWOICT8TjT3SbB1WLcow4OuN7gaPeh1vd0kkToasIbNQDNjOmpwsMPiiZsbs4wJy23O8GatTwN7sO+Fxf7zsGnq0GKlaNsddmLnuDoS2Tlr4k1VdOwAKx9HOr+ulQtcUhA8bV22H0JMGR6OvOa4J4GbNedkE7ZLRXhSxCP2KbJBYyn00YEvchP9Pk1/FTycq+Fc/98UVd4EDY99ReBK/6ikRMR++U/eNqVT1LBkbFpX+2u6u//xThK+uktEgJ0yD2oXZpTNYW+H8CC7E8Ub+O+6t+CPIHeEEPqMhL27XYWMkiM60h1/1lX/ZSZniaUb/OPP7DvG6iwLU0HnQLF64Vk5FV47q2JLHwqrfgWNGBrHAfs92Gdsse+hNohGTb41tR1OLb3s6mWF1ei6MwqsJBNEgErMQkOM9EJJ/fGi+B8t85E0uSwklZ8A6e93uDTr2T42Jcc/MqVj93mUeaTJDoEHnPckddeeeWsyea17AAPOPLorqe52F5h5UkpdfaWVI1JAweof28Z+um7hZZ5BIrja4uD43rL8fDOCkgUJUOTGqNqAu4lAdEQFxRnMgTTT1/Sd2RgR5FXPbt2jVv5HLaPqA3nusmJirp6S71mPwL2GZcD2Fy2AXU27b2f2VNeQBWdL+v5yawVr1XgfE4v1DmhltI3kWuI7FeLg/sw94sc9SbcwOOA3aOR9kMvsVrbeaWIDXpX0kUVBw8628bB2M2CkEIjXUcQlNZvcEvFAsfnIdDx5++8jZV1Xf7yOXqmnUXGbt9BGQGD2l9OqiaDlz0YNvc31qX2C4aVjwDnJiLqwOKZTpahnmC2NBTNIZSr0RAeLlyyckd4SD02vdvmACNOr/DOuT2qudDiBdpbK8WhQl/h8NnK5U9P493KL+k6SgmW+qklI3Jqttxc9gBrPCCu+ER9F8nHCcb2J8HBpFiVIDLgwrP/2mODGnI1k0elQqrBmIbkcQoXF2QFGKm8w45yuwBmEXhStCursO19VTBqjX+C9VWucUTsLh807rpANBwCamwLiZE5OlzBXNCeblf+vOr3Rf3lX00po4rOwLJ/z4t9q6uqdT0O0EnFnG5VvrFeWFMWMO6OPHbD4/cfvws0TsHmqbz88nEEmF1uKNp/inC6bG4LbCzOxNtdVeaTn3MNiFC8RcuXhvm00Q4lDJ6wWPFBYR/5uXYxbEUbBz8/YuWT4B30OrbVjdMPWXXQwTULXGp3VzllRqtm6naWH/SkLnM4Cv7Mwek0FBi12wSwn38hXo4dtZPGSoc1/qD3lEXs5DedtffXuYSi1rrY2T+znJ6zWwHHhxfg80vah3ydvhdYIedGhCr7gC42vgFMO5RS66zTcAn6tNUaC5pEa1+Pivg4UeGqv6ijTrdQPLq1CA8hWWhkgZoNjs67cGtLCza33FiR0tMPUPlwT+o25qsfzFjm4C9eo7g/9LNeHEv4W2+/2Oj9FHBS+dNHRDCfPaB1ISN4+4Qi2mizzOZLEiwwy+wbfZxZxZaMfoYfv6L+U1XyEVr6FYq9M/7wsh9dWk6QUWtPd5xI2GxPL1NzZp7H6CH5aStpO1mRL/mB0O89CCd1zlrQSKimvoVMJq38/fc1Do4Hn4kDymT1VdQRjcAhreZCjGv4PSYfGnKhAaT6M2WaB/1o9Tu6cJ7u7xbWZnCkBlPUcNjPzgJtZx9Tc+sO1soPVHjqSxmt+h4sc3prYMwygwZp3VTMLz0RpnNUEOnL5HA6b/MY/vSOcd374VwKyUkRL+eORq/BrNjPj5myW4X1ZyXm3zvYtfB9Uk64jBcxX9rJ5mAseDb++SvDxj5MsCd2gVPli1LmPDUCtpOXo8m3KsZ4bxeDIy1dAqJRrobuyyJ43Z4n6kjxEYhXNKvao9Uqun1Jc/il6rDyRdnBnqSdwfhbb0mSBRwPtV0tK98DZrXbELby1Xakmgeeo55Tiz8OFsUNioHjiObKd5S0z/zj+krAJl71shWy/Xnbwlz4nrE5nGOLfEq7gZ4nd1gPzm7In7dp/Dt/aPPbz4p7B/Cx35zJtPLLoajKTgva1XJvhQMTVv6uiaWjIv5GSNrqm08AwXnH0HSw4nRZ/Re1VfQ9PafUtSaScB4kvbpBm0y+MUaJB6EeE58ae8XIxX1fxvDyPZ6xaV9JP4KddAVtkZhEsHvKyOYrd3B3nzY07ngjFff4VWhJ0h+xC0s+ZTe7FeFwkPw/vGqzY97B+pw9qC5F35B5rmdD/Q0T6l6UYzinvGCrUKoMBEDC9TMPlPKHr6hOmiolO/cRARycKmxmCexb4O4TACw6UmsjJKFUX2RdW9f3n3+FBFtVobK3f7+fT201x/B+HlrSTXcTjB/8aMF7833TU3+q2I+PAxsaMt35uyonslOKsPFygWQnoejJ5T6VcAPPA+K/nNTP5D24ILQ1F/ut1VjLoGclXPMhDYslCufs5WcgZlcDtdXOy4kaDgv8xZufP7Jqsk+LDHO/exMubR4pU+NkbQQcrl1bqzJtPVfU4fnNPmiadSftfn+/9Z5PrEN9Zpdz6usw3OMbNn98p77IJmx3tKXWk5f65VJPAww87kCNNT+yo5AWP38YweNGZAP3Shew+ttkRC+nF27NzlW5N99SvJOnvGvmEMEjv8QUezUKZTOWITgtlYODWPZDybRBpK54je3Vb50OHFaB8oFPerq9FNAUL20dbFsbdA9VLxfEt0rggz1FujVJFq78W1bv+nAjIuSO1rKvS1tdaHHBp5tzCVnMow6u5xVxhrmwbtGOBEhKJ1N9jefv2z8MPz5Lo+P2mI7utYzgKZm+2Htfhnws2jiCHXewcVicwvybtX4NV7/zLx/NhnCy4fbrIbzf2uf/kHYl28rCSPiBWIiAJCyZZCZBQMSdICo4MCZAnr4P9+9l73p5z7kLIVX1DRWqfHYbKx5e5/N76xcUxrJ3DxBG5iem/qXWm5mjpQfzmE9waoayP8uGLf3xT3IgQ9+Mf/wXcq+QCKm7GtPTvOpQL/FKw1W3kkmN7x5MMhJi9VT4zeR6UwbRk3FkFXbpsGSiGihox0c0MZyXsXyiUoYuI/6//gD7fWVHvsYXH2PpICbL4bwX/vgQtvjvlCyoXRDsT6crVT9UTmZFjL+HsNfORDKfUcJEI0d/fJRW2/skzaDF8K07Z/IqtSDZv/wTgrfphqmb3lgx/uGt9RAD7E6XNpkuNxdBFYOVyPOhabru+gxgltYjtr3+4U8j34/gwHEDDgj02YzVoIJaM9nYE492IlQiv/7zc9zauifrrwhu4NuMFdXNG2qY89m10MyXDL0VvxuWxos5sOEtRnLZGHNw0WoYBLVJTeXXJ2SLB3lMbIv6LBMHcevnwM3vIh9xzJpR7vMK/PFRdy4mQP+mAIl1P9JjDW1DsC+nTMGDqCPxdukBXSZ9hJsfRfVf8yvYx1gCsPUjKP7uj8UsXdH4x2epuqjHQuD3jwj84dvFwao/SI+Ig+Khlf6Lp/vLmiqnR58RefOr2GW6W1BRkxMarZ1XLE+a5//wP6y2xQrhz6z/+jH4vovpQNkniOXt95Ef3QHWXX39K59O+Q2b6forliHvOHirLhBr8VKz5dlGCHo7AulxSAlggWJkyo9Xrli/X4xmht0tgGXQNUhxlrqh+xXd/uohVqOdxxiCRwuAVnfJWj5qYzyUkalMuaThtLMEn1h8nsoaF17JfgzmYfzTc4Y8KxhnowQWDWYRfDlLR1a994u//sffeVIjfqOi++jpEziVw6j5EIJh3fgZ4NxvTK0g9A268J4MNj+I9CHfDJu/xkGbyy80TddfsjjXAf7lG9Z+CvMZzkMZ1uf3gh2jJcNCxjGS7ULkkDiK94aKRoQUp/IYggZ4AzEOola5RK+KzDk4gbWa+fe//BPkLErmuhgRbD+1j21UNGw2M1mWN/6Lw+vxVMzmHZhy7gvWxsei5o8/w/k9Hja+Ujfz7/mT4IZfZFaFqlj+9POfX6zF59pYdhePwE0/Ukd2AZvPLJfhn9+0co8bW8Jk7qGgnyt6rM3Pn56LYa5ZEfUqZ01YewFPaH3F6z88Zbsmu8FWjBDNdEVrZmM8EHgP0Zk6xVT7pMZODYNznGLkWFLyVkP6BepvPOMywgnY4hspJJUZDfzC98n1PRO4lmqCH2X4BCwCiAfGp+bxP/6uDKkA4wjEWPNh3kzd4bL+9aOIOAevgZKn84Zk6nSkbPi58bsYUhiE2MDPFsxBpRE4ahcDCeXrwOh+tXIo3vMau7fvxV/m97T1W/oX1jNONugwKDygmUuwdt07CQn6cw7vhPD0uPlj3VneqWB1HzKRxaNdLO39oQJRcTjqhbzRzOmYjzD++gV5LuXXX958aUHX6h5Yw2pljMtZi8FbkhVq7rHeMPC5yTDvhAe1neEJ5sshFpTjbC1onEdqLD8ti8DhXV1Ro4/PYjiJuQrC+7rD9lY/1nsKeLg7fswtf3Tjr/+lxA8X4avvuRtf71SgxmWALwUOkj+/GRZxvsdnHYzb1Kynrkyv/oSd3YEDA58de/jLdirenmdYk3LowZbP1PiWZfLb+ld/9fGPfw7rV/JzxV04B6tLaRl9dwzf4PJr+j+/aWjnwTHh3/v0JocD06b///obOIxODpuf5z6G/Cu1adkFLajZNav/+tkUo/nEZpGG9V8/gDSPPGNL9JRnmIblnuw2/4Dx2tGEotknOMgKsVmF8BVDSbxO9NhLxF8+oIz+8ZfNn/XnO24z2Dz2D2zXdB1YlQ8OUO+BTi9lg9gM51sOr9XeRJ/Nbx/XfpvqvjcnesuCoVjNxYIwBsWb0Kp9gPl5ruP/60oB/N9XCn7yi1IL3cSG5meogpmvrtRd3AHQL3IhLF+PG/XLj+kvcEvBv7/dsHgny1U+zfBYqCcaDeWn6VrL6WHGN/fwh5jSLBPfzGD6GB8EbUXw13wBGTydLIqdmvyS5fRZCEzNb0hVhUYDqTJiwliTElrdH+4wT4qHwK86+whwleUzdPp+wU6cF3rOUD+0kq86EO+pR9jZ6oo53O8CoB6ojTVyWtl8fF0ceD4oJVVvmusz+XVzDpGXejhtopc/tcSO4aQ9R2pn1PPH0s+ekB6kHOvjng3s8tFWUAIsELLL/WYtXi2Bn1D9YncnPJJV4/wa6FmlEc5KgE+n5iuDndlYiFdCAXxC0PXQyLML2i/DseH35aOX2x1MaFBenITv7r8nHLfZcfpqiMZUbLuQ7kafkPrQoWJ5wDsPuGSqqZW8fw2Lf5EAna8sUofWtb9cw3VUfuaXYi2b3wlxy9IEws1UsWesA2DvqvyC3bMqURMbarJ2JM2hrwCEPXARjXGyxTeUO3Sierf2zfxA7xkWKnel6EIuA1NRk8KHoPU0iXvdGK5RRaCW3N9kcc82W060d2CrvUXsluZ7WK/HMoan1X9hr9KMYvXJbCkVuHcUO8wpJvXRBlCrUptedr/XMB9DLpb1uv0gCMJXskiZ9wYP1eoRLPgrY4+MISg8whJBpXOGZV3LEWiQW6nhD0Gzp59KB0EKM4zP6itZxE+UKVZETHKjyw4scFxGSHv/S/bc41mw7hQFcLnsYvTVviWjLyhZINu+Ggb34Mj2s74tymgHgL5bPnQaXJ4wuOR3BPap4M/2yXzKVl8+CRR6ZgxjFwQwLaQah79gXwxWNcfwVTYqmX7BPmGJfBhhQX8GKrzfwR9rx3tDbteK2OsbmCwaPNSHZSlfZCy53p/7su7BJ9S/2yd/BhB1vg1g2EUMO+GlKmYuDAL4CNua+u5Z9/cMqDH0uGqHta9qJRMUegeqh8mmvtQ9wXz3Tj30lQPCuktCMHrpbQXYPk+Ed9uhYcN5SOEpuG8lU/r5bA1Wa6cVskrt73diY0PNTBk/mYN9MCvbIJrDFw5tplIVFaftfEAA1zcJaLAaSzI+0DiDpO1FaimG5k/z++QppFV16veqOoiMAQFivLrYfFZvMN4rMYdb/tCgfWsJk8MlVtzeqama6KwhD19a4Sl4ELS3LhZb5W7+QlDJBkZWUvjT8H0GcFFbBd8ftTdMkdPe4HY++DjRg/EJwatVlKv/oiHkB39yC90Ca7q7EcBVX2NsJDjDen5H2C7RrVi79wBhEVgeEWb8TWZ+fxcAOiKXSOr+mCx/8RvENaZ/+TaLQaiCz9CdkFQedH+e1fwJdWvChDsd1mKOH94NnsrgSeNzejT25W3J4RavVCUPMiyyYmbKnvN6tHNYm7BSNS243K5XIjbNm63AdiGEhexj7VxvixNu5AYu1pjhsPhyxizXvAcbQ71Qezxy/pr2Jw52/VJj+6JMDeFacoPO3btRLNk/Y73iYIRqfmhw0PmGT1J7yODO3xcI8BOfrJG75tByTj8iA05idC8hDp6LdCF7Qy8N8h0sB5K+crGtPOVmTq+TCZ/DVFKnPOjG/KmWUakvtkbV1rCHOX7oOZyo7FDtvepsfTXvWZonx6BZ6KjD1AmrIFtH8YnxG+RDJ3zvATRhy9N/z1e8SwLJsj6QHHwtxkvMmuXDa9tFOjgamFLygDBQLYc098serP05C+C5yBbq5k7uz+viERDOHxcHrn8Ak5F+3pA54ZHiG3qD1aM8hFXJczgQpawhDN5iSHj0pfbpZQ3L2xAjmPVMJfVWH8e4lQUY2waluCjbhDj7WwRfi6dh31wZmPWd3MoHWeC3em0PnYX8G+QFddn+30n4Q9Xpf/UEG202FKMgvS14KtGTLGKhM4FLnR4uTGrpFQOOsS9yOejQ74si51YnI/+cTShXlwn9xSOBt1qAnR11aHf+GT4/V4TA4Cq8sS4VHmPa7lxDy0l+2DvxfTKH4fxWpGs4Ymt/d8E8BpGq0PptYGPDh30nyAI42B+XIubHTcejV6D4JV9iqxPXZgjCooJOHgUYL87SrO43eMJTUwtYtcuyGKeuy0B0ap9YO4iesczE/cIijwl2FcUaSPPbSTCjHaLFWNqAwQIKsAajRkOhvCRLYlcBjEPdxM67GcHSlPsSlsK5RfyUJf6acLsRimmrUUc3HLZqfGGCS7+t3izcdzNH9K7CwO4GIi0Xu9lv/ETZ8gcJt1/UzIbbOMoL+AOCFo2bRUlALRt8DbCq/S7+ckkiHSpDeiP8zVqM9jKXCH40eY/Dvfcs2DXKRmWNXwnWl/wF1mInSIfklNUUyV5rEHv8EvgU3ip1uyZttvp2+8s3xMLnarSCNJrwsy8ItiEyhnekK1A67LkvRkYUGz/B/0lAyy8rtUskF3Pm3ioYnriKqndz9dcYHWvYQa6gYUwwm5XyxMGtvm3xlzD2u6w51P3PHS0wWZKptPMnbOZkon/4wfqtxbnVH7ThYbKk1jUFqOI+pEtEv1j0hmVQ/1gj2k+OWIxjkKuQqBwg0rsJQH/6+QSmcJf+w4Ml7k0B7sR1wWY1rWBOBe4md+2lIMKYHLYRaVGv7KqkxqErvBqGPrgCziHj0PfeX4e29KsaDm+2Ig4JbjL00omDuYgv5ECmd7OmisyDEZ1Uih4pAbPWkAD+4zuTgZPFLTwLnvTKRPt31BmsbhZJ6SstxLfj71Ssl86eoWn4XxpuLZuN/3kwsyObWm89TNb7oRzhaTdd6RZvbL7MZQAuy+uD1v4aJKszvHjQH2CDtalf/OU1+kje4pHaAZcn6wgKCwr2wcboeBQHeju+cujFUUl9vHTGfH1qb4VfvIYGnBj4/OI5EIZfYcQBOrtsFX6/AMb+QSGSLSGD3z0/JlzJJGD7dk3B5J6uvTzfdh5ZXOg2e9EgX3kRMvovPqi0vFf4nnkD+7eqZLM+Xlc4nj8ZteJtSpgjoQjk7yWij/DW+4TsCALR3r9iG7F7M36PoP7HN5Fz0wvGPW0OSsSWCd86dOhE6qx/+EWUIG4BW0KOA9+dQrBbCU/AaunSQq5fO6TEhIJJn5pVOZA2otrrnhvsHz9qjxZ2BW7xV6xZPDg09YNIuXIeWB/sVrjO8vxPH8z+j7Uw0NmdTIdF9+fnntQQvW7TH774K1CuFUxOaY21X3wvlhOtPSiU7EwUsZdZ11pqD+s9HdEBOq9iORm+Bf0XGajnl9nAl9rXgsq0vqgRNYUxSXpHoNY/h3/1fztvAVZCGtIsZHvGBl2v4NUXLhg963VYhHL7qtz5ffAxuEuMFWPjAHmf77GbiH4yqcy1QGbHNvUmyTbE+P68AfFnOeQwPV4GS4cGQgnkHyJ/D8vAgoshwWbvAwJWiYDvL8YcuN9zij5rbBdfQ88IPFLpQU2wYwb5hFAAWvJ4UzRlYUGcfRzL/dojolSgZfSdvh0opPaw8XlvYNc2UpVdq+3Ikrl1Mw+XYwbDxzNDh3sGhpW1yw1OkXshrfJWh/1tMFVoRuUJp8/KBHT3MExlQMKC9dW4+Ax+pgg8LvmOenEx+rO97ZLe6hN2tPLnM9YbNxgOREbt/dmw2RPdHHBaUmBLMV4GfT6HHqTXqsDmay7AssUzVGbUoQaR7asLG+p/9QHr+YUYQ4JuLbj5DU+N3p+bhVJUwuaBZOwfIr1ZNnwC0qt3sR5Z2sDr43WGW3wT6eLMxla/dBhebBlx+cnyxY3/KzvY77CGvdCYT08cA3FPGFEkqWoWx34FoM0PAXYa2IPV7x+tbAmDSZ5hSArWxncLFpa9pxtfaVgxDg6AgXvFJvyejUE6Hkf4avYZ4nSdDEznnwg64bXFejGP/lK76VtxbiTBR/vjJfz0mCVFzUGDQ6OaWEtuyRfwly7FG181loeFMvnv/dmz5g2zJmILbvwa26qnNLN2zHV4KB8XinOya1aS2A5s9i5AvEi+DeW0ZYVbPaRb/DZLdS4tWNHTkTB5NxTkxxai/MXP6jz7ZEnhk4e7T9rjy/RpkhWPnQ6vQvdF+xf/YusrMiQYzScf42biwfT3//u0KxG7AdIsCVNiIIHb51892PJ7lhsh0nEppwpbhPK9/uO/oStozUCOOQHglfrUqiXFZ5k9VzBHAiZcCotkYM8bPGx4jE2NU8F8DVoCtSbI0HrayQnVHdcD0ZBDHFzBy1iOcl/C0Ak0es6N2V/q3duE6lQ32Hp9LYN95ZcKU1tPse1csi3/fAn+Pt2LYu+4K77FcPLglxeVf+e/fJ7GCDvJCqm36UnSpA8VqtoHbcg2+8vRvHHgAocM/xePnYMFaXT1UC3yDqNPhecgE941tY51l2zn//3Th6i5pQGbu30rgOYRyPgoPj2wXsSohTf/xVOnjNWED+oshVyb1jT1cFgM6GNXsMgjgo+aaxRs01MgkEGGBMsdjK4p9xXch2cLq68hAXPt6F9wzVVARCLKxcfwFAfeHP6BH6sigPmkHSx4GJGLduHN8xctiiul9eIX2X+qcWBzkkZKuisK7GrIL1j8ywWotFJCr5WgAtHGfQ3MWMrpVbjQZKLUKsFP91rsqdcQsHRf5pB1J5EacV8bzDca/e/3ocS6u/4cmo4H2mBst/f7YPR3WW/A5laFIgEVDbGO48Z/3y8cPGYrWXWirNB/OyvNtnoyBa0zwzN2Quyqv66ZTyR34BHaBrXbIimW+X1y4M/WBaq9/ZfPnnxQQ22XHwgD38kYv9DQwRbfZDdcdsNn4zNAZNG44QMwlvN1DUBGB4QU8LUTwbjlKhzdfKXG5jexC5EDqBWSSi8bnxOcoeNh/7k0FLna22e7lj3hrYi+aPtmvVifVlH9nS9SDotuiBWy+z9+jhaTfI1BHrwvfHCVhX7K89aMor7Fy6zJVIWvyV/NVB7h8htNuuUToDh6ERA6SKMGsrdB5/42deUAZWz8aFcs6TrnCjT3Jia7fBjWZrcgZeOn+C++5naQcigOMMNlvU09Ufu6hcX7HlN0iueG3u/3HALtc0XRpsdb+g5UeLjOOr0e96EvtCffgsf3TKi76ZURqOETrrM0k92v05KNH8tQWdsZV1mpDsuhGyq5Lz4WdouX4NOW4x1I7n5Fte3555vt5/B16VesQTnxZ2UWR1Cg+kT1QSU+Ed2r+lfvEOe/qoH4/aUFQnockLjp340PmrJ4Xe7Ye2AL/PlzkGvKlBrXyd+G2Oce5Nm7J7fXQIxpP8hPSHbZBe34FSbLLK4qOLQdwGoYomT/u31vsF3zguacXyfs83Mc2BzLatM3vU936wABfzsWWJXH38Die5vDTQ9g7b3WoC92nAx++zyh4fTujN7vHz2E19KkeXN2jX1JH84//m4se5DMgzFWMKeHbTED2lY67EUE/Ufc0HDjQ/zmdyo4Dk409OmtGDe9JxMoR9QH892f0eDK8BuUexqoydD8opTn4ffoPbG9+Ql3NCbSYfPXaKA7M1hG2TUV+zIJWJstKVntXOX+9DohwUDAFAfsCU+r+/qn5+bqLj/hzi1Saj4rk036zZMBaNvnnx9cTB99vSkbflIsxNowvoM7AT88PtFem4/+onZ5Dx9jEiLwHfaM3bdFJE6td1Srbtif4n67wls+K2zrkpUsH12+Qa1BGRpC2LApsbMAHvO3R7f63Ux/+sWsVBerq3tNlvAYO/JjlrYpkYbIaPdRIEzs7xGtmx6euMXkYZaUA7a9+uTvt98PrztTp2oaNGBu9E8M9SeqCGdEq7EA3N5kw6AXtMf47C/KveGgDq8a9a/RteC/be2AKLV+aKnNKyN//HTTy3Tjg4V8mdoAcgqaN3ygYG6FaYTSHPHoUAlPtkoGIP/0nhrykTFXqW7++XWbXuOK2XAHD3b8a0eP8702xs51Z1lp5QS753Fmy+MnmVBqYYW9Qi59dtELD+wxC1FnlQj882swufF/fM24dpOXH+SLkVMknXVG5Us3gg/IDWzwzTshxzVQwUM+SFSHx3OzOLwTw7P/21EtKQ7N+op8CSLguxjhu+9vfguC1/ObpzbfjgUjda0D734LEUaazxZwzQWYWA8OG2SNC5Y/xkqWVgJoWKW2wX4XOQfUaidsXKfBGIUiXqGoGhp17FOQzDYDHhRZPGJPHjUwbX4pBJVkUEcMRta5hW4q52mVqA3MJGFh/17h2N/fVKvNAyC9OpdgoIcGo70q+V1gXXT4fNTSH74zFolDBUr/eUVCHdqM/6sPF3+/Uu1ysfy/egVU7YcI02SZrZSXZHg32oQcuBaweV10Aje/nUZ0io3FqDIV9vhWY921A2Pkn5L1934QOwp2Mb+1Zw5LbjUxrh9LsUQzVUFxFn54wwtjy0cLlBeioAOZzIY3zVAAv12hEPnS0Wa1x+8IeDXbkXd68sGYJbqkxPtrQL1d0gyjI6FY/vPDjXLmjTVVVuFP36EZviZjWfyYg0/hq1LfU8VCOJ+SVXHPUUptIt6SyV8FE2z4Q/0/f+ZPPxT0Y1DNUhVjnrpXpuQGqYi44R2bv3sHRNYCibyvF7D4jzOCrRe9qOrv+oHA97Z4Vscj2V9PbGCr4bZAarmK+p199+m2xhXwnRBSv2lHNp2nwoTKkN3QXB/EYhCaDgGeIwWiGz5P4fHmyDGcXjjY8G8x0ukLJzGocF6q1bB+TDP/52/PGaca/MGiIxjaVKXHv/oDJuELxbTXcHidPgW5nIn8519Qc/k9hvVuHBGMQ9Wk7uNeN5R74q3/db/h46/7+bMueEhmty7AaHQ6MGT2tugqjwKy+/PD1nP0hK8jGtAMkq5YVPsrQ4kcZQJ1JwKrbbYW3Pw3sutHr1gnBHUQXG536t2dB5gndlrh7WMYZMy+QkJ2QL+Bc6qX1O46Acw2Yw7M+kWl6NB8k/m8P9R/9Rq1gSuDuf8WptzjvKbpAwgJDbmwhfsXZ//5e8X+T8/butgisL3/9SSPX/Cb6yMRZqE12MFUBfiTG0pAxse+6BuDCqW3GVHn+haLURe8YJtdaWILa9eEcedbD9NCromsv52CvKYzglf3FqGd+M6HObx06p++Iy+TWMaSfyUJuCBMKdK7uSBqeM3gXOsxNSeFZ6RxOwIurnNHezV6sHlJDjd4i7+QCG99SmZPPcj/6qMVOs+GKQfLg1HL7dF0nT7Jesv3HixqzafHZDWS/ThHrRLjyseukplsP5hcBW7c8qC37iyxdn+qMyXhxWLz203wz0/a9BjaV4+LT+LLHkKc9jn2+59efLffB202BNTUuCcbX3zXw7CLGbYz2htTUQgxIHkSEX54hQ2/3DsBrj5SEPeZs+1Kv8KB8xOr6CwR8sfHAuWiCQ71rrfXsO6Ad/vHr//42ypzVXrY8gd7PJiN2W2eTyjuR4ZdmlrFapx3b3hFUYXL/n4z5nOd9zCr3iXO3IA35g97VHLJwIscsiQeyBP23D//Zc/bAdjqMw/joqfUNi3vn34Cy/nlo1fm1gMLubCHqabtsOkJ2Nj4kQ48dkFEDDip+PNblP3W3H/sPAqW3UBr+Od/4/tpYpS/Ke2fX4Hk7X3/9V+ht1/OZHv/4J/fa43Sj/7pd2HzsxUjqVwcKLrFSJIdzD//Az+oPG3x8RqVp9f2+Cp+VrbpVUEBAfWwe5PTYkS8nMFh156xfgkVMP6agAcXM8L09IuVgtbSpYezZULqhN3TeJ0M31Q+3vtB3stBS9aQ+QFYdvqVeuEJ+uSPD79mQ0aiLn0Lxp43DkbfmmBrFhx/nLcrkX/+Uvh9Pf35HZwJlNPMILtmW5SG78iDfmj36EDTb8L0mCv/+hVoPacfY77qUgwtoTOx3RYs2fzb2yF6oHyLB23Yc+ZnhjniMXUDvh7Yn596aguTXKqztn2SqX6h+6okamz+8nRZSABNfx9hR2RoWIGtccpIN36hXpNBtI+yCQ/JMtEgWk7+Wo959n8tPlD+95UCEeQavZJ0MpgcQ1lOnfOHmuerNLQ/7hQBQnNINYGd2awd1F6ZdiagqXn4GasUG7OiXFubop33KhamV9zhuOwzirM9M5ba1zMgHr4aNpOf7TMpdp7A6oITvSvwWdBLP8bwWvAfrO2o2dBdUULo7KKEPnz8GpZfK4ww3Rtfwi1p3Ey/liNwqZ47ilL6ZKQYdl9wvbcf7BbcOJDqAlLIJKyjXUuSZuUjNkJZq0xs96YHlkmNa4i/coHtqvSa5ckLXzjvqx1FwhAPCxkyHqpegzFuCRvIsHvwoMOZgPiU+yXL96jf4Ps+L9gp+qGZLe25QrkdTWq8Y6thf88zaOsB2++pZ50qvYhCrAxSnHcsWWb59oQza3fosDtVzTra2yCpF2Ho8NSqYhpKr4R1/dijHy16QMsx0mHWiC21H0uxfUXyiuDn9JGo/Z48sJRVHCjDOT9gvPR1MXBpAGUdPGIC9QAPSzzHOuzPpoSP9XgAxLAvAXyM9oLtPfYNYrFtT0OMZQLL3ewTtGc6bIp+pl40PfxWR3cVqMjFNOPi3h/PTZjBfsQKkcFn17SDdbjJ2TNssRnoeTPHr30M4Xm0cNJk4rBmyAhkXeRCIg3UZ9NO8mYYbYNTjpbtGJPjWkjeJ4WJdp3Pmv4J/RTmwu2D2tN1aJYo8FTAXTmHcMd6AfM1u1rwdLnWRNmR00CHJY8BuARHkgrqwe+yPrYU0zBSfDzTtmB7wK8QcOWRal+yH0iXFk/56tMeh/xHLVg55ir8NDWjdnLyEuF47yUYBWmBZrakQ/9tHyus7R+PxOcA/dWpLjF8sMuKzWb8JZ3rviR4hM8II1prBv8RPl+4/xkmxcJbTxjHzW8YbYPM7e8DGkt50QN47H9nrJ1T0+BXXatBTJQGzUadgOW2ro78yB8L1iXjCMSueEbK/bD21Oh+FzCD16tVPIs/U1zfWUEl8haUpOMe2K1CzujWqv7CdEeeRMQYDMSwH2i7fh7h49C2w1qfQA5BLxypc0yHZJ2dooWHdDWwrb6KYd7VC9k5WZBQ/28xxo+7xmAaSvCvHhCmJwTKfW2i/qFOYD4I2lu5K3lPFuQagNTkMsIo+ZbUo0fkL3/5Kr4djaYytBml6zNT5jLncHidF3/9taAEqx+q9Ngqsk+dz7gNanm3ZD54RsPvZk4FhKkKmo0jY7N41d7wystfbD76fOi70H+C8LBU+LSLzWbhun6F59f0w7Zgl8moJJwKufs9pLnflEMbXu8BANp6xJo7GmCG4rWFN1H/oZ0dxmwq8IrAR3QYkuFjx1rIhRB4r1+BpMUKjDmiTwkWXv9Da/0Rmvlz02IonkULNZfka4xyorVQi04nFNWXxl+sz1WAx58Z0cS0xGT+3ZQWqk/TRwLSbgPp6ocAf4HEI+6hqmxvHg6zBP4WF7x5ZLDt/OFSuyr2XDtspvrE9WAfuAZO+73EVj9/ZFD0LZVqzcf0R5vtTQgWxSfc142T2Vw/Onx/qYjEswIYEyaphEUV/zBKcnXYv4ysV+wCXxChR83gD8rpC3PqvTFy7WczjGXZQyTbD3K4vIKBjWXZwkjmS4w+J80QOU56wxOqSmqWdg7+1V89ImH4M7reX833A8mHiTpk3l15QKZ+JwNllhxaoerZrORwkWFv7hQEO3Mu1t/xwkMz8TChtZwkIre1iHKXvJEo2DBZJlTxkE9sgzpZ4jdr3oAA6qEVUM/dcWBqxWqEel2HFFFlTRZEXQhH3ZTxzZjDYo6CMILW+X2iri0qwwBf8xtyTHWp4Xwsn92yp66oByOiWnk/D11gdBB0y1nZ8KMH81d0Y/jsyUTVak0TNjtRrmjPPKDHLGiL9USBBVSH92gsGUdGnZHXlQoHPbYxBs26vEUOWIN+wi7fVMP6+BYZfGmQEEasbzNz6ZVAOL9tWn1OL4O9jMhTpOFjo33ADs3y2t8i8HU4hk3sSEX3br0Mnrr0TnavT+2vdB2+Mm6iAl9c1UvW5pncoE9uGXZWNTDmrltSZfcxMFKnnZGs9WM3grSPntiJ4LDhJdhuywsXJB3c+zArXNfCHmYSMmLha7Sftougex+uWCWlUbDLAiNovHtE7bTtB6b1hSTn9fyh6rRrElrcZ115zRVFC3Ib0L7I8Qk9VmfUCXR/mHwDxdBo3YSix11lfLqLIBQRUbEuup9h7qVt0C2rM+yrJmno4fl8Ksa32lpo2yIEurYpqJRxoOhmPdkfHgIwNh5pB+oD8rnuZlgTjmLTzX7GurMMCd7Ox5HiItWY0MAdAduRYMcb/GRQG18GHU4FqmP+zdbX6UGgFgwR9qiyK6Y0rU2l10qJHmPvOsyp5HDwaFzOVL/chGThI4GD7+8kIm4+aMnUp2v1h2fYM8NpoPVpdpQ//HXU22bR32BwcFlwxs4QD2Bxv1YgX+56Q7FjM5+W8qwrxQ9PVPfuJmBP6Jgwm7OG6o/Dx5gslnlKutQvrN26c8LI20lhMj3eSFJvfrI2BOTw/bqtFEWxCoS0Aw78q+dH/XgtFtUiFjwmVUSxNcdslP2lh1cHfcje2h2K0dVnHp4t8YtEuC+H784yZCAGkorz7X0tQ3OrDnb3jKl+bo9G//gmKfT2uPh3fizYlxbc8ASfuatcvGnWVbD7vkX6OEqvYdjwGz7a74gOb1Alf/kM3CU/U/eaVMb65EEK5aXz6FEcZINcmscTrlGn4aMWOv4CzJ0FpRBpVOvndzL1NTfDOM4rnOT9t1i0s2WCP36WJfttlySOdCVjXEPt5wANwokNLzMp1KmPRzIMh2dbgzC074RZy5HxPJiEA6rhDaPnuhYzP3VPwJ9OBplr3jD22e57g5zQIERur9hY6EEQ4F++m5AcktnInBHeQ2v7ZDVFQCxlSQWCah9p6A4zIDhmJjSlL6ZHDFpjHZbkCefyxlFLe3XGWnz8SJa6xab2sQDNqswJD5+5NBHFFqNmVpu8h5yjhVj3LyYT7SrV4bcReLKD+3qY2u52g7llvmmF2Qn88S1gc1yMZj3UB35slhvMbelNxMjvh7/zhOZop3/10GDw1n4hHDyL2kzywPIiXgy/8u5AllO8L9hVlVQYnZMX4j9Pe1g9vuaUDb9wcOIpm35Jn4P2XQpYe8rnYfmrp7ktv6nO7Ayw6fzMFKd45dQwLbFYw/0lhbUf8hTtfq+iDsmg/+UvVTc8JVckfuF5zF/UZV1VjFzREXjuvy+SmaHcLIG3wL96gn1Q4WLW7ZbACO+fZNz4sFh8VB0+snWk+OXUBomPjQeMMA8xHpM6WR6uHEMjvIVkHYtjsz9cLzpEmvbA9n70/eV3k3P4e3t7rEX7fbLu0kGCrysi2LHQUCxvperhD/0O1D1sFkjpug6UIl6nCD5WNtWwjqAEiI64m6WC/Yt4EdQFL6SqNuvNknCrCmTOMQkAgBZr8TFiaGTnhPrlgP3xS5cYfn/nAzmgzx3Q73YhC5zzI3pHj7wZ0/CewmmowD/+Nb6f+7diyBbC3u6HktXEniQLDa8iQXu5vtAmogCr7DIj3s1snxdPh/ef3kAsfHyNNSSDCs03xPiivkDzLrFSga+3MiRufPn9x3+elrJiD3x2A3NBqsNND6KxziKfHH5shdbqX/CxVW7GqhaiA4O3dseGnn7A5AEhAL7tZBRLjIG1qy8CvOyVDm/1xGdvP33KLr1f6VlgLaBjmbYw4acPdsVhMtaryiIQ1v0V248FADbjZw6v8W5A7YZ3S2SuOhiMO0ePp9gphN/xwYO/8wza35xMS8ZJICily6af9GKJj98cKtfepmECI9AamUrgwhSVmlmSD7N3ygVgX0hMnVfls/mrKF/wrVWeqmFeM5p0JZIrnc5YnxIB/NNfjmXnf3y1mR+GFiihn+dYA9H5D68QiJW4wni16+IzlHoJi+Q3/asfnbZbRngC3h1bP9g1VFbaGiLhfcPe7bUz5ooPK/g9RDw9q0lr0Bm3OTzgVMdH+Ov8NUl9D06ZDshBa8eECUYgwPFSy9jEnzxZPr5AIAvPGj2qiWPsNbRdwdsmOwt56g4b3lhAWgwHcSl9gvE/AAAA//+kXUm3qjyz/kEORAQShvQ9CQoqzgAVQZE2AfLr72Kfd/jN7nCvvc8RQ6WeppIqLE9ICr7HB2KhdMtn9JMDiBshJxKtiD8SRXwCtcwCamadEy/ib68AP1uvhKcm0GdNiYjM+UeNInO/sEUrxBXq3T7G2rAzc86NDs6//eXKMIznA1RLONj2Dvs9pP50UzQPbn4F3vCM0RdXZPAPH/33l/pTEmYG3BeGS1PABfr8LlUEdq9TiBY9r+uVAb2FybUtqVZ9rwPV7BjKagxO1Ca7nhH3uUIowauBdr2v+nPOToa08VWspQk/kHIaEnh/FV8a9uclX+JglwLZ0mystTzPhocbGdAv0Y2aQ+sM6/e+X6VDfDdwSLtTPr0P5wiqFQqw/js0OaH2fge2fI2ts97lq62uEP58iyOtuQzxYo9v7p/+N/OdWHfnzlPATNAO/bxLPrCp51p4RuuDaur76jMeRk/4PVwZti9yDsZFWgpo6/IN7fPkzTb+GsHd4xVic8P3BZXvHVS+eUSky+/ls1KDTzgfij29cmqv0++dK2Uk0xd2ZH/Ml6+/I2BUzhLV7cEExzaGDfw9t1tQpdTWs9dMHnCmIsYPI5lZmz3ehuzWZoaYSBo2C4a5k9CjupMj4rx4+suvuwogjNOA5f0gDBXcCwPe1v+ts5MMPXjqro/NL2j1pTrxvdgl85H+yx8PzguAcR0StFP8E9uetwK+s7tSbVnNgRasVGR7Um8U5fnZn1Ols/7iCbH4dIuXztzN4EKCN/Z5G+erEq4csFb3Rs3dXYpXS32dwXtQCFrM/qDP94eZApkPQ4z69u2PFZxKKFe/EB2T1hvmU1BCuV6lharKfPAX+X004JBNO2qf9Bws9tjxsHmmjHpIneq5TdSrnFjvL9Z3fsPIbgd4KFmLiz0EwmFe1IkDrTIBIrZy6NOqTB0Qfi5Poi7FBSxRoGlSLjotVbhIH2ZTikZpe59o3hn6sHpghTDw5AJ/IBHzf3pUTGMH62R3Y9PsXCWQhrjDbhhtXTyeSgpbQHgkVOyhkxoeCRTbTKc6zY+ATJfh84cH9GoJrs/BWe3/+B3VImL6bS51BkT+eMfG4fsDc3h/IBgrwgvfCX3m7NWkFizmLyXgpCOw9vlQwkKzCZHrz0lfTPzmoAg1fdvvWGevqTTAptc2PmkO8yKJBazv/PyHN/V4sy8ZPHf9E7u39zgsmL9DCM2fj8TjMPnkinQETMxhbN/33sC6UDnLSb7/4uA3zf/4loxOXkbdtgz1+aaEGfQZd8PmuG/ZhGTrLG74QG+BmwNyX+MAvnA1YNPsHX8+kosA4336ok42+zUTy7YE0WkuqIqaGrCTGSCQyFJJDen1A8te0Fb5OpKKOiot6llH8ygXIOq2/RXEx11i7MCmn8nKj+bA/vwQ8fpyaMg5Ss5/eD2T7o/+i47zZfDnxDKvoGuzI5KNZWbLTfEcqbu+INphtrBp079gwDsBG2Mn6uQixA6w5tuN/un/4/a8cvDRH396JV8utWfA38c50ECldFjK9BzBvVO41PCGNB/9n8PB23Nq6XkwvvGq268A7PLVobq1mOBvfWHIFXfUOKO7dbHieqBVZbjxCUsf//gQf6lNbF/Mfhgu4ecMa3c6oNdqazntZ9jAQX/tiDC95ZgyN1hh3h8mbH+/0O+Fsz+Lf3zEhwc6rPlw/ICXmoz0eQlK1g31uYAVbx7whs9ghO3Swq/3XPGfvlzrX70dkZlNfNv8CdZkKYLs89OoOZoOI9XrSIB1aU70z887qHtxBKZ+uZCHJkfDzDWn8s9vweHuXub8H//Y9hMR7SLIx8tF1f78DCJWYwDEP7y6kqpCHDnaw+HPL9T8c4DRXLzjhT6yCqSP5EPvbTnppDqxFO78LqSBo1DA/tan+PId1fLC1NmGV1Lcei+0N/N3zX47owR/+GiOewdwFN8L8Jc/N/+Yzbx++kD+dzGpu/n7qzV6Etz0C72UkjPwTze+gs3/waoZXnxW3R0His1Hx5pZG+xYcrPx5x9R61lLbOmS5wyNPU3wn7854rciwL/6QHifTzp9Ta0BN7+fWtTM9fVWv6q/fIrVC73kM59+BTheiPTnr9ZDcuQCyFeagpEel/H8bFRP3vxYcjzgQR/fjVzB9PPq0aLEB3/ahzdHehiYUs2+8D7Z7RgPbuZaU3sJYUyFe1TJ4wglGjzE2WfJPkBAMvbuv/x2zK6t9h9f3PwYdr8aV5jsxxK7h8ez3uIZSRu+YyMy7JzXxYyHbyZzhL6/ms6Hh9cVbvub7JrmHB83vPzjO2TuZK4m6HxLYRMhDjE9OOrTh/A9DMoqRUSK3jFtdyWC3mO/dbl9CmDgdYOHZitFWE9DK+/8aZHkTd+inREqNeedIl4+BW3xD98nfOYT+Jx+M0J9q/rrjz/OkGsmnRweqwhGK3JmeBqPFSmdp8YOcKcRqB1hSF8N1PSt/lDBnT+E1Ln5EBx5r+ChlYlXBHibxiOfTgL422///If3qShA+5MBkQ5XEv/xBdk3r1dUBSMfz+nlkEpfKq3Y88QdWDJlV/75/dRXDDSs5VQnshaNIXVLdZdveKVA7XMNKUJPpf7Lh/B3DiUaStxpoOMlaOGkpQB7bI/0FcY5D2ONvDBW7ytYipsXwJvd1BQBZx02//gJPafOsLvtt3/59pwET4zcj1LPET9LUEhuNuHbuwtm0eh6kAp2j5E0veP1ez+u8Ou0K30uyTqsccA8+TqOFVZsu6rnsRZTGM1+tdV/7JwgI7cgnSQZ7eWzNsyhoUjAWayE4lBlertqbgl1wGIcMlTqw29WkNzvjzISTne//u7DlweCJ7lhp7B9QCV/FEArWDzFaxXXFJ0LD2D1VlKTvzqsFY2uBdFrl1M0Htdhtm/RDLPAaWggunM9HrilBGfDrtEHknu+1PfqKgG9Mak2GGY+X6xOgdzroSGZBku+7Od1/fN7CAs1y+dLqF/Bnx8fh9ItZpmjaHKp9hNiMbnlx2dUGrIK9yfUUBP489hPI9hnZ5f6F5mwxVZ3WxenJ4f2J8D8SbXdFd4IV0/1fX8cRix/A3Az55qaaS6y6XXjP3/4QlZYfhk7enMJ9TOP0HG4Q385vSXtnz+N8QD/PwDAqNaMfJQruPl2S9GXqPrhPlTen/9M2LwdGl5Y94R7ocNU7eNPPFN8KgQluGEieeKOkfo3pHB3hw6O96WwDToqn/JWD6Gbnxe3Uuz20LrbV2y1fMfGbHQt0MkTpCjbrfqSKXwJE/r7Ymd6P7bBhfITlv040fNyMYf5kh+u4NlbA1bats6J22gQjN1V2vDeZhymZgA1+XTevs97oN93UIKsTn9YoQk3rM7zFYGdUTroMO5bMIb3C4KuQRIkvEXZJ396+SebEvYLRP3pTw9ut+ewGaTtdsXUHSVHa2LsdoddPhOxyyB6Jff/6pP7ahn/6gf0z79d36fbKIWCdad2dsxBL78BD7b4JMxVjvGa4TwCWCpzxG6x5c9+WnLwMbwo/vNLVhsfz/C6OjU29MoCa5fkFaTpU6YWszs2b/UD+dmeh61+uNdZRAsHdr0NkXQJJjbAdhQAGN8emsNDBTa94IDNDyXZsw7B8j6cz3JYcnccf6YjW9bvVYBc2Gk4sj9azeBb+Pz5M9h839p6MURx/fNDEa/lrv++WvwT3nP+Sxh7NMMsHCYJEKOC6HChTjzdRfL85w+p1+AQ060eLVu/7IQN2RfzrV47AkEUNJoN+j6v1Lri4KZfsQdfL/CHD//Vq8vXJ/8+vhWCfRwJNLI/1bCcO08DWz2OKru3PtCuGxtYCyGPnbf40A8OUDnwx8eRpyrDtr48nG4cII26c/XDXWwK+MnhQoTzqQDzLn+PsnpsA/wgdMmZ+BMqiHxy346A9PmvkATtmFz7kqJNLy34vLuCnXsMSSm9OPaPj1iQO9Hs7/mZlo+S+mx8qqtHE8xJ+Ph/HSk4cv/7SEGz9AO10PfnMy9zC5gH6466sjcMi1PcEphlVkmRbMf1MuD2CeVpiunpkG6zY8P6LD00HyASmi99dtriCm+1PyBJPv5q1p1IIhp6OyPx47981j7JGR413kX7YAdyanjPqziw74UGLz/QZ9T2Avhw+EjRJfEAa4nHS09XtXHY1hRMxhmscH+UHIwFXo4HQWo9MDBJItnxo8TTHGYpLMRYR023qjWXFY4B61S9oV9UPcEqfx87KGhRS7j75V3PIb948FW0CX0891hfuHvWSCwVI2x6lZDPDyYKwL68F+ycz028nkezF5zCTpHI3ktNLvy+BAV+FRS/2SEmz2dSwfpGV7QqzImXkfkSTHmfoJf9mfQ1PyID7ixxpmHtqvUaeEIEbqp1w4r7e/pzGUgG/BL9QaSTNOYrFz4aaAe3hNBgl8cjypIWWNUxxiHCJKevTzoCkfgV4j99AdY2RyP4W39mjMawaCProSr3HTaSG47n9PswoCmqI/aM/Ouv3WNI4PWjLGR9yje/o23ZwOyKbxRPSI2bIXY0uH+mFk1pDX2axq8znFO2I/JBfoAVVZUFP8N1j61661ogNm8LZg3/xvbRM/WpSw9PuS/jCYk+cQAf2bEAwY+G1EXqrDdZXPVQfkcCjm3mxzxkn0A+tmuDuGNXsUntbwq02POBhJQqPnuZtwau5q9Fn96sYhrsQAAwBwVsNIqrL/w+62Gr2h7SJO/0b30lITtI1BI/s79Yx6kElCc9VpRw9pd6I4XssOOpdZMAW87Zi4NSMnmE0SbRF/0FCOTGQKBIeUWMlLGIID1qGIfA1Abm3kYe6A9yxu6rdxm/mspVpk1uosdRrPKFS4MI8rzh4PDyfetrc0AfmF3DGw7T5R0zWWwzSMLZJev3chvW8Ln3JM2q32g2zm6+SF7wAcXI/aib3Oea4rs6ypywE8kuLf2tUWhoQe3mDPhkO3ewxV8JvaBocGhD21/s/vuBjvis0S8ZT/li8q8ABpZ2our3zdUL9Q4zPH9eCuo65A1LIGrZXj+ihCrub+fTlmg8HJpjgv1EwjWr50iQLPd2Ijz62v5aCT2E0rLOiEX3O5jdfoZAxbJIQ31N6nGAnzPcM5qRY9cYA2/LHQFq+TWwE+XAn0/qYMD07SjUCw+xP+2S3RNOcbsjfEt5fTHengata3ZE9Pk76NOcty2Ify8dh+d7yUgwhSl43pMR32pk6LOx3zfQniIdO31c1kvQvkrgNeeQ2udnnRN8qTw4BsuCXhcnBP1etmfItUOCrXNfxuw9fneQKw0N/Zg41GtbXDT4ZE5MbaasA/meagfMnVlj5/K06mW60gzGv4dO1pSrhoGUuge2/EOWmyANc6U6T7jzVpG6zyVis20IAvgclxx987OoD49d2gBpu8Xt8W+Oza6/54B4OQ+EH3cq43GS88C0WoZzeWsUJ9ZuBY3uG2L9IIKY/eDJgs3na6KdHASAn9pHACPAG9jq1vfApgGuMKKWjkPPzFnPn5RSlr+OSpU1FX36vWhEPhBwJXtv4PTVu74leEVGTPFZbRh7exEvsw4dEEP+AGj1Igqc4l2NNfEk1H/xJBT6tSHyS1bjdetQBy/LNSbHtl3zJdIaDe6zMCVAHvph+e4aCLZ8QL08yWLWmxyBGXQ5HFY+jVveYRaMzsqTGjLs9aXu7jNoDRiTzpv5gR70A4J7NmXU33MvffWFowIP7kdHib+UYAau2sJ7zD/JrFqufoQ/GoCXT784SIWvv6gi+wjh/nzdKNA1X2NSnaGtoCfW1fKTs/fw6mHGPhW9q7kK5saXEihK2yl3EbCYzNpAoN2NL2oX2scfw1/yge5+/GLP/3316XLSeDh5s0VP8s/x6e9x20HuVRypPn6amp6V1ANxNmlUb4JGn1Nu6eGTdHu0q2SjPuCXV8FXl17o+ZvNjFi+oEnf3S6g6PbYx7OJi0B8rXG4/f1nYFfICDg5jYlR+v3kaxztn3/5H6ufFtTDp0538JadGfYu/pet2XsWZAerK5rz6AbW0VhmePbPNVq8RNIXcjc0aJ3fBNHiqQx8WIYFzO/lngbyaxq+JdYTWLdXiI5tLepMP7jGXzxSTSFUp6MACbjPzYt6HbAGYsE8g+Jju/UnBrxODlgK4L08S0h4+zlY38eiB2D4XNFepHze+QZnQOn98hFoWm2Yv6kUSdnPs7Bi32d/pF9XgapeP6mphvrACgAgKAWOI1G78/Xjbsgc8IdXQS6tw9jIowboUcHY+ALMVq3ctZAGQEc7pC/xAsnuCv7i2XqeYd6fp3gHnkEzYJvtDHbIT6cMRpy54mdyTevZOs2cnDyoicPsAGsClBGBdGryjT/Z+iJ+sxUeD1jDvn26DCQuCw1YbNVw+BIcvTvxMIHkOqjYSb5TvUTcbYRJ85WJkJRJvCppl8Is7A3qPOWQzbMzVpJ7rVwC5LkGW209ELM6kmn4PfPxePugFQbn+YzvSXKMh0YgDqg/LMW2dAr+8LeAVHm21E/9rYSYWyNUjrZG1kvd+aQ0q93WuG+lLnuf6gkS/grv8+eF//Bydau8hBw6TNi67S/66kthIt2tVcCmODBGu+qEwNgdbxSxNvAXyeEjKJKHjdVusPUpUV476MSlhdO/9+8Lew2KxK2oI59oPt2OngAOe87EgZQ2A6lEMQJbfGFDvSs1V9WXD6yMidKA8nG9uKV2BhseYHxs1GHtn0sv/9RdRO2u+dSr8zYDuTkgjE2KJH0KpWiEXmW/qKWqVr04xesKCacF1BTnUJ+++C5I2Xlg6Fqgt88u9zSCciTHSFZmW1+OFe+AcRrLbdmTfCmjewtfB34hbqg/AEkqod3GKCjklixezQHXbeHiKWeKi2dZz+L52QLu9Tyi7jgYPofzCkpxuFfRLslPYLynDwdWu3BGhfyxGJdySwurNXshgdaFPlt69QGP82IiUTbXeBV9XIH8u88RZNuo9b0b8JB/ixnWuk8drzaNC+iZqoiW6pLki/eOGiBkR4lqu+Tjz1kmznD/tN7YvvT1QLpBbMDf+zET/5xz9/vwhMdD+aOqf/vWK9QdHiqnp0fND38HY9CgM7zG9x8RaSHEU5w3DuTvSoVK1LvDPHhrI+PFpAhGnRjTXPq2sPpeRWwlAorH4zTygPnHHquKNPrz4EkNJOdFwGYLYn8V2vUKhn58YOUCap/9Hq8d7KZThxV2OuvMdZ8NxFjLKA6PXDxCCVwlo3j//vEp+vYiTn64Qog9GZZgHsBjB//4QciD2V+MM1vBlm8pehz2jLytJYL8xb9jY35obJ21eoT+a0Xk4lVCTLH79UBaDCNau48er1M3lMCQghsSVu5Q0/T9LYEySV9sb/xmlXmFE+disKkhHiM2asLc/vF3Gpyq9S/fJCB4oYki+rwPLLOnHizWk6A1KuV6VI3+Cnfx/kq4r8aDWdFCAtd9jmgQPkR/4nfBFZiiPpJPPalsdc67nbTlG3Ko6nUgbhWXUsYkmxr8EA3rTxBLONlB9W8/HdhV3gEOHSfs6h8+X//47O7Gv6g5BuOwnpwKQVV8ALIqBOv/+MQkPz/YPMlGzvTbM4JbviPvl5voRL7ZBGI0HqjTuMinpauV4DBcVrQ+5aM+/uHbd9f/cJAwH8z9TarA9br3sfLKvHyOU9RI5eu6Ui+c76zJ3rME57I6Ebm5qGCQTj6RcF7wtDB0X59ZJUEoDA8DyafrIV67R32F/D2xsc6GKZ9A8A7knnvmWKdvCYztIv3DH3Ic+j2YZ+mKIOBeCOub3pgjZWv8XZ9mjDc9uvw+P+Pf+/+ymOWjoieKlEpJQa1EtodZfj55cLwdjtR/3q9glcLRkVx6V7AiVUO9eh/BgWfbPmAVPYPh+DJvH5hGFY8RRFJNSxsGf3yc8GEF6uV0IArY8hs29dMTsOebsyCnjUfC7yotHqUERPBicyecjm80LAUHeRiR+Yn9163TWel6FYzOiU6v0qPTFyH5CUDgLhCH3xse5r/9fPtpHN2+X7zu/acFk9AE2M6kl76812aF062ysR1VO0YjOHnAusMc+wZ2/HmlkgRG/pfiwPZOgOVpVMncay6w37RazRSsKlCDS43Vl8vp8ysdRml6MQ5x94taL33oc1IVOAWS00WNDyX2r3Db/+FF8VJ9nZltwftLTrAjn3C+bHgB1qa8YTS/vzFZf48CnBes4jAdW52iRu3FCo8KtT3vmTOePyAwPswr1STsgfmKxA8MzWKmkRJG/qRcIwf2th2R9R094+U+nCIYaMVE3Ret/aXlyzP447vJJXLilctrDnxPpwcO1U7x15VfFXBZkpi6U1wD1htNJh6GrYvQpdcHbjenCijbsMc++rUxwfXWINa436hKd0T/y7+yIQorNiquBfQNtRLKX0/F6Dh983/6K+VfMcaygsFysiIIrWt6JIJ8der5zA0WNBQzoNlJCvJN37YAOT7Clqo2A724jIAbe0X0zw+Zwh568E+fhO/w4Y/eQ1QgCVcXu2950dfD3o4g7xAZB98ny0cnsyxgFPWPbvzVX+K88aDfwoGA6jn/5eMEHqq1xMbJOgDm3j68fBHFL/3DC57iuodaLY0UywplbDYgBK/iSlH79gFbLxdh/ONP9C/eGIjLq2xVh5h6fjWwxTegBTc+i4PLaDBCXwqCWZaZiFVaXK9VXxB4qA0Th9EDxiwK3BWyYr7TTLkObOUKyYFr1SHC2GzV7P7xPMBf3Dv1pMGO2afyWrheg5X8+U0/YTwJcHieVdJffJPRw7tVwOZ3kH3rX8CKrbARs0pOqapDsV5ZJ1kQZPsA20O/Z1RvJE7a4gnJOUOgP8O5hGT29emoHNxhJfklgorUN1R/0TGffpzfw/Nn/lJ8bN71/LqvCtihVqOm1Fk+v5ftFTJFudMgIWu9/L5yJs5i7pBdY/j1+nhsRwA3veGd9t9h2d9iC/a/MSNzu/N9MlqKAZNjaFOzan3A4HG7iQ+GG9o3vAI2fYakux4meGj5ecMnhwfyRGNszicTjMSyBXiJ8g9G6kPX5zwUedg+Dh7e/KycvqxJAtUOz0R8sF3d1EOtSIGlnOj1rimAq6+XHp6XqiG83HXxgvAXwtEIXtiv6i4nVzFxDvTCANa6V6+v0kMh0Ikri0j2Y61np+v7P/5Nrvv1wZazoPVQ5yVKDv5XB0ytbQleFHOPlTOtwKbXIni3rQfq51TJ5ySrA5CdO4aVZtDB0V6BAhbLd0n64i3AtueHvg9MrGXCgzF0ea6wn39n7KjVt57z/VBC31Eh+smPMV9JaGvgY442Po1Qqf/0LHjMToS3qo3/+8G7BUvhvV05suAwZ/4jAA7WV+pdrKCel9GGIDl9MJKHrxxP3K/l4ff006j1PBcxk9SfB/OO+9DrpqNn7sIUecMz7PC7Vp8H+InAxrc3f2fwl7Tl+r/vT1FepX/7fYSb3qZo+/0//O25IqcajlTAzNxFkBOgiOZ3m8bzJV9KqBiji4O2jwcmSKUnz9vVCOPsqvlx029yVTxV6vLTwvqNn0uXiLrUtQY5n+WJbfF4d3Cgi0I8qY4rSev50tHoTCvGZCGz4AdAF+uSPrFpuv5SaF5hikgl+DH7Hl+85IyZTA32ivIZQrcF2bWE2PElk3UaUCW4vS9qS9dvvvlL0p//RrdRgvW8P08ImLqJsQYcHUzoAf/9jICTqPG6S68a/PN3sPGw4tE+FBHYh/N25qBr8uW9kn/7C9+69xBv+dSAw3HW8VVVrYFBq8xgIIyUGh65bF1MyRUEAyTUSXuLHcLRK6AgYBO1kufEc7UMHMwa7k1m41YNDBzkJxT31mnzL3DOSOl7oHsXKfZYFgJBIMCRvtsRsj+/Zbb56iP+vLrCdtuu8QiEK4FrU90ofpPCX3hCZ2DtJYFafHwd5nxfV3ChkFIHhaHf05cT/OPDfke7epxdiQNaqddY9e4sHu+do4GznWeES4u2nrUuMeAVWTF12yiNxxsbErDM0YXGNjn77LGLPnK2pyl2YCzrgyycDVhj54Wt02LH62gpFjg555KGSXWp2e6hC/B7ih/Y67RwWEb1HIBcSWqsA1XR+V+XQHnb7xQrccyWwjg9oUIC7x+eHvlDI8D+lh7+4iFuewm3MHq6CRoVaOizfUjO8HeLa6qGpRRPFX8i4HQqZLzVB/zZQKEgPXf7D3XkqzP0zvyeIaeRIw1uh3s8H2U1g3axe5LFPwfxmr0F6U8vYD2tx5i5KfPg5tfjACdGfCz8tIHXeV4pUh+1voSj9oSX6P5BjRFaYMlZU8INb8nx/KxjCo/6Ck9OVFLXZ5rO/44D+vu8f/77EvacB/3lWP/jgxt/1KARZQvWou+VsbqECYjM6IHzY+zp8yUXS+m43ESsoZsD1iFWNNku4JNq6qjG/Obvgg1//sv/n+LEg1QWFOo+2HNYr0LIwYA7NkREUucvh6yUpK+0PBGToMWOIVM/MO3omez+6jfHivfgn/9mf2/biOtw9KDSPASsjObWZ7aABajSRsCb3h4WEHQBjNRRpIrqa/EheZ0seft8sn+zS84yh+1grREDa02q6+vU1RX8e37dOtz98ePgFBp6P294csmXdQ0cmCu9Qx17ZnGbFYoF/deM6KvhFcb3W8cpDb52ZG2bRSe+2+3gJfmcsU4bzidXuy/g7Xi9U+VD9/n6h5+qB338Ojbvge1fZQn+6kOm4gn6CjYdcvspHNnqNQPTPk8Eouw7IzkdW38WZvcJfx6WaZDvB9ZjY3+G9N4Z2FSdPmZ/8Wp0cYsWujlGNMuuUH+MZ7rph3wmli1B0uwa6iFmxixmqQNSSTli7VxU/qT2L+VvfxLBl76AtP0QATVx2j896//zNzG3E6hWKBWbVb7QYH/LDlT1EsmfHp0eQFasd4q84+Iv3718hqXAc6g5Lb+cnWRQgN2iQIpO+DQUxqMqpLpNIH1tfGwt2j33t14YS+sbsO7MtfD7oALi+LkD60MSNbhrHYPqvmBsg0pUItft1kh/8wt4uD4EKILQwX/xxtZRT8BWz6Bn4OiMvT4R+VtfrL2AGx+vvqbJjf1+bf5YMbBTmFp/eoVqbXPy5/tvGeWzB3dk1Q8Htrw1PYUXfb9NwXh2+XicPrz0KhJK/bqo4jHC4hWKVXKip+ZT6kufZxb8OqNH9bQ16+V29CSoeWlPldEb4tWZuxVs9TMajHRks3R1P3DT1zhQ4Edf6UOUoM0XJU2kg67PCttnUG9+Hg2tHQf+7c8mH0NsfVu8+c+nVZ4+kYPPm/5f+qLMZEcsapqs750/RWevAfun8d74jpuz5QghGI6rjg2PkW0SBAfhVg/B7pj1YJVveJR+w/OEbKachyUuuAJ+dzDA9rh+/vmhEuAeaMPj0zYYDUBYHaBOA0Mf/Fk1qisw4TfCxv3yHtiNfAvo6MEb2/DD8q1+xcNrPQVYrxWTbXoKClH2m6nTFpeYQTOzQM43X6odYT0w96em8PLWCN3qWTXjk9YCXmW+SJckx3x8NiIEf/raGndvRis55SHa5RHV5Nz3aQSe/J/fT60//yyXpv6vXvTPv1wNazf/Ww+30by829YLRuZHw9vf6+vntWQQJd+eHLd6Cyv8qJHfZ/20XRn46Iy37tzffsCu3eFhmCbdgJvfiEBH3XqO74UE6kNaYcdXR0Dv3+gJAlqd0XpbeDC/d/X6V1+goWRHeVmtqwfFSxNhb7Ittm7+nYzSOcUabwr5eLDHGVoNKahO3xn756fvYvlKmKfe82VAmQfvcSlSnGAOjMYwEyAeb3sarLI0jCdWrOCwL8tN3+f1fGLJCsdoV5JZZqa+4ZEA7699QvYC/8jZ2JMn2PgaVr/vZOiyyLekP//CT/YO4I1rnsADDcA//rk0UYngcgbeX/0LjNd9AaWfEJxpoe9OwzQHhgFc6KpEqLWfTm6DKcE/vykEZlVPZzHdwcSoOgIS9Tqw0tWq/8/gg+Phfx8p+FTzRIRu5zKm5q8PcOVKp0ZJ7mAl4lLI0bGyqWK0C+hQOBM5ezwRvY9RGa+Z9/iA98HV0NFOSM00FPdwiNMdNS/4V8+Hy0GDRFU6rL7UKV9iBzQwEAubBtnprdPzXvag1bEvOcx2nY8v2YOQA8pIH4vYxN25LlJo8VWDPY7Hw2pus1VWEChY4VnFKIdDCQyD6aIuJ299mEczgit57snjPsvx+kV3Bx7ZryLzsIxgYYqmQTGaBYze8rVmPgsr6dm6Cs0S/aSzixEaAIOUYkW0AZhdV3Bg+kIS+kn7dluf2wdAX08QeBiSTtX81WyN2QKKI3gcKKvvCHBAG7EPHJN94VBd5Wd+32N8D4/6fKjvAryJ6ErR96MM08jOVyl5LCPidrcBNF+Fi2R9lW5ELuA0zHKXW3D7/4lcTzWYjkXhwGdeIYzDdfBnk7FCHgPfxu75R3wmfL1yo7wqTqaM+WMTdRbw4qrFSmK+a7Ye/Q+EAQHYl5/asP5eIwS8yzLUvNWfPmnC+wzDkBlUGwkF/VcyV7i+OURTqt/1EfvvpyxrgUUYuqngWC1XAj7VOmHLJadh5rpfBqsVqrggaZOP9HDeybP4exJpoDBfJoMg8KJhRX0k3IapjU4rLBayNeZp5JoJX62U9R8nI8buhc6sT3QGv0l10Y4g3l8/+cWCF78Z0ECjIl4d2z4DSJ8lOkUHX19rOF4hWvuG2mVl+1NCzgS4cs4RNm6WtygcPjBr73dsqN/nsLqSHsFlvbVUVyPC1oEAB36JZFBjbPScjRh4kGhjRFNuV/z3+WV+lbDdCPowF/uuhEV7TVADRK0+mibqITMeH2pbIge60t23kI7VjXCCSuNZhbSEYvvSsfLN55itxnYrEj8Hwu1Wc2gpdDPgIvVBZu188Jlxrkt4e1c+DR78L59QOI9y/F4/1ElDNWfiKfXgJzfeuFiqM5uzn5XAU/riERc+Wn+MFqcBIqseRLgcjYH7LnMiJ0woaXh6qzU3bY2kl34oEBcKbzCe8HLdn97HjgZu0uZMolSQAidz0T6Ct3q2l0ICwzjP1O1eHVh+H8OR98yYsbeMtb8qqmXBLR6o9YyiYbymdwu6H+dEZr3W8oNUfjRgnM8ECVQMhvkmvyJwSXZPin01GRYm5hX8Bt6LgO/M4mUBqwHaL4uxkT6keF6UUwL3Zqrg+HPv/bYQmAGXp9LjtL/rNfvCiwaxAvdYnW8wHoX4WQDY5wP16bn01ysoI+BnX4/MmfLJmd48hL98gU1uSdmSnvIrrM3fDS3DZNUMXLAlhYH5oFoMFp3ypdRCwxEAdhTJZ6tgeA0wgrOL9i/nDt7zQ03BtN2q8WF4yJlmTwiWN3mkhnDUGP9pFwjq6VShdSSU0XV+eFAr1xyr4pPGq0CPAZgOe0wOQG5Bz2V5BfX928GFvg3xM3iPQDT+Ne6a5ZjxpdRDz3MONITlduvUOJSQZFmOvYz7xRMc+iu0bA/jsL3da3YvZ0c+vs4f7Obk7S+1qjdycFxLxP9msZ4zrkaQXC4N3d6nvopz6smLo1nofg64fBQyQ4DN7b3Hil5rMff4OqMEGnKj3pe711s+dyCRPYWGaB78OWy0M3wHmYCqaDHAestOCpQ74UTTbtcx8kmaHv7lJ2TQZ16PmHkAaCcfW9t+OkypWMLjqnjY45Riy7dzKS2afKKqJ7X6Mjs7A5LLrSGC6/v5IuAokC3CZ9RTbmbNzzs1AV334XH8FEvAzN1iwK3JFrW7oBhmEB0luJxOPdbYq/GX5KB6snW2M+qsuMvX/a1tISnvClaJXsez/14zeSDFjWKvyQDVmTRDTXJCGh7vOJ9PWLxKj+TyoGESJflyG6AHh3W5UL8+zPGQmXwG+lvckGU4j2x48DEPKRfUiF1unM6O1p2HYco96fVQN36/v7U92Nabhs7BiY/8723B6QV7bIIK60NavgIgNktBiA9Qzq6FfYX75kaxEQoqY9DxPVjehxjjitZs2x+KbA2vAKP76ZGzkh0imBilS21q7+Ollh6WZBEuI9zPuObMsyNBhqN5pur2vPRBvxm8u/2AlZB+wJbfIVzDu0ptw9PyxWlKBOOREjIb7cJ+P3H3hC7SH9hLxE9NIiUoYTfuDBLNQunTl+P0QBgvAwH6w69X44NaiIr3ivWjYvnzHD4isKyXFjv5LRzazw5GUBLElJpX/ZhP4bu2JPsryKj7Ci+2htpgAc1OW6pP+muYtGXlwT5PP9joDiP7lF30kee3GNPgrLxrBtVkhNGBKxFvpwlgQToSIIjWiH1SBPXK/YQMHn7qAV9+fF0v0v3wkbf8+A8/552j8/DzKRJ6b2KxXr2z2cAfITN2u5fLWASmSJTo+4v2xd2OV0zmVr7AvsPIUrYSlP9y/tYDgdveq8e0aCFUFXyk1qiK+Ti/2wZK7zAknF99/fHkaoI04vJCLe9j+vPjQ1coPvIOo+OsscVCpgLFlxlhX38MNRO9NxGLqHXp7TeynPEBTeDZbXUc/MPnH29BLFtXqu0vA5s9GCPQp/uQPJxDm89n0iugepYcduT+Ek/tTUGwzaiIQ/+TMYbqWvvbrxSZ3xMjsbHxtW75/uWbYanyMYPLMX3gayCpYPV9wYLdEWBq+PaQf9RIkmCDdxpqymbKe333KyTlIlywLgBX5wFXaqDzJYuqfFKxGXh9CvAlhkhIfLmebOncyPtiDwnPwi5mB82FsA8Bw/62nuu8cxNY/YQfzfC6xPT0kyTo43qmwWaDLq4ZQWBFd0Y2E1KfeHm7xcQuLpLgCdRbPkbQeIIX+l7wb5j/+KkznAQEs/6o97shVsDGn9GxtMN4GV+2IuWTUCPp1t70Wa4+PVBoZFPEvw7DLF/sVbLVx0LtnA+H0W9LTi6fo0MKklrx4be8NciLkYJ9R+bY/KP3FWjlnKNx48vLdPYNcKnPRzS/wE9fHJ884V7TVmx5rh8vawxTeK+1J/Z/ajlMf3w7R2VAb7mS+f/48AkCDRsX8hvm6Ip48TFRjA59oOS81T4r6JDBosbVVWPe2wye1Z8yitP1ETMaJg2s1p1K5pEv8nladAMO1ro1uuU7ffxe+UZug3uJw2/bsLSXIkO21UbBONP7YYIfIIAt3rDyKqd8/Z3fmryt9x8/Hf7yNxi4J0TsdebBONwVXgYvzcdmt1j1vOdOmTyN34JALu7iCVg+AvudujX/7Uy2LGA7kjuhB0Yn7T3MGh0a+EhuD+w+OsPn3momgXI/HNGCXiQnFuw4sMUPmtlvHca0GyWw8RUkbPg0+8ml+nvfWJs+dT4JznuGrfx4IhjuHmyVhSuEcZot2BkTq+6ncBCA5Act9axhFy+5ehPg7tzmNG/8SWduW3pwTZ85tXrrmi+f6e7AXQk5cjiLHmOO7mpQQYFLi++J5Su/XtY/vUNvzK39v+8LW/V5pcZu/dYbP44ky7sjrLI6yOdqKgv5nvx4qvUp01vrfm5lnCULGc6GzY6FZ53hciA81l6pAg6NmT/hFk/brGYBzI0eBEDVvyapQ+joB+e1zPIfP1Gi53H4dXfFkbXzjREufDh+5+6qJ2yKhsN/fHnNToYCtETPsNUNsCZF4V3BO7GNzdI14uWS4VT8dQPAQb14/mJWUQKGxSZU6YEY97l8aoAhxGfyiVMPrIKcGOJaOj+apuE7JzXFBXQsCP70CRu37wevyv6H1pv9zpdRUmZ54VSMjVTg/K5W/QbiQksJf3HlgfUGx0H1fTpsY1aOrH8/QAvet+KME2UhYC3NJYXoBRSyDqipKSuqFWaPAlE9hI4/u+4LAV0vFZou9wugoSElMJ+kmnzH8h6vkpMV8KlzOn58w9A/+G7LQ9NUYnza1buaXJxPJIPZ8hCgZ0Xns5tUQLkNesRi9ZiPzifawTCrTKr4nMoWTegieNBGAad698yZcxgtaP+aD2HV86czcydacFsvavZfPp6Hu8JBPvRabO5ic1gKVeD/4Xu+6dHDw/ytMC4NGf/Fx/SmzxUKteXgcICvmoZzA2Fw6ibsISiDaSEPBJZ2f8BuLUPWmXknQaDvVqyeIoMt3xc8gxA0OpKU27de+NkqwdGUVgK2z6P9UeDARx0pVqqTzo7y1J8hyFuZmuxE62XDE/ncKRnGKPyA1XwsHtSEZ4NVrWuHec5WB45yaOI4fKN4Ydb8hBifboTnzilg+os+gXCWRarx3blmbq5HYMVGS+/SQai7k3wI4CuJtkFZdVePdel/YP8liLqbf7EAyw/gl/9ENPHGU/2Pnx7npKb6pi9GrqPZP325psEMZuue9eBaqAoNNcnMj01yu0LnrFywv4S6z6BEEOhO0kA9Wa7q9YG+W4c3PkBzG1iMwDiaYbkzXljr5Hu+nphSwk2P4efmB2ydW1IIgxGgq6oJ8UAt4oE/vpwlTw8sggoSQOoZ4ZTzxr9/X0GPa5o/f+Y/fpa2zYTtpJeH8XkbeKCcaxsxdWhrptBegIK0xjg0u9Sf5S624JeTOrKDWTqwtLwh2N9ODTWDmuRsKPYG5P2Hit0H8vJFj+pG/qiE0nARrZx7tcceZLP9perNt2ty2Es9sAQUor/8PHfi3oFzFtoENlVZf4OtkTkn3kxyKLHIltQbJfjyhC/WPO6ps72Ae+B/2w823fXGFu/j9iC+6DWi+3JXb37H808P0Fx+VvUyGU0AB96pqfG56Gy+picLntLG3PQ8YuzjLlD+FLODOEHF8ZwkagDAMlRERrOvL79easCWz7E+eEq+7PNGAGq1L6jvpqg+bPoWbnoCI2ep9DXnBw8+m8cdB+b0jMmG/1BceH4bT1PplGRiAZfOMKj2HkU25pmWAdl8mBRPSRGvIf4p0qb3qTbHvD8rq+bJtdcHCG76vc8Nx4JrfG/I8ip+/tQdZglqroVpgO63YXWUbZBJ1nJkt2RWziKO52FTgpXwnuvnK86+yR8/xvbvdB9IV0Ne6iXVx8P5pQ78H//KhSPBAQ2uOgm1wQB8wnPYw7djvX7tikjeKuyx9o1rRnelmQH3bhwJCfklbtKAc0BEnITeQbRuXSDzJ1SX1KB6fPTYOhzeDegBWRGfzr9hHI9iBe9uO+BbF8CaEKYrwGJuio5BrjL+dZav0uHoGdRQg7Zml6NrgR09BRhNrIgXcuwR/Hse28XLsM7HTICh7Odkl9kzm+tzQ6TjdkuNfF0LcE7fFOBGuRq7coP9f/lv9WmGERo/jDVt1ctpJFUYk69b8+8hKuEWb1R5lWE+i9a5gnFmpHgrn/3pMQ6mDbBoQBaYj2Lo7MDtXfp4uzaYj9KwtPB0lZ7Uf0jhwJbTp4Di7vGjKts1PvFe/RPqOfKp71RAJ1dQnmXF4wB9+QX552fIMosMHKeOV3O/w+8stbenhGQ3qvylvBUVlNnZoMrGT37zGEZ/fhL1SHkGi/neZ0Btkp5sfNAnxlJX8ELFFtueaeoDnxkB7LOew76sO2BZfmSF6rN90nstQ7C00X2WJ+f8opby29Wf4e7w0nyFDo32jzRfAk1KYfB/pF3LtrK8EnwgBiICCUME5E6CgIozQEVBRC4JkKc/C/c3/Gdn6NpbjaQvVdVJt506P77psfvJb2TlKx/pka0l2p+/lnpLKTb6VK/D2a6hGm5L7CRKxwblhBeQRo1D7VXvaWxVmmRD4iSshroCvhKxZTg6nEmt+6f2lmmq79Dv9QeZtBEx9kF7Xv4KuEVg9jZxTzLp/sP/ZKdykbfQxzpIwa99mgybaz6cBr2AK57FZnoKwEy74Py3X8ULCBVZ+QU0LRvjxzXYeexhfQjUevqmLl7mfLpi3wCCFKnUiJlRbR89EsHKx4j8KcuejuugQ2pea6rVtylfpMIQYJrvBgJWPjjfTXUd5Pty8D7tQyAGjRbCmFxPOH62rJ+DDLbgh4c92GJvVK9TAx+H3UQ1sT71Y7XX61++oZa8acGynL0OXs7FvP5921Oqpi203rKC2EsP4hGITQS+fBviNIMxYO3j1MFDnXXY+BhCPM9bvQXqwxOpE32QPq/6G2zRwaLxeL+u8YPjoXV1IN5vrpH+ew3AdXNG9SJDfVj5AVjxHnV16FXTgzam/PbtBw7Ho+C1yWbLyx8hhURa8+00Pcta2b2PDtXC2WDz67uPfvoUkr6y3gs5hYNsvSqKXrXY6XNzyAv4cOU3US7bLJ6SIFpAfB5deoiTuhoaR+5geSc2Enz5CaY1nsLI6XRqpqdxjU9BCpxy1ml0sfbxJGhuBxv5WNND5xb9kEhWBg/39ICvjnXQdx1nnuGK35C8xrtZv2QaWPEWAVLBsVmrT9yPb2MV2Rkgx7vig02rn8m1RUW1wGgjwJ9eafNvUxfql/6ChYafJOnCpp8v0lEFh02h4xBVSbW4Ka/99g/7+vUdU1kxFkiXF8SBRAdvOr1vKpDlZoP97LjXJ7B2JfjhdTZhythjnyFoR9rpT19Zsnspwpt8D5HM5yfA7Bb7UK9vlIRGkHrT3jXucN5lN7Riilho2BTCZ8kf6IGfRUaEQY0UgTKO+sVb9vjTMst/+NDbPXM2Ozuoggua3thUP/d+DhLkgzV+rvsjx5NvHf/yP9qsetK42rtyKMgdO1+56n/2AZ9bT6OuOb70OT6HhfI9ij3eC6MI2HtLalDWZFz5N9VZQ9d8DYFGvWUfMYYd1//h+VUvfsV/fIh+PQdN9afsRw9zCXw1WKWeordg6c6iDDslveI4jAwwYANoQFfdBbvwCHryiLZnZfUXqr7Vcz8eEnaHL4hr7HxqE0zi57nA4OLu/vT1OT3GZyXLlw+an0vFJoubJ2gcqhGdtp8h7jb67Qx/+P38uVQ9YeQgQz33PeqXfu2RpslTeJXJ9x+/nbj9Ga76BdZQ3uqjcty/4Kxtjhini5KPP/7nm8OLFqsesSh+d/7Do5l6OfQjUmMe8unRosazHnMmfL7mj29RbU8J67j1Pr5k2CbV71L50//P6yDyHY3q2xQvmm+kUCR6hPdim4PpthgtUMe6JJAnlbcc31UH/WE0CenFa0yjRH0p+3t3x27EPXseKkEBf/qvqD4Wb+lbYwBR91lo8NpNMX1xoIFc1OX4oIg9mznIuT9+hX2zmsFffDajQ/aLH/28+86q8iyFA0XXYadPwTAN8m6W1q56s+rNDvcqALOEhTr+ca56GhQN9JSE0nwOKp2hM3J/+jc9fAS9YoEhn+Evn658T2dVnS1y8rjF1IjTjrGHbbfgdG4P+GoPXrzERpH94j89htte/2y1Paf05uRTZObvnIn3xAQrHiHCPQyr0SdUk7QT3a96mtfTBzq7io5uLl3ri/m4PZ4EGKukwebW9vO5AFoCjfBtIeFZqEzQIpn/1UNW/Rp6S03LDHZEmbF58vb5rPV+Cs32wCG28svlp/em2k3+1QvATrq8W7jfgzvZpcMznw2ahLC7a9qKX749UyFZu6oLAO0asern1K1l+N1JGP/8bzrITxHuFs2lWuBmbLnWXAqQjbbUmsUtoFsQF1B43hoaFHCsJmVyyl98JYrsvsFcyScD8lXyxF7ZG/rKv+8gnSKJot30Ykwol07ZfvQt9d6naz9F2/CuCAQ1VL2+u2o63UkN4udUI7ZNNt4oCJADox502Lqdz2xe61lwxefULvWP1+r5jJRDYxzxTeC21QxrJsKfXrDq1TG7CTEPx1418PFRfPR53R+42g92QO97C/90IBBSpKHhVUKw6isu/NV/bA68qm7I1QUafVf+2TPZN6OvZA1d0NYqgD4O6yhsTuw21PQNEo+9ZSwSsM4q9Wr5AWZOsNbBBk2O0vKusqX15AaEyy2i9+IWVCQ0ZQ4oHEYUt3j0hnuoZHCqapkaDzRV0x5+Svj1RBMHdkb6+ZCAQnaFMCA7aj3i+bsVZdjURxU7ZSqA5bTf8lCvH396Plj1Xe0X33Gw7s+4P4yRvHvHDnUaEsdDEmQTfPYME25kMB8OzbmBwcXe0WuiuGC+XZkBkwElhFvx8vQa8ev/6lIg/PeRAi++2tg5SlP/rfikhrV+OlNve/swqnqVrainLKSBM3pgoRgj6OPrg17l/VKNF/OVwC668WQwNl4+ukmZwL0wYLTxxFafm3ZcwJiWNlGg+wTUdXIOwqQxEJ+5s0di5SzAoVFquq93A2t52qkwSgyXxj0nsdH2bQjdoYhxqKjfnujy3YTV58whxff4uH2nuQkf0lEmSm2WYBGzbybbF67CzgO58fZG/RaSQ5MT2Y+UfNhyBIHhfb5gfHD2+iJX6gKjmVK6f9nvip5w7QLxRq7YOuu2JxiPyoAX/SmQ7STeqsmT19N/TnPEJvENthSBukDybBj1QiPw5s0bd+B+PhPsnHOiM/Q9y7Cb5Rc2pV3BZrg1bbncToDipg/j2dKfNQxBM2Ps81evq85lqmT0ptNDCRuweAfxDItIlrBzy3m9bT6XEMp7+kQLk5/ejIsg/T0vrGaHnd4ajuzD95aG2JQ3T2+wOC+Rtl4/rpDx7FF071IYjy6PvXT3zacvbybw4pjaeuRB02fwXCJIZ2FH1fgw69/vOXLh7pLs6KVNFjZwYyZAakw19W/vL5j5Crsg+mwD9LqQE5jIESJ4kh8etjmT5J2YPTOl+UJIEdpu+uUVpUSSi6+yNp78xCO/VRF08yzFWvGM4u24HFLlFfgptTeSUbGdLDfQgPsTXdfn8aTLTFnZTDWRTKmrGA1PRGbnpkfq/iFWQzfPSNFs/oBkb9pUfbBTQ7n0rhN2nerszR+nNwHa+zbdLyfgfZuXCmHfuIgI8+kRs9jyJzhIhwwpPQb693ZuFqibMKZH/zXqV88UOKh+nRjbhjznC/iEhbK7v0KyMfYFW4p4bOCeFDI9nLIqHjbwocIHzVMyu0bds40vtVDaCRuMfeejz5t7J0j2gR+JuI0jj6lEKaWi+UKsi+0eLLy3Nra6vzPkdn3kjSjY+8r+c3xSq3sW8fdyPAtwZ0YQ7w/szVb7T+E7lCPSX4+wH1NX1gA/0SNSutrRZ99DLdxE40yUMZ7iqbvGiZx5g4pRLsnVuC0XbWM5l4Hux2uXD+XLSsAsnD9Y80moM/SSDei+Q5mQfu+C0YNaqqSZEmP1mh08dmsxB8PqcqOaZt/yWTx5CN6YrSBx2Tr9juyvL2DarzNRYK7221MmlpC15EnAwfh4b0VaU3QilespmlCfJUG9Q/+7dBjnmVfNm70SAY5Xjzj5Dkk1W73XAkcKX/gcGDaYHFe+g1NZd1i1H1xF8/EIFSnpEUXJVMbsu3wEKPOJir3jTo8nTwYi5Lamj63l21R/633X3xN1D9ElZsGe5+FW8Y/U+qRPNs0vGQJ3l07USp9htez7qwwPu3uOOBp9e1ae+AQ+mmahB2PKe2bXiIOe5zGqXzmkC5LmlaBnM8N7bqMBwR+jTPkY0hU78j6qxrxU7+AqNS5SuLbTl97qbPksfROcHfsyn1syaYqAzxbWmLzX+bhXOtiURk6tytK9bZ5PExQ3PMbq/bwF5B2YBM7ZGWNtsTr2lduLAYebpeE931FvyiJXhsbFvyAhfh31+dOsjbTf/Z0GhyLQZw9qmZLf3kd6INnJoxYceCgWK+Rc/Yv1/CuTy1684kCsT/psCEuhnAXOJ7tHuOvnFO8HGHJHieL63gCC1OYs7tgFU1Xp82o6naIE9oaaYvP5uunk+igyeLPsN2FLHLAtPrUNSNjrQmgkEn05HkcDbHMzp+YITH161XsZ7mjjkRmdqpx+tCYD/U2UqJ3GarwV3s4ACojstYtKnC8BvNdAPtqYGri+59ODigSE6HVHvOG+cxY/Xp3SvFhFHbPtwRw50gQrUl5wIJQbRrdLjuDhdH4TdpFFMH6luoSfWRnIl4uOcRdcfR8A5D/pTRsPgC/e9wUqjxhQyyAony/Ez4B/5wNqLrsz61oZaHDJDh3Z+JUcz/XpKMMy4+80P19LMNfiEAEraiHV7zLHZnKJUvgCkogmybl789neFGLw6CvCD/u2n6z3+w5xbF0xkisUT8+HjGDgiSUudkISs89u5hXJITPeN13lzcPpwcMhRk/qVr2vC+GbRbCMvwes6eG+nz5KqSp4yFpqTl2QT6JjI5i87gU2YrfXWUkyH4JHWNCgibucztuuBaf0dELKFeN8nHQDwWrTRPhwO4D4wxOvXM8gfKk7Oln1Det6gRd3xKRrAwdM3Sz50AZjgzVZ/njs+2EJaI60xQ48WGDJB71Qru0LU91fZ61mZCqAz1ML7Vb/nYJSFSE+3n3qIfXCpqOqy9C7vhp88MUDm7Zc4yvoxma0fQfvajnpTxcG1Dxi37rF/XJXNB/eSa1h7a1TNlHpHkFg7W18rXNZn9VnrSooUTzsB8unHx7CqQSbUPtSO/dyNh9b/g6X3HljY4o+8RACaMu7731Ecui0jN3fMg+vlyLBsdjuGX+IjjVkj/yI9yII2Hzz5BBG80ipOgZWPoNmz8FfvPd5K47JVSM82HrfkZqJQQAxjcmEotdU2BY1KW5cJRVhRV4X7CfLWJHv62T/PW/DvBCw0KcdwlRQeqzZt2M8vm9zBB9NvZCdQVA8JfxJg0l4brC7u5N8uZdJC736piO+fLw9pn/umazx/A2f3aaM6fGiR1AbPjY13Hbs333l+OAScTWBkvythh8+U58bGXu7bs5JrNwFuPobPfT9CIjOpAi2deOhbdnb+nQaRQRnYkV/6+E1a9eC1Z6pS2DIWAudEn7ZkmB7MLVqjFOFg3Ptzzgg2w9b/UdU4gil+PD7vCxyRZjyYUUvm/FZzeS2QWCpMpn61o1VM3CKDMSTJFInlYS+PY2TD1UjOdHATRVGjp0LQdnLV9Sz69KzS+qV8L0dQ8Q+BYzH3sw7aByMJ5loT6vh/rme5a7VVHLzsJ7T2y0uwAbqKrX6r9oLnR7dYaqNGzTsr/dq6E5eC4VBGahdaVYsHPlNAczieMV2pX3ynhyeCNp4RGiTQD1ehNknIOxKgQZsFquhIlwmZ+mxw5Ygv+PVnm1RqQUbO/aw16eb20/A+vInGvbOojeT3WXg5497mRjrrZ+9DM+TQIhoFjbgP2/NVSy1MulhmwF98cPh3375rxCAT+UeXvDNVQKpCq3KWXkc2p89IyBt3vlkOAtSVryMhMBo2aSEYwhP4GniX7xvqXQOZUeKXlhPi3PffV8394ePySUIezApbNeCJb3fEOe3gjfty9sLbtItxofKmeLB+ZSawtrhia3qeY6ZTL0JbBV0xLilh4oYeZ5CIwAWtj+1wdj92bs//ITNT7N4s3orzmC7AVcCmuYcs6RaEnBo9yOaywZ5CymmBuY9Z1AHb0E8F9Y6SGr1B4flD0AFoRP/+Il3Y7LeruuFfnaCWN9/0Q8vncHJaCK63x/bePY/vA/1VEU09uVYZxETBXgzzQ55K95ZDNGGMMFhRyaL9/P5h+eUraxTI7jwYOjgm8D7M/aoVSw4pjU6ITjXaKZ6yfF6rV4EF7JP15DpcK71gWfzoEwxtw7mOW/BFCaRodSb00jt3SzHs1cNL+iN8RfjB3S83aCTDp6CVKSXeLOAacryGuyT+oqNd75dn19lK5otHMj8MYR8Dq9iCIPDrCFxjXeDzEucvInojBb+zXLqS6cUaqecIuGqPqqxyrm14ysJ8Q/Pz8BJUshsLGJUK1vW7tRWAGj0HzRf7Ye5Tg4B4K0c7Z7JwNp6eIbgQAOTHjMVxL1dIwjjyE8x3qih9zJbrYCo0U18SB23n2ANCngWNYuwzQy9AdbgDsFSIKrRVO+3O7/n//Z/uSRaP9zMxIDPJ9pjb25gTDQBpfK13nNYfZ9z1vHeboFqaqWIL6cKTNp1GoA/PBaqf8tjtZDq9pePf/zLI3bqQbBY2WvNr7rHv7d2Bw55oeNYihlrF/dkKOvvxWt8j/leVQrom42Ejfdeq9jNUBqwy/TNj8+y+Sr0ExCL9o4v7qKvfCO9Q1fSFbRRRS2egm6bAcsaHjR7OKRaQF+6kHtxZ+zVNvEYDW8EDM2mphZJLcb/nveOnTCSY/HLfngEJmZhUF97amy38h/AbuuAjN3aaEzS9BJ6kFywR0jZj+gYyvJ00lpSBvtCZ0EWETh9xomANd8uz1EncLuRrustKFyxVEkLmJWvzQ9PVFv1OWjwly/dtG9ilnjFHW5t+MbWihcnLuE5eHxVDeogLMD4CeQJppE94tAR9/1kSqCDG/UNkDLXqwR7OXJQqXmb+ld9iIcpi2tI6hhQx5TcnlnXrIDZqXmhj9Nt9MFxlwI83Doj07r++XrlfPh5pxo9q+rIRpa4HIw5RLFujXou8LeJh9Nth6h105FHlc/Qwu+xu1NjU3lg66mRq7yfXIAPaXVjc3+fSyipskcPkvph5Jm8BbBJdxhJ1ePrDfP3MsG2eoVkyJ98314OuSCZm5uLTy4/9estKx7uyV2meowbNj+f9iCvfJ3ugb3L6RyFIQju2hmr5v6sU6VKOFjndUeDXHtXZPuyX1DLqwDrp5HGbZhkJrgix0CnIJK8bxIdbfjDf4fbIc+JuXAcvGJ/Q4QRNB4zx7JTcKHIVCuXo7dYMQzhRXBPOIhK22NMW29taRtI7WFOerZwrgq6VlVpBo8dW2Z/MWUDKRq2j2NQ9frnnP7yM3V2irL2BAuJEu6DD9U+T1GvT+OElMf9dENKVLY6++wkAfz+f680GzawiL/DEot7tJnhdsX7jgwOFJvUa067il742VCkN3WQlD6qeKmzyfzFa2oOV1LNDvcoYZyAkiz5+xl/Z6+qwel7DVd94NG3s3nI5NWfyaw0GzCW1YkHs5B8yDaIJH0atUmFX6XdYu2wsdn8ih8JGE7Sl1ornqCXIvd/+IFIxaTpi/hEPhTCVKfZM9DBwh8i7i//qi20K4burwzu7mVINfRs8olnM/nhcbrqUd74adIWVJs6Ik9hl/YffcNHf+93V39YGleqgdXJIfXO9kv/1tdvA396klU9hXwJtVKWablAbBTIjMc20gpw7ZwC1yJfA7biCeXHD+MyfunUnQQVll4+YawEVzYVdwmCAH1axFlbqfrDPzJWU8ITFOmk9yQBsu5C1v3n+z97+fFtHY1OvFy1hoe59PkScc2/s3Pe3uHmKrk4AokcT3i9xXX3AA1A8r+ytQvNeKsWonoqeALjRc34NXvUO7IE+sfqjFU3StifPQclfSDmcZq3SHfJAFKs7bHbqaU+655NZCtdMvS+HUC+lL5ZwNeUuVg7gUfP1DYlkB1eEz4Y5zaetH0mQP5b7ZCya2ud2YKqwlGNeCI8bYdNdoBrsOqbqOIvus6PjZZCvWdHul/1n+9mv43gwQg7rKKK9ZNWv33A8WvXx+L0G7S0a4HbJNufXuItnyXu4KrnUKfOM33JPmCB5NURujdUWi1tnEL4w9PJmm+nUh59aRtLGhHc07Nf0t0S/fAPEVa8P1XtsVaCx7ei1ldw48m8maYc12dEhO50zedH+jzDOUsw1b7vICe7SFOh893ySLooh54E8N4Al6sdelz5MiP7a6k0bHsn3Mll1eylogbBcfMm3MDv8xlOQgFJu/jYd542G/iL4f7WQwtj48Xs/l4EqILYIZN4H/RnWUgaWPkiEjWh0Cl6ySacG0kiW6m/gk/YH+8QcVGGTeM4VB0xqQDnBkjU4aI5J0TVNViJqUTx8XBh06JPEYw+uwAHQHqB0WoY/Om31IGP3KPVJuUgEl1IbcebvL7YSgmE4YFhfLuXjMwXUgP++9zhNR70FGTbGkaPt4h1YLreDqblHVrHz55s0+oGZveRCHDh71tq5IoV73iilz/7Rxufl7zBIT4P87fQUDOgMljxbQRW/0HcC6Fq+vH9P325DwIgnbWs/fu+e4g0sDPHsoWti1XE23n903dcmDXd7YfXWGe2bgFvWPGoXozbnPiuqin+cFuo55zeYHx9SwNGgq9i1FavisG0LCCV1BCfA5qB2UsnDax8jLRYvugTsioNbNQPoJ51DHv640+rPk5xnvU9+X1fCOoZe6Ex6uymjiJIhU2PYBhOOrn4ailreixRhJWKrXp1A3/6E4KfqlpyWzLhL7+ANR4tSN4Xyvq8KU5gFc8070zYLOiINklfryXnaZB89Zb/vr+akqPWyZsrcJFk5K94KjlehGb9ItSI8y/r0jBFMEDvFqvjvfGWQyUvYHNBGkXIHXtCMfZhAHrw05cY8xexgZdidyCf4T33A9x/TXgClYndHz5Ct1wEa35H5eKI+sKuT1cWD7cDdgdqxcx5zgJsHtqDVPK2z5fwDcKfPkI2B57ps2pwd7jyy1V/dqtlF7kabOvaQ7sVPw/2Q21hyOcpPnSOEP/wBfBLzsCrfgN+9iMr8RTgOOJab1bINwFRYrp4n6l5/i++Hl4T+Q6VES+kEBtIwlKkq17sLaqbtND6CiciP7IgX3ZSbSgfA1yRcGzMfHGKuAUP/bpHH2id9O3cXl2w4nGqb+ZCXzo9u0Ph6n//9PjtPTl2yv2TfRFb4/cfPzKFrkaEDhCseKqRNV64UQvrmr6rxocMQztXEUBHoSc2uJ9/9rvyH5IvXP7sIEDoSX/60+yEYato1uKueA6C+dOELay1OEfz/ZWyP3wKLN2mWnZTPKJFUAXFVqVkOjlmPN2XQIDOHVwQ8duzN6dLYcCuozaZc3bsl2DuTOgmaIP38u2Qz5nM7lDoohr7h9D1utyeTeVMyI5iT7S9BV4/JjSkc/DTC8ByOW81aMvmlbroEFfsMdEz3PsXgx6yc+KNXfblwZgHIT4MgVcxMwQmbMd0pr7zbMFcujvuV59a9eE9m95bu/3pC2iWb++cnYYjkY/s8yRyAd86i7h3Ajv1wv3wIphuldPClW/RiH61mGZ+MgC0SU50XxhT9WdPNqaITHqEAOsvkAe3b5RTfP1sY1rrJZFfctj/6ZXUmqczMJ6GRMP8QyrynOMUdgaP8S3X3v20qwACN0W/EyWS83zJ8U0GudZtiZDZFSPWzuwgUBRIFv4d5zuZ5QVc62HoZT3VfLnIOANnuizUq3bUG4DOISiiuEdsxZvsah+0f3zGkpp8DsubAbxwUCmycjNfvs4mhNOA9hQ/ejeeX9/WhNfLPaG4OMO+h0Dm4eNU7miw3Y6AGXZMIBZil3rnq8qWPRoSeXwfFnqQjk21rPUlqDyOgO5Xe5o3b6uDt9QvUcJXjT69OkJkUh/Br14Tk3X/gbYVUxp/y7miD628Kyy8BdRQpm2/5MY3lVf99acfgLkJLRHeeqVCcnRecnKFe07ZMJRRe2pLj3H2l4M6niQkq+emH396tRV1kLCDHOh8L9gizL1bjgOv1LytZkqanGabGDH7m+Q/fQZO/hwjcWpVb/agm0H1oLyo5fnnfip5NZWDyQ7IZsWH2+N+1X8DP8XeDkwec4OqVbxr2fz01XwJEviCXr1eWb2cMWNbrArgp8+6tmis9SMHAWWz1NTTaOwtSHYK6AdLRBYSPuJJPR4TQI2l/uFxb3bCtJX8Ehr4Ulm6Tg7dpQGX03eg2j1p1yNmE1H4XI6odtGrVb+dkcI3AqW/+t/XfRSCHHKxhBTo7tlc5dwAFW74YoNOTs8O3xCC/Sd+ktdbx4CBXeUqazzF6kwNNjmfVoXVKbCxO6uNN+C2DJXUQiE21f7BVv1n+ellaFFSWr3f+9UmV70FT84dTBv40EB1wis/JPf8T/8QurAmIN05OT3HgFfe10HE9mV+/fytAyt/pnqhVfEvvkIRXDjCQ8R5w7lEAiTXyx1Jz30JRodVGlzri9Q73LN81WcFcJzEK92v/j81hi8Cp0CY+h5ZYiIkFxuu/ktk7+zniyIPZ/gGAkFz3zA2P9LvGdD0+cHe9maBtf5R//QJxOWo7VmeQBOe+MuIFNn0e5Z4yR2GzyGkCZKGFe+5KpRy4YP9nZDkM23uzV9+9FuB9Mut8CFc95dItQvy2WoA938dKdj995EC8iwswuZnVw0+3EySW+uQHrjB0RlRJkO557VArd0sVKNhcGd4mbiQavC2qToXSiG8cNeA2td0n49ZuDsD8bKeV7cJY8scX0wgPoSQqvNZ1t9OorjwVI5HNJ+LJqZA6xDMDdShqTzfwffs+S185MVMs4k8cpqawwCHazFgn+hzPp5ht85azzQi6yrJSU4+idwwkGE8uDaYfJyX8Hl+DzRgO6bPmRzYULwtFwJpUHpL7MYhXHYjJIt7flWM+BmBRlBZ1DPFbzxWTj/ADotPfILTK2fClW/BZj0FqpfffT/pYWJDbPUZdnVZrGhy27lQc74PipX+FU8QoRf02bxgf7C6aqntTIPXmY0ESNNXX2YDvkDVyjX1N7pfzVX35GD00Bt8MJ0iZ2HmqBA2H0x27/vB2y3D1EHwtmtsixXUx+PrYYAxky7YwVTrZ8eMakVA2hOrU4EBezeaCnPNndF82Ty9+fOUTZBOvIetuBh1Vph+CnoNKEhiverx1EkK+Hu9IZ+RTYb05KAvJDw9mnerYu9ckUENxSN9bB5nMAdJIUAFttv1lNqFjdWRhVBKwBtBW5fBN7iXnEJ7+4zzPojYpNt+Az9+a2G3vPA9A3JWg2NeadT4iB5buEPoKsdbA7C13WK25CIr4NcOPXoJz5dqajLog62r8oS93m0+sWsegeEsddQ7kKyaP46XggvTHIxdplX8i/cQNK9tghPVUBlxg7CAq33TkyNq/fyQagFKdyph95hH+cxvIh7erI9DUZuV+jJXnA/Hk78lHy159K2o2QJQBRegTjMNb6Leeovl0IoEJB1kc8DWJm6GNmO/cHq2zMQ9w7eyY9Q+uHf9qwq8Cp/v1wFrztbIZ6nRBXC45RrGN2RWs/MuIrg1kggj2Y/j+TMlHUiyvsPBzGRvPOf9BO/H+EpAcpzY+Oi1UNldp47+/KHBRtvAXWLY+MiPZzZWy/wCu5tc0EBQbDCdDLTArcUB7Nw1Pl/ib8HJq79RTL9uzjx6F6EqzTVFxo70XVztuU0X8C19cG+/ZzpsETT2zky6+tEwlr5JuoNjpFMtewNvwUZZK/X0Amix+20/3IcYQmt0RZIcT1uwcEfOhXXt1NRd/XXqIj+B0Ynkqz8f85133ywgzmZKlGdB8wnexw7cvGBBt+3+pU/HizuBMBhVbDvZqx9sa4iAeLzusdHc9HyiXUaANdoiLu6HpWK7pT/Dr96HOBCKrmKdWaqK0jxc6n2Pvt7jCdjwcD2GNNjdLW+XvpsUsm3F4b0BfCbIL6WBpyqMsemTvT4xbNkQ2VFLD+kQVdPrSUtQWBRhNzI0tiNvJ4OTYrgYndA1ZoXCLxDbdkX3svTyFpRnBF7kpaa67xrV4AvDAsqqORKul/b9slckGR7vhoHPs+5WzAtPCFzF4km9pIPgKzU6L4uXZsDqsdt7C/c6RfBnH7jwXZ0lt816d0mIqVpucL76L1QaoSioPn3UnD43Rw1Ws+sQPsm9aq5eWQqtaJtj5+Hr3u493DRYfoiOONGWY5Y8wACC3fzAKBmBTjDvZFAPvj6SeeHYz8G9hVBXESYPzyhiMt96X5by5kp2sdLHdCcvonLlOp8G8b7Pydb9+D/7pLZYFd7ELucBLDsKqatqvU44XuTkt+gcsZbOZs9TWeLB4bpcyXy5vxgjlcHL5ql8YW2g7/gr3fgImnHxpUZ9deM5OF9T2BrhHe9VJvdsAbEP75lq0uu9Nxj/ks8+jI9FjS/CvcyX/Vv3wauBKwQIYD5PYXSGG96zkJiipadv4ekqNffYU/PWuJ5QP9VB8ZaTRdVnGfSkXGwXxJcOr+s55Msly4yf/xAW+HtvHrTUhDO3XssbuVs+fsQaKeOz8akVZVNFvY2gQW9aLmRa93Oyp8WAVXN5Ie5jc2ypuUCAHnRy+riaST5PbyxD+DFT6myucjyrpC7gzSMAKa+7B8YoeJbwGzxqtIv2Rk8t2TtDfT9tsNcLerxEIYmA0jUQnf3DVM0HsnYV4Yo6SOprl7OUyiUULF7AWk4dxq+t4WAtDA31iVf1y3gRX7KOA0iI8H7EdI0XEshOCvZdK2aLeypVuH4+9qyF9Uu9WwRoFoyn6ISkvGsPigulWxfhQ7vo1dImjwEQmgVkVysNmOjLs6WtfTeIrFZOPPnTdQKr/9G9uA4+WpytACmNbLJw3w4M/jE0FKWzGD2kcVORKGxC2D/imDz324u+yEorQD3ofbJNPT4eBy01wC5SMY56Q9THAO15pZ5KQNid4+Pxc8wg6A4WwE7g9jGJ++sLcmLKYfeoNfGs7m0faAE7rqe2A296nfalksreGdub8N2v+eUuq+wjUexqG0ZBHorghy/my2bvDYyjHLA+9zNaqN/FTFO5AdrNzsbBa9N5FEvuALGLCmycxbCfwtttArpvFog9HlE1Do+bD262EVHPkg+APev3BJ0P8qnB4zOb9A3kYHxqztgSzkif7P01ArUspBgd0oF9H+CbgsNjLZFSjfbMC28+LC++jLjT2etZcqlt2V24E/3lX5Y8xVBKxbpBoLaUeHiNE5L3/rlBIvgeq2XwPgKMi21LEaBIn65nzYWgMnu62gOYjp+nDMl4TkZOYp+Yhc5TVo7eXsIhYw+vF/YHDmqmKlBnWG9BTVLrgtbZqGjJTSmvX7HBwa+bGDSIpKs+V5tLCQuUalSvPjUbXv4MwbMELpIr4ayzJ5FkOF4iQjYjp8TLUJhQGeLjHnv5xcxnY7BqOIR0Q/17M4GlPO5lRVOThJqFIlXzilchxiKHpOVbrY2gHANeJ1/B+yQdY7aR5PD3e6j6lKSeEgBe0LjKd4wMxOnMy55nZf5KMjq+Z76a2BSk8je41WSTPSGbI16eIG/XDjUS6IDtD2+AMbPR7n1eGMmtuwGddoFo1LqymtX2WEAm9ROqNXlmdPw+BODNOw49D4Wnz1U7puAv3l02T30+P4UFptx0xMbnMlYt074uoGTaUA/wr3UQWfeCw6O70F/+mERJ8uGrN1842FtvsIzWNZM7hwgUu/2Us5S7mfDKefoa78aKLfXThKBlAcrBgMFSb7kIPDKlpZryITn7akQGVdmr1GHuE8zBYYmggd8q1pwx0qe+SAtISSxgaw9YP+h3jgDr+8IYE/QEsyS8OJBt3oRwwnuTzx9Hz6AZ37/kufKDVYtsoL/d9tQ7B7u+295cGQ635k6AKTo57QRbgM5Te1LrNYN4gmnWwtVfcBhaTUzm+GHCc8tPSAmVJZ+D7MNLvNtpSNzMFRtePegg7H2XevLxE8/KLecgtr4ZdrcPTd/2426BHFd/8cEmMWCbtdOc3V5FsrgojBf31KqQvJ4Er/Gon3TbaOBGIA7Zcl7H2r4ICyUudi3dN6CK57VbFhQOR54ic20EqqA5hZqWBdR9xSBe5veyKMlH31OHqMyb7za+Q6cTtvSQ4TGe/CbogIE/KtU6Le9/zxe0buFgNW4sRjfaXgTKIjypu7+xnrh7PMHHTX9S6/zS1orgTYDpkgLSmqMIln0ymNC8TSbdf0aQT+L8bGHVijUZ6CbVeeoUBayGZ4BP+fELlrHJDcggWpAwKzzoN9nUgFqMzwR8ly5e+dcLFk7MEenurkc0ayuCPr8Y2Nomx36ulrn8xQvs3J5nfVZOfgYOR30gb87rwKwYYyh5W2XCrvZ55T+8JFWvQaLF+GL6xK5xqHT7W4RmOdXZmLlDArZm5mHf60g/54lYAKc7Ddh9Hjk2fh7b1/8AAAD//6RdS7eyPLP8QQzkJglD7nIzQVDEGaAiIKJAAuTXn8V+3uE3O0PWFtiQdHVVdeioX834UMP1pYJJplFDVYQJdr8OGMZu20nhLbYvvPEFsBaEpuDh6TwBwzEGU2oIFlQ+541/oE+wfG51BUvzU1LdzBbwkseHCH/4lmE/FhU25dHuDMLdsMOWdBmLVUR9qrx+0wOfUmEthntWbfnLZuSj50LC7q4G4R8+Gr1zZuxFFhlMrzbEh25/HNZih0pYWtYbnw5VG6x+AQzY1MeZGl/tabKNP//DN4NOfUMm3HN/ehPrbRoGAi8FMbQLPqZ/eMECiTxA72YRPUZqnNDznIsQkCcl4I8vXKUnAkNm6Ng7Ntdk4jO9++N32LnvRPProZ8PhwvnYgPen823CfoI3o8rj0S6L5opDawe7kSs4UDulIJwK8wB6OgZxVnkJiK3P+QgULoB/ekZtvEtmBSRjP1T0zb0oD0yAD7oTm31Fw7s3fkGKANJw7qtfovfdGEc7K34gW1vjhK27QKqHG66Q0jrg2FSRb8Hz8vJoacNv4lzDta/fEHgo5vZeo39GjLZ1gjIbk0wPVxcQvlSM2pDbJksuz94BYV5jlbfeQRLY0Yj4Oa+wUfDMwqxpU0Eo8PrQk30+Q7ziS4P9ZTMH8L1eRUsXvMcwcaPqX7ZOsPu8rkFVyjekbgtK1m0i7DC4XQ9YgRSIxDm90GGW/7Fh6upB396QvnjJ5wynYaJH3e+4r7cjvqCjMxJHlMRvGFiYkyoZpLJLkVQV4tND2ZamtO4bI2ej5KNgFW0xVo5wgofiVhgS7i9h9HKqwhu+QmRNBLApqcjaZtvZDlUVrDYb9jBu/2KiNIZejOpVw2C8SwtaKf6ViDt9musRvr1R43icx14uHhb14Ra+8enSXFIHbCq+8+mX3OTrYIbwi2eaUjtI6PGL6xAKKY8YezdNP/wZ+UPCT6eJNhsfk4KlfNSbcdls/q2pvw7348UPiBCc1Hg4zTX9JqUUzA963WEyeVwJMqmz4edZp9BMqw6De8tX7D7bisxDsjf+KIzLKMROYD8lniak+7D/uJ7H86/GLt2HBX/8rXbhE/sPOuZMfLWc5itOcBeGOnmfDm/ZaipIEUjtSdA/vSb6WvbRhPqNMzyy6+g4JbWP/7P8OGdwp0wSWj/vJdgvoGUh8979fsvXlvOFiGsuQ4JN/GVUCA/DEi6b0V1jeXD1OyeNewW6UXNcKgBQe5Og5/9U6JIjsZhXQwJKm4PdIrE9y6ZPM6H8JngI3YP0meYO6A8FLU6PXE9LS9A767LQYzOCD83fjKp76EG1anKcLJtnr3ILY7BGE07rO8luxH++MjK5TMNZDI2dLdXYrCIc46NzBWD6aj+flBj7z0Sj9U+oJteg7APdtigoZ+s7Usjqm7UMTY2/r4KYTP/i3ccvJVm8sJ3C6/z80DUKo/ZWnhxD+PresbHpPaaPz4PdnP1QEA5HYpFw/UMQ+XRIanLtkbz/sOXNSDcqaXAqpjvwWWEJeZWjD7RKSDfqsphKx7v+CBM94a0bmxsa1U+m975stnydVfd8JvMUW8NFLwaGfhw/WLvOHybtRcu3J/+oSctLovRPbQRsK78G5v4lbC1mBsZbHyABvteZP3jvs/g6d4C8ue/zZFoPWCrXDDFqt8GU4NFAu/BCOi1y3CyWMejDLf8ibXGdBPJMECkxEWmonqw5GDjP62y5RNq+Kkx/PFhxbmYN8IbrzdYi6sQQth7O4qu8VrQMh3qf/4f33GvZjZ3PAea/lYgSZTGhJrNUsNcIw51nvljEKuTJ6vb+ehkq17Cw0VP4QpTCaMO8cMsf3NLiZ8VxegsTAUx0uoHWoXPaJy5ojnCKLD2rXLF5Gd8jES8ZpcKkMaQiBLdBLaiYeHB/jkG1JcSsfnyo+TD/gAO2FCfMBi772MFAQwKsl+/5sAP5neFd8xPNMhuprl+s0iE51f63PyWmrHotJTwe2AGgUdyAJPGSw9omfhHD+aDJP3lbRuQwXBF4MIPw4bnImjrw4Bd2+cCwtmZD+Vi+6p68z+FJ3jl0DllM0YXyQP/8oOhFwDBZ1WY61J0PxDK+USUGg6MGqcLr/Bu55GZgVMh8IQR4Fy7AocP0pjjL8IzuMrjgORbhAP5VxEFdMIuwUF68cDs2p8RvogQ4T88/xtfsPlr9FjpDqMBizQ1EB97srsjZ5CAqyIIyeVHOCf3tvg2IHjVqom90CVsxTDigAosG8fcSx6mXDn6YOOLiDcTlTFyruM//k3gVLNg/C2OtjfNK6XHV/sa6CESauWP32pxOxRzZ9gVVBo0Y2NnpJsenCOoPB2VBu3hnnxMWIWw6fgBx19tZ453hauVbfypu+lD4rBjCQUbGNRvLle2eJzBAVA1X2zfLk2wLqM9wy2fEO4r9A0LalmG53Jq/vy8RMouOP7z96nf3H/B2FmGA083Lsbm8voN843hGO4vOUEjmq2Crcv2Xbo3PKn9DXCz8Vt+f1sjEQeXcV/Mf37hxr9Rs2hjsqjWO/rH5/7mCyNTxkH3m/n4kNY1my9A8qFohUeibPUH8jcfThe+okYQhVuXR96H66rn5GRmC5uHHzPg65UnhFMEE0hE6Kv96eFY+BDn0TCf3B4p3kt7YVs9acO/fOa3OsR/evAfH5Pv8xWb2D0A9hqFFDoFttBf/YSt5an+88cR3x05QISYm+Gmz7E9HNJivoCdCxd+fFGcv0qwJpkgQpBfVbJnQ2WKQizO8M//NzyhLcZb6vvg7jrxX30G8FYFYlg36YHql/jafMhe5EDy2L/+8d3xYRsjDPe7O9WqlGNzF55+f/iPpqjkA4JuDx/4YschXrM0MPGj5ILj8uGpU5YgGUNthmownxD1I+0LiO3tetBBn6PO8TCZ0xzF5798RXZb/WRdkqcFZ2CccAh3rKFrPdbQOvXKlo/ew+qk2ln1e4/QwAqe4Ps8Zz7swCD84fW/+gLskbWi9T++/qv/+et//H86CoUFTOus4/JBTJMI77gEBpZ8qoX7R/KLoy7+43fYmz4HUxDmOQLTVN6wXXjSMJ6uxgrdl99RjeVJQIkqO8C+4is1Qwgb0ncgg7v1gJBq/Krhnz/ijs0P7V0NDsufnvDJ9fYPj6ZnrYzQ0NIztaRjHsxmVPrwUjOfBucVm5u/mf/DQxfGdbE0dZxB+KM6tYfZYYJnpRrw965G3Zx54JsPdat0c7z8q68s6Y2GcLxmjFSbf7kqoVlCuxBjNL1a/c9vFf/58Vt8NcvGN6H3jWy03prHIE4jsYAV+yZ2Zk8rZnfrWjJvXYjN5ZYlc3htHBiuJMCGSrVG+l2MTo3se4k95utgju6Xef+nN5yyPQ7C57Va6kf9fMkue4vmchQSC4JPeMdulraAvcmthSbGEC0X0JtzB9YS7mbzQuCfv3+XviswginDWnRwkp/gU/Snx9FigZFt9bofyJTfkwbXeU1+7f3QQt35Wdjir57JX6ayg/ubeaWYC7WG7aL2AQNe8dBJFrxgOv3ID27PixY+lBt2kNEMlG9W/NUDAsLV9xhm3MmlRXu4F+x1qHoIyfWHzcptkvGvPmU/1JUGmfJK/vxbIJrUwq4VMTB95BHtlfIFkLDrkmKuEwtCqRAbfIgBAStyJQNea1MiM1KlYhqNyFJLQxsxHhsesHMfxErv5hH2a34/fK0Rt3CuRh5jzxUG+k0cA+5UtcDI2TZib7PFh0quBvQCsRUs++cswulkm9QSR8AmnoARpu3IUbyNx6YPYrDp/Y1PPreuf+4DJtce45KYp2QZv99UoRPC2PAdzqTRr/LV4TmX9CBlfsNwRw14g22CdvTrJ3M9ySGQDtsS5v5kF9KZU3OYXOwj9pB1GZjUajOs35lG3csXBIwMZQ7dvpCx7V3bhJZOmMPhUu7wJe/3xfBXj/7LT95ojcn867kHLPVXg41b3ILNf1WggaIczU3bDet1n6zQn+WS8J/rNAxATg14XV8atjY8pWdN0VTdqGKcfbeuMfAx9WDjq9T4ukuyXkF2htJdLsnnvWuK+aYWOWw6cSCfPz65wFaG+6K9Ua1R12E5Ik+E3ttNqN7lb5MBfz8D3UX85l9af/GIlDiTAJGHIWbLM0466JPLjdru5cNW/3fv4E45r9hBvw9Yxs84Ax3lT4yhdilm9/HIoWFClVrp0xqWR0ZaoETb2rrNTyP68AhhaX8vdNMzydL07xxu/hC9b/WYscukH4BTZFIHj22x8I+y+38tKZD/95KCq9ZP2CM7L1kz9bKC1gUNDZbCYMt8/ZUwm68qUcNXV9AVaoY6oMqgkfehzcpk1YXXIJCoXXb6QO8fLYeguN+w/+73CdshxdqfUMtTo4jcYpZ3AQKGvbYITrUyTJ53ctT0rLeID+KaDdSVQ8h7e4c+dkFSMB0DFy6ha+Gw199N702zosb7R0t+MOmDeferEVQUbcbebroDWhVBC+3zkiMBCmtDNEcd4Y3JLTaW36eYOF0sAXRPV/KJiNgsn+jewaL58BSPkW6uTZW1UBIaGwfPw6Og34fEg/RW38jNry9gpm1/hp4WttgYAG6WUC3D/RjQH5EPpwB8X8kBwctlt2KU0JqtWrkY6qE4JtS4rVUz8/ffquS2n1ET8EkzJuKYKzuiiYir7tIwzh2C8EPKIxEBXYN5mKwawqQfESfynskK4eqCdla2VbXZLiDh8LTghKMTti/PsiFZcnPhC7IdkeLwUTCT22kAUk3D9rre2aq/5AgmF41gJNzIMB47dobfpE/Inqtstt7DpIMcVS2aBrv2v/F8l78dNR8PO2Ao4Gq4TN1EFliHzdz+OAW0sy4heamshE2mzEGhbXV8P+1QwL7BV4Sl38TU9J4VWKs0tuB08ReKr2YeMCT3D2AUg4m96DQ1oz4MEUQdiale3USTSWFbQtaXd2p2ax2sWUd9QNryik49Z7D5WRx5WB3CCLvlqzIXS0lila6VhzOh48BoGCcONur1RkOusIpxOT87kBeGhC1jSgOqR10JkQQdGrWXoVmTcZ9BqKw7tHs7CFDx3tdQjn1EuJYcimV0WwI7S4yxs6jHZNUDngNOX4nbXjmWKYn3qlbPhyql0YnbA5Lr3xmAsc6wFcQ1IDi0Igi/TYBROqwNK2rdhYIbTGgG4gcQ/TVHSnkqF1zYvBqs7SuQ4aefG6p3dpWQd2e66jaeFAXFm/2kRepgndAHxm8PmgvVtBqq/o6n2LnYwzIsBlG/FJXYHlgFJlM4G2B2P3fqfu64YZ2R9vByUVfqkd23YPldV3anxbrTWHKpOd/4zoGhNWK03oSJMVjeK8Bf7hG1HmI4rP67rbZdbw/UxX0arD5MXIUYQUt1+QRB93XmVH2oKkcd8fQrZkd5aeqEnw62i6AD7J3EBGaUi6mG7WvBoAU6aFx2N8KveZqwD2UyuLvLHtvfk8uYJKgrKIvuhA8VZlsjvpMGO69U8d3rTTZR+BHhyTxue7ZODphWFp1Vdgi/9GLxl2KZwrmHw7tPsXF5zYDVlejC/VkcMH6Zr2YJu6mDexgw9L6z27CchOYMz/fPj/w0vTCX0kxdEMeNg7X3U0xWTyoUeIxnHSV60ICPOZ5TMAu3gh6TvB8W0L4UNXCEmIY30DSLmkwioEX3I1A5fIp5NAGCEsoX7ITJi61+oovQHmqTMBstwegoXw1+H8Edu75PiuW2fbV++RgL1vffnzlrn2sKg498Il2Y6GAM5XpU7eraoo/Rn5upnF0HdssvItU9uCVsvPRnGL12I9bWw1ws7FVxKrcY1jYeDltoPCA4jQ5Gu3PxaZgczbm6xTORhWYZtuNMfU8KQ4p6XxnDkV/CzDN4tKRtA8YrARWc6dmhHku6gt0/bNxy4Y7I61QW1BzLMzTkKKSRncTNYp88Dnifs0TU0jCAgA/xrMzvsKNBy3rGrl/FABO+O9irczj8PvreUarrW6FBhspgOjVuD/WdYtFD392LWdxnPby/0ZEevLVjc/ExetX6zB9cUCoXS/TQM/gasws2xXQA63mRf0oVq5jMeZwCut0PZueOo5op/IZ1aG4V3OKRuk8vboYdnvJ9e75PRGG9NvzhKyyS0EfVc34M67sLfBB9Hi/qnH9hwF7eGamfxNkjIpQFY8qOjxXetwHZ74CWrF10EMEJZCuShY5jSybNnHr5aAstSF0V0zmNavX7nT746EZiw8zLRIDb/nIE9uvRpB3VWrjhCyIMdAPztVMOjKJEOBK0zaKb3z94I5qFzdWG5oyHtVU/zYlgn+ZcsCYpZ8GYO2AcBNUh4Ut1H4NHXQhkopdyGCOzbMHyGRGBz1JuPgv6rWB4gBGHhvMLhqvWj//iKbh134J9ZorAjYR7apwe5vC5R7cV/uGjtbPVhmRvJiocON8Q2EVnMJcfgYPopPVY25/qZrnPLIdDftIJMIAyTJKpP6D6yVzEpEps+kPMnWELbgENhnEwWfLUQsjNnkKUsPuwWR+aCNxvvLz1w3LYsne1Ed7f4RGfM00aPg1KSjV9Ww25hZrKlscjGqFgJAj73/3XHM3DDUFL/ToYg3uVEBC3K+Qxe2Nc0u0ri5XOsKbOuuH1AbDaP1RQus0OjfI4ZTOsBgL7j+6TvX0AyXa9UKl3yQfttutt+cuF/cf0cXB29YHBNePBxb/12McoLyaquRXcHeyM+jUVAX2OK4Q/Xy2olxzqgbrQzuEjNgJq8uCUzFz3iGGkNgIOiXoxWcQlBjQTMcXWQU9MliKphC8RVNTewzmY0TnqVenGAcLHpydYk3HJQV6NNb2ZXWcunexG4C+/g0Q6DXRKi58i98aEEf2JbN5bfg1tsJ/oH17+wkx3oPh5JtThRQxGv+R5wJ0/M9rd9rhYam2sIebhHl9/usSGNfkZcIwH71/8kn5QR+V3khX8l48W5Vn3UHqfI4rc/hG0H1+eIT3FF7IzdLdphymsQKkaCj5W9hxMjX4VoY2ITYSjuyZLrNSt+jyDO7aERAbEiFwZyqlKyO7tweB3xUcEfeAkFDOvSebn+plhdGoN7McHCFj0abOtU5OA5j6TGVuTWoPR5AZI2O9rsPxGcYXeqcyw9yO3hsHihyB9fXekRj1KqK+HI7hg5Y6Ab49sfexnHsrBrd3ym1QsnG760D63byTSQ2aur6udQe/0yCjeno+J976CG5+iQTp1bLl1XrfvfRwi0Fwq8EVGUgFdCXNEJntpVlmIkHqMORFreSyyFXyTHPoovlCr3+vFnEhXAvOcN+iFjGbBVGa5kI/ENw6/ZRWQ5ykXlS1/0JKoQtBHZtlBFsoJvXHVm62iSQ3Q4UtJLfVzYXO/91L4fHMldXTHKMQ/PtNVeUnIfhoG9tZmQ/V3e4YPF4MNPYc/v71u6C72Qk0FdPfut8x3TrClN0GxxrvS+cfvj8aLA+tn8HN541cEyjQPxoc5KJDtyYlq49dtfscbHUHjGCdUzzgE7K6kOfzj59SwBMb+8Ghdzj6+s27c8l2VqnHT2miGvh0IpnhI4VTtZ2qe6bGh5vAyAMnkIxHiTjFZzuQKlAVzyB6JK1tdse+gc/de+IidYGCncehhuZI3WrRjnPSBn7sQt7OFw798HnvYh40vLdTd83rCHztN++Nf1Mltp2GOmPPgvY9dioNZC6Q0jixgQEWiOil/zfp15jPY+Ad1he4BWJzDGLazKVGt0kkzntxChNeT8qLac+Ya+ou+FtzwA3HCjTSjivgz5M45oG4LrsPaVFGrquq9RMJtHpNRUqT4Tx9hwxK9QfCl7w9ufye8w9mAfyyeC9+se+CAvI+NGNWKDFv0PuLHS16DdTsGf/nkgCM0fN9+Y8Cwc2W0dTxupsfTMuD5nglkytMsWUdF86ET/64YG3o/TPB9CcGruKb/rj84zxEBeN/pWzyahZjrWyNSkvrY9ya7+NMTwLNlRAud1MOonfWzuvF/7AS7tqHKToMwLoUC+6/3GCyXqylCUbtqqDOHQ8NGbvmpqq/yNHwjdVgXbx8rxud4xHaqSMGY3S0XRJ9vitFjRxvqgtiB0akzyMVaepOKgv9Q8JF/U3yq7YAv9tMZCHfpSr1ce5vfWKk7cH/cG+qPa9As0YMf4cuODPw0SzMQIl42oHJ4ufj59krzt/OZrFb6VFCtk5qGBfQeQXXlYnxoq5qtsksiwIH0hvW0NcG8XucQfmlY4kIVlIL+4U3chzP1FjlgZHd/dFDgZ5E+pXBuqODsFZAeOYzD3loBOxy9Gn44SaLeH76/4kSBh9eBIaj4/ECvWk/gAX899Hn9pmaN6lWGpZxh7EQpDcZdwlpIMuWINz0WvMdnkUJUnFWcgMVJ5uM+1SCm1g273/BQ5KvsiSDH5YRD6RRvz6u14LJmDomw4ZuSstM4dYsXAqNwNFfltH/A+XE6oDlJD8G6/R6uS+qjQc6fbIobxoGNj2HznZ+3LgCVAZMcHLHFhAiMh1hMoXKlKnlHOg9G5yhZ4BEfNZo7vMFYyL6hog32F/+N12yYxxhYqgCohTO1aB1QnuHhZTOKDn5qzq9jncHDGMXYv9ZSsQrDiUBvMl5kAqo4rAsTZKh/g4Ka1/MKmKFmOfwcaLvl+yKZFptZ8ODtntSIzK85y33ZghZlGfZvSAezfuZ/8Oo0IbaX99ZYlHgzPOrU+BePYgZ/DxDmHdn0O1e090sS/+UneuVUBAa5SRz4isQQo7NZBR+5KRx4Y0r7T29MupP5kIc5wZpDpmC8vSILiMV4xkeOBWBMr6cObnwUGxt+8rdX5oBo8gMiZ9FcEPsCHpB8bYMITlg347Sas3p6sC/5RV8hYJwc5FAnfUSfRE4G8XYOS2Us1Qc19pyVrKeTWcMr27oa7C+WyYZTmUH3TgABwzgEX7sfZMCIf6Do9jqwZWVRCqV3GmGTemMyvu19Dcf+zLBBuZKxX/R1/vlBgbj3Gzaczhnc8JkeZCtsyCDwIaQfn8de1ktswsszAyHG21eHel0Qaq0aLL7Jg+LjSSjGlLgIFvyPoQ+b6oBE9arAYheoeIsnsJSzZv39v0iwFtcUgBS2Si87HsZvBzHG6+sPflvlgMOS74L5PqpI3vCHTN5wCpZbp7dq7x9DiongFH98VPmVW29P/84XtGzoqkyFGdG/+ds5uUIgvQANh+BNzWkS1RiIq9gj/jrmxcwlWgy2+U29ExWKsdWUCJyo2FMnCa2ALe9TDjc+SxE6u8U/f8gYRwNnz/AJ2J+f5ujvDI+Kfx42PviAyC4f+HpLzERIncMKe7t94Ycras2mb33lWUUrPcDMa/jj/mHIP1nM/vFNurxvGXytjkadbNoX//jnQ108JG1+2iTnTQ42fxCHoNYZ+T3yGE5d9sbWmqfFcj/8HAXYmY0Phdw303n34qH4Yl+irFFS0N27GuGRvz3x5jeZazhcHfgVHEjgroebf2e6sMpKi/SfOx7og6vTv+dBzMgA2PS2DFdspjj0Em+YnfZNoG9CDe0Uw978zPqh2m/+hg/O3krEoTlV6gSfe4pLajWMrF4Nd3E5URPaZjP/OLeFNbVWmlvxD2x6jVe4d0+xLxtyMuKLCWEI9Ss90OeuIfnNHCEh80gWPjCSiWpapfzLF2bnmMvluvNhmdolfQC3M5fSqHm1KZQZH1kXJuITPEtl00NIGc7NMMdP/wH/8t8t194BU1nognf48NHn9amKBVF5VSxVAoS3u2xYnuErhS4vYOz1zsdchdHWIONxiYPmorFv0gMErM+upFtbmEI6DfJZdQ7OEUlspgmzJvwDG1/GWpJ+gjX4DTOYv9KJaHr0TsYfBxTFm7QXPZPr11wFw82g6Q4iEhHgkxlWDQHb+0WsgeO2r+fDBd3SRzjQFwwW7rpfweX1ghgJJQC/PIty9dj/KuoeTgOYvavaQez6AAUb3/2trwSpn17NMOZSg83oQ3qw/Z4sQpYXP5jKRHlCc6Yaq32wzoTrQX/yByKGyQusvTFm4C9esWFd2Mq6/AGcWAqxDYV1+KdnPuRxRC91vBaskdpZYfvxhF255M0lXfcEfI+wp9a9WIPf55zM8LdtPPR3f+n+cTOw6TXsosdQLPZH7gAf8W9qoB4VQHwkIjQf1wprKfYGQTzLPEzw1cQOkg+muNwPMUjPZkvdCZ+bZe9CDV5Ofkz2fi2A5Rl+U+jugpbwH99r1j9+JI7QxfrB4ZuVpK8cbviMjd1zX6zqdTSU28HpULPh6ZpuvW4jJ5yo/sGBSZ+jwoEmPTr0tsgDoEHW/fYxWxWMR+MxfNy2Kf/wCCk4mMzlQt4zHK8JT//G/1vvFvcfXlyObpxM3yFzld0k6tQ0LmQgq+zx0OlrkfpW/GMzvgQc2Px1bNonLqGHo1dBQz2MRFzUKZme4fcM94gLsMvfOraKBiDw4fQiNe/mb6AoEOs/Pwd7SFxBbz2AD49HJ6X4T18ynuMUU4h31L3khTkyxxXhhwwGkr/hJ/lepvUBf8wn2KThvlm2/Ays2FHJy23LZlHEWwQyUJc4PH26Zspe6k/h5kAhinqPwbz540oPwZfw+BKZa38rDKhdsI/G3lrZGmaeAz1bQfQIlG+xsi4u4TlxKmxcWs78/vmxYy1w2DESpaB1ZfB/egrrO/8ZzK2mxH/+AS4DQW9mFcEUbv41UZBuJPyrvRnw6rzCf9dniXtq4Y47Dht/noY/vgg5RCOy2/LxvPHZP75C0SXKTFG9tgYUXG+iFgreyTxOO/GfP/XnP+xfcaFAOb6YaM6kMpnf9lLDSL1o2Kb7olgewtqri7bO1FD0UyOAI4hA+/OuNPhkxGRwjcR/ekHzl7xYF79tIbgwuvm9fsGkYHFVfacrOPDtkPXyzgyh50+EOt18ZOvRuRFQK48DRS35JMx5jiGM0qJG81Zfmv/ytY0U5S9+wXJIYQXBmsnUp9cZTD9j9dWC7Nx/+ZgMYS0D/+wK2OnRBUyRixyoZ1xHlnuVDOxGlvif3+WUnBes5aE8A5m1En1iMR8WZCIR7iOk4WAparYcf0sFwjOwyM+9yOakZQoPmvLwJkBLLxs/vBGYefi7+RN9Q/SAh9C/iU+sH8xPQv/8r+iljmRt2ncxo0/Xg6cYnPDxehcA+c56DzXcPCn6pDewFlQ5K9X1o/zFU0ORXJUwCNMDtQeRBGTH2yH8w0uv9/iEwB8a9+bZDMgSCmMxLdl9hsejldI7vcCmV4qxhIsMDaK0DzIsvbry0P0mNiLAdQKBoGcMizs9Y4TOfdL/4e9ePJ2RJFvhIGx8SP3Dg5lYZrAmUztC5Nse9Ydz08zyzkRg81+wzqS3uVysrw+lWc6pjqIOzJoa//7wgjpgbMFKLUWD8DiH1Bdfjbn59Ty8nNwYByK8AjZdHQiTKN/qQeeczWH9yWHwUU70GBsgWYAkKfCh7riNL7Bkys85+qtPEEEyp2ba5jOQ3OlA+Neog3/1oT99FUx+YkrRZ8yhKFcxzYTm1KyUBOkfX0DckurFcrBuIgyX6kjxsogm5Qcpgj6tPJzkR6GgVR7FaupGb3q1X1Iw5rJigMPlzGNNj+yCYQVbwK5cShHsiPmnBwFaoxI7PKsH9nHqDlSthrCdSl+wnm1ElP51qZAitlHBXm6vgBCINfa+LWJjIj3/05N4uu+DNeaqGYpyHeODWvPF9HDvGcTudUZqX+bFaM715s+NMkafdM+mW+TEiuy0Fr2Hry4hf37wOUkuRPloXTOfcrEC77D0EUn7d/IPX0iCGsSnT6MQ+vO3gusZiNi562LCFol3gHK/fahWTKdkGJQ3gZ8mIRte+81WT0zVZxWvSKowM1fHkjL4x/eSPpEK9ldP84p1Qt+tPtDv9Ez5h8dM5rhhFgLNUbf6Ac5+6Wqy3bsfFZKEDc5wn5rTVm/dPtkE2E32NpMEZ1FUzgodXHJFW1Ryf+7A2Dc9+VX+aVjSdSEgfEOTHsrQZv2q6x10eFvDf/mWhaXSqs+l6nBqJHnBUvDN4PqeNZrdSWZuftUIq7tFt/ltB+vvEccqd84A9pFuFEQ4Dxbsqs+J4l2Tg9Wtphhu/j4C34PNWIOKEjQrj7FhZnojbfMH8ridcSC81IQ8jo4C5HLISLP522zBqQXOPdz91ZeK2dWSHo7l7oHd01kbhM1vgL/SyGmQ8G2xvP1BA0kX1TT2/M1fctVW2fzyf/7zdGq0H0yFJPsXP2TqsxXI03il+CbWwQRhIP6/lhTs//eSAlgoD2qwmzSMztBH4LBeFOpna2iu5vVVqRZwPxRP9AzmQ7NHsPGThdrj6ZBI/pxaMGmeJna4XWmuoiUrIH2oALs3f8fYUxhWcJXBmaKpDczFRHW8dYnuyboPcDM6QxVDc3e6o9sDDsnqTPceNO9Rojdn3RpVhAFUZOHI00BHs0lT8lthM2YxNYWlGpajVSqg8Pkz9ufXCSwTQTMAQfIjyvxa2JiM9QMc1BQg1RSkgbL1moNjk+vUv5z6hNqcyQGD83XqAsdqllgkHMDaF2B/8PVg7vuIh+RsHNAomjvAmrebwXmkDg6g5yfzPj6KIOPnB4Gu6Daz1SAEZQAw1oZOKEYqaQqQM9FA6i7F5ujGtQjz9MoR+BZUttRtFMHhzioyr/eOra88k2HsyC+iqnoXMOHbOMopnRbqjfhgzrPWR8p5+lKiJBofrEI18PBJzjz2X1zXLGbduVBEdI94ameMTduq/VslQ3ycOcVkXPi0lJObIcT/tpb4qv4rYTIuH6TIhtAs3OPdwWBPIUWXnAsGmpgQdoKaU4derwUj+eaiWG+CjUFOGD3ZswHZpRWxHQiNSfu+l0HeWT98kVYfrChlD7X6iB42VSgOS6otZxixX0s6+EvMie9XTqFz+8UG3r7xS41HDyffIRRV0shWs3Yc+KkPMrX3vQTm9u7FUPz5OyRf3h9zXM6t+/e+kfwat1VtT26FF+OWY9f5nAc6SxEHglsi0yB+BYPktnoMtwVD+LivjGLej6yC6Ts3yYwGwXzz7FlBqb2OKEe5COh44DOIgx8kg0UZYOWvDOEeJRZ5pfsfGJ9CMUL7qZyou7Ywoc+cc8Cz/hU4zKmeCOYN8fJv7C1c1tE7YDH/bSH8dDLWM09pmCRICoTV/k6PRasm/UJvIuB3NUL8sQXF5L29DP5CkFHPcUNzex6o1kapYGNqfmC9yrUP5tQckPR2JHO0TxIPL2vrI2A8dgM9CZ0IQw78iErMZFjD78GB+tQcKd71x2Z+d30L0Us+Uz8aBrMP7mu+G/ZhRwsdzcH4eexrGLfcTGT7apsCXvUQHqmVU8s9D2C5fQAPNTuOKeq5ic3++1vCuclr6sKUL1hwHny4g4FOlLqXAUNKlanCvbuTfTZIBTtFZQckPX7SUDR3jJa2B8EyfRDazV2XrFfTWeH2e3yAgd8I7/PqQ02hZxwYewcw68ZBJb1BFef2t2kGeHZ8ACNkYzfF+2StiocLUQdiijNJG1iaqBYMuf2PWh0ngSU+qBn8nPIKo/R5bZaqEBEcjo5LpDOvmfz8XitYFM1I/aUbiun4NFpoT1xFds/rrlm4fRHDofCv2FNroxF6AHvAdw8ODd7lFLD8KMbq3/xAK680s2kPBjCbt4Wta5qYLMqCHzBIccHGEIvNfNZIDm+/Y3X8F7+3c2Wp7CaXaN7574AEQaMAQ7EpNitVT8QHX3RgMOwDvZaXBtAfr44wGdmHlPORBUzPnBF83Asm/eX9CZZZc8O/+UQuYVEN84ZPqv7FHyL0c9MsEpoj0IZiSpZ+bdj6Nk2iauVgUyc6oH/zF4SPe0cP01E257Oor7B7xwYRyaKYk1rMlvqe2Ug9ta4b0pS6D7P7j6MouM/BuOd0BRxOQKTa5bBL6DHkHRjJ35rilnsNcyPzITwvxMC4yqyip9OrA4J0dVAvvTUm8fbDAdntmlG79Z1kEl+BDLbxwkjKJbBS3xqhenKOVPO0RzKL65rC2iu+aG2vUbGMwy0CG15QD3MymBsZIvg8KjORxeqQMNnxLHB5HBiBx/IN2O93cmFlWk964Kqk6XtYjmCLL/L9mGPB0j0+7415CXAoWW2xXs8XF+4kqaB2ZtrJlJZtDL+5/SS7VKPmujPyDv7Frxk0bdMf8psCrTRXEaH7s7moAeH2XLa3/saTEddjPzWXyyf1okpPBHbhU2CanrbNl3RY8lBT4HAuIfa2eBoP5LLCIpMbxJf1kS1QajR40keGLceUGrIz4lbN3F7DkWS25vg67Uf4TDmdmtjqiwkdYQj2Ua+gPZv9gTzcaw0NadvbOJCaZLkZ3w7oayxj7CIpmatbv4IlDQv8oPtzMO9jW4RqmNboEmq3Ynrw7Afd7/OGFn7fgrFI3Qh+7NGh5+edDxhmYgcFBxjYa4lZkNjJHOhKTU84wUZgraKlhel4Xukht2gzlce9C6eHmFFk1R5jG75Dk3Q24WmlmfOZPuHet+cPeamazcgfn0gv3ytRGOCL0T7teMg7hoKa4+3U9EWqxdDi7yF+VlmbDPENKPI1F+xtryp+oHk/QHhUZh6j39dqWC2dNfV5+/jYNhMFtEdwaYGLyUyPN8wn04ntHzCevz5S0teVkeG3IOUsThrWCDRNKSX1rG75DIfCbWqoF68y3Bn5bSsUVcno6WW5Z68kQn/4MsaqzCuZDt/UVtua/Y0fyDvnRyAahWS+q8aqMoQMrPvhOPSLeVnhsc93ZDkeEpMFTzwq6NzcaZh7VrC69ChD81ILCG73n97n1QWV3LyIqHtFs5x3ugFZgnU0j+HKaLm19NieD8li9SnaZS/mMLidZHoowctkkaPG8PvlA6pfubaYlZPWQuUZhFQT+5KtllP4cHe9XfGtvmOzX86tDyeofKibVcdhObdJCg9Jl1D/Z3+aWXw1EAb7CSKJJwWg2ZxosK/jftu1OGXrecpbSOhYUWucKVt50/3BZaeaiOumfUMHNpdq7hoFNvTONOcDucxwd14Rxp/9hy1XP/vBPM8jalrHq7nqX8GHkji9aOg7WUCu3tzCvVLUpEeunFD1/i4VTXYCwseO2ax/eDayW0KP6Xli81n0Vuifnjo27Xhu5miQSoicO8Lm16oTVoR7DWIjzbD/NLVgFo+9I5seX2DzrqfFXKRapN5C70QUZ58Ey+t9qeB2P2ylo8ZmTz+X4HR2euzWaV6wRZPPUNPg+If/hfAO8m1J0rPYHOJfsFjj8QE3fkejsiXm/A4UBb6l54H88YEx5k8VDL1H/8cHg5Hq7xoGRK/Ja+3nYarPBxcIJBH+8LiZlZPbwTarZrJLbLeZ7drl4C9p+Y0PSgUdJ/QDAchu1P5QjpHDGOWqhQ0PH5vhkSxhhXnwFeo3dj21LqaRl1swfO8KDvbIBHNmOQoEbv/CR16xA6nPnivoSrRgvAAZQOa/dcClrwQbsJthSf+Ol7QzO9AfKxUb4pkzW3FVUuhe7ZZ6sfBL5u6Sh4p36z2ccjsYjF+bd6CWpC8CAu0D2OP0mAGhpKKh+ZsYPQlEBMU6hEgaVDdZZPUrwisudvS43F7JSne9AwVnb1CvT2BAoyzowSGUJWpehWJgch5CmLtagcRj+BkY8DsRNoe+J0CIZbblh1TO/aGlDkuMZLWcxIfnl5rSEPz0YV5DwQKNbI3UbGI/4a3vbKjdBwT0sFfEYuz7jAfb+URp95M56eFqKJY+JNTdFxOYkpzXgGOQAO3SLiyW8NJEIEE0o6H4OAQr9xl5iNrIo8EvWpIRGh8C8eGaou7+4AY6Ts4PdmTbi70WjEAUwK2GiaurWDfsoOG1i+6q5kf5YU0/t02/4Sv4w08uL4xhPP4OIeBPpUbtfjYbcbeEPmQZ3mFLljY+72kP9SSLMQ5SgxbT0SplOJ+0CR80TWP0mYsOPEmeQIB6u4HZPiSx6kPFwdv7KIjEHQzwFg4xNRfhMtAuNKD6bdwZH3ILN8sDv3II6KrhYHy9h4U9kx+si8qnB+F8M9lCvwqMrXqkB/nXAdI/Xz94J/BGeHvb23bL3/LGd/Hd1uNimc+WA7b8gR3dKwb6dNZwL5/ZjH6hPYE16E6dzJ8e2va+6mDmbcfY+73EEwkbvUknceKgNdwAtS8hAysnAwToCh+4MB7PYT7Oi6Zen+5AFv6hNmv3iUb4xj2mvhj2w5TtfQTctf7RULKsZJJr3oWvfjzh/P3c3kcG1//mi2a8zBmh82aRbo3nd1yVLIshjKCuGg9v8VDMDS0VaPXrSl0rHppViQVOUbtDQIB83CXfqtgalxb3gFqT8E3GO7oh+OClCjtd15prbu0MCL7WG8FONAo+gm77jw+4I6HDgo58CH3fOVLvwGo2FyCu4E8Pdzj47O7mKrH6Xz6kGE6HRHxg7wzsdfdE+z4pzXWIghr0aYuQfPOf7L3xR7jhGVmS7BAIm18AW3x/YttusckEKxMVCSlfJH5fv+GnWz8FEP0Xo515b8BH5pUeKmVl0jL32oDNM/XBer1IOHiiL9v4RAc2Pk2PlWOzxaMThO8g/VL/OFsNO8chD/fSfKOGIa7DrB9zC54c7UYDSA+DkIxGDqfda6a6L3Jgvh9oDttXp2N306OT+BtC+L6aJtXHa9mwahdYoI9fEIfzMQlG2u1WyL24C1oOICuWkZ9b9RvqETa74wzm1HMfMr46BrUekgiooOxLoO7cgj5MOCa/LCQODHzugh1yOLC/8yHcw2krKb+G6XQzV3hXtR4/Hl3WMOWwT2EchAeMt/1Al0ticaDh5gPaxr9Y46E+A+ObX6m77syBz8OKU//8iiXd+4BxZRWqxbR/YY/Nv4Ft+hbiei2pAx5ysWSPcwXcyhWwdv8emlV2Xj48q3lBpMPLKpZXPkOVXTqR2iO4Dezz9Fo4iTikzmlt2VLVvQGVi9hvfCpnU/SLfXXTawRWb5TMyQmuym7l7/Shf8yEfa9xDd3KF9CStS8wKcI6w1ViAH1UUU/E1ldmaApwT4YwujbUHtUW/M3/P33xbfWtyxDWPHrQo6igf3qCkpBR93cHxfqtn/7eCTWKdondN+OmRwA6+l98nM8HJjqumcPZThN6pO7R3PRQp5SSqNDwu/RgUXU/g3fV6NEqXerm647yA9zsu0gDvu+GOaDaDATrddz4tFks/Y/E4LGiK/6HT+EXW6A9CRe0OwOhmWoCRegcqIfAw5uLMV9ACB2O7+k9VwbzPWsaUqkUW9Q+DnMwrHs9hAJnvLA5v7tgDYJBhu/o0uPu2p+aKeLF8e/5cdI/3iarY29VfnmE8WU8fZJpd6/OcJUWgP/yI/uuGlLUzg4wtqZkw9ei3wdWpGD/tn01at9uK6ghrjf/4l7MF5KP8DwNFPFr4QyDKhf+H3/HllIfmtmVVEtBR/dLXXLril//QwhqSz5Tr1rlhLwfXA8O2eeE9tZdKOhtv6ZQKjmZ6sKzDrZ4dJTmcTYRWCbNXHTQtHCNCvePnw1rz941yN76Srb3N6z8oiCo/R9pV7KuKoyEH4iFgEjCEpnHBAUVd4CIoIgMCZCn749ze9m73ns8Eir1D5VU2b2N/VOx6l1p1Z5yqYUSO+3ZjPd/+I3VARDIfbZBWQsL4JZfsUbRq2H6dkSoUFWdZhcgD4SVbJvtvCJ8JBqLR/E1QNlebzLVbgY/zM4UVcqfPgkWyWXsz296e8WLeoJN9XU6gRWc2vJBj3/5XzQkCXYGumOt1b6bfzpL2632DLvw4fps459A8xOHmsLjuPlPCQLy7huR8Mx6f2HyMYG3YBap/90p+vjHp/78ygV+uKF4fz88/NNrWwH6n/4E3uRn1PYtxZ/bpzgrn3kZKZaWImbJKNcgDiyM/Sp7D6Pt6hW8MtoSUeZbfx3fdgrdRVOoBq2rvrrv3xWavrAjPFj3+izbr21wHttTjROteI5emQz2ZmuSZe2iQbTqgwW2fIrv+v7Gxs9iOnLDFuvv+/zlxJYCauOxombUXoehbece3M/8RJiqHXVx5KMKsOJ8IlJ1POXkRjUe3E71iyhYaprpAfsRJEBrySJlXVNryAvAae8L+FhmaKCvCY6At1SZhigMGDtwJw6esln/97zMpxEv70prJXtn4fWlA3wPN3yh+DZ8AAu/rxUkXluj/bkZwMKj8CwPoeHg4rDz2Gt5DBks1+CGUbUPgCSGnQEPt+SCS/8R+bzbkhEeHdag9ekLzb/310jWSA2tjtlS5VwAM2B21A4VMiyOCjPoHJC58c9CXw+73RlW5SphayxO+gzJMMP1V6bYHhsTUBrrHBQrPsfGeb4w8rvJb8h5vLDpQebPeTXy8obP1NmNL9ClJXyD3pYzfESrC+bupm1da00b2434zXsB3CtoZRZH0YYns9LCETrpesT6lj8Wnj1rIGpzQJ8JuDT//Otp18xEQLM79JmcZTDL0gifa6vwN3xwgHMITCIIjxdb2Nyr8M8/OFVR3lDevBqwfYUzxQGfDIvOYA1PV7pgT76Vw7z5QcqWX6nt2Ecg3nS0/svfT9W+xkyvqlXZex+dGrpz8tmhGSPx8fo2aH6bJzafJzoCAIqM4rm1YuYe3zVUsmxBh9VkbOHZrZY3/f9XX2iWP79B27of48DT4qELWQBmYb6RaeYynQWlV8hXFDXUt7J+WD3NeEOr8TD21ujR0O33yMd0G9TosCRv60YK4GM6QbrpUcDs7AWV0Tio2G/4r/6j2615lww2UoybqgtnkUDQj73xL16XbkktCDi7Ib/0+PHXU62ryvWT6tSIBRpPvfKWoV/fXHpUs4TtN/0JBLLNtj99AVv710kGmz5FkgEVIMTCi8Dqy7sYG/orpven0YPY0RWstpnMxm84ONB40hc17+uiz95saeDy9Q1qj80HkNtjG/R4u+3RvOmDNbs4DhTu0R47+08F1m9FJLjpNer5zygm5f0jw2+blxuf+jZ/v0c2z6+cBueuyls1uENoHXWC9u/CYOunFHuojHOLj4VpNuOv+q1wtncFdSX4yRkyTe0v32Azf3wBE3jcA6TzJnbBfhim86kY4SR9jn94BujFu6x/+w+Hn3MVz+fGd0Cr1ikhrmPr//yBv3xXqYdHPGrXQwbfXvlCH4kzh/kwghqmH32dBPsg+eT4UxygvvUD2XVPMxfFXnfgc+B2ROlrCuardu3hXz3MSqYhn4LKFkHS9QspE28r8V/r9A+fqGN9+WEmkuUA7gUv9Hg9eGzmTaTBkeUxEVgwDQtiVgE3/49ent2DsTP/esPnR43Q8Ghin7lT9YYPNhr0/qy7Znw1qgH/nk8OzBD8+W2y/9PeaBdd0nxcpYMHyOM6EPH38hoh30rq39qUaKgcLZ8vrd6Bn/3DxsG3SgYmDXEC6+rlImWPkc+idUngafX2aEndrJmAs5TKH5+H1ifJWcw5EpzU2aNnLn/6yy58IlkvhTvi5ufSsM+VVjC6vC9YlWIG2GnwIsgrwoL//Pn5HhIEaC5yhFfDnq3aM21hcHE1at9cV59P90aExiLqZN3wen2YvQrMOrLpNZn8mFGpDOB43mFyE6ga74+lVMObGPk0uX+/MS2VjJcdICBqbZ8fmvxlKUvPmdjf1nOoz8f5kIhU3eplNWPJ2RDlv/i1FDoOc89PHdjrhw5B318GOp1iAg8GrGhMd05Df0OZgXyOb2T+zN0w1uqQACZfK3q880u+kD2xwJ8/ezJbnM8HzpVh3yUlPUrbJIpV//B/9Qm0OtqUTzniMhhLwYQOCIf6+FC8GX6b9YL1VKzi9areI/gCloXVEhtM3LO6AH74KQmYtV+8DK+FA4v1oNQ8n6aYBauVwCMuOXIR7cTvkJwm8LuIb+yoyxd0f+v/k1yC1fNX/cdfZH0XP3BwZWLMUt9Z4R//tKpL5I+yeBbhLDkBffQ1BuvS9r38MQaE9hs/ZwfuzoHnR4uQdNI5QN3HrQD4c//Qv3orCwNo/dvPdlUd2CjtsAdyLJwx3r+CYTi9egi/x4FHywus8cJk9wrvthPjq9P2+Wpyowre79D7V48k+TpcAZnvB9LNOM7nLKggOCYPBfVbvXidv19Jed4/HqmaJ58vN9kuIQx5TO+Hdt/Mt3bo4Co4K+ID+ecv+t0SYW9LGS7i89qQpa27P7yld+3b5bRt5w5wSkcIAE3A5oTeOLjVS5Fsc0GzBj9sAdPf70i96ctRukMZ3i+oRpRmfrN636sI5+xy2vy5zN9/f8QDn18qIW73SsHyLn4I/r7FFYeMeDHTb8cSrq6WUDV5TPqGj294fKMf2nMVa1ipZOI/f/YymOPGT9MKWmX2JvL5egTCutAI/D9HCuT/faRAaqcX9Rc4xeQ0Zy3Y49WkgdkOPlOIGiklXCOq9yDVl5d35pR25Dl6v0q9Pj+qalSopEGk/BQJjBxvp1BdXxW2e6DGgld/znCnAh1x9zr1V+kVp7AwwAsdtLkd6CfnakjtWaAWj3x99WzLgc3B0WlWph5Y0FfsIBdts0m+TubP82HnwRtOjwg2zo5VaNFSOEDlifhHNw3rdJGCrcGsRXbANdiy3nYq3LqUkdodq4Glnx2S0/ObYrT9nqVMjBKcHN+i6HTi4xGrYQK358Hh6DYD+xYcBw5PcsZq850APSJJBLF9NMjh6YZs4fc/D653PaVhkBs+q52ewG+WtRgvtzJfLxIswJEEMxLej7ZZT/P5Dc/216RmFmb6urvceVgfiIGD7H7NZ/kdGDDHaoKWbxINjKalCI41+1JUBF3DeEGSgKrFd/R1j2LecS+owtafKdYfxAHL/lwWsA6cAn2fFyNe57jyFI02FpG6Im06PnYSOH2yCIfhexlmdo145eiVGoG/D4oX0VM0EPKBQR/JaDN2OQ+pfLVxSriiR/lycV8E+qFbTOx8QWAuRKOFTtffseZ5bTy/5rcGA9nXsSq3OqPx3ciU57xYVL+267DOH7A1Dj161J32qr/2h7KGRq0AbKSjpq9PFc0wvZwQ2Vdwz+bDkznQ8c4/MvKVNsw/gFZ4c16EAPx+5BM+n2c4UlNBPBzMWPjKaqa0+0LFp2EV87mfEx68A3mhvq4JgAk3jA7s+lWxOoQ/sD6FYoYpElWyuwluLDD50MHrKv0QlBYrX85xjgD2d18iPrtXw8KXUMjQjD9oxdYCGl6YJfBzz2+KjlnSLB9Hk5WUyhgj3FdsXkTSHYwwETDWqwbMR/brDhItfFz4KoxJ9lIr+FY8ieweWgoYnz0JuHgPCXtl2oMVLtcRAn2HN0kZs8UpkwSsq7jNrrldhsW8rCXUHj3FlnT86Vs8F3ID+BoHLVBApYqyB78+IljvgeSPJio5eVtP6olcoq9o7Tt4/kABa3YlgKU11mxnosGnx2vSxERbDhm8RLVB2B30bL797jOYa9mkvmA0A9u7xqxkp2KiSIhuDUv0roKa7Dj0/JNM8Jv8AEFJAHeq/2wNiLoKEwi1r4WPmX3M+aS7J/JsI55qhbXLV925zCD53X+oz2xbZ1CSA6jRl4XdUq1iNjh5DWJbN7D9bTt/nC/RNgv2oeNSPX31qaiRDOC6D/HRejQNe77pG3aQ+dRed7U+fo90swwxRd+A5/NRP30LWD09AbvFGTTrU7VWSIa4ILAS34xN5Z6H9veqE7a+Ep2aJe9AbNYZRtdwx8hDv53hG5xfGOnspbObUXFyWaYVkgJ9yRc5LmVIpLdCtbaZmjkxryO8z1mJA76qh9WOdj20fyjDvh8fGtZaWQ+vL+1MVW5vNytPLhl0bq2HQ2nYSMtpQvAYfylGmgnjJXpdejgMpkP1qxOARXZGCA+vtqe6BhOwOGVxBTM/Fwj6apEPt0BLldDqC+x9uBYszg+d4Scyn2g5CBWYc9I48FHTCCOn7tms7J8yzM+LTu2droN9+tkF0MsCEevTZ8tH2XMEQDQnqrrxk/39vZLdDjJ1uf12Cp3rKuhNuzdSNP82LIfrN4XMjZ8U3cB76I0hzWAozTI+EjkY9uJxuILbrnOwL4aLztSze4X5lBrYST8pm5te16B5j0L6gOXPX21uDMAuSALy3vJ/r4taAvlljOgW/2z1YOLBT8e7uLyGT7DEzi8CDsxtavHjDJa3H2dw4luHevtfztaevFuQ6ukeSWp/y+kBaBHY4oN8uug9zDfwccAfviHD+Pjk0v4MaD2VFwHXow/WF2ErLGsf0yDaffzJjesMaq97id2nOzF6j/IE5MeRJ0y2I385GVEC+q8RY78804YFn5CD7PvDtIDvdzxdrRNStnxAlOjgMtG2QgJWW3GxqZZ6PNO0kuDgeDXWt++b+J3XQi7qILbpfmBTF71nqFf7Bw7rW8HY7/qAMN0ZNvYrWPnEWA9bI/bVIeA0O7o4x50HINIw4r1CGJZLrhhgZz4OiHswwKYltys4/IIFx+H+5xPWMg5s642NLBby9TBfI6gFbUU1Nd0B2u0OLRSEycToF1zY+m29Eb7xN0LcO+pzZuDDWZacy4Ide53iCZhJCcq3QLBp0K+/ipefBsgvN/99P/00T/gvHr3jrhn+fZ+6E1Q03PkfW/id1sq9ePYpylSFDSGuLcAvJMKhpDb5disuUI7xZ7OMb01D+9gs5NcxTrB3AzCemJZ7wJkwJvxdoM3ScacrPDH+hhNxhM3UKpGkNM+LS22698GadT8I0NfrKRY8GC/3neTB07t7Yj2vOZ3Ik7lCIj8SbAfuOJA35QPoorjEKGBoIN/WI+D5+iKyY00H2NsdPKDwbkPR+EL+VzAYD2exZ+SwMn8gN6OVoPfLCPW5MmEEGZx18Eo2Ynv/sNmqk06WwwufICm1Y30uxKCVFU03abCIq7/mj1mDnWyM2Exai633rfHuFl/UVi47nTggJ//wH8c3vVkCV5LgLjIA/sOfde2NAuyCa4BWn8sb9rdfVYX7US9yuGEIHaeD5v0cIhHpik//4nl3Us5YxU8vp6117hVrDn/UosrXH73oKcLu5lkYDZ86nt+F0x5O9exQ7waKmFn50MHjUJ3o3WqMZnV3Yw+eRCLUbU9vfaY9f1aewgVu/HHQR2V/k5TDPqSIE6LbsLKkesPftTXJQb7bw1jSpoWT/7lSdCCPeH0VXQbhaeW2U/XHZi6UVoXVWF6pJmxS7dQdPFC+94R6/l4e6OcUtNApjzdqLOchXo0h2hqzlTpqxGTVl0cpZvBzXji67Ud9TqWig+frqtAwtHywPLmqAtcnp9Fg8ft4wDFQ/+H/YAkxowpxInh5tTFGu2k75SxXCCbf1xnr3EdgP+sRSzDb8QV1Gs3W2VtzCYyvCGLL8C1945slWJyXRzUxm+L5IT9q+NoNOg29Is83PGwPtZ6vaO+HKmOTfNK2W3YZVQfpNGz5gYOB8A5paoBcn22hr8Hpe+UoomLrT0Sozn/5Bs342edbFyAEZXJ10c609/mCveWqrK5QkaUVPbacP20L21HksM23wjBUUDqDz0sRsQpVIV+3fAbb5+uBwEcahlkmnHYQX+kVOw45+GMwHznoHiBFy4976UTz2zNc6qvx7/mXxeE9GP92PcrlQWSrUJ05WXvlJUY50ZrFu7Hrn17AbnLcg1lcLAuyWH7R406+s/dtBgjqoSxSTOeerY1MPGjsHjF13r+s2fRHD3k+o1gX/PewhgJzoDGMH+zV/jZb+/7goXvgttnrmbzxU2uG7d2KaGAZEVtDx3rDkEcGDQ2vihcJrhVM9WyPYkVG/rb+KlxX/kzTh841qwcLD5wTuUUdyV8+61XZgpMj7yna/7bZu83agyHTDoQtqTWw62u71V5YJt74WDOByEr/xbP+SQw2IGN2lGJu1w2Pw3id6KTBtT9Q7CbjbphXdt3wUXSpef6WPv+3HyvjxWNNDv1YbPnQgfAR2PjaHD75LKX3EX5vo421+vxjUwUi9Y9/ot13/Onrb1EsOPNrgQPtdGYr+kojiNbqiK+TlYC5ed4NqLFYwNonU/2li8ZVdiK6J9AOuZzBJV3hcxvi5DQTYbSRq0B2Clel2UnUc1ac8hkSXrUxArLNVvHhFSDHWvJffrELxSsEptBii80ffR7rc6YISS9usxTJMB+5uAUHIntIihJB/xy3Lg+ree6xdfkdfAr4VwT1UBIRrESDUey6Bkysp454R6hzdvbcGtIkQlS/PD4+0UXtCu+qd6N/+u2dSkkPlAtjOOgKFexH09dg9GNXbElPxFjwMaGyfNSGsPDexMskSTMcD2SHwCczwVznqic/UffFGJ7XYcr9/g2b58394/c+e1xGAk+X4ou4LX8xnCcltPJ0oPGR2X/45YCLcDv+9/PuafXgj4AfDThxF5NqNc6yvjUS3YPow8juchdhwU4nIox6PYzLO4+g2897HM6ZHX9dLxrhRQ8a7D/c2p+fY2zBDLcXjPPum7MWdB2s/MzGtnSPm5Yd8BWklxgRPrQsfQGKzIGNbxIhuui6+C1fEbBe+oJqfbpt708rYfHofKxdUeevtcJ1ciQpiOqn4BWz4ytAIFQuMzZHXWvEq73PABHkEinT+eTX1t5bgR2+XDTH5y6ftDB6w0ViJ2oF8nZI/ZryQK0Gl3rmemzW/HMqwT6ueIpoquZLv5cS2P/WlboM3vVNn/Xypi/R/OQp+GXG0fnjc2g1D/Uwsu4dwEksn0haDxYQPo4nw8mR9kRE+kOv71zIg4+kHomoihNb9sLdgpd59bG2NwV9+ORiDVU117AGrhIbdsa7gy7YW/gvnladVBKcC+FAhFDt2fI+8zzwQ7+gqhTe8gVSqQKmZ12wWfVdw9R3QuTMEgZqvYWTzm5XeAWbPiFiGrvNkr1QCV/lm0dz3gT6RPHFgc6x2aHywXKwSFCugHC7XajbUhfM60tblTM7X0l/+R3z5RE0qvL0obPdQnr5K7i9ZKU8mSp9GILj7x+X9wjf1a8i+iir4E+/y9FX2mH0uIh+qy2HFMYHv0agNsOBivJR/IdH+utlMb6yMAdnn/X4X/6VP+P1j79jTZZifWlQI8P6MBp/+XHo7luRXVEdQr1eXvNRJqIK0nNLkegUP7DkcaBCjoqMWr+laJa3n2fgmtQH6nBnFSyPW8HBr7ResR+e63z6y99euYwI/j4kZ7IXBsArDhfU1D0fz5Vlc7LJHc5YP7JvvE6XGcEtX6FPen+DZTdLHNieH7tQzf3+AZQZauewRbJwq9h6aV8WbH6cj9iGH8wMqhmuSVET/tGFzcKfrhochNHDt69Tx//w/NOTCs2sDIe/fADPLLpu+m4Es1DrAQzH+EXD5Fjp63NiCaz81KYYvz/N+vpmCfC9QsGheqvzdZkSCKefYuHvm14AO4WZJguLg/Ethn3ev4oqg2ddxfhKla9Ou7OpHbzRDrG3TnO8cPyxAJorHamZtC2bIJ0rMBv1hTpFKoJVyWURVvE0Ir54qj6pnrMEuJ02bF2kjmDs50KE2hm32L5RJ34X25Wkfvi5aF3KIxvrKa/AphfJLl0u/qRObQq/mL2ROFkJW9NjmYHpG33xX/xNp2szwvZuRNgMh/PAtAcYYfLmGZHgu/BnbT450MA4wB4TH2CG3UODW74g0tF5+AsHevlPT1Kz6p2GKWdqwNPCqVRNDoAtriMVMr3CiQgqdP3pzz9MjlJIz1fk+EsDo1IxZ9bj4JV4zfLSDhUk+qr+1/84hZkKQ+JL//yRVUgPNcy+5kr1cP/Tl/lwQEBdm4oGnWw1G/8ZYb54DJt//qCSryKo9fuKQ8NTc2E+nkeYGX5APf/OgwU/ghHi3H8SRRoGfxGl11v+3ohNuG0//+l1cO6GhBwYvPvdo9McAGj3xNmnOvpLhoAFjliVqFuc82Hhd95beYPohcSTmOvr7/kiQGBaiwNlWsDYprMlu7bmIsUQOn/dn6MaLjpM6KXY983a/mIEN/9w87/4hlavm7H16d9uwWGZjSF/lsHEvx1auuo8jEf26qG4P+bY0NIYrH/+SfqavxRXt8Ufu7tUwzySRxqG71Mz3+1nC/709cHxJP9dDFl3kE/ab+Prr2a66er4jz89f1bWLG7ui0Dh/Qb95eP1vb904BX7A1aDLvWXOIMd1J8sxOFPScEqfmEG486OyZ8fPX5pkW5FwwYff9xRF//4zKaHqcrdj2A6+EoBad40SN5K1nydOw5If0eIj0UgN1Pq1R60DnNOPbFCOdj4NAD1dYfNoDZ9EUROAS/3YSbNKFdbF0ZMwF/8WVSxfVaqDg/Pb6ukvvs04i4xSwJfEL6xJy+rPm9+FXCc7IxR5Fhsw9MzABx/w5fzl/OXY+pVcjZBk0B04RsWPMYKdDhsaBAGtj6Vx8UCtKc5DTa+NSW/fS1fDxcRq/GM9DnYN+nf+8Pe/gfYfN+JBhxyEFGfngvGip2TwEYhB/znL031ic/gkB8i+o/fv0r0hjtz6/rxPR5zFtWKDMW1/KBdgMNhzr/HETqFr6IPn1gxr5++JSjLrMJubI76Ola9Jxl3HpGz9u7z6c/vehi3Cgc81+Xrhv9w0+/0eBBUwLPZ7OHGt/75T2QuMwtu2xvb4lr5Py1ZNTjIJxWftve5+q10Bk67aqjd9NJCzp8evqZ5JEr4XpqpdM81NHbPmPDiWDS9E349cEiF3eY3OvryVn8lUE+PEzpyyxgz4sYQui7pyKIz5rPIlFoomCVHxM5zY/bVPQ8U51AjHJC/YOZw1cG7fR+Rot60eGmVVIbxwa0J8OP7wBRb8f70BVm/I9DZ0+7PMEq8EwGh4vnb+l8PslIfsVZYz3xO22OkKEVvoUG7EX9ZxG4Ef37Bol/CWChqJEF/F8uE6d+iYd7QcnD67aytsb2ayyi41ZC9Ao0G42Q0whwTA/BRd8TJK/eHpb5feOj2655I0LrGbNNv8BHKZ2onWZSz48B5f/kLbftTHztR4cEzd1T6vHmvhh3RzCsfr7hj490cwah7SAVNY0o0kJY2Hsv30kEffnJqmhlhjKZXUYZPucWqNVds3gs3Df4O1YDNxDn+DV7q4LeIFOoitxrel48jwpfHW9jxP34+T21zhVKy95AgfXqdTYkpgUyLBLRu8TRb5GiB8TrfseoftyNEXVlCyRzONBxdfeDHW1dCMpwKrIvJWV8TnZRg85ewLq43tszHjECppS8k8ImVr5ufDWxgLf/45F7AnxVu/i/Gu683iO9HJ8Lev2uI8/caEB7msQVT+JiwfTIlf2xTyfjTCxueXsHmB3eyuNdz6k3vms2+DGQwGpJG5PZHhvE2swBu+Ybq+hc2S2RXIlTJvGD0BmefbPUemFX9h9qJdPXXnowtOCQnl3pfm8/X25oXQDGmN7ZVswesjgwPhr+v9lcPYawy7itcsvsLcQf9MvDXl5RAbGcLElZnm6Bj31qYlWtITQEcmvHHpqs8lF9K+s0/o1t9Db6WJifCd1cN5G+/zq7t02P/68DKhXOqeL+U4G294v0t8FLZ9d87igclYKvSJBEcp7BF7Hh5DWO7jhIgvGb//T1jUVTX8KvcAtT/FoOt/Cm1oMDUlmrP7p4vWz6DuUB/5Pod9ZgtvFRA0o4tDtAlaUSLvq7Kb98lNMliIR6KU77CwEwsbNPA0Ol4KzPY2RBhV2zdZh5vXQHBbVKwIT+z4YPP51XZ8i293U71sCTP8A3ipnr8w9/R+M0O3C/Sm4hKLseziUoItvoDDjt+yMfykSIoCNQk7HmBPuvOpgqd29vDz7/8SJpMhJ2ELtupd9Isr4IkcKu/obVtpoHIUziD6qWHOGijqz+LbeLAv3qHi3gnn/78lt+hHhDtOp4tt8pSwZ/+99ofalhSTbxc93VAw+5qNqtnIweAi15u9dI3Y5v+BU407fHmr/jsgfwIup2VYndv4Hj5Pb8dVBRywfak3hsGLJ7A1DKv1B2GS87uUXxVAvRYt+//NHMxZD3Y4gHNwHCb1V96BPmoP6K9OZZ61c8FD/ep2VN980PWTxZdFZMDZ6yWQx1v/FgF9bzL8J9/tvERQ5lsrcJuWVo6f1o9Ef7hPcsNKV9ul8KCz0m7UTyP4jDvhacGilcmE/Hks7izfKsAx6E+YdwgPWd8dhsVZwoxToe4Z6yOAgcKbRNS+5M9mqU8LsYfv/1Xj2OlqoqKu48inMa+HW9+ZAdfwfigieL6esMpvgeUE1Kov2bbla6uLIGdev7m/6gx//2uHIz9r/xPv/3jO1u+RSs3LPpsQL+GFvXvBAq/2Z+xGl7B5lf98xP4N8k5CKlVUjU+O/ls+agE6rM9bPpv0cl9WAs5MuAdB8Jv1jd/pJS3+gjND7WbM9xaKay9yKT3rf7KqtfN+r+6FID/faSgFkFM1eviAVJsqJFq3kjtfvfIF96tOoWm2+zCZNzHA17vFgxJ01H9Og2AHsfgDZ/RZFCjAYI/LleNg0VuttRR7GO8lyVmQZn0AbaOyQhmbdbf8G1qewLwesuXOX5U4LlDOkY9Hv3RKYsKOrvkSfOnrwOmkScBdbMEiF0nH8zsnFlgaL03RdlF90dfOfBAj90b2mN/yGnUlxLUyTartQEwXiSvVCFdOp6ah2bOiXiXDPjaHRX00VHfEHfYGvkPo0b9NHDzee5oCk+yLmHzYbk+qVMZgTRNZRx6sgqWbtcgCF96gfb97hGvURmtihAfRewma8vW2wlzEO5PPQ6qLgJMbBoLGrb0oWHm8800cmEB0hcqMXLQK15jK4wgDcCH8GXF+eO98SOY81FL1U4K2LSDM4JmU/LYi4ZInweLg4c9dETqHg+6L467V6K4JDthB4y9vsxPAULzfWzJq+cI6DNy9kD8ECUEte+HLbwQQnAe+h1ir+DBVj6OOxAe5BfGctw0zCKzB9eXqtOi1bdbXfI8wl+nIJrol2O+fIuLBov4mmKb197DEseqCpLLiPAWL/GQJhwHxzR54Kt0/rIZySqnXIhzodZu5dhI7oCH19R+ULs1sD5XMb3Csw0tfAT9oWF5HqcgxZ8r9bQ30ldJMAwoDMKdmvmwgHmpmxQ4mqhjjRfCYZ7dvgbMS1NqVG+vWYTr0VJ++wLhE7VBPh33TQGfkXemapO4/vSOpwJ0YbYjoiL6uXAZHRm8tWdNoj7WmegwaQTc63rAzkR4ttTyu4K9117w8XrkwGyfoAW3eMP2JAwD+dyKAsb874DkDMfNXPkRUtr2IVGfFPumq2KawKV5nhCctHrotPtDlMXo3eHo7/2uuoHgozV17Bim7P99HuBXlmPjloqA6TmIgJde7lQVjSpm4MSrsBPZBdFcRf66GpWlHGXvQYS8NvM1rN0OBPBCqVs1Tb6OJTnDkA9NMv6anc8Q9iTARbONjcPxxCZrPhLwXR4XjK4T8+f9t7Z24oFTqK/2c0z3cOCgNcgArVKQ5lSUIxG+PRKTF+/VTc8/eQPOXnGjx0ulxaz77VRwyVVEvXZdwGI8n1B27KdHj/X7oVP1cuWhCOszoiEvD6xyxwTu7byjlmWRZhReZg+XB+PJElpRQ07XawuDtBeJuMXPkpt7BHe8+aaB4f+a9ZgGEbBLg8ex5YXDVLAzgSzqvvjU6uqwGmU3wifst8Gjkq2voZ9LUGs7GXvadotzd/YcqKt6RKp6YGwOX44FrDZ80iAhXza7aVoBPT0fqRk1PauWqwZhphUu9T8vN2Yc0h3ZXeo7qa+81ixfJbIgl1s9RvW38Otp/3VAniaAxtK1Zdv/l0HvvS80KPM9myLV9+AujBrsnRIz5s+mPwKgXSyq/1rcMEHENVjwesPHp2GCCXw7BG1RTrEpyUBnhzHrIYqc+S8+8nUwPylsmvtM+C0fk+SJPDh46EC+7tcGY9ydZPhKAwU7x5sxEHZyakjz9INV7MqMrWmXwd2ZU3H4YO9mWcJTdXAOg47EXrGHtZX7Dt5+FwfbcXJjM/cmb/C224A6V53GqzAWFbxGV0y9HX2xOT6NDjRTEyChiV9gflcVUiLTTmh4P2pM8MgAwesh3bH1tg/DXPF1BiYSYupmVy9ejSRPt0bJBna47NkwGXcSuODhQm4JxfqGBwYcBl7FOnzG+Rw9+wSGmUiplRhvfU749QovfPrG17N6Gxb4AwlIvNuFqlpbDOshzRJ4NZQrtj53wxdIQ0ToOtuRNmP5+hO1BAuYu6ykTkszfxmyfQQmSPC/fPY6CcIMb5dumy11eucscNoSdC/7QN0YNf7MESDDsb3INDx8xYZ8Xr+tiwoasHFuBf27i8ozdKIzIfPpyth8lgYEk0DqaSHFYkzrSF3hSN4DPeoyZGNsl7xcPHqANaBZ+VxcQgsEWtZhAz2cYc7PBw6SdrhhTzow8O6EGSmTV11x7H+MZi6cd6eU+4TgsAM+mA+3aFbcPPKwzaUu2//l7wKOE7Ud7jzsB/sYQeMVAfRtxQgszfwM/vAKO7fSilmGtiYrMD5jrUjbeLUMzQK3w3akpI/ifHp+vz1MNVpiFF+7vOfjvJOeXiHQDZ9zkp+6DHqlKlA1mbhmERGSQP3Ce8T5Hx+Ic3LIZG2PRwRSzvfnIb+3oNWCkFrcsxp+v/pQyGJDKBos8xv/23/XXarSYvj68WLD3gF/z5foosImVUgT6HuvMza968Lm4ySVcOTPzhZ/92a1z0IH721dYtXaH9n8qdkVGHhg2G8H4I/u/pHCjS9h73PLWE+dlIMn+A2pteHdOu2pB+NqpyJu/izDnJTGGzTaOUAH857FQ8cHiXSNEowTxeNy4vyaFLTDu8aBff8O/9b37Y0xDYrnO6ZOcq+gDH8/ai3x5M9nUx+BCj8D6iQR6r8dlBA8hNkLo8Tp4546EVSSX25jSxH9eL5ujQr5KPbpMY7dnOfe7RtQ07ttjZanfC5lksFup1nUefhiM/Jbydha3unGrxp/moaXCo3XGRD2EGJ/VXf+FcCo6ImoDvuGzULmHaxBAuj3+5b++LpJHXzwbx17meSA+eskBH7z0EIPw1jBclPsFvbkhKijfjTA/7R0BBJ3eCGxbgQ2SV6pgSK3W/rHB5bIiwr4lw+PvKcNM22TCILzQcJalhzYiD/kCm3+om94FcXMM9RAkd5qgJ9DE+Trol5nKD6Kit4++QEwpYcyHHfuA0E679mCDqQHcVNfqIUqNR5C0YVwWx/Cx9jLJ9e/rEAiV4rE6lvnS/WMamjtdI0GcRw1c9JPGvS11cDH4AHitdezM4DDZUetffVh/XTkK0g7ISJCFmVA+AX+CK9ev6IDvAkxzVfXgS630ze+N7J5PZwcpUnrDLsWv+TUj6oepJozYrPug2bU1+sI3XQUqEH1Iv8NQL7CM8QL1jrwbtZn0VjQezkKDo4BYuw5DxmYGmmkxcY/GJc17V88EeG9/zRrj+URPpoXoUFIJ39uiqsM74f+QzF6UDAo1bf948vU63Y9WE9VI8mfnWHi+HROwHpbdRXc7XKk9v0VselMD6vyNJY7+WRRxtauPyVQsz8O1p2bNawXgcnwIK57vLUlGN5NUcrwW8kNWkL6AWvFIhHK3nNGa0uGYQyFfQ+Zl6VUV9ten6v+YRyS2DuQRaRDvDhPKYVpxmGKRFfQ51DYdVA/5B+s7pY5J9ArPKj9ECaiE9vDNpe3VLLo2RLArw+d2Yt+huM+w2Svn+qYbXoFbPuf8OXt1DAnOdXQtsUWSaS6Dovx+0QwMs0Egaevs4IXuggKsS4ib5Hv/vpspRQMHLRpDjpfZ5+9EsDZWAESZZTHC/56AfweRgv7Y/XWh1A8QviHL0FIQ120DpCAhsz/AQAA//+kfcvWqjyw7QPRELmlaCIgdwgKKvZEEQURuSRAnn4PvvWfcTq7t5trfGMJJHWZc1al0tI//vDei78GDtXc0V3/rQ32uHRv9MpPJjYspqO5yMD6W98oOK7tbI3ybtW3Lb5WvPP113wbqCseiBjeI8aqPSuggyVa7WnoZzV0a4jk155gdXf1+dPuJvxnX9Y2q7b3DXNg1/ePNb+y/NPRq4RC/ctFSxIs1YovHMXCm5hUv4b2vzs7DqB514VM/LJly43cHPQ02TVanFDyhyU7m3A4LSEOz7pjLJ1sSkq910QaHmIrIVH41SFv5RHv6/3aYVlZgM5N/aAF3YXsbz9RcNzciDI6l4Q1mZQiMbRNbI2e1m9Nr81g8ooLXflJNYVnZYG05+4RP8fb/F/+4HKzw/6vO6F1Pe7gBszDezw7qH/LR4BOtBaK5S7KF/UMtazqbUX3iXLKZ/zVIzi0SkoWfjv2zCyiG0L9mGOzrz7Ggr6hhA4V63Dkvjb9xOaCg1pe9tgmhYbYzfy0Kj4VE+kzrjfWU9c1jE2xi1rLtfIp5mgk3cJLgd1r7fTDYdAndV1PjN33rp/qzceCNrHueNcEofHP3w8b500TwR3Zop1kB2ZOcP/4Zb4cxGuH4mbI6d96zyvfAa5S1ilofJIs9wSVypFEKWF5qxhTxtIatOyskfeTTmgwk4MAfhxQsozmbMxkBAfd5bohvxXfzNddBsD3nUGWJDhW/ZG0AexlqpOq3zXV8LpMLXCmcI9MaytVU24d3qqprCUTflENdkRaB1T/6KTmLaMXrdvpDUeOWURd8RKTnuut2JuDjCMPhGr5XNI7TNDFRDIgTBh7RB2SsEgJ31d7g3rZZlGqzelGiwOa80Uw9DO69XyB9aOusW3sZQWs+IwAnS5szPebAO6mmK2nzs2K3fl0jaZqiA3/Y/Zs2h4d+L0CDevhnPfzXggHUOVnRZBz1PJtg/karX0M5O2EmTFZuOTgtpjjv/z1x68g0LOW7ug0VfPU+bGiPl7Sut9NvnwPWQF/9hgd0CHnn4c0QLeMXIhY/jJ/NJlSK5E+7GnWJg9GHu+vBepMTthc8QPjud2AWHM2qIH3OVq2bzuCF3n42BOLe7+s+Amt+Imo5IkT+rQPgSqdqiCSV/1gS5T7OjXm2FNsFyd/SvK5UFNNXwgXLjWa1KGc1Ic8A7ZnLlsH1VICEfQBUfjJzsXaiRrgRP2EvYdoVCzUuzus+Rvv7Yto1F/LrcHY2LtolqBOJvvu3v74GQ1nQTFGky0NkLP1wW490LWlV2wgMpkYLeGMemIctaPahtkmgiSZqun3ejTgOp5BnbjNkuFtFBp6ZG2GV70pn85rS1WdJ3saSeGun//i16rX0ED/ftCyeVw1JDSxidO4e1WMu/U1SgVxoXuuKKrunS2BajyeCpmf5p7xqv8ZIOPPn4jEpbK28FQpyL9zQA2TnvuliPUOeO9LSB1c7/lkSWgd9C7MdMeVX0Qokgr0qCpCnp1y8Vma7mr0td8hjdR57y+PMuHUmzDydP/72cmik0VXN+Gxiviny/JF9mcFTtldpnvxLCbdH14+tFJKo8szZV3gOhPcbfVJtvwc9a/7Bjly2ZNyvUvX89vBd2KIvWnC7XN65sw9Dx3E3jJh7MhDPiLr44E48wk+3l9HtvhQHqEK3RfWecNns+joEkQtl1BX7002rfocyvpqR43al/rJsOQb4KwR6f4ldWj5hNhB0/4yRuyxZcZiepEFf/pQsep780dgLaAKQuolccaY/A5TEAnxqfF5GP7UfxUN0vhTk3nl7/Mf/jyX8o66gndPRm9/mEAiKaVadoqqIRzLtyK8/BupP88MLY52CNSVv2FH+7wRYw+rg+707Mln3d9JPTEd7P3hgN1Pcein9undQdhjGomZhCoSF9mCsH7+RZuUnRJ6Mz8dHPTWosdRWBi1QtWCeXNDEWPJs58p0AGe/FWl+5+2GMyHPYfYC18p5q0OzVb1O8IGzieKr5+LP2WefoNLIPREPoBUzX/xZ3/WXGzEv001HfFVR5re1RSPduyv/lXD48gB9bPTFs252mpAs7hY7efjj5tGv//ht5U/2P1iW49IVkgb0DX/VPRNww6EYneM2Nk8VwvvRmdY9aLV3rmeaYk/qBou7zjHyyWZGvlnoe38Fsh73jzzYcUPIMigUjfITsZQ+lkE9enzoyftt2PzrlQJQkckUecWoFXfY7yck69L4HWwjJmTiKSs8Z9Gi+asfPt4huBUUmyg2kRL7bQKaMHGpo77e/Tf5YbewNlcRbWMq9iM4qWAbGYxDk7lrx9476KgWp72hMsOZ7aAirp/fPCZsm3C5Pc+RYjbvgm63L75ePect5I06xGKlIf+Nw/FDS29nOHbY79DYvsTdVj5QrRZ3l+f3daLN1a9KlJ4ezGYRz9vaKs+oqEj8D3900f1OBvw6n9IOG2RArz3IdhT1NJYzH7noWdyvGJ74/m9Mr8Owj+9CVvD6s+dMMEUDw2N4lLJ+xVfohVfUkPfvQy2ZGUGaaB0ZB59Gwm/YSgg61+7dSqDyeZv807Bh9En7NfQaq75slQ7ubXx3UkFf6ILP4Ch15+V/ydsrlrHUvhZOkbqLNwMFkknCxk9p1BjexmMqjFPBCS+4TBuuaqaso2qwd/7B6teOPzpnZP8dqmx5vNF9mUJ3rdNiw2t8Yw/PUdZ328tKXU5QXMegPjoBWpR6iYTR9h6sYyLcLA7oXzavTIdBr3fUec5bZKV/2dwyvWIbMPxXk1C9AuQ8ChKipe37VNhlG4g7NcW8dTp8gl/SIo+/GFDtcutNOjvcqsV76YQat6ivTFx+xdRf7oXkaUTJX/QtDsH/uBdsfswN4zZKG6Qxx9MvD+vUzlTZyFozPcOxq/wazDZ0Ao1fICwPs/LJ12JFSAyK6JZJZaxsEcLsMutnuraqDFeMHMFAiwesa9sTmxWzJsGK/+Jbt/cNpaN1cew5l+8c1TTWGouf6MKEwFr4qWoZk2lBbL44Um6b27788nfC3CpfgMNDpL8n7/+8RtzKFg/XwchhnRjVdHvMZ589tD4CZRNwEXTc5D9eZNvHXBO4NFdtUkNcTzxAjjinqz4uknGarpEaA6xTv3rV8ul5mMVqh+aX3J/mqPxW/kN8gp9iwMx+6KRLYuAJMd8UUvrLxULfq+3utYncKjIO5+pWVzAUy6/K58xfRb8fu8/fY1sm52Y0+Wj8eqN73TCWLLppzL5phCH5z01QtdJ5vtvvw5u1/ZElBvHmJ6HewDPeB2Efwij6l89RdHJO2Kbcc7nrKscMObuQnch3SPx/N46f3oPjnbY6v/pNyb+MWw3wsTY+ny08tVo0nYMzf086nD7Je4fPq9Iv//c5FU/ps79mqL5sR2FPz0bm7nWsEljcP9XT4pcrTImKbEL9HrpL6o3xO+X6jsuCoGU0Z0EZjI/v7QFf3CuZBnHJp8KvFunSmzf2GPcPhcr1FjImNvLX30BDav+pvztt3bY/IyJGJGliPF6cZIkDT0x0K2AVG9sajnJt59X/UBpf+eOWg+HY5PpBiXYrwCwOdoOG9711YK3ICfU/RRzv9arAnXZmxmOpDPxF1evU5D06x4bZf/Kl+6maYB7wmHLkLf96JGe+9On8d6tY5/vD3/6usUTtROf+eBmcQmrfZAuSzRjGjWF+6sPYU2uxWq6P483da3vRCx0nZzyDDJY9TOK9aphnWJsBjjbZU/N071KSN+0d1jzN7WPb8FYjHnvgJHfHPwXb7s/PsgUHag9GmvLQyJ3ECy7IJJXfjSp77yAt5cJ6xEMafVnhaC5ehwIf/1QxnBrTHCPowM23l9+3U++UH+hUVHdNPuKTul600JDJKK+YPb/6bNREotYTychrwUzl9CUG+5f/E7YsT4qQPvNhVrJUffF4Pn/7DWQPyUjiRUe4QjhTM1Qn6s1Hzgw5raD7eUbJms+KUHq5xv1d8mnXxblOPzVw7CVCh/ELCJ58G//eVoaCz5IKfzxF7+VeH/VMz1l1eOovfH6ftUDSqAvS8dhUNT9vOqBSM4SMYIo0xPR2Qg8ZKfth7rWOgf8IeUxshI7o44k3P1h98o0CKsuiZjqtNVyGIMU3fhWp3vldPTn5/fbKj8+tXFRxYeEJWq+oEd4eP7jU6zlDp2Kue1+jSdl8pev1VaW75EwemU1/dWzgqwVqFXc3GT+na8ajNmL4RAeJhK3F6+FwHMFuv+LF5e77MHIP4pVH2gNtvmaGkhzIWLnm9F8+Fq7WrX5i4GNsyn0Q1TlEaRNokXC1F3YvH3/3pDr/ZPwgn4xqL4P3+hP3/rjC2Nj3D14N+cXNmfZq8bN0kmq3AR7fDRNvye5Gg7w1syE2n17rKZPsK9h4zn3VS/v0ThKuwKUE//DyRrP6HeWAwhl6UXvjtrn3V9+5498SfEsz2xhB+0Nz+ZW0j+9f1rxqlqdNnu8O3a8P4xhcoO/79FvKjWmRb560InmQt3ovst5KcF3WOsv2GkTFU0IFguxX+HRKFMGn2o/uUAFH31p+L04/nJTlBreN7Ulkodagx4uSwFr/Z7qt/TKBmuft0o+0wPVXvLiz2eS6ur/paUA/veWAs3cDhS/+zLvN1CDkjm3F0G5jfvldEcmXKc6i5BZv3sakMsbtN/zRwNHYsYSo20KW9X40d14PfSLPPYdWrqhwpY27JLt3nQmBTMvJROStmhQ47lEp7CPyeRKtTGPX0+AZ33jcWgv93w+50gD5MWU3lhv+pN3OgaQKPYlUmxW+PPW/ygQTa8T9d7Lni1ny9AhsR4yxp+49Cef60xYvMWJlJeQM7alTgppZl0jJS6++ZyGEQ+ztNtgs6lfVXPdKQuogvaku9EzjDmpBAk2piRgw0FSvmy3Ko8O29bF5gbd0YiRX8P9rbnYt68/Rh5pcARedRg1LLsz2t+FRZBKKsFnJTCq7uC9Guj5xCHtL9xVApzHI2LPI4pq5Wgn5B5nLRRUyIkon/KeCWTRVDc58dTy428/AOef0SNMdmRzhlfCQjk25e58janzeri5iC6fVC2womEf0YDNYeSYIFWeiu2soIgad4mDC0+LSCEvkzHjPoEK9XWDzfax8SmG7To1wrCjaWt+GRtbaJFtNl8a4UvE2HZhANnDNOilVy3Udol8RMqnXeiOl3V/uG2WGrWX1sAFl3RsiL49ASbVOX5qklctY+1wwNVcTsNdeEfUyY4ZODdbJtwBSPXv/cjLuGDsWk/G2vnkQZDMFnWwVzGaPc6l/FB9kYieN/tzdGBEdX77G5nmFFfjal+yvBgptVyhrGZ0pR4cdK3HseX4aFaMfQaHMamou/k4qJ/q+oacUHjh0LuAPx6UbQzO19lRzRn7arrM6QDKhpsIV2v7ahHXexVhEFxs+bHdj7NqAzzCww57qz0uhnCvYdEvXPThVT0RU+kswJNlJxw9+rDi3/WphfYZShgrWcAmA0dvgDrfYAsJSzL707eFxw5qukfvF/pd8/Vu4KD6Yu8lILRYS5BCWowp4ePSY4NhxwDrelBc1g9EPvznrBaKc8O7WqvYHLfYQcb+yOH191ifPYo3SMfAIAyJvM/C5gVwuJ9/ZL72PRuS4GHCYHN+xB0g6pmY7bjNl550qnXlK1ki8Ds4XH52hBKnZWPxWc6wh5NPcX7jciKOM6jfk8rhMHnl+fR2Z4BvvXkAFEDrv9Kg0J7s94DuBrnpHahL7joSt+FlvSuthH/2OcPGuCGmVDxR1xF37Fi4BYD5qCMvcgSDet0SoP15SfFe9cWKEfRe4M5klWSJ21VDR+4c2jwDHp+unNIPVZkTKJN0wpeNkhtzx+0C9f48bGh0ANJ/ok1YAoRCS2aR/PJfm7H4z/+jQfyUCWOKKMDf94eVtlRTI3wdpOlSQk+laRrj+5VMgNMgI/4VLsZ8CPu74sduS302WT4LEiSgXeCE2KqdAS2/03xD3IwZNdPYMPgXix3ocnPBAdc+fHYsdoX6lu8GNnuurZYy+XZQZmpAdTlcqnFzSDmoq2+CTapz1U93rjo8rNbCR+PRJsvQ6op6EL9v6nTftmf98RfJ4vNrRJBdvJw62e0G+/OUUiy0fDXTIBYgE88PvEvsff793tAN3tQxaTDG66mnKLfgtnUmappzzxZ1o3owf/d7qilFxFgkuxPs3rTGpnpWk+V0ZxZEVoyocdpSNh3kbQB3sf1Q+yU+KjK7Wgvd5zaT++fwQmMqjLqye9g23WP/U03ZWdYQN4cMexT1aFE/1wIVyE5JvSRatR2/ugCtiRTszju9EvkaT0hM44Z6ZTD6VFzGFrJRLwhbxhQtzsxp0EdDTJ84cH1iBkIGpMtyfJ51M2dnjyPKI3spZFkkpZ/zTq+Bn/kzxpOx9ZmUbxtw51SgcWQf+1l6iBms70fNXyv2o7aVPRAzziF0zZc0wRHA5Vd8SLU1Gp8qOY3RkKE93XPn2Ccv2VeghaMWzSA5bOpIysEgKDb173pZLaEU6zAPs0WcRowTRjbFDWRjn9GcTZax9NeC/IsP7va5qbpdBQuUY0uwvr4/i9bBsXWknrD3aVJ/zdcWSuoC4d36vFk2cgJpchNxJDtLQtTP4a5uAy/FrpWefCbuykCd56uJMe6fyYqgJYDM+0bol0f5dBuDO9ijYpHRlT5sGkHh0aJ0HLbx/oVINWuaukdrS1v3dfqJNN4CthTsqf3Vz8aajy0IuN0TO87HTGbvmKXwa8obfUp6jpbdIepgfl+rCCTjUc3mu7khnwQRvmRjkU/zaymRp50v2O2GrhrvPz4G7EpXWnR8Uk2VssnQ4ah+qPY7tWzq8kYAVpx3EWe0FBHHrCNFHX8yNn7p12Bi5gIYUadTpxGnhLnLd4Fon+5wMV6TZD6Tl4fCS7qJQPxoCXvGq6TSRgTbn+ybs0c1larvV91fPEezeM4c5G2OR7rmA2PW30DQ16N7sl0yvZoYfzyjNkxN7O0Vjc1BLTkgRq2LT6p/qYattQTg3okUbW+K2Xft8LvDjZYJfabbgtXba3lWOaURI3G2m5wd/SSFvW4uUaJfZjQ+kiCC6SFRrGXBG82VJVlKuRzXFoxjm7eIu7ZwifcvGnFJh6aQSyaQpPmK8YueV38QCNDr+UJX/GSQXZhrUvozEiIqh0/fnegvAi17U+qRKUlqwaoUqFV0IGryQslEkyhVzi/3g/3T2PbL8nzfIFDNT9RK6JtP59vCqfAummhRg2s+pmEkKItlNvTxjG/5pCXF8ocfCVft+f7DSyKBoKIvulvz02QZDlFCpOlkMR5tPm/fuEX5dRlxcFq8frh/nAZ+kc+TJd2qBmvm6q7eE73Fdvk4V2ypCxNGVDypTd5NzxTyuP3hDbpb0ncyHwV2hu4wEmpsvkM+3jRlQJ5+mKh+8YkxXTWHA0uJW6rj/tFPyRbFSM12DzJ3n3UQs7HV4fV41XjNx2z+iw9zZtfR+j3VrMWpBHYsbkhbSG4vTN8mBk9Ppkgt5tpn3RhIQD5EptHvNlTLdp0KllX9Lbr1Wu6TnlsAMVMz8I4zdolw8gJQ+Fk4U4s8zGo0t+kb2ieWIjV55cnM39obcCdOoV76IMaUGyRGj7coU7dQ+2o8Lb0lOfrbxNam8fol/zoERFLX1MkSzxf/8EIz5TbhZ6c15udLWn8PFGoKb+qT9kE4cG3zTi0uX/x1vzPgDoeM7svk2Pe4s4/qkyNL9BDlCXWC2Zmg729OpCjPY068n+KA3m8K7FvRnA9vd+bUQvFuOJLkCk2v9tnIxCs0bF9/bTIe6zCCJ54Eao4ZZYvbOQWseIdMn89UrXhdgX1DKMXHeGMs7ggW2p3vAT7UWoV6j3wESF1Loo7/u/kCGk9n2GhhSvUfQQlxR95Cbkgv0etiBcayKJYFUVwrNGBbx+Dh+2vgyEkGdrgTydfG1VoND6TC4UEcqhkNjxi+LbFx0O5jf8l3Q4GU7SekpjKr1eKYQ4R+30dKw9PXZFNVJgNItmJiF6ZdNVmGRtDD+T6JmvU3VH/KMJPtX1DT087aVt8Hl0YoZacjNX/uLmFcY0Sg7PQtUZ4H8OkimoFsSMqdBgX82HwlZqnett5EdXfRcnY2XAc2vzcjUppWCZs9jSDpGBnRR1zcng+ryQT6VI/UvTt1Lv7/fGIO4SVhKz5QrO3XwpjnPozo7tVUhjRcT/H9rgml9UJgsXcl9uT0ilh4oYVyrqUw4reXczXfL5aHHn1s4CTu42owfbNBJ/3MsEMuGhLTB3Og8IMiEgMao+XZPQeUvrNsjWc6GhUjzNCfvT0uB9Z/FxbXMC77HNubPqjmz8N4w/hyXn/r2Ys77+Co23I5EmTWesXj6rfAftYINZRwn4tnTxgghltEvvVdTUaarlMdVnzvYbP0h/5SK3/2GT2ywOyX6SkNKK/NIeKf5mwMxotv18GILcWmuNpv/WiRzYkaScZkZFPpOTESo87F+tPj0XInlIOsTQE/l6vlj0lpxKqUunfs++7bmOReFtBpCX9R+fnE/RIe2QQzWr6RZGFm0Jtel398HOuBcM5n0DcWzAHf/8MPk5acFxCr2Kb5Y6DJcrkPi0yr9rx+j+ZvUftqoYnXlh/lsK/ENd8rQqcH/+IT+46vt/I78BJJMn9nzDezSeGS8C7eEzFDpDX8I5y+coetZWD+D4fyBLss/+DIaDFbvnYYoINFQsLrQWBsS19L0emiYsInp6Mxt9beQ73EddG8pHoiPC6i8scXidirFptsC87owllvvMazng+U0gEjjZ/YZjD2Y7TZv//Fe/PN/5KJq65nZTmZNvXb+IToBucO+qn2RKS0OrA//Aulq/YUgzr0S/GW7ii6cY8off0m9vvRk452M93/44/zoTzU6pdpFnV+4auqPX2wYDlcnlgTsJazbRkKqOpOGTWMWWIj5sQAyjTpqEYVJxf5vVQgQUhq7K3xenqhkMjp+5ZRUw8GY7gfj3cgn0HGoTOG+dL42EOCNozYVfwXmu+N08KunHx8CrZpv/ifKVBfr6Cl2j0/JMy/qBMKz9meXp4GzX//4j0TBaxJfOkv/PNugTufBbpeqmkMmoQ0JSs0FTsWTvwfK96pEu2+V2yJ34pN6/qqyYaySNAQRnNzdZu//aCaniX91AjUA9s9ulQ7fQ1/ue8KB44h5rAfLxc0vQ/0DcX5caFnu8T59k+/Yf5XItyO2/kznMYAGaR5kGldn8mabiVw3rCjgfmrezp7DoF725uR7OMPm8TrUVdZxRXY3zw/BvnaYQTD0DirvX6qBX7rueIX6NTOxiKZvNMtAqHTAnpIzgmbYsV4g11InwjVOzuht9OxBYzfWxrMWomG7zIGYFSxRvHKByboTxFg5qT4L9+t7zOA3z0aum+ko7+En58ESqyfCbOPeiVowhzB4lMd777mtZqCteQtn6ccB4tc+Kv9pvCIuT21jbOO+EJsM9Cebre+L5eTlPWe+FrcN9Ufm3u+HF/GGR73+P2XfyuiK8UbbqfgFBH9ISZzwz5H4LNSwPbFdHpRLxUFVv4ZKSvf+SjTJQBeeh5W/l0ko4/aCO1U40298XNjM5MjHW3Xq+xszzv4rHJ+0h9/x2N6D/L5xccRBN/CxRr3OFX0/bwCGPuYw9maH5aquErgNWgkOqqqaiiOgQcr3qE4buJkom9NQCt/otrZuuYzL20I/Okvunc498ttTzI4+80YLfdTWLHx4+oQPBwP31b8uDizoIMbjheCTmNbTSRJW1j5L3Wu66lx7csR5dbxMwHObdgS/U5vxN3WKSeVI7PhYnoSJJuRkYXydT+6Py2D8cMb5J1uVZ+d+FSC4u5mOBA/Wj5tgt/xT4+iWA75ZI5b2/vDCzhs1qkYZ8vXQBaI8Id31lmGnIlWvhSJIHwSku1hUMQf0td4s13tdS0Z8hccLfnt3vduGt/VVe+kuxAGRHT3YCqmEeVR6278fEmtQwrbN+2pJvGavyxKZKGVz67rOSUMdfkd5l0Z4aelu2y74l9kVEdt1UdNXyjeUgGPl7Khq57Ub6VNq/3pW5H6+Sw5C8iz/BdPVvzYL317iAB++xf2dlHRj6CLFuLuny3Wox1h5NkMFhytr0H/2e93+QRqGi43rJ+1UzV5rXZWqAopEVO8S2auPmTI9vGbqFTpfEIPwVvRzyed3rlWXf1HIwrDaUkv5uT5FLTtEeBnv0hVbKjPEhxx6CVsTRqy7p0zvVQk1KtdgMM5PSQTxTeC7pDaNDsRL5+b666Bv/zEDoJrsLD5cWArbhG1Dn9kU3EMHKRCf4tmKxzRaN26N1R7mtNdjY/J3HFuALfGxdRRvS0iAXY85DXyiG37c8iH71O04PUVq3/rxQwxbdFt9zoSKah9f7GJl6HwYWjUvvElY94u1RBP3GOkLGXfs10N/B/+jeT2fO1FybXvSCOuH5VZ8GbsZBsWCPappftIC31JuvoE3fGlxiE+Bkg4s5SHbB52ONSzU8JeVaIo9ql60aDrWzbTBsp/+T2cXAktlqm8wRQnRjU7MZOlNYwY7S80IptAkIwmwI7zp6/hIGQG2m5nz0HdZqBYN6CoZn3b8bDuJ9V5/Waw7b5zUK3KB3qbLbPnP+HzqIz524yAdLinard34LTgH3EfCzPmv/W9sKmmGZttxjP+lkLeLhE2jUvd173JLWjVn6l3kEjC6uBUgtKl6ZpPd30vkEX/4z+rfg6ILQfK/a0XtVf8NVfitoSUXY7//G1aHlMDd4f8qO2U77wvn+VR1Z+DhfPRb3q24nnVmQuNepOn9MNnQSXy7l9C98rFTcbiNwIcX1sg83vb+2TVb//F03Br/qrlz5+t7hwSed7p/SAOjqeU7/QQ0XL/rZbjyz/DMZb1FZ/p/lxCuIB9er0oPmuXZLWPG/zFW+111g2xKbbnf/HVtm4ZmrX4LqGBvF5EIoJorPx6QKv+Sz6rfkjdNLsr3owHHJVxmMxD/DJB4FOfYvIL0ZztXB2GTN6TE7/LEtHeTZ36Vy8YV/28ywkXI8SJNt5HGPVscZUMvn6/ifqtF+aTR7fSP/wcnJaumm63IlX06Xsn/GXf5f1cdgWq23hLH623+OJO7DiIizwgy5DkBhV3bQDaWyDYnB3HZ+tRjz//IxvO+Rize74d4Rpw8j/8Rszl1sk4jTJsf75btESRLPzhf7oboqvfjhopQRVVCfvZ0cmFW6+38Nxfkz985I/B0dPgW2sfoniZirq03Gp/9h8p1S5NprrG//g51raJkE/1/TBB7Zxv1O1Fw99u33YLyc0DvBu9yp+fn1oDa/uxsGYndTK7xuDBAwJ19S8HDc/TZoGneb/is7en/qw7Vw1Zp66n//7/0X291TV/R1KaGokwHo482NsnRPyhr/JhE7xieeNXc7TWx6ofdzorsNoPzQ60qtb4G6gvQTSxLUwIrXhB/+P3WMNH35+ESbeUVb/Hf/oglXK1hkUmJv3Dt1TqJAuBZOvUEc7ffhT5b4FWvYqI6p79hxfTcLpRXcl6v93IzISvaXrU9k+/fnnbk/fPf2Gdcjf/+UMrvTJsp/iVf4dNTcAp5vwfvxIecvtGnt/x2Ffd1GDBLiRgRK0eMeER+kIERgur/h7N634SLnrdQHUNIM/D7DDGQqL/6RlEXZ4/xvzLdlG5+3eLfS4deiZkcQwtxNofn+37VR+FXus7wlb9qi43dguSEbzpJUmnnEmk+g8f/tWH2JWTeMRt0YlM9U0yJn7KbtB7GlnrB5hNjyh7Ky78kmiJm6gS3E4rVO6kafQgrBdp4+8pg796jytrbiIOP4+DsxbH9PC5degT1S9BbTweUxNbVV83ZG7U3+AI2NOvojHnndf84aE1X83Jb9UH1ebkRXTv52M+C6MTKM3u4ZMpHpZkyo/tBLtzEfzhYUN4yOVb/jhhjK1Zr3P6Vx9Y7ZfMsjP1NOfeJajuDiJWu1E/f7zHDUZ7u8O2sb0a7GT7JthUfEaykP8qEkf9G2m6khD1IA79mO1cDbRZwNgPql9CLZdEylqPIuUuRMYaL3k4PT49xcu1MUYjMDu06hXU/mR2Mv3VIy4m3xJ+/f5GurgSLCfLJmKo/HK2zghE5RIP+LJH776fIr0Dc/EuERe8vxXz8g2BEHFANvmtyJebKi0gbNqWhpv14si5qlO0LacjxUNyZ+zWOgu6yFcNe4Gq9qNnXyZQG8ukWgCKPzubFe9ApGJsPDyDkaNZQ29mR5w01E7Ge3Is1aMff/Dtebgb7Go1BfiJEuMw0fc+Y/fy/YcfsLeR5Xxod4cC/I3r0HDl8yxQbzocJ/FB+LWeO4tGp6l/9cKIcQtre5Ob4PzyP2s9A7OJ98BBaj+UOEjCDi1XGjT/6i/PtV45XcaXifxnNNK/eDyv8QCt60NA8UqDCUTRkSTwGn3mNy6ZjUJZ4OK+PRxd0TaZ7eLsgSQIGtUOYsemxn2ckXMXdOp8BhGterQDw1A7OIwH3mebt3uEI1XehNsUVdJDUt3+xTfvr97NyruDvv5vg420ExPSPLYxesdOTa9rvBT/+MDtFJ0iPkS9/1fv+z+1FKj/e0tB2J1NiuMr7enuizSlqyKPMCPjc8LL4QBelPY0cIKNsZQmjqB0Bok+NO7L2AYwDw/vtyXckkiM9HMdgDtl54jvX6Mxu8fLAnqkNFEd5kLVnt+uCR9vr2DzIn36UeDUM2zF8oF16h4SFs2qBvw5Dml+32J/7AS/hj1sCHZVleTz1yoVEDdfiQhb/DamEtozDFvrje2rHfTT3+/z2NcjaI6natameYKqD7Po/puRP4VbPgYLCT627WHJm33SvJVN15RE4S8/gzSaHIM2dmdsCcAjlsnnt9x7l2ukPCaREVO6LgibDw/vkw0zGH2IAjzee5NGg9b185hMb7Vtnzvsene1H671rwGtfr5peHBcxsLQLRS80JrIxVQm0z0NUpgKEkSC/zGRsNWHFjaGe6ROfd6zYSNrN7D8wKDxHdfJNAmhiQ5GP5GNtdMMVk3Hu1p8TCWSAv3F+tDoaqCuVmNb2A3+eLcsCyzE+xESVcSoXT0c2MVdiJ3kZfvsaXN35GBvT/dBGTLStfsUYiJF9IHhWLFSjAV0L5hL7c2x9qe97CrwoPREhGc0JEuPfBOUt5ViszudDSbU2gKol0/4oJ/uRjtEsg62nTGqpZ6R1M3RAtBKfU+dkKb9XNhFihzv9sPu6dnm9Lz7RIoSagy7lShW7Po8mnDen+cIBX3oT9Ex5lRd2Ak0DN5RMj/e70Gp9e4bLW38rRbxvHRqoecO1q9EzGcLi0e4hGtLxJkW+b/nDermgnUj+CB2fy01yvXmFo372khEIgcBBBfdI4TeIrbkSRopxuSI2PKuIVqEaaUkkXXHobo/Jb9dEJXQY3OL/d8nqFjd+gK8jpUSybdmU1Huco/hVU6YLKYsMar5RSbL+2SdCvFrjflwlQAqT06jEcOxXybntgB/ox3G/QvyRSwPJbzeW45aSfdh5PSKAfA1av72w2iDg0bUT5dz2BT3ScUu33YAvo4qHP7uIxq4Ru9U1/pesR1csM9enz5Fl1y/kmks1arL7DsPX7d5YktODZ/h6EA2j4YvqVnrNpuUflrUZP82IgXLOls2065DMTsNdBcfYjQ74+BAnx0ojWBqjYFcSwfOynCizpBbjHWccgYvJjcacBrnszHNWuhfU4tPV6FZ/at4K92VHsg22TB/2Tx8BbZbh2J87exq2W3lGK7VVY6A5z9sib2ugG3K9zjIyhcbQkexYNMGC77my7n61q0hAGnOCw5mAXy67q8qRJeWalfxbIwYAg3qXCyj1/XdsqaYXQt9koZhu3vs+2E3em/YfESTmtlGNYj5uWvw3pkJDeZTmVP6EHmoZJfgIM01JtJTqaBKlT1svArfXw4SSKg+Qk+NLGT+dFvPw2qoGSh2y0+1cFIWQ/6JA6zRY+yzh4qPYFgnZR1k9qmmrbwVgJO5jBqfKjCW4SkQ5Wrst9hvrK8/dN8xAi1Mj7jI/R519abkwNs+Een4i+svh4/owL5xqmh+fH9osRXliJidTxHYe3t9fhyrqz3ik72d/SmZixs4DH0j+ajpjLVqZ4GitgiH5TwnUzHPkfqzrhdqrTeWzkldmqpHOoq1qbATwbfkAZ6qE1OvenvJpKikhiY/72ko8g+f3S5+ITdH94A9nNg5C6ZhQlU9HGi8bxP/u8YXuKD0gZO99/Un25hN6Lv+QUBGD2PqzJ0CSlPN2E8nYrAY/wAdcHCksagO/WDsshqOi3CgEYlExGK2j2H4hYj+xSPhURgpEpQywfdvEfSzkN80oKXLU0N8lj2D51tCL/FzizrOBTTIe/UI94+UUvPjPv15RmaNivhUEHb5XpI+/TgBsuT7A+/99FyNRlhMsOipT2PzDv40qn6h/By2p17pND55sV8Dc8A12AtuBaN3fh20ex0PZOFvv37i9aBEdmd9qN/5rTH9UloAd4kbev4mYfJzRH+9y/j1JROxZGP5TQknn+8u4HB+ETYm+S6ChhcNbMTO4s93XHNAjJ+GreWQJf3rU6VomZoPjpxfzpikfSbVfm/ySEmyNmelG613I6Ybuv/qT2Pbu7sb7NyXjt1b8+yneVMBGM7Yrv6Z+As6BCWSD46D8/x3YcQJJxPMU3SJFny2kWgPoIHcXXYUW7vSH623qkN7X6dQbLHukyq2auA+EZB5L+/yfnBfb1i/J5pk12Bsid4lWONXiNir6P35OV4F0DJFwXZ+ujIWTPUEpzI5ECTpD3+hNyeGyIlvFFd3lLDKyI7o2FOLBlLS54RvMIAuGAJ2s2xJJrVeMpVv6gN1/HvjUx4vExjH6IXxnMX+jH/RUeli4U7Yu3sbc++6NxBOd4YTQd4bE+/3GczPNKV+sV7p9bpsTXRB5wd1w9s3mcayEUCaBDMq282OCfqtlmCjsZp0CVehecP/NHhv0gHnTjP4wxPFFkQojsnGSaN+2BY/DxXiMlA7P8moUazTDbaPsaS63Gj9vFx+MTLd00RU/iYxurVr7w9fYac81GySuvaNnnchwPtOcxgZnsKAFHx7UeN+5P1ZcusSXpF5J9K40/PhLz59y5FSw6z9fvSbz4JcXmQ0XEclD1g0/9uP7ZGBMabCQ0Fx5y3Y8ja/pElLh4BbvyjVu4JHy8nkUzjJi4vDVljy5cyiBeTP9xNNri31lD42ApjlsqGu6eKcmWy5qThv0r/8ZPzlN+Qe7xp9KsZQTTfhksHzRNfBjLRGw6j6d0jmjGJN7jb9eLciC4SL8KL+bnwbM9ENTdUObMK+gvb9cjwdagiswaJpErrGuH8NC/AvYUsxbR7JdK1fNVrfj4bOI0yIuZMG2HHNm+qjqiRT6CgmlJNjE65Hv3wpQ2KiOxM6qh2WkzFfvk4D+6eRRXKXNqgzHDFD8ldNCH8eSLXiJQmCtL3T+Plz+u0ceRlqb2Ufqbfrjg2edajRn32gUomN+fSRUriCMuPQFw8Vo6dWguvcRTg4GseK7a0pAEe9PalvnNaSinRf4PK42ZHwet0Ym5S0AFO7I6or62DxdyScoTAngV5/DkVj3skpqAdZx/uJS9AkLeJKuRpEinTtuneEo6Ku+YNm1uxWgy68brDZGCpRXaNFi/JWdDQpR349RRXn7HtpaqgoxxMhGCBftqf3Td3GNiabr6ZVU2D/eLDjz4ix6L37oZjlAP3F+/X5bPBYsqjr+kSSNbu9aL1NCU56iqL3JXcYa87nMzR5uo/G4XRhTG5eR5AK50A9q/UY26vXI0o7NBCx4J/JLI62gE4X84IdpgwG2TTvBR63jUymdSQZf9oPBYyXKaW5lxRs9AifoZL/1mTzS7AxH3uywNfnQmrCuV8POTaBQpfXG0fbw7tnNPA08JtMx/voWCZzmQ+pIqbGIdpspk3OzFBQ4FEXC/XOhyWZz7vQBCQ+VWpKYpOw4BtKcCQWHykP755P9HAtQd6ug+nTvGT/+IkmbGPqmMW9n/DDsWDlC3SXnmc2WGnRKkbTc0QZjq2/lGFjwty+Ihx9TyPqllokqP4xgVrnCqPFOJ5j8GdYx6kEBhMa8XaGfeNV2MfPLZrveOBAO1cB9YP9oRflh36D8oCWSM1L2Vg+N5WgYz9a+BByej6VUKaqeyw0HBncxuh89TYptCdnHDlOaQyi+dHhG197jPe52S+X9y8AU5RcnB85lLfX3BvQlwMDny6F1A8eKC1ykk9FbfMY+fwhlQuQqfXAPrRZP2dtLMAPS5jexTbqu83ktjBt9Jgo3x1mwzd5BvBohBIb25H4S+Qeo/VE5xHretMl02q/agLr6Xm69X1Rk8sS9tW0xc7us1TzSMMAPlKbYPt3iKp//pEumhi5dpX0k9MOHZLKt4atop3Q3B/LGH0r+0FEMayMcXcabxB1EFB3J2hsQnF9AzR1C7aigqA5azMB5Pke4Gxx5Go5Tk2scjJk2DmeYoPhi1RDf460SDipadLKGdP+8D7WqNT3w8eVNCj5T43D6qP8yxdqH1A7ejM6sOnv33/85t4ctxVNj94dVny//v7k//kjjJKZkelS2//+rhgqcyIl1JRk5Qct0KdIibi71n/45f6P3zilWOZEzVkLvb3psbX5zslIdF9XSEvKiON7259+utyCmO4O2IyvZTL/xbfRl0cyffJ7NSOdOChkby5iK54VJ+VegGpwA92Zo5d/57YB+MPP+/3OyUUDdjr68f1MlOKc5Mtcfe/ola6zm63902i/vhaDTM0HNtb8TMtxnco0oxuRFufar/Eqg2RfGjTNNg9j0cXdG4G77alv8XJCq+lYgB1/R+ru4k++5jMJJLC+1MhY1C9y77RIuuxsGuHvJ/+8JI1D78PtEsXm/e4Te84zWKd4R99h4v2W07D3D9/t9snnH75Dh0rl//HhIT+CBakwJRg/1S0aohuVUNs+dth4m001/fGlFT/jUzjUqPf1WwqnvOIjseFKvz2eXSLU2/ZB70xP/KmbAxMdkMlhPZqCnA355QzeyRWpu8Z34pxtHR4oUUmTdHv0L176tZ5i3RffyTy1EY/2h9wmULDYX46FdEe3R7Al2937zeZzqgsqRkpGZh2JVRceSl593fWF2n/2EQ6nG8oKDdMjPL2eL0uDQM29jlTXNYI+9ew1aOUTOGhNJ29lfHfQvn0fsLtcv4yA6OjQnwONuhkXMjaXsa6ufDtCfCVWg7P4b1j5IPVWPWbownICNjxjqhmoNJZ3fwSUFASiy6m1/fF0vxaw5tt1/0hPi2sFIBo0pO4b7xndW1IA6aKLNFi/d2iOEQenjzZin7v1/rCRnQzet0NABP9Tr6cU2wKZ5bTBeM0HIpqzG5LtHmNt3zJjLuxzCo3V/PDuzUq03PJO+MevXjIKESN3WkNG0oTuZYNnZMRXDwIeSuw+ajcXK3lOUb3XTjj8XAK2nC6LpTbL84TDU+ix+apEHXjxcCOqut/mC+FNAp32zmigPt/5PAWKA8/bvaBalNB+kC7vCU4m+f3Dg6MoNMM/PGs07rdf8WAJivfbrwfR65ypivg/pJ3LlrI8t4UviIaASEKTk5xNEBSxB4gKqBwTIFe/B/V+zb+321WjCnJYa85nhZUG/PEJJn0ln9xGxwR8eoMI7ltUs32+ejA6zTPqm9PP/+67OYUdljH1d+p36A+D2sLFeJKNBz79BQQnHf72/IEcTpm95T9OAn96caJIjVfmgQhUmhVjPzguAy3HNwGNnRoYDcCN2SAO49/4U9cFb8ZmA6R/fgpr9aWo1zNNdGA0DcaYPL8GVbXdC9onIKP9O5jquR4NEzwy5fCf3sxd4QInuwyxjdz3wOQLW2EO7RuZ3/BmzFN/InBGqfOPX7U3C45QOEg+PeHkZkzBHPSQEZ7Dmli08bqND5SbQqdRK9bGzLlfHTrX3RntNv3IDp7Zwvv1UZNd0671xgdnKF2GO/3TN5MbPVconfgT/Ztf5hXlComlEnpLUFWzyksgVD3Y4PK+4xkb3e71l++2eKrm83jMPGgNL5u6bwMB8bdd1NBqGqMeHcd8TirNgnwSneifPplPzmqBv/wtnqI9a496ywOjM0asL8UO9H1JCslW447w6Hca2GvaOhCsdYVPbSiy2X9/I7jFP4yWSYnp3/tB9LGx+xXe+b98LFfmhWadfGBb6yETfh3uRs2YmfW61LQAlzNhG4+z6/liFki2f+Oeolps81UCXwSj/Zng4CYc/X98bvG+0j++TEYYJ8ofT55RjGuKyl0EuX3To/ZxSIYxqMQXsC6pgji7auKlkd8FyJ5NTXMZfOrVOc0WTAX/iZbqdIzZYXY8mH1zioOoI/7ajEMAxPruYtOrxmGeszlTUutwpEZbiAZ9Ux3BvTGdsLnpd3Z1gQgu/WGk/mRG/qZ/VShmAaaYP2e+MHrnFtgl5sjupd/8seplUd54HGGFhIfDXbZ6cK53PFrc1ALi9Z1CaDz5FSm7A2d8dNDKwF1nk3q/nx+vaFRef/yOaieuij+xY5RQz54IfcPlETNwoAkQoaxt+XBnbHpT+ltvGCtV5AsbDwWyNxwR/7z5BoudoYEGvx1JGqV68w8SgkyALs1apg9rI+oWSNjP/+ePiTZmKah4y8VHdlaZYJySGVw5/KX4g4jBntzzBeO6uONLzJq65z5RBfff7M/P0Xg5vpsZrg95pbb+AvEHGlwG/vSpxeVZPl9udwiUb7sdIVO/W7yRHchVAkJMjLt67C6/Em68Cw18favXh3/6wk0/4D8+0YdeVQAjtxOKOvs1LFYlqGAEv476VJIZ7Qb+Cw0z9BG/8/iBpPWhhCFqPBx7+wP7Vy+oT2cdOxEYanYVRf2wE30HDaxQffIojQQ8lGEg+4SW8cj7QwYlv3yiRcnYn1/8KrvjW6VH/yLWTNV2FUgPEqBo80/Lo+pH4EidgfFufsaLyAkJ3Imus62lHZijoOIBC6Vu059RvdYh+v75E7T86evH3HLwNa0pCRdTZ6L5KXT4SS+YPla7z+fI8CF8C3jEx3vo52tGXo3iwc+R9EFWAtY75xBIB3Ig3M3ymGjLcgi/XZhT63CpjfnFtBLeUXuj8fY8e3ybv0q0NeYnyn4Xz3TrIXs4nt/b/giGGU1TCw9nz6EnOfDjPz4M9/ztSg3Cm/7y5783P/uP37PW1lT5cjHf9Bqxwhjp+fxSurOyQ7JQv/yl9m0Tkmz1CC+dvY03VhYUzOpHzftHqtn+c9aB3z4X7Pr6waBj7GRQTn85Notaz8XmPhWgppCnpQVbQHhKRDg2a/nnP/x5qy/s/+Ktsdhrvfj+3YJrXpvU8ULqL+1QlH/8F7sLC3LGY3mFdygtNEuNoy/A9t0r1vQRMcoXOxYd845AlCg99jZe1ifdT4YUqhk92efEX5TTIwL3opmohw86mD0sFdB/RnuMZE7IV/6LOTjONwub23pcpg9JgFenAVb52ombZqfycPLBRI3jXA0zPPP9Hz+g6q5YjXG8YU7+3Sph00sTWM4WCGCPvI4a7PpkrLkiU5bp+MFWH9ziTc9kh3ElPHUEy8iXjXeDeaeGFG38YrHuiQeDKCTUap7msMLGC//qLxsf/tXLs145JR24D/q8aAjEQAgcGEpHBx14S2btkQ66/C7UlfqSrhhk51keVB7uh3pp96qnP14Wf3gb0cPjbIxRUIlwDDWdzLsi8vdj/rzATe+Q9XGCbI4SdwRbvYyUwrmqF+J3EjyK5Q870sdhq4RGHXhvtaSZA+7xPI/fAEApNWnwja4DHeqJg1X/C9HeHqN4Hq57Is/qQyLrR7rHK4oOJiToUGP84d1a0NvB+1dfPG/5Yb7czpyy+b9Nb6v+ejVhAuVZ78naioaxX16h+qdv8KMYw3gcj5GnXPj0Q59y1/ps4xXAOsXrVj/41Mthz3HglKkqxRv/4H1Ol8Cmd/FdLB2w6Wse/vFv9bwK/jxZVQrPgdhg5zd7/voybQRvEkcJj7TVp0uyOEpjZwb2tv0znpzVPKjOV8S4tVOfTVokKQ9vELBV6teclaKzGaq2JfOhf9ZLdw51+BqynuKmXYcWcqIIl7ZGpNPCY07NPn7BR1IVmx86xvOwXi5AguYP6/DZD4RdIge+752JN77OVv5xUOFfffOPN1JZelowlGyHHHpZj4lJZBmev7eKulv9i33hXQR+cXCxwXGWsTh7Q4e6dG8QeL/8YTbyq6o8PSdDt2cmg+V7DPt//rjU978/P8LLF3GNNz/R5tTzXlCxZ7BgVRbFmp35R/WnxwmXL7+cXdULB+tU6P+rT32PaQ9/9fFBUXDS/DWWTx6ci6TE/liKw+oxICmbvsP5I+/reVVhCI9QIdS7PHdgcs74BdaVi/FW/2Dkcy7Fv/Wx8Y+nMRFptP7xUoxPUty7nbn+e/9NX9RTYHglrJ33l+rK0TJ4FKWcfFaKEW/62aCX/J0om54jUpN82PznD+cjvhDFCAR/EcJKgt+vPKF9lZrDph842F1uE1UV/hXTD9C+kCac/OcPYkq+VgGKYxNibVoGtjB44QH/sFOKUE7i6UV6a/tUvqb6qRG29aJ+/z9HCiT+fx8psFPrQ4NvsmMTQ58WvtuAUkviw3xt9yOEl+qSU6uPjUE8KW0CoSX71P44a73eJOBA5Vxc6fn4WeL5fG50kF7vAz6xp2DMhyYg8F2YB6wPec3ex/cFgoAeKDa1V5DPt2ZoD+AmVGQRtS6fC8SH0PxujbK+Sl+zXXq1oC+jEgff5AlYxK8OsI3JpF78qvPl8RkCePtxR3p0Pl+wfgX6gvwUVPT4nPp4bszZVIQI8IhFXlCPPddFoBA+T2xev1E9p+SewUWyMFFez1+84GPCQ2tv77HbPndgPSmvi3KRvxbZzZ93PB4v+Sxz7uYxT2O8PX/dw+ZeSNjsxhRQ7djpcB6+KkbsoNSjWEgRzD4XkxZm0vjj4xUloFTCAKNob8bzbcwhtN33FtIswRgF3g1gervO1GR3x1/8hkEwCOZ3q6JlbOXcsoCOWB2oDlW/7ujWyNC5H0Zs5v0UE6zvU1jbXoZPO6oOYmTJ0aHMbne0P+tj/ilpCmFvBiLWrTI3iHXOLnCnpio1VOcdsyLlVSgkjKNGaJ3B/KsfBagD2NFYs2ow/upHCcdm11KtTr+M7V6nDNbzJGItRQyQPppFpVVeIr4ZT92f/GuewGPa1eRw0lV/8ccxhH3a3Kgexq+c7RxYwmEUZeyo+ymm7WeUIM8ql8Btvkmqvzh4Cl7bfXhKDdZfQiJQH9GVGpplMP529VXYiOYRH0tnBjS+SjLEFDO0A1Cu+953XmB6OTZFLCtixv2UEdwcUGAPbUgBf3eVvFCxJqN3UA0xnwmUL2fBpIG+9PGidW8H7h3/iE+BpOfk97VkELz3ApojOwfElt0LPKGHhoPpFRvrwYYy1NQpp/gifofuBrIGQnm4Iene9AO7PfUZgniXbr/PjEW67V6Ap86P+iSowAp0XYV1wHXY2YvvnAdf3YFv/1NRFCefeuW5HsJq5nkycsdsWCNLDkFgppgec4vldI7nDEThU8GG6mi5GIetDtuH9iRwWz9tKF0biJYVYb83J2NNRGEEUvasieyyi8+6VCO7anxE+G9/dYl2qqB1XW1yKN40Xu31rkNTcXSsN5INZu9zhUoqRzVVOfkZr+W4VDD1TzLVqsNxWGjZe9Dh1oZqwH7XHYAHC9qZ3iNpnTufKO1thO8qfVFHB60x28kdyb1zVKlb6MhfhErzlFwgDyJY74Ex97HvIQk1l5rTdYrnw6DoYO8dPRyOEu+T4LIkSmkD5cTzT3VgYL8GSrDeArKAbwVmYoMASiz4YvTZtcb0fjxVeMMnnR6V18tgKq/LgLa+SObtfeZQun7lbngyJFnFFyxjdWvgZ7UUtJtMveblaS3g0810qok7H7RV1yBoG9TErpN3/rzazwS8fPKifvquDeaHlxKewwZQDx2CnPbO21J0ZVKx97OdvDEOWAY70T5T9GT7eGk8B8KDEqdYSyfBn5r7+6tEytHFpxHeDTbHcwqlvTVTPVzfw0xuOQ+03Wpg5E9nfw0v1xLWcRgiEVdDTJq2DeBt4DFOGtL7tFHOBH7R6GK/kg+gq99nWbk2foV+Y/RhDLppAsdWWPFRv4sGNQOhhPwvi7GB1Xs826X2gpbgrkS0LkrMKlCE8Kc/E2p/P2I+cubWOLswD9SIf2HOQHv+wvmchvT2/Yjx7ItQBShTQuzjmAcErN0F5vu+IrvZUo2VBRaC0kEXsKudr2zOj+gFimW6Us0LnJgVu08DP51wJvLX/YD1cHu84OezswlVZzVmqXR3/tYjto5JBpZbNDRwfryOFEG3yxlvAAna53WH9lu82s+Bail5uP9Q56h86p+dtj1Mpy6hRns5gVnNqgr+xZP4Gnj+ms9fCHe8H2BX2mu+KInlCi3BX6kBM95fZGYkijm2A9bKhbJ/+UDpRpXab+6ZfyQnkaHpnfAWv0ImEpb38AxCnd466tYLKUbyt96ILPnnmLFK8P6eByOWwXwlQ51A83JXqX6eG5/VRaxDVAcQO9fiwpi1ywJ5UC5nfL8/F7YIh8hU8oj16ODIfb5WChjhL+gsfEzNxG/JM3Bk2roitQ2ujonKZS20qzDBtqG+GCE10EHasQDr92/J9iP3TOXP7EnYCK0FsGIOOHCzlBt11rkzFu2grTA3KUWZ0F797avGXhaeWkcTM03zuY2hCJ5focWWzri6U58ghZzkXdCMj1w+q4d6Bdfk+MNmyav1GlyWC/zLx2vQD4BSPbrA2MhmrO0VEq/CbUmVdBoS6ivDarAnmB05S9Z12y8Hf/sKroXeT1b/6QNWVu9V2UeJiGRl9kDfLbIJ/v6/GLp6Le4yvoJ8MPk4SIFfT2OPJbjGnxk75s4wppT1IdAVqtLjvMTxWp7mSNF2s0F20TrUX+15z+C2nwnzuZzN1ZvJ4BRKJX5Odc3Yy9lVh++syfhv/sj8kQqw6Q+KnCEGTLtqPaw5NhOqER3su73HwW09bffDVnUqX0YL4i5vEEhgF7PK4yF8adWM8Wy9fGpephne4u92UUzS+IzMMICuA6/0L/613aNq/vIb1cBXZ6wp01JK5bBGh5P+MkY161/wUug8Ukr5NMwg6aq/fEUIdN1Y6AwZQUM3K5TyvOkL+ZCY25GPFIHgvB9mfCtlaFYwwifvahmreq17+NbylZ6s0xwv/UP9Qq3Yh0SOd+Yw98+XCgAcM6orn6MhwjxNIeG+GcWzpfr8Ft9g8KE77F85i/2Ln1LTXYiQmonBkutVhVrt7HFUuMAfdJKqkPTBgZ74z1SPvlWQP72B/FBC9cL/eFV+uDuVSHvxHS+eIYRg288UKfbA/u034E8jNUv+VY9R3JXwKtUGDZIU58MuvZpQuUUNdspeBwT0BxUmHvekqmGf2JrKc6MQ2F5Js8oWECsF/HWx0LC1ts96+VvvTZ4p/8ZjPU81r/TNeMLXhFPqNeGIDh4VMchSRmTotPcsyt5EMAFVntbMpocvFJKF2+LfkfE2amVIYH+lwT0L2GxNlQMl/SRR6xAvw0ovUSZ/38oODXHuDeRg8zJE+vRB0k1DufBAUQTHnZ9S/XPrDLpqXAkw+1ypsQPRMK8Y99CXwjt+5nd9EOtvtcrTsdhhI/7N+XouDaTYp/yBDoWOjAlMaQEpfN/oUcvZMHfI5UCp24TsZC7duoo1iXKJFxebekkAqxv/Ann2cvGRBveadhyLoFvVC/XqkjFGBzcBebHLMHpeti4ovziD+m44kvPjEhi0Ebr0sOQPHSO15nzSzGEFG0n1tvHeDTO/+it8c68rvVhfs6ZvzQ5AXscaEZJnEY/TUZiB3aCcIusnsWX3CSKQdQghIL45QHP7ASEfUJ8QdnjULJXOjqJgVSJX+4lyQrymh9fHHlD9I3qxaLVD+Ke3UFdZDltc2S5gedxJ1DZUlbWn+xwAs98a4bZVE89t/vFguUNnqj6hyuZ1Rzj4Ph9c6uf1K2b9Qc2UYl83ZC7keiDn0kfggJOcomjfxDS8kwukpqTRKOh9sPKPMQT12gG86Us2d1c5hGb4EpGy1KG/Hy28AlaILvW7jw/27aeRoZTWJcY/caPG08EEQKshPhrinXVqaliwfhQqScQzb6yNpPLwuTvG2JUvJlj/9L9/iwcy664fs7m+qwDESrr5rXVYpBAHwIdOjYNJOwPqfn4cBKduocf38smXtDgnypI/dXys6A+QO1MjWS3lmP75reV9ElMItDfEfihtR3Yu8QwfYfQjb/V592dOsCQoJ2qOj8Ler1fMSgIbR3ljPW1hvrR9vYJALz18MuegXtetq00Z/Y5Ekb2fsaonkECbpD62vZucM52EOlyvtYC4bT3NoXrkoCQ4A3Zf3dFYwBQW8A2/ITav9hKPnXXvDzXcD1ibIjgs6aXT4abHqHlpZ3/FLBmV4z4QcPbIDsas9oajQEPVcK7fNDZjTBrwwk2PTx7/i6crpSlsGf/A5WkJ/Pl8LxIQQOODlBfX1sy8TCvkzrcbtbh7x+bWLALYnw4YScTdSiBvI5Rb0Cw0V4KZLbLe6NAAnUJ4terYOn/mEqL990H117wa86G4ZGD8ggnt38/SmARNL6CIzAgJjvWpJy1zKnib1gvG5P3NxzrKQ/j3PEsf7vypv4YhVHPdJbt4JsaoGfcvaO6lhE3+qdZ77er28AisHbUWH4BxZ006xMI7I9ISH3OhtDoO/rooRvs394ynkoYcfALsYufeePWUsioCrTBXVNVdP9/0dAESV8/ILiQzG3JshfB3Vlsacnnpz029XMD7qRhYk5rtiJm1RtCw5WV7n2PN2+glKQdmtxT9wMlYH/4qwuVeKTjoFRGs1t1rweIaX7JMywPMu31wAX/765r9Vv/feEaK7f7TH3ObTx7o/Z2HsUYqtpJhSMCffjq6tRuT9H6Q4VSZAelsfgFbfpRA2coD1oKwztnj7I/bxTwptgNZrOdTl/Iwvx9DeksHFczAdmS4ilqAbcrMnAaZHoCmbjt6bC7asFiDTmD9zI5o1tuxZhLbJ1A2vjuiaLZkrLuMf8EcvEbCafozn1vzEsCczSk92k8Sj7VXcUrTQfz39+rljM1G0Q+8iMTVLXP6p4fBnf2IkHCPYYV5msGDX56plqKYMXBWWwUN5Q8bPgfAfGQPFfa+4tE/3sEXCEbwa77u1LEKi63MfEjg7///6atFzuUMktNnpHhbP22HNA5AXnCQGGgB2/upuULVJDX1pH4dqGXrDewOb0IO/sOKl0fifUGxfzfUUvJfPKbftwlfwhlSBKrIX+Cn9aD/+Jz/5d+e1EyF1nW26UP2bJ9Nt4mH2nT5Ub95xvVsTb0HFlm9UHtcfsYSfA8prLllpsF5kXKitM8R9t82ovnmn2hHo/af/3HtaziwMnYdmAUfDQd65Pr75PpQwSoawd945HuovXRl8zvYy4VnPvwuSASbP6OnB/T9JSBvAut1AFhbsjVfg1GPYF+mX1qUOytmIJ0h2HNQp1qjvIYVxq0Fu93+go9VuH12l7wcZeMneNriPeto1gOhO2W4oMdxGPHTDmB+aH44213NeDGljwwuhcpjp23SgVE9SiCIjJj02/P9+QGgqBxHzVA7+PPmV//tt+s7avylqKcVAHm9YtcSadzO5xcHv1ZZYrz5sek3Jy3kZPNO0XBUY/F0ctV/fCzxM6GevNxCf3qT6Lwo5WuE+gZs+QT7tPvWQ13EKiTS7BOm/qp6aTV+/ZsvtCRd5rNX+BPBqYQpmhN8HhiYXRm8QksnYEFqLHj+9IWsXBFZw1WrefKFBXQu9oP8znqQs3NerzD4TDsk/sVTsAtfSp9+b3TjP7Eo3A7ZAR1eFX7sfz1Y03cVQDVXXar2/N0fZaGf//Q1DsYqHGY7OSP4+6Quzd7GVK9Voejg9AtMmj0OcrxW12CEv7ow8abY6kkech2CERtUtXFdE+H5JvDK8d3GRxxfMDEngdep/VA/ebT+P365+Ruq5XTNl8djleHesz0ypbfzMFsmcGRzZ9nb+77rfrceCwj6kKNpe9zn7GqIUPE/ooJdR+7jdRebCF4e8EBPd/4aN18Pm0B7o5XciPBmrGI1lDt6VahWCB5b5tkJwJ/eUQvZGOZUkXVwJIqLzmt6AV8u3Vv/eMRp//PAWp0uGTyDSEftbRey2ehoBP/0hznxqGbShbNANT4j6lPvE89iMUfKo0ze+FS/m2HjL194M+wTWndvzyCnk6aD7Be6//IXHcWfJW/6k5BXhurt/Tgg7Ndx46GvYXpzDwLo97QgOapeYOn8qlIOgjZRxA6Pgdy6rIIf3tCpcQ16Y54eFoGy1stI2PTrQi4wk/khfFBnN0J/NqMkAXgZwn/6bhb8CClDeW6pZv4QkO44deCOdwOs1yvN5/Pb7EGpuh3h7A+IN387w6gfJoqi1PDn6fS1/s0/mtOdvz5g5kERWRE9edevQb7KjYfzOQuJCOHXYB0HQsika48tc38f+NJ1M9Ah9UR+HItiGrzXSvHi15MGj6oaxu+djvJPrc/0WAQ+mGtdbiHfJSne4tnmHyEEl6fMbf7tVg9B5gV/+pUGtJnY2rm+CX9DkOKQPKZ685creIThj6qa34LlluUyOIBbTH3ff/rMewoW3PIr2tVYyTce48GL/35Qd3b4mJ3rwgJmxUXYP9RFvJBjvoJTyaUbb8TxUv3MVblproNV82TFbI6lDLqenFFULLL/p7//xV/Ev3g27czjF2y8lcyb/5q9q5D848N/Px9PXSpCVvAuzg8mMDqWXCGcrlzyT58IXiW+5OQcWTQYwCFmpR/y8I9HWk8tqxldlx4kgdTQqF5pPNO31vzT555MTvEiRu0L9iYS0U558zHh3KQEMgktJLyXYy5GtAvBOuxz7AdzCtZibTK43vMd1vvHO16N07OUa9d6Yvcvn3E14uWn4iJq36yfsZb8WwTGYZKw/uzvQydJXADs1Pxgl3nLsKay9JUfjgq2ktKDTRURLMgdT28i1KjzJyFLRcjJ1p2exsceCOYsfJXgLQjYizXdEOtSLuWdeDwj/ucWw/a+rTI2Sov/8vEogEMF7vw1IcsbGMYyMaWXNdYi0m48d8bkJ8JXDAP6jFZ/IBvPVtJrPmD0ZLd8xrdEAl1gOeTj1l2+/D1/xRNu46Fj/E+PPJrWwYYUlfla33QPlq00ILlpxnyqfsEMzlGtbvUkA+w3fwplElnYWeJPPvvoqIONR6N1kD/GqhJZh69ItTE+nSKDPg4ygY2ke/iPT9KNv8ibvyHLp9DA4q5PD7y3fizhQ/oabBSpCf78ePp0TX8+sqsK+bM54ZOEKp9JTUJA/vN9ojzvhK3UXGYlvDQGviRbVwFgdiWUGyvZ/C1is6XoK5yHRkVZpc0+S+2FV7Z6BQGprrHpvKslqEZzSaPDg2689oXgz5u0v/UNmCimvQxfj99WH2r91lK2esL66rH5c+FAcukW/eOT1xer2FJA6PzL72o8XvOVt/IEbvqDfJD3ymdtdBqZmd8SARxf2HwoigyedaOjmz4axJs6vP74DDamg52zGDkNPCvIRvIJdIDs/FiGZ9ILFMlHkv+uxnbxtVvaGLcPf+DNKLkAXv0k9LS+o7opykKChuo8qH3t6nh6f+wLMBf9RE2yLgZl/aeA3glJWAAQQO+/v9uPel7t2wVufO6fvhRVy9fBGz9Hqt0DMV5KmnLAaQuO2nUtge/PPrbyD/18tHO+wJi5KfmCAssnjL6lG++J1FRA0rG06avBmF7jroexVgyItZcTW5Pf1VK2/Y61Z7gYi/T8iWDlov2fn6vHPz2jdeWD+rHss3lN9hxoJvFOmmf8ZoSZVxmYjXyj3u7axPOx5v/pY+y3vy6e6dwHf3yTHHRyrynrpwI0E3+nancT8tkSshJSWN8QKgWe0bLqZugZhoPIrxgY61VphUchnP/VJ5m3R//4Fk6emjyseLsRd+M/G5/l2NzGPP+PZy7HzzlmzVdd4SBYX6o7VeIv19/elIXowCOYbJ1xDwKcoXIur1g9t/Iwp6JGoLW7VWS4qmbMJnXrApXd7kTseD1fPRf9xyu837cb2nL7JK1Y6JUshdCzlSpuCjP9fsbOsTRjUX77obyc4wj79R34q+iEs7Kv+BPZHyZ54+V+AvlYXXGUtkU8xatD4Et7zTj3TsXA5kA1lUvM3C2+KWx58ZT7x691PLpGXzVTAr37hWz6yPE3vZ7B9HPQqZ62Rb5qeF4hn+41wq/5sR639aj85bMLiSlYpCflwVb/RKKrLIyehjaEHu0viO2KJa8960tAwzsqLk2zAKwO1lQK1NeR3utBj9d13a2wfA0qYs5DiRd7Uj147Z8OVcNeMtbk97Dk/UtyMHa+ubFS4W5BUVVTJKnpaCz0m5X/9oOFGgcIhyhowRcRd7uo5JDT9/KtAHT4kLpUB2xKOr4CosY9kMhJvkGinSYBM3AvGNekHChvABnKT8JvvNfx91YyBPKf/8L9fR5ol7oE/n+OFAj/+0gBN712aDdVNZstcXYgbqeOupLcgVlljwKGZ1sjwm45g9mKhwa8iqGgAX9RYyHPkxmc9BbTMzaCmrjRxYH+eV8RbhBfbGatwcGnQEocmOE8VDefVodXQTOiHHdnxloJVYC8pS9FR3Csu+dTgnDI+p6q5LADw03NCqgF9w+2KF/5s0NvJZxdzqb2OUnz72U2CmiBc4gUV4nAOjjXL3TkG0G/7qPXrAInFb6P5ortfcSM3hbDRPk25h0bnAPAjNcqUu7k9pzEz3iK2Xi/ePDi2CZGv6c8LAVnfGVdsRIyOuhcz/uPYMLyaExYb768Pz2fEidfnKNJ1mCm/sLd3pVi+R8LO767r9epl1/y7XnZUe2MXsb8aZ8Z9LVdSaD+euesfKmzwnZ3ARvl7ZIT2a5SpRuKkD5ktfbnqe8JZPRHEfcrc4PB1A3gZ93LiPVRAibVBDw8H9ALMe799oc1mV5QQjsPfaYJ+EupBBaspghj+3qV2FA/DhI8rWGOS6E+1zTjhhA6A6dR53QZjFmpUSEffvpInT2yALObA4TLPbtT6/a95cxVPzKMnXbF6LR1Ujzqowy/21U9wLwWOZ1SmEEjgBl+AszHncLDHjbBdgoRhtWweufxBdfw+KIGTCbAjvpVB4L9i7EeQY11BBwcKMzmD2PheYyXs3HXocNMGc3G6QqW8X4JwOHmtLR8jyeD37vaCKc1yjBeXiZjsa59ldKqTKxn5dNfzk/+BbNdYlH3vJ3XqwKWws6fLZyN7ySeZbsqIZbeFNs0WYy1HB48LE2Fkounc2x9DkcIwamWsB7M2G/zUfBg6DwWRGkys16/VhWMnX7FXk9bf2x8IEH9VDloMWUpnors5ygSUjwiCK0ykJt/62X/DF7YX5FUr4Kx40E7yDpVv5CLhxcMKiA/DiM9Ln0xCJG+hLAFokm1h13XLDRePOSU6xHr3C/IWfPIHHi+lyn2g3O53fV8RwBylw9ONKUBqx0bqzJFrwjxxB+NqZEfBbylyKY+91aZaImSCT+1xmPrJ72MbnfT1l1Tb0iG8pVBRcnjoJvZInZjdWKL9TnPYHhPHzTf8QkMr+fZUbZLkonsrBMYw9WrYCkGiPRy5/vrrn1Zyqf5umjW7i1YoBC8YGrPV3y+u/rAJzSXZMDxV3y8mG1Nvdrjwf0W/KgzmcwgjtCOIKgkm/rwQupVZY8MBpXokl1dnNg6d3EIgaAgHPbyLifHGGSwjSOGT5ejDRZX/UDlC/yYHoXu4S+vuy3BS2pY6Dd5XNynPl5BeiM3rMUqMma8yh6UyBRhNLXUYEAYA1iZnYrepizl9KJ1PNCnKMTmfFWN/S45iFAb3Ynw6gWB5Wy4njz0zYhzk2q+2PhAhH3uZNv+2cfzJU49mDylido7fBkW83uP4NirHD52JBsW3eATKGLYU3XnO8N6Yt0IH4I9YF3vD8YkZakHq0ttYtMr6prwpk0gvNKEQBjqOd+PGlR+Bv/G/qv6bX/fzaDT5yMS/ZHPqWkELVjmW4oDlDXb+vEi8Df+CFAzX3IuLqEK32+qp8MyfELjJcPb9ymhfdz0fhc/g+22UP6I80tr1mI/uhIc5HKmLg9btnC3rgIrVWo094ADo5pECExRcSHCtp4nKRYhvJfPnKp7ZPvzb3ojWD0uJ5zS8ydf41PZ/hcvsT751NThCsfDQce3uPGMFa2rCbADampa5oMNBzHnQYFIRoh7+A6rLToFvNGzRp39yY7FKwXbEZCDhLWP+fFX6fMIoTYRneqoKfy5CkAGvgCfEa8/K4MsgeNA8SlukiRbBxbs0BeUohdSfCi+W/4DJbzv1QnNB1WISY4XXjkGpkjWoluH+RK3OvyYvEbVmynnrbEiC9a1kmC9fOxqIjmdDP3+RannrCfG0NsQ4VupbPLc4pcQPYsVTnqL6JNel3hZE6GAPL7uKXKlnz/ss9QE7BwYWK0UBawh+urAyh8ePYWWna/Md3qJnSMNH9megH4OUhU6ccjjZNvP6zWgKpQVuiK42xdgv9/XgZR8dy1qVvdk7DMOOPIWv9Hu89WYQMDiKIFhafj44Pc1G8VbBkt+OGAt2ZF6xvjzBaNWD6SQjwTMHtkR0ECPoZGPVTYb14goWTIL1IVSz5Ytv4NuqBA19Wfl918PXiB7DhPe8qO/alc5g4tKAzQ53jFnyeNK4G3nHzFaPnPNXHWS5arJHfQ33zU25lFB7j3Gx60LyVLedxV8H735v/WVhV0FFOQMGGvlxV++B2TC8iIwtHCjZKy2qJZAG226zc9zYNbHFaGdKRk1L17MRN57yco23/heEM6YuYproIyOX8Q7YQj49NypEDyeMj3tRWpQdogSsOVPROO6zyft/bzIyU37Ym2Ld8s+a3Xo60aBvX7+1ewJmwg+jvc3VlloGYtwLQMQueqXBqKF8s+9sDI4nm8LWgyn9xf57syQHIwSoU1fsQjeuMM2/tjajZbBnvCSgUoxr7hk98ew/qZ7CPibYlM/GGp/OVV+Ct+NJKHd747jLi4VVWaL7lKjTGPAQsX+wv3OthCv20W+EttCYHc629i+Xg4xdZooANo0qzR8nBBjfVZX0JanCltTS+PxFD4QvN4+F3LwjTGfHfrbulCdnvi0W5aaJFH6hW0dCFR9BDie6y6Robs1HG2i9Fivib9PD66HV6rd3apeL3N+AfPhG1O3F+J8tOaEA/yrv2L1Zshg3uKLUvLdgeyVwjboCOdGfiiiiF0V7OuxHzUOcNNToza7LnWvrw8ZgscdUl9NMzAb14zAoJJtdAiEbKDvcsmgbK081STZM/bS3i9B+mtyqtp+ApZf4fGHx8ftqO9cIFv/8n/KdVfEDcI7n4bM4OFbedkYG73F/uKr/Def6PBeh9Gl+Asb6DB8dLm1ZlfNM8GWryh60KFemfkr4JC1PX4QS/W3fOKA8z3LyC6uekbV1rnI7wsnUjuu+3rLfxEsk8LC1m461otfMfVffg/AIWeLcjukUP72ElUhl8TDC/At1P2D8G98iOAuERR+t5wa1fWaC/rrN8Ivr+fU7fQjY1ftzskSNhz05mHnL6HRynA87FRU7hcj5w9OZsLHNf6g3fB/AAAA//+kfcm2qjy07gPZEAHJpEktlQmCIvbAElCRIgHy9Gew9n9v6/ROc4+1FwtI8lUzzGQMjS5jKTDFMdm+WgXmvPF1V2WHz8hw0qTBNKfvGryiDQh+9UMw0az+qP1Mw3/6t5e8Q60yxTIpcofSHHmg9fDlz47tLrGS8J/0mWHW9lcqTe6jYMkjFEEYP2dieyo3RyfhV1T144OY8T3ik1/lM8KG/2C74Ot2YsmePozbOmExpQ1q7YRnf/xNdAF+5pjGTQm96WjMtvaWyXt4UvSnv6VLnBfjFGqhuh5MgtVq3VbT6b7P4E+vaC8/Kgb7vS3Rc4Mp8+u3kHDhpMrwnjfKoq8DU8wOT1BeJ0Ng3tuq0Sh8+/BPr/3NL85f920Ot9PhzbC3/VTtZYAPpGfzw3QNSXz++P0dDpdr9g/fhJ2Y5VCb7I6fet4kk5Q/NXROvwLTEueSdGFZYFj8BV7tpV01L/4MxVHwwBCFc8ff22GGX8lstqsK3EmmeVwam98dot32lHPI9FBd9Ckx8Bt1VPheI/THx8GYB9VsnOIWFLUTaFkKNuJEXWMYfc1me28VJ70vbF3opu5LrA9pg8X/ZEjbRAMxxLZFg9a4uXzOfI+R4OOiTZt3H1DEJ5DAqPfdVN51EfpXwpkh3LJu7rrSVf0gOrNw0Tvc/BwwWvAUq6awKibx+KlBvx5+xBQuYUKlj7X4k/RAq+vbKaRRmWpY+JNCFCTmlBheA8exzLFKnafZzVvFgWM0x8TdBWI3QXZw0YLfdPl58Pd8SJQzjV2e3bqaXvdfjb6Bed7Pf3rcX69CZRk/oi36mLdqg6Him5x4V3oPODsLsvq4BSFxOfkk45kKrvpDeUxcO/uZPDEuV6QOsJQ84FWNVRiMKGeZRS7tJkm49Z7uqta/H2ynFt9qnIPnXVn4loWNJlfj+TDKMB52Gp7uyhRM55utgB/EZ0Z2zY7PyVhh2G8fB7ydxw0fUPyg6MwSnSKnwgt/+Ve0SvMdcU78xyfjq8mqm8QC3l68MmEP6GMwrE5f/FbNm1eLn4qX6/K/PICjzfUIW3p4UjUzfgWNsRODBo9q0atmJTF0SKE3LY34YtcGvIeGwjfp32Svrqxgst9Tidan1Yl4L6dCVJ/fM3KsLCKHU/gK+PYip1BdlYKFR593w3s7iOicuR4zmvpkTn9++F4ziTl8NgMpWysNuPmrGTaGMXbL+5y3KzHcE+PDP8ms8VOmChFNmLH4dz6lao7eiT1jySs26M+/oEjW11TWL003PjrHQIVz0enszjQYwZlFUO3iiRU6/Ezu6GoEL2EGEnKkcNp1eSQm2VOkc1OdqvHenWQENK/Yzr6eEnoKzz5a9Dsh7++rGGLjl0EbhBkzlUozZ+EbZtAfCsb21H52k22cLJieVUxb4SYnfR4dWthf+I7Z0obwKbQjA7yfqhAjfa7Mrhd3T1RXVU03ofvpmrkpBMjZ3SBuUTyLqVWfkaILs8q8pVvQuH3v73C1t4d/enKcg6hWve5JmMYO727k/iiqi/9nj6E0kXDvbso/frTuSfOfvwxjsMnjVxtoOOmxhhokWCSEqEz6wzS3arU3zoRUBS7YX57Qb1UNq0erKfjf/Dp4ZUph0ZP/+JK97gIjh1Q2h/0LPRHTac9s9f0IOF4RB7EplTFqHp45V2HQ/+ljdjptN8EgyoEGysBHKqrPpBjjKVZg8ZMkcJNbMZ9i+QhrR0uYPVuvYtJsswei+AbxY9CrDUN6Cb/57ZEAP0ZztKb0vr2nubv4o0PHe/GRo7XjHPBYFFrFXugog642FkuWfGnAVpPB9Itu/z+fel9hKPOUSvoj4dP2Mubq4keoXOQaHzcfoYaz85vZ/gthwIOyc/78Fm1O0RBMptnfQcV+x/C6t/ny/BZyrDzCfOUVBa+UW4Z6/yiQG5NpwLZiIoBq3+7kN2gO4vO2DYHGWkkeS97HdSv05cUPEMwvatUL3+sRfkHvMsKPExoOTyuHNohT2lwwDvrXb9UiN7+17G+9CvL7loLWfx94eM1Z0e/5RYZ7zTf46txKxK8qb1HxcDAxjfeQDJAdfBVPwo/YbDvw0T6aR7idThXbO9qUUB5oDQwRWuPtuPryPhAuGXofmx3Z/cJb0cvuJMKfnjbxY0w6UfYBfTjc/vmtqVVlF+JG6JkzfAmaqbNKIRUnSkI5fiXjjq0xkBZrGPyi4tz66Ed18RPMvNYObwW/UdBGuxZsx9KDOVyu9wid3dRkIZIhmYznl8K/9yWlD3MwnusaNqPzZWGcvYtp0dOw5KNYOh0vxTSeB0eZ19KXERQl/F8+uR50wiI7+yVTeb/08DYJJfZFFKvpsl6+6nwdONFl5FVTrZzuIDB7Taef4QSCM6YA+adGTPumZrBs287/5XNeNqoBN81rCY5gXP/yF3NO46yGYvmeBBe1bLJlPkHuKNPf75t0DrKnuvg5Sk/8V00LnoJ59A7EVAIlGQbIZHi+84b84QPP1u2o/Pl/93F5JYMkJTnqpt+X+ZYQ8kG5RA26H7cT0+/KIRjNaRWiUxSVZDft1ogex+AOy/xkO/L5BUOt7D9I3s1HZvbXFvXDjhqwvnkB2182Imf6t/nA+i1e8PbmlmhshkuKDOunk723mov+TPsYsUM5M2vxr3Rbb57As7tEQhp0qD9M7aykn21LtEJHaC5DnqLN91QQzIprNxErK2UvGHesyD52x1o1S9HznbZ0Ljd2IlXKKVMM9F2zv/sf8+jSwF9+jL2t00mubrfwiyfzLz8L/uVfi59mXmAFSNnzV6+Shv2Io75mNP/58WW8iIW19XJQSZwDe2UiFq52WrBg/TkConLCkvK0KUb7GCx5kNwTO9p9zf6B4xa0Kyv+6RthVX56dBe+iPjXJuZjNOc5KINEsZJuK7N5/VYN+sMjZ1MfEtaJax+90aCzPAa9G9ZnfYQ+9xXKaSTx+bUPQij3V4+lJpv5sDnhI/qbf8hN1GTJe2XwfmuFuChwkxHtjF6+0vLJ9oYeob98CegkNMxffcJqmrezC2+hDP7yj679+haF43ntMjva7Uzh1m0agFX6xlsBeQVte12BUNHWzLsOq4ot9QEoSOjT9f6SVgO25BjaebeUb4lcTCc910C9WwPTx/W3GivWhIj+vJw5l9kverVy7sqX3wcSxmcbdfsXv6vJCy/58GNV/eWxQLLpS3D1VMyph+cI8rnN/r2Pnv2Q9ce/WLyxDvVknn00XY4FCe+xmwjn2B0hyNuO2dW65XOyTxv4Vu2X2JtGreaNt41BPZ1KDP7VLDZNUVmoNS6Eypc97ea/9WDyTUFOR7sxOc2urQKYXshu99tV45WUBrxsd2TXJU/ZVLdpBULUJ+Te3VA3FAWW//AcL/yBxDrgInSvqcJp8jvxRW8of3kKwY8qq0bBb1bgItlkESefTlTqoQX5vg2J//zyZHpC+EGr20fFq6+kJdPl6mQwN2JHzBnLnDri6EDx8Txau9HIxz8+2O7imgVj0Zmfmrk5qvbameXCLStm69hpUF3lgpDFH85Tg0r0ly8H/pN1M219BS35LdM4+VRTqikR3OtBYjspibuxiLz5n7+U9tm5GI/J01AWfCaODu9iulxxDpvdOyFGqpRozg4XS/l0B8LwtozNvnPfpRL66YZZ6dkJRi++YjACtMHjfX1FnG/jo3L/pD7zIgGZfd2wGHS1tZj3ckz+p88hc5IVHtbzwZzIU9DQghdkt2u/Zu9vPAPcvGooktN9NW6+4X275E/EXuovs3WsDBjKLCW4u4L5ntPNHZnQl+S8JkI3ZoeDq/pzkC31EaMbW1fNEFqJJ6a/7LqaIPNitD4pZ2Y8Gx4Mk/KbkXadLiz8469hIzVo8UNEW/te0DzbNAfpcVyxxZ8n0vE+WNC3DjB9XDXBeEq0CL27cc38XLICaXtprmiKOkwvf89b/e4KzGxdMftoN4G0+FF0ExuNuLeQBJxv/Tvi07KF7s9fnu52Cgu+4cIdjGDQXmsHnpuQLv+fLXlV1sKve+J/9Y/hAf0RTtLhzizhqFX8+pRzZam//fmzhGaHgwWylD+JPdtPzn6qbIHg2ibLDoe+Yq36xEi+o5DZp+3GHBJDb+D4bFLmPbtHNd2fUa/Ql/IhQXP3qqZm7hW66f3DGzewzc3iN0HQRMJsK7Sqeev6PlRcyun0cupgnuyHg/JHqRHTqPd8XJW0R4i4AXHYRq968XMV//JwttMfCVrqd7NKf7srWfL8arLfvwaCth6Is5d2XJwbU4aPwYF4Sx42Lfoeaaf7l+1FowzmK3mtQEmpSHZm53SbVFNiSF6uw26hZ3NWrIoMiOIaS33jUbTWsTNQ7sgT+asP9Z9hstTbm3yJra7qYnhcWPs3fnR8XF5V825IqXT++GH2Vw2QZHzkFSzPw0IgJVr8Kt6uRJ8wPdGHZf21GehDb2All6uOdbk5w5JXYDEYEj5OoYtR4ZxNLODc6v7llYvfppuj5Xb0jvMPTJe0oILoDtU/Pf7nn69X51RNDzhe4R8fL/kFH5Vt/VefZZ658wuplYgBbUlOZG8Kq+R3vp3mbam6CYmb6rTUQ1696vmewAJr1KrN9tKUf36ekOLRF/yuhgacJSDsDw/GYtgb0HQrjVkLXg3aVy7Bqd2MYXOcg16pb4K6GY0fCeLroZtP4dmFOrz+iJl97YQ/ETRg9fFIrNnvu+kB1zs6bN1yqT/Lxbe8e6Oy6A2mleoN/W5P+Q6FU+hsp9+PCV+nvxXSTtcvcbvESqSj/hLgoPGAfsnHM+fxV8Sw1A8WfPqYs3VMfHCCr8Pwu9t3En6ZAmy07EZs1393Yx4dGliux0LFprwUvlYOD6tS6bjoOaEZvDuqKpRRilhdjHNTiIokyRE75qevORunvFWW+g4e96cWDUf9p/yfthSI//uWAmn/vTHS+QOfy+HXw/E4EzxnP6eQOiduQKBst/x8j8Sg7catWeUlw/ZLqaZL8i3htez3ck/ik08/Xadwb/YZ82/n2hwv8LmDZ0o90Q7vVdcl2UVBqmE0xOC9ZbbB6fNRrrraM2vcTGb/jbfjctj7nsXkbVVDPlmK8vFzg2D/uinGjdjmwH5fmwVo+ATDwcoj+FXpHle3IUfsNSSCdFb7C/ONQTOnXg0FdD3ajFJnwwp6+24M1fhONtH9a4v4JBmOeq9fAx2HSkrGzdKc72XHGiH7dN1Nj2Tfo6Mox4Sc6YnztwN3FJ6jG0nobdeNnhJpECHRwnIjbLs5T6EFJjQ7QjbrNZ/caDeDcP1adJ2EG3MM4EWhXRPGXEennCknbIF78DDZqQ9scjX7WZC94MkO3O6CcXatFuKHpRLNfd3MabxygExwKmZKShUsp9DPCnndENFLaW3SYeoiMGZxRyympAEXqesg0z0/8dYne847qZPh8OAb4l+vXsIsfpbh2+8SuomjdzLpbzpu/ade09fr4aLRvSoNjI28Z7kMBuI7UVEgmpFDFWN4mqOdNysw9x9O/Po9BkOzi7D62WYbcunaMuju1+SuXi9ng4qn6tfN2bEFyKOoIPv1tyqkNsel8pCeT2J6xT7h27V2VSu6NZgXVEY3mEGfw9uWvnhc5s9Ynd4xQnZ0YmfZiCtJVtcuauOzRtzD8Rmw1KY5uiNkkt2Kl6h956sQDq0gMSPlUcXoudBgskeV3O/cDfjvedPQcZ/JGM1RW01ZGDXqJlYxM0ZvzXn+WDYNP+yYeNUqRWN2njE66Oc78+xhb071w5XR3/x2M282O0lsIihvc0h8D4Xm+CsOoEbPyWS7q7VF7KM8MtSHa0KCTj6aUi3ve1jR8MHOh+aFuPSdasW0fhss3C7bYPw5xxGieDl45Mq0aj4i/4i+StXhydlYaFp7oYAyPbdx2qxf3Zg8IVS+twaRRD6v0MijXgT9lQN9HpkXTL64PwLnmUbw9tabk70mRyiPEsZIta/VtAUdr1/99krHnffp5rC+xWBucUTMnxaak2FaGC4X5YCV4kULpoUXgFuSS4w88pfJ5pF/QOuMmfJCZx1dHx4+rPKnQMwf+qBxHFWKxndYLpHOppss+6Yoj/mwJ1aTjAk9N6mguPtHSVWzDMzpbMp35dx9UkJSjsx+P4YUbvBGdPz+niY/seeI0tXlQI5HKUs6Py0N9Z7uTuRvvPt1dbLUv/dHBEy6idqDhYTT0yRe15YmlRBPoVylX6KHsVaNhbQ0CsVjRJVsUyW8CBILhou3I7rnisHwDKUQfci2wCs3DszNbGw/oHxeDTOYXxW9dXk0yNo1DUnIoURTZyY5+P1Jxq8LVyvuFQxDsxU4Fa8Z6lhiXinUFPv47RiXYrpFYKCLcu/Zfnn+GZ0SUNd1/SM3+bYNPlcalIDe4kjcx3jmfLj9Ssjn/M6ci8+68axcR5jviUc3N1sqOqWCGabPOcMrsh05veDrFXgaIqJnxlDwrvxQFOF2TYztBxX9A8IWytsYYrH/fKtWWI++aj/dDbN75ZfMUra7b9m4uhLSVV/OtsWxBoXdP8xvC7ua1p4l/MOrgAfvpL+lxAHp60jMWPhkXuYDmvUsZ2kQJGZ/wzJGwpxzEiyd1n+7d7hCvNd+TLuHVteN/sqAHLtnkpkns5rXm0ADHtwxbb8HZDJdulJ0F0SD+M7xY95Ot1mAeKhOzNdnO2k7dqgh7Q+YEOM1dP3zS67Kgt8s9BK3E9aaUsKw0y2CN6ITtFurqJVHi0RmvmYtED/VPUep6fgM78Y2GCOCRHBzJ6TfTfoteHZVIzhfrgnRB7LpJml+UCU9bmVGcLts4eAPBcTTSie67PV8cDlq4bjPZVqZq0PVvYZCRMNhmpgevw/V3/v9x39RK4UmJ/unpp7eyKYr7GrVRDLHBUKtmuzqj9KNg6CU8BTUjuFmtjp+HXfpP/zBx2JCXa9ZLuTi0mQ+sWw+P9aBDC3ujizcVBSNAmI1ClUrIH6I1WSKf7hEC1/h9bLe5pXvRqrbPGtirl1icn9eOXDYJoSE8Vib3LVfLcKXyCTaW087+kpzEdZ4VDDfvaWKBT37QJsaHa3Pzo53twRFKPpRndmZD13/fT5cWKf+gW6+t6GbhryMAT2/NxJk7q4aV3IcI/MlLgclgZrQCz7e4XXOTLJPBLnisJwluFyPWMv658en4oD6iSnl2jngs317htAOuU6c4VUW42E4hKon9Fe2O6OZc4fGFIJPMRCLLl0u1L4VYUxnn8p7knNRysgdHqf8RowkbKvx5i4RETyBePcXKoY//E3umc0iEg/JqLLZAWq0L8z12On4t1cMpb3terwqwjL4eYFfK4H2XRPtB4dk7vJjhlZ5KZCdB2I14mskgt+sSmbvad2N0b0t4fh5q7hwNKsQjnLgoBaJF0pv8r74hftrDBjvdaKLiWTy4plFMGZvmZwX/psy9Sej6bzV8Ed5m2h6husQ+nhe0fx6/SVU3tQCXHYzZlaTRMlMiUv/9AfZhcM3mD5xJcNhxhiPR+aZg9i5IpzO14Fh30RJH4oFhrdiD3gT6ZulL/zegDK3XnhToh5N+RrV6OaeN4s+eZjz7hBgpT68X8z8+mnSH4YLhgLuMVV2ftHRLbsft+euTlmItDaZ/fUTwHfzHTN89xdMVRSHgNTQIQ/e427zHfVYtcyVSuGZfrr+ZfUK+j7CimSvz1Cxda6M8sIfzNbayhycLrmrTfm40Zf1ORXces+lyndjxcKtL/Bvln5mJRS8PbOW+Sr055uPUgbbhS9Dk+2/Zfanf5itbN/V6IyfElS1saithikf1VUzQuMLGnFufZRw5eQ4yJiFHdEjQS9Ef49zUO0+IanAaDLGsf2E4+erUsi3Phc8wXtCL9c9uYH1MOcFf8HZ6/Wffk1of7Rl5ZDcXixI1lo3mSyKoSa3G7PLcubzaFQUSe1csv37oSXsaRwseNmRxg7OpkZLc/AMlINBCH45l+I7WqyEVDpGWCGT3m2+DpZhW218pqvWUoKWtFH5PZoXrl7zM+ClP8VwF5eDtxY/IOBd0vzjk8AvbXNMr+sc2t0noesz3aBhsxJ6NcxEm7nmyewENcShclg9S2J+jhraTJ7mqGt2OhGfccSZhz0B1K7UqeJ+pb/1ZAE3qoi5It/wKZQfBsSvvU7cjYxMVrF3CXXo7IjrV6zisir5MPfD648fUX/V9Cd89IeFz6PgdILb/dK/9c32TdBVNPs9XeR6k0TC+3PkU7g/xn/Pw6zf923Og/Mswd1cjsRsRb2a/XUDsD6v10TX1qz4p7cXfcv897NF9HQgsCVtvmW6gJ58KmdhhKeq/KhCjaAShf3pAyvymJm/6CeOw3sPWehPeC5ol0zv78+B5HTbsUzkJz4XQm6Aet+eKf8cn5zng9qCFRcn5ryStJgcLeoRnRY8F++/avQfVop2Engs1VK9mAQ7iNFtPHyJoXbPalz0EzpO7ZpKR3FAU3j1V1Dw15GFv7wJpn27bdC9SBtC1tciGUlqHNVVxbb4251bPpjPXw3rJjqS5f6Teb0xDXCK+UAr00z5MB+esVo6ufhvffCYbHswxyTGSsmUYhbWsoukMQFi709+Nas38AEJictc9vaQeH/REh6VuMGbYnjyYRkPVMA1ZlcvaboxG9bjv/Xw9us8GOVdK8JlqigudLQ2qRKiEXwpU4hTlW/Ov2dBRG+Rnol3uG3RKFcrWfnDv3eveMnEg8sIwJQaz1LSBsP+BHcQbELJHqx1wG/7fpa1KHKYJX1exXg6Nc8teTQhu17eojl/NS6CexS3xDtZa9Qb5/0KLfOXmJJimtN749zhe2vRH393gnx9aury94leDwKfN7udpaLCMsk5Ou5Nvv79rmi3Nn28riToeqMPXFhzUyf4owvmN4iKUnm24YqRQTOrSevUePkq70DHH0zJpE6qDMbpZ+BvduNonFoWor71j//NZ7uWHPjzd3Ke6RW1b08Mr+fbZWTOLnyU9tsjpH4QEI/4bjWHrh4Cx5uaWE5aBPwq3kRof32K58UfLfr5CPb14f3Tq82ryUYomUKo8Lbrok+sxofX8+sStzM9U3TOFwp/ftpc/LOkzN0dMj2zFz1uBJPuxRSdNPtMFv1WTJNgiNAdGpckp0AJ6B8/6bvtcpYxbzs6i06DtCh2cLvzUdU650OvChUU7LDaSIiDN2cw63lOtMNK7kZlaDLY70SZ/OH9nNL3UdVJJDMrrr/BLH9WPuybIsGQtUXRUzWm8KfPfHzr0cQq44p2Pdqx3YIn0m1fz+DEUkJ2Qwvmsn6tv/n+Nx/4sNlXdwVJK46dZv2qPv66WYHk4x1db9ZrNG8TI1aSMDLI2aq1ZH4zngP6PQtmXqV3MrREzgBI6rGA/qxuuj3aHr7aHBKv/GhVPx5/LZLasWS3udL5dHuUFLqMeX/+pxs38apEw/f7oD9tnpP5sZ8b1YTvh7g/JhTjypZ6lJ/PVzphc0SL3jTUIl5tGVGUvJuZElxhhWzyT38xrLIVHI8jYaklGwF96acW/vxKMOrIHJLi5ao1tCUVkoeOpKHPQmBRrjNzwa8J34+tuqwvPAbdrpif19cR0Y/yxU1n/oLx8sxz2PajS+zte0Rdejw58HMPAdspB8MctSPEEHQ/jVnUs9E7OeUtsLA/MdN9xtX82Wci9LsBGPavp2JsNSf641esrhLa9Z1Lr+iTvHdUwOorGN89uGClO43pOZWLgXiPu6Ilvyvz4uxYbdRpo0ASxstBQS+S8MkeRRC2D4FON7lEdLxLs7LdqHtmebuu62vuN0CVOmandfEpGl13Mzgblkp298Qr5t3BDFH/IinbDXutm+tXSKF4W8Bcrzny8RtPM0T1nTJchIbJPawLaHk+cjyDWszZeqAwdZ+OeQI1udCegqXRvFXTC55oNzav5q6UfViT49u2iiUfGkHJ7IjQX5MH7IuaHuR01xI3vLwTTs+JBhZmPxK09aOYaj/o0Vvsz8QNpLoY77y/owsYx8X/ecl3069GRfEamQXYC4JNc1RrdD4SbckLnO5Pf6NHJWz+80/l8Fq2KAYl2Ve/tuLJex2DgN2e4UydK37N9Rmkbaiw/XiMEyakE4YyaD1ivbS1ufDNR7m/3DMLhhND7LYSje1wul2pkq731UjqyYAln8FTFW2DWYfvCFy56SzsgqyYj+f0DtqbP7DUxDbnevkowdyUbyyW+GAKf3j1Kc0HXbckCaZMfSko+fkzrn7I4Wzoo1ANbT9nxmZ9SgTFE0oI7+f7X95ksvDhh4iMuGF6pjbBUN3WNZQf9UAsbmn/6ZGiTQlzcrRGbNhuPmgKpRUjHttWY488DYgbicSf6zCR0l8cg+SUV4qy16saboZ9RE6Lf1QNugnNOrAR7DmSaQLXOqCiG+Ww/Vk3tvBfMJvlkMPnzXy6GTZWMIT7awRd8hDx6kFLTtdxcwc3t0L2sPcZ6rfzu1Y9eTdj9dTSpfFxI0IqpRHezPGjmu8v+kSL/idk9bHR/D1Nmiq//J7tyByafUSQIIlxlDIrDfbm1Me+s/27/vHRNH95i7O9fnmO1wtfccu9+Uujc5GKcnos5nX8vMNrbT4YWe6HzyP6IBF/WhaaYs/nuOJ36DNj2QIn46CdAlOGqau7P33azbnSlOiPv3T7NQYvN9qNUATfktiRfkJ8XpcR7Nfzj9hmSoMpX/MabKxNxEwfGPFYEe6wE6I7S/7+HT58jLzJmJg5lD0f13Mwo8meVcrhagWCdTk3f/oAt0JuBNJHeeSw59cTCcudiPrhoaYgnkBnRX3ABSL7RvsbT+IciYD48/52QZQdizjuwzX5uTJnaHowya6JbTTG8f6J8lEUWfhMnW7ztJsU6lQUMGnuJZ+1TSRD+O43CyCbiaBEpgbl/ib9yz+GIW9jKJUWiP6dL6iX9lMKmiszZiUPnU/YcGtY8i926hWv6E/OJKjL/KSCLyM+hq9U+9MHy/v9duP1eqrBfbzfeNVJv2pEJtVQIPYGOStUrVhfyRpa9AGz8mGPplbhrtqacsOwkn34FOdnEdZd19Jv6hvd9Ik7BR300/2f/57QKpZhYlFKjOz3KdhRdXx0GmHH0r10T8a3PuXqkiewnUJvFS+/+3SrnsWUBXdh7v7yUnXBP2Ys+nnBHwuMy3Fgf/keI6sp3l5ErmO+jO/Y3apWvb0k8g+PRqrmFBZ8I6Hdl5VEVlME76474bfgbhJqSm0Ndf584NmKedW7u80d3pH8W/Tzngt4X7qQoHjDtA0xum4ZXyWndF705oWP4uuN0daMGVvwLOAhukeom8MKl0nYduwFRonsQ38jN8sKzbFwMgOFtpuT637zS/74XVmNacUCcQ4ScW5eMcpMwpf797uhfmiyuuR/xEnvdTHXL4uCsd26eL7VL3PSuk2MlvyPBIllo2FFihTGVfFhe9H/Isl6KyXcnHL3l8cn41RlR3gJEWf2wl9U+RHhb739+TM0QCEf0aI/MPqo26RtDxD+1XOYdx2DYLZOmrEUMpxlPIKCY5UBLPk0VZpQXPR6KcKk6CZzf+xY8NLfRpDMJ4nZJ6lL5uD0qf/yKyqsmWv+PuqnhQRFG7K3Mw31uq7lMKk9JUW7qzg1Gq6ozWkp4eZ2W4y/1m0U3qQrilRf5zzaXZ4o4MZycKtZBTNTzDvcG5Lh69gIAcu0F4bF3zOXtsx8X6QkV8JS95nzvD35z/rpI+jOWaG3q6wUPd4VLdxT+7To46brf8UFlHZXJ3RUMy8R8tyUQdY+B/pS10YhKj8i/unvxf+/ij7IVBH95cmH1eaM+M/SQHUewZcq+3IOvhchdP/yrv/mM+qPK7Ce0sA0+YaraYrusPWOvs4Cq2fVvHtsZYDjpiKLH0zakAcrtOS3LF/qO4Iz0ifYB3qjJHq2AV9Ljvin17DIBV6Mu/UJoyXfonPpvJb6lnBXr2t/ZHadNd1mC3oI70j5YSE6SR3Nju1KYYi5dOOoR3Ne8rg/P4f/xm8k8z3/82/E6bqw42S1jeHZ4hUWmCIGtCHlU/3ya8vILZiqqWjFHKTQ3FBVQtnit+oRVLW1SHiOa8756Ssj0VfWC369+N/1kH9DT+Zf4hWfbu8JK+9bqDLjPez47I9KJO/xdktMnLrmUg/KUBzPPypkusEFwz3HMJ2RxsJZqir2l48XaVOzwBC3aEiKnw/X7fZGrEwvOXXp8wNHow3x+yQFBXdfKoU/P7rwBZ+K7dtRwXdEgt24C+bLrB3BsXK01BOe1Zx3WwEW/CEEt8diPHhDiv74mix6YySpn0IZNB7bdecWzWl8iNUFLxnJZS3hon8N4f7jGvGfKz/4y88Bd7lD3CHNC35brTTY986K7I+Md5MJagtnFuv4GX6MZKk/jsoyf5n3K+JOxBf9A8v40o/yrhDff8sc7rtWZbtw2Jk9C70rqN1TZ2bXn4OlvrP6q5cx5wBVxb114sCK4geVb+tvNz1fQgZ5BQ6WHt6K08BZy8j8Onu274c+Gdc7TwO88zW2/zmfojtPyvVfvcVxfnMxKyvbQKtGDZlxq/VApFfqwD+/HqKLOUnzmSqP1ftFrsE6qQblqT5h0StU2c5yMs/WJlc/+s2iTP/EaC69jQi9lX6owC2tE8qCz+D2mDDveT4E09UtRCj3D4nOKR+r/n3fX9Wrr7Rkp1C1G0d7XqHxjUuCr7Vc8WU9QpmVW6KP2ieYUXvwIfl+fTyVudlxTe0wXEA7soNQftCoRKaBaCG9l/xH41Ly1T7wOUczMbNTXfEs/YxwyHqBmSVB1T+9sPA13WzMaPH/ryuE2/zJgj2OCjF6vcZt0R4J2en5hrPmsGw5dEEju9hWkwHXnY+arcjpd+HjiWE7gufDA+Y8NDuY/vD+OdUnVnQPJWjU0AlBfmgN8Y3hGdBa1JX/08EH0v++peDxzEKCLy8j6N2uqGFWIsxuT8ExqfN5WerLdFqmvbe06q3ONsB5NgO73cNHxcOvUsMl915Yug1u0dhPOUYjT0YqvZevfD+vdAVXHnR4upl10ZffzgdsQ4NFIV4eaflKvJ7bgpDHd1oaZ16PYCpJxjwn/iTc46cWKI6WxpDcLiRpK1xh8jZntt+RIJiestEA9+BH3GboOmrxlwYZ/yq0JbWYjKYcAlDrXmCQcMTHLTuNihKXNXGq81z8ZvMZq49nHjLystdmn4ptDX1OVOJ3xSoYpOwjQ9k3R4bn8NcN1d2fUVo/NOImuDbfuH87oGS9ysyHOAac7BUKvJxkEr6YV41liHNER0ViVj6u+cdzWa/0tVnT33g9JdObCE9oTveA2BfnxMdYPGrqTju7bLl+MCXyXwldDMku/bySWcASIHCDK13nw72bPVhp0FnJE6sMhbyaFQhBDC8Brc7IK+ZbLK7Q9RaLeHQfz2osv5WrBmVFibNqtYLdan6Ep2nq+OtNu4KWzr5WPkh5Mn3itjmajySDe+t67HYq44KvkwBD83pdqBIlatBIam1AcXA1sp8uuTmcFMNXC0DNMh5BxWbnrQCNXj/mamNUDBts1qDVypUFuh0X7HbRKexuO5doW8cLOLwOV7UL/B6/p+XssHO1k9Fju8+J+cFjx6t1dAShKo/Mqlq+WG7lCo3b+ywM1w1nZRilqmGqA3OO6zjgbIxkMPNaZZq3fLVqmmIDK4H5xHW7czC+JkmBhFkmleqtW3F/vYv+ja/hMcecEusOyH+8WtxLOEJ88JfGWR788MbeoqLX4lBWUumS0+66TyqmfbGCuLm7sb/n53IPT0DNQ8dADqdqlGrlinTqyCToHjtzKuOLCwqpPbyVywYNsf2O4DjZDKtiMhRTK12ugNzxg6+XX2qOJ3INlaszEDo+10UyjbmwAmfoY2Lv15gPH+Hcg61kLfFtBB3Lz70Ih+JcE2MXh8mn7u0WWcNbY3qRt8n4u3R3lBR3ke2Np9WJd7fEa2N4UEqFX1V8wtMKL7v+dVpdajOZmpupwSn4uBSG9zmYAgUdQc8fHbFYNyQTvQYxIidzy7x1BUGvpD2G33kqmP55TcXcbdsevS+hgb9GnhezgNcA+DFjqhZBH/QfrUsRcYwD28kbr5p+UeAowgM5dHNu3EosX+URbS52Rcj+6HPenrgMHN53cr4NTTG/llPG76OxIsFvEoIxksqjOif0y3a741DRWywCRHOZYnl765Nut7/VynHlHTFb/5ZGktJDRMt8ZkH3+C5fHXUrZfMARvvMIaiXQ00GUZa+dLP70oQXH72B6LV0FctNpWp3nqhBc7oGxOxcEwm3PfZhyp8+u9MNVHzXzCkseEBX9vsVjF2hpaqtni2MZKsoaG9fc1SWIqXV69Ga/Of7EWD0kv6tV3FXsg/YV1UkHuUoqWy+c6C516ulo9MdTUS+97C+k4CQWegL2kTrO2zRCvC4ew/Be0f5siNdOpDdHENBPy9ZgWFQOLG7C/BOvT1WKBu7J/NjPTJ58NMU0KklM3O1zQLeDQ8XhnGD8eoTsGS8kekI3av/f+vxmQ4WcDU6kH2tOcXIMyVS0lf5wXLn2+bvbL2fIIZF8IfvxbDaxxmS36eeGZrTJy9N2TUgh+WNadaR87Gr8QzNeZiJUx/efNLZLMOvHTYMp6cX77t19QTzm65Y6HzdYr6m4xVGfhjpSs+FZBxnxUW/e/slJpLrbkqsFOAZegIzcUy6sX3fHIUewiuVXFMoZnnrOtDezRvzzsbXpAFlM/LSE6bCHYXd1Og0Rt1ZHha+eATj2psFdd2uQ/oCJQxEQsUUmi5dMzIo22BwKq8EOKIbVdewC0bPbh3QJflBt+IW8/HUyiuU7rcZnXe7dTUVz0hUp/3osauSH8zpej2nqA/wCR8NO0v4kJwj9HXbF/GS3bN482ULU7E7XrC4HYeA3ccatodNeSFYTaKKfybfgUYXVuS8jitzPk6jpa70oiT2S4fuD39QK+OY6J7o8c1yv0jpjz67leewGJr8sXRFkVRKPwEpaH9wNMidt0rIO+r4tNrHOZzPY0MsNGlIYGvFgS9aeYyYo28Ox53vQ3e3HRbQbrec3zevQHyjPTPO7oX3F8FeQXvvI7rCBCc8EJRSQagoiK10YzfKcKIo3Lorcs74yRzv32sNsCrujDjgF/Qn7wUI09IjWESROYrTnCOHf3cs9HjTNTScHUiElUzc86yi36IX1GvyiLB4XM/mdFJ8H74Mu1jdf4OKRY3uQoa1llnpZmtOOlMU8G+xSdzrVzYno5xBna7TRAy1xGizHMMBkyedmSacy2qs910M3ciAroj6Sthc+q0izVQi5uFO+LToBbToIRIAacyJIE+GhyfWBJvuN2nmvdsiQ+8ddpZCVjHN6Cis1I1KvGIaOv6cdQHOU9xi45x8qoEkqESOmg1kp2SMT9ku61HCHBNvnrclghq/ESjoNDObDC80pa+shm0fv7BgWhanH+foQ3qm6//w9nJHoMD7ExHDqGw0+VVmIfenzHiOa838u74yKzFmu5GJ5hhJbYraV9Ox/VlYm91Ni3zkMHXLvE3qdmJWJiWIZpyRcOE/ytsjVRf9x7yVsKkG2XiW4InmD8vc7njz1CsLSduPyaxcvySTVMQWIHf+MGt2d8FY4W0NP3enEecbb4NBIs+72h6Vlu0kJJrzZZSPKia7gljZPQnmle4I8NiSnBnI3gSs+jvebWQe061lC0eP3RxcLZvI7V2F3bTFsftPX+DLqzTHBe/RyjoBFaTPMZiG/ecOxTNoWAhSy6c+/+T/6bdpUotOsB81svhtQ4Jj3HMefucaUl0I8DixazB62zEHzWdfrOZXu+oXfAL7w28suKFPNT1+g4AW/CKWsw6q2c7CCAnpnBB8HcqEiQ5c0f3KTsyV6Zv/4QNk0rMnC/4lgn4cHYTtVcNCs2jMKW0fGlq/hAs7tvtnMh7aNgPTMlMsUPhwmr/2WHkjUWJGfEkKcd25OcTCljBTo8T8Qc0c1CvvgLjbW1/8WPt0IAuciP7u+FuM+FbIcJq8DNdf/Rnw+5nnqiBel68C+7vJbjU6Qvp6fnA/TueE73OlRV8sKlj6KgXqL+bkq/YeMNunBxmNw7troEYTJsHUK4hd95mFVGIdcDuepqoXL66I1vd9QGF9rJNpNW0+8FudDYx69Vg0+dcxtk60isl+t5qq/n11HfRlocvsRa9NcY9aMPOPynDBKZ8chCy0n08Fw8lQJOzzSgEdTl7AyGzbXDgQuwUrkjQ8Z8a+mIwnGdGiN8lF+Jbmn57+e366ye2yGL74gxVpPV5Z+tbCZH7dJRdyPoR0GX9zFg6d++dH6Gqzv5md+601ULZOwPaCvpT8bbmFyVHUZb3qfD77Y6zmn/Vy0FzD/uOD08bxmX0IljLetoiR+1lldNg+9tU//ayg88ycA5/QePiuQ3R8FUf8zn9gTpIQtKg/Hyra/Yx9J3XDeYlEBYs91DBEwnCZNRhwmBHzC2a12a4oQGn6CfG8+6cb7fve2nKxsIlNdTOZBqvRlHEyPPrdHYeOi45wh+R+iagqvPOiKfDxiozhRv/pjf4cTRbo+a0jWncuqv7WtMo/vRVHO6fbLH5LsSaMieVr62CIX772j49OTfbr+C5yR0iQaJFA/FBzfiX2E5qN/1n4Iur+ve+Jny7EOVhBMp1lJIIvzjbe8EdUSH96rW/lkYSbrq2G6/VxRE4i92TvyrY5K9J2BHLSt3icAqMYkqPhwE8nAl3ldoFmPX/K8PTkPcPVtkwGeg0iiPX3F28WvmKf03BEC/+TfcN6NLWFQMFKeE5215WOJnvUr6rq7m3Kdwozx23Vu7DF0kA8c9NX86F+1ZAftYlg1KbVoj/hT48s9+t3/JClBsxpp2NFLt7mHKXWDL8NJswvDT8Zb3vsItOiHjHGQUCzNrJIqWPQWFaXK86bVVTDh/kPWuvpxOeTl+SgHKSJTmeiVvPrvvaRKNYaMbiPC5o5qxEdrtoZqzvSmX0UFSt4rSub6K/ZR+N2rSnogp2EmMLrzKdva6zgz//PkTgE9fjVSjiugiOV27WcTFSjJWiZXzBfu5FqDB5yCfdHx7Cy+G3OTwZFrlfVtI9vG97Y972D/O1yFnj++PDB9PUcqnV7xpIUkmqMrvbnz2/TGk1PztbKoYbt5bhjMVvhYBalKoQrF+94azEtmC+n4oNopxnM6RE3++Nm30Mo4pphpv2SUbctgOY4ZUSf+DuYePihiOJYZ8Fr90GjNvwaMM61wv7ygbHC00clJLCw+lDmaord6A7/1ke8NczxXrQrdHNmGU9F7he1S0QRHTp9zUj07IL+KMkKKpzuQ4KkcgJxTbrmbz4x136kfDxKowILH7MwbcpuvJFtCosfIh7i5ZI3zHR79bofHTeKi+YbLSiSP8YDz2xFg+EXmRbg+WKxYK+ExfCn956jHxEcmHRp3J1cURiajFl/+nbaqwZc9pcnsX+7MRgHXbuq2rhuqUr3FzQSq0xV7fxo2G6oTkgMp3wFm41U05WIRnO+v4oRCuf3IXZ2JgmNz8tXW4/30mWIvKphip5YXeu3gAq3/yHtSrZWhZHwA7EQEElYMosMiQoi7kCRSWVMgDx9H/7by971A+gBkqpvqKQq+WZzliIbYOueI85b+YE8ZimG8Cfsqfptbx7h0Y6Dn6fzpO7u9zHmP3+q9mNKgzPz2NRcdB6eoCzgU/QJ6tnfhzOobHOisdiM7M8vUCZj2hG+X1Jv8eiJgPJD3//wbHW9VAY3wXQxpu3oTcg5SXDDe7T0z2TL74MrHyGrybDxNcbD7YjeIR6p+Qknb7asrABvMVTJd3hZbO4Ex4cP8zzRdMg4YyLqd7voVPWk6fVwWDnh5sJAKnl63PyGpc71VdE1Yv/Tm7MdSjG4OjlDXPN6Zmu/DZ6Rro8rUmp7/cvnCKZmFNM4LBvW1fpXBbS4TNTY9Dk12mGF3xba2CjfrrFOJjLhOC8f/OfvLKPG83IWFCu+ycO5Xhi+yEC+CAt+AKYbBNf+CAziu9hf3+6mh++ifDyiiOJs9AyyPQ80m2dAn+vbzUTpoNr7u6f/yLrlmzbPeggAFUDqv8kUdqTpl3Tjt5okG/Zuxkeclt7ayQcdfqxGwK5rd+GciosD75cv3vDqAtg9PT3hcysp6K8izeYRqQnMIjPd/LjcIOgempDTzRuaQV3V83awGTrhzaNICBSPFeuJh+wJDKzev7+Mmb9bDhZ2f2xdWHYhm48QwaEXjjio7ZVNmtMUANA4oMiOfvVyOsRP8EoTi3oPvzAWBM8I/sXrEWonxr4QbIPojAt2wTMJ27/nm4/VkerH47ueNz8Ibn4dtQ6OG87mNctl3r8cqGmwIZy5akz/9AT1hkgOF2uKz/BmjhCH2kuoFz4zqr/42/S25DEN3WIwND0h9Q8ag9Dx5Awv+BrT4NVaYOXOCwdrHJ7I3kGlxxz11YP5tBB0KLLMaC+5NMNV8dt/fsk/f6oCA6TIWcqMfThXVbzxFlEnO/WMvZRRBqrzVKmVqydvya9uA1sk1wjn0pDNtHnFwAh4SM9cs3WF63kHstNFpBY8KWyyizyWVW7U0W6XH2oSKR2Bf/rSG6I0JLJgf+X9yOtIcbMhI3vjKcNgvWcU64EBZnMIdGhNfUf9QovrtXs/r3D6GT+0JksI5o3fwd39tkOS9Y5B6+wtH27xRVWOVmxZuscs+9Y+RufPYRuk4Fwi+XYfYuye8+4vf0WgQd0Ou9dZHP7ytWwUr/Wf3zpynObIrOtMrG96fO441ILHF1RU3501IIia0YKF130EX6rh8fy95qAQn04IoO7K/vQ7/OMrR7cIwMHcGj8/piPAiKqnjH1OYIQXoXhQd5L2bHUWM4WC4VOKi/ITznY4R1AtOZ26820ZVj0oOOXs3EvUAnrwxiV1GmA0aYPVJm7Ddb48G7D5b0jM2wEwLGg2ZIb1Ioctnmfr0PHSPr5mVP9Jck27iolQOD0c+vR56JHFjHqw4SPWb7Ma7t+70ww2/kadwbW8za8j4M/fuTuoNNglyVXoXz93fOF5qV7W50WE2Lrl1L/fT95YtMsTRtEQbvvzA5a7OVWy4mALJZ5zHsjFm3XlCXcX6ic2ZX/8Ad7a+IRtsfFZd7bBF/pxcaJedPVZWz7sGJ5bDRKoSRoYKzVaYTxEPn1Xpldv/I6XFe12oGin1fUy/L7Rv/2/23V2tvk9HPzzu/0Bvoxx38g5fDHpiJ88bLzBQrUEeYEBjF+uFHYbnsii/vtQc/4UrHNKgACXexVhUX82mMWOJhhKElFzNx7rvREcdfg+eQthG18ek8eugOebVeHj+0xqNtdnDl6e+h2JOyRv+W/R4bHQamwJ0PXYo2lWOEQwxC+rlAxyd6UrCB6Fj4Oie4Sz8c5S+JGkF33Oyz6ctv0EaJpKGF0yUjfuy4pgzyUDto3CHcSo8jn4mKcTKTSH1exH2Qpqsmso6u3Ym7ggTcHBIjLF+LsfBKAasnIrnwo+5egYilXZR5DM0h5vfsZA7nUngvvxKGz6Zwr/+IBcPYwjAXkfGB2ntSvc9AaS13X4rx55d8WORqenlY3z/ZVAqbYtbC2BMQhley/Apt/J4j3O3nzpqwR+n8j6p38JzNAIkjt/QXRfr2x4NSyGFyufUZGuv4FNBKpQIfNIj3oqZ1t89tAVZwv/8bc20SwOxtOHod1qbbPJtZ0LYVv09Li+Oo8kwLL/8AlJadpkW7zyYOPf1DSrq9ddrhOCmta//vJjOKs9l8t8bBUYHZITW63EvILGTxM0RjIeVsGsEVyLZ0s9yJGafT7J1qXpd0erMz+GafOvIU7ggM1dKYPFC0d46If8grUha4blGSYSfP1cm/7xOfpzPuk/foCv650x7/GaQXAdVOruy2VYJL0o4EWrORpMXWFQdnqYQNgNLlr1+sO+xxOng9Iwe3pfXydvntfVUYrPIJIOMN1bpJ/3j89ireEGb5VHx4U/azwi4XqojPnG9imMzeNKss2PFjY+BOpr0JD9n37rOLv949f4ylwS0vh3SqGeP236qPel1y/vJVWyn8oTyXPmYfnzDxRQTNSz63e22OMR/vmFVD1+AmN9Vr0Jj3CpqX77hDVTRVmFHGhibO7GX03E0NFlqTYtmroCZut36ivoPN/cpt8RIKUcyv/qCaIUfBl7nfIvWG3ui/09mhmRR8eB9YdfsJE7irE8w7MMftfcoa7A8nr8qnWslNJwIHzTfIflGGtfCIRA3w5U1x45x/78h2/473tPqAA5PK9FTB3Y+fW0CF4iT3LPo+KvHnM6nXqYFXxGI3mNwtnqxBEGj8rH1sHpw4FOnxGeryeHcNvzb35V/KcXiehlS8b+/L6NLxHG1sVYpcthBH/+JT7fuIwWNG7Bff8ysP9qnmAtSXVWMPgVWAvfxjDpxxxBQSzu2NaXxmAi0Feg5enrn/6iv0Z3ILgcUmqlHfT60Xomf/XCP7/WY6TkTbC88gafblHk/fkjf98bO7W51Atl3wIaBLnkYDYsbM/P4Asztgp/6xumMEMEusbzRS3/krH12+8iuMjog+D93hmT4Z4SqN58Df/Vh6bwDUYAs7UjBxRM3hwYQQ6358X+3X+GrDxNDixOcrD5/xZgaq4+lT+9KOUuF7Jh1mOFd/UrEnqh9n7s5hLoH1yOugZxABumu/un57d6KTfMYfe0oTzGLnbKcsj+6itK6xh37IztNVva9C3KXxBMWC3d1vuUBoyALHgPNH8OZCDc+cDBC7//Yt/nn956cigBnqIeyZ5eWjYGltTKvi5Bemq+P7b+Dk9HPiBhu3L1dGqxJP0VFp9OxDrliNFpdJWVLT+T/avK6qUYLyp8iWJJ5pU4g9CrbwgNV67I+FJrb3v/HHqiA6h5TnYDudMwh/f926C6D77hX31KCb7XAAnb+o5c1aTw0+KeWrvtCIk08gXc6lkU8V0djn/f+/85UiD97yMF8e6kUHt99OHMIYeHkZ6KBFbMGZj8LnzotuUbWx5SMpoTFcFc8k2aNwtms2teJCWcTJ0+oJWBKRJ2OYik7xspZr03ZvSqZLiqvEsUpTgDGp+XRAn9SsUmYRkghSlHshW+A/Ix/HBYg8Vr4CgDjToETGAezlID9EzLSKNHXzD3VQBlduEQxSxtwumkBZHsvZ0aa/dm9jKteZrwmKEb2j/6LpyPN5+H4EQMtBwfHzB+HMjBxDp0+JSiuGY4X1YllSZG9fUihXPLkwYewXzH5+t951HoXWS469QjtnN1HVLJOVfQt6IA39vssM3+5mQZS9kH49PtApb5d88heOsiNvXIZov0lHNIg9OJCFmRZ60JYx82+rPG6LydcsqnvoF7eeHRypW0rj6na6PcQnijunm5gj5/qD0kk15RB3gfY6zthofvwHpSpEbNMN2/q6+cT9cM/R59l83WbmnA8y0f8Ml1DW+9FsxW7m+6owZnP8JlJ34k+Nj6sKnSDXi08zNOpseyojYbg3Buy6EAs/FOqQdhPaz5Q22VTgm3WaBqCVYneiPQDlODCPeOwoXzYgLzo/8LtolqxvrWYgjye6vjF++ZntjtowiOMzSJ5O8yRg/HpwlH0TnTAAYBWJYoSkCyujesDcoRzGOTm2Dp+4K6cm0b+73lQXC6BhgjsDczwTULAmvIAwTaemDb4Owe7KSLhMrproEhuz162e7YC5tjNA6sTKMYUP0eU3sHm2EdzzqEH/5rYvPiI4OMIHXASTdbpFTvzliDY29CEAUGxW9trJeCWCoc56rD9vpwwzHCjg3vrvhDg+/02Qyd3QyZEhtYO2RCuBaG2cL7ol+wmhbvmg3nxwx+36tLDkume+uHL7fZtbOGs5g71nuX6mdIxs8R2+qVeCvK1UrJdvEeu6F5GGYx+fBwd6ciWs+layyyzT3h0aQSmo/T1vhJvhO5qX4uWo+WHTIsnH3wShWAkWLJNTnM31Wh3FdDoBMRYC1/nGHZ7HyM3ZZn68dTz4oj7h9ECYvBI7Asq51emjkNU3gxhmKb/bl/7x/YeFT7cOmKnw3ysUyx6b6OGd/666yE1RlT92vs63X+fa/wQ6wvtc2HyZgmyxUU341HhJeGvbV+FfLWiJFgL7r0YPm8K1/W5qNGsT6VYAyDNIV7UTOo2+y9cAkoNg8Df1GocQ7cmm37FRbUjLGe3X/h2ix2Cq+gc3EWuZExnYuTCPeZ3WKUtDgjOzkxoRucOnpkl7vBJvk2wqZ+qgTe6WtYTO46wvH2Rajb1mdS/JKDiVefSWU1AltKuhLxeg5vqD+cxmzmDmdVCbNlocfkjGvxMH9nWWj8mBrlsAfz8CljiOsqwDiVBTBbgyoq/k5hVA1OJ49OnwbCSuRs6h7Otbd81s9VEVB+RLCHnTcEzLG3afIOPR2aqiZb/MG7m/lboznLWznhqEP+ip/4SAzNmE+quDX+qRhFjNSAPSOUwO9usNC+rc7DmLagkKMRCNg87G0w1tntC/tadrDeyBpYqvnmQHn6cQjukGusbLrM8hzKAnUV8x3O7kPvoXiyCHkh+xKyk/oeYfjLM6wN4mLMjzNNwDqsDT2lxx2jF0HuYVPnKnWdZwfW4HkVAaf4IpmxaIG1Oro5CLUxoBHel8ZMFb+VrYfJY/Mwz97qJ/unrGScRw7Vfe+1g5za8OWNLr4IRRXOip85cOc8LfrkEx+Q8VsmivxwNRpMt+8w2Lt0hsTPC4qGx64exeQjgtSRVJzYZ8GbrK6DcLUaQIN69b1OBYUDvw95j20/QwOLpQkBOXjdqdledbB4CfKB/5Hwtt50ILIjc+DTvnZU7TkzZBosfKX6DAJaL8AA+5kLC7irk4Jet/3JkLnjoBwYkHAkCMNJEb0cpMb1gXYe2INVw1EhE912qLG/r/WaT4cUyrz5pHGWVAOBfPOFxupX5F6Oocc8q13BUWw8jKcD226hn3ul014Mn76fZqCpEuQw93mEo5y2Gaus+gvXAi5oEQo9G08qV8BEcyWsT4aeiU509yFbbYHIQ9Ma6xInshzY+QUfByceVj/ZPeESfXK0ne4x5puPXZBKlGH3cDa8WT+PDSyYQlHnvb7bTbVHDN+VMFAflcdhJT9PhDGVfMRrmgGmMtMgJMdzRC+4sjP2CE8VeEvyRPaP/pQxJw5HgOzpjZ0HZt6cgKcLOfu34hNvrN44wcqHVh6qZDHHzhsT5cSDzyESqJs7TT1bXeYC7tnySFCnJlyFCfpwy79Yvd7fBmmDc6L4771PxKGv69nP0hX8rNHBl+dBMcraKWPYluuPLNGehcTAHAc/pNRw/PwmjNm35ax0Csmxqh4WMF9POxW6XFNiP1MG4zerp+sfHhD+k2NjDehLguadm9Hf+/3S70+FQ0gBDrjx5a1CenDh4/5y8N39cuGURo8GKhcnocbZZmCxogUpZvWeqRVfnYw6cUhgX0sOvWbneRhMTopht77OOFjOj5rx96aBu2pn4SOabsYq0FIC5suFaKn5Y/YXr3Ba2gm7zo0Z3fmoENnukUTk6OP+26+HsRF22FTlyZv0a2fCP/yY+31QL7em+od/GMmNlq3FfKqATcU3Vhe+BLP2bRvI3fMWH3Ppnc0nvUGyxX481hXk17PdHmWYlOGbnsiPhNS+LVel+w1PbKZlylazm1fYs19E8TOijFyDWYV6ZmRktx61bDZaaYS5vfgUxzsdLBvfhB8OPqlh149wtFsswfENv/hxU9WafXP+C33V0ejf+hItICLUeo2j3k8H3jirha3cewWhXdk9h6/6OVebxHYIMG21Fp/xXAFTKlaq3V+PbJZSBcpD7yc0H+U5nL+870LtDR8Yn02pnqqHSGRp7I9Eqd4nj4nJUYXX5bxSZ6LlwLdeYIMifEzY1LQaEHl9PuHY7HfUknSRrWv4htAN2yNRxJ6F7KUvOvCIQP/eP+xNrqzkSFkHisfvmQ2XUpPBC5QKNnPqhHsNtr58Xa4r1URmZctFLM7goQQxjV43NIwXfphhhmYBHbJ2Dkdrd/jC7y7oKda/nreS85TKpj+V1OffxjD72XWFfWhctxIOycjerkQYlMmI8bQq3nq6yw18jVcf2w19ZPP0W3KFlzILrffTgy293EpAWUiKpM9X8/bZMJuwOHxiIrzJANbK+NmKF80eRqN8Dru1ow2IHP31Dz/opdQkON4ahIO1hvWyQ7INV+sLiPyQ78YwQSOR/Xe2oJU1IGRm2DmwO1rphpcfr89urgipkyY0+Pi2t9/bSw+370ntG9eCiU06BNpsadjTtiMgsZxK4MZJlDpLrbB5abkYaMIlIHtpkkH/jKUCntrrhWrdiQ/pEn5nKDQopn/xzJxES6HKNw29b/gsRMLuCfFL/lC/y5J67QKZh7eHU5JRCnebBXxGYOuKhrb4y+bkIrdQaHdHeoT8UrPq6eqQ/FJA7gsXGaNkvivwuEs1dd/ZcVh+vJCAC/bO1CV+Yozfd5YAOY8C+jyuBaD8fWzAEv1ybEpNzVjyk6/gLz/oM/fXWLdK4evbf6j5+VhAyCAVgShEKb7JYh8uha7wUPkaM1Y3vrmypNNl7q4F2Ln+DIPt59CFVxBQJDf7IfuHb5t+opteDMdQ6r7yJ+B22KG6OaxuTGNYDeETe/oHs/adDCp8lTpH6rneeXN6fdlQPpxb/Gyd29C+EqeBpGpdGhZJxKZfYbZKqy4uDup1NJYHtBKY2DcTW+t0Avyyi1aoolTeZqt/jVmcFw4UnewS5XfQAb+rnzq4ZlVNoAJ+xrqT+gTuby+NVI2sMWFq1TNkZbDDp5feZ7Pih+4/PaI27gyWNz1flcQrz9Sphnjojrewh5Kd5xSfPRqOs9qa8Pc9uzhvJHvg38mggy1f4wDZS0a8ebvFPaUKdkwRhCsBsIF234ebfriFSxucvvL2vkiJncxj/sM+Q7E/emStr3I4rrqEIJLcO9kPOAiFvUniv3xFncI617P5++SQWzMDKYSqGY/WrIffd5HTyxmq4VzabgrJLwHYf9w/xkqumQ28nDr0aK+6IYjW0igHDQKM9e9grCRyZjiK7hnJt13jdbQ/p396EuvfoGEri0EETj9RpOiX+zXBLBvhJU3fRFj5YhhTZTzD1tcTfES8xwRhmlLYVB+XLGoO6imDPxGWUbmQgyYPgFVr8YRkUit00GQPiNnN5cGS70SMeCh75FwkPTzG+omIgeCEW36QYf6bO7Tcm9lgWEh8yD2DB9WUrgKLaHqyLHbdTANo742psgII/untujiy9TmUZ4Xtxyfi1kxls3WFBDpxeN/4R+iJe7vi4W94xkhS2M1bA3qTwC147YmsH2i2ID5xgcUbGHu7rgiX3+mLoLjbbilOW2EFuycdmK/vnTAumI3uTZMrjJR5wH96YNKh3kBlue6wlg1fwOZI1kFb3v3t/dpwUfYHB96LRqT3K9DrpfPECArkS7BBdAssoJDO8rl76NRJq9hjraDkkJ8ka8O/ol6X3ZpCkYZ3VH8On/DPH1DKT/pDatf0w1oYfg8vJ8Wk4c93MnIcVVnhnvhBvU4kYKJK+FRCW34gbvMb1vNpRRA915JizV+y5VqMVziYT5deEDZCYbqUPFRNvUKQf9fDn38Dl88zoht/MxbywTHY/Kb//l/nvvMDTs4c9vKDPNTFvF0JmFlPjUeHjDmWD+Rflx2zvVaMdYczDw1flSh6gGu2ymv0hG/OPqC6Tbl6uYjtVW6Ca0y9oDK9aReYCYD4KxHA4W+9+UccPCNZx+rteqrH+OtwgH8ZmHqSMILfHz7sXbySrxPd2V7mzxwQd+NKA44xNm3xD5o9UBADH9VjXDGZkE7hTEQ/I/XGx1tlD/r+33ostdNFMJPdAaPT7Hh7Q3F7sOxKiaKkpdt+IQiuquiidmcnxizbvx7ugv6C7d8z9siAbmfYXloV67vtVu7haYpg8wOo2Xi+N6uNLMH9TX7SYNTrgU3QS6Dk2xZ2gXjy9pcXKaBoRgr++tUnYxsewCm+7rH6lg9h10vABza+vtCm/42pMIcKSmN7pP7uyMLfOsjSv+dVg1PnTVZ08KEDXyph9OaAPXY1XVEKoSFSyGi2wBNqQBq0C7a/+jMjXGVwUJaEbZbxVc3WWyPJIFeSMzlQ+RL2XJGfoanft5+5J0bQergC0F8txJ6vEszlI8hhTGUfwTE2DHaMiArxunCEm7SfMQ/YlaFAGvLHTwde/9xiICTlSIPNf1qvVbHCqaxs8hfv/J8++X1ESn6Qv9QiOX8SJd55ClqD724YaTi4AN+FGoHd1isE8CyB4uwgGvFxHC5maBSAcs4XpzzgQL8MpxZuepHAFvuZKDlJBeJ3viCwq7qBxtD5wo2fkHiofca6fe0qpPIpfXw/Zr2/OMoM8t8dYT2qGVsT+Vv98QHqat8xa7bnBa6BRqpVpZnxvNZARUvXYMMfcVjDbfZve+lVoqLn6E3yW/+CP/8i0W+6Mf/x4XxtXtROBosxzypW6BfEoE7NHYb5nZ5H5fTjRTJvftUcVp4LX9kjpnjjw8VRjUwYTrZObr+OY21fsx5G/oII57klW8RlG8QW7woaDLwAxneaECjKUEPc71NndPxKCGz8l5DLegGzmGYVVB/9icwHyrNmvbccPBs9/8d/wYiseIZb/JPumwdsX8xJrLxfxZ4GnOwOM086XvYOQ432iB8Y8ZNdDk7P34/MmtrWc3w5I2je4Yxx0/yM9f7TdOUFagWrqK7AMiL0BDZ9mNgzpBXMnmH3wFQIR/HlDob+cAyu4H08nKn9nHA9lw/rCUO/UPHpiKVhQU9TBZufQw6S6wDhz0896Ftjc1vYagPYkcFjqlzqXAs/kwQdJ7C53wDWFo/z1np9tPB5jm9YD767mpZpFIGh+S6k/bzdbN4fz0+FwVdANz3pLfBkf2H1PZ6pdR8rbwSuoctFuHfQ3h68kEnp24F6aefYUt8imPKp2vJtHqF5mTxvHg+IP2z8geo2Rzc+qetw+17U3rPG2+LtDA8rTPDdSpxwvpTFqLS+mqDD+dCxJZj5FfxcKaLRYf9ljKvSGU4ifyCfaGeFdO0tBKZ4vNJXn0JvdJLWh07JaVg3k1O95MlBhGniLUjgFM3bgzziYOVOKdU++quePw4PYR13V2y4i83Wzr3nMNirIfWSpKznlv9+4TeNrthRRi6kWe+mf3hAvoL9y1ZYlsVhV6cFPTnzKfzTj8rf/9n9iRlEWlYdXszba8NXm83qXuEg0soQH9tqruf72efAxm8IWO2vMU+hQ6DuxRjVql5k0y/POWBo2NoG45oe/cPXzKh/ZMv/Bo8yBckm5z7o3/pPV48VEIRLS4ai1A2hfqUm2PgKErlOq0kbJAlEmiVh4yg+wwk9fR1UYjEgeVEHxgQ6E0WePhySXi+1FpTySsCfv1Tats42vppCTX49sOpR7LHL++nD4PuVqDuuebboOBhhikwfu7k2MYbdkwq9RwXJ/gqqej1knA44uGRU/c4iEOVXTZQL/g4YXdaFjecjkaB2c75YL9hg0A6dWhjvPgm1uss3XDHLCLx7Vx19sTNk9A+Pv2l83fRnm/2rdyTPxKbB71CBRT+DBI7FEZFD3afeQvskgRq2amwL9i/8qwcBdHdlqrKjyWbKydE/v7vc/Jc1lvIUVOpNR3CLhw3vc5jAYsL6fnUA77/UXHmzi43fZzOpp3DvEghBeqK681ZD4aEw+996HUixr8fNn1XCjC0Y/T51uFYGtQF+vV1qbvmdbD2nwHJTD9ia/EO4RoeyVTK0Cv/0xewviw9ByFrSB2I9zBfPvcKC2vGWn5twXXZyAq3wFeAtvw9rXO44OHlGi/jyLmUTei0j3PQx1utrmm35oJdTghg9DnjK1m8+rfL9c/+hpZ7mod/4EfD41x1Jm14gf373/HYMlNj3AdAsHCCUWaeR+fFQM/4iXnIwPG4VvafKGI7VcTbhKB806qr+dZhLWkuyvjUvM/hlHGbJvBd/eozi6Gp7bFUHAh+S5qJZU51B/PPPuzt3pqcwOXhMk9fij7/Rv/rC8hWd/g9PkezXRb3aIZz//DYkRg31tnreF5oaIOR+BdVA/up7NXwUNKguoJ76xs3hnz9+2uqH/+oRN766E24/T8OY9p3/pw+pJzuY8W4qxfD3XkYaeV1YT/7q6NBqYgP9OoHVW/54wracf9if3V24jIdXC1o7WbC/DJgtnnHLlekmPGnWKZ9hyIbZVt7KkNNAyI8eU/dvF55P5wwbV/kXrsOhecI9CDA2n7pXr6f7+lVEM1aodoi4gXXNdsViq195nYjYTBWzh6RCFLsH/VYLHz7l4OOyL9FUD1vXrBq0QHtzD+wE9nVYsWNWEHOa/w/Pe5jbLrx7Z51ah+dcLze8RMqMwgAjzy3BeIzXAmSnpkNLd4qyf/XXDW/x42rFBvkVYa4E51JE1VYP2kOxM2Fr8z51/VodlmfXzHDz68m8O1sZiWXfBhufoidd02v+FkD+jy9gPE+/Ya7tRoSbvvvjQ+FSv6425NaHQb1O+dRswqiCnR9+//Z/Ni99oyuC0UZkN1wMMGL+FMFkPF6RcExL7yPbYg7c+hZiPwRltpx5ufmXDzzt6rNfJLkrVPaxht2W0w32bHfOoWfeAR+lSWZfwbyOylsPO6xKzwtb/vRj1l0EivbzVI/Iyte//EsD/IgyFmOPQP6lYeqre3FYL+8ghYdjU2H1qc0hIe2hUDa+j9p8NoZZ3QtQXnJFJP39etz4exnDdZgbjMSYsfFbnuw/fMD+6yp5K70cRfhXH0jcXP/Hn+SnMDjkYEGhZiYnRfCCT2d0yG9TuJyI68PqPL8QV/QPgxWPRVaucXQn4nOi9eyRmyjPfL6nGtstAwM8+FfPwWr88Yd9cJRkCHEj0cjGBzBl3KsCV9Goqe1Ed9B3vuUAtHIeOnyuWr0vDUWG98/tR+9bfXg9F+cWZrv1irEWtt6fnvi/uhQc/veRAm73s4kMhVu9NN2FB/EoS4jTIMz68SI0UHI+bzLBjW+XLSMKfbd7mnibBToiMsJc8zRqfTjNYJFZOrDveh3VkzLXi7+zi8NofxE+5sJxEHfv/gyL0cuw7QMjW62Wa4FdHzDVWFdmi1K6LQRvM6fpcBaHuT2eRWjJAo8EKhTD+lw9Vy6G+0St9+Rm012bU2DlD40cWFUPs1RMT1hZBKPV5E/huvy4BM7N/Y6EzN6D9bIbCJTYOcb+sQ28EbyfLjRLDiPx6s3hqj37J5SerYWjTtp56wVGokyEhVLzSF3Q3qAMD+mb7/FbiOVsLAM9gmdJt8nHAmdvFuF9BUw9FVi7s4ENX6dDUuZfXlSPqOkRQ04j2AI7JQp4Vgar0+82iCA3ERcPH2889FdTsb/RA6vP6Dn8XlMmydcwEulReCUGvWXsDHddjqmWm/qw2mt9ViRxINi7uL+QcFcygx9yEfapX4LFePQ9lJ21RrPkrsaS3FgLD+/JwfFP6etBjM4RzLtkor5cuAYvO64KfkFcUF0QvsMSOMCHYchj+oLvEMz8J+jhbTti4X4YMWZX/XKwVwQHHz80YWwoJRnEpIhwChIfrIM8pEDQOBWZnbQzpsDXTfgpfYMaMTh57H6oXTmKrQbjIkHG+NvbKRRmFVP1kg7h+hRSFShgvFGbJ2BYhY5BmAP9RNGTqqEw7ocGzO+4wl78w2DOL1WlHL+qiW/LqGZ8/1FH+O7MhOLoFWbrlC822PYndov4U89lWGy3kMiAnSe/hMurnRpYmPRFZnHqwnm+VQ3c29upppc2ApJG2RWyCNloOYRWTWDf+tv1ZID64tQbTP06Kpz3DSbCmGfhuh0fgWH8OOBjX3/B8oz66HAM5jt+LZ5Xi+h4FcFT3lvYN7R0WHfv/gqlYu9jjQgsY0OWOcD6aFcCmzLK1ptWRsqeTx+EJJUJ5mQRdHgNqpBw++VYr/dRHOGu7UuMjbHKRi0zdIXjlgTJ7p0OC/1iCbgzcTGW7wYTW6tMlG43H7CnYX9YG1f77nJcN9RaxiIj946KkLtNHD6GxzacP/Gxh1cUaRi9khQsmlTzyph9dKodpcVYeEtIQVo+j9S5TWZNWTfKcPF/BhEvHA/GZYQE2Ht3mzV9HbLFW0oVtmH/JNL6OBtEmB8Epk4yUvVJwnpMBE8Gpflwtv+/GOyAZ1dprzwhMt13xgKjowtvtwXj21v+sNEL+hyqLKixadwYox8OFvCw947UR/TByCo5M5ClHNGjaLrDcm3bFh4qJ8SWOtRec+qeK6isEePTj2/CldApl7f1Ir+TEWSsKc0W0tzIiGxOXi3wlpJK8Os72Bqyblhh3yJYWkjEgXeRAZt2xaqQbLWp9gOVsbyoEcH6uGvIoremN+/KC1Gyc2Tio9CHNTv43RUuCL3JvL3/awnGJ0j35w7bP8UdGC+2KViCdMH6aZ+yOXu2OVyjKiP13WmGZajbCILgpWN0zbth6eNGlPMeZRgd3TLsreziQNHIfth90xUsy9EegVFdG3Jwkq/Bjv3HhYar78lcOn3Noturgme/LsnlYTyMWTaBA4rxlGEH9jYTPsrLBN5QFtTYpweD7N7VGXS79bB97wOjkm0UsroTXerS1+rNiZSuAIjFi0aPqGNzTU424Fv5g72nZA/C7W5CWE55hToCFoNZvnKFIjtecSC2kcH0y+0Jq9XTqd97SUZqWhRKMa17qr+fj2F+yudIoe9+T49hVLNZIOsVvlrri1Xllw6TjjkVanae0cBFp4yF+88XCJpzxWo2lKAT/Gxr1LsH1PHf73qKDG2Ez49eU6QIFVipvetl995Sqlv9LuyMR9/CuhQnxD9KKxOvpySFFaV7in7dEn5bq0yVe+o9UA+zvB7zaElgtcIZB2pjZSwWo+sh2686Vn0mbbX91VUMZl7pebVjRk/XE4HiPQ/+8MLrD/AjAfNEKiS/IckWc+ZXeP2VEHtS9PGWxX194cfh4u0UpA3G3X2yD1Oa77C56x9hY+zOrSLxpomTJODA+vf9TjNa0MKPzFgNpUPw+7F5rMKlGdag6yWomcYF+6e3z1YFPBvwDLMjDsYlqlkSbI1kv+S8rQ/vLYHv2pCfrIE6sXKpx6N1dOEl7DxsrE3tLZFxGuH55JxotMXnyEUxAmdvYqRWBgzWH4AEHK+Lj08bnrOcHXr4AcGAT02f1uShJiqMNCnfGkddssUjqQPDe/BDc7xnbHauegv6+RoSAew4NqOTfoYgv87Y5+TS67Ij4aEsiiuBu3lvrFLO6bI33hB+h4HtsQ+YWunwpg4pt/w+X48zpxjOI8NnPB+9bX0cBZ9NSt13dc8Wy0EQbOtHyJ2Iw/SM+hjepiCgxwefG8ud654QvGUfibxVepPlvXiQijnAqtR03mz4HAK7u2Fhu0vDkFzgU5SlTO1ogKUpm/NEvSqv4Ixpapx1MLtMS+ALOj5N+1Qd1m9TfWGunTRsSOgXLmU/uLIb7zUkbXg2ot2tga+O6tQCsZnxwdalgr+HJ1Lmk+KR/rs1ps6MhKwWUsN5lwIO4pJ4ZL8jZBgD0vlw+fQ5kUrkhIudPGIpDxsPJ3tVrztnXWM4aKaG/aPQDgtUDUl+XtiA1nPVDsspCFNoMFnFx/6E2bq/JBX8tcqH2kezHpbnfUHKsHPxH16FiwZWAnH+vtLjkRXGYl9AA1bgDOgjPcS//DFDUqwArae9DEY1mq7w21xs6s6yzKYOejPkQk7HWbZ/smnHrRW827NGH1t+G79veP3jh9gM2Nej/wEAAP//pF3JtrI8s74gBiIiKYYICEiTIGA3A0UURKRJgFz9Wez3G/6zM2RtcQupqqdJU1siuzAri0QM3qdswsU+AVBumFmb7sdnmL4C+gJ+MPyLT13/8SYNweeaskxOPsZkFM5V6Xq2p/3aeJV//w+NoXukq2reez23HyP0+7mg88t6oPX8+vZoiV8S/PG/7u8UgvFcsV0+qMZcWUoPD6UYiTOttka74CGCquqX3ZVHY06PfoqCvZUwSwWtXPiQAOov9vCHfESD7xQvQq05Uea9Hd4NB9cvkPo7euwvvocreShKn04Jcdw1ioeuOObqmBci89Pw0f3hMWLFvWYWxa9szotvjpb6wQz/sfGmdTQq8NTvDuV/+bfwCchqp2ZWc9mhMfkUkvq6NBrT5niOR9s5a3A61yrm91WVTUShCTqcSgUra1TFjRnuLbXRsopYm+6AJut6TEBVrC3uBini87ErcigucKIykSo+fs6kRdG3BDzcf3k2frxJB0fbZFjix6WRyW0clffB/uJNvrZL3vXkjYaXHTL3lN8z6RNcc1jvT9clPwWjX/SF+vsJF+LU+SnmolRc0YbXHbMZXyTkU4wgis8Snuxu3U3fbK9BJkHC9mTlGZP92/cwR/KKuW7leeLn/kmhp5rPTmytleLnbDcgtsWOZZvizKc5cX3QzuPIDs7n1XHtvXXhWN23zOlZ782u2Iiw8Btmp1lYLnxSB+MQHCiqWW3wbL9J4XOYTeap1exNcyVVIL9a5V98UH1j5P/+//FL646zL0ugrvuQHBY8netXRtE2e+uLntI68b7Z5SouMpMF/v7nzfInnmGzL+4k9/jSavRxakDn1y8JZTcyvqY8AYTlqsD8fffREDgIK5dsXv+r7yMVu3nZtWcxDYTCmA3PmtG8i0tinWcdrb2veEXPc4dxX5pdOZTeD8B8vkxmrmshm+NH1kLRnQaifwoR/b0fpfY3NrMefWI0S31Xb8/TkeylU8rHVa6LYCuBSwJErE4SdkoKn43+wWqXdHyceZRDMYwbZv7umrdu45OwvbJfzbzvvCln+ZPNimccRcoKby7HgL58qGS3Id77xLy5v8ZncPfBh/IzHTrua1SHuootKnylnrNaN/JtcRFOTDuJ73gW9rsIHkmPyfmyFjPu/TIJ8l86kKC/LO2JKt6oM4w2uf+EO+ff26OCOVJW//39rx7x8zQyY+FzY8JxAkbROSTohdCg+XlpjDM8joSMVhCLzun2hm4uGxac3lP3XQdzBZ6JQkLan9lJghO6qMz8Ozst+vxf/tbbo4KVdE/5AEY0I63/RizQqk88JtLDB+x4F+Kv+7sx24GZQJl/xEVP7vjc6NEbKPf3RKtn3C16yoS4zZ8Ln27L4ZiDhrYHuSZmULslNRN+hUQt32S/5INkGRcKQnNwlvjQvLkyOgm2B0vG3At+aOQBL/6+j4of/eBtFn6EsghRohuXopwP001Qrq+jQUgc1B5VhTKH1El7HErDIR4rYX0Hy+veTB9F1funV4xU+tDV0yn4eDbCEYXKZ8QQn/t4vvLkrh4DsSH+IZpiOuvPHILhrBFHO+0yKb28HSU9+Ckx+qHsZvEk96ifScwWPp2NqkQjUBE9ERsrPZ9wecfg/JQ1IURrO2of1jkAHg+Uqx3j9C8+DhGExGrcOu7N29SDXaUNCazdgFgzfntQvx2jcocefHCkgw/7UMvZ7WdO5aCfsxEWfc/05+/kDd1Dr8FuPpSZ8cP1Xjs9fKtVKtvk8Bh/8Zi1ewGc77PD8rL9fLyuPRle2cbC66ygaCKDI8E9qCoW7qK1wUwWnEFs5A9b9F42BA731QwdUqyeD6Y3x2dVgT99SMbCzDbWTZ7h3Nsuc11XNGY6QwJ/esOR+NebzpVzh2Penulm1Eg5btvUgio/PomP30LMnjjt0W7eYrYnV7mcBuFwhoWfsMM1Ljg3152Jiov7ZR6PUTynR/MKZ7PzmWmcYj5T9rnDxz9RvCarzhin+gxQ5l+RkeeUZWzhc8spS2sW7IIn7zePvIa1wQCz9leV3V99VY+bgNY+tdGsc6iQdr36xNvpR0NMPoUI6/mzZYtfFXMpuSbobKxzLDWulfV/ftNq55e4OVqz8bugqFK7lUMwX/CSraTPWVnwm+CNYHjrV1u6cLbCBourjcjnJT/V7tIfiV7bdjaeQyGCbzU/8aq9H4zZ2u502IjXGwu6pENjIG8kxTWzDdstfJ0+/N7/4+cL/nTe2Jg7UDvzcSNY6GS06MtePZ0rlfQVZWgs6c4CPXMVYtw/QzbV9mFEQgMSCQx17sruakbAqq6n0zb+lLMY/URgbmswX79q3sygADhW+RYL6lpH0u4W12pz2YnMLqIwW8bXRB+52eHSCbOuCcVni3amuFr4H0PVdNeS7clcvSjY66bkiT1qKvs8UkZy9ImHKajuEDAbiL16xR5bHw853J9YYwu/LOfdLatAODEBc39DDYrShwRTHCTEv2ljx6WPT2HxHwiOjtSbwHq16hc7mAWf9sv/4ekxb87LkttjvInqyVfV5vEgO+dp8KXeneFAhguxHs9rOdBTVsBu3wzsORZVPEu8qdESP0Trbjtv7AM7hKroW7zWOsPbfKjjgM7TL95MIZRMva5zuAzpkQ5L/gzbTMCQFs2NReEpMDYDHGWg+WUk7uK/zht8aAE+aYpXJ/PDeSTmFKyqV9nCn5F4eWmNyhPfwsL3vkbjA8ctOnWfiel3o89msTxjlO+AETfcxegXkBAg25YC/S56ZBDXmgDtYKTMq+HVjeJn36iL38lMRTvF/OI+67/fT5Gc7A3WZbEDeLPRaetWndEv/Fsxi4QvfPBi/OffIDNldwOfPbq7ZTVMlTTiol65Bvdtb0arfvPF22CNu7FEtIYmkigWgjYrx2cDLSz6hy31MBtf4c1HnjBemTcbOJZ0LtbqeviaWGyjszd1D7eG/Sa/E8zdtTGtUNcqELgD7ebHPuZW6Dvg9+L3X72jTtxaYNjfgRjZqfD++XFy6iOiHQOGuGjuBXB3YsCSRb/3fqJhEAjK2M55lguflEf0p7ec7NJ0s6RuMPrGMFGx/BTZpvj04vbPf8SP1RDTpJxSWPwlutVtksm2k2vgLW0LhQuKvE3DhQraRkqIT1dWzMvDXKB7hdeUN0XjMYie/Z8/xJyNpnfrftpL4GfEo5NyQGVXJHIOe6d6Ymkj77P2QZAJS76RsJ5pN/ZnLit/eusvfj9/fh8EzsA0mMxywx5hD83qWLCDnrR8OOaipiz1lhxWxjdml23ngMwCRnZvRS6nVn9V4I69y06faV9KhxZ8EFCqES/bAK/um8MdDfvcY97u3njNnz5ToxZRVbscEJ9L20XNLxeIY/kFmpMpl5GTmPGfP5L9/vxl4x1WWN6vPvH0p9dS/zv/8dNy3bzesxp9Ro3gynDKP/xVLsXUErz45dP9GN/B76Uvs5PqaPB4F0VgukXIvLtcl/RBkIX+8n1/H+/G3Ox/KQRDohFDzt58Xg+uhITYSVigWnX8D38ut1OHhS0Ol3osRahYpTGlG6E0uMedHAz7MzAr8sJ4vcVhD2qc/xihkmbwleqZ//gS1s9xPDx9FMFNmkLcdOiB5o07j4BnCRPvsqt5Z64768+/IL7uVWV3TXwMuxlhzGvJ4OvQjDV0Kw4aw9vMQ0MSMoxexiclXs9fGX9bXYNeosVZ0E9it/CR8D//dPGv5yhmGpJtPmEe2Znx93yI5ZsDhZ8ASDKU9AzJGUV4IN2EukN06CGCa/jH17rxzy9o57XK9qrWlDO6WAJ4s/qkwlnWSgbmvByMn56wIOSPbPEHXVg+T5Fn9R79Iujho2QqVVgbdJP1/gJAABmzn7ph8EctuZCvCGG4JGncq1vVgbTaTUQHduFj8r4JUBbkiIcwqrr5Kw+iEiVOxch0EBBHwj0FR0C/f/WeH/0rBr04MLxe9PDfeCNXiFZ0lJSKz+hRUViZX4Q3Cx7NzzaxINcuMSPsmXZcSsKzWlxHgwSfjRFv9qCJqj5UJsmv7wpN3zyWt7fXfP83f9HtDzSFbmftmN4mOupXr1sP5NV7JH6TKZsfhFvAdyOwvXbsvbFy3i7YvvAjJn0eO8ZH95++YtrbA2+Wm3eLlnhhuvkNUMf75ZSJucmYMV/sbppA1pD462OKtm5mcOH9NuH2vBxxuLG1TGyOLFfo+3ph+eMjxb/Bq2Wgr+rHnO/eRqOqpQIkTUEpUqeh7Daz48OV9wHZ75NHx+eSuLBM72CxaiJvfbr4AGZx5kyXdN1b/II7BIc4peM9gZL+CjdF+LHa0lWc7rpBTSsZFj+Z2OsN82YqGVgpn7c3rnIh4Ez4yAAa9SkL3KaIZ/PqRgD+ebXM/+1ivj7u7qp4NTcLv6rjUbwUDnquaMM0yzKM9e1+S4Ec7jnLLy/kNeN1m//zu4PwqRkbWRcbMIO9Qsha7flYWH0Fo7+94jHL63jWIlUC2H4Klm2UAQ3GMChwWjUXFq2X1lvV7yipeGMkxF5RWo7bzaaCK6cBvYSuYgzlPT/DMl/DzESJ0Dx1+wiUlxaS7Hh589GVriH608uWPeSGuPA1uL3GO7G4eckmMKIR9nm2w2LqrhBty1uIdvt2wHL/HjtuD6IOqEI7duBOXw7aOgF1fa1CjJZ6y7TBnlGNmEn++Z8lHkV1qc8kW/Qq+wji+9/8qyDIYjxH1q4Ag1sRPp0NKxuda5PCp/pmuLw4ZskaLtQo+nlX+h2Dzhif8y/808tEy0wWt7M4LVuAjgZx2+Bj0M+ypUbUwxPz6YfF35+muCA73ycjt+MrW/zXVj1fZJMFy3zxYPdJBdfiecLKZJ/jyZt+2t94E7yLd2jU5VlWtfm2pgoW3t4orWgLFjoFxL+l34721zgBtjElcj1akbH4S6IK8SiQfFAaY6n/OdjQJlgpDq7BDs7JAnH1XlP5rE4lFaJ6BrV5Puj0Vq7dUl9cwDn/4ieu424aGRQqfn5PxA96J2M9y6+otNWKubBed+ynlj7Yca3grUK22fx+nh1l8V8IXvLrGwS/N3J32pOdKd5l83dl1MDPfMT1L9jwZT4vRCoUBtPhDTE9rroeTrvqQAKSn2O6+DEQbVWLaIPxiaftlZ0RPZyBkUP59maJF5W6fbvxHx4gMb3dalj8FGaPaV1Sj+wUeLNhw7z32y3HujTcP75GnC4y4vVHWp3h8Y1lticz6SRoCwzpAadU3l1nxHGjv/9fSwqU/72kAIX9SFene865IjdvtLre3zh21TsaL8K3gmPw+DLnHb+6MevDVE1bZ8vu9bU2xn0aw2LRU3aYUVvOw+6ngCHYe6rEyabk8UtKkGteBnIwwfAk/a056u97KIjr+2rHe6IL4O/UmZm/qoz783O39JavCpZaq33529rvGYLVVyJOdO678bm2FRAbI2BY0h8d+2ruiOgpVMlep6HHl2uIpP6DJ3LR4vmkeCLwcOQYQVF1nDTTrObOQyeH2agQSzaToL6Cy4vWvr01Jl9rADJTQyTOdd8Tj7krKBHHmE7mVvOmVvpoMB9MjWTjhLpmU3Q6hPEBE3NX8ngYRG0GKAqTWAm1OY/NA2wvtrJjGqsg+5ENAlinucMMnY18/mqlg14Q7clOOXH+jSgOQTphhSr9ZmlEsOoTFHzplQr2+sCniNka+kXjjWm0P3dj5voimJc3I8FGI8YahPUIoUUCLNGfmI1b69goTnGIaLzGr3i+PJU7mLqxJst4lu1zsbS1Ijgx5xsFsRQcP5oS7I8PZhZ7ynurtWSUebsfO+2YmY1pTSiCEe7MEp5GvHm89TOYca2RIDdpNrTXsVWrS1iS1LO8shnvhwgcaBWmDUOLqP8AAFcglK4vZYtaEE5XZOLygSf1QQ2uOPEbDlEVsFtThfH01sxR2ZBXTPTj6+BJMz3n4IVty3YKDrj4xnWF9u5VJ6d07rxZczMdXns5I5ffQ0K8vu8bqOfhxvbNs0PzwIsrnDqnJz7xR97Er4+Afrw7ELN7p/wz6G6IvrN5Yl5TsnLufCeBUpW2BEu6WtKyfOXqWykxlW25N0Z5fACosi8RrcJSzCL9eodePwiMvDwbtXHUjbBtXxNF4RV34yaUrW0jyxdyG+d7vEFuoCnWzt8TN0NWNl4EVsNlxhnxX7ba0bv/NSHcmgXzj/dPNl3ffgLH4PmlExuHrHtPegEvlphUbl9BR/PkFW6D1Ucielsx/ivS3IWukCS8dbwy49TsC1S+Lkfiae9VOZ8HLqtm8d5hNrJ0OYjzVa/4NdjS+ZiWHrXUMFLHIs6IVpI25tLjelWu8d4jh+M180ZDpyJUYgvMrW81Z/urIsJ98hvmS4aQjYP+buHeDQMhh9Xc8cszsmDEQkTs6vLxxu3ZrOD+HQXKv6+io2EWUtVU8x2GU9llvWibKQxoE5N98pb4tPdmV62yICJ4bUycX4SNADg3dXLx49aYSg4zTKVD/z3/qJearIKIPLbPd148BAWWkEAdh5nBTc9mH+sa7FgVEr8MOz56W9uC67qw8DWsdwaP9PCO7h0bsHp6PLux2XUyOPq4ZaazWw7mlyUFXhDuGUax5c3p9mbBLZKfFDUl6Wa3ya7KfNZ2bNe8hngena8M571GSeCuVgZdH2gL5Hf08eup5DF7ZViBo6aumOGqd/627oIPmXL9/MVHPO7dnw7KTx4I3veoHF60iQD9+h3eWjzppvno3kGojS9W8MlD4vzsI7RpBJUY7UUwhsi4+aA/bjtiqPcgpgfznKC0xi5dPeBbjqy5YZALcqWAk86Ylvr7Nx5sF+dWvN6oG237lQwTzw8JGeMZmRVMqXen4tN6c+7++gINaeGx0BRPBit1pqMlnpjlOYM3IW8/g/ZMKpYY/FvO6hzkgEI6kv0xvXdTmE0m1DQ5kofxk1Gbi7aj6OZtxKnvqyXnL+qA3cgbZmzUa1cy+V7AmxofHNONheY6XRqNhP3IImPQ49HfHc7g+kpNNMdYx50aj7265S+DWe2bZiOV0hYyzfTJvrp+UP+Hb2WShUxrP2PHbC0FxbCHjJkWeqExveIIDfldwXK23nnc3XwA0geW6Q2F947PT7EFqO6cmZ5uo/H8CLHaKg8PS2m/iln7fUuw5DuzA4+gaef3MqrW+4S4csLLaXhKLaz3Wc2c1YNm/elgWagqaIDTftxlE/ibUNG2uMZCfflkfHTsQnnkX43gtIFsoDGlMJsPiXh1jLxhppKEVlveLgflmWUePOkdjpvLj7jFYe7mLphEVc6kECue1ZVMfc0uVO6o4HW+67LJ0PH93/e54aeI52A3W6BLUkectBPKf/HUZMKZclcFNN6qHMNRW62Y7hlOOenjC9Brr2TE69t1N3cZD1VQ7ya7baO9N4+ZU8A8g04MSzqjeTjeJWjr4k6IuV0siLM1KodaTbBCvxFi2m2o0BQEGZXTLi+nMStkULSHybTj+8cnZxf3SLzU6yUfl12qD037h+f7t3PMuIYmR0X3UWPJMJN4vW5/FlrGj5ijbqBmZhcfXVRPxq+Nxct5wx4YvKFqSRJdqTevD3Wjpjf6okg6tAatDqGpmuLWYV4dZ97cP/oZlvvppqs/xrRuXxay7zfMbDZ0xrByfgUy5exJzOiKvT7SHQslsRKRQ5yW8RREQbplH+tIy1zvvfGWdBE04yQxw5IkxMXNbwazQxJVd/M3G7P+miINqMp2b3fmk5QfXYRn9KZvYzko/2nLAJ198ymi3EDS8aH7alX0AbMcjXu0y3gEfIgyZh9vGZ93NLTUdPiFxPZj1+CPt5tAGHsY/3aDzqebtbsjuBQzyfQuQAwKrQXRbUQ6LPWRfcm6h66aPsQcZpLNvuZUyvlYXEh+X0m8X291BeiHnWhX3X/d1HycGrnS3GB511w4B+paMP9gxHP9+PGpWtchHKO3i+suFT0uRxOorhBQLJLDgOZRoSmc8s4g7tMoSl4LRx9UNAQk87QnagfepEjLpID5jnn+l7/LQegNcT6HlcHa2ytVyfV6Z7uo1srxztAV/vLdvfI+noajilFtyg0zl/HndUtMNAuXDQsk5xDzgWsaGAkxl+dflbPicBmUOj1TdRxT9N75fgG3TVxT5cr9bP3xXgBmt5WI76lhORvltoHXYeMys8sSzpVlil6i2CN/9ZYt/Bk+QRMQf1rPWV144hnmUH0y/Xsi5fh90Bkieuj+/f6Nc1ylaOF3zFjwtLu+1xa8hafKTBLGaPLunQjfa9P945OzcRqxahs3FdfjtkE8eGITfX97gwVd+Ubz9mRIsNQntmNjkPFht3sAC0D0v6tlc1rhyNHFjvurwkHK42YS91xe0CzKuqu+6/rJ9N/HNNbW0if6yO4uFtuSefz8aCqINB5Tvt943mSTk6seSv1D9BG52ahcJBNZvvfGVUhWS3w5DeSnzFjqSVPOh+gyw62d1D++nfVj61Iw1fuOWMH1VTLxdMbo2lR7cjsYB2MC1Q+VzKhLquYmzjYvNc1hjwaXaTj+dZ14yjHo7UUnmkFLY7SJWijkF/tUhBzx4c5iHdYBPLESfopspjFO4HbYBszu+4vX8DhJ0Hujb/Cnuu7RxsbJ9Q//2WU2P+UfHiOXR0cWJJ8tX9rwyGjJb2bP5qebLoKN0ZbVMd1S0exGhLgDezodmNO+gpKec0eA9vFy8dpan73eOTIdxMrKmW+warmf+Oh34DYzh+6Qcbw+9KhGYcSe5LLz1u/ZC6E1X9vl/exKsQ6QqKTJb0VvwXHtzVvbTSGxhCPm6n3IZqTMKXonXyC7pJJjXnixoMTT40KurlOUY4HCGhSeXNguR1HJFj4I6HqQiJGUm27YFG4L8cMijJDLy2hrn5swHyyNGFIweHx9IVS5JJKOle91LtvqcDVBN7ORLb+vE//wMvj2Vwy7WsrGDe3v6BrbHvNum9Jr55EAnFvQll6fS+9h3TFRf2lkKnim6222SZfDreUqnrJ+jvk2KXMgxknBj/NX9zZeVloQ4tlimjYwYxyKp4Zeo7+mq8+Nc163tgXL+yMXOdM8CfyzAvNPGLF8+vSI97kqo75oXWbNYxpPbsNnWPgQTZ6WjkafuDN6a11AHEysjv7qI1XdgZ+xMIKH5nux9f/46F+9z7r3ygD11/42RFsbR2+8jrULAq0LKrBK9ea9dxsBSa1OlvlGbx6OiYQW/kmsOmviybuXEhjG3DPsAeHz7YMBjJe3py85f2fTx/sB2vSoZ3acmV6vKLsWoR/dMc13s2yQ45nCLb18WNC1Dt+UlVL9PQ8hkJfGtP08HSUrAMh+0WsMuYGO5K3/o/Kix/t1d7hDFc8+LaKUlPyIm6vSbM+MEK3IvfF0sMxtdJsrYsaXLZ/uz8b643tUEp2DMYRdpYPaRWta4v3Fm160CNFHzEM8fd+7bJNstoIybsOeZK/gF7NQyfEf3uH1pR3R8F0dBbResRWx43drNPJ4EsB5hi9mdWnizfbknOF2vkrELV2rnEdZlBE3xJkEyefG58txq8EqAY95B72J57/xPtboiPO71nmz/nZcZI5ww9sZuZ206HGQdXHF/uJ5hODZgl9dB3JA4b0cA12R0MU4bpaDsTfdby7UFI5luizhaFU+DLoegTZ2A3Eh23Z0iX807J8/LPuBEA+7+1NCf3i8S8W+bP/0SWG9nuyk09CYfiIq0MYxl1NCHnPXSw9Hhwu52BQW/cIitprhgV47sjOaTdapsUxh8XPI3/Nx7TA3ahPfHlgW8qWRwoqeURLLEUtFyy57d/OoYQtFwgwlib3ZOMm+evo2J+bvail+36nSghbHCdOvG5bxSL/mgG9GwYJd94rH36cA9fN9Ezq+LPD65Fc4qDQEmarnr27wL1lT4Bf+wtzH+3I+KkKFAhHv2B8eT+wrS5DW7Zt55PYup+iZmGAM+PRXH0oJ70+WIo/dyEy4nDhb+DxKCjFmer8sAZ/1pgFNl+Dv/o5hU6TofXZsZuea280/yV+WqG7PZC/trXhCwy2B6YwHPDiHFxp8rREUxbxx5stxxDen31ioq0n2qeIJU9acn4ce5kBnxG0LH33//v5XPyVvZ3t8vB+bf88/3dYab//8MOv09YmL8QfN5vfeKsbQDnhKqmvWOdVVh/VpLbD9Ksq9Dn+1SLVo9WC+JZh8+on8DdHh7FPeNVY3vrXBRZ+N8GX4/JLimRrZFZRHZjLr+LRLCvR9V019tyZecKDZvFzD++GsyeepbbwhiPZXkG7ej3jFqex4qX81uK3EJ3Hq1O5+39VNUEii7PG47xXO/FXjQDNyicqf9w71ya9x4K9e/emnKbc1rObHPGG77/uVTYVbYgib1mF7J6g4Oz+aGkY9b4l/ao9ZA085glOOOzq/9lk8qSMkYLwOeyqfq2s56xOy0KKnyTnEK6Nvdp0C+PQ60LHO25J2W9bAgu8UfRKy6GmmgKJMD/IP//qHmf7pDzwXFuvGP/37EN8xlnBoZ9M1uqXwoasTVYpDVEpNVfjqodQ+5PC7S0ZvE/WNNqSM8So3gm4MHZL8/d7FHxtijty9BvacvMghKdYZY82vAuPqcbxJXmePO6ILcOSbiKrk+uK8nEEH4fcSqPg+lR5/XkoFtlEbM78MPb6phRuW7bUoE39U+3K8JWWkkuf6zUiVNsakjz8BvJets32+PXqbW0Ur6MI0x+v4bqJpOK4xrNYSYvZzc/f+/FklyENKtDpvu3nqK0CKL/SMzLITcyJXFP7wVC+CdTft7hdRzd8Xk+A272JauLoE+29iECO8TyU9XIv7Pz6veeYhbuV9KCt//MmEPOPDfbUXFEWIxaWe/7y5EWMXwqZxmBvdJz49z9wBtn1esbT4oezUtTq0pv3CK/gcvOYRj28QdRsxX9zXaEyVm6TMw/bJDtXDjdd1Z0vqlTgZsUTn4H03FCRY/ASsPsUtn5TDPVS2pdURUh9v3W/R0xAPxRd/XZTF/PpWLfjzw7ClVt6cXvYF/ADrxGefBx+4qbyBfYofi36fyut1TT1Dfrwn7DxpmM9Wu2nBj4UTloxOQ+IQVhaIlZkTclu/OjG3m+qPP5HAD798PhJnhmN5VZgzrrAnf5rAB1HfI7z9nEJPypBe/dW3xX8Z4h6b/RnArSamn4uEz79rGKruIxHo9rE6IPF0wBYQWzCX+P3G41/+YH//pBs/dr3xJjcJNPpqT4hPvt5c7k4K3MpkQ+zAY2jBS1+x7xnGK3Or8U1UmBLazMuSlxdpOX/aI0B9ixnRRuiMKZ8FDR5770LcuzJnzce9SkgUVcy0tEHlXBr2FcbzeiJLvBm9wC0M0ucX/fP/JysbTPBe+6V9kat38+bZRugr7UyyWxPd2zjz7Q4hwTk9T8tJJ7Hk3OHekDOeF79AbI65iHJ0PpE//jsmdlKr60B4UvUmveNpekQpHPaNjwUU116fuaYIr5YpbOFHRv/7pjm4PDyy4FIPfPFjGrBm9YO31dmMp7QbtT8/lYpG/yq55vUuyjTLZ+R0F/gkzIOI8us2pcrix7J3ubNgd2gEdqiDE+db663DdBhMZmmtzyWyyWowpu+DDuT6QtNJqXxwxk+7+LeP8htFxlV5kqPJjJtYeDzgoa+il+fgmXYnNL01f4bXiNf/4pMa5dSq4zhw4m8CjYuPqVeUf/7I6+jHcwZgogV/sfjnRzlcqZWq8WLm/hrbE9+YVvBct+yffln0pILuIl0RlwRTx+SxTv74CpVexhZJPIprdfFn2GHRH8t8iYTuxRiSQzr+uvYQPUdo/Talheh12Wd/4xX85fvq5X0RW3c3CdmObtMOCrOb5f1VAbxzdWKnU5uxu497uPaFSNV5Z2SjswMT/vxXgzG/5NV56wA+lQcW7LdBPLzudgNaM2KCDVry+ukcz4hcRZHpya/M/vxeVF2iEosG/3a829oRCL9SIIve9ETZbJwt+5hHYvf9xqBtY2BIj4cGL362MT4v2Ru64ZwTV3ns0PTnny75zQ5GJWbD4neir4NjPBXxLl6vnUcBwYmtyb777lF1DA/vf/xFxsQqx79r6h87hkWvN2bDeFbwvbYd3gbHkze1aevC8M19ymbt3U3qe1bANjKV2BxtvCHseg399uKVaVc59P78G2XxC5geX9PyFzGiw6/0J2bDu/badiO420psgAUII4P/vd/FbyV/fGzYUH855fkrMqdOvyW1Ai+EOLEEgj1gaDaMSw2+rSf4vejpFq9bC4n4U5KgK3UkHgdVga9xmBa9ekNir20d4L/RZFF0w2iS47mHZb6MaXF0isf8cxeURZ8wz9NWvN3R0AT1xNHffEjGTz+5QPotjxa9vPGGNm0diLQzorPwMvk0H/Ucwt59Mmv3k7s+YuwKULxNZtBNzfuhuGh/eoa56z2PZwkNLmz3fcQiW2yyPtl3Fnx2lUp5HcrGMn9SIZmNK2J1r9T4mVfX/MM/rGSiFm9AXesgj7+RnRY+1NuaXqtmZljM+dO3j1V9VuvbkZEFH0vmHJdGEC1oxFOfYdb/6dOkkGJmrXLm9fFatv70E5Zexo2PM3tiNLUfkTjJYBvS4k+h2P6ecL/Mhyz+i6TIbF7RqXkNWfNSdfNfvPDXsc9GLE5n6Ax5zf7hb0/KRP0OxkxHsjQaPuJQ+5tvIYemGjOOv1qoil1ZEVzYkzeuaiFCf3i5c5wi5tV5ctSRbXRcL/jFD/WuQGH5qYkDdyUekjNz0PvxCYjlOYHRAXVN6DHBVJCj2Ri+O++NXpF0J37S7cupPGspLPMhdOUT2+vd2wureOfoLHF2MZpW1yT/56/ua3KJebJHd9QRYc+W+VY+lWfnClNAMmLu2m028n0qQ5ecAqbJ0THjNBoEMGyW/fPjx60cOiCcnA0JaS+V7JPeHYiNtibaVR6NWd6HirrMB9Kyp9durlXNhM7OfKY/7bIbN7TK4XxVH+wP71nO6fyPvxp64/I/f0b1BjcixNpcs1GOXjXY6lFglnvYxeMZJBP+8GHxH4xl/oDCI/9oeIrzOh5EadJAervonz87O3olgS4cJ7rOt0djJHJyRvZLPmBpksWyWfwGwLml4/qd6PF4Nccz+F9kkkWfG6Lw8Ud02Nx6Fsy7MpuC5ZQ0+vYF+mmeHpLK8pfD/jTJVLFWn5LL0RaUF2c+O2RsHffM2jfKnvIDIbvJKsX1eXOGU+RlzJ6hy6bK+M4w8Y+Fm1F7L1uWI+X/taQA/e8lBavnfaJ1NeCSxTsrRNk8V3i7aZbeHdZPBJ4oK7bfqw0aX7/XrH7AjNk9VJgx3xVIYBcKO2Yar5I39XE/Is8k1t/98WSo7wLM70sgAblZSKw8cocQ6UvrLPntTUbvCqhUOpOKZXqN56e2B9hcqiPLH/fB47lWvlEmBDnBzlx0/fx2a3RI8oYZxDt1s1a/MUq2DhCS/FqPZ9doBOvxjjCyxBPnxfGcAB8eH7Y7vTmaPsfyDE6a3snePb296fVmb5C0NGV29Kw5v0lOAjl5vIgVGrq3SY/fHiGnmjGdD343E5Ar2Cy7io9TnsWV/NpiZEjXiXbOqej6cyDnaOa3lGhcl+Lms6od+OavLbNnbpejbMpX+A2myA7D2+ZcS/gd9u3LIdpqdtB0fEa+OvjfEYM7feKfQMwzeg1gsUBa6f/dL3+WA/PPcpqN9ufRQ3+tCMkeumZs3OcE/67z38QzHsSlAHxvelQ4zlfOi7cqA5s0l1wPfck7SZh8VETpma6NyTc24927o+QilfT7VLps2B3GCmL1tmInU7x0/NSOOdQ3nTNcNofyd0R1pCjdwyL4dUs9mj+sGTH9uiVHxybxxGeK4fYqXkzXvRRNK3ypwJDSiU4KRIhamzEFTMoET5epjPlxjFNo0Jwxlwl9yZumFRF46Yg5f0rZ7DhlBN/vsWeOsVf45D27Cu2+a4nstpLY/bTpowApRZmccMQ8HkididDcLmvDr3VHL+PNR+0l8UkwV+es3778O+ie5pOnszqhX/D5yaBbbcxsJM2cf47bHlYt6oOGrINsZN/hjZ4xHJlhrIry33gtn8fr3RtKqjvQonF1x4w4Scmny1hc1cqyV1Swj2s0xdJoAmrNC7l+RZuLLzGPFF23MV5fpY9H3amgaqEIQHYPZfCmbaGGaDgoDZWvLkfzJiw0VfikNdPqYTRaRZYpEP7rmftKJcQGvgcoeW0s46F4w2UsUjUh5kgOx1rLxkOX6OjJv1tin6YdXx/141U9jYVGxzJbez3dTtLq+awubJ9+1/Ev1lYK2N8sIvj21Ix/4799VTaxoP95Ux8OPsj57DDyOx/KeX5VPvIzMrG/fJzTdTui1ToJSaAA60axcZS/90t8obczJs62iPLPSaNrITQNJr+8FtQuSRkp1zlnpcdTJDihwg6FGcazkd4xPFnm4W0d9nyMcqLASx0VEmFBi6eivEdwM+sdluWXXY4V5Qkob7asQnb8bCzWnoawscXMv0yPjlf32ocBRy+sblqx5Dja4G11d3/BRL99OXfZKkJoy1Z0OMiQseFVX8G+1DndbkVk0P2kWKCe4pFOhXVAPMQHHZRLeKMCJy6axfmig7z05grSD+JzGJR3kG6Oz8wQnJLV1jUH73rjeLuH3mA9n6n61h2RuTvrbFDcHTW4Jdc1MbR2Rn2+O5qwf1oB2W/dPW/uKKVQ2y+M62J8dXx9Itp/9SL9IDQf1J2A5rb7YnS8eny8SQcHorLUiGl+39l8V8QEefT+YMEesXiOdBfD9drJdLXZ+DHvVrGg+uv2xDyxRDHXneGOzI+m4xe5tcY8va8At4r8qHC97fhYW7cQfL3zmMGVdzl2x5cDbJ0azDkJG2/EUqeAZI4xu/xOozEX1qQD/cQBsdmr76b5xa/ooO4wsb7f0OCq822V1fockoNf6IaI3AMAumY1FdDX9GY1PV//8ontHJtlo0x6GT47EViyH4pyXp9yjJyzXhJjqR9U04UEwpN3ZNbxUGR8fu9mAEXfkf1jO2Z1Ymcz7DeNyC5JV5a9P34qEMXuwfx9qKAO394RZK02UWQricdVlZuQb18D29eQdX/4gbCTx0s+/LopLYcWLPvRUPXcYF7V4tSg9Q5OxOXht+yvsavDUjaxZj+HchRPUMNf/vz7vo1g5iipgFBlZ529f/Er5lygXbEavMmbDBd0q4mJ7c7P5fN+Ds7DrogfNInXt9qh/pev4Xs0jMkkuqOG2nQlWizyZQnAq1KL6HomhxoJnLN6JaA73054On4sxOl2q8Et1IAES350qcUxWvHuSQ4vmZcTqrEIx7GU8HjWxm7eyYcZdkZ3YJ5H3gYn8EuRymhMnMuy6+22nkDNPo3MnscLMcb6uJ8hGYmAeRkYHq8vsv5X34lpvAzEozitEP2J0VKPTtm0/vqA7Pz3ZLpbJh5vNW2Ggz5tMK2fcjwqX3dG4a10qfCzdvHmbF1EcB77iujU1/lUlEmonqvXi+1tujXGFaYjamjDyO2wvXm88qwGOqf5/PETgxdrF0Ozub5JHvZKN0aJ46j4qCtUlVbvbnScuwzH7V2kVVWc0bgtnhSMvXllGFpSTquiVNBjUIHtn/qrHJjnhnB0nIw8611W0pLtevRu9Iho+fXAx/Z+alB+/wTskKTgzUnJJFBFa+n1WpdoVFWkwLNf9mdVoHhs/8wrZIbLQaLOxzemtPy0//gTFk+/bHCLa6LMAbOZ84cfjtOFID/2F7L/Xmz+2c53Cex4d2Nk+T381HoUtMN8IPoz5F1rdGiE6yvrlonAwuiLtaGDpHoDsc6bR9c4vTNDs0nfuBPLLJuiT1j8w1PnYjtxbz0vKfrUxo/gm8lR+8efEM1Dqgym500mcV1YRZ5Ct0kKRi+Q7A2PnfGgHyGsjCmx36CcJcPCW0Xts/l1KUX1tc129NOncTY+tf4MYXQ/EO/Rrox+fSIi2ONhT+6hQgzmAtYQf+sdCx7KAbVTuE2hrpbGO7V+jaf7rxNA0q4pO8bnjTeQFt0BF2vKXCOKSv7zWh2p/kslBr1dvUnt9y66XN4d238vXz7P+6sD19etY9YwbjnXJrtQCv/SLZZfG9O9ceuhP29z/KJfv1sO89PRfcI/gplKeHMOxjvAunHY9RbvDal8tA7Uw7WnyTqQMnp8ejrUN42TvbZpy3GTWS46ldeEPT38ib/25ofhtJMZc/OyMabGd64gHLWBZRm8Sn6rmhEl4mSwbKxpzH5fwURXZ20Sz7VCxG9VMaub2PCxKMVJSWcuv+HT3t4suEyFxyRhi0Hd58Bcf2yzUT8sSzadpVHUs1O8uX+/E4ils0AHHDfdfMmnVs398cbcI1+X49qNE9jkXYRR/3tlc/l4O+CqrknFu/Po5j22sJq6tk0O4kTQKJC4gNP41vD8uT2ygW7bRrlbf71XDxdjrDw7Bw27OnGr/sjH/PFxYacqBZ6p/+azP9oYvQ9kjef88yon4yY0SvayOVWUJ+nEfeG70K7kmTmw1dCwvoe5Wuyjlux/ZVWOK1zP6Hg/OYzQm8hHtU/OsBPV98LPGzQfbrkJioi3VFydnws/nPp/+P26TGU2qqETou9oPJlZFWc+7w6/Kxyu4otl1qHk81p+JADP+UfhXpXZvOlFCz7H30iVd7H2fmT9BTiGCv6PLweflwL5/RvgdTGuvB7J7RmK0z5n5ub+QTxZV4BOwXvNdJWbHk/XcQXHX6OxVHq/OxqCJ4K8ax6Y1zuBj8HHPP/FM5a7SUTT+elI8Jdf0vqx86Sm2UeIH3JzWXKsxmNqFyPYRXIkz90Y8FExzjJMT1vC4sIf+DXe+ahJcx1L6mxn/MsvZ2glVSS+YeZG/2DTHfJxQsTW5U831u9P8u/auNZKXLNtdofoeY6YdujajK/wIMCRBHeyS+6nbtqetXmLSMfpFrQNp8rSyO5nvjFb+IC3xI+vKFkb/YsfMUo0Fz4bmmJl93rHo9B9a3Q91hsMC35PqLbEf3zZfmjLErQ01VFDW0bXH8+Ll3ojQHiWdOKo1YwWn/sM/bML8bjg5czN7orkz9plu+FF42l6Nw6khm5R4RIb8UzaKtzyRzuRIP1kaIl3V62Kd4l58lt2Bb/PjrrwE5Jmx8Dgen9M1CY4uMS+NmHX7DYohY913REPwnc37ad7AWJ8MYl52c9G/1lRF/3Vd2d/vJSz90xSWPg1yw+PqOTKqb0CSXSTeM5J66TvflbQ4VUl7EZSo5wapZgh+XYXfGRR3k18rn3Ybd9ftvtVu3hdl7oMcypxYmG1LIdYGi1g66tB9Eaz4mHR82jJVzxbte0NYaA0f3x92SX0iccH297Rgjd4Pq6JMZBbpqAFPwg5JWBMf3gTa03PDvYA8SC8ri386c8kwWXHLn7uooNmMUxrxezWli46wCIykP2BGAt/7nLEE3lF1Shcd710oDWqX3NNMFeAU/vTW+hgn4G5Z7xD//L9qR8LjH02lCN2/o+0a+lWlmeWP4iBiEiaIXITuSQoqDgDVARU5JIA+fVnsZ93+M3OcK+1vSXd1VXVIe2VwDynY0Z4jA1+k7RYHa56TKt0/ePTcdzOMBkNMB0LWibmPztdZnXnlGcF+uP3GqSb3Zd532UwVP4oTurLsRtyOOCv0Sd3oUTa6pERs6gOfGL5T4INFh9kr1h61x26yEe/+KoT55njbrw/bjKEB3rBkwIz6rWv8wEvyThuzM+7Gzb9o4DhYZ1ZbpgPr+85KpSolQ0q6+lyBOztlfDZV5jt7fWpGl+Ji0H70B9eLfjV18tTacm8DYmTvwtjqu5TrGInj4iXwaub1oOsg62l3wXvYj5kaDypfYwvFAm7GfHz3qzVhY/hrr3XXZ8l0QfWQUYWPZBl0/MoUth9NxLznltczcgNYzW6z1f6pr8SLfxFBNhry61hb8vjn6MpwDWTa6JXjc/HPhQT6F+xznZBMFR80UPoOSoTM6VI7Oi4uo3A7HlmdrB5R1NpUfqPj2OmMtTVWurAm8KXSgwu0SjzcFSCMvstfCL3+txXLshW8pkRWW0RGw8rF+4SY/iry++/elfA1qPNn/+UDUbvAtrNYcqCwrarDaQI/um79oJ3fNKlVa6Iap0RT71onC38FO6rdvjTR9mSL6aqtz+R1qPrGVOW+CmcTkaG+W6cvGkXDzZyS/bCsNSzSea7jyolKw3LCz/+IWNPYXn/JX5fiOaP5gT2S/apvMTD/GCZCeZ4nNifPhorD3yIfOvDtLz+dO/81wHYjRqQHbm13uikPx9e/fFM6qL6oWk7x9L2vZOA6FbRoOn1O9XwbGKX3BzH4T/jJjV/+gJv6lPNGQxaqH6Nk8c09dNnf/wADYjs8No8WJ04WJGrEu90ZGRlixnVHbFFXxnuWEaJZDSnHZdg8bPIbuvp1Sx+2xK5YnoiWu99+ZAw1EDmvHxmpqlmzJFUyGCcfJNk76sdDfMLpYBoHv7xXz6L81ODFf89WfDsUmOeQ7+Fx0+22I4PLeLPlUDRPjJuZPc+nL1xIyg6aLdaJWYZpwadhuCBdttrRh9ZGEaS3heFinyhI9rqCl29lnmPpj4oqTRedf7T0y6BT7P5MksSfsbUKM2ItutRJMHC/+d07yZwCn4vqso69hZ95EPbFVu63TSP6B+fOhZMx/LCN7hyLlNg8t5j5jnecempBQAskh/kqX3zim2y4AIvcvhh5YNe0aDJoaDuH92T4W0Sd9Jw3Zlq0TkOsxa/5FdrY/nHJ5hz/KiIo6ygcINVhkdffWf8a3U9kuLvnq4GWvJRFoLTv3qQyK9vN2pG3KsCdZNlFhY3JuWDPmApZyBm7tyr2Z2KHkIrvhN399KzPoqiBL2GZXDj8v16EJoWZFoDcxY/i8MhT+FxLn0sqm9SzS/bPEF7mvaEJJ+rx9znVoD063PcPC5htPi1M/rz+3YL/nHFuNggbnHJPH3jcOlwu9jqy75tyB9/pwveoj896mN6iriRBpocb12gtCy9bBC3txCqaXsixu/i8/Fxklu4FqcHwVbx7sbfXU9gqU/EO58TNN2VywzCb3yy/Kwq0e9ZH3S4ZkrNDF0i0bK/Key7yWNYeb3R5BZhDNs4z/C4uuad+Oen/NVbI/mk0fw+5i5qhHu14FnQKey7dxD+zT3umWV70nN9TNShvBMSHOQ8msZsbcOy/ky/CknFt/PyVCQWO2bmjtpNkyD629cbx5T3zZfz2XIEWPzBf/4D9QwnBuRDR05NJ2fjGRIJKLlR8ucv/66+WCBR/N0xTMfyP//pz6+mXMlRX6JDrASinZK9uKqj2dZ7APWBKbG7+r74W7P550/8+e3V4g8AWvwT4n+5Z8x2PIVgbVqRGa7TRrNZpMWfXsWvnfDuqJ5pAF/1ciF48WukbUFNNFefD11basPn1bnxISb2SHkR7arNX/4U0tsgQT7J1ezCHcMdWc0/P3ws1oaGdN3C5LD4f2wj+DmKwmex4Edh9DDsbBT3Rsic91uOpmEZnHu5mR+syjo1Jui3MsRjIGBBecyc2aPkwGaldovemyteNfsHfAu/G2AXDbyfeesineEt3R4/RTQl/n6GozGXjKRru5L+/CtjaAVmftd1x62pVNDSHyGHUdQ5H7i1PNUvXeltK2bezLk3AtGvESGKcfAmJGcunDbKllibH/KYNpES5vb3xWK720WbSLpR9BnSnkrpIemmu/IYkbISV/i3Olvd4i/IsPhjzKuPjidWSlyDWw4vRnTJN0Z9Y7egFLpPND3Xo/F7HUXgn7Rmu2JCSPrR8aJC7FRM13GA5qkMAZBwNDFa+Oe87J+65C+z9sbXmDP0M9GzubjMHASc/fM3mT3OxNhD0I35D6fK+TsHeLLQ3PVfqy9Arlyd7bxdiP78esgC+8i04hVVY2G3LfpiZjHtpt47bnR9Da31y4hp2NeqsQzZht3bocTvvbrjJq7Gv3jCKKqbbBbw2oWbEkYkeiLH25SN6ANKbh+8+D/ZFOwEHZ6yI/zxVaO9IouCspJWJDi+jW4T3xIFys3GZks+ZnOb9zrSN9Djjbgyo/V01Gr1zw/ytx6ggZpP/M9f0Nr27jEnLVIV5fzJrOkuVL90HfiwxCPZ79GIxmedYCTVGaKVpfvesv6S8rf/2nw1s4l5egjvNivZkk/euEwcRN9OnJh/MrRFD70F2Dx+J+ZNvd8NX672//xj63M8VJL2aX3Qn6lFdBgsNLnY1+DPX7MP+c2b7DjrYeHDWNF9MRuN1JJAZX2EV7O4M7isPini0+ZJ8y/vvMUfOwGpJJntN1sLrf/q37q9Mqb13h5x+WW0sNR/Or0Pa2PMRNZsvVm8MjwYNGKl3zhK6GcPsvvVr2x28auG8NNKVP3ZAm/892TCfVgBHfiw7+i5TRWIfxeHWeLsV7z0C0f9WmrE/Oej5mNRClT+82f87ednzM/1Lf3nh5nxdl11m9eYQt7kEl30Gf/rT6IbqBn5678Mf/Gmyg8bb9jLr5bL8XVoXmeZPbv9FvXHSRPUt4NUZppfPRtuzFbU6JY+iJ8mn4pKKydFcfi5ECea02y46pquXjxBWfJh79HjWH7+9D8hKzuOeP6zPuhnFpjsRn6IJPrlCph7+UJ27CR0403aOf/y03PORdWL39z5r/9HNjbayOqVgn+6r5hbxHI3dMNHUwepAyr89V9m/oohznFOdKZyb1r0kZp+MSfe4q9M1hMEZN+cGx39cmtM1Lz6UHfqnQ6GWXT8nNQufCTnSYLAvUbU/oQiHOoop5uGTKjpjj8HjtH3gtcHUqGlv2EiTzgeieGsbkYjDekD4cRCdLPoGb7fvLBaxfzDPOITb35XxUNdVyfKiLM6c77pexkK6WtQIQvHiDYWdv7h3b98W+e7UM2zq4vL+9PINpahl6pyW72IJZv7blq7owwbsZyI9pV20V8/EDaGn5DQvrHoX/0O6I4t/VzdE/nlFQP2RZ/se19Y9GBtg3qQ1nQmv1M06AdPgpXdr4ibHQePEpz46u7t0qW/VXhjraUA9XUe6Xrxa5f9T8CqHntaL/VlGngfKwt/I3tBZx3tVpUDfQ8Oe/ZN3Y1LPCk/702o/LiM0VSIXIJlvZiW+EE0je65+PN3sPJXb26n+AFPDz+I1dztaJ3sshA9BHtm9pNc0LzODyH0+utNFdRoSDTI8aL+EmVPN8RN+BQmXxcdi0H/10+ex9VtRotewuKiPzZ/fGtf9y5Lgt+IpjCYW7iferzgL+/GrtLo/+tIAfzvIwXFIZ2Yvde23lA1PgXjJwZMG60u6s0trkHW2oBpN16g2dZsBQxT5Mx57YuIh0B8OKb2gxjZRvCm1yOQ0fdyaun2kNJoDNgpRb4qXYhj4RZNvZ+4EPW0IcFhVUUjzLYN9/GMmE/OW9RDYfVoImHAwrbX0fgZmwasqBJoRYu71x9XmwvkHD+ZXf+8bh71wwdK7aUzr3CHbv4eXjHsV+aLHbamGYl2PvrAMi7jCV/PHfdvLxm9l0GJOqtHY2DCKwVrqt6MmM+kGtdBVYBIBQ13l8nypGQiF9RXuo0lZ7x4fDjcahDvRkrcG7lno9CaJfBNvmWm1Vjd+BKTUknWlUXw7z2jbrjTBNFHm9MNG4KIkvoUKsi7vJmn5Fc+x6UkgnDar7BU/7qK/dBOU4dnnRL/aacZLbwIlO9xrul6xE41yfeHDJcwwywwEzmbMrTq4VlJIXHecpBxiW0TaF7ZQFzP+qJRSEwX9OcmIbr+s7nUXScRlHRzJFppfqu5E4iGqqg0yF5WTWPjeMcU6LsJKZ81iXd1uI2hivcus5OX1A2/x5dCeXhhOm/MHx8QimL0zKUcb9cDZP0t9QTYy92aHHIjiHoUzQ91dfvaxC52YTSUh8mGtzMMzMbFCY1B8LGByCWjSvgYo8lK3gD5hr6xsJa2FT+KVqt8m/HKjLPAulnbVDm49rRlxmsvcn6VNRfNGF2I0zWuMa9PnxK+7jwS6/S+ePzqOjV4yyg3IUJVNxXHuQHeCSviHu+aNw1Jl6Bfl7yIO14tznfIq8Fx64xuwRIrLjxSEd2Ho03wNnh1vJlcHz1up5h5zNU4P06TrwpIT7DaKVuP3cTvAwT8MNjh5KG/+E9UXOYKlkbllPGfes4hNb97QoRWjiZXX1MolLvPHH5cd/1Kes7gdjyir9v14M3dT/GRl4dfuv1WNh9bFviwEdiHyrcxiWbTAh2uai4xct+Y3vgsTrLqb9EVq1sEqKlol4J5SUuClbPhrcVm60BcnCZCpNtUTdV7DNW2ykfmTQbr+mNXlqtbvOcskNtf19vP5amOge1JYHw9Y3Z000WA5YEYzvub8VVzbNSiut8YSVdWJd2Q7UDuuSEzLPzMplXWn1DU8B9tntcqm7+H3wWZ5b1a8OLhtbEgaKieBoXhF+yjMQmWi0Vz/cScIdkb3BxyGb1uO4X5n7serW3z6KrEMTI695VmfMtkVtRwKA7k8gyXWYsT/aByet9p6R6Kar6IhQZUayVm336Jx43qYaOYn9/MWZWQUSkNZZB3JCaeM746ptExBuFnzcxbdy0fk9BywDSUNe3cX2hMZyseFb/bjlQ67wANt+h9Utw7ftNVe4Su89S2Rb1r9bjN2cbrA+/Wwlp4HyjfFmM1vIZJUuqJKcw0i9oYlQ3HiLbOhRiFYHi8OmABVoqZ0s10d7PxjJeL64Z7Rv7in3NSFOBVp4wQ16461t5yCiv9HTHPm6ZurtS3D5enaLND0TXdLOtVKkXDkVEmvOyKZcnN/MMP4sivPpubd1GAH8cSOWjuhs8q25cwN8mGmPr49ehj8zjBgn/MYp/BmKvg5qPTyRnYbi951fQG97LtBL3727+sqcaVCOdwtljQbH/G7Daug6bTWWcauxPEt85VgFHevNieGC3vr7YdI3k+MnK48Es3lYplKoF076lifx7Z72w4MQIjEbFfvQ2+xng7gnAsZLYTXDWbhOP7gfa3QsPqYWVkVNjiGNy7/2aYBth7i2ogwCooLHJb1oMis2hgS0+wrL/pSXXXi+jH5C9ztr8A8X739WG+iQcWxv4ZLfsB2z7/3pgnV79o5nYWQs/2NgYd7TLRsVyKjs9Dx/Q5p93Q6ccYMrmtGB7tHM0rbZzVQkg8ysQDrcbBcBX03MUV2R8i6g2+AjZUfknorOa6MR6OdwGixi/Z49ubXqs/VUB7w4qpVG5px1PhE8JB6WW6ulzdbMEnCdZBQQmxHk7GjfXlgcLr/k6sMqjRlG27E/peNhMJrOKGevRWRPirL9gVBTQmgt//xRMVfvnOmCanCdES/3Q9XVqP37Wqhv3jHZDDJ7Oy4ZPsPhDb+EAMfDaN9XOPRODesyNmOLlo1rYrBe2+vsEuC97Pq3PwAXkXxMTTX5nR6z2P4TenZ2Z8NlNFd7v2ouSPwCT6Odt0L2XnlODOWFt+T5MNfVELqPOXWW49sIz2KQ4hfdsZc+m3QdOJuS06hM0RQ2610QhsasG52w6VHs6uWuu15m+XfCN6apz4WH9eoooN2Wf7t19V0zZyZCX3nJBk2jHxplp8AmpWtwi3N6JGk3T0Wui+ukxsi1m8bQOuqbuDn+Py433RqG7lHJoefeiPi0PVvn7fD6TafkcsREtjdLgbKtEQMVpbzbvrUUNCeBtNQS74ujP42zN9uE6gYrlMeDdMLvQIsDLQEb1rxHMxOYGuiivmSfDw5nrf2yha4TMVcJxU8+ZTuzDu+XKkD/bRjOYC/9V7qkzN1mDHBD9Qk2Zb5tofIZtwZddwKtwYz+6h6GjG/Q/8JCVjGPDERzDtUvnNyZk4zkaKmBrHGuwyesC9siKcflZtjj5vTLCYHM1qRG9FgtDUf3jtmH42IZTF6HRiIlV/uoL6zpE1Re3gQi7nHfA+988hhKf3lemZJ2a/VRdiVSA7l+lR2SBejE2KZJU3FN7ngvO1sk+Qtx4d5kLTd6zfMR+uVHGYto+ijrX7/LJctMow7HucjShScmBifyKPF3wzRr+Dr7g2ntkhVBxj3KrNRXZtvqVS9/rxUTMLBbir1MyVQjHqT+tXDD9L0phd7JZBWFHZAzN9gVz1ufamhwqgNOe4Zxc59b3BUtIQIFUpW/hXNPWPsATpftiw3bshfNqlhwR+XfoingSCN4aku6Da9xJi/Emkwzep0Zu4t6UGoGhuA6QjOjku09q+RKN70y7bZ7K9E+N4EaPpNUwimLJC2MHPhKrZ/4wHPHMxx1Ngl9Gogi+jv9+r1fAxprU5pnB8mScWy2hvcGFmDcLPxCJHKn+yKUzkz996UlY2R2PeFisdPh6lTCvNfTW9sTvDVVPK5YrxxJvzztCQQ7oGr+qEemN20pM/PkM3xaB4YxY/JHCaWsfvQE353ESNA54SYrzdmnU2HtVSQYp4mQdJiJYjOuvXRc3EoSaH9ZBnfL9LP0jZZiusuHbisVVza/7Wi37PWWVMLPyJyB6/Xzwt9Ye/gLfQHhKHaaIkRzQOpQfabNsbce3PI+L7J/URetxueHzUARJbFmCkO+GDeEq+4bRD8wdd20T/48/ROkzGj/o4n89006+ZwV2rP6EiTN/E24VfxGb+CtU/PuVdFIlz4XESYeF/ZD9TtWNHMWhgbtINMwcUVfxc6wUEVJkY4ckr4odz4v+LLz3kkDH9dg2RiB8921H5E00LnsrbC9WZc1htEDeHWPnDF7xd+PR4c7wPoBHtqSqkn2wKTEUAU0wPeJudNG/unUBBIdgbpsfRxeDyVvahr94BM5XlKbCoagSwT9qWmX1bZNPCp/7xnR3GBlrjYnZhFX4UqhBJ5GNa66P60DcNMQ6Dg6ZduktUj50zrEpK380VCkckt1SkwjTsOXUb10XruTiQnXexoun+Wo9oCDoRd5ZceSPhvQmQpt+/+uGNygE1IPsswBevEbPpW8fSH58lOlaCik03oUDG+rIMrjI/VX0VA/kfvzaT9BL1DzPqUWz7B3JqeeXx9UYB9NH7Eq8M2kWMPasW3B3t8dDO144uegcqRzvgjSDNFXe8Y4KMa1zgn589ujm9Bim6lAoi2mh5Gd+Kng3Xz9Og6uWGEDNX5xM8FdFgWlSn0d/rIaqjCn99vud8+rUP+fBtTeKk8g3xjTe2aqBtPSxUZoMWflUAKi4a8ZJXafRHtZTVpX5i5XgvvOm6T3XYPzR7wTu/64ena8IziS/kYeivigfrn4mk/DOyfRy9Ku4PEoW4CCd2vF0Pxl98yIEpucT6qrtu3WixiX71as12D+dijAmST0hA7yctLGPs+uhY1EjfhR2zb4UdSall6XARVoiYdacaQ1LdMBJY8cCbKrerGc3LoLclP1VUftE8nMwewFARVUUdZ/NKk2eligqDBEN78ab783eBla77ePvirTH+wukD6e/zWvDJ9gZBDWsoadkQZz7E3nA7JhI652uLWSNuuhF/E1FhJe+xNE5atWFGn6Oj48l06rXGa+4fTQfp7i1dezcyaIxbHYWkLJlzG+Ulvm8uvNRHgCUhSqtRu/xOsOhR/Lt7mE/x9eyoklWrLAh/K2N6PSwZSXk9skMtKhmfOkFGkrRY4JX/86bis89BXL32zO5PV4/TKEwVBzUScV9Yq6bN4ErKbj1OJPjpCp927v2BNt+Bk4PivxE7Tlsfja/wS2y2q7rJ0CMZlZbhkGB4mdns2XcJdlVk4iRvJDT88V1TTA4s22t1NzPXc2BXHU1ikWHT9RvrJai8XvnMRJ7rjX6UYdRLtkLR/USMWTY3IkJE7Cgnn030EcOTCbV1eGMllZyMe8dNCUfZtNjBnLn30wTdVR+3dfbHz9HIrloB0s7ckD99OV8cUQH9eToyZ707dePm2l7Q1VdLZnqJHn3TkPZgvuScptcL7YbXSvH/6fsNWutR20tBvj1t3P0/f2bQTlcdGdZNWfRTXs33m9vC/YhtXLYQIzo2jxmJx+pF2ZERgyJRbKGeXM524f5UTbch1GB9tn7EPVGeLeOlMTKdFLHAddZG32SkBtl3bUbCb9Axnbs6WI/HSMynwtB4v8QmWPIrYVZ5kaqOfgesWETWGV7ZozF6mwxAmj4e8yq94/Pts13seUPEczD73kBgimF9e7P//Kqb49Ug1jtMHO4YfF5rHxfmV2YufEZDm01h5TBkXYaj5ksrmq+eEpjPlOL41fa8T5YjHXo0J8yPxCobnf114XeTzYLzUcl4+J0TWLgC20uWVU3a6apB9flsMKp0Dw0oiEY4V9KWaO067gbzEZmwl39r8klel26pJzIqr+X6j09kzAneIqBf7JP9zaQdU+qrA99hXROv7TZZAyYuYFSvX8rQzkfTQSoTtJ7Lw3Idv48WviyAcNcnZiZHs5tYLTRoJXwKyl97Ec37/XQCU1yFZOc89sb0uAFGTuGo5JQaM58OTikpjS6t2J/+7jd7Kfnzf4gX60k193yrQ+hpOWat0/I5jD8xaImzY9Y+H/mMnciGremfGb7HviddatFWPOlKiD6IPJsNtHZB9+cay/ixi/jf/m/X6w0dbtt1Ne2LJAY8CJw4+PGKhsg7yFDgu0CXI5seW/lpDvp8ttnDrxHvu1RO4SzFH6w224M3zoxpYIzijuFCtNA81JYJf/XXdEMNTb88OymKLMrk4LVTRJnsUnCAqCwwiV1NEbrLAOipL3j9qqY//MOG4lPhU+tV/21RCbR1L7iMSgetZe9RwGbb3Mhh0Rv/6q1UfWq8PuVmtv449xYt9YL5Mz14nKuNCbo/1rQfHx9jvq93EmKXvmOa+uDd/KdnDHqJFjzfo9nYFlS9n6m/8NWHMeXTrwe1f93Jfrq30dDQqAXjir7McNdt1DvcPcEtLZ9UYu454vmpEsCrwgzXc0U5RfbaRuQGu+Wi5ku2rK/yF79E27sv3kppIkO8o8YfP8r47+e0IF52X7bfXGQ+C1v7ApusnalckhcaxV0Yoqsml+QgiC9jnNlX+/Of2WETf6MBum8CnW48iHvfyBVd8Aol2eNO3JxdPb5+zzVkI3nQ8RR9/9bHhmQAl2Wnw493f/X1IqgI8/sX/efPbL5Oz+LPyfHWTl/VYGiXgeZMcrv1MfJyBS73BnOH3rzxsxwBsjbCkXnBC3fbokK68h79NVatYosmI45D9ZfI4qI34mjk76MG0SUC5hXRM1rqeY/Ml5LT6c/fWPxehTmDSezr+Ivmha+qOfeflFZBWvFhc3NgHRclOQ7HLFv4JVZs2Bd0ey6NiPtdG8IXnUy6ztZ9xao3dlEXvzymPzrszUEfiXAwgumfv8cfbpmob3O5iN8wuTek995W/HJbM/Pn2hXHO0iAqsQlRFsJ6NM+UYK4nTwonNZRxXOp70FXpRUtDUUxSjFMTQhPekhs52tmUlwKohJv1h3786PFxxyFYA7pmZHWcfkczeUMKq+OdHA2Lz7W/sqGvKAzPqbPtqIXu3mgSv20eLMJ9ga3oxPAQW9bZm2/IZ/X/e0EO5NeFj17RGPnyDpcraQhbvU9/+knCaZfvCY7+Uj5X734q7d0IwwaX9+DRgAtb/bEyC97RO83t0F/+abFRm20A5FD1EWCyXbWx6kk8wopEA9SZq/LoeOvAh5KDtOMV0u9oUT+2ujjH9dYDI5HbzQc5YPQOwtoox6+FVvhjwLV820QsuDNGL4qCq9PnpK94/XVuPixcAniG7v/9JTzpyIloH/WPt5SM+TD4yb6EF6KC/N3MHXTd7kl+VtvEuZaZ88Qzx56gDeddNyY9iGi+eoqIn23mZmZncRu7TeIQl70M7N2vWg0K+k6/vnr/77vpL5uCXTB6/rPL/15bmHDUNoO++svTLp816HKbJUE6qlG30X/KH/7setej2zMH/cGfCG7//m32eT7UCiDab9Y0Ck371/+fpv5ymzBbRB1FbeARpB88uefs5FsqELULxDzm/6q3rjvUzQ4ny9zFn40hVmgI75TEmJ7z7KbV0bgo8SBES+yqRuL9kbhKSGTbv1M6NjKPz3+8OSP33oTPtoYFj+ZOWUSdeyzNWZQ31VLX5oQRFIMvxqYiQVi6tuEM1PVJPU7nk/EuH8zjz3jH0bh7+syP32sDGYdcgedTu6AwfMbb4qeD4pGr7dIvDuA14767gOrlfcluLlPGdcmc4QuqK4Mc7XlTRJa7h9+MiIecDXpkvNBybV6ML/DJBv7r9fApZQRM4XO4BvdcnNgI/bJ/u0b3fQNNQ0WP5Ou4Umyaex/GqzOe23h+2E3TqtUQO8Li3G2P0gRK/RGVO4uPrFdXdBsHurAhjO7zMy+jodsvXPv+b/8wqMNqMffUAI5YjuK/urD/bWeoTTzHbt/dm43/NxUAWt6vckeCaLXs6tTIvUuMIqU6OM1XSoniH7Ila6Vj1bxtUJSpNoCMP9YF9mfXlbRuN0T65Sb0Vzc4wt4x/OaYVXAFdvaRvm33+xw9/Cij3NFWfU/hSrHz3JAOtpcQJq9E46pYmTscO0b0NS+JIGaSdX03C8tXvMesWtjlsYfXwZz+7xQab9yePe8qC2MfuQTo987EW/XkYyo7zD8ioSiajRbvcBN1DWmZT3J2HqjCPAeXG3xK2SjkY+qjxb+94f/lbgrGhvG1+lLtP49deN9GYyt7diZWYH48yZvXIdw+g1f8qdXxmPXlpDku/qf3qWrc1DDNVpdyOJ/I/6MXz70kqkQu2uzjs/rda8ufjs5+CcfMXquJdiFOKRKzjYGT+EmQhVYl3/7O80xKoHR45tYjAlo3rGfjH5ubDNzp7lLf25rwjmJV+SwrtuKrYDmkBFPJxo942j8tqhA2FFvJFh124oVpnqCWuuejFyubjT1fuiqu6w/LH44rj7Gtunhz8/am+XL4+F51lRNpSUJUvmdTa1CZYCz/MLbk4cy3lVRqSrG6br0h42Ir5RUg+l01YmdJDUfFn4JHz6qf7+/4nndXyDQLiZxxdXLmw8PL4b193uhJ0NRvC54qy7Yl2LFPO2YGFwJ3QuUk34h3m1eZ4NGL776nBOB+IEloeHgbkK4PbU3rTYjr9izETTYhM526Y/WBisTRUHomn3I/qeGHTdVTYSuKwWmtWuxm0PtWKgXIRWZvj+WxrTK6mXKXVHibZLu+Dr7tjJaK5ZBdjZtDU53oa5aRNGJy5M1583zIP7VB7b0I9Hao40I6XTIme/EB7T546+t8qioqPhpNgirQYeomX5sV2xKzg+/twbvjKR46KZvxEeyon/+KLPfyuMvP+J/+BLE2t5b+IcO/58jBer/PlLQFwcBT5lUR/z3O+bQvJwTi9ynxznbg6b8/R0XzqHbFNX+A3l9cqk4XEjE42ubo/1k4OXitYlPymxIUF4ll67U9h3NlGMTmfgpYIUo76q/pr8QSZdjQMwKH7zZHWQKazPtmWGpbjSaEncAmuuJeb/BNqb928UodqYbFpf/n6LbR4a1tlxJ/aStwdglN+HQHzfEz0mWNfFc6CiNyZfKxUvjUhE2JRgN2+BrneKuz8cuQVvxExKDoKCblHk5tRIpJgXlVFR8xXYmnI1MxqL4mRAPv5qofNZnxIhoanyCY09h1691PJ0LPaIvcChIz51L3OET8ZdxcFJI9f0Li9f87Q3tV1IgNn53Rrzt2RhT6lIYtyphu3d+MNYZTUTYCSsHC9XG5OtaEUPkx37DrI1he+x13yugZ+qJOFaNPOpCMgO5WgrevNzeoJXwSlRvJWQYfe5GN+ZBV8N+rytkb4mFN5a9bUN0MRwqPVdSNeXS5EOkHGOixRvasdR82xD8BhdPl7SsRuHyBFRFQk1X5fCsxlq1RXCRabLo6o0e/VtPCp8nXe/ETcV7UBSFYsEl3vrpej1NbxjScujJ7RHJ2VC4J6qyxKQsuGhdxnfvOATF8Y/sdG7AmBXhFsPv17TEWt5v+XxBGUA0qUz372jc78QQlvhkh8N69MaNf8dwvJQn5r2QbkzTXdPBt/qKmD/f73jUu748utKKSud95E3nPROh2kkPtos/pTHgky9COIc2McI7y/6tpw7fO231+OWNr7O1PKX6OjPPxQ80xjvNQavMscnevew6ST0qEtJfLGWH7iUYw/FNQ1it0tNyKKsz5nO0jlF6OFfEPEhaJYL3kKEse0z03tAyUU7VEFaZaxODblMuHpjqKuUttoijHjreKtmtAKtZGHtvXNGSbzWISKuYn3wVrzl/igZsURGpStqDNz0uqQ3H1I1IMF022ZhZng8/7VSSvRfu0PqT3l1Udg+PmEfbMNgmvubApnxDjD05RJuTvKtVxRNPxGm6qprrudRX+Vf2KLcM15sDMp9U0XZ8tvuZbvQ+6Z8H8nPhjVUX77Phx6UQbtmA6QAQQO+/eFWXFuncAWy3vc/cc7G0xBPnA/v5dcCbdRNnawFbVGWfDyfEtcRqmPWiVs/GTaZqhY/exJuDDSPsz1iA/TGjr6fzgfzkmMym+5zP7i0U1EeQDFTm1ddrOk22oRbPLjnJ1zd6c+rMEBXIx3/xMxsBSeAa0IgF3L2i+WZeBOW+nXssvqA16PJ+sFXjgCSrs+eNdHO7QHTZOWSXgmnQb9qd0F7NfFq/wPXGZLm4r/EVi0reC0fr9C0/UGO6zvKU4L4awbsoSMpuByw3XdVNAg4ozNUg4DE8D97ouHGrVOf8yezkuu7mcjxc4HYPDsx1TmY13a3bBZD9mJhW83M0dtpoqkYQNEQbNknGJfUhIOd7K4g5ySNis3A+oeMxubDou5dQ48r3Uik/F0Ksg5Bm4zX9nUB/viMS1G3k9Znnysh/4Zm4rxPNWi86ntTO9y7k8BvUaoTmqv/hIfOcVMh6LZ5adSUvR0SemziaCjTXgO6Uk8DXHWM9KY4L31nTWehef9Vo0HSENyEBW+IZzVf+cOGGmcm8+62oWrMmojKNq4ERh5+r/nUOGpTEdCKaP3hociPDUYNINYizvn4RTbNrCtegj4i7olvOacslYHfcMrM59dncj+8Eppv1JHYfQTS8zEhT+c/RmW0ee++XXpMEzWeyJf/wY90vRqVp79lBmwKjzlfGA043hZJdoX2z+X0oS0iz54/94YlU1zvYulzUCV4FI5+mrrEBvKtD/GQlo/6VWZetyOcXcW+OVzXK9RJCwSOJmRX+eUwkDxusqUyIZqIvn0xDo2qChR/m5fscvVNnjOF5QiFxqTzzuYN6hkjqImZ8Aqma6kOeQPzd/pjN0D36IaX30dFMfOK0mxL1L9l6oFS3XsSj5NtNxscpEVyIT3BOKtS71XqGbSVYxBLPViQmXavBeiUrWAz9kvf+VUiUqvM/5HDacmOQT5UO3RE9sFrhyRi+8T2HLB9WFHKSRZR8FAqKg4/E3lWdwcKvJqHfbr7jTRi/PfpX70/L3V7k9surflBvOqyFZEV0G1/QOL7TEM13VWJew99odrpQg3+vZ23Ipy8+jxBNrysJfHAyCvfZV2/l6kic+lB6w1b2CrQ9PzT2hx9MW6F+W+J8R0F+aMaGy/d6q7RQsvC7jfkgs86B6vt54/VOvHbj/iEmqo72JRaRJHpsMu866GPwJFh69R2zieCj3WawiS8/CmMqvidJpVOfk8vtF1fj2ShE9aiNHrlZEe36i3/w0S9z31j6wydfnua/esb8xRNuh601IqvSI1o/YofzSGlDWPKVXHgldOxryACHy2v8x2cmnWg2aOKlZVp5j7z5U7QC0PuD0PXl9ERze/Q//wcAAP//pF3LtrK8EnwgBnJPGCIgdxIUrzNQREDlmgB5+rNwf8N/doauvfZSkk51VXXoBq16ELDXv3KTkPOOA3MfvbFOe5lNnHJZwH1ZMBLGTWUuaXa5Qpv6A90d800yGGrqwj70zthVlDajYnHmwcMtz9S7aOeg887yAUCkedg9xM+MJYOB4CntVcT8dXDQxyxFuPIDJJw7rlq+UpXCWywEOLKtuqezddJhC5aJbgHZg7nCdxv+1jNBzmhO6bPs1N/5xdUuT1iaRD58WOqJRtJwS+hZMg8wNOxyncXKV2zK4TroSAzpFsasH41H40K3CHLEipsY0AQbNvxyqU79dR4RS7BvwVMYCNjv4301hbxYwKc6P+jxcn+bHWG2DWcZU2rbm4FNc7yU8Pk2z+gAle/6/cGKl98EwSji2Vxf+Dvo2myHI9Kcs7l/SSHQR/u7Dl7RwBfVa2PgXWfi7Tk1+rn7cjLcxAeT1J+8r2aFM0PYtl2Hvkg2A/6VRUfwfCZone26MPYVYl7r3sxCK/8w+SMuQu34BS0Or9/UHEYycXDls0h5bG/Z9HUdDqpK/qUWEHlzCaP9Byi3dZbj/DRMwTmXLvRwMlLrkTbVcntdLHg4xyPN5++QMVpDFyz4MSPxSo/ZbDyKtRFh+UE8LVEvDUFi/OJ9Xa9dMFb4aMNJfhyJJsgyGGZ4IKCObQ57z0ju57AOZODm2wspBlMCcz0ckaYW9hMHQ/YNZiULrvBtSBgdLvd7PxeCKoOdU1o0YL2XzdWSqTAiko3UQ7yW0+1HAd6/K7CX+72abu/yDMXxhXHYgE21uG6MtIOQajjiIGCME9wFUudeUXyMVDYzsfXhQS0UbL3rPltcRbYhNiSCSi6wM/FyPuvwmL8KitMtSEjbDwZENj0i7nkyE94/PciPn5HB/E7mdJ+qFHbLjDAqtbpiTXg7w25bythe+fT4w2e38HL6w1v6rq8WxBdHpSFsDCYlgxFqypL7NKwkmEyfGedg1QM4cNM8W5L9vQM39r4j7ut8k0FY2eisjB21DmpVLXs9UUH5OWKimWezn8r1uYf0JpIPce6A+Wgjg59e2bn+bcVzMYX7prnSM/ZwNbJma4Gtb88Ua67JJHJPlh/eUrf2jIA+chuBhsVXIh6jBTB5vnxArJQu3daly8S5pVfgDtUd+2t8EgrIHazxjbiONj11U+kAJGYuZKZpmE3Ld+HgJzh9kVZ3zFyauR/+Pi+jVIDZn4IDiBACSFheVj8dcRMC4zWm1BcmsWcabg7wJjgXbOeBGIyZMTWQdiFPrU/e90ujBzwQ6/lA1NZaknlcNhBopvTCLr3VGUvFEMI9lz6pH1wtcwpUEYFcyrbYdjMCJtXlQhAXvo5D/TVVjMdnC3odg2QjLtueGSNswNUOB2qOOzUbF6P5/M4TyV5VlU3v1DEg50sc9Q6vYzKHS8WB083bUP+8tMnineUYok4rMOrbBow3NBna8ZbVZJneW8CXg21pqNsUP/5qLt0ljGHdaVskzjQPpjX+4b292tQJBxMQ3UBH+IFfDVvJocwmXVLusPX0J3amcKmmLVK4H38hWnmcGGvC/fGfvrl+l4BxZiPDxnLdX3yyYR7VDvhSbhJu/obJ0OOrC4wJP8mLwZEt5bfhwKovcPACpTkdh+YMNmJzQlC2XxkBumrD3/p5nhAHv3wO0eh80Pfg7vrJ2mUxVO7EwME7qPuPbthnYEoY4l30AdUsMsPX3OF1J6+6dMFS1x4HXPw6IO6815NJ2B59iLcXhp7nWxpM9zI4w2rL59g8KXPQPZVCh7/1NmsgVSufVWEgDzcadJudOWvN2wV7Ja5oenP7frpWXqc2euEgdtxMYJwv7hEqxdEi+5K4wSAd7jKMyqdLqrcggUa3bzU4HLqB1Lh7BfPbvA/wx1dCfDsG025id1i2MKbOUO+zERWDCtvt9CCq1VXJ+NjsPzBvZEgeu2HHFlwwHW5kN8Y//ssWqiH4np41qTp6DSbSKAc4RNmAvfKRBWyjtT5g72JL/Yh8kg4LhwX27+pJ9fmp9Mt4jzrgDGyLlMdNDpYq8krgnUyB4vNNDebg1Iuw1VQRaUt86ck3NJEkedv8xwcZ+4C40N7X9xkbWz8BzHxpMTAP2kTNk7IP2CgypDl4kqgj3XmwPJVG12pJC5DKjFPVnD5No+wfy5Fokej2kj1w5x8fJTOMWUV/+v5+mnZIqpcx+eUfTZ2G7nd+K0Kvnw7yXFcjteUO/ewaRqru+iWmrjOp2QwLa1JW/4dwK99miLlIySum//SvOUXBxlBph3hqf7Hyt15K5dcZAoLTJ0zDRQzNw2aiu03kstaDfgOFzmXU4KO1SxfffGB3iTeIK00rmcPaVIFXvVTClNsGTM9vOIDCS0pqZuO+EtPsmYJUfjICeuWdrPm2hs4wb+lO7Z1klq4lgYdHQWmypygj2fLkQTFsGQ2RcwrW/DQB8eg52J/RKWCtNJcwMYFBtH3eMnrSDE797B2K5k7u2HyHkwzprW6RwJ/e2WyXbQmwIRAyZVHcs334SsEDHL50S9MhmZ+16qrUySsabkiZNa/2nf7w6ZcfQd/QvQ+dfm/jeuLi6vsVriKsy8jC2d159cO5aDiodlyJzVAg5mA+FwLPmu1i+7kTMzaKIASrn0NtKXiC0U8CF9KeULq9HA0gPanNwfaQNoRf89UUEZEHKz9BkmeVPTtUrQh/5x+rqQGo4OUpXPH+h8dsxY8DEF5XkW6PqErmR6KkwFvMDYLfp1YV437igS2mFBvp8AyWp+u6MN2MAnbH6G0yx+REqLf5h7DpBMFv/dTSF3XESdkAGLMFAg8vfybvTdSwRc32JXw27QVNP34pmPkAqh59fvjU0xMpVbjyeex6IUyYBtw7NI/PnkY+chL+1Y7pz0/ESL9qbMVPHxT6601/fIQi5oawr7c13Z6KMmnr9a19NRAP2H90o7niywfsXSOi3uMmm+w8BzU83YIN/ulRfrdJShgD3aT513GSYVIWQ4Pd40qE9rHtRX+UB3i77iJqGqc2YCQCBAQyudHIWt79ssarOp1GEzun6cMmw1hqaErR2pXiKPbtIG86kMoPRs3qKfRM7xOoGQk+YXy+pebkhcL55z8RrQ2P1QzNsAHest1gHSm9OT7K2x3U5G3QZPWHyIWdfZh4OoemuzMH3ZC8Y/jz37jnqcqGm1siuJ4fakzvF6Cc13xUKGuPX35ktZWwM+wOgUnNdf/I7fW04TPoI7qbv3XyxwdE9XXD0T73AMFCOkFNjwq0yLT+xZsIry8CaFShvblwZOGgcFBnsmTWgw0PJVhAZHMKGlf+tESLagOe6DcirfhGPDalmu6K6xV1+QCWUdktkHGqR82mujL6Oy9n/hhggyVGL2FfH6Bh44BGT4700wwPg1ohdEetBSijWq6foXxJuNWfCDPVqh0e7qmc4lP0yfrJP50GCILPiF3dvWWM1zkdxILqILn2SpPpfcb98AJpyaHLlqX6ErhvuivFCF+SyaOaC+w6bslm5a/L9ZtPkJbcgl0paLJ5eRdXKEiuhqNTE/bL3s4+4PORRGqcYi0bn1v1DMXmltDtiKLgz39d/Qa0sMSoiG7YR3h4Gh3dFuq3H2rT/sClohzVc2HPCNmSEJIbj/C1+hbZICy88fPD6crP+66SXwMUdvKXOvemq8inKDkFHDkRqfHdyaR7HalQWe4+Ncj8Mpc1P0H9zb9p1IZ89eOfkM65RJ1L7WT9ldUHGHrnmm472WezlkYWsB/Gh5qi98iYJWsDnODuRP1dbfa/8wCDDczoXisPFdW2LoJikyVosmmT9fu2LeEorFee6b40matJNgjlnKeuytpqaVElQ+Gqjyg87y9sHmSpg0FGMMWSryfCrmlDcDnCM7VGQoJiJDIH++d8Wf2MHSPG5CBo14eWvKR6vdIXxzmMLl9r1e8bwLJpF8NVf9EocL89cz5cp+4l94F/9YmeyY8PzBNXwAdlb5viLx4Tfb+lj9BozIlTnhPYXj8i0hQ3S6iMntNP//7VKxbpfPXhG0ol9nfQSKjcX2QYvsKFbORPmUxK9WiUaLwE1OkQDcSv1tsQke+LKHaE2FIvnQG2T1EmcvXVs+nVjlfYeAcL/fLV8va6AnTJOgjCjghoxbxMofo9vmjQfT/JsHxVDj5T70D94ooC2qTK9effEW3gT2CKAkkHSeZZdLs5J8EYz+8GRv5HXf12jg1sSo7Q8ISQbiv7A8Zlr3fgKGaECGrvZKtf4MKLbx/+/Ll5/bu2njdspxUP2Cb0YphXs46d9zBW48rPteSx9xGfHMpkfhOoQu9cTdjbfIpgTC/XFLaNSykCGsnm40TPPz5LkYCjaq3PiEATdtLqf3fJoj/tO5gnbaTBZ7f2z0S9+qtPYev5+TIS4SXWVj/6l38YPV66HKx8BxumfOyni/RK//B4p/bfbA5x7cI9d31SS+t4MJFg9iHZW3tsrf7caH70Uv357+mbp4B1aNHhprx61B2Sms3vPZx+9TaM/e85IL/6xKpnqCvuG3MxJhxC3vZDHCJHCBrxAzugLyJFgPVt0hVxUfzwlV6qc5BIS6ilkDiDS+3H/gSEpj/JULt9G6LxnNz/+CIU2f6C+COps+aqb0VVb+8fjKVhy6QHJj5c14toHMzAHH3qGv70BqCvT/+O9WgCQYT8Xz0sIGbnlLA8Io/+8vnybYMj9Jlo4N3qd7GN9nLhyncJd/8alZidLgSCay3RnQZa0C5G8YFhXH//8u8MHoMFpLB9Ii0oPsl08ooC1tImwIZ82bE/fR9m947GgqOCHz5pZ1Kb2Fz9WKIIMgd96W7SndNcA7p/ef/qP8n+giv2/UyLFnONRU/jxjRHQdmK2ta3ZqyrgcYIBZ8cFg77Ur+9700x5Z4IXJmwReIuCLO5OmUTvMpQo85Nb7Np1G46tJ34icNLcA1m/9Uj9YZGi/7TV8qiwxnhDG/FjjAqSZfDD79xwEdBQD95fNWGV6tQ27z01fSrf96OzxBH9udjMgMeB0gDq8Y//JzsmrfBe386kjdOYTAMl6n488NRNpbmLG7LGLKXqlMTvDdm+6tfrvwY/+Xv9Fur8Ipg+1f/WFq3RtrzwZI1XzjroLLPB7aFPNLzkNwTdrlXPOCBUVEEn7FJVv0O+WdxxCF6JoyUiYdA2HIUQeVaZKsfbGi/emBSPYXqj0/tHnGAnyt/ZEe+q+E9Lw3sX4a2ot4sEdiNpv3zJ4LxIz0OgBXXHT4E7sVkGfc+//l/P39w9eMtAPtNgj5S8GRzpUNdk1CQ/v1/s9YvwbUKRRrmZsbme7Nfu6BdHkSxAAXDGu8w8msVe2l/MdmP/5Zyfvrl52xB3vIBnbuof/XkJXnDK8C+M2HPlIZqmtlyhJmtyejNn94J+50XwB05HNydbSW+bq4MtymB5LvWG4WVU//4K5IAd86Y7YkltPuyp2b7UFb+aNagadIj9ZKMr6baRDWwD26FrYYfwdxz0vmnP+l+L28D6ec3eu62p/pXOQLahPvz/9OlQOH/+0pB74YYY+l+TCjcgA847mqdpp/PmFVq89bh3qA+kdBj6ZniUg40fWCQr1PZlVCJ1gKNmHyx7y9xJQmpLQM/K1pqBNabsXgPO3D9kjfeVqwD9GYHVyB+Tw8c+KmRzQ2AKQz95U7EpRXYfO36Gn63g0IvWLfYbCSjDcv9kqHeSG/9fNtytipEykKxcL8m461rG2Au/gtp3fUFyO16KODzI18w0sODKXzrloPbt30mL+ULTNpJt4PS60jHPjGDarA0Y4GOwY+kFDBfsWev6vBLqxib10LKlg/wD6B6bXvqyuyd0INnHLTzoQuwja99QjJ7k4O8is94t70VwZAbTQ5NSfsirtC/wejdrrxqqu6eTNaFZ5NfKjl8rqy2aALD5I2dcoQhyVTyiQUhmevodIRuuD9RLGwMMO+j6g5eCmuI4o3vnmWPTIV+e9nS7VH5gOle0hBOp80OQa2rGakz7MJjkL3xzhCVrKnc1IDf/ZBSnxWaOSH3DWFLlhptlHsD5mgTHSDYxCM2WVqb7K5dIRwCMSa8h/isPd2DAtLJ1ejz0dTZYDycDgo97dHe2XyS+cWxGDhuz3C4e+4zJs+nHH5yS8IHAR/75brVbe0rnG7UIs/EnL9WB6EonddbTYFtjux7bGCkGgRxjcpVC2wvPohVKpMpJzSZr37XwMjCNVKO333PLPt5BjL56hTX5YYt6oI/YARWiXcwP4M5sWYbgqCLEMDSEExO0MnQYl+Zbmn8Sv6erz7zAlKfwzabL8nNVaNuO6D5yypzRE/jCpU0mqjJS59kjs+xDj3fitEIDmWwHJeXrOatc6fRKZ9NApftBBvmHnG2P6KE+eFOh03vGdgL/Jwtx0MBNe+rekQ9YCfgm/PkagdlE+LtizmmeH15BnjN841uySgyEgnNBC+DxbAullkvIPE8wVR9i9i5qHy/dF53VTcPNqHpE4z9Qq5uCR23ZWSxXptsMt5LrMHRdnAYQwdIrNwcwRoPRAEyb/bkrR7/9kcviMmEWZ4brWk2CpIk0lbr8yybNd6RqhSGOR3J8aPxVt7T0HkKJrlez1fY9H6FmDEQsHwO+QCztL7ReyZmyWx2mwKImzNBDdqFAavUqw81sdzjYD2/gihwHbSe6wTBeFdU05YUkzb2zpY63T4HA0kYgnL+5vCuc4aKDqTh5etlvSe6t/2KcZfQh3rQ9TgwtNrsJdUw4PUyWvj4fpvZzGL9AIHZPbAdCw+TJcV9gC/9aGCn5K+AuTx3VbNw2iKWF0E/k1dlgSWKPvgcgHc2vfZhCvlyb2LXajpzcfCEYFO5jEbx9pu1t67t4N2OPBpqjpqwIAwsQMvzm2JnP2fUuCxXsL9WMyrm3R7Mh7Eotfd0KMhrGb/ZLOQDApqv6lTPCc6mBD0+wF3sDRHzw5eN+XQ7QBOVOjVFqTNnLB5kDfk6xvldP/fLUMgcRFpHcdQKl2S6QLGGPTJ56gR62LMLUXlY7qcM+y+v6pledCLkDkGBYCVaAfOOSq0QXe4xKnQCaFvoi4b3CcW+vcgJq9KbD/PWAUTU8282OEGpauqbryl2CataYB1U8O7yC/ZqblMtl63JQW5xTbp7RHU1GQ/cwP21OlBkhX42vWYz1Xa37EWNV1b0syTAAagCv6N7fLequbFaA6b25ozNSjtlf/gLvvs7Uv0l7olkkg+s+TZCGqR1sghDbqi77BNQF5dav1jy+/77vdgIrB0b31Fy1aoqPBEQHR9slgV1AfXQ3zFy2mc/KqMVw7si+dTkjwCM4cZBUBOLPb6cH1VA3aOWA+s9b6l3/RqBaG1jF5qqO2G3VVw2s++9A9MbOniXRevsM0FsIHw4OzTd9u9+4ka5hnK8tNRy0AYQmwIbDl77Iet5rSbPgCmc3pxDLQ8Nffc2Jx62n+WEzZemJCueI1CZeKFI43EyDfeqgbi/e/TMt10yadFcw56JBd75YhmMo5/W6u88GMOpXktCp7v60J4BmtPz1LOFv+bw8e3qtSkVrOYfnrCY7ygO9i82dbuHBc5pk675uwHkunVtsHnCFBtb65ZNWgQK+A6bnPoIi9XiOkEHdSmG1OhOU8LOl+aqbEf7jTbafRswxf1CeLoYN+rfhndGDiA9Q3FfiNjl2Gu1SM0Q3nnDoj7UMJiihqhgLxdHBPo+7pt4o93Ve21UCLT9AJhlP66QCy8X0vPvK5gWhXagaE4Y41MDKvo4Vrm6k6KUyK2yWoYqdEFXpg7FdPNgM7BSGR7uXoK9wiqy+elUkxYN6EzEWBAyuuYTCDaHEe8OSZEtvQ5k2NpswfixU9jyNmURqg/hgO0d2AdfnL5CjV/iHc6gIQVU2ud3eFRQQSZD7RjzBkeFnZHVZGKNbooprg35S4uZ7pJpz5ay2tSQux9vOG/UvJ/nGFlgkO6v9feK5iiPKARXTx7oAeCpn7r33QZceJbR3MZjMM3G8QDfVofxdvPF2ff2sY4QbJ8MB5djWc0XdnXhyhewp8d91uc9g8DgiieN7YvcD19RseAxuL2RfN8UYLGuQwnqsyhQM/l8k2kpb2fAWRcXAdpvAz5QAxWclrZBn1h4BKxUjwZsXQ6s+Oib635zMLveKI4O2yCY5kDntfrDn6me7duMslI6gqszVvh2+AoJKYT7R/3xqRB0U7KMVz+H8qeeiaw3M2gTCxjga6oGYq1mmOIoBynM27VxGOYPrI+qWwPX/cU6bb5gKm4yB7/b8UoD6orVjJ7+FV6FUlvzK2GzF9cx/N4Gnz7XeB9P0P3AfJc/aKC+d0l7Zg8O3BXBp3+//7JrD7BSDIhR1FqViGtzgqf1/h1a377t1nwOI/uK6Gl9a29BFhrABnxbvEMJBouDVRfWQwtIxUt2Ip0vxXW1vGvsH9ZZp2KY+Wohnycc+fXA5iW2XA1vdl8cubVnSms+gaejRLElwShZ8/kBboTJwvvjGWaLbHYEZFNa0vAmShXTJEcH2aFu6a7our4D61vD+6nY0R2tOZN+XDWE+6IyqdsqUz/lN26CFtYueLv4dzbtn1MHPjOVyNQFbyB2XpFrX6kwaWyoHSBefrZhUVye6OOBNluaw1WFeNds8S9fswtiPKTdkUe9+t5l0kt9qnBe3wIWhO06227lB7/zpi6mCWYspjKAqQKp0/FtRtVmNODj0pbUyS5pP7dgyeH02BwxWi4yY5LqG0A6aIQs5KQzYb7KBPpZ2a7551kx7SkTGHXmgNjFFMxOPygGTIQPt+4/ArMaeSm8CoVGFE1uenazo+Pa10mgjhb0bAHpfIAwcmok0/NSLTvKcTB+Wj7V1/O8bLcX9W/97YoqCVvzO/SlQMbh9nkzFym8hVAJrwp1JOL1SzU08fqGm0h/55GR3XzVgNk8aGgYZjW99n7+O+/YM+JvNlEmHyA8WSK2nm+xWr7LicDvnqTUnc9f87f/YHmghih6HGTkh0fuRhEQW6QZ0J2d3GF8sVMkJSpMOsUsFg0JTUGfiNBqUp9xCaPSfKA44c1E1H0rh5Pro5UfCdmkPA93sHE0j7pfhc8mr2QpPNyDhLBF2jP2w7dlRB4C756v6Eu9yICJXYK+kb4N2P04pkAFbUB3KGnMUT4pIuTv94xIgLzYFM37QpPd+YJ41OcB+R6OC+wKDNEPf5lt38rf+VjxYttLVAsXGC06h91tUJt0Q841jO74SK3UHQCrZpqDweS39Ke/JnDuocofkhI7Ahn7JQZ5CDP/I5NFwtdk2F9sAxjwJOBIOrRgmT9lCaXDhiBlykSTqU1lwRWPiBZuz2zmQHOHupRkSH16ZzDebwYBAYQW4TEqwDI/JFVNh2lDb7nVMzLZYw5u/dmh9tIikyX6YwDuMf6i4Z2QgEbVrYPX58BTLxi9THjG16MWQ9lc+bluig97brRV/6Lp22yCcWfYLhT6sac7VqN+MWV6hbOUFtg69KQnsaWrsCgLD98kGQAqz1kJlRRPSBJIVIlwCYYfH8OBJ0lgEcOTBZ88oUTsaWn21fzNYZsz808vDq+9lcKbeeKR5OlTRSs1dtXr+3XHdnnQTel0qQ+QLxMTPXLQZ2x4i0jdPOY91t3LLvuWaWLBsbIW/OO/409PjDK44Z2dbDLaIdoBswz0ddCSmUjd5XDQCs4TaQDf255J6daGazwRjr8I5liJPg86OST0p6eXQ3ZLYVGcdOwl/rcnz9z3odN0Z+razQjIIDuHFW/vFOHWTZaXcB0AVuIX3Xdj3k9THwwqng8H7OVWwNbzw4MnHDjqN+YzeF9YakFsPi6EK/WOkTwPbSB13AYJjeMCsdM3EzxKpkjRxbZ7KbW9u7rs8IVo5fUWTEDsIMiDfUXt64FV09RvF3DM0i8Culas8VlB2HLLDgmXqczGJQ59sG8KhpYbV2YsSqkBL7VVY7TyAfYt7A9Qq15FZMMnwQTFl6HYb52nSauVwdxmSgl+eiY4HT/9uOIh4IudSrey7/Vi175S+BCeGRG/4TMZuLdlgC78PNAGEVwNcuNCOLe1i4+Pt9ovx1aKobQLBIq9/Q6w6bFVtZWPkjYYX/1yvR7vf58VPe6TptijI8Ab50t9Vcuy6WHUZzCY4pZaDN7ZcljoAKNy+1jxcE4WmzJL68r0g7rnsE2Wjd6LEOwfx5X/8ln3089FOOhUT/g+WDkTgepVD6n9DTfJ337M9DaSwr7I1fyOkhSuehEVyV4GkxhP+Z/+9E/DkS1imLhw2m1qupO2fE9FY6q1TwV0xCn8xVzYQ7Xh+dAEGKVV2C+yWXeg5jvy8yeCqb/TQuGOR58+YHhjYhhKPhTb0sEB/96vevI4wHP8eK14XvWkENIOPJ7tgcarn0Nge3FVgdE7dWpeCFb8zMHv/73dKASjbYQIJtqH/PyDgOyu5QfSxuvJptqhP72p/fBGch95MqRHMwagvdvYdXcSWPSDooPJ9cd/8XY7RqFKj0VEpog/g/GcnAz482Oiw9ZMBtGNRBDXyh7Xw5MmrNG9CUSqTvC9mY4m+Z2vJyQcNtji9/1Zep1hFmcF9idTD/jnbZHh5s0MsuJlMLbZXIDy+6lodMu9TDCS3ofWBbY0yGedLad2HVzn2zH1rYXvl921+0DGNSW+mNU6eEl6+DDlpz22lJuUTNGc5DCoOUZ951Sy/lugWjlPdwun5snvZyUyz8C17xixonDA0heqDGEJEA5fYpEsQzFx2uD1H2r22g4IZ3aCMLhrL8Lyou8Zb8AcsnM/kc2WdyqxHDoElSW06KpHElbN3zt0xEdE1JdXVdR5lAYgsRr++XtLcihlyB/zkLpoZyXi9BlySJug/+PbzKS+CjIxaujuGen9nNyd6y+/rHjfZl1GXzZc8z0ZvGdbsbsWcz+9RwM9PbGpclMdVma04O1BOSQS3oufn5+38tEqG6WTRqD4Ki40gqECJty0FrSdENAwE1k/p1voQxaLHQ36fuqXVW+oq3+At9Hd/cf3L3bc41VvVt14Ne7Q7gSV2nxr9BLYSHcNv5IY+0+PBuMlufkrPxjJybxVbF6cZw32cnlEolapJjm38x1uF5nQuCRONd34EMHD4PIrXx0z+uOjUzU/1vxRBKvevUr3HKXU+Jxkk6z8WfGzwkfc+Nhm9KtHnRo4vkqElU+TspI+K7///Pw98CnDHsEHbmccgYNhLnLVN3B6aMeffmdDqOoGXPkRRfxlTHqiIQJ+firjjm4ylc1dBgswXgio73fSvEVO/eVz6k2c3s+P6eH/+CvddU7YL2hQD9B+bEvqH7GZDdrO5uDj29Q46HsX8I+yP8KH1O1+fmrAWN+uPaoGkeqr/h9+eDQ+Yp/eCBcG8oqXcMlMDtttmIAl4G7hj0+TTtVANtnBZwJv/8ETAebYpB6/FPA+S+mKh0Ew1c3NgCdneyFTspfZG58T+YcvaPNsXFOUhjjU0FMUEVjzwVRvxhRENXIwRsQB8650bHB9V2DVnzMbXEM8Q/91Xla/EQdTFtwnqBlyjKOdY5qrv9GANOfWLhReFLCnaeewO2S7Pz07ilwfwsdWvONVP2Xzxf8UIPV8HcFlKqpRrS8DjJ+2T8P4pmXEwYsPnzVFqFn9mmmAwwcedx+dKO3LSHhxUlIou4tMZhpvk9WfS4FTNA7NrbDsh5FxFrAx6ld+MCbDeG8JeA7jg+piCfqRvl6u9sND6+pOoKvC9vDLDzS83uyACOHFgGcx8cmb1rnJjtLXh7F3MFY8HpOpJcYHYvN5odEl5xn91TsGIZFQ/8Oz2zUtwYZ9U6IYsZOIh2yfQuNTIWo7IAqWCcc2PKDznXCDKoJl5dfg2KcuUpuPV03mezqDd7MfybzbGL2kX8QYrPUSauwsD0zF3j6D6Bjt8P4bx2z46c+fvjEwpyUz7+wXKI2uS9P6MyeDzccp2O1vM97K/hb89gt+L68CSaseW3bXpgOXWYWofGaDuQTC0ICfX887c1kx7zh/lFUvEqgb317IFKeANCwBtq+HLOlZ36uws2pEmvyeBnO0CY4wdpwrgiveziu/B4VRfchwEy/9bCSVD+23wSM1G9ZXPuvF+PkPRFj9qdWvhL/4QXD7VIKZ574WbBLvQKNmbZ/OPyZX+z3f2QOvnlbq1QWr4KOmMTjmsvp/oOYbgo1cvrHhep8nWM1mSKBhmL3QZnO5xteIUV5ZYN4ZyAVVhU5IHpWXOZ12ow/n1+eKd6fJztr5OhGNU90DPrDF//nPCxz2jUwDK7UzsWvb9Lf/1FHWLsOfswBXvW1SnDWXak63SwjX/aW+UHhgcg3uCMZJadEgdVdziestr/3wNto5VUB5g7+DNd9jHfML+NNvSGsoNsIXBQxuWA1XvkxErUqD5Q1CpGrXQaK6rVbmT1+o5yZfKNrwLGAXsogqi/mAbs/nazKNsBg0xbp5ePtkajKGX1X87T/d9nFrMqx2LrQXIcT7BztXyyDvzkD0qnrVC2M16agaYPuZTvQQv4pEQmnvw5viPyk+kCKQLgjwP7+FBqN7AO3QPe7AMUREvc0pDUYspir44cfPD2YmDcVfPkLspSnZnx+4v75mwn0fx4oYa9doPWh6ilGgJe9dufPhdrRtarbppWq4t6XDnx8dkkgDs21YIVjrJYT1Kavma/cu4Vc7NdRY43t21i69LO+LtX4xJz9+BDVS5WTJMsaWjL6sXz5Y17sx5/FFOJhc5h29beT6t59IQ1/eRZpdH//56yu/IXCYrH5Snscr2O4chl2RxWxiykige3C0X32OsaNEfWgUxCXTlQCT5JxpQ+nkSvTS7TnG1nqnsuZvMqfnBgz7jVJD2ee21O/WQVZ9wfM//k8tZzZ6UpyybvWXRmptbkk2+3F3hPLnG2PT8mQ2Zkr0gfm8i3D4TlDw81PgGn/Y2OCXOYixnIOtqmrYPgpjtdZrIYAyFZAKNcxGy4fdjz+hZfWLKSs3Z/CrZ/3qYxM8NxYU28JZ9cQL/M47XPEWO9O+Ym/hGy+Qn5yMTNrmxpiFXUPriXEhyqrPKNhscujfLpuVn4KVv27PcM331In0tQuurDSwSMsrEqLp0c99d7mCfTpk2LmpXjDHYsxpxXR84Wew37KVv91hniRH7GGfZmzcseOfP2d9jSNgOd+UMPEgwqeiOyRLSgcOPi69iVf/JGjkRodK+b4pNPCkOFjCcOOCFn4zAmP4ZXPPfF3Ls7XrW9mdAybPj1wmsEqJWBwscwLnTpejOxKwl1pJP2e3sAPoK7pkY+5v5twyR4TirfzQ3SnKwDLhq62+GGeuegiylX/zYJ2ehvEhOFWzOrpX1bk2AlrGhTNpmWY2XPXNOmhqm4jshO+/fESqsjDX/khyDB+0Y2hpTkM/HCTT/un51T95mKsflcJfvVT5viI2Rc1Hht9nRYnk6S4QkjtO4UePtzQ1T0vGnsFsaWu9HwlcvrBh5d//15UC4b+vFKB+6YjU1jD7+qF/h6Kunil2z0U1OrNM1OF8Y9QsN/f1CkA1gV29UciivRGbitGUYapLNwQfhWxOu50kQv6oDehVnTlziTKJQE9xLex89jJjRweE8EK5CYdqewxY8c5UqGLJp47N9eZ8dvMBXsT7kT4eaWsu+Zn7qE80TtjJnyihvnUlcDPfjjS8ll1Ar4rdwDF+u0gItR1jD8Qs7bRaVJbxiJhoxFUOHWJPK960AZX6+g7l18Sh1svebD5Y4gKPG8ulqNKWamxPnQ6Nvt/jSEYY8PrVI2oUTFvspkA2h+soTJAG6y1AnWhg0NjTWO+JpeRV661Jnq/bAYZTEaONYu77pjLrBfbT54m4o2wx/qlbPNBof8JbQ+WqafCHBmJfOWI9E+xkfq+zCIMyN+mOVSIY0suzgMemflOTqteK3McjD4udHpHNyb4Fy8vcxpoV9CoOHrMPZttSGlUsTB2jfFP3yxekuho8VEDtYR2soHSyDjcpmLA7zBMYvi/pCNtBtZAWhV4iouRWALl5NtTMtyhh5uI1MGfPDXXeu1O22EpMNKcUN9Rs97o5MYkcwHCxDIxAfmJ0qmRXvR/eF3x0MgAoJ26JdjiLX2w5GWDd83WLIeCvgAaTd08G/cly+LxtSux9p11GD/n+Dt8bfKd2XyjVQiUphEXtS0juGw7MKUxshRfplgbNZWaLYBwL+FkGh+6HvdrTIOERsN+CTJ2cE5JiajYhcJ/8jj73R9IP4dXmYRnlAhKEgIJp1+98aFvTgmbwGsyp4LVGFRIFE3m/NiLLm/kAFTJZqLBzHgyuAkO1n+onxtXwBO0XDQO4H74X9ErcPGHK0k6w5zoDTeCbmbNVeQ28IUMjSojLbEmC8qjNxoViN5c/CYPcV4WtOYvUVk3EGuXOhbBe1DfGaHMLmEA9XuWSk0Oxvw3M8VAejlAIYpcaG7UOWCIQAkjjzdjlLT4b4jmuNcCnADvc/QOWU7YTobfhCVGjVg0Gi0M6zDx7j71zwCXL1zR5Lbj5I9X7W5ZM0vUlboRHWCPx5DbZCNWNATfyFJFDI7sme/ltDNT9/MW6zBk9/9rERy2fq4oaufNIFlv8TvArH480NCI/ocdyFKE9Ox3Rt5sIiOH8KsH7YGKivnwt+8Wzdgg+AnUSxUkIu6oTHOOvi2Dpl2yRtoUFxdyuEHe69Gw5nOcchlMZI/GaBWAxu7YDs35L8P5upmxsm04FGctH7O6TTdLk0yvWCuvEUWScaL/c8nGCn6dxQsLF2vUzp/r1b/+wYTtJQG23LGF9kVTyXdevhhUowdsSttTwP6rZq/cNBEHAPWlgx9+K8WrMQSs8elQ/Xp7ZfHXKA3Sf4g5vvbDMpkN8aVSFf99oNHovNkczi2GpsJGaCzkFi/DAPrxn6kD9nYSr+Zy7JeTv5zf1nkwyJ+8DjrDdNwnO7naRLQ8ns6EX+hre9XOYTPuPl4P+6j7pNZc/2dL4Wg3fM+/i65Z2ycLV2FDf11HBvq68qsVX8QCIZzo4FLYgGZxQ8yHuSIS34XPHJvzRVHB8nBkNkqBi83uABEKwqamO4k02EAcfQDVZPvq4UWjO51wvoA6aBhtHXavmGz7qcLffbUlrf9tsPr+Xgzb2vEK49h2sjZ/sD7Q/hUP3XliujdpZARf/88W62V0zUqBrCjepMmEHNF0y0mgRYV05AzbzLUnYexprIB7EBfn9XQei48ID8FXDxDrKzGAKqgeEn92oU1xFVzY/xk+tcoDZ2L9MCiO7rxVDfUoluuVObj8/ZO8Ape+7xR45D9m0NMYCOZwj6oanOVtuJvDB8/6JCFivsLDmLh+gCA4ztfeCBXipyGpYp/l7bY9YZfPnxkTwy08WlvbB1IOtDU9is2DXWgeXUK7VwWycKA02txHM4/6KQMkck/qbTq/Edb+AygpILwFUzOX1HjtVB11DXWZ/zBHYNoIn7XTHnvp9AHabmhwOEJzR4izrFYtLscC3XCy/5wXzKRlFyH/rC04OB6FigscXmmcIDbWFXcHGob7ZcP1+Ap4AZvMpefNKso1M9OqTMGPdLZUhufI6xit+dvr+qcJrwU/4WQszW4Lnw1ZKewmo/jqAfjm9i0Iloo7ojh8atkjS7gwHqJyxU39QxmaWdSC7ax692E8rmOXjQmA7YAEbLsDVMLG9Cro6J9gNwk02Za8lhJ0x3vD2Ol2S5QkDGRjOdPvlt2rStJnA01Z/Y3M2u2ouXr0Ob012W9ezqOaDxU2AU/gOzdVrC4Y8iYa/fHFufKsSkaCpsEx7E/sxfPwPAAD//6RdSbeyMBL9QSxEpoQlk8wmCIi6AxxBQIYEyK/vw/t62btevuN5iKTq1r23QmqYB+BZwJ2MBB/U9mCKb7HLoL0ceuxDzwFUi06jKqjHIw6iizMwpJ4lSIeuwKZRQUb+rrfFJ1F3RmgysVpHWLxfJ2pNzzTZ1oOHV5522Lqf0mqEkdJBf/Qa7AfaO2FWo3yAukY6fbJCGqZT3jWwk1GC3h0nButcc6liLdyF+s/JDRZdvxHIIbbD+EEWtphXAmEzOyVGq/5iq5XuBOXB+4hIQ/cA6xUbkbrstoMff53Ovs9x9VUCiURtEa/F0t+L9d/3KVv8sB9/eEHGlIbsrNuazI/5HQMsKgW2n9g1xTvv5pDcG0TgMb4W7HmWrjC6U4q+ofoFYyQbKRh7qODs7HbJTE4/Tnal6EDTw8kvFo62CpSQE2Ln5TgFw7jPoUJ7k5qf1z5htUk+UHBaDR+7pxgMwrbrOKxSAxvkpYFVaN+CKkJ3pp5XHNh8b1CjXHv3gKPlVSQLqH5bW0YtafnM7IR15RxDd5ZD9BrNJlm11BXg4du71GtunElviaVA/dha6FXbV5M9OjmCWvTlsCe4Apsmxjfgj0+Fs3lM6kOVXP/hbbThz5S/XyUUUoaQINcOI5owIWBWio8xp++G5bQvEPD7o4/t8RdUE1dSDb4lQKj9vt2YGMj6S530xwNbcxKBfng/rgDkxhNr9fcZrMV9yWArZSlp1pOVsB9//ECkXzGRdOon84ysGl6T7oOYrVsBM54qAn/1xFSGqmBalddQgcIJ7R5kAeyMRw5s+Ey1H4mAKEaLAK/l6R8+gLmtuxg4cvrB7uBd2NS9Fh/uqadhu9XXgbHOesE4VQIa7CQezHcw5+rvWwVole2WkWzKI+jI2QfN2cgPs+LtU3gSdYIGN78VtMgNpOoMx9QvTLWYI9nIlOR1nsh8312DJf/FCOJSnKn5TU9MNEI+g8GujzAKgVCNVvHuwXQ5bYMebMlcH+Mrl++dcUccPdbJNN6EHGZ9WpFFDgXAlOdLgfdyHWiwj4nJZq6fgSNMf36EZ7Jul/YwTx4WNT5LZ66voH3AQDpdcDCnmjl/NecKCTekWPf0R7UoN2xBLjcXcmp8ZZgF+35Voigt6AlqbJvGeriq3yWQqVPd4d8sv4fyC3xKN7waFmJ7Nhzv8/jH/4sxmOYe8okZUSM7x4Cd5NCCtfzFRCyGExijRDVgkgRPIqd6yOaTBl2Y7esz3u43WGvs5NAeojO9HJLXQPIk62Go1xPVe/6QiHZ19uHnK+2x8btgc5SO+SgfwrdMqmlug/n2IT0gz09P2kRuExYkMITP9fbBYTd7oN+dbBemmt9gvcoewRxPDEG6qxKqf8SLOQfa0qhu9pnJ3u+iZLRXQYLdTlHRGk1KQOX1PUNNNlWyv1RhtbzgvQc7yeEI06S1WK67+aFyzNewn+Y1a6jSuWCLb5qKTRr0A7dAdb/vahooETSnzM1GVVz3BQ7PZBp+9f0Uqu4zELD9Metq9fo6VPpQIzRob+YgvuPEgHq8aWocDWx98LkL5gof0NWUAevTpLRB0URPbPqvIHifA2jD75XKiL/8wLAedIGDNUaMouUiBFTgphQEdf7EZvtrA/qnl1TtNWJH4XYDCcISwUOl3+nxN+TDcpS/mioDLkbqVmX27185w+EheqgZf8EwBaqfw0Z8nOkh4BNAmt+xhvfG0mmQP5xijkjbw2ZEFYKRzYNuzw0N5Fq8Q6y/VxVxXD4Geza6OGilfliX8urL1XR/INidPmy21VMDB64zaA49h7G9B1/geUrLTd9eTSaULgTgcL9i4+GoyVrtKgE44aVA9JdewborXjw4vcMc642fV3NljjOgfPKh1vEDwHhq9FLNkQL/4cM0nSIEd/jHYa+pdSbsn5INb06aYP07sIrepBjBK7TeeMPfgNG6buAqgCc9XI0ELEjPeHhdlxDf4SSwpgW5AfdB7NKjU8/FqLffEN7YEFBUjG9z/UyXHFq7y0A3/l+slx9UIDy1Hrms2lJN0+kaQi2cDtS6n/jqX/7YyHbIblw1cy8eXQ6OHv4iqQk8IDx+YgldjqNEksdjwDND11Tg2iZ1B2YMvKc3BuR/H0Y1i/XJmge1BMLHrFA38Y7DvFPSFF6h/ca2iONiPh4OHBxG84ItdeKDZW8HHTyDQsO+nWXDutokBVrUcmTa/AdyxUYM//jSubffYGHe21APYSUjbrkI5ri8bgbc+C+115NVzMfP+6Ouv+n0L3/mUE19+Kd/sFls2+M8V1E2PosPH48Ns95+EeTcw5l6/D1MyEdUbDhdOJ263a4pVr2qU/UZshSJl7AHa9DaAlju7YuirMLF8oevm76nuPW3g+2/2hWOz8mlIa0bcykWE6r//CODaBVvX60Y+EcNIkUjd7B8R36EU0gw4T+5XayJOTfqxm/pxgcSAe33CjRWf49eqKjM+dToD4guuKJh217Alg8dtK9DTx7cckvWgX/GktWQL3Wry1SM56c9wvqyV/BfPI2UtzNY3eqGMC9th7nvYA9Kymoy316ngA2dcAVqsd43/SCx2RLSCO7vqCbt7a0logQcCBMHTKh9cOeC/fll8DhG9P6WI/NrRdqs0rMrEb5728XyO38MSPxdhZTjLw8mpZAMsPElihK6gr4/KQrUvsEBDdOur3pbaFeo20qOHX1/K2jYuB20jzcJO0n+KtghkXvoZq+ZvKWJboMYnh/lL17+6Y8iu6Vgi19SbfV/JV0ywkvzK/DvXUR/+VVDN4g5fFwdCugpPGow3u9OaBXiYBuDpfXQrz4v7ItTXKzWmuRw8caO7OVeANOsLBLI3jqihvhAgD3A6kMjKl40aI6vYKTcz4AZhg4NtI6ARaOHEPzxsUvVaeZcPS45bE/8Qj1zeyeVODgC1lRg6mvkzmbANS40j3mD9s+zGCwfM9GA0mQEH+59OKzdOYqg2xcdgd3JYGxBKAOnM9dRrf7ugtU8lJnC3tw2XiDtC9Z+swfc65BR43ehJtu9LgpcekaoRsYHWyRd5v+eL4HXjx8sLimyPzygoTEuydiIb1d9h41Aj9bMm2s+KwimWefhW3N7BCz/nlIY3CVA5HzvmaNJ+pdCg/2HuqXVm+vtpz1UK8w8pEhCXZC3RD6wQhlPDavsqvX0vHSwLKQRx0Fksf0fH8Bce/jzr4qlyx4PeLyPd+r3axbMe0HmYdTt3uQ1fqZiPeoHG5Lnq6d4+JFgHL+XGORIgghKT6Narp9Sgn96zJOLPBnj6NLDP/7tFekczI3/sdTuUnLYejoGWFAgv8DwzSbUmXKx6dMoVJOy5LHOnbth0xujMnLiSk3z2Fabf5hB73G40WDTj2zz/8AdN3eM3JJWoyvzCH4XwaWhrjegf5teBMOrHZGPweNh3q19A/ZncaCGEA/FBKJO+uMzFPVWXI1mI61wPfM3bO/C18B09brCO5DPZN74qkCOP/svP//4XjGfNN4Hv3lVsXuLjtX06boM5C6KcejtePDHT8BwrnikuuZlWM6LdwXBBZ0Q/zqcgvX82dV/9Y1mIl4T+vZ/MfwpVky9wXTB3orcGfbWsKe2MA/FNPi5BENfMfBRO03BiK3bB7Y7g6N//rFSY+cKzzzJ8EF8HQKhBbGmfoP3QA1HfSdzM21noYpzSJ1cc4qxfe8yxZi+E9ZKxg/rUusKjL3+RpTHu65IexdK6e/5iQG8mfzz/rqqxIpkHK+7FhAjqsp//rV1OPXFSo0bB8PHqiCKXqtJhvcj//OPaLCq12r+3nsI1dbAOIyVk7l4yWsEkmpQovRrZnbD/fuB23pSp25Isr7Q9Qo/17HFpcuWYjWu5xAyJjV44//sS7uphN3h9SFrX63DXCI5g/WXXJCw8YHFK+IH7MzapuHlJpkrFXcIbPWBFG+LJKy3cwPg7vChvmC0jPiXIYM/fZ9T64sMtvDcTZBvb0LpPz11lCcN7g52Sd2kS4fOeQqaMmYFI2z3W4oJXvNe4VznjP/8U+H2+K7w6HkZxQ/ss+m8bFuO9dGmB+0dVdvzluDmjxBh02drVcshGEJloocuYsMovpLmX/4UqiVVfWsGAkhel4kwg7yG+S7jBzicHB2HuJ0qtqc6Dx7a445y56ME40MqDAW60CDi8u6r8TH/YrDVE3w4gYSNAnJ8uOUftny5MqkEHA6Sfi2pn9dZMstGUEPx/DviIFdRsfTGz4VvR+i2QcvDMJ/cSQKXlOyICDo/EZ/BnYBBTDwCznxZzfVZRnCLd2pznz3YT7b6+effuW9DMpknqxDoMoBk3vB0mhVZ+vMLiVykszmCU2v/+z0zaEGwutfLCpundqYOQU5AcE9WaFrOiex3MR0WdY149UMqgKB6j4ZZGPoRghZN1PsqF7Mz5KVTfhz/omWsLOa6N8oX9CJyIPz05Isl7i0btlZXYU34Hc3lOSou2NbzX/6vf3zlXEYZjk7ErmalvUpgw3vCU94blvQBOfhVngiHd30xiXfIFMi1EsKZYY8mM2VwBUK6IPpkym74mVfCwadt9TT8/H5s4YXOAik9bTtm6zhY2Cme/+GZ+3tMBTHU/vPnPxJuw7t//YoiTU26+RXmWCI5hYrnvlBiVCVYqsBaIWzcCJ+y5jD0n+l5/esXUP99fptj4A4pqOLjROp+uLC+7U7+Xz+AamU6DfNeWHgZyIFHPtl5ZT05xzxEPx5h/S57wS+HiQW/Q1rT0jj2xe+vn7Xpexw76rtYioDrYS+dG/LXn1qcRRphDhST6uNJqWZ/G1Qd79UTyTc+yue5W8KnPBdkfcTvYBlv3BViK+yplh2nqvsAEUDuv9lRpEx6+UBdujRVj10jh1unbPOzaVX96fUbMCxSVb4WLJKiaeqTvH70qJ2Opjh1HgRHjlVUq1yPLX6vQpi/uhj72YEWMzm9ITi/Aky6Mf6xWUkjQ10F+Ukt6VAUxNhLM5hL+kYdX4FkqaWABzS69lt/xDL5jQ+DUUAjdnfCY5geO2AAoXQd+nx/SLL6cO7VP7+Bb69pQfZG+vnTHwSKWTQsIv2mcIcHDvH78lOt/Th9/vQZ6gXDYfNVih5qs7Xov/fgW236iQNPeS1oYCS3ZL0uzTY8Kv5iO04HsOZSxQEuuTgU69/9n/8CwbF6r2g6DnNBPj4woBrfXYqO33dCar4cIVRMF29+PJjzXHvANDUfqO7DGczdGGvqhif4dMNcMRHbs+StH0fA7MFkaZmigeBTmtRl38n859+8lC7/p297LdV4IEJ/poiN2xZ9gc9hf4lfSMEc3vy4Tw6kpgpJcrJXk/7GZP7Tb+TEnd2K8eU+V646senhoF2GTW8j+G52MT3ecy+Y7HC4Qj/LYux/eTdYfSh10BpKhrV6/oDleZMj+FouB6TcrjFY7pIe//kVONjHyKTmU5vVN6pivD2PgqkD1UATFj3WkNKb1a7SBLW5fSUkovk8TOp65eFF9Tn0NUIQsPd07ME5VnWKvrZVzcN9ekH/1FjUjBdYbfWhU+NUClBx5uHQ7asZwvux02nxtv76zdEIsREh9JTNU/XH98CuPtrYu/2+FfvrR//1I7d+A9jqlwa9S06pDoyvuRZ3OYNWM36xTpyObX6nBO6ddickq2gybuupfuw5IPs/v9w8pCmc/eWA3SLfBWuDYgg3v5e8zGAp1rkWMsgycqVuIPgmzTVLA1u/jx7F6D0QeHANoN4EnaKyp8VyiZdc3fKTRmV6HNgZ1xCir60hafPzlmRRhf9n8IEs/O8tBe9ceFK3yCZA9CC/guz5mqlvd2iYPfUVqtnzM+PwpITBL1tJKSVE0xHQfw82v8s8haiSRfI9tIpJnqUUwawe3miZkVfNUvPOgf+NHxhdrvEwWTq+wqzkrti6SWlBbud3CV/9mxDBwVsL8QAUQATpSZNR/Az0UdcpIPaX4CK4nwf+Fns9BPV8o7E7WGCJPyekHpz9nUyTYhTfN5tHVfJAhU1OfLF1/O4tcGcSpo7I8MD2+TUH1Pgc8VGglC2/UuVA+5oc6vFdlMyX10tS3fF4xkEadMEYN9MDdnxKsC6bYkC+fhDBl+CV2OdstWA2eBFIu6JA0iPyitEsz426nAUBoTwmAU0vtxVKpYGoO8oTYzK/cyElyhWxO+YZe8pOCiUtfxMueojJlNK6VgPbgNRaz3T48VaYg5PemzR07X1Cb3ovgV11Wymu4yaYkT0pYHt++MBZq7nIwuzD7z2/Y+cRYbYIQ9HAQ7AaODiSwJybCEIgeXKFPUX+DtPrcJMgeIk8KifFZTxj+xqKTTPRQN8ZAV2U6wyj9TBT5II9WJSgQPB+Jh41T6+Arcf9p4Mul2lYw7fvQD19/EA3+nb4PI2VSQskxOp9p/6oNg6kKpvvBUKlDx0a3n/7YJHiDw/t8fjBqKgVk321RwjjMEzpeY/rakHJOgOcoo7iT58NDGrFCi4pFxOg/qRkjZZSgnpjqthaz3iYv6uWQxAPBH3X88+cquDcAT0CR2olxSUZ/taryK0Ohxy4g/nXVBooJ4LJ/nXu2erprgXfGVDQUnv3ZOlb5wGtdZywL/GnYtnVgQuym8mIkslGIWZ50YPqUxVkinjdXPERN3CqYonqydceltqyNXh5NRoCye5VMKvjX5DIDxHjc/JIVi841TJsTmeqdc/WXMpvHsMVdz9sK9NpWFTnWAIHpUeSOZLLRIshDWzXowaf+4MoyJYCwzIE+BhovrmehyhV4bjGhJMqLZluv26b3YMCtDyG3zCOn3MEvvo6Y/fWmono1GSGXqgyivD+FDBFPQk7YdQKmi6jV81+bMZqHrQLUqZDl6ynIJrhRS0k8jDvRrAqp6hUxV1vUNSBtZq/n4cFI9MLiRS/X8U694YBwosV4Dup3EK0HpUBScp4bCvWMJDGAB1UeuRQ5+CTaq6PwAblK+rwsbm8GPF724J1zIeozs4rmMyrnqnU6VRsa+e2WvspJHBfax98Cochme1W8aFSTT4OPl3N5pMzQxW89vy//OnlybSUgZNWXCQ/NaBL35RK7c0CRjENKyaY2QMcgtkge9+z2OxkJwO64t7EwZP8kk7wqlE9nvo7YlIzVD/9cHflXZtdCDssHzDZ3seC6XwqsX4z82SeRrJCVIaEnL6uXbEuUFZg7ZMDDswTCUgLKk79OGgg1fjeJaOwi33l+MkBAZ19rWayi6EKpVzD2gseBiZlfg+lmJORJHUZI5X4NAC4+QO1xLYYGBSMUEUlIlT38zMYnkmAtkEXCw6fpzrpd1FYQ3cfDTjuBn0YbnqvwEbdq9gx5C2sXWkbPKEb1Cv5ImB////DXEGP8i8o1g86afB3zE3EabZbjDyMIqju9BEfduM7WfaZVIPLSZ9oeAhvjI1CIMB1NPbU+qqvahanxYAX6eTS57BvE4b5aww+QoAJb+SfYpGXZwoMeaixhdZTsnA7dQZn5n/JqP4Wtiqn6wOayfNKmuw9Ff/un3BtS5L6fGEjf/Uh3JuRRcvt9y5PoGXg8iUzdvekSOaljEZgjq+J6jPyhlnYaz38/owArcoZDlRP0EP5nK8Lxf4RFEv1PZWQ94BKYMN/2V/9gCZKW2x+8sOwTp0AYb0LL0SaPgwwek9s8OOkHTW2+iQuynWF3QV+0G4I9WT/wkOu+GR5YVeJ7IA97ymBi/BN6cHzQTXj15tAp3N1+tg512K8xXqvguNLpf7xEFSsuDkr4Gh2x4H+ewBSFhNSaid84A0/AnYK9gi28VsnhO6PYL4ZzxTsbv4Je/uTkMw7o4i3gwUXio41YFMYzZJ6P48exd96NfuolBX42+97tO7NaFgsQeWBblAHAT6wmNBf3yN8XuMUI/P+CZYrrkOYeCmH9UZcgvXshxLcwadDNS35sC0ekTq+bpTITXdijNfKGn6HpqLeZXcs9o916sGpABU2Lu67mrjdfgUmPRywEYlhMXvVmIPiia+k94PInJ3spsH1V96xc/FHRuuB+bDvCMN4muWKNfXwgmpW29Tl5NBcemGZVfnnStt6fYcl/CaS6k1xTdbWXM0FoLMN6ZhqOBP9KFjnp/QBY3z8kWekrwlRxLSBv/4IMbpW5rD24iOEK+5/RPzIezDrt2QED658YXx0MtA40rTtAgcz6T7lzOZr1a/QfP8eCICDZopZ5LvbG9oqNsSlLlpbcCSw1Wu0uoPFmNgOM/ydDyF1u6jdtoQsnGK/fBetmXdN5mz1DfjxFpNwXTwOK7rNBuS/7wHru3RMRgW3JSyBdMYX5v+quZQjAbQisqgJ1EPBN3s/At/voUH7v3ytztSHH6tL6GWMSDHuuksOE+auGH/0uaL2QYnBzH1zah4WAxDouzz4sFokssre5vy6XR/gHACP4vPvXU1KkCAQ/C4rWgrXDZjUTx2YDtaK78NvZMuP83J44dYDDW53Ppj4h4ZU8ecdcJwPpslCdkDwD+/sr38CLJ89An/e/UH4AY9DrwfxVf3jX67q68M+OiQf9fx4vqlZpJ9qOnrvGG71EicPsQ6m8hvH8Pvk9tTrZKdY9OeVg3ZrrWguc4UN7+xow93OfKLlmdJqEBc1gqmeSducE8imzIh4dd3bAQ2vl18wDM7XAJ+Yv+E/fBjt+6uHA4YIn4qFmAsZyiuMVmcmO0jfyRhovQu1N/fDnt/tAxollgC3+0UcDgNzTmYBwnXU9tSyzmk1cfs6Bs+12uN/eHk0awOAD9LxX72f+asBYW+ZM3WiaKm+a1AacMM3BIZ7nJBy/zMgp8CAZsp0qlin/yK4/h53akSoKSiuJ06ZjFeO3efnXEwengRY8b294a9RLFlXctBPPIY9N7Kqsb5aDdRcd092FqDJ7+/7vrb8ooYqPQLhuONdGPXXlgafzgK1sMtdZasH1C45P9kP32sne6dexPY4sWLiuxsBvBHuiWrwn2pUKTVglMg9ee6cExAvROjhlq9ElhWYTLWFNAWI6YKk2nolArpJBtzqLTXkUagabzsFK0briARlWqrRblcf7vNdiDe+OcwhdSFYVPuEjVn0gtmq5xjOi8fIXKVZMERtywOJNA0N/vLT9F1NuXDzAYfOHZt8hN0GvmXti22NO1ZLzJm8siTxA7uZpQMh588Q2lG7pxjZr2C216ADblCK2NXehskLu9j945NUv+Zpwg7GnANJQSnF72tfjahdMpjHNiXzaLgVvb0uOaz0VaX+ekmLNUcnAVagmQl0aZHMkdeuIHqsMrYu7YMt0fDsAIicjJrryg+zob4NZYtfGmJtHpbvw+Ph3XmZODgrccU/e7mGrbyWRKSt+6cHOKjVb50IajsFJOazGS7dDaF+f8Js+QhKDbu7E2O3JSWYxUQNgbU/HbBVmQdzDoRroyhwfuKAagxM/JXmcBqzI/VduQ7+4dN3pin2DtkvGGAqzFA/JE+i7hRtWL5dkSp//MV/7w6FGLVUgOVnr6G/ervuDsCCbTss1PUyPExMXnm12SGfotWuim3k/QtkJjCx2x4ywPw5SCFMiEokxjyTEfMZKaeakxHXgXjTsx2CH8Hbduw6UkEVZ7j+6R20RqhJ2HHYN3/PA98O2c8cb8Yzg492awlKQVD840Mfq0+o/WUX8O/v8WhJW/07mawhqgGOvJpsfEgv9hT/Vvg8sQvhVuoVQuiYvLoHtEdK0w3JcvTekWqv5EXdodWH5UinHG78k57GwQ3WZ6vPMDqdY+yRgBWsUssY2vtYwsHx8A2mcyJz8nwXIA1zm1Wz3a4u2PgfttQiHsRr2xqg57M3NUiTVCtQHqWi1ZVO9vk7Af1W72AmrCFZhRWYy9stZvB5a098cl5KUZvC7Qp3SyshvhqDQBQSd/7Tr/QgeZq5qkd/hNitFWqRlQTMiYIZnuZt1q0SNQEzrRb9XZ9u/LUSBTlU/tXn23pRWKdjP4SunTr4KdZz8Zcf0Bw/E9U/KAiW55AZMPEyDhvZyhXENQQJ1pMzkv2S7UBvdVcb9JY+Y4MTnWLNr0MG5fgHqId4OMxxWUDwg2n7xzeSP/yDm74m4sUPwdsx8hLyQexv+cknVFFvAsy3Sdkeve+KZRVmCLTj6UtRo1+CFfnHEU4Y6lgXXQvw5REo8KBJjHpSsDDmfxdBVkmCqI3OBzDT6pVCQ609XGzrtf7xq/eUi1h7GH0wv25RCc338EDc5boOMw+jGLyvsYMxuT2H1TgPEnSjtqMO839DR3Y5J3+3U4TWy9IOSwQ8Dgq30sTpt1ULck/PDWRn/kdkrnQC0kWOAd7N44hkvzsHM1p9HkYheuM/PT87r88LZiW80mT3shnl7qcH7Bu3oMepfgYzjnZX+P68O+wKUz2s37T8x2do4NoFWH/cdjS+9kXUhTyX0IUXITyCR0Tkb/YFTJ/8CLp25uCjeD0zUZnoB1KhfVO8my+M5UoR/uEb2gMGB3IpF1tN7LUhMuJhNdtXh/+7HtZUU62omxy7f/rkUK6/f/kIDprCqLHx1fXaGjVUd+ZIXcuqhjVLH9d/fKT6bRPEV+b5sD1eI2qF7zJgB0O6Qr3R1X94JGQkRkqe/hyaWlxeMW/yyr96g82zeUz27LnTpNKwPn/4HgjrZ82h7ogiWsJhKNhL/1jgyBkdtYOiTxa6nxR4TNF+qz+/YG2XuISCEr5pzOf9sI47SYIPFFC0nl5xUdOqy2BDfyIRRH8OFr47jSBpKwvJY+mC9d0H/V/+ol1RJxVhp1sMWhsk1CmytGCl0/QQWNts973ZBySBcgmvpiTgbqufzH6PEnhzwRmj868z2fE92sA7dSI28qEKaHHDK9DHj4JD6fJl/z7/3p4SdkjHge/t99KgZadvBABpghXV+ke17Sylurj4YD4chRTw8S4hrFDdiv1m1/7TM9hRpiBY5Y9cg6aq7zjMqVwx2o41jBLQk/m4ZMmf/6AcbYMSsvmFixbWK3j2/Ig1XhTMbstnKIsZR950fAwEx69c3Rm/lPCytAR/ek8NzLKm+vv7DZbdTe4gPHxEfLz9SLXO+YXAXE59siPUYHv+Sq/yVwxPODRP7TBH2K1h1ZQa9p1TOszc7pRB2O0nwn8swNjFXT9weV4k7E8HtxBBia5AEDuPnsv1lyz64ez+6VtS3XEKNjy/AjBQEwmO1LGlCTsC+SDy6bl7r8laOd71Hx445mdnTo2DJVDoekKUzW/69XqQKZufSg8Pa1/MkpFa0DwkMQFiWBQst8YVNt78o8Hl8warfZt5ZbseUTP7aK5/em3/Ln2MpKNqznD8usq8vjSMeP08CNV0eKlXT2+w89zlCSXygcDLq9aww8nrMAMOxUA88Bg7H/kM5nM7f6CfBIy61vSrxi+8SYqSDzzixgdvkqx2R8hHV0D19nUJJm7IZ2hkGUGcVL2KZZ/NDVhU64SPesiScWckMVTbrKbI0cxqbVsXwmF5BhTr1yNbR99/wNViOdpJAqxI+RUI3PwmrL+agtXdtPYwnZOSsIdYm8SCwIbKLhWppReyOQWCqoE//h7wvA+2eLSgUho6AehyCmZfcvJ/ehtncTswugg25IabRHZ431dr6piGynZ9Sf/Wm28K+wHd9HNEM3CDQrxwL07Z1h9f5xIXo6e+kDpchr/Z83Eg9WdPguSjKtihrRuIav2z4Lp4zVZPB3PFJDEAC1lCvdMhDuZ9EfKQGwqJjB2VAuZ/ZV7Z/ANsh1Y0THnc2HAhSkBD+mMJY6UTwvJbXLE+Dt326psRwkugQLQ8jKqa7zAfwdMOfmQJhyBZK/FiwDhEKXUE6xvM5RFI8JLCGJ8LX2bTPptr9d7Fb2yTs7H5ET/yVw8Rd6wLRo5FI4AHUFzysy5PQNv2m8NMzwa64UnQbfwfqvCeInD4VNVaOD6CTGgdfIime8A2//oPz5HinNJq/XFf/i9fsLO+q2rT4xbYvcScNH2pMiL1OlIDSTn89QsShgRsyRseEm8sOzAL3jACMTXO6Dk5bKDdwkngh2FBPWsyzX3jYAVEUjNh4+UJbI48uioivzLsMvYzyZQWUPmc8+UvPtjmR3TKT14xWWRTNJf0m1gwQ3NMpMx6s6kd7gh6tunRQNXWZFriqoeF84rIPo0ew/z0GheUN9ajZf/aD8zQp0z+8//9sTQKcbfAEn5i4Ya9PPqA2SzvDdjqIbYGaa2YVtNGkVPNRX/65w9PocjPDHH9katG4ftI4WdyZLLi7ysgpNVctbLOZ+yG8ilYikJb5S/xAT2sHDZ5F+tXeNP1F3ZfAajmblo7hevEF/WTXQPEXSBlMDNlEyNHqypaPF4NHC2zIiJuh6KtL1dXnRsppid5VINJePsW7Bq3o4b+fYM1uI4QbPWAmvEqgnHDS7Vp3D1hd0kB31qGJdz8BzQXLqrWoRjqPz2MvruMC4i94yFUX2JL9fqpVeLhklzh0qsNtuH5HTD9I61/+ggpOzIOc30Na3A29vy/esVOekVUIVZtHG/3w67iLQO+KAj4wNp9ME72p4e7Ax7Jv35V9SxDMDqci73iQxj7zZqtGm+upH/9kNW0/BmespVRtPGxVb52Nowes0z/9PBs37ttMNoTEZbmbbHpiRBeYwui8a5Rcw581sF9roY4NGKuYH/PF2dMw2Ftx8H6fTQxaHahj438vANre3l08D4Vp396mm39kn96MCWea/75o7BEASSz50bJujswG+yqYkXgG6rmCuYQwiy7F3jzG9my+WdQ95BFNz+2WO5d6oLf2QlxuFPa4J9+FFdUYEvGQzD99Sf05TeQaOs/rKtOOFjdrz09V2M9iMHjE6r3npfpVj8HErXmFXR8Rgh7vnqT2PvhAaUYyminPAI2lkemqO+cf5JdTO1gieb5oYJPqNMYqAHY+mWjeh5/LXWZb5qiGMgulIcpwsbmR89/eClEV4JtBxtADNkRwTUqXBr8Du9/ehSI+Hyi9nU12P78CB6wJT4hg65JjGhu9IKJFf7pVwqouOwjaPiThjPWkmrp6kMDoXTVqJkUd7a82UxUMXJmqteeWoxPr/Fh/or36H1+XdkErKCBZ3u9YXNv+sGcUteHB2pLREpY+NePU2Aahg72dofJHDVrJnDTs6je+ON6bf1a0b3Qwkf/UpurJhFfmb1ApnYUSQGLZ/8D7ydWT+vNZGDh8MuH9+cxwP6jrBh5Ho8QPlq1wvjxoAGt3+8eOprSEI6GLes3Pqle0D3FZuydwMJf2xxGtLog4eInCX80Rw2cHk9A9tJqB2xrvkOe0YWgTY+OmT1ZyuZfkN3c74OWqXknvwzbRSqqgmFS314M03ogiA04MUlaEENxFHJDtAah+c/fXRvpQK1l/A3sFsAcLv2uodbm141xvL2i/g5C7Mt3sVgf0keS/viVZx6SYTab1oJy1rxoeDo1QX9dUhvqbe5jLRpObHHCAcLUFxWsh0NQrM/Ls4SP8rzHB9PU2YZHNjSDGdNg7syEr69WDWgSDzTguvcwp8+7AFexrxCb8zpYY5T30Ee6gZT2dCrY5r+q+xV1OJyUDiwt/jQwGrkdDSulTxbQOyO8XV7boEjrlayn8yf+5//r2dPY+NWPgPtpqakOG2lYNanx4eZ3U8sZSULeXNP/9ftIt8ULC9kx/Ncv0R+DV/3jd3/xtvlhAxEPQILZKrbETBY92Hu/dwer5qER9XR3AhpnaATDd3/f8FdnjCReA4HPfan2XPhqcYG/wum7j2h5UkJzhZ2aQWR6N3oVd3O1tMM53E5ZKNFSP1/V9MeX/58tBeL/3lLgd3dI3WofmvMJgBTUHjmQLntPwaLssAXLfV1S85JlbMkO+AHnUEY0xKhO1qi5j9Dr5idFhlQUS3c1DLiWzYJkHk5sMdlRAmO3HTzoX+OCPW6OLc3iiyBedA+DKGg3SZnjzKGBcfiZdQxwDXb+y6IFbJqCKM+UQM1PBWwaJiyW3a/gYKmlL5rdH/eK1cb+s+1q0ujBtFZzOJbHFNqJHJMlGLmEtVM3w3fve9iSCjqw5kKh0jNXwUePvrezIO0eqErFEW4qM7bI/Q/CQLpO2MeVU/B9yCOY6PyXyH18Ziv3mHxgcVKFr4yZ5vqVilwm7T4gQJu/FXmjN1IfykfCofuJwey3dwGo+e9LZpFpjB3cl6QaKQmoKUZKwiZd1mChvW5knJYbWM0keamF9rSQvGu+FRnFzoDCIB6JMDuLOe2S/QyD6yeluqS+wAz45wi7pEuIKkXIXFX+vcI7VXt8wJYBVg/SGMiC8cNIryeTHLoigvP21p+tzMmwvtEvhGZaqjhIrma117eDaqw0u1HNr71gai/tFX4RO9BgAbdgUX9fGzo/G5Ll2e+TsT7yEtziB9vK0oFxv58ITC6hi4vkQgr2sMzPX/xgLxmX4ldY6wfqvZlRXWzWYTmVLge3eMCIm5thMu+qAW6NtdIba1K2Av/mg1vjO9gczmbAV8e2AesiEOrjz2ouqLRmSFXLx2X9mIMmjT4NeKfTCQdVGgVzXRUWjJcJUMNszIJZ96cPDnKyYvv3NIe1wG9FwUbt4XTnvM2FPxMNoHssIhi95KAFnPCC/Luu8OG2bWmQNG2GTFBN+kCyXowf2biqS7n22D37T5MxrdJgbZ2OGMsnE6w5diK4TVBA/E2s2QB+3x42j/6Nre37+JdcfMB4vwv4GFiHYO4/RxsSo8V/6z+stiqX8BgLKfbRkVTEi48vOBo7neymSAXTh7wUNX81A8W/ZGQzPkkalCLY4IeFvWHRXTWGy+XmoOGnroDtz/cSWreuxecx6c3+idZUfdBlQZNH31VX1ivamekrpnkW+sEq7S0DFgcWY01cg2pxVwnCVjYY2R1uv2L145yHNTYSeijPzJzn184C68Ju9Nhz3bA018SH+9G0kWAdIZhfaDslRAMnIn1e7iBi+6GB5VKW1MS3A5izbfOF+n3o1N7nOZjGce5h/uo16u2+UTKCZ+qrybImpP1092Q5rPQB20fZ4bh4D9tb+3cfZouXINamRzACfk1VsP9+qHUTLcaQo89QmT8fqi12bk7OmqXw1OYcdk7Z1Zyt7vEB3SO1qG0dS7b0RkyA/XgTbFqzmRDFE14Qx8XxH14tpvsQ4OimNda8YxHM3fGYARDlAOtnPQaMS80eGvioUuu7QnPppleovC3piB6+mLHpOz0IdFBj4wBEx2JVniWBdR0C6mhWDOjhPpbAfCKTGoL7DdaiVlb4kekO6/3ZqNjPeNUgVJsL9cS2D+am8iA0fuKdvHmQFb/ydukh+Tw7HGg0Koj80kp1/jh/eFoW8yJ8Gng5mSNRLKVmC7noGUxE6012PjXMRU1TBJWzbFD0ckU2h83uCvqJi7HvfHVT+B7rTHkoL4le+vbKFqkvO7iWVUkRkvVkvikbhZ+aFzXLPgsIfYcc3PXXO01i7WEuyaIRAM6Th/HAecEan3QD/pLbAevFZCX7eG5smLR6iA/OoU0WqU87cI/clpZH+cUI/7pf4Tv9QWo0QVXMgaqnMDvFCrW1k26KOe19eIsoRvO2Poz7pS+4XB7lkd85ekBuyseGj29wJrtvLA6rwb0N2HIXnZpd34CxlToXaH1cEwbiGsxBO5dgizdq1r9loLWhvoBg9w3qs7AP5ht+CsBzhYUeFPXN1lLeDgIP6RllvwdJ5llwOJiGmBH+x5aCpFFfK0tsyUTmTkYwX6OrAuZPEFDkHjHY4nUF2SnF26FBFzDPQRPCJ20lJDX327B8blcDrk4gY1d2Psk//MyAcsOHHgKw+vHLVTY8w74m5f/NV+1gdNj9+dogfCXbUh9+tSdSu6omceIBAvuX+tQz8jCYK+nRAVCYFyIKrTfMl2/5AEdJA9h++ThZ1N96VXDLH/DhqeFC1L3oAbd6Sr1ksgeW01KA6Wn8DwAAAP//pF3JtrKwsn4gBiIKKYZIJ22CgqgzwA4UkSYB8vR3sf9zZ/eOznAvXVtNquprQqp2ZIevVsxLAzcQheaO3X4/yx+ZxClc0O1IYT2e4rndTA784avVH0VEP+HUIsfoC+aV/qebX7IHcHrFG6azR5mPB3AagFP9wd/ANCqm39Q3ysac0XeMS2Na8Ay1TWsSXVMOnB/sYAtiLdgsuK3DeNOdLQrqY8WJFVzrbq6wNyvH/eHM9GLzjidN1GdVd1cmsTNp9Psnlkeo8Tcgbhln+bCf7wlcxunFfH6YEP2GOYbqN57x3O5XxpSb8xMaAd8oyk9iRQv5vN00Df8Q0zg844UvBChQXzrZ05+R86hwn3AMGoV53zvLOcmX+0YR1Ix8VY5+zrwVlPevvjOvdn3eHSc3Qsed6jISGbtYOkb1BZJ6EgjxWGmMZyIcEZ3fR4yW/OfrliYwDOcjc2j+4HzSqATzQTgxS4xyv165vzc66vqd7Jf6OsqPTwR3xicsXV99R+EuRGhb+yEJikdSTWutvYPxCAwSjscv4usWtcoI26Wx7Rj7E5m2R2TdRyBHTTmg4WCXM9Aw1tiuBwXNVdUIoK7QC6Na26Guoob+h2//6uugrozj5jSdAso/wtrvNw/hAuHcXbDwuY8dh98swBaVI9PmXK04/BQBfnfjRdyd5VTzqXZm9JVNh6Utn9BoqiJVxb12If5LOOdUcLEAF8liTO9uZz4sfFXZdo+ceW/Ojd/biDO08EHmFeseLfzVBO9CQ+Z7prng61eAQ2mOhFSroeLpeO1hax/Fv3oU91tfc9QY7iYLXRrk4k3uG6W7nF8kICExBp3LDaifS09h+Vtc3R8Ryju7Wurhz5jfODL/6jnx0qA1RiSee0Uj/ZUZmwOreGW8jnAofhumXyRmzAUWHKgNlNMV7mN/XPuHCCGkZey+rFcTQrsFpKwsKq0zhY/nT3KHGAqT2VE4dFxILgL88fEd+u7R/MR2DdlHwMx6aCznKCF3MOVHx/C6+P7j08DPxgmPqrXuxt3vSVE0WwOxHfKNF8GgK0/LtplmKJM/203zRqfAIlTW81fcs9fowTeWgr949adVYtgQB9eeafHmiHg6BhdUeABYuXtRvHRu8OA8qhndRLuk69/Yw1CZZY4FvA2Myb09TTRtLh7Z1ckQT1c2ZEhfJgGLxuGZr5fX4bhPe7bERzefam2GjT8iWohZUY0lblpweC5T2BZfg+8d/Q7TpB6XIyiUz8HR7dHf+lgh9fxRWV/Gv/XG6NJu81lLLhfoh8pnml3rfGPd5BGe4lQx7/H8Gf/q1R+f2d00nM9N2DzhkV0PzOse72o6584R0rS94SQPnFxsX6sR6fJ2Znt7fMejAytJWVn7gE5k4N0f35LfZhxSS/2QnAu/lwQH3deZ/n3aaApn9wJvMy0xvB9WLHblMYPP7/LB0rLf0+r3OqqG3MvM3tp9N6eR6cFv++0JOa+Aj4e6LaAW3oQcH6XWzd+tHqFrdz/h1e5857yihgaoc3bEXvJrXt3nO5gmYczxlbfPSiMWEP1ufLLsv9GTQ9v/0wt44T/jnXhb4LutwTJ+13yRBQcBNv5QM+sZyzmTk0FBtVATZmNplfeC+ArUv/fr1HUrKnnURGk3MaK3TpLzg20qYFy5z/a7rKvaRY9BvLfuVMnv927UGxCQaYYM/2iixfx59SNI6k1Mlu4CxngnUQA3j9GlHlc594tqRmROEPGidWE0T7kR4ahrdyr97svsVWtQ4LKzTbxOzj0aPjoIaOG7xG2PazSZjnyHrskkYt36l8/9eQeq9Aomkn1vijHmsjrCXLwnrJBy9se4NjXlj98s/K6T8KGLIJneGbnfnm1MN96+RUH4WpHl93e/5/XngXfpQ3bLdzUfH7IdAIfDgbiEPXO+c6MCpenXYe5WEf3uMCIBmYJSMZxuvtUkCOcSPbL8wMh04MY/vZJ9AJPbM4mWWdSPVNk81QqvHPPDfyCsBbTgHx6Pr8xvTFXsgelFxyx3EFH3MC8iNPzZE40oL04lj1/g9DpsmCscdGO96D+Eb2HJXFGtjOlsFTMaziuGpz3dGj88lQB7If7LF9ffaHebwvfqZcTdfD2Ds132hsFxOmLtqJwPK6EX0YqIRypfVnnMk/wAMIJyYF4kP/PejMMW2M0rKJLlRzzJmhOgBpMMs7nZGdIgUYAF3/H4hx+5pWWwkS453bhn6P74E7zeY03L7Th3syF4bxBWQ4Nf5575/GNEHhRPLBNDVeaYP8xI/MN/so+0VTygNhIVr3Ipnha9zu6GhEGswSaJOjn5RhDmHrxh/SB24nM0bFuSoszPDEKUz2zQXLkIqAsVjeHGvvvjZl28YR0EOjkLH8KnVazO4A2KiFF8xjnFEOrQVsfXsl6twd29nCpvujnTesFv5hf3AgqrocQ8bN2cv4e+huejqpm3yQ/+pN1lBVaW86ITyEVH/+KvIjjAYH52aCzeCobc3z+ZaW233Wwd2QxJEHKm7aLWmGwn1uBHPZ84SmGhZb9qKNr1ifzpqTpGo61WgvyjpbB/doO6utSwa3cpnu4JLPpyFFRdhj3DNReNSV4pEnoq+wmPJ7wzJFX8zUh9qJzZW+ucD5Zj9cpzdUuokgaewX/nqVDRGCfM6o8JH24mHv/0Au3iM46b6XWl4AhWS3SYvnyepUwHOfUipm+Zmg9TvzOBfb8q/QlRwEX/2zmwy/CRNjeP8DH+CBSFm1WNy3E6+6w7NwlU70ykL94EMXf29x5MYY2Zlj3XHTP4z4Y/PYhr0c3FGCVbaIzXD7f7z8unZ6SVqpVYPv3ze6Y5Ne+qX6prgnfVGbHCfAlwTY0bFY7rmz/vv6II61fWsh2+jEa/frYeYmcJM73hy3095XJBUrde5lyrMxqbjXhBi54kzcu3/Nls5P6Pf5PDKHzy2Yd0GZSlhsx8iSc+Xj6vEX1ljRNjgDyeBdeGf/i8z9qzPw5BZ8JFck3m9z+z23yH56yGl33IdpY5+UM0rjBq1Slluzq+GH/1EJIgdrCoTk3+825uA9qq3dNlZrjBw6kqYfF3WHCSJv5VVmUkK93+Rxwljyq+SVY63DRDpbUy8mpa+DaSXn5Bh21EF349YLif0gPxWfJE/MRWNmq2kkK77+mT94bQ3KF8tzpVx+OX882qNpHwiRxiy4UVb2Dli5BKpRTW2uHld7v7K1H3/DvTkfHR6EucJ+jzO0fM6ZbBCRX2RuWLTwIJm7iPh+Ys9kD38g3Dttj76ykdA0h7TVv07/LI7uV9RGLhtiz8+772DDOcD/sd00uP/uNzkLwqi/z5lyy12hYtfiDxRPao2k+5DuDzNnTmG/kLzd8NAOTPbMZl/vLzkQVXACd+PYltVaeOh4WV/q//FOGuv79/Nrq1XcEc7/OsRknSEmRcxSfL/csRbUJbLNQvjXui3V8t6p0vHEHwmob4Sz356K73hvOkMbquheX/L/sVzOsD239XXT5Ug+rAzZsMZgGRurnAkocmffdme/cy8TGuD+k//2p37ok/Se0wKztv39DR357z8V3FNnoqrs1cmjzz/o9vCEx5M7f6cWN8YaxvfXWMqFD4NprOoy+ihT/jsvaNWBJEP0Gb+jBR4e2GBv3T71biPMleZ8zgtGM6NILvYDlLf3kfHl0HlvyiU6+OfntGTinvFLNjd2nyjSljWEB8HxzY9Zhuq3n93Gp/9Zr5pxVCk3MLC2TehTXmgxp1a1nTAoSHJCAXWqz9IbavLYRDaTHNxVGONu0pgEtey5T33w3ivAtGdCqcN8FP58y5fcMaco2ywtP3F6E5qjsNGmezodfnKvAH+eTPII+djb/uZUIT32kK/OkpL9isF7+v7dFqNWrk8p1Vf7K5bgM+o4SemVBz9qK/O7w8nNPyKa7jxR/UlXFTUjorVmqwtRbUaPGjSbAyk3yoDT2CBocZ+cvvP/6otDEJqJwldz6zVwCIXvQ9saci6cb8/d7++WnEU+ywGm/yOQG2H2U8B5IQs6dxnlGm0SPBbzf0xbV/OEJ726rE6yc5bvrN8gjFY0PoZn0Y+fwt3zYEt/bHtMem6oZjfsLqwm/ophIkf9LvzQyQKZzoxzCIu80pSJDajoQEHx5XXFm1R1j8c6rwm4fGoXQjxcFZSOzG04yxf9UtsPLAiM6LOB7d40jV5ND2zO5txMd6G5bw52/9+Rejq2Z35SSNJklnrnf8q08UudS4LH5nbIglfjaw2e29//jx4pM8kaeCu6ynGA9f/f5EWuYqFBWNUNGH/LtA5Uo/Sq1PmQ/qb86AfCULS41z6iaDW1v4XMuAhGGnxrMR5yW0TWP+4cmfPoj+6XtnOZ+hxwj1YN2HL7M+7TefMWTJv/xc8JevNy03YffuOKXHteo381qQkCm/NLZfH0a0kTpHgBe7n+n2IUqofy+3qP0Y2wv/L9B8VVrzz79hThhiY/D347z06ETMKLouHw/1yVEqkWzpNUt/MXtdLzUIbbVj/rN1/el1US+w4Ak+r4+2P1pxE/3VE+Lld6Gj+XseobmggJHT6YSGJZ/UP//2N6Jt9U9fL34B8SfA+by0eQE7Xqv07RO7k7zj01MNM2+I8+XHeDmvstGhn1/k7/f9/Z6/ekbrsJyMngZBC9P+NJO9Y+Ccb9v2qXzpoV/8kBV/mc5UAMrtngVX8WLMon8VwWlkg4R9susGTfRGRPfoht9muULDH3/9CKND1ehixiJ62CK0fP/BZSAJ+b94WvgqFrc56cbrx0gUz0hbEqp1jWa/3gAs50OLP/3m1G6eb2i3Oafr02BV3N1PqWomsUnHpZ5MJW22aCrGlrhZIvC/8wjVSMoj2WtW4/OHeZGUyhV/7KxGQcyb811ESz3AsnAo/UkTI1tF62bzH37+DWOMsBp86NauUv+3abmtjsdoZtrHL9E6GzVN/Ttv0Vc5Xd5vbdF1jSSmEWXHp6t1EWDrf3Qq3KXK4LA6OGD9SoPYt/utmx/yK0O3TLowYw293zuwWvTB40zCRa/MNMieaPFfsDRzvZr1X+Sop2BPcDjVkt8f0b5Gwufo4PVDY/G46BGUHlLCgtxFVdOFbglSXa6I8RFOxliXYgPrwBv++XvTwjeQ5sUvYiWX0lgeT9Qh3jucRSH5dD33TzYkgCVm68jx+24z1upQdq9//L0XXMVTvpx+aFE8f5wpJ61Ur+O3YSbfR/k//3JdjyHBTpBV//TWwmdJOB6OleR9q/6PL5Hg4S9XyMxIlBf/ioob59ONBIICLXwVz46id1JGihqS4OAs/tK7Gj9VcwHJB5F+nMsUd9+hmaHGn4DopXtBgzNXDaie9CIO2az9aSUsXaMe6Ze43vVbzcFx16sb+74Mhilf+XgmUgQn0FQq0Jl1vOtlrBBYnWk1/vSYfwZ5i8RDhak+ThufJ2Mpwualb4n+FE8xh9XVQ4H6PmMBLC8esI0UkOo6Ye63bfJx5eIMKmZ+GC78Gi16fAsJRD67Lnqvdxu3hr2LK2LD/oWmP764kbKceKVvdRz9hhZyS/wyl9cib/78bqdqPPJAyrqagv0xgT99FCz7waF1jrD4ZXj2KzHvl/ejihkRc/V8l3OlvWYgTUeb+TwqOs61E0XP7DgQtz69l/NKpKn8NRbkz9/544/y4jcScx8WxlRd7gLqmrtP7AiXiNk3W//D43/nq+Nvu6OQvB4jw+2U5dziegOLPv/zU42/82Agx2vIjG8S8oHuOgekXWwQkrbXvEOC8JQX/ombrNTjjZx8tkhBnkBV+V3Efbs5AVh89cbb9vH213R3k9DFvhxZ8BEdxLLMB5mcWc72Vv7kw8EeTVjwGovNfeAzPPwa0ilo2E1+Q9z9nTd/8GSRnUDWOVdOTvlfdSnY/j9dCp5HhF83J+VjmDUOsLZcLbeaTvFkR+tIWTv9iR1lx803SejXUH2oxezmVcS83WQX4Dy22E7Q+3haIyeF6n4XqeKvNvF8di4J+symRUxZbavfL1oo2uOXEi/29G4y3DqDw8oOmD3Wu44xaxtAiB4O21mh1vEpSyL0EYqCuDLHHS+btQZ4OErMOOrPmH2E8gLj68Ew2q9wPsHnUCC3HAym6W/dkIq3cQR2eCC6FZZb33LKU8BiuSe4tudujI5YAnF6WFT6GE+Db32xAXuVhcQKn203xlLWI0OUHGYK8413YbvcmlOqNRa0s7vM4lBqGM7YJHuDfHO6zSlGwlB98fhrdaO3st8RDdSTmWlvAmM2P5cUTr7bMftgGIbkze8LZPtXTIzXR4s3xvIUO0GFhOlsT/4vdHsFOSvrScK0QtXPvZge6Ii7VDxu2ooZey1Sz3rWYvGR1MZXaLZbEB9dSsgdCXl/UNsUjnL7pptPPsTThrwLOIrEITsmGflU928bGSSbcJ33bTxtnFMA2u1zokqY4oq/G2jASqoXs0J1300PPdchq+QPs1H/4ZP9yGflczR9circqGq2RrvMpm4xuQmLxOmzk66GJhHoSmSsG20WJug6X47sGhRqNUA6A+yv0OEx/Kz4TEsBlPXrvqKCRZ+8eR3NAHI6n1lYaRt/JoWqgCs+N8wq6qEaX8ZAFfP2noi78qyOjyYtFc1unkSXP3Xe+0fyhl/QesxbLY94bC72CMZxWBH7KShoSD9nG7b8eKL14fn0J4WPCTqdpQsWVje7416pSCh/1gExPgZ0PAmNWsnK/USF5/kTt+WWviGs0z3x3fRT8eMUBZC6jU183Kz5VKDABJ9ZDrHtmeeTcQm2IJDzi1g/tTKkX7mhSIqPA5bvw+D/1P5JFeJ2Dglz5ditg0F+/q0nXW3W65jVsf2EJC8CZly6PeKDeq6h4R+b2IRgNLaP8xY6r/oR/5bqnehczxj6T5YS55Ob8Sgd3UXiuCExHWzEkkHKt6o594Sqkq0YX21b2quYmBrzXweE+vlCSpAuvYs3jpDwsf1uJTDNasCWqj4N5rWeCeFm86QbadbR1KQq/K0vs99u7XeqekrQtrkWxD1/nU6y5o+nvj79mcQN3vM5x7fnX7yzvZp78fCOtjNMxuFG3OSl835zsWdoMrFg2L9RgxurUVBfV6Ol4kGNOlaUWww7cjXIrbolBjuXWwH866+nsmN+4zl4h08I9+uaufPQ+tMjkp+K5OQi5qFjx+xq8RqI3OlkV133iKPReSLvByGxNHdtsPdryJTr0VLxtNSjqeg/NZTr3mfOysPVJhXeLTyvqU9XxuXBmb15tAgy3OMv+kr+ZOgPD/pUXjNL3maI3UPdRHuW7XF11LVcnNdBCUazTEme5zSevXeowK9vTRbgpuf95dkHEIfHgOjpw855INQeipNQJ/szMXNejsERJW5zYef2tM/ne5c5aMkXotUQo/HnIQmq4qeRv3o6Kfdl0EN06IiWwSmebpedpxZjrRECx8ngrlCXUP6MO3MHPhqf7LIr1fp59JkzcdmY8nQlIuIXyyyjxKzW1eeGld7VTYat4GbMQzFdwJ6wzgLnnKPJ4SsJxuWW2L4QJj50+sFRpPqrMEdNlaq3XmOJlvjEn8IdO2rftV5dpXVNcHBu8ulSPzNwfvDAE5OMeKPGvqN0vG6YIwxTN7fbTwGfo+3jdVMHRv97vt5qzuUr+9tP+tyHTxQd855grnU+P4Q+wPenURasLD3nf/Fy9t0rIY9b6c+hc5BgyUe2Sx8kl1Y4OoLoEYWOv/BjcGZtMciFJpB9R175NN99ipJ+9cFqWuUdpa0dwO+nFex8Ju+4P32R9K++47mixqgeNVutjA+Q/fsVx0v8BkplfIG4Sz2cx0LW4eT7HQvS5RbjbkAabHl0YtZYe93wvmgazB/LwlD6PZpk8jaVM552xOTT0x+j5ydBcbGaCN4tjzQ95G0LyS3SiC+eBT794W8wKhP5l7+KL0bohNwPIZntG+P3O2FY9puQ+GZU4+l6S+D+S28UzEKvJlHe6KBf/C8htPoYzc9412jJN7w+zgr/ecimaNVkGdtvhTCebpGsgPyeGrL7Oad85EZnIid/CMyWZh+NufoUQba/JRWW+Jn8izGjX9B4JKt9AdH10vVowdvl8yyf1UkUwC5tE2ZlG82YnunGROUnl/DmfnL4ek7FO0ChPdltONh8FJ9PE5Z6RtwDT7qpJTSBXSI9sfR2a4Na8+CB/GhrQpim+6wczQiqo3kj4UZLjPkxvzJVY1eXFDfK+HSJ5kYtjvsHMTX8Ro34SC8Q5cXILJy9q/4P//rsdWOaLx3jIYBI336s6x33rCxj3pksgkwYbyR/y6bPy9dnBClVTpR/VKmaqnsoIM2Uerbsjz+p3UMHL00+zH5tE7TgUwo7rtXE6b64GhPjWyvTeu/juczuxiSnKEUrtcqX+vKM+TX/JfC530um25tVR1GpmtBsMCX4Ker55K53Dnr3rciczps6tjLfR2W97ck//GyeXyVFDVlVGH1XLpqlbbXc4pVqvF7Wf72rqxnJ0qfAa95H+XQYtsvgH9dnxsup8rG85nd406IhqX1KYy43U4N4vxOZJnYPPhJT0YFmL5+ZdsYMGu08DFvW9gtfINX48kQB9sNhy4jGzv6wuu9E6A6jgtdL/Lb7YqWjv/pqXJ0359q2NNUiijvi6JFaNfSoJyAoQcIux9Munhz308JQo9/yfpOL3TpswbeTB3GfhVI1mJkY+KX/YlGYVT7q8fGC9mLlEl14aDnPRitDjL9NFul7y5gdGTSIkbshun/dIdaGWqCqaJCplM1jvOyfBlh87ondvCAfP9LFlIe2Oiz1fLkVPUWgZobcMfK9PavNEt/q50sCYoXqt6P56T2D0U0Gllbfhz/sIZoh74WKYaHqq4nrFx2O17Zl1svwKom2OFA6OJ/Zzhyrip/LERDrE84u7SB2U430N1TrvKU0ESs0H97BqGRJoOHJjOuOP8MdVc+dG7NHVjn+5K5dD/xr1+Pl8hqi0U7HYOxwTfbnfpeLrloVUM5mhcVnnXZTQ2qqwk1KyN47+Wh+rqQAxFUXUWHhs8MZBRKin8ykkprH+ZgYrIbt7v4l/onvfEkq1yLwtS0T875xF7zfCoq12gtYem1FPjc4b+Hyxkei32HHpePcHeEqYpuCe1jz6fa4ZJBF9QXX77ry+4OU2+B9NwKtbH2H1unnYaJi/9oxl61yPo33wAYxjlbEcwqxmhS+TeH1oWdK79VkjG9PrEF9cxOrx6aMZ3HvlaCQ9km016fgbwrFEyxDc1gYiTTvP0wTYZjGkh2sUKvW8TBeVEuTZfanf8Z91mxRKHcJHt227sbHs7LBdmFDt73w4d3UzDO8S/vArIVPT4UeZxC+nzGxXqrZzWy63SGUfwmV8t7LZ56cezm7L/1ETrmcD3akRtKVjj+Wgez508ntRhTWyZ5pEDuG+Dv6ptI/BJnt30IUd65AS3S8Ni0JP4cm5x9rolB82J6Ou9Yx1vGwvcCi/0iUPbZxH33Ft6I2WY9XTCuNPpBiCR32a52R5/HUTW/9ePxb73/rxafNIYLilzKCvSrxJ7V/9tBucEH+8HdcwUFBN4vtlvqv+lN88VpQj6uI6H0XopFeD28g77Bm4exraPadLFDqoi1xO/CvwXcrOUH5udoTvcfjgieNCBuHGmx/23ac5itBQHvzRQixfpPP6+QSoMJN1iTQGxrP17ffwK6bTsy8Gief35NDCh+mIqz4pZJzL0lSiPL7SIXVre74sZQpXORzzJxP/o7H/jveQRdfMtvHXzDmHWnhr96S4Kso/rDwF3W3uqjMbgQ557fR0tSFH1F1e/ZjruUfE8TVLyJO5x26pV4WsOg5Kpmu181s2/fQUP9Hdn38XD5/6uHpGhLu2Q1V09i39R+eMywH64o31pSiu++d6dV5mTlffVmAznP2XvBD5IO4w6ny+j59+usL2R9EeaXLIhgNrcJPFXOn1e8gOFlNvLlRYr72VR3VqxWj66IOuy5PrhT82/KM4+sXdD1y2RM+Y3RgjrX9oP7twRvu8GvJsp7Ge6jrGS3+AnGL1y4WC3h4kNjayP7th56/Kbx1+4zvW3apetUbJfidLiLd3njhz5c9bsG104k45gvzPoijLVwqtKGyxSVjKMn3DgnlV4xK/8TH99GQUDTnNcOGNnc8SY4i8rpx9y8eBgvtC5QFAqPBKB45bd67i/pPz2nnH2dio2To/n3+SFCct+hPj4JrPlWqvNKum+XlkeRApx2W1JznTCshBcYPPzxmOoqHkcsS6G8xobG+SaupSdcASz4S26y/S72OdPW1Lw9UXlkC6pH7LQHmVUrc+xD640EtU+BZmTPzWUvVoBtPCVQP10zPNtDxtb/W0bJeVA6EV86lLC7hdh8tdrCB5fNjelDAzGwJuS6N0C/SQUB//sB2443GOA5qA2++tYjewjPnIGFbsS6+y8yKPPLxwAxJbftTxXbrz4imAC6aOknb1XIL+OjPz4If4Q9PnGtuoXXH5xri7n5k2KIaHzeD+AT5Yxt0G7yGeDrqyVb9QpMy9+s1FeOvzkPeY59QdaMl/vK6gmYiGCw4HZJ8dnZ+ip6zuWYejUxDuneZhzqyshhuzgZf10ivwc3nkJHXr++40IyKIp5MTiw9s43xbXwSaBQpZebwZD67CO8IFRWKqVhnbdUHamdDtSF3+gE3MAb8yBqU2tqd4ePSqPs1bBS04CPTohgb69XnYMNEfiJ20uFcjVqcjShI0xgjp/Cr+bK3G+TXyZU9hDug7k+fp0tjYPLVqm62d0YPz6C7L3q7ymfvxDKEfx2mZd+FfFL6lw3cMlfEC+RDtexfjw5l/qT4GmR+r8CxRYdI2VMFD59u+kWjDvrta/zpq+UhLtogrdJnZjy7Ou+kZtb//AFyvMMOjaOnUPQcDztSBbiPh+X3IL/sJ5JGrmvQYn7NMOzGhrhDGhtTrV8VOIv4giV8EtHiD5l/fh0jYQARQO6/cOzGljkm5HpmMx/knS/tUgXDcc4TujUFH7XPlRAoSJWyf3iy8B0bVoh9ifZrdZ+zzbWFvMw0ss89deGv7I2SXv2wnRnX1agHhocWfY9XuWb5s9OdSiQeHj7B3c395x8BnvuYuKP5isdqjWew0fj593nTWS88RUeTS6zjrKD+9/zV8KqUiip+mcX8GurSP/1u7VTX2CiSXUABwplov9DyxyC+KBDpdE/cfHXnE0W7Qh1r5DPdA5OLytrPYK08DZKO9auam2L2/vlh/ls2/+UX8l3YsyASN/m3fA0zBGJ5Je6Vx0a/WustpHKrMWtt7CuRHr0EQsfZkcf651Zr3Wgk+KvXTm/6fNivd6VaRdGPIkd2uvVbzyJw/PnK/vTHHO9JhlTS6sw6PV1/XvwVFFy8PV5px8wYiTlrf34qXofqt+rX9acFTrqSSslrlc8BfowgvPyILPETT8bFVODuO2dmqGpcjdkxTBC2kx0h4Y9V5Xluy+3ib7JdLtkxPTpXE91PdI3bxyrJx2aNNcXouMH8K1XiYfGzwPitliOg8pNzMwwl5F6FK8EbxfK/enK7o4VfMlczHTQv8aiW56fFYi9bBlmd+gzQqsH/+MPoH/dvsBtPpUJyrvn0eFx0EG6SvnQlOfBe0M8K8C194eazfeWNrr5r+KsPhq2/EM83RaOsknHGi7/ZjSocj+qmMKKl3kVo/q7WNjh1uln8GoVT3ob3P/6++DsrxG9CVYJ1FVS2P22HfHwYtQmiFyq4/E5r41dwUYLDrx3/9G+OHo16ASXDAvFAbn1ur7Zv0MVKJrqqFl2v/bQnyPpKoWWeyNWCLzN87kWJldWKoCmMRA/ya4qYc92WnC9+F5qycsDdd/Xj/GkpBcRhFJDrHA3++Mc/X25iEd+iat56p+9FkcJNxP75ASt8OUJ4/WXMevQ8Zx9L7gFNd4OEC1/7rPom+dNDTCvioGL0VSn//MZ48cvm/NSP8AvOjGiDc4/H+5qUCLaXmVk+kWPWb44aBFISMvM77aqxhlurSKtWwOrdN5CoQnaEb/U5Micwo4VP6+UfflPYlBoXrde2BGlt5yxsq0tF/+rLgrfMSaOsGkTn9AZIvybzpKjsJsrnALbT/cXs8nTgw+Vx9f7yk50eJI3H+PkWkCuWGzwv9ZArPhxhXexKsotG3eCt8GrA6uaJhb715LMzv0eAsFrR1bFyK75PEgrUshjzGnkwZjOVRVj8S7avSMmnPSyDODYlY6H6Q93CL+4wnfYHatFM8xtlED1oX5PG9C1mC9+9bkHWVYXOix6f8s89RR8rvxNLmRNODyd6hGVqKfnTq2L27CSUvAOJPRp2MGZpShIof7s7Ffwb9elYTJq63RVfZoQfI5di0qRo5bOBOOTLDXp/61ulnO2K7Upo+T9/83I9X1m4V9ad1E53/A/fes8nfD4u40S9NP1g9fe7dz335kR1wne48L2+WvxXgPJED8xf+FYjPp82+jsPMib15E+R+y5h0cuUKbbdzUdZeQIvUkLXv2ftT5dIaVCwMuEvXnK6xCcseoKZXa9w1lhyAst5EdvlVzefjnqhKDdDDplhOXvEp9HTwJRVgxnGNHYT3D0MC36TU+LO/uJnOpBfE/TP75yfKwH/8U0qvgxe0T9+tLVsQozN9PPnbbm+wyp910xTHjGapZzWoN2+p3/xvz67VYaiku5wEwhtPImpaCv7Wx0zt5dToxf0h4IK3/kRSzltONvGxlZt97jEm/E1IRrObx0SMwASXs4M0XKliuj0O0/Eo9Hbn/y6jUDZFSfmF0XT8d+rb1Edf+60L8Q1+q0+V/svf5gROnU+nj2hQEZ6/lJRyb4Vd1qvgHf8GYmz4O+8S+cADne++bff086lIzhhHRJ8PWhoHt/aEQbjXeAPPclx47xGT8nPrz0rRnHm07TDFK765cICqbHRBmXZCMpRpcx8TIYvqflQwOLf4pf6YfEv1E8NxF1xxKpUbQy+zzsBzmfJxqv9zfIX//YCu7RJmKaGut+66WSjuaEDI/HSpW7a2RQG/k6ZVoy/agzUzoTBqAsMUlOj8fZVeqjc3eXvPHCZV9NS4LbCWXigTT5QPmNlU0UvFsoHaznf2AUoFx6AV3VVV5O5dreAmd0Sq6jDSnwbQwr3HiyW8MTwR+f6wJC47QWLPKkMitMxVW/4Ni711eXj5zu9YdETZDdimQ9w17GKpmJpOV9IBr2f3pn6WPe/5TyzrEZ61FMII6VjC38z1iZcPSj21Q7Donfne4EaYIcbYovf0PGoWTUgSHVPpdG8Ib5V7zbKxvrIdu+49Mc/f/H6fN+JdoSU80d2V9DiH/2tt8/C7TNQD2F0Z/bWrYx5wEdFeR5tRLR0XxpTWjcjjK8bW27Vk3iuTlUD9845LP4FoJ8gr0vlen5dmb36Poz5Lz4NlnUsIKuKd9SXvL/8JT71k7x/XGMJta6WYrpZ32Mej7j88wdYWp4mPvzh1VuLKlYQy+UTfhwbwDONmXWcM8RWUtjDZV99sBwIy63BR+LAYb/RKSx6uf9Ika1OqWyR1H2+OrahmzeUwS8gZ2He5dT8RIn656drVL/E3R+fdLvHTIzBefHOKdHShSSIyOnbH/g4PZs7PNz0TJXcexmDX5eRYrqqS/78x3mzUkQ1Ly8ayd30003vaDuiIDxgFt5ozTkWhhHZh8Bh1j55+myzuZSw8CsSVsrBoMlpUNBffup9N6C56S4tWvQ+Xmv1bHDUyMc/Pkt0lqTVwi+3f/wXV93UVuPnK9fA+cEiQVUaXLp22RaRepexHZ+gm/ViNSq5Fm/oeT590NycSgWi4fhmrimDwW8vWsqkNjJGGjYt59fQovtxH5LlfDynyqk5/vml7ITIAY0uC+Affvmo/CFqyWL2X3UpkP/vRwp0QfphOMMnbq6x4iDpwdbMMpbGRnB5afAeh5LpswL5OGxfGVi37kxfB3vi00WJUzRK5zdGnU6qtTUlktKLhUIl9hEMhk85VpRLOWL5+Ci6wZlHCm12TMh+CH00re5bBdzLZ02Rtlis1lo2wQxNjV1iXzTob/re4R1VFqVNMeZ0/QkBbdd3kWG/+XF6xokJN5Tt8AruUTfeJ1zKkaXvcVFuD1y8PyIbYGYp3Z5KrfvBrj+ipCtlQua9ZbR+ptaADXSgm1r+VrNXFRro90dHSOdvujk+pS3cdiNnWtR8c3ZYnrJ3h1Al2tcqjXFFTyk4h4gRO6iMnH9+Vo3Eu7Aj+6emV5zfTlskFo+CTupFiGdHyAS4XfoV09/VZEy89Bwo2PFApcbTYlHEuwL8u5fiaRxTf3w9OYWV7UR4VYhBThUZPEBJYbDiGJb5RNM+ACd+cyzuohdi1cN/gjvrXxLcXIpo8ogEtT01AVVfllaJ3JQDKMX8hDfD3KPRvW91qJt6j3kQv/noylIPdrelTD92G6NzXTUCM00O7EaPLmInNadQ+ecX3exuW2P+TazY6k84kLuElY6yLqVwgFdLbp/21c178miBTUnJAuWBOd/ZPsA8ngcWRucGvTM/72GtyBHuD80uXqM4E5BCogelp9Up5k/50sBNrd64H4iav5WDI4BwcD0WOrJeSbrZjTK7SxrZ3dMqpx03UuQ+Sov4J++E2NFyLhB8HjfmrOmtmhzzG8B8W/tkZ33MnOfDTIHFhYursWyNPhIvGihee8bjB2kGN6PRhPBhd3jzYZ9uniVdROaud1nm+gVvXk/eg78PPHIp1Hs17la3BumC+CNWJhSc893gAMmzLQUq7PL1VtMaICq6Eu9hpNXmmjUZrCZZZ050kuLBPPUmBNZBI/v1OvE3m9A3IfsNI8FDPeeTcyY9ujxeHrHKR5fPuTgKoN4Ln+kl6dG8pvcAxM8Wk0I+BWgt+HWyFePrDwvrfsfn4WJeQI3miNiWLvJ5OuxEld+zGqs1KSsefHfKalgvs7GWfGgkzI/qrf5cGOFY4PSx6iVUdr4ZAuCjP8n0sFVrNSDsIKtazIfcKYB/Uo7ZKVZRv72oKcqtoiaa/EjQumi1Ui0ldiVWGMwVz99tAYnIPeYbimXwvg9tFChHm2BnDgwez+yt1E1e4013b6rRuYcCZMJpi6UXj9H8GiQPtn1QkdOy3mWYfzOkOTImlgh2PMp73MD4wArdjPbBH+v1a4uiD34Ty8gav9/YiQSnsb+ROFs6cVTOKEFs7o5Ef7Udn8vPo18ukg34heewmzr5UUKe2ZTt9wEyeAMPBYXG88zcSd/7faGrR9TuOcNCU0T5XO60WT1oo4w5xR/E9yvkwdcunixY8nf8HYMSwlrbMj0LrIrF8FPggiKNXT4NMXi+0UG9oxkRg12+aPpsdBt41HfEu3iHjpHJF5TdRxNYWl5ENFt4EGH5PmRfH+75eDudZtg8DweC8+nZvfeyqSizvV0RfRiV/PU+7mz1dI47YmNRM9bL34ulYjDrc4mq8YVjrJ78IWWORpZZfbMfgDA9HbLfEyOWrpbaIgcLLXN4do0n8dr10Jt7YOFYY5/T4Smol5DYzGWxgegvbUYkxvmP6dUVo9lZ6xREz70Qv3r/8tHadRfAdT7TVhgyxLmnZqAEQk754WZzkSZZgOZkujAdaT5abyQ7Ai/dBGTXDJh334sG6so5cDrlq5QPCVUzlD2bHcmuctKN4Sw6wIJTzszKLxG9PMUaHjpziDt9G6P5CoqH9DPVGB52h1zc6yeMDrgQifd1a4N3UZICGvULvczrSz6F19sF3V5qRLkLl5zfNuIIcpBrzHtGL3+eqjaFTHhemanab2NUrsyDWVTXjOiJZ3BdPAUgnPiR2EdxZYzO3RIUU3pSlrnYMoZ7qyQgbvGR+cam4FPKvgFg9fkguv5puvm12RZKH6YR0WelyCf5+HJgTvgFr4x770/y+1zDPtj7tOunmU+ahx10WicfRqx5jNl9F5qy9/MjLEGcGuOFTjYs+4URPkTdkH5dDZ64ydi+TuxqeufXFO4bj+NtlbScbx/VG3H3o5Jwv9yKHCraKtMcbZgFWV/R7odscIfsTshLwPm0n3GDjpfjk+np0mgsijQJikO+xqclXyf2C3pFXq8p2dneJ58VWXTg+u4p0ye86/ivNHS4k02Dm0ru+BCIi8RmU0Dl1t3xWXRPGOT1hjL9Znl8/ETPLbxYOBF3ej/QOJ4CDZb4x32LZL/Nu4bCKBpPotsGRnyo6gaa5zEg5i568fm2bmfoSZsQ0l9KYypa7am6B9Ejp7Y8dtzaszdMj/nEPCSuK35qEYazd/oyjTm/eFSE5wXMd9DS1ft4rCbF03v14zkxydKc5tPNklPU+1pAlRfkfFbPjojQz/TZ/Xn9+XP2ohks9Z5Z0/3p85WQSyChe4eF8Bwac49F5x9f8eHUVPwQ0jeax9NA/FtkxXP6izUoqm3Gov3l1E2m4b/Bm2ud6Fnw6SZBDmfU1aRi1ulYGmNk20+Et8oZH07dEXHgXwqdsu6IV78tv89Yqyxdjwjx2xutWHd913/5QDBX0pw96tFR3/R6Y45zJP6sfOMGrSvVJDHlNW833mTKQK2QWcbqZ4whBNlf/WVuxHeo/xBBVPw99nBFXL2SJKYdVauMn3Spn5xfpYMDX/uwIq4uMJ9/X1cMa9vsmLPg75Tq+xEUKXfxZzZ2xnwTuIYOW9Ngp5OooNac1zoQ896znS878dhurBIWfGK6uLfRvAJXguJVpwveHuN1NTgaFAXvyW6Li5yO+6mWpTzCrNB//dLlKhthemd3sn/tIe/o+9JDYVQF5UkaGCLkhgaHKs7IX7zzy1VKkfq5XEheZt943KjmUzXZ+0X87htV4qH8JSBv05i4meYb88FPaoCOu8TjE825k3cCIvLhwAJvP/PxWmcN6smDU4kZi6R+xSPKjvzNvK9943Po2luovSpk3vkz5rNTloGKduqd7LeBVk277eOCfqXqYTSSq79+54dU/Tbqjt3GerGs1A0GlBxKmgm+7s+ie8NIe6wzEuLm042PdP8GtdWeeBWuN91UrZ6lKvBfR3ZK+VpusWmaeiMFpSfxbMVNMSY9mGl6oC0S110fZ54Cj5MRUHXcDf7UFCAo1vv7Jn7Ys2rhfy1Kg2jCE9/NfBJ8mqJtoNtkT4Fy2gT1/Y/PYeGUifFSf2fAB95i/quLbhhxOMPJZykdlu87vzZjAc9T/WWmENXGuNoMNcqVg0/shu1iUenJ0sh0brGskDH++z5weK5SEjrJrtoMh22AVoGMCFl+728mvwa2T7H/45fdVEmXCLGDY7EiWxrnKt+8Ac8ROK6aR8lH/fiMkH2O6kX/dIjPH0jh7W+B6PFaNubLuU/hHlKLLfFt8OEwYlBb/Yk7j7fxcBe9GlB4OuG1Yjt5U69/yl89pR2cnI5nx52gKmnQswtYrcFvhamDCD+Zbovc4pvHtq7/6h2WhPe88IWPBNWYNHTyk33Oq4dRwvDMQubH+VzN5c4Z4dk/ObEqcxmsctAE1FblB4uO+/WHa4AU5eN5MQv1MjUGB5z/Ie1aupWFkeAPciECkrDkJW8TBETcASqCIvJIgPz6OXi/5cxqlvecewRjp7qqOunewGR4IOpeFByxz3ebwl378dFGOmlgeWxfPOg5U/nHZzhZksBTPV+pc5JrsMT+dJdXPYL9oyLqY6yeIazs9fD0afvol+CmhzDECqaosX19oh5bQL4BEUbJi8+ng5gbcBQ8kXA96/V5NDwCgnwTYUXw1q4m6VeTMojOaLtXumhum6MPD1TOSbvm8741wwD4GwkhuOqNMRQiDoRqHK940eaTB8IG4ul4p0W46NG8vZu8JOyJRs2WPqPprlMDiNZVwlbiYbCkJWxglMl3kk947026YpWyoKUimSvwiqYKDgXk8xAhedVD7LEeUb4GZrM2ru7B8hj99UjYkmMNushjDQxcGFwSD+NBktizn/YJvF+tPaorO4kEAEUfxvtriM1TJ3uLXhYlgNM1pEciuGwCvLr56VmM4/ngDbM/NuCHp/5eOrLpbaUd1CT/+dMb0cp/CcB5KlL7WMzeUlzxBuSbfYR193nNvzjbBzAeORnN5Wcbva7uU5TrZM9j5Q1KbzTOLxM8hOeIvfyp6TwvBpXcJ6pJ//jLii+S+tY2qPIvTB9PL5CA1R/48x9WfnOHaz7C+t5dItIaSgjvpf+hPq21nP3002t37qj+KrL+XXzvBRA1tlDn+0z75barFgDDco9RATS2ZM8mlYpaysi2qnE0pc6Wg1yrz+T5xnY9vTd2AtV8GfHhHGqeIHOnSV7xlaro6PeciEcDrPwAzRUw8mm/lpTB8XImd/1d1csxpxm4X4OM2jmD0RxFRgutS1+iobsqObvWYgfPJEtR985qbyq/mQubuRcQt3vv+lG/uxW8GuWJ6rPleb2KCwQ+yzGkxQW+84lMLgT7y/aM9vOn9bp7VvPwmX2+VONlo99FDpdBA7g82ntqEtHPJRH/9KkdTWedba3BhmemPPFJVeqcLWLMAcEgkBrq8drPh9ZoZFGDEWH3bvJm/RNOMn97hav+u4NZGFsDKlWi/PJnPj+DN4IflUupQYYpWvUolC2WJaiS8o4xmxiFHGP4wiqwqmh6GFcXoqaJfvonGvrCfMFsL53IyaRmTs7AIfvvHiRkc//c6mXZ5uZfvtNXf2Le3hEP8jre0uMmFXO2uWb8Lx+QTRrt6/Gnr/f+VaHmdPz0b9ZnKeTqxkV96XR1lSRSBUtXCbGVTAFgj0Z0pa9y/1KjR5037ZhbAPV6/1Iz5B76rvgmd/i9kj2K1eO+XiTdKOB9XwjU0ybdGxMNL+Cz3R/p1RG4fCzKKfzp05+/482Gn/Ng1cf49jyU/RzwnQbJl5eonZ/qekhFJ5HW+CRdGTz1KQnvIQz23ID9z23t36HNHNw+svIPvxbZaBPJST87erQGUZ8vvmaApPNcxNBLrdkHiQTetRjh2LzkdZdzpgSl56xiuuqNScvNYu0qmuCb8GB6Mz7jDp6Z9sRqdCH1MBRT9+P/2EtNPefKb2bDQuIaahbGBMiDj19Q1+8LNdrUzwXIKIHLxyqoenX2+qDl6L5/w5ajSpbN/YLVrIIXtKXYeEmmvqz6HMKjOGHn+1pLiFTjYZEoKs125aleELEkAOK7vurLOv/hFXhyWo7NRt6BP39EdngdOz5S2O4cl5VsMxbQY1ubgNPf9vSPr5aB6s1zVzZy+xoZAboA2Yw29+wvX3u3nRkJld8r8KfXecSVHhUXwwRNxO7YaIxWXyZr//rpT2pzmsZ2kiLd4WuiFdZ4+VXPg34VpTW+iGwNqdeeXz6E12/CU/xeb3Fz5XcDm/baYFMj09rYf8wkWXlTuvpzbNanWoGknC380898VqV3eJJSiwZblrIhkNsQnjLVoUZ5PniCHiAFFKfrbtXPBMxckN/hMlVovSvX9NMPn4xsFrEyF2PfHS68AUVSftAoMyEafvnpJGUWdRbf8fjVD5J/+lcPxAObdOEbQi+45yivtm3EbuRVwvYlxqTNLLWe/COz4e12saiz3UTRbH3bO7R0PSXWVpPzPqmKRVrxn7rlsgdU640NHOiva59p57/9BqqTyKHL04JRzzXElYjT3ehh0VVvgfONwMXBOtVxn0d0f4QSnF/pHTsnWWczPn0VuH/ihixA6Rk5G5kGk+GGKA6cHNAGEFOiO9jRYwAdNr4yGkrUVS9YG5o0GjQn0P74w+rP9stnkjvoO8Am+/lje5PAuBAO6ua6HnHW2erPurDnM4M0VD/k3DnjBvh5DBPFk6x7vF4WFfj1QnpZz1tPOe2+2a/5mCqT4PfAJZsAKpMq4uMmV/o5JPoL8lRMcIDWwVBP5T6AmttMJPhem2gW6vcE6/CO6ao3vfmG1RdY442AXaFHP34E6UCu6Pc3N6rzIHeXTYB18T3nPz0KOKlKMP6Mp3x6B60ItHdzpXj1474ylSswyx2henbA3uTcJ0U2kXLGB21n6ZOuzC8oe3JDXfIZ8r5+eBW0PpxKlb7TPcLxsIXXFyFYnSbe60S6mPA1STqSZFXRZ7VpIQTjc6G24m/rbgtVDv7qAz99sLw8l4fLxneoct1N9bzP9xk8f5eAqs3V/fObfutFD/Go6gOon3eovV9X6nHhMyJ21SFAWddQx0clmKy9L8KenhJqOeU2H3/1iAczTWqfq7KmpdZu4NuRFzLxKqnfa36DMKz22Lrzysr3rQ7u58yimn+J9HF7RxzQpU/+e996tA/XUKoD1yO1s1VqHup8CBKW5yt/sev2XV0SuI5Yp44ABm/afSUk1WGB0SznZj13zVYDIkrcXz7x1vzfwlK0bIrj+e2xo7YM4F6VPX4MkgRoKzsbWBTwiB+BAxjzRLEBP/wtTnoZLej9HSTP+85YX/X0G7qwhBqs3lQVEcxn3topwCRo+cv/89vpWkmKxBaVohQB0j4QBE7sotWfIx5vBeoAUrkxsKJ+l3rsP18Ttt8LQB/2xGBBxbWAx3a9hnk5sGj2TSj9no/am2KCRZGeHRxH8EFsHnxvdtCz/MvvKlMXMF2ERwDW/I9em8D0dh+BifDnJ1r2Oig5RGkLO1Ux6M2O1X5BZIawV7PNik9fr8/zEEEh72209Z4soi3bD7CRJI/++O30OD4zuHDbHUboSfVfvgcrXqNNL2B9dk3PhJ9bOmDX8SAjcaIQOdfdCiP9rdVEKD4VDISypWr6Er3JbIYMvrtkot66v4ROBgtY/SlSrusz/fxHexB0wq18iVWSW8Dz5dRj3d/dalZNiy+/36Rd9f4tnwJTbKA6faK1PqFHq5/lQqddEnw4zqyfjt9e2l9sZFB0P7zAIrfbEBzkHUeV0/KNSoty3c9foa573oCp5fMBzPa3pUh2W31yj2osr/iBVcgfera8uRgejnfpT4+s+437+bFYO2t1/fP7AfeWEJLGmxvNMzMnOD+mM719bYtxQ2NLMMabFzW/p8wTaC4FULxKD2rk3TqI72r70KaeRe2cN+rF55sYKKHz+NPj8+q3wiFpnmRXeGvXjPd3gGu8kU09b+v+JXEB2D17hRo8FXpSXBcNnpGaUdO4MTDmx/cA/ci7YlfcCIBBHEzwZQUcEq5fXl9MKJjwY95Lqt78ZzS9ONGEhulMv3riiteaDa+glX54x2Y5NqYfn8Z3XVFrAcAJyUNl8zQ+JVM0D37lyms+JPPV2XvDRXiE0GcXnsClsPrZ6cIAzoav4iDLTvWclwj96p/USPG5nlypXOQVvzCqugNbroddJ43EsGkqY1/nB8S50E59gL0qs6Iu78tB9gPhTA12mvO5awQFKrc6oY7XXHKqQtDBw7GQqEnuRr7WpCAEX9PDxlHs9PHnR0QqRUjuN4eefVIbwu2JvJF4UxowqnTvg0v0EbETn1p9MeWvDakiv8ha72Pkx3/PIW8gIX1wHumMxYRfeMyoKzdPnRF+9sE5qBRq95fQWy7rlY0pEnRsw0PnjT88C64PQpY977Alli6d/OPb9tjzEQ0vpSSbqyV7UqvCY/CJfbDGH9kX+ynvjEVWIDn7C2HtQwPTJbITyVCJgxbddfq586ZEThf/iANRitj8DEYfEg8+8Y0/nzx2nEL759fh48qnWQNTF9bxFOFzbfjRvNYP4aNcNGxsjjIYuIcggbXeRH1x8tajpxsOaOXmhKbk0kWL2kpQXutV2AqKAaz12xf8LDhERHFr9tsf0l1RXIzYeZcPpJEIvMztQg3rKdedY9UhTM1QosZezwHbX46ulHSOi/bP+xwty7A0MBTvMka/+POibQxeVsihRco70K/+FrzKm82Pb0fCz3/2wulBVWBI3nxo/QagV4CxLdyeNT0B0QS84TyJPDVEn+Id6MCPz9ixdIn+1kdSX6+/+sDcnZVGXv05mgjm0FPYq6X8eSV7tA23+5qKLeP/ryMF0n8/UoCRf8PoIFtgbN6xD11vqGm+G+RoMAKjgLezk1LjnI7euJl5cd/CW012m/cpmi7cB4GhUWKKzrtPzXSkbKTTPlWx/6WJzl5dXYBXoN2xt+CLPsPgnULJ5G+ob7dCPlktreDW7yaql+hZz+ax4OC7Uwp6bz+MDV1MRHDUqrWx4IEBokCxgYH//VDdM5+AkVJxYeD3H3JQwxQwvCiDbI2oQVJZHtiOkYmDwIwLwvGg0RfjJf49D4k7LPWtOUg8NDbkS3ZOfmDTfntTYFFdFLRwIgEsjXaB1HMxwfo+UfXx6b4l6Faii8+K13jUefUbyDaMIrbdKGBh5iuDu3EeSbs5joA8ukmD9jXzyS74bNgs85oPffMcYffsb/VlcF8lbK5VjqTx2LOZvLc+NDbDl5T2O82X8yT68OCgL7Vrxfba+6fkpa37cIh8Gdue2OupvfeuR9ib7Vc0BSJNwO/9LsT+eiPXuBl0bpeEPPvcWT9f8OF1+Bb4eJKwt66fDbuiTLDFHXEkJER5Qe9MKop8DensgWUb7mxGqPLlX2CJTTGEzcxxFJmYi5Y3Gtp9chYsbFfek9E2P/FQnisF5/ro5csRR5V8eNYaenWo1IcxP4dgk21dquyJ0c848AwAdnyOvUqavZ6Pri8oWVtMD2oosgm65AUjTpnR/quYgD+6YgaPxOkovmR+LXxeSgBV8jSp/b1IgGpzVkr2yZnR1grKfEx8F673Kz2KFenojU9x74Jg7j+IL223X/rCySBC5I6tMdLY7r6NYygomk0g79J6mba7DdxubzaJ1DcH5ihsbHDllQ4JL732WN/0MRBdzcT+dgCM0i9KYcx9K9Kv+2fch2MB1d0wEu7c7fvlfsh9WF36EJvM0xnXxY0EvxI/UZM/TNG4mTcitExdwbiAe28CahuDKCcp9q6WUBO7EgvgvEoZG2S5ekwoHvyeyHGHnWtfgu9XFgKofdIIX97uDixPX22gvE1SwpFyqMn2lr2gvhNu2DxJQrQsOORkTyJPquK+y9lnPvFb+tACJI3ToWb7GiHo26WEneI9RvNdmv3f98NISJWed3kxhbIRvekR3Ww2+cGngJyleGi3tT2vLW0pg0fH67GqV3I+46ewQIucU6wHyRPMSzK+IJG0E1Wn3gH01tl3cIn9GKuJdtPJLnF8oOvqATvsso9YfsxMiPL0gK+G8qmXHx6IkLvjx8m4Rot+5Xl473kZK9pyr9f/N+A3ZhA9w6jLWVaHJkyOFcHIfn/ArL4LSeLKW4KtsOO9satjF151P8SmVb9q8vVfDXwsZY3RS3zqYyUXAbhZyZaaQ/3S5xgSE7BK8+lhmwn91O/KF1j3M8ZbzQPse7jysE2Shfo7sdYnXmw6uL24E3VutqXPX3kbwmH+mtQRRbOmaJuF4BKjmKrzAmvatnUqU3tbYOW2OXjUvWQZTDbOAxt3aZ+/QaUFQG+kkBr9Z5uzYNyl8mYrO1idUV3PRV9kUHJdHh+SLI0GDKVOMq6kw/717bBxf8gl+I16F+t3N6tZlZsdUIfLg+o3/QNoavYE5hAhis7KMxo3r3cM9Qz1FMmURXQqHxAENNNW/DGi3Xdf2MDbaBJqxYzLh17SibxBayPb083PWX4MDeikokfj1xjp4+u8TcH4mQVsAyHLR17SEmAeMoxxczM9lid2BV+Cb2DLFmA93ffnEoah4COhk3G+A82YAn23uxEpVBpvUI0FQinueKqMUa+zAxw0YBkiwhcE9HwirC2hraGGmh8tYdRwdh2c7ms4T5PjsaU/tUDISoui9sPAREW9A2X7jbEx8Yq+2J+8AWs8kf0uV3L+jV4t6AQlwe44HfpF6BwbiEq7R3A4OP1Up1SRTBF9CNgNt4iRrZlBWbBk9DmHvMc+OmoAIB1HBF9LIv7KokCav1+F3noN9aME3xlond6j5hQmbPZa3f3hBdpIyrr/zhsiOblH0S6RQ28+ZCQD4FZp2F+2O8AW7iLBg//U8H2N33U9FFjTxxexEqn1DOKJwM2lmylSCglMDvwU+8nQAjJ8b99+DF+eAkybtGhvearO4lOIYHzwaozB+1BPj7uUwqwVNCSZwzafzzSuoAj5O/UibY6YHr5MGMh+jg1T/3g02coBYFf2w7sgn1vN7YCcxVcirfExnZqlgwXVGny4Cvd1NpfJwdpUHtj/WIk+uxpJwPf5qMkuycRo2mR6BlGeHRAsjg4TNmavQEBZQ21HtOtlFqxKvHeDh+8hzHLmugonb15JSpFjq/UuTOa7HHN9hS2Snfs5iIkP50K+4uNscYzV0E7A+do/8WEZT/V0EZdSdivJxbbr7ry5IVoLSS3fsPXSdZ1x9kOCfVOdqWaEMGLOLFdgo9w8asG2ZSyb+hZG4gNiFfEvfeEfVgE9IETYDiNNF9xLmEJWKT49c2WfzwrxEogLhUfb/fMO5l5xG1jevZii6BF7rIN1AvnvNsJ2mrYR03a7FmqzGOHzAxyiRbu7LvhstCt6zkvRL7tE9eU13yJRueT15M9PF/Yi21OHSZE+1p8ihNYjPWJDH6Oe7fjeBVzNKOk02a+Xt+uUgAs7GetDOrJpeOkEUlsu8KHuUm/q1lnahzILCLswCyzfRc1gPPkXHGuNAmjwDUPYtI+GWgxoNbkfcgS7/vbEbtw2HsluUQg38wFSLWoqtgTZW4Mrvv3xpWHPNy9Iyq+Bjdxr+lmiOQ83swXJRiufNZvF2ofBx/sgYBUbfXT2rSYVx7NC72/32DMirRLp4GnYPbz9erberQlHT4vW/frtB73x7/DeczI2bHuMJtFvWvjoY0ht3FcebSQ7BD/8Cj7IAPSSKg2sw8HEOSmNfMniFwel6oYxwkerXgQgc8A46jq2ZgGAlQ/f4aB5Fj4aHY0mTaEtdBWPUuy6PuO4Q1vAo5pa+AzW2YhcKvJg/jyu2Iu0Uz6px2cGnOWSkEUnur6ozdTASlxv6R+3fE03HrJBXJwdaknhLm8OhWbAQ+px1DDPrKb7z6mUpeqBCW+kntf9+HDiojNVtDL0BEG+VqvsSKgvLrifcuJr4LHjIZoC8o5aDRp3iGt0I6KjazmnN0YhtS/H+1ufZcDrNe1dklGjF/16xcsXvPZVh/WbSPT21J8nKM+lQubUfOl08BUke44GCCd1KZg+zjmT7ia3wccyI2CpeKcEzyyWKGoNSV+yQCVgyeMGgd0g56Mmty7Ms6pFm7Ab2bS5kwrCT6VifD020RSeb4v0KZFKGi8U8gXswhYec9GkF5Lt6kn+FBCokiOuswYFNk23spK3FatQowCD8b/41fPzDTt7N9LZrbML6M7CGfttq0eT7/sxTKbz2qVqmfsfnwaGcrnR4+nQsuWO1FY+BucQbdp1DoR/LBVY2cSix1up5UJpIQJ4vpN+eANoNtUdXPkdfWjqA/Rnw+72cpZcSR+9e4/IR3mBQTUU1LoH32j0sv3rb31c3IXrIBCugffD4NP4BExA7g8+BtZXOiL5vh45soJBAZwbv/BROtje7qcPVMkTUSkpp7U5oD1AB6UeeSbazRt+eHeeBBtb9nvyXttt6cP4Xk5kfuySnoRClMFn6kUUZ/FeH1RD2sC0fAhEgK0N1v3Jgbi4OGi3uAJoW6gv4LPc3kSYpq/3yvjl/sN7il6i6vEuP2Uyn2s2tqQd1ac9T15wzd/0+lUa0K98A1ZJVaJl09v5fA3nWP7pNfAaOzB9hLaFIOAK/HDEMmJuvqugnvk9Ivho9buV/8NQUhYi59udPn2fZStL57mlrnzo64WbXglERSVgrSVV39+YSaCRZCfEPYMBsJNb87DEvkNTGTwjuuZXsd/dSjJdkoP30wc/PEJsIao+jE7ZwDdXFejds7c3a3JryyepZBgR2dJ3j9fsy7j2b9gJctUjYL9bYKzu3F/8AJZq9gvuSWmgMEEVGGxkZFBQbYks2yXXl0u9ucMFs5mUsyazKbMpAsX7e0WblZ/vpl2hga9QXeih2p3YZCUSD1xfOFOUt099NJe5g89n9cRmwIx6spWFhxerGjHeLb6+e52FDNAw7ihezgfAgeimAfWWxat+Wo/MYJkDTkNeBF6WQH9P+60N3U0FMG5o2M/eQAJJyCrrF2/6bsUzaFnOQiZmvvphu20RhMxliOfbTh+Ea5nBYSpjmpp5lU/A9AqgKWjE+KNu9WbbOBp83Psz6fIqzOlmf0phteFFEl7lc71IlpWCZOM9qPaubcA1x3V2+an00HdhSj4VrnQHqz4g4vr7Lf47KuWD7DH002tLoVsbeMwlE9vzEuf8vHYRrENiUp3VVr5bjtu10fc3JaUUyv2yj1UX3kz/iHU1sqPdT8+qtzSmK/9nc+xsBzAFM4exOzar3tXNX/xi7XFfG51SC8Ic+ggX35vTs3J33cA49y9UNceLPvYnIQTv2dfpw+L2+YofmqzPWfiX31b/oIIz0xBF/TLm8+65NWFT8By26Yh0+qx3JvTLXUSV5yiwadFvPpSIpmNjzvbevBiTCPovR+jjNm9zypf9esvzEZMp9rx+9Xd82eLS499+mALxEwM/UiSaDEqXs7g2JehJw5PGjxvTSb21Joim7ECdzrrWS0YxhPKtW8iEQF/PukkKoHiORN1+uPcziMUBJqlGiOiIbT1cJt+E6OvfqXKvNvra+JVA+aIoVNuNO31SQ7+UNq84pWr4TgBD2zCA3KC5aH/RSzA8FykB47mKKHq7Y0/4YzbB85acMbaCMiLjpCYymtLDz4/yFpHhDESB86LG2Df5erR3A9FHEyha+cSctvsEnHynQdvjh+msbO0MSNTeoQ33iPrlUI4+5O/xkzoLK6NFgdNLruD3RPUs/4BJE54xWN8Pa61ng2+uFnd4c8qGRnX/6af3QDZweXMN2bPLdb1CsTOhdGYtEuxI78eKe3Pg+SyfWN/mlif0vXmHnzNRqT6YajS9pyWA0beaUbs5HsFyWsQQKCdE8fEjcIBtPNOGtHR0/L4Km/p7CYgBk2NJ8GM4Pbzx3O1TaHjSCZvebvZGrSCFJBiPCB+c/ACmiyiVQImyBC1rvDK/zxL4/nA7ar0+0JtR45nQ3F+uFJfWAobmWBKI0+FGDVuO+unIGyH48SGLr7V6tw/HO/Qs0UEb+WayXeK7G1iJvklPm2OiT4b3TCC7lD5JPloCpvun5YD3PMf4eBntvr2tXWjirzZRjbaILYOcSb/nkVqN7HzHWL4BSnV5IpAqr3VQy9TBfawdyH6g+3pxfLEAK97SyD7GTCgtc4Arn6fm6SL3VDrDDkjeqSWLqNs1MU3NkFf9RVY8rYXhBv/iHd+5B+unFd8ljC+YOoZi9atebGHgZjo98hKKll+8/fTq3AZTTm1Lbn77nearPppFpMUwFAQPW+MbRxzPeRVY+SDZOWOYL2qfE1A53J4qp53oMbTNApiWN4H6u/M3X7xyyuT1femhTr1+uSWiCctFqwh3T5ScHL5RK6/rTTPchfW4JO/mx6cRh4UtWGAtT7/8guNRDtm4DacO+mO5p+oz0dnkHM4QJsVjj9h+vUWYVlIJrK94pMFnubH5cGptYF9Tn+w2kQGYYNoaOI7rFYlkydls1AUHMqXqCIfuZT8vTqzAYHvbUusgBx5d4xk0+uNDFbYeDP7o6AWuCzlRn3dx/dNTYP0+qz5hOnnnGwQGxI/ovcYnP6obEw6aYxFhjCrANullAN9Ru6C43JT56O4F/sf38Pn3fqu/BYfia6JOoqn3y5fSNo0qwnWo9NhzqCvIXP5N1a6pa+qUNg9TkaxH+kcv54/RppN+ePTja0yVbAgerVJj9xCV3oTh0v3pG31Ij0A0Ar+A4+wdsJEqR2/Xam4Lzf35Sl1NHupPT68LWPUTtXyNz8l5l8ew3z1KIva52u+epjaBlb9QFKbPaH6d4gCiuRKQ6JdtzQohVOTzdjjjMw36/M9fbRpfw1bs1RH5+bW/fIQUl0TDe3fLIOy3PtUWZvfUbAYFKlAo8WG43KP5qJDgp0/JljfE+g+fskn5UteYmmhaeO8Fn/ljwNp2AfrSnnMFWOIupf5w+NZMOnMtjJUhpbbrnj3GXyCB1VMr0XwQJzDrn9KF+23LE3lMNZ07F4YLbSb6GIXdkTF2hQvYkiSh+q151vNn7Vq11N0W7StQrl0A2wyme8Gg3r199dPWbkq42XAXilY8YZjvOUClr0a9VDHA6E5zA+DpccTqs52i+ToLDbS47IgdZXdky6MTNbgLXUh2Vjvo5Luoqew5CqDWwf4ytnxQDB63sqa2cgE9Xaoa/fx6qtGkimZQuQFUTEKpgsx3/uen634akvsvfwTavoTV+9ZTV7PNfK4zd4CPPoFoS7dLPtTmEsOluKU4Wf3fqY49SfrxQXv5ZPUk3PVSeixVTbheHOoZbqYWRoPg/vmry7PHHNz1lfNbPzA9FR0C/p48qeYedozVB9SBFsTzGr99NC362Yc7s3JREN9Ej3dOeQPHlB9++luf7WJu4Rk7T2qs+NC66xjDRvEQqkVmRQRxUwz3lRwgQf8U/TQMiwuAdGqocbUeYBYTcYF2e7mQtxsM3kTpzYcvDR2wR5YAzINQGJAP2UhEM6+i16/eYo7Dh55v2nrkZ20EDzsuo05Wfrx5LMQNNI6qTi2t/ILu6E7Zz9/Bqpl3/SSebyasg/KBH36p5D//SzoaQ0nkjxCzpdDxBmh6bWLkC1xO43u/wJMtHLG78e/REOpf8xfv1Fv5FNV2cre3meRTu7qh6FdPApn6LTBSXBQRY3ENiK87TD3wSMCy+t9g5a9EtuF6BISzJ1ig24L97+1bdxdjQlAdzg/EbiLxls9dLcDqj+MrkyKPeQe5hBGP1vqaqfTMKRUehgeNkf22NKOBwmaBTT9v//R061lPJInocSI//44pgarIxI57wsn12nWz0Iy/9ft9/rJPhxDs1iGlqaNX+SAV+h2OnhJRpdS9aBCqpgOvnXKjh7f3jmaczpU8XJORKgc79HZl+RZ/+EoNUq6D8YZBhKsfQdd8XLPtzjThtS87ND9CyKpbOyywcvg9dQZ67ZcVr+H57Sd/9ZFBrvYczB43jvpqONWMfs0MrH4i9R7roJI5aCa4hTalln4OPKG5ohe47P2IKqu+Wc7asIGnpG+oYvDvevimiy/98N04p0dvPpxKG+6b05fEabivGbe9NntnRi/sn4qCTURZ3L96hdN0UTTNm0WTNf5yp+qheeUz6gj6+Qd//GL6xf+qL7DdVnE9XU+37g/ftPfuHP38ClnTshhtVn+c2VvLBKfXY0sPwWcdFHMKJXhJHiJhXkpy0gGr3ZuVw6h3xAJYTsaogVUv0dXf8obqebtDzrslVMlYH631Aw7S0tOxb1AefK/ztoHWrtpib2MlgDljmMrfZFvj4+fd5sOOlhmUv6cXEWYBsMWMou7nZ1EnGMee1UpfgucGWUj64dH4LEyQnqqBeko1s8mzvr40vm53fAx90HdaMDXwrfE8arn+WROtGsOf/qOH921m39Ufli6hMv7zj4W7V8HcJ5gerHbwxmYZJzhKVYjdWAr76aBJInzxHkbLu27BdPWlEgiNuydcTsqIRLHKgZhVE1b42mVs5G37519h7b3b5Quu8wL2Wm+j9ZKGN675ROYfjwi1dEQ/PSMB/0FK9F7ytzcJ1zaD0r7d/dVnRpl3EXhiTlrrYX49v/y9LS+y5iM5L0C+wFA1gLrXTcJv9bpmgnwtgbEVcrL1SyWaP18hBms9i7C1PjKaoDTgPe4vVD+SJ5imWDJgvq0+1PCzPWOFYlfwkzk+XvGRzfWnCH77568+QENVzqCbZi6ZK8/Vuf3YxtAopRM+wm3c79xdMcAvcRx8VCcN1J2o+LCIq88fvi9JNiF43/cJdSd4r5fJHu7gIxGF+lkWeJP0miWZJI5B47g2wfRIdAi78WtjvYs+9bQ19P+vSwH4H4MPTF5EUwHe6zFQMxMNa/apOz0/OXOoUcCro0lUK+h6i4ILMtlqtkeK0/2znuKLd5caORGo8ZHvOvNSBcFso2UU1cCLOG1tyBfAfm2cc3c8DrvBBBvn+KJ2sIf9NIaAB5eXnlHLskFP7qeQg0al2PS6K2g/x2nQSd8y0bGTVbrHMI8M8O5snyZhgHp23y4VnIybc3x/+E8+TTr1YTt+FYwyj+iLSMALNouGCWTPa87EW5TAug/X2fTDp2dMBi4MH4JIXtOW6cyhfgFRpzQ462YH8I7EWgiuukrdo5jo0/iYfKjUgMM+25j98noHHHz43YVU1DjWn/AaLFDRUw9N/icFU1zAEmxfV5EeQXtgcx82Ezzjt0wVha/Ywj+mFurnguDc5AdvuLezL1viomGHD54ezb+vEB65h0ado+PqsxA5Cbjf/JweytfkLeBBIDweVBOb86eN2EkoE+gmNMTelqs8tk0lHn7b/E3AW5v0cTJgCk91r2PXgG40hO29BenUcEi+FprOxd9Jgu9mb1KcSZk+386bAer0fKDp+2iDBZW+BM3P80SdZKUsVumUYN4XX3wQksqb4q8owXHzybEhcDd9DsrrBgpiSql6Pnz7Wff0DLrnSCVbipp8TvmkgrIl7bHtOQ99MdDDBfBwFKjfISeapFZLofZqnmgeEimfQFGG8HnOPtQORZ0JVNHvMOesFhs5lQB5PkUN1neXx6Z1fHrztYMpLPLDDe2Tww4so1Yu4MajBmNQOPXAa7Mvx2aL8EmZ5Yi4O7eRxmuaY/y4fKIByXECJotg7OnHIJrz6xeB8rzpqRq0RUTTMkvhWx1MbOfKRh+Hq2SAVqhTNJ/Y4vWe53EQt8oJu1LbAmbgIYZ8WY74qsFHtLOmuIEneHDw8VpoHntxiMD30kTYvoE5n/alYEgnVGhErtIjYPUjG+DLYzJZJ8z1U420O3S97Ivdr5xGY1BeIQxJ/sF2XKXRArbBIttal1GNu8hg3Z8+LBYrwrjLOMaYzGz5+iIWkUxL8ZbKOVXb21xjImxel3q6Ys2Vi4N0w8fW7iOWXJQK/OJLc+fWI7v3c5DBpZmoccgSnY0Xa4Dsfneo7S5rinl9m188IlniuHwmoLtD1QhSqt53JljuvSDCiRCDWvvTp5/BbCFY8FNH5G/09OauP4RSmbUaVpHLR/M3OYXy97G9k3kYN/XsbC8lQIGN8W19P3rNnol8ePSItOv6dGhZYllinErDdxzk09l7xnAjHjVqTNvIm/JD84KxuBmwTZon+4u/72hA6uANp7O00QsQo3HCB/q55Yt1hzEUzc2dqtr0qufXFxI4BIZNJNkkgDWBaUIk2AYOvk6bz7p4luDmIL3ogX7kiMVnEsDNt4+QIJonQC4dTWBlBhx1K1+LGMx1U2ZqMlA73h56+gah8sMXRJ9qDgZzVHi45dGID3w11fPzKGfggYzVEjcJmIBGS+i8Uo56Smrmf/uvdcQTVssHyKkDbU7irOsea82j0Wl4TRfgxYOMleXA6Uw1w0KarAFT77S/1ut6JbJ0DwpqHYeuXi5yPEFh532x0Td7xjaCm0InqwqKnFKu2X7rDXB3QVeqP0Glk/iDKmDUxZV6hfnK56V5LTCzlDeNdhKIFkneVODA8g32M0L6aatcAhgoRYqTx/dTd3cRhnAo3zPG87n9F18bEndkfKwzrqRbm8Ix8c6IEeedT9BwJrgE9wdV7I2sL9o2dmHq6RgfT+MtH0RfN+SDe0fUeb+nfkbz24Wb7zfCWr8k3oyMsJPNdltRbP4HAAD//6RdydqisLZ9IAciXcKQXvogKOJMEBEUkSaB5OnPx19neO/oDOurKglhZ+21VpK9gQpoO2oyqD5DQyzTccfBO3hvcLgGtw1/Y38hmDmQRccPhjAY/KUF5x0sQakR5/6TQFONexlax9AhJrDPLQusO4XzyjcYZJkN2OFo2cDHn3M0nEvLOGzfE150wSTG9Zr6Iyp+OrzgJibqI3EL9rDazZI42+ioVd9idffP5g+fon2/qOPCRUUGp76Jol1sBuOUf+tBrlvTRZVGjuMWP5zCXfY9MpsB+5RUtam8BGLhRVK/KY0J4mWYXC5EJd/ImI9KDBV6PS7ROs1Vu7Bu5aE2JiFyvfFtzDvtXcLg+Xgha0bqyLdVWIMNP0j4GT4pTvcfHQ6mSZH5zPlxXmkkwuzLvcmT85JiuMZ6IjdyfkTodZgLfMjnDGz4gVw74gEea/EMUqt4YHz3I5/ptVDDjM/TSErYrsAxOXKwEVwtOhzPm2W+z89wkIYMC8/wwVh7224RW02I9KMTbPmjj2F8zwjxb3u95dE3jyRwvg7I1287QM7YXGAi2xz+xrvGWPWHyAP3XpfoOiEK1iNv9YqRyfu/9T+u9U7O4duYChJKv11LQM15cIpOCYk+UdGyft1VoDXjJ7GmAhns+9BL+IL3EmkSYelcxVYP4KcrkBHRsV1NafFAKu81EoWuVKxyNnjwKZ8qEngCGrfxJ7B2DiEW+6daUINRFX7v5YVYWsiny8d77uQxHgISHax7S/H1vMBHWAC8fx3Cgi8ORQnvsagQDYZSMRid0oOP/DtEoB9H9tvwFphKtiAzb4N2CfEth1f/k0YHKnFsDhBHpVuIT0gvicPIxK+NsvE3/JlRPS5Vv0bwL96cp330V7I4ZyA+vgR5oxMZtCzhDigyuuJ+w7f+cXR4CEPvHA0mHAqMr2f6937Eo82TMeNyyQHOuSvSa60u6M9rTGVJVREF5u0HaPMjA3x3qhRR8dEx+s3MAC6ThFD1fX/9Fd2iQYafd0G02rkag09OjRJ48Yv4ryVvl+o1y1AvvXv08l5yOw1wruFHHg8kvLAuZd2h3wFYYIMg3yi2btdLDXci0smxg027dO8cy3cr3KoInd8tjT4KBM2Zb6Pd9300luO5OSuq9s3wuOHxITt3DphRbaBK8Y32b/yga8uaZMmXsrVLlhJenrsXskKxY0Ta+xiYmGnId8/UYMNdjoAkJN8Nn2q2ztzTg5b+WqOvmp5a/Mcn85IzyXWLXzJXqQ4awOXkvvVYm9Bb4cD5cXqSMJ3MAAdA+L92Gd9IhzQaf3g3n81xcX7ZWXLKZiU+uHJg5U9fGz5fQk5CwRdHWvRPG/qnhxBBvgxGfrHdNyT72CFOwZFx4XUpgk/Wh0gFhzWlty6u4fwmZtT77tNf+OE+/MVXNN72+rjY9/SuuNsp/D8+0jb5MYflJCcRZDu7/dVdKsLLE76IwcpDymLllAMlRU0kPQ+pz2yx1+HahS0K5wKk80358fJfftTTDLU41pRMXqXqR3zinsbDfAwG0NfiEU/v45HR7e9hdMQOcpRkNNY8c+7wrT4uRE2wnC6JqkSwivqJRNfZ8ZfP4C5wy8/RO2HIWMRKrOHj3t4wK9Onv6jpbYHyIU7IdeNPVImKRd74KTm+lSJd9fYlwoPfBv/yO1+AoAFhjdNourUiwPlKB5hY+xfRmqoZ6eV1qaDzGxD+/u7OyPgov8OfOfDElSy/WCy6yjJA3o/oZf4ef4UknOH8hR65mW99PJh3+wzvj5FHLn7BdGG3QwW5tT8gN7jkIzsXzwwUD4siVQuPvtAIawAb7ftA6r6ajTUhpQi1F3iisHjc24ndlBKuj7VER+3Y+rie746cPfMHqqTmCFh1fw6wDsw06gI39N9yYavQOiIHhc/WGP/mD6gjf0KaBlNjk7gUps+UI0hp/UIQDiuvGPQdIDP9qiMvW64IzqedQKJDuWPEaG4L/N50E7N6mYr5Lz5kagQI8b3or6dDuJPBogrEcM4f9pdf4VWNR+JgxfZZb7YQRMtP/Mu/TPjj70e0v2Ju32pMsISQyu0Yn1Fx81ef1YUkQ/WAf8g57z/jWk8m/IcPlja0LbY95wydJX1hKbiIYxdH0gTMszz8m59FtR932FSTjMwm/QH6zs+lwo/CBXnOpzPW41K+4fXyGJEl/mgx+6rEwz++ZR4XbaR/+a27dQ6W5d4BZOKlBszL/bTh9y2l77ysoAXOBSk2PKNS9jBhFF1uyEJ3FSw35DnwL5+43WIXi96cMaCauBCjSrp0hp/ZhufD3BH7EL8Neg5epWIGZYtSvz772P/VJXTVwYqURvu11A1fW+91N0PaK53ALKqp+Ld+iL/pSzavTgUQ36nIkNqrv5SBJILvvbogLb9qBncNiQge99eNHCeUgEWTWSDjV1JhaapbwORujmTKqwZR75xRCH4MZXmieYdu8NqwnpQhBlu8RWCvLuP09/tC95WRY45SSkbHpJBAQ9/wCI3j83vW4aa/I564ekqfljiBbf1h+pe/7IrEsNSQHX0q2zO4kYcVPBPzjIIT1QFn+nkJj+Ki42muVcArUbrAh5Xd/vkhCz9sfJEeZBTtDlfG5MDxgGiQHKHUNY1VLtMIziq8ID1+WePryIcDlIrvHQWObo1rHE41+Puzi3ZnY23u6wKP5kCI95cPkwfXwy/5XcjT1Zv2n/79Or86ep2xVZBqL28b2PRMrMoefAKL7Vbe+zwjT6/eBT6uPwrjq/VD9vN3bNfk13KKfp/cTY864M+/kPXr0yBoefHjeCmlDj74oCO+qTX+0tzebyW1bg/klr83wN5B75SX5GfEWc0vYK4m7WAZKvvND7iwdZWSQElePSb6/dSA9bx7ctC7wRyvu0Ad2XhxPTiowhStozEYS3caY3nTX1heXt90RZ2hw9PFOhNfbDyAHz8pAxETd5s/kxrsA+4qBOGUE3TaRcX8qe5vqO9KMaKBKaaLRSVZal47jXgRktO5engqXE96G/Wvd+jT7nu9Q392Dby3ltHon63qQe7cXrHiwm9KveNiw3Ncd+Qvfxx8VeLgr2pD5FhPj1GveXjAYc0XGbEFGHmn4hue4ptC/M/tnM6WRjh4H9iZHIkJGQE1dIBcbddWBVMDwvfhVfAlzBYWIkFNmyAD+j+/KtzZI5guZqXDQAUMz+c9B8bDMTTB4Cwu0vOkGBd+8SfgnAKXpEv8Neg19mLZzM6ABNNECvKwxh7GT91GqqqvBRVL24HFEMZoq8dfrF/5JsJhakTkJZe2mMpk2AE6nHkUaMBgw7OzObCtx0iiXu6/H1xx/scv7bR4F5Nk31XYTtOHePrBGbm//K32H5+YeTuNS/eOsZwcCxpN5SFOf09zbP7xgfMNNynZj30ib3oG6d7dYBR94wDSz+/5Fy9sW88yeKijjlRn9zCGv/wsKLaNP/uqTIklhAvc+EKk7OyR/fmDcONnyHxqSbFaGuHBc7c7RJ9Q7MByDb8yeIQ3gDSuNFLWDBwP9+9CjPbDejOEiV9rZfue0WHD83kR9lB+DziOOCM9F4t9L3IIi8kg52bAxpI4Tg03PRIdQtEGTHwUZ4jeq488+1j7rGtA/YcfBLWq4S/4eJrkr/Sao+TCXca11YsE7q1zTe5WGm3xtXKw3uUrsvfqK10wN0Xwj++5h5K0vWDuKdxP2YUgLVUAXWvcw4Y+hn98acr1kAJ7inri1AsY2SkJK2DX8nYX93Ef2fRTPCCZ0MVT/A2N9VqsFZQLLSMRcupxuZySXJEOfIY0/lEwNr8DGzp6f8drH9XG0s/D+w9f8OgoM5sSEJigluY78XMuAJj4cg9OSnsnx4a/jWtk3geYXhYNK0+bT7G/VTFQVdeK+FHwwHp4lw2IxkqIOkW7G0yTKl2GV30ijqyyca27QgZaiStiBhc3FfIbsuGWr1G06dlf2lIK6/ugY8bjiS3FJ75Dkr7hdoSkSPt4pYFigayIDlNBtvE3HRhQcUeoag9gHRQ6wSj2Nj/vzY3z6QgqUMETI6fNT/pJqOLhIPUZyX0lHqc/fR+VkoOQtYz+Qmm6g9fm6yLtnt/Gg0TUXtn0bATG+sLWo+HZcF7yE7nPCAHxOt+mv/Ehk0w64BnPifALKUMG1B4GXe+HDoLX0yHmxzkb0+4jO9ALeDl6lfx+XC3ty8P72zOQS3e/8cfmxYbYS/pIWWbKlt8lMGHe4RIhRSbjuo96Hop6ekS2fiPj8qKG+eeHoOhlv1K6dFcMl9rLsJQH1/H3EYUeCAT26BEYv83fFgMo8vkduZl0TP/8AxirVR6t6vpIqdEdenha6AsZztkCvXCCDtj0Fq6bzy0l4rVJ4Cmq9Gi/5avJ3JX/9WO9OgT+4iWJCTd+RwzsWimFZ5OD0oHLkDPUIlse32wHNn84WvHWWJe7nDql/T2fER+4oTErk7hdsRBPKJKa7z+/C/xOy5nEnLxL8eTc+D8+iQ/orjIqtbdSPiE5xZ9UeqbYJ6caeC23EENqBYOqvJdAerUWYj4PBjts60MWYa1vepu0wwt5HTwrvUFCctdb9gGJDjY/mhjzJWXcDXnenz9HUBWcxhXsjDec6L3bxjsbcwJvCfRv+RnTzX9c3aebQ0tv10giU+Ivqjplf/zzn99PbcWQ4U8rlmivV1uwf6UdFDL7hIHjlik7XfkaVo+oQHbgzv7w50cmXWYRtQQfn5YlB6Fccn60flfa0uzCzkAujAyZZ3tfkPmKMIDp2hG1n4B/cN60Uja+FEmZ9C2oupwi8HFZH/HvCBXMMr0AMhpJWGCexTY+ygNFXG3ivVPTX27uzZbk7LL/8+PBsmTnAR7H4U3UXSoUmFt9Dq4darGSXupiDa+OCV4xiYm1+QmT8atVWLe2S7Txjov3oGc9DLzkhdefyBXk+JHfQKWPFnPU6wH7Xk93GFPK/61/8OdXwWRSMvSYC1BQxnMy/OMrQXX10vXHf+9ymtQA89e2ahfjV+vK0ociMuABj1RP3AH86eUiV0Gx7MN0AKmsaH/vZ9Cle05w0ppbdHguu+LPX4Z8NlyQJpzC4sevuQzdtU7wHtVOuumzHJThfh+1f+Pb9hNg+HgGW51WvVjCC5XBkZ54ZJybnz+r3MGEEv3GRMPTB1CdPhfQy7SKErej6d9+mlIV1CPuQ/35sx1NAcCCRIiDO41xz/g+weOJhtuRjbBYwYoCUOUvk1Ru/Rh/AYILgFH3Qbqy8ICtWIwgfyAz3n9hxFiw/w0QY+2K+02/Y8d+8H/xiw+heSkO2Td9K9t+AfG2/YF1GMMEbOuboH6p2+Vvf6/A8pfYr+VXjLr6ymE63RL0SC9qIcBLosI/vhg+5S9gZ6A5cG9lNbFmVLe0gRcTbHhEjlBu0xl1hqqMQ90ipLRjup6tMQJ2Laokf+vMJ7vTt4HOr0fkhl9lShcp9OA2nxGfmqrBxZPrgZ5YJ+Te8NqS7/WW/+kd5CsV367NIeOgYJ5Kcit/b9ZfQyKDNzIMorL4B2hmWLKSMX+7UpNy6crpkyfX7/qOkAmldrzrOq8ECe7/+cEbntnK2bGfyIqzgFGdXimMurVG5oGZLXe9TwloJd6IaPfsNj5ww//w/JhmFaD4fXP++BX6e/4/frD5ZxGrl6D4t3/pdDcXafatTtewXJ0/vYI8bGgFv+GnsjuhMFo3P2/jI5l84eEVmQkjBs2FcYIymmZieR0q6J+/sAv0IAIxslL6p1dDyblFUlxsVcXX16JwtwATQ41KsIQR6QDn9XukbXx91WOuhOIwh8TvRx/8xbOieVsj0fB7Adt+hf63fxHVUVcb//iT5ZURVp6t0Qr9jnKwKZ4ccorHWFB7QTVEIbsQa1tfS35mkZKSPkdRe5TA4KZJABxWf1HRAJwus7UvodfcnyhUEjllIN1TeIDFDSsVSXw2n6oeKObIovQo5AVbvpMMu7e8EuvqZxs+lQPshVeOLIlz/ukPRfzFcNNvAtj0EQ875SxgIfaWcS7B7Q0m9wM2fWqAVSuzDoy6+UDRoawAuYUThIVI98RreX5cD4IG4SueY+S83rPxj59u+614FyoeY28bBrDsI4DcXV7828+Cr5mb0eYvGQIqXipE13EmWh+pPjuGpSnfanVB4aBcCs6NBR7+3HOI0PjxxvEk9GfwzBpC9M3/ZHufr2BIEi0a5eBpkPPWSGfH7eG2Pt2CGc2JQg5lWcT7l6JgV3GR/6cjBfD/OVJgFnX0+fXnlFFO5WCSqog806cByPubi2CJFovcd3pcHLzHXYe1iiOizhZvEBDZOcx3n4HY6Ce3ywFcKqjTxoto8AoNpge3Sl6nHiCzMYCBrZ/vgew9Gej2jTyf1V9rqxrAjhjmKgXk/Qo42L0imZg37j5Owt7qgMydD+gYP3qfpgdmQizohOh7PvfHQ5xBuLTmFR1JpQF6JfQORtRUJAi+vMHCyy2BspRYeL39LsUSFCcMzVlfkPpBH7DekyVSnjIP8A6fXylr3e8ERVEOEPLjtqDpfQ0gES6UmFrtFsMhljuY7ReK9Pt4aZkElQSmv+gd7UbPMkbxuo+AvbhyBIC5tPRTnO/Qds0cc059YYsbfu5w4dQbiThLYmu6eANopOmH9O9eTllav3oo3KpLJCk8A7P+K+7wE90ZUtOpLiZMX1vvXB9jWrpDgedWVRXn8zBQuBizT4pzHSsKFk8o2y92sd6+WAfmrC7EPrIhpecwj2W51t9IOyuvYl3z5wS0pbfRMVvrlMmHOof9QTKxchF5hq+E5rDHQUsKNjIwtU6RwOd7/8O15R5bfptv+NSjG7KPd9mYsVE1wO4GH92WhviM5KxTKjJfyPHoGv5aZvUZmlQ0yHW9eQZ7OmkNmkZ3ca3YRsuX3G6SDyxWkZtdRTB8T+NbakqPx0LHr/5qyFMF3x96Ir59WtjSynICYlv9IL0xk5Qo5qUD60F+IP/gOi2+53WvWI8rI1EUGf58YG8I0TOMkXqJxGLevj/s/bnGMF0Tn3HCAqGyjk1Ep6jwCeUcDhS10EfcKxQKqsJpAfbn6JFghk7K8s8HwsQJJ2S65MeYfOhzsB8yGde+SVpGZ7hAfri8kLqe+a1XUhwob61UUbnENeN2UeTJWuXrmLme4g/c/lVCGN+38XelL9jTs4dNTr/4BSUEmNvLIowqMUTh8BGLNde/Oxi7OUec+qQBminpGY6XcYc8cDIL/m+9NeAloMBZLcCu9x7CNT8PEYgLqWVY1mrlI3ZXTG+HlRG3OO32nWAHRCvZqZ0VEHeK5PIR8sp5Z5CDvtOBHS8SMblc8xd0qkXl+hoEosm740j+xsfP80I07rQ3xuJcJ7Dlfw+kJ+XF5x+1KiuXXivR2Twd0mlvrzH83dGFeHmltD/zVjWwlrIFGbe+8seJP93hwCcKPrhW0y7MT+7K9j3wztrrIx1vBg9TJ27QVUt2xVffLZWinrsqOtRtbLCXtX/DtTZ84rHntaC6/VLho5QQMtcxT9tDNurQ7UUHJa8Ij8vIWxQOfKwg/Vj27XJN1Qpqe8vcCikO46SZy04pybXEShuAdi3GzIP99Gvw3qj4tOfvxwZeu+4YHb5z4LNrqOpKtOcRCfJb6y+uHTdwvr5FEjXNuaCeo3YKJzp3Ygsvi61TWtyhkVYBOdpLwpZQNiYFpnSKaLmP/N9+r24UN2+R3X8gGOLQlIEgqA55+Djymer8zjBMaY+Ox729UfBSh1nFL8hoYgxw6bQLKEyOR8bEvoyaV2orkj+WyMSv0lhWdoggFlRCNG4gBe5CVik5pCVxaxMbi5F5KiyfsEB/eL9WdluB3npr5DmfXMaq9pLDhUxHcnFBV1CS+h7MiuqF5VB4pThY9x3oZe5MYm3vp2uWLyJ03fUcSV1uF9+njkrIuVqH1zEbChaiMAL9ea/jPte1VHjkeQ65lHeJ94a7kVY7WfyLfxSZSzQyYK+1cjUtk+jyysDELXkFyrIL0FE9DIDhqX/D+/e0bRHGRkHjNN/B7d8j3UymcYmmhsI91QqC5pMLDog3MvBD3gcLIu0Yywyfh4m7zAi9xNmnqmctYGafAUXBHvkYXHhR2OaHpMsv94exmyg8d26OjrdmStkha3UFtW0TCdE+LXDmwQwE8bVFbpfbqSDFTQYb0ArEelZjS9Pz7MD2mpREpe3Qkl279ZJ0zRzZ3cCNzOxJA/DhiaN16zi6gM9Vll0luCG7dzYLsTvo8CNoWdSLOyMVbDteYPAeue19bLDmDlRBsKYf5FvFbLCdog7Q3RvfqDFCx6DiUVsU93s5EmcNspTV3FZoXN2HSL1PExvSPnGgE3A18udlBOsFoB6ASyIQL73djLVzfB1eSjghg1eWYnYDB8LijQRidgkYl+ASDrLhBQPexm/gv98rsyNA9nPo/bm7jBC+NOOEVMU2RlrDDMpjvqjE2H9eBrueS1l6XS4NMt7vb8ru/F4H/r6oibGKk4ErsePgbsU50qzL218eisfB43B54PXLHoweb3YC//LNw8fYx7G16DB/jH0kondtMO2FErg7mF+U2W8+pVbRBIrMZQdkBOdb8fvKgwphdSiIl9JfutKTx8M+TF7EvEpJut5magI7KL/4Fx80Yz2wCUIx9L8IWTQCbMNTCcSXb8SHCjOW1O8j+fRNB+LH3A/Q4idhKEQ/+g9vN3zP/vgVcmx7bKeKvERo/D4jspA6tEvq1wEQU12ODqc1az9rfp3gN0QjsUeSA2pQALcqOMF/42P/oAscRV8jkX6wC9p+wgDI4zHF3zzNC9rzvwHUH/WJTDeTxin77mLZ/8VaJKlX1aDG095B25M6ZED9DCaFnE2ocfqFWFK8jjTtEw8K89KhSqZNynIWyTKO7gFeHuonXeC66AqJCMLzWJT+bx7EBtLwrSAvRopB3ZK//30vEs7Jy2CoG84wBrGI/MV8F+ypHys4j5JLXIVnbPVxayokNV5Ip6BtWf6ZIXgf/IQYZzgY46lcm82isQlKfqohOJ4jw5PZ3COme8tISpl48LDifSRramwcouvtDLKtR7qdisCYqsbZARoYkHiiMhn9KrsxVJnyRNbrxti/93eHOYsot/U6j95yDKP+BpGx5ffVvFW1wIt1ispQ7bbef7RXRo5SPAXfzOCKrWpB/+oYcopfzOi1DO8QjI6LD9r0YaQoDh50zFYj9hrO7fJFoAH35sKIhp5TSxtRDoB+kG8k6lXXWMu3FsP0w13ILR+3wqipNP3hS7Qrv0HBalmu/+GZd5nXce2KRVcqEQokdwShJarzy2D1iq/EFNwATNZNduS/9YQavACG6iqG9tl3ItjeSMGu9gYhz1+I7LyefGqr9Vn5CjdEgiWuwZtZ0Vl+y2ZDHNv2RxYL4A6ls7xD/kXC/vY+NTSs9I58uM8ZjVDNw/h0vGDuvRhMGOgvASd9f0MIcHq7nqZ7A9/NXSfIEOz2sBO5QeK87osCpgXjhkcD+BVLhlRzEQqaKcUZuKnKE7fqpHT4UqmBkpBryOoq0WCXysKwMcuM/Iu/eD/K4P0OY2Ssep9Sx58z0LZyiJw14FOyKGuvCJlpE+vn11uhX78CCgtaUr4F0+Bj6cnBrHV17D0g3cpS5SrY+A3m4Pc10kG+Ufh5xzamwWs2yPdR24rp4CfZ4jtdmPDJ4A3EJ+Qrh7Kl47Twyji2Md6dD8/iC2ypAS/8MYgf1WtKFmF+gwEEIbnZSe/j8zGIgPGlD3za+NjaafwO8OdAJ2H4y4oVX/0GrNylRDrwTJ9/PqYduNsXjQSf+cvYLRYd+M2eIYoSk6U/V0xF4HxVkzinp1PMrTpQGZzkHh/qrTd79XtVcAlDk4Te824Qb9oKS6NHj4Lgm23xn9UQeq0XLRv/HgJrGoC3Nx94X7Ie0J0pRfCkKzekKUnt0xsbakBEmZE/vcbe+p0H7X0YsejGXzZfhUYG0vSt/sUvA+d7+ZdviXHsPwbV7Z8OQdhlyBfTN1guoE2g8PxyWMquOVv3126Con++Ec+u3u10zuZI/sEpj0gSI0Af38tWNUA4YjaxI/jDZ3iG+kD+9A5LsNdtValuGJ3ffTrdD80bls9dgY5Ht/Xn2is6eBzlith1Bgt2HrteCX5fM+K4/GUs728Yw6CLDtFoHLlxOWmTCo/Hd0i0MfMK6pa7HEbrWKFN7wD6u6QT+CHngwngmpZCtlVZYZ+BmNv64KrGgX//H1nS7wX+ngeuBXtvt1o/f/klkDd9G4nVdt0LT30HNj29vd+XLUd9u9WRZwY6ntKRrbdZtuGtfhDiuqVZLNHT5SEmWYRMLn/59EO0XEkqe4dXTwBg8Dv6hi8QcMjYBwsgGz6D12PUkHGN9T/+QZVzCXjcL6QBbC1b/C/fPvRYGmvXjmvAXaMc7+7T26dz6+hwPYgPVOSh3c66Y5UweP+4CCpvq10lJmZwkMYA84E++vMLyp0E1vRH1PO6FZINbFPyhiX44yfsQ6DWgXE2TyQ8vF7tssparKSFRrEufK8t9TGq5E+UM3RsJw7QTT/C6PiU8R++/fFNIE5xETXWqx6J5FUJgL2tRAwWH4MG/jKB5+t7x+umn1gC2hrC8RFgFsy/dpF0hUIuOTnRz5IEsByQ18A//W7W13Skv5+KoTrMCol+4GT80xe5IATEeNp0XM5v24NMU41ICVgyrqnwbADj44yUh8tWSLnEHoTey0NByHv+/FvWAPZqv5K/77m88thRrD3PIzPisL8knKFCoianjS+n7J2uZIun74DFXtmO4GdfUbk4QxHx1+I7Ln/6RqtcnSBQ0GIR1vcAWzu7E82PJ2PhBjOH3lP5EUNvVbbyeWsqnWAGxMgEagx/eP7S3wnR3eVl3A6SpMLT9zQQbZXagnmyvwONWWWRcnBOKVVuXx2Yv/5FwsPuYCzPKN1B5bL1Kt9DHXDzMZNlfHhghILLkS1HeI7hxPf8H99hw8YX4Q+/umjon6OB2/GWQGuXHiIBtEmL++XRAXkazsS3h5e/TuHxDJwhT0nGJycmuKGkw80fIc71HqdbodYSNvXTwZTkV4M+x1CWT2Z9J5V+6Ar6pWsN1/R2J8cv0grWY8mBSlBESKPk6//T600rXDG9vm7p9H4ud3gvgxRpsH62dBIUHr6NNIoYUVqwqJs3VRFywVOrPv3lAB6VGLfvnFyr79LSyD0vYFt/xH594nR9Snr17/eqh7lnJDqKGWD1zUSDDnKfPmpVhE5/SFBe3UtG8s+8AyK9gS2/wBFrRcbDRrHFiBP2y8huuaWCqC8gVvirVayfXwyhted4YrhtWAhb/oFOZuokr08v0L9v7zNw7Zu1xd92xJrDEfxozEB2TYKWAHWuQCkYCjp26pyyT/jkpYcinIi34LFl728sw8v7FyLtd0pG6nNFA+rsMP+bv9FjexFei/W96dmI0TdsMuUpVBPec4M9CouyDnA5CN8I/8DJp9lJvSuaP+5xzW5RSjd+rxheNETKRzJT3qAMwvkc/CJeDOWtSmGcwCgmJfIO92e7WmY9KfbxdSXHy37P1u+s2dDqnQwVwIxb+nnVFXCX7kcCxT+kE9jn8E+/4HUbP5sWK4MNai208R+Gvcur+cunxBAyteV8z+lhvYtVlLrewxBQomTwT08/2s8IiGS4dxgqO58gT0MFFzRdB97ktB1p7kHBZq2qgJ7eMnK8NUGxTiE6y5UxvVEQe/o4FdL9H/+PQJ8IKSH+vQfb/BLznOhAqOfTW9n8XXR6iQf252eCTX8TS7j8Unx8Jmc4RWoafcR7yCipJxMIvbA1QvSNdh2/ag5E4epjrhtH1qcCcECfX0+43X80n2x8DXIs9P78IJ/Ih/oOd5bCosVMDbZ8OekNjscu3PRgMU6n42IruMEVQXpP25U73nWobpXa3C7vinlAYwz3rCtJdIlQy8SrEMGx9NCf3mh/4YQ8EBYPBwUHKo6v+gob2FzDDkXDegZLwvm6/HoGOtJkp/3TqwP0xyP687tGzBun4Y+PEmvzm9aLVlB4mO9zhK2OFkvTPhzZZTvxz68BPOkWB+oH8YasY/QYWbO6GCos2ho10RCIL7N1YC/zZ+QruesvzLLPkOM/N2R958mYPXdWgRi6X+Rs/gZ1TlIu7ea7Tfw8tMfDgMYEXOIzJCa/wHZlJeLkVPx+IrE+aYxP3NpRTp+yRJcYULDpfxGOOVUjwZKJv1TkJ4I5GXtyjE0BEIcvePgVdzH549uzfZEWeBj0KjpNRcTmDf9glMQP4t7M18h6PtLh4foqiHrjf8Yvz0oIe5/Umz9upJ+//CNP/Tmah53TMn0nln/vjzc/J13S9WuDsxVmaNNfPnvsngkwvdeMOTSsDCdGacME9CuxEI/TVVPUHKiHpsYCaOn4Irgf4IZP5PhU1Q3fy0Q+faqSRPc0Bf/m49U2Z2J24whGboh1+JC3K3g3U2uZEbsdrF9DjE/WxTR+UYUjWL/6GLm/Rm9ZOdsBVHuZEK8VZGNJZh6C6T6YEaVNmi7g85TlXjql+HNr23YrVR6AzS/DB71x2+173WGhVd8//u7/Nr9e3i9RGHERF/kr1OcG6LT2iPewcbGSvnzD9bwrohN6TuMa7qEH3k2uo6K4NuMkZgP9y++odFaLCf7p5UGeJCtxDgXP1j9//fa57/HXeu1A/6cXgRcdMbet50NXiKqMnihG2vVSstXXYw8o8VxHYDy0LakELwe7DhxIlMiCz1v8ZMN7c2W4w+Wr3fzvHfjeDluj5kT1yTVUVaWNVPmPX7eUuskZ4lsJiWsnzn/fr6zlKnpv/gRWbkQH2umVEHsIXz67eW8TOkcQ43/+t3GtSvCnv+3+UwK2OvwE20iXiR9JWrvu7EcPfJvuIvp1s3E9OjkPNj8Rk7uojpOW3ESIbxXEonM3fd6QVF3h3eKJgro3Rs7QHyp4WBFBUZp+N/9L0WHWvU7EL65NOwOhrhR+uL6QfcsIG67NrQIoqFRi0fjjL/boR3DH2o64PH9MhYxUFHSd5/3Tg4tgnTC4i6FFrE5wUmw8IyjPGumiuAFzSpUnM5WPXHwi9vuNI2a9mQE5bGvkszEFxC1uO7D5O8jfRdN2ZekWw/iZ/PkRtc9WZ4fBrdupG/7o4+fDSzLkeSUhjvhJfZZLCYSey3kksL6/dn0QO/7bn0IOLoZiTvK5lrfnkQj0nUF/CPXQ/xJ1e17AKNQ0E9xbmYvIoR7SXktOovholobc/vxH+GkbmNj36t/zuNPlpkKAm5wY7Kj6wvV8FqG5XvRo+SAL/M4XlYJXPq9bvty3Sz7iOxxmrUDHjj/5K+97njzdLAMfVL7Z9FxTg/KdzMR0pM6nbutVMGluMdGgMRnkDz/8X6Ih83fojbkpph4ek0HBKyVHQ9Bu8h3+IM7J5g8AfF/tDm58nFjXqWopF+olPFeVEN3reGgXwbpNf/s52/7DwWD7QsYwsfOK5LmuFcx6JYPi+zjCnwI8DWw1exvCqwcw/zxtq0JNaiD9EEL6O/fYuvEDpbj5R2JM92tLIu2dKNd4OqAwwXJLNvyRj6NYkRsAfsv3pjeA9Be8UTD2hE333u1htOcQOQpn6i8jHy4gFw4BpuJU+ssxdjPYh/ELr4Y2jquHJBNGVj8hr/OTdgn4ooORdNkhf74Wbe97aq806GURe+GUoueDroOr2nv//MqFdmUM+9qgf/urjCVY7+Dp5PmRcI1SRoifDPC8zyWMz7nP1q/cqFD6hYhoG14Or9fFBtv3Qc7lko9zdTbvEOmfmlgVurYsH6muGGkZkOv1axrrfq9iZfWxRCwe3gx2/1Um+KkKRzwLLSN2zLyEjWYfkV9K8oi5/a8E1138JcGZ58fPSQIVNPalggpuEdOhPugmLN/xjEofaAyPyX6B74ObRBz8au2y+ftw50kGusUHzV+D9BXBHh0JMohisOkn/vDf8/7l07/9FBD2toScXLSM1VpAryyvNkNoPv0A+/NTpOlTIZTEhG37Fw7097eaHOtGBLMY0eQvnyC3T3FLzmM3/NM7pna8+eu07zKw6f2IBedbSrUi4+Cmv5EauJyxbv6JNNbVKwLzFbRLK9MEqs8xjNj+oxkH5C45ME87jZi369ennHS5//md0f79k3zySVsZpKfGJB7AV7YqIO8AOXcNsb/Gmy0XlJ8h1miJgrnN/QWfCht6p3okjwTLI32uNwjnaydi6SJbRY388//W+ED5v48UeFV1ivhHmRWzIFWeJOsgJPrumaQs/5UBFMBRIyi7yiOlqAqkQ5rwJCC9wFj7qW1FOAgARf370FLnJeZSI/CI2N1ctfjUxByU8sVDqAohmE7BT5TH68Qhk3rfcf79mkZp5vpLjsJ2SribBRMOMozIjSVopEdUlECN4zmSsyEf6RRkGbAP8QmvhScX45C2HVwvg49cx3yPi3JgpjSB1xdFVhC0B9EHHjyjaUTuNB8Afjzku8x8ANFRuxotdW7HDL4FmBFEBL9dc1fKIT4iEx1/GfRXaRjvgNFGJBZcCkBhk3aKp3B3lIzvwph2T62DpYqcSLKeQ/vbFXYG333RR5xeagXrDGzKf+Mxrpehxf6ez6Dx9C3cZN8oPbx+ugk57rJHoZJ56cEeD2fI/GrAO1+UwXw27zZ8/V4oEmiNwLJ38q3X9TUjurT1/qM3jVP461wjs/lc26lyjBK2fPdCuqFXxezaJxse8U4jbpPc2ulQZ7H8OytbjQan/Pc+UNl6yWvjrTUWb1gniCvgRMqhdgxqnJMzlDrnS7JaW9Lpc95HsPZzjmhJ6zHuespECJ3kjoJHbPl0v5vuoFCoi3JPz1rK/1ZZobvXkxx/Up2u2nFeIJ3sFzGobRrrgTQx3G29QxtD36XrOugQ6P76Jq4uxy3RP2kpnxN3wAcDeICc0v0dCuldIT6WQbuWG4WeTNVB9x4IPtHsMZKDXlaRNbq8vwrCT4XCPL2Jnn2jgtD98Q2J85aw6GeOv1gnNYNJtZujxRll8D2LUgzHRi3R3/iIAopS8rTXEdMupWAdv74J9qw8kssnuvjr7nYLoJ3OAjLNq95+siDngTnwDVJN/8nW0qS1Use6iZtLCgHZh2IJT/GIkYaJl/KfGu3Al+cJceVK8snx7MbQ5b4w6qSXVvBTxtXgPgkdshIlG4lLjwHknukjWsvd0V+Opo7h/lQWWH5ZHKD0nbyVEu5n5Ew/WqwBVgIY2pZIPFIvYP6bL9UPfHSswJPRYth6qaWzEM2Hb9kuz/Uk71+ng08suheLN5c1d2Vh/TOilxSyKT33PbzD+xmpZTyAOdPkHr7rOCHZ6tzZ2oW3CX7OEySOqWr+1G69eeKj1yD3cjgCvrc0Wfm8+iMqboHW0renLkp3qGTiP4/6uIp5VMrx8cNFJj2Vfpsfvg0MZSuOpDo2DSaf35UygFuNTPhpGXnHLQYXzXyhx7Z+JjDDDLavWkX692um/F17vZVbYPVb8ZLIn5qt95CysyVkwklMf723HUmpuA4l1jcvVsZ4HupUoBFXto3BGOUSWEJlJlbxWNs53lGscNx1T5zT+k6ZdOAcUH3fGkG4vfvL7ul2kmLeXOT1ngvY8awlilIeQ7wXd3wxNEEdwT2rjtHTe2sjLYcQ/61XomMWMrp2Rwy18lYQg3Nu4FefF1W5FUOGnCuTGDZczoO/azcjpN1nNhXj1qvnedsT9V5W/srYjoOW9OaQS3serAOr7vChvRUSzursr1WwJkDqvG8kZDvXwO990yirfXwg47o3UjofJgrT/iFhTl4Ff1qKV6IoPzUnunK4tfRoqA50H2aJpd313S7wqnNAiqqGaOXua2BDqRfludOvxFSy1e923NIofc4VEVjzlzE915MIktP7RJLHdmv1Wx52UD88L0gt5Xakwrr0yqWuhkjuJK1g6em6g9+f9EbRchcYLfeeCcN9lhF3oOeRXuPzGYaE9cicUNdu+JND8/Ap8f7WzenEuxMFw+sobfjrjbMg/HQ5rc8teXy8AcztqUtg+fi+kdVuhd3XDmE5UOCLBPrTH3kHGxieER7xeaf+GP0tVgXba5Ajh3ty4/q5fVRwuIg3EkH3M9JE0xw47AyDWODJ0kk8jQ1sj+OAWTaubF38O4bX9NdF2F/tlBb+pZKqfWJtpyQZo4nmehDF5oWc3kBh5Fk7VNSCTiXawwItfeWghqQwhAhcT2rBJPV+B9OtBeiIECiYHl9NedDiCisjMcdlKX4JzJObGHW1FqcUTuuiMOdwJJq+u4PFcLUOODfLJKjvbwZlhidLylGdIkVvkU/5nyTC3ZcOxDmwzqAxnjwg8rTCz/KgGrwmXB3ofu9mtK8pD+inPkI4GKJGUOkf0xXVXgXb35hhKdxb4/IsHzX88Tse8+mYgAWnQyP76ulGtGR4pr+2a3owSrhGdrx/j+t11EzlIIgWMb1b7v/LR0DZUTzsrZpNVfLqoeGZb2K8Fpstz3ufg5++rwiipTXirPz2kNB4QOG7Tvzprr8dJUM8jbqu84xFWrZiV8fkhzTJ68bl9S5juOF3BOrns6W1nXWA5/srehjhl027ejfBzzV7otCiLzZyp/cbBi/juuWrpaXd8ZUp4lX4RnsZqq3QRWYM6K/cIZ9fFEYydTEVQbud0P0AQoO9wTf+W2/oeDJ6Y3WTrdAyqlOiVbfQp7+WelCneb01ppLALF++OuQxTJDVP45s7dWzCcorCNCG1+nyh7dFK3EonFc5ZX/5ApipTswEyQXx5CWG8anyUGgIdfu7nxYP7l2aYd55uuNyawEPLX5/wqtVqoWwF6EOTDHYR3KmPgEpYiMBz2qIkFcXpbG+ziEGp8UQIsr/Fn9RJ3GCpSSLeH8dJ3+1n40q36LZR8ktcNK100EtmwfHQwZ8qSn/LO67f/GiFyI/zt+r1cHyXhP8+ov3P35SXqWA6Kh4sxld3rEyAfOCULO8/NWPgx38EmfAMrYGxtSErwHdtc9o5T9By844NeGGn8SPVitdVgIymJeiSe5i/TUW6XPo4KzTe7Roz7WgoZLJkHaHAkWrubSsLTQR/O6/BpmgIIDAI+Yl2aoXUl7LvJj5+0eE+1fKR2LbfNseXj0OShHgcPXKA4NXW8sER33ASA8f8kh/OM+A06kIJXmD2iWgS6m8nugbKexjMyFoyxJSPJnodJESnzAKE7CsOvzDt3EQ43oH4XdoyXFffxhNJnM7IltZBB332y1UW6oB2lcPEnBOaqxckQdwR82E6H3E+Vhg8wKnatWQr2ZuSmvzVwLb72o8hLe44DR+6uC1qBE5n42vzwLypbCIhATTDa9pWEoNXP2sjYZsEMdllU81/HjFGX9PswoET14SpRmA+W8+p9qaVHg1eB95eWUVpN+fSrh7PPUI/H5pwazAa+DzadU4JX01rlNiY8DxTYxsLVX9ZRsPqL6dRry4Nwz2IQUE0873kH8LXmPXW64Md07+Qu7uarZr7Z14eNp3b2S8bOxP6iRiqBbbETVl0Ma1C0+TZGYoJZrRs/+Qdi1byvJK9IEciIikGHIXARMERZ2BFwRE5JIAefqzsL/hPzvDXr3ajkld9t6VVBXdqhFu6Ko0OvFlQzBoor0qBWl4P+fThTEcdI/CxnQQ0Z+jbqxmfwPrIA+EZJPIv/VKESD+KivaYOPrsYOyFzaV3Kns4eQRHx6Od4ObESlUXFeqsdaDs42S9Q5TMdJkb9x7UoLkuy8Qz74s+GjtLRsMn26Zmpx2bf/Dk535TDCLz0k7WbB4wGn18vDqsnXbQdOXgOwVK6iYrCH6uu9dDN/ED2Z8ujK4gb8LVGvuGQOpRGMwp4sOwyK90K1qTB4vEQuRGoQ9M6wWoWG/1Svkmk5D8xmPcOmVm8rLn75kd9fGqO3SPAY0VDFxiLJup+11rCGVCoNK/ido+btwGmC97zD9pTfFaDeqr/TLbEkhPRWIn86vEri9L3GctV+Pp8n3AdXcqI/sgsGbxGfa/fyXbOEQpaP9bFRYUY0xfbxs0VqdDjaqcc6ZVswlS/lxseGzuYXkbpF7Oy2a8AjB9iPQ9XzhaSLy+gFs+bWJxsk7HSMshb94j8c7E6Lx9Z3xxD1usNKysijlUr2hI7MFYj06M53x0TxoSSuYZjoUDQ8k2fBlwcgu0iUzvlLe1TDjC6o8rBXvZ/uFl3hLiHbahMbQbPAE0nGYmDvj80F3xU4p+5riZpFD0b2f9wuc2n3BbEtmLR9XUQcz/iD2Y/jwgivhAxkC+czxNfCmm7oOoU2OZ7K3yL2gRf5JYP9c7JnpL0JjFdnEh4dVnQjpXmU7bOQNIDdDAduO1o5zXwpEoNu9SfR15PDPfl3l8MPTDsedMZyrKIT2nvrEOW3bYrJAfMBOeAOekCylU78qB/QRiI83M1/phDi/QOSxCIvDuS+Yd63LX/4kbrZQ08lf7DD6fZ722289XYqwuOyBdtfztZ3c+bFcUCkKHYembbt4opW8Xq0Q09y5seqFywmskaURr8N9xCjuKLqU1Y5CuHLQ4E/SA4zjxSfbz9FOh9IzYkScVc62v3h02JYmXDZNQyc8+nNhzsggLZDA3IrUBTvcspty1eI53zAh4qvhKCC6OByobB9ROg77rQCZQhDTBjVEQtCPJRw3yY3Zv3zJc6VDlvtViPkRn3yIXPchX6UE8OCXdjoJnlbD/P0wCjr7L7+iXe4siC843BvMb7WAZP+8EzuW3+2g6PYDtv7ihCVzuypo534x0pcDsHDJCzSpxd5Gi2T1JHOD9XSY9wtFu+3AXGdSkVgumxwSvStxqU1OO8F5dQHtyyUsbw7HqPcCE+BsCB4JDX2RTukJ1dDfbY25Urb1fvoIVK0XUlBCGw2dyI5gdK+c3idEvQnOykXutOTNPFYK6fguDR/N54klWLJi3KrkBvh6v7JdagfGJAUZKGSyNba3iNLWDsPz4MP1kzlTGaWjme9uEAxCRMd843hDdc9CRdF4RREe39EwJosFCnaDxdSuvxUDfagdCFzqMfqY13RoLq8LpMqww1zQrHToxM/xh/epuB9GRKVPeFPSqyvTg77v234UH8Hml69poVho1Cyp3vx+Dz/9gh7vJvKs/Mm2ZxZHIq76BA6O8iW2WS2MIVwNsz6DgC6kIDE4LV423BFbMtN8nL2hwR6Wp1vB2b4g33aKb6xBQ7tIiP1MspaTZR+CtLd7thuMuzcp3fYmvzp3wotfvlhkCwrL10GkM35s+cq6BpBqN5EOpd1702DlMWJBsGD3fV0a00KQsh++ZH6wfrTTPoxiOEXFk9jDuW+ZtcY2uhDYkM/oP6IayaRGQqXkJF0GF8Ths0vAc1yd+J/p1PZBvcMQHr822RcbPRV+5z/nB7o91y80bpriAk/eDTMfSdv1s7v906PcWH3yobrXAbzd65FtyUbwxqpf27/1k6cMWTGuxnMCwnEpElwoFheJde9Qb60Jw9GnLuhj8ZzQSXIpsaV13U6H89Sgo6tHhBxPllHlfu3DxcIq5nV4Lqa+xRXE5U1nJz0zkbB0LR/qa9TThSW+U+7MVwbXsZoRzRWUf/ngMGGHlrdGLLqg35RAF9GBjjPfoiMybZi295Bo0b4ouGEag1xmYcic993h65vV22h1kq9ke+gz9DaLRYnSx0XFVaQlRmdOgap8L9qS7SK5KrrMKlXk2tMet6+dFI3HDRJQHhGV7fvGQu3KOoTynG/J/of/NmqYQBSCze6LMUi/sx4LG822//xRXAkXE83xkO0lS/e61XIQFcdUC6bP+hJNG0kFs79ZeGEpV9RW2A/gI+x94lLLRb94hu6oX+JRX9upUC2sWrFxeyK2FYh8/LbPBtknyZn1MhrNeC9Dcn6I2Y6DE/U/fuKbwcjOpcV5TYWtDIUvD/i3Psrqj4O2yXF+gjU57RgF74ssHuuW7HhIivHHN0SWlnjG66jb7ReVfGgyg93fglEM/Txka+ZrLJxnnfNYlWxYeLqJn2vj5FFEqYR2S9uZ89mXs/X+ogOpSctU92t502PrSOAivKbhc7uLBnaPE8i9DBH/VnXp137mOsLVZS7xaE46ic+oQ95muWNevUzaHx8FtamODB90ysetI+VghATRdXAl6TpMRVe2yMZgruM4nlAHTSN3N+8x44UyHcXkLf+t/zbrTdLsb1AGrCTeh07e5BR9BoZrl3iV3g9t//QxyLf34YsFeBvovZS0G+zVa4YX0adu+bO7mZtZn6KL4KC17bo4Y3gzvcDr+YrO+vzMjor8yW7E8T9DOzj91ZXN9iAQ75Y7aFrz9wA7dRcya9/R6DMdfR3JVj4w96enr4TAVIJBjCiPtavH9n6+QPEmL+jLr79ouu5BBnF/lZgWHS9en2/lC0zVOiWzfsA7aWvF4FfBnehB10cjpFINAMxknraNCz64F1debl3+hxcGt9lQeCS1yJxeMeYrZ9IE4U72qaDfXtEoBLIqP6tjxDRz2s534HbNn94wVUrb0onEGKj5eTGdJ0rabd5KCc9qfNMB4D3XA9oKTAkv2ay/ou+liSfom8cDK33z5nyzAmdTdMGGkGUxGNPGdieY4w3TZ3sRi2wK4CpdgNjGEkfT+xEKEOu3mJh6seK8MwcRSlXasWM5d1XguUIhrUyLWXpWouF9XGP0Eh8J2U8IGzPfzUHKd4RhA5neWgMf/uI/kY5KSx+QN3DknUlCNQ6MyVieZAi2Tk6iq2wWInV2E9RSK7L9hKgxHvssg94gHV4zQYumjPUqzPojftXu0P7tb5vwuZfuc1kMmqYL8OR0+OXTlNGrK0F7v/q4Wy5WnnBT/Q58rcXEKXfriBaZHMIhwDfKLnBsu+9mNKHXh4Sp/fkUjfuLQSFO3IS59t5Gc/5+AIwLD2/M1QEx/Z0+4BBFBzqUazkdZGKaQFshYljVJTTza0l2KzdmxjXw0PT4VIE86+/M6mngNa3k+ygpacAct2Npo3TkgbJl4mPJ1cWCIefqwHF8cbZlaIWGoB8rWMDKI1b2sYp+xvNouSAqLrWNYnQbeVz89G62vxhqOggvtVIeVnki5ykjvONr2YYO2Se2F0SS/uFd7Xus2D0qLGOdw6FCdYwlDGOxMaZkbcRI0cYKy+Lb4r368zLXXJH58yPhfVz6UEV3jFc4/nhM6tQQScy+km18DFJuN/L0w7tEs4ojGjuLJxBUectUdSUVtfmlC1itZevPP+vtpnz8+CPbqsIy5T88O+sVzC7O62gQLs/sTw+e6z9tx6ZkQqsMa8xg9aPgu5ujgsZrTFIbFUZ3sbwKHbyPT3a0zYzffqLuwTWmz/YnknIIFWq+X2wXVidv9dPzKfpS5uJeQxwpk/RX/yFNVUR1tgnqn33iL4c64nArsJKa9pUuhXOFeHR4zvWcY4iX6rDy2O6mqrI5ZR9mopQghuNY2IwN7ZhWNKuIzfUyQJq/Jz+8O7TrQ40ifBQZkcMPH6Jj3cByN8TM+FZf448fODh2memGRkt3PujoRacTc99vxoegiC5QeXxHyKxXrq93Vf79zLZyPBl//vv8pg7m8MrSSfFyWzG+jx4LC3XHJ2m7lpAgZgF5jPQb0RnPwczf2N3YbxFXrJEqm2zzV2+LRksdJ2g0NjD1PJBiPT0aDEp1WREr/6Yel7+ZoMz+Qmy7rNNBOrQZRE3tMoM865T+6iPude45YaMv4j++MtcTie8uq2J8vrwYqp1XEfdxrdLOyWWAOZ8T5+ar7YxnG+QPlUXIBYRixoc52pZ1wrbPh+k1ajxOv3g162UuGs5VGqC3SGu2u06Lgl7MnY4e0OTM5v2x/XwFFKJXhToy1xcMrn4meXNocoMOYZXyRvDFSQm/4YlZR7z0up9/zXiIRTUMUb3ddDf0Oy97MX2Lub7sQLIZRmIz++3xRWIMQN6O2Cue4XrlBpgNsbhRyXHms/yk9z7I5yWd67VF0asf5wiDGOpER8GzHQ3LjiH0lxpR1dWlmHzeqmjWo8lPf/jTO9daemDuzOeG07bQESyPH+Lnr33US/H1qMx8BK+GqPGmT4oSVOOM/+k1otuWAZrrf/jnf/ltV8fweQ2Y2PvhwDniRwrn9tywWQ/1uDKsApDX5zXb6wUz6K+eI/pQkcusDw7Cyyl/P8/1XMZpLRcN2PLii1F58Qzhd579R0TUMg6Txzt7fjgqHVuseH2O6M4XdHSSHIqXwtnmq3Z8hRCM0ZtZEreMtXzsbn/1Q3iGcjsgfZgUR+kidvpus5Zli1FVNhl64UN0lDw2xMXj/7lSIAv/faWgOjcV7TpzU7CvER1hU6o2C7+N600l4A5yv1ozvLRexrDLXjJcmmnNXEELiyH8qI6CQHKZunv2Rr9Vmxq+jzDEZb9rjWlveg3cKmNDPzzfeTxeFDasw0s+pxi9pU/Px9Bn44ptk88DTaJBjvBp2Yqp29ZE00SEy0xjdXIZroFX94eXriA7Neh6FR/S6XaqZVhwz8SQ1c92UBa9Cd93xpkuy50xnbyzCfy5uxJ30208jje1DofrjZBwJFZbOm+3Rg8miOxQ8yL6vrXjBVa19iC7uZEo3w5jAv21OOL54Xs6GFGSy+ZwuxNrc/P4tLJlGfyr9mbq+BKjKX+d7N/3Idbp8PJ4VCcYziT6UKmWX9F4ab4OOKePy5zX6Y14ttxfQPlYlOiLHFL6oMsjXCKvpJJsxu2UoC4BqbqPTKs2NO2d9Bigrlja9Osvl+mwWwqBsufAiLVjckS/3c2EZd2HbHvZFAW1QHJkud6e8HlXtUbvRlsAwTJTEg27nFPNWYbo9VgR4vXRnXfz/kKTn3KmLamHuGI+F+iJu4Yd7cWjHdPMfwBs6IZ5D3sypsdBdQCP7oGQo6FGfBt4IuxeTUbIcgltnxjuA1hUvGkO7wkNZO91iG2+G4Yva9Ub7/LCnttL5kRv+yz91uc+gLxoLGYaMY04fGkIbFxHdPm6FWjCGgqh69wn8zC/toxN+xukw70lmK2UiGXaXQSpEkpi7YvSG4QLPEB6koBu1m7b8qHvOvQV3jIxurBMx99+SNVzxMp9hmj+Z1eh6fvxaL7bsuITqzyHzx4LTKu5EfVuzHNQ1GlL9mIXtcM3PXcgER6z3S0887H/7HUoli+ZmXArimkM/QHwqztjIcysqFMRTZC/zDvi1zEUU33Ib7CZXlu8VkwccfEWy2j5NS1yJU6eDrN9QiHZW6bRTxuNgV47kA2vnKmxFLSTtVRzJT5InNjhYZeO/XaqgZ9jjpV4ftWlvuUEzJdeENdMesQbzQWQnpWBF1V0iUZFvEqwzAAKQPW/pA7zldJwttTCZKkEvsaC4yqJWC/tEnRphjXzb+se1b44Tei2CjMqwv7TjtO1GUBe0poO2Vnz+EZwF0g/85btpFWY8u2eP6BeLko6ir6NhNLTJ0iw3WO0yFpvcHI5QGbWDhQlhLfjHa6hXMaazsznxuGT8JUEWLRyQbQX3vLhfJJjZICeYDkaZFTjYSH+7JNcib4qJjNrYyC0sIi6IlE0JbdEhfjKrowcjSzl234vQLGUe8rCXRv1TSA4wN9rgeDq+jaGpPMwsHzwmWrV9Pd5x435vRJmO8yMaP9yfcAv1DBbc2vOzXWTw93sEqa2Iim40ygP5NyHgmx567YijH4I/bKt/+xhIJQ+0Hw+lPIiSamyv7ogOZlIdKKVEb87eCE7OP4yx/x+Oc/TJIBzHK+IX+XHdEwKSYfPUXQw99CS05N3tmG+dc/Shx163+rxuMAevzndvOVv0XlJv4Dze2J4HsVmdPvTRQWhSHZk7z+mdjp9hVBJbosXXpALK/hrccHwje0NcU8N41WJDrlyVBudaS/Ljlij6QDz+dKsFVkxnrsxg8fVudE8ZK+UZdpJUJw7vjMiH14pr+tXA3XdmXR94fN940YPQJtUlx0klRmdtG8qqJxpIru3/G1p/9Ix2uMPx3vtUPG/8wAv9egAyhB1+TSXIOjGZhq93I2ypE4Hlbrwmbk123QMSlf6+StFoybzkeVlCPP0dJJ+r007vB35sj7HxxWzJ3o22GqWLHbe7kJ0ab1Ck/gObCXsjx7z1UT1BvOgO7K9KQSqLA7M6FK3fqBKBZ9t98fa45uDpcLqAme62c6zipzic4NKGWTmfaiB+N2bcqXxyZ7CQ1hH/frr5pDwGoh3CRtvqCws/PIr2VrML6atCBg+ZaCzy3AdvK9yKmOwC7zHw2JtGQO8WhMpanqk7y0Kjd4LkwFlSbqnched2vF+TY8bM4kdsjUWG+PrheGA7s0TEef++ET1OvSO0LLCoOXXX6LpEz5rqLOdROxX+eJzPnfhF38s1eSo+kSTAD9/Uyb04sNYXB252A1XEhvbMOL4/AzQ85Ra+KlsxnZIOsOHsJcO7Ol87Oizvh5iRcv3d1xprsPHxFjWKAvLDzPK3kH1WNox2NPhSPA6exdTet4EP7yA17eP2s7x6/LzT8rt2DZ6pmmZsnTxgVnV5dUO+imXYAQc0+8cf4dJjXygcScyr72piKabowoj+DE5V4bEaZ5LAUATLIm+sk1jdVgIGchrSSeH9C6kPSR7G834hGzztC766ZpP4IB5IIl9N41J+A6ConxuL+IPmonWXSqUs+Swodzem0UfpbsEXo6zIq6gTW0raH2IbN9ZEv12qAqm36kJBz3Vydb7atHwuFsTiPdPh5Wi/qYsXrTmTJG+VL7vFi1blJcYvOnkMQ8KreVQb2zpPTfaQ3hjR/x1bxr4xs3yL3/WtnvQQXwTlWj2cxWNIg6k3/9j/p4X7XBe+R06Oo8ab47861En2tmw/rY6XqqwMPgLViogXN2If0gjPkZXilFpv505/n5Q/9ZuF6Q7mzVxmnFhjNvXBUPqdju2Pelvb1AWbxPmeIxXj36TcsFQHxCkSCZOtIz5cC92FG7Cpmdb7/tKp4gsRZjPk3bX3YD4bC9IvrQpXqGnbojvjeaCfN2/iOtax3QSdl4ATzR3kRoybIx4dw1htj9G3ubR4MrbypRDLe/mV4tGOgZ65ihhyZdUmVYrr7u9ExsSCx3ZXpzUSNRaVUViJ0Q0X9lzF4ti16F2kaxpgxiL+Dl9O5DvXYVudmfmTf5HnOTH7sRwcDCdgn/zN4VCMrfE+8Wbl18FqBn3McFVYBTrlL3nKy2+zbRSvHhjYiUC0ibdxT1ummg6v9MMHsHSYJobcz7jmwCyQT4Rlbi8GLlYDqBuLZWOjgsGX2XuDdwzpnQ94zs+fb0FtOfN8Hd+zC3949zj5Micj9pFNJqcCp62ZLLTimLEvqVowjs3L2TvfwSvk7dVg94RLjEat5920OQNnhs1fpjepykffv55I6ikufF20/G4Qjr031gj+3ZvotWm/E7oHMuILq7qqyjV21FX7M1LIMbmnRo8U+tms7jrjGD+/XijdhhuEKWRTRfNNjf6FbFtsAt/z4w9erXD73z407tiqRaEtgvaWgbH9gK68ZfPiMpx2ABrqokuJewZ01URJmTwlUbr5aKNhveOlUiFFhM8z1Nj4l224fy+ArOaUEB/9mI9rmeGT4aY8kzf6EgXv09CFjo3xr2LH4Aeaow5qg+RmH1fCXDVjIi/Zq92qmLDh2ZzYXQpHmNjejaPEvp6iQlutFPKP67/QEZXZUzrUl787AF2ieHPfKbkZagzFdYbG5h7fqzRCGkWottKqJjr4hWf7lMjy+AtD0y9fE1POGzJhEquKH/44Q+Px5KxpSjocTvUS0kA9XHK8JrRZcrPae/AHB/Yxfx+0RhkzyNkuf7CTXfVI+GrZA841EVMnOWiTQeL+i7ctrnEtvESt+s9vEtoF5c1wbd65IOFNwP0V3lLnGbtomE9SdIvv+FJy4/GWBrdgMZuuJGd0dXR5xfvtsFHx9M2+kTDa+1itDxYS+IEloHWnXwdYKnrEtltiwoN/eGrI8N6Rcx6iDKaXFwf0cXbGITE6g7RqwITEtJhxc6LRWEMiT8Iis6SBV3t7+f0z5/79VonbpcbaAiLW4lmeyL2nG8G7zpMyjbTgXnvdt+uT4YhgUWKgvhqkhkTyYLHHx/Ait6gIXBRLJPzU6LdmSDUiziQgat2RAXcoXYii22NZn5EF/vTNWUHIi3gKop7Rn78xHfKBOL6s5/5z60dfcww6E/FJGHQtUYPZ6GDE0pb4gmrshj9wE0QgqNJyPCdGxezbIJRUBUyfx7vQZZr2MM5Je7c5YPrz10op4dFQxenXeHxH35R+/2RXYqQREO9ONVwo6VFtgevage+0Kcf/mbk/n6n5XrIMoSgOOPpckxTnl+XNojdPaPC119yCoeNBJ68G4m6OqnG1G73A1q/hBvZJmLvseVy7aD6KgbE1SurYN/SkUCp5JTsNecdMS3HAvJMiMkz8F9o+BSdDgkST8xZaBpfJcZ61gO0DXMo3UXDx7w2v/xJ/HFB08laOjkqLquMLtS50b++3jdouMQJcT6q/8PHgHaJ5lNFO9hoYDWzkZbMRQw5py0dLioFXuEP26eyH03vzc6FcX6buLldzKJbxZ0Ne3vcM926TgV33K0E/aDe2PZRNkZfASqh7JsTc+wu86ZlrU/gM7akKy5X7XA5XEsIYbKYLil5Oy08ZQFHDTvEExaV9331kYAiU62IIwS0mB6kXEjL6+FCrOpleDzOLBk2pW4T6+Qd07HtRQcdF7pIVBJkf/kKHLAPeI3cTTSNx5MDp9trzUwXfTndDYb5y3f41QwdGnebzQPSKw/oeqmt0URTO0SVc12yvXROotGNeYZasTwQz9O3vCtb6Yg2U7HF8JBLj578KZRd+sR0oS19owM9oErqhYSZLRE9uqr2AYAxSjMe4KhLKxKCpOQLZre2jcT1osrh/LSPeMFQY/R5a9xguVs/iBl+K9SyEJlAnt8D0U7Fs2B3x17AfbrpzJG2e2OY4xsMn+lIyMd9er1V3id0mbQL7kw9iNoZj8h1fZqfvPRGNMlxUqNeDwVmLQPO+be6hojlypM4ZqEYjfbtRLS43b7MsLdrTl+fqwoiBHt2ce8j77+no7RZj2FM/PLdoOl63/pA6XFHbDHPUP/OtQV0x5fPZj7AJ74vdagP9kg00ZaN6dSZNeySd/int3SP+35CM96jwaU4p3QicAHx/u6YekRb7+f/SDonDZ1e0Hv8uvpWm/3WURlxXpuiT/KjCPP3I9sfPp35Dwj+EeFVAp92NLrGlnk89HT5djM05t5ow7w/TE2qfTG6XMmBRa83877XpuDa69D89Buym/spDushy+XD7puT72qfe8Oc72HmM1hoSWyU+fR6bOijuBHHvY+ol94xoE2x3RO1nwf7LVk9yUolpUw7IJJOv/XtO/RierER2/F0vIRAnMtIZ37i8c04VeAdLwExhXVtdHf95oIQASHHMLPSIf3kD/DXpwgLCc4jBo6Xo68APdOtYO5C2TUmnKzG/elhs/6gJXBTWh8ribpu2XK5A1hY6Y3s71QoeCcfJpj5CJauHweN+/2k/vyH6JljeZQscxFitwmx/AxfxSQWIEO1er/wslnUnEc7RYV16moMz3rINOth8uusfonepwj1k3w5opDod7ZlQuc1S0e6wLP7von9PvHiO+MzNKI6YBd1aqORbB0JzfmV7a9KzrvUBhl2rzpjafvWo4HtbhQZ5XXLotV6YQzGYXn80yMfEcHGNOsBaMXqkf3w/EQezp9eioccK//4ZW4uSywjxtJ5fy5otBsH67Oe+eMHEIXFB294NPuXky/Q2wODJMuqR99TuLJh5teMXGvZm4qlHPz4FLES+BQzXojRzEexvJksPvKoEqDs2I04ipSlQ7su8995MC1avNt+RPsMnR9eikP2CI2xLMMjGi7HBIPpjXwIi2MFI94ijISF7fFgTCnqUHWlU9vPF6fVbtYvsM6ImOSoDY5XCrO+yzQz9zjP9FGHoO0+RDee92JcCLscLXerB2231q2Y/bGBpesf8Ps2EDROF1LJP73LMCPG+awHyrRy5sGVSprOeqULXhGaf/lmfKylHPgz92d9p4z4tzqEYA6PO/6UZOBDaCeVfNAEYNr9AC2bnDiBzlY9Es79PSa+71RoxvGGRVOy+IyPZKjUxKabxwl7yFqFLpr1W0Ik7HniZ75yoms3k+2y3TzIk082qsQsYQHa1cZwf1UZbNltxWY+joa0IgFyn8mWOerkpXTmS2gIdhoVUyBcSKttgEo8vEjieponiMe0Q8FN4EztP8U8jiRw4KwkOjFuy5bzY7UT0PRKJ+Zm67QdkWLo0Lu3/Z/90QC5JmCv0ok/x18upq8OkercMRPimI99XfsQWGVEgvHxKgZkfm1w7v6d+E/DKkbtIN3gksYK2xmdk3JR8R8orkElZ++rpWL7zhc/fMPUhbzh/SQHR7DzVUKs3epjjFtY60D7yWD7Z/vwpkqUJtSe0YBXqqu23LxcXNj34ZH+8vnw3n1KmPEMM3aLOOKb6JQA6rd3CjPf5ZujVIHTNWeizuvtF1M1XzlMRrx0PlU04EN3k0mgW2Q76680FF8xPJgo/uJ7OkrvePHTG+k3N1qvN7fRBKtddmd2ynEkfsJnA1EeH6n4bDrEVTvTwVIij+zFIjT4wxIryL6rLbGu+oR+/g23B78QzxcHj5nSk6LDkgxkL2QIVTivxZ9eSZxi13O+a5wQ7OiaMd9aXhFnk3WDkd/WRL0lKzTJa+UCv/1BW+vW/vQTuTttQ+Ye+CFaVc+xRLjZGky9ZXk7TM93ifLiEDLr5AmpeHJfsuI+L9uZbx3/9Gr0WN9ccpr3W5TXqq9E44CZm6aGIR6ksUPWMw6Yff/Exejjjy+Tc/D+00OG11r3USCPlJlaUKRD9YYLHNlO3y+nwkzneoj/w5ts5stoCE3XRwhkl5Fnjvm4VfMa4CVFzBZzlY8vvJsHaTlXsr0MuidajwTAvzyflA9G7I2w3s750LgQi6oHNKWJ1sCN7sMfHvDGVfANoTjoMtPQuk8nCB4UGfb2SrDiddEw69nQOsKX3Q5N7rFkXOgwvYY3s1bvfSR8ik5FpitjOs5/3/zqWXSlln/xuI+Djv7iDzPq1OLrONtL//S6/VZJp2Gd2uilHgnZA74g8VeP+tPjXUtIJ8SPtXJw1RM7uLes5WN7jOWfPVtn3BT8IrtHWX0vBLZtlb6l373WAeSPK/MEaRMNjnk3ISmJTuuzeIpGJ72FyNh3HfNmPb0PSl2Cx6e943VJBtTNfEye6w8Y9PO3HSM5msDYnzZEm+tf40LQcuVnjz5Ha/TT6356IV5tUeg19+iSo1UwzfyrexfTYf3IYYHiO9O3N4dPoXBZgNeaDdk+Stf78UvZM98FMxNn1fKjdQsg6S4pVXB5b/sZL0P1vPtE1+qMf5m2y2DWV8mP783xOUOCHyO2HZ8TnxaeOgCnF5VKgVXwWd+SlT2cUqYfi13xVx9ZZViitJc4r7zvFf7y5TA+tEKU1w4G5fN4MSM9vo1ZD06gxNOLjucub3/2oywP2yWuZ74yXr77Bbo9HY/cxWIyfvhMeey6nD1u9Yjo4eK7kNjhlhgPOEXUOc1PJlp57lLTRdHa5toEn1tDiUPpN+WnYryh3n3sZ76boLG3nzcowYsxr9M3+tJSaH72P1+RwekohJsavWi0m/d/8qjgRTWc2uFBzrM9tGN7PIJLPglxu9vZG7L1OgF/Te25Ptny6dnEFcjaPEi1X6jtWN1sVfrFr91cD+vPfdXBqTuWzFrGWTHczDJDf/W0Q2i2a0HrA7hREhIvfMXFNA3fxWauL+BNAG7B4XOSYZd8QkbmesofXvnpDcOK8B//92HmNz+9Mh3PbRz/vh+GOoZ2up0yCTbH/ZUK2tVEwmutY2UPHf7hFc5v2JXgS5IH3mTqkVPNTW7w0F47zKPKMeb1hYClxXquZ0npdz5/1FZjyYyqmdKuvYQu6Jp1oPwBq7QNQjGHWH9siHsuy5bnclkr5/5zwoOXF+n0IB3AD+8ae6TNVxp5Bgk2e2IL1zv/6cPQWe0FTxI9ptytjh366XvH9pSjTyLYF+TJeclwL0X/9OhnKS7xerNnfBrHswPL5fT81evmQeXPGH3aLGf7+1qc9dTAB2tLFTyPs/CmH15gkXwh3ktgHo+8YN4fiml8Xdppu4lOF6k+1OtfvcKYvl6Vw1FdnbCNE5ePXTNUcFYMwlxHf3hj10glzPGe4YQCGsW+DeH/uVKw+u8rBRspFindHhVUD1IxgLX5AiNqkKSD8dBqOCxfnHkv8VjwUiIhKAb9MtsX8mhcnFoBVCey8Pct3dJpsT4tEO0Glex0O+PTZchdMNvAo6OTHtAYbG0Kj2a6Mhw033YKDceF+6t5UG5qqje6S0mCl3Uh7LjWxPZrLNEEl8PZJjtWzbPH0VWHUegchjsWt3W62yRouLgv2gvNyZtaBWpQm6LBwlMCPiT14abETwtTpVI7r6TNygZ/22mE0HxfTLdtitHnFDzYflDsohDvywv4bzUiN5Zv0jG6fUvYTtqeGMppdglK/U3zmduJnppVNJ4OE4X1vVeJbTziYsrlNZUfBjKI3kxVwRzsu6B87iJTbeQbw4WrR3ga7oV4ofAqRiRJAXTscSNkIuC1x14oQTk7R+ZcWielwav2AR76BS8EExmj8NYWSB/7FXMst2wHX54CZQ+KQ3yTF8V4ercyottrOO9nZgyp6DgIJ4eEhuyrpWW+ji5QVE+V+DdtxTnXDBnG23GHF9vjHY3uJzoiP84QMwWv8AbSqBJcFt8zS6eX2U7bSz1BmU06M6OP5dHeyuTf+oj99jPE0vTRgLuoLGK7HHk0u+w68Fiskz1dV4j3xyWgT4JHpuuLG+ozV52Ubi2m8yOlLxq0esiU44Rt+q7IfR4EsZeRPT1iunkUa8TPAySA1+8OH18b06N+MHaK954WzJDEVdHfqqULu12TES0aYm+6pWaCrM0xYeS6nl8x3ZsQScIOE3tXiunIkjtA5bs5w8PZL+jmULtgRntG8Apvo4EqgatIl3NJi8zuvd53UIAmRTTIXl+URXcR4huM3belwsepOfUMTwfNXVjMOcQG54t33cFtJQjEfj5aY1QLJwCsoRvZXpJPMXp4NYEl9F9iOPalYCivJbkWp8u8ftEbn/F+QPW0+7DfevixhxKy2JXny9p2yk0yUCXjTx8vkXIoRvBfGYTt+Y6RWN09zoZ7jM6HiRBLuBWIHQ6aCa+xSGm3qjdGN/YgbR63g8b0cAq96dTn8XL2f7zUnk9jOhM3hPr6sJlRlWJB+fNAIYsdGYvjJfPGeT9gQBvKjFePUB8/Xwl07HZj0asu0kEuPBc+zDPnmnbaTnFKAvSC95bsD4HRsmTb38BaBD1zvUjgHTm/RRStkUmX4V0tVm6Uu8CN7YbmneYV01eQj/I23YkEx8POGKXifpHP8p2RSLbkiKlL14UFPvvERNKYfv2VripB2LTMMHLi8aFJZghT7sm2OL9Ql51QhnpnpzB7ZeGi69nrBgJ110wzOeIjs7sJ0XpH2FaU3sW4s9ANym4XsPnv+ciNxobqXIx4YRAr7QKvFlFfVxe8OX3MdvVmi0rWtFRjW8TUSLzXyEbuXnQof/UpYh9EbJCyi4aF8zEqROsbOvLiQjizrPZZcDkROsjry0jSt521U2usMfzOGwXpUEzso05K8VFq5ng19vj/AAAA//+kXUm3ojAW/kEuRERyWTLPJgo47QQRARUZEiC/vg+vetm7XtapV68Ykm+64V6hoQfYS+qGqN8tR7lqzjk6X9uY7dX9r5r0eW/C9hJZRN9lpJu6TC8VefsJiAfH0phej90KcuGn0vYmveM50w4U3ob6JW5TnwN+9iIVHhvbw5Hq/uJx9TrX4Gjxgbpc0Pi8UadGka6nmq5vW6XqC3oz4WxQlZ41dW+MK75rkJUtgxrq6bt8hWT00GU8Y3r1KAPqe1aBdis+LftfifktPIrIX9UWIb8u4lNy2WCI7/VMTEtP0OQGCkAxrWpmpKXRbaxNKEF9Hd7ME9E5Ht02GJHK3JTcC+PRzd05OgB85TXT6/4bjESZbZRahcpMsmbBfPiWVLlryZUd3poaU+1atWC+mEOVsvt203pr9GiY8zXzyI7yt+IoLjSUISyOOEbjfHomKH1eP+y2Lx5o/P5eovL+cAGvb9tHxdNhoqCyp0JP9kPj0+cn2LB2lRGX2f4c8zB8ftAYh5hFze3U/aq9+lH83GuxWJxsY56VaYZTCQbR2k+ezs/tVoJNvHGZVoWvdJa5qsKrJh7BPRMrRl5ytlNrmxHDO5h8ejaFAIeXb1BYOT/E1Z6ZCJ8uDlG/zx8fO/lwVrz8w6lybIaO1ueTC6RRHSpq6j6Yl/UE4qdwyWk+1wZdTWm2253NIwkj/K1KD53Hf+vNDhQn5Z+dtEJXYZ6INoltzJgrr8BY5y8s9OgSjLP2WY4wXJf+LPOxEoXBvcrX7D4TE1ifTv1ZVf/whKh9+kjLbcUa+JwNj04qrdJ+uV7woznDm7cqVcv761GnyyJTpW/297x7tOALbravQ/zHl8Csx4vYv+Mt3sb2HUMyVw3xrhaOeaq1AAPoBrHCRjZYw3QbfY62SFzHe6Tc+bx6JcrKilgf8ki58D34INxZyAwcSkY/qVcdUqtU6ZgjteJ3553BYb2CP7wKJlwfGkUy0iMxx2pvtNdMApSN8gu/9U2AZrmoASpycNht/Xx2f/gN3ibzWZLkhTHQkB2Q2UUBI/K5RP3mevFRcmYrou6lTzW9ps6F8GCrxAX1FbPbxypAeP6ezMgmt9vMbBSgVfciMd6nCbFge8UQz6uJ2S9I+HTUTAzW5XbByvnZpJN8uV7BlB2L+e4mSGck5D7q3+iKp/aziqd1FRUAN9tigd+UKe8t7suXONpifu4aNHXlXpfH/Jstesiuhm1y/UA5ziML9fuczmKTqSjrVnvamV+UTqh/Unm5HpobXxaPqnNo5OP7t6fzG3Vo3Fw8FZrwecaiT8tqVh8HXTEvYsHCZr8xBmtjSsotXf+Ice5ctESPCSh4PjFLzWTUX6LVB3xyHlmgVNtqlAZZX2YDJswIFZ5Oxsc1//CI7q4WjUdqRD3opYzoxn5oaDo/f3e4uWHGNPS7xtysfjIY3nwkIfqpxsYNNoDi7c4kxikzjXGz6q5QCy/C9Pm5CWaZuyr4G00j+0ru494R5gbcQRSZGswfPulmEYLyUhEWV7w2uG0/AT2y3ifB3bON8XEVQ4h05UlXELz4mFl7HWymt3iTZSTeNkw3EZ78iaJ0FPiCJzU6rsMjy127iHtd2Qrwx2d6dHeD6bstZ/TZdz6dfpddx0utseEPn5+WszH6y+c7wyZ4ePSYkG8wDEp7B9KcfsRZ7f1gy4eoRWSIgW6XP4+qsCmVQrnMJHiJQsW/r/i6e2doT7T8/ly6gtMcKjNMCYbghZgyDRQClujsnIqbYBwe9h3yj9cQyzQPiBu//o7utP2xBV+64f4AEb6T7dKxILnRnx7vHHmqlTHb2n55I0ZJAx1vOdHDxP3TQ6VyIduAynZ2D6bOYzm8RD9kgaOGMbuuKhudSHHB8/w8GXOouLnc833LcFccq7noZBnmvW2TveK90feP/6rvuiEk1X58vqCbCsN5+cpPGsxOjM67M6hz7bDYOz1SKnBdhugnbBiePlM8tXJbQ/2mJxbg04gmpz2r4D3sAK+Gnc6FHn0yuHhspuipFmhyVgQjo3zODKPE5nzHowi85nGnY9mwoBXBwpAGgBj+ciOYioNxUPb112f67HTBbEs5gFBZASFRuTNGFj3LPz+CZ2ez7aZmFu9IclWdmYueFm+rgwgNoh3Dr8GoxKefqsDDRiHJa1cHLDfbEd2l6oA3kjfHvbHdnGGVCTX549PmkyIfBP2C6Uz8zODrveGivi094nibbTD//T64mRa5/B6vbkJRraM/fQf5/YP+9DlEWVEtfsBD03BMG1TQUqKr9302KJN3q5198k1CkkqNR8G7Jyj185i46QshuvChPFSNRU+31buamuceg8WmEzPPFkbC4i+QUT5mQuqMGsxcIr/FTxFzXXzTqZmKSL52pGdBZe3Sbre3VXQg4Zrp3/LecYN9JPT9GR0VP+m749d2kpC6Le/EkwM9ZsoDClS7V4NENnbR9s4FDM5z/BLvOZhGH3BsAjrt15iTsxkL1mBnQKr0jKdQLjv+tlY6CtysJ1E9ravmak+14pNkJGSVpum41oorOM79R6/+7ReP69PtA/z4PrJU+tbxpB3eIbwN/Yvny7FE8+59O8Of/9EKPsZDFlsrsMPZIiZZE6O/hmCj5iVYzBOrPp7T5asoydV1Eg4m4aN7vtdych5WTC0bYvz52f8+v/KM476avyr8+aFQnK347+eRao8PYjDjm9LHSZOh350MFtbvtTGPbkPBM/s90x+XslrwxkS13DZ4ku+849uV58Of/g3Ez8OgYfteIj9hRcLf5RXP8k4v5dzYGcxwbaljPxhn8PtO/9PrqIlx08DF5E9mq00VTN9jXqAFv4i58Od0Ga4mWp+gYHsK6/TnrEgInG9Fph+0rTGnz3H825/Ey4MBTc3N76GyBoO59dbpBhAMCRRP1Jnze2id+MzDEC16Znm/tTG+fjWFPlMnLODRj+fkiVqkoV4nvlZ80ETfoQgwTR+iit6MZhGsEHUr+iTeThMD/tNR8uc/WbDs/zav7R5kKHOKIJnRYKU3LJPN+YY36b5NqUhWmewN6cDCQhq78dxlPvL3gkvws8/SsVZP419+QbeZczbaeJX2KNFyjxiI2B3nt1cOlEbNMgHvgzjTpRxuwqlh1pxCx2VNU5XNbfUi2hY8zl9O+wF6F5Sl5OWj7e/cl2Br9EaH0ykzpp/NGvjTb5o4WP/8K7yow1iQGJ+KfxEx0fqo77FQXwbEPmuU/+EviarNcqRh1ZR/eQrzb5IVT87KwQDRqsci3LkxLfwj736bnCLzm8aznzY11DtfJXsp6gxm6LqORMQVulOkAx/7lzzCa5j3zA23cfBb8B8t+4mFpXNKx0fEe/RVzwHx+bPp2IDCEOJ9VDCSUymea70COVh3NQm62jc2xSE4wF5P3sQ8DTX6819wIZuAhfEjTMdpECR47vUV0272C80HlMoo9bOYWPlGTXlyD+4IDVH6j19GW974ylgaLh1ftzalvrcvQZCMnG5OTot+vx5J8p76mC4f/gb0dg0/cJHdPa7PFubTxQkERJaTNXitndJZl4MSzbp+J/j+uHTt6bZz//ltJtMQTW4dlyB1nBB9VHLE/vKEbV/JxJDVF6K2P9twd3hMsG3djHEMl0bS3cukaOGrwVijEf3ldwbYWifeI91WIFev7LL44eYXaCOErlFhvviN+f7mETRVMpCU1JtuuDYVRWcLN3hQvDf/9/68wHOZdlijgKv914TEvmZEF94CoiIuziA4xxfRKBbSb3WoJUBzyJi63rrxVLsZ/vNj//h5fsWPBNygPpL7sp47fl9/4KmMiLm79d3gx6Nmgy2hIx6/zx9q93lxVe7h8MHiq/b5kgeGaMmTsNA+hpROhnCGBe/ZXmg3Rpf99gkiPdzJ/luW6fxd/0JIoZcYeUp1xbcXkNAr2Pp0Wu5nwUf9z6+xI7sWHd3XrQz6xDbMKOzBmHyNmDCaVCT7YZCrORoHHa7u2mF2fc877rpaAz8/NFjY9xYSglt0VXYMtsxPHT+YPgYTly4hnLjY3iJqnorVX95Kwv2l58PztwJ5A3t7GazBYxbUir9LtMxjhxyp3WavS6NyV1yNRJdjycclDwHVnh8Uvmc5GHM5t+UFv5jl+2PK20Oro9VxlNilfK+robnpFLIh2zBdY5LBNtkrgpXUYLw+LrOof+rgos5TCbPKEqOp/+1CWPYnXj+lupsUqt0VVRN8lk4XKR4cmGyF3VOBOU18iicTkTtI61CmlXcw0RzXjYqeXD5RiSrfoA+XA0OL32Fa5H3jPzyRXfiNzNU2qjGJNDwgPAwWMfynV/HT6aIjbXZXZPn96b/8WbgPITEbE9JxnF8RktmLEmvx5+O1GCKUJmcZd/MOV10tkYM8kcuNgq27qUAMoQVv3NyIetp3xvx6S0vXoEakoAX7Tm6zZIbA2CIsSykEw+JnFctFa6zchJ6Pj+4WyYeo6ViWJE48X0qegec1BbOlWQmmP76m4enNrAUP5sOJNCiPrilz1hnlE3n2B/S6JyUJneM+2F6vubCrrVim/EtLPp9P5oy0rXVkWvI9GqOurAX5fuvPLN0rNpro0z9DkTQROS76Y4bm6KPO0wkx5vGExsvOF6Ad15yFeIUq/t2XIejqWvrHB2Pd1yVa8k7KxWvA//Qd2hrCnSVPXqfTw3FXsPg3sl+vd+l0/F4zeA3jftFTcjeMSZqjHc0IUclzE/e5fLYhquVy0VdW1Vy5m6DvXP/5xSjtzo8A/613pl9+PZ+yddIDtaSWuYZZ83HJY9GiL7A82duuqSNJ+PN3WOw/Cp+M3v/8y29VQabG+6O8D7vNFNzpeheeq9Ea7BxuxU5h1m1ldQJpVRmGkz9Q88nNmD3GXQHaYY+YyrufwX3jEcGsq3di958HmqUpT9CbjzX+aUlejavCzeHzywU8jUkSjL9AmxELapn4haF0/apQc3jIeoZX1sCM+WN1M0q0qSN24tlcwN7WB9F2BrquMxqwhvk2uhVIweJZ1hAX8PyRN9+IE23Bl8m79Q0s/pyKyu/Ct7MlHeTT7b76y7cMfmAvH/3Va5T0bARycdWoUoSHGE/6aTY4VFsVnb7ymTjmCtKpkocM/eW/msRNvtlIyEfC9Kkw9esfHy6adgY1pSNx3E+ULvWBEd3tQ8d8rbDRVMWGqWTxbiJW+hbSf3pdVZQT8zL4BdObiTW87ueSefALF39yKWDPzZL4UVXwceW0MrrumImVSg5T7rpeA37n32mzkV/d9D2eS/SX93v1cd9x//cq5b98Y29lNGbqp/8gYjsm5n98VZ8fvrz149Nf/h8zJ5JK+N1UhUWc7tAI0XFWak/u6GvKi3jug+oqz3vTJvvVKFT00XAbrsI4Lfrz2o3WgHNY4VPIsDKPFceIuuBYkrb4kyL9p6fOV2VD58U/TI11K1F86EOSH3c4HUWpkVG2EQVmPMkc9ObtFCHj+g7+8pR4bO3TFeTaLbCcC9duNjYXH/Hzq2bhxSrT6dpUPTDfjGh78BkfzPitQuF05T+/OBW+O0JFIofo0TwH06CUV3TxhplgHzha/GL0x29Ez1dTzCtALZCXRPE67q10a/d9CFWsnWix5BM9iy4lTHthwqgLC2O++icZwuOnYfutYRtTi1PxTz/htXCoUh7OlQhKFGrs9t1VKT2nzgGW/Iw+a0EKutkaD8ov+uj0MviH4PfdtiPasdUWL3lrRcPV+QNL/rb4STDGz2vTgh5qNfPYZ+JTgMwStu48DNtknqqZDG8Mve4HGJ/Hn8FPJCtgeZ/EXOqB3GO9Krfrp88MKQ+qRle2IvI2ub/0Kgi6edE/yvJ8MFrqc/2fX1zyRaJG7BVP5foowqLH/vKrJR/uGtS9hhF/2/4T0937mMAuVWtis6iI6Z8/WPiDhJ/VwZi+1e4jJ9vHMiLRP3Qb1u9UNAvRGv/hNT1mSARJ6SPicuHF58jMI3l3fBTEWpVV3KYvW4LzS4+Ifz6wdKmPSfCW+i3RbnmHptpNMLhWLlFx+f/5H19Z7VanjN/cePyexuZvfVBZMpaurafVHe1+25yuf7HLx007Y+j2q5KOLJTSqTeWEyxxlpP0T79H0XPpguoJSx7jVF8rCM9wT2aDBehx4TMdgggO7mziaR/11bjav6/Kj/hnCoV06Ggpb3tY6lFYzIYx4OvPSoClXko3gjAg1uUHqizXhzfqRU97ejEkUH+aTs6V/TLogyo1jPLN/pe3ifgm6MpfHh2EXK6WfJ5C4Ob9kmd76M+PIObbEdOJZVR0974l8no3DCTcHYhBF/2pbD/2esmDd+mYh1P4L389IHVfsbN3V//yEmIp14vRFPRm/6sP50u9lKeMCCj3LyumL/qJ6io20Z8+DRY9MyZEHGE0exH/8mrLl/pMhP7yMGv1XewWPczKby3HVDmdwJjKfjXL3ri90c1t9e5my9hLMIQzJUGOV914vpQreB6VCPPTC6qh7JoWxToWKO9bMaaXkudwfBwx+6cn0b3NAdvFnp3nNUWjk53Mv3oBsec1RjPQuP2/uhSI//tIwYPGmG6OoWuMQmqEcKvCmGnhi/DZNG4ClErusP0jOcT86bQzXOy9xZKVcjfmDI+1Um4dYGo+2fF01rAPVSucmS7tBWNyD7cVepFkJkaoBcGwetcA0mF8E9/Xi25U70un+87X8AZecvdbh/cebmSTsseHPAxWoCFDQ2RvCdlKQzocHz8bTvFBpKtYduLxElzPYOyWIwT4/kwnIU8ySNTep9fLYzbGpauecr1OE7G8/IfmTvNXkEBNyV0Dh9PD7VEgvBceLOmZbYzos5xxrqoaiy967Pgqn3OoDdWlwi32Olqjaw3B9ZcTJ7tr1fi6rTG49FfjdS3XMR+T4QP+b3oTn/dHY8iiDYW1MMTMag6tMdfu0MD3fj+w/d7N0Rjhew3HigLRTsI2oHlVXhXtO5T4FdV9MJbyJ/q7f+ZeY9VgU6mpUB53T6w4qhFT9jjWiranPtlHZ8fgHHYZ4KR4000m2+msfgMf1FAx6U4I9vEULrPE5c1OITo1V7wv1Rrgk/oCwa+uNDpMyxaqVjwzde2yrsnbRF4mU7lM3Y8qmtnj9oFmt27wTtun1XQTmYqydXoiDv59+PRE2kexs21GCNOf1Rxrr1zZNuRA1+tP0E0TOC4cfmeNGZp0QmwIdqr8ENZn4vT7FZ+PslkD1EZEdxkb+fzrb7aslXKDp3vUpkzLnz5ULxcx3fKNdIrqdY4+2Hfx2n8/qund67YSUxGIFU1TMFZYvSOfPzVmivqQfsPBzODgrnLi5ckN8WMd1BBWtkrrlKrx9jiqAizXg8dzHAf9yZNdkBu0nIIuOzQ68xWDuXZagn3yruh8nVzlHAg+M41MNLjTjGdlKsqW6b/vO2750AKcZWow9/KYg+52Lg9yqPcPct9cYoOLfTyDdiMhhnCZbT41vPzbf+R033qIW9/IBV+AjpEfk9LBEoIDJKZ2/9ufaOLtjUIUfTbELD8HPi7XK0tuzYk7r510NMdZVyb70RGt69pldlBawGQ/OyqfrnU8XqPllNrGNTC80gnxJpnk9V5+fphFvKBicDk1Er25LxLKsl9NrZiJyO/HHVUg74LR+D1C+J3KIwuX65/naC5hm/WYxemFdkM/CXckH1jB7OJlBNvu8hWgVnWBqMfNE3H3DBmUh3TDrM9+6Cb/OPqK92aEKie8rXiB3hnMwlelK+u25ZNxu4tyTBSDhN8cB1OT9lfEw3Ei+fdcocl2FR920/ZLgqkJA0okeoV83CJmLc9z1jdiAueVFtORzx3qxQ1vZdX1fWIH25UxV/dXqaQoWbP9OPZ8TNNXD835sGHGT1FSprbZFWmv64phvhMN7vlbDGn4tLGkKGPVt9z4wPfBCgqDdwjmvd+eYfVRXswM5F/MI3+XQGnKHK8/zyGd4Lyb4UPWFBcGmQz+nusPGpizDBI42WiMIW9REx9fxHLSfcpnXfKXb6Qc4jD1YIyfM6xgOLz3S4RRBfPGjTMl6NUTFfpLV41hdaDw5HaHz8rB5lM83yUQ8SojhnuzutGZD1j5KBeFMk9NqilZMxkMKFbMScObMf+uax1M5WASZ0odY5i9slGSeRcTA+o3n4MyvwJogkebgMV8cnSxQFdhma264NmgPvgBfarkQ4jt1gFXL+oIJ3H9Y+Q+MWOOqHNGcC0PZP8hSsDB9FVZt78pbg77bzzSUTtDHLgew7h/BsMytkna0fLM/M2FBz/rvlNh+mwww0EmBPxkXyVoG1th4W9nGRv3QVfoOjQRyZ7XTcqvaDcC2by/RPUVls5NDQe0Px09uvZUoZvTzVP8x28p25+CZT8nQHeFSQKjcIPhR74+iPtsZv78LDtqTQ8J7jGamR+fvmgGdZwhv3uc+Wtd4E0lsBbOrFBo8/1VFZfZ1UfVVfFIuPdfMXs65Yzuh7oktsZ0vkk+jxZ6fZOy+LnR+Ox+RBGW68eKyH/GKD+fCWq8g0flhT/ZR3VN+bHfdQTHZY94Hhc6PE08EzvP7aq3jy9f+ft7T8a/ap56c1TscyHtpfPB6LbmbdWDwiNKRevixpvRDfPdsr4J+Tgzmo4iSsB5zwkLHHfomDRMAKGw+xBDud34XDokg77RJLx5MDnlF03KQUPmjQUEf1K2kW46aLd9SNT3Mp6l6M8ANmInuh4bveP5B7WwkgRK9pi+qvGrtA18EuFAcNq8u/F2D0pksCLCcXrB1Xz79A3o9jtlal9qwbhbBpncKhwz/yAfjRlPVx3O9Ulini8pMbt6WET1Fb+J5ccKp7913StZJSUEy3MR81eWfdB0PUtES58SH5Sp/C+ff9XiyIfHutQhcnc3kpduWtH90shX5+uWaFuNBmPnKDmqlVRn5i32KkHlEAE53HxaXxExaO0OLWrPZKRrVU4Rl9nBVV6Xsibqj5GKe/4aI08tZ4KfhyD4HR8/E06BY7I9qTbdEMREQnv38GD6zdilg7N5ZejC3wnDLRZilk53CkdV9ch9w4aKI3FR7QftSdzw/eKT7OUJipyU/ePzcVpBAftN0xNr+xkqWrzdDxhhkDLvMw/GNHSbGVW7c8+MLd2ivns5Paw5+RHVlGNjHE0eok/Y5OQc3OuK6zvnAyv5fGWu+fwF3J96Cfbd+oDXhXnu+M+FFq7BZBHSKkU30d0RK034vdHJFvdoFMtCV4JTgoketDdjdm8/AfV139Bj8nWr7SX1e1Rz9qVrN1C7MfkZKvz04I7X0lnls2zdMLz7CGG+x7tqLjkfFVsJ1/gti1LVv+yuBjmV38wKqYA41lZnME06siDu1nzSg/UVfbTH7R++zOfOsv+eD/PS7Bfz1RWJsgTHD744I3R8uGFVfnxXLQsLXMW8PiolsgucELsNa06PggUova8z7GzzKubW9+5C81wd2N5RjVT0T94V/vBwLxtCMKzVR/bvfRjVw4mF6pWp8NpKDvFC+83/+BACueyI5uAm/tObqJS+H7r905/+d/KVfb6qiZYNWiz0tPPh3U5H5tnGL2bZ+5SDiCFjx+3NrQbPT8/oQxRKjAVfmutHHUE5pq+/+0kpG98YfuuqYQF8TvFUB7EO7/6AmLMOtY4/6SEH2aYuCek57/gO/2w0JlFJ9pnzQtw+nSPl9qI/4p4PVUX7zX5ptGy8ifdrlY5hTUxQQ7MPcfbpqhuuen+Gys+XLEa1OzHD4+dvvzG7066IZtn+g0w03qmIW9YNpNQKoORpYbbovbl/yepOzYUjCwOn5vNBXfSRVZkk+DqQDuXYlqhpfJ1+P/I25QUa8j/9y9zv0TOGx666g+AEPd66q7cxGlX+Af0HEfGqNaoWvr+jv/slnpp0Qyn+XLgLxxPZT64TT+FaCNHCV0uk1nYzqw4YlJAYjACXYz46h1pB4cHF363d8LEdTEA2Gk4kvLTbYGrcwwhDN0fMmsc1H4dykBFFp5Y53fgOOqWebAWvKmA6tg7BlBc3H3TjEDB1rwacS3ysEe/alug8+hrDu9dNyPeBw7R7a3JeVtNVEQzxH99Xm+SmtnA95S9C2F0OuNAqH5C36Zcywi0kyPPuimZunYkZN04l+jRtwC7ChOT756Gbv60sQd1VG7oyzmk6NtfURfV4v9B11J3TjpwO1z++pvy+Foz+Y7wSIGlNSDTLfTW8P0Emr4LsSfzskKDJYa0gm2Y/MuPt/lIucamGUWgtsuj7eK43R0DfRv4wx+O3YMp6B4Be2i3DaE05E2+uj/CoffHupM3dxz95d3TY8ysxtCKN5/ud3aE4xQKNzNlFm09hCnDERU5CN4mrPnCbAzwf0p5khtYHfeymK7kYHm+2f/Qt53mh6LB+FhumfVS3m4Vvn6C2322Z8S4qRPd+myDtdV9RGd1Z2j+nqQdps9bJH//xYK2elUV/Ej/4etW467Ia3hu4EE/bo6pPX00CrxXu6Ldq+3RoxUT801/ENzwxbqWt0oMV5SXxF3zv3s/rCvjgJ0QzjayajqNA4auHT3ZePU4xTbKbBIa7DBqZnSaYq9dWhjPx7sxJ67jiF23MgTKxweKmbLrxq5QtiPt8xjNSrXjL7n0IvrDqMFve55D0y2z6rBSJakX7rtFwPQMPjg7xTlrU/TaBK4CNTzYJqu0U/+ERiqXiSqwBdXwWmebL71kx8NaIDUMI9FerXP04pXQQd3wqx7L82890ZdYG2tI16tHy/PH2PbhouiQNRlEWHYgD2oZP1fHWoOkmloQkdEZddQEf2o3zo4Ko75cj4uoZmQcyM82jq5T+8YlHDIctfq1jC54jdOE+U3Vd7/omP47K99BvWNbZvJrUapLg4OQCFWO3RJ2t+y1Si5+E51B6dVzv5BpO5lzg0X5CMB7szQxJO7zottAdY/A7/QpzqHVMZ61WjXJoULB+/o+id8lT3sI2gTY1j+S46AcaZJcR1Nt6JMH6Znf95mTWkBD8ZFa8Wnfsj1/xWSfMye6vjrJq8Z8ftKMDqU5VWSWtDCynLxYYkt6N5XCLUL4NbaLqetlN3++rRYU3z8TyOynumygrQISkI76e6KmwVa45vF5YZftFX/ZHXtrKZswdZiuNls6P30tVpH060E+ef7qpM8azEgnTijlJb6RCvFEj0DQtZcHu7KeseszzP71gmU1mcAlhQJYBIa4DX0jbyXrakC2nfHH2uPHBXmKtBb9JcDzqnK+sAoPhCgFV3M6KJ1J6Jeyyn0c3F2LGm7/7UXLzwO6rVk5709z3iHdN+8d36fA6zab859+MCevBLy9uLgwespipbQeDaq+wRGQcB5KtytEYuRrN8sk++MwO7mY33/rq8KfnMXeqbTWHxr5ACx4xi3YqF2N3LYJLu5qu85vQUedZ5FB6w0Anj+Yx1fajpKxzI6BKGPuIoyqS0GDZAdGlN+3+8hAY/bfN/p5/k50qWwm1kP/jU0r1nw+C4/W0OiVzOir0CuhaKBVzh+kZzNWguKiYzw5zHt9DwNIus+Uln6OSuTW6qUjHHlzpohLHGbOKnjvLhD+/UQ/huuP7eMZw28l3Yta/fTotzx9hvbsS8sengrwM0iHiSNzX5xuPSWVeAWseZcaC58MlXdWoM75rps57HW1lt8yVY7mPGDnmXz4Ewa5E8C6BbmHyUd/TylfI5vslf3g5dnvBREv+RTfMleMOiZ8CLqv59rd+Yq6vcQi1fbouz2PVterX8OE+grX44Q+fonZlQviVZEJUOeV8/j3vQMZ5oJvvHYLJ2fwyIDl6EhPPN/RPP/W/qsT8lMwxzyJPhN68WMSIzG88pe0YKn/89WwVteK3rJEh9ponUe1nZvCJnVWk3XuRHd1dmw7cqFWYW1T/Fw++gj/C8aEuJaHNi/OmsUqw08vMrPuTpHNbpCKKr+6G+QV1DRqynQhDXL/Y5bibOL9lhaSEOn0QDfrRGP3vzpWL46omOBBwN4VrCNGJ7FbMXJ+Sjv9YmYD5NmMWJB5PqRyyD8wPSaKDJFrd9B2aCC16D6MdNVHfaysBFdtAI0FB+qA3Dv4KScN0YEveEYyol0cldKoL8cSPaYxT18jIn5QLrhLYov6obl2YgiRkJDysK6o3vzNKN2rK4iJKq5nz1wfWa+nKDHFnoM9u2tog4d2Fij+hjUfJ/MhwecoF3mwxD/rtoXZR/3uVxORfMeWPfo4gWZlXlnzNOhhrCBd9hhQarvxN1+1jGcNNF0ei2eLAx4zUGRz8zGW+mymcol0qywcXchYteRtd/DsSU8XFYPY4GKJLm4PLS5tY9+2P97I0qnBUrhdy0Lfnjj+WrgIbWu+oMN8dNL0qx0Sg0AGj3bmNxz//c+LNjS3ro5vrzQ3kP38ddnbcCdUr0dFxHBpi9OoODbcqvsMcMY6V9IfT3Y4OIlIs+YmRjOJ061/vzR+/4z+84NYrLuFAfcSC9fQKpqoeDpBWAWZaFE7dSK67FtKklfBOVQdjWkW3BP2tZ5CcWzyl0h6jks89Mb87KRi/9eEKsMYXpsnHm8FjU+7BoHrD9kq36wY470YUtfOHqU+vQEN1uUbQMf+L5y6k8Z8+h2/50YmTJA1f+NyFgq4JU7vkWo0qX/IS9/AgF3f1DuhHlHzkXtYPZpVKWY3di/SQiqXFjIc+VpOpuh/A3+0Gt0/DDjb3VSDKCz4wrypLYyKZL4Es2BfMl/34p9fQkudgwYzqJe/2dEC75kL85d9zN+MmhLY2MG/Lo27MGrGHm0Ja5h/K84Jf2xXY0t1irqKMHXsZ+hl4AhWJZ2PJZyEAtOSJeLPw4XgyUImW9YOnZX+zu0mvyMzkF14dHTHg+9soQni71gTPyRDUWPJLuIVlwDQWEy7+4eXzlxK8iW5iN0sGWvKXcCYatV/x2AuvGVoeGWTPlkbj0bcXUb+6Ggxbtwuf9w9lBdn6dlryZKvjl1SnSuSiG9046RDz4M1asNhjz/Z30/qnt+W7bobE9UsrnWhYS6Dm4vFfPskXPQyLn6b9ktduzy/vLEfOjTHfWdfBoG6tEkVTTpnzKQFtdq+DqOg5D6mEfZ//qxd8Ulcg13jTd2yVz5nyGVSNWd97ZvBT/JZh8efErj23G891+4H3ML9J+Hv5HXfKXQ9sbZrs0D7r7i/vU67sIdHZf7TdqLsfF23Hm85M/1Skf+tT/vNvF1Xq47FzNhl8dfwk1u8hVeMrKkRlyWfoZkAdWvDiAKP/tZnpMqXjL89doYOfu8Rf9Pffz8PGkWaC9ZcTc+ONVnDi7Y35ZTwF463QXVRITUfOei3y/iHefVj8CDvuMisQ/t5vIGCHaMLnEotGWfbA3tcfsWhX8Gk5zQCKMF+ZutzfvGpWGKlb1WD309VMp6+sHMD8oT3xLoLBp71zs2Xlc9Dp6vT+pSOP6RWtBRbjbbFNg8l2Nz7aVtczuxDtFffdXrBR1ScqezA5R9MP0hz50hExIxSfC7+98r/7pXM8HvkIxab4579e2jLe4bpBPjzrz4mRaXMMeuPs1aA5lzVeDfkz5bRvTOTb5oyVpk2CiZ+3Law6UV/8ghuM8ry7gyyYF7xakxsS//LdhZ+Y65fvdCIsLxDRZIEqdBiXelIAFkDpv/FRHp45EXPJm6ddwzAk7KPT1ZLfTZ6Z0H95+J8/W/bDqJhNWtEdoZ3B//L0yxiZ+BO7JafYrHrw86gitnVxU8oud0BX9pTYn/9h8mmdyff2u8Oy8gjQLG0VCqvS/1J58Vc9uU4txK2uE+cC1Jj/6i/8pRDM775qbP7l28hIGH51ujF+t73+rx6Hr2qRjnz/nYEY15yYQ7iuZuH17kFbpT+iS/skoM8jLUGUtxrbq+++m9RqJyE/P1Tk5NksZuoY6xBF9YZu3ZVliEH2nJHuWhatzcgMptWTJojZxcj0E8fpmB/1BiAXBeK2L8H4lzeo8S/8x/8seVYuaLuaETdgMZrWYdTDrVk+cZY9jObhJIzweoUqMbXtPpjSehkEsg4izNygqOa7oJoQmeaTJVlwD2apbXpki1LKyK4iy3lOMwO5vSJmm18ezyfFBVmr7xE9GOQYcC2/uODUh5b40vpazWvvnfzpcxaQj4ooFStR0e5UZCreyzFd9JqyGTOH/d3PXz0QmWurXepv+5j/NsUKbY41XvLucrmfew/B6YyZ3j83aAqCqVROxykkh0NzjAXZ3pvgxm5Fnt74q3530y8gN549WfI6Y0pubgu7QtX+9ms67+rWhKYHYPrLi4K50/QVaM5pzYy//HhI0R1+A9WJt6w/Jlx+oAiPLf/7c9D/7OcB3Niv2H7h75ldIkBJfVfIn96mPTIjWOqZeFu1YdxwOTEh6PUT06Zzn1JPPsjor97zV19d+KVAR+Ny+8PnmJ9pnsidmxXM2+VCxexTHv3DH58nYjWS/G8wrXtgRAkENDn6qoDdRST/8ubpkoofkE7v57/654z4I0LZ05iZrrM+ZreskWBX6Bpd3faYj7fh4iJhRc7MC9GNswnFB9CHY8mwGf7S/o+f/p8jBdv/faQgZXTPPO19Qr0/0ByF22ZLR/p9VUMaChl4NylgJ+P547OpTHflc/QsFt8CXo03pTQVipOCqdJKMUa5fSZIyyjD6D338XheyQna07LEYD4dTndf7wpKnGMqvdcuGtkyS+iySiS883+XeCI2lgCCXcmu1nOqWHy+uOhcfEviFaWeDo6+P8PvlBkY8cM5YGUKOZzXrUrCxN8gPpmloLTTPsLKN3LibZonoDh2tMdtzJWAS/xLkap/dGIrklgN50gFlDX4zqyba/CxSWUXHGI+yB0JXcCnx6lEvD6emCakBRq9q6RC/6oxydzdIeCy2y9fVb0xCXKE0ShVSgSZsUqIr5943ODcE9EuIHtmaqFWidraa5DGkoTKt8kz+BhtMcQH+UgcNIndeLGSDKTdp2fGY9Oj+T6nLbLMaGT6nKi8r3ZTAnxZ7hOfvnG/fiWjchMrjez5/pMOIe2vsHt3C4XYn46PK5fCMTtigmFKqkHW2hBs+3MkhpqZBkV2HqJzexUxUEPt6r/fHwc/m2F8C4zx/S0oSm/PNfMPD7Fj/vkmIPZsFObk1z3v169shIMPE1Fdvl2e3+wrfb5qiPqar/H09gyqzHs2YFie1+ZaeWf5t+s9vBFffdets8Os5LuQk5uw/VXz+FEkpGLlytyrphh8907Pu7M7nvBmeHTBWJ2LszI8fgWzP/3E6ThlIbogFuNvfh34XIStDxm9WSTi266bPn1CociCiQXVuwm4fz6KaHh0BVEf7jqYHg8QFkuUMY0+BM4bvGmQroKId1tlbfz+1j+d3hVzLtMrZZY+ZMj4Fg9yvmgVn2tYH2BZ/1gkxWBMTV3elYcnImb9DJ3PceZlcE/qjOlsH6XDLj/6sFLLNyGPpVGy5CUF+Ne3wfb2fAi6qsxLuKdjQFKpbtBk294H3rVNmXbKhWU/zYnCo0ZgftbY3WztFF+O9EAk3uFrxHPWvhIUHK0Dsc/OrqNpYegKXM8Z3cR3F20vkLgw2sWP+b9sa7B+fQAlnouZeGfBSUdl+2rXoQOIPT+nfTxd12ME1gkd6RfS0WC3ffKB+CAdabUM4pj2WTwqm7sIdNTDIO2fYxWBdIGAeYh+0Cjd8hXSzoXJ9pGiBtvu+GvgLmKFmKJWBJPlrRsZiuDH1GT1RWP/djF4L3bFWxl3fAbJm+WH/guJ296Oxvi8SB9gp83SmLB1qlFPryWYj5tJzkNF/l0/6HJuEycQy3jQgWcQb9wLu8Zbq+sz/xMhQU9GZsaJ2XE+312gdK2QYCuTeGSnxx0EC4nMLSU5ZjrOVBiWwRi7p9Qgfi+PITjBU8DesRD4lK4aFV3jj0GslV6lc+ANZzRc8g0xM/eUzo/PYKLeYzkW7ayr5gTlGF1f36UR/buo2PPb6RAZvkzc7VbmlC4RRHmYBeZm3Tn+W99y7w058c1y2/0kLyshZf2eHC/aM2C/04XC/bDmFDW/H5qjY+Uq00Z6EbOYaccs+0eheI53psu5ZMz45Yxw7a8xucROE0znSF0p7/Z4w+KkXKqpHOoVtKwemS1+R05nPWv/4b8dy5u4T3FbwJb3FjHuKxbP9wBfod8nDq5Wp9pg+WZ7hUssO8wHzKuf+HxdUeisEBZo4S1f9V4bGMOlMbfeJAanh+MVlvVBsOFacW8+VmcUbowIy331rug9wHf0y6OYqNLqEfT92w1BwcRgvjKtUrYLiwbMuSV4mrdKML/bTwObo9YwgwxetSHJK4NrlxLihSLqmC3cVIB16JA/vhODxGiAmlWIkQc0nZ+5PEP4wBbTfypOR95vBdCynjGdfN9prwsBhnJOT/TreZBOT+cL0KilwrSLtg6G67XTkSI4HfNuWteNsqC0cFbUlJHpExtTJRmHv/VIFb7/xNwWjirEFxuIWuxsPsaAz3B6Hk2WSskFjcFvvCtWU4p4AG1rTPaWAqrOXUrnZ1nHPfq8DpBlY02Cd5mmo2anSwlhZRLT8ZJqNhphBpGNOjlmp4mPVHRr0Jl6wON8Gbvp8HtK6Pc1a6aZu8zYpKOVIUN2dRKevy0aTStoYMwvGzoeElxNmdyNgL9LI/OWeEH/sZUCqtI6YiF8OKmQ4raEhf8ZLpDYtdR5+ZDeHutlsE4V9M99dPjjb2bdtU06h9ukRVk3FUz/9qjiW9SEIBVjRuzt0Q9Gz39kKAtcg4Tzo0HTWt+OsJN3HvP76t3RW7erkZ1OEiPt+lNxL+AlrI8bnbk34YrYkDgZ7ASaE0yMOqb59drDS0x0RsKeV1NTUF+urysg1uyYKac/04bp8LsQU06bmDule4edpZYkEo5C0Lj41sN6LWfkD895XE89wqcrZsnH1oyNgH86ANQlcTwviydZKzE8CvrF+rM007ELnQTkZlUTv7ieqrFtVgcUIqLg9QtZwfy6qBmU1fXGjn/r6fB7ymhN9hk936RXOuyNnwkv3j8Y3mnvatKB53B7xVsSuN5cNVbw7kFNrxHx371rzL9UV9GtcwKmbjsj2C76CHX7NiCOIN/S+fpKIxC88sm85DLH45XII+rbe87sZncOWOsECbyJ+KUdL75G//yYK5is/WvBt008OkV5hu+W9ix84G06s1Z24TuVGnH1RgjYJJv5Hz+SQzeawbTbGiKsnD5h+w6KanitlQ907NATv9uFAbeOqg6b7S4mZrmeq4U/AMnnZE3Ur+3zOVgszZRE6jLh/hTPZRxisFvhgkvltKmmXf8uFF3ObLLwVzof1HaULpK7Z0RUUUxvxG/Bf90S5v0+FZ+1i3BH7XvpkmL0n5RGjinIr29c4VN8d/mGm3qPSsA/LF9qE1HqvFw4GVtCVx6b+KhWuginsHvifGm1yqV8d0DX1xuxvaic4uk7r0YYQn3N/EVPTh+LZGiHpD2xLsLRGIwiLEBUWY3/9Pb0IE0GWz8U/vSJMUtLI8oFT8gfno56uFnJRM/fjChTZUyvCrcw/oe0M1lXllei8AUxEFFIGNL3JAqKOhNUOhFpEiBXfx7c3/Cfnfl2owlVtdZbocCJiEQZ9DrrXpwC5NeuJpswGdh0sHkOUiYa9Pk0RJ+mZncAFy7ZY9vTrX7CctJIX06cEN9Yqi8o4dMC8cWA9PL9soqYhfcE8X58rPq16MfT8ubgEJx1HHLPwR+OYl4CzhoPFK16kzbyFskPZ7tDW/3lsrmHAQ+ao29iMzla8VSo1QDayH9ib9Xj8/2wDoJ6pxVhaev0gvyeHagRNaBKOWjVRD5EA9m72ZLh3b76RdT3V/geJY3sdhcSL5+ST6SzlfE49LNvTJ7gO/zVt+OW66uB3m4dzKfbnpShN6VrZEsQp9EWCZs+StkzIncwWeUXmwM7splwkyAv7+ZBwyd6s9mVIgjMRDpjo9VP6SCe2z1M9+UTh5G+ZdPoHCNoQ4enRkoGMGU3RwCtlxyp4w/nioXVA0KudC26Ot2KnRxvAemcUIz2NkiXD6AK1Kh2QJxUT/EcHuUMWOT2oJ72rtNpegECg9sno8g0rz3LgiCB3O5+oE6otPGqzwc4O7yHw48mxMQLvzVc/QB102fev3/5ItwlDP/y3VJQ5oE9u6vY7V3Sz0YIJOj47kSxRZV091WKCI6XbEvk1zxVDC6XDBr3+YUPWAGguxbpAQ6youMoeWps+aaeItnQ49G06v8l/96s/ar/SJVrs74cHrdBLGHwxalz03s2JSyD2/gbYvOZyv3g9EoHoUl2JLr2ti/oK2g4Ri8J5f5hYFS1RQizaHOgPkqSftbtGw8ns3ojxp2Nnx6sweon0XJHMxidoG/hGh+rvlTWI4uRJY/LvicMoG0/7zjBAaCLVWw5XwpIbZ9buGPExBYAejrzs6RALhABKYKuYpMlHyOIuveW6qveZVw3OpLqG4g+mX7rmR2PAojM5UWWayroI5X4+k+/X3jVBot9O3iyuI9rjEbLqibsz4EsyLNE0Qa51dSzrIZPp2BY/049G8xFgnAIExvdjKGOyXlUebDTVRO/1v0RlHTq4Cs5euT9On/Y/CIyghB8ntT24F5flhSf4GEWHtgjk9uPVIINNC7Bjeybb+lT/bokkLudtj//2xP3JSF4uRsL4fPyUS11HdTg568wcx+slg+nOzwNioZv+nXuCRFRCZaI2yMOuXedJjffgXd8OSK2PWrV0j8+PJB0ekfyq3hV7Jdv2gmJ+OeH+JtcWvIaj1hJt29/ZoZH4LEob+TbUCtdXpZjgLeWhdi6qDpYTlcTgSnfpNiho16t/lsTV7+OzTfk4+/43nFANLUSCW/X1gkq8CRR0ovU3O5YTAz6FKRNnX2o2w63iu5Gs4MlJyACcfLWWWCogdzNOKJa6B1iFjHLACpNTmgU5HM6r+sH2hQuKBfmPRiCN3SALjocVuVXmU77z5zDcZsfSBnei5g65vEpPsR8hzaXeMPm7Vk3futLbcW8g1/8wy6Zcnxf/Rsr+Y8DpBbW+GTAQzX43+kqr/v754dWPsHB41ScKb7EL7DmIw7gPFew+95CvY2rtIMqdzlQk0qKz+biNoH7Rg3RdruL02myXQ1o0fvyVz9noyt5eJnBhkjf7OKv90sCQRh02L99spidHG2R70IgUw/lVTwUaj/A73jEGPlR1s+qjyU45B+Pujt547PD1Eawn0RETeC/AZV6+Q5WPrE+xbtU5KCUE5RlaUN2MD34fX8sOhAV6Ezt8ymIlwvnIeiPuYuDs6HoArASBFY/S8S8LGPSD94dnJXIpd7nVbGx9FIOPoit0uDxdNZ4fHtwXF8MGdKM6+e36xPAp75CvZg9/HFJ4hMM1OVAvUjyq/F3v31kcMFI4ot0WCbegNGzoWhu84L9/f3P381udY4FTqINvKAOYgWafrVLlGsGtr6gIODcqp6mzxMnbjTe+rv+Gu+OfIhm7k//TepBQuDYDg425vXdwunO7uAXY57sPL3pCQsWTo739IGd+3PxaSPLCJLXRl33M/fnNOCfsFxuZ7r62XSKrZpAfpNaVO++j3Q+HN4BYO/oRoQGaowuWHXAKeQ+2CZy49NEuT7Bj4d8rr4LJqGnDQh7ScZqvvH9STznEvS35wQ/1nidf3xCLh8edhvapN+T6tR/ehuHyQDoPRY6gBev+Nv/abJVTTbUDabILsOeVWXyx8t++q0n30NF5MNed7DpK3nPYrUl4H3peVSN+X2dJlFcYUzBWu+zY8X86FxDdL4jbL9Fox9p6Urw50dcHK8tyobUsNulMlpWvdaBA19CeIcq9tRe8qeGeNOPn/3xnanxxOVXL9G86oH59gotuH1kBQKr3xfUjdrKLucdEU3uKJ3yGJ7E8jCt76J/iowuH8bD9P7Q6e0syfqw4fxBCvu9jOZdkcSzOQeSJBspXfOrpi+naxiIWDwdaPQZQP9deRekvcGoS6uEsRM9aHLdvR/0WJZbNsvKDUJPP4tYO/JuJVStw0M1ll6E3ckznsw2a0FtnS9U9/VDyhf35xVEsPMINSL/n545e6pEgybaA6okVgKdb+gjoRlmQFZ+CNP7S8fqmZjpDOixhE/AXymqNdMXJs+C8sXYttiEzw3ojpA8QfgeIqrXmZgO27dZgvV+RSzXjv50vR8tCKsponf/+wbvZsgG8X6QGQ21qw0YIw8JrPqZSNq7jpetVEaAvGSV6m2o+kuoAg2G61jgxc628Vhar0Hskyyj0bOV/LU+IvkmFCo243vLZn/JO3iuS4zR8dBWZC9Gyl98St9s5w8rD4QFzhKqVlnuU3QMk9/9RIA7yOlXBIolb4LPDqtVQP3praRP2HBhirXGncDMV5cnXK9HrVDf+6Qm5fru7EYg8k//ddtykQ4eN1MF0hqwB30k0i++Tafye8Hd13tJ144xxsyV2Ws82U8oP8INNdGEexB6VQSF+Vrj7GwovrDqeYgf0h2rcaHqW0ktg7/8jbHb9rOgSRm0l0tO9dPcp0xwYQf9hc7kkhZTPLtxSIAntE+sPUwajwW6IjhVHwXb3N70BYMmAjDjeCCrPvJHFRsOTDatQiDfjf4I5FH645G3pXunS3cJJ7D6Nxz6wTUeTXfTgfmpzkgszVH/3a/AKnSdOlT3YiE69g70ousVn1f9Mcz8lEDBSEKq7cEYT+p32MP0YbU0DCyNkWTXetC51B1V803vTxczy/74kFmUgz47zucKV32GV/6ps+NQa/D7sWo0S20NZh4VGiiERMPmFd36xR+4BESS8qZ40tt04jRHAcmxbmgy3Qe2PMGXwJVPo70Nm34Y+zKCPz947PShYjitWujDwsSq6Y76fN3sD2DVHxTzj6lalHTfgRicNQJYbvtLk90jMDBE0ZB8PEb5Y8NBPbUrqohtEi/q9Fn53viktnsbU4b5JIFrPiQsOQn6YPpvAn78NO7j5I/Hg3U/qLFIx2rM4mcJYjNLaTBX6xHrzT6Cb6fdEw7den3OitmSpyP3Inuqe+kcTY4jrTwcO2v/ZD5qV/4fL2A28Zc09zVp4T837OODwnYrr4eSfdJx8HSKato9UgQkO9HJfl/w6U61Z05OT4crVbAC2LT/iCU0y3Vqz1o/13xpQO/JCMXXT1T9XQ+fLQ9NuDvr41G7CtCDOxf7K6+aF2pp0iRfT/TSLIk/Xyv1JNPz7osoZiqYY0NooVuMV/LjqVT7WAPI27qn0Zr/ttI9k8DPDz8DIY8Z+QYWfKeHB9bmu9DP45cP4Plm3Oj5q5dg2itDBPZ+ccT67mn1wur/wHB2T1jFkxi/OW+Kfv6cqkFXgfnRxt7Pj2PFuOF+4VwPweIrOtT4CpM/nflMAStvR81xPMYCV/AS6HemuK53y2brCSPw440TNPv+m9hdB6Ri2tITyb8xsT5D/uMhf/yZmd+FwMHyrv/0okjiGqx+CZtU2YLxq++CH7+g1+sR+YsRmPzf/fXzB2OdZgm8KtyTLCqeU3Z5jQH4np86OphQigd37gZwlJIvtT+DEk+Jex2AsbSY3rUzS2k4TzkkB85CsmToYAaBUsJz2FWI72/Sj6ctf/HCdWIZs87WE9mplBwHWlT1fLc78HKjOS4OZ0VL2QvtEwhx6VNjY668wtQ8mQl7CdtbvqpYfr7f4apHsG9G25XHkg7Ir22Nf/0jok7UgFKSbKj3TMt48tMzD4/RQ/rjf7OtmSdIEnfENvRfOnF1/QBba2yp9jDxyput+x/v2IRJwLrL+kjd/T7bFD+OPhuC0H1C8dLaVDMswmarnEq48gi6fv94J8yuBFtSX+jB1FtGZfvk/fUjhWVXsHnzaghwS5Kh7fET6nzVJxNc9Qr29D2n//KJvN6P9GVEffwxoJ5IP3/tvYdWH1v5bIBPnDV/fo4NV53AcyF1P//Xj102WT/+SgQ3dn02JSADRbcPsHU9yWz87UeBnwn2veZTTTsjz+U2cp/Y74JTP/Aqn0MPLwtG7zcFLFAC+OvHYNsOXH+qotoQrVKz//aHPUXWwluoT9TZtGW/RPv9HfaeXhIuK0j6fuA8gyfvzP31N8fTMsI/HjleVRWs+mYPi9zmsWnjK5uH12MPZeNGyc/vtVX/XGDByIO6YqGxyXvdLSjzZo8Nzt/FC3+5RfAyixvEfRypJ8vLb6AfGSesduP752egrC9cTBWmukD4+eVffTvlpVxNJv5ywPliHyvCfAXLomUtDBolwc85J2y67hRNzs8bC9ufjKbTHPYGqOVQo56ZFYB9nLSBqE49GvBdqNP2cUXQYm2LfzyUbTbfSV7zCb55392qj27539/bUfgAy/ItJOC2oo215FmCcRpaBJcI7qli3GjfLlf1DsJsr9JQMiqwCLeNBRw03f7icbflN1BceQXVVx7CiCrwf/wRIVfSB/c6afItszD12L3845EQ1FaCmLpBgNd4PYAjIODXLwSLm8ocDGfHoWh7eIB5zQ/gu5R36ouo/NdPSdWWUcd8Hau139KB2j6l9Na7pKql7nL69at+ekfv1bz+/6YU7P/7SEGZ65jaM3/XF9d0HIgWbYdmki0Vha9LAHUtuhDh/Y39wdXGDprm7UKjWpX0+SVLDtw6e4PqSaGkCymHE1gQ6MgiqaiajMfGAAcs77B227rVwPV2DnAteDQ8S3w6n2hFoGIQQHYy0BmrWZiD/vOk1IyPp3SZTCmCM6M5dv3Y8cfrdktgkhwkrCVUTYXAjxxwKbYYe5cn9Zd5nHPZf9omEcwH0qfM/AZwULMaLYfyC8jl1jbgeg1rwuG8BMNjzJ9QoaKJNuBYsTk+4gDez1cBH+1pSudsBDU01KePKiN8+cTaujnEd+GM7VIz4tnWtQYEjXVFXCROVYuk6gnnmouxp7w9n2oXl4PMyzP6TCIuJnE2J3DHCRe01fZDzNTueJDDZacjo9o/0qUY8qvsbeMP2W5q3R/b2j0BPClnIjV9oc/5XuB2ETq/0GbvnarJfn1zKJ7uxWrhBjYWWbCHSdmn2OaQm+5ku02k81masCp/jYqlTqhAfnlF5GNAu58MXEIY30Qe7U110Fm3AQlMT01H/XiXp5MTRAhWL6xR5biD6eR3gwSLXRRixTcVMBskqmGfRTVF/a2Ml6vvdfAeax6SxKMC6DAMGiyPBw2bjXfrJ663S7DUnk2xuin9JbiRCNL0muNneWv16SbFHLAyFFOMrp3O3mnAA3UgIdnNxamfyJe7Q+tx/1L/4DX6vHhogOv/I3ONU30a/J7AkvB7/EzFDszS9qaA6XsuqPXKQDqytgqgY15eOKxC3p9IHrdAIsuL6i7fV5P+VCSw2Ud37Ko3QZ/wYObQ7OcBG5ul9hd5Se/wsPV3GGmhrjPBOEdQO0ohKRW3YJPmYg/KZ9Glbn2VWZ813xwW+S4l8ttu0j42/Qmox1LHxna/6Au5qQ1MwkdKhFJYkXfdJvC82df44QA1FXDNnvDiHSqypOqrH9IyPsj7IEVE1k+nnoX5A0HNiESMNs9HNZ0O0IB9c7hhuwdYn4V9sUB2tWPELqOQLvbDEcC6P9TuAdWnXLtm8H6ZSxxsgAW2fDULGymuz/Ro6II+NdNFgjkxanxA/tcf5q3ewLlxvkQyjo+UGOnzCiUKt9QGadOz8w0Q+JREG4H7F4DlyGULDBTpht389van6qJcZZJqCTb5Wel30zc+wCyqHYpr7gsmu44ksDQlQ5L0ENi33jYI3q5vglEcCDp7J+kTrvuJMepxNfMvJQOtdmrxmZ/zfrZ1r4GlpK+Dy/0hHm3u6MjjEuzpZbE3/dgoIAPr+pJJ9Qlg/fy4wk6VGhzcnW06xCPxYKW2AX18rZc+J8g5QEfgMsL94te5hi08NPcONa8MxPOQTw0kb81HfHNT2bwjcgDbrxijciIIMOvaNTCpdjP1Qz2pWGz6CyisbYMNi9mA2UjQIK55D0fS51bN6JY6QDVtE23d67eiG/qYAOX98rd++th4z0B6VscNkqPC6vvgfbhDv3s01O3E0if2hE4Qo/SChEXXUn5kHQcHHt/Rpp+DmM13+QT5ajDxy5nlfgo3J0E2n8GWxJ4967OxDjJ+EC9DOx641VwaAYLnerhTTXELMPvR5gRZI8lks70c2bRT5wyqwqBRxO2jfuQW5QDPF9uixrC/MFrtlQFsaAYIEATHH0ZWQth/dyl1jWDPlmR+PYFphCo19I0MhvTx3UPoJeu7UuvKXwL/7om1piVYh3EHSDNuEKggEwl3ttqUOe3XkVTwuGNT2w/p1J9RBtbrk92zpfGypZEHWz3nsGMQq58C181Adx8MGl20Bszpeorx7mpnsjfGTTrP3qGUM3f6kt1iv/oBiu8MCqfnjdTxa5v+xQO3kw5Eusx8T0VPNOCGPgFFG//qT6f7UwBoEgqqrfs/afMByboQKTgMTlSfJm5yQPNyPRosre3Pkj6idbBjgR3H5uOlMF4JvCRfg56X2mEj2eiRXA+ah5301OgL8DJPjDfeAduvYgOoW72hNPHFgET1JvhLcxcJhJUtIOH6vbJp2x4sWVcNFV+LcNapbOcnmdx4Bd/m/lEV30Bp4f6kXUg1hG28vC7TU47fXoYVYJRgKUvAgzhIZMSlYsfmi5ESoBavZt2FtBrf+HiVd9fbG0HX1dKdHj6ugG6uLj2/j1/9HXxECz4jz0J8tmzjOQ7OPIyb00LNwA9Sql1UDr6BWxBYpVt92B3MBny20MbhNifp6LtZDXx2NDHiNx/wLcL9BK7yU6FBkpX+6APlKldisKOKXCv6LismD9aD4tH741qkrKX8BMePNmLUvq891d5PA1omKwi7M66aDl5nSb/fa/HCW5+qlHJS1bcKjo3wpX8R3t9hxI9bbL5361PlM5dBHWJC+Ph1Ttn1rUiw6RuH2hz6pvSWlBCm51nBztN2GPM1r4R3eu2wOq/j88ct6EDPdgdsXfWQTbl2yGA1CAnGpMb+kNBDDY/3e0z1ndKBxeY3RErOVk2k2oNgEElngPGh7VFbx7f4o0XXBkYbmOEnWLx4fonOBNtHvhDZAWrM//SP2bOB2lrmpXwzXfZQM1+Y7Ag5grkxBwE+IPjSsMrFfs0fCSi15xVJUz34pLrhAxSQ2lDf2lk+i+KLBEE0udTSDCXeCmx/B5nTxNRBJx+MYqQ70H4sDKsXIQKTlAceFM4dxe4u6nz2TuInREoqUT2QYjCZ3tzIXpa/cTjkJ3+57VgELjd9Iru9OrMJ6HcDymO+Hrkkg94eoWHA1EEuRv1mjMdTJ50AZ5cWkg6mWo05PQXyMdycse7dhZ6NvtJIpbEzqKOejtX393uPoXymODIeMaEndAf4Ewj0EZyoz84t5oEh4YCar16vePIVrvCriw7azwrxyZZGDuSkA0RNS0G8NK/KAG+9FtanhgV9OSTnEuwRk9b17uLllX156B1jDhFjVFI+NKwDqPZagQOR4Hh81FiBu5NQUd0iVcwezWWAnpbPOLOgV02WGipwF+I7th2Nsll08js8e8Mbm+7VrWZh/11AhKstKsfPK15au7tD0dEUilFPq/mOLxZ4Ro5Fz1nNxy3XPD1QHzcitje2COipPbbQO5gtxWnvAn4kcwMlXw6o0Zlbf/HmaYEyMB1qARj67CN+TxBcxx0NlnPRj0k0tzAri54I5eGdLjWuS3lKl+6nt+I//R+HVYzVu6ylgwXTBq7rg+16a/t/+fZ5pg7a6jMEk/Dsc3gv5ZFsTu+Cjb/4ky7+Bc3yt+7nvOt4uC/nGnvekweDR1tLnN7TC79M04unk308yau+xShScn02vwWS8ZKqSI6Quk6Tai2IWl0j82My9c7mdwS+bX9PRpM/AppNwQG87LilvoS3bJzKWwDf+2mLtcs5SKdaFw340xsGZpq+ncojkhbe7gizPwzMDmcnoNKEkgbfNmCML24O2J6j9+qHSDVbyXEvnvgjw9a6XkxhUIGFo0KqN5ITb7+HRYO+kmOKzps966VdQeBG6i1qRhxhtDioTxltWo86qXT0l/0GSRKANEcb7hLoNFaiKxQmQaLIVN6AvRRNgowdnxg765HCT+Ik0NwHHXYvm3M/BRnioJ1ebapOSQ2WU/bJAV9vOWzefKvihbMyycKmrfCBXIi/5MbXga7mfbDfPBSd5UISgfYFnkjoq7c/ik57hY8BWqSG5pfN6jBz8HbWBiIxTmGkutkHsOUs/RefFanV6xWcl/j4Vy/5gqqGpB5zHauXKoxnQTNquIT0RO0W8WDUbl0LdaPXsTaeRDY9x2cLjaE744Bu6/i7z78W2JyiGfu3qY8X7h4RedVD5F1dBDB3ctcBPjFm/IsP2gEXQiiWLdYu7cxY3moOOGzdHVaI4fTMPyQdfO0Ixpi7DHrfNncNrp+np/1G7bfR8ahBdRhCeh8fsJo3s/CED/H0wapUbv1Zq8I7/HwLF0mHfqgmv9Ac+S1ufPIdh5rNvtEHcHwoe6zZJU5pnSsK5JI4xopzvPhT2Zl72GhTh1OvuqU8eZsavKKQIn55GTH7xhqRP9Yo0MO06+NZO4kHqB33IUavxky3fCUKv3xCkbN5Vr98CCXKbXGwaYv067unGgSZUVEbOzvGvhdogAWJ3ZqfaDw9x6QDUei6+HYZJn143W8OkOAlwZ5YNzElsKvhuSoN6kx33Z/3eWFA6DrPtX6jeNgo6gmKN18kIOl0fZstAwdNlT9T77O7+Muq5+AaH9g6dYo/d1pmSAoFJoJr/pvz95zBLJ6eOFr1Zx+jJoe7IjSwhS+5T5TbdpECQQWEPudIX5L5koHS2Bo0TniTkXHLWvhWkfcXDwsvTwa8noU92a96aLC/xgHy19eDhlRy2Nz5HA/J8tFw+B7nlN2OYgMFv5OQpOxpv2y0u/LjH4gvNwEg4rQsP7+GptSv4qkOUx54j5VnOOdtzMyGG+CztL9kh50LGHZWKYB5TngEv+0AGJacBPqZRHG4ZQwsxpG1cpY7G2pG1+rnXzUoyy/+L/9OBZMysCzgRCDkL9WaL0tIl01AtQ/hY+KaigcNcCvJxn9/UrLcS7Q+ZXfGiB/KeL5syghURBnQbtUDy4PvSpA5dYy1i2atLbZZgPmwR9Swci1l3hPW8OZrO6yLeetPR5NIkNXlETHYHNKtJHl3ELXnE9VWHvQ91PkJFvtnha2WgvSrAGTAS6W/qZ7ZJiAPMZZAEVkIh/rpVA2E0AXMt8VB+XTM4+lqKA28lZ8KvcvZB3PjJQF0no6MJNiRavzdzzdXKJDMlKM+15+7Ic1L4VEtzIp+toPxBFwFHulJeMr+SKTb+qKSwqVe7tf+fJEmCaz6HivFhQGykfMGzpP3JNx2f02/58Kc4Loe6L0c9Xh7u+ndT09j1O45fWGHbSelErch0+wdwDIvnQR+n2fNRwNT84iucL7DJ3ouwVtnp/bYQW1nBKSQoacPPz/G/GFBm7XezqBhllwZ2h4bXnDu5/hoIzg8dgYR3nDfU070Tr/68adHBq7HJeCGwUSc4Mugb3v/LpEGFaTID1rKzEYYwC0IQ4z7pwUYilQDCot6wL0gtDr98bXL6XDFt3EwWOe6lMDrmd/jR5Jv4qG6OHdorVNPfv5sbsyaB5XaBdRNLVNvjybZg+jjcKjWh2s6e5ellNmbfKjScUo6ePwtg7X5uWKnbjg2aJLE/fQe2hGnAbQ4STzICNeS7fbSV0t/uThQGcsb9Su5ZMu8Ox3gPX+r2HHuIqCpY2qwe70yIgcfvlpOsTHBsftQ7ItwSpdnYzTwY1w8tNzTUz/HGjDAen1STo4OhJXXSev+Y/+eCPF0OAXrkdbcwpjr5qp1jn4NpbF2qf12hqqvv90Efn5s3Y/qxx8BV/Y8xX6kgjmrrzz8NiTFysuDPhUkKQNXhClS5DrXp4ItGeRdciD71W/SoXIjIJ1llTqStNbLuZZgKWQqTaHb6lN/OBtg/iQblKx6erf7VA787Z9un0hK38E0wL7XZ7JAfs1H6ekEjWNKyEzc0F+abyhIgHpfIoBE86fbJkzAPXhfaFBuPX2+fooGrvcLfmLmxD9/CJTyuFCjHOx0Hrr4JHtZ+cbqWJU6Gyr1AB70tGBtxyeAgtdXAxtZXdC99iAbHcrQT59T79ZbbOWDAWyFI0+g65bxQm5uDfzv8UBEJTer7S+e+HqfIsm+BtXfeqSkeWJ95VHDFpwbSaR1T1/9PKSDcQvJ335od3JfX6Tw4OAmtlIi6x9Jr69hn4hr/iT7B6+nw+meCHD1RzR8330wSUlxB05XPLEfJlD/+Q+g7aMSzZ8vBYNfeI645mOsbHTQM/EUC2D9ftSieB+PO9Y04P2Sk/X3NWxy7k0Cvl38oMo4r1Mg5eYANXIYqWOkhb+9DncI+reh44NTZ/3ErjaBP79hDFEApGcncyCc2xE/X9G+Zz9/CM7OFvs7d6wWPV1bFFfwovp4e8Z1cHnUQKMvnex7W/eXg37V4BKUHFWPyRnMTzvjwKAcEPZtz68mYdi1UDvuJmy9sjTdDu8vBD9ezVZeMr60qgFo03nU6y6neDrvWQJU+zHT9HIgPsvnQQLF7hBiP+kqnxErvErCoh9I32V70MntvgXPfZn+8jfbfXjiQOaV2Z/eWjY+XEArxDx15ZcKSI3rHB6DaUOzUZV6dpjiSVp5LcofnOUvb+Iq8DWUBg308lyxj3gpQeoE7r/+wOf6VeCf/1t53fw+aQs83s8CdpDapLN1bEtQjGsLfJ4AmEIDHaSxblV6W/PT9O6nBN5iPvmLnx+PlRyltsl22aF4e6jz5Bc/CIhfj02FhlrJ7i8dkUZvp89jTibQqM0JbflZqVbe4oCVD6K+gqCn4ikV4D1WPIrOVhtPR7OR4O/62iclbOAycF+Pi5YIWDtLn1c9DALWY+x9nxWgt+NcQ45aM9m/Yg78xcNaH7AmElfv3vDhQWc7WTQULDGeHQoQ7D7Wm4YRKvxF6BIIQ8UKyWeLsM8/lEaBx/s1Jkmss3RWhNMgF4OhodLenpjQXVoORsvZpT6kzKcoUi3AxdIHQVgs/u52nBvZes1ntEdqE0/94WFB8kg1jN6vKWXh26phHkl3qjg1rKb3VAyQpvecmuXcA/oSWgN8+wcjzcobB20+BH/89ASvNF35dACFTVdhR5JynTwbowZhGl3QVBgoXf1/DRlXmmv/SdKnhF5rOM5aufrTG8hNS0FwnpwnxqD+ptPlXWsgubwOVL99nH5bbSdNruyPRERkdYCRnYh+/QLqhfVDXwrjcoJmz7s0ETTg0xiRXBJp02P9YvvpKCPp/utvUU/c9WCevWsJS0u9Uzxyhs5LyfcK26O5xWE2XnSaciUChpr5pOXEPRi3T6GF20t/pNhYajZfNt0BgEtRELrW9z89432GCbsK8/3linkNwELMsfV6aBXJkb///V6qKl0bD5qgNvAwN1vqcEobz9ziRLBrI0C9nfH1l69o3KEK+4nIET+sPKYgkml9RupMo1MtXeETUO75kSZttmXEfii8FC0XF0F9C/xlUh0JInxQ8JWLRzB9xwMH80FCa74X2Oz0rgDRPfOpqc8Z2B7q9vTn97xkX/tMj6wJBN/+TkM33FSt3N8S2Kn7hiprf4AemlmT3e8YYe+z2/mDdJwUWJjfA13rbd+1dneFypjfqD7kIRN2hrdOQbFqIpefr86u7KH85bfnynfJgy9LYO6UE1Uv1RjP4yXQYCUIPrbeydiPP35wnKYvVR69UvEii5/A1LWebJnHGLuoQIFXrx2pnwmsmmesSjIsQE7dy82rlveyXCWhChvqPpd9PK79Ivg4nzgcrPVsPix8BjnwipD0uBbxxOIkga/i+KDn8tmsj8DtDJiDPkVT+mzZuKnKk1wMloZVGXb6Qh4ShA8HPnAmnO5xLeWGA9b+DFV37mfVT1IOt9ftBzsrX1qE7sn91h8HWbtUE9fjHO45xaf+RihTun+uU7ef4hEr46z7u5XfyJegx2t/r+7XfieSniKZEcstrmLS7ktE/P2UFL2adzqIe4OXtNG4/PoroNG/8AT0XZZQ5VgnYCGPBUJutz9gG5UDmH98p3qFGr4apPnrN4LN/nBHcOXXi/i5ajDgd2+yR585blslT+T95X3DCnqSatVLwp/f/PVr+bV+w9RnPoKiU6fzfK1b4N45k6qCUIClPp0lebMzDJycOkVfhJxHMA6LGB+Md8XIDM0WGiPf4zWf6WwsN0/IbvEXr/UafH/+2xBajyrTzk9piTcdGL/pjWLtPfqzDvclWHko2qcny2fyGWbyr398spjNxk0bD7/+HrX0CrDB74Y99Jt9jS2OUjDR45ZAKf5NAZEhIwCbObSNlSdyhtV//WiXwAR9Z6qiiukLd/4mgN0fG6rl65Qt2wYQuvpJxsrpmjNWHNznz58SaTpaffHrv8Qb50C4frCBQPFDgVPduBhFsdnvsimI4LG+OtSvIKgGhmoOGjq/I4tCh/VFIM4VrPUC8eJ7qKbbtmtgbaTayk9OgH3EVwk08bmnuhhqvRD34fP/mlIg/veRgo2SfqjSmxzogTo70NxetmS+plH6fRpOBpucEDLN223Fks/Tg4H1vtCr8RYZU/uplrVSJNQtUp7R46hcAfULi9xerGTsUe9aaBJ+RJKYSPqw3x55OH+bAw5Bqsdv5aA3UFD9hkjR7OjC6QAM6IytQ+PgFvSsINcAKkI6Y9V2YjboN2pB0k1b0o1+3s8ptTy4L20fm5e46IetmwXQv04BNgma2bQ9yXtIv3eIdjG3Y8PV3Xaw2R1ybDxmz5+XhLfA2dxeqS+mt3i+ILiHcngtceZnz3RBY6LAT0ocVAriRh+z5biHO/fwxlelMaq5r/kDzMTziO0zX/UslDkOiFbJsH48lXHro6WDqG4LmtyUhbGGx52YCzOm4TvE8aIFZQCn0zqIq7lqYNvG4QQRsQhhfeFX5JHrFiy/PEdDfnfUp/p1z0Cu3SPsOrvWp8d9Z8DM6Wwcmr7p03hSMxjdxxOCu10K2Dk8EsjkyxsbbrBUVN1FB2gaLca+mIoxaThnfdfMQaWeQq/xKMn2E4ZoSOhrrCJ/adwuAuEUiBRP1g0s/Pjy4LcXZmyLzkefjOPRgdey/FI/ldV4+biXBk76J8XONmzSgZfmu+y+hwc23tq+Z037hlAvii11FxL7lEahB+MsFHA23LiKid5tgl3CCrK3UBKv1z9Akb9/yfb2vcc0hSGBcqFiqjVFUk0+Wtrf98eH24ZWY30dE+inH4ixJW/TxT7vLXgUNzpVbhvcT49i4gD5SHesCFrdM22HG3BmFK2Df019OZtoAJX3wRi9I1LN87h5wqU3Fuw/47vPcGojIMfcGSNq05hkx0cHsvSxwxbX36pZSccIatm1oWgXs77TVCeHg358YjOoen1+fUktvW3JwcH5ieKZGw57UJ34G9nwcQvIaxYbyBK9xOj1CHuBiXopnoxEIILwOsdT9nwH8jY+pQTujd6nupQmUO12N+wKQNOn8/C+wibJMfYe+ckftHf6hK+iVdenVL79TDvuCvSrF1HfVQBjQSXlsJU5gJEl5oA9s4Js7oPj0fO63uwOr3eoK6zGLpwqfeQidQJ7mJzIQkYJzIF/PMhVf/epk6UbMLS8pv3iE+00rwCLqXMSfF2uO2xOi5FuOas14C2/8Njmpj2YT+Uu+B8AAAD//1ydSa+DvLam5+dXXH3T6Ch0webO6EKPTYAQIpVKkBASEkJvwNL97yWyT9Wgxjs7DV7Nu561bMNOc1hUcnOfEw7XHaw7B6CV8zRthVZeA9SjCOu2eIiIiZ0djFQmxsVLKd3RsQIEfv6arUe3Gj9Ku00RyyNWcJxqf+/fF0JJrklfuKsxbHfNhK2MFY7t+ilTVwHOgrLtgsadO78feIWf914lJveOK4LZIgaZ2fPYUGmbd2IAPcCPk4/d+4dGq6BeCxjZqYHtdaIulfTVg9733GDPe1f5zEnfGbBlfiZoLEK6XplAh+zxKqLdbllcyrAvBwLZOWM0q8doOVhUgOZDVYj8JvUWf8pBet3WbRf/1+xXmZwgkGmVYAUQthpMa34BeEzQRCHdR2P7pJ6UoqM8gfOVaORxslQ4gyGb4L0Lq16zLQbiYWBxeM9gPwNTzqSDuMuRkNGREpqaISgtqBNlbfJq3isNB6PjQLAS4MmdWTv2JKGvUqxfoK0tL8d5w4EnBhoeEXYnaUkt+O37+3Soz3tAv/1hEktrpxP9o6b9glCYQDh0J+J9OI72IwOFg6E+solX8OCuSvV5C5Mjv4mzHvtqim63FTyWb4J1XrtXQyAtCTDjVSBH5ej3I2AOJdRnFyLGfMs9k771GR6WFyIezwM6x8JpFgbDPWBrZ56ixTm8BlhwXT0tycr2s3c/pyLkNAYJIqfS5h3Nq3S59inZ/LlfEKNZEL27J1bWBlSkViUHnMWTTI6ER/n89CsIjcXyiLP3jv3Cx00I0xMZiWWXuJ+/rl/A8fyGGBE20VYLJAhE8+AQu9JPOdmbIAR31tKn724W6MKqyyrd32eLhGooRdMwMLVUnIUzojn30FYnnQoQm/iEBP1zAPNnZD34WD4Jep1w5c7TizOgm38gtuqTmy8HKbQOjlFM2HNvRbRi8+NJ0aiu2L3MYf7zX+if/QLxY2dXc3cDOzjwo4HRa7q5y3A1BSjJwY7YfcBW433Fnpid6xRv+YCu73KOpb7V99iOYxEspOMycBg1kahMZfSrVtcdlL4fZVpQveRdoygNVJ5Xj5jPE5dP4jF7bSBCm+Bc+xVNlFmFx+doT9wt9NylsnkR7O9PF6uZPbmNy/Q3kA2OQ0xrtPtFe666ROlO2/LjotH8yb2hNx4yogmM49Li1g4gvxgiPp7unDYJ6vUGWak8/L5fxbe2sgNXhjOxPHJyNBfmw/m9/yRaSO7Jl4+yv/gdloc3HVq6j+EXFtepN1MbrIvy9oCXBRPxO+uoLSyfqjDsXwFG+8eFUqvNDNi/Kh9bZYMA7Sw+AO+wf2O7sEHV5JifwSrYA6pvoacNWPy8oV56X+Icu8mlmhglsB61hKAjvlbkKMUZ5IhhEKdcx4gkPlbhdRfEOPBrGE0PKQrgQ9tOuWl3dUUVPgvgEOsZuZ8rv+cOqjHDx3jYTcKn0vu5pXwCT7zekAvLjXThxZMBbeJ0xKOC0dNF3Mtwz7CYeFv8mOtX/oIhA+gE3dsuGk3/Y0BmrR3ie+2rp5XbFBByCrPlC83lFmVAEB+YDF/5tgHUkEskUW6hxLCaLu+CuV1/+gZro32vur4wLfj2rBtRc72i6z5zdOgfA5voN46JaHVxLHjRnBPWFRnly1fvVdFYHA9Jd8XV1vh4SqUmmu/4juUjYM4CNsDuIDzIXf2u/S9fwyY4Gj//riijuCKY4+xCDPlmuGvwsXSoOEeLyLdK1RhadgE80fw0fd7XxW1b6MTi9coNxHnwfDT+8j1iPtzE3vyBrjWJdHiuPy3BYxVqczwIukjaFCJ/nwn9cmk9WQTGZCJ6ji7VMqp6Cff82JGfXh37a7i1/FINn+q7qnWvNoWwk8MM68rEamuTBys0Wnqf5sDZRtbkBkHtVJeIMVqH0mi2C7g3ZZ0Um72su4SLAaSeTja92s8hGwxS7ok5NigywHT9XHaQeVJE1C2fr4TaGdSlqCTakgx9t3PjDs6XYNtl+zxGc4uMF2TMNyG/fDQLuJVhUwoqtgod5n/ry3+tnDjxVdRm68VAqA4XgGX4GaLlnD1DWLi9ix2pat2fXobJ6atjDB+ju/if8wDZq+gTtb95OXWNSwdXNjqh+XTUq3UIxxtoXaOcdp8Q9audHhwwO7b/F59HIb6/4byGPvaToopGdIUq3PTdxHnffb9gVehg7gk5ebxbU6uliy3DV4JC7KWqTOkWD+B5tPPpkD5busRb4/AyxgQbjn4BK3+9MeDnnza9Heg6zlYM6ruhTF8nMVyeDHEIvvolIyrnVdrK7dMYovtpJfbeNCKmpfsE2KFmTE97MHLG04wAziM9ECVZ2YqS8OiAzT9RsFYwn3O8X6GpmE/iNmfHXQLeQ5Bx7g7xJe2ck97TVDF8w2Kzx0s00v3cgPkSrj9/7Vf7nTHwfgkQDsZt188lyFZ4fBIbm1M657PxoKJ05acX0Ze8B2uoBjF0yn7bJZ7KlEus8AZVfFJwGNV1vhI/fUMyRBdst9+rth5uZwGo7b0kSqZPdHQjgkCaJs64XvNv1FF9DEFoKhJafTV2Z7bqEzERDiaW0yRy1yJOBuAfQ5v84iPn+N4K1eEMsOpmqjY2xfcG1mm2SSBF1G3ljYXuT6jCiqW1lDalH8NTEl+wbFg7OnXFiQEnK+empn1daX9zKJIeu0GcWOSZPfN+hAVkFFXCf/msTa4l7JUZYhMUj2qCk5eBF2IrrLmPZ974RqjCeB8HBBET57RWWecX38ijOwl0SN/eCnBYXlB3L2NtuZZVBmfH9TFOAwqoUy4F1PHtjL0jM1Tzpk8kQjsDHdaJajNzlt+SceUsrDfPktLDGdzAFl+woT1nrS3aJRTvwXDDspDe87l2AwfaJvNFQGqaaCnwy5G2zycFKNWK02SWAeILM9iWihb86bfX1RiJrNptP7bmYIBrsjvhY0xINOWnJoH3XX2awILP2lLkLgM3vYQOjetW68dIStgkjYADcwH5VN3fNXyX9XF7/jYYlS4b4BbPsFadv9EoK4kFFdCcsdJffG0pC08AhOwmJO69Y8WxSbRK6eeqT5J/afOZEesJfPoXg31+Q02VW97g+mw+f3q6V3n8BuxtbnCylrK2Xj+PHXBhJiARvQ9u/zx80c8eULcXvagBppX+9D0Jv1iKpiW4NrB9pW/in5JdNcaSkcBpKjyicKYGxty+x9ArF46gU+PRX7yGghKLaM8SLl82/gGebKFgA8ZJvi6cc4OHqEkn/tHq+dIU5CZGXvDEP39fhkaW/3jGzjiUdMu/oYjDxzC96peSzztfLWGKTBntrGcI1nKZBGDUQMWYeFO/Ot9cALyROeS4lK42qNfD+qcHTieh60n4jOVfvTy1I9NoS6HLBfxkRCD+Ya1pG8a3Aq53yf/pmZyDr24S41ORYyMMoLZo0PZAVD9kojxfXk5/+lOk8oztnTdXq1ovCZTbZLvLtoWgTUN5u+jMG/Dx8TgCBphWBqv+UhI9R2rO3IoPgsXRvBLtG9+q5exSBuyXHYM+397RqOHyHtzqJWIVR1N7bcN4wK/lbCrdoOrncXqs4LpYM3G7YYzm8hokML/x88++83ZdNAS6nYPRenwn/aDuu/rv+fhrbOdrFaoi2PILYud1G7GxbQiZwnkSrXWsnPz0wmQ6NnHNtAXzxbESGAi35+/79jVr1jG0i/OENe869F38KEvo+bZNVNFNI94OPRWy7n7A5u3SR5NSjW/BKC8B+v7061afiNTaNfjYd/ucVG5zg/OdexP8ufig0egOwYyLW7Twcxkt/d7NYDxVMXqGtMxJBoNM2vQJks6VX81Evqrw+MlKtOqW7ZL4/O0A+2g1JJKXBjjxMK8w7psDGuL528/3SCv/468jY7lLdrYHmGs3hHOnFaK2v2Y1MJF/xOPGh1jfNd5/9qa2FNN1ImwH0XfbJpOoSbVElwbBbX2IAewIE/dcpy+6el28A194u5LzNvtCdg8lhk52zIjLr7BfvEU1pKMMBWJs/jl9U18Gt8NlRFLQXACZ7ocXjOX+gQ4br3oPD1bdDnYtsHJyKkDO/nUC6vXlEot/txV9Hr4erIyDgJ3t964PKQohU1hPjKL9rC1yoL2ByT5tbJyJHm31iQh717exdxjNno0uJYL0cSd441E5e+ovnFjcCnPid2qoUfWUrDCJ7w+82W+0yuQKYVk51XQATeGOh0ub/HgRVob9Q1u2/4fvq58QN7Tkaqq0ewH2U2LiTQ/ly/F6ukHHl0uiqqGUD9VR23hByxN53yX52qyxA4fFjon3sQJt7k5hKNWPw0KS2vToMkdABs93e0Q//slgcXwDLwunqXgpsjvcI/cFl7NwIE4uqC5nGjz8+SdBS/8E1BUlERaSlxIdmVY+n4cxA6z0OqCWAy9tkXjxDfI3eqDFyHxtrXg6AM93bSR4y85dN/4hbf6C7cwxoiU7K5v9FAj73/faj/1eywCPmQtWYNf3zW/9QuHrEOw6ejQbx/cM+XHwieN8Krqmbl6CvhDLqf8sfLVI7dECh6hLJ65X1X4+nowCTt3KYietW5cgRV2lcvbvJKYrcaf4Ub4k+WGO6Mf7RlWQCth1hYBRQQzaPBKvBjvrHE7rPbv1NBzY6We/RE1HuVrjXkUwO7/TSTQj5z/15/smjDiY3l+XHGanBpenamI/aHgwPWvfA3fW0Sf28fhQmpmrA0RLO6PLVg8v3uLoPz1BFJMT+4FfkQ4X1X8Rn0dxzrqvuPvVY9ixUNkvG38EFuMGxNCegQu00kNCzaRHfBdLv+dfVjzA0yDa2DFShq5bfAbqkWOIwhTffDlc2hiushATk90uhtNPVwf2en+ZKB0JHe5j1hzWZ/fByHFINK+amcLf+oRQ0V3+cbJkcZusQ7s8KKoGx8wKdEO2JqpeYLWeu/3rpy9JlNuVO6dprwPrq/Sbvzzz1dffFhQtXf7xPEo53YOgqchK5OvJonzTExneQqXDrtFpWg+o1oENQBJvn7y1uXhOAWTFpiAXg7/TCcIDB24vrkYiLz/zUTM7CJvrM0Lz9dRQinPsgWsCT/hXP2+8UAD52A0THW5KRZJv4sBVcAesvaVD1L7fWIXloe2mxe9Bv9UTAaz61CXXTV+vF1ir8Mdj/fDERCQMpxpwzSvGx1SW6I+vAXXmMEbD7GmM404CQM5NJea+n6olssQZ/MWz8dPl02BqM6C4zAiC/g68xUJbpa3/gRjEYm0+cnxw8EkOJ4mLdv1w65Agbs8ba0i1tXnjc3CZjyn2wz3Qujklbzh03yea9x2XT3vmisDi9gRrdX0GzT3SXpAtb/K01waDsrtQWUF/U49E/env014vwcYriSFJIZjwE8a/+v+nv8HiHLpNjw0m9i6mQxnpndbw6dxqsuWnaJmCww5m+QUR/yLOgPuIcIXSwrlIekKZsmrkdfBanhks543nLg/8uMGkGBpy2nZIrI9lqaFlJMcf366mF0N2P72MuJqNqllgrwwUVsEkj4IxXHY+VIw0eGOPGGQ20fN0PAwwd2SZqMZjyBuSNdafXjudHI1yce948CnEt+2UsqpaA2feQefr7fGR2t+eBrrGwbv25rf1KOiqKvJLuhjqgE0nqd3VfocM+GSjQOydF1QzFscaMBpIiZbzLZhnZqihMRYMtk3k5oNxHFbYGYxHLhtPWp1VqqFB9xDNQipFv3wDuwoYiHlqVT6JAYNAqHs+sUTuBVbZbp0fjyOefOBoXz5eM/jxB9XNXhrZ9L8EJtVBc9ue8vnhdIJ4mfe3P3076k+Swu31JH74fN9fOO0tHvBeJl6RXiO68R3w9pwb8fbna76t7yQC2TqTJLn37gojNhSnZ9wQPYm8ntAUh8Cnx5hcvuaTzoF0iKFjX+xJsh0xX8YvG0Nzv4Zb/W277ODPIuzPtwj7MWtQbltfKUktbhKWqXAZYbt4crw5E9bAgXHn+bN3fjyZBNpqaBTVtIa7841H/O3ibltK8xfUS/Sd2uNnAtTS2hCKlnKe+K3enL5VPcBTfRqmHTFxxFb2XgA/nqNMrRHR8ph34LeeiLCcNt2OFIIiRLsfz9OW5XVfAZXOn83eaNVQI3Kk71QJk7jlHyoFuQAGmw+IKWRytPzqk+e7P06iVNka34q3AsrWuyYp6xvRHw+wdegRtQosd74JMIbgjtH02fxlDT6yAX+/X6kOpJr5FRkQGXNP4q2fNYyVvIKHtrpYhcShpDzmDdwzPMaumBBtyz8N3PopON76jWMknWQgsPNrctnb252FdnbgpStijNJDnv/6OzDYDl01anOgMyeRGXqXLJpYLkvcmRGXFPz000V+fvIlvtxLyOUpQcuwf7gbHynAxqPRUn65ammhGsOgCFQS2suxHzJvN8Et3xHfukX9eOovDPzxA4OxVq3d+Ly4m4sQbfwDtE50EGDfGnusT3ZYrac3m8J83C4GJXe9n5f7E/14M9GU9kxHK5g5iWcCGXv98Nr6gY/6p/fxaREZQI6eLUJ8NWz001s0M0ULDsmOJfju2v0yW6dECmP3hX0qfeiy478iuHS3GMfP+bHxoEfz4/Fo6S+jtioSnKASR1+s6patjap+QUB0wIz4gVCwVq0Rguzg60RHLNH++MRWb6PRYJ7VytMeSnEq+zj58WbjaqzgIbgW0bjTK6LWfU7/4gEXGyagM7AnKKyiSdQT1tzeugvZrz9M0JU5ufOmT6BlxEeC/VLSxm+UFmDj88Q8WKbGiceshKr76bCiL3M/3KFlQEcUEqy45xel2UsJ4V2refTe7IWrtPsNOFgE2HmOlfvHX4ddKBAt/gSUDvIzARvfIUVT3TWavewAHJsAIKqFYbQ88KWAZxx9iPbL982+miACdjMdLPuZz3coG//3lIJ//dd//a9tQOCfurkXn20wYCyW8d//b1Tg39k9+zfDcL/Bgn+mISuLf/77PyMI/7R9U7fj/x6bd/Ed/vnv/2IZhv3PuME/YzNmn//vT//aPvB//vV/AAAA//8DALZe4+fwVQgAwGr64Q== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_8ef6aefc-fe0e-457f-b552-303a45f47342.msgpack.zlib b/docs/cassettes/qa_chat_history_8ef6aefc-fe0e-457f-b552-303a45f47342.msgpack.zlib new file mode 100644 index 0000000000000..bf42d4896f326 --- /dev/null +++ b/docs/cassettes/qa_chat_history_8ef6aefc-fe0e-457f-b552-303a45f47342.msgpack.zlib @@ -0,0 +1 @@ +eNrtewk4lO3bd6hUijal1Z02YcaMsa/JLvu+M8s9ZpituWesWUpJq5RUKkQoFLJlLZUUSiKypyxJsqWy5bvvoZ6e//O8/+/7H+/7Ht97fN/fcYS5r+s6r3P5ned16v5dh1N9QDZEZTL4MqgMDsjGEznwB+j84VQ2eIALQpwjKXSQQ2GSbliYW9skcdnUZikKh8OCVGVl8SwqmskCGXgqmsiky/pgZYkUPEcW/p1FA3libhCYJP8WgYRACToIQXhPEJJQBZwDJYhMeC8GB/4gYUD1ARkAHkCWAhQqxGGy/QE8gwRwKCBAw3NgFQAuBLIBnjawUMCXQiVSADrVk8IB2CAZZIMMIgjwRPpxACqDt/J3cTIAmcmmcxFh8EYQB5aOpzEZ4D+KJOIZAAEEuAwS7BIOk0kCfKmw6VzOXySiAV0mYGZuAysK+cK6IeM/hckAXlyIp9mvTamwWmSAAYIkkMSzjQkvYPtSIRCexuGyGcgMPARQIbSEDCDBZtJAxDWQP8QB6RJBMsCfPGaPKEKFABs85A3ogoi7mRAV2Vrr99WI0/6y9q9rEEmI+iw2kwjHCGCSAQIbxHtTGZ4AienLCw0SUCoRtgSOCiIARgoTgOh4Gg1kywB0JhsE6HgGHF48gQbCDgZZEBqwAYkUBhXxCkCjeoOADgUPxwYWbwO7FImdpA7TZg/PHTZsEPxtBAJABgWPBJUD+/uXZgQYFzQa0xfRjM4kgTRYcSYyheHN2xOZwPuJiAT9WDSeXlwahwrDEXY0HmIykLWw5RCVQKXB5oOInsgeeBa8Cx7GAAWksSAERBAVMZrsj6yYQ7Qfz3iIJx6e7UMlgchMiAdEnksQP/I02w39vt+c/n8KLR5WAQEi5z+MLoJPX7w/4hYSExFD5fxNeF3hJ7wdkUeeLA5KnomiUxlUZCYDfoaFf0IcWBc6/IGMp0Eg/AAGFQvOdBh4iCQMGhOUSgHxCOg7Fqy8QWFCnKg7f87tTDyRCMLS4UxjkmBlom57BlBZMgAJJCMAT4P1Z4C8yhGV5g2CLBSeBqd1ytyqqCzYuzz8wOOyXrBXMubtRXH8WeBfh9MQ21AwnBicqFxzWAltI1kLfzgTGQAWLa+MxmT5oWDnURk02K0oGh7WJ4XFGy/+fYCFJ3rDQlDzBS4qZW7xnd/nMKGoZFM80dz6TyLxbCIlKhnPpivK5/z+nM1lcKh0MCpVx+Kv280P/rEdDo3FopWy/yQY8mcQo5J5gSj402KQw/ZHEZmwjKjrmBQik+lNBaOaR92JZC4MNA1bJYw1m0s1V9FmkTleSt4cL7Sevu1+BZq2Bc3BzoejYKZv6G2BMZHHyqOwSnJK8go4OQWMHE4BBYcXjUVjUYoYeWUM8qUGuMNS3Ql0DYa1rZWVMcaOzGDaKShh7YwVCJ5yXgY6+yx9zKhYNtcUa+WzD61jyOUS54QqKirgsCjsvESMMWefvRUaYyznCOrp6Fvi9fyMCQdsDTlEfXnbAG15thVNz86MpIj1ZptiTeTQDiagope3kxFo6memTPMyg/wYNu6mugGG+2yt9e11Akw9dfEK2nd+YoMGMjw5lKgkFTnlm2wQYsHHCRiWAruMw4UO34BxCNY8TZ0/VhLN9/8BYdEbujAmo0r12VQZQE4JsIZLghxGTh7AqqjKK6sqyAEGpjYZOvPb2PwtBLNt2HBph88WlN5PyKcSKVyGN0hK0/lbsJciYIcjiagP5ygKLkBMCETNaxWV4YCymjtQUUa6OXOZhWKyPfEMagBv26hSHup9A/x8SUQuiUTx8aVjVALkcVQCyCWSc+eXzBcTWCEUHYpKkpOXuzM/8hN3abCtGBQWg8JgC+HUpxLhNEOMYTHZHBQEEuEjnOMf1SxDx/shOaaBwyrgFHm4oDKINC4JtOYSdJl0GJmQGly7QBoTTyryQ8H1AqRR6VQ4MLzv8+0BFHVDAV58768TOExvkAFFpcrzUIcp+30GG0TkI0b8IUZeRUWl5O8n/RSFg6coY+SK/jwLAn/XBitHh+79dcK8iCR4NMPv53QUlRTVvAP+4I5XIuOIWIwSURlDUMEQ8RgckQQqY8jKWAIR3hPM1NFH6cDnA4iy5gEwKlXX0Uzb1Egn3wH1O5JQ5ixe4xOVymBCDCqZnGINsuHIRKURaUwuCa6WbDAFlmWl7RiVq0xUATE4JTKBTFZSJpNJqH1wHfop7RfubiClltdIHUpB4snwrOA7IX5yyQLelwD8b3aWY1nMeI9Z+WlcVKjRzkNtdDvjcHWXlWufxF5hwUOr7VfTz1WzmgxPPZjdasimuR9YcXLDCxb5+2U+Se+GxTbt1FtBnInIePPa+5Hmre4n3/24FxiIc/ZcvulkZu2Qs0K/qM1gVgzztauppura/fgbA0ecsnyv3e5NJxS6tNUufnheu6m6RdJfu7CgvHesv+RpavrBfM10tbsKd1sexC9f8BZSnrpa/vZYywPO6Gk/UiMq7XnP6lDj7gBdKrk6MezmswsZe5aEb5vcn7pIRmDRwshXUYfCV9ssHe8IX7e8VPAlJmZqQV2J4KYjoaU+wvULS4SL9FxVFq47Ne03ZfWw90ERc5Pwi2sj9TuLkhR3pX2vcR9+srja9bIF7qjmLiE9hazU5W+HMHVd8Y1Su0Ytja9rhHew7NRPBX+cxCl9GjVZdtyn4Pu7kLRXCZSB72SKwq7c66WqJrLYY3EnImU+VD8JX2dt4tNWehzMcbO5eTGde/2u9ddFiMMFFmRaWc0c5V+w4J80yjv+40YZpBNAEhLeuRa5OTVQgspgcZEOwNkZpyKHkwFwSvIygDJOTgbAKsmrwJ8V4W9YBYwiFvmBzJBThGcoyisrwIPyivB3LBYHz1HB4XDI7zKAEhYrpwz/UMDAE3EY1z91C0i3jPqlBwpPwqMwGDmkcfh5yrsjHSye15UQ8BCoKC/x70bhf3qjIAeiiSQTX2MjDM7PAKNiAhnqKOr7uTMw1gw/ZRMnuq6nlxXBy0IeT9P71SjACFL4p42CnKO1obId3k4eewALkoxp8gz4rxcnoraXAieA7m5GNJV39DOkavvvN/D+o1HA/GoU/CjGurpcKy9FH3ks0ZjBsLaET0jQ3RBtpEJ2IBubW7ApXg44Mz+yzf79ZnJy5nBjYIYNICk5EY3t2b52lo4QnWFmruSnZERzMrEz0fEnsPWtLf/SKGAVlf61RmH9/5VGofgfGgXe3zRwK0D1pDKirkv9K31ExvzRz8vpqPy/z+j/smYjEYf7n95rKPzX9RrIFBVl+f9Er5GI+dtWA1QhqeCVCQoEDFYeS5LDgXJ4LNJjwIkoR8KQ8P+NrYayHAFUwalgsEr/x62G2No/Wg2bWNfMuyYFybWd7gf6NJN9F+p6jV4dQfHb3boppHZNGEhMkBC33Tv4abajfJzs++34UsOFKbZEN6LNTN/9H9MTzqlg3HjI7MTYt4kPk/dniZq+ppPdQ1ohP3ijY31a9+NnOy9MSD/PbKos/u72Y2Z0pKz3fWfIj4jZoN5Zty+18fcHlFl7bvpuHrENOa3t3GblEtKyEGt6XDrUGfAA14hbBxfE7XJozcIXVLwnmZoMLUtwPof3V9es7i+L8fU4SzSS2cwXz/juIGN+2vr8sBh1j+/GLd6jh6Y9tiXtP1kdfvtwidWKfGzJir7FHf0tpzULlldWxIo0s+sSyI5Xn+7xMAOCFiwcNholFOUdSjBvtF80vYt4pC3Gs6M1pidxgMAl2a2R2f9ZTUd44FVB9rou1LticU7o+wNtZ4ejUAL5ydIbEgde4VsvTNwVUxZf9bnw9lkPV2mK6okZIde2pgsqEyNObKOpDwmfvy1rjqvYLn75pvW9bJL2erUexxdDU3sHRixX1l7O72/oKTzz1jX1se0yN6tcBeynjn6RR32p5BXnxi3fVg684PQHT1IabGoFijFaNFyanlrD95jtxH43wzca39at6BHQN0rnr8tMumLsZaom9n33g5MBkq+6JN015O8ZP258vsd86qi2rnz++mt0EdnU6H67jw/sY/jKdw9GLCZvpWMWbcixGNDskefG3kHn1ofRaQ2pROU2osO1mRNRP/J0Z7bsVGmYNCME5KKMq3K2L2qeecYqn7y7ZVJgx1n9cd0X0rJ6NREiaMPqFbv0rxRQTugTQ6uBkzX1W3dtXKij+oBuu2iH7ccrr93dUy1O7isnls2iM7YVB8heOqPzUPFsMdXg8zq7z+Pl5BvSqLKDgjMLRow3UEYbG0ZLz7LFY680YDKqzwbH2DQfAnwEoBMZ+96/E/V96Ry2T2ZEOeZTrou4x1ZZGzm0WLbe+Egoo2bl/omRFrOhCv0FuSwVt1Pro1+RetazwEkRu2zdRCPTRIfWaD2Dza5ZMmXoIf63RbWXt592ffa+mhraPjCz4wyn0V9rXMh8p1PCmj6LkqQuH7ePWWe0t2kHZCX16231jCgavKa5uyOpP9aN88GrapjtuH4wN7GAn67fXZdoO+5xo7xuYcc96QwMI6G8zUz01KTj9ekRyLxwg5+UE6f5/IfaeE2CreqTlQUVUU/Yto5hUbulioY6lkL8X5eHW1yNrfB5I3PZ2j2kivrhRA6ZPaCvZ5sp8ePxosXPtwn3zly6+G3nFh+LofWi2WfEt3K335aiHFUnb+oduj1CXn7eruGJLqd+nN9ypVt+gNqXVa89vG9U7z1Bf+NpWr1Z4VTSj4A07LlrgY9OFftKGQzde3hWSXt/8ico8oke87VhpvCepYyZlW0b3CI+ris/2V1+1LHhaQuuwTTlvIbzTPQjHxmh21r5q6Fqz9dmF/WwFFfyJVrOCf6TQbGu/Maz/KtjiTXp7TMGlvHs8sthryU2YjSesO61Xoq6TXSafuG1YdFO1VfgdFHM+6xPy44sdnvXYmo26JGVtyywZyRxXCTDwtc9d21MJrmiEWuPCli5mm/H9EHswC3/VTodACXTx6G+8ernOo+xN8fUXxxadNBylBoSMAhoiTir2tUJr2AG2V73fCU59v1F4gEL/7CYiwC+q/YzEZu51iuhPGm3WXe2j9Spt8uHfO/vJGm0V6Fjn2w/N91twkkl2l28mSYU5xNEyHZP5QtyK1r4LGW9XOmmmJJZ/3MLac6SNxtfBJx1p22pKvrs8FaTjv7awVlMFlw0+H2lk06ozwlyoBb/lm13UAEBnkvv+hKqHnp+l/LnOy/czA0i+0U7NAdfHRfIkLEcJkTaDTos+bbMP719adIXu2H8+lu7XFblGYXGaaauV9rysm+3TVnA5TK3isGIlETNbOvvCx+3nHz3sI69Jrwy1jlj/0O+W9392eNytw8PzUQ9GhA6abUq1XqV8tJPtmyJOFW9/iMSzw0K/dzk1vfhMWIT2nzB0Mrx7xXvdSQj1h7eDjXroy1bNT66Lh5ab5x9w/RkropBsYBxvl75nfxbgucHOWty3QIe2OZ67BRSbOajJN85oNU8FD3R27c8MGjjyNlhX5WIz1VH/MuyB2cKc6WuPhZ8o1RW67Kut46VzZdU2OEg0F8v1zP+tPzDy3W14yLhz5deq5PykpHq7UilD/2IDP0sfWiNd2CQ/v3JdJG3UaZcfPn3lduODJi2na2/7mCwf0kOX4n3OQvbu/4NMrueAtGP16QE9uaWyMbYnN6QHuG/J9Ew4OVzPseqQ9bUd86PC05eXPINDPYg9YZte2F4poomdjxpRrfnJTme79kTFbwbYRNf5yvL8AtNqn6FHfFV2hp+Uktq32m/2iZTtWs1cRGQIbyjQ13wR+sQ85sCsdxJvOWZTxrfNOP8mpDSzVX4Zw1i5zZtq6lszXudGuZ4qED1akTpREZix+2TG9GZ+U8eWqJefnET479p/8306n7vmPP312yyeM7VMch3irlW0uHzUV186Z4rOwix/h/kAztpx/M+rEqUnrReUJqwArI7uXZFX6v+ovU7xToHHxsfUzZk3+heWiGX4CyvuRAveCTPd3WAq6NwU7VU2LUPbx4nxHMxepJnLw4Yd9f0Pl4e24e/ENZ/eiuus/nO4NT4Sn7LK5tw+w5SDbb6o1+K7SbRHRnybcnmAhcN1q3xbuxDOyompPjYZVt79oBapz8L73svZXFgfXh/6Pl2vqOkx7R6uzIFO9u0xEy32lri6WaiqM4NTQWZgotHxlivFp2ug/bT5D7WyZ3fvNeg72gWRfRkrtKjbYJN0Z0Oa7vXHlA470LP5r/yifHksjlNQXMv9tKzU+kxuvEV0inDZrf504MGrpdbojaZ1VfjfXzVWPpxPsI2DcI167qj60k5GbmP2ise18s7CQs2V3eNhYlmZDXhNop0Ddxs/5qu1mzcXcc2Et83+MWGsK7v2LbJ5dWfRwaPfTJo3q757snoa7zplncibFGT4hr03qIzEq56BQJDXgot2rYau00qB9UGvTW+bLM53Sfrnt//fThKqm8xdr+/9YkzNXzRPW+j1NEdBz9+Nhf5+vGrrrj3IYlgFZll4+m1A+udU3Y2B1Yy73t+JniOghfunBua3vnY1bkua0ur4EbT/n3rq6e2b1S9m77XvHAvvs/D++w46bCV7+bexRTQsq61VP5shUjO4/dln3Tyah6U5Vzyx903Nxhx1Aa1OhyuVjbdtF93tKPdPcvlCRejn8vKOzwgQC/oy1Nw9eh8UBrpcvfrRcdqsgafwNXoxCtj+jkd6R/kIiRaXwTs/uwjYgutr73qH6/YNZ1QIfG0OHGXfmtj/73B84/sM0dumnzzOBV9TMSv/+alE1dTphvUxIwI9fViO28OGo1tD+v/3FHzuelWRaSOj770+hc5Wz8pm184L5SnEnfZtedoBThF2Rd+y/jLS05Li/ITuQg198p21xuUaJ2u7En1eANysoTpBJtq9nahl9F0RWvek60Xt8pkcJ+qV/rKjNRPoT9N3X0iMFDNplQTj2n2Newkldyo+35LcNWXsQV+8rER1g6SoZrjToQ7ftLf1/qoma/paNW44n/JPLEg/W2JlHp+n9L1g8dSPA773RyqeVixM9auIk3b9a2KTHMlWep5yQnSCZmSiMGbm8PtxF8WrrEmn22ijKCLIj50mJgf5HgVbB57VKEv+kkuJqWAf8Vr1xVdfZVxwVPPdggli/TuOS+mUmjwxTnTekvmm6b4FQM09/KRrPTjslyqyqLWstAeQLVb/b7IWG2QcPHqzBGDr2KzNeO69rYqWUDwVf4fjxUWN57QrCu2phjVisdLWK/ECh3pEq1R9z/SReu8dfDKqdAmt44H74/b2WBkFpkmlbBeHzDfIRN1zJ7dCkEKK9s2CWV0198lTOV3ma1fnX3Gz7XqSltU1NYyQYJ+8JMBL4LYNlT+5Tzq8rKSsoqlnBBT8v3EguqUYyt3FoEEklFqhFRDtOWGN7tGAiuOb+VI111oO2ZAUBwKxfm+jZu8bcAiEZ1Nv8k7dj1YcxmvWnBX/MqXkiJrU4mu3SoHXtR3L5rpn9z1Q5tZZSymsTyzknt0/eGNiUbQ/lBq0F6/5MJ70Zl5GQ+kWwoef+sMwKj03jrUhfWQmqqqJ4hjn51N2x0hpqaTo998ZPOXci0ivnE7I71Cxzm8IE7lVeF3JVlCB0h6FJwP4sZWTKp3GrioaX1jf3n1QmB6e8fxVa5nUK1TIuvvmG3P8pDOorxMvbJUS8vrqGD9bYG4M6cjywK2Z3/ZPOzudshtV3deuz6xIN4na8s68TRlrW/5AyKEw16cxgjRTdoYP6U9h/onJq5Prcysqmtrq82KqRbM8a9POhBwbFtGgZBoQXHxZXanpRz308Pj/eqjrZmdFlpxzdOT6VSFV4s1DSbDBJnNcKO6RY4Lqfe6l9H6+mbHW2XECwaipXXGQ8dzgld/CyjNbyKWrrK8UaYg9XwmK0/javlnlx0mSv0rV9SltZS/7wiSbIkGq/Xc27eV1miZuL+CVN98VTzSA+LchwL4Uq9IHXvfZfH+9ZeblpFfLYWbfXqw5mqF/bk2NNEjDtFZNpf53u03TaQovIs74iqTf3C/vUTDpLaE+6zCE+/tR6rkXauOqa2Y1AwONwzY8lXGT1K7weDkeaGKYcDhQPApH7bBYEKVdAXQ+lJ1GF/XdpQZkoxzzw3L6taULNqafe9cFWWje8qKorWP5TuuJYV+2xagfaDKNUVtSu7aZJDkI6/zspeDhHK/ts7mJr3VyrpXcqb/7DJ70UnXr6RNdwtakkcci19Gxa/JLpygHfOMXSZdQ9XvDAoRLuJGSvvpWVYrxp5sNYvxXeH0oxuV7cOtEx7ZE5hQmWR4uVx17XC7z9Gut0dWOQt+rXhX3usXOm5nfSu35c2qTuPXoY31I3vzhx5SUoVcvHLXNClm16isfFO5sGH/zow3ijfdI/L0qA9HFAttdhCj2HrJsgv9mBjPvFuvuvILvyc0Dl+aeSES0rsz//VBL3XyiZ5dG2PaJPdy9j4+KV5498mU2G5AZ9rjkAWjpa5SkK8N3eDYrRZUjSq+VW6gtSVnnVlDY+PIRGiaPYfQ15Fyraj9bdAYOu0JsVLwSCXf17ufV9bWf2RPj5630xVL72lZtpgTaJrwefsi7/SBiJT6S31LZC0r27izXdZ3R8Uprfaa1Z9s8abNOPbrrzV7sCsOSld+dBIQo8xuy3X8/NKjP95B9EXl9sIqrxe7pXM5nNFxaRXRy6fvgVpeuTFv9tq/mCCsiF2zy72MjD9nZxmSliIcYzDcLPKmgPNyIGlBVVdpQsO7vNcrzske3tcbDdiIREQO220rVvVk522S3UjYbmbxdQPqnedr9Mboyi2PoE0uH4b93CdqMhUOGvcYvYtUyLu2EdpwatfnCKXTAa0nLRX3Xh1Yva2QMmok15CkGmmu+C09Rss8SvCdaxNFa6yzux3H9xYa7R+tiKn7YCi9YeN744jtS8W9i2gHBF/0Fe3cdMuvoE1LC4oQpa1cI37NMMC5X/hex3rc0Ez0e52zIh6yWSYmR5ZpTnFFgmaaPx2ru2HXtDyfjJdTb7pyLaY79EzU1zD8iyF99SXohg1tITPHl+hbUnNCdsS5NDe+Ukw8pjir6ez7fPvbwcJ1Ht4ctd4a/5X2uOfh247rF22ODlKl1Y0tgmZ3xmV6Diq7morve7/rpfagWWOb+WCm+PUsp9IMo1slS4fzNbIHJ0aX6uea4wwZzof99RsoVrrUw5XXgj/cHeoJ9a1zm+499LjYvfWrkkg31Rd8NqU9IT9SMDwT8mGG1VhN7etfenBaLgEXmSrwMJ0vKLL8EBETQO15RG4/5Zecu6uvuiMJMyaEu86fPoYmL25/tfSSP7uDXtDg+KNnj7rDFZlLMvVrEtrsduIuQMeeBJHu23iuuQJtlU58sd5ry5bUNbv1V266qlQq9lDDV3Sf5oH2MzniupK7IvyawNds8MPW+/47/elT0cf9zt/M6QTv1bRHV1wcCCXfPyKYSiznFHRCs9FDner3tvSNRHg9CqotqXcMG1LQzLL7uqeFOb1uy2to+soQ+KOWf0XxDQFMhtXjJRqbNBdhSC89PjieTcMbCRYe78JsltM/EtZ+wkYMUzNdq+jzZXl4Kbf/bfaDAfeyjVrn0x489P+Gu1/Gv+6ZdbJT5kXTp2K9B1mkhWlSr48EjWmlFSaHjpIOgIxAo5d7g5eLn7JQvNx+y1/tUmDYQ3zmBwdCUfxotP4uwhR5ZLCy5/t4ZI7buQ/riho/VDEOmXXpJPDfmb7ZMbh1mUz8q1ivikfL/IAKtPrmy1ZlH6zl07S2H71FMeM8zEJVhuetefXZ+9qHFnZESu/WPotGUwPR6Bs93TKsO7Ft96Ky4vJ3Flyc0lVTX3x6Q+82IdXo9o15LlUflcz3a22zX7YjuqjcUJyjnSmta+OupIbHS4g0drdH8j/WyM4KeKd8qUpT1FKidesW2Yy88OSdJS/XLZVV/3SH+MU58iyrhn//OSvFMdVlsvtGn2cWmqAaHlyVJTjduyQCCqnd3DqgoVk5dLGiVum7q+w2XWUbFH3s+YbkihH9p6M/DFOhtUN7c+9G3Chu7nz+g1/91KPO4K+DQ5ITj/eovTwyrRYyplOxTTtHK2jmQErQwHu3JXGzmQ021Wb8+zK81h9f2+6qp+YmsS6jXiY56WM4Zkyuvm/aYWK02R+Q0ss8eMLPHr/qdMGrbYfSNKpSvB4KP/fHxjzcPWzpfN/ljbLH3S9+B0d771as3dxz/tz4ezfBR0W+7pS2E57k684OZyBNoYni8ZGKM1c9IhZUeGRIiZpXuEndcmNIPY3/cYx+atTmlTdKUvJi8iWaedIZ/VdtpL2PHM65zwT6bwqtfLZQnXbNtnrHIPHw9imppdC0/syEm53hhY37+oaqzdNkYzPjVr2fTEC1ujxe3/Zg0BATmz2+9dCtpwUd+5eZpFff2cO1xh079uBhS4j+Qe39y3NCHnEykkJrJyRi+yqZmq0bbimUqzVbSdW9ye0uLW3haxHTyJ5SWPY9tbkCEBrQ+Dwqwtxd/V5quDVt95NoBdR9q8byOqt962rVK+0do0KPPj9159w1Unbx6wHjq9VM1XKyYSpRpWTvM2LVp0Cbkb4xqdeUXo0a3zy34DQpqwdRGhdcZU9ee13/9qa35EPpw2FCQvcSy9w+NtUGT7CtkiTCcJfimSGo5GyZ1ZfGwJZ6F/Nk4iYBjtU5vNH6qoTiwX2bVmk0r3R+z9QcY4YHh8uQrvt/Rm1Vm1r8CloZRT8QkDd9sPnecM+g+c5dN5/rOx55F6z44aHrRSp0GxQF35EwQ5UK9VEbA0O/9ar/GK2+2mQuaZ07820m6cDM8BqPoxfuspqqV9F37RaUSea7Ni7ldBi62OX0xbu3VVCy2aWTqTlypdZwAs8M8+6srWlQ6Ws+t0lksO1ZTrzwVY78OdOwl7fMl6gUSqQ+STd/eRjtcteyRVBctrH7cLgPX5BrzaqZ0We+M5yvawazXqBFi7aeQRWvE6l2inN7Zqa3Kb3yRAlAmTRsFnL7YmG9ocDN6ErLieuqyaK9xQ3CMfF1qjoHqlzeoTqNMX3tax4yz+O73g5Zf0zs2dCSuphTcsdUfvptYPKg4i6JTvVQ8HbyQ5xa6fHbH312cG/56X9+d+39sbWner6XeK2InRLZYvRWd02715bYMZuic/ttrJzFBOUz7c+abjEbvOF4OcKuo3Jb6wdoz8QX9UYLabY+Pk78/oBBdVVk3/ibmo3Jz68LkKrte7n3+sSHlMOd+N+fmDjUzHYSK19FOLHL5fWW/ccKIr0+jN4lDZz+kDfa1KkAN/QTzyGfyqowpZBAqOPwK0Wbs/wDDhZZPsLF7MmPmZ2LVLZ+PmldHRlvPjoQWTmWsizlbpv5ktuR/COt2kuCZybwb0COfE0+zctgoenwmNDSrSi9sG+O5KdPT0b5vYi0FA707qR+2xRS/2pop/y12K98K3LWrq4ZuCCws1ZgMzOsGm1f6jUw6KD5sn91Pu1FdRU2yntDlxE9q3si6fV4XICdQO29Gv9+1Mbbg43HhkbSgoXqPlR9P1Q2gA+3F2+RjU/bR3f8spI2vTdOeU2oe/1Z4y6cTgarPCzSmvZGFKr/+B7ld/99yAvP+vJi6rOhAKFmgymbdZzUsHZ9A79s66s+X8L2ht/vdOWbHc/UCvnR5HusPL2st9afuDc+ciZk+pvdoVnDO89CIhKni1cc8jGKmp3p61Rb+SO4ZXK8f9bX3X6ieGqqVtxopt17uCBzqntiNm626WD67GTTLN/cS+8rm2VF3gL/9KX3v8wOXaH5T9ihjkwugGeDAJ4B/KLMIWzOX2xL1BwDEyHI8dh5aMAWAnlEPDLzJ1mQRQWJII/ZiLw9pYI+IOkXXZTD/DsOJxowIgP+8N4kJmM3B/BmMH1543NTZQAI7w9/xnP+Yc7PzRE6IwQiRiD70vF+VDqXzuMNIq8Bf5OEqEGkQiDaheHC0Kd6ogEsGjD3Adk+VNAXURgPmJiYolhMeC5CHeVymAwmncmFAN5Lb2COIQqv1kEInQzkkTkDVAUsaHgG8jZruwtD+6/0TS7ExdNo/gCV4cOk+fA0ZPj/pG1qM+ZlI3RVHsOSZ70vYi2suP98OEgAi4YEBXkvCe//V14pvPUvxifnN8anGmAPUgGQA+BpaORtq9wegIKHAAKy9g96LptHsaSzOLzA/mSS8iI/xw39RQIFWCCbx1NA+KJMxp+5mgi7c56SiXAqqQyIw+YSeY5gAi5cOQyW+Ff+KO85bwaXQ6VRA8A5hivCREYhL+55W3A5vBepyCzSvNkgbAibNE8S/Z0iy3MXj08K/z7vZtgTAO9VKaI7bD7V8/eFv1irv9Fq/yCfQhTYABqVx5TlTYcDwSNvs2B8z6nFc/q85Tx7VKA5puzvhFQEdH+h3ko64pm/hQe3B4DTBGTAUEBUhl00x6zl+f9/w60FYMiACKkWsRlOKThzqWyI84fDfjGPYfvo/2D5T8zw/MUzG0YlwlpF8PoPkyAEBLyZMgARVoaHGjzsXyQPeRHnssE5LEAgwtn4xSmep3zv07cGJBHaM4lDQc0pOTdxDwAjThcZJYGsv4wh9PCfFiI8b9AHT+Py8gzhKgNEGlKzyFRYN0kfKh5+ModpnlA63ouJvB0HfJgc8GcGkf7EzJ5XjoRQgSWxexChcDWY23UOTr8lCY9j7SJhzXMXkicOjk5oFxcGFu0iIQMP8HjFSO4iLoe4BE8mnjY3EdYfromIDHiJFjJbUo63GRf6WVZREAskwpYQf6UQUr/VABANlyxYNmzIXO4i5H0ml0OjMmCbJHjifeHBuXgwmD4gTQYxXhI37zwKl84DL5xPc3i0AiEmlw3HRhVRHTBCYM1A4MhjRfAEznkfnAMFlTFHUkL85YlHaPXwXrAkOTRgwoR3tQHZdIAO0hHF5pKJDhc3eAIODRhY2KBwaAXgZ3nVRure3B5w2oCev1Jp3tlzJcWFIY8G9KnwZ9hQWG+e2ha/FSG9ORTAa+dsQF6zUxlcuGrDNZcN8ko7ojqsDc0fri7wGYIEgedSpJ6ADAiGK+9oQeI1X994oZijmBOQOxFM8vzCX0x2ntHwZvMBgn0N1zOQRkYRkQgQqT+3gmsNikXl5QQsioL3oTJ5BxHvcKX5z/nGCiTTQCIHqags/FzOUiGehrwKxEES0RPJcVgnNkiG4z2vzjyRfs5NevBR5o/USzqyCqnzyG0CiAOfoEwE2nCBZHPm+PpkGF1UJDSANpWOSJ1vFMBfdXHuRgiIaMPg0glwViGh4ZVTJAQIpnhJBPqBRC7P/YCeH+w9zs/bAnMDvFOClwQ/Mf1HZaUxPWFrILi8IDKN/sC6KrKDPYJYZCUPr78uqcAQnL+DMr9UhvdY2+i3luXXYUoCITgcBPBPdy4QST+35VUpFgIT5JiHV8Nt0c9KgOAAaQMgAIV0Gmw4PWBFVIHAwN8+AkFBMnOO+NkF8CbY8IxExkx5x6E1SJvjJvFG555pw/p6MpAE+UOI3h/ehOdZwHlCnYdqUBAaQPozOnLdZa4w/tZKIQQj3jUIXk+FhA/Pgw1ybMF2+CJHJYwKuKTzTGb82TO8PuV390AUuAmZQxiSNhB17vH80f6PEfiZKbyLQ/PImdMQxgM039/9dRXSFOJ5mpKR/GbB9URmzjwOSKP9IZF3HegnPH9N/ffdnX/f3fn33Z1/U3L/fXfnJyX3Bg6ngvmvvbyD+3/o8o4iRuX/s8s7WBWl/wShljf8d5RaopycigIZRitGmSiPUSYTsSryWBVFkgIZQyKSlP9bKbU4EkmF+K/d3vn4j7d3rEyZ9XtXlvbZn/q62Z7BOqe4/vGxt6HLbNbWxSRSCJGDOwe25ODCdW1/qDm1mlYdqt7aceXbl44aTbMFp1A1y0zcknpNB87ZM93uF08G+KK+XYwf+fieMdVlf6/UzLcw2L8zlmoz3Lu7Z/KGanUhdcstUOulP2Bz4k5fdbOcs0yvLFmjjqWNrkqzO3/q/JOAKzWvHGNuVHdPE2yaaNDqnMNDaxaEVv44rRKkrZZzmDN5RH7HYdHLrw8sebDQZxVWkqBXl3457unV0nNDSSGjC0NYIi77yhvtWWF3jxasbc164yCY8YAsck3XiUZbSn+bYjuQvsfwYlMov2SrcoKCdidrmUiv8+llYjcNklttTpkldC+41BQTbFA+2D5TLSiglCdKMfRGhx584frgRDdJsMpDaNSrWiNBNlSN2xjZuELVgG8tKP32+DKpRI+SZ5hujM1agKwcWHZ6L7hbTPadWp/+NMsl833aipKoKK13yeN2H7nA2q8HLiS2xcZpmCwI/uL56UfhqQ2N+XYd5yLDT04cHMaldkKEnOooGzvO7oOXybPWt4Wscs3ighbjduSWqarcqLwUZL490NKrMXlc9Kjimy5m9GBRySXmkvXVJ2tMhM/fXzD3H6XpsQWv98DR/V+2unbi \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_931c4fe3-c603-4efb-9b37-5f7cbbb1cbbd.msgpack.zlib b/docs/cassettes/qa_chat_history_931c4fe3-c603-4efb-9b37-5f7cbbb1cbbd.msgpack.zlib new file mode 100644 index 0000000000000..0497b803e875a --- /dev/null +++ b/docs/cassettes/qa_chat_history_931c4fe3-c603-4efb-9b37-5f7cbbb1cbbd.msgpack.zlib @@ -0,0 +1 @@ +eNptd3dUU9v2NSBIbxZQkCKiIBAILRB6L9I70kMIEEoSk9B7EQvNgALSQbp0kF5VpAoovYtU6Z3QP7zP+3v3fe+dP84YZ6+55p5nr7nWGSc41x2GxsCRCMJCOAILQ0Og2MsHDC44Fw174gbDYENzXGFYR6Rdlq6OgeE7NzR8jNMRi0VhJAQEICg4PxIFQ0Dg/FCkq4C7oADM1RZmZwdHOGCybJF2XmNmPhxwBMoNyyHBbm4uLgwC8bGDQEIgkKUlHzuHK9IO5nIZ4cDCPLGA/0sFQOwgACBQiOMSAkNAkb/XrO2RaFfIbxoOWwgGBhLh8Mt1hEHsLqVPE9BlOSIxWFzxf8opgUChMNQl7x8KXJGDNxzFx24Hs3eBYGEFUCQCAfvrZXEFzjAYCgBxgbvDcv6VhSuFoFAucCjkd1zACYNEFF7isTAEFoD1QsH+O1zghoGhARCHSwSuUudShLy6gK7X5bkh2AX5RcT5gaWeAAwWAke4wDAYgAvkUk8O6q94/T8DKAjU+ZIE8KcmuJx/JRf/E4PE4LK1IFAdg/+ghKChjrhsCNoVJFLxz3W0GwILd4XhchV1/3u7P8F/byfMLyjIL1b2H8QYLwQUl20PccHAqv8jGYZFewGgyEsOXAYwB4pEOsNhuLEda2uovbWtq7SRnj7ESM9b2EMRLKLlaafgpY0C2muixZ+oKUNcnJyM+WGumkhPA1eQkAhAUExITERUWEhUHCDID+QX5BcEaAi7aT5ydgB6anp5uCnpazk664KcFBXACrbq+qo6+o6mGBVFOFZc6ZE92ljcyNoD5qqqrmorqO2pB7OFeqo5aonpOXm7uD9R01IUeiLKD1NEiaCUHSTZL9W5ucPtpA1FxVFguImKsJuHvLyrOEgfrCXqCAGbQkQUkKoOECFRbWcFI2UliO0T+X/IA4qJAoB/FIKAIuLA31fx395wgSEcsI64TDAwDw3DoC77CBaSc3liWDdMcNalDWE9Hbmul2d3WeJMHY1/O5gxS+nSkrhGFTScj11IjN0AhmIXAgqJsAuCJIBiEiKC7KpahoWKf3Yx/J8OLDNEQxAY+0sXKv/t+FyooxvCGWZXoPg/vV7/2+uXhfytHo10uVx0QXoAkGi4AxyBy+Bp/P/CME8UEgMD/BGNKzQF6P9rQgDUlQr/1XeAv1oaV/W/G7riDwiJdoAg4N5/Scc1/tU4Ht6eHnZQNzs7R3cPVyDYW0QYbgtzg9pX/klBoZG/tfwmc8XgMoWEiv8E/nZuweVxAQGCQABQsBaDRcOhl436+zxQSDQWgIFBL+cW1gs3xucK8fzdpdLCgqLCoMvSSbLDEVAXNzuYgZutEtL10tsYSXYUGuaChNjVeQLQl2VxgbvCL0v71/3PTMTgskQvk2v+G4BFOsMup2eu6F/GADb9E4GG/eb//Q7/phEBg8EN/xv0N9VvCBgsXvefKAzsn2oEhVwxNf8N+EORCcQUev6NBsDtcGOclw/W4mIwYTBUCCwsDBITAwvaQcTthGF2QmAxKFgQAgGJlyiqABQhUEcYwOAvC+NylR5ry2upK1aZAv7pRYAO6l/fjFwEEoOA29vnGMDQl4XBFUBdkG52l+MWDcu55NKXf4yrFIeCobb24iBBKEhE3B5mC1C4HGR/s/2fc7N+z+q/PiFBOb/LiXBou6XNFk5G8Nd1xdBEY6BAKj4loPnn4NvvRplkYw3CG+zserXPpa8pESvNxxAcnfuO7GJNPPY5Q1JEu+rW3gRcrPalNVsaMx7tHabJBswMiZ+dRaeNzclMXZzvLsle7C/1pclenEtfsJU7VvzczpNZEDg9LD+WermwKRuAv0g5ZVu+TDvcP73/2dFrcFesUb5EfFQ/3G0AyGgWEzI0xvIhV5P8rUsbk5rDhcKu71jFdueDQATGl36wYxMliNkm/lyM5rAOBkDbOmd//FJk5bt7raH2SIiom32UMJ5OxgLZOaS6cVSrG4LNTXwz4UAc42oNR0FX5XbOa2In528Sd2MMhWanj0h60BkDcyfCmb2pUur6i8b3LL+LuMlONdMIYaQfTJBKPKvwccTsjUoifbO65a0PDg8ppnzciG5rJ0Xkea4qNBS5FGzqOIDuFskSNlq5jxrq90I9dJKCRmFRljWpTg/Maakt3eKuQbC0x2sj1azptSxlTUUzjn4UwcTKsVT4PFP1qi/MggTreGKn8Oq6B/WZ83S78untgo/e9r+0IB5HbZEhZdpRMm+XVEDfw3IXb4BvZ+/0ksSaD80c5o2kq/EO5rQ9XYGWsE97pnq9lYNAxOLuVYLMjBXiG5Zs6jtlHaVMZsl137OUbstrNVIUQOWUi64crGw/H9ZvXocABeTeBOeKTnAd01DHzHyvvB3p4uAzRY71AjmKWLa5tOQqhOx+a9CrPniCfzPjRHyoesu2TWppVqp0LGaTZhqyix+jDRWbvx30mXeUMpUrWlqvhrQL88DoWRPr4pl2oU38PFUug+LdlBpV4vyOxvzobLCdZogkR7RwK348cdrX9zPDCs+2xgfazZEKP7QfcPt1rOuYtFDwE3jnQG+FWsBAgpjRxmTQzSH6D8320abLHvQUyayQSI+e2XidVy67j3acJ5dX787LN1km8kZV+vz42mdVbjOIv0Fq7qHkDHxIkO+cbSi89qyJbPg6Xbza3fPZEIDTGFr3FxI3ThWAzRlnZpPeI5h9Z/rsbr3RYGDFLZkyyciSV9JDlaH6j7QKy4uVdwmlk62lv0H73aeFmhZUfq6Rk9Q/1mt4CosM51Ssg7BoJVYzBY9mxkVdp3+fd0ulF4j2jDplNLefsOvmSHw5n5esWX6qeJuc1p/Yey10cEshR2AARfrj9H52kJTL1XJFo2a9WPFMvMzg7M9eCtz73JpTvCjFCDf+2p7g8euCb2OquwSiLR7mxviRZuFxU5mOM8+slXN2jsyAemLgLEuB2bN37XxMN4HSVvTDb733h093CgJXd2nbBpaXK9YKmLIMl6/YLtt30Fr+/OjWQ7Onqzy5JR07TnLGlFa2DSZKzJ7If2ZTMSi+/QmcDDLICMrKv2Z8+mT410CLVLLlw3dx3hyOtVjXK1NO+SKvUmKbuJ8xRo/Wn9nyrSVGSOwktZAKPk2PnP4le2qo39+YbPM+62nTLd/J4B26nzauq65q1rRZGXhmYqXT7xrirKiiVp+ZRLvb3n4JbJ/Wg6lE674N+gxJTDESyafGb3a+jyJK0TRO6AD/TG1FIYJR6knM8pMnizH6u2C/s+faFN4CTWUUwRJrDfnYfoCZrRPVo7ZhWBn1HviJw4rXIUnkTUp78ZvQOx29V2HIjMJrzzEPv5iVev3q7izXEF9sY3De5L/DsHbCkBz6meYzIfVsQf7VIG9vVnXv0fD96CZwQjnnXSPMUxfD+QnWrp01vTkFvqrVog/ExRFcBcf1SWISygndvsmbao8XolG2FgGqq3Z7gzPKTdV7rk2PvopGw6czi2RGts2Jzhu+Bw7MqX4Z3FoMTIh59VNMMAHoqx10Ss9M/f7DVp5J8Yq9Z0eTCmYps+yhbxoVMJXoQYwQ5bS4diFRLZeqkx9HqtYLnn1ut0gR/ALUb6qEQu3LuUqFQ3nf8I4zY8tI0ovCvimxJFpud6WkSUlvlykpc8T2ajBN0l7kVFzAsguvv0Dg4dLL8aKftBpjUzyGWeMvb16kU9VTGh8E4s0ynm1pVOSzHN68VR+ufZDUCeFj6CdJzXVqNW2abHhb4EewPUCVv5lvVUPskffqE4tIIg9D0VhunWM/mfpNl9dQut6ULatv3lSs8n4fou9qQR6m92ztyXptZTWFhVFI7TTx09sm6W/fpeohNq/uUtZaytCOqe2mTEr6KnrSOXMtUf7ofFlxqJpUG6s30cM6NPLTQOCKzg3O592UvGfeEC0BU2rNUxMad3vn0HobtDiwray11SnmmFnxTuA5j2+5XxaP+efvGMg7ZrHM7HBGfgctQzqze5Gp8afPGVR7jF8b5ajiG6RW6znHzoj1YdBmGtmxCPd44uBVSNtB9znVah0zZtR69y2PdLHwgZM5eZihOGSk8ksiOXVyS9Mt4TFDa2dTtjrHdBWNQ9OvMam4vUhJukMt9aFFVxoXRJ+kUkkui4zGdleOKLnxr8aVPjnb3rjIAjou1M9EHoImEcXFjk09hrMT6VGtNrC53Vdh9oehL8b9Mr0odygYv2xMxQ5LAEHdJQ9xvh/NfMUR9Ym3m5KDz7v8ki1c5Nmiv4nJHfY83zYK7TffvC3iGABYTJNaa8BFf2blObt31WjJeIxoayO9pC2ORxvNNorv8gY2/fiZ67f9aT/XOpDifeR6/ZrXqkWnZJBJObPbDEfX81dR+UDJBWpmRb/OZbo6j8/C7Zyrq/rLivWPD7npWXXWCknIH07VcanN6pL6vuKfLe8RYzQ0+apWvsUwd3Y8KX/QWKWUUC4ETR0wAj7moncu+JKxYFXyhsoCPrck6DG61tbL8nrUIg/HqddIoJmSFf3waLNhZV90Z9ZfneGj1t7iV2aazVcy0+SP8SN50Y4eL+w8ayhB2vq/3ILHnPulk4kntjPIR8LuSI6untxJQ258zKHcfN3/3E19fy2jTHlohlGcLy2MJxu+6msexxKh+KTF+zWTmq7YsfJKTJ+mhF7hHi6Zn+XWV38KpX32kXD+Kcsb3205xe7JrWkt+RHNPYnbKnO7m/zMwU1h1W4fX5oIShrYa/kkFr9IQNI3lmTghVFFYnw+mXGIyR7fv+at3hvrtBk1VLjZSRbv09x2IGy4IqpeI7mznvrOno737mZe9W1B84aBlhu+fvRdMoR5RJrSfgbLzthI81GpzSUCl4S9N++7bmdOn+gfOtpUkg3flEu4TvoeYOe4qGsmv9AenebXEraAWPfoZ9RWix5Z0nMQUNbUvVNLWRU9rXHRy/yBRKOG29AtbaiU2KOJ6JB7cVArbR8YF2nR2mTVHHo2T6o+407qnMsW8sFIs9ItyV0lRy3xx0lF38i2j/Ns6QyC6FudqiN904to/1Mld0pkRtrFZ5LF994fD3DJYQ8nJOnF54RsFWnSHOtG9PcnSoLdvsnONlDbXRlb5LFpf1A+EvAy5apv94n8gxLh4/Xw5pNAVufYXbUbDR0lzReUBAQXF5qJWn3BveXrSycGa6e59qRK6UnCinTzyvXydIK1tYTKdErz2czL876H1z21ERuD5MTvjYv233PESndGfGjjC8wOyO8cYp2QGcolb87v6D+4zZhe69uu8uJZlWpDHHvKaLGf6RKbihGKu72DwVku6UBJz2ct+LGb1b0sw3P9vZoNg/LFFEl6Qer6nWuaR1htuzu5I21pEi5VObzNB7TSinPrUSdbsC4Nq5b2uXNdxFLHndniXTOOykM5hxKwyRsEHamT1Fzwh2a+udawbtq9GEczrohOVgVh2I0glYFuAEu7GlhHXZvlJOOXUtWn2/YOcNWvrGtBKIEHpEw9U+xv54y+xNsiW/1SIWv+iroxnLo+HSf3LE/D+hKKVqOyxlzCX+LfkyiyVBOjhQtxxAqAH4qtDK0bp1r0innqJ2mtb3eEC319bdqqnIvbFMOUcdcLgjBj+8Zx9kIm1VeM4NVX3i2ai062qmS/96cife/LvQXXwr9FfIjxcFgnuK4SdYuaqz6peUyFZMV1Ti82Xkai/nk8VSW85breWaNFlbqZVVw/15ecJKxE/vNvgbDUd1rctCzMOu1rOrKCDujCISHhq63cy2Ti9R4SqZ+IinbjIq56oMhrhph812oTRFQzl5VPemAd88NKkndPszSPSBjx3IrB1BtP7AzWftAVe32RQRbp20Td+bjyKWXrhRL1LSUiJ09W4nimp4+6n/QfbK8sbZ11SQxXlItCXk4TyfDGkKjccWIiJpqiI1/zlSuLz2fn6bhdvymykjgd69kSxZ7h5Ms35jngRc2/G0n1tJky7GCsw+acLGGlSlzYNsOEmnfE24Y5dDOwAFl/tVtKxQIaWPkrwVHBHL9OzheClBPrTCLVnh4V8buzY7MiMUZEHClpyCJ5b6qWU2gB7xnXsdbFNNEox6OYeFNmCNmOkTD3ePis4vVrPLf8YpT2Q4p6CX+LZfWKHqx3gj8lxCVUrfRb4SGoRgL4PpxNhsWKztduR+28qe/XR1zUm7NfRBF3N/K2Wb5jK+fUQplztUsnpjfXSKVfdZ8e5MTeTt4vFzvkCP1U3ar2wNNubSIFZpM4fp1thiAbwyVRQFVvrbjObBKUz/OaHjG+pqHVfOxuyCxAhKUyV0pKwWrlm7h9XCnJV3lZk3wYaJU+uuRQeD8tXCNiZjpocrj4fM8jinO08IjV2caOH3OmSqWjkvO9IivOxRHNjwv1Y9Kz9EEjmuet8xI/RNDiR7BzihOgfubcYLWFJYrF86WRlu2060eCL7AGWy++NvvfqW2fhmltvZ8tCSRLA7l+i/yW3cceRHv9bNE+vnfZ59GPkYdpN/w+VHSnzrSGlLHt4LeSE7E/C6qvwPyL89UFMiUfoPl5Tzw8HsS+t5w870wD9DsrRKh8evarYGkLwHC/bc7u6hrHg9uV3Z/ktjF8XRtrrjqoWZ3RMnAz1PYL/fNahYzxhnvHFtx9lKZez79yDmqtJSjLhR2nuthfcdOUibznG6dKSd0/F5xfc9HD4psGjPQPno60DlAqJZ97+3OOITADqE/re+2xnPLeaWB+0Sd642clgV90COtkTkKJ+c6DrNrrHyNEJ+DpJtLMSilJBhSDgQwNqP3wRKi6ZBzTg5juTwfysbCmndA2jtNX8YqudE6/SobeWRTo9LK8mOwPBCcWPm7SkFalTdzh4zoamNf11A81rR2LG8g4ofecJmH7rIQk4gQPv7NIFvMQMUjOdQ7QUDIiXklsIy8d7GbpmJFI5d+37s1FPv4k/tKPI9M77WCkRveN0wH1ZGOmeMod+uGt+2BkxEZqcV8JC9eVT2K3ZQKauIBCFS8WXqVqVe4fP9ez2VH72DJ+T14dEZGSCTeMO8x4Rn2abdCgIyzOlKK5rS1OzEcOouYrzgXobbb8Wl5hY5Bu6TtkdpvL3zP3Ogp4gdQhX4YPSaVnsrAOYm/WrlUKzmb89LviO6g3/FW1ujbw29JoJvL6rawwg1lJQyAoufqOyKy9JBHhO+axuxtkCQ3RnqNiMwzMpNXoX0J9GZvPHyozuIwcOs/ud4Sbsglk3Vk/WjpbWJh8GYPuDKE9etNERJzay3vr7dv2Lak2sF9TKhTY1m4a0qe9LHh1TJltakywdccvf19389eyx6jZPi51/zufKhHtrrXVE56QTaYj1ur0X3W7H3W8QYus6xCsloLv8hFbUm+t3cfJNMWX4F2SHKZ55ucvu+VyMG8EGnoZ34g2z96fAda58W/55yNDAVJPPzzlawFGIJUSk8yBYoGrs3EqND8bD99GYtzZUU2oe2MM95d6bRtdX2uU1HKudYHTW0LJbM17dalBdfUrXOwgLbpm/PpDdonQCrG+wVBJ3oTYr3wtltmQz9hrJAMVVBx4oxrqcX/OpqRI9W/pNrd0OJ8im5i5fO6FrEYxOTY4qYiles+djWyeuKfVNCYSr3ct5R0I0kjsHqQxNRXxKxwZfCDYVcp/eiPzDu6bbDDrJh9yIWVwrOoZmsYpi3Bz/QPZMu0gtWjHXRd60q2f7foP+tzIwh/L/Bi6KNqnrWaowQGalwwWJ23JejRufJO92LAaIvb/6qpEa6ZgkaP+PPANV/H+1ySfJ/cEjqOLzr4Sc8bYUN736nruie1LIR4TCUlet8LbOBFQWYqZUxgr0LARN1KobFseoGa9BtVCW1JAOC4eAYG0vIdU/KOAM9JPfnevgZIb02eaH9zUbh5W6RlwBK6YuchzRUhFaButVelOXc+LehMWqWO3PFCheQ9cSXNb2mJMlc3VoiBdF59o9iiIcG4SHJZaf5POR/K51mRZp02ZtJPasjzh6Gyl1o96Mr6PTxbDjWShDsGFFJK+5seY16zWGnEy4y8CGz0AS3xpqulrhtfZnvaTqaQ4MuIx4aGZtuPBTuUkRwIXtdKlXdbLTMR1jEwcs1BCuRbOB8Ch/qsvGJX2yZ9NXkXI5Idwt1ajpd7DibiOqu5KvWmKeFVa8mMkRGZ/OtpBwoGip6XeyMfpc3vVvYlWnWGv8K6v8nxwsVTNhG8/Imgnea8OGD4hi9jJ/WgsBm89SLVkMRWJ1fravZ1zUZ5fMHyuVB/l8PBmFIY6bfh+jpm7f5ngpIvDqGzwi73GkDER1mpw4duS2etpAd+9mqqFG5qiCPX8uyRTopIZ5bt9dp6vI2slTcxeKRo+o/F3YmSKOPfZDvfoKc1pcgTSLhjEPhU5VONN9krxzeQIPUHOZPrPWr/7ZdhQrhNLzhx2RFixg4WavluljsShKEL3flj+CPzANcV4JGh6xpDXRa/XHEbgAlhX+9EB8DYKJ7WsefKCYkdnMB2+zRUSP6N8q9mH9F3QI29e2QkKxyBxfYfZVWjZEj9qxNKsEDmVnqRhPRNI2QqyPKVeFYC+4Q2/uHuTt5iFV0PAuKv3ExZ5UHoynCERPH8Ipp/2oXU534CQDS+x0CwX9FldJM06X4sWr82YzvZm9vrxhEjo2unK6HZhAOLHx3pUOV6MpxxDMx4ZV+IVg+OohQM/Z4RGcnLXP0V29NfsivleK5LL5boqZDryMnL6K5BQSPRhcEGbktOuMHRqrPzeckBe+BdJVBfOWOuBiRlH8bG+dpgIUi6VkHXdpsrB94wS02EtHLTxGBqc0sRCr/kxhoM11ajU/IzW6MMNZvTR1VCSffIcutuGRaBGyfwDncCPGDnP7fgFvER4Z511+gEhYemx8BYLPwhiLsY9JrhpVLqFrbswNYl3n8ETL1St5g1LzwdSLRgZqaz6tScykG2cXqesPGCz2p3W3uq4wnesRlxWA4ybsw1rmm9e7hrJfTDTthWtKmsUTq83c3/rm7+Lb6NTbuAUCTdRg4edd6H2VeZunpd29SKkhlS+G1FFzPa6mcwKh98GCCoSqYesm6p4IWQJb/pJ1UJ4stw3GfnH9oWJxjfcTI+wYFkzxUBeWozj9PJA4Aajp2zzfe+dTkACBRabbjZp/lJyiVXT2crkScJZycz8GeZKZIGkrQ9aM8V658hMQESwx6DzR2fJTec5p73kTnDC9Eef1wwB4SD9c+12pQCynaw5snqKaVKDBloh+Cxkr2ZH4rw0JcO90B2POnFPN6nqCebW81t5sWOhLUQOvYVJrJqnfUHNW9IZqfoST1058PglNXHkiodSvdIvixxu2evF+5xpFKIsJTM+B/GyEzrzwY97DoS3JKhx2ixOHsfjFaQTzpploinI48J1HWJ+/+sT+9u6O3U++vKVPo15B1dndqJzcYf7oVNzhDlQ7jVY4OuVELds/K89rim+lk7PaD1SfomyK2RBxX0UoB/r7aPGPFKehs/sZt+ZtPRIlLxxEIFk4i1T9Kd3HEZH1HUeUSgDc5diST4t+9xvpsHCZ+jUQwVznUxlfQcQvsqN1RsV3ApLmcxzFnf7d6ykqgY2s5mNpResyqIFBFppVIy2lWFMbbTG1rnBXx2A91EB82mm1A+yrpdNV8mFUwX3jT/NwY5a3DNF4NHfDj3GKVcynvr3DZn66ckmtHJ+6VJ/TRkRuTagBaq/q2vdvBYtRpv2487H0WjPQqS96NmEyTBff2ljUGrTfKvXAjj0Hn647NnW2sIao/lg17RqVRJCuXxH1hdxrM32zlVj2I9FZsQ2WyeME2nzaGFAX0czLeDTNpFvo56JbAqiea+75ESOoynVXSxHx8gAdORqustjg1wbtBnidfPJH+Ve+8l6LFkh9/Mjklnnp5OaqG/uQX6i/mJfF2HgyOHLHFjaXnXJuUMjBX4z4Oxk5sKhEZiX5HDwmOZKmAvT+e6FNsl5rFTsxVbDlkeY3DFn3/lRyUWjHH5pRHQfiW9WNIDNnKddHFdveTht9fVTdS5dnBxZd4ecn1hfXPn9q3iFQNWyg3CanYDg/wFpGxJ7 \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_b1d2b4d4-e604-497d-873d-d345b808578e.msgpack.zlib b/docs/cassettes/qa_chat_history_b1d2b4d4-e604-497d-873d-d345b808578e.msgpack.zlib new file mode 100644 index 0000000000000..32bd4102f46cf --- /dev/null +++ b/docs/cassettes/qa_chat_history_b1d2b4d4-e604-497d-873d-d345b808578e.msgpack.zlib @@ -0,0 +1 @@ +eNrsvcmTG2mWJzZz7PwDdPZBsooR3QAigNjIYJJVwS3JrOBSjMjMys7IZjvgDsAZDnekuyMikGzKcloy02FO1K3Neg4zVaqS9TKSRgdpJGuzOc5B/0CbzHTIm/4Lvd9771vcgWCSuVTPmCoXMgJw/5b3ve/ty1/+7iwuyiTP/vnfJVkVF+Gwol/K//4vf1fEX87jsvpvfzuNq0ke/frDe8e/nhfJP25PqmpW7m9spEmahNl5nI2746SazAfdJN+Y5WVVbvQ3+1udzd0O/RmO46za+M0gjxb/8XeTOIxouv/ubz4u46JzgK9e/4e78Sicp9VhmI2HkzDJ8B1/9duD4TCeVa//8aMqvqg2JtU0bYezWZoMQyxy4wKf/MlF89NpeuPLm5vd6+1kSpNvnMeDWfuPN/6YP7z2P8mYHcw2p69f/7s463x81I4z/n7nd8/iUVzExev/zWzz/Py8O87zcRp3h/l049d3Hx+//je9v7mTZ1nMwHr9N6dxPOuEaXIW/4ePZ+OC9th5mJXxcF7EnWcCxpLe+R+LuJwRcOP/5rdlFVbz8i9/M8yj+P/6T7+bxmVJi/m3T35hQPT//LP/6pIpfnM3rOLX/3C/SNpBfy84imcBgXs76O3ub+7t7/SDDx8d/6+/6nyYVA/mAzN952H0+h9bd/fu3N7v7V7b2d/Zu73Tv7u7v9s76N07ONjf3b3fv33n2sHfH4b08KM8SkZJHL3+h0/jqB30NoOP5qnMsrmzv92jMTDLv6MFVnROnUPCgWry+re9/s5Wb+vvzMfHi1n8+n+3Z3cjoOMtyri6Oa9GnWu/+1XnTjicxK9//eDh8a8/ScLXf9vr9oKzsMiScvJ/4pzKsoOxijztHKRpft55UiTjJHv9b/7438/iYpqUQNyyM8vp8Bev/z0jMDY7zCd5Ud1cW//tUVwQfr/+G4EGDvB38cUsoade/8PxPCYIbnsQ3Nrf2tyn3dLefvNJWCxeG2y5l9FBJdn473nFZlGv/3YaXgDBb+5ubhLI7xPs0oUD+d3X/7i2Ge1ujna3rm/ubA03e3vD3uZ2GA2Gm2F/txfu9oZbUTja7Q96f3/RmRX5xaIzZJj85tHDo6O/19mfEa7Sgv+HwaKKy9/cOw7Hr//n1u7utbgXj4adXnz9Wq/1a7oxr/9tf+dvf9XhPUed24vX/wsP1hnk5fbuzl7n9pMjAvpxMiWI/B9Hvb3+3vbOVn9vq7u7vXt9b6/9ydFm+5N7/b/Tg+k8SBht+e7+S0LZgiDwf/+zf/7//ssP/sXdJ3eOP3t6L8C53nrvA/wVpLTMm604awVRUtxshfMqb916j74kjL71AVGR0CJAizGAvpWPcdU6BLXk7GbrV52PDwjA0xnd5kEat4KhYNPN1sN7N+NoHNu3snAa32ydJfH5jE7be/A8iarJzSg+S4Zxh39pB0mWVEmYdsphmMY3e+2gnNB2TjtV3hkl1c0sbwxb5IO8Kr1BkyyKL9rBKAci4uEqqdL41uHho+Bpfk54FwUHtOMsn+bzMmD6VQZ/ERwm6U/f37p+4zAff7Ahr9TmOY0X53kR+TNl6azNwAR96kyJQqTtgMkorbqKiUYPiPJWi3ZAGDOdVXQqrWCjPmwUl8MimYF2eCPfnicp0FhGK4NzItsBdrCWhsU4tpMGPOl6EJYBoQC9X8Q8COF8GhdBUgZ0lHme4kNgaJfuEF2zMMWK8lGH/tNvyiCKp3lJC58PJxgPMPrw6XE7oD/oWtFtpg0FYRYFt8PB4uDDh/Qo8Jfnzkq6qlhvfBFOZ2lcdoPjSRzMcmyHTpOAEOQj3gERmTiLymAQL3IajPZH6wFogvM4TTvnRVLRA7TgWRJjOVVe8A8gvIuSF0BrJ9o9LW/QpoNhmNFYwYg+oJMNseMZjnlEhFAG580Shk6DMk9p9933+NCDowUd0jR4Qh8BN4OHGb1LS+zMFE1ChyZ8DkHJb7R5H6N5JhwYc1a0WX7kp0X55Ty/QdsriEG2aRsAx5S+ofEGCwKZgJ+wib/LM5zvfgOnaWKiix4+HDIHDz4l8o1HU7oQQRGnN1u0+zwjhpq2gkkRj262vgvPF6TkQYdFXpY5E29aBo29wPbN4BthSUSh3BiW5UZZLeicJ3FcdadJ1t3dC3dHg914a2vz2vXhoH89vrazOxgOr+9Ee2G4dX20t7m5fT3cJgra3+pt7hD/6e/uhJvR9RExo2tE8UuaBoxhTBiwuNkqJ2F/Z7fzp7uDvcGLRw+zw1/Ek0/PHqVR/OWT0fDgKPxlce/FvfsfX3yU5o+zi48+K2+2BCYz+jMPo8CtsEVnRCPid4BPbhwhPAkQl+64LIZuwy/KjUkynqT0v2x3Z3A9jDe3NrdH17eiwe5wuH19a7TTu7a9O9rs9bf718LR1vXrw93e9mB71B8NosHeKNy5HkXb0U482hl0X6zc7ac7xfjRvZ++v71147jf/+re6cbHnz07Ozj6ZV58NR1+9nH19HCvv8Xfp1l0/Mlej/b1XkD/5Bn2TOefvii7oKEPzHrpaj3JDunLtfUbrVsfbMjua1iUDEF93gKBRuEZnn0+i4nvdOnH1opxKpIm6GeW6WYgeWXyVUzr7O1e9HbfZZoOv9GdNZH+zdNs9S+2+u80Db+xPA1k1Zj4DhHEzltDqPnS8rDTsDx9+/HKcBQWSWeWkIQZdapw0C3Pxg1yQdRnGhMhT2s04/1+3Kfr2Hh2WnoiOIkYaXzn8vey3CALUOwDvkDyM/55X+at8jGJ3G37cbfKZx3e7kv7Gf6JknKWhov9gO5YfMN+9eo9GXzDG70508+JtCdhsEY3m65sKVslCQHz7wdRWJyuNybbJ/ZWNT7DP51OJS8V48Fa/3o72Nqk//vrN1Y8SdAoFvLk9m47wP87vZVPzgpCQ/Nsv3eNpFX54/rKx0nhINZnX+jt7JDovrOLP/ZWvkDSMnFR8/wuPb5LT+9eW/mwHqSOfR3Dyh+rxwbB6AzGb7VPKEH2Wawai95dDb0BCUtxoY/2MOSKYfXwLeqkSbnq1Abh8HRc5PMs2ofasaan+BaD7Wd5tdZlDNnf75CGeZpUhDiQjwZh0alIjT79lgk3g83vP89kPh2smoeBJPj85q1ddl0+2HCX1DC2sFxkQ2Fgy7pxFY6nYUZEs2AteUy/E3v7WRLd/LDz4P7x9s4n92//arfGKMwPtL4gyh/n1TGD7WYwCtOSrnIyCtb+hfsCd/GPzkkMz88JIlV4GC6Iz94Mlj76i78IPv/ixnt/ZESpAItZW39pn+jO5uVkjSTeOSSocv3Gq/f+iJ+5+qK82g4yEtqgY6+tE7j0C8L+UTKmL6/626HfXwZXhbsTl3iezK7uy+qDV/Tuq/e83TKxJImRFFdw5ny8z9qAL429SZXwJPzaIH8Q9P8g6JOgfwl2QJjx0CIkej8Ezq1+el6k3sPfVeRvDqyT7pdiyvJm4EFWLsa8M5sPiAxO4uh5lUz9nbiZjzc39/k/Fl/5pzcOOVXb1ruPWBeOzoFnxf4wLCJvlHI+BctuNdRx8/S7XflLBvnDlf/DlacrD4y0vFm0Ft8MnkZ/8qIkDLn1HuSD1s8ZUS6q1n5gbzZLumE3L8atNj/D5IIeuF3EYTQsSLg4JCFEvkxoG/jtnqyNHvucRQYjfbi38dRDerplhHdc9ITRdT8IeoH9GGiNF54yHbAfYyZ/mW8gQKKkvmoH32kp/eWlvPlCfpclLtPI94zo9UVdQvhxjjLNx4AvjIT8DayxpEa95W7fATA1myNm/gNB+hEJ0kn241Gkk/nmZn/3O5IlRgVr1TZUAkbtVjto1c3a+IRnxA++aRu/O+M2rgoPqzz8dh4t/oBh/yVj2Ddf/9W7ItZJ9pTOMwMIjuaDcU5PYJdRzM8IUd9neMoiBsTDTum88vMsEHSowvIUp1DlQTkNcfTtQHTWkPZNR8qjAogZfcDnNBolwwSjTWgu/ojORxZ8IeN1g2fxKBXRlhdUxCNCgimbStxqAP+I5o1TwiU6PBq2nPLz/FHhxshp98EsLEnfFsC1gzQOi4zOLp8GU2Jo4WlcelMBqtNglBcE62pOqE3An9Fb9HEREzyTKR3sGdYO8H85t3hGLxMQi7icpxXt4xFhdrEIjuA6hWmIJuNP9oOHwXk+TyNcjzKJgN9pyoMlWUd5kawRk6wdxXHwlO9uYC4Efc63b17R7f4KT5XNWbAgDMlXNaAj4gG7wWGejeurOZ7QheUtEcNxKCW3H78Ow5mSEYxTkACdmKMZYuVrCenyGbHwddoAwW0aOsDLvSNEJK0hySMCYz7CRSM4poyXY6Y3GT9YAH5ndG4Ee9zAmGcZ4exoVrqQZ2FKVxyUZV7GHjbw3kqsjhdkxzp4+rDkk6RPirC2umoSVqBU7PSmJTA2OICdx7DJl8GaLHdCWgkPP4HrOAjpQ0KqIoZlKsExrcMjOkznTD6H86LAsrz5cC2jmNYRD+c8vwNqmxATrnmMD/WK9lmRylNbbZnPi6FiKZ1a3A3uJ+Nu0Os6MkLn/VZkpBvcMUQgeJLF+4ElAwdyEyEl0eu4jQRmQu8UazkDEStxvxdyIbrBQaYDE0pGvPzTLD8PzgFZguQiCPUEZzRDEEJQIiJ4jHHv+lQmuIMoFUHYfE5gD9bu5Mc3gk/jJIjp2tKZk9DXX6dTAAGnN2lYWkQI42zknLZBFQ8nWfLlPJYzz+iwhvhcjpQwkAFKjCfAAdSpzrE9+oQ5S1XMhwyGPPjm67+uJjCUY99MUenvb77+1/hObmDMh0Lzl3QHSQ3mweeVYlpuiWqsiLREOIVyJVhRYcBLMAgIvbISq6aNJ2P/xSkRmYQe9ymufM1DkYofpILC/DgdAEdzzHB95Xp69IHZB+8R4CKAAh9xVgXRHnrwWM6FrsNnYe6dyda6ZaxYLYEmvpilOfNku0DiGyRs88A53TVG+gS4XAVwT/F2u8HDiuhnUVYOVkKLDBOtb9ogCoOKd6wcHSjaeKjEyfOTdAlpMYwqIYE2BmnHMc9xoYAAJdERWpECwDD52/ePgjWwv6iadGSR8uB6QGh2F99GJMs0v2P6qTukhQWgXvNQmTIJSGlI0BgltLa1syQMQkVkHnQavsjhcQzOSJYxl6bGms3iIrrJwVpvHYNCPuBZBZO8m5Emp3Fw0jpicOFy/OqzP+2enGS97gmJhietT3FncV0BcsO4+UFaP9FdjEGv/AxPr/V5sjmTTaBcp5zFQ9rJ0N4bsNkbQdwlEkVj00bkwjJbmlfQlmheHh6Cl5xHRvwibWPza1sKvMl8ynhLVwnYeJDl4MHEcjFglEAJG9KyZ7RPWibLR3/yNFg7TOY1HG078lXE6YKljqzGc+QshpDZQAxpDlxa4plglsRZk6/ohZnSya5wTDOtIQGCrpaY3s2nIGp3Y2aNODATIResPb1795D5t7mV7DerYvllFBKBYqIB9W8gZ2ImN/ehC7GxUs4NZBXpEIjANCPlq7B0gYiUPdXfsQgiYizXZHyoGqBYWuRsAMRcMfoeLwtZH4QlYbSBJ5/JGNPo/u0szMkhIBE3wQE3VukPODyVxWYh3cwwtWpHN7hXliLZp4t2HSxMmgkahF7CK5ly+2dckdhAyyjL+dTIbuFZmKRGtCEyF/GaHTrzorBwQl7COaaxBh7nk4TOPoH2M53mOMdgGBcsGnGoE71extWcrttgThwyhzQg3FOQWOYCWh9BYPWE3qOGAMvq1BlNTwI6llaJ7BIibqpc4vLMh0VEJXyqWMuhi7XAlWX5lpHIicOgKkkpCkUGkZREl2ElmEb3HuMaGZmJNHzDjCF0zxOIu3kKvAWVJzUqL1LD3s4hLtMxJ6pYxEUBclLg6fhMoEm7fxYf0I6W+YoEXTB+OAbCZyGrA4GgaYH0zHbAhey5ys7Kmd6kQcwK6XRA+Gd5X41wETEh1lCZVwUWGMqqvDyYcAnwY4i20GpoeVgCYK7Rvk5ujrOzpMgzqC7BGhNDSK2fJqfJjP3kym1ISCUSRfiUxjplJdKlId46gb1+Dh7wi8bg8Mt3hXgGjSXQlaFIPCGuIGSGjnmWC3TBsUl7MrwURFknZIGgTSdMXJQQSKTRitXdfQzP3HU/6HZJFByKuoifnwygoYfuA/y/9iyexcz8+A5ASCrXRYjt071W/R0HU9vdC1YGIC1gXRAvU4QsdgBs0p3OjMwj4H2QV6T7//KgHdy/98m9Z+tGoWX87kzDU8OxzAsH6ehTRtl72Vmb5M0BKWuzdVrtwymfOVOS/aCJnEx86Y5PADzSa9jrCRp4+QIvXUlbz4iuzimkWz57uuAZ4wJ908kz3F4is+Cbeq0s8L/5+reW9hWk0J3FEV8qoh4XwPS1IzrELBALFLEgGmdibhiuMRswMDcOHBGjs7Jm/YkWWTilC6JK5SoF22oyOCaP+LiDLE+TNDWaPS9rwhYTK8I/OxRiCU6tlBW7L+JzfKviu9FQQyPe4DoXC/OUubG1yy/RpcJieAZMoAAX+jSJG6Sg9j5gNB+rLYUBYgkC4MUUwGoS3oZVQWI1kUVAHfVK+Ly60vaUbFEUeFeTeF6Afw6DKxN6ijeUs/WXmeY0XDAGRbFo4bSdJSoDhYJ0xwriFKmEQnxJNlXamGcKiPoBGovFScb3cYvQO03nJMnVFAV3eBZnli7KCmRrK7aBGrkd2lCCKIb4Q4jNDEPWZ+/9QnQxZzUiGgD7CBgnoRAtcmgouig9bFUZQKzPZ0RjcU/dy1ZWkOgkpnA+hWGuCkYHUYFFPz5xkihgnWSNKHhQmzSB+RImI7YAxkRV52ACIs+WkKZY1xyxoYcVf/DkCCIMRCvDa3jilNQLIbq0fIJvkDsyCqRtHLWRG+pyAqs3avWb5OdMZM7zDv1cWRspJgGBZ54M1NQvhB7MwqTAitdGJBpBiLJn0cbK2b5lZwRNHs8Txi21lYmBpDQrBszXmWtm3oulWAYi2IVY0qvbMYFarEEyzWkHdGv5GVLY2srO56XA3FjLsBICd7FQfmlweRu8pUaifZLPMDBMY8XhhqLWq4QHiMyZZLDYvgKxEjf8u1wNa/54kJAmnagB5MGNoKnICIoV4ViFZmvbMyQXy8Y2zzMIwlCbjE4ODk9EZAa6kbFUkaikUsdUlgz13baSroyk19ASwFEcR5DRCV6snpnfA4QDGdt/aq2vo+DK3eeT4GZwcvJy7aIdLJ4nAckU/OdXz5P1k5NXz18mN3uv/iy70laifOXiCgZS7YVEF13JFXr5ijkYbF0or9jXrhT6JV4TzVEt/FgD3hQl5MpX3nMs7iKHiHGY3+ooo4mCiT0Ot+cD6A/CNuzGia3gXgGnSak5lfsnXImXRcd+Mo6/pE2/zDq9V/rbyUmU0/mYr3pXxHehpgdaXzmfwbQHTAeN6VRzRjLHtxzA7QnqtYOoxts+OanCOYMfsKed8wHgpxf4if6QZeCTDJ9k6+4UTk5SWloSyN8v9O/sSsNYhsXR2kTjYmGFsCxKiMUS1LMrOhpCKVkPFm1R+JCuGvGiyYU6gSo1H5ojpnP0GZZaSaM5vafSkqCr00Rrh2Mm8ReNMT3OSgpPDMrsLFaIKGRh1Ddo+DYJvRN5wWYs2P1YpIXUTVrnWZ5EbP4eJRUwsB3QdQa9w1kV8XiehkXylVoHYYqHaSu8SBDzJipAPu7AZJMmkzyPDAf27c18+CQCwByuE7ILgJhMZTSlYT5jerg2iIchVA/2YDCeshCudI0di8CcJZiV620x5BJak77KQkh5Gmz+JOgEOz+x5KLKT0nWDaJ5oVI7r1A1kOaCFUWToiY7K9moaWgkjn/49JjvOIGrZM+NhAMZ2LHNflKnQti4fCRRyIxgBljKFXaMaFa7VzhdOqd2A/lEhKxjgoeDhs7y66RYFeyqIj6pNHkqjgDvki6xhiUyD7iB2QIKwJxEZ2TaDUkxUVvaSAcVk4iZMrKLglFCOSSLxziLOudgeSc3clecRZfeL8iz6RhWyck0uAsxLk3lGNYO7hKvIsygwWv74JgL5VUs0/Cm4EZBMkcnntGpRnFdCmNTArs+hgI76whTdUnICe6gXU3Cwlc4IzGW+RSDmwU4hVTHpz6S3Qj7unjfxGoAi4rxZxhVvlytyzsNlqGKXbMcZbZjhftxzMY0Uo2q1ECzHRzcZb84rTRT8xet3+7SnC3by8Svwp4qIybxyRHvZbw+j43Qi8s0FLqZ4biVBMeR0TzEAxiJ/CQGBs8fwjKNNfiw3qA+EXYMCwKK27TyuBQhIKluuBoYGmTK3PawoVUJ0CGdEC0393B3WdMgqfUNaLYuavLyDVpGPg0FCGH7nyxmMLqVaqXlo154+MMfOQcCrmqFxTQOBehprO6yMCO/Qt1i8wtxQlamSQBQ8OL1QTwJCbIFW5pFQ2TnqCoAslRz8Iarm/Wou0CXJDsWcEqAAlCPwQ45ARa2wAIdR0C3tjJaVaLKKYGubcg1v0+HWMyJ/4dK6cX5BxmEVYPIGkEHvqzI/NLeYrN+eoulc6zFzNlk7QxYexUZvYAt4ThDZNWQ8OOhWBTZPeoIFswGKbFJQMUQNglXpyGRMk0T5eYilr5CCN5IlxhWEyZAuZLz1ZvoBo+8jwmSOhljfL+z7aYAM81iXAaYIuwlAUKERQdCxhT3x/n1CdQW8eTgicwVYwPT+pOwyCO3WoiZLl+/FyA57mhoFdxaxlpU+l7pe3eDNea5lUFf9Uwb9LTIKZ4rebRBnO1NbxKs9XYNNxfBmsUCL9hmyaTnrwSI/vGd2zTSs8M/6wdrd+ehd6d7ezes2jef4VoPIKYFZcKCr/FCkwAKM9mzw3WmtAgvypjA8PJ94PIufSJI5JoXSWAo2cjCy6BTnsHfxJKtOL3y0Ugn4Yuh0QdToDiCFYwBTwz99iy6wacTDjGqCcIzxGDBPWGup8fcmW/6QOUtEWm2Gt+KWemYzZSGzu6Jz1/xhAY+uNum55onhr3wlukhj98pyVRc9C2B4uzls+sGT9hMWTPJQaorSYPKYIo5bmwm0dtjaBcfx8HWHUaLkxZydE5a9XVgzru/fCyOwxCSc/hV3P12XuBFPByf5/smMmftdsKcPzsNFvkcB06aeAWZExNM4nQmVoggKsJRJXxag+6JcX3z9V+dOUoGeYNmHMBa5BRQjsgS2y+ouvU2S3QRZOdHD58esWcI4niG0iGhp2zoerrrJEsvZmIf18XrX4YfOTOUx59jJcXgUEM+PYlso78kikc0YghNhYmwif24Ez41VRlMGFllFqKIQIv3NisOrax0S9QAI1W4CVwQCSvhQm6Yttp3rQtnKeAIGB9LgQoRfGUSP0pmjbTleQgvH1E8sVnF1XBdw3UwrCQQ0y6I6hDlT4ijnEG4i4ChZt26MdoozHSE1Xz10xCuURyc2KNCEs/OA8kRpLt9NB9ApBsbQgmqS7AcIu3bjKjrI8oUDye597lZ77ocyCScVd63nKW6DsBykNcxNEaDwkfHjzhg4FO1mRmYP6zkpMvloKdzOU8NUqKdhef4HfFDNDeoqKDMMCzEX28N3MN8DF+2dWqYoE3LCyQoTK3g3eXQN2DBgEhTfCZTMPRNiNlQvbByifbgvJyWwdqjhANketd3dtcVXc1B9Dc7W5v2CE4yjm2rgeeQwLO/FPMmRgUOMPOhI9ITKXBEesIBjhxcF4J+G3LR2IaJydFHcIRKcE8YgdWKOS1DzKhVyeaZkVcwH1DebNW/WyQ0QriyV4uWvX+S3TOeuQ3MkYbiyq3H7SGCzcb7jVhnYcp8BoLZNlGNxtw9AWPj563BWwkIBKIhhH+xhyAoKfKFBysJGaSUGQwbIC1KDAbqISJ64GOwW5iJ+4UPbWq3x/QqYgm6tjsAxCc1RM8yu1JVvjSyQ3xMsmHCH/YoVCaqRbm8BsXhuIcSQ8BxMYWQnZC4F5Thgm++BokganaQEzPTiLtrxEr1mn/llBamf7JI4vIxA9W4TW2QpxjmYExgtkLKMf0NT2qD7vgXKp4O4igSp4Xq/8ofgKxFeK7RMf5RQb6h35kp0kMihZD8HIqL7saKaxmWq0JP2d+flCo8awAH4XJbAr/F5YgqNkPVUniH/Mhq6ZxDyUxEW1wsB6Ma/rU6GNSqDy4EGP5osVnQV+wA0PsqIZUoeBMguKoZQ/oI1rb5NHjIsRxP2d5REQNgh/wamLJYYexCPMKBu3HG4TrioxQIKCro9nldxo9IbPTAD1eE2ie+RfjrDAm87KhFK3BUShXOGmQgXUDoc1e6JBEZp8Ybn+puUZyg6Mx0t6W/W7YjsrpibJAWWtAnQQzEXs4mQ+ZeseHpHAlFMwAkUHvA3jPEzw5gH107ePx4/Zuv/5WvbzNTn0NPcq+mYPaz4HTFEOKpi0AKRs6eQkdMFGMIMl1WSrwncw7VoPXOZ4gYowXDOF9fN5NYWpVbUVkXyOhOHh49IO6RD1kF7eCGCuN7EJYThPsyh02Q8gBLGbtv5Rvn2nQqb0lQJfItd1X5mlhh4aWsef0G8+FpbAxPqGXC8Vs2UtgZ/7M54Qu76swriSoDJqTUBhG4RzWUDpt/8hmdjHdwjxXqjy3Un0yCz+Jwsi5h90ODZ54Uqx4PGAxooBfq8kFgJViPMVmoTsAf6wbY6JDlWYdIzYh+iGKH9AxLovsF3Go4zFSM6BogDwiqbz5jCSIdOVcmD6dyD+Iieb2znJ4k/Ob5seTBPElxeOIYVxkIBo5Kd8NWBNxNRBpzaBEIKt0jOsfhqrM2ENUrNcG5ZmzLNJH9snu46ryQLH2cdHaxS0BvwH5MbDoromxg11SDWBUvDtkLx+MiHtsIOpt3YK3HNIKEShax2EVpnF/clcBXBKWJzsIuTlTx4oCs4MHjo0+DtQcJrZLWxn7qx+FZMuZIhyOgVsAOTr0BJgvHMQBjuGY0DCQiTM1i5vinuLAZ209U/ChwfGrqsiFy8oQGeoU6oENmDrLQKNNvvv7rMrkgMWnMcGb9YBaKaopI7VEcMsayBY3j1sySdMfAiaikG+ftO0Vtg1IVcSKuvACNcRsX4WxS+hdykFckWpiXNEzBRKTMEYdhkVEPSR81JvkkikCp2IVvnTnCI0DQoHYIwqghwTMwmliytmyGY0BKI6vqDeVbpnOB0PLsIvLz+TIe5dDbS42KKcbwL/FckvFEKi8btfmMGDkLuRdsieDMIEVVtkHzDG0S2aokxWNyyOUStLrBPVzeKUcsygLFwGNgCdu0yeliiYqNp5qFBAtS6Pk+hUaBQrQdYfDHTpEfYcaWlB8TIMTXUTN6SOA7eHh0FKzdp6EGeX4aHDwMjoSSQ1MRYUGuAXLiGYDqSeEo05mXZ5IJLY/g7irZ72iWaJbPsV/nMcFa0F7dTmHwYTgnQQbpTgkkjcHcxrtUk3mpPj3rBUBhliFM6uLXQFCrj3ayJeOXURmCNkyg/cra4NgkhV8M1TWyhiO7OkXpqJGNLdWkKDeiXmDzSteIWRItnxJkhf3qAzjuKIkYnMwFhzlqHNbHtNOO5gXTChmG18YHbgaTkIUki+vbpEUMQ5IA1o6U8C3zP+V7HMVMglPuQnHkVRi3MlKKSASYkaqzApYsP+sHLCK4owiuXCAKgVYLFz2RnvjlxSt8UreTs8AWGIENDnlSQ2mxX7YDej84OSn4d4mJKK2coZfQGjvsFZGQADtGfWoaQBI00rjtW3ppd6fmYPnSV/WzGKIAExzQFsmgKF1v2hzZ0uUkrjaJ1GE5L8RdJyrnz3ubS66dD7kaToC0a46X2US8TDw8Fb7VGFSyjTyTrmceZ0Nc1hmQnjqBhl+irg7JiJ5tELbzfckv+xj5ZSbRLCl9u4DkNEn6wXieiCSAQpxE52ONb7NK4SCGkidKIVP2dsAFM4SPm+whq2bkA0hRpaYf4N6MVY0d5yZ3lQATzCYLCc8XndqYZdjWQLPdQyDnTGOhSmPP9wLhhajCNAtHUcgikMRQ17zfLrDTmJJxQgdACcNOmfUQw8ZlE+s46fKn4uSFP55Iozi/SWSK09QEOo/SXDwCSpTZnAtmgy9Z7hIZgK7YNNTlcggDFm91EVilQIvpgBBhL6fNR+RiNZa9hQc6pmawYMT14NGzXxwGa78IixlC+byss7bqvyBRJGY8oruIO/bMmLnawS9M1C+fhknz4KwHxhz4BvNOuZgOYPcOWL6oYmcIXgrhB4h5PZKxF0iWB3KiInVeSQpmI9CKVidOG0g8U6wzdoHsmpTcmc0LTkTjXCGWyTgUFzYTyfLgn+hYYC/WiF5m2Gy0NVkQ6hySSViaKWM7pcp06hKVSOsojmfOrMH4VbLh0oJFniNdZIIkziFc+TlJD2KmHBrzOHvQz+kiATkQOS9hJgu6j5Gke5igEvBiP75Dg9o5QTSsTSF4EDIJiXF7GSIc1DMkpZq314hXQXQlDoOZe0XYW3Jmn0CQ872JIRQDGA6wIc3BKUUn8+Lxykpj4v2HTLgO3921vdvBRwRIpOP0OiLyaPq9CdHMJb1V3f8FR6zZYlzih52wT5CRz+6StIIEZk4RRlV9CGz9TBePaymHPStHQtjbbUZqcwC8BqllkoATsUsfmZKlRlvzu2yBlhSStgsCtkoEDstlyNIZ30a0/fEBUpyYLB/YqGybVvWIkepG8BQEv5E5inXgPU3dILZPIv5p3UlkkAXJIoIrGvAga6/RT84sFsDZuCZOpQg52dmGohEchIwhHhtqJse80suKhxJGZtL5TBhnI69cqLGNwkE+ODO/CI6R1CoQdP3v+YnPoAKlow7LKeRgfurweprOx4mmvTwhik2iLhZpbRlYrVwSRITkkYsmlvoKS2HyleGdXvK4ietNMmsE66ptwSdjFr6GkNiAzIFNnopJf4bQTfeDbZdmA0JSEC5oPGL6fW0nJajGg/kYFn3sfu0I6FpPP1pKjsBmDLjC0iYO+AlyNDGCcIS6mewySY/S2aBL4I2KIzTD4TAvxGbrBfcEXt0XzebVqDdrceSi9/WAR5dZ3gjn7/VWR9l4+18dVLMMFHbhCksCq6VrJgiwLd482LKRgHhswULj79c5DVMi6xWdQbKXDwm8hctAbGT72hRtNTqNIAOFlahDMXuZodVb7JOgGHprX84IfoR28PBuOzA2HwmeYauPoZQ8wYLPeRSfLwfNI9I9NmwE0hlvk3ZgPF82QRSRGTZacF/iIOlGgYZDEBcLLe9dti1WLUYg9bFiw/vB5y9PWvjxpCX7QKZuEiEHF789TyJ8QDvC93Zji+f6ZYlvaXclvsZIRMF4JPYPnEhJXnzw8bNDfnQeJbn3O+6c+f3Vqy/kqup8RCzjFBlNRL/0ABM/TlXjyAAhSefxo6uQmkJIKrEAVtcxRRP4JXAUVqfZdI54JobKmObv6PZOWjXPVuwFTLHngbcnrmDhQ7wfayWw4NJVcvimONBlfNkvf/no46NjjiLi+42oFlMswvlzJJ6YDu3ly+DA3ny+CiiaFbx6ZRCYSQupMyy/s2kOL06SmbUAaKQjIR5s+gCxhsxyGVK6ziN3ZQR3CKGuVkwrgVWEFwhogCtXbO0ziPdE/RfBR0dPHiN6sOHUh5wjosICV8tGzvJ27toYGqZIuhOoPJUf9UU6HNbHMKS3QCuDB/o13rkvQINd03tTlsqBtomKqrNQXEVmj52p+FLiyKKNt9bKpzZdTmRmSUBPi7MQcWmt+SR2xLsU4cnIsnFas+gpNeIYd6/OjyFLHfWC8EOs7mMaltXZkG2IERwWZWUZuZQpmeQQwoFH3eDuPDY43AxuM1Ftloop0R8lqSHn0H3YZ79Edj4klTBbIq5WI2AJBI4R+kA0qhqNQvyLR5ode/OSoYVfqZ1xeZcmTLS5BMGf2mwklcEibgKXHTN0ZIWtxuwwIs4DG6mGwmIsTQGYEpfDLRB7MfvlGOM1d3Vf6ee+paMnLQlXkM8Yn0Sq0jAGKz3LWZ+0WJPnsIWlDStGNo6Xr4KxaKmMytfhqdxuBSq8FR40BRcAKeTKMxWxDH5fUpqsnCFf2CjuWvSnyA9EbDypoI4kn5oIZyEkBjmSzMTO64srMMSWfalXKtBDl9ADzydh2YIIC7aEljrmy6ADq0sRPMRCmPC4XwlibQHDUytX0APHvEV8J1f+yF15+lY+O+AINNYI7SD3HCzpuacSK22J22d0iIxJYqEMs/Jc3fdA4qulIwyKZiH0JdqHZKuyOKg5bzXICKXywAMtUohYSEL7okxMgR9G/OYJGBqhZF+97VghBGE2N45WvOWsBSPYVkBc27K9KlbnlFxwa1KpYvcoIeD2evDMiJwmlNMQVU2dKVeLoKZsmuTtWik28neEuUvJm8E5e1Ipy4AIAlYn0rwUhm59usgAjTnb0HA61rz3uQrGPU3PGy7qmRiGWgLhOIWbibaDmqT+SGiJa98llNyGUuDalTDPi8/DYf0N5j8PKyfAmEyERkAEm3Gm03nG1ZYkHHyp+pLWor3BROCoMnqUvx8tb2fopoTjmJgFZYMF+vZwAZWnDzu3Ee64dpisUHesaVTKJ0m5GmP5rVVPEiWt43Q+qIBs7rbpuTtb6nTnqFlVetV6FzpEWx6HdYURAVfE8/7utpeBGJEcmI/nsc2K4OifYGf3mlWqS1PKx1MpWZu07tAoQZxl7MfMqOsnZuWYVlizQIWEZVEoCaZSHXCKHOtJPrVlD+kz+C/nth7TlH3GE8JeJNHD7u9/DsVvjlSeOZwYldYltTv3ynzdXkrdMn4v5wjF7rQ4IJMDTq63JcUAl9r28KGVtcRaJGdjbBLqWpkb1ayeJBnlQ9aXbHGrKVKI2KKWWp2zT/ytjOdRLmXPVOXEEqdabc8ZQRL+mRFzRWpUHU8falkEg8gOV9gIYeiAWZIQCjjBakVO/MpTCIcEJzLVmXihElpSqXZiXiYM6qJymY6kMZ7gocbK4+/KimXBQ874Hi1WA3w/SEZsvRa7Csf4N7bjxwyo90ChoBEd1sg6THx0NlVD+T6r103sP2I6dXS9ZkrAuEqh9xvJcCrYMGHmWonsf2C0GbOjbORof8GqS4CA5hIFwrVukqMyBuTNOpbLtiMtFybJDagbmMLWcIgfOr3mOC5yeGiiL2hH3UDEYTkjnsezs/hJJp5Yo2ZJa8Zz9uMxD0YjtfW4K1M6B2ZQlX1wZbRiOkc3KWQR+USYJMvvs43B+qDrcc8SkG13cLy8Rj1pHLBx3gm1Y8xFzQixRhs2zxvXUH5mIDaBoWGnnUoSc7h8583KtyAKSpR5Y+Vcxwl7VY+V3YnBFnMYc7pCNHfD+CPIbAkqGnzMSEGIwYuI0LEvfsQ26o0J6cbpBhy3IV3YzISB0XSzdf9MAQgJNmb3SWQzf2YCL+EcznifVIjzJEgcVcQgaIdHnOrPcvXdpOQIhIUUa4Y7cnqnIOCt3S7CVWbEZlkpW3DB1DpRvbFhQu1tqWraIUTlJAq1nXM4vwgL5cSI+ZxSGeTFOETAebnIOOGNwBUV8zHXN+I1C24i4otz/AIZWlDLEdPEqyCbSOUyLlLQNkUcSqnyCL+HEevThZV2IyOeSqUVzAh3lokARpZvLBUDXckUazXmIm10pTMb9yTWMDGjWRVbTcINDZtJB0psY+O+GVV0yKQQl2ulcDAWdJe3IXmUvAMirBsiV5lAWGaL9dqQqhyEYqgQqqDlltS9aF0ebs0YxiaNacCWU8pIUB6P+SLUMnU1IMSBVXRa0pq0GFBbqzCZv0Vzavv1mJClo1XmYqnUVqsyolTDlaJCOVFhDUYa5MKZwvjU/YVCzdsMTXsRVFbkSE5YntCIEkIU00bxi7vxSj/dDBicCN75sUiuzoOgEE3E1jMluZnmokq+VDqXYX0fnV0aDlRWV+rKObtS/Wr0Z5IpnyIJiWVxKe2s0Ue2mh6vWU5YLcJWgDAVOBr1RrXgWy2ZqhS/qOw9UVcjLQZ+85H7mMmX5xMEWzWeNsw2SsPz0oUEDVle5sLWwYs5/NJWivNgJWZWYxS4nSentsjVmqZvI9EMgTUmzRXoEE9tfdmx9S+Wjjp6lIbDMzMEtXkebiE4bWuxay/FbHgVob1xPe+rKcBoo8BtYABnN9Mxq6vxIRA9i6s2M7I6F2tbuwkkVOXiWrmv9GYTnGeWKqySixab8ATWe0jo5RLDTNXbcr2VmQmRgNGcHVamzGXA6RHYbcH0mU36nqA1RQScSz53VuZGiSkiiuKox3EwDbNW9IKrsrKfpTaVO6Abzp4darTfDW/dIYJCRzR1pF8qNSvlOrKefIPoyTC2V5TzMcETpMYRhD5/XwiKJ8IIbIIL3bAo9bswtmFx85LjHFhWZjt4rA4AIiVipk8lbwTbkVMZJIST4czkUi+sgzAyjnx4aFU3lYBJwzFwjzJHUWQYg9usLJSnuhxBOMgIunRxyE27wTanSdFovZ4nxmzt/mQ9OGe9jfsOa4WUgZpjLAAszXI1zHgmBy/NWKa7uqx+GTS2VoiIy9nueUviNRTxCz1sbGqa29Pcc1+xG6Ad7GgEMx7m1LkQxTiMrCnsod8Y1WoQyv2g+NPN+FANRiRTaQvfIyTeyeqXv1x7SopBe0mG4lI48OH68R1iqO/vBGdJwQG2NgbLpMXbngSaQ1+rji39f6GlpMmZceFZm4+4qemQ6NNBfuHnobZrIc8g2LQlQjxvN4o+GssrGW9SE583PyxCP0JMs69BSO38Z3HgdSwptZiKEE+8O16ezMhVtgqwzaw09ak0G8wYRqYxqnUl5bT0itm5IqK8sHg5X7msvIwvzgViThOWy1UwNYZLgppOMs3KI0knDqf7xhHWSAGSKCKkqqsZyyS3rBvWOWSdVoxIRTzROovmQstspOd4q1xZIVOijuPUGgaRsu3EoTaHEyHLDe23WbGrRSLYe9olEYw5TceW9FO7nonrIHWEJLqCHZ/NZUgIkPK1ZzbnhinmPiE+lwM2UpCYEBnMLGA1+j8oJrXrgQUqTg8563fIFlFG9SkShEIuSPNMPt+XBypNHxSNCQFBqJ895KyKh/atfT8EkpSpLEK6BnsvOFfEpBmiZtZpwA44gSKm0xXtO7IB7dPkKUhumUr/hqOVSaUC6IZkQtQ6RVhc3veoc+lyHSVZRLbCBgRn8y3F+sp127mS+LzeCIFhq+XtDIgNzyoMfDoyqNq4JSxCroqAcg2V37aGHePNDTWfXAyvYGbJiNdTCQibNRqJu5/RDdAgHnPDe5ub4hbTc/PQV+VBr2zsljxahql04KB166qNB7NUs4ZN3fHH2/ARlZ0boZyr04Ikv9SO1nXVsLXu3bNYaOu+K/+snlavNKDyQL/iznL+mz5sJ0D0lZd2i3p6JhzPZrUZOix2CltljGc4kzAq1PAyQDblcveDlw/BRyRDWnnzr16pF50m/tXVUkweVR6FPDfJoNzYuiDZudwPevCgOD+/C/X3xIza0QH0mW28gvuqlBSyBGxa4WmskDDppS6FuUHuBeJd1DtcDU/rsBaO16yLLwbdLa0G1GA7tWDWJevtU7by1SOI4EyfZ8oIa84iFG2QUiiVSdJxFM2kmvsrx5WZl0yqa2EUNkUZZiSkVlsOicqHcxvL7tVbQEZMMlxXAwXTThsspWsxF5lHnbAvmjMlFiYPGa4FV+CbY8yemnZHdyTt2RU61j5HbKuPivA802ws4JjNHbVFn1zjBC36JRlxpCMsl/+2TZs02ooTGFx3JrZlYFbxhdhZJYZTHUxlCRfL2MYPLDEtW6i+LeXNoRXRgyl7NqX3U7PVE5diQTiPTjjUfCQDicSYYdSuoZFViNTTe1a58LMpbCdjrQNKF8S2jRKh8OXLbrf76hXfFxclA3UJvt2QnwiTDgxF8Am/fMnWG8vdDx7CNegbkNQtXHiOBHahhuk5qgAMAGbejp9TaKvHxjHHPfJKjPscbJeoF9tL2QUMqQjBHqU2BjA1Wmfzgk7D1DyWUjbjxCTHZIhSHYepcx4K5f3wycHh0T4axDQ3xwW9egSc/iXf9em7LanavS1/7chfdyQKCEkePPJ/vb1J/AceBolbEVMAB8t7Ap0Cbulzm1nO2ZbJVHsgICgaYocRT+rEil1X3Oirz+7uhR7nPEMqSaD+9JpNEpURicZzLkXAhWNEidPmRR6TbrsWKIKJJp9Gr/45KZ4cFsNzwH4ODxwXTH6cN09XSs8iDUn8Nib8WQNuSpZXxVIa5XNI3l/OOZZOu2boc2zMPGnhCJCSUs4HrrYLJ02Z4cRyhxXC9iOOC7BXmz6JkhX0Gcc/3dG3+Bg1w0b8QwiDkQbUsEkgepCDZXB9JEaG1kKgvy1GFtIKSSyL8bmYXZ6fyyf+y/MiNa8i4MaIB3Y4At8RF60GFWA9EF9wDuNzaZ/nDSbgcKOZ8Ejzu2ifduxttOESUlEbXenH8vin8cIfTp+z49ExcDSfHYxfwlHKUKUbaxe+QvZx12aO+LM3Tsz1mlIIAM9ibvfCBTEIJfDZ88J+5r/uPn3egLe8hVgOO/61biBNWfQ64WM0YomfV/lzfOCPLL97ENcwUh7pOoTwMLKjwM72xhEkgQjGhcifnc0N0TtPj9hmBbIZSeH75jX0bRLifVATxjf+nd8r/RdFa2Fom7e30PoqTBckUt4hJsbrl9+fg6n5b8vv5sVtGAkq6FBSptO8rQEdS2+rIwAUvXaitUF3zGEew+rkHSV+vWwtGGaUD+elG2e3q2FRcfB0QYwrY9jgW7UwPZ/xx98C2j1rCIkDlgaZougnzzXm2L3cuK+9a1yGKQqOST4WOsB4gd/81+pYQFh4NycazDSeDy1/nslv7qU+IR4Hf90xsSdrR5N5hQie9X2lJM9NXEr9arkIQZrtmQlBZeJpTMwm4IJZIKOSrQ7quNeY05ZYGu9L8ZPg2Ld82AgR5ilwT2x1dwJjsTpw9nYg+dgJqCIaaJT8dpcPLjCuq6eeaf2e9brw4u+IQGyq/nAbObYOKnZLaJqreRsLlzVM10tA95PE8pG+aHMHsds7puKiKX3gGjeamQbJuGMyC11NQrzHCYoMFFX5rSWqHtjhSUcuREEWo92apCQ8e28Nh5VeFEOS6FkSGcQa38OxVKbIO135ZKpRWxq5pL3YTEFLlDSo1yaQSEJNzeZAKBMTQG95YakQ+JzrlLRUkmJsZMZ9jVx9CRTVhmYc0F+7BfqNH9LKyL9f/5U5JAnx8kVHhbLBPMWOopOTrCNmNCkjA/1oUcqn1konrzMZMm03ZbShd8CNvpzyfDmLw9Pack1M4EIK4SxMPCDdsldtJwOZ7TreXxeOankO8nPgngXKQ4J6xf/eExSu5dGYNCMOnYc2ofQPPaK7KWnyZb0bLZsKRSHXsieS7hpLb6zzSc5d7wxDtsqOMa6w602jAUQCXLZNQtluTlr3PEtLQlMKQY2fpvaL6/PKllwUtzDODClhV0s7QW0xBBU5O1DoBZU/cJFnUg62rjlzhDRHK/Ioxu5Zqq9Es8mQDXDHeXGJqEsevFHg/L3K7j29jWc/L6RaDoFL1BazfroEpJ6dZJ/z4aMflRy8qIqGZXIkpXyBW8mSMnsFa4W9GamQScy17zgMJocPnW8v9DgfXOz7oetxpIEdbHlamMG1GaAYBEs/Xly8Gf7dY4tPiIsqV48Dv2rwxDxsdLPjIy2frUS6HJBhc4DiVD0PVSfjgvVsobPB5QAgxpSrVgecXMElsH0a6zlIxz7SoIMj3skjmj8n5jZlfV6kBJK7P7njoyHX8cH3WpglNorcL7TAmrFRkN5+ybps5PmKxR0pIfk2OO5z08PAHJkNG1jaidh5xD5qfNa+gwkPoReasTwPy3Uaug95tBlT0oCEjCyRP97H0hlNHFcADYbbWgaPi83RmpfeaKRDmJjqtgnnUg883xUMSf/dWUYYgOVOmKnyzNaAeo6p200TUm2vDORlwGKz+hLAfvYOyPfypcv+621qDCBz37wKNQlELF1mWu1nkwpPzjh/h1cNI1EuycthKg0DXsynMxPk02h+KJmajBIvYPHhioEeDFZOLQVx+LKl8UjMDQmH6FTSoobt8jbAKeJgHPU62fwjv1VDPiDEH5p8/rCiX051AhKtp4nXcUebt8otOsk4bmEh1g8CWWxi7n7G5hN4e5m2KX3w+ocAJV6i6IV4zE2oHt+uV4H7wpn78cJjOKjMR1gCzQLjoK6AfblGpkIpH4xZX8LJyUlLRXntqmspbhffdd+VNDxbvQfSCC7bxcqb4AvychsmGo7VuN+cV6fUjiM0fXr3bjj/CHHMLL8iSMFVFTLSrvpPpn5JgUE84opesJ/QzggPIPt8oS4bUwm3jOt00e9Jxl3knPGZZRdD9af8iwTdOZdV3SrbNS3u9Xc1uzLXGnMHEI/jihFLmpqx4ipSMz98rp1jWVznLArBEdRvPIUxzBSFZAwzmVtK0WtlNhKukKl+page4MhtpKL4Rxr0eKlztFcll88WsrKhBBId7pQaE8vOqzqPBXyVPOYBSksphVKuVyz209gyN/bHMlXDfTep8FyCh3h1zXg48MrZ13z7IRwGw1PWmrS6hgRUakGRblM+0ZQ867iWZBXL3rzki4PDQwXWPfstW9clg49bT2oxLMSNc84No8wgRakZuZZ+4qaLl9LWNCYvEJmwIXrDujJL9x8e3nt88OiecTBwdTDEwcg6MpFqbG3ViX7OxXLE93R48PhD8zbWN5/5q7MuE5tJSN+xS9l8I+zxzpO791xXKk4rMEsjgoQv7WlLiz8bHYayLyQaLFig5mJ3CcLQOFh1nNtiULWCuGJdN4EMYaXvMFXJOe36aS352ORoY1+uq8JoDonX4BPY8GMO/h7GpAJFktd13xydBQQXkrWVFfyETjYf2PqoBv6JZE+diVNs6ZoyWXVZbmmqm4M5n+spx9Vw6SXjfPK87onp4cVVhKrEVhFilGV1r2vVx9xd9kDSaBFDmDQdEm1Lwggqc4nOr8tvsCBJqXCNe/ES0+HLJT4fjk1SUeF/G7nO0lg7UoWY8GMF+Ab95dSzMOSCWaZrMHsty0somu8LNsiOY/y4jOm0sXEEzO0zMoappOSKDwyX3YFTqc0KGHdh0lAVW5K/dQCjQGc1nPByFcpudVHpZjHGYwL6R0dvMYZCsfuitMD6zL0TRpEEE/FpDookHrlYdpv+pmWTFGpe/0pzCjJmJcYMjKkjSoddFTOM4YmjWweJHAPXAqgtyYv1rt0JV83HxWmaeyUSYIzAZk54qi3f8vCK4zbAvLU+isJmQy0ZcFqL9QMBtYM4rbw+WnCgknqHFSEoy5zxHWsOyNRCgAffXR1/C9ngxBMlfr/SAc38Iw3Lmv2PJiT4EPvPQkzQDX9PUYHG+P0LCyeOJ39ncYHG+A4Cw9VvFxcYrlZkOMn+/M//HBOdiPQgH8hDlwkS0K6cJIHffhBRgmb8gYQJ2eIPLVAs3+zfp0gBRP7BhQro3T+QWEFD/ZiCBR9pQ7hQFP2O4sWJpGN8TwFDR/keIobdxQ8qZOio313MqC/r9ydo0LxLogYf/sm3SBxwP4nQwT96goc1E79POtBvpX5+zTWBSp7cb6hoS48fuX0nrR/AroJSMG9vgzpwU6gF+pEEeLuUXqbIftlw2ByJ7mPDTRurZ4vyDK2ycDW3wiy4CNgHZcxa/W7wSRKfy6Ts7JWIJrEQe1NKm6JaUxGkE5lWmfKcqVXbDtB3dSyFM2Tu+SxyhSOipITZtyvm7Ds2ENG0FTC/y2KEInnOH7f104Yl3J8s9tOMTPB7ulAUMzVuyrh21mi7lbBgZspow9Rq03TDkltq6mU8/RY7PAszzMvYQjz17ZbvYvSzrPLcRphJ4KPke/0exMX7P5KUePAHKfG/JCnxh5TZfv8S5382UuLx20DtBxMlf2RRTTwJd1zhJWmjPc4FjaWNCVFKbgJSaoo9SXHSpiZJI82X7iBbxUsibgcPFTXYYeLVbtHGPRxfHCr/JApV6zElRfL2TRlj05DKfG17y0l1dC1vxpG5Wg1VuvsOwwZjFdU+rocItF2JF53AL/dRxqYqsM3U86LWJ5IjxwiodyDxG9r6eWMDGvQ8iVCsSxIuvWw95jDNDCFbr5i9ghwcNYU8gnI754p6Gclipu+LeCdzCYqmfa/q28U9vyVYp9ZwylR3M9lqXM9UnWWu8pCm1Rcs1UuB9FmOWklC6xttrjjMzVRy514E9DvUgrDkG+PyIqRusUFBQtJ6dJLNfeGoFOJ7cM2JGLTvEoZM4AzjzqLWdjumW2fi1KTFqaHSNlFXWmGI+9AWIuPAPk7QB7qMEVTNMjr7jbGyUnLDR8wvpIJAZgtOxEWRw1dOvFmng/OYIFnkAwwgxe21byIXtmc/tnfm3LZbdoCxCEzPvKQOQsXL0zj2gzuaZicuQEVYV8Vs6VVJUrAD2JQmKQbtlyHzg0BUlPN6yHLefjd4QKd9BjlddI7asmv1r6WMlzhrQ25VEZYyKYoksGAjV5gFUAGqJFgNiQEzveVjnSQDbklDCkfKVQltxKFEVNDNkrICVlLIfDqwLhGN3A2by1pw6y1DTxmGoHxCyjnSVuBo6gX7ewI+K3UL7iRiHURVqRjVEQ4JDOggt/bRPDOdzb/5+q/9VOYDlwN0oMmv/xpx6uk3X//VYY5spaoi2XFjI+Wxzmnc7piwbz7oJvkG3Y2q3MDInc3dDv3Jq9+gRT0pTrKfQ9sZpvFLvIWHNG+6StCC7SYJrG9cCcfRzomCFPysvyV89YJEVaDITQ6iX14cnlnAY48HMDs+IH5ANwefEEjwwbyQEb7LNpmlPbPqZvB574vg09hWHSNIc+EbOVkOWtQEd4mngG5YelUZQIy4lIi9J1ItsAu/3ON4XqBfCUrSn2Sf978IPgtzbyZ0KOMWiRoduR/cTZOBhFI/1bojR3l6ZsvlHPJUjQL4PFVY/Co5Ax8nEYez9OjX/f7W5k63t7m72dMKHwia2/qCzmO+ar8PiAWUUq0sJV5WNieSNdyP4wgKIF69dNp+d7O/u7frTbvdnJbQ6E+e7gf3pLwIywmrdieTPtG+6paaE3hMucc3bX+72+tt7+1569hpHgLX1tkPjhZZXIyTr+pFNzj4xlYHWHXGD+8cPuNrisF3v/Db1/DwB1lGivIQI3AboX1bqLIKPhEOu9RjCuN+NCeq1b8mLXAw9t4X9lqjnHIXfVbCBD1tNsoJ8YmN7d3RqLd9Pe6E28O9znYU7XXCa5ubndFwO9zd7sfh1rXrNM61L4IjUiczk6J7iFz7iYJihP4qYJuwdjUyDeUkogVE5aFP0RuCyZvOY4vOY2vXx4vrXzQaeNM6Hnpt22OW0IZiJD00/USkd7jtL3nXayq/dCi9zS+CepsXdHVBtxWJWiHSJUZTBCa9qXWLiupadWHltW87LuhkIFPBWrsIDYuYrZCma/Ll8OrT9d3c3N7eYXj1GV49olePw9Mw83H403gwnhESS5ZW0RHLFNFnwzg74imzoJNKFCO9ym9YQq9HV/n61lafl9CTJRAhq/fcAC07OHykrZQubdVB0+B1okD1dhx43fbq2F+iAIjOOma1hwTtKWHbmYT7m5ZNb6aAtP7tvV2fAva2QfJDaekqF/XTCacnmgspqUKkW6JD6M/o91nQ2+Kr2OcBdr7wClXikmt5yn1Cpdu1oqpYX+egVjb1zfRq81p/e9tf7O4XtcYMNJsrmbtv2cPBQ62N7LeRl3wU4lf3URVDqgN5fSm+5aLu7Vzb9BdCBMivd8ecQ4ps7Zsjx0r4XnQa90Ibu6HoTimm7G87NoLEzlaNg/SIctWqVqH/ickf94iVV0MK6gYfZa2wJEzjl/LsN65Hr4Guh0jXRzmJcEdzMCS/jg2tbKnUzb6kDmmtlyO/LswDvo23TamJb1nG1va2v4w+kTfNhnaCn4pBYA5HrudX58OCZiAtaQMvdOgNvE8EpR6Mv2KQg4zA+6RMTsMNIjSdWJ89yVrt94KghZTgOyhw2wr2g9bu9rUd+TzJzF1u0eexPg3z7dP5AMUM4whfOCHteHNzn//7U/foIxRATb7tSRE6W/sv6Rf69eewyOCNp1wqm5+hj2GIw6cikQYQT1v0zSseArrdPcKcavFk9FTW3ByNCC1/o8P9POFVfRc51E07U1AUK+Z7wuUdpe/eij1cJWnffEx0LLcj+GNwUt4Ttt3rs/QtidDfuvIRIQvx4ecz0N4u/djit19h5e+9eu+DDcmWv0U/TeIwuvXeex8M8mghtuKbrVaQRDdbVT5r0RPmUQyQjIK1FJ2Wj4jYwoc2jquHxIjXWvADdaAIx6314ObNm0CA4pR+NrsKbDmsLqbq8lRI0O2GUbR2FU9fXb8hy5To53eZjEuMvtVsRYyYWTNhcz6xpXRJJx1OHiHLfe3qmri4ShJs0rzooNbpFBV16P31q+vyaFx+t42+5x2FD+lHYTX5KLwgVUlGJYHK4UeSpXSF8ch+8PnnV69cbQf0xxft4POrJydr+O3kZP3qF18YjFGvjnuB3sAf+sbn8sYX3hsamH6vJOKL5EnSpOPmd65EiT4gO5LHXIcVfYvExNmDapoeh0jU/PyqbBUzZ7n7uawWaYwfIEAi8hs/E/ivfuHQ98Z79KceEwH0Hoy+gC6I9tpVpIDRS2tcBoBw45ZdgT0ULkgk3Qfy4iBN11rTFxcdtQ3TVV7vEveHK2LNmH3XLtbd4V50YdrJqnviUXLHG/zJzeDqJCw7L8KLq68Us+ig/dsmPwRlMbxpL/AsTxcjEoFxb8+23K/TJOu+KH+m7ZDLm3G527q1PBZoxU1OL9x4EZ6F8qlcYMWijvksLBfZkNZVm34YYRpioslZ0c3iaiObTTfQ5I628fOtjbjc2aDBO9Np2hlO6ATpYX8ZtD1QEOSxCe2Q31pCLz7IwjPzBf2on/I3UWK/YfrnvuKvw2BC1+7mm8lcSy2Yp/GCnmyJpeMmyOtP39+6foNIbLB2kNLJBA/WW7e8jz/YCBvzlTOUzHbr6ZQk9+BiNxbGDw/mVYWaLyCSoAadKocJsbacyi5Hl3C8vmIomftszGNNSSRpBRfTNCtl47Tv8/Pz7vlWNy/GxIg2Nzfo2VbAxuabrf52K5igB24lP8NPfDu/uNnaDDaD/jb911o5If4BitGZ5BmtWoof3Wxp+a47oHPm046Zy34A4kN04WaL3ciXz+A9/iJPMvP8rUtf+ICbCQFv+z3k/e9dP7geXKet9PBvr0ufbgV79O8m/2se+groiFcvgS5A9i2AL+f/v4b7MCmG8N/QDno033Ahfxc3WzuArXz9hvcxVXDRk7cW+Jug2ddf6e8tjIKH3mWMfmOQ/juNst3t6zjyE0ba6e5uy1j807us6Vp3a1e3Jj/yyq53967JgPLju4yoo+nStnSY/ruM0W8M0v9OozhI6X7qoJL9fjdYySgNUPF8bxzvkhv7wYaQ3Qbh3gDl9vjKBjEW79d5KqQ1zuZNFpMmKyZ5S76jpP0pNIRLyToWxk80F+kW22RDG81FfY9VsgXsjDiYWe2BfPDG9eoz/zQrFpXfgVetOcxAf/r+9taNYGPdZ7Ibb9qJvPxPs5GKxFy3DQi9bwQ6HvinWego/NIu8/7BL9+4Svr+R18k2C4paC8SQYVuOJs5ODa+eONiG89+x4V/sDFPVZLdIPnV6MtxQT+JP1kkRvzcggqnLjjzOSwIHTgRU7l1DVmZv64JzDLXpFd7grdvd4tic08vc+LpWic9XbUnZfNQ07gKW7fucqnMj9A/uS/G0a0g+IsguFfCVwNr5zPtJnKcQNfd6iH6jh85YGPNfuCZYaDhKNG14KnNXOVDow+YHHUPxKauiCc7D5uy852m7FyT13XQFt2jgfQQuiNBZ+Uyd9DZbr23UhNJ0A+OuJM59W9F4BoSv8/2oY445DuIWoBk2EIj77CThoOYJD/pQ6JJt0/MI7dWfgzkXL5Ib7kW68rv0J8dE2xRX8wd8wx6TbiAi9atS77gBa2CjfnnuywUoR+dWuhHfZFcCOpu7ftby599L1g13GD1+Y/wpStf3LrV+MDO7IjFmynhOx9gdZ53xGl32fEdn+f7gZTs9g/P+/jHOTrEzqFu6KrVHXNgHV1Gs67GB9/rxKbhRTKdTzt8YVEUE22COkLvO9NkVtbX8kgeDx5y+++n8rhxFq09evj0iAjMWzz0ezhr9M3qcKu9eRlfet54Sn12H9Njty796vvRkLCMO6W0VWosxWu4RLN7v/0oiOYcQx3bE0Os8Y27emnrJ7q2l373vWDkyizLgsqOq5dcX9yb+iu0br3p2++1wGZx345plF5f3aX1j1u3Lv3qR7sONmSwgXXu81vu5++H4hrN1ZjIfHrL/PS9JnE5MvVpXDBT65b7eUkmvUSgrsHc03vpRxGIbhnB7L0VkqDG5ZOwM7t128T7NutSr63ytq5zcW8u0l3UskISW1BaUQ0FIqVpeRMJSwk2dhkjS5rA2/pBSXYSFyrA1n7jOJe4QunueU5UDMPe9zeNtMgncZKFp+ELkpc3BuFgEY6T1q3b9MPBhw9lJagRH0sddLQg4SA0vTfaZNl0qtLYSQCc0wqi0nTjM8QFwR9xmnZMttYwn0l30yqXNqdI3FjYJr7jIpyWN7jRoTZu9nqi22BdGdz1yeJ2ekX3g40ZIQ6pILCbrJZoLxFXCWBJFMVWLg+zIRy7gvLyFSkDxZzY2hsF5lvvy22DFkPY+TBr9oNphjfJANpX1WS5mKLq/MhPi/LLeX6DAFtwbzxJuNPQDiTmKJ4iIN4Fwe4LLHDPcMs/gGk1G99y4rB+4B45mg+4MLeE09fCmY9ttOmgiMPTUhoSywUzBSoRUi9lAduaXiWtaGRUnDMCaRmVbCga54RxmLRrxiX1RYVmYFle9w1tLEO4PuUyx25ZwJUob9SDXBUmJgHZHLYemkh7L7bZhrK7qSREGlE12pyDU6Takso1MG2STej2l3N7J+jlMLW9z3RDTPjc5syxGLFy+VBQvs9vXLMfPNQ4e9OSITDtRxMXwJaakLW1ozh+S3uKHzKw1entdCQC1dIaGm6DGSq6VtxzHwLhma5yz0MOZSybqzYhy7bNIC/QO+XDRn+efenhYLt6u3hnm9Vjo2tMG1POj+Fz47yJNZNtsF4rqsUIILQq5o5wSY6EwnwE4kTnqa3XJA7TBdb5eQmS5BNyQxTNTfiW8z3WXrMrTtghMcOktN1f7dTcFY57ZV9URVgvVM/tqUvgLcd728KLmuzJnp4yWJPdTZBYiOHp3iG2nrNqZgXJ7IVk9K77uZimI049CxSB5q4DuzuDtpeRITlPdCAov++t1g9J5L7TK4AmPyfTsbh6hcoa8tqdwQzArvabLfYy7aM5zU9utAzdloyfVrBBg4ySMa0PM9+S7iJdS++5gOPbEGZaojeM5S2XWCguNT68O3u5bIY6fzlY7uY+R1It96bhpuWlVPbTSsEHprGM7eyLgFHpslqZVkPMidFoJoRFzDDVvviMly0eqywa777fVQObvfZ5rz8cFYOQTsQyRyAOx8AT3YQ0qXezGYpvLy3LV2t38uMbyyQ1LC6SM/a5hgOav7/Z6/Z61ze3Wre8OH+Ecgq5RI7WALvlerdViM7vkRfzX8XDSZZ8OZfMyzijGzt0CR2Nnp911ukley9V8/1pGkGWqJYye39a8Bdc1pPJuJYjREJ8h3tWYZK56wdojipWqrIkBQj35fTlwqAfevFySybpjDpIxv6LtlOyJz5o22EMNUFxAKFn0pxJ84JmIP2mSLmlfVZqss02TMlKweeZo82NfAh73MHat52yzXRo3fLC+4F8cspGJMa+B36Wl92qC/p3zXe0DbntHc8lQ6WojoV6aapwsvhbB5/JIGGgS1FULYxfLj1UBjM9nraUnJC2lc3uTEApDWpVMBrx/Pb9o2ANUiER444WI+YH15HwdxffRqQ0Nb9zSaVSBsG0tdUWilIbdZTQ2tbOkhCiP18NHnQavsg5b+GMtBB7nMdLaXhmiRHKF6/11jG07Vqo1ezdjeNsxw/A3279FD1Sbhwx+HD9fvXZn3ZRTUE+/2CDH2rXHv7UZA1z/p7KvFIVeTghCQEz0DA/awyx1udVaQ9nkEBbF8DPBr0h7VpqE2pxFsknzOcVnNL1FfL0pqKmtoRtA4BrW+t+QL5Uv7aAPNCi49K5Sbrvob22lranfev94Fyad7otmhiDeKb50m1pO5ZVxCnXr2WZ30vx8yvmsqUThCiXxEziL8lXSH1TVmna9+qyDVmTi2Mzeu5yu2TiXrYcjc0DWHt69+7hup+BqL2DvHREJoRSUl8upBlXbybq7kn6rV4bUfSAjLY13YqrrGTaZGNhIUqgNWcdeGM7wIarAWM78oU8gLB02wiR4SqdFc10CovabCzpJpLNCLRprNofeHgqi1/RAdO1zGvXwcQsiKBD+CvCoXY7d2decSov19MwOlZ4Fiapl7jZbHzPi+IcKrqJScV8xMBFKlgnpcn4hh80Llh10K7MaHs2R/M8NBzLOTvdtVsz7bXrQlHTB7PkZnl3cWhpyLosdNTQatl8BeNSauqJmBT8HC27l7q3SREodIMJkkpttyg+sxCllzHY6ciN9hfa4lvQXDpgWcWZeRVCdhktiX4hVxjVSABH4hJp5zwvUiMvaOGLekKxliiPz+ToHL8OuaLFzRY3G2yxNGZIEafTvQMp6vc2u5tbu/3rlzBu3PCxcMyVaXna7gp3mfk62LxFz6GXu80NbqUk08Br9lcn9TY9K2w0p3TdWzGYsGHJV9I+uqVpC19viNtsbCm5xkg0/jQ5TWYgY4adk3K5bnL/ZcpKtELDF3UCS00cPIgWDCUzfunKW6Y8QXcpOhvTr9l0u4SemRezXGBs6h+pyAK+pdOy9NYOuOQDl1PhnGvJXdZJgEFEDUidRxgj4QUzP5Xm9tFS7r2Dodix8PMT1wFTPkDPubVn8Sxm8YPvOgTecv095aM0T0F/Wp2U8e/7qaL9buCaNHJbRA+oL9jUkGh1LJvR18EZSxNiuT1yqg/yapZXvzxoB/fvfXLv2bqx3/GF7Zg0f++Fg3T0Kd/Be9lZG73Vjib5bH2pq+bbXyFt3H6z9XxACHC6+ko1FWm2jRLBnXi9tjl1/fL9XroxI4opFRDhB+UvuAWqlCIPpciIPOge63BNeHBFjgIUgtTAoG++/q0Z1PArycSIlnQJm8v6TmKR5qcS3+AU2Z8SXtzQDFmfJoGkutIyaJREItqs3pHz2xNl61lpHiNwOFieJmlaahck7EabF1k99dmhcEkuPCosVQoqnONb1VGN6S40sjYIYLEwT9km9D65lCII2oMTM2ACISCuSFKdeNbeB4xs2iMDxJJQ13vcqMvehtU6wgYx1kp01Cvh8+qKX7RetGDe1SSeFxCghsGVCT0l1R9mlan9gDoRH8TTW8BYqS2LvEDCO/psiUBDbebCNCF37xaOKOUSVQ4WiNRP0tmWZ77NrDDHtopGXXtbErVFrDxN59zrylOuHU5YVHxn0uEwfol06A1Q7G879F8iH2At7gi8IobSlDLWKiiMMIamLsQi4hwQ0vkL4h/akNN2h4ZJi8nB1FIiLQtdgSDOu5etFCtJVsyufOot5axQKoSEWKmBY3u1ztlYStS7NmlS2oLJyBsnFjnHAYn+JlVAhrE4S7KSbbAQ4NAHloV/20MNE6foOqSFrUoppGcZn6sXbFHQkrIVoqXUohRn00TLk53nHfq5sn5BTGV6yfIN0i+0P0qYcMOytZGUOnIn0uYiTqnXm5u5Hrqjs0FbfC5isXbdRwjy69oevNbUG9bLKPLbStRdaEBXtr8weWyjtTE/V8SoBsayGreKCktbogir4bwrFYYuvW0dYmTfTyrgXq41Zujzagat4fYrMCcUi50qNgC0lg/IaihvsTZxw//T3OAle6stBeJxzzv5gxtvsRwt/bHasiA3qeCiojUvlGF9ACAAfp7Z+j9qrtOqnFpCisFWmcYk/oVkbUnfbSsLyUh9DC0jsmUPNPHa/M6VN038QWrdlKPgyt3nXH/m5dpFO1g8TwISg/nPr54n6yevnr9MbvZe/Vl2xdQPvHJxxRThE2Fb13GF3r1iEAQbH9oGae3gSqFf4jUxB6nTHivAm2IDuPKV9xwrgNxiEA/yW66588TWc3E75rqkWuHQbLuaz0yxuYIQR8iLyAa8rCw4Gcdf0pZfZp3eK/nlJMrpaPTz3hUJRVB7JPf8mcG9gwsMItqp5lK2w0oODtT27LxWRLzlkyqcM9wBddo0gx4/vcBP9AevAR+g6u/zbN3B/ySldSUB//VC/squNMzxWBctS+wcLHsSakUJyTcE7OyKDjUEaHFAYqsR3q8LRkpvctH2eos4lIbB0xcS1BkXzaVyFqQbLW9p7UC1MzGT+IvGmJ5YQ5p/DK7jLNhckRWwqxXV9+yLehG4QlbFHgVWsJySmAfhWZ5E7JodJVxSqx3QxQctx2EV8Rh1UjQjXbp7c3nRi2QKT4XUvhx3YMJNk0meR0Za8Z2bfPokgdHmzITspyY2Whn1fpjPmM6vDeJhqL20/QZZSlxReYCZ0RLkyvW2ONIIp6N8ynJgeRps/iToBDs/sZRCq3tG80J1Pl5hTW1uLlsxNSlqCpPSjZpxYYlaTqT6BiyW3WG+oQOWG1LMZ+Oc67g8l8pvCYnEJZxWA5Ty8D779hglHU57EX4Vd+CN7hgQtW6ZL7ShI1zV9YowbxW/FGaoADlLhuXGZNIp0smodUuGcfWcDcwwYJNfE159Py69YxSFGo3hAij5g3bjNmpVt9rV8C6l4Tb8epINpUB4mBrONNX6mKF3Nd+ZVRveuMSqV/HKlXI2RDTJTXjAPCC3tTtDW9IQHSelTl0i/mfTftrskW2tKlSx8leYEtSWH7OwnBuhXZt3ryRgJDob8WF1QSZPhDi4e+OtrBm97X5vh6BSKwzlhIhwNksTlSBYoGaocEvWvCw78YyuSRTXVQA2evq1pGxgjhouzrUgNKuKodmJKIkJqwDhrEQorbQkDUWNUJh3fD4xQ+mohdQLTGwRbRiBjc/f2AjL1UZCZ/nSjtIqx5t9WR14HLPTISVKnZpjaQcHdzl0klaaqXsARUfNdv3ClyOJPeDQFSOmMwqQaMS399yWsZWylVIdGnijzDKOjIIuoUSRyO5iufR84yz8Whs1a9XqH+dIN0FlCf/ymhoClZ8d8p3F0GAlhhaHDeODAB3CI3HdJqWxx9mJPMRcqZTvvCXt2V1WytEecPUVAOavix2Mbsug2Lj1HUx8cimWScfqS9JdST5mIZzMk8UMPpRSnXCMmYQQdun8kfNUg+Rx6e0GDuFaGceubNaoeyHXUaNzJRGLTWQkUHrNw03lTXYk5l51ViHLghcGT42kaNajfmldkgBQTl9iWHFTGEsge8KH4Qq8A2OIZVTGFJGoyYnLZ6sEwO8TzhVzNNVV4UHieSDXsiYdWZ/WwNc8WBCz1Mesn95iRZbrduucTZmRAWspB98GIHc4znLYVKw08lA8Nxzk5cg1TIKuprBfzler3XKbc11X6dtSuCNxnHG5X251rsxx9Va6wSPvY4KnTsbXtN/ZdlNASrOF4N3NBlqERSfXYo5elCQB3KKfHH8slb0EsvUntYFHKRRYl6/f+6ByIpMhs4ilMBbmWreDe3eDNRbmqsCnEG2vLb0iqoRLyKMNBmOJVJPWrrdreLoI1ixGeLHZS/4GfyVA+ncLu+pd62z2UG9KzjKEz7yDItNJtfH+fEYbAExHsFkN486AdYfWrY/v3NYQgGeHf9b/VpN5b7fXI5lmb+9669bdeeiRod4exrlhjTg8Y8DTBGXC+p6Jfcu5FBFNuM68CzH9GdNVhqp/8gx8n60QJWTY0elI7V5eNaHgDBETrNVJREc+GukkfHc1wJNr+CJ81DgmxLVsUQSFATlQvqYEopQ6rMKWgniClxSN9s6at0TMzpo4VsxK2GemfDvO1TH25u8lPu9BRLFXhBZ/cLdNa2kiK+DFYOU27q5gk5AvvYy+m0OCq7Tb4RP26tT8DdCUSlRLhxn3uAGwRMmHIeF85O+O+dudzWsd2UBnXIQRDG4b74dbw2UGerB1h9UdXDmpN1bf5pIa9Dbz9zu966QS2XjZjfejOJ51vuwoR1xext1fPrbLOA+hWYdfETr8XoSFbwut9XJHL0kM/T5htf7o9aDatdsJi87ZKXc4oPttKlsCSpM4nYkJOYiKEF23IeiWYrcj8UxtzWeOv0ohfNfaXLRVzuYQnyZkDRtsJ6kGMBIgbZPDT1YQ4e9ejLd1y29exGp9rXxnd70e8NvIk11Khf0Oob7NIeuxLTKulfGcP8QT0WMVbyD1DZkUSEIR/SWJAGK1hN5UmCD9Wm9tJgFq2TEJNJXZmVIVAr13VMbNlmvcvm/BPoqzEm800jg0iUGtptIjipvD4F7ZedrqKrXxI0tJDaDhtGk2HrCaLbP5ofVr0kwJZdCJafCocTVcd524AyLoY85IQaGEeZqQAHcWS78q5LrJkLpzggQcSkRDmZnRwVYiHIi/JCQV7hwoTxyKuNXRfAC1b2wkEukIhyKOzhGt6yNeGxN6eJ+b9a7LiU1ADty3VU5ca10hb7MqaqDnVJNjmAQb0A/Wjo4fccCoefZT9f4sHdPDyjScWEquOBcc0WQI9I8/x+/IH6DlQpQQNByGhcRhWvfyMB8jpNCGL7jeWiqnuWZKHK64lOoDxBmgNcKZtmPAgZnMl6EGvwlZ2UMY17T0JKdZuRhONC6w7C5o5/PuMNx4BH2p2Gjdkh+C3vWdXTVv8H0xB93f7Gxt2iN+A/w5cWc1+A8J/PtBM7NHjNRVs9e9KE1odVGchoNUW63CHNGGOjS22S2CfBEizCQMPYwgVYtPJkM2oTVBzTOjoJRShtNCzr/+xAigU9nbT8tuJM/dM+FJG5gvDTXXuZaplJReqtOIrSwslZxJ4xnNJzNu4gkER37eOoqV3kEbGsJcIbZ2hNJHvs5g1SBzRWQGIwLFqLkMM7SGfhD58u+TW5hJZl33krAeTu0+mc5GrE3Xtgko+SSS6HBml6x2Iw3ilSgS2TnhaFJrrqTitCbeAAeGEh7KYdiFUMOQRDgYBAsmSBoPbFukrcweymvZQ7LK7yevXiN5VanbV87ownxBh1+yeXwa82maoDWbqFfv8DUNZ9hUM1OzQYp9goE2bZH2yfOb2siVLcJzDeX28UVaByUsytFDomqQBh9KANANd/rL9CcsV+UUcohnUqoerwHCdMvaklst4VG2PRI3z4qDlX1/1FDAyRcmK4SzeC/LCjRSwOqsPGvYcDmh3MxHxIRKvPhKUiRZjftbIb/gTcl8Kgh9e9mOt6rC8e7i0ltMXBegjn0IeUQXtETKz1deCyvFaD0g2/0IAVUkJQUHfnaS9i4Tu2lp2NFlaCk2FEfi1UhXOzPIvtBCHQ0sSWcHYvGR6N6D2t5N6OqymSDOuucmwJU1E/y2ocfyvDbIcxmEDo2ORWyX8Auylcj4FF3nqXIWgwyL85tdgCzFxEa2Y+s9Mg0uuAgVW5wg6mVIwBzA87l28Pjx+jdf/ysx7XtWT5by5oX2eZX3U0h/s+B0xTgSZBSBCI+cEZ7QmWj1EFyzrJSXTuYcOEwLn89cckej45lsg/keLdCtq6yrIc1s8rcD/CEqYBO37UBiZVHo+SQsJ5zHaOWHoweN/Dr71pF5K3ggb62zpJagaAM8QrARA/A6pkDWBoI5W2cpnU6EOKqgJB5dxHTVYqQG8+FpbBwkE4I552XYFFcXSZDNuWUmN5yTVxI1sZj0Nxty6h61iTY2PfgNfs5yllfJaLEB7/nCwYtO6clnDYgdeJj3WDHmscWYJ5PgszicrJtOqHrrPI0TwAAg1eysjXNZBC5iFPWg79rO+q12Ff5OQcL26yzPOsQkRvRDFDtawLGSJDYUiDwCRqbi4tecdZyJBm9mLOSmIxdExsOpaI4sLl44d3Gk28rzY+3o+Qe8MP2lWUyHrbxSSzqbokGykG/J0frgiehcNyXpGOsTFLLY0w0YzobSTIAp0srVJNvL7hFD5OVP6OOmRSEr+9iPSdNmgyG7/7VYQGzak8HgF47HRTy2uTXG2hZYDyz3JEs4Bl88gjTOL+5Ksh7SVcTQwFFgJd0hzZ64FNmaRtXNLTRd6W86ZHvw+OjTBq49SGi7KLSJgMPH4Vky5pjaI2B9wMFkektN8RAnAxgv8ltSDx5S0kWeG/vVLb5dgeSQ6IdqwmA85FbeGXsDVJ5GsP5E3Tc2i0ee0CSOUK6sd085HFhz7jQ3qkwuSPYf86GzCj4LxdZoEme11rl4hzjrxSyvGwCM0piyJKLiwS8NF9AIxIJLTLB0Ww7GRTiblD7NGeRVhWaK8pLfw5n48hwBw/Z2KNboo8bNTtIFKL90FjexL8LLwSag3WvZSbFAe84zky/Sls1wsHJpFDKlG5n2E+XrQeyLZxc1mfGEETuHMbbUOG6YCXUuKfiixjP2MfN58Y0p5LKyGZsrj+j9YZcwz9ImNaRKUm4wzAdeLkGsG3CP3innPMkixTtg4AlXsSlrw1K7tm7kKicR99x28WJCQUG22o5a+WNzL14ztlQSMWHtTCO0UMhbMgOE7gzy/NS0lqEPkrJ0F/X+wcOjo8ZNva/voEvPUrMvuaT5TJ2tGnPh2lYb97wwwQjRRtLV0GzaAKS0LRnlUtmGxx+GcxKwUZcFzXeSwdyGVdOuTCds6+ZHEwKwIPRLrbSsCNg50vt8rOaN2lAMFSUJlnRqX1mXFbtK8IvhMkbkdGxG5ykd9bWJb1rGxY2odMK80jUSvWQ0pwRikZb0AWBSlEQMV2lARNpq2RjTTjuaF0ySZBheG+OSGUxiR9HdoTbAW+LNmPvCdSzaNH8H69iYslNog1hGljmU4r5xDZQ6Uq6yLGWodMEJpCRn5y7OnMcBO2AZOUvKvOLwrVWHx2fO+qV+yjKeQ4DgygXCUAlGV07oukfxy4tX+KDu12Y5PzDKwpUTpIDQmr9sB/R2cFLwrxIRW1rh0LSANlZSe+E5KNSOUJuW28eKFtn2PbG0O9NcVQhYVT98mBsKxB8qVq8ufQLV7ntlcFxvetrYoeBEfPRSD9EOOpI4JVhgft7bfIsIs6QriDRAGzPgGdoFbmzusbAqfQc7jE4dG3fekePuog/HsofI618ovQdXx6Ld4e7SLOA09iJFSzwfreeGp80tb4HWNjA900reQ+vW8odeAOGye6pe7vINdSy/l5uqMUvdVWXqCkkcqLWexqbrH+TseSKy7XASQoGPNWPGWrEGMaxQxIaNaIDepxGpHjyIqQZiDQo593QqNfUelHGsdr1xbmq/EeIEs8lCUtLF2mhs4dIdm5gxctdmmlNRmgAHL+lbOHLp6uelJtG2FmLpctmaTmwicZ0cIWGrLtHO5ubs4i3LBtGNOMCdNvIdy0IBD61+/iIfnkokIGKB4ZaTh8pJnKYmu3aU5qHp6YkdsLsV0g++ZM1EhFOikdNQty+9gfO0tLYHuBbAxrWDtaB5aPu0S8vmb7/CKFY+y2cIq9aO30O5BVyudBhv6Co2xlvX93rb/Z1r5pMOb5kxkuvEN/3aunotaYGnLsn+MOnc0+I0rWdzo03muyRzm4aVrVv1jpu23E5bjZXg0irQP5Lem6gWLg6YdvAL2zsTKGvqQNhSCHzF3tSpk80uzVR74A63/dRe11IKAiVcIg1+krpljeQPXaWE/Bgdg/uFxi49XKsgdmbzgivxcHETTnvldE1Y3aUUBP9EeAdPqWZ9snjM3khTIkHDi2QS1h/K2E6p2pQG2EkiMWILnHFauhmyv82CR55DRyaUNBsijjUnWV2caUO2jJOQzeGj50R5gP3IR/fj4BdExiKpCGGi3iGt+rHXmirORdPC2kSChCGziBhEj+HCGQioD8ybbATUI8ENR8Pib0WXtOQCRwJHLjNJgksxgGUV29KyHaWYe7yMobLSdHL/IZNVwCRvbe928BGBEx66XkfUDC1SarLkcin5phGwBWfV0HNzWSrH9k04toxR0e5SGpun4uUydgSW5Ll+kkuMtATXnpijvBxBaUZqs/SG1GxNqMmkTkfE4acoGlVqbi6/zx5TKf6gxiOblmmtATg1Vz7OHvltpITb0kwHh488QvDmPq9vU5Rrp9vr93eIUNQ7ybq6XBx24xXtE5fEO2Vza+tXVG322826QHKDu6gLIairIcgCxhoX5OJ/co42D4TrJYRcvtCm8dCRCPNA/jDMX5wFSS/rtZAUHFMUyeS9NSpW+t3iWc3RImCm84Eyrh+wEJvZayecJaTOKtW751c+NMSvdCXrsdblOpQWhUy0ztI6vXgZSK4cRINqurN0TqOgWrT8YPNQntALpD0DjMujoY4F0MMPw4nyIbHMOfLeUad3w9gTOzgFtntb+7R+InMViEjPI5dNKzV1l7LZKyPvecUvTU5rklkPTVdNvT5HsdhkaLnN2BvY4jbxWZzCJkDEiX1/gQJEqDoSy0w4jn5f2025vlQPwTUNfteCCOgDjGTSeEUmxnIlhP+PvXfdkuM40gT/4ylySt1N4ExVMtzDwyMCEqmFKEpiD0XxEOxWd4tcKlGVAEqsC6ayimgMB3P27Nl9kp0z+2MfYf/NW+zuv32SNfs+80tEZhUKF1KaWWl6iMrISL+am9vlMzNdklx+eJOzBNTpkDYom5gqA1sOIealqaoTL9Kuqkvl/IIu1CpEwdI9PSt5WnK4UzLaPtPY7GmAXUmYeU3IvkVoHQjNvGWOS7c7QqBsRAoIeJOIX2zKjojf9dnt4ohMBlKhVdgvyTwQD5XTuWTa0SRZX+ZNrHMW359KOrgDM5rumRpb+FCo4qKkyZolycu5Es0B8liVltUlTVVrgEXVjpuPHiH+8qv7JC1FQuwvPvnl/iK5HRgKAMdDuqPRwQuQ5+P18+2IebCKJMCoOoX5ygwSPihnMysI8xxJZitWZ0cHU9z78I4utjAuVmRfmTMcK8NFodsFp8Kwb7oc9xd/+B4ZPvc4x/3F3vHR3j7+/ub4SD7KVOW7POEX39hXMu89mfRGSwGjoKe2AOTBHqAH8vEfvvhUX7o6Oj7Pn5T/2KeXL78m10IfckeuTzTbi1xbtpnHdVCnBfToajH9SB03ohk05JwR3putQimdLX6kcg3MniqeI1IDa/Bksfez9MsPD2xuexPgzroKCQGUAfMj7o4SESaV7cR5qWy0CPQjnJHNc9b48rf/8PBLREiAVSlWP6XzLaiRUp72+8WDzMRwTlDJ9eXLRNTgknLNQQmHx0h/+PT4WbbYWgyaEKN64HWpLcL0XAVeYSSPyzEixQgZvXeJy0NpSShCAbIKgqMf+5nq6EKBLxZ///B3n2k41wxiqVI3BdcXetxywCam88sMwQdztZmo3eKyjmu5WCtjJiRUfqVsf/Eb+1p/8ysumrrbql9yqAjJPDb1CTU7z8scD04JfVgfZfKpxnpZs6JlKk9Q8yt/j5Ko7V8dhEiOlS3h63JFbSjlJ9VrfTJx+RjzQuR4lQc/cbEDQyHgJbgttRuomHC9Jt6lOIHNZRbxmGP66bnqjEpiy8Uvr9aJvOcxPSmYJzM9u9oeH5+kO0ZtEQBCviaX+vXxd6aI1Jw6q7eQXBWnIA9o/5iwNAViV3y+XPFV2j/e2eam2l6DFPA3HwIJb9KbaAHq4U3BrEUgKHwJzkegOOR2UxebBTVqWxZ2fyoXsx4fuh2Bv8FRscRm98Fw7xvb3SM4VD+DAimGG2Q0a38kgT3Y74AQ3ZqokfBs03F2kqfCVCicn8/JDmwx1eterSIpRFZo1wFo7cLO4k5F/x/XJG5v5FjfSawcxSphXDNh6bZU9fsU3EqWlajp+CwFh1uzO0gqZ8WeJvU0KiGGs3LK54uIEkyuWGHAxs3iQM2/F4tPdCBgceWjLPU+VyvlIsULX2IB9DuykoeJleBbPnuAMBZYQnIjH6clx3ufM0w2s9F/lt0H6dFltTrbPDc4olL9e5vCZ4wuV2onkHkwnxdkaEu3M1kZ8sRqedR6Qna5Ev3txeY4JXvHSZnvQGI5dsEYUFBHqDoIoike7/hVsZk9VtOpsvF9Tu9ybegMcoRsMb1cl1d3Um64t/giSe4pOG6LfVvqi81ukT4VMGHSs6wVHNWT1WFt6rwXSgiVaA4RVWMtDeFwtaFskUFbuXBQvnRhkrqPjLIfm6/l8MU0fUDizkqRyLiHS6IsKxN4ELvLCPGSwSPjRfXUbtSzSwd8ORY/RTLaTy6LTJWi1GdgT1g7T0+vzpCtnrG3W9nrrbTPT5Fs9uFl0nHr+Vi5mcSJCXxOaEe7fy++U1Tbljoq6u/BL0Rnec2kxc3gQ9B0CdeootlnxGTtTGWdHICTXO1Uww+KVq9KPhyeOQ1Z1xo2D1GEZsQxH8Cq0PN2O1CIHssWUQfxMVQpiI5EwD1/crXOcfcAaS+6OGQj0Sal+a6MBrAXZNiRHBuh33UNLzY0A406MsKJmXcltHq0Yvos1vw51Rx3T89Pc+0leabwnKuc9f0U2KyncgY0m6F6fuvnqpRfadqJK3WeK2icHnqbeakssfjFVgKXBOUoOB+dnVXeAddBlsNcxULXZTI9fZiFRxpjuTfJxmYu/aukf07zJB2dH0IpzCn0TzXbBQzWJ1sBmM+ONWr224OUtH6HUSDe2ibg5VLfrK+Ozlm+w0wCOu9TK3ZTLIXH+Bun5A1sBOms7Eg18moLwSfkK6n7ip5hCkscLy0bWaICRCbZievM+Rq9o5dyyi6PeRMre2mqYfqxUPlSi1hYSxbFdH8a8/X7ZGWtF6wSfnMgBVLyPX6xm1LuL44fw3lHkx8iyWdzrEGF5oy1pTEQaXbBHB7X5/Db9QvmJlJGZDAVmkiTY6WUVdplqNIO7L66P8tkY6IjLijURYJfF4T/BKiPx+UmvIA2udAQw41o8iVUAwuptiCENiWumbZnV9GrbYunlUdgXL1W6zmZh1B8qg8P3LzdElcHpFFCcsqcDXdCfYSbmwdQGfzq9AeVqGiejWyDL76oJ2hQWts3WrlMybPVpWLypPIH+ATXF8B92yYoJrzGCnNSHuajDCabzSlHOk7n9eX2qI1elEwShIXMHodCc5fS15WEqbwcFnmNmzjHtM+8QKdM5bbaZntb82lV+mZA5475ILO8LofhCvL8Eu1NNu5KzqyMZmb240HJt8wTEXeeiTa31gtauD8Qco/hF3v/6bkIkO8rsGklHOIsAemlz2f36r3X5WEwHhy4Rzl3xTOuIq/T4jA8vpxFlBiUpC5ROi1E+gaIkUljNUokJam/vg7pTfVF3yB1/Q0dzSr65ASQ69OPLs6fv65Y1rWa8fEXF6vrfATzygA5J2nKWmzmkpmXxbVmkTmQw4+MAebXRLgxZdbN06SsIv3TQkamIIrF5sUZktwIaR1dXD1Z5CXgeVeMPtIQLdg0D2e56Y6r2n67cEsVtu/pc1EHNmvXv68AN5Q00lD7syfIp8l0bZYHcMMKT+rMTjqrsJqkyh1tOfZ+Yin2LaH2PCvbTwjZUFhD8ZUxCd2axW5KauXstkJVD+HIZxn+TpvzlHV/aZ7hUvtty4SFG0GhI7rEtTeGZpjjC2KWLm3Fk/OyxN8zqRSmLVfp+1Qk6tv70sJ6zmbVk0xvXtFaSOZuee0N7pI94GXw2kzOSmNg/mLHEEXxyRPwqUkiNEPRXub0+bQPLQ6mucn3F8xsn/6laWF/UeW4t8zlUwb07MPfnVkZkzVLgEySA9stUIoCaKE0yglJuUHVKcpIBpbQQqQBK56Oc1J9EMWklmG5Ob5TnQC3H8Fnpb1NneRGz9MxT0GNGC+ZS0ly0hGs23apnlnyLqZDObliszWiIw9NN52j29jIkd/JUBjy3+MzKyAjAj8UVNYfNXx4LteCMXPzzYuTZc2UUXZWrMsqiEzymGyIpeHcjw2YIoNRMNnj8hgXT4UgURkrYTK0t8cnq+ebArE+hPqH6quLP10prikrJdVa0R0yNbTdkvu2Xrjv+fG3Odv/XeW/98gSNPmMgppTdi6lofVpLrf3JENYyn1RM0uEAp1pvEIFqSLP3M9m+P0t2GdVSLRqtwL4pLJAOUQ0Q+yQQ05ow5Asn+jpOFtf7kOSmYox+9mAqYfLhDurH7OpeuNBgVxFWQmlJRPQD7p/WvJfob4jrqd9Mg2TYMh66tJP5qZPJZ0WCPHW2V/gypmVmKql+FONeSjZ/4pXaZYKf6b2EDimuwYemj1pFyhuBr/rZARlH6vw4uzUWplyWH1XprrSyKXHMrAje8vY6oaHH6aq6oe/Y5a/8iXuOGZEV8Wjnr6GtgqrVnpUnFe6p7d1Ey2DqNSrs7jaAKgHNQ7OsrV5C4Wf0Zd3wpB5nTd3+dGx0PjqWUop9yLDKo4S9kxRPGbvYWxNutr0MJ8VtsZm0lmBcrv51oZDAlYR0yZCAMLpchGQhUJac66Sgtv4t/cWz2ELOdTAf8tA/MgsqXk5MuMsBRrQU1k9S9kmDGPbpJGORbYPHqF8XF8NCWO4WP/JiEEndXqeN7kvX8FXuL/oLPpOX0Yyk5XWLEkKDO8oP2s167R2O6sxbVqy6UkuWU/RdHOwuW1B+9eXiG/ubLdMvDWE1xWO2xA8cG7f7u+UjpEsWwE8NbKSnkffLb47vkBIWQaNpySHuWa6ZUSc1FB9QiPdhfqIvksQhmxUJkZJaE2ePjr/1zrf1f4kWFAvP1lwOT/VKtgpsOg15kVhhWms5eHFqoa0W/48vV9y/9rIM5qbkfCxzrbMm0VbeLLdZZJsc/HAnLgn5dK39B7JcmqQ6s3ppio7UkpvYXjr7QRvm8sqhQfSKeDuXm22KzwZVJwQ492lvuf5WOTf9er0fsIFzDIrEOir+QjNlJ4i8+8lSeUQhiWaoC/WT600T2JdHIqZCapp7CwPVaVWQYrZk+ypsEy457UAy+jjM+ZSEa5M+8kEv5b51PLOAW/ug1yvxTwOCfso2rxI3BdAicwHRtTu6frslQW7v0ipAcr64pa5L+cKpQGTwEoXCPYPsvCOsu5GrPtTyJlpS4dIaXUIrw5O06lmR9Dn1Sp+wRfu881LyzpDG4XCfrXEpwZ+bya5Xqyd+3WgyEJW60jDtOHtRbB4SlOjafy/XQDGwB2YWBNtsPcL71WbUApUZloQ0/uS/LA5vjRV4n2GQr9yzR/PcRXlpN2vLsJNSa3DmHIuAWyFxfG1oQsKxW1RJPVqWmk8b5DVIEn7ZLd6Cppn4wds3Nx+RLbxQH9H5q3BjHf/7uTypwcJaLOy1HF0IakIcfwYQ7vk4hd1e6sY4OwBBe5HMp17hSYMIJtYlmsaAhSMRKoTZipDVeOt5aub1QlKhugUbYIJabIx22ZOClC39351jOg1XpFyig7NDEi5tVfsfC7XydJYX6x5nVT+2VyX0mAzVU0YE2PqVNfbWUn4crV6uUrKZpJSSguVpGiAnCskXUa0XeaKDOjqO8KmWe8gzevzaTG8+ybef/+J3q3MLWZi1z+9NBSVjOOf3tuw1ubl+dEKQxF1ZaXJrS5EzdrcX7h7uWJddTAz7quE6lYS5YQOdB/PksSHiHm7Z1RsVHP56tu1rVhKalSyd80uQ25RNemPr9uADFeieDCrPfzqGvFb4tVbQmhbSxE+EwQmwT5v5huDTLblG/scPpBX42cVBHZ1tiiyY3a4aHJNZi6+TNkHyq2S8s7Va66s5moDTXaCDMxJxdRmronRsgikxW+uclBrlUFSQ/2PD++ZDRD3V0Ye21jsOmKrT4GSQoz2i5QwTJ3LpchqxpGbrC4X/fljzRdpOcsOEoJ2Tw8Sv/qIX+Wiim8gpd/QzSsK0VdG2YclXvHg1xcrrWG6ef/B1eX5wa8//3LvQ/0LYHhh2OptPrpYPT+zvB167HP2pZwYv5QFtxILzJ0iavx2VVcwehThMnPiykouQGC/AM5Ae6U3P/fKIB8DWmw2ChJ4kpF5WyJSLn68zxK5atOQF08AAVIKgHFsspJIrqxIW+vw0BJF2GrgBoRlwaycBoDOAnpigJcFQn6q9tQnVq1LOJU1tT+p4Pj998vl8uXLVLxRuVjBsr6ifqhCpvQH33+/Oj5Qa7NCrb7/HpbfLHk++EQBNbUV+uXL5Z1/JlgvuZKBTFqdPNeMhY90UzD5OldNrgq3XiOSA4NMqDSN5pDbCD4xIKtUjldI5sZKU6eqa8+uLmTvUrFFprJ+cpySEJxplNGT1UmB3ODevXPn17978OnD+3fuuOXW9FAkwb18ecdf852X74RbahXVwH86/nPnIyJ5Nbz9vjb9n0IjAoj6pgkwpeUPQZmVFgKk2o7nOd0cEvkcn1ohbg2zUxE3ycTTewVoDSHLpQ7/k8eAQIIEzjTmfWFItYlDREsCybWNoOYFMiLTxsLY+Fqg22dlWlx3IN2UR8B43fNjeV8RquhD/aUKOlnqan12Pt/gOyj8phkf6PFPwXSGfd1AyaKb5uj8SnVJNfFp3VxkqPlJG35qr8Ivgge6E/+wQS36kjMXWSpSo7Tx6zjVSkwntgpQOS2O5tmUZwpX1g3lz7CbFq5PgMF9joAZAfCnmgCebOw5Dhv+sgcqBNN683dPLn/KwcoO/YKm19+vH4lesLZ3aY/95jkfbjd+dXEyb1ofpXb3+TiJmfNX1Sn2jezPN7rP31yef6Ponm/Oz3J/eXyybQ9Rn1PZFewx1gwS4XxDfWFrdHkzqj7xbDY+tcFvrZCSO8MrlL3Mf0LD1vxH9jQPW+jqt8Yo5wM3Bnrd0L9dv5g3ro9mo7BG5m+mx3kcQosITsiDSN0oYX9jpoNqDHeiYnGAc5uP+wiP33DYdzT5/ImKuF+s5WJF4mF7VSstrL+5yI+32y7ffXM7smOTijmdv0wNWnvJIxuWi99fHF+uE9uyt5/rM5LmrsOVn1aN49mcwtb/ukUseJb7H7Xc7+qo7lv9Hm/a7x1kTVC77dFsRjDmHv0YU9JYOKOiqn8joDeel8/5f36lt0viA3iEVjfbzZb9fjUhqPrxQMHTolh+JJJIWjY++kaFk+0O8tN63FcnJ3j9Gw00OHtSdRHUsnq5+CSV6Kr6MaTtNf2Yt1pFh3l3OMrnj7+pX5kfiNcbZZeOxJfqwpgeCH3ylstgg3p8fnh17WTw5TcrdY9VA4tLw9uvF5+/ENHtDKRgPzcXyDfP8M2b01mfrd/rBVTNdM/aw28QeLbd9O1uBjcg6fvR4svn63W+zHAw9cF2s7c4bsJCfnku4g3Ep0T559+c8cGEv3vhDohb+Cjhme8+fHp1qdjye/fLpfhNgjvv4sbqsZyPyJ7mMd35IgVyQW5JPt2E8oUQipObi54V+fEJElIg2EvOvKYiXnxZG8wzLBlSnYII2mW3SL6QB8XBrRznSdGJKZ8z/lRvaKUdQ7OL4Px55cz+OIMjMPqPqISn3OBa4IP+M+MWjLsoRQbXFHST3Ftl86vzf5w/th/mPDo63Y9SUaaU2PJEtDk5eseHx6mnR8dPDlJWnFKwSH+HZD1YFTPZZvfGFKpb6SgFVsrBaBTV6vApFuhjwNGShMtS9IfnGyoDj9aGKkccQMo2JSz0+NQiDgwvD7BWSs631sHMEj7K4qvSZynpgL9P6Ez5WRWlpXpXwU49Wp+cP7+T4bS/YiDXne/vLOR/pGSCdRKT4Tfl29nBsrdJ8dNXs5e+fn/6cPYLtcnVLx+YbvVImKKsytFXZwf04DD9spp1XmzwMPuHchOzpo0aNqd1+4cV2UyIxl6btbF5tl59u2PyKX7mBfNMv0ixMzzU+vOX+2V9jTJ2L+9cBt9SlGZDUhaz1VL97WLeoh7SdRkZRscx3nl552OewUlqgJR/ASG0arywS+RPGvJ0cr462tzJdlzRTj98hcnpwdnl+dnvNsffrjTlRM6vsfehsqSUHwMWJ/jXaNG1HL9MWgWP6mrx/On5CfL2mpibTTXJ1A+skIEpqY5uefZgOa07tkSwFYoOivMiZdc092HKmpwTn9FRqjlTE/CBBUgm0etai0Gx8cUrsdoKRf1Nif9gHb2p9RJhlIg8QlvJU7gxdIVlANEg448K+EzuSeYjTOanesZcg8rQhN6fXzDbtII6zThVz0WYQDZULW80TP1BaKtiLhfnU0mC9rGKstO5vEwKk72ovA7aP+BNkwK1OB+aXAw1TQDoPldYIXiiGqnqtQfo5Kuzh4axhZfkRWqbcTXmFdvUsamEH9TcCO4HiFrkRoiFmOyKdANvUm5eEy3CY2GD0bst0QKxYc9XZmtCHWq4nnIcq66/NJmOLljKDSubGdDN6/r7te33MQy133+/WjzEXH8rQzwXqeIUtk+Kh6Kf/+NHNdEjO7Z+bxmG12bDWvw7q3qR7LnLly9vP/Qc4XqL8T80zvuqzbj/1ZnIJGnbM+5ya660+tN7mPB7NapEX3qm9s2ch+7eV2deNbc5bne2VGyYOO7q8QqFZQhW0bWT1trt5StAa6ufVDX27fpFitbcT5ENhkXEaZUWvzr7aJviZEU+Wp2ZURFm0mn6pDKT+SLtV8WBrlsnuKi31urn75h6v/++ZERxjYXXQGw6v1xZLDvdCmlo9F8/O6EwdYYkBZiZ2uLPmUpsdfItxv+nq9NnqXzIamHViRRNm5LugGL+pAZz1IGp1mln10wJjQN9sn5MU+0xcNGXFy9M0NVM0ibvHgHsbAjOnGShru9+/kiOyWHKsbe6lA/fWgeidp1aSecq+hXH8KszADxf0G4sC7ZOsSg/h+FZYWzgncaBUqizzFho5ntN20kkYIpgwcF7uShfFEe5vP+ZIkrSE+leulAnjHUPaFeSgzWPtbY47f8rbLUpaqTRwtCX/Hb5Q/CWL3bP9P7CXzPXneepVtJ4pp4aVn7GIZB5xBgqYp5qlvruT85vNTAR6ouiOEsu7aTsGDrhtE4T+Gj9GOn61Ywsk3/5Mo/qztdbUiChFKmi22Y9Zcj7FVrzFGad7ESEFJdupFN8YExFgZxM/WrLOw8nn29It5DlCD1oEzGC3oYjEBfMNsvyMj6jGMyFlfoibcqFqKtoQvPqkpSdUl/YHTPJunmMckcG8TiaRtCsNhjA8s4P0iid8iLLItT00Qv+W6q6gRZUCUr8h5GgRQdOwawY2PM1V/CSr1VrZXnGVywvR6fs6TrfuABpYVeUz6SMbMjuLCLGxNHzqCqQPMEXrtQnfPgtlGzLsMlQGkstWmMlK/nLsppkpBuj8/PVW8WJP/j0U1u1j/O3cIwyCYqchJw4XkNCkWQAtPPoRHPr8sDXmXEKdv3y/Nt1crOi4IPcJoda8y0lBb/zq08+/fizB7/9OPmQkZtf4cUcxxlFslwx66k9R7ZhgCTufPrgs1+nX+v4rp7Vo8u+8ZyTRe2QCT6WvuUV/tHvfpnHoa/ltGdpkDcJ/+nwpSYPdFx7gGoe6LMP9vDgQ+1ki3tkegKzKVEAKdWsyEUvoNXkkhbHGouAOKgn5zlB+qSMGz2vCYO5urTfgN+da3qtO59PkkulXFw6l1IRXE20LzLlqpjx2fkCuyga6VGdMuNXiUjykqP+WE4FWGffgXUr16xKO33MxBTfEWexxRlwNZQMIycnNkV1+KJA4PrycItHJTxDBeBDM0iDqgmaL49zgmYcDujgy2wcOC/8ZcGcRxpUcjx3We9nrilrc8WY3akYu7zziVXfNDhvlX5MEVoizayepEwLF/W3yOt4TI1Yxr688wteTDoC/WbzdD/5ng+RhJ0kAKf4xeXmGiZaA7vSsSqb+Q+btey8Tl/jHu6D4a1OmEWJcAllLmVRjcftWOnlHQ2foRmFib6sgWTbOJtQRhXDvFle/uulTVnb+EyW/u8f3qINW8vlnzZ5yf65/GZ1dESkNPb00cXx+nEJuMyZQSxts61dzqVZ9oJtXtIOpm1ai4gxOjF5KVlHEfT06JibgbxvkyFVIYWTk1HyCJconHS6KO2uNUgOeRYmw89CxSUAnipNMDnoHVub983IlDfc7FwabfVofaJDSPnf5mGgoh3LSAp2UDmcbf8UD5gy+XyUbTpnZuZ5Bb7nnZtRbiH+fHX2Z5J/vjr7YVpVe8wPJgBVq/WXIAFxtm8p/Xx19uOLP1+dvbX889XZmwhAP2nHV4s/uqxpfF+d/fGPf9SeRPGT9/BRv79OcqGmWgQXfn4ncstXZ+9GcMH03rXQsnWcf0ypRUj4nYstX529K7nlq7MfUHDRzZwJLSTON5RalDTeWmxhI28ht6QpvFPBhY2+ueQyGdSPJ7p8dTaXXXTPhRncILmou5Tyiv5VSSpT+/xPFov/93/6LywzOvFAab2S1cXJsVbBWJ/lhBf47TswKdGa9+5seA/KIOgC+C3j3kqSIbDqujzhE3pM9TbQ5Zlbuyt7XmXy5uzM8K3G1xcLOCbNMuiXi388Xj9nv4BCEHJLO/2s1++ON1erk0ldbI1dB7ojv5sqG+0vHgkNPGFaRHZ/9eyoJPQ7Ot6oDX4Jv8JHGV2fyqumzxwPWVblDSyT/3bmkqj7Wtdx6ykq8OQFqDHlN92sJwQhay33xNG+3a5q1T57UTKrrvSvy3Rkv32FOwQyDm452OFPawPxuzac5ov2ecZJE+mPTAQ/uJD5qx9ItnzwV9nyvwXZ8t2JeX8WKfUvRbb88jar9q4E0B9UxLveAZPStuUkvHtaasb+fpOUbVVD07J+D+DjeXLOI8Ni0sKyUUF5Y1mtROJk+fHjkyNLP3TAsMacXmd/8YkRI7xfVdZMq/6OUBxGAs0MMHUqil+pULeeJYSvYm+tyBS4TZU4XhM2HmpMGUv+WRJuRLlYXRJk5ocDeCIC0CyxnoJS9kvGTeugTqC4WaciSTmPQxUs9pQZFHAg7Fgeb6pE93WKgEfSKEJGU9m+KpcD7sJZ7HUp3wQvMVCOpypMaWLV53YWzkS6TOW56a0+Z4CRzHu6uMyVrLH2J8TC5dq1LIK+KlkQV8zLmVyjJXGtpbG6gIbCgnbPzjXVLi+dXJidEwZgNZUTREVT+awqzmqDI1yCEs2Ol41y0xR+OTO1nKcpejAHBQNnJRezemgpyVVUlCOuEzIMZPYiV34wfOc6QVJV4j3PAlzOWsMav/Qm53zZCuJlyiwlqCcauwS1BEgDHeKGKZce43ZjTq+znCZufXFxrggMkSKsO4UbyFpfnD/SBliDkeA21l8E8qGiiktN+ccZaFs3LeQXVTCmUPH14ZfV0n1kCRXo+zWiL+m4t9pg3GBuKYeFs+JUnU+7RiaZ2GrwZ6YMONes0b8RivlOtRdqYpPxT0qKMZM0vfsrFM1dbdipJjaDkEY2AFmby84g9UORKHCJYOOfHj9CoW9RxU6Qfz/DjwnjkdPJrF5Z8jmreck9wptVZWQqulOdWrolsIbKXnk/IQKA65jq8tRzmmzlNLuncVa5JOyvN7kiciPTC+KjYxpijWtDUkJMIL79/VpTo32KqmzLxd2/vzpDXPm9XM2+TtrzoIQRP7AcLnhHQ7ZOzIn56bkGbt+22ls8kP9iHd9PyzMb4O8ubrTN/w+quR6erL/XTrRNJhaSS/lSNNy16BIfUHW4eR5J9dBk4UIb6Uf16uR3/iRKhBL8BykubXuO+d0XClwpg9AB5u/kVhXmkb+Tpc9fXV2cLKqfvclyUjZ5uVsuKSYJTdyZ/n4DoqsbmpLdH9zXi9+vcyrvV9dbdEvnxqbNlf2QmpRHDUBvS9BF2JTaLzZVKjq9SJCPMTMu1iFYGoUC0/zZ+upCS0GzhCP9TH/wXy/+eXV+22G2WhayiY3Lw/xSU1DIKC3N5ub+4pcnx48Yi/O5ZX58eH7yXU5w+inGOStIORnn6uKfjr9TmVOEceSSkI/3S9eWOjG7yv7Qfi0kenX7Kfhl46Omw52v9G/kdG2YgvxERKPNfJScwK/W6yM1e9yxn984Zutra8zhNccchDpC3+cxy3H+t5/fX3zMLJEQanetK0f8O82+Iic2yw2yMan+xW0W3jrfmkT3WrTjXbNs2ujHPAnka72/ePjibH3x5Pg/TLMrAlWYU6HdRNeffPTpF+DaZWTx60VVJ335A9RlT3N4kF9fPDxcffbZ/Vxb5HLxj5RHHzLeXa95hkPWg//7K7mn/cBS7mUC/dfbY9YaXXUFzc1TEaXeD/HxYxfG9cEqHPYH4eioP1gNTXPw+DCsYvDrVTvIir99G+RuNrzh68XDp8dnZ5Zl6FNNf/Z0ebvKiK6NsSKBx1qlW4vxqPV9lqeD5Hv0QnXvw1qcmmkWtyFi63mLiEc5iSJsH5+9Dh274F2XJ/HJ2UFSSr5YQz87pKvn01TxGfN4cPLkHJWHNXP45fEJk8m8gpJd8/ViWqr7NWp8pwLeWlSbKEW58ek4UqDrTRW6zexg6fx2Xi77Rfgt6lMqBgfN+3hzeLGGO8ZO9S34fB4+dspXO+XkSv1s9e3q7NYsxznhvyOS79pS/H796Mkz4TlMoXBxQHO+yERJ2D4guCBvGrMkPjaef4vx5z4xflePX+7aaTHl16jCnK7bB5/+9v7i5urO1RhL33JJTossv0Z15tR3LvJ8f+ueUfTxl7A8fSk6nxzP7xipqHk1voTuc5szaj1unVEXVJgSvUWlims4+nP7XmVClCx+/vTFwfHGmPYBY1cPNucHj1eby70Pf/8UqVISi2aY+kbUIPn25xjkw/WzhWvBmH01lE5v7te5uK0kUrovrGTLfTmIv5gUQ9JlOngwKXd0u8sZHWyvWVQevT67/VBzKWEbaqm2dT+LcA8+sbprOBy5jvAZMwX/ShNZMs9xVSj4ltxZ+96ehVyEddWC1yh2kKU75jG/nw6MTgP87GDGzzgnpBTe0B17W7q1PrdHL/fkJOv3a2QLTwW+U7Ky6m6s0nWreQqkO6n5or7hV6oDN07G2NdkMnJT/v25KPcPr1SErLPlvkaWXZvWVs7e+4w4t+SzD+tEtb8BC/5Fyil5yzlod1tz8HKbWv6r5eItkpO97i8mvNjLPTaNgnyjmNXbv5t7vyO6tQEB9a/H5+dqPE9hCqJIH/DR3odwQ/7s6mTy5eXqyca+ki816eStytvrz94/O3n2/t6H8l8ORo1Ab9ROxnODoqXJ6YO3bJ22g70P8e9btiVihdAz7XvSZP3xLVvOlgBpNv89bdMMbGerEoWyEmJYfYf9+9mqxKasv9u7TceVmcU1B747WB19d8Cor4OTk9P3E8lsnq2y/QQmqL0P/+v/IcPR5/bKo4vq3Q8fHAHfAbPvA4siO6eBtfxKJzcZ95kWzn7NcTcy9O6AC5bPBlfx2rEv/uv/ecPYLTnpx6Wt2ZB/9r4suZ67Oh4IOtfBo6tLOazpPP1sNc91qeZhmee5KmsaLXgOW9PFOtmjTlaP9AU0hsR2n19n3YMT/bkieC72ctz9dOnsazCRY/jQ30dyk/d/rlrNB9L83/rGOpC/Shf6gSZEVQSvLk4+QJN/267+1j+W/9u1J/IYuyL/zs128ggNPRV1Ukn9A2EYf+sPp2dcHtjLh/Whko/5MGQupTv1HeBTahT/YM8t3R4wML84VzPqoll0zuv/31v86+nJfbhEcCo01eu6agZNaYKqyRP939EHe78NYVyGEPebwzYsO9/tN4vol10X9v0gV1H6wH9Omv12iMth9Ifyl74fFgd4z15YHEzfP7DXpfkDvi/tp3f4y/Ix93FQOrFfLfRVP6Z3FrOf5F7+5VQOeLscfb8fvPwyhEPXdsuxHaVfVX99HPYPVNGJoS0P7A/0t/RuWMgfcRnafnEgGnPX7h+My67xhy4sQxOlgWYpavTCx+XYy5ei9YYwLFr52HY6+mXrwuGBE9Fw2O+WA1apl/ba/XE5NOPiIPhl6Py+czKO4dB1y9ZH7cSNsW41Nn7Ryqsy8dDIrKTNsPTyw0H6l2ZatUsN+/Kwi9KoLkLcd70Mw6H7MPT7Bxy0vKyTDmjXj93iQNdJNt4+H2oPfex1f/p2KT9sZfhNSJ/wX1kgTqdZRlEwZPhhDAu3HGXtnfTeDYcHUR52UReyidKLk8kN0e8fYB7yufPLtpVh9f3SBxlmXPoh7MuKDoNbyBKM8jKmnj+1vSgKujm+W3banzStGzwsvUiu0u7Y7bNXmbSXQUvrzbJtZPe4MzqY2A+yBPLR2ToLnWFJhZAxwoW0HuTbyE66UTbR7fc6ah2kTncZB1lH6aKXIcoI9YOcnhj4SZZw2XdOV1B+rN0Kmeg7ttBu2Q6H+s247+VnPirFRC8kIivvh0UcZLrdfifv6cLIeLwsvPTQ97IWXb900lPrlp1+HN1ysA+HB0LhPXZOdmRoHKevPffSfqc9N3172HLlvXCSbtE7ofiwjxVZ6IGQRcSHf0HC5Mw43hcmlC7m1Y/D8U+Oz75dHx2fXcfynz9/vkzvFFPgA7qTfn56fHb8gbo63i1fx6166+vEMtvc/n3Ynt56pH+9PN728hjkDA6dXB7CFPtBm/NyDnvXnxz03bKREciz9Mie/Mup75tlp3eM/sDp4W5H7T/KaW9lkMrBnF48jRxY5SHSZTu4/EDmpxcD5ifnPLZBT+kwyjmP8tH1ygN9jJiesNtu4HC8MJtD4WJydvVUCwPNg1tMh+nT2KLoyBFjW/ZyZwmHGpQ1yckfhQUuQy8L4/QC6w6FH7rA7/puIbxErwdeZGEhl5zw/vTxUP6Ri1bGL88bYcBeWJowYPskLK1pexmA0+dx4JCwdHKH9bINekHobikPl2HHHmuh16TwUb1a+jF/lLVqGt1fmXPshoV8DVaGx4ugN0Fnn050ftLUoczbRR2f3bzKGkXPzh+tTeXYsv2y6ctG1uNAm9YbQ+YxKoFK42No0+t/flYpXxwdX17HKPktWeTVo9Pjy5+/E3Z4a1b4V3b0luyoxXS8iCSxhXQqdDlGGZmc0Ojk3AZlHwv+Y58OVQjwDmKIHJA2un0RALsekxuEmFXojHrMVIjUkQvvagZwmk55gUgBvb7utB3hSQciHykvlD5HPQuDiE/enYjENajgJlJiJ4Kh/EZET2E4LQS0GLwuugipwg3lG/x9KMcpNCqoyMO+Id/x45g/4l+nE8Wb7cJesG/kQE7e9JirTMbmGrt+X9iaHlw5753rlHN0MnRlxK7pIAtHEefkFHsP8cypVAj9QD41QX4p4p9wAGVYKk4qg9mH+CRtLgdZVpH+otMfeVm8oCLhyQFEKr8/KuOXDQgqpOvPvEh1B0OQhqMK6SosQ/kYRAzTVW1lBsI/VQWBdAeJrRtGVVFECnXYM9mM9PmQBNCBNzoOFJSQP5IEGrBM0SXUca2CnVMpTxUi6UquktENyuqiTDso31Y1R1ZZ2L4OGH/LKLteL4rYqnC56GX4UR6rON9Kw1FusDZ9PFRpNCrJ8bkQjbD8oRvL5/Sm7G2AiqUyapCZSacD9CwVYVW4DmN7CI0mQAnrddy96lVeNyXkj7hbnJwSp0J4rzrEIIJ9e6gU7XEFCe+WDZW9d7ggB10oXNXBPoKAgojgevHqr3QIMvGO7ymR6IuyTS0uMvwDksGnXo6AV2UR6st4qI9Vc5MFHBf4kr9oF3hB9u1QtQfpRf+R61p0LiEpvYvkxpaBRiEMfjqUSWn/cmPJVupRl2FHvAN6kJe80w6VDZQO7UOXO9TxYlyy8fKyW3CMHPkBvqbyNcpKKklKT4OO7VDPYCuKaGOnzuG4tmCT9ln+jeNg51UEmgVeGHg8XVhU78nHQzQ4lOOvb4t4ZJ/sJdBu24fFgTXGTvLR50fd9igUNBRecM0oFmzXPmEMceQYopw0vDumT3zHhtDaENhlixHYS1HJDL3FtD4mKrW+fOSLf34pQfGfWgL9OjkhfV+UqQv7Z/ns6bOfX/1VL5kKAq6JYNoUqUc5cK47EUYnHZ6oaamXYz/Iv3JLHvSjcBWTvrtWZXm7x6NyBdws+3phRDncctJxjePTSRv1QuIve2WW8sMGZpxejpReU0Jqyp2Vy+Dj4UFUmwG4mROxeowqBndxzB/tTpcmZS5jr+NTPt+iFxty9STNTSbp1Bj0o4k+f/Yjo1UjNqtnz647Mqtnx8v0Do/N+uzo1iZn+eNA/v9fj9WfWb7uRHgSUneivfaNcHQRfYcAVZTWyF4lZrltO/mpKMtQn/tx4IMoMtQoV+U44rzpQXf7g8iUTWcfg1wv+q8cXb1pXQuDndwkA7RKGZCIHgtPe7WI1dH5E9V+g4xeTp6I1ycjtfwDEXpG30GNHZzKkvLDTtSCboQkI6r20EFWpVwjem+jKvShDnDQAWIgKjnrCF3LzwGShP7RHjY0UQSRDNQ6DLly/0AZgCx7p2qyo/1ggMyFlRAhSzT5fpBhy8+VMFTw7lXe0+bwu1HXvlfBbKE2iwEXM0zNJwe0uEKWHuUT71OZnIjwJyIvqsTeBRUMTzTtegCfExEJZvDR0Ube64UrPHF0EDqd8FF87oUCdGpqtRbSacGSnUj4UeUp2MUHZYELJ1TdwD7LB4fCM/uxVdFJRJhehz6qZtO18m6jpnqRmoWTC80JpTmVUOQf4d5qtB5pP/b6qRtVJpU5YvdlUTAAYcYYgU5UjU0qZfAPexD+5XRwMi1dbhX7VRQT4Vvn42WnqNwEVYrUEK6iaiuivCpqKjX3eJvKjrylgqyoAI6/dXoRyG9k32h8l+2RFZfWMQyndwW8Cbqo8q+Tq0U1kuj1VSHPff3BoEqSl+Mv0o7qLCp+qXXc+clAHYhIu1aHhoxS7jPX4+7zLdwTLWQmIdiee9bqJFRzwyR1iyPsXY2PqX/tYAgquHrtR1oWcVzUuQgfjYiPPknEIqAv9OV9SLWy7XJtjhDZQ3+o49tHk92Ca2AN2/hFKev9oS6gifMLoVhwAl1p6C59YGPQEp0b5yusE/C6VjLRQehCmYpX85aQiaovcjDVNKhyPDSJris/7UXOHDDlBoqpa6GXjnApONX4B6GL1j6lbVTPjehYI7bCYT/HEPYx5EQUtnxOTWzdPhxP+ZMohrKfaldTNJvqePLPoLTeyobIXqo7Iqg+57mAWBhlaUIm6o3xoiaq3i2sTR0PosMIYapSinUWhaaRwyKdqFCu50ndYWo8dPB/7MMVIawhjKAzlcql0Ubn0/fdoTAkUrUfukU+AqK6yDLKCfCtg7KmvizhCq2nm04INH3SzqQD0hHeHPLeqf6qFkaeHEwsrTHI588vkVxqgYmL1em1jnD7fnm6Nmz01cXJj+8Ev1km2SV9FEHFL+T/yYU43FoiARmoQjbE3whFrYRU+338R2TlfXegBu0Dp086/oeP+cU/CmseHigTAyfjd/ut/r9pM3KEun3/1Dt9WelU/sMv5CpoV/MW1EYU4j961SFXW13rl/12Q2Ui0MPbQQ30biU3kfwfXmr2l0N3sIzxU1hA9vXaXgnbkP/j9wfCrw+kZzl68n/pWXDyvP/3B0tR9BvVWTsRwITo5aeiG4zlNXwWPtSn3vQK8ydB7Vj6HxgSh3ZVN78vvAzvRTXypd9ph59qT8IimpMg989++2A5LtM81Fzm1Mnrun/5rbJHuAtEGVHD5UH498Ia/QHmpdIL/jqUd7Vt3/K/cuGuZLrqYOcCytMmbmRfO13hVhmql3kONx/cClL2PgFk+swi09J7GmXKv+/MgGdTzBnwM393eP7sxU8VehsWtwNG7X2oMXia6+DTc8NCVbCd8qf+L3GIRy/KlLYQeOdPr56co+UbONC8Pu1v5DcAJv7dDS0fX2qz2vyz1bP1xen50ayLXXVv5cXfnh8VPmmzqxY818C+PH825Y2WNEEf0+uw92s8+fL82eLug5PLxb9d/PpeLvgr7x2oY3gPoXLlE6Omv12/kAbzZglvEm50tuH0zK38vAX00zdNo5QyU6JEh4p7mkNARmb1zT86Pzm/qHmesiqwJn35N81JPIj/IZOgkR/W4s7PWE+U35ysLxen67OrxQeLo/PDK1QcknX8mPlafvHik6O77+n3793D68ePF3f1472qfol+Xkqb5ycnn2qe9A8WJ+eHq5OHl+cXmgtKWvvkcn16d0/fO+B7BylEe+/eT6ftnJ/xDWklZ366e29WLWXS/ubG9vfnw7u3XUgF/+TZo1j8w/UJYO4PTk7uvrf6g5LJ/yh0svf1e/eWj88vNBfKXcY6Lj74sBodny1XR0cfa84LrUuo5Hl37/Dk+PDbvf1qUuv5rNZLhRbKr365fry6Orm8Ww1V//fd6kLoSxZGEwzosj64vLw4fnR1ub67pwPcu7fcXD3aXF7cdbNf6q79Gwb/L09Xl4dPf6slTu++d5eZpjYHcrSvDtdHB6fnKDWw4Od7Mlm8vt7Mx3r9it394x/kELz3N99rKP7R+h+++OSjFOZ99/jo3sv3vv7jPduOT84uzzXN0t3ttvV/Ke76/mJvcypH9une1msvZxN9yfz4P+RY5z1uLbRu0QcfLJQN7O1aNks5sLR8Nw81EdXds6uTk/0F/7u32LvttFJbz642T7cb+uNP/ub746OXf7x2yGn59F9hDokvTBiEUt3pC0Ivb2AShetZm0ZurzzPumS50UfnRy9swZXTfrgYmmbxH/9j6TX9YV3P352vdxr4EuXal98d52rXskH4dLLe++lNPzm3NCPyvqve3LkjN/bGYOhbd9bsbfGp6/fo+k15Kh8OLs81KYWwh+vZkmzJhI9t7wquus9Wp+slEy6tN3f3jlYXst/zRd/xO+1QCF4LB9x9T3/13owmd3N0ZU8HmIMM8b0TjTOuf7hzE67rXeb+5l3Pf2c7cu/VO7J9m2hagg+R/qG6S+7qZ+QxmG0Eap6lBEkiSn2wyG8uNS/I2aUmZ6z+/Omdrd8+23F8mb/RiOXue3yhnmL52XwR9ZsDjn/n68dnMtAvNbTzgwVefq8aU2YC+sXx2ZNfCrfdut9vaOx4ffRv3ptuoOzZl8en6/Ory7tzMr7l6CbcUcPXhJPUm71rlltn6T2cpffkLB0+2jEMPVH6yjOkxnuP9c2+O36yErrYdU3kL5f5R0ukOtWxF3JZqqL9EZO4zQg7DTiv8vbXF+vLq4uz+fUw2wsloovV2ZP1Nv18oY/nDeNdOUlK80qRNrpNReM/3dEFf3AMMrXLQ9jZw/R03kt+3fiKnC2MZnP9i7JlHDBGOHtNw9dukBu08KpVKecJeO/1Vvvl4lAlKYp9ystvmsvuUeKWrskpc4XqhNozYc5PhV2CZW5z6PJD1kv+6OnxydHdQtzbPHbaXcV4kDwbvxeppzQ873F3ezcyslf/eSb/0RtJe9778sEvPv1479p+Oe237PC2q/W6Y3h1u1lMq+6b9/WGU33ufU2v8OGd//l/t0S1/8t/YfrI//z57x5++b9dXRz/X39Tuw+rXAbfufc1JeaR5njb/Gdt7//+f/7X7/eQS3Tv/uIPfwiuH/YXIewvYtP7Zn8x9l2QJ51rO3nYK8pr4cYuCtfs5HHs5LPXF11wo/w3ffRtlHfcYB/72NlfQ9sM+MYHLz1559kUf+W0M9e2fut3fdM2fDO4TgfpnNcG4qBttjoA/VXrPD60bdPrREb9T4e3W3nQYqi9G7Qd73UyMchwdNKtjt830kjEAGI36i96mbfCPhe96+RXfWjDPqOeY89xKH5/MQytfugUybbohqGXZ3Fou5aL4vAu+hidLp++7Ydx4NdhaPJHzIq9Oh2xduU8lnP0Op+GvxkG3RI02QYXZKyu6XTWOjgsUejxxjDounTTlfDSm8xm1AH60GDwUacZ+3Zo+VpkR716J7i1bRzTmPqIHYs6BPkYdanbQRe9b/R9DAwLN2BwQSEti7brZQxt0+jcotfR9l53tleia7tRJ9A1Udc/pJWvxy2730jrrSyF/DOoF0WISfvFOlZvdoMSD4ehb/HdXic8eN0em1GjxKzT6nR/W/XZCjE1Oj4QuowePTXYox7zdxhsg7XXxYgRG4QzoSufx9WQKHTEnc5n9GjSgRDa1ta1d+reU+qTcQ+d72w6fgi6EvLtiCdD19hWRoUPW2tYxtC1uofcmtCAQKejwQ5F/KAbeQKVZPSMBpl/SFPpcGYcKMnpuqjXeNEqiE66Gu2UhwZ8oelAnWP6dYgapqIj1idR12fUcfVdE9KcOqzwMIxpZ0Ibe5uXA1W1ivGWUYFTCL8Yv95f/AF/2A443+tmjUNsdBCgFN28bsAp0MmPul1x8NaH+vxkCXrQ6ggiBC9omlZ3WtMmKS02OqF0UoUcBxzTftYXhopmyT7asiLYjEjeORudU3igkKXvJhQJJoXPchB0TdCasLMhUZcb1ZPHASvgU07F0JBreZxc7JCQB06x8AXPpdZUQkbWfa/OM6ESpTuwsNBzi8gWWwwUjEPOb1r7XuO8dI06W3f1fqdh961r0mCjEibbbUMAf9O9koMc0xiDnnJw015hEkY6ZQ1diOR3um1Cd8qjou5ky3Oqq+RaTBtMJWKcPVvRSbhOx8PO8JNmwDp0vc9Li+dxSONuA44gfyO3SLSlGLQl1yrVCavStcd5AsFEfjBWRUq4PZMCeXiPo6pIVt59Qz80ie3p1eP6dtQND8rBonPY1ibifIxNPk1KGp0uNntoxxgz9fCWUIoc9Gh3Pm1z65SXDAqyNWJtdZNH2fcB/NmlkbixjenqkKG0tjl9UMLExS+/61oICMrqwISqpTIZoAehKqRStt+lS6ELDlPusWydukNJM3JpKTchUXSQR3ASao6Xbzg7fkpVQZhnl6bfKIUJcWHQjbZH5o4/h5ipanQ6RG6312WQhQdr70Kf34kqEwgH9okit5k4V7Zrh6HeHDl/ra3UiHvPB+2u/nkHicr4P7/gjS/r6kDw4Et4F4dXr2C/zYFwrfXBY9t8pt4Y+3xjSBujbSG66cD/r9+3gQwGckKZCdbRh9Hlwcu9g3UKHS4cdD6U1QaVugZHsY95PYfC9igT1OtBauNCcjl6xa3Yt3KktXncX9YHLus4JNpSKJNKsE1FKp7SGhanCCty73WJ64RBYx1kPvgS3JA/gijVgzcO6RTIedROtt4Dm8L0XXQU4nBMusQnhD/GzMxliGnQchO3felLuHgP9tZNjqkJGmUCXoMjbEi8EtDVhBtBCm6VG6bzBgmtBUcWPuzs6PXeQSj0vDGM2TURPeDlEWQAHtaPM4GFt72IRl1uST45l6XuMjqnaG1jb25MvKo3ebIdQDY+cVrtWZhYqBZQhY4e7N3jEgLjwLpxLUXc7kxO6bPYX+2QLAbIEpyDR0UuXNAOLmmRL1Q96WLTbguW2mNIrQbczz42rzpLuKmMiyundsbXqitZhCsP8sWBAveJZHe4DUfwIZ2qEwkPfGhs0wGDaIHhxmagpDrmm0UWC6etUdCuvByhEnibh0o5rkg9ZDNjx2OAKx0yKrQDtMp+7dhCFWjBfzPvcbu0LlOzBkicWwefLLv1XnWgVtu3YY3kKD60U0IS3aax7d6xbnLdpINVN8bLT/4b69WPARSHEchgIGRvjYAyEjlETU71fLZ6kgPSZtY2tm3WOnXVHBQ48M5qVcHQqHW2UK9FbyDHdxNi6ajr4RqOLvFSaRP7puQg11rM52syNrBUHJQAic5WDgRml2mWmdtehZVudA1EPxycntw/vUKhRHg87tWuTzqJqpCtabRUT0yw4POJklH0bBEmRxAWWAjERmktZnHKdHtuc1Bq6KA+D01IjFYOrwoL1FncSHVK0a4m3vkAUaGHdErtpb6m2rbLYxlBKp2eb84VcoB0PhRtLjSQTGKW16EwU+QSTcbn21hJQvp2r38N97KqPt+17EVENaW8cW7koKjT8hyDKEby53yWeXPw1uE16roZPw4kASp86Q5O5Mumip1hAEduoG1NDj6Vgzi4Ws0JsU+HKA41p0+KhmL57ErtwOzJO0M+aK6jZsPbbKtHHv60Vh0vbdhlqiMICgX1q9kk7Yvdwi0Un86Dr8ht4rPQbVfNfI794LKhB6JZgOAGhtrpAZBLEtorLpcOr2j0Q/1ApEdIpqoMV4/VwGTLJdx1GNN5a8Hzh51KSl/Tkah4iSXYmgzCywebi4iIEDcaZTJJAt3amsHRAAWjjAhK3lTMgH5773iBkEnCcKaCSbyhRaEKPGhacPaBtwCYUWN6nH6A/MqrJWDRRjMYCkNqX3npyvo3yZLkoWq5IfP+nTPfPX43I5PQ9tQ7setNlmRxe8nBpLAygr8HqjZ+sG0VzStO+HzvmmQ4kGsddzwY0NhkMRG3FFR/BZWqqs+1a3Yyi4qXmmEHB6F1VBxm9tFhhOxAw8ZuC5Doo92U5Roh9aBtXXjhGmNrg4auV2l5orlRdg3JMKEnieIMjrOc5y6rfLSPQKWGzCqCdszvFE5UMzU5ijE9Zy/k1fXBDtneMJU7a96o6yYUNyQx0bgdpw07URi6avJJ0Qt9yFoPGwwN6E5vyYYUFSdGn25om3QJCxk2o/0E2jdE7WxQi+BBHtvWhDEPCPdyzVBBpDSomxaUbiXdxSRvcpG2tpgmt2tsHoNJ4kIpwRhUUUDrnTd6c+01h1ak+PZ6St7hPWh1YcGlbZV6CMpyc6vyNoYiSQ5JdpHTPrissXkIuI4Sj0tGEAdBGNegrEFil5Rj5WmTZetxcMlYYEwTAokbcUIpTlM6b3Bpha7JEjmtH6PLPUOyii4Zx0WZ6tNmSePJ1OIDnAe+gaOEFzCNZ00xXFDW0yX3ymeM4CtqqAWwbUFLLsVkGRzhsXBQKOQAYnb0I7TbcnybdXs3TJwjcegSUZi0H6p9IfvskcRbiGFM5kHXwnwDC3EI+dxySyFAg/+LTgavzABxGGJVT76xy7gvfG5I/IzSwJiNiINpJ0UKcp1L97THRmJkg3fjMNP6dh+N0ba7HdFpDycUb5cd95tZF3fcpTeQjDlRmiSWiw7ZpGvHiD3pDmHe77s7iRA0apMg3CK9yMfNxDBItw+kGWq8r5Bs297FftuabtfMkJ1ybsCPIlxjNKfQ7CwSBRYSol0Ytw+UqQH8JUgRJBxF00tyqVBSk3ehJeXgiYaRVbsQOkwN029gPYEJ1sNVAyVDL7ZeU8Askk8K0lcXKCqABaiduX7gsAL2pIGTr6MMAP4wUHnWnYOxsM8XCi81jATHMQ0Va0lJtsyXrw2po3aqc0HWGZNCynfd1rt9sZ00YzfWS1FatsHx+sJX486GVKfvSnvwpsmdrIxkoB222pbYwgdm8gIeC7OixbEHLcC+hRvYxIl6Hs44YIC8pYewsY2Q7XO2qjgGttKzV/kxDiNMYjuaifbbbJmGJYQXUgOpvcex9WRzAydWhJIZoRn5Zm4oe5kIrxsbaqMwiVTUh0OYqG5CU3MqLF/PiLT8ejLd9H5aRXvfPkqr6WeYjw3Q97Y+scnrmZ915DKTZ21DBSGEbeu+G8E99KYLI2zBFHfcCHOELlamQg6rTcORc99OhB+u7RiSfzv55psJFzJ36UiyaGNTBIEW+Ae06iOF6qxU1ATKjmbOCrRrUl3XUt6DI6iBhYVeUBpDK1OlvGjXY0w2dvgr6K2mARMeuq6ni0EtxoFurMTQacSnmhW9S5Q24KiFvsv3YhebomnTHKoEDj99kftqN5xIDEnw8TjAHIaMHT/HEOgj8XYPNvSr4uTjjoe8AsU2mFO42Je4nJ7SCYwBcGp50bVpHYjpOlb60Es1AUhg45zeAy6AOlu9ZcMY+9oUwM82G/Q9gAWb1lj4ZWU2ob5a8Byt2a/g9mkhFcLoC4dnNjzD1IYVwROV4oZqHXfJGr6ptY0d7IT0Uu3yNkE7YmVIXxU12+2IFroWniIX4dAmDyo86VqJ4lYXfpHnQzRzYT1kCqcmoRUDLprXN8eOJ7LVuPY0aHTBYbZZwu80jHtLqqDcXg7q2Pp+x6lOsoIutpw7umghXPWuuFto9YpJTGwgtnXDLWQeNSgNEyk+rQauXG9HTmTysbLW6AB6r5ltDMFQ2SYoCJBbwX/SmqQBvw6YZ9lIaixcVjXsdgaACWNI8KE46IUInohWKV8PAZikuSmvtkeRpnFqIXWMkONqzbdt0zg8DaJ9upTGATYQ1RT0w2BOBYNrkAoMSjPGpIkVHcBwBOQySmcdZDIqacCL2IJDohp54MZs2JioV5BjHPFd0B96k9mTsA6O3sF0UoiWEBAzT/jELc38EWCl5xOwGfNm1UZXbECH2+QaHuCuUcWdxx34Cmodkunq2lP8erRM+xp9CHATCh8DcqqDRQMIB2zTCIogaaabdkgGkD4kTsCt7lp49YqTU/gqxY+MKRNZwfPOT3qsCCiwzUSow4pcyfcgQUtp00hIRd4aAFIpDtoyGq6KaFJjrAVpke7hA4h5MLwZuZPA08VsmuEF08WY8GZjEchJFw62bJfu40DTBJ3EOMRjEafNqEexaxgShfUh9BOWYYcFTKxzyb9rt9sOkWeMQO6B/EjOnAycNd5lqIiKZsKv2q3LBSa/HhesMeGWprNoGndvRy9MrS/EVrWwPuAIjXDTXDMh6GcGSvKq7kP0BcUAayX/HbNtKhvCvanp7LyjRWjspmeW++ghQdGGNrZuChtL++XNQZ28H6Mr9vXt13tq11wUzJMLZC6hQOPemJXXlrtKAzuXy2WIUwzeZW17hLSO5u2kY6EBezT6R5MR/qxkvipcqOarxFGB3o0K6DrIUC7DiNaeg0nXOD8dQVrw1qHFZPl13Ao0Cn7WUCnYwVwi/NaeN2tlnRkAYIsjEMEdFhjIG8xTNqvYmdEz7xLd0bhzWyjpEF7UwxTfhkwS01EPI3VRGASBXPA9eKO9R0WXcDghBYjDA9HQzVj8ovWOgvvqDVsrJz3WjYe0knnoyK+2plyVjipDhJ17V9ekl+SJ2H2j2IUmuniX9I/Uem4BJDihjnZ7cyFV+ZBZvHDrfuJY8H3X2P01QG6dmvZ73tYJ00DUTs2CTUcA902ybhIrE/4ELK2lUScPh8OF7W2wexO6hS7YOHL1ZIP6t70OId0S3TfyK/otC6auA6AXpjnpGDJXRny2jhdeUSRAPbzP4MNuYFiCUNTC4EokIi5CGK1jdux6GLNH7ydWm8Hwy61dgMRIGVaTg6KfGaoPBGIXs2Fta4Re7lcMKCbjxGSyhtitoOHF+G16coRvocs2WblruqyuFrMC7YAui5c8ahDGDPCJy3HISEfoxaEbu6ykgQrhwaVC3cGqSJyrEkCv904E9J1zKJDdyvbV9DCYdnnCxc48FGOOCJ7dFMfbkYZM+mvAUZs2oXBEP3aGWh3aLA50gKwOCfZKecJRPAeCBybiMSaYmzA7vRAxhzQsw/LjeuHYifQqNnEQC7CfMQu3imqDhAFmO5qU3rflNJdB0zffYytGP3ljaIjsGZSy8J5tH2U8GHLL296DD3d9Y9YMqg8QXABCtH1h5xGwh4SW8x4+hMnO4YJp+m6KQO4yjXTwqw+Na7LjAoQek2YcRwaehOT38zK27CquIjoSnrzNrkGiGUaAOmvcOK29Q9ZHY1GOikGBhzbx5lYzx9l6joGhG4DEDKYODNnUWvYXr3SNhZPgiuTukt4Nn37N2gLQ6AdeIAPXrJ1OhEcaB9TIOAvDYexh4mh5dZr3xwfAqgj6LiTnR5fZn7PLIPleO4oYFKUHMM8RlwYDF6YHnv4rSsbyVqwjXtJc4LBwTYP7OOIWjUBbB9du4/TbijxpxGpjdsqGrqv4Ue0ldMBj6jWSwUuZ/cmpoyHMt00t1kVCnk2IrY6EKHV9gp45B0rMu+1hyalejiNc+zaiAFmC8Icm0stD1AvM+rPJjt2MUULxaPoyRQIX6e9Pp3hMJgJuQQOE+wjQGj1+8As3wWe0UQugJI8sY4AoNfBLTY+tQj2bn4kpSWzSs9f3UDSIpXTZrGa0SSkBaHvcWobIGQsqsoeu3DHIoNspFf1Q3ZEKpxcOG6pYSWgcMQg9YeQE5fYFsVo0gpBtjd71trSUOF3bwbBCEyScGNtRM6HdGRtT0HC8+4bC4Lo2H9N2TEI4zXBhyIo0nb94dVsfpPbRMippd7xMkRG2o1WK2loFNo2xSVYYwjVbN1b8x3UjBZAi6likC6ViL7c37Y+64V0PR1sc09min0JzKy4yihFWD8NiFqYoHD2LAULi2QhkixEjzBIZOkvbJSVD2Dx6P7EoiWiZWjOiED4Ush3egl2yWWSyTCCwwoIceSjm3qONEaKjH4GiI95uPlv432nSlwPfJjEkRQnB3Z1NAcGEn37i5hPCBw8PrdnF/JDZm6YshoQjPKovtksCt0G88CkLO4O1rd9qBjwtMkrJ+4ldUY6KXoBd7Lv6fopjM6SRh4yu108dLD/BJFMTkRg7RUCTD+MuYZkcpA/QNJNzY6Qm0uO6RfCsDDnAHRUZU5ZuV54zxQumIcruAMUKaFOx1ISOhksYTyAV0PUpN2nYxoWEFmYMCu4d1wxhFW6KhnJQrXhb8idkMdAmU4hiRrhVbxsvIv8Dzl8YXGuoVkpODOajLRCagg6kSx98B5ymXJjUmsCAKXBAHEUUbqWmYLY0j8nbNCQReey2THemWdr3gY6JjqYDsx75DpEZPlC7d1k0cT0lp7EDeKYDxzajLteemDOyv2ybS8ZBwOxM8BzyFByYIwSNcSwy6EgIr28TfwXzCobTN7OZxTRFilUuQy9b8HUKPm27i3gQOxz6emssVKUP2bqVYyRtucwLUTDVFjpTODtnXSL6ZOpDV5Mgua9BrQJdtKHNyJ501dJ+RtdHn4MvOri0ebQDdHQG9JTgMSq3gMTE0ZRn3OKwlCCEOHHuPsJELJTfEr8BxQXGIlwLAHuEUGivuvbkcg1DfaNVPiuRzEAjvNMRY21kxuWHxaWyYENCJOCK0ETg6PEWEdzGudBqOWTEGO6IimG0QucYbuujz/CxDuIGoMShAsHQo2UjbQ2+UxZL47xwZmnsamn9xDnvaEPqh4x7V7P7uMVJOqIg+dPYZ7LqnIo7NLiDTopHvC1GVoOb4zFsQF2029Mldt2TDfVDbUEzu7/RRZ8C6qezk9UYau3DuAiOfgWywHaLTpBMRnKUXHJF9S4HWYioNRlCCYB3RIkqizGPR2hcdVyFuCCTdX6G5PO5Y5pCuhRX77uucZMFttf0/mHAKCIFyyxoKE3bQLvNwICd7AFkMHp07QRkwi0y7jaF+836CDQQsg/fGOrZZ4GXd1YssDlqEg6UTm2fIeLCVGBq8/B5gTgpdtWH0fdmd8ob0LW+oCJDuuC6CCGvzED4BGx7I71UuIWHzCnDiOMxuJBtYtDHCUgwJ0UDvinqXNIDZ3QsHARaN6dmjl2KYa6B8dG8/xb3BvvEkLT+LK/lC8XTHVWzTgazGKiratL4Bn9A/CqvMmXO3Tj6bEIcKNIEnw3fDbEQdXNVlzKs3ISFZ/FyY0tootdwhVkTkAUQCo4TMBZbkZZjWngGi7ibpIFKAHD0+YwAftF0B4NK1TbUVMS5DGC6yAGyY/Wr6B4+pmuSsIZyPWckXUGr4S4koMmBBSJeVLguhJYGlwu8gTucahSvG170aEKusIbIl2Q0BG0YLAuoMmHEvgDlLCIvy7qVEdBObwUJC64NdeNs8VXDpgrok/+ochAJm3Mx3+i0KE5oeoRrMB2GnXp02OFdMLGZ8jTdkUQIMcCKyQ4QwXuTp7pzI3GsyTtbG+M7M8YHGBkgKUy7pbBFDz/db6SwpiE1gK+1DE4Hph1QuCp8X97pUvxO2xN8GHMUf505ocCGZHC5b1F2IVeMcWgnZgVpvTXTvihIMV2HIMQ+i1UWuk79MxJOlANGRQZIThgo9Uzz4qDG9YgKtCDznvDKWOJIR4QO9P0skmtIqgQ77IGD5eXi6Y5uieuogBgMGtlNF2VrkeplDF2dS2HsBiYxoNAVk9+tb3L4g+gnoMcSLdJZCBmORsbFOEryY5xgyyFV8hBRGoNs3RgQdUxGBe4fJ5tPn2/H7K6yGEiqAlyNMcab4BX9WE2HaGLGjmCLutDkCHM6yFqmy3lVhgUaHYas6lI8FFGUY8LFCY+Rz4hPoZnM9RkRbIGuBeWmgZJQ0LJ1XziC8zmzSx2PmTdTrqW2TIVpL8xq5bPYY+LhDFPNUZtne6C+05csSKSGwWJpZ/h84lpK1iFZ+D5b2RkiWXCjJnVRamd4CdTP0KeTEFoGsqD7Iscb7mRHPFsXu+xTDykejtHnDN3f8Zu+gfVMpu0zzBbIoMGlFEAjrgOGQZprpAf3dkAKMiCYK3gNyHhHQGaXIqfrrhmT3w1DqJeRMFMFjCYO4ZsSRzf0CEuAPtXSpkZcQO7LQUpo48BsLaSMtstGBQ5GSSPMvkdipjkParNbhE5k9qd83oehzubVZw/cMJToaGxqLMlGqHSM5kaFWt6HoYZ4mbIqjKSrA44s1w13tuKGkDRTG3T/IbpwzAY9SllxyGp91p/YTALCZsyRQ16TSgmts3gxrQ2vJWdWV5hSA8141IEZzdqYwaAvOQDkF32CWpCZ9P4WyVw4Cd56bWcGNIOtADN7m8CPmlQ9YHhmwuzcFE9XrVMd+m6JhooyaahdWq8imUrGZbddybTR8rrpiXnHXcUjQXUeG9kX3OIkPVWIE3ioUE1j8oXd7UWbtCQ0De5mDpYBviVWapp3ynDcsQHEInvZo+ahShJL2xP7xRiSkIDPMPcM8K4kAuqqQK5u+yTVcY6WS4CkaEmo4Nylgaj3E3tN4deTjaiY5JgRQckV0TeZRpqktNm8EpsEsld+6rbfxOwiCQourZbuR5yigpcosbI4X7cIPdoVJ+tsL2ZYh+KRIDauzjbRwjdOru+7mFRlGCFsmBoFr5sDC1RwM4styEoUziFha2Lr+qztNn2/K8aAKMQb4jaRJOwmtGg1vnqiNwJEhU0Oze1h3rz/g4YLTYB5uH+ZmQlQvip9DcOux7ZG4Gzf8TRYZDhLbyGZtGNCJOpCM00rVJJH1VARh45bKjTtNIcPt9rnv8bs93UuGZ4b59rKYMLbhTBQQt1wqoiw2I6vHGJwO+5oAu/YewWs5rJY3kSQhTkfsNSdZdaDmsw4k4F+Fpg1aLy2QOCMY/DQ26HLDLwBxoL/dCnxD6LFxwxMHZKPF9+qOau3H4pyNTK2C4qXb/vqRbntg73XmRUreHtQPJlsk6ARvBonY3G91kDe/VWDENfqK2H7QDoM6Tqvxgu4EYys3rtsAxsmwc3EfdvmW8B6xi0jwrrzzk2ih5CGzvC7gWkth7GSj1vQYhgI/4tNWneu6RRNkOI9Y1ofenmJ8+xyPPzQTiKAbQ84Bsb44xC243T/soxDOhsGBq/ivNIv3U1c2D4mdE03jhQkfT6xwq/g/+om4IxK921Cg4xusINCTirxC6GD1YUhTZBIGpfMNqEEclR0TGmLmVTBPJpEkoH013QVP/eI62ZkUIIX4tKu0GKdy1msIAp3Y9PVsx0iLLHk+nma5qoyfajAGHuXOJWtFe8Tl0Ke8+8Zig/doGolT4R6aJUscejaSfo3nzDOQqrM5ZMhfVWWraSqgVmUZFywdkQEyc95rdolcog/k2O4oid557Y9iX3GzWzlgCUDjm1PjTc7IWq+11MTz7hlS+WVEQPs1Fz8MdnzyWm7IdZHZoJEzxj0iofzNu0jwUsMfYrNlLUSquFFGRumi927aSYKC0POrkiygZoZD32+zdlGJTbUiZgsBUZxRe6cPWNLtkZUJOFJ3yJ5wEtvwVJF3pixOjquBqRGKqE0ROEC6a03XVaDc1ZkCjTEVMaQbst8aRi2enqHgFk2gRmI0/eiOmDreP5p3806moEKzOsLdcv11y4Sgx3GbWLhWVRLc5uVn+osEqOCXRm4ZmU7DK8K6K0JLEMlsKQ8o5g8sDocy4gMYEVsY6xIlW2GEZYU43Zc7D90N0bkoXj4KSYUg0sXaj14J3lXmUerNHEWAkWbz8Tla9FUlP+K3iCsPqe0ZggnLPkdVdW8ffVTpupyBB5RiGbGu/y20DOExOpFcD3fOdfXL/Jx2/FKmLfbavK8+nVFeuoSwyKbSUiWM58UOmJCOzusDCLpc7iIGWKYf9yZYy0lvaiWM0WK5UV1HW2iNFAlXB5pdrJrlaJB5lN0VAzREcaTL9vJjytLnRmLhoTQNoaAIOaq+WSni7Nf5MuHwN0Iu8aI+29++cjK9zsVHSrBMPrGEQCnaortiLztzHyCQWmxzmvUHPNrgQWYG79BbEtGkxAPpLkkw1SgoE3Ld9PMhpFJaVLYbLlTeAv6LWWGq5zivi0KuFiSG591ykhNoquSH6Xk63VKRIMuVEJnFe45heExjT8T3fSzhMMyCl83Tv4zOLo9bHpzk4JdL9RSmCOfYbexySA7kbP1Rhhobmoy3jgCYfAa6rpmp0x8vh1izv1k8TzFNNF3zJhRDF9zM0jxDDJXkCcCuqVVps0ZYiwRXXEFwFYVySBe3ZXi04dKS6QSrHbenIikD43lq07qhOxKzEjwJmRrFS0hRfrsfc69Y8m3C5hGkfmxRozSOa/pU5NmVtmAWyZhbVz6jVzPUJOIcxu6FH0E0RQXJXO6jwnhUT3s4XzoGwvQyteKZddWB+k4jf+vsAkVBiYZ+uZpWF0fc66xoeCWCmIpDFnUqiVoGIH5XmUPr9zfwl/GaY6ScczoUlfFUcfrg/VzUinMUQgfRmikJK8tMBP5l3n8Z0ZJJi4k9VUn54bEPlTuXm2fYVq8YgStm6/odevEVJywrEVXsHd1qs2tdNCIvzClhvYp2upaRqCmbGlJHYAfHMQGHZ6xKCazdAS4bi3YTJoXURILFjKbuIYCPIuCmFePFlRGbL5iGSb5R/vsbbBBESa5w/vTNp5WAx7IrmC9geMYmI8YjdDqKQu9wxCY5tGa7D1P+dAVZ4NVZzA5AcRLk67PFyxhiS3Ry9gHXP8Ufsh2Y9+GHXm3aiOy+X47Uh0Mn9D4KdS+q9ZIB4FRp5Z/p26uDsPiDlfb0rLgSZhQELoWWThuBThXIu7A1FRwKMwdah5JztLOp6+I/fJ9yppJQ2FDhzWzZhXeFSDAWlGPPDXoTjCibk3N4uCmc6sT6JShG8g7ZsSH8VbGazLHoEk3tSGVazWUpE6Qk+ZOLCK6LBC4aRPXnM8E6jDzvwzbs7G0b9wNwhY4v5poy975LhQLJy2+O04a7yuR8qgHd2Mu/kKPJsFTAy3zuOSwNPh9QY4PXZ897RXMAasW800Tmb8L9o76uq5FR9ID7g1ZeWr0ocSIOrNq4s4ZEbwnQ+x9qYwDO/XYNVlIAwIR0SKvIUZNE0S7rNiPW27jeWJMii9IVkqDUBxhizNEA9E4uEWpggaceJE5cGbGMWVn7yIxhkNw1cnoYarzNLZnG0S5keTmHzNwsfV9qVVBGm9IxzT6wh+pgnmPQNaJf64p6ZjbOXBhyIFObVeyJ3Wl4AFRcJjwaLnQ3MRe5ixDntuxmK15aHeYucj5OhdywZxiqIFtRAFJk3BY2kJLqC/yJ1OPFxGo4Jbc4LJ9kqEOpWSGqal0hkFfYNiWYw0A5pLrMxTVNhqzgHObGRXybvU9NWIE6m9l4RnK03oTYD6C4m/pcol5atr6L+r94MMyiDGfI0JHUNkrpcTMIKgqdXS9ExGJd11kmCvDW4hlmJbjKlh2Xll28DyiZHu41jQiEFdJgvtaiFh0Q8kxODIQAhDRCk7MtHspyA91B4bgp1beBl6lCm4xHUrPkRBy1gw7Z1CVoOiYebLKVcoiLJ0rTviQ8vNz8Nj6bShJkuFKhsaqZIvlgicODSZEgmSU29WJ0SzJuqu+AlPtUD5ty3HdjhlXwY5ld7txAuENHnOLPFrMHWcXTck6RRdNZRHzrG3S7ZCf2+0cTlDbe+dKfZZaOYGjxyBcrspaHxlnYUnfM9uznHpNRlX57Go0072bYBarImDWmiFyyn5WwXE1js24lGtyEB1TPEOc7/OtXYyKqY5Sun019AuRbJRDTeMkp3QxxzbMt40siAgzlw63ZdYIvc8mceybd+O0lMcwuGD4xD5dG7Al17wFlirmUi41tfoqF7xFU1AIBWy7wX0HuQx+O92TZJjb1aftGcIpAzAmFPsQEeCt5Fg23w8MZfHSdJsCKVrvaaekAaC42CgiEUFltSjcDFBp2WJg5bFLtK0QYa6x0k99yZOfrLZd8CmNg6iKTDHgc7a06IjFYbRhHBLai9qv8LlmAgeDrjfEXbdXazmGwMeUuzeF9pnPenQTaT8JTVyHIcuRkxS7fRNq9ACYTiXtOSuA1jGhMz2BYwkQJG6LueSwbDH4iQvHSnRxgVO25zjR++0w2KXV9rMUKrtGaCOxFAOeqMISUZOzr/CFLmP+crY/M9G3JZ86c+MzzCXk8pqun3dWdMScBzYjBzqaORn1zsKeIVjGAMif299TpubBd7e31WHbPcyWxCiatxABko5Fu5BfIBmWLMwgAIhfLqwdtdVsx1JCaGaE4xprbvXath5aVspkrjo3jetiHjffJ7ewj31OCZCQrcBfjx4OeBEle5qI1HY9TpDbTL1EhcEhHHTovK/zS/oSaC871c46Mklzq3ZTyTFieZ5pQUQibRWd+kmO+ro+Sht7pA2usgwxC2abcQT0O8SYg8HnNTsShMtQvlUpxtBmdEw/zS04CeXux3yBquiaIpNTrEQPIcEMasT0F3Zi3XY0KGXnRV3IAwaKAAncMytQiQqhIJgr5wg/7FEgaZyA1OpYcm+Xt9AFziutepb2BVCKlj5BP6voI0x+yDUrrboqQpVZlZEIL3TW+VLwsaiNBe9VWUFIURh/gYwFOdzZ+w5O0jYFWTqybhOuCMPzueSsGHPuCkhJnWPOfhRIcXSKAPnPAizwMYJ5xJEBDkini7BcS3DBANPG6vYBXIvFZVQ/zEcaGWWNVUyJLtmOwIy2jnivQDQReJNoxSvGtLpWS8ixUC1TQLOY08DyxBwagV+OOfLbTDlNk/ICDtlnpqqq35FJnqVLhzgBdFnyGHr7UWtTIZ5+kmSWiyy6abBgY0JbqFxMQfaeVYhYNxgLvF2bAXIeErB3HYElXOxaF4coGbq8z9J1Vivqkli5oAPeDW1vZokcJc45hYE5nP2wnRaRLcvpZ9rXZqg9lj6yPlqF4jU3ksVd5eqiVlKXGZTBnHONFOHx2ZRpef/rEIA+TnMfRItwcLnR1oDoJYt247KJyRIZAP4/WAxOMi+ayxs6QQ4aAaXw7uT6sz4QiRomrpivgipdqmO+YpjfCDeyYcHKTZ0HZ4Slq4l0NcWnr+tiuxQm0jnIqhDIaQKtRKu04xD+EXjOhKsMe2+Sk4V2LqrOFtvHootxnFwwfUDcLjliy4rCBS7D/LyV/X9Sc3FnqYSmrYH19f2XKqS6VE1mN/I0QkC6RQY2c9Wbyt5n8ziXmLIfoqDgsyxMtsrpxKlq5iND9RC4VufbmdauoqPAbslKyhXuqOdJVHdfsPPtwEuxRGYHO7rbXgKqENTKs8Aud47LlddayE+GjPZwi1k5cuw0jwurQFlitrab1iCnYNeB51QR9tQyY4zTPLstK+XSd0kn3FY40Fbp9SrrG4R9llcv7tee6EDXbY9A1MqWtqwxs6R+nEsBKeiXMXIDMUWlcPuuOu2O5YtEzA51AFPp2Rx2UBJnZdtxCkZm6AoFpovjMhCOVvBWLFAOicPcycgEsKMSfEqhT50cUls5uob2cubfBV30XclpygR6LLXKC8x3IeMXwTUmZRYSisdBb6ffg92ZyOpL5TyCPbxhCzAdKETMXcHyN9IQc1fT+enHXOowg7GISYwMt83lJreqzEijpQKULFlOTg4bfjeAbcaUUp3ZcCFZInaSGv70maX/Kkk4di8JUzqXUs8OVobkzL3Vz/rysyHFcTKN/jj5mPK5dxY/y+yzyZEFeGRDGDgLPehfSGvY5Do1jPhj7n7TEhC+7YZd31W5nHJukZ617AmWBnMwJm8271xKqJ8ghMYx5WMJloAE7mwkLIS1neFpnsVoqcXm3CIpxLcSlai+eG9HihHPJqqOhGw3CRHrfcrZn9ZX+H8zJztm966r8wRDw7lmEnYlx5ZJPpn8hsJCS8cTawFul6PteqoC4H2+3kqLaeIG5CSe7IK5mBAh1loyyVn6j2ABNojzay2rQU0RDHqmgzgDLTUWNtvDcDTKV+D6AFkGVOZ1jA4fod+lTRV5jJ0Aop1/HH3LGicOYfW7modhq24eD7yDlayl+IMLpnrFI+FPz9LlzGrXOaYYhvEDSloAOMm6TsNNgiZ9SsXEbd6xPCxvaBJUidg17thMVyUyFrGMugqF4BusBmhhDRquOPuBqPuDm/zCnqSxGymGkej/68cO0NENY+9n69mzlTIUtlC9wQc2kESqxOtXAzFTT9lbXLo9U3FXA+G9k5NcmtPm2vkE+mlfcz5psMkOOVL+7EPfTdaqYzaSwFS624374K16e/cKOrW2fD+jaE81Og2oTR7l4Eux+Xq+HY2lpOXO9dccHPqc61PhZgOqYmPsFTxIA0m8vmNm4MkYBgJmX7Nza7mE5jdjNiTNJwm73Q8+yRzAZmQ2G4WR1hvOsyr7By9ET69k/rGl0UBe1J2kRcK4llSKviMKrGcCPVxfoW5FU5YgIQqwTLsmMQxTXjUytB8/aCknNk0P68Bf1+t268UOc6ZLkRuYzQSukGl/DIPtmAru2k4HVv0bZrQcW6sHhNC//MrkANx6uEOqvkPe4y218ZTviGbWvPnCTAbWM2R/93Q09zsmS3O5jTDkBe1ILCjQ5sduqMfRIO9wF0cWRH4zanQuFRrVwDJanCa9jCOTEcHetKP5V13YBIYTH8QbjMwrixAD08tBdNktet3E2vo+4UN9y9IobZjEznRWugzu0Lh9A3fZ7MbAEFGMEqA6tsxqQlRsEWdE9IdKsOtwVtE4SWhg6s3EW0SGBbStlkbpOjb0LWN1uj47KKBHeNaPn+gQzCctAkifC3USNjwR6ucQhiTrg5Ug01FyTkUm+Is5wTpUQoJw2GQyVZMSaXFk8oIBDokG2KLJ3HwzOtsCRnIWMxtUU8Zd+KzYRoCpimKU6tHM0o0wq19DV13TzLWrkTZy1r/prGoJcjcglyl8Arh0kRVnoF/CDFgdN79ew7ZDlaPK8VODc02vrqGhjHyMTTtbOSsAPSvv7HMoCPNUDn1CjBuaxScbT28BL+xqKIXBS06ellkGZqkPLT0vzBxWyomezCbXtKqDz2BSMKRXD1vkOCTgrCwQ4zzxHwjZPh1mQu4y/27p5I/bR7l+Hblhylt2YvwwCXubPJ3+QKugpEPHSGAq5z2SdfYNQ/vIHpJXjDnvmBSTumV5oXK90bA8668dYOEJTHZQhqgJbmF0ntCca+jQ4svTlnCLtSxROl8VgqPbfDB8U3K8E6bZeFt75xgA6Sdq9a4dKAu1pX/PNqGEmKMJVGXhmFWt5E9yOyOz0nhrIXSJKvBXh7QTXddOMzFUAWuMOmamCxKwluUESpmJp6YhRyhaSs9PQuLRMO9DyJI2vM3J7Q1f2ZDjO2iPrLwylouipMqY+CRzyo4pK52PocYBup71hHcEVzIZcBy7Uk2vMMXomoxu2so2gOrs5vqh0Syj82kqLdEfEegZM5oTqIwpRsty7HOzk1QoKV1H8GYtatuJqfX6FSgOiYlx1TNFffEbVpa/kXmjxm5iLR2HXJyBxFvIesgqLqkOVlK5hiGz//92AXhy80sOFvyKcYLn0/pnQUUhV0PomCzfNwku1Dc56SGvh0ylRn72GjB+SNo6RDC2LtsV6dHtY67b6ZoS+liOgaFarHCZi7kOaD+MGUnflB0rXaqnva97ayFDwlen5RAwfXgUwiRYrIXoTzGHZSV8MwlLJlvN/ZChcW369nZbgo19xY6wyoGZffvscqB3GDJj8D1zdySq0TLkJqfLjFEuCvwjErFJmJ3PpmYicCCz+Jxi1Rwg45tPrqegaifORffXRcmL8qrpjX0uXHQthbe0FFbC8whPWo52I2Z8x3Js+zu9xUsmr0ABh/neMS0UoxNZKL2vpWdZngkSfrK6u+JCGp++NYtDKKluERRZdTLs2AniRq5ruW8KoMoiZCZhMwT8GjetpwOJTrQDFm8tHKEsdCSkjWlexnaSgqzMf8eKz93c16624S3qJQ9DyMWFXpOzvOujFwZmmGfB1By4G815mvF/kDlcO8ko3KJuZBUGM0Ih6RvEPdli4a5L+GnanIiKGEOzXR+FQckjVLXAkHcuNoEPKFI+2YtdI7Lk4OTrLhejZbQiMWylNlUbpwEnKX2vJaGf19RuGchBiPzYpW5cQPLWOgV68g9MGQxpsh2ZcaJhVYwcfsUYi2Be0a6+iENbqjOXQvaFkFGqIhCQw8bIZZCgivVjsYfldoPuM/auXJOeBhX4B+hWztEfDQsdDbnwaTWonqG5oXchnZ9KXhh6pHmVTc5J9t41b+0Y9zaZt6/dyLsXYPfZp7mFUHaf689OOKDBfwo6rr5l3uJwv/KYDkgdYFYPpjcfQ85MEknfDGJggB8NEMC0jRFHgXH5Sn4jgykhShEaTTy1XUZuCi/vKbG6SodjLmOoLmNwdRQWUXgTtAbMD1AEf9R+GS1BuBgeWNBCkYnBAZJIHKvgciY7ydHP5Rd8akDbNtdoM3iesij4knzfuxw3BXPE0E/u8ZQDOKUZrwoIBD+J0DMkVQ7/IB38gB20Y88oxjFhe/lniu8jVs9NzHLGXmkWq6LaMUqGq7clZtOF7YW1LCoOEQJ9HixD+Mq0iJwV6SEB1zPurCPcIcMDYFywiLodEG0aBwDWCE1M9j0sYt/l4OEtbcOyOLGCRcyJCCpxx2qKtYBLVMtKdLW9QxxQZEBvqabQORSxMwsFK7rSCTXNEsaAHFnv2ExSSjm7q0sSfVhPho7Y2lJOqnUhezwHVqRq+xKZofcGU6DRit1lsJblzgeatB6mAcji9KQyFNz7OjDVWXru3BpfhUXRBkrcCZMCmu2x0EmpyFRliA0OVxeUZ+a8Lvk4WACinaQDjKifWeruebkMU22ZYOkl6zhzM83mSMn/BgZqYSpumACnqxWvKoizLqncGE1bg4H6EWcqJQOK2abmfYWVx80fLF3xkFPdNrS9sDI4rVy7+ZcBpICOj8ShdSmKh9VnWcR1J3etwIW8ANgapbaUF7SqveGTUd5MkgauhiLGJA0pUA9Aqm2MlpvcAVrDLCQVxu4bYKcZsGFJJJmaF1WLI0Ii7HkfXD5vXGRpLkHAYjukotFEUg0uJfeIrJSQrfxbDL8GFjOauWDQGqt2NJTqukRFZyRkiDGjFJn9iUtLrru11lVQotlvc+JFtkFrbMJ0o4w6eAvTc5fZsw2RZAASGhJo+KaWuKiB9bWrljAP/mb0beH2rIMK5tV2PuRA7KGZKNmQvbA5VXMuZHPYyHg/5PmJDc8O6xcNSMdVQm88K2tUDpi/nFFtLVUdU868/p4JpWPJIxYYPU93EUtB51jaevTG1a2+Zb5wo8thMijHHRyiPil4OOYlYSooJqtRxT6XB9S6q6P9HEFJoyh79Kt61hmyQtgs9ZbdkW9oVXY32lNfLTsWbeMvRYAsI/ohpcjKWGsa748hUO5c7b84qXK+Nu9GwKws8n8eKZOp899YzJTHKPjTv42w2dEvexthszK21iN3xmKJDOZAbJtMxuOH4Mg+XZxYdm4Q/mgmqYU/77ofUvorFKEiIBNGNc1f1+t26/XWIvP2MX976fkG5v2ji9CVIe3dy9EVJ39DYbpa/h9Uot7a5muE63J+3kjCrhbk7cTseUNvKWvPr9zXF20ZotEOzX8Xs9kW1OdtvoW0vnt4P5rIboW0K5l9i/gp7F0vxFe3CMBCQww19AqpT0fWduXD4u0i0oKJbseYynMbwCMQx9Da4R5BKMxiQJzVmxvOPXPevEN3BW8s4mL9Tr9vSq09yT9IlaPUA6ZvDAyLtTd3uiQtvDs5x7rgasfkyJLqDV1r1W7ahTakQCYbxxCSEAyf63wcXWCmlZIl13XZh8L3WGORUXFdyiRCNcDFnDGxRTGYakAJsw2kWR4Qg18pPjR+nKGmZguiZXYZmN/OfLPtrH4QUkPNaZu53VPyIZIPYJNNyoNolReQDZplVgl6dMM4uVM4jtrzzVobzLfHrchF9zLq6619xjsoMVoGgz6FAxoza8K2wPdjq3BdYP6hH0pvc4zH/qvi9lfFLfxAIv9fpnbzF6SIMCPprkWGuxgd/vc6wwkZvWON7EdTeWZefUAMArPfW45dULVntSoCvBHtKJJESuKhBZJSooiAmo51GgO5i1hfgBlBWFs1nSdLnumGSfb0QCxPZFwUEvv1EAjrQkZZhvAeSRT43UDIPis5kwUMBMUzixbFjyxTOcfqyTQBl9zTlsm6TcnBjJ8RzFQy8eYkZlV2C0SFUDsYkwwbrDRln1NotfI81LWZLX8ZpYcdqY9KGVAme2BhJzkRIQkeAwv/lZwhVhYK1AI2FQALSrPyfQ6S7IIr5eL7nMey67EsxPkHwvFzCmerGc+YDRy4ENuUkJYbzgDgnO+ny0rJgKuJlzYRzKx2xaRhNRESiVgFdFSJeQwPrkmHDC/EmjdjVUKB6W3GUuG57Zlod8xpZy0HYsT1w9QtQoVxuzAXyFiOZE4kBc0lQqpiAs++yQmRFW7G1LrZUkLhlapax8x1jml3MsSNVbMBuKs2e/QxhyqFUr8sDhankzNS/X/svXVcVF3bNmwhSjcqjYF0wwwprdLdzdAwwNAp3SUgKSMhLYiAdAtId3d3d384g3Hd133dz/fez/f99/qH/py999prrXOdtfY6j+PvQDBMsHqFP4AC4RjKf1Cj/PnMbyCSaxiZ6yX8r9zDv7hN4Oep/ojRf+ICMf/iCIFPItMfB4OuYWz+TiR7zVjAzA74Y2f+73wDcMgjmE1lh60b+CRf46XA6jaY4YkZCxz07WrOWX+hEv6bk7ZXUR/TXyCZWeDH/VjhaN8/Vi4jE/PPfAT4l42Cn4iZMOic6zgJDtsIZyaAo+FcJyaw8BK+ymGrDYYXBLezcKaYXxoCR2lhhdEf/CRegHMUMDIy/QkOxcwGj1z/Cv8E6/Wv0woAOAfyNWIkkB3ml6+LBq9MH+yAB+M1ACQs9P0JiHw1mfA3wpIKGEM0DBKc7Ve3mGAYFXBMritVZ4RDxv/uCDyehhkiOJwk8DeY4JWjZoPtasPqSuE1Qj/UCpYwwIhUfr7nD0hNJpinZ2H9NWRGmPLD0j6WXyWt/3HI8PQeTh/F9DMn+/30P0/67wcBcJfz65n/cXJ+P8oIp3uGIcz8ev73AH/fyMQM5138y4uuxf3HXXDUSDil/a/mWK7xY///kNuVSYUBhjLDq3AYf8Hxw9z6D3WEF9Gx/J16+BrOF45R/xN8GuapYDTlbKwwIcHZS+C7NnA1h+N0w00UnFyYAVaBzgSrPYFbVAZmlr9RdMPWFOs1bhHMe1xZCoZ/6BYbfHMSVuzKCCvbgxOhwLdRALDDtnDkQABccdhhaw2Wa8PzAgYgfGvkL5TisJ4CYDCZcA4fGGIwzBOx/OsFmLUGsDP8Ridhh+OssP+qaf4tIjjOGes1vBKckA8Go/w/Tvo1Hj8Qjk0Kg9gD/K3j1xCisJPO8HNRsFjy/3gkv7aiGOFBLwwV6Z+HAvyfh/JbveEIi9dQicyw88tXXhe2kv+dLH46ZjZ4ZQbjr4gBAK8vYYDtGsLc8f/5MK/zBQA87wf8G7D036OEH9H/H5YjkP0nIQCcbhpWgQaEYZyzwJHyr1UEXsLM/ivS/7uiwCJudlZGVsDfPAX8iBkAjmTDxvATWYmRhQXI9md3rkYEK/Fgh5O2w/Z5mWHI0L/mgQFe+c0E90eMcFgdwC8aH5iiw8IPuB1k/Qm3/mePWP/sEdP1WvjDCwFh6JmscKgoWI+AjHCwNthOFTzPgRlxeOUujG0V8JOVDLa62K7hdK7pANjgduPnLSzwmlJYxAXrERBew8TEBAszr6JmWKk/w9Ukw3Kn/ztz/8XM/WGZ4QxAsGmDHeuD4QvDy7zhQB+/Uuxr5YehozDBSq7h8/UTa/QadxEekMHZnmHIBX+EpH/Pq/5LZQf8wn2ASQzwn0waEwt8hPBAlgE2Caz/5BthyDRsLLBdoyvdh4OmMbLBt5d+DYyFkeU634F9cWSHYSLD04j/F5oOKw6C7XrBQe3hTv2f7BAjAMY+dM0Gw8gKT6zgH96APxkZflTKw7JvmHCZ4JSosG0I+IbLNXXM3/w4LE2GZxKwHBIAR9SEQ/RfwyEAftux/wNBAdgY/3CjgGsOvl8MZL9jhN+Cgn0rgUuKGcZdBAdO+LdiYoTV4cNizesPPT88DczUAuE7DfBP6vDKHNgGKQAegF2l4j+JneFo6YyMzAz/TaDwg9iH+Q//ygpD+IJBivw5RLY/h8j+MxBihF+FJer/boCsMHZDFribvXavcOhr5t/Ejn/1rgAgDPkItrThjEjwI6kw4qF/8uXsADjWJttP6u2/tsnMAEf6YL4miYdlDfAh/aLKgGMNXoWosI8q/1249WsSWWAbRKysLP9Jo+HUCQy/GJjhVXGw4OK38Qew/q6+gsOFwIw5Oxx9FiYlOGQhA/tfgYEZ/x7GMv90Nf93Yv8/ndhfJhHmauCj/XeskddT+jfaVvjGEfzEMtNPmIJrTbn6Ceaj/j3d6v8uyPxxXAYG/Q1k+w+zCWC5ns2r2AHwT5YMZqX+lRMYvl7+yG+uAXKvOaThcfQ10MJvIGD4Fj3MljEz/zqo8Cfr8A86BYb/rdP9URAMi7OADP8pkWBkvPa7V1ac8Z/d7Z8McrA4mwHuen9C1Vz7LBZYbgp3WnDbzQCD/YVvcv23ygH8ZbrhmQzbf1aOa9VnYoXv5rL+40plBV7DssBFdA1IDedHYobBVVxTScJz8H9Ir/+34/mbK/rLcGDAX3D4E1gsCoA5XxjTwTXA+T+O7u+8LPBMHbZ5ygKDTWWGr/u/kJNcOVo40yv7/8agAX+X5/9YI0DAfxokDJwMnun9C8T1v+yuscL2sWAROSP85BG82J3pOnxgg9FHw5iRma5rkxngpy9Y4afVrr91AAF/7nrA0NfZGP4n1JN/6gj8DVcvgO1WA38yGsG+5MFqp2HBDysD7BvcVWvqV26K3AysBzIl5yAltwbZW9OCzHRAenpG5ga02nratAwMTORXt4DMdcE/ftPUB1uZaVv/uFlHGwJiYyF3STcEaeuBrCChqYZgiHV4rraFER3YAmSubUSnCzbL09bVBVlctXrdQPgnA0cjCxpSPZC+qbY1KEsXbG4O0rU2ApuHZ5mAQBa02qZGtqA0+FPhn7UtLEyNdLV/XKc3hoDNc67utwaZW9NaO1iA/n45ywYCsqLVNri6I7xQ8qoTfK/opRysDcHmpIx0LAA6hs/2tBBrbSNzUxAEQmuqfdWfNAvY9fI/L1ho65pcNUJrezWsHz1Lgz+c++c9YEj4R3FtXUnZvzSpbaVrGP5R28qMjaXgz9+tbMytjcxA4ekCUn9/3fXF369jpmNkpGPP/0vDEAdz3fCP+tqmEFDxXx4GWVs50OqCr9oIT2LI/Tk/piBzA+urrlzleUD2DCsQxAJsDgF5pl09aG0D8Ui9kgao7Xu62VUTVyNNlhT9KcaJGw9TBa8kE14pbGX0Q/VIZUEWP1SP5WpxcjCwc7Ayk4qIy+UIXL9I7t8KIl/OStscon8lDKGfgk/XNbQxNwHpZQn8W5GX/xD51Xh+DMAKbHr1oynYjhZsZWRgZB6eRFX5L5dB9hZgCIj2utPhOUq0MiBLGxDEmvaVYA58+dHC1nX413+/qguubwJbGWibGznCuh5eCVs/do72dnq6Nnp6hrZ2ZgxARxZmIx2Qja5+4fUjFlbgH3350ZgZJDzlKtfLvb7yU4JZV/PFQMvIQMvAWAqxtjLSvVqwPybEAmxlTQsB6dpYGVk7hA/TmGnb/1it3FfG7gfbPAMnqZG5rqmNHkjWRkcQbHYlYwgnqYUVyBSsrVdmT2t1JRdTIzOjK/HC/raCDxkSnvqDXavk7zdYg01A5pDw9B+Xr/5U/XmHFehH+z8G8buZH2d6K/79TT+bYvnBSAtgLfvrXRDQn71hZDKDlPz9husmPl5FHGaQHPufD9Aa6YUPP7n6jyYQBNBlY2XUZ2cC/ABdZmNmZwWwXQkewKirx8gE0s8TEKYV0NY1BNHKwpZxeLqgsgSf+CuBLNmr5gXAYBMj0NuRm7c1NXX1NXXMuBXMLNiVZQGQ10pM5jaaEqxmMtbikizGQtbsxjYvmYDG8tpyIFMhQWZpAWlaRnYm9iureRUC0jLSMdAx0jHSvhJj1OHTlbIxlLSRVtAzFpZmFbd/KekAMJXQZ4fw6YLFmYWFAQzmYky6inwAaSCTlbiVFJMUAGJoZatjB7YB2OobSoiLSdLJm8gZs4mwS0gpWctB+K4Eqm1tyE3PSXq1ho2uZob7WtForxSNFq5mzD/VjJNUD7YMuOn+alY5SV9aW1tImps6cF7p59V6Al39q20GkjWyBnFLgM1Bw5FXc2Bja6THrWTDRPdSTtKCUVHfXBksrmSjwqopZiRlL26gY8wEZNRkfw1weClgyiRqzPDHJDAxAWgZrufhxyEN2Pr53fX/sldflWj/tBu0khY/1O5KjuZgiLmRvn6aLMjqSofCs3RNwTZ6Vx7CCpR2JXMZPuXwQoAuUFdHX1eHAcCszayjzUbLf2V7f7b2y8qk/nAv6dqmV2pmqxteYMjMTc7BwsJMzklqps19FSwwMKTqgPUc3NN+qKW5QeONu3cESALv3YD9uS0XK9rrwVWctniqWLEvsU6FGUZT9ZACE4gghOn0JOBewHcyd73LY/UjaxtFSUKt1wID01UD7y8v8twujoubs87Yzk6hbhcu0edbm5dx0PG8+v3Jy7Pd6svVq1+PF6vdoJeTLRUdO6eVZzjV89X0rZ3c0IvzTt66S5edS7zzRahbpobKdBweB5R/RT18SDbC5+vFVgzkrfNn1vwPz4LyjDm4Th9JkJi86lwUMWHSNTPOojalDSARQay0FnVzN9onGxh9zAr0n2CSoT/AQBo4XwnPRSesATuTt3YTVlbx0OIuDfTVdtx249zpxyUhdBDcu7A31dW3q0S3pYy317wTzP7ItfWFQxmijGLGlEDYJEoXVMffsoMmlO+oIvOFxm0HUFqHt2/VnaHAbPSJPrXOOy9cQhXwD2pHtSW7pszfEp7dES7TPU9eIVnkrqE0fZ3AVrGVdhhf5CdGTybYAfEbFu2TOaLaQDgNHeVetRjArMlvqjvIqOI6oSFGqQpcxXLKdzp+H3qzlqd/KfalXURrvM1t0Vmc3i3DiBga4vCtYjfZGmIV8VDaG+tmEqzWFuWZHPOITyN576JWGzSsbXgeeTBzpilRa5asgANnpfdJ+y2mQoQaY60wtA6r6DMUFOXZGwJWkvVVxu9DbiPsb5rTZ5txHww90n0fquYSrIWbKHhnfoR0J1bNJ+F5vVxnvB1ri5M/WVqC7EpB9Gp+Tg7kOf14tMX+58D0pbepW1jfbh9k9MXMqpjkWaB4IbsO7dcc87Fa2fSYSXQtJoAi8p+jG7oFPlnR684kV+3IZeBQ+xb/nYTqnZflTQA+s4fwfHt676e7ha79kdbZqqOM2S2oGcz20i6qqX6TbYXuzfguX5wNUpoDybL6TaDDQyO4Mk19+WjhNuYqjlpQ0BiwVTZpSnVz6qxPgN3GZB5Bl2OorwtfiDVq/UFtJg799LdO1wbiZ4FhOUqRFu3n5K4tUMSwmwRDg8aPmEGYhgyD6F8FbdTzGx74Gt/L9uFwhcyk8lDzrA2rNo2i0gCbCymUNQXBNe7kPowi1ucyqRGsWLGpwo1etrr13Q45lqSJCuPPpREi9d9u4CyugXb8j1HngPH3OO7epxg1J/FAcXeftXu8XRVq61tUDlwg211NjqcSle3TKfj6PWuhM4iRMiqJwV9iXU9c15HS5SZbc37NTSMWMGvJx3y54jRRm1PhWUanZhSPIovHT0Y0Zi2xh++PxGUnrjRytx5J8yBL5bYS2eh+7PB5FiyUQTzj/mg82DrVXvTukLrPcggehwplU5kvES+pKeHLsWDE4IWWeRyVPhczApbh2Zhs3dfrUhUt8lwrVRz8lvU3Y9e8tSSaaVVr1pmnpBqjFrbTz1EuOw4lHrWvhUqM1nGU5eY7OQD8Rr0AW1OmyeWdzC/OXOxvc72Xx6yybSh9pLGf5r6sqh0UCFHfN5hj9Nu3EGV3/Zx7VyY/usyeXRpwlzpd94ySynD1Kfra8g4zceenRI+PdIDwOK2I4Lzc6O4lMR1AcGyMeLbLBjnh5gObQ+8aX02XwNeZ2oMAT5EqxAx3ynSWhIMirZALPoWwqFVcVo8B1uZKbzzageTgemtdvRzslTsTxAefoyI5IUgeosgEH8X4t8OeEY1SqyRpNO/yK9khZ08flERaiKGR873cBEZUyvkk0dM4U+4yEtj11ipsxg36ri4WCdd3s+QZQ3hQpuv6S5oLLQrlgSXjn/sDc1bNq+hvlByiH7yLaxRCmCXgwiVDmzzsnusts3HECSNKIRjUf8jaCkYyxjd8sDpPTZz79a6FJDH1Sut4ZPirLL1CCQBy00Qm9wb1OxTJslOZzQ66Z6JN7Tdb7LB8IbwvBNqYXlRkPBxXm9Vl16bF0Io+IC4K1l4Xj/lOiQRZf2FWji5mua39KNUWcybDudvc8X3FvR1+Lm2aB+8o1EKacMyz65riLXQNdHsmckk342M08B/u+okkohQFV6AoDiotjRB7YUXW7H1nWbyUC8y66/CcO7P/ZWBIw0NRreImyvHxuR7Cqt6dk0ESu4AUCLF8RFDC1ps6KyP8Z9yaeMHJaggUc5zJsViWNMk8waO+E/tJgoW8H5+avk29lySDDVFZx0bU8LD4UK5U1sCtGUtvX5fcqLpauPzg4oCOKYxi2uyD6XGhlRdCy3Dy/ejiSHka6cN3ZVibtAdfbD298iJZtiYeSnxHsM322rEQDTu3rJ6uzSuSsL4f1DUZhcAq727vUlxxDwOceFh9tk5PvNOdj7YutSVPcF/3DIu0IDXgblXhetqhNM8bXE1arkFeg8UmdWF9g4T7K3MpTf0uNt5ztJUClhsiETjBaDTovkhOsSlOM0Dr11PJHp/1twuA2osptR1CZOPE2TGHgU4yL5wf6uysa6o3vA1+++INnjWPW/1aPGfxm/FR7AOBQ3VxTnfjMBsNyUedR98SJjtoe+oakE7j5i+gu49bK2pGn9k3VQbQ3UnOtNtylWMOdY5bRO5LKXnKVe1WsX1YdYqKEWdzPzh9VITss5E54eoq14ILcQgK1+hxmCtVobljXZo7goraFt2Y7zNJw74PTss8L5PZ9dkTlVUff7JyelSDeqTFauz1dZMVrb+UdxcUeCOqzAl6WpoY/vGskt/abfXoC4Eio5HOGf8iucr0DXP2jj6Rpy+oA2NOsjYdk+dsmFbsPeqhiTL7xv1hr9H9OdArsoWjmhFWENg/muuolZWpzeCr5aUjlcd7qotDeFIucAFDITHYkDIxiDXwGM+F5nbSbKBLHLnIc8mkJx8pvolPMC7ZmQVsC6CUSZ+sxZ4EN/idWErFelKZ70xe+kJ36/dVhgP15pGanuzlUS5yTQhyc0UPxM3IQ/zSHWOPPi/tE02kzb9zeyX5IHJoCJPypbgsIOprnkKRU33IF+Bj132SW6+Z3AToJSaTGqXrbtNUfXnJXqdPVMBgpfHBViklycaFjGlB5dbkYTL57ENDVuVVkCfLspJOLyfl8IODckKfqFIK5KJHuguJB2Qx8vvkyfimAKeTEdSA3RmBfYU5Z0LuAnfHJLNlEFApceuBIoIYFKfORpcYwP5pBPHzOPcxYZ9dGx6JkECw0aukHZvVGNzD8owS0e0QgeLII0237uyGgJn9phAEShKTIsd7vhY5pmT6AeJoLZSmojtRtyiJ68pQboq8WLaMLbAvSdx93IJmhvm60dBxLeM1nlXBgud+hDKI5kRjTLOqV2nndUT+04IkSFLq6NaAnaBeB5/lZjae71OyiSF/K09zw0oyC/meEM5W2cx3UXnt+wX+sV9WBCPlzPy3D40dcrJlXrziOttOFvGkJM9KMH+TYUPtZJp6l8/G/JU1tvmKvV9Cys1tSpJ7KrSGYnaixUezlplnPs6m0ZV+bablT7PsVeT18O0fZTTPBJyfnfFZF7O8HoqTkXxms2yXPZXqVwP2F2Gl/sJsDg3C/6Jk0eBacGax8Eb2dj6eZIB2td9oBBFh9zi2pJIdMzOBZ5a/VGkpxPShjGK+7OV6965S2dBBShZBdstjUlGLlOWq2e2r0JKP2dlk5VM/lb7RzprbsU9wnuVh2toaUVIJws3xZNbMxvSJ2xy4lUSuylC782Ur1jckRwHm1PS5jSufRaVGn4sy4cw3zhGNq3SNB6N+bXjerDGGxmqhAUVFXTxbSxwSrxWR4F5d9AlUFcVI6s96EN/tKHjG6qr+/d3iWzGhKfvkrRwcB+gjp50qrU6cEJnpx9Ox5Anl8w+3vzy8kVtc7re+v7VhKFLMZrXMUVO1nztD3DKew8vp/6gjPe/7wK2bTztvzfp95tRpaw4xJGA+mi3QkDp8PAR+nDTdNjsr6VahA9A9bx2LwWoOjpx00HgllcTIe7gVSKKs3/Mx7thaULJ0sM6ATY84IsTde8YcJz8Pqy6ddcd06pYJvxyKPgXHh8oPGKWPWloWFcRFPlpjHMQGCVifOooRb6AmtAYKBLc6KKNu78qkcG4hKKt6eh3pmX+qtt/4Nl6T2SB7t2e0i787xbwpoDjV3eahfIJvJ5ql2aA/qXiCbl71nWcCtoSZrbpUOrLos/ZqJ5yIySqd+ZX4h36JeppKyD1PtJxlU2NQPCCCBRratJWcRK16tIom+Rw6i3MP+gFclXgjSwrd35eoeMbmB/jHBlASumWjtm1u3e3D1w5dP+jfJdum2x8hEkYwcVlN1jhURJFf9wzvTHA7HyZkOdpWxeAlGdZ0NTIP3W6wry5bLljf1XTVZqdfNZUTR5iqdEv8/HVOvi3Kl4BqKf/Mi9SFB1fEOouvj4UILIGybcQcW1pWqYmalS1a/ch3U1QJTD3jS7pnzGZ87+mSEfrNJF/PSJfA7JQcRRTVXddRZXSZW8xuEReZ9NLVezaKRAmrHgzDqmRx1ePUHKl1UcLL45kL+9wjNMIfFM6as7tf7WNxqXdnIkJpdH2qgrS0B27vh0rXitAT0DSw7QdspZydHJNRxq1iE1QfOzz+yp2q+AzDATJpb40rcjx5lgqdCAESL/W/KODlxzF7BLisk+eDnNXLR8QZApgMcqG+fuN5JgaPqUJzbxWnnwbaDUziFT82jUuI2N81hnDs3q/Zp5Jec6m0J3XhJn/K8/4zKMFYgmm4OXyPu0+u2vWQSLWlk7qPMxV72NVnnCUrMSUBsuhfnDal2EsWJStFjFcbApYkxsbo6C7sIOlrZ62MTzyLugqbmYzXSTQG45sw+2yYGMtun+3HfBl6IFVwO4k46+B9CZPknfYTrKwNpW/tF7oBLWWAja15mhBG4HD8477R8DBvh4k457wJ8L1kI/KZyjad3E0ZTNeTinUOWn18YGt4RxTqfkd5DaEmv6EnERa0rPtTYHpTIqYhXaxwpad4dncwBAGUN5F6d1Qte1qc6WYlz4k/x6rVavh3DOEunmF3n/bpfpcJR8XLI4zVW1oRW4v8wrtcWMlmIeULqqvdoXmvKFW0n3acFYYcZOsvBKMbpF8MCxzzNE7rXFRW2ePQ3etnTnVMwPd7ni3xZldBzGjL3pmJyn7jpiWvkF4DMa1O9zcsw6+LTkez/WQKCrmOZuiEq5a5ZImx6sgkqyXpJb1KbJuLN1IDVQJSLlaDc8tXbnI2uG+kBUcFBzppnPXnsazdp+AsAz0vj8EnfFJMpLNjYRxZCp2WVHHtinygG7BW76HLCVCvkN7nzWVaZ8UmMdpjSl/OV68JRa/l/Z5gSpYrvZkfcvdgzuC8jpfj5TDiXW4W7wRLslyr/WheH8Nw8yHivnsOHaUNjV+ZunBocQ/YoZd7McetE+qXR7VqTxA7DC5v+hf7y6YDnPWJezWo6rNxnAouBWbsF8LPs8iyn30CSBqO1GRhq1eYCXefZh8iklDkgHtQ325syiL5riRNTZ3TcT5ravPJM2sU1GniWcjbXs7aqMFZezg4QthKZNdHJs7/NjAA9yokeejXr4AqvbD07LDa3J1qXqdLtYWNCJgrgRRWoN1+JtG2HVKJGaS68+TLF+AupVXIoxdOYz2eBGrSvKusAH7L5GUV6gI6pTzcrdzoN4lzcbG9hcPpWYXDuGTRPnGSgxCrO4cJK33N3O2ns/7zherYQhiUOvpfcT+ooqMlqS52BX+aK5pyCwZ4xbhihH4pVKzgIalvyKy2ub3c7PeWZkxrMp44oS9Yqr7WWNP64DLsOVVnPBVtOeJFu+iTkw11jIpx7FFl272006XvS+ybHfvvz/futp97prFyiaGVR6CvPlfvVY8VGbbIL/D+MkCsyQ9eTpppmPl8g5D2ufTsIlOKOvf3JWf7714fGt68/MqME+MATUOvWE07MPFZaVMV/Hieu7qJzC0tAjrTcRJKW0lXXPWNVp7uMi9mpBZ6mwytdmR2LnqU+tI2vDYObRSXCiP+FLtwGnN2afdhBaXrhmZG1nuCqr28XAL6equbkrGG1gQPY5twHR6Eh45x6MmdfzvLAX3V8eoP9MkDrBxJnBEn0d1Cv5ywA/lxEohn6CftbZEQ8SWF1Z9jaL1NEXoTmX/xjuEU1z76U44Yx14IgnAi8vTeUiZwoZ3CnYIXv+97HTlBTlFfzTp1FMQ5canJyeLQC/sAX1pNvPe25xfJIu6BRCGznhXCfkOCOZT4nHHQzBo+peJY/F5elevFGGGoxYGdA+RhKkICmuHhLkWFv1yOT2cvlw5XXMrxPEmv9JrN0mxNzajxybHNCd14V6XjpQWeeAumwvupGdm1mIRPiZk78b6Zdo9LdPiQHpNirrJsST5dfHaEXMIm4U7bQvjkOHP2wzo36xLeh9Amly/lNyO2n+Hgvcyb4OUxkOym6N3nlD/nO52zGObOEyzqUOw7uIGQfGe073n3ffGb4jI11IfiLg6DdoK1AERGYJkc5wI/ewxC0XRgPHKHh2Jrk/hrUdBDIGZjuElDXSevvel4wr1MSG5VMaNCF39nnuDkc7Mm3sE85PmyIe/vPSG4QPvGW8KrD7sZlMzb5cscoxh2V6DVPIKSmT6ZVlimxNjta3LrJjdAoWRqLpvRpid4WT4tu8y1BLsaTee9qOoYT+i8vnwJl7p8CkKTh7h6zeB8dy5kfK3Vl/zOHCTf0Tg7b/Zh1FenQrqYNk7laYyDrcwy2tAjS+RP+H5u7MgVsXKjOFhfs7oJwR5ld5rOLnjUo8pjEjJ6yTfuDzApfhBPJXCQNDazSikf/CyWRfT19nJIjKIJfX+LFMvuFFOimCrdvOoUV0beWjQRqqYBQpiIzVpjwHtx0bXh54EBb4iLo59fzCJqXy7VzTMBFDSzlYXC0tojaKDsW3ffIW/1Pi5zLzZDmkcDfg7PezYQRzfdezGjrr0RqtR5d048qvpLDQeuwaPFw09NBQOMWr52twZAeo5npFzoS9kA/LXeTx4aVxlRnYc9e7KpF92s/nHFLbRw32DQ7kzlzHfWyHjEdFvSzKVOenzT7vqL5SeNu+eKfj0agFlUVikhaENsbf/XPovSIYcJKEkX8XLIivSwgkv5GsLSgS8xOKq/kYB8WcbTxnyU91KBwyQ/WL/6lm9pdes9hZfuI4qQJHYj3Q9QTR+k6dEedWcOu3qJD42OB5KGpIkS43tlh0AZBzuKFaZ5Ylx5xvP2FOZQ8X4LvUcflKEZbpiZwwXRG9nJ+kt6SSvqTc1fypOUoRYPxlpNA6KiPBdOH665dAxDJ28wQ7Fj9lXOGnhLKSjZPnUsnYgVEgmVJbytdn5Amxy9AuaJ66wnpLAzne6U9Ctkn7Gxef2BY8Rk5ZVP0IJ9GsOiQRfNe3kublrylGNXUjW34mJ7FHnZo9XBY8RR541J7kfLtq9QqweoEkmIxI8L11mdi/pah+opgN9SHNCrh1sC3HZv3/s65V3v7AbY4E27gbKhfpS4yucxzi2Y3XqUZKDL0r79teSpFppEIC19EZPj9CiG4zGfn1p9jx564eAH/AQczZCW/fRBxf30xVKbIozDNKFQCfqlxdNvYczrYyRh/f4IifujOMlz76ibUlS1SQg/xaNYGlAWQEXfO9uT4Rm0YLKO9hKNoi9J5217Io9ONfIDdlwaFo4fGm87fKvi9BvWC91B7cp9Zn9A8eXYtdU3eLrQHnnKoHc9n35aPPT0s4WSwZcEgmSd4NH1NV/0hcBMUZ/kccaUXGKSMmXozXlw3uOdNs3JCT8EayCFATn9SsaqYuic91AlcNpFgKUjemAWIb3eEZ+LaDakzHOL+40CkBt13xeLuZvFz/HlidmRzdinUsdJenaWQ/a1zgsDk6Wem+/WBfPPSziI8fuFkCjd35nbP9Xj2rK4tbnydNZ6ojNBE2HlQDo0ZW9CTq+jifeiR7t8bq3QKoqXt+thoCx7+75P0My6lNsCGdPk4IuUKsGVScW0QSfzV1O9BTd1dSE7R+ajwVnbb+/ZJneiiZfzYNwY0RNdb/AS11lx8ZIychzizno3zMaY203XBS0gUbVvL490kgMsxBr3dun10j7EjjlXMa5oIE/EY/v+/D6Tb4draTPBA5w+l6pNKdQpc6bjd0RTlnkdejKvWYkNqh9RroKJL9Bv3LhxeZmq9qr3C0PYBT3EJkvwRQ/hsFDNHT5M8Bu/KQ+a+2FZx5uyVZOEiyyQwtefwiR4VVXYa7VH6d2Os8O1xRIyeY/j2ywVSY2SRQzowVbmiPwBE6IvlR143yUg9h/eUd/D285zbc/J68OIvRrg8eOPl2OKs0jNJ4ZfxlXYHHncTrEuZsFUU9UXu5cM0p+PJymQEhW0CyA8ROJU8kw1G355bdy4JG4HdWZIJPqEfpasHNAs6qLbxzzlaw94pZmh2jQvqD2Cwl20F4m62NyrNyGKGmYdfCXEkbqtj88AXP7NHtbBoB0q7orzGqLtYEPAG85xMnNn/J2LwAOKrZPlWp3ltEbPqSIktdebr1CUM1zo/MTv7LwvbysVdoKix067k6QDa++Dz7z75D+OHL30P87ReEYSJXAPrx0pztNwPzC/CVdl/Ox2/pepPnoTXCEtOgJfTLyKNsv5fWzHitTYNSFicmGsj4LoRYXKn+We6Df3KtdGijDnF0Z0fDQtHQz7aCymJsHTrqPeg3Cy+alhZd5+elZJU6Gmc8XdiPyULeLgAeqyGrLXnck0oyEFeyTSunMh01JKAmFbPuROtklGxLZoXs0CDWErWeNvFucflN89c6Zalu55SDfECe3courDA28+IYUY061wYL6pQApdU882Vlr1pVTLsHzitn+UiDw+nnXCSe7+NMt5B1Hb/WkLrU7q176gndrOMCtGygIq9LiOCtObxKNZoOULzL0Cwj6l4DFj0vLDL80ipUM6JU+aQgzX0zp9IeUKNdy0rIxHB3oSex/6szpGwoZkzlkRzfBYlIIW6nJonbu63g54enZrY+G872mLrWOxV+mMNOxXeHHOOUX9tK+eiJlsffe4hOn5GtS8tVAjCBO8tOx10eEZax2hiWtbmNE9V3W/O458oXN0ijwZr+b7+tzlyqZczYB3DRcr5XmmMpeDybuAZi6Ih35zUz/29PdTDIgTY9yxBVjte2JGEvWJy0FrmP1DORAGptX3QleJswYEokpqDl4wtdu9gMFbeX01bdxjdgmznVU3Pu1zVASNSgrsxpvwJSB7je2mGsXYqkYxqHdQ5OCE1kADP2k+HyNLWJrwJaXkgd6O4UED2Y4ftjOx76YOTGbzcwa/d64abUHTOx2PX6rb7hYbpU/EAIXJzp8Rdn0Wr385v6JPmhgZwNNJjI4qo8593k9NbHzb4bmvVGreaCr5impRsUQeVvrO+UqMczTu07Le/NRx62Crsk8DmFZVoJq1Kuqz5oSBG4tDw11OuAWJVsyaWn0T9+vb90Tz5wGeBtIv20q9O521DRYL99vjZL77fIRGJXO5h/J7r5cZGR+dxZqE2cnW+ZUU7zC2G3kREhR9y1BQeTyWsy47gh8ualuktPPRjg1b7r3wS9cReWcNG7mbsxN930oTrN2q3PBEbUIIYh1aP860LXvi0YWDMKzE00oaXtzd+rgbPHwG3FlOqf3gpUqrTzafD5yukIxip3+if2AXjX4yK7ltaJJmQ+C/217uFwn2EfjS+k2RN68gEMWsCSlnBZ82OnmXSoCA2zxmf4QxohO651WljDET/bT/+Il9VPLbcxlMaKZP6bKuqsDoEWG+wPzyBfI+6wu7CESrwLoyaNNsseBx2Kb/xXNcCAdOLQGajay03HC8s/laJj/AitfeSfXjAsOYHlL/Cum0A89DoE3Cyn1sdoW5wwpDoG9+StWmczBJ+cAiOaebcUz5sO7Aa/l2aToZ1KhKcy3L4WXDEuVd2agALfGgPEeWxf2L8FtBz1PIrd7FGNx14TeWfFqPeEyI3q7zfKveKdnBZ5Bmz0biw1RrMJCEMKbn4pHyZ+IqcHKgQSZ0fETp69oOD3P7mPjCWvvilUrhYbqRVMzO2+znr+Vte792l2E/Tzi53eJ15ZnfBfv5Smi+eRXkVQoVHdiSnOaJklVba/5oQCKBTfu55n3LG4firOZo4W2Zz283fb5uMF+pzmKiipJrnccBcE6gusrg+Ve0e50OuMeQU5redfayJ22FwxPQR+qJWuTpiJa53YOLIcmRbybvxJxfVHXrLX17s0pWzqDoZOzMOK546+3ncuxWLqftw6Ju8u9oZf6i5OXtQf5xNXv5z6ldz17Mb+XLgPUeZDzytimoGPl0N1SknOIrfZWLhsSwF9bJ+6UFLuXzRgwZFBWbBD/NuGeaYspU03luhXK0s6W2IZ4nLk64+bfv7ztLtN/sU8yVta8cUzqqDwS7MORbyyWR9I2TvbDbLkpeYUQ7X8YkIDZ8MaBHUazeVlEJri2npx2hjG5zdtgN5n9mTfX4M/IMyOXIkYF6PwJwaNh7udUoVJ73dFZEtgSVdZ7J49mbneipjPZv0pik9/3RLD0dIySxvTBzvFFmC+TcXF6Tg97UW3EzrJf0tGvXeCKg78fKUGKv+1BIVni4ouDjGXekT0dQA0mVj17sHet9yyHfxqbbPEcIbPxklLYTO0j61ehlrpjEjG1Js+dOvYnK05WxLp7lSamtZeGdMQc2WSqFD8YeH8Ncsh69xKh47ePZpKsfPYtTsG9VY1E2yD1R9m5A8vWpIxUvD2mt1GbcK7ejWx847n1v0ChesBiTvBXz0RRrs2ueR3PwEGeG0BjvfnL9cPcFx+cswXiHkymWSIJWbDNTEz26wNCFvjz6h2oVosJtq74NuyYp3lSj/n5hInNbJIkKYX5J7eYXw/sIIEVli3fW/muTqgT50ET+6gsD9/KEGRLNqA8FdN9WnW45f97cuz/f0RNTSvLJWUaF2vNtgmzL4ug3N0caOTXRCamPlfNLm8616zv3t3SIFpyNkyXv5J4BsTpXKl3DeksFQ2flGLDmCVj8FOnqjpOF2tomNl35o8WRRu/mxdK/+MbeHIbjN94UpPzA5EIv3MSLn3sEs1iMG+Kg4YvSEnquc/AejbdSqTnr/K04VjEoSlI2HN8CQ5KoFUHJ9ShKfyoxLe5h3r4PPS6GpEMFGzMk+HBGko1aRu8ztbYTFYjxY97ufVvbwiZDtSbUYBL9e26rnedbBiDqyhfBY6WCTq8jgNCAkzuaswgl+NPE6FZltFrSIajqd7r5ehzzb1uwGW2Pgsk2fdsg2vJ8Lfe4g5wDqoe9zKMVX2wFPjMkDoq4QSL90F+WJA9VdfAQxWxT0d2h2jU+ofw9Fa8r2WlgJtvZVqZq6kqn39Gya4Ovtk3v1AnAIEdOI915mutB16ms2/PL9UOl9b5751veRHRNyDP9LtBasmyRr57F42Kd3y0/BAWHKVXSJvO4Hsfp2Mo9tkd/GicchTyVEdokmTdSZTGubry/0Ok1FG8w0BVJR8tS1xUx1XQ4u1hoFzbsz8iosxhcZotvuwIltl6aWGYnq6Jr0dp8bKWUGepqrzj6CGeSbnga5/7Cc5I2nFqBSMtZKVq8VJM+/s8jMbyVCuwV9yj4XJrWhM8sLld8ZeP1b+TNB31UocGEykL5Zz5QJNqZdR57L4ILOUzo5HNtTEJGX7BLfeK1mtEAC3GJ6Mp5Qlwm/RXM1SM2JoQRvlKBlWo2JZiHlb5qYagg3sYR7ax+Kdl1kIjcVq3MV2/i3NCyFo9dv4kZT7hddpR+mBVd0hqt9/rW0TQ754OGkQR0GrXadVlTN+fFuU1dM7ua4k8NARc2/IFHU/e7Iu9F4m8CDEYjFOo3T7cfGw2gni5z4na8Pg2dXMjVuLO/5xD5rW1C4nGcFZZ5u6PL+WI0YEbd3/UkHGGhsR3hMY6gVLG7ZLlN4WxPiultv8Gzo15RbR5FqJyP9qMqvcMYVreKD5VBK9tWteJj6Bc15uyY7eoU3bibuQm+i823Uqdw8b68MDS0u5/m5tqBRM6Yvl1oQ8ptbl3mv5DlkLsORtSRNkwNM+d4RH/efMtBfdBU0U+UK6fhVs1WYP3lUgSv28n+a0z6t4I7y5sVjx9J6wAp4jq32/P4TMbRohEgVtOFNnoY3rL7nXmfQYi3rdDT+D1a/QiM3SbQlKQttapdV6J5uef4hWIdLpB42D2ibx9uiMYWPfCvrjgoxlEGtX83jzHftpbYx8HY4P2GVF8K3TMapWx8uuMn0JObLqCTuuIrSNj6irKpVXHlmRIy5TP8jwLt7NU8xhkk3T53TofBS9zPb5ewhnrETC5sdA5AFAUOxtj0SFQUO24bmeOO40isWYUTt1upR+Ce9MwGHtu+7Do7UmN4+UkypoBNrWP76Qap8Ns30a824nkGEYNc7cWFVtkaAr9MoG2p0A93omucaMenkVENzMTFPI+Ot+wZAKeapInkPFc7FmOsx+ZCWwl3DTHuFkvasZ4O3tA8KXzLCRVyjolEDnmSfBWZQYiJZTM1Dj/W2ZK4BpUe8aOhiJSnLWWeGqYgQ+7ObIUvyywNqW24jNTqpp6jo+/5cLYw3mJAY358mPoCJx6MeOTjOkQsrn+xyUWzeaMgZTzzmISH+oxT/Z5tMd6KLh9eUjmtYoWhIEuTjd2DKf6ix6I89gyLakA/v2PZ1zue6Ydv9fJcsReq/bPWF7udxV6yfO+xCYJG6JORrX3Ddry7Jox27gqic5/PDTOGePNkRlnSVfRjoX4qoSh7RPdsHJoyF6o5PC28ceUBLd2rd30JVo7rXOdLLEziPHLdLvSC5J+RMk+gikluTiZCE9Exw2QH7dHihy4PT05K9MTwdSg0EydRUt7ZqursHvb0UisIAcLNvau/OTcKLCSoH/UqnqpFd++8Yr257OxcoFmlE+I1/nhIrNXb/HKvfUzx3clitFgSRtfRS6osjbclKYE0D6oEU63cW/zEyk5QbLmy1U+95D5xBklwotKWDKO7XeBQrxgR7BpGPMQwmvSOXdM/li1XIPeDhHetNwPiufx7scyi+6OywINChG1F93RU2PU0U3KnG6dkPjxijKF7zxCXG11/P+goF/M0WpN2s7BXy0G3zcNLY8ehZ6AT2ltxPlo9X8Sb7tdmJHymoduegeKOfGIg8bysZDKmmUDkdFe0rcJ5RT/Ox+WeKXuhXpNw79yg8kCXXVFojDK3Ee/58iwJyexymteZ6NDTOwGRiaWyhuSuJffqoBN12YH2uwas5TzdnG6az91Y2FbA2JqZ79irlLT82S8+0Tkh0JyxDknmLbaNTtzac3LVPwjNh2aVvNLK0bgH5lye3v2Kf/foWCRur5YCes7wjUEdjcPf9WKts5OcFlVe5nxrY9F34oPWx6cbzP5neR76N4Zxvs7NkVBfAEc0kRfmR6c3a3kut1S/vghFfI9ZueBy2lut1cnflmzYdBLbrn+wKBLj4ORw/jYsjJ8HyLEQ78wQq9NRxJGa7fGgqDQk1rVcCAngJFZxZLb9SjzMJ2N+IpaaKGjyW8TMrSg5MWflicWxnXK+UsEQvrXIItRx8Dc8pNUjkJIx+4Jgf4ZnfyMhI476QGdegfLZ9kPLZOSNUu87mCyH3V2ZER+0PSD7pBxPJ2+DRWmhd9eaPz939TsuVo4nIX+K/JpkMwFgstr1uTiAaK/EnzrtvaLy2IjJbQEeZQ6gwS7uNl8Sgn1PgV7jOD8jZ9MoXtr4uoBtOL9zR8SAp8IZmik078wZbdtSepG9NeYZM2OihFlcXWwsnqu3MyPvfhZv0rgJlNmkj/VJbY/Km8ez317aPtxxO3lGkEYQOE+zZzCu/8Z5B+nV1lHQReHrXPI11dbGUNH3W9s1OOgDeJPd/WWuu6943/nsPLJF3a30DEeOHmeVmk/8+I1wM94HuaPb+8LSeMuZvsk5CJ36ITfa6mN1OgWzL5ahXAwnu++FqvAbq50BnqaG3LaVn/QgJdAcpLVonZ7GBBsIhK+MvAm63FGI3bOjXFCERTzbNcszGmxJ4JaCUNWIGPM0d9RV6qPTTjQ78+E70XZnvmDvjdcR2CnKm+3hs1m3QdqU6rgF4J1eSizt4ur2NqVd/MWv1XmXe/OTrg2iUZuqGNmb0WuPU4J9qTYi3JzXEwPeu132Iz5Vn8ZiXotzDXmtehf0UPYspqMSCPZl5Iu9i46FIh/8zilMq3Cq853DxqBwz6p+jtx5FcsDYHUSbUGPKOv286eP9m6O5BaUe/TQZ/vNk7A+4fnyVW4oneXexSc3RhXUKYgdte1EIKbmySGr9/OKu0FeitmXx9oo+8d7dfUnPm0Sie8x+gZnBY9PWo79pDhqRz5K7gxCA2cLJYXsxyetP7MTQMqq8qgFc9fdY3UGvrk5ULaFLH35/C7OeUe4WcDt+HNwlkGbq8P9BEVRf3wbiL/DIC3F0UD1XJXpYRqDwM4dHkjonc5D057Qs503xtHME2dn+PE96WeLBsojT0G9ovHoPgIDJoKcSVSaJQ8lt+xc7epqjpPfvkke1GJ/kLQeHvp86H3XyIh+m9sKtwrx95Po9Mt5/OMv975Ju57VWK+vxp3tWavaD/HXbKxPY+6eVrrWe2iqZj3HbzAwwq7AvXjBHkS3wYMXED13Nh9tLZX3FYggcHZHyEFEyUICkHixk0VymV/t+Kp8XS9p9sVDnzDHs85Lcuh7Drwh54DjjhSiJzp6EVMsgGckhyI3rNbRvLwGDZidphP42G3RgCgdXhmEroqjq4PdzZPHF0g0SkmxPegXbAEdBrxijJ/LWXr26asTva0K+BMpCZTyT3IXN6J8tQLUX26ZtLg5d0GnUnLMlVDfqvLSHvd77Ha4YJJvhqYZFhYh5rkSfam/+GK2wMIL6MJy0a5KTXaOWNh8aYZUe5VALW3L4Om+OYGkho/TXyZtPOx/Ld9Ey7kUTZUIVhzju+SGPjTy17VyOaJiEJF9vfZ+LOk+T2Ka6YuhiyPbSdEAoGJWmf/zi+VY547I0O3oaGZETQce8xYdj4hjuhhhIDtiwQj+1qqIT+hMn8VJJVDKoTSwofdpqIiR9e2SB0dB8vSxXTtGg/47YtWP1cfOEbf38+W76MG1XzAmzqY7VCUzwcVobsaW3s+y9ImC+hHDPctWZpqJQNvonZc7yYkB3UkX5fR1AYSqaRkzVR6+KkN6+DV0Ggfx8r4DeC1bktCT+rzqF5uUBk86hKsFVj/LBL5AthRovSkekKrFgN9cm8dJtFNqsdirSSxh27m8jF5vjPtBMUsbz65/7NDN2VVpp77TrdqRroLdO1lUM8Koep+W9+zItzjzeKQp8PCk0O9rOWJUa1DyfOIgeVeXtthl2sWk6/ewPhIxtEHPkMamReLn9gUSGdaCWCrfvue+AOiLvM7e7t6KsgzoWjDMaNMURdQ8O2Y+fqhvwLXedljNhZWoYMRsMDvkDNyK9KBAZY4aN9Cnm8cgWPGfpJSvQjhsOq4yXFqA1CVMZDvZOo8uV19wqKGjdzSXI2kzi+Pr65o37dKDL1p5lzlKO56V04mgyFSXfZnqW972yZvtnzzH4KyozD8e3xSq6Vy9XQlcTpt2O8/FQA1/b07JCO5DmpIhwbE6WqPaHaS/XzLCcV58AU1k7jJ6n33EXa7eCR4ROGvdNNKlceqwHc58UVf0yq/gS4S9SjU6dUZoaavtY+wT6WLeGwBONL3iCyk3UuK6MPRBbuZeNEB1AYPnVkzetm0xp4UCiR6q1+B6u62O4mIBLx9C58w85trrOPpncfu70PmbklW5KWjsHN70aEWavJ08eZkqtQxxzHgRR/O7S/sofW9yscuIUm/HSVdtd1mXJjAgndEtZLgrlOa9jq1CiWx0OzRBSgv5XjG1y2DwHXJDVZ5NyX5YneuYT4l/qpzkIA+qaFCKkFI91rxZ1XQ2vYrt6kCG68g5XT/cPslQRmPg9TZDm4JA93nMo+lPVU7frLErEZesax+zYW5uW/W8v5V2RDWd5HL3OM10Vup8PinycseTt0IOcjwlFZ6qUTC3EpYEMTXzO19R4kUP787S02M9nj0FcZn4OLbwxiidPF3EaSr1+LZs/OW2f/vkeWAMHx5SDGb53pm/nubtClcHrXmFWKAu7Vv5GF98yoW0F63KBAIWkkTaJ0V9R17a7DUSPvjDy42lmiepDvWaiTpDfKOXG7xM1ss07srJI1uJ5qgIF2d9E5YN+snFRUlr5mTJ8j63qkyLTBHq3NXdDou+XK4bC3lFr3L7fWV+r3+bZx+jRQPLdeKsED/VZOBinmju0UOzKrXlfMHTvT5mgUgQ5Gy7Hjp50pSeEkcZgZUS/GJriGiHl/uOAPWaMqVr7sUtU83axQ15uQDpy8Oyi0sxHL/LU8FaK3kenBLbwGFqRRqlYTmdkdOUA5cz1sSVbiK6No3IsmlFcGgSUI7CNstwrI3vg6fjMI0IHpeiDBeJx61INQl8KvqdYuWdA+4PyYbPNxyYjnLcPG7WUWrdoU+vU3t5/PHz+SMTrJzVbgN7jrSVWcKDNWeJRzzyvix3pJ0n708kNiVET7DdAi/QFTTR7Pnec8Ac82An47zHy73p7cCvssScRWhbs3ik1tKl6CES3o528YVz8i7LsY3Y94udJYOsAjRt+tyHEn7+R4OO8i+DsmISFgnPXt2rfySsgwiITfQpXdNwcB9QnBfMeRJzjOWyRfBWPE9aynpEavMNDiBiTvD7Y5JjAHGBKcF3TgmKPNeGXl2BScP3rXcLbl3W4Qfk3gZ8VcDs/ErLsl/+weNodfOhhsRUp8xX8aiQEGLkqsO3nbsz35dUWYALsQ57pXbhd/u7vjy2FJiYQ1aWxl9afIJVcfL0Dd2J0tJZCbu1U3UnKieJgHiDjiuZU3JLxmiW+41A2rm2xN06QnCyDCX/Sx19/fYu3vTWtzXzjENrZ2EfnU3Hq+RWzJaZZFVJjixM0WjfQJm+MNsaCeT1a9w5jBp4Yuc3St8+m+8hHi5qH+EXKymPixM5ls1cL6x14LmgT672eFcczeqS6fjdMR7LrKLW6aSjQ4UN9lCh0YszJjwM9butbyr3eJgElBu4eTuhVvFBUOTeftSZ1osuKga9bAyIy7lg9cnXjEfjfiBD55SnGPsY+hG4JYF2xDriatp7yxZv5PtCz5woNG5Qy5Pr5bEEH68byN4pLK36/J3m7S7fPqd3td1Ny/VjM7T+Z65Z6e3eMxeNedtWJ6lEgJRZpklkbx9OTtQ++/VG++6OPB+EuPVbTpFUlnX7E2oSh7NeQzy85zzVwYiNA0yvY52TIKyo584Pem7xL0YxyXx4Dt2MrvSu2mzRupBdOglJcudftvAlpAsJ8ImyDJOeUVQta3H116G1AWtBrUQSOgitysrfJ37I4KvdOn+w/dRk92ZIY06P+VK14cSBTzFbZWeI8gk74zFBYfEIwa73MMlwyOWKP9Lis89TlY7zvdbSEl3vDKLNB98Ndho5YIRraL4WHlhNS9969FiqPbptjUMdA3/ro8fKUp5foxo3frnQ+8jVluUHF42KblToaHc7LxqtaXMU262D/FGwiFLdzlmd1O6HM6vQ4e2rxnSi48l8ow1+K5ifrY9CO1crr+kv2Evs2vZEhOjFuFuQm30j38kNOazw2KJDlD0X+bS0z2bn5LUjMfFkawsqQpbW2iFrOY+qog6ohzsb3pZ+EozTeD3Cb/51nNiNuD4/NkFE7vH8qrcSleNIsU5Z81QDTmALI8mZUckmN8CMnpjZXDE6sLX3QMvmvfiMGklXaLKiTdYaDe42jwaY7tD345ujHGs8TfEGwgDtcar7m4+TX03ioaLvy9fJM4NQfEwt3w103BriHBBLWUfezpVSP1LS8FImFeFh9aHzCLbIW9oV39cXyBlASDHW1ynVCE1br/qgxTP6tqWggqXveSLr94FCLeuQEOe3aQ1Siqdk+mXYfuf2LpOIgpvbN/PYKLgnBFNUa9HRv9/kLU/YWNdMtpPnEeu1QRRXPaep2T09ZcwveH8kk/rp7q4Zg9K0GjvwPUGDUDSn+MVJM/Sthj3/3aTX1Ys7PVvcD4WOBvrjp5yzdCe2DJDX5DUe8kwhtQOJ1ZU0I9l3DzZJ8dGzh7wJmdoOHOkaeov8cIdic18RNgw41ibY33jQg7jLe6vTwJH7AkvcQCQh9WQPeXUZqUJgsaBSs+3YXgE6TaKha1Svz4KkPlfzzZGfovWFYa6dPNJm21as/iALdIPgMHgNBGL4ZJW4XaxX4ln7FluncKk7dPZAWDpmX5LLy2FCjJHDd6kIG0n426Rb6tlASmOarcEr3bmFnSaKAklJQDNxxTT1q26pYhSSshGiiXYWNz2DUeHmQEMBJ76K7er7JU3ZAmLTu9vK1oWKpHdBr9saOWIj7KIQYzZ4ecaJEjScnYSRBhuGz7HC+sYs8pzr9pYU9sKAwdUVHDQ3TAKIRRslNnxJRe9m5L4TaLnhdjxDiHWzanOkppXSJWm4vRzNyL/4I0FaxjF+UvStJm1sbKYJY+jFEXZuYJFu847K4xOAxu1UE5HgB2YbMTNz2biPCm1EXsad62/Vi99yr3QMF9jtPgVtoSPgWIG+5IyV82xCP5ABh73mtmyy7RmRM+/K4Jn4UB7GXxBwyQpWOHl66z3Q5anwuwuVj2TKGzJ49r5NPruCx4QUsRXHvjpqD5eGU1vSlhz47az7G9KTphZyEHOvvcXiMzmDr3KCFLPDi3gKFBmbw20MSUNzvDzS4Lqunp10sDDie5owY8c6+QNHVlPq5Q8bHxfD1SKw2HstSr0znge6H5kcT/Sq3iO20t9s+040v2DYP4o14UMsey98rvczzl0LP9e0t1jmu9Oibv5GK64vnc3Y2gEu8rrZdq/4E5aVL5ejsNaJt30cdhlIzWccPS4KhzHMLvQN2ZLf3eLxdsJLehsbCB3C/mYgClo4mvjgM5F8A1jgpH/yzHwWCDQlLHHYRMy/2EqN1+M73kd2SeLfWyQQItppvIk5+QxSbdrp+Ml8y0iAf6TqyMlG6vkehZFAOolGd7Wj8vAa1ls9IV6DZmlP8Pb3WDxVJuhGXrwfcTykI4jELWRXIbZGZCVAq+VUP9fO7K6wLb7RUa8ipDlBwWx+T4I/7+vucLEzckIe6+dCia9+7t8UpjIS2y464qWquG7mYGtKs405u21rWgWvSMZ2b6IZqbEE2uwfnn2zJ/vO6SRQUX3x0UKwLyHnoe5WdUbd6rZCfIJYJ4rD7trM+vYCe68JSC5LnpZx1OVW6+QRRonFigB+oCYkAr1Xwj6ZwX6wrT/EskCp9skNSzABv0bDOzdeq77k21MBS6GZRs/y56s7RegKtn3iRKHiSvLnh4I0lgNATcJyT/wI2gXOb2b2G7i1BwvcJGtV6uATMpLET1jy1O+B6rt8Z84oqA1Y307ReZ8UftheyszmDh42Z73vTBwqnRa0eB6CRnDeg158Q3sqRKFLaHTpolAmAbcEyqLnWxrYTRNfLmRmRCd70aS5xIHXharLV/HUcHd7NeBp1vA5n4dkZtL8QhbmPaOpAlIpZ02kokf14qn3C87oWKr3wh3DNLwJutnH5nopmj/v1NtVMLycocSPexRkt1ygJU+x8AUHIJju1NY80WzJFf1WXSDbm3Om2GCOPkv9fkZpBY5PZ0676qtEnIxZFOym0nWdKp2x2xMcSAX0zWmxdhfSN4eH7nnFNNNBJZ4h15hkCLzMZYBMWKd4jmw90QaOzwHxl0elXDcN/h8AFEDrv9g+pA13JN/9x+fRIxP4dN9oT9DlPMXV1vv0f3ofSV7bM32IXvGkuZEAzM8NppGmzaeRHWVYvusL8202msP9dRbQ33mdm2kT/9MzypZoGD2FrmHfUx+CtZJObK+Yn57XKKzUPf++qKwqDhduAccwj8tCdCE+5lLoPhwAqXoyY5dkuZhrafaHD1hYR994YWbTwsS+hBRIfzX0E51C5U9P74bR4Mtlt2C41Z2HefMkTcvlWATYVtHvxqo1l5+UAHS/dMRjw6pnpbcN//CXkDq30FivvyU09+dC/tY73Ud9gNVGdInVkiqeXy5OkSg/D+xe5Ali55kVICVsTfbfx4UPCecl+tWf2Ga8yVly7DV0loqRWL/1T9fTzQD/IhnM9Za9v3GaSwHdfwMAAP//pJ3LmrK8EoUviIGIQMKQk4CgCQIqzkARAZFjAuTq/wf7G+7ZHrfdraFSa623IC7DF7viSS9ZURIZxNrug/fPnZeu/vMIl1a5keUWk76vAJeDe20v5KMyx2M2Dngg7y2T6mWisxl4MQHig0+wF86hN3+ndJFfjrzH+CYZ3jxrEoFLKl7w5RDRctj6fQ7lkwdWPdiXW75Ij2B+Eh1bbTmBwU/YBNx9HxKWGLMxrfkCVu+pwFF64gExj5MAt+IDYiOvajAgt9fhw3+k1F/1hSmvLob7h2jjuwYWMFj3sAOqbo1oZ9oWm5VwW0FUR180k2XpBzWOaxjM6kz10y0qyd0/WnCIuYLMD6r2jD5H9PP72DbtGpBC+hZA7ZwLdsc+ZyyaHw8Azn5LpsqewqnfWQTEN/BCymWvesu9UQlY9wsquM2mXLzPVCirflBzmmxAGXFU6JvfDkndG4G5ET+d/Nvvh7Nie/PtIxHwUgwNq0ejMii5pFdoGfqCuE8wGrMd+ovyYuqRom30TmdVPuvQnLYGjbZnGo5tnptgfk947S+9MbjnWZBLL68pouHXm7xFjRRc5TJ1rw0Ih+HrqIBLlxkbW1vvF+oV+S9vErESyp69jFMMdL48oVVvexa2bg0VNh6w3Z0kjy6CLcC7DVWKN6pYLkJVIDj1LcO/fvzLK/L4OkB8+jannm4my4HVnj7xMQAfj5Rtw0MW7CeUu8U+ZNdD5UIhKwSqXsyvN2z9soCDqnRYHx6Bx3TyRQCes45MS3sGSzIFFTxP/LTmuwXMWlf7IP8cEiJoigfmrpkhPNpciITXu+un7HKy4OGUuUiwlAKM6PEhyppfqFXreTqFxuMIyefmINi+MjDr8qCDd+vb9GY7ac8bomxByEqHSK/N6C3VvJBf3sNewT/CacLsATehIlN1bAgYFIlBIJ8OgPC3wUwZ9+UD2PIfk+p9SkAP7c/y03eKqkAwxm4SBfjTq328i0KaBI4F9zp4UzwodTkeI5UHnDdo9LjmC2oSyQcrTyCs+iygwS6nS2eX7OlxVvuegG2sQ8eITLzqsUFPudrAixYZRC5aoyTWx3nA25vsyYSMLVterTHB3/40FlsJWRqkJkwi54N/+Zt9IuufXh1cuAXzycxM2Dmtv/ab1mDnfCJgvJl7ai9orc8uDcD6erItRBTu8lKVlVBxP1jTva5sAfvqkJk6QdzKu2bBbTrYc8BD0IjzdI6Us//Tw3VCrXnTzZAC+LUcld7qoSmnoL/lAAt5g+R7k/fjKQp5yODBws0Y3zxmZE0BMyIQ7M7HOSRaFHTAMtQF3zeVZeTxwxGB6QwdendzXfZouifyMKqEHtxHEo6VinM56DiBaik+gdkt+UJpoigknLR12KIe0wmsfhU7Wykrp3N/LH78Dd9b7ZFOml8RWNf2C0lcRT3SA9yAd3kbqdPurHLlgQPEj9cZe7dlY9AKCAXQouBBkXypwuXHq9Z+Q80PBsaAglaE79BXqHHV9972x/teMbfFqJxROt28yVW8UYT0JHl5uUhPNVHqyNCwUVRiyaaxgEo4OzpG+5NYUvHKHjDN7zLWV71eOhk2MIUxoimebKN7n8/rmYh89ne9luJcHeHVLp90395Njx12zRF2bo3o4ZLtyraN30j56fvqtxmtQoCALJ1UeutHrxREc5oUWUEPbPbULAVixB2wbwhTO+6KfmJTBGHrPPEpX3nJLpamWJFiDlNj7T9Dvk1rcD0XJl75ApgxbBGoJ8vCzo0XDbrjhHVih/KVz4nl2m9c2BT3C/U+Ue3NKfeNFHPhZ4xCKhtTWn0m6HrdkzRh6PcLH90fIDpgCc1ipKTjLpkT+DxWmIZmzoXUuLYNULadve7nKvzxTtiogY3V75cvh/16BsG0/0joBtczsYp7b8EAgRmx5RsDmpeODM/uyhdt/gGm3STr8GjDkGoXQkMWvg0C9Sp7Ip4/x+GiKFAEpjvE9EAKGYzh5SqDE/JGuvo7Y1CdQIArH8Unu7wb5Nd/f3ku9N91z9jViMHaT//0erfl4gU659RC4Bk+2eiyJQCr/yLsZTQGi7QkgC4dVgOUCmCquUsOG/+6Q4BcDp5gK7EFkwB/0aeK38bktFUsm/kUrnnrCOTiXCG4vl/8JAcj5bdxF8M1jyHujAe2yJcoh/T7sOnNcRbWXvb9Eao1bv/y3uRInQv3sdhTL2N+SG0cCBDB5I3maVHZYl8uA5RvToEv+7DsWVygCTysF4+41K8Z+13/0bBaJLJ4fWKOSRa4bvrtT+//+Cm022DE+zGZjCUV7xmcmTBiN27ako4XJwI1Z97os2/v5Xx7yjw4nPMbfqz5Z5RBIP/1azxxSzm555mHYXnYUDtonXAZStf6+VHErXo0XvY9AknsahS9z29jVpNLASp7XJ8Z57qy+80D9rUyom1/v7B5PKQFPHbqTPJLVfS0PQ4JtA13PUP5RMvW7KZIHjbqg6YqlsumRuEVLql8QZNZ3NLlumkCGFw3CVYl1y6Fmy0jYGmaib2MTeH4FJZcXvszEpNIA+RXn+/TSadW8g574l8VAY4XzyaT+u7T0YOmC29sKemxe23ZfLnkHHxZ4g0JG8vo/3hS6RU1timCxhB4jgXfm0ijbtwc+vGRdSLIrlsBcfsx8uZ+9gToF90Tgd0tNpbyzlkARcEBu7dmCacapVco6juecKu/WTTzK0JXmfuVN6J+fnJzrKz7h4zjYUgZuYQR+M0fjto9CwUCzgO825xKf3q8LA8rgLgoj9TbiJt+m3L0Cm92Q1aepjJhw2FRbqrU+ONHDN76HJ5iJ6KWpehMmNLGBxtoFPS0/r9Bj7karv7yx//7qXzyOvjt51cB1LB3b5sBCnw9I97qJG8yxMVUWKy7K79nPalmeQD48TxTd9VfnhdrHqx+BKN83peLe2IyJNK1wu4ylGACc2fCpVf2VGNs28+XS8P98UydPmRAnE+dwbS5rjxKfKdLrKIryCZw+tMrVoC4AKIzIey/9prHZJpZ4Hr/ArIZnr3HPHvWFVg+YqLcaikc3vsqgUEi/vj6k03PaLGgDos99pLFTNlajwCTN6X7RmrKqTj1PnQpaVe/8PzpdQA9ewmwOftGul3zAQjv5h2H6/qOrcM9oOFXAb3swL5f3vfY+vEBqifSxqA1fxjkYaM/6PH9tMACn3UMvzDoqPvtrJ5JN/QAX9MJVv+apt+NuNfhe3tLKUonPVzgk8R//npgqpJOoZeu86BnSff1PQO/fCS9d7cDApdZC3cMHdfbZ59v6gqnKBWCL6rg6lcR5fKnV+xPhvA3z1HgMBtsVLIOdoS6RKpVOxQ2tX6Fl3PMVv1+ecs91wS4PGWD6m/ZT+m8lxuoZ6+AbHpYhlOY+jysNtuSrjyarf42h8tNljDSjkO55o+jlJlzjAjjSTl9rwGCX/GMsP30OoOQ9QzRz12WCTj6OttiM3cVLfDXe3QclU2EDiL48dA9eFwNoU4cF7RFUdMfPxov+xIp2+KuU+1O03T0IY9goEo5Gl7PuGRJ4JgwfssW1kGGPbpp7AA+smyg3pNJKYulKYFcOs3YtN2oX/kAAmPrlDQ9+gWbxPmkAw1GJr4nXOctrd7UQNbMhqpr/f30AgqP0kGzjyBonbBfoEA+Ndoust6Pp2MEf/MdlO52YT9DrxzkH28VyU33Vv+Vw2RAJ2wojetN/eZUg81J2mD35ghs2R4/FVRmmlIHL6oxHYtLDZWyuxN4S388HBzBj6dqq57M2vJxYM1ZN4wUgQfTgK8xwHmZYeNVluW0SdxcqgezxWaBamNe9QQmw/FEoCtD1rePwlV+86XT4uJwmF7SUfbsKaB27NretPJTWKvah0hp9ulpDdVKAV6YURWVc7rw0TlTOGWLsb57GsayhXQCl0uMcfQ4DcY43Tc+FNysw/sNnMtpf3e6f/NdKAqAaCYV//LqvrmfPDKk3hHErXSihzJXepLFTAfq4BhkWnnXZM+xr8BtLmBVe+vpVgaBCAOg1UTw1cyrYtMMYODIMYrW+iQrH4TON/Hx8SQXxhQaEQJmPCdUHR2Wsme3JfArhoieqsZkKx88AsrKlPDaQS5nB1Drj+/aaX8Ll2PtFXDs3TN1FvFQ7n71dVc1kaIzHsBcxy8HrHqIHTPY9EulTYWy8hPE7U9xz5JAtUCJc536l0ov//iUwujhp0fl9EHO9ce/6BMOszenFvHhz6+By/xOJyFWkv/njoLd/76jYBMFO7LdIz78ikafw4wClwjirQZTCw8QjhWZqTdrBphpkhVQajtK1csrTRfojg/YUzuj7qNVymEDfRUOPYjRbvYrNmX1VgS+eUJYtzd834q5VMNdbHBI4FrNa6YMLUA/9ApicG7K9uFsI+XEGxdq3euUsZ7XRbgYG7g6+KCfMdavcHnaH3q8jzAlkyrGYD8fA6zKEgVjNAwRKOd7S4RNuxKxiasAZ2QPeuDEez89H98GZMLLR0OQSn2VWfOi3NOdQ52o6wyqeDcIj17u4Gtcs34xrhoPhXFuqM15DSC3efbhILw2SPToni3pfm9BPnbPWNXaoqRfX0lAeSc7rAWxFBLUZwgIn6mmJ6//lNS88ld4ukouPVq7ni1kSHlYfWwJ7Y6C2DfBu69ghC4eRdui9pbDiV/P0OcGIt2zki2Vl7vQq+8qRsUgACY+Ga8oeqdh2wQQNKCMJ/jmbjL2jIGlw5sCS4xTfcQayQEbjPbQQNMIZ+zxYd3P/c5poEzF1SHJrjFvdC4Rky/aU8yPG8AWT3Jgf4Bn+nhvao+NTVnD5NGWVPOeZrnAPFUhfm7uaNMd5JTkTVJDpFcxvt1eKiBCACwpvb+e6N2gPGXdpjhCBp8GEaypT5e93MTA/VQffF32x3Dpx0qEw1fcIX6gesk713GB0p57oa4C33TU+hOCu0h7UvWd7AymGk0ts53WUeNCgnL+0EcBZz8csH4/Fv1Spd0R7oo6p96iDd6c8v4DJv2xpnY1TEafJZEFX/ygY2vTHkJ+3IQNvN/479/7/yBe4mDmoDvaDvJ6x8ae1KBQpRd2bt27XL5deoSXPEBoMca2XLbIvyoH3GqkjyQt5Ed6r+D72h4IGLQHYzeiqVDEpMNq7BhMAIJTQfdmFGjDm5+ebl58Bu3UvWLd2gzpdKr2AyQd9yHEAF2/SOdOhcftlOH1enljkjgufIXfFMH9ruz7MW5zmJVgQCBfT+RjcC6UuHJvGDOTS0dfiga46QSIdo9kb0zdNYng9Hr5aNdzSznwc4A2xl1L6YkL2pTu33qteKfwiuTrTWOzABMOsrf4JPyu23mLnm4bKBr0iGB7bgBp0cwrz71iURNzFhhfu86FE9FDinSgp8uC3wmIxO8b67dS83bVbYYwlSuTRiD8gvFbKgjuLBAQKSj9kLncUAPUE40ekPwql4xJMngdVB57+0FnS+JXMRj3mo5vk68wUtgnAsUgwNg476V+fDhKBG+SqFE/ejFvUSplgv5GTulRmZL11J+lgddNO2Hdl0VA289d/tvvHvfJ2eyehwzUtgqoZvFeP73Oqgqe1KT4pE9aKUjvwYJJ3OtIQRFNZ3BYOFh50KXrz/vJqakAhJbZf/1xTuRjALNSGqh9e+VsvFg8UQS1zbDRV0nJkpue/AgWPRnTgQ38+RrDPspFfBXIPmS//oIv8IbxklbeMAffDPZSp9JDPtU9KR7Ah92NcNjcQJXNm0B0AXyXCYKRmXrDwZc4cH7qNT6y49ajM9hcgSVoCNtrvx7N+2IBYH8u1PWJWvJbr6iV0zEqqYX6r7fIgI9h4u43pMuCjLG4eA9wpxwsIvra2Rts+IyhV6cqEZtcKwdvGxcQbHyNcO8B9RTP8AjOguPT+A6VcPFfnAweh8ORcEnSA7bllwc03EdIzZvf9uMj3iXw4DOCXXmm4RKifpHCz6mgnjqk4IMpesAvyyt6T7LBYzPYRfDXD9Q8QWztXy7krqqKtvUm9tgragK42FxM7WQ2+t1JSQvgSBZEynq9WkscXcgl6psetKuWLo+ty4lDKV9Jc9buKVuuNoFvdW8SmTMWb6LhtD6dGh+ppxktmO1iV0HKRRXNbnPhzcx4yXD5WCU+6mhhU5/nNWhKFCKJRR5br3cMQmd/o0doS+ESRK8asp3R0aNi5+Fc5GWhHNlRxnsLwXJ4zUcXeC9BxhZsz2wABzWDrS7qSARmDZbM4HV4Ui977NzhMxxD0etg6wITMf6VMTbG7xzK58sbWxmOwCJ7Qv5bL2yZ9yMT4ocxwFt/5ZBsvJe+DZ39BBXhesb7qbyEs+Zp5l9/v7OoZwtKHw78JrGMsXj1ywk+R1+aXk8fLYdG8Ab57hbwWuc6NjMvC6lDQQXYKxJptGhbwJrUaED4PmmkCGTH2CrknIPzRWuxGgjnnr3vng56pVtP7Q1AOoDwpgLZZSn5Xa8h7/0ruPURh93j3i7nsX9HsKu2B2q6l30/o6RtAL5wNySjvWhM7QM5QFXVPfV6OpeTc/0s0MLzHUdxoRi0v8s1fISUIV5PWlabU+LCtV5x/NndjeWFdF9BJOyI3J/e/dKxOJZa7hvRQ98Db/QPmQDLOW0J2IWvcPlcuAF+DX6L5unwDCdEUgjvIW/h50IejDap14DIuh7w0TsIbPQPV0F+wN2DnoBal70kmi6U3TmlZirpPdsLoiMzMSuIlG71cEyzQl6/BSfD3v7CM3ojBx2s/R+fuOCQjncqqPBxGzAN7lsIJvv4KiT7MyjYbas8najBZfLZerwpyown+9U7mG4ZwuZIXfAB7cYE19lsKTIrgzG+GxDcBsmXyI9W6d9ho9VyunxtNE7rGQEgvOng/tq12K0qKWXnqXdh8j3u8eWaFt44E6Yrv35uE85NK3OsEti85xTjYrfrl3l71uFc72bCL9qFTYq9G0AjLTGR6rsNZraerH4+Gw7asvLI5kU6BNDjofHzg+E8o91RsSKxwM+1H0+WrkLQ5vqJHje2z8aTer4qVgwMqh8awZj2p9yH0UNEFAkFSllddxBq3t2i1kHfM/YZsglKcWHQU/PQwrX/JXAXaxwqXhlnjN1jusIoBgtWUVWXTDT6AtwPYYV25PsIl892yRXbrM6IY5LZ72AtqXArWDvsDoLhsenmP2ABq4HsTAAZe263D2BcVBm7qfrwyASOgmQeaY+mSNCMbZNpMUjfj5SepNYPmbzEV3iReR7bNydgVHwCAd6LO6IHs6kMFrgsB4ocLfRs8wzQxFYjqMdYJawDarpLdlb+5z/npDO87bo+8NhjSA+TMoZMd4wrqNdn9G2v2nvs6Z8E4HXpm0gv++NNdakTOay7hO5f4zYcn+W+U5a3pdNjkN5LOqDUh8ZZveOTpZvpzMJ7J+dSweFDmvHpXEyfGo7NGNCD1UQ9fV7mCHZZaJCJXnSPvg8qB52i2OG/9Z8vTwQ+UyaQrfEJQKMmcQeFkTVk6+2ejO3uZ1OJyizCVhjlxnjy0wSGbPrgPZEZmCaiFrBtNEwP16NmMONILJnfBg+MTsLNIOfEMKHPZIVq+QeXO2S3AnxorouNG9FADQS1gj3ELcbDUrDFjfUHXGh7WPvjNp3X/QuNiy7TIy3L9ZlbcYCvwsloEJWHUiiO8/H391f/9fGmsJcEYOWyRu14jtL2XH4duD+UH4qVzQzmau86IBOePpGdh8AI3pMKrP6RSMamY/NwvqvwddIu1OiqIBy9Hk7w7ZgajaY46lnQbRo59wIba2GshnyfNzUU8dBh13aNlE9OXAeKznCod5XOgA89Tof3dOsQfu3XTHgdZXDwmhw/KzaVZN6nDkS38bP2lzak4XYvw8bvKJp4vw7po/8iCA7qCR/r89kYrSwS4Ocj49WvFWC2nK8POeZ6GN1m3esV7ZDA1hJLsv1sKJjYztLhIUMmNp2LEP751VaoA4q7gxyS6+5jKmHdJPjasbZcrGrh4eZ4lvBpf/dS9uKr5Of/STgLW4MRHXAwy6aMuiGR0r/9lr2vBjafRWVMw8e4ynxBRKzaQcmG8NzmYrhjFjE6kKfMAokIpIOi0tNZUb3dLU4foB4cg9roRBgJyVcEaSYLaFa9wpgabSvAX946FW4Nhl++vNhuhb2L1JbLPqkqRXXrftWzNJxXvYNSnBtoAzeHfulPzQQXDh0JQw8Kqn7qGrD6S4zGr5sutvTqwOad6kgx9a0xxfcLp3wQLujhXDoeq6+5CCUR7/Apqlsw0i4OgIbvXyK66xk7jvCu4XiraowM4PbMeUk5WPMr1brdgQlAvSFom/UZbYkcglm9NjGYtwlPeF7bp91Ol3R4FzchiTBXs+UI36ry87fmom0ZO52eDTjf1T35/f5y00AMsJ1GaHrOe4MvXC+D1TWff/65Fz4XYYAvlJ2wpbSJt3RhVIFL5VO8L6+1N13ypADD/cb/+YElkYUFaM37jJ3vrgn/8l62ZPTXr9LJEdoK8mS4Ur9INilxR1GF3FDtUTHozFg/TwK/3nZH8S1sWaOjOVKCPK7pvm3Ucq0XCLxDsMWYLqCfNwv0f5+H4uwz9Ew8zRPgI29LT1/WeBMWOwQzILf4NJOoX+s7gPLycAisz7MxT3wt/HgCqm7+oVzuwkP/4we8bRRgDmIsgBI7Pr5tpZc38XNwVA5bWSD807saFTWEDF6Dd02zzHiCZe92BVh2nY3d1X9MYpLWYNTUN0aDzxsNp3syiCLpTE+B0qSTzC3ur58T5VIvBlvzlpwPMSOhLurerE0TUcqFfyNZexfGJJq1rlxkgafO/un1E7kPKnxnnbX6Ny4d+RtMYHt59tRuOODNCpfWcNd9CgLwlxqk4dsMkCjJiajzbzCew9GEJp/E1N54s0Gm3l2gyccxYtwseaPniR04i6NE1de87ZtAowvMt8WTzIYng4FbtAVWu/655qdnT/jIdOFRYTlFT+PSt1KKTLD6XTTgBbNZ36YPQCl709MmOJes3HEmGKgkUQ9+5n7c1Z8Ent2njkr+lYHRbnoTngK5paoZDOmsqrIAAK4DeryaXbicZfsIpZvtYXddH/bL19BPCJqyeUyXgA8TuPN1SL3yWffsbPmT8tAcl8a7VDDY8yJdYVupBPFa8v7lQR6creyNKgXOJdWek6z0fn7D8Sn+hov0rizl6+12pJVwnLKD63GgA3eEDdetAEvPVxlK8BjSoLm/jTUfJsD+EIX+/D5TvBsHjLN+X3mU3rPvJB2hdlaOmGz4PF39uisTJT/8+ffZv8fVr15xor11YxF39w7e/CWmnu83YX9/CEewORCf8K01M2Ljkw9s3lfpQduk/Xxmuax0Hn1RtTZ8j3R31YSX3EfY/QBcsleUBxBmmy0+AGz3v/wmr/uX4nPXlKSJxkaeH6FLNcXMDRa9fBXeX9sWG+8WpRMIXzo4Ru1u5SeQ1RfmRnBZjuTHc9Z6JTr46f/8CKt+cqyeyClXf7BmPZV++MQwg1Ohb9HJ6ZExRTW6QnjaHbCuXnXGy+2xguZx7LFz7ZJy3ASTC8kjLdDuO3xLJmyc4ff+qRn5izENiWLJm2MoYafJ3+WQjHIGfn7xRPcdGC6+/1DOtHaRkuIwLcOPJ/zzW9vXftVz3VWs78Oi0ffph7xVnEwoTccttrNkWy6iHS5gT7qRmlf/nbYTX/MAOveJHtuzA3haLr7Sf60HVVFl9bOobheYfaIKTXfn6JHdU7uCle+h76ovQ37pJjiZcofkV3sx6qA6X8F4MEoibcS8n91z9VDAMDzx/pBvwvlgZ0fQWnK5+oU8ZXKR1eCX/07qtIR/fM+5cT7VBz005kst5kBs+Igiq+LDyTicBJAXnIS276sAxikqCDhPZIe+8cynLD1nMgQg/GAvLVwwr/wDnDLZpt7ccd4IXk0B7+wtUzR+u3Dek/X1m0BDLV9vQnKv7xBUQeGTsXm8Q8IOWxkKN1xSJ/sIYfvZXGtQteYFH+wGAjqD3RU+Cl/AYVt13p8eqSW5YKMCZ0+AeapDTRVytGP+Nq3g+L2C78BlRHLPn3SILBdBrSomvFc/acqoolpwX/QYLYVt9cKhfC8/v4KUldcweN0F0H3XJj0+rydPDvg0AflZOOHTmkcWuV8i5dmbCMfAtNh24gkvQT8m1Fx5J6PPow+hk05IrHY+EK670QI2H6hUd5oRkNXvgA86FQQ+rhVbntI4QH8nZRhxvJT+5fufH2vg6IQLnJ4mmLWhIq9r+O5/fB/c/Cle+9PVW7Tvg4Ol7YVEwD0Nx88reQDzzfPYyNvaIJdntEBXdA90rYdw8gu+ge/2OOI0KljI8AN1QNEbjQa5vQt/eggO/kzoylPTRTGlDrLjHNFjOnr9/HkFmVR72oNqYvo1WPqOOyil9oDNpycYA6cbMqzJOFDPGMKUWC98hT//0q95evTbpINwLESifJjIxkQ2AyA/r5u/9Rm6a3KFiWtvEBfNbjkGJymA4+Z8I9/+IpVsa8JKRvx2QvyzqLyRi3sO3KJFIttgOYdTVz8SeKOXFwn3bw+sevYAF9upEKsDOx3Ooy7DnHA3ar3FTzkHyiYDUa0pZFGwyuir6q7Ab69XjK/hu1ycwz2Dp/GFSaPzGlj5nw++4F0TJXd3PSPLLMAu5xusU73rB35OEPyM0hk7Z00Klwtzr9LzDD8U94d3yCY7G8C9Til6zwczXdY8otzWiZYZF4o3QaU1ofRuF+xujCTcrfwe/PhYBvlmnccoomzRl0NKl228nX3pA6ipfE4RfonhyltUcOK1C7bGB0vXeUAMf3l91c+SaeMC4cpfafDMxnI+7CLr5xex3tzf3qJp4xX8eLtVublBX1HuK7/+etRQ1zPPkUWYF1CibtYeAcsmrYHy/ZpRHeI7m+zH3YeDib74FCpTOX5wnMjLtcwxMqsSrOsRgYp1cOWXF2+241aH6ecBcexaVc+mb1DAqTauhL/675B9ChXJv/rcr/liCbOPAI84b/Fvf07HVkKQcteKwPv4SOc1r4BWrhmRHvapHEZ6riHcCzZGw1c31vnKAo/fU4r3m6wp//gWieIcOyim5TofqZQt3upkG5tlP71fsw6dfTIgtuaJHy8D111HsBXXYdlt2vj4lxfNnK/BxNYzilb/RTZz+jSmX15bFkR+6+ktop1OP/5HLfoo+vnWhz6Yi61PNWH59GOuiRnwLn5EU+vyNMbf9Vv7DzUVOPfLs+07qUF7d+Xfck/eegdhM0UZVi8vEP7xUmDUPLUDwQa7/dutYL2QAz5ctsxj6zenQpnKJRLfH2QID3p7yGv9rvmdL5fPVi7Aq3Y2BKx+aMljv4CzdL+svLUs/+ZPty34UHPX3QzG/FCWLXu5kerN05VXgEL+8SxbDYp++DBzgT89PKz9f5rQkYBEmVxsrq8n6+QJrnpKhMpVjd0hQTocKJAQ13MNqNd+D20xeK/8NWDC8JUsuB02J2paQ8SaquEKyB++iGI33rOlRZIAHSTU2MHxDdBxvcP5XNYDRs7pwsZTVw7wt98wXdKSBOazACtPQ1ORvNJx/CgCSAMQ0+PNXMrlNks+OBqlt/La9budNtsO9J+2QoJwu61nVihX+BB5gA/qJkyXhmw52CLpg398u1t/H161WEYAf7H3m3/AneR8UNmDpp/q5+sIpdDs1vlFDNixNBCU+NOVTITjjSmNTREiKIwr77oa86ORXIB3toHejvUy2ME1OFDmgYKAw+1L9jkGjZS+sxT/5p3M/nwikNCTjdf8awhdq7swesiIwEO+LRtTqTN4UICI5pNlGZMLjlcIqjGnXkNlr727Vgz7uLwjKZ/qsl/5OVh5DJq64eDNzukwwJX/UnvkdG97+CY6nKPAwdZb3Je0w0P0HwAAAP//pJ1Lt7KwkoZ/kAMRkBRDBATkkiB4wRkoIqAilwTIr+/F/k7PukdnuNdeCwOpVL31VFJBS32MBHSvd60qrAXwIxOTUNkSLuXjoYV10E/EsF/3bCRN4aCj+9Txqv+WHl3qp+hGk57st5tvNn/Tm4N2PzgQ77Aa0Dzoh7sapy0irv5ys2k0mwZm1h2o6N3MeOHD4x8vJkR7KLz5DuFKXfJ9opmR/+cfU5Sqs8uWfD6b/vTHWaufzN042JiqdjvCLQg1Kmxbq9r85YfpZgrIIarGePrjU4/HymB6rITxvOQ3yH7RO+VdrXTTWPcjWvwjMfqAI05eigsfsW+ZLqm0W+ptIjwFupyYsMyKLXxDlXbPLQavMNHs6ScFwt/pwh7L99vYOr//zRdlYVtkE3maqfpf7CiQ/+8dBfkVH8ler9K4T9GxBkQCzFwuvbzZX48ntRzRm3lC68W8jLwZ3vvnzPbB92FM0RoKaOM0wJvvL+FzrEQ60A8m9D0PWTXeQB+RhiuKxaztOLs0AqDQ3u2Yp5ApozMQBVz/ucHr31PM2PrpachyljM90ovGQ2dEAuCnXZP9CGXHNWVnQmznnHmWd+uo+6s+YGAe4K9Fvh6141yA4+Z3J9br0FTzLSt9eJ+KGG+u1nIvRSyf4MQ+Jdl3n5MxCvyTI4tMMrM+FFevLFrVEM7yhzyYD9303To1zL+vS3Dd+0uPAd0EYkYe0Xy5qObK+azgfnMY3WpNm/Vd0efoaroj2SWbC2LZ1M9IC2BDPSW6GHzsSg2qfjqwQHvJxshCd4St6GrEkq5Sxndn6sO7FTqmNc2IxpU+f2BvnUymg/KqZu32ucDQspBu3qjuOBlKU519uBEH+XM2Rnp6Qcl9s3SBlhkakpcqI/vlt8yYZ8mg4N01KFv/Qw7jZoxZeUxrdHW7DG/UaZUNWhYp0PXPjAXx82jM89O5w3DSInbfxydvPpBGgQ7JJfO5zLwBhasCXUe/obPP98bvzCJRfU9VS/YqvVX92AY5gOR0JPhudU9oHfWknAx3z/T+qme8Kw86ZHbVkUB4Mz5qcl3AZiv8mFOvjGoyP5cQ0cvkYKilY/ZbPjgUHUwUtqevN6Ej6yFqRZ057YfGcwHKBdK2/5K/58+7eS0iAxkJM+2zmNHX6VfA+3TRiI90lI3NJJ1g+yk/zHmZgcfh8L1DYQURHvFvW83SL2rhaWx0OsnBzhOa8b5Ceuk8SLQ9bOOPepga9aVbEhUAkUpyQlsBoy4HvIzP4EDdE0p6y8dz8/D45DrPFhl5+iUWOg6cBmkfwjeaHSy91teM/TzDVGbTWBEnzMxMUBS9V5I+ejKiQm8MqXS7I8XPE4ze7ILmrRa26vcm9cRfrcVu6B+PUrFoY1EhY3Y2oxm1cGNBQ8zX0UFT8vJ7xM/SGSub97ma/9ZL0K0cOh0EGU0cImudtqcdu13ErTE/14ECr29j0A86RdX8FUsRFLmvmP/Snh1Pr60JSpl4eDOCXo2uLTfQWQyY2Q5FRQWpmWG3kSMK563s8dXrUv+tX2KYARhs+V7owPKcbu7l1I1Hc1Dgo/qISsqlqmZZr33lvY+fdHTQO54TPaTKo7v0eMuCfTZ/tt8PEmGayflqnNDsHL0IbjqOiHdYf6pJ/Rqh6tjuksFcSNxLB9cEbyg04my+fTZz5V3CRtGAeG924QyoewE1sB7scE+Uagx/E6DjZsMYXklizJ7PpofXTqnp6+rahsi3hgvfaJXR2b4GRt+VWECPDL3pXC17VOtq0NC3UQIspexV8evnl2xDq82I8busM5a/IALrYCn0NfiGIa2fhg79d5UyJ8x/xrQZr6UyKvOd/M3/WJKVDm1re8RbT3M1/ughhdn4JcyQT3JHV/VQAIjzHm9HeWOwb9LosDkdH2zP0pcxPz7vGsoWf4hbnXaIs8FM1TpyDDpP26riye5xgbEbEPNdlPNZubUu3G9nnWlR4WXcFgMHirPYE7N5rSquoe4O9vEbUm7dSz4LUjGqxfluYUB6Fv/5H2jOxQojUvfVJNnnAv7s65puOmNMlSYB9D6f6I/0PppHB1El34VP5lmOwOcmfH8A5c2ZGML1Ec/7V72CQ2gkVDH4IZtuytIVeI+/TPuoL29w4peG9Gi7dMX8atVs2mUIbG27xCqlO1r8Wb6ddo+Myi97QjMZtzrSeKkTYoa/bmyt1wyFlb3ZQUzFbAJychRfTIC2tWhkvOoeESKFDMywnt9uehdFqL5bsWNEu987rtN1j6Smu7KDwD7oN35WJdSrusBjTZV4yHcVBQ0fHGb5P2o0N/Xtgl9YNZ6uth4LB49+QC9fBosH265G6IQPONUU0OuyHjgb/BSN3fVMzM1UZZRO5tIj43jHv7S1vMlwtxhubHfGs7PFHdsbrQuSHE14dtayQV3zWcB3/fWIL7ECzZirI8oezwcNCj2spAueQ8B5v2L75C1m49gGd1ArPWQ7/Wujz1oNBHQ84BXZnWTUUeco3OGX2C+s5gXzpnS72LtRndiffbGTJEQQWiLFQOOfMe8LNCpePclsN0R9Nyar/ALHpN0zF5mRIawfnztU/UckWpTukPCumwSet1kgTvgK+Bj+tFHFiaax5xBX8RLfMSrmx4MZXePyqdNfLfzobfvn72NmtGENb1PeEu/oX6tZMq36b37xvGN6vHlmNEVkLC7kmYymwcXmGW4vV2U5MzZMcVtcPxF6/lJM/BvH3YQ2x0RdXc5r8jf/vf/SHdBf4LKT5zfG7N+tFuTaudApoCSeApmZKJ0MjT6/ymi0SpqdwHfPJvHIoPABbW4JSJ4Y4+3xCtW7z60ebs8Msb3+CPmyp1cEQQotYk6Sj6bTtetRZ71+7MCCd0av+/OCCozozx5iXv1mBRZ7xe/u8ebTnWgN1CvVYldPmtCUG5YJf/a+k4OXN0EwzWprejemS98rHx/dz0R+YdZ4Ko+0m7T0RSG5d3sqwOoUj3lxpXDUS+1fPJo880VBC1YbFpjntzcbB79BF6G6EBJfQzQTP3chzpc2+PnZ9caS+CKqm5ayv/g7WeodgxNsUmaI/VB9jTb5QDZYEjOzvqxGFqKVcrqFLrt4u8rr6fHtwEsdHXLpgy5jBQpmdB31M92KxZOP90Fo1NsqPJAgT/fdVI7hCGbxeTMnOiQdFzaAwau/7+UeMZOL5+ETom+6W1PgMjOY6qwiZTZ3Kyo6M8Tch1+CmH86kQNhx266k60Iavw94M24/sZzvJweVLcDJtp1bXPxWAehMirAqPDZ8mrm6NIDWz9HKrSD1olfOfDBq28R8V1ZMYb1Skmgupgeu99EHv+QUPjq5dpHRNseb9Xcr9NG+Xz6kM5Rxvj4fNICBXvRYI6x0YzN3/cTtVdD1UVPvu9hpcP7VMZsPw+o+iUvVUHCsfz+80c0Rp6PFj2LRc/2O75+Chjxc6fTZm2Ynqgk4wpwjo5Mo4HI2fNlWJC+gpjy0jp0i/93ke1ZNf2OSofYwb+tUGafEzpH5082oHB/UYfT2yMkz+KO41NYw8k1LsRvb1HHBHFI0SEkHTl0d9UbAplZkF0+PpXE++DNwY1bIL1mi5hhU3h9qjQpCvuxYM4+/cQtmVofafUR49kfi4xnI6oRdj5bpttHo+JjKwsgEqAketwDPt8e6gzCDgW4X8ERCS+xz0HPBJN591CJex++PhIBb3F3Nn4xF8QhQTinK7z5i5fNRssh5kVHnLXVILqb1wLImN+JvUaHivtqVEOU4QavA/bxhqd2WPRDd1niAVR/+Qz4RSQxXaq5Mbu/rgZRqxq82mO561OlSIDnKwMLgFg19k8eKml2LBg+6PtuEodohpzuS+bFebX0PJlEcF/tHQu71kKN2egC2M0eYTQOoTGbTnxXw8f1xvQo6TwKwbeGTZB49OPtDEPU2U6BXtcbYl7lczdFa2HJ3z4FRt747MRLbyjwXJcx85hHqyn8fUewNu5M3LaWOjbatgPi52gT046mjnX1/QMknUUqXvZvNNPrQYS6uWdEO+k+n+7tQFFpRgKxXv4Qd+v8KPzpXRJor8SbfoOloxdlXyr3DkNzSWsfqXfZJXom2VW/hUsIHRHbxR4vnAWX2gFQNz/yF98nPTBnJRdIQz8ZV7x/+Yr11HvihrFpSCfJs+BavDGelvglKIrbI1G7nslB68iip0xRubPNQJznvfQm++wlaLEfhitzF/faQ26RVvVn5lysGPHa2DSQesu9q5f9m9NyQJryHPcB8bSi9fqb+nZgiU/kdHFfGT++WAmLfRJ80N/dt5m2BQzKqaVLXYNP9uU9QveeHxT4ck93NRxEdKG++hcfED06jQ+vJCOEaDcJ8dqkIpzWCcE8PubdIFn9BZyqVthxVqT4x1UjhL+KiX3drbwhlY53mP3ZwvL+uvubzxn1bLfCq+flgWj7US5oF7qcStrw5uPB3aRKORZrtju+X97sGfSCzO9DJO6mHBHLX0IEUnRZE6sPR2O4h5WGFj2M34u/GbXH2MKOjT4hw6UxqHM0Inje1jaWWKRxMXTRDPk1rbHsf6/xeObRCvbVOcOTPkzZePHrEpluO+OV8Qm6QZ9DYZtd5ifRVjxd4tlWQLb3cIkxmSWfwzdroRoOjBnixzTmajgI6E9fHvW68kZ8yhOEqbunomd++Wg2rgi/XS0y/Iy33j/9Nvur29Ll9W7w2lBbdE9Wd1xL9whN/W7MobD0NebC9ZFN5icPgf28hDmISB7dHLsCtmom4e1FvBl1IZ1bMMNRxkqxPlbz7iynsHSIx5tj1notTLdQ6Y/CmeyC5o3+9ASsDksPnEzpM/7W4xB0WcroX77IPe2aAn+Hd3YQizXv+zxR0Nor33ha5odd8M7aBltvXvKFgzf6wLAS3C8UV8JVzWbm2SE8jfAQrOXTLp7cLnFAe3wIOcQfI+Oiv9PBosKNqolcZ5MTv3R1v40DSttrhhbeMwL7HRLiH9w92hz63UVZOaCzOMY3tBk/YgmPzrnRYut4GfPWn/99/pKfsahYneA81QEVJznldKslDQhSfmNEeJCuexY3BQ6Hoid7vTh3Q+l/LZC73ZcYQZ9Uy3pMIQzYGg+zUhh/PApYtJy5ydN9NanNu4Fk5h4WelIa8+feOGgTpB7TKj9BTRY74z9eRITilM369MiR5dATMY6Vu/AB3KLT7f6gsz9q2eTtUxnULcNMj3Kh+vd/QbcL4p88gwsr8w5I2doHDGcARBPjoMBYt1dmBL3cTTuhT0CP98D2b2RWo340FVjiIR4zqLyFZ0TgceHGbvfsGY/dfvyowRy+iNU2b6NOyilSO6SUWJXvu07qSsVX2vQxsd3VLuOWTn65FTVPx22bHeLpA8EF7npj/nse59lyplibcyyN6ljVPjD/Lz4vB6L3HVvtt8X2Ra87shNpHffDdgOwMBeSulLvDafLXMK5y22iN9U55kdLz6E/imeGm4/O+RbCXPF4Y7HDr6u9UVF0qprSPmS2p2YZT96yD0d2Nghhu2s3ZuyqQzmeehJ/O1bRNN3qAG4f4BH3eTytdpL/x9eY62lK9i++LPGXfruc8z6+PzT0Gd4vYnd5jPqGdeOfPeNyif/Thb5atOQ79K1OeTZKB91UOeI28Y2mzuaoLBVQ5DIk9lqu+eiMSvsvnln+Dxvi5lgVKjOyLVWrdVfx7+246DMu48rZ/QxWhr9UuRqjy6KFv7Fi2yXK476X8ZSwIF74UPPnv5kF4smY2l9oQjdPAsO3jmZ0m5nLLTZ7mekTONnsr+ULNN3PYMega6uxft9qWOLXPx4p3Ps0ggpwyKzR3iExmxsX9NfKpduzd+g2euCPf3yFymFWZ1x6p//hF0TRzx31s3P+n3w7nR7V7OkbF75rnhMTZBf1Cx+E8OFZDD8vKpptySnUFdnExIxuW4MPF6lFQdnZmAe/GPFEtwq0eqs3+rOCMRscZpmoTN8+S9aWwydNXK/QuXz19F6RT9xLNXO2zuNns8DVhIotfAjVibSjkxy+OcttLYFoulCy8ORs9JZbnIaT/2aRlB+6Kb5hU7nkk8iwXdTGq5yQC4rfdoQszKsvMrmG060Zif0WD0a32juXP3tnZLg43hjtfi682ybBGw+CjLdvESAfyt8/f/JznWsLVb++E99FKzTa15cLR+aMdKscG49PJv+AZ4OAK/FTG9N53PggfmIbt/vI8liARh8aZLkE4zbMNn7ep0gEPmO533dGh0cqolfiA9vNQoC2bavk8Fbue3JLBxeJtZUlf/kIMb1DFfeK3Fz+9CfD+Ot1g2uZJhg1ionjf6+ZaEtaqZLxZCy3ApUV79WPhfbWxcSrMMrihfeeYDMytPCYvBtvwFfw7oIjMf2JxqMzzg24UdZQ3jUumgw/+4CmBBq714LfMRorMvrjjZh6Dp/F/pr8+Wv8AU7i6dGkLoqvZsCWfCue/sY3x9aTeFwvYso8EinMd3fMQp4ZC3/xp4KkYs9F/8++9lp+j2+pvGknY/7kegmHMOjYXpt3sfASwoWlZFtcXwLrjzfnf/yBWM9az8bogTHyxTch/qPV4lGq1BUYTliyg4KNpT6QCvDGacCInLaoWXgCSuZaphvZlzN2tFAL2/AjkB1VweCnTUFhuk6c7D0Y4p9k1Zc//kscv46q4V00EWrjkTMteny6YV/dyj+eyNypexrUoGEPz7WyZSR9qcZcxuNFJWkaEoevd5lARUcHg2o7siu9t8HutNCVTVDnjOQJ5UOf417R5Z9DdPtYVXPb3Cnsy9WG4ZPlxNy6o3b7EqQBr9WtHQv1jikwnsSWShckdP22cDTEdEnD9v3qd/wkCSHcHBSSg3I9dvyqSxRJcjjRqWt3lWRltwiJb4qXeoSIKJlK/I9v6ijRvO16tcNq7ngj7ldiE0/r1cFHi97C4mi/0AhHrYf6cFMY+U47Li28EI24r//8v7HocRd8poTElk3Zm1KZi//05PZNHTQt7/vnz7G86OfRvhkFJOeVTflH07yFzwsoHduUGcJVjadobZxg9QxTshdfTjWujG4Gpz5w4rrqpuOE+Xe45Fxk9ih9jd+9u8hArwdKDktPrH/8/m9+d4t//WC+mSFt6ZeZ0lPquFzJDhrru0meQ2ws/Xk1Cp9hEliy8HZpF0etarqhz8hX8uLJOaVLRXKj0xllNf+nrxPrMizXGteI/zzPRLlwQwzzES/r55nA+Z59iF+oCmJLxx60Oe1dWp4MBf3jBZnt7f/xsyGVuQBDZ4vMPZBXzMy92is70Xov9Qwczw9vorAPyJkF5bVAf/EVQbHcOvS4HYypM00NyGtPWPB7DQYt4/EEFpJGtj/mFE3niSZ/8Yzoy+8vfNAHuQKDHKwgzEZ1L11A8e8J8cxUq0SDhlTt3h8XF00TIvH6G09QtukWz69LHdOqT1qgF+7gVzLPxrTk+6DIRch06mTxlMpIhJP4FPC6Uk9o7Ir6jv7i53EgNpo2p0MIKBeb5QTI3ptuiCTgu+7EbDI12S+QVBl+q1288PFnPAG5u+CLU8k06fPjsxOmFoSPg7WsH6Pje6N0//Jz5vR4G0/5t1ipV2N2afu8WtV8e5g1/PF257VzYvH3kyyITDlkV9jxeIJA+6hLPo+3Ql8a1HTiXF34GwajqWNu7v1CCavYJ7vyiCu+z3Md/t4nnbq1t8Q7Fy3+/Z/+oeDvMRrrZunp/JP5Yu8lUrclIrvv2Hn9IC87cJvflQr9ueu4++7uIL6VF9sdJLXqs1Plquc7iYlmvC984WcO7NjsE5K+Ht4UJ3dFCbeTRAxn9/P4aj8Vql2IJrGyYexGoyMf1OvvFzG6chdLYnMNUVTayn94/qp+F+DlzydVzojy/r2+h+iuC1dmpxvPmJVEXsC9YNJNKr3Q7O2i+R9/Py71kwkLk4M61BOyL3fUGLcKV9Svcd0x6/n9GnQTzhe1mdQ7RnFuGBv7egE4sKVeOu8qND5sjFHYzwXmOblyuuRDoPjiim6COsn+6TM9YpflloSKz7+fZIItnRi5rlc4nv/qZYt+Jgvf6hr199L//P8SD1E2xMldRov+wshyTmgZn6wIR2fH8i3purH+6PO/+qlzUwpO16qkqXYhmOTy8oOMu14xoqbLR+aN/FY1DDcJurNfuozHQNO71Ns//kzO79Uh5n/XFmn23WWP1e5b1X969afmKfMUv68G+5qvFLNIIyo+az3ezCrkaNEjVLKSTTyH728Liz5n9pIfCzz9T35BV866QIOFtgIk8+QR06eHThDdOodaL3/E7l5JN7JQH5W+cYeFV7yy9mr2IfSrX4IF+3yJ+7DtXFh4JEuezw8azzxd/ePN7V99/46D6L/pUbD9f3oUpDph+tN/GQ2/t6DE/qtk+5tbIf6U5QYOso4ZwWKMJms8YSi+0psR2XE4XzF9hIcuEvqu2qvx2a3iCObX90c/zfYej+vTzwTvIe5w0Z0jY2hDAWDfnI/MqcRHPAVPPMP2W8hE/1ClG6rNblSdrLdZrr0b/pbGtYJOgs3xWoiKbKKpVsIKb2y6jf08m5LJMgFvzx0WZmvupv0l0+CUWm8614VkjNs2vUMkKCH97lxUdcYZO/Cx/Jo4xYfz4bp+lappuMC0uvv+jWeEgU8WiU/yyuOzoYeItYNM3/nsdLO99RL0qhqPuAxv4olhfQUrt2fMc14pn1ftukSn38MmDz3KY75a1xFEghwyX4Iy5r0TOcDwhTHT9hPOd4cihd/XLsnBL+Nu2mTzXd3EQ8WwHgTdpPBDC5+ruqM8ACOb9uSGEQvtAM8yCtAUq9dRlc0+J2n4KBGNikaDx2GlkYMTVqg5nI4lnOI6Yobv2gZXp6JRw/TWEPI+i6h76mEC+5N4xWLbyR1V70hBJck27PDbyLz/dbRB72VPafK4tN7wMKYUhGDLmKP9jKrMx8MdgKYNIW7qV+NFBRfSz9cle8mw+SReVhRGlvRM06Q1GizpogEUc8288axnk3c0XMCIfYidBZIxY/NhouVvvLxvLJ2Ts4yi0UnpRnoyb3SPvFWRU28Y2Zw+8XBsogt8LEEnWL/uDQn3O6xKSCDk6fgHb5b2fQ/iO10x7TcM2cgOUg/OxpboLNpdNt6ZX6Nx0CcWkG/JOf5VJ1WVISJelpvGGG77E/oZdUOFy/vXTdrSVbgTL9ryvZKq/15+PuxXUo1p1rqxOBrKDBsN/xb7XMX8kxslKHOvEcd47DmXxLFAAvd18sQi51OeiCI6/5I9FdcWyXjRIwu+78Ikp2w3Ii6H0wjMMD/MaJ9RNvgzdoAzt2OHV3XwZtFxP7DfrC/EUnO3G+qH1Sp79vgfAAAA//+kXcm2qzAO/CAWIQSwWBLmKTaBDGQHGQiQhASwAX99H+7rZe96ec8bLmBJVSrJkkF0+irQx5BKQTP5mBP3UuRoBiSL6nw5LEK+3KHhmyaixh+jz6xjbXbTfpqN1dgENQsV85LyjR4n2pyuGqqgd1OzowgCXO19RNfz9olmp33K2jegF8yht+u+cgoRYmcfsz9//q77VAB//UvpvLbtgr+cMoJc749kz3qv22hH/42ELTH/xZf5nQh3OOHuijUjEVLmhfkBfTT/xJxmO/Bl3pUB3uUUYe3kSuk0sh2oD2dqSYE2Rc16b7lT/GUesfrWTjl3aQRDVx2ZN00657zZxbDO1wcWZr8n4rK7TLFfp8tenpdcswfLBChPtkfX0gASQO2/7WtSaauPgPuzxSwqeXzualMEUwqOxMa7PJ31W5ag5fvip2XInI5L+B6arGFWZm5CTm6vGZpPVTGijEM9FudnAmh36IibPp2QwrwPtMoKezxfxbc5ftTAkeunu6f7aTzwMaxuATr56E0869GH7BDkCfTF50x0ffPg8/1mOJqnrAfmye51eZ/cglvhrPA6rFnaPZd5agnKahI+DlE9nZinQ2BdzsS7lNtuzVor0N5e8yB+YOimeJX7BF387oXH18biIrG/AjC974gDyRCOnFUHTfrMCl7Vw34Zsu3rcJ5uG8r25Z3PrzvogAX3SUUa/8Lecn4G6FrlElPzesQxqQKwb/2LZcud7GmdJCMClU/EGnATcvPXZcg431MqLPF/0r26Qs2YTxis97aWHoJtwRKP8To4T2jQ1qQHii8T2x2QjPjFbWP4qXXO3G5+pZN68a7QR2JKLlHfme3NtyX1HFwNti32e7T+Spyqnc0brED7Q9w7zIbWRemG7fogCXm5mq8gjV+PhY8xRf0zueTQvEabubH7Cudf8jvAfBI0qu3JB43twTzBy+uebAf+sxuZv6KAvPeaQiTv05Gs9RzWe80heH3ZmM+vXtzROyUhRuPRSKW7qaua1JeM7W18Kii0013D5e1GJ9a3NTfyrQx4tRYIzu89mtZJPqufV2WRoPXMYkTJ+QT3dfslOhH0jia79gf9vRkJQdWXz3i7iqC3+wpzLbGKOdmVLZA+NrAwaoRLhn304LnOWrZd68KCx/4I4WdNyOIvfM728hXNNi6Jg2lbjDffFkHayxbxn+4T9Z9v+wbj3lhUKZ+12dz8nQTf+EVIMBtnNGxPHw9tE/5gmKNvN0+B+EYbIQrYbpglPolhDMDYgxJsrnzE55P/WxT7Aavb8lJM61cSwO+VmGx73NlorKpZBmM4eiw0+TKV6xW8wVCPjDnt7W/STynD/gwdCfbms55u6v6HJJGXdDyXucn99VpHZJ6XPWmWn/Jypd5heR7a49+uXvDIQZ/a80lSJcve8vZoaTsPRSTQVbUbJHN1Uk9xoTKsFjeTX3MiwXGOD1ToO92cjegEkIxBTuX1bULsmhMRcmGjEkdpq3BK61MDPk8yLD+aXc0N0XRUe7BdVohbnr5E+VKBd3cMKntTwUezb0dY78SB4UNe8v6o5w5MIV8v/jhxnkZyAIMqb8huVRvdws9mFa6/cOEfy97UcCPCI3zeif4xjeKPjyiPsL4z+zIa9cJHMnin0pdqZyWph+jZtBBtxh0W82I2p+jZ/1D9Il869fI7HZ+FYqHJNVd4nZ+26fxebQyETGlFjAVfZ8kz3tqqku8khpOL5s7pZ/RTnznza2T9+c8J7kK1IWaCU5PHDWuQIik5Vp6DXovn+war6500MOe9+nTjZ7et4MtWI5VrSUup8ywdzW4iBW9meVNP1zK+aqBNAYm8axBO4725wkebxX/+3l+NyICmzgMWfAM/bY7p5Y6E6yOiqvbSzfk1oQz4kGE85aTj3NCqGX1644xf/pSGvF/nFESODQql+6unc/8L0G+1j4mxUdx6XB2eFgxlHLHo5Y81f+4ED2Tnjuiq8S+FJG2+OqSkRHg6rYxw3sxDjOaw5yRUu7s5J2fvADryIlqYu4bzgr0sFX0HkeAzNk0RrR4yGpPcYfZDcMyJat8cgh0y8TSNIh+VeJ8gZ5XrzPHKhvNDk17/8IkdEr8qqBS0V9R81RsxseAXkx3xA4pUz2N6YkRoU144VT8oU1h4b6SUF1GEAfIkxpt8e6lpiekP2e9GxEIV3BAfZpAQYzfKtpPaF+NpSH7aXzyVdlWA6FydZXhFXCE+GH3Yf0pPRbf32SfmySq6kR+fARwSQWR6h2I0ged6YPI5x52x/aT9TcKZik93Ql/ea13TuXrIan4QB0a8dkznrq8rMLXYYQ4Zacp3K6+B0zEc/75XONiZrMIWfx22zddBJ2npASNl/zNJFMZ9SqXm+4OsyTEe9c2Kc8M1SvSXn9g3PUrX6sW7Q7mHkUQvP+7YIV9Utit9Yu0jV+a4LJmBkh5l4qeRUHC/QBIy1DNjzmvXpV9mdTH648vRi7GUa2ip+NxvB2JqshlyT85l5D6UJ+3qN6Tzdp9QMCXvyJwf2RfzXJ1VdDHDhOmv/duc9tZ0h9VHl5hPyl0x55tHhgYp3DJbfh6L/rPbllqwLwTmJg992TNb3FXY5wYtsvKXznfTU//FhzArg0IchL0K9v1gsqzCWSdeX40K23N9pPDbrsz5dzV0kPjWJPfZH9J35Meitj9hjDc9jjiV9lUC5+/OIbaVvhC7iK2IMrl6E2sNyOywY1zR1xZqYp1DL+WKcT8g1/1N+JWfnsVUeX6E7DNOyMK/EffC5IS+5rvF8nb9NKkR3QV0/OgBO/3lkxSBDu/d6UicZrvjc/O8yFA854Toq8Oz7rTWA6jLB8erMh2XqYMRBYHcXwyfWqvYzEHkqGHdb/CMbyhl5UtJVFacT2QnaDUfP2OVg3ur31hRRC+ll0jsQXauiBnCSkH9tTVGOF+jB8O+ItTD5fAxQD5ubnQuLcZ5L8wZhHvIyWWVrLtRmLwA8vvhQg7Xxz3l7/KbAbLuNzos/KA9/cRR/XySJwn1tY+aYRNbkLfnD27EUeumvaVc4RKZJYkSuBX/+P7adza0XfJX/vr5Diz4xM497vk3WWkturetwQzbt7s1+lgOsO3BJ2RfCnwK858EUl8xuj+tKnP0P5mMwlxqGdk4Ri3GSnOAxy1FeMGvcMkXJLiG02Ox1zqkveXI8L3vUoIvCUvZZLceHBq2Z8Hv5PD196qW8GzzLR1Ta+bDwi+BHTYmLoeLkI7nSXrDpNc95p+1m84/5uco7D82MRz0RNxPDh7K3rNPgjEuunFV/GS0jYuGROXgF9O6LwT0xzcR96167if3Dkqdl5g3hVMs+YEOyiN22fGVXEO2S3QdLfhIkb7apuOn1FWAXh8oAJ4L6um7GMKLFbJ7Fdz4eEb3RAkPhyOJ49wzO5puVNTMIcb7w7Yt+EXwSshWvzNzv80Tzfdxe4dTpK7wd3UdwuF6Gke05OPMuOUNn5pvhNESHyh8tATNWr3+hx/E3m0B8fc9/OtIGIh5ls6Iv3c/HYJc+eGRvhAaLstWxn0pqSy6bkre8aERIFu1ZxK65lBQfXO5A++MlC3+x4dws1VhZ+QK9ptzWE/rQr2jq51GRD/K65S9eDsCpnRF3F9Q1j9Bk2TkPd8a3gzSvutkCzB4L3ZkhnOsw7ECsGAu3CPZ7ddOx7ttfNLIpoqYbSlWJ/VnJ4G7wrcsdG60+6cPFM8xYU6QbM3ZvfYH0FeywS7ftYxqj6IlH8lr5gsxq0dfjRPtsI/OxAmSZcI5kiW0fB8sZFJrzq7RBeD6F4ylVfzmvdmXs/arZI8VJje7ccEHhDMpYLpAK9Sfw5WIEm2+szCz6rBX+vGgea/hyIwrdovh+h0DCIu7Q9uCvsyx+JUtvB3c0D98HF6BG8Oxm3UWnJ6Yrxf+gEDjAdlFXK/FJb7C2aYR2/2qIZwk54ZRIcwy/kx9Hg5b8zP+6Q1UIx+D91+byYhIMmW6tmxhao9yj1bi9sbCNWdd9bqDAaRPDKIf+g0fK8IrWMlTSqUg2YbSpjJntPBXKv6WGQeE+C14wqem2s+xET9mN1mefTixS2g55qge1hGyJ1ISrJBVvfAdHfr3+knoNLzDxb8CKFrVJIs9ocE+pTp4SVSQk1DGHbcYOcHh3P+IIR9JOLBfpaPUKwJMcA8pnejtiq7WlzLbefoFz9Hv96d3sLC4N+FYnL/xnz8ST0nzdKiJaWhxXrQEr1dr9C+f17TeY4b4cOr26U096FrpsuASXjgnt2FWha30xNNh26b0nlaZug6vM7FFYted91EyuLj7H2ZCJKLvLwZBjY/LndxLqKC5icccqt03IwETwu4vXoBgNgIhpULqebM2Aw0mVJPgpEnmtPa4pZXuwSK2fQz5YH/zTF30IbJb8H344YeFzuZhzzJnIPVIwMAgbcKCBOneDtkhnWDzflgzW/QdNB+428DCd+lgJELRt0H3A/nzUhd+gouJ1iXW/vQ1+z579bjYK3i/W0jcox+aUtd3pbrLUkqn4f4KZ3aJDQDFPCz+1nTz+FVKaDHiVF5+n0gq30Dno0Nxt/jftDfSN+ynlUK1zus4FTRBRbXrmBjsqCxo13cVHFdqhl/L+W12iadrDf2lhDhNY47PPmngPD02eNJnEs7l862r+Kv5JJTICbEVpxQt+SR7oMrnrPSTCIUnGjO8DT/17MV0RuzHZLwSjFs63iQnA1/NfHZJArl4bb/vCn402BM3eZTh2AZ1i17bemQmPaqI83x4Q5ndTLpa9OU5K+IAbkV/I3jRA0Z/HBtY+C8WNh+1ZtfclaCv7I7ZlTGnTzHMBOQVy5T/LakKRnZWrB72+Ey2D1ct+qq8GShC8ovES3yd1KoN0LlZZnRm5FYw60oEdcEfOrSql07iR9aBudKV9kv8/uPLkIjJTHb9GCMp35xztEtrGY/nUjXZRs8SkF3nssSHXaiWnU2BHyqdWLOTdOuvjzyowv2NbO3fraZ5cBdV0Q8VZh00C430qMVgJ9cr216+u1AUJj2ATjrobGs0YTrjpQNnyWcGKcmV9O980PloUXI7pxzNv6Mewf74HrHWqm067RRXQFX+XeFFL0+p5oslGF3TsSu2KBq+7wT/2SexzHnTtZZmxIr9XirwehSnHFfPEn1Gb2QnNgj1uBad+E//II/1wUnHD9djxKImWSo2q3p+tWkP9mbgbHtDwFtF20uQfFuH7IDphfgxnyJsPY+z3ZJfzu/r3UNLPMLSe71kt0H9067u12VR9bBr9t79DLCS+r7om7+uH7q8gmSSN/Qvv1jspZF/ZbljN2B6OnsaO6jSZ1SwtM/SYgrTrwEGX1/JrmDI5GQXJai/7K50TIyI88LoKyT9ApFustWyxRm/EjDlKsbqgc0de4SyA/0Vr7F2GtZm1zXTv3zonz4+3b3jCe7vxMX3Ra+Y//ILr7C+LLruK/Of3nf+aTVdVfYQzphuRjCn/EHZo6hMGiVjBXjfX2hz6xDq6eMqQEz8O9ueLma6eavVW6tP19fSUfAp+vgbiH/8g/iR0xfjUckicPVap/I9G8M5TaK3suRDJGBZxEXaQgteSynl9JijX29hVTlKWc/iXtuE64e9uv/js6G4TVPeVp8rMu5va9E31YJuu0KGPbq9mB5LLF34tgpPqh7YX/4yrrFbgbnS60UP8gp2SBVAb8OK2CX8NagvpuqqCVZ0xckmbdHs/z4AS/xl7iyfu9lAWga7bE9ZsDeXMGBoMlryPbLo+0V/vXcOBLf9a9Fvtp1YaK0Of/rcdqQU/dNjF/wgC58NR9HvGhSOwx1vTuEUDjQuJVj/dhLz8YGhqX3EGay+2UQiNXDMefO13+CsMp1ZNA7C8ekpFF7O/r3obV69KYy+BNbsXv/qC3110k4QbshE13DWUG9pQQJKnZUsZ0JYs24zNtrOmkUs/chUTEmiOWi2o5JgxzyF0/lSjWDIn4QseiIfbodcRoe7WDCyVu1wZEy4o0VPY+exvNbjn964fzhX5vZi1/HivcvUaXI8TJf841+950+P4Us+3xdaaYDdnX7MVmpUcL63ZSipdiL++0VCrhink3rnCaWfX6B3mz899u1IBln0Y/5Xz9I+3/ZKRb3CoVhgv1HhVea4Rd2xWOJBBb6sY0Y+Ljfniz2rAOo0Yfl2+pm877ih/dWfwrm20fzzgx/ibZsxu4xPIU+VsddSUqFly3Ztzl799kCwBQVvWsEMx4/5lABtHxbmXcf4dLrqLbr9Hs9lRjGtx2vYUTgEvcncKU74dNum1T988Rf+s/7DazLmBQu4pXGmWa0FX6aNhEilycV6d1s6ys75nz5bszzbztq3IyqGRR+bbHuqNLk/jnTtuq3JlfZmoT99auE35nDWwt8/+3OqWi+meyZIyFvbG2K4T72eJHNzQgN8D8RA/pTOWXURQN4zmyz5WD3GSnOCoTK+dLOc56TybQtpMNmUIWFvUjiqzj+93O1mO6V3U5e1JT/BP8PJwv54nTxUTIGIFS820TCGLwv94enWajfd+CwmB7hQ7xa9/FlPwahbIHgHkT3W6iuk0Cp3VPfH/F+9ctobRYMWfeOff48n8XpV104P9HkuvsVcZvigyv15JM7PVnjXkxTUFQoxZqEeFkOdVVRTrnK0dPirHX3JGgZ1PNn09w2+KSef3RWdv8TBQm9vC3H9dFT4q+c2JrCQW4YzwvYY5sy4X39o5NefAKrXbUgUSp05R/3UA+/HkdxmEXgffw1Ry+vPRKL2oqaTeM9OYE7Zg2znE+9+jXiJEQuiM3PHEjr+V89Zvs+Sn+B6CgP/9Gc/JG+9upjH8iJqLFsVJOiqppihVa6wuuYBI0He1/0tJq36taHGa9Gm4ZxYngA7axT/1W8+82nbQjNmE8POV0TTUk+GXZi6FHApmby6P1qUx86GKov98sNbOWzwaiNgbU9c/qdHa6vmhyiy93tzrM21oKLj68qspd74Vw8By/SAbLMb66a0vv+LV3j4lq7ZF1prqKdo/2Tedr0N562LdEAP26OZ3fn1fFi/rqg/2hY7ToUZTslq3aLdbdvQ33f0wlHUTfX/mVGg/u+Ogtqvv3RNj1bNX90phkv4CVjYHWjdragaQbxUcYzkuUPcfvaADp+0Z/r9UqS9jpMGxM3rxswPmYthU+snMC8op5M7/uqZLj2l9rlKKHIeP0TtopuR8sy2mB+/jTlNh8yBobqm9GoRhvqNoWVAPktoaxotHcqD4sA9Cq7E/27qbvbX5IBeqm8uiuc7HHV71aMbk1uqzX4X9te2AzifFYcOZeKa69ujz2Dl0S2zJvZAY757WhqUgoVXeErS4brTKvAVZjDdvufp9FHvI7T38ksOeLvppunWL3tUrjaJjk8TTQ2SLEUsRUas3hRTbh3CCtUfOVxGVj05dzbfBN6k9cg5sj71OAX+Hd3E05mKD2ONvoeC3RHIo08s+VHVkyc4MvApaojZnmg4sToWtVObIGa88Jm3afPRgdm2TnZbH/NJz56Rem/zmBlsaDp+eTStto7vKvHwbw7Hq7TLFcR/CjHk6Fz3uq4EqnNTQlpbrc2Hb2Xomn5EX2LzMS+4qAi6Ih+uHcFE3fP5O50xDDUD5nWvNGTEmmP172f916RoQvLprobOL8Py8XYpZu0dyOBdLkfipdPQsf1wf4Np2EdiXF4/Pl9TgYKsHVwWkGoIWVU/G3D3K5sFfNYRj2TZWW6IacS2hGM6foOLoAJyfXx6fJHJz78zqP017Sg3Y7Hg2/0th5/yE5hx798p9Ud9RPPr9KLaT5TT8e3WEqSlykn4Ou8KPpb5FS7awWRWHsXheDy+YzBiL8Dz78iLmVkHAXldZTLrYRw5z6zvCMdJNYhL+FSPePRKNazkiLazaqNNYiaAJN22ib32Oj4ea7cH0q49Fspvg0tHmgnwMXuD+RNROW8bOVNL+eTReqVodcOR16KrvmRwH7dOp8qWD7BRnxsSlk+3m7ufckLTIB/I6ZkY6XSvJxGUKyR4ymlQjLsOWdCfmgM1V4ddN/SNHMBu64bEf713vP/zh/Px7VAp5+u0X+d7Q5uvD4/o580XTerzaUBoxltm1HupoNdU6CErYIVXb91F/J4mxorOo86u1+VSBn49Vc2b45nyQn10/foUvmEUEh+L3Y4WvP1KAGtttojxe39Dul2fRUhITeno6DaSUmeYYQjaHZ4vrx+aDy/BAoJ7g1xNQUHzU4gNsPbnjrmogG48O0MFhR8ZxLX3ejoMll6CdzIEzLo+TSc2qgks9kpXHnmaTEWRhC5Ye5IjTDKvhWc2wxwWE3FjdUgHAVmNFuYGY1thaNOZSegKzHZ1tgvhiCarHWcob0eNbJVNVU/toXyj3TQOdBNWy5aQ1WVW8x4w2x/lph5zpHpgn+6I5kcs8zFfhtFfWvnIDIlI4Ud6fhP4Ka1A2fzIu2m3ulEg7cZjtmbQmj/3aq/szmuFbK1jjtpdxx3tZ39sLPjaWI/RkqG8mq+AhfX+mY6ftxiA2Rse8cSNm46tE1WAejkg9zGw+TjKeQW7C3zYzpsLxG/b2oPKwi4zRrEshqfo52CsxgNxv01W815IBdR0gkWc12Yu5upW5lp/EToSdgdcS3ZRjwjfjZLOjr2q+eNKDdRbjzeF66tE87mfWm3jNT0JcLGvZ35oSih97c12g8Hq4cdHWdtN88CMe5Aj3n4FQOcWbhhuwcj7zptbOA9ZyDJFMLiIvn4MBUQNCWjOumm19wC8Yb34YxrWY/x2TnArQSdbLH7qf/Y2Xe5v3LrHRzqc78cGpinpcfM+t91UVnmJOmHE+Cniop6Hc+ehB8cyseZ9WMxwOOhIdFcJc5uV10lMQnd1U3Of7J5Lx0M4HjH8/bnfjG3Ib9vOg8LHBhVCKwr7+FeManp9LP0lMBW81EPxD2+Y3pwATZctz8HOJsS2R7npxk5//LNHKnb3xpxkRZtRkLwfWBl/PzQ/zdMPgWd9sAp7zuen2zjaZfU12ZFf9ZCffw8BWnW8MWsrPcwphbOjTsudRc/ydLSBcV/CXhHPxNmmVjE+utwB39+WdJORMmT8/nfH430j7v5xS0ehPpSgG8+EBFXZI+aelBbgWh6X+Lwzxc+tDMDYF5yK8qPq+OkqlKo9dRkxmq/LuUUkB7218EV2yq4Nx2OUx+C+M06WeIcmY2u/0XkcazoncWb250AVQE6OGvFWF7nuu0249NDjDfPDtCjGoNlUyHqLIzO/0dIAhE8jvH/iiyRS2aHJPG9VrR/OBtlt4mUPZn9oUGKubpRXPyMdSRheFZqtoz9741M8HgT0kWjDyJMlJn1/qxK5qX4lJjUu9ZweSISssE3J9pqfzL7pSxnS1+lJ/GC1NZd4X6HH7D/xcyjEgn6V2QFpjY/EObpf3oarbax9t3VEAj6XaJxLSYZWGRyGrdcqpedHjAE/MxmL3jEy2asKYqVZmxyLzrdMqfnrSzhSBiSqJCjaCn1baAVPxNru8CnYTTu2CN/1kiVlloTTy7oYyxKS67/3GRd+o5LPNNE5aqLlfKQS+a/9gZirl5lKKMZvNPiNRPRsIHzoMBLRSJQPs4aAobmcPj1kj+OJmOrd5X98AR793Wcu4fu6nwv5pF7JGxGSd8dwls55i+74dmXE9V7pOL+sE0BzKJgbaB2fG8eale4t+FjslXypkN8qNL6vf1PLo3AOsyEAqMhAvKE6dOxyilvFTY0rs1n4K8ZPRSks50l0reL1sKm9A0K/6cq23uadjsnZfkNRnz2GbTdAyy4dC/mb3MDDXT3Wz2GFDBh3zQfLq0tWj9qRWxrLG5tgM/gWf/wIqOHcmdGFlz97TYAOicoMdsV8PvJHBf0selSQ3E84jMY3AlC3MwuTy64erhtPV311vmDZPT4K/jx5AYgicfDMBqueWmOicNENhQTm+VBP3+6ko31zTvCmWbX1KOok/vu+tEmSXbG+FXeAAAcjHXXT6nj42UZQygcPC/CV674+NQ0q1a9HvO7FTRoeHr2yxBus6FNgrqMmEeFBJ385T8KZ/ZpzkFdfl5AD5bw7btEPopZQ5n7kiPPf/hep1k1L2bk2PuYASRujK342xHl8UfiT8GpGlVO7dA6p061fu0FXfd8s8fv5vtb8MFo9qlhWM2/hP3N13JUoP998pu+/CeJkE4/gx+s3c81WCXtjqFTty2Ob7Rb+zT8YLKhu+/Wfvac/2YruELR7iUT+Z7tsIfEk6AvdYHsRo27c26ceFHHO6OtmjvUnid4CkKl/LfkGSlvVl0F1/MeNuaoU1fN1WRV63HwuFILbm09OHemweZxzEk7Vi8/0mxt//J1Zb2dG0zDv36AlCsH8Lx54sXwH5SokmBdH9neePZzNR8awvrfNdRunAfCO3bGsCBUaJYHJ0B3Vmey2uVVPihH3kCozwerNQ13/ey1T/uv8yLxyjsx5Vr4NKh/3jm1TZJqjuBc8cBzXwZtiOBQcRWhEysbO2G5nTjVf+APyJlKw6FY4HdeUV/XHd2lu7dR6QlDLCOm/M7N24R5NL2tvwAh+wRxhV6esXi8dNfLos5vzLM3vJh+ugI6Ozbb+0JtDZY8nIKfKo4IWNuH88WYZxqiOWZSZx2ItDHWgsioPqZD91HrcGOsMuu/eJ3ssfrq57nwRUrs/kXCDp6JPH+0dtG+n4RHphnnDZo3hYf0sQt66y/v4qp5UpgQKHu+/yRyqbSXD+5RviJuJY9j657ujHiKbMH0ySzSbdAJ4ucGT6MlDrul33bQoOOs7lgSyztfPjpaglKcfCaxd3n0VIYxAPtw7Ym0rC/Hm0IqwxHdmj8nbnLa8cTRtFRrMl9MN4gseovuj5MQO7JH/lt+nJlPSEjtAUs3HL72jwXs+8Cvb/dAffwZv2hXMc9/rsJvm7QE+627HrKl41XPgCAl63eFNX3t/4PyUVhVACRY57K6fbvppkQortYuI3bi7ehLPqwM8+qtPzOs1TMfPrfXgHr9Dok/tyLunf5bgezb2WPld027KxL2s/T3fbps33bhNSkMjX/WB1Wvd1Us+fII//Dyjfk6pl1tXIKfSIw/fdpDouE6FXNwMWJHkLZfUT4XhewSVGT9Lq+klMgyI3mCzMwWfi1qul1C/JZE4hv8Lh0YP3/CqDgLBhXioh+nWWLD2aUiiOPfS8RglMTTsULAi+ZnpWvKkBvx482ZGIJdoup3iHD7D2mVG6UI6x4JiQPs+MSylTE4ZfKQfovOsE+95hnBsYbxCF2oC1ob0VYy2MuiQPc4nsugNxfTTLBVkXdeoePmU5nzafU9wiu8SXq1KmbNTWpXwTB6Y+Vrnh9PyPMhxbIcZr9FM57ItKOzfd502s37s2j9/Rnp7ZslN0msRVsKyYVI2SB5/Wz7spC2Fw745MhOCtGPP3RDD/VHxBQ/tYpL76wmw38wEL3ydU962y03+kO4P09fkkTw66P45KTTbjGE3tZdPgKSzEpAtTq6LouPGsKz/JjEDOxTZJYggu+9XxLAnOx1mlgvQ0L3FnE5Ma2589hSJ6/i26AEUTa6inyAZ1JhuFn4/HKd6RhIbCMPVp+ATqzMJxgDHxDxqQtoeL6hH+CW9CRGvYA5/fPK7fUZUWP4+v4nbn7Z9Ti1dVmDXbJciHZ6zfSH2+vLsZiPTfpDP3ZvZrZYWIrsYERh42ZI35yWngVZFsNO3In33iBTcxfcR9kJiL/irmPTbxy0YHyBYXPhIe1C7EyjimGGm2rVZ7jrkwD6IoiUe6Hz9p/8Md6PBX+e27objQ1Rhq3yGf/kbCz9+hNaoO1EwL1/EhkN80JjsVmx3V9dd81KNg6Z9DhozaUoKfq2SGRZ8IruDS+u/eIbOoqey6JO5fBCv1gi3inyZsTlN9bj7DK26qYaZOD9h4POQHnsY33eLeW1xCWe9DyV00ESPec/z1fxO4ToCYzUfmFlYCqc/N23QcNcbut7TGxr59zKqn6J08WR8iTmQO3WgvVdfEr7aOnxfXHjDVnkNZDdTFA7n47aBTZzPzOoVNaSJKIjwXiUpVv/xz4WP3dssZrcQ1nwe91IOEBQfPH5XJh+Dxwjw/O1T8qmmqfinpxnfnUy2M3/Vr/Nx+4bhJf2Is5zX3IBM//wLf5tHkk6e8xRBa/MDw/G44eyt2QGUqH9QpF29blytwxyS7BIy4/IK0PBZx5FmYLMgZPFHyuOH84+fZAP/FcPJzHs5GF2gr+Dk1NN0ObXwKhrC0oXPz89wKqEyg3GJ5w3iLDh5am/d3swN8bYW95t1BN72E9MRNLOb9BgfEBR3ATdJMhSTn8UUWJneiLXVlw7kL8XoetB/VEnOcjoZm6nS3l+OyfatVJzzlnh/+QtVEP3Ufac/RnCksSWOMPN0fF4vB6BT/2W37Uqs+YMe1OVGREH0QAq7MdlNb/QLDM7813vgNNpoV6jD9ky26nWuW0IyFVj+ttnif8VwOJWqlt7Kgp0ex5JP51j0kJAZD+JdVhbfHN5yDxv/Z5LwXH7D6bTaReqsjCk7I60NR20/tFDI0g5vztd7N2dqYUHTgUXsj3TupuJ1CSBz6z3zNV+rqVS0DoS3wiHBqtjxGZ930l98YXaUeuHmxRVPa4bdQPQ+XtVjUQQlbK04JLiJ67Bf8kl10YfI9vnc132yU95osQ+WLvnGHDhSDJn73NMfn0s+6bfPDKlNT8zVrJpPHMQMPcSEsC1OwOwfmgeqsb9wYq6UW8flwP7BmXYisy6fMhx16H4ouxkn5pSh8+dvFP70QPV0PKTTzNsMzsT8/uW3Jk/MXFA3SoKZcTmszekvPrSPRv/Dy3r6se4K19PxR6LrS0fz9bp/o+qWrskf35Eyadeqa6ADlsrxxKl33//3vPzFHnhzKEVlp5siFQL8Lvhb23n/9AoXFdduEz/WHkBxFYjxwhvUp9JRBW9OZkbe0q6TO7QPIPied8QRYyPcBO4oa7druSf6+DwWHb/zAD37bMvOYVXwORElEcZEP9HjF/vh+q5+EnDc4EZXjzle9I2kVI6Mp1gaItsU9WDnQXAEiVzNi4/W219mwQvhnNjXe1nPsjrmMGgtw1KOX0W3H04NbCtxxc7rOyqGn7y5gxrcGLEOBHMeGVaAIq3nRK9LCTHjMsYgR+2L3fKjXW/C3h3htRFNki96Ae+N7x2+l/Oe+eg2ca6ukljNJVNjf/jEeuN5h+LaXHArbrdd2+ffCpy8FJnjOWG9fj9SFcQ6ZHi2p1fKKCswaLDM0vI2TvoPz/7xGXHYIxY5l/c/PLNe61vIlpmVaNTwzEy+UlF7dl4lWG9ppEAMCY0c6T+YmxQvC9f1VHRvgYQWfZ4Z9yKuGc9fFFVyrBPi1SjtT93vDe7rfKWrHH6cFpqP4aLrCkV9X5rj83lW0ZM4EtsJB7NeszqWNP13PtOvLb/qXk0tAe0TI8Ho5Zxr/qd3Hx20wcaf3pywMUG+Ol4I8cS92WdE/xevqSYc6rqXBKYid/c8UfHRbNP1H/5j71lgsZuFtH9+1RHy8vAmu1Sf0fTt7jqc/N5ldoBO3fyL2Rs16y1n/vgLuKimEfzxSyzP39jsptk/ocdJs9i9Sredyg9NpTHF++/7sSwxI5jBTeksR+du4W8ZYAcXbCd3UFPnu8NwgbhnUctvaCYtULTgFZa3qt+N7jOLIe8FzP7iyfDTLFlb7JFZ3b0Jp5SHFhzpAGwr4mLpkMtU9LohQsULyos3zxRAY3hTiKM4Hz5ctiiH7J6uyPbd7kKpl/MRDQ1PmZ4JdidG3vEAzfHSEptEUTG6vz5Gh/ZsLvWWI58vkaH/4R1zR6UrRladMFr8i7hZraY0v40qqOkxouvl308f9TTDdLIIs20SmqJHlR7aPdriEbS6G6bL6Qenx+WONzf7hf7qTcip8z1dq+STjv1OtzT/lR5ob2yEgier3VVZ9EASFKEazl11v/7jfzscDOaSP11h8N8S82+ajuZHcs6hsh8j2+6EJ+dBtLmD1KVP5rPkUswC/sRqc7qu2IIP5igp3wMs9sIWPQf91VtQw+eA6Qs+ro/D/QCTuXpi7RF2Bc+s5wz0VEXEhGK5UbB6Y/Snx0eDqqR838aGVjT5g/LVyyxE4fMU0F99L1r0evZ7mD9wXO9GTKt98SW/ff/pscxre4yGWKxybQiRhP/0R24Zh98fnjN3H9bhiEqawa/xFabv1baeTis7+tOD6VzzLR8QdDKsk0nF2mYtdZ3XpA66QNIzt/5szDk9uBhyy5nxep+bNQ97dwatG7vFnyZzeioE1F2//xBvVl/8Y1zkRGVXZJMIjHTRr6ITdG/wWbbg7eQZh1xrTKelPDBR/S4nRiHhr5YE31Q02XZ/zICtx4qRx06vx+fzoaLVvcgYDrBT8PS4lUAoMomRzVta+G32gzp46QzTp1BPA3q9geLeIfn63tf0qRpvuMmjzfz93Bazq4oWILGPiQschwt/wpo05OQfP5nyqxAD1Htr0T+dblS2JwemQT1glT+7kH131xGs2DHwFBOt4/j1VWGpd+Apv4k1X4cNwLTuc/bwyDOcf+HXUCx15zJjlyfptFsd+z+9mG2vuWT2K2c+wEGTvH/1szG0XBUWvYUsegOfitfeg8dRGbBKu1c602J8a4t+RQLTEdAvos874GcuY+Wk1Hx6CCJFn2Xr0MKniimragO6w7ogtrm5dJx29oj2UR0xe9G7N1+fnOCpe5jg6oP4Us8T/9VzotWtNuelPqEt/z8J741jiks+DIjtArY9RcuNxqtvoYUvU2mz6kPetctMcJY/mHekJJzZ/DbgeM2ABEashCNIv17TKbdJeLkF3aIX6ci0sLmIaXo3RrkVqUv9ktjoZCDu+jHW/vDSuEll99saeqQt+jrdILcq+C7T73DyfiMzjxlN6dR7Hky2IdN60Zf+4qW6PA+xZn1dj1FUzdpN6s5/9ZqUzTsrhm8/tMyNrE/H9Xmno2DyU0L41gnXiAV3WPCFypZXIp5PRYXCcrqzLbls6uEnr64wwCsjRule03l/93OksH3Cimiown5+RQe06D/Mbtyhm21snP6fjgL0vzsK1tV1YuH5x9N5rfaSOhU/TtelH5lDvdwJ2ZRCQ2GtbrpeBhWj58My2X04d+YcTucr+FXCsMwGgmZyu0ho1/OIWep5lY7qoHjK2mQqRol37OZk/cNwKSLGDOMWd8P7rgvaKkq+WAzmTUEZ+lrguWeV+Q/khFz+9BHaK/PSE7rfdnxDohmRTfNgu+7XdQM81g5k7cbHm1t+NueVcLkC2LsWb/B5U4/rfDhAWakOc1mFiylcuwCcox3Zlhle7ty1d8QtgzHbKrk58HMCmgoLAsSeXmzUrPZAWV1PJA3Jh8+OLvTIHZ0r2da3Fx9veimBw9U7VcNlD8ew7gNYrVcPYlJ8SplECgmi3+OMFS2T+NfBXY92zuAQfRr2vL+glQyKklC2M8opnPrPNtL2sRExr6N9OFb+GPx7v1Vnv+upPvwaaIa8Zt550tHmzUVZQ8x/4gY/tsV4eMQeLN+H3LZvu/hwe31Hp+DiYjjcPmGbxbquhZq1ZfZJz9I5O+8NdATQCb76j3r+bkiCnPBMKGXRHU1vO7kjtE4vzHzLOuJhnBhwzncicz7dI5y5JV+h1kqb+df1HI6YN9Lf9yfbQ/7umJKpGDLnMjP3JAzFhPa5B+0ZZmbfPzicU8vGWipcd/++x3xvVhS1giFTNGdNyq/dU0Tu8EqpPMS/cOwYw/B5fSK6yU07HWMtj8H+jHuCNWjTyUhXJzRPn4zgWWnRqJ8FGb2+7ydzs7Ir6FXTYlAeSw+Y8BrQSHLhgEZnLTGsaE3NdXEnI9NZu8T+YJOPTMwcuNqwZ6H33qCJKLKEBlUFosM4pVM531pQ7QYzM3NROjkWw/B9fjbMqS92+t29sYyMOvaxVr5j8wvfqQHh9pzJ7tB6Nb+klytkzJiIGXzWaJjOP0NRpzEiWb7UhsK1K6C2+zyZ2QwH3ttd0INuiS5xU2VdzP3lioEqjYH5ecfSZcBFDPy2dlgk2iZn29NXhWO2fZLtXNqFdBaUCiV9kDFnpb0Lpr9SGTafIML8t2lqlqmTsOK1IDDn0D74dHDpD04H8mCRbLn1LKXWCZRH6RJ/VVdoGteOjqx13mG2Lg/LjAk1Q+o3jFgQvKuC50/I4ZpeMhZMrxHx4OuVQM9BR0Jn1kPuHEUKB/FeM0+RzG6TqYoAt+Oww9NL7fh03ts6+FXMmJmkZs25rV1ReWreLFp6IEetPlWIfiyVpJriIt7DOkB4egdYPbiN2a95KmoHm/UMi4XDe7EZZQ3CS8x8a78PKbfkO2yyY0Pcl9NwOmYfA+F2FTD9/Jn5lO5VrH6+BDG/Vr+cf/lS8Vw9bbY7D2U6Rq9MQM5OOjPybF5mz4rvG5bnw3L5G7vxLh0juGitQ6K1uqnnnH1z6B1/JDaLupS+tooBR/UuL/brpVK5zzDw+ETwsK/Henyu+Bt5K8UjgVZnaSvPawqz6JTEO/S+OR4eWQCbNuXM3TyTcCovLECHV4eo2ps8ZP2xplAGe4fZ875O6XszZIoYmBbRA2dfzOk6DbRQdicqS75Sc02VDWg/aEuMB9LSmWWCA7l252y718pufE5ZC+p13dPT9mDw5Xkj2Md6xAL5G9Xc0bAHubrqWNCszim7PocD7B4nm15mY5uuaeYFqH+7K+YWsmLOm0SLoQ69B9XONk5/fz+vV8qG+SxepVNzz/62PByI90yqmm9ZlqPwDcGfv3b8Zm0PWtfOObOsRWFK92oE7u1rMftlnvkkeYYIEaiU+LbYhfM+dWL4i2e76GshaXl/CNrUIuGdknBtfb4JvPRVxYxYvoeTZuwtdD9kKdGr31zQMWMGqu8cs2Dj4m74WnD48x8WpWsRTd0nTiD/nIBFu0tXTPUy1dSPopbs2Jeli/1X6BjThNKr/+imV+AKkHq5S8jl9Uz5PekTKFbihZ3dbRUObzu/A5aVC5U2glFv2maZkXjREUmZL6SDY30weHO+xws+oVkTygpuZiphzYOcT5+bogI9fGuCVSIUww3GWLvu0hKPUfwsGFRZ8y++2bZnmxKu3BNcbEtmpEES4vekieH8wBb+xkTuvvPudIfDoTyQIkqfaBx+VYuS6rSl6w820WYtiQfo+sJn7l2bwtY2pwRK/c7+xT++a3+Z8ocXp41QddO+RAlqf7mPxefTqqc80q/a8LRe5KJuXyE/ZGIAk7kV6XXBrw9kVws8J0pZIP5aPpqqOcMJ5oFKLylMqVWPI7D8K+OV6r1NbpVeDNFNj7H6fQ/mbIRlBgG998Tt6qAe7nPTA9r3BblnAUKfLG1LOBiORqJKPhSvRz336LqWGNnuj7T7XreDCE9TA+LG4q3rPi9DBuaaPlUu9zJljSEZwDevgeAoEtPvmcs6sjX1PyScyZaqMABEP8iFzAlLGmQMJrbI4A4QacCBKQHy9e/o29e27qlFVXl4tVPXmn1sd3DX1Ba5ye/IWoKirb9+p2p+9Yo1U5ISpmflwW4v8zpuxylX4LIqR7pK2x0t3Cx3YH6djuTAgTjSJn51YBoPhMT9MLdbdDiGgLYVotyeB2vpMKmBeK4bVnEujJtqCSEMNrvEmzQMLRUPf7mO6O+VubpecBqJRQBi6mdfPhWL/eeEcKIbY3hORzTp0Dahffd/cbtGNFrNaZaAqWYGO+4mCrYfbmjgGUUpLn4aiNiApDMsN4+Q4Px4WhN6fDr0uuKx6Ne6j5RIRgJteapZ8Hj1BR0NYQGVkDQMte+cL+1+qlWsgCtzrNUbWbGkF9jnpxfJpthE8w0NCfRFUFHJkepxYkPU6VOYZsTpRYamGM4HaPkXwryPfpmHYYCCEc4salHC1xtUzlBr9I75m94Xc9qDGj72U4YrT2xa3giNAxPts5HInBfYmv7dAbbvUqwY7sj7cz1hqLFEIOFvRqyFWmagn4nSU71+LtZW04cHj0ZbYeEVQ7RcqwFCB8WE+eFJ4AOOpgzWz0Zkzi6firep5QL0VFYT47o2fP25ODkEOvSZ2RpixGdqeTCdRoQlOTm1bOxuVIWv9x7L6mha61nN6ZdnuNPS+0ePAu15cykzJv60qNGHGTAuW4L3tMyK5bl3Mui67ZGetIs7igVac7iMW0z559V3CYtLpZVt/GI2nBYwyuSwabmmjwz7bllswHp4oH7WIt1OSmXxzO9MvSwd78vrcS1+oAKnIjCoEj8vfO6xIoFdErYED5ptrYY9VrCl8425YWMBoVu0GoRdxHAyLCn68gF6bqyxEEcpGlRVHgBExYnKbffpzmSBA66vhvznKQvkrYan0b+R44rmaAHt/IRCr0fErUwfye59CKDqqB5D13CNWFOADnzyPjv8/XXtAuLgDWcZl8zZyo6vPV4kcDyQHVY+eYy3j+Wge75skiC9r5yXZ5AAKWtk5kznGPED3c4whjuDGegfAAAA//+kXcu2qjyzfSAaIigJTe53EwRE7IEigiJySYA8/Rms/TX/3mmuMfZeS0nVrDlnharfEK+9ryQwvNaEOs/53bB0MSq4fLltn3T2LpaPhyHQG0Og5mO0dLENhjvs+OBFM/m0L5a6ubdQWTST4pDzm7VMkxVQdrLJcl35+I/fSNkF5ei1HFjcPZXzLD9L26FYcix/gU/ZgBm2aqpE5kX/0ydA6QoTqw/g+GJhbI6hmQf/Pr9wkCwC+95MqMvEvb7OifMGzyuosH8+TQN52AsPNXT5YZStJ/YZBoHAf/zkvW3tir0bgoD6L+wseGLs/Xlp//RIXASx3t3xNqV2N2b47ouneKK72xsmnatTbxw+/nrYnxE4eNRDh67LdNbJfQLiwPpSE3gR6E+me4czLffYmo89GK8QQYACWqC1tH7D2oqfDKr5ur3J8rB1seFjTdZ/UUnErR7NivQ7SNzp02Cd4ymb4qPfHYSEvyJG3bJYUW0nsBrHB0Vl4g9rTVILNHJtkmNwsMDy9A0E6iJUablwCiPRvg9AZBkR9T33zBiP+80hjVVs77mDP9O+aGHW7V1setrM2BafssC9ZWww1WXMeh4DuOUv3fIdLBf7+gaKIdhY5zMrHp1j+YaLKNVYtSTVF2PvjOTwWhEUfy4WW1GNUyh0D4tGamMwZl+mDn7cPsJITtKCce2XA/bxwDa+Qpo5L+MD0EKmokUWJNCd38MK59hPqXeBIptveOYAq6IS7TSB98erWNVwF2UvjN8KAosuxBEsjdLAbp/Gzar7twTuFT2nvm4K+jotrIOoqHUavPN10/MvCxo7rKGXJak6r7qBBPt7d6L2skti8v7davjgkgBbY7T32QWEBny2o0PYeNMGelCiGU7ahWB3rJqGZB/GQWBLOpLVw1Ofplby/uWHgW+TzozADqF4Vi70TF7q8Kf/JCZ+JyQs/MrWezoIgI/FO1V5rSkm9Nnx8EL8jGqHoGvIg/oR+Pt7VviD/k9wNAGqHn9HXOhn/sbfM8hb2YXm42D6okkaBNeJ6zB2Jcr6z0+7Q9kzUrzx5YbGSkKgpVYHrLchAb+Xt/fAq95m0vzxpyGKIskyFAWfvfMKFnHbgmEso49PfGjG7Ij2I5zI906xXrb6qjJHkjQWZFh7queBfbYp5+Cm90Ty2jqeWnCRthsxKXU9koLVXAsibfFEwgR/dFKdw+A/fqOH14G+A6kGSlYKRC5dT6d7ZZbkKYpltA8ChdHe50IY75cHVrkyAMvaBhCAMykorlTf3//xwZEjHNaF/egPNrl7gBvTHL1psgNLcB0grLWfhnhDboZRe40JFBbLoqeN/zCNqikUeoiItJ40tqzOQYNVmHNEmM8Zm0XZjaRj9aOb3v/E5J42PHgS/Ur/8mnNrjcFyLn2QdzCVYC9i3cFF/DVqMspHehiyDugj+UHgeUxHNj9NaVSuK06xnpp+b10mskfv6XB81U3VPKcAA4l1GjEnwwmztOkAf0Xljh5H4SYeaJUQVPbr+jrNIq/fMfhIG38jeLgugdTtV46qBodTy21hcOmB9+Ab9iAxMnshvm4kh4o3c0ke9GnOvWehiZHlhVhJ8KNz8ISr/A4fzn02fBuEY/hCpmSK1QRRbVZ7nmSQCPaJeRIt5lnW8GUBUSeFLuRzOYqOyKoH4OJmsFTYFSXxxCK75+BP6Zj+mva5hZUIxugvRR+/bXNwztUUFfihG9sNn65XQp+6q/D5s0MYzZC2QPDbbdSV4pLtrTgIYE9t4Y0kI9FweTM1GAxXc+k/9P7v+CUwFP1mLAOqMimR36KYJN9WlxI186n9iHrgdedDfISnj994V9OBlek3OijdHt/qaebIXmRf8L+w7/4v43PSO/3xKiWfDr9n/7WFGFF3Kb/6Kb/4NU1TpufYRXL23sqf/X7z38rVqM5zFI4+A8k68VNn9ezxf35P2i27Kn5wyuZtaVFzX130RehOiZwVxIFuz33aRjcTTWwdX6it1V7xfNS5DVo3fuOSF+viTssv5I/P4dw2hANNHPfCszV8D/9NQ/HYQTtr0BULYXZpx/OKYFp8xrNlQdhjFySfnsD6Yt2nO2yPdS2mS/zrGM03nVf0NW7AFZwo9SKeMfnteuXh62syhir6jYFXlZD2D5MgmD/1vx5V5452MbnKxHVhdPpphclbz4YOCRp5U9fgAS48TPqu68dYBuflme8zRRCz1f8l0+QnJKYepqUNMP4rBCUK+ex5Uvrz/bd7SRbvA20bNA17qcFdOD4UHZov1vfrDfwbj4eTiiiqnc0wIq3GzebXicNn7Xx8vD7BN6b6xdrj/I6rOVbJGA7H+pmAok//hUoYHAEn6KQ9frMvw8S5I7shaavdmuqXXK5A2lZA6qK+eIT0AtvsPJGRYvvt2zWvfHL4c1+K2TBLGwW2g7Gnx7EzrraoPvz88ITSbEjny6FKJjXFOYxOaE5HT0wXc8nTbJD70QtMZ0bdqv9Egz3u0TRdr4zsLIO7m50RrxxOQ/7tMje0AJ4Ihw5C+y3d84S/NliSJiwD/zjtOt6iIZ7hGPDC32eVk8DHpltkb6ul3gWVIGH6ciXNHX6LP7nT5d97WFj0wvL79ELcIweIbVrmIDufDmuoF01REIu9uO91DsdvN8NBz9NEPj7PB8yOAj4hY3xbejMhqIBtcmqqIVpqM9cg0vpT/88g+sF/OWvdLZvAVb+6kN2PSuwBL8FG0IGhuoPP0EnH6nr+pDNj/E7w6vwaLDx1bV4cfdPBdz8qKKGi+V4fiq3+Qglx6bJc9cObPMT//lljvY+D6u47yJ4i147iqV89+evBcBmk084P+rite8eEWgIfZAjvgTDMl+PFuSsKME4k2mxbPVeinaLTcSsGuJpNFIERfIoqO6OJ0ZUdZBAjGlK9sPJHvg/P+6O1w4rh+XU8Fz508A4WBixxhfAxjcDqQozDmNRJzoNS3uF80kvqdXPV53E27QHoXtaFEm4jBlSXQkIWqHQ4MF1zXydRg1qx1zB+tfLB3I93SvwV59PfPiJZ1H9zpDlTouxGuc+3S4jw1uxrW1XTYXNr6x2oMu90T/+NIrvfAX5NZ82PsrF8xNB8i8+Tlp19pfnTQggivYxWrJbXyw/aTeDKTrL+FQYqz9VMHKgYVYnapHHSxekvebBVT6I1D49fDBnoaLJuiXaVOtH3QcnMcnlzR/BRvep4ukrdBks+aQmUmbZYNn94vLPn6CWhVDD6n5q4XCTVxpk2zvFwMp6KfyWMj55zwRMdHd+/+E/IdcQAyYt505+Kp2GNcytPhGHYQab/4KyZHR91n5u8HiyqEXo+H03y6lFkrQfzw5Wmk8ez+oL5OAPzy2BcAO7LPEbduazp8FHDoo1bg/BP/xtMZ19Jn5BCLCfv7CnSdvWovBygFbMYbJ4xzdYfo9agHfbPmBDMs2BndQMgk2v02SLd3YUsAfBTe2pmyEYMz/MFTAP84XIm99L5cxU4FwIFnYkRy6oFpQJaAto09NXOzab/x9AJToj7OTIAjwOghTInpUi9vjd/HVxZQ1iebZxZgf6QEeSb5+/Wf/ymy1P+EOwH9s7DW7XlbF0x9Xw6wsfcpyKYZiF94+HXpbuqecds3hpGrOCbpRWCK77Z0OvWakdR27kqNtE120mLDjAQ7jX0KFnhr+/9F4LPhVY8Mm3LTD7PbpLCH6OOJjUTt/8BQ96BrEIu1s7fznTNICzJQrkkCOLjZWAHNB0zR4J3+GpL/bX9yBcHleKheKuz44ee/Ilr384qAo00C4NJfg+2wb1RFoNc/p0DfirsufWH/kUZKsX0FqKlNqb30lHuN3Qkmdh05cTI0ZzWCFf9wY9qa0Zi8qnkOCXC3y0xrqn/+HBH55gowAXQOi/4fp45pJ3/a++naj6iFdj7edjvVc6XKihFos8rqU//42W1xCz1RsXTV788U1PgbqCKbg2nMzXnYH19lCxlR/dAwySa4UEsN1o+/OHi51wo86l5cH8rp0KpMj+0tMUuMO8S7YtpHYD6Ql8Bcbc8GWAEfEVLv/6aw97EeCvyp9k3urxP3yIa4ds/b5Ar5Wfkctxl6bYHOmnWbtuTKD5iV38578Q6V700NVfB4z02BjWNowhlHD+wZq9IwVbxbyEe2f0sGLZp2Z/03QIfmEZUudPT781TgHByD2pfXAcf0kPnwps/iIOIvDzJ2svO3DDT+xelrRYC94W/vnfxZB02wzORwmkoUuwfdRnfXHnuZVnk2BC/vBbjPYRRMFUkMcuURifWX4FqJ78sP9gtk/CAa4wC745+m36hHmToMANH6h1ivpiLgSQQpho4RY/pFmuhVvBn5dk2OzmF1ujfR3Iy+fp//0+nZ81Zsmp8p7R/jBNPhlXbQQFe7pol13kYvy++lwqHoVGtSd4FGzTz9CkZkXd1+Pt//FJ+X0k+j+9zaTvxYE7y1YpogHH+nNsReC+zShlf/2ldDHqv34JtvtOG6qInAP543YRvW5n87toiwPos3NotDtX8ZwQzwFfMOmEJbPbiH98+aPfexyf9V2z2Lulh+j+6//6uezPrwaG9eNp8NKrP340wsVRDJzUxVyw2YrbP3zH9vpti3U/rALkf7uYsI1vUyWdofzg0oCAG9/Ey+5Zcn/1lV526xv89etB0vc+evW8OEzRMSL/nxsF8H/fKBDMl4D4x+TGM0hvM7wiu6VOEnYDcwwPQjkZUmrFalDMrm+m8KTeP9R8QWNYfSYfYHNxblSdOxB/RBM4INwJO7SDhsyWF/6WUqTbHBFu+2qYn63pwYfu+0hSvPMwBj8sgavqysTg33bDYk5IYBYDkQbqWLPpLXUBtFqWYRM3aUOj00GA/imdCPMCt6Et7RG8390PNoraHWZpBwLYXLwbkdr2F7MaqIYcfn2VpNlRADRLcQ67A6/gh7gMMZGmmyOBsHnSU/gmOss+Ki/fxUxAx7vM6/QsRhEc5kDA2NFDMOm7mIOf6Bnj0yt7NMxjAQK6F3NkoVaor/XNk+A1rwIcCncysCzFmdBaWU3d2f4OC7GiDO7KbE/VJz80S1zlB5iO9Ec9g1n+/i1VgXwg85nMnNoVc8d3CQzXY0r9/bbXr0dpBcdzy+jf912IpED5lRgHrH1tWV/e8F3CL40dHASXiBFPO+TQPUt7Eqa+UFDsPUL4uJAHNm5GAmZ/OEDpPvQvfIpZF7OuO/Sw/OQq1WZr8VdfwSngm/uJls7D8xfr0Odgfz1UiFN/ezZ2ynGGeLJNjI71AkblKnPQld4MwbO4TQUKnhYUBMCooXF3f2bg40DjNLrUz5IPYE9xqmGq7C7YfRYOWz3szhD7gYHdQambz0tPDfhs1Cu1UHYF6/n1KUGTIUpNtC763CnLLN/v/gdrN/sFVuOiCLK0EB4b1Q8N882gGrQKVaeO3H2GqVbPPAw+JMT2ovv+2tBXDoG9r6j1O3jN/gTnEhxDB2OzOO4BWcMuhXdLO2KHT+/D2gBplcRXr+DgLMqMfaPcgcV8O1Ote4nxKh37GsYX8UADpGk+EUz1Dp25PtBgus7D0PVQAuYuIhgphzBe0f3UgeTzumNreRjFPj7IPSSXsccZOh3BdNy5Fdy+H6m7m1Us2Li34LfzE1QDBoZltQ0JLh9WUg9ENmPnY1kB+Wj+SIQKbpi8847AdWQ6OrzjdZjvjteCZR/mVInxWV977eRAqT64FHVEi+fgoKU7T6QmtdGX+aM/HDjo68+cSCvsGlpalSKd33GM2GXRi/kdhD3QDTfa4m0FI3JBC0Dr2xQ/tR0Yv6XKS/cnBujtrnMx35MCHq9N4OPCGx/x8ol1BWT5yFMdnM8Fr1liBNUhHLAhM7kYtcOrhUgdToRhkjRTGcyjNJpCiU8YHGOq7nge5plKcDKiLmZut7PgJc0u2PRc2JBKiKBsNnVO8Y31+hiEH0fmphekJuzKYflmPQ901YI4uDeq/4vHMYLqZdCJ9ApwzHjJa+FwLA7UzuU1XnR/ymDsvp8Yv5OfvrylCkE3OAfULPeFPobC3MJbftzO87Mv5gbdpW2vakXd+TDpi0keEcwcv8aarv78UT8HOfw9ohi1mbPES+E+PPh++yPZR0/AJnaOFIjhW8V2QURGfVJKULyccqzaYel/1+6Ww+dTVmjwUpeCuvnvDoueddTv9++B7OtzDZBBGyJemqxYv/ATAvGuXLFxhzpYrPGsychmR9LYoRGLg8UieJs1Fesf/cvWGPU1NNrMobfdqPp8EE4ObPpVxe5uVPV9vrMh3F+lCpHLGzF6icNObqoDobaI+mZ2OXaAsvpVyOF1PcXLdZvp/ZHHht42fJ2T4zeBhu+IRDKYpdNsiQP5XHwTanNgH89P9azB0vNmrDr9oRjK6JjDL7ca1LXZR59SeA7k730S6Clzv4C5nWhAsyoNsncz0R9fF+sOD8/zBf/h73pMpQ6aMMho4HSd/wUBSQH2qYMOTf9g03m5tRCfk4WqF0UcSOk+IHi8ZIGIdT36s9zb6PBNPx41ArJvxlMuhdDpj5giW6eAEcUdYd3yK+Fo/y3YW4hX+dqGL3zBjdDMJW47eLC+VyI0hlDQtsl4qXYanwiXINjiqUNwMW4vanxy3h9jGOZylrwdrFnmLl6P6drLdHEabLhruD1PXoP7qXLwaWkHMCO5d0DJ0xntH3GoE8F072BZNzz9xXFMH84YwghXDdbYxS8WfVdA2IFDir2zuzH27zZFv9vzZDrCwV9Jl72hsbMs7Gx4RKu2FWDx7iCOg2ceL8tMEjgIl5q89tK7YJo8v+WKdm+q4WtXzAZ2POicxxPaycukU+UbWRLcCwNZK/3rz7jaZiqcpT1WwuUeL0xAzh9eY0cV82HNZ6eHDa5miupGGxbPbBOwK9Inqqpd3ywbXkoS9V/oyM3XgizR+IYHvVHRX/4S5ajdoSjnCRLe5dwsOyInwLjJNeEtwdf/6ptUo5+I8enhMaFpMgWY4c7BBkdtf/rm1ABNJRFEEvaL57ZCBjyb9w7ricH786ylM7QRF6HLVo/GR/mz4F1uarKigmu65PhNIbKXIwIus9h6R34IE+AbWC2jqiFjzKVgq4cYXa0bm57LW4BDcn/RMxTc4UMGqwZ5/1XI/hHP/gjBSfqHh0dXK/wfvu9S+PqRipRTEDWzuRy07Z3NM7Y5j7LFxgoHL65MqZcJs782jhHAwrpeEERarS8/++3BurAeZLFDTl+oOlkgVeQLAd74KJZWC1KpeLUtEi1XA0uohSksbSvH3v4wsTkwihlseLfdaysGdtiWGlnHtEfr3/kPUc3B8Ouq+Jm/8UCginooKSKg+t5awPhbxAiSqEsIaz8RY5W6jsAdbBHt9+Mtpv3bT/7yk+rEC4b5t+xCSJVzj7WhU5qlcvwcxlbl4mBd+oaY4mGU2a6Wt/iRmilKTzPMEzlD4Jg2w5jFr1Le/j29T9e5Gc+6pkGzuhsUB6NZCG6l3GVolIQYu2ps5qHkE3C8375oTWHtL/VeyQDvnyN0CbcbF0276+EuC12sD+gbz3dHa+Hhu0vQ3L2NeG1PowLR0RXIeG9e/vxrfh1056mi2tBVzVrLOwUKbvig+Ns08aJa5huix+2F9eApFRORHE76qzfqbxT05T0XBthPtUO1fHmAiQmWB4+nFpJ5fT8bBrmwl9UOXQhrfqdmHe03BPSTIxoALLEJbQoum0IL69qXgt8yk1QqlyEnIDqL/rrFv6Tbp47+5eP4DsIObPyMIoBfPhPZWQNvjVGKrtYRsN/eU8BH6k7YBfrYUEnAKzSPjoZRdSoZqXq1BRteY+c3BQMTd3UOpNPyxr622/aWxr4GX7vUoadDrvztd6vAFLgrtVbksvGse9s7zREhO7S7gAU/uwzeziSnPvN1Nq2kN45/+d1dnxpb5O8tBFt8YTf58ozQz7cGo3y1EVUxHCjJxhK+cvwmx7JvivWgJB6Qd1JLA1/U4vllzQL8Av1BXcvaM6Zmz37brVJRFQq/YTn5yIFltyvwKXwjnR3IMMI7GUW68W9/2tUNB+1rd6YqtWZ9FR5jAKWfsqcbH202PHTgmc2Y2q/FGvj3G+QSa4UdDdJqjdcrvmhSDct/3w8IF3lYYRd6GgLgl/hjYBQr4MwKUwyNB2CSYM/gm349srtoxjBu/AqIr06hUfkbwajsCudPr5GxJlUz/65ZCGXo7vDpCH2fb1ByAEabO1S74QiIG78AlKcyWf7wibt0B8k6Jj1+3DQuppc460AuOxHiPt8MzARyErCbY0/NPmrAnO6wB/27m+HteTVMnCknvdrOw6XN7+Ov9JgUaM9JiKMbXtm0zG0KXrvEIa3p1v6SCEsOY95/knX7PEzzPA1EQXmiWhRPw/ijQIHDtRaxe5cTf272qwWj4H7Cf3p1XaY5AzUaRCRsfIpZHl/LpAQjkYdi9FlqpAjUZ+xh9DYntq4DTkBnlzrVX/4BjKYXCcAW7hDrbmH4pNLG7Mj1z5b86YG5ejsHaWcSkVrn5KFTTZ7bf/oEl2epGBclr6ESZSY+HzhpmK3qmEL98PkgMXpq+pyqcyj/48tDMDNmO3MoXx9tTX3w4312Nr8QLuO7oFZSWM1yXs5vmXPeH6z+/b62siyo32YJAeMWsMX+NgSaiVrSWHGB/1tJbcgBByKsVXwwLA8h8kDHcSN1rwLVN70aABqMmOrTzfb/1ef2+X3/6aOG9PlXOr6DQcOe9NJi+lnaO3y25oS1z+PlTzZ2OGiiYo+RFF/j1WolBZ62PctXcTfrrI6bA1xulYk1fUXD1D5CD8biwaLK+t41qykeCPy8OEy1Or027GTsS3htoxc2uvRYMGH/CIFbzA5VX8gETK+6Cm4reLH/h9/T++4B7SIOZObcWzG9xKAHVtWPG1+8FGtaFSMYesOlIavceNN3GVT5J6GnL3nFpFccSfp0FiDsw0/xlD1dB4ZTPFH9wClslUwGAfdOJGw5wgjY/cMnwHWRQPVTuANj5BFDihgU6a29Ep9d0ZD+8RvsS/ZPXzmrvcM0bWVsSpeJrUfQrtLYRwuS5jLe+FntwdHfeXjTm8N4YhcF3pJ1Rny17AaylHsINjwjkPcNxoCScLCMr4wGn1Vgk1dJDjDXy7YlwnwWC/w9anh+BTI9OWJT/KDxy6Tnc6eQL84OTXvfdyXcZZGL2t0FNTO1DUNKXpyGfelABjL1dwFkR62gp084DjTOPQQlL/CoX37TeNn0llytBJDjJcuLxZTaHv7hv7nsyLDg4bjCP79CSMnVbw+8N/7jO5zz6P2VsTCQt3q36XHSEH73a2FfKYgixe7Z+siyHM6pKVF3gjZYbsgrYTtcjvT0alRGNc9TJHT2XOrPRt7MzV4y/vQGNRWpZWR47zUp0k2O2hs/XwPOV2ArCXt6Ehe/GG/GV4OFI30R++hfwBzxWMF3z/2wEbbvYUymBwQoQU96upzqYRmU9Q03vKLRqb/96UUPeuJkYsW8tozFPp7B9rxJ83tl/hLkTgtgc74Rd/LrYuK/hwp69ydP//Zcr/VNOwDvIhhkJ7ZTQf7i/yvKNuJl7fpXryKYenyHE5G9GN3xgvbnn2BDstZmBPXggUe3sn/xQD+yyMPyTjTCdq4Sz8BTctlhX0SD2/268dt9+s8PQ3JeAXqoo0Su9ssZd6/rtG1NbBIgX+mI5F368Uf7LEiSYspP/OdXMMDrFdzwnQB8qtgfn4fzwXFo/lRpQwv84CV+Rz9UT/bHYbKZbP3hA3V86eczs3USsMOtR5UKffROkz4CVMTLHT/G4AymbJta/vd8lZOxNEsKbwFseeJS/91//Dm6VdWfvsP6O6oL9heP+pgE1Op/s87OejPCprwU+E+/r27llFJ4bm5YyXmPLTrTWphVyQNbP9v0xyXbR9CgHw+bB6YxapxbC9rVPiFw44vLo1dm+U9fBLe72Ez4oDtyx8Hxz28c5uwp8RA8Hg750w/MWs8jRK1dYecpM3/en9IMRjLv0RxxZtPJR7eXHlFvI/4OG7bQfdzDC7iOFL2FuJj/+G4s4j11NGbEYml1yp+fifXtPHnnHijSa5wFHOD35G/nm8k4bxh1wMMEovIIILTMokDsBcuCqPinAZy/GDUv7SemqeDU8ERnn/DXPm/mWTglYDT5El91TtcnW7FqyDsIbvwk9Gene2QwDvo9tsN1q8d1OMLMcWuqnKdW3+pZddTBAMjQhD345Kvwhhu/pgqr3IItZRCCzR9FO9UemvllHXjgSawgQH18mzWtYgI3/UT9VBqaaePPf/4fdqv9tpXkoafw1xQKVX1n0qenZ/fgqTopvbncm7GjqYVAt3FHUtOt9Z9/N3hwQ71OdRLJwxBzQgrQ0Re2z2vpZBeyFrzxlFHD2qYmu+ONh4+TUlLdbPZ+f3IyJG3/n4weOAzzU71pkHblm9pBojWLL4Y9DF/aBc26PDZLvgrtn56hFgpbMC68awAp3TrquyoYBIv52V89xqo0/Niml1vYSvyedN86ABKfBfmf3se+hk7+XjSZAwd/rqmuZ5d4CdYhAfehe9FwP/z0xRpvCkRrZWHl8CXFKhwOGuRk7YBPo6EwRsE9AQ77IAJaed9s+ZbC9eoX+HTTyoIRNoeyTzHBRr689UU8vggYsVpR88BqtioPoYOtu4PU29tdMb8uVgnDFWwdrE8yzLrBFHj7pho19g/OHzH5Eoh+gk1dZSwY293jEA4qwNhYujpm15wfpb942vzUTT9+DDidNyfq1TrDGueb/zNdE3Ls91wxv5y9BS+r06Pdo+IZw8t6hweynv/8LH25P0F3lFH1owbzpoLFbbG9ocO1GA3qtjXIj9c/fkVPRvoEo3M3NHhL5pkm9jccGK2XN9AkiOltPpz0GddpAsiQRNjaXUizStPZgyWoJuxu+nnmy4cFbmbMEwnyTKfKI+AAN5t4mzlzKlgw5j1YdOlBnVtfN8wnqQTJkEbbz1ojoMExJKk+HQi3GK9hLG5uCLwLb2D1tfNj9pffEKUqtm223dXc9O2ztSe8xbtP0KAY8KbhEpuUJ+AFop0GRTlLEMc7IpuN4GrBwuTPVP+9Mn087lsDVn5wJvKuFHwGvdqAmg57rPwuLlhS7nGHr7b3qAf1U8P3kuLAfcJ79IHBLV7yWUphyU/z5sdDX1DxS5O/dyoQeeP3iwAmKHW/i0Gd4ywM4/PG5n/+J35lOhPE75JAzy1KGthoAmwgWQnvlnLEcWlrwxLZsyPre80n3Ns8ARZWbJb3b/+IOFiK+iQefyM8iv2BHOXdApbNnwbOVzj+8zvZjuc0cPjKCZLQSdFFwPs1XE8wQ5V4Svz5hKrDv34LmBYXrK9gqWArrk+sMvoe1huXRsfBIQF2b+EvXrOCZOC+RB5aqDX7RDjMGlAtPsMXoWv0qQwOBN5ycP/jV4CJ77QFqNE97MX3C5sNBiNw1vIIu6IvN1PhPpzjn//snc5CTHqU1kcD4RORNv+MV2vfgN9TZqPVKPSCV9o5lz15v+ANnwu28v0K3WJ18F8+/fNrZejvqNcdJf8XsgsP//DNt8RXw8KkzqAR88I//TlDwlcQXx8PUqN2m7HjqyngBCnA1kU+N20X6wL447MmDxjY6tu6rQPpyYtRY9jv00X4x6cdgT8XNKjcCF6UdcKWNUz62I7X8o9vErBuy3meHu7gwj3u+M9vJU/7TKASrHdyzFXC1nIGHvAKOFMnEkhMqse2b+XUUrJqYTOsjyzM5dusqDR+QS6m1J5mGMmChwh/lItfnKgVPN6LLxIetR9PLXqMwJVahmRR+bA1h7kGCK+cqa64hT6P+0j44y/k88evX0rlyTPdZmyGawSIe7Y0KFyUlaqCti8+c+a3QPPsFHubHygKP1+C23lSs97euLHPnPT3fNBqmc94kr/nSK797wvtB7hjY3iAPFhAYeHNz4xXtG0Z2/pB5OM8lYHHiUNA7s+Xf/V2gI3BQ03iMHXl3cLW9vTWjlv/E//ph2l5Jxy8qgLa+he34o9vgZvgTQjaO1YsZq1LULmUBdrHxaehyVyNco/6EDv7qI3nUR1DKS+FAXuKtwxrmngJ2OoNNrf8Ge63mpPTEX0wyipeXy63XyqKGVRp7otQn36xXEn28RUR8nvagB1SB4JNf5EjmaaYGK88gIv9FLHt3NlAD5JsATWjN+yalzBeTIl0cDjn/taPTIZ1iwd5y1eqX9qdT15K5/3DR20CS8wmdE2g+qxSjLqm1GfksvbPLyHLcqZg2ypUAQxbFTXlodv0L+VgO8s1xjRE//WnNv6Mg/z00Lv5fA7kd1Zc0bux9Zgf1TGCG18i8kTugJ0MuZSqhx2RGQjOMJeiL0hBihNyuKhk47d+9ecXkCZ4SvHwuemjvOO1ElvizLNx560HeJCqljqXNW42v6M//v39P71E9aMeyVs/EzvPfe3P3Ul3ZCeZG5ps9fK99Qeg0wNMoNN1Ovt8LsZxWZGBJvvh6sIrONbw9RsrfJt8LeY7vkrl4ksjeqoTO17xaVb+8J4sQf0t/vkTIP7ssWoEjr9XmkcPb8y64mBnu6znpIfylx9Y1Ys6Xq/CGvzlP+J20xKzgYQl5MtrR/2Ya4sl4PhR2vrPBFTqPHRoyVb4/7hRIP/vGwWHB+2oq8dPwNK3OsNqaR2qG8atWZ/nlYftrcdYSbYpMpoFJOjEOqQGVb149c2Yh+nv6dKTnuiMiV5mweDu2NTNoBaLI8wg1Mt9i+ZrPQ/rDsa5/PzJN6ydAtcnZFfU0P2NAAHzVhfs2BIHNq1T0oQ9X2xc5qqEoXPX0HK1k5hFRufAXZmeqGLGCpgOCmdJj915ITua7f1eOP4cWDbum1x/Eaev9SLy8PpAJnWHO4inQDzcAS0MhP2P0cYMTFUvS8HtQCQrPetrvsIKtiN1sAdk5PNOUkrgu8/v6IMfsBkYuIeQcyjD1s6uGHurnQZ72/+g3WO4MupHxQoVMzlinQ5aLHbvuYV70+vJIQBJM+oLCo+H4l2iKY+SZrkIYQbdtNeoZZ4dfZWSuZIf45WgSrzPxRKVswJ/vDFiBTHKlqjxEuixkqeeuAPDb6zPhkySG8bKbzKbpbPdGciKeMOovlA2GXItwJN5krF3XT8+kW4eD68U3bAFcrEZlbMagY/CW9R9cEdGRLUuAZTBBdXdURpmt7INGJROQTNnzMAag7WEX3WokOya95idZS84ul2fYsRXbzbJRa/BtMveOFq6olgnMY+g5IUE29z4HuixVGu4H/wWwXzQi5m83BQeP8kVP85R37B8d7Ngc70cqZIpXbwAfOThQ44f5BuZy7CET2GG2/dF3aW/xCt4GQZUjDDBaNameH29zpz8Sqsnzkaj9VfR5Gcp/zCDak8PD6uvqhWk9DQiuUMnsJSqD6GhLxzFvSQ3DCwSB5Z8r+P0yeFi+Xw7C1xf1zd28pvgz5+882Cw9QddPuub2YTcHXIg97BtHG4xW4fbDOR9J1F1jVhMGUgiUMhVRxLrgAB1uDqEhlBesP7F253kQyzAYHUN7N30w/CNzlcLDmSOcc7QqViOSkSAcfg+UcKeKhiLB4IwyrGPhEXqhtl/KqnsrTlGvIxGRifHDeBe9iUyg7wGJDDmUgY8l2KPhhJgfuoRSTNNsj0POlTaS5+BdI81HLyHazNairZtYd72Vhcn1RcGCnP47IFDpIfq+8vQXAWgzlxIlmdSD/Pq4g5iZSyxbwWlPpOPqMDquX9SIxH2wyqPmQRfUmMjovUDWL7gXB+7PmXYkJ+pv+DrvoJaJ297zdmNTVdPPUDY83fq+ss1XuGbafDLlxN2xgsuSCEoBrxUtYcY54OGBK62QiOuIxzupC+YM5O0MLh7NjYzL/TH5FGFslr7Aw32glZMhnrj4e2u+tTLXpa/j8WnB9y+67F6+poFU/Qlgc3l8qHWIjnDJCW0Bm7GAvSzz1G8tkbdwiaJFap4b17/9/N2vjg6F2+w4nsoQGedQ3wm+nVYDHN0wLepOOqGmOrrHJsa+PHWSOZP6YKF+8otzHSsoYM9kmbdS0Z9DKjhUV3+/XQ6QD6BW/wh6aZnwxjXF07SEnjAOB6aZqqclwCrqruhKX/NMfHMHQIc9zlS3B9mf15h2Ev8uSBUP8fPYjT5M3+sH2mCBPPs+Iwz33egJbyGL+qjaxjxZ0fSJJnH+tE1NvzcCfBxC/f0tB9pQSOjcmBrrwv2VGHUZ6gdD/DOpyXaeVwY91bt/4s/qjVO7TPFuJMjvEkTxb2tsrVYb46UfEeFXvWvyYRvMhlw3VcDNu/HGZBEDzN5qpoH6S3zyxb7dmnhyfAzbDvCwAa8RBr4YCmlProFxVxU8gHaN+2KjYeuA2HDb3BKtJq6vK0W5G61GojG0xMrov/118SxDLg4AiXClOvD3rDsCn75+4QtUwuKJXxyK4Se3lDd1lQwn6jGg5f0srFR6ycwa7+TAp7SGlGXDqK/lsg/wCy2AmpVZTIsdeZAgD/9nnqv0AKrJ0e1DO3DDQeN5OrC7+5xgOO+R7RXd4W++Lxaw0u4CNiWHh1bKucnQKDFO4rm95MtU6to8rHNIUW07vRFk64hvD4CEz/joRmG7hNzED1ASF1eevjLkHYSaOVOJB9xHwMW7hUo7lakYE/Lyma8nYy7fCm7AclnVS1Gg5cDqJZKgLW3d2SrKhxTELrDAy2r6vms+2kS9PviiQ05lIqRPKIM8nwA8GNBIls+/FOBK6uu2Hzd9uyT12YPi6FOCHzCtJm1t0RgXeZHrEK1LCYUmAkYnjtCTajVxZLffhq80Hf+d36MP4nfO1iGecWh2orDcjQmDWz5Tq11EMDv6OwSWIzvIxKge2jmXfl+wz88wweza1aiexUs3H57Rygh+lp/lIMc2U5Etc4ZY3adLwkUtfWC3q1axZPPjwdgvZGA8SNHzfwu/BqOhzpA6/5iDL8tv2QsvN9ozW/qP3yQu1+E0KQnOthz330rSaMT0EDYHLXrMeekMrQGApiRF9SWWAotBSGy/1y7YvXU8QDP+4jHVgNf7DfkLIAjmAB260kamEnb+pj8RI8qWS2BKf/wLZTrUaTlUXEBazQ9B7/6hGhwKgd/7RJ1e77ZEd+otLIp7qtAvu8LHfWtutc7JHQjLGtrR9UdqovZmPvDX33FzmI9huVzMDlgunlGLeCSmCT+XvvjOxiLH71Yf9dDD+zCf1EF5BpY8gdLYfr77LBVlF685YMGz0ryQLuH+ylmrMEU2LkFUaVeSDGNvUzgNOdfbLxWo1mt2kcHaEomgcsBg5m+50i+3XUfydx4Kz5uFVog9L4B4UObZ8sV3RFIpfxADpw2DmusBDw8K+kDu7OLGDnPWgTBQcdbvr/iudrxjozVRcep8PsVC0gMB+jFOlF1in7F1AJekr1w+NIgouVffVGgzLr273kz+lYrBXbctSDt777olPgHD9q2pqP10isDewlCDeryRbGpPpxhbZ1bDe7Cs8OnL9Kbubaj//BMfSZ1s7CLwsuSi1y0juLJ54t708Lf+1Sjp3Wq/fVZohy8fp+Mmj/xFPNPUdpmVj321CO7pWGFHeUAqDhHfP/6xMtX5wJgvEuVbHhbzKGWQbj05ITV3Zywpb7Hkaw+jYXq+7vEvhv/gHIkTtTVzk7BqjbsIT5QQnEMRzYZ6h7BfW+r6MhLsr+eEomDDKYV9Tb8nTsh4sFfPixu9hvmotpLsMjbD1knJy0W7P84+FE4SOYfRwABnzKHYVEBrAXyKSbe0QngK/1dcPDM3/q81S+48U2sLddI//zx3+Z6PZL9pzsP5PU6Q/hRBAvN2fk8zECaW/l6j1JqaJkLKL2nGrj55p065dUZGL/zA2g13pm8CtNi7HMKA/l0tQvsI8Ax+n1NGiSHs4qVT/kD6yUWIiiQQ42ELf8WdhNqeCn7gfqAFTo53lokzYJ8ppa7nPTlL37bcXI2/pfqTPodR1g/Hh455E7AVg4KMxyz5UBd/sfAfBy2veb9U6Ons/qK18OJ08CtkC40mDKPLUMOAkiOl5ZwoaX4wkM9JHD3zFZqCZmiC4UmGjCP55newtIDTJYbDx7K4UqtNwz8RTLUHq71u6PW737Wmfl1JYg1sqLDvE8KNro2hJt++K8+9uaqQL+7+dgpr10zVwaqgaG0mLwqXR+Erb4DH94YOg7+6q8F9x7/6ina1T4E5Mzf37A5OCs+r2rvjxCbd3jUvxRjln6b3js6CG5bx6ndPeuYpnenhi/wHYl2Hok+9uaqQTEeDfzsf0kxm4e3A3fooVNV+Tlg/q6NJGumTajnfQLAh1rGAVGbL9iLm19MNj0EzalQKN7wheY7/g7x+x1i6z3UbFnMHwFb/GL73cjFpP6OuXTqdI/ITuMysZY0S/7Tf74VcD77y29LCRC+SmjSJ4V8DZilrokDThgLpiheDsRk/lG9xKjYpkgK8NxEFenskQzs1J4CsFsDhUbc24tZfzQzEFcHH4nT68bmZe7uoC2WG3Zfg+6v006Q4KH6jdjzEr1hikMVuOltlG74Ml+WvQGZXe/ILJ6SYe3ubQr8NlT/8YVlN6iO/H7YLjbIrPrzPB5reD5Hwb/8IbrXC3B/dTgat/DVbPz3DR8wOGz4ow2LIfcC6GV1ILztHvyJXRQB+t9ke2eOs2ISK4YAU/1+oiq3sxrxOj8SaU5UhPWWwz4TrJ8HP/iQUvupVgNdh/MKXulwwe4LjsV09dwD3PQHdTqLNTOX7ztYLW9neznbj6lgvRypXoua2qd0ZstYny155d+Qml7x0Xvifz0wmuKeSNmr9f/wDp6F623jr6HPVjpaYMfCDwLXWxovR0dM4bWKdhjVRtss0UA4YH3igtrpR2hIyIsQ7Kqkpg+n+QF2ExmCe/vMY+t6vusznRIJ8DwCiN/qEXubayJvepji2oeMfh8RAZe1LjGq47pg8jHjpZg/MKqd5Ws8y6g3YE0inTrfDoD5p7WlhLjRxddl3g/k+mzv0B0mjA772GfkGyh3ADPewWrDf4efMBntHz8hf/x7XQoUSZq4mvjkRNWwfswThK4tPsjB71/6Gpy/OVzP3ZHmWcOG5ZYbGXzflTd2tnjsOT734O/pJBTj+xd8P5EpgaGaO3wqnzWYT/2hBn/x4Mac2YhGcRshpXjE6ps/g4l7Zhzkw4u73aDfbrAUqiX3V43SU/nUAOv5bR0t9+yxqsDdMPdekEJRWj7bDlSpWKiUCND+cRY9XVY8LAdFsCAcdy2C0WkAbDt/yOPiRtZB1BjftlkCjMtwpw733ulkrUcHvE+nHTm2w6SvrixL8LArQyS91ls8hlaz6eX7hfprPOrTh74S2Nvuh5rr3gVj6OUBaFqvxObGr36vRM6ArOxvVP2YwJ/UNVWgQIUzWVLB94W9FNSgfHEudh93u/jtP34Ku/EpE87uL4DZYpCDX4gkQjd8G5vr/S09MhSi+zM39P1RyUeI3+3/kXRma6/BUBi+oB5UTYlDY1uUqKl6VqqKX9WQIFe/n3RfApGs93sXVkDU7Lo2WEpyEQbO34Wot3XKtyXyVFi5k0bMICsNKpV2Da9NUKEfz23kKJVACXCDgZUjsLJ8CY1S6JB32f5Gdn0p/K2fjUp1pK+O0+G3Mk1yMYhqbPaB68HXO6skDVHbsPpwBventZAz8zNEO/WBLMTb199z2T6nlKiTEtrXArXKi3cnoaEdrPNU9elV591B49dU/u3nS0h20Ua7/AiIc02wpHyCaBFe3wA4l+pMTmEq0wnpMAaXMrqSs8K+KCiqRw2pcrcwfD1ad37HDxU2seOgY+W5EVle3w5+UJWg5yssRyI4wVEOzp1I9JNiGB+6xy0M7+eOpMxnbFt55SD3PuvIHos8X46qY4Lf/bQ7yOffdzCav/rmb819jLZmWU34fTtfn0q26a7p7torwdwgpL34g9vjv3yAtyJIycn4WGC12BcWk3U4+AoHNIOXbDVWjHlw8TSftGagtbpB9t9tlo97g4TqeoFTOmCiJ8CmtIhmCMo3tNHzHKojF9UJBJZTKD7cp2s+CNpQwFTORKyCcTK+sPAewP3GMsuDHVjKycHw2zgK0dalokJzTCZIFrdA+kcKokOyU/Qff6CjWp9yTq+qBwwHMyFXED7zgyheM6Ubh8Zf8889X10x58CRN2N0arWB4h3kN7ihvkVII8O47qaTDIF+3aPjX1k267JzF4nlRSy6YMjpoNwmZfjsSgzaw9AsZC5E4CWnEzHx8nZXer3L8kHauciyJjNfV99P4SRWF1IGt2/UX8ZIhlvd9d42CbOxnitayL/9BudvbAyToAxgd//WyBLMv3FtKseHqRRHKHxMoktPm3yEUJESX1JObr7ULDvwheizvHs2hO4+bjAKT50v6ZVp0J0dZVAJpoYY5+gQYSvNdSA6AyHeZ+EN+gCDA9nzjyyWr7djbVxAslUlMji5z6eiOPsgu3mDL34EYVyfnJjCP30fIM163NzldHZjeLg5O0wYH5P4iUIoVuOExaUd3Vlftx7+fFzHfAFnTlkH35/CR9rtxEV4Bm0H2PNLTmns5fK963eA8Q06Pbgw56sO9ZB/QurzjPd+fKYctfuX+PeOGETe0v9+1+8/ieUK0eX9UPohpnjrb72x9m5xhIVwvxHXmu7G5sUb/M/v+whegLC/xj38XOsB+YEEwCQJfyrUE/mDJRe1bArKOAGATESeO+f48xs8XB1FQmZyKum2h/kDaqWtI8NIsmZ1uVYG7PqJVhlGw6tCMUGzLTSU/x0jus647WFRxw5+q98znYO8LSHjFWIJCQbL1dccuBvKHLHz0F25p24q8bBJWCi3FszB7XEGNQ4MZJNMjejV6mQo3ISa6PsjpNjRJhn+tTz2AaC5S5Ps3gGsZ2z+nSjSKbyKRxBmpkaey2TlNG3tBeSP9s/fi3/zSL/rxQFrDnrkXTUtOrB89Kt/eHH09ziHo9GCGT9C4l25p7Hx0ttRtFK/EHfTa7DiLe/gL8//eGGzD9cQpkbpYcDqEdXily/XJO79NTw50Rb0tgoGS82RZ/B8tFw+dgdbxz4iCz2LZsvGdIAFehyR5xk+XTG2AwgHvkCa+u0p9d6yDN9x7f78ND0kfPCAd6z4Pl+RJyWD5GUQh6GFzsshjrDkPfrf+jP+SRvK+hNgkMU33vr+Gh1sNpUgVPSM+fRzvjLfCdvd7kNOBq+NUtu7JXTl4Os/D3nnLuKnrkHlYg0x3o5IFNAJGk8gkJP5WQzaPXdHMD75lqhFNUcEzFUPLi9PRd5nSd15tTkdfF9OTC6zTQxc7LRY6fZf16cHdx1XU1MuwHl9NKJiohjYlsYO1K9XSZynNhrrZmc9DNxxxQcxuRursGQOZDziW44ijP95mvEUyTjaARIlRx0yH/Lfn9NLXYbSqvQB3jM/yvwGhL6z93xZwGFOi+hvB8O70yE/6eGIX49bCbv96BKUsaliyVxvyux+LPxl++W/797U2UGm+1VcEhzOO4ii4e2TI+HGMe33JUgBm8KnnkZjvTZ/E6RyekFH/xq6S57BARr2ckdOxIXj4jS8KklhFqPcAjF71/90hrNTV+TXv2H1fYBuwjqy5iuh7LzeAOsP+bvkFuXMF1bK73yMddt3l0wVZTgSTsR7Lnvl1E2xCSy3qYl3bSKwdebQwia5EH+dOUAZL/kgqb4qrvz6yPotXAlfqVghUxNbunRDPfy/PygajZHncBxDeiwe5JRbYCTC47CDRZMRvGd8tCCdi0F/fiXEVkSp2UbOx/BM+YMfsP4cVxSqD27kcie+25/zxf1M/9eDaPapihbtrteAqy4RMd2MggnqqwgYb+Ii9xIwPQL6gHvvUfqH211r+NfjVYI/Tf4HAAD//6RdS5eyMBL9QSxERBKWvEXABAURd4CIgIA8EiC/fg79zXJ2s+zTR5sm9bj3VqVqQNwplfSN73KwH9QH4eW3oP+LH+Iu8wmPoyZgg1gqMDztRqxt8XO9sSOCNHMYNQPHBHPi/QyJO/0Q1Y51kQ6K7fZQ02CNzzS5gO54+Gow2z917MQVq+ZYPkvwenhyFFUW5644iwVwjD4rAiu7urNyTxtp00eo9adPXtbjCg9Nf8KnS5vohOhfEVLinsh00RFYM+4cQsl9BGi/6aHTn/7c/XyEnq/JH9YtX4BNX8AXw7ylzKhuHNz0ekLYUoFZuZ592P+4FVsRZ6ZLQNYS1rN6wSh/vIKVE8cMbvZJ+MOuAXPqxwr05fiJDrXqsOX0akX4Su4J9t5uF2z6XggKOv6QnKzHYZ22G9XK7/FBUDi5FW+KowM2vZsMqN8Pv5M/czBn3ItaUa4Eqz2BBE40P9BNb2FsfhSh/O6P25BSzg9Wjk9seNQ+DjZwS4eF/5IR5h8tIUTG5iCkkrxC/1QGSHhgUrHR2HfQ+bQRdqAcp+wQVZ0s85OLY9uxAp48bQsa37LB2v5uVHNyN0fwNrkFce39CZq/emXYHyk1AWvSaSLjNhNg90G8I3zSRTqJtfxnH5Ykft0N/xr/8s9JF7G7dO4hlxZLSLE1JdXA7oWAoPoxLXyWo9adwvWXH//0dJEL9qC5XD1F2vAR9rq4AJN1cRQoI4K2+ssuWH4P2v/xUSRv/HQMnscIdPJNQDz94IDt7FkBAVZGavaPNWUkzGZwf1N/w7N3l50ORnx8JlxD/+pbQ55LK8wrjfzTV5eAeYJEM5tRc62Vaqt357B04iv9Vx/D3AduM0DeSLKiRZ/0I5P+n46CPf+/WwoGU+GoWnundJWivoMPLz5To3pX+gLueQ1LUvBYLwSLLTQTHFi8yoFeDtuYLC2AM9zZWk0x/ZyqFZHKgdL6JNhjELA1Z8ACbnjoCMyjN1h9/lJCb2v6cgfrAnhZOzfw9PJOFEHHAWu9Xn1ZLOiNIi86phPNOOd4E5svWhtrF3yb17OEffwNsMuyQ8p08eUBw5gwYhAYwWT5SiZ/cFtT5zQnFbN5zYNIqAPqvHuWUu+TQaCRR4545RdWS2gYHJxQ3aDdtK+D2WoNBdpgHHCKvb1LiBIjAEtaE/4TDQEThz6GnbRoWPNaEkyvmyvAzudljMYGVONwgQ6sc77HqCg/26J1psFRlgLqvD6gam6cy8NzXa1oOQQfRvuf24HIGkeqjNqYMglti/KwXVC7deOBtVlow0+8f2DNmRt9vZlXRa6GbqWnYKhT9kgLW4aVUGE3y1rQtdklg0wjKpJPAwbz6E/bWFa/wy/kLAGx+UKUR1kM8PnGf9Mh5jlPqh+JQ9G7E6t5Ow/QfHqLmvJsD3vpoYZw/zVmGvB2kzJlPvfwy58yVJYXJ1glfC+hs/dDiuzup6+QSzhQ8eIXJ7fDPl2OYezAyvE9Aj7GRx/FGtXHsIggekVFAtgj7RwgVeWE9b/vN17ZNpbXrMgoTJO+xLI9QtfkWjIrQuh2Rz+RpOOu+1BzELOKQi324Svam/jv/U5ELyxZHeobfu6Sq07vY9kDL7C+1BN8sSKPRylCIb51COQbIErOog9jtl2C6vd6JUhR2cMX2YnY0LHCqLDLLVBf1Bi71vPhzjYDJZRNfMYqQbw+f4ynB9djjrC+8L9qFi8/Ai7tT6dKMHCMdMbgwZbMOkWFeQlIZ1Qe7BSnxycGmmp9fn7o7/3iC3/cu3TcMweeguqHjU/kpvvFBT24NUtAxvh9YGN6UWyYBzsd7dvpABZeuDvyaRITarjfPmDXlwphf5SP+NxYNSD9mJaQnlQfa/2+Gubmhh1pP3WYXlD2cT/vB0FSYhMOFWZgVwvXlNqulQeDqidogPVxFAUofMp08w8jpY9jYoOutyjVtzGsQpzPisxxRo5PrW0PbPB5DS7HdEeE/Qu7vXLmcljM2pWALzbB0gptA3BhTvh0eZwAf1q0EE6Xd0sO36tS7dXVzABexG1xn+hUrPJADoyLrGLTbKaBvQ5zCBelOaKgdfR0qUmoQX+69DhxwTul/rzv4XizIb5UQQzGyNt5cN5/eKpj3xmWNdguJTg3D7vXYgFrFC4j3F1vD6xoE9R/z91RBH/xyN6ZS7qkZhjBgPM16rnRrI/8U+WB/CsV6jzCH5u9D/JB96l8rOel4y6u4sXg4wciPp29yl3Pd8ORFWc/U/WTCvr0+dQF/IAQksN0l4Lx0qUJtDokY00dxGB0y0WD+Xe9I5k/3l0WIrGDwooItncP1T2YhdlAvjkwrN4aV18ey6ODbePVVFdCnpHXOHGAGDcD9f1C3OVZHy3g360D+Ybi5K7q1a3Bri/O+P5+oHSd+HZrgnZ+aIkZZHTX3QWpaXctqfY7ErAxmBDs0OOBxDCaANurigjZtdWwkhyNSiiOrwzibvDweQyiYaC12ANNJD61ptN3WK6HewK//eFH9pau6Uw5v2egqt2Fpqums1US5xqss5dh+3Lw0v1CztsYZClF9SdygzlnlxFY4tHHnhnq6XxsDitQsp9GLRVMAX1yfAHGco/J7LZfd750QQxvU1X88781Fi0DyPNnj22ug4AgMtgg9mGHVqp06eydZg/mE9ojQf29htX9sF5WF8BTV/x8A9pmmQPeUsS2RWNYX/0oLeCrsETq5gEGFGr+DTj+7kXNXTsPC16ABl5ovNJ8P5zTGdz3N/mjkBprjysfMPVu8+C1Ni+Kk1hxR/yIJcAfZwOrQv2qWGKdCbws7ZmeygIHSxvvG5nJ4ZPqNiT6/NRVHn5ABPGlsw7u8k2KCKiIAvIOHCldym7p4fzlCqyuwhR8fX5EknY/jX/5CHTSo1Dkxlgovth2PbAOHkJ48b0KSXbM6/Qt/UoYS9KEz7vDd5iE8pND0ARHbH6GQR/b4hNLT3k44suiKPq+K4EI61zosZqiOl3uw/4Gjl7+o97brHVqU3KDNu+72BUu3bBe2kiDozOm1H9d1HRf+6UGb3n3JsntcA/mTjV6KHepilHF5JTquzKE2C+eaEmREYwwJhmMj4yQwy8zU7rlP8hNiUsvz+uok1/58mAcpzZhTbrTCe2UAmb77E01BLZLcdHZgI3BKHWnLw1YOmwlFiqOOPvLN+CeN2CnNAZi3DqmpJ7kCGaDOWF7vbGUASZDeOLqCavQUtyD/hFDYH/mBjto9Cv25asZYiyY6N/f5/1D+C8/qboGWJWzLIb+hHtsK+0TzEf/JkF0Vn/4ZEtBuvTj6m2TvHlq7m2cztvaOBAwcKUnSGo2Fu+bBlYX1OiQUs79SVODoK+1N6yni8hWs3plcGjSGv2egcVmTsn5f/HrdZ4gYIh4Gexv0MSJHYf6dDHJCvQ9j+i7+F7Bb8s3sHvGGbaTWBqYoaWNZMpNTe2k79P1+4hzmHrfM8XHI6dT9oxL+Bf///LVeA6jFdad8drsyxj4+fxx5KGwdIwv31JfO2NA8NaKNyKnSbXhvecN7t5vA5tzEenrztUK+DnfdHJ/P0hAm0MGwRZ/sDnL/bBk+NbJzs3I8KXN5YoC8SpKtjV9qEoGu1qStvchqhcVvzb77vUXMGBX9pgqgUyqESRXJG/5lvDCUg7Nsc9DAPlCoA57tuk6V2MDLOZr25onVrHv7S785XvSXh4tmI9rIcgbnkW/g9EO6+/XR3AnmS9srCHSWaemIcjrX4QtOyFsNb6KJz+c+oD2n8F1x4MzF1DA2h5xdvdzJ1X4xFDRnz7F3OcQMPNcjGDLR3/2Hcwvfs7g6RsBrOXat1oLpe+Buhx5JCfDe5imvJPAIfiGRHQrXAltJm2XrHVE7fPYDgR5LwQsaSxp7mhwmLuc66S+6mIaNV2t/50v+LMX1ohsmP2ZcFCLvIEGw91254hty2FWRKhLr2vVm+2SQKs1OYoO5ZKOFVkJfLys7B++Zk/dL+V4fSBSYb+vGJe/C5jv7z9s9mo4jL/GXWEYezZhycMMFkTPAmziOCCwPb/A/MV37pjt8zfJD/zHXZWzkMOI2Q/qnh07/cNXUK0UhiT1eBtIPe0jGP4NH2/TqWId3IVwL0ga+tom1teKFpacDaeJlBejBLP8BjVoBfFA+B9nVEvzehbwUF9b9D1+K8Y2/ABO3xBQ59gc9Xk3Dha8cRdGXd7wGUvUaYYhqX7UOYodm6NrYMN7ZgUo1QYL8HVwlOCfP118UFYzutzqv/xCdhd7qhY9v65SIw7Sln/s9LDyzxBWpzugTtOcA37zV8lU9xfqZk7sLtPWVrn5FyJFqYK/84Jv1KZIPGPmUnWVeLBetAod6p0Plt93W/PRszP98781dFgCzNunwF4evdksni+z9D2/dATuspXuOSO0oCOBkrpctbrLV7xF8KoIGOv3FwyWcc1q6Lb3C44QGVImy7wP4Vl84ZcicYyWRetAomUrRUWpskVhIgIbHiH7F4qGrs3MHE5052Hj5TYVOXpjCAuCOLTdigdM248afOyPFeFu+2RYxE4XoIENBd83f6H7/WOGP+FE6EmsFFf4/foQFGM6/uFbtrjlLYK8+DMxuqetPr0zx4HBNR3J9/Ta/8OzsHxYIZJEVQHCbvIzmJ3AHmvc7cRm7TGEEGX99r6zFrAnx5f/8kdr3BKXJRUjsE/iLzq+Wz3dn6UPB47h90VPru7qv8UgxZGrpolakmkHREtVCb4+koP/8Car6Dn540cYW4/sjy8V8uxpCRJ3D1Wf1YNtwPDi6uhr6aU7EZiIkNNzC58/QHFZWVAbinaTk8V/sXRibOCg/+oiIvSsY+MLoQaCt78txkWmPp9O9AZCo62x0V6CdHW3FpQfXT2qHZgVjM1rRtBRAgdjYzX08fehAiy0V4vMh2owHk/7GZaeirEyfB/VMh1/ozQq954sfaGDMTGZArfnx/ZNu7pM0CUDvrr+sS2eXIY/PguPXvajirh30glm2xCP4TTR06M+Bhu/FWDYidvA2Ds31Bleor/3v+HZwZ3UMMhhrPh3GuKZuuNI3hG4/oY7Ipx6Y2vJHQTp9YAG1tlwreZ3VvAw2Cs+Rc5SgDlrIg9s+gB97LTPnz6AIF3njqrPUtWF69MgcLN/etppn2C53nEGd9LpRS+7WAjGsuZjeAjHYFsMf3Xn1Wlr0EPRQfInm8HozwRCtH+H5KBycrrEybrCb8p1+JRSTifgGfAwXeqQbnhuWBV2LaB0YncEBmtiYzYNkbRrvyIBnihW3+fuKP2zj2dU3ocRDUYNm8c1pK7hv4PF+GgQbPySPrTpM/zDV9/r94DNJqhTeqmRAy7L90xPki2m42MRon98SLmAD5u8r1tCYGk37OLc2IaeRQrY4juqHCa46xTJFojeMEcJeXMBRf4tl6EQ2f/4EpsrU5RhxVc49C862EPpRaDN31z6h6c3/N7Ar3u7E0lzy3RpC4fAp9sqaFXlzp2kxzmEnT2eiVwFIlsv51GBR1M7k2GZeXdlCDkg2Gs+gcF4HDY858hPwy7Qsnd6fd5XtiPF1ldAXMXkYGle1wLev5GFuO28l9/3a4CDmxXYEJayGpXhrYE18iMaQ3ispk+jZHJ/OipU1RfF3SfcyYG3VrphzLGTy84CS2AaUpkcaH5zV1/85HB/vsdUPQQqmFrNH2FkkZFa437PxuYlevDkxvs/f04Z9607OH0sD5HCnFJSDZ4N5ce4tXDfDsP4QlYDvbQzNvvI3fXYRxEo71eNmtLuEczGLt0WE5c9vvg50VkkFJwsSOtl49PdsHSmKoIxjQk20XMYJnW9ZNL5dbpSZCiUTVs8gtfEUumZOPmw+YMA22Ab6XP5lu7sQ1+R0+aDcfvLvummpxAY916C3XTH3FldaxsWnhBj7/zu9GWgVQLNUbpivZwIY3980FHjM8WhoQ/0+jpDqOWzQ50/feezy8t//Nrd+P38FRcFfuU7InxoxWw6Yh7Br3Ks8bmzF7AyZNnQ+CkWVV4XAAxA8781mLeLOrApqhNVtJ27xfMkkszU2NFLm7+GP73wH75Wdw9QTYISFHDTs6h+Oa1szu8BgYpRYHza/GMoi9aWkmrW8ROMCluqFonSnz7imVowtEGr3OTEP6zoOH6t4PAWLjUkQiSTUjrp7poacg9EHA6oCw3OpU89LuDuw/X/9JXfxSQzMBZHwu5QlSn7nJ4GXJT6SNijCfUFQDuDBQeuaLFPZ/Zd0SgA390bVBGwDCinTCWspVqjV7e/63t2X6B87edwy69uIByDJYfp4VLS0/eq/OOTmwTcUT+0g2Ffk0yBB+fxoXZnfsCm59gAgl2EFbz+2ChePgQSsrWwWl81WOeq3i55Gy4+qdwrYFcJcADM/UBPG3/ai53Oy4dv3CBBREWwevXIw7hHCcXKnQ5LfnA48Mdf9Psr+8cvgewNP3o+pQno/vQv9RYV9OIKfMWy3zZU1FIhPhWPQ8WOJG1Apvkt/eNLe+OjcUC66jZ2py8O/sX37TzIQbz6aYcGr4EwcHxq4+uOMVrPvcwdwitaUS6kU9DcRLjlI4pTOU7XaMgbOFN0+xfPZ9XPEQgqj8OqdyPVHDRLI/+0o4D//J8V5VMCZy/hyH4Q4UDWW2+BWLndyb5rPy7zPhkHOO1+wnb0/lZzA3oE7eO2dk0xvulsvEwC8HN28ekpRu5BNtUcnttMx1ooPxgRDH8FHRBVapjXCzgO1yWGbYNqBHd3Kz2wmxtDDu7eaOMf1RJOnSatd/fxx0fT8Y+vKdP9/qdfgEWkMQd3hRv/yxcsupgSFKXfg3qfp8L4160vYHV2L//42lqUYgOC587F+sY/RyGvPfgXb/BS8dWmB4cAhQah/ikrUtbZXQatTzZjxVRF9qdXwIh+VqysUcdYJHQcaFq5pedn0LDlpgazbDa2ge0wuoDpWswlON/7haJcL4KpOocidNTkvI2NPoF5JI/wj8+hvZyLoJ+OuiLv4vHwF2/cLV+MorZnO4xFTdDpNW402NFJ3vDw7x8/lw+CdSTyFg9mubXJX74mzFjOwXC/fgS4bkrD2dP5lBRK2cNaajSMmucZEMp9kz+9AHtivQ/++I202Rc5HqufvkbhcYRWLjsUcerKyN165HCzbwT9M0qXVosJ3HNhSeim1zANHh34Pb91BDc9eZVVz4P9cXckTHt5FduNxxmekqvwD4/OgTH0IC0kFZ+cBQSjf4OcNFPv9l89lgJLgLLvI/x2+JkN6HyJ4MYXMab4wXjlZsO/eERNkLl/em4BV7PRCU/O54A2zxLCfZi8qOOT7YpAECDA5+OOqvKqB/zF+SUgg9KOOn34rJjnzJZcFuHp7/eppIlM+leP8XLGp2PEPhbwG/GMY3IiFfnutQzoty6i9107V2zlryH44z96Nmj6xi9iGKhCTO2YlQHb9HYoMnSgGO3u1SKcik7evo/awfHpLkXOQjgdvd2/+hJFa5fAbsUVtXZwDub0YtuwKztMyIZn2d0JCfSD4EuaY8dAb2jrDR60o0qV4dCmUx7KGvxqRMDmeVm3KxtxLgm+YGMlkFG1JNxpywerTuYNj65XgSMgenpXnKRvVG3MxILjaKo0aiI+ZfHDQ/CjjDX5w0PLY3n34E8P8afsDchiDyvIdX9GM9+bwzQKcymbo3il8XoLghUHZSiXwq9DC7QKl1m9Lsm36VMgNj3u7mIf5hWysbOwLytU785CPUIyBCJZvRalf/bwp1fSUynrm36JrL/6GLbeSZ4u9ngaYZakCTWeygds9tUB4QUEBH+0TxfpcY4gb9UejYsDdOdxBT48cp+S6sb7OCzT7SBAlefNf/WfSbp9E6DaSfJPPxqvGbj90wN3bPTSfXSPY7jVh4j07JqBsHt6A+M+5P/wfTBrjyqEGx6lXqREKb2l26KOMTkglg2aeyDgXkJTUcFffEhX5B9t2MRJQLF7/QZsivIYvKWQEaEI24roL2b84UnU1/STfhmrOIhCi1ClTW6MX0hxg5d41RBnKJitci4g+MqvX+rdbo2+rryowcN4sC7E59aK9XM8w6/8QPgsybBaDA5ycD30kGrrUU6Jt5t66XOND9STPVKR66vrIU+fN/yvnnnvvsk/fOEPhzZgONC3epLxpdc/fM/Z1xCWRXTCeuQVVUfEewc2/Zp6YVOyjf8QGOGbi7V74gUFp0Q8KFzdIuXjGgZjOZ4LaKqHC2mDZziw/uf28JEGDjqUcgXW5y71oM5rENtz6gb/9AhqOxif0a8YpudrgDDdLSpGxqtO57eUCIA59udPjw1m5/gSYStIf3pHPRA9+nKwmJXrVp9NwUpyx/tXTzr6w6VaDzXgAMUN3fTKFKwfPRAACVwTa4/K0A9/73OrnyD5brUpO3QLAtdaO1Gs5adg1V/AAs5p6ikilAWLaMoiXMDlitWDuurU63oDlA8jxEre8mCBWTX+03/vu2ORDrBwbvBnKHuM+ppUs/ctEXjmxhffnLlx5/zw6WTljkqs7UYQrEHlanCKpgTrX3Woluv9lEGzwgxVQlayMcPHCGan4x613HdkE9f0GrzEs4bTQ5vpK9e4ofzU9c8/fXfuzK6Gr+hgEkaLkS33+Yr+8hF2g995WGWzcKCLSgvtK74Ei6CkpWS04EQq1/yCf3x/y6/4dN999O3zHqwS7k3gPCjBYUrWCGo0f2EEdiaYtvz/L37+6Z9zedKSP3z5V39I2Qu9fJg+eoSN8aamQlLfEumvvuJtejX7zliQMBuvf++TLTZ6jRDypUB41frpc2U++r96MLUsa3Wpn/grTA+4RD+vsNlXOBU9+H9aCvb/u6XgxTGHOrkcpjNlEEKdTzCSvKwLKHuuNZz1jUEJztZFnpx7OBH1QlX/m7Elz3IbirlByfGYEraeUJJA1xQCIpfGUC0GvY+gumgj+h2j88CMA+Xg2bgkaF1aGowv9MnlR8MuJKZviZVTfrPly+6QUb1uqb4eL/YqcTehxufjNsdjDJ8xqC5DRE2rJcH4eKkrrGGYEtkK7+44PgEPhez8ofqluVezn/9K+L3xhDqT4w5VXH0LKL5yE2u2eWbTxcxKWEZlgo7HFLHlpzQ8vHDiCz9fjypleuet0ErZEStKVbPpnCczjGnzw04uYp1FoRPBc8QfMZr0Zejk6VzCaNIWrA43VaccPErgCCaOwN6tg8n2bRHK855iW5T3+ly7cyzn9c6mXmwfwBSqiQ3Nm5pTWzUmsDyysQatytvYfkS9vmqZNMIdEc/UnVbMZhOyTFaOd4xNrtgPBKS3Dn4KxcbYFi/pLK/WDKz0XWP1xV2rGT92BXwEaLtlRyxAKzOo4dt1TXScyzaYw/MDic97diNlu+uH/kkXCPf16NPrcPu4a2+BHl6L2aRIg8egVhynAP1n2+TiU7Vin/0cwd355+K3YQxuD0fswFe6jwjPu+1AetvjoGAfY8RpXZ1Olm5HMCmzAxK/ByFYn4t+gy+Zd+n5WIT69HI/HXw7ZUp10HXpEioKDz6FfKLGNh1wLSU1A/xwO9PLIEgVw/fSkudHOmFt55Dq5x0nDyQl8yiSZpDSytzukpvri4hxeHCXH/gVUJ6rhOr2yoJVb/1OHOLqg93DHbtMetY2nMjvgBVzyFxGfiMCD+kxYNWRxW0QFO3g9n3Yug/HavLf9w769x1D6Tpn1VrfllASX5lJX3vTdAc7DhxY/nKETbo7B8J6C3MIBn0i8hzZ+nrEQwKymwWwYmZjOrOHNkNYFXvqkZ1VLXyZ8fBNjCN6BhxKF8vib/J7yjAOv1SpWKA8ZnjZVSeyOOKNTdxBu8maaRUI0vPVnQX+IECksSs1zOQwLNPnCYE8AYmwNNil0yyp684iz5jaZ+aA/XLSEvk9JwZ1clIPC0YfB44VfJG8C/lhyePeA2JOn4jLX4U+/vSmg/zufSUgKpthBYkayX/2i0ZeBfv9uM7gZ+5+f/bvLizUIMDpUUPrsjzB6qdGAfX9TiScv7Pc+vE6z+CuaBesfIoHWM/xHEJ5jK5YEZuoWuKeywHOPiN+lvWO0fEFOTDWxwwbskH19fza1zL4rU96egsvd3k5fijfpKKg5mvrUueOtQSH+PPB+s9Th2Vq3h54tM8DVfm9UtX6N+RgbTk5dY13ok/aRxdgw0kBNZ/6PljGhHKgtuwcvwE7DetUwFmyt9XhVvfS0wOnfCXwdjyLrNrrq4+l9R6Pq4wJgqhgLnFGnMOzfktJLj0++nIxXA/oZZpQ/TJIbAr2PQ8jZ2qxObyhXj1puEIdv74YV7wasFA6O8A1+QCrkvbSR2QeCeAaY8LnuWzT2Z33s6TcnRNV1Z0bLNHlHEN+EBl2p8PdnVnCETj0noqfbQDZ0q2hBO2X9cJKr5juBF6qI98k5FJ8KU13mcrBB3PjPLG7fkY2m0qbQX0vi2hWDkfW9+fch8F1eNHLR/q4i2VfGkAzcqPuVCn6IRF/MRwv85u+bXmtlubTxZAJvz1WZJ+kiynTGjZnbSB7lY06sUxzBX44vpHQkkb/sWsXgrPGWRRnFwBYFNUQHjTVwYr4WdJ1vYUZWK3niWraGDKqXA81LAzwQfujIIPl2voQwoMZUFR9D+kshc8RPG6N+S9e/3sfOOF0anldW03mkfWgaD8Kkrrv02WJ3HTAw0AnML7ILlOzVwHlZ/yiV1Wy3BX2ex4Q9fqg7pUYKbN21U3WUdkgyV3nYL7bFxFs9kE+DeSCyZlkDvjdsUWD/iirFX7nRj6FbUS16r6CadtNIh+PgkLdw53q8+qmBTzcjzK+cPbD3eJ5Cfo8m+mJXDiwnUcOP/zFx/gy0qp/JbQHcbHnsKYtktvPBxXKQ88PWB0GkLILKES5nq4J9uLLS+c5EMTwmucSOo5a4k6LuVjww25XrDzYBczIKGK5z+0Uv6xnEqz+q7XhD5QQn+fl4a6Z91rB2ylSRG1m60t/8gX50aYHfDKy88AC5T0fr7n9pe/V1d0VOb4GQtmKibTlUyFYrgTAUnRx/Igcl73upgc87D/peX6V+vyNRQjz7/VFkTb9qn6nuhY8HOoXtRJLrVY4nhzAzydIaHYBjOg/4MOfKf+Ibz5a/c+/YSGxM5HDxwcMBuMVqByHGqPTQ02ZTDoNqIvwQGPgOKx/rmEDwWmpMc70JZj8xI9lRRNkbN0bPp1dWufg6kgZda7uN5iN9VWA0HYpKWT3rNN2vN8AXuYBiX0TpDOyw1AOLlmI39G1dJnLCyKMXB2SWbypw9ZajWCTcm96VpdDMM2yTKDtnroNMFyCcerMEexS7k7t/qEPMwdrAqcprnBwczt9uY6RB+tn3OLtedKBpboIxUWrqZbfFLBPhGmE0ie4IaieuPSX4XsNhUlQKRZ2ZsCs3XCDd7UV0E7YfdP5OQQddPz2Tng2JC7hMymB8oxNVJifa8WkRM4hOl4rNH6yNh2MvRlBTM8udroUDev1lyfwMt44bBs7u9r2y2tAMyeHniLyBbMnaYkMBTvEmvDN3FVv4w4E198L0UMgBXN0q3jpFMCR3DUNAOp8g1FG32RG+7IJK3a6yB4AvUWouz7KgF4rBuXPywhwIFAF8GNcFhDWb56eqcwPvx/4lTCUk4m6RsKzefVGHvAjtqma6xGb9sQzJG+/jlSzHayvfK4TeD7OE7483dpdCzoU4NeBF1p3iqGv8Q9zUuAnZ4yqrWufxZkF9E+WYnxZeMbs+1zIf/mwLb7SNtfbVED45DHZv6bJ/cD+TAA8PDtSbkMEpsobCzBetR+SBJ3p487OtH/+e/o5I1u44yiCLT6iUSGGO4NC4UA03S18GcpvtTwSlZOjHfelp0icAzrcTALPxofSuH/o1ZyphSh3TN9Tu59lQOMyRHAFvYk1oYjACn91Kf/gG1ATby20n+N4A69Tj7Bz9fthfo7jNsDydqOn9/IAM75noiRPgU9xiglYpopv5BeX77fnD3SqXHc13PAXPv3wqlPFJze4vxkLEWPHGxa/aLg/vEI99ZSnMydpFmgykBNOyqx0dra5jEo0zXTLZwE9OjYHAgZbrB7ZFKyWeZnBVzAOhDfdli3fOJ2h6kYGdguz0ZefQgRYeYmGNjwEpql5I7B4/YCO6njTv8l2iyDJpZgapn/R1+eaNeCVSA+qEP4UHGAraJDDzVaC+YoVxffegPJOomgd5W1O8lWfJZZLCDXe4ZEuWvlyQGOTiOqZllV0a6gA0XntqHZKr4z98SkhewlopjbcNuF5W0vr+0WEWgPBuu9+PUifX0ZN66WDPXidHZg+gxwB/aFV7Pq93ODtcXtQ+1HwVU/6cwLv6vWzKXgTo53U2jCEs77NObz/lw8Q0eSw+ecv1QYnry/Bpzp8mIPwXNwbKFo0ENl6ShvedGZwED8ZPnOKGkwYfWx5/F6WbYeMDtbmo3sw8W5H9CoNd1gJRf1RiUwLtdBS9TVYngQ+JD0iwN6dgp9oXCMYOekNG6TSwKpc3Qxu+XzjT9SdOkbQX7xAXD5SsIpaLwAkygifbgbSl9B6x2D/HTDVFuHtMm4XFvA2vN9YT3ZOwGA5z1CwWx0r1M6C9Y6RAH6SdMOny33bi7YUqywVfUfxlm/2Y9JCKH3aFusH/c7mJz3VcLz+Auwe3s9hbWeSwNuw8Khp5TtY8kcswVYME1L69DP8/QysmVRUF/hGX/1H3IAffAF8Ag2rZnTSNSjYIP7jV6x/f80GbvkQv1e30pn6IjwUHb6hOlhXNiv20YNP+SJi533iwHA/nVe4oyhHm39US4WxDU9BqOEosT7DnBpuCTSJs6l3HmdG/+LvvaoHevP5hq1xrRFprDobZwdSDasggBL2H8tHPGt40D3eYyJNT8HE+NfM1XrOxhuMqcTRC6cvbF2vug1zTQ83vn9xyTlRe7i9P/SRNNkd512N4G2bs2mwJgRTqMMZ0rm1qHavdMZeUVTA1+7JU9X5VTpRbuEKb0ZUURuNa7D+4KuH9Lzm1COSGvzhI5gFuoTmx1YiejzHFRx1LqbqeGfp9vwF+DuPg74u1brTwgQW3bnH3sanGY49AjZ9gp5+5qliFveE8Gj4E/WRj4Y5L6h/CC55iMB02OtrCUcLvN1XQg02SG5vKUohb/mTZvK10hn84RAYfeNhJSsHdzyADw8vu8+J7LGnsGWxgxGOyODpWX1p6QHZnxL2L8HCl/n7YDMO3RoexMOCZOuZpHOeGx38ywf2YWfr4/R7aHDjMwhueGtye02Bqu8eMOqeT/Bn77D/GD6as7ioSLgbGvjHV+I4fLi9pQ02UJdSwzqcd4C+rk8f+PdfjvbHkaX05FUSvG2qlUd2zbCecEWgc9ntCf/l5mBpPkUMFk9T0dJUhsva7hfB/jNKFK/Jja2iei3lLf/T01XSh/WIEuOPz2KzHI6AnZzzDWzxlSrBWXDXlt4tKD8tm1rCE275Yyzh4ikqPl3cZmD72i9k5w17qjShtLUgSjUM9hdADeVWBNP3oeWweWFG2M/7VMufHoMTqFPt3v1ciiMWw7K3RJRc30nwpz+B/TeSiGhIerqGCr8NtdMMrAvcPNC7HVjQ4JaQbv7EJr8gEG58i+yPwgvMd13pYS7iK6qK5Tn8CB0EQNR2mxTrFWBh1yKCFzt2Nzz5qRbp+pREr0QIHTmzqdb83sdg8xfCP5bnxifjEBzuQUBNnM7D8uMMG6ZmMlDLW1ed3s9jIt2F4o31jV+PWz4DRIliJHnzK1hC9ebAuDhwWG26c0B7HQiwTu4NYb9CGKZzISd/503tGC+AVHYaw8l2v3/+EUxxlwrw1EgFNb7HQe/rB9eAXeb3SNJ4fZifvRZCOblneNo7zva+IAd7PnqiJ6d80rWdmwSg72RiFyKBsSbtVnjW6xmfjOEYrKL6LCRUzxa1KiSyX9wL+Z++R8+U1GBeHQfBmN5Cqmx4cDq/RwNu+AOfJr4eRsXRSug+rQzj1a1cdpuUBrRfAtAf3mGJTDogpHuPvvCBT9ML5xbwj09fLMepxgPnZcdfy+WoXddrOn/2gw1bsacbnmYBi6KRA55ABySHgwDGAwQ2ZMK9wOps6dUPDoEGd1mzI5LGV8O64kWQqzcsqMkTqxJEreRluuss7AXhPiWVHSTwLJ207fNVNT/y1IABSgN6CYeIref0BuGGN7FV7s7unx4FX/ZNpNY9+wEm0yWEjT1GCKraUWeLPiWQCEJP9V80ukx6nEtocCykLlHflbBuUzi3eIEvT/8c7DFeM/iMpgafw85K+Q+zC6C6/ZNaEofTQxSNEMYrOhO44b+9YnQG/N62uboOX6asbWMNDvHFw4bpnhghW0v00Wg1bGfHXzVxYtoADTQrObxfJfj7f2SJ/6TYWtJZX3/ib4RqLpbUcjk6UJcee/jd5xd8DmGarq9nFAF+qHP62D7f71Td+q9eZxV8sFRu6gH3aWRUB4dYX/34I8La5M9Us8PjsCT7MAb1M9n0DN9L2bXJG3AQL6ft1rLm1sgoEtmstYDaoogZ/+N+ETyoZI9m87NUY43rSLp+qIFW/+i5zKmd5A9P0IA8c/2XLEUuR5OyYJS3ffXPn8tBPWArcRtWg8KGx41PI5D2Mlg++wsHqZPaGOUjBrM8qSUQ6LOndt8EAXmXPQdtx/lRXeebdBljM4Rv92wiwetOgyAccweclBhRfBEkvV9OQgntbNvbE0YXF2jPVRSNvvZwUL+MQdjtjiMkiqKjkeyaam3py4CwKvfUM5dIX2xfEWFqqXcE1mZ12epJGvzjB8/wIOhz8QOSFE1DivabfjW1/K4Ap87l//KLeyimvQK1Z9D94+u9zDsZbOxEpcaXNxnt9h8JGjJ/p0FqbLdEq8aW9I9jIaFC8aannnPovCMFn1+DmNLPXgzBZk/URi+tOiD7t+nnmYlv94kEf/wcFkfBoadLIgRL3Gql5HegpXb/IW4xpqYN7upXwDYqWzDfht7445fER1atD+1P6oUaRim2Skln8847cbD8ZYjm+UjZSBnPweVy3JGW2MdhNugqgfWnNdTkf59gzIvWhwc1LmjW1/lAL7tQAL5qq1jfZn6t69V1wBDvBWzcxGslHC/KCv37kCNu59sV0bsfB/fX/ET/+bs8zEjO8Nn6x5c3/7fgpk/SS/j4MNYdXwIc/TGkilIZbM/nnfgPDwuCUlbzmEUZOD9chL1P1gbzh38KUJh4FSuf9FaN6PztYRpHb3x+PfR0NaV2BvNxPPzjK396iFwE3QXrb3IK/vA5rCrUb/m4GkbwSXy48ROsE/OnE/nAxXBfE5+IaDlUxBRNG+6cYE/4mxyxAxkt4V8+y7f6xO8zK0Qm4cWl+aZ3iMVwQVCL5WCr3yDwD/90BGlYq41Zp8U4EOlnjHcavOWDPj3iuYOBT3Jq8G5b0WCHEiCPHMCo6uEwLScthknplFRtqlof/Zfvye7p1NINr6XLTu18OPTCQPFZe7D1/TVruNkf3fSoYF3DgwEKKePx6RceAmYpsAf6/oHIVo/687/oiFM/pvfhnenLH7+Ym5zgMyUGEJYTVwD7Zbw2fOyzaUwoBKrXxv/FY7U7J3D7PU6kqQcj+Fpb/vJDeo+PPZgDsezlaTIQ1vJHs+ltQQkjV4X4Miz3lBmzbcE//VNbRn5gHzHhwNWpTzRxq6La8jEP7aKHG55RB76+nAm8158eexsen5PjVAJxHjF+n08bngazL4vLgP7sjbEbuUowBbeAuvauDZaD3N4gh32TcFt8YmOiKjC7Zlf68tS3vu0lLsFsvI8IiqXlsguUELxXfkTfFf9JWZNJBry6h5TMKHm6m39BsA12QkJlkKAenLgH+UGEWCcOCZhMjxHkmulBTewp4KBvLWI/M9oRQeJoSupQ6+Gf/VwsRdEPVKhXKJx6g6o4LvTF2y83+RbjaPt+lM6JmCGYvA8Pwg42cBej9zM5YP2NOntuYsvLkyCgO5hSJdRebAkVm4c7urcRKBSFEVNqV6jvteOfXq3zu5NDQMipD6yNpGVz8/vmUHzNCTmsEDC2usUIMHVd7O6kz0Cm95CBzpVErGz69ILDHQFVtQ/paeKNannXz+xg1mFH5iaU3M7PP6XsrNIbaydP0+lBj6B0V6IS40vbB6wOhRlw30yn1+OvBNtIAAOgYytiz1wE93sAXie9yRPRs3/JN/1qEOD1YyQ4C5QiJU6refBP760E3nLXOnQ6kLw/GoHismc0rqYS3gwFkS+OhvQPX0L1/fHQZk9VPQPxBrP9jqD7LAvplOFXDZ9dvE19FHYuWc5Y+OPzSJLWWZ9/2isEf/qGh6Ju6Ab8EsHurH2Q3J5eA7GstwFE9+0T4YTXinb7nyi1omxg15ZKl3VS60AXdhLVkmbP5ueQ9uAyfgNsfMJ42PgQAb7qqPRiOX21+OmPgHP/fPyrz/7p7XIraibWLx8/+NPbIBSyH1lth7pM8YkPz48z2s5fBn/870+v+qu36etWPwR3wXPw7WoDMAbA9OVX+lHx9cWf9MP7PThwf3tapNniL+t1wIPdeXDRMeCrPz6VANXlyJbPWTqj89SBPRJajKPvNmX43sfyd7+W+LLHdFj8JI7h2agoWdR9wZapgg2I5hvAnkJqdwVp0sOtHkC9QCmCGT8OJXw0dkVPYIhBt9WzYZPC94Y3LDD+uF8I/vREfJKKYBbdiwWCq8YIF2mxy1z2bSAm5YcaH0Wv+O9LQGBXuDmRwxm6bP/98WA7b+wdROKuCL9ucMOrNOmutT7cZr6EG//7p9cs53dtwL/6Lf9oUTWfLMWBE3mU9KwKcFgk364h+lITSa0AAGmJPv9fUwqE/91SkEn9St0BWgNxom8M7aNwoi7yI/CT6sED2+QcJBzeY7B66SGHcZPM1DbEe8BQ/uHlx/PiI5ZyZUDeF1bCsb2kWPXGK5uPWddD1/w42IxverVC2SVw8DMJ4xA/9fmYFb38fENMJFlF1aKF/Qx3emtQ9/1+68vyvVrwl+lPjIZ4TkluDYXku6eJOmJNKiLt1B4ugiAjUUnv6ZiXXgEvZ9iT3yGOdIb4Nwd/8l2ijt82LpPvow/tPemwivsnW3v4K+Fyub4QeLQRo181smEPhSN2DmU0MIRcUbrmxMUW08aUHl3bhiV7HMjR+UwVG/JYg2NlQmxFMZ+OVbSWUFN7Ay2H22dYVu19A8Ib5VQt5Subh64ogPxISnRIdjyb99TpoOUeTtQi3zFdP8GlhumeXKkiP49gfApjJkHnolHznA0VO7CbDX1guNTSzSxYyVnv5KtTj1j18JXN0ZIkEt+93ki8rPuUWdugFRRoA/Y6qw2W0n8Z0HoNJ2y0QTrMv0QpIJTvFarHS8rYPsw8oGClolZ8NPSZa70ZTuspox55P4aZf4QEvuQloGpRq8OqFB9P9G6kx27zIozSK0JAu9pfnLXeSWeEVzT5drQm7O6Dho2nO4oBQPuSWv4xG1jJQw3q1rYqdHv+resHATh8KiQ6j0lfh3LfQXt6/ah6FtRUiKCZQy8SzuRXXr/VeuuCBOzuqUFPH7ne7Kdc5T4tYsKyVKvmOndKEGk5pcb+BMA4INgD67q2aBWSPp0LVSuAyJyCeu3vpB+uyQT/Q9K5JSurA1F4QD6Ickl45KYikQQBBd5AlA2IKJBAMvpT/GcCqa4ktbrTqV6fNnh/OTHesYn4Z5f0QCkyg1m4/FufjIEHH9n9Si6DwyL+eL5aGKDDhPdTEzdieuQO8BzqEju0vGaB2WtFpblXdkO7QlD3Tw0BlpLVuFT3IskY2hBeJBMxt6pugxid1tViuaPEak68EPVAHaBsTYM5mlmI78YcghXN9Uc/V7tEojTwEUKjN0n0lLjoa1JX8PsHVWb7b69pb9n4hNtCsogxWxmYD7OCYWcNK0re/KDZjBQMxqzWGLGauWGhtWhb+f58sWP8aBG/HM27jpKbxy678hN93yfTgkbdt1hK3w2a7z8rhfZV/xAyP9apJYQD+ExiwXxiyoBXN7vWz6g/kYOvDoOo26cD73HAyOHhIbA/XMwAGoHU0s1BUgp2f6kKkPvwhWet+RYCJjWGmY6uGHAuo2mJgQc2x6wlTjJYYhnVxYLa9maS8vCTRb/fhz3sgmSdqv7azb/19a+spczTn3gQ9ulv1n/BFmDx9T0wB/SSgz0sKrx7uZFYQv0OYdQfGBWfc2EvTTIdgW2gD8PH/Wx/470rQTk+G/Sf3vERnTu4+2sq4mWrcesj/EKwc+InMRPfLOTxvRrt3pQj5YbzQ18fuhy0QNtjLokc8FFrOv13O+WYB1et4Y5UBLDWlZil4u5HPBu+KXhtTjExn9UiRpU/OaySXiIE5MawKFhg2NcvjcLP94QmFb4CVQs9gxhV/mczt24kGP0yzPBH720uXbIe2j/8Ji6c/GYCxS3Uz6eqJ6fg7DS7Y7LXYLepV/RR7kZ81IYOcvenr0bAwB473X3AwjVDXK/xzv5ffQetlSRYdcunPSNrTP/pJ/N1GKA50lYU7xbEVNvYx0hejNqFbzm4s+t0P4tlcjMHOIX5WeM10SIB09HzZ8kZ2Ya9mDpdGGD78R1M87Nr05LqFTh+6JG5x1cLlvBTSdA/b36MRFwBzDASBZTuLWLWbQ6jsfTuLRz3DBJsJmkx22Ycw2Nx65l79cuBq/P6hVPChRx/U4sWs5ypLovhj11WI6JJvegBuFQZwtIyimZMWfwE5d4KieUXHhKwN1x9g381Mxz/jBY3Ubj2FVxl2C4+YOnw1dLtNH/TOc6zhvvjLYXlM+DE6XnUTE5jcUjk10QlvNRiapZ0A9EUfFninks0Hz91qGNt9mifoimadbXvteqd3MjlUCXFArxtvGJuH8z5RGCYFUejMKp/PvEGfrRFGncWJNUFkfJ0/UTTeztDnXAL4dRLphWNnrswRhMjRrP72tJ6vkDV0oqcwe5uj0NqdXDy5IIgQ92DKXrmyv/7eVZyak/IvkNYW/adOKAfiiVPc6jM6lCygytHYuZ11enDIAOC0i8FowrGUbtoK/rs9ZBEt7Csgx/xVJgjIxRJlleHsGxxSM5u+UTLqnfgZ0c5Fj9SN3MntAqau2vHyItXBZvTJ/6nJ1j4b2+YHtTbAPd+ObGbKwsxu3oYwHdRJJgN9SzWfFABKOYazw6vwIS/rQL3fP8iaz1TzMFJiTXqxTnV2TG1xakoJICK55ecdfUgaNyVD1jpXUROn0VHXBpuozZOv4ydX2hjT7oWXSB5ph6xtYewB2fS9+D63lK8HGcV9AOGPbxpZCYkowEQnvmV4JWuDabzn1HsroRrmnhlT/Zi20DMl58SQprtAXMU344W55fPgOoPwHzTlwFlyfCDVQYjkh8xtfnl7acg5yeBtdjCEU/ba64RISEWuQ0HS8LXDtbvLWP1hTaohWnLweGodMw5yBZY6x0NHgns8GJFGeCiPYxwUb0HVdTwHbUjU2qYvTaEqgN6Nwv2+j08GGXPbMW2xLhTghb+Obs97df6g7rX4g4TVDFyBd4X0MFeOrjGR/f2L0aLvCkxVCbfYI47RQU9XM6BWr+mPTGd5NvwbvPuINDoH935cSTE4dBI+q2GGM98MNG0dUUI7+VuZqdxKKORh1avB5RNxFF+diGNr7yFkha9mH89fIbxJtI7LLbXkF3Ig9ni6/YWGFW7YOiod9H/91mtUU2XQ2ZGe/najPBjuQlekJ8BwdPAAc6tO2BV2r7FEiPZAns/fxJyV4xIUkFLIYrIMKlB+W4WVHoStBTNYShidBBpTA3QHwIFS38v2+aJfatgj3cq1X+X1F7zmQHFH3kRx8xrwGhTO8BBzZGQvW408/HzCwCUNZNdug+L/gMAAP//pF3JtrIwEn4gFjJJiiUCIpMJggPuwAFBuciQAHn6Pvj3sne9vOeqkKHqGzIU6/aaA6utWmFOe7OSZ31dwxIvjHzrouqzx5jB+yWp7NGe04rC/tXr7vD80vX58LDYLk9k4LZ5p/xBULC0z9EXfsy8fJT4nG8OD3hc25gYF6tAo6SmNZAvD+nKz1U0ecuWmNkXbsy6vMp8jirvrNfHe0o8Zu05TU5KAdWmOJEIfTbWkJ9PJnR+leHpQL1uFrs7hSW+Fr6/CibxdcdoF3++xLwGWTc+U7kGSXmsqL6ju+ViP1VG2lMsiHlI5mQ2oiDSRvcIbPdci5xP3mjr9v3ikN2xfldjYsEDEJQvLLZXK+hXd0EGtzF2WDhu1apJH0IJp+dSSM2kB2v+1EoLCx9g2+sXLN4S1UTLMX8SRJNTTVLzCWHhi2RHyDvhtUv99V/OUrxe37ZoeuxdALfSGkamh8u/xUayYcF7tqlWXjXE+llA+vZdMjKup2AC6xXCBwb1h3+W3NRTqZGb01FhjMdu2uzjGXbaxcWitEO82SQj1v/N1/5a897t4aiV31nCysJ/Z8U9jT8+yO4//PVvaQT8JN6JYe+/1sIvfVjig04H74BG+QMUyXAtfvoEjUMoUI1eRUTR3aF8dJ0i0pf4IpcChWiEOWphs863+Bcfvfg3t6C92hfZfdKe92etOMP9HcYs/Av/rEY9pS387f7WZPdQ9GBsX2kB3+mZEcfbiMng7jIZJeOREufF38EYJP5Zy65mREicGwnDtgSANoHJdv6+7+j2tUqRt9m2xJHyG//hF1Ii60VwZTXBXRmUGPRo9SZ2/O2s3tTsWH9LT5XtTXGXS+SgihBc2y/56bHpfnza6JO0ZxKMcs3n4C5loA/nDdaIS4PvT79Nwp9Ax0Rf58OiRxFuBJ9tGxCD3qtohqRKXJHw81GqaX+QAcT+LZAbOqzQdEkMTf/htbWJyoRrcepC+Pj4VL8ghc/SWu9BqwSD7NjR7ubzNn9AGp4msv3lu7x9GGCv8ZZsLZ13cxFINXTuHrFf++dEXZ9h0X/sGjjbROrXaxOk9fzAayTJwZhGUaZ72tf7p3enk2hq8HJXJxL4Eq3mOj2UsBX8mlnmX8bHchUWaOPEb7J9VLeA8kyZkWK3T+J8uz7/wPV5hvP0nPBUrb4Vg10YwYW5jPmbiVp/Xyra6MgujPY4uyTTp9468No7InPBlfiUfFoNpEpeMXNelcEs3DY9+s1/f/96dKNSyTMijhcyr2jPAS/kCZBlJw4GRVaqfqjLN+BoCOnXvQvBondK2KT2m3nlYVu1l3lVgPQcnuzZvF00nbOngZb2MzvBJpoORSTC9TBGxFj42HRVngYsepUdttfXUipU7ZE+HDcktVUpH6nkv1F0uQX0YyKEulv8AniGM/+Hl2JxaB6gg1wyz6oWS3TRB3jcD1T2mwrNsz69gVrrGwnf1YpT/zxkaGevXRKUBua1RqseZC9eEfe50TumtmEIdhXVVM1rKaFfuimhveI12+TtJpngejkj9XJ4EUc7AWLncwVwZCeGYX0i1TzqCoXw8edTtPAtdhJ04d/vKXx6V1yEGoN1K+yF73kB97Tr/PMD2P7DUmuqmsCE0dgJzDi8v8GoOGOjP74+J9blZSaDNkw+8li0Y48xjjr2yycav72ocCBNMC3zD2lPuSC+vqHdLJh3EfjnKDDL981kXuIXpn1yp+ibPHN2i78C7MPII8Twi2Q8nNMzLH4B2y942AtKSSGvtAP125EmQ5dKPtxilGD1s1oKA56DENxKbYiBvQLxaNjIsBLRh7nb+z4YIrdV4XuMUra19KTjlzsX4CD6ISPicZ1Ten3Va3O+O2yfpmkw31fJAy3xyxwnsLhUrhQbOVX9Rxz7LSaj7fZnZJbwYcYumILFr5qhPPsS8wXLyRUR6hDdw8fMAhLjauZi16DFf6LjlhiolTfbEaJS2WOh5WrVM8gWPrTl5Oc/TFttpHrp3o5sG/Og49ttJ693wdlh/jY853M1BwU0qaayPWhL4cR3LMPl2WCWv6+rpPP4Ztasv7VDVxJy0fhMhRrJvboidev2+dzU6/KfX2Wkyrqbtcd+RPfVX0L2d4XwqXMvoVYq9zMhZTNyfnItQcuvUsxc07T5Pz3U1uts4Ws859tupcFqaE22ue1e1XAXChV++Xt78ztES2/Vov2G9QS/bmn3MT8GhTHzgVjffctn3F5uYDj8w4y6u3bUcPQjrNaWTfYfplr0+Tg8oM3LFJeG7QdjzB83tPgTlH09o5I/RlUD3m8DjLiI0fz21gUKeOiRbcRuQasWAUVzvF+xwElxN9pXPwZfNr5sa6Kcz32x6uFa1RHZrvZi8PODgE7vnBw+j1f16w+Iv++QHWcaJFM3f034jEpKwpSzhLGDE8J+qFu26ZQJ8cz2APLYOTDn/RWr8ZiXmX5OU8yeX8/o5hJdH1Ds/yTmtG6YSHOsh3D8anvieHVvjf3ZbrVB14H4uSbnfKc9VVScRJGu9fV2ubyseOvL71Npvw46OVKV2y/+mbn4C/NUBy0c0sOeeHki8dkaghhum11CjC0pUKvRjoLq/Rlspz31fMGPo74NjC05dMrEp+Hv5IKdW3+Yv0cfzZu/NUaL37bkryca+VetkZDu3+wgdbG18IMYON88mV3cu4T/fVtDc8zYYZiMkTXRzwWjBY8ZlsKx4+vGiaAp7xpeWZ8mb/+e30IZLDtj+0Wf9l8mtPCLn1//jk2sljBVoY6bid2X8VIotKNwxVo310H//B5LOB6WLYf7vA3mePqe4ezUmITm9sfvCxMd1xn94XPHrn0OWhofDmQv/e2WwnXKGd7nh0y2f/dbwBf/EvS83GD5xe1gGV8MzJV0Fiz+07SrHxqSX8aT7nAbdrJHTsspcDhQ7vtlwtnr7cPyf7ajLETr/XKLVDvClTyErsmnjR2K8D7fZFpFObJ4Mt4BFZvhxJ5xXuQDbzsXFn5BUWlQNM23wEfxftjTadFDfYazG5ACB2T7forBoqfe8MVnlThG3wezJR9CaEFcE/e631r9K1VvKPgG/o/Po/ZrKRSe4chZdD9eu1FLMop+fo5a7j7WoPvLFkdNmsluGE4B36w3VHN2Q8Oc2zFMJN5WLuyHd0vurGN8fly827o9bTPmpUtp8zBf3bQ0Tg5sX5133c8PQpdRGInbSzriqyEO0eJP4rXGhYRVYWsgyz44xFgLh2pobmsTFv+WxUPR5hO2UvmfX+VcVtVPvwoAtbNZ8u8hmOjnGQK9Q8Ziy4yt7oC+sva9Mo3yTVTmo/R4Uw0UdUOIbbqVsp5uGD3fZYIFR46sef2XU9jJ5EulxV+fLomrgRa7BnMuWRj89Jj6w18yrg/WmOHsAZpulcwSdZTMC18H7/7YkXAydslcit4N8WG7Ijuxs/kYrM8ZkEQZaL8tlHzwnsYMOgkq4kX3TzedUayC7tHN4ifcrd/8grWWFRT20rP6rR+AeO6eVJR2Ofr5H+gt3VXi0vVyxOB+bPSffxOe2arr8TqKdORlBtud9LulaHHqo+lU3hghp5Rzt+xkEAww2dWqdCTya9bCB5hK3+21suixPj20UbkIeC6oGUyd+wzRl49rdijer2rWHttR6+rsiv/xuweUAtqYwZbsrxnh9PAKUrTfKsHCj0rO7tcJdPaYbmy3eklBzzqxAVxWIUUbRKvZS7sjUuKTwVxytbkUuaWmLfqVGP3ftDxvP0MDhUr5d9+iX76C62GOGPFzlfem38ZojZcjgJ9cCebj7pAiX3NdyqcysUbvZERAT+yGV6u4QT9+pGnfvCSbYH/lNdb0DOYivbMbF1jO3xp2gH/OAvmNN1dbO4QP21x+egPx7yoz4e8pKpjVxTqYSb4+w/euXNmOT++Oc+kRQnesrywIj04nUfJywF2LO8xFPc+nQeEOLHqEhGpyQXPy3N9g0cuMSOcpoCO+U82k0pY5/M+2pikYQrT4f3iKdlpA7/K2/OHdgjcHPoZZdkaLv01Xa36wRq8VMrhUEWGJ68xojO70BoIamlReXcSO//jlt7ZTLJAgzcf97MaARzL8yxfjVX4/oOarNZ3ftZ9LKkYhRGK3p1xYJwH/Ph7u+ojontL1N6om5CtntOelz8x33SY0zYMH/PTwRf/YaGShWoOlyx9muoIfKEb76nXNOBvMfPatNb3KEaDJw8uPP1rzqK/6f+sDP/9sWOIfeT00eNW8XS6eWz9FgSx1ZKuKFp/7dt/++CqV5ES0hkgNNcQVXyC4V5pk8Q/e2u7MXLJvoh0XJ39uQA3UJwve12fSli0vgd6FDNcnvtyo9jWprvHHi7huoldsM6177fMsZHIPPFZxw7hosMwvlqPdMx/Th1DA9pzviG8Nj3wMqiZGC35jPpXc4qydHbD83ibHgSQdpSupBUdK/5hZr7SOB2yrKfFGHJibe1L+RZLnw6I/sNCsimAcQrmHK3uMeLI0L6GLv/JbH/zHr+a3NxX6v/VEsXujqblNJhji403lWO+t8XOz31q0KXq28+d3MoqXW4+mTBeIsbp/c/ZsDgAz4g+6eyh3a1qp9xj5svnFKyE6BGMTjyVMwkcgeP0dq8HmTY+248P56XnrPX5lCp+kOTMDewaXymtlwnje3JlxsQwu25V+RH0uXon1DhKL+5MlwvTc3rH0+lqdnObBDc7mjTFTkuZuOom+Bs66dPD02ryqRa/JPzwlmcO3fNGrhd6p4ZXE0SGrlGdzEPTF38Sdk9JqoivLgfI7SsRTUjkYxaJdrjx+RGzhQ2hqwtzWUB4a5H4qd53knzRR7x5BRrz95RHwzTT1EGo3j91Nwqoh/mvEddrgkVjCmgc/Pwj+PJTi1eLHDUt8aIPlZCxQ+ovFlvkNy/gv8V9Xo2e3Z7Tw/cVfmqx/6w/vl6JiTbDq5PvDu7MRRMxVo301XzeXGsy+qn/rn8E8TPcGjKNgEX+2BDSG7RjrC3+kmjUICePPxkE74fFH4TIpCSe3SoXW61NiL+u507iv/ukl9ls/5wfxIMIb7xVmPM6HfL49LrX2/2wpUP73lgLvNitYXl1ZNYTh0UBkw222X92Ujl3CD8D2UBW0/F5PycSnLobGfPp0ZDcD0dssRODLt4JZlvVKllopM8zVd0v8vd1Zkw/VDNNZH/fa9VVVvNqMs/49nlQ8JnHLh3GYZP3A8xWe+mO+VIKgI7wvZKZjnuiI0tXRh1d9M0n0fc75kKzOJsSuv2F+99wGnBa0R6/V58HsWBWCzp2Lt/7xNkdit4famoSnSLUP2alUFykKON+5BTjv5IqXC8ar+Xvzz7BfaSe21ZKyGkVRLuBvlR5IGmVDMD/1r4OM0U+JPcfXoIyrsYRyjkO8/uRtMkHzmJHdlm+2sbusmyP1egbM1x/iR8cxmMz1VECluDWznye5mhm/p6C0fU18oALnlpUutXvDHQsn72I1dftKdWzqmPnz/rUsPo49PIKDTGle76uxqpII1lGVsm1bfwKKwimC9TEjxC8LOxkzW3OQsK8PWJ5BCea17hmAGq8jRNyWfNwVG1UfiXkn3notocktChucv2SLkZt9k7lV1jG0LTTMJydi8fGvsSEcyYnZ4qpE/HU+1LCrBYfhiUvW56SlLZrlQcer601CNEVBDek78Ijtf9VkEp5AQQlWQCHv/Wo0x3WEpJ4wqlxtjObcvI7okp5XxJO/Ix8t3R4hmawOQxZsqrmNrDeg1S7D5Vw3aD7Cs0RcenGsvcpzxdXYtWE73xXmh7Ka8NKPZX1a7o2ylytK+3FUz0D4u6bDRizzyf5EPXzk1QpnlfXs5uQyzdCBcmZevzYtKRQ3FE2++EdMgwTVgBXuQhNUGV6bldLxS2S2cPCOAcmQPlb8r90JaFr2h6LPaUhm7igOPGJSY/kibDr2MbcFeh6sG9vW/rOb5IPVazvTV8nOXC7SmY2di/Jrixiuj20+/73fKWzE4I/st/YuH6E7RbC72n8k6PnWmhI8FdB95wdWPq+/nNcHnYIpi0dyvDgR4u2tKeAxGCGzPZclQ3AUHEii7ZFyq751jZ2iGbAjbtnpiq6Iq7XUwIO4A2Un4RFMs16aq/X7mTOnuQ35fOQF1dPlIh1v/9xZPLtEI6zwRyQ+BFXHNmNgw+XyFDHsjD6f9OQbQp7UF7bZqzQY3KJw9F973bPX8PoIlwLaCDbMVC4yGtNPncKD+ANVn2ulm/ehhtEW3/6wOE5jME6nh4tE8fIlW6/bWBx7qIelv6j08PpqyLK9jIgvHcnjO5fBfBWKCMQhX2OhPrbJfI83oOdt6TDSNa3FkmI2fn/T1cstcv45FAK6J9cRQzXcq1FguEe5WFC83pi4mnb3IEXne2qwnKgFGtlpk+rD96MwfP7rOQ/j+wyln22JpylVx1iwdhG0ckpf5XndsYe89uHYoIm2wQ6S9vE4PdA8vAtyKKSoopnPZV37niSycddDMjfNxobSeWHmfpwgWeLtDVarVASfnAr1ySMo4erChRh5cucDn6oYhOZmE7xvwmBum5OMru42xHKL3sHrs2pSSCPiUNXEacX5UluvK2WGeUfu+XfyCllXvJGQbdYdubLNVyZqlCjFAjLcasy/FxlWVW4xey1Y1SxLmgo7zRDIJt++Kl6U6REyQ34QHO4sSyH7KNX/1FvJrBstuolfDwbc4nSPUZhDMtYm6mH9SiuWsHtksfZzOf76i2xvTdXxTcEaNJ94Tccns5LJ2SchfGR9xbxkEizq+MceNc5xgy8SttGcJncNHQP5wNzG1auhsa4quH+rL9VzK+djL1xGME3LId4nb/NZ2qsP2BydnPKC8W58X24FUvNWJyFIm256q8yER5DIzDRpmUzqQFJgD8dhu8mYre86PchoaS9zhj3KR+O1sfUusETmfmQnnw2+qZfaRVsWb4VdPiqVloFxij90+trL2Z6ss9GMFRkPKgyoG4qrAMt4MSxE+2pKVg8TVJ/PjIS3MpjFkprg/ulfPG2/TTLzc1Zq301iYLjuOeL9TYrAVUWRls886TjZXFsUnKueOFmU8jnzkQyOdTKJKzsriz5PKNOaOt8TNwyzfBTVPPzhMyH3tqmUc9pTZKzDBq/OEPC+bl8ZMOcQEisvn5y3t6LQBb/+EGf1ZyZT8dmnsPX/RuIv+ZS+Pl2NvIIitj30R2v+irf6lw+JL91rPvvmLkNvZvZ4RVUSzFZcmrD+u+/YZsF/qX47GC4spr/nob4XniMq1eNIPDtOqnkfziEcgpfKwjI8VpQLBtbL7HmgUho+LP6uHwW6C0nJguLcV5PAIheY71tkT+aKzwXdN1rxldZ4vmt+xZb5i4So88lGND6IX3dNjb5d8ofHnikJd+uXqN02L5PsemIHXK4bFdLGNEi4Ung3HQLXBm/Z32ua1EzGL81kbYkfZq3SIh++3fGMFnylpx+/UFbfI4QevhJDCKJuariQIknbYdz07ypYxq8B4fJes+Mtsbup8wtzqW38oeP2+E16R1RuWvTJXCz2RhlMvtvWYKxx8994bD/PI+L7b/8v3mma3FVkqcxkZHbFYHR6o9F1WzHINg2FoK9NTtGPf+xLVufjmlxrWHlZjtePYegm93vWUBvuBbKX+ob3X2fwl0IawhKfVTKnCtXQ9vAqmHkclGCoAwSw5Husd3QXzJvV3YH+1XzI9VRoS/8VGqQH+8Bwtn13wxRfWtj2Z4dt5MOXfxryyeD2eJ2IQR98wZt0RKdjw5iVFgNn8f1+BFOfLUJOghA0n2wKYck3dBTzDeeD+g713TMIcNdcnt28n4IQuPtImH8sSzRGdSQDFueRsur6TqbVyj2C1zZndrbiKmn80VlQydPYb34rx2FfoOocEjymhwApvhwbv/df+EFXjfhcNPD9HVJKzIb/+gv2G7tg/pLv+d8pS9F1rVLm/l1IzkG7RIg/M5N44euaNCXLDFCmdrmV5Osk45RqsrZ3TYIlH9+SaZ1eRYCzdiLL95NRjD4FeFPtMMcsm2S6DxmFJDMY28ls4HPUZzVSx1vIEpePebM7Wj78+OQdsk81fp2Pqy94TeWkvAX9nxNlUIhtwXzL8fKRN50JJ7WemR3WO0v5huMZYhx+iMvqUzA/ZEbRGuU+/hz6YzC/AARA+7/21yOgFwG6jlgf9Oi5mfVjTW3ivfZK14+e30A3/8q3NmtrOKy8GG7Hj0aIlK6tXr2gFi18mII1/uWTsrUFsA79jmQoLLvROl0caAfhyIzD9OK99Z5LtEZXn23XJ5HPn8OzRL/8OJYrNxlllQE0bWST6DBtuOzfhTNIOmxJaLMmoeZjObXen160e/yN1azfXo8f/2G7fn4mw86eXMDt6LKDtyusWduuNI10U0ec7vHMv9iaQN8lhkWC1snzJq6HNxDWlFgLZTXvY5yfkR1wjZneKkuK7LB9A1Mdyuzgz7FopY4PZJ/fL2Z0Rp6PYbe5ofdneyDhp+2TaairHhY+woxw3gTSZ1VkcJHDB9mt4JV/f3xq3O5MZmbttmP6Ju01I794eE4DjMa8hwJMLjdse4R1QN/9uofdYLZUQ2FZjcv7wWdYlkD/tFcw5lssogVvqCyuP2gOdQ9gW2YdMU/dm4/je3rriaiW5EyDbzCpR8ldisP4ZCMfPD6tVsYZNPOo0fmVlvlQiIUMAfkAs20Nqk+QxjPkei2Q3TXedKOdohH2J6MiV93T0LC0T3cv6h0fLC3Mpy55iOhxCzbEfxMjoVxwQ7TwJ7YThKRrp/hl6+IrmoiXCgc+NVzOoEqvQPxbdUKzjLchUgYak22lNvn4GD+CbldviZFFn8wnLt1+8UyyYrPvBm+7VWG/Uk9kY16rhBsXVYbCXZfLqbZHwEF7xmjBIzoyTIOpsQ4qnOYCs5Ru+2DMj22MiF5uSGDlbiK/+6mHQxuV5PlyjXw+2L0G5+2fQ/zu+bF+ehUyB5kUqkGvhh9+oM67EE9Ne/5lD6/9x1+VH79R71IKjRj3ZJPLrPuXb3981nqOczXngm5C6xsHdi+ZkyjHsQ3RX7cUYlP6E5oWfgwTnVvKkt7h//QdTc8vqgzj3povuSIAbfKBTh/LSsRxzVztZNCebJrEzafKHmR07bWMeMt40eCVGEgH5pDtjsY5haYJ4W9XBhQddw5nyeFRIz/9bKhi11Y+7/ZTBsK9uzNyvEvWbJL9GYqKn6iyXs1ocL8PDZK3dSGmftx28yl1SqTH/ZMF14ahGemnEUjHOyxos8S/cTbGSPCGjNjZWULMuIzyLz8yq+3LoJGLew/G6KbsLvUuml5X3MCSj9j+s+qS2fvqzvpVP0ysRtk+mGJuFoB6o2S5HcrVwtdSbeGrJMvnv47D1NzQhUX03/cZHU0X/G3psaDeurmMr3sK2bDWmbflS1Hbjkb/9KJg9rflrq011YZr2RH/tH0E42HuzxDneI3jNMB8Wo+9oy14RRb+k08bzFwoEupRlqOw4mobn+E2P68sWPp3KvRnCxvJnMm+Hdc5x9M3QwvfJDtt/6nYT58+vsEJKyvY5OzcuD5cPpeE/Pg4tZ0q1uud4pPdg7dVJ0hXDepnYzPjYfxVMzQNhk+13rHdUb798FrVxQ6HZH+c3mhaj28HVmN+YZvQm/PRv8AbXmldsWAuDUR/+XLhwyS4uWvUqtvOBY5LBXPL2uR9yWIDpKur/PNLGrLbYzg5PMJc6U98PiuZDx1IZ7ap32HSQHeKQZWLEa/3zz9rvH4DB2WrJiHBXBaIjrJm/34Pa6xQg8H+RBTysP1jTrH/q+ZLl6S6/pD+KFQoysdHPmZwTjuBtst4zPHx5Gj1iX7pUWCHqhFv7yU+ji9GhotjjY83w6idNnuy6FU+7aRTuw6m65OK3eYVjIl8n7VlPJnfP+pgOjvv8KfXGBG3JldO7+4BwplRvApvpTWviliFlFw0qn8296r/4fMvvv3ry6p4NAk++HYjYNg8rXyey2uE1s05/umDbuFTNrSTmrJLXm27wS0aB0LRDlm8xA89wqXUBrcrFj70QnMUdY3mH74x+Zw0hzfvlY/VJV6JDVHGP2d60JAZaweyO4lfzh+tlqE28ejCl62lUMWpAP/RfZh/tgL+PVTxGRxEXKq0sZSPhyx29LOSNsyb2tHif7prw5WL/tKeqmLKLGY/f4s8d/eX1duhZMLlchepPH0NPud1OYKBzxILl3sMppgNIqDACUiQX4KOreWPDOE5HBi+XXLE434cIT0fWlrsT5DMhQctrPCfSCfK52CeH+Ib1n/PHZ4vWVExJWt9KIX8SO8bsUy6JV4gbwuHjqb9TsZ76Ia/fI+lKOiCfjVXKdz48U0i67NPpvzeFmBNPGEb2KR8tMIiRodvfsHz+Taj+ZTiAqHVNmNhcn8jtin+GlCqWWGObU3VfFCp85vfbHcr6256Q0DhWsKK5dK85YpbbV3IhZtHkrdeJ3xSoghwaD3wuM7Kbq7um0ITUAHMP22FgE/594hS73Bm9l0cuvnjNj0sfgltGlfvxka71uBMyYB525fW+EoqB+LRcEm+8GEuIo9CGxKBkcXvGecQbB09DUyeWWZVC186outKjwlWk2cwvdmItdOdrsjGb77B5EiuhpjgxexqVpdq0sLEQe4Lbakq8obPyuGlwlhvrmz7t86TKb7ktbboK1qxrkR8u9vcYGp6h9hYCYI5VWoVRX5xokt8BFPyF8wwm5Ti6il8ElaWHwca7RSRjd1pFdM3UQ98U7yJM3aJxRG15p9eoJWZOPmsbRUN9RZ3CC6dSzVVRy/W+j/mkcDp9sl4uWYast7jivkaPqLpvh1MKL7Kmq4Wf2i0wiaGuqQ6s1uL59+l/XoulpSFXiHn/HDYyMDXWUsW/dnJ9kMvUKX4NX3dbLObLcup/+FbvzPCfH37CgZayU9Etg8v7GZO+/EffwqU16ZSJOYDUpReYzdZjdHiT9wgy5QtFpSx6n78QwtxPtOWVBs+PhtLBVpjg7j6/O1oj9oeQWI9CHn7cbfg6xHp6WQxH+iDz5F6OAMuxIFt1mxTDfx6NeHBPZ3F7+zYzebfpUb2+PGIE6+M//Kj9f72xOPD2HWzESTazx9gnjn5iThsxAJgGl1yDOs/a1SCxkdWgkSqZj7ic9N4Nqy088zMS1Z0i59hIHt6HInJ189gYu3JXaeSeaTLboBkbIXAgGp7scmujaWE0r+NBj/9nEj7VbDgu6iNz92XeD89im8hRu7OihlxMctnYbOLYJJoxmwduxUP4o2JYggi5k1qiYbb+vpAz/fqSdHS33KO00JTvspycK0oK25xKCHnXUW5bZbJ/Hv+jkNG/HnUg3l22iPSErxlP79+ahUmIz3lFlvaYy3+ugkLP2Zh5Zd5+1sfSKfgTvaLvzNcpcaE7fecMeM6i4hWqnpbn8+PA9msXxhN9/sqQspN2pGw0Q7JeCukWV/696enrYl0YgbuUZ1oR4/UYquDoaLo8NgSQ7lztMSfrQf0WGP9e7eC9sfHjhtVZvH5FnNpmb8QvK8BMz/oXi1+vgM6ozMzpQYFyssRfPiNjyOut5w7pZrBdn4qWN6+s25aXbLmF3/sXJF1RfsqvaHydd1g0NwLn4TqmqH45J7ISd4yNM8PeINFacaCzvaC8ftYpWDkJw9PfnbOefP6qLCFa8x2En7z8TYeQm3xz5mPQrOSU6XW0BOtMTHd6FH9+A3Q11PAgJxtN5WFawAU1sy27MKDBhF6RmvttSLEY2o+79MRoLaVB9aDs5C0op+MsMxvZhytdTDP5SFGmujfFj3y6ka95BjsoYjYRRB4x8iZ4B8/JoYo3K35JmcCeiimSH78cr6e5xoexXaLgX73gXSKS/itF7EHrUaLTZy/UTf2mC143onb6Npri39NV+X3m7RN4zk/f5yEn9u163/+2xLf7OdvjQGJS2iS44kZ26OXcDwt/tvR75i9+OHL/DbQrL3Ff34nfd/PMTLX6/C3HmZR4SZjGP5Snx1udtktfNf+x79YeDMDZVkvWf/w1d98ioT+8pVyniuygZVTjWevpegxChGdDm4SSNfr2kaSYp7JPiuMavyWN+fnp9JVmcsVv+c+hmLkX7q2izof288462V3vrH9vHoGrBXnGdV7RJl7uu6R5B7sBv6OxZN5t+VWpMVv03xWjGQTpLbFt7liwOqcMtwYA+mmmn9byATuYjV3v9UvPpFqM4wLIRirvrtqJsxiGeG3rd2qeaKRqdNNOhMvGDuLjn/nBsyvbBDcnvRkMuNA1LQk3LKn/vfgszh7Dzg//waqXE4z6p7OK9M1jRi4DeU0+eEHbHb2jkTGya0Wf09Ey3olC7Pg1dVRI6lw+zy3VN9vs9/6TYbiJVkoR/lmjb3wnLX9rJrkco031die70dEd88z8zrfCSTz1BSw4C0LfO9jjR7sa8iVMsMD10PEst45osmeLWJog4roJV8JGl89MRbLD+qmq9QYUCW4oq8h/gZz4YktBF6VUvi0YTId2+IGr+BNmL278qRZr2QH3Q/YIrg++vnw89cXf4j+yWyPaA1fDYpx+i5+Rpq3bRTU//K9HaZiQjvbFqER8A6rQd4HtLpvSn17yi6MSHXHJ98ta/0dOF+2+OmV8jH3BYxfLfr5Jcn8N1Y+ii7FF0+xU6D5+dJcsJVC/ednSPdXLgB6mhjr2v3M5793n2o/f/nnp4xfjR7hfCulRe9sK0lPXhgEwoXfepHVbIZjDdvmSaiCKO3m33pL3fAXM3q9DeaHE4To+9lby3qRGSj33A/1ikRPcj49fTQ2reAiQ7pMzHz5rBrvxuYGh+rISaAupRvth17CJY5zzC2R5QteqVBdDzsW2szN//nbi7/AAqzxoJmmvfPzj5jdlG0yn0l/02pbejBs9tAN+8YX4BZne7ZHud392otOfrOjr/WLon989mqaDXGlykKirDIBPp72pPqmZh2V5zOGd2xemWF9hp8f2CPte5FIYN61akRJYKLFf2H22jihSZJuFPnyo2BbU3/nY9E19f91S4H6v7cUGBM+kr1wX1mjw5ulNnwisTBX/nK+vWsitNEckq1TCV1ffR8CbENFYrvkblezct0c9arYl8yO32XQlIHkw7y7YSxJjyrhF/3PAKnZJMQX+aEav9kLw2p/jwl5j2bCmt3B1PnYicTOsk9HV+ZSm/FVxOwguKXFpufcogIdQ3JNrVc+f6qgRYKzO7Jwo2RoaoXxBhsxflE525b5sJXyCKh4fdCeHvVkFtvsCIFsmMwr26QbfT0XtZs/b4lZf/p8ql9RrbtE/bCN6tbWaCQfG47KaJIb+Pdggv29Wd/g02Nl9/cKpiTINRS9ui3Z5YlrydZld4bL4X0jwdphnApHzwfhwCtab41TxVYSCqHnoYvHXfqx+vXq2kNNL3valacxGfnq/oaorj1mBaZc9RyTAjy5nRlm9jn5rOdYWzeSjZgfhXE1RU/f1gTaX9j9QDw0oRsp4PV6fv71d39Ztiw0Q3+n83i45PPZGI/QJXuHuJ/arCar7o7wabuBNuWrtZbn1xoJygCvpD1YX9/2ziB8eYLv7ZQGPPcUFeTw+GGH5/7UjaKdmhBfzTf+y+xL0FxK5wgrz3uRzby+Vf1Yq87v8+Qh4V0yc/TKdHoVjsy8FhfE9BOE4Cnxlu2DbYomsrJMNAt4jZf3TSY0pwBS1MiYv/SWj7q3TbVlflJ5a0jdGH2rHj4F3rKNLqpdP49DA4pF3xSkqq3GXXnw9Zskl8RxtzTo9JMYwl99flL2Hst8MIKmQXUVxWT/2X46Ph/cGeSu53gUNdsSL9L81kibOMSE/J3Tce240Aw7n5irkAfj84592L1FjyToO3Du94UIkn05so1k7bt5Cy6F8XnPmfXHZ4sHKn+j26aKGD6lSf5nG1cDLuPlQoL6ZzHeL5l2bsM7XWGtzcdV96p/40+cvkxzbqHHGw3++8PwPe2qmVTxUZ87f491QoZuPiFdA30nBISsLj0aeweZaIwcxoxmVAJ2728OEForxLaeU9KtJI7BP7cJw5u+T3qa7EfYM1nDvHnr+RQ9TWfVl7XE9vftkPfvlGgA3eZMm6jzq/HoFSKssmxHyFaSOMvvvQsFvV4IsewafV/V1KDzR+tZqD3afMZziAGIsCa73T3MKSoBwETtk8p3o15OUSkRhNEzpGvGmoBec27AdHkMuLeiouPa3xbDcN8IZGtt7Erkq9MbLfGMeXQwLPnbKzFCYtSRuCoSNLnS9YhC95ljSdzeO/aXfHq9uLR7ZhJh082D/wzhmNxG4u5v96T/PX95H6ztD5TPmbxqkfmOTbaX0cf6hPE6QrlXCcyg2h8aNY8cIXCMF0XvQOHjGqBAIX+pWHePrdVfdh5Fr4xmWIvCuZv6mmjwSZKI+ZW6TmbrQs6oKkSJ7E6ekveDunF08ag7xP4DVPUFvkVwOnzWzL2MJZ9L1xW0Q5qPy+cvedO9HzNk8ZSQX/4d6akUYJlflGvvqZttX2vRcLcEOq33ZjJtvv4Nnaca0bHwDP4dO+MIsbjbEFzc39aQSriEYTod2HY3k0oqLK3V6vPlTl/+bU7YQ61lqC3NZpvzza/GgH4B1E/V479x1SWjZd5sOIzXF+Uv00rkoSgafSU4DvPs/aejY6g90OniRxi+w5/F1fQe/cvfZMk3422Eo+axpdbwq/PQ8I6LRu+XXavIeqfVPAluiYrqfCOblfWtZnXtnhHOyxbLT+R106VBI3CKM/ylbceH976O4Ngqe/y9iX3et6plQLIaR5K5hYUkf55DMG/RgTnZ1sxnE8wGlb7dUKHCM5r8eca6bjUZ2x/IF9EoDiLEZRyw8KVUHZfSS4hqrWHMPLIQTe89jWCeiw5/J/bOeWveKLo5tyOzMnrveMJRhm6zbzOvWtvVmElqC/vbiEmwcjr0ax+c94eG2QY1q+k+Dw+4L7Wab2TQEk7Mvxja1cthDp+2ybyPtxjy84OT3RETNK32CUVx99Qx93Qt7w/psQVJFFysXsYSMSwfH+gSXWSyG0bBGvMVDWFaajntVfTK5+J4byC30h3Jr1lUKe1fZECdRy+MPs4qn5fx07TiL6BTdym7KRqvLlLlMSaPr60l00a7FlBo/RorpyS0PlunzH7xyaJmvFhDGK9jiHShJsEna/hkZlGthe6SH4MwyOlOCTPQs+sbR6EXJUrhiSaaUscgrin5SPT1RIbDtz0TPw1bPqrYaiH0bMrwrncTvlLTFPkmHJd8j60fv9DTd/NlR5wNyYRuuwKAXXbEWL3OybjDbxW6RL6S8Ax/1dQM3Rnpq6NHjAWfZ2crH1HBzBYrcermbwHUFq3xaGKFrkgw6oocwXv1FxFbHVYBX4fGW300WsS8wzrK+9Cr21++w8v87cbevovaXO89WiFuVpO3cjQU788n4hx8sxpbNTBg7EYdz5/2jUbvqRlIapqa5QIoAWvPrgDm5bQn27+m6kaJuxrUsdXjkrRqMOdtK4CnX4Hsvz3iM5iigcRPfWWhDyQfNqcz1srvTWYhH5YtC+e8AGe4+SRad+SXf2ONxNqXGaE3Jtycvia8xeKEJeFaBdMSj2DhnUq10XS6eeNDDXTZgbbr7aCSpR2EaFU7Z2JXwdhRvFULEPx8S8JwltG8xI+WNGlCblV1DibT6c9I3KgZCealRA0JN5p+X5cmW+YHGhc+geq/2sJwhl0loTkCWB2lkTmRfLV6LXukYKR/ESFpLSVtU3kU/NdAiOXpWtK/aBLp66HUCe6Tv26uLb8H9bWc6h3lF5pE5eDrF/HrEvN5flr8K3squEJXMHvYjMngvf0I4k27o0LjzZyP06ZHTcS/GOI5Rjwz/COK+75ie3I1E8UqDqCpu9Qm7njxuNwbrxb9+NW8Pgd8lFd5gxrvGhB3iKd83OOvATslKbHsEhP9G/9v6v3R1ztuk9m9WDdkXoSCKuXqzEe6kXukUG8g4WmQO2a3pEDl4emwMG4EaywD3Qe4QEuCd3Dhc6i4JZxiEtKi0TrOP+dQROYKIpaZ5xgNktUBCIepYqEbGBV/eJKAGnwkLJiyTSCNl5uNJPEoUS7SNuHqtz8jz7EE/HbeHh/G6xSBNLYXgtt7EfBqd1NR7r0ELD1nI+Cy9znr4+7Z0UkX04oKx40LZ129kdtJ6XJmiK6v3fmqo6ugu1sTPHoK6nx7UfV5m7qRvyOA1r61+G9/byoqfCKsO03lUHHRFwM7yiryYuBs9+d1Fa/LS42MG9pgWfoLORefag+Ot1gzROz5GGnzDMpaAdzC9xTQncgwGFN4pCpyI96H6rOE6SxluEHuyKfqlRWwHx/4X/+2nnutoZEoJsZYax19nWcRVuv5hPnC1+fVVAKqsbCiwmTPHY+nR4icg/tlx7MD1mReeApErhu2M/Aqaa85MhDOi5by8+4vn/h8HtHzWBsY4adYTUPzcWB+yB0z7naT94fdvkad4WZs87rUVR96tIVNH43EqZYtRUpVAgQTPRASjRNq6+Nh1DfqO2bxwv9H9Zn1sMxXzIJOt6YuCGLAz72LoXjoaM4eUQh3N0FUOP/Zufw4XmrU5kTEY7XqOB/NSNS/cFuTiyzF1bB/2gbq16uYGDku+LSV8hip7W0k5PQC1P/wbYl3qpj9K+kzaWxhyWfEg9ZI+u17jPQJuT05/kFeTZJVCdCfDwlz9fUTjZa9jn96jWQPM7ba4+NoQ3DPBGbhg4Ump/6mkA9KhDnjfvI9a6YMCz4T4tlWINfGpwARBJlsnvtT1Ttm7OsZozt6qyo5mF/X1ITTyjWWz1dWt81PLdSWapPH+c9ORrfHPQrXDiGb281B8tdyZ7An74+ZnrDt5B9eVx0amWUeum6cuS8jZCc+Vf9iyZpv11xF+6S6Lv1jIMVV9RKUyHQIuUpOPqSSU+gmap4UZd9XxXNvpf7jU/M6VALW2ZOqnR8lJqFO1nkbxVakW3UPxNjhMR/N94z/4ftfWL4sPiRfEdbUjdh14w7WVI12hqyuMaj/MOegNw9bAVyifZiTTFB9irkqIbH7I/PkgiU9zvgM8wulFFVZWIl/WeWC8pdVeMn31cgxKZFcGB/m8lsZsGj3av/xq3FaGTk3RNcFlHd/zFaHpzXVD5TCC2cq1oadiSayKWLYdX8JVpZLwuapvcVA9SZh51b+dEzT1g/oPX0iZpNzxN0de6Aff7RCVbD6Hx68dI8T3yx21bzxxRouXt0x02qfiMfnaw33PV4xV758eH9Ibw0AgTV7rl6v7hefkIbWh65vYp/M6wOT0fCI3nQCdss/z7gvQKHBwLY7eCfT6fY1tVqAgpyX/Cypm1BGFMdbql0OPlr0Wqqts8eBLfjdKTe98vXXTIOlPFFRTdUrLjWxv1RYFsqw4vNq3QKg5ku85fkT3oOg5fhukkUP/Jcv3LneETt+m4H4vGMXzGrhl+Kn4J15hxl2G9dnucM/aObom0GknxKyebtSN32Dbagt+oNC8bgjhtLkDGZgdf8h7UrWlIWV6AOxkDlhiUwymSggjTtwQFBkTIA8/f3wv8u7u+vutpFUnTrnJKkiivI5sL7Rpwo84BtjR7hnJrXvKw/dXcSQknMWWJIhl8HfSfPoHjUHc9Kik6Gh5tP8F48X6wy1g3SuqP8OTXO0d1AF8+E+IGA8b8UsILuBA62+5C3AU0C/bzjD7X3gnx6ebe05wuCecdi7fnbBe30+GkC0PqZ2vB7+1WNY4v5GZFP9musM6hReSDVRbyi4bZCg78Dzfh9ju5x0U/Q/IIdSPdo0uL/tYix3VaJBMvHYXOWKjcWuCaG7Ux1qFLxtklLJIAigp9D9w70Wq1+nCC7AH/H++efHG98PwcaniQrIxWxJbM+wkwOXIs3q2cI3vgWCjpToVy/+1e9wXCfqaDHY+PDZhzdd0agzLJPZTGXbq1IxJtSQyne8eKfUgK1t53ivKjxgr/CKgJ9zFgEb31ksaxuB8e477PZ/07C8BJdAoqQV/f0+FbI/9Msvsg6pVLDANwhI2ONMQ76tA/LoXzrsYkGkjjza8T98G83wi42S2sFSuLMMRelq4O/F+4unfghDcEF1iBbR9RjLyiACTudecV7L13jei94J6n+ahp277gTr4SMkPz5I7zJ4xaN4qmYg1LSiYQoPAy/dtAq+T2KKOsKXdfvOsAy2+oV+8UiSVU+16JI4+PTw3sM/PbP5UTQgF7dm3MFPYPL0OapLwmGYUunTwvetemPMuzvAUiT6YBFxi3a2IABml5kOLURGtOUj48/5wgOoN0ca1O99vNbprIKmjiL8e775GUgO3Pgk3XfmJR6eHeRg+JU6BIXar+d3PlmQP75bojbsHtDAN0a4+VV4X90qtniXU6Z1++xOi9sliVfC+Q9IjubW1WyICiZ0zQka+tuk18i0zSWBHYSlShRq8qQvSFQCBDf9RRHOpGD5DsiH9G686FEYE1Ny/bCF9/F7RIqYqvWSSp8e9K3bUauXnsWMcjCDKrKuhPMyEKzmbT9qtXyMiLj7toCNVTz+8IMoNcVg5tTiATd+TXU4f+uZaygCfy2nYBcJprmcgrsIpw4yejZuecDuRDlp8duq8C1qHya7LLcTYNPnQCZucYdO4WULflyU4L1yNIq51kykIlYWNOaJX1C9Upwfv6LOAF5sfS9aCbyeq6kpMKde48hLfn4pWezXug1qk3sY8vODCIcVDxVMAucXb9RIlNcwe8vegrXmpjTF+lIviWqt8LobG3xURBdMw1VwYVEFBlpdxYu3sT7bXuMtJ/z5aTN+y0/w0NWS2qlUxgtz2xNovm8TX9uegtE0EgeK653DnnLmirnJbA7OLCjI/PDeNW1Ek4cXQQkQ/xfIMREUI9K4+3Oh/qiRYIXbLGwFrQbe8q3gpf0sg7+LeiSzqpbmpjcreKDAQlwTBwWYd+wNnqcTxvHLqIsleOspeDIO0R+eDQ52OfWZvHV6TTiX0YsxZFDdI43MYfwxKcjlCnJ93hD5dTuC+etwqrrpITRfkMU6p3llkL9GEsbXYRnmSJVFQG8FQnRuPmwV07cPhVMvkp01K/Vir5wDPGfP0Uw8LgGD3usB9VtMsNU6c71s/uiPD2N/86+Y9t26XAhiRX/+7myhhod+utfxrV/reGVKGIJBKjPqJ5pW1xNpHuDH14LNP5h1iyFIs8MdcZ2VF8u13j1APmTb4OKaq9e16HPgoz3Ghyhr40l09j64u2dAtMZ/gfVpTwTqQmnjCH0AoBzb8LQyMDXkgwrI6scpuFqGRK3UuZnrlz/N6mHdLdv+gLrNqZUiYNBUQxD6mjmj0RD/4aVu3V/D2HQXA1gd8xDkW9P86jgUYWIId+pboVosmXPv4ZU3Mmp23bVmD7nh4SHENsXnXcXm00V6wOPbHbHDvnNN+zN6A+ZXBbakYG+uNtQJ1PLijaQEUUBeqSoCBfkU28VDHFg1nkI4RB9GnUxc4uG3H7LxUXrcjbO5tNedo8ZtHuPQdlqTRrZf/vOzTDt9B+wRFi6sessjkF6VYfPHEhjfiEX1v11ciz+9vvnzZK7mHDATGzL8HD57ahZMARKUo1S7RW6N/dfBr+ez16+glPQC1afDELfC89bCIEpN8tGnv5hdEURK4w+IiIndxGPvbZdWwvSDj0iHw7z5xapC/BPdnjdg7eGsa5MYXcguV6thAmZpKS8uv1K0eoQt0ZCI8HTU7H/xw76pIcNTFWUYG+pqjml2WjWQqHcChtMpoL1xG39+DpEu8RhM51bq4UCUBNv0cQjWgz+PP/2BHew38WpexxJ8AnVF/XBwBlZ7qvPjK9i6X7qC+B+Wwz9r+NLDNy4Llny8CobJrOHg4zzjec9GB4SX/ITNnGhDhezt1rb6umJ3PF6C+ccXfn/vuLgC5fzSRjiXxMB2NAUDH94jFd6WciH1SNZgRjmbQWqIOj7o6BkT6t9PoC+kA7WSvKvH1zw/1FIsXGrszQ+YBncbTw1zSg+XewnYOh5zhaCTTZ/TUG1+W5/98w+NvWmzyTk9OXX/3CHqWykNlrOKRti9nx72O1kYVpiWJzjZwwvNBSrBHHpNC6PnQvAx1/n/+t+29ugI/wlCwLu7FUKov49kPO2tYEX0q8Mt3/DRSY6MldmkQj9PFnqIrAdY3/ZL1H75Jg7LMZjDMBDVTR/TMN2XwaZvLcDd7wtFufeIx6+XOKrPM4DMIC3NDb946BmXEoebXmNhvydwh5wPPRL98+NrCO4udxMj1TuY64fPCdj275D4AR/G3t9CBe/d54QPXszYqBsPQ+3dtfjpOcZ/HVEF4ThPNCKfd93tmymCm76ge8AtwXS5vQytwe8Izdb9VS/co18hJJTH+82f2fifAaOXcfmHP9sVCevHZ3EA92yY9p3xAPcLmrfvx8ULfO1V+DT/cmyG8iMgx89yA+QFbfp8ClXBrHNpafcJlaibS1b8w/uLLxIylo/75pdmb6juxdPGV/uC8GljQc6/2ojbV9KwzM5Rh3uJ2yHOWiywaFFm/Ht//kIUcx3O8gj+pqgnE8bHmvkZfKu/9U/Z91QzvSxkuPmFWM9VKR6k0CjhsQci2s3NByymtOZQn7977JXcy2QnJiTg5x+ap7MesJs2+FDbpd62n+OY099w4rStfv3L73l633i4f14AYtpTiNdKVETgzJVENP3hDOLGF6CYJCkaPNINs/C89fBXXzc8qaf46boqfJ9CbAbhELc/PfHjK49t/YWH4PdwIYKP3ePcsM0/TOEvf+zL+g6WL6fmwOHFlm7xDZbDJU9hz98CHJ4dveCpVchaHmQCPtWCFIz8XBNYVJ5BhKIN4rVOCgLydeVJw+4Fa6rabqBWFRccFtM6rAfJyoDGjPbnFwXjj29N9+FM99PRN9dPSW7/+Lo7ReeYXc/nXNv0Kj4UHov/+U8f6V2Rj5Y4TGrkl66qC3oQwZfa4B8ebvmCsfA3g7XRP9VPf5NVKq1iMayD//s+FE+vY7x+Pi3/z295fv9gPLiH7+NXf6nj2AtYzu2uB7RLTJo+Rnnbz3ii/+tIgfK/jxSMTnaiFoWUza+2bSFXWANNMikZ+GqZdOA8hidq2/c3mFhXqpATzYQe4vE7TA+Og7BdgU/NujgXC3xhokgv6Ypue/xgbEeNBoQUYwL7eBnm9/3ZgDAXd0RSLmAYAvGSgfpc/SEJNeZA5VwZYXH4OhRx2K9XU9MQdCpuxfiEqmDKLKmH2qAQiqQXBcsTzxGkKxGQiO6Xgu3u3RselVQgfN1wNfsDr5NGO5gQQMYL669m2IB4FFei6n8LmIUl9OGfo57pgUeuub6Tiwt5j3fwTXR0IIQHvgRlwxYi224PlvZ0aOA5VBV8LHkvFv+QlkPnNPdEIX8+W/pVI0DsRI206n5gE+vgCvdC6NPD8yWAPjl3PJjp+sV4uMB4JPeDCxHUdHxYTRyzLiMuPEp4oLbIuzEpbf4BxLUsEXhcBHM5ffsEapdTRq/4cRrmc1KGGu4PC2LQNes5axdLs7rPme5JttY0O/oJXBQtwL7+t7B2qXYpqM/lH/VbZTVnwFoXRl34pfZxvgyfhUsdePbJQg/beojD4rfy/e+2p5fnUS0mlTv2UF3MI9m111c9z1eVAzc1R0huP+kw012Xgf7DTthgbRKzw7cVoe8Dh0ht7sX8IZFbeEX4Q/fnbj/MQzs68HhDFpLcHazXOhhbGPyFPPbrU8Bmy6l5cKzmO8XybBT8+9MmMND7G1FC3YyJGPMn+L74FT0aj7O5fKLWh6fKxNgzO6NYJPl+gwpyXOpiiQd9id4Q1jW7k/7LJjCH/JpC1bHehE+SqJ7F4DJCzhkLnAdOwVby+YzwU5gMh31kmE3xUQk8+p6MvbOzNbpaCKcaVQLwAfuXYElfL6LlQqJT5/V6xdNld8gA8AjFet5I8TI+9FID4lrh/f2BGTvPyQq56bKQJEnWegTwXcETj//Q7KNDwPdP8Ibt3Ftkd5GlelHGsf3lA9ldkiZYds1OhTXM9hg9ZYOth9C3VFlqtvwo9ULMg1eohgLpsR9OZrBeFymDav5aEced1IDm34IHq/56I5HDFVgWzkA7/2gjfEzubd0pNfR/z0ME6a+PCSFGCj251/F+t91SQOVVh+0qhki2Pi2jrKt41d1mzTpDIIL5iGQDUpK8qWdHbb3KIhcBfffgKcpPYTGHo8f/8o3mXzax9UPyFe4+Z4zRJfhjdC9eOSj+tQJ2dwfMeLysBnDNdsZI8ZxaOstKBh9F4GOPo0VAjPGG4NF3VOzryrtg/nTWtUzqjvSQczFgkR/doJ0JIVKp1dckyKsZSq+5oOGGV+vJ3PtK2vEPel3VkTHVyXIAW/Qh34PcAjqYM4SLxEwCYeSZ83RjEfjQ6IDm79Ov50Y/zgBf6AuVrQmLJc2UEHDTidFcwGbM//2dHJhbe4UoSvdnsvf+xsGR+jNROArMRb81J7V/xgLZWdonnt2LVcI/a/Rwqk2ngk2y60D5kzUYWadPvYyX3Qr0wXkT+DR4wK6PIfnhGdnuXgQk1nUR2k7jIOX05tnSbLdufZdBNOsmqldj1FNNOPMV1VWD1bNM/gj8/X9+jw7D5N8uPBSa84x1H6fDMlwyA2z5h3/ruZgn4QEyN03IDn1ztng+z2t1cFD/4eH8/myzDKtLjq0Nj9cSvTlIjn1DfX46MaHwXQts+EjUoCXFvAyuBQP0iKkZpqnJEkFx1P2Fw2RnXlDNuEvIgdcsXtHgeI5J8NJaIHvII/XYnQDCKfkJZt83JrutXix/fR6C+6UQcPg0ErB8IqjD5vYU6b6IDsOcB8AFhixeqKGrYSC9Z7xCr3gf6a08dMNyi+QGclYVU5OuazDjzqugHoAvRYrXDGweBxeSndNhNK4fwHZ37QGv3eFEg1B5guXBiVujPv1Odhz04/nvTxIh4IcMMfV1K9ZS+1vB4tYuxQ3OYpa+hh5yTAhpPF+SePbowwCvGfyhh/zlzeXY9606V/utkSMtzelyyELA2LXHdu40YNHU5QGVIVSwGZzOgOZzmKjhyHnYyXnRnH94InL4iP697/ns3/7h3e25t+MVsMqBNiMS3YeGOhBnDTN4SfQAYzPlghkwaIDt/eDMauR4aIroDe+XVKL/6lme1C2UHyAg8HD9svbofCOgrYWH3a0+LO0hCBVesfZohFEXUMN1VJh2yo1Ig5zWUv6NRUgvg4ENfuoCdhe2WVEbnh8G6Wu2J5XLwedVIyKgyA2Wy+EUap8cClg/FRz7tz7iXKRUn9wZTJGflfIPr9GIa8bCg3iDt+f3hY0zT9gCuzGFewH52LpeD6ZU9gGBxp3rsZEqdTwC1vpwy398jFWnYF2PXagNgCBp5HLwrR9kVkaBevSI4l0xVZf2AT+v23aE6DRs8SDc4K1FDjbvLAeDF9MIvA2Y48x2fTBf1QkCQa0stLZKX7Dw0L8BvTQW9bpzw8asVRzAl887Uu2bU4y74BhB6y8JkHLuumJNvCMCTm3OaOHrIJ4ftZVAtHN8jLF3LMjOZ4kMqueJHprFDAQe7GWY7o8qNgPGwKKZmgrOz8Oe6sqjCma7O3PQVx2Tev71FnSf4tRq+wvE1BG5xhyHxSXwj98bhM2Sw0R2nMPf+yJceUtq5r/5DGbh+MboQCKwTHJugMbfGof13miSqHnqMq8cNezPwSMmp2Bp4U56/iHy/NuB1S7rDJaDYSM1nEyTlz5F8vs8ehyqms37KGmhJLoD9rIsrlsL31KYW6ZC9bz5i0nqWLLWjumCvZa8N34on2AQiW/qsngJFt5CKTz08jZ6PnFM6XIyWmDGo06Nd9oWy5ZPUNM1hxpnHgHykcwIHCV/QrPyPNfrES0Q1m0wbVtebb3k8qrCfX+94/BwPTAh8k8VePqFTY3dTgi6u6C+oS3we2xdc3GYwRCUcDq9eWykfzObJE+sQP0sQqKNdmMuX46U4GOcYySOp6FenOPrpBqyEuNg43/9r14NxtZFmftc6lmY5Qh0FELs3pDAlkPrtECPrgZGslnVy3nf6iD4QzwN9GoXrHYXy3C+v5/0kOdGMezu2g28DS6naFGUgt3H2YX9M5Sw52dhvXQvXYQi0iIifx8Vmx5cbcGijDpsJXEdrFHzZ0BDbI9Iu+j+QJgdN9qDiRPhzOAEhq8gQWB4TY7NqHoELNq/OIiO/QE7aPcFZItfyL0ah3qrGgKJSxYLzuKV++EXY5JeIu2tbbe6wTGJKWL7EAIZ9kREuwPj2Z9TglutrdQUCjkmo7F7Q8kiLXbTt24uL6tI4e4xitiV4V88Sp8ihdbFNan/5bWY8M8z+ukZwp1sxqgceSGsSi+ilpMENQN/Sg41fedgS7smbDbqboYI7nR8lP5Wk57lJQMenxIcAtqA33rAMrq+6Ck1PmwKdn8iMI/oQ11vvMXf9IoNAJtDQe0/eK+J711aEFtORP5ujV/zzP5U8K0LJ+q9AwOsptalEKrPgerp58uYq3giuD0/LwSOuQFW7Zm0oA5sFYGAgZqytUggPBYy9amtBkt6PVpw4++IKwvbFO3O1eF9zXqMXHYY+I1fw0/OCYhTPGcQ95ExwheZEFlmvYvXq5roqjjAA/67fVWzvS7dW6numof1l8SbEy0op+w+6IyR0T2K+bp0DSRYJNQz+zNjrbOcoHXxTSS4B1rPpvBo4Z8jn3FkP+71PLRZqOqtfKP4ZuhsPCRyD62uivEPb+gs0AokIpeRxb/yxbcHbgaLd6tQQ02xyR7c2Vc3PoB//H61cHqCW70kAzDFemzcPv8Xb/6Gn+JNom/YjldKFlswAOOBKcL9ngKsn+CezdC+WEA4ixV1rAiCpRmXHg76pFD/fE6GNSvTHJ7rPNnwXwVzEIWhku9Xhg+XVIuX9KU1wCjxgh35GxZ8Vt4e8DqEOQ4fz+jHh3Vt03P0aNz3tYgXAOHIbiY+tzM0afyuIZRoE+E9UT9BB1cdahG6qtheKAPUecypas1Bj80637OJ1vMIw+Wa0TxKvWA2BWOF3X3l6RavgMhilUHn0bxoAN0hXk1NQHDTU//wiDoPOYWFqOzoPz49hEICv0egIOE4X+rVwn4OUPAB1DHab9A6AInwY8Qx0kRWDtN42c3gw9qM7gvBG9YgF9sfP0Ka9LcGzJ9GFdQxeRIgXF8ms7fBTNvn0/28lxlx74MDvMNFoXbJ7wdxGXwDSgzWNCv6t8mGUEvVQhT22FfTlDGRxjr8c3aY+ufTJ1j756vXpCI06M1JWLF29qgDNgpn+jBaBJaX9UUgOZA7+XLXcmDHfmzgbGmAdGrQ1Sy9Yh1Gem3T/Q1MbCHR8Iabnt3wQtoamU4hmN6a9cOLYm7cPgOzpWr0cJH0QtSe7goOAY2w71R+PMdShbQaPnbUtT4toPf3N4dGeVyQ3O4/JtPMzIEyUHV8sIog4Df9DFUiWDgQrvtAiOKbDF8Z5pE0lceYLfia/MMLq487MF1OtwacP80NG5kuBSuz4ze8JLZHg961irkOKvLj19gZghTMT/6TgObx1dGgPj/mXJDuBNX9EuHjof4M7AUyHt7XZ4s42TSGUZjnSNv8F3IWnKlY+3RxNZ4XJmpv+bsUPhXhbO3AtsFT/NcPKZF5wu5LDOMZ2vtQ2/lJg0/W5xUs/iTyMB31BjscNja+rzvaUToO2LpCz5y2nwOXlDlGHN6uBGxdMnmRkyg6TGYx/vwZx9U9fDBWi4m33ZxqQhPPRIizMCC+t5+1W4DPqFM6yRw7W+NAcrMmas2Pqp4dVeXgpn+pcyBDsKbaLQVxdquwcwizep2CWwgr762Q19dxivUj/bnQkwlHHY3sGMupfIPk2DbY9ZeZ/eoZ/OWvf7dqMDvdh4d37vBHdtib4i7/XmVQNiOjdiQqNd3qF7juhpYMbFXAEt/sHKpjCylCXBmslnNWta7ybMSLvT/MlXqv4HSLX0Td8nl6WTQEjh+esVlrNVjid2X86jdG8asKGr71RrgmgEfr7B8CpscSgav2Tbd4epnzt2IyfA+jil8bvgySHJTgoB9qjEruYDLY5Rmkl7eF05wXAyJs99YjlEI0W81pYCJtZPjuqpUeXtPDnM/30wikayD+47eLDXWkKbsyoJf+/h360uZvv3gnn/4hmcPx1aKfX4e9sP4Uc+wFEahbb6J2KSzmKu8iWdnykwZ13g1LZu1agI7tgSjpDAH7CjsOPF2kbfpTHCbXsBLVFsT9Vg8PbIn2QFbOZxTSLT7ATIibwe3v8W2POdAW98SH979qR31TeAbLgxsceDumBd3m2Q/jIZlbTfZLgLF5IXW/+X8g+zxt9Hc6KTEtfEOHo+Fw1Jv1JaAAuypIzZODr9X+Wv/zPzb/keIGtWzZ9CzMQvKmGx8EVHgcVfDZBoVE5/MIFhLVDfhY+Z1Iq8Ux5sVFBrWBn4mYtMQkmz8C++8uo8F9MQcR2qYLPL4Ykb7Oh4IRr3Ph4r5cul9BUlPzNff//Bgb7l7BcnosPHwRitArfE/mstUP9drZJ2xE6Suecbcvwc9/2+ozWJ4Z32oj++7w5o8w5hWzoVZlEJF2d8Bgff3tG3CBUoduFLRmu9Uv+HRjQN2XOMbdjx/+3R8dRc/tSM9T8yDY9Ol2JKKI2Y9fd3dppV6WsWFM+ZcKPbnVqb75Jcv9fW5UrzRvdC84x/jH11T5rKc0SWLTlBC7OxA8jD0Oo4E3xw4qFajuakCd/MybKzdrPfhiziZMfcF4cp7GCUbDfaK28ejipez3KxjpkWD0/NuxXvrcT8CEjxLbovDHRv45uODdfWfUO7oE1v7ZbY2Gq5DacLc352XQnW2MgEbe5WEP2Hl2VXh2P1+6x48WMMk7EW3x+wg7l6mq53PSon/+rjP4h0JR6vYEm0dlYCOwt65zIct+fso/vj/vfCUHJ0t9UIO1fLyucNBhNGSUiItcBbORL5G2rS8BbL2C2cK3BE7KX0KIuLvH6+u5WiCpBgd7PkADn/KdDNPLK0SDXu1M0iO3h9knOxClJRaThLuqq9yrs2jGtq5RDnDEH35hMxsPRe9enMcPH9Ccfr5gPQXbhPki+6PWuzeZmCfTG1jDWOA7iij4/vzLcUmUTT9/zWmLJ7j53xS/3DdYNv4LZakbEQtWq2ABp+pg0xc0dMuiXou7gWBzIgEaN/00bPoa/PD05yeTrHzkv/Unin+9mas8KTJoM/NJtA+AYEx5YYWd+PijvrB+4mUWrgT89I3pXpp63XvEAeLAHZD042fb84Efnz6KZxQwBO03TP/adONLPJsjajdw41vUoHZUrH9oG4zs0xP5xeN0vcwyrAMdbn7HLV4ZenIwZkVANj0eb/7/+PPP0c68kIHeYieHjJrXn38crHYpncDx1FywM0xdsSjjaYVPpdOxGeAqHo3C9gHL3wESx20MZvdyeUiO0xv7IYmGdstfLVPmP+zE9TXumskuQXDRR4qxNxVbfeZhmLUS9tjjEQuGG3KqUfqMetnf22SqYIZwqe/Lz68phPt04TSJviPUkuPRFPt08cErP+k46N13sQRicfv5xXjTj+Zql7sI/vgaMlrEmH7TH8BCtEHLuT8HP78dbPWY4tNiBcJePOna008O0256foblPt25n96gzlq8zUm/NRFkTqTQnz5bj9pJ1h7OqmI3Ne/BYlXpA7Lsvket8uhA9xUq9x9/8H71YauvkK+aL/7l43QrOkvRBnHGfle865WKqgijnaBhY1fUw89/hkHEvykekhBMm98Nh1XXaQiOSTHtmtGAndw+0U5JYvbbXwJH31IxVuJ3zHZN5EAYixf880c+ATdbsPl4VzLfZr1mE90l//zuwyW9F8w5Dgjyir/DuiQOxZzk4+mHH/iI4mexytMiQ94DFnnZ8Ryz8FA18BJcG6ob3BXM0idOYO44NlHOfQZWu3MNeP7Ob7oXDpCNdhby8HGPErKmilkszwy2MKneLsWvwWEMli9Z2/wNfPvtv1Wq14NfvnHxywjE7/kmgs2vxeaZG+tFuNBU/emfY8QbBR/yagLLVgbYjsRr3a6Qh4B7DRbWWZKxUa2ICrd6SdTN317V6sbBYKduowZis5hbPpFh/byG9Mkfy3gt7bYBlUh79NmDQzwnZzDD3lc+9B++F+QVaXfTpzg8fk7BFg8qHLrkTs92pLMe4aMI8zQwicpPM1sk2Wt+eIOg8NHY/L6bBAbfeCXzSTv/8GCEX3U34iDAvillx+1Wtz5H9G9tzvH88/f+xfM2mHlOzmzVhss+IHIxxPWM/toK+ufnExth0LIpPGxdKTe8cby/pfi3X1TH45N8NH0eRsAfZCDOaUZUU9iZ35//t+lHbOjZtd78agc+T3JJo4qch5lTxhAylo7Uf1/0Yfb1IQRPsPp400M1/9Q8DsDnzfoX7111DHj42r8fyD7OwuZPz29wVBJh4/P2sM5nK4ce5e6bv8bFrF+HGbq56xNp298Uupcrwi1/6G//cr2MhxD2Xzn/p2cW77aHUODUBFuR6xeir08uMPiXia1eAjFNRIsDw597oYbCw6Hb/CsowDGkfjV1oIx10sOnG2pk2faHWnmXQfgonHDbX23N5VghQy3E2dzy1QU8tO8WQElY0t/n//wwqDJ8IY3h8APhn5MD8uwvwPtvLzHqv8tS09arhz18f5m//Q9435sfxCjSa/4mXdcfXlKrW/6K5bI75CBm14BakXcFb/45+DDO6hLrJ22JiXTLZO0alTIOA9iBlR3l8OcfEf7xHMyxR/kbTuWwEt59WjGDXRPBUGAtDulVGBbzmlsQPZUjvcv3tBiLxmrV7i6s1Nb0Uz2rVWEA87NzyHp3CnPJrHrVVDI7+OxnFmO08H34Iu3pHz9ZEbZF8Ff8PdGvvm37PRbsz6mBkbjTCqaZJwue6yzB6FNl9VjaagU/2TzRp5Iw1sxnK4Pg8P0gVb0ciuXBcRxwL0Ck/o6biqnsvRVezqJJ3dZIhuW3P/3/HClQ//eRAtBMPsXcn2/Oj48yw7eZPqn7GOdheXAPX/masMNh8PoOfXIJG/iysUrR043M8UqjTDNxfaJYUnww+lR2oJscr0Q2rc3pfvzJwDvsIjSnujSwby81sHU/FZnlphqWDykQ6Gb7ghSYagXh/m43aJB7Q3PDywY2qt0Kb42jYju+hGBmZhHJV9a9qDtz6UCClZvBw8l3+NBaOJhhPlvaqSMXGtz9smZ7bwqh/gAO2Vn8ZRiv+1MC5rvCY1QzAYx3z+C0TKYq0QiH6zUxnRFO0y3B2VT0xZKlpxEe7uxEQHlSgh5LsgHvncjw0fhT4tnpORFmO/1LWK7cTLafWg7Kt6OJD0+WFPPMFz1U32tJHW36gun2CBLwlxUCdh4GZsucHHVILXZHZPc4gsnHr5uGr9lpO8Wv1wuwvivUp+iFAH/oY6burxYgwPLp86akYO7V00kT9qOG4HnXsLWq3RkqQ+tSm+OHgWZrFcLDdzhipzWLeHLXA4R3Ns6E3UapXtcGW2pdRQL5PPY3k/HEEAGcvIi6J/01zJ++sWBVJgG9yewFyCfTttmOuzOawaNn7PB9JzAxrkfsYc4f2HI85pB+pAM+2tEYd3c2IThHRYwkAHRTPEp2Bl6X/E0PSb8Mk3lsKmgcmwaxxtiZbFn2LnyNzRmBRGnMpdXyFTbBdEZkfxIGpo03ETRLlNOgKduAvQzV/cULqYz2NUwDHSro5OYf1g/kPDDmDBYU3cCmntOawdoI7wQO3nEku/tbHRa96kcwW2FF4DaXfu1WYmztqe74wjM9nq1bJ8NtZOm2nnwx7eaHD2sN6jjYnm898wdLNdORQzW/yGCOshZBP3caaoVIZ8x5uwnob0NJ2iY6xOvfcLUg7z0/WB++13p5/HUGHMrGQkJbfcAsvU8EVp96hx35ryzWLphl+P0YMfVbjdVT98bbqcHvgQjxqg/C+iwbTb3aCTac4LhZ3lYIuYFfqbcz9WDh4m8Kl31HsFs+x2C9j10GlIc30f0e9sGohWkIFcxBxEXhr/HC6u+Edf2ScZDM+JEKzxxOLSciRbp7BT3OXgPoY7huE49rsAx0KOFy5jPU5YY+zN29e8DcFANqL/JUzEYWR+DN5x4Bn2wepmJ/K4HmbgAQQO+/jfLv2b5Y413fwtVQDWrLaVjT277jAR9EPNl5z2vBHi++h8P3e8BY6ACb1wI84J2kZ8Lm2mVSSuIG8KwM8b3apitXtbvCcGs2ExR/tjlpnJ1pr041qBEfwmD1Q6+FZpX5OHgJ72IpvWXWlP0cUjOeFZMorWEoCbfLKH56NmMSuhDwyycMVw70eB4s+BCGnABHmE3mbo3fuulqY/9NzXpZjtWoPnz1jubdmIN14UsObM9DD7mumGw2kgfkxf2Cdq5UmtTXZlHDzrinxtKHtXRU1Qp0U2FT66S8hzEcDy6kXgQwal9WMUNXRfA63hk2XoFh8i9O6qHxd1YIlIY+mNHjqarFobFIU03xwC63CwEcM0rqye4UjzExHFjfWYrtzt8F6zPkI228u5i6vg9qJvgLgS+PZogUnw8YbmrCg3u7fyM1e3jB0uLTCG9f1cMovMr19C1rCHso+jSInb5mVt+30JPwRHXt7MQrBWYESa6X+Li75+YYsJsDs6+oUoskx1hQY6+F+55ORKNFXbBeLFxY35eU6g/yYevfNUZgwpaCkTg/6zm08+2U+vOJ/f2DZ/0z5E9Q3LsGUue6L1iLQAZdyYnovuCdYamRngH6bVN8LS7aMAXj6aTtmvVKPStLgrWBSwSux9ygWNkbgyBcLqn24PqUOrQ7g/ly6WQwdvVClrf9Ktan/U2hIJ1sisjOLNY8vcnQt4iL7WfzLdjyDCLYi/WdhrtzCea/g7o1o5tDqi/6wGb3faugkawJPnyvQ8Dek6YCk519uie1Hgtu6/WwNM8nGucKNFf3OqtaJoYXeqRFHc8BSyzQKdYZF2QxhiXD5gyqq39HfIrDQCxsr4cNefuErZxWkIwIFnidgIP9x9mKO/laQ3jHUCTy61tv+fq6QT7ldGyFYm6y3r06sLq6d+wcNwvweby+oS7uePTZ6sn6nGUDFq/bHj+VsYnbyfAh6GiY0Owcc3Ufn8sG0NeloxZ2vIAt4PCADVwBdhstCJa1P5dQnZqVaDecBvP1fqvgjgWA9Ljyax5w+22kQ2bgh+o6BX+Xjga07p6Dj4uyDQ54n0aokPQPLflIg+F6fWbwosg77Lq5zxj1uhxylSRS06NHtqREluGejT1+5HcUz0r6ukHwfN3+5avw3jUPOBPngQ9d6NTCh8QIHDhexfqD2GBU1k8PS9t6Ynysajby0DlBd7g62LWff4CdC9mAdbPGFOV3VCx1JfVwWy9sCPJtmG/5A6l7FLwQWfIsINP+0wLtSh9Yjys5ptv7VulxvuI99KthZs/nDdoejehxyGRWNT3I4dx9dBoW9SMeoKU5QEz/RPTRm7hY0Ongw+PwnQlYQimeo/rqwo0fYTtey3r6U1487MXXnZrwDw/S7ZG1EPZ3E5vZnoHeD70eSoe3T09bfI7OujUezaKSKN2V1V0uDiXkKkEkEk46sBoVUcFrfJ/xnikHJt3to6g2OpoRD7M6XupsSWB/eTK0eFUJVhTDE7DHd4D/Nn5GHVn6DwAAAP//pF1Lt7KwDv1BDEREGobIW8BWARFn4ANBEXm0QH/9XZzvDu/sDl1nHcS0SfbeaZMajv1BIeTztXxRfdxs2IvVAwO8BZ8xYcxQN91NsmOSuvyek6uu1w+JOabUop9xqAu4iVGH+9HiVcftylZFyZioIPDW/3FHS1Wqfhkx7GApUa1Osup2uc3+8OO0DZ86DA4KcO+bnM+MCzGqW7Nn+dWRfBZ8jg10evBj+p4qBq285o2mdJ3jd1nY3W81Ji7IDy1keSexavS2Qgb715oQ++fPfLJvtQkb/DkwvzbiiB8aaKA5vZ/ENtcXf+1iSYQweK1I0DxviNmhfoNV8mVUbiydS/ijuODOtUj09P7v/RJE1Q8jO3nO+VSl2wTJDz2kinn98n4s76OCmvJKN7A/Rvwl71w4m5cNXq2eu2oOSySii2Fc2BJ5c67LJxmW/UjFyl3xXsRmgNKJblhQm64/2uauB3L57vBrq/Co/8u3r5+sM3+rWN28v99ktBdfD6KfVmI3n40pRu4dn9nu2FVo2nefVg3m1mC2uLpWQ/i0e7BBOZJDIFc+Z4KcKqFVAJb7aEbs0EALatjnbN/99G6tHd8S+ok1x2s56avWpPpD/eZeQuXFv7vl/6EIjgELwtarprI132Cemg/+HabamLfzDHAmrv4PXy328NS7eTsz95c+0ai8suzv++hqrqpofB3X9R8eo9IgJdX0XtHHdsHT/9bvzz9Blc0tcXcnB/V43zSw8CUSIJxEfE8CF8LtcY23qfLzx519zyA+fgWGp0w2pq177EFBwoHt0/s6mqpy1SJpi9k//Dl6bDTBeQsC5Zudw6X5ps1wD382272tXT5r8UlAermymOW8ar9LtGsJ+6h5EG3/Gvxh+44VcMj7Sbz08TMafe2ZEITPK9O7327xr9hU2xAwsdPejSR/lkZwbb0hRvVtc372nuI6t+Y1LSnbdpOJTy4E4f2KxyUeTEKvuCAmoJGnfi3QuPA9FF2aIzl2321F1/haQE+XW2awH6PhXbUhjGQwmL/gI1pW2oyknafTWTqPEXuNEIBgjBa58MOJt0hKBFS5mUz58j7zLAcCWDgYSZI7gCjOdwF89vOXruLORuPJbmNAnicwszeFiC722eCTtyVOuJH8Sfh8ArCezkh/7cs3mkTdtfDOyoDst0cTra/d/P4Xf7xVfzCmj3Z1kf+lNxI4j7vRkIPZQOSr5l/8RcMf/1jyAf4cylM3ri7bGd4NVdlftwGRXd4SnL77F942p5sxewkR0PejRSRKusCX+mx8QCz5Nla/66Ca3assq87YeEzPBp1LS36GD1tm0S7+wa7XS6ZUY3skWnX9LaXAuFBfssopHOLK51m4tiFkmby8/+C/T3YZ/7N3wgPB6FHvJyjoHmemnc8cNX3/0sH0Hhvmys61Gp8ob+Ebb350FCvZ/zUk7VF69jpGfuuzIZX7NSAWCw6xx2nf9Yr6eG+PH7zB81qGqilX5RGSoZWxtCFu16dh9f7HD13l0lSjU8gFtEhDZE/NTdTZ8uqNFn6NyztHET/lo64u38+ccJMYNFOOLYQslfG47lg3HYLKA/HYRSxY+AcNh/f8hxfJ3m4qYzgoA1Zemm5Tcdpsu8H/GMk/vuGNlZcPgjBqcPRjhUW1/jS+ah+LAJb9ocU83qpJLfcYHvl0Z4fR/ka99Q1FNUKHJ7OREkSzGsk3aCy0zJa/HLrN2buISAxvJTP1Ne2YZLxHiD+hzaxN1yxdSU4K5NkxInhziKIxUfct6n+vicLvG+fTKGuzKn7XGnHG874aTbm2Uf8UH8y1vyyfNqDaUP0eJdFjxemkT6oW8Ii/47/8+6l93dw+Jh+Y4/1sf2rfSq1oXt5gsSzqbiqfUQv3n8gXPtQgehKJjf74zUEXB59K6ymEh9AkeGrGjzEiYReol9UYEFzTBo3V2QxA1V8TC4pTj35/7wvVQ6Pjgan+XKAG/vx1+T1i9JMKHEKxWi+3MFsRzUZ1LWH9m1qyO4xHznNJFiE8YZcYKwV1o6Imb+DnocejWKXG+D5sQngURyA7agddP3xuNlr4Lh0WPWX+pOvyTy9gRsF0Ywoi2f7zR0K6TIs253VRAp9PMsFbDSO+8BOVqbpIzMsKeDOdvALyaFWzw0o5cH69PjM01/cTIwdr9Bc+kCFfUPaYrxRUUdjs37D4FxZrI+Qz+x1SKO0HZu5TdA3xULoiaEGwYW6MT9Uf3kfv+a1Q2fNQN+6jXfjHh5jrsJrTaFU2f/ieIi+9RVMMhffHT8hhfcNoI1YnGb538cNIJf66oUqnRI0fdkrIwToujeVHRTWEqWN2sg3QzCzxCPnudGFBqi234mtVQX/4R5GST0eNW/CGjZbd6fPztYy5TV6SOhB7S9w/vcFdqybo31tF6nj37hZ86KHxbJUk4M2zmoVLfFM0rU9IYq43xtfdlgFa9BI6T23fdX94yD8W7J+esfD5I0SIPP/4ZD4fjsdQdWvU0CnGo99I9KkhN6UbCm84VvR3XuE//YBgucr98YS2yTblpc0Ot/7HOXWFEYROmv/LF2gGDfAz6ym/cKOT5O09RAs+wopBDT43TNdAyeSK7M8ryZhqQ/WUS/N+Uh4cDn6zNas3FA/ISdy8Zp853rqEsFIuzP40dcXuv12NNmh/pevH7uZT2OzeKk73gBV9n1Y/ez3K6LhBNgmkaq6Ymv2d6Et37Ghe112vPdS3UtPaI7plSFHvOJ8eLoEeMTvID3wWp7L5yy/MGO3zMpgsLkE+9iU7rfsq5zgYH+rzd42YkXSBIQ27oYHFHiTYGU01a09dgY1h9ww7xogmfVy126vsrdh+0Vekw/F4VI9PKaXyoz92g/TNMWrcb4nHt3noxnvuiugR2j4z9+MyCM292uh9qo7EYPlk8GU90XpcpUwDMezG+8bSVGkbMHItkRiNL2HVIHdjhmTJB359OqoCKoH1+BPNRTdJ26uJFnzFjgemGt+OjRJYek/YaaW3fHhcXjqkZ7ejq0Np8Dngv1Rp5aRn/hGX+Z8+g8zusqFqtsU5/3jvGW5R1jE9vDURU/xLBu78Flm8VkxDypS0/ctfxKTTy6dPiyXbq3m12Z68JD4T/aUrxKY75tbhN5qYTlz0Fy+tas+rEfV+jJb8gBUQTcQHfpPQTu80EvTlNx9tECnIX5kQe7od8tHzIQbD1BgjdejyUW+vHlB8jqmElD6f3+dTAWXcrNgh/q3yKY+yDNqXt8LKnpFo9HwxgUFsdCxZoYeUbWJ6YEk3lzysSPPXkz7NYK/yNZWW/Tix/ATKoiey+B3pxlxX9Ia85nRhi77oT2BlGWiPrY375gmIbYrorRRirOCqhLqaVvvfcms4t8nyvmjTbTcuLHo6FeQqN+bvtfDgT98ijx2O1n/2eVWfM8vzi+WPvvLSoay0jGT3fc9by9vGyN1VHnFY++n4e61LaGXRxf8lxRgPrqCBrtvWf/P79XpJ0UoVbObVzzif3qc+RYueydxT9OjmT+E9QOBaQau7SPxpG1406MfhiWM67YyNp8oSrAZ+w0rOP8Z8e8k3VMhSSoUCHToOzSipcTE2xK7Wnd+IhW6iKPJm5gnvdTVcu7mG+HO02bE8hcY4DjZFTBANtm9ON59TV5pRMDcG/kJtGpuhdxQoLxdM1UNxy//0K7TEC7bPz/dq0Y8y2O7mgJlGWOaTKlgZnJ4rTtuL+8qnCfUz2h6OA9s54VSN1jeU4HG18BLfkNH+5Y/jV7OJpteZP3/fVxvsT1+RXams/EEc1BJ5XKiIPUhSN/tLI/0/fLm9u8tgOP2pAFnDjeFPPUUz3knZFs1pQvAKvToqGs0bkKpsCK5PZ3/BPzH84edqaNZoLittVBd+S9O2uESika9CpLzHgu1V5Fa8ceoHPN3zjzkIaT7606viYm6w4gBH7eHjlMA/SkK8hV8Ol+KigV6qFuW73bMaCzto4cjzhtlt5EUL37Whvf0Kyg9ns/uHf+bZu1M5qoZuvrxNV03b156K2/sxn7jjpmiVZgKzA/lVDaHhFeglrzjz6aRXH2Xnj7C2g/zPfsbg70gN3THPFn5y7dj2uj3+xQdi3y+Bv8SzFmzNz/HCnxCPsDbDidicuKoS8+EejKbyaTydrun55fNjfsigMKIjOZT6FPH6m9eAm6Rm9rTd+dKp1Wb1pUw62d8/PZ/l7fkI3WeS8eo0Roib0JRwk6c9sYLNAc23rCoRUOH1pwdGE1hhqpLIquhUq79u3PgHBfy79CSHny/m8+m4BoRuS5evy0dHi74ZQPCc9swZNl405vylw22wVKaN58bv8aakwHt0pfLu9F3qPekRkbVwYySUu2iBdAB4VUZs6VadT4Iga/KixzC9iT9Gn786F+Lv1JFdsvPzhb9lMK6PwZ/9O35Q5gIedroiu9VAq5Egu4dy3f+IY/qOL0raDZAejzH+vl8ln2b7PEJ2f92Jo3C3GmnsitvAdAR2wE3EeZFnCSSle6Hf/GNGQx+EKfrTYwP/5XRT/kmP8Kq+ZyoueGLhtwDdNUuY3wjfqNvtP4FSyGJKcrfpusnZ3mS01McYuSZeNW6T3wMWvQZz5S0aU6sJEkRTeVjWd2esL9uXhK4X60zw+q5X0ns69yjobmdyW/QCCe+EDI6QvlnkbaycO98+QYu/4jm8ufksdVqilrREWAbvbYxF66bKEj9ItsSn8ddkGbpfvDfbOczKp3AK3ihMiY/X9pVWg/F8pyBPn5I58UHl840ob/TYPH5Eb+AR9eFwecDx4O3Z4S6+8tGe/RHe26+61Du2OVezRACp3OkkOGZ5xTVBDJQ/vL0nQtu1mZI2f/VZHIwW7+Z4q8VqaAwD2R+DDHGxOinIv4tPsquLNZ+3swKw1Ifook8YHAWepkyUbHG11E9Gme0bSN4d/MPPw0H5BMpS78XqaH/zGe/9GK4X50zI/a1U03Eo3uCtniaeN1rsD6v9S1eT9w+Yv3u6FTfO2qwee6L81SOMXl/r5p8eRDf7F63G98R19L4bE33VxRmJKDvcoBj8AP/pi1Q0ilrty4ISb46QX5DxPEI9HTMSlijkY30NxT89h1yXesaiX0iArK4g+yV+TlJhh8Czg8f+4nGXaKcCLPXpL/vLWa4MXT0A8aIRx71eDH5TbqK68Ffy3O7KbqTKGmD1rDt2mF+IM0gUQPHxIxCfXRH/NqA+0LNmJvH64olmspE1WPAzu7XM5/1L3CZwX5ET8xf8P96yJPjTo5i/Ji/Ol3qVGo7Rlti5c+PjSXxnYNXRA6+WetPauR8pFM5ImWMUhi8qPD3CVhm2xOjWyuLfo/4XnzGn4yFnDeYZ9CN7UqUvVrz/4J/8rz60i7cRH1PKZrToS2xfpa6/1FNH5H/7G9sHP9qN5jKY6/85UoD+95GCUuZ35mPJMSbri0YwX0HKLiep6KZ0fW/gaqEZw++r+uM+6yRYe7cni9TIiP79vTYHSj+2WOYsc0oRWWtdI7vRunCO1sdGlea1SPaOVUcM5xQja/5iTCV88+egNGw1D8QvIaj45ePb2JqArGrD3GyM/Glc7zJ1nzUHkgftFk3PrRCiBzl/l1vSrT/KvyYF9cox8brI8de/NIpVk04f3NJmmYWRFi0Sq9sOb7uSdXQM2wa+p2NA9mbrRFM56AoqmVXgoQ1VTm+PFGCl9Sa5fMI3mjTtIkJM9hkxXR52ozdPR2iDckf2CtP9b372Mvi+W4vsxt6MJA1HAujqLyfWXO6N9iNaNWzf/o555YsjqpBliN346sneX7Fq9uOqUI/RU6KiH0LVbb+TCY5n5IwQxzemp/G6gZsFD4yEQueb1v3KIGyOnKrphVRTWV1GNMo7l+hq2fG5IeYI5kF6ECuMT924Xl81MCY2ksWeBuPXIYZn5B+ZGVaZz4PLdkTRJG7xVieu3++UXQgf7ZcxTdzs0HTR/FoxxfeJXar1Fc3hCimwKeMb0SvGI7o/0xCa1arCYuDmxtifpxD9ff/SCdiYrmKmgCljieajaOej6d9jUISwZ/u2qaPB+Hg2kJMYk9z57CuePPYxxLTRsWENc8XeByWF0xWA+WXYLftjslXDuaTMyz4Cp8l1jFU7iDxM5y2v5rulzer90QXEVHRi8E1+C8E1c8721nvs+PFa9KpunExiyeGIxvHSBMo9/a7ZoTZ6YzTew9KIJA/I4bd6GdRYriFKuOCEONLQ8V9XYQC49eQk7gI++XfFBnrcB8wjKxl9XZbroEZPn1lz+TNmtbUxbH6fmgUt/lVM61QXdvrmTPwaF/lsZOOIkrtNscx/pT/Z2v4ItOITIWVF8s09lSTU+G2F59Z2Kr6nx6MqbuyaOIfo6c+peatBlTbmMvpu3fWXso2h7zoXz3dUIPp8eS2a89ok3rj/VEPVux6yKDTskow/Pvw0SwFvzTTcnJUYje7nRFf5T7nT8f5sqsk5FJLqvp4/4lX53RieW+kImepEeLYA+UOoFK56KvSYOeIc+6PqXEOYcu/MDO+b81kXXQEM0S1J0AwcTfOGm4CazqT9Cb7+bBHXRXlSvrH67Dec+16IYcDzGcvl7lhNVJttdRUnPyqftG6hyF8F0m+zJ4l57avxU6x7oJt9S04e/fiTKMkJrAX+JIeSGl0fmlOh9mbTssQ97zpJPQoaGN5KxQUtDt105rQHdoMz0TezafCLufXA7lcfpr+O+5w+lEyE5pwUzNy6FupPfa8pMdusqZTFCp/Cca2DLHkmCTSkG7N9L29/z8Oitlvl0zFGHszzu2InobtXY57VHhztfYzVWl3ngy097D9/xOIjN41xs7UegPJ4kXyEkzHdpZ0IoUYZ8XTF5dPD7DE40ZCSIL7U0W8LOYXvY3NlvlCUaNZFDUDVC5OcbxrNRwuNGBT5cMZItirEJrVLgVbThOE9PZZO6U2rNnOWUGHV1ZwJD8WD68pMmBdmqcHrnxjCYzdnlAnrE+J7moZy0X6XLh+X2ZitgRRo9TmNzDQ392q8eDcZNp/VjpHZELr2uqXtv/Xw7prgz+ZRlyGo3w8W90lYrU+oVRRtkjGLnu81moNxSLf68VMz62m/0TtEOFb2gm4TG49aN5owg/ILzJBpn5b88x9Qq+CJV41SddPJOxxh7T2eFMjL4eMKNW9wFCZhJj7uaGI3LoBxMXt2N3e63/WJc0NEUPbksHwWiRy3qjQ1O5Zurz80r1NbRxt36+PzltfV4k8NoPPJJ0He467PPrEGAUfLbHpzm3M7unro9kUZFVFloo12zyRgdRvSUau31dw/HzpIXzDxtOzXOWmyFuSrjcnBLnpjXFWRB91d3rDwlnXGfPrSB1RuMTEibW98+C2Nbe/rrsOX9VXrpstXMv/FZ88fv/40n4wYggh/KA+Eoz/3MsXIVd8XcmRZwue9/HtD+lpm1+8PJJ+dVyIjmjwJnqyTEo2u8FJghsrHs105XVuW2zew7FXhTfMdIsruxwJoZol4kD+OsU7mSoBOqxPm21qDRmJvNHCUQWIWXv189j7MmdqkqkWs78mvpk48Y+BSu8GTuOsRdU9bCeRAfRI/rimfOsFNFL8RD8S1M6vq7UlPUByDzYzoygwm2H0PU/PYkH1sd9W8UbkGiqGciUVr0RhLS6pRqRsdO5zhGPVUuxeovIgJOR32ZrTY11X379ij8A1Uzj/5Cf7ly+AEjjGqzumI5nJDCL6Ebtc/VmkGet/HeJoLCX2zN7tBN2kWSaQyzKetJ5nI8jc5c7xP5dPrCTzwmvRBwpXxqkY7BQWqVViRYG83nCPFEeFyL+7ksr4WFfO9DKMnvAtin7NTNzNTiyGdX9slfiLOXrtzDWF8jinqLnk+SEySAefnA9Mai3a95WU1RI/bivi9PEVDpZQ3aMX7l5iBi4zpC9cUTlt6ZDs3sn0xwCiAm7d540Q2mpyfj695i03bYCTezIgeq1kHhwca2bOH2fVReDLVJd4RzyanfNxF1xLOkEVM/3ZutN7/2h4unvcmpjTU1fCCL0ACkk7ck+Z389c/JuqbxzK5H4MG0aQJG3R+Jnd2KGnVTX1u6dBexYr5Odr4s97eRSV82w3Bg7UzRG1fp1CrSkjlqp6iQdqWGnxGVyfZ5jHw+W//SOyp4LFSnGojH2n6Lz+JYaX441V4B/Cpbxa7VheXj1HBM6i2h4Dpu+EXcUnsb2hIHyFzts2cT9b1dIM2Kgrmzm4fzZtEKyB9+iv8e4y3nH83ubh1bfFDjHRpJCcf6wycy0XF2fuUV1P/lj0k3rszM4pMjFq9PYvgDhuDYGntdmK8dUXoNolLpQ6CfDihUoaUbiOG1ee1GtfdIAN/tikh07jjm5N2LMHCxwPBj6o2qB93JVq/HgLeGPGn4oq5nkEfTcwIa57RvGHHHlKh/eLV62cbwx+eWPI3s14v05/XKdbQgn/xyp/LbhpD2/yLX4wU7jGX+t/eQ5Rgk7kPK69GpIiZ8hyJjbfw3CNe67sZLfGP2V+98qe0Rgncslpe4t0bce4bujrRWWH+8/js5u0V4N/+NMfw2w02rmrg18+OEEoTn9vIaMHRxxPRucT8+blNbXSUNoz4UW/l8x9+RkKfM9t5Vj7f5PERNreTucS30RjvadMgp7r1xPS3e2N62bn7h0cJrq7vfMGPGbzD9k7sVXrslninwOHwBuatfnE1r/dVD4HjSPTDDlo3XD/jG3ZW6DBv8zjw4WH2ASrGds3slGU+rVK/h777ucS+bFE1hWXYw2c6r5m35MM/f4Y9fj2Ym4gPgx/q2Eabj7pj3ke6RTyJkwBpel7TzcIv+qdYFiBqsUj53fK5hJPsoXTYr5hpvjXEkYF0+KItYf/sUahmCYV4yih6HlfVgFy5hsBSDLySsxl11wuRwcLhgfnPTe9P37k+QmG8V/jW6xCNqlrbf3gYf86/zKevajkvcHNKZloPz+cBxi18Lf9OXCfGXPLsfQCCGnskmfrYn1525KEFLxA7tPZ+YziNjC5iAcSVn1o364cr/sO/+BfbfrVRT2ENyWV3Ic7eHKJx1oMHkh6h8299OOaohdHoXbLTpdznx10Uwj5+SxRgfHeTU08aqBV+MrwylZzl/vMI0ksZ8CavG2Os6f0ISzwnZ1+957OP8iP6GHZAnJNUVNNqznRoD4NI146z8icQ9BaJv9Ek98++RM14KQLIA+mLVdyFnG8fFsC++8bErwKx4xPb2epFeL7pprjZXT+K/dI4+nplJEvdbiNn1wJFvmNjtc+KiMu6af75J7F/dz0Xx9szRTuGPLxd+GK/zypRTYXm+4dv+IRKbVQXPEJc/Onzue1wg/7wv35d+ZxDW46qbz1igq/6mM/lFT9gru8iCaan4097+aCjaXZFFr6Ov2gOcXIEmtwJOVxek98fwm8DK0dz2LNRqmoMu1eoQrW74c09UxBLu0b5t792KFkbU7sybOUMaUTihe/Oq8aloGGuLUL9FzVnu7nBwh9Iij9BRInqBXA7tkesoKzk/Nd1AeyaRiOaW+KK7dZNKJtifcLyhA1D0nNUQphlHQuc5GWM24dSQnuyKDlw1nSjLOsU2OGwY0He02qaqQNI2IScGLFi+fMmOGeKw0Sb7fM8QtNurwWwrM9iTxONxQ8amD/HHTvJm86fZDV5oC4SCNtF7yofOel1VNSCzMzz54PoD+safLJLwsxH/l7iSdGo8052SaC2Axqn/NZI0ucVMquZX93YIFEE6edv6CbKdxGPWuhRWDwMiir+MsZ8RjXKuNdhtPC78a1YyrY5xwUxEnrpRq1/9XB9fikWU83yN/UPQpDt7kbsoBHy0dvlDepPasCSysbGmAwphgUfsBvsZX+S3CBbZmlXxIrZiGZb+dqQitAxk91+S6PkxAaQRYdcjNiqptdmnBXl/R4JNvuSjzNvbbTEWzwrByOXfndmomAMc2aET4vz7xNnaMHjVPxYa39cm4ILpevoxD0ITzQlcyeAFO6vJAilY76Jf5Ogrl83gU6LfdlJSwt0by57gjkHTpd8Dprv5kSn52v0tx9gvk0b4k0GRlzr1i76oN1Ei1yYK/q331zzytn+5aOOCtnPhaB9MrxtGzuSLOusQdS4wHD2PRljuYkDhMiBY8G0kmgSEStAJ82DZfv3Fv3OvhjAimofRl6/2h9r51MC328GglP3a8ysUyT0+qZfZmlXI5o/qtyDtVM4c6r1lY/9eXtUlt9LpQNp+XTOkgLIz3kw3/n8umnSf5ryt/9s5eHk4tMwZaVThIFOHblGwxE+LVg7meP16/X2OT74ClIymVNI5k/UP76eANnNDchOXmZH80mZoc4mi+3PXRA1qyr3EKubkOnPYtcNVTRTKCQa0PEU73inSFEKiKoOsxp/7U/t4fNAvuQx+lJuHafC5jOqMh9C8rlpOO+kYBLQDUURMW6+vsSztwTkZz2If+8ETvPNywVb6kr6cajf9dshllCTriwWfLmXfwoZFeCHo8ScvXnIJYtonmoYlDP3k2yNzi1kiooNWmEq/1DEHvvrDOz4RmR34WuD7W6pjdbC9KQvj1rGyMYxQ6vXz2cOl9uu56TXwGbphdll8EZTYL4UlNxNSoy9nhtj8RMbuOar/aJncWMWl0FDWyVIiXV4RNEQ9LcULp77Jo7/7HMuyHoCsbu50JJcLc6zN3tAoG4a9qfv/OUPFE3Slo4XpiG+XoUJfA66SOzXR4564czrP70Ly5/k6jf16diiBQ8RsvDh6SMkMpCuOP7pC5W4NiUXdn34wYLZ63w801BAj92YLfm19Xky1Bk8Vjxh/rmQjXl/ro+QXIwLRuYzMrhhQ4yq9GixND39fH4N0x4O2fbB/vj83EirI1wM6cWIO26Mx4IH//jZv98/eTsZQ3J97CnakE/OG/JLts9zrZNAOX+iH8PXFt635Moc6lY+L7LPqPbz70uInIWIqw57KExtR5zww48z87kbgdmyQJx3J0cDZthGRjH+2O0Ejj+uYlmCpPJs5nRDxedASQv442/7jzN278XfUO/RHZ0O+3e+6GkjsM3nSshxF3fz8hlFmZixPF2ObJ9pJkAXAWHXrfeKZt2gNqSneia+p4T+UD6WKzT0lRLr8Uzzbj7LCizvQys0D9EYmlOpDJZ9ZcFu3UW8/sFREYa3RLwCuNHgPNWQcjlikjPB4SNvAP/pbVRkt70/yedKQN93YzG8r3uDJZtTiVbrncmwfTI6McAco3PfrBa+nOViublhiHfvwz99hotpWf/xOzxUTYCU3xoKRTpzgWhfMvr/8mNr8IBuo+PgUz78ZvS3nt7uGvnjY5WmSuWWE95M965j1Vev1UUvpqN4PEfL899o0XvwZi9I1fz7ZgF8H+vrP31kM46+pOhSelo6UFp8eBbU3qZI16nqboqIz/O6gMkZb+y0LstqctvhAc1Sss4WvZyJnnZUx3tqMn/J98O2MgrAF9pQOqUqnz7CQ0bXX9QR00ujvHk97RHo8Bzws7sOXT/WXoGk+O2zcC+PPrugg6B4lv7B32q9RfyCDgAfM1rhVl2XxnS0U1FZGubQ3jy2FWv6D/zhO6b1O6Pj5bXToT48qkUfwGh43LYtOkRNzMJFD+1fuucC0R2NCh+xqgZljxLQHkX8lz8qBsWqRVUaWsSZLyLnk1ql2yXf04k0OOfDkHnKGHeE6e5FiThbGrED8zzip2WF+gF+OtzexzUx/fDWDavrXkRBr7xYAOO7mjciUSAhc0D2r9k1FnzZqJuEDIRskduN2SfW0ZIfyOH7fqFJD8QWWmMKiI33sd8/A1mD4nJ4k/3qo+X9s3YxiHbqM3wod4a0fk2eehyrHlNeaP687Cfww1kixkm+5n0VPVzYT22PpakX/fHveY31DeiLO0a0Ya9fiaR1WLPgdUuiSdnzBC35jB24C754OIwPVUFrhTiLHkzlHSvh5JGGWI1/9uf69+y3i57JzhescN7LmoY6M0Ds6Z16xBQpz9CiZ7LdJ7cRJ/OowF6DE/N/VYP4teCaSmRp/uNL3Uwtw4TnbR0wrX2n3aLvmmglqD07IK02xvNzbFTzhVPm789T1Kp6TuFxdiO6ldx1R1txO6NdTTAVVeHtj9dkS1H63K9IUBo6Gn/lu/1XbxjLs83pgm+U4tomeAa0yudgr7agyORM3BpteW+oKv3TJynSuyL67MaZqq5aX/C2ujScv3y3V/7wvWReg2pko5whiwoNceqA+tMJtTL6w6PRa6ehfjJI8Kff0PXjKedTigflT5+mYlhlRmPSYwtSikdi4dXeoLu138PsiyN7DNbOX/wZo29JIhbEFztqlv2NVq/OZ85j981H9rVCWPAOs+qLnvM0ym9o3ucCXa1XUTdP2zADW49LFr/GoGr+6j/21oxJUnTMH1DpzlA+vCtGhf3wZxnkEO7pZ0209eQbs/xuJQCLKot+kvkb12kKsE6NQ66PEaJu4a+w5HfKZ/3DF71PVwT7neL1gp+mqHY8WPg7nfAyCLrWGSinqwDMeK3O/nTorg1KRaGjbOEj0/XQubAtihtz8xaiKcUfGaW79YNgkkTVdIy5B6/OCJiWm79oXkmdDt3Q+Pjmf0I+uLoiwNsVCoYlfDOmKZ8wgG6fsepk6+hvPdCiB5HASXZGbziFopavMmJmLGyj34taLQSH/QHz/e/b8e13ayqK0jjMUgaCpuuh8iDeVjNxzv7PoEVym5E4pD8WO2rsz1fjJAL/JWeihduymz8XDeCwFy7//HdTpUWI/vKPfiTvqF01bg/V6lixoNqs80kPlq4SCN5409mb5bPYwKJX0j99dNFvQiSYfo2FpV46olcfQExbHct5C3n7h4edxPOImTyJP54eO/rHr7CUoW80beNXoCz1FLqpA2oMohVSSD+HCxUMcuGTGgwaZDoFqqhr3ef2nmr/8Ka9V/R8Tb8/cRm0+CHZ5ZhEg427NwSWbLDdutS7qVLKh7pZteqCxydjplJBVbien8w5KH43qUnqAoceE5f/SoMrpjrD6XjSlvrG5M+9fk1hkBjCXJHf//j5P/3xSDYS6oJpB4DWq5pePPnJ+8gdAL5y2JIgma2cvmuqw5DeQhJu/MvCHzQK//hAU666guGV9KdXsJ2QFmjS0k/4rx4sxEHo/8JR1VTpcXTIWXWJP4j3wlXvuf5ljic/ES1hP/7D29Ki9472qm8B+R+MkbqVIvYz0Q3ON9Qxe7E3/8NLS72NHdT8E40CVMlffWjRC5qKk2C/yLJsJMFST++t2bKhPTCR7L0M8/VMHQHNjVwT/1e5SPwpswni0XTJzf/MaO6PnEL/SGoMC/+aS6/30L1bUeI+etfYLPEKVsKqp+JSj+n78zaE6ryJ2M64O90vDgTY/vE9nYKFpN3aoOr/c6QA/veRAssefeZd7TUfT8l5hFnAMa01BRDdbXgDzu2cMUM8pT6P1daGffStmDGPQzRer5qNPJHvmAH7PZ/XeeApEbFdop2mR8VP9ukI7W3/I+YvI/msJ1sFjn0QLSX5Lh+27XFWXc9v8AprRd6zX+Sqd99OmKlbZTc0p1MBxnbFyCEVW9Tfm64Gvha+xDy+WTf773hE34fkkKBzfX9ObPcIj9N+ZCQR9IoXaamDVh2WWVgaIO7vulQJ165J4We+/Qm1OYX8PoaYZVpv/NTJCyDWxoIkm1WANs/s84Zbte6Zdvi9uz7VOaBMejV0HWHV/5knVQDpfnjQrVG+jIEfIgzbG9libj0dPsWtimHyzxivmufVpzu2fyOjSgOiXe3Gf7uaJqq/LVwZNnf7iGMZAuifOmMOte1u0vV7ivDz6hLPGIZquDqzCOYJZ3TsNWYM5LBpgA3liXh2QPn4ew9HxI6kJ06SbPK+ET0FXZUsIq60f6Of1xCAOeZ7WrOlUZrximokne+IBJ9gjlg+zwlsfKNnzrg0vrqf6x7pQdcx/YbLnNf1XoCAyRXBcuD5c0crXQncbovV87yLuNvdlvG13wvZbXesmubbKIF6PB2Yy1ujE993JEJuSJg5rpr7nBA3Q1kTvEiIKsPg5nCTYf/zPswcNyGfxP6agT6TO1UKwelGnGQSXD6bD/Ob+lJNm2wM1FPX76myOdd+vz5PiRrAbo+l06GputdJeMBd6g2W3+oOceqLbzg8UYjXr/sOia1oSbDcefvv/rez2ISrYxhEH5jcdWKJa4QSsaLT511EfDsUunpHjkV8QZUMrp+9EPHQfpC9ePSi8T6dW+QIhs6IOjr+HB4VgPs1v9NfpNa8zzQ5he2vfJKgtw8Vs0QjQy0rPOacjzbiD8QSRRX9hDiFp/ubrRSasH6ZHvEeTzsfS5wfQdy0Al459sefuPny1PIo7cjBvgdGG19eN5B74hGDLeO7b709K1EeUEyl42RMheprcD+EG6bX4dpn+l2M/+1v59P13XQ0dH0VgZIwQyVZPpPjqKv92smIpQWuP/JvViqdDBbx16sITa83ikH5dCJFYev4PZXlEX3n/sT0U+z4jO+RAFu/PxF8VgfemcbPhGYOnOX9DDRGcRYA7l6U8oPyQvNL3wFM7zEjZHVdcfpYum486ONM5XMe5Yt/h3CU42W8ebDzaXouRHhtPwmJtq1bjS/JrVH/1BgJV27Mx50nv1XXGmsW+4aJpPKluWpc3lyyexAJTXvKC8h750qCC1/z9/Xq2oB3ps4uG9NFTX71dbQf5T0+W2HaDfNS0lS2+pkFhLfGuNedGOGuon/xLRpvGorRdx9ZlHL87ebTz2vh7rA1c43vjQ8zSUYkXqWRTsdozhnjbwl+OOmJvVn1fKrFh4i605AzX6N6xX73UIQDKlfk8I0uHa1dnoEmj5z5OzEyxkryS1ThBrO4LVaof0nuGz6WfCFm/vC6CcJAU5b4xkjoZlFnWd830AKrZJmKmk9b86uri32ZXq/ViJ6PawWWY+nENUyx6k7fSFdp9lMYcWzLH8erWsJWc2Is87aqJgltBXT0yo4q7+oa8Y9jjCAfzQ/dfIMu76fLVkBrY3rj96u8d3Su0FHWr3BiR1E4Ret6N8L2FZU9ll5W7c9vTwC48ZiT3WNeGb+RZjpU737LDFJlXWe/h1m5V+eSmJbT+2OTowCdCy5QwXloaL2rni4SovbO3FwRo0lU1RIlP3okGrqH+dScrgWqNGlkViv0OfdOO12dhP5B3AeoaGgyo1aHW2wye3+W0OzB+4auZTPS2p1pN8yfVkHizTjhrx/r/gbhfoSlxQ/lFyHuJm0WR7DL9Ivfj0L0u8WfYYmvWBBcna/d9JsinwYBs/LfxR/tCnvQJHVG8JyuoilSMhGd9KPAsibv/C418xrExt9QCb2Fao5dX0JEXP2Itr12+fTzBgESV2uIf7Fefp9fDQ3O9HvDXXRgeX86dBTErkwJ/qz9iF97QwTrcuLkYAgemn+uEKOVn7HFnzmfLvJypGcMMN0UQ5uP/umroJ0c/rB8kyVU1O8yhm8zB4SYwZrPHldStN93D1ylV8qbj9W7sIrciCW2dO54il4Pta/niGjCM+fz5+WbKP1WwBZ/Q3zNihayWtfwuIWo2vyWIxgBGHty8PQ75+519KB8XX6UCdKmouM9GCEqhRBvWLAxaFIkN3SFt0gOiTxxHj06RWmwKDFT4n71WdOLDEN93JMjZme/dddrgEmgD+ZYaKrmJb6gbsIlXpdVmNOL1NbIbl2PRA+Z8HEtcRumQ8VIwCrLGM/6VoPu9xAI6eC4HAGYPfQo2g1z1bqJ5lyNdVjwBXH8uDRmdnhjZbrrEjGH8OW3ufgCNV5m5wY/0zTYH55S3epHzMU/mC9PR/Ai58osDrSif89bphhgJG6NiIul/QZ1gjWz0VvouOjIGZj7m0QMX3D5NKxQAI4WrIkDeveHz0zw5rpgh+T860Z3rnvgrntd8m3l90c6PJCzbTXKkIj9+a0HCrKTcId5ITbL4BlTg794qsfJWDXm7dmiDeCc6dr2Fc0W1mdF4L+AwrP7VmN8qFuorexAjLGvI3qRylpd8j+5LX+f6+xSQngtL4yYTPDZ7TS+4WzHJ4Z3ZeP3Q9m3aJa7EPenWOTUstIepHJ+YSi9hk9bBDLkOPKJpfNNPqS7IEHP9tMy3zkYlbTeF5pqRMgi+zb+dPwsSQWsRYjYZc+NfN5tUAtDmGrkgOg94jl6p5BYksMOvpB0E7GsN5SRXtL1F0o+v7r1jMLtyyYHT679aV67JSTP0SfuOed5rwcbG4YlmfgIBdUSb3VomlCna/nScLaWwx6UsxcQ/95DPsvNzwNPnHbETh0Djcw9ZSBh5cIOC36StO0qgO9J/xFHsedo1Lo5UUksKMQN7idjHtbXAlaRF5Fd7bjVkONfotRDlxIv+cYVh/eoQLaV98R9H7RopJGjQ+2vxn/r8+Pmz0VxvfHogmHz+XbLjmA6x7/4f8830sRchZycgm6e8bb6xnaM4UgzEUMyfPLBFU4ewks/iYOjiTnX6zqDY48jttvuSNc7P7FV5fj5xWudb6LJaK0G/vCRc+8KxLb4JanyXTZIQk6kG3feWENwhif9vdMeTQGkJXAvUTBK/enPfhSMYP+iwjmzuqE0tjU0zVFnQZwI0bDSSgn9rR++GELUfn5rV4V2yIlZ3A7+BPuToDLSG8SWasj7v3zxcW2ZWHvPi0a8iWuwcXnHSqSXvK/fbYy+Mz0xf+ldyHdSoKN99KmI75/vHXXgV/zhr4WPeHwyR3BBnsYDbd3uaMy/r1iC++xbdogizZgK/A3QTqcyIz/5V03+PUyAbW4JVuuR5eOa7nXkVrWIL4VXGpMnxDbaVqs709B9zvnGQYny0FqX7Xjx5q1lpRRYVB+Yh0bN4I1wq8FPOw+LJ2eDZhyi+i+fsL98J52K9A3bzbrGpaC/I344GYIy3BKTGPHrblCzzh6wvB9eF+aU88mwHsrsthUW75lRrdXm6KoK+e6J9vjOXUtB09SFf5CADjfEokelAAJ0wOa5PKFZxakEmid8FnzCjXHlmyWYh7VMdkcpq8bgK2rANo+EWKEbVPxW3SiAgks6PeaVP4MgB//4kSeQVz7sqourKNcXZliM02hAsfOGj3e60nmJR9y9yh54rQTEo0pg8B5yQJ/kuiJkuKOIz7udotrJcUe7ygrQnLKNDqtzLGIQ9NnvXpsiUBP9XhPjtwz+sun4hsC+pwu+fP3DIyjdPUOqOOEqKu8BtGi/jnyGKT90Ipel9i8fEVNmZjXvUvWBhkBSycInEP8krwxZZyfEhctv0aijUFZPg9IywsQy4i8tTJC6A5v4WTuj0d6GR/XweiOCxVjO6W6DGui7/ZmKNJ26qfY6HfRKTsijSlqflY1XI3G7frLTgySI+uHYwuA1N/xgyRrxoPjV8By9ga7QyULT67Y7/rOPVZinnNvvzwjR7tgSTQ92hhQeZ4BjupmJfo9nNN6fU4H++OWCH/9D2pVsKwsj4QdiITIlLBEQEDBRQcSdICIgIkMCydP34f697F0vPdyLAkl9QxVV2bqeEdBt/4uNR6jU/R+f9n49pUd4uA2zLAkG7C2lwDcrn6Mpvp8d8AzsBPv6XbWWIO4ucCqpSxThcBqIfKiEv/iLUSeL4GMZZwmGcucitdrkFlvjIXjN3oSTppfBgLGXQiPWeuqvenARx/MDljvpSo3k2wKmGVyEUDF29PalfJhqMVIAvc6EOpfoHnRpQAx4eKGSmtVUZ4Ntve0/fUMPOhprdtvEnX6QX+M/fSF/j9oJjOfjGUH9deDTH76ufO8ffvH5MjiQTuUZX55yZk2nURfVy6fTqdsjkf/hIyzgkmMjM0vAkjIpoHcrEPZezAm2jhEzmH3JDe+ljIKZRNiAsSNm9MWkAEznykNwNBWfZtEsD8t9Y4zQaT4eRmWugUXlpgif+JmSVqy2Gb1+Hg94JZ+cwNMy1r/0luYAVGsKNlckzhuiOrB6X3/Y+TZuwI7+oQIr/pANFauMWULl66n140SeP1/+u9HS06cKdNj01Cn4t7/7ecexc55PYJtYrqK+N15KjTNKMvJJz+Yff8RFF69dOSZLgfUeMyRCWaj5I/Ad2F8bBwk0ufIxMIJZQ4uz/MPXPimLAqqv9kEPL50NNHbiEDolcrCRfNdZuE+B/fFXumv7ExjArRBBLLQTWaClWsN0KX0wulFIAw4Mzp9qKYHL9Cix2fsOGH/WUIISPTne+6cHH7W8YpoMw4zaMJYiAt0+hi9dCBB/3xaL6egkgcP2HODden5+KWkBEw0rhK14SfMRMbjyT/oabz7gd3GrwP5NRnTvuMPXzxo86lNJD+ASDWyfiCKsrd2Z9KKwCUbD9h34vBoZfoqHAEwURxJYnx91SFFFQ6AsF7137A2RVvyaHq1qQHrbYOpUQVKzPfKZRsKEo1F7GpkMp16AwL3lpBReGeDVLPaAxcsBT3qfZLOk/5q/78fHxa0ytjOm+Z9+Nbe2uepZnIBXY7p4731Na/VLWvgGXCZCHpd8ipZu/vO7aBC3RjB/ryGBhoVNstgS4W1EF09Z/SekJ8oCeOA/C3jJiIIDg1TDwpxmBGt8oIicPhFb+EmBx6w8EbA792CubvsY/u1XD2tdTZMrZJDIQomPWjeCafKmGHrP8oBjkq6DqKoz0svkeFvX8zfolSUKoZ9dt0j4XCxrcQ5IUvsb+5Jql//q8Rc+W3ifdZm64cWuv8X77sH9LeJEq59dze6OFWqF0Xn4tMZrGl0XEYTCsSeL2tx4cxl/CryWi0DAo2f8WwYu/Fuf1DY7n8+XbSZoc21bpOjicegAKCEEG5egpSRpwPKoQ/AaApH6eFKjRX4oISifgkbUtzr8u17wVSORet1Vy8iGXivQqwWmK55lC9saJeRK4NE/PfHtxrnQpZ2jEj09VzWlfBSVT+d+qf0AZiQagxbDUzKcseWYJ4vDRtFgTTqdqM6uyvhGesF/+tMOd242ik46a6XvLISdZZzxznUIuFibK/ZfJqp/S2LGENrdsvoNL05c+K6gVLYG4pnURvymTwb885ODT0OCKUPvRDulW0aN0qiz6XoAuZb9FAU/SuE78DQfTvB2bO70ap6wNf/pi9WvpOt+5dIrGny4+mlkqsmHz0RRGLC3dk1NNcyD+aepDyjKnUDjOfbrpY2uNox/1kDmwK+jeROEJWja7IQEu1kGJgWkAs5jsDDOHDjwkf806KqdQf2vqWXz6s9p6e55QfrGcvjspqdKX/k0Pdr3fSDW0z2HclMoeH1+GR9hJEDJ9UVsiNnP+j3oYAPa7LfUfNMQqLfKcf4bD4VhCGbD9m34tTULH9kMrPGyzSCkp+OIwLI716Q1DjHcWrwhdfx+BovfYQHuJMejWGQNX86BaOvlTrxiZykDLn+Eewd27XdHtldfCpbp97XhvAk7fGyPX4u5zyEGy6wa1N4sR/BxXw9BE+2I0F02X2seDDcEQdybdH+Y2NB7U6BocdP9cGio2OLiqc9BfuQ7BMxbFv3pZRgwO8HPjeWAuXa/I3yr3wRluVXX8zFNUlhsLZX6R6cP/vnJTNtyFN7DdmDPKxlh9sgWxMxKs6gbJg7Ye3BEXXw1+Zbbb+9f/D/ebzxghThq8I9/27IKA9LhtwbTLEvo0XhH2aq/vT/+RPM/P3/aAAQfG2jT8P01av6H38KBpGR0ti6XT0UpgADRPRJhnERk1aNa1bP9v9/D0ffkwFcbdkiIcxys/IgBJ5cbGjpbF/Ch2cUAd1sLCX7ZR/yw6wp4aAUbSUXbgFk4zza8m90Ox+kuChY3KRWwxke8O48VH3aC5PzhF9msfIp/umMJ2Nqx2DtLu2GZvE8ChcOYkuV49rgUb+4EdrtdSoMV/wcLslI/qnGBjezzC2auCB30XqTHzvnYDUu4Nzv9G2GfOtP+zKWTH+bgsvVturfpHNEVL2FjxC3ejQEY5L/4OlhpTB0VfMDszCXSRbfD+GnDKeuiZ3iCWhC6NDuek3qr2tQE//TqH3785raBa7ygaI23dGxdSe36vCab/DVF4+OSl//8kh1zxYyl104CddpGdBfNBzBv1C6Gf/7lVdEWax5/aQjPKKvRhkV1vXweXg9pIP3oHv+GaEqWeoQuMiKSxJgFLIxlH/zxA5w5+bAM37KFxjFwsPcQaz7oxTGGf34LvnhaxuLNfdT20qzh69P8cro+X+3PH/FfHwlw82pe9Pii73Bg3kDE0uKhwbMrGjjoLBqR71z3eqopT4yk0xLwt9whKCzFsMaHj8VK+1jCNd5ge+Xrs+cx7R8f3qfha5jjI+lhw2oJH0GwDRgbpxiufhUS8tgA8yaSWshOqUvX/VLPwllxYPs7JTTIukO2LImZ/Ltfd7Rpas7u9xb6XZ9RFFiXYTidkQb2YnOnqdg51nr/OvheYg2J6/5f5DFO/uINts+6Eaz5uYsa52CPTfYxAH+pA4MGEQlSr9Zt2KoP4MFVv2DTrB7B/EFJCMrPWFAAFUDqv5sAlXNBtyr4lh9bbFaTFfH6/TLhuj+wD6UZsPF1fIBW919IdI5wYN+v2mqf+7yWAJwWi7n7qIOn5Hde79e5Zl0aCfAixx/syLldj1DcPv75dfvmNUSs9uYCmHfhjL6eDiwi9u/1rXgUERaU+Tq5B0DtwfyWopV/fjsXjcB7VofVn6fRDINdq39A7tFLzSPAIqp6QLq+AP3z12f8FSCMvtcYqY/dnf/ld+DukWc4d7ZfztSe9sApQ4eevJMYzF+rbGCREIadVZ+MbTafNAKvFbX6K4+W2z03INj7YM3H3TKGtEGCG5AVdLe/34Ll1ASztuojNJHuHXzXeKUpynXGfli/+ZfCQoGxwUryjuYfWGY5dGB0N4/4wGR1+MvPwbohKnkcfyxjeECh9sdvzacMrLlpJ00ryk6m18whnF2/pgnWfAMSpVOd/eltrS7lF5mfbzOYv+Glg1fl/SZbYmwBO2tkBnWrPrBxGoj1l2+Fz1sI6bGY64HBU/yAv/S00KOVVfW0zQGDlaQMeGdqW85PZ0eB75tKcJDglJPntSWwv7YO9sSuDfgjb0OITXYnhbk/ZQy2XfWPbxiZafD5ai4mKCo5xa73uHDWejzVod0v+HAq6Vqyuiv0NX+HDZMeskXeOg/Y7tPjGk/fA3PRkaiszRca/r5hNv75t2ysRqLorZdNh/aQ67I03Fd/Ls+q4KJ0cOUHFP+u74h+914IEY8uCOLTG8yptpP0fLp4SKxVu5578SiC3juX9L5NHmDBMCuAhj+Hf/keYreXAoTG/UlOxqn7p//hVkcUOzG+WGx76EyYGOf9Hx5Enfv2W/goLjne95kdiJXi2rDQGrDmi71gW12vBK7now6zxH/5U2iaiJB363Y1m/B3hlTtZASNpAVTw9IEvM9xQF/+IPFpKcQU/F0/Yekmm/00K/6vLgX6/y4puI/PjnzrLaiZdBFtMKXHmpoK+YDpd2+RBq0O0L1lXIPxoqUStDNFpa/XuB0YlrsTSKwBEWne5NGyW0d/bhjT8fH+kyym72cH5tElRururQ39y3z3+n679nq0j5E1joH/gIXPcuy1lNeLcPBjOEQnge6sr2vN3RJLkAjziJ8srYcZuFUFP9j5kB94naNye9IaeGsbGxvN1sjEc+hATUZuScjpfebL48tjMNZVSUNrtoYxmX8Erq3CCfgcx4HZvcCgRZIB70dI+Sxm3gxJFWHse6EJpNNhm8O7snGoQwNW0yu3FTVFy48UA1yi2Uo6H/pVt8WBFSGLaYXx0IeSZtjyEjVoxcvThMxWOdl+PSdgu9RswNCCMyov8SdaxoaVOnaeGsViVmc0nOIRpoj/iD68Mj6yx2+EaNE6IjyuWTQRwYPgPpQ/GvW9ES3fGqZQToQB7ztzsBgfwgd4/GwZhxNAwXxJxFB7bJsrPtvv0ZorSYEw0IcXdR6Kvzaq8kJQXHYWPbbJN/rJ1hIC/u453SO/AwwAf4bjDHWKpOwULFFVIc019BMBLH1mnKaLBq3FMLDjfExrEd7LCE5bBeHrDn35dzHeDdycyZEGcZllXHvtPF1ctCvRoBRwulsbJ3blHOBivT72Uc8ldF7ai4axFVrL1nVscIzRjxqvlxQsdSVc4Ni8XvQY0yViWC5P8PZ9W0hSs3fNQqz0EFRNgPf2Z5UovF8bKfYVdW5vKxBPl3cI57clIOGNrIAZVcqApYkHune8sZ6zfHyATjEX7DjimbOc/xJYFCnFR8FIwKI23wrG42GPNspOi/ofrVI9eggN9m8fx1pGLDtw3qM93aO7MswnfRphl8Ad6p9+GfCKHiE82IKEze/cZTOmYQm65lHQ3QsG9TR2pIDKsLzQ9fQdsvm+eUNo80OJMb5P2WL/BAOethrCDoEmkKQLdP6tf9vcGwGLfd7AmxbekBxF1iBX9qGAjhS6+BSER841/zjC9Cj1ZJtd1YFG7CMCAaQfwn9uxRlDprk5XO4R3UvvX83Nu5XoysBfSMSnmdPKPuTwK3OM8dOo6/nwmkIY7+WCeqwyrD6Mmlardc0m700nZ/xQxAUMklQl5XPqwHLdNI3elSzAYT28giVqCw/e24jRnXwbso97/owgFqQ7ur6cH1/8nJl6VYt3GhxZCMZKGzVQHuqA6IIhcarJcwmF/MjxObktfJy7QYKnU93i4w8K0SLnZaOfdMui1pIiwKUiMOXPJz3iw6LdhkUm+gg++och6dOmYNlnQNNKKjJ6B6d3vTy7xwN+Po8jUayxrJdr3Nngk9xCalyHsebmwgjsM63FWFP29ZwP+0a7xHVI5KY8gQUlkgR3v9Sh7rcdOIOHxoTr/kVfubcz0jW6D5fjO0NqtBwiUVMPJ3AtoI+00xNx9oxfI+Ri4uIwOnyDERLgQPPp+0jwTns+w/um1z5M6mlAwYOPm08A4dZ3NTTO6WmQXMRKuPX3GlL2pZ9x56mn4NQEKqkuB5Zx5NRIjzJQI83/faxlM18UeMguT2zEHrVYIRoP/VoIPvUCfRwW35Ua2P+uFt3JbWaxV3Y3wNdyQsLi28eaL0I4Q+A40/rW2I+TQvQegKEJ0p1kPWtWl4EDKdGe1JnnsWZmWzNQbJ4vVK77m7WuNsMAkhLj9IpqXhyVFmzzBeGDDiNOjDYctWZXpXTFi2E5CaQAO924IyERxICHju3B56Mb/uJbJFWWQeBkdWfsDb80YuLlasLXZE3U2H3FYLFEG4GMlph6lwEEy0A9Atnt6xLZe+QBd4LuBN9RK//3c1CACliGhun+PG/AYt1KRU9KfySu3DfZNOo/BTSz9aHBVKQDP57UB7yGF4koOfAtcdclCNYW9AkHoRK10aT60Gi/O7QktzNfVLWH0I++IrXMZRPMl8i46Ifs9ETF70WtRfhMvfbJ3ya2v59rRI1YSWDuMAmJjVpn7CjvEDx2C6DueW6DRS7jCsYbnmLPPNTBIJBdqg/PvYtUQVIGlheTpkT0LeEwHJt/6wlkn9FZ47ue0fx4L8HvLYzr8yADee6FUuv6JsaPcCzqeTs9NRBIZY93yW0BVNx5HZQmc6a7PADD91KmBIIxjbHblCdON4ElwqrLBup/j/eIjulF+sMHtKW+GW0VPdGgQIBLxB/3LIrPaQ5nrB/xoaEtIDtxWt8KEivs74XZGhovz//FaxesrxshLSpAndY5tcWLw+dHq7XANLoJO8Gr5XMqwhHk4KkSrj8Ca8qkvAK8MF44uDzfoHtpRxGWrHIxPn4NawbNUYKDeCP4uNhXPmbpnOtfZ3ytb1k+hhkERQ4vrk3RZ5wMa5mFztC4/wjx7rsOfjoocQvM4d2i2OOo5uq8CaE0bSi2JUHhi6sIFzjgrsc+ZveBoX1fQNf+1DQWnFM0a31nQ1cVAjSINyOiuZKsZdBPm+iNF/OxMEpfFzp6xkb/O4BJLUHzdxwpWTJb/Ewu4l98pHb5LILxMx1Edaeb9/V+ZRnbiZMG8+gUUyz23OJgSS7QqARCZLbBGanOb037JNeQHtfKuMV4pyYMy/xDncx9WLMr7lrYKfpMHcg6Tv3TI1ZX/ofk8+xY5JWdTf39Pfr4AuOcj3frKfzFL7pLP/Yw30xJA5VcjPQohlPG0u5qQulUR4i8kWXx+6l9gBUP6f4jptHkHpdZH+8koWFV9cP07C4PnWymgdq9KYMumd+jrmuhja3r5REwXI0ikL6LStf1DRaygwKkXishiIqLxQeQPoCaqSfqbHBg/dt/lmfZSAnlcz31wWjDrySekArvUsY2fuBAxV+7xvw9rz/++B6LHVJJbNSyOyaNJpLLDh83sV3z7y0ewTtqZDRPVxhwM99cwMH7HnAAdNmaluPhBGs0XehOXBvTGRtRhAxRiI2PfbIWlAgS9O+8x8d561js9vzO4CZuSqJT8LbGRk5NqH+rGbt7S+ScbJ8I7jeMUN//7a1FbWgF8etmU7c7v4Nlkt1Ok+v8QC17roKVv180/2W80Xb3lIeFiXcJgpTtCOOHgLOL07WaoR1jUm0eMliuaW6CYfQ9pCGcB2xbCgiexXuGd6U0D4t9Rj0s9u8PWkTtYIlj4KfQFacYe9Gm40wZzUpXipuJg5V/TxnrWig9rjnFb62LvpW7TcGG+j+kmOkFrOfrwHFXXwnL7++MX5thBLkzSxS73i6axcyY4e3htOgN4SdaOvLrYBgZHk70XVpPfZMV8Gk99kirIrGelpOO4CdrLYzhSKP59Z0JrB4Gxuh417JxX1BbbdZG8CbeaXyxW9+B8OTdcXTcIYsVshiDP753+GYKZ6o2jH/nIxINLsPvaL8JrC3BJ5/0961/n9cvhcd5dGl2cGW+tItQgfm9E/BBEmG2LJ+5hyIcnkS7ejWfSXOSwDmBArVd9TfwstegpgfWhXyUa5Tx+tKvL3NcQmpGz9JqLd8o9Lk9bfHRqppgqeR1BFLfCvTgChAszPka0DXMM9HUV1Ov8SXX/PbsYWf9vVwgu4d+5nmO3aTvwSIey0SruvuAQIhptCy/sYHJ2x2wa2mGtfTu7OmvWPTwJb/vslHksw/fxW2DluBnZfS97dCfXkJfWRWtZfcrIPCnTEewb1q+4oUCT6bv4z98Xl6RYMLU+3KiCd09kM7tRgLnKBmQ+F4GMP3pwb/4FeZ7L+JWcEDgNe0momTJyVrvlwj2odHjx6cHnOxRVGjsfD9jsz32nCn2IuiBB3N8nCYysOs9ZvCU0BwHV/EXLA87GcHo2Bb1zJRx+t6WIVAzcCLL573Ofu0uKXgV3do4/WsES1ndQric0Exx2WoDx+e00P7wfJkNO5uucedA+jcJZSAL4Fv8k6A3jRj/8aG5OiAPnkvuob/fu3ilo0B6dWK6g/CTLYUEGlBcLIswZ0ZgGHM0/+P/u6/wBXNolYLejPcz3SnroLHJEBGsA3tDz2v8mMUCjqD2fePfeuZjjhhY4zl10syzxMLofBjePg9qH8wim+IjYdp+2j+Iek/qiB9rp4KsP2U4MQ85mF94l2h/etAWLy3o4lt0ATcnj8g1ip7RMsm4gz0PjnS3uX+HhZvc1sHjt0FSZbz5/MZdCi9irxPdqmxLasvK15s71alp7u9g1OA2XE3LASO9dgcWjpkAYlt50cPqF8yAfQ0wYwPhu/cwo58tqDlU67XE0m5fUf8yfz1MYHegqZIcAD29lg7gIt3TQlHYsAS234Of2BvUOBu3+p9+cyTkUm+rfiMqwKrR92qj0L079BZ7me9Odw/SA+kU7AKp6ZUE5OClImGZQcBP9dTAwfj2ZFnjHRPR24HK82Hh0NrwaOmCowFXvoQac2NzbhqZAB6e4eLj6C/B+Ps6HSiTTYfDpCQZNeI5BnzjYmweFCeb67Gf//gNRS9jjujCvAQa7WdHn++8GjiaAFN5cA3+8QvGVFSCP/zefd6fmgr3vQCzD3GwZ7f7YQ4U0MOm+nj/+POSBScDrH4EErdbO1vXE4R/19tqTRKQnfjRdLPYH5Ba2gtnZO5K/e3TEbuyKgaTQRekX6/eDm0ubxtsf1d2gZDUItqu62FWXkxSFbHvsamVPBhtOcnB7nC64l3I0mBc1y88l4tHw+jgBv/8I5EeDaIXcWDxp2UlenouBKQ97xiQYG+lUDVdl5rh1eNLPqIYHI6SQbalgcDcyCcD/vkba4FKRsNfx9TsyTXqFdMtop22xHDDV/2x8lPGtpdWW6v16RGBb03Y9tGAMxU9ahtVNcxL6JVQts9ryaPZRrMebEuNfazmuBnImW/bRShBdkAddpLjNSIY5AiG1salTngfQO9LlQdsJb3Rx6CQjNQB7oH89N+I3Sw5YN8kg3AaZImI/LsMi+e+KojIKcZ/fz9dN00LwWPYEMAOx2Hdj6Xmxds93TkCyuhu23awvjVPigHro6V1mAn8PUoJiS9VwNC+ykHvXSLsC50aDJq/H7VLcb3iph3mmp6vdQ6P2+i+4vMvWL7Gi4HxpYT4eQt5/Q8/1/iGGD8MgHcfXdGizzRR5CYlH6/How2dl/Kid8tWgj/+D9WYZdRTT2QgaF8VIFa6GhvCZGZ8qH4mPD7SF1Hw3g54frxXcHe4XMlbboHF7F6a4fr9FAs45L/7/eLBq5lPZHt4cT6XNvChuChXHDEwZiue53Af6j8c6vs3Z3/+x6qXEHtHrbXotzCHqz4j/EZhRlM+wH9+TyfnNl9EZZT++UHegi4R219w+s+fOp7T3lou45yCZRpCjObjs54DSFtNpNignmt9ebfu33/6wJs31bCYIejgiocU2+fEWszTt4Fu1DX//Mh58wkEuK5niojfBNzfLb5evB2bHla9v/WsugGB/PoRecVLHnevHmiseGCkKJdhqOgeQhyMC90H5jmT6tKy4en3mKlP8XZgifF5wN50nmhxBBTNk+4h8H5bMdLX65kD+G3ge7av+Jx4ZjAJoXCBHvBGIuQ1CnhCT1AHVRtgU+/6uvfxvVXlujgQ+Nv9Irb/mqLG+kuGrffeqefVfwByAgf6+pSbjMhSSqB4fcjk/rrDer6ZggYiWksE3uXtMJFkfgC3yMa1S80l4wvzYmCWc4Fv57m1pukxxnB79wC1jeUSkaVVH8DYl2eaZq4RyTLYPyAv9AIbVy3P+i48zloiUoHi/acGXD552p8/Q3F56zkdjlMDMu7V2OeaXy/3J7Lhyl+RtqdGxrKP54GOLRo+gNc5Y2gEJjQC4iIqu9vsH16FoqPQ/epfLqFkFPrvFd0QiMu1pMOhBtxchhBpBTxm8tUzUijNg41NypqBdOFxLQw82HS3FY9AO9hNDLfqacTXR/gJuDoFJ6h6Fx2p23PBmbW1IXT0GBKhWIx67rdfESK2/RLxbD+GJUWjBiflFpMmDS/WsvqzevNSOXbDYIwWd2vGUBG7HgfV3AcsmF0FNo7bY7z/WHyO3u8ccKOxULvi8eo/GRrf7PE/v6Yj+PmAf3o1uDx3gCtVYv75UTjcXrYR9TSZAXE3N9SRc6Ge7+k51Z+K6+FdLIrRbCQHG75iyaPhoTlmM32YPRAmwUNSQKSBKlVhgmOhL6tf8uJs4HoKr661ISk1XgNBIzfhxbPIql9izs6bbwif5+VN/YfZDTM/RRV8/bIHymkxDEyhQq6eAiGiqx/AV3+iAjggCz2oJg64+9gV+nYQMUYGOtRMm5+Vlv3iO/7TF5xaQq69fvcHAfdgzqj2OnjwtZl22B6SfS0+UIDA2/HXkrZ7PozSK2Pw9r4dqXk5XKI1fhZwxTey8YmSkW0poT+/F7sFSMByin4Q7l+9jtqp21pc3Hk9XKZfiFGxlMMS51jQePVlaMnO0sCaXomBllYvjIDzsf7yAYB8Swd9suu9ZtG0+GvXXEhEoOj1VMqXTk+YZOBdn/nZ/HVOsV4oSU+2f37xpHshDKSqJwof4lp2pHHWVGCbNHeObcBo+4ihH96O5G3PAEiTmBcwusXntWvNDtD0Ibb6w+Qn7N/ELRha7XEB+Vdu//R6LX/Hkw8n+XGlgVU9wcKnTavZ+VbBltyug2xTfQSjtjgrvxQi1qlzo89sjnD46auADfOu0JdxPOIwj1OLzqgeIbxFiO6784NzmqoKXOqthc1KquvuU3Q9rC+3lmgv6RLwV35nIIPCSLT6a2bszz8zNwcVH97rIKmH0TOwvz9d7HbnXbDc2aGCceBcaSCJ5jCP7CHAc/85/+UrglmqMdEOaN788wfY6bAtINmhF1nYs63ZEDYSfE+ZQeTt0Vz50aSB25yitUhEA5WIfg4sE/NHZBI/Ir76H1B+em8c0iIY5PaTSLD/3SwklWuXNyJ4AozVT4U0+XwGs7i+pc2SzqOnXlGH+akSBuk53xGYPSLrq8lKpVZuAgiIz8MwYxdAAFxrpPvTd4g4cO4z3F5MB2178rRoeltLCFSloPF6/7k/bjuN3T4utpSyzRb2KlIYnb1s9RsOAY+7Ww+Epc2xW+wuFr+ohqNfpXAhampeB1E7KyP88399lYjZ2C25pCGKo1WvexmHdexr3re8k+2NmjXPlcSEfS5/kIC/I5i/vn2C3+seUEdrpGCJRTkGw0e4UP8yvCMe71wbRpla0zApUbak3/wEP/IdIunFsPUvv6Rdkh+RtSSp6SPUcgiksEDb68WItkAzTf1qZSMCl+ebz4Nx9cDNKaJ/fOLPr1f//OO/z1vpzBNdeRs3mjjiAkaxEAnY3X4LDfvG4QxXjfjP/7Z/3AuG+4mkILWNN87P7a9ms0ILIG1Gm97/9AlSHyOgv1+L0aoPCG0fCXzHtUT339uWs8fjocAPX35/+BUtlGszzHFn0GfqpMOienYI3v40Emm6fzJ2w6gFJSvdNX9RRH94BavlJGH3vLmC1c8ttb/8mpsX8SDW+0cI//TtIXDEjD12QwV7Wqn4yFKrFo1k58BueEc0cIXaWv3oFMxOYCNtrOthfCArhJbr7Em706bg00CbwGEvvXEgidUw+44ugTWeYTvTTWs7JOcEboYqwUHUStm0F4fL3376b75OEB0RjFPyw/tH+LH+6aP1eeC944XDiqc57L1TtOqrd8AFI2mgY2UmWeiVBn9+oh6EDcXuNj/zTxVfHZAuDcUmjCEfh+9nhFBvt9hsc61e3nuu6Y4cOOgvn8XukhRCv408umOjlNFrIMbAixSHmtGIwXjP9zH84zv7KNIzrjuKqK/+F7525wf4y5+AvfaWqbkJPGvlVyl8uvqNoq85DpwaZqWv+gLvx8kIeEpnA152skLdDZiz8fD6ILjuN/oaXpX1l7/RVj8PDd21sWb68DuoP0n7h8+gq6S1kQGiF7J85ms2lSffAbHS13j1tzIxev9yYDP0xhbZuYMcyJUGL4vRU09Jfpz2N8C0D7Y///gTp4ZfwtTtRGyufJhfoGj++UcUPw1rWMZGq/7wgZqkkMA8wLf//5QUSOL/Lim47J2Q+nuTRLOomSX0XvWTbNwD5yRm2gzf+ujSGF2dbN5YCoFWdVro/TomNVv2HMJWfx0IR40eTXDyYxCy6YnmT0frpS8fKdwRj1LjujMG5mXtQ3uV0Qk79q0J5nzWfTjXC6WHQHRqCeLehvfLyaF+GGyC0VEqCOtPQLC/eUsDixljUN0HFv47zqrYK6Ee6wX2N+4+EMkra6DIpHX2fNDVy1LnIQimdapa/O4yjnYuBO2xqhCZxgBM2eCb4Hu/XIl2+rY1E8s519vzIOCDsj2BrSQeRGj+dhG1+WZYG2FkMfy1ny05GWk20N/nLIF44zhElYjEZ1opFRyl1w8p4PuzPsS7EfggnBJ5Ek4RDxGfQfJTz/Totz2fqdvmenPVG+o+lwvnN+0U6z+qrLPyzqHVXfFbhPmPXAifzX1GCMljINOkItVDFAOykwQbbG+ijl3nOPPlu78q2ruPa3zeMg44VIgHrnmVYmMnzwEtsmGEIhMjbE+mGvSenkvASpGFWDo9oqXzNBE4+WmgqDFUQJ6fQwyVK8qpe2a/gJf+nEOE44Ja1jEFPAwSEZRFM1MEjTpiN/YJYdx2L+zEArdGMY0dGCzgS3g3GGC7CVAM2e5k0P0Vl9YvC+dKV/JZxJm32VrUl3MPHt+GQEPhPkXj7WnYkJvbiYbq0gVzeSkc2OTznp5OgVtvj84rhQ7tMA4u+FXPT00o4NetZTJvt1MwvNysgvfI0ili8RIsn4OXasXhU+Igm56AhUZzAXv5sqPhF0POv7QkQHxvbGw/4tmaZXQMwXt7KrG/ZFEw6uPdgd0G2vg66B7n/bEh0OJAJjMUdN509tgDR5EJPVq4zeY7zk9wwa1Gzf3mHHU1PtiQReyKj9aO1RT/5hPUtmpJnbh5D0ysZQ0c39oR7+Szl8nIbhSoJuYFuw/xBaZfcrb12ghsNI8fc5BUcapgDtEX2/Tm1Cwxzrau/8IztR3hzfnpWjrAZImPpLIeIrbWsoFzIBHqk5GDkc8HBHRfm+nxWX0H9ji+2aYPn4R6Z0r5fAkfBaz0juD7pqGcP899Cjq5eqKt0ijWUj52od6ph5oe4+LBx+Q++KCYpIgiz2wzfmmPDPq4tHCEDRvIrvwe4dFxd0j2M3vY9gBBMDZSjSATt8Hv2ZxsaNniC+8vY1GT5ZBqUJL2e1RL9Tws5o0nutCbLj4OxofzQtVDuMh7DZ+5JQ7dcrUJrPSe/Pv/BT+FtUtEp9LbLwkC+SijBm7PYCDK64iCbZ6okualUox37GdZ8ze/M1i585ae2a8OaFVwGwY7dyGK4Ik19+p7CT0Q/9b1eYxEL5w6MN7Xxr6gryLu7Q0DOtk9p2G7HTLWN10Lla41iPKMO4tz6xRC1+61NR7M0U/M+wsEhvzEzlhtrTlJEAKuVnEEx31icbZVFfh0vQan4H7Nlq+gFtAf4XVNyXt8IWUowWluEpq/ihZMoN4Z0L0FGAfk9xhm7Sh3QBDtLXZGz6rnOQhSQMPEwzYBm2DeVD7SnWhrU0NpxogZI5xBha9H6r76FLRUefbw+i2uRLq3abYIr6QEOwU/0Wf8oGx85KyEpk8Z+j4Xxnk9nmN4VYWehnYsDfQ7BgzkYoepE8+vqFOyOoeL7GrUm082l5TwQqDwcnx6fHzEYT4J0IN7b39GipB0EeXvN4GPeE3w4NLjFa72PrSQpaMmROEg7k8nT7uEXYP0B++yZdt7JVyvh0B16axZUaEA2j30kdCgqZ7Op64DN+TbFNFbEczxvqsgI+MZG5toyHh5jiXdPrUXJPZ0lzGXRyVcPoWIptdRBWSnZSb8Ow5/jT9sl900ay/SHYiKrpdggWgWIbyaMt35ijXMyb329XPCBhp6lR/JCSpb6F6rA/17PoyDyYRNsPtiZ9BovdTK0VOZ/yrofty8QKf+dkT/3Lofxq2tRfMlvBTgK5EvRuI2H2ZvWQyY8M0Ggc/XAlJ/SEr465KIutVdCeafd2hArssT9m7Sr164nIhg2kwOtprnFPDxE57AVzhtqHHIvYgrp06Dl1v7RnppRcHivL82+NZXa42XOh+DQ9rDIxQP9HAARs3e6yzozX3/wkc/lYMhfTknSAvxSW9ndrAoNQxJB9GNIYn8EJdR/jCgApwrUWv2CJZEmTR4SBlAp+4ALBrLHgS3u73DDpOrmgvkdYK5vp0oRo7DKd/wEF6qssCBIKVWr5XPGJrlZyT0sZ/rdX/kwMbUpGZ5uQxTFs4lnN1wxGYcdfwTwsKA7SBZFH9r8hcfbTl+bCN8BNtuIIygGXC13WKjsG4RE767HmbwPwAAAP//LF3d2nM6EL0gB1VUxqHSorSJol7OpNUWVa2fIFe/H/32FXgikzVrrUlmAp388n9/W0oOCekngrX20nZz8RWQke9jhhNS8u4tWxH6rVeortuQK3+nANFij4jnRUY7WHY7QlsecnI8JWY4dru7pbry1sTl/WTQ0Tn2X8SSLTCi1Pu2lwXTBYi8hrliUpt9En6vyKeqzQ61/Ua9N1871LiWR3RatHxU3fEI0nZH8fpwFc3xceE6VJdVtTwuEClvpNMO9JWMySGha8T2X+8KSQkvhstEpJ8+9gp4aoPN3JNihzNPhQpI1//h8rOf6TjcaY1upPKWWcJyORVTM6Nb2b8x+tsryxUhV1Rn95YP2jZ+hONrN2MNSX1M0j/uU97kdwE1G68cuOt6vDPWtIYTApUd29vYzmGzyeEyeDn57c84dhsRrf8kDcN5jnj35VOkHfBwwlDBKxw0WVThYX5FPNfvh9lLPQHYC1JK3NKm7Yw3s4/+vsxmW0FaGrPrcg7v1L/g2Tq9PBbjR4Va/3NgVLl0iAsTHEEK+icz0LXgPCnaI2jHp4Q/k6Ih/nCVHFUsyHC95FNemwqo/mNbEjMy6MIfmg5ed7Idfv9/TiLagW+8zsQ5biTEzaBVNpfNnhKShRXtOs8HuFnnC7OcaV2OPS9HiG8xJrtjk5v8SXMXSenDIN5jcvk4SdxFt6qSiKdcjnw8ZKYKf/vhNszv7bnsh70fQG5sHbYT3+dwHHmMYcE/dgKS0d6LPIw8N3ljtNq16GW+zjWsrJf7iy9vPaaZCusWP3G/8NOJTY6xKalAsLYX9q18w/scnRG/sKNFRzrJ12snny/oOijPIW3n3N+4QFakY/r7uS6nXt4AWt0VnWTpR6PfInIKaEsvJ/ure/Nm9XGJwb89T4O2F17t/G6DAjFx+CMGXru012TzC+9sQ/E8J7HHb10OcAQjZLYDo9d09emBlNvXJM5FK8vZWyzPg406vFqx2JwEdWmUq90Usn15OzSO3SSC4b23eGUfQj4z5dJsPDd7E3xAXdgv+AhmfH8xr/iOvFviFxY9M2xQfPVmTB/jv3yw0W9GKO7aXQfoZfmDsnx/MnQLg/HMEZb3K80cjN01Qcfn7o9ZyjPn08WnFkj954bnXti1EvSogvs8vchuVe3MtRMls+Jd4urHN9rxPr5r9LT2I4Y4y8x5E6ws9OPH7kl50/bzSiW0r5OZOOJXopNlzQVozZ/Blnzfyr/863uGQmz5OpT//sfCb7EsY5UPNg8LbU+va7bzpQmNYRyOEBJg5NSzvSkm70MCqz1DxBIapZzrVdHB2g9e5CBFL8rvd+eLvvd1QLaTO7R98/34IIjWmmzpMrhEdRUM+9DEuBsys+WCfxpBl+mbYKN682YuCkFzw8+d/c6rzBtrB/RSKJiL3285S7cTwOMpXNgWWM374O+kw5rQC279OC2nbC806Pg4OSSOqmfJ/9QkBrUKMoK/2nJlUV/lQLacst3h3tPpffOMpYSOyGnhC3MiGY52OEkCIdLdaxmDUgK3Kgbi2ofGm8/ciaHv8US8NLPofMm/9W89DD/vmMrPDfv+9OQg4GlPJ0PHGIqUIizL16GdVA4B3N00Jnr3Mkppq4a65g4vynT+uIejbmFFOsZuNhS36e1NZZx36LKtruS0LwRzwZIjTPYhJIbgGZ5sfNOlC47OSZj4rJ3WTmBpN3nvMX+9PpmT7SMRcmX0B00+mVQ83WgA6UHKGZHOMudzfhxRm5yew1RcX20/OPcOCehzYgf9VoQzmzYBkL6qSaqsRz7Xz/QIULcaFjPrSvuuVxpkPK+ImHrXt/3Cf8DO2ZthuxbKhf8v+k05EapcjmgyNs8Z4XbzxFo9zybX3qoK+Xs7s12lG5R/bCeGkgIhZr7C5aylbYai1c4atFbfc/5thSNa8GXp0hZTVhfuFVFTL3GzGUyTy4OaIdROKdt++NfrhKgF8K+twBz0PngjEVURdCcig6plVzSfmAKgZ1KFxT++a7l7eXVgP64Wuy78bFrVSaId0sYlhq380fUlHHV0OB9L5urZx+spWQFa9BgjTdp4rDZHAeq/l0/sanjxadii6H99ka3UsJuSZwMRHYqh88xLyVi2zmCtdRJzNg9GebuWCyS9iEROdfJouWoFuhauxQ+7H/Jny2r3EsH9LTeDZKIrnfuHYKFEMINhTg9PNKqn1Rct8YE37G8Ox8KxMcQfdMadEvCyuo/vCjWRuyHG2Je856O6DM7wv4QMKg/f+/6RacrDSX9+BJo/yyvgMDNvGO5KQj8LXwaXEpkQdXNbBl96KiSC8sSbm4k83lvzCKtzaTPLs0xPrs4kQAzRB9miTV9+f/E+Fu5naBY/hF22boyeR/VMFv2CphepRnADIyXkWl+9uV+RGpK20Jb4KCjjz08Hxhy5xB26EPVR42DY8Lwa0OHUcC5Vm92PzxF7fRF59/koOqzat8iMhQ980L2yUHWd92RnJ5yyya8fsCLGxMwJtbTv5QnU6HA8YW1tfdoOclWEp2WPg7IvAjpkLDnCL78s+SiU76ZQQxm0KcMVPrXjgl+gmVHCAsg3iEWyDqD65nsQm+Zdjo5v1PDDf2frPHiLBecKd2WQh9F/pd6YoaMBh/TrEusmdt5YpW6GhkaomOmcX2ikZaz+zgeLO6csWbE80fDG4MmcfrlC8qcmEUqDwGLk8F3RcV3cMnS/btpBG/MqnG9mpsARHXakudMn5yHvdJgC4U6Otlrxj7H5zEgVLjYJtgeF9pK4lf7fj6WIPl7IR4TEeoRYI9j3hlhPdyAebZfpO7H0Zu1hzyDEy2DG7UEJxyy9VOhuiAKutNuXTj99q810xByIgaYuGCr0bsfv8MPrJZ4U8Ed1HibrCuawS/50dS3U+2H9ahDtA4XnkDheOsC6jGifrYKjMr9SSi5D55hz7k+uxqPKI4u/WA5+Z+U/vMPybQpQd7pRH3YpH/Gb+nY4kuPD0IhSlJiHzdcb7Ye2+HtmyJwQ78IJn9IANQOpyQHFV3M8G2cXTL6RmVmRlLJVWHTAb/xD7MW/GE0kA9rewsegxH9rkxvfVEcsl26Yx4d1+8NPtVLxHzMbWWh5ov3NcKlfFovv6MWnYnqM8MovM3Me5jucH40/wNld3QdFiB06np31A8K19GGk8cQFL/VIi4ajPITmSUGjH39isI+ngOmS+UAjfkc1LHqA7ZmVtgt/auBZzB5xD35h8vurN+DcpBMjoXNrh8rPdeiz7krSv9e1nAtFyqBryw5zJk50NNEKkBUNIVn0eVndnWj+6UNm1pWF2Cr8DlBusicWD/3WnMY0U2CFDwWzyNCE43HtZOg+89eg2J+j2fGuC/7x17+TW6J/+vSrcsKcBc+/xi7KYL2Pmp8+Lsfn9iuBeQos/BZeq3CQRLRDeH1MiBe3tjemfT9DHpU3ti3wmY+f8ZqhxS/FgriGcpR2pgorO0/ZXm3PaO6ydFBpnNjECFuTSjyVavj5HSf0jlBnriIVhjgn+PA8D3y6Kk0AEe2KQeWj3oqjZybweBB5WE/UpuLSuxp+fqH+mKW2U2iZQ9c+O7aN5RNFAOZOfVuzTtKFP447YymZZg+ZGfHSVbZwCEYrUW3ZLi9MNHnDat78/OrD1Okmp6o7gz8q8zJY0jF78VoECJc3leDa5uW0Pc26Jjlfjjcbs2pntG9mVPuqPXDBafjiX2KE7dlih425a1v58DZAeXcTi2n4WPz5INOW+MF+0AVoOc8jBIgBLttjZ7JEF2cwn2nB9MtJCGdNBgWqWuQkOFef9vPz988NnTCa5YF28Po7wse4ZuzvM15bfk7YY/PT21gqKtSlk9vB9xRp5Bgxm8+Lv4c+kcCwiC91yGlyjaBL1ZqRjS57s2ykGSgPNyXHaphavoHk+/MHl3rEUiLtb4UaEvvBTKn0f/nTQFUU5YNyZgTx6+7oquv2+GS61R/MtWXeasj1zGC7HNa0N83WUfXh6LC9KazLaVX7GeJPD2M5E+988O2kQkn5HwAAAP//pJ3NlrK8EoUviIEISIohAgKCJChK40wQFRCRnwTI1X8L3+mZnWEvu3FBKrWfvZMmTozHYhNG/YibGAIxKZh/ukcRX/gbpHTv4uoz46hfmUoPwm46k62qO2VDDk8dHoYkkF+eNheQxigIfUan4GMguUmTAshQ12R3ej45Je/Chsv4FWm3+I8RnadCq2jq0+IopP7E5VwEOXUY/uLyjebkb2w0VhwMsm8kxx/rU5hpy3xjeAz+IvExNB48v8+BipqMlvsJK7Tkc8QPPmoqPuVXDlmAbLxCzsi/qnzE2m+9ZftkWtrXQ6D/8jGW4/JYiuVwq9GyPsLsMB7QYAVV9ssTmJcKLfr+fl7yQGYH6yLt85qGPz9Kdst8WfSwgqdVmJQ/AiPiu+GZgAP7DTPR9VvOp9eqUg8+vmP1hddlr9/BgEva7Yd5w24d72FzQ39Xe0uFKnulc75mxr/5OgnSsxu3n3WM9rKVYSGT9/6vP/94AkuzbJS06p72L68nHi961Imzc4PBCNdYsv4sX/rpR7MSLOZuTqik2l2PIbw4NfH72PQZopWk9n2C6KQ42+67+v6JEDml+y8vGBfeRpvic8HqierpOgl3BXyGdKR86f/9lHxbqMskI3nkx/z3X+mweqg6w9HV68bx+JlBfGSU2YozRNN1naj/8lI7HU7+dFJQpkpbO2WBHJTRL59A27HbMSO+FR29gGjD4gfZ5d2kEU/TzQn+uiomtvlq0XT4azzQ3/ML15OnpsP74Egw2n93/PpYLe930aMGeXMN6TpWT6l8rV0XPFKYxP3lz2lnGEiwPMyMz3Yq2a+fHL+Rjld87KOPvGcG0g6lhJXjK/M53KdaPW88kRmp8UHjdDn00AubkLm3d8PnsLcziNX5ib8P78zndbsZEa7+9nS9M4ruX3+4d9GKjlPw4fM6OrRA3t6K2MpL4MNwfeagE/XD/Pen5GMsQ4M2yACGxbQz68vm4UIin/fMzvG9HL37U9IWf832F9WL+B3vMmAN8pkhY2LOBURnWOqHOevSLUef4ie6GYeBXMWgK4f3FGFIsNWxdJZxOrlze0I/P7rGp8H/bgPVUL9nYPh1Fpxo3XysM+z62CLe6dmXM8Q42yz5PNMzb0pn8alksNQzcR5K3/3jQTdQ/siWBunS31UdlTSr6GoXDoj9JV8F9hp/42+ZuB2/M67ACQ1AfDu8cHbAaFTVnbAh+DUYpjhbxwwey4v5tx/L4wPStBqV+t4iu05reP9bn1p1b5HYRTal/elwytBoX+5YbS3accNtq9/6JXF1NTAlehgUdVkfIu7mlJZUfhYqnN2zwDxn7/qc3bTbj1/w+nMpu3ndTjP8+tPjZZRdf35eLDRvTzqVQKvTCXfFCN/N6vpvPWb4+6gtFM68JsE5V3mLDoGnzvptwsbS/5r+W2S/fkgso1CjfllvA2eGlNy7mxwxJWwUtOQ39Ne/F57qIQs2NnN+vOG2Kxe8k35llianaFz0SKt8RSIxeYolk15nD6pPb7DTXO/RnOVOBpC9CZ6FN++mv+pOIfUzD3NpqqJpvKwBDdTWmbk5Mc67WbERqOaL7dS7YLKdPwlQlPWW/dM7YqIGRs1+E3wr0mg28Z2Cpsp/jCSHtuuT3U1A8vlWU/C+lr8uDvcEmpEB3vzWo7/x0dZg+42IWX44b4XPvlHvg34nuNKvfFba/gDzpsHEf/tZ1Pz4C1YCZ8b98ujGe6zXCMn1m9kPtEPrXrwb/9eWgvX/3lLgOeeU4Wqs+OjXOARYuxK7WqWfzqQaDxoLv4xtD63cNVbxagEfrw47b3DFx8BZzmoNawtzh3jpWOpyjGYT74nzunE+raY6gS5yErwqkhvv5ddLgvFOOqLrieYP1e5Za9ftbU95cpF5+81hhLn+e7Pte5GAeDAVdJn8L9kr/Ij40RdbIOsJ6BTN0PG9MImQjAtiyp2O5vDkZSiLqjPb//VtxB/j5gDuSNZ0WutbPj5sRQKacEw8O9dKmh+7AqQhFNmJBVI0uO3XQG95ioiNhghxiD4Z/IWOSxxr8zaHQzaKcNqBSJyPX0ZTnjU3ENyLyuy5eZZcbxIBTkkcY/XdxJxXYXoC51lkzB1FXg7q6ZCA/Zd7bJc3TTRr2koE/TuX5OCRbVeF3iOB7VXy6fS8spSf81GFKlb3ZDdMn3Ls7s8DKEFiMbI98pIK07OCZMQJ8arjK522sBlhZSEZgzvhdN4vFveylnd4M+zO5uThroFpNhLaXj6A3sa2UTfXrirZ9iq5JT26qoT07UtkjnQ2ypY89666WWUrdpNrAf0+h4ZNJtsWKOXtteli5IfJQPBW5z7fhMdYi9t6T/SuHP0me+EZvp9vRWezbFI+jc0I6WhumU7wilNnKCSoYmVP8s9pimYlv4vAdySjcq0foomiDNBDgpBK13Td9SZnArL19MDwplyjr9CvzuphOspULt4tH4+RVgA972bilxaN+PZ2CiF4/T0oujt6OtrbNUbneFPj919goxGShsJqVbh0wm7Lx8BXzhAB84meDUE6Czd/hi12Rvop3i2a5Kps4URXd0I8r4n4fX0cAXBmYwn0MeLnzT1W9bfjMP1RSH7X3WMd7L/MI85j3PJ1GdcKHJsTxUqoN+Xk7oInUsf+SnDCWkTjy8cCtFU8kp86Ac04vVmQr3uZ2f59iNp4tWkghpdI9g/HR6NxznKQkVFg8Rt4vB+Z/4T5Qe+M6DZ0Y7AxClQO94bsXuNQDqkknBHq7Ypth7ceSRv12wNspBNxcXHxx6cy26uXegBmLvO5+WsdFd6H1CEePDin90d7AMP7DsyZqGcOhZyewczDhgWv8t4VbVmKYMsOYibsvt3ITqsWWtWmdP3Nu3SS3L8RUG9VGKXfHk2CdT6ge3kcyF6oXtHgstDWLPduUlW+6ZEE0tYFd//aEXIadS7/xnP3uRWESKsgmvFEMtW0txtyL6jY8U+HMdil8CDBn3Ish/cJn2Fbn5/s+v6T0nk3m8mya98jdhyF6USbzwEC97wmB4Uq5dCduhgOu0WCx2FX9p4COoiJ9IdXJ1hF9CKlTyj7SKZT3qzKMSoMqnkgX+nzV8+2NGfoVf0xWlJnm0otclvQ7POHxbdNw2ffvUuIPe4aVumr69jUbSh80hvGcn7C5fhHyhxq8S9kVqPSsk+u2wpSdKmWTWteOvphqIK9rTRGlPuT94E/xmoX7RK8ppaJ5DYcQ5gvvkhXzb4t6UkVbciCwSZbUHOT+8sGFBYUJ2LBt05nUyoFLanuGvOfxZbPu8e9BR02KyrEAjKZdJ5UyL+HgjmHT4HGwNmG2qu6MGK+Xy6fg7jTQXH7hgrKQY/WEz6GmlodLPZ3+Bho+msNG2jepMQU28bs2fudwPUZ6uwyTE4pTd3qqYS50WHRbkafnRr3iR5RorHAqdJoeFdgI8PrBrzZUWOp11cP8TVJ2KIfJrtcviGU/VFmfjsf/Pl9lQ9wXnkXtg+Pe5M/100INpr+iLnNb4izIqrAV98O88+vDxr/YN2gdqiueNwfJzTt2LbWNus4YKZf1N2s5BcRqPO5E6u/jCZzD2P9Gz8WxINa1nl1DMFmR4NOoOb+7A1TDIL7p1Ltsx3RbOmeB+H1QlhwiXcmt2Mda7/n4aj8Hg2/fqJgX8CzWbqR3JO/GK6KpbD76ZZHXDYsDxHU7XEY9jwajY+H4W+YAuLtHdef2nQG2OmXCn8cOqCxEK9PxP9qAYsx1Glv2/0JfV/GnRhXQqP5mD4rre6LP4yW8f7i9KGAiw8vKhqGXE43S7PRxV5hKsrjMZqKb9aA7TNGpack+9O4bxf9uVnEX19mvoyvBX2hy0u/D835vN+fUQGNzfKXmJszhEMLkk0kLLS3uBx3n5BCFNGC+YHwMsfYgxt8vMOd+KSZ+RS/Ix3qm7smdms0/mgV3xYOay0ih3nyoiFW9FFb+jfDl8+7nPhe6aF5t0cqSOlYjuezZcDzIWyYGSffsqXNKwHViRRin3TR/FevdXquiWsYerQe591ZncD3yC59luZs3WiFVoNXY37aDVGfG/t5OWs9I0E49iXND2KmpSK9E8cuYzQ9qj8Lba+iT5s9ZCV79IYHzvOZkftbuvIpnckJtMoYCI6F1JzRdLLgUnVnYmosjbh1a0awt7WGld19i2Zv2JxVUkpHZu9Wqk8PgaXCiuRP5nzdYzdfmzKGOpw0zOWDWFLPpDPoqnAmZC/35ozTkwVQajuycyWBTyFxGwiuz5pdaej78uOaJSA8EoXscmR10wNxBWW3IGUpjOeIFisLQwSDT9f+4YDmde6cQehQgGcXKWZvfLwDcjfVQEz5MXL+6D0PbY6zSlc9M02en99n8AKtIPuweqdc7HWs/fTvkq40RCu1a0E6CkcWmMeHSemFtyhw4zWlY250/OpsLLhE95IESe5F6zZV4cdHzDHTYzmcdpMOp+/TIaHak2gSrAzD/u7pxG3ldzTeNMvVTL0uye526f3eea9GMMjffjkkqu5Yw7QT3EP3yALKcCk/esOFk2RktNPn0Owfr8uyS36K6Aqd9iV/5GYGq8GtsWqJPprRdLMRDkmMNw+n4900NvMm94uM7Mjja3LymQ2Ior5gpqJV0RASvdF8as9UVMwBTdHbesLy95RdlNpnv/ttDEtgh/oummNPvk/YfBqHHK47q6Tn/T5G4knzKDq/PpwfPt0T2f7AqHSrD+V0Cj4UIZzkGG21jzlWTAHkhpVFVbRJTW6tA4ziFzmyn77zN6tHeKr+GW8q/Yl4eEVnNGzQ37/6WtOnUkAhjRtmwOpp8uToUnA6aYXRRblH45a8b/A2ThfmSeSbzntBbkCyAwkjWX6kfCtKVHMHK6GSWgD68jkVAX9OZ+Ikl2fXoY0noBqLR+Jte7ub6q1uIHUrFuTwPmn+2Nr+Db0Z3DCLCOo4XisU7sUO8Gapp+mT9rk6IMelNJIufHL0PFeP2IrIj7/nRGp1uL/OBgntfd+x3QZOMAXHiByMl4nEtTJ6mmwf84VXtO7nN9TPuv7il6Po0bDUOajt2mf24A3RhL5f/I/PAskbzVbTZBFOZaOSoEiTaH6f9Cfsk7wih3ivoSleybl618SYXZ1ENH96rQozHNjlx19f+qToyN8nKkTSGk01vWHUc9wwUuyWg22s0wmMVTKxfTlY0ST8bQVtL3ktW+a3P6jqp4ApecvEWIku/2pBKYLG/kIsJdbTZOeaVSDsy+XOl7PfD6xKtBu/WwRf1S3nd59gVIbamQR2sEMia885jNlWZbZ1adJZ6KdCS5uDS1xyY3x+BR6AHqGYuEt/WvuD7EKgrTl+rx+7tCv6pIXY0SWchLrbze++F9DuWF6wGq53XKwjXoMz9QHTre4ajUpUumAMJiHudZeiyeZKi3bEn5l9ca8pHY5WBYybR7Y3tblrj2lTo+uh79kxbx7dsNZflpYwoyaHaJuU/3h9G4FA/D9TTKeS+j1EtW0RInpV1yl5aGhiq7vsV2/ScboIKM/6gPibhvhzuRYr5BhSTPZeoPlMvjaAdJuE5PDkRToN2Tb/XW/h2X0ni4xIqHNGkeW/fpUc9R6irrzhdn+zolEfjxKSrJNPnEWPpwKPB/WzK7fEvAmGyb08SEB4Vi2W/nInkpoeZeCLg4o19X5IR/t6M1AzCmticU/h3XGDRXCbGxA8rBWfrs1CRZvjqBKT1pnJT5fTrEpW6LOsbHyfpx1vEJW/O+Ks937HA3tlb4j/eTE8u2JEw5OXg3JVr7TavF5mL+6FAvKTXxGzMi/lvF3xGmXT6YYVWA/djN0qhpr7D+K21defGlk5b2zE/xZe36b8bZwrtCLZkzhnw4rm71Q84Sa2awof5ERcyRMdLa85xpu5dCK57TKKNpYtsl2lzOjjHsYKGce+J5jpzB9Zm+XIk28mC7jR8vHqe8rPvxMTa405SO7fDNNWGJlBjUdKh1KN4Sv0BRWS5SyQD1/ANn5wZh2UWzc1p0wE1id7LMfVyOfFzyI1eXzZId7f0bRrb08o7OHIMr+WzdHxozNcED2R7b5YDh6x+QGSQVzT9TKfuGc2AGvhprGffkrC1NTAi01BnEBIIn6uPzVa/Dg76P5ynfLvBOt+mxJdWPndhKPXAYZQpTSpjz2aHl/sImSu18RJXg9/ZCe5QfNs6eyv1vuI/vwnFuHGIvkgdkteIKF3ssmIcTC1aMhwhBEfsoWck6Ec3vJX+peHuAfFTPl4zlT19/u70wenU3M6S+iXx2ipLiH+LNRCefYPTPN97ZffatfUMHo2Yd4bRf4kzcVZU+obpbMQr3/5xA0muz1Q4Zzhbu3+8ZPGDO1LN1MSRrMeqDE8zhXFm9srisbduQVUkbXHLFWROpZ2qIUfX2/X+gu15RQ8FRfjF/7qITP5S4sFWPSLBBfT5fND0Ci0dPQI0e2snJb8RIX4tGLuHrJusvnYwD7JKixGr4ov/ryBfvi7MVtRfH9a+Bblq/WX+fk0+z8eQ3l5udBIC5/loj+68uNBO7F0n0W3vQg7sp+Zrl4jc76U71FNdHf8x+uz9zVCSHRvZIfsWfutkM/iP33xd0lTstDZVWjRO+bU+iGdTyrYyC7hQcVI3PrcFDIJwgfO2PZ+9Ez6zWGG4jGoFL7KpZw9sx5/9UuVY6umXZKsbujnV4Mkb9MpwKqHugTe/55nDzS30B4AG0Dkv/jEDn+foz//8qCg7f/wbfHPw1YxeiRtpj2pHlRLB93e5sgK3Ad55No1mr34/ESjGLYkBj2MJpyEIQo61SX6XanSfvyrKbzz8ctOSm9ynl0DBZr8c/rla+ks91kBqdjfsbgZHt3Cq8qPFxa+3/p8o5WFNr2fJrk9kj4ay+ht//JACu+TtvjB4YZk50FY8KhZSr2vF6LNHrYkaOZnx13VGOHztc5k8ePduPDcjx/odAxHc/46f7CJr7dkqW+ajm/xqWu/8dzat8GfhF6Oocf3kmwXfefBtZcgcnBA9unKLvl2cHV4ntuYSutxhz6ruqTwWV5krKdkwydMdw1cHxYmO7T/M4f963qD7SN6Efsv/6Tc2LxHeLznB3Mu1ysf4pWcbaZZT5htyCLq/VaL/13/N57L81N/eRc7duJYzvuDkAB61IRYw9Mx5Tp/5oC2qsecPozR2tL008/P45TtmnQyeeFqkz6vmPO4v7vPom+QtH8epavzO2KPa3aDBD0RC4y5iqbqudNheUk9XXlekw4/f7dZnwNm5X8Oko/lNdOItBpwoZrXiKvOvgebRQaVN9mHDx++D6GQ5g2xqJx1vFSkBIzNq2LJkl8Nc0yEf/xmJpc/zrOx7WHvA6Eb73mN2MOuWxA1v8LatOxoM7ErbbAo3P75nw8OLxjaLGlYMopRx7vRn0FjlxCvC/PLpws/Ulj49d/3s0FIhJ9/Y7vFT3Sx09ZwqwXGDh55lROOvhgGtHOZiywNDfbLUNGxB488rtGnpNu/MPuXP++W/G9upWsNRvhEC8/uo3mznlu05taNmVlzNgdmcU9d+hOz9K7wefo5VJslf/7lJUgkbFYhvXc5OVj5smXuvqvhqxUTXn0k7KPY4AXMCnOIpZgBkvUmAZB10WXbHZHMyYks/MuzGZmvIqfGBAqM6zwlvzyNpcLrpi28xVwZlHLQn4OiLPkt8T52a86lWyS/vIrYEPUdT7q3h2YtKdkhfBzMUcRDDUGgH4mHNsicb7e+QXlGAxYHt7Sbt6dXAnNqbolxfIXlmGyrETnK5UzF/f36zz+hrZN/F21Wo2HJi9FW6Q0SQ3ToBsHKDuriv7G6v1Vpu+RxcGCxz3brxztiPXnEKDu8LsT9IKGb9efTAl0KFeYUb49P1/erAMTRHaM5CMrf/EBy0un09/w4Du8YxDwaSPCoyY8fPeRoxsiC63cbzeS5dcFTfI39rv/Vn4P6HwAAAP//pF1Ls7I8s/1BDERA0gyRm9xMFBRxBl4QUJFLAuTXn2I/7/CbnaG1q7aSdK9ea3XooHdr75kfkiGmyWrTLre0zsSt+aaauyZT0Tl+VvT8Doj5Fy8o8F9P4jY4N6e1/nPQhbc5M54h5PRmPhJ0F+8PZs+Xwhw3+jpD73a3ZzqT+ng6F50AWL2O+Gtt3sH0uwQK/MoQkzg8afwG20D9pw/+/OQB6CECt2IFWfDRHJ+YFdD6pkNsty3yZX/av3rCtou/OC31eOPcNgULG2wijoJx1OLPWmDL7w34dA0ANqJ7IzumZfm8NkvlL3+xBHFYyftHrEJ23JXMrbxdNVwupwQG8bFlvhLK3XqO9UTLL8aFyrn/i3l3TwxQHyfpnz5gf/gYeBfKtp14qKS9uT6gNCoidvxFVjC62ukD4t4GrBlznY9X5e4g3LOW+RMMwXS62KK21FOily3Kx30wnoB7qsL8tKqqOZu3N4Tc6shc6V2ZvOzT5o+/LM//rNp7xn1t4Q/EDE8a6kNjeSv7kA1UeQlj93a8j/MvPvRz1CGq9pW+SULVxH9+Vh+yPkOL3ieGzWe06KEM9HiTEPv36OK+FK8lKHL9ZJdmfc65IJaZtvLeMZZulcqHPVgJfL4SwqO53eX/8GKL7ZE4YzR3U+717ubxw+XfelY8yQ4nzZJP6n9+KWxNFdB5+2F/9YMdN46EbtMhI4epEPL+le4b6KYVYTgRUDDcL1MCi3/M9ImrHfOvjxM6lvmLrsnz98ePb0jc74At+R8M6yS5ofJ0veBx9Nx/fFLt7s2WJWp5Q3SXYB3wj6yIaQAN/vnd5tgEZOdLPBhFTyqh34k32pzimvdBu07g5XQ/OvW7fbDexVb4T38rzH91VHmcJThkL52Zo8WqWZmCD7RHx8bKHH14X3ysRDPHNsCq/Hmg+Yz8j/rXD8BtlnQ8PGkjsrkiU8vc42oO3LP4h39/eq6jqVQacDPSCs9zc0HzZVIFkFZNwi5yp/yHZ0rn+HttwYM+JicBXkccM/yUGeeNUTno9mEjXVnXlHON8RMIz0wh+mnFqvmhOi14d1dnj3qsUZtkDx92E92ToCDvbhyopqMpdl/EMLqh6uWbOqPdM2mXi76LeN7/DjMIhlqzpZ/S/X7Ww0eLvidmD34+bdzPAcRL+2Hkqgex+H6pB3TsheVIrPhF/DlOGJr6URD/7JbBbIdMgZfz+2GVijskJvfSRUdhsyb6LBw7nqarFJ7zQcTldxYRv41lD3/6NXmG76DJ2iSFBo4p/ZruOR/dlkp//iDZbuaUDzrP27/6yWwjTs1pU5gWWp+zE11XWOfNX/zhwz5h5Pj2+NjcjxQMdThjxY1aNOZOeYK9JvN/9YHvJ69B//yInWEGg6YKBnxp1VLxY7+rf37f0LAP2/aZt/DLW7FciziQ4Ns6fCriw4wiqt2pJoxNNxaf8IQWvkKLiWfdsP89Pn9+OCGvTWFOWOc3yPI2IAvfrXqsbWpAxbhd6p9vjp/PK9EuG3si/uucdaN3LQrINqcj2dsGRaPGbR+exj6kYqPSbuyKrwRlTD60L7iRU2nv6Rr65i7Zaaw2e89RR1jqD9udjDoe1fv2AEt/k27ylfPHtx1QlPmAX+cqzPvj5qor9tppaAkrPZid4wPUjejflv6uG8/defAhPLYO06fiEXPl4/TIaqU38Wxq5HN45AJ6TNucOd1Vq3hxCGf1QTuFsrmfgqVeKeBVk0uykOxzjitDAPzbr8j+iKpuKuv3B5VPpjIHK5T3P3hjtPT/iBnZQz7zZxFpoF9npr/0X9U3suCq2PtgKqdiHrPFr9T+P0cKpP99pEAvUxNrdD+ZQyHJ4ybq2ZUFvt5009VfWZBUAmeW+SrN9vS6Giid25IFmvnmI0seIgSVFzKMuZizxt+14PF9wcilyyten8gBpfsByDYlr3zmWosRYSebxOL4MycRmZImmM2JuEDmapilaw3x9H0xdyfUXXt+7Xy42MGF7JJph37lYBhALmCxaKJGIK/UH6ix8wLin3dBMPOfiOGZ6wGz38td2j9UNhAk65ZW7gRotF/SB7qOIfxxhR2ajGdJod+qD+ZeEsfkT13pwbwna0JM+9dNbQkiTPqtYGF/zfh02DYuoI1iMzLnQjWHe4igYLKIxyG4VSMT3RmOG+tEfBUJnCq1QtXL67Fhhrv/mPxxPbUg+47Dtu1q5vPqd0/BP8wW/b7WChre16Ukff07VT7029G7cAZYK8r97/+hn7CeR9iEt5j59m6Des5RCK+tIxNXj6xAUjIY0c1aJZg/cdKNdmoV4GlWwexPaZmyHP8sSDL3QFctu6OpJD+AbXlq2W5PHMSODxSBMyo9Ow73Kvi3Xh4nBVVXhOTjJ2cqOLa8wypujXyUwuUt3nOmE8Nma8TZt0kgvswCwVbS8ekm7xNo7KEmQYS2+ViI3QGS11Nktj64fAiya4Oci+WR/NXF5mjh6AEVbH/43Y1iNR3P1gHq+6Gjs+0OXY92BwMF1+THDP1lxyMZ8xJO56NFhWc2cE6lDANtU0bu680R8a9/LMD33y9iYPOTj1CPFuib4cO2VsXySUszCvKIA4ZPmh3z2j+HyIn8H9ELJa648t1jiNHtRVz5dO0mM2tVtKkmGa/v3y4eLxs4wW6P91Q8Mcv8F3/fyHmy8JYdg+kg9y7061dFbEw8PtSnUwjpQxCIe1Akc7bXvwIJoqRg8a3ZnBePwwx/8RxMnZX/e352vp3INkCrvFWfo4q6UFNIcOx/+ejc9RZgpXVYaINdMIjTdQTjrDGquqJhzjs1nmGbCQ3xq0USPq6nBrZP1aVTdtW59G1jHVYeU+l42HhoqhsDr/LO58y7eufg8dt4GN72+khINoomT+W9gCo3q3Ed5nHHB6JbmnHPMNP16JBzFMcl2OPmy9xhVroxud0isHn2wd3LatF42bcpKJV8ILY8vtHYCXqGxqBOiRk+7GDefYYZhq1sY0GYrubkZudEhd3VwXDWmphHzv4BHQ1VElxKr5tbZZWgYL/dkfz74vlYtCyBwzRg8owtHs9JdD5oJ9HcsV3V6xX/2dcezO32RDe7k49mYz1gtRpXPrHQTPh4F6kAQ4hqij5qYM5VMtcIOufHDKZsu97u5gJWQvNke9n1lsFKAgX6BUy2ukyrXrdqB1LbvdF1b71zbjzPM2r2uzczndPJ5GC9Wqh6a0ffYzdUv6u/cgC2hx25HPEqHsddLaC2m07MU4UxZ6Ot37TmdP+SYGszNOXbbQKny/CmQr/9VuPv3fgwXPcOC7yrnk/jnd2gvSbLoPPdu5u18xSh41eOlvh3lvW4H9BJujcEs6vcjWuKMmgfh5iFXeCbfLBDH7WUrKksubHJo/mZwWauUxaY0qWb5+RgaXPfN/RKvjGfnlXeIua5MxVsJa/GrnjcoFVfF2Z+1Es+nc7uBxmOvifeDe+r8bHpLOgU8872949cjVbpPv6tf1jQbSeGe/kE1GEhzcvY4NLqd85gv0qvxHxKTs5KcjagNIs7/hl2hN5z+m2RUc8H3Oe86Wbh/E3hMobASCes+ZCR5e7bBJkkGAQIBiGOFPjQDFEZ3gjNuXmWYNOFCSN7zIMx+sQqSJ+0Ysv3o3kdHh5o93seaRWd3nn3uZop2hjfmIVnrcn7Ba9Qv0orihL1iriW7mewfx+TOZfdMeCh3M/QqI3HjPz9zXvvIgggJNaarpf61EfCMugZGwxL96NhikacRTC2p5zdy/0Tze+jOiMp220p1x8c0UBNHXjszhXxUUU7ZvyuFHz186FNoXzzOTYVQHR1Isz0G6ua58L3Iaz8IwmRH/M5/jigfeoKkdDaSag3vCLUhq/mEWKXUSxvg6kBdXQeWOHnbTD/NlsMKB63eLPEI81ui6c+3zpy338HxMQplFAd4RB3RGoQv4JvQaTfEmaY0WBSd3xKMOS/71K/v5ye3SqEc5C7VDv0Tt5ohpOAcAzO9PVVs3i0Sv0GMD86QpJl8GpeLfgxoi9W0HaL+Gm7b8Dl0YbK9DbHPdNUEUTmrJnhJ4L5h9fI/HopcztIg2V/RaQ9GCX6akvN2RqHFLxrquFxPKxNugkNFWUdDonfBPuYbc8dRdnxHGIp1abu1/kHFW5JmJJ7Ye3Qgi8neCwW7fYbz8EUzX2ixhtdZwHkUkCvQldCmM+EeDGqYxq+ygjsCBvEzc+Pqv/DvyX+yO6IVzltFfkEZrlXMJ/jIu7rtmoARBTStTzaiL+/6wg6tbxRQW+D4Kf1OgU9N7bMPz1RPozfKkPqMVkuWppuvLs3uEBCbpyJuat6k5ugicg73e8Ma8TLJaSlAIeJYSrs61tMafiimt3rNbvsyYePu49K//CV+ZsrMen49gCcZ/fDs2GuA9pzuYQ8nmcqDtuE869/LcFL4MYM7ZrnNPocJMSDZf8WftFPzBVgn1OJ/O0PI9nW0D7PRmH7x5p0k//cfcC7ZhoJas+MW+kJNdo07EL544tzOu5eCpSwM+j6HKu8G6csRb+RjWSvCH7Od1SPtD4fdLZ73N2KZ7PjavXmxYhtkLSbajSGWn9oXyz4RHk+YagEDYbKp+O5mE0urN8Smlng4eJczEHbhe8UrTIACsbmY854TB+bq+5VZP/19IB/9fsHncTtjg5WvzYnPG/UP/7wh1+VfDhvMTyS3YdKO0aqSfJmSzO+eKI03llI7qS7Av6qcAh+HWjOjOA7qptYPBPrcbTNuRbCHuonC4lfKbVJx2MOqLofP3guCj0W5/BlwbT9rZhFxCBgU9mU8CtmTBWcDzFH320JkWdKONu6r3hkRTajo7cjzGjPV5OTClkguesV8aK+z/uN8hrRhEqLbtBHD8SzIPqItOmb6JtgjxiM6IOkp/Fiun/bBp9HLjmgDSXB2vx6ddLKWRfomFcj8SLbCtYDMX3tWUuU2eSx5WPjuhZ8/CElJLbiuJ9bz4UHHFxyTMk2niGbHBjeZUOhdo5IClUHQ2OVNnPZT8/7PzxMbf+GOSEhHx0va+BLM53gonlU06WqFTXNzActiPmL/9X3Bc/JQazf1TCguwNLfJM9u/2CWcz9BMaHvmEX64QDZtFAgGMEB2J6176abo/f0jJQXOIo27c5c63EINZGgtFvZXbTGK9TKLb+gez2EjG55TBAC1/HK39q87FL6hRGb3dlntPn5kyTfISFL1JYTWCOc3gJ1R+pAiq1vAq4LQv6xrQFkTlmvjLHv3y56ERmVqkMebfLsghi5q+YuV5tzZHvfhG8tpaMlUviBP1hjxqI7lpC9oLod1OlKw6gilUM75iZ85sOKQhNlWCqzkU1N+LeAdyrT/LHL2b1VwqQN52I/a27zdeP6++DAiv3ME/QvpI/ZHeD7HPoSXYLIFj0XQN9ZRuMHOKuo+Ume8BJzwyi3zkym+j2WqbSjFuGvXfF54eZucjeRy+aJjtq0vCihOg6ug2etWset068bcCse5mdl3wdhV97AnEvcwyf+oWovEtbZH93FvMrGSrmz3OhQdq6eJWnJmJLvUJRUK7JTtyggK9xDwAxbajcjlPVWzh7gPlrLsQ83LWOx1f0QIteYvh4uJvztvQc1T+MFnnobWfyKe0/KHndRQxrqHK+5BcKi19EvPv93fE3OZ6AxEbN7GbVo47AxYDAunpkL4QZH8ppJWzmLNoRM51wwGjf+BC8m4Ck1vFWTe3VGDVL1xAz9rlUjVcRCiSPYYCrV//hQ39f6/A7PXqih9GrG0ryAs0h/Y5cL/GpGrinzdCFK4VK6hzydlNTCZb1YLdP/eKzs8prhFdnnRhDNnWcYgGjYrjGDBtFFzO+Eijk2vvEdnb1CXhwiBqg7zthbrV9xtNvoj1iTn8k4d0oOD8Mbxf25HoiRmu88h5H6KaK0k3G/Jd+q6ZxdWvzmK8urukBI3YZcgWS22fCd8Qic1riCaY2Nihf3g6TpX5vgGI0PbPPC8+lfRXC5/S50pXEWDCF8tQD15QjVaRhysdsozSwQ2gm7vPHzEFY1RJY9e9B5cxTAnaeYwr74ruh8g9v0Szv0kYttu6BPe/rvuNGwGY17aKChbPs8/G43s+oUVuP4dvPMWdLfd6AHUrx3/rMXZFnKK2UJ5W9UuhGb12oaDyniJCtNHVT4oQi4pdxz+59t82lFysyLW9+Igu+Swu9LZoEhJCIlKufXzwaqxpDWqlPPJ19F3XHBzqAPrkOSeXTpmPrtFFRNLUqCa9npRsNr8DwG4eR/dWH/mDK9C9+2VXZN1XRJX2mfoVzSRxNfv+ntxb8Z06ebzu+6beJlqd9xNyEJvH4vAQYDe+iIZfoLsczT5wQzvbBY86OkW4MItmHtXR9kNA4JvEkrwQHlMuL0sLbe8FMPqdCq22lZfbFL7vhsG18sMugppohnTppyR9gTscpMk5f1Ms/XsNYIsCrS4cqdgq8GvbWac2CRd8Pn8pIwebph1lv7c2fcvxz4AkhW/LzXrHH9dagzUMVqbA/1tVkasYMR6wzFuztrSlFUSuhe5jcmC7WdsUG4lqgp5WBN92H8mkj6Sctrp2CWeVB6wb/SWr0O916SiT3g9jcRzWY5nON+UeV41485ifQtPuE+dapqqmfKh3032hR2gY7U7bPhQF13Q5EvwilOWuGGaFefZosFEgfd3/5/acf9gsf7ozfsUeve5ayXZ6OZm+serxZ6g+F6PjtZj8SHWivJ052K7PjU9uPs9a/P1u8apmGmP3MHLToR+b4ohvMtetS6En+oKMejflsqq8TPBL7Q/yHUfE/fQifr6Gy3QntuvF6S2uYN7pPCBK+QX91yxqtypNA3gZRuvG0NhxY+BLx3p6T0ypR63/6LJEet3wu3/1NXfafWN/nuqJnUXNVr5MfzAl2K84EL1fg7SYHOg13M+CyN/gQLRdL2cdTGQ8vxBXQ0g/DUvGL8qm9+jOo2vdBwto5cqqeRUGt3LRm1jLYl3bhkCH8Lh7MXPzAmXPFhcvrtmHbyB7j7nZqM9TkqkOvgtnwaYy1FCrzaRHcBl9zhrrzl4tXEuIcjwc0ZfbqgMJJORHvtl4jpuBXBG/3dCBbb97FU+EPEpw0ZUee59Ks5Oa7qWECVuGx3HXdtA2AQhkdCoK/Q8LH6PYTYXu/eszLv7bJr3NqgHt9JFhe8HPsBDeF52bE7JE81+ZUSaIDG+Mds9B/O6jflqEPfL8JmfdVaTDJ38iH6tQ77BJcP/H05+d91rNG/F/2jqcfSSla9pe5y93z08L30S9Be2bSjxKMn81RBDHII/pb1oOV5G4gX9ktU0BHGfGMKC46n0lHpTx/VVNpf3TgzMVUOhgKZ1EzLC2rMWO2e/U6eV0uJ55HIOTpT2086rjRUWHWEwnQ/h332lM5wDOtQuLUZx7MIv8c4GSIFbsu+mb6ntJiQ4KmZO462FaM+voB0O72ZLtvtzH/9A1a/CmKFv9ikDzVQUHRdxgtfuDMClsCy3yojDwvt5x66xxQoDg9C8N8F/d9XpR/eoeE9aCa7csNU4TVa0HcVdOaE9dN+s+PYEjYBTwfcIL+/FtvuJF4MA/Ksn+5R5zthuXDZJsF+tO7sda9EF/wB7WKJTFjJQfxsPA/pEjxcqQzfvNpSqcCtR0/sd0YzWgwnmUP23oKaJfEx05c/A6Vthkj291JDvifHj+sop4q7nsfoFS2BdX6fQSCayCB2AiWBRZjGsGLfzMfLmWLXvgrU7QR9vFyUjgEocwuxLDd/T//RrOj0MC/UxmiQbk/wj9mRDyc5pxJK6TDfD59SbxebQP5OP8OaJ7eHbEWffbnV6miskmJZV+MiqtrlKLN5yCxi105AeVaG6qHx7YlOoJ11c/t1oeu6G74ga4N6sdjo6IkYhMjVddzntkiBtl2PyRpAx6PXZtloM7liuk+SznPyecAdiHYC16/gr4tigRc/7f+xx/G/TpO/ulXPXK3fO1uNyn81Hqk3+dKyR/G6hJBKXsl267HMJgLMUkg3CJCdnepyKe3XZ6AXL2KakKoommTPlL0XY8Gy36ZndM5SR2wnnOOqfDYxrP0U0o4aeoOC39+NKhqDWt0EogpRQpiXpCUUKTlkSq8Uf7+/oFCaM5M38xS0Cz4DUWyDI5e8Lm/RqcW3v484aFzlYoveA0v/JbxJrFu3bg2XjdNROmF7Jb87i8mfaCFvzHbqX4B5/emR4ZQz0T39p7JadljhDykE6vP8D/8/os3PNXLVMtwu0wxcZPDgicfNJ721AJ6DQYSZN8ymNpSFMG93hLaReiVz23yOmmny2xSMdgbfN1KpbT5XdOQvqKhCFhO6AGln7POwmegIPEmjpL2p+/8MIxi/pREqn07tCVL/TFpI2x1bSvve2Z617ASs83YwBhBhkUUfLtqvNcZTCwsqQamgfiCt+q6Ao09uUlzutQrbfF7iPPgRzRnEelRsenXZP/Au/inpMUBWC+e2YMPjTkfOzzC4lcQPW6naijJT/jjFwQL0yaY5Lh3UTVqPlUKZZeP73cnqs8y3ZOshXUwOT8SooX/k8VfqLgJawnOKN0T+yGZ+aTXZfmH94RIrsOnT2VkiGx5yRb9EszvnSRprmGdCbYVVI2W2mcg6Ycn7q6rKP7TC7Do8X/+ZblRThI84s6mQryr+fwtCgBmkQiPo6zlNIpKCb7XW7Hwu7Sbq1Bq4HQZTXJZ+Oq4ysYbcOZjpiuVEHSffpPBhAqLGUt/a2zfSYQsX0RLQ6Pv5lTc3FD7bs9s8evyTsNxD9M51fHnVwfm1PbKiFbxB7EwD4v4zeOp1zzXQ2S79io0Iu2mAz58BMx3VRhMGdg+epqtT+zhczan/q4ZUN+jju174RrIS/8O7K9tkb2n2x3Lrm2o/ta/A53K3uOLnpkhMWZC/G2+MadXY6vaK9tciT2adzQ6d7cFuwCbRaGIc27RAOByq1LmXWKx4uEw93BNEpte5Y2MmqLQDoCOsUFX3WXf/XawzKf8yhGzEgXMaUo3JWh4DIn5+NK4TV/BA85ZENDV4i/Iix8JxdGe/+W/VLVNDSiet8zUHzGXhrfd/vXn2DmSZpN/pe6B0l2t0Q1Oc8TT6gnq0v8if3xz0V8CcEWYSGD5Tcw21pBAs6a/f37ufLkcU+CaeiQ+O9jVnF9MEb3XYsIsEuYxm9K6Br9gH+L+uB6s7XPnwLja34nufnS08I0ero/Nm2zTchOMTNRnbecPmPz1o946vdUwevaVBNfUD6Rjh2e09A8w+vu8MQ6i9qMxxurSH+zzy2GG7hpn9JPn22reR2MGz/nMWPhQXuYYqLmLZHRoyS5PDya7zqkOl2qTMf9z7hGbdb2FJjIdou/FKZ/lH23R9fKqibsOXtWfn/avX2i711/1scYhgzehRxKeEz2YNmWUwMXoJaZ/k6qiVdE3aPEv/vUHe2rMPUxTZ+Gp7H9otvC+gAeeDTrX4TaQK2kyNITsmgTuNFZ0W24t+OsPPmQ7jcfT62TBc76wP37Hl/6aD4fVoSfmy5KDccFn9QB8wGgyTxVTV+8H/NVv/DrgeDa8fLnY9fymc5KQfGatN2rpKy+IHfjHeNCVQwFrPc7oenVzKolSuUff00vH36Vetov+gH/+2LI+Y/I5hNpWJj2V06+bT4qlRvBy9AvzHeFV8UXvqXFtFez+9XRzOmwLF0anUQgWQY+5/wxL6NW7Sb9I4DGPq6GEaKMjYjcXLZga/1TDO/I52VXWiCad3j4QTuqJ+Kdnno+1G4zqKsQbttSb/LdbXnH87n0B/8g3Rvymi9m//kO+1IdmYGG7Wd9qRMuiKPLRv3Hn/3WkQP7fRwpsW3WoIJdbNAz9RQdVqBDzd88Wjea9DLXg/qzYfhgH1D9t9ID+UrTs8bi+qhFrYQO98XaYB9+3yaq6aeEkfChG1bblvFEuAI19Eog1Jodg9NFJhVJ5XOnvTu9B/zt+W3gd1w9mrDpWsQRvLCjCp8a23fZcvdPdkKB2FT2JZZXbasrYVtL0FBsstDohmKibArrO8gdraXZGfFWSFMI1oxR0Zc1HS16nUPX1g+jdwLvleTCo8bYmOneaoPtEpasK34PPTmNyMLnyQQU8wmtNtjs0dXMI4ay2gZ/RlTx9zJ/IhAL2kteSnX7qTV519geN0aCwUH+U5rDZFxi5vlWT5LyOq3ntChgc/bOiq+D2M6fG2tzgRqUt27XPfdXT9GwB3CqP2HbvBlMn3As4++qbWYFz6KY0uauoV0Ybi/a94sOKFiJ412GLp3faoPl0XRUwf1SbGNvPB01wBgUpNf5Q8WyKcX+6FCmMc2KRQKBq/FVxakGquAPxrkjkA5tOPYwRU6i4b1e8H0L1gX5pV7PtDh27cbxHM5BX77Poh0zEyVEowZq/E1XMZs/5TjRnNPSKT8evGuQ8DTofztnOIT4Td3zgdaxqSzxRarEIjaLrnGAo6hO7fX5VN7PvutichJqSTA1WMc0xvYEWajaW8O1pcumliap6TM/EfPZnNKPZeGheoiss0K5Wzm1NamD4hVvinNe86pX+psJpjhSytackZzcpadG66o9sS05OML3fRYG2X/FJYX06ovGLDw046m3H4j205hTrsgKQrnVikMrPhxkdHM2h/gFLh4/ajXCoSkCTMWMk6Yxzp/m56td9B3gmlR9LHh8d7SD9VnTN2wnR8zCMEDjqSMjp0VazvAoOEH0rmThVWsXjPntLMG5VFyNXc+PvMQGMrn00Eyvfs25efy4n8Lb2ibk/TqpxmhaKB7NJ5XNbB/xKPQE6MCISNAKt5scTj+oh8h1cHYpNPiE/ikCPHiuswdbNx7vnpXAue5HpV+3Lx4d6GEG/ykfKl+dvlvxYub6zWKZzb1JnuftOn7qCjv7hVk03tX6AgQKbyrtFkia6XmhGLtTMo0nbjR8vEuA75hkz3o5QvTUlp1C1VU1R6r2D+XSVy412jYB4pjwH8/hKaxSV4ZMR+SB3zW0gDzhci5R5Q97EM6leCVz7w0wspXXQUBWthKLvSybe5WJ38/UoZvANjydyjK4mYtfnMdNmu2mJY0i4miQRQiit04mdeL7vZvnW3+BZaB/iz5t3x0UOJ8B3TSFk+3xXo5x+Wpgl68P0+LmupmxNZ/VvP5l8uFTcqrobxMX3hTdeVprz05siTQxuDnO1uAroGR4JAmX7YrjLDSQF8s5CG0I19vf/J/WwCtF3fpyWfMxi1jauD6/PZCx3kWkmJ6YtgCkrCuVUiarxeB4bsAOyXOySpfn8bicVady1ie09x3jW1eABv4txpms/mzses8LVAv+zYbveVbvePCcftVRuV8xRUZhj/lNuIJ8+HtkWHkHLSTFfa+PRJX5XHM2ZjVtfdQ9dSpcb1PnE908K+yasie7cT/n07u2bJtGrR3aeIVV0eytPEBXBG8vBUMSzNfgNNKV6YPjd5fm4/yUp4rnuk/0lgO712jgHgEdtsnsVoWouzXOGDvvwRdwglwLOry8XlnjAk2jKiyWtZWizqR0SFk83HpGtq2rkpwemX3gfD6euPaFDsQuX+mObtW4JBzhhf2Z/+Da7x+sBPpusJXuSinmNNatBajp/aafUq2A+D+8ZSo1PeIztF5pD6/DQVvftg6Xsdsu5BscCKBRf4sJ8qhhulveJ9K3MdrW0DJq00xPaeU3DPC8rFwswtzbUuTRsryWPfOzb+KNxI7tjc9LGeKq9TwvF3Gj4+FCTav7Ytg+50hn0HZqrarrjaIardavZ8RMH5k/QjpmmhNkFy9pjrqZBLBtl+X5CvGhAv9fGiZC/rQ7M8K4s4PRVH1AW3GOyo9zKxy9OW1h7skswjspqhvDew2evRFirItT1snl0tcoaD8TVqzEe8wgi2NE6ZI71zDv6kHyAbJ3ciC9/R5OVzxagHREjRrpaVd25z0LAn/dnaSFbfA7G1t+s1HrEKr4c0Ky8Sl87xNOZBE70iIf+p+voHgk75hFhCv7Fr/hIRrzpjj2fKF4rcEvwiZBXEfDxoj0wqgc9Y6FyZV0jOGOjnTfH77K+QjyQJDyhKwNE16n/qOZ3SSO08Au2w0fWfcvL5aR+ilnDS35U4/e+DbWgfhhUOu5+Jp81hlWMKp8E48U0af9sJDjC9knwJqD826mEImuEktzTbI3oy6mWi4lag+Ap/VR99IojKA9twFxIC8QS5/2A5i50ZLe7egtf8aS//CdW+anNcbxnI+g/cyZYdY5mY+qeBdM4OBTcY5u/n/HhBumtPTOv4CofLo9fieTReuFhyRe64ipG76f9ZkTbo7i5rXMH/vDENFdOPC78TD2SuCcef1fV5NTVCeR1vmGeAQSJCx/QNuZ1x/BBOqL+BW6JzO67Zdb3hCve6FUL9WBkzOvVDXqPtqmjL1nd8fSJO7NjVuBDHYwrgk3nzX+vDT6okZ8d6HiimI/iPI5wXhktCa8ORzPSkQNFJlJy+Kx+QfE7shYE1RWZX+xuvPmrf8KjvRGjPV+6uo+fGbp87gnxrMAzJZG2gAzk2cyt/ZJPeXE9LBN0cvLH/5psvGcgGepM581Or8bUiEF7fyyLJG2rBcPpthmB1YnESCAB77/dNP/js24kthUnwbFGcb+54CpqxY6uuk/9hxdUWPafB2mWAitjwI/8ZCL69KYDPI5nj+xD0c6Zt/EeaKnneMyU1pzuDnFVsY8lqlzKszlrsuuCOtYSw6wREK/qogWJ5h6Wt4TG7I+PrZSXRNyTafJ1dAELqa1hLHh5q8bvSavVlc4aPBuvnzlnYoxRpoFH1a6Ygl5wlBait9JgtO9mPnmmeECJtM2otq4kswmd1QcleuT84/PzTisBFvwj1noFiGdbJUJpkKrMip7vgF8v9gyfweLM3nzP1WysPB+uSv2js2oYvLd+i2Q39ltCaisPJtRvLOiV2abfWtKRvPB/7WYJGzy/HaGrvzht0HD9rom3ARR8bcdIYF3RI8GseaDxWqszZD2ldHO5vLvJ+k4RNIWcYPWg39GklBpFvA07tjUii/NhZWd/9YNK7GnEVH3cMGjnmhN/e2bVoIuqBbyTVYJ7b6h6QdGXt9SbL94kNzNfWxqe4XUICfvjww09Kj56aec18VJ7jNnOEFOYn5sPc4+bJqbXzDXgcd5GWO1ZG/fJKbrBG1qZ8t3jwkdPaEX44exLgvMDBfNzXhtQKcqZ3Zf1n/P7RUf3gZhsl8cjX+o7AJfKkulInLvpNb9OoLJzRjVD3lZzvKqjP76Hkz6rEd+fwwe0WKxY8A6cfFrRRgI3ohHB1a435/1wC2HRR//wZ/4IjYu4te2ZdaxLNJXVOGrPLJuJXTzW8Rjc+fynr4gffzwkDuwawfFQufgNPc95xa8hyuESEFPzBpNfsrj/i1+Sb+yhm48pGWF8OT+MDNvIp9+2KmCPLzk+PoqS/85yKIBXJowKc9zw+dooH9VVy4JY+/aJGqYiBabwqxP9NR6C8fQ5ACAvrHBVRWUwSsUcQWevYxJ+3HXAnnrkgFTuYobTn2rSZiuHYM3viQQ5Liv+q/zbv/1zBWznfF+tdVBb3SC6Ln6rRQ9mMKxmkQWl43bysDs6qFfzE3HXKu54Hssiii8rvvBn3A3bz7aEx+cwMLL7FXwm4eCqt40jMCs8/9DoXJwElGe8ZV6lKPE7VjMFlK/CSHCfJ97LkdcjaxTKP32FeHm5JDC1fvQvPt/+pSw0b02umO/zvOLOdazhcBYJ2a5uXfz9klu4IUqkEaLt85iuj56I9P0rI1ZNJvP3as8Uglw6EXsMioov+AOppTcsl29FRxe9inCJ7mR3wnHOtceYgcgPZxY92Nec1KsvQW6VGgnK4hYzdbH8bnnVE18s54ofN7n+h/8kLDa3YF70zNJqOJLYqdYdf78yCuw+GiSafzQfdHTR4WbBhqre7xNP4u9ao63KPMzN1ScemL5P0AX/dkxXztt4vaKFpInnwVz0jxn//X606Ddmq24dTA85KVDvHAkjmywOpmec3sAUQ0aOzd2peFEq6l/+EnvzXXes1e4tus9ug6vb3uqmU1eeIOnGO0vto4r4o6/+6S+qzVZdTRWLM9iYy+Rg737Pp9Wlb+CwNkZGxkA1x2s9j6CenQcWcip3/XHnWuiz/dywVtC+Gz9EVkCo6i1LknGNeB6vJDSsRpF4c/uKJ+8TO2g6lm9mzD8as3t0qEEfjSPBopwGPPReIhStSbBA9hbi3147qX/xYuBmmTpV+ydl2X86Xnif04MGJbhP3WWpuVvlb2w8HNXUnRaPIfp04yB4ElieG7OnF+352KwKA3Q5rUj4ytqqi1nho19GH//poapoRXjaT0yIewk6KUqaEh6CkjG31L/x8IQbBjEyVOY9SPfnf4xQxI8bFXBUduMkvwXg4/Rk5NAZuZzHsgRFb3nsUgYJmvNEteDv9ylhy3K29VcF2JU5MEM1Sj432xX+40NUPLlRMNMuuKGKexHxN1PQjcQwUrTUT7xa4p/f/VCAcYx9LL1hrqYsrAzI/YPOHsZbzgfr+W5A+EY+Cabonf/xWdjrWcKcUj7xWV6ZB8j25Z55x68Q9OKszPC+znvc3eelxT2EI1r0FW4XPUjHqwVAK1VlpE+PfP3u7cefXsRKzELe39axBZUk5/hvfUbngk9/eIfHz8oL5lMZuH9+DvNmb0aT0nkJ+uMPU0iarnV+IkVBHH6ZLgU24sN4k0DY59vl8u80nmt994DRrC5Ue2t2NR1eVEAb+7HFm774BNNbPFrIPBuYTrOo8a82FAJ6yoJFp66sg9kmvxKhJ0+IFWffnKZn44Ta8/VCfsFhmbo2RhTWuVWRHIevnD5nTQfBowoJkqsW0+cyVU947w/MuMdJPF3b0EU3Km7ZCe7EZEc3aKBQMv3Pv+qmo1ZI2sq1VbYVa7try0IqlfTWnIm+buWcOc3L15Q6/JD4a7fxVFbKuFk5t47p5mY5QnkxW0h3dFo+v83eRzcFXn1h0+m5ThG19eWuWWs80KbTWj4OwlaE8zJ3adGj8ahtWAR9Jb2W/Nvm69y7W2hlzCWmHAcB//v+5fcTu1iZfJLdtoRX+wyIk1thJWtwLWCpB7intwDx5P5r4VclIdE1AZs80d0CtrN9Ywte5qNy70+AtKQhO0Y/3Ry8NjUC8ZLixl7uAv9+Dhl4iaFQYeEf3QEaAQJrLS38myFmprqkOcp1z277oop5n3gNBOXVJeQ+mJXcSiNF6WYCKlS7MOAaXEsw52DNyC8+BVO61VM4Bt+K7c3ZRN9zn2E4PdM9Xe3tJJjHayhA93jqFL3eqrnkg/+H11hLdSMY8o+A0V89NIMZdzKNeK9VU2n+8TE+7RtfhA+pXnR9/ZCc31OtUNMgU7GUW33Xfn1DRHlpEXbfvXuTT9XNQFPrRsS7TNd4cl/39O8zhuH1qzhbZwUau8ubrpbnG/qfq6ubzcchW1G4xgtf8aE+9DW7XeSsG8XNmcL+api0vG3KrifuNwHZQy9iW9Ob07PVGih57SRmH5Qa9Yf6h2G3T6Z/fsPUR4Goysk+JcHrrQas2gg+uupzTrx3U5hseV4YTNP453csfNGB5tisqXCubzlb/BC06Dfmv+U6/vO/4WyW8Z9+QHRC1Qg/e1SZ0U1uLvHfEME1Ny/EqPsWff6e51r9bFqWJcnVf3gnv0K2feZ2ILr2ToQnSxISntJfPI3BV4C4O7jsCo60vEV4SuGdX290uP8oGrOVLcBx395Z4BqOOdXmtgclWgUUJdd7PAqKq8P+qpskKkuWzx5XLHj1pY1XOzeKx77Na9gPFVA5sWRO7d1ZAf90VVk8GThY/MwCvPX+SuxjpHTjjushEP3BMBcslrNhPEko6eY78/riY46SRGbVTx4iMSw/Cf7VG688MbZ7TZU5Ber2pH39xma3bJuYwx9fMc2Rk73YxEiuz4oF5GrdqDgdo3iwnkODEvv9YLsspdWQbt0M2Ro9LX6i340eUyP487tOC//582dg8fv/8CIYF/2DavJ0mfl9PkxuemkEi59E5fs9jCfMhwcCI9oTozts+MyEqUcLflNRKoJ4MjMG6oJXePUTy2ri+0sPnnyIidMFXcdRU0WgTbsAV8mh4PPjG2XQXm5H9udHrU+3zQybISL4994du9l8NTrQ+8khl2iVmUMnKx84y21KPJR2aHSoX4B51jFxLkcrp03/ayDBJCD2xdDN6ZgbhrZbBzqFb23z9ftdlGg/31/M/vP3ZntW0RS+9T//MZhSogC8ws2GbBf8n8guHqGzsEW8BwkqcemvoCsTEDPXo1Ix0agFNX1HJtuGP8gldbBm2KD9mfmEvyre1zNGm5suklDVhI6S6neCuHi/WJ43SbyGh15qSNBkhi0W8Xm738wwyMGOrk4Pvxrv+nqEzJMsRoRfGCx6Y9RCs6mIYby8YPLdDcBTO96Ye5twzt+jeYDF31j8rs6cFj8PFv8Nq0v+zfKtfsBwET54/ccPT3gbwp8fZIspdIObjTd0mfmemAuZ6LGdJmipJ8Rp27tJPaOh6l5Pkz/9EEyhXRtwq4OM2OImMHvXJhIkL1tiJwvO+ZzKL1/bTQ+Z7OKiqaYGhhHtxTKnn6VBTy2EMIqT5WK6k1ktUwhmAS6D3NBkI10RVcash93+NJGd2xioJ4afAdcvFZ5jeWtyKJ4NWvpnWDIk2s0HTSxgDAPrzz82J9sIS1j+P/M9V0Z9QeUQqd3vSEW2S9A8K2cJtZ5d4EbA77yLJdv502O0+21GNHtG04O+JTVz2Q1i+o7XPWSrb0oMkXtIXsWJhNpPO1NZP/XBxDZNAsdeEhb/Ra7obv1MQGzeAxWO0ymQ0lDol1dqTsRXpF8+3Z2dD4p/ubPtckRptIOOgq0aAQlDa67Gu7fNNDPMCnpbnyY0JddOgvWNzUy3yyjo1bLV0Yyuwp9e5XMYb3UowS+Jkbe/vD0wU4CKbEMSsgs1x/ahCCDJhszMnVWb8+PpzPCnLwTcJ/G4kVclWvyYpV82VuMMXYt+F/2ML+e2Nsd2+BXAU+2w+LtbLg7CVoJDzM/M2dUbkz0VJwMlrxWyX3tlPl67C0VLfFONbAz+z4/vNqsUX9ym5FTU8hJ6uGEWLX7V1J2PI3Dx2VAZre2KJedEhwesCyyaw82cDr+5hte5+tLn6dF209BfDBTaxxlrWNC7qc2FHvbDC8hOe0Td8IwPD7Tk0+KvoGBgZe/ChvQa5pkQ5HPqHMc/vMDy4u8PxcEv0F9/I9hREoy3T1mi7Ke/iSPuB3OK1UxFxPIVFsiSmPcmnlqoDJbQz9JfmxKDNYi803iZUn81p+n7k2A6Y4pXgXTjg2AKKZo6/iK7Q94FbL1rGzhv4u9/fO1QvzAoY3n/87d46xZbSYsnCdg2+az41HwPB61OtkD8GoyAYSdW1fXrd8HoJrNqSIxvA3/xvUkkOaBlIZQgH5T/I+1aupWFkeAPYiEikGbJS+QdFB+4A1QUUJ4JkF8/h/vNcnazv+caku6q6krSUVf/t2fr/k4CEtsaOKb3t0HHw90EnezCkJ+PSzwh4ncgSq6L/+n7kd4j9Ikab90PtRD7GtIXte/jicxTFLJZ/7CvfGh2TrhxTiObhqxXFVp0Yyix2uiHokkj8PNT9I/vCGRhhNb4DSfF8BCTz4oOIJsZ9n/GLabg6e7f/gHVpUPRL1ERJwCGlGM7s7WY76/jFdCRP9L9jmvKZft9nWHEZ5HIouDEc5cJA9Qm32LXsW9supaeCls9F/75N+zg2eo/vWpfEgkteddcYe98cbgTJ9ubV38YmGkMdH++CTHNf8RCGG2skLYx71XspX/gu3bNSjfIQgtde5k4j8z92x/O6CxH4f91pED830cKlMqXQ7neLxnhys2AmivZ0L3Uqd7C1+cCrG38Drdcj4z1NK2MTuPboSlfoHixTT+Bb+pfqd3q6y1c4fJBomSopDS79ZbDLk/QVFxmbE75mLHgctNhdJ9tmHTSjg190YSg+q9HyASEyl6unzx0oZrS50/zvYlO9RnOm5TDgc1M1FYPWQYHUysc05uDht3kWuCK7iqJ39d4MgQ3gteOaljVIlbOinM7w7RJQhxw2583p4rdoVLKdRz6dz9rAsn7gPzwj/RIPfCG5zImKHwaLnbUsOoZ//E4NPaXOZSWeVcuy6bgoGgWO5x2FTFmenZE+Jpbl4a2rHjDIX53cIzggKPvSYtnvjrooCFsU59wI5u5n+iD2ngJ4XX5YsxfMlfgiP4D4+a565kkUBvc7PoLkX5N+uXrpDq47/ZKsVp1jOzaBsCcsB1O0LRGe9OmRNkXLgk3TLH6bWU2KhjqBUIUPUlG91qwNjaNTKxV0aOf8HNngmeyArv7nqJB4BsbAlDfNDxL154tkCTAtbeRTNk3M9h+X37kz8i/6fMgaWhyquKqJGVghPwPPmwo3g9TynnOxLryaBl7r41Cd6/mjdPZ9NDcLE8LkFkd6P47HdC/8XupO9C/9WBGdpTljZ14OGPiVE7z66FCZV/feB+McTktKQcwDo8T2ZhqmpHyw30AN2+XOqPvG/NcfD7wsnoZq9e6MMafQdbG8cuEDTl1EVNPNIV1vWmC57EnITHPkHafJ8YlFxj0O1hflAzimT7uTIonoikD3NjxQRb9NpRs/PxCaA+TFXICCbLFf5dEOfyeDjYLLysnp9BPf/HwL94WkIgFV99VqZn1szceoqMJU2aXIUhWWbIldRJgs9FjK+z4kmWLlkPml4dw8zk48fzquAldtn2M1Udo9dvHh/fRdKoY1b9bh43Fz24ARqhDZcruGTmNC1Em/pdj++ULJdFVqYDycExxSDFn0PMZLXDvhzsRUf5GU2eNCWw/ekL9wLkZy4JcEdzg3oVT0QneYoG2bAqzeNBYnx7GdPq1X+isyqPqa+/Gc2k/XaS4k7aOp0Xz1/9Uyt/8uU+XlaM7k0K2hy+Q/Ot78SSJfodyrUfhGk/evEhKik5D1mBzIPt+V7qzDYa4OxGoDJotvLH/QOIsLjYGVTFYOdo2mFNgYwPHP2NOpkJXKjE64Hi+Tkb97bIPtLkS4+TEVT1d8xXoWcQ4+u18NlX5mMCn/72oN+RaNl33NiCXe87Ya5TFGyuz0VHzMEZsbpciHp7o/VF+dS+GZbd5s+mwFTvUzv4GmwX1jQl9rhHkr++OlOXist38RR1cT08abubPKVu+wdoFI01S6p1+bsZb2VaA5/P8oYaFh3jB9XoLw+ErHB6kN1r00v5AE6VHbA8TYmw/RF9w231NA5tVaLEDtQClvq6NU18+Y+JbvgJfbI7YceulnA/R3QJNpwup0btErTL5CXzc4YaDRQj6+f6kCxKdQ4pt1qfxfJy9COlRdcHpM/eQ8Bc/a77RYNq0rH0AtmB8kjO1uZtaLmaQuvBhBg2Rc7xljGv7CODoudg8SaScN2IIsrxfdCLQQc9aK6kjkHa7PbXXW7ALfyi/cL21QET8umTM6/eJtOILPagcjbvIeLtw78kdO0JkoV36didUc0X2bzystDIT0WaDsAqNYyyvH/FRVfQSNXtLNsh+sxFhyk8mmS+HAU31otsQaE+bWmpslcJGkQuYv5OJM2O10JZNAxAsl4geapdfu1ocQ3idbttwuRxNxvxn7Cp38SZQfzdN2Wwl4wn9wxectB7jzVgHdAwq6jzm0mD3uuCV/B45NLltNv16ZdJHtYkqavHPvbEU5WQp/OGTYO0h0Zj5n9kHNzv/qPF0Xz27bvZn5PHUIuE7V8tt6FIBrsdbSDX7p5d0/NAQlmQaCXf7lsay/9YqZGluYk8hoTHoRf2Bu11h7Ju3c7+4C6+j7CifsS1/796K5ymIczXj/de/xT1jeQRXzm6xx8SpZ/HjACC+qgPVFaobu2BHdOCcysLuIcoy5gV5Dm8zN0Lupw3GqPCfHL5+fMduxVJv2h8cFUnP1KfG1tyhqZeQCUF0/dFDnszsp0RRqvyUkxXGOD4YC19wOZri4Uy19jv1892ROcRmraf7feDEc6FmX3Q95RQfvN+2n/f16/MPP9gsFz1tT50J4kJOpK2GN+vXeIHE7lrqsuDA+JMzdYB+5Eidx6tj3UbKc2TG9wG7eUwZi9SoUliVhtR6C3tjPjXYRe9vPuBoV4XeogX9gjA2jyuffssphmsK2VE847huCSPD5a0qWXsuqbMdhGzibGmRm6cXUt2tnyXjiHNFYtnyODh4UsxWfJBP2hZjr+O36P2Xn5zztbB/fXXe7B+8M9LZ8PrHz3OP7ArJu6mntilgY7aJqwNvpTt6cKYjGjfpVQXpIuRUa8UGjS+aC//Gl7RnP56lrPXRH785BvjeIiVRA7tX96ZGfbv2wiESGmAPVBDe2TLUSqfRQl02JzRuqqCcbuAvgAA9w+bEmX2nOcEAkYn35FqODZvi0vuggSwEG2bSlA2kriVvTxuZvPEs9QtkiovsZ7/BzmM2vG0WvJ5whE7DPj4xj7yc7UmJmudEnWXe9R1fcE94dsoGm6m1L8kmKws4x9SkrnrJ2aSOrwnEm3qjl+vraiwEnQtEzlyLg4KI3ni8TamyG44c3bsFlNTgq0kJQH9j8x7laLxMcwfhYcjpPT3FbJyL7gM44CYapK1urHhbQXzVC2op0aGfl9zPAQnVFPIrvkzuzbLhTfU8lFnwQ9N1r3JyZ309shiQGNPtGQugNk5Cw/1zLJe7bp5l48a5GLOexPMx5CPYCpFBT27N9cvUmSFa44F6RBvY71ovT3C6Y0HVr9oazHlWC/KyU4C1VY8AFUDqv1Yrf6E65vSQ7RXemIXtnqBLHqYUv7ezMSrX+aPc7S/GlnyxGevZ5iPf9ORCvYQTe3pehgG23demeLF0tkxMPSvGuf5hu6dqP7+CvQDovnbFWeNlJy+S/oendF2PflZ3bQoDqlx6MA59PNy/1xRep8uW7seD4FHejNU/fUwSR27RWO/2i1Jk3BDK71ZHZEmQjFa+xPo4NT0BzrRhW8g7bN3NTz8jN5HBmaaQrvmJWISWJ4Rlevs3/pGeHRnlTCgJ375JOWzT8YoiKm6o1Zk7b+yR/ZV6b+Cw0Y1tuZjHyVc+3+QUbq9zGJPn9fdBcxTfyDyek0y4YNEFzdjF9ADmUJLuk0Vgmekd4/asxrsVX+SOQx8i2YSwKchOFVr1XMjfI2BEGF8mBIl8C6VgacvZbLcV5DX6Er5Plmx+7I0T7NA5p3lxOZTCt3+ryrarbPo8XI7xci0sEbrzzSFKTIxsd965C8oXqpNdDno8h3gv/+lRbP84yZtf9CyAJJsHem0CFo+Tt1/QZSdecJhOabxc9QeHXufvjnzSKvFon1YN3K1bQLUJ3zw2q2EFXain2LzzQSycDvu1/nnq2Fw0EU2O9HDBvp5C6t7eo7dYu3JA1tEQSK2rSzwrV6mALdfzGEdllbGkvQLoS8Vh1fpa5TJ2DwGtej7k3YNv0DV+YbxFe7I7ffiMPmcsoucrN3Ckb1/G8L7bsnzutAXv/VSN/9U/7+3Fo3p5TXvhJjsE7tXJ/RtvxpzdppPnZHugl4MZGAvZLBWUayPU/f71LufLkFVI+DkedgaZIep9f2cY6v0DH9T0yaaEnj7Q79OIbNTKRcI3mCxQrkcF7327MWbUODwwqc7wQWlFj4mmkyDxIgshv12KjOy8SQWuVDdUH59Txp4zllHdGGTly48xV49FhntXiTQ41r+YHoKvBSk3OThuqrFn9e0+wTkeTaw+2WLMzkYdlCk19PBSyy9jeVjRBErfOtgZn2Y8bm/nCXqPcOG2kCqPIP0Tgfw+cvhgelY8f1h7glK3Amzxz9pgB3EOlXV+6fHbz4iQjVzBlV12OAz5omfyxbbganwjiu8Xiy2jbfFy7j/HcI4/mrFE8Ub+42Oykb+BsfLXGYR7EmDjAkE/Ovk8KEyLTHxSiwb90+drvYAdKeWM9i8+Bm0Tk5Z7JmzNdxF2iX+i7rdT2IxblYDPSi/cPrh9vN2tD2us9RnZWFnYt0+2yEDjieDzWg/wcn9KwGdvD+sbfZtNT9QWKGd8iV/3y5eNH58PUfS7YBxoomWQaxHKsOp3AgdT85ZN1hcgbE2bnreF7U3fsTJBPt1f1PPSOGbuNfnC+SzUdI/eBlp8Y5mUesv1VMXrkYABb5+o5j5ZmJyPiTftfnvuz08g7+O99qbz9RjBo6I9dY7FnDGBVF9Y6q+D9b96sdtjET3m9wG7l66NKdFsF74QbnD40wZvki5Kg+RG9rH7vnV9UwuFD1L8S7H2uHCI1dPQIJ2RF0G3vjbo+Pn5qD6t9bdyi9F0FCURBqYA1VLvULae16ZgWgumvolqgxzI7wv+l9KQ7QLGaKU8ZXkZ1eTv90pmZWoEqz8TVrp88ZhcXwWQ8IVQRw3NcjLnIQSPS25k4O4CGtbvVQYzvPzVJ2j6GaoMhxof/uEvix+YQ9RSTjRIwpFNrFcatDlbVrjTt8wYrYd3hpMTP0l8DfeM5lh+ys/LtNCDgqJsMkfLhXLovqF4GvyY7G3egsvmWoVT5dTx7I1TClKvtSs+F/GcBbcnSksL0/1r23rUf8Y2/P2e1G4u3hKepRyu9ORS7cpF/bAVnxEURZgQbkzSuDHdnYvKyhQI7J6JQV+44dEff4bvvPjnj6DTIl+pLWlBKax6BS77ccTalZvKmuGTD1ejikKx1XmDRmpS/fkpIffo795S7F/+nz9D3Xp/ypbzfPORc7HiUIgJXvHzycHrQpLV/zh43WvwTyCqZUe4ixcytq4XajsxChXpxXujep+eiAtZHApJsXjscDJteF7lmHQ3fEZ/ehGY6pbklfluP3FmPMDPUZRwWfm2y8IB0FrvYNrqtrfNKHmilX9CTsi3Xuci0QbQTz02d61pjMKJI6jEOzfcHrMsHhXndUWt2IY0CPgXIt1Xuv7xD83A0XuhFrMTPC47n1opsrKpPh994Es/xmbxYIgNk5ZCVkwMq8NtF9OiQQT85d5Rb7PrDGJ3Ug5CwT9oEOeesejqXACZlz354+Mlzj8pNNqNYUMsf8bcHWQRNptFxcaqx+fn1QFkFdY5XIRP7039bTDRv/r3UyP0N5/Q5psYh2E0GXNz90I4Ur7GuJkom7u65JUv99QIb3+Kkqz+nqJcYyWUVz7szCC10YrnNF79iFG6GTbA0XFXvonR0rKygst58ag6oB+aQ/cnQNvJERF/nGTUTzHiQDwoElnGye6ZHH10hXzGH33ExIhnbEkDoptng/2hlMplfk+q/LvJMjVub8kYqrxOITdkhUzOpKApUNoKiO0EVL/ZTc9OXWcjdW+EJH/YUU9Kp+/Qqk/xIcBvg3q2kIBHL1KoBPyL0fP9LsCDLU6oCIbZ88pxDwrNfAXb1/RsdMOlVZF4EQWMb5u4nzeaYaOHo01k1L4BW46Rs0D7NHka1SRi06UPLbTfXhDeS8kPkdfUnSE8XySCTj83Zu5RLuRMqUIabbOTMc5cnKPXw/6t+P01FmHeupAvo06P1yHJFqR/Top9jULsyz01yGVsLSjH5UB47eKU7Gc5TyTJ1mG8stT1xufV4WCJfIXifN1SzhbtCZPi+Vg9uz1aXls1gZ93eGKLDp+4xq09wCG599jfPROP2fujDCrP8RQ7zb7843OZLY5PjfO+ZVP19nJ5/b5QXJKfx7Sh8yFHp4XMKA+QoMQNB+bn6WLTPQzefAm7Drj2MlJ9cw56Sb2LTzTiVsDmird86xn5n17EarB2Wf0ZqginW5jRoEeE1dLNs//8o3BZ+XYuPt0XWb9PSbj9VLOpsHUfvB/qiK63FZsLU2qQdpwiHBemkc33QQN4nwINh35vljxnzwva2KlHnVdjMSYlnP8vnk8SJ/dzc65t8I+fD94LXoSmwnZ9RK3NKdwNNy8WnA2JkD1zDnV22yWeVeadYXOIOmIogpzRriwWeD6vH6LsZDtmKs8lEL31NzXYbMZrU7IE6kYj2B3rvCfGTjkjd7/JyG+nzn17DGGtj04GGbBQlmx7PwhwryKXmke9YywA34JVbxFpc9b6+clkEX1P04E+po2DBOsZ8VBvoaf5iufz7VqH8vennLG91iMkCbkvqIJ5wdmF12LhQOgX+vT3CDd1KbJZ2AYD+hq0JeLMX8t1vOmf30OYPJTeXC+/ASnD0oWL4h3LKb1XrnJfu7DuHynP2Cf8naBuPRxOv5rv58v++0GvjRNhh5tmgz0MNVQ4+1njv8dxpudjqkAVrAve4+oWs25/kGEZ9QTbvRcZo/69W5D0E1v1/93YrusP6/rT1d/tu0bUmn9+Mb/6kcPdxAk8832Bdf+lZzydxvNffpPFrbmS/VLhJNcn4f3PP17+9JKgo4Ie7p6MhLUeBeuoCThYqkvMjCkkyBQnEQfAGVkvosBHwzfkqNZotTGTOg2hrMMb9eT3zqNrvYYcS9v+6fF+ThW1U/hdvPnnry1mcLKV28uYCb+7eYyS52xC0Uw2zVe9Mv/h49Y6P2h8DWs2HakyAc3PT7oftgpbBCEOFf+2i3BA7Rot5+02AlNcROpoLPKmnKoyeAJnY9X2lmxY80ta9VO4eA42pirBV5TcSvuv3kassCoC2zb/4WPnvg1a6FYHKBW39Jh6v36+vd7XPz8UWwe6XfPNDf/889XvDNeHVUoOxDVH9o8h8P7tD6x+/uo/5CVNk7BBzetE8R74WzZpnkjAN+p63c9gJX2N9wWlb45g7W194194LER4TjefWix1jbE51y768z9MsnuXS4+IK1tAJ7KL7kk2W+93ArqsBdQwuwKNleqAXOFlIv7nafQTvxc/IJiaRo+J3pfDARtfOfrdcEg/hzYbbndlkdf6j6D6rfdbwtUmJNW1wuv+lbGExLwqM8veZDNHqcejL5zXtgtWuPMuSkyi5MKBcQOXPlZ90gongUBln99YJ2tXs5DeBTihp7VeOfJ79on3VxjQ1w03J5uiNf7Ev/mnvuY+Sia+lytM+/mGg9LxM1Lu9xVwb/TE3vNbspnF4gnFn16heAOqsfNsIYVNSKTwe9z1JQ2PhawcDP9JWCPUjOw8UUV/8anBohlC/LZzWP1FbGdPwqZdP+hwf7CcHm7iIZ64Xl2UXhl/1CfpI/vTb+KHgI5159TH84caIaz+Fnb4e2mQP376W/9TkuXevB7wR6ufjQ9zx5XdvZkTeagPj3BG7rZc9w+av9/DwatTvOF23y6QWf6diA9DLgenas6yNH9uWD3nptEN7M7903dUFUpjvSRhK15qD2Evv2/eP7zO0qeJvU09o2k36Sbs9J2FHfpTM75eXBdMa8J4fzO+5dwIvI2yrf6kpgi3cqw+CQfiTb/RIINtNp3F4gT6/HiEyv58Kf/5vWSe9oTj62O8mEfRB42WATZfrhq3cr/hZOJEhPrTWfOGt/wDpCdqhT2i+WxuNtNJ8T2DJ1wlRsZ2uX1TtPrL+FqreUxO3toF1jqxUOy9yaBt6Kvwx49GI9SInuzMBTJ1FXbDxxKz6/ucgLwtW3zAVoWYsCsGJfOyb8iFUWRM+decpOutB6z5ly4b779eRn/7Fzr9Ddl806YUcNv0ZCt1hbEA57swaEocTms9Tkza2srO4H748IujbNq3iQpRvK8olsV9XKqnX4I2e63B1l48eUyIUAfWryj/+eXk4qUW0DB7U/9VVmi23m36b/9WnLBnDGPzWWB08xa7ubYrWdl05j89Nn/vUjkehzFEH8LpoWIzkwnOWzmjbSgHOIjz3ls6R02UIXmqODxyOzQf4/QKP3640iApvh7TtZuJfsevT9f1j0kmiSbaRZOBVVHWsqms2w9wmnqll3V/qPkVsyArfe8Qif6KbFH5SPi/jhRI//tIwe73PJFZdey1sbhH0MmMdWpvn0JcRXpqwghXgQjdm49JfMIERk3d0hybdTy/imGC/QbrVNcVNWa4EQfZ/EnRCJvyWy7vo8SL7XGysdfI934qaGKiq7x9U/xz677JdVsH9dvu8MHuadk3e+rDF3kcDfLAYEs0CDZYy+cbCsZHQ4sgXRa4fb2SCK12jYdcV3VFbCYf+4k0x4NcuRHy02QTsibSyh0tcAL6Ns5xgG56z/TjwQKzl17hjnchXgWGC1TYOOvb2Gc2COHaeFH0P/g+nUi/ZDkB9NCJRmpFx/GkKnmOcm4g2BMxH0+yqaaAcrIjPJEgo5LbcCCqrMF6/nvHk3QOXDinok0f/G4y2DSZBTwG40oADM1gkxoUILqMEkG+JuXIuhkUfvz01LTkrzebmfIER8jP9Cg9juUchPcERvkWEHn83lD/jo1GYZNvYlVpt/38yzwT0JncyVLD2iLF5QR0NYoFB9Xn2M/ocR+guG1KrA02jhfg3hVY/AdT3V0YGiXllqBL7uv0eXkHHrui9Ix+nqPRO1k2fWW45APFfeOTzeXSGkTD2xM6XrkUB/XnEpMjDwQOCv/Dd+4gZ/OdaCFEr+Y3buCc9X3RWwB9TScCYeV59NtECaj7m4oPqDuVs6L/TPge+RYbZyQYU7a4PKDrsMFqd5bRcjIlGX43e6Ha2AQxyaFWQejs37+/p9n01pUN5gRsPqsHWvKhskAOsnJ9FcpAs1D4OTzpdX0bTsrj8YjaHMnCCBS/Oi4em1gdlLMqchjnbsKm9ha6oFmdTMA322yRuTGF4qFkWH1vRmNOBK9C8+93DtteKcrpSWMZbrK7pZhs7gbbBPsc7Nn1Qv6EJ2MR3s8IhMItsH8ytXK7sx0XpZ/DFE7r93Xr98mVhz/YrKqDt1PwVEncRmHU8eKybI/onStDPATUiZpLNnvkZcFZl394b4ZqPHHtXZYP6kelnjPJ/ZyzRIC8o3noR5XRz/qzqSCkek79kXQGg5sMkIpWT0AxKrSI0pHb9OFdpd5x6uPxxu05aD3m0/3NKMpelPsF4vh7pUE2Oll7SaZGOex4SjaHYsh+79hrkDdaN2pnZw/9QlvuwOC+O3oQ3HO/1D83lVN3MnCe3mm22PIzRZHR8oTdshtq5LNzheFO9tgdvmdj2c1xAvuDuDZuHTI2H/uiAH08yhhvzreyVdy6+4sHnDLr29PRZbqSFgcXHzL10o85yny4/EqOBs+x7qc3T8+IjP0YRseO9D3b3gAsJwzW+SvikXcnS9lgEMgVCUJJUPipwHvs14cnuKxc0LP8SLz0ycnP8+Z4uqfYRXKcvghRfdkj+g3xkmY2Z3y4q8Sb94a8NhblD+Fcsn94YCNjH72wlsRyTG631xUWo7Ix3r1MQ7hvMg6JzeJTNexOGU2TtgCfpMdQ9DazUZu9kMjUa1z8El5q3B7jVofd8XELd8O2NGgbtAATF6Fwt+mMbIHvx4IYUE92L/UbT2XVVfCBysAnaT4gYSILUYTFdWiYvrVyd+vvKZgbcX0L0K1Lyo+PL7jxLIVL8ptKMkiDCmUvn3GQBdjgwbk1cDHDN9Uu8dMY8z6N0PN1E4i8P/wy9sl0H6jXudSi74YNSSUKqDUmQlMui/oxi59fdJHeP7y31kZf74ok8BDUNz28CrXkcfpI5fshL7Cxq72YfaNERJTjOmolvlKS4VhWiqZ3PVW5tvMm+yfxMKxbiD4qt4xhcW6Uervb4r1fPrJF1KJKMe3qH19lW3sOddiNuRu+Nw+HkUmYTwoObx0196n9N54UDYr2wZ6JymzeTc4XxkCtqUbtPhvLUQa4H54FDdqP5fFwvIaw/e5M6lJri95LygvKMeI+2K3nKl60nUJQ8eO+4SIdg54pr/kDXbC3aPAYNSa8tUlWmiQf6EstongiZvqEKvPrkJ8kns1c+lkg5c0c+3K5GAt/Vp8Q3GkU3r/K4LEjt7fAImWM7bpdDHq0Dh84qsqLqqKzK+dePPmKmLMkbD+PI1p+5+sZrXyL3ee8iydlPp/Aux3ykPOGtzcdKPggB/eSCPbtnk3l+d2h4Ec6jK3CLpnumAPi8u66zr/rTSP/iFDY6hV1CiVmU/oJCGRl1pENv9GzSTmeEmgUttCDen2jpTgqHXwzfiKQSiJjxtE7oRHrIXalDLxpPlZPWOcLB52Oy4VanAllK/dhz+Ghb2iVFODWS012lpezaX7XCZqao0Ht85miccU71N2sI7YUgRqTCEEF2swBNbqoNdilv4R/+YLvBxZ4zfeNOhRmhkt2qXpk8zF+6wolmx82wq9aLgzMQWk2LCNz0yRoAdI0supdRapF3NtgKptO8KdH8PUyoLFPcleGqxpjVztcyynGgwnWtVxweHufS+KeTjbKJ5LgYLk9skFxMh7MGHE0XPFkvF33H/i97Jgm7ibIZvooJ3Qyj/of/3rT+fUOlaWSN9hJ7cqYG8+1UfewHHx4qnrP3iwoQDmeL/R1u2jZtnrIKlpALsgPukO2HPaqC7xU5DRVDye2FDMiiOwakerJL+rH8sJyODy2FQ7425ZN7Nh0EIzDJ5R2p66cSU1cuZuyH5nkVsqW+qXq4OdZja3TTc92X/t0VSYfTHzq4BdXl/PmAx/ybalabvbZetb5BBsW37BjsDxrI9aJ0GGLEiUZx3h+TeMATfq8/MOPWd5eVND8Zgnhen/209ZirkJFbiGAq5BNtbMBmN91jvNN+e2ZIRkDqK+zS1/PLi3XbqWywm02jNqIs9lkup8BqjI8rPwceXOliCZEY6fRAHYq25KxIn94jFc+99itvyfiird4T4NTyTZB8ITvzqHUudk/Np0PLYHDTqAhAkrK+eFFCeDneaTWpBkZP5rPCM3KFxPu4F+NWdGpid716Uj3FvkY7I8/ywu6k41e3NiMtvf1iMj6Ssa+qNiSHJ4J+l54MfybH8rqmw51VFDCxH3N2E7/+iiRHha1W6fpybFii7zmEzV/po2m/uAkcAMnI7c1PnbDSUnF6NFxoRIkRrYtxOYJXN5c6UUjYzljRggqNnDAGm3qku2vTwK9m8zUKobV0hbcAV2uvks1rbWypXdqXWmDZUtknOflnBnrLWKdaBgXXewtvfbN0Ypv5DdsS2+Wx7SDcbgwHH4Fms25cefh2IBBtZCz+yn6JO4/fNuteEGV32RJDnkupPS+Zta7cc+BAHaE7drZMTaepAqkxnqEm2XTohqj+gTd0bzTcPYu/fZPz6x6jR7yoir7U6hHf3oI+5e7zBadsivEzs9b9bdl7OokO8HHr5U/PDLGoTlGyujoV2y3jl2yj6dF//SDc7JZNkdGL8NN9HyKtxvL2C66coYfvEQarPp/4Xn9jK779chcNrbZ4u9+OZj2V6cul00luyf1Gaq3/8T4tnXREt7aBdLrYUMtXTfY9LpFXyDWWSO7Vd/0/Da3kZQeDDJ/4jIj4jvNgbxbhdp480aTIqU8ENa1ZKe4K79n0RNMKhHs7g+HbPct7gLEIPUEdgbql+mKQqRnnIXNGMdsnj87X+rgfsN3Ly57djMSgOd8LjF+dnI5rOuDaquswgmvR1Ivi8OBUNkU+7gibPaFx3qkNDng62dQGampCusRXQXj4/ZULgk+AyJKM5Hp2IW9sGFgoQen6ti+nOO1UXjqys05f9B0rXdYWvQiEPv6I/Im42NWoIOMjpZyw95n36LlousczPP3hfdDIKw3Ci8ELmHYhPxO0vrt/amewIA6xOZBdtjk1iFB92mRsKXqfT9lH02GYWN4RBqXDC2y9eP/+JqG0VssSUBrC4FuaNQ8Ualkj5p95Gd5c8h2GR2jE++RKf+NP39KTr/VwvKJ/vSqe8lrNp1etaqs+gcbv2hgy/guBuUciRp+rXprsH8zD+3mMIRi6WyygnMSFU5uJK/rwRh5Ds0JTLV6Y4OvaTzxZJPCp6o+NNfpF43luAA0yrzgoNEbb8mr8QNrvlDVuNgxc8tBltT79YR1ee57suRhh3bxQ6X7YZzYfEnEBjrPLMgv6CtvoZZgIkndS1j9vA5rfh4FKN4cCTnb7xgrDKtAE5wuoU/JJ17rmxOSPmZNNZN7lfMucS3Z6krzj/9jnlbRR+l3453q2c/vmyi9V2itB/FBcif0hyfgSaYdSvKiGXMZ8DJ88p+KNcMxs+F0GD/yxQ6ncNK3xOtW/lKIenWolsVCVolVaCHlde7pDfdeOYlVaCJOb31q186NTVpw7EAPuIEeUnVmXfUyeOUoxA1pfs7k/WLOiZAsUCCIpoM3vaGWodnMGWFN9O6n/qAlCoc2FQ0c0Wdj9ZB1OE8BXrs66MZolaKPnvO1pP7OyPrF0R86EPOaYAxn1Dd/9exaj2A9WAo0Ruwjo796FKtFlLHHls/hpgoP8vmBHNPtNrrCQS1UeiZSng39yxYRupJN+Fvzf/IvDofioE6p7W7GuHY0L0TzrrphOz8X/XDj5wW9xxPFB8V9lzRtuhxk537Gxgkp/aSO8Ue64uKDfdtMekbSyVWqB/aoP5BvtvC+Jipr/UeUVZ/Mu8LuUBDThIbJ28m2jqMtMCAdKH67QTz9nOmK5CxV/ulTuth2BGlzaMLdcLFZQ4aTLLMusMNN3f36ITupHPwuto+d1V/o1vwH7afMf9+T9e32k6I/fg1C8R3P2ySQ5aN83FH9/uNj8jg30z8/QejfojfI4CxI6kyLes86jv/w5a9eoWZpJt78eWwFWAiyiJFlTd/uJqdC98/8Cr8rP0+hfDvJsnHPqadlPhOcJdeRFnX7EOFpYdNj9zzJa/5j1ekeiHnso8LpeurpX30xf5TN8Kd3aTj2L48FtpCDfEsImeXHNlse0IawOUJBzeW+sI75AYFX0fHY+9SVMXzO4/OfvyOm58ab0/L2Qa+8f4c73/t69MjtTTAlUaLBT4//ux6pPaXUU7N2bf+7hPB1dgf8x5+kmNEAOjqecWFs51WvFg1cg48USmosMFJoMKDRUJ84ijuLTYk/n0EgtkAP5KJ50yK1FrzbqKBumItsUB+nClIwZXr7bZV+GaRBh+m7Nop9i1G2sMGYYNWn2LnbRTZz8tD9qzdfVWegJThUHViOH1CfN14lHToQIdnmO2pRjZQzd6p8eIi6i8PP9WJQZTfroC5tE7aRjQyyv5gi3GFpQ64XSkb2dcAjG7mncPsWp2wJaRuh1f9Yb0062cLO/gldm60Ylp7VGUxyC055cLqO9/vQNHZuX+aKcHUu9PAo7HhxuscTwNVeODgHsTFP+yZHa36s+GqxWeW+EYp4hYQ/ctGM6YkvAoJB96j1GQpEmjwX4c7NmGqtHXvT9ygTxMflm3CWv2S0UapFUS7nip63Uhsvf39faTjD2tJobGdo7hVS3srp/itWrPvBc/nTD2Fz47fZcnW1Alb/J/z1W5Kxa3yXoeLfiNCv+0bTG0YZCWdnCHd5YZaL/XmK8Dl9pTXfH+W8szUXEtUl9LCuH9ts96JSpx8Bh5VwYAvjLRvKVuz/+U9/8YYmi/PJJzh9S6ofDyY8y4tDzxE9GWu+n//+/1+8G4vjxl+Q/ENLhL2ueqteTdHq5xCWZiZb/cbvH1+s9YppzIo7dhBetBPh+buXLWA1Icg0wTQIEiMm1kWzlOK46cMtfLZe/3xILmSb5EFd7RehwXrtLMSdGkzT98zKUWgM9R+e/PnLq//2BK83CX62V92bPmb1+Vcf7cdAXn+vCJVVT9DASoRsPEeLKWt2V5Ltn36QcmMAQ6ivRA5zEY3y9qGCBcVI1002tG0814XjGWYiv+e4nwPrJEB32IfUf0lBJvV2Fsr+kDTY/cy2t5M+TQ6bOlb+xTd77qUGvbP4PwAAAP//pJ3Luqq6EoUfyIaIQEKTm4BcEgRE7IkiCiLXBMjTnw/nau7e6a81hZCqGuMvqJhUGeO9/uOR8DyvU05iuwfTPNcJPJnbC+HVd1tOyZ034MojqPqICJtfQaHBeu9SjJLXBKYff6CHJsSGcovKuUi7G3iVQUPtshVLhpuJ/D3/lZ9mk71fJliegIONt8FllBZWCpdjrax8mEar32sgdyoF+se/4Kat4O/5aXA2XMLPFwRWfUzVrVzpJLjvPPjjf8dLM0fzIZs7+KneKtYvYNE75bJvJNzFOUqFXI/mlV9Jqe1g7Krg61IvKhz5p++XzemtT+/7oEG/HSIEV54zqJ+rA0TFEtdpxTkYy90uAYEgy9QW869Oj/03hNUTcVTzQ7On4rvJ4ffhdNi5z1t9Ka4Qgf3xscP43fXR1G7NCoB60LCLp5BNAmcpwGtuV1R2U5kxK7lJAG4vDZmBHEWLj3sEZlDX1OFNjfFRaBEoP5IDWRqI3eUEWQAXvbbX/kXJ2FUZefi6Rg8kmZbrzq+gUeCj0gSsgRln0/xaeXK5uWDrXOzLP3334x8uvXk6xydC+NODBNwOovuObyiA7e7wwUc30kt2bUgADbO+ovKaqS6XQiEB+vK1kEw1Q+eP3fkOk0th0OPj8Yj63XhdoGo3JT2TUcj2i62E0CkXiLbbeF+yEzJN+BUeLfZ3ewbGIOtTuAzig1pOv9fXfg4P5Uvsk83KCzsWGyGMFlAh4fjE2fLTx6zCATXzIdCHV1WnsrzpRQJOwQssHLQFKAYmpFiMtxGzyO0GH502Uf2SXRixlycHLyZ3xop5rsrZ50+8bHxBgF0Z22DabWABf3wafXi3nxeHSfAxKS3O1GxgnfGwQrDeH5msnVYuh4/Pw+/TiUhZBQGYWoxrWNCtsfZ/7tHUUZX/e16oSCD48V3ZH8mbEHPwevrYwVx6BGpNNksflZPeVTXcVVyO0XGwwbwNm9uP31LfErjoJY23BsrnpMKrf3SXkJsk+awhYe1v4X7AUpaL9ZkXsMadru4UXsgdAEHnCS/xIVv9ZQjJq5fJpkrGkkzmEoK1P0ePH7nJprfXG6D0xf3q7+1+5XsFWCphS511f7Eku4eSJocyNbeJr0/2ZRJk7QgfiKpF7C7IKjiw9WWfHibfyvgpYR7MPtcIH3KB0+d9oXTyM+xviHf2mbv73c8LBEcCsfHJhsTY1CJ/d30ya8einLH+JTAfzwF1vYkH37lwa7DyTwI1aoJlULsONEGO/urj8uPHAbclBOrrK2+zchx+/TFSnfGQ/fwMWPkXdphZl5N79icRvhWDnpmvR5z3sN9w399f67/3IqJZkgTRRQOEJRmnz+RQBeJf/f31y57TZ4Crf8Q57zo6Hwy8A50na9dXUjgwGOErlN2v+cRuNJXlHy/kazsl0lBz+iCfbjdp3U84DvCe9YVuvn/1kUbTZ9PTtZ8FWIFV7PrB7H7O6dSB7QWm1D5xsr76qU5yX+YXe2u/a1bJ6w1Rr/lI4PKwZA6oUtieFpvsNV7vp1msJKg/QoXsL8XTZVgQG1iXfIgxOt910txjCUaX6oNzd1DdPcQwBbuBXw9+h4U7X3M7BKn4NNFopZI+KbubAQmKnxR1fKEvr+t0Ww8WaZAY2Xu3fQpVCLNLJhJApJlRSJc7dKODv76Sp0bL7Rt0MDkW3a9+6n9+qg9vERHusdL/4h0e30/tH69a+bS8FU+Y8MHeiHYr34KpZl+wUmyP2TS13wXgPBnRmt/d2SNRAOydffvjn/NygzwMrg3F+VUtyyXWzAksq0W5JfdjuahYDuCvv5JtsFfykvnlIR4SCyv67sSW883JQd/SLdqaCsrmO4gQrFvOQVPS6ToTb60E7+nIkJDE+4jApLV/PJx8kyLL6HbnC9Lan6HHlaffKQwUGJsCj8TysespoHz446PY2Iuv/s9PDIeB0cg1O/evXjkX5lJXoDIbDlqTwNcp2JJ51Xc8F9t3aT/mDj7Mfq9P53j/hlMVzWgLuR1bnq9NJV3xXcWuM+UZ28m3Ae4kPsG4co49T3O5/ukDtLmqej9vw+IGogkAalVnYdW3DZRSxSaEP+2bP/4v/eqlZ1chIOt6Slecq9S/+t+SfoSHA/+fVwqk/36lwB5Cg7q0ldwqFl0bDtXXQHtvPoCZu345CK8Dogrot4AkZ7cDVIYRfVxcNZrObhlDMQMG9XNDY8POuW9AZm1z1Ow3HzZzA96IwVnLsD9+zJ5vWafBVg88HEzvQ7bg/VGArbqdKJLRS6/8k5hC3tjz1DB6sx8S3V0guc45trSb1i9P2ZekBsY2TYut0k8vkw/h5nVbiGi3XcZuwmUdZOiVRLK+RUb5uYUQpOobcdG3BfMFK7xMNp8G67c0LmnnyW/YbyeRuq/9JVpmflAgYu56drlJ3Tkpphzu6VKTpTbtnmaP5wYUrX7CZphiNnovIwSh4+3wIQyuLpNTsEgXuW6RqLp2ySgNcnjfPkW0LYSOLeWmFqB8zu9UkanFJvdseZD/6Bvk1vd92V30WJH9hV0I97gOjBytoIayFNaEq0ISzWqsDjDv6oX6Tf/MFl492/I+5UrsbBaf0Zuz5yD/HmVscoLoEiMb31AmpKDOM9tG5MlkDp6GhGAUFTiatopoQGfUKuqLZhexCys46CV7ler6hmYstkkMxetHpzf7fnNHhR5vEkZ0QKIpHaNZ6jIbmDuGkHCdU32WuYxA1xF6HGqD4A7Ht/CGiMt1erhfSn0Mh5GDiWkgehULvp9VtIfQvjQaDu/xh83n9a15iiUDTSZmEdteqwBK5/MJr+vT08dNc+Bro5fr/W+jBYZ2Di1vPGEn57c6e96kDqoSr+LjkXVgvhymBdrMs6nij2d38rPjHUCSBNgwkm1PvlCtAJeOKbY1f4mWlr0V0KjfguwOOl82O9UTYDBVL6zpvFCS48bO4SdPeDLJ9MuWcpdzMPBmgH3et8HMvGsuteZnwaakieWofOZYxieVUP/61MrBGZRKPp8CAz/P8Bux7HrtoHBFjDR4u3PZK+tt8JrOH+wnqgJ2qjM3cLoWV4yLqOunrXO04euIr+iZvKx+r6hqAj/aNFP9zLhouB/OAagqqcN+3pbucpkADwWjnsleDTR3tJ9lABv1U5DPZSuySVbsStIvMyTiosWA8fNrs71OrUvVpeb0pUoCXmaliLB2+Ijl8s6FG9T2Hw6b820ffQ5e2PztL5W5cUSPrV7DMLpL9HDQk3Ja9kYIXUfqiUBmPeOC/dsBt1nPMBplvl/ITY+h6rML9QKnjRqQKaEccXpIjSokWXu8uERqtj1Z80FdMnqfYrDGN3p7TNOn9e9BkfgHfCfapH+45thB/rbE2Lw7CyB8JAfwfvqyNT+9weBYAgeDtntQfXlJ5fjLb/1LYuhjiTs2cKQisMzCMzXe5RhNfnV6w/sHBVQfh5fbHtezi+/HzqG2qs9sNqbuBjepMyJY7MaeaDdZA/VGRNjcejd36uQwgfVJt6lxBb2+LEcDwdsh8snOyJNsaeFiyjfrg7BSZ1m0bI6FIOouOlEbqrY7gcwO4H1wInxYZluf+qtTQxcXIz44yyWaqnlaYGucZlJ5xO4ZWepAOjfIIlLAle6k7IYcNDCxsfq5zmVbqvoADbGbsLl9qW5nmY0JL33QUMOPGsb8V/yGDh+2hMnLQZ+dtufheeCO+MASO5tSqbLB0bt7+Ho6eeWuju8xDBsTklLcwmhcptaDz+3HoH7RPDJ2C9QKRM7ngKRjfesn/NE0qGi6Q93NuYpGxMUSbN+ugH3TTdzu97x2hT5QS929o6Uc0ALx0TxgXb/idQJkI4DD7rahRqQdy798jb2sJ9tdSd3lXoyeGJ4XQK1b2ZRzPmoFUN1ngmaY7vVmA74B9JKdSrVHXmdzmgYSwF95xkpuFzr95Y+y5jLqCnXZz8pHjIG2OzF6kPBxHVw3ShBwkkH1UkkYJU7gyccuibDFZbT/24+Mnn4jnjw2zdndhAsRAFbcK2MUc6MDgn6To4V7uGBKpcGBaHE06lC+i9giXjUYfOM7vQaDl3VKea/BnBc9tUXbLIeBWyYYzhcVG7HnZHNwPSOo0cZFy0FS+n1g+Qk8XN57rI+Dqg9bZOVwrSfYhP2LUbeFBpyU4Iz9kun9Li+Xu1wspwRbJ2BG/BLeQ6C73gm7/F7r56t8suU6pyZ2LvKjnHjhE0IcnSlJjRcr13rKwevUu1jZDR/wV6/w3o6pEzyh3m53HoK792VEjFO0jP3qcXBWMvqsNTeanAlJYKN6HXUc9wb6bRB7UD8/AJKCJ3RZopgL6CvEYSzcp7L9CIMBxUukIVnfc2BpLjMPs/unwJa606KhPYgQ/PaDVLcW4+2r7YFoPCBEM9Nik7MpBrkwfItw4eMYLUdOuEmsBAhr4fsNFlAKJsw2pkEP351Rzuv6wMPZ43FuRgNoy6jk5GTm7mT/ujvuYhHeBmt+o27bKfqyZEMCtZTYhFv1y3RrYCHd2PmO7eqhRezz8Gyox/cEZ9Yt0JfDURYA/6YytnnuE7EijAx4PoUGtclcZlPkSDzMpptJ//L5V7GgFNkng9qb/Tdb83cN38b2i03nPLIldnUTEuV1Q5Koj3p7vjQpxETk1nhpe2Yn/R3eS5Gjx9clKGf++TYlUAQa4nRvwxb7YRZAe0Efeyo6gOlTHG2o9doR46xv9NkpsuWffvvUKptnLZXAo0NvjFF+6PePMkSwNLsI6+IWZoNntwkMkHnBuiTq/VS3JySvz5d0l9HI+C+/5SG8pD4R69es96+stCFTswMR994umm/9qwD7lC+pCc1XP7vQhVBHrz3+6cO5+VYb2S4EC3He0Y7Wv+9B+TI98L0I/GjY3tezRV9Ipi7hip7EcebA6rGpqbPmx+6zqBos7P2R4kJwwHL59hNc6zdVdBD+9MwgHa6cgC2JBmW76aENdrxMqfV1HTa33hjCi3nPsZ/Hd52K62DpAzNlsu8ML5oadppkdF6nEDD90bM+OVR/+kQ9R2NJyX5SINCzglqXQ80mZcMVcmsJCKfv40sfum5tEdyvB+woGyGaYJN3QN37FRkLXdab8zd6A5rdnZ/e09m5bULoLtqe7B37UY4uqmxYTkZBr5eP31O9lgyoDTrBprgoEXvvowSyW38kwrHn3OVE3jFsvoNJ9ey9c4e8e7wBX2SQ8KKvuNzJcRIYPX2LfPH3484+vjdg1R/Y8rxDSUInrOW0TfZIbhUzWmAWFPLus3EQPwQJo9GwMUD+2UxEHndbQC6SLskvQN9o2sS2O9g0ucFq4xDSnk5eP3F7bhHugx1RP5IFRrZ70ZPuzLhg6+t2bIRp+YbTJi7xzz8s72vdwJD1Gtp9d1VPyg2RIEf7jLpImMHyAVcTTtf3lSpBzZcTu3s1mD7mE2tGJursRfRAUsftk+oLr/bj8NxJ0O7kZs0v74zNcTDJd/tMkHhkHZvIBsSg+no91UGug8UplQU+DAtSHTZVOW2ee+Mvfi0LQ31R7ViATCgDenAvl365zlUiLdJTRdIze0Yz994KwL50GhHmQ1X2EW86MDl1MbXetVMu50lPwHZ0tmQDnopLBPdBgJOYL2pzZZ2t9VADfvjF1Iq5L5g8+xXLlZa+sE2Bznh3SHn4gZ6MsZnp/fy0pQXen6eZYsV695MgPhagF8od379HUrKE3zTgIwoQP3r+0LP75iSBnZ6rZEqNNFrAaNtASbc+NkudcynZCxoUtHCiiLx5NqPe42CxlWOMAL1ms9k4PPzph0iq7j0jquLAOPZvRM5FmLGN5Tnge9iF2AqLumfhyRdAVnEKDW7SpSTr/pRvX5YQtuq3yVb5+i+/WMeocpcOh4GQVbyCD7Ds3ZEKaQjhG0ZITCnJ1vubYNo3Aj6EOzGaVfVVrS0HhjEIMZtiUbdhGOUS1n/XJxhSA97yDa3ro/UtPRDyp3eV87R3q8PdX0DX5DV2GrnVCRgVB+5UR8Ha4VxkS5Wsr/QeNBt1qx9d3u/NAPXoKGF7rZ+LuvUmeJ7vHr4XO78fD/qq7+iw+/ndctq7/h2qRfTC+uBfy0lOqAZv7HLH1pCO5YSOV/4vvh8PChibHw0H60/rYAt/Dy6Rq6aGH22ZqYOmTJ+kPDEhEAvzd33RMgTOApvSMGjwi4dNa9nw7Lc1VhX9uCIPkMKdflcRr45uOS9Ti+CzadXVz9flYlRyDY6sSqnCGpmxfKulwNhphISrX551LTTgs9K2WF/15O5+FSW4xjvZ3RrNXfbC7g11zT5j/+XL/RQ9wg2wx1OLkWAoPdfJtwTcv8UJn9xX10+QF3IoGNVM7Vi7RNMlZxsonS8nxOMnyeijvHlwVzZHeh61bzbno/MWT8HSIpdgJSOf5ajBd2U7+BDHqj4q7baB9c0yCO9IRB9yuOvgC4zv9eCZVzZLL9cAzil/Is6tvoDdTLGAq3+kfqvU2XLcKH98AFvtc9A7ErAQdHaQ41M/Ln1XmLkGea3ckcGUzXLCH0eD7f0dYIsij7GbOb8BTywJ6/f1YL/8dSYiLJqQBpu40Vmnf+6AT+yQPhBLM5btVA7wF3dPeOfss/ZkjZU0PLcqYrvbXR9WfQrOfl+jcnnd+u7y7ReI+xohOalVnbu3owI7O8yxdTmYYLZ0YMKu5CvqN+bTncpn0MlG+P7Qw3PR+rl7+incge9MXsM+yqbNc2vC/Zh/qFuMPGDs297g8vJkqqx6YMnRroK9nAsICpuon9BMBaj1ypH+/Nkfr/GnZ4LAyWPupN6GBbytU4NY5Vz6pUg3DkTH8UZ/60/2gvz+6W3sbqSqZOz7usHt2jbzHzRj5DUVipxZck6xL34iEtcgFL29eqR+sFeiaReNCvjpH3QgQ08tiSGIz+2Ems3eiuj8KHhoFLeB2gs+uPP9Oguw/m5d6vm8re/F9aC92xFgJK3xvQA+9cDulhoEpAeu/KhoC0H7KHfUzzKpX/WQAE8TnGmQnC/Rwh05Ave4XvWBCLO53LMaXlyzwAfNOeuLfVWQrApvBYUHRYyG47XJ4W1Ws1XvqP0sLhKB+KSTnz/O5vjGI7jca4n+4mM6f6NCWvXjWl/u+sp7CvgyPhesP3g+m8YrM2RvnA38gune/fEmcM43GipQeM4W7n7nQZthDpuG6rElfz0I8IMIkYJb8r45xsnw85/UsirdXb7wWME7My9U4ZZNP+mhj+C63mR/qp/ZqucF0N8gRTNz42ycqECAdqUjRvYXuUuSRwTg5R1SJIiSO6ZpIMD4BK5UKaxbtoDvJpXWfIUx6caSjJvI/MUPtbTtm83N2eN+/AUjU/DdsTvvErDGy8gN5ymb81uXglH8JlgHeQlm2QQSPM+5R8YgLPR5SfcxeM7ARNxJaH/50PjxB2xkXc+myFk40XKuATaG8xSxxRU9KN2jmB6//VzO3Pn1BiiUn1jRkxmM9yHUYFnzGZGDUHE536MN5NN7hLVzVmUdDJVcTgOD0d/9TNK3dqDTDSWNP3fCVn71L78j8Cx0pjjXG0S7R4P12GB9b3pvCZpk71CNRa67e2yWlffx5bq/i2xyzxgBm9QHuvqjfp7dZgPD7iaT7ViM7ng12wDyis9he785gAaHrQBX/Yre5fLNfnpJLkIL4cPucIz4w1GW1ikSFmFnFLvsx9vQ9/PClhqsLd6dWcH38dtS76I7Pele0k26P6OZOu27jdjuPC+yEy0FaZ/r1MkHPN+gpOsBeXOPHiwv3UbwbiVHEqw8uTm+p7dsOVlAcRrY/TL2EoRW1J6pfx6ubKE78IY40I7Yvt+UiK8zq4PtzcNof9+3bHCsiQO7hH3RNq+O5T45BG8wXjNEiv78Lmczlxaw1n+cy+yVTRofQ9iY/vvPP+wv6yc5OFCOVH+ceL1feSMg1uNBvac5lD+eANOvxiP5ezpk7Jq+HLD6RXrQ6DnjjfCRSybZOWgvfia9nR5pDX+8ANmaD6Tz5MawO2we2N7erX5fCToH/H12xcdimaLFH9UENvarpJ7Kapf1iV9BQ/Eq+rg+tX7PS4sGHWw/qOrvekaVqL3DdewVxrIasPn2vt6hpjxajDPzC+ZZxia4LGggNRcJoNksFw++5kalkcYhNmNzZ4BL3dR//mSetUACP/6k+ek7mrXHdYJ3Ux3JfuUnP/0NFiKBNT6liB1bt4Iu34jYt85JP9JDPcATaeiPl5RD5nMctM+JSi28z6P+Hbk1BGT7QYJo1/3cSgcTppwk05Un9FMDWw5qyrNFG/3Wr7z+tYHYu/Z/fGXVjzx8A9MnQ/7yop8+kWYN1lS/pVxPxk1mwEuoVRQrw5vNt6uaAlKqJfZ//qLylQmufhltGsa79EpxDdd6ip9Zb+sLp1QNeJqOQDYbWWW7X34mxfhGZI3H6eO/FOm6bD0kte82qxwx2cANNSfqtQ/KWKVGEESJ6675MC9njw0pWPk5xiVx9D9/bMfqB1uLtb4CFNYS6IGzR5OenBi7dOkCj2RzxseriBgZd64G28ZM0D50t+W8848bGDf7OwFHcoomK6oRWP0lts1l6dsfv3k/C4teScXcST6mDWxFCxApDSvGlOiVwx3elQiirImm8QrMP/+hTP4m2z/HcJGpGJ+oc70fogVlVwI8NwRIOm30coq1LABqcXqRSH5s3G/sT6asx3mC9hZ3z5bOdBDMGB0QwI/FXcadrsnUKCzq969NPx4v7gA3Kuqo+gAYLEb2KWAaDztqOY+qnKpZmKC2bBfq3JUnm8A6RWmtF2RMlUz/8Q+wFegB//jFvLWGG5wvdYP9VAEuexE3/NVHvH6u16/68wbuLnSxsWczW4K75gHMcRG2F/xxl1Iqangbrim299dPP2+usQbX50994tSMSB5CkGa5Q7YgpIzVblzAPOro6u+h29+CYw2yk19SpdwXYKZqc4N1eT4See2HLfVFjUE15RNW/Z0LdgrDBKx+HO3O+aufH6cwgW9g+BgHSw2Wz/aSSqs+oEcB8Bnrn+dOCjwGUP+tBX1CynGBTNqdyKSD0GWTuh506KAdElY+MG2N7Q2seoFIOf90FzCbORThwaPhXaz16f2dPPnCvUdSfmLBZQTwCUw6If3tT5dl79cAiQBV6trVxMZVL4OLu47knZJTtjNE6f7TX2Sq3bf+6z+AtV+E2jDz3UaYfAK7u1Bglw/f0bR/jBXQR7L6ufjudvVpWwmrXyZ7rQNgcN2tDec76tDlurGjRedHBNfro9ZzbHU214Ik/Xj8qq8j5jLPBs9K2VJP2LBysR2Sgn67iNQNtKVkxVaS4NpfwV6x88s6jLpGLB918tcPW66GV0DHKTJsefOB8T/+s71xG/r4LA8wbD4KL6/6h9qdV7ozn9w0uK9uLXZO1zKa+PpgQy7JLoi/vKdoXPpn/qun1IyHk/un13bj2OGEi1JGbn5cw2bauNhLcifaT65N4I/PPBK1AAPYphokdaeQqQyVkh2+XQXre3ZAMri02fI+F4k8Wpb/F5/0wtYpWsFTx67a02gp5/QN81NMsMpJ52z1CwN8m4GOL9pWA0sYdR1M3XzC1i9/6LGEgCgyl3qAW8Bwb0cN/viSnQhJv6hbY4INUAfEHjwfDfCJKghJHGDtICllx0e78K/+MdYDnZ0zdIfy+X6nytjqYPYhl8vhfFapVl2+YKFDmcvtpG+JtOaT4Yuuxd/6+Ke7UrKxTbwfH1158QHsER4EGJDwSaSNvx6suF9u8sprsHuaWcS0+ATB4x5nONYuh2yuH1Uq74TAxUHj3KPl5w9WPYGN3TtkSxi9u199wahvz6vf5gnMnGjlOSc1W/OT8qvv6/PpsrGevEJ+1mcFzcOeRSOJAgUed8J15UsOYPnWSQEUhQRfDFICBlI3gBz/fWIdRo+emV4nSVX7Hsi2nweX7OvHDU6GdKE+oZbO9Vh6i7mTdlQ9+MdyqowUQrATW2zH331ZO0HRyY5Qdb/8qU9fdH3Dn59Y9UE2/frhPx6/8p+e6ZPjwGmTlPQYO8Qd9+AWgCOBZyLd1E8/7+brABugD2ha/ce4CfQNRIut0Wz7rACrhPWzxyEmFLFhn02vc2D+X1MKwH+/UjCbcUXR5Wjpy2cIAogCU6W+xaR+OTEJQnd74Knzie/lkunwBvYL4+hxyKRocKSXAo3seaAmK0ownxTXgU7+dNDmu1VLPg5aU3q8Qh0xHNpgNoJrDmr/kxE5Kki5vMPhBrvnhiPMT8eMvHOxgfEdSVRzhCxb0EkpQFpvPkg0Q+RSylwCdbKpqbUfk35+lrQAt1v3wVYaK4x+rLGBqoBDIk07i+2tFhgw/DxrJFp66c7s6nTA9cMbdq9GGtH2AHn4Hs2aOol8ZCzT5wLeLt8TRtM9Bexz3QfSNkqv1FPAJWKykRQQSqpMdkNTlPP72BDgf8wGCdpjAMSI0gW6zrbFtr7cddaGjgk9bgkpzoCp79Hw4MBSywFVxPaQjTI4NwA4Lof4OlfKOYvQAPnde0H8Wb8CxvShglEV8PTwinKdxIJZSGHhtNSE79UScIe7DCVdxopoXHXKGzKEHyW5YTU4PPpZ3Dsm/PinA1Xu5JPRp4sDeEZryz040ayj8NpA/xXMBGqPV0Tf53IA1ke40UA7Ze7s4EWBAE6ABsqk60QWglpWTF4n4pgK7hhTbf2q0uSwIghTNMgRMOE1t038OIx8VGd7akL/Fc7UiCzHnYeeEWC3gUGTuW6yud3ytrgqBGxeJKbPmWM7AAfpBX3eBtMnpcon6b5pAHUWMLgzI0kOm1G9kNOrMCI+1UoFZov9QNwj5HSWRcpG9vhTSgqN/2ZLelru0NxVBj3TfZ91fHEu4MnfEuy/AwN0YlrE8PE9lxQx6xjt4k0YyLOhMoqW98Md81sD4Wuqbeqphd7v48+igef1/cD+kCE2ydbIrVM0JgQ4/sSW9nW/QXV/p0Ta6BFj7XZKIQ3OjLy3s1ySdzikcDKXGSvaIYx2g5XmcNh0PpHOeO8On4uG4DV5p9hrL1q/N663AIavlpJtpfSsOeEAFEDrv8cdmqCvqPV5e2A2kjMPxeTBYb22qnJRxmclNYUxkFfQtWDhaQVBrXQTVd+7qGfv2U6hOeEt2SxAKfn33mqgT+Qt2ftV10+f+tRtTRZF1BdsDYz0sesgEOmXpGLgMCaZOIHK4bRD76nldZKfMgWi821DLczvyyF7Jhws1Pubpsql6VvlIK+W+zWjqj/tXGqJ2huy9+hhPziVYFZSswOJJEXU+pBzOaYvb4FrfJAp547lnCk7AwZ+n6IXqDrQoTZ/A/RgGB9Ln7jss5wWwGVXhlOxuUeM7Z8hPIYUY6+px7JqzSOE23vpUw+8vWxx9nEFy/coUUUdCzam8b6A3TlaSLgJDiWfa24F0D04EsBXVcnkJ0Pw4/gzNRPl0tNPaw7QVc2QHgxvFy18+STwY0EbzaMMspE+5EY6JqWJgkhw+v2ndBJ4EseOmhXky6U9YxuevHtDrdvt4w5Z85JkktgHJH1GRd+fzicEyTMQURsczH6SS6cAenfz/u5nPIXxAvPsOaFFjizGZRJ4w038OSKpPsz9jIobD+MsvxCl5z02G4aHYFM6CrU8tisn9g4qmcZuhwA/jVn7fm0IXNpApf7mRtmSfR45FOMNIZK9FPpscByRZ0fY4CPN79E0vAUFjj3AaDqpc7TI/nCHeQISct66ADTK+OKgkTg2PZj7A5jexOTBCy4B9UKyfmXuvmy4Uw1Mk6o6uGx4FoNUT1sTK4++dKd2/KbS5c2lZDY+RsQ7ZmVC1dg3SCavSJ9j/zVJO5VfqE/zgDWntCjkg7WtqHeaZ8D44tbAWrIkanGhrpMBKIFUeIKFT0QSXZrG4gS7LL2RTX2oXSK3RxucVFUnUNstYOEfUSI3pVRSW7CqbEYnNwVjXYXUOF33GWkPWwIXen5RjEQNMMUFDYSgctHQUs6dYn/opKUvO2romlFOShYg2d15T6yeNBDROOlq+N0d1lcQcheMvOvVcPlShvhjqZScdfoQyHMTprcvq6JZPGYLaINMo4rOPjpz8i2SuKswYn2HvWw8eUEKVcgGshuVxZ2c+bGBNOcGfKI90sd0/Sr8QrUCGzoao0mclUpW0WRhQ41nsMTPqZB5fGDkHT97fXH0VgLSXVjw4aRh9suf8rdxvtipD6d+yBxdAVL8fuFjAV76xOZCgaZ7QWiJo3fUM3k9SzLGX1Ldj35J0cXRwNKGKj5K2pHNw7UzYHxpCpp8v5Y7teZxA0n21EgTNDxbZL+6wzPiVBwmH5otYidCkC3Og4hRIblU2ZIY+t31s9bjfcTij6RA1YEBdbbeLauH4G4DmuQZojzsypnhfQWdqzBh1eKoPhqzVMATl44UXw2PDc5xKqTfeuQsWtzZUbpadHfoiRVlKt2OBwsSM7nScJjMgsviZD3opd6sgwyRWrIhiu4gokNGo7Q461Mrwg5M+KiR8R0YjDkfxYDxM0RoNyqhvqSH0YPPk+3h0+Gt6T3/SO8wHPd77In3xp0N1VGgy9MPVcPqky2f0kdwzXdIikMxY/Kg3GEbI5Gq9PmJBll95fI1F1r85KcXW974jcDBcEe032GFze04FPBjSNyfnpqc/lrBsBA9asq9z0ZeWCSofbU3dbOy0CcxrU14TYqUes1mqxNrbYFmcq1hO4qsjOpJYMq9A338sLAS8UZy24CPsn488Qif/ZSKnS2huMuQVE3vbD7hsJZXPYdt/db96t8NznwjUSMwGp3mcZjAS++11DzSY9Sn/I0D+yrRqJHjma3XW0vKIdqRfR2tU6qWrw33VaxRVTgrOhNlhciZcZiQ/g16vWtf9xQKrbfgW+UmOrXqSYB3Pujo43CuwMTmRoPvIdGJkH8vjH12Gfzlf6p/3mk0Mm+XQuF9+aLtzWfRcuJlB6hwHrB5eas9Q/Uph+Y8+dSM+yZitN7k8Hb5nLDXxUU0ppW5AVFZREQ83XZseXuFIsvN3qfHUTYyfnj2FTDy9xXtCKkYM+7xHW5jG2JDDJJox9dtIOWP6YVxkz6iZc034HVMa2xEz6z86SUgFPwLzb98gnaNBJWjNSBy1jW2P5nHCYiPZEt2Rprr7Hf/iieWNBUsIxpPimsDlXUCgtGed6dTJznwoFx4IjyrXb98fPEGnctnS51jcotGBSsm7HcuoEdB1KPxU/gS7O6OjA8WV/YTD/YQlh+lpwcj3bjD52HW8kEVDOzl7Kz/1YvjaTNg+37U3ImPwwKu60GGrmhd5pgtgm06R/jwErpsOklqBeAkHtG+lfKIvM2nA9d4pp5CUTnLV1hDUxJVbN/PHWsZ3tfwBLUMldV1Zsxo2gF+7KHHevWR+hHFfg0zqSDUlq6njLdaeQMvgijQw6ovu/aMHdi8vgu2dt8wYlniOqCHuvm3H9jbvIegll2ErXoP3Qm5qiAD7tZhzLu7kn120Qb2lpP89L47yNdtDn6/F0ubo85RlnIQJe6LHgSRsPX/S/Ca6jmKOxuVS/o1A7hDmkS+/sSiha1f+e7HO0+17zfsZ8ckG7DeH9Xk51Qu6XRN4NgcUmpllIs65OwbUGPJo/bpw/Wf1U/AW8ITehz0hrXiXjPkaGgtbCbzULLB8DQ4a8WIXmZv93z84SRYvqlEZrrnwZRm65SYoV2we22rclKwBmXIjQpOtVPlkg+95RK6oh09nrQqY5nJBrD+HnZ3XxMsz/iMwNhYKdnRvRvtTl6aAuDdP/gxfC/9kp8iDcIJHDG+7l5g/unLs2r1pLOXwl391xuYMjxj7z4GgLCjkEDn1kfUH777ksqLx0F1Ec4I7L4mW5ABAnBWzvaaX5x+iZ9CASd9fCAxOOFooTehBlEvVNQWG5jNsd9OsKGxjd2vfo1mUTIC+DGcE8Z7scnmTBI6qeeHI0Vbj4Dp1C02eC0Woj8/NaG2WcCjd29UDWHClsG/bgCYLwnqNhiWY5umAwTi+KuXcz/9/FCBjxM2WjcARJT1Sq6ujoCPUSHpsxNCD36/NwOjj21nxLD0NxRTTfuL9yWnogDrI6uw7le8PqCh28D22eXYuUjfcvzc1Dc0JaBSG7z37C/e+E1bY8feNGDM5rEGQpPj3/WXs1VIIZTu0oKm/rBnxDmSEPJCbRI5vNj66q/ucP8xPti9+Tlb+NvJ+fPDvoWLbPgYQg1PIu3W37dKkgVqA6W7g0ktPz/6wp6GA+xXlyABOQpoaHeYYLcOtTBWRL2PrXWwZbSLsQOPQjSlLuPhXRZSagdNAqZM2UNgf+7+uj43d5GtwpRWv7PqT5iNCB0R7HHxxd6z6tzhlHUESncbU0N7CNHImtAE+TP6UqfmzX6hD2mRZn8TIqF/hBHJT5Hy81tYT+2yXNr85sGVB6z+iJV1XnQ5uDNZxCjx2mw5VX3xq7f4AO0rYDQeONA0uUwP0Vhkf/no97xMu36DZfW7ABhGjMBtcd3ldI5NmJnpC6OtYupt6gobOB35AzY39zeYT+d8A9TtXvnbv9RYzyqvQWev+UeIJrECsaS46YOG8nPqicK/O1jFVY6NIAhWfzdsYLbd9fQI4CEig2oQuJBq87fe/dO1QnjfFRb2N3XajxTeC0hz44gfNA/ALo5qBwLftwkXPbO+YdHRgdluE1NF1yaXoTZq5Mcr0Mlu5Q9DPOhv2BR7TFc/kPG04DbwJb8ZPb6NbzkahoEgjy2Gjc4mJf0Uig3zx/Ki9skv3SEW0gWS7KFhNRLjnon6wYFLKUKMvlu1Z5JpJbAphZII+q3rx5UHwJPj7tH+uhPYlHY3Ak9QyWiSfEo2iUpq/NaT6nwFepKiKYTd+bTQlUdkJH4vw2//UT27kGg6HU+mXL48Dh/NnGdf1licuOpbQhLvmE1xe4zB7pgXFH85je3e6eQAfK+fWPtmR8ahDVdJ0Td2qLsXI7Zkz/VgQ6duqBINKuBXvyGr3iOhnvDssokdeQP+/K265tdVX6wHB7UhdTE/6BMqnxIMK6ojKd5/emZBj8D9ZgvJXJR1Of/2y48n7MhR6Nf8HPz0NXWYcARTfIeGuOe/PXX3Ly2a2ywU/vaHng4y6E7fcYB35ie4Pd12YLbijwZ/ejbC+fzzk9Pf/kzzDOusTVEOxFvUo0KqS31GsV+BQF9UIm4vok6pFnnQ7suROm5wBvzgnzYyF6nvnx/OWkcfJnh2FQf/9DhRqpMmj994h6/r/pzQ7ZSAhJt7IuS4jto2fxig+Q43qkhLz0aLRwbQCdJ/18/67LiTIDhmJ4oWoPRTm18gdLVPiv2gPUekfcU3iB7KgM1zY7p7+ck8ODZ7gGRydrLpne0QnHT6IPyqd4e0C4mclg7Bh5d1jrhT9h7kg3LmERR6pjdxUPOw3x0BYrdbUE6fXWtI9BaE9ESfh2iytDyArx04oL23zaNFqa4K/Fgbm3pCpPY71oQG3Nzl2+qfKBhP+iEB8flMiRi6HSPxU3jDtC+2NHRiVd8NzVzIk1XGGJ3XqTt/es5zFSSe6rxs2jSroVBwL+pbWbsOYr8UEMceooeNds6mkxcFEhC2BtrE3Tabht2x++lb1Ir8SydxMt7/+KielXu3GXZqB4C/7am5nUN3ryepIaclOCEuikLGLN5OpN4dJjT++Ex2P03Q5OMvaQ1FdccheCpgZp+axp1YlkzZ1jFYeeg/nkH5SIOJOZlk6OIiG+NB6WDi7WvEPm8hWwzLfYPMOhoYZ6DWp5y33/BbvEXql+uUguHepmD1X6haeeH42QwL1N53m2r2ctHZ6fvmYLI370Qkr7ycWn7JofZlB7JxoqFskcHb8Mc3JkEIopYlSg7j+/aBtelklB2TGg4eXJZhvX7y7kRHawNxbn2oWgDBnfndNMCU1NFfPV155QDHb7JDbK2/FIFPCMDheyOtaR6yfRw1N8lvhCc9kuPodu0WhLDp3ydqtxfkSvztav/0JPbF0zHjhn5TSb/6fFyfzzS8Jw1OKH3SWLAoqJz5AX/+l14H3QZ8i50Frnx45fG3nhrKdpJ4N4LkM+hxtKz+TJodO8Px6XrJmHjOFzhIXIJmMa/LjpZ7ByRYkqhffji9YddDAfaLfqJGcL+WJF4PiqyN+xd7CiX9KEeTB11DOGI7x3XWprC9w30j3emvXi/D+zNBqx1OOPlu035C6ob78xc67m7RnI435VffqdHzajS9pbsJH20T4/TRSe4UL5YA48g0CVzHllB25j3Yw7klXOtOjPLoqEF96HfUXEpTH+LNw4EkTBDGX91no8M9QmhyOk8WZwj75aQogZyf04De2LDyiOa+gcsnd6jdFXE/n16DJ+Fr6WI/GvbRgqxdDvzijbA2PcZoyVHAw7Q43KgGCSgX56NtREUZM7LIz6Cc1688gYK9mD7MjtNJHLxMyKNLQK7iwdP3H/UVwu6JTtSXH4s7fpbLGxqXHmHltNTRSC9i+LsfwgFQs97BdAJGIvXYicNrNg7AtYEnJgP+8YjJeXoJvEYPA9sNsko+jbkOqrjoVv9x11lqD29wxlVFldMG60vWPFe9zxFEK7ntGboZCKh68sbGGp/zTx8+441Oj2v+oSlLO4nLn9aP1/Z78TVokL2QSV5yhyM6PBsC1n4NPpy2Yz/Gg93AGt56+nc9p9crkc295aB9WrT9KFtvCA+Io3TVo/1EWcABvdlv6KFcDmBKt6SAm8jUqd26h4zLnjkHeqlQaLTG35dugw2shYqjTuLFbG67dyzz6u1D4Mo7WSo+NOhxU4jYN3Bdhgwhhbf8fv/tZ3eK75wJSaA+8HXlwUR2ulDC8WYm9crTKHqYN2l5NRHGH+mbzUrohHApAcRHSy//xd9PzznzhmRz6+m53NvtHWtbX4/+9OFJfr0QWP3QGBs5gTVM+59eK2cmlQQouuaRLX489PGdTrac1p6GMx7y7oiGwpDQY8ZkV6oTGLJnzoNhP2vYD6nYT/GTDyB336hkapgD5k+bbqDpnhFVT9ur2678G6w8j/rBw+uZktoSOFsoWvVZoI+t5+bACSONdAstMyZvbv/4zXmcv/of33DuGwOr47z0LFtfGfvxkUO5If0Sf6Agrc8DK08v04cfr4QwIWh3YhXYn6qikRXvqBB+Xk7unE6xB7k7VKn2eaFo9S8IekJ9/PF8NsVOl0vvIdbxymfBYnAiJwV4c6QWXwX6TEffgDU3yRTNmzebPrGtQFdcRCJouzxjqUsI+MUTRuKbsexzq+HAvIba+gL1JXteTfhbb669XMvJAEoOUXJ8Ud33qpLRkgthfr4F1IiihS2fAFSwetAQiSfk6/PwrHN4sgREc9dQS8ZvxDecNHShPz3+2//QaskJG/dzEn3YE2sg28EY3xIvBjNCKpJdld9RQ0d+tvIlCa68B5+Ec+FOT5RXYPVX+K9+/PSea2YYG80tYwMqLxK8QEpJ6XtVT9DJLmB1FTMk/+rtAFznxzOxhV7rTDP9JcG1fiAOJFI5iGltwGGvPLHyMBMwfwpfgH4jPbGz+s8fHwVrvwijjW5HxGkO60FZDlv7H0PU8C6+g6i3Vaqu/p8ZAfbAwfJV6vyPtCtZVhbGwg/EQkQkYckkMwkKIu4AEcGBMQHy9F3cv5e96+Wtugsk53xTyMl71qLVre0ZbvVLhLX5enPn+C5cDvcHNhRY/csbwbAT5L/9Ifbnr2BWlgW1h1MFWCpcBHkRegkNP55EM6IfG2z4gr6fyRtaubJjcDXcHTY/0zCw42tUYJlNATmeXke9HT8rkvv4hXHRV44+x1YbgmPse/i53/mMbfj5tx+K88M06ONRCU1509fY/dgMtH/5+ZYn4xMhBmCCClawNs598+sCKLt3+QVdLvzIng71sORkSOViX1sY49PQ/GL3EYNNr1D35lyG4VPZNlRFeY9tbc/llJGUwOCdnPCmv9maKxKCX9DatNjyv0/9EghUPcKoE8XnaC47cJEWuTqRlWtvOnNTiYco5N9EjsZbtMbJp4D8NYnwX77Byua1Qm89Errt9wwr3S7KFb9eiY3h8QCzkqcIRq+gxvjjrPmcu54CFJPXaXLlEWNKn1VQcGYBjeePo5P05UjwdXpTWq7uMCzPVYAwILsd6T9T5S2I1pf/65MC+L8/KfhJL0pNlB0aml6hAma+vFNncQZAv8iBsHg9M+oVH8Nb4Hgk//52gvwdLXfpPMNTrpxpOBSfpmtNu4cJ3zyCH2Jys0x8M4Ppo38QtGTBW9MFJPB8Nim2a/KLlvNnITA2vsF2aj8cSJkQA15UMaLl4+kM8yS7CPzKq4cAV5oeQ+fvF+wO80KvCeqHVvQUG+I9dQm7ml0+B/udD5QjtbBKziubT6+bDa9HuaBKpjoek16ZfQzd2MVxE768qSXWBU5qNVIroa43Fl5SQXoUU6yNezaw20ddQQGwQMgu9Zo1f7UEfgLli52d8IxWlfNqoCWlSjgzAh6dmq8EdkZjIl4OBPAJQNdDPU1uaL8Mp4bfF89eancwon5xsyO+e/wqOJpwoNqqH/Qptx8pfOh9ROpjh/LlCR884KKppmb0/jXs8gsFaH+lA7VpXXvLPVhH+Wd8KVaT+R0RpygMIGSGgl19HQB7l8UX7KqyQM1FV6K1I3EKPRkg7ILbQR8n6/CGUofOVOvWvpmf6D3DXOHuFN3IbWAKamL4FNSeRpde04d7WBKoRo83WZyrxZYz7W3Yqu8DdgrjPaz3U3GB59V7YbdU9Xz1yGzKJXh0FNvMzifl2fpQLWOL3na/1zCfAu4iaXX7QRAEr2gRE/cNnorZI5jzd8aeCUNQeAYFgnJnD8u6FiNQIbdS3Rv8Zk8/pQb8GCYYX5VXtBw+YSKbITFIRpcdWOC4jJD23pfsuWeVs+4c+nC57S7oq34LRl9QNEFSfgsEHv6J7WeNpvDYDgB9t37oVLhU0L+lDwT2seDN1tmoJLMvKgKFnunD2Pk+jHOxxsHP3+eDWc4X+CoahUw/fx+xSDqOMKc/HeXu7+iNte2+IbdrD9jtGxgtKjzWx2UpXmQsuN6b+6LuwSfQvtjUJx0cNL71YdCFDNvBrcxnLvB9+AzamnrOVfP2DGyDq7hyh9WvYkbTdgkEVI6TRT2xq8D8cM899ORtyoBDAjC6cbYCbF0nwjvt0LDhOsTw7D+2u87En8dWfzV3ai4p1Pp+JzY21Ejk8ZPY2AOzrDP9fPzCoU0UqqD8vK0P8OH6Jj71V32JxicaZxC1/YGasq560/w+uzJpFY16vaIMB8aAADFeHWxU5RuMj/KQwq1/qN++1YhJwXKRnd6uqRJprCFPT1zh2X8StDdvJlulbv5CUEo6RmaUe9PwrXy4KK2MH8/aHabQbjO4rQ8+TfSofwLwamX57r1oAPnBm5xcM8Ea7zICuPKrj40IZ1jP7xBbBcrytXsPEOa+6RJhxt9o5vcPAaATcoio7E/R8le//qXG9K/f5oMfKOCz3QknFkfNm2clraBmTphw5+Oaz5enm8Fz4Vf0co23U1rZksKtXqlCnmRYJNlI5D3n9mhnszZihWKYcMnud3JomjdbgeVACHPJw+q1rtjyy0gGbuaY4CD/cvos1bwLG125UWs8cd4a92cOdv1SY+smTw3hWpJB++FmFIvWT1/v2B+hkh4b7Hee7pHYGhK48/Y5AvzER2vorCk07fOPSIATGd2LiIPXPF7IXtcKnXwH04akLx1syZXUzPF9MmA1TAW1i6Omz59yGeX6ZqlUaXVrmC9PLYUTlWyqvleNra/mPYvzZOs0CWxlmDphFSTzdKgwfoN06ITvw4cGbHn67/fl74Jsd2s+keR/TcaLzJyl48tMaTDYKphi8oTQV0ybNI/bHqz9NfHhNU8W6qR26s3r4hIQzB8H+453BJMef96Q2cGJ4gy9wepSHsKy4DnsH8SkIQxmF0h49KXW+WUOy1s/hDDpmULqDR/HSysJ8GLplOK8aCNi77MQvhZXxZ6xMjBrO6mVjpLAb3htDZ2JvAzygrJs/29H/LHstD88wXqbDPkoiG8TngtUkeWQa0zgYruHCxNbeseAY+yLHA7a9PuiyM7qaOSr2YBSeZvQXz0SmNUC7KywQ7vrT/f4uSQE+nfhjTUxdxlTd9camnb0w+6Z76M5COa3LN6DEZv7hwPm0Q8VmdZvHesbP+w7QRLA0fo4FDHv0nQ8evmyV/AFNrvD2gx+kJfQTkMf48VemtX5+hU8N7WAFaso8nHqugSE57bC6vHg6stMnC/M0wvBjiybA2l+OxEmtEM0HwsLMJhvn/SBUaWBUNyiJbJKH14CzcD2uxnB0hT7AhbCtUX8lETeGnG7ER7iVqW2pttsVfncALd+GzycO+9mDulDgb7VDURcblaz3/SJvPUPErJf2My609jyC3gDgibdLtqJQC3pfA2wov5u3nKLQg3KQ5wRPjMXvb3NBYIfVdrjYO9WObuHySivl1eEtSV9gTXfCeIxOic1RZLb6sQavwRWwluhTtfEzYZv2V+/IRZUq94K25SFzz4n2IJIH96hJkPxuOe+GOnhRf8J3k8EanpbqVUgKZ8TJythcOZKqjyM1Vsv6FTDDnI5DS4Es1kuzhzc8G2rv4ix321NoeZ9HmiB0RJNhZVWsJmjif7xB+tzu/3DH7TxYbTE5j0GqOQ+pIsOXr5oDUug9jFHtJ/sQz6OfqpAonCAiO/G3yJqj8AY7uJ/fLBcekOAu8O6YKOcVjDHApdJXXvLiTBGR0A1LuzlXRnVOHCEV8PQB5fAPiYc+j76+9AWXlnD4c1WxCHBiYZePHMwPeAbOZLp3ayxLPFgRGeFomdMwKw2xIf/9M6k42hxcteEZ6000P69XWRRN4so96Ua4Oz0O+frrbNmaOjelwbS7jRs+s+FiRVa1HxrQbQ+jsUIz7vpTrd6Y/NtLnxwW14ftPZ3P1rt4cWD/ggbrE794i2v0UPSVo/U8rk0WkeQm1CwjhZGp9NhoNnplUL3EhbUw0unz/dKfcv84jbU5w6+xy+uDWHwFUbso6vDVuH38+HFO8pEtESk87vqY8CVTAK2snsMJud876U527lkcaDT7A86+UqLkNB/9UHF5b3C98zr2MvKgs3aeF/heP0k1LzIHzbbIgpB+l5C+gyy3iNkRxAI994dW4g9mvF7AvU/vYnsTMsZV1kcFIklEb616dAdqL3+8ReR/UsL2BJwHPjuZIKdUqgAq7epYFy/dki+kO2ikalZ5SNpQ6q+HqnO/umj9mRiR+AWb8WqyYNjUz+JmMrXgfX+boXrLM3//MHs/VgLfY09yHRcNG+u9qSG6JVNf/zirUC+lzA6xzVWf5dHvpxp7UKhYFciH3qJda2p9LDeb1O0oP3Kl7PumdB7kYG6XpEMfKF+TShP64vqYZPrk6h1BKp9NfzD/229BVgKcUCTgO0ZGzSthHdPuGFU1euwCMU4Q93+ffDJf4iM5WNjA2mf7rETHbxoUphjgsS6WNSdREs/XB5VBg4/0ybH6fnSWTw0EIog/RDpe1wG5t90ETZ7DxCwigR8fxfMgccjpeizXqz8q2sJgScqPqkBdkwnnwAKQI2eb4qmJMiJvb9cpH7tEZFL0DL6jt82FGJr2PS8O7B7GyryrlV3ZEmcupmH2ymBwbNK0PGRgGFl7ZLBKXRupJXfyrDPBkOBRliccVyVBqC7p27IAxIWrK36zWPwM4XgeUt31L3kozdbcvP+wydsq8XPY6zXMxgMRELto2rY7B6cFHBqlGNT1re7S6uhB/G9zLHxmnOwbPUM5Rl1qEHkOqyqBbU/fMBaeiP6EKGsBZnX8FTvvblZKEUFbJ5Iwt4x1Jpl4ycgvnoHa6GpDrw23me41TcRb/asb/ilweBmSYhLz6Z32PS/vIP9DqvYDfT5XOELOOwJI7Iols1iWy8ftOnRx3YDe7B6/bOVTGEwSBUEJGft5bFtEVt7uumVhuXjYAPoO3dswO9VH8TTaYSvZp8gTtPIwDS+QtAO7i3W8nn0ltqJ37KdkQifrI8b8dNzFmUlBQ0O9HJiLcmiL+BvXYw3vaovTxMl0t/7s2bVHWb1gE246WtsKa7czOop1eCxeN4oTsmuWUlk2bDZtsT4A/k2lFOXFW54SLf6bZbyWpiwpOcTYdJuyMmPLUT+q5/VrvpoiWHFw90n7vFt+jTRisdOg3eh+6L9i3+x9RXq29S2s4dxM/Fg+vv/fdwViGWANEvE5AsQQfb5hwdbf89SI4QaLqRYZotQvNd/+jdwBLUZyCklALzibXC4KHssseYSpkjAhIthHg2syuBx42NsqJwC5rvfEqg2foLW806KqLZdHBcO6XayEbz05ST1BQxsX6XXVJ+9pd69DahMdYPN19fU2Xc7AhFbWowt+5Zs/eeJ8PfpXhRvNzx/8+Hswi9/kP+t//Kp9BF2ohlQd/OTpImfClTUD9qYbfaWk5Fx4AaHBP+Xj+2jCWl4d1F94G1GK5nnIBPeNTVPdRdt6//984eoyWKfzd2+FUDz9CV8OlTblJxD2MLMe/HULi5KxPt1EkOujWsauzjIB/SxSpinIcEn1dFztvkp4EsgQYLpDHrXFPsS7oOriZXXEIG5trUvuKcKIAdykPKP7so2zGz+iZ+rLID5rB5NeByRg3ZB5nqLGl5KuXUvL7L/lON2bDsO5XiX59hRkZezyy8VoNyKEb2XggIOFu5rYFzElN6FG40mSs0C/DS3xa5yDwCL90UKWXc+UP3S1zrz9Eb7ez4UmQ/HmwPDdkHrj+32fp+M/m5rBixulSkSUN4Q8zRu+vf9wv5zNqNVI/IKvbe90mTDk8lv7RlesR1gR/l1zXwmqQ1P0NKp1eZRvszvsw1/liZQ9e29PFbxfg3VXXokDHwnffxCXQNbfZPdcNsNn03PgAMLx40fgL5c76sPEjogJIOvFQl6lipwdNKV6lvexG5E8qGaiwq9bXpOsIeOh/3n1lDkqG+P7VpWwSwPv0j45UO+VmZe/q0vko+Lph9KZPV/+hwtBvnqgzS4X/jkShP95CprxoO21cusSlSBr8lbjVga4fIbDbr1E6A4fBEQ2EilOrIiNp+9VwW1I5Sw/qPbVIN1TmVo7A1MdukwrM1uQfKmT/Fffc3tIKbwMMAEF7U/NavS1y3M348LRefL3NDH45FCoH7uKNz8eEvfvgKP91mj99M+8IT27Jnw9J4JdTa/MoLtIs91Fmey+3VqtOljCcprO+MyKZRhOXZDKfX5x8RO/hI82nK8DcnDK6m6/f45s7wUvm79ilUoRd4sz4cR5Kg+U21QiEcOzl35wzvEea9yIF5/a4EQnwZ02PzvpgcN6XBfHth9YhP85XOQa4qY6vfJ02e4T13Is3dPstdA9Gk/SBUku+SGdvwKo2U+rAo4th3AShCgaP/Lvhls1zSnKefVEfv8bBs2p6Lc/E3v0d06QMBnpxwr0vgb2OXRpnDzA1h9rzXo8x0ngd8+jWgwvTu99/pnD+G9MGjaXB19X9Cn/U+/68seRPOwDUpJ6VHFiolEMAb7A4Le89LQYNND/JZ3yvjin2ng0SwfN78nESiF1APzw5vR4Ejw6xd76ivR0PzCmOfh9+RW2NryhAcaI/G45WvU1+wZLKPkGLJ1mwSszqYYrVaqcH9+nRB/IGC6+KyC59V5/fNzc/mQKrhz8pgaVWmwSctcCYC2rf7y4Hz6aGsmb/xJsXBRh/HtPwj44bFCe3U+eYvSpT18jlGAwHfYM/b4nQRo11pH1TLD3nTpfQGgotqm0opmtHw0KYNqgxI0BLBhU2QlPjylb5du+N1Mf/7FKBUHK6tzj5bgdLGl5ywibD70A6PdR4Ywsr4ntG5+eOIWg4dJVAzYcuuzt9+eH953hkaV2G/A3GifC9QqVBJOD1d9AbjNJF2nN7TH+Oot8qPhoAbvKvXu4T3nv21tgzA2f2ipjTsjf/p088t004O5dJtaH3Iymjd+oGBuhWmE4hzy6FgKFVtFHZB/fk8J+FCfy1gz/vK6za9x+aw7gws7/rWjp/lR62PnONvNiFKEnes4s+X5Ew0otrDEbi4VHrtpuQv2mAWoMwsE/uU1mGT8n17T793kpkfppqcUiVeNUenWjeADUh3rfPOOyGn1FfCUjiLV4OnaLDZvX+DV++2oGuXHZn2FnggR8ByM8MPztrwFwfv1zVOLb8eckbrWgPvIAoSR6rEF3FMBRuaTwzpZLzlLn2MpiSsBNChjS2e/m5QCarYT1u/bFpGQX1Z4UHSV2tbZj2aLARce2GXErjSqYNryUghKUaf2wR9Z5+SaIV+nVaQWMKKIBf17hWP/eFO1No6A9MpcgIEeG4z2iuh1vnnTYPWsxT9+Zyw8DCUovOqOhDqwGP+HDzdvv1L1djO9P7wCivpDhKmSxFbKixJ86G1EjlwL2LwuGoFb3k5DOl30RS8TBfY4q7HmWL4+8pVo/r0fxE6Clc9vtUphwa0GxvVzyZdwpgrIr8IPb3yhb/1oguJGZHQkk9HwhhEI4LfLZSLdOtqs1vgdAa8kO/KOzx4Yk0gT5cv+7lN3FzXDaIvoIv3l4Xox8/oay6vw5+/QDF+TvizehYOV8FWo5yqHXLieo1V2rmFMLXLIoslbBQNs/EO9v3zmzz/k9KNT1VRkfZ66VyKnOinJYeM7Nn/3NgjNBRJpXy9g8Z5XBFs3fFHF2/UDge88hIGGR7K/n9nAVt1pgdhyJfU66+HRgyJ9Ad8JAfWadmTTdcoNKA9Jhub6eMgHoekQ4DmSI7rx8xScMlu6wOmF/Y3/Fj2evnA6+CVOC6Uc1o9hpP/y7TnhFJ0/mnQEQxsr9PSHP2ASvvAQ9yoO7tMnJ7crkf7yC2osv+ewPvQTgpdAMajzfNQN5Sq87X89Mnz6dT9v1gQXSSzrfIxGuwNDYokF2PIwsvvLw9ZrWMHXCQ1oBlGXL4r1laBIThKBmh2C1TJaE275G9n1o5uvE4Ia8G/Zg7oP+wnmiZ1XmH22w1DJV4jIDmgZuMZaQa2uE8BsMWbDpF8Uio7NN5qv+2P9h9eo9R0JzP03N6QepzWNn0CIaMAFLdy/OOsv38v3f37e0g4tAtv7X8/S+AW/uT4RYRZanR0NRYA/qaEEJPzFO3j6oEDxbYTUvr8P+agJrg+WHzGwidV7xLhr1sM4l2oiaW87J6/piuDdyUK0O7zTYQ5unfLn78jLIKa+pF9RBA4IYoq0bs6JEtwTONfahRqTzDPSOB0BN8d+oL0SPtm8RMcMZpcvJMJbm6LZVY7SP3w0A7tqmHw0XRi23B5N9+kTrVm6d2Feqx49Rase7cc5bOULLj3syInB9oPBlSDjlifNuqvI2v25TuSIP+Rb3m6Af3nS5sfQvnzePHK57SHEcZ9ir/9p+Xd7PmixwaeGylVsfPFdD4PuwrCV0F6f8nwbjJ9GIeGHV9Dwy6MT4OohGXGfOdFZ95E5cK2wgq4iIX96zJdvqmBT9569hnUH3Oyfvv7Tb6vElfFx6x/s8mDWZ6epKnjYjww7NDbzVb/u3vCOwhIX/SPT52ud9jAp3wVOHJ/X5w97llLBwIsck+gykAr23L/8Zc9bPtjwmYeXvKfUMkz3n38Cy/XloVfi1AMLuKCHsarusOEKWN/0kQZcdkPk4HNi/pe3yHswNvS5cylYdgOt4V/+jR/niVE+k9u/vAJJ2/v+23+F7n65ku39g395rzmKP/rn34Utz5b1qHSwL2smI1FyNP7yD/yk0rTVx2uUK7ft8f3wWdnmVwUZ+NTFTibF+Yh4KYHDrr1i7RbIYPw1Pg9uRojp+XeRc1qLtx7OpgGpHXSV/jrrniF/3PeTvJejGq0B83yw7LQ7dYMz9MifHn7NuoQOmvjNGasyDobfmmBzFmxvnJW0/pcvBd9X5c1v/0qgFCc62TUm0xf8QC70AqtHRxp/I6ZduOJvvwKt1/ijz3dNvEBT6AxstTmLtvw2O4ZPlG71oA57zvjMMEU8po7P1wP7y1PPbW6QW3lV8/ksKl/ovEqR6lu+PN0W4kPD24fYPjA0rMBSOXmkm75Q7tFwsE6SAY/RMlE/XM7eWo9p8n9dfCD/708KDiBV6Z3Ek862MwxSbF8/1LjexaH9cecQEJpCqgrsymb1qPTytDMAjY3jT1/Fiz7L8r21KNq5r3xhWskdT8s+oTjZM32pPS0Bh+NXxUb0szwmXuwKmJ1/pg8ZVjm99eMF3nP+g9UdNRq6ywsI7V0YbefpX8Pya4URxnv9S7glvjTTr+UIXMpqR1FMK0byYfcF90f7wU7OjQMpbyCGTMQa2rUkalY+ZCOU1NLAVm+4YJmUSw3xV8qxVRZus1S88IXzvtxRJAyXYSFDwkPFbTDGLWEDGXZPHnQ4ERAfc79o+Z60DL4f84LtvB+a2VSrFUrtaFD9fTEb9vd7BnU9Yus99axTxBeRiZlAitOORcssZRWcWbtDx925bNbR8t7w8yIMHSu1zKehcAtY1889+tG8B7QYQw0mzaGl1nPJ2fxpXyH8nD8itd6TC5aivPjycE2PGC99nQ9c7ENJA88LgZqPh+UyXzTYXw0Rn+rxCIhu3Xz4HK0FW3vs6cRkF0n6XbBEYLGbPYL2TINN3s/UDaen12rooQAFOZgm3KX3xmsTJLAfsUwk8Nk17WAeMympghYbvpY28+W1v0B4HU0cNclhWBOk+5J24AIiDtRj0050ZxhG74KeTMvWJ9sxkbSPcgPtOo81fQW9GKZC9kHt+T40S+i7CuDunE24U72A+Z7cTXi+3evtYP15oMOSXgC4+ScSC8rR65L+YsqGrsf4dKVtzvaAXyHgihNVv2Q/kC7OK+nu0R4H/EfJWTGmCvw0NaNWdHYj4fToRRj6cY5mtsRD/22fK6ytH48O1QC91S5vF/hktxUbzfiLOsd5ifAEqxAjWqs6/xE+X7j/6QbFwluLGMfNbxh+0oJa3yfUl+Km+fDU/65YvcaGzq+aWoMLkRs063UElmxdbemZPhesifoJHLq8CuXHce2p3v1uYAavVyu7Jn+luH6wnIrkLchRxz2xUwac3q1l/YXxjlTkgDEYiG49EVTOLMSnoW2HtT6DFIJeOFH7FA/ROtt5C4/xqmNLeeXDvKsXsrMTP6Ke8MbR/OPuFzANBfiHB4RpEYFSXxuofyoTmI+C+pYfctqTBTk6IDW5jTCMvgV16Ql5y1+/Ht62SmMJWozStUrkuUg5HNznxVt/LSjA6gUKPbWy5FH7M2qwQO+WzEdXb/jdzCmAMEVGs35ibD7c1Te889IXG88+Hfou8CoQHJcSn3cXo1m4rl/h9TX9sCVYxTY1g1Mg93gENPWaYmiD+8MHQF1PWHVGHczwcG9hdtB+aGcFFzbleEXgc7AZkuBzx1rIBRC4r1+OxMX09TmklQhzt/+htf4IzfzJ1As8XA8mam7RVx+lSG2hGp7PKKxvjbeYn7sATz8jpJFhHqL5l8ktVCrDQwJSs4F09VOAP1/kEfdUFLY3jsdZBLA/EenNI51t6w+X2lGw61hBM9Vnrgd739Fx3O9FtnrpM4EHz1So2nwMb7TY3oBgkT3CfZ1LNBvrR4PvLz2gw1UGjAmTWMC8vPwwilJl2L/0pJetHN8QoSdV54/y+QtT6r4xcqyqGcai6CGSrCc53l7+wMaiaGEo8QVGn7OqHzhOfMMzKgtqFFYK/uGvFpIg+Old763G+4mk40RtMu/uPCBTv5OAPIs2LVFZNSs53iTYGzsZwc6Y8/V3um1TT1xMaC1F0YHbtohSh7zRQbBgtEyo5CEfWTq1k8hr1rQBPtQC06eus+PA1B7KEWp1HVBE5TVaEHUgHDVDwpk+B/kc+kEIzev7TB3rIA8DfM1vyLFt8KH9MT2WJZUmK0c9pGrxuA6dr3cQdMtV3vijB/P34Fxg1ZOJKuUaR2y2w1RWq9Snp8Rv8/VMgQkUm3fpRdRPjNojr8kl9ntsYQyadXkfOGAO2hk7fFMO6/ObJ/ClQkIY2e4O4+I7gXB+W7T8nF86e+mhK4vDx0J7nx2b5bXPQvC1OYYNbIt59263KRhd/CC716f2VroOXwk3YY5vjuJGa1NFGfRIlmB7VXx97rollncfHSNl2unRWj93I4j7sMJ2CIeNLwGBHhNuSDw6j2GWua6FPUxEpF+Er95+2i6EzmO4Y4UUes5uCwyh/u4RteK2H5ja56KU1vOHKtOuiWj+mDX5NZcULchpQPsipwq6rE6o7WveMHk6ukC9dSKKng+F8fEuhPCAiIK1g/MZ5l48J3//jz3FIA09VlUl699y20LrF32gaxuDUh4HijKzYn98CMDYuKQdqAfI576bYU04ig0n+enrztRFmF1PI8V5rDKhgTsCtiXBtjt40aA0ngQ6HAtUw/ybra/zk0DVH0LsUnmXT3FcG3KvFiI9Xdz7MMeizcGTfrtS7ZYJ0cKHAgff3+mAuPmoRlMfr+Ufn2HXCKaB1ufZlv/411ayLaLPoH90mH/F9nAZwOJ8TV+6PbSGYttiHi2kWZPzH56o5j4MwCpoGzCZk4Zqz+NHn0yWuHK81C+sZt01YuRtxzCanm8kKpkXrQ0BKXy/spWi8KIAIe6ADf/w/KSd7vmimMSEp6gMKTbnCxslb+nh3UYfsjd3x3x0tJmHV/PwRQe4L4bvztQlcPBFBafb+1qGJiuPVlddqHZtT3r//EYxdPc4/7d+zN8XJtz4BF+5u5S/adKVsPu+D/R5El/DsPE3fLbfER3foIz++hk4S3qlzj0q9bXiQQylpXPp6TBIOrk1zwquYafikxrY3gKMnQnFAKlU7ed3NPU1N8PLJS1xlPbffFGvpgH+9FkS7bNmyHCoyQnjGmpVwzbu6tDwEhMDjXp4JMNwrNoaBIH1IMxcToznwSQcUQ0zjKp1zWd+6irAn886mWte1/fJ7ptBTmgQItnroi/0KAjwr98NSI7RrCf2CB+B2VEvjxE4FJKoAEGxTjRwhhkQfGEGNMQvpicMWn0dlqiCc5Fx1FRfnb7mHy+UxG6xqHXKQbPKc8TDKhUnIluHsJmVJu0hZ6sB1rybwQ5WGWvb3Xs82cF9PUxtl2UwNY03LTE7gz+9BSyOu6BZC7SBH5slg6klvskh9Prhbz2hMVrxHx7qDGbtF8LBNanFRBcsL+Je4FfaHclyvuxzdldEBYbX6IX4T2UNq8vXnLzxF/bPPGXTL+pT0L4LAauVdB2WPzxNLelNNWYlgE3boD87f6VUN8xDvgb7WwxrL+Ap2v1eeR2QQfvrX6psfEru6PCF1zF9UYd1ZT5yeUfgtf++SGIEUrP47gL/8AR7oMT5rFktgSHeV2Tc9PAh/ygafCbrSPHLrnVyOTUu0IM0wHiM6mh5OtIF6kEWkHXMT83+eL9pEKnqE1v70fOWXyal8Pd291gN9/to3cWDCF93RLBtoiFf3nLZwx/6Halz3CKQwnFsKIa8RhF8rmyqYR1CERANcZmpgP2LuCHUBDegijprzRJxqwIkzjYIAIDma/7RL1BPrhH1igF745cuF/j9XY/kiD4PQL/bB1ngmp7QO3ymzRgHjxhOQwn+6a/xXe3fsi6ZCLu7H4pWA7uiJDS8ggT15XhCGx0EWCa3GfFOYnn84Xx8//kNxILnV18DMijQeEOMb8oLNO8CyyX4uitDh00vv//0T2XKK3bBZzcwB8Qa3PwgGusk9Mjxx1Zort4Nn1o501clP9jQf6sPrGvxB0wuEHzgWXZCscgYWLv6JsDbXu7whicee3txJTn0cadXgbWAjkXcwoifPtg5DJO+3hUWgqDu79h6LgCwGVcpvF92A2o3vltCY9XAoD84ejpf7Fz4nZ48+FtPv/3N0bQknAj8Qrxt/knLl8vpm0L53ls0iGAIWj1RCFyYrFAjidJhds+pAKwbuVD7VXps/sryF3xrhadKkNaMRl2BpFKjM9amSAD//JdtWumfXm3mp676cuClKVZBeP3jKwQu8qXEeLXq/DMUWgHz6Df9w49O3S0jPAP3gc0f7BoqyW0NkfDOsJu9dvpc8kEJv8eQp1clanU64zaFRxxr+AR/nbdGsefCKdEAOartGDFB9wU43moJG/iTRsvHEwhkwVWlJyWy9b2Ktk/wrNxDQho7w8Y3JhAX3UZcTCswYnlCkv85PBALpFs+o5/sQ/wVcyLRmngjUY4lUKvMp6ess6Pl+NspwMvWhAj0BPRZU0Ii895Bo+i0W9iiFcd1ux8pwtrAnXLeCff2v/5yZBhE8x6qFRwsi8NeD6k33RTNhVtegTc+Y/TJFxn840fv9aHeFAeZAXeF4dAU8L4+vyoVAe55DtCi502zMqC3ME7aimr1JxmoZkVQViNwphbhekaccoVQgomBuN5TvTlnZ0Pa9CrW0lgYSDUNMbw/iw8N+suSL5HPpUA2NQtrrSCw4eGEBvQqdKOnobWH9XPfrdI+uhs4oN05n177SwjVGvlY/+2/OaHWjgMbXmPzonf5aqkrhD/P5El7WoZoscYX/8//n3Lu2HSXzlXATBCHfu41H9jU8y28oPVBNfWVbCMfwhJ+9gnD1lXOwbhISwEtXb6hXR6/2KZfQ8g9ngE+bfy+oOrFQeWTh0S6/p4eqzRYwnlf7GjCq71OP3e+kpFMn9iWvTFfPh5HwKhcJKpbwwkc2gh+4a8kPD1VUtvM7ndygT0VEX4Y8cza7PEyZKc5ZYgdyZfNonHiJPSo7+SAeDea/vCVqwHCOPVZ3g/iUMOdOODt/b90dpahC89d8tjyglZf6rPQH7t4PtB/+PHgXR8YyRAjTvHObHveGng2l1BtWU8DLVilyNak3ijK84s3p0pn/tUTYtH5Fi3diZvBlfgv7AkWzlclWHlgrs6Nnri7FK2m+ryA16AQtJz6vT7fH6cUyEIQYNS3L2+s4VRBuf4F6BC37jCf/QrKzSotVFXmvbfIr4MBh2ziqHXWc7BYYyfAb5ky6iJ1auY2VhM5Nl8frHPelxGOAwKUzMXBLgLBMC/qxG+z3wA5tnLg0bpKbRC8ryVRl+IKltDXNCk/2i1V+FAf5pMUjtK2nmjmDH1YXbBC6Ltygd+QHPN/fvSYRjbWCXdj02wnEkgD3GEnCP2GLqWSwhYQAYk1e+ikgQcCj22mU53mB0Cm6/D+4wOamKLj8XBW+z99R7WQnLw2lzoDIm+8Y2P/+YE5uD8QjBTxie+Eljl7flMTFvOHEnDWEVj7fKhgoVmEyM37rC8n/OLhEWr61u9YZ8+pMsDm1zY9eRrmRToWsLkL8x/fNOPNumbw0vUldm6vcViwcIcQnn4eOh6GySMJ0hE4YR5j675zB9YFykWO890H+79p/qe3ZHR2M+q0VaDPNyXIoMf4Gz6Nu5ZNSDYvx40f6M13ckDua+TDJ64HfDr1tjcfyFWE0S59UjubvYYdq7YC4XkuqIq+DWDnk49ALEsVNaTnDyw7UVvlZCQ1tVVaNLOO5lEuQNht/eVHBy42OLD5Z7IK42lgf3nIMXnaNOBtJRfegp5J90f/QYf5OnhzbJ4S0LXZAcnGMrPlpri21CVPiDjMFjZt/hcMmBOxMXZHnVzFyAbmfLvRP/9/2J5X9t/648+v5Mu1cQ34e9t76quUDkuVXkK4swuHGu6Q5qP3s3l4K6eWXob/AAAA//+kXcnWqjyzviAHIgIJQ/qeBEVRZ4CIgkibALn6s3j3N/xnZ7jXuxcqqaqnqSRlfONVt18B2GWrQ3VrMcHf+4Uhlz9Q44xuttWnHmifMtz4hKWPf3yIv1Ymtq9mPwzXsD7Dyp0O6LXaWkb7GTZw0F87IkxvOabMDVaY9YcJ298v9Hvh7M/iHx/x4YEOazYca/BSLyMtrkHJuqE65/DDmwe84TMYYbu08OsVK/7Tl2v1q7YtMrOJb5s/wZr0jiCrfxo1R9Nh5PM6EmBdmxP98/MO6l4cgalfr+SpydEwc82p/PNbcLh7lBn/xz+2fCKinQfZeL2q2p+fQcTPGADxD68S8vkgjhzt4fDnF2r+OdhuwX3HC32mH3B/Xmr6aMtJJ58Tu8Od34U0cBQK2N/7yb98R7UsN3W24ZUUt94L7c3sXbHfzijBHz6a494BHMWPHPzVz80/ZjOvn2rI/64mdTd/f7VGT4KbfqHXUnIGvnDjBGz+D1bN8Oqzz8NxoNjUOtbMymDHkpuNP/+IWkUlsaW7FDM09vSC//zNEb8VAf71B8LHfNLpa2oNuPn91KJmpq+36vX5q6dYvdJrNvP3rwDHK5H+/NVquBy5APIfTcFIj8t4LhrVkzc/lhwPeNDHdyN/4L1+9WhR4oM/7cObIz0NTKlmX3mf7HaMBzdzrai9hDCmwiP6yOMIJRo8xdlnl32AgGTs3X/17ZgmrfYfX9z8GPZIjARe9mOJ3cOzqLZ4RtKG79iIDDvjdTHl4ZvJHKHvr6bz4eGVwC2/ya5pzvFxw8s/vkPmTuYqgs63O2wixCGmB0d9qgnfw6D83BGRondM212JoPfcp9h4FwIYeN3godlKEdbvoZV1/rRI8qZv0c4IlYrzThEvn4I2/4fvEz7zF1hMvxmhvlX99ccfZ8g1k04Oz1UEoxU5MzyNxw8pnUJjB7jTCNSOMKSvBmr61n/4wJ0/hNS5+RAceS/noZWKCQK8TeORv08C+Mu3f/7D+5TnoP3JgEiHhMR/fEH2zSRBn2Dk4/l+PdylL5VW7HniDiypsiv//H7qKwYa1nKqLrIWjSF1S3WXbXilQK1OQorQdivzVg/h7xxKNJS400DHa9DCSbsD7LE90lcYZzyMNfLCWH2sYMlvXgBvdlNRBJx12PzjAnpOlWJ3y7d/9fZ8CQqM3Fqp5oifJShcbjbh24cLZtHoenAX7B4jaXrH6/dxXOHXaVdaLJd1WOOAeXIyjh+s2PanmsdKvMNo9j9b/8fOCDIyC9JJktFePmvDHBqKBJzFulAcqkxvV80toQ5YjEOGSn34zQqS+/1RRsLp4VffffjyQFCQG3Zy2wdU8kcBtILFU7x+4oqic+4BrN5KavKJw1rR6AAHQPi/WhC9dhlF43EdZvsWzTANnIYGojtX44FbSnA27ArVkDyypXp8EgnojUm1wTCz+Wp1CuReTw3JNFiyZT+v65/fQ1ioWT5fQj0Bf358HEq3mKWOosml2k+IxeSWHYuoNGQV7k+ooSbw57GfRrBPzy71rzJhi63uEGiOBYf2J8D8SbXdFd4IV03VY38cRix/A3Az54qa90xk0+vG13/4QlZYfhk7enMJ9TOP0HF4QH85vSXtnz+N8ahWjNRKAm6+3VL0Jap+eAwf789/JmzeNg0vrCvgXugwVfu4jmeKT7mgBDdMJE/cMVL9hjvcPaCD430p6Ixzy0Le+iF08/PiVordHloPO8FWy3dsTEfXAp08QYrS3aovqcKX8EJ/X+xM72c8P0e5gGU/TvS8XM1hvmaHBBS9NWClbauMuI0Gwdgl0ob3NuMwNQOoyafz9nveA/2+gxKk1f2HFXrhhtUpXhHYGaWDDuO+BWO4DbJ1DXJBwluUffKnl3+yKWE/R9Sf/vTgdnoOm8G93Y6YuqPkaE2M3e6wy2YidilEr8vjv/7k/rOMf/0D+uffru/TbZRCwXpQOz1moJffgAdbfBLmKsd4TXEWASyVGWK32PJn/15y8Dm8KP7zS1YbH88wWZ0KG/rHAmt3yT6Q3guZWszu2Lz1D+SiPQ9b/3Cvs4jmDux6GyLpGkxsgO0oADC+PTSHhw/Y9IIDNj+UpEUVguV9OJ/lsOQeOK6nI1vWbyJALuw0HNm1VjH4Fuo/fwab71tbLYYorn9+KOK1zPXficUX8JHxX8LYsxlm4TBJgBgfiA5X6sTTQyTFP39ITYJDTLd+tGz90hM2ZF/Mtn7tCARR0Gg66Pvso1YfDm76FXvw9QJ/+PBfv7p81dn3+f0g2MeRQCO7/gzLufM0sPXjqLJ76wPturGBlRDy2HmLT/3gAJUDf3wceaoybO+Xh9ONA6RRd65+eIhNDusMLkQ4n3Iw77L3KKvHNsBPQpeMib9tkLxPHtsWkD775ZKgHS9JX1K06aUFn3cJ2LnHkJTSi2P/+IgFuRNN/74/07JRUovGp7q63SJ9CZ//ry0FR+5/bymwKOmpV5Kfv1i6mENA0h1FQjgM89jbF3jN1pIGnBdXDC5CCi/v8EIfI3vGo8MMJHkX/YhaPi7Y3JV5Ah/8b0CH7v6r5m8ZRVKIFIr2c1GAJXbQGY5a4iD+2UmArnqxE71WvFL0XQKdBa7Hge151JuoBxYgDpp0GkUH24zNPsWPbIXRo3ewsTvJVbc6AgJD+/PJczyr8VgH0h1Ctd+hVp7VirMUx4H2x80Q3T5/beppByMQtUSQ53e1yr/3dqOTcKGJnmJ9HTKJSO3BjLD5gULGXEHkQJJ/F6wuSROzrzB6x3O0v6P18lgYiXb7GuDplVNDGg7x1EvcB0rsuKJVHpx4yfCwg/Zg2KgMb1O8vmViQNBfZ2pgpLLF+7URcF5egt1TVfjz8pMUeM/1J2GqMGZLv4QNVKXbhbzfr6yatEfdggv3irHTx2SguGtbcL3GFYKW8dwsz2IEe+PWo3XgjYEJdtVDW9v12JQaHLPWkR04euGAQzH++ss8DBcoMm4hDNxu/nDWywZmvH6jxnoKt8EFjgZPimPTk4VhNs4GPsPfSVGo9lWeYBH58zab5bPH6F07+sI3qgV9nryxViBTn+jdLGQLvrbZHqsD+J+gc5BFA6KqHVHWuO9PD6sVCrgQQr/iRukSyIfv2iIhMCp9vMg8hKXXPBHYi4q/HmO7gbGp/1Dj4k814V0WAMeLBKw9fm7M+GPaQ23Yc8hPwxNje1+4SM5PlSjqdrO/2LxcgofV9Nisvdlfn4aiwdyTDtRBGmDraGIB9h8zJPBJLvo6vnwC985doOaJRNXEAhdB6U4wdh6jNqwOClYQv1GMrdr09GNmlIl8oskRJWf9k839lEcwPUEb+2X31teTQ2qY8eoNa6fwHf/LpxvJfXLYBbdhPlV7SwqabbawkrjD/BnzEvCu8qPIlRad9Pf3KNcJOhLGag8wQ508yIR5wIUxPgYq11wJJzv4YQQ5O1vX/beG35dXI4JIBNjv8Args/ucqHkFXLXUnjlDsfA11G/5xnbCOd2fJXLZ1lcGlOhnCT4r/YKDwcXVkr1mTgpE/0QOQLH9mRM8CJfreUbyXngMTENvBfDxVaKudLhUE+bqMzwsNCVioxoDrx0fK/CGq4F9rZLA+g6BAu+2vycLfZ8BuXxIAVlsyGQvlbzONEOyoDV/AOpWlWNTXQo18N9HHdvhraxoIcl3gIAy4uJ5M3T2CF89JFptYOUWlNX6l5/JhSCK1azyab3XLHiXOxmlyYiHToW3GV7C/QW7TVvGbFbM3UYhOJR/4FAtqXnQoEfvZ2q4zTpMq1BF4Gd2NbbC3KrWnY1T6KOvTuTx/M769MEQ0MptREjGScO/9U2fkkBNxTrpzGpbATj37oHKORVYb2VODzp3R7D9rjk2Zy3mAEbngQDzoTL+O/gSaJqc4de569n0W9wP7NEhxLo0g3h29JMHqfY10fHqBYDPy2cAp31i4LDo38PaOzkPyZfXcZiFBWufr6iU6b5WKDpfRH/cWRqRlfB2I7vV5/QlTVQJfjkupqHGmooRd+ZlT95aCLQZfeoWOwV6M6qwu9eEak5qaRZqIH2J/CvUmJHupcAGJCeyn15rxtyC16ADxDuRbaXfdiknEDwUe6J+5KfV8o05AhsWHrBxU4nevxRmQRDMBbWqU68zexAFoF2ME6GviAdjGF09WBHzQa2n9tKXvfUzoDfCCp2LQwmWb63WsMvTJwGT7uqHg0AvoMH+F/st//XX7GkEQlU3N4qlMvGX5XA+Q8DOT4wwrbOl72kPL9foQ58PXgVz85AusLiZFfYSk7Ex03wC53fwpqjfV8NYvi41dPWgwdbe+epjUq8rdNDFog/YOz7F+5sE90N7pDrnN2w0meMBKpo6Nbxfo88P8O6hVzQa2vKjOiY37wOzLrrSB9/O1XT4CJYEPkVILZzuY5Yfx7v4DvUQcUJcgznJdB7sKTGxy7ran7sIF2DDXxxmnFQNRtbuYLxvGNbs9VstcqoIsn5+MrTg/gbW1n/PcA53b7TGvqSzcax28JiffugzPpWBa9wph8B39lSLggl8wyWO4L2UINpljsDY1xEN+A7VkDrMJvGYmzkBr4v1os5TtIax1v0Cyheww77t8RW5J30A72EPEeucDDCERx7Qh3BG/Cfihxb/DAVaO9tHUu9qwwL0VJFOVWphzzVmnxT2Q4GwigtqH1p9WGQXKiA5wpAkhurrnB/3BtjwlupHj/lT0o4WuBYBxracYTa//N0In2dsoKMFlnhWBVKAi6ZVGDshAF3JVyuwgmLAxvFlsIMdLSlsy3DFkYju1czfS04+vn0Le4+tJb2vcwRu+3NGTaDY+pYPK5zzm4ZN/XX1iT4DHjT2WcN4Ej291YPgDq+9r+KQM6dqDevjCD/nSSbwLl3iuXK7+1/+UkWnYbWO13yVuFJyyeFWVWAeL5Ehmc0sU3wY+Zh4F7JCTeHO+MQIz9o53AVgarI7tuc00EdNu+ZwrHYt1QbsgMMvTUbYHGOdHB2382ngajxoRLJSzMdnfRwaPoGlVz+x+Upmn0mXoYZ4UCesXJdrzKq3HEm81QhYjy1OH9v5jUBd/+7UM46Bz+qvFUH+9nCwuQZ2TA8xlWB6CCx8eWW8Pu0tasFAf1bUe5U0oxOfCmC81jb21qQZRi1/RIDxCdzqu1Jx78+3hl0zzVQvScyWVTufwX7ojxgzWx2W6qb28mJJmNrXuq5mX78GcrDvEbYEUdKnQpxHeLtWL2oZrcXWLNgn8EYKn4ZQDOPxDbu79Ap/b3Sh5xLM6sOJYLp/39GSWLa+1S8F6MP9RW0aXDLGq24L8f27IwqmT/APj/p02ZPTTL3qUN3c9l/9NKBUVotZohZwjwag0bCM7BDfY0ea9z8VrY16ykb0fBqwW60A3R+mxXjrdBohCLaZ1NyS62sAPiVoLqqBBOis8bIUtAA2Ahk6tLeLzlgCeTjp7gOrrlnFy2BUJdz4DmJmcRnm7Bw1wPnpEjXPtPZnsRVneLmePxgxVmXjA3Q94J+CifH0OmeH8TQU26zBH7WW8rvFe8vDd7N6f/V6mP74+9649mQeGoHRdm85sPAub0TB2x3Y1dMaGdVvilaoizoJhmsLD1UiYj9RQjZeT7kEqmzocXC9jP78vEsNzG/dEev73RksAdHOAERKgYNxV/kM718S5L9Lh/3r46yz9IYayPkopWZoc2z8Pf1Eyqpvi413/46pq5WcDHAQYr97lmCtb0SDfTyOOIimOVs7U+fB3Xb3NDAmRV/8fongKX09sPe9amypo2qEvKv9yDV1hIqGWi2B0cMDOvBM1xe9ymqAGUy3QVeHmMSvaw6yhG8w8oAxsN91UcQ9fNnUdKSIjdJajn/8neLptcbrayYOKId0orb3fgxMzsIG9Eoxoflxk6uxeUgJ9AP/QvhHzoN1Wacegj1G/+G11QRnsPFpUkeaymZPJEhSu8ogwvGyZsR9f1qpileb2h8/Gla678o/PMMGlJSK73cTD/CgT9j3d3y2grRDMJjQi6K7Ow6zLX48eBgPgDCwIMZRbwqgaks11ubeGLbPCyBmu5R8YH9hhIl2D+P8wlHNv4eAHPn1AlbztKCll476+Idv+3Q7hfVdAn+u9lIKotj3Mc5P3rCsbZFKGkYr1dy5qOqDX0pwu9SCzGVoDMOZZb1UizlPYzL7+pIGKYSXqtMRt+mtZRWqM9x1gY21hzINEwvUQO4bL8N+5EsD3QlpCkebQbK3mz2YPbFB0LzcEHY0za/mTLiMcItXbEUqyBY4/hy41Q/SaIxl5DvogtRrQk4drbMzdngWPNjilTr56ZaxJR44KYk6BavBMFRrEjkB9L3qgANNCAZOB8ccZr+ex/6TSTrJntutHZpWEekXg2o+bmfvS8Gl2Md1MbCfWXtw0zNkb2GNTcwcInj5jSf8jFQ0zFv+/PEjrJx2nT6/V6mAcXTX6fmTdfpy+AgGiF4mxN6rxNl6KP0CeumHo/i6nYI9TUT7W1+s8+6rYnFlbbeaNDZWBWevk7x8ImCCNsPuxl/mkyxJgG/xHYekP4F1dqOPXE5c/qd/qnlZSgj9OayxqnWczi5K1kp//PmPD67D2Z+lLZ/RegrV+LAKwxkSxbkSFfc3xgZ886AqXS/Yqy84W8qc7sCphLdNP371adiFJWhVXcX2GLY6LYfSE+l4Uan/DIpsnuQvAvXxcKPOpfD95Vu7NQz6eabXw4oH+hFKAxreLyLrbRsEk0rLBfZKPlH98akyJtVzAfLXHNNoQtts15lxwBq6HCtdq/gzmt4Q/NVzZf+shnkKV098+f5Kg/SjD/x+d1eAvcoDdnvUVtN3mktA3O5GcXcm8bx/lI3s19GK3bzp/KlOzy0U1VTFGDrfYd4dDjOcXRBjPX9jwHo6C7BOgiNZuaNTzXPhW1AeQ59ew21LL668EZQd21rwRjMQMuo9MKYjpn7PyYw8+8CDutpVWOF+OfjHlzCfutj9Kos+z4YdQbNZZaxeTTZQ/ch7QCn8H3Xj79efA6tBkGnRRA4b/s/a+XOBxcyX2JLLA5hvxYWX4/bUUAc65+xQRxWBZodG6liYVrPgjxDoJllQ1TmArQZyxj/+RH0VvvTFSctEvt6mM0XkO7C1NAILsgqE//gWSSIFQX7xTASbT8yYIMMenq3WxDZMYbwaxmOFn5R70OK4HTng89SBa+piwjjfYpt/ooHN76HBr7Lj1X33LXRrhSeHuRb838hUAdZ4EskQNiajqr/d4DD7CZHBcB0YV8FVVMLrNiuMiWyeQsmD/ccOsdeMe0ZeCjCk9nQ8oblVItBt6w3RbZ6miQluNo/zN4JTXzQUqdPk061+QbfJv1TTv+9qkaMTBN7CaVSVPMs//KLfCoe9cKeq6K7VKkp+IlZz5RLp/PKr5aAlCWivwov+xcv6ZMyCkR08yP7ceWDc+CDMVNmhZiX7YIY0nmF2ZncE1pMyLAeBJtKzUi/4m37mjDnbrRiXN75gI85MQFzvyMHLqtfY3uV6PAuZyEOuf/jY5/hDNj2TcAdWM162/Nnpv08bB5L/FU40654K4Nf9t4HOftcQrje6mFFmQhgq+Qu7aNdlZM+9DeFk/gA2ENfrq4EUArOBGGSZryv782uAbaYPEmH6ZIsSaz1c/ZWQeToYPjvEPwlueI3VdPqATa9FsBW9Av0SX8nmIGEG2PQM1m1LB9xc+AbI1L1D0pLY/rrhHVSYbmG/556MxRVaoaThM/bP6bf6x2/3685EHdTHbHmsNwscfncbF/5Hidcm3Svgul1E7IzOx/9VQLT+4g17jg6HZR+GClgKtlLzfA1i9hdP2/9HQMjlavzjT8Ww3y4axnn893yo2kJNn1Dc/MCQKfJFeRjY/j1afYXe5QL6Z0iIcCkGn4Eb10D5Iu6oMjR3QA9TNcLzVWuoen0NGQnrI4F942TUeg0qYOVbRPDI6gM6CuE9nkv6zuHOhA5Wo1MMllAtkbxYAqb+TVUzfs91hvy8E5WGpF9Y33E7Sdrij/pCLg9/9UDc4gujehYqKmXuR6rPbkev4PdhS/zxLIhjx8ObPmTTQfhd/r4Pel9ffrx+lL0nlffd7s8/G/74M3h/RohD/2fFfVW/JXiIgEf9DH2zrf5JcHyZLvWSEVeb3jiDDnwRduxI94l8y8/go78DtAdAjWee4zW4Rn1I1Y2vk3Me5AAKzt/zm+zfenPL+MCnDZ+3empARSx1fGo/1rCM7zmBr1qgVOvRNVt30S4Bxisn//QC916lfBukYaPP5ueu+gw4qGZORaTe/QzL5IefP78DO7cj9ufh6CMw8vcb/uNDIhAHRdr4PbZzWfSX5neuxVnef7BRaqtOvEuzwj8/Aknf3P/n/1QvIlDrEyUDg+/qAxPMUap+Sux3odoG8A9vMD91jOhSP4O/52Hjx6o/vwGkY/zY8KOtlktWOzB/rTG1MHfTp8EYSnBU4ZU+n9o5YxFf1rJzHx7YqNRd3E7h6kADtQU295zFliOdNRA8diV1k+VasdmqBMgZ9IlddAuH9eV9FNCYbYVN76Po/Pd9gfJeBYCqVzOu5jd8p//i4w9Pj5v/A91jdPjHjwdo0/EP///0UbzFfwI3P5taz05iIzgsBNz6u4ztZg2yGWSyIF0KVlNlQk420FDloKusR6oEyYMt411NYUf7nBz+8rGngvSnF7CZuaO+HF+VB9+L/cRKGRoVT+A2mzxzFurl70pf+W5NodM9O9QYrQXmeuVLyNl+QA5fv6pGSOMV6o5TUme4aDq3rTc0Dt4TzRvesq9Qe/AH/Q82p+9QkbrQdzDo1xlbg5HEi5+OdwBY9MR3Rjx9jqROkNxnJWDbcV2fNedSk//8L+Pdq/GxdWQP3ItX8KfHBjYpqgTEulW2QZwFmOVW5mAMqi+R5bLzNz9nle65+kR7lFuMn9Z3DYtHdSZSNcXxArrEg0NMJ2peLwI46rvcgtnbFbGGvwtjhTHewd5JBYz2LB4WZIgBjAROpDgftG0wn2rJG36Rw+ZvzEcn3kEXJPqm13Sd7UhV/NX/Ta88/AnXr/ufP4wNabhmyxmNwV//h6Ky4qoOo9KDuswhei4OCuNUB9z//CLC7c+LPsnRYwcFJ4///AZ/GlCaw8hGD2rYy95fXe/IQzS2Ps7MxxtsfKsG9o13sDnXgr4M6FzI+XLnCC/GC9jOcnrgQr8cmlet9efi022Dw3SZqhwk1aC+8Rl6d9PE4aXt43k3Whx0uleHgF6jeKFtmsDmbpxpMMzboBbTlv7hvSVdzHgeL3cDbPwNG1b68alzxQYQx6oinMqajH7aLADVx2lx+OXPPltSdwZbv4BaWz+D9a9Rg26t8Zs+FAdaZnEEPyn/+PP//XmcpzN0j+cDeofnX8YevywHny6QKB4FvnpeqaZI2OcgvY47ylbX23NwyPsHDh/8G6zhwahh9vZFtNp+B9ZcemjweLkb1BBigy0vWSXyv/7N7lz7vN4/BZiSycFW3xfDCi96BB5Z7tAYS3rFwrwksifPDPuvzI2PxmnVZPMkvnBwG/Nh3e/uGky06EXR7RMNDL2WUdbFRSHrbT0w9kLxBU7Xn4MVJemGib9ySJJuxkxNnlU6zW0xgZv/S6OSK+NF6FIL3tXRp/h4MatND+4gfpcDDeZ6iNmkuBLY+mfUNKaRzfm1q2HCJwTbrVL/5Zv0L3/zLV7X27pPoV3/PIoSwIHZeAQX0BVcgDHSsD5f3+9VPhiOg/Pa0+O5FKNUFh5RRV87a5eNm38BRDy/cbjxvyU1ZQXEUarj0A/JxodrCLd+CFYruwcLMWgtfemOQ1aQxT7L+jqHYbPdsvUMt8Gc9WRJ5uWKKN7bJ8Ccbwbh8djqVGd1DxYOnxEAzhRhH4XvYf7z9zROeOM/v5OdHy/+r3+FNW1nsmXzp4Rwp8/UjuFVn12r98DxvH6pmd+2QQt39Q67CU1UZzutWkK1RSBopg9pNv+BmoUIwZ++xpC+42n/c3io/24nqla2B4glER5+OT6mW3/LZ1dR7qGY0ZgaNxXp8+e7q8Hx2OvYLVno9/QgNVDwBA0rZv3WF0tfCni6qz2BhTOwlcDoI2/9pb/401ft+JhhnCccxquF/Hbje/Ak0zsSLc+tGIVQAk+dq7DtfyafPo5lAnKmxUhGjAerKbMVitbhQD3JPYPStT4eFA9FhIPFt3W29U/lIW8fWLV4wScOCmbIDJJTw7hn+ipNuAB+4F6IWK2PbN1tg0JHbhaou6ocIP0n6sHWv6IOL0kD3fy4Pzzc9H1WMa7iVnjday8CWt7UNzwSIOWHCxFH9sxWsdsVYKuvONz0RzcYw0d610mG7Uh2AC/Z/gX+8Rm7Cmp/1hsFwfFlu1gbn+Uwbv6M5GvtmV7TT5RNZ1QHAF4EmUiZ9NOJ9rzu4J/f5PXup6Ia6jQoL1ZPuBNLBpbctM//Z/DB8fC/txS83bknx/rs6Uy/7GtQvpBGlTx9DAuPllImaW9TTfHY0A7LTGSjlxC9VN9SX5HzbIGliRbiOETY3KWMwBBfZKqZza9anZ+xg81B6LF3NCafzTe/gZ/P3aGedvpU4/MWIijaWUMOP67Kpt73FUjTdqTXmH7j4SzCO1S7XYP1fYKzWYcpgcE5UDHKbp94VL9PAoJOVNDHzAt9uJnXCKoGTkhSibK+mmvnbKfCSyL9fb6crhYcLO6IwyC66axhBZLOjarQK4pP8Xp2JwdId2XB+lxBf31Mdwe2BeJQ+eJbtt5etwgoO3ZHnNFK+iTrrx70bxJSva+O2WjY4hl0xWfE+q69xl/60RK5+Mp77H6Go75EUsdBq+0TqkiKkk0PWeElZRBnBE7HDtTazAVyl+1uhNvBKVul/XaxnJIERNSGepiOVe5AMPcY+3w/+KuzVrl8+lIHW5cf8dn0TmuodFDFj9tl2zUWtBJYWfPDmnh4V2t89VtYiJ6Eg4DThrWTQgP8fP2Cuvv8i8cmXVJYvSqDWpw++8Oz+UowvBqIxtXhXtGXqxZyJNQ+kdVRBYdp36z/fq9pwLPPMvPWQPfiqPhSHBuf3EdtJ79E/0WEI4PZLMZIA/Pa1dv7umWUQ9uxjHlnY1usZTa30lrKcAh4JBxZHrPWLwvwFVwbzSDk/UW9fjX4OX5WRLM811fV+HngK/g2ep5GfyP8eQLvUvGlpixaPtFOZx4spc2R9au5w/pQvi1cnccDB2FcZEt7iB2YoOFHlcwhjFnHzIClu5rU/HH69vfMg30eYXq7L/nA6vhqwW18Hda6WR/m8NLV0NLRA9Vir7FjZe8aqN3MbRb7mx/6sX7VcKTFhRyKO43Xv3+7SabjoOHmeL7enAZUn3QivLB4fvd0OgJgKlZEXOeDPw9zVcLHZ/Wp9bi2/rTo0SiHv76iXrBXt1N9jgf3yfjGcV2dGVM5/g6POWZoVXCbEbFvCzBQLyfiGhjDwQznu/x91i9qXI5qxQly4cDOYTkCrfrOSBaekr064pYq37DdTt3hWWpdy0Myn96q5bvLd6DxFUpd/tCBNQ0MR5aHkmClrCt/9lZLg1s8ULsIo4FKX9eCIyecyd4TtIxzn1UKpLu2oF2jBNkydDsIbgF5UqyQSzYP8/CBZpsUZH47rGLpqhnAuNEYh/lOiplLThF8bhc33upz77ck1wNY+GOPTx7Rq9U6XT14IPMOK4sD2Xg47UpQe/ZI9dkoM5bHUQ66t6mRhRPqbP2ETwjp2u+xLYB7taw3kEDhsU/QwVUttuppsZPS8/NJ7Tu/xJNApBaqYwmwhptAX08HrwAnpDkI+GuUlU263IGTpAU1H/0hWwIh9OA7UEdq3UeNHQ6i2gI/mUokrjZlpFBlD/qdlGFziw9mKbcI8CNGZDWb39Clp+3UznJycd5awB9Gv1+h3moqtuNU1ufdtSdwyxf6l8/HwbvW0AF8hv1f/NPH5z1NYZ+fMXae5MHW8KA48pRLNXYW+Z3Njs0aeXDJCx1JKLLVL3QPsuzU0MB/VvpW/zw599MQFaeQy8ZB2i5SLFcFh5TX4kN6FkbpuJ5vNMx3aTwFQujA6kMU6rjmkC2BeE7g41wI6E3fBmBkXAwoTM6Jbuunj63OE1g/zz9sX8JRLx83TQL+xfWxfSRaxT+OXQ75/d3FFvll7C/+JdE4nLbBB208J32hwAMDHdm2D2WrCmdHvtRWRi09MmP+KcwQaLc7j68uLcEiRaoC1d0iU6OY8oFtI+Bg/Xp3WGdJ469Rv3jyOaQpNdi3y9a/WXKC/VCxwcVVNT/v51Q+gfxODbKmw/jFqQCj2EH0D59WPxZ5SZrcjDqfPAbLRRo9uLLThTpHYdE7f2x6wLK4IbtGGePeWOIdvKD2ifYj5mL2fHYr1PqooKd98wEDou0KrkGqbPnoxIdJUxG0hmDA3q319Z7ifQR6JmPyoRry5894TOBT2A65t42mz3QBGrxC+4ztbqPU/ddU5KTZh9hZ86c//8TvBQ55bVMEu321jIdnIY2pciMHBJNh7nNFkHfDO6aOdhsr6h2vKbyePgO2f1090Jf8EaAyhjo1yUfzl3M2I6gsN0LE+7BW33rdFRD1+InN4lnro1SMJbyg/kluXFgM40W9r6Atn0cyH4BfMeWFavg9HjiME2xlczHKCojO7xY7D/My9F8yRtBt5Ts1LpPgT4umfyQNcgx1bVDq67KmK6if0Y9666nIiAnXAkA9qLHuFbP+2zVRLdvXJabe0X2z9aMbLWRMeCHpc7r6SyTmPaBpP2KTcUHF9tBJ4en6OOACehVjW37JRh+32DZCDSz+xHgIzPlCHy4W2XI1Dh/o7NIZ6zjw9PWHpVbU948JHfTejteyjloZ3JMOKwcwVKtqUAd+D5KJ5A2/aPAQIOQcylOnMkWfNgehgXH8jIjg5I0/dcoySuUxuFIf3E1/jQu8wvfp1WNjw5855r4KZM50wuGeHyoWkqwRTkhxaLomzF+eFr7A0c41jCPh55OJ8hY8R1JC/SkeGOtK3QL1x96THPzabH2TDoK2CDjsn9arTsKD4kF+uYlY35/SijGtOoO2XDwajmmsj3d/vEPRfjQYnfjHMAdxnv7FNy5KooIZlY4FXz7FVBeTHtRa00vQuS4CovOl83uKj5F0eLQXjE5nV+fF9ZVK+71mUXXffNhq/LwWwLsO0EEvZUaYo/XyN9iLhGPfLl7HRoRQSV4Ma+nFY8ux7i7wl11+NL2f5orcR28HtxufKKYNYnPgRRHQHp1AVnEOGEmU6gK1TvbRvmSgYmfhh6CrVxlqPuMvWw56psAQPiW0AzeODUyrIjDm9YiO7iuMN74LJaNVGsSlxi1mxWqkQNIEm2qv5pCxTG4b6bh0C7Weu/CP/3Hy9FExOZXMig8Kv2jQSgwVh/n1oM/J+yEBU54zNPn6W2f9QRKAMWsiOsrkF69FgLZTqc2KLaL7MTt8xjv0L0WBwyAtB/pohm3WtxJs8fkA694XHXhWfjq2tt8zr03Bi4tZBWje+OhB9dAHKgmzqLPIasz9aK5BjLuUmsbxGS/5Uvfw9mpMss/y3J8rsVLgyy1Cqr9OrU6DW9LIPBe+cZj9JFbMz9mRrcRSsXm592D80VwB8i5NsPXcTdlqOSdN5h6qi82j+M5m7TcbAMupjKRbxWekt2Zejpvex1atW2xG/SmVld1yJ/J76fTxjfwUPPAJkoMsWjpLV8+A30p7YuNyfA9rEWY99KH/xFa4M/zjJfNWYM83gJb9m/jE3bkQaAYGaPcCK5h+HeyBfIcPxAtLr8/p8P1ApIoCxotW+dM5Oo2QptcH4q7JM56/95sC5cRasKObVjW4U2CAawNbaj38XTXbwOag3wkZTe1q0pmNIg/K+ien5lZfVxZ3Dvx8jANh7sFji8KLGiRm4NHXoWHDWlfmCq/BXaEv8135EzcNHsx860oVqftW64Zvkma8EQ6tXZCtYl/msjPgA7VXwFhv/LRW3vQMGd7QZtxoWgg68YfHOpkUwI9ZVkA4IJ4Ggi/6K46hA2Q9dEnzuDo6dzuqo5xGKMPBXZX9BiaKI2/8kkj3xMz600EroAZ5hvXrSR9mTo45UNZ6irVUAPF4Lr0UHJe9gXF/MWK2N4Na3PIX+6ejC5bdKSqBvs+mv3qut7WpNuBX6T/ye9Z+ttZVOAtgmhtaNObbHwWbljA6c4B6Wz7TZF5reBVxj7i/9X6hkpM3PMShFa3ZoPF+AyWzyMlMFzlbvXPdwqD7Tgg6KmPdovkloCs845u2kGFdWjWHQQcUIv6KL5vccN30bBtR5yfYYA7OGIGNf9JXL1zABNL0Alv+k5Lu3Dz02fpJd/h8OzrOz1boH+rDnYdZVMb4xoW7avzTd/4vsRBXfRWdb799Dnv3/kPwdj8OY1HNEqxs3qRB4qtsxVf3AvOoFPDZzIu/9fHgtCYfsrzyhq1t9vBgjPQzVfDI67PNIgF6iLRYkTpzWOPkzkPtNrr07uSWzh1ym4dXsZSxZr5XNgnH3Qq1G3GxGVulTvQ0gVBZrgRjiOWBmGA6A7+LD1gJrqAafoq7g2mYrDhoRFNf7HFMgIuIjtbH8K1WY7Zm4MNiJsc7sHT6LZ0ZVDmk2E++OjuGtXeGdG33FEmEVktxUZAs9cIDOzevHtY2O3lwN/ANds9aO6xH9+xA3ThY+BFeULXx9wJWx/eNzN/lDpjZ0xRs+EEVyp/1taz0HARwbmk0OILePm9mAPWr86D+6dixrR7W0Ptp6E8PxDPJ/QAWtRLRp/87VSx4zBCKff2m4XvpfPr3fLFv3ohx7QzmXOubP7+BGjUyh2Oe2Sm8Hes7ttebnrFlIAi43Xmg/jv+bOOEvxGw2x1CfJdaOl3u0Qw3/YXD5voYFkNQSji44wtfCqSAebSyO8y+rYwKdQFVt6+nHfjjy6eeeWB+I/8O7BYiHJN29FmUKQUU9qShdvxa2GhEhxSmApqw05kyIB0FK9D2mYOgY7XV/Lh5AnShF2PjMt39OXB1C0528fv3Pmf1cUQwbtQvVcoXydb5Sw1otVf9j8/47FuwRk4/60xRT6yMu3G/BLxQXFPPOdnx9N6lPYhPCCEe/bp4ptLegS/+6xH+8kN6wz2lAl5EbBJudiV9SbfBV0lw/2KlSQt9ac77Hry59os1/L7F8z0QG/CMqidqtnq6XnpWwJlFHr12/oexZWgCaIOyomibe8QSeLLg5fSxqGFMiLGfokKZf8AA7f/w/je/A5B/hw+Z92ePrfiV9uB0PpTYCT3Fn7MDz4Gy+OXUeTJUHS5S7UD022XYDuuP/s8POFjPB8YBeVbEL3QHvmrtQOYv+MRTn3QlRN+7RfEsiNW46QXQPL8G1U0t1xdDcEop+CUDtdj1ANbXffXkR5iEiKuypOqGj6PBBHU/cuA+DaDBY97B2Ukx/Vsv9ny+V/g4CgeylMzKmDvwEqQ5IGQ3E99fT+wQwY51N2wb+iMjPzQV0sZncH05qgP3x7/WdE8wGrskHitxUABnFRz2hOTIlqpbE+l+rOU/vNOJFpk9SKVFI114IdV3ex9g42c0BdOarZceFFCSZ5XqbO/H7Nq8z8DsJYZ2ufIDIzx0Hwg0YcSnsoOMnmhlgEMmJmhXEpXx+lcupEuz06nzebfVLPuPFPBjiLC2H/Jq+e57D27+HMaJtwzsJfcC5BY9J0JI5mqRQdtL32fzQu9XboEDnngH5E/4+ecXrr0l8HDTc9gyfjVbBLL2cv7cfTDuZbfipzXKYf0Zv1T/ngIw74fzB276DsfX+RWz0/cxw81for6WwGwKDUEC9u7u44AXUUYLdqrhn95H2Tkc2N40aqiOYUs1qWjARD9eAj1Y+NQSr1JFbrcyke22BfTZpCRes/B0kZVLaeDCqr34UMv2Kl3Fj4wO5PPxN7xs4FZfqdqbM/hJJAzg5g9SpX+dwUy+OPnjn+TA/F9GNV5vYO93HUajctK7Y3VxoNPuGNYfkgNWdkLrn96haVjIWzx1s7yY/It6sFTjdrLbRsr5yKFFFt7BEojpBX59xcPOPccZq1x/ldRbeqK3Mz9W83HZ94BbLpSq0CzYTw+dFj5984Wdc95X40t9kT9/hBqSuxuqaifdJZY1IrafneKP56GV/vlthp7V/tLt6+LPjyJz5iC27MxVkWLl1yIePfdsuERiAc4y3ZM9vJwzhs17D7f8pifeTP/0YAl7tsfY04IQLMpe9sAnhx6+T+zIpt3DziFvlBjnOT3683E59tCW2ZeaIrdky+av/tPb3nsyqoM/khZULuPIQYxKQO95GsE8Cr8UqfycMYwu25aAgRJpWbWBwahcYSJ5DtZNOwLiclwdqBphgs90YNl8O8AS/PnBQetjMP3K+QO3CSQ0WP1L9vf9QV6lJVVefAv+8VddixaqY/uQUWzeW3g/+wqSFyfU6c+1LHA/ChG+b34Ds/3DCoX03GFz9+Sr5euyEgyuLVLtOyDGBGRY8BIvDr1X5sNn44UI8OU/IHYL7cRW09y1YNNnqCE/wKZbvdv48I39l9/1s0mlP7x6PC9H0IfwaEigF3ZEaHOhmt1irmW/+zpUR5XB1lVeznCiuYjmV6gPHGdPgRTCl4QqHPT67D6HO0x+55KIx0caz+vzTMDRNl0aZksdj3/+lnldXbTfz+/hz3+BPlx1GgR0YmONwhEEl6dOI9NRdfbuvAaycqqpddxlG37/UpiGrYmLJTf1I0RWCh81ldBkicdqfj86CWz6m0ittNcZdzMlGAtiiMNAzLPpNj8dAGa9I6/EzNkSBpT/01fU2vCcH7O4+NOb5LrV6xV47xYgidPxQ7Av1doYFw8+I27GJro3+sQ+Rg8nT4Obfzj6iz7kHBi5Zo/9VlXjld8r65+fSmDrU7aE2EOwYcmVGnGp+cumF6GnNickTo8rYIf3K4BJTXySVNENzLXOpZAx6YWkZo917q6VETzFuUX1tBBj+uyUs1x893uqerXkc6KnSvAhBM52EXjGWAJ84V/9dGNcZEyudgGogiEnoi1IMeuHdyNbSrIgkMFKnxpfIfL2eRv/r4ZZkBMPNpWuUVNXPzozP3Mub3wMh8MoABbcivqvX7BtqSNs3r1VBJ/CUaMBFGN90RIpgI+z/yUQXj/VIkWuBs277iPp6L7ByP/IBW7vi7py1W7+lCNBjswPnGonbSB+4XuAy6QFW8YTZNPkm4nMGwhSzzncwPR12Qfu7/sKOxO2M8aEkwSj9ixQ9z7/suX3qhKZPbQaQc2q2Cpyywyffrqi0/U2VZ2oPxM45I2NHlCqMtoVBwnGTetT19Fqf/yL55V4Hcb8ZRrm9PPetqicLWxWVheP92BpoLq3I4wTEwLSZg8HfjzjQ6PyhWI2B9IZnsEc0VR2rWE89/EIl/JhU5M8p2zT7x5MRP5Abfc1xcNSYiJdTqVFtX1QMoY0/gy/3nikl66c9YU7cvk//8+Mvxlg/0falawrCyPRB2IhopBiiYCADAmCA+4EFAURGRIgT98f9+9l73p/r4SkhnNOFZXUqkYkj9qTbjb03U2BUVIYHRNoL4m3krqH4q2CYD2IxqJXt94OQ/YXn/F2fk3oL7+hU4NmFlzOY8wWfekfPvJ2c8fH84licLpgTdygnNCf3gG/R3Bjh8b20sljO039i/eadZY4F8bXVhnXgcw096mlE3vrp7/zY3aDWNxlWVb/+Q97LnhkErDggvYTduyPT/Bdp0R/ejwzbmvR4KktC0p72J/+9CU+1Z7TI1qYe5Ic9l78rz7ErYywY7gvja95PQoqn04u87zNx5tv0ilC96Dd0/lch3yAzygplso1ghd8xdJQstQTPrssu7RqR1l6niGIcE0cm3qIl8KcwC/9mXhrc60UYaUsevljWC6mBm++7MZFX8k5CTxj5/HH7CcwFXsRj5/ASccXSWqkmwH6qxcgMcg/PVzx6kmFhf/ypy2GcC8tg+zWr1+36DcijMNbxpNLy45Pr5MCY7En/+qjUzZPIvDp4jIvMFNjShSaoewjrNmupZLHarFMoH3tv0wfb0M5/+nt0L0PVIXqg+bo8HEgRE5B/vD1INzIA60MSWZLvceYeundqvrKXrNDVN+8hc+/1W96+TKL39uSVzlNELXHJ5ad1wqxJA0slH7OLcFddOF8ploFMILNnNz9pc0SD1Q7Lo7kNtzWfD6u4hGkFCGye0Z5zLUiHkG9JCbJLuLX4NKG6LDsFzHvB9/jX+0AKH+5Bi72X0CTrNxc8FdGy4wFz/2WeAXv5/uJN4k0pb1VD7661Afxcts5p3/Pmwu6YsbZp7w3IKKyZOUCs/Nf4U11tGn/8B7OV0iL53y4P1D1vkUstwQ/plV1F9B3jQg7JPqQ9mao3uEhOwqzDG8sZ3m+JjAlvU18L6HpnPQuKMv7UwF+z3Ja6rVwPu01Ymg3Cc3+/BlhfTAocb1mhxZ9V4dsK+WEPOtPx8azcFf26tNhnhqfDVbE9xE4//r/6q3DtZJakJgpsQVfpnNVRQC57J4pZJ7V8XT/rP+vKQXS/24p8OKbQw5Heex+pXiqoDLOF+at8y9nmlc6qna+hyw4DB6aGSEYfHJ7spuym8vhar1P0Ea5SHtz5aWDeypOsFtqYitv2xhT3QwzGpLCoSq4L8TcQyoAnGoTi3d38misXiToa7Viu2rT80ZkrQbRyXRZ3AkyHxzfAXD7LCahqv06aigPC8rvRcCq74lx80lSC57yUaFqZRVo3t5/d8W5CiU5PLEbr3PmN0D3dUoVP1LTfi1QjPrP5UrI/rAzZqXUZogmtnSBOp+SnUnlom1Ob8S+GI4nmc/ShKvxWrrct3k5egpXwDrUR2JR3+RzFmgz0FfNmReagTetPqRFj8uFksMlpQbHv4sC7aS8iSVvMj7B2nKUYj0iRuoujCfbeFUQonoixBdvXlteikS9s9xg+wJqNHv77QWySJHJIU9Fo6m/1xCUHXvhmSsvbyJZkPztF9Hu+43RmAfFh8+ahcRSVi+vtwXvJK+9biC71e3iMfxoE4gHVyResvml40+0TnA9WDoht0A3JvSaI2CTtGFavJ+M3+8SubC5njbs2pxm3gvDXQJmjhXz888PTWJJXBR91wF+X+kZjfQIGM7K0yOOYNG03d5fd7X+ATCM16tufkcJlZXspy6DJ7/xIK41DG56T4ievaJ4Pcz7RH0HfsKclWyWfKMoNZiwO7NlfZ5I27ulqKuxorIltyVn4Zkq/FJ3WNs9t2XfThNWdUfcY8UbV2UXbLRQKbzbSNxDefGm76GzEN75DtvNZ+T96rcG0NUuptJ0fsY8tv0Renl/x2pHkPHLL/UMhgUxO/rvwbh5liSA9jvExDGVKZ3RN8zUzeMd0pW5y/icxUMNO5opbH++l3G/gqcGT5YmdHLNquMrX25A3kgrQvzD15hWj1aSnb040O06jjyuUbWQs/oHxNg2OzSL3jLY6vG5Y7ftIm/Awc5Xd9/ji9ntK4t/1+NFgo0VAdnt+Ycv9p/AJ1Qi2t2O0A2Jq+hIHNkRq211MCbfww2somGi6hCP8dje4pNy93qN4FRWymFdzPrKPlx7thtubdoXb/uEJunyJbpPQ4Pjt2KC+wkVSrudiwYP9ERN7mpMtNt97/G8IQKE5TVnuu7k6bQ9exhy7qh4O68P3Ybubm9kOe8LVSHVuvX5vi2AN/RF0d78eh9VPksQn+QCv5fnTbKkPcD/zS0h6d0rp9VOjZAgakdy+vWncrI7r0EHOXyTS2A6aDy4ygOdi6olmvMUSpYOR1DlU4cZPo1FzH/zVwJFPGmLpG3Eo6egLQjrpYt8/tXlv/V+qt+ZufvoGvNgJ4qwVv0js7/Ji4/TWwHkbpKR2ckrLOddd1Ngv3mkWGDRr+PFWTzBs65ntjfHtONOhQXwPI8z4yZgQ5IXCbvjEyc7YaUjyR+iu/o15Rs5KLuoHNJCe6CbXLtYFZrWmDu7dZSL/DuR+7Er0qmho65K5GITnSs7Q4w7tYW6MFNml7bhrdN0HGG7EgnRHpc1op/AojDdL4Tos93yn9JcTehzWyc7sWXeeI9cBcyrf8VS/D4a07deBml/ugcL9llgTB7odzXNP0e2p/ezx2zoRdhm7YO4i3/xTnzflaLb3kiwrc7GZEpzpl4kwaebZ7jppoTsegiFo8xI9agRxVp92W74lTBN7dJyPJ+jE3SmlhDr9c4Nentmd8ht50P5HAd8Tc5NjU78faUs2lJjPh6HRZJaWgYGZBnju9opsGG1Ryd8LlP21es76vKtzJwk1uK19Dn0KAPsEKs8x+kcwKNCytEhzCTVIx2fbEtRiN8PLJruJ+Xx892q9ZuX7GA1HZqigzxCSYsrCaRixdl6TjHsz5cP5Vdli4afXBXwndSe/oToGLfBzfcRwv6L5fqwR2L2ecygPmPEbJPidLpS/478hxgwa95ceNsoSIf5vm/pyi+VeKrORwWKu/hg6eVWoKna9hGyowaY8VAEPtFrlMAbyVs8yoeHN12cVbYNnl1JxX7XdKP9+TyAxPaNYKXE8fh6KhgCb1uQbCOdYv7dTKIqH+hEdnVbelN/forQx/jF3LLzDSn88AiK+LcnuhHuuvGrFppK+nvDrLEN0nF7cDCc3o+MmLHbGbygdx/QM8xYUMdtyqZ126Bzcj5j9UZIOoyGiaFc1RHZ53sUf0XqFQBz8GPucLiXv7CqZri6A6FtExzQ2E6yDw4aaqIrytfjvy8/ofrIGnKAvY3mtDcy9da8CTP85a7VOx0z5IvMxpvFf8eg0LZAjg+feVi78vGoGQp4t3dN9v52z8e1UPsqzvmE15/gU85n4+VCwKwj8e087uaHqvvwoJVO9I/B+MjkRwTI3jnkVqWKMWmvSlPxSfWIH8zfrn9K5wKtQv3HnNRL+XRsxAfM6eFDzDH6xn2IwFE2v8eAlfDQcP74KCLcrtmJxNtmx8V9dKyAP9Mj2W1RwKfcU0KIpoExbQjsdEL1ToC/eO+LdhzTm05FtPZ+A7NOJkXUMkcLtl5dEmery3HtqskWSvq+Ev80DyX9vc/Ov/02rStFM3s5ISSS2hHdyY/x8MmnCJ51NdONSXE8nsSzDqfwUhN386Dp/ChODXhVbmCxeH48bnyXr4pFMScXty5idrwaEej912Gm2wzdpysPPrpGQkVBVn5l/4fPtNdKId6mnVIaqw8JFn9j+64bEDW4HEFT1R5eF51jjOdhi2GidvRvPaJubxq02DNzKYScN3Ao4MfnE3F6Sy+HOFEFmCp/IgFdf/niP1s1jnBC9n+/d4/cLSRiWLLraniVE81XGM3lXWG+nfNyQofsjuJRXiQFWeqa8zD6oJmnMwvcROX02LqAik654Y7f5o5fE6+Az3oIMf9mEA+dlbZg7s0XHVnHyv7xvV2UttE1mnvESFmexxlagaExu/tpndQa0QMSfVjhfnd7lH27tHhKvdozp9TtWDqKqwxZ2fFGnFL/ph3dvzA4ZMB4dQIjnqXJpyhsC4kFfNqWfUmFu3JPji2xJeUTL/bsbNVKcsjB6XfGmLvdiOyfeGZhd5iNenTaO/rzx51CTW808U6ByyhRurUyB4nfj+6qtlZabL++I2P2w/6/5+W/Q4S+pbt/w0coJVpmepny4tg3f/aMkbz6pKN5mLG64GUsBWbDRzUcQjijl0X+4n3D5EuoHOToTYwku3Tt7527f/iYXoOwQ6PKNw2ak0eOBb+RvHFX5IsEtCZkXx7GuD98C13lTf8idvm6xFxh3ojWKj4S0rB9Sc00TcAMkE2cb2Vy/nh17h9+Ita3nr1Jy7MLWq/QjaK6vsT8VM4ntG92A56KGnszzcYa0k4w2YGsUTxl9nKR1OIPB54+EZOkdvuPn/x9dd4s6wX/fgZi7H74Dy9d0NmsI7bbHZt48r+iD0aiYRb7SmzwiG8lyC2rxd6Cd2Zz6wCcSNjS0Rb9dPrDc+paMZgZXEXUt/Ch8HjFHrOzmcSswmcMU4UnZhSCaFTaVXKBf9uajvtLZfQin3p1jIXlYp7LGo3hKTLVanUemLOZlHjyyv4N3hD/CHnCwdv0Bm3hHCRbdo1XMxrHe1qh3am6EfOTrpf9Kx1Vd6Q9nb6mlE7hbRtCsJ90vF3iXa+IsqCsIjbhWfzwlPnyOQH9nDIs3bRnOZSpsEx8pSH5w/MTOpwS4A7ZElypa95stEZCePCfLF3sh7uHFBAS7RRvXqeeN1X/CtGeBRY73jUUd06FAeLITwhZaaH3tho9A1wbFtknB7cboUIZXLa6TflqAq+HCj0AzRlmOkuMbr3xO/Hf+c/Xk971uXUy4fXCO+JNNcRUl3Ci3KqdQLTPJeWt6G1m0BI7wWIxlmjUb2OP/P45M+NXHMuZlvm/fPzHvzzqJB6g2b6/l/xqeOJn7bRon2YGieWY82Z2z6a6vC9Z4nssdpqagW/VMjE/O73kuanWaHM3Vn98lk83qRvRNmse5OrOxsI3kge4sqHilbbV4zFo13dk2/2T3Z8HWs6oK1wQ3sKFeJVDPc7CnKK+XlXMponNxb/93vAzwUq8/fE/PAInKzOZr790vln4D+L5ckHGhgXGLC8lGg/olXiUFt2Aj6GijGe9oUWwywwe3CMK43cYKVry7fwaDArrlXzDojSSkidqksG9eK/+8ES51l69Dn/50k26OuYnL3vA2oEPsRe8OAonUYDju6xxC5Ch4RsoIySRM5DwsN11oyWjFlbaB2F1qogxq9ejAGolOsy/GX3cj/e4AlrFiB0s2e24fbtncD/Xb/w9tCujP7hzhp5udafjsv7pdhN8+H4SnV00beADP7kCxAJmxLAHI5XEfBRhzDeY2bmBPaZ++wZ+x/bBzFXpobWnRa76eQkB2SdlzqfuMRUga4rH9rL25fR1+kholWwIlsvnz+un33WEpnyHtE9fYtdc96kkW6vcJWdXHLvZGX8i7OhDYUZMaj69Xk6vLHyd7ZCzSdkUhSEKHvqFaNbuYjC1PAlQpVXLglT/lHT9dt6gp2VAjPPA4iY83S10wwcTn4NI9n6n6OjAH/7b5/s0pdYsCHAj/opKA6o9bg1Fq5JMVZhezEdvtmMI4Sq5ZxJEheNxrh9nddBXwJx+OnV8FlwNtY2msTscWz5P/mwpJlZ14hyHoOyM7yX5y8/ssFHVmL6jkKrhLvgy/fvaGtV5GLH6fJxzrEZFY/DvRpbQ39/v1HrFex6JDyjIdodXE6wXvH9Q0J4Ri3n1eVOyqziZqvxhBywnzzKeq/to/cVrZvU3Wk4H4VlAfEIFndPPK/5NXlmh8+8WLvrAs2sma39XFn+mk1qv0FCUZxFN0ulL10EkG+Ogjxr81GZN9P3K4dM7fp5Qf5Z/zF7wBLtmqf8AEkDtv4cfqJyNujFvX9gHaZkacn8FBprFfST8y79aA07J8eN9h82jCJmOX3U6inyif3icLXqUN3zrpEHlqoroS9ok3ddYidG//3cXf5hrV66Q3Soh8y7O2/hVt18Nf3qSXb6kdA71QlFYMQMxM2zFQxPpGbq1h4xUW7FCfMET6h8/jIv4bTB3lDQovHQkRA1ufMyWr9IC/G2wYK/l8h/+UYiWUJHiyKCdJ0vA2ytdzl/s/tnLH9828HCI55tei5DK3x/dLvl3OlzWD1jdZJdE6KTEI+HZjB7e/UjVesjLmWqehl7IfDMrfk8e8478BP6xvBDNjU78nz0HBXti7gm6N8sP2URyrO+I22qFMRmeQxU7me/4k+9ROhe+lcF7vLtEP6Nnx7UmobAUtsjevDTxqO/uEoi/coPVTVMZ3JE0DQYtEqn0cg58dAJSoUXfxKV4NQxxqPUEjI4f2W7Rf36r3TqCvRm2RMMl70a9+vhIEPUj22Xnv4uWNg1y69P6Ty/x5u8ct7DoOexQpXdjvn/RDPTdUrYzNVbOTZwA/OHp05Jvx0IZfHkdyzqV3POrm5PNHP3hHyoteH8sm2OlBs9fyeyf5MajlVuWElcXTKX2fEunZ/K6wHQ/Eab/PkFKN5GuweG3FrF8VfcdDeBRI1eoDuy48GVOd7dCrfn6QYWzy8vJS7Y6oOPqQ4Ve3KUTjFIGtJl94h9eDu/Fq+n+rYdl5lJifnxmCTQUH+i4ffTGq8hkHS18EW91KTMYfisWTLUs07Xc3dA37I4PwEK0tHgc+7KlFpNgqpHMDkI0pZRqhg7lNpEZOe6vfJyNMYLouwlIgOQ3Guyaw59+yw7wTD1WrhIB8NYF5hy80euytXwCCPeckPxRcDpdaYXE32tDlnjQMXRfVxA9P1tiIMv1NpAUD7CP3x1dJ2WOJvd5kmAWH2tmpqodb0RqFH/2j1e+KHv9gfoipB+pZlbAFLTg2wgt/oOFN8bl+Mf3/+nLXRAg+aLfm3/Pe4RYRxtrKBpoXKJh0UmrP33HhXvd5n94jbdW42aQE9VjRjasU+q7mq76fT4z73D+oOH9K0yIJF8juCnfJYekyIDJWkguAbujyUtGHS18jDZEuRojtksdrbQvYp59DDv2x58WfZyR9N519O95Iaom4oXmYPBcG7YokVYdhjAcDXr1tULRjVhmmKglX/TqGv70JwzfspxTR7bgL7+gJR7NWNll6rLfjJygjCeWthbUMz7i1amruvHJxl72tTz9e345no56q6xuyMWymb7jsRDELVjVmzIzTn+8TcIEQ4A/DdGGR+3N+1KZ0eqKdYaxO3SUEeJDgDr0py9x7s/bGq7ZZk+//Wfqetj9LDij0iLuHz7CebpFS37HxXzYGjO/vVxlu8/3xO2ZHfPDa5KgfupPWirrLp3DDwr/9BG62ovcmDRTeMDCLxf92S3nTeTq0FSVhzcLfu6dp9ZAKKYJ2bcHKf7DF8gvBJMs+g36sx9FjceAxJHQeJNKfycUnSyX7O5amv43vu7fI/31pRnPNNvWQMNiyxa92Js199SA/ZPOVHneg3TeyJWpfk10w9KxttL5kMUNehq3Hf6CfTbWU3Nz0YLHmbFapt61xv0B0s3//dPj14/TsVUf3/sP8yV+/+NHltRWmLIe0IKnakUXpZzZxNCNTTk8FQidVMMIH6WOOuhx+bPfhf/QdBbSVwsI4xf705+mQxg2qm7P7oLnAE3fOmyg0uMUT493wv/hU2QbDtPvuepRPQINZWuN0fF8sOLxMQcSHB7oiqnfXLwpmTMT2pY5dEr5sZuDqbXAPeEV2Sn5Pp3uCn+A1EYV8feh67WpM1nqhdINI97W8Wa4fS0w5Uvwpxeg+XpZ6+Ao1o25eB+X/DmyC+z8q8n298vJG9r7T0RDGoRk3wdeya0QWdAMycT8w6tBU+FuhL/61KIP7/j4WTvNn76AJyX/pPzcH6ly5N8XVTL4GDwSPsuUrKvwhxfRmJeHBha+xSL202N29089wqvTme0ycyz/2ZNDGKajEWHEuyuIKP9FKSO37zpmlVFQ5a2E3T+9ktnTeEHmy5RZmH5pSV9TnEBrioTkqf7pxk2JMMpV40HVSEnTOSW5glK9XVPp7pSc2hurBaSqQGfxE6cbhacZLPUw/LZfWjpfFXJHFzbPzCs3zOuRIWDY4rjDfMGb/Obs9f/yGVuu0ykschN5Ya8xbKdWOv8OqxDGHu8YeXZuPL1/jQW36+PESHaBrgOkiPA8FxsWrNcD4qYTUyBS7DLvctP4vMP9SRk++5nt5WNdzkt9CdTnEbHdYk/T6mO3kCd+gU9iWRvju6VUodUR/dVrYrqcP9LX24TFv2Iq2VMvHioP84CZ6rju5tT8Jcqiv/7pB2iqQ3sLeaeWWIkuc0pvsBPUFcd35oxN4XHB+QlgkFHGinapu+FPr7ajFijfK4EhdpKzhdTLUxJ4he6tdUvWleS+ijF3fqf0T5+B0Z9ivB0bzZs8cO+g7dU3sz3/0o2FqCVKMDoBXS34cH3cLfpv4CfE26DR425QNqp3K+o/fTWdgxO8waueBtGuF8L5mmgS+tNnXWdrLvWjA0bqaq6Yp7PYm7FyyMAP5ojONHzGo3Y8nhAz5+oPj3vTIUwa2S/AJNfSNgy6b681up5/PdMfp6Zc4jlVxVSJmH41ykW/nbAq1hJjf/W/n/vMJCUUYhmr4O74VKZCD6rQ/4jJxkPH978Q0O4bv+j7YxDE0aZ01SWeEm1iJh8P30aD8hw4xJ202utJU4RqYuOQWFr35Iv+M//pZXhWE1Z+PrvFJhe9hYyHBxpX8NRReSYLP6SP9J/+IbVhRVGyOaTsEiNR/dz6LXGu0/vP31q08GdmZHoZ/8VX2KKrQEXAgtdfCiwBvV0fWH7tCjQceKnDUl9k3v5xTxd9VkLHcXtju8X/x9r0t+iQYcJ8j84xlU5XBxb/pYp38dNZVfoLfJBE8dTVnE/P5HdBLHl9ibfObbTUP6o/fQILKW46np7AgrN4HbCqWH7HT97pAeGrD9kJy/2C91wN5FT6En8jndKJ1Y/6X370G4l2c575AMv5UrlyUTrZNRL+r5aCzf9uKTjI2Z6uVb816LPVQsUfO2Be3B2McctGUz2ZicT2wUsqmbPBEez1iLDATlT+21E5BCt+BWzn6Lt0OF++EcqT8k2l2ed81HdfFwXy/cgM6kzxZ93nLtRRcMYTEz68N0TFhc8ad1hQSNE1oQkNtD9xYvc+fSBmbaGB9dEZCNk4I2L7ZRD6UZ4NusacdkNw3vSKIXQ3EsSj001PBxWwvsg9M/CeG3NVqQ5cN5eErh2/SGf5UfpgpWugk755l/P1pFBgKbKZaUU/Y+kl6cGOtDeJdXh7U/yuGiTkCSFG3++62U1FH+4kvZPDJdga1FVtF+Z3/mSGDm9j4uTxhsT/TcSOX60xqoe7Dp0Zd1RWLz9jDE1oUWZHFfO3JDBm39gpEFxRTYJvmnlLSNPgel8FFOTX3tsgJ2yB3v2S2P0V4l7fMQc9jvKV+A9bR+PZjirVjvQ3cRKdoHl8vjVg3J0xCtVXOo/PVkf4YXrE3P8Ggztef0Lr0xUwMkLNk+KPmcBy3njzGQc+RfStw1YJRfZUP/bSZRQoSPfCI7s4wtUbb9iX4DuLItubl8To+7XhA//FJR7XEkKtdB0FdVyZF3IpnhGfeAlvYBfHIQdDENPZydsKiTLSmbEBj8+tpbmq3kSI2IeBlONaiBNQ68pj2ep5jefnzg/RYn+U50OTjpujZyH8GFpmr993Pp1XXYia6XIgloz0cqNCisHTkxPJj7rGh8sjPAGw0WKPh6+n03Q0FSiYLROnqKKUt79ZBLc2Dsxv8sKY5ZXggG+aW/oZxWfa7I9bCSlfRcX9MsWUu6oGcAt6ic7j0g5Uf+oCdMudyC6OunK+fdsLpMqTM6yvH/HP700TBkPaE7djZjpe9xX+e39iyZFVLu8XAaqTiASaE5cTL8U3+iirlrjlVe7Y7uyN8L0ZNzrP3chZyaNQJWLWsoP2Hbu63Cc1IDN0SBxkV6O/HF81SgQ3Y/apd9BcL4PfOk9AxJxtMR2PQR4pRHy0zMsTNx2bUdiCGU4VI5upR01T7YRVjs2GXU+Gj7iaOhH8mqmnvxxqPie/pN94pmAy+9Eiby73YaWaxqzgTfVYI+Y+YgAnZhY9r45rxOMYu/B+rUvmZYymo//rT3DWLik5fPxjKh05owjm10jFl8HSsQ3UGvHLwPG9DF58DG/3BgXTsCNO6bxTps4+RpWe68R8C0bKx6syo2OQbMlRi+eSO2d0gY2wdAzFWVty1w41tai5y7yP4vPfWkM+BKtDyA6eaXtioVxO8PoggZjJy+dr2g01/OIsJu650P7ilwNXcW6Yha5RzJHGKtToKSbk9tP5Jie/O3zPokv2PUo4P4/mDJrqv9leeLw9ns4thS1IFcNvavLebGBGr41EqHS+7NBkbG4KZH5ikuQluTFv9A9GDyF8MSvcqN3Pf61NpfrRnuDvVUN8I68j+LMPZ0tdY67Cp4v2shWzw2Em3tTvZk21pT5je8fX0h6nOx165rpUSUYvnj47NwN/PWWE6JPhbZ5yJoDltQaG6aDEs087EZ1BfpDlfI3+NfzusM8GB/NreOxm6boFQGbk0PybZgZtv6mp5Fp7oyIWu7I/ie+tCp7lMyO+dl5/3G58kLfjgfmdkHajq1969JdfAua2fMhPW0WBzS8khjpa3XqTyyL6i9dqn5XGWIlxo7B1/yaHPqqM5nitIvizf72d3XhEmpyAVxUP4jh3pePN1fBhc8ks9lj2e9NsLw54RCxJ/F4V6fz04hAVV39kSzxNx6jXI1iPzMZcS2avnzcvV2XjV2fGrnU9KfmFvYrcnc2sOA06OoqOjlyvJmQ5TzSf/bsJ7DJ9qTidtG7eoUaH8LWj7PA95h7DcoVVta49ZmvvyRj8a23Bvrrf6DyRnTfmju6AKPI3Vs/7lTFNlqqA3ecpeyD9lI5B/BT+8hdb3q+cnkKVwd18IywzzUODqC8taRiVeB7rvTeEx+4OqXdaEe1sG/HUWviCzrO+wg/UjfG0lipHlc63HcaJ0qbjeG+Lv3hGdux84JKTvyvAavNhzrguu3EnNW+lymREO7Z9GsOmeI6ye/gJxI+Sk7HEbweS39J1X5w5mpxUl+B87kT2F7+aCQ8uaKs5Ivt1bJRzRliFOqP1KfIOdbfk315e7I/Ot/0hHp93eUSKu43ZIY9dxMlmLcE4tTbdiFbnMfE4mqpnGJztblYdD0y0fGgrdqSvilzjads4EuQr7lNJy8Syz7PGQeGYEHJb8jW74ElUxe+4pZP0EePhGt0BxecnIrva7eJ+rOQ3NCcQiB26dTy75jZEqPeOxImLwJtVfCzUteBdSPCwPogt+VkRRk9m+vu+Kql0HQGFNFfptOAhmuJRh6CiV7xipI3nayc0sM+YQ7w8aVOWzm0PS7wm3ucYLvMr1B5Fh0uON5hExlDYgYP8YRuxQ0j2aHqTzwhjJviMXLJLOaptL8Dp8L6QxT7LaUflCKEdTUhw/THj524PGcr8u8ncPWEdb/TBh+SnAd7y0ktH92X0yuzWZ2bNa8LHhiYg+1bTYN4HakytK1Pk+qZ88OZjHzkX0o0EHty+SzzH8fwx3vgPvzFHe508vrodFcAJdNR8n7/xlLsvRSXfn0wu4SbvGvxdC9AVjcTM6ZGk0052IkSWMY18wVeLjiLAdoI906dbwnkxXCvwTDCZ9/UrPizxDUmb0sOq2V4MvrrdFAhRRKk6OYtUk9egxt5uR7zHzkpnHa4VzMNVYLjgI/q3njdtYmYdC7kckXG9wOTvNTyFVcnp6nVw4JoXKiHZMph2r99P8N0IJ7brJxkNnHpvoIKSE9s/CQbfvKeLmqtBhsNDIpbjigeVMgdTRSe7BD5HtTJCM50OzDi9D2i5XV0EYbZczCt15n3+xCZ47K7i0rELPn28YwZakc64+n0mziqHKQhWqxX+ipZnTNU7T9BfvLMN62WMN7meQcrNIzHoNMS/v/MHJdCYZt/fxrh7u2+wVsqV7ftp53E1lEPwu8ubaLffB80nQ34o7d7dMK2Qx5TTcbCA09Rg+501lOPm87JA0zYJjlwr9LiaU4wGdGyYz02a8vRAKXKaVGPBm73Q/Dy/o7/9JF5mRfFoV00GrYskoqNgKTlHjxrJJ4sQ4ya+lhKH4aKZyZRub49Vx40vv4PeSh3tHrs65sWG1qBeg5a5x3bbNdRWFFhJl8eCpw/e4LBGgo2kF2w/5Siec11poHKdiFze95r32WllgXSFCaPMmtPJ/jq+jBpBx+tHWvIF71Oo3ZPHggR94xFDKsBJ2t+Jo2i6ISHBnqEBvyFk1S4tackzg68hy3R2rdDgfLUBuO7Xw4Ln6o77tVjDgkcpJOuWtw0PM1X+pQ0z30IZ87SJe8Djes3MlXhO55MxZRDodfBv/Xy8zrOqG98ds5/AvdHKVnfAyFozq42HmBc7tUWffKWxvT2kaGqNJkFuEbrEq0uH0+a3y5B0f7/YrtrylJ2PzxHsK38xz5v1ckbRIMF19re0XoVbNLe5b8EcOHvmGieU8lc7NQBOkdGi/CbG5qpDBuVhH5BTu/khbiqdBofXvMZy0K27ZlWHLRqrzYXO7dzG059/NC5T6aTjupwWPviHL4h/kI7deDm+qr94QbxnfjGmqu/vSPHKmba8adHcnLpM/lyOI/HW77fXj5b/li+XXmbxwuem3T0O1dVNXSSYtVH2C55EtXvxiOOeaTeLJDmh7HkYiP3YrYzBfO3f6i2MvsyZmk3Ke3g/YPF/oh2PyBvmz1uBWwUvkgqm2U3Ci1yQZ+w4XS3n3Tvm3oRj1ZTEHY/f5SvmKIMqMrIFn+VdKdRYgsvxcyP+/aiU9CY+Q3TK4hWxKepTvuPbWZHt44PkG2NKf98mNNUFf9FiUtcxl9cFwCXLt2Rnrs/GjNBLRM9z4RMbmqCbzItQwKE6fUhi7ytvHs+pDlI+jMx+7J7GjAQyw32yV0y/7X/xcK23AmRPbyDa9u57Eh+7CNg2jBZ+/opHNi0X/VA/ZA7Kjpz6W0WCQDFGqt4qI55v4jNCei7tyEGZkwWfjYoi1/hGtHS/LpvccV1gF9ch+vv+LFtZTXxQeb3Gk/K4c6qnZgOgEI3sv6OySLL9Bbm7K8HPeO0YUtN972ibuC3e/tjIJ+l8xECmrbLgqYr3/hmf/vIfC4jtd1O/U3S0GZFG/GTdoq6aSgWsFOfE2u/Dcj46way8TVGmzd1G3XD7uBWC88tiUZIN8Z9/o2y7ciigeuT/4qFrbFd0HdI3ok3HElD2M2fGGpvG/LaFQrlF0hVvvemRzmpSFGhNtDfZ3Ziein98FyL1wvY79usmeXw91G/Yt3Rtm080HznrUTjeCXOszDFGeRv2aIjvTywfZmKM/Lqf4Tcgn+yFh+5t3PV1C+qWnpd4vvOkEh3eiscSlcpgHr3+fCJv5RVWH+a4Z1yyc1rPSFlmBix8gFPNyXWU6QeTWcI34z3NEgXO+XX5Smpfebz19hL0fX0n5OF9UiqroQ9cVXP8Gu7LRQYodzdjBj6FP35b+H775+90fES75ffCLZJyNuJR7k1vvavekdo/+W+5O/7aia/hl6CaU43tphhSuq4+CmpeakP2SnPjY0IbHx5TPrHdVcRGv1KzCl3QndP5LZd83FhgQZ7aEbEMF+K+GO0LdOrvSfB7m5Xztygk0IrbzIJqEP/9PsSa82a3z3pI2Xo/96B8rgGFcaV37VNa++imWDtmDz8xHX3nlgCRa5ctfLubIkOz0G3zPgaK9fqW7CY0pqx70ZGY8xim//L1eeM8ib/Yy5KPH/CnT5iPTOOz1e+3UHbkius2HlK6Dn7CP32GuLuhW+yrgPARmszogzydKd1fIJuOWwzrLkOz9ZK2sE2clhHx/jOYrJ8FwGr7wau3+Ipp61ALbu1QLPjk1tGMsBqkMH4x4/t6oz7IKYCYlxvmtnmfjq1RVwqibMf8WyOU7LlcJLjoR8Q7SV80f4wWK4s+Rerz5YUGY9cIILojJhfhC/wPz6BH5lxJepJsPiLjeUHzcBZIIAr7cu1udxkAzCMz+a2PqTveMVIrLSX6iq0R/dPP2mlAeHqa227YrMwRum25IoZqu+X4iTWq2qc6+ue/ExZ4D9oZtgQ3BoqpI6wLiOqrTSctjsqxEt4NDLvoTALxfCjH08ERkJX6OVZuNzsdn+F7hPDmVhjRjKTzor9tG7LOmbHwO77+7hug15YTm0ZhSukrvENpvXLivmle9v8BAAD//6SdSZeyPLeGf5AD6ROGdNKbINjgDBQREJEmAfLrz6Ked/jNzrDWqrIwzd73fe2wo3qxoXKR021+58cWYJ5ctYn1B1mKkwUIL5sS2MHdD4fY/dUsT3iikP0b0lNI8mG68OcITGhscHAFSb3mHwbBNr/UsXKxHkx4T2Feasqm/9/5Ip+4AraCjCn+XmswVYfrCp2lgTRLHZys5f7Jwbv7vWJ/sN1ETBbgKurj4qM2G6Rg8a3dQ9nyCf3z67MnppbCxUNK5k2/zafjJYL4VmjULZs1n14uqOD5Z8+IN/V3vZwwb4CyOWaIPa0xmXxJLyBaV5tqQ1kM/NP/SWrxurToUWleIpCbnsG6vErYyjE3LLmohIrIHjPe9EdOhSwiIPTClJ47yLPxfQ9SuTSciAxVbyTi5cPPYJZ3AtktIs/mj7uMf/mMGkojJsMxExEEvulgozbBMD1uhQB0Z3iQVV7MQcyhTGCNwmlb7wabySNS4GPYFdi4hBVbN30Dk8DUCeM+bkBPglPA5ef0FGsCNbvqdjGg1T04xHP6MLAm3ikAFbTHpqzs8lGikg2DpirwHx/ho1bPoKvA+W+9DSz+ZRVc2lpBKw/yhDHfMcDxWIxEptrARhF+NMUKCp+I+/0p59hQr+AV7x4bj60YpQ0dwYDKYbteCQdg0wdgf98n+E//z01w6+CoHSNs6joyl+ldNOBc8JSarWQzooNSU7nvKpE9lexckP0jgkmqDwRsPJ62qGrAVeJNrPUWYWt4jBSwC6IDTqyTNJBoP9nADHc8kvi3ypYtXv/Fi03PsHx6z7or5+ZAqTmO72Hy8aFQdhD+8FHPhmG+dJ8Smu9+xmGmXOsZBFoKu/NuR51JS5N2qw/8+Tt8atW9SS85WZX1Y2KK8i426cmfSvgLmEENl0tNlizMB9eX2WGv+lRgUSt+hM4BL0Swt7uwV8WV4P52r/94XiIwh8YwLVqD/vnjUcxjG4aTEuOQTX3+p0+gq+xm1G88db3csQZa7vaiR23BNQtb2MjuNRKwL2A5X/QojMFTGUbUpu2YrP7pE8JnPNfY6D2y6a9u94/fBcFa1X/xBKrSeCH8xn8JCvoKioJW/uOH85JyPqyvB5Gk4LEwZim1ATf/TKSnagL+c+ke8uXbHv7Fn5W800wRsvKNrT8+9F5LBQLZA9jqRQ/M/Itk4BSXd3x4rg6YwY3fSvTDAUn5ndVzvn8XKrpmALHQ3wdTdShmqDfaF4fLes3ZMduH8JNYb2rd1cfAdvNFgOZZ3P/VOxIBuFcO5t/Rx+7QN2BqE+Vf/iPyRLYC3i+ItzatNg2Vc8pa4F4F8En5EntP2AIyKsYIgz55bvFiV2/7rwC3uCvQb/t7uvHdP32GYPfUAnoXRA388Z9gfINkWhVNUjvjjqijnn7DyAw6g3fp76mz1RumKF9T+DgniCx3WiXz47y34F8+trf60XhZYQUtc1awYQufTd9HZ3XzW9S570rQR6vkQzc0efz3+f/8nwC7AbFWasHySvwKbvULvMXnYRRPgQU+Xajjy7c1ksmf1gf4zE5A3WApkr4YWwST/emCLfnomMK2HwEWtQw7kybl4yuqViieri3d/G1OuZNkA5sfbhRV27scCc1TOGo4QoLzK4fZrVYbeoe8R7Nrw2HtY9764/k4KIJdQPVXNsP9GZ2pK/hbF0Hj4cM/Xo1+O5wsvXy/wl+tTfQYiFUwA6E6Q+cBdHqkzGZcdbQ1YP7OGrWSvR/0/VJZinDbLdQ9sNCcxxCH//Ruu/HLf/WVjcehXjnog9hzngCljGRbvu5r1hHsw4KlBoL3rhg4cS008LsaJjbCXsvnqdgJ4FcbE0XKPU2WUEhsKD1j/29919zFiVuVvz8f2DSgEWz5R5NFqYmoL/nHgW+T1VJxj39E8VzBXPtvYv35TewZVTOw8PDrYPMAAM2y2ZmzHRkPeMxeVyIL8pow/fdbwSHz0o3P2Unvq9j/809I6tORMX4598D3jBcNPWGpB6B9G8i63sKeevVM4UkeLYxrdqOeGWj1nJdc8U+fZfbbGUbfKAiMithCgsmkZFkg4YAxpTm2O6QP41Y/gTJ5u/S5uM98lfqy+cfj/+I/aeTcB6cvv9LDXX4nf/wWPIzAwuEvYmDc9K5c0oOMVnBM8uWmchLcn/oGH7fXKv/yDQxkUSRg8sV8ik3NUucbN2L3Z3Ngvqe5oIx+EWF38zudL+EOBseIYWxRfiC929rwN1we2NpzfDI5jwXBwbsH9LnzrIBFg6ZATpaNjceDelLFfISW0uyov80H/fEzAvxDD2k4XF7D4htpBacPxDgh7imZo/rXKyvduh4Hyy4h+yHy1aOmPekhefj1LHbYgOlDi9HONvx6qx9FoP8JC3aM5yHg+J+aQSIej9g7Dpdh5vyIg3/r98+PM+M5ZvCxJBLGO1TXU+Q8sr/1i1PBl0G/8WY1PyoUm5ueWY/bRdkHeKqwhmEz/PlVeJCtBAkbj1lELxFgunMfZCHjBAZ2vhpwdxn32Aq++3xUvUxTnXMT4ycUx2BJ0mcHilmI/9Wr//gKLHePjJQXp85nfpdnMHjvCPkq1jMZu8MZQqanGTX3/Jr/rc9/fhvz5sdcuvY3AkmJOaoXJ4vN9PsqlI03E6gNicnAr26hufvd6dEwv/Vyt5/tH6/a8sH3z491YJcJL2zk/iWYS6W4ws0fUu+eWTlrP6QE0dsk1A8vVT5RDoXw7cpn6v+4KGEn/1PBQws9ekriYaCX020F++ts0eP31ORbvvz/dSmQ/veRgtzXGA453k/Yvhdj0HLBi+IGW/UqFUoHo+LFEdBz9TAWfmmran426Yl9KFv5WtWgezUl6t85N6f6U6ug0y0pPoycXM+clT7ki5ZK1P0e3Zx1fo6AZvVPNJcvORjX29tWr+zUIkV+d/Xv+U4j6Lw9h+ZXfA5WImxtDG+Ri3XJzur+aUY7lVSBSTqz7IJZkuPtrmNJwIdAfw6Ti/IOuuEZItkEjE1c+XxAOYQN1qXiF0zxfEtBbTxm8m2RwJacTDGstb1A7Zu7Z+P2vLDJwAHrT/sRjK4jRKDgm4DUjX3O2a7rIojQucXem2A2Bwd5lFU7+ZCdA/RguBhfA4aRyLCnJVU994+ToTZ4wlSX+jJhOytolfKHrtSVz0dGqiosFKk4+oj7ZXIw4msBYcTKhPDvchmWU2et0PmVPOLUvVuvvtRKgNdsjcg90wK27/cRTObzCaNYzGraHe8avDqlRl0JvvJFI4QDiu7ISFmvWyO5R3eG032ccJgYJJ/Uoj7D3zd6k3noLcaaOMngul8seofKZ5iQoLUQCGhHnevdyud1RhVkrT+TVV2PbL7YW3u3+v5D4vVuJasyuQp8nqCGHwJFw/wRfwI0/FtM9cl/B2v2W0N4VtuZho8oA8u5dREoj4mJDymjbOzveQizx5pQaz4K9VK4lgbDbMypLb/eA7vR4gr6ZxeSR6abJksfxxEWToOwc36V5sLXSaymP9fFFzHfD6P+XGMom+KdHqL4kBPxWhqw/sQiPj7NS0CEY9tAU+RsWuSwZ2uS30v4W4iCRHs6Ator7hVexqtPWLY1PvWvVgU92U5wUPOIzaNprSD8uBz2DpqV8HsUVaoLrCvNrZ+cj/V4T8H3sN1l1IEKTGlqpRAOYojd23thK1P1CA5evqIdwd9hE+acwnNwwdl6hcOaJ8MMd2lTU/dk1+bUjMxVjTGHRNXFV9Ij7AjQVPdPHHJPwBhVoxbaNyxSzVGtgYl8Jah7uy3xURdf+aQcrB6MKsuoNga4njvXcSFrfgLF199vWPzHW9lrVveksXmg5gKI4MPvbTKRDAlJVqdCGhgzNaHHIz0G6z7gHqp4vNvU4cl2ivRiN8rvw77U0G9V0L5mLVblJ9GpLSd9zrrjSVMFnHvYTbRvPuNH3MK6Nc7Uj2garF8b9PAuvWKyKOHVnEXh3ADBPu2wL7/dehY6dAX6U8DYy8CaMwhmCf7MUcVJdPBr8jceBH0KbPiWCUigl6nKx25PX32f5POpLzmIb+UdezyYAYtH24Jplw1YU9V3vQ5AbWE9BgMarN89XyuzTqHYtZBUOcvqv98HBXoZ2DwxcVufoQE/r0VA+fn9DZq7fkbgdZXTLR52+bpGp526nj+Y+rlSM7bTjyvghB1HQEe6gBmf3IdNEnPYsfYlW654WaERCCFZ2IcCkgV3F5Zf+sDGGpNhyaMQActTZmzMaZ+wpyoa8E24hrxdGQR9Iq+NqreMoNZ0ruZY+J0NxddzJrVyvNeMn9IQspNIsdmGFLDZfdtqUa0WNnnJTliwmWFw9s9ISrRvspyIlqlCJFlE0I8LWMhtTlVtUVTEBYxLFnPsI0iPVwnN67PKifEGDRzyzqOecWzB4t8bC97Ss0VDOt/BeNcfIfSuUUjj/RibzIr9Chht9CHicTQGDnCRpmi3R0O3eG3OWJULwD73ZFu/+7z7GspV+S73PfXE3xP87ZftrRSb/sXruTu5DVwlJaKhQ9pkvt2qTg325QcnrSYNK5EXDe7f8xUf8H0M5sdTIgp/nwHZfaMYjNcwQ9APfJWi8DGAxTvdH/AK04XaX+1Y95X2aeXX1QNEbZAezLcT1WDy8XNUlKciZ+3eJ+AVGQ11utIDi/NuYvWibzj4dczNefTcTI4f5EB2oqvVK1+KCGzPg8QTv6tX7V7u1G3/0/sNPodR3ZeFGvtPgv/iIRPXyQAHXunR0pxcc3qN5QghlmX0SfffYPmdqiso7RTjJJGTLT4eCNTSUMcH+wzY8rlXpVrSy4R1w1aH+QyQBQ3phrFxK5wtfqUV+Bn7kvR+WebT4sEGWANWSRtNJ7M5cLkPPIp7rP2aX/4zDGmG/fw4//t5AcdXDIJc1WnAoW/yTm7yDqo4nXGwbAjRm8+xss0/mm+HS84m/9PDRxK22H20VbIsQ1LAczb/iNTyMiCSdmohr1kaAswTWB9+iggGySehGmp6tpwB5cAXGhbZPx9fc0lzIwSNYAH6931mdV8+oOM8Anz92F7+WYbkoa5mZKDt+9erMmkSrAgIsL2WIxv1/d2HC1E1vOXPhOo3S4Hf677FR9WtwYow5mAyriOCZefl7OU5JYTT2aYXK7vVs70fWvhpLIns5R1I6LpmjXJxkhEJn7jc4i124WKyAPuCYuTzevtZACn8Dxtqex22fHOGVPmkVNdCOZ9YanDwcFdv1AVtOUxy/SEQnZSA4uUZsbW9oQK+jYDHW/w1l1SuY7jpC3zs6nOyjJXTwJdMX9T/uHM+P57zqK6+L5DdLS/zddCXGJjnqKJR6n8Y89K0Adv3I3vFj4fxcFFs5XOKF3wQvwL7268w38kNdd5TmHy0q57B5GFiqgfBEUzb+AKIgYygU+Fg+aGxgjqVZJzlFZ/8GpTZ21vXPj3Y0nugzQwfijFJAjazMarXua4auK1firb92GicO8J8zl4EKGeDNSsLz6D49RLWm8MMqKyIPSztDJP99bkmy72NO9UNvi98XCIhmKQileDy4XnCJ4owdLI+2XDLx9TgT3XCOuvWwC2+YTeq1Hz9fs4j2MYH8Z4jJ+serRFMjzBG62W72Od2+howOpRXHKRClqzt07fhLoIx+U0Im+R9hRo47OIUCTEb61l2yhGm9PSiVjmJ+UJL04DHoXyh3b1PzXlClxC+ALrT495wzUVI3Afk2VOk1m/91svhfu8laTFjJHzDBvycdxMB89FF6Bs5S82mVfNVCq48di+5kLDfpe5hdKiu1LH2Glg//LeCf3q9KHkrWJ8FF0Jv65d7FMVHMNLHUCjQcE/0Yp8BGKYxrOC6HelJ/eRTr2gmBNyKZ0715XVO5r/9ETxIQTE1dMAfOE6Cza74Efq6Djk7a5GhqkBmOJR9dfi5IyTyUf142AfmLp+Q4LZwjyDCRwn7YH0WEMGr6iLsnPjdsGp8iGTY7FKyCuwe0KLKVwgN/0QdjNJk6KxXA743aqLeRcdhBsO1hYuc3wnheqHe4vkIH8Ls48edH9hq2NFVlTs3QzveOAR83YoVbKBKadBVERulbLmC8COdyHK+KwmLk64D+LpCMqsfZq6O17Xw7b9r7EzHYFgO15yD8dcvEMjmou7D4S5Bb3kY2KHJN/iLf7CBe7rpXd38y2eqpPhParapYy6K6z/ALxS2RnWOlnPnquzApjcpDrw+WXwenxUwOSu1Zv2Vz3oGC/gtviLVXylhVJeGFW56jh4CXa3p5nghp/IdWn+fkZFfbFkwHwWFoki95mvDolI1Ju+OgOYSRnLqGNCVPw9s7CUvF+PVI3/7maxrcQB8KcoudF9Kid3L91iLeuaPMGu3PnvX55rP1x5EwKk6Het2X+dDuzcI1MKIIJ4QlVElNFcYt3ed/N5VWq83bkZ/6xu7RPuAUWTXGfif7xXrX/me/H5zkIGF7DXqGKGZi225veW0v3o4YO9DPoNY9v/y2bZ+m2BayClS/UDKsCkNNRuLn+5CwdFzHPTdmLM9PhvwuyoyaqHtsIXJb6Ju+ozavxwOq+OVreIbC8bo8BQDcpDODzCM6hVrzjIl40d8C3CP0EK8JWsTAq9KoUTAbah3Px5yrm6fM5gAu1Gnz5A5cA/LBwWYKnqIQ69mP84a4Zs2Oj67gRlwV5wa0Pi8XZz6Dkl652Nyavu+pNTwrZqtF+MYQcSRGDvTvWKzXCIXPMcsxaZXWDlb+SiFQxLluChPu5zCLDNgtM4C9b8oYLSZdj3MHppAz5c7TUj2UxCYFRvjQ6yt+Spp9/YvP9CDtbbm+rVZD6NgmBCfTVwwXZe0hz+TqCjx4slk9jOGMKbbkYbdlwajeGMlHEgRYcuMPfB1uyGDc+FCHK/Fga1NIGz6x82x7j018L47cgvOajNjB8qGOfDBcgbhuBzIudr7Jrfz55267U+y8ofRXIhwL6Ak/Wq03gonZ3ezjCBlpEH95lenz72qwKVGe+zn1SVZyntkw2edHLE134+AKIc2gzvoOkQ91jwY8StNQXiHOxqh2TDn23nklP3h0OKDuP8krHOeGfhUnx0NE/QZ2oP0eEDD+/DUbcClZrtP9YCIG2N8lFURsGw6rXCbD0K/Ig/my5d/QOU8PGkYwRXMt6wroBy8eiL88kdN270xQv5uFhvv6JIVJrADlaTdMFYqPVhU1cqg8jQDbL6HT76+7zIHFQnr+E8vcmWsEKAYLSPK/SGDT/GrtiNzkk7//HTXIWOFB7f38fHd7IdPIuQGhN5aUW0vfgB9bEda39uFWG5xpvkkCbuzkk/NDettEOZ0OzoJ+z0RsHY7hQNX17cdiEoSEtBVMyDoEhQwJnpMhHhfM7pGbFQFNIykeWj8sDhmgCDvjCcabeGYG5uhU/bsUG/jeahX52MKsHv3CdapdUjWrIUpvL2QRBYtnYf+FQwNOOeVTU3l45rL5pfhHu0QtoZxYOOm92HBceSP59RLQ6UdjL4fjVrDGLCF07kU5vpwoM50Nxj1GOPg5qewtn+JyfTHO45Vfqb/4s3uF2v/5stWOQ7QlU8zWNdMRSR1q3z0xTqDm77FOBHCYMunLlwfOxXtT9BhYvTcc0qjIx9v+oaxhq0xHL3exs6Otfli5NdQio6KRSb8O+UzVy2l2qhTSM33cMjZTj/MSqq8Lmg5rVww3cuXoXTP24nibsbBV898AuVvpmI0eqM5yfVEgE4VGanMz3J24087sCuoQq2h5IZJgjIEfOz3VF9EA2z8IIYgnz808HQHLD7vnMGfnsl3z+KPr4RQPOgpfhvxGbDbUSxgPqcvfC1epsk/BVGB1YN746cu7pPpA7xM2fgYDcvOS8S5sc7yzyoyamj7pJ7O1u8MqcwD6pquPCzxaXeF5fFkItnqeDa6PmeDie80fFQudjLSnX+Fr0hrsPlMrmDetQ+kEPfh/PE4cwJbY+kyrFvCj9x9oH9+Xjb5O7bd0K6ZSL8ISgX2iTRUYKBQYtaffyPfLR9P+LX6cG83JQLHKwjm48lw4esKUqw/C39Y9/2lgtWc2mg/Qjthd60qVKJZdxzsdasWj2R5qL9nLtEgcMyEHYlcQP1prdSO9+Y/PQz99szonZ37YV0XiVOOtbtg711JNclaLoX9Tr1Tk540c3lCVsLpdN6TJfaNehoHXVOgNtyof3Lses0p3vKT96BnOW7ZHDTxrCpzO2NXz8KaW29vC+hPDiPRCOuNj2Qt/EYcpgVvfP70dAn46DejiZEy2PRiobSAzUSKuxSwV6ztoHNQT/jQvNqE3SI+gurplePj0jV1o8P8CliGn/T48qKB33ig6rLigIDLzxuvjQpo8h/6j8+wmAYSuDinEV3XsTFHt31dlW/6KOmN037/6dVtfSLxeObMdfRNBTzHNEWCmUzJrMvPEhxrCWHTfuFhfm+NyaPlBHH4eRs5mdsyUxNxV9FQrsaAJalaQJCvH/Lnp39/PK/hLwU+7FaDrfvvawTu0b5vfs8JBvHmrYrJfykND50PZiqhETg2IYQXDu9gaYJHBNar7eGAh+dkLpw+BqMbhNjYj2uwBru+gpxHzqj27AuYtfjNKW3FxXjbb/U/PrH5U6rdRzAM95dZQvMcV2Q+vLKBT+HPAorOX7GhBz1gW3wBNpO+1EAflIP7y6zg7Z3UOFhyDwg/oZshD78GdnBrM/HlORXIiFPSwKZnNk8UWpBrFJ9IOuLzmb5+Mdx4Gpkzyzfn2l8riKsRY+f95k3mDm+0vcPT4WOhyvlcLvmqXG3TRpTVY/KnH4GqphMNXD6qiVr5Chg+lwO919yQj/Hp3MjKJVOwdRsM8+OipIORtcpIvuvEXJeBD+HnxQSKCP7Ww/t5SqF+ebzx5V2easLXvKZs8W+LZzT4i09wmAijprj29dpmYQz+/OnhfVYSCrDXQOf4rcg8FFNNLfZL4dvKQuy9la+5EJb38H19CNTbnm/jsy20sv6IQxcvwZDkIIZFn12oNyEcrCKv2+A+izo9PsQnG6u3u4O3ytQQ5Pg++W08BD4EY8KW+lXMVQkqDRQpyAndDU9zFXnPAt21eGIrlBpGfhjFyiINkCgxnwzzzuLPyqaXCDvtEWO3BNjQZoGP3uO61uvTTHcwplVILTP+gaVBsQXnhbyxd4NqPVgX7QrR+gTYKEs40OlYP8Dm57HxOxb5omp+DJ/N7OCrHxvmli8zKD9Hnaxvy0i4/nE34P3yC/59PrN3Cwdr79Jg+6tNw3rqSAnZJ0/IfJdiMANyTuHdbN8Ud82NiTbgDEit40RtcP+wZcEzgri/lpuY0HOZCYMCr5xuIr7VH+aKUj2GdnQxN16UA7bpGdVvr4w6IneqeTMIUvC+TPdN/xJz46lbV7X1gd2/FqkT5Sy4mCahx3PlDwvWT5b6LT7iv3pJfzqaG+++r1QbimPNZvdngy2/bnqgM9f1+HChGbMOMX6k5orkzoejVgFsr+fLsCiHsPvTn9R7Ewr+4r+KwNf+p6f+8gPY6k3Y9sgjp/GIbFgbxUwElTuDv/UCfYNhjBLsBcvXfFhAuM0SvVl5HrBUISs81IK28Zlq8/eGBaoLish4/3E13fzQHz8nXFhe87mjvx6+n7ee8Lz8Y9PePUuwyfsKa7r/TUha/Fa4mDoh8nFqg3XIriNwDvsTdj0gBhQpugSFn1hRd4vfy+fel0oqU4kePWNI6DGKUnjNrg49Lo8pn/o7B6HzVhqKFX+tJ1oGmrzpHaKAfAREUp4S3PQmzeIfTH5pGqZ/9Q2y90wC1maOR4g7sUUtuB8A17nYh4MfYKwnEq07ep96mOWnOxLfU5jzJi0t9XpCEO0ZNYcVJlwHX+sB/edfNr4NPioyN7/2Sf7ptbScM+oWZTvMdGdc/+pv1B+dT7Cq5o/7x4cP+aGqiXjtNGhsR7zdX3fL5xhdZ+hUvY6dxs2Tf/l/04fUqr6gnnXhRuBWzyKSeZ4ZTdTMhxRZF7JWK03ocQA92PwdUc9EBxvPb+CkbkdUZCcxuav3yKAnWwk9q+yUsCbOM0js/RGJ55cWrJf2t4OtpgWbfxYSKn9SDW71PxwfRj4nQx356mqUHxpzMgcmqv92AOophw/p3gnmrX4HTNH6/bc/9OcagY334OD6rYYlX2obyIdzgo/a5Tesp2G8KnXzzrZelKdgITcpA6RSSuwZOq6njW9CuSw9fJDOEvjjd398HmuHYQH0cT6WkGev7aBedA+mJVwz+G/967pSU04rFeWPv5/nz8ekO/2wQv1xuxCRJl+TfQTJAsN4lNHwN39Mfo9Q7+IObfEnF2kuj9BycwGbIxPMddixDGy8YeNTTj28b5f1H+9w/eRQk/2UXNWuVATEVWxljHA3F7rsccDFxxfzZePLMDlnO/SdjsPwE5ZfBboL1chu87cL78yG+qcP4/24mnN5kUrlX75Jv2lNI+PR/POf/uN7YNwDnlb1p3AH/NIqK69jairgL17TjV+uj+u7BY8EmtR3LlzyvfR6BUGuuxgn/Zktp8Fv1L967q1x85zxgXyGm36liXU/m0SZXOmP/2N/dA7BNp+xusULrLc3cxjdMYNQpiaiWnV/5nPUTAimrbygVd0dzHnzR0DkSowP7UdnvGHMK7wMzYSt4awmI/BEAtoftUn9TAS2GuqVA5c63GPE9cLA3lvXvSOP//PXXBmvBArD9UExo/WwjF0QgrZ/bFfSY9tcT5FnKV2v6QRu9cDJ32krRAyn1F+vsJ7+xpvzxjM9tJ83GDe98P86UiD/7yMFhdgW1PBjKRgjwbVAJp0UGnJ2wNjx/C5VL9Ra6uHoPDBGPQQnvl6oHVPH5MHn6kKD7A1sN8rDnB2cEiBUi7zdNb9nTJWDFYSaeKFOZAbJ8lYNpJ66aSK8OEUJfVXaFe7vdYKOYjAkzKieIyBpKtKH6hTBer2PqSJET45ab3dJpvDpr9Bu5jMNHK7M2UUOBbD9jDWNnsBsnQkH7tT8ECDySz3FF6MH9tYcC9SeCIi32AJQzpVO7fzcJfRWNDbIh63kyfsWWzhnb4NOfcvYuWl6wMTnPMNYJhFq198esKx3H1C47218XFvfnMfztIL1/niR3WS7NfvcCgQDUmNsakc+J3O5IMDuio7YuMNsou66nWoPABEvllovzW4+Q3RhFZFn82vOd0+C8EpgSeb4+wFL1rFC0W/P9d94s+/xCxUWe4yI1psLFvExzBAeOwFbrtbWK1OuFvStTeJn/N1cDuPHAv4lAltjXJkt7ohd5Xi0EJIEujXiEv0UuuD5QcpV4es1Olx6WDYAUj9R90NvXhgHM/d+pwdg3/JZZOtOfU3qiDW5ONek2b8UoGUaj11wbkySftwZmMvY4/j28cEiJEmhhsrq4aOHhGEJZ/0MtWItyCBtdy/DYRUUjaU/HLzmmS3fQzHC166aqNXKI5vlm+3D+HkTKYJPESzP9z2G2njdThHn32T0AefCCtETgu3ty5bddjdocPAeOLjsL/n0PZ0MUGtAou5wDAbhLGy/yeUWDr+1ETBI2QNeT9mBqLtmTb74tC/hIa0zdKeKMEw1bCLYk0wlTR8zwGT/EUGBXRXy7rQeELo119p564nq+gOyMeVIDBpdyXGICz3hnyge5cPEWTg+LxtCkuQGutxOwvpXVJJtPnew+OpPan0vKusJuO9AahlHxExdATQOfykszjSl+v0Q1pM2lVA1sw5ghIYesN0lJmBK8Ij4Whfq6SqKHOQfpYfg1dkHU/ywFfjYDwMRUz0Z1kC5+dA0v0dqHDEyZza4DdQkN6bOJG+W4V1l+8juWnrquTmfkuVeQXu9zmT5hQeTw/clhIYyZ/RwlAewKj2YoawWMfUCcaqXuvo9oL6339SrZi5goB18uC+/BpnZJIH5tI9S9eHFTwICSwxYXz164HhZQQ/5a5/Qy8vXwPZ8aJmWNlm+hyuBapQVOGRvP+F9v/IhF38vGEHdBowMWFNK/qHi2DHeyfC5XRHY1f4BI12Vk/WGdy78ebcTdfpSG2ajeFrQOy499eaXFDD9fkzhEhRvfDyxG2OC2/rQQb5D9s1RM3k7Xxv4mvYj9afbEFD2MDp4AFlJ1Om0r9cbD2L4G9ENezxn1LxVP2bwdpiByKc55Wt8E2L1NJCYHuZZqefrKfdBbL0P2H3ZiTk7v7wCogau2LRWoZ7JF2XQfKXNsf480npdVM1SoZGWaEZGM9C4bRDwysOM9fypm+KwGyoQCW+HFk5cgxEe1BGifXAh0eHMAibl9gywfbQIHdoWrId3GsJvI7Tk1pflsCaTpqgq9/oSYf7U9dwtcwmU13ojMuLqem2kpFctnBz+1kuwPjR5BsD2Wmp6N5Etnn4SoA0Eg8zupJjEv0eWCtLXQH1OrhLCp4sNudt1R532NudEGk4EPM+JQI/b+FF9NHcQXZaK+g/uPcwlOUdwfMU6topzMHS9dULgV9EDIupRN0XBJT6gbpJS39gdzKliOQSUKg7GoyEFcyU2DXTK4ki9FyvM5XEwMvjKhy8C5hAF7MvLLtD5L6YWbOVg4SaIYHZGC+Gag5PMbvrTwFyLK4He9AGLTRYXIksr6JH+zuaw1CMH9B8Tyd2Jx3x5ds9Snvc/DweXuslZ4B1cKNY4p86FsxmV/XMMjf54JzLUacK0vV9BKo0K1tRvwwZe/ynwvIo2Gk7Z2Zy1YLt5KfhY9Hy91slY5KxXydMtafCSdZPzAeeDnRbtsU/215ypL20HV1ED+KimUjAeZp7AR95s744Hx5q5Xm1BvdMYdq6RyIjXG436K6GOXzysGd1ICdQx0v7yYT5e+DDc+p7JSNFXH4zP+7eFpYJaHHZuXTNOuldAV64SNg6TwNa6SAXA8Y8cXw+Pcz7//f/dz1nQxZvzYVrypIXbfKEFjs0wBjs3hJXU2TSHey5fDve2gv1MTYyMyRhGC0oGNN/Bj8xCj8BSV+8H/Mkzo6jcz+YI+J8FBbO4U2vCHlv719uA7sM//NuP4/7wmmXUnmtSt4tpTqZzlMB+4FOi0t9WQhH3HKxPhYzGLMJJt77nGDovOcAnODb14ElzJavWx97yGzfQDkMNvhdXwAe7tNgSG5al/njTx1pc8MP3mH9m8C6EmSIx4c1xPP4qeHL5EIEvuZv0E512SjpyexxEO9MUSWPM6pbPsLeKY02PegXh8xbnCLzkt0nS8ajJJckR4gZlb5K4lhpFe1sNDZqiqqdpXzWgvQodYXTlExbL1aq+06uJg7gl+S+dLz38WI5OFnEXMwYmmirnnfOgOhytYel7VYI/eWVIvB8nRnv3xIGLlldEBK/cXLZ8CcFpt0OKNzNzquy4hawiHJJP+px/ckO4wk3f0SOq3+bat1MMVfER0iNbm3xmg9bA9bUPqVXNj3pBbW5DZn1uOD5xOBnCz9mAFxZ31CjpcVhAkFwhBGtC9fX6rZebYkoQLxeI+G39jCJbIexr/0vE03CtV6/3G/i3Hw6vjtZz6KQtrIWDiUTnItfjQyofKscXOUYkNtg8nj8zPB5thD1vO/XOBreF9RRH9PhJbsm2X314Le4vikcjDaZB0xqIa1aS0nIlNmUXTlLWArlbPDRrNk6LAQfxF1Nrt5vqxdPvAjyXtY7tOp7rxeNvD9j00xF7Pq4AEkDtvxJ2Mu8WrN5tikOh0HKWs2iVDz8rx8b9eM0ZTaJIbVQ9JktZJMMS08MDSr7gY/uba2xV1XMKRD/rcGiyO1jFXRrBP32Fu1XPua8x2OA37XOshUKfszB+FtAv5iPNvhsSbJ+KAgfTdAmfv/Y5ue7fJUzf7Q87WFHAiEu+gPzOI4SGzZyPX+97BsQRBYp+07te7b6rIMIRR1Tj4daLaHQ7WGOXUbsfxIFKOVpB9W5S6nJsn9A+jzL17/md+69g693GEtDedoOt41IF403rOjAMvIIPU2mCGR8F5U/vYmerkov5+aWAwVkXbDxaNaH1sttBHGuPbT3Bmq17RkA8hztssgAmHy3rM0gKuaHb90/mT3g/KwmfevhczXD40/ew14SKzOz0BSsf7mYg2fabYjObalLWZAdgCo6I/T4uW2+urMD0kewo7tZ3svr31IbHj6xT02lhMCp23oFrH4rUyoI8Z+X6kKB7sG6IvbXvsPzpLX88/wh30iW2bvpfzlSzppolGebC+6YPY/A807/5W6IP74Lf90EoqgI/4eBpNtSPRANq1VAA465JOzBj/CVqF00J0V+VrdwcllBtPUzD9ARnC/SHNkAsoGG+XscKAmnBdxooqzOscQ85KKecS/HJW2q6qN8eHnrxhaZu3OV0egsE3vS4pX96WPztvQLG9Acxaueg5qv7yVV5mPXbfNWsb83ZgrkrAAQj0wCTOzoucD1Oo75amLVgvUIf+l9zj/0xmBlD85yps1XF2GveFEyC9pBgrXAjNn1HN6fPKhgwLCeBQJpmwTLHZqzGF9vGegI8MD0v1x1Y1ySmxjhdwBhFBlTp2ZoxLi3M5k94usJ5aDV8dNfPsLx7s4dNBz2qsSlli+XddzBx4pEiqLdgvDYnAh8cvBL1EX9MguAhkr8N1+LXhOJ8wY9GAKUStlsXmUdOcxbN8lm+MfQLxGlgeZkhEVuFRn3vXAWsfF2vsmM5HFHA9GXTXZ52f+NHzd3EhvUAcgOMkHvikxK8hiVoF009f6Ke7Img1jNh2gi5iDv9y7/UmhQb5C/lR4PMPdR0Z5xdeOm0E86mWxAQdnwQkDKJUPubl2xtfe4KX9Jmfs20TNb5yz/AgX7dTS/3+excHzvIzWSlzr4bEuaPAlJ2HPD+/f/fwCEELwcvoC6qf/V06jwEv/q+xIdMa5LleSl2cMZzhxgajZwX5LSBUpq12DhxNGdx24Tw7BBEdbeqzfVzrhpY1/MOu/T3qNlpjgvIB6pLUfd2Ep4lcgoMWBdI+OMFXQAycHZGhCAiqfl9prMGnzbNCESxE3AFWREU+XeJkaXgZH0+3V7ZHYwOibbcDUMs99v9xXaCYOfWwye++B3MnqNJo3fVBJs/MACmuoCdoPixtTNjH7Dv40lN63qo5/WiQsiQ/aPhPFns337x+DSjRlCsOSvTzIK3vrtT71E7g/j3fV7zaaVmNO/A0t/21z/9hP/809SkIISHZ2LSfzzkawwWIJkHcCBlSUAP7/0K9719RotzTP/lS1XYfaK//QJYV62t/Dn3BnV+s5hPztZl6HmLchpN5Zh0O4wM2CvogpH+dhM2P8oGutqZ/MXrgdClJjB9Nz/82MaTEdG7Qv1d2vjAXBqwpW4EsOmvP30RLCKtzkD3ixs1k5M5iFcQKeqmv5EYmUE+t10ZqsHt+cZYvvSAZQXyocjWBzV4UcrZ62c1QM07Docodsz1T+97fJYRuZWtfMlTDaq+sRNoEKE7WJSL18CTK4bUS+4NW/al+08PbHzizmj0NXx140VE+erInO1j2CsVk570qmtmskz7qoU3CfGIVeEbTOHTmOFReBhI3bl6wn3kbIR3O2Tkq0ZXNi7h1AFxb6wUO0IxDOUhr6C7e/jUOHE4p+eHugNu1THqfi2QL0L2InLPP0aklMeuJqXXuGBbH9iKPg7jwneSwfzcJxQNl5CxKVMK5fRSFKoroAOLlvUpFCS7RmsUNuaAZin7W3/UeF7bgXFB5AI5+4Q4gLWZ/40nCMwsxeF7bYcRrnsLwOEYIy6/8fUYoocA76eXj9ZJnoN/6wtJXUeL4TKyb5NpSM2exKT64TMFw647RfA+xW/s5+ZnOwIbSFCr+A5/Uz2pSfK2mz8+gF/K+2Oy05wVShSkGL/moEvopkegDg8QB609sXmeCyLvONnDyPSSgYmNqsl/POnI3T6AJReZgHH3fVNfSJ/5aq3+CBkWJyQprge6ze/+6Xes5aFjztZ3ShWGrN8/v9dxLxTD7l7Mf+spmexqxwFOSyIk8C0PaECNGOJ9K1Jzm2/2wt6q7BfXRHKT7muyr1gHaz/3iaBrZj5fqkMPzvKFkW38hnXPKwiqF9/BIVbWpKvb1VZv4/2Jtd45JOJf/v7ssURkrnOT9fs1Q0iWecDb89Xr+8M0GDWzSS/zrAxjUtUt9Iv1iO3zba1HlQ9cpVNrmdqLzg2r3Zelyi5+So1E82rmJKcrrK9hRTWhJ4w9rsMOBBfypGh/UpPl8Ok4eFzIHbv6/Wuy9TNLIHmyO9YV4IKFy/gOdJ/I3cZLH5bzuSFgPtUTsSb8A9vnn+EfL/3jT/QmtQrceBtatcMw1Pfzdj7dJhI2it3C5mb2M9CD/Z36NlODlQ+FWX3sfwNFf1eLb/4USE8fYxfTGmz+rYH2MWiIWoptzsz0+4D7IoYUK+rVZHH4y+CSPuEfzzHZrjvFsIy/IjVdYLPZR8oKpn1rEekEo4H7hPcrKD7RHT8f5GqS6HDplF81Hah34y9gXXq9hL12etOD60b5cFm1FgBwXogyn3WTM24RB5ghJASwKMrHjxyPQPisBRFZX5sEOP4IulVoyFLHsvkaTr0Luhxz+LhkGEyfA+zA5KcyPcTF0Vws77SDf3zOykAzMHiZO0U+GjORxICx2T5aPXTWNaaGfvqAP34NvnH1RnK2DmCp4Rgr2ax5OHe4Mkm3fAaTULtgw+1DINd8p8HM7i442uMoEKf3boTBj7VI8HW+npfDO4VPDU3UTmHC5udIXMgP/I+a3Z0MjIsf2Z+/pd71l9fre9zHMKhjGdv72yn5x9+29Ya92XSCaW1qBarISvE2nmyyc6WBLEop2fxcsGzfXzn4cEc9nquGHy+GJRjCKsOhCf1gbmYjhfR1sbG25c/+uv+VMDy0O2rTKGXzyX6McOPn//jFMrxxD1ovCunjbl3M+QdcDoKezUT57aygcw99AWN5jPCFv+RgOXxKDiB3dghw72/GoKFYkPhcjgvByRjNCtuFWfKb/6s3vH5hC5/6fsE2sYphVetTqyKp72jg3nUgJG/Ugo1v0LMjXs0/f6UaRDWoE4sRYG+uhJJSi2+0i60TW+WOjuCPX4Z8bG8XnzQFnCuboN1KGFsKtfOVo3S06bEyy3r9fH8ufM4dxgafO0mvmUkISBNi8lN/Wf0X75Ru5Rqqbzx4lQ7nBvJEQNi5WM+almlsK3ZcYOqD6Qu+e6sLYZ0cVRp84y5YK0OHf8+L8d5uk99uXkvQnbeumYujmVzmILgdcT5QUzyH9bJdUAe1SuzI+xd+AtZwpqbKdmn+iy9jrXG7P79Hzdt0rvmokCQgo4XDB28GNbOm1QZS+EFIsn4qEF9YX+G771ysWVJljtt6BzEdIPbUn1KPlT+EUPjWFdVv55nN64XfgWlvmps+/QyUi88ZDEsqIEavTbI9nwUzoRSwJS3vgIX7goMbn6XGWpwSckKfHUxK50Xx2f7WazsvhTJ3n/xPD4C2MjwIJfiiSPA+Vj0jq23h0T1/sNGdLEYV+Ucgu4IHDZ/Hz+a/trvjhUDExht8wZz8qAC+FjxgG9YDGP/Wq8SrBt78+kDee16A/0fatWwpyzPrC2IgopBiiICIHBIURJyBIgIiAiZArn4v+v2G/2wPezWrW0Ol6jlUUvJlUxEnIUU4D0/XXAYBXmix1Kd/fHfxt2gFl6fx88ZjDKx3ctwG0T4bqxCVoDSS5cuLfjzcAtVDUsllOnaHfSaqa8OG8sI1ygeBoX/6lqncVGLMrM+YkXxytDuimEZXgfb8l853uBjpYXlfYj9fiWSj4DFEjMgXh/NnjHXAwyag0q/99ZNKmztoQrtiyYhzY7xkuwTa3LthGn9Dd5LkoAZ9VRjsod/b6kfpaMJrd75QeXP30dhoV10Rj3OJZ+V+6wej+Dp/fIMibeNUEuc3CQ7xTWZ2e7Nc8QCpCbJ9OhC76qNs6lMjgVa/6XjBZ+4/P2epL3gO72lFs80rVR80OmLlfImyRS8AWH5mWVPmaMpzdlbq3SXFavOcqtkzWAGrzozI/nvlPXeZE0ApvGfiLn7d2L4FjAbMNLryx676p9+k/lFnhzm3+fzUQgked92kqmC/wononYbMp2ix2BPcaiJHGoCrxB+aHUQt3LyrpITzJ3FZRvxPSCs3DZTueiHM8Avb+M7Oy1KXfEus4R5m3coeRTkZpBWeyaesFj/NUo4bN2fu6zX0s+M/xkXF+GBlHGeXbTa8gce3Llj8lI8VmwJ6Rn96PFr2O5Vf/R0t/gHTIjJl4+8hWKjQRE7S8IX7cYeOCoyyfV/wpM05O1wAzkH8wNKpGhB9nHAMQR+MGOGdbzD5kYqwZXlEdH25Zbtg3+AvPv/plZu4PUeoDr9POjfF1xjN75Sjd/qmjMTKz5gyXYrgfD68aDDKYdaeVkkCpY3rP76EunaHLRR9dpRYCtLC+allkhJMfGnyXEnhnLztGWqrM5lF5pNLs7qUAGemx05nRnouvlNB8aDy8ZyW2j8+jh5jR7AQnYSekdOmQNvD+s3+/NZRug7Wf/sZb+Tw9+fHXg9TSHbYwVkbBA78/R5zp5qNGaXHMwAaQxLdWJeNDgIb8Z/qEO2ulpyuStQh6zUxym70jMba2GnIbPdb/Ong1I95udmqOyXa0rK2xZ6j3yeFBQ+z0+xvwunVue1yhduE5ZfdookLDf3jhyQxdnNIzVkf4I+f5ev+i+jH1xKkV8NA5XnjVSOctjp0tdxj9Hp51eK/Osg3DES7JV6G5DAooPH0i6sncflklZIEjbsLiGb/Ulc6X4Uzwq9awevASvp5LGQM6DdeiLURnHAKp1P5xyeZt+1/Bg8v0wAvr+zx+LhxPlWkU/7F+2M1Dv3Ua3YNf/iIl94OSb+GROj/01Kg/O+WgimcSkZ+p8FggqV0yE0Fi9lj0LuTmxSBCtZM2N57JhV/FrOgqh4I7MSSzpiqbBxV89MhrLw3237o7UMN3drPid/OWrVZztdD4W12mNerKxovJyOCS7ApMDKh6ZmR5jmMeBAZgbMTjlIiefDCo8GuO91B80GTRmBFuqWLkZeN5+MTw83pt/gt92FWoLvugbX1Czxd/F8/nqfWhmZ4HahIviafTfy04fioPFpPQdHPlUQlZURbRnbUSNxZqqIcneKnxVzi8WoQ5EcAaiYBIftT5U44z2eki9KZkLSn/dDPbYNcy1vR6RT7nNOX7IC2yZLlLn0DTdHD6aDru5ZoapZn08u/31F0KygWeqsJp8nTa3iyw5458S81+Hd7G4EdBJM4Iov7WbmACcNUxHhrxMG/z4tWhDTM+H3aahLCLaCHc01xrX6Uvvt7PnsvXf1FZWdjMtI7dErR4MbZGRWX1NFSHYcd6OryvPNvg5MEdHHp2rKrKZvKXBPVZ3cRqLJ3cDjHpq+jYhWZ7Jr5h3DeP91CedxIQqVKw9lYRacGLm+twc4+xD0PSlMCe23diO6nTTWSwbTA6D86MV20D2n2q2M1KSeL6RmZEc9mdId8fnjMsZ5axtEub8Cpjojo83bHx3iTt7CefI1uXG0TzvapssEfrIG25k3P/t4HSO1rolvffbi/U6NvoVm/AK+Fzd7YiEctV/duoJE8HyV3+Xwiyg7lxJztQ3L5I6JUPhsHjXgP6YtmcbgP0N6EHR2N7TGUovI2Av7UNV6zn9VPfY3OyPqiis4Se1XjexuJyvI+sNytpv7+MV82OnS0YtpNi6rxtjsrf/uF6MrjZXBx6kWZrYI1OcikQiOJN7UMF9Mjz9OkhvTJtQSW/UPhsk/QjORVjBI0KcSL025pYYhFeL+MgB2GMQznxRZBjtacmHbJLsu1+mUJmy1mxHufWz6Dx0XlkIlv4ma96VbHqMOwMgRKsHaXMwrrJ1Z8Jf2y/WxFBn9dlQHS77gmOP+s0TTvz+kqkEOXaSNautLvtxTMQTCosH92fLTvy60LgPdME79VPx71elSzd/Bju2m6VjNq2ju4nmmz6w/2bovpfdkfqxsjR1tHoj9DAKf31SQ2EXbZ5jTLnrKvHM7M5LjKpmS9rtHw3J0x7YlVjbrcedA8vkdi6HoRzqtVlqKnujKIdmBf9/cOihyA+TpJ5bk1ft+E6ej6CTFxn7eq4rFIanjurg4jQfaqWKgSETzF7XCv6euMPu1PAvvovCbkjhCfbYgbiO/XK0UBeYdje/kA0G4+0vVaDfnPukQBkElIif6KV3ygyseB/kpfxNGVl8GVzMBKvEoyLC37i99vWIJCqVXmrtRfNfImrqHuzk9y3HzKbNaKZwe7b5yS/d6T+fwdlQaas3BmuOoO4ZTwdwmJlLpk7xA3499CXS7CY5RY7xKMMb+8KZwOb5uZCPvutOthC1vx3DLceBd32t+9HOXf+xXPQ5FnXf+ZI9Vu5jvR0kvTzx4VMPyt9/aaFtlc7w0PFKkKiHeuemP06qcAJ9HXmXndG0j8rUgAaRdJBCe4rfhlywYUbnY9c4vH0+BKwm2VBj+FWQ39caosLSvhxujxCllJxsX7NYL7w30yP/Yqt3tyO4XX8Y6IQTZev0nXbomgAof4/nFaBtPIKTC72JNd87kZoyiHOoDlYZZHxdfl4x7uqGl6gUYPY+z72jlHgD7bE7POnWBM1iU6w9mGI4lEoXBn0ZAjdLoaB0ZcPvYTYYvFcz1bjNz8ezi2P7NE1XP7xX/7kdL0BCh7S5TWpKj7+Xx6J6j6Pp7k+Nq9XXo7fk0YP8eWSmvmuZOzryQI0hVm5vI8/dufvfHKiDmYlDNddE3kFZpIxboliN/w6KHjNIREX59YyA/2Q4DdLAfsfM9q/oP7hNUlv9H15XbkYvrOHeSkR4vYWqlXPPoUW9B+Uknc354g+hc/5qdFZJegn/GDQz2A7G8exG/SO58uOx/AUT2H2NdT4dLxIosglc2OznpgG5sNanVkvHIP881m3XPcqhpqmq+AV+1V4b+6+xSw+UYTuRRD27Mb4hQZxhAQXF7W2fxppAQeeVkwM8pWiF4ecgdJKNtkyVchLy9dCzy7nvHEks6dEtdxlPOwF4l9xrT6qxdoY51+ZM+kBo31+Vgi0JBFdG1eo2HMA01dlxedkV1V9Vw4OsNf/OOPvVgGZlV1yvrTOcw6RXo4mONLQGgTB8TMXyXiaz0IVGE1ffBqf6qMwZ/FQKl5GC3rA5xlY58iXb8SipYe6PHtv1LQD+2VJMeHWg1fddyqJ/t4ZL5y8bIx7xQP+YrQsb/9OL8624GdZz+JvgHV+M3zRQGeySFZ8JX7EyCKYCusnsR2ZtIzs1Vm9F4hn25Xp687V4vF4jd+xbT1apU9nH0lwuYbT1QcfOKy+80SwX9gygz0vhiU7v1cDj+fgezr04Fz+vxayjFMYixs53M1lnv1rKzDp8kwFLPL2bwSlq7pnhjQWnwO7msKZ3zZMr2dBc7WP5ciaZ9YzF1mp01lbotgSoVMPGWIFnyw1xD1cg+v6m8WjjFe6qNgfZkuNbuManbbwuepO3jegOoyy6E6KJ/vealP9hKfc6N+XbVjR+vXuj9Lf0pAZcsi5GiXfE62YifDLNrMDuR7NZtV30JyHE8sVw5mNZn5vUTflUb/1afRn8WzCukDMePq9OFvb21AVQVFwxu8ubpTfdFqcLdUp3Mk7XsmdXyZtfe9MitOHtV0fCY5FEqjMhIddwav1/sRhgrfmLH2Pny+ubKDXq8rZf5Uo4wx2yuhvrwStvtAb8w7K2igdS0D18s4rulnxjkk+U5g7vcahNMzvg9wyyWB2bXqZdPH0yJkDqnONGP7Db+/WwfA9A5owdjZ+H08O4LfUzqTA93vwyU/YMijX0A8/yvz7plVInA9ytme/axqusvHBsxkVokerPZ8Xn+gQb/05TB3Jf6W+vErARjR2e7KMneGUouVdmeIeHs9aQanr8kBPB1T5qb+CY0yUQVwaOSxJLlkFf/HBy6Wyvb96uP+PsfxDLLevPEkqd9sOE+FA0ahuHi00o07odcpVlf5vqYb8+MYfJdLDZxPgkD07YqidqB2jm63l0SOnrh25wH7FPxmqhcLoUdjyAJLORpwJfsg3ma/9WYSYGUAxYr1LEL2MqUz3Li+Z+7ueginQ2hi2OrXBqfjVuKcyK9UwWGWEw32ejVXxyqGF/Z0gkmz6XmpxQ7EOn6xv/X9aNseg2DnEsP7tjfmtszPMNPjdZmtmHJ+v1kSfFc6JYepq3v++HIPcDI0xJl9m8/k6Y8QpRYj1iAg9x9fEZWcMD+iAZ/fv6YG9yuZzG/nouLWcy7+8AhO9w7OxgU/wu8ZnNgjC4RwqlegowXv4k5XXu4I186CNFU27LBOamM6NbqC2v2MqHw+HtzZG6iNzNzaL9+3rH6n0Lr/rTezw0qr2pAFplqG0sQ8o/T4eHB/Oqj1eiI+EVfZmH4aDGdbODKzeufuelWvZlAP+zWxh5sbSpOsmnC+igeSecm7H1cHuf33M/bNzmCSpnmQxcKI4ZV9l4sqfQfetp4RPSNnzrnf1uj1MDWSf5WoH53L14PzcBCJVXtaxoPSkxT3yUUqnTvB5VPcSmAoD434/YOGjLtBoaxf045dQTWy2WjdEc52Yv+X75b8j5LjfMKjPlz7hT9iWBG/Ido3rjk/ZOdUZStJYs4+pP1EL7qETnLp4HEFutG6p6MJd9PpyT4yN4gF613wh4exmCd69XvVsga/Ddtj6eKW7vSQ5BKc5x2zvUBrxN62foZ3EyfM3eGPW47CBaOzspqJLrhav6bXVIG6zuLl++CQV2gN6nQzOzr378rgY7LdgtM+DTy+lD2aViSQlE6GN3EfaMp+l6Qr4AiZQ/Z34etOxtuj8CBtueTXhzG9/CiHVRn0LCwfjvELul5D9P3c/Xt+NNa6BZva+LLjt1tVLA+sRgm8Q0BFLW5C5h1vCsTKPqTqTSn7H+Z9AK/lFIYfGyV6zmdtAI0Ub+I/2tIdkz3XATk0Jsba+PTTobFbWPQCcginNqwHg+VIvGYuHV/TvprOr25G14dzpTKXdS56XgGofaIJf1ztGnL7psdQ6LZDjClvsz++ruR85zPrPr7COS9cAS18j/g3Ra825kWKkXzKKyxT6ZQ9wmdK0XLgCiuz36Kf/SoK4B0/MRISUs0PeVujpl9ZzK+Rxqft8OpQaSYzM0VBc+fnuI3guztzhk0n4fPsyY3ymY8Snorr4Pb0+TJhWS+88n6l+x/+r6w7HtPcQuvl+8FncxeosODh4n5/bFEU8Q/ttxY1/uoxGGPsEAPdRd7n57iDT/vRiLsxIOyDpzjCoj8QPfq9s8kaRhEW/ExX4q83xudpX6P7YDzY/lnE/bTUByT60oV4X60NZ9UOqcJk9fdfvrl/PYziVZrRjecdw+ln0RJWZ3HA27Z3OfPZ24Pr+uPiJPrc3SW/t4jQa8Tszdpxp/OrnNXkU/q0fi8W5i/jmkq78cjcafVyZ5bsFLXohxW7DxvbXRcnsYZFP6I7l2hofq2YqVAxWhFM2AZ9gs0tgigizTJkG6Ph9XwpkEy9yY5nzeLrvbUS4DWSgex63vFptQEMYl+f/uWPhe/O0LqtyZJAhr5X/VKCRU9h5u0yub9o35hocvCAN/bl23O+vWsgXGOROe6Q8XEy+xS5PFWYWVq6u+BZHfJWiYkuNa9s0FpVBM9/jVjtI+rOF/tno/rgZ7gkIBrzGH5nJZZfZ+KN7081q48Cw8YKf5hKt7c7dnIyo6nyX8St3bxvFfchQno4zVj9y/en8eUA1KWLxYUPTIc2GP7qB5Ua6nN+sPYKGGPkkPj0KKspU78U5DF+YeW4w+44FoUFChITZr/IgEauchusLX8xbT49+ThrRgBrqbAZXhLKjJFzR+uzbBBir8p+UnC0haZXLTL05QWNSp6eFcOwCYnlqM/aAMYcTtmISbidPsbwbFJrKx5WHjkqx9GYpPVri1rXNJi33TXV0M9FjfJtfFniUerH2y5VII2PIxZW7gp9NeNUoGgj9cSlp13PhvAuwVd23wRfXYlXwfp4hpM4GXhc6vNACRrQ+reTKShDlLGnLxXwTTctRocxqvieYAdt30lHHKst/vjGAD86BETP1XM2uUY2gqVtGV3d/Hs2J3jngX4iPvmrZ+PBVy1QCM7pdon36XfrhL/6xTT3YVdjaK5MaL+pxkzJRdXYakdNkcfoRUEMD+7w9/s/PBSujUPPuRuU6tdddeRPr1zqQQHSrGvM+d6vfCxeMoCxZjIzY6j6STNuJZwVdWbeq/6GPNjcYlSlnxfzxPBgLPhngPHRzGS/yRpj1LRzjtqnPJE/fWwdpXMNol35TLexiCY4DAP05uH+lx/cOSpPo3KrGouu7ihD814MdDgSQqhU5AXqZudVoMcDniSaDlo2nRpHQcth3IWv3N1x8+1qVXkUGd5WSlpxX39RVFHcEPc1T//wnvL5xQcsO/UHTX96SyDUIcuPcVf96R3AYklnxsoRQ1qYhwCC4Hxlpiwjgy16MVrqNcu+eHSHMpko9OfbjRyTIHLH3+pwBk0zP//2M4vvSQN/fML3zyc+4uxJ0VZQn3QzXub+c2s+nvynb+yM7lVRzS7af/jp2eK0GoN3pqA/fVmG8lHNfhebKOVoILtJuSJ+vnk1XBvmE+NWJWgqXS+FvHYJlS+bpv+9yFAg3NpvQqLzLtx094cFp2zGTFciDTFXeiQQ7dEXowc6ZVIWH0a0zo/onx4zwLW0IBbElJG0xBla+A9yLbwiWApMJAawvf/lQ/p7my9j9J8rCXmHRvvDs9m08u0RHr80Z8enwMOmnjH903MJ3n7ncFr4NzpOzpngRR8Ti9ckoKFsE3LaHVU0n79HUFR231Gk6etw0X/uqLN31RKPRvWrr0GHZi27M7d2hf7Xk2ZW3OckEsdr/HDyt0byLz/a0QeMcRPFJtgrHjBymh4hTy5tAqZUymTRD12azmYO+X59Zrsu36I+P+ctJIgrf3zKHe/3hwK1K5RYXPSpscx249/64++FWqG0cTcK0oAWxIn0IZzPzaTIq/LcU6OJvohO4Dtw2WUvsujf/djbh+Yv3zB3LWlo037eKSx8hh2U97MazPErQGabMzGfm7xvi1rX//RkEv1uGp/aQ4uRA90R07nch9O6fOd/+jmVe3sZNOeVKczqJ6aqbodhe/I3MRJXJ5VooX7gfOjkFDn7bPWb7sUQcpHzLVhBTKm6W3F3XPwBOL9SlSoLP5i44cTo9L6YFIZN645kpRUA34uMxy3W+WQNWwn2uTrQqZRv/b989RXuP7qqvyicrn6K//gg3S71eezFbScvejWxXPx0x+N1ClTY+hvc2dsf4uxx05B3ohs6XXy/kkqEAda5iyjaGPeQZ49GAOf22WMk11qGYnFZz12ks2PNzGoDCo1QGow7cj8PbjY+0r0I6XdeU6G8XMLZWLUxoDY/M9tBBE0jyh1QZX2DlTfdhr8R5TYKzfuORe+lJWsjauJffiF/eIsJEzXRGskbZiz15pehUwu4PN2ZK77oMmt9OyuXS/Mh/t/+GKWDDtOt7ckfvliz8zzC+QQC09/mKvtMUTJDsdruiS94nsvlZxXD6fCxMW+iL5+PilUgTw+2mOdNl83Stvhvv+j3rEb8z3/KL+GJWcetkYkLP4XYf9yIG7fnihcHHKNk2hvEqKVr9U+fle8sw5vma2V//B6NP31ihq5rmagc9zNoMBQE758OEhd88Kef4g2IhivFt1OJ9tqeERw+Nhk1ke0h9bLiTPNXcTZnMRmV3qgyprOwrGajyyQE36tMm6xm2RB7lQfGX7MdvwAffSdQYD9rE7F2wbkf/vCCRtOK/flJS75r0Om6OzBPGcSMo7g30erxqpbP16ER08iBZDoYZH8pO2P+0+s0x39g4MElW//pEd/AmTAqHiuj7bwPhfUx9hnZvGTjdxRXqfIXX507ID78+XOx/7zRf3i57j4l6MXBZUd91fbjaRtEarXThr/6Form+AXl02qrf/x0lhPThmh/afHkkgL9ssa3kbRPLYaja8vnvtNTCLrMx2+Bmnxq94kDl/r+ZsZlfcs4LzY5mBOZ6HNXGf/5EbJev8kx6CO+1oUpVkU/iFguopl3xS2bQdWDA9HG2eC/M6bxXz0h+0Vv/ccPfrMqEOcg3LPPK9VnddHTWew3JeKfwS+QMiQ3Oj3d1KXlu9CgUts3XTGQl1t1BBEF341HdoveubxvDMGWOQtegWysQQRIpMQlj3n0Xa76nQTNSwroDBKtZofnEch3N8VSQ3/ot5yBQ4ufufg1FzSSr6hBXn0wwfvWdYfrLJUwOfMP068iVos/MPzzv9wtweH4mYZWWfRdpr2UPed/+7FKjWLxS2s+J8EpQK4mb4ixVQ7Zou8FsPA34n8Y5mPnfQZAjnMhTlrf+CwOEQXlKMfMGI9x9rf/1KWeMO01vavxtnJmpLVVirer09H4w58Q7nUd807/Zg8F37cwJqeOWc8zRos+FqtD/jz9+SPhNEmShvpzdiOGffQzlnqFrS74mByawjLE5e9D5bol3hj1Npts767/fV6mObbUz4vfhVghyHS8aWLV/eWDZ2ydiN7fdTRrxbVVufwlJEy3HecXd/iHH5mVWw9jMteTCSmXB+JUS0v1pdJmtXmJAVnwYPUPj+0y7cHi5fnSDhFGr2OO/vl1/wbbJJLgMXM6aOHGYKUA658hE10PWoMq7bYE4MkRo9c8GXzxP6Da8DuVAnvs51H7xWiu9RdZ9Jx+/VZ7AeovzRmOiqM78iZvUBt1MjvO9cip9K4L5U+vPioa4+MOKWdl8RvZE46O+89/WvwUFteG5nIpvFr/r1sK0P9uKSglFDItnhxE7yEvINGdgR261SObxGPRqiw552QfDZuwJ/PNAp9WLTPiX4/YbvBqeAY/k5kVWrvDFOsC3LN9w2z1sAs3ypZboNDOI9YuGtCoj0YN9V7fUETmazaN4aNAzxU2CO7I4A52fi/AXkVPlj1dA3GdPikqq8nDPP65aOTn1EJ949QMpxfDHVxVFpERHq94Q9w+Y0GXb8GgJSGkQhBOWyfXgE2tyPZyNWZUum1NeK12Kn4buKvosRdKmPpBZ27iHbNxbFkCJ8XYkv3DOrq0TBSMkiRRiO8oGpraVYUBXsYdb7rVI5yDPJjVdbiTyDGaGz5fT0QA2Jw64hVtgLhUVRaYh+2b+akrVr9B8O8oeeGcYBu/wjm0/ACYh95UzAvBHW6VG0AmBg3T2q3HfysYMeyrXCRO0AfG2FsCyBuwJXbcyYYrDatXpB5peiI2GjpjGp9rgH29a+irEyjqUnp2UPiQthj0z5tP4toHdO67FeYv78FnMQxb5MvKixAlrCpu0dGB+aUZ7N4YH8RzZRzg26qYRcZll02f+0WHexgn5CDqdT+Foaah6DJgssRL2CeRIMCQRA8Sb88fPmJFE9QLtS/MWs0CH+gNiRAnhwc7NCYxxiJkMZwPYJEd6uSKZ1mYoIS8Y+boNTbm7do0l67dG9tn/YTGqawSZOuSQXRx7ffjeOxKxJ0kYWZRO9W0jneW+t3cMTmxA8p+u011h2fgnJlWRUf3V4e/O2r9dDmjI7nZ+jLYCqr1Z0mDLjS4ZPPtgIRXLBP7R0U+lUpdQOc0F7KLdwIaDyewYIk3cvit+56+r/c7hOJXxkpKwmos3ACrTfPYMpfeN1VbhCyCqXqeMPz0sm/120NSpKBuSfD3fmfDxPBo9gaxzb3i/j2PyCvNiHlNJMSNDAXISS43pklmEXJ0EjVoJX7BLNOwO89mYak7xXnQdVbus9kvjy3y4MLYsaiqbB5yegZf9Pd0+FYrl2PibJEQjAdiyrsT/1njjqLP9LgQHP+4O24+pbWSZEFlrtaNIdtAL4DVKwjPWy/JmKQEEtQODelLdMqqE5+iCaNzv7LdpdBD3n5XGrpkGmZOM09oMp9PUOzD02G7sn4YTLvEIkhQnjHzRaXnxXGIYHPIWmZZFq2G9WvfwfTgIp18K6joKY4b8JJOotISP1O232BYifuaeab7reZd4gXokJsiCS3H7393fqbAg/ZDTo2h9bOZtwM8oaOLhXMwZt/NtqA3rUIcvabGuDo7NhiaEdCi7Dkf/ZdtIavxn8yL6IePxyQpkJGcd2wfVB0vplgHSPX7kbnv1zHkAjZs5TiVN1rGol5NHzWwQMisjuDyc3fL3+ZjoyyJEAu3ccOX/6+gzqkvzMuzDf8FmuvAyg8q4pyifSie9+6AkH6xmPFtSMXXEinRROYr2T3NPfqhT4vhICkJ2W8VZHB5SDvAgT3+xUc29/t3AlV1G6m45GMaPfFysRWW6ef4OaAhbE8KvBJPJfbuavaUn+wSWJa8iUaOCudz0qawOgsa8R+8rqbJPxWyLfcGljr10M+N0rVw/V5scgijKx+FmtaoPjQes2ODhfN6uBcQBzFhzoq9+BieBhv2yR7hdRW+0FgXBVaD/SFi/m2n87VDe0Cvx/ZGrPog92Mhlin6UZ+wYxo74WxGWYJe2dKCIqTPiiuk3aIL6S+LCrrMpj2nJvS9qBEDnmE2Bs8uAj+VGLMiszbGSJxjuIhJTeKzdu0n+KIIRc71wjS9ufeznKQRxKYaE+t9M901ragER9s2WGpOH/fHrLWF9qs0Z3bDUnfq002AfkDJv3z2Oq3XI1wvSxe78zebyG5y1L4OMjuGuHJHgSIFhuaiMF/+SBV9v74zXHTcE/PcrI3PKsjPYAdnSsdTzPl4XiyuyNt27L4NpZCVgTbDQOue7QwF+BAeclG5PzpEdKRb2Xi/+Bby9LQlJn7Y/ZidZQFo01+Js5U5qtv1iNWfU8QkdJeu77tdt2q+iegyiMVFo3wNRvWYBQ45CMmRb/7y9x2GHzvYwrnf9IddAOYrQPjTSAGaqvHp/dUrYl9zK+QpVgAKCM9EvydNOFumbqGrLCvs2AVh9nt+Ph0kOssJDuM268Qwa7dP575mS33OaHZqU3Bybc206CdUk4TxFpUvssGC+3aRNEZyqugbMmCUCK479tmtQY3u+cwSnkX//ZbyXZEqynBv7T/hv/0XrxKN3fuPG04H6Gz09/0iQ1L5T1snEbjO60z2Tjzxcffb5jCIZ3uJv1s1H87rFm5NmRPN2uz4+C55jEzSc+I2PXKH4+aRwIKXiPO+prxjdiLACT4+s5Z6N/82zIGwWGlYGN9TP0a5WaNKP3tY3t/SsG9FL9rGQURIpDpCRu1vlaCmr0viHW6f/t/61s4QMu/+rENmR7cCFPh+mTWFP3c8740BafDucbuVwPiuYItB9tMXwZHdhR2zA1Cjb3Ygliq54Rj7KEBiELpsF4bHTBTqpkZs71yJbkq/bMwVmkK70i1mP1ypGsR1cQZrqpMFX1Xu79e/NDBfZ0T5Yx26s7ZyYwTBvaOS1m8qPq5TR7b6LcLf7yd3h9d128JDrA3ipFsbjR87ovDJfAs/THNG01U9NNDRE2a29taR+NWTAW0F+YWlslrz39bJdXTPDg37wwNT4AR3+MuHO9HR+5E1UQDoLG+JnkYyH8ibxnAQL8ZSr4KQO6bmqdta88izr7xsnrR4BOmxXNT6zmTE1Q4UGFbHBwY2bviEZdqhsCovzMKFFva+dARY1oeKIXGy39G9zGhLY4al4lNmU/EMSrBWhs68MAyqMep+Orj6bJKd90Dh3BnpGUF/WTFrU7x599uJBbB2HdB1GqRo/fXcAWKnm7EM13XIsvlow1FYGQveG/g4yydbrZIyJUdLnDLmBkWHEt0eyL7svGow5niAYzKsmcmMe/btkRLDGchE9BbV1fy8VxY4L1sl3s7DnD+XFplftR3YfcEfXEir5i+e6LrevKu5I8oAj+pFmeeznztW91iBm9y9GcEPhnq1+DR/eJk57apD86motsp7Ze5JeDpHaL7OhoZuh3xgh9sr4L8zk2f1aU43+k6DlM9td4pAP7xtYthXq58va66ALM0bQpb6X1f3XIFPoVR48tkbzQUPJFCc54jnhvb94K83HXAnTZihNZ0xFt3DlKPQkekksT6c7Oc2gSQVyHKsZW2M/nrVgiFnb6KtpjGj4Nwd0L+YUMkOD70E0StX0+DZUCTOD4MfJuMMwyYldGOcypAvfAUt+5+K+fVUcTs6lXA4SA3e0sXSM7/vAIL9fhlv5Br8Lq7bANahIWFnUm7u/Gy2CeoFOLAMta7B3xvVg9GcEZYUnIUT+TgefOTBIu5Q1EbvSzuAv/ri+cw3JEuGRdIfW/bHH8r95tvAqZo6tus/tcEf165Er+xiEsPiOpryBKy/9cXe+UX53Chlq5aHzWvBOx93qbeeuuABzMkecV7teQ4dzHiJp6GfVP9YA5Zfe0rU3c0VL7tU+i++rHVSre8rbsOu7x9LfeXZu2O3LfL1j4Dn0JurBV/YikVWAa2+Deu/d34eQHNuMx3Fec3nlKY2epr8hmfb37rDnMQmnC6zT/xYt425k82tUu+1DfNPgRVS7H90yFr5R/b1vuKNVVmA4qZ+sJztfP73PpF3XqXLlYTXkDfJNkIb/2AS6+do/dp02gTG5dT1wk+q0Y+VGaJeuGNxCtbZv/ohZGZH3G93Qct63OHocYfsyWSjvpTPAN3GmhmRO5zNagy1rOptxfahcskm8tExnFolorO4/vXczHG6zAvJiNlXb2NGH3+LThXvCD6+Vv3Ip1yAWp6X2bq5hnhqvluVXPKR9onQG/x7Pdfwa/Idbq2jlY2BwPA29a85Od5qux9Ogz6qy3oScix3/Viv3ha0oXUnu8bzjX/7/bSySxZKxx+ftYtswyRIxz9+mc2nza1DQTNk7G+9p4XvgFApGIu+GIbzPUSFcqY4ojxrFWNMeFSDlsQaLZ9sRIMZniRwA4/R+WdOxkR/YKO7XDf0u+Cb6bZbBm/0nUHncGlCPdPWg73MdFr1iwX5uo4tCKZ0x6a13lZjZp1K1VSsnLnirBr8jLQOmP7WaS1aRr+x0ksJZ4FbVF3wEt8+Z4wuq5NMsANSNb+v0R1G6AK6NcAPOX/gDm3JhlGxr/YGc5LVrFSrS8ryE5qyWTL0GKW9mBP9rGt8HThJDgs+o8DGK/9l+5UHd3OTMJ/ZZsXvYrRkU9Unhvs2ez6uzzZ8X55GdH/K+mkv+QOo8rOiyD5r2bohYo10P6hpafuJMVqkECCdzd+/+vXHr8DTk5bt2DhW09i5gaI+XtvlfTfZ/DklOfzFIz6hUyY+T5GH0oRe6ab4Ju7P5EqtYH3Ys6QNH5w+yo8F6kQvxFzwAxeF3YB4ExvMIPsMzevygOFFHy5xNvm9nxf8hBb8RFX6JCF7Hk6eur1UHpYX/WBNlXuN+u+5Z+SQX9wxzKZcjTR9poI/12hUh2JUH/IE5DAJifFjwChg6D2qiOMh29Q2bkDY6BfiPDbGYkl2d1jqN9kfrhuj/ljHGozVYYenLdTheLgf0z9+xvxJUozlYogGaGy9ybEeGJ87umkAm3yDZ39CPTXO2llt/WSFIQzHavy+Hg0cbcdgdtAm4VAauYYeSZuQRW/KxjiwEqizcM/w1t/101/+WvQa5umfN5pXi+UiNYFJoqB7VVxIl0EM0mZmeyHPq65MZk81Hk+FTk9zz0XVfQ+QiPEb06BQQk6yKgL5G3vMMJcjIHmgdyA6H0pr73bPRmuLbNRM0sR2QvFBlKFtjh5VRemzU64uj6JdjT6H0mdYnfbu/ChCQU2ln8j23+8hnHU66+rKP1dYfB55NsvupPwfAAAA//+kncm2qjy0hR+IhkiVRZNKpA4KKvZEEUERKRIgT38H+/y3d3u3ecbYxyrJXHN+KyRwyu4y3YlnMen+/PKhlVIaXZ4p6wLXmeC+V59ky89R/7pvkCOXPSlxZDPPbwffiSH2pgm3z+mZM/c8dBB7y4SxIw/5iOyPB+LMJ/h4fx3Z4kN5hDp0X9jgTZ/NomNIELVcQl2jt9i08jmU9bVOzbcv9ZNpyzfAWSPS3Uvq0PIJsYOm3WWM2GPLzMXyIhv++FCx8r35I7AWUA0h9ZI4Y0yuwhREQnxqfh6mP/VfRYM0/rzJvOb3+c9/nktZp67g3ZPR2x0mkEhKqZadonoIx7JShJd/I+/PM0OLox0Cdc1v2NE+FWLsYXfQnZ49+azjO6knZsB+dzhg91Mc+ql9encQdphGYiahmsRFtiBsnH/RJmWnhN6sTwcHo7XpcRQWRu215Tdv1rvNWfLsZwp0gCd/Venupy3ryUk7DrEXvlLM2x2a7fp3hA2cTxRfPxd/yjzjBpdA6Il8AKme//Rnd9ZcbMa/TT0d8dVAmtG9KR73sb+urzc8jhxQPztt0ZyrrQY0i4t1/nz8cdMY9z//tuaHfb/s7UckK6QN6Fp/alrRsAOh0I8RO1vneuHd6AwrL1rnO9czLfEHVcPlHed4uSRTI/9stJ0rgVTz5pkPq38AQQaVukF2MofSzyJ4nz4/etJ+Opv1UiUIHddTQG8BWvke4+WcfF0Cr4NtzpxEJGXVfxotmrPm7eMZglNJsYneFlreTquAFmz21HF/j/673FAF3J6rqZZxNZtRvBSQzSzGwan89QPvXRT0lqcd4bLDmS2gou5fHnymbJswudqlCHHbiqDL7ZuPd8+plKTp7thLeeh/81Dc0NLLGb49djoS259owJoXos1SfX12+5QDrLwqUvj9YjKPfipo6z6ioSPwPf3jo0acDXhdf0g4bZECvPch2FPU0lysXvfQMzle8X7j+b0yvw7CP96E7WFdz50wwRQPDY3iUsn71V+i1V9S09BfJluyMoM0UDoyj/4eCb9hKCDrXzqRSt1i87epUvBh9An7NbSe33xZqp3c7vHdSQV/ogs/gLm20DxJTthct46t8LN0jNRZuJkskk42MntOoeb2Mph1Y50ISHzDYdxydT1lG1WDv88frLxw+OOdk1y51Fzr+SL7sgTVbdNiU1tP6V15jrJ+Pur2fZcTNOcBiI9eoDalbjJxhCmQb1yEA/2E8kl/ZQYMRq9T5zltkjX/Z3DKjYhsw/FeT0L0C5DwKEqKl2rvU2GUbiDsQhpxqdPlE/6QFH34w4Zql1tp0t/l9la8m0KodYt25sTtXkT9GV5Elk6U/EHT7hz4g3fF7sPaMLZHcYM8/mDh3Xmq6zl1FoLGfOdg/Aq/JpNNrVDDBwjr+3n5ZCixAkRmRTSrxDYX9mgB9NzuqaGNGuMFK1cgwOIR+8rmxGbFummw5p/o9s335rKx+xjW+ot1R7XM5c3lFarxevGQeCnqWVNpgWx+eJLum+/9+eTvBLjUv4EGB0n+b73+5RtrKFg/XwchhnRj19HvMZ589tD4CZRNwEXTc5D9eZNvHXBO4FG93qSmOJ54ARxxR1Z/3SRjPV0iNIfYoP71q+VS87EL1Q+tL7k/rdH8rfkGeYWxxYGYfdHIlkVAkmO9qK31l5oFv1elrv0JHCqy7jM1iwt4yuV3zTOWz4Lfr/rja2Tb6GJOl4/Gqze+MwhjyaafyuSbQhyed9QMXSeZ779dBtjRdkSUG2fdQnkP4Bk7R+wfwqj+109RDFJFbDPO+Zx1tQPm3F2oHtIdEs/V1vnjPTjSsd3/4zcW/jG8b4SJsfX90ZpXo0nTGZr7eTTg9kvcP39ek373uckrP6bO/Zqi+bEdhT+eja1ca9ikMbj/6ydFrlabk5TsC/R6GS9qNMTvl/o7LgqBdL2SDqxkfn5pC/7gXMkyjk0+FVi3YdUj7DFul4s1amxkzu3lr7+AhpW/KX/jrR02P3MiZmQrYhwGFEvS0BMT3QpIjWZPbSf59vPKD5T2d+6o/XA4NlluUML+FQC2xr3Dhup9taES5IS6n2Lu135VoC47K8ORdCb+4hrvFCTjusNm2b/ypbtpGuCecNg25W0/eqTn/vg03rnv2Of7wx9ft3miduIzH9wsLmGdH6TLEs2cRk3h/vpDWJPfYj3dn8ebuvZ3Iha6Tk55Bhms/Ixio25Yp5ibYb2Yu6fW6V4npF9b/mv9pvtjJZiLOe8cMPObg//0tvvLg0wxgO5H88dYmcgdBIseRPKajya1yguovEzA0WaU1vWsEDTXjwPhrx/KGG7NCe5xdMBm9eXX8eQL9ReaNTUsq6/plF5sgIZIRH3B7P/js1ESi9hIJyF/C1YuoSk33T/9TtjxfVSA9psLtZOj4YvB83/nayB/SkYSOzzCEcKZWqEx12s9cGDM9w7eL98wWetJCVI/36ivJ59+WZTj8NcPw3YqfBCzieTBv/HnaWku+CCl8Jdf/Fbi/ZVnesrK4+h+4/X9ygNKoC/bwGFQvPt55YFIzhIxgigzEtHZCDxkp+2HuraB6+kh5TGyk31GHUm4+4P+yjQI6y6JmOq09XIYgxTd+NagO+V09Ofn99sqPz7d46KODwlL1HxBj/Dw/JenWMsdOhVz292qJ2XyV6/VVpbvkTB6ZT399bOCrBWoXdzcZP6drxqM2YvhEB4WErcXr4XAcwW6+9OLy132YOQfxcoHWpNtvpYG0lyI2PlmNB++tv5W9/zFxObZEvohqvMI0ibRImHqLmzeVr8KcqN/El4wLiY1dmGF/vjWX14YG/PuQdWcX9iaZa8eN0snqXIT7PDRsvye5Go4QKVZCd337bGePsHuDRvPua+8vEfjKOkFKCf+h5NVz+h3lgMIZelF747a591ffeePfEnxLK8Xmx+0Cp7NraR/vH9a/apanzY7rB873h/GMLnB3/cxbio1p0W+etCJ1kLd6K7nvJTgO6z9F+y0iYomBIuN2K/waJQpg0+1n1yggo++NPxeHH+5KcobqpvaEslDrUkPl6WAtX9PjVt6ZYO9y1sln+mBai958eczSQ31/7OlAP7vLQV0nkfqwvaO+l9yyhTt3nwJJyu4X4zR12A/vnG0Neyyp3azv8F1g39U9zJmTio5xVD96pbiXDigadFRgfyHVWFbs/Wa77mfpnwLwSZ8kUr+qETGHc3SxiNTLtRs+ZxvHJhaJODAv93zf+/3uAaU3i1vlzNTOmbgn/wi2jyKR89C17bBSE4xtQRpvyKZpIDpGXJ4NztlziblZoHPG3akJLdbzfKtc4cxapJIMh/ffn68Ix5k96XiKBZ187uLvQb6d3ynmqgYyRznwvoUzMBjbQikfmmdSEPlPT7gSERFvh60nUFv8x62NNwxqnKDDXkGW7pPfcr676Y+wmGaJ/z4fH7mV0QHArewv5OyBT3hTTto0Bzud9Er3gfm0IjZGwZ9vftLp7k/490MaiHrPI1eY+OTykIdKu5fkywH7sWm84EaQhjKDsXHr9tvPeGTqvpX0fAuDAM20fYC4L7PErbrjuYj/koc2K/kHKHkZ627cGZN/fu9Av8GOXGmUwZhiJxoivE3meqH6qCirr7UMUOcsMFmE7BdvObnw+B/zdu1QOw1bCmebro/XOYkRr+PZuL7uB43+TrnAnwa644f2dNn071oBXh+lTv1D/PLp99XlcIRep5stT2tB1ttOdge6xzv8/5pTtl4iqCyPnsa4rhOxo8j8TIo5ky49DL1c1Mxon743Y3Al/OTYZSyQD7uaUIjPyuTdbudAU+a9fj5tfx80oNTBrlbv+jOtZ/9b0dTBUlQlXgnxCgfUbtLgfWBTaOf1dUs7HcW6ORGCKq+tskKjSvQ5tvY2Bm+Zj8KijgBSw4Gjsxb4S/5CwBUMQ0i6fEzEiE6NQLYcnAAB0D4v8N+JoUJf79vS/iMroCxrwWM/ebiDE5rchjnwsyYDqIEl9+9ovsJR3m75MIZ1hP6sL9HCpp0cs/AeM0mEZ9LkJD17l2Yf7VAnWp+5MNn+zmqZT29sBd4db3wPOXRcrmp2OOgYx26kAo+6Psj5XvL+5PnGzHwmtcS4PmpHmQOAHS3CKPpsonQZOcvbvO1ZYPa/PfF5qjzCTTHVxgp6+vRVj4WwOTQovu4X0+Z6BZN3Q+ujP/0g7mvlwQbhxY0mC2H/eijq8AxqyO1sWX0W0ERF5BObxVjklM0H1BtIHe5CGTp/D5fjq1cgJKK5yhxqbw+pTbf0WZjn7AOs5gsHDY4IDrXkkcsUZO6aFhQ4JU8zj+imtOe+g3cRmvCh6t9NyfJnh314n0U6mspl782l7GFo0N4spha2f/aeyXBjhc+0e0yl+ZimnsFfNvZUO15Zsmy2ds8+mpZShN23dWkf9QZ/D6GGcpNeTHZBq6p4sXzj+72nJXPYKIGkUzysXNdxnzZcdUZrfOdWlvNTHjaPgGpQtpj/fR85svjeriph3tsYseBNmEJuRSArqFPNVue67/xhW+UH/COaZZJq9S1YfN92zjPtV8y2XKlqEzCNQ1Lu+0nkWqc3HFoF20lHPTDJbmdId9IGfXv7dacOb0UQJy6O17HB32FZ19B6mQGxaRvzel07T04klagvgQ9m1IVFEiCnUONucKMieg6ANmiFttpoLLlLBwJPBsJUf2woYzx5jaFTdzW1AqjGxtarE2wH/0bOR2sFyLFKT8rJwnvqdbxH3PGXwkQ24wLNqx2yOfd7EQoz7gtqataq8XzfuHA47CCLfoyasEZninKPumXaq/dkI+xqk6Q5NWdLKGY9hMZCg2eQorp6bt4PRFbO4BAzG44Pl7MfCqy2EDG8UTJdl3/c8Af35Dk5R2bgrz1p0XdnuH1dbb0nJlHNGeKmMLJ2M50vxVlRJbqZ8P56XVkUNirH1P/aUHsFjkZDa/xKWuxhXC639HgfokQJUWvQJ3d4mib8m49iV9LgFfc7Sm25Wc90fbJofePVVGilQdzuitcAf39dKGxvNjJfONJBaU81NRyObMml+XegXgMfjg8l0q/BGZrw2GeDzjSl2PP4qIvkOcdFYzVn5ssa/0AVecE7Hn+koz7Zk5V2eMSvD+bSb80qRao4T1FODpmz4QvI9eBi1mVkfjo4nwy7eAN72DZke9rvWurOt3u6NkoCBvb6xuR2H8CHOolwbYpuP7cWMryp2+EQXZiy/3ZRVDm2zvWg4uVTNVeSgHX5ZVmF3b3mXQoGhg4t4jYwX6wxXN2DbLyMsI3zB5oAuGQobd1PGF92/Xm8GotDc77NqcnfZMky7/5wE4fur8qbT3f+KaCyIuMaJu+55zqxuus/OmTeTl9TYY6RQPKIpO6M5nqZdrtG7hOrYYPnJwkTIeNophaIERsnX9sEu4GxI0yYi3G33zpzLJUy+QyYHPsAjRxk/NGLFgSqpXc05yWJ9zWrf8BmdvcYAsvJB7anTZqNMsvzWT6u01BTAIPx6uBIv2myoDfd2Ikrnr6voZuCVQZjvRW0Vfync/aWSVuIUYsFJp+7gMzAK8dxuhqDxMahy7wYNAHgkOavtCsbraF8vh2VSQ1Utf//PO1Bdl7FXS/P3X91GmMh7A/3bB9RetTjyA0YOrRhQa/c8HIZUk7uVDMEwEtmfLfn3+4s+O46n2ZN9KHFbA/9T5ZRA8lTMjHu3Ie3RbrEW79WYmMAlpzaqP2ozXoT69Vy2r6aNkeLz3lBMop+eHe0KTv834S/KL70xOCkmvQt/azNUAW8prir9UnbGxaQ/mbT91Da/t1/Wpwf5w7vA94Px/dsq3gzx8o81k1Z4rqu3pKjg32bfNiMuZFDji+8aKaNzX9HESPCtbvR/fLt6rZk6s7yFJ5oaGujGhUIu+OcPdh1N6QkU3O6erB8et8/8bXn0+hlyH98vDJPCtmshg/i4PhOfbYot7DnP78jFjib7TdbHhz2S4nC5ojGIT/LS7aZnchAx59xUj4vt750hzvEihokf/0LFn4exyrtb1RoitGV38ca5ai6erscPjZ6gnvhg9NKWz7RF1x1OvRvLwXsG57KZIL+ZZMHnbOkHQVovtdSOrJ7R/wV1/XU4J+5lC/UCQ1R87AGuo8f9b20gKrf6Da3nXRlt9FBGxTtIh6+37ZnB6cApybrlHsawMaFIVbrwbWbtSZ9sxnwcEIoC3DK3W3hZS/b/r+rKKXE0efVV9/h0dnwUbvrEhQmwMaTqhzAAn9A9tLO/WjdToaanuMcoy/ad2zRzc3ysMgOjYc/DOHRVXP8EPlTIOPQJPF7KT1FIG0JKwxJ5P1rl2BH3WURiLikr/1ipAfhPgcQ9P3ir9bIBsEge76480XOn0bgZJuz3T3YnJNPtKBQ2WX4OjNYb9m83LigKsnlfqO4SRbl/sVYMjDHu/uPvFpeX+3anfl3tiNkrFmdz9M4c8fao0a+1O9AQ9Brx+pmx/Vejn0QYS0ZHemZgEmY6SoJYBTtcOOPGpsrsRDgUSDnQjXB01fGdiz5Axnb3raCW3SvO/1gvjz70yd1V9OziGxYayrLUFnGXwqiUknVqmRUy1ou3qe5/StCntlpgb32qBBKX4xsHxZiPR1KsZMiAtUKPopejWDi3j7WWoQ0MeJ6sHlnQvq1jHAER9HbLfyha35x1D4p2/jQOo/9cAfvncFlleFrfF4TcifH5OFa41x3lz7ZWeUBfqe03MkteU5YdLh3KCUpBZ+tsPFHOrH1kNffFuwf5h1f1uYzAH5eK8jbuCP+aKGzxYNbXvAhvPUc/pFY4B0DR70ucv0vE12swWtdzhj8+0HybreC+CU9amg21nv+T+/tz1y6xae2ki2sJfXLZfDTPFm3uW84J9bSBJtIJ94hGT00yaF8WHY//LdcGysBS4vSKLRnQ3E4upXon/+F3jCxkdrSX//n9pmMyFaHR8Tit17TmqjHc3ZvGYWUg83D4d9yK/1ubTVSgLAj4e48VvvZwZq+rk+sc3ZVTL3xItQkX+q6KDJx35ulZoHr4zUiJfKhQ2v9w6UbVc8sXNAWb60TcRBkMGXmlVd1gu6NBWMD82mB1Mn9XRsrEnSVoT4N/7z4VFZoArnnhqJsKu3TYUGud9d+YiNN75mgkxucv1UnpEPTGNTeBNisPPJWfNv1hP73p/hT9///GXLHr8WlPvlgw28ies//UdPr/DIYrVBwhcTfSvM3BIiB/6hnn6fXYO2L45GAmevHwFEAzXik5Dx4Oz/W6+7QqmwWeZWL+R1GUO95SscPbnRH9J8q6DrKxqwAdMvmZ8b1VC4RxzRXaym/T+95gv/QxRtOLCp534GkKf6oVGoDT6LrfaNvhBn0cUstnUruqaCPoV/Iby9j+qZbl6l+vTu3soTvuYnme8elLl4x67TG/4cNWGHqHXKabRZWDJuku8bLKnuqX4hTr89ytkR9SF6YzyZ+R9fEGQ1U670z6+MQlE5UIWWiE1nHyKG9pigar6POKq3lT+fW+kNyif28aMP037uFy1W7dv0pdbtHSes0TkLvYNpR6+nbvHb69e6gVKLW2x42rNfQtQrcLotW+p/N3JCFP03KL/R4rD99QrUz2cnVc6n/or9bfA2GdhlrK68Jtpqe9zPQtF5aHpijnD+IfFnf6FHKN6VQ4MyMtES40KDcmIcDjQz8+ePiQuogt2ZZiLBvXjeKxwUsskT1hp6vghDEKOncMZErK+uz2KtKyEWUp3igH7QeG6lBua5QNH2DJ965u3FUFf/jk3MVfXYTXcOABV76rFPkzD3UQsw7i2LWu63MNfXq+AepT69jc0pWbLBFEC8Dddo0SSrpnVsavBOjjzV6scKro+PFGpN0ml4++7RHKvbBd5WfMJG9Y761T+UEOh6Te3j++jPjLo8uKPgksmRDLa9ZbECEH41bGCaJdNw7zQQp/aO//L39LkM6xaDm031NjeQGA1SBm4qv6m/6vOYKeJZPiSngjryOc9nZTBvoDfSE0fpJa7pqY06WPNfVG2PYs0+9daGTswEjHnPQeLnizz4QXmMVP/X9B9/+cYAp31MrfBTJoM2fT00pvsXNcLvPVnrPYcc7zPgcL8c+qmz1hag9dnj8cUF+dSvTzHa+eLgSEiOjNz2igX6VuLwze4rttTlj18vujqT52Nbm+PzBTbsbLWgeqkezMn6TAJa/TQNz+WtZ96JEtBCP6GR2Z3z+byLYih3ZxLxfRfWS3Z0uL/xwscfSkz2m89nuN9PLoHZatniddYbvvzkUu+3yfq/vKN4ZaAS6bO2dL79+Yb2T+9O5i6Qk7Hjcw1+/Q6IgK2qJ2clnmAz9htyv2Vqz+xudwe9UG94p3w1tGw62YNfYT2pS/aMLVtyMUAq7BEHJ61LFvvep0DoTSZir33QuDexhvixkSNBeH7qP7+iuCe0o5o1b+upHDwLshNKoun0vfW9CfFd3T+dO/VO1x6RVb+UMXTViOxffr6Er5cGv7DvqCG+NLQ40+OGVn9HrdKczUX6oDsQjg/xHb/cemteMxs5L25HxGNt+bzfSAVszQpo9HmESOD5Lw+t5DwiedWDieueAepXxB0tde/P90k3wO93JXa3RZbTAJ8VJIU/CbstnkzyDQIbzD3dUR0ZRT7X9JSq532XY+xNab3kD0FR1nxCuF9qsOlxqyb0GvuaqNT69TTsQ1uB+mXSG2YqGg+bl60cdmlJH+7L68lJ+hRQzPWHfKhL/UV+bM5IGncBxem56mf9hVp0CIUYm7SK61mE3kbBFRya0MVBszLpBfTDEkSLMTkJO/9kDrTUFqPCPyTmFAnDHa18KfrjgVQvu+MfP6Q7bh8n0+nxC+ClhUfqdJni0+DkHBFnnX7YljcnnzzDSwRa9/1gW8Bj/sf70OpnCBRPDy2aeJXQRXrqNNrIZT3ddrsMRdvfMVpY16N5nu9v8PdOGQnB9ppv1/WIUnK2op8aVAmrY9MAzfrVdP85hL7Cjb6C1t/jj/8h/rP9xNBusBiJjnpO5i/3UpT0kz+p1g4/c76UcIeLWZY0oDuxZ9fr7QjT9i1QW3ju6pn15oTcR56SxY5F9kXrQfNXycM4ko6Wz4uhCwh5wYDDh/g0p/h4G2ArSUfqseL6L/8iwV5PQdQkqxdi/8kpTVccIo5AlI9OsQ1g5aMkZ+Gyjn+3QKqmNT3Ihz3brvX2jxdikysP6L3mASSNlU6N646YDKqtBIeQj+nu9zL7vmN6969+aEdNRX9+CO7LIVj5pZpMwnhqoYZLHKHq25j/9CkJ7R91yPObt6dNGamlMlj4urEan1XH06L+nrZGddbLaHQqFCNmioSG1HJrqmmc9sdXyPbTkX5c6zfsIOXxLuV/9cpX7solMGICr42Sd5u9LShrfovc6+trzhXLb7AbZR1b3NNEM/8NCeTu60WN7fFST0Gl3GDlNXT35y894XOGYnnZOMjKK1psZYiR6B3eBMq9UE/KfQsI7p8naQXbMml6dHml/uTjygfDZEEo5uHcWBHF9SPq//HyUxI35Im6zNzWs9ap30G0oi7w6r6tEWehq5c42JHPKF9+XyWG1N4MURmVUb48w0uA1n4Gxo9Pxyb/EzrK5usfyHYntHnbsFuFRHMS6EXYL77ArZz4L+/LZvBK6B+f2ENDVr/n9EvMtBSEk0wJSn5v9ucX/vIUYZgz6vHyVioZHkaK944q5H/5TPmrz66mZn7nNVEJdnnYrhf9OP3W9k0H/uafrZPRH++Rp8Excxwis4bP2ydJeWivQxdxwZQwZjf4Biuvwx68hX4hB30Czz/m1LN7A/FVuZfgEZMN9u+0yuehsxyIn6qL8cDeyWJV4P3xeuo9NKcfJB0vf/wIH+eKounXSBJa6xVd/Uc/cZHeqKF1FaNJvZqmYIymBlrgL9FW+ZZoCEGN5Y2GScQ9hIPZrX4WQjRhGjtSxZZofSRgrRfYED2UL+h6FaB/nCXs6Ce/X5rhucjk8tzilacianfhHRR8dqh149uaXh7igv7p84W0f/2GBUWltyNi8Gb+ZETOAOO7PFNbbWb085Q6A/5r+dRFj18+jVIcAXluPmRxnq+cZfIIf3kX6ySx+5/64itY+yfY0p6mL3RmWyFhFBi2X1WSMHobBYD79xm9Kz/0xUx9a+BtujjaPtGpJ5F88KAIfUqOqz4v+UZV4M/Pz7rbMeZeP4t6jugWY/015NNpUwbgSY5OHyuvbOcKOzA8ab/+vYdaSd9PsPYLaY4Xiqa3XJ/hL48r4omY82HzsxDOvymZmlFk0+WS3YCG/ICt1b+veVpRXuRnReIujOqtctQq9e/98ts0m8td/ljgP+wKa4vv1sKrUTq4Sg6mB2MWkuwQ6Io6GAOmAQss1O2lQ6W+5UBY+ZFosnz2bn/1GwfptJjteD5EaiJzmGo7fUTLZCuSMt4/B8K4cmaz8WwlWBrhQATq6KbwuR00iVZzhB30efdjcMwb5KPqRGZNXvrhuRwl+LITi+QoCft5Esfbeuqtif2xuJn/+qGGnBwj5fL6sr88hgTtVhFOMno0/NW7/djgf/pG1PDZKUbIGwTBHSVr/noD4tyBBpb3SQgNTYIMmeypdiX79VDA6Q1PDWSiKv4Jdf5X5uH+PkZkgemXL3vpWqIw5Qd8L6MatWu/4Y93//VT6+X6xgTwUkkE8duiX16dRP54JMW77JX8/f4oG/kL9apsbc8WvyNa+0vY5VQJ0VL4lv947Mpj+vkvH1QSB3j3Xbx6kUz+Do/SSfBTfwXJAOkxU41qeuMLiR8m276EI+z3XYj95Geh2ZfiDq7HKMR6OUqIxAf9DL/3J6K7M+z66RC4Cjye9LHywoe/qLMLKvlKHbb7w2D++F30r79B948uTqYh62E9tfiJjbU/NX3pvQB3L+1xfOVKc0HXA4/++KgeOQqaU3zy0EMnJZF2QVmv9dZAb0PcUJ/fcvVSc90C2fnsrH6LrxdbaKK/fhKNJKNni5IPDUKbxqDmj4mIqe9XAOOyHjwlL3y+mI58hKMefQi60yrps2dtwy1qVYqj8p4stA9alL6vHP7r9xDjZwE66sGHHkswfYEc3AmcX5FG0nDp82XlX/+vLQXq/72lQISjRUOT0p7sij5VDMnziZQHfD9CNw5ry6Wj4ebIseWzpR74Z5Bo2uRftnSw4YEzwy2ZxVliw1xbAXgkuEfo/RyTeb+/EGic4yeqq0Bgv+tNtkBUXYQ17vnpqWyrN3iK7QOHlXaoF0cfLXhncUiTu4J7cnyiN4jFhmDX3ZB85vhYAYnPJYLKd5WwR9Xe4LaLKqw7fdBPp+RqAbnXZoQu6ilZqt9rglmI/Ch2z8hnfcCnkCiGjx3Jp/lH+J05RYubmjCX/5mj5MgxCJvmjL2CW49GuSed/FXzWwTSXqxpM7sL8m4HD+8HnSXTAX8FyOjDonvz3eVzstMqFSlPHft+rvZEeMsNbDCqqMZHLlu4QvYUYWIVERkpk8VS7um/zyeW9c4XUzNo4XEKj3Sf/3YJfVTlDYo+NulVcN/JxHJVQ2TAlPDE1EzWSce7mr0lIZLvS2X+ypvyBtdMK6wfPoNPH4fGgETR/IiPFVQPc/hwIDnfQuxs2D6fA4fcUXNebBq2h7Am280pBX2SMC3Ou2PN9tlEUHt+elS7pG+f6ZcfB+WnPhOlL4d6bje+BoURpdi33XOyaMYkgHJzT/jwbh71L/9lHJw04Kl3Od/rRpkEgF7ndtT7Smm+JAVJkeIVP+xKS+uP92PaKevfY7tQxXpKqGEBvUZztI1x6M/5L+bU9uwKVPuYUbLs+GOmCE31jaQN+yaT21Sd+q5qBxuXq+jPkyoeQaOWSeNYLvIpH7kUGTua4eBjN/4iYqNEZX7Mo/e2MZOtrt9jmPJzTL6bIKqZF6dHpeQ1EYf1JUTL6XLxIC/tB959uIvZvUhxh18zCRhbUpAsm0evgOpvpGhbnDlGb2SIAUd8QCRHl5Ohf6l3+UFZiY0rbU2W3ByA+aV+ovr9OKLZf3YLPHe4w9FEIGfu4VVC3H04asfChw1ScdAgMLuG6tb0qnvF0Igad18O258oqdlFdAYo7kuFnVAb0fD3e9iPJMNRco/QtHH6O7q01Z1Mag5ma+GBh+OVPHHwqA00T9FMNvqFf1Jb0vf/xlO1EsOONnVkmsupPVSoeH0G6rwecc+CAhwwt+NEtdBsE/ralA4Ew3Ciew3ZbN6evRuUnHKlewacz7paagGL7xYnwrlBs6FhQ/m8LwkRB53lkxj1ClDgKdYKcZ8sEF9j+BayHPGW15jzwfcKeC7BgPcv5ZWQjevZILbpgoticzQ/HkoWuA7egv3KhZy8q+NbPa6nquB3fqppNN41mKNLEw2Y1vVnT1wPdcRYsPs+7XJifpQKlvfeooaUAKOzlANocnukZuuVPn3y3wFOeUgwdkWN8XqmH5GcnTwcHhXfX27kDkhu+J7uebSg2ehHD2p5GagVWp96brUshdHXAhxKJM7nSd0cwT2OCo6U4ZMsvbBVIKNLRkPdDswl0ptGMW7bLdY/3denvRhGUKnZEd/6cuh/vq9xIKOeJy/b+Lt7UbTg9bCaaFb2P7R0oXJE1vVCoqX67etl2E+pOnEQ4WJgc84suVifUsafSIlF05wS6tnwtlKEzY0/JxOvH47qe9yd6e6WM8T4IbbUr2dP+G9+CG/JbeH4dOJV/7yEJW70BupWO4pL9sin6+23yA9pG//TG8bmYEL1QTvQ8zF/oua1iYV/+p/ZfIOW0NItECWzIEwJ7ow1s77AovkLjl4xMedhliVkzUFCT1d36Kn7zd5wfHox1c1BRNPjuEsh7A4K1V752RTlJSmRZPMJPudG0M+3nafB+FYZDe1d2U/7zJhQ0ofnqORf0FNnCI9wuEgp1czd01/S7J2h73W+E15hp7rHRylGas0/sNVuzjXx3mStL4FPYzUHn92P6KikVmJT0zh8EDHRr4FVn7Cz3RYJcUFKYSG/I0Ef4dfPkTGUCOmkoZ7StyYzTrgAcskaWngVTtq32BtQBo+GCBaWzYlzJSKz7Qdha/oSNrbdK4Iu3Zg4vNqLP9Xqm4P+HmywoxVns50lFqPXRD7Y/R7yeobuM6j/6hn3aHP2yrgBbrd0Q523/kz4Kn2dIchmE4dj8URTlaQW3NTfjyzN+9gzm93v6MMcB1+fJEvGfKNp8BK8czRfhD3anmHQIIBcp65Ylj1x9NGGJc0y7Jw2Rj4ouVBCfmhgvctJQI3EDgWANUK0uaVmPS/7qgT7mAsRhHrvMwFfBdCnBmF3p10ZM87pAKL6xER96A9/Sm5tDAqWblTT7qiehE8bIdPIbWrPU5/T/ELh7/WwvYHFZOrHyFRP02Lqht+mH4e7wUNIqhJ7oonR8iJFoeyYURB1jCtzNg/uDYKZZ/iwv+5MdrPyDG5em1DD/un9VqxPGtJR8Vj18psssDkLcCg5K/peNZ1tzw0PcIr7kryKfY1m+MgabP12wE9LGnLKD7ENLG9TgiwR+2T1B0gXjIHi+bT1v/bjcwO6Ozyp9XG1fuL1a4zczO3Jsu1kk/RVasNScA3e3ec3mw9C2yBldw6wEW+dmh6UpkWSfquofU95f0Kn9aDiaboRZraGPx5dNYLXS56o8yVBPmzTj4DG94ZRM9HzhBw9q4Qtv+cjbiKQjPaiCqgqlBmHS/VLvhfRIRC0D0r//NJcqXwMy1VwcXBMlnxKGLfAJ0/qSLpupZx0sBGAjziO6lcH58xFy00Vk+iEzQ+PzeFd6wF6VqVG73ww1Msr+2ZQ7USDesx5o7Hc+SWA6FBseb9NP8wiMaASuRcN/8Zrb9SamorfCTuPatfPy+PwBuf2tunllLn12FfBAptE2FJHnx7JbB70DJXl/kO96xDWdJ9JA6x+kBoFrE8lfm8WCFvNIXJl/XLGRZGF7tHxRy2dP5lTSJ0GSh1l0UbsP6j9eGKL1q4hYYSQemq7qwT2ub3TXOycXsheXooI0t6RpPlmQnf8a0D+uX8TefYw+1cfnO64YFM4HNiyPFoJ1N8xwvjCrbum93EA/KN4Um9YUnMSJVhA2BpOtH1/b4zZLC1An95oRaKXmtl74QwfGmzp4erQfEzoNQOkPHSsOVaCmHHaFxCeipkcVGr4YsUdFdXKnJqeX4lTj+ZBv4GTP1WCxK7t5zZVPLRcqy2R2zjOl4mz3xCfli0R8AIrQq5uanF/RkS1d1q9rl8eOukw4oi5lT+u/h8d1fSBndJOk1F914v6lxeky8Htt7bzBrgOzhL9Os5hEycJx3/1OtbZhU0H4XAEd8gOFD8bj80Jvd7QKceELLb4TJYH+jYocK0L3lXmYNKUVAuEXaIQ+FK3F9JsuP3T96tIioTMktUiRbpUZLuUEZsEjiPQPoWQ2q3QM/a97e6Kcz6V2FBI9V/9GNxAx/a8LZO5KKFUro/+ECk92+QsfDQKsHhZqMXiJZktJdSgivcq3bvbJpmO7ijB69JtI+Ue3/Nl57klnIX9j+6+RllPhZDG0DE3pn7l3vN5eGQ2CA+/pqZwmBkJWNQqf+OxXGnrz8LG1uCLwxCHsz/6rRVdGuT9NgLdlQNG7HcUYhhjp6OO6plsm1y7M7BzVOMgBsFfVPmugCv0AcVkOOTiYC83iIN8jtCtkU02B6qAMn9r41R/Gfniwuof3jdtrWdc0qHBi5WYP54x1v2nOX53OwNCOvYYm+uR5JfgGsDrAi7OXhnqfyHxWnQowcLxLElo2GfehFL3WlMvXiJfHO6/Ap5i98CYcVk/k7OmgBxZmJ6k2UPdn9+4PLiQbPMlNomQbAK4tUKJ/XNP/PnUGv/5ozWPJctFmG8qd6Bn8qqvvi/mqVbC1Sl57O2+S72IoRqD60wJ3o8Zrinp3RTocnxF+lFM8qXw7wu6uuMGR9txQn/rD/WHy4OIxrE2By4ab3B5QEj3Ha+xRazf57/xx8YXEcRObSvAZX4H+J585Jopsx2raRZk2DrJscn+/EtUdlrEr36iG+zaAid/qP/lN1++SPDJDzV21Y2SU83UPPWXJaeoLfiBsb9/h7/MpCcYtozebt4duN6+rq8/+Wu9u0FzSE9k8ZHDRtJ1gzLMvRttx5eSjEVwHNaDuicC9vbts2yL7rDmAxxGm9IfUF+30Oeox5bkLebQ2B6nrL93xISzjSbfk1tgxuGA9WdRmjOGrkRrPSBQGvf6n17CTLhIXf2sKN+HArZ+N9Cg79J+zd8Az2T0sTNunJzn3Imgj/yciPCJkp7Zyz5A3jP/YtOZnnVrQBzAJJcPvAvSyhx2zysH0ZBfiXoqroi0J/0Of7/HPXfubJrehwJpn+tAw+9RYqSZlgLA80fqddEnJ72gSvAboi/V7m6EFs2QeNQq6xZavRv9ZnmUCmJ5l0bnR5Pn40pxYPSNIHqV/dK3ofP04PWwG4zF/sPonz9cecg/fRuq5G7/m1+ucRH8QTFKDVh/0nBwD5p6eUia8+efcSbIX/Qz0S2Gi4j4aIr7su/W+Sut35depTHxl766W2j1a3h3dYOeSYF4Bu+nCtTIdZoTe/814DCLiFCx36G5uetn0M5GivFsVMks/ApA4ynZE/FdxD4blqxEdj/JBB51xaY2rQQ1cO0LEdb83e+8mFdP72ahDh+/84ly2widlRTTPDW8XjSVugOhCRPqbVSaN2t+QvZF/K7fz+67XwIBgso44ujofevRLyUDhC3aEGWtt5N9jQ3V7xQvUmgu1lRe8gq6Z32g5spjyDucJiAKjem/+aVfzBTNF9JF8dDb/cj3cgF7yU2o3gHJyf1YA0z6JqS7i7gz6WvTOmDuBZG69Tnu6QNxCrR6OmJPTntEQyvLYM0nZGM2bzQbjVQgPgIO49MJm/zitAVCWzPGej4vjH2tcwZ/vMK8nUs0ZcJtQX95v4YqRDNscPnn5/78m0mI9vOg74YS78LGzbeCckjR6XlPcajsgnrZuIatZuf8hD0Xe4xp96L7y0NEOh63/nwz+QUeHneh9i6p+ukd3hxo7amgbhtP+eg/qwkutd0T+cxLbFTs8/Tnh3CwK77ob3yBU+YdHi3yztf6+EbfAsl/v3dPyDkL0FofI/VQR2x6h0cPTL78ROXHqfP3IdAy4IUKUxybX/Q7COUbKBZHGqjXAs3fXWiA1Dkq4XJr7zNyiwCteS2q61hLlv3oR4h+yREHP332R7eZOcRnqYHdynKT+d76A/TKNaBOIb8Y66o+A64sffzHixY47Ti0k+4Ya9tPY1LjhO/QN08l4jpvrKejxxykmx8ZG7RYfOYMuxiifRNjw/69+nm0kwUGwBeyXK4Xc4ZuJNB5g0P4Szwkv3EaWijfqU/tbX9OxnEaOii2JbfqUZus9deC+nw36HHma3NR7MYGocFJNK9865+fXn7hi8y/z2KOReVO0B7MK3Vj/5TQ6bhZwEjLkNpK5zGGh2iBYxoTevGDqp6WlwCw+kF87zu+/ucHar7F2Gw9zWflrvMg/g17qldGhET4bSzYX38L1Z31Glaivbw/nkejDlf9LDPDQ3/1WzibktnvvIxHzUTH1a9oOeHqkZdWHkLQ8xP2s9vIoK7+Bxv3RGCrX1j3v857HBWKav75Iyhv6h47X/bKp+GhLdAHZUIfp0Jmc75xtD9euvpzi825QUtkVWSJxK22Z4uKA0PBiyNSI962/cxPjQfsciV4v/JO9iXfI3D3RqI+KrmarOZEXfWMbMsBs/GPj6ha8IyqT3jO6enS3FF+eEO0/fTvZOb7+Y7Ecarpg8qfmhmH0oCKfB+R0kW7hB1emQeoqel//iA1UYy276uDvZWfzKekvKn+1t1RfP4KCenC5Qjh7RNhW01IPe2NnCCG9IF60evoTyf1BzCYU0xtPr3523J6tegk54is9btf/cyiTO9Mo+bKr6VP2RD0p+focLWR+Mf7GoPnI17nt+b78pI49FevfDvyE/bxxzf0e7uiviTmZiPKyQ22GvMiUigPc/bfzwJJrNKx89Y3yeKcbQn++J7++xx9oUqWASnPrx2pR8U3JzdGb+hL5xgJclav+SGLYLnyLv3n5+6cYSP1iTzsJL85GcrplqLYtl3so6PGtlx9LpGhJd/VnxFzCR/PNyh1ecW3LvokLdGMCiS72tDIq2iyRKM1wMrTqNW3ivmVKnJDt1SOcBQ9bvkSkisg2WkLbKluU//Ts3r/CyPxlP3qQbH3Bfwe1yUaOe1SLy8rbICKNw7j41wmv1XvUNLjM9XP77Kftl0qoa+4+dFoVytscIZ3AyufiLYrr/pXH0bSejidKpktLkhnIJNrYBflfT1Xv1shC45pR+NYbNAvbliBvumlJ0KJn+Za72/Qd6SMOOvA6omc5kaFwtpQHI4CmxQbF+h5dYBGzDX8pdzdeLQprib2f8OzZrK9vQEuSonU63oWS8o09NG1H7ZXA8nqb9H85YNIWvnIyoM5+B/SrmRbVRiLfhADAZGEIb30QVDEGWAHqLQJJF9fi/tqWLMavvVcF5KcZu99wjmhJ9c4dy2d8VoGdbjFP1Ik7lCuue9DePqlE1LvL9+nF05tFaRqOf48sgegQ/M+gyekMqZD4DHhD08I0rkgfrI0Bv3TW+4evJIHu+6AoObxV5kemhd1mz2tzjUQ4a55v5FxuQYla5SwgyD4OsQaFL9h3e49wC1fEVd0zZLKNrZhtJwnZN7f3T+9WiY0fpOTWFQNtjztpfzpO6CfniOD/d6ELZB9DC/Aa9jLqj14TuiP2KErNZR7rB7oV2NF5qE6pPMl7Qr49MYSmZu98lANX2CX8gJ5LOV2xemOZXhwhgeygvoJ6Is0k5TQBRH/+KLNprfoMCdPkxgfnvhUG+EDOtn1hVz6DvwFaAWF9UNayUObTbC/vk+DEr3f+z+9MuVT8xAB/tEPyGjrH+jU9UphK1YFMddD5q/Mvidg4c2JHPXE8NfPKuXw43//GscL48p5qq5wMrOQYQr8uEbXKAN/+q8rmyj9bfjqXz79xy+3+gfY34QTUW8SZdMJEVE2xodA3OQwg4Udy+APf5CIXZ+MNpA7y18n/iBjtLOUDI00HExkM2IKX6NkD38yAflNCdn0mpL+bqIHm8zBxMh35sgmW86B/Y7GLV7/GN2xhFPul/obDR8UAzEXJgemr96JJBbIzfinbz6u55Xow1NppnX/1aFweH+Ifr++UrJzbwXMJd6JCHzFzYZPKLxzJw2LO5j4olqhM+wBSDG4Icg2fXj5w9e4+t7rdPWFGw/9l94hK3s5bIm/kweupvQgz9q7NX98FjhcYBLXP11GDC8hB3fdLomE1U0aGjB7kLOll/Bu+/0/vS2PlRb5H9Ft9o93ueXLPCSXDR+uGx5RNrwWLbeP6jMwBhl8XcQB05U3DFEukfSHj1GSHBEjm70qGz4iadl1/hrwZgv6e0nRsew/6bLdFQF/8d/66WqzP+N6AYkUqKjo9q7Ptn/DUpPiTT8S/OW1JGe4g3KLovHtgiV0rh7MRhHjZZxWMIlodZSiwQYKXPvlb/XA/PAhkYCQJOXlqsgJr7yOhoA2Pcr/p0cZsfTDe6l7Gas+PGWQlvVAUCXRstfVow6/x90Jd3xslsRyjRYepqQi5oWzjH96t/h9/ZAbx0OJ/Sc1IYKzhaLdYf/f/Rykn4YCUf4YxFGJB9/Rz8KrQnQDP0RZhh8OvMmmzzWbXi+DLrt7W73NNtiLMB16TPtGsnrxSzoGH1XZ6k3R069ksMWzr/KnF1+6c2fQMK8leQzq9F99cDoaL6i8o3RFWlGIDY0/Sg1zG/cYRvmvZNG15WDiHYZ/eH+5h/kAw4t7J9bD0fz1T+8sg8cDbfm+XJ0JSIqmTzrKrfvQLGsTbIO2LUxMvA0G4MnuBS7MTlGkxLxBnt5DhH5Q9P/i+x+/A0ZypOQPP41NwlPYi8+auPQ9Gdjii62+En6IKnxsQ9zqwbJnOTPa6gvGtOntyl/9XLrXn2ahAZKAEezOGNbLhv9JIkGloHO0RIU57lsp5+Ce/mbi6+krJVu8ggs3yMSOwtqY4JDl4I9P/tOv1rqVQHr85USfBNz88WXwHeWG2NZXKP/t9/9xpUDi//eVgmNuf0jwzXZsZtGng+8uIMSW+Lik3X6C8FyfS2IPqTGKodJlENqyT44fhzb0KgEHKqfqQk7WZ02X06nVQX65jShkT8FYDm2A4bsyD0gfy4a9rfcZgoAcCDK1V1Au13bsDuAq1HgVtb5cqoiPofndGmV9laFhu/xiQ1+OHij4Zk/AEp464GjMJvHSV1Ou988YwOuPs4jlfL6AfgXygvwc1MR6zkO6tOZiKkIC+IglXtBMA9cnoBI+T2Revkmz5PhWwFWyEVZez1+6Iivjob0/7pHbPXeAhsrrrJzlbVbZ8nmnk3UuF5lzjyNC4ZRu798MsL1VEjL7KQdEs3odLuNXRRE7KM0kVlICi8/ZJJWZtf50fyUZeChxgKJkb6bLdSohPLrvNNp/bcGYBN4NYH69LMRkN8df/ZZBMArmFwUJKRjl3EcFHbE+EB2qftOTrZGhcztMyCyHOcVI3+ewOXoFCndEHcXElpPDo7jeov1Jn8rPg+QQDmYgIt1+lAa2T8UZ7tQNAqvOO2VVzqtQyBhHjNg+geXX3CvQBLAnqWY3YPo19wec2l1HtCb/MrZ7hQVslllEWh4xgIdkEZVOeYnoajx1f/YvZQatvG/wIdRVf/WnKYZD3l6JHqevku0cuN1KFmXkqPs5Jd1nkiDPahfD7bxxrr84GAYviAVZaQD9ZTgBjRVdiKHZBuOvF1+FrWhayHo4CyDpRZIhIohFOwDlZhh85wXml3MkESuqlHE/ZQJXB1TIi4rRn9B3V8srERs8eQfVEMsFQ/l8EkwS6OuQrlr/duDe8S0UBpJe4t/XlkHw3gvRkhxLgI+ye4ZhdNdQML9Sgx6OUIaaOpcEncXv2F9B0UIoj9dIurXDyK5PfYEg3eXb75mxStfdC/DE+REfBzWgQNdV2ARcj5y9+C558NUd+PY/NYnS7NNQnhsgrBeexxNnFSNNbDkGgZkjYpU2K8mSLgVI4qeCDNXRSjGNOx12d+2J4WY/XSxdWhitNEL+YM4GzURhAlLxbLDssrPP+lzDu3q6J+jPv/pMC2toX+gRH6o3SemR3nRoKo6O9FY6gsX7XKCSy0lDVE5+pvQxrTXM/VAmWn2wxpVst1odjrZEA8d30wN4sOGx0IdIokvvY6W7TvBd5y/i6KAzlmN2i+TBsVTiVnrkr0KteUop4DsW7PfImHvfDxDHmkvM+TKny2FUdLD3LA/Fk8T7ODivmfI4AiXk+ac6MrCngRLQa4BX8K3Bgo8ggBILvij67Dpjft+fKryiUCeW8noZTOV1GZDOF/GyrWeJpctX7scniyS7+oJ1qq8t/FBbiXazqTe8PNMKPt1CJ5q480FX920EjwYxkeuUvb/Q4zMDLx+/iJ+/G4P58fkBT3ELiBcdgpIMzttWdGVWkfc7OmVrHJAMduLxRKIn26dr6zkQHpSNMuaz4M/t7f1VEsVyUTjBm8GWdMmhtLcXosf0PS74WvJA21EDRf588ml8vjxgk8ZxJKJ6THHbdQG8jjxCWYsHn7TKCcNvNLnIr+UD6Jv3SVYurV9Hvyn5MAbdPINTJ1Bk6TfRIGYgPCD/K1JkIPWWLseH9oK24FIs2mclZTWoYvjTnxk5fj9iOXHm1ji7Mg/ESH9xyUB3+sLllMfk+v2I6eKLUAVRocTIRykPMKD9GZb7oca7xVYNygI7gtJBF5CrnS5sKa3oBap1vhDNC5yUVbtPCz+9cMLy1/0AerjeX/Dz2R23YetqynLp5vzZI7KtrADrNRlbuNxfFomg25eMN4AEjye6i/ZbvNovgWorZbz/EMdSPs3vmHcDzOc+I0Z3DsGiFnUN/+JJegk8n5bLF8Id7wfIlfaaL0rig0Jb8CkxYMH7q8yMTDGnbRbcYyXsXz5Q+kklxzf3LD+Sk8nQ9EK0xa+YiZiVAzyBWCfXnrjNiqsJ/9kbliX/lDJWC97f+6CIFbCkeGwyaJ5vKtFPS+uzpkp1GDUBRM6lOjNm74pAHpXzCd1uz5WtwiExlTJhQ3Rw5KGktQIm+At6G1m5mfkdfgaOTDpXJEeDa1KsckUHj3WcoaOhvhjGDdBB3rMA6bfvg+0n7pnLn8WTkBHbK2DVEnDgaitX4tClN1btoFFYmoREhdBdfPo7hoMsPLWeZGael0uXQhE8v0KHbJ1xTa8+QQ45yTtHC7K4clEPDQWXzPoh88GrDQ3O6xn+5WMaDCMgRE/OMDWKBWl7BadUuK65ks9jRnxlpAZ7gsWRi4zSzV8OPv4dww56P1n9hw/Yo35TZZ9kYiQriweGfpVN8Pd8MXb1RtwVfA35YPZRkAO/macBSZCmnwU55s4w5pwNMdAVohJrWdOUPsIlUbTdYuBdQsfmqz1vBdz8GTOfK9lSv5kMwlh6oOfcNIy9nF19+C6ajP7ODy8fqQIb/iCRM6aAaRdtgA3HFkw0rIN9v/c4uNkTFuRH3eTyebIh6ss2AhnsU1Z7PIQvrV4QWjYKYp7nBV7T7zYoJmt9hhcYQNeBF/IX/7r+Xrd/+Y1o4Ksz1j7yh5TLcRMdQv1lTGoxvOC50vlIecjhuICsr//yFcbQdVOhN+QIGrpZRznPm75QjpkJL680j0Bw2o8Luj5kaNYwQaF3sQ2qXpoBvrWSktAOl3Qd7uoXatU+xnK6M8dleL5UAOBUEF35WIYIyzyHmPsWBC226vNbfIPBh+yQf+Fs9i9+Sm1/xkJuZgbLLhcVao2zR0nlAn/Uca5CPAQHEvKfuZl8u8J/eCPyYylqVv7Hq/Ld3alY2ovvdPUMIQabP5NI2Ubn/vkb8OeJmA/+1UxJ2j/gRWoMEmQ5KsddfjGhck1a5DwGHWAwHFSYedyTqMYxZDSXl1bBsLvglso2EGsFYPDziLZ9pf9s1j97b8tC+bcf9DQ3vDK0U4guGac0NOOwDu41NvD6SPDYa+9FlL0Zb9+6lnnDjuTwhUK2clv8sxh/jDoZYjhcSHArArbYc+1ASQ8lYh/SdaTknBTy963sojEtvREfjrwMI33+RNJVi0rhHiUJnHZ+TvTPtTcI1bgHQOxzIcYOJONCERqgL8U39Cxv+ig235rKs1XtkJH+lpKeHkakHMPyHh0qPTJmMOcVJPB9JZZWsnHpI5cDD/2I8U7mcn/xuTZTzunqIlN/YMCa1j9Dnr1cZJHg1pCeYwl062YlXvNgjJHRzUBZ7QoUPc+Zsfi/tID6brTw6X4ODNIKfX5Yy7uOIrXhfNwucQ1bSfW2/d6NC099Ct/c60LO9tdsyFs7BqBsUg0L2bNKp9kSFnBso5JE9k9i6+4TJKDooygC4psDpDzeIeQD4mPMDveG5dLJURSkSvhyfEYlxl47wMt9D4j+Eb1UtLsx/sNbUV/bDltd+VjBh7WTyNFQVdaFtyUA5rA1wu3qNl268uPBxy46EfUJVbbQHebg+3RwiV82r5QNB7VQqn3T4qWSmxGfHn4EDigrSZTs25TEN3yGxJQ0kgSDDyh/n2LQ0B6gDV+ypb/IMTTjlxgpaxP7+8lGFLBKdInff3yw7z6tDKW8eSD0E88pa+eDCYDWQGQZ4o31am7YsLlXKs7EE2/QVlJ5+NxZKXLlswnoH/73r+mIF931U7Y0NxWAVNlK6F86rlKMAuBDp0HBrJ0AcT8/DoKwX4n1Xj/lmlenTFnLp46smvwAvjE1kdWHnJI/vrW+QzGHQHtD5McSbhbrnC7wHic//FafN3/hBFuCcqaWyBL2fkMRe2DYOsob6XkHy7UbGgoC/eGh0FyChtLyK8JH8rOwIns/g6ohyOAR5z46ele5ZDqOdUgvjRBxmz0tsWpxUBKcEbmv3jJWMMcVfMNvjMzLcU2n3r4NhwbuR6TNCRzX/NzrcMNjxDx3i08RyybF2gcCKu7FwVjUwXAUaKgaKvWrxhaEcAteqB1Q6PG/dL4QksOO8Xf0CNfAX063KgMBND6R8uK6hpnnmULudL0Sm7v1bOnMKoBDeECRhN3Ep/LbiOUOtCsplWBhq6y3OjRAr2BerXtGl8/ygNH+eyf6a6HGcqjOBZi+YI727+fDmAVNr6AYmUkkOPanmbXCqeF1pmeE8PtbTk1SxvDvfdYh3vnzcIljqJa6i3fpgo1JM25f0N4eEjL5p9rstYs7QAvYO2KvPgDTzp51iIR3gaU1tUrhYfcc/PVJGu3f3DOdHyTm4BMgFzm31mvmnNUJ6ISlJqru+uWGpyuQuXqBdzFe2FgiO4a/k9qRmCsf/tI26xm8n4qBNKm1Nr5EE2gc5XVbj9Xwx+glKQd27Ej0A6FB7z4V4XqrFRQMigioffM6sLrGF6/zegfLbh+cwZ9/XYof9f/tZ6Ic3X/4Y+nK2QODv/MQ0nDNKB7HDPzhJ8tt3BTnt4MM59oMcH/kV7DlRwk8OnlEWhA3Jbuf/GkbzJOjYyCLzRL2OQ/LmxWTaz6qYAFHR4ZU1AJ0JMwsSVDoAWibridWe9bG1R51DJtnYUWL3k0Nk9g+g7Lx3WFFO0oG3RX8C5bgNWFO05/l0pnnAJZsyYl1fOJ0aryaU9oeor+/16wnZLaKfuDFSKTuoyR/eBjc2A8LGXcfKSzzAh78x4loeZQyBk5qp0Tj44cMnwNgsdhdhYOveORP7+CrCCbwa75uxLErm1Fm3iXw9/w/fLXKpVxAHH4mgjb76fpI4wDkBScSAy1gez83KVRN3BBPGuhI7KPewv7wxvjg3+10vWfeF1T7d0tspfylU/59m/AlnCCJQJ34K/x0HvTvn9O//DvghqnQvixHcpe9o8/m68xDbT7/iN8+02ax58EDq6yeyXFaf8YafA85bLh1IcFplUqsdM8JDt8uIeXGn0hPku4f/3GPl3hkj9R1YBF8NBToievvs8tdBVQ0gr/9KPdQe+nKxneQVwrPcvydIxFs/IyEd+j7a4DfGDZ0BEhbC1rSYNITODzyL6keOztlIF8g2HNQJ1qrvEYK086G/W5/RlYd283YZi9H2fQTNG/xnvWkGIDQhwWqiDWNE3oeA1ge2h8qdhczXU3pI4NzpfLI6dp8ZERPMggSI8XD9n5/fAAoKscRM9YO/rLx1X/+dnknrb9WzUwBkOkFubZI0m45vTj4tTcJd+Nj82/JOsjJ5o1Eo6WmYhi66j99LPMLoZm90o7+8CbWeVEqaRINLdjyCfJJ/23GpkpViKXFx0z91c3aaTz9O69ozfrCZ6/4J4LwAfNoydBpZGBxZfCKbR2DNVJTwfPnL2QPGmEaU63h8RdW0Dkf7/h30oOSncqGwuAz7yLxL56CXfxShvx7JZv+k4rC9VAcosOrRvf9bwA0f9cBVEvV3bru3fxJFoblD1+jYKrjcTlmpwj+PrlLircxN7SuFB2Ev8Akxf0gp7S+BBP8NZWJNsTWzPJY6hBMyCDqETUNFp5vDC8c32/6iOMLJuIk8Aq7D/Gze+f/0y83fkO0ktByvd+pDPfe0cNzfj2Ni20CRzZ39nFb77sZdtSqIBhijuSdtS/ZxRCh4n9EBbmOPKR0l5oRPN/hgYQ3/pK2Xw+ZQHtHFF+x8GasZg2Ue3JRiFYJHluXxQnAH95RK9kYl1yRdWBhxY1OND+DL5fv7X96RLj/eYDW4bmAJ5DoUXfdxWwxepLAP/xhznzUMOnM2aCengnxifdJF7FaEuX+yN4obN7tuOkvX3g1jmFEd2/PwGGo6aD4xe6//EUm8WfLG/7E+FVEzbY+Dgh7Om166Guc39wdA/IN10hO6hdYe7+ulYOgzSRih/uIr32xfcVr6MS4BIOxzHcbQ1kb5EjY8OuKz7CQ+TG+E2c3QX8xkywDaB3jf/huEfwkUsbHqSOa+YuAdEO5A3e8GyC9oaRcTm9zAA/V7TF3/IB047cLTIZxJlGSG/4yh1/73/lHS77z6R0WHhQjOyGhd/ka+KtcebicihiLEH4N1nMghky6DMg297eRf7huAfpIDfGPY0lKgjetFS99PUlwr+tx+t7IJP/U5kSsKvDB0uhyB/k+y9EWzzb+CCE4P2Vu42/XZgwKL/jDryQg7cxo7/om/I1BjmJ8n5uNX1Jwj+MfUTW/A+u1KGVwANeU+L7/9Jn3FGy45ddo1yCl3PQYD5799524i8On7NRUNjBrLkH+oanSFVslBeGDyze9EaVr/TOpctVcB6lmaKdsSaUCup5ckKhaZf8Pf/+LvxH/4tm8M60v2PRWvGz8a/EuQvZPH/77/ynscxGyindReTCB0bPsAuF84bJ/+ETwavElZ6fEJsEIDil7+DEP//RI+6kVDSN0HUAWSC1JGkrShby19h8+92QcpquYdC+49WSLdsqbTzHnZg8g49iOhPdqlWJC+hjQcV8iP1hyQCvaFpDeyh3Sh/s7pUb4fMiNaz+R+5fPuCbi5afiRuR4tX8GffBvERiHWUL6c7iNvSRxATjm5ge5zFtHmsvSV747KkDavN7ZXGPBhpwVvrHQRL0/C0UuQk62bySc7nsgmIvwVYK3ICAv1XRDbB7yQ96J1inif241buvtlKlVOvSXjycBHGpw4y8ZXt/AMNaZKYOssS7C3abnLgj/RPhKYUCeCfVHvOnZSn4pRxQ92bVc0DWTQB/YDv64TV+uf+9f85jb9NAp/YdH7m3nIENKHiVtrroHH500RnLbTuVc/4IFnJJG3epJBthv/BTKOLGRs6afcvEjSwebHh3RUf4YVMWyDl+JekQoDBOD3A8yhq2ke+hPnySb/iJv/Aavn0oDq0ufHnjLg4/ju/Q12CQSE/zx8fzpmv5ise17x5M5o1CKap9JbYZB+fN9rDxvmFFirosSn1sDnTOLgRWYABJA7b/9A8qtnW38NmKLregULmOrRkWtLT7LjyuvbPUKDHJdY/Np10hQTZYHSQ53sum1rwj+vFn7s2/ARDEfZPi6/7b6UOd3trLVE+hrQObPhSMupWvyT5+8vFjN1gpC519+V9PpUlLeLjO44Q/8ibxXuWiT08rM/D4igNIzWw5VVcCTbvRkw0ejeFXH158+g4z5cCxZGjktPCnRMZJD0AO881MZnvAgkEi2cPm7GNvga/dxRKi7+yNvJtkZ8OonIyF9J01bPSoJGqpzJ8dL36Tz+3M8A3PVQ2JiuhqEDZ8KemEkIf12vDcLPV7PcNPn/uFLUbV9HbzRcyLaLRDT9UFyDjhdxZFj00jg+ztanfyLfn60c77AWLg5+4IKySGKvg833WOprYGkI2nDV6Mxv6bdAFOtGiPWnUNGs9/FVjZ/R9ozXo1Vev5EQLlk/8fnmukPz2j94078VPbZQrM9B9pZvOH2mb4ZZuZFBmYrX4m3u7TpYjX8P3yM/O7XpwtZhuBP38QHHd8awoa5Au3M34jaX4VysYXiAQlsrlH0EHhGHnW/QM8wnAj/qpGxQZUotIR4+VefZN4++qdvoeypySNF20TcTf/Z9FmOLV3K8//0zNX6nFLWfrcrgYL9JbpTZ/56+e1NWUgOfASznJTsIMAFKqfHBamnTh6XXNQwtHfXGo8X1UzZrJ4luNUTsdjzekk9N/qvXuH9vv3YPVytgNVKLnithIFRorg5LPTbCTnWw0xF+e3H8npKE+Q3N+BT0YkXZV/zId4fZnnTy/0M8qlKUZJ3VTqn1MHwpb0WVHphNbIlUE3lnDJ3i28KW1884f7p1zqaXGOo2zmD3u2MN3zk+BteL2D+OehEz7uqpBpaKOTzvYZ5WlrNtNmj8pfPzjglYJWehAdb/TMSXWVlJBy7GHpkOEdsV61l49lfDFreUdHDNCvAmoDmUqC+LHJrRj2llO4ofLxGNWLOXUnX46x68DI8HaLGg2TQ7He35f1LchByvqVBiXCzoaiqeSSp+WSs5Fs8/vmDHbUOEA5J0IFvhN1tUMmhJO/1WwPo8DFxiQ7YnPV8DUSNu0ciJ/kGTnaaBMzAPSPU4MdIeAPIUH5iftN7HX9vZ2Mg//EvNNyWkfS5i+H/c6VA+N9XCpS8VyP+EzRsOWy35tNJ6EkotT1g5Km8YBgkOywcDyewTM3YAlNldxLxNzXlfZRJYJ67iFSL6bMp2ZkmPPXPBu9M/m0s/Gpw0P/JD2TVexG8Yahm8k/0C7x2NDEWQ+NqgE3zS4Lpoje9mzoQipU4EPtGdv7wuxYVzA63D9KQVvsri441dOTsSMxWvvvfsGE5nO+fKOIeVgLW88+qoXxNl2iKGr1ZsHJXIa9BikKYMmPM969MifiqQPbzB0Z2+tBEQUa+w+6BhSn9lGcPNtrTRMa+l0d6GpqvfHHFHM/P+yllBAvmNktqQiGGDMwn0snyg4UWZq+S+Gx5abUSSFsjJAPvG7ZHwyIzudoRtAdPRmVpV8Buv7/jhfu+S9qn8aKonSKgI8gu5XS/1rlClTYmWXduSubIBYY37okjoIilQV+/QwCV6nqI6HHJwPzYjQt8jcUzEm6nt999TsoLxtrVjUZFBP6S7AIbikDcGmMdD03/Od0kuFP5EsVndmomXx3P0NyJGgmafmBLJ+OXnAl4Iv7+bIP1nN8gnM6PG7GpeC0XEQgiLNWAIjcqfg2zSSXC/pmjiIbXCsxDCgv42ZkFSoaHYAy+CAcYt/ZvO996XJIleMGEOzyJVTrzuH6IpQPhe02R6t/1tA9vBwfu6/iHdGe2UvrZGgljLhYj+K0ugL7PDQTsrHbkWsehIfQ/rYNarhdIK15mswbe+lUuH9tE9o08fdYW7QtmX3okbuapgBmXJoeh09rodGmylC6MFvDI1gWZ+8dqLFx+52GLHiE+6wHH2Je/QKgVo4Siax2N3cO8ePBXHHA0VcJijGGs17BUI4pQ+OzG6bmWPNRbzo1Y50npxG8NzozsE+BDrCrjvD/vsXx0f09k3YHUMN1+8kCXsE7M7Xn9Lp1qEMcnTIwYVCMf+e8Avr3CJObmnyt7vxY45G8LRaYRlDSKZQdyyLsip9o/Rpr7twTUePmgU/Fqx/VXGVS5jXwc7bVibIj7C6t/+2FoWGUilhwTZu8D+9svYxDyN911rdUSK7/UjJjtwEF374soOh5nRoX8vYDNH6PFPSO/D2+ro/SPlMfiY5rLiV6LervSc8d1dvZ99ukXW9meF63GqQPrLp1ecL5JF/T8DPooXM5BLN+/5wx59a0z5k72JDAF8EuCQmEp6d7dBHaTaRNnu+m7iJ7ygH3quRiENGTsHDVn6HzfESpNYTcS4zIWMFs5hvQ8OIK15D+SUtyfKfFLpwJMt688HO87LarvVGnGg4Qo+Jn1Fbn2sGliV9mD9UE5Ifu+EGP5cTCActruo5bgPSBufpMAl8gnZCBjx1bRu4kwh+uIeTuMAJWVmy0vx2pCSQNVIGSNL0Lj6fz5zz5d0l1uw56amKj8fAYU4UMC5SevIBOERUlXrk2gH+cT0W3BGZchP0yQt8YRHYWHxMg9zD0oB0cToXPaNPgY7gfYgPGMV6Tp/v7Hv6EiYOmFvBP3K1n5uhVQafZTJKQ5X06jNVVgScYcWddbW7LTR07A33kE7s8sWX5Ja/i8HLZG+1Dy21Hc2ooUoxjts3UYR/gOeFBBx0KX681MhYo/SFD+ZQsxodex5SH0NQCv+zdah54bZ6TXEWC7OMVSXN0BMdoMwsx/lkT77I7++r69E5gPTohOA/iUdLhzndxdnB051vHsT2FRUVgONx1VaeQZjJw0CJ4X0JBj45dpB8MRAprZD9ygy3eku9qpYBQqOlG/5TEVCgm0EB0tCbmv+eMvw2+O4Z+/Hdm38hdfHTOQ2mUSgTyrDfwtOwdywpcQ9O7puFw1PIDIrmMS3OwvWK4NeMDfAHFEt/g2i96JV9a9ecCHU0jHtRwcHYJTqxFPTkA5Aj6y4WlRMhRW+Y5NJ+MmwssSL8S8tiHbGkWI8JbbV5xSw2QCfVcUKqcgIsXXWdN1hp8cvrV1T8J8+I7Dpe4CED1UHZnCRQHUNiwKpvLg/623ZJl3GaT6KaobxSJlN50lFZr7mEfX57021kzdqbCNrjTit/y5B4Y17V/X3zdqj25o7DHzFjkJ4yoS+klj+6eoOcqIdQ0h+Ns3VJb2BfSk/QF5UonZmkMhAT26InwKJAxoFRIKkgbz0XDDarNOiGLlJi8CQdwysHWwHB4cdA4RD7xeZR/upxiOvT8jf2e+/OV+HQr49VI7al+xNS5UsAYoKHsLeZd5aaidhJnsyOkxGuqb4/9WbpOwJTdF2v6SGYs1kBq+L9+FRFN/9Ff55X5BJkwTcoPTuWSAj0wYGjONFOEpGfRSvyJweaEFmcnvOS7u9yDCwp0LEgU4ZXvBXGTF8tUZPQxbYRRkXAu/t3CMDnsQj+JH6SAkBByIFkiYTeKsJ+Coe3NU/8bBx1VIFnnmtS8Kk6Nero3d6XC2jxWyWPprVrM0M3jlhDdy5tY2FmHiYrCUwYcckf4uf45rZ1B0jTWSpONQrlaQL/B0UtYI/eErGDbcAT1+Awqc0TaYspgFeCrVBZ2Fyx2s71sfg/PzcyTeJ2x8GjYgh1JV7SMBcMgYlARK8l0RHeKlQgrWU3Uc/u0/9+Ern9Hr1wNP/uAgvf1KDXm4egWUblLJ2Q4jto4rq/+9v72rMSNPQfHgl79fsfI9TeWiN/sMgjZ8IlelK5v0ff6F0aUSSIADZNCAfjl4nSIDzw6y2IKVi3rY/RAldnmoU5Zfyhco5jolpnpJSsJVew8o4eOM9MUC/spdaaScr5qMd0lpM9IWy0v2jpGI9LO/Z/gKTwMwCdOI0TyXpi/5WYZ6dQFEq+xiXCe0SQxpdIyW4Fj4s3g7FXCzX2K/Ws8QwwYUgNzjkpiKdfXZ/jGcD+/bqSeu8YHNYuh6DRPa3yLRf7zHGZRMgpEXb58cLkeD8u4QyX/5bMOfPhHW5xcqL4ehwKtpswBdNoHy8hgxHWts2Gv9VfC+zdbOf4rqU8PvHVCLSY75fj+mkx06+d/6iL3sBsbuo5FArYlt5PGT1azwwFRIpPpIrNyojNUx3RzyUSQR9yIVGx7jO0jhXUBu5+8bYr/eCfQyvyR/+JMvhmsHPzu7IMFwtxhLjMND/vk7NxpCvfeXUZREiA77LLoZe6PkzZNnwrBEbSRin4BFb3bZ33kSC/W+sTzMt6Ngqi9k809/CeClhcNZDJDZgdln6bv9KoLsBchP7pdyDry1VTZ8hrn9/c2oHMQTHPavgTjZWU6X0slE+H6tFaZc9/QxUiYR9v6QofDxZsbqRSwGF9t8IgvoMaONNmAA+ORJfDF3xv2GR2Axv1KSf5fR759Rk0ObWjMKO7c3tht6NWwzTiUuNU2DlSTmQBOMJAJzWZQsOMeBEvAsjJaqGRidPGWjzHFH1MGLR7K83Br8Bg4Tlxq8sbanUIJvdpeJNZe+ITZxHcvnQWTEHvMW0HNdBcCKli/RP3XGtvMq4JY/iZqp36bHxfSFJke+xApf+21QQlVAt33lJIr2R39/5LqtESQqo0nYBie10rOT9x7hiTnQWzO4dz/6e37EPZMjW7y6dQA+smekRDYt1yOvUGgMV4tsX2qNIvfmH5C3qY3CdcGMXW/vQCnlh478jU9MUV+dQWxZOgr3nZ9SXq6/f3wLk4ZagIoURVAMJYuYp+mUzqZyc2DlXn8I4cvgU/OIKnAL+BF5szSM85eLv/tSxC45XmcHiLej/4W/tILIgnI4suJ0EiHId4wEsZuPy3tOHKVV8ivxzlQv1y856aBwSREBwHElvTzsF4S12yMfgoDNMTnLcK/UCX5fWrsUNvuCW/zCoF0StoDToYOdHRURn/yezQj5woZp9kiQ4Z/FcUneMQRUP30wTd8vf4kyZAPfClSy4c1mNfGtBbdyjWdxMYJxXT6PSt5+jxwRhSMFZZ7AKhYKZKzrw2djZ0qKkf0C5FvHb8rSpXWUE8oSZBR8b9ADvr0AJ7Qkgk/53VBTKnnwNGILVRJJU+b9Tg/F0u8v8o9/tf7C/bMn5D6khgnmIkElH9VIij6rz9zckiHtxSsJPu9jw0S1ieDGtzY+JTA82wSDW5MaWPDmgJEw9l7A1x5HpK5yz9YTeUmKa9Usok+1bqbMghk8eKWGHFbVTV9+8FnWil4i5miq6QK56QwN//LCQMy7kQzA9qAYNy2K6NtoBPX3LuC2f//sYcm2Ljc3tf0gtUtNf2HCaQDzTb4g0ygaMAueJYKyhjE6cd7bX60yz6Di4pI4O5GVuHneRbDFW4JQdjGY3/gLHJ67PVFLyfB58eFNkEivIza10zIuozU9Dp4yhSjkqm+6OMInV6p2SEmYchhQCYc1EF1tjQ7zUQBLK8U6ENb3DksHoxvXJ8hs8KcXyJ2K/eXz0SkMbs07Ytv5MZiEMYw0DJHld8Ag4SwM0nngGV4t59KwDW+B+0NsiLeMl4Ycx6MH7lmaIbsSXgDPvpvDP/u2cKcaC6u3KRcFwMS74df4lx/h4bW/4ZFepQYrgobhhoeIviaxsZr9TgabvyPvt1PYKKzXFmSH8oPh5/0buz9+KgSRjjSkvEp6VlF+uBIZkiAotq5Bv/ABQ/Eek6NcHn1WcfFL2fg9MfXHZ1xsTqWKX3WUnDzLAMKWT0GzhyWxTu8f+8cvn0b8HwAAAP//pJ3J2qo804UPiIE0SoohvXQmKIo6Ax5UsEGaBMjR/xfud/jN/vl+tpBUqta6Q1IOuZ6w2TEQDzay1ItDjJ5XVh+/Dq0Wovaf38rZde/IsF2/bMz7sFn8T3+AZf6phAQWUmHF3nDXA5H9q+f61DVoxu+ORd71lvPLk7hIeMgynl6Wx2fqoh5JUWSyg91LOe1IaEM2hjOFNUtyfvqrVDiyZkusR/qXL/F0hOLZJP/01vxuk/7f+EQ31ajFUnpU8NM/rncdrV+8brr24DH9yPfdT28iytI9FozYSKgkH9fwCC42u30vCLE49y7Au3uGlU45IO5/nALcjp7o1MlJPV+/caZBcrAXXmZYPHDsBrLRn5l9uS+HzZ+diXK59+ljJw7hL37hGsnL+y96TyhWHrp2coylsMnDKQyGJ/rp/avb0pza60SEq70vCTvkLhpXfhvDFDcVKWNW83HrqXS9+AHix7pWD/NYHMEG22Nmn05omMdjCkcvOFH63OwQexDaosXvMjfT7FASpCH96Vlcu5dLztjeB4j3Fx8/5bpCI9kmFUKBi8lO7geLNYdHoKmd/SXbeEOtf/5dpVPFsEGmZCgfYwOrG1thbXNvLJpI3wL95stc+BLNLUP9xwPJ+zXy5tupgK7HY8nCIVdzfhzXHhyFZ8909CAdX6nCAYTXg5Gg9R/JWJ9WGLLmu8Kq1NR8zOjSCM7tPOaumW213+Qy/4tnbJB9wjwfH1FAZosFWx+SSa+39OefyBJ/Sd/Vtyc4eH6zcB2/8lG5ajqoVV1geVKv4bgL/7C61D/mSMExGf+kUwXm3o/ZYWN+k+kRfHuI44QSnU9yMhukkn/zT3y/9JN53L/e8H2rJpVE4obK92+rw58UI2bkhYnGu56U4KSHK/N0QwsXvlL9Wz8Lf7HGIFk/ofEhYVtrv7aGXkcB/G3TiW3Z2uRUdpq7lqp3nSKLfOtFr6gwD4+Y+Ke1ag0/HvsR6GfxkySfpD5r1GZfuP/Gky28AOnjX8PIxYw4ndnYo9N9NzKi8304xiKOEEhQETfK9HDCp64Ec/QkZp7jb86QtaMovR2OTC/qFg2bWDChtaeIbY+NkvzzC5GWZnjScIXmJ/1m6G96mMQq6zkf7DxK0S6ZZ2ZtX7ukp/RUwL48KMStm65jKM0E1RmvLYnwHqH5vUkOCDbfnGCZFGgSe7dde+pxy5Kid1B/q5oDSkD9UmV1dhI530uFGgFZscW/o396QaqajOip7nby4r/h5b0sEt3le9h/VbUCbq0aRsJPiDYXavTa45p8iXM8zoh7u0YHZTNfidsGKz5tTLOEqDxKeB1Oacj+PLkAIx8TdkaplM/vTX4ApbwPi5/4WL2gVi3ApsvJln8iS/Y7eUTdvkPELFeHejyiIIN/ejXP6ro5G7RBv3xkK+XeovHmFqBNcF267CIjpAvPg+5BEV03H4XPK4wikLzCZwkVuDW4LyFC17cGlD9SLZmJ1ovgth+VuK+7l8zshOJ167/vLBriGPWGEj3h9Xk2zOlvEZ+15UgUrd2QBGImoO/JsSkcvJvHzHByuThLTgM6lp+//I2YgSYV+voiMNc/CknfqLSCejcGdL0RUt43Kw/Db/9gk4nrfPx7fwGk84Uu+uZTL3orRjz/yxhGURj+6qt6T9SB4Mo10Ref6vKXb4njjELNpOn8BuWw+xA92qrW/JDH8bee6Obnj67P3AbhVTOsfKIu773zfECPUSwI4XsvkWe27iGMs/4fP+cP8m5++YA4641W/+N7+P594JnlVi6NabVGgintqSAdaTc5m7AEYZxyspezD+dm07dq2ZjXhQ9s67l5H0xQP8eRJZ+7Xsvm8BCg3dsJOV0sCPuQlGu4d5cb3ix8W1ZbS4aV/Tji5NKd+D/9d5c/IQmj14VPK3u9+O3IYum7eHfKbtBaWHn7HbGW+Z6HBirU9gcBT0TTk/HJ5ePv/Yh3jtc1+9vFASjW3qTfgz/yCfPyjeT7+8nMGdPk2TvrEv30SyEtjbqcNNfBPUNB/M+dod/7ov33r2ahJ7NuGtNWRcdQwsz81m8+xmIW/eNd5PE9dGMFVwqHLnxjeW+fu6k76pnauFFGtqvzK5+VGGdQHF8JsZd6w5vD11PzwyZmFlf3CSX0dVCv6iwxXGA35+ExwoCdXMJo4cHj5sSPqpC2wcID1Lo/FKsDJINgs59enQdFtEFcKQjf1dc+mY/VMUIbt/fIwgM524RfF5wxb6mil7tkfJmasFn4E3FJpKLFj5sgr+30Hz/58PeLIi8/VuRvdRa7ebpPnnby+YX9+NDCt47oIb5PLOykZzLF92+K9DQ9s+AR8bBfXb4ysohzXerV0+LP9blBH/t+JoZU+l37PrsltH0ssKIUrEQxroMN83oG5gXyB43kez8i1u90prsPO1SE8XJBiz+np+do1VxNsfDT6yzUwyaUfr//TEEn/tkhIbd5W6FPofvMSvnV6vjSmPesowvOg5WJ2PePmPDjZdZvP2yTNS283eeOiguv7J0ILvC+D+VvP4bzQbmUav0MK8p+/GbhjeAcqjv58a0+WV1smCXDYulo9XVPvvcULf6JucZLsvrT1XiCfXymbOF3NT8391Edc/xa/EVgNfX3UsCS//GYgs3lfbQu4TZhwrYU7Hq++aoL9QfldHQfz3C8EWKiY50ZP/9WTwcVj0hSveifHqSXLJJ/+0HMWl0TNAIbZ+3H80LTPNajc/cb6DbRQJz9Y8uVzToZ4fpeAdktPGxe9D1SqsOHBeqzCse/90OAUcpkEqlrt5MklGEgt95hx8PGTQZ86gr48d7kg6+ouczIRPLVnkiwXdrtqdre1n7+2no0z//08kpgTyqehkfyrU7k/Y8/eUoYIiVnFwHK1XLY6KfPyqSgm994hOw51Nzo1SNAEttYcoW669cun388DEumltTT2r0ESMjOFuazZSN+NXGMuq8/0HXTbFH/KLM3TM8sp1LuDfV8mvIRlWftSv9a/VRPNHs+wZj9joSnahtO34/fwGVjz8xe4SBXfvFz9LYn4n003eozbVQ3Sz0kcZ2elnyw7zXsXCW2vV/1WtaTdQWL3ieWTPt82u8KF7r0Tv69Hw/knQlaQ3X248esEC7Vf/xk385h770HUYteckO2obHP53hz9sD2jy0J17GT8FGDBm64HIl1hL6bv1WU/vQM21Ux5J8UtbqavDKF7fZS3nVSsi6B9URnC29O5uadmWjzvbwJMcFOlC7Yj7DEL/2y2LfG5C88wCu2ZWag9G3NWWoFsCosl5Gg23Vis+Mi3L59sfC9V7f44wZwD59/8ft0IjGDj5UD5fPKsqTj51qhJZ/Q3v888ylbo7eqZ3bM8lP1sWaDtLK67L9iNXJb1Cvgy/+vTwrk//1JgRGyP+ak/cAnWn57qJ6HPZbExs1FC8w77MzcY55U4lAWjELcDIH5YIF0V+sxSc4VfKu5YH4KD2v6C4w3oId0Zk5weFqjtnIrmLtPS1xvp+UNzvwZRcq7ITt/0urXZ05VdScajFkTmZMhO3xHwEaxY6l/Mq0+Xm9NVbRnk+CzKOXj7ZC9oewUi7kb9Y3Y46DGwJs5w0zY5d3wKj8jv57sjHnapFucnABQOzlres972g25c3K1HF0d4tdpi/heOLiaetZmun4RpZ7NE29hs50Nss2jVTdu338N+n7FPQm+z9Sa8kefIYEXf6QwP1vERefWo2nGBl4lyiYfv1to4fI6emQbXXRLjuRPC9N3ZdH5TSVrnqKphY/C2LJlRy3qFqUN4fuLiXWVcD26va/D01jf2fX3fLR+znB+7y3ivYaC85f01MGP05q51b0OZ+vvKKjS30YjHs+EmulTHkNXlx7xCzHNx2fqYSR/eIU3OuwSXnQ5gPjZykTPsZ9QevsAUPuTUJU3r2QKV6v7ZjqmNn0cuBdyfdc2wIJ+x/aHk4km9aOqkO9qj0JR35NxsD0BKgOLxDQ+rKPRc8Sas7MlcvDVR/edjKTSVq+tTaXu+u2md64CGDXkxDx/6lxUYiyoZjZWBJ+2u5qrbnzXcOkbzIhcPWd4jg5gnckXz4eb0M1D/EoRm+4ndnjeDrVcpeWINn+5ToiiPMIBZRSjNastskXSDX1RRiOY8VpixEJHvvQT8sDha41c9dIL+ZhHT2SzaI3hcWs5T2j81Lj0R9gy//Wobt8jyt2/hFhFlXajy6sUuZgVzN5nu2Ryq42HVmuFEvfAJt6emBdDhNWQ6IIbJWNUPUBb5o9ZSbKcYritPNQzhEmo34+1PHba+G++z5nzQLz/xp7a0IeMN6t+E45/rj3Ce3fpmDEyveZoagvkU9Rj6G82mkoAERnjN8bZBT/Q+PLQXU1XBSIXngndpCaRCryvbdpIuofmvfoXw9YEk+DG6i1+KG4X2IXnAwb79mfNCprwSiN/LzpeVm80OYaWLp5yT0xVC+vphMUAuj47LGfHaddH1RfgkaQKCy74wdn5UlOg/szpJPtjPnhP5oK3u3NiBpc3Gt9nIUDb3fggtjhK3fxy/w6qU2rLxTjaaPXjeW2r7rb7UG7mi4vaNaaqbN0T2Voz4vR6Bwp//STQKXLvCVdbw0MHfNqT7HS61d06PZhamtyOJCLGvu772rG14nwZmD4qBM2jt/PQQCKDeK30qNmY1AfYq+8P0a1UTzhr9gf4fOKYCqNYJ/PnUNsgKLstMdFGDulI3gU6HqYGi4oYcEVzri142a5hRHZrRDv7dkfZ3H9JuqzPcQrqDFa30l5682o1/95WAeydRqLafYBw0IKewiF9E1yX0zXklRBhdNrLA9s6cpjMT4GvtZT0XxKfmlX+bgdUwbEWRhLm6sWaNvfrG/CEbyy8d6ybZg9EUG3i0fUMm7w52IUK7Tu54Jkcp6S/8KKAX3y4Jh9yfj99XKQE8upffqb7tG9hdbkQzA3tVTfeagy07G+UWdh132Ta6+ts432rnGy3n6buIRGfv/FjfrV26nmfPhvw3EIgbr97Wf3FvAWAT1hhRDy53bR2Vy463O5XlkzkkAwjbjDydhUn+icY0Dd3/lx02osD8/at3jUnqzQBB5czOclXq57nYwaAInymzw1W+SDqRYt+9SE4BIe88PEsQncMT2x3tf26w7XRgIoMQjz/TLt+VwhPdYuakgXO6HVSvfRmddvBJsbeDFBrnlCjxlqu/OpHKN8QPqBMUX1m7TZtONpWp0ISVgZlvfLJl/iNQWjvB+K+fakb94F+QL6vqUu+ERE7KUyGpT4QK/J6TsN7SOFPW7m0VzSLN2T5Kn+pP8yod3s+8bNSgrjrI1aobbjE/13XxCw3qGpZej2qtWxDfn++CXmZaseP1/b9L/7sLLS7ef/6HAAb5Y5E2W1EzWb9tEFET5+kuuvU/PgI1+Cc0YlZQknRdAxIgx5a4RMrsLVkfDRChdpnbmEtrFQ+f5EXaee8qElkHAn/rV9YUQuTSNFqzuPsUSLfuVvE5+Oxo863nUGZvluMqCzX1Opvb/h29E2boHXrxmjyC7LHzGCmPQNa4sMDtzQJldJ+QOPLOGB4OXlBzM7YWpN4Mlu06oMNCcJGq/tudcygsBqLOOv9ms9vql5g/9ytCE6tizVf9qoLo5W1dK2QMOHOPo7h7bcGCf/uVT5a4iPS9lPzx5w84BZ/UpPCpLGB2Dx9daOPVRnEHY3o6PcZl1BFKniu5oL45tDWc6lPvSZ5sUCIsEPd0F+1CBkH22XX12uoZ8eZA3jsywpPX+Z2c802BzV2PyMe69W9a9+hP6rK/bYiRtvtraW+jyj1WpGEy3jxq6GroHv4waL+9kTTKlX/rXdsbSo7lz0bHZDUpTllGGHUYlQE0Owlk5hjrlhz9FwvvTB3a5JN1wrxsPuKaPVybHzPRjuc9nTlgZicI/qnDV/eH+zjGnbJO2ZYWcUJV/CagnzwauJ1yRuN9ytfQ8PNAAtO6FtD03gzmEk/sKB6gkXzGOGFFzCsSqaUsOoBKiTu8YFn69KjeXfu7mh+1hKxztPNmvpDrqq40R6MJMo1ocv4gBC1JypWhyLvi3D0VMeMU7bdH9t6HGwdoOpSl7n5/RuOQ1jFkFbjllzVEXciehiH5XJVga7O/Ttkx2bAqNzrT3KL+j6h6bdYK8WpujB3EKqk9+e61DbpOaSV6RzRyMtDpQ2B/mBGpq74R+INVqPjI2S7UfcsBfTl1GlXrEkoXcKEls/qCB++cpiru6969pV3BXunlaiv/aX1LN6bEaQ/pOHNR4wtfli/KfrpwdA+Gbm0rnEGgwAJuUgltcZD49zh7GwRFQ7rgMu7/nqH5BZ3pOR9mYxL/oVJnGr6KASWDG6sgAqXb8nc+17vpuM6DkDlWsZ0dzXzaaXWAWqv75q5cr1KvlSddCimu86SXf5Ek512R6gPASZerYvo9YvvwIlPmKPE6JTMFEQY8c5n4Z+wrbn/1o4bRVsX+C3Xt3zqrP0B+JgwKkjjDsm7c30Hg44qIf7KTkZTWKWgvrKYjg6Wun7RL9oxxi7bWr6VK8YTP9W3XTxIdHKMUII4djXrdDoSX0OI/9P/n8Ok0XmJ50mc9gB35UxY8H3K1jzymwvv214n9m6LElY7C3K/q1vi3K+MT9fNFv/Gi0S2cUaD3e2PoOerEOc2dzuJDD4Gtn4HLMjQt6aTEx+RWe0Vsg2OYz0FO/sAf5IObLfzXtb8t4lTcM6b02/+Er5bXQCs61YgOpxYSJ95GINW1RYzvc+3ox9N0zeHNt0wcsZ3PtLsuQYIhS9Vn01Yi6rulODqn5k5Iabd9LjRBsgoTFh7T13C59vGBRp+PXYUx1M9FsrSiOj0Deh6Tu58Kr47CtbpfGShejwh/lHjO/ruP0dmqfq35reKzyhT1j47+KrRzYnbBeg4fl8kHIs758I6UpGhqwJFymdAXIhU4fd+jDyuTTju998n+ukhE855zbE7HzVbVNa4/tidNfiC/4RI6hNiNAWt58StAzhtzR0dQvtUM4nfsTbkqsysRT/MU7Rp4Lu6xVh2BLWbjsG2QS+dADEfS6/EqxaZPz/B3MgMQqUBXIJEUo5Xy/j1Z1LLyBm9hB2nV5NPr5KNcA9PH9oelSwf99dABePYNfg07QXOmiEUwROPiGydy9taxl9F/jm7kFAXNkuvxTJSDV/xaDXEPp+TlT/C4mcxn6s2X/RRCe06HIjJPQHN3f0tb/r90WHucbn42eXVcfPzp+culy3+07vr93tD9EWfMVkqA3SzXWO5xcCy5r0ht+Af8JoK80vv5G6+65oaHjTimWexXvSXrdV+ZJFsPu2SqQk3BVryM0YfGbphpXYeXI6hTjB+rflnVHJVHZ14xexpa1mTkg8uqiIroYhepmS0qSbC8/y44e8KczQu9RVd9GxBbsMrGb1BFiB7PB50vfjjJd8GAOLXZfopyKx55fpHwOdtRELF9+oRPYwYVNg8id6e8pDf8W6GxV/jjdivEhovqOVP3wYseF89/jVibw2NE+yo+PrWiIqwdn96lISh6VtyqS9X7D/iA8EwbpFyjcMKgOkuMW+O2f2r9/V9uCz12On4sD7MIDyeHslfHzWkRPco+C+tYmGxa3Pq5+cIoSkIMItPAu/azb7RPvcoZyfzT8nnNDv84wOE5Kd1NwfD5QI/PbHoMz5p9HTUlvzFzM74hKNaCy68otsej5WSIxp3hxb6SJoYMfCw+OGqQRx3W2bKNzcXp4NN4aijhERgI/7Pv4ce35NfPeknejTV82NbYzOb4/pF1Y0J89f06FzIeiha4gOrPz2TLfqO//wIfY35v/pCjdo7wmVbhks+ckLundUedDeNiA0vMxki6ZshPz7WrPA/Bv83XuByn4SSHHdTqmIX7ezkj775ZbbGpqgabfFXxBJADOejrozIW4UZnbN57CarHk1tiWem+32GpsnI7+A/nR0JPzLUTOl0U7PzArO/h6QjahlOC3LuDuyfP3t/9ra28AmqId1A4jP1IqgVd7lF63Lnk1ParXbM2Yy1VbkN55P8eKJgG7T484y/4aLnMri1a+9ffWqPk+TC/vwIlvq9nALK4QBOaujMU0iYv3ujXW4hgRPTuXtIlvo7A3OXW/IexbEb89SNf/WP4PZAu4UPRGjRS1T8ZI9wTp0+hsX/sF1ZbnJ6ed9dRFKpZJ55PtbiyUpNiEPXIvZtSywey+MMVapwqnzmuqPd3JjquvnDjKx5h2hvtD1chPjA/jbk2bVvqylglnqNROfZQ+OfUF/Q39U6sqio9Zy/rgWF3eeosp0Snqxx/X2U8GIVZXYOBl94UYNm205J0g5a9y//37Zyx5zFD4kuChvU71OH7puCdvP09QT1Xj9fJMv+7HzGN1sET97F5JcvWb/zRIjYuSUBXr2saYst78dXiCVmt27s8m5ETWmfl3r+zHmk9iVCqntkxpe59cfQ/0D9+UH3tQtDiUm7BlGTCnRDYBtO00YNUHRoZGb+4luAfQ9N3z1ItPCV8ZuuDtDpl44Fh2BORgH2FD6drrJtbBzqYUX2GET09oku71d1v/5+S3Vri2dmLDxh0avqRj9uUrp5vXb1XP4ZJrjwumLQpE04FcdzD8V3bzI7Tc9odA7vCqI0v+Np2jl85pi94eKnd4zoZZ9ITeONsPAxOrqrA5q/7wNG2a0L8fex9RK2+Adt11cZs4/bUyKbm+cBPCMpiSPc84Tu4iBCiRY0bLvE74AqcoeFxxBvTnQ+j/zswvogExYmXM/nz+NFkdN1K2Zb2SYZK/NqQ3KJZLK9GVEi/Q0zhrFJCyof+SMZPlsb0Hcnfymq1Dnku+E2grIaJ3pc8uvS+qaCzViU7LDUK/7Sduk//y8ufpD+4lvedArWrLy2Bnr2MniQZ8TyqLiGQ3h8PbXLXZGwYjvLxfZeo4I1vPeYL3qdi5pwRCygO7KNZCdfxlvXHDvomJ2EQd0TTc3WytY+se2qjeoxasPDv/pYSoem45LZqhuZKme8Tjb/1StQv4FKN8n2mPPH534A5dTd2M5PLvmkht37975M3696PmsbXv7jIyPwY94WYi3CbSt27Fc/+Ee9VOh2+IaLn0us6i/cinCi9Y8vnbr5TecLDKP8JSS70nA8AL/Dc2rmJR/gbk6wXcKPB/z8xMw2QYlSuZqYrT16zpshlNHOLzW6OYUWUnbDeQR6y2f8yRwDiT+9u8QnMSxTRv3pNqQQOWCw4hLjXP3xVcLcnOwOlYj4xneOIH1Ll5Be2Saj/Je08Kv/lqE53XhodnfU+anE7M/azcXr8ZLCRqcR1o1XbU2v8Q4/fkTCg2lZIl0uRrZFaU1M+fZOGHbVFMhGRcS+W1fEfjzLv8YDC9aKafGEXp6w+HV2XkXbnKHdJGrKUzjQzaK/+V/6AvDWzov5/evTTUt8gHH8Nlhd9DInf2WMmmUL5/R5Ah+W9YYWvc0cdMLh1NM60iT38mXuaf+ul/oyw25HPrRmkpmP9ytS0Wer/bFw7fCEtzrX4d42GQl488pZZDoykr6Fy27xqeTT3XhkGl0audlsVVrc2K4Omw5XJ+ZUzZxPvmA8taIsKmZvhy4Z9btq//wT803ySujx9JrXz4iuMEQzCcdsa7Xaj7/q47Wt51/9+PHFUPCrWl65xhFuhy7Ej0ch1mxk6hOudGlUtwGe0ApLJcwOdAuv2HHFE00dFEOVmL/kv25M6ljtFLw0voqyZPq00hvZ6YEyP7ZWIbdzekHZKB7xsH+3eb/4T/RcjQW5hF7IeWkoAlLpMSN7zW8TNhzbQNXOy608i3+QVtyQ0eIfiDVXQd7vh3Gt7af2j3hf+5nPVWfPoCRTgIXP9pGM7/goI3+wzsRFnR0O4hod4KOjhgU7/EGiBUEFQYu3xBOruh6vx8sRlq9Q2c//s9JYAQRbryXOVUHhkj8uaPHjeEoLtW7XAVr/y39OjYJ84VWmJihk6dX+F4VjShkAGbBLlWCW0PwNTBUO9d5mwU05LrfUbWIoJE1hWHl0Ft/E7+bHz6kSHOO6KaeUQuo1ItHrld4tfi2Fe39n5OjodU29plY1ObcH4tSozWfl4j3V+azodNVcTWv+mt8nwkF2ZnZUVogX2zqFw19j41d/EvOh3hgBHNrjhvnrR2+9ttgK1DPb7VgYqWXSBuLUw6JXaDGfN6h3UdjCfB1OJNBOn/zHv9Vkd0mpFIx+IntNvYalXtABb8xcWfQSFDw7kaio7zk7LLew7MyrRzJlf0bTBu5rjdx4Q5WUqvl7Tfs7+vnH33jMyJdMWPYX2LahOBmNZLhsFp7FvKpi9Xh+XkUY2PdO9AM6J93iD9Av/+Y/vV1Y9P7jhfSKwy+arL0sg4CrFivfiHfzoq9Q/mlzCv7nwfnNfZaaIKUz2203TS7x3eMIdSEMWFr0NFWs7K2OmPhUeiona77xp4CG5tXh47L+Zn0oS7CCSiTWOO1CXhTXFBZ+iTeFKOeUbcxC++7EL9vdpinhdv7OoJBWCp2f2hnNzlEcgaeqQ/Df+snnJZ+j7eVjMNJcK2ta/DtKutWdRYdI4L/6r352nsZwsd3WY3Pyj8rCX8nCd+teW+E7eq7ph4pRaXLJe35c6A6JzgLkPuv+HRcyrI/9k9nHl9r1WL668F1fc2IxqUqG+99I4c85tJgdg7Cb0TC0ME+QsLz3Mf+Nn7bwbWInYduNwz2OwZpSIJZxuyfjjX7XsDw/cfrTMV/mL0OJGJUMB9ukGytfzeA9Fj777Uf++Ir2jG8tW/iINZkmRL/nXfJV0P3jH/lrdv/zY35AdUiN94oE3YnnnGc7Cp/PIcbffmsmc2ef7ypzicrc7f7QyerZWK7UX7mULfsVHE1VCU/1DezHW/siuRYg2qPJdOV57lgibVRYeOeiN+t6hCg5gKKbd8r75IM4PzwvoBVrC6/xJCR9YtxtMD11afS0nLrfQLOG7rNZLX7pnXefV3uHyxg0ROfunI9b82WiH29yxMAIRVMpTWhK90zCqLhaM92tK5VVu4pcTkli0fa6u0PUJBJFubq2uP+WUm3ZH6OvPEjC8aJKMziz2fx4eSeKLy7DfU9jtm21GE25hihkdS5T1f4bayq8doWmeEL748sd3zu8RFmoPkjQ8XU9fTOwIXzOGxKK6jucMjr987OYHzd2OP3yaYPgyE7e443mxS8iKp5fLBwLncuXIJ6hU6KZBNnfM+EUyyMQyxYZsa9qQod4SOGzCzQqO2ZsTVNq3OFtlw/mvro4V3BbwWbxW+THvyjap0d4uI1JPMeGmnmoS9E5L2v6bmStHkF5RWCkD40FeOWEI0T5AR7y5cj21h3Cb+u6Nvw5cUvseX3PWSJN6v+r8YHyvz8p2HV2SNyiNtCQGKiBVXbB7Hb5c6w+MCdbeza0ZXZWD5ytLSeAjwA9K3B8q2dmB08o7kOOp6C2u6ZQLxlK7BWjsDKZxS+BrMKf+flikQ41Yq6LDmB++h6vWu8eDpeiysDdqhnx52RCY1NEF9jyz5U5zf2dTLMpUaD4YpCLVjq5NLfPC8z+N2XR5xLmM7PNJ2jndUPc/NWhHkuTDeq7sKn84nLC+zYCiNMyxxstjhPuIjdSZZTVRFebMW8m6Y61SXqHbBdMQs3+pqyBRFY04l6OejhFiQxQS+sTw6b5DYdv077RJkc62b2+U/L5jUdd6QLTu2IM53UbtPAn/inE2p38ehQUnKJ9ixXmWZ3Jm+ff7aiu/A7RZ5EcOfcP9hN2nRsSYxhSa2TCUdfG3NoyZ+888zFtTiW6+G1ELHE5taIK2xF54zmj0FzLfHw62Ib4+rlhMTzvur9H2UcQ/vUz/TZHP+fTxqXosX1LeLwN93ouojrSarYdiLfS9JDOYV3AC24ufg/xNqTqS7irEOA7s42LY3EuWkcwLN1nmXE7hJPi5BiGQLrSMXpqXVtv7QDEbqtifrWv1tAvpwZf564hdrpcROsopxn2yv7DrAGTkP7FSQPCqsqZldcJ6pP+8YbbiHwSDi8/HLfJo9BwIkj4W13+6vk7b5/IlaULMXbi2I2FGl/A5fTIzNeKJ6PiZQW8s+WUyjpt6yFj40F7rV+M4Xy3R5P0euigmJcV8+/OtptXF/kJ7e3mEyd1zyHPD+dlC8zz6WRJW/7v99RLZxAH9W4ylzZtUCJLGm7CMO74GDczQG9TPHUYhX2Y7EbV7Tc9fa2iozX83VYBmv6Ugnm9GVlz8YQC9rezjdXVI7V+z4v+nGpDluep+XS8RjDPxwhPefxFvfE9ReDJV4rX+82Qc0PZFHAGHmNyIqk1nye4qDfHIXT1gjyZW+PlQmrYyyknE3O6xAfI5PklPjwg7189zEuv3ifRz4fMehY3R0Dq5Wswiw1fPstCV6J4KGVmLOtXrPwDXm2+vUVXkkK6j+lhDGj7WdH9s7cSvvITG26GEFJpXZ67ebh0F4Ay6Uik8iGZNwNykeMkG2YyASEWGQUG5XrNmNscpnz6S7I12heRjqtLnYWjPBCAvXk4UbXadl2/ZV2AotVhz6Kb79e//0+N63q5WKr1arnqzAsKs6ki9vgX8GngfA1uaJSk0A5NPsF2pFpdmQIxti5Hc7k2j9rZUj/MOvHBoucqBai+wfE3vkmXHPFF9Y39A7cmdq3Z+1u1KHxwgYrd6mON2y2UapQVnN51CYd0l4xr+LZdR6VoS+vJuE49rMN9g2tUbJJupb11KJ0oILrDLSQFUenCRm2C5coMqHnjVhlUdipTvk3vaCqrMdWErrMxCPY1p4kAKaol9bQUmzaZxkCNYbw4CtmtLb2TVsqqAlq+JOK8jTD5fFPFhevxatP1Qym7kT+EBvycRMRtpz5klcgyQHaJsDLtOfqI1l1Wd5QQ4pc+QsM0NwLcA1kk/r5bJ+2Y3E2Qh8+d+dma8CnsYgGi7qIyl5qXkM+w8mB/30dYbV/MmuTvvgBuxQlz+we3xlWp2eC8ISHm1DmI63EwquKkVhjSzrXaz+FUgNTykFm6smwBhocnOm+NjtkHp82zZf0Bq4KS6YrKax4/hRnm+DsT/ya/6jGx5zX0jiMyL1Vqi57a5A6y0wqM7JmXj5dtfPmtHyr1umhxMVdt9KjKhjjK37Obhsb97++3p08cjlOJsTpcmoJOr1LMJ79euyA+tze2Be2d9K8HmdF6MjAV/voIzZ5DM6RWz4HZ2nDLJ+FTiZprrwLKhmsUKqbnYnh11YoFj4vSsXb2K7jQrqQrtnYRT7ZtAMdvUdLVuyMJ176NipzWOVOpcFacJyyWtbW29tlR3u3raaUoFRLgE+I8hYvFt4LcoAuUD2KZly58rRQvhs3Y3zCSrb7rx93mvlH76kL0roit+bvLXJCdRiDJV6utiXa6rdFL/SAk5NDN7vSN0HcqE2Lksc+VR+SXyCruAUs3WpSzen0TQcxCTrtII91Qbl9rKMINkKDadvWyvlLotfFLtn+2juSZZwG8s4PP8D3z615oWxeeq8FhNgq3yfiMuQsvvdsx36VXPhjvkwCBNMZ01CVszZKKTPV0yQuCpXTslnqN0TA+V+T8Pp4SzqOiAVIoJdvFQ5D3l363hhxRjyzzaU324/BG+YAcFujDI+zIsXJhYK1CyAtQ3glO1Wi/fAonmC1+VtsAHnkZYdm7hpyuREOH9dXuWLAlaz4Jn1YG9V3axJhA4ZMxm6DdBmMigbfDSPyj3QW+4ufM9BqqZJQKdIB3dtOo+nEeydBEjaou9Z/4YU/qsdJeAVryB8FF+OHjUH7XsPaCJ/HUVZu0D+JR1BZHh50bPia9fO8ohI9J+OXXfDl2CMB628eX2+ldU4OFFFliMZDIfIzWqN4uI/Ivrod5NlV8ejtKDGLmcxY6fw802pH3hOH7rjH/apZFf/X7EAbCv/ni2h9aq+ad7kn42DrdhGwvRleaMjxGD72ebN8/qv17xszd5hJf6lmJRlvv2RbFkLRafw/QfjghtotKrxMFk2dwOh0uJOhPqUWnWqTaEi8sBFNKhg6NJXhyTjF6K33yXdYTMgTZZOQxXOv5lR10uF2EN/OV/bab7/X3Du8m0cnONxREo1gvNZm8vyxYPWRr/k6Xoxb6Sk68aT6g6WW6IhzMMGOBQzkaziJvYT7WPnPXK7keNdxkoAzxRGIyR/m865dTNXaZst3gVhbfpnGPrGIQqOrQBI1vT65g0TfMjMS2nsZzWsGiH0mo1WreWD65oIf84CRySM+5dKvusKxnLMv3vOM3+/6GoWcfvCp6l9NdH3iA+vyPYfX4Trij/I1IOE/Dcioy5CMTCh2d/+QDcRl7cOYfoicaAZ3YNry+6ol2Sgo7Nx6I8d55iWh5cYCcwfwwYtaNNcmY6OjGxSuLo8e9Hnc4uMAttVKsbfgnGWRJoyrtszULm0+Si4t+h5f+3TGX6TvezbAKkNROIfnp32aL4gDqo4Bp9aaffMZeuIY7H0pc7ed7Pnv7JNPmv/tAvIdS1sPtHB6Byscn/uTnlE+q2M5omluE+SEt8uFi7wPt+egJM/TPJhzle9fDo3zFJNBMlPfx4xIjWn4kfL1tp5oq2BPQpXkFFK3ipzXjp/OGv/Sm41WTp3mrCtt5gy7pgUQvb04YX61TdPiuPWbu3qjjzw69IdOxwIKlfi36wkY4dkrmGcLVGpzpEyMBXiFb6hdXdPs0gzlwHatStetGuiVrdOSXgPxd1QefFCeJwNecjM5jcEe9/nrOql96BTuu+6j+b/0J2p7OTMj5hMPQg3ya/6gU+pe6e0ANENE0YDgk93pe1j8s+oU5hWny8edPuoIEzI0VlsyX9zZDi/5iVrZc5vzRwgyd8rSnj88iTsbddNds8Twv+ndC83i8xSgWbwdcMQFxnjuoQmddO//+fS79nm+XeTZL3E+EpPNlApjPxXVp3GRxsVtRgF/8GQ/h3f3icTPY3CHGogfn2PLu6m99tFI1dNzo7RJOfE/otD+WeceuxyfSHydG8CuHnGb9pINqTy2xRlrwPqo6jKS019kZNDdXKvFzUYn43pHINTREL8Z1jX766aAujYoSdhHhS9420XWJWtNDlgqwkupNLOLEOdeLjw5b/roSI0rCerI2nQxyUhpYjYq4k+/14/5vvft/55b39ZWu0bPpW2LddLue2NYXYedfJzweV3ZIv7uDC2GsKPS3fhc9BKDp6x2L/q4V76UCxTD0wwdvsjVDzHsPFxTMik4CS+jR+NiIFJISZWR3VQ3EH5FRaKE1benUacyahBXY0Inh8F++oC/jCYEOMzEjJ60nr+/WsLPOf8TwbB9N5falgq0kJlYF9rJm1RdleD4oYZ66CpKpu1N9OTXtEbtIRDRGjBTqorfZbc4EPs6buIEDEwr6/BhTMstCXYLZKiPl6UuwuG+yAFFWA9b+wh0aEhk/UXa0T3jT151FFTMXQKnPLrEf+6Abm8+UoUefJcT83C/J3B9nAYIVYpS3TAyf3kp/w+x3KVWibF3P6kuoYGu3OfNeR5KM+tWr4DZYE1b1UQinaHugP/9Eq8NzSlp/+HORXecdsWLrnQzfeJ9C+XEvWL5bpP63/gtHamjrrW68F/XpCf1J3LI4NnDOP7kVgenIJZ5TexX2Ps/fSJ9t81cP+M+/AZXTJ7N2p28969uTDiTcnIl7kl7hWF/fKlpJB4ORon+j8XL7NsC+3oZZ6UsIuf83vbUuTJZPMO9zzdPyXoIfJA7ZDa5pTfyQByh4qBuMwtW1e2NIZVSvZH3RL23OEnaR0cr6fEiwz9xcWvthA5fV68V2cprWc7oZBSiKliz5oEKzWG7Sf+OvG88qnP37Wt58HmFL1bXhdePj0ZWoMOkTyzdx6NiJWDpstYfN3HaKQqZ9mzX6u2Yx2fVnGnLbMkW0zBdz81eI5tYYXLh21xtxjGAM5yjWCy0Z+ZeKg56F/JlUqRbQVcOCP/+E5HGLTBgrq6aw6A8eal0P9PvXEPxAuB5K5D+huE0J2wX0UfdL/dDu2ten05JP5vgjmGjRo3jZ0Mr7Xz1++w+ZhX/tEfXyQAQQVvec7XT9Zc3Cs3tC65WUGbdbWA+qWI1QG65CSFXs6vk11zFa+BI75XbPZ6vVj9pgtAZVjL8snN4PnyL4hiXZoWOfjxZ0LrKvcfjLB//yDZzKvxGvVvLFmm03cNXzrLxoE1+aZEaGocN7xj37p8eYER5RSNsNHaSnU8/F5RJBOXg9u4CuJaxJ3Aa9pLKjX7lKOp4gyQVXABNA7L+TODO9l8e5HpuztuQzph/2n2SqT+sMFeJ7/lcf/+nz82NTYvFi83DMlRuGwIeUHYbiabVN6qxRYmuMWYue67NVPoPtHe1/ep6vNKoDfhgvcj/stzkfbT6q61afSXpy94v+rQK05DtyGAOd02GEBuGPGBEzEoP654fUH28JJzHggxZ+vX/5b681QS69TCyul3ijqJelsClaFaAt6g39ntTMmt+lWajL+iZRkz7y0SjWAjimJ5GIaMtFwIFhw0GVCdsG7b6bZvl6+ae38SPKuqk+jRe4j8+MhM695HQzcBtOLLIwLPl39Fb6E7LZidiuUbV84qovQj2vHOIE5083w/5EUdUnF7qsf4vLy2GMcyf5ZHvY8ISeJ/GCRCTv2JY0n4QzKY2R2K5d5vXTfdkbGDFcHwed/XgeJ2M3g3tCe7KNskvd/HjU4j+YroS3mtd2tIauNXdsa6sB55CFpQqjrzKMpC6ZtU2Uwcd1LbboxWS6hekRsLgGsg9PUj2JqfUGI9o9Fr+9DnkcvSpUDkFPmfy2OqkWyiMwA5+Z43oOms6XSQAkn3060s0dcWGjvVFAtQajZby+OW96gNz7LH4xtAZ7EGTkXxJghKwe+XQTVF27pUbKnFTqrPkq9TJa+CcdX72f84uQPaGryRvj5tvlc+f8Vahtj8CK6X3ifDg9PQhjSWFRcxWS3nRKQa24rePVY9jUdGJfCpM/7xf/lSe9arupuuRfPEVJ17HbPpLhNdc5C1exHY7X8+DC6pG1bKfPqTWP9+gA6zBpsNjFSThrJzeA+fHa4LnFp/D7fDs2/PS/E8lVPZLN967m9SrDB9TiZDZn0VNRfktJNJ++aOEvF4S2rxUJJ0dGPI6GavNXP0bmva06H/bqoVf3t5NNIhyv6vGwoz1KmPJgv/otv+WkR6WDAzyd7lYop9QSYNGLeBMHSTKuDrEM4eMZLLx8h9Qk+F7gOueI2D32w/kt5z28wTsz8lcqnKv0eYArPTJmwPaVzN8pPkKotxaz5d3UjdWkq9ry+/ghh5uOCuPlifS/Q02cnjXWVLLiuVzZOGCQn103TfNdgNXqeqej8TSt+W3q46YjQcbCW4bqvpwTGabz5LHihtSOpZ1N0VIfiav2eiLheSMiFDwIC8fEQdyXAxlpD/HIyiy//5dP7tV0Xhoxrev5YuxVIIVUMstxt4ietccFFO+WsJ30fHWcToOsPvXZw2mskJwufEnbVt2BmX8Pxv/Vt+Td+v/4ZXdbo+ofbw7fSpQ0j5NcAmUP+K3f8BuI9gyPvIjYfsn/s1OFo9oWjw0Li3XNxxbJdxSsNgwL6tHN+Y+P/Xi3Hj3/6uFuthXUtr4lye707f6PtCvZWhZGog/EgkEkYYmAzCQqirgDRAQHZEgCefo+fH8ve9dLDpsMNdx7K6eqp+XaxWW9n/gqKNbvISzGX7xf+WyZDAMKTyBXw5oIn+CQMDvaSOCwb840ConbSsnxGsB72zLCw7fZTqlOS3ge3w3ePxLSLvk4m7CTyAmx60kLGdd3zr//Vvn0wRKVL/Knn+FUR2oydrgLgImZj71Nc2vZFoMUbr7Rnd7KTuHEMm8dWPkaxpozJy+avs8wgGzARtgGg/JBkwn3N/9AxukqWfN5/3LA336cU3YuSL4PUhANuUadsN8MCseJpg8bW8fxlruJrLdaBnNobHBgwwZQcfYXYIV8g+ZdOllrro20S3P1yCb2o7a7hZ4C1SlU0EKjHizHTVGB8jaKNDE2TkjMMC7/q58A1SoUbLhnsDFzkaz1mIK7yymDUBT21Fv1jElnVQfWegtqmyNr+9+7TeF9Tjmqn/fvsDzOkQ0/SzRS9/DTCt4lqIfOTnKwSaOeD7mSmnC/P26RYLM3Z8nxEcDM6DrqKvg3TN1tH0DjUHRIi8PXwDE8MIBmcaQ2BKjol+8UwJ3v3Kkrlk9ruTaVoP3DQ8/Fb2efnVPAOiVA9d7GYK2nINj17EPdY0aSmRK1hpSFF8QSKyumfixM2A7wh2MzAeFy70b1Hz/F++MLzNY+U6EOiUOjIG6GSc/2+Z/eScNV72MrPgW7p2XQcPOaB14c6xqyrSXQWLXqlnq57wGveoRId5qSv3R+10Ceez9awNkv1vzu6cthWEgbvs1hLr+AgE2NzH94Z14qL4BctCMkbfsmmTfHTQVPktWR9OwVxeZkbUew6uNEvdxAOPrfzwu+DObhm3uf+BRTP/+Ht49KeBs6s37m+kaIVCIZvznkRklNEPn1SBF+PgreqlcJ+swYqHfcxgm7tbkNZzK3Kx5POA+evQHnfMxwHFVdS1a8q127cU9vf3r0Wn+DXSuK1FBuaKAPlTd/ehmSznwdTJUIAuB++sXWfGd8DEkWwYZ5DDvZVbf+/BEcp8ClZmo/LGIMyUlv3IdGZDB+isWVjz2s2niHY6S3BTngkUHfvcg4DuaqHQUTrIMhDheKoB0n9JX06xjWfEHt+CgsDgSfwENaFvQUKuf2T6+FNSIhXu2v7cxp30Fh+NlEdSACfPfoEBg9yybSVZ7/8gOBiknJ37c1B+KWAcNKVRxPvhiON6qcgb05mn/8GcySvhx0ud7Uf3wdTOm7QpDuoitGxvNl8WNpCmDK+pKoEdi0hBgnD4rkfqPItQD47fXyAPde7NN49wzCv/ojeJ+bF7Z6eg6X7DZ4f/aGDTrMfMaW84Lyt3eJtnss1nARpwb+yl6i0SEakufbRAp8W6/7mm+KVf8QD3DNV2h78X4W+cuHQlcbeH/9wpA+VFCDzOg7wl/iVDDuTzksheaOg2Zbrnrp5EGXNjEOj2BfrPyq1I3nlSIxMoWW+YWZ6iufQXCPR/BBVPvAkSsCdeaHB1gwXE3oarmx1keEgfG5dOCFBSG2jq+hmEOrP+g4BFe8MzenkFk+zrVJ/xFs77J3+F7PB0RLkaIF9KQYFbs3YbMrPti7dyVY6gg3IJNLh8ye/eP0fvMzrbkcdGqw35ezKpg8beWnSP2+vGTzSvr0X33YXu+3d+NG0L3L40vmARXW8qc/J3r/+qt3DfJ191i7pJsv0mdeG85fj1UwJN2WhoMqhmPvth+4lyzrr55i/dWndFXX/vRGMNBqHTQ1i7Snxll8hewwSTWcqpFRc+UPq16R/19dCtT//aTgsNsK1MjXEpb3VCU4WMqGCEHsDRwYLILtYa6xIZU6mPySBTCRVglKOeFkdvyjqjtjZ9JSB0U4xi6ugJU2NdLdu8LZxWkEeNnZDgFGfQxJ7T4z/RicDLxnu7KgEdBGjQzAJR+hS8DcfIsXNPNkR/05n8Cs37MXQOW2IoNOPoC7y13StPaE6A7dXgk1yzjTLjevxaF6TUCtJqUNxa95QZwUv4SrcsTgt3AstD0Hn5DqHdSgmbx7vAe3tJ13l+eiq+DOqWEc1YR1ovCCcxhd8T2uhIKq01GDaWW4GNnRMynzi9HA1OlinAXmFpCifZha6xdvvKuPR8Cny7WCipAr2Bc6h7MjyytomluX8NyohkEWHQ/65NVir1wQ599t/4JLuZORVBWf8H5xzZeOH9KZIn5Oi+Ewsh6qndLQeChefAptSYX6179Tt9Jew+QMS6QTlSDUEPVXcN/aQZD9lC2OU9MKF/huHf1YbUQazOUtYVv+VmG89skMTRmEU9YURHtN05P6VRgnM9JACdouzOnuW7UFF69Gp4+mZdO4UJ/D/JRwANb7Q8/sfW4ZMp0F4hkXMfCuG2sG88YAp2tk4gpadrh5fewzzKNoDUFl2U5uFNlwF2ZHivsxHmZTkw7g4X3OGCu2F3JZRB4AuVNTs704ltz4AIKhPWKMEmoXytOsCfwIB4jAwx34EqfeB/xOk4S6iBnh8AJbR9sn3zuO53Isll6RKhAFxeXfeS1Wsqjw2qQ2Dm/HOJne9zwC34F9EGzSn8XiPDCg2OkWjffeyGexkSCEtP/iQHv47SizzPz7Rs/80BcMJCKDD0IsvHNrOWHz69XBV+EccBTtH3yR0p8E2N0MiHbHOzCH+k4Ak1bv8On+cFvlBk4HKNg/F+90k4QsKA+Nfi21DQ723hYsHr6okHfiBqnJPrC4YZES2oSqSDOq97Ccvtnats4NkP5+O8mMD/UBVNMEsHHsNYscgbLoQa+YSG58BDhkXwaPryTCsfyVrVnQWKRzA+REjfEwTO5nbsRLXVf0/mPY6q4PX4PoldywlYgbay6NqwPazs9xeMzdQtEtk+nhz8B0/zlv2jlzPyc4nqYvdR5Xu50ltW9gcWSYwFxAwwIapsH3sCXY7rwesIGYZ+0mFgbFqfAcaHzLc3hFvkm9bRtaC6qnboskHVL3MwctS0gowF8lXbGdvb8tw49PDg/XS4APPj9b5HXfKrBTSYf97ILAdLt0HnzK+x91UHe11lmRDKojFUgtlXfAiusyQvxQzugJW3P45+/VwGPyOVQy58eb4mycDbihZojGkF0EZugb8pypAX44kZDpMO3cw5QG/LQBbHKeKbxzM8a7nMpgzvJa0Z/pRaJOIgbhVM9nCC87x6FBcWvDpVLkk55WposENvyG4XPOHGB+HY96jf/k48NjHfx0YYytjb4P+c25mpDRocB79b2zlufJqSBLU05tOW0BE3whg7YU7pFwQIeQFNuQaU2bKNghmgsomOQPfCuLi4202Q3z+7234UMbdLRFXWCxDdnVWhWlMg1V5ZEsKj71cMqOhDxicEyYUuMO8rdTYMeZZ2sJYpyBrby8qB8lhjUHZkDg032L1HCrH2C5lpigis4yEd6eU/BTHDTgLWYRPQq3p8Xxdow0aKgch5c3C2f75xnaNk0jsgzDZugfUe9AKYwCnMlZk8zEBx4cP9GePq73OJyer2emf1Cwo16ZtMUPyxqDXx48qW1UYjvxRl5AzQ0DF5ElFeR3/EGIogis6/PBb+saHvzzN3z5omH5AT0AF2u6Us+3TfAvHrXIQxQnMwVjuBsccKxk8b/2TUzjoB/qgaNFO1hAXmrrBUNTremjkb/t0mJRgN+vpRMItKSlB2lowLkXUsS1uxqy2d0b2umhuNQIf0s7m9zPod1LJT0jtQHTMbV7KD66nBwqNQmXGWQ9qF+HEHs64WA5+YzoM95zvOYHMMr3ewUfGCKc6bgrFjPjH/g4dAuaf2cznBqKyn/7dWXZLOSn5HoQJR+FzHPYWdxIf6ZWl9oB+/I7HThqxfIv36CNZoQWvzkPE6z7xfjiWSGvzvAFn/DeIloPn2I5oG0Orfo5Ujt7uwNDWqHAbKOGSJJTC5BH1NjwI8EzPc+9M/Db7fYB3TMlRCxFP2TnsO3AqdhX2Lo9eThHIgxgt+cLDnthBuN11xzgGi8IK9tfSNXppoIceTKNz9Gr5VFVOEDObQ3J3vuVcKGFEXQXFGAvYrU1SieW6TvQRkSRypYvKNMWECSlhy/TuFh1Fc8pLGb0Jdve5Mm4KZAAA+e3w9X5lvFliJ4HXUFChfEzmMF8jQiEo3BocGBy2n5zZYvgpDU7oq/xc1bTSYXHCBGkaPcwfGW/D4S6iDWM0KYES1r7AUy8t4cTZxYs+jv5r7/4RgNV4oCp4RPpTlBQ6h2AB0aVcQLX9dLbRNjwO9tZDl3nh7C5tW/tQvvXCxqyuMfYvl3aWfOXM/hloYGEyHKLOepxBtXcnrC328zWjzf6okG/UQm/pEHC05igrTpOAo4yaSrIcbwZ8Ob0BtLpJ25nsTAd6OWn77/4weLNrwefD3rg4I6f//AaPCafH17jR7HcJcvRficq4d3wi6xZSjITOnX7oMiUiUWG6HnSYyyWONJBYS1XvV6gIyYJjXZbuubbgwHH56MkXH/sQna2VAaf911I/9kfasUK/uUrM2K5NdVbLMGzLX1xNdYG56i0P1BvDztaoQ3k0xxUCuy4LtKAfrSBXova0Q9Yxwg+/GvxLWbWwGsPfQKqzkikX8wagDfqQtHQ3UKWmzHUYlBn9PB5sYShEiI4qGOB3eiitjQd9oo28cAlm+7rFwyijQ2vr8NCzWP3HKTZjU0ApP24PpFqQ5IL0dqodSNSX34rLW8WUYVfa/QJHxlv+bY7IhCW24GoZWIlHT4YvebIwkDtxT9Zv+vj2QDv8hSwq49eIq/nr7WVMtPQ2O0HvjvWZzCqckofnYLDaURA+lsPkrjIWurXvw9szd1ATYOEBfuYcaBBU35S4wusYn6QZoG6DE4rXpsG+uxOCkTNecD246aH/GpoHXzOKMZu+8oAf1XH6g8vIiFtc2uGoro2+iQ3JOnmLpT64eBBYP/ORK2rMVzxoqmPlRRg59ee+U+2cAdmS7nTAIX96t9HFeJvhLFnprDld9qbMLmmOhFcI+WdEy9Qc6/XGfHgDhIuST8bcmObYyMMvuFwpL0CTUO40eA67YE8RLsexspMqZ3TDkxYXhiYz08DG9Yytlw5axCgHjLqTERv1/gfAOMbH8jcfAD4+WJWQnv7OdIwsqSE0kPKIBVOF/rnz8w67Cq4Z9lrzW87S2b4UcMANG8aOs8sYXXYr7PRPZ+QMBQH9t7UJkgvufmXf0PuekEHVz5EjfgxJ3MhbwWopQ+XpOv50NXeQTyylu7p1QVzXu8joPb8QD0pyqxJnYszCEo7puWc12Bi7tiBGX7v2OVi2y420hD4iw8OXOSCx7dTDk8b7U3D62EPpN2LauBqSzm+l1bfzuf5zqBy/DLs7uX3sIT676OFtozWLjiWNaMsCWAv3Hq0TGYPpkwEKTAk40pX+7AoUjRTy5pKxOYztAH3GU6hf+R37L0CP/n90tCA759okHbCYrjY6eTAl1Z3+OK3RdHHqfeC7hIF9MCOF2tc8bXOvzv/D98nC28vGTRkfY9N5+WDzX1z1uAZ9FuytJePxTMwa2BvCBHZ+E8TSGQAChiFU0NYGHytWdT7DJ6Rj8nvPu64YpH6DI2bL2D7vO0LDrzWAaGp1dSUtgww+jBO+moPNNh7N/CzZP6BQphWFMGGtvRadDa0JCPA6cicQfHcwQTO++BhpI0MTBvy9HR3XHS891uQLGJbvqDjNAkONOFi8dUftW26PjHG16Jgv3t6gMuJxgRe75pFS5whCOXlSjbtPk6U6E1S2Hgvl+55c2i5ou0riOzNDsEqNAol3a8SFYIVPV6BYbEI9ilch61hZ/m8Le72vQCsx8ajiPSmJa34T58HVcOWKA0Wl08eg8VxwUhI6KvoLs9DrndcFDH+PF98Uc6rvV1yZeVLER9VBka48jcym8ozHBu/PEMHBxlGNxbyjVnGObQlf0+AKQOLQvZd/vyR6Hk8gLljrIT3S90i4cZCIOVaYYCV/2DvftSKCXHvA9Gx9wi/m247bg5PDf7xNy01mbVMby+Cw/mZUycWGrDM9YC0Ct4Z9TRTaUfhWxngo8oMLYx41hIWu4MOnmWBFNXbWczUyh7uRn7F++ybhNLhtEhwPr1OSGTTJeRFJUNwP8wakeV19miUdgg8VIqx89rW7TJ3qfOHx7FpkCH5DwAAAP//pJ3J1oI4EIUfiIWIQsKSSUDABAEVd4ATqMwJJE/fB/9e9q73DpDUcOurUJBiThVw2igp2TojrfqX6Z5hH70HvIPTHgx2H73h8y4J2DXL7zIF8CqAj7/MLDK+TcxP5n7RZ2+JhqpmVKyuzgEc4Z3iXzxjm861lHI7GnQXghOYfvovXYU7fP5dD6lZBt24DtGwWlpWvvp6qzsNBsh7ZV3PsBx8YXE9WvR8WruAFHOoqEu9R43wSPoRKbxQn6fyjGZ0fefsrUXoT1/rB2PO59dQRH/+eXp1Zrz+KrMItU9UIrF0qpxBLV3s+xlTe8TM5M2LngEsjzKSHpd3zwo0fRX9kKzwXs9m/8XX01k14rpb9AEy2SpvCbzmeEUUyyv51E6hCOH+uaW2BqKeKfRdQKM1JNTGkRBPmriNlOV6qUcasx9UxwpAves2ZNrcvxUPvgcB9tfI/K0/J9NNNoB1ykNqbD/Ef4+t3sEbrQipanSp1jcUCn/5X9tz0aRAmxCYpsvqz7/Y2z1YP55CVqeaVOxlPAe123UdxXlzAlwo9glc7cse67Pv+usdyr4/+6G7dUrjabdFHvQ3zEJUG9N4upC6g6HoHbGjPM79SINPAm+WqOGlPlhaKokAYq+SqPu8B/6ctN0WBjUqqPl9VzkDrl/86kvs1eHeF6sAPWFuDiouxeyTM9oNb1g59w320osSdz//HXfdDbHFXgd8ASUUGtGlznEjxvW38CAozPWW7s5RA6jcXANYhM2KiBl1wUY7vwz1vd4VRIAl7dl3J7zBoi+wQ53CH8s9F2B3Ph0W/9D6+XBqBBDpVkxAJxx5n+v3BJruA6FnUe1Nimf5DN6ttEPKT08mSL1DNSkDtMRvzg4m+tOjZIW/tcnioFNg80oImlt+6CVCPxHgm3GgDl+Z/ZSYE4O79GwTiSgOlybtmsE++g6kv9BjvJntU6qGOhAQ2EqrfBCzPgLFfCoR68Zl7h+LUyi8CkTTLz+bvEv4BPoWfvHjwYW+R8l1gDw9JmQa7CBfN9P2DopVxtEaTi2gq4vbwfydP8nVgwGfNFh56v4hEppdK6sSn/FtACSpDnivHjlnvfztwHtGGsXluu6/9l4uAUdCv/BOK5ceSQJVr7AP1ICTBOZF74KVkGGiJ1kPhvzCCLiGfUDSdWrE0+uMtxAKaUFtO9pVs0k0AvmuM+kfX/rZ690cJqIEqwdf6msPvtDxTHefs9a/nMCyfjyDhGmqxdSmVQePhXwk6/r54kyi7gQd9fGkh6KUfPIyGgJ/6/leeAQZPy4C3HnPpL5Wx55rYJmyKBOfbKgDzXolL480jF9OD3yWcorv0gSF24qSYTAPXFr4luqXyZaix9fLp5fducrBrUsE/G0f/+mhcJXXREVdUy28GsFZaegvnnL2+uiGuvAN7O6tEvAQ3lMQktHC+4gzwL3e7kDyjlbUqnZK3kP/FoGbcztSHQQ4nnfnXQG7INExvsBtz7H8DsCqk2eihLoL1vvhtIWgEU8/Ps7HTeBKYLvPPOqzc5ArCx+B5/kEsQtNwZ/Gdt9A/9idsHUZV5zk+dsFAvNm8k5kL+dnQUvVxV/okn/92Z3PXzhM+EiN96b0B8dlkXJtTBuptuDHC4914a1QbtipQ8mnF401sONeguS17fuzJKCtPDq1Tw2UU868py5Al5sNPWjq2x8P230IP2GT4pskuOZiH4O6+CeSYNxythMtAh7uO6GFfPz+6uUJ1kk6kDbxbHMA5INA+w0iejt6oF/0SQB3D6JhNPX7auGfEiQfPKFZuOr+elWKAjTk8Uot1twqRg4WhOdGj/He3Nn8j5/fQBNRB19eMfvupC98tWKE/SgVYoKkbHmx6QWSe2DWOXc/ZShj3X7SfT3u/+pHdWWsExwcC8YpkpgBl/iE9Y1uV0v8MCDzTxE+9MoU86UfABY9T8Al/HD+/DQdbHTljIZg9wBk/UIKgBu6++MdZHs5lNB/x18yL3pqvSqhoEjn85V6vaLGJLjxAta1rpLyvTHMTVll7vIudhdtyq/OiUmaBPJG3WBv4eFEB7kC+Dn5IjE2+2ri65CoCz9D689Zqxb9IYEteHDUurXBmfrsMpjd1yk2KxOBaURFAGNCNtS057s/rSx1gIv+x0v/hPOHu9cgvnoqAc5YVpNQ3w3QVMeCYruSwMLUiEpDNmBP6Fg8Rqkg/vQU3gesr0gmXd+wcz4pxc/+G89u2xO48Fj0+sWbXz6OdDvGhpU1Pfvtz9HY2n/6a/LefgoRNxFZ6kF/emdu+uNFGC/xm+hnPQXq+a5Q80kszqHZpfDH04Z3z2NuJwICbTjbaNo1fb7k+zuEaThiI29dIF1y7a7Oh/0OX/08jWkhdgReOmFPcSpq8ZrsuQdXcv8lajZs4gGd9LO66sCMtRpUMVu51AMaqT0aTOhcjUaaC6BoNBkHQynHXBVejfrZkjU2DWcPpv3rGMD7rr8T0ohVP9u9guBPb+A4esfsTr0UkuR1wPnJtnpm3R8CfDZ+jTZiu/WHw+bVQLe87HBwuWX+Es885WB3It1VqzGfr5+DogwRrZFYTFPe//TSVOtnJEqJwocf7/6GPEbBLA/5EBMfQi5cTbJKRS0Xl/sDoTSXNJFfQ0Xc1WT98fSDHEc5W2liqPx4uM/OQz7Nw+UJT8GloPvEs332FfwOmo+1i5iVuf26RakLRVMKqcvOcj6vz0YAVsEeUqNaKfGPR8KFNyC5Kp/xJKXFBHWDBUgsv+TXz/vC1/kikhi0ZU7XV9DAuNGfFKk6MEct6+4wfLacOvk27/946n1GGeFbl/jD/nUN4OVUqtQ8CJiLi76D77s60Ivgx3w4CVsD3o/MQGSj8YpRding4k8Lf1rFs1CrDahv2owdy8OcxfM6U4fXraBHd9P0/Y//nK/xnS7xB/z6Wz/eig/Bs47/9GU0HxD2/a0fzzsUfdXf9eh3Regn5a158BKgBFvlF3H2/rwJVD+IYh8dTtVmqa9+vB716HDq+fT1n2C5P+xo96ifUiu5Qx28AmpYsug37/brwf4amtQl/lQt/YRE/fH/g8HLnjKhLEBoNzXiVpH40yZ8bdUvcnX84wPjjVd39ZEfPqjroB1vfjxEN6aAutVKyyeHWBPck29F1u7HyodtXNjg1/9FxtmoNr9+6XYKbvinP3gDEwbTGYloW62eMf/FU7M+mHThAdVsquT+86+f/edzrb4NdemfLnrdAPSnf0+5c1z4bwU+pvq9A0+9xXgXHl/9tD51b9jv5g/W3nJWfVXTY1D+2Do+UMcwl3qmkGEZy9ieM4V/Wl42qm73zcJfj5yXbKPATJIlqoeEVAMyEINRcGoX/Zrk8yYGBNbrHaY7cJV6Xh7GDAYP8YXNg0D5KB33z188QC3fmf3caOdQWX5v6TfbYC6mOYLfu/jG2MOiSZf+ItwwI8Q7udr686qrpR+forkzGtUS7zJlqaeJ4Erraq5UN4HBcQ6RciNjPJ/eXQA/+rZC/JNezWX/FHXhh0SFK1ot/VlFUeBXotZdmXuu9H4KP1FtY0PIg37j540C30kq03vfyP6P9wP9bpYLz8z6dqkXANXsPZrPO70Sd6dRgk3yqmn69tqc66LWwNMqirBFxRqw9ppI/2tKgfzfRwpEUDtECIWTOYeakYCzIygIBKWcL5MgmuUU5oW8+nLgrVxxoqZhuKWPl70xJ3C9D3AbOBp13oUez8cl5GZ7O0TVZpriOVr1lmzfO4Rd8nD69WB2IVzzPMd70pv+MlF3AFl6ONCgMl8935HsDYNN8KDFl0pgDvWnBC1R5Ujx5ifgKxFECsnwSI1rv+/H2np2QKxanbDbXPXTVjkU8J3dXcR27d6cTEZSKMD6guTstAFzb/gMbpLmhB0P+/5QbgcPruE3QIKpTybXRqWA8baw8WOjr3w2O7WhKGZLqJeSHWgV8+3KeSp2+LaVlJ48WpZCcbh7hMhu6E/rTd0BAHd3rJ3yNu7079zJrT4/6O9+CRizBPoP70xWc1HGPPBtCM3v3ULzqX6DsTYNV31ehwxjenv2byT1jfI4uhtqH0HKhzHjCeTvCNN91ho9sz88VHudE7yX2m88Wgp5gnQrIKy/+tLnYuJ10LlnDeJOw8zZE8wGqsHSwtBpVzVxFqZwLzQD9aLWM9fJU9HAkbIntU7qt+eKmLtwEwyIRvEzBqyp1Q7e28HHrpuQeBY1x4DOR3XwQdqknEkkJeC3vllWH/JJgr4HhrzYk2TraiYfObMgt1KDOspln7NmXzFF4XKF0WaPYmp3Ugb7KkQ0sKS+mrRzFoC3kpwoznWQT7etpcHj09tTy9A1c60XQATRSinxLoa4Z+8uKtWzNlk4GyQt35B1+IYd1650/8zinnXD0QPHdDmlhz6feHoXkw27jHTYU+rZZNJ+bCDvnRtZPeI2nm5y+fztL/aabsjHi+ZHcAMFE22CxOZDe0sDeLJXazRshZYzmaYaRI8Gk1Wu5/G0O7MEHm6ygn1F/vYzN/tAnvk2xWmS+pUoq8Yd+Ci3sVEVWc6yNovgJt/4OLjPvF/sPQTEG10ybZKkZ3SYQ5XGXUJKTKx+Tu8nD7alciHzvnKqyeX2E14nVmLnfC3zYXWLDdU47S5IERvaz4fssQXOWfKwMXPLXLuanqrm2Cj4AMwAzMR6fVfOWH2oNu4fPn0NKwl27W2F8XhuYs7ppYS/9fWjVwYmDkxRxQ9dp469n03ehrsMLP5DbYTNamBXKMDcfRgEGB8xpzKDHXgyY48NPvT9FF6PFiRV9iArjjEfvYfMYGDDjvrSGFX0THMGyuPRpWY7HitmNKGnHp2CkbWmtfH0WtceJFGLcR6tPxV5tEoG/+yJm2I8zErwhM5n5VD//knN0XmmyxGVCNHdbuWBSX2kAzw1xQmj0WKgdoZCAWAdhtjcrd8VK+riqwjr9EWa7HLwZ2ZYAzw/qpRMtPDjTUlFaft4bR1s1mIL2IRcBEv5K2FsrxTA9+FTUlmAbOpDoYxZ38UFnLL6TUAgWT6/syNRb3pjYg2HccXl8z6Cfm3fCLTbqxm1beECTxIbbOrU6ydPdkvAeMfw4TznJm/F7R2Gj+5O+uf23XN2dhMoFwcDeyJp+wnAKlI2wzfHQdPcq26LdBcSI66xU3g8n4aLlIDW+zZkZcafasrPaw86tq0QvsQHDtjtDssWI3Ir12k8uefcBfbudsP2+WBzcZmzDs717UFdY7+tqJyUE9iInkLtjyrHo70yNOWcEo8eSsDyacqVDtz19EaTG2j5PO8aBbCYfbD2etj95oSsLRwqo0H1Yk+sdg8RvIZmhB3kJDE/BJ/iZ08UdauLT0xXe6tpGC3vtmquPQvaMFV3a2FLnTR9m/wTlRHs2nWNca7n+ZjdVAivqZTTnabtc3b9niJwn5sIa2NVgb6OfBvaNxNQ83K/V3RI9AEu8YXaU1L5PA/oWYGBSGgg9WrcjlXWwE0SjWidObtccpptBId2I1Eb7duqFs6vTBUK6qF6a93M8W2+EhjctxPeLZ/neJrP8mCWJraPYMtnf1V6atdbEc3e9zSmd3Yl8CFLBwLY6943h/XOBUogPdAmOpCcy0zsIOCtio1q+vh/+7XkF+wx6gA6x/5Zbj2s4WAQo6q2Qm1QzW9h4asbrHz28J9PtXx1E1qBAze5N10RXKlIxDu4PA+tFMoW2msa4cBbH8yZGcGwPOThLP6VxFMlkQIs+QjvDhvR5yNXbLgSrz31vp+wopvQiWDyeO3x4bGv/Okst29I+XZPr8+MV8SrzhmQ+gMh5GPjfjqsDx7o2dXHqI2qnpWdTKBufUbsf6s8Hqx0q8Hw0dx/8aBnjuMFsC/1Ci1zwTnfYyMBklXGZLXRVybL2iiEz+uZYW31LfuGbZEIH3s0EXXabmL2dg6C0ikHjNPmafvz+pu+t7epP5Byw3bV7DxDQV3za44fq+syqLdhrlq+moka9HnpGa2FN9BtpJGRyOt+EJeWzdSpAT3c6T1mnrt/QnWXRYhd2AsQ4B0mMPEI4J2mtfksvW4KeOm+jS15HVeEtDBSRu52VF+9x5wfIy1SX3uIacbWOmBf/1XANXwH9L4+a2AqFaODn9es411h1+bclEqpsPxiIulpzXx4bXYNlAtsUHO3tvr17jm5qrZDgHy5IixHclIbJg7Oiaw1WsUeTa789BuZ2gsF9MtlF1Jevojq6241nYFrb2ZL83FoPnWzEWF5hsou1LEGnk3PLl+xUPwb6BHrSZNzZ+QZdNXjCu+FF66mD2zuMLusP9T46bXTdUbq6kbwL1/FrO1YB1cij6k3SM+YObt+ACc8CYjIhuRzOekmqJ/OKhKeCujJ9XuL4EceHeq5qVKRrAYTfBulgR+tlcXDkl+hNIg6vYbv2qTbOIjgT48GK/OTk9BzPcjMTKVWz5KeS/M6gf6C9Jw06sypWjsCcFF3o0FAEjDcga6B40XM6MU7fUxuTmmocB+HpDrILz46d3YHcy4cyVx3Zj/OT3WCW0huZF7HN7Au1ToEK/Vd/PSZyVZDDoGcdG+qXVzI5188+cUHZCkb3t266xf0nThQ89QfzTl7FHegC0ZMtc9HqzjkXID37cZFzyoSzWkGvQHKaR6pET85IKIXiGCTr336s+8BgIApPN5fsPbxAR9bS7+rojmJdCfze87RUYOg0rcfqpnPl88/h/oLeFyu6A4oUj8r34nAbG+FRNGex5w7R01T99/hS/E+1XN22GuSSnJRo9ZxZhXLP5IFSSeoaN1475x19b0AlxrLCDy376rZZCdbfaX0ja0b2AMmjscU1ootoOZ8jM15+kz3n14n6st9c87powSPZywiutEf/s8/oXPoU6RKKuPs0kRQOa/yDxJz6Jq8JY8IVPIlpAGqi3yNX9sMbv0xpUHTCBW9sJCpjkQu2Dg9ThV/xs8G6GPX0yWemaMB3wg+jt4GKVO57pn3FrfwUBcJdRf9NhtgN0AViir1lNH311dhV8Idegb0EmYa36jTZfr5B03Z8cyZNCgBjB8TpSg+vvLZXLUI0sqV6Z8eEgVXhFOckr/4uehJA8b46pDpcPuak5xeMgg/5Y56zZvlDFfS85evqS3aUTxcLvzf/08W/T7bCk4gMZ8RdmA4m/wR9h346Vf+gFovHmX9rvbdw6Lec2h9nlOuLAi3wKF8gPEUn04DND7LEZ2nAqrXyyiXfqT/RKoGD/7AgS8pjhCtsR43lT/fnjmDhnrd0eBmPU3eoK8CFA4qbK5VA2w+k+j+9gO13qOPSdhkGuy7m7XYn5BPSOo7+EhPI0ahsPaZOF4zpTzGLrX84cx7MTEatXnJ0aKvMs54z7bwQFoPO0Fig00XexnklVKj1QUP5nzSyjvco3RDHemh+ZtFX8lls/7SfXba8N//KWJSWuT9s1cVvUKYuaTBh0yl/k8/Qef0eRBJ8EcwjxqyoX3a7Iiifft4DIs1kdHme6a+vSnjqYF69KuX8J2bYs43PJdghLsRe+UV9vQRVo1a7AsHp8wv+Fw/1CdcBcIKB6iG+bC/ph5MVjqhJoDvfLpLKIEfmTrYdJrIHE+GJsCD9Dli5xkeYtG8XEuY4qqmfvRSwKcp2RPWRx5iW4qtXsQc35UJDAW9NoNecY2GAjThvEGSZ9JqlKyyBJ/9I6KIHj8mX8WHAEqgPmOr7YuYd3MSwm7/Ydi4MJ0zFhgl9C6JiYNARGBa4iGsy/JJvWU9BnsdBIBX2xprr2tQ0ROuUrhfbypsPqBWif4yFW7J79SGqZb/1eMHSZCReAMtmAutSn/1C1nqd1+ERUxAaD/G5fvPigfhvlN++ta1829Pf/nFED8Q5Rl3OQfsVMCrQyuKb5rqs+d7Q+D+S76EL9+f9Ms0gB9PWPvCEP/ylbqzrR5b/j8AAAD//6RdS7eyMBL8QSwEBBKWvAQETFBQcQeICIo8EyC/fg73m+XsZum5x3skpKurqpPudWbkc6AFDGi/HTEqdV/c+KUi5vkD2wjXw6ZvR2A+o8vmd7yz9VBxF3jRjBs+5Npksu/8d2fwxmM3ToaBGPW1gD1LdMIPEqnHLd/Bs2Rh7JS3X0Q4cm6hlBcttg6MZqN/uc+wlV8zWZ1bXhM6yiGMJKugr5M31yPMsxFu+p5aXxb5NAqNBv75Ey6s7Loap7BQ9cK1cfCBXcQOvm1AMYpatO4Lha1ne4DwyEUWEkSd+ovxkkQYa9qXZtLIR7QLTyncB3FDA3HX+tP3zQL1/NJDxBe6CRganyJEJPtQXf9amXg6uiKs35lHtS3/MD0IEsjHXv73fNk6TkkOQ4ckhPvauF7eRm/A5bKU+FRQbsvPXg5uu+VEHdeQ2F+8//t/viaVbK4fwALGV/xRv6lBNI/yJ4EP1/FpUCxRzazh+oHS8P2iv3hcmuKuQZZSgZrsk2ej/FAlAONVoE6vFyb1h6KCKm/yiETnd9Ru+R2W7s4jH0dxNv4CcxBryQnjd3A2efUVjlCLrxLVo9Y0V45KLrjTLkVskg/Dtl4JXEcrQuXxvJp916+tmulhgKQg2A+0vBieUj/4AVvHnZnxbRoheMLuF+2cA89YykJbDe7xBbvp0/HXyCIXePlxOYKh4rJNH9tQfcbbrOXdAP74iOJc8Z4eMmVlY3yDAdz4B9XP7x4sqq1Dla/PD2w8nxKYu2wZ1VdnqXjgFgr+/A/oFZWMNSGb/vFxUMkfEVvd7ufXd2wh+C63Lnyp840W6dDx8NEh81+8sjc7a1D8GBKaDy8D7Kc1atQzeQvUFe8hWJcxtcDrATU09N0164p814BaL1W88Sn/s8WfbFq7D5HyvGWrfyw1dfMXqbPxqclRrRgCNqj4b3+PZ/lYwANZdarpj5atXDB8YPKwdHwQt06LOTqJcDCON2yvzjys9DgS+O0/HrbuIvHXzX9T7aJF1La81lz9Y2vAp5zfsEZv50jY/Er1t3RPrD3eZjQrWZzC8CZcsWu5aTRFr6yEF9xO9LKwj8mYIBGQOi8Vnw6u7rNTv4+hK+YL4q6h6QuHUnJhrBlfxDWyalJruDZ/+EC+jW8M9DlxCGZv90HPQxUwQefeEvS+dMZ+310j9ljkBlaVkSCYc4255M9ihfo1VqlZEwz2l2Vu1XMSGEhBT9FfC7euAEbnhTprNPpr2dwQ+OOP+lAFoL9vXSCkDKukc4OXSfu4VKD7ZOnG197Z2v6EVt38C3psHleTeR7u4a28dIT9FJONpxsL4e+4P5JvbHSMvLssUBI3XuixTW6MNWxx4WmXpLQIuas/HkW/gsahWdHEDsd6hnlGwHOOvkhyY5StuoEaWOrpiMTDPqtnURn7v3xKnfXR+PPyfLjgQJIH1X4JMvf+yerVwP4ZSHzubv6S6t5WYhZzrPs3wVw9ezCUh1ZN5EuOB7bu/cCFBMRfxBVAZhRcexu+kvuENz2RLdx3jaF2CAC2PZMO69oKCqwv4YneN/4wNZ8ZQT0HGdV/fV2vl2MLgXzVAor9cwv+/C9QL/NKZJGWGf+457H8TVH1zw8ldFwu8CzZmOyVM85k8OY0KAwiREr7uWTClyMfqKh2jG3Dt6PlY2xdYuyGEbHHv4xY79cMP4v/+efviqZ5UGAZgjMRjotidrrmFrBT+CeC4qBmv9/Ft/7FQzxIZFiWKg6VqKw0fMiUC/vFPpYANcORbnygFrN+nmHpfqvN7+1NuukdJShqd/Pnf/WYSkMAj9cvwX9+zvzJzh/YmZpHs4twqPktv8OepTo+rs81+uzVrgWZfgmo520jK25lus1+tlXC//F513AqkLSIwzolJVgfH24GP6ONKM4cIes2PxSe9+MPLV33jZhHVgItfsfQjj61WvgYhqgGtNXw8Va79cLbbaCI0bnFHse+/ny5Rwm8ht6PnmbuHK2BU93gp0ow1bOmiUbzCgzgv9wbdj0nY8zBXQXjuTWwMfBVtEpjZoD3WbpRfL825uJqxxR2SzeiZV+G/iw/BGUb1OyQlv/UEdvf2gKS9DTRk6uEEU/VcoRL1nTUODMt+vN3oZ6/GT7o7MaoMWUXeLpNFmqYUmxcx5ihfDUCHGzxPTzmzP7Tw9jOL1XdFVqAYKMPCP3Fn/C3P4pSNqgRNScwvZ+cAuRMSPGfPpvzJGsBsHpGTxDyAxswCeDpbo3UnYsuYmefWsBVhx8Sd1wWsV/UNcCzsU+k1YdABFN6g/1xlyJi6rPfdpk8/tMLJuN0f3l/Qkvd+BW186Ct573UcDDZLTkByk6rR+l5sf75G3KKn2BVR+DBb6vuyX7DozHdByMMrnS38ecTWFLo8NBF7ZNqu8aombzcvD++Sp3NHyO2dQogiJYZb/5Kvaj2kfvzn1AjRp+BhQPXKn/85Lj5VywieQEHeddh/EATmLtngv72L+I2/3f+ZI8GHA7UJPLcf9iqDnEP//SnzL3pwC7oY8M/Poc7K81WAZW3f37s6XU0TWH3C3lVQ5qF80H/bI3eR1f2btzWNQme/C5TyXYFpdLpQbPNbPPrRmhyiYdDeluyVR2ZBzd/nXpxOwB2oqsBJ+b12C4OoT9WitdC9Ap/VGcx9Ochu1Rg41v0D7+Hjd+C0XQzqkW5M6zVmAR//jSREi9lrLwYLjSFn45u9lnL9tp2y7qrpDu9QUuo+9GxJRjf4UBt7uwAxl09BXr2hxG5eA9sOF/cEP7xHStrn9n8FqgH4/0rRDBZL75A3jmEGz5Ra+N/E2zOJZxXEJF58yumUPNugHqOQtQd1sCU7SweTgOq/6ufLKFOlQx3EqJy7Nc0XyUJ3qSAbv5FWS/FW7lAT3xp1Oq3Rv+dpefqAnIRreepiRYv3VkKzxvboITtffzFZyVvR6Tf933Wddax+NOP2MDxjjF+jUsYilcFW195Muc//x8X3QOpP6eJmHo5KVD7TCV9xtw0TJv/BqPQTejLPA11S/KzqFpTFmOnwYSx+7D/QJdUPYketRJNNxWhf/lKH/ILWIVOQH9+CL7sxIrN5CnFwEZhg22mFKYg7n4r3I+fDAfKcs/WfVC1cG+CA9pvenTDmwTMUUrQ6lfzsK7ex/hXT3VhPtb0N8dQ3fIhAlYBzXEQfyngLGZh/fs8Z7OdhLy64TO+gJ6AsU14AtvBNhF7dny0nLR3CQVlJ6M/fTwfpDaFh+dwROVUm4w8PtwK1ACXpAndIVqj7hFDEml7fPhxszks8VuEfXo18KZHI9L+1FZ5aNL1n977SM/Uhp3OXvQY9++t3mj06lsJLGo9BMpGJ+ZbGHDZFe3o8cpYdO4sSIG9w/qp04e5eFygmjsCT9gbVNnCyqKBl/spwKg+/cD0pwe3+icuDtqZrYDMvDpcSg6Hv6I1t3pKAd9n5YZ2/tlldJwFG27+P4HKfolojewVhoRlBBTfxKfn6enBK41qdD5sc0K2/aEmv/0NH5PKy8i34WIQilNFN37hk9ipw3/+j1zG8jCvDx7++QXYkQqdDfHyKMBfvfouFTpgGx/+Vw8cvHpfz02qJGA0S5NaWatG07PMZrjVQ/Exvt2iTc8RKMW6g/W//Pc90QZY6gqpNmxd6JZp/qjF0l+Q7DYmENjhSCCX3ytqfGnDqHjVOehcT3t6ehsem0VoerBP7wbeutdGgq3gG4RgL1G9LvAgeO/wAn9p8yA73WbZv3rp/3OkQPnfRwqWICZEtsqCzQ1qU8CGKURxsj79uTbvMwyJ3lJrst5gmV9zoS58KdPLaDXm+nlHECqhQWmAhz5aLpOswNLqd0Q9HveMxbAJAcfjCRvVavoC6UJXre6HEhsuU8G8ihcRuv40U6OMK0Z23DLDeBe86avjgfn5+/vu9RJxEOvjsJ5dh8DDtw7oKW2ygZqK8gHADWR8WKfQX5Sz18LgwfdoPrx1c8lCX4K3vNyj+Xr+ZLPbLqu60sXAFnA+2XjcL5wq9Bkh/a6V2NyBFsLVjwGOjnbg87IypkqUEET4POAyim5XF35+gYbTXSuBofsNBrzLwgmbjbua08kpV5gt7gGjS+0w9iNpLl+6rUGxwymgvZygBvejcqQI2ou5PT8Pvvo2G6WqHbN9NiSEL8YBwl1X1yc/I2gBpUZCZmZ55ooyxwLSd04oTu73bAZBLsErQQR7YYKj/Xl/mCFiDkI7fOCz2a+MWPFQ4JNLmr/N2b8qCXQfdwEbt3NpDlQfQ5Dcnxfq+edTxO/D2FLs9pxTM6JTRHDvhEDIl47GUmf5c8W/KkAFPqM+KcxIiH9GAbVDqmEPDWQY24NGVIO0Nd6eO2rt+nH5ex56nJ3OH2H2tGD6wJTIn/sX9D09BID/DQUSfu7E2DiZFfRc60Svix/WC2v1QOmF7ooPp/LoC7/XrYCyUHT08HNPTPTfYgmyPjbwgwNDNiMDGFCSywyfh0Yc5kf/zaGddneKPsswbPs3h9dPPP393nqQ7s0FdHPtYc3fvaPf76p8AC3imAbviEZzk0oxPL16GftRrZqjs54L9R3fQ8Lc6xgtmn+C0AShgE8HKtbjz0hy6M4CpMdfcwDdDoMRnl+PmezlGQ2zZ69Illr+juO7mJt7BAKoaBQesBMn9sBSDjfQ0G4ZdlVbHcj2vqEfjy+KrPKbzTLJczgenY5wfTf5ra9ecjjRHyTfVkADicLWkt36tMdeXM/REE3Ehq+84BFotdpfmzsMQf8GF+xn8s6cRT2S1AxdFTQlcuZP4f7c7HbXr0Dk+FcNkyfMF1VNhxQfrkNvrrA4usrh+w6wLl1SsJ4CJEFg2IAeNNRE0+2c8tAQ8oaeBonL5plVDXT26oT1m7IOa55ePJir9gVbkP/6s7JYIzzViUpm+1ICogQhUTXjpiN5Nw4+nQe+gf3AImyjk1j/fV/F2hRhrBsLWwhyDXipPyZ+CGbH5tsRivAntQSbRb01VgtKSUVj5FPPK081vXVEARobj9TvKmNY9vfVgpIen/GhWAfG7tLPhpclcJFfybrJil/YgjrAA5o19AJLlmc8tBJJoQH/ZGyxbjYHL0pyoFp5sMF6xw8PNt8gJUr0w9nsKX2gTN2LIzAJpnpxL84Mr79kxMZl2EVkSVAP4V32UMO/X/XUfTgOTvQLqaahHXt/cxL8rSdGKLHZev/JBjSjmWK7iQAb9SS5QNK4HoKKF2dL/PNy+OBZi4Ri9YHY7PIbWA9IxVhiXD3hxyOAoPvqOHjKyKR/+JwnvU9kCn9s7r0OQfz1UyKkv56tL+eyqseHrVHnerQjgQilJa/i74B2w02p17b7jNBe/YLwfFGbjAp5CCIL+jR5Zlujc1as4DzpAnX2zuQvdX3tob8LP/Tq2T+2DotawKtgLBjPz3xYmPZ2oX61zjj5alLWfhPXUoT+QdBt9NV6JXYRwNctFqm//x7M/Brl5R+eoPsjdjIWdHkJC46n9Al2hrkmxWMr8XINdtqoZ10QzaOKPNmkQX4nw/qKegLz6yfA6Jg3Pn0mYaEywjANRmcB1Pp6UKnsR079n1X5S2OhG9jyHwKfRgfrhAUJnmcmk2el5YAF1mcjM6VAta/qZrP+KZHKYhkhvrF2jGzrCfev0KLe3/7Y8BvY2nLD5riwejGjG4HVMjTUkUzi0+h984AMmh96IKqBmYu/rVLcbx2a09PXn7++5ColqjWMpx306TUlBP7Fv/0MlO1zQ0C4Bz32+8iIvr9XkcNKerXYq+/rsG75VtUrckP7rQnYJKXVDZbJw0Dcuxqyxci5BO5eTxEfg3NZM70zPLgYxYRtcbdjZMMDKK3kQSSuVf05XzkEP1/G0UPwcSP20c8SeA5phnEUCtmiLixU93lwoNniWGA2kfSBlym3sN4LNzArH7jC+Px5YiM7lWBbj1HhPf2B2KhFgIynUwuYeL6R1T8XJnuhed5uPVoUFXLH5ij8hOD1SAWqPX9NxDKeSuD0KAF2j+UZLOj7dtVJkTSavyMc8ZbsKuB0XSVs8YXpD4nzi4F2SDQEt/ie1eJ0g9c+H3Cx8sSfi1BsVePJvQj0aFeP30+oqZ3YuVSXzXRYXmxc/+HxPuS+0dzFmgJ6/YTocTcOJq3XRwvsnVNgJLfhQLlg3wPqVBd82j3qaLF5fJPjHXoT8sMDWCDno7/1p251F8HstvIKxesgEbDzftn83bUesMZepW54ZNGa1YsInPD1I91FebPRGiUIWfWOCBihCXhPqQL1L7/qz5r3R1yyFG7vh+LJzCKWE81WE60L8SHijtFMZyWGiTaEaJgms1539/MIrgtccYQ/QTbNTtjAk8vvSXU+vgAN28MH8sK5xodJw8OGJ4ESO9r9Lx/X43quDaja4E468dtlS1C6PXiuSoV445FES3T0bNiGroBk8O5NJu3sGEZVE6J3ETMwH/cLVDn+NCHh00/DYoSkgMjZW9h/BmW9Pg5L/o+P3T5LnrXGLynAfu5PFF/lG/iLX1ikaYtt9uVqopZLqtLdmFNbcrRo4TRQwkfwfVITsbGeoaEi8CNWuwAQQO+/8Y0JMOi8XJAqvz113v0xWqOwtODbeyFSbXi+pDwbYRNXN7LE+Rq9n8c8h46xr4hi7gNfuLzfENbKdhg+IedodvXHCEuR+tQ+7ON6vdyxBKOzEmCnVt2akEvjwpzmJ2we7dH/SJF1g6p0flEEvNBc2iu3wtR9D9QvM40Jffa6AFEHAtV37xT03Rhz8IIylerZIRqWtB1mKPdSTWR559UL6UJPHS/qgMaD0fnsUkwSuCfPAz1u+X9J23qFb2m5b/h98lfOPVfqR+FMlCsen628syuVu96Z2NLGO1ik3cVTm1V8Ue1mWKZ4OBws+H0lHuJERLPZyNwSHph/JvJu9H2Gqq+tGlL13fDZA4ue2i4Q+GhGE73sBqIkbQvLJDPoNrI6WoXbnsCdqKrY+2I+o+bNW+HxYWn4GA3veqo9YQUbvuCwl4/m2nbjqPjvfrs1vUOZELM0haW8ePS4dO3QfXOC4FrtDXx81HW04c+swPaHCHCP0JzuDvNgfOIfSB3T0l/0DsXwLi6I6skvygaSWi5YalFAZaYcBlG/xgGUveBFr/r8ZYuU9jHw2vVMdd6RGXNjwIOIViE9GO/vwK7MboA+KBHhtKuVLQmoXXgopiMN4jWItvjl/n4vkjJyzf7xA9lDL+oExmdYV+OlgXV+OdTgLsdhtrkuAdQpL/QGL3omvrUhhuK1k7D/veu1IHd9qURjcSZp7ws+MyTvBvVWjBFM1Clbn08jBZ8MQIzzSopY0MWVgs+PO86eahktS1USSJPgRvU4v0SjwdoEbvkde/xuP0xXI+3hVzUwPe35t9ndHebCPWq0ravBCOZCIIUy8auBRPPBmx3RJQuO5W+mFmn0TPBQiFS9Gm9od8/EjM0D/IA7M32qne0668XvToIaDnWKvNMBrOx8D8CN1zgixIqXCZwGKvihww4JymWNlseXVXDLjyj7WYbP/+HPPkcH6kBEzaULXhZ4zRIk7C//dsHdhl7VRjhurB1YLNKIsOBEihSLTT4Tp6cEItfwKB5uab1WuK6gWJ9VcveuJlhu51QE7L474YPfOhlJ3TdR7Se9IRj+/GyFZzlQ743j4ZPyrIZes2NN3XVXCQd9evZXcmk8OJ9ubwKiWvVnVziO8NL0BvaodN1uxfArWJZcwYfg00bzJTU5eP3cJho0ODTn0ikgDAKlI1Xxq/z5OPQaGPP9SK0FG4B+9LMCskzdUUN7ZuAfH3Eew4eilLhsb0RpCe8WNbBR1xWbq2CXKwBrAJv2sx/Ge6IaoA2ShexXuA3Wuh9LSK0iIuNvwfUaO26iXIFHseGfC589kySXY9muMW5Smc2a6tpwwelE5i0+KWliG95UZUcme7hnc1uG/F+8IHH31jNBNrxC+XHziO8ft2PTpzkpYL0C/T8AAAD//6RdyZayPLe+IAYiItkM6QQETBAQcSaKCDZIkwC5+rOo9xv+szO2aolk5+l2GqycktFntTd90DLeZIePDe+Om90M28R6skBBiT8aKzmFgy9LZGddnHiuW978PT9xqXzh03zZa6CNjce0D21MjuRUgVGgPxxbqPOnwT0r6JOFF8x3vYckY+wTSFsXmGcZQz7120f7z2/Yr+kWz4V8rdC6fvd42jcMdeR9T2EqZwnP6VEzpxhmG45+NxB9Kyo5jR9NiARj88ZLvhCz3C4N8C0jZ+ZdH+Pf5mUsu7LvD3aah9CcBLEr0eLniXfbzvmw564BOP86f+Nh0iNjM+z03Y7YsbLx25PatFDYzZvs9qfG5N991ahivM3x9ixV3Ty+ig+ScXhkuXq3OTvmagsfr0mY97TifPJwFqj3c5Mx+zfczVsQXClkx3PCdN9b8Jw3V6gS88lsiJ7xdEhLULVNEdDV+qLmA54mCy3+mc7F1zD5un23EAZdiTehsIs5CgURLfjA/vwof0iZ9Ff/S71WfNYUS4PEMc7sIEV6vb51iaFcY2dituYlJj1/Jw19tDFmxkd9mbzgzQtmfFWYFp7qjppfq0X7urEX/eX7PLB6CuT8PBGDx7Y5tvM+hKCtKO6+6yeiaSZLins5rdlOiaJY2k5aqXrvPqJc+q39pg/3PXzllhI/0tWuLgKtVHU9xVgId07H6/nYqAv+UWU9buLXsJzyt+RVxJefH3/JCwTFjGeGp097Qgv+2RBZT2DWx3qgHwvHSPXPY8EcXFp8DJO6gHftYYqgd/x5J6s2CkyjYfrblWJukzyBc/bYMXPXe7wfs+imHi/HmTjKk+bT9leVcMCwJu30lnJqo3cC9S7/EWsz1P74eEgi3LdaSYJTHfi/tb1vFS02dljmolIP7O4GsFIdRFGZa6jXX00Ag7uTyK5Z025idw2rN0lI2P54eObz8x17cLMUl/k91JwqL/nzN5+IqYip//PWcgRFZ/dUjJQ8HrdKn/3xHZ2mIov5TvQ99NZHm0T+UTDZ3u2UP39MuX1v68GNyAj7h2zQdWNhPr7alQTV/p6TwDru8zGRrRQW/U7MbMc67vk3Dy18hzfXneMv4x2Bfe3OdDp3USzqrzJQT0R+L/5D4ou/aNFuGxO8EcUD4pnDEji1Rcc0QRzi8aydXEjm8Elsn0lLXnJ5/eVpWL6qp24uPV8DVXNOFH3XTz7dupsB+14y6fZS1/m4abgA8slOmNMXPl8HffbZPlprS5zx1/PFH0VqeD+9GI7qL59z/yKApZ515jr86G8Sn5aQHD/3xf/t/DH7rvG/fM3+xDma0ymkinIDRvbbVfvHFyMqZGNg2vfh8PlrWO0/venmdJ3zVb4RVewh809fmgNCkfDPj3llzGuaxGECl+XijINmpGaz8MEW/w4B01F64bQ5WpJSi7m04PnPn7KUp3BzwGFEO87mdC5jDUTNz/DmwHbmEJ2uBojyucKo2ur+zz9qBRyVTmHOVfqgKWM5Vi7xpWR79PRM8dVuJHWrJQUhm829K1O1l2Cl7hBeLXwyW8ZNVE73qiXL86Burm4y5EOm4yFz85jz6W7DcZy2ZMEHn4vfdQYbv9L/+Mnsx+xaQHFOfiw8s1fHRPGQ/sO/+LIcnu1Gzgx65oV4zg8aEiP9ZYNxhwexhvWzkxLa3ODPv+374cunqWooWESTmecK2JfBUAPoxRPHstmE/vokGQ2M2vVJnPV7qJn36SNIsTwzgpOkHvUsDNUFv+k6uu2RRDtsQC7YO7zJ6m89y5WbQvg9fOhI3X0++b/m3/wnWrn7oEkT1sJfPkIcoWd5f1thV9lVjwNWp1TjGz6d/uEH3vystuZlq8lQ94gR00KdyeOBWtDC47z407H7TVRuUeucAmYdM8TH5/ucQN1vGXERzjllgxRB203xgj8tH8/a3YXydDIpajTTn2/Yw2ge7w6xBktHYi9uS1BuAqPx4TiY/ffevICYPMJgv9x688cH+ns+Edz+DuZ4cqyPmnRFQee7VMXzfV1F8C4tgpGCP93w4K8RXtGyBUQRU7P31WsB8Ric2O67HWo+PV4NXAb1jbfXxDQXv+PCkl9TVYqey8UWYKCNNPtsb5UCH/PxACiT11eKNu+d3+/Q5EGpvzVm+yw1x314VGCu1gYLro+AS/XG/0CnkZx+jfHZjfIjCcERdh0J5ndkvtipChSsDzY78F/pj3948+PfPV5STn9u7rdlmYGxXlZk16h3Ds9WlVydE1s1dXMzp4GgLHqXONM1qGf9dAvQkofi0VsuMjxwZVb++NjYFI4vFnf8giX/oGjfoSVvJDOaH7ZAvOozo0FfpyGYmtZTmf223XrRx+qSNzMLzF0+v57LLv1PGBJNKrq8W+UrEZa8ib63z7n79kndwFrwJ7q5JN98iDMvQrJXYfoNDKsbrWMjwbCRdKJxq/VpcKIvePjjSEUJzHzcWIEL7+jmMc+0g3jC09aC88/fsyCW/JhdBecFtz7DZKetPubnEulXdDC0NXOsps6nodzM6L4Wnnhew7ebOmNzhSVfJc7+ZflSoozZ9i/PdRsi1z3fmjY4z32HF/yNp8vsF7A9RAUxMkVf+MvFsORfTL/pYkcfdJaQV7UxFruzboqX4l7C4DoS8bSm9+vqvK/gYj8eePux7HhaR5fPP/+Nv6TjXHg/SljwCEs7O0HTxm890H1M6Nfsq3ycd7ENeUaAuM/PxqevLRIR6+DC/vpX49AdJaVbn//y8yLuzjKzwWxfE3NutOm6NblX2yUvX/y9wqeGFg1seB+Q3TCxfLiKqEcDJiLTHvs3H0DwA3hsqEAwQgxxNT2ncAf7gb+12tSNZysYVcO2Ivt8ZyBpIKoCrr5mzNdeF7Tm2s8FLbUsdrR64nOzinroWl4y96qeau4+/VnZuIXxL3/otX1oQY7PCiGJKvmzorkjknMcMU/EGzRs/NaFwxAJVARzF49jFhUwmkXJ3KUeqVg+Mtjsribb7byvSQ+BLS/nu+4YsW7c/Mtj4E+vRiL5+j2WOgNKq1nR1T2WzT+/gpb5Sg6P6hb/5I8SomD4DFhS3lq9mdW3AX35HlmsmFI+bO/RR/3zz7bslPFk3KSr+odv3vSWYgZ0g2EfgUF26/TY9fo4emr8u0Z//tGnm0dmg3BjHyz310u9fH+BVv7AiSESx5R8pbiirPFT/DNfKporMU+VmXGDbma/z9ubPoegXJQRC5+i9+el3mHxJ//4c8hSnqgrn3E6+R6Lx1f0AIRyAf76O/nEwjFUl3oheHWa/EnXafTnV8h+z0tzbNPJVQ9lKuCPaur+JLbTDTmX34scQqqY/VNdBWi3PRJibqO0bm/XqwutFR/odMm4Oaw2+YzuTXojO+O5q6ex164QTrynY5O7aOCNjtU/P34T7zEatzQpVKr3JrNj5WzOVeNniJ4Km/mT8+LjX14gxign9pUuLXrpKgJ0vwPbITPy57/6y2Z2I75kvrv5T39YhiWTu3XYmFTfByH85UW6uxkXvxBK6j35XGjTDhmaI4EB2mVfn2kRrxH3sXWFLtw+mLZ7Pk2m3PEMV+W9IXsVe//6s3/jSbytl3XT0v+CCF9UdphlLZ7ejeSCp0c+09VVHjffY9hCo45bjND4MYe/fkWjUIXZh5uEOEaWAEu/lCpLvjeVWBTQH19J9Kfy35I3wCa1Hdz9KmPhcy2Fc15bxOdXy9wEVt+jPtXbf/5l8n9lirLkEtNvX/hIUpNfAXX54//y5Rnlmay0zjlgel9t6v4UJ6WyO/L9Xz+x3lyYc4VszXP2h+dceJ8rKMLyi786rvzxkEfK/2tJAfrfSwpaXXfo59of+NAepBva+nODV8NXRf1q2o+Q11+NeZXcoJH8plm9gxuzzNWZOe6LIAHBmHV2eP1edZc81iMyLOZgXl2EeuRV9IIdWiMSmFcbiQhWGXQFZcTw0sqfi7ZVEL6cdxQpXlaPx/4EoFxuR5Z1Vd/Nydf8IO2rF8Qg5rPrP/fr9e/5mP0uTmjOf4aB4Dyq5HBCPzRXutEDtaQYq49Lak65+klAQMOb7fRlz62y4h58V8qN+M5Q+fxarSpwE+/KHA1/OE/UJgEr3z2I7T4Nf71RNz36kGyNvz8xQGN5zRrQX5ZFzpg8+fsa7m1UlstOrBsvO7o+yinaPn9XYvsCN7vVLnWhMI4Kc5XQWXb9ZDcoviFneL47nEsaL+EZ3j1il8Pen7afOVCzdz7izfI8bWNZBdLozWGGlxomf1/cBHTieMx5y1d/XG//rnIICUleH82U8EsXoZIbQnLf4zkXXpYB3yg50LVYX8wx3gwijIbskesreNUN5uWItB++UHkkQbx+PdAL7Q5tQwdYdx17GuULouiqsau7PnfcrLQrRO+CM/2yZNSf6UMVyVg7RH8JV7/f3T8zOtjulpz1D6n5YWkxPUjyYMZzdc3H625TAjPmiYIrx3k/61oF7ZSfsLCZ6niSjzyFmHs3hptbz2fjdG0Qv7Qj5rdEyuf2FWN47tSB4dxW+MRHv0F4dZCIvypEv3k6awEu7bghke9QxFHVuchXqYC3fvvJ+0b9ucipx4BYlZH6LPNvNzB7OSAPJQz9Nsi2AIrdxswnm5lPx/O2gen56Oih0g/5+P0NH9SGY8QOWf00x0sWBWpRCEesbt6qSevqNiPTszA7zGZdz8l1zNQoyjSmvV5rNG6q0YVAFc/kzNcO3yAqpMo2WS4ueMAL0UdSUlWuKRD/Gw3+dHXuGRoF40fXf/X7yzRNner2w4xfMpkN5s0MU/HrmZ7JUsfoT3LhcqYWIS3eIraMlxrnFiMk4quO4ZtooE9pbonmf3Uuvftnoq7DWKBPulr7faHo0uoQNinbE3FjdpJMZvBPXUQOb1Uzx/gUFnCTwVnq9edz7KguJDl2mX2O93xO78kLPdR6Zvvz+EN8Er0e4Z8VEl0dGJogyhT4qUJM7NXT8fs12cjoqqomFYu3xXvT9in0l9eV+eP+Xve3C7dRo4oK22/T0JxBCjwo1c7HSnvs+SydHhLcQFNIUm+1mLdzEMEbUgNvN0en5vvQDME3NgnTumX/lLD1ZGTxfcCcSbh3/DBLAex49Mbz+irWs/x4XbeFcv5ga7b6eFzFD4x2LZh0GV+fXk/2DeqfcadSOiKzV8jVg8z4zhTCg+fP+/PFhpP/SumWmF4+acXXBgLRjVneF/HxLJsZLPXHiCw7cV+P8hXc2zDizfzsY6p7xqxif1wv45nW9DpPGhj9yAleIdHvvfuyKyxKD4uFVfm3zNoZ6Pue4s8RP7upOjENHU6yxfC+R2i6H58CKs51g1fo5deT87sE8FCKFTnYtyofM5pkKD6UD3ZwDmw5ZULB8Jk3GypKk8/n4vQy1H3/SZgVJyjmAQwBUldg4B8x23jyVzLA/u13dF7wafqe9uHf+DATsorP2+Jpwa+8Wsw7Vht/Gi+dAtQSY5bDzPiYy6UAZbs5ELvnfTeZDW+QFZ4w8VYW4VNqbyTl09OQmK5lmBKUe4CqyL90y2Wzm9vxk4EeaGfm2DHz+XMLIix4zOLCL+sx8GiKqvBTE50Um7wPPJpATs9HZn9PpT+uJn0G+zDrxPz+evR59v4MVZ6ILG3py6RftisBZnRn9j4F//fRjCvQuyvSWXASf/SF2ALtOY3L+OZotMMsRPrUJoxczr9u/tRqC6/9r6TSPXmbn+z7dJF6llPijVFj9je6FQCviISd23Xg80eGCjS8mpidjrk/ZUfriq6tHNJN9UiX78st9Hm4GpU/68HnucRt2L37E3Hw/YH4J+8r6PDqRQ5TmSA27fct9FPjkKNIzHput5GlRu4+I7Zz5N049/pL3dbiieiFKvDptw4N+GlbilfWy+6mtvtpYMmZQswfXcfdJjCvqAnrkni7G6/H3Z2O8HCQhNdzMXZcwHsJDjXbM2x5VTy7wR6jBU9JsKHfbggkHVS1DGR2tUdijuvtuoU21TRC1g8znxL0Vf7wjLjvu5XzU6HcEE7DiGmTkKD54asaytH2yXT5kuT8EJYSXCzFxrVeyuakfa8zOki1Q+fzqJsbSXZG2NTvmtiia8az0oqhitp7xdy1tjUna41FxC/NSE5iffFnu7Z7uEvymxz8/ZOPsuVFYFRaRbJqq+T8nLiuemnnDUWmVnX/6m15P/QVNmd/Tn9shncSpuyvfmdtbUro8JmA7Uj5rJn89EIYD01OzqvsVg9eO1toJ1cxCTJlX0/S7d2gW6xiZjg++FNqryRYnYQDI/1co5FJSIFRrmy6Lb9KTt9YGJG1Th265nPw3/sUyuTInE/eIJqJm0aZ0Mphpi3ybtwqeQCVts6IdSCx+dbdXoFDcb+y4NzmJp/bnEKYpHviPp9T11UYjVD53x9dPVZl3R/2tQGa+KXE78dL1x3CRgJY2xmuiJx3nP/CDOr8diD+rDmcadnGQ56z+hGvAMnvxkhuIFoJhE6G5vszShQbNn4tUSRLqtnbt64A97h6UMqsmk86HBtFVbmDeZ/23TgZpqiG1keg/aIfFv25LMdPHLKL6aoe1jMToaj0HQnpO+T0EOJlyeSnYwHkTt5K7j6F4+E4kGAlZ/G/9wlReGWFHS+W1+5u//iUpCyKp1W8ndHwPqnE1MvM5/JwKpBsez1zp/rLecMaC7b9pWN4OGzrqTp9NeVPL2z8b1vT6XNpYNOsj7jpqqBb51PuIVFUfsQ37jH/xbKWAXxLl92ueGdK/qG1YOFrmr6LNWIwIOMPj8jeTls+zvVJQfrUJOze0p6/HPsXAfpmjO3pqzF5fZBvIJKwZw/8ftbj3ZRlJMl3k0V3PNTDpKiAaDtYxG3x0Z+Eezmrryc7YNGq4rof1/IHzPe9ZvvvXPr0u9liWPQI0+Nr6/O74RuQTq8nlkpPyWe7mzOwaW5R9pmabnyGz1YtlVfG8E9c19Pls/Cv/AgxOjnPnMtPI4RdK5h0jeCGeIFTrC71SYxVTjpu0fgFbWpoWHjwaz7Q+iorjzc5MvP8Tespb77FP7y2i92R8wDeGGobP7C8elWcvz6phM7Bao15OD3rabYPsiJ/OKOT1pNOCih4QBnMTI8MPe8XPaOW77QlRi296tml6Qe9v6c9203e2hy37yQFl+xLYpbhz+fjGmugTRWi6lstzanixxeUfL/83Hedc9l3LSSDeWfa2Utrvn78MqDrZYl0P9d8VPIhgaaMOrpaP+p8OpwTG/bRaaBbYKLfJNkGID9QzLSTlPszLAfV3iQe4HVMV92QvtorvPp7wfbB+ePP3e6doMIq1uwfXr7fcQk4LzV2PJyeiJVmJ0P90+54e/2sTJ6IYotwf5GxMpnif3psv+ocrGa17q+jlyWhZ9TuiDMJas3V8yj++TFSPIxDPVdyCoD7XMaSKVb5jH4joMF4rrAkiU43FrdzBOdAXS/65M6p2R7LP/9DgtPz3Y1+ckrALn5bYukKxJ90zm+w4B+z4k3r8+dLFUAG/U6CbnfKx8cYSdvxYo50NmfZpJENIrB7dGCLfkWLPhCV2acRceFE0PqPvx6icMPLQa8m3+LvB030usFjUSsdN1kqw7Hc9X/6lM8hu1CUQjrTaaX78UiSWYGLUhnEi6S5m96FHIHz/B7xn/6enFWeoemy3zP7uKLxHx/A+KYuFdnK5PyHeLiN3WgirrW75fP1PnvqR4lKLJbtkHMi2JbaP2UgYfU4xPzEp0TVn9s9cbZxkjcfN69g8QvE2VVVPjuHoATvHVtEr7ZTzRY/hahyI8y5zGk9XrevCBZ9zYqTHtVT+mozWFfYWnaJa53EbOM/vCiYZfJZXWsSiDcJcF4YBZrv3SeA30n5sl1y0GNp9axEMPqZL3xZx2yzGj1YV4FFPLV3zP5zjzJ0zf0dFmF2/D7qrg0QCG/EusjveJbcfYJO08PF251BYlqcegMt+pAs+smcJrK41b3YM4J04HQc3RYsYxZoNIQ1Yqtd4aHPt6jwryqsThreogVT0fVE+4mWOblelyK3vyG66qp13ndSkaK1Ur3JASLgy7VOSx4wq0w/nHQkqghsWJ3ggP/wj0vLkhO4ax0jWhPzyfqOifrnd7vo0Zp/eA++2gtMr29avu4vdgpdLRQUsIq6sUtcgMp//9j+jtN8srmG1ZOdNsTYGZ+6bx7CB4lWlRMzr/fxWCh7CWawSkIWPfWrk7pHj3OnEwvXuBvV91aGqVESLC16bNCP2QfOjHNcxtobMfeIXzD3pxO736aHTze/PFN+ZWZR5S+P2R3zDwR5jJkXSVE9uqBguJTGB2/Ej8h7kijLLqx3TPywefAxTadEXfT34v+ei590Dbgn9pcR9ZeY/Ru0SM1W7ZnyEM9okqZXqUq7rYLfZfxCvZjVHyhdk/zTp3NdJTMseMt24RHX/H3REvVwUizaq6xC4+lFRDjFssxwpu7y+eGvDXi28CF6owR83BdWAuu1ZjByG4d6esXNFT08e/rDX58+Vr8RWqRMzM/Kdzx/r7iFg9/dmN92k98o5OrCfWo2lN+SNJ5Lb+oVO0YN3Sz+rj8fvBQZq9fEDu6zRUPpPbx/erV9PF68n/Vlidsy/qKDz2hQeQso6LQLM3aGXUtklwPo57yng7/XOX9YLFBi7t6IFT30mIpfpYRuqug/fzDIu9JVh7ue09Y8++b06/sULmGc46n7TP4kJKqNHmxVYfW4Opuj8Zo+qiQ/TDwlzg+1mbhpwbqHV2airvb79XLsTvx+BXR7st7d2LW++6fP2Q75oTnmFgSQ3t5f5ibtM3/hFQII6C4gJGxbf3TsX/hXP6SJjNaf/NUobMdmRgS/zQbNdRC94KVbHsm/0cFs9qJdIvsw6kQv3Benp48WqjlPfWYu+msQmZv+1S/mibfr1l3APdVIioiZyBXz4aS8PqiTxhteVes1b0eIJVjwmxAhMDi3zGuFKtOIiauE37jnh7yH43nymFtZWjwhR9fg2I8muVmOXdPPARWQ6kHMdFbVnOsvov3jP7vZXPicRAGFIbnt2KKP0LQtcIVUub4Qh21P/pz/PAMS/6YS9/jI4yGDQ4HodbWll/EX1psl31LDvdQT89Kv/BdecUCLP6CSf7Djtrn4CVBuftiuWv1MTnK5R4v/I4b+q7rxc79mMPr3ZaGd7vrd9hyHsMsDmW4F58bZXLgVdJeHjqUT0n0uneYrvK3aX/yAXq/LR6FBV0NBCmt1i1keqOkfvmBUPcuYot8oqKP/KJmxvibdxlN0TXV/mcusTEfmV/PLFsK+bZnenAV/HketBZw4Z6yk8zufLb9rUPp1LKqu7lU9+ZtDhN4bK2H39e3bzUlk9aorCRmegpmb3KL5B97tBQiRkns8Lvngn34g5qnQfZaezBta+I45ETzjIXw2LSQ0RCxgumvyS9qnUHrYw5sl/5vzlYVhv/o5xL5Nad4P3kUAgbsEdzwLa56tI4z+8pHg+J7RksdgMCqjYof65HKJRamtUnXaEPfK9t3Avw9B+ePPoFgdOUdV7cnFN+L0GV89n9n1LwR020bE+p0Dzle1SwH17Z3gMHyjyVLnEv70ZrDxM7T4PQq1HTxYKh1l/vNXsgCpL7yYb04kHiVZSSFj24CZ5L78/7JtNFs1Z7xZZbdu/ZenvC+VRbSivtbjPQxsxG9DzYw7PnTbYuUE6K5HP/x0dTuXRJgy1f0eDsRw/Jv5Dw9fU5ExHe2yevJOPIDAgGHJp9RuqktBXsLaiKJZ+3KOgkaA/qkAFejz5LO12IQw5kFHQsGScz5AJoEmvumSL7hm+yNJggJbLzFf8pjJWcUZLPOTPrfT3e9zuQFF/KYX4r+VVzyP3xsA+l7Zv+cbcjuywFSK2yJwT/W4/4zanx4ilnH3zfl01DNo7Wj9h698PoF3Azm/XvFwJu+8B1bKMBCckqBrLH9Df4KL9t/0Q6Vy+JmzfZIDuB4+a8rDSa83ucQtMO97nezUUK7n2/qOYd5u31hc9MVfnodGbSBk/6oHs7ed/oUC2yzZ/vp5mMOCb2glfUNGzEQ2J4pvGrIb+YnHyzzwhY9FUFeCgTeHnps9C5a8VF23zIkucz2qrpOCd+5FrFWPIe4XPkW/uthQ/pFLczy9HAmE3K6Yb1/sWtoWTxsaFwt//Y9uvOIao+juHokJmcHHMbONv/qh1wTl/hil+QiPKI+JUVV7f1ZWyINf2G6X+lG64XJ/fGBVPOvFL+nxZlS3FPmlx/7x0/icVxqyp4OJ+9Nz1426wkdo+SdkFs8ctP6k1gvOa71izgb7fHr39gwrefbJYXU3aj5AKP6rbzeYERL/+F5JgpodLskB/fv8s5pMzM1zlS/5HKj3/uKy/Ur4mvy82gfIXFGPGbGI8/Hx/Xp//QwS5J8DGtsOF0pnXzHmGZrz/iv0N1ivDYP5PAs7Xl/9BqqTdGSab8Xmf3xgOzYzxfKejxKGFzT1qSBLPmc2W+oaf36Y4M/5lf/zh5eoSLHSvZt8LOyT/ZcnkmIY3Vxa8p2/8cTC9aghftwXBjRuIODt09ub7VrcUeggWhFdJGYn9ZdGAcnYOAt/3/yZ7HIBiZXV4VWzs2Lx6Gkv9XeSv3/6EjFhfGDw3keLLPl014tBeFVf/aNgJuNq3QSPIYDM2ZTE59nY8bXYRKh4OzKt+Cnwp5FW83K3dES0t2N1U+NHISx6gBkO9dBcDsRCnlLOzKq3y6lAr2WJ0PtwZM78DPLh9B76f/nx7hrta9EFJYCd6+2IdfR3aHzkOfz1P9hfPsON2u/heDdkjJb+yPRar2eQaZDh7bHTa77F7IOWfJMeV3qXTyhOMKgllhe82yFp0ZsQtg/G9Bk5aMlnW9hQe0Wl1l/HXJLJuN3q2pnZL3swh1W8HZXlfZA/PfKXL8JwrmS6KVOtpnJ8DOAg9wZVurebD4f+KoActnv2h9eTK4SWSvrnkR0e8OKzVVbV9lb3F7Z/ej9ztta/K8TGjFkgP8T694rLK/zq22bJY0VzKm6ThH6NeiX2kt8yi+YvcO2Ph+WuCmrx/jYEsJ93maXNZosG5OiGer91KnOd0PCpGXwE9VF5BdGE79fs41NWoF/unYiV6bk/7PeloYYKVpjjIjtnL2ZU4Hx34l/eyqeqfSvoX/712O7N9UMwFTh+yxM5PAuhm/9+/1++4t14WTPIwIVdM7nEUYnji2d2piCdJY3tNCLnNPx8NHUw6hVVE2tVM6mdwr9+AtF8i/tTb1quWlFvJgsf59NTvP3ze3S1WbZIF7dzCKy+iP/6kzx/ihgcv38QbT+e6z5oQhmWvIKK19/sN5fhYkFbfFO8mfZ1R9vt1ULn8z0i2mGf193ffF3yTLoSAgNNm/GJVfzsvmy/M0jO68NYqEy+Dsz/nU/1qL9BBgy+STfCl/F+1RQWXBxhS3ShuHXjZz6G6i1eYfyWrmYuncAoVFOOn2Tpj+RTL40y/Pnpv37VVMaeCCMPMxLZVxbP1lmSoKE79vc52uyyY/anL8juvRbi/h5aNoirVqGrx+3I2fTwJSgPoUoWv9HRhX/UvJEoMZ5emc9CegXok7Sn6tLfY395WvoyjvSz4NG43x9uymSf/X/9LIaq2oVb6u5Z8l0ufrCiqVCM9e5EV1M91pzFXICT+EQMf9nBnGXvXYL0voZYCruZT+edWMHmNBcE+7VtSoveRJ+1MTOj+KQ5/5BLAp34ftJN/tOQtOw+VJd8hoqoymp+354jdN5vDfbH9//yyiXPwLLV+H/9EgHA6j0W0veIxqiLWvDP4oHp1o4vF99p9P+1pAD+95KCYa9MTL+SbT7sq4CCdLIOzDCkzqTdXWjgMhUH5htaiSYplyQYlJEzbz2XMR/FVQCPRimIjy6CzydxkNHtbbR09eipOQdro0JpQFMS1Ku2499348GqVH7E08Q6HqPi48Fue0fMe/4UfzDz04hUGhxYtOEGmrd91sDtJWt0Fu076kl+TuG4qR5MCzs/54G1/QCx3gbT9XboZiIfE1Dv4pN5l9CKxZ0XBiB9YhkLxfOE+DTrMnIhuJC9M41x/+ieVxgPqxfztNWypOEW36CwWwtTbOx86R6wFJ0FycZ88k7LLtTtC/rf90oMJt/9SXhZFVyj25btcmuXc1lpFOUd5jtidGzOm7WHb0ishDtFrXKIqcCrQBHY581c43Hm03Vri3AKvgIGqHqT6dKkqeFpzIn5Uq8dxdtd+Pf3dJW/3HoU0kKGQGOYHZ4nOR/P71UP13kOiVVph5x/XvsM3MDsyX4sv4gHu2TZv1xnBM/c5mso9RF+7265qw9/6+kOFBB5XU1iusQypf42XcEfLUznOJHqRttdElgnucd2m0nq2KN0ZrjyS0hXotOag13EIVrGH4u7L/isrpAAprRZk91KCuKB4rlQh/3KJt4awngYgskGN9B7ZmzUCE0fW7JhHqWBbo6PMR47dQ0w3uc3Xtt8W8/ady0oadCnDHsW68a4MEt49octw95O5HOESg+9Hn5K8A48c25v9geQH40EV03qj79NU8JdmimVr2PdcUcwXnA72SsSZOYKDW7pJ8hn/ZNoQb3jY/rsGng/xAtd27MYj2rkiSj8nGxi7fNnNzKtDZAsewkLxEg354M4BaputBlW19M2HxrvW8FdwibbdS8Uc0OeMzXeJzJemV7k829zukEocYf43JNjTrw1Bb88HtiuPq27IaKrGQ7RI6Lt3tz7fAttiKpb9qGbWXNMbgtDAKOw+dBpx7N4xjISwH+MElvGzx+ryZBVB9UplrTlRFnj519BOnkV0XeN6W/K+96F/d0bCZZgqnn700LVsLSRObsjQ0M8zNXKw93M9CL4dX14BQqfI3MJLjLfnM9mckXKHgZiHdtvzrtOb9ROHjK2q/1dLcZlGkDlKyHT2/cjn3K5x0iLHh2tQK+7cRv8UvT0jxXB1S/PG5JjDcXKWmH7V+TE4/G6rGp0oogZj8wxZ6sH8d/n1mU0YnHtHD2Vzyynq68qxM9Nbigq3G57krQ705zisaiQYb1z+vNpWU/ncVwOZhUkdrjgzJ8fGNtoc969WQA9+EPjlDJMrIuJ856eOcN2mICHfzPD6bHlEz3uXAC1WNPvIQvNEV+sRnmHT0Y3ygVQX03vSkm8z4eO7yPkTdEpFIXpfcRVnkuIYfvXQihNDt0ueEMLv7IV4bHZMrfY1HwMTjFGt3WW/huf0QkFAbgeXOhG33v5NMelBoOn50Sny12VUjOWEJ7mnNi3c51T43ejMJFDxIz8OnXcgrULZ0G0GTnfm5yPcx5sdPHAaIdTmw9DsLUgvmwwsfavPp8vVliCKQVrQpxoU89V/P3AM3dl4sza1x+6g5CCESs28ys+LBbt5yLd6Ae2jwW/nh3qRVvtKHXMv76Drm2uTAQXPIuRR9fwMb4rAfrDZ7NBoc+r+qvAl9dPFjzkNmZctjXE9S0l+8RJuymiJ1eZxn1LxflR+I1wbAL0eX4KHJiJyddmth1BpcmG7cVZzedIOBXohTUNS+HeQNSdiwR+VrPgaxF1b6ccBOgbeUeSj93kbJrG17JrBhj5TiaSbNrLqALxy/YgHRAfxU0AD1ncs3jB+znYrMSt0q4uzHTDXzxVuh/+zQe83iy7KufEa9EfntllSX2KpWcI1qaomXVc37rpY2mzGkquQ59Xm9bz/PIEdNWhJv7GHRCl5XJQ7iEidNsvd1/iy10A66tV7OJ8tby9uqqMtHl9puq6od3sjJ8QroYmU8EzvXwUYkWBfdAzQkjq+txS7QJly930Oyy90KzQLkWFzCZib3cX1FueIgKfrZx4p5uAZuN366H4fnKKbEc357MmZ+ivXnj2bv1Z4LyEa/TEJHhsdv5wk/UPrM10TyzhaZmitO9E2F5YR8xG8RCvaqaguxSYLB6MMB5trH6gTZ8xCV5hbjK+5glMqyJhOzROMVN1pVLO+G0R7bZ55nXkNxV0NtWIp62bjpbkJaFNeg2Z96MM9acKh2CYQs58hBs08ZNCkYAbjOE8tebokolCxqhLN4Os1+vxRGR5mW/E9d4Rn9TnJKqXpxYwA/S6HnHaNMquCUOSFMYZjdsg1EBp1QvuPqpqjpOVt3A1DJkYxnrHO+LWmlrfgxi/7vIXzeuve4PVs/7RpsPMbP/mT3fmOjG+RWX+8YVSnDeMNqvnOx+cchWCKbklKdqXbs6xYLlQ9TJg9Z3zfBBeQYnIS6B0vYwfb39uBLOma+zwexX+HCq9gW4v4UTV9y2r5yMkNhSybxPbASeebpsxgvPDuS6fy3Uv+UKFnj3ZMvJVhXzckrSB+o5jzMdV2bFJvH3+xp/50WOqp9o8CUo9NAnx7UiKB55aGvijjXG9jCcN1l6Jnp2B8YqvrJg3X0WCkeIPRlER5HwS/RDBgXC6OTwVxDzddf/4m1zEWY2HMVoHkB5OKfMuVzFvKjpi9XI8+P/Gc57rJkW3E/lRvrXL5SKhc4g+R8tl+1vQ54N1f7hgnvCeuVcl7hh2IYVO9ga8qjnO53dyzUB2woiEU/Ltes1RE2Vo05lZz5VrTvvKonK8X8l/9W2O0XI303hIX8zuJdHsFXzMwGmvGtub7WiOuhP1cLMagTyYvOxy2kCvYNHqWWRIvs+09TUE8n7TBR8P5mRdwwrivSov9Ur4TORLAiwwnsSaH4I/vQy0tMTyjBy0Uq/Hdpu90MKXtFV2yJzuiiegbHQ9Zr2XuygXfth+jtOdHNSNGI/NZhJhd5YIM5isml2W8AIernbD4zqu4qn1ARACb2bm2vmYfOjLK4yCe2R5enfMMakeL/QeA5vktvvJeXLIPvDRWoe+WRXy8b0hBvTuhzLiuE49Gntvhm+lPCnqzMyfr3YdIDnLGyxH3YDm/VRlf3hIJTVQ/DkS6Axj8VBwtuqv9QhEdiE6yz5W1eGV8ygwPbR+YZ+aL1XpuLt6pmpwPLyIQ/1bzp8Pr0KaHmoEr/xzPtzk/QuhPr7R4ektJ/XR34iSnHzw9o9/3NFsYWgDd9Hvck2twfZQYdMLcXOziKc2wCF6sfcZo417QBsLVA95NCvI4eRs+JBOUYvmMjSIptaHWMpt7aN2zfFMlcuFmaOQBBhdZ+lNXPvW+MxRp1B9em1F/KiUOG++swjKXskIIU81p/Pn3oC0wxumR1pcc8GsXvDR8cwOWvms57F0A9hmlcZ8/ASfSt3GRdtt1TPcvj+LH0pEebu9Gkzbvjdoro6JAn/vW73sDjHPs/wDYuw4dPPsPvlYTZ4Cx03h4dHNtXyWh7uCVJpuWNCnqckPVhNCqUwBO7wjt5acQRZAFUaZ4Ssp84nipweZps9MP6kmEqkw2zDeJYVOtBb5WA7VqFbq40v0w8ZF4zI/VF3cX/G2ufZopEI5ootG13Re9Bot/NZGGetdsviheGyUk4j8MN/gZfx8/vncLEg640u8497y59W6e0G5Rx6Ok6/YLb9fAgqWRIzvN+BMtYoSodyzmYur2lz4HMDtqMn89Hs2++TBX2jha/I43+pF/3oyUoW+xpvLu4uH1q9baHdCg8u7kXb9PnlYUCpugFd+NtfT+ny8oROMHWZftVj0xL1Av5OHiDnovj+ple/BPc0N+udv+i3ZpUBemcm8YXOtp3TSExAe/IWZTxw+J6tKkZU2soj+uV/Q2G7DjyrtjgFWf5cGTY33Xe4ufQvkYH2fnB3sGdSTmnd4Uj6lz2e+FUCMbg5zqB7kw/7ZWtA5QUoKaX7Ws8/3Llr8DTPi/TOeeJZSeI/jxLJ0cpdTMcpou9QD2ZeejsSitzRE843ItAyl8T98vRrvmtbTfuyo3JYvdFvfOmaq2I4lZ0wEyJMciKNcgPfXzwWjKMueGC368V89bbNSI3boNT6fJauBnfveUnE+YZ8PfXNVFv4nnmKdEH9VlxSis+JjiNsfn1l5rP7wkDmXl+3TbR82UB+ihhyGKu7YeuPOiKzvFjMQanIurrNe+Xs/m9NNq8V9FGRo5363VA2kb9cS9BDQ0z9v8FYeIz68rauN/NGr2R5kOZ+O7X45OH4OMNyMaz1N0T6Ctbna495/4X/6XpWbUGD22l6ZoxudevT3PjE+KPmixwGNgndk3t78+WNUbG7w+Oku86MyRfN9X1LFshuJOMvzzbGqSErxbUbirnqlHk3/XqCs3IpkV/vvbpjjbYLsS/AllhTXHTcVPqLjmbjEFrmVj195mOFaKQpOdh8J0czYjnD8ant2i3+vbs4s5IJe/6w/vd4NtTYJqv/Y+Gzxv/74kXIbbdJKoZIIxJxId25Q54Qd3fbVHL/fVmSB8JheWPzYbj5bw7mA8wEsZmo+736NM2M1TC852z2CFo1+rJVgna3NXz7g8w1KJKj69MiMjkX5RJo2Rey+q5hdPlz+0vdCD994V9LYOtKuH41rCOFJGul42+hxVxQ42z4cwWF/ep7R6bz4sb1CBbS7xXOXX1uAwHDxO9YSxN4fgSL7svnSt9Fizs5xQkHkBWfEOUbx3F9HDU6354/YtyfP+16NU7T5CIjpc7s2qT2uXrAfDJvZ4xqjwX0oBvTbYiSaVYz+JJ5FC1xYX5hDTYk353owFLfrTYbTaDSn09QBeMK8tFD8jv+r52U+4XF9O/j0L29S0J2xi/gx0PTboxcE2oCJ3bxNPpdE8uCMv9aiZzQkWoddCVW/OuJEqGndX38PCSbcfnE4nfrlXKQyUu+fKGNu9KvzqdQcD97j2mZEzpScF3mVweIXGb6Gu3rmzVkD9aBIeHMsfJ+BYYrQvKItCW76Ke/3x6VFJ63XhLYszRc+kf/wmgT+W/Tp+rceQb2PAdGLA0XLeFiwa9Q3MR7Vxu8sFd/Akp2aDsEmQH95BhIrxaWo6AM0L/PvH78FTm75vK6LF7pobUkFbyci/iwmDInHQrIvfcecx6rH6FBlKkk+7sxn/RunSn2fBfan/1lR2Nlf/rPkI1k8irufDYPSF/h7OLd8TGspge7s6gx/viOfUBnbsOhV5uNz4K9Jw1tlY3/Jv3pY/KQHC39jgXZ6POtfzwCx/s20f7nresHDBB6NwP/8R9wHp70MpbJ+0mwTv9BAsXID0fjZ7AY9mCx03SsI7PXG4py4aNIvKw1OSyLnTXzXcaS9rX/8ryU/DU3WFXnKkv8QSy+meDhzj4LdnlXmvGe7nm/eAH/8Qow8fNb8kmQSKhUvoII06/UQvPMKSFJkuEknF63jsSgh3CVX4jN9qKnVth56ouqF13Zj5dIffzmKnDL79dn7fNHfUF7GkpZh+zGnAj0pOvVJy+xXw7tJKWpNtS9ehMW77KAZUY2qUZMGS55bmPMf/pinbUHMW9/G9J3UFJb5yHb5rq3ZFtoIaO49qLzqTvHc5rUAz9yq8Z/fHfDPEv7TV899iujVvij/+Awr2ydvKyzLoEcf84/P8rFDbgsTOX6ZacVbc/ZE+woQfDjdTKsnmsV3mKHFHxPfdp7mpP8faWfSpSyshOEfxEJEJMWSSWYTBAfciSMgMiZAfv099HeXd3eXffqcbiVJ1fs+FaquGw0OF/vJjOL1S/pB/91haNGD7Bf/M/iFOCME9oNgST2jaYzjEqoDf1BBUX7BfNjKNkAv++yy7K/6WjYuWng0hjJC5nzWEwM9dnLPUvvuBtJqXZSAMm7TdJX7nXgpsl5ZfT4Nns7uNRjt0I3hX77YB7hDxO0MxX/eOZ6qxxaNq5MYqfDQRBYG36M5u+yjwbFjwPaC9jJH4XyWUUrOdzqqg5rxbhDgnz9281WTTEeWV+rG1kr6keZbwVW9Cf94ATl1ZZZxfbtpFRh+LzqDbv7xmQgep9mgG4X0nKri00fqXg3YvrnhYDoyLgPqT9M/vjfy3ZyqK635EbtmHPUQ331FqvYFs/STXUzG9Z4CzZhPzF7Wsk7cdCla/AeVapbwMbpBD99xY9PKXG3M4hIrFjRWFREzOlvZ5lsJvbK9Dh3749Gb8yE5gnaYzywsVv6SP2cJvm+U0d+0+vD5smM2sF4pcGQ9Wj4YZ/mGjuhZ4+3CC6dMjmXQ9FvLwvEU8fFeezFsG+O8+NlDN2o71wD5MtbEObxPxeKfJAD1vib+Kaa831/MGJ4/tqPI0JYub14qwOI3yeIXA+YIfonKVZoSd5OUvGsbN0JLfYDp3ugWm8jvb2CYkLH9Ixy6Rd/ayqv5ciz75b6jN8/BaIm/GNmHQzBqu7ZF4ecX0XJf/MxeOJ8V+BLVJM7O/QZc3yQt8E99W/h5n8z1Zc7/eDSLrN+NL+chBZ+qHh7DPir6fDqGf+eJaV936rgkjxJ0MkuZ5paBKQ6r4Panl/GwpV7BkLEZEeovE3PZWeyk77GjIBrLlbsh50W3/B5u/KPg7dE+ZOOra1JY/BDTrJ+CuqoYbVjiP9tfrTqYq/Ngg91QlRgbnqPSiYZaKQbaLLzhmc1/fggBezDiOEb2x5sUy64+zC28azZ+N44G2+3zwtyn3ARMMNsSajPeEy1ao2Qg3aVVlvNBdkbTFEP42+QoB+nHMJWkbl6tQUFLfCSuccw7nn8eIfq+jyPeSG7fjV/xSkG5vUy6ypiKmKrPOSw8gBAzATQy08bwlEnGDNlKMraDQoIjODWtomCfrBf/CXerFYjBhdRceLGi2tcpJov+72gZXw0EQ+EzMx1XCfvVoYv+eMTMxToYrf1TQorS70hmJKhr5NtU/cVP4h3tKZv8QhxhqzgXpmnntuhMtLNhqf8wSyhwMQaJmyMaXJ7M/y5tEB7LlYxxucJlKTeTi9dSucP1Y4REP0hm908PjTSs6NqeSDCeP54G4cFW6O9URd20vSsCirfZHt/lUioWvT0qOcwxMzWfZqPo7u2/58PcfOVl6/VVvcNSz1sGfUDH/vaXg1465drxmUzv1XqGx+6os+fCI/s/HtnsDl/ivnSO6NVKc+SFlNGZDT9Ue6RO0TxlKd06P23xu6snypIZmNnL72xKhvmtVvrBIW63s5LRi60bHOS9yPSbjQv68M0z+tNHpFNwN872w1Ds9qRSAZkTHzvBiSFpE4LP94uZ0bt/r+GPtxpkLyVj+jVn2OfbhF0kOzfH8JRhwAk/UQEbO7N5wKMF6xKEf+ff5ILJZXRE9xq/w/xd1FuyP//xyT++g+hZzwxo7UbFkIhbXsv7R4Tq8oT/fd61eErtPz5G9lo7dfybuxo4mXNilpI1wag56yPY1/WP/Kvn3ao2h/DTfJlBzCrpbayWMEfF+Z9fXvRUCDsHtkR7mBnih/A7qjp/7sif/vnjpTA+aEQ3s78xebJvZDj12xPzPYtmU+0GOYzP65e4v4Ow+NNGRkZ5dFgYFF7xrz6w8MalntaaNFgLdyBf0yQBItj88+uIH9ZXYquhYrKi2MfwM7oX28WCn8z0GfmqeQo95p5nbFaIuj349OgxLR0/weS+Zk1d/Bkxy+XK48nA8MdDsZA3KFvqe7k6v88XEmxsM5mfQWsBsX4GsWWlLIbTjEtobU0lgZFkxehE9zN8ydkkuC0/wUhSdPyrf9LLV0WoienDh+IxCowE1wufuuB2hkKwTwTfbuuOSahy1SN6q388Bw3OexNBsY9qyn6I88HNn9q/521G5zLpF96CbC+riBb2UTf91Y/a81Ng9tYSuzlG012FhyEyr0/zhX+XMSReVGDV+ul80zStjPRkb/57vv/08/lhG8QLtmvOT+QKf+eTLfVItNh2GV5uc2fm8ekhSaE3Axa9R5VHfkVD1KoGyPK6YXbk5XyK2rUGomg+MV3pv2TkLqOgKBJjZpg/+fR1nPRPPzLjcrDReP7oBvw/VwrU/32l4EJ2W7zFm685huYnheEYxux2yIKCvy4PVyke1oHdLrmXie/Dr4J0gx0quYwk46fz3+gyO5g5zJnN0duUNryuvk9XxfGbjOccu+h8qE3ibtM8Yd7Lc1HyHQgJu48XjJIuK6A1uGduCT6fz4ZpgfPjR0YUxTan/Hjz0TsdKgzro9eNH37RgP3qJSWadTGsxrsF0eBJxH1Mt6xJy5EiciEdle1Q4+uT67ZQNL2E8zn0gkF8BSG6noQDCZ0h7KZv3SmQFK2zNPp+J9PF1CNQahNh4XGYgtEcDpYSB58tc5e/x4sTULi+Hwc8y2stYceLq8Ah8gJi3ToPvd9yjSEnxRvPyq1ElF4cH17GlDFrczzx+aa1LWz7JmT2xXKXF9XTEbZrx8IiSSwuRR9RQ5lfV0wT9B0aTh9HgPynLm8VXlE3ZHotwYc2E+aHZ59QAw5HdZbyO173tpnNp3dWAu8qmbiD98qmOJQwLOtDpYJLxfg+TCloz4YQS1WHoGfRF8Pqd8V46wR5MSOfvFFizCnd0OptTt0syRDvIovFtj+iZcJhC7T1H5S/j7I5Xrg/K6fY8Int+H7HOsMzYH57A8kGf5MN8iOfVa0Je+Y7dReM5eoYwfUEB5YcbUh4sr6m4HtuR0yLbhJetVGMzGncUfFqf5Pxk5chpOoDmGUUDE0OGmJgRnViGtz1ZCI/NqOfW36IxvswmOTvJpKjuN3QrcfjbuZ0JcLdj1/MCHCRDIESiqB8RptoKKVdfzBcAazP5UMADEDzvzuz/HQjpese+s0nYrjVnmiuHxQU7V46xN5zHa335a1d+oBembORVnyoMhzCcMTxMku8SybruQ5R+1pXZHf7acnmiQURzl4YEIdWWrDu0SOEXeS7Swq5FeIvobZyyzYrLJ1zVrSEXXtIMkzIrn1fso1ALz2Qk1sw3DdS0Oz7EaBWY4kKH+5nXBk9ARpHSohWwSaYJiNzIf3aOdn5gxFsbqlaoX4wIuJYrVB0j8E5gp29JaIz20s2Av281WqOCNm/SMH5aYyNleIdMV2VWz8YLTuPVemUOszZ0YP5LYSzjR6CIOJZTJyATrfKAsfTfTq+5gHRrXDXgBZiwHwZ+R1/Ebf9d15U3h4DKbqeqJoHZ050f+QF5afxrQr7vUzleX9A4zdKBdh5PMXCL8X/3W/F9+0xu7EefPogTVBTK+RUyqo86MK8tsE+rD3ykG9NVmzPsgQfw9xj+VR++UirVwqlFSdMq+ASTBDsqBJ1NsVTveoKGh10DOvdiEmU2kE3767eEwaiOsRci4Y5TEbmo+lsiHRwHA9xNVRsCJo2oRvDwMVfPET9+uky7fyx+bL/YtSUdxlv86nIZv+l5n/xCa83UZ9Ny/lVKj19M3wy1xmP0uYMxagvKbe2+NQdrjF0WTyz3Uk/FvMvH131slJrol2MFI1H7UlRlW1fxPSisWPvrVWhrdef2OkZo67esmxWiGTExAnlWzYnwzaGff45k0DbJYhKrR+h2HtOhBTHb9aV1XRWr655JR6WVD6u9Z8Nl9GwmbNVVcR270+lLvuRmU+WJNPzNJcgXSuRaEhxuBi2KYZG7g0WrXlrzh/FH8HdZHtmbOWum8XN04d1zXbMlaXGbDjGpaIraGnU+zgX7J4IIRqf0kz8QxZ002QkrrpyG4vgm/NDNBSdGIKmTohHWyWZXsyk8Ihwxyx/GWSyX+/uYGTTnZhLPBlWFwNUmacmcy6fKasVLb2je9wpJPhtx2BM9pAir89tZq/jbZcHvnkGNREYcd6Hqhu3Z6OFHpOGaeor7NabTrvLf/nLewwjn/XCxVC4G4doOyJ3bOXMvay82jexdTPkza3eiRA0P4mFmt5mg8gEA84/4bQM+qnNGZ+1So14XmE+jqz46vEK0PK8iFnnnM/8uTPgu1sdmR8/JT5T+36ESZ9atv9slgruPUyR3EJAXG1XBL0dnyhCh1NO9h7+IT4U8hM5nukTLJEPGmpYtxBVik4cVdiZ4iG7WbDEY7ypX3kykB8blYi/K2I63lwsz0+Ab8meWGQ1Txj97Uu4uJJFQbkc+RDp/gyP/BwRI49bzgZVr5CU0Svm7v6bsSB/RkjN6ZZZQfwoelo1GFpzbxDnZJ+D+bXyXaTUOmLuqfwifjqsepR1+QlL1I2S6WGtAVbS0kUBHn7AmGyEaqQVy6AWP89YIwU9Wr4Pc+f9xPvTITtuVfoO6FRcVwXPoXtvkS3m7NAaZ96Ll876W188/p3/tXw8qpPOW8ylkxjQQB8M2IBXEjL3bdZjW3ijdT3sCCmS5/IW2TyrwSG8k6vTH4s57SNRXeIbuRgG7Xqv2kZIyo0eqyfnyeeHpVegOGHDNElaJ/WwtyO0c2hEi3Xs8rFqWgtMTT6TpPmuAqbyWgZd2Q7Mhkdr8jB/23D5PhumfS5xN/94K4B6to9UHYdXxxtyVxAWY5G4PHqY9GedJCTQ3Y8Qw5U5F+iFItd6nvEqWzZUUf3eUPhCz3ahqJmTNt0iSKN1Ssg+abJeuV5GFL6lE9Pk7Ba0aHKXkuveIZ5gvLIxPc4xFCpoxDqWfTC+vcSG6z0usHwqhIJjmuQQ3r8+2TtNEQz3rhz/njfTb+0BjfYNDJDY1ian76M3x+5WCIrv+R0L+vppTqdomW02zkem75U7p2JVnOF9bp94sPx1MhG5v8FbOy+zOmcxo8M9PcJwTm5YWOJnf08OEtj7r8ACs1CSJT5b8PptNiRg37jgVWvfQXT3D3Yu4rLoqtZ+wltLGMPNq1/WI7chvL0NjK36a9JiHdzgtV3d8fqki8XUo1OIFEh2BCv3czY+MtlF7m2uWaD99kFzL9IIXOybBB9zM+PzA4tQd96BdsdPl4z0ach/5wXnATYzqf3sZWTypSvLWpz5mPO3qB7PlYDprfmYYthGoSpQ50ds9X1KmMrfChDW5Vhax9eOu6ojwcqfG+ZIXCymbaXbyDkLBnO3qZGs82Psgi28Bub/7r/in16un++enbK26zjdL70BVpLxLx/P41ZLAX2rHiuVgjPJ4Nz42+/s9WAaorPFFThajytFgrrphl9vSOhR5Spxp07uJscKamS3B41+WkNCk7eysGo/2oy4u/bX8V0aRLDq6hQPL3zvxisN0n/n17MbL+OmlM3gaiTEcvJw0HoW1RRpanYlrmZlfPKdvAI+bYNFz66SSbAjX0UWVYnNAlSM22ctwOuifZnvR8jkZbU9A601mQS90wezfExtuBFyw93Os7NNon5lOGD9y9zHpCQDJL0Bm/Umxvy7zC5N6NDCS6MJ7X7b0ZzSdZFD7JxC4ulWycf127vBN7W3xLb2ksnOORxBPn7vjAzOF7Hx+pP//APTWW0Umz6LXXXRx8wqV5DwVUQwem3V+3Kl4YlGwQlzFIhegoWfUptsDu8GIHfbMi8SCpNHzdFHqgQmVb4bMxgLSRVgnaec1ll7z7hAXz2SGLIH+by78H5spDM8PDlld1ULTarfPjJyt/nMcO9apgSZ5YPfGje2P9zNrs9Pdo7unYupbA8zmhe/gqat4S7+yi02j4EcERW7B9Ec78N79BGsf/sHlvxGb+7GRx/aTVTML2HGf8i0oZ4eJd7IylxMWO1GQM10xSJzPtkcm12O3jwx8Sb9WsGSr+5Imb8pMwVd6qarXWNYO5sz0Q4PMRvU8l2DdC1FZtdFhyZ1nd1RNnwfdJqjuRhT6SUjLL8+xHb6AnHh0ct//oS5zdMyR/UuUeRL7YoYZ4sF8896iEj3dYFY4XlMxl9SWUDnQqbILPVueuzvEXqtR8Z2LpcRDbbpE+B8z2jTlwXikWILf/GQPYPoyOddVPjolB5WzJ7bphir2U2hPzcfok/7Xzag5m2ojo2+dM5cvROX/6eWanGnq+T2M8dz29/hAWuC5cWvzU+6f8Pqe7TZXr55//Ip2PufQMKtlCOODts7iKX8Inr5mJNpCK8K7HfKRNUwncwR0EGDvSzvSFjKc8CPF1f+8x9seT68j7Ztha705tJZ+4YJs5z0jkxts6XNWafJFAZejqoLnYnl/PKEezvZQLP0vv/phWzYrm4YjjzWyG7XkG6c7+0dzGsy4i4Gu+NnrwthJgeVhOXlHXwPnU3RTw5UorMfSqZDPmMVn/KWlnLqdrPU+jGyx2+CpUpdcVZuSh/aOnli7b2+Znw8ZDcw5PuT2FgagvaKtSPc40ZhBGWyyd56K4Ag3i/M0y2Lj/ZyJSBwx5K9jsvs+UxxW8XI3RBvfhnreuK4xz+/Te9D7QS9rvQAGWMGHdKqR43FtiI6EaWkjOWfYBxOfQnj9jSz/WFpbI4rnkId1TEjWynphnELM8i1WFFVWZfFn16G9nIPaXm1d8noa8Yd3pv3nvh/XbOer30MzwPqaXMNLt0sDw2G+R0MxCmfWTDte1lAXHJkqgLkRdO6swCuXTyZd7G23VgpdwUVDZXw5J7kbHJ4OiN4btbMKBUFjUfWSbDoe6yadYb6WOzCbepe38Q46QXnTqm9VeEynYgj8WPHfW/vou47zX/+LphHj8dq3loqI6m3DubSdi3VkI5bLNzqK29HWag2ujl7VH2LbidBJwhoWX9KzXJOWNQcXVj0Nq50s+ezrfws1cJpw5z12Cz7zW7//DieykeczTd35W81dD4w87ZXgumQK+F2iccUvHhKRhm2z+2XdDpzQllJxu/SaHfw2jXbva/bjjPZx/JohBivF/89XleaBtH6R9m+fgdmt3KUHr7v99JI1jCSSS3rFq7y1sXyEh8m8kpitOQDOsbvVTeNWxiRdlzlzKTNoRCV62tG3eOi0Fl3vsVYLsOF7+etxXQi2v/0IdgFUJYteoC+3kxE7n09siV/Z2POaxHt2sYh+rE4BmOi6jnUR2lFJcdvC1ramq1oYdEuA8BazodivP/T57zgXzTJ1rX9419UEATSjVfpQ1F6b1vmN3qfTOrdPyo54JzhNk+D7gK7J5zSZEXCcyFn7fM7GZAInk2GdfQ2816pJbgkJ4tk+0seDM9nqvzjBfv4RTldu7EEv0lxiTfs1mhc9DP63g/Vkr/uGWsvKIRye2Ys3EoGErOtJMGhpT866kZpcvN7cdHVlP75i2y8Sg2F5fkRIxetgL1GGoNrf57//h9fOQpFC59j2Gc5X+LbE7nYNYl3DS5F2XmTi+j4HEmA0Sub42PtAp0/MrEV+ZtM5vmpwKLHqPrC0E0f8/HexvDcYaT9hmCKDuvqz6/Sz+VdF6MM0/OPp/3Td9xycI2ClfAl5poriBXPxIDAnUuCjx8w+RIfwU+6jgVt7iRSb6g3WM4nsYJYLfq+qys0y9+SOf4ECf37fCoZSuao94437zY8w23vx2Sn3NZFe/tdn2j/fi4lB1cuxvEavP+tl6d+9skaq8UMLZNNli56p9Nzw1D35hRS/sR6tk5LuYfc22Pme6wJ+LXKYrTq2pRpVfYNeKRgQfnjIQ61Kj5r8pyCa123ZN8JU9d1+gojZXxw5mrVOpi/o6Wpi9/8x6OmU3TyQantlG7MX2KOf36ze5wU4j1Ja7JB9Uq0v+9N9ogUP6Onyb7BqnlzvNXyrmsc9I1AaBSFys2zDJgazjY8vZfIDN1+Zswp3VyBt5oR3T3JSaUCryD1ix3bL+vHtmdmgLo1AxYEUWnykyyfYb6ubwQvvIvKX1+GutF7rC68agTkYMhbW2VueTsUvL1wDF1BWzrL63fS7493jFqTGLjioYHmKb5WaAjGG90EybpjraPd1KtIM7YrUYzGi7leeFPuLXoyM9lBSWeQyuWtc+2ztMhXtB66a7Bn/jhQNC+8VtkJygFXtT4XFE2a/7eezEvdMJNj2PSwMeSM3D5ShvgvWAM0O0qJiZS0m8+xKiPxWYUYmeWnmPIASehVND5W63cXjH+8vZXwmdlDdTHH/TAcUV1BSeX1BZnz/iSMsOg7srODGk36dixBaGSF7DZRmM0N7SpUomzDdttlIoSJ/RtscBMxIw32wQz+9fjH2zE/a7uid/fnIygObpj2Pv4yNj9sCTbGRmDm4RkmTJAEDeJSwyT9zJ+uX48i/osnzCPpJuiINInQwrtmf/tlKCSv2u5Ve8ZivHL+/I8Cb+0YMvOJP8nC+22gh77683fJv++78FtGkpsTtOJKfIKutyVb1j+ZmufgLoOCf0xv3o9u7OJ9Df7+lC5818xGKe6WLnvjnb3sNjYH9+TG4NLVCauLP20NuJ5h4Uv43pt5MTpdJaFEaznTmd0kE1eTHs5ipWD95qbFPKwvLSw8jWHT1JL1sbq6iAzljTmvfYLKv/rFblRv7I+vDOXlF8PC42mhl9gc8TeSwG4Tja5sTws229fu+MfvWbjKftmyfrNi6NGD3C55k1VPus9h8Oo1OZPUTkQ9kXw4iarO0qXeMd3hVSLvTUW8fsZZMbiUlFCi6wYrpj2hJT76MOw3OTGjTDeHYr0ZYaZWSaejkZuj7euhIjZOyPRdwAKpjTIbNtaqoNtCxMUUNDcDBS9bouNb0rrJTx/pXz0HK8xtzSl5KCI671OZacaOZc3lHt9AnqLnn//hNPneBHhl+5g5Kz3KBo9eU1gDmmmR1qdu3p+kEbXK1WTB5nAK2Pl21mB1sIH98XIuVGb4xxPY7rz7BXSKDxVCLmrp3/6ZX0TV/vHc3dK1e+y7d6XqvikQvfdExNfpNYIdt1ZkN3i0GLSaC+pN/uh47Q+5ObcOzBDMJiVm830FC084Q2/cRUbaJ+0m4fV6wqLXmT522FzfXtszOr2HDbNuXcPnvLRHdPl9JvZ33vpFb6Eb2d+IFa9+CfPlOFIPk6bgTZMPBZu4L/3LLzsHH4PpWB18yMWvSgL59EPTJVm6cJH+w3b9b53xhcdCnJVn4n83hTmk9vmmZOEYsFNyZ2jkwkGGhf8xe+EZo0jCEdrLMyQ2ul6yvi5bisYIIbabuh/n3nN1hPJOfeJut2LWmvsQo3V+41hEEjO7Yv8OYRlXzBb+XWxW6ZDDwv+ZEySnTpyCr/in76kgnuSO5+I+hMRav/E4skvX1fe5Ujaf+rv4Q52L8e5pw8JX6QzvrJsEXNZwo4ZOQf0IQflNhztqojhgu85YBn/SC4XDrg1YkEsln19pdvzHU8JCfGWTffgc4fZ2fDrP1EjEGDYUnpUrMZd9P6gRcXSDokjLv/iWjN6mt5CprbdYaPXKHEc36oEtg6eMWNlx8fYe6F+9iZ1WKyUYzkquqIaZLlfeLnHRX1BjA9iZQKeJXrPhYnoR6nFkk7jYkGRiZJTUGO479gAwlhL8QVF/krUmf/6eNqvzDViS/Zh7+x1MMTRfFVr4BeZOF6DxEKMR9JW7+fOL3QTGNoTuCO9/+YBLU3tT4Na4zHsMEeJOloegpsGdOAfoef/rNxgGOhxIUGZe1ytadFeLvS4yks+9ObUH8lSW+gfxxKhK/j1/SbkXy4WKIBkPMZ/RUn+kxaJ3Bsk7aGgvKztmZ1Vujn1hRP94Gr7VW97Wj0qA4eitiWPan6CvlKMCFzQiypXNPvnjE+p5fp0YvjkOn6X5PIOUaz17Hj93c95eviGaCP0wY/WITPqUOhGIpMUkaDVs9q+zPKPLw5iwuo7ewUj3kf3nF0iC12uzv65cDRa+Sx5OYwa8vislKJ/ZJkt9oaC7dNOCT4mz1C8eiJmD+kSC4Fok27VpMvfG+gb341I3WOqV/bp+yIieUIK/Z+vFJ0h6TV14Itndw2/Qaa6sINc4Tst+uifc/L4BxGr1o2ipH/SDNc2wFcaJuG58KaZLWSkQZ9WZ/a3fWDpzi8y1MFOY/Xcyo+29RtvYGcm+ug7mvLXnFC4v/4ybtP0WXJAEA35DrZLQbvVk8+fX9Zud0d5u9UzsbgWAa5wnjILpHIz3rDrDFRkDC99nmc+rjRiif/y098TFbzELqX1akVDZ0mCZAluBZrkRe21Perf5ugtvvE0dMzg5Zr1XTfH/06VgK/7vKwXp+h0RT5COCT2Y2RPh41tjqbH6ZA/XWFvg9JuArpR47qZfQWZkr9oVZZ5t83VKxBkkbFQksK4R39y4fUcb6tZsN/4qczzPfY5+lVKRELdtxvA7eKP4sc7Ibh8b3QzO/QlWbd+pUFNpeQupK2Gw3lt2u+wtzi+eaoP9vbW4yuprN6ul8FTUx3ViYbFLzUFImxo56fmN5Yv+QbS4G29QLPdC/OB74OKGXQWInkJKa/mr8MFzPXtr09OKuHcv5L3pzDNE5tWkjSCJCXelVoNfdolIsNE3wdjm7Rmdgn3L3FtSFr1/NGIVH9qAhHTozH63eT3ROU4vRHMu76A/bNLbEmpKrB73Feqtth6VKbqf6Oqbi3ySLtsnXNxCpsO6N8ylBW4I5auQaH+Z1+bI16cQ8ONxYvoqNxCntChRb5sD3eyf325ch50A2/qnM3dXVIhrVxYCXwcmXjWbklNbJS6s792XBM+V1NW3jyeAqPVXZiuqak4HeSdDkNIKr1dKjfgOhhh4Kw/EKt9lMj/mRoPv/bmn8mclonY6oDdYqzuwmxmUGc1WTgvE4T2+0qwq5jvhGhKGgpMgWmaBxu/1E5TsvSGPuj52U/p+2+o3PaTMICRJZumhALS+8WJ7UbA4E8qyhjKhPRYPB6GYx9SWEBFXMl1VAkv4W1ZKqNbFF6Pyfuh4+nvZ6O/7+6m24nO2Ii1y0uObBGfhnI39djKghFuIJ63ss2mr+zIsf48RP/8ks6w1Gmy6iGP0HvVsRtrWUh502+P1cCqSwZ+MFH75MDG8tqpk4vStgfC7J/jzeuUBl5HpKjf99WDhdBiLofKnEWQTjiQ7uDiZtddOA3e1NojvCC9z+pxGUDeS5NHVyXEC8WNFrlp2TkgMQXFM0e9cBUXqcGX6rt+YrL2nIuzPmkh2yibrpDFduljIV4mQby6iiaieqATib8YjmYZudsc6B8lbT1RxhFUwXzMjUjfn2SVk7TtIClQWoXJ9yek4p5w3zjIb+zvClhivr1ls5sOnV91PJuPttat5z+hnXhX5qcOr9muY3HDEStV0pWO6fROToVLsFJ6JX+AVBorm7kJ7qLz6yp5dnCVjvmNvlEetiLuvHAZjadUY1Mv5QDRQr52EvScFuo9vWHg+38lote9RPVfIYA4ynx0VnoUPzVtfEbuL+mKYtLjf/jDZYah6n4/q/u7DfJs7Etabwmy7OjbAJ6pFslAzu7G03hh2qf8gtqI+zGl+QA9t3mvE2M1pNx6zh6iI1dvC21II0FxGRYjqXfMjz5P+7WajhRv0h69JLL5r+PT8aBgmZxSZ3lo/VLfUa2Gz/ngs9E9KMkZeYCFPrkrmrcqpo7wxQnSSMwlXH35Ao7i89TjeqprW1+8vmzYN+Gjk3xVzXxnJZi0ZKJrElUbneVvx/tY3MWCx0tke5a05X0kOKtXciJy147nj7C4L8DOFkeiH4ZLM2Dv3ICvOmpGiD7vRdW8yBKi+Eyt6Fmi6z4oEK/PywuoRWcEksk26LYq6I8axp9kgFdGswj5hBL9WcjI158aHdYUQnc7GLxvu8yypXvouGI76ddHkPBaQfpkvxHTvq2KKboUC39fRYKbTlMVkHV817DwWMyLe/W58+8VTdTbOh4Xr6r1cCetHBK27Y0c5tzg/4a0BpRssjfHEUzdqia+BVnw+eFxMUT89cQ49HfYY9ebSmK+gvlKG54Dp4lHtRuu6vgM1L4iYfNgVlJhmqq4jMaOKPD34dJlvFNVucSd6930hKtplBC0tfObJHWRMkRwMcawdyOMNZcYgVWN0b08a2697I9j8fm8Lwp08Eyed3GKU9TtFn7vlEPPNo2CakF3DoHcW3hqXbzcHo1xC87Mbtjyfjl37zoYr/VRUuG2Ggl9O9xvs9orD/Ks5BG0yvUfAz/lEgvywTWZbJT6yPubMyE0l5vT6FSW0ZPTY7Tq1yfTxDzXcY+FNrG2UB3SsFVfRJqEn5CGV3Si1O1Dk08/HQuWP3Tjt5BxeJi6Jm4lQjIZRjTAqdcPci/7hU2DuXSSO440YUtB0A6e1gaptfyPekF6zsfDRG7JcfjGjKqRiWklBC2onAtt9hjEZFdZqW3q7fbF6avRsvG0vAJXXXpk9ZCWi26Y9QxmJG+IueoLrTx5C6p4tZgslQVNJXwbaISvBc/w5B51Q9rVyWj2XU4x6NO/fjyPQ3sworbUUTcK4atEvO0VEdyMoes3JqdKg75Eu+YzPRzl0EUt8hzk//WmOq7IVITs+jkSXo3c2DgEf1X5vX/7yMaJ1sDpD1GBKtCR9Z9NQo6XRVjCTQEq2fLTaegZV2sXED4c7qtyvHqr+IdqRzFelgJru8w6tYr8pVH3LZ2/aKPD6rL50dC6aKclrr5VV2k9MJ96B86F5lWD85Cu5LPGO/1aChbRS/DBnCKWEnWZ6ROe+7tk1eY/dzOzQR05cSVhVxB7Nol3GkJ6eZDm/OCvrlRjBLWMzCd9Szuc5qEO4CV1N/OvUZnWkFj06kfTFkrmVsyF0ry7EN7XCa8V6o7FeQYzaY7w0Tq9+xbh7eU8UaoGL5/KoZ5IjIQmV61OO60y8d+N7ZdmwrvFyZbnwk2W9BYD9gRHt+A6y8SOPo3pfy2dGtEuT9RfrF6G+VgsSxx/JpPEGbGW/aVpmmDAmfG3fllnBIqWyDmLQySjwESlbA4vbyDClRY+CN32WEpJGeIPSawmxKDjkLx7zGNcCIEO9/tufY3xU7rBxzyrRTYnysVqVIciV7LOsnj5FL9lpC+rxeWfh0dkl7elEMcrbrccM7xpkc82bGK6KDcQaP1YhngVThM+NO0SPx7Ko/U6TwWhHzO47FCL+5rREq+jVEr88R8G0DdsQztmpp3Rt2cm6zrXlralzueT7X7DomUqhl3wk+rHql3x2dNXw8qmJ9+09UxwumQXDOWBEF5t9MSe33IdIHC1yjrcQzBi3FJFA+DD9QTcFTyoJUJ68G2ac3Ro146OsQVdLgxn3VCiGu3Bz4XJemUzLrLEb4YVHOOu7yxIP7gVXmihHS/6gW5x+0TpIxqcaHXuTXUqr62hb2AaQluW4fJlNNqFCVkDfv3Xyl6+n/S0RYbyVNf7tHrtM8qaVAjW9OFiR9mn2Tx9cjGdK519lopk/Whl9whMwO4Em6ztxMMBz9gXbxfzW8VQ2bnC3ihPR7orMuS1dBeSXj5Eil2p8fT7KFPap0hD9UryS6e/ncn4NWA02UtLKWmNAyG2B7IQnziZ+aW5/+pXylVZ33AH1CLjcSMz4ZB2fC677MIeXN97o0jKZYI0FeNRiyLxltuz8Wf1mqEhqkv3F3y77Nb7D8+7IxHaqqzkee8/901PMkAKv433tLvn/KjF3Y+XFuEX6UU1W0YPtta1ZzM+svSH9KOfEjOHXjaEkxzBfZIm4Opb4/PisKaRxdWO+8fiZnNvGDYW1VNMxfAVBLziuBI9AlbD6OE3dsFkndxgGfMXyz1kV9Ut+U1Wzxjc7tzlL5q8w5hAM5IAXfVRsjifrDOjiY0LUcp3NBzyPaP8++MxAiZjNxDRvy1s0R7qK8aGYKgWnsFKePkarUSwYbzY9QhtM8ODVesB9dX9DeLyGzFfyOulP70aCp2RdqRIoHz7paHqrxvl7xYL0fWaU9BaFq8wB8+y8DngbbXMQVaVk9s3RO/HD+xk+aq8S+3sri+Evvy77gZneq0ejJq3OaOuJS5+2X5fMntFFSpduPsSfdkPHB+0ZgYxuazrW6Gr2Qiv5f+tBrJXdBuPpZORgl06L130smfzaFxaw6/5H1df2zEe6q++wXv0yvEbfFPXDJbHRdivrVPXqTzDfVDlW7FW9+jsfBZ3ZI0eqEjvMCDtsTmryqJGcHUXcLp9ncODawn0I14yE6X8AAAD//6RdSbeyMBb8QSxEpoQls0wmCIq6E0QEVGRIgPz6Pvi+Zfeql+94HlNy61ZVknu9XpBC96gCXzOx+XI1UxD4uVFXPEI//r7GmwZXPUL3sYH6maebyy+/YHxTaTDqu0iBe730/vBg1K5BBctHMCEJhvtaZGsP8x9eOMNF7NnNX6tsoTclU3Ipkz64fQp4Vx4G2tyFph7QzKcQNVsBTR97YsSdylKpbLtY9axm/s0Xz99d0PWi9v083ZtOCcb9AbtTsM/eXFG70DKiGe9f6QxI9p5b9e2erz9+2BMSPgqATKzh4Df/RruK1XX+Uhdrer9ozcGAlRcnhOETz+ihVyTwTiRKUXwvg7/4PaWzhu3d9tMPdrL2pj0vZ2rpDQlIoH5i2LrPnAZG7dZLNF8GsKjDk8b87RGwLwlyhUZxjNe6piYd81YCsyVtqKF1e9A81ioQXf89EdHSOza8NwMCv+8DQe72fCQ9BngPNgLdH/cOEMzmaynzBp8IH4/XYN7ovQZ09q1pkAysnrqqSoF6eH/QtDuX5sTCRIKkdhwk1UYVDN6cI3CWJRlt7UOVLdsL4WCRuDU28kvRM+36QeuueQtJ3BSDKfPNVF71IH10ryqY/Mf3/Zv/ODTPn2yQnZYAY1Rlquux12+v3rOAgJk3sr3ppUmtpOaAeDAKtFnz5/CVWwjFdHLxKWZKv7SBePzTD4a/tcF0LmdFXeObdKb87Oc253P1VKUp2YSXb91JTXEE6nRuaShcs4xdT00Blneq01B/5z893sLv5VtQ6yjNyWIZpquGPbmjFmt6zQSaLXB+eEfq/vyF+vPkYR9POtWOZZ/NG8HsYBMeA6r3rw0jDzm8gVWPktenlhL2HtkNPvcdRNWBSWA6imXxwxtqlcExYdnAXHjwxYaG52UbjIdj1Kg7SjU0qX3KJkgVB+p+G2LngcNs+cj8G6z8j6J7lgSzWkAo//jCJXxeGR9bOx8+c2eHrVA8mBPQmwnm+rek9utYB2S+3wRw468JTayzYZJYdS1l5avUxCceLGVKCtDit7P6a3xGw2Puw4eWUmpgdeqHpY4rGJ1lQri3tGc//aq6B8sg/GLkNXlY9QQODW/jNd/37II9CyhcMdLdU2bJzO24o3Jtc4cIqz6k/MV2YLuIDBuft8noidt3wLp+D/iZSTSZ4vI6gYd2pPief47J+Isvm1Yq1jnHzfpXdLjB3c4sMdKXDfj5O3AzGBsyvb5CNvbpHILXm9R0J/Fetu34wId7CXbUMWzdZKg0SwA/cUTx/cn3M5676m9+R2BLaipe7j68ndoYW7QQzZnfmjcYvjhG7X1c1X33mVzFuLcmTgrs93PHmz5Y5wMSJLIDs9EoEnxlwR6H31eZTF+55FSTiW8amAcbiJv9W4PlYn8Iv24EWOw+LKB43TCy+Xq7eiuHHYKr/qcOctYlTe5Twh69AvLn/8zBYoClLkIcKqRPZvtlQLj+TX0zsBI+WfICLt6jx7/8vlhG4IOVT1NbsTQw3e3dBa5+Hf35nZ2q6z68T+FIWmv7rdmYlwrcBehEDac8sT+9u/qZOIzKuBaNV/qGD6W3qYedOviNH7y/4JmuegQsqu658DO7kFqhx8B8yXIHSgh9/+bT1GvWTclBp2EUxm5AykW24E/v210+su9nE1/g9r22xLxcjZ7fJGKpHso+wh6MabDqAx+i++NEjpdHs3by2QxgfV4EV7+DjLx+gUUUEZr4YJfM9wwiiBxri23/OgZ0u/1YIFblHJujV2YsynaN8JbJje5NV2Krf9jKtgpdxJ2oASg9D5xylhWZgKsYAMJC8Q3jIX5T83PeZs3J6xFc+R82o4uRzPa1b+FxUk/UsjlQDzsh8uGkdF9qcZeBtTsTKeAxYIVwx8RNJu8FJaAflQqBLHknffLmOPDjt4Z10PplA/c+XPM19Q9GCOYnp8QwLfZPaiSNmZHt5c3Bdzo12Lv2LhA50Ec/PKcIPdVs1b8GQOsSly9Gr358P6cbzN3Bp2mCwkBe4xN+S3ODsf04Bky5yyEUH/ROSB+DjL14ZwCSYm/JZE77hBZSVcKLntyoF8Fg9TN//oiXrngA61eErUYp+U2OYH1zzS2gUagOx0JC4vh8Zwul+394YxbqDrDL5+yA94Yp1BqUmY1P+R3D5Fos1IMxDpZ4yCcIP1GE//jprs9LcHsoH2oJ57CfjliofvqHwHujmSPl1/dX0wwjT7OzxXTTHMxCrCH5vC3/+CGUUy6geh6rAfnpFxdu9mgYOxUsfj+8Yer6OlHV0UjEwLgWkBw7QDZ+pSdzr5AK0MTd0cIjVT888sICwzkdyda/juZIgi8HVn5Cd3QC/Ri6B1f1Th2he8WhfXseruvOotqg2pdzshFAR4FPRXTJqA/F6q/sfOgeHOM3X80Zz1UF5UU807DntzURwRHCvUV5VCYXLZm2dfcGprBWRX26u0Rso2cBR8QQ1Yd2n81bMjk/PUk27iyAJZf4FBy3vo8WIfDq5a1hTklcbyGcR4xeXDThAgJp+VB8vHpgeZ2dN/j5l7GkHxhVCy+Gm8PSYfO7V+ul/BwWyHVHlx5Lea7JGGgOKB/ehAN+0cHSKWH785cQKLcFmK8ndwGviZNR9c0Hc9n3sP2tHyDRCKqa3TOtknlVaghc+YPYtmIOP7MPsVd+M9Y1dqDAgCsPhPK7W79gM7jA7Pg4Irji7fz25QWs6wukUl7nYJrOtQ/LqJjRUnheMPOh4cBy2X3I5sdXfnzDxxsLyc+zHLAVH2B4P8R0t+pFMgWRq34fg0sjlj2DobHaELQHpP74FvvLn6s/gHFu30wibfUWitvaI3xUmEAcD/obptl5wHq32MEkd4UGVr6CBMN+mtPhPTo//Ynx8jay1ugiooZFE+MofATmkszlAqP3UV79fifb/vLhIvQiNWcIzOXyPDVA+XIGdaTrmU2PZ7X2Ql9c6tvUA7O0K0Jwy8YFPdX5kiwrn1GzSeuwS80qG29Z4wLDcMiK70s/PCVpgdE3JBg5OwqmNkhauPJlovbhFcyvfLgprtGK1GxuFSPuQ0XK1/IZ9fyZBXM8L29lqfOQaq50SZZojgZ11W8Y8zulpq3cLcDCN0CNwvua02byXShvxxAXcErrWRdeFVj9KQRf3FgvK7+AuyA80avJSpOfzr0PT/j2oL/1LH4KAx4Gz9uOIkVBWReXag54842oK71uYLRfPgeur+bw5wez4ZwrsE25DwLVQc6mkyTy8Bq8JiIL26NJjb3bwLvmDqsfrNVfZJ4Q/Pl1bnLD5je+MQiLjUmwt5PU/uffgH2Z+ET8KqyeHdHu4OrXU2N7H5L5hAcCC12sEb/Gx/w8SXA9WXYnC415czGbpwUul17BumC35nLxCw6aw92mNxw29TK1i69+HqWNhNE5/vOTVr+UKGZgZT/+C+w54HGoxtG6w3m/wPYBIPV71ajnL9n48Ca9XbJ9b4E5/OLhrh5FejCfHJtZ7Q7y4+3eCDec2lUfye0P/6jmgVc/bwtrgmfcVFSLOzMYqw/oIJbdcdUTSb/o+9vlbz1yd1mr7pT2voPzYgfYFu4o+ONDTmN3eO+1T5OoYVv84geH6/hOo0Mn8MOz7ZaujUB72MGUN/e/9UIwKMnjBn7rWc5t96znS9la0N5LO6rv7s9++un5m36/4715b9n7Fy9DL17IZo1Htru6htp4RUpmzmmzobJp9ct3a+MZwEjwOsQQHdqA7k9fPVl+71+kxgXBU3vPlgO3uwBBk3K8m5gXLJL2NFT5ED5xetvp9crfcjjRXYKdrqLZTPk6gr/3w6/qCObD8fKGvNkgfCnG2Jy+fM7BoqtNrG037751YJ3Lir8XqX0aouC3Xgp++ghm1w/7+ddqxO4Wtoc4Ddh8Vg0J1ruMyNQzGSulpZFO126L0StPsr/17A4vHpHHyzVhUncWIFGKN13xEyx1cEYKEwpz1UOQkVc1SmCdLxhFw6n+8XeFv0GCmIo5cxjPmfPT+zgoJz0RgxvNITxtIlIuowm2gF7CHz9GqkP7nsiFafz8arTpLzlb/ajVH60VIrIzSmb98Zbgp6IzAahxwfb8pDfY4FCjd/WyZLPn6pb6+GoYbUeNJePtYxb/15aC7f9ofNAXLdmqHwG8FdyVcMZKSsOA3OshWM6CctqeeBpYTZ7NlpxcgMOdAeHbG64nXDIeHqvkhDh1lNZelDsBird9hmoLc8lkEVGB+gAd7KWFbM71LgshQMqMNQsmYMIlEKC8Zz4NOdwn03NHBigqMKF3prZsubqPRRlv44Qd20JsqIOWwNNtPFJt0r49Pd/eE3S4bYD4r2fXjN+Ymsqn1Yu6oblnvD2zG/xIQk+Eyer6sfP4Fu7yq4nac/mqWVE4BA7uxaN6s5lNylFv7WV6PmDX7TDYCrNXKXYxWGvvNzkZH9ftAMWwr7GvUQ4M9PJwoOUWL1InfGcOMbqmkE+nPZK+mtn31wO/wKgmZ7R4J4ttr+ErArxjnnBAS5XNlZMPsEoOKbbW558PZXlUr0ZqUue+FXqyuW5y2DTtixoCuyVjAHge6gHlyNc9X7OpYM9Q/QaZgv2h8vvlee1C5dGhDTbEbi00e7gclfNagt1p+6EexK7VIDGDCRv2fgLU3+yO8F5wLtq6g5cIh/v1CLzbuaO/770UxBt+96O2IB/B9PhORH32Dkc1NdokI03RG9QXpiKBnY4JOfdtpGjcN8XZIgNAzt1zUY3d+433uAZmn/leBMkcStSRN3kylIWJYGftKqx/d3YwbEY9h0mY3GmYlnLNUCke4au78UheWg4s76X05Ux66NRNLnPNgN6UUGvKHb0EQO4Jfpsp8EtboetYsmfCaASM18WhN70iYC2sN0AyIwlNCaH93MxbH87KVCDAhp6xfCGhshXkI5k0/sFmjn8WEB1ECeW6tQX0gHJeobL0wAa95VkbpSEPnKc5oB7HhcluiTzB7uUYiHfXU3Z9ILfQrW6AsO+lChYfGxdVDT8T9sFx3UWW7zhIhftKIe6c2WRKEUJhd2vwPobXgKmSkiuzuHWo97p45rh7LRfY+JpN8atsAjZF1AH3djthFJo8GMg0Nao0FQCjc/PuZz3YcnAjW5QI6kXJyDPkQujdlxj7asAlv/hVo7qgdH/vMnM6XHRhs+mnBwJc8QFjrVAfbvb0jNwK7eppzq8WaDm7w764MTIhdKKLuo4fRdZqKeXdboA314qpV3Q7k952+wX6KYqJ+YpQIExl5YA7whFZrgrXr7UHJPW467YUiYuTDCn1Jxhzmz1aim1VT5n8GIA+kAKx9juYM+L1FLqvNEHiaxcGS4VlAr7oFOOUHW4JtXnlBk73bsDm01XM7rjRI3WvdBoNbZeCuV4PbtuDcURcKFiAFZ0ygLzsr9hf+5UMUrFUUC5KgwjnAPUfPwA38BJHiwYpFcwOSDgHUeo/qGtoHzbN+cGB9wK61L1yj35pQOxD43VzMC6WKmCj2lqKGm4vNAy/TzbNUd1AnsMDRTf/2M+ZiBGsUTfSXXGKTLaZ3AKWlfKhujWKybTfZkf4lWGMM+9RZkwsgQGTzlGxc2vCel7w9Q3W+UuT8PHOmHTal5Dqg4vPQ9mZk0U2irLyOWw7xjNZGE9LoH+Zg930C+qxTUYfbooCY+zFVsIaAfngODlbuhuaxpzfbdjBtHw0v3jPhu2LVmA5XThECzM02QlOE1QarcNWKav1zLUMwsoeC9IMxbdfrqkRq8/e4oh0zoOeyX5awcl3dzQznCqZeZmVsFiMFrvJ8dyTqHVTSIMXxVisv2xUWcXBc3DusXMOSD3b4ygBLO3OyIleGuC1K+CApxUmDr3IBMvmpkLo7Q8G1XF2NZk6OLmS5LWN3QDINTkXfAQTjLbUZ8DNZj++3qDcXjtsc+kAFu+yKPCgx5hqSjdnrJECH/hs8QkI+SaZL40bw7N8Y9Q3DhbYfo99C+NZeaO5utbBLL6OBjhWhxPF3K/qhqj78FYNC7arcGcuZXMNQXE4TDR0nyOYQHgxQDubJnWKQau34YRTYMsWpKl7kticaFmqYM1vKa52b5OcPu8YftpThk2hua+FN9sC+okZIyY0KpjINL2hNjcUY2GSAUNPVYDlqTnj6D5v61mO+FId6LZd71fWw/ci+3CdD0ToJZjNjReF8uC6T9Su4zWhvuOhOK5VGtovCzpPfyjwkUsUn0V/Zuxz5nwZLsSj1i0APaOtYSkHPcIUGVbLWCicUqgkz9ta+HMPljYPOtDns0dvw9vq50atOni0HltsCypio5RXBjCqgmCveW6CKdSMCxxv6gWHyu6cLEsQWgA83Ct2bNYw9r3NHTz1YYON86WrZ2EKNKiG4oU6RlEyZs2cBPYDXyLxJRjB0PD79sdHfvevRa66c1CqgIlXvtNPttpK4HJGCfYm3zaF33zUzOcHewm0A3rfPgdVz/cIr/gWMBO+JMg31h0H5QJN4qaqAt87biBC24f1vGcGD/00jKkrgFMylfF9gAUnfrDdLCdzuC/dAEs6vrElgmcyG3uFAyO5aPRoURGMWyBVUMf+G70xEfrF2+8vyuKmKQ2GsxtMjSYT+PislhW3n9nihUiCKWdm2Bu2T5NVlwiBoOgORLaSR8Yu9ypSjaMkYMM+dKx6XiukcrUjUf9lL/182/cLfIz+GW2arxLMi/FqoKooJdlgaTHZCJ9vEMjVFe+ei2uKP7wSNScksjBcwGTEbg798lyh53f3CobouRxBt9MUnLyOrbl4oaPI5sjb9PA1g4BBqzVg86T7v+85Jea6BcU3bKq7zjaZxSupIEl6DbsC2GZfw7ALWJDPBingomVLYB8UdZ2PVAvvNmP7YRAU6x3ZOOr5LJlr9zpA4TnnNBlGx2TxIUrhU7oiRCPtnbATlBa4gcaOGorLJYM98QoMeiKj2k0uyXy9XiNYNJyGNeEtJqQ8vxBY8zndFXfLfEVFfYQca1x8tlsjG5RUK+FxI4ZoesW7evzc7x2QNS7AbiBufvEkgE+mB9jlLvtkELONBqMyoTRog5sp8preqGu+w3u9wdmXiVwJlhoVK98sAIuaOYUrPyQ0u1omG6n6hu4iBUQsrr7JaH5sIKmlFqlnZgZMO+wL8OPD4auoezYnXQN7RTggRQyXbBZvowHOGQ+ox3kREPBHF+DYHtpf/IBJSd0KyNpQYzuQr+Y41bMDL85oYgODpZ9IYzXw0iwB3auQB8z0o0I9oB1CUoU+9eAWtwt8KMUHKcmL76fivQ2hr35n1CrRNRur2ECq3PYxDa9btWfCdzTkJNS3RHnql54dbkYKxxudqGWxA9s2sPHhFXcxtvVATEb98uSAFF8Z3aWSZDJTbW7yd7jdELPnJiFO+b7BpQ4Lot5OYjBnuFxgmjoDNcXzyBiZlQbsBXUiwhm79dx5fAfdi2HSgCs+bNq+PhWcrMMZ7/a6tubPTwnTJDhiI2BFPTEFa7BG7Ug6/FR6lkjcpLQ1zOj9rDFzdOrtRQ3aWqZOL8FkaLahrzxyhVI/PHZg+sNfRSP4l48o/WpvuH4/6rjXGCzvF3ThSTqEZOXX2bCd7waU93VFBGUJk4V8cwt+9TLB7nD69LOLzjdoAvdE4+lU9uM1eC/Q7KSRhlNo16J7fN1gd2wWbN7FyCS1FYZyc7yo5MXd3oBlsCBgJyYBabn8k7BxghbsLLvCjue6oGuj1IWmZryx0epFz64xi6HzTI4rXzknE9vNb7V5clvCuSRiRAo/2o+vIJGOMhgOF52HiFkaxQkMzfnIjwvoTFEhzD0v2WTEWqFmoNPxPump+cxtKQJP0CCa4+Xcd5vPE6or3lNHgwojtZS2KrSuVxwqwph1ZXMI1UMQCNiZ3KZelk1aKt697GiYnc2e5waDg7dX62M8+IPJeufmgoOQvFEuEDnpQ3HVSiu/d+7btK+WIHTgaXvm0XQfQc+CbSpA4Uh4arvNNhu5j5oDKisPbHCXdzaI328Jg+LyxbuHqwVTHOYp3LSvBw0C9RYw4fvS1DRNjwgYjpEI6BXyUM8LAfWsPQCCJiWFVVqkVKdjDAYxV0sIHhed2jq3y5Zm/HTwIBdvxBWI9F+oZgXcvRlA7Cw15vDqTj5IHoONHZ12gBm7nJPacs6QYncVW7LwsPz4Lb17+i6ZeiNvQepOOTaU8JJM3uMiAZCpV2zrOzVZ+UIF5Dbr0PjTI5tJy8GnLzO8u79v5vI95C3YiWZNd/ihBIP2euaqM1cQu+2e9eRBNQSbw17FJnjoTJwfFwcKS3nEuxQuJqWt4cDszj9xgGMumDJwJFD/1gW1nm3SLxF+8/DVeSG+vSSj7mnrOzBsOu+n7wDVDnYOP5kZUA3cnwl7eh8EP9u+p7o8cGCK0lCAToMGcv7dr7pcQljZqkON9MvXMzMH64f/hA2zZoqqvG7ZvbEabcTaA6IBPheY5MtI5Nt7H4iCcNBUuyAW1bmPAUSxEAxoI8TToOU6c94UFgTCpgHUPxthz3aP4wXeC1JilORxvyTQXqDm4DM2WcLA/FpAC/fiQ8PeXTwHzPO4C1jzI9k8L1FATnwcw2zd8nap4me/KNHTUH96lBM2QjLM+dWBqWdY1Kl0q1/k26FSP/t7gs11PrAvtvzf96fBj7+exG+svF9LiF3lyDKWyNsYnrNXQnevXWiOVewjeIeVRp2Bvvslyo5H9efvKCteLY/0TQDcJCW1whCDWTu9C0iH9EP9796pJ4dNF/jjd3jNrz89oKbqzCh6Ua3ezvvjGzRPuEXLVSl6Vp6OA1THd0Q4cXGySeCjSj3tvfxPP/KymxrQt6mBvt+8Nic8PFMo2bt1C0d6CSY3+kgw+JoeeaTVzZxH8ebITdO9KBpOpB9PX2GCqx+AzWd4DEYmChU8FE1B1vzUL+4Z3kDQsidRwigCE2RCDo475U695iWbcy5b4S/eSe89tIQH4UWD9+/ugp6uc8pm0/JzyKVaRC/q95y8zuM0qau/QTa67GTTSZ4XaBw2BRLc0wWMq94HkStgqun1Fny9w02BaNOfUX8uBrO7uucFKim5Yax4Z7D6XQP8BlcFB9m7DCa2k99wq1hHUuofyth9ZUIuxQpR7aHOfnwFKAkzSF8AK1iWwLLgWbhnuOZsDKbLtZlglVQcxrY/ZaN4GzUo2ecATUW5Vom7ae8f38PG4MX99PNn1PuxJbJiC4Dgj86Dh/jE1NcrBOY4MFJ4z+qSWvFy74dR+Tp/foy/+i3MWrYXwIBk4yx7a+ayuYoFLE9HSm1dGZP558/oOUZ07/r3ZH59HBd2u7hCkvoVsyX91hGYdoji/dnaB6v/40LNrD9EWfFggowrQOS+P//i/ZdfU6aERCmyrp+k2KngZeYZ9WyHJtPqZ0JdEAnV8flhsnTxJqhGsU6mZPH66XAOUrgfHZfile/SNz246qavRGqebd5c/TUE+wf0cLLqr1XfuXCNd6Iq/brwc+olZf/9lhSfT91amL8sVFv393/6kAhPVMGfvkZF3NYrvyih3U8DvhkHi4lkkR1oVNihJlW2YFEMroI/PmEI4jFbzt13gvPnLJDxFYwBe1cvH2bS8F17yY8BWb8vEJZoQNuBM9cjITmEPz3mNPWl/v3+zz9ax38SWKypxmZSsZedzGC5lHIEVj2A3r2UZ6t+CNWpskTsvNK2n7XqlivrFg265ruEOvfzDTYbPadoATBj8+Ni/eXDn/82PNfe3MX55tJ98XwFfb3/hjD0Fp00RYL7P73zw+u90ndgWPUXfLvhkdqsiRh53loCv8PlhpEolBlztpIC79mzJFwDo14UhKsBrzlXrX5OA+YttSoQPzsO+0xECemOFx+s/hN22InP5mc+I7A+P4Irn5jJ+G2A/rihtSrAIVh+/s5wGq40vZVLTcrmiuD00jD1zgcv2BbzZYBnATO68odg2LVr1QQemdhKXmNPtbtcwDrj1D98lF10vsAXXo5/+nH1vyxV2Ng9dav4Wc/NxHVg9YtpUERuMKhfXCg//2On53w2r3oY7nCaEehFNRtMJ4bSyt+JpETXhF/xVt3njYQj8frJRqgm+Z9/HbhTlzGOehy0s9pClRItCTE47vaL/3/+iJYrEI6ARHjflgeTMX9qwC9fCrjL606lpwIaJ7+gSMlJsiSedIQ6dt/4KLpzxjL1FEI+LV8Y26qWfA1jn8OrUt4Ip58WsBzu1xReleqGlsFbVv1RveGbHS0a6Fj6xX8M3szKyY2JJJm93FNAInovag/JxxwtObtBXbRTaoeTmcy9FvryMlWEahq/AdOMRwvyjXOnqOTzvvc84aIQzhRXPJ/A2Khdp+jiLsX7oQlM4d1sOxjs5St1WRckNGrkFM5Ac6iTLFE9R48nD4Ns/yXCU/Vr9ujlEPDzbaT7144FY+ybAmyW3KZnOsqs9069AurgMZLF0UrwW68Ae2xqq98xMlbvnyHox/iKDjiTA7Kr+puy+vXkk2mDOdwOcgzMDx3xGt8JHYjowBeuBuyJdcWoVEkGNO/vOzXUV5ow8gkaGHPqHoct3fdTdbqG8C6/W4y5Qw+m/Xfkwe7LAbK8Hn7Nkxo54CVS6288Wb3/ot94r1XBtoBnYF9BY9e8Mfqt3whvooHnB3BEKVWuHyF3heD7fRgEsjtNhk47d+DNnBzNbQSCxVBFBR5f+Yn67sYB9HwjC+w2+EAYZ1MwRdXEq2t+QtskPQTLo74N8HhCIzWGfVh3zUhbedSaJ42Ubl75JizhDAyHMIvjM1Z8eQRt+dhg3c73ySQVSglaGyRk+7yvVZXKzoFVmqc4szMnmavEHUA0TRvCG54H5k0Rcj8/GVsvfa5HpxIUOI85wreXN9QAF0Dov5M9gwsoNyqi5y/WAiKtHTHz2f3SHff5stWfh2CY7AP2BuMQsMwzJvjzu7Bbk4yufizAI7cj03NLa/ZbT0k9zaKautkm5Ljxol8+Rw7u8n5ONscF3mU+wod7sQleLnpc4FVZDLrPwqdJIPAhaG05IW9M0rrVs4mDf/p91TeTwG6a3OfMI7V7XpIuymMext6AcOjeE9AyZ+19i2BD70byylrj4EE4TEcZRxl+9vO6XgMXSyZka+NDtjxv7QDlojKoYRUKmzffpVBXfkiKdE57QXu6OXRfx4TMr+UZLL5RXH76hnrPTW9+eftpKYFcXtHbC9eSTKpRwd2jMWmw6ptGuzIOHoTDm3w5qIFJ7EpNdU9WTw1dCpnQ3n0XvK6goeZk+OYingsNZloZY9ttacZWvw3gPcZkEJ/fZJGzyFCNg1pQT73dwPgbb2TVLWoXESRMCbMS9F3zXf1ryxT24JmCM6p6bGN0D8ZzFcTg5z8ntkGS+c1PnZon9pOI1jbOiCVYNxip4pvId3AIpld3cuGq35Gwvt/SOWMH36eqQY1d7dif32G34hENuvhis1ZfOOCkSk7D5nOtV/5RwkRJX9hyxR6sfDoF8XHnUA132/6HX+A8pAGi980SDNzgc3/82Z7OT3O4XIcJZh3wsFvIdT/n9hT/+Asalc8EFrExNNV3JQPf1nglqz8hr34qqegNJovY+Nqfn6idd2M9VKcDgnvlcsEW7eXso7VlDvxJWKjWfvp6CeUmhU+teKCl5VE/t4+4+/v+GWtnRgaVNfC42YbIbhXPZG8SdwoDik31lD8HE9dbBfRun5iaRRUGFI39Ecq9EGPtFe96VlbuAE9SyWMjJBVYcuMbwbt81tDmvokD9uhnBNf5ge1WwOZYrFtmruEjxvpv/q3+JthdHz22z4VtvnAXCWrIPSfE8JAG1Du3EhQq00JV+lL6P38hn2SdmmfJMicG9iWU3o5J7ftJNYdR7pqfH4pONIegnfODBfux1Gl2LkJz6LHWwp2o1+hsbeNkWvUtkCrZxBq3vJLpM146mE9ApztrvvzyLYTlKaXUAtErmeOTnMKykj5YH/KvueKlBDQn3xBSIFLTzaQV6k7JAyK80raee81yIUXPHfZjgevZpokhbNMuIF/Mz8EUsjSF5el9pvviHpiUcVYJelGRaWhUTzBwolSAn377xc8U+PNNjc9aQS+huQdL2jZ/egiJ5eZiMl/bK/9P4wNZ+O9bCp434UHdLB0B0YPbBaSPcqK+06J+8tQyVNNHNeHwoITBN11ILiVE0xHQvwWbnvntCFEti+RlfxSTPHIpgmnTP9E8Ia+epPfzBvxXXGB0vsT9aOn4AtOcu2DrKh0zcj09c1h2T0KEHa7YItpAAUSQHjQZxKqnRdMcAXFeBGfB/dTz19jrIGimK43d3gJzXB2Qau+2dzKOipG9nmwaVMkDNTY5sWTL8Npa4M4kTHciwz3b3i7rDq5qj/cCpWz+5ioHPuW4ox7fRsl0LktJdYf9CQfHoA2G+D0WsOWPBOuyKQbk5QcRLAUvxz7nqBlzQEkgbbMMSUXkZYOZn97qfBIEhG4xCejxfF2glBuIuoM8MibzGxdSolwQu2OesYe8O0JJuz0JFxViMh5p06iBY0BqLSfaf3krvIGD3pk0XC12etU7CWzq60JxE7+DCTmjAtbvh23OWsxZFiYfvu63O94VEWaz0GdvaAeLgYM9Ccy1EzcEkifX2FPkVz+W9lWCoBR5lI+Ky3i2urbi+z3SQN8YAZ2VywSjxZ4ocsEWzEqQIXg/EY+ah7X1535btdDlUg1r+PrqqacPFXSjV4tP41CbNENCrN436pdqQ0/q/P06Q6h04Y6G9+82mKW44qEz7CuMskYx2UsrQhiH4ZGetripZ5QsE8BHtC6pdWnPoJYt4HzkYgLUr7Tu0sslqL9NFVvLCffTa9FuEMQ9Qa/l9DXHOji1QI/AnlpJdk7633hlN6vFIQfuYPq+aw3kI8FkW57WU6a6a8FnChQ0N949mbvProDWMozYl/hDNm+awAXp1WRESWUjE9Nb1oG6qjMyRrxuLniP33CsY4nqycvp58ZyNHgu3xoCyabMmNXyJSRyIWJ8Sopk8YJDI8P34US19vEx5/x1i+GC2y92lPHQz+pun4MdOu5JupNcJloMaWC9HjX4m9+LgmwpMMxDgPeB5pvLqY+OKhyWmHBSrSXj9dtqUNNRgOai//bDUJ2itXDYhN3rx0zEXUMm6IUqowhvDwFT1IOwEQYto8d58OrJj81YvQWfGSmj3SbLIYgmeFYziRTm3QgW5RDlqrjpDLp2wq6nV1VYMDK9kEjxs8yWqTMMEJ6tAN9J7WaiVdQGJEfGY0dZT0G+DdBCpUNrYwWf1FOzBw7Iy6jF+/e5ZMTvHAs2MR+iJj0tYDQveqrSXatiRzt96qUbQwK3jVbhQ9j3yeR8FB8q9ejjoGobNh12E1RBueX/4qeTR9NSek5acJZ81YDO3TtXGm8SMIppWDPBTAtgB5NBtr5nsWmXHgzoilsTBw/yTVrBqwd1f+juiEnvvv7q9t2VN5/0TJg9V2B0vMqCx+mQY/1q3pJpHMgCUR4Scni5Ts3aQFmAtU1sHJgHEpAPqDm12qGe1MNzkwzCJvaV/boFBbTOpZ7IJoYqlG4a1lbrgUmp30Ep5mQkSW3KSC0+DACufk8t8ZP1DApGqKIcEar7txPoH0mAIJ3zGYePQ5N0myhsoLuNehy3vd73V71T4FvdqnhnyOu0diUHTlA3qJfzWcB+///FXEb38jfIlgodNPjd30zEaY6bDTyMIqhu9AHbm+GZzNtUasD5oI80tMMrY4MQCHAtP0Stl1rWkzjOBjxLB5c++u0nYZi/xKASAkx441Zlszw/jsCQ+wZbaDkkM7dRJ3Bi/osM6ndmi3K4FNBMHhfyTp9j9vf8hPt8SNKczmzgLz6EWzOyaL6+7/wAWgrOLzJhd0uyZJrzaADmUI5Un5DXT8JW6+DrawRoUU6wp3qCCqU6XWaK/T3I5vp1yCHvAZXAN/9iv/wBTXT8YLO62f0ytgKEzSY8E2msGGD0njjgy62n4Nb8JM5r4cT2DCu06UM92Za4vyk+mct1i5oTsMf9SOAsvI7U9nywbtF7ErhrXZ0Wm90lG66x3qlgX6rU39tBzbLrbgEcTe840L8FIHk2IqXZhQVe8SNgh2CL4Cd+6oTQ7R5MV+NxBJurf8De9iAk08bIYkjnYqZo3wA2htEkqffT4FH8ahazi3JZgd/ttkPL1oz62RJUHugG3SHABxYTustzgI9LfMTIvFfBfMFNCBPvyGH9Lc7BcvJDCW7gY0c1LanYOh+ROpRXSuR3e2CM1/IGvvp3Tb3zZp9ti2XswCEDNTbO7rMeuc12ASa1bWxEYphNXj3cQPbAF9L5QWROu/SqweWb3/Hu7A+MNj1bCyUThvE4yTV7N30J1bRxqMvJoTl3wjyp8teV1vF69XP4SiTVG+OGLB9zMWeATmuvxqOGU9GPgmV6SBUY4v2XPCJ9SYgiHt/w2+0hRpfa7JdOLNbCzt2XiJW8BZN+TQZQcHmJ8X6XgvdOGlMgeGAibZVPbLrU3QLN57dAANiaKaaR70K669beg3OTfRxhJ4E1X6PF7S3GxE8/we/JDqnbRh8wn5KZU5zSd9GSepdkShd/PdU5m4Rr46Ff0HUyIP969ljfHIdkUPAnhzmQTvjM/G895XIkgI+ILGoC1c7499aPwOtlr1WK1nitT9SHldUm9DxEJBs27fkGE+YuGFf6VFPHVmIwca8bNe3ZAAT6Lg8q1ohEVtnTnMrrpQCnAHgUn77PelSCBIHge17QnLluwKRubMFoWwu+99+BzV/Ou8Ezt9g0uN75YOQLDani17NxfOtNk4XMRvCHd87LPwB2mzwCv969IHyPh77Tg/ii/viXq/p6v43spFJPxeNJzexY1ePee8ZwzZc4KcQmGPNXHMPXg9tSr5V32aw/Lhx0PtaCpvymsP6Z7h242ZgPND+OtO7FWY3gUU8ltNlPkI2pEfHqsnUCGl7O36Dvdy8DVDF/xT98GJx72cEeQ4QP2UzMmfT5BUbLbiIbSJ/JEGidC7Un98We324DGiWWANfnRRwOA3NKJgHCZdC21LJOx3rktk0MHku9xX94uTcbA4AK6fiX7yf+YkDYWeZEd1E0168lyA244hsC/T1OSL79GpBTYEBTZTzUrNW/EVy+xZ0aEXpnFDcjp4xGecPuozplo4dHAdZ856z4a2Rz2uYc9BOPYc+NrHpoLtYbaq67JRsL0OT7u9/LkUtqqFIRCPsN78Kou3xoULUWaITNzVXWfECdnPOTbf+6tLJ36ETsDCPLRr69EsAb4ZaoBl/Vg0qpAaNE7shjszsA8UyEDq7xSmRZgcnYWEhTgHickdRYZSKgq2TANd9SQx6E+u3pmqPGaBmQoIxzPTifxYfb2ybEK9/sp5C6EMyqc8DGJHrBZDVTDKfZY2Sqj2nQR58PDyTyftPgF5+m72rKmZtsHO7u2OQj7L7hU9Ze2NG4fT3HnMkrcxIX2E0tHQg3/gShE322FCOnDCZnCVrgBrmIXe1pmLywid0fn6T65XZMmG1MNyAp6Ejx89LVA/rMKbzFDiXTYLg1vZbnG6z1RaX+cj5myw0dBFiD90SgS7O1KtJnAVGxyNg6fwo2R/2jBSDapdRcFr6fDPVpKOv8pSHWpn5+FR4P77vSxMFJiWv+0ckN/MhLTkT6cX96gINa89SJoH7GgMR8OsG5vSLUbQ+YzZWgNLC972LsfkgOJjFRQ2BtDza2atM2p0C4vBUFTg8cUI2Bkb/QGxyHdE99V26CP3x6TfSIPTv9Bj08ChPU7eRB1I2irY3nsqPy4y/+c2NnYvShAsyrrYZ++XbZ2MCCn08/U9dLcT8yeeHV9wb5FC1OnU3Ua0qQmsDE7sdOAfOn4AhhQlQiMeaZjJiPSDk0nIy4FsSrnl0b0wkexmizkzKq7PrLT++gJULvhO377fv3PfDVTr/mcDUeKSw+mxopUhBkf3yosrqEOi92Bn9/D3tLWvPfYbVYVAPseTVZ+ZCebSn+LvBxYGfCLdTLhHBn8uoW0A4p77ZP5r33jFRnISV1+4/ez3s63uDKP+lh6N1geXz0CUaHU4w9ErCM1WoeQ2cbSzjY269gPCUyJ093AdLw5rB6cj6LC1b+hy01i3vx8vkYoOPTJzXIO6kXoBS5ojW1Tra3ZwK6Nd/BVFhCsggLMOenm02gemoPfNiVStaYwvUCN/NHQnw9BGshEHf66VdqS55mLureHyB2G4VaZCEB20XBBA/T+0NdJXoHzLQ+6Hd9uvLXWhTkUPnLz9flrLBWx34IXee4ww+xmbJffEBzqEaqVygI5kefGjDxUg4b6cJlxDUECTbjbiDbOd2AzmovDugsfcIGJ+6y5XbpUyjHX0A9xMN+ivMMgi88fn58I/nhH1z1NRHPfgieO+OWQz6I/TU++YQq6lWAt5Hk1KP3TTYvwgSBtj+8KHrr52BB/n6AI4Y61kXXAny+Bwq0NYlRTwpmxvzXLMgqSRB10MkGE63LI1zP8eBsHa/lx6+e403EWmF0wVReoxyaz75A3Pmy9BMPoxg8L/EOY3J99Itx6iXoRp+W7pj/7VuyuXHyyzq7aDnPn36OgMdB4Zqb+Pj6qBm5H09vyE78d21BtwtIG+0M8HwXeyT77SmY0OLzMArRE//0/LQrqxKmObzQZFM6jHL3QwG7t5vR/dg8gglHmwt8Vs8Wu8LY9MvrmP/xGRq4TgaWLzcKINReiLqQ5xI68yKEe1BERH6lL8D00Y+g66Q7vBcvJyYqI60gFT5PijfTmbG1qu8P39AWMNiTcz47auIsbyKjtaqWc9nxv+thTTXVmrrJvv3TJ3a+fP/iEdiawqix8tXl8jEaqG7MgbqWVfdLeiwuf3yk/h6fAV2Y58PP/hJRK3zmAbMN6QL1t67+4ZGQkhgpt+N3R48Wd6uZN3r5L99g82Tuky17bDQpN6zqh++BsFTLDeo7UURz2PcZK/XKAnvOaKkTZF0y0+2owP0Rbdf88w2WzxznUFDCXxWNrl+GjSTBAgUULYcyzhpatyl8069IBNGfgplvDwNIPrWF5CF3wfLsgu4Xv2iTNUlN2OEag48DErrL0mPG8t27g8C6t4htzS4gCZRzeDElAbdr/mTOc5DAkwtOGJ2+rcn2z8EB3qEVsXHr64BmV7wAfagUHErnF/v7/XV9SHhHWg68rt9Sg5ZzfCIAyDtYUKNXquOkR6qLsw8mey8cAR9vEsIy1a3Zd3Kdn57BO2UMgkWu5Aa86+aOwxuVa0Y/QwOjBHRk2s9p8vMflL1jUEJWv3DWwmYBj44fsMaLgtmu8QxlMeXIkw5FT3Bc3tSN8T0SXpbm4Kf31MDMG6o/X69g3lzXY7J2JeL99UvqZbqdCbzJR59sCDXYlr/Qi/wSwwMOzcOnnyLsNrB+5xr2d4djP3GbQwphux0JX1mAsbO7VHB+nCXsj7abiSBHFyCIrUdP+fJNZt0+uT99S+o7PoIVzy8A9NREwk5q2fwOWwL5IPLpqX0uyVLvvMsfHuzMamOO7x2WQKbrCVFWv+nb6UGqrH4qtQtrm02ScbSgaScxAWKYZexmDQt8e9OXBufqCRbnOvHKej2ips7eXH56bfvMfYykvWpOcHi5yvQf0q6lW1kYCf4gFgICCUve8jJBQMUd+EBARB4JkF8/h/vNcnaz1nOvJ+murqpOJ2upYcTr50GsJ7tUM09v8eG1yxNKZJvAa9lo+MDJ6zADDsVgb/MYHyr5DObzd66gnwSMutb0q8cPvEmKkg884sYnb5JL446QjzJA9W95DSZuyGdoXC4EcVJdFotwmVuwqNYJH/WQJePOSGKofi8NRQfNrNfv14VwWF7bNV3Zka2j7z/harEc7SQR1uT+EQnc/Casl23Bmm5ae5jOyZ2w574xiQWBA5VduqeWXsjmFIiqBv74e8DzPtji0YLK3dAJQNdTMPvSIf+nt/El/g6MLqIDueEmkR0W+npND6ahsl1/p3/7zbeF84RuWh3RDNyg2F+5klO2/cfZfMfF6KklUofrcKXurooDqT97EiSVquAD/brBXm1+FlwXr93q6WCumCQGYCFLqHey42AWipCH3FBIZOyoFDD/I/PK5h9gJ7SiYcrj1oELUQIa0h9LGLsfQnj/FBnWx6ELZh0bIbwGCkTL06jr+QHzEbyc4EeWcAiStd5fDRiHKKUH0foE8/0IJHhNYYzPhS+zSbjMjfro4jd2yNnY/Igf+auHiDs2BSPHohXBEygu+VnXF6Df7yeHF/0y0A1Pgm7j/1CFjxQBu6rrtTj4CDLxe8B2ND0CtvnXf3iOlMMprdcf9+H/8gUf1nddb3rcArtyn5O2v6uMSL2O1EBS7L9+QcKQiC15w0PijfcOzKI3jGCfGmf0mg5soN02QvDDsKCeNZmm0B6wAiKpnbBReiKbI4+uyp5fGXYZ+5lkSguoVOd8+YsPtvkRnfKTV0wW2dybS/pJLHhBc0yki/Vm03d4IOg5pkcDVVuTaYnrHhaHMiJCGj2H+eW1LrjfWI8WoRQGZujTRf7z//3xbhT73QLvsIrFG/byqAKzeX+0YKuH2BqktWZaQ1tFTjUX/emfPzyFe35miOuPXD2Kn2cKq+kgkxV/yoCQr+aqtXU+YzeUT8FSFNoqf4gPqL1y2ORdrGfwpusldsvtobhuWjuF6/Yl9ZNdC/a7QLrAiymbGB20uqbFs2zhaJk12ePvUHyba+aqcyvF9CSPajCJb9+CXet21NA/b7AG2QjBVg+oGa97MG54qbatKxD2kBTwaWR4h5v/gObCRfU6FEPzp4fRZ3fhAuLseAjVcv+levPS6r19TTK49GqLHXh+B0yvpPVPHyFlR8ZhbrKwAWdD4P/VK3bSa6KKsergePs9LNvfLsDfiyK22VcIxsmperiz8Uj+9avq1z0E44FzsVdUhLHfrDmq8ebu9K8fspqWP8PTZWUUbXxslbPOgdFzlumfHp6dR9eBzHkhwtL8W2x6IoRZbEE0PjRqzoHPOijkaohDI+YK9re++MI0HDZOHKyfZxuDdhf62MjPO7B+r88OPqbi9E9Ps61f8k8PpsRzzT9/FN5RAMnsuVGy7mzmgF1drAh8QtVcwRxCeLk8Crz5jWzZ/DOoe8iimx9bLI8udcHvfAhxuFO+wT/9uF9RgS0ZD8H015/Ql982zPX6muuqEw7Wj6yn53pshn3wrEL10fMy3ernQKKvmYGOvxDCXmVvEkcYnlCKoYx2yjNg4/3IFPWd8y+yi6kTLNE8P1VQhTqNgRqArV82qufx96Uu801zvw9kF8rDFGFj86PnP7wUo4xg54ANsA/ZEcE1Klwa/Oz3Pz0K9vh8ok62Gkw4P4Mn/BKfkEHXJLbd51vCxAr/9CsFdL8IETT8ScMX9iX10jV2C6GUadRMiu0hZTYTdR8dZqo3nlqML6/1YV7GAnqfy4xNwApaeHbWGzYF0w/mlLo+tKkjESlh4V8/ToFpGB6wt7Mnc9SsmcBNz6Jm449r9vUbRfdCCx/9a2OumkR8ZfYCmTpRJAUsnv0KPk6smdabycDC4dKHj9cxwP7zXjPyOh4hfH7VGuPnkwa0eb97eNCUlnA0/LJ+45PqFT1SbMbeCSx89s1hROsrEq9+kvBHc9TA6fkCRJBWJ2C3j4Qgz+hC0KZHx4szWcrmX5Dd3AvBl6l5J5eG4yIV1cEwqW8vhmkzEMQGnJgkLYihHBRyQ7QBofnP311byabWMv4GdgtgDpd+11Jr8+vGOPbvUHwHIfblx75Yn1IlSX/8yjPtZJjN9mtB+dKWNDyd2qDPltSB+jf3sRYNJ7YcwgHC1N8rWA+HoFhf19d2S+RZwLZp6mzDIwduE9I0mDsz4ZvMagBN4oEGXPce5vT1EOG672vE5rwJ1hjlPfSRbiDlezoVbPNfVWFFHQ4npQPLF1ctjEZuR8Na6ZMFbCOyt2v5oO7Gn9fTuYr/+f/65WVs/OpHwOO0NFSHrTSsmtT6cPO7qXUYSULeXNv/9ftIt8ULC9kx/Ncv0Z+DV//jd3/xtvlhA9nbQIKXdf8lZrLNA3u/dwfr9qkR9fQ4BDS+oBEMH+Gx4a/OGEm8FgKf+1DttfD14gJ/hdNHiOj9pITmCjv1ApHp3Wi238318h3OIUBf8Y6W5lXW0x9f/n+OFOz/95ECYNxU6tZZmDDeGFJwnP2ANNFvKmY5oi4c8+xO9ex4YUuCdk+oHn+Iauq3SVZhm7rT7umdBgeQA/a8LhxEQb8g3kITYzo5SqD+tDH2x2NcrIZSKlIOI4L2H84eBLx6klIJ+YGGYTHVbdS+GrCbGos+X8EHkGDmW5h9ShG7C4ABO6CCg9ezW9LHyX3ULBs+FcyXL0fkqVuT4YjVFEbhMSaqFnP10grdCP1r5WG/8enAlitulJc4y1gTmvcwNi+xBW+d16j9fF+SZVJlCIdzOeGjeT4UvJY1F/jToo7ArjmzteoeBlizqMZZapsJO/2Kp7xEN0Rge//UEzfpvvoF+dbC8GOwJLkqgiNTv0SwEo3NJqfx6kS3t2SOiVIzI5MgXCE8kDZL8mCZpfquat+9if7+3mhargPf3f5IYGjObKotm4dAc1Lqa0sJGFJ3I0RleiF7szqy9XTVRRgpco+d4mKA9cx2F2B9/B8+3NlYkwYEEZTbWsM4yZOBwd8vhIEZAmwGoVmLfnyA8HSNb9QcJncYV3i9w3r3talLkgys8c42YJw+OcJ9EtEk+5c1wyEXINbGWzeMF/NBIKk6F1/VkRTsFbAW8lQrcKj4pOiT61pBEX4v1PltkqXyJA5eFkixVoA2oPPv6ANvSVf6ksjZXKfKQyCfVxe7qW0WAtavBLycllCNnVaTuW46Q5kLfXxq6w58YB4roKFLhNGtiwJ2SAsXJvMZUHyMzWHx5Z0DnFe9Yt0xTMCMeFmVKhk9nMjJO1m0XoXgHCo84uQbGD6tJZaQ+4YV1svuUjCnjUaofQWTXtuLURBbiDPVMp8D9nfus15Ds5KgLk8hDvDNLBaZ7F34VIsZQbL/mL3zOPeQ7Po39jnwNnntOVSgAac99lhtgfn9OTowW+vob/8HdihvJTy8nBgfISXJ5NlqCZ862ZG9jrmBbPmk8oHYU+0VjPWcTJkGf2/Y4vg+ecVCPyqCPuY5VLbiOsyDcsz+4hmfvLhPfu5jjdQP92OIrm3Dulu3oh2ux5ieTpMH5jNOHdi5RYzdgQVseXcuhJcoXsh6n37F+hgVHtJYTGhYvpk53zjsAuIkN2r18XbRcJr4EN/NA9pVEwQzPTYZ/OgvTJTp7A48pkgDVtvd6fHeOsE8DeUFWOCiURT0+TB+rxGBhnDjaKCbp4SkAe+rwppn5HfFj4Sxx+4JQ3nu8EsQh2TZ4SOCmvWLkVqLYUHExUhVmnkVNSZgmyzeRpS39af+ccnrMbOcDHJxxeGQ/2b1kqTcdlFkZ9Djo36Ys7UaTzCEZ/oXf8lop04JH6Q+Uuu9/5lrND5XSB6wxketL4q//w/wo1LwoTSTYKZJ3UKlnHbUXB7QXAZTK5XY5a7o4T2u9XiiHIEr3C7ydpXjwH45JHCvR4Bakx8XpPyOKZD83qTuzH0Chrp+hfG44/ChvRjJjF9zBLiDcaV2EPQFe15lCHeYVuQTggfoo/a6HXE5dNiKTtFAgnN5V9VbIGBHCAuw/uVjmtQjEYS+YetdWhD0Vv5DFkp0Nr8HK4bzfDSpZq377cARTcGQVQm2uYdu8rW6VsoXZBK9j+HNnL1p7OAH7wpqyomeMB6OFsBa9abYCK9gqv2jAflj+qCv4/7BFu38NkAcqwH2S8ULWNm8DbhfHg7GO91K+EkRnX/5pKn4W7NLz/PAO7lfenLysh7zSL3/4Q8N8K0uZkU/ZfBa+QoNoa2bAixzB55vAKHVa3LAciltIDrxHvK1RQPEN1a03SqZkOVw3Q/L631y4DkodOrEdTuMupq5AB39huzWtgGrZM4deD/Slh7UdBmIdDs2QHihFn2S9gfWvqEK2OofdcawMhef7RQ4z9hEjy1/1775KvD8KQQCdHMppu+vT//qEVk/klGw2HA5UPl1QFFl4mE1+TcBHYsQ1gUnG9agEUMImgNAYkluw5bvBoRnJm/xUCUjfw4348+/bfsLwLoIpauU2XOPt3gfVm6Xz1A1/A6HNtCG/YM5lgr3rz2RXz1ko92GFjjObkDN4RwAFp+eI6gUeiGgsLxi6Z/3HhxcCWBEnthc17pqFGyWh62+4mFfPLQn7H8BR+2E295W7qEIMzXU/vCNzebx2cGoa3R6obwdLONgEngvvBNh5HiuF27apn6qpsbu3hGCsTKXFdz8MKfhhoezIuQQHiMmUuMjVQWTKreDmX0Z0I8BvSZXZ+qAmX0pIV+uMudZ+DagRE8T+1J3YnO7jvxfvlEXVcdkf9mmFi6HA8PhqW2H2ZGUiyLCz4W6Jm7MldvFqzpa2MbBWZ6Lqaq8Gcof84hNkxTBlFXPDJpgKam7k5eCil6BoFOMFyTy/M6c47RqYPBVXkTaO4JJH7IdSUpCP/hgP8p6fMCTC/hMsLCdLWYwXzqvhMV4l6lba3RYmHz34ZJKX2pL/gK60vQc5cvlT+rUi5H0B8MrQf/yfOpzQDf3iuREcFUXFW/rk6y3w/MCQhAVaJcdo2CVEpTBF2MJNVr7xf7hl8GcMz204D607VFuwF33nxhf4kcyT5qQQs7fM8QqZSymPn5GYMM/bMBnyhYh9J9wAKOFDZn7gnW+gEoZlPCE3aqLwYxfUgyqaYQ4s+kpoOqjEuGP43bUdb8K2PgPB03ASiT8vkbwC54V98dPaPB9dWzUsvEiFd7JJXsIeUC+Py6D1+PrjLjTcR6WX58YcL2sM/WuWE3WAeccDJ70jQOquMmcfjMRcH3o0lzqFrBIGr+qwppl2NajKyBqTjh4hd5EHXWXmdQBU6ecs6KgRv1Z2bACloO9MRNq3awRsN7du9Cz/CN1eGwBliLJgD3jKbY2vjtXpjxD4UEYNYOwrmnsaq66m1qLWu9XWOxNBUIlqa9vfBxkbJL64I0QPKyJyETDptj31ALKqFTYuE+/ZF5lzYKwfz1wEP9+bCWcoynnd3Oj4V2mjB35tw/5SpAonkxqrmpJXNhJ3wfhblFSrOhycv/lT2qhCfQDziG0tJdNFPsCzOUO+Ar+8W3dVaZhNZROgb6MDtTauYdhsddLBcNxRTRoKS2WNacVvHfBQDc8Hubf+wVhsIAEcRMRhmU9RRwIkTxiw8Vfc6ktW1SK+OlQz02XgDltNoJdJacECPa7ptUSOVC9iCHWfl4VLN+69iFv/CbqPJ5JwE71PQKnatHQLlmjZHGvwIHc630lfPBMA9qz3ofnd3tDXFWEyRycqaRs+IWPWJuSRXUfF7DFE+ICuyyEJCitP7yg2nhzh8W8RwrkfGF7BdS414v86Vo4wFohHDq3bHak9QJfbEnoUetBwZaDzANxHx+oEwfbxaWJNP/VO8SZ3z1Y75yUQTEsAqrnksGEkyTP8MnJNUUV+5lLlrgd9Oxeow44oGLt31kJo0mO6FHeN/VCoy6GVtvf0YlwbsEf768ZqFXKaKC6TcJiV/NB/wp8wkUCA8vlTFN5yx/iDgUOFrzqCvwYO4MGTnsIljyRU3hhzwqBMbaTff2Kqz8+i4AnTsMyqHqs3pG73/TfWDDRTA0YeXjE3lYP5o/V36H24DE+wUYPlkldIPD3JEUzFz7r5aabFuz4WcfmXlsAs5PqCelloDTgpwaQRrAcsBqHENt+MTMa0bz7pxcORXSp5/uvl6C2PZwUhZFWiCg6cRCdfx/qP7/yMOrhxAG+rDDVhGUXkKnSQzUrSoOGreUyWmmTBL6GPmNri4f1Qy0F+ugaUDN/jWx4Phb/D5/JqoAnWJZxcoAcnX+o0YnGVr4pIhiFOMa4miBbyzAKIfh8CTZORl2wJkl9QMMOYCxdsqSvj64EN75KZl0hwVpXDxEGuWIj8cymYDRvDwOwfeDg4LcTwNqlvyeEhBMxBrd3sHBfHarkfp9xEjVKMidwmmGpuAJi5LMWjHerUtHD8kv9d28MwucOIvh+8jccm/e+pqP3FUHVvHf4uPHbH5Y8B9oef6Qnr/+ai2pcXMhfzyd8dMtymB1rngENApf6TBCKfv8JOLBmcU0x9/vWqx8fOMBfryfqVt3K5r23j2C0txC+TV2cTNn9hRRg32q0bvk8fJHdA6GnR7S2wq3ovKnpIB/wPXXtK190TdTxsJjgiIOCrxip+CSDD/csUtzXhrmnwCDAWaeG/n0+n727Ajb+ieanKSbd/VdJUASHmhqbfhGSVOzh4uQ53vKNzbWqlBDP44jdjyQXE2N3CDa9QngjKUyGyBtCU3yeqMX6V7DheQ+3ekYg2D/ZslwzF9xiWqBBLXVTePw4CEtpMJAQApWtd27OoY60nOxbAIc1/s0WzB/NhTQNXcH6VvIGZirSUNVltJgrPPvwT+9bk78myyWM5r/vY1+cdiZBLzrK3fk2IhhfymDKf04Mr67r4Cf7ucG2HiOE7vLC/nddh/Gyf8VgfOQGNjptrWnZ/AyQropOg4R7DItyGDuYnkITR0+G2WJLD/IXX0idUwToSlUDBg56Yxcpvcl6+XdRRr6IyFSLYzGJBN1hYI0EO8/WK1gu3VuowmtLcXCNwIqiGwfNJCoJC5YHoPZxiKB8r0IEKdbB6hsKglTelzTkv9Kw+Q/kDz/pX32av3biwnPthDhs7/awrVcLcf5O8eHTdqyNf7OjwvMiky56lAHp8q6Hqirc/vQhm/V9xKniufGoHvq8ufpQ4QAwwYzAtl97hn4ETO+PQIOQXIuRx/aspM47JsBHfrK49XJXzSlJ6HG3S2taMm4GJ6MRyFQ/cd2b/I/Ae+cN+C/+l0faG9DKfEzt9wLBiG+LBflKMwjLXyETWx2E8K2LGqmrCtcz90QKIPxuQZ+LcwH0qHQpBNw6bOsbJmt9f3ZQNs+Y/vFXQjvZgd8bUf6tN9+uDQ8/d1VAnby8C/rblZU68reI7D/cp14fJf9Ut/XEVuBcC7rrTwoMtaIkS/F4BOuf3xJmTk/D9Lmx/4Mfg0biEPV9eQZb/WrA8y37RP4cV8BeNp+BP3+HzLodsPpzG//4N44/5WeYweMSwl+xIKr/zDNbUXSC4EyaFds7o0hmeL1q/63Px+O1WOUFaFBKPIsi6W4Ngl1rq7rhwRY/M6DS8ELA594XiuQlS8g2XQlFcvDQLqr6YDgbW4uf9QV5uNPTXHaF2cKr6zv0kGpz0jz7pJHfVvDDXkSjegECNWD9BYCUF43Vs5tzGfC5+kK+ZjWx+fV8IBgGToSR0ZdghteXAT6tz8jnhz8FCc7dE85XYhAm1d8tX84jyOfZxf5vshPeYwMPoeAj5AZ9PfTAeqfqpWMLEY/azCa2K1IwcxRTW50OtbjxbSVfPhwOaDXU9M9/6hz5hcBWb0VK5giu98OOiPz3XS9B3LTAPv5+1HUOE1sOdijCk34wqG1kxJxxfehgedlZf/lfE26Xr+CPn4b0/kp6YtnRHz7RA1neYK4H+NeC09A0j8HAdv1NgpE/vbAG0hQwLvjEcNovIfYFDQ1049fA81536jhSWa/9OyrBLpNKet38CR4BK1O7czFitD8NxfbrL7ARYIcPZYHB1wiVBhrPbCZM7M5//uQTvg8epnZjjcV4AqoFm/fJov5zJxarchNj4Kt6TQ+8vJrzL9Nz6Kh5igPmI8CgpeYK31wHsvO/12K2RjMGJlkcappeCUZr9e9wEdvPPz+JGeHayq8hiskuVBywunMggY0/o3f8MJO96YAMvF42IfKtCtm44QcsXvcXNrqMJv/iJ3VNG/G3+28Yyefnwoei84SXPwv4HWQnl7d6Ql+CGCTLEL4cQPnyRF/SRUoW/ulqENSRTQOhB2C5C2oKAl6R0YoP0cDPaxQC+V6GOJWPQkA/o9fC7zu3qZ6qUQFIdY7gS1xlMlvrHszm7aH98481a70ytv5UHuTq+kbSpo9Ypg7Wn94i6c0KwRRkwwrpuHdQCcZl2PxjES6s2WFrXoX6T88Dz+40fCoeajD/YgPBvhXPJLf0b0L++MctIEfSbfqTfSWpV+J9T8m8yueEBDNsgWCgI3bta1qMEl9F0Bu8HCMjtoJZPmSNcnkkPuFk/cnYpl/++O+/769ClkoQEbHCOKDHmrHHdpE+yCT057//4ys76Jywe1FDwD/gyYfON1Txn//d/enxsP6eCPCeM1vSqXFg9jV+1E3tupjoR0DqxkeI+HbEYvPzCXwXIsOHTsTJ8KcPrMzF2Cj87WHdxb/80zdbPSiYEcuzMqrtEYfxRTNXZrc9/PPzNv+7nvdaSdQEGAN1lQuoZ/87PeFriGPsxLUzrC/5pyhsTi182fx05n31HChnnNHgARNTOPzmDiLl6m0Pw5bD5ren4KTcfXyAkGd//gDY/Euys+9cMsmvXwZ/5ZORdgyrgFyeVf6nt5C4wHPB5tqG8JP34aa/1WTV3+AJE1pa1CRHoV6f9lZvjJuK7eI3DvRuByPUz3q38f1vsGx+0r/6o5UXmwn7kLnw9TqQzQ9UQXesntyfnqKB95wBfyo7Dk7TmpHVhvthRMDKAahje+P/9796H/75NzTUNGTS2yVqwaaPqA70IWDFes6UwxpZhFyyX029yW3/6599dRewYn1k0Mcih7bfAxjWswhuN5hhM1hUQCc+5uG0ZyG15OM5IJtfpW54gEb+K9Us2B9EuJyAjt29iIZFfEoEQrHXSbvtj2hopa9+nq8OO2sam8vGV8Heit/YwId5oF3JFPj6zS/S+/LMxvwCewhMecbGwTqC+RvkqZK8BbLxF48139OphIfRGelffi46/vHQhQ/jL36CKXj2EITld0C9OO2C6UruKwB6cyAi7K1EjMbLDCcMRPT1ei5YutPUwo3PI9BSXCzc25iV8sb1+M9f3PxACfrF+UOP5tSYJJe0Ej4Ukyfi92bXa1+cLup0/eoEnOWomAVZmgHg5gGHYM+xpRXKUS0iLsE6uH3Bkh29p6L1/I+e2iA0WeQTHgxvM0VSA6qCsbx01NEeJWz/vpW58fMcoKPbEOWbn0EnkdpRJ2Ve6eEGKiAyGGlqYBFCLUElNU2f9gw+951A0ZczzGU9ZRzsho9JuKtbm0u4nEL457cF2e1RLJO5ILD59dQ7HaZiGpyXBLf6jV0ct2xJ5f4OIu84InHzs5blGrmqlHZ7lDZXMaDL9dCCi7X6aPkxmrA0xjmQehHRQ2yr9W+fyRW0hWr3V//Y/KdHwMOZqJ+MR3N2OLkE4Ht4//kL5tbf4+C74Bm9Puo2oKfH2YHd5Ih/ehKQLi979c+f+ePvowJyX2kF/UKy6/lXT/ltrlR5Nb/UT9KomPM7E+FykI44CC95zYqHdgd5a19x2MG45seQjfDOnQ2s56UTrI+WdbI3BPkf3xvm/AI7sPXDkPAOjUEs8rCF3Dp5FO/0JmGQdhk0XlJNavJZk59duytUd+cQm1GTF+Pf319l7o09eRAClvsx+ufvHs3zdzuyqG9jG+JI3Y1vLv5OjOCQagpZa5UOmx9DlI3fkLp5GMmy+RXAAqlGrrGw3/oN1QwzU5Swz4Rzsmx6E0hyWiCem302eSegwL29ptT4uB1Yvz8uh62XNtREfAuWK0ln6Al8QM/vsKrp2ZB76OSoxmi+vcEsmDgHPDUKrLfAHpaPrxIo38qWIjfnkx4NrQWJBn0c9U+BMRHHGdReFwOHZ/Rj6y5zYxgfng1SqScMY+GLEWgoi+hhH+oFu0W3HL7uq731X+7BIilCBTA2JmwL/fYw7wI0tVvmAuuqBwp2eXJPWQxv28MS34KtdxcbQGBKgLVye4jnJAgKfAmJg+1tv9Zz827hDmFKves3D9iir//1d46enbORfN4+9MbfkaLNn5ouSuH+9QOw/pXuQ7fxJ7k9iAtqt/jnm48wg1j0IVE3fjztPEf708OIGUsTiLF8FAFM7hE1TP5QjOIXhPLpeSiobSUlG5Mp0uCnDo5ICU5TveyKoIWqsd1YIPSA9dHD02DnyTY+8G+hYAGTnv/XLQXS/z5SsHNJi7rL8Wqy9Se5sKh3Gg0UKWWLPzdQSXP+TGPjsEn8FbTwfPIPVFuWombjTskgGwuL2g861qvOSxcY7mNGBJHuk8XLsztYnpmJvfLd1R1RMw1m5+MFOwfFLJY3f4lhF/chPTRHfaBKkbmw+IID1QNNK5YLSDVgHpsn1lGBwGoElgSbHdlTb73fk9FKqww+ArCiRbUQWI7rOwVxc9Kpub1tt9979QVuOEbA73oq5uRqxjAriIM9+c2KGdpPEda/wiFLXpfJ7Kd8B/O7ccROBfthrpUgBPhuHKgbBTn78bJM4M0MGJLWvZ8s0Fd62Jw5G9vr+RsQmyEEmGXOSBKgnlBZkQ1QzIZMj3gM6vU3ZjGcfPVHvYtumvu84CPoxscM6/JPS8T0FTdQ+p4C9L1ZC/gpHnyCfSq/sTPvubq/HhIOXhqAibytJ72do1A15JxH7Cx96s9ts7yuV/OC8emhDqN7zHN4xHlDdrtxMpe+5e8wrA8edsTaLNb9MVFA/mEa6rW2T1g1Ci606+lExPGBkjl27h3k8+ubokQ5AFaMvQK57FhSLUk/bMYkIAqIQh+fv+E16dJ9f4H+zcC4KNYUzE/t7KjSYnJEUSkdVj1XU/DNsoSeTqKaUKYbElS5+4QU0u7Y8nk8eGUQOY6Iya2vB1/itzfF/Av1D4YIts9F2PP8nuKjOSVzM3Oioqkaj9GqO8Eqp5yvML8ssfX9fgpiVa8GqvfWozZYT2AJu8sM3WbVMVoyAAgPvgZMtPZB6iDbpszs2QXQiTME2MMpFnPOCVjiS4Ddkw+3t29PinLSB56oB1TVQ7pw5b94Mr74U8+rqGlQvEU+thpdYHMfhC5M2puLfTCxYBFLKME2oTX2rb42edO/ikBhCkFCtX6D7qc8nvK5Yi7GrhaDfZjfGvhM1yMRDgehJvBxaWD26o7UjPeHYh71/Qqt6WfgYAdwMd+f+xkO6PvDWMRGIYzcwYfWVbxis7mbbLWPXgQf3XZx9xZ/YpYZjSpf1xPZnQ6O2Zfy6uw4MVDJfrEVQCDcPeGWvwjeuJQtUyeJ8HN+1+i0gJc5ZTAPoV18X0T6Zmaw3NiRhxbY3kqe989huAV2B7Z4wZ5euAPvNx9Hta78Fd/XzjVnG0wlPMwpT22WumwS8kyE8un0xrrFWeaYHkUFZofyTp3xQZJ5us+cyrTDj/DhDg30VEsIct3DxCdBu5jjcu44eH5+HmT3/n0Zs+mjgx/v0dMwevfB7B7zTDEDU0AwqVxzTFpGYFoOOsaxcwDMlrsQOFEUYS8vWEIal+sV/+3riJeOWjB7/LmC2jX0qHWvUM2L9jbFeUUekRb8TEaiRgb8ipcZlSIvBgt8Yx8mSGc0XHYPMI7wxIPy5B/RW/5pheB0YQVfUdEQyn8vyeJFRwWyfDVpeCwHRh0tTOFY5AFGZuYE6/niIOBXi4E1Z7UCJkqwB6p1z2iql4di6V55CJwUXTd8SwqW5IMIpfpsYY939YKlQ34HV0MY8aH9nBOmlydfDadKw4GkLAkLtUsLz8/vg2pR8mXfUtQrVU5En5r7i5ws937XAROUAB+vs5WIf+vzuysW1Wf4SNhdPZUQjLFB/VN1L1ZWYA7u3LGldjHN5njHOJUTfQeotb6BOebv0gEg9U9o8n9LQG0vGlXXfX6wF3HdME9HrYJZcK+RdBVMU9SY4io9Wjt62PCRPUyhg9yTREhdmMdomJ8atbrqd+q9S7+gujh1AOvXCdtz0gNm7gcejmpEqd3w5rD8ZleE5HQqsHEmVbCkbFmhyfqJBmOGh/35XiJYmC+FyIdHwxiXuj4salXDzuX5HlbgBApQdUARF8cFmN7Nh4cpmu/0IYpNQrbP4TuVz9h+EpLMW3yoinpTcbDfX2p6hp6lHMM9+MPrej7hnwET/zBSBN9DvX59oME+hgn1ZssdaPLGElgrL0QzuUzB2rhip+SfRcMh4V7DX70GW33C1qEyh/V2c1eIO0v7Vz9m07/yf/GJA8YejOAzg2DvCh1269RPltOwTeU8cw9bV9us17M4RXCPLxnheNOo2Z05HDTS3RcfmdCag/llORjFZYegbPGsf+wFAmpzm4fejUdz6bYpTTPxvtgW5vOwhG9lBIpaqNSlYhgsD3uW4CWiHzIn/SOZV9g4YE7dAN9YwQVk+rgRBN5L/Bfv5GFoKWxzlFB/qxdk9A8W0H1KkKwXbr3vUUPggtySFrXiJHNvlRbslWKHZllIi8X+ohQOJz9By7n8sNEZVAfOptJhXeyMgLaOFUEZdy8c9JfE3PjERbXeHx/fdjWtF/4Wd2r4BE+sfaQm6N7dJYNA1ARqOudPveEhgmX+u1O3iE41rY5pLF0aGaOykatksRwaQXzgH/jUWFYwqxf7DvMXlxJOLMRkmZAqgsR9DlSj9BWscMIGtPD4ofbhcB6YsEYtfAduhT2uOTIWyutTOZSHE+LW66Nev/nwBM6NvRABVlkvv50cwV/Yv6m+gF0wtouqQboXKbb3mT785Svg5lagvmsvw9hE11WpizHEdr10oA+fvg+uxn5Ecyl4A6OZeYGFY9RoyWstEUQ9NYCXnl9IGKIoWP74Rz79ELWudj2wAhYXOHlphwsbbW8Zv048uDoLo3iqXsmclT/lj2/QkDQ0Ie4n9+HTqnoiSrvIXC8tL8KDuQib5XMaxojqElzFVERSSzP2g6cnAZ7mCdTn44at1li56tfe99iP35z5075rBMuzldK4i7VkeQyCCD/eq6f+ObSY+KuO5N9+u1GgsL5f+cvf/qA9M7lkLeXVAm5/9fDxvGqAkavtA5LwFk33vp0sF3DXIPAeItavlRFQsmiu6lWcTuZsmdm2fxoMaKrhw2rBgW14LgvlkOBjRNtk0aVSUs/OY6Ro26/9cdBCtawYwn4ctMO41UtoCTOPVuY+AjLxM4FZ8Kzp4XkYk8X3O+Nvvejh7fq1kMqvTnHO+4za/LWu1yOZZ/BXX1/ujh/YuFszWOvmSsgZNgW7189SuTqMoYE92mJ1z2+idtkxpfekcoP1PHsIAtEQUHcR38XYme+tBV+1+LCf9YKnvNnBXzonSOXxZVhH5dKq55txxvbp6IN5MgQId6Q+ETjUS0BWU40B7hyNgP6SBOt421VwDLYjTtdWA8Iffn6VeI/NRPTM5aZmuZKUvIa9VhXMeXcNeqhG1Qkbn5NhCrgvfKifc48sZ0U0l+nm5pDg/oZo6jYFed0KA159qpBPGutAGLcjjxte0nDR7iYTfyGCsyqpGGcVXy+C3+V/+EJG97Eks6LyFUzawkWzzapkLb2+hYKjlPjQBh/zSw73EeZ37UgRFmlAHqd5hvWhrOhLjrRamG5apm7xQTc9UTM96kYwxCxFoFbaYmYPE8GHk/ZEtY5N3WFUidC4VhENgXMy2UswL9s1CBk+fhOrmN+uWsFmu9uGhUIQsNJWNPkPH4LzLA1k43f7p1X29FTrXrGawwBBG6c2DWvbNYUvBywlE54yNT6nyuwtgyPAWvgJh2vXBbN8WXLYj9QmnHZ1TcH7DwAAAP//pF3J1qqwsn4gByIgCUN6EDBBQMQZ8CMKItIkQJ7+Ltznzs7sDP+13YsuVV9TSVWWbvkJxvh6+wrRdHYOoqQK4YQkIXqx0R5ZCMavaVLt872CNXVCF274jvZ2+4qWJ7rE//KNktE4X5epGmFvSRnWLE/zZmdaSuBTTyXLhZfzNX5sJcjnJ8A+epyH7X5SyBTzS23TVgfWkGMlnZfXiL7MbOttffpAeHsG1kQ8D8tz13GQvyY6PfvDVJP4QC2wJ88LRqCcATsPjg9EUBywBRUSLY8/r4FReUmo5+Crt369BcGbO0lof3scwYxkzoXO7sWI+ExasHLmsYen8RFQ9H400Xq5zQm8mG9Az4EFdYa1DP7yI1aN6xFMF28u5V6cd9TmrKM3h4lpyMr6lsnuLHr1UvoxhPrnesGWd72Af/cjHBNCDlv8rCvnz1BN2Afj71QNq7h7NvAXr9N2vbUIpBa+j7uZmkl/qOe/47wDzyiMScaFBli2fAAA3rXUditWj2pINGnhfEro9nwT9+DJceMvpP/ML7bGj7CFB5f/4FN4k+r1Tv9CsNjDTEQtsED/e/64+Esw3k1eTgp+X8FnFMTUXYMuHyUZVj99i09X7Rl9DMS3wBQkgE/NW40OhkVDWPLdQvGxn8FiCdwOtvkhRorppvp0jBQefgz/Sw7LWICVG3YtTA7uun2/gE3fWeFgjuuVHLbnpYUmlJClOEPCTbtG6w41Cdj4CcV5vQ5M/7AUcGK0I/xeHaOx2CccuJ/6GmnSOdbHL1tSeeOHRFD1jk1xlBGAvbnB5/cg5uvoYgNSgaNExuMwLFWpzhDL0oBk6bICSoQRQT6ZnoiPmMSm0bmvv/VNssOQMKZaiQNjqxuwxpZPNEufSpMf4e5MNr0LiB8JLcwf7IrP+/icL36ohfBlZjlVmkDUp+eu4qFoZp+NT8N8STJuBy5BmBD4OVVgHaKohPe7aNECl3TTg/v1x2+xWuwnb7wHSwm+SvtFwt6jbD2a5xGGSWPjDW+GOf6jiZR9qU3N6F0OPz9AHtPDiypdPIN55R1F7sRCIIcOh96yjyILSgJ3oPo7N4dDw4c9ZGEfUqe9q9FKQDxDues1wkZpZCs6xJxsJsqNqhr81GPuDNs4FzsiwreNhgXdmxcYb6VBcWfGw+y9hxDs5uZAN76nHza/BQw9MKnRdnrNz+PrBT9x6QAFQPq/U32URsDSRiulQgqWTe+b0frXmQE8lWtCFXolgO5dNoNTkKfkeJH7aALZYMHLnb0JfXy8398GuJ3igm5N6fJliwew6Wfq/IVIP8j5M4QTKClSk+ONzemcxWD4Qx6SRuTrv+8LZl+500fmKgOVv0nx8zPojx8uVNEbGNyGElsfpc6XIscILLmQkUo+nnV20FQLvhduj63j7sL+xevG/4gWaH/52EVhAtyr5ZD1Nr6HGQmBBbVnpP/Dr6XwyhmcDyX7F389d31Z8BMXPn64H2VY8nhwwZUcFEw2PTGmc5iAB8ct+KYYtj4ZwcLDWRc7rA6PMJrF9svDs7cV6u87DrAybgJ4u6kJVXMY5rO722btlq5D3RtSPf7H19pciInYLNe842oaSNv6xb/7mYmcalBJPx+MzEwb1i7/9vDSlAr2w6PM/unJTX/QU7Rv63VP9Qycjf2ExAuzwHxo3iUAT8HD51dwAsu0P8cQXWa88bGKzVy042FkVA32a7PzfvlKmoazj09cKQIChXsLBRt9CL8eM8Y+ySrBNB8taqu6w4SDwBdwr/ApdsyL6S1vIeVhFK82tpleRqwhSyXvxtylp5tiMM4eQQi/hWjg2KqfbKmmFUFweXcUfwZDX7+v8wiKuLCoY0dq3qv9tMLS73NsflHEJuiuPdz4IdVUx645kc8CaLeNiv82/crJe1GCsp+01CZfpNPYW1p55hVKxHB1BiF4SQrkVfdO0UFr8mU873swB8igliY4YEZ/VwvYbasiKaizeu2G0IDWtD8hfn5+dGLW1xXeStCQ/fTab37Rfob1dDtjf/m20UzqqwY3f4Ya0jtiLDzJPjjcHB37+t7Rn+dIKY/mo26pLuz1mpr3kwOY+6rQ85TGOSO3syNteE69kEoRuVbBCv86jKjGr9vsaOWPB9v9Y3Vved6Hdyb3p8+p+tLsYRHXJ5Ff98akl7YQ2IreYwbjRET/4Q+cd6sgElqJ7ELQ6vMrciwo1C+d+rJzrift7mhQXrMDGi21GYZsaAj0hYBhxOmvYQm10ZDqQ7FH82NFYC6+WiKDNwupdmqD4R8e9RwvUJd9pWg8/v2V0C4LTGRk7IfFU6Mecnwv0xNVJ7AeCsuB78u7QBuesm8rcxIMZo1RJFfn/Hg+nlP4EsI9PmlZn89qITbwc6Yi1rqwyukzqTp4PNs8ofz7yFalUcnP70JzugRg8781qIMXoKeDXetMylMXmKddiYan2Os/PweW8XzGly3frwdedaBZOs4Pb3N6LTpf2vj3NnhP99jLEhHkwyWjehqvOfHRfdxaminY8tOxfh2SLvjnt53kt6+Pmx6Hr7/Kp3elsNiatJCDG1/A6ub/MY9SCbC5ofTHF8bqucZQvHYuNQ6+ylYOUE1SGqAj7mbqw6E4uAhaz+OFnvY1rpfU1wj8ZHpMpHZRdUGuxfYf/nmbXiQx7l2YeWtPtUjPIzq1h+ZfvcFvnBf46TO4rb8ff9PJOzohCPtCo+XtmkTsCd8t+PnjM1do+cr/+Qms76ca23Gv1tv7HuFP/55FsWKLtjfgP79n0cEpWjQav+Bif2eq4W5kq1EcR1gUcUzV2+ulL3+mKMFWdGdqzhPwCIRCCTf9RXQz0UH3ujculMAMqb+zab6KKDN+fJbIk7sf5u99l4GkYH/Y8GDEfvUDqD4LDd+as1oLue/xYPO36SNrArbhZQXff9+YLD98PyeLIifYqKljhHrO309pAg5KPmPs7Ll6bJeDIr1OyYti6g4ROw5OA+TEvtPNnwaH73sXQlacnmhMlUs0DyDvwOYXoNn/PvLJD7VA/vmh2u4yMnaUFgWK9/ZC/e4V6cNyrFrgX0qHmq4TAZblXAi/pDZJM5/snDmquw2KC9HWBes9LIUhjcDmAvCPz4yN8omhsfATtS97iU1/128MnWZWqb7pm3kZ5FLa/GpqbP4mE7M7hOl0tal2P81bY/YMQcObS3w7PRewPrOLD8eDs8P+56SA9dwQBPFhlsjuxK1s3GpHEF1WjNVa/ebrc34TqOlxS7W+j70V/pUt9Ap2oyY8+LXw87e6nbpH72ruGTt0liZ90iza+HRU014MXAgwbLH3jsSafPpIlGuv/CJp8JZ8lIhhwfR7V7Aq6fNAzT0yfvUhjDd9uoha5sPh4kTUm4suX0q/2AFrkk/kaScCGN6PkyWNB3dHz6rf5uzyLQ3w1XBP2Cv7RKtYuhU8KPcZaxP1vGVMNR9OmiBSa3309Ty+Sg5eigRtfE8Z5s1vhQKOU9QGK2R9vF96qWhNm16Gxxr949tp1Fyps/H9Q0fdDnrOe6LW7U/PuePfXwGVgN7RWGpTPRzSa/PLP4h7K0K9+as8vN8lC0kNNcDyrYIU7hUupefnxfGGO7dY4OevWodGHdbilvRQPQc3qurgGy37KDdgpksF+umteS/0IxQfpztVe0uJDhs/h5ksLfQ8c503KZ81lPbG/KCacTLZcpeDFGz5FR03fcg64Q7hQyM9PtPlHAnhSUawK0eDBm/R8FbfwP/qI0i0o2dEzg8lkUnEG6hS6alejGDhfv4k1qznsf5dT16LRqf3zY8gGeYyedPbG7951TOkWggTXRvoeT1nunCFJwsmk64guY21YbkNQwPhcZGpekq5nMWXR/HLH2Tz74ZZPpAEHB7ahZpC+hxm9ZUUcDLTJ0ZbPluLW9kD6wkuiLdCIaenNfBl6PoP6ln8iy37Wn9JyryDPz9bXw9tOsLj6UTx5mfXsw3rEUZFd/09z9Cf/GsitY8lp/oalWw+cH8i2PQN1aNzyYavzGtQvScBVlMQ57SW6/VXz0Vflpc6O86khL/6cOpNS03XOUYwszcaeAlPv/w+Qum6u1BvXB+AnGN5hqf49kCr7eqA2nPEwVUKZbIPSgDGV6RYMt/KBo67vvLID+8HcvBxfGoUjzylOZDVXr5gq1Wfdd+8jj2MkM6w18hPvXuoeQC8m4/x/V5c6n9+EI6khPDb7+mFVZ1EvncfI5o8IsZUV5R5btjh//CTLOXA9u/UuOifaLlKfxywitjZ/IfnMKmdWEIvCh1s9Hqoj4dmKsGG79T96ycwX8XuBZr9KCDmLGu0mOopA5O7/2LnPd/0+YBSCHP8XNFnHvp6nsZvBn/Pq7WBzgTqZCJ4poeCeisHvfU7BgHY/BRSrmrrzXoT8tBXtyly4QDqxb341nHTExR76szm1S9awKqbjzc8A//qYz7wJXo7PS9gfh3PCvz4cUat6N4PE38xyv+pS8Hxv28pGB/ujOY3/ta9ZEoFWGx2oM6Rqzwa+koD3dtfQk38gTlLyCWEc9CEBDTGqs8FU3nwiB8C4u8Gjg6N/dlJFUl7wuJwF03QBIlE++0s6PmUDSOSFg3iR5lgBLCXs+Ll9DCqp4UcJafVF+Hx9eFN8HZUfQYCoyfXzqC8C89kbJx1oPJ8VsD0lRZqRElX0+OZi+G9vXwRf7TwsBb+8yW5Rz5GieddGD+cqhDy9f5GVlZNeVs7eQ/kOZSwvVPe+lfn5BYO3bZLMkMtY7xYBNBjeMKWZgr5zAk8DyVFEalzfHb5pDWzJV8ud4ANbNX6HC8HBEMTEqy/iQZW68GtICu+e2xTQdPXJ+sccD7vJ7IDxa5eQTi40AHjniJjmetZcF0DqvNqkr1iKjU3h5cYmkVfIPG1XsHCYC3B08OI0P6UonxcssKCn0+l0aIjL4/hA4AwuacAzRA9h/FP8HyYONkba2jo86kqVU3eF/6d7CpdiQQ/vftwsdgD8X+fcVjbr7BCZJAEweXZsDW3bQXOz6ajJ8mx9IlcpwBahh/Sou7sfGte38OH/ngSMTiKNTvQcSeYhLvg7MrBfMQu30KrO/c485sKMHzAGbzVTkvxOqN63XOAg9v7oAozueEjqF4HQ/maofZ4UtnhfXZLcFeNlZQKiiL2ELoOmtVwQGPjNeBt2Q4PO3o06Pa+mSDdAl9CX0vBthc2wyTWrxZsg7axYkiXYdRSJ4CTVf9RLUV/bN1zdgAl/o7weXW0YaV0TaBxtT6oWJY+Iu1XmOHzvavQjqdKtDQ2hWA/ZwCx/vkelhdhBljPlU3/prcZ9ekaVZClgYPT8lHqax2UKTD/uhUrqVWwuVnlGHK458iBUdXjfKLEUKV5gXV6SXT+8OgSKEamRh1tPtQjmAsHOkm8x0pxjwfBi4YAKtrfZ2t8v4D1slYKvL1PITb74+gx5VBl8PJoblSpxjFf9nVpwD1JEb64hj8IaPK74/Moi0g4nrXNQo0LmMAV43MSHer55qic/Dm+CIJ1+mTs/Fal/d97LOn5q3V6f5R1Sw7sw52eQbrTp/Z6RiAeovac7yOcL5x6EeXBbDC9L3jHqOt1FcxVxNDEv0FOXSQnYBd3Dba18eod+HB+yXuKc2wN51VfpyyL4akELkWZbNbsxhcayJvWxvgMvJopouxLjuXxaA7rb7TQbfa5vk5fJGV27M2yaoWw97gGB7fE9z71026BTEwDWzI06uVJUAV7hi+Ee9LN3wWLA7qn1WBNYG9vdPODC/WiynGxv1Hw7336t/dtu/5Qs+39H29oZ6BXwZ3zdYz3POwfGqUe/ydFs3ycNfjRnZSaf5E1kJc+ETCYWEYLikNvDfcBka0uZYi7Hd+AWd2AoNSkL2q/ni9v9pqxhJauMGqkhR6Ngrs18ilvO+qvKmYr+eiKTF6ljLUIfYbl8tRCiM/BE6OGBYDebeRK9MbJ9N75/MCShRjw/Iiv2JTXx8Ca9+EFe3a+YPcqoKH9iqf2SF6FjBWYc6xd1Ysmn8502H6/r7fG0DsYIaJtjWovjO24dSeX82a5Z6gFZNd5Drw3hYV/98vdCzkEUogm6teHrF6nMh9h96CAIn13HuYTXjRZJblFdfVk5hN0vwEYvp/P7/nAit/aCmPHzLGWqv0wO55nwNdUXckKWZ6zvTlZMHP6Dzm0X6s+APUIge5fQ2rKbz/nxMTy4XoALraGoIn6MQmgHHGWTuabHkdkP58lEHx9FWf+EnvzVq6Gj/c3oWZ7f3qjdWwyuAa1i0/1iejfZ38kAGQ7leL8efGEV3B9gTtfrNjN3DZab98GwZ0aBeTqcvdhvtl/ASjm03XLh+kw920zQjd5KNT8058eGz+uC21//qNKs2/0tXewC4XpKVITZyd9TSpOhFq7D7G7RPtoOc5RKMmTQWje2UZEtGPfQT7YXanJ7Qu2XtZOgSuq/rBB0w6s1m1VpMzuL9jCQwEW93up4MmnV7SvPgNgd89+QavDPSHnhkVMNScIEid9U+uV0WiMv2txlHOAkfz4XuulgUEC76HtoL2gxN6YBkcHEtYV1P1UVrTi5ymD//Ihoj2bLfXjg7emqViHcpUvV+9vld7HdNq+/1STo+xZsJrbCuOEoHy5pagAy939o+dm3HkjWBQCU6dqEZH2JpsLkotS/1JXjM6f97AYx7qCmugsFIdIz9cieEmw/VtvqAvuUz16TVPAKZ1CAq47NVoz3ezhs2UTNURy0tdzHIywXC4jdrPPw2Oam4vwq4d3NOo1B7qd1a3wqX9eWHf98zArJ76ApWs5WD01z3o+qNkKz4/kitVv+2TM9apKfjTcCWd2Hv3wLYU7nr9TNbI5Nv8JHvrhH1XfUa+vaR/MsNbFkRxHGjEWF2sn+0ZzxemYT2BOg6MLaoMeSWVmRb1ER8EAwJl9Wq5FN8wPb0dg+We61ArKB5hbo9Ag2LsvxFsp1hdyqUW45WPs+KdOX7r3PgBFvvT43GAzYlZX+/CuGAUtEnz15ngCHOzWUMfOkL7zNd/ay1mm/qAOBa+anbtkBOE31tCwZKHH3kOqwZG7dvgXv1v8u0CsQw/bwXutSRE3IUwzkmPFdG8eyZ3Kkb/gm1PngIJh7i5LABA0NZwvWaj3uvouRDZcXGq93C9b+WEsYZqNObUD0x7GfKKx5Cerizqt1iJ+5qpQvr+jiBzt7F2v+3ExoKhYCjbvCgGrdviGMNspH6oR6Y+x+ioqsCThF31eT01fxPrVgCvidJre98zr2fnqwu+3pxR9LadmRm7ufuuPYuVqeXP4d1rhX7h1YXmyS8056CZCehe++CRd7/n0JOh17Csf02B9fwdiN/0Iy7l8YK++UG/I/K6Dj/eQECnbRqeDsHbga65TbHJ7CFhltwhEB+OOCx9+ovWoGpX8w6/TEl50oaX3FK4BiTC6CJ4+O9goYflnu9g5LhP4rS8wdO8L1RnHoi2/OIC8Io7sq5sVzd87p4CS2BVFoCjrOav4DmIcnanj8bPH1lDz5Yf+98SuDXZs3J13EAR3RUQ7pUwBd5AviYyffzpNt+sRK7d4GNshIrkeqt4sfUYejM/THzbkS5szItgdlAsjReLnLQ7s+qxaOdidKdYj7TWQZb/noHNNvmjLv3pLByOFwm66ERJupxBOltT+7o8s1TyCpQyGVUI9qLGyHqjOzKorwePNPdC+ijl9zfRzD8jaW1gruCkidZBkMMu5FR2shtNnvTEyeG+jL2L0knh0B2UC/9p6ICST38Ns60oMXbPs6bb+o3lkfxkw9KODlYRX9cPVojyE79cRyQ2do2X/KAjU/VuINbPTdEHV7g6o6FnAaGrZMBzmewV3AkepdxULsKI/R/m33ooL7fXZn/IZBndNRN/DtY7Y+Cp8aYJGi43+MAxsJ8IE7t6dhHU5O+qb/ti6FIQW9fYRjZYBzhks9u4OjT9+Gkr9CotRPiFo8/7wNXf3EvjJRyVvcZsFTU8vTd7yDb29UP9bDxq0wP1A9srV0oWxT3awLT/NZqGsYD4oLYJvXbmR44gdwG58rEHgrD49Ty+25c90hMN3nrc+xLQet/UBvLP2QAIVXh5RZ5BI2aRtp8LFiE3v08mCVzwE1Nk1QT0nGo3hXH9iJCeWls9v0PTgVB0FfE6SD5jvKZCAYRzLjf/U+e955WKf2FjjFLGetNEK4JSQ9hff/+ELeZiGVK1mn7EHz1lgPO8vWH8D3mOqPDhQVAyFaqLes3W7P3ANNYxPnjQPy6P4SNKWr9HBFQbGNj0J+5e+klBgpjfM5qUCRmxd0GxmcBjpuU7BZI4BNSylG5ggawgmzrmgV+rrWzi9W0k6tCr94cUayvsGGF9zj/X0GgxzGvgtPF+8IwmUz/GHx5Usn6aMLOZ2CqV5Qgcax/KCWNF1+WrliIOXc/Yi//D7p0dX9PrDevQ6D+vhUSXwtScuNlWurpsE3C1IZZ1DZE+TiDOnLoDN398Zu10FB8ZeMAARfmLq7GJPZ9f3cwe/RkDxyT87wz9+rpfXHdbRPojWv2vKw9MaPP7l9/XJKheqng8oJuclXwwpsGBbLRnW+zLKu+FzD+CpMnrE4RqwpmFPUVbEg4zxJN2HCajLDnT+c/6nh7lnprzkwbxbFCVZlzPRPLZSmVslej2NlRGRy1ew5V/qN93fMN8Mp4Rj6WbYeNJFp9MwW9CmsKMn7aOB+WM6LdzyDcVroA9tOk0N0D2PUQT8u8f0SEfA0MQVK6uoRuzvm3DSLuoR2YFHsOHFrMj1J1DI/sE5bHW+aQ+vAT9j7d1ruaBjlZOTE16pX4s+4NxcdkB6JyaSL/VWgvSvIjizUSEffHiyZQX7BHRPo9n42tblAzQdnMzaRn0dKGDxVoeHobkjiHR87bH+0rv/9Lg4OrxH8Ntdoe3N9ua3FHmjN34Gbni50Mh9vHNW/GUjKFwWIy62jnl3urEVuuljpF65GJ4wvmIE71H4QUfdyOtpoVYHtdYxsfpmV33FX9+B7B6U+BpXNVji3VsBeZPtqHVvspydNKOXv/0Dkg9e6cCav3WWuYCLKa64hzf7xInhTTjtfvzKW8r47f7TP45WzfoqjBdFPu4Fgl5b/C1XO07l5xtW2Hm9X/V8wkfth6900yf12PD8CNM9CM/QOBnDWFClPP7wYIeMMmL9dXiBh3DwqKWKjT43/I4AlIoCPeeWmM9GJyWg3JcO2U0tq6f3STXgcoM7quaTkfe5Lvn/9OJgr6P+3vwFSE3u8sP3YXkS6yUx2/pSBYDvMJd7qQLche/pacEl42OchNBcFJvEf8UxWg6hDqH4DgTqXLE2kDtTLHh+nHwayhbzpl98rOGTp56hLWCpwbCCQYIYx/21GlgW9Bps/VakpxF3bNwnJJSmr7iQN6NPnRGGQpjI8xubkcR503e4zFBswidG4DGDdVHGUmro40i1207U5+v6nEFLmY7EK962/G5+WmKnGOf1M66/2/PB8/Oq4Wcun/7x9e006hUX486uv/tHTOB5fT2xZl77iDz6mYfJ+LEw2r90b/Njin/x5j+udBivUlPBzS+glgv8/PAoqAR/fAMDxrPR6yb++PPLTPmwgGU69y8Y7DDFbsBZ0dK9hRDGQ0H/4a2w6UvYFrNKk+Ec6j8/ClwRr2McojpnmhW+gO2vf9hdWsEbiQENaHq9hfEpV2punJVW/uGNJwW2J+yOnQiB+6bYbzp5GHlLIfKGp2TL5/WsnHbl7/pUqQqLHXZ5HkPfykXEsaEaSHPRdqCY9g+swbbTZ8X6dvCGdxn1eUPTuUucldAL9BdWt/y9LMORkz4SORNh0/N9+SwgXHqX0ZPGJd5CkjsPI+XZYpw/F33Z3peU5s+OnnVp0pl4WiEcg5ONjdm519wvn60v0aHB5h9N5SVNYAivBnVmYg6HJD4bIPrF9d2g+XyshxLa3mqTw1/UDvMBjjPI4/MB6+bxAL5X7zrDhvIeCshLiIgyoxlMN8mkp8PbAQIvxoE8H9gJe3Xz26l2RP/4SlR0XbQYciPCcolGEhaxFq1cqBswtm2Tng03ZDPWuwymO8pIcPojoPOnfJWS8S5Tn39KYHz+XRN458uVuhpwwMKH4gv88v2Pn3RiBl3pekAZ3b7nsMJskuDl8jGoK53iaHr8FSV8i+kNu52usw2fOJhk+YXIzaNnNAxOOzie5Qs9J9YrJ5fjDknhEJNfPtSJH+5bafOvsaHKSbTpExeGtnOm5tFU8zWdphbSVIiI6J8cb3W67ZR8RnKqp6nG1t6QErjhO6lvBzM/9CyuoCQ0EzWwpXvCm4w8GMzcQuR0yQd6fXbtcVtPVFWIP4jKaVdAJl/4TR8rObt+6/jHl/GV+jVYqxUrgBe810SrWxuxDB8K+ONT9sav1lxf/Z/fRkR81KJ5W++QDWWEOHPW9cO9v3SycyQRdhtlGRbTpCOopizGziAG+Rr7pwJ8dDel1vAnDINqTjuwE3hKfcMK85+fKH+vBcLaSbTr5Zdv+vLQUoM6dd71ryGBl0sOyBJK6jD1rKggAtaIDWou3uDhp/TzM9AhzvbRCBZnhEJ2najnmIZOHUnlYJjuZ3TgqJCzp5Ot8K8ZHaoY0lIv4ffYQtcoY4rD0mFrx6Ie+tZd/KdvOsdWCcwyrqA//T39/OHNv/vnr6zWA87w/r5E1Fm8XU6dnY7A+fny/vlRZFXvGnSsE7/Fp6Z3tnV14fxqd/h055WIX/YC/9P71B1rxEZLpT743qIF7dc/no3U53lpPyFKvuNLqfnYcSxwDYWCmlu+7qvV1iAME0L12By8le8FSTJi48fnnGil9LyC/UlD//B8UQtnhnuCTaqpZgOWZ7+M4BzEI75fZwCIOh53MITVGaf3EUTzwfi0YNMLNNfDp775BY50Ok8DxqDV6x4mYwWvtfameJ1gvmx8GbgS3yPxWlzZ2padLx3tYkTfTb+S9rufweeanOnJticgDGXI/cdvhRZhY3W5I8gye0DPd42HWQyPKSzG/QkdP3dWs1fw95K44OuhSe/tYSn2Sw8fovBEu0pBHrvrSwytYxtSLCicx04uTsEPf7+bjStMg15Bwv62IzJr603LRyzg8JkNmpaPnTeNysLBW+NCqt3Kyet9/Frht3sEaL2RtSbN+dTA3/fFhQrz7XoJVKucYce3ruw9nfsK1JqUIEbVoGbOzkOwdMQvNtR+VxPnG/QyfvUvrJvQ0emaiO6/eod/GQUwR2//BfW/10KxIerRIVxgAtaaXgk9dYwtt/jYASUaLCLEh9RbDshtoChcanwKqipaK7L6sjCSAdsH+w8syO6kX37Z8MKI5vzdtLD56xNsti2Xz5fbJzxu9Yp/62FudVqCxV4O1Lrbat2kgdHCnVreqR5vgxT0m98AQ7qUm1/yqWcxXFJZniyC9S0/zVXQdFB584Ca1q1irGXZDJ/HvYixIdYRQ9Pig+CLVCR4L1df2SWp4FN0rvQ22jY7/Oorm/6gynefedwpklKYZXxBfb2OwWzrTvzzW+k/f52WcQNe5fWFT/4f0ddQm9qfH0KWE/fxFhzfG7itN8LJZK93thbNQPcSuPFNKZ9u8dLDw3h/Uv98kgb6y3+DlRd4q/+BzY+GcNMvaB/m/M8fs356iLpH+NTXsnRcmJ3+OOx9OD+a4UEzoJEYMtXVdqfP3cUYoUoajIuOaPph42fyIUsP9L6Ei84C6SnJkCcpEe6dBOjJxRk8ZpyyTdowwYx2awox41R8+wNhvfpoh6Bzu12pPRrXevP3VnnDf2zNuh2tX1Bmx60eRLd6hH7gTnEP/+Jqj1F+HvRP8VI6Gd1oSlWSrPkqnewAei982/AyAyPWAA95PB+o3j/NYb6kEfdb73jz39l06sYdFJzbdsSx1IelK78GDFLthYTR/gCyiN8OiGJ0xGe9/9TzBI8BhNrpTYRY7KN/fstxtw367bMVjCOn7mBTfe8/vNEX5L0C8POnf/qOVfshg8D56Nj2Xr1HrgXagb0rbF2qG5utfii0cuWqCvVGgWNTtFaS3Mzci5YbHq6HEvvgyvkGtV+5PHyL/dmAX+lrkqUIVLB2nIOkv4Y4aDEvJ7AyV0lkwalcfNn0ymK5fx0MU6fGWz0wX07Vy/+nX4yNr/3+P/wLqwiHqerWs+IOGrywnYZRMineL77A7307XusOM/V3HBjProEEze/1tbm4ULaZu3U7w2O+vvT3CDc9h+TVedW/+qM0n1MLoypgA7WX7AXlOZAo6nhdJ0nBXlDOpCNFDzkf2F4diITSiSBOneZ/9ROoz0Te/GS15uVKSeHpT+IQmNxx6L2d2MMtHjY9r9dCGCUz/OlH5buXvOVqFxkYqzjAro2qerR1JwEb3pFdpRD9nx+41eOp7T1ubPlclxnqdGzxeU86b/7x35cXVzTfrjfZ0VLJBwcriEu/fE3tQyT9T1sKpP++pYDUaYVPO80Ek3AyfLgclYZebwzqY2bEFfTxcqPqgZ8AfQg346jd5S857KxQn7WiLcFnUkLq7bZd+B/y4qXzWGlYNffXen7BKABf3iqxvZZJvX6MawGftbWiSkHCsIL3dgrabmeqm+dntC7XgoPwahQ0KOBST2qOOkCBJmCdbw5gVG4igXt8/9Jzzz3BbAMsgfMlTommyHdvfbXBKNcQ1ei400x2KE/KCFt+rImU0TaaB64r4aezFiR1n2PesbTnIT68OrJfbJPNX/vPgIdG8NHe0QhYB76B0mMOZmw+BE0fFf0tQZ/CE4764J2PvprvoCALC5rjTvUWOY4TaL96h9SqR3JqeYEF3xIKyL6/7Gp29DUfmvQb4dP9so+WwWsq2Ez9DcnsNLD1M9MYHtCzIJWtpAO7K50Pxbvb0XP0DYbhFMw7qTznNhE1oR2mosgU6H1rhDULNdHyx9ESnK6Fi2+MdPnUr1IIPR0/SIfPrj4Lrh1AED0LjB0NgSUU8AzkZ3fFuKI4OrjR3MD0KL2oe6+QvlyDyYH7rCYUp9k7XychtWD0THnqOTZXz1ItwSO/5Cb206mKRto+e9j83ff4Lyu8fP77q0t58nqIpqNc6STLriVwIuBSE1emNzsAKKDyygyffYEOXWDfG1jMAqa2qB31NVVRBeFJXJAQYAscDKcr4bm49NQSnn7NXTjFh0/7aFNNeIuAropkSLEofxDvTRUYM6MXQXxUz9QZJHeYjvwJAcF/1Ghnha63ROIphNc4LLEpNhoTuHsTQD/mTcJ/XFqzD71K0D+NCmn5kMtX0edFUF+UI5Lc+wus+9ErgDr1Dj4fjpI+jcIuhbxnXkn/0OSIKulfCr+ZyAhsm+MwY9vzYR3sI6x+nzo7cLTlIep2lDoyN9fEbnYQ8m2kYOW0HgFrb04B4Gl3w+hJRTbKchqA9MtBrPvhfViGR7WT+mKb7dIF6dD9vu8zVSJ8zbnDsKj0UkL01a5kn3sjI3W4lSiX2wN7JBWi1XisnNyVWUW9ddtFfWELvy96ckGH7myy1e0JgrPlQLwNQ6tnlC3BNkvzg53HWxl4LetiqHy8D3VeiROt4C0UcH6mZ7RvFi3vHryUQWnCI3YfmpzPofhpoSAfb9h/PJ75nA7nCmq6FFKz7E6AdKbTAmHbRWeEWqmP8fFrAEAmC3tmfGRsVSQLWpgzcb7lG6benRdsh6bE5a64RysjtgaZ0kOsi3bJ5tLNHHg3jTMCv+fzrpoGRzckWH3AD2CmcEbSTTO32WaVMEzioSmhidILxuTa1FMoNC94pekLG1/8isZ0yEXAcqZQxbg0OkP53w68mtanep0Lw3wf5g5ES1lgK+N8b3a7L4FnNVypMap1vTylhMAybVfqL3c7WsDnEUI8v22KtYfJSJ5JCCgjiimaBbmetLxOZXKs/7BiBO4wzTs3g7Y4PbC3myfQqIbWAb0lMVUOn723kIuZyi9pOmFdvtc1IxLMYNBKPLaOxrWezGfWS3r++mJnywdjc80leB+wi23fz6JFOCQWeD3qkqoH4ZOPfOkRmLjtmerC4anTd3KN4fTcjdTv30wn/YlCEC0vDfvy1rUg6YoAeKSkqGorBojzjojs6EJDXZaf86UoQgUqJvTo49Je9OmPowUA+h+PcXBLAdGsNQSNnSGsPSfLW9xIbKEaVgbG1QSjlcsOI/yoTEM7/YHzQ1/KHEjMZ0V2XdMOo1SvEDYi4Snaj4POjmJhAXxoEE7QQ/Pm3VdsoMHQhyJTSyN6Tw89fPoSQvPt7gzrDGcIrk1sUH1S2DDXHWtBhy4xRlK+Z1NReD2Q1ljZZpkrOe/fYhEoox9jJ91mVRnlNwXwqvBIuLOTx/S/XSBVkO+IKK9/NdP/+BC+ToWNhOvCe7/4AmlJBHKYn0l0OMx6IyHtq9BLcvO9DX9fINXrM1VGI4nmYtFdeC4yHknKQRkOT6kk0vcKRjQfv6E3R6K8A/XTNbES3Q4DG06pBsW7qeHi8XhGa2H7DjTpZ0LzdFVrdpVmCWpoN1PFb4C32OgUHwOFRKR7JV1OT7LLgUemtQg+HupWEtMQfPVDjU/PqxnNkS8VEGmDgvZBss/XueNeUJKzkp6y56KvSReH0L4VfxjpVQfG6Tg2IPPrlW54k69y5EqgDYqMHDrfzxl3X3u4I+4H4yB55LN+smYIK/+Jrc8p0VkSoQx8Pvs3YadKjBbSsBIOkgmRwFenWijWDMLL7vGhSK8cxvLlwx3j2+zhK8J3MFeCMstJxd+osj2/AC9LKVNjeGGrul09hu1dAM/rO8MaenFs3vgG2H29CjuX7RRZ6IWd/C/fv5ZDvuosrKCnnx//8IPlC+Vh+feKqIdEqC95Lodg7a8+te/sq7N3MoxQTx4QK/yxZmyv2xW0w0fyj18c3Ojlw1fT+LTAdg/WuzqEUBkdgsQzLAGTxL6EmfqIqX4zY4+ZLkt+f2MtbD6MxZI5w2aj2LdParDf78Fxlnw0KuFfvhx51Zfdy+4PLfkxj5bqpYbQZd6RKgW81CTpihD+rSnGFqsib4kESQKQv5Xk6939iBXWyQCElLtf/mGsEhgPh736h81nmnormgfuly/IcnctwASmttC8VwmOtFzx6IReL/gM9y1V+KPOpknMXdg1zxK7dtt5ZORZAndfU6I45F+MedeDBR9vdPnhR0SawSpgYr4tjLZ4X2OcE/h6PEQiVfErmrGt+9CMH9/feozGo/DV/sXTrQNnsI48SOBtinT84w8LthwXpsedg2A8ttupYj+EOItlbIaXkS1HlIzw7+PsqCvh5zC6nWiBy1/g0asJTvlUnhTyi2ecH86mN4Ng66IlfgN8hsRm7PRFKfhdT82PIF+jF8vgpwAWdoBGo/Vg4w4ypZ6pmxCfHW6yWMF3BG2czLOps1Mg7sC7BHfs7pcArJb/fIHBYTEBOtMZU+/KC4bN7kRE587rZO6IA56R6lNf2uler1lrAMujwNFTZbJ6kl7PSlY++EwYY8jrvGuaQXJ2E3r6i8JcuBxOPdz4IPWNrbHfgx814B1bbssXz7qraiOBvrE+CPfduiDltI6lc3Hdukf0L2/VH5jAA7dLqR7Efr22qVfBH95oz6nVv0tvQkh0TMh0G+p65FfFlavkdSRzCtJtFmgrSWHDydiqUjIsT/RtwFv/HXa6SfrMxkAC/kOs0TGaIBj51XHhLz8dIZvqtRlQCfe0V7FlSO3GB7AmCfJhIUQLBG+u6nCEsd9ZNC3jQ7S+h4IDCdRUwn+BEC1uNLdy3kQJouRq1AJ4X1wYh1OJTRRE0XrFYgG1txdjI7MMnX3oGMCOextYPz8XsMzffSP5GSioMlvfaHGkZyOn3DFH3KOLojXTFAUu8s6kuvTRcn65ohLs+17Cai5xYDrMegtbvpPpVQj/QLedeJNm+LqQdqbDQPRVXqHwmTPqy7Rn47U9peD3e5Vug5ZaEpcQaduWpK6xBjpHbQd++Hacho4t/cP3QfUcm60LkJNz+8R9wf52qxABw2WYfVUcYf+pQvLRPmU+3rcuVqfhY+NTvmigM10lgJ8CjkTkcAyo8Ihe8Pveh9Rs3GNEtnz+//EYOYAp6TAD275dtnwD8s5Xox1YtPeXyAcwee0p1DI4NNqbKpt+4rWsSmSjcx1sfM80mq+XXQN9YCD6MC8frz+niiK/4leLmL1zwCw1aiyfgoeOQPoYvHndiw1sxLnAQb91nUsH8wXBuTBQ0xb2cFC0I4KKEDCy4a++4kVp5E0vUBzfB/YPr8b5JWJ7lCsw3PZtD+HVKpC4lJO3Hs9RD8MGnmgM06r+5QvRFc2MLFFr5LO6cWVn7ytY/fOUaNx95xZarYXRYL3f3k/Pyc+dz2OtedjR4Z4sjiys4mPjuztviCVzhe/D+UTdo/LNV446FXSi3Yx06fPKRxsbGYxgJREgkWybw7Er4Rd6B9LJq1wzlOMW9LdrhXZJrwzcW4Xopx8oAsOlnqs6I4Apn4QqefbSyW6/vKCwSg+sjpGpL+tN1+Cn2I1YqamvcxW2JcAGrqUoEkzAM/KX/fgpgk+tj1gsnWegduRDuEMzRvVDeBiwHl0Z/1uPQ/XXSWeht7EyxY4ucFNHoDafGRHcocknvXBcCE/SgnbF+VsTZFQJpDEX01J/vvL14YMUPO3dhNHJGKLPlg+hZO1rUrVVBKhRPlN4BEwkmd5c9fl8F+Z//FXZ+Bz38wseb2dA9aIrHrMbNwS30N0T+ONDGdEreS/NFmLWJNczDEQNHt+rjS0+jPNDO3Id1A6JRd2/pz0crnCvwEh4MvJ8/slgvXWLBjNBxBjvBkfn568rgmbqbvSsPH19bqf9CJ7HM8XaLmsHBi+1BW+2VWFltjXA2cAWYWOnCF83/TPf9qcddC0upY5zT/SpW20XdHqs0bJ5St56OdAdpCeCEYi3Iwp1GIe/9UU1b5m8dZsQAcd3xvBp6nE08n+HBGrvU0xtqxPYXPz9GfC5SzRsaNIxZ9v7AyfQTTRvTSVnvQNC+MMXfqbesE745sueE/h4Wy/efKxtDpAolujj8umH1ddbHvK5/6QBzFk0bu8fzp6r043PM1Y+AkXe/B4ye9pQL++RBABXf4Di/lIOqxumM5xkazul5XSMxlLh/vge3eJBZ5WYtvD9tmUihHuOLYM3VpJ37DK6+UnDcinXGM6f+w4trvbyxt23R0Ao+us2uIcM0+hJIlxpEmGj/XvqJL1eEllYoYmNYZeANQYPBE7D80l98mm9+cvaHXQvkkCN4PVka3q9J6C6PFcEN73DlLFDYO3TFc0wj/JNP/qQBeOLOoeq0ufdd27kOpAjinfbbHMYPDtAdq2LbdXWvN54jCU0mP+hm37NFxLsNUhP3Zfw7HGvl848hHDNohbx3bj3vmvCdeCti098Qr7tcRLmX9C+vXS66e+aIRqmUERajd5XHXnzhucgSsLlH54wzuR9WMFFw8RUd6yHIXHgpS4oLtKpyokc3YOf/sb24bLk5PmeGqmyHhG2oWkOq/GQOJA6rxjN6kMDy58jJXDTN9Q66nDTO7kG4YDv1MrYOozrfm7h8T0+qfX3jsDSPwwENn7wW+/s8PqcMwjnwEYbP2RC8H+kncu2qrCyhh/IhghIiiY3kZsEARV7gIigiFwSIE9/BnPt09u93VxjzrkUSKr+/ytSZWUa9C2Y9CEOMWO//HWF+dhe/ezcX9FifcQcrfcT49dWdXufthOs/pL6+hNH81Z1NZAHwkjOuVbP22fQUP7p3/6S2DX7zZtgAVIXJhFjuq+XlVcgdng/6C3cxn/8hQOUNDY94a/ck/X5oKe9T8ku462aLspiyOL25pLtIVRqDgXrIIfMe+GrIrJs5vMllA5xjelfPp2rbzT96Q9q++6pXvPTVf7jifLKt6hZjxWgevDpLX9PjLExjNdTkC4+ZDus7/78ZetjQrZddO5n/9CniFcUgepgidmCJCcA87ATqLXV25UPKYV8PJ576gw/L5tqEDUYpqYg0vGr9mNr6q0s+oZNL0VzZYOrHhrIdC32pbbZIrYXTwOUTXvAoZRENS3FoIHfbMnUObmGPt1vHw5CKux8nj33/Th33YBUcTrR5CsUOvt0rYUUIb4TLjUN989vIlVLRHoy9Syat2MuIsvie8Iyq+xXv8BBmVXKql8cNPzxY5vvG2rsPwc0rvEVCWp1pg5/8mu2rO27nNF8UcX7cPUQf4oQbY5S4f9WXs0bz8KEx3LWifiza3faqMKArpch9BN5efREfx4JtEVu4oQiw/3Hf7753vS/z0uSTSXGkiTn3y/ZDJ/Sne2GVaAcpA/94z1j0iU8xJUUUN823IwrcRFKx1upUzuAXbb6wwHdjkaJ7eP1iWbBDteS4fNDrWd96vfekCcwvpCJ9VE9uYIVdG/Y7sY7dfQPqatn+SsQ/txz+sefht+xz2HlJWTrGeo6lSwK0GYfDP/4y3x4GQEc3s1u1T8tY9tuUWT/p1xwAPmAhnztUvGnP/zcr3U67MQQqu0QUFtSh4gOr7GA4XI7UVX8WT1lowtwPdQlPmrfIppDobAgEBRt5SPieqTraYJdlr+VT33YwjS3hHf77bBzKZDO0MeZEE7PN3rUxV/NAsto4dfBnWLpd3GXovQIlNfm6e8Ff+6XuA4c2BVtS1AIms7tBSP803fY0T9+zQxn2CDrrV0pfm1f+rQX0g4+xWbroxAqffzjv+Zlq1MjNd/uPAh8ApxmXam2Sc16Khx3QhfpodIj/9JdclfnDhVJ7WGDbqeIcYcvD3bZYGw+mlM0e8ltA3zmIDJfb4M++vdzLmsfT6Jm7/70iYYFhx658aSYb1E/jmLkwGkocupV52qNv2kC13KZ6UlwPtn8GZ4i+orWjaTHdfDJKP5K6OTPj/7xLIYzaYDJdMDfxsmSDU9+SSDNPwl+RL+pZu/OTaU//eqWLKun7VUrJdfyG8KZMERT4ZQlPC/Hg8/HmuuuvIED0TdtrL2L07r+DA9B6b+ok593bL7AVkPcw+Oou/P6lT9+DFgM5+dn8UN0eTV1G2D8pseHMGyi5XSbW6DGr/rLv+5aH+H+1WsqvJj1EJZlCZ9if/dndZO787TR0nUOw486bfNE07G2eLj2Aiaf1huyWTvKMQjL5rDml3PGXu/8H38ibK33fN8/WYGjPDT0fDmm0XDEXoL+1o8337/ZYrBW+vNXVL3bY9a6lyD9y4/4dOs6d7mPsgPr88HRn75ThtJHP94oiECHSzTVsB75Wv22tpKs4cC7CzTKzcc2zGlNd6mtQTwyoEYvyysPlLv9h5ouNeUD1pn1Dtq//bnqTzdau2YYsH0+MD0I0S2b7r3YokRvGBGLCDGW3dsJQrrb4dPv86t78TmFcE5Ohb99yMRdxrpS0GIbDn4KQoTYUxhz+Lfe1/2+QDNtIMiWmcileozoueR58JNZpvbYW+z33JUbSTrqNlnCjxr98UrZe3IykafkHY1b9ZysR6AyGmsoROxYIwmt8f+P/2X//NoaL6j9il1GPe2ooTmcMqq4+kdn7m+u5HdYjFRL92ck/PGkPz7tXMmAZqbn60CPLKFqRWx9/gxNCE2QcP5mk++j+hrlC3gG2VOTPe/9tK8LH4Y0jrF5OsnReDnb4p9+/lfvWH6Pq4ZWPU+PZueg5XNrJohlIFQvu8D909so3ij/4eHr52/gWbpvqp/rNxtVes6l+mUdsKXxJ3dGOPDgtQlykgmwrxcSONf9sWoqbEdjziZZViX4yzf+u4rqRTpVmrzWQ+hx9SMMnf0rpGalUq0PfLac7XWw81p/NA5jrM8692igvkBK9fx3refqe0jlH+Zjf8NuL51dmsZE6Ee39ETNZzS1me4AD5lMRKTRjI5V8N7/Xf9fvYCduUFCwsLvqV/Axh3/9JFxk69UyeVenwx7LwL+PDWs4lpAbSjSBra7ZYstpF7QNJRLIsejUGFFLX7ZcHCUEM71pf63Huc/nrDyLKqP6ujOuuUOaMA+XnmXidjavB9dL91Alf1v0acpskH64x1W5Ov9WH+nCuaQ7Pxy9Yvj+B5NtF4vPdbXmbU0HD3pX366GVI/2w2qwH9IAVU/ZZcRnMsTmLMfYyPhw2zy0078q1f6s6O2/coXRUSiq0S2m+FV0+a6GEi6mRSv9bqazXFr/fGrfzx7ejz6HMzX0fKZ1LSIetfSl9f753f6x+/ndxzwaPgUd/97enz6OVjaFIp6ENb9KmRj/e0c9BYHnuzCs8emtb4k1xDaPioZ6ufnrgQUvnmZcGu9ZnmWvxyZF/QgsntRdGbBbfinz2QgX0TF5xTAn58+qsfKXaRTp8D9oH2pu66/+We2KezeO2+t9z4jxt2HALY7evclhTu6IzmfUnjkzoHIt87R+ddeTGCtv2HXOsb97ih5HEzCy/m7f1HutJPxrx5srfxqtr9B+MePqXWCgi0XhDZorniVOuIWo9n+qpIsr6+f3tb6KduLsQGC97JXPvlls5bV6f/0SgH6768UnJxQ8Ked89Gn204393J2PlEvod9sDm/vEp5ptaeOAi1a3F+QynIWnaidLq9ovo3ZRorxRqC6FxX1/NOCEH62n1JFPbi1YJzPDhQ1PWFl87NdPk8VDl4H9UOVbAfr7NaMICzhlB63e5QNyjkUYfMyLBr4b9qzqAsqaZQbDXvooaGlC2RA98zyaLhN/PUteq2CjRNkvjtU3362Cbbg9ryrWLEoiSbNRW+AY+OTuf3c+4VJUQhKzV+wHUrffsZV7wA/6DwpKV5nSSpr40YYGnz9IhvtFLuegMyRRo0zvTAWnhQPvD3isHkMzH5OfwEHky+lpL8Et/r7dCYeesOwfUHECZqTL7Rodu4iNdP8wKasaQaYz+OGujyu6mUpywH4x0Tw+RkPGZ3Ry5OjVNKx+bZfLlUvcfjv85X+YbPZCe4F2u+SlPq8PbnT4hQA2udn4pMztxH7TVMKR9sNse5alTstpFug6+s32TwsWg/zNMTATFfHx4vs6jTZkQH1XbX4u/ek6fxGVTWoN+qB6kxN9QWKzQCRujPp7RtbaH5b+QaWRD1TR0p3NTuQX44yNnXYPjaVu4xjKwE83Aw7lvOoF7u/b2AQAkrtcfr187wOojhgZ0s2j2vTTzBdK6jcq4jt1/LU2T3cmuiz3fFUCXM7Yvu6SuATbt6+dBv2aOYOpQ/ckn6pEbo6EwBFKSTLt8VeYUn9wB9FDdQt2WF12L8yto28HJL+XPm87uzQjBtFQo2gNdisTKumZata8k4VffykX2A0bqRF+tleig8ENzq5WHGFzhbB2GqeAZvL6/6Kfluno/7t9IjGpE8TCH3LxMfsuomGNLiL6F7S1Bciaem76IQ4eHzjCPt42/bzzRliiF7xiOOuekacoHAVuPhuYfO30bJJkAsC17mL8ImfZpfNkdBKv1I5Ej65n/rZ2jktbB/HDdliZ+qXw6WqoM3MFh9FnLChq/cA1e/4xdg+JtH8GcpFVpCTUtUWZLQIfGCBkdwifNRqjs24qi259xad7GNZcWflpFbbu3bEZG6mRGfhEJpyN4Y51h2p12f9UHbI94Xwb71l5P56DXIYNxN1t+2FTcXmNoCNiE31505Ck0/3DXgdC3zJSrh+PrVOAXoPd2qugyVY4Bw5OO3DA9Uu/jdjunfzQTa4NxEv75fLQNh1EsOegpXnyEdzn6qhTH7HkjAv2tTzpRcm5OgKxsWW7/URxtdV1o3oTMrvZ3K75hnGcjbGCs2GOOinolFjqO6yTg0+DNHU/PgWdjYZ8EniX2y2gg2PNnaypeav4qLlF0cDOiryjHW/eLhzdYIAtuT6oOrr9mbTVfA6eJSKTwQnI/2c57wGr2tg4GRL2myiy0f6W7/U4W5yxM6WH4ASPUN/w9uBS0Qbh8C4YEdV86UxhgrdlN1j01Hn8zwg8tE0BdTz5ui/DC3v6V98eT+qAWPsTPXyiE5X1GZGS7XIJWjxAOcgd9OKokWz/7f/+A8E/9kfW7q3JHL/7LHdmA0b47tF0PcdAP53vacyiqX9dVolc3uPJg2fr7L29HLq7dOuZu/7e4LD5fvD3hzvV8ff5RCiNF/3gxwtxdmdQO83d6qkca2T0vIJIh2XUE8O39lciMYCvy/3odewQBFr+02B8P62wZb7I2jadIIH9ul9w4VxafQuRXkIinuesBNbrf73vOE5xw0pg2+rU46zYnjX26vPq9knm6/TfoD4WRQUr/uZecnbh3U9Y+XRFe6wwbohL2cTUzscpp6l7OOAXH0i7EbZ1Z2CY9XJx+2xoupNVHpmradk7NyvqLJzDm6nVN2AFGSl1OnNwF2Sug7gVtQfMvWPH1pG+2LCVCTqGu/s/nswtxL8Gtmm7p7FNdPXxl1cb76IPNsmWva/3RUtyuj5H+V00Hf8/nQFVf0a1DS2t6xPb3sNjFd6pvoc2v30+7ASosqzsUH4r7tUGk3R/rpgf1EOSs/SOAuBjbzrb7Tw1JMXnUJpzUe44G9Hd9iEJSc/xajFdqmTnrVRacj1Rj+Q6cu++jIwxUcb/nehJ4ME+vCwZkV+G0/qbw+4qJdupy5APP+Etf38jkbvGCcwv04fbI8bpRf471gitcSYnq7RmxHR+2iwBB7Dlt3wPckuvghD0r5p4v581A/Wq5CarXfEKncZXYqnh49eY2Pjw1Xm3QGPooLu9ywmIzX97C8egh63sT+j/QbRv/jRXQzkc0oi6nOExBjqILyRzRqf50G4v/993xM8vIyFJ8uDf/GKx1rNI+sn7bU36zCe8002RhzHgbZzRvK9upU+bcKWR/X3neOA4gUt0vEwyM8zv6W+Vr776SJ1CSzb4U6VR7fRqWnFJvj+LqTGS88ixqifol9QlvRw4HA0J32YrAWgHGO95fQxgMuAmiTN8JFs+ppZX6VBc3VUqVnv9u7Sh6kDLvwKapUd7idHEn1QyxP+F6+ZmiwKdBe4UZwWvD5tP09JCi+FRw9lnkaz9oonOFn1loi8esr4aOpzuFkGUN3kpKyLxtOAvOpD/W06jHo/3S4pKp+bCTtS69XL77bPAVf7iz8ZAlePHDKl/boeMW58u6ZXTW3kSyYk5At12c8HRb3+y4fuUB3XRm5JjqI2otiVez+ad5msocGKXqRUI63vfSEhwI7a0ydnrnMHZXov8Kc/lY1Q6sxNPxPa3pQEH2ypdNneDA35DZaA1Vv36xdS4w4ub0Xyd5neAAlA9r+wOZRiC76nB17X+9ednlA4Unbi7lQrnnH0E6RXJR+O8Yv+5cspymQJnvO18V/aCekDuTzecOOePHW7sVktc7sgrg51eqqvKVoymHL4OEz7p9/+fi4N5DRj73x41/MQnSZUPMLaXy7+MVr+8k9+ru/k++xMd3fYHyakkUHH90Om10zmntK/9XH9jgubIzTFEGmkwn+fT/70sR3rKjb9YYnmm++YaFGblip9X7JpvD0duKQy+FXr4XpETGnhRieDnpXVok0pc9D3YyU0fS5dTf6edymPT2qZmlHPT45q0Gp6T5bT2+jn2P/me4uYE1WXkOuX1+emwXiiCVX8q9j/+7zH9cD53MbxemFJ9m+4CYZDj1YwuUsr/Ux4XwYfK790rue7p5TQptjzX3h4ukxSpAVZu5T3y7HUMmacWCofHcnB1racozqdjsmf/vF5+2DpP/POREDlVFH1ae6iCZ9UQGamlz57iFHG2FXUwKH7F7bjCOmEOPtQUowrwbYn4IgO6riRDFXqqPkSzz0PVV6gNb6T2+t5rOfPZwxh5CQLq/dn/xc/rlDjfURPzkWKGO88fCCGMlAj645osmE/gVR1k19tE7+erllSgn91E7LGx36KFXsCiw9CmquPW8SWS8ZJV5X9qLnpM30e4xfAURVO1C7Ph56Ds9chWoaBX673d7R2Wgc7wkqKL4cKTe3hUEB/fuwIfd+t7N/3C3tpR/3o52bTKXyFUrxZT9myS933eBByoAk4NK9yLRNuyTWBfS7ssJ1aEM39bpdC2Is7fMqGxJ023dZHF+8yY03Oji5/nOYAMoPl2CfPMWJ+5InQvfETn5xLGo1GJuewHy756scqRGhrv6WbEhQ4AO6Ipp9KCVi39uiTSzGg4nlqFIg/yML+ZdDR/OLsFkkSf8aH6hnW053WC6SfaEeVMXQz7hO9eDl3wcXu8670AuNtEZGwE6jb3DcR8Yv7BIa2mGT+yxfXzdps8ok8fKx90V2ml29KW5/jqeq7n3qpzIMDaJsM1N6HpjurDWegMNyJZIaTyYR93SWw/+g3woSLynh77fqU8mWMg+A+u3Ou2hKYC/lhnNNPz+L6ooBjH3fUdbSKDcJnPbV9xCXZqo9d31i+3SL26Tp81LYVmm7zeP2LT9hf4xvbRkYuk/R5wfY+bPRlfnoldMuuw9bFYi413T0Pl8HLqLasgx5k7iYCmkKb7NXaRqSIfxViO+dMjad/Z7NmeMWf/6WX4puwxaQPAzj9fsennar0jOiO9R//6C9mP98PBw11Zj5Rbdt86uH7lU3I6vuXmnpTs+WkqrlcPIIaX3XngkijKDkEnWn4ssh+9fyxZwtI+rhgU08GRCynFkHo0+OqFyZ9UmKxQ8O9UrA3djf3T48hKjQXrPS9woSboihg0F9C3UIO+2mKYkUKnOZBZq5+uwu7j770UBOdYnWv9wIIcifhg9Xg7C2+WWf95AWpWl76LPWnfjSlH6AUvhLWR09cm7a8FygOR42aY3tw+7GKtX/xaifPWr1cbXFAn192IrtctKJxlzwDiJxa8ekWO/ouvA3VP792OL81xGcg5v/y58PiFMSvfgCyE3+n7nJr0bzuVxliWcJaKN8YO9piiNZ4gO0iN/Q5/TATnm5ywc6Azn29Xg98h2OKHa84ZOznDW+0uz0zjOkuYqu+muAzN5SqStH1ZBiMAQ5wv9DYu1Y1O9pTCOg2vv2qTc1+LFBXgZNe43VqeudSVLjm33rH2un97sfrtCegvecO+45zjJboxDi5jQIHH+zBdqc0OIuSvmQ6tY8O5/ZXzW5AqL2Grn4ITYf6/Zb/9ru+2b77kWKtk1e9TXX6aN1p97UleHDjlnr97lIv8Fk8+f0oB/q3/menpRwoNXchAtRKz4zz3QHXrwd/h0inT9ebNElf/9qT/fb4jf78D/zpT3Up3X7sUztEFjEmMn7uUTTFj9T48wfU+4m+S2TdecMuiQWfF1QxWpayJfuq1lTqJpIUUTWRFHj5ZuVX+/qUsQ+7XYE9HhZZBNKz3x9PSOXnlaCh+tZzvSgmWDj/UMV/43r3Ne4cDPR4wnb6dqLF244+8uLrF/vdHepRP7Qt8OwC1OE+cTRe+u0EcvWNqLZ7QD2OZ89DXLTkq79UkUDLtABE9wciBNeS1d16quqArS3Gozhk5HkiGrT320Re5oFDHbuPHlrjKT4056xn39AV0btILBrK2VdneXgfJEPgJKpIM83GpUHtn5/G3uEyr/HQNMDr5gA3vmRnbLO/c6BHi4gd51cjehccCWFk8BgzZNQ/7sG/0S+oSn9Zjq/+fdygGOQFVsRtv//tN5Bi5UOt6GX1fCvoV/mo7k70mC3rKa8u2EgwRFufaMa1/gVbVMC1i084ye5VRKaXaUqXRxNglasNfdbaIIA/PeLhoNaHT/TjkVmvk7C3+yzqS12+wmIvNiHyJ2NUuT04WPWCv42Fnv3xCHgfTR1rx1+YsdVvoeu0CP6gk6affuqXoPX5YHtu9TWfGRI8xmzvb3borvNSfy5lJJpfH9V6HQ2XjWIh/yYFPmzVGC2t4MYQpaJOAw6IPvuW+P7Lj74URmbP+i+KgT73HrZjuXSX2nDf4FPvQtVnpWfzdFINaU4X5D/Vx6VfjoHrQ/KOS/rMX3695jsOrr98xu6UvqLF/oIPf3rvJLUd6+rnlkCeNld66hW5n5zIb//tZzt3OUZIM6boJK6jS6IB9VN7OBVo/7YRWdJv2s/4eUrRHz/q6vwUMTlXKyifh5i6z3vZz9tDmMjysrlihaoZmz6BZwJZrIKw5FnqsxSmbzDzJSE/AY81+WwGD5HXnNHVH/R0y6QSrbxv9St3d5F1pwHUgk72PsczojRWAfpy131Zah20GBykaNg0nE/QlEZzNfqO5PXdQM3gxdDU6a6E/vy7/1HsiFPWwW8q/xNXf+T2XWVXErhWYRJeTwbGtkIQQqN4ki8T8Rb9HkXoySt/9jmlofo0n8MCbU/bFDv+aYcWpaoGcHQNYzx2u2xszCxFuBsZvT9luf5Fsb/8W+/x4xxm5BjoHkzDz/7Thy4TP/UGEonZWE+Ve8/lfdnK6/P0uZUPz+wtmWC8kjO9cQ+M0Lo/wcxEwJoAGuIXiDk4H3mGMf3m7J++k/WtRY8XGuv0L1+v/tJv7WTbs+x0W2D1H9git67vVn8O4Sns/L16WRirnp4BB0XLsRMeaP/nR6DV0BH7D2v9909XwGk3T+z72ktfSH3soLtsbkT4mmfU3xRLQfw1/+FHvbRsyZ6tBclDSVe+cNTJEAQNBHqY+PwvfkQrj2vBl/kS68L6shswCND1fA5I14l3nVzcJYR4szn428uhYtS0chPW/Yg11iKXEV2zwH1OLnXl/SGavs57gtGcrtj+dSJjnHdd0Oqv/M3Kf6adPTdy4aHSF8jGrYfAtVJ0D/MQY5x8+7lfni06uVZEEzbJbOWvEpQmYuvyUqPp97sH0vFXXUijQcGGnT2/kVS1EzVnT9CXuepCKKrdTP/iEb+UJZE290mjp9951H9SmDbA1YG+5jONsQetNLQ5N691vUaM+0ySA/ffcqNWFJ37ifJ6C1GqfX1U7YZoKBr7Cu9RichO4INsnrt7AvtDPfn7+BW6Kw++As/hBGt38+VO6FpvIBCekz/fz7H+//xuExD54+YRe7RNCX/5RBNIj/q9BjHwx+th5VMfd95lOwX4onX+rY+5MaME9b/+ik9Ku80GS9jy6Fa8PhQHM3J3p1Yr5DX/++yaf/tZvM0SehyfP1+oc+zO7auzIIn5PdnuJlOfeqM10et0Mle9qCPW/Thpf7JeW2rdfR0tWfLuQDb4N9XDK4/G88Pl4CI91yOdbpkxuB3fSNj3mBpvtNNHsgsU4KTGoub1unMbzDVvkDzyJLt3zLnj7plOiHPGggjfuEVMcNfBbBcTEZ5+hp4FDuYhlR9XvPLEbFGexgbk+VRgw4kcfYnGA5G+OfBEyK5FxNh10mTj+xDwiZrkjxcStJU5gwZXBWUrX6uQIx50+qfflvq5HcBvqszf3LUNItvifAWf+hfsycYp66ou2QDbWWciO7MVLbOeJIjTatl/b5yhnyMxbWDVm9jK7lr2Lx6tfg7ryfnnkvPyUWCzvWHqG5fGXXlGi9br96PZWGpG6smXabJxqHW5di4l2yFGD38mVDtIKtv91QOu3fWEjW5zyhYlox5S1Y9Br4KaZK1MckBXh2+w7XM8+sePHj4jRNqEOGLizyZg2KNFqosyZbSZHwtsEqkh+513yYRsrt+yNLOY6pvLth9WP4OuLtEobvKyZjh+mWDXVUvNgHboB+MrhtvuEuJw5ZHcxGkGvJh7o0rwbd05M18eVCn//Pf30/e7M9Caf9b7/dapPtWKbPZJjR2r6eu532cO2k2KQh/iZ+kpHoQC/vh0mOe5Pp1fDx/a8sf700ZQ9F3ztQtk7+Xzn/7Rx+Zr58i4exRr+wsfTYfS5CDGh4zGsfKJfpd+uyCAXqMGX/7QcpcvvBzL+IQdK+HqpXSHQnqGQ4YPZS5FrRtXvHwjUvuPx648ypRXfoWP2eJFa/2DgPj8PLEZf416F0q5gzb3RfP3+7Bxp6d+J4DajY5VtC/QopY/C+6/6Yb/ni/jezcEOY7dNX542T898Zd/lLAro0UtXxasvBafXjs14/JjzMlpIbi+eA722dLekSaVNL9ht3uuXR57dwAfD4QeFhWv9cBqAY/xvs+P7UGf3fH3j6/5szK8ejZ+5km2JW6kbvl+uMz40QplOchYL8wuYhzmSuAvnxP1EHbR/EwWSa5l90d173XpSbpZNLmhpPQ/tlTq03bIEjhbAyY8ZXrNe7quwON65PBBrvt+2lj4DbMbxX/+PpuNZ+TL2lG84YOb7fu+3i4W8uL4ix/UJBH7sGcMg3p94j99P6/PD87m9kZ2dhG6f/oI1RacfWofk2z57j0Jrr9ipuoebtm8VaGDLt/fsd0jS5/BQ4G88mNsDB8BzaKgL9BWCSGCFM4ufR3uJdJOskzgfdbRTDt+Qd0Y5NjafZ4ZRXIOsLHTLXW+Pp9NXT0DlMcZY/0zjfpytScCa3wlcDo5bML24IEYFID/eNBCnDn8+zx8WP3orodJhOf2O1J15dsDc5ElsQEoPnT2JdtdemGBUuFO2Ga3CP1o2CaIDRtKPZ009XxkTQGrH/WpazwZHYtNCK2wRdS5y3Y2rXwFVj/ugwNZ9lcP/Z9eKYD//krBTmGuX74vF52dG2VYLTCmyYvT+wFaa0L3wjjQW5kGGd8OtgTz2HnUzSpBH0Ewc+CXS0ftxJLqhfM+FZQ8f/Y3G/OkT2cjXSSN9xC2+a3E1olzC0pJqeF81G205OOngx9PLSJy27kflsvAQZg3e3p8XtKejMUuRdzF22HPzVt3AbdWYHMPCfXfcZX9jsIVwMq5K3bNnYomI3wtyOirJ7X21o5N6eF3hefEW2Qxz3H293O4nqQJ62ftgxizSl/e/Pgt2YjZq2ZBfpygzPh11oZRZ/NBnT3I8sdED7mAsz7cdBWMS86wY8oXxg6y7MPZ1J7+/m64rNs3Wwf53toI6vudomW7565QXOBGpPX3p7z6hBAL8ZXqxXbPFjZLDTq8yh8+DR+pXqJqXk/ZkLsPpyNDRCncFBocMmzf7qU7KNLLgeeJfcnmTLtskM+TIguv3wErDRt7+r0rgVzy3Blf+ZfpLjMvb1DVJhPVJ62rZ3N3EKXzS3tjN4WXu4QaFVF0jS1sRJsympgfJACbRCZC5vERBWlJ4LMZKno3nwyN+ykL4aCxJ+nP5Bjx4V67whkVN3w49lI0RK+CoPpGXJwjoO7i7+tGZs7+Qu1g0bOpnJUYfEPRaWzYNlsbfQcoJZVGqLjXa0F0AgXhOFewn6U79Mu4aZCscMOR/Vee3RnzeQH7ng8onk+zvoisS9GuNBqsi3Gk07fz8ZFThw/sIMXVx/iotDLQnlFnOB7QcLzHAGjzOmOzEMR+rL3ABMCHivCPyzljUagqIHjs4UvDmCHy/YkceoS3xkdZJbisXIY3mu5Phx4r0WLz1uMVkO6nEbu1/6vngFoK+jy3CSF5S9mie/kEh3Gu8aG48/0kBoonX5xoi31tLGuuu9KrZLOtRvYLz/ftWM0xtM8mx5YCecYbX9yCJfDZ+v9hxOKuW0vwb4z9VhIzJjqJBrWe7Ci+hSpizlf3QP70MvYqx8j4Z4euiP/ueWxX4aGfYWwByFfsfe4k72vG83Mp/0otJaicZp3Yz/Nme7zyJ3r4foOIiJnSyD+pOGEvVRWdBfq4QZckF6nTb9SMbfxAlJmxiNRwJrMfwXQ4+FX3heovRWF0SCcTzuO5wIa4XFzeeiiSjOfdA9/sgdNHj74CeO2PF4q3pRJRa/AbuNsLxSdUPFEXVXMDQ6XxZKu7Vc2uSpjKCv+sidCaGlroEq1dRt4VviVERp+tHlRyHpiVL3kuZuzy2L7B2W9dqundLVv07GxA3swBxkH/0Stw+7UxMGfh+/VBEGurzwJIA8BHQ23rueTLCi6+amDsPnqX9rPCy8aXpUS86KieroK5zm47fMnGlljd2a1QwKKbB58fIy+bVXe7AVsLMXVPn9pdjINyhUIw9lRLk6hfPvJUydpkFPT4eR7YPCoo/Ys/9HjTQ325fKNBrkV+9Oe7dO67ux+04DtWub61tnXb6feu0HPiLBpboe8yJP5iqB98i81jbWYsTwft3/1Uv2faD0eFWYgZk4hVR/yyadhrpvxMcIa1I8vqeW/tHJg28Uxx96BooN+okMNrkVO7exN9MjedAsxvU6wogcQYV0cm8pK3+p/9XF92b9CM0qIR3Tfu7FmuA12j1USCQ8noNsUFmkQvpjc1dWs2LVMLsi/7PlL8j/uqyTMB8rYbwtVK566zjK6okQSb1FtB1blytmJwa8emR+O76RlukQLmt1ywP1HszmN7LuXE3uvU3j1YT8TMahB3XxtH/TbrqW8/aUFTZp3qS6m7i3S0JNDhZODTPR36hUzaAs/klFFFftmI3z0WCZ1i0hK+ShvGtj93gVrkRqxI0oAWubmIyBAvPT5MG78f8WPp9pM25bQo59jtswkW8FL5jv0aD/WavzT5RfqXv8nSCxrMmyuh5rKtsLEnZrT7BIsPxogEqktLX0+v98OA5u1k1N0cOn2cbaGFoFdS7Acdh+Z7t12Qf90OvmB8i345f7mNlNpthg3haGeLUF00QO9D4RNq6BEvZsob1KPOkf1PM9F8cnIP8bfbB9s1N7CZhMp6CpZVPm2RVTPFVSe5TA5Han3Uaz1FryuB7kxPWHe5nv1kuiig0rbEqrztEdumOEfCYIoUF+1dn99fZwPs6fXY6bXJpd47EQE9MU9PyWoBycsvpFeVfInUmQUbZyW0wDIYwv7TbLNhOPcAwg2f8fG21TOWPr+JFITbLRHM50ufFUVNJezd39j4fL86Ox+2GsqF24sa+X2MqN5dJ3CsMMHqq3m7U7I4HAjL6UrEpn6wWWVXE7Q9KPhaA3FJG5UmrO3d/dm+lvVk5DgE4okNfrQ5HzHyDD0ZiSmHD03/dNuQ2AAjsXNqJMFPZxZyJFjjD8VIDvUp0NQBlceSJx97UKPZKweAsI5a7F9Ev5/CS+vsu2VHfSbGTGd3udWkh3zrqOZef4gprr1AwS4cPYid6k5psXapKBoHW5tTH9H7VRVh0M8DdvGxi6ZJLDnETb7kc5WRsI95+k5giLeeKm1xzxaDdwGg3jr40Bxsl+0/mggHr1epGmPTZZ34CNA5pycynINk3U/3Cv3FG+y89mjwn0SU5unL+z3VlYghzZSAcp8a+7oTZvSWcB78DtqFnsR0zpj9XhyQbkmDi3dcRUwtSh/ZOdHIVLw++rzmX3n9PoQ0UZb92NqV5HUqt9gxnnL0L74K3vxY80nJ5m0mxWCYrYhPJ+vtrushhWN0sKhtPhlbHhumyL+z8MJeltb6/FFlESkfFFIrSijrnuG5guKQmvSggaLz5NZugNyuqb/MJkV02VAftlIIPtsgzPhneC9RZ0gqVj4CRKN+ESV0rjOgXgJd3V82dgCJor6wSXaspj/e8GA73VP/Lz/M91cagAcH9Hc92SzfEk+8Hqdo1WeNPuPH0srj4+uS1nGu+s7Fzze4Bb9g2zYDtjTzKQS8zQ3Cr79PH/nOBMuqFWqgtWvQp0Y8YqrKqIc/Q8SCsAtQqaZ3ag2jrc9v/2VB3pUXGh/62WWe9GshZMLeRxPx3EU9Si0YZ2PAineYe3aXS01+LSDScGkFffjTz1/unVDllzo9tbwklv720+lRT2hRxU0A9Wbr+Kw0aL/UGtvI9u/l/8UHxCwviGU/2GGKpcxBn2rwY2l8iRX1jcTLWKL1BfhKuMHe7BF3yh03h7985LdSEi1DX3YQhvRGYDnrtdBm9yvy0u0dm8VZq5mwdxrgn6nypz/qHZ/Wy/7/AAAA//+kXcu6sjyzvCAGAgJphpxEBEwQFHUGHhBQkUMC5Or3w3q/4T/bY9fyQDrVVdVJ93WFv8SP57CbAvL8IHysj8SsFz/qsu6Mv/3Ilvxp/3D++0BddALmTarY8y46tX98nW17Sbf/PV/vujkQuywbew4/ex/R14zJVrZl3lfPQ69LGGyGq/6RM3QIMELfZZbgeVrmGOhEgd/p88Hbsz3bvM8UB91Tt6PC7v5Ck9XvWti+IpMqpjJUf3xJL/rszozzVPEpUt4loHMUE+Mw3u1JWo2yfl49CV01qOnec7tL0ZK/mCeupqpfbe8i+mm3PcvXpwYxSG4xClhuU8sMBT5lx6+F/vAT1EfacV0PHuj4290JqWcnl1RP95G7WGqhln35fKs9D5yZYOLfu9luny0/IuPquMx761vUb46arG1e5Y9KFhTBZPVmC5vvz2U4Dm82yy4ZwByYP2KwTRrwryIXwE/nHZYOltJ1f9+v0eoXHeWp6fhw3/n/8qV/Wj270WvbI7rWs8j2M3t3E7i+jN67uKXqs2uqfnOcZXSNng/iW+LUjaXU3qDJpTPbqp+3zb3y50I7Ps7EhPtyBOyWpGCdnxP9w8clny2z5W83tn2wuhoCWacapaaHO7olwbi/n2QgbrKlqiF6OdfkSwzbm9CyjfzT7PG7zmK0Ev0nNd+sSejqFRewZ35OyMOqAvZ+BC2ED/pgm18MAaefT6P356+FVTsu+Ljb3CPQQmHGH+ktolExAwWIb4QLvvgdLwJ8A1RvH8S1HiOadnNSo83ZkWg707KazjfFh3fxapn7Nm0urj8XgGloQuKx4NXxXy2LqHiQmgXPzTuZVval0KSf4OGJ95BT7+5pqACBUvFQfPnkdk0G9d63idXrXcWPx8wF1u4Y2+89J5h2V3WGSHpgspXuBRpxal509+4KdNET3U/LrAJauRYJ9l5j1+sHxUJtHxjEcb9WIv78cdZ3S7+NcieWHX8/7BZWovfEL8P7oFdZFiKStPJK0fFU52PwVSwQvP5OInnyquHWbG5wi+8a1vrthnMvvKQgvrlLx1/WdoMWYKx+81XHbD+uu4nG3qg8iktAPFev7O+iH9DxdjywsJheySRcX5G+8BVqN+nFngoDuxrO+ukfvxpzFhUgf5FM5bZn+SRdsn/5HJe288ppsaExWvQbll5Q8zlVXg5a5jtR3opRNe56foFUvbt01o6/armTQKG6iw3+zMIajeSSPQB3B4uQrxyjf/zLFU8C29DzoZqV+uPCu81DZm74nPPH0/VBv3tbrIRTEkwVfWbos/NS9oy6dzCWH+rDikkesU+BH/QfyQzhuhsZM0a/4zMaR0fHEpXJdphoPv9oDCCKZcQ2z9OXf+uKWLDwD7pmidSN+eGs6CT73PHkK180BeT8ASbcN8ytN3PHZyK2cIrTnO3WqLcXv+MIwun1Y3h3N//Lx4boBMxVwok35d1YSlq3mIVr3qKybHbGHz4wUxqqfHbLMEaOUeYYhb8Dn0Xbs1CAoxcz7VBKxhXlAjz7cmJ792IhSf41rrZ3X4wYB39rz0roRPD7eGvmut+T3V6oq8CT7wtc/8YuYXahxiCdnyoeWzhwKoZDiZJAOzIvOr7y+bP7en/5gh1X1wMXhePOBfNX2My1HhEfzfpygSw6+1Rkeco50/audt8UGYsBfbrZ2LxqMDs1Z3v6MXP+Gn4hZOiMyeb4/qBp9T7L//KZsvDpfp+MKZiacySOw56c7066DMFxFWF94TeTf/Nl1DdBQgdzfAajL3iz8peP0/Q92pOcVSMCIdOZTfTI5ndqPUDJLwk53blRcSgvH3Sb9g5hM7vk3BRHAOOtxiTWtGc1nD/3Fr2nDSI7PEE+1Be3ha9GJTwl/vinHww0GKPB8GvY/OePLPqRYeLt8zXb7R6wEgyTJThvULfwH2SMJ5cseiUY7auA4Zczm7gVYLtXrgNFlCQCMQIY7PlWG752bdGBmZXXJdMomBZshU1IvBWLOx4mQYnsr0r/8YmGUqZArww1MYYK8zHfzpnuHNyeyovelV/CYRkMhAb8DZNDwIlmZDo3bU4br8H8nx7/XOkXK/vBSeTdmo9Q0+iNV/akdFS/jRnEOsuJTcwHH9Oh6PV2e7iyrXBaJXPZmBa8DmJKToiSil+SUUYiaxtmRFji/aFTlL98zsyijdHUnN8ZqPutS+xQfVXMx68MlG+H2WZZH7G8ew0Un8ggh+f7bq/Dbkj//f91jfqALXwH/JiGzEoJydcDrDM0GLPxTz+NdUwfyDqcjswwwzCYtusHaOW8DNJ67MycmftMhIO+ZniUpHUy3NVMRCV97RmO9nYgvZSp1o+fcUNOdinb0+unx+jPz3Wf/Md7/plDeGwuLi4+fF+NfHUzkCdu0z8/LxkfG8NBtstDqrRub3dp2nkotgKXdseTk7OTsIuhn99bFqyRgBZ/MoZlv2K0f9v2LOY/EYXY3zPjvb7lbKUYrk7n9Mn++NJ0lq4CHD0LEf8QvXNWzcERqia+MdPLSDKe1XMMzyAjzKTmyH9o/4xRor+3xJLIMfiuD/0DEP69iTn7p4Av+Vh7nkR78cfqfD47TwqJFxAWegLpBpy/PvCMXYH5S34dpySfoTzLT/zOojmfLlGoaN3ho/7TS2vuFSEU5uVK8Jrfu1GGH4VylmvmX8s9UkPP9iC40BNxT7aHFvz24CLdr2Tn6H01fLrBQTy/fwjprqa96CVPvV0FhwW+4AZyHmszun8aYJtTAHyavmOEFv8XKywwq3XRRZ5uOs2NnCdt7kZKv8o//wnRLQvml3AdkeSihlnL8RiGV8EMN1JGzEQXiljcXEcI/OqG76GNKzYL3xDawHiwza5/5SNNsfunZ9j217T270+/5gF6Euc3BskHtyxGO237xM+juEvGnF0KeARlRcf3wU342ji76KHvU+JdPj80KjMp0Sd4USoW5cJXKVrwvJiYfT3SZNGDDko+2pWiWj3ln75rWhDkjcb8/da0JxwOsbb4o2yzWm55p1sqavj4ObLteOnydsGTf/rIDlWzGk+2WsKX+E96vR0E/v4Ogg9//rgZuSbnI6QebNcCY2YZavbMqnOBhm52sCAqSTI7X9JqoX/16I/9quqfvlqNeUZlA3bV9NF+GbiT8KGq0A15szWQry3xiGfyxAHf/vQSzdTZMdNsaTD9zFsD82/mOL99ezSWOEzRd2dY5MSSEg3SJaOwu/UWeUC94XKqvFw4q+nMQvUhV//2e5Qyh7LiZwSsQaQGCKlPxdfDQvLl9Hb+8JTshc2N/+k55Cb7G4bSrxNW51qN/HcnMdKt1oHcjr0F6TsY6buuXnxMzhNGIzFTKiaCkVPRNgw9enkKsb5sWn5/GYF7dwQWXB5e9+/3CYJ/wkPCDDSEKp7RZ3M9sD9+OOt70QEcVgrF80HOx4P0uCBZyzYsHKMbGg3H7cGSMfrHFya2uRfofZURhsc3Dcb15yKg+RqWtFlmqbNV9ANI4u8y2HSykbz4Nfq0sYt//tAa/QYD3Sd3JKQMvvlkTHsLBO0asYWP20wSi4dOd8GLeF3Dkz/9hyxVMFiw+I/c/wYYovX6w0gZbBPpmT5kxGYcMBJowCdkTzNa6i3MO8heRa9nwdOa1ohw5xVDtfihjv7nn61/TRvQuXhj5AqkIHYmnzq2VVQZlXXX/fltaLo8dyFcH+6G7Zf8Pl8o1tCfnvX1bxNUq+gngGZvIubv6hjN4812oDr3AQuc8y+ZtWgh/OzHiXFKurzfXm+gzeOzZEt9i0+PntWAhpWx+JUhn5Z6CDrqD44/WtsmjW0eL6oKlxe7GKmbSM3KLkE+lQ/2x0dlaXN1/vQTs6WtEYiqfQTwvJeBpedpi9r9Y6RI9aaR7Dx/Vc3eh2awe24yskmKQ8AvfdZq4ntyqbp0kRo7EitoTNJh6eLzyefrR3uA77wSthO6xa9b5rU578wiu0XfDb7YN7DwGzo9VltbfqdZ9ufnMWJPl+4fX3mBmLHdeHnYfK1aNVyPYYVviz8zMqw2sDwP8q8eCEbbwiSEd3bbaAaatWdJ9e0rNulnLJ4J/eyYDwKWNbrebs42O7aliKSOE2KuiV+NK32M9UUPMmfRj9QtnVg32CgSrGVaNaTc0LR30j9Yos1BJZtbrUV/9Ql/k9OK6fWvAfoaMQuzx4SmabqPqCt3PhWD9Nbxv3zpV9GdotO663gS7wyIUN2RHR3iZLqRrgVKDgLBxXS0W3fpstcEB/cvPlFHP58WFrwhOfvJyVR8+xD2bsXoTJ8znz2ppJDqOPjHr+l+HZcwiUdE248acF7YswHHyztkix+QdKpeU7Tsn8U/OQeD59UZJJehYJv37szHdxBbuq54IbuVvpPw2o5mfTO7GvOf+2vy7/dFw3VmG28cAyaJzQ3GZf6v04ha0M/1z0NMOTbMWvjz988PWuqP5PGsNLtb8iFkWdiTgzTYybB6P0VY6ol47T5Ne9TAe8DKkRySnl9mPs71ywfvSSgx3INZsUnaUWiZtmHBW3K7yb3VDmpOVFvqvxu+8IFG33d5SrZ4+nVc9NUY/fl5G0RZxdEhCIHudi+2WfyKwXWs+K/+SFyB0+pf/DX9tWG+kV4DPjfpA22QcFvqa9dqqi/L4LkXehOzyzif3cmr1Xh6vLBaKqiaVvmcAtvZe4wyMG3RrKMLIseHwcJn9c3505MyKMoCYZDXascWvYxilC5XYoOLvdTzBHRu5hfbydeaT3HuHWH5fOIf75d8nHVfgNWv79jl52tonDRVgWV4OJ2F+x6VvubI/68jBfr/PlJw7XGE12mVdr2wx4K6un9DZl/9OJkM4xbBb+4stnkJWjeOJXbU89TKzAjImnP4GK4O7haRrYukatzetVo9qDJh/kF+VMORGAp4CvhkE1d6Ppziq6h9zopIzO797YZDXpb6swobZlZ1ldD2cHbgGgJmt91SQlXVoEYaL3o87dNLN8XNJ0Yt7S90tBsUNOmGf0C+PgKCwa07zoU5UgtRb0h4IGElezpaGqUrHXFXWylgt19GNXJcA8H9w654Dt8YPmmUMmztA85df5ll6yQbYrsnCObOzB9oLqnCTMB5N+uV/dFv3i0jeQIZ7537qwTzut5g1Aat3T6qNIX1/fvF6r0y81lSdEW7zO8vMe7rNhmm2U3heKlcyr41Ttavu7U09ngLy+t+sjTtOIK5fvyoYJsaYszRXDgfzRjL3wdBs615FshDlTKfKT/EEXuJ+vkovcg+PJ0r2pnJDd6Xz4ssz79j8DtYwHVsMuPzvHKWwzfSfpPI8Wdn3YOpMqoWOKvvxBOKyh4/tdnDcc09LBWTl4zjyTrCbDVfdqT9aA/WlmBwSpCYc7Z9vt4UsgLzy83IthE2+Xy/wQNtyLwj6TFKq0nMJ00n5b1g1vtRJHN93o/w2DxKFq4Kx56vt/gIQ4tr2nknIZnOcakgwby/GTnuDkkfB/z49/yoPr99NLgmecB4jnUWpjaq+MlbK9DiZkviuVjnQ0/zWGvM1iB7HsrB9BlVA8JN9Gaug3HQd9O3BnYZVTrxqxdwxzdScJk/YNWmavetUvUIslrciPXuHJvaxg/UW6Zu6TpNZzQ7tqaggDdbFpPbEc2n586DxlNl4nvYqN6lrMxIpO6L+K/Hs5o7wbrpIqIb2rEQUG/dLzfYjoj+W2+JnyILGp4ytvFLNeiN6hdB6jEV91Fj5utUEUPEcvL5W9+ONfU5hMC371inl20wP5OYwoVEVypktojmexrX+uNaDcS++nM+h8I9hFrQ18wMYQp6SzuL8E0gIA46PqvxOo+GjqLUxP27u1XzOE3aCm12PjM9NuR1OcSZ3nd9gafTGTjVbpcGfgU+/cVzPiSXtgE0XmKW3g4Zn+zx14Alj8D8yDIDer6ZEbKrtiShmW2RVK9NWT8TcMn1fTb5mILR6/tK1piFidWNhqyLmuLJDO/SNLRvYbMtIQneBGth7iSjeKofeui9XoS0U1XRcM1T9HpeCnJc4pF2Tp+BVRUG8c4/J5H03avW3WTXMH9vkW7YfpcTM49YJbtyWvNWbrQYlbr3Idf2fcn5ppA1kFeBiNf9u7Tn37aOQZx3AwsbZeJLY/5Z96LVaonf2h4LWfSQe+sNtgvKLOC/g9+qx/XkEXJmu24cjlOsp6cKU727SF1bG0UMuJ46fFrm7oxtt6cQuPOL7VsB23y8nCm87GvOdskuRY2PDUOfyk9KnHytcvr1ax/u23kgYdNRmxq7uYVJOayY/X4/gikUBRH+8NWLZBlNxzfNQNALxGzzNQRjiA8uStbtB69/wc4eCiP+6K+yuxPPMZdbs/JthtQbVCp28XqJx1esm9vLheGfcq0mKY48uO7HO11p17qa91NZoLRMK+Ytw0xZIBijfi6sC/NDqUP1FBQfPb4qBda324IPp/ggombqD+xgec9glhRJg6gITiRQr1U37zuj0TdF22KpCcx8zthagN1dqgn2m3U1opXmwNP2z8xdJ8duYrQ+gn87N8ST1U/CfRzeIN6rGUWfekiGtwEULfuJbK2jny/rL2hpeazY6ZR2QT8/XQwV62riyEn4L5+h1HZezGo3QbfGDp9hS7BAj9v8x3mbSQ+QkHEh+3wUu1mSakC73XhlmzF8d/wgmR5ExtZhASl5wnwflfDe5y3Vu2DioxT6FLTv64Nb/nSr2dofW/XHsg3Bfs45Z+Zv6eqjnNhNSvSqR+oFK4VQGkv+QdUkRMEN3GS1xqv5YuTjePJTtI2fiCyvd3OC1jetzpw7FenGQTyZdzFYVWngUtWiZKbiNOr7zXW75POsm/rvlKGInTZsN18vfLysWqruE6PDK3bBiN+rnQJH2W/Zbrh8lngHH50L+UvP+5Nhr3fZ2gNF1FwMLpbRRIUvQL3uTWZW09bmF5Y9gGX5mYqSuskn3ukFULVcU8WT4o6vFa3U3Ph0ZRu+elVNapUNWitWQXYnqLt57l6Onhb9huH4dgnGlTofIdu7Ix2WeKJ7eqhhaMOambnuVqNRXI7o97Yfy3psOjpvzjWwLbTEGNQYsSMSHV2V5DV+b6hvz6+kmyEC4UeMa/vp5hCFEbyEtsTigo/Ta5+myHkdzyS5nb8VFVe4h2L0n2S74MPPXR9r6A7kvJxyHqtJI69Ux5vqh6XibHB5MOsC3b+iQLZkp1fU1gxD//H7gSQrcW+P0vMcwbX8KWQvGI3NL5J4BEXqT8yvD/t8fm8tH/7wLZC52rGz9XUBr7yYBPZ2W/FY4ICuq2dIdu1bSfhaetWoGu8icY93LeF/+cLbM4uRJlBRr8vREf7y8x8/657XwoezMaeU77wdGrMVmkH5MULBNIxcCrrQQo/PyVrirciZt+cZEjoXL/zoZk++OMyIAud4Qt8xmMZH0/9b35XA+2BqhsnT3HEKyT14ecm4ewSNFt2cHQlNw0hkPvsCNGaz4OdJzqkVvT9gKpFC2c5D1Wzs7Q+Ml03IHEl9JwOkx0hPzvWJmDJ/BbMk9QKoktHQ8d21nF8hDVGanu8YPZZZ607CPSB6mzLve9gkc7hGKUxWsWHnHfra89/n0a92xXxXTvn8OacyXA9mRsyNN1bza28qiN6GkrjfB0MD+jw1dXz3I3tk0aVjm/sb4OQTCc8/5cvbV5SJcDqvr/S2y0NbhF0NCMUzJd7J1rox2ngZsuojIdneItW44tFNX/ALr76+y8XzLizgLYcbksvXOBjIO4wRf2EgO934Bu1rNwqQdWXFjIP8sXl/rFtY8IMZv3hb8W+k1oizz50R9o6raU0uEfStcmD+bS3mbDzoImT6ziSEoJ09t5paoD58PGh/uEW5xJv+A33QEJYGzQfN8uo8Q34nMQV8e6DJ5L8S2lX5xV+JK91k8lcBuhXEtBxiA61faRHrn4bZWF67I+rBvRn/+LnhW5uO5qlZQMkqC/NmTvLxuGlL2DAroAfx+0Cjobkz4oIVEaNRjGD6w+/RsUwWMsW2+eTdHCQIZ5/gTfYKvli4yjDWyouEO9OpFj4sw1Rlb0Ke44B67jUUkDs19I+Pc/t+VNSjv03YLgZuDy9XvKHYiy2yfQmc01abSv0y0JBtykBIxouFKLhGj4hHFcuWciI6ML7pMkR4tba7st0r//JlteYNYtbeCLX12TPY06NHe6JdfgGDfnWqkMawRUfcWmh1f4dUPt61fLz3SoyqPUiEmC+Bz+v57YLxTbfMW7t+wALBm//FM1WLrJvtRChBNA97LBumn0/o81RQVKxqKlkIks71rxms/GPEnpdUsqdt+9OQehSWwWqhbHMj8lzQZnqnvujOwXz7MR/VmdazoKoR4hKaM1RYt5Z+rRe2xz63HP0PHzciH/lv/yoXvRSnJDzJazSmq0MDFeYOVctzlM/a7dLCmYUew2+nrUakRqFup4ZAkaVVaDpcDjVo7s/F9+TUoDHeXB/g3qjB7PE6BjNDeYOmc/4kVvtMgmn3bQ3IVm/KNjd9i8RMNgQEYyn+8cv/fo94j2JyvDh39C8/7M9rkUp7mO2Jz+cM9JXkEssS3/myH2LYmFmD179ZTHisZA64ROvwSp6//F3K44jy4CMSj0g2olo5FyCtpBfzvIaiOXkoLsAhmlnunR5Jy4S+BoaSNdVMUbZ7LXEpyFmUETckcTJv98IM26GZmMdVEY1a4va64okM0/IAnGXy/gLzSa0Wfsq6maGkgcAdXwQvr7/6zkrRTt9+sEj7KJjK6BsD9ZozCQTxzvsrWT/AxfGembc6tiWmPD1Izp/Tv/y5rL+CpvQbLXpxx2chjTRoD6qz6PVT9Rk3bglJ9yuINam9zbllx/AOeEisdtNVfH/4PGBUJ4THxFZyHgZOjUQz2WN5XSg5Vd7zBZ5unmAJsqEa6KupYfCF8g/f8wnC3wP9vd92ed4j65gMvS8btI7sa8e/+6ZB7UYVqLbwRXaXHw9NTAaNWWrh8TkQ2wwg3pgEH6Se/+NzJSo9uvDXYOrr5gFa3ITLkVE3H2WStEj9mSWzFjwS6aN24Io/PR3VbZgPpmZf4FIHIrNs82ezUzfe9JchUEpjIibj7nWskYGuMRV5gvIF/0YYVY6YVXZxJ//xDWuj3ZhfO7uO06Peo0BTdUIOuyeftFiLNf/n61h/jG4w9+upASneC3htbd1u2k7BjFa3USdmH/Lgn94w9uxO/Gr97niupimQR3bEooFFzhY+iNbtBdihu1RorNZ7jJx0VxATfaNg3L8Eis7vZUjo0kVh7W/bz18+xOXUezlv7tIRamHhiwse0Xckwj/9FzNXyKeNGDSw2pUmC9TPNu9Xqpb+h/fNwe3G73qZ8BEpCr23Ag2mrw6jBitaMxKVYje//cRBuvNeYd3Ysorvj6sL1MPpygxXipJxbRWgH36WwZyuF7rmFNMYBb/kyQxpSP7i4wbvtXGkyEdewP/yR1faHyrs83cydcJDQ4BFh5HLeKu4PEcN6ELYYCTzazfdbPMC2U/ZYKm5bIKx0r8OwulZoeNnM+cDbaybvmtblcaxPKBevT4LddHH+K0YbsCf8rdQv1Kr0b//n7q1bqBx0z6Z9VHSRB4c/QHoY7bEvbSCzaukuIACAVB+ra98vHHThU+3WrG98zoH87oPsPYXXxtl/0NjVJIZbZicEWuIC8Sbu57CEm9sz+Z7wM/W19GC7WfE8rdLqllcYQoUJk51/WN042PchXCUQaWr0BuCWW7mGInGTWBZmNfJEv83hMujwPar7BHwVKpi+ATbJ/nTe0Pc0BgJj0glRanc7XZzJDVqq1dJTn55Dab+q2ZwPy5dQGFIO+bsrzEcLy+XmAlYuWxm5AhVNvvUXu1faCzH6gj3r8H++WGiOdxcOJA8Zbt29eQj9rwIwo9+/Mc3uBxufdCfo0ROxTLbWXO32Z9+IbaDXFuSGr1BvyMhy35vOKtGNqNVLlBiKFrTjbphY/Rw2oR4z7vDP6dcCUGBHWBpuJ75vImEFppCsVgelw6Ss8/GA/vy7P7iJ5/zdFfCKveexCgV3Z5Xw/YB3d4PaPUK5Iru6bWG+bQ9UpUwnfeCffThj58bv03FJ9olFw2NWfwPj+R3BAJSRXwl+G5/8vo3PQqUrb4U3yT3yunYRYa+7AdmxbdPMny1SkTMTUP8lvZKMv3WHSBbSow/PhO0tT1h7Sh7LQnHzdYWV+qcwiNxXHbXeIyaSnv48OcfSfuTi9bP6zJoID+ZzF5fzZzSqZD1bS+WzPFugPrrrBhw56KDZ3nIg+5z7yNA9TUk5sX3O759bQFdu8zEaMFLeRKkRqcoOJFtWsnVqCfPGalHz2NW1tJkOlyuNdrdzRNzK8dLhj+9/XCjiSWFMPNOjM8CxKowYe4gN/jzF5GRFTPbvs5ex0lwarSFT5DNOyB8VCFy4dgGNdbbqc2HiK5cLfMbm+Xq1a64Xbxl0I5Ry/LfZFV8MC/uX3ziez4eOzbHWEH6PvWYo2u/it1vjQW45h0jW81BvNs2Cnz8JKJZ7ewq3j7cDOquR8TtNn3Xve6Wj4KPURFrwcfZ8u0e7etux9zjPcsnIdRKyFp6ZGYRUD7hi1dCoCGdKtGN5JJhv7H2aQab2XXgBes/P3l4kAcJfFrnI31vBNgUTcuSww4H6rp/NpDrSfXPjxvlk17Ab7JqPIVwCPr9S+g1vHn98MIPgzeErxssfi6e1aJB3LwHompc+4qu7MEMuqY+Y1jwF0v9HFZS+y2O+ulY34ll52O3+J2WZgUvkWyX/MjpUeqhLE4xM7tLxWtyCi2UJtrIzMVPX9bD0Zf4puOju+asqGIBGYrwpr/h/UN8xL0GDB3WbP/UL3lvV9oRVjTPiWE3uU0xOqXgEudG7JU42ONx5dWQqInDCJ/TZN6KXqyFritiafE3eWheZwjfR5kFlmbzKY69GfaHbE/l9vFKxmLMIi21opjhvtvmk777fVAzlwUF89t1//wa73kumHNxdNT/6L6GbyO9qfI9vPNfkqMPBF62YrsTK9BP/bgyoIPwxKtz+eaLf+GpdXhTyaZfjclsudoM10GmzJ373XLEqFwGA9c6cc4RrqZai0c4G2NKPBNLfJQ2hfyP3+bfQKm4WQ0U/vwJQxlqNAp7V0AXEl/JZs9wMo1NXgLYP8zI/HaCBT/gz79jgSDqqP984/Zvv5LnyiB8/hw3GsSqV5LbomekzfCbQXhVMttJH2qPsWUUkOzJgIU9Nqu/fAVr+WLhD4vHfIbbj0JfVC3Wj9WqmrbDLIJdPya6boR3zobAV0DCuolfR13KpbcBPYzrM1785XU1LPwFzE+b0c/irzFmvjzQ9cuV4df6lMyTkix+iZ8xK4tcNJH8+oBvIgRYOo1xN7zsroQffx4ogKbl40MVDfAliBm5VAqafLRttD//zpiSAE1fJ+21/h4PbPubj3mblRCiWikjRr41zdsErR5ot35grCNDrvrurHqwP0siM2+ThPg3mj6w6Cmy7H8+NJPvoL/6xeK38+ESxi6EsxcwLG6MfKKv4vPPP3hYGanY6te6YDR+ysjid81FkT5APY0fll3sTSIVuvlB1V6QsP6dFD7OpyRD/Hhd6jvjxl7GI4WIZpFEzG9g/Me/t5GJ8VRN34CK7yhGup5difPH38WnL6OBSUBwZh/RGAc8hVtTdsyJbLXq6vYhALl/Nsz9Kuf8N3X1Awa2BubVyiofwT0aEM5Cxoi5XSdj2JACLEkYyN/fM2y28h++L3zrUc1jdzFgt75hEt/XVdXvHkGL/N8qJIE1FPbCLz0E8dZk+2C5QrEVjVgf9HvBjLQ9BWK6ujbwCdRlf8QmGttXrEByDTkzeVgnP92NGvBW+YSH4NUkY4Q51s1tdqEisT7dRAUGaPEfMPoIy8is0jS0sC6+LCAn0vWs+4qqv3N7hn+dxPuX/jDgy8M9uRCpQos/eUFULdZsqRdWU3Ty2mXgTMqCrPrZs/LWMghnP2BLPa+jXMo1BIJ2Ypt3wDj39vwC7qHyiYu0FZ9qPmrwlZ87Rr7TbM/H+U6BW3yHwTSKnDNndvU4owwvfhhf9J6D/LSPSITJL+nvuxWF6yBSlubRFvHffqJ6ZA4lsZj7SKb5Mc3wx8fxEl+y2Gk+JMpNIvuwzPNpzgtRv+CHT3bprsnn+7Ur4IJvPjP5tQn69WbS9LqvfKqX+g9Nhwe/QSGuGrK1tp9qjAOUwsKPic+fn64PjxrAwjdIuEqMfKwqpUWG527Irr2I1aKvWrToUba5jE7w2wyvGQzP2VDFy4OAcyuIEG1ow0zxK3A2OD/rr37F9gmL8i+3ghgF2bonS33B5nr/EtTgmG2ofqyeVSuuXKov/iFzm3gV9E4WffRTGZrs+HSY3bXnvkBEb1LmLP45kz0hBKVxJrIn3jsYm2/VQ32NMPadr43qSmcuiKxfkWPyO3D+KfTwX71su6NV0uvy5fiPr+6P1bOb/uqpS32a+I1yqfhq6SE87FKHhGPc8v7ejxFk+ipizqLnxvXOkpH+gA8JPvU+YUu9T3fSoMDaUk+dsYgeKG9F+Z9fI4fIidDiN2PvYodBPRyaFPhjxGTfBQc+eeKRQrpFLfP65y2YLON9/OO3C55QzuzvlsLf5x0f7bfinuPVIAfiF6tZxXi/W47Ua8e4xVMl+HzxQwGa+Ebo8zvNweiMsoOstO+w5nwrNHRi7SJ8KBhe+CBfO/tDDIL5fLNNc9nYonjqb396dbnSpHX85xez/tLFhKVlW6BeXb0M3T8p5h8fzdn3nDz+P0cKNPF/Hyn4nNvP0mJPrdjPTo6g1obL4l/rB3MNuIcy/KyXzscve9wVLw0u7bxmvmjG1Rh/DU9HoPjM2D0He9gabQO/Rxzjeth19rx3ghZuH1ulX17uAp4KlQvr+FIybFhWR59BiGEoJolts+8DzbJNjvDtmMSMbeegeSbiBc76xSKX8RoFzXB4WfrS+ZSupfSQz7dTo4HAAwdD0Ty7URcGB37vgjNL03p7PgVnB/hzdyW+2qsBx2pjweF6IySeyKarvbffoAcTZXZoeJX83ubxAlJjPsjudqk7vh2nDIZrdcTanQT5aCdZqTnj7U426i3gs+RqGoTXZZDD9JKTuXyd3L/fQzanwyvgSZNhOJPkS5VGeyXTpf154J2+PvNepzfixWp/Af27ocQSSsjpg66OcEmCmiqak3ZzhvoMlM99YuZHpfng5ccI9dXKpb9wtcrH3UqM9D1fGmPsmJbQX39zYNUMMdte1KqiG1A8TWu2J3zefTp78JMtgLhxcpKMu5JT01vF6PWQCAmG5M775flCW55KZq5ogLjuPAX0xH3Ljq7w6Ka8CB8AKlVZ8HBne34cDA/w5B8IOS63FrdRIMPu1RaErFbQDZntP4Al1ZuW8J7RSPZBj5j6Uxm+rI1gumuCi0QnKInVDUX+a85DBGXVbphjpzThsFyjYNN6uf9zq9CMTRRD3/tPFmB+7Rib9zfIx3tHABpA5b8wk/SEFeZdBuUj1mSzr+pgFC/wAOVJIqqu/a7j49D36Ce+NWL3SyP2v+ehfJ4T1u+imczhd/dB8+8b0HK3ZdU3NXgJ3z0WmdlwOxn8lJegG/OW7OU+6cZffu5BITxlu1t85tPw3VtQrV4ac+BWVfMUhyPgV3/GYlxskt5ANEPhquxJ2KRQzc2hvIE6v7Z4rTs44fIt1dDq52zIlXhlPi7xCZXibplJv10yRVbjQTG+SmakStTNm5VR6ulB4cSND7t8GrZzA/yccqyn5I24saRc52VVxHeyAfHW9AGU58fGwie5JJMuXxVYFUqPuaS3nK3MOFvpUWiy6ChlCRuUXYYu7bhm4W09oCaU5xndpLigMuy/3TRf2xG0FW3oWJzNgKuiLyDrzDu2U6Q459s9f0CzEmo6yaGLxDqwZsiwO2AkFF0weqUWIafoRooywrvpDtdYq1PTYs5T9fgs/hQRhE6riPnCWz6eT9pyK8/KsJaMGmrwKMh/8UmuxJKq2Sm6FAitNsSQyDK7+JYZkF7ZlZGjXeR8O+xFqFbaQFm865KhjUQP+HstEvy5vu0x6wMMrBxDZmwa+vd+R9X5XQlzPeYkdHj5IeAXaplr+g3nzrot4e70GTM6mVTca/UH8u5jRba88zsZpjCGYdU1/+JhJJQ+0LI+lPIqy6m+v/qgeIVMLGLWCb97WNA8nP6Y5/x+nJd5FsE5TSUSfspjPmWVYsH3KHuYB2jF6Sk4u/B6hhbLH24c/D6PxwX2+M2p+tZ+VR9kgwDn98xwp/SV3e9PFwPEKtuRffiYu/n0E2M9uwkvLJALq/hLuGD4pa5K/FPL+KdGh1I/Gq3FzNfGTVhrWgDL+tKik1k1nfupgMfVu9EyZq+cFeZJ1L07vjOiHV45b5pXC03TO3R94TIaWWtFYM6Gzw6Kwexe2bcf+HjzTHZv7dfR4WVhtMdfjvfm4cP/rQcEeUBH0MekL+ffAz5UdZlJL3e7rqnXw8cQQuZsnS6fotpX/vYrRZOp8YmVdQwxjBuS/65tN7497bI+p0eJuTM920wyFBd2we5CLGUtoVl+R64eD8eAhUZmBKNzsDzNVSuR6sKB2X3uNw/0MSBk2/2xCbh62BggXeBM1W3lotGrvjf46KPGgi+1Eb8Hc6m3IdlTeIjrZFj//BIy3gAJLnEbjJ8NFv/yK9luWFjNWxkwfOvIYpelxPLTT3UKboX3S2OvjT3Cq3OQbuRH+t6i2B6COBtRkeV7qvXJqZvu1/yoOlnqka0tqPYviOMR3dsnIt798U2adRwcoWOVTetfuELzN3420BQ7hbiv+sWXfO7DH/5sDIejzzdZJOmy3/QZvfg4VVdPq3bjlaT2Nk44Pj8j9DzlG/zU1akbs94OIR6UA3t6Xzf5rq+HVDfL/R1/TN/jU2avGlTE9ZfZ9eChZqrdFNz5cCR4XbyrOT+r0R9fwOvb1+gW/Lr87U/K3dS1B2aahb7y8YFtPpdXN1qnUoEJcEp/C/6Os5GEQNNeZkF3MxDN1aMBE4QpOX9shdOyVCKANloRS3IdWzoIYgHaWrHIIb+L+bAcV0ALPyHbMm+qYb6WM3jgHEjm3h17Fn+jqOvf24uEo+mgdZ+LNaTWTaXc3TvVkOS7DF6eJxFfNOdu8Vxj5Ibeili3w6di1p06cLByi2yDn5mMj/tmBvn+7bFeNb+cpULnwLL/qXbfCR0T6ksKwXwKWACV2XFoVFd5T0VMEVbdhL/ubQu/tF39y5+N6x8skN/EIKb7lJJJxpHy93ks3POqG89S2KOj92iweuS/gHrJzoX1r7PwygDB5i+QDED4cyPhIU/4lFwpRrX79hb8/aLhbd4uyPLUNfHaSbCn7euCIff7HduerHcw6sLbgQWPsfQY1JyLtvGAKEca8ZJVysd7taNwE9WBbYPfK58TspJhWU/aX3cj4ku8IO3S5VhCT8uW36rpL12AXsT3N8d8FndBBE+khYSMBbYnvLvGsMQfI2/naHP9vSn0Q6PtCAlPdj5FVuHpcc1XVJ8lKehv78yFbIOObC/PRiKbnWEguRcTWkpuHSzfr0edkK1pixhL+Dl/e1DufZ2quzML5vArz9pjd2I4OjhexX/lm0KlOFsS/OHNK/xEqJ32KcGfyK7WOXs3wObQZWYtX4Ip22QiMmfLxwNu22Q+v/MCHtHKZqafcr7wmwiKUTsRg/i8mrhcj2BsNwadPB9sLhX+DfwzpnS98Ds+/wIBurM6/ls/5tfhEVVrdmTe1+gTmszeB56u4rCTRDFiv1p24F06F7IPv2LQa9tPi94JrjGatt9uNDUVw/7+/DJryHM+/u3PG0E1Le23n09HCVkw/FKT7Lu9gyS1/s3onGqIClfjVdXG7WjprvoSia2+c5sXRtOqwt1iBPPfN5jMw3iDJE9cKrTb0h4k4rrgVuGe2Xv06sa/9eHP4IqVRhS7PuoaDTw3iKgarp4J1dK4BdZ+ZrpScGDPV12ckc0lkzYroUvG947VyIAOE4zOtc3k+3Ik930FtmljEf2Ll83jemb4ZMs5LyzVQpb8exIiWNye9j5+AHoYKeaoOSRy8XtlwA0nIeGavbr5k9ohtOqF0ZV8TO352T5qGJoVJrg1Tzn/+uED2f2nYGaf8+ovHmCX2eGiZ2pexxYzYK26wPzzY40myIsY3STxw3wfS3y+z62mQbA6MOPycwLxsCUzqrmu/+MP//h4qthbiqIBd2OzUkQwHqcCrxld5fycDx4s+MAuzu+Hpqh4HqEorRdu++tyS1wvHnBoqpR4K6HLxw0NfbhtS4Vt0xXu1nt419AJlzXBt2bi4warIwxXbUu8du2jcT0ryl9+w7NZHu2ptvsRTf14Izu7b5LvH95to6+F523yTcbX2sdoddisiBdtbLTutesIK8tSyG5bfdA4HH4WsjevhG0esoZmHzdHdAlUm5DU2CF61WFGYj5K7CwIlT1m4SjqFssEKu3v5/zffh7Wa4v4fWmjMa5uNVriibhLvhmD6zjr28ICFry7fbc+2bYCG1JVJDSywp5JET3+6QGsWy0aIx+lGjk/FdqfCUKDjCMNuOEmVMQ96mYibBu06CMq7E/XnB2IIsBVlveM/OmTcLnFkTbf/aJ/bt0UYobBeuoOiaN+Gcx1Fns4obwjgSjV1RRGfoYQHB1Cxh/rphUrZphEQyfL+/EBNK2BPZxz4o9Rgbj13MVafhBaKpx2VcD/+Isx7I/sUsUkGRvh1MCN1huyPQSfbuSCNf/xb0bu73der8eiQAiqM54vxzzn5XXlgtzfCyr+whWncFAVCLTdRAzpZNhzt92PaP0Sb2SbyUPAVqu1h5qrHBHf+mwq9qs9BfSPlpO96b0TZi5n8QIHUvKMwhcav1VvQYbkE/ME0+RSZq8XP8BUmUfpLhm/zrX9y58knASaz5uVV6LqIhVUMKyyGq31vkXjJc2I9zXCP34MaJeZIdXNg4tG1jAXmRkAc7SSdnS8GBT4B3/ZPtfCZH6rOx8m/KBYvV2cqpfS3oW9O+2ZtbnOFff8rQLDaCxdKurWHj6AaqiH9sQ8ty+CedVYM4SMrajEtU83Xg7XGmKYN8xS9LKbhUAX4GhijwSi8Al+ryERUeIYH+KJEa3mB6kFZXU9XMjm87IDnhYbDdTacsnmFBzzqRtkDx0FSyYGiYp/+Qo8cA94jXw1mafjyYPT7bVmjo9+nO5G2/nLd/jVjj2adqr6gPzKI7pemWs009yN0ce7rtheOWfJ5Ke8QJ1cH0gQWFve151yROpcbTE8tDqgp3CONZ8+MRXMVWj3YEVUz4OYMKcjckClzz4CsCdl4QMc9fmHxKDopcDcznWRvBY+JZyf7hELDLX2UHb2DVa79YM48e+DOhYjB8jzdyDmqXpW7O65Atznm8U8Zbt0sdySGcbvfCTk6z+DYVPfZ3SZzQvuHStKuoWPaE1z+j/SrmVbVR5IPxADEZGEIQhyJ0FxI84AEbkJAgmQp++F5x92j3p41j57bQiVqu+SVF2Q8Jy0cJWipAPT6crT8y5gjPXt4wpoKb+wpVey9lX7UQBclvVUM8wDI+/PQ4ECDHwaO8+FTf3fTTwelu1IVN1sXcuepgcJudnYEMoCTE2pcnC8vT268QG2Mr8+bYcrFqwKhqStf6PeQTtprv/0ljF/+ivY8B4J4uqekhXDGArPZqTKDZjub/8D8Z58yfqGk8se+749+qalUGy9j9WUlDcBbu+HzR8+3fgP5L0bQPsEfoZFG7+GxKJ5IrvGKcBSuosBt/WhStL61eIwuYQ0fDfU7R/fiqnvy/en32AbjjOYD3NRShe7L3G/90t33uo93PgM4gccaXW5vvMjyasMW85zAZPYRBAcK9PHyjTX1bKj3SrJrZhS9QJwuv6ezx/Bm56qozAsf7f4CrEVL2TjJy47LmsL3VscYJ0/dNr4PGUO5EOI8e1anNM5/ZQ59A5/IeITVIYUWm4Jeh5O9HQOFnd7Xx3+nb/OTw/b9Ac1gZk8eEhOlMNAdzsbQu6cZth/Er5io3RZ4cZHkPj4WGDx/VX57R98KqyzS/CuFGDkfK9Iel3f1SpUUILtvnmj3XebRR/amyWXOipFmx6ybnqY9L4rPT5NKQDTKsU3cMWnJzUpP7rfnSXG8DX2DTaaP1b1Gz4DC+gCGivrEC7YtESw1VfqP+SSjakBJWi/u4KmQ3MKZ2pnBGj1w6Th/sBps3bZ3f7pkXmIkbZuegDY026hPzy/4tz6p5eiuUTyf/yy1Hc12u4bpdv6xGAxvhY6bXrmjx/A8Fp90JGF2/6ySg40LtRwsmsn0P9d9wbc+DXFj05y12onBT8+hc8J3Cyb4hWBjY8i6bie2cLClof1SDNsyWKRzsOhLn/fg6oh1wzTAvwC3HM3RVeaX7Wlrq83MMe3BEF9O0J/rW4tXJAJEOA5w2XBkhIwgvZB1mEqQqoq46ZfoBPFQlKCIbhtjaGNVKOqXm63Jk/LCQbD+MEn7fWsFo63S7Cz9zkZzHNWbfvxC3eOd0FNNmOwrDFupZ/epekhZWzTAyXSWjM+UzlNN73SgW511f/VmyU/iCVkr9Lb9J06ZH17uUJ9zp/oU+OZzVcjaaWLykOqPi9woKsVJXA0FBdfm4kDK/NHBX6XJUOCLp7Zho8k2CqJQY75H3LBeX91wKbfYiwi1xU+a6DIJzXTqV3YQrj0bDVAKxQJDYDdafPz3RbQpNmebnwczGmLA+C8EpNayuqmZONLYA5slQgpxIxPWzMANZrfOHFc1eWFWzqCIOMZVaZP5W698yx4l5MT1rLdwNittXmwvtOVOsUhHRYgayc4OZn/L/5IABwdInc7YrTlXyak7xHg9j5SHUYRW6au82BwrkMcLPm7moHeG9B6ek/svbRztagXMYNxGsnU1rYjbYLs5SDqoILvbq+mwtCU3A/fUIWTjmxapeAGjXKf4LO9/2iLCQ8nSKZVo/5ryN213a5oDXcwo73ibINz4tiB/nS9kV89nxv7U8MNz1DN5qKQHcO/BILJfBK48V12vIkttMbvHSvb807c2kYAW8mCdtanDWd0GTMJB6czNjf9lVyFdwRzKgi//J4uYhNxP72R9KU2uJNuhivc28WTGilDofC5vr4wLKMbEV7fETDFKE7wLIcu9oXqqrH8LLSw6PcmPj9OK/jtb5jlLMauJ8wu1cUXAZcdnrHPFwC0qOyEn16JrcqeGLO/1hUa4aOg3nn3AIyu5wwuLDtgJUv2YJUOcgx/6wPMczb89BNp/DOv1LmwS7hvX0sN0NfUqJIV5TCvr6YGZXW5bl0v+FT4c96S7Lxic+Nbt396NcgPmYP/tvUWpIPiyeEyI+qkqaYJF3EZwfkVBdR4fqJq8dDHk/A9aP7pIfP7cPJAIC2E6mpQpXPbwBjeqH3yd2ulp5sf4v3wJt34MpivuuMBACWH4leJ2GIqZQfhWwypIZQKW97IzgEWrAc24/nkCuc8gdCLXy/CZi1yF3gwt3qoxfhMlAtY00T9woz41x8ecJd90F9hdTlJVAWHKV1hkBOgGeYDI9kdw3nTs+Fg8T3NLt/SpcnCneD6nht63jd+yH+qUQG6IyGybL///flZZK/U//LxFAUj+eUfqnXpmR2iwhf/0+t8U07X+ZAa4K3cMPYhioHw86P+6fHOmU9XwG6dfHGUP3pxsmJgy3CLpF88n+/oW7FYcm6S0nA8NQd5GkjvqyOEZf6gLi8ew9nSnzpManwi3V34Cxcrza5A88eRupuePgX1SYT5Z3iiQ41nMG58TNr8BwRP935YQilcoeb/HbG6+V8Lx6ul/ItHj4ED+Ol1P70Q7U1wdb/PMC7BPlg3/jU21Xo55CXkQPSkJzOz2HrlYw66g/7FZl477o9fSq7eVFRPrP3AbucsgMkYp0RG9XOYNrwM29fTwye1K1hPVbuAm76Kf3xvy88F4L0IUHPZbtlzrjJDRmKFiMF25G/jZ7IP/1J6ulV29c8f2RdIJGQSGWvd/gH/1ct5ydVKkA4WgvInf1MtvTXapgcnsEbrmyz3sRx+8SPvLuYOdRtfWeLe50D2slz8FKpV++EzObfHkuZZtwByiT0HJsbVxFoO/0Ji/V2yn19BtcsYhgeDqSv8ZF+CLUL6lP1VSwYmJ/c3vpuAZTJeGayhGyHWpQ3oSc1/f/GPz8UHpQt/PXbgTUJ7W//VJbwbdvBvmHN83+JhWIbbDTr4k2BnzO7uXBwOCfQOxNj8yYGtr2/UQkndqRRtg2mXNjMU8Ze/7M0Pm+5TO8K/8VbT827ryprpdQH++WmXqz4ceHUKYEbwFbvXd1St69xzx81fQMcAOhWDnz8J2snnSvHmp/zDKz+9Yd5j9uP/Htz4zU+vTJf7EEW/90Owi+CwZn+FCI83/0F49aED/n04IdmHI/rhFcYy5Iiwx0mOjoVyY0R1kgzm6ttGLGwtbXu+K0Qid9j8LDHtt+8PhnapqdZ+13Qc4qsDT+r5QlgO9+kQXIUSRqf8iJ17XQ+slOpOvk+fPzS7ZZWuOR4h/OFdzQfq1hWbFTBB+oQN/vFkP30YjuchRqtIbilz2tsIfvrebfgrwSfhjRi4UllTNInhf3r0qxZ26HD0KVuX5W7B3W59/fy6cPrhrc9QlNR/HoRNTw08eDaJjGTugt31hxdoKMXYffPUZaG79S+DBJHosTPS4Rj+xWJ36Q4/v0Jbe7ct4U3Z/yEDJQ5bxu/cwrusYepYp9xdxq9Ywy3fU5QQCBZhGq7w/3OkYP+/HykA+0Qk/fsN0j7PGA8pfcj0lOySdKnXSw3V15tRPXjdqrUU8RUqD9TTs30pw/WxDjx8Kbsz6i9/mbv+cQ0HsoelYGTxb21ek9WBZWm5RJTay7C8aoPAW7I+qJtts3DlwnLgHkXb7C6guHMgdiK8NzGm4Z0e0t79GwRYfVMDmzO+pBMFjxM8OJZF1ed6Ad/KtXNg+deCtJ/wBlbr7I1Q0IcegVyDjD2LJZPpXkYESnge2i/Vue3IhLpZdH61nO7pFbzR+KKqpn3CordpBuXKCnEok2M6R3+PGmr73seKJRrpwiraHfVccxFI1X3IztP1C2VeVrH12Uch4w6HVko+lYZdS24rEiLPgQpZBHr+Gl64nAIlho+a2yys6l0td1EMttlLGfbJIg+d1OkdTJEeUo/5tkuUTvSgUpUPJAcc0NhHeXPgz1h4qrCoTlkhlYFcnVQLG1pWhctauwJwD0tIdqn5YgyfxQB8VDsh9+PDduvdLczghR8UbH7qfbVORybAKSosdMiTJ1g6PYzBiD2JGnZZuYtHZx4qg3qnj+itD/PnJK7wG6ETtSA+g4lxgQC7JImxIRgFIGmaf2GwSSa+sgIw3tixg7Kcn7AO2xasnEx5wNh1pTa4PcGELsEqP9tTipXo1Q/rPlEKWfbImYx18gzZZS9LIGnIH1lV7wAWqcwSuGpNi/Ju0tIJ2+9R1j4tR5VA2Fdj2u4cSGunwOYzj9w55vQI5Ch+UA3Yz3ROg28EuOGBsHoxhZQ1si9Cs5ZKao7Er0h06RxoSk+K7fFmhqwmhSPXOSjJ98GPYKSBG4BeFjTsxGKj0YQ3MpiPfw0B2bevyLdwT9CYE4NipmsVezTdCMVsZNh6XIdwflZWAK19lWHTvn2quYrOK3xq/hcbsxSHVE1jUfoXH89aSOc9kHkA8v2HqrZtamx39To4ftojYQI20tWxCiLbHXYQeLaXcJFStYCNqOVoyfEznR/C8wquVYuxp22nnKxxUbbG4i9SyeQYTmcF6Ufv+1SpNrfXdOmnMtp9z/4Oibfmpc3zMUFwnYlJt+cJyTItBOZJcUD7/b5wGS+5HiyGI6EKH4CBvk6XBA5Mf9IMs8qdncp1YH1iZ2o5XDrM3Pq6AaG/WNjA3WkgPJIz+G6siSrvE8/GRRROwPgAnXBXSan25/LkQEpTmTTS1a3W4+gEUqXtBYw90w4XujV6+n2veIgkbXr0iQN3GvOxVdxW0PnTqsiKIgxUP2QIsL/ly8M54hE2Guk90BSlBbCCo0y1docYqVw1gwJrRep8RFDNojGu4Kj6ATXZ2lTsSUEMOU0NqH6S3mxJHcmAsqGtSIrFs0vMcycBZ1fekVRy+nCIr6SVvk+qUL26KiHvtw4HoMtZRHKLp0v5GDuQt/lNgl/C6pAdykxSXxWjBnd6hUxL+BFe2nrBsdUXA8vpHcFQe3lo/3nP4bJ/zat8Pr076tpHlC7wygWwawvhl9+GjMtOJfDib0i9yeyreVEmC4qOdMYo4/CwNN+ylJd762LH3mbHC88jB9usk8lQ4SacFT4gcEqCDz4rdeQuplbqMNu1ProeX304t1SoIX3wM/HFTmW/eiGbuloS4abJ1ejtex3eDPVAHubF12Z17DsAXWjRe5h8NMY92Ajv311GvfZcumNzaDogjp952/9yOPvTegLkHpyxViShth7ZnwO9LF4xUswbWMz3BKHplRVVtVIbeH/vibDK7YZqvBlp8wGlPFj8IMXp5fAclr/2eoP0I+2oaxxasP4VpQH8alQoPrypu1rCicg3ZsU0vlJFG28n9oUfdrAI1KzPwPpFm8FXMHbUnPESNropW/B9vUMkTafwv/gOcNzSx5bf5lpUBRmPnz0SZ/lZsZ2zrHCdR5N0Ijlps5veDCiAs4C6X/1QFUrAe4kRjScQuR3nK63MGQtFkjee2eIabwl6JdSwirTcZY1nivCRP0yqjsZ7WCy+0OH4DG2M+G1wzfEe60eeP1Gs9IHOluKg8LBwkEZ2GujBGlxfHnC6nYl9lveM8escyXhvHIiQuBMg13pvQaXJHHIQeN9dQn3NYVWKFs7LT1VNB2uoj/xdvGDXzk6sedXGCC5JHlLtJZvpsmQiBzTVWbDh1d+KjOqX++VndPCvEWBoFQwY1jePnn18qfaPJPYkM2lXjCt+dJfksBO3VXxitLITqBuDdlBQgENY11XuxJlBBEucZwgCV9yO9K0ZCJ75ntqqnbGloJcZ+E1BUOV8gnA9jqcAysFfidWCf4TCbec4cLxoPUaHAIXrmTnib32wtpSSNm7fDySqIWDjpj2H9dm+R/mUkApj9fZMf/Vhg+w+db9EDGnjmRK83yOF7JteYUu77GO4yw2Ilayx07mvg04Wu8MF+4bkaR262wqQY6FCnW947rq78+JvfWmsP15gAckUQVDVzhaPhTY1yi4Gim+41G+jEkyg/1yBZlAOK8baVosuAgtGk8xh/Li8telwbwp4ER8vqoyLNRy+7nZN8XzZY8X/WwABXIcgn35n6h2+t2rhmhuCy9OOERcKXbr83eP4h++oVuWuu9wbzgFQrSIk1gsXzppxLWDf5GfqaOcynfuhKqVzb4gIHsMOrPgtR1I2sgxbo2ZUxPtaLUzXdqbmQ15TVnmjDrbfJx/9A1JmGzSSpO/dJc/gTav5hNRacpTGJrteGsBijUcFPsZXhNiv8bcdKSeZb7iCuh+fr6b0qkM5fH16rAcn2+UnMtwg8bg/ak+TNNDdG7Xw251m6pv3Q7X+FV8DmCi/UUVOWLqkQNTh/fTJCTu4RFvzfO3gDZUikcKLOjAP2BEc02wbWejG4WpkDwleSuGK7crbBil8/0aQvGwdo+yta//qhfU6I+q+zb3L2sDSYZSfVWyZyhjS83TtoKHmh18+Yuywny14/3gyWs/HWltoQXmAHdHBCCZGOJufyIPaSX6R+a96M1br8umHxxE/RTjcP8cLBBy+zmSfCDxbSnlXgEvJb4KvVFTkTk0eFq8loMbhZA2rdzyVIBY0m8hLdBzmorUMiKvAps8D2IdTLh0I5C7mi5yqsR3IvndyOF7UHhvR13GFLV+CBjCZ7A3fcde8PZeycaQrNqYHXy3fybCO18H0sbO8Xu4MY1LCcI3TX71x6Z8oE3ja3U40m+q9u753QgTj49Lh8zMNwHwWYATAJ+rpyU4+YKyeUIBVKVlkrxZPNhr0fAX8fv+kvv3qtGF0+A72nyvD57axqnl3vpTyVi+JOESJO/c2zSFwkUs10/Cq0VKrKzg3twdaD8Kf9uMjUvhqeurei0u1/vIVrCMTn7Rb536O7VWB8ZF1WPEeX22h4KHAXBj+sOYF+rCPcB/BiRMN+vcUs3TEZilBtVP21FbGJZyh9K3h617+UVP6mwGr0laBn4pzEbeyEztMIMrgYTgwAuH97f72A2DXdKV+tRhsber1CufxkRL+E9Chm+TmChdVAdTDTHPn1GKBDE7UoZ5HB3cxxBxCG+9dbMndUZsl+iqhLvoimmd6AGv1jq5gwx9UiyLd3f/wfPyQBuocA60SvoWrwCHPZPzXO/Uw7Yk0Ak7TAjSbeNXG+22fwIti1dh/DJ90ENLBgXvF9bf21pm2ZJqmgDwmNjZd7+Cu2mVQIHvoZ/z393wPq24zDugiFsm6xddyN6Ur5P36jW1ttlNG/4YCOOx6IBw8LIxwr4E7/vLzD09t/z8Ar50UYuTa0J0a5RBLoQt98ncVm2oNtOcVqtojol4QIMDfuaIAPVkWrJv3KRxfLjBAR1Qeay/5k86XRBEk7lCN1Cx2R9DlS6sAS1UVqh+OSTrbqqmD7eeEN9JmmHl4VYCSOsm/+keTxitA4Xgazu3ZAsJlrBG8xXy3DeI4hxStnA43vIl2paiHexELGTxnhzua7Xs5zCx5cmDXxSMOLaowaolqIWuqtWBT/6RbPg5i+NmvR/IXPfpw46ctjEY7oNdfvpDh2YNOgzokb/Vhrcc+guXsJdT5pLNGvpsE5JbIwHhKcUUUAzogimpt46djOHenWwtpfDph98hhtnBREkiaMXHUjz5Ym7gmQyCY/lZ8agnSyO3vrkC25DpWHvq5YuSZ1ECKi+eP3wwjxhcO9pmsUWd57bSNDxFoxzefqn98Wc3+dguoQtduw09sWNW37cBJxIx6G/8jvvKXQ+1TcxidyDtklqiWUsC2wVY+L6Yk8WYJnvLXiVqzLA+DuRNreBHT1z/+Oo+3/AY+w9PGHue/2KoPogKidXxTZRl2Q39LcQAfARao9aQCY7/66M7XP6wW9wnMn4s0QjlrTlt+NgC9WaEIT7voRI1GUoe9hkcPfB/cGxu7qdZYVOoEfjtlRoeP6WgLjocvOLrdCdtC0oL5X/7K7QY7MlrBrPtNDH581biogruKJ3CDF3Km1DpVBejEv3aE3zUqCLwvazpWO1GSnI/zQMDLvymtUqJIx+k+UdsT52G5RxCBztss8hpnYD5y+w7e9xePzAn80/ryBTrQeZGN1RAbw9LtLwnEn1NHlhC3A3NPYv7LvxRfCjiwUFUVuYmdN3aj2mZroSTtjx9Qra8dILBoLGHvOn/kzX1SxrjDroZelqzY6NNzurj1NENTelFqhHYbMt+mFhib1UWcHBF3On7dHBxi744zo3dDmnVdCdPuolDb+DuH66E4IBh2xoB2h9PKVuUgORId+pwc9E8aLsdSrH94C9tH8K0mLrpewTHUOMI5Y1AxzZVmOEcCouqsB6Db8j/gcDBTrMR/wwwuYQduHnGwE4W9S71TFsC0Lt8U385ixQ4hr0udeK+x6+VOyKcWCGD/8GqsR58arBkJVrjLbJcaQuWli+XwEFp9wlFsn9+AgQhI4Kcnade9ki7AHRKwW0n2r74wX2ocecPfRO7jbzr20pRDT/i8/uGdzoyzQEKJ4//47zBVsdfC+/2moGnbjwt/Hmbg6PeOOk79ly6B5JYgR8kDn2+Xh/vl4ocObllj4uYh+e4c1WEJv79GvuohB2TZezWcAxdgX+zegMj0ZED3wEJsLu5D+/FrsOlbZP9MZ0D/ejCDLf4oDl013afOashdEsc0+zuWrLteLzNMhrBEcCfq1VqD6gozdpvwhidS8rprLVjS6Iu+3tiwpUm7GoLhbFE/4IDLfPtjQbuNM+wdvvwwDYoSwf54fm94W04bZ7zx8J3NhFp2Y4XLLx9lyneHLYgbsNw8/wY5t7jguDp83O+c7FoYPmdAT+9zoq3fi2rAusdXtN7Vwe23fCpv+gsSjNxh80/fabOvjHjzPqUT1PgI6hc20NM9F6r++p1iENdeijf9M11G8eHBh3I7UpeldTW/YSYC6/DyyW4SgUvL9X768TX6R2mRTnn9leBZ3O2pOlaTxsr1pcB8lQS84dNqvRlPAz7y1KT2YOXDchnUGv5xnk4dbzwD4eCUsbzpL/S84a2Z9S8JHIY9w8pWz8m4Fhz8uLWHTYGftA3v1pKy/zOxlSCmTUP0dI7Oktn0eXoqAx+CbpSvvqXiZxuV7FdvYewKGeHlneSuF0AcKZ3nE9Xv+pzOxd45gXOvi/TWxIq27MlKYP3UeWrMkhiO2XG5Qn+ZMYLyzIfLtHX9GLwOUzOIsPtvvZh42KFj9K6HRW2XRBaW2aFJfRe1kemqI7uhy1OLM//C5dDSHDZ8sCPjTtQHdrVEHciVE5LDo2gBmVZvhdpsKNTTrE9F3ytAUnP+m6m18fctPjwQaLaBT+xhV798Arj9yGFz+v6lax+LDtRz1f2HH2bjoibgpycZL15lsxVMCKj4K6D+EKGqO3PYk8IePIjUvqyUbwv+C23h8sCqUQ/aTCwxgeta7Ikou/5wZNlthVLIAJI3PXSyI0WRN76GONMd2bLb9UhSFH6gCVzMcD49tQI2c1HQE7/K7lyEZw5i4dhQXVK/YPH+cAfQXKebnkXYivoxBkV7e2PbvPjuAVcveAR6JRL+eK60GUe1AORvf6HuZwwYCz6BBYLHGNF0q2c/PRRu/AA/x6wcloxXT2Dwvhird/8PzNj8irDWP4yeib4NcuuvFnwehwM2stlmi/C6teCn13KPp8uWTHMVMFZ8Ql+luF3ZQjEH/f7iY8fcHdP5HIsZ3C+KT9HwloZxd0tz8H4oGPucutfIBbQOTDOnJMdNfx34VbyBgo/nX74cOhpst2ZDm6fu9zKylYb1Nus+GKhmODVbfC6qAW31C2Kbf9Bt8f3jd2ivFjJb81z6gjRONOxI3hDWKA/F43jaJeRwj6Nwaaw2/+EzqhvpeTjARZHg+gR/xC4njRF+PhbwTiZAlazpw6XnZQQ3/oDNTT//hzfUB2wRBa88XG57Mf/xTcQF4c1l1Hi34KyMEjZJK7vUfgcl/Dy+KRIzRrU52IEVtML+u+nlBuNt1TSgdtEIWUd+AuTHV7d8jY4nXh2W96ckEukNhtFVKoY5fIwdVAbtTvjcuLPDpg9J3J5wVJ8iGq5QWBzgqncDwY0vSM/2TeS+Km5ouY+rxsTUgACuSfRvP2z6ww1sej796Uf75D0YYOPbqGP1VyPS3+X60w+w4RfXdAlWsQOfz/il2/ODxUhCXSaiPGNNP/Gb/pbcwA+Pa1rTAbZ7GzW8xGVJDdh72prvzQyaXlHhDf8wFgYOB+rU1dACqZcyI+o76KGoIu2m3zKaCQngHm2BjeLiD/PfeGqlzW/B2sbfJ59mX7B2+IyW0VAHoez9SHIOWrTF956RfWKVMOsVmQa6K7nzsVhWeav/hDbPIlzlT6hI7oM3f/WootjXHNj4/EKR2cUpM0Yuh3P+51G3X+dqFR3kwR/ec6FRpOsBdAl8BL5AFj1LwHIZ7BbY8+jhm1yiYf3pxfXT4Cmah3WgT24fgR+e+Plry/F4jiH3qAskfPl4YGftU4JfPvjpLWt602bYVh4iJBIpm5K5UaAc3MsfXmVLGXczDNyviRUTr+4y4FMAZENdsXt4MLDIk3aFQxCO2PHtJVxtkn7hxj+QdF3PqXAZRw8W5+ebvEPcVjQd79sgn2xGABpFOJd8I8A1Mz4bvjPC5efXXWbpjbhuG2T185e+XK3QW3esfnpVAE/dupLLoojDUPpKIBt7OSTPz9YYUXo4IxBSdETQRp9w8rmohV1bCuR4+YPa3ByaL0xOx5qeTXthSxXrLZQCLfN5ZV2q5bRNib8TCnzQzr22vnBWwGdKBrzlU23OVM+T4ufw48euNrSBZYCRc+xf/gLLD89s64Ok8PKuaLoNipBmKcOm+HyH82F3EaDk5IiahbZqdOLdGjyP/QER4dZWU7e/xPDV1DVGD6UIScOgB+IPJ2HNmwJtwXZPJN18AorvdjAId/uog00fRMf1WGnjtv8haW63rf682VyEPiedvk2BtY2lDe0+4qG5QxdsRRNNN39MhAKrRWzdvWFYvrmO4KquIhGtvqjWXcvxkv11AOk2vLQWS1DDv4tZk8Pmp1IL5Qm4BiwnnD1bbP0YVwRZgyqy6anpzGsjhHeW5Tja8Pt6KHbeD29QlP6BsDw8xghufhi1zOed/fzUn36Kdg8yVj9+IxutERFZ+QvSTU8a4eZHIf7pzO7v+eDmlxLYltNA1rtC5B9+3Id3FUw/P5p18gm/QvcdTiWRazgJj/O2v5RwT976Sc4X3cJmwKRqbruKwD2/jlg7zo672t6rBk1iXCne+PaUXHtLosdpwj+/Z9r4g/zDj953d3S3/GjBwO1MGmgEhYQLvgqczKeAjS8fVxueNiDbFVccuONzWKwr5kE07TiqbXrkz08DPK/QHz8NGciNGSZbV/jvhm9WnKAreCsV+vmjjGz8Qf660pUIfAq1+btyifR8Vg8iVH/NMKPpyUO6IortweKGxXleJXhR5Stat3gmztY7cdOnybrhU8LvWA6Lzsa/+lqtKPnmUI8Kn16cMwFLjM8W/LC9hfHxg8Bqk/D7/+pSIPwfgw+yFJH9SCxtbgJmwbVRQnrSH0HIKqfnIfogg9rnb8DmHfiu8GupZxonaqLNqqLU8indAeoajaEtCuYcKF2KiJrmhbHZDJ0TqHKLYePRee7UmzyETstXWEF/RbpKhmRAy/+T0Sxzx3S4h98Ryl8/pVE5vrSx4X0Ielzu8VmJpmGqxoexzebliVy8TG1e5ziCuvxq0Kr9vdL5ztcZ7FhAyNMP13Ae+XmWOU5e8flP6cH6PX4lqJQWxcHnbWj0LsgFOIrekyYfdmas7zMP3udXg+Y3uQzL5bgmUH4FJpE83h0m37MKeO0eKbaOf2rFGH45sC3kFIE8rMPVuE0tJMepwb6QBBUtj00Lsfu8Ule79WyNpm2Y/Z7D1DClHCx17xTwAjmIz5Z4cKfz4XSTxzHj0Dt9je66fzUCUFEiULWoduE3XmcR9rdmQIvX6RXZ796FnCvIw1rmmyE7vuwM3rH1IZx2Md1FYK4B1anxyXzy/Yodw23WlapyWFWXnTY+AQ+hHBt7bH6bZ9V5ybWEl0SIqBlY36H/Qo2TEhCa1IWRApaO9S1EjdkjwXRTjWX2TgEJhyPsL+JHW+GotvJ4vT+xXoSFtvZwyWU9DxFZ/zRvWFPlY8H72p6oUb9CMEpdf5MovEfYrfc7bTF29QhjZkaE+/NmxkAqSZLpCT1amP9NSTVhB37PukCt015z2VXECRCr3ECS/sor5rxWR/YFArBTKks6v58yJ5mZplBXqka3GSY9g1CUcqy3+2SYh9jtYNVEBmlgr1SHmpt5KPu7EMF9c3NpIkoe7An1UL9Lh3QZfAvB/vYZsC3LFZs+p7clF+7No+ZkCtrq7JRItk3uS/XaaFjXBMCCT8bpVFsP/PCN1DmTxLV74qh+hYwNqFph9tzGSSi2MTC8shbOvXjF2fXipMt6OVlwRV1PrassupM6DgG8lPuU2s8Yu9v+FCAKTvzGAS4auy39KLmv24od72yC5fVeT/Iteg7YfL83KWEFNbxFr4EAT6rD5b0KM/zuaxUt/nEBa3pbpN3Euw3166vHqOPSWCTv8Y2VInC0ddeMOSgPi0Nk8vmCtdg9PTgd0YUqvGSk85G/XiHWMkT/3ISmU3bTE+D5tKC+wmmu8DYPHfSTnGG/kl/DHOZZBucP21N3RsRd7s/ZkN8xuJD9XjuEzOXPGbxog04OvCtq8wrtq+ReLydsvXg0MBiPN/Ac5wXn0KjAGrRPB77G3Qef+6cLyE5GN/h9mhLVDc1Ol/tfFED5c/GIvB9GMJ0U4SvR2HCw/qm5cHnOSylbl0allnkfK+ad1RHiv5qnzufCDfQNoQW61pOpJepCtQzBPYKf6uMhcHWXatoF1Rfy+eFFJLvCKXti5wolxS+pzd/7ajX4fjulacyIb+op/ff9bo9UQrSwl3CZcp0DV2yWFP3278PIVzDHTY5dRfPBrDWxAWPnY2CzuQXhKisZB+9n1SByNVfuOn6rWHYVKyP7/jkw5h0DAsGcYJQptlHNRi5BuI1wxFu+dhnKi6usSC4jVXC+Vav1xBxcn3uFOtdzzLb9fYKgtkys6NTQaPA5dXKgqiFGddxUC024GM5KnZBBff+Fc1pGMYgv64Oqn/NhmA61VoM+q1uMx0vtLv1n7qDQ4o6iUaLaMt8/Ahg4I8CuF8vu0u2SQsLfoUdT8fpoy59+KSGNdYee7O9zoO6OS8T+8b1Tlc8PYNgl/WbJNB5VD5SBWTx0POxaJNOTdD9rvMChEpiVF+Igf+7T1Wr6GUrjs8c2WajLfH/UwczJJpEPNp/O3XsnwT/7eKbP2/2WsvxQ3OC+nM9YF5A9UIbvDuQjZaWOfi3daR89IQzga6F4Uj6AZddAgLd1YtThgqPWqx5toezLIemYUm2n6OPy9/eweq7Lahr/yhaEq/fC5vlyYnvnPZF/+/vV+Cdt+ZsNArfnR/JQdYyVF1wAGRSYHFz2TGkt3BWJu04DRo0wucvgKwjaN7RiJ0rObFrPFyST4DFtz99XSxTXvAxFMUf+Ymvp3tfICB9tORMhPlrhIbzB9nibOhljK2UueybAgzaJQor1bkrHaDzpUJefDT5D8xEuVbULoG6eITpkzyNgXylO4MEsMuqrUwsou4sc7MnkYTVK03Ssd4II+3N6I7OunFL2cgGBcQFnrD+4N5s7weng9n7Y2Xutu6AiFcC2H1GSQBzOLMg6eOj2D6pwhTKwA7EgzMc8pLiwL+Fsgs6A0e0NqOYimREdIA5cnmuDf/+etvoi94/ujpXJLKr5zo85OGncAWtaKmrb+xnwemhW1IAGV3SrJ7+/h5+XfcomXQpEWRpfPfbUD3FnRZKvAGCgUb3e25UwClkEdc/qCI1UP6Tf1v+CLT7IYZZSsNKx0GXxEdUYgwMOmePSBPDRacVO7rtDh9lRh1cb69S2n8JAlmI3gr0Xp9Twi2M6xpdLB9D5eP3FOxs7wfnCv9yycKpoE2NtSlqpNfsS27G5HXkaSABsvCPUdU06zB9/rGG4twhGrzdhZM/EFnKUpVQ7o5Gx+COcQLlII/Xu5WGgwfUgQoccPhg/+FBjz4R5/+L1LhaNtvb8/Qt3z+hOfWvpwDLlHoRKp/lIctUIrInoEcgpzRkrXFEMDH0vSJ7u4EnAJfMBA2JxkgWseNh3lgebSyJZIKHKjkRgsEIeNMkMOKhVZAeBkq5re4LwLld/6AAWVVuk5Yjgc1wXJOTHY7iWMeNlzmoVRApNrOiv3u2C64fql54H6yEgEYwagVLtNezYWk3YAnt5iqlXPl4p8x9/JyhI2bDViz5cW+oK0pRxNrpNRzjMY0EU6TCfRmqPdcXW6/35BVa3hliPpqaa5JOggCj6xsS+rFW1nr6OBxV4DaitPLRhb6t9BvG1a7C/5ZvpU04xLFRv+B8AAAD//6Rdy9qqPLO8IAYiIAlDznIyQUDUGSAiKC9ySIBc/X5wfcN/tsfL9SqhU11VnXRjg9sdY0Euc/jjmxgnzYfNxie0YaWhAese6JoZWk8bYJS/yOF21Ni6O589BT3sNz7dRi0Wzzffg1/rnlDcDt9mPP5dUvjjt6mDA2PUnZ4DT+NLsT3yKuunY/iGv/xsX+x6IHbyaaH0un6pXXqXZuU6psMzhJAiR9SGuZ2qCOq552LXA6W/rNYdAfoXvX7xBtY/sUVK4XFffGrmxqBl83iD4WC8sdZLSk55ow3AO5w/2OhVzie3YxDB4z49IDG+24NoBTOB4XTOqF0e7jnNTqcWgEz9kIVB4pPle66gqRtHRO2ujJn3lB3pBswzPfX8x1jPCISwC4CJtcBW8rG1PASKi+2TN3gKYAFnpYb18byjiBbHmMwqK+GhBV+k3POPsZYfrofcYoYYrT6MiUsCD4zXzMWW48b5JOTfAF6PygW76HWMGee+ebD7XAusq20/LLQJEXyng0EN7ykbyx3Nb2XjQ+jvgLdbkdWnAtv7wd4tE/25WtURLrSM6Enzd80WXzqI8ktPN5Kdf5+pZivO6apQTVRDf86Erwev99Cl/tcLjO39O2CP0x4bU/sXE5ZFKrQU/0jtwjOb9SFrN+U0Cw9sAGDFotOoBOaEvPBJhrLPyubRQg+AG6lMavtiYLkjcOblhs3HcmzEfD90kPXvGEfmPcyXdOtyxV0GmSzLKR/WkzQEgK+8hOycPPb776JW0D7ffMJWkW8IemkJVGEY4sv8mhj9gD6Ue1A8sbGKycC41ZNkqQgZRUL1zZkmdB1cYG3ggH10tpr4PAOQ6R+K9f1tYHzgqFB1BIEaljI3VD2IK+DsR4OWjW+85e6bgu15MH5vwws3fIXSO5ZI9J0cIPRnk4fWoL6wf8dxM+a9FPz4Ki6Tx+TTixzYcgHPLdWbW9+wi6XY8C+57andR04+H/ytMeswSdRt/GYYwf3LAxbnGoHOMPvkyr34rSuajgPVbYcVXcJMMY9HiPElcptF/xYjTPLqik/zHzQmdugCuO0fMqWHcSCH3pThpQk47L5kqRm4y2OGx9arsTOdCOtv2y1I/1sm2InHnK31+73CDY9pJF3TmNLTXYK8IQfYP307n912Vxn6r8ed/p53jYYqg4bddgh+d92wHpeIwLJOV7RufGlvojGE96Z9obb0LgOZg/cNWmYv4ZOzOKBvZX6FRvCw8YmmaOiq1RmhBB4exht//fFNEF/gFavSNBpzfQ0jecN/tL5kw+BP6NUqu1s8kJHuDg079GsGCYptchjfBtiTqFCBxbQWMfPp+izipQjshD7E1u62j1cT32fgDKTGQVDuweCKhQ6X85EQ2JMgZ+1bzcALMUo988kNIz+5MxDmq0eDGrQDjV2/B7XIPKqz2PDHOV1mRbmZexp2K2sWf31JPz1FFkvP8x6Kcg26syIj5Ta+8mW89G+o8WuF1ngHhkXRBR1u8ULEarXZeOCjEI6X80hVdFFjFrtGDx9q3ZPZU7cja+I1gAstIhyutwmMmnEdoag/Zxyca3uYdsU2SGnRK6rXx90w9sdj+c8v8PhHnVMjlxD8rd8r6N5Ns43O+MUHxUKr+4t2cTPAT4GJgzqoAWu8lwCOX3vBprqTmqlLYQFv5thh78/UfZ5jTgaTIFWpf+C7eFrPuqfIpLXpsb9pPttlL1UhcODJuK0fS301VQLjs6On6Gr4+z9h9uBf+8q3/eINdNBX4T99fA6LeL5s7W6PrVOjigr7fBjrnQ23/bLx47tBm9oncGTd+R///ek/SPkkIryVWM1yz741/HQPn+yVmxmLFX9ewcCZIc248OBv/KoDxLl19DQ0HZgu5rmSP/sK0uAga34vvg8m7B3DosHOJzFdbbiCz/qecHRZ53h7KZwsk7dNtUwzh2W78AhRZ0hIEP7EZh31UwKsvWf8/p6xl0wsw6puOrK0KQN0r6glnLL9SKDx9zRIUlSSsqvzE5GelgcYoxEPsjvn4aOik2GulKWHKX5Y1B11OHz6OdYVNwlWbH2cEkzX71eHwtcVyV+5W/2lGe8moLvzZ4uH58C6/ckB4O0dqbO7RMP4/fM9GX7JkexPJ9NnIa5mWF5iDR+18hnTyvk4cC8vLu5e/A7MZKkR9Lw2x2bin/IlEgYBrIpxxUefPWLGB6oK115eMDLOm5+DkwLujxdK3ZfPs8mBpQM4563S8zvVwf4S6qXiX05n6nLjXzNZwz0DG16QGbMjmJRn4yl0F3/+6b/VaFkH0Ek+kYN8lZvh+G1vMAvk++aPuWyJdyiA1e5zw/akKfnwfTQRDOvk+Nu/zeYvOrA4SRLW1yVnP/8HyjOZiBSPACxn4hbQfRhP7OPv3f/xS8hFdEBwJ6/GzE/uCv+OVxM7xrtlW74OlN2hfZKkilWD/fTKnzyX/8WvpVs8uNhQoHlt9z7lFMbDZ0grJB0ur2H1j/38Lz+Y/Fwb81pY7T89qN1Q6LN8P/RAN6BItWx2YhKAwwrvzftFz+OwGjM8zZJyFu0S6+Z9jtdXeC/kJkdvHEwrytknDgKQeQukqEmSYSlgvV1hKWL6jz+eP7SHhQe/5Ct21rAeTtcVSPfkjTi9NnJqmaUEHk+q/uMnY+X2PSDZC/30EWB/Yz8rOWNXrG1+4qK+HRn0npKg6vMS/+lLeHKS0w+PGqrs7+U/PfLTQz+/D45ZcqOb3gR/Yy3aP71EYNP32/4XBIij/oP2PWD56KkMAmAtNXb6QcjXh7VmUI3gjT63+JidfMzg3Qs78vOPuo2/waHhKMZNNsWzk79v8G94H6lprlw8eRe4yj9+W+Tiu6FSHepwyU8Ygc0vmd5bV8BPVR6xDYYuHv3z7MA07W740fFpvvitxEHjNqFtUNLml3k3BwAhmpCwpH08y9Wxgvdrcqfxc9ht+HKvZFaVK/bbLh6E4pFEv/2JTceQh6nzjRpWn6eIRPpF+WGfPrgfP0azp8b5HpK+g1Ot7pAwaY94fl7iFoorBzZ8efk/vIF64yOKl3rJ5xP6tnBUkYg4EU/GYg33G7jsr28kDVlmrIxMKcCcPGI3fEk/fr4deeqv//B1pnU/QuJkHdUPtuzTr+3eQHpv/+imtwEtxS796QvEHgNh088f6/ethp1P9jVmzBYTLjnG1FnoLV7Cc5EADOADhzv8zsnO6hBImqagqqnW8XKP8AiFLrWoY9pzs7zArYWTEOoIfK52zm/xJ793HKDeZaiNH/+D+bBGiHG7v3hlNo5Ao1w8dNj0FWHoa8MfnzhWqw3m/ZcFcNMv9DRa0TC7b3uGl8IY6JGrUoM57VWAh69uUz/yl4HYahRBZxhrHBFOMNi5gSaAZIVIYZJksOsz70F8k1qkQHXwKZhRAK5SWSFJMoVh4+cEFu+wxurmV3x53euhf0IBVQ8FZuIhpR346RG+twXA9J2vw2w0Z3wC5Ster9xL+Pnd+PRAHmC//EOXm0GNkL/FqxKcZJgcz8nmd9j+6h/rVRGa+E72Zzo165d/9jC/vjBF+8UaZmYOo+wElf/j8znT0jf8py9/+moV744He/Z8k2IxvIa3areWfX87ougePv4U72wEOhYRagUDBEKwjZqdLwMmSrz3mnn/BQiew3GPSxFP/nRvo0LpTEmlaPWLeD6RjwAN+91hv8udfC5Y1kI5KT/YLb5+vsD6MMJgNC16dS5vML+dcFZE/TETuBj9sDpWa4LldlYprt3KX4PZ4WVzrSKay81oLIO0v0GFK7cuRzepYVVXCQq+tDzhlWgY1rOhJ5Aa4pHaCCv+Gto3GfwAHkDhvw3tEXvdhQ5r7qrcv/U3qXds5vsd6v/8CXfZL1tXUD0AlTAPOOltgU3r2fPg7vB+0tifLZ8PsqyGfRE52LaLayz4x3qGs1F98cmPXwb7nuUU/vxNv4zf+WwUXARmARobfpk+g+9HCKf3DmFv9zKN+Xi82/JUQJfsLtF3YKlOKnBSrxESxDTPZ2G9tOAT31KaDNcXG5XaRCC2Z5Vm5rMcVm0PPEDiC/znT8xpdfaA8oyORCnHKF4nZs0g18uMjD4M/PGg+hEML1FKj4qOBmrevh3kTcqhpWqe+VxfbyHgTt0e8XN+8Rf3cGyh8xFMbAa347BeTt8MHgZ4QZLTZf5ePJYFPEhb19mj9xnW5YJmoP0RSiAvzPHyAmGr/OoNzlgOxhJ7OwRvkqeTvS19wOo/zR6+fLHafu+6+a+vWdn8BsKN/hAzA8AC8BMyUc3ixqB/UjzCV2W/8XH1bUDcOg9AMAKRbvW/ZvLLpyPLz1xCYh4E+ZoZCoGzUX8JJ1RuPG76AhIg6D9/zvjnd29+NtqFs2rwP393tI8X6n4rjW14YMOLnIXUeohVPofFdYXSySyw8+J3jLV430FQGz32anrxR3ImNXxddjp1kq1LmGG7EnhV5hvf8Y6wSXZj7199UpQqyxC/Cq0Bfi8+oaVkgLnzShUUf8FCf/WLuXLrDl51W8SeFzFj/BSjDfj9aXMAD34+ldM2N6XmZ+yY+ySfhyAa4VZ/wa7k4XxBoznDUjM4dEiTk7+8jloLNz8CjU+nYvMRVCZMxPlJb9v73PwDB5z8sKCnz5zkwzEyK/irZ+A7zwxWGvdE/lPIRMr2EwIGgOj82++u4Wz4/7BC6B27gP70w8aHBGWrz1K0+W2/51c+VXGkuuXwxmzVWg3i8DBQdas//vwqcEZvhE/RtfH/5SfZihD1i3g//Ku/bPUZ/Izms8F/uocK913X4Ofmhw2K5hXwHsUTNs21jOfz3enhjo0adjucgjm6yCbci7xM9V0X5ascNTr88SdnOiE2m4ch+9XjsPF3/hp0196hkioiw9bNHMDoX3AIq75uqBFECMzFzqh++QKrWY8HeozMGgpX44yEV35mXxJtg0ionlC9LcZh7I05BcjZv371oh+eBmDD861+oTRLuIQq+OGN5bgsnnDHIdjug5Ju9d9f/TCBoasiis6AHzY/9w07JcP//ObVrtIaHs+HJ/3596toKhnohZxRrzwNDQntm/TLN0QsQxQvfnl1fvVZaifvPJ6qsilgcJqqn7+Zk63e9//qUiD+7yMFKKzPVHu+Lv7YgIcMiH4PyT6uaoPmVuLA6FD5NCJlH69H9VwrjayY9KJd+JgtnzpQ3kz6UPtbK/HyinYjMINsQfxnGOPlHcpvgCP5jaRik9z6ci+gPgsXAnHgDUvOrQQiRbPROu+vBjvzJQ9l8VXTe++tjKyaFAJTZy+snS/mMIWvKYK9IxnoUI35MC4XmEHCcxp2DzsBLC6qJQUb7gnJUnqMhe2SmvKa9ARV3lkZ2KG8ruD3efNFhWZsD+EMuOuaUcNQTTZfo96Ba2eWON5pQ77iw1EHIpsuVLOqaliXfafCOHgjnLFvOMy/7xerb4Sda4JzdpmnCFIxTfAJcwvrse16oO0Gn7r5SYv399MBgoNexWR1Pl48J87VhgrXhlj3oACW12RWEH/1nlr4PeYrtEAJyns5U8MnnPGtgObAjjUSklfjzcaVJLNycICOXU1u/fFPHBMIVQOieaEtWKuH1MKnZIX42ChXRtTYC+H2vrFVvq2Y3iYuBHdWHZDoTW//Gd2XBGZ0sWiAA69ZvebRyzj429HgvLXxLcz7G0ypa1BcL+dmwm4gQfIJenxsAtGYe6wjxfbWDvuBeW9YNjKidNmVIE5MMRBKO1vlC1KdX3zkQ7hXiVIWFcNhKn/ZcvBJAHr986R6EcNmTg9P4XC05wCBb9wPzOLCSIky7bF9/9IQYQneoPL9GNWHemrmapY9eDY/Rxyh4wDYsvIcnIpmpdj6dP5SHc8ZiB7HCrt2t8uX+18hQSNTS+qi995gNEveoBEPGoKBtmff3k/ekLHDm3rt7jVMzVlxwDlJShzr+G2sR/a8wb0+1og986lhYJPYChEO9GRaBpv/SvcGb3+woHqSoZweG1WGjwk1GN9jOWYRS0IIqodBdX4JQG/qZQ9p6Xj41iZdvvCh28M9xxGKpz3PVk+pC6XxO56aF+s4rErk97IgMx4jfmfEzKFnE3hXC2P7MR3yyc2YrUwfOSPLw3MG4XjnC2gI26nelIgGnQpNVczgtmC/UR2fqful35mfN6DXY42NddXmCP5xxxcZe2FtyBTxLTwKZkEo3E9gposxK/HoHwkXjNgnRtGU0HUCmwbGtR3mR1bKIGpuFvWPqeqLh6fbwb4rITbfVjXMn7Ec5aV+9tSLHn8+Q+HNg5/4WSLhwg/GejYLIqPZ8rBzE87GnCOphVJrddg7HB2DDeItgxse4Yu8Qz4rzHMLda228FHNXmwqoTHCwQ9T+sg4D4yCuOcAS5Jhu8Vs5Yv96E146J4A222GGQPfKfvtL2qtkdiMf0PhwF07NGg34q+/jtUSQH8vndB3i5fZgOIMrrjUsfF3bfK58h4eGFuBYddlSb7Y4kkF/Y1+kFjs+4adxJMAgr2xw8jUK2NyUS9DmtQyxuUesDHDwANXS1ipr6lpTJ1LEMq79tvgo+UAvz/eYQnpK0C4xHbjk2m81jBw2ErAu/6Cpd03jmI8zBdGvjflG96WsKXBjbqXTopnX/8rIBWTBD9i+W9YLmHFKRZnJWjpP7d4GWfLg9VLXajGG5RNVwRr6OahS1Ve5OOxdrM3lOLAwCdroM3KNHSDtb5T0OUt/jEqTimEsiLY9BTQlfWKVHUg5J4qEvPYYYvfOiN0LsOF6uo3aebLtFS/eMFHXJpsPHTcClpAEQKN2hnEEFAGOK1PsCcspU9ReHMgf2caNXVF85f1qfJw/eg5khcMh8UPhAIejddA9WlyG9EBrxDeXjnGWviC+ej2kvTLZ9gxmsuw77J4hhYwzmiXTySfd3MmwBMfmdQujqdh4aa/GfqxyagGdp98dJ5DBM2dMZGq76A/s+QI4cESdtSY/ricKjzQgdLFI9X0yzDMeJ16mMHiTo9RG8WMTxsVDk4QEzb1H7asw1mFr0ekYC3vbLZWIVfDQ65YNLfrK1hmuyoVaUckRHlHjGf3TDqQf3BBgLL/GOPfeQngCpzX9nxFvjVSJ5CJnoXx0Y/ZHOyTHl5xoeO7eV7Z8tfdbjDR1Q/iw9vis/jz7MDcdm9qaHnO9udpX4DdVzKxfTb6fPlD/hsKIl0IzMITYwLI37De1wRrcLZzGpRTAf8W9/PL70D4u2UtHON1pl6W7vPhfHp5cKq/B+wH0gtMjRQ5kDqqSY1zsB/YM7dqUOL9k24Tkza8kUL4HN4ZVpW3tx2+mN5A0RMTaw+vG1ZiihA+vLtLTX745JNR3U3AaQ+BImi0zSwK7B8e0KCWC0Dz4RhCdS1LfNrrf8bolt0IE1HSqf5ZGFuXfaUD1a0VrEW2la87gUcwbbQbVsVzF6+G4dQwQfCFE2ZD/2tKhwKKiVdgwzvE/i9+AYjhid5wrhnClu8hvN8afKRabswnPrLhE/sUOenTzNfw/FfAQawbrFVRaqxXjuvAb/8In48Jlr8uvEH+UN1ouB93+Tg32AMtmBA5NcMrHyMojf/yyTHAHzYXfEOgdcMiNuaVxUM3WQmMo/Gy3Ypz2LrfaQHY2waiXvcycj78RBI42muANZre/SWx8hT+OVlN/dxcY2a0cgGMTC+p/VZzMB1WP4B9gCipfKHd7gZ8Uvj3p+TYGnZ7Y41xnUK4thMNpJOUr5+d7MAytjWsyenqb/xkhY/MqXB5uVsDw3pcwyBQY3qUhacxEWdqYXkvZqy+uJO/WBJuwR9aztj2PyubqUdmEOBkh3U39Y2lOe8dyN62TiSjuTRMqgL0W280Tu72e/aXQrnLpo0fVRUMi6vdnENzSxzq+7HUjLfBq+E8afGWnxu2Hu98CfD6fFCz/Pv6lPKvmyyGAKCk/HMN/m7UEPy9e4pmqzFzej69HFjjISQyjlaDmbtIgBZiJgqHwozZ23MD8L1/OWp1c2rMh46b4Su8atTY+OR8qXYFKHfJCbvfe2RM3BF28BrgFwKr+tqOSDgd1I8Sj1XMdsZ6bIMOgNPQ4dO5Ys1SkaMti31U05OR1L/1WaEt2xKab8XQrPH3FIIzA1eydLux2dbL+7cfilw4DOOJz0zA5lbChhsfcxZ/rr1c9b2GduFH8/lp60IhDAGgUV/zzXiNeg9U53NGnQtpBgJjG8Fje7Gwm+jjMJ24lw0ej0fwbz/SJ9qnCjq6X7SnwGM/fgVWKzbxlm9jdnMMByw2fuBNL+SLfpyJEjp/DTk4J2cQN/4CHf0TUbt8ac0Kn2UG3hnJydfunvmSSE4F/XuvEoAxiVmIGiJLY7fH6IW+zfi83WcIejPGaXGcmhG0hx6G1qsivbmjYM2dqww/QiShffuIB8ZlBIF8WL/YBCxqVr6tBOWipDdqHorWWOKDYYK28C5YPXQXf4xdB8JsVxcYO9O+WaD7smGUjgvVjuLkz2rQyb/P0xMEl3jVH0SFU2ypVOfV0VjZ33ZLNfMm7Mi6PLCzSk0IYu6E1nKam3nnKjxIyCujFgcawO7VUMMyYAX1F+U+LFUFU/i6c2eKqkfH5iJXZ1gko4cD+8kbYyq7I6T9oP7LR9XcHFQojf0eG7hnbHseG/SWoGLTs8gwt0+fg/1yoNSfsJqLn/ScwTGeZ8LUdmZMssQb1MCpwvfxtRv6NAAJLNDbwFfL15sldLxERilQkeQKkrHlN/0g8LlFbhxdjGVXXdRDPsxffH9VBmCvNnbgET58rKWGAgiaKgItvq/JWXkdfaFBuAbo6H/Ra5qneLLOdwnCgmJ6fPSXgT2KA4QN2m2DHvZGvD6tWwDKMfLQvgCrPyXnoYInlLXYeZ6UZrIfta1s+EIYsPbD4qltCNy/dYc18iL+yC2X2798ufF1sOxs2YSdsN4JicXmh58Izt7pQL1vSvLlqo+JnMVhSB/Hc54val0icBTsgjAgCPH00wvXrgtwsvFzdtu6nAn+8421VLSN+cFejuI9Htw/frK+VThDQV54rG77dww/mQS334fiv2sTE3JeVXBzThZO77MK+PM7TKE9PztSkLWL1/YzpXBx44pazJBiFgW7EOJgfWCrv7v59JqCGr5SCZFdJjX5eI1qD+oeFLHLRj6ny6dH0HwWPOFFsWDr9AxmMM7nltrPqI5bPPARNFNVx/HS8P6YfUsbbPwdCd0UxdTyBxOmjXFDs7oazfr6phJw9L8IrcI2WOLvlr1B/8kOGENVZ6I/1rYSigeGHXh7D/NdzAhEB5KR1kJ2vhqCFIIbmiPsH0wzZ+v104Ld6Xn/p2/WaXzWB2hED+xufKaL5q4G46n/ou00PSPhmRZyO+xE6u/ymZF0JaW8H6SBugTEzRTJVg+LmbsS7nL/NMuJe5nKfN+FVL9DzJaTIgbAbrgVde/h4s8wGAWQiPSNEu0m+cTa+zwAj9sO++vyAusxeI0wJ/xI3tNfbYwb/xe3f0e7mFcN8cf3Nn1F1Y+dDas29P2/fBhv+LvK5PIGP75QPFccj2Sn3pTz9evR46sd8gkooQAfwjelTkWf+cxPEQJ/S2Jg31pE4yt7Qw/37vFMjYep+XP1/kIgLBcdKeI9HphD7zb4jo8bDmLFj5eoqkeoa5VF3dBOwaZfM1jatwnjXZDFq+euRFF4RaUO+GsaKhwHHu5tDWH/6hTDbMDdCtUP87bfs8sZ794iuPETasbNB4z3UCEgYviP8HnBG6MQ6TwscvtAhD79DB1LMCcfKXehyOp8xn7xt+kLrAuZagiC99cCyh8Z4d2waWhgeTW4IN2h2nCvGpodfBnyo2hSp02cnHXV3oN8c+KpTU0OzId81ME/fXCtypxAixWw33shtbZ8RL9PuYV4vKYb/jwAFY4NDw2GOiSlz3dMb0mc/PwCdJgfl1jY4g0qL1nBblR5TLjdHAg6M7OR+KlfPgnq3JZkhbepf+u5nKEwdJQMngE2/pKcrc7tIIOfnscq/5evGRXLbfapQPho/fh04w/Kfn8tscou6zC+0imF2b3fUVMPqpw5FzOCZPjc6aZnAftQPoVn8+9Ida18DmuXtg7oa/tEfng4VfIzlAe5bbGThx9/hOuVA51sWXjKtlvt2/sDP71hg8n3WXRfUsiO3yu+bnxstXktgrf87GDVat55lyPpDef0cKLB5Tn5k5ra2yz28rl9/26Y52bRFWz4J+qctJO/JINdggqdUmxseEu3/KykNvOxJ8VPsJTprf3lf1QXcTGs9/mVwOfHOFFbN87xvH9e3jAOWoQRuug52dbv5/dhtxHneDUEdIP3P9XAPgwW0HUG38JrVNlYBwfZX6KqH398dfu+HVg4cu9/fhxid2fYBoE9ELyCESPpmuBY9BJtVOLng6Gt9yxYXxjAQ0nfAtbTRWZ0+sYzFPi7RbOxBIz2ZwXKSj4LaPkYKVvvXpDKCrhSAsRab9hTq9+y+7qF9PomEhii+yGFHyGUqD/0V2NunFBX7Ou5pMXmL7GE+0rwXGqHjb+4zR4oNx7++eWHwK4om4VLAh44w5JTR+HCXNiv2AGb3iIfj/k/PcRB73iRqJt7B0CqUKjh5s8h+EoWf1qkYYWANfaGt+awDMvSwvgz36gZrZYvvmdBUrrrecBG2wC/DwCnA33mLxT9fQSfqNI+Az/9spZTOGx4acPNv6QZxJeh2viH3LGXRAOyOvnSYuQBl/iELOfLu2EKz3Rg+ZP2D59YdZJXGAmFQ5pzsG8mXebeB8OGOc0FIufz33lBSlOOItZe4BsvFzNcf3wHHwvzy2j51R14aXYLmnmRz+nmB8Kz7yRUrW6vnP781y2+iPIu9JyiMPSUi2jw+GgvJJ+dAZRwnE419i/1DDZ+k8GsmHSqeegAJuPAq798RXYv/8Pmcrekcoi9mQa18s5Z8n7YcjsoInavZ38QMioWch18TlirR8/42/g0fMR7SDXk4UGGFivhYwoanG/+197q4T+/AjtLosX7fXHm/+G3d911w8wf+huU38/nP/xfG36s/+nvjH3nZt4P0wr2uCuxZyJqTIUiefBm+frPPwH74JMKIGv9PeFF2cyp+0oKiITngTT3w+gTn04CjIFU0meVffxVlqf5p2+wF0ilMV0LHAHHOnBol8KpYfl5TGXOMQzqPV5eLCzYV+FFSW74aX06gzytEMEDLjHd/KZ47rvJgd5B/tKgDIxmip+dB1PYddTytsFSnQHfULlkR2rcD6OxoPTaQbgd8bLAjBjb3ZsePkw9Q7NvfcAiL2oPdl/ZxDpw7vkSl1wEfvncu6I/wKzVMYF9HD+0HKORLfXzsEKudF2kYLcFNG2iGn5G3sKlfR8bVq9NAtFXMbBR9iP76XEgavadGhvfXVR6iwA/7k2izGc7n+tLv4JwyBTU2cRryBiLHmQMvKm27f95WqUAePP5Ti0BTTnDuVBCzQch2bGrEI/74bMC8fGHSPaUtpIXlAgwUqYQGKxpMwUL1cFhGAsa3P7kgTafWwsFXV0J22lDPCeXs6c8F/Iikk28Yb29t8GTSxVt+8EF8w+fPe99p49WJ/6ydTyUI3uXYYuJarPH9CvBn59jbvxk829aUO7SE5kjjveFs6jJykUOL9T4SwBbBf9ebldIAmyeuAJsfqYD6cuYqWueo01vODNsbqmDxMRJjMlvHQKHhLrYWqPrMO/mSJDbwrnQyINbf7X7kigp7DtUR4Y2sGNq8zAcbspW/+jz6eC3AdDI2NNywz8h/p4icFucFrWcVBkstwoPwjSpsDW9BLBUyduBR6be6XUw62FOQBCBP21/wXr9tXPxEX5ncDKXFFue7rHPLIcIVn959U+/MuvKoh+/xvbri33WHTMEOd+yf34nWOsicMBmYqBP4Z1jflZiDgTkIOGT/O6aeXZHBLb1Qevdp/7XfvQ2kPlAoDFPvgalWfGGM1x7/OPPy2E1EDwjdMU6nOqBnTMmgcLkGDbzYhs8qF2DjUtfaWIlJzCH3H6rfzU1Rf3sG6PGjQjKmtAQGb2WfLHKsQNzCk4oD8xDM+aFn4BtfalfBztGLe4WgoYUiF4PIctpuFdHKB1SF+3vzBzW09YVg+P1PyRSDfjLKxIJNMI7QvCe12w1wjhSnCCo8W+9+MN+GzR37XwcKKuWz+dtEGdr65ie3kUdLz99tXxVEZsbX9v8oxJu+hmfJI8fVv7DcUCJ3BZr5cznG76EPz5FHVmoGUtda4Tc9QOpZ39AszSllcDyq30x/hyeBlmwocLt/1O3sXEz5/s2gvH9aG58zYyH5BbIcEgmd9NnKKbu8VD//HFqXUTC5gjOBAbOslJPE/VYfBQH7l/+y7jvtxnbp8HB3az7hNVt3TDhZa8gfvZntEzzKeY/YzrCjY9i81pxMSmmNVV+/ttjPrfxe/P35JPcs82/bdnmjwTghG4tdg/ewOaHyjjo1OkXn7Brg3FqK/1XnyPTpXDz9Tn4CSjH0MPWbQfj8VKJJQSKl2L0HP8Y27G5UPLPqcD6aKb5dHonIXT9esXe5mcsv/obH98ijO3UAT/+dmisyKL/9nt2MCS4+gOj5pG8wD8/s8Tik8C95YG2Olc3KIWeSoPr4eWTn3/0q1fUAGrDMjYQwi2f4AByd2Mtx5MEL6LGE0lTXNa5D06Aj6v92P6+xtbIyDx4TD8Eu/IsNkyyvxHsjqWLlvEo+7ThQA35trjgbZF89sp0qDz17Ex/eCb+9LK6FiWOOwsyljZZDR6PZ4B1PF2H+XIsKmg5twu+TjmNWV/OutJG26Dr95kOW720AD//HJGxAsye8x6eM3qiwd7yGO1LSYfzYfzDWzzk8+YXKZs/j5O2EvP5Mh0q+OOzbr97ACZFSwl+fNj90z85eVo3BOn1rfzyl/+1LI2An59s6PjtM8naZeBXb/mHv08nh4fffvbceW5WVLUdrKMpoSjmYUy6a6grwp+MKUKXOt7wzfv5D0jpGQL7w2oEkF5bBbtPIA8LfZ04+NMbv3oIcxxog00/02Mfv9hW/3rDUA94ipRvFK8pu6XgfA5zWtb8Jf5DRmqCRkc6NclNZ+Nam+3/q0uB9L+PFFQcPVFj1TKDnZKbCV9lyyMu9BmbrrUYwDHoc8Kk7xlMz9NEoCRYVxpfkwObP8csgKczNGiwP6v5zHlFAcpvTshytVCzvA/PEPiPk4g1TXNj+iLXClxk4lHvEvA5G6cmgwiTA9mrX6NZGf+4AXHOJhocLzHY/j6Cze74xNaSuT65FvsVUsuU8TFwtVxIs6oCML2E+FRYNF/er1elBMHOIhLVUDzz6yGAfD0+kah8tlnAg4SA8jr3BDLlnY/kL8zgSVxstIqsadZlRwPYPlUBpxyawazRoYLdO01Rrd6qfEr9rQvAo71iIxYstvqfJgXMQhmSwh2Nh1GKewj28gV7jesBehdcDh7m4kHPykFpaOBpGfx9fo3Kgc2erAXKn1a6yCbRI18+QlUof9f8QyQhOfrTOz2E4CXcMAGwfhlzDvlS2oePFAmPOmbLKrlvKDlphe1PNTX0cR0l+M38Oz5WyAXCrNw52YDegtUAmIy9dQhhGzx9MvW6Bdh5v0KYZLWGeFkb2FKPIIXW0vZUP6zVsCyn2oOx1ZjUZSLM1yscOUgC4mPrdVGHFfI6D/lP1lDL4OqYTaesh8qQntDyNxr+KCYbJXAKFZuBcc/n6ZlyIHkgizqc8gIzvJAIHpjzwomkdmzN8rUH3dJHVG13vTHPbiGB6LqeyN6zk3w5X8sMmvb6pe56+8SzmXMjJJ5+JPxfnsWzk4EWfvlOwlc76IflcDo4QCJuQ/G9h8OY5sz5L57ejB9mzksKMPVeRbW7OTTz/VNFQMiEHLt6vmfsqO55aI6fEZ+6sdlmjw81rNw/EVsGp8dMMj827GDkkv671A2j9GnDP/EcUKt5Sk2fWN83zNPrjYjW6zt0KB8dUMythc1rurDl0Jx7eNaXkHBzQMGaZl0Nw5P5welSaD4v8UYKj9+xJcDuMkAIM0KFfYYLYbmSDPPJnhB8adEBb/ETz8s3MKEUwRt2tvhn9+FMoBeACxL2H8Ffd6WzgpLYLtWuFmnmfdQV8CotDT5C2Qb8tdWEnW06F1qog2AsOyBykF67D04e3HcYi6Ih2zuXyE5fX/7kjSiBwBlXimS3zZfk5dcwGawLYmEP/Zm7BAS6Y5nhYNtvTDHUm/IC6xVj8FJzAbrNDWJcHCl6PL75LLPXCqxvL6CddBGa73hoI1h+7wQbt27P5rQdMtjsrCd23zliv/0qv9Kqw0/9WPnLRfBKmKGjjo+6ODTjdHwFirMLRfoseDVf/44gBEpqlkTYyP1S6UoB9Xv0xroVCPn0bBCCS52caBqCZ8zq1AkgL3KIyL7MNdN0f1TQOtQPNPUCYMx2QwGar8hBi/9V2Zw/TiF8li8TkYRHw7Ijcgk/ybBQ85td46WTCg8kl32LnW1/s0L/cDC6mC5OApLFzKv8Aogx9tABXb/xSL9TB8rXtcbBBXxiooYclI/iR0DCFh9fz61SaEfah/qwfvlTi8oQ/o1DglaN6LkISM/Bm39FSJZfgTEnixLAvf628dXZKcM6sregzH+7I7ECa4mZtk84aGrZC7GT6BoLbUYElfiWUe1Pq/35fNwlkFq2TNZ3fY7X+W8poN1ugwN2/SWfbpfQgWLY2NQjn1tDMA0L8E2W8z88+8UONI5GTk+RIzWL/sI2aI+WQfEycYDub3cJemLGU/1uN8OcKaV+OHLcBXtm0QMi9rsIhI/hQARcdP56RNIo34fXFaO8HHOWjNwN3C47m6xDQI15XGsEHyQBWN+7Fpg92Q0AXR2T3oTkz2dmUveQYeFMQKHt8rWw5lZpW9iT/etSDeQaWRWUY90hfyTZ58xKRfmHb+QgP3mf0uBgQqtI5e15bsOKz1wNijirqfUtcL46h9BTvrasYcRepJnlbqnAzfl61Ky647DcA8WDr4Z/Y8dJ+WZ+ls8MxtbLpMkz8ZtRe7NI2fIlNrm+bVYkq0SOsvKMzdNB85fx0IYysS4jOoC94C+4//awoVhCh9y9G+s7r2wloqOKny1cDTqPVagscqjiLBciv7G5qoK3jzCRP1PoGvYN1Fpp7lGB7XVt/JVngAdrp4tIgfYQz5cl74F8273RTk7vDfnC103x9HOJdpmn5/zp/ChAgiWXln59Y5+rekdwGTkT7SplHzORtib0xBtP/QniYfy9n3dwzwnXIcEYVcynYBcXHkarMA1TNRUS4O6WiU/f6xt0ZHU6YLdEpcZ5XwOyi8NK2fI1dW+JaojJrrKhP1YezaL7K1+qKZGgXvYjdnP37k8T4VQYKk1FdsvEMTbdPFmWrL7AfvH6GHPr0lL+rU/JKUXcazcpg8x3BXzi2TpQwUIdzA02EX40L/mqNVUP7cJ2qJ9LvT999VqCDv9VMQJPJ2aT3mdQ0KUOn6bqAMYL9GVw1lm4NRLe+MkjHOHdyW44+F4CMFZ59YbZXG8lSXvI5xvDqQzCviXzd1X8cXy4IxAe9RMNudQbdbM4LZSsrsDn4u41M/+4jTBnFSBwD7VYaOyvA6/EH6g9PL1c4IY//l/+h+7uDBZyCAjEzrGjqJVlfwwWgsCT9TkS3vtxmB4Ih/Crn1pqR7bt/4v/8Sz5NCjfqsFHWFqBbW4lVDd1wJQLTIXDuPJY/0hxvvoW9OBDiCg2vLr3//E9pTBkqk38xV8T69Uq6svp8I/v/f4daMGVEbi7rwYjomzCP5s///hd3BufJIEsK118OhRTPK5dX4Et/yPF2+9Yd7H5QDF3/hVbtSsMq23Wuiyzp0GDdVWad1IUBHLG/rLx1Soe/0qSgVkJBBoNAfXZfsYdqL8Noh6mRizgs1DB6nCxEIgxzUfZ1RP47TUVDa8LMNh00yXwfgcC1hu0j+dvt7fB7/kQv++b+SwfZniRRw+t6k3Nefr9dKBd2nqL71NDKX2a8DaXH+qml8ZY8/jawVcuzThTfM9gy/2hwp7fZVi7zrSZq3BO4USrDpuS6vz4Xwvsaz6hV1U/m1Up+xTmsa3S3+fXI7Q5UMxvi6bNa246/4hWIOV/Etb3CgDkSLUCyjflTa3rzQUilJYejnvNo+b5uvdnn4YcPD/uRxrg+DTMT3BI4Iu/S9S997U/ObttMFpwYeSw3j75ElR8rWQT96XBvgDN4grcG5APjrHpvXWfjlLeQ/DCMnapYedMqKtW4TaLYDGfSr6alv+GJmkNwr2tlzGV/q2EygE/EO/Lb39Oz54E/5LphZ3+xgaqekp9eL22IyuZ48XMKpdEES8A4aB8VwbLLgtS9kovIQBrzeetRvLgaX/UycqXJuvz+NrD0Yoh6f7IZZj+biMEp0f8R9Xstm+oVR4SeK47EXtP3gfzeeuKc3lUf1hzEt3Yp9WLkxv+2RG23zEw896f/g//HZKe4rn9c29g4ElHoM+RhukXM5Cyg7vHelZ8BubuBwj54bKjmpo68X7RFxn2f6ZHT5uBOlTpa4XG98+m2v44sekhnEtFBzym3l465yzvZ+8fHotGHTQ0qqLil5/p0dt/8o2fCzBUXhX2YkmK1xRLEWxMdcKWt1zymfeoDtl1tqh+X97D8j5cQ3AhFsCYNXYj7Ep1Vp4HtcGXyCT+ukQ3CGmWfrEraqrBUPpJgXN9PtBOOL2H6Vo5N3hAhkfuG3+ZNz4JC78k5CCOmkHEXgxBFdc6tmpebKYzLyXgkbOQasuKgKAeNOeQW7OJ9f6FjNWYzTe8S2JM/W/MA6J8szcMsljDTp0dGJvv3BsyvU6xeb8Q9h10NwU/vNnwM15fR50oyh5aRMgbAaxW5tXgzfETNqwDjae0+kJ4ddIOaxd7YfPKGSpo6EnCzi1yfJbf7M0iyxA+CspsfAtf1mEWJyt90FQbRCvRbFiGM6KJZ8J4jtZ0/Rcf//RFDKcSPrWTu72fsZnLQncUTIFOJtS/m9X/DAk8xKGMjzMX5+T73Y3gRMUI65Z4zef4eJlhoyVf/FThPeeTP5ODHf3KSEG92czvYiUK/bz2tMzYsMX/IYEdB09Y21Er36fVl4Ov8s1T52GXxiJLYQvRSd/jo7N7DMPuY/Jg2z/UUl4im5sjmIG+LCP+6YPlfE0zsO/uLr6W8sTGH386W8/kF7/Nv/eBg9XY+JoxLOw689B34RO7HxszUrRaAqUUz0RYV8MQtX3BwWyuLlSv3tdhcYPnNhiwbLC+4eNSb50mbsiIEPtg7z9+WYRjia9v8T10sEormA6uhVErZz5NLk4vb/qZ/M1cHC88vvBgDS2TxsPBMYgPDB7mTulQ6zZ+ADsloQkvHgcJiOU5Ju3Kh/AbiA/qiL1rsFgv4T/9YK7G6s9yd6hhUKM9WtYHBbObZSok2SdHnD67/sQdagL5bB7QXv02zRq1uQQuTiQRQZL3xrpTCQ/lfOjIvnbTYULeWoJUITPitWgcWL7vMvh82TMOap33Z2wbnaJBS6O+5TZg5juHg5NMeWp77JQvS+N1YOPzBOrazZix7ff/R9qX7DwIY2vu6ylKtUWlACHY3B1hClNsAgkBqdWChCRACGGwAUv33Vvkr+5Fq3e9/ocMPnzTsY9h5AKfYltm+vC0VAvO0/FOpOnS5dTrQhca6fmM//w59WcLqLkkIeaWrrf+vw78+NUai0POhEpzoRG3AUWuvgdz5Ps1PJyLLVYR/ID5XXELHE6yh5ajG3jCJk05sAHK6Q/vO6lVb3DH3Bd29hMPuuVMfCgRr6KmSAwwiruIgGDgfGy+i0s14iMm4FfPbfV+Vuz4nRo4T/iO2jjyvOlTNAnUbycX7T7mUA3DZ8fBAqHy9/r65NEEyvh98qh+cV+AzfUxALe2PdHH6vfHekgnYB5Mj2pbVvXznIQZSJj9xdgCokfbeFpgcCV3In9PN9DdbZOHzscIUamleiSGAcug9vF4/NMPTL28F1lg+p5IX+3UT/Wn48BV455EegZ7sFg4DCDLbg6yTuvUm+19Xn55CQnPd5vRkyBzUAz8Ginu3gHT7htZSsysHfZ32SVf1OZaQEginXBmBb3xIro3EJXkQ709bzCyVR8i8K5bit68pHjtmq/I3cONCVnXa1JUcwI7dcT4aKsWmDU2TfC9cTD+rnhMBueYALG1rzjJPxbr25Q2sKc3Ccf8rOqTQdoMeocgp46wXiR2PVwCoO1cj9pSZOj9iregHZIS0V2f9JNDl1JZ+Y0eOnGf08/Wef7yBrw3Hko07DNPg5+boWL96LfeOB87G5zkpiOABX203JStAUHbpBS98kpnjnoOIJHvGsbbvdyPMLtYML6AmCxKwFfTNzrX0FF0gp3XPIHZFOoCrv4VAXy69Cx5eerv+SJ9JeqA3zzyRP7wbxub3k2MGN77Isztm43x6kc64evVML23B+oCf9R7/ZFJQIvrJ3aAEOuL2HYauEiUrf5X+w//RXKXYefiwnyU9O4GYi8q0N0VHmseGvo/viCSxJne8MzbBvz8nLc/b/TR25vxLw+juS582DymlyeItK2KshNRo63e6TbcXnYIa/128kZn3TK/uR06IpqPuZ8Velah5TOBCKf06M3L+yHLhy9pCFdPmjdZzTEDnPVaL6Yo3Wpy8WuBX6c28b3WHZ094+8CxD6l9Gj3BzDFTZUoqAzf2Dar1+/5q8F4rQVsQjEGQ/NxMhBiMUVh0ihsFNK6BEetnyjaZwd9ya3QhoJ3bIhQ9GU1MTudwJemNpmOjcm2t63QQkrrBAmL6eqDi78LuLTuA+NNJ+TkkLac3Pl1T6/atu/XvKODwQB96kEtjwbochqcsywl8zkP2MfnW3EHkCWTDb/VeiJd4gUahvVe8zuvn5ws1IBFL0+sBx3UF54bLLDiEdqKyuSNNdryu2exXbccTgBMalY3gJnrxUCjvK1oOQoc+AzfM9VmvmGs1OPyt75UDYIKLHbT3OBStpTqzH8CAV26AbwraOA4xrk3ne5X8T96jb/5ANy0kQPJmx9x4ZUSmA+CJkG85UVsX7+jviyL7ULdoY/VXzX6hzPvLRhxvyeSttP7eXlfZbi7cBz13twFsHh7tMDRVfE6Rcuv5li6DnBdD+xnNM/Fcu5sUAQLQlKifD0yKScOrPhD7S6JVn9QxiCMzIXGpUf6afvwM3DW1lOja745XaAnyVhBHCmlzw70h6+tguCipdT9LGYl6Cp3ht4hzNeLgepoYQWUQYquPFWjt9aP0OBryMWpSgv7KHssFfdQjlqLos6ZrH52vjsDVjtXp7azv1TTh7dkcDycPYzbAOlUlBzjz1+LtN3ki2gvIvzpZVv4Nt5yeScLAG2d/vimnwQB3eQ136Bn+21Gszw+Y3gppytWYUL6ecGbTBYnwyOiV6BI3CdTBtf1R5v1+ViWRbXBT79LziBWSxWRFhhpfEZTjNXqx39goVyHqjXPHJW6X35+ju53U1vNutc08KZIKnXqnDCqPWAhi+xaIdkxzTVPbgNgOgxjfZTe3nCa9k9oNtxCgGer/QQKJwRiOWF8kOBR7ztJQdD78hbFj+8umo+9h376iHqe/ez/8FLKZI+U/gN7POUvEpRF50Ai9c16tqB6Utb8GPXf6Mz4n35wz4JDvV5Z+vHevxAwIXoh+BwWT/z575Uv0HxQG30OX6MF7xU18PE2TfmCD1YAG4hSivkrZIu1mwe4/j117y7xBh/b/i+/IxXzVUCke+BDbWd79C4vNJ+NixLAnSC+sZY0dzYowuUGZM86o3nV+xOvvG5QETiTOuJLjmbtu06BNlGJvcor2evUqRZEg3TDfvD5rnr6XYBU9DA9GKLdC2z71JRUpwqZbKX31vyDgPX7oei5TplJ2OH856eCE5XBOPqBCvxBHLDeo4M3XEEX//o7VG/eQ77MUMpg+P7e//hu+9PTQXuasSZ9UkbOuWYBpW0d0h7GXU86Tmzhw/qcfv6pWqKpq8H+9K5IteqrBdOggH1nTNgMiO9NB5PvgMGvfixM99GaB0nw138wnu2nGpp57qDocjzdP/Q2WnDdItj6JaCWf/jmcyudXfjBj5nI8mvwWOjOnDxkVU/xsLMZe/i5BfptMtDHmp9TQEooE8Wz0PwWQc6UpJV/9Yqzdf1mjXtp0HsghP2bvo3mekiXP/w1eenubY8P+wxXfsHokFZgvqNDAFKCc7r236LVH8cw64M39U9h1w+JOVvK56sE2LmzrTe63KTCxXYCatepCNpdJNfQuKkJdT7TsRK/oQPhLbYa8su7F3b2W+DUCcKnIvnkdCiZC7yTFFFdUcaKDbrHwWciu9hx9LEfta+65g3wuz4farXypwsmuVzIxnzz+gJ5l4e3ZOroUShYteTgJSoGXz3pwfLdinFSYMhr/4MevuquGn/4tN8lCsaZW0Zs9Ud/efqG91/V7A5WDO+6cKfpaf+JRvndSDCcossPb/Wx2i9nZUOsPTavyZdN+8xT//zLBZQye6e+YIORnxJqjcUn/9ULFMX9B/udOgLWGtj60ydr3lhN/BM/4U2Ax79+2UAWtQNb+x1iZBENiOVt3yoW/wn+8tF5eEmlHL8XBYFVbyybHoWSw29K+vs5GVjNy/u9ihGkZ6f/ttLNBlUlnakqmBfwy7PgfFFP2BCHAfzy6j89dvWeTTQXTwkCx68ZYl1leczTDhxUXlFH2PYisN5iU6hsj0qGXd0mbB6GdoHlLhOwL8B9LnDYC+Hpnh8Q33zqfNFyswVFn5l0b59Lb05GU1aCbW3g8LJOH5gYH0PTv0e4KK1aH7KP8ISzaXfYOO+ZviC4KeHZrjqsMbcF7adoMnhREkR/zxslxqYDaz+UapEzgOVmSg24sGuPpjayvJmQ20356eMraFxGZcSmX39vxQ8YjanmS7BzpA82MpWCeazNBV4zOaKr/ovGT3XxYXzZxXTNc/PupmwtuDndGfWtbmHT6Z2GYJxMhbr1vWHTXOT8Xz/CSTYvfVH1XfHzU2RzFpv+s6GCBQd8fhBJ3Ngef/74EGpiccBHfDF7fmIwXm8is6mfURANR+uNfv1qMpntoDOfb3mg5VyLlsgZGHM3cgf1Bmh0Pzpnb+3Hh2DNw6h2y7VefN+V+P9rSsHu/72lIEkfDfW43MqJVT95eGBXQKC/UfL67EkJLLFGyNZPBTad4sKC3OF0pYFVyPocF0GrLMZxpKbHCzqNbziReU8YSfLBVTR/uSuEW2vgEZ+8QUTS2wvCS+6GWKVEj9rG1xt4cjc1Ya+dHYmel0E4x4lD7zU5epOJpDNU52jGPmxOOhn5B4JzlAAyevUzn4VK4OBSej62vO2zJzMebFifV4nkVLPOsD7y8KiFMmJHU2Sk680O5mlyw7atOP08jEwEGB4jaoQ01Zc0GA04nYwSF6y4g5mYFwinjaaiarpvIlK7oQp3H7/G5x4Y0QKVsw1fkTNjVd1W+Yw+nAiiXcYw9p2X/iWnUIQB9l/01pZMn4yrlsn88XKmZqid9OUJ9hC6/LTu+tR0b9s9jwn8frmWsMPG1knZMA0upeNTPGgnxgq/m4D4FCOsFum3H8apUyFKLRsjjj9440eafajslQktOrz1C7/blzBcPm+Ma8DYME6lCj+qirHqvCV9EC72E16GiiM7/XuL6OFxiKFW3mIa0WvQz9tXF4PpUct0L6+nLB7bhwsJny3Yl3FTLdplvXsSk5ZqdrVnbPu+ltAo9RSjp/zxSIZOhXIwn1esfh6StxwmS4WP/jVRNB6inuiCz0ExE0T8KC6czvr7bh3ET3si0PoazaHj+jA5lTVZzmrGiJAoBMr8HVGtRHHFpmThYWTXexyiconItVAaaB6AjJ07EPM521852PL9nnoXEPTznn9qYIfFHFuoqcEilTgE7LLxqRNaesW0GgXgiz8nbMvVyCazpA1knxvDxwmk/Wz0YgiUTXzGB9DSatg+RwKU3UXCh5uZ6XOoHEMYym1J1bf0ytvuk9zgYb8vsb0X+2qZdRrI4Bn72BK4Y8S4bs8DOgYvomRSB4h/SjPoPqMK27fvEWyB/4130EIj2c2bczRJ4cVXUK2mhB2FLicc9Tr43tIU+3hSdRYIlwCO2RBgjXlxPxRjX8Jr7W3QnB2/YLrqqAW7WxhRQ36AaNayrIW7N1GwGejPnt2eM9lcH75LExdm+kI5u4BUwDX2h7SuhvCs3QAA4Y2ALwYee71mX0FTcaK4uHDe4CR7GV4/65SQ0/4F5ss6eajQzyI2emDkwjWwbchXWMReeJMAo9b2CVW0uSL6jcae+k9LhILWQbTEqc6mjQg6EFJywm7cStVQkV6Dt297xmnjvnqaC2oHzmVQ4cfj7kUk5BwZmreEYutYXCtWgkaCbnt+0jiGDzDlRVRC7EgyPs796I27jcbDK54NrNL4209atLZeuc86uDgOK+LPxydgNBfWO2jKvs+/3gRoGJ8wwkcWsQF/Q8i62x77bcm8ST0sCSyr9Ist9inBjKOPBHKFxdS9qmHEDg98BtrtvkNiweZ8gmNpQSkpIuxKs6FPUhK1cF7EPdUTvcnZOX62iqlxFkbj9uDNl+Flg8zyYoyYuK0otTal3PgIEX44baqB3CJDublHRJSajPoYlVsZErVeCNzadtWdX60EHwdbxKdGg/3kFGqs3PfaHUl4GCsiR+ICEnrTKN7EN32x6laEfifN2PweR29pXryhWGmfYtRNjj6frtkAzYl16Os9j2D44fXTyJ+EV9Cmn3TPLOX6pVnUki5XML2fYQmZkIXUNXup+j7su7RrKy8jktL1gMnZTtzps/+hx17o2NBWYwd2NY6xdlwKNhh3VQTvkyitg98Dj+yr7/lXT0gUiQqEiPATrM8Nokd5BtVSS0W7A0ewxQenO1UsJtoA1/onm/NWAIzrHF42z9cF7dDGrN5t9yTKWwcp9b5rRLD0lQHJt3hh3IecPpgQciAaIKBeqqF+qrOzAb/ghikOJdNj6bV1IdIPA3U3NsrnNB9jqMCLhZ2NEEfL5/h2QbSBDrXl6ghIce01QOwXT748kao5kudOUT/CgabOVorIdOc75eUPF8S9widb+Uz84RUSr+ddP/cfIYHh1wboQ/PKm5tGkOFZGjlsTmfPm98Uc5Klomnd0ldU08wEW7nMGo+9xxz2jCf7AJpvIUXgE7jRrJ1vCF42Lx/vbfvWs5ezvcEf/qs6FRiR7FMNKiOO8SGyU8a4SQ2UJFAVrEe8DNb3k4FVP1DXZSaYT1tLhEcyzETujSnvn9N+gL3+dalKGtEbNz3IADSoRRaPIX2G7TOEBlS+ZPeoPbAgft3b3708rF/OpfcdRsCDFT+p40mHfpo3i6ocuMyiqDrNEbMDkYfPQEioxsB6t/v9ewM2RRI+rPqFSHZaw91iC9SXsVVt+/u8gM2gGdj4PT8J2XSAJ+GebISn7PX9lcUw/Y4FPlOtjKhHHudfPZDu1djeVEL2BNoTUmq4+1UP3FsNJnIW4cPkJDrbG5kLZf6BMOoSnM9vwUrWQ4wPfEwnpeqay9YHrCv2qFn5gHr8ZYIrH1BHvBJvGc+VBX/1qDtcwkg3GxZsks6iXuQP0bioj//gYX7x1hurUeXDNOY9HCV6EzECsgBOyjOlDzE49jyumxq6ZAZkvhZmv8z6J4StaLe0GB9jNIWZKsO3JX+oKZcWWPbKQ4VlvQuonkdhtdzfoITUv/KEmc1GJ6L7RvDyaVx6hKcSLPdZyuCkOgJGkql7/LYZXMhamOGH0X3z+axOrrLWO7Uj7523pr2TIVYGGVvf+clat/oY8AClB8UNrHQW7DMfYl+yqZYk/HpxR+bDHx9gLz3m02FIRHl+xRkSzLvLpuf7dFO0WC1wqF1MwEt+sQCnfj5pgY8sJw/l3sBdejKpucvSij2kfAHOxCVUFxRrfX+SDWNPMajXUU3fCql8hh7Ce/Jd9UTHf5Avr3xM9RhIbOD1I4L15/4iwvc46tNlLiFEujlQe7iE+hz031beWdGW6A4ngSX6ylD+KMKCpOYQ63N1r8/w0KYdPd4/VKcPLkRQOj41HNxPMKrBfmdAl18SfOgigbH1ihJYbrZPwnchAizc2RakgdghPmvcatL7NIZ5Jun0ftvm1fKejBrcikGn6aTqgAmPaVIkX8uxJn03Xqu8Ew2OXuTSPcZyvmyaXQOzsSqomb5a0C7vuvvpd7q/FmbFbkjM4COqCdVfOztftEvCQ9m0dYw3MfTma6C6irI5n6kmyDKbvpeLDQ3jIOP9vJ7SX/UglBz9iM1t3v7qS4Pf9rH/45fpZZotVK6cTw9P4fjDnwJuvMMViY/KYMsW3lrwrMSG8PcLAkuG0gKsehAfzHDLhmFRWrhkyME4lN76wK43d51q45Mloxxgmps0v3qkl3cMqubHh0FrnfDRq9VoCsSXDIWb+SazE3zZlIVFCxSFH7HZ3tOeiZtBAp/l3FKzve+qeftpJ8AKzSEl51ieWIW1BfbiJ6EHta70pX20N7jqQ+o9X1a03b4fJTjueo0M39DqxbvX2FAPIpkeQCCwqbHWcdmfG0OhDmE/BcGjg2TOa2q1tpfPD3SLYfN8OxQf5Es/tLQrd9mlvv3hw3C97CFwNsVEzd0S5Wy7zXjY0QDj88t/RrMjyR1snh8H75tl8ib9pHNKi5YH9XNl6FlfTT5cN3RhtPFVJljfsoXf9r7HF400/YzXu+qV6HHF6jPJoul4sAwwKu+KqkeDsuFxfBDQnc4zyqJXVnXr8wbSfN6grVZFPYuJS+RHaB6wJY2nfvVvEPB70aWGnyCw1TqfwHA2OazmnRnROj3cwM8PpupezDvRIBPcbpoKO+r8ZfPFv59h2/tX7M2iqrOY39uA2fpIqpHkequkkavg10kn8/18AMLPj13qBuKjdWM6uW6cBF5vPlzX/xmNp9MtBAdeKFd/WuXfb3xa4FWbImo3DwxYEwh/+EaLVX8Ntn/UfvWHqjoI2c9P/n1/hzFjYJm+cwmdo33FuvAeqgV49aDcw9JA8kdZolnVplpxGu2Abf3x0hlQhxsIC9RhK1Bo1L/fRixLvppjn+zuOatTXICmqq+IB5+2YnsjdJXBvSW0OCKNCa+3mIBHX03Y449dP3mgFWHxWEZqRI+hH/h18P8PP/eySPRx7Fv0w1PC35SLzrrG42Fy3WzQsld8fTJE8Qlt6kv4kj93Oa3YWYTqQzYwTuJjP3aay8O1/vHx4DcVcV7C8+/zHuf+qDOl8CF4HjKC5jo3mYAYI8prqbdEsOsWLMBsQgDHRsDWxsjBcoiDM4yPtx670Y7Pv7aA+d/zhm/yR41++AKRZclonWnq9T+/6X9AhZoYPthXSpMAGtVLpXlpKzrZNLsaNlf7QfW42uhjLFkxfL7jI7WMxPHGUDkG6yl3ca1/v/rDf7lXazRvr2I+ybGtgngratj01i1wuezeYJk8EvKpz2bOkvfUgtVfYH9f1tHsl4Hx039ETPgnm97PrJSlQ9WQJoYbQJZLWcMg6T2kXNPIm9MLkcDKL9hsLLrqzd4AA4ttatxHuxrzdB0h/ggaWoDx65HzpVYh15A7qQ6bVl+SaZLh6k/o4XX8RK32uBWQOa8zNjlZ7bcfbZDl70O7Yu0lQsa+ahqAV+xu6Oo/8x8eAMO3t9jI0MSm11XlYH6VBQSFwy7/3uHUKkFTd/in50Tv3caw17yKGoWp5SIdTBcOYZ5Thzxv1VJcKxUcgqJFz9PNqRa/P6z6uMDU3vJO36RxXwIJCkdC6v3bm6NyI4OL0/bUXv3Hoh/UGLqHnCG42w6gn0I+A6s/QoDdY0AvMEeAksWmx9fGBuzsVgvYOJ8JSU/brKZfHpL7XP23vqRNOxUBwgk99iaR5lG3v3XedPakDPLquaIo1S/9O5asM8zhiWJ3Y5O8ax/P288PUpW/JdFWqjwZBlw1YIN/dmw4Ho3nbstZELVQlnKifI9IPgL3i/3bqObTKLa3P/1kb28YtOc3saD6PROkiPmzmvasz2D82jaoL+27N1xzNVNWfEbLY+vrS1W0HBQMt0Li6eJ4gxZdG7DWM1rMmw5EDqgllBflg75n4QNmP4586JUfiHbv5QD+8hN9GRAOH9tB75+dF4KM7k3cPCoD8GjZGsBbdG3F/0BffnkY+UAZX83wyph4akO45gvU2GzKaFnXF+Arn9JYD0C/5jk3eLivF6lcPMWbpCK0lMGGM8WXja7THz8q+82ElDUvGT76roQ4utY/Pw/aq2Na8HVtG2zt7m+PFPdvAUSncKkuDV3F7vIngWot7LC+DwxvVlAo//QrNsvNrC+Zdq6BO88uNuPFqNZ8kfvlQdi+7w+9EMxPC4LsQrHt3/a5cESOK//4eRs9o2p2k0aE90R5rHi716dSk1U420VH5hNXrJ8vLWDwPuhYn+6PaJbSJIRnTbjTfUD3vzygBLoXmxgr1Mzn3t4HUAjqnKpcKOcDtQ0brHkW1QttPZWMDA2qSLlStdhjxpLHgpS3li40yns/mvG790FRnCy0OwsHJjov5Qmyx2dDcAN17y+/+flN3bhq3laHtgqrDm2plj5fYJmdkcA+bhNqbnMbzDZAITgSMqNa9cpoEWq5Bms+h0CqoWpZwGW9WEw3EQSikv/0qhJg9MKWGB905p5fLfyoGsZmK7B8GLilBI+LcVn3Ogl56+cXDbozc6nT7kw2f92zBE/S2aEq7Ktq9uPcB03VXAlZ+XEa67cNTqJYEl71tPyXn8EgcxfsvJcPGE/XkCioV3Ka7MW+J9vbs1RcgBmaoVCw8d4pMdTteIvdlMZVP4UwA3vxnRAIxHvO4HAp4MavObqud7TmgSIkgpSSxTRcb369xQwWj2nEqTp/wcpXIvga1gH7x+vWI4F6r8HzcZnIol3ebJ75efnpDVQVixutevoMVv1OkUdAP2hpocJ3f3pR/1xcPAE/6gU+j5yBTd165nObjBm4Ix1RhwaBtyt7XtwV1tnAV26NNLLjmYe/1zfkraBPhybLwGtpttTVhw+YUmt3g8UpuFBkFzifn1mK4Jp/kF3rLNH43uvnXTGgN9YPHxKxVR9BZ4IJjsKj4Qlj3/pyw5UfJHRiWfXOjREwL/yezLYNq9mOVAtea2dDi94uAfvK2QS+865f9d7zV68q3Cf9jgi5vakWOVV80Mj6Qn3jZFe8bmIDPrZKi208HKvOTCrux9/UXvP+SSCcD/ehX9Db9llGRIw7C/QXd0ZLPxRguMwdhAfttZ6afrVscfKNATK39fChPpvrEahHAu5S9ibzfdhXdNtfODgH+Ygt8hCqXlqPe3+zV0mUkQf9mpe0EJ5tn55+/mTyBQ5yoyP96jUarjrqwEbkLvi4XQdPlz3PA7OLEbZD5lV8P2x8wJNgT82tTvWFHTIDrHnlmh903qhb+gBOj1tK9fBYe+8aR6LSbY8h2qlpoC+hYScSnGqDGouj5sthQqq81g9e84mKHbzA+uHl6m9VtuYLLcwN8EFKb27z4cG+HJhunwF7lyoG7TePmr88/vM6HiKht/fhD2+on1yafnGjtwp+/tUO8xMYj5ofQL0JYuoSj+Tz0XYHiFLDxmZ1dZlghHYDuSx4Uz3JVZ1vQleDcDigtf8we0LZQxEaTYkQ/HZqJAJvILDO11PiQ+b1q968QdeTWhpYImNLm5YaDFTi0N96jD89pjaXJwIhH1Yzbzg8bJLWotHqp7ddo/NK6546NFsvs3rlaTrA9fkmnF3QvG/PrQ+f5XlDA9jrlXDIMxt23xNDn+Or0lkVPQnMvZuy4vunZ9eULVAMJZ4iVtzZIvdTqQAtG7HGOY03Le+6BXgvKNQ5xev63DkLfDbXlHqfoMunzxY2P/zE5lbH3rgvBwJzdPNopEpuziJjjH/5BoJ3qESL/GAtvGcPC02L8MqHNT8GpIP2yneVN4H9zgIY4ogeNy+qd9F3gUA8J/mvHxQNl+0rU+5jcUbLLg376aPvnvJj1K/Y2VlLTu8yTWD6mm40FGQZfDV0meRG0VVq7JdU/8PzrY1yerzu03x54IST96S90Hz9PDNOm1i2z0FL9aPg5vSbIQ6M5TeiuS+U+hLRXQIN7hGQ6ZnI+fLT56QoA3xUTRuIS/7S4OeTXLGpEavi5WDfKFvOgISDeeGJOOsg0J4cxWg8sH7Nr2O4fj56WX9/aaOqgcfx6KLtvByrJZS8ArKWy0inn4k3V98vgpnlxCv/sp4sQjxALI/Duv442upQVf/4xkpuB33pZt8C2bMcsatBPqKbyyKBtX9H0dR40bQ8CAKDqVRoxh9e775mZCmnAO7p6tcitoj5GZhLdPrj6/nnT+Ikg0Qh0GbidIcdfDzVhl4P0UFnuWB3cMl8h9q+cejXsQYJlKJNQarPc6Mv6nYK4UYoCMZGSKvl7hEXhoXf0dsdKjltXI6TC4X4WIWRwwZTAzcowe0Ra8lEIgabqwpF5+bijFS2RzbNXIOof5zR6hfyP7271gf2z1aeL7eHYPzxlTbww5onPlXll+/PTRb//N9NfvHGL996gyltxhoi4x0hoTUfYDktRw2k6paiV3oXI6aGZQuzj6HTNLT0nvQxR+AvL92baZIPxL1O8NIYFTUsd2FdVPGlfN/JPtoW1jfvW/SdIGcvHDaeRqT/8mNY5reG/umz0/3kwsvw4n58qI/bz3NRIh5wCKz1N8cLlsH8Omc4/354MPq3tIOr3kObY1J4bHa7M/zxn+fEbj65zpwp2n3zxLpnNfrMWbYINiK84PMhfHp/eFTr1gdxt3KMpqodGgga9sF2FurRuGMmB9a8H/FPg3kzv1gFOLU7ne51bWQ09DcZwHx4Qp9D/2STR3uo7IFxxJFL/DWvf8egnK82NVf+XPHl+ZfHqefqsPLNroMP1zX+9F4dwDaGaSx69PCpT/0fvkwbVaVYeMo61aGtgdWPUct7WIwPz+4NyvGL/vk9IqFEg7tbEK15aaWv/R331x/56Y98+9PTyxUBrMVpBRYx6Dv43Vs7attvzFhUzy44vCCmj+JS6AxyyQS2lT0gJhzDtX/5aX76+z/5LEf1DnLmPBGO4CdYNsOk/e8pBf/45z//x7pB4F9Ney/e68aAsZjHf/+frQL/zu7Zv3le/G0s+BcZsmfxr//6zxaEf337tvmO/3Ns6+Iz/Ou//inwvPCf7Qb/Gtsxe/9fP/rH+oL//Y//BQAA//8DABZKs3bwVQgAzmKhdg== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_bf55faaf-0d17-4b74-925d-c478b555f7b2.msgpack.zlib b/docs/cassettes/qa_chat_history_bf55faaf-0d17-4b74-925d-c478b555f7b2.msgpack.zlib new file mode 100644 index 0000000000000..eeeae4c1c1c44 --- /dev/null +++ b/docs/cassettes/qa_chat_history_bf55faaf-0d17-4b74-925d-c478b555f7b2.msgpack.zlib @@ -0,0 +1 @@ +eNrtenk8lO/7r30JaaGSMKloMWPGGIw1e7KG7NKYeTDM1iwYWyqVKFtlaaEispUtCiGytWiTLEUSQqIQQs7zDPr0+X6+v9/r/M75ndc5f5z+KM99X/d1X9f7el/Xfee+jmf5A3QGkUrhziNSmAAdh2eCH4yE41l04AgLYDAjMskA04dKyLCxtrNPZ9GJHdt9mEwaQ1NZGUcjIqg0gIIjIvBUsrI/ShkgewIEApHizcjwpBLYHdRgeSKFxmLKa8JcXdFYFbQSDK2uqgTDYFTVlGBYdVV1DXAEo44C/0a6uyvB5MlUAkACxeWZQCAT/lsfHEfAwZFIFXlQBKDgqdCYhxeVTsZBuuU9cQxATVU+NMsHwBFAf7q51mT4UBnM+Nt/t/EODo8HaKDeZRXx+d5BRJoSjAB4kXBMIAdPpVAADgLxOX4AQIPjSER/IHNpVXwBjkYjEfE4aF7Zl0Gl5IHyTIDChDPZNOCf0zksBkCH47xBifgSa9AIfTNlGzYIJgWGQqhqIJAFgXAGE0ekkAAGA07CgfZk0jjzFX9O0HB4P1AJfDlQ8ZlLi2//KUNlxN+0xOGt7f6mEkfH+8TfxNHJaqrFf47TWRQmkQzEZxna/HO75cm/tkMjUCiEeuHfFDPYFHz8TS8ciQGU/W0xwKSz4XgqqCP+OjITT6X6EYH4ju8eHngvD0+yDtHf0xrv4EmiBgCEfSpOLi7OZPpBfStHP0/AywAbaLfP3NHMyIZFtNzvDEepq6irYtAqqhpwFAKJQCFQcDMKwdD2CBMPBNEZqlb+eIKTD9Pex4FpYmfr5Gmgsg9jZmUecADF2Gfoi0YSPK0InjZsS1qAt7m1t5Ez0cvFxgh50JFhsx9Q9bXEUvw0rD3MmOgDWjDQOpY/kaCjAiDwBIuA/WZIdKApEmsBKlIzCfSgIO0ogRoWLmQjb19bT18bVRzJ+A/zMBgMHLlsoRpSVQMJ/bm9wg0SQPFm+sSno1CoW3SAQQOzCziRCULGZDGOZ4A8BJ42ZZFB8MAY37A2/4vCGzOMQE7GPzChE5VgKuowO4AGU0GqqMJQappIdU0VDZippX2e4fI29v+WgoX2dByF4QXS0HiF8ll4HxbFDyDkGP5bsldAZAcjCZlPp5LAQTBYcCqd6E2kxF/f/eBfpoFAGpUBwJeNjs9zgtsu1Q24mVHeUuLBOTkdX/rvM7p4WYhK98ZRiEEc0+MfcDInICgwgIBnEQg+/gFkJDZIFU30BFh4r5LlJTQ6FbIFUkZmxN9Aqd9enlihbg4IFxKOQsKRqPsMJp2IBzMVwoNGpTPhDAAPVjMmO75DiYwLhNJUB43CoNXA2GnBiBQ8iUUA7FieRlQySG6GFoxGB0hUHKE8EE4Hw0IikolgbDl/L1dKRnwGBlx8758CTKofQGHEZ2E4zEBW/SlBByD9kA9/qVHFYrGV/15oRRUkgsWiy/8uxQD+tAalQmbc+6fAsoobSEZe4Io0nEiI79gOfnioqGNU1EBOo9QIKgQ1LE4NQHsBKBUvAk4V4wlgUXcMTeCGOLwPALfjUDg+y8jZSt/SzLDUCf4nF+HWNM5JEp9FoTIoRC+vTDuADgYmPgdPorIIYL2lA5mgLlt95/gSDTwW7+mFxmgAqhpYJAYLNwAr2Yq238zNgIo152A5lgmFk+Jdv0lOLlqIi/OH1z7IfH1ReflAyGLUQb/9aevW7nNCf915+PiNSHd39/DI8Ei3dUJZLUfHaqlvh76e4eUTM+se/DGgtzj11uNoGfGid1/P4vzUdMWWhurFxqDR+LPN0PfS9MJUWvXzxbGWSrOJxvR5iequox6Jaaa6iwvPPeaPesxWqy9MvO35du+Ekba7nEhKcR1/0Rd7m8bVw2HctA24w6bWvlbHeAeenZVeQ7JP6T5eciezLUJee6OxIcpbN6m/L5T92fdHTOXF4k2IwTlDQVvsUbP3TrbV7ySUj23xXZNS10ewmd6e+2GLqcBdk/fIiIqFqItqeaRywY/oK/jJM7iUHjZpukKgIMFibaXIx3PdzJLczo9HaA/bKLYh2mHqC7d4WcfTbCUKdszK4R32SfOOHjKsValUTzTdtWN8eDUv96jZj50x11abS6dlB7eWHTzKP8bFY40scMTrAmN23k8S15ntqzzU02AjabItN5gQb5ydcPKIVW341Goh3fGrX+Pzgmn0MAV+qQ2EiOghESGV159uXdI7JHIVsZrb45CFD1ORfdcc88DBV3usEFNRVGixUbtmPKz1VrWZCVW78gafwuVnMbRZn0yMTuQJpcjMc4V534fKZTEXEs7e6O8L6HYb99zmNy20ds8NA+trMimHK7J9H3VM56MA4fs1Nr67Q4RC+BJZv64vrNnEcu/HK/Fe1LSZ0Te641tlPvjau7wGLJXleicL1TvfvXj42oqWzX7Pkr05qCvQbLW5gPKwZPONXMQeVrCW52LRyBzq6nqpsElq7HTaAK5AKhIj6p9oSS4/UGOjrbpxt0PXx1x6TF1/pqh2az/ZxBKxQ1J6LFGMH/Uxfl4T3bf+3W2pFyxrV8WPxU/TL1kgz72Xee96Ovph3Kvt4zrV+5kDLrlpE/xNtmX8F4I6H7HPDzor5GX5GkRNdU63bokXVQy4g8+Nu5iTOIsXLfO/+rHS7fbCd90v/DtPkE+8bBCpJX6/tyWy+N15ovvzjlzZNaWVG6+f8a77nmJAF6ieFawzE8kyjVKMc2yRlotLP1WsvcWvaTivxtuaPf0+msbfri19seZO8fSpCpgYMuducnnPvZGUuwsG7eQdUeKGxHB+8mWTUovmrNMT178ldhkSuWZlN3xRfd912T0/nHZFFvVG56T5YOFn9BFp8qqS9ZLqhKGqk2seFBoF3e7ehD/fqUsK3preua2bXTLqfF/KVV3ROTNZQNr/2G3m48/r+1vF3xSdV9mOyUIYFKs+O2yR5cRfN0g4rCegTo2aORxeHCDf6m+7a8d7/8SLVWfgRaTH0smlTtn945SAwKPRjWGpzyqEqAMjRuKW5dZJbXJC46uLzsGr3+SSG2RFJ90Wrjs0zPVec8wSagr9VTtw7m3tyxbD1ausQh+9NcGeYs3pqhX81N5Umoa//9R2bLWN1g5hltDilIJsM2/Ijy/fBKkKW+Oef+8v0MK9X6eI1670145b51Fn0n+pl26mLBboE2GzZ1PkwxblXlGX59PZwvgup4/z2SfsSYq10neFB5IfYUN8nolxV+4JSgw+yBNQb/+Kq5YrzsaRPxCNT/l4NSMoeoghVPqGWfs1+QSwU316U6djSrpvV+mTyrmg4KaigpneE40EtPLhVK6rkV35BaKFBed7owQn+XZy123b9eNx34vESPT59stlo6an9Cd1Pcn1XUANPKKlkVbgkW1o/OnniQ8DzrmtElbud5PT4XW66sJTm9+6bEL2CbUQbROEo8aYbYQePsXBx3Zz2GGRtGYtyZB30+ubu34mIGw1JQqCFbe+2ZIvnC23X6zStD9R9kxvhIWKhLRb8PqXn45dyum5VYGWoF3H+bXuoX7M3mhu2CJzKxrj8KwozXRNjdKjzrL2U3YKVPv2c/GGV/0TbV2w78frNgYhWQEpY+2jsKYvKSRH7ZsH/DXrxGJKI/TIkrEdtbDwmW8mk1vkjpWNq8eeiC2+ezgj1UNWynjTw5nI1ZOBaT2y680PnuT5yv3xhZ+wFkt3e5xY88nyIRzPF9vUVTbvYxS6TyfxWbwxGXj4zIJQnuTv/NxIx2s8GFthD38Mc5+/KXm4qEMysvqrG7U3IGk1RX0o/kaCvwDj5h2x6jpKZltLrtjHL1U7wsUrDJCJA3E8mz4dbpeM3Hdb8hSjuoNQs+Edr9pnIM2qPj334fh9xYyqb3eYHXgsr2J5ZaTEjA/Och970x5abfJrgKrdVjnrqkw6YIkp7fqx7XEUbcOZRRR4IUrAHT/XZu4zMSTe22Q5wIWBk8bDKs4lundE7jibH1jjw/icQ/weIaq7f1Jf+6jsHEpnSEhtWsykdis6B7u5nX/Y3dKnxiy/rMVDOPi6+60HYdV+oX157Y3xdcOzq17PjkeF0qRnxHU/OYoGSQ3AlSw+HRhd+2yoROskX8K9B72u8zli5QcCuK88JLxy7b7yetfabe4D2yqM8oSSfu2Zuyz8w21D3NqyAkW3kWi69mrNlg32N9O1bdzDdp0/xTf2MqOuMdLv2oan9QLrWLFHWti2j5Q78KeR24D1HxTurX2QGLTRcshMea9Ag39auqR4YnOJbuVTD6y41u7EPUE9oiiJu7D6FBcpyQrnOi5f1OtxPPJ93HsZR661lWui7syWDj//9qrmgEWoaqVqp/jwiK6+2YA1Xyr7xetpfUkJdPGYk+TAmMG7iu3hrEXP3AMNcfZ2bfsl17n/nLydxCT+9OYKm9cIgeu4O+jwBF93fXHuTFJq+8t6/reyDwrVI2IeKtAeNL1rYN5irz99UjLMz3AkP1foUOkYYOZB5Mrtgu+oyAhkT9SPkm5VDGzwUw/ht28WyYycdnvom3g5Oq6U27Z7TiHz1/GzJRVHYXydvZp4sadJYd18V0TnH3u3llW49ngDn35Nrrq7/RNvYumxO7fyafUtJrF71L4MbEkIzfbsuvdV7EetRjjhB/oKf1dlmvgdn3q7+HTHudn9zsHZ5iBRxO5W5RxG+uVuGC9LnVkzajuwX3l9yOTbkz8rRHqsu4T5uX6uMq5tutnwjqfjZLKW8CfRavLzmWc7eIcubCO5fitRGj50AVfkeru98oSfMTVqrWF1uWzD1acyOonBoaJnf6HmB95eri2+dKyLC1u+qBr1MOEBZn5Ycps6/EHHm2DuF2OTr/u87tbHSBlSTtCDtEMvAx0N+8KTvldeL90w1aD0xbqcTo8RV61muMFvbIn8QPd3HVY1FPR5Gipw78gh1JttdhO/xjdOY4UyPKbH5oVQgkDdhE3PNTuNbbkFR6dOxafsCq8J2GGImTFhhnrs7dMe4A5jrHqjG3s9jX25OQr+Rbw1dGa4qEKnFPOJofMzPTZgNI7uKXdf5cfRkT6pRrTblNSQdVzQeuuqK/Oq3di1c5lWSQFaKTR6n/AzxbfZ7TtT+9MONX599u1sv9IsN3KvXRy7S1LyofjaWvy9+/jcCyWAQdOurWxn+KVLAb2o8TaGU4eb0YE9Tm/mzlfRZz6/k7ic1b9BxRzpqTEdunfqCbfjxMx3oP2dpEW+xWGB+JE+vqRpfPToHYvc2LYUKadGQ7V175Sjtap5sN83n/6YT9r0xMrWZVPqq0u+guc3F7e+RVy7euyWWlu++uMwiYcEQYHh7fVPnAykxm7KyeHF3j8oDfkqmBw6VnY3tfQJPZkocKFpU7a/wfXC+fFPDxFbptZWIJiiQfq6fEnh3U/PvxYpKER8eBEmbvR92uSeZZbT6dVBnyO6trzbHevrwKO6eW389z38FjluUiFs7NZ3j01z5Xyusw+sreq/6yGWrZHWO7zYZGpfHmf15G5Ej/mHGx22ub6dr/TDp+xlX9pf0L+nMype2tpUqp//xnoNC8Eu6LbOHJBRbjVZdaL628/H+V+9t1U80gszpjVY7r8Xm8v7ne4SpKoiEJmB9hiKaVzT+LjFqTShMZrW/knTv1FJZYCl09+UKxM1OVJ2KV9wz4dHEVeGt/fNDYV8V0Cexup/9P9Rm1I2luI2eklA7sw3s8Hp0LSHjBC/OKPdFZtVZl0MBUO/GgkLXokRizQqCDiODt1S/TwsCpGzWvJr/OG+3vE39HJLo9kLReHTpl+mJw4VC22h2kayfoW6Jwft/0Gjn9Bq+1zhmhha8GDvhWbpL26p6tTH3Ju4mm5bR/1IAZQaPuQWPLWTTafkOjKvMQR17p9FJmq0Kl+a2xsX+3Sd69yAi6XHHv+Hsc9l9NtyesNyCdiHpUabms+XHJUrR8OKib0PvD4fTlyQ4R0kVr1YmGqDZzzYVPo96Mr0LfrJXFMr60I+RuD9AyHB/d2O5gie9uw70j8emVKfVr3cQJvASU45ReQSZR9vIiiX1Hs1Pel+x1N6ertXxCXPp/DzE/GEfR7SJzpfoH4ODZYZWB79uDA9Ydbo7j3CVVOe/vWKdPfeCkMeUffSgoMMu5+l6k2ncn+ZIgW08KJXDoT3vv/yWVZo95ra79hw+RG7nIADF2PuXMYbPFH0INXbFdpM5WIO53vkRMkPnhsXQjeJUFcfIRQLD20pVXALmY0MXdM8JK8QLHd73jjzxuegDer6ufvOdrQ2j0iOXVE6nvouZmbwrUNoTt34FI99WqrX3Rnch9292l1O6qVptPgEqqCuTA9ukcwdGxccfKxLfLgQe/0Vfmw27NjxidSmG6+0ZnqPKXX3bBxuVf3S+OIuP4w3Kn5mQWNXhTqp3tRRcf9j3fD8kN2x+V9tDK+m6QTjBkWDzSeHtkb3paoqGRaQigQ9DYN4SK8ThAT8FWzwVSKH1dDG4YEEYZ0rD2QLvv6cwl2ghJRgnrTgX8SQNqXWbsOcaawkkubQZ19tbezWj3Somhcdz1cJL3V1NA8Y3nq/Bms0rOkRpvcuIGTiiXpBofkqZHdMqti16utHJ8W2Tasdn5DnkwAeCSuOyDStuWRreXfSHnGhB5BpxxPW+5QpIk2rhg1/2oqSPF8h0MVFQ42K9s/j+58JTGqu6b6D0pXVDRjXbTMT2Sy1o9Xj+J1GA/d+YBtGT0jAXHSAHK1C3L/7tGzUdvGNp3OOqTjKiXw7/VLNX+8B72HZhGdKJt2i8zUnn8zdv2kV92Phk4aHXNDZfa13JhmdPw+t3TUu79ueel9ly5XnSnUJTOmiDK/qp/V3Cd9/zf4ouBpzbXPQ4O66FtvBN2mzOtHD5+EV62bk1wpqXH1175a+yAcDVtWlymnze5HI2UfcOiIY10jWRcHxkzy1aoM/ZaUp9RmVvENnhxzUKlFXM7bMTyZ3YP13vJP2OmFxUPPLxeA3+PvUVeFVM9xaczTRFHuwWgYfGuzpOhnkvdOgulzmlvE59WRH7fCAY9nMWN7NpQ+KK/au26lIuh0WSDwddyJaWfbIPFG2u+iAHM/Oosfb56ME3387skNPz1qc5TmVbhC1qXtiPppl+bl2zPOMZlzu9huBnyrCKic3yqW+QdY3Orw/eGEjF8/Vovxb4vL5aUXBFx+iaHyPtsB+PI1R2RhT2HYggC3RUBv4Qv/bGoyT3l6ZkINmExdtHofmiUyxUzKQC+nTQm9HO+NCax1FFn7l5QWFO0woL9bGttVYnzE8OilpseXiC8N1/rLm0/z2UcdwUWKie8t+hvZ3dkXu6wAmBbYKBX4OO78t+7PzHX+9MLjE2PFnI6WHpk4n1WQ5Xt3VKfX08skfmKYKgwuff82FTUV/tUqhB6XCf07IsW56rf3SbWz68uZskEhMi1hevTjsPMVnK7W1y4Fd/a4xbZ6R2bm9rrJ2zSjf7BtrgzUT+xUkZUuv2x0UqbgkvIXXvKZzoiHYPGC+IfxNEm93D6JcfZPk5cPUZl1MS1GxRf9A2153cfyj8gil9dI63LfZKpe+1N1P++ZKKGh4df7XjNdIYvaCKdVv7EuBaCu/mP10lbGc8q6JAR8ho2uKb6Nkxandh+uTYTNPylYbLN5qulmZVEC5Y/pocX5UQo1b4m7yy4Xccvv1m/kFJLfWO8FXlbkE9qo2++ng37fL6GxILOtNUkw4uDjVhXl+yvZ+yBmCnxySLVO57wUfpvfCg+K4knOhHZSSPcPOEcHcTtni/r6sdAXsV67Xz+24gq8/batcFfHJOGKdr0vONQG9UHGLJ+lxdef3fOg7fXluyO4Bj7Fm41R5T7vKXa9L+jNWcvbBgyVyc4rOC8SF66Y3iAtfHZWB9R3M/tgLeb8EvQKmzpb66dZ0Twzd0Basq/Ptuh4lVO/IdzNUe1vBQPDI2OC1eMsTH52TDRpCf4r6t+Gs/aXR1oNWZ54fnnIkhBkxNFblBzlojkw+6jyi7LidIcxdrX3kmWttLx4pGcGQwos7OP8cikPUaNootx4oGVGRiX3ElytnUvT8fkPefkG+Y1vxUXD7jL6qD9jPze/3TTe+xl6JTWw+MR0y8C027fNePB/Vqyfh6hkPkS5zU+7V+6QiE6zKXw5kt9W0Re8u8kvKQml/OnO6OavvVvGwu9qj28q6hvRM/+pQqe2lehiknVWWIPtLjt7YXF6E8qHG9QnMHvreMyVr/WauRZwvuXczZJBP3JJsmqMXhjt6Wfiup9c0af8ZsYFh8oF3z+n1ma1jH6KSIgrdcge0+qXsN7+vnxtzHenwL77Y66JHMDuI6VdfZ8UVJLdDvucleuGNXEiQsNOsmcuGdGXpQEXX4+Q+NcRr14oRWoftxc7uvqEDT9LsA6lBcpaA5Obim7c21geNUWdmFbyp2J47u92m1idc/IEf991qsubSk/jN2ZTg1+SKg4tXvW8HhSRdTlzd4zFndDVGH/9rqMtDr75v/y6ZlgmH+fOOuUf8XQcEL7MC+Z/H/ZofsW1dnxW3ySnC9ZvvbvVpvkt127IULCqB+OJtEbXnBCVYFaGahUdEPwxse3x0svNDeahiftC32F8EN7+o6m8fFuA/lUSrgqUSa0sfIUIHdM4/k4mowh1pJ+57sfid6LPap7ahM1bKejQ0oX93TEGonBHS5+Zhw9Rg1PxIlmhsBos7pGIySfnkp+n5Sx4HMOUyr4ZosC2Vs2ln5ZvbzjnL5m1uPRbmPNiXulov5KHj8aGXex6MZ6WF9/Qoj8ylndulnb5htXXFtRjZnbukjXV5piZdpt5VDiXtmuTfOR0fnU+Yzdw+dl346ZNflmk4Ta6BE6UnwqZ2Ih+fcqwHrw1cfZNnm0MMohv9O+tPWfcN2Uzse9CfVF2HFdMughVOKrwddU1WTjqT2UY4eZ7YUahy7b1kbvn1m64HX8VVHvm6+VevSPFtUvi3ne/WWno4NI11TfK0zccozY1i34vdCy/A6RtizPUy0jdH7ygw6ao7/cba6tBR4PtQCoHQsWNYvqCx3cw1+LDP7Cm2pmCLa7iP9ll74/aJqhJtVZjWJtdWREZepirFb/a0YA5SruZKKlOuXNDaY26H8T2Jse0bHKvDT710zRnS3qPSuj359YUrlviX5WXz1Cq/7pytV6LWZ4VoGtc1XsCKOH9zxurwinhf/uRD6sqLOayxEWV5KOn9q9thDmwH6YvDdX1tyjJ0Nu3p2UsWSe3WKZsjed3mNmo8P+XY0/Cy8fSO7yS+tRXHU9IFuSW8EPlzu8yTYstirwcOR3uEbqoYZhx/EYpZ/2PtUO0B8yJM2hP/fdqBl1D7Qx8I8iAwqtleV1XmkzXiSKX8H2/ECjZsyBSredSefn9/muTCpKJ0iHJztGolKn8BZstL0rF8RL4SJHWze0eBkWZ9w8i1g/NsHs2ZqREb7Sa96st1B5Vx8wpP0+8feKNX9bDz4aMGaypPtbhE66RWMM5dtf2w1GvlQ1ORKD3lc8It3+7qa8m2HmSgtHmmEBVbE2cKUVSvLO5cOYVKh4vdZ0cNuU9KZ79UXQuXeavtYSv7WGS0dZt45uTtkXC+4xaxuOlRxYOvScbvTaUabCputgJfucIWXr4eZK82tZQVSeZ/4Tzn7dbk1gHfWuEmyBz2uKH/44hG0wl8pJNcauyFnaUSzXpVGLn9HeIlrxM8UmN0TiduHaKK2fN9q8VTR98+FVcYgrUHKpb8GGsLO+VtcJ9qZGvx6aKVlr/EtQtunlc2q2J+TTrKnmmM/zY+oFP64+jDDFNqUAHGu/fJs10CL3oaZl5kkDWKy7INetVaI5UtcLP9flFpOcnaPRFS0cGrfGdkdAXcp81/jpyuKZuUOlPyY7FUr3r2s/363ODqL4szozdkLYLEytXmadZvT/uFnRrt6spTSHfQvEV7/inJg+2Xem3x52hE/q9kiRNNH3qq7bgXp+5U//rpUb1ewHKuqWfkYTgqrXFxZiydZzFeO2HxA7v3OYpPZbvxr2m9Rd1j49Nl1MtjM9WNpS16dT2L8zsWsb7j0+0xzXOL9+fvTMX+GvFYFOTiWlzk5TJ0mr/VDePi+k/esXf/x+/YeB8cUxn8mUYCOI8YnEeHThFcsPzyQx0DetEOll9+44OeoJ2pLBiODsBwFBiOwSAymDgKE+ZFpcM4u4NK4DgKIwCAXi1gTBzDj4GAHWQAMKYPAEpBb2zQBI0I4AEGjOoFgx5SiYA/QIBx9ghkwphU2JIGzpoVrQiYmReMDe5NoFIUmTA/CjWAM78kqgRj4NjgN475LzIrm9MBAMYAICegfcm4QCKZRQYXE2DQi+AfmiAz8EQGgHCjuFFMiN4IGAoBs/YH6P5EIAAyGAezsLCE06igLGg0jsWkUqhkKosB47x/wxhsBhMgg6sNQVSpFGjImgJowmxIOAr0sLXNjaIP4yAOPV+CGiCMYCwGC0cisWFEij+V5M+xkMKGgZpoIHz6lGXdFAAgMCB8ON4HQN6ChrOXw0GA0UhQUKAnSnB/e0ivEQBtRWUQIQjBrQ19cEQK5AXIEJa3DxO205BqrwVzBIgwgAnDkRDQw6vKLpgPjgHzhNaCimFQiAk4OqifDipjcgIL4H0oRDA2nMgDFB8cCBo4znkBhdEAOqdlAcQaRqUseQsErrDBHsR6SY7IAB1mMOksPAcIKsyNpYJE4Zk+RIofx3mY5xIInHGOBItJJBGDIAWgz0zoQQ96w+dswWJy3lQhKcKy2wDoCH0JYmgrcIZBBnEGowzBxSBCdtFXYAaRgHFeTSHbQfeJ3n8uJLNITCIoDkUGjAbOE/xxaZqjygd0gEQEEV0WBwPBaTOhgfxeMosD+rLnHH+wYCghTzn5sPTCyyGdPcRVUNp+KUQM2E5nHPWP8KB3wcA0ASggFSCTQYiAQBqJykm431bSARyDSuGopoJZ6gmixiSCvAIpA+DwPhyfwZQCM5dIZzD/AozBMRI0B/SP/C+er3CGgxfHbZCVAPTqyviHEAMiAUdSCYYHjeGwBgfiC+UhJ+IsOrDEBQYAtW+sQADDg9B5AjADEzvYTk9wJYHpA18ycklwFwxknBE0SwBo/5gLIDJ9VjwEDYMB/jgSi5NnIE44GJ4E1SwvImjbTn8iDhxZ4jRHKRnnS4UeymH+VCawkkGEPzNoxTiwvgCwnahdkFKwGiztukSnP5KERPQDYG7ydhy4oDxxcnZBuLlRUAg3eSVwwhFKYCh3IcgZLE9vKo60JAjaD9ZESAe4RA+S3qnC2YzFWCmrcAYNwIOe4H+nEFS/tWAAAixZoG7QkaXcpdLZMCqLSSJSQJ/kOeoDwMmleFCo/gBJCXJ+J3oZPB8WmUNeMJ+W+GgLMKgsOhgbTch0mBlEawpER06DBEfhEvrAEimIlKV+JQgvbxzoG8RMUJMKAmZBBXe1B+hkGBkgQ4YtJRMZLG6gABoBM7Wxh6MRGNhKedWH6t7SHmDaAN6/U2kZ7KWS4kZRRcBMiOA36ChoN8dsmz+KkPESC8C1Sz5AL+5ECgus2mDNpQOc0g6ZDlpDYoPVBTxDoCBwIIXqCUBhgHTlHC1QvJbrGycUVE70PMFKBJm1tHAl25acBjdbDhCINVjPAJIXHA9FAE9c2QqsNXAakZMToCofnD+RyjmIOIcrib2EjS3gRQLwTKii0nBLOUtkcCzkVCAmlIjeUI6DNtEBLzDey+bQQEqCjFqCyRg8ythQvSRDq6A6D2YFlcEET1AqRG2wQNKZHI2AF8guIhQamD6RDGldvigAv+six3cSAFlDYZE9wayCQsMpp1AIIE5xkggIBPAsDvww40AQPeZSGWQsT3BOCU4SrHD6r8pKonqD3jDA8gLpNPuL65rQDo4QY6GVHL5yFix9eYH0gSK/vFSJM6xv9seV5fdhSgAYYDg8gZXKx2E1pGllW06VokE0gY55cDV4LVqpBBAPoGsAAwaHbhp0MD1AQzRhwcF/fMJCQ5WWgFi5BXAE7DlOQnOWnOPQDiAttSlxZpfG9EF7vSlQgvylxPgvNEE5GzBPiMtUDQ1FwKD7GZnFWKnsf1yloF4jRQZs+Z4IhQ/HoQ10bIF+BEBHJcgKsKRzXKb8HRnOPeVPeBg+4CVkiWFQ2oC4coaXj/Z/jcBKpkBGrDBnyUKQD4zl+90/V0GXQhzHUi8ov2lgPVFaco8JkEh/aYR++E3P36IIqI2STiUB0MV16WYmD6L4t/sspwqDtv/zvqT352poF/nQv3VuetOYULGCg2nrSYVkKeAoCvwXBBXAkcEPTt+gEtTjSaZBByWY3+AoEoH83cAZ+//bN//vt2/+awtjhgoWhf6v9TBu+M97GNHI/yM9jP+VJsX/tv7DdKw66v/1BkTV/74GRDTUfohU+d9oQMxAIcn/tgWRgFHDAGisuhoWg0JpqGDVvFQweJQKQMBroNVBlP/DFsQcO1C7IafnOKGTm3el6VjNm21OIltZ23gzVLzM1Vx8NBzsHTwYlnSUcaD+PsJBL0eUSRDT5IAKw+x3Vy8G+bvpmOyPsrH0RPiZI1xMHBxVbQE2YObMwDqpEB2N0C6kABrL0RdnTTLwM/EiEyyNDXH7kE4Ia5o9Cm3kp+5h6GLhhCYdNEAgLALVATZDJSDA0YWF09fiVGIdZS3ovylEEBid5RyBgzkCX8oQ9EqGaIFXaygAOoi/F0Qt2D4mk2ZNIbG1wNQC6QSA/+LIgB14y9WxAm/jHRdWWpsPqiPt6CyiNVaf5sX0Vfdj+iKMTQ6aY0j6NiQnB38mxspkn58N0kIVpfoHCCrof9Pa/Jfp/4tW/Te0iqphCDiCKt7L83+6VZRnzV+tolzQL4mYtk8o0ijRyrk9QlfJ25Qbb1GNozbcx4Rbw1cZVny8vcn8o8knTeHj88FbZzsMlTWf0m5JJcit5zJsyasp6faVPo2c+1lg8WSeufDj3kjdaOzbwaxG97kJYDp0eo8AGr6Kklr4Jt23m76FZ/eRztdkk1yn8kPK1MSA6K7LFcoXI78gJZz1Pn/xr0oeSpZOdXfvUVq9/3nrjWTJ+VQurpDWskCL1T1PV93ONN1+I3L0ZZ6VMZcCY2dkofx23/OXhlJI2F2ZvsFkQGR19JENu1uO8SntLNV9+SQSuUrT5pRC+vvjfW/55pKp1xxKeS5c0L8hxo1u/7T31gspoyNx2DwdYdEUVwnuWNyaAh0FyQ+irDU83Qob12xhydzFvzAcGZDZMtp0YFhfp2HBIx5tUNL8w+dyOAxv92Rw/Fz5arTCycjhDmG+TnntQHPheyfuDhZOu7jfRn/kVzg8gf1yRD4wBRWjT9wpl3jYLtLf9Ww8j8vWp8b7zFDiUndn+Kcu+D5D6QZI3skeTNrT3H7O84lZBiqC9xe788iHsKZ3Tcf0emV2rKtu9jlp15G1UzyzKG19uN5UYsPRljrRlL5r0v3wzFe0wvmiMe+WwWCvsSRBW2fyvZqxr4tZnRr25voIxKsvMrbDz2VuW6n5WW0bu7FJXeZm1dm44WNtxBCrXzxLvxv0FA0OTwM58D8AwYuB7Q== \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_d6d70833-b958-4cd7-9e27-29c1c08bb1b8.msgpack.zlib b/docs/cassettes/qa_chat_history_d6d70833-b958-4cd7-9e27-29c1c08bb1b8.msgpack.zlib new file mode 100644 index 0000000000000..78f2d19299061 --- /dev/null +++ b/docs/cassettes/qa_chat_history_d6d70833-b958-4cd7-9e27-29c1c08bb1b8.msgpack.zlib @@ -0,0 +1 @@ +eNptVXtsHEcdvrxQVRWlUIKaSqjLKWrTynu3e7f3WFtBdc/P2s45Pss5H7jX3dlZ3/p2d9Yzu747W6Yh0D9oELBpeJSCShP7Dq6OmzRWKAmhom2iqqoEFYXIMaogpA9AwZBWKiqBMLs+NzbJ/nE3j2++3+ub3+yvTUBMNGRumNNMG2IJ2HRC3P01DMcdSOyvVQ1oF5Ay05/ODB5xsLZ4f8G2LdIcDkuWFkIWNCUtBJARnuDDoCDZYTq2dOjTzMhIqVzYcHoqaEBCpFFIgs3MF6eCAFFbpk0nwS7t80z3vQYjIznYxAQx0qG37BCIg9MjdMVACtS9pVHLZqOhGGs7WEYe1qSrPP0nNoaSQSeqpBNIF2xoWDQUCvS4uBDnrSGkN6zbFcu3oTqmH63H9fG4mZkKmpLhA2QdjeYtROw8hjbWIE2Vh1UgAVizGvBgBkoYFCBhJFNhKNDBJmFgGUBs2YRRMTIYuwCZVsdGJjKQQ5jWURo8YTx6xqMPeayWhKlZWgLi+2Bhmlpsa3BlSmuBK/7o/6z7G4yNGB2hIuNYjGYy67xdjZZmSTNHg9PTXpZpbTUMFS8fDeqRNVAkj0FgU+j0yHStACWFOvVW4PaZAvXVnV9f9uckACCtDDQBUqgB9+jopGY1MQpUdcmGdVpqE/qpdetFCC1W0rUJWF055R6TLEvXgOTth8cIMuca0mA9X27crnu6YCUvf+5CmjrR2h3ur1B9mgwfEpIh7liZJbakmTrVG6tL1J+q5e+fXrthSaBISdiG9t3qyuH5tRhE3Nk+CaQz6yi9UruzEjbiwom169gxbc2Abi3Vf6O5xuZ1c9EQz4cSx9cRk4oJ3Flfwj9bd5gWs8ICRDncZ7gqoGXWoLt4JZ8Hal42dsWy9Fq1RuSc2qdFeAd2O8kBVR7XI/kBsiedc/RKEqTalXbD6mP5RCQhxKKRmMjyIS7Eh3g2ZQyTbNTS+lNDeavU35/ZM87zHdjMFbiYIOZ7tFxHOp5Us5ne7gjf25PpFIb4cpdmo0qhq8Rnx/ZiNYOyaU1Wc3KldzgkWorBlVoY6p0zoSm7usd7cn1jD+FyJKZDaU9hSOsY6NzdW4xl8zQbRbmzUiyCwdzevRGwxr1YIsFyDQ/jnJDkvG9+VRs6NEftgntEEKI/wZBYtNPAr1ZpymyH7J+hOoSvv1prdJzD6Z7rEt4200Y16Z7pwFoTE0kwGWgxES4iMHy8mUs0C3Gms29wLtUwM3hTCR4fxJJJVCrD9lXJ10DBMYtQqaduKvYznthpJT33aX9jYZleesg2vHLnsuzASq9lu9tOrNwsFuFRydQmfbPuGV/1pclySQGOohQmSgYnTgpRTYYOUBcaR2jH8MxQh1iDuEci0ch8Y2dVd3UaK8fyHMvxP/faAaDXzAvGQthmCQS0u9sVd7HJkMreHdsV5WPROE18C20qQHcUmHHkNmRQZZIWxsJQR5JyqszSTgt1zdBoYfzfxstB3JkYPfzCjQAbFSF9Y2qCX1bul2sRGHr8XhDXaQRRFH9xc9AqVZRCxIR4aj2KwLXe8BGDvHAjoEFxmCNz5VU0qynu4g46yYtyFAocTWYyEVNjybiiAFGMQSEe52EEqspzqQ42JdH+z2Z8/bm1tuHdrX3dqZNZdq2Q2LS18rLWTERMTVWrGYhpYdw60JGj0GaJYZVyDbQOuwtJIAJZFRVRjPIiF+PYB2kbWmX7WHYzXqf1n9ivVFe6+9kNj9x94JaA/22yv92afumB2x9bvvr4+K8fyB178wP5lbY37vz01h33nBOWJnY+u/SjUy3bbvnTi0+d/M3FX/VsXV768KN3PveJwIMwuNE1d9Taf9pZ+vCZ4clnz7/yaPRb4dO/O3e16el331++/PLrTx2QLv/40h2ZL5w+d9+22Y4hJffD3KFvOPW7d7/0t0ean9zyyZ07UyNLVw52/nacu/jaPcKVq90WNrtm32vbvLwpsC/1/tGWH9xWCm5E5aFb7d3v7Dz890/tOzZTbO969xDQsrdNff+gJPRd3jLWx9Uu3frZhccG7yrv//3mqfq++57491LPibPO28rIW4O5pz8A5zsyD+ce+sPXSx/ltr8dP97+l1fffHSid7bw3njgH298aeQ/Ytuh7z5+EFTDgvPHJv3PbS+SrdPXNj+Z/evDW9F/o2e3Pz94YaTp3gtffu3S9L7z39HnP2Mu33mgfLT3mycX6tufX7yY/NeWQODatU2Bu/758vc6NwYC/wP2j5dZ \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_e2c570ae-dd91-402c-8693-ae746de63b16.msgpack.zlib b/docs/cassettes/qa_chat_history_e2c570ae-dd91-402c-8693-ae746de63b16.msgpack.zlib new file mode 100644 index 0000000000000..f942fbce3a078 --- /dev/null +++ b/docs/cassettes/qa_chat_history_e2c570ae-dd91-402c-8693-ae746de63b16.msgpack.zlib @@ -0,0 +1 @@ +eNrtewk4VXvbtylKoVOpHGRRSbHZG3vbm8yEDNuUKdIeFjZ7sge2eUqllEgpFVKhJIrQIDp1KHMlJREpEhkSkelba9Opc87zvt/7XN/zXt/0dF3VWut//+//PfzugXWv2NwgkMWmMOiCVyl0DsgikDjQDft4bC4LDOSCbM6+HBrI8WOQL9rjnZwvcFmUtm1+HA6TrauhQWBS1BlMkE6gqJMYNI0glAbJj8DRgK6ZVJDP5iKRQQ55JWQapkQD2WyCL8hW0gV2hymRGNBZdA50o2RJUQSsttAAIoOopAYosRhUEH7MZYMspQg14M+0IJXKAEwYREXAkhEMkAh0wAogsNkUNgcIYXABDoNMCDH8mc3CIgHa/lderpCoAIUNOBPYAYAZCAvNYFNgqQ3/LocX9ITGIINU+JEvk4PQUkcjOFwWkQHT0qGnKOh/NocFEmjQjQ+BygahBxyQxoRMChHCvJDqSPgZg0FdtAInhMk/w4dL51sd5vXHtS4kLp1A4xMQqQxfb0g8jjcL5LAoIOQymJYMskksCnORXMkJJLBIfiAbINDJAETIZdHZAMgjgSwmhw34sBg0gOMHAsZcDoPOoDG4bMDYFzIGG4DZAzB7dZgrk8CCjoWgwObLwGRBLmZxKODCLYQJVgj/6i+n8xcgDwBUBiMA4DIBCh34k7TftYWsRKH7KkVEwFaGMEZhgWTYHousvX4iZRD9QRLkuogIr4hcP5BAhoTqFFh50Q+SNfnan+FXSCCRQMgzIJ3EIEMHJBf4hlKYagAZ9KESOOAVyPV0kG/a5CsBIMhEEKiUIDBnYVdyEYHJpFJIBHhdw5/NoF9dhAoCluXvy1dgXCAIsP2SS/CQEMZWGvYhUJzQAZS6NlYdWcRDQLij0KkQ7hFUAiRPDpO/fufnBSaBFAAxQSzGYHLOwuZrP9Mw2MmXbAkkvNOfWMKuTr5EYNEw2sU/P2dx6RwKDUzONbX/+3GLiz+O01JHodR1rv+JMTuETkq+xIdw2Z82Q84MQZAYEI/k88gcEuRmCpjc9tnbm+TjTaTpo92g8DbWJHr42FI0UVzQiot19CEGUjW9HdkOeA8uNQRLMjUnm9OYtgiUjqaONlpLE41DoNSR6ih1FMKU5s5202JS7E1dvJnB9vZODoEo1A4W3cMPidbGeVtTPHbgMVgfNycbK02UjbWThbYLimdJ4TBC/CyDUW7+riwfJ4YbnkL08SCG2Lir45hkGjJYD4Ck4wZRyPpWgdYetv47WTxNNBUkOPi5UHY4WtjZBKDdvCFrBBAtQgICSM4erq6apJ/EQ+voIJCLEmKQ2lgk/Ofad2xQQbovxy/5AloHl8cC2Uwo44FxOZDJOFx27EUIh2D9o9zFzJeNt/4BYemLZhAmkyt2sChqgKYO4AQyAU2kpjaAwugidXS1MYCFrfNV08VjnP8hBK87swh0tg8EQ/PvkM8l+XHpASD5iuk/BHsFDHbIk7D4UH5DgDwo6EHEolTJV90Qjgs5H2FlVrwQWQgGy5dAp4Tyj02u4KM+OJQXTCZxyWS/oGAaEheqrUUhglyST8niFihjwMdAAiFo7OQLWpra1xZXvuPuCqQrEoFCIpCoW3A6IEFhBivDZLA4CDZIgqoMJyS5TY1G4MExpq+FQmthIMPrQUmFROWSQScu0YxBg5DJ1gOYLJDKIJBv8xBQpgWpFBoFcgz/38UKxk6+iIY2l/+dgMMIAOns5FxtvluR936mYIEwf1iJH2y0cTjc3X9M9J2VFkSCw6Bu/5mKDf4sDUqTxi7/O8Eii2wk+yrvOzWCQk5u2wTdeGsTtTE+PiBJWxOF9YGE1cFqobQ0iVpYLTJWmwj6FJruQJgSoPyPcOLjLznXzN3O2NbKtNQN8TOQEHh+yobW6Qw2neLjk+MEsiDHJF8hURlcMpQsWWAOxMvR2D25BEvCkYg+BBQZ1CHjkGgkwgRKQ9+5/QG7i3Cm5Zf6mJyF7P67YLXC4aUC/D/C0N/5eY4jgXEGuXK2sbBoiO1ofHtNPCPgpNXzUrp/vpW1k2IN7qAsafX0y0PZM18fHxM4gjFwa9XvDAseDl+6XvhWzL6Yl6xV5perFfquz80VXfymntE0HHVXvbIi4vzs24m09E8bCO9kfGYPxTZeVSUcclS0urDbze3dvj3oQ1tGD/SPv+vNERQvNn5PCbHqGcjvP7XtDqYHmW6Dry9IFpLfNIjbm3jdlP1tw7joG4DQ/cFzazMuY+OmDnxiDLrWNVpvi3ygLfKjMUH7/ARtYOdlQaPqPGfmpdCeCb0VQxH2npc53vHuE9xpdunVLZ8jr/NmZvrUK48oiEYWcLwwEuCJtV5Gwnfzt6zzSYzpNX/gpXo891Jgqscm1VGdV8tlqqPb726zP64gKKn60tVvQHqTKu8tvcbgvHdK4NMzBV1Lhydrury/phmbrS2uDeTWDjkbBtXZK2sUuN85TFU87nGb5p98x6ea0HK/rWA05mMH5nxJjsrWzcWmn0BfB1XxWdLAfb8goccrXeNC18wlnaAfK6diOvVvlNpeHtujOHibun+Jq95vSg0XG5+cdAlq2ooVjRKEnSUs8LTJBmsLee4/aQM3/cdtIEgjgmQYGgsNYNveMCUKncmF+67duzFaOIwagNPR1sGqAVpoHZTXn7orDsiDivh3BggCmYBAIjXhBuJ7Zff2YbBoBH4TRySwQYy20r+bg//Tm4NdDo6EXQ6hWsGmOG1bHtkkxI6J9LFhYQMtzQlUf38XdZBmw+A50TCa2j+qL/aP5sBai2uzM8AXybMJCeaaOdr6Bdhj/E1NcCZEK0cLvKOfG3uHKYWDNdvpw3LB7vIOBmkWVhZElB3PASSSeJZ+tjoO/qHUoEBLW1PNQLQ6aMrUZpr7/mgOnNFYJo7iukOLG2xsTMNiHHG2aD8Czo2gbcKw8CVoou0CTHaZmxGIgcY/iYfUQf/Pm4NsHOaf6w3W/W/pDe78pTcgQD9pBUPVn+JLoSef3/bPtA5XF6s9P6STS/9xQP/L+otsTdT/6e0F+l/XXsAkOJzOv769IJBAApaAImG0UFhtMklHC4nWwZLIPkQCTkcTp03872wv0FgiDov1AYn/5fZi/fYf7YVzWt21/Lsn46f7tpYGpaUAy/aOfS03LX8p8qjA49hyQaFN0bSRkKmnHhZXHLmvi3KvUvBNKIP5ae+ouRn52t7AM/NzY33DdzJ6K+fHtYI1et8OG0bN8VenxobfjM6bG9z+HFj5ImJcdu6O29evNZ+/Zho+nW+c8W6G6Fr9jyvansycGU/9JuizM/K8cYyiW0l3u8lltEbLZOTXnux9ERIbQulP9MzP4nfYiX7o1YhfOqfXEyAppNDKiMgqldrT6q9+ZLkUe/x3B6kXxwYKOLGF/unJRZ2dbbrVCqJ5BSItdTdVvadNNSlmv05oC7e/Uuo0z6/SfbbxKClst3pQ0OVu1njhFxktxEyjuET0ybPXyKoK08mPeiWubLk/nXUY0bt29+swcZGeQIsvyu3diYVeArlYzJNtjCPJFdWJRtppoubN4e6HI2RduTvFpcP8vEzUVcKjeTTuoKrXacS9y6J713E2n8Z35Ltj6Ae7xr1Q1E6DzcAevTyjykyhL/qG08cCLPWNe4K2Jn9cG2kVfSehpTiQ5yB2WOweSNoc4LNxY+IapLb11R6Ra6ZfLoWpvoplcL0qmytbNrTZrhzdfCV1zcPHfbapW8UUVxtq7VO6dZkXhW9nba4wNCJ82uM38GXDqbLZlKqNZz1KrIRvEoobgcFUXPU3mqZFtZvH/SbHDZcR/ek3fdANJ5pAj/4l9eGe3VpPCDrquhXd1qscVSuXMwvuPWFUVJ21kNh3tGgHtr7cPTJmwhH9+fYlbLD8yqdHx7cspZvsm027nPrmLULrucPH9NCuDwcUjgMiVy9kvO1Je52+K5+OObuv2Ho2obqtmuWtLnfpfTxiMvyoXOBXIfK0v2PUPuxu9be+sR11co9PuntpbemoiLtf0pQQ9DExEJUge7/6UJm27ife48ekcUVTrQcq+DAkzXpjc2TnagxGuNgyj7S0YMvA6GXvsymbySzFQ3uEWttHJNzEm+RPPfstK2zLA5ndxX6xiaVyBeHHWY53ZYQJVzMpM6O1PrvUmwSNzCeJEVW7AzS9pWQ7C649GMVHctQkNW20pnZ2xgdtdS/x0a1fZZqdbPyKxW2qE+YhDjWfVJ7DprnOLtdXuvvIZDjilssja8U9ZoLPU8CYT5ENGkWtG8KyPzzXVI/zullre3LVYOLXKo/f929O78+VVSpsDy4mvzkigjYXIz95sj7ljPfy7PXpyk9bk+rSGOl3Xr2ksR72vt91zzACFeNoseSxsLvoamTxWmrHxd9uDw9IyDYOLSmK07Qv7FC42s+9fad596yq+YMJYZct2rYjn8cFNk4/TwzX2CE96flop8uJSJPPxxVsql3j9hztHmvo3vCuq8x7woLuFqc0yDp24Uj8gw6UwECz75Lwr8Fihq45OvnnFJx4T5JUS0OZTW73ajAXf4t7ekpGrKhkdlpUOuppnleutDc+X1zwN6lld/LnHuVdO6Q8sjT8l63bXlFDjoYIngG5B1P8q4jT8pr3ve4mvHOQOGT+YS/+0LQ68MtLVGmv+VspXrL66l/GNDRkxNctNSKcy1P9dXVWRGb7x7dV6dGR2MDPBj3SpWMjRnceSeAKu8KFXcAIlcjSTGpFVKHu4GHM/bLb47WfpgdRlg/r4upjNHVs9ujLjLzStZcFN/LMn6f4TaCTojq3INrNtUTWjx89WPG2322G8mDZkKnxw8pvBh1v7wr79qofpKWUdjeRmd2JF/Qn+m81ttapXkYLd6yUaDmD+5zd7ox8cU/muf4JzOBqYYUVHAUHb5R96+H3hyn3vl6nqPXcDnkzHCde7Dz5dHZODfMwCi+ENUs7alD49ffsS4aRUeOSZ9DHTV4FbBF1J0zv09OindzTKlTuKrNjgOQ/mQ1u3Pc5J/Dy5eDc/ey8Tc3bTeKKep+Obb3+UVrSZWNyB/vAVGifk1ApLj3BTa27HDO9WzxyTO+M9PKQiC/4Y7tTxi+sKwy8zmgQnxSddg6+Y/voxCqXj91tHdffW+nnhgc68xJPnN0hS1q2zuqxctcn9bWSS9xV0qTOKF6sQecclKVgJL1P+m9ZvcWMPuxkFRCBj5yW2K2Xj9jSr503svoq41BxB1S5Av2lzY8YcWeX4Z7p/3K5K6R52XNLxi9902uqUDq2m1ouEJ7Mt1irNmFZLpRNMlbL1lNuK97F5zPH0zaJFVaHKlr1bsuceZSxN91PovrL+iTViRm5PVc5Rm+b5mzspJdihj/bpWquwGWe1Yxh66eTJfIpZxXuUu47lKhjOYcqbm6umItvHAnJ3hnVie1JqY0ekTBr8W671R0RxT7/e2D8vnOpbs/60+2Q8fJZ059yJW5dT8x/Nbhqf6qC/okgHTHjdbtRR4PGLr+bEr9nNL52n/CF+aPs9iadR2rXL95Osd77S0OExGUJITlzp6o+1x6zYx3ilg1PXu97U/DlVrTNBxu5c3rnNMqU0rNm7OQ+zk/KRgSvW/3o8pGRbov5rRH0jcy6tNWY86Fdz0oblvvtqhYbbhr8zZ1UGDdxwWLSMPLGOXEZlyQL6099BQKb8F8QiXYp0RunHdzqXci7zl35pUv/kpZ3vPUm06iwutFnYX1t2dt0X2cdaeny1p+9m44VGroo7fx19srUBta9+Ezjd+RfHLA3qp5u4yUa2+2gGMTePEyQKO56T9o949zw2SRPWGWdKlXBxV/iepT3ffQT+dBP3unjs91aXWdeCIndzaidGkQZn8DtTHhnEX52B28q9t6HlMyx2pmAvhqRHNkxu9Il7Z+fd4QsUROTIWpEUmVLKSly9BXdtud8J5f1v7wr7KZl+lDlVM6xT031z/cPjPwG3myafGX5VVJlCMRrnNEteVmWp1eU+17yF9LdJNUhu2XNQ6BttfmzBydYbfE6IWfsd2e/CUwRKog9EeBuOGUhEyB1c/mF8cBqg56v+w+waQESV8XDhxsZBrdbr8Wf2hMeeuN9NjnJbM/5gk7JLxvehRZXmLlKW+4kETaupjzKni4QYOxOolwdD3wcfOh03LCP3TE1xVa1KbrdLr0yWbnXdjUpWhf0BTtcDLEGI/vnW5yi91ZuuO7dOSTxZv2LiTTfYzZN3FuHRMqqAu2TuMV0wQAqVyB72NzMJyaD9uVu03mmqWpp9JYjz9HjHrsyKk5aXil7jJU3PPcxQyF1/4WbfQO9+3Xd8gsTX+385Lvi7HKRW9iOpQp4q9Lwmz1LIku9k0V/ZVaZdGzcN4sazovcgJt8ZDwW3eMrUTT94PCdA5ujutfdkUbLkbry8/KEEoPSE0bFaDdw5fI2SyVn9x9bV1+9pEE4xkJ15dajbfqepdbOD1q1PZUiS9KLO4hWSNc+Pcmho8uCstsnm/vtNq4qIYps13sor/24zHh5+8X33+ru+CKcrUzbXcvvXjssID9WBBQ0oOfy07o+ciVaFSvd5ru/MkrmV42G39bePjGhOxhSG3gWhZw4I7Gsyu7r9qeDMXvoQY5oY/PtdtqSqeUyl4yBrokN1yyfPW4nVqnpZV2lmBaUdWmnFIcv3X63Qj/dNi12elzvFdNOQ1QSo3AGv1P5VBeiVt7RK/C4rf9LK2bZQ0Vu1PTvjcPLNm3BX2o97/fr2q6d8bTVoi07XR0dY3Yt8Vy7zFG4WXG37gN1o0i7zpbjhsqnVj19VWV7Pe5lSD02s4Mtefx9WFbo7y4GKBdn5BxW/XTUHKkE9Va65FeeY4WEfNEua/X7mdNKeh/utA69YIz3Afb5Yh5ts5/Lb87ntZx8smJSI2nPDpTRg49eaqU4/Mpr5Z9HHvfrG/TdCc7O0MlN2VTX21zkWmBY9Wm7+dKZz6eCJsqabUliBwZ7tB2jxWR0a/qMRDZvM/W4/1XYcm+ZaYpPYk87crygdau28jOpNyNVcutftqet+/3tpMBhe3BJfbb8xdH1bg0ahpTKGV7b6gtt+24pGqMBzNGvjA2rnDoyqqJmomL3sW/0Sa+0S09Snj6/v/62yCoe/VSCS89Lj+NKu3RVXnUasXru7ty/7ZZwxptAOYq7/7hzSmnWNlmT0tpcydM4Wan3ifsSfj19MGo202hQFyF5Z9ON8pRIxzxPPfkD3XUq7rggKR4aLz5xl9rbYp0nqaXw/mXNzr1WO5U/FHHy4hpqWgT2WCeZET5NGM+Lwb+SUju9+xl758r4qGOHDz5LtPY10dz4DgjmmZuYyfkgKyPXvbnnfKk2684LD/yA02RCbvOg8iQ2Wq9zRiAkI/bCI50XGyX3RKmcKZngivTr6SbrWs8cOh1jnPUxM1TOM1c7wyNwZ+mUrRfnRmy38LSzYONcQuqmG3Gb11rYHTp0sjlrmRh7+42+GxGMp4blnZvOEgCVyg2bJ67KKyTWTr4QQIa0Tszw9suMCFg8UxgX8j14wGaax1Q492uid4Xk5KVTaseS8Akqndak2PlnEadC/a3H2eECx+WHRE+BvN9UCncjDQ/JO0i+UT7/Ld2i9+NrRNeAshS1UQP3QUHhVnT364zrBTNfylW/GYqdfDUDfHbX0hp1SkgJN862kqgJi+neJokO/+Kzv7rkTFuebEbWwbuFTmG3AmTu7Ilc/VoiI05A93Bv5fZb31Cb1slL+KCvARzn7qS3nQ33E1PKLnVKxd8bPbL3l0lv8Ura1AHE0MdTD66fl/cc+1Xi0C3wS8saudTVJx7kWo/nVR/v3WGUuFFy+sWMTD01zzSP1S0mq1Zyv2S8bmrO3gofz6ikRsYqX7OLMHGAQGUaTclaM8k7nJ644/yeWnb00TVSlZgzD3FdgmrXfLM9T0mu7URJT6ZeU3qbdIeNuVX5paJ/a3IwuEbtbPfG9covYvJGU8ePRyrKU6Ef/K4NtbVxylq3q9sggqZvC9W9Qe80njIS19enE0s/x8ra3A02S0Xjm4e+NJ73v1jjoISQehk7vD08olxPP3I4M+vaBpbIYxuS85GoDbLn6i4JqnoreWnPQLlMTmRyT/nsla+R6KQ4v2gloVWnaR3C50bCNeyDngqP7x5LQwR1BQCjtUtJJ8pzTl0XjNWSXn6lfzAD4f5gOVJ6S0K67c0vnzacE8taX5ieUV9S9zL3lRWwsW1dhfi4xxEz5SWTThXROZGKu+qnVVl5dplrdr9aX/0bzi+g/Jtq9ruyCIzEaEX0gYip8/i+LwOuFbHI0GUS+jbDG6ghqz6HzxiFnW2Nrrh3RCAme3vzhbMd/phzmZfItj2KozIyNhyDTMmhJDPjvZln2sKFD8i1uF5U+j3sxN5Onp1Wpliox/jBd76CMaFvGdp6V0Ju2mwfjjveoTjI5XYUf97OaxaP1I080eTafA9/W+Cr1zCxYNijuvyybcxJ7GYM63DRBOK0gciw528HAG7++5ppoaL9ZfH4C0o1nNk9RSmVaHOTkE9trUnTS3WcKzud2J14j2udw1uVmI7oIl5melwP+LLH0Co0dokZTbjjDZAtP5lyaOJzmpi+xNcWj1ebARkBHLWXV+VykqN/4oLrUmaf9BeVE+Gt/eiA7pXK4hjO+7u9J07HZVZE5RzlcKcf47PKxhV2nB5Nu27/4VemNDte9IVVwmn9z0Jnpx7sk5oeKPxVq+5Flz1ay4NXTKybtt5+rCfPdORmWtsXt3einhlxpg/e9pw5/DlQvrxVrJTYZ9/QOIR3XDV9ZnU1OtjIQe0987bYLzdlPsWVFodJ5lyZyLGYL35Y8EA/vKi/cszyaO89H8XC7MvJ1xnRTTllcvXD7ywr0Bp2p3lrqz4ZCJX094kc3503cUgGSDjljek8P7u/oEZcSENQ3Md8AusnfXdf64xv47RN36561e2nGY1lv76Uyq2tJiV69/kevo0XG9ezU6/efPfhIL4lYpLoeIS8ukVmawkvNjN3D6FO3apoTXZanELU8rznrxt7WZoBCkFN08vRyz+1hQes6PauCJ72llh7Diu+L7uxcGzJlzp0ppKKkQzJ925l/ZF19BctMori6yPELe8FTiRBFKSTbsbiTowX2fLIPc/rDj3QqX/7LvGT9rIbqHmbtfW5qSn9wzb591O2LHnYORoroSVEBSpWxaIZxI5bLjJ1h3qFdCJ3yVdiVuIJG2iRZ1REJ0XG3neUNJ+s09G31JV89DHpnZOWeYtN01ho5NaU6r5nuaFIdhtx+f0lK4tLrvc9zCPSM3JGhpwFHYdfo4SzB71Tu/dJJB5t1T/1ktD4XDRI+Zvo19/OHnhaMN+wfDji8H2lkUKzXeU2XlMZZ0YT9Mzta6cOpR+Yeix60Fb4aujRoQMlCbnvqCdXynUIG5zoflkYLnP/WT8u+9uEzHq9SEfzy4b4o4MOGtXU5xZ54dXUZwPUNazdguAF7MHC6yIfnvc4rpffvrpwVs7GMEEjFamGb9mcZoF32ZOVqnw/P+Oxvvu8BvC76oXGGvWGkP72Hpckv4SnOrL743pNTxw2WNOmWZsTDFYovlU6/HGk4+HG603inuPrZTNmBUTiA4Wn7v3yKNx9BzuUNyKqE3lD1eRh3pfAdZb2qY6qapORzs/f/PL55snm19ueRr/viKNOpSnFTh7KqLoZIzh968v667VnS7d7GhwVN1Dp2byR9XnQ6GPJdoNGCV/1czmvyVMOAdpdRXS72siiNXgV9ZYXlZGGHTE6MdZpfS19tfENjZsZXS9CXd6V9Q5EDmRyo2JcMzYcS4pkAU6f429nVmb5rgu+dX/mN/pD1mRppmNOKVM3bu3AlSxUZP6bnhcdBIURUn3nDEJo9wa916uIT1dP5hurYkS2Bsx5bbro1VJwTyo5fUlda6Ge8eMncjwNp4P7MpUY44c05A/X7DiLKB8fFvwsvNJ9aMdI5JT1XIVG5fuQ55ZHJx9F2iHTvj2LkyzefrGkV2MDzlBxr76h+U2ciFp7vM4uzDyRWqlU4V3yZGXWuNc8nq0nFvdh/aVtvqvwvKkOn2fVlW0h4pcD4mrl5hunVw3db89tpPldufS2ED0oOxrLO8DInzofIaICBB84Vynn8y537VFye43G6dzmxocGESrMHh334MekFE8LKZGTKtkd6QrrFYyFlSe21NApadFul14Yd7xbM2h77+STc05TRYbekQN3i284REkvL7Hec8Gh5EIiufvtA3RSd0PhDfaqVTz7tTbnJsnVD0a+LGm+dSlm9nZQfcTEiMcjdp1lg75+9GytsHFKsvCVhvxzn953j+4f7mmo7tWNWn+Gtix0AnHRw7F+b+eSKaGxUbxJuMGn/ISdhkJHd6qtvDZWYFPv1nDfK0smwLB2luErt3OpP+aY69l7DU2elqs9v4a0SAydtRp4Npd343AAYZ67V5WRr2xZd0OpsreIPFZdt2HV1LUxsKZ3sJs733snAlcTU+70sDuzs4c797TgnkWX8/zkqnjQQLCg4l5e2ejhOcq97rHTD3k9YWOn20TlPBSna4qXzS3X3qySqdj9+nhNjtO6pSkZuTI3sZslLUdbQ16uUU/Ctz4+3DbynHEMo5y9AyH5vHbsHKLyCfZeHI/6zCC2qWX+yd5H6jZLhYomXoRfyI1rPXUx/rKolNNS5jue7urMtfgqjzfaJRsvfTt/fdPHUWVmS72BKZIxrZx8nN7iMdaf3mfCxIUrvBxPqFaOUCjN6sYm563CfNssfDV67xuHi5ZSlxRcK0V7mt/NTx1pkzWWHHRsLgqTf031O1Qj67EzUPkjmmWrW+e6/NCumxtrh+mx4Psy5sCWTREOVS0P6UY1T+ViOnQEZnWl9ibjliWv1Vnmdnoo5UguCT+zC2UeJRjjUJ7vsuHV9d/t9y13C1nDVX+lmnHc+jR9RqC9I2Zi9XoN8ebap1VuXaYYtalzx10NLUojGd4MDTECS6GIFip95l7k/ceyUWs7sRLVs++kixIK8R+F59YkUfM2ThZbj+C9X358s/cjZ3uyXd2KyLDwOsLqN5lLfTrkbPxL31WpDr8ZnyNh+ro98+rCcgkcemIit2xWoGzWjxo2nLFBoWTfwOyZyoKcCYQG831PC+/R0VufVr//kOzuluS00a221iV1KCSC8Gms5e1oUOnK7TKk2CPsyqT2E4WXO6bHq0Tf7N8bcul11tXIZddPktuY1HuIswpzwp+uvV5mP1yoknVcSkrOtfPar6Xbi2uUjdvnqEHmZkZW1VL6Cbd2JbTPYAp37EPcTL5CUxDR2SOCiZybMLkoeePcfFP7Q0X9WI/ygZbkqB1Fhl3eEtvLyppZ314JalwGYjPrZAh4vc4b/UqpjJe6IRamds31OOlnq66FJ3+5w6jK0d3FQHbNUDtq1uu/eVAkrNBRcaF3ToE/HyB+Zdu2uhXsFTfthQrF89472h9cUoh81IC3ahBErFCxKlB5Eq8h3WxrY9WCRiJj1UxVEHY2+F03Yq8Z2W9TqW1CqCRoPG6ya1B1ueGI3K+Gtt/2WMOq3nhVr5C7c90SgYWX2kdrrC51Av/pS+1/erZxRcT/7bONf95L51Kp//CMxdFFbxKB+p/NL1LgWT4lmMg7kIv08bHxc8F5hGhS7MzNnXYEW/ma6Dj+s2OOBJYvlwYPKsI0YZ4Lc4Ke0I2n0t8V9FSKUILHBf9ikR0UX3UApQ7gIZ5BFDAYYPgABMDGxhbBZASDLJAMEH6MRfLf3APsEDYHpKl70k1h7nT4EZ4O6gL2VAIdfie30ZNuDPDxAL95hThwYGG4bC6kewhAoQcxqEEgG6AR6CEAxInJVgeM6Yu86SBIZsPDkgF0yNfBsLs4fmAIQGCB/OlNJnQGQIDfrkLn/11J6GhTPwKFDmsB4Zfr68cBVEwZznqAK0gBQA5AoKrD74w1twJ+BDZAhPdCjAHYk2QCC+LPgphxICUADkjyo1MgkwI+DBYA0v0IdBL8nP/yFmCCLP6wBZ0EAgz6grYgj68ppI6zH7hIB2GNQmdzWFwS3xAMwJOriUSROH4UegBfeYC4YAT+cz4Fl0OhUkJhBpDOHPhdJDx9wD+Cy+G/DoapyItqg5AirAUTw0dBK2waZGeQxTcXmwLLxfpuZsgSAP+FLyw7pD7F9+eNNC6VQ4HIYc9A3iAQocuFZT4rP0gBKgWy6CI55Aj+YDQTwuSCWHyjL2rO1wcHuRLWFLbb4stpyG2Q41ggCFM7L7iIDai4Exg/uUdrKwDyIIRCUIBFhkwE8phUBotv/+9SskACm0Hns2ZAwUiErAYP4wIQZEACyY+vszpgxQF8KCwoVfxhMDZfSEgcSD/aXzT/jhm+vfhqQ6iEB5VhvP6FiA2DgE+pBpAgYfioIUD2hXRb8DiXBS5ggc0fQP5uAn4KI4KAyQ4nQIUI7SRz/BALQi4QbgUgxJnBq2SQ+be1YArH77uGkGAAGESgcvlxBtmJAJCocGryoUCyqQRRCNCTBUzzmdII/gz4HT8QxOCA3yOI/HMEfReODAU2oILaCjOFssHCqQtw+ilIqJQAEMo2TnxzwXHi5u6h7ulJR6l7QgnKcyHfwrELm5zNJfoyCNQFQkh+KI/BPKAthjC1iib/MC6bH32QYAg2EyRBmpD+CCG4uugBoDqUsiDekCILsctghQAMLodKoUM6KfHZB0OLC/6gM4JAKHFDz1S0Fo3nx6XxwQvF0wIe4RW+KUAeSOLCx+gC5jx4unsBzOzFBX6s81X5LtmP+IBHxVkgGwIJzNPqh8S68Amu8LnwTv6p/A0Ldz5QjoWTyOJWtYVJ9O8FjvBzSlyYKyeC3/HLx9LCSPvCsXysQeEYRIGTNbQbKr3f/QlHPJzM2QAC2AWVN8AKFgQqMmE/3QLw7DnfEN9zOZ/Ama8kvGbLT2pOIHVhToa/uvDMGJLXlw5Xox9MzH9YE6Kzh4oJZcGHEIk64A7VbhqX/T0+oawE1Ru+bnD53cIGFnsReF4e9jKLACcfSI9gOOFBHoQCk68y/c+W4Vebn83D9oNKCdQpwCmRQA2B7Mp/vJig/+oB2NLfhYCPhq8XJITwACUcKKX4/INdcEkl8CX1ocAhQuD4qS2ox4H6lx8c4YvFXgn8QcpH4UIphmqxFZXKhfX9nlRh+S25vr6QPyzsnYFgBgsuMipWNMjBABtSjARVXyfYED+nUCi6YaTyizX/SBYFTn4QP+1FbEDIhCOc7yvmHw7nRzt8BAwWWFwii68YXH0JrO/5k6/M99Gav2bRP6ogXLVZMPhg43Og1oXIhVMpBG4GicLPWT+yGbxLd8F7cP+kBliZwXOIUKtJhiwNZXY1vgx/ND38A+B8AfEHgxGQl6HEzyPApuU70ZdLIYN8beDYYSziAtKAnxcWewlY5b+E68+NINzY/anB8/6vtHH//irm31/F/Hvw9d9fxfwHg68XtVA4nX/tZzHY/4c+i8Fpaf1/9lmMFhbzvzC3egFH+4eDqzgIkZqaRKQmVgeLI6KIPtqaRJw2gaSF0wZJKKzOf+fgKgYk4dD/1HcxQgJ/+y7GltGOXFHR57pSd4txCubxsfbb0vor1mOy1ouuMDWqKykwX7sreWjVmqnhuLNSuQe8OF3PwsKT3rUvrSp/Sq16Kfq89AneINLjAAN/dsPh3OxvUz1jL8Lspms+TteZJnrXY7XKJ01dNK5efo8JdazpFmk3y0vd1Tfw+7fIkDK3grCs9ynhOc8dtgQ/e292x3mEjPFWa6rff24zSnYSLSTAG3gziEot0ZE9dUTjxEmzIuXiW5FCyISIa+vXBGavb0kUa2bZi1d88k2VT009Ulw+KHdWIDaFFhvWv1T3/KrU85b79FSmGNFO9foqtXZVS8BjaytyRdbvXJnWLZK9BhRvsnVJRKFeif762UFA730VIljIzcle0K5ZypxVKGrav1V1i69D/+vLWKP+PV79JhKv7MP8O1hKfqi9tm68jx2Bj7KdeNgV3Zpb6xI1EAjRrCtK+UMnZgSza5rFsvTb7JapyDZure5ahqfJXCw+aXal8WsoUi0iVO+d2a4tp9LkdIebxnu4ARkDp8qPaUUWuKpjKaUJ9th3Egksbf1QOcGZocILYWXM1avLHMpq9cTdmejMzC/1XTSjtAGtvKsfGG75UvMkmrUjZw+dXn9W7ra9lHhxfoNBbnKcys322vh0R5trhrcif615Yrj4y0c9xo70QMjn/wO6mGOu \ No newline at end of file diff --git a/docs/cassettes/qa_chat_history_efdd4bcd-4de8-4d9a-8f95-4dd6960efc0a.msgpack.zlib b/docs/cassettes/qa_chat_history_efdd4bcd-4de8-4d9a-8f95-4dd6960efc0a.msgpack.zlib new file mode 100644 index 0000000000000..e9b74f559bd39 --- /dev/null +++ b/docs/cassettes/qa_chat_history_efdd4bcd-4de8-4d9a-8f95-4dd6960efc0a.msgpack.zlib @@ -0,0 +1 @@ +eNrtenk8le3Xr5lCmlQS7qg02Nve2NjGxzzPc0jb3jc2e2oP2KYUlShTRRqoiEyliDIWGZonyRCSoZAQQsi5743n6fk9v3PO+37Oez7n/eP4I+7rWte61vqu71rX9elaR3MCQTqDSKVwFxApTJCOwzOhD0by0Rw6eIgFMpjR2WSQ6UclZNnaODhmsujEth1+TCaNoaGoiKMRkVQaSMERkXgqWTEQrQiSvUECgUjxZWR5UwnsNmqoLJFCYzFlNQB3d2WskrICoKymogBgMCqqCgBWTUVNHRrBqKGhf1GengqALJlKAEmQuCwTDGYi/tSHwBFwCBRKSRYSASl4Kjzm5UOlk3GwbllvHANUVZENz/EDcQTIny6utVl+VAYz6ebfbbyFw+NBGqR3WUVSoW8IkaYAEEAfEo4J5uGpFArIQSApLwAEaQgciRgIZi+tSirC0WgkIh4Hzyv6M6iUAkieCVKYCCabBv5zOo/FAOkInC8kkVRiAxmhZ6Zoy4bApABopIo6ElUUjGAwcUQKCWQwECQcZE82jTNf8fsEDYcPgJQglgOVlL20+ObvMlRG0nUrHN7G4W8qcXS8X9J1HJ2sqlL8+zidRWESyWBSjoHtP7dbnvxrO2UkGo1Uu/03xQw2BZ903QdHYoBlf1sMMulsBJ4K6Ui6isrGU6kBRDCpzcEL78MKJBK0lUAknmAZZG6GUg42QWEtGaYGqsbBXhSUAyVY3XI/2dDX397b31YFRzJCoNWU1FQwykoq6hgMBoFCopBoJBqhilJRR8E/N1fAJ4EUX6ZfUiYajb5BBxk0iL5gVDZkE5PFOJoFBRp81pRDhqyDQLxmY/EXR7ZkGUJBT6oyphMVACU1wAGkAUooJRUAjdVQUdfAoAATK8cCg+VtHP9tjG870nEUhg8UZ6MVTuXg/ViUAJCQZ/Bv2VQBswmCCjafTiVBgyRqEIJKJ/oSKUlX91b9yzQYTKMyQMSy0UkFrgj7pcREmBkWLDEbwUmapNJ/nzLFy0JUui+OQgzhmJ5UxaFmUEhwEAHPIhD8AoPIKGyIijLRG2ThfUqWl9DoVNgWWBmZkXQNjb25PLHCjTwILhQCjUKg0PcZTDoRD6UCjAeNSmciGCAeKhdMdlKbAhkXDOeBtjIao6wKxU4TIFLwJBYBdGB5G1LJEHsYmgCNDpKoOEJ5MIIOhYVEJBOh2HL+XS5FjKQsDLT43j8FmNQAkMJIysFwmIGq/l2CDsL6YR/+UqOCxWIr/73QiipYBItVLv+7FAP83Rq0Eplx758CyyquoRgFwSvSCCIhqW0H9OGl4q2O9fFRU/NWxaiBIAGrjlL1xqkRsD5KKAIeT1C5ZWCMMMDh/UCEA4fCSTmGbtZ6VmYGeQ6QboOljGrn5vWCcsrLm6yt5OZgqu6Mc1ZBH0KDBHOSCgWkB+3H6/ljmCFkL2u8lYpbsClRj21hErCUUqqqGGUoaMv5FOxnbmjIsvdXDVRB480pFAc7iHaglynSDOvj6mNuY0v383dVtg72cbSwsFZSsmEEU6zRIQS1/XhzF3qQs50bg0yxtlELVjMj7bd0tjRge9ONHeygaOKYftqKmgDEXyIEi/ZykiGgJENAKaaE0kCvpJgmQOBwQBv592qtCZhCJ40NhcTWhHITIhMI/caRQQciE9S2plLAUlfE79mJsKFxDq+kHAqVQSH6+GQ7gHSIqkl5eBKVRYBKPB3MhtC113NLKlHHY0GUshoWg1fGYVFoNYQ+VDxXtP2Zy1nw+cA5y45kwwSn+NZvkZGJE+Li/PA6hlhsuFNePhC2GOsUYJ6xfp2pq/K33QePXovx9PSMjImM8VgvlPPi8Ggt9f3gt5O8fKJmXZ9/DOguTr33OlxGPOfb2704PzVdsa2hZrExZCTp1GP4e2l6YSqj5uXi6ItKs4nGzPmNNR2HvVIyTHQWF156zR/2mq1RW5h43z1+L8pQy1NGOK24jv/OV0fbxjVDEdy0TbiDJjb+1kd4B56fklxLckzrOlpyK7slWlZrs5EB2lcntb83nP3F/0d85bniLcjPcwaC9tjDZp2u9jUfNioe2ea/Nq2ul2A7vSP/4zYTgbvGnajoioXYc6oFpHLBT8qX8JMncWndbNJ0hUBRsuW6SuFPp7uYJfntnw7RHrZQ7MO0ItQWbvCyjmbYbyzaOSuDdzaV5B05YFCrVKmWYrJn59jQGl7uEbMfu+OvrLGQzMgNbS5zOsw/ysVjgypyweuAow6+T1PWm5lWHuhusBU3lssPJSQZ5SYfO2RdGzm1Rkhn7PK3pIJQGj1iF7/EJkJ03KCwkNLbvhsXdA8IX0au4fY6YOnHlGfftcBUOftrjd7GVNy5bblZ68FYRPONGjNjqlblNb5dF5/H02b9sjHaMVEKMdmnbxd8HyyXxpxNPnWtvzeoy2PMWy5gWmjdvmv6Nlek0g5W5Po/apsuRIOr7j+w9d8bJhTGl8L6dXVh7RaWZz9egfechu2MnuEt/2qLz299yx+gVTXKdY/dVmv/8OrhW2taLruTJX39s47AY+utRZSHJVuv5SP3sUI1vRfvDM+hL2+QiJikJkxnDOCKJGIwIoEpVuRyuwe2Wiqb9zp3fMqnx9f1Z4toNfeTja2QO8UlR1NE+dGfkuY1lHs3fLgp8Ypl4y7/qfhZ5gVL1OlOqU73E3EPE9/sGNOuMWcO7M/PmOBvsi/jPxvS/oh95rPbroIcf/3Yqfbp5m1JIvJBt/D5iefyUmbxImWBlz9Vetxc+K7zlX93FDnqdYNwLfH7vW0xxR/OED1ftuVLry2t3Hz1pG/d9zR9ukDNrGCdmXCOSax8ossLSZnEzOPFWtsCmoYKHvjasKc742j8rVqS5x7cKp4+XgGIovLuni/vvjecdndBv5W8M1bMgBjJT75oXGr5OOfExNXxlA4DItes9KavKp0dFz0LI2mXpNHvtI9ZfL79RfmQJHl1yQZxNcJg9bG1VbcNQ252bcGfadchhW7PbJfrYpeMuN2XcFeTd8s+LyAZeOQm88mXDf3NYu/unFHagclB6herPD9omePKX/eZcFBXQI0aO3MwsjhItjnQfs/OzsCUc9UnEXdITyTPl7rm9o9RgoIPxzVGpD+vEKIODBuKWZXbpLbICI2tuXMaUfMun9wgLTLpsXDVuWGu54pLjlBT+K/agdPva1+/MFiz2jr80Xtj7HHWnI5q0U+tLaUZ+PvP7EfX2GruXMUSWpzaJf2YN+zH13FB6q7tiS+/9xdp4jrXy+O1KgO1Etd71Rn3X+ihmymKBvtF2+7bEvPwhWKPyP6X07mr8B2un+ZzoxxJ8rWSd1cNnH+EDfN7LspduS8kJdSJJ6je8Q1XLVeirQt/sDI+7dPlrJC4QYZQ6Ttm7bfzUeButekt7S5pmf4dpU8r50JCm+4UzfRENRKUFQ+mc12O6SgsErlddKYnVnCSbzd3ndyeH096X6XEKJ9pvVg2YnJcb1LHm1zfAT5ARL9opBV55RoY9f2M+jjglt+80drz7vlMRJ2O2qqpre/3b0H1Cr0g2ievih1lthC6+eQ/P3GYww4JZzzWFA/7ML3hccfPZKS9xsaiUPnt77YVrsqVMRetNOlPkT7ZE22ptFHSI3TD674jF/K6b1Qob6RdxQU076N+yt1sYfBC6kYcxvn5nQyTtQ8UHrWXtR532EV1bD2dZHA5MMV+P7ZzrG5zCIoVlDbaOgI0fU0juWhdtwvUqBONL43WJYsntNUCkTPjxpPbZI6UjaklRCUU3z2Yle4lLWG05eFMzJrJ4Ixu6Q0WTsd4vnF/ehWwSpOlsyNR9PGx8kEcz1f79NW2nfG7uk6k8lm+Mx54+NySUJ4a6PbSUNtnLBRb4Yh4AnjOXxc/eKdNPKbmmwe1Jyh1DUVtMOlacqAA4/ot0Zo6SnbLi3zRT1+rd0aKVeijUgYSebb0HWwVjzG9KX6cUdNGeLDpA6/qFzDDuj4z/+HYffms6vFbzDY8lle+vDJm44wfzsqUvWUfrfb8W5Cq1VI5665IsrPClHb8kHsSS9t0chENXRGTcUdPt1j4TQyK9TRZDXBhEKSxiIrTKZ5tMTtPFQY/8GN8ySN+jxbRMZ/U0zosPYfWHhRSnRY1rt2unIfd2so/5Gnl98CssOyF16rQq543qiJqAsJ7C1obk+qGZle/nR2LDadJzojp9LmIhEgMIBQs++xG1j0fLNE8xpd8r6rHfT5PtNwuiPvSQ8Ib965Lb/esk/MckKswLBBK/bVv7uKqHx6bEteVFcl7DMfRtdZovNjkeD1Ty9YzYs+Z43yjr7PqGmMCrmx6Vi+wnpVw6AXb/pFiG/4ESg7c8HHXvXVVKSGbrQbNFP8QaAjMyBQXS3lcolP5zAsrprk3ZV9Itwh6412gPm2/hHiFWx2XP/rtGB7Vmdgp5cK1rnJt7K3Z0qGX428e2FmGq1SqtIsNDevomQ3Y8KWzX72d1hPfqFw86io+MKr/oWJHJGvRO9+uIdHRocVcfL3nz8mbqUziT1+uiHn1MIS2p7M2T+hV91enT6amt76u538vXXVbLTr+4S5aVdOHBuYN9oYTx8QjAgyGC/OFDpSOgmZeRK78DsTOiqxg9kT9COlGxcCmALUwfsfHwtkx0x4P/VMuxiWWctt3ze3K/nX0VEnFYYCvvUcDL/osNaKL75LI/BPf5rIK925fsO/X5Oq7O/p4U0qP3LpRSKt/YZywT/XrwLbk8FzvjnvfRH/UqkcSfihf4u+ozBC75VfvkJTpMjdr7haaawERRfRudd5BVED+prGy9Jm1I/YD5oobwibfH/tZIdxt07GKn+vnaqPapusNH3jajp3XXNUnUkN+OfN8J+/gWTmS+3iJwtCBs7g77jdbK6MCjKix6wxqyqUbLj+T0k4JDRc59Qs9P/D+Ym3xhSMdXNjyRZXYh8lVmPkhcTk1RFXbu1DuV6OTb3t97tbHSxhQoughWuEXwbYG08jU75VXSzdNNSh8tSmn0+PFVGoYHohr22I+0gPdh1QMBP2ehQvcO3QA/U7OYeLX2OZprFCW1/TovBBaEKybsO2+4qAul190eOp4UtqeyAdBOw0wM8bMcK8/erUGuCMYq9/pJFzNYF98HIv4KtYcPjN0p0K7FNPH0P6ZmRA0kkj3lrmv9OPwcK9Eo7LHlMSgTWLIBpvqS/MqXdh1c9nWqUGaaTR676rn8u9zW3en92ccaPz2fPxUv8IsN+oPh0R2h7j4Q7F1tfh79/H5Z0tA/aY929luiAsXgnrQYy0M1zYPQ7t9ru/mzlTTZ7582Hgxp3+TkgXKW306/I+pp9wuEzPfwdYP4paFlgcFkoZ7+VKn8XEjtyzzE1rSJFwbDVTXf1CM06zhwX7feuJTIWnLU2v7/VvS31zwFzyztbj5PfLK5SM3VFsK1Z5EbHxIEBQY2lH/1FVfYvS6jAxetLOqNOyb4Pnw0bK76aVP6eeJAmebtuQG6l+9PT/W9xC5bWpdBZIpEqKnw5ca2fXszFvhotvIj68ixAy/Txvfs8pxPbEm5Et0x7YPexP8nXlUtq5L+r6P3zLPQyKMjd3+4YlJvozfVbbduur+u16iueoZPUOLTSaO5YnWT+9Gd1t8vNZmn+/f/kYvcspR+rXjWb172iNipc1NpXqF72zWspDsoi6b7AEpxWbj1VE14z+fFH7zlat4pBthRGuwMr+XkM/7nb4/REVJICZL2WswvnFt45MXrqXJjXG01j6NwEYFpQGWdn9TvlTs5HDZhULBfR8fRV8a2tE7Nxj2fRfqBFbvU+CP2rSy0TSPkQsCMifHzT5Ph2c8ZIQFJBrurdiqNLvfQDD8m+EqwUvxojGGRUFHlcO31byMiEXmrRH/lnSwt2fsHb3cynD27J3IaZOv0xMHioW2Ue1jWL/CPc+HmP+g0aM0W75UuKeEF1X9cfax5FePdDXqE+4tXE03bWJ/pIEKDR/zi545SGdS8l2YVxiC2vdPoVLUmxUvzP2RmPBsvfvcwH4rr32BDxNeSum15PVE5BOwD0sNtzw+U3JYplwZKCb2VPl8OZiyIMX7mVj9amGqBZFVtaX0e8il6Rv0Y/km1ja3+RjB9+3CQvu7XCyQPK25tyR/PDKhPqt+vYk2gROfco3OJ0o/2UJQLKn3aXra9YGn9MQOn+gL3s8QZyaSCKZeklHtr9A/Bz+X6Vsd/rQwPWHW6Ok7zPWgPPPbJcmuPyoMeEQ8S4ucGA4/S9Wajuf/MkEJaOJFLtlF9nR+/SIttHdt7XdspOywQ16Q3bn4Wxfx+k/lvUj1Drdtp/IxBwu98mJlP58eE1JuEqauOUQoXjW4rXSXR9hsTPjax4Oyu0Jlbs4bZV/7ErJJTS/f9FRb8+Nh8dFLCkfTP8TPfH7vHJ5XNzbF45iR7nN3Bvdxb49Wh6taaQYtKZkqqCPVjVskcyckhoYe6RAbuo29+gY/Ohtx5OhEetO1N5ozPUcUuro3DzWrfG18dZcf4I1NmllQ31OhRqo3cZE3f6ITWRi2N6Hwm63B5QztUNxnkVCLycHtcb3pKgoGRaQ7gt4GITykt8lCAoG7bPHVwgdVlY0igwmrtC9VSRd9+zmFO0sJK8E8fYF/FU/akl4rhznZWEkkzSmferO9sUsvxrl6XmSsUCmy1N3FImho+/0HWMMhDa8I3Q9BYRNP1YpuW6xGdcWni16puXp4UlRuWvXohCzfRvDRKvlhqaa1F+yt7k46Is92g1KteMIGvzJ5lEn1kMFPexGS9xukcvGdwUZ5x5dJ/c8FJjXWdt1C60jrBI3ptJgJb5XY2ex19Fajvmc/KIfRFRKwEBkgxykRzfeekI7dIbb5RN4RJRcZ4fETr1UDdat4D0onP1cw7hKZf3Ds6dz969aJPxb61L1kQk6ZNt+aZLT/PLBuz5isf2v6faVtl14q1CUzJe9k+dQ8q79L+P5r9kfR5fgrW0M+7617Yf/5XcasdtzQGUTF+hnZdYLql9/cu6En/FGfVX2hctriXgxq9hG3tjDGPYZ1TnDsGE+t6uef0pKU+qxK3sFTg86qlejLWdvmJ8+3YQN3fpD0ibJ00vh6LvQd/j51dWT1DLfmHE0kzRGqlqEHPnd3HAvx3a1fUy51w+i02nkXrcigI7nMBN6tpVXFFX+s3y1PuhkRTDyRGBWnKH1onijddcdOhmf3nSc75mMFO8cP7dTVtRFjeU9l6sdu6ZqYj2NZfakd9T6pkZi/41pwX0VE5eRmmfR3qPpG506ns5u5eC7fKbwhJluYcSf03EM0je/RNuDHs3ilzfG3W+yC2BsbaoNf6Y2vxbjq/iEV5mQ2cc72SXiB8BQ7LQu1kDkt9H6kPTG81kV44VdBQUik84TiYm1CywObkwaHJ8Utt517ZbA+UNpimt8x9gguVlTkj7Kf4f3tHTGmbeCkwHah4C8RZ+Ryv7jdCtSNQGwcPfp8uPTA1InUBzkul/e0Szy7eOwHpqlC/+yXX3MRU3HfrNPoIemInxMyrOs+6752GZm8vj4bIhz/QrSgXgw4Q/HbTm3ucGbXfGjMmGdkt++oq6xdO8I3+85Gf+2E+S5x6dKrDk7CFRdWbeO1eNA+0RBqETTfEPkulberG1mutkX84kHqYx3MizvFlv0DLX94iuEflUcrbJDU5r7JVrrwte5+xrg7oajhzZlfMz7DKbkLJtSA0a9FIs38oo7T1UYyinsmBvyEDK/Iv4+VFqN2Haw/D8w8LVujv3ij6XplahHllsmjxfmRjarcG++ef72QX+64YSu/gPj2elfE6rL9wT0qjwO08Z2tUtqbUsp6UuWTnRanOjAvj9vfDztJCJBBsaUqTV/xYXrOVhUnlpwOb6OU7Btyiw7lds0VC/RnZe7CfuN6+9KBK/Tqs5bK1dF9RtHr/ffnXRHQDRezfJqZWHdm38feExfnBh2qeIw0GqfKu1uV7vpc0JuxlnEM/VwiMyfvtkBcuGpyjbjwzUUR3NDG7E84W/BL0Cdo6lRpgM6DronBa1qCdXX+HVdjhepd+K6Ha8kVDYQOj36+kmQV9cntvH5D+E+RwBacTaCkss1n65MvD065ECIMGeqrC0OcNYYnH7UfUnTZwVjFXaN16Ll7bQ8eJR7NkMCLObv9HExEPtCwVWy2KxlWkkp4xJcvY3zn5f2GAnNBviPb8bEIx6ze6o/YL487Tacb32IvJaQ8jpoOGxhPyPjyB56P6tOdfPmkl3CHhQn3GlOJmGTr8tcDuS0PWuL23glIzUFr9Z088Tin90bxkKfqo5uKOgb07MCacIkdpboYlIN1jiD7a57u6FxBtOKBxg3JzG76HydL1gXMXIk+U3LvethnPjErskmebgTu8MVVd719pknmJ0UHhsh2H17S67ObRz/Gpkbf9sgf0OyXcNzaWT836j7cFlh8rme/LsHMCdOvtt6aK0Rmp2z3a+WFdzJhIatcZ832b8pUlAyWdz9K7lVFvnWvGKa12Z9r7+odtHua4RhMDZGxAsW3Fl+/sbk+ZJQ6M7vLl4rtvrXXY2pD8rkf+DH/7cZrLzxN2ppLCX1LrnBavOx7MyQs9WLKmm6vOcPL8Xr4X4MdXrr1veZ7pF5MOM+fcck/FOg+IHiRFcz/MvHX/LB984acxC2u0e7j/nvVpvku1Mnl7LKsBJOK5aJrTwtuZFWEa9w+JPJxQO7J4cn2j+Xh8oUh4wm/CB4BsTXjHxcQPxVEqkMlUmpLHyHDB7TPPJeKrsYdaiWavlr8TvRb41fb0J4gYTMSnty/N74oXMYQ5Xf9oEF6KHp+OEckIYvFHVYxmap4rG96/oKXHaZc6s0gDdhWOZtxSvZxy2k36YKtzUci3D73pq/RDXvocnTw9b6qsZyMyO5uxeG5jNN7tDI3rbGpuBIvvXuPpJEOz9Tk/qkPlYOpeyb5d08nxRUSZrN3jF5d9ezpL6sMnAbXQFRpVMTUbtST4y710LWBq3fy1OMw/bjGwPb64za9g7YTplX9qTV1WFGtO8DtyV3vR9zPK6aezG4hHDtDbLutdKVTPL/86nV3pzeJlYe+bf3VI1x8kxQ5vvvDOisv56bRjkmelvl4hbkRbKfovcginJ4BxkI3K3Nr3M4i4466E+9srA8cBr8PphEIbTuHZIsaW83cQw/6zR5nawi+cI/00zrlaNQ6UV2ipQJobnFvRmYVZKtQAmZPCOahZB5cSmfKlAvaeM3tNLq3cXTHJpeayOOv3fMGtfYpNe84//bsJSv86/KyeWp1QFfe9kuxG3LCNIzqGs9ihd3G3bDavMK+F/v8SB0F8QfVN6OtDqR2vrkZ4cx2ljw3VNfboihFZ9Oenbpgmdpqk7Y1htdjbrP6y+Mu3Q2vG0/s/E7iW1dxNC1TkHujD7Jwbo9FakJZwtXgoTiv8C0VQ4yjr8IxG36sG6y1s7iDyXgaaKoVfAFtHl4lyIPEqOT6XFaaP6+eSCrl/3QtQbBhU7bog0etmffNM8QXJuUlwxQfx6lUogsXAHtekrbVI/KlEInrXTuLDDXqG4avOM2zeTRmpoZttZp0ay7WOSni5nc9y7xv9063+mH7w0cNNlSeGrGNzZOaoThPldaDEm8VD0zFoHUVT696MX5XT1O62YmB1uKZQlZsT5m5jab65HDny+yqdD7XdWrEgPuYZO5rlXUIqfdaXvbST4RHmuXEsidvDkfyHbVMwE2PyDu9JRl1mkg02FZcbwa/cUUsvH77mb3GxEpa+Dz/K7c5X48mjzbE9goPQeaQ1zW9H4fUm6LwMa4y6Qlnd5dufKxbjZExbxMreZvslR6vfSJl+yBV1JFvvBZPHXn/TGzXINAaLF/yY7Ql4riv/n2qob1l3zlrzcCNV856eF/aqoL5NekifbIxaXxsQLv0x+GHWSbUkCKMb8/T53sEXnU3zLzKIqsXl+Xq96g2xyha4mb7A2Iz8s5rdUdLxIWu9p+R0hHwnLb4OXziQdmkxMmSH4ulujWzXxw35IfWfF2cGbkmbRkiWq46T7N5fyIg4vhIR0fBrkxnjRu0l32pXuyA9CuLP0eiC3+d3xjV9LG7xoF7cepWza+fXjUbBKzmmrqHH0aiMxoXZ0YzeRaTtJIXP7J7XqL5lHYY/ZrWXdQ5MjZdRr04OlPTWPpCt657cX7nItZ/bLo1/vHc4v35W1MJv4a9FgW5uBYXebkMXOdvdAFcXP+Lp/O9//Onc7wfjqkI/U0jgZxHDM6jQ7uwV6js8tMlA35ED5VdfvWEX73dqCwARwcBHAXAMRhEBhNHYQI+VDrA2R1SgsBRGEEg/GoBMHGMAAYScGKAANMPhKTgV0d4gkYE8SADoPoA8NstEQwECQBnj2AmwKQCSxo4a1a0IgEzH4AN7U2gUuSZQACFGsSZXxJVABg4NvSNY/6LzMrmdBAEGCDsBLwvGRdMJLPI0GICAL+R/qYJNgNPZIBID4oHxZjoiwTQSMAmEKQHEsEg2GAcYGlphaBRIVnIaByLSaVQyVQWA+A8uQMMNoMJkqHVBhCqVAo8ZEMBNQBbEo4CP/XJeVD0AA7i8IMupAHGCGAxWDgSiQ0QKYFUUiDHQgobgDTRIPj0KMu6KSBIYMD4cLwPgr2FDGcvh4MA0EhwUOBHW2h/R1ivIQhvRWUQYQihrQ38cEQK7AXEEJavHxPYbUB11ARcQCIAMgEcCQk/RSvtAfxwDMAbXgspBuAQE3B0SD8dUsbkBBbE+1GIUGw4kQcpfjgINGic8yYM0EA6p0sCwhqgUpa8BYNX2OAIYb0kR2RADjOYdBaeAwQV8GApodB4ph+REsBxHvBeAoEzzpFgMYkkYgisAPKZCT9xwm0DnC1YTM4rMyxFWHYbhByhL0EMbwXNMMgQzlCUYbgYRNgu+grMEBIA5x0Zth1yn+j7+0Iyi8QkQuJwZKBo4LyhP5emOar8IAdIRAjRZXEoEJzOFhrE7yWzOKAve87xBwuFEvaUkw9Lb94c0jnCXIWkHZdCxAB2u+Gov4VHeQ8ApQlIgagAmwxBBAbTSFROwv1pJR3EMagUjmoqlKXeEGpMIsQriDIgDu/H8RlKKShziXQG8y/AGBwjIXMg/8j/4vkKZzh4cdyGWAnC79CMfwgxYBJwJBUAPGQMhzU4CF84DzkRZ9HBJS4wQLhjZAUCAA9B5w0C+sYOwG5vaCWB6YdYMnJJcA8AMc4QniWAtH/MBRGZfiseQoYBYCCOxOLkGYQTDsCT4JrlQ4Rs2x1IxEEjS5zmKCXj/Klw6wAQSGWCKxlE+D2DVoyD6gsI7EbvgZVC1WBp1yU6/ZYkJGIACHjIOnDggvPE1W0/0sODgkZ6yCpAEy5wAsO5C0POYHn7UnGkJUHIfqgmwjqgJbqw9G4lzmYsxkpZRTBoIB7yBP9nCsH1WxMAkVDJgnRDjizlLpXOBqgsJolIgXyS5agPgiaX4kGhBoIkBdj53crL4PmxyBzyQvm0xEd7kEFl0aHYaMCmA2YwrSkwHTktIxyFS+iDS6QgUpZapGC8fHGQbzAzIU1KSMCSCu3qCNLJABkkw4YtJRMZKm6QgDISMLF1RCgjMcBKedWD697SHlDagL5/ptIy2EslxYOiggSMidA35ChkN8ds29+KkNESC6C1Sz7AL+5ECguq2lDNpYOc0g6bDllDYkPVBTpD4CBwIIXrCUhhQHTlHC1wvJbrGycUVE70vKFKBJu1tHAl25achjZbDhCENVTPQJIPAg9HAE9c2QqqNQgakZMTkCo/XCCRyjmIOIcrib2EjT3oQwLxTLii0nBLOUtkcCzkVCAmnIi+cI5DNtFBHyjey+bQIEpCjFqCyQg6ythwvSTDq+A6D2UFlcGETlAqTG2oQNKZHI2gD8QuIhwaQI9IhrUuXxTAP+six3cSCFtDYZG9oayCQ8Mpp3AIYE5xkggMBvEsDvyAUTCEHnOpDDKWJzinBCcJVjj9V2UlUX0hbxhQeYF1mv3FdQ14BxeYsfBKDl85C5a+fCD6wJFfXqrAGdYz++3K8udhSgAZUDi8wZXKx2E1rGllW06VosE0gY95aDV0LVqpBDAP4GsAA0DANw06lB6QIRpAaOhvn0B4uMISECu3AI6AI8dJeM6Kcxw6gKSlxi3O7NKYHmSvLwVOkL+UGP2FJiRnC+UJcZmq4eFIAL6fkVmMlcr+21UK7r6SZwDL90Q4fDgObeBjC/IjCD4qIVZAJZ3jMuXvyHDuKb/Dw/CDLiFLDIPTBsKVM7x8tP9rBFYyBTZihTlLFkJ8YCzf7/65Cr4U4jiW+sD5Dff3KCy5xwRJpL80wn/8Sc8/RZFw5yadSgLhi+vSzUwWQvFv91lOFYZs/+d9Sff31fAusuF/axb1pTERKlQEVAeIsCQFGkNDvyFIQRwZ+uA0KirATaVkGnxMQtkNjaKQqP/fMfrfvWPUSQ3lQGcRbbB6NB+mv1oA0x9pZOxkgSHp2ZJcnQOZGGtj0wBblKUKWuXPjlEMdDX7D3SMZilh/7Mto5v+Ny2j6P8rLaP/mZ7Q/7J2z0xVZeX/7v2eKv91/Z7KcLcnSun/oN8zC40i/9uOTyzBW8kbq4zGo5Rwat54NSVlbyU8BkShvXE+ympK/+mOT4qDk729OcrZh0J1xqihnc0x3r5K/iYG+naB1kQ0nWWFtg/URxqYslj4vzo+0X92fKLMmfou9kiUuZIbaGRgbIczCjb3PuRkysQbqziF6KnQ7UlGztYEVXQA3QptqYR0tQRV/QP2m4FWwdbqJH9rRjDF0cvKMMRU38nB2MUgxMrXEIfR+492fKL/X3d84jDqWFDdx4fwH+745JH9q+OTC/6/Hqa9VcIGtEjVtIvrfS5796mAjjeSZ8W2q19xwnLpO/k0KI+rbjihXle6f6omM6uzdNu9Z6YRES9H6yOGuHfnNa92JDIV3KmC1BaqbtjsLq+o3IaMr9OvIz4EXpDuOlytOz9z4+fJh/W8KeNpGIX7U5vkbms+BP+QQufGbz5TT9KpuRiv/Ip+TPX1VhlBZemSPj+UhJVP1Gtv1IH0tuO5hnb7Ztp4uYKfdPe9dbrnsm/LVMY+ROwXgXdDb/iu8HQ42u2P3uG/2WlxdcpX2XJSeCYoOIpK873aJ20KbOWTuWe47uPW2MgQk5tHYmWk/Jrsci3HgV3c9CS9/WTEcZ2SbWv3jzCjyouE1r9+ulbVdatJjebGohIDV0kr5GOqSNDpk2P05xddrnjyX4wMjhK6otx+Tuh1osclccFXLd/x9BQZJ4Duf6hCSxnTdzj5UVVZm4uvHDtura1wxaMpBX1+t9jox74XrlaJFVjwChRuBgT19zDDTU+9vTmNrSSwZWbEnM5rHLM/P79jUKq4eDNdc7TvcHBFciRLXuPyseEC7fcJqVLulLCP+i9mrh84I4fuOBPYnmP4Y29mo/SDW2EWnbqfr4Z9bGkk90mV7wguO58+2TwVfetLWISAnAmZOvT2/SKevO/UhYIPHlnlWTV7TyFVGdY7BU+2UgLoogIyX5hX7na3PK3gmQq7fSm36/b05uX/9Jvg8b8JseJ/AFM1m9w= \ No newline at end of file diff --git a/docs/cassettes/rag_0b44b41a-8b25-42ad-9e37-7baf82a058cd.msgpack.zlib b/docs/cassettes/rag_0b44b41a-8b25-42ad-9e37-7baf82a058cd.msgpack.zlib new file mode 100644 index 0000000000000..ce8f169759f96 --- /dev/null +++ b/docs/cassettes/rag_0b44b41a-8b25-42ad-9e37-7baf82a058cd.msgpack.zlib @@ -0,0 +1 @@ +eNrsvXeAFUUWL6wiGJAkKCBRXAVWZujqru7qJicXEUkSBQWHmQsMDDPDBHIQMYKIIyiKSBYUkGAAJIgZBQEDGQEFBQURkZy/6nOqqqvvvYhh3W/fe7t/uMy9fasrnDrxd855aFbfSFZ2akb65XNT03MiWUnJOfyP7GcempUV6ZMbyc55eGbvSE6PjJQZLVu0bjM9Nyt1ZY+cnMzsGtWr52YnpiZmZmTzb7snJmf0rt41KSe5R/UZXTNSBmy7MnlQJfi7Uo2KnQZVyszKyIxk5aRGsvnf4psu2akDI/xPUq1ipdT0LskZaUld+Z/dktKyI/yj5B5ZGb2Tuojp8S8qGYl2oleJf5UdyeIf81/wGffP8b9qnpEe8b/pwacTSYkdJSkztUtq78w0/1n8KKVrIv8wMTvSvXckPSexNf5//ZZN/GFSs7tk+u/lg6XnxI4m3p+dndYlkp7UNS30xn+kpfrLqCR2JiFzAP+/9EriG309VqKT6MAX3SMZqZldUlKz/cH4VzlZuZEh/Iuc1N78CJJ6Z/qPm4ZJEwwvwWRtiFODWDVsJ5HZju0atxtGDcPwRwq2ZJD/ez5iTmp6ck6X1BRYuU1oMrO6JjCXJCfQiJ2c4JoRN8FO6prkde3KjK5dU/xRIn1x2ZUapqXyf7XOScrKuQM+44Ne+jD5SaZFgI665Obim72uRrLTzaMJLCnJSqCsG03oGnEiCY7lmsQzva4pLuzE/w79dx06s+jffegNsyJJOZGG6ijF+d/v7zd/QUZWanJSWpfeqd2zknJwaXIvsv0tzYk/eZZoeA5znWDy/iH1igyAzeuR3OXeSNv+SRk9uzbtZTdtmer2aJ7Wn3Rt0PTOgbkd6b8a5aQ5rNedpGtaX7dBj0pDZvWIJKXwrX10dlt+Ogn1u/M3570ZPoPqsOHz6ycnRzJzEu5IT85ISU3vnvda94GpmdUqpkS6pfFlzsSv86b/s/o/ZzfMSE/HNefN7hWJZCYkpaX2jcxt6O9yek5CmwGZkbwFSZmZaXwH/Keq98zOSJ8nv747kt49p0feDEJM65WsSHYm56aRETP5gebkZj80g78+8tkns/gJZyd1j0xr0VSu4fGtFZP4JLKzE/zjzMpI469Ny+iXkJwVSeHjpvLNzZvhk8glJjIT6TTv5Uh634wBF1nMjEZ80Xkr/pWVWq2iySq2jmRW9M+qojylio2btZnRNylrQN7WO/hJd09NrxY9OyEeElA6XPRrsbro7ZlG7BX9E2CKCbmZ2Tmc2Hon+DNPTY4k+Bcgb5pjgiQZzrcui5/Y/EGVcA8r1ajUolelIRcXUFv/ISWUf9c5q0pPSgX51JdUj/TuGknxCSAbxdT2RwZx2ZOZ65Nrp06UMLdaRUqrVXQMZhrVKnrMpvwTm1g2/5BZDmdvxLMdvms2/9ix+d+m/yChxOP/lX+alsOfIa74kzm2+JdrGS58Y1KTv8kkJg6FvyL+y4hlmTG/Y4Zl4JOU2P4kOXn5AziuP6blT8D/lcWJzoIhDOYvxPP/Y8PTFv/Agqky4vrjmKa/GIfy6fiLtvz5cyLga4cJOLbn/4LxdZuOv3hi818xalF/fP9DhvOw/FW7ruX/YZsG/9p2XcY/c1zLtnBTCDwL7/CIv33+06brufg1dQ31J6wK30r8GfuvIiZsJ5cT/EsDf+O6/pHAkBYllM+VGLa/an9ysEWUwROu6++LHd4Jk7+Nr8bzJ2hSAybv+Mt0mOVa+JiDL2LUE6vgH3lyTsyBE3P8KfA/HX+rLdffdGb4z8PEYONcmBw/Kf8Jm/E5WIbhr80x/dky0z9Z5hOdZXv+AmzD8fefyp3X581P3+CjW3wr+P+5lPmn5vrvhX3UnrRdn3hwGv5T+CzzF+ya/vGIFRk+MfvLsv3ztVzP9InJ8OcHhM5nD28y4IwYrJ/AZA3Ye38zHAcOCO6Ev/NqXgYShT9j21+PZ8KQBAjBssS+Mj5lOHp/9a5t2mI5pkv9neDfevCJaxviKB3qkzCOBttIbcs/QzwaPnsrZjZwQg78wPbwBvok499RytdP5VJsuDMEKIn4++L541uWf4iO6YlbTg3gC4YN1OnJX1N+nSjM2P/E8ffH8+fFbIPKNdmww67ryZOhlsPEughQlcXZjT8r4BScX3hc6HaCf4gTICbzD8tzHcOfBFCKf3i2C7fAX7znH5fjmuIdlv9+hx+lv0QPiBB4gWFY/kkbjgG31PAXJG8qJ0cXrimLehdMFYZF9mEFOwKH4SDvjJodIf7PbNe0QxQJTAr+5hfB3xMYjbMzV1IX8RxLTtj0l2g6roFcy4SbCyfEyQNuMecLJm615fj8AsiaMdvfCuofrgcsjDI8ImSLFkwUGAe/v3LvmevBCcAp+/vOfHoQ02YWMeRkHZ8wcVyL30FHnD2/yI6cI/VvOXBTfnRUkk6wh4Q6yO/8Y+N05/Moxz9JC++pv0vEgmUDU3FgngxH8RdBbH8++DL4ieHCPtjMVFsLnzuunLdF4Qrib7gUccRWuP5IxPKpjrMqf+/hPgHBOPiHYFVICb+fSQF5mCZcVddfLxCDy1xDsj1f9BBmef6BU5+DOYTAsRoO3A/PULfJJw3b32x8g+U5jqIelBI+Rbr+1bZNecwW8XkJZyyeJFbLP2SPn7sL/JnImRDPcqTo4FOxxOEw6hMmCH7+O9sCBcFndcCEtK0SOgADQmX+yVmMSKFgUwJLZrBt/OhsQTNcaPncBInCBn0EboLO8ZSEE9fPpyrKmactl2/4FMaJCyZt+OMhc4d/uo6iKo/4U8TjNv1t4BsPrN2mTD3j+DoB58CmpMhYJo47a1uuqx8Ov3+W2CkP5J5J/dfpP7dBoxL8H79Aic/3lQDBA1+CZ+Hy+iLYjOVAINYYNeHYTEW9jsOUxOBjeOII4TU28P+Ln5uLDAb0hGAlsI8m9YiaPJc7sE/UBoEDL3eD3QYqJQZcReao/XQDtoc6gb4fSG24kbgdzPOVEvyWX2l/eJBf4h0grB1X0pZhAk9nhkYqJmprsDmBssLlni25DuUX0t8YYP0ucEP8EahSDHijK28Bv4/+S2KeAzYFyycOQSUOrokt+QTnj45i5nyKctJcElsseBfn4gzYmx26pkLRCBZgui6VU0KRAK8KcSPQgi2fG8r7BhqaBRyZ82Eirh4zCSiFJkoMwewMB94AD3tABsDDmBelsKC056qRrUbifxGitO5gdlzOEsneiCd5FRP6pOUC2ZiS0/pv5kyMahvoKx0M2LsJQggYB+wb7iVXt22hpzCl9msnxDcDyBI4B14VLnCBdkBIc/3CN09sx7BiFUv/jVSOSkE+m45xqbsEkkpwcZ9TE8HXNJHMlSsTyBcuFHAfB9kdSEMP+JC/VMI1POBDniUvGKgWMF3HcFFT9ZRk4ZsFt80wXRCODpgEpliHr+WQQOtBNsMNA9gnEOmgo4J1AKPie8W1BVPAAv6reA+JZ3UJM8sFjTPm4iPLtkzTt4Esf3wxLQ85ikmtMCFx28YQxx1n37i4kRdLHwyFH/+vo+8+Fy1UzoBPBpTsmBmgjoQcQicnfT0xb+IXxFKszbMsZXX6u0bAgAPeqe0qMDS0Oi0wr7ndgByfhIjFRlsPxLBDJC/lY8K5+eTAxZqj7ldobsBS4aJQ0OjEzgGBCWGqdGaL+cqK7REDVD+4OAy5v3wElRLO40Gu2kzaJL4JaQmLFs0ToVjg5yEjI7CzuTLpAWEBCwG1kY/mKHVK2PZ4zNSnBhvMZ86JJaPll9dXFtBmIR6aU9SU+jSXHKAqMNBO0XrRxZRl2WouHpCK7d9vXCvoAfzlbmDNUQM0E0fp62Awo8rFLRlTSWOfJPi7yR8Xw4zvqqlkLb6Fq2o+5XnRTg5UdSy8x0AUHvJndZdRcqDUQTFK7Ch+TJEE0OCTMliSLw4V+Blc4MgGWFuhi4/GgeMS3cyhDpOXyHF1Ti8NDce1pUi1gdkj76TqohEbLRuUZjFvxMsv98pGoQ1+Ge0KAoUC9ftuE3kuQgpbYPjYJvAVLk1MpXQLURO9RuYS5egB1YyC4gYM1fYvABeSYL2CcLHhEZtZoQ+49giaqW8Max/7DiaxXZy7up68bxbwfDeukcJ0OuImnmQJYk9czstdsRauIoK6YfhMRmqgMUfjEnRAgVOGK0qmMDEpvJeLexQgyCTBceYrJs5vjMipAj4wLODsLkoBYEaGsOP8P0B/RdFCYdM84TDkDMm6pNDl+29IT5IJphZxFe+Pu/L48ydRZEIthnYnnLqhNFmQXvxiorLiAX+naNqYrjhWbnk5IT7PiCEdB1ysg4wHBuQZSk0EKQWmv0Ng58XeGXGZhcZLhWMHLoJF0HCI8o+6HugO6NiI7wHi9qgdZrmCkBjQtr/xnGt4lpg02HqalcctN9RdqXRM+DcJ1Rm4zvw+28rkQ/8ImNSgs3JF21HPBJxIZ2r8Kjryc3wL8mr9YlPlbwjrnTpv9PeNU5wr1UTB7XDZ4Ceirq0tXhp6lFFl9eCA1AC686WkgRTlhJw+tmsZUghzMjQ88ROwvkHVVg41B3iQCcdmUE9NCOSyzlCBSNGhLqwgKZX8U5T6Jm5SzBGjy+0iPg9XaOKcUqhgUIEBqp+8oDdiXeTSci3eujglx4keWP7GApcWu8RAUeaS2zfePBpokq7UXfhtd4my2ExQcAlqPEQ6QQgowiAG+R5Idol6LP/UULq15xLpLBBMExQS4sENRXUatXMDhBa1DaWRo/fDI+rNoFk5RDrHuTHF5GHxwaWrxaQQPDANCJSgAEbnmRE4LlDX87fc9PmMIHiNGnQFLFbR4kJRegY9iFgQMCj4BYTVYRzBitXjLWXbEzcUHHFcWxKF0Papdi7IPpkJ/gQbNApwDxIL3DfgIaZU3Vs8UlCggf9zmwyiMi6ow6BWMeQb8Zz7nM+5kp+hNuApJ6IrrJNACyI2kXLahIOEmfkxeTfK6ot/NTxx3JYHL2UQhELpEke+Ce9iHFn6GyQjgiiGVMu5DWlIsSOIXdoONPq9/76bCIqG7hKEsAjj+rERcgxi2Ae0GbR4L6HZWow4LNabLsSMq4JyfHoOKJNMevNMdDtzjQI2ElQ76sVeKGEG4C+BFIGEHW7pSb2UU5KhTsFCyoFPXDMkT6kNS4PlG+A9AResCaEaMDJ8wcZX5GtmwjwD7cumqCoAC/D9zPoHBHZAfGJAkM9GHQD4g4vGs39y4CxkSqCgUIOZwHWUU4W9RE02WC8+5soXWWGbC3QdTxqk+CyJeZYFvhPDsz19K4KRxeRQfMFXXtyBfJveDsaDaBqXyT4jcdEPqx2LY0EMTOgL8DFnVuhxZEAL4N8CCSzUCX0dRHBACvqWfwkNcRD8+IjYVbgGYqejHsU/Ha4rOfGHccRvlWcaPCEokAzQ2hlcWxPZnIsLC5SSKEIT5Ku4IT9LSXi2Z6A1Ci4RjfrgEkqqC9FUNBUGX0cRafDr0HLl83IXxfPiTz6q/BmsR0zQZGJ/HEPtp/rMRi4T+swy0ECgNNa7z0UX6Bg+tXngC0Z1h3jgjvA3S1EhTsuS0+H33gopP7i3HpXxbRmbN0JcSIRLPSQLyzECRcAC/AOMajqoVCujQidQfFFUsALGFVqdbaG+B4EgAzwsGAVFZ6jmquQPCvHoSB87xCswWo0OTIjQ2QxDDL7HmGIYSzJ0dOKjmeWYRFKaC1eNMlvJRdsxAksb3aE+gUOcPtD79DAc1xik4mPCBcZp+Ng2W04BYySmkIMGxlXh5oOMB30FDFsqgsKBfwm300TtBJwBENQyua2N3gFHimOfPnyhKgEk4OMMywFCgTotX8pSz2G6KwD/FquBd7vAgoXVGPBLzW2C9mqA57CE/wrCPhZoheD0hYCncjyDqw12BD7xtThX28d4uoZp6NZGHHaC9KKdcixBE8TKIH1p1CykI4xgWxApIg4EtJEHBTzpohrF7xL4gT5PHeEu1KeMyqnQ0AIHLgzvP+nZeCM5kyBq0vAKnKalNHzbpmasVoF6e3BRPctkcW611BX8zeb3DkO0oFwxEoRb0OvlSDXRALXNdn+HzuM7lNyQFi93A0SuKa4c18k9zVvjT4BxXdSVCAbNN4GKAHIriJ9YQtOAuA4wz+Ag0WLBbfUdu7YAwFCPSviQ4/oCEXgijIr6tUsBkxTtytP9UUjTcGtB6/BAj9MtX8uS8zDRIcqkUPJc8IH4loL/hyuCCgKugVQgoDSeIy2xwAYQOALkMj6d2aCToZEGeBGx4aBReXjhPOXYCJlXoMcQxHeB/cCEzi6VdeDoNrhOAqJFCIhwT5iSWwr3BwUvPX4CbEZEs3SnKxyADdLkIjyAXMQUJybIwEtQqytdVxe9xX+MltG/hjEECBNyPgbIKRs8GoBwgGPygCKQNKWkdaUDhFHJCfCobQuiekGQk/NVVD8UpozrCibKfGnHcgUFfDMOmMM+ckXJQQQtyUNDQgr0LRdAKkGANpgN7gq3pDxHV6S5dg8xAEdNBiUjniTg6RzlmkEBYzuOxJt5gUKOdEHAl02kPKbomsAgMVxiL1CnhVMP1S7XlRTGKGUhliEuCzAxm8j4rpBucVQezwHkHpAfkjMuBoI1JlFQEV814/zKihEu4PJjIGAFE7bQdeYIi5uJq0fD3hfEVlngfYAr5EGY5iILAvtMgJJM39wH1RcoBrBW/L+e8k0pR7gpzHR8uY0eIc8O31k8RxM0KPSheRYJw8bkeZkiQC2jHx4J/OuxjzO0rnFTYJ24QSIkRNG55ynj1cJTRQc7bhdRECeHmkRZ2x5o6zC8uOmw0QB7FPQPQzoQz5Luq4AL6XwVcVRA74IKMHSgoFwCI6pHDkKvhvtjI0gLonUwovT8EjwKGBT4mYFGQRzm4kDc2kTJqnlnXACwOR4ggm3YYEDewDr5YQV+ZngzyhL/RJ24x4KaDsKLGLjiLapIIjxr10NbFByCgFwwGfBG8RwaugiH46QA6rCLaGjDC+Ki+okC9/UlrG6cMNg3vKSazoOBfO1oAlFJ0GRwwM8d79VILzISEV+iCIHGbXFb2h9ydDUCkGCIOqzYwwWtyqSKxXNuzUKBBZPZhpBfLuitYdc+Q2ktMQ2I2tFZsLARgPtKXVeqlRJ/AizNQqeOmg5OF3xvrpCbYFv4G+Z5uHv8gNhfFYeg3SK6z8OvMG4ZYOpsAPSCa46/GHQuhfi0CAq8wJAA6kF5BjFsAxxLoBRZ4HBFJCIIQnBaOyqwa4Iz2zPNkNfGFfhlSwhAxEgJrCZOCuPMYPqAQkwc5ViLmaHJ5StMyJHOidBiBWJXg4YHzm9hJzsQW7CVT5bLGluZq4FbAf2ARKmXeNVAGROATxCOrkI6gl1Mbc9WRhpQIURw0aC2wauIOFefAJgvdxyAvuMaAsiu5vsyGDhMbbXgwM/sBs4crnjaYRyvjTQktD8DOKphSRQOt4+JQK26llIHbICsuhL2ivoEQfUcEDzgIvYcCXPjzM4XiLAGOS2B5QfxgnNHpFfgEwdiAeyno5RbH9UGGgYwW09o6cwKbnMwaYzNMzgKzww94RqI7HF9yoLnxPGhjgeO3OBp0wQ+bDNDeDPQfADFBUCI4lzw5Q7AHiRazjQhhhA6ORAwfM1hBLKtaMSGuLprEEMFLoDQHWkZOx4mnlAZ9zP53FSoWMvokHhyS4UGEc3gAahTx42jt9dV9qgTGEeBQwEvreTNXMWXurrrUUzdAEiMK8wBV7lag/OFR2xDpJOAiMTTRXoX+PSL7C0AGvnwIEBc3DMrvBC80nBBBRkrZZh6DFwcFopOEf0xKcCqEPQdkJzpEcX+iBAGMvZqo4qBqrQLzNMDoYGJC+ELj/Er1Iz5U46e8SLXAgELYhggjx2Qog6grSmxYnH6lkae6MSyHBWUpbat8SM9SkgAj+mLEQVeUuyP3zp0hJmWoat1DkKehRKrXQlu1DEJPSMEKFGdtgmeHO1hx4PQvpgRBV0C4Q+Gg1EeRL2AWz9qsZ4dxSjB8DBYsEQELmK8X95iT7oI8AgMQLh7AFrDiB/EhQ1qKrSRBUBJvLKYA4RaA37pWRDDM3H4KDVFqk3+3WMMDA3EUhLlVhO0iVoCoO1BaglEjhegIhnYyjYmGdhxtaK/63VIhWGBgwNprIQaBDEIDGHkCMplAWI1sAio8jWahImtRY2TWDY4VtAFCUGM2KwZasXNjQnQcCj73IDB2Za6ppYnlXB0w1FXGdIY/IVHY+1BtD4szEqKny8T6Aix2SqB2aolNnmOIb0wCNe0iKfxH2J7qIAEqo7IdEGt2OTSG/2P/oHbDAJtjifvFsYpDAsvIGo34PUQWMyAKXKOrtQATuLKCSQ2w3HALaGgs+i7RM0QfB7MDHmUuGopRxNEwfkQVX54keyi3CKhbQICC1gQQR4Ka2cwhgeqo+kBig7xdtGrhfg7uvT5hbekGiKzhCDcrVwBVCg/LBTm44QPPJxawi9muoq9mb4qD6ERw2GB7xKB20C8EFPm7Ay8bSxmGOBpDmYpmWbIr8ivii8AbYfZunxyPMOVM6cKXe//ZYPnhwrNVKhImDuFgCaTevGUZeQgjIKlKYMbHloiDMQtJM/yKVMIRzmYUyalK94zHy8op8hPB1CsAG0KPDXURsclOE9AK8DQJ5ekNBYXQi1wY6DibuOeQVoFCaOhCJhWKC3xJ8hiwJqUKYoK4aY9LXgR8j/A+XMGZwlUK2pOmMyHvkCwFPyJ2PIP0wacJheYaDUBA0aFA9RRyMLVzBRYLbrH+NPoSELkMYlx3QnLUnxPMTBho+tAeI9MGzIz+KECRyVKNSEMNSfPBvCMDRxbOHVx7xFzhuxP+eakcxBgdkLxdNUSCDBHUDQ8L9BBPYTwmpbkr8C8qMDpC7eZyGlyUK0iCnppAV9Hxcey4hEP5A5Tph+NSFVhVHm3VI6k2C4RhQgw1SJ1JuDsuOogo48v3bV1EkTuK6BWFEO01FLIHilq0X+GoQ+mki9sCGnj1aZgo2NCT5A8hsYtQGIcTxjPIMXBUwIpxJJzMwdcxJzyLcRvgOECziIQCwD2oDSgPU3sceFKXV2iaTErrpkBjaBMhxxrQWa4/eBx0TzYoCEi4AqhiYCjh6cQwS04F4waXDLEGMbJisFsBZtgui3nTQo+ZoO6AVBiqoFgMKIlZmoJ+E6wWX6eF9xZdHZZ6P2Ee26jD4m5Cvfuu929GE5iIwoSf+owRVY28dUddLgDnQQRcStwsgq4OXwMPiDbEdKTSHbNkA0xV/egCb+/oAsmE+rDq+O74erWh+AicPU1kAUcN7cJpMuIXyUiQ1FcF1Z5uiYJTSFIgCeIEvVZjIh4UINo15UTF+hkthmF5DPVi9EVYsu8etO2DRLaYPGYL38wYRQyBYNVoKNUHgP6bVxM2FERQExGd4gVApngEQnuFob7Rb2DooMQ32EaAvVsKoUXZZYTwObQkiBA6WjtY4o4ZyrgajMh5gXEiWqXfhlNJvxO6gC4MhWgIqkUcLYDSl6wAs4nwLfnYZQKpLCrOCX14Hq4hCqfGNjjCEgQQQoD+CY356QdGEXHnIOA1Y1LE4FdVMOIAc5HEf0XeW/gn3Cl1a/0NSVQTAxH6awTk1kEqEsbUvAN/AHiV1GU+cyZSxlTuRBdVGmoqRzfBmIh9OG0V/JpqSFEehYKNxwJhmB+ukLUEKALQCo43AAv8BVRA5bsCr57cW1AUwAIxnw8AH6h6w4cKtrYYKZCnosLTBdqgMTZfS27Bz/G0CTCGgLxrJB0AVoNZCECmgiwQMgX5VwXlBYDhAtEA+ME1VC9NlDQwxBchBmIfJFOQ6ANAcsCVBlnxGYAlBMZeUrX1ZyA4vZqkDBKLKoPjiNeatpoApoyfqQFiDibI46S6OhRDNG0B6FBeRni2tE0TnRBqM2oT2M4EhFCmGCFxQ4gg/e3ItU28RDHKqOzujPeFs54Ck4G0BTCr0VlCyP8GH5DCjMMpAbgaxYmpwOmHaBwWvo+f8aW+TsWQ/Cho7L49coJAWyIT069mxu7oFd4jmuF3Ap8dEu49rmB5EhxCITIlFolUtfR/nQQTqQSRrkOIIMwYNRjmRcCZhyDrECRZM4QXukEeaQepA4wFpXJ5UpTAl/IAAeLwsXEcLSFuA4NiIFJI/HpIjhaKPXiUVuvpeDZLhYxQKXLkXE3Zqj0B26fAD0G2SK2SCGDq6FwMQQ1ec8JYctBq8RLhNoY6NaGAKJ60qmA54eLVbfPtDwVrhI5kGgK4G54jvNb8ArmactBNDHmjsAR2dRQGeYYILOwXM6lKiyg08FVpi6qh1wVxTmB4ISIkakQn5xmFNfHjGCR6Bqg3PxESTDQlHefcwRiqsouej6mOkwulqxgKVj2QnitTKX2CPUwClONsxaRbRftHRZUQUJqcEUubRQ+H3EtQdUhvvFMedkxRTLAjQqtC7V2TC8B85P/25IMCxNZ4PWBHi9wJ3Hy2WzHVjF1KvPhMPscU/fj/IYZ4D3jyzYVzBaQQS6RJYA8EAeYBilCIwy4NwGkICYE4w5eBGQcJyHTlpnT+qsxJ992XapvI8JMfcCo5BCmEeTRuQzSEsCestCnhrgA9S4CWoLluFitBSnDspVTASfjkwaN+h4KM0XzIEuFRTCIjO/z+bxJXb2aF1MRONcNsqPhUJ2g2AgaHZ4Io4JZzqirQ7yEscoZia0nHIlaN3iyGjcETVOOgeE/yC70lEMPtSzHVWa9sp9wGAmEVZgjAnVNNCNUr+KFZW1QLBHhdQVXKkU3HtrAmM1qCIcBC2oA8F8wCbVAZsLM31HMBReBUs+yhQNNwFYAM/t7Ej90UjUBhidcmDYJ4+m0fdJT30WhocCYFKhd9F45yFQULtuyg0obFoobhph3kFV4JdCch4NkAW4xVJ6KOiF4KKcaQ+gXQrYH1qQoQmOAbMbJYoJvkCsVrjslcNyOARALFWV3/DpUUmOxGGK/MIeESuAzuHtciK5IArK1RC479ibpeY6ilgCSoihCBcFddBAxM+SvCfh16CA0JukpRJAMRTBD0YghjTaxLskmAdnLf0pin4TVOUhQENKyMPwItyjASwS5snC/fkfqUbw8WSLOIgrrEEQkEBunV5uwIDaOXN+0HWkqgxNCTNPPgvcPBzxQlER5bIGsuMHpSmyNYxGmrF2DsXg5BohC/I28TSgS9ltoUW1++kJ/EyDK2aRr/H6YN8p/6qcLhYB5IH+xMhNA+bTyNZh27Vk6AidWxqPDQsFZmEjJRD8mqEQ2NcJlhYLiUTpUhMCLLTRorHANHzxqU/3LU3FfQqTj2SDE0hwmKF0QBopQN7hViLCIza90HUriyGgE3uHbNWA1bouomwhkIYIPsNW2qKwHZjLmmbgYZwG3BjqvRSKwwjGYYLeDLeOiBPAC/CeRhX8gW9xTwFRXxnjhW9+dxcQPuXHlYW4XGF6mxbQHubSn4jlbeLGoKT4IIpk4JoJG4FEnNBfCiG1e5CsDUly1rzjbB6SDK8W5Nl+AG4GT1TSJ8oG5oeRmxH2LwxcJ6wq3DBnWtklIKHsIytAJ/C7Fspaup+nHFtAidRH+5xhy33FPw2gCme/pyP3BKC/iPG2VD+9aoQxgcQY4B8zxh0toeeHzUzoO0pnrYvIq3FeMS9uhELbpSHSN7XmoSJrqxnJ+BfEvOwTO0GxfgxpQ0Q38oKAnBfkL1AavC6Y0gUZiEOm2oUEih0bHqG1hJVVgHoYkSYr0Z9gaPzchrxszgyS8EIS2hhaziapiBaqw7Rm2vlrXAU8scn21TBGqEvZQAGNkRHIqsVcoT4hMeVa/x1R8sA20UdRC0A7ViiW6thUq/2ZKjDMnVazloyB9WpUtaaoBswiKcYG3w4Ek+Whe6/slVIo/FscggZ1kEhIbSWQKNxNTAxYZsGMxtHhVEELnewwtcYVbFqW8FGIAXypC/I705yOntV1HvzIhJLrCoGs8HKUpcxC8hKlPjhFmrQjVMLkx5oY3m5FwJQqRhqxCkcgGdGbsMiXNcQxNbdALMYkSGEEoMu7qMbckZkaBJhx6N9c8IEovkqUCfSOK1WHgyoXSSEEqDaJwAentSzplBquqyKjQIKbSoVJaKqEhsNVhGQLM0qBYgVh+z00HODq8/+jfVTaaABWIqC+YW4RddJMw2cGLJRa8i76n2VLGj3YXEaMCp+LingXHIfCqAL0VCourKSyyzigsHrA6OBcPKoAFahvmimjVZjDDEtW4OIL9736NIHIaRPhRTQgcLjbV7eC45K1VHtXKxIkUKPT5hEK+IpsK9b/AbuCsXpW0xhRO8OTbaKqq49M/xVJdBIFHqERjxTv1NKdnUBK1B4HrmTYhTH8QP7ZsFAnR41p+8Tz9cR/p6W8xeGQVCfHtVDcFAzHUirqsmETCVLqIcMRg/XEiAmuy6IW2nTJTTG0qsdEnig4qictDmg2dmmZoIPMJbFSYIkEYjxK2oR9rnjrhLHIlQlswBEhi1oaXfjon6hdK+CBw1wG/hgfyL1r48J1ncQ0dNILB6et4AHDSlmh5ULcdK5/ApEyLXMzMEXEtYAEijG9AbotCkyAeyK8lScMKBfq0TDtc2dDBojQybTaQKSgFzRhjBndZ5n2LLODAk2yYyqZ00JKwteJHsvi6XhJRQBc0pVNL9wzD8LCMPxa6YVEFh/ksTH1w5D8uwbCHWF60S0GIF7RSsEY+pt06hgLZcT3blwguupsMhTd2AGHwB8x1vzql5POW66jaTyKfJ3BNMBsrZgSOr2g3SBAZxFpBJiKgLfTKWKpCjChEF4QCwFflIIO49Kt8fLqrWYloBPt+XlWIhFFD1KuW5gQ/FUchwQ2qvFXoCQm0T2aq2jui+HYApvGR+Y6OGMXgvF8+VVpmmg/YwiKsBpG/4eIZzCTEubm2zD4C1RQEJdZ09yTCQ/uQQfCBGSJBS4kVUV3bD5B64fx/DZugYWCkoy+6DCthjqo15ga4pQCxRF2laukaNDiB8TnNH66Fvzl/8cI1SjxPoUuJlkftXDxZXxWVgjVywgcnNJQk1z0wIf0X6/hHOSWxcCFSn3ZzfqOwDxp3l/bPYFm8wAmqD6/Ra8yN0ThhsBd2gL3TS23GlIOG/Ath1KB/Cn11Fmagympp0hyAODgQG9jwmIsidBYbAa4xGxalzXNVEjaMKjZxEQowsSmIiOqhBxUzNi+xDaH6o0xFG8SkECYZJ/pjGSZ6DfBC2gHWG3AcLtYjhkHQ68k3Oo4jUK7DErp3dMkHOwg2iO4MQk8A4kWXrqkELMISLUQvwzmA+EflB9muwywap+6W7kQWsV8bqQ4cn2Dxo1L77xoN6YBi1qmov6MPp6dh4Qlrx2JhwxMaoiB4NdeFnZgEZ03FdbE0FQQUogNqJhQ5kycvv0Lsl8lk1Ux0FBoYsMaqWQHvoqDAiqYeamlgO4ETNWZpIg8uvDa9gE4wdQHydhTiQ/BWzNfEGoNCu9EdqbhXblDUCfSk6CAWIrpEIrBhSa4ZvRIwh7H+ixu7GlH2DU8DYQu4Pp1og7MzbRp4ONHjG+emobziWh7awbanmr9gRBPBUy565kHIwdbA7wPkuGszFWnXYA6wa46SNA7W7wJ/hy6uddUR6QHkBt95tOhpkCNKhFcTZI4HyXt8iswMOuOAn9qzDaWkAQIRskX+gBoVLhBNlGHvxYSNowtjovoCxUrRIeR44IsTiAZE44AURROUwo3nOgfcGc+T1dltBzGGLiXazWDgqjPR2a58EIFE4pLfU8BFy2RBrwqkcQPpGJ2+EI/0FXMGiayh+JwRlGO2ooELrkp0suygepIdNDxAFBws2BO10EjIX0ZEhTwSZzMtEaGN4+ZCzmcTqhrmBI4a8I34gKRQOiz6QoNUX6ifjHY8V4EC3BJxifJPYqpD0DJDmKkYDAN7AdO2CPYAwFpyTEFRxUHDKiC4jRUV1GkxhhYxJOrHVOFxg0/1QwD3ERj+olwuYp4MS/8X2v3Ah/kkPHWPEDoCnb1kSUwFgtJKR+sn4UDhXeJgmiumtyCWIdyOK8Cyo8gSF8+ELFkGoTU/IxBEiYT7ihQxh7hBjUEPEyEAIqrBibHsnkzyg74DLjXDXl4Dokoa3CI8FYYzQciZ4cZdgdaCwsbKk1qtUmzCYpMgCE9lfX6cPBx9LJRE6nBBhUatZYuoBY84NHAhIkjG53Z6YTRRZJ1oXwFTtaF9Wkzg2vIUrgJfzE/X9kIQXmrC2hy8Wlg7TgiaoOoUhmg0j5iJvU3sOPqzFVvDCcx2RkjQn0U3TiDQIyBcRKta72CehSj6rtieqKlnKFSVqUKNwnVPQphFrQmYGE0gcoLz1JLjdByb4FLEUEl0WOIZ1HmmpHbgVJR9lKT09VO/IJMN9VBhcSKnJI7KbYg+NmRBiDAj8nKLyhqUmcolDudmEi/cysN1CRX4RCbFBviSdd4CniqspRz01GJaLXiRTYFKKMC2DZB3oJdB3M4/E+mYi/dOcWaQTkkBY4JqH2QEmKLlmHLfu5jKYvKhLZlIYZkm+inRARCE2FBFQgSV6EVBogCVoloMeHmEELU0RBgxROsnFtTJl15bm5qyjAM3FbHEgKmqpTkEsTiYbei4Eu2F1i/nc0YIDga2nuvEk16WqDEEfMzn7kZA+1jP2iMhbV8qTbgPrtIjQyV2mUF19AAwHU3bI6IBmo0FnTES6AUJgojbwlpysG0ONUMhHNGiCzdYVnt2Qna/uAxCaFksqoRKvBmKmYgSAyaiCoOMGlV9BR+wFeZPVfsTLnorqKeOtfExzYWq9pqERb8ssBFVHViFHLDRzYlZ79jYk1JRMQD0z9jvUafGi09+v68Ojt0EtyViFEW0EBIkCTbtgvoC0rEk0gwoAPEDgRWnt5o4MVkQGivC4R77tdV13zq1sFMm1qoj4bwurONmMhkWNh2mSgJIZCvgrz0TAvBclWToIvJ9114IuY2ll9BgIJAO6tqmqdeXNINEe35SVtSLhKYZ07spqDEi6jyjBxEKafuqEwvVqNf7o1gOg7LBWpUhrIJpKRwBxh0cRyWDR/fskBAugfLVWjFSS6FjWLi2YCiVm3lKgPqqq8xMlrkSDJQE4VBDTH/ATsRrbXQoqeCF3sgDHBQUNHATqwIFWSGoCKrOOZwfMmiQ5IVAanouuSmEN6cLuK/o1RNlXwBKYWFM0Izq6MOZvKt6VoruqpCqjF0ZEeEFL7PNoOFjYDYGeC/NC4IUBfMPIGOUX24VfQdOYhkBstTDvk0gIgSej8hghadqV4CWZBOs2Q8NUggGRQD5jw1YIMYIzMPxMMEByulCWq4ocIEJpobo2wfgWthczOoH95GfGSUG05gShmRtBGZYesa7BqJxAG/iiOYVntxd0UuIYKNaLAGNzZxcbE+MU0PgF8Ea+ZaiHMOQdQFdFTPzTVUzTiV5bF3qOiFAlygeg9F+6LXpQzzNUJFZ3GRum1KRbIzQFjQuwiB7E7sQYd9g2ODY3gyg50EBdttGYAlutm6LgypJbXXO/NXKrNBbYqmGDvAstZhwS6gscVwTdbGGs+nGlkXEkfntx7KvhqtHLE0H+6NpKF4RRhJ5V6q7qGipixWUgTmrHimcxytXpqj7r6cAMCdc+8ARGQ5EDWoJIHpQRdsgysUkChkA/N8VOTjSvShC3mATqKQRoBSUnbj/2B8IiRpcXI4SBVq5VIL1isH9hnAjMS3wcqPNA3cEW1cj0lUYPkzvi01kmohNQFcFhRxdoJpqJU8clH9IPMeCq5j2bsggC/q50HQWuX3YdNHxQgKGUcjbRY5oYUfhAC6D9Xk1/3+o52LcVgmGpQPrdfknO6QS2U0mPvLUAQXpd1RgE6F6YbIz5R7HLUbdD7KgIGYZMFmtphMu1a98JFA9CFzT6+2Ee1dhoEBISU3L5dzRv0/cdDcD7LzlolAMMrOpuLqxUQI0IdAqVwo7lzlEdV6zQH8SyGgTwmKiHTmcNF4X7AIlCrNZdrgHOSp2NvAcLcMerUzHccJ1di3slIuxSwzCxaQDxbRe16q+gbKP7dWD8CtDdCCxY2fAzUoLfVmeYknMi9YCZNIv5si5iCkKGrfH69NOsH0RV7OpnsAUvFkE7MBIjGrbDrfAwwpdNIDpwnVxEY4W4K2wQTloHCKcDJUA4nSClyX00SYHrS24ugLtRUR8F+iC2UFNUyygh61WUYCZNlX4ReAaoTYLEsVDwG7HuAe+TqisZtA5D8EepsAWwHLAIMLaFdj+hg+Etasx+Gl6qtWhAmMhJtHBdFvVbjKmywwfNOgAxbdMFScHH77tAtt0ZEl1rIYLmiXkTqKFH/5MlP8KinDE3xIs6Ry0eibgZZDB3N/1Mxb8zJV5nFhG3wv9Keu52yJ/FqvPykAWwCMNhIFjowf/X1DW0FB9ajDjD2v3CysB0reJG+87rZaTqi3CsJc9gqWBOQgmL3zeqpUQCyGEPE/WY6GiAAmEs6FgIXjbMT3NxGa0aMWq2iIyxVdTldB8MU1xpTDjWaiqHkK2DYmINU1Zs1/uL+f/RjTZYXVvvTsPFWg4YoTSrvi1xSKfWPwGlQULA0/YCzC2Ha3N0BQA3mfqRylymvAAVBFPfAXWYoIMMUsUk4wq/0FFgg3k+VmiqoFOEZj0jAFiBbT0c2GVPwyuRvAVcH0AWVLozEswO9wD+04eKtfH8CUA0VY/dkwLe5wQSKuPNzw4tvTh4QOTgJfMQvUHBIz2iAkFfxi2LseqdjbBEsPg/AAjjQI4SbxaTlcqmhhTClzcIjqmpmUKNAl0iYg3b8cI74qDuYjBrLVUCHwCuwGKtAY/XTHqB9zcd0noF+ITOXdBitRD9P/F5w6go9+YO4vaT4ajBFPBEbQn8AMxEUmqiNfXJiJcPcHZgtBlWIpbmwjKHVXkUgRtLroeinHaP7geOVnph/RQ/2SU2aG9srEaCcVSurGDm9QU3dvtS9CpGMtkURRtohktJ2TJiDI1g2bz+nptdJYiLduEXeTiYMxZvxUkakJabox4BD6QE5G83sbKwKE5uAiY/YMvFyMHqfmGpxxJ0YsEv93fvkiVwCbILGoWgrT+5Dq1tn8QhWAYlVQ/FmU0oC5qXNJCwrgoqQT2DjdgTSygB+KL6qP4JUugIApgmeItwnXDvMrD1H74gYV6omEw8A78b79+337hC1WlS643YDUTCIWE34dpsDaWgrvoS13s+udG0bJjiX5AkPqnHgldgN89XVd230HeY4rSxmG+wy0z489vTGhiDFP24y/Hr/0Oi0V3uZghVRtqI7FAgzbTs119HgbUHbYdDxsi/zlqJEQ2GvUTy9DjFHqL52ExIvA3xRn+UgIbgeGID0IJhsxLqRAulpcD1SW+6vVbrI0xiQ81LWyNYtFQ7owtWpdBONSJlcC2crthYgg3jCSg2rGwqgmiYgN1hqv+YBLEu5xaNo5UGrD0puQtXIcFaJuujWLoWKBvMVfHZipAAXaEif3jQzYE1pPmCghTjToRNhxS6qMhDFLXB1YClY5kcMrBAn+OKrAOJiGCcHBI6apGSkSPIxYvcCEgYQC2KLQ20/CIOALM5AzcbGCaYt6FqQxbB8BUgWEk+9FElRvBqn4GhuoMI9q68tBHjv1vbNG1BGo3QC1TiAmA0IWqOC7GJYQDy8bD1/fQsqHLkRb40cG5wq7WoaGY+egYVtTOiQbQUe2dTZUKgnUqXSYR4wLNYkofDxMJL/gqN2gMHtTksbDKQFTpQ1GeF9wcopUTRjIN1dNKTz4Dl4JAejHwRXquBM7yDcI8T/gPKNmmvMwIuVP828IgvxN7lfXHoTZM8JS4MaYbSnsLfRr+gd8FRV46zARG45xBsU5mYGofsgcZFcOad1gUE23L4AEt9IaO5aj3WS54eCgWOwim6Be4BadziOaIgQEtfDg8EkgxC1uURu8KgqMtdTFMI6jxjjBNwxR7TwgmQJohszreCQQbFWN/Rx1CkGIOQ0BXFpyzb1biT9Q4HlalMcUI1JZUAf+yoeyEbVvhSgxawhpmHWOlCyRgvy0noJSx8FQ45QialmLkRyLx0DFvUqo0bYg2y7A3xMpcld+B/kgtKiNqUQSlMkIxSVWyI8xKo+eg4wAJw37CcZIrsRiw49lBN72AKTrEUOimmGoD0J1dhH7QaabQ+egqDbI/HEDPCKc5ApVhiY6ocmyqYUOlUGS5DmoKb5FlhVytF9+BICARcq6aWKI+iBtqnj8P60Z5dshb6rmqOQMSb0DWrjJxkerAS8rFMOjs/89uAN5c9RABD77GOIHno/dPJBVR1Q3BxmL5piHhQsxQRQ9RPCgqFeQnHgOMHxRtdR1gbLbyK2JElzmqbycxgtTH4BoIVItoXEYc1QeUuZ5C0hvBiQWv9CPtTH+bBTokxOr8dgiwfIgo0FCymAWqP6o52FbCNEJpychW1XuQoeHeMOv3HQkc7CVOBLscCLcvUyEHjA6DzkhNhrU7JNX4bciFns5XDO2igH84iNhEmJ2pXM2IwAGdxVQlVkUAxPvzi2OoqIobRxzyv01Rm3Kp5XlMNS66KIVb6CnUlGcPImkq2w0x43G2IzbeaYp8SRkVCMBhJiNYFgqzE7FROtO1Z749ISR8aHfj5YUYpvxWeBxoUOoWkiK1l7hxTgJxIxcbmRkBoEpkyITSZhDwK7ipvhzQ6Lh1gM1bA44QbLSDkDYs8+JZoRJkwfrj7Hh0mPuiuy3wFvqWU5eq5kJ/kLP8u68edbHCPDZMVYm7jgieKvwf6BzEClUUtqBvpJYG44FBwgzIexKbBbJO4qfR54SoCI8asf1RMCnZA1ONYso7bjYCH6BJeegs4s1IFAdHvk5UM1rMVkQMW9CbynLCCSeyfK8oQh/dU9vCRA6EyHu2fA2hULxVL4Eu4wNhBoM0aXlYccLArhgq/QpzLKiIitq6IKZW0J05aGQfEDK0qqAIyMHBkMtAgSrsHwtnGEg3sH08RgIxaaJDBeIDGFZW2R8GNjpyVeNTbVIMU3MpI1TeH01fcBmUeeWHrIrs/bt5q415b6F1m3oYOf4GxL/76G5BKLup+s+GOKCA/wToOF3K/IXLfclr6kLpAOH1wPLmHlWVSRykb0xiwAQ/dEAAps1z4CpgXr5Pfh4mU4IqhdBoxFMLYUTC8HKGGivRbDisZQymi0eJnoWFKLwQWgPcD2AI/kffi9kSCBeDD0TSQqATAweQKrGjJZdjsROV/Rz8Aj8VQFtL9WgT8DyfRUEsyWSMqLwpcEe4LCTHZQ1gWWZcayBAzVCGnkBSqfQPpIO/8QWWxzCL0ZPYXvynzO9DrB4JueUEe0W3mJbVDrPEdHUryNkkNHZjRRUVAhkCTE0WU/iCZSFylmsPEriucGc2wh0UPACcCyKjLg5EG50DANaghiP9e7CJzFbJwzHWhqjihB0sHFWIQFN3RE8xC+AS2rYiulo8gzggBxN6g24KNoEmdsJDgR1dMQgVrhKGCTl8vx0jVFKKCFkdFNEH74lrI7Y2aCdlEaoini52pLJYkJnhyw0sgYZebFuBtUTtfECT6tMUADInfFMxFdw09cRUIspzq9HwUfAoioki7gSLAgrfY0AnQUcmrUIsJSC6wHjGmtdBPQ5sAGGFygE60D8z6LtncmEoe8tQUV5SzzMXrlmVKfl/wERFmgpxQ8Bpbce1DuLYl5RLDMPSwUDMgzsliwE5yqdmmhpWHiQ/FeWKXVXq1kDfC3YGRy9XfP4lAFKAjncQh2bLLB7sPotNXONyVw1ciAIAR0OtTdYF1XpvmNIpL1ySAlwNhhgWaZCJegCkisVokZAM8HuYUWnCCHkD2GlM2BBFJLE0L3QtdiAlQnzOKFH3DTeZDychYI7lyqbRiKRyiSzu4WCnBOXlj2H4OrAYs5kDDJohuh25QXddREUrJCR1HIVSxOpPuLXIdWP2WktKFP5bVXgRx0BvrMR0Qxt14C1YnjtYPY7BNRkACbkSNPxbI+GmUuyvrY0E68DfeKYVcHvsgwrMy7JNqhKxXSNkZIPuBYejDUeocod5mO8HdX4cA+8O9i9yoRxXkHpjYmcNLQDz3zOrmK3Sc8qxrr+JBaWdoI4Yxex5DBdhK2iVS6vPXnB10d9SCVyHqDQZaMdNCWR9ouJBsC4JloLCYjW+Ya/aA/p9Vz3xc0hK8rixh3FVE/sMiUbY2OpNhSP/pFeZ/KY/9dK6Y2Bt/LcokMGM/k4tUnPWCov3P6FQxt3t/zqtMnpv/j0KpuaR//9Hy8TS+X9azeQfQ8Mf9leUTRvjsr9H2dScrfrMiWCxiAzGiYhjEjoe/kEJsk/ihDw7v6H8oZtEV/5MYv+d2l9AEb4KiAWjDON/+/X79usvq8yx1/yva8+/wbz/4yq05kj79+vRGif/k8q0tv1/q0Ydc8wXUa6D+/OnNGxtQ/6amh090F/UtaNF7h9XbTFFw3KN/ytWE6uoR4/5F7T1+NP7j6nsopG2prPHED8qexdX4jUpAmAh16E69ApKn3rY2xU/DKJdiLTAQreeI9tzC4AHRRyDJS63B4SCVQwQZ/XnHecm1rz5N4YrUGIhLtaMG/eVpbVD9QfR5Aj6AWNsDBgW9t6MG5IU6d0yOGZTogcmPWypbmBoTTtNIdBcmcgk5uFSqQRDzDV6HjbFSitBlVxiqxgKPoc9FjErzpaVRNAMII6qmGhBMxhtQhKzDUgzNSFMfkX1wTC9KNRU1Ib4bXYxMd+Kis1aUf2DoDRUNG1jbXdZfAjJB2CThqyDKDovQDVobLOKoEfieiGZgvPQI9/YawPr7eFRqKZ7CvX1l2PGcSjRERUMmEwHFMzMoLEK33/ahLMp1h/6u+w2gvnY/zPc/me40b9J5f/vtG7+iwwRrEgab5MhXAwv/L91hSEy+jdbZP8xkycqqg8QA4rV70WNXaBqE7tVIcAbsh25JiGLePgNkmShCAo9HfUyBlwWYX8BrAiCvVXlfRLFM4kbqp5OEcvjYF4UFPZjoBDqjYyUDmGaUEQBv3MRso+dnJEFuAiKxypaqH4onYoQ7J6MLuCg9rSoZG3J4mCCnyGYKajEq4qYadUtICsErQNP6rBUtKZkqoSWxT+nem9mUb8MtYc4pY+CNqBY7AEbO/EbQaXi4WLjv6BmiGgLBdQCbIoCLEiuymQqSdKmJGgXz1QdS5vBtiDOnyIcX5VwFj3jMWcDLhx1LFmQFg8cE4BVvR9bGSUuiCYU2ohgxm5XWDRMJ0JEImoJHVphHoEH94sOCbwQ9rzxtBYKWN7GCzo8WwwL7Xqq7KyogeiA+MHSLZwKndjGXEDG/EqqQlJguTigVWEBT2aogsg+3AxL6ypPCSqvaKrZWLmOYNkdBXHDrtkAuNMO2zMdlapEg/5ljivydFRFqthCMCbkK2iFArGGstYaRf9NUIhElJERJBzde1j1NkE8laajy7pAluoRgptoasAgUcYmtpGs6FhgMVfzzMf2G8CSR8BTGdANbrKolwJ5GxYaZhSLvvE9t1VVwjhIW671maGSzBThfjZW+/Ypl5iWtEe8kKNAVsyE0jlCT8KyjdiZAKvhCMME1EukcqA2qBeEfBY7xagbglVabGh/IBsvYI8CQky9OJTloOYaLv8Es1ZoBRd7IIuKkR4DuSySBjnrA4AHEQUgQfWVBZH5ZuIbwaiADtFQEtxR0zKhRgXW5OJXnWDJ+GAiqE8DI8Jykl5QTJALage82pBXijlC/rUCgwEaqcj3aCU1TZD01FZLJnD5weyjKqX1N5eM5j22jzKlTRb8+uKbHvzQRZGjfnPJzQl+SrDdM1SYUb8PFhg8aFrYdzH0InHc2lNYNRJb2qvhqKgf+3ecG2epUDDUwiwcosrxg1j3ryMm0dHY1sOinC/WqJfFp0FSQZtyx4ZDwu4l6LXBa451upFFYXNhAzLQTcg9QY5qWDSmRTfQlC3qFoH04JzCuMi0HHROQrIrgbQ9bISCbhQXwLZYOdDFi8OA1sDWRrvA8NA1EmopDjN1oUwm9vCBisEgiWj0F8CtXWYE1UkY1llhKqc5OCKsc2aL8krYkA/KKF9y00U9fg9rk0KJPTdm4qKEKCCdERcFuuQfXolyRRFUeqEq0sWX4l16KcH1xgqLolSiBfhlLnWBkuOdhRTMDmZmEKUxuJhfYoDXEMTxH1+msBdctPvdOMXSg1UiRP8S5Ogx2RAA201DBpoHNc4pVsoXVwRTmJnS9GMvCmjczCa2GyMpEGLmYiUbx5CVlQilnqNPh68IUjwYNm0HP68FlaHVPhiY+W2iPCJYVsdVbXzgooP6gXzQluXW9RnZ+oxMQQuaFPKgeqaNpaJgRh7BYm3gqUI7B5g4Zu5Ct1VXdiUD6nJEOR3RDsBBviEfoZhTChoXzMjDHCbTBDWTa82Q6m/wTQbb6X879yd2TuPM2AEItg1gfVBfGNO8sdCHMrHF5YfqKCakXON+yVqjou4iKmTY7RkqF2gqaaxd9Scvu6vqPsCJub/F0kyKK0RF1oBNsC8mG6EyjUPBa8TvPhZNIw66l9TCKKHC3oGII4OayGhG/I6bDslB4PXCovYo1C/Gh4gL3YdENxhio2GFgTdPdmTwM+XB+obDNbElKrgh0OEiWsfEyHEwk9GSABvSxYqaWKJflENwAz72Bw7KdYgmRl3Rg091IAt0hOCgIFaCJ2VB7yIsnBD3mAjk4YOuKQI9vqQBVuuhpwFD6piZAw5SFxUwborLxs5YLZ0Qy/gzioLf2MfS5KsNFb6gpIi+REdfIpOKEMFvwVCPt0AbuhtSFLNCvGLpayto7BiWrq4HlY+AtLEjEkJSofHQxWQ5c7HWpiNbb4fHtAys9GGJJvFgNeCSVKsMrDXIVVQIqvw5dUttIgUHkW3T37rR2DrBUB2YMSsOlIuA+bt2kH2F5UKAmTOsPgunhCULDRYuDExi1VhLipr/bey/dWMVSwRRg6uN1zVSbGlM21Z0HCFi2ZRlCsRN4R+BjIrfbvWvKZk+XAZKf3vOb+ymS8Vuct3BvRgnAy4V3RMY6UWzb0SBXNFDGvVoUWghKASMLnrgZZalgAp612G/nYLxV4WunxAMepZn/JYhQYiQu5yLk4uLW72DHOjZBopeWapGyCwKtikKLeTdBpT9RSfXn70cnmLdaMk4v305xNU3bfTm2helVNsTZVnwiERBauyPZEG5CtFKEm3wi5jXf3U9MaIotBwo/IXlT0AXdUH4QqcDUeD8oquL7cuCljo4TymUTbWQ7kPNSbigxU6v7K8wNC9Iz/dpxHN/a5FQnAwtvagS11HeNRv8WKCRE0QeYbK7KdQHB9pHQ2dkU+QmG4i+sBGtJmIdnqt7PaD6umNcqurJxSaCb+AvAG+1JzsaQSQPcqdB+bENiMHx0e7nYqpS74yUSFqlGhUr5UT65yREeneNpKSkpndPSEpJSjAMsxJ/JJKenOF/1qVbRlbvpBz/4a5J2RGHVhoyq0ckKSWSlT1mRo+M7Jy8eUmZqYkZmZH0pNTE5Ize85OSkyOZfFQxQN5r3QemZlarmBLplpaUE5mdnJGeHknOSc1Iz5vdKxLJTEhKS+0bmYm/yluQlJmZlpqc5H9fvWd2Rvpc/nxOJD0nIWdAZiT269m52ZGshKTu/Im8N1vwSdRvUr3lgJweGekVSSJ1E40F/ROyc5JS09Mi2dkJaUl8PjMz4ftl+heZScm9+CAJffmy/JnNxB/P05/JyM57uVlScovWoSGTspJ75L2clNXboW/on2flpuek9o7kzWrYMvZ14svgdVYiIYlsYWjg7AHpyXkvd0tKy44sDv04kpM1ICE5g4+RN9WYJ/cnLZLePYdPhdt5HnslK5KdmZGeHRkxk/8wJzf7oRn8NCKffTKrNx+Cr3Rai6byGHdeVmpGI34yeSv+lZXqX72KrSOZ/tWjnDhrEKuGzSo2btZmbkPxojZxD2Jhm6yk9Oxu/DDukAc/K7lHbnqvSMrshnGPfJl/5Hw9/gKyMtL4h2kZ/RIyslK7p6bnTf3niqivI/0zM7IjCWLSeXM7JNwT6ZMbyc5JaNJoLpJfAtB13qL4VP2GeCgjq3tSeupAmHreCqCffgP790tJzk1J6dG3X2/DG0it1K6R3ORub4qfZGZl+HPxB+udnTedKyDzxDfyBGfz/TISiJFgkLezc7JSkznB+huSmZGVk5AdSc7NSs0ZkLe1Wu+k/j611ubMzu82b9SsmJqenJabEmmd27VRRm9+xtk1K2ZmRdIyklKW9k/I4ueSlto7lR8v/DcLl5ydN8PvrrUk9oGcjF6R9Oy8Wf7X/H/v6E9kRfzx/UUEw/iY3uXxH5JDUb8jrWsvDT+VHdFnQ8ze2UtiHxBDvMw1jt7Zc/vLHySkpuRt/Qf/o0sKcbp6EcfsRrq5SU5KimE5vtRLYl6y1S2pG5vf8F8JDZOSe0QSWgMZ581qdG/z+s2aNJzdmg/fMCOjV2rkmW2X5+vSJblbl669a/+rTXbrHNfs7vU1WyY1ymLtGzbObJzdjWSlNE1OGkhaWm1Tk7IaN3b69OyXQJjJ/GIOFksgiUYiSSQJ92SkZzZNbmUPuNNu06pdywEdMu7q2zDyLy+rSU+zsW20v6t3o/qZGQ5XG9sPbNivSZNIstUm667UJi37WizXsu9tkNRrQJLVr1Fqs0ZJiRm5dk/XatysOz/QpJwetavXrMhpOJXvTG1x0RL4RUvAa0blNatZMQXIoHZimK3WrHhnTk5mi/S0ATX5/eT0FOH/n9Q70jo1J1K7eUZ6ZOs4vge5fVNTaie3vPveZndlphnUbpjVqkO/tPZNGjfqc9cdHXNco1ezRncntXDatnQbdXE7dtc2gdsWCYbYBx+kAfQTTP1PzmpRhwSdbyS0yPSvHT/H9Izs9NRu3Wa2jmTxO5Q3OzktIzeFS4isyEx+5vfUvzfvTTfZS052kyJmUjfPMhhJaMB5rxxNcZkZvniZ0TUjZcDwmf7NS+/+8WUF8k2tMOrqy+B/+dq80PSrh2otnrnvTPvlx5of/Gexp6u9U7pyMS9//mKD/jHy6pGf3Dw85cKp+0/n5LZvUfaBuxpu+vadTS9dOD9/2PlTi9ce2F3j/JnJw84PafvByUMXTtdZdv/Ha1ZeOLVv2IXNdS+cPbJ+2IU6F1Y+e8fYkos7HUsctmZYl3aHOpEL/BcPXzjz3YWE0+vrXrhnxevv2wm5dR7bsKxinym3Fep97meyr8qpB3p1bdLs+UnHBve/rlDZXZuemdT8xLqUj7dtaNN+S8cSu4pfVTu36bCHUgvdvGnZwxMmNqpe+tXug67Lf6Dv4TvrXln4m5J1nvk+pfnOz8uOv/Zor/0P7Huqbu1TP4ws8lStmwcu27WYvHHmvauWPdNsefURm168bmXylFpf50vt2eZXUmVegR+KLHx/yQPPrao4+L62Fdfn1cpuve/9+7tc8dNHG8tk3DRv3xVTkurNsQbtObikco8clnr50GuL71iY1KrIia/Kf1Nq0Q3rOnYeeOTARzUa7Z1VtNI+8vFPVXuWHlzixJPnzhx77oR76JpvtiQnjX+lxZg6q2uOWL/79Q87/zRp2L7kegvW04GVvlz73a/ddrz/pfsxvTvt+rEf1b7+/PGMa7c0nHPqnfxTRqx99dHC6XU3r9o95eFft0/5dt+M58/1LjE5s2uTR9/a/8SBb5feef3GEXd/MLzms1731fUf3HFg0ZSOrTefK3v77FHbBuTe8lmhEnT56RVz+66lD/QamVunzzFveNuB1xcb13TUJ4P6ls6aVrb1ih5djv3j0K2PPp+1+pX1k+at+nV21Sk1TlR4f+MHiZOmZ094r3XRIlum39Orea/XltW7/urugxe/mHdkRM8S++dunzjlRNX13ZNblfv8/E1NNnw6PbnZoon3P5C15HGWV3dTtUJ7rs+8ee+VzVaPWr+qV74e59Kq/Nh+87zu7e4v9fl3v8w4veizoisn3FvwjeqnU06trjx2fPKGV8bfvHjhW7e/POnV1sUrHdjQ9+i7O9cs6ffcqnve2/zeex/1eXDoz5tXF5+Z9uarU6uvHjhvadWHkm+d9MELk89O2NHsxpvvXVjl2wln6p/tUKtwxXzOgvk27ba60uffdKq75fqNuWtvbF129s1zO+4/eTBv7N4ZJxd0r14ugy347h+by6cMuXFFsatGlvq47BfHWuc9talRyjOlveJLRxd6IrvLnnq15p1uMu3aKger7aiSuOWr76wjnapc6xQfd2XVytuHVnjouuHD97S//XDS430fe2tZk5FPn2q2df1bL1ft+fa9nVI2/tJ43fPjPm05odGsvktnktrt37nsRVq1T72OazuNTo9U2/jaj/fseOfL/qsnmyMeSLjvmicWje+/rVHfkYv29pyytM+a7EmfVL58du5b09Pn0lNbui28+tj9tVpOX/nMpHHVP71s2Xqy44t7Gt9+a2qBLYfzvf/x8A/P5XzeY+rEMVPv2LFv0R1v1G72SI3IhsIfjbpv1dif5xQf177s01s7X713Yucj+e/bdUvhyH29yg/bMuaXQ4MzZmz87OY+Swtv+iIyeseRHfW/vu3D4TW7WztWVLh89/wPCn7z7dzVv7x9e4tjJ9OchM8m35R836QJA92bx9Sf+1inpYdH5NZ+ZkLtjR/NGf1+1Q5e7T1FWtXvVH1FcovxFQ7n7D96XbXc957YUODFwQOPj3jytu43fjBg9UeDOx8sWPLb/qteWVY9f53z+zu1+WehZR9fU+tXr16+u71u3y7PuDL71yKvPzS3wfxXi+XMa5JeLqfHwht7l+1W5pbuKz6f8cuvCx577c1tL2QXnVhzS5W2N418rNrBrZ2/uOtYg/Ld3z/dq8OYzWfefugftR+/8uYh39x93Cz98dQ3f3n7nzMHb1t7VacVqTuLzqswvsDoJ1I7bzieU+qDR+b0GZv6bcqcrMwVXXsVvXdXlyFdLsvMyPgpwR496tqP2/ev0qDsO+ljP92Xu++6KhVr/ovNW5vVs93k6zbU+dzYNKd7rc5phb55bmf7DePPeJXfaLOmx0tZNzYf8VX/r9tXK10+58TUnaNfavZcsxfztZlPC688d9losubyw68n5WQ/MXboxx0rvptYplbPMnu2vUjyrBI3bhu+7XjR53fvXks/+cn8sNWxGefO1hpYrMTL/T/sYFRr4VZuUmBz2x/3NFuy8EjVg/NKPn2i993VR00c8OEtRR5d2q7zo3OaVju647IG+e96YGDK+b0Xvn58doE7qtR+ZeNdoyZ95DVNWryq9I77v19dtu6RX3/dXKHfyOnZ5Te+8eTEXx58v2fq+Ntqv1TytWn3XVn5u5rTXri+T7VpdZ488OLOowsb5Ljdbkj78s3rprZrnd35YOurJj2UOWVZh6Uf5+vyQov+7057r9OBJT+WPn9dovl05W97T0k7tTzr4fz/3DKt0PjNT26s1vbEc0uvzyh3/Nf0EQ+PGbfol22lm3+Sv+9rj+zPbJZ3rm/db9/LeLNzzjV3G1+Py2+3Hd6/4cpaBYtmlF+88my5deV/bfXlw32rnJw9+uGqQ699utM9zfJ12Xb8yO15RR74qGTBYQcmv/HVudtueYM1v/JY1u4+uV26VBzSZH7Ls8en3zvytquee6zh6BVff1H7cIkaN2S2qt/hjZOfTlx4ZNMD+6Y9nT62xt4Pdj/3XNHJq54f/Gj3Lm/kTJ9RdEr+c5NWJhU+OLrTu+k7ip2Zemb2vpfq2Z8Myqj4Wvflyevmzyqc+m3XR4aszbqw/lRepNXu3mWW765/R/crvqjl9q/76tuNdx7cc03PSunXVE/PyDi94tDQfA/vHXLXnlOn212dtu32VaeXPn6q5cPF863vuzPl+aavTa6wIDVp+I3dlxc8MfXT1je99UO7t/s9s/+1rS0qb7LvnLNjeIHM/HU6vnbT1IO9Rjc8tn3yqdcbPvjPHSuGnHl70tiXz75dL2fQjyeXv9iOpCafbTTL7PjtZfPar9swKKFe5VHPn559aOC0746Z+weM/GDypHuOdbWfbtLviRr9ls+p/Oynt950JZue3nPimZkdd1e+L3HVTcteHHH/+l2D//WBlbmgHKm8N+eFG34YfDRhYJcCDdaXPFOt4VMtyzVssvqpx19c3t34ael1e5aVOjr26E7rWPFRxY7tmeI0bvt1iZUXiuyatexA7uslP12d/xl6tHrpfbV2NspX67lNE3a3HfT4vm4vnF5Q6mi5nd02Pjfsk3ql2mzZUqzqJ3e3dtstmr9p9KCPnnrdu3no4UNX3JU9rOH6dZ9P39Tq/XzV6rx+J3u/W7k3jKxJU453mD41d0Al84aO107ePO22r67pUbvTgcgoWvXVBT+We3bwtY/df/me1V+PfaRjC5I95kzRz5YOvf6Lgs7E2oMPXvt96uGZAytn1Wk2aWuDNz5fdHR52YQWS1rMuX5vvwLfLrWLTHyx3Z58W36etLzI/tu7jVo8beqmN2e0PLWk2Wertzdr8/XL/T+Y2qnJ2fkrfzjW9Y7Dp3uveqjN3aM77nqkobtxUVHro9uu+r5U3xtO3Tm8xJik1o88eMsUeu+N1cpXn1Wp/qmptzf89Pm7x9w6O+VmlrGrQ90Jueumrd967vuao2+db5buZJYZWPKfSwvNb9ii0d6yJU4s2p/ZodjuZiuqLP5h5KYyV5S89cDbb9Rq17PtmW2LhzqkdbsVj3+5dI5x/r5qY47lFqgyelXdzkd7GI0bPftGoaJv/ZgyptmGiq9UrfZE+vvNio/JG1uqaIVReVM2PvRxzuKcNXXLj5/d4pNZ6d7jn3y2uNO0kavaNus7fNbwCYmJW6o3z2jUr+n0h16rWiil3fihK699auTVZycMbPNGpZr7jn/Rv9Ko/CV/WryGdS/sFira6/CUUsdHLam5rf5D6ZP6f7j0xRdPldjQ++HZa0cnr3n69IRyj61/sHyT77tuH7N/6OxeYx6s9t6z3c5MWmU92fDKgydTX1nc7sDzkR+TT35fxqnz8doXj4wdX29AoSuW3tHrnhZFhlyWU+2qmmcXTP3hsT2nul5W95cbdmzqfF+LY0njp81r+1xKtTmjPx209K0pK0uXSRvVakLdt8v1/KbWrjI3DT3yxrAHWL4K3tr2ddl9X3d86OqX2q3a8uSm4rvX/7inwTu12qYk5ltV/JHGr31y5rMtYzeXHjTz6TtfHvNw40czv21X+cM5fa9ccl9GpUWb98yZVXvHtk9ePnDZmU1znrrqlb5dzm1tsiFzZ8Nmi268usqQcaUaP7yjaHLzSVN6f/bNmPUF6u9o8cDKJ8c92qX85KGn9zy755oDFfZ+PO7O9Bln1x1p8NBNzT5KfbDL2U/M8euOjW9R+ejTVyUM/i75Z1L1mmolTox9fMizRevMz+uer2SHMtOy6KAvLj94zcufbGzZbufmgc3Hra6/pbtZ+Itje8iA5W9lzl5X2F43K1L74zHZI9LfLZnSe/T1u994+63zu98u3u+WWTeuL3Vn9YYF7xiztPbtXZ4psGnAPX2K1Rn44Vv3V3+IZj+14tuyz1+3tc+MxLF3fziz/MeH3zzar3Cj0Z0fGFT952K1V7+z4MYZ9757cvadpHT+yvW7rHi/Y9/sgc+t6TjV6frSA/t+KHWM1lleeOkPHb/65IdedXZ+t67B15uum/hV8ktHcq8tQLsnjTn4s/cLObZu7bZylfP3arhvWv0T7a/buOOlvBPswqNjvZ6/7FlccejXR1ae/fLry/e8cXjg8SODapZYefb99Fb2qRkTrn231wW3a+9PDzx/ez/W5vMhpwrXH7iy11M/fP3gK6k1dpYtvftIN6dg7qBlpdq0Hz+09ujJsxbs3PRhkfqlNgz+suhdX3xQPl+DIldVvTCuZON755da9M6Zg+8MfLrYyV9Z6fKnry/UtEu/jV+8Xe3qsStumPbRmhVTGt52X49xOyaeXja03osfXblh5K47ansvdB4+6/Yax755ad9nn48vVu2zbjOGXv/s4F9//eKetNbzr2nx3b71RT79fHGdhYdfnMy6snp9k67IY4tHN27fp83ZtS1OH/7++a+Gd77u6LHGj09be8u+Ckuq/FDmQubGbrfdVHzv4AP7Erue2LPt1MOzP2z7zenMYYfXPXZg94R3Zya499ZNdGZ1qXP5kvv+MXLFmJJjUnrcNuPDVbcsejL5gyaJNfM/U+exR/ePX/9O96an+gzv9lhOpe1jFkyuvDF7XOtva/2yqcTZgXVSsgqs3lFpy+GDW5OveD//hM0fvbT0kZknjoyoW7Dt2w2av3Zux4GrrBfq3T/Lml7z3Qpjqo4afXmhmkX3Tx24a9TtR+78vH2XBhtfWr1kx8pmre4d/2nhyS12lxg7fUWTKVubP1zts682fTfoWN87iq61imW0LZ89ZPwTv3y1r/euXqTmmgHDc+alvdJvW/69R0s0KPPT0yc3jJ43pNauE0/WG7TO3l8urWOL9PuqVBlW+DZ7y957xlR/puAPpzaN2XBv+05jGj1qDD++rghNK7L+/Lkvz+xd9ViHkpe9+HDdG83T6265eduNSzLqji5/7uSENtNu2LR7/ORNXwzdOHTAnrVb+/S/ruWKZ9z7Bg/LqHLo5YINzl39avmSt1ZaPbvkN2/eYN309aFDE6+dNKje1+uL3rtw0GMd6Bslth388cbz/XOffPbZOZ2X5ls18L4eXNTsem/7XcdLnLhpzcoz3mU/Tn9qd4+T/ccemFfg3eYDpiwbkPz9V7vbjRt27PbRg97/9Kn00qvX7y191Y+5jz1fq3yn77ev/6XmnJ09mo+u2vB40nsLy5Vdv3PG6Yz2L5yY8ETxm2qvHfBORslf9jT8pYhZudPjZWj/ubOG1z5zasEvxa+qeubdKY8tGped+GHu1PO/riqa8OWY7SNuunm9l7tly6YCE6a//P75vUcml7eGeUsOVKj7/Kij757aPKze7ty9G6oWOVR9TGqLZ79t++iK+Rca7j655pYzbZu2690ue9KXcx9pW31p/+3Np51of6hfnbUddqWU+ceOzquuK3zs/vfeO9D22N1PvVCowvYnn/jwmZv3rv/x29k/f1Lip9LjP544u1y/DaRpw3seH3mDNWZwqcePtSvU6ucfbjtRN/2Jnt+nfd7rY6d2k3aN83/y6YJ3zjb/7MdHV1zzZK/TFV9/3TvsZV1faErTRUe/KVCSDj52U9mptb5Me63tgApzN1/bf3x2vTFZH3w2YOdPVtttP61+umnyB/vWVG32bu1IjdxrWxw537+rl7G5UbFGI59/ISP/D5unN/xhk3e0deUB5U5WuKXwzTMzPpxeq0yJjCozM/uUnXfuzgLmVFqEbTmxt2blZrfTzAVLK587PezOEs+uavvsc+fKXdh76/VDjidevfPn4QdrtVh+yvHM02uX7Tq9btjAEe+cG9Gt0NfNCi+bXuRAlU5f3d+20an+i4488vqmnys0mL916t7vdy+4rGxClVZ7Vpmzhlirf8hZsubhKR89fuc7VomTv9ZZ+3P/zet3rLpuY/WMYs8WXjZ0ScLRNi+N+3HEwRteODC582uHOqc/krx4x8dzr2/y6NDz+zf+snHguEpb7yjQa1Da5lca/bR98pSCxZ+cfmLQ0b0nFw6btrTPvJO1ap0ZWmPMmvy1UqZ90Tvlu/Ltv+vToE7Wi0+3OlbuyNjnto8stqnFTXX2vLKv5uGx9VoXKH9+xaHVRfs5E1p90ODHn3cNeqjB1Ae33/zujHqjLqva+sir3xxo/83977ye9aPh3ljqjpsfPjJkyt42bx4qUf5sm3tuKbJm8Jub7im4eUybIXuO1Ku7c8SLlcsuXPn47oGTDpUaN2TmwYXHq5QZu2nWK/W3T3lgS8qOxJIrh+ZlvTeiyYX9B/atH7Kn2NBz9++c1Dj18lX5tp07e03GbXavb84ZxZ+snG3WPdu7xsgVhYeULdW/0/q6K5vvipRZ2j4jY920e5s8sLFgYp2Pn/p06/68qisHPD+w/UO9bkwxLr9+YfN8Fzr0SX9o5YNND4zbMu2z+s9M9gpv22mOSL/80f7bZi273Sid0SBp+NHTx/ZkHy86xOxSJ7t22Tf7Xb5vx54GbQ7k1N9xWctKdy1oNvracl+U/ZzmW57VZcP4fg1blHiyYNGvPny54z1Xn+vx3IZHi6Svd4tMKjfZKf3auMh3jUo1nndDwboXvnknt2CllHWvnr9vVof6BVcsKTpkek7tYV3qJLY5kFWyUtOmPbN+eTL/3ZtumZa04OsJc9KOzf1mzZxh50+Xqj2jwN5tTRa+MGPC1jnbVl22+ufkJae/XnfqbNW2hdrOajyS7X3ticceK7O04p33XR2J3DL124azr9h/PKfIR97Tp1KSx70/445yO1bPntji01ORKQde7Lq81eJyE2reevLXn+Z+WW6BvfvGjtWLXki7sb81Z1HVGWkbp2Qsv2Z/67JHth/o3yq968AZzR9bUrnDmgbDE5+d953NlZrR5ze9a77Wb0vhGWW6dp5eu+3tjb8Yf9X4w2nbsm7tkm9f8yGRlT+lnqxV9cFas5NZu58Gd+66/l8D2hSgWydNPzmmwsPnVhQZv6biq3XbLRtZcc22q+6tM++b0XOLfjOrcU6+6ttLzC6X9cAtXe6e+9aQ1fvObV327uK6XWtXyGObz6++4kCHST3u+3pR+fU1Vz1Ybuc1Hcbn/Xh4xC/ulDG7Jy5ssfjagYnpqfkL7r7/ideLnZ744sY9V7iNyjvPHRxbZOQtrGXvnyduGz5jWt2V9y24o8iZVdNLDTu0ssG4Qu9fk/HK8J6nq7S4LnHRy4+u+WjdkfNnH0ycWnN247bti+zIKjplV4UCy9u2K5Px5IzsfJtePXD+bKcfZ3zknD59g1vt7P3NFzS4a0Pt7daKu8rkO3fWbHPt5Kd+3r3n1Qr9rrA3dbnwcIHdh7esX7+9ZcVnT7BpidbPrVrd8MauWqe/X/h2+eIzLz+9v/ix9ZXsq45vGNJ2w3UvVWuz4pB37/H2RzdWLltg8T8nJ0e+n3Lo3HXHd846uz7jweqTi5/c/9bJUcMGNrXSOq74osjbPWqOzKkzc9gp495G8zfsGny0dpHsCTteHVG37s1fdn6cHSOP1Fi4ecPY60oP2fPCe6zuiL4/zt19KqlY6SGHrnr/WPdBo2e1tB9ZOfT+5QvXrjw3qF7xHYmvfss6rh314Rfj+m2+//3ujVdM3DHknnq1Xlj8y9j5c0+yug8+ULCzO/RQkVnntpd48L3XinTZNfDpB/oV/GJ/rRU/cmMhe2nivKrPT/8qac2auRMnnXIerv9O8UpsAd1a7qBd6srKH+xr9PbZo6ennT+6fEHijbt3Li/1+eFrPjjx/wEVQOq/PjHkTDsNB2T1Yom/+m0KUXotlCRxa+yDo/WzIe4s5evnUqcYn4jFuZKgdnu8YfsOAxo0fnBhG1xZCAnf1+w7P0MjPhLsu6OYz/YkXwHtGoK//kT+vd/yYWM4Hd4C+Pl8ve8reNFkH5YO601WcENUrGm7/frho/lk6pKhaJf8DwAAAP//pJvJ0rLAsq7v5Uw5EQIilQzppZNCQMWZICLYIE0VUBH73nfw/Wu4RucMjSBoqjLffPPJMqeelsT9Wp8BlW+/J9Lqv36DnvDoejlfiMR9on4QHucXWu7tCR9bojK2MR8vOMU79/B09DvqY/4Xg9o4Aw21h5wsoqETJT4P+/DneHtDeN+vBVr1DQcr/+x0bRvDppspth83x2eiwmWQEeioxRo+Zwcfn+HdvCScre+zxleF+mM04Ci7tw1Z4/Gf/9Jgv2HLSfDkfzzQmapTP6/5hvTq7dBg9UNknddAq7xEGtwFwx98rybwHZYRY906+czd95Oiv7YEO9HXRbM7HHiA7rynNjdjgxjaECFUGz72UsU0ujbBH+QetOfKYyu/fdfSgCrHuFB1Htt8Ls7TGVZeS/W3WCUzZ4OEzofcoSsvN1gLo4z67+8dKge4G4tU5DE87s2FzHKtJNPKq5G8+5WhEBx2/fLHX/VbGGJ76lNfuNkOB1tV9Mjs5U3OrIDP0GeJCC0fx5KxoPql0MUfMVz3r5k1TomQMZ+fa38k998HN3JI0kaD7jeS3rP515fwf/5OBfzP//1/OFEg/PcTBW7nWPTqnyNGkykDcEWSUfWaf/3JJW4K8b0+YLXTOp+ed/cOmDG79PyTUMNG616BKBQ5PZijl/cLbc9wr1Od7teJCuvDSUVJmgchaXeYDXkv6dKjJ4dQsuZHv7ytxYPofdhjd9wIebvzdhkURlTTWJMUNrqiIwIk4hubh1Ptz2KexDADc2nge67PNk0cgg5DjjV0avyZLWql8M2O4IPMv41Z0+8RdG+dJ0cvs3x21bkCHe38gL3T4+SzU4rOsKWzTZ2avBpSV2hAydjMWPOrYz/uj16J0tvZpvsgCtlo7M4LjLK+YOfsaI2w1zcfqNgcY/3JfZu5+DgE+ur5CfmgODdk3u1lsPAhoI5++TVLuQ3kbYSrEPsj1xikSUwJJELf2L9nlUH3LHjBr/vuqUn7F1rSAPEo1nYb7F6VwFh+z8WU+emrU91HH38q6lOlHBTliY0RZwmL8UcC7ee4WPf8RzLenlEKU2TH2Nf9J/vZEckk91TH2K9nhS2aly6gxMzEbrxsjaE/9yVSc59QTYhl1u2vLoDemi0tFyPoJ3NTe4oDUY+DE+X9cV/uYlD63Q8Hl2nwx3hDRciDuMbhoKcNe2yqUrlKQ4QP5tglI+/wJkxP/0LdM//Nx3nMPNC9M8b+rpebqT0+VKhK84pV/iP4/WidavnhVXvqeF3vL5s8JhA+opbayi/p5y/PO0jVDZeGbq4mj67QF8XJzTd2ir5IFulWpCjseUS178v358fz/AKxCHjq1/MdsWMfVLvftdapTXzFYJHHVcgU7S/G4qw3y1syIrBy9iAonF9oSrJbCXcipdhrHbVnaV07EBX2k2z6l5IP08VaYI1v6n32TjK//F8B6s3+hWzgvsZQ7SUVeDAxTsL2ZQzugyuhfM9JyMqLj2ZzJ/PyTaI89v0PRoKArAAMNyb0UE59s5RvbVIEy+LJDxVJz66l5IEFmzcOhfDZsBgTCa3rRxZxO/jkEquxssO7HlvaIPoTCTUTXj/ljPEh6hjd8UhH2hJRUr8zpSdrPm6w1vBEyEvbmKYXfNDdHhn5COfYH7l446Gxkg9Uf1qFvxj3SFUO0dkj0c8jaLDFnsCdyClV81uI5qZPbmC77Y7iX/rKJ1y01e6RdCNBaFj66cK4FCy9lSnuionNTvPsQNkUFxqYmtlTrws91ObNF3vnTG3E3paq7Z3VDg7C18NgB+00QWEPGN/fqGqm2S05+DSXGtuzpSJ2v9Wm8nruROrs2mcynt1hgGUZTOxTmzZdEjwmaHj3Tq3+MLJpPIyq/AApoSdPjNmMfkMmn068RN3H3mHU/DU8OBLP0fDkbNnSsJssB3IdYfzYvtHipRce/JAVIT/Uar696lyJuCNt6MEXCVsS0YlQInzjMGr1Op+Oz0hWqk38wAcS6ob4DNMKjbMSU1e5++iqhDUPw5EfccFzdb9407VGlyn3cHD35WRud0MN7+FSEyWJBX+6T1WGTNH8hjxZrgmJSolAEJ9oKISS4Y/BISqAcz4Kxo5NfGaBoSuPF13CAUU+E/b69gPX/dWlnshBs+ang9rk7YRK6qtoqLm5UgaSbbAjfI7GtPPmDAKLFWSHf0syUZO8oDlEJdXZcDFoyOscvEPiYX15eQ1L+XcMrCrvNLhMgSF4baxCdHc/2HI32569D7tuJ9zXF7aukzEvjdDC9xkA9lv+k0yvPRdvZym+EKWaG9Z9AbUI9u4xHLxkRAzt+gyuunyh1u19a2YtWoeI39TFKRxbY1SjwIR6IgHVfu8mZ4/HrQCnHRUyvvwrmjPS2Ipw8FNq5vKARv62CdFNGvkQHkGcswO9vXYb5XKi2uHpoiUqpQFGpXjgwPd+/oxcuQRPpEAP4+WD5uoTcjDN8TqhzdRm6sTT7U9PMK5dnLS0qmJ487UZJvPRaSbzOJ5BQCqh8Sl7NXTynpyy/ibAc3Wz5PlPhb/v8S/mJ59zSx5QITxHsrF4s99GHymEzH1SrNZvg7HW3ddQpJcvNo5+yVg1z60Sd3aFDfON0GSLzQDH3FAJn85OIjTXKFaI/bZC5XhUfHqNxghJ1n1DuNzFaB5m3YNqm6r40ahdQ45GbsK+8GxS0/zNXtPlsPzFF/2rV0zYuTZ4P/uF9f4q9GTb+g7qeTMNu1Ufx827PP/V+1D4+kozHVmhomdW29hYroK/WLV6g1jsWHhD6wTSSW4tyKXiU+xxWjIAH5hAdDMhYl1aDXMvhIMK8QtNrPKbMPfy4UCmdoD1g2UYVLw3BXAnNwpn22qaKfv0H/irTyX3w02fppdI3hh6Rz5uM7Hhrvcf+NTRHV824Ystj20FSrTjZRwcSx3xgRUBmNc8oQF3nZrBGcd4PTHVh2JzUtHi6ekgS0c7xDi+7Zu5Sn0eTksV4Oz++q7+RuVBL0HHKonznGmvRwZsbhtaplu7oTi96rAsxKRmVNpsrJ5Li6SrOlLtHh2bxcXfEnrBv2Jjf6cG25MpUqKdKGPtldsNg+tcAB0Hi17a1Mn5mE0mbF/HHXbb1z4f1BO7odLdbyhO6tSYVNG9gaGdcSgnJTC6j7kXiJdBpxiZpj/rKV+CPrxvRFzXZzk2liofacuI+JPyfmav4wDN9uuFMufO/QT2PgYvyCO81sOc0OgYI9JEV+oYD9En4qnhwCuqIw3T7adn8/NUwH4WN9Rp3ZgJ59+5Rbebkv/V93yKP26MHl69X/2oZ0yXNLiB+VY+FBtsSMjoV5IS2o6B83tW+RMf9hkEWtTRPA2YTzhROsPctC+qn34CWzYPqstYe/LUiIwln/UUCpSL75A6aXZjY+NbGXwH4oYLL6YG+fMD319U0KzoIZlG9OSRXnku1uBOGbPDOoK9eJrDp4+rZPjedhWEvPIkfFTaaJvy7+jPr1IXFaxvJenmwNcxz1TfeGOz6F03oSp+B9iWHmc0m9cXD3YZD9jl3lkysBCfkQonnlqcdUum78Pi5bW+YNy/lGSOXD1D1lSl2LHmTTO086jCUZqvNObF1F/rRYXwJ26JGJE3GvH57iFE1J5a7ubSL0V1vUF/E0dqvHqrmT/pxwOVnSNsRlTyOzB9R94BUbFWZqW/LLsGoH+cHlQrHMsXpeFSKqF0DbFXW5lB/Loe4M8vms2Z+UMlux6S3TjBZh1++tZ+VR/FG79n6lup3W+PV/cmN9p8xFZnPXO6PHc1GIe5ooGx4Y0h+zQvpPYxDUfUq4n4d3+/1QwcrPo4h7HKK9NyuWOd5m80Hn/ZDY5bkoYCLR/+TFqfwOXiNyEb9j1bJh59UP6uXLKs/p0qQ9Shdb3wgZ8LNglP/QPNIS6xxpV7Rg80fsH0C7ZrvNrNbA+tCbdDaoRwKJZ+ycxjiX4HxKgfTAFjJ8E9y2izn2j4+oTJpLXxC4yvtg8/8Nz7bGeLARjeiVGLlhtjnm4TB3Kc7XD4LbX+vd0IH1BVMGnEf07+pNjNGfocLWS3+r/h01ZnMPpmF76qcsPGbz2rit7aLXWcvsmXeR/zytt3C7yfZ7vhnV8Gu+qwybBT5o2//J6yjY4v/0P3Ku/02+LLiyAaJibP9XvFTncc2HP5ER+euyhfRr+VQL2ZP+w6pdL36riTkGvlx3D4VYNP9LVjVr63LZFt6crmjRaZkFm6ErLlKhgjEwse2Nw12Dli8V88QPJTN2t+fNgrCncEbBlUfD68NX+49QnAG8qGqmq1JOSWB7BO1DBVlzcw8oRrCoDDOZzhjtGy7w8mXKtuwuaskHw+XfL6rz6EJ4vYuVgvIg+7V1vhw1T1/QikmNDBpAhr9S1Mhu1WtOG5GwKqa5KCmPa63CCoi4nqjc37jJfeOiynHaU4F049ex3uL/T3PJdyd2NyiZZCiP0vtvRmzv/6BVn7ee7qf7qeqO8lU7ZNyIci1aVkuu68CfpYCvGtddSGFNXxBu1FF7BDPI8NS8458Ld/mG1LNIVk/wH2fNb4oPY3g70f/PTPr+YX9GyWJHgsKFncN/WpjXv2MS8eLPcNpjZ+OWzy4oaAChc+lNb602txEaONt3EJf54mY0L4N8Fjb9+w12XXfqBVGyG7EzcYq2hnjNdlc0Mv7utiVZa4nIQ3Nf17H1It74Ix/Ekd+MqXJ2kPQmVMegAgO5dOwpbRK2wRuOmmJHtxRzWmHpMl+Ob2P31kw95Hwst/luCdGpEsG+/QTIObEUBE77H2jDXGylGLQc1dQr3NsfQHlIg2bLfil2q2ZfSDFbvZ33rSwj4qPesgmuS1n8B2OB76/mlmMuhA8lCUHiIbpsthgsttONL4vR+SabvlbARtkeFTetL67RRyEbReUVMvvbTNK9jaKgybrxWSOjWR2HfihJyJlTisXpyxxM3PRp8N4klH+tyYMvu+6kvtYo9z52Y8vfUzrP0C9XvzkTPDvYt/+Ys9T/b8bWjb6377BdkRcWrI2l/BmNGe+kf51zP3PYuQzHYVTrcm6Sddnhcoxc2V6jS31n6ns5GldzJ2t+7iUygPC8SncgybxVlxTXkKIA7Oe+zP2c6fKllz/sWLlZ6ezdjXmxhesn0h8OdvDpfJUcwBNLy/DDyiUhQRRXU3LZmURfcFdg5F8CXPJNNHspLlepbav3oVTirW/Jm9rsOf/wy33GmXTI/vj4PnMs7UqzmjZ/rSxfAzZUxm+5yy+aFkMUoe8pWww+wgZvzw8s8//vWri2i0IrDdV6e2XIWIpfwYwW74bHA4B8dkIYqsQufLIXXj5eKz8ohfsFzLOw2T8dfPp61VIPlWXLF1n2gzfnlwoM6VC1EU5cfIfD0BpOG4pZ6D6mS66G4E37T9rXzJMObhmAXIiK8p3bOJ5JPk3VN0fDyXUDjdQ6N7bb8BnOeypw5fmj0LEx4g60YhXN7ZvWfLc1ehYmfnhHve3b7vwoRTUDCufiR7Nd1pdEXIPgeD7nd+0Y9WeQ/QylOoPt5GNLkHdv53Pxj6p7/ymwk2l+5OHoL8zefbMzrDz71q+CEFEZuluOAR57wUTFK1z5dykT7Ax+IP/92/Q8cZINnzO3xZed3Xk64qjEKthp8pOCXL9uyof/70r/76v56b4E9PadwoNGfivSlBlCSH7suti+aLpy7w9Wsj5JNvn1DD0molZHKB1UvGNeP3ezjLR/t6wL54NJsZi72DnmL0oOFNM5LhsO1MKM33AVvqy+2Xa4smWS85Havbsk3In35fpNOPegYVjPmlLB8ohGYMF4hv+TxvkugfL9izKcxnKU5FuIH7JGs/Y5DD/ufB72OewlC7bNDInzsJ7G0eh5I8jezVHi862iXlDXsPFjbUCsPwT/+oYb5z1vtdHcJjSjV8sawrWp4kLEBx25IG7xIxoknXF4jR+MV4u8P+LL8zG/Ynt6fqkvr9ym8W5b7ZXKnJQDSm+9RmcLx8k/A11GrSFaqfoU/sFvSPXwgbLTPBmuqUBrY65P/8jV9Kd1pw16j/46sQ3K4YHyQ2+nORXWVwwioOq/uQJVTe32KYBOb9q68LnMNYfp0uzRrfei5KzjVQ6nxzwfj3Fpolbp4muKr0CKfXdswHbSAS2uZ+QuaL0CRjRnob4qvyoPfnLkomnuxucHErn6afx5YNvMq/IDfPBvnhTDOEtX+Xymf0pCYXq/4cHKISDDciYSt8ZuPnnhYRhHMiU0//tj3JNzSG7c0OqSYX24YVji4hFl0KrKZHL6EdRMsfPyTcb/KNRe/qBdDGmqh+7z/GfMx/H2T+/rNeyTKf3BZUV2mx1pLWIAbNvX/1euUfRrXyaLTGL9Zsq+lnvv2osOZL+Ha2vTGftocSrfqPDftU9yy0bQ/dv2hHjRhZPb99L5yy8r9wuuZ7Q0zaY6l8BZHi1f8hBMqGoPi6eWB79TNCvPmKsnghOl55pDHfu9kEaWwrell2ifGPF/K9EtJwMk3EBD+IYTH5LuxWHtPB2Y7gO84h2T5dlowJcSaYm+6FbeXH+lnXd6mcdVQgXw0E45+/k6kZUP1gNcZUTGYKKz+jx4vQ5PN12d6QUsZHfLik72SwX+0LpLGrQk5qL83i3pcUgo2hUz19usl2H4svcBH2sHpQpjWfrTM4j+8lFGp5SIao4vk/vkaP2aZKeq+4nOGuYw07B6Hy//GGyS9K6v4GxpZELj5oJ4zvcGPD0aCtu6/QFk5X6lVK38/0lsqQBKd+9RtlzloX1zJp4ivVWuIY0/zOWqinIaBFiZ7GTISlhjrZ/fnPHRo9+e7JR4ldQ+GcuonweJ4/SL7LNnmLvZlMqde0kD3JMURSExrT6a6L/3jNX/5t135c5nmdhptD5LGF1ukNrf0M/ft+JlLygXN7tlYeYydMHWcJ7M/5gPWv80rm0XjeYGfLe2y7zYRIdHTlnfQmGg63pdz8iu6uI3+yX+Hn2+rJWl9CWPk74VFWJNM+t22U3lI7FJNtl0+xxSL4iHKEcXPM0azVffTn10L4zfd82tquCruQ/2ALsYhtr1xtA+z9I92v9XdenwefzY6nnu+jXEhfn1iZLcnH7pqvy8VQMiSztb9T3pCTvYRkefWz1BzqKmHjlnTgje/zmm+2wSbvx8FVly6rX+3Qor7lTIYqk6j/7dxcyJNnpdRS14fyy55yRuGig9XLFdUSxnyiecUE319c0LU/NKhhuRVcL5VHDRZNyYIaxYZe+tqhsPa7Aw9tAHkkn8NNOsz+vPJo2dk/t2SJwi+aw9gRkcOfg1BxuLynV10s5Y1yOoXVJeP6OT7IC/z5fVfwumRZvq0IOxhUervzH0RH617D9WXfwykQTEP0Ir+COEj3f7wkmT4B6dAf310sOfRpT34c/Eqdp27EaP4j53UCj80y/Pb3Ac3fkxdCKed2WK88fl4ezxT0pBCweWqbfsxUEqHtzQxpnFyG/Hc4vibYupsDPVivd88iT6zkGl9Nus6X+kW1nRLW/aL3290zFnne84iXmieRPYOgWVpqEbQlpjT4VYE/u6LDA97kB+yjXMuHlc/K2cLOhNtnW8Rup1MLtuXtSXt2ns10wqmONo8PUO9SHfxt42rxDtoyC0V4fo3hZTw5uB3Oxj8+MLVjRsBLi/lfv/ePJ4fVhRBu91jQOk9w0PvBMLV3WZ0PkndK4YLkC/XXfoUttEqhYWZG92NpGYtxz1Q4me1ClqFZGvLJjue/+Karfhrb5znVwaFDRt0yGpvp4I4xVIzFpLjpQsPk6/0m//Fii7PkZHJ+EYC1e0p4D1aVTIcfigEd13/IlqbF/vINrf4m3DW3Ll/5FQEibY6kOZteMriqWSHuczljfb87sSnYhjoUQ76npukKPmGyo8LDeA44WPkzIZMfAiWzRw/8DP/6HZCsxybkbe9gjM7+C1Ckp++fv8yX+1JUfzwTa4a/QbM1mDr4+tlfecXG/3zvGvnjb1iX1QnNUX6o4KXSKdzm5O0v+fhylKe5yQgUxgFNUcWLaOg2cSh7cmf8zbfk5aNPpAtOWTKlBZlkHzqRWhvhacycCipw3E0Mxfe3S6Ysrcp/875/+fzn56V788DBu8zZqq8VVJc9R5RGyozhWfY13G6bnBr2J2HkeCpDOBvvY7jc6mcyBvN5+DePXPudZIovYgb0M3Zhu9yDnF/1TNkMUUQEvhtydhK0s3ItVCAcqjy2KGIRowfPMxzEH5pPw09vlT/e5fTax5iq/aQrh2eOsav6hTFyKujonB3M9TyRkYsX0a7h0Q8Hus4fesbNrg7HxH6Gc1JraLwUvqRMQ/vC0fIu/tNP/PmPdb7X/JvnLHLbYLfAp37KPs0H5P5Z4kPstf3ChmOI1nymeP6+WYu0hYO1nlG1d8VmWud78qccCXkfvaCZ+7LjIJrZDYdr/v2UsBP/3gev/KvZCh0Xov5ba+GvFbJeTG9dC1U9HPDts29zdjtqZ7R/RwPFr1xio+mL+h9vpvgd8wY9PPtJXvkg1jfeoWf7p1vCdxhcWt7za75wP7eCdd5EpOzW+wsOrvX/z4kC8b+fKDjo3YdM9/OdkcfJM2HH61vq3U5c/vv96pdyl18XGupl3bCa33lAHllKM9lOmuWYPEEBXj9SB3fbtcIHL9lpB0ZmIv8a9irtDJHzlw9pdBxyOpWBDtuqIthnUWEs6XglMFy9Dcb1OObDdpozxbGynkZn0jA25lIE5zN54MNLHvNZ868x6E/kUM0YIp+eeC8GV7cjHDjk28/OplYRyg1Ktp0BbCpfpQR25nhEMbcHf3nPhxd6tXqCnXh45vOn39RoD7imGl8aiL27d4vCuk1wxL/AnxmeSniE9zw84UBrpo+LKkQetxQHw3Zm81EMPxAVy4Yo2zNJhmXuRaiO69WbaGRj3cr1rs6+AlGev3cy18eyRptx0qlvNRfGgo87gKkNT+x6qolmtAsKMOu9S30WgT+7gZvKun/3qR/nJZvJzuYRIKMIN2l6zJfU2w+KieIjdnfHJp8vP+LAaSq2GN9RlDNf+Dro0n0bsvHGxSBZpaoKk/cXrPmL7PflSvgcDnIa8ErO6O/nghwOLKbaIaH5V4iWM/hWZtEMd1t/PLV+J3uEcyiux0NCDqdDC+7DoXifXTNGb9+fCNYs1fgOstNPjq3rwKUbIVTkLs+JXYGIbEs9UyvVDDTumbfAz/XfWH17b4Mhy3cgvh14ao3zzBhftGdwpSrAulvwaHQYr0O8K4/Uke2kX7+f7C4KvVBL2CK22FImguHbUcib49ufhfHRImkMYloO/nddTy0FAtsi/BUP3x/ESfUQY3YQbv1yaLpwJzuw8jtsX0mT9PqGiXB/vptQ7H44X96APjLi8wDb3Ofd0LvQvBRDokM4CsI1ma5V24H+XRwaBDrfLIedKilFxSfh3/4Tc2+ZQDYLYFXkXWMqkNaid/bF4Svd7YzBOU4qMLfKiTSGQz+hi1OAu3leqN97sb/4j6uD7l1mUBPhPm+dEQicbGTjw1Xg/DHWRwntDi+ZTPsP7hfXvnVQMG6PzbEdcqqx9AUwSXeq1tuYseCWD3DPTzLpffGHGNfH3qbkkj093F5nY5qh+ij7zelMHTOxkkmzjhzyGo2nuCne+fICL4WSO+7JVv95/ZS4BxGp/aOkYSo3iOw+hxiE70mipn5b0LJVvxVIz4TDJnO1nF/eCi9LZ66j+PK++izMxRA+8Skl3AlxzbwkVIJqfilEOFekmcW7HCCPgBMy7RHl7PqZPih/OQQ/UFE1xE96D0I3FnFwy/xmAPU+wLyjOg2eVOnnp3QBODImUW+oNfR763UqJ273xnp3XAwiNnOtzJvlTI0L5hLGtmjZSje7pL53Stmv7w+m9OblIGwSdExm2VxqJARiFPIvbcx/21go4WB9bLIwYfjbLw+k1PBomCkO49lysuEyPg287wxAVPOmTtG1usJ7jvbGJAamDJWmavS0z+SEHn8bkOt5E2P/dP/540MUStCEfBui8W4mA918Fvht3k/qccEbTTI7OJBQ+RAOw/aIhsPoxfDNNi/SEqo14ufZOpDvtzMOU79Hy+9SdH/xQITKW9joaeYH5K5goTDORzZF9mIrUcyn1LhwYk5Tg05o/nzDcJnPWiLIUVvBUJ8dHFq06//0A8pn2NJw8Pf+tLwFHrLXpSWDXE7s3/r/6V+h50JO7aVz0LreWH00b8RuOH3BteJ3pPtVl2bq34cFGkf9YOft1M2kjeZ6woC7Um0XVYg197sD6U78UH8iQS52U+JA/rVDGvjRNmF10ciw+0wG9m622m+PBxaBaBRP6uUiy6cfPcb/8mO/z7/9rMiEg7tC/D/9QaSfzQz17csIEd7PiE6/RYfxwTCZ5SPqp3RXpf+u94WG5MzxW4IU5aNRf89erJuCksABgjP2nXftj/zu0CH+nj/ClzLnyRyEJxOVfFpQRzpXbN6ZWqwsifmgEefnBrvlSAT7FHbhEamsYduuM5E3qC2Z2fBp/uJr99yLb+z9qku/1oszFJxl42DJPmiQP28ZHt2SYZ9tUmOqntkA8i1+YCxIds+n45KCuv3ssV6NmSHWHveCzupEst+UjT/jouSBu8MvZAWT+nGTnieoZbBxMow/tjxme4LmeTNC+S/+usmr0TPTd0TKai7v5kzgQP4+E+wN9RMNmzcqQJrSPY2ee9WfF+MaoMxQVOxmhW3wwmZ8oSKlHQ6fS4fYVRfOQG39jfEsaP20f94L+NO/u8o7PjtqhYoex/d6oudaJfMe72s4J9OGqgfPZf2qd8g45a9wU49jMgc6Nf/WgwZ2eUsoty8luUIUsGe2QvK73mYObvfUxU7zPfwnfrRSNfBlpxCD7GYWKTGWK2x+45M/Bc59AlG2Z+qiKTTYJ1dDRZKjhdzlLk/IfkzNv3gMB2P3TgbH1lWFCPwRl8k1bOZVT5DyrUZsl1WVj2IchH/+gnpOf0sItq8lJMb7SHbjbeuTKTMHsLF7ItJU7/rhTy8cxH9xpOtCQ/PoIO7+8mn/02uDnXlUo9sxF2jYfQc0S70+wO14FbCvzje0xgMB8wIujalBDcYGawKymWCtzw2qzUecok8WpBSXXZtMQSrooMjdE1urHxLjyg1kvKl9QrOLmE9+6i+I2S+ErSOZ++lzetZKHRYCPuPT1/hMjUzADrBAAG3eaPgulxK8n+XggJ6LnqXsqMJRPRY02FGJzc1dWVC2vRd01QdGtq9uArV9chjvUN/MA3ZusPpL8miKd7Ic6adVzufhgW+6beUL+L0JDxkG+nA52R+1nHJg9KVEA7SxmBAymYf7zLak1s4emnMmlWhzqW/kl141g/8ujwK1TnbCXkA2ee8L1EPXG3sRbmcQYxE3XAjZ0ajC6Qe1sZwJH6KHpAUhiLnPpm7SK2X1m9SMU9PnSxicv/wJRUsXfOLKrxfasq6mGlKTZt5z0wRcqghY5Xxk9Lvt8kKZLVfY3s1Ns4DfmP/8hYsmYiykjkJF0ewZa/SnNUyx3x0YZWBS735xmnkwbtnOl6QnLbingEjrCZmcuaJKXSv8ouVISbf789fh296ixX8cPWX5hAk1fcyzWV1iIjv63Se12V0Q6abcg1MAN7IVf5rPxsHmoD8VmKqnKEGzKVyIcva+IuHMo9xQ3N4LMJfjHQfo0CJi7cUzyue8xsEWVDTLwxj++XOqNh8PbVf/Abaln6n95A9J93m2HlSv6o6DrWewiXt7ocyKDofswp2T2f40NQy+7FM7L8/GLNplgD40Z/hfPlLLqkGuKgfbRikjtjOqFo3uiOj+um3RT7ir3F9+Yp0ue2PSbSOEJgtlGtSl0Mze9SiCeJ957Hlon7MufgSwVT0b+xSosTSNYqMZeDFEsM3zKXBOy/8CAAD//6SdS5eCOBCFf5ALkVeKJS95myCg4k5QERSVV4D8+jnYs5zdLPv0oiGkbt37FaHlnz/yEKTVqFt+ABs+1ejhs+bYrO3DJxifKsX0s3+3o2d3Beolp1v81Stm/E3nYC0gne5A/rRM9x8i/Pyt6qQd6z8mbyLnTleDWIrLGY+ln+54X8dIJw3rH3kWQpGdEoqtx7sdGzQWSqW79TDuwWKbRx5HMFcRI2TJDwILNQv6A/ekWzu9ZFwifY6/+8VTJHzj6fAxPoCuCiH5HV4VvfEJJ//8dFAMOpuHY4l/64+5qd3H7U8vIynfk53KfYzxXaozhBZtibP0A9psvgHQs3cmWiOYbS805xvkvTiT3/XOzNNGCF8rhxDjWBjser0liHbhjkZDcvKHU7XOgbvc14Q07BTT/Y5FyHGOPiGP1Saju3o5MvUae6It1z/n1U4HYaQ6tTey629sYhcgKmlNnO1Wj8futdaRcjs9iZe+/HYe1pYDh9P2MsA67NGX64b0L092z8lG4xXNInKXb2r5d81Y7s+Z0eQmF6JdlDgbl/wnU2e1Jcvv/YkLvwMEgXog+++RVnQIUQGcFah4pXXbii8OKEETrXWyOz4mvz8TA9Anqg6DcnxMxtSbxucvT8XbcpP1dVbwPz9M3GhTo+4FzQoktchofDdeFcs5Ofnb74fCm1Hv7yoerd/DgKVoY7GpFl4F4Jl74yUP+vRcizVQXZz+3ijrP2FnwU6yygGteTVjzW2H0XB8cUTfnOus3/SnBvHW80C2KSvY1Aldgm6P4DOI+jwaMz7wMioH4Yo5tVH9OYzGAXXxfo2/vrauppIrSuUsWA/qDqLtd85eVOG+sTvMBYz409s0eZn/ildi91vbn4Pu26AHOmnE76/PeCgO6AiWWM5YaB8dm+6XcVZOfBdQm/8+/Nm4PSxoy96gsW/ReBBhVNEL54T6S310iVQcZZX7vKlO57c/QzUmypKX6E9vu1OcOuinp8FyJmuelTIHXDbxIGaPKpvGaJeiJf/h+PHatOyceTWsMs0lW/kroj7iBR72M6dR7y6J8fhy9Qj0dsOIg95ONX/W5CiBuAWi3rgd6k/f2oFovF+JWxsvn952ogjm+gC4MtRtPNt9YsEEPE/tfvv2O9yzEsaz9CU6xns0Zt7bQ6vr6juMn1vkz/q2fMI1SSjdGfGM5kKpVbTefy+DdBR99OM10FA9wqyymvanX6BNxwCPkFZZB+phUPb5xaTuyiiyefAggGK4O5jfOXefLfwGzVJi0wvyspa3Jc+CfGVbA3rbvT86UjlAP7oiMUcvj5nN4hQepStRzwto1q3OSYCm8CEPE+bMbOqE5xFebW/Q7bEY2m9+3Q7g3PvVkj95Y1kPGQaCVeo+Xwejt/3UgoeYPSgOnZoNxu1hol2n6lRD81jRkpMc5GzW74GPvpzfPsxbI23xZfuXlzsSfazlXLVJvHY0qyGMxg7eYqANovA0qu6Xt5t5oQq31YbNaG2MsOt0nTi1q8SzGSETHjb3Il4dNO18rCwMiYGPNFj66+R8sAobSwmplXjfeBSVsEFx8NzSH29iZ9wef/5uEI8qjgWlKWRF2OEX8eLxG38D/W3BXV51mOn7Ppu+m7SGy+nuYrTmi+yPX9SoyCnZz1rGms0Xg27mKk3R+1NNm/70QRb61JiXq6KlTGAjSN7VIuWin5N+EkuQwoESLXKmeNC3ZY1WUziT1Dl6caU0HxG9/W7EXXSoq2bhc3KVJQMl6ikzqJOtU/m3H3dZjP2pvJqlsvijYbxMDmOd4Hcol5WI4AO6VZOnBTWsQtEjx0nJs/HtPWfQs/aOuY6ni57cP8hfo446R2rFI5ykDlar055oZLM26K2peXTjjjklO/UZsx+vWvSG6oYoV1Q2zyKsBkehbm1sfe7H+y52tCHeieFsts3RU35+1rtYRTX77XhRPvpJI87KFavxBSUoAv/UF34lsv6ksRw0rMhku/TrsXChgynPMT1Kk1F9Z2OP4dN2VxJU66Zi+P0M4CK0V2pPgulP/PcTwC5d3mjpL4LReumEFdl22j8/389C66HBPaj0lvg+409xMSowyte//ShEtVOi9nAj1CtR2U7X7xNg2c87Meq0bBMzNVXsvUyoV7Sbdlh4FNJuukG2nO36o76XMPr5E7tWBdaT/MjBzz/i7C5W9MdXgqN7oFiaa39MRyFRFv0nxF3JxszNrw5OOy8bXtkhbKfT7pujzfsk4vF6VNDwKfcXOKlhSOOFj3RY+hbIWtXWsBqVpzEEhXeB5Wei9WeuGqxumXCJhxOObo7hL/VjgTW3M97I3xQN9cGRgTqwpdnre/VncfJ0kPs0prsvpfFoxvEA6v54x9yqSuP5UOaAlFNy/um1P+Snk46q13340+9BeJYzGLqdk4UnGfTnJ6Oj45JLUtYtO+MqQT8+ZOVhnHFL/4Z7Qk08f8arQftQj5BNfX1Y6++P8fObv/xLglHm0fyatk94rXgBo8PV9Tfvj2PB827ccIWMgo1C+nRk9ZnHdPsdAoR6M4mg/0BKjufByAQzldM/Hspa1FVL/RTw09MrOrO49XZ+AEF9+g78ThD8GUuyB0fj2dJAvoVsuDsl/8tfS32r1ZwcNh18N3lJLuekahc//0E/PsSme83m9Y7nIPfqBjNDfcXDwgtQQ9iGepgk2fjLX/R77In+yEdjvCfSDd6z15Mtvn6rPmZOin78/xCuzxXjbx6HDiw9kfDG9YxatS5D/pRW1KhPc8Vkcy/+8hnV8ptTjbRqLLi1fozRtWI+nZo2QnR90Sje0IcxLTwLvde7gKg778s+5t0dYFbOMxau/oEtvL0EYqhoKNSoRMNzzI+w7med6mIzxJ+rXYD845nR7i6xr6vGR/AyPsHzonfssBYjmOL7hThf366EPvQi1EeSSQztPsb99jWH8ns/bjE6BppPOTOzQCokgxpkOcm75Om//jZlXZt1Qvr04FBE1U/v2XRQwxW8H3DGm4Vn//EkUbnUxJ2uYPTFO9XhLKsaNY8n16e/9ZsthcfjFCf+eDm0MjSZfMNomQfMhTLoKDp6LiH1OMfj3m6PgCVhHuTw/mhnYxBGSK6PL15vXNxO9PtIFcV2tkNNsy6bHnkcoijWD4Rkn5shtPo0QqHpGjWGa16x6/V4hMW/UN1G65ZLx/URDldnWHiayoRyS0S5LalB8I+XW3VbwC//4/KhM6HOnOBvXvLjCf1v/vHbPwv/R3NTMRn96vluHFXja27uHVBdnvD69JL8eT3NptL4g0d9pWYZJWozoos87SnhG6PiFM0CpGqeT7Yq21ZT08Q8+NHtRdTjUKHpnV9M+AbbLTUW/zVu288KYrWdCDb3cjvE7vEGy/7CwuIHp1eLI+TPwo4G63CHfv0UrS8fTEKh0nymXm4WeukVGjYArT8+nb2uGEOaDkI0S1XPxGTRs6dF7Dy/stmWdAse3rwlu3hn+szcBReEMo0ueftTTfq6DX68juze+dVn6WV/hJHXI6LLvpFtqm87ozgfzyRf+Fy/5Au4jJ+IpnDeovHnT4aycKmx+6zjIU0uqjzMw5UG0cFqf/M0OBp1u/gfC836gAuUfD8RxbtN0tabtbkCTUMZtd4HPR4NhFNY+it+VIaSzRVtTWTDrqTW4udmD115CZ/vHkYz0WL+coAStqA9qDV0ScbN59sTfMRr+CkNfFZdMsbDbK15zB0+kzEWK9yAO7fBIHvIjjedEV1g4V/EjA83tORXGV772qTuBYWoOyfyB3J5HQ2KKFQVo191BO21q6gVp53Rr+5xAX7ZSCQIpq4a15ddLi36gBvGD9Vf3rQ7DZOd+22MHu3PM7iBjgZWbfRq+dSopyz+d3jzX80Yb2Mgoh3pt+Q3zxDul9RDa/NS061waNkQJTFWFKHXqK3sM7+/8SaGdpZO+HsJUja9P44JpbyyiHvvd6h3P0IE/mvuqRdFUjbFTL0AL5sTMdogaSe5WGPEOq6iZ80v2Rgkio72eWqSc2M1/rQ/pw3Sn9yHqr/9B1suBUdENmacidDXCNAMzkZ5Y8696/5wKBOA9B07+CbcYzSNV5bKZ1nXMPcq9WyW52fx4/3Eqmsvm358WTdvKsFzzzPGbzdPYEabUfVhq8Z4KDc1/PiWKB5VxJ8PfohipurUvtQqG8vTNgBthU9/87apa/nkl+eIccRVtcxrO2m8j19iy11tMCN1PVjqaUAsBONLr7qn/PTY9jpS0c8n7WQThft/5wGuxUI4X6bnIJfuq+2/m/CpJEV7o+bUThl7Z9NNeTtTSFRIjZix4j4icjYJuSV+y+hZICGoGDfEJo+pYsX70wB/7twBEoFvF74Hf3nV2ftBRvc7FKLqc8aUZJ+VP3Ae01HWBPqwWnjX0h9C5bNd3vBZ1pPb3mcAyX7Uw08/3puteQQi3QQcn+9t1Xl3p4Rl3kPUH+8bPA6jhRdQcnVZNv3yS/YgmDq9YlZjPQ0B6oM2G+bFr84+EAst82Hq/eYbuEcl8Iq+p9oguxV/Ud4YrtMkUN3zO/TjTchfSx2xXbxu59kNS4W5Zbbw+LQdnf2oI/ulGvS41Puy/wKYd4aHpzQzqhkq8QjN7Ng0OXwmf9riWwh1e3QG5bR++GMK/fH/vFEg/PcbBf00cMMml5nxfJ39Aj6FEQxccKzR3HieCumzmSgWQgMx5N9K0BJMqbG5ZtnsvHc59OX7TgPurVQUvNCEk0NSLObzk01TfRARH+0x8aT1BrVv41vD5moreP60ZtZu7zcZKTZaYelifarmSl6JEgBNaHBQsorVr0iEl3AHYtE8ylh3mI9Q2O8XJecWMmrd0hzxuhgRu0oo6sy5C5HV958B1NW3mnhx+KDipOfUDnZnNJKD0KG4IXv85SRA79naz0pNTg71DnUT9zd4i6DtQodke421k4wfHKzmzYe6PHyyXpoeITghpxFvt7KMkSovHbSk3JPdTS5jKu2vN+S7jUC8OZKM7pkPGF1PRU2NhH8ZXdMmEQjOwaV6PLaMhVorwuhTAU+pJWWtFLVPMOx9QI2nX/usts0I+ubWDishrNh0P48euP1DJdYN84idiMEpg1urZKd8Vv7HadIRvjciE3wLmU8jQLpoyque4LBBbOCo9IGKVCMxv0HdMi/+dJCy/EmDr+vF0z0tdanaHLc0eLzWiKX+14GXK+5pKMy1z+at0YCyeTzpzhfNajLemQrShZwxqx056zh6qWG2zJRk/aD5XbHtGumR32P8vI+FP7tWGcJFvVrDRtq02dhZTojMuHuR1BCCeLz1iQh2KUqYz/d6JezV6wzL88Pt2ntnw3ZSMBiv6Uq97iYYMzmkR/mz7r+UdHNUjc4bSricso5YRla28yaQA1AG+U6tUu386cCpOQxh8aZWOI/VpzeeOoT+RyPbzHdjQYqqJ2RP503OprJt68bzdMj11QWv/G3lT5aCb+hpnu/EyKsHGz9TFsBdv4V4buZvxS7WeFTyh+sObSJqsVDw7hP8j+sMU3jOq9G/P1TQvagh2rsxKuE0fJ4QPtZPLJnKq+0fXHKBFdKPRLuYXcZOu00Hbs+Xw/cuN+10TxsVhFN+I+bIeahLPqkH4YVmeFaLqv2mg1vA2FQNFuI1RuMOHqWi2M2J2KeNggYz4TroXrWCWcJvDdYd5ATWXhZhqKqZUWmc8fosShn1/eiL+nUx10rpshPejJbGZrZvdfCF8DpMx0jwRzM5fMCUWx/LSPmg/nCYOGVb9DYlztn2B7hcPIDLMaY7y9Rbxt0eN3T34gfZfTIt48WXJkIEiUn3NHojusl3GA67dziM9iY0GLcOGnT+8hol+9W9mqPuLCPhLjKyrV86m8SNAYg8FZ0kia3EXbXuGyAdj4l3zqWs28m7ECwl12g4ccwfD89+hO2az6idlZd27B/zBzZIGon5OoiIguuuYNEP6graMuGNghKRayfRwJr9do76QkV89BxJwFOtEhIeLHiJtor5S0yzsXXLFRwviU+tALR2LGrCI/lu29RxH0o1Z4cugvXodhSXdsEosZJBeQnTjSzXU41NV17gxN90utuuPaNnxjGHiMtFcgukbTyN7vWCcNilxKXJ0x8exvsGnolV6tNNnfV23oaA382KYFlRKwZeaiEWsRSvwiZDXam7K+S1Xk2ck82hIWT3CLVhT8hOeT7jAS6RhzTkHqj36dVKGH29VvgprWiQqO9sPOpcDpfTuRten+uNzX257wDEhz6sm1WYdXfvmgM/2dqw8ZHK6A2cEu6P0BgmW8ctVXEeouBohvSIOSUewz2W0aJ3A/eOWzTv0JwDscaY2gfx23Ypeh/BNOOBOBNP46mibS3dvf2D2nxW+++8wDm0lKtoKlWdPwq1kMLYPBrqqSlmbGWePeieawkPm12aTWPjRDBbVkqtaDRa7nX2S/SrBzBbK2t/+8/XgpLa+kfz2VZ1eVGuV8nwao7nbLrYpwGC284YZlmf/dHahREkPATUkvQvYsr29IRFz2jkaWXGuDuVYe80FcGCNbNZl8ML4mgZYe4d+2wawjJH/PdxpEG3luLpXd5rQJ39pbuzVcTj62yUSnHsZIKrNVQUf3MP1ct/0rAKe1/1B069wVURDcyEokZMpk8L1t/dlpCXeo2ptUINZJWwxawfb9WUDloBIO4KYqpCsvTzYwGLfhL1mQaMP4tVBwjhFRbm74javXoYQeCjPbHl/cH406/TIJ7Ist7G/Bk7B2RFlImr+WE8h+weSvXxtceiW/M+FdKmhK1n6sR3yS2m8Rk90XLQleZcx/sz2bACaW0uDMNKdAzuFkwdwunjS7zDY49YP8s8kh3vQfT1hNrhfLYAfXGVD8qiH8MGq0f0SNQVwVFvx6MuTcm//dVKtu3YvqUnSlLvjOVSEY1Jt1chcm+OSQ06TNXc2q8ZruR7/tOPfl3INchkPWOOqp+q3gQyBl0QQ3KXccp+/Ut5mOg7iP730c7BTQJJVuMD1eQR+YPjrHhwuft7mPX0Hs+HatVBVQcjXi/PY772CKAtHIvkryiv+mr5EpHzsVzy62d9lAtYTrdVTreWXseNu008eFR9TrXkoP/5Fxm/V8UgXlZ61YNTyvBsrRvxdtzG6MGVdLQe/Y54le36/Wk8mtCYKqEns1B8dgO1lCs7VQgZv0XGJmc4ylfl+aD2aXNls3z3VgjGCyFuWOyzN39Zm+jYqF9KPmBU86MKMGjBqh7GLTOy+vgoPfnRxhauS7UzevyuV+honBriaJKUsebSenB5O1uSmEPZUnFT6UroNxp1Gjdq319IbvCUrxdiW2ehXc546BB/ER3Wr+2BsZKcRrT032GdDTYavcroYNFTPFfbgM335hz99IWa5gzxfMWnQKHWsyTpxNOMrcy9g/x0DuhfvSTiFCn6aJiUOIQ35usYBrA5PDG13hz2l/uHX/1QMozbauYIHuFoWAbVx+UMxytNbrD4I9zbsIoHxx4vEEA2E7La1tWch+iGOqgqDMvzna0hKpSzr2LMb4mJhLr+qnDldYHgN9LRhLoxh3UxjsN464GxS71NETNMmWjymPl9fM5LyerpB8/L3+ceLy1FHD9m1LZuoTGZS2Lop44juwOJKnoiPg92e8DUKE8VY+vCKNBbDmeayBWXdfdWTWDVIm1Q1FBtBbK1nuAXMSz+xvD5e7OPIPZtoNr33Mdsc42P6Pwt72QbV1t/fsq7GTW+UAybuHr5i//k5dfeu1Dy2m7YIJWvRmlKXv/5bdY9KhSCNIpnYq2Qmc2FfeZlTr2siF8cuXa+CIcasoMWUWsTJu2wOjwSsI5MH1bL+nTia1yBNNYC8Rc/NWaHHUZM8jaDbAUhatpP2sCvHkFHVzaFxsNUjA1OiB24hdHf5ewIn/PyzSp7Zui3/2FXTiENvKfKxvP5HwAAAP//pF1Ju7K8EvxBLERQEpZMIoMkIDjtQBEBmUmA/PrvwfMu7+4uz+IgJJ3qquqkw2mS13VPrBynWzFcP7oBNwEnU2cocMH7836Bj9l08KlFGvhaD6WE+nXTYQTnnE3FW3vCwZwdfLB324Qt30qAXneVqCacCn0p490AX4qf0qfC2YVwPH1OcBk1DnEt/bpzUjwWsPJ3agXhGfR2VFvw2iZfevLR4k6VGFu//Ew2SSkwYoSkBAGVeiLQT8em3XcH4S9f//jvGKgnHm7Lu0qv63jOR6go4ISEI1bpTQn5dtzl8Pl59tjWbT0Rs0tKQBoVFtWvuwCIEnlxsAsfLtmjPNXZRoUSACDL8CNVJ50oMjCgW28rvObngqTDV4BT4hDE6fcqJC90QzDm7h728ikI6UblJfjDEzW65IAlpehD7+S42MGi0rde/7jCcolqAlG8dnUWKg0qmDPwb30OuyIaYHHNzytfk4pBFy+GbF/LGEfcpS3m9HXmYZt6ErY65LpzXPErHzoppMDuVp9Y4HJwyxtvasNq3//x/2aTahjFcanPz1zvpOgmiH9/D8rbu+8IBTlZ82+y6FeHB6E7KlTxMsXdGkZSAv066NTdHAijP3zSU0FA25v/YdOl/C5w5vIRqztWAVJH8yKzuCuxEuK2WMSmLGWuSAesqkZSrPw8g8+pVBAXfeyetdxugOnBOZEdlfm+tFqnAbc30zCqBSeZntOmAtm40ZDUdTybD9mBk78qLehxh61kfqUZhJeyELHWLW0/ePEOgee0rcmfHhceQQW9effF9m5y+ll4PErwtaVg5fs244/9Df3pGTbnIZjur+YOFOIwwkrXdNs1v8CWr+/k5Q0Vm7cwUOQfv/WCfMsmI3o1IFehSTZmEoJpr/Z34OvvcI33gy7WWpLCPlBmrH4EtRe1zmxgL8YIm9dP7C4B5UuwbyOCf/xu2WtOCoQ95rEV80HP8MGswF6TA6xNYfNP763xR83oPSaTSe0SDqi50sdL3Lj09bYUeHrVG/RgDtMn+XqPYSnZO2rq105v7GMQyT89qFeGUkxS2u9++PLTy2B+bU4W4J7ZgaK2G/plvn0g4CJ9S9Xzs3HZfpIQXMpq7dnBon76jV/zuB/JfrzO+uQHpgQtu5BRxF3sYqqEkwbf9maDRM7KwZ8+iJRdgB8v8e3ORp6f5EB0eALu7Y1VHC/EsF4eFQ3T5NWz4C3loHnER4yd86ef7pxbAcmyPthJLoy1VQkEQMs5oCf0bpLFjzT0w3ey9b7Leguj5kvX2V9IqI8qmPgpI/I7gx8EZD3XJ+5cab/fp6d34yYsD6ACM1KZGGst19MgHWLozHNPMdTWLsS0r+AstB/CmxNdzzDbOejyPCPCCX76ETWyAZFP7hTdn7M+mpuOwGerXBDLol0ykmBXgXX9UlW1ebchKl6geEtTImEgJb/1AyOOvahakFcyPBLDgUgNP9TC8d1tKl7egU0AZUQ+MmaMYHAHryvIqXkMgoKxjFPA8eTtKVbqGdAP+14hqV8eqm/bF6Bz4xrw7sUNNdBrcBk6dgK4R1xIlU3chfNsHf2fvsV2m+X6UrzbDOrHiiBWmmPPai1MIbE4SN3zpuonJE6DfDQGh6bXQgjnH77d6mhEUKCfnlmPNwT4ey5RtZPnkNjlJMn59LxhvwvqcPHPvCk/dvWeZLfDvZ83Ws8BbNoYO9OlBEvNmwI8NGVIA3pbeyAFQgq2bJGpniavYnEzywS1kT9W/0Prl+HwOMF3sD3hUfGzfpp3EEnD+LRxVIc9m/LsXkItayyczk+VzS336OCNSDeq0nPNuqGsfKCJkv8XP8MnHy2QeCeFYueaJBPHfEm2bPFNkX30XXoNMgNyxYTwoawxW1Z+Dk0Etth498d+yhUgSER9nKmyr5qQfAy5lPKmduhxeb/ZDOsNBGA4tBh/HZRMuoA48HpfRMJyb2G1+XIieLpM5DdfawAXQOi/vBINPOJjQ/j6XibTUPWpdBnIFyMWyf0AwBDDIm0PSLuUSJ/jL7lCpartNR9pTAgoLOHanRGfnCYuRu6gINh+2Rfx774uWD7f1x2e+pYqm8vMZvYZTWmdH4wOwUcfiveKT656oI489+4Q+MpTdpLUQiw/u0m+XBPhj29xe8N02SfUHBlfSpNe/cUvtuwzGnBAEY/Nnm4LZnKsA+BJRnoM5Nztl2/FgyQaJ2qcHQuIrDj78s/PNNqT2S/L5UB+ehXJLju5Y2wGZ5BEdEIUaok+bBZngvbW7JFwrc5F7U4fBDCqS8JJctazyeafsqPvUuzdgk3IqgNnAQV3OXaaMetX/UJ++QEf1vkn30dXwSbrfIpSP9Tn2rg3QN+eImpIBR/+8cNvJuzQvn8JyWhucgK80FwQ8SmfLDWPBCgR9sVGwjmA8RujA5eXdqRmanPJiKsmh0hUJXrk9C6cpZGTfv4GGtf3G1f/C7RwMQmZnx82oNtBgPbRLegpEQS9Zfo1BeOiXFf9KyeDWIkxRP5dwPd437lTZIE72LHqgu3xGrji6o/CjXZ+//wvUOKLSACvkIyA/fWbkJ/+S0BMsZUVScJsIXPgeQAeWi6t2Yv9bl6gu94aLOdbmy1wv1YEZEmn5nzx3P33CK7A/sYeNld/aAZ9Hsm/9XF1dZOJs0WiPbKtkWqOqoWsOp58+G7Ygrj57ANx9SOAImgK1V1/7KmC8zuIFbskm3dSrvp1nOCYf99Y2fj7hFn3IPv59Ygm5MgYbEcLrP4Eeeh2kdQfHjx//hF9JsLVZXMFObj6s0R+QhqSveY8wXbIeOwl3rcY5WO0wM1DsKlmeFm4zlcD1/fFSSuycP42aQ5+fPMGD2I43Z/xGdyUltAjIXayPM929cdP3Ra6gPnaou2XYXxS5xXW+vQ87zqYa3jEqikLOvXVQvr5SxTDY9iPB3VzhefLpSD5znjrg9U6HTzm0p7s/WTHyJQYHaiTdEPxZTsmQ4CkKwzzu7LyH7ug7tQiKL6/AalP3p7NJvdcTzxeJiTe5tIdzzDhgH097wgo9SBchi+MIVKDD3mufh9pR/sJVKbkiD9dTUA5XdegseT31V/4FlPnbvLf/JCfPhtfSnwFyaG74sNkfhi7skcMiZqcSV6Jmjvj8uSD1T8nU1aJ/YysQIJ+XjYrH+v64d1KCCryNvj5lyHLBLva//wkN9p9wvnupQ1Y+R3qO9VIlmU7ra3pXjH1SCi7c/N5WFCuxhkjoMah4MW2BfDXL2kSsYbNHZDvkkl0h2THfuMKZ+Se4SeKMnq8kF3x078gqj8XjNSYJdN24CIov5FK1Vmdi4UFhQKtO+Rp4BdjMb2b0vzzh1Y8dJd55zm//E+1j57p9BP5vrz6nfj49bp+ydV4B02c7alWHE5g1g+fASpbklLblB5sjs2HD88HrsYql0/hqJDGlMzrO8P4ZBZgctX4DsTagavfcXHnW2BrUKwtiF8ZKVd+tOTwDuob2dTWJ5yUzXSWfv7vrz70x8+l973FxmvxXPaLj4ycS7LdvJ/JfEPlAnbszAigk8fGyZ07aETaEbuyrulrfWWB3bx/YidcGn14Bl0Ob4KV4VPv02IuaFHKETU2ZL+ut0W/+RzsRXNAM71lyW99g317JdhL9KhoTO/uw+xKJGrW+6pfHvu9AA8aEghg1ZPN1sNa8fZKfuPpzpeoH4AkSxJd9SdYnj57AvgYMTWE8ZuM/Pue/+Fxsv7/8Ju/74Y7UWe5zf288sO9jGeHuj4ELkmYtINlb6RY375AuMaPA3/8zzC3R8DzNC5huXQ2tpnzG61wgd0pLRE/HpEuNhvRknp7aiheKr6Y1voPMCEvE7DyIfa1sxy+tuOF6sArir/605pfqRM2N32aEkakoE6vZNwvVJ+2p8SRrCx/Y3N/zBOSK8by7/u1+yacv+3QAX2ELrYOPSmIsrERnOvySMSTrehCQ1MNzrYO0D46V31lMDeCehV/8Kkozkz8+cGkfntU2T9vYRMLXA5H44ioU/EHNkuoFaBISIXVb313B0m5nKVVb+PDw7uufiproFht47/65MpfKsArdw7Np+ENqGyOBJgY31Z/aynm/dz6AFmii72DNBeDEV06YB/tAm3L/JZMbJHP8IUhwD+8WyjccpCOXoXX90sa+/iIYNfBLQI5xu6v/gHLg1KgPmINmGcL+/C7aTp8Uvh7v9yTAsGDuo+I2EFeZw/b2EH2kUZ6HKZruNbzHHCUXBUNZz9lEwt0DhTHWEb7DzuEK78xdscCJdgq49ZdMP+9g+y4P+JV/+rbuVmcn54nW3u3DbuAVCl08s0OrfxGn4oXvMLO3WbUefsg6Z+Z+fyrB0tN0+jNcxIrMNf+F7FnaidTetoPcDzvVWq3meaK9jbW4M+vQKteHBsV3oH6vOVYayjnVo622f3xy4cgYrb98VXD2C34sK7fxTpOd5AHNw399Af5FAYCotX02F3rh2s9wAKffrf2TI5HsExSe5fDzwLxkdOd5I8Pc8x11vxqFBOPtzxQMDTwz3/oR17h5J8fZdrOKWGGlsagk0xn/d4kmX58XNkOKfW6F9InoWsnmGeUI7VCzUL48YPIDzzshckUMlz2VxhRotOT9PWLZfV7wX1ACdlfsQSW5zJMgNjndL2ZkYFJ4bq1p7vfUaU7ETA4ZSBAXtU06liOodPhtvLPdT5mYWP0i/TiBViG/JW+1vqbSDC7//QwoT//N0jLWP4/dhTs/veOArPtIuxI0kunTR7w8PUefarm20/CDniK5E3ZV9R+BK4+W3HSQVPQJ6oY0ytk5fk0wczmAiSV46OYwbqHS0wvT/LlLk82D63mAylwOyS6j6EgKOMnwN9GhWowZf3Qem8Bnt2biIQ82/Ukq+IGbPOnRlPfpSEppXMJx0AssePfcsC8o3qCDEkzVWhxB+T5KTqoe+ctyvd1447yId1B4XF54aP5bBjbqXkDj4YVoYkWO8A8cXeC2WvJsPtwg3CZ2fUMdp0sUXtIliIP2rSB8cH/4st4kN3pNN+f8IoSE5vN3tN/3wOjznGwOh0+4WKr1wXeA3gj8l0YXBLwkADPXgi2CuvmDuNrkEAyJNq4mb8XxsLobMD66dlUc3WRMUq7AYpDqmAt6EXAFD214A7uRmri6+wuNTpXMPMbjZ6izSdctsfreXXcLSJ2ddn/nidfcvjAtqgvCePHrgOgVR3CJ9ySjMGE7uCWTTW1M0so6DMGOxie/Q7ruw/Vx6ZMfBCIRYM2RyqDYQc0AX5y/UWV5yMo5iJvnnCbTAF9JlaUMLGwCHzfpw9VanVO6AkRCLhu1xJum0th/bFzSYbbvsHu/nsvxmySz7BlZYtdh2oub4ruXXrInUnR8tSTaW82HCwutx57D0bZsnB8BOnR+FK9jHU2wdxsQPzc62gT7CvQJlKTwxHct2RCUuUuCkcnOIvyhuqxSsN5rh0E2bfMsbN/awlLbxsCgHaLKQKekBCpsO8wPbTcuucYADbWYgYf3fKlOE1QwmJdnCCbVX+N532xXKPzAttYvZFZvqiuADMPAczDF74B0Qi7eqOWsjEsPOHsAod8Gtw4qKVchTZyW4VL7scNOGfOCW0eqVOwsd7koEvNBp+u7lSMxXbwofYRLCSUbgSGQBAs6WP0EOsHyXC3G08zJCGqMqpPsA/JAuwnYPB8RnuuubpL85g6+Td+B03fAjo/OiK9Po1BJJE33Vl7JgQO4qXEmo6tfsqapwHwG8doOqSXYtYyVEI7EnQyQbYDv/W7sTeRRi/pbh+ys/yS4Gvv56ROi0ifuL22QM9/vukJvt/9NFBJgQfHuqDFkgw2Hex7CTPcQ6od5YyNhtYIcP0e8pHZzl3E+XqCvC7N2NKljU5krjZBsCw9EQwyJ7OfySlMqYeJfIVlyOpjx++zc5GSGXQlm5zjPZe+aQyQeDoeXLY7XHLwKC4Lfup+1E/o7V7hfFsi7LxhFc55FUZyIy0x1W8PHA6/92XzerI0T4d+IsNWgPJ+2GNtK4TF8HClM/x+zi9qUGvPZpJmETgCldLjOxMZ+cy7Abasagl1A5NtX00YQ8mqXkT87k/heJPfPghvek02FX71cx7LPqjOqYeEY/5h82Q10V7OzWTFDzWZa3s4QyetNqQtaz3cLkLowN/7ajpuitnBM5HW5+OjPA/69H5yGoR64eAfXk2e0qZQ3G2fFOGXAMbnU47gx2gh4nkm6ETh6uWHx/RYaOvtLM72CcnZrDD+nTaaIj6WT4vlE/4TF/oi5N75tz6oFThvfV67scL5PmrUc6uTO285WYEgiAdsQYkr5g9MIsgnBSbSp84LNtQK/3sekoNNVgwNkXfw/SwnNLFoDCeR2w4wA5ZK02fah5P1umdQe+8j0jHTAzOqh1xyXZhRd1FWx7zcVvB5gf/yE7Oeh7WL2+1BZEW1+plUaL3nN23W3fKfnsj1dAfgarfUMhylYI/zWYHBYb0lou4SwD7SQ9qJ8ccjG2W39HMx72PwmRwVu/PcJgt6qWvLZfylxjUUknngs0ha8ZUU8Kz3y+h7MfjudoBqa76ZBTPzZdmNO+pazstdXIk24HbEl3WvSOG2toVymL2mDMGDA8NhRCEHL/bjSFUTt2FvLgcTWnWao20aa+FWd9Y933tPpw/5abKFdHwM4eN8IpHvFCHbpKd0PYNwwYd2U7kDZ4ULsKSrjj6H86FnD902oUkeAdr5IOzXeNdgq8V7JK7xO8D5XcL2ii18VPJPMlWGDMFz6wXkOgo+++ENTJW9SpVDuu2ZkLwyiKCDqBKKLSiW46sEa7xiHG1kMPK0NKB47Ae0IylN5niRI3Cp6ZV68WbjNs8ociDWlxFNm7oNF1V0FGnby5CeLmgAMzZRCmcuNaghpWd9qwjm2hV82WL3i1UgqmAXQUM7b7Ea8J7OSKDwsjg8Ffowj0WxtK1agS23fVH0TN1wOc+qAKVS3lP9EYr6cB/9CIqfE4ePnHIrWGFWA7xsbjzafjUtFFKc5mCy/At+rOvvh/97bZ9WWI2vfNFWnOkAMTv7+GDOyJ2z1/yU3fsFYlvgKzBeZi2DQwctej8+G30SSpPA4jSlZH+rEGPP42TA9tMLxK9pW7QkT06QGp6BrfIA9JGOex+65y5AUoKQ3v6+/4efFklxuBzDQoIPuTGxmbSeu2TbvgRy19bUCmnpjuN160DjAUKsw3NRsEXPCXyaew3VV1qyZVKnEvaKd6SxES4J+3iXCdqb63pJppYBtluCToYf8UFP+XjXZ0NreLAt7hPaeg/iTof7J4djSQ9kSa4hWzCqO5gBR6V6F/UhG4RggTSWeKo+nG8yj8fhBLp9ccWHOxeAqYxlDtJ3P2Mlfttg7gfZAaIoEarbCnCXTQkR/LqfmNonjur1xrU62A7Sjh50Kf/hy1Vqe+jQNf4TStilhF0GHXztYevSx/clgNvA3YhoSm82a33ZyP0X2vi0MYx+2bXTEzqf9LMy9huYrtcngu0oVlQtloO+yqIM9H3L//JPSG/gJUgLSw0igAvUJ7OWnmDFM4zf97M7gc1egNTABmIyrsPJ+rgxVC77K9aD95GJXuwp0ooPBG4bXv+LN5fqA5GDjdILQu758KF6EfZmCeiDDaQ7lHeTS9NWWVjzDf2TDLXyid3o9dDnlu4jKambA2GmTYvZtlAGeI3TqX7fKrqwg/AMD+3jTAS7v+j1Xcw5mPjchXrgqOiU018pSJxzSdVZ+7o0KnoFSKXuIiFQvYTldyaANKI+KW6ODviNkUlwOeoB1dpCLGhUFBrMWg8R8TZY/UIl7wp037mRUeGGhKCXLYGm3u2J+LqVYHDb71kuxdH9Gy+295QBrniIDSacXWqqqQm8Vu+xCS7QHaIJm7DtOYfMSjkm00fXHXh7OBY2psMLDGBqJPAZ/Td1Vn3R/gcAAP//pH3J0rI8tO4FMRDpEob00iYIijoDRQVEpEmAXP0u3u8/dSZ7tseWRbd4uhWy7Lc/AqnXQ8Tp9BUsj664guuv3VP76Bv1GkUShFJyJfhM5ahm8+PRwuVKDURbLQnEfRi20DicXGo1L8WcFsXRwGlZf+i933WMFVoogZA5HJIs/1XPdz3OYNtbA/ZquQc0o7sZRjta4CD8eWx730ZoS2WDWFg1wXiFvwR+Y/NG3f1ZYeNXDyzYvxWJRqPG6rXxhgZKyzAgeHxIxWg+4wZmJ99DUtbSer0adqcc7tOLOrpog7WKkx7uml9LN//DyKnQBTj81isCoxMVnQQMHnJXVUCyRFC9PLr0qoJRvFF3eg8DPTxF+A+PGkMxU1FwjwRufIXx65wFy9drYtiMyQOJ7/w58HshFaDr+Sk1X79NT5MvhA/XWbFzjCVACPnGEBLdw0iJ14G0Bqzg180VIrS7T8HI67ZC9dAUm14JTWZdSgc42crw5ifTXxwtHfzpZYCjUb0U7CGfV+Ar5kRYuNBhjXN7BM31jrBGLl493a7OCcqLMlFdEk7pJJmNBbXf9MFmEmnm+sz5VqnZoBCa9zJY5VS6w6/VDjgivGXu5bJwoNvdYiTFoxvwx1o5AW4QL9h0PFzPj6eClFd2nja+eQP22PcSQGieqDP2ej3qf9803a0bPVzAKVgOaN/A8TXw1LSVxqToM1jK0b75WBfgOIz3+mNB6X3X8HG238XaOjSHaebI2MfSHrTz0XtB93uvyO5jknTZ6g8uQ1uTZdOD9NjnDnjzEvfHDwHNH5L19z7i8GpLBbuXZIXbtDsET7t3McbXe/KnX+nTfQjpb3v+MC+4Mz68891A1fnYQMqXDmIwMWsWBxICu4e6R2pEnwW5cjkBmCTj3/NL15qzS4U7hTLd/G3BpBMpwff7E3HID3MxPd9NBqUWqdi83Gg6ng9mDHRcflEVaoAtlvES4G6dfRxpeldTR639P32L1oOqMfHqAA5+nPWBdvo+S1ki1waMjrcIrcZ7LtbPla9Ac8shkp9BMkxxJHdyZHNPbIC5MNcr9WbQgcnFuOGrba76boUB1Ud62PzYfOp+J3DYnyz63PTXskdowztVJmt36VL2fPYKXE4So3it5IEF0Ryrp4m70aDt7/XyM1QEYI4U9DvVCdj4o4Trg+poruM7WC4EneBXqa/UUTWpGP0g2BKaC0A7u/VZm13tHo525CBFGY41Mz9SBiNX0JCw4zvQjayRlDjoIqy16wfMpfIO4Xc/F9iwwnHY7ocGt7yEqDMJGFNFMYN/9RfC566enLFbQZmuFWJJ9ArocyVEcmeT0kNkuWDVri8fPMq1Qs1sq2ARHhmE2Ze7kkB46vUiOF0M378yxliwjGHuwrcP52o+E/mxqwtW6rqhWnyRktH278V6qYcRjjf9vJ2vDXi+jg2FSXeT5ubnBnijFTJ4HNyQdOdfAKYLcU4QHXuMg+btDeQXlNd/v89+cUunS9s1sIuTgur7nQt69+lx8LjOA3a9DIM/Pwg3fbPlIRe2VG2R/ekftAz7J2PJfnah8eZdeg6eTro6rs1DLNMcgeOlMtlzbbfxbX1E/cPBAD9n7Gb4vLczRUc3Df49380//6dHXhpKAPe1crL6590wQuzzkBdMTLU92pszrFAP8qausPvaWSa/LCMPRhs7aI8+akFb6SbAKywzalxTEawShPE//WnwvZWy9GpxEFcWRPJerIM5qgQE9cy90uvmr5j61np18zs4OKGo/tBpSdS/5weoqA+CNgxQ2fwtNU+fknWN9PNlYUQcag3eqzd9XsGDdrLptcxL9vd8wR+er5Ot1Z38eHZADc9X/J5eMPjt7oUmO/3XwBrXf2pqXTLr7/zwDSz9MKUHo4XX0j/g4DWfTabNSQJJt2bU9iujXt3VXpWz3Hn0UO+agU12tarh/RbRKM2L4l99OZptYu/lZsM/PfzHn+lwpCbRvrIDJ/vuIsbsMmV2+9XgJ8EB9bxIGabn5xLCs1ccCJWiPaObngLOZXpjq2qTYlyqQoKvYzOj759+xe8Zgffs6oT4tBzm5rC6qpqaHj6Eh0+w/F3Pn37f9Gm6mKJP/uUPWALIFBZaX9W/vNG1bqM5H4z3CyYlvqKXh3uT9qorKBue0aN2frOpXuSrsulnNPthxGZLXe+wDteSmgcnTZff63WFv/dPoFhISUDeFt9C8aMCGso3d/iHB6Zu2/R5K/t6FbB3h1v+hsPmekrFcMx9GF76mOq/h17w9e+K4C31D2QJRa8Qjjwc//iFGrukCWZLVUrY3K4Q22l6HqYD2reQ4MhCO/H5SJcTv8/hlp9g7Vw5wTSlfgIvUmFTq9qrYOXP0kvN4ynF9kGT63noHOEf/sIt71u6znGBHeoLac/cEoxvR9CA+NEj+nB+bjpveACNwr+Q53xr60kjL17587fu9SWmY1coFmjTHJCdqLcp3QVaBxFaJ+wqS1DMp4eZQDOFLY3/3seuQ64Cbqr0p1fN5nwIkn96xT/XSfAPP95ZQ7H2Pnjst5AvB+Jneaf+EzrFTPmfAZNH3COgZlHwr77+9IBmvY+sb51vDnlLfGLkU25g9lNP/vIJsv75+WeS5pD15yeqvnmTzofz56+jKqMmX81gZHKswcTuQxwSMy72oTpW4Hm8EDR3j8rsviekgJBZHNXMJgKSe1RKWESujUs+C4L9n//b9DjWDucqJXbWOWDTTzTMZRds+QCEOcAJdq+vSyGQy9yqm38itAwrtt4/WQXOVu8jcbCLehXL/Ao3/YNd2pfDumt4BLNxOmNvKEm9eiSRYNiYI+EwCorldipK+PKlHb2+4QEQc84hWMTdDofvt8uW9Hc5wfN3ylDTHVHNUJb7oIUwpInSDGyVIB9DpXYe2/0r68l4oVYRQk6nUXiyanHDM2BL94ZeBpaCVcB6CXlhp5J5Pi7pnEZrBv/yNL3a66nw58+qvauhLa80l798V3RG7l9ePBcu5wBzd0tx9BO1dDX5SICvLn5RY8M3+vZ6CTYrh+hfHtIpEuoBFzY52fIOMPlW0cNH1a7YeMSgXo/vWYHn3ZnH//IXHfHoXx4WOFxUU4bdFeSexdOD/fwE48H4VdCt+5QG5/zOJjd7zfBUONKW96jmfJ3iTP08yggfrrke7KW5Q1AIoY5x7bX1WH2eiozO95JGYjbUm17blmC9PYy8U80WXR8JnEC+p3jLE9lA2lYupsuM5MA6pPz2fzhenS+RE0kY6JZXgy2PRw+VC4Z/+p1ldfzv/dj6GwgIkUQJ2PheFNwbAbXKIWyWHAuoQxIEodHeaTQ/tUL+45t9NEzoxe9+9ZKIcgPut7VG8+lTFXO4xHe46T/qnFadiceSN4Bh3b90y49SMmp8Cdf7muIDiqVgzbuEgOqZqwQ4ugc2/uxgdCwiBKl2CpjasBd8Dr1BpKO/C8Zl/xzB8VTeKRafajobtXmHnTLn2FTxIV1zcehhxp95bPFMCGZzvV9h3w7bLuNZn3ZD5/DQV/QJG81+V0zW7fKC9+o8Yz9uUfoLqn31Lx805kAc1tb5XkEZuiZ+OiczIM/DvP7D64QYViE0StKqm/+glhEG5sr8vAT6NAuEHc4l6+/vuoNb3oCmDDbbipl8BOn+LFC0TxFbq5Ve//JDHO18BUzKNBogamJCfm9bKZidDghOPraxmccKoJjnNTgMA08P1/xt0i4Ds6L/uC/1VgfVi31cVmg8wYlGGn2BedlfRlBimNDj5emZi+WkI5Std0h1rZnSMb/EJ2gv5rL1M0jBhJ7c4UcdpH/HWznRO0EnONn4oJN4WOX+68PfOc6xaalaunez16quj0lH75ceg/0nfN3h0Coimtv1wygQ3R420iCj34et9Ro69grFVxzTcFYKxhoDCLAbBwHtpOgM2HRiI+DU2af3znM3vfsL//CY2snBKRbNfjZ/+R7VmP0GXTWrEBbnKcGR/CwZC17Qgffy/aJa/vwxZll5Ao27bW/63wDr8kpK+KVWT+3PS05XX5459WKUVzLR5cBYebJ42M7rHR8g76Z7sr8YUPrEmF47xtKlUF6VGgz4gdTH9kXduNSl+tcfUO2xqdfCgZ3SiDTA7t7B6ewjLoFDcPdo6V60gJXLbED7xTvUjrrbQKVTWwINdFcayB+pnlfVUIAUEBWbAT8MpHoOLXxKekm4szAU67gMd1hVyXPzH/CfX1KJaZ7wllexf/1AnPUIO/hzH9b+MFRKN/4EHEi3X/GnV9Sy7U1sbP7pX39JFn49dliip2K7ExtQcYOy5bFPc9HjffeX15I1u80mXaWw+cNLir5OsOWrLg/++i2DT6uALbeKwOvhfsElGRBb8ufyAs0KEfbNjKSr/asVdZWwTv/83nis10w9H/UW7RreYOJ0bRvIqauPDb5vin94frhwNVJ23Tklf/V42rcSUdHjMiyY+S00d0WKDWI06XyxDhasBIvg2/Y+/NPXO6G5/dVrQYOHjuDYcy6arVktyO0OOxBH7x+C8es0sBdnzcpf/zTd7v/cn00DjnouInzaPdhE9hdNfRxcC2fVMQrWxp5HIEQKpeinJay7TtcTgO/9Dbu8aIIleBq9KupQx9n75KVz9blI8LvAkN4Ny057C0EJ/M5JToPRmdJJs5+tEok+Jkq+M2ox8qEDvtTpyY7b7+t5710I3PQ5DUdRNwW3gjxoL9gnuzKsAB2F2wyVRg+wY/DesM9wU0JOy3usP9NrsYR9N8qxug5063eDXmlhDJNG9hAfdnlKHXXw//IwWnbLt2D+cfDhe0qe6Bv472DlpSj5v+xRIP/vKwpEq4op0m5v8+fuFV4RgulNLUDqYf2IXQdToiAadXoK2JecENydnx96OK9uvXrr2sFz7d9I9TlGrIm+ZgIrELSkrbl7zT6BbEEbtwbqufHIJq1pIAShGlMXsUe61qhcobU/SdheQwWQfDzOaq/NLi1ckdWf514z4Lk2F8RFh1exGE+thLn0i8gqmmWxnBLHgoOhT4j7Weswt8ugQZxlLVHso2jO3zy/w9coRKTrMDR7WUAWfPNag73oxOpRSpdWvQYEUueSfNO5G8oZPulk41uuq2BZjsYJ9OpvR4bx6YIZHEADEvMU4GgN9ynLwoSDOzpSql+eeT0fTVoC1qkHnDlVaa5MaBJYPCxED/ypqtfftqJAXKqZhmt7Zcu11HKIG1ZhdM3SYnFS4676tl7TbR+ogdn9rYeMuRxZr405rHbmJeB1LUIkmlwE5mD8zuoquCUuObkKJnWSNKhVRMc6r9ZFR3K9gpV7PdKQix3Gqp/WqW/p+MPGo+NB58paDAUluyGOeBIYI64QwJGIexpVQErHciEj0DnvTtNG7ItJjpccNrvbTI2KzGZp+L873B2MH45YH9bzvb370Jupj73SPLD1mHM9xDttpLqg7YYxe7UWzG2hoR4VjWINz7XzVy/YyjrRZCNTNfAoii+CRmqmwvt0nkF9m0syhwkt1v5T96rdhXsakU+bkptZ5fA0QAP7MbDN/aN+I/UxvDA+1p47LOIXjpAxn6PBYZ0CJkliB9fWFMg68EOx7m/3ERQXtNBt6IHJbtQ8qeqOT7CBBctkzbbiMfbCmggn+gPMvH5ayJ2QhoC5XM0J3m8h1IP0iTqz8VMBPP0V5lzVE5b3XL1eV7OCROQ1bO2DbQ1XG9+BT086vsc2b7Kr4xDA+ZpHZHvEw3rGxTanXLNwnD9msAD2nmEoSh8a8TQNxmdeunC8ZQM9yDcXzMXZb2Hvixk2G9EvRqH/9sor+ZgY++45aCT44lRBOd2w90tyMI/izVLuWBIpPp0GMBp+xavNW/OosdXXYs6Jsfuma01dst5qtttpSH2N9EP4w60xycedDCgmakh4D77BGn11SeW66ob4Y2Oz0bQGHl6+Z0zR0ILg1z4sA/5MciILYnaxKFUcwiFxzzgtR3fYj8GvAuIUGBR/m3RY2ROV8NWC+5YgqWxkz/4Ekvl4odaLnxiLgG1A9eKHaLZ+QroKPYkV6kQdvmHhbk77e+9D9fN1sW1v3/QfQi6EFkBnajJTY+tZVGP4eagnGkjuGyxSp3NQc4sK/6t3CXYcxPHDIzuT61Ia9doITSm1/u43W35dzcPTpT3j8Ozn6Xzirj4wkqZEhHgSo90lVuAwdx8awYsYzHSwBcgfSUWRX0/bHgU6gr0v9Vhfc3sY94vuq9JzNyBpPLbmyrtxLkvBkJCjPZ63uXoTAv3v0mLvPQyA1kqOYGAcLtiJpydb/aJy1NKyCfUL6z7Mjdhr0LhTDSlfNrPfZD8S4BZajdHlGDImx5IGx9vxgs12mxOrTidftd7aE+OPqZn7LLxnoAh3LWLKYDExuP4UqFXdtP1/3BKz5KS2YSUhod4d60UgLoTRq9fI6xCUbLXPUIPv57ci8u7QF7QMfQPG3/WAHbscAZPlxIdtLLX0rvGiuY6icQffSFxwtLhNwKQvOAFdR0cyB1HHtvHFBLwEbkYgfuu1QIyzBdXPm0fcfl3AqK+7EX6j/UK13yQB9nKuMWSnb069e/upVy3u7lB6WSec6nFvDlloE0U9nkzqc+MRiKtcO8p2vkj6Bv2w7tLEUD/dQaRePyfB/M2T+189UL1204EIxi2Hx76zaBiWn4BNvB9DdbdyZG9m32He3+oMqjLY5kYe38WinncELkRhZI7osWYHMJfQPXsOto+ulFaFOmRgOAAfieFkpPwhjhVVXF4zLT07K8bP61iq3dm+k93309XzAhcJZvyNw87PnoI19pRMkfTWwtbpYA6rOYoZ/ML7D2tjog1TGV572H3cGbui/GNzj3AI/d+9QUCPrWHWK62DenE9IKb0mAmmdQ7hOsAvRdczV1Ax+83wa04Ye/DzZizedy/wupYvjO6Xrlim+4eHc3q1cMSG93/Hk/i7TnYUveuv56gC/CVejB3c3YopCw8W2PCSeg36DUzIThU4nzqP2o4q1Gs4aRKMhYBiN048sPiHG9kSMYrgW7oNS1avPgzV1aDWsbHBxr8Qqp+P+6dX6vW5KC1cozOlDn8+B4R/viAMEnfAQfx+13/1B0Z8eBGptPJ0cUDTgM+aZ9j23l66RlxeQsXmERmGW5Su4DByYHyGLs78Og3GU/uxVDHZhThYaiUYrzl1lDEtFIpv18c2ZYAKMPxdz2S9fXdsVEpBghs+EpFGazAdLzsekrcIsPNzqmAOOaeBTrbekHRRonqWP6av/F3PU9jPdcsEuYLdB1lkzu4FWw125SEweELx6fxiI1lyB+K42CO+uS9s7tWrA38RL2B8Xs1gUSqDU+6YCzb9YQwC9i48RF5UYly9jGImuf6SkYdLqjmuUa8Zfl1haBsdEctnwsYZNh3c+AmpD2E1568Be/CW0h9RN/5di7MXgpsh7hDXaHo6L58tkcxWDvuZNhRzcTZa9cjBB7574FDMpRe2IIluN+r0tVUwYVIyWHOOiC2spSZr7WcD3r/lhmTD1mqR7g6t8v4JE8Xh+AXL3j62f/VBJMTUlFo3zVG1xVXRbgjFeran1139dF6A8TL7xeIdrDuskoqn1rGOwcj1AwelPvGpBSZUtzvo5eArfEMiv8JdPf5OxR3OXhghFV5Hk51+VQWuepsjOidpMCOsEDinuUVgeezrxZxzA/zVd+iBQ7q8qK7BrtAiajrnOZ3/+Pqo5QoBeX8L+Fr9afAA7zukvEIjWCb7EYP4OzJspPfSXMOzdIJKbqfk8cobxnbfs6u8QLTHQTmapjAIFIKX5R+oOx4dc93OH8oudZDEJJ4xni0ZuKiJRoNObBhzEsYD9xPmNM6ENxiPq3QCt4f/wF6DvGFNTHYCfHR1qWOXIdgjkPbK7vySt7mWwjala0QwgcYRrafqVo8hh1pwzJt54+cHWKMW9iC1PjP1R3ks2KFJepX5RY0U+RsMNOO/PMy7r4zdiI4Bua7XFUi26GErqgqwJsXRh+Zt5an/ZTFY7+LFghv+o/5z7FJ6rstYGW0jIX017WtaH2cLsFNHqCtxc/pPX/Fz7FAH/0i6KkLXQFPCM/YvpTGQcHIV+BvPDkU33h+EH+QRwCEysaXEY0pcSe5h8XAQUjl5V//xG7C935FaShymghZ3JcyUE8X25xkP0+47zH98vuF1lTLGMh560SLhw3Hmhtm0BgFQDhCqjceh7uo2CEH1UmfqVjZN57/7/4W3M7ZeewOwKOklEO30L3m/e5iuz2Vt4e17OlEbXo/DCp5XA7SxmNDwe/mwOR2XDOKGF6ih99GwPnP8AqdDrVOk5mcwjcH7pR6uJkf111czl+kOHGW7XnKcTn3KuOwqQEXqxH96URBubw5KemPRo/q7Dns1szjICbsz4d/Szlxu9Aihd9VNfNsd+vSTazOvbn4KqeY5MokEkwzey9sBe+KzLabjwZ3B5r9wWJ8B69izOoHYQzX2P0c3XWoFnYC95iNqZf5d/OlREN2TBEc5roM/vAB7P+/QH38Q3UcckPrYp3/6bonL0ILFfj1jY/Ob6/iUJZj36Ljpl5fZ3UxZg35dM7Sst7ne9D+BezX5ULdyrGKf/gZFmZRRQuB0ADXx/Gul3CG4YDwOjcl0wcihvKct2j3yg0lPiTXCx3AH1LMHZSD3Nplh6WtPGnQPjk1hcjFgX9cPIk4zZX/+DT7pfMPZ8N0PK81dH/7p7z8/yNTpd4XJWyhIBYMaDCXfuErqV2+sD3sVvJ97TYMKKUbUCbk6zPf2d4VNDN74MISPYJajbQ8de1XIMJaMzbX6M6AtxR597q8kHZ62OoPND1H797KHPc14B276HuO65uq5V30BCnq7IxseMHZPPO3vfv/D/z23reh+1wAiIZ52YGy9bVfq+PbEdmfWBf2r90z/nLHeIGoSmrsuVIviSL2D77A9DpUXFMGHI7twmzKpPC0fmnZxQJVocunGd+2/6+Ps8pCuk/vLAHd92tixn2+wjMEpBq5DfGz+QDEsX9Lz4KQPDbY+ihcsh+ZugEGZGFnZw0rnRjxUsD87bySezk7B9tPHgvLkHujx3d+L8cTFLmh2xUyUUdHTBYGXAq+x1RO5n9dgnFM1hkYLA3q00IOxI8WGfLo0Z3xmw8EcIkVcwVE+aOj+4rtiTSy3gemJXOmmh8Bi3fQSllZgoGG4bXPHK60Dt4f7+Ie/S5SMCdjwm4DzJwGL/N4T6NNMx35hwWEVe/CCEIoTDovpAtZdmmvwUdy+f/U5UEna9WDjD6pt+rozmMXB9DResdt0U0B61Ssh7klK7evapuTyWv79jq6cFdRMF/wcXHscbn5wb274O8PtejAOvu+0P7ydBowWxyFWLwj8/vDe+eAz1Y9ZHSy3C3Sh6LIzjsjHKZh/iDP1dFxDiqTMGgShbxNoDYFOtYdGhnH9vDN49u8JtUmrMSa/4QmG6mzQsno9wXsXFwi4hbFNqG9pzX6alql0p2XY9neverJ1SQHJo9LRQsUvW3k38GFj3I6If9JvOsnya1WrpHHpCRBz+ONXoF0rn7oFqIY/fQUK0JY0GPKqGI/rfFJFdznTjZ+LKaGzDxMzCwih3cdcP+KrgzYxOJLevlUxLfIlhP/4M1IR48mNjwFcaYDRTLR6v7ePDbTtPKTWVE0B20+TA17jKiNy2OVg3DWXEV6uwo5wRaIzUsGdBGopJlTf/O98iK/SvzzlLw+pexka8J77BtYSXmTLIzRzGFrqiSheqgf7X1cLYHHCiSz9+h5WOP8aiBbwIfK9tYfFKx+adPC6jD5AatdzMO41ID/MJw5ja2fSQA8taHfeG/cD/wHsrPAOzJTcxL6XvgNSnWoNmva9wLkWxmBWdZrBRbZ6bD9PCExSp0NgvXZBtIcXWBOlVF+AcjKhm14u1m7YPqDb8OPAPZtgy6dieO2TFz7Uzc3cZmcaqrYcfthyH/th7D9K/E/vW2vnpr9VXkb4stwD3fxByhb5IShjXVVo2/m0ptKXnRRnsFZs59it+x30rn94hIia70GfvUaibH4QG5Ing0XM5hyS73TFeioFw9wNowGbbOYwfkJcs7tS+6pvmzU2d1Qw54PENHXzc9iqL0E6vkc/VKwYiDgys8ocN78EfkJzpLdfitnilVUCxeV5x9FltAtCc80V05+2/OmxYMOjF5wX6UTI5p+IwYIW5t1Hpg6L0TCXkoZUw3gK1IvObj2f2icPi+HtY/PqBSYvwWJUis8wEeG2/wRMjmcD8srlRO1k+4Ioob8XvCzPlQgzcQJh+EgK+F2NCTVgIsOfX4ZYPgAyP+vRJHfx6QBj8Q2kZPqrGMEBtPBJ1xv6bM+Pv3qSps6LcsLb8zMX81B18CvUEpKVbZU9tFpXUZqjj/X7Jwvoe8cRsL7nhT6X2U+prVcxoFkWU92Nv2y512ibclMoCNryI51F6NwhmTqP5nIrDB99L1T/n68Dxt/TF0it70z/8t9Z9x8thL5uEd5IXbbSXPPhOzg98EG+dWxRba3780NIfV0VRp/kokD7ofY0OHIma/aL5wPYtR0CB1YF02SfY2VX5BnG3U8JSOxNDlCH+wefogoANgadDwyAY8Qv3j0Y29uOU9p9kpL+T6/85akHr8/It3wmgBFixlBE/Yodz4nB/t19K/B3v8BSKyapTlLyl6dSTbhHgQTmM4GOUWpYd3EC9qgJLAjL7Yu3IXyYVMhwrAR3LFODPaxiweEUQ81yH//+z5+42IcdxdyWVwbp0u2+LhT6aCHmWMrpOs1C+KeH//LEYN74Dt59hyDpR7p0bm8iB1pt4f49j7H0rAY+QjjQp20SMD0fFYKPg67gsCnEYmjthpc3PY59/h2ns3nXOzCnp5mmW545r5EQw9q+2zjJdJvNb/NlgT+8zwO22ygk7f7yGWp0EmR99NUV6Ayugw0LaQWvGjoP9eDEqLU7J/VCd2UIyq41/+k12l3MXh2U5UDxU7Xqqfr5BnQKs8Tuls9M4i6v4Ph0eSKZjV/MN3OYpUmZQ/rc8qt1iWinVCBU0Jo+0mC2LNmB4vK4Y39+gXQmN5iAaJv1twvaMF0P0piD+7ruCXDFtF41aZ9BxRYQ2vQLmJ5714BSjwQkEJ+lvy1fhk7MxX95E1uuzjmDGx+iqyh7gKGaL4H8jXtqCFplLofmncCa6DWZhfsUsEgRZ7iayZsMB1aZU3CdK7jhC+nnFyjG9wC5v/qgbhCZqbD5ATX1X2+ywM+3GHvV5yHMneuffymYHnXbLuDJjsxmQwETsnslX8/wgLVkHzJhfI4d7Fm7EOn1vQbdQ5yILJzhSHP7KAb7K9mVMHyGJfXUX2rOqv49AQMlFkaHnQKm9DdIsETHhhrBnprsLw9kWnamf/5lzV6XEl7Ea43x9+MO043eIGD5K6CFHjcD/XXVXY09D6OzKnRgHYTvtqBBrKl3gpeBHZroCl/Jm9Itj6yXy2OSwHRQMDbfuN34e3DgwZw++PAo9IF/m50FHXoRqQF9ApYXYTN05eaAL+FUFXN6Ll5APUYF4rX9MkzHg7ZCK5ZFagsRBbP8ia//+bnr6qSz7p9b+CzuGnWkzA/mAf22XlDUEZmHLhMvj/EFK+C1OAxL2xzlaMr+4a94+EBAqNFnUKy1F42fdWjSG40b9Wy1+3/HX8rHnQOU51840sUzmHfQmCF20gRb6zdNRyYo255YWkE182OBWYSoBN0ntGjSSXe2yLGcQ83yH9QplaFYiqPqKoerzqEXWXfmuOE3vF3wSLi28sB49Wbjr/9Ag00/LpfHR4KLrGc4mg7b5FMsZory5GbydSpt4BuxMiAwFAMb2/H++lnqcIAl2VsFCvZ9J1tKCaU76sz6XKwnTq/+8rGtXpg5G34lQPdsr2jne725NLVpqH/9J3/gbTA3SOlB0L6u1K+m87Bi6TWqTqxAarpybc5c6rjwtpQiAuVoBlu/Y4Uy+JpbHknZfHlrDSCP+r3xJ6nn2AMEttlsUiN9pObsF3UJn8fYpwEunC2/xhYw7bKg/nubymP4kvXXr8JeVphMrI6PFobTkFPTIO90POP3qj4OpoJ2Wx62RMlSqR37jETwm+6/fpR6cCSsa13NCHsWBGYBFalTAa3461+CLJjEf/rw7/4C2n/O2BPLJV0vL5mDjkPtP72QLll4yiDYk+Ff/2nRo3cH2911T36md2TTlidBvcgP2JV2dkoMFvMqNrQI/ej+WpBvfrTAxj9I/LZmMDbiaQY/oT1iPITisKq3owHldxEhNbTe9Xr4viwYHCBPT2XyCab86uVAWZecbv0gtlj68B++o5jQdMvnGkXQmx15Z8WvWPYTuSt8wWasMUlJf4fmpClbfw99QBoElGYrUcO6CXH0uiqA+nRCcN9xIakj7pf+vd9//g7BblshaX8d7i+fQa+tn7fca2eE+9osKH4bQ8CyMOfgn/6yQTqYTMze87/8+nL4QDZ9ydav2hUzdktLSWdXdhO49Qexdrzsh0Hc3VxQGNKVGvYRDlt/goNLsx5p+JFRvSIsZzBTria+1V4drHXr8epWDxg/1WZg3l6+w9tSBduU1dGcPEGzwFi/KsRciQQsvV45mAgujxHuUtBs/Ah71iw07DkezLdCb//8LoFRJaTzrnmO4HQkElH6jPzl/3fJa587tG/VA1tdaenVCiCF7IR9XC/BNTOU4uI9qL24v4GZc3CFTixBjKQzHRZ9z1XwU0sOep+4gzkG43dVNn2/5cEaYBynQIi+i0FuDfJqpkX2DIL2YdHLVi8s0T4SuEzeldA5dYN1Tpnyf9mjQPnfVxQsX/YjvHqy0uUxCDFc1l1AvafYsa4K+xg2TahQh56jYcXpHYJZM0caalphjuZrvUNLtu80cJR1INf+lcF9L16JAFHPltfqNrDL1zNZBukHxuN74EBz0Dy0w3pjzlp0daDX1CVxOZuA6QjUE8Q8XmjA2Wo9VvnPgH1G7thO43qY5WUXgrT9mNR4DG0wV/sdD+YkbImUmz2YtGCA8JioB/KWloMpNE94hXbf6zT6gucwe9Fiqavt22gvV8ea9LO6IdLBpBFHc5Nlj3KGu/ja46OZisWM1lCDXh9aOAhf5rCituVlw40pxkrGp0vSDSUgtzmgXkiqbZfTXwL7fOtAGPE3Xe+hVwGx425EPLwF0O/ezxwc5ZOP9XqqavYtWghNcazwQQlJwOpV49XHx4fUEbobG/5+jw1ph6OkQoxNZnJXhjyJKdrbDWCva9OpJVRk7JZoDRbqqoK8fSGJtfJ2Tafn+2oo004uSJM8D4y8wkRTX/buh41LlAdLNBFL5vjXgFF7P9ZzffoiKIpPSKNjnwK6HN+jcjZFSLU4TQGriqxUgrI8I8gJt2Klg8JD0fhk2PxQEpBZ51q4DMcz1h2uZ/N+IQTq6dWjnqaNxYiQ3sAEiTZ1q0UblvsiObCrVxVHn+HMVuj+FEU7X2KUOTMw2TWRXkppXCYCd4QvliNQM+jtyI4Gu9fXJL9ufgGl4ToihINUs0/LFFif/BVb/i8K5pzz77AQJZO6KIqDhXnOCf7V36pZrJjliF/BuSEW9Yw4M+cyvM0wi1sT6297qZn5/kqKZUgWob1mA+ETVi/QPycTh147sJXVlxG+Jdml6G0ZjA/VKwcv4V2n2veu1LNRup1yu7dH0t5Hpf4a++4OwClLt3qqayZymyIszyLWLtwhWJF6Q+Bxd0/4SAYjXeWbDqHS3U9IzHw/WN5ZYEEjLY/EUdKoIO549WHrPgNsK3lYU5DjDuBjZZNZifcmZfPRUN8ScLc9I35gZa6mwFtabAo0Fwa63kgHA7wc0I7TD4C1aWXs4MHc0Ui+BOl8nY6Keh/nHxH69bmt2S16WBe+j2TPJMOcZhcNjpNgYb+efwOd7wcIdyWmhDdKG+wX6UFgyaQE7YuiB0vtcy5ko2TgZ13JYL7lmgFvK+upESUQMA1FFdxdrgYO34meTpEVvyBfJhD93CCtly5VEngkbkf2Jn7XUwhGAfTWu8LlhXHp6xxIKzwP9YJRdJ1SYvFWo7pFSai3Z106w6C4Q/WW6tRJ2jNYHsaLwHzwINY8qapX+asRIB1PI1FNGdT0nd4qpSU8okdubNLVin0X8r+yJHFaSDUjt8yHMmzOVNeIHnTa7pbAJnxbpL44OVjLVV2hnwKPhoeBpEw4KqHs2D8Ju8vlFnQFYo56TUwb7YJsrudGP2fQtyOA9ih6p3ODTw4sn8TFniYdUhb1sILa9+XjMg5sxo4Hv4V6Y23fMOJimAvELIg+vUMdlXsBquJfDo/v7vwPD9g3SwWw4R82Gm4tmP3RclU6ZiPW9xyqxaNszgBKbUMgcnbb9ZU+QHzwI6ILX8MSf5ZO/eL/hxfLVW5e0I6OHxpUC00nos2SelqEifp9kIM5zZ4a+OzuNdqmMpvTrU06yBYrpEV7N5jAfbddOce4wZZGKFiG4xXCm7wY1ENcwObT3skged91bIPkWy9rn0FYY65DA4pKNtrnzwuGK/midow6sHbQv4KanlJEWF+Yc4GABRa/lbCzxEHAHGBZ4MsXCdVU4A6CxYetwt0uHrbO3xGsz+PHh1NBE6pfxC9gv33gQotbDcKpcRgQsRhipY4Hh4jleSlmvS7mP76hmviAA2vtOoFvJVKotWbNsJzwc4X+Hczkj++W7X0ASrw+kcwJ/bD2lUBANcxPxEyVsfWmNY4KlrdFk91DCxbQ7zjI/+4ldfr1aS6u5RrK3hkwRkdTA/vteUDreb3g0C6sLUHrnT8+JsunewWT6xU+rC99iZ18eZhM/pwaaJ3kFDv0PA3jG8gd3PCGuk8nMvd77mXAoWOMSMJaDWvZ7DQlEfEVWxt/sOThJICB4oPt8dQFzJLyGGqv14q9OFPAUhQ2AbJs/YgEz1c2um+fg+70ULEXpFI6SVZAwKn3ReoqeVHM8iIicNOvM4388WQu79GZofGEDT4CeZuCUb4VNW2/Jsax1Q7rgBseVEtaEFmfjXT14ryTB7oENLrtC5Nh8HH+6pdG4fdYj99wncGVl+44wPaN/dMP9MenGCmPtKZwm1uf2fkbb++vucRMyoHp/X5oundsIPmU+ND++meMG7ureyAuserCINjw6V0wVRIgfMhnm7plzdWj6mjZlngIiBfeAaPKy7vLt+HAoz1nv0wa9fAFX8lTxXYvc8WvNb0RusWdIP7x+A5T7p9dEJfWi+YH/QgWbucZIPPlOw2OUpKuCxyuCpXOAuHWJCwWnbZXcBamFOveYqZCX3EESF4nYH8SUDqd5LsGivz9pcYTUDBz62GEN+GY4YPjuSa7+48cPmrBpxYZjiYZr9dScUYDYPzKz8F65/zx3/G3yW31TEmTw5cJc6oDeWDMPXWZ/ClXB+3q6gYWd3q0QLqetl3LUQDm/vXwIUDDiPWnfwom8+JdpXJEd+qyXR/Mnoh6mPngji1GWDq1R/cOkuB8o6b4as3FVvc9xAB71LizICAJz1kgktcDoredyersUDjQZt0PqfV8Tf/wT239zsbWUv6GGaqnDu7P2YMa/OFWbPWawKZBCtUHDbGZsF0FR8fFRBT0bZdy3wuh9PQW6sZuVI9FLzXKyStzBJGz7clzkHy44QXi9rbFZoT0Fg51ImHdRifGzmEbgkv5jJHc77t6acdnDI8e9yTtxtf77WMNaBXKQPZuYgXseNZP8BJ3AVp4JNWjm1oh2PgYexePmWPvH+/KQ77YSHy7HhPosPKw5c8+Das+NkfmryXEIPJwJI8i64SxaOFP2xGqZ7uQLVLi35Wi1FOaPpqWkX0rhWDDa2w7olJ0UooVsNUzEa7/AwAA//+kXcvaqroSfCAGAgpphtxE5BYERZwBKgoqckmAPP358N+DM9izPV7/klt3dVV1J/EsxGdPD2Ry3L2C/qhdDUY+xw16d8fnwrctd7S3foG4y2lPTa6P3RH34wY+W+2zvF8pp/k7kpWyOm7pspFtNbVJb4IsKmusfwIwupVZ3KA9aOIPvxjzjhsRTG7Uad6aqJs+rtUA62WdlC1mxrs2RBlgABVA6r9T13RbMIl9NSvl5U9PC7rwn3g0UktEPLe6EAmLb8bstldB9bsMu+XjVY1d7uiwxCM1mDB3o7LRnlDZShhMZnJhE5D0Bjt5PgTTwaTVnAxa89MvVA2QyXhdNxw43Y1rMEvPJ5qC8b6BQ3Jj2A+jrTGJOGzAj6wo2JQ3cAnyBf2HF9Rhk1uN/Pc7ov4t9tQ0L0a81FMbrBFvg7nVjt30fKMGaadLSm3emSp25vcOuu5XGcWhaXWj/t6+gbB7SMI5k+MZ5WxEzvN9pvbXO6Dl/ct/+mvRRxWd7mWhpF65p8VXKeJv/R0KUIzZotpD6Sty25cBaKtoR0YmVGg2pmgEsvscqCqHJ5cPVF2Ul3wmgrWW41FYvQpwYmmPz4fdB01lveeBP4UnrLrhlFNdaG6QdS4E0nnP3KfsGgGEfmYs9XpX9Us9kl+hJQXSxRwrktz1DRh8IGKvoDNqlvyXPSzghT893NmhGkCRvkus8qc1o31SH9EGSp9Gr4fKeO9Naij6+Yu9C2SLA96F8MdfGDE7Vs02DyrqY2on6MWWem8p44yMZf+TNZqWeoh4x2RYZzCxVsVTI5+npMG+OolshhUXoFwX5qBRd11Hs+phwXM65HTJL9T98rVlyKdB6L7YmB2DAJWUT0k1DgNjbTw/4XH3DHwY2Cdf9DIHl2jnYzca/XiCPT3C7d7bWN2objxd9NSD645z8c68zMY3GM8y3JgcBattHucL/94oniU2WL1IdcdaOurKs5vvgczRLp6/Js4gIt5Ij1zPDJpIx/BPf2bj10L8/ZgQNL5TGox3XmPiWZkDiLlwQ/2zrFRE/D51mLf2lsZet2fiCakprGzC4x8+D68kf8NZAwWr90McE5XxJjTW28P6k9jxxE16CKLmFfSGbSPmvfe7hoUfUA33ZTf+6qGLvhbdZhuI51b6WtDJ3BDMw16qhgySBAXmxGHNv4A792lYgEImCGSrf+XzU/NNuIhxgnflK89HRngZYj2VCV+GpcE+8yUBh0V8ILueZAwz02vwEA2ozx/37lwb4gbRfL+ldiEa8ZiNLvn9PqkX/OrGAgPkfHqm+fWiVvz9eCPopz9uQdjEdHvW2l+8U9dVjojMq6sH5Dkzqq8/25zFe8hAeqQ81uPXI/7pPdQbyono9vw1JiDhDWkaxiS5H91ugv0nQRifHLzt+RzNpNp5QKdyj6/b4zbnX+DYADtthb0ys+JBfiId1EHb0oDeY8aweODQdTze8K4MCZpW1zGDzL6FBLFVykhPjg5qbS2ghmIU8Yj7jQyvmQvxT4+23bWr0W4dvbC16GtSN40uf4s9JpN/KYy5dw5EsV5LB+Si7at+4c9Q77UU75/tI2ffi99CQncvipf45PFttv/wxzSSkhGS6yH49fZBhl2NXaaqwbjswbhdTi3ZMNqpZQP74Lj9048t37sJCIoaBY9Fbz9+fLUoTG+JH7USmoek/+pnMGAq5qTDtQjW9TzQ7Y6e8qF5SCrq6Tomo7FtXbrmylDxNvhJjXrN3He37DJ+VnhEt68H7kZZforQD7yJjWwiMYNRVpH42EjUSg77eIBXzYPxqhqK4TAxdv16vTyojwlb5ZkYc8C/ljV1skkD8knROFyRiPgeHLqX48JoPqPg/fyuxb+R2FDsGI+691gTbqBXNBLnC7Ijh17A2jmMh8rhHHgerRZ748ijVyr1T1BFbcBO68poib8GeIGb6fK9XBK8CQ8SvE+BNDQPd5xvZgIAZkivr05gi38XgfA598G8b01jWvQYLPUfV/vNlNNRlRw4mAcJ71yvjT+3anpDOEctttkOuxN/35Cf3xc0dhSxaa0dNlDRJKb6xV5X/YAFC+RwvJM1Mvfu1Al5Bn3+dagxvWxEXVMNlSb95Fhf8rv/Mqr//AUca8OCJ/PF2jxdUydSxlvVdLwmJQQSj+kNqboxz99DCUjQR+zfw7qb16tXL5eT0NCtgbVqvbFe4U+fkbl6G/m0C0iIOvejB/TjDznr1LIF7rW+Yu0WXdw//epQsyUKIRvjx9cU9F0vg9WHypj1htpQq+pEVqH5roYjvo9wTZtmwTsWMwV/U1C9Y0PzBPHVqJ1OOhz3RfbHbyfHmkSUKDOjquVTo59DvwZFDTO8X+pdV+oNB4vepubB5PKeS0ZZia91Tm/W9mHMsmKmiCTRHbvy1WQCf9/0P/6DF/xw5wVv5JutxjTeVE03quLQwDbivEAIlbvL+rozoahGHXutcM7HAn0dWPwzulVBMfqkbSw4v10L21vHZzO/nAt/k4cVddTJdtdnfm8rN/00YIc/rKr55bXlj49izFDlUuecOfKj7ld4vzGimN4q6Y0koVZoVL2NeH4yKwSKlYp8h+ZhzOfPTvzFJ9WPTcWY3/IlUj4cpj/+178cG2TjKszY7NRrN9cHoQVN3AnUiZ6lyw6SOyNJJWfqOTeLjXF9mmFjuU4grD9HY3T6JoVlpxey2QylMbaQtfLv973XLBgzpxxlcBVexZbt1mxOKSqgbYbuTy+PF0+LkG9SEfurz8kV+dDnZf4wfwNZ1E7VclS7/JffdgsfNpF5NqX2sKxAioZ3zpDo2/Aw1SdW19eiEwUi2PD3fnp/3fXSSuAA7Z2J6tnG76TXfLBAmKsA7z2iu6J5UzfKnY4h1jn50HXlu8qQq4FOsxDnFQu5ZANmvulIZM97l9+l5wQUcFKyMXCYs/f31Utr/ZMEguJvDSFzrjYYvCfi88PeI1HebkyYTnOGsSCW1XxCagafuBd+frvbvFhSwnD3OBqfLRn1mnS+wVOTRuxuhoDNN5V/owbXDBt7Vcz7bxp64JP6RdOHtK1Ebb/mwUlMA99n1zfGeNhnf/zxx6fmKGSN/POPf34w/cyHBDzneAxIENr5V/18b3BICkatNnJj4ZLGMhTthwbz+vOK+xNFATiJZdD9OFoGEYDJ6O7WO/zTw30Q7N8Q+Es988s8p8es5pBLnZkanx2gth2FAmpVnwh/XosdO1Xh+8fXyJS1arz+1Nkb/fxoJ1UOcT+H2ze6yXQVzIqzTJiGWQvl0N2I4F27mB7Nb/R/fGMa3U+L3i63poaUG9W6mlVR2czGnnxs81XRs2PKSNCcYzDX1jn+w7Mo1nBwk6+sm3U/TNA9NXO83xtB1ctJmcFjoG8iLPx9uD9CHTjteyRz/NJi/uefxNX2HEh8yjG6ebYjxNvNG6uCP6MJzsT88QeqXXCCfnoWKeJ1pkEcO5VQfgsANlleIE6vc9UYRAqQlkomPStrrdv0K/OmTGKxXt5PGQ+PxDChS3cJWX2v53yUkzIF+8Zl1DtqikEEojig8zahv/xlmdTPf3xZgJPjznlmhxBIIqbbUFkZhFOOG0VUrIx6+blC0+3d2dAdthz9fb9ZXDczKvYoIhsUJflH0jIbsbUk4V/+DaRGCVRPXsXHxc8XlCgDxClVRLcz3ubiZX6F8P7uG7ysyenYLPQ2ukhMJ2L0PrGJP0wAjXTYUBtvO3fMjlaA3Ftxwj5HZeOHx3C8KSciG5KHlv6OCMeHHdJtnjtMqOLvCEHnasGmEKuc7oP386cHgmknvhC537sNGqf3gcjZ8IlneTuaCpyoT+oF79krVWzp5y9bXSu7s7G7lchWDz7e82iIyQnZKWCOCNRNchXN0XudgCl8RmrcigebSv98g3rAD/pXz6Z7U8gn2VtRL358jamopOPv/qm6V3cds+7BG/38nF+/Sty/b0dYHWgRbBY9M7q3Rwsr9Hbxrrf23ThOSYCWeoyxdJPiP33RcNyNcNg28nU/P8SFZd7o7l1uuuG+jglEj/6KPTl5VdN3/r5//ivVbM3P++vwzJTdNRcC8SjeERMFvoU2Dkaqk7pyx8OWFD8/gOrnsakmTXnZwMV88Lte3Lck3/y+VyDuGtFtjSma0aIXKObztTH17tkBrcjGQBE801j8LAKc3fRYTYLJWPxSkHGpNXgnPrLqrftpIlvm2cJ+0cTVH19f+j/0OCdmNdnomChBdqsJJEet6vYqnWGOvw22FZ8xor6EI/R6U1F90Z/MeFAZVYN7oVv9bHWTUh4IJNpGoLvoLlbE75sWuO1epZp746o//+rogYVzrukNgr7z89dPpB6fN/l0bhjAONUHvH+ufERlogbKfEkCvEuVZ8WiaxDC4gdjPRqsfJ7KlwzXwjkGvPZuETnNxQiqkWgB4rZKN6bDRYaAtEOw+Rz4eG5Kc/Pn1x1++ppVZyJJg7SjlpRH8WyfXiPor2tJVSMTqyESnx7Us2wv8ennf/X85885O+3A2JnXbHD5Lwm4+/4Vj5OttspPz/78zLbwtCfYxiwFkC+nbqqFGaGl/mDr+GD59BF0Gej5e8H6072gXz1Dscw8ag9UzfmrQBP4ZL2Pd84XsdGMWA+fLx7xbqdVxiQeq1EJEm6Drdm2DGHxx9GPf9rjfVnBbdsbFJFgJGKY9O7IR6sMLfqBYhTgnO0UQYbrywa8Fan0528q/Hy3sN5NTjelp9ZEi14h3MIXprR7jXJnmQs3zvRuFt5joEiiRLHLba9ds9RHxVoHV4IgfebjYz/egMrPkRqLH0CVa2P/+puE9iFlbP4MmdwYVok9LAoV2zyfs9L2+EyDQiurIciOHjj28Fn28Pl0o1PBiIq9FGF81y13fRTbG/zwZn49SjS+iZuhn/7aTbfNcmrRvf57v9tsU8RsPX6f6PHwY1q4yQOR5ODZCPW6TRf8ycf9ao7+y0QB+veJgkrlGTXmmMXzI/MTOVgGYOW97BnLXqcqfEe5JrMubtxeercOEubapPeN1BmzMK4LUD4ZCZRgxmhiu6+IViX26V6SV9WMi+8odaEhB+tre+rG66EN4LP3CHXhgbshuY6colHxG/AkFFE/p3sb1rezTLVw3CLGm8URKft2xsad1/JZrooWxWNRUrf6dDmpDlsL1MCwA87Tz8a4zqQS7t6jDUA8rauZmsMRnGNrUft1CtAUhefNMuzn4/0n96uxyZsWVeRNqJH1M6PeTQdlvGwRVj+d6q5LPTbBHpoE349VY0zehquRfEoK7H69F5vbYhRBBflOxlxx8ikhngP6fL5j/XVKqv7TIREctkuCTeTKRnteoQaJrrDFXtgfjN7S8QZ+199VbESTBQdPuTWyRzX50ufsxY/B3/OtVvo7nsizrSE7cxU1uLWKxFbjQSnw9x08Eklz560e2nDOzTu+njHqys/tJKPAfuwCbvRfbvPCo6oc1o1GcbZOY+bwDwetuVHDfvq8x0xwaYSIuwtImyp3d5yEOUL1zb1Q3a80d2T9rANNLwK1u+/dnZnZFMAl4ZZaj2F22bPjRaCG/8Fbzn8jejCcADYXYaaaqAz5KL1bG267caLeR/XRaBhCoIQk9bHxtA9sfuP7jMiUbchmMuqKufvIRI/DISFMfrXudKU4gCW+iFQettXkO3II23KM8W6rN/H8Ve4BElicYpUrGsROjNug4ug8qK4JXT5U4jUE4SjaeCfuBjTeRBIivdAEai/Xm6fwCuj6uNrYrHyDTbvbosi2mwNV+9caMa9rZGROMmD/qUwxw8W1geNe9eleuyBjkkwcQJZ2a+qTZY1LUZMR1bjfBxsAHLfseaghioYZe/3LjpkkSgX84nv/fgmovwSSKIF3dHFGrTciSp/qqP2gB93vnknce5LTA2TmDntBJXSMOMuaku9nFZRDTqs5L08erNvDjtqXwjTIKbnIoHTXB1al/TZfV/m3RaUcpVTzj29EqVYBfLy3H8gZesXkKz+4lS4Qjhr5cK9GtSVvAN+4U9cadvHEiXUCz0NoY7P9PtEsaVseLfgQvAr3GM+XixMiw0EeNWP9mU/PR5/Btjik1PruJ5ed4rQEx3h2GO/FlUttn28hUZKK2ppgdALWZB2U5BAHMG06NtXDSQW9LEeK59hg8ydWCnR4l2+qfzTLnWrXCtBrYREncdohJly2AeLs5z4Qw0fFCMYGr3BB3v3+3hjmedwo9PsIqeErYU41amfg2oca4zisY2I+xSfa7nYO9Zk9syXf3vJ42SHqxsWXTaZtjUCtl0WNT1jGYyrbMpKZlVLPxq94+Bz3b3jbZROsTW/s2MXchhBtjjtsg7WumK18M5ATbcT7Oe4qSuSUA3lFNlh9C3Ys+GkagP94OsEr24zV5E5Vi57tY493lnEyOm0SWqguWYnV3Wyz8Xq3HWjvZ0a1kY/c8XKgFqozJpPRKGe3V3YGgW0tWFTXu8ogX+XuSaaVm1iP14d8UgXDUZb/T+ZYkyo2vBoLZm6lYceclWqMjMCC+Tsz6m/1smPqxm7gclYmktuiznjNsT3QtoVP7fTtxQw+xIPOWXd0u12fY/LI/CNE7dslNyJrsfAdUgddBndFrSaW4mnlXkPYHdOKAPcJ4s69DCHwh+uaul2witlFS3WgOTvivfx6xmOVbiJ08Ow99bqo7sYCplBJsuxCd65rdCP+OB4Mzd6k7qo7V3OLow34akaxc0g6dz6aSQhdnF+oI3EmEkYSB3Der0y8X7+xu76lUgS/fNOEwxVNm/6horQ+xtjbh7NLH5+7g8zvOaC2UIZ5H176EISd5VH95AjuFEdqAto5AuqHqMunKFffSuZ4H7zDDY3Hx2PzRHkQeeS11+7dtLIbHVY82WGH7x4xM91l0f2hzOiBlI+ub7fODQR2SImYK3rFC8u5nPgwIpzxKlf1g7B2QO58LjjCrnHnPh7fgBIqButwm8fjwPYyIHqosPV2FESQEIaKyFa3gN35Rz6YY1PD6VNgauaTyQQt20VQH0qJ2t5G7Mae1B5Y39cqaCJXdhs7T27wsNUjTu6XRzeq22e57IrMEb7yDcQn8TFd1kzvqdpFvNvJwxRAtL+NARzt0Bi5b1ZK/irc0kJ2nt28jboEPQ+RHYiNbcYzM8tCEVZejZOyf+XTBvgAIPIJub1OH/fzCcEEcTdG1POfDZuvUjWD1cgdUULkxtSaxhG2qSQFm6B+GzMS0hAUXz0EY90PxiSUYwqr6t1jv3m6rM8ScwShCDN8keRV9/nhU3lxFBxEbpS/rX1lIvHpUIzPw+i2197nwSgGhHd1WKDOqiMeSLN2iCif7vFwOyQWGLvHgPc6ntl3utkqeiF5F6xnZVsNj9WphC8fGjjJDrExbdeshF3PhWQ+7u2c8aJ4BHvmX/SgjpecZXYLMAV9SFAX3HPWvHoO5UHoYRzYAiLb9SdFTadifA+4oZq0z+ChCxUdInTSl7GrdG/Q6bZ50Pup5hEjTu1BMl3OweoRtRWto0em1Lf9hbqidY2pOeQWWuIN65t7l8/jJfHgEhBKg7Zpu6EeTjpsrv4hKPk1qWbt7MtoH4NKTWqRbuSxKqPv/n4P7keiuL3svqNffGGda97VcNqrFghH3qbHE7t15F6GCXjIK3/4inqeNwHpefKgweGU/fE3iUtWFxpcJdvtr8dzAWOTfvCx/eqot8Us+dUnwhH5kfffJ6uVJb9xABZFlN6vJlhBGVCNlFo3NoFD4KnaAz3VcsIm5dBEYGH/Sbf01CDaccua0bVoBOn+8KzG/RBZMOFLjX3cfLqp3DY14t36GLD82VZdWXoB1KuIxwu/ZGxIdUfZpt6LKMFMGaP3kwkv+OQBSzJwpzBpN6AP+5D63pevGruBFB7HVqA+DEPeWXXGw+37KbFdbipj9uJ3Bp0Je+qv1kI8FY5hw6f6uIGQbcKKapPSSkU46YEkv/R4nlVnBt3BVvDcF/eYSd/8KT8vOaHOUt/75Xro25FTsHaTtJvNp1hCW94xuZwuu05MzUMGSeOcCOCLH7O4rzj5YQ8NDeo7zTv/dZLlg671VLOMAo1eV49oiEAkPC/ejKnbH3UlL3Qb+yP/7NhRKza/90mWOaBqcNqUoODSPLHG2NYYV5ybwUmQ7tQKHwYS5VGukW6tP0Fem+d8GkkeQFpcJRpY16L7nrhzgorXKiTC+/3OqbvPLOSvoi15CFB2/fMY1UDCwxWbNzQY873y37CVtSPG/m7vivE9cwCZ0o7uUDbF5GC5NbqeHogG6buuWNs6DSgrLqe4Xdds9sLJQT5ZcwEU2Rux4VWaShEyHe/33cTYOetuCK+eIt3BcHLnj/GMYCslKnUapatYR8ojhJ1OqB6JdTVlI18Ca1onqPZl3U1vngKKM1ukdlBbxvq1dQvQ8+OD3sSHkI9PC1pI745Jd87JZT/+hdLmYpHJkviKpMe6lhs/ioNPiJjxvVeHXsHv1Z56q6vlzqf3YEK9Fp/Ur8OTMakRJEjtmIn9D7ZdfjLCEGyHeNQb3idXKK8WgVm8HKl2KwXjL96nwS2xbxlDPryuGg+zuu2wcV8l8bvvEgKzcXWwf4DUHY5vKQDfvD+xsQ0GNtks5MA8l3ec9K/QaMhO5oEpfIrj1cavyGst1ZDVL5P6UvVy2VIvkKO6XgB5lBrsDHKInEf0oa53TdAX6CUFR7wJWC83LeqV822DxuKeBUIYfTt2V4QjXPpbR3hP2hmC/WK60t7aO1mFhylnvXEJ5Zsr1Njyn2NFeV4zJfl0LAKZV2/d/PA+KVzO4ZVaM3Hzya23BBn3zCLoNVpoJpTPUHBVNZrWR90gUZOlqDK9iP70y5j2LYeqxNCwLpUbdxIm9w2SPeyxPssjY/UYlQoregVbz2rP5sj5hvBY1ytq5cqzY/vTrkbRJtlha8h3bFj0JjyuwRNri74TnodDoIivMgjCpLXY+NriBJZ4oNcHmNVsBH4D0jOLsE3RCY0iOsuITz1h0b+EjbujUf7uL1hVbxk18a6bYZfeE+pE5zWbFj2OeO55C5Rwy7qh3JZvSKXygfHuGXTsULIEnivdwPiixv/cv3M6Z1QtMjEeaVH1YIuBSZf8QH24P/yjz99coRlrMfQ4WO6fBopyjOn1IT3BdnoPuyII7hz3o/njy0TmOy2nTyka4Xm5ELx9xE9GdreYA2fO9ACsw42Rx152QBu5LXWs22Cwi/gJYbCOJ5p6g9bNpwu25eVw7ECw1Zkxf0Yi2oxu8ePDbv88Yx4IZ6TUhF1j9FPc3dDCN7BrbSDvxmqeITzxZTBLZeqOR29f/P3+Vaq2rtDylQWSZzXYFbZj9fXiufzzC7whLw0a7OoZPmBvMA64oWvnuZ5R4dYM72/cA7HgpBN5FnoVHw/JjNiue43wNEoP25G6NebD5lVDXtBiyee3sVz/Jh8OxxQ76mmZKFqfMpjVXUfAKJ8VqV8C99PLVLeiszs/oXDkc27dyZGlr5gIqLThc8sAb6VtmtMzyBFK+Fkk86Vw2aBLpagkYQyBstXVamhN7gjneXvFht16aNJvPaA8vuXUyncOEsETb7DoRewkX9I1Lx4stOiT4J1HKzSfbARwK2AVQNzVLk1pcYR+cnbU0/jYmDxRS2DR/2S1LNOdpputgxUmHNnoalr9PW97PzECi7766TlkiyilZhmMbAz3FxMZ0lwFQu+WaHZaswZ6POvU619N3vkz41HwlGoyFd+wm1sNOHnR+9haq7rb6sewBS6JtlQdsycb/DT1QI1Kg+Zjs/DhzxCgzcW+4QvniTGz86yG/HtSgsftpLpju+4Lud+2mJq3rZD3p2lbwnZIGcUL//nhG1rqb8DeWdNN5TUg6PW5+GS1rOPqjbepK9tyjvE+fz4Rm690hm4stID7zhGa7UCdf/z7x1+qKVCOIbw3u5hIDTnEP76lKFFQ0kDolGp6Hi4BrKq6pxrpxIpkbn8E07qY+MHY1p1/+bL4awFL8MedPmKYwkOGGw5xsGP9gidIt4QP1opvWE379GqhzWU9021t3g22rhURmXpyoOq0yfN5RC8dJNQtzsGyS/a58UO4qqcB+99qU1H3MkRQmdIbh4sf81f/Z07RyPdVfw2GL00KSZZe6OVpt+4o25IqPz3mL/iZut9rf+Hkcz6xv/yc0j7hQTQzFihLvSCR8wiBaLxP96vNFo3Cm6rAQuuKrZ2SuAzqDch+hG8Ba8jFmK/7tQ4LvgarhS/P5xVrlPq6TLzAcDKmrPwegeN1DRsb8qqmx+r6RLdXOdBjcnvEs7Nun6jgSoXIp+bBWrPUwp+/RaSNFKFBYgzguKk3wZrZWTVdCrdB+a4KqB/MFNFds3ki/mjr9HJfkWp8WnwLziP8BJt4va/Wd2SbMNw2OjbYSkfro1bIaPELqBEw2xVvt88GxDBRsXY7qQYLySGEevvqA7hVujsv/g3IcLoQdDYUNiz8SV782kXf3DvykokIkxzYi7+z6mbl8TkqyI7e2OcXw6TEkgo77B2pF1SnqlkNYwAsNK94wR93emSXQuaCS0dDvc3ixvdRg6zwyAXrs/w2mutDSaV5cCJqPHZbd3QTJCPV6b7kbqbvaqzc7AgLv8P2tjh3f/VJvn2uVHtZEL+tfWci8BKXbn/6pVEbGYQdK4OXOO3Y4ztuU/TzR4PLZ8r7hlkj+umHi9XfqomY0g3kDnOkdOBgjH2IzB9/xOal2Xffn593d8UE48E95eJ2/clgyd9g3h+cnF5MP5LbT+D/gy++j1q06G3604OjaNkNkDOlwWY2D/l687RrWPKbjEv96xTpIUKpfkLCycxzpfS4IbB30wjn11voihPBJrR+ZZJnvJ5itpHePdzC453mZZPG05v/ADiW7GCP9yCfN5IsQvFSQurd6wC1UrEnaI2yJ4k2dzcW+O+mAVPhbXy6aJ4rXkSUwnFPH9h3TqYxny47G+Y5eVCP0vDP35V/+ifqp1O31Je3PO4O3uIPvmL63j9ssI6XCatJ+0bVVjdVJGWPDfVOe2Dj87zj4fG+1jjobnq8+E0mEguupLutr8Tj7vEtpG9S7mix8OUJa7MO9+G7pf5TOeQ//2bZRZ+jnnRfsUkxnSMijeAQJKAmHjVPuaGl3pE5Uj003pikA1LF488/yScjuMyy4Uge4dxXZ1D4vAOIJC2njmL7Bv3V9y+/OhPOinadIHDfJ9yN6ItViP1KFMOLhdzdOwzY+i2iSRQeoSyujwq2TEaM/nneiT//nnrKlFTk8i4DpTAMizq8eqsYxXsZZfNZpT4nLh3RPViQgqzinSFfun6pB8gpzBTv8uRl/L2vxa/E2+h9QVRtW/LT03gnWJox7Q66DeXuGND9Ul/oMZBFlGhiv/BRrmJt0RNY6g91qvTgMvi8PZDQNw7WI9/m49I/QN9KAIxtYc7pkOo2LP4AtbjiYfDS++lAKW4kGqh7Lx9feNSV6+NuL/zHcFEf1zcFkRpjZ3st40EoNykMUngnEzx3aL6ILAMreAZ0f18FFZNy5Q3u9TpT285bNKvXVJYL7qlgI+sjRKv80cBSX8mj3uKOnSatUWrkadiN3rNL13M+ooW/B0e+27uM9EiV3lt3T5qf3/9NsS7H2muP7cjNjMlvugz5KVdga7fjcqat4hqk7bmlVhd5+eJ/2hDHlw2hiz/D7m5+/PkH2LRuPJte+hZA2958Iu63NZr67inCUOA13s3KtptafW+ivGm+NBauqJsngi0YdtqXGkkGxtKv8pA1FReibPWyIiN6qWDJuvXzRzvixSRFm1WxoztDlqqlP+HBplX8pf9hIX5uigQJrZ4EEIsXdy7OBQf42u/w9eTr7pALmQfT8cOoqdjHH5+OoCyeBd0ufHXcHMkTjF7/EEHLum68BBIPfBoI1P9WaTWuxlcBgxTdA154lIwI3DWTolvDUWyEZ8So1gGc94oZrJ+z6a7tPHujPq8mbHrSbjnFM+jlOptkvBWnD5uCe+X8no8Itblyp9YUjz8/kcyLf96XA1GRXhhCsNqLd2MK7p0DDtsm1OO94udPOApukwYHFAUuhXrkYPGbqXsmZTfqN8mEX/9Od7NXN1w0PMJ6dT9RrLgP1L+iZWIwAnHJ16Eaesmel1PjDKrq920svHAnw8er/R9ex0s/yfnhCVZzpY1ZyNU3uImtTc1tczVm47svJVVLG3xZ/JF1Zj85SMbeoKkV4ZhFr4OuZGeofv2/Xz+EU0ap1PH+nZVsRNfvBohePQL+9TjGTB6kADainNE90XjECt9u0MOmDbUs2OfzdrvNQHi6CsVWL7KfP42qS1riJI/ubPxIhxku5+hKxDy6o+mi7UbQdJNQrGPXqO2Gz5Q0Wfa9X/yaafS8FKA677Gr52NH2BG1MJ8OEnaMo7nwawbAPeU3Vvk16WZ+7dxg6Tfh7eD51XpVGQ3iv0m46LszmwshMJF5ft7poi/RdHKFI/rpDZPvvi5ZC1cbhvsnwba3STqW2B8RUb2McXqOlxHBp39DRl2fsNW/RmMyx/KtbFa3HXmdSbP4+acIzmVIyLX4aga/9vMazRb/xR6v7XLKqSDCUcCX4EG6pGMjvwUwFFunuwXPmCHmCTxec4i3r5FUv+8H9XGTYmfhW7NAdE+p7ZWLg9dpZ4jWvrKUpT8USJgfXNq2+sIyczuQl/wcfv2bpZ+x8ONr9/MXAKvfkgbqqnZZUb9HZYkv7JnMisd7KtiwnT86xYOq/tMPOiLuHEzbzQ4t/s1TiSI6Y33Hvbt0c5hC5f6tI3q4nUr3y70PNkq1dE9vYlLG05LfSOJ9jciau6/EH1/utLr9+c3V5K60969fTbe9q7I57jcmUiKJ//WXcqYte56ld9vEZ04c80mYjPev34Kd8/2dj2Q3iyAejCNZt5eNQZ69CsrSzyPyl1XxdECEQ5/q5dLMONbo169H85kzg684rnOqtk/yXyYK4N8nCiLlIQTCfreP2fl5GSFT4jfVoG66ubFlAKhQQvW+9brpowoJvPywprY1mN2srJUNuLKd0WBFpGUxIfJQymerYM7XSjXa9lqWK2OtkDk2y258P18WKLvOCThhOLjD3VN1ePVuN/DhZReP3ltMQUo+a2qUcRXTqVo6VihP8fa2PRskjW0RHtusJ8rJdwwqh20A8fPxxvtO2HezeMk9MGl2IZMuf+OpVg+2svN0gRz4QUT9PlplQN+1ii8ff+noOftCvgnunfquMrApzidemZxiHcjvmjcGA6II4lXBY6MYw44ehJgDY7WKsHdTrtX4+BYBugiMIyt2Dg2WJ60Mllh4OK0R6cZWrZr1bg6f1Ntxn2XGSD+C80hF6pRVx2b3Km8AI/SlWt1ZrhBOpaeMrInIyns0+SzadgoeTCfq7ClfsQ9JCjjNM6O4IXs0D+MIyjmuJbzTJcWYi2v9BGvL9tg42lHVW5qdATs8W3I9cGJOi0nxQG3mK7Y2myNiRvC1ZdOTH9i1jk0860LaAldY2rJr++ROsXGPkKyDT+/L9SYKcoJmDcpA3uZCNXy5bw+Ol28xjoKpG9Bx4OB5BDEYX67SDSt7tczo3hnVjbZw2Xx82fAsm8Uhj17dlL6vT5gqdsJWFdmM2Z40gjiaW2w+D4/4LbRvFe6775nuhuiMJiE5JWgqOEr3ojMZ05d79Ari0Avb+Pvo5jRWRcVeJQwbjzTopu3McWDWikHx6frKKe8feLCEIMR+KLkuI452A/m2vVODNE7Fd3z4RHHTLCPouZgTZ9ck0B1mCW+/etFNWEGRrAbSCgenr8KYKrcmRO8hpPohWMejenTesAN3Q/1u0N3BTx8FTM5tTYOLN3bfqPFkFN1a8ounik3O0KDT5lRgfJnMXORAacHd2i2OOU7OyY58S1iej5RBaeXT+lW80TFlUdB/Xqib1uVRhK753KjzZTs2v9ygRPHet8nh5nMdiQtKwM7ORrA6yHM3j7nzRrxVZsv7OxhzbF1tCKJi/7tfY6IwJ6uWM0zq7i6so9y34WBQ3JSI1tTEvb8PS3ng8mMwO7bRzQc83hC89hHWb/Oc08cRPVFf7nZULatVNyz59Mv/4DUexpxJVttLddS7+DbfrvF8YdEG1WnIU+/pHXJhJOcI5D5cJN5NyftIebwhWq88wuLyGC94ocrjXb7i7eUqGb2gmDx0xovgfInf6RdvZtkkGPc2VP2pn0FZ8ID6J781aL3amoq5fQDdk88tH4O65VEZZoD36tlAbbfxIijSyiCcusLGpPhZC+lxtaF+HszxPPbXFDghvWOvcJc1SPPi0Q8njzqjlFfkM5RveB/2Bd4+B8GdtwKIcGVjSb0I9WxKu2sEn2n1xNqdNqgXd162rMnAwYsqkzEZ/uBAcdv1ZBwYqnpF0jYQ1KBh/UvXjO6lmwzn7pst+X51P+F9n8GcaRp1G3HKf3gGmpU31DCcuiPXw+GGxPO9IhLc025eS68QEWqesb58P+bkk6747x0jbRKY8ZozF8eYORp2vuzD2CnOnkCPpk0j+tLc9ek7mD98wDp9aYb4GHYAwicpg0qRsDG8nLBROqEcaNCZbcXEodpAnFOVCJLvx0y/I0DEPVY0Hk+8Mbni7gg2Z67J6rS34uFVVp5yGfGJWoUhxLO9eegQ5smIdw23QU2kfzNwuMSkxsZ7sd6VD56yp1eR4iH5IHY770xonLdBhNt27RK7tAqoy1OC//DXfcoN6MrxTO1D27ovpt+SX7wGq668xaS+fN9wVPuJBq66zvs6Hnh0HAWe8JbQu2MameJmj/Z7qq46oaI7XQ7BzRVMdUuiaA5EqYHTPDIiuttPzugrnpXjq3/gEJ3FiumiVULv7hIiP0B0+/yyGWUpih0iK6YXj0GQRsC/Lg9qsw1Dfd2rmXIuSxvrvLmKmW/prdK+oMLW9xPGc6+Y+tLOs/H2qnaIMTsz0aGgNPjFL5HhUiA18Iy/ekCHvAiBq+0Kq3Lk5tP8cQHKfZ1g86JtY3F6ORbsC4UjzW8CI03tGjZPZ4fVOZc6GlpvETYGAE6Ce2bM4XA7/uKd0MtU56MFaq1QJX1Rz2ibfHofUwfO99AN1r3fV8MtjS05usstGTvtjaZHn1lA00zAO6iKeLrWxIZkJZgY82PWjdVnaalfzZFax6/ejdPdOqIezZegIW5bjSfOn+WYsWcgq+zc9Y7W15C971rAZxmu+pcXlfD05GOwfitjPCa2f0T0qtwI85lrsP5DE7lRpjV2b77D1tbrvEHV07Cx+9nvEL2dsYncrdMGNZ6+xqwXnAkPq2nwTn4yxARO7CE3Wy+4wnkyenPeWxAG+YMoPM/FzT5aZ5AcvnIgkNpi4xyhEJLV2sS75FNWQycEGbKlcekB3zODHN2jDA3bPOj5UVvuq8jeLdJnpBEmvUaXkOdVBqHrFoW8LtxuuX/w3CwhxWPZw8D1Ggte7HnA3n5F2cIPOEg/15HaxkzRnGRHG56KcQ7E6fY0WKrUFkhXrvi739FeDzrSfSkk3Hy75qOCi6e8Vcgn4DVbR394Z5tzhtWjMDAmzl2Dhk4qgo3s5/l8y0MA7tB2gSImTTft5acMVnPQcD7ccE5uCvcG4b6SqWXfJkQxfCJwLscjWWtlxCawow0a7WoT8JvmUvXF6B4ROn3sP/45zwcaAkbSF6tFqlZju+2yv/h3b37Lhqti94rPRxze57rMhvPjOkL43CcBK+Mq/+GhEu34PU03/GQMjfTg4Jot5+hWwdYVy1dYKNpU6iR+q301OlZ9RAfqf4JpQk+Xee0Yoilt9SAz9S6fN8dVC29L3eOdmn+qecyXc3u9exysLpMZzyp0AOrjsiEvKB7uNLlSA28s3WlgiyVjWo9VOIpwpVo4V9WkGa8GjEx5Ys9NZbc/eo0sR6y5Y+cBojH/+PWzbPfUfcS3brjWbwfOeqIQyE73apyhbBXlJJ6I9Hz51fTZCibi2yig/gPLbHhNogrbU2NhNfQpaoWW6PJqY2REqqO1O6roA3IqKQ3dM1zE/ZLP6IfHdnN75KM5axZ6CBWl9lNddhnGjoqe99Rb9qzpKxrMdIa9F+rYNW93g97oo0V372niXe97HQtcPUMX169xMG1jgxhhp8Pf86ix6oqNL/fIyk8ztU/c3hjW2NHhXYiErCf5hKY3TlNwZSejVngyql6/OaZkVdwxoFqts/l6uBRoiS/sCRPPSP5dv9FSz4Pui6Cj2gluwNfui4znosrHtWc6SFaeb+o7G72a5EadYW+iK/UJE9jv+yJSvO9U24TfjnFJYMPdynPsu4rPxtFGIxQQrqm3mhWX8E7MgfIxD9Rh/Ggs+sD74/t6owfVgoc2bHATUF3zrE5AXJ7IxXdeUe+xmeNffZHx/ZnR7bo0kBAwNEOUJVqw8J+cDLorolorMF30Rzd/5TOPHoTuCdvdjI7enWWFvuapNLzse0RSkts/vCfvy6GslvoSwkN9rLB9SFyXf39qHu12xKaeZkRI8NVARm4YK2S6kLIiB2fTy4FctjieCBcTwbAbhGc1DjbvY4rmPrjJiMh+S/fSUKFpg6gDF6KkWFv01/wYMCdPlu3g8xCtWQ3bqwoG5jG+H+S56s3L+4mWfyedoD3dZcwtg/q6vv7w4BdfOlI2iU+dHA1dP5+RCl9KRKwp3xjNfj87oGyOPvYXvBlPSZmiR2Wsg7HJpngkEn9TTsa5/6vf7HIVA+SHlYP3z9dQjYcSh6hciTq1WLPpevmlywiva/jj4yRTslTyuX7Z5z4U0Pir18v1qWapV4Oaadn+8IXaW1fO+7Mo3yCo+i2+86PcTceXlED3OT2D1SrQ2ExXo6f03inCi75a1syGoYKC+Um3H413WRWeAT6Gmf/ioxqNRquVfOW9lnood+zRWRY4t40SQIQ8NodnY4bG8G90adW7TciepkInGmONHb18Kj9Rgo7assZn3VFjpBx4KGNpSPXrsHPHnWU7MFzymu5em5dBn34TSErm6jgwA5398SfUXwbs99oj76d1I0P72InYC4/neBQ6WYW3Ofr0zs6jMXU3xv/pt5/+Is26tKDZH3fUuharinGkIRA3LaaOys7VeA1PN4DZemAtDiX3rz7fUGhTe0W33dSfmxJQNcfY+OF3TcFBt0PeEW5FLjm1b94bbftbR037eeqmOul69MP3cFvvYxbetRT0NSZ0e/88YvKqvpY8GCIiSLSGmC76F+LQIHSXfNRq3Npxj8TDRsbbou/RmD1MEz2PnEidz3eV91MdmPJwMtf0srKIy0aaRzDcy+Uc5eZrjN+DWMDqRgDvsDmwWS9ES36+gzngfSfuxv07CuCIYufHNxCVH4IKJe+MAWSnVUfH7WuDUk48kQ0YJhtDk+fgdekY3U1vkZFczzx0c15bbLbjPZ+bu/+Es35UqA1Gjb7W6WLKi94jz8V/+axYc4P6FRhBFyoBm1FUm3KCiYZ33YvkvaB4Imo3t3ypr33XA+84MISjQ00zSKr54Iy98iU3mXC6meUL3yHgaCtKgwdPuvn0P9LOZVtZGInCD+RARCBhyB0ETFA4iDPwgoCIXJJAnr4X/j3sWY9dS6WsVO39VUy2hwWufIDsqukvaNJZGddbIyW0JHMfLGUfhepZn8o1H0g9lvGhh1c9QdT6bNZ75D0vh8Q+KlRrJxdwJegfcEN0mdpFbMT0cJJLRSSiR+25z+tlfvsWfH39krobu60Jm/98pX+8VeodjTHgs1BocOU91GCbYJiq+96ALU1bpHz5B/DL51pCCv0vPtykplh5BQQfXXyu+rIamJYYDbStzKeX8J7FdEnePvzFGwlJy1mUYgZ0TdiSb725ALbArgeTesjIcZiqgOYgK6GVmcI/vcLcyxmCNf5E7ZZpoEEprfcOHz20+bwunGfj9QyP3q3D11dZxVN6Sw1oXyHHh5O+1ONtFzigDdqF7I+DufbXD4NSnZtEqR9azBxdy1UoFoj6yuFS8wW/c1j+qW8cyH+vgKy8SZ3f+glTQ52C8ZjXCVjrIRJ2YgNINKWpsuphrAlvI2DhX91Aa5bOZGc6JWfygTXQdUePFtGXclqM6k1ZeQQ1bSgX08+vxpFOKA6P34IpSEpAOaU+DUb7bXZHtlPgxppuuPD0EyBW3ldQGEqfrryoZoFyDaGSoAO1edgANghRCek7tbBBT1Ww9BcFQX8Qwn/9dG7SeoTueVdgPJSPYv5cXEW5J5frj+eYy8uuWviwtRs2660VjN7yPsObowfYQDejJut6hEX9islm9adrv2eqsCRsrUf7mvgZ99Qu8iasgUs6zM97LsDFm22y1DmLf7wJ6h0osfZZePCPV4bU82myq2w+RPmhVwZCXCTLU8351a17OIpgpMdcidcdkpczDCq+o3Y6WLFoGS6E5tefsNW+tVjIX6Gl6HGyxwfHmoL1981+/pwGw2yDvRZACNH0KdC8NR7Br56B3XLnv/hxokZZ9Vu/BJA6r5dXqmaA76IHPvueWdMPSR9w5R0UKXoUMO19z/75L936LHzd4TtCGk4VxX+HNv7xBLlVnjIpC1YVzZa2DXzcHZWG0ngY5vALIxD5loD27DXUy0HtGGhPwY3sVz3MKh4TWNzIRK1PP9Srn81gOSX+f+u5+qpTWGJ/u+5onuIxSt0FrPyGXuVrw9l0rTJwHkyVpLvlZQ782kjArFuL/vjQd9g5Oci9WKTuq3FMQkIzBe15PfPplA4mM+qDAPtP+KTu33VXDDH3cgUc5B0pRSoN/Me37lXVUP3kGDV/mSWB9WaTIrmSx5qXL6eFLXH6XzwKKt7WHUyrPrfqNBzEdgMyqI6dgp3H5rv+BbFr4UmRFPKJsxCAizSmUAT4sv6ex0DMSOzB/TWrqHemf/HPD4KssF709KQdZ9JW1uAXdjbW5pQUM9x7Bgzjh4SRJ2qc+c6YgN3wPZJ5p+/47DVZ+k+P6ms+/PyJmvecYKP9NiY7SS8RqPxeUi/4q2qW79MOFrIL6cp7izV/cxhVQYq9i5kUfD3CC9qtYlA8lJuCzO5n3VG3uBTlp4IvJDQT2HUYYa/zq3hpeiFTgJzCNd6BOfv5ToOddc+pbiKv4J/MlOD5/UzIdn2/1Y84ULO1L2LbrVDP6vmcwavmnH/f3/zFQ8685ktdKk8FK4aghUGat/inT388BVYvyV79QhmQH/8oBY/R1FsiwOHzdQPDLcT0b+VN86g4HvjLxxO2E4twxpaXD5+GRbDrvoqA6f3dB+oR8/XMySWmQ3g3wOt+P9KQ3o4/XtQD1UzvNDxVVc2Cm6jAMOzP1D1ujVrgThcqa78iQnV6FWOO5egfbwkUEsQLsyQN/vrt4bhswLJlVQPAWEwY2Z91ApYzC3YmfuCg2nWgNDE14CVkMQL7576ef/0LYRhRrBlZPWlya8H1eYhYUDFYEsXQ/stLaXYYeG/cSzg7vr/G7xiL+6Pmweu58WlmP6/xst31KZS/NqWhw2Cw//G/df0Qvur7+S2qTAm2k0ndP1ssqNnwEa5+nJpQMLnwyvQMbkX+oKu+ATMeuwc07UzGd18yhjnbMEtdP58IT+M4LI+xZuqGmDKC80Hk49WWGcyljUz2ujCDZeXT4BK3MpHuGeCsL9QNSP1dgoD81UzxOQ8VPOnNHfVtkwS/eg0kwd2SfZb4Ab98TiVc/Rn+8c5l9XuyeXJCrNnNN56HHcqAJy8+2sU3Nkxwrxng4UQZvr7COh7X/g3XekXD+SCut3qnj3/+wFguf5xtktsZTOh8wqHhbcypVEdJrm+Pxz8/PiXHdJFJBI5E+VPsWFTbwYICZA5aetUMhB+/w9frjO3z5V3wBOULLGzFw1q4uZkUPr832BXxljoXVwqGitkC1BAy6TrPqOfzaUl+8xTqGPdvwcomuf36LaGKUvHZDk4tWPkTdrPENz8nJSag7vYTDTXKAetptMBgF0+kNn1r2MXFLMLPu13PSP6LwJqvZ7j6A+ykxsipVrkVfCCwEHECuBClZNvBle9gf6ENp5OtE/iwjRsRTznh8yUIEGi+6z/+wJaYk37TkGp+lJlIrl7//FiuBrjR6DqPqMnVmhgcthsTvb8GHL69+Sqh5MVf9ONxY5NNDVjnN2hHpDdfeaYDvpl0orrfFSYPdUMBq/4k7YlMfFn9hXrbb3x6mKo4oHm1W3ccdwu1kbAMLbwNLej+aIrxfsDmXpwGBX4z5UQPWOvNn3+F29jsETPJk0/yQz+rl2tQIaDFmjlvuhEC1QMOXnlmzOHz+4CSuYGkvGXasLeyrgd71UsJDLLc/O7LRICYnzE1jNPMl0GyzvI6H8TWAWwB1QJhA/+GzRF79vNa8M2Wl+BpOATxi8B/9VKBqx5HG6l7c0J2bFTFWxph76G05nKvxkiZCRowyqR54M2kRGBR2Q47laXW30tkbNRii97YXPk6NxtA9hX39J8/NCcvUJnyuh1P5N1HLlje9dcCjoZKIjvWZE6d0Ifw5OM9PkQTH6Yruxvgp6+CyY9insWbEUZWtZ7Jfk0GvuaDaoTfhOp6tg2mH++tGYqp847nmJ1KN4Jx6l2w5qUPk9M+ruClEXYERF8KePiWSrCPTzKqU9qt/ve5gVA7VBiDLTKXqlC9f3rQj6ybORCshyrBQ4T6vDJjYV2fcNUfZBvHN7BcD1OlRLw4k+3X8MDyGIdFaebPmcirX1ue81DCzc3SyTvaAbNb/Z7qmdUDuyISOO1HQ4J7z2t/+WSuenuRL/Ni4YPOSECeYn1W136BzeZTFTw/1d6Px9NnNenFcDnsEVS4G5H9DXbmous1k5/HRUPfODmY+8vnWsHdJynx420asfDT71r+OdPDBbrmbDy2EGAeYcL88FPMgYgTsOoVrJemF4j0c+8hLpfLP17deftJA/I8nrBWsCqer08jBOt6R5tMmmvOHtrj3zwotM7twNZ5mVK+OokoXGDBV+m8Bf4fOwrU/72jwG6LjhqRUwZzvX2NsDwqLnWc5FozIlQM7oscY9wpf3x+O+uKXACkdq74JpPFmkHr8jlQHQxmPY+Z5MDrzXJpWAIjFhKYQfh+7r5oy1U2LCeB56qWnq4YZ9EhmCo2VPCllQDt3GNVzPSy8eAriR70ysGLj4ebVsEtkTQkvUkSc0H1LPioF0TRoGgDLeJjrxjnw46oUS0G3YivIWw2akZiMdiY7D1/BLhe2kj9Iwb1NCpdA8xbuZ46c2jj2RXWq4f7w57I+XIyF0+GJdTswsNBeEWFEM1IAcVnUyNabyAfQhBGsJIGjv3P6ri2nmTA7evzRuqmuXDCzsECsT/K2OG9Ee+bVGvh7s/pyVYI/kx6SqZR/gZNjV6WltTMOLEM+svGoK4deSZr6qhUN3DL0Lc1WTHnkabBvduN2N/tKWebok9g1ffC73mGfvqeLLVs/jAO6N6O+VjLDMhJccXWoNJ4HWoqkNi2ur7+Luip9AV43/pXfLi7+5pcxxMCbho5NIyQYk7N63wGzy3N0TjulYEtxseCZ2QV9M7jbJjLyXjA3hmeSP2dqnHa5JF88toU48Ro+DQnvgGfitfg/IiLYfZy/wyPz5Hgozk0gD7wqYLdWL/RUr/NYrHpNYXaLrngp076mh/Y14FxL8tUv2w7k3FwFWD7qgtCm3EeWEMcBufmGyDSXP5qnk+CBqVI+sPWW5ziZXnpG/Xd3p745pVtMHvo7SnvIbCoNai4WEL5dYOdoBK0PR1RMIu4gHC5nDY0AFyt+Yb5Cuj82cT5FeFicUvPAcL0qbFxBWKwZJ3kw64YEuxhpY/nZdrcoA9yH+vN/hozd7gyEN8khQZzxE2Cq8QHLhkRuSYDDkb3aCQwFPM/HBKWxfxemSL0TdnC+Mmk4f09uQ5UWJngNI2PBWdF1YOtYk4oDxtjGF/yBsK+2gcIDlE3sDCKUnXXiUfEWDzy8Zf/75ICIgasGqgUaw/VTDYp1tGfAvjt0S+KFZ4INZZ0KV5HXndgvmEDO6N7ice/7WJsr9oy0WPm6IWo0zGHJ4APZIe/PmDasFeAeauORHjG1bAAj3bQOWp3bIrB6gjWfCHZrqS6et4N7KFICvS+3EdT9R3AnKh8kS9tzzH6c9Jivk9/JUTGX0UknOfm1B9mCbZ1eaO+rV/iGaamAVX5MWIbzAjQ645Z0CuWAAnFBtRUu5wXeKwfZxx3aRewT/Vof/ULW5qJwbikWqRa8mWgvvAwiknwrgLM6Tugrnmwwd6YABxA478xArs/q8eYDXbB+PWVwJcyvSly/txidJJnBYLT/owq/3auuRlULSwsrFFfsQVzDpnRwtt06/CZqQ3gaR2JMGBShM/m9TKwiwNDAPpxQ41qTzgzh0YE6/MQJt8PYKHmsYUc7HXE/ZnUzF13ryidFVDE0m88mgchgSwoKiR9YTaQpto5imoJEjYbr+bUeegixK30Ru17YZz+nge+Z4X6R5UFC57ms1LoF0Iten8GtNS0SH4V4h/a25EXME6FEWRpY+DE2nb10qpRpgibu4ANiCxzOSOqQHWWdlRXVBoQlZQWvL2VGQfoPJr89b4KkLrKA6nh34l3nzBY7yF1FeoWTRXMrzfKZbxNJ6rvGr3mR+d7U4bDTaMZb22+Ox+PFtSu3oCd98IAYYAl6iXmL/KZ/A/n79O7hdAyMxw+nPXa0eHsgPEpptTbgbBgFj1KEHWbC7aTtwlEsh1vYBf2L3oUqA6m0EkNsBntJzbB5xPMd+xYMIsJI/sOmoPgJJcSPpdmwvZdDwvWELRA8Cxq6pkPHfCsP0Mgmy8PB1KMAi5KkwUqTzlTZ3T3xXL7CySY4jyghnBPBi4JEgTBu91RVyrcYE5JValDxXKMWHqId7nVK4BbF4CWs1SYy904tfAuX3fYP8sdn6/6QYRH8tlQ3T0/+SxeIkPlTgr/1UMey/sIvu+ejeNs3wy9l1kGdLZDRI/4cw/m9nwwALJDgXx3VQzm0HkYe+t+2GJ/2D5MSsLmpq7xRmJ11gMyTMcQSt4txKh7y3z+docUvIXnA7FT7QfcfVUKDJ/8iYMuUQrqbpcEfpYE4IvH9pwDvtUg6uAFo+m11J8itnu45hcB2S7l7DYoBM7xomCzVx6AhPM7A8+4phTJ5ypY9OvVgEcg5djVDZMLarUvQSlZC74p+n6YWz/cgGNhHOjRPotgiOVtBN1BgAgSJsV8lwoNPN6niRpZ1dX8e8pLWAbGDknP68T5Z9QkdbtlJ6pd+tHkX3uXwSFPT+i1xpcYpxsEQvkQ8QG+EWdRDir4MvMj2miaHvRDOovqb30Bk+oFd+ApUue0D9EkiibYEdFulTV+VP88hprj49Aqrr8ZyEYb8mBsLjyHEfMRkQ68K5bPJZSgOis7rPdxFfdmGXtwnXZi7bAow9LGtSjj4uNTsxqVYXJHoYXS0u3pM9wewFy0cQ5cOB2p9aFDwMXqRGB/ggq+3yduTrzWQjW1tgaiKNvH30ztRnh45Bvq3dxqmHeBIv36K7bt7X2Yu2NrgDPwM6r9zSQeEyFRgOD6N4wezBzYMHU9ePx9XlTLnwbgNy1OIV6Qhk2n9mPud5MBt4V3R4JivguWnMcc/OEHRO+nRwoSudMCXyNpsW0nVj1fCoZk03JsIs5mFMzHe3RWQ7ANEEPaA7zNB0vBu/4cyeLVAl/rJwKc5zKRkD4ODPUhg5g8btiBCY5/egUSd4tpMHxf5oz+klC158nEV9P+FguuEg94ajVR5N2+w9T61kb1HPNDkSU/4uX44BaMZav9xbsmp0epwfI/AAAA//+kXcu2qjyzfSAaIiAJTW4iNxMEROyBIgIickmAPP0ZrP01/95p7uFYYyNWzZpzVqWyxyUhD2eJCJttFy4IGYi/++qwGkJbAb/8LdgRAjvf8KwAHF932DsKRr0+G/0/PMNXUNUreKi8Mi2Vjdg7OnsiPtctfEu6hoot/hlnFQmAppZSW5/PEX8XewkOT21PTWIu9R9+AIFnGZIS5ROxSSE+sMpVI5BTgpzpbQohEfUzdgkfs9Xt61CJ4sdKza0+fr96nMAmZBM11Ieds90zaKGQfgm1uPNkkP3wcaFGaw0JV6Z4y3DOOCiOYUl94f1l812sJLDxGyQm3S9foPuRIf9qG8Jt9XtG+58MXa8AZLUQyacN7yG8zQCrc+QzgvrUh4V8vuLjgpqIofIqw8PaWNj6Dqj+Pr35AR/wJpFDawQ5PXcXCAlpTSRZ3GVYLixoFTdZE3oUa3egv+9HBsv+/aCn98EeZt3Kgz/8JV1ztdgM49JX+KuXb3jDsUkKFR1WlqZiz/b67dYGK4SHgq8QdwgrY+loUsEtX+m5dfKaVKuVyGagbWfsorPBLvFEoHKdHGy6aWLMl99hhFv+EUgLn/3jo9rnKFHcMjas/uFXwB0Wdaq/i3fErj3RQZbpV+pC2WX/nnf3/nzIGliqJ8hyGsBb2zHqV7xqiAk5mfDylmb6+N1cwBYlciEJ8pT6MvW9NTKWHqZe8KXYNi7GCl8/GSp+RhF73OJ8mWwRQtOPCPXDvZ8z47eqf3wZuxzr6lkaUA+ujmyRUrSNfO+JrxVs8YYE0V29pefiEcpGcUO7moNgHD/bhJYVrDjR+R+YkvqYwg2/MVrx1xjAKQ3hi4gOtVhfRWNTpxX8imAhbvMiNfHzUIfHejTxkx7jfGG5aUO/fhv0TJkNZmeN/kbpCD21Jx/s56DjAI/GCOs/+cdoeA5KqDwjlXrRdlW0uJgPqNNHgJ2mrxhzwnsPtvjFpyJR8olvf6FcL4ZHlLJy2F7Dq6uoTWFRQ/A4b6unKnRRfMbXyzwZ4xmKJrz3RwvbezDmc1/0Bdj4HP3Tfxu/EeDjqpekC2wCFpwqAcCrr9Jow7/V+l4DUJ6lE1q18s7mpk5L8Ls4GXZ/Z8Nb+UfLwVL9jNhfI6Oe//j7rzIG9MzbmS1TfDXhbttStcurOJ+PgVD842PH1nOite4XW5nCl4vx+NS8pWWHCm71B9sWd6lJfukFWEYPjqY0fderIZAS0rcvYcub9WHdPgfJzhnJkr9EQMp4FuAzKz8YZ47F6C2PV9gd/TM9erlV73fPsy3/9gvCx0jc7l3dOdafPqPm3S+Hv98TpHZ+xequGcD4p88OQEdU23ksWj/mp4PTUtq0QLVXT6/fO5Vj3quoYUszW8NKs5RACQA9I9gY3ap/LaCH3p7sPlnrzffrmsG1+t6p5ThBPiv+6AIaxF/E11pSL+rtlMBA3XY4k3dbL78LtsCmD6kLfSGaHupJAvocVzT8yT/AroLhwj8+eyzfD2NWxasO8iVU0DJmZs3G47YV/5zcKd70PckvlQC6xCrwX72cb3M3y9+DtP6nR77X3oTHmphUP33Bxt+PrfyeHy5+dfIejGVqPaBDLxgJ78avp88cPMDhWDr4NLlf0AmNWcH7ffNLl8n2Nr/DlW+/6ohxxJf/8VnhRJ9ESa13NOeXWwZbPEv0Gh/ZwDb+BvlX02Bb0snwC9MewZ0+Xim+nInXAOUjAzmOO4x6rQJLvkgVuPSxhJ28PNaCc7yPMNl5Iz7p+SUn3k3ioFAfnH/xsIjZYildy1FqsLsOGADMVHIu77H/4XfDXFz8BHbj+0P9P39g4wvwlIQW1XclztfiYenwLdMPAoI/gNWu3zZ0vjQlkjQbBq9fpBRYufHY9MjOIGB9+CAPzzsi9f1kzKXwlKFOiwDtf8PdIPMc+TDq/L8TFQMblVQLoMH2LbUIcYaJvGQfbPoDq+OxG/pCfj6Avj+k9EhX4JHiYanQM4SIrCD0PME+wAoMF9nB2F6OQ0eSPIHkeFKIUNArYMQfCzCaFST98f2taXR8PORDrgSoAHfT2B9Ud4Rf2912DF0XRrQzkGA0LR5123TMFylUVKjgQKPO9/Fk//L1cVVLfF4yGczF41cAs5IbwoULBkvV0QK+vFOLjXP7yUd2fyfQ/Xbf7Uy4OsyCHusQhv6RGvFPjda9w3dg88Poc/g0NWs55oPlfp2prwvpMBWtHcuahTq03qxdPr+pOiq7n/PAP/Dbg6ma6wquXqgi4D33+XBI3pVcyPiKtec2UeqbAIFbfk0J/xiDiAXywQf6TbXp5h8wuqowAC8xCqm++TfM8PoWEvy2yDyIjUe6qlchbSx302tePbqvXwv3S5Dgp5oU3nSYgkR+PTmJmn2jsa935jp4PgUtfWx+xnLXNB6OUNUx5rat2H6eqWD7NzWis+j15wKYcLXyCSmWOkQsO1xseB36DikbH18mTusUfXphbJYyP/Sm7hE4vviE+nZpeWui7wispB9DzEk1g/eDIFYCt7fJlJ2NqINCQGAw2wjtU9YZ48XWfJi8XULdU+fUM54mHqzG6OBwpOrAc8t+BAfP3CHu+F3BDzdZCj/QuBJnsoZoi8cCbPyc2s21Bf/00K+RFXpCfsnEMd+PEI+vHCOaBRH/WqEgq+d9gN0pP+Xi05sLmGXqlWZi8Mz3G54q07Q2iF3je77ktgf/1UvDqvuI2vdW+IcPWCP9wGglCvBP/2lPvojmlHf4w2/PEJGw3OfLrJxG5R2HBTlIt76eZzBK4Oa+TlvH++2tQ3IQ5M1vwdqYmcO8v6LkTy/SwPQ61n0OtfyPT2m8MBnL8bM+ZDC1AVk//jUaxlwhwCwP9YY/n2EWLxmC6fcR4ZdxkrzZ0zIXuvFyRStOvXy+7mQdfq4N+uOrkejf8xW6+6FFCoKmwUKNpfDMxzVVJbqPiEyAC9zSmqmDqWAwd5uIOqbZD3tPY7s4+1THYPOTsVu5nbflRwLAbT8iri3EYb3yXQKDyynA7gxu3uI8hxj2F04m9LQf6+nz2IVw84+IDOUeUDnTG/injz+bX7C/sLSFzPERdkOPj+j7zhNwaWadWpt/d3Ddgw46fkcwvuZhLvz5ZYbmM7T/qaoxm6IGFfK+/Kin2dSg/ElIYXjL9mjMl6Mnrv4lU05RyhPxGHTGei+hBZGgJPS44SPjZl2Cl5VpaLbvZ08c0riDJAp7rBkmGEZVvKowOlgt4Z9Zw5ZYATPgzj6mUcFZwzpmoQzJ6vzT52ydoJfBvr/r2FJeab3ql5gDpfodqenrRs0zCkeYW76GXy2Lavb3/zX1wJF4PtjR+MnjAqaK4fz5XWCZHhcXVpckx+ct/5fvtTKVK6wORNn84PHhuj7oH6mBj5qlRuxeJTL83b8V1eFBMcYtH+BrbSd0MMc8/8f3Nn1BjfIj1eP7nCLwllSNho5x3PoXvxFs/AZJ+jzlLDmMCJTK0GF10bSI160o/MMPwu/3b28cKqMEW33Y6v+Dsb36Rsqm/7f6V4HltnotnFf5R1gqmjUL5AX98S8CZToaTNpRJHNt+UMSlt1oDSvHBEI759iNQ6FeHvt7Cz3haeHjJXiwtbUtAnNALIyPELGFb38BfOrWEx+dqmOs7mQZvufCRYdTdK7/5T+XnxHiAvdZE3+ZUhiI5IhPby82xm+fdXByDW3zRxK2anRMQcF3L7IczEskrtW4gvvIpfQMTNubiyNFUI6Tjto01YZD8AUFDK2yQZeL1HqM4bUA3U/QsCkbn4h+y3qGae+JVBtGylYj5nSw4Q9189NkjEEbdMCdFQ0bE70O9DjzLsCJHlMnHqhBb0ctVWRHOyMhey/DP/9s8yeoNh2VetreL0C7vKCWZA0Gu9+6DhbtayUH8krZP7/9tGtfyN/8oH/x8VePQma2//w9+AgdhDXeloZ17l7uYevvkMP1Xtfsup1IvCDPR7st/+ZSuMp/+YA1KYGA3MVTAaXk5VFvZzfD1u9aFSM8mYSM9sdYE10kQBMV95++GGOYclA7ry/0sXk+/231G8BD/fz3/PNWD+ARuj52fTPMl5r3W7g3/Tu2cBDmTNp9/YPd+DG+UHm7BdK72TAy2jc1enxkW33vIYVVSG3Pv7LZbwcCjMXVkTTvomGVnHejqFBC9F5D5K3gYQtQiFSJrDfrlS/6iTPBH98+h49t4lpxSzge7BmJvAQYpQfZAlu/gZBra9Wzem0qqJ3nFz7JccOWrxi20LoWLd76eQNfXMwYWrKZ0RMvAUDY/ShDwW0oWb/sWy9q1TyAG7MrtYvhEM3RpyDwGXIERUuoAlEzywIQPb1T09zZA4u/PoSI1GfqCXIZsVe4tqCTx5AaBmHD1n9QwR/eJr169WiosQwu3+qJBA5otWCTVwbKXb/lWyYba3O7cfB4fd/++n/Gv/gAUxMQWRrbep5PugknHo9YjR5ftvLsh+CBEkbdh2F5W39Ckq/BFVFVp69hKJO8h8pbbbDm7j2v3/VHC/75SSezYvUCwh8HncddoRtfylfz3Ang6+55tJbcxWOT42Wyvbc+dIvHeq7W3wrDPjxhfdOHI54+PPyeqUWm+wuBFSiHGO4CGv/rf9LpVaxwvN7P6HYeg2FBA23Au3gfsCW6obdYp1qH5eWlkEu01GC2nF8AS8laN/54zOelW1voPq4+VpvqGTHHgiWkV/AkAuZasI4fSYUfoiZotkKX/fMLFOGTYa+duoiVSdSBW+H36FCjw7BmdA3h5v8hbtNzog/8ELRh75Hhjz9K/MxBe+wf9B9+20ZewNxbRaoenj+2FK0aK5Z4trGaS8G2E9214RQ+t1vfSgrYIyEjVO0wI03oHIf9oCkCTE5CjHgRkXohwrGB8uWVYJeL0pyBZ90pf37GnXesaP/Xb85kuf3jJ9tE47UB/b1a0EHhHnm76msF7eJJ6ZFd23xK92MPkX6r0OEWvvM1VNNGATdxxO4Qf7z113omzPe7asMv7C1o+Lby600em79XD0yElgvFQLGwgadvTpvEbg+6NPdo2Xks/6gqgLI/QR/7UV0Ceu7uEKKgwhRx3i6au8+uh1u/GUGf9Bvf/yWgo5mI1l2JI4bFwAbmEI/03HFrvvTcYwSbv4/N6++aL1UYm4euqFqqfh08DFs/D279Fex/dTNawvPZkov0waixhCojqrhNlHflhabL1Hlrcl8gzKpHgbg/f1N8RPL/Z6Jgz//vkYLiJinUmSx7YGHZN5BKqkvtPV8bS/lDD9hrpYT9R3VkSyZdBdgF7Ui9b11Gqy48Rshqq6YO7N1obX91CD/gN2HrrkFjObwGAaTydyBgAe+BLXRqoctIhE3/jXLx4P0SqHiPM3WN2h2Y1C6BAk/ejeLuLnvTt765h/YcFmi/e32ibgqcAgLvcsH6u5M8tjc4FUzR0Uf7nhrGlKZzp3Duq6H4Cm9sqeJLA7lrkFDfbERAtucFUL2laK+VUc0+yMzgy1gMdDimDVssEvGwQ36PH9og5lOp3QugSKd6w7uerff7AcJhuKr4JNtLNBl23sKLqkLsiws0aHn1OBi0pYg94f1m65cZCWz68Er1UjBYF72BBNnrNCPBHFpjdNrtjHLPE2oI5ujNlG4X2wM7o7iU7/li5tEIHftyx/pe/bC5O5dQQZ9moP6j+oBV1gNfYfr6whYNe2+YhMmGjfD5IjE4nYcV3RQOoFPX4SK9rdH49/fNIw6xc0wb0L2jIADVWrnUsZ+HiPn0wIGr3NvUCBM7F8XnxYf7XTPTxEo/gHmPgwBjXzyj/gy87ZCiZcG5HzG10n1nzIfObcH5Fjf4miv7YaGeyMHrR7LILjYaY7pXwSg/eIlHj4ZlYD1lXQj2E6LYD91mWM7nRwP20ryQ702d2NxepRlunxOoHgzv154zXT6X5Yfi5ZPVU7R0JjwK0xEbNwIZqRQsQ04tY5ymfVyPHI5ccHayNz1aFmM0BGsJi5usoBkKxBubuCuh8ssCaisH0xBen7WC3z2TsQ4OljF965cLHHp/YD00k3wOyqGH0x14WNt9eWMpH78UKl5xxmeP9gbDch+C10Mx6Pl0VRi9cbkKu6yGhO0Cv56MC+tgprgddgr7azBhm9XTxXLF3v3GclLNlQC98vbDrkm9XPz2YwvsvDNI/SwVNo2PVwMsDI5oLag4rNLtaCk30MT0fHlvQ9mnMICIv3B/8QJoIQ0Ekt3lin0sNvn8yksLOJHpUePEfY3mLA+JrD1OEvpxihst7TnUd9KY69Q3UwOsKJY4eNbbCs3v3W6788EdgX5vKdUdpuX8S5hVRTE7hNXLzxkW+Rbr0HYCnbqm43m/CqIWOnfZJYfL8wgWIokruEv7FVu5bXt7ugt5qIz1m4D+oTLBkY9/y8Q5bODnia1jAARgfTUHnwdu8taKUR6M3s9EVbzoYGVx08Kdde1xSq5VTnUx0WF4POr4hN9nb1TFlwn3+YejvuTZA+PDUlK2+Maee1/ArN11+y8/sfdUWP3roRwDmpknavL7NWdD/dFhglN3w6e+prd7rYIu25YccLfeWJ4G8kFpiw52utLOV+l2NkGeiwDb7F2BxTmYrnJvnwvFMZYMOl72Njy8nw4RIgyMaVs6BC+iu8PHUhcYXQW1h27qXpD0FK7eCgsphXkTjthjnZYLHHdtIRMw//e+6/nkizPcW+ZItQUzg5pugYAXqzc0LTPxVl9KCfCe6EamyZ0ASwIXArr4Hs7S6OzNxnOzLCv9jf6eh750Q5Dxu1jIRMSpXg9AsWC53hASw2walrwuIRxSbof1vjPrfWIrJZTTr4/94NmAfmdKBMy74kJxd249Nl72Lrz7u5HsrFWP2FCWKlSePKKP02pEM3voKtjtzAKfzujs8bR2Gvh4rjOaXgffYMKKTDCW9xO2q0DL59dhr4PhNXNULeKejc1x34Fm0D7k4HAfb5FkNsN5EktqCQrHmOW1D4Cy5YCRiNRhVt6eCtY5LdCscl2+2rsggMXF4tChsR4eKyJGFM2hIt3wkZFxPwj/8MnMDjiaL703QkERROpMow1GI9olcvWlKUU3bxlmS5BbsOEPvYuFMyzhcNSVz0Ke2E57vmYn+/cA6tN6U8e4SEP/9/vQ02hh10OvaJ6zwwpHsLOpdjsE0bo77YnSfKWYIkOjNRM+bxWaEYFYzwMBzMbzlclnQRPJ705ksHzkiwD9oSjwUczMqPv4AQGfifbYvU3+0J383Qyz6ipiP8OfYfkJtwCyo12iJZwom6r43sLuvo7YUf0mp2B5t7AbgYLVO+lruu9aVf6Lb12P1Xp/bMAMu1mesX81Ph6b22MFclz9qIOTe00uCoegs6gIG1n+y5fseZTh9v7p9eZpuZBfKheyfdEgbA5JtJpiw/3LB6OyOG9quzeERO9UNIe5wjrqch1seNwS4Znb+RS/Zh/OaYKoqqadQUD6jOFgIoVI5KpH6+mi+jCj/mezgPua6b0EYeZhRk/vlBpL8lYL2HEl2fJhMtYzesqgHnWE2O/eA7o+FQJb8c3w0TizfO4vnA+7UzrgcxLt8qU6OA0474Mv1l7pxWCFVI9wfrlnxPFArWezFR//+MFx5Rujuda+DXcXMGLn2KRgdrSKg0vhNNicceitr89aQt7dbUuMUuQtnvzIQHz5BtS3jnU9NoegArV0K5HEHSVvEEHrwhP3CvAWT/XqGlMDlxjFaBzKk7HeNarCuORVel8LxVuUdAwgVaUTjm6VzWicv1aw4Tct3vUKukjxhM3yy7DOcfKwJLtrJmdd1lI1gr9hVbq0gIfuYlPX43f1doaIwPt+fGOnZ3ZOEb4h6IdBgXH6M3O+WwNOIb/V2Jb81NHsfwcEU6Y+yC6DTb4UzQHB8CeaGO1e13r5pXoMs9dujzIR0pqYIYQgCesHNsZwyJeR0xslcx811m1Lq1mcZvOB0y4N3fA3WnMhs6FUn3WcRDj3hoTflmyt4Zlqz2GJxgEtSLF/jUWW8beCz2NGKhCSkacOvXfD+pfvBNomNaHMoiWx9xVc5RshVJK++ZLtA0GZ76cC0d3yHZbuJyPoRPsca/p2CH1RBxtc48sVu2SmxhKbZaAck7uGFDVwhrH21Ac8Dp6BWPDrhqmZlxlW3ymlx/1BqpdUKbt/eA03vr2CaxDD/mkd/uN/4tUtQG1rDzTftMKbUqXrwfPqS2RBJ1zvf6mbgGmMfOpU5JuPxfWsgy2/6V3slWFpg5cqp+GY0uv8bgzW/B4JcIeoQpJ3XwE7H3cuRCIc6WNn2mBm3dcEuO8Xqp7Erh5Ap1Uw3rfbmjo4g9GlTIf3OimpxirmsaVWKwVa6YkoEerZbLa7B1xipcE2eSc5mXaeDL8sP5CPHJls+RgHDn7fhkR6j38Ny/gRO7G2jQcpFPU9rLePtcJdFj+2/LY95pIfgVdwTxFrSzcnCr+vYKu0FVoMSiIWcrsS6tVWP4h4rrf3Hyp8Z/+IxJ/qfI3WXwr6bJTIfuqM+i9/Iac4P/RZTk3E7KJtwVN9CH/4XC+r6yHoy85CT3MS1Iz5Zx5yMuuoaj9/xgx+IQ93F/tBEvS0gHCvM/2ffsLOsapZ8ApjOO49h8jtQAy2xNdejmtfw8Z5tj0hNO8xzLwzo44gOZEoHw6pHMlPn1renOXrmEUyLOrHDg3iSffWL8oTWGf5E+1LXQCj/92mnC3yQOK+unircIU8PIUAUxuoxrDQXSgApb6+sfreveo/PQQu81VFgsVZ3l5eaw4ut9uHoqJf89mWdAHedCvAxhlCY8E/OMM4vWMc0M+Yr7zOj7BN+RLfmalEJLbbFhqwkejxXev1vF5bDvCfuSMsy518YP5RgNb69Tb9+GGTb8AS3n67GpUh/oHF9f0EbvWdrOLrDtZfzypIVmjiQK7PYNriAd4vlFILOrthLWO3A6sq9hg/cVPP0mEtYDF2O+xLXleP7OHqkF+SnlTuZ1/PZhZmMHOLGq2qpg6CEwYPeBYMEauua7PZ9/MAukaGqfPWvsPKKF9B+cLOZPzt8ny+XeIQkrIxkHSIDLDXM6MAkFwy6oRYNr6ZY6RbC2ihZ/o8M3oudAsmFnKxc1gcwOz818KbAq9YfbCXsXrnY6dkWlhvh7h1tp4utg+Not+jbuOLox1lPKSoOmJtl6veX75CBsOacPuJB5N8e+jQkb5PUqZaz0byIBW8nqBBH+vuxJbqSAjwvG+LtQVH3kxrrYXJZfWpV/aqMbIX1kHUnTzsN1+LTdTbcVDqNY04p8Fkwtnc87DEPxvbX/1aL3OYqzK2fjvCnqUC+mquePjHZ06yfcnXNLhLf/WGSN6OeZN8BhC2wlxTdfv96Lbo5k/vUvwpD/XyvhUtZEVc0iMe1aHb6gNMJBljoy37fJLPjIMNeyT0kr5mQDIPWyCxdhl6w3Ncs3wCmfx+lSrWEj+o1/NTnbdDJ1fqdU4J5iK0VWBfPzHNWffO2aSeQ/jNyw/d+GMk0uiYwUszc1S/32pj+e12MaxYlNFjruxrWs6RBJk+v6j5vgTDPInCA9SjihAXS8swrlcCofUUbSKsN25Y//SiFrodPieHXT39+Qd/+GoJSgHWi7z4kAinK1I2fTYlMM3khXt25FDIedT88b2lba74kvjBQJYojiGo7ld6TqJXxPrMhGB7PzS0rfcwP56xAPTjR8FHOWrA2LzPLZDPmks9bhXASLSkhR449NjOlrIm/d3r4e7YZvjkXv2aXO6WD36FsKLwXoveAkpogfUeZuiqpIdo6t9VptAotOnZo663nn8fXjkXdo0fNmd64qw9K1jfQp/6Sq1485uUaBvpcsnOOLzBn/6Hj6pi25IikpPw58Twjm8T6XaryLb6ykP+s3ak8z9sWHcnhQCyciaBL+0A6MRKV0nV+IbmEP/YH5+Ut/qNWBorEePWhYfNtYo2flUOzKSWDzb8xTrnt9HUKIUAtr+niXo5sLGm80N5Op1AvY+gDiKXtTK8lXqEj7vXMWdPavRw4/uEl7UQrNF5ySAwnyG14hyAngNBA7FPCMVeI9RE/to+/MF5jw1UPfI5p+YIAQ0N1A7sl9PKhzY0oxHSo7QevLG/CAjGMNWwBekLsANLEtADFVIc/W7/4vmfH6D91S8xWlxF2Zb/Gb7R5Yvz5H3wXbvfP/48dePOl6k23Cg6fSkj9zrU4XuwdIrWrszZMpYtFA/bpUsXqcqXKAlsZSK/Mx5vycebu3PH/flLGA1XNiycxadwPZMUWy/SRSzb1SGsg+KMzfxFazbUk35wuM6nx3zRBpIOPx5u+UCRmPHDTLSihV/nwFPvkOn5ujPnERZohETe5UE0KWkTwvR0aLHWiguYx0aIIX08bOpVimosuaZAeKDbUsP32YvmfSQjuZDOGrW6zxOssU1akCXqB1v/6WVW/vlzVCPJWi8AmjpsHHjBzklMQQ/YJzjE3KzjF+Z0ti7RI5Y55t+pS1zCKrtRE4VdXitiRmoxUWueEvTVYSKf4Wrkc32bKrD5l4jIJ81jKkpnqE3kR02dTtFwhi8VmKMM8bGntcfM6mdDDc8t2btjbKw7UxphXO8uaK/4x6iXkRKCSFVs6mz6jADlnEC7UE2aU3Q1hHR484qndQlOhMVl4inUqj89QNH+rYK1/Q0h/AL+Ry+sijzxfQAQzqLxpmjjR7Om7nyw4Qt2TWcwqOBeLHjj1ytaT6VmzE/dlCHMbQf7Sv002Af5GdDi6kd1YToO+81fVBp1vqD9zXtveOND+LFRSt2DPefLPPUceHXvI7aWpchXpQsKsMN1T9U87/NBfN59yDzuRe3S2UfLs0hs+Ke39YKK9fq9gQzwmtrSDR+H5fPSZPDqgYWt6mszivALgY3vE6W/nPNeFx7kn1/6py9WXwqIcr/NBdodL8Iw2lHIw/X0+1HfFW9gvYaoh/UHYWrXyttYqpLrQfjbm/h0P5BoedN3pfDVUcZIyrR8Hq1fBk5BjQhLZWWgYdm3YG2EB5FuUumtfOH3YASKjTEpW2MZBreA9h6kVG/1Jt/8hAJs/A5j271ta8TfLbT1h4HPOn3W9PkZWtlWTZ261fEM5CR9byNcBCHBEa1BaE0QQJCI0cYn6j9/opDB8L1Sz2HLQHcNgpAIxyt1dZ0DS85JMnStuiQwyw8b/zwKMAnfD2o/e83Y/1Af/Pkz2Cfb0tLbUaqAfDZcvMUPY5XP2/D4+mj//T7vlZRg36iURs/yCeY36Xy496UB+9f9IWJdyhOYvZQ9dsTiVy/JrcvAfH4/qJPvW7ZYkSEpcxqjf/79RKTd5kFnlB7Dz9uYomrvQypnHrUi4+StT/mbwjU6D0gcXAr62qhVZXsevPnFHnOcw3ggxTaiYHFCRPA70SGy7xI1Xtqvnn83TVc2f4Gwb1gMmx+8wpsulkSsj4T1DydMIE+pRECr8wN5ilX2h8fYftUxoBvf/uMfWD+Ne2MloW/JiVAhMm/8nUm6E/zTs7a3Y8YocycCZ4s+kZj6aFiyQVohF0pX8nnX+rBe5AOCwzlT0OEkSmz+0/NtxRYiRyc/YsrrMEKteB4w5sOvsViRJ4O411Xsu6LI/uq1nFxmHx8JqsHSBjcdwjU44/xbqxGR+zOChiMxfOT9lAl+1I3gi2FN/WJ//Mf3Ic8/AVGEBEXTdKpGuENrRo3t/awq11TgaGoqPW76RpR0JwShB7R/fvkMLliGVQttevzpRg5u91qHzVeO8XZ7FBi3z2UHxTaOZ7waU6ldHsDL+ITm0WeNmHm6+GDZR91Wb9RomcZw3C4SSql+CSvjX/0QVXSgvuOmxuq5aqfAC3S2/sI9Xxa1tmF0Wk4UZ0ljEFe0C7jA05eeBpey9bBdPA60RCO/fG+xBR/NFV4VdifV1u8ZvPYiw01PU/Vs/PLxqfsyNB4hj1G+LGBJbmUmV6XrYPPu43qVj09fjrlVJ4p/3fpLiCRgsbsQP7PJq8lUAw5K3GLQNO35Yf7zP+inc0i7LFy0Sm6pw09r57iYr2VOaL6NuEqqi5g2nLzpflJXpbmWEX2h583403sKvHAOkp5mCeY4MHXFLpYY7Qsh8ebNj4PO0bZxtvl9XczzKszX3Y6IYXYe2K6xOLB9f6o/AqNmwrmwYNLYZ+yI/XOYj/OthBV8Zf/45T+/YZ9/OaT4W/U77n/hXzzRFxeAf59Dd9Y+mx93GFh0EQkEWqxhQzu2m38pJmB3cR9Yd3b7iHyZl0ATwQNSqtUfBLuxYwhxe9r8+w8Yj3a/HXHoRGpt9Wrhn0YM89PxQL28j3KSxdSFw3BTEdj0qrgetiNGSaJS+/opPSYb9xK67ySkm1/4h9cdEMBDIAw/v2xU3oYKz7ekQeX7vovq94FxEBsVoaashUywxsCFW/8Aye2ADHZIrQx+DpeR4gw20fwSJB2G3NdCl4+7Gsy4O+Y/f8yIbFivgjwKcKvfFI87Oaf8dZLly9AoVEMnWlO9lzh4mvfhv37nurtcV+he5wBH1uUbzQFgLWC1WdPke396TL3NPITpauPj1bxGQ9WZJvjLhyMey3ra+p/w5oUB/vOjq7w4+cBv+hf5bPlNgX9ooMKBinQdSvI/vIDvagjRzhkqsNaFDGFPCxmfjtSPFv7pJVARkwjrx/PbI8Qe1b98wM7p2AzL1o8Eq+g/sWNfPhFj3+cMxW8CCQznP71wbOHNCwJsxXkOGPIzHx6Y6CLxpp7ZnDaPDOQrohh398xbbuG1BZYenbCjv8yI784dhEBBFhIi4+utj92KwHUpbGpZnGWwIgLkjz9RU7TXaN1dnjMk72uET51IGeXWAw8+UvnAumHxYA5ZPcNNzyH/GWdep49uCB8JXLD7fE318k1WC2hW0+Lw0LbeutVTpRXWGqu6CI0ZrrIM59fhiS0uGOqld24PuOEXAlR/G+RWOStEKv9Db10nNeVuPxnG+0bH2+9nzOiVp0odfYs/f36Ym8Ju4LXCKZlFczLY/qFyf/wW+7ve8eYiVHVol5mFpD1fe8tPeIXy5k+THSlbb7329xbmTTBij+crY+PzNtz8GbK3z6ohcusiQA+4GXZ88TiMb9IhyH37G/W14RZt/SgXmIg7/OWHNzfvcwOTxj3/4y+ioRyswyyEF6rub9M/vQDm3eOy+af7erW/5xg+nV4gB8nsjfl4EFv4flUqPYn7xSOB/3bhjaMfVB6bbvhGaCXg/zNSsP/fIwV4ZC497W5xvkpPH0LQ6hiJAuqi6XoPG+io9wD7QJuMub3/eugnnzPVX99HPe8lYsOMpTMRHxphzNu5CZSHIiaMvIZ6tj77DhROO6FGGJxh4fRSV1ztmaKd5NOI5LtLpnyyOiWZymlGEyeVrUhL/qTWXaPGMidSK1t5UePTJPPGOtF7DIyfmFDXB4SR6XFZoRX4T8LNjySf+u/Aw8e0vKkeyteaCexXQSe1CfX2v3k7gXh9QIfvLXzMFrseS+VRwEMgZ0jiC8QWfUh4uHDjE0dzXucrJeMKPzqTMerFj0H2jTzD/YJ67BwBNha+chNYPcwDdp/+DLpKv7dwRP2C3STXIuLCuwyatVDJ7pE19XjFnQQf8YVi8yHvjfniBanyFL42ddqD5BHukJnwIJ4LioR0AjPeWuzle7Qx+ka9wR4Pd4ThTXKpYWuBsdALK5U00DA+u9UekITqDdwb9gkfj/M5Z19BGEHj4Qb7cX2pl+bzKuGuDyk+X5AFJvYzGvhJmYn2v+wbMXd0Z54M5ZFQ7/7zhvf9AuGYpAENxODtMdfyeshOpUnRK5fZJ5v7Djzt6oM9eNXY9n0yqE6OhyP3Pg4/Ltkh6F/2MeGA/fUmT4IyDH7HO1qdazOMZ94O4TKMEuLdixCth58RbpaOR3VRjTdIvjTwmGU59cCny9k7DEZwKxSLata1YYwctRQ8jsShVjDJbPk+QkvJi9eE9ViYom6azzbIW+xTS/yCnMzfoQTve/gk88ALYK70ewOH1csoVi8sYuPkj+LN272xfusRmGXC2xBdJwn78/WRz8JttEBjvQZs7XeSsabVa4QXQ3hiNw8Oxrjw1w6K3VdAWX99sGWel1Q+UPtI4y3+u7WNXBjcKoR9Cp1IKC5NAZcjJQS0tm3MIAYJqC8ywOblPuark4QzNLVmT/X7NlVoeZCHY2o3qFD3aFjicxwqyc7G+PnN1YgZszhCqokukZ1btLWow1DhFK5ESwkuOfNfNxnuwvpC0ZOJAxPKHwRbfJMDa3feaBze606NfnfqqYILxNIKM+XsCga1d20zzNX14kJxvl5JYFn8sKgf1wbb+0OzfigNIl6sDmbDcCFyGbdgScJLotAlPuFzsGqAN6KqA2J1+mG7uuw9Jl9WCdyiSUUCz+5g8T2+hGT+HgjnJ2L+VoRfB7BGzti5PrZ7LzQ1gCunX7DpXpJoSY+kAB//MuIsKXeM+GjkwDk8PLb8pMZ8u+4bpbgJd2q70tNbmosaK4eHXVIsBOIwu7W53VPyfmNb4bR8VnUagDM+CNSNJVhX0tPk4G0oCmokSRaNvwsTIPa5iJrkto/WT4c5EN67AseieAILKCZV1vzexkdbMnKhovsVdIZkEtCVDRtrSKXDI44oOvRP5hFhwAUcL/1tw7+3wYStRfAXj8jh5JqgqeehtSwd1lwi1m+S8ivsq33797wR8yTHAodrF2EnGIuaYnhvQXSFE0Zbvi06l6Ty3nBPVB1tL5rv0SGFk/lg2JHJ1ZsPkOth2T40nPVXyFYfNRxcOLLdK+Ec89FHmqtEE/HoiW+PHmvEIQDb+8T+rxnZKgynB8ywc0A7dZKiH76hALLX90GN0n3nSzpMLUAnN6Tux1QNId/dUxi9Hi8atnStl/Btp1AIlz023z3JZ4XgBvpcMpClfI0R+Xt/gRNUSA6MhnU1SAOArcKip6MJwPJWTQh/s+ZirQRLvg59HADxsD9R53OJ2dTBbwMXjEsEslEBy3EfQAj9a0RPtBLztTs6IygS64iPu6/K1uDOEXj66QY9yuK3Jse7UYFdOStIMd37xv3bGTThziCz6irezJ3PJRTVsqCpnFn5ssN7CKLdJaGGfzVzhuYoVDZ8RPwC5mi93s4Q9K/KIsPocNEYDpMMzPd9RN9Equr18QlaRRK8hOI9vw4TvNWrIv+ISt1ia4Hf3aGEYLcH+CwfErB6D1oAdbYX6mODA+vpeMvgb7gEeKt3rE+rFwEKeHL4uDDZ60ThDZXbG47YdCeQr5MeQOVRvXOsL+bT4ONnncKOEYBW9rgPxK0uFqy69oL9Y3EG/+rVlfI5zvE3M9YPOtmQn1yIjZjcvPWZTgQE+nxF5KbbxhIiVVBSoxaxd3s5+YpfZSyvu/lD899oeOvjQFfZLts7AcIeG/tkdyFAihsPx5rt5vNyugYA235GLca9GSOpDaHxOT7pKYq/dbfdeAyTT/ekxvLV6qVEpwI8MgbJ92gCRuo3CODGN0i2X77GwiU7H5oHz92m+Kth2GuNCf/qI8pXLV8007YA21l3VMXCOerhKe7hYX1+MJrVJRr/vv+uXBWM+Y7P12tthqCMigfVR/yJ1rv27ADceZRMK3QMMphXF9RDOiF4u0XenCI+VnZKEONsf608Rj+JBLsYc0QxrlrO76XWhVKSvKj3eogGLciTwMfP6Ki7aGdGqP3pgBVzCT1mV2NYh1tMoJU/apy3dmcs5cnyoemZX3xe4g/49d+ahxds1VSTAxUI9uU5wn45hYjbKRzoNnyEmpbp1FraYzQH1naT2XITkGQZn21kwujgtwcxEb7JPR/9q5tBQzrpqIv8S7R8zGcBC855omGI2/znffYJ9ILFx0bWo2HRuSKDyVPm/vEt+n8AAAD//6RdSbeyPLP9QQxEQFIM6UQ6EwXl6AxsEBCRJgHy6+/C5x1+szs866wlaSpVe+9Kqn7+avV39Jmh9m80Y714aOwjngghc4b4HbkV6prvBzejr5ajmZaKutgbTWofBUxdXirqoz9hkdxP5fjXaC7yLv5Sd9crSrbNOGgkhJgcl/nK73txA13vxAUPrrtG8b418FGizD2IIv/Fe8QH2WWGT//Kwd31ulqc657tg4hYHN9jCuaYD8SbvCqY0zzLUUVWd7y6LbeiV5eDiY6R4xG7Tj/lP3zwvDcp+ff713LMNf2SRXRQXmrGcXUC9CrGA1XO7jcomq1HkV17b0p7JYtZKfQ56vb1F6vDfeasXyQpvlsLxIO259zbhwrSRbXFrzqzEA8Uw0Fhd3aIx7R3yV/Xo6ANd+HNzOSxdIpfvynMwYuxc3q2Sr5ydUUzkueaBYs/pF27pEy7YkvsJ026WRntQqvdD2Ih7LtyvGBIUBb4mHgptBnfzCCANrUR03f0D03BWzup3y4+sOB9oWg6lHatnf7MNZ7Nb1yy+rCqYCusAuJKzmz1GyJEYKKRU+5fw25yzFqA/StY6pyTRzBX6WwiZn0eVDhhp5vjwyYCWHmMubb8sRb8rCLhG36Ik+6HeKyyQUR4Ha4pOnUfPh28YASst1uyO+S1tWg188++seqXUcCgI/4idnRYHOO9VTHXk+AimVemUwj5OFjhjEKo/1iww7tYNNBbgNaIMmKnhRIPWtna0FomwzIr5Lg3h/KmvqiZYJbzv4xr/t5BgTQnzN9lN4utaf9A7Fo3LDiWRz79+FTHPBGLKxuyceWEB9jI5EHRSkAW/6YbitrvmTNj2d/1vtz4sLpaDzz7L5NP830fgekKfyx4iZw3LPPSH98hZLemFjvePi5EfWOx6zY4o/6azg3cD2+B4Kk5lfxyGAGgkw7Ml7Rttj7eggTtbkVHeZKo2XhN1QYp0/VO/IWPMdl5uZqrfCdyXMYzhTY/AJxlByfZNej44p82zFj7OH9znf/GD2ZlnSkfZTf+6oGRQEK6iOyqsxXM/SG7QcHsByEto4gpGwHD+2QEGBkRQ+OuVSna91dMwhRha/QmckGl1RHm8foZ8DWtbvDkqyexDdePJyyNPSzxmOy3860ck5sgocetjohrsMni728+a9c5adje9KxAPkgfgHxtfYiZ/yXWGD0/FeiXa0T8Zrh2PzwJ39RY4VIRk2Dq+0YFrVculGbzK5si7Ero3DkFw85UW+Pj6Laodt+I2Kzk5XR2YhOeCrsQ15Z3VttO5wIOWM/I3fRKazK7hwjW9lCz7cvhFn8n3xDo+N4s+E3ovsnqSuEzqk+8gTbk8xsTFxKlMUn6UV7daA7d4x/fMT/LKTpG2gN669KxND/VfDoyU1VrK3fJ9dmX3eKvCpBT84Dnxf+1+1dfqBvmb4kuGGM5tac+grpMViys9YnPnhWHcOTdiVhPKUTDsTFaqKe6w/n5o2X9VxAxVP1tTZzz/RT0gxWOkLWr7c9eOX+4SQV59xLZ1lXKmNq5PcN7LErmpN855uPj3sIuMR/sH35VBR79+DVeRf6lG/8QUNRs28uPj2XLfG8/PI7FZzSVc6qeErC6d0uCzKriqTV6iujuSBhx37tyxnGrw150B/Y8R7j7nTeFFmaMuX1fW3OJwEHhfZsyEvlK9zUm/aYt8ZMlRCn4P/z/4xtBEndBf78YCnhnz6PjYt/zJrF6uJS6yOzTy8yk9X0q4NmpDln8IR93NqrAVboJ8yRJswlNVQWtcchIKLxdi74k2YRNmoZYW+yVVumsQyEHMtGd4trNu+3zAguex1PD85J6Y1bDj68krXrKmrnOXIRWhUHCSVt1Q4S8EL3P0xMr5Z1nrI8tFY6JaLL9Eddo3u9KCnlXilR+rMd4Xm0PN7QdUh2PZWYHi56SgHZ2VaYHUcSnpz4VWl+tJEYgtzqOZFWH07zjxN0fNmhWXQ8jV5Bs5ndbKeBJtPZhlH2X7TYZoLlooIAutQ0SLHhgHs6HXFtPYbvwJzXuW1+tYIQ9YnZHnjFTq/kBzzfjdLKHVzkGUviA4d3bTH/K36D/4VGjf6zwP7xZDZsaXWikUnk9W9mYtycFGku1CUH6iJjZlib8ne8nhleawIfpiAEWPYDyWLh387yk3EkZX/CwTf66ttMyCXUsEPF79cnRP/1CdKtwwZOvkp/iL1W8lRpiPlt1OYZn/4LOF0ejiA3XYFob7gF1EoqZ1aKlCmcghvB6zi3bC/eJ90v8VLXGff7bL/ZOvhjNm+iCtaq/x3xFTB/uh49A7Hhyef89IglU5VjTzbqQEHsa9wSFW9Nk2zqaMtZgdAF/t3ozcqa8pIkUSPB1aM5wvet493AfNUoV94shrC00uXFxgtL3boStRj+YXnoowFneiDhNslc2BSvJR8nV2xJvXUh8VjN3Bn8ARvDts4mn8b4RVU9sHGZVq43VMSV5gCA/YrYN+grxy68vwSicmdd9jzHdi70N1jaqCbmlVTd8vKgAyac3sje9MpgElqco3jEDv2C4WVMVPHrUoW/I7rpWobObdhX8dbfHcv4Ca7iZWr9Z+CauVXbMxsX+YQ2PEfPtl8fzQ+ilnx6D1wWVsoFD4EJgvnLiBsQq2+RmmbDD0YqKW6XsJpscJY1e8pzhE3ZKMTBNUau05Uq3G6w7Fu/KFE770iQB8sp4ut47GwxKYua+tgnnSxtAOGUz/e0XmprzQYSpowpzFfOLxms8XcDC4wXPh2Jj8f3xnoKT0JY5vdQH8/q+KaAHdmL+1nqW62V9QbBXE9luOi+WsF7c4MDeNXH2uZNJOTQN+qdfmIhkMq5uAN05camsEztYG7ZrQymrW5znn6IbO1BMmO73cKkK5sY0REMCGzszCblI37KX2q5FxUHiVCJKgfj3Nf/H/3b7y2hNuuL1kIJSMK9Zs8X/ey2cymJPnNrPgikXnRot+8P+1nOZdcPGMuFxPIXMUnUxnj0rC9Ftd7szog+XeOTPowK76uAz55NsFrxjHxBf1x/iJmOYzfIRt8j4DA7bnbxVVx7Wh0Rb/PXyfcJluvVSwGu8xvP6MsW98xBTtRszB8/dM0A8d9IUZjF/sudDfpbtBeuF5hgwkW1ntuWomHkCVrRViL/Ex8o9bJTNgqexMswaGv9MwYSmJS4xeEXQ7JNjga7mumPOpowt9n2pAqSK/2V+JNfZmOnbA5jaa4dX7nvXyY/s4aPz94QZpvambHddUkAwHjxmj/E+UP8ab3mUE4Yk8s52t+6c7wioHV38kdO6nE6fu/2bH3PeNLGm5H1QQDO9M5bv3zlY4pkJI/YuNFZEyZq9+81U9xG6YRlWMhoWPRedZSQSw9LcQALxrP/4IgnMBw6+R9PPl758BtuC5VjUh6MKXSaeWaRWrOPdy7mobEp2mFerq8Xn2/UBS3wgu+CmZEzumwOqv+uQ2W/BLCWfXHMQ96ctOb1aGk8X4e3Crop8Zq5FKR5ftyhVu6b7MF/0SlR66vaA+kqTCN6+P2j64efFXmj703PCs5kqZyZlxL30tsXlQVbht56n/DFa9Ke/LeOnBb9tukUvVNFeUesFP7zivj/uDlBWSs6uhfdAvZBvHZTZjUGM+5+UjbLWYXSxXjIh2/uxXGNppPDjb8rZ9Sz2ul4FWObP/Lov48mfc6z99GUrGnQ0b/vAASHZm8wpXq9yPqw06RefWdDkNpdMrijw0dQNXgtZUY7en1Mheb3DxD5on3hKk68EaJUbxB/uEWfj49yC5ZtPYm8Vq+OuuxPRWu5lYn/qN59jbzQ1YvR7Ej67XSxtvkEERz9p2V7Kq6WPTXuAXTv/LVWKvnwwhccFotg/Ut4GctwP49YFKeJruoqThK/NLpFAky4Bu8ThlH2X+Wvteh2w+6I3qCwbMLyfxyMV+Q53s9SRG+qZapLt58HK4Y7BVPNLeGanIZCt4VmPDZg2frAf3+23K+GBvEeLFvwNXS+XxQXE0S+YXmaV1T8qPdTqRP4w36yr7BcvwVBp949vT2Z1rmDBoz99PuYcakAC60Xi/G3leNZdoL/1pOvtqckWfyVsFjzOni9yi8fOmhJY+D9xbt42kNMJ3/75n20dHWMae6MOeHgmWFNeaTbCdUyhRvadXPtri6hcORgWvYrdp7FdOqUXrbbYHzFdr465Q3kBsP5qxOX0nI1pqPiAzfS68Cmxm+wkc375GXYNP7nVr66BCOlX1SifPka3/rBrC/i5b4m34PHx76zVaJwvhNyrXsv6Eh0O2hzHmO1FReeje5hU8Do/Zj/7GbdXOYFHYm/pyvmS//TLcDod2bFRnlafbpQCpSTYYG06bdGUWm0EhuUm7Ozbr26OWtUGB8UpFbXbNRhL+CiIp3KJxeX8fnZcqdG1soFY3p7G81/jJfCtX3/M7nwdSfdt7cJ49AUqlIwFvRUX7Y+vsf1Z0C1xSk8SDG9qMyNLcouv1kakLfk5jGKEMy6MIYY0QZcfvw2mH95230n0y2/xuQl9QGOj3Jguvh7W1JwvIqjbu4/F86CXjCcfCXaWuSGWfT9b4n32KWLu+Y8EP76/KtYF6MLlRjdrAQAFQPq/cc7NQ4NQEAdkpwqvjjkU5aj3VIU4It/waXtjM+phOLG9rtmcv1ZXW4aL2FFl9NWue/XHQpvF4knCsTc5fR1kRVWPQkEcarbxzDdSjsy/0GKR/yrQrKWnEC35CqIr203wMab+oJrNhBm+Wo94OueZBLZdpeRa2Hk2dLxwYXU6vnFrpE7ASZLeENKNLeXd37pk/W5fw08fooe266bq6J7gAVcPKxvsWp/w4UagfFCLn8ZG6vrhvq/g2SkO8QpPQIPPVxLKNKHF2uo7WtMODwcUn/D1X/7sS9q9iDY3P8ea6t07xoECwgU5UGlTcos2s2+r78tkk31NioBDt/Nh3zYq86/Nms8lRvS3fkRvm0v34xfoX3z5xdvz90vRY978Mfdj0PinN2hXO9oSe0KHeLo3IEK3r75UuhosGCuXHuC3Xo6uaGiiF5jhmH8Zsb+fm8WvAUnQgh/I6eKjBQ+fT9odnQ2SrqedJTsG8mGK9g6t3kJR8gahEX1Hy8ezoJRo0Q9ShDcCZbtA5xlPVlr+02PILt3KAZf27UX77W9oR6wbP1FzgZ9+q4lKzv/xy43noyU+VcFoxW0Ly/fZ9jbk8bhJ5AI681Qy8iK3rGGZkYKSnJ7EI7LT0ebiHdBwxT3zpVcej9+L5iD3XnO6nleXbBzu2xoYTV7MHDKrXM6bjxInyKn4/UAwT/wrol8+U7/FNPun/7TP3GHZgk+/r9guYHU1HsSwB6Ocitq24auHMd2sHjjmFssd0Nyu+OWzumnrXirInZWN5fQFwfDTh/8/Vwqk/32lQJ9UzuyhdrLe8c434N68Y1Y2/WWNp2YhSk93A6/GS1/yIfs8AOXq8upgOsdT83iJmoI3RywYU1H2bVkW4IbnlHipeeS80hsK7WbrE6IWVjnZQTfDvjioxGmma8yfZ73VrFQ8UI5HHPNT1o6Qe5bNDP/9tMboYTiwPfErcWY0Zj3vg0r9/mUDs047Wg5/K6OFiNWAxxecEX2MtxwG+dbQfLNLrPHzXglgjBpitnV4o2l17g9AM6chu/xx5ZMfXWswd9MfnstPwodLL7mwFx2VmOEmQZOTBqOqjo+QYAX3AX0HrguAA5lOkjCU8w1dTNjuNSD7xhEzKvzNNQxbbGPIjq+OHxKG0d0wn8x7wJFz/5Lf0IMVTyxIgsj5jqoNvBHfMdIZfTb+vYYKbNM5MtfQ1YDGPtzUW/I22R7srpxxb7qgZnrAQuzf4lFUy0pbO0pPvN10LOcs9yN1fz/e8eo9rbNxvmxFmMW5I86l/MQ8czX79z3iN1XW8bg55BDq7zvu7DDjk5L1IXpnS2GxJLD4DOvbCD5+ZsxC0l83z48TBbR6xSxYhUbGq75V5DGXWmLdDVoON0/AqDGVN0lOzi6eb+hgavKtHcj2CXU58Bu+oCTYF7/xZ1Mtggnf16UmnouPfDxdugQldL28OjsO1vharRsovtOXLfQ9E490XcCq9TEtH8d3OV6DOEX/7KVNq5IfhIJqUVVdqSZrZjzPc/pAqo0ZC54iQvQp9wVqkuKN0QbabJ6WLXxafs6cZbzraBZs1eXvjATPnRGMfi736K9XViz8Fi80t1Luwzbwj2S7E1jMVcIq+P5dByzsi1M5baQNIFF1XBKakh/z68AOaBu4R5YNzc3qH9YXI2rH4b//S/pNjGDYG8HvPGVzaou5qmwSSvxnOWfTmQguunpvne1c6Vo2gYsO8GzqnA4vuAfTfvdw4BPdDHL9SBNv1yTKYX+4qWxH+K6sz9fbA1pfN8nuu76imaYKBkuKL2yrGJ/g9zfCgqAyx36P1tCbk7q6148n06tbFYy9YyRaKx/9pQ5cYzVhZZjwCZoKC6wt0Dw48w1u5bUmO14c0FRYwgGMc86ZHT9kNC7+QBNPjUuwp3TdtKwvqOjGCL54ARK/X+MAtaJXVNT+lGwYnxsF3XbCA6v+Urj6zzIjUIoywvzvJGf9rkMYpcfjm2DhYlnjvjuacGuuJjkfCqXsdp+iAe1qKYRMjVWKb3s6aMc/9cIsxnA3PXevUbMCGWGYvj6aQ69P0cnbvTCIUsxnQd7pMLHNRNWdm1mcShpG93H3YQ41xrhT1ooIUQBANe1UlJMfeDUc9+hJ7L1dB7O5SnWUVacHCXXH6KS7N9owZQeHqrj4Zt0kNjPaDVTCm9OcolHyrFZzWHfFSntT4zE+Zifwe/vEjsfVPh6V7ntB2tSdiTe1s0Wf5ZIi2bic+P1JR6O1KzGssmBDpTHYdf0Dr5RN/VfrJHi0L2s4TJYI0/GImeumTTwRbVPB91m/iW62YcnmbBtp7DN+iXGr7VJiYq0CDmlCdkLtWuPaQC3EiaQxr8tVzvbr5gbOdE9xwxM1notXlCBjvfrDK6u482U9LxBu6w1z6OOQTaiqb6D52YmKs+XEkr+bXdh/DgnLnN7jI95sdPQwNh/iq66OxjOfbE2EDWeeZzScle9IQdQ+hripTLfsfVG7oRHXW2Y6ZoW4QnMR5n3RMqdMN0Efff9GpEbrmPnuOorp3nYasPgOyPZQXLo5ME8XeD02DcNhdO+mrP1StHq7M9HRpwp4nRyoFh/lF9s2GuFsc96f0FfYexi9BW7RJK8eyPlIEQlOuR/MrTa6WtmZBfOii4v48aoUavASNmw3zk0wevhoak2TvKmc7a7lqCfvC+j0MJPwNMUl+1OKGfoDZ1Qo4oL3O6URYLyHX3Y/ufdgvn2iSKup1dHjfjvEPP02lao9rBOxdO8v4/mHnVBwPd+Yv4pQx13JbwHufkjscnasyRrPAmx0NyDJZvspe//80rWfvzpaxyGY44e6vKJ7jcRD4teSr5lboTwMc0Jod46ZIc41eK2cEbP8SIiV71QBu/0DYnKXWpTWjgKrQ5CQPfp02RSeAlHZZ887C4V9zHlaHGrNbAgiS7zu2DnZ66pkCx5z1/lUvoPrtwZvahW2l/0gln7nfTunESH75BGMu6oL0a5hKRbIeykkb/oV3N77mvlOlme/eAObvGIY3L3fsX7tC2iu3R27bWLO5zyaT2Acyj/8aZuRz8KfWqFiXRV40/I8YKFzAnj4zpOQFp+zeV65oZp2hzsV6/BiTecSKegX32yUOvHP/sAjaUz2bNQCvg1PinoyonRpxKSVvafGIWyOEJBwvHLeSHCX0IJXsDR1m6z94r4BGqGR7F7HA5rexlcEiQg93WxsPZOVF3dUwq4P9seLA5/XNzcCUqWIkTC0Yn5ZqSM6GjYwawa56zd10ILrnGISvU/U4iuyvyBeWBzPtMPW2LymSN2UY8BSOZg7TsoTwKa5Snh+/K1QzYwTRW17qxm+SyaaYry8Ip/sN1YMPQ3Gz/zu4S93blRd45x/zoJbgEUfB8qX+Mu55UrwHK8Nw4FrlizZHipohsSgjLvrrD+IWQTqt2EkFbMvGvzAqGG2yplqn+8p4OP2HsFFf+lsb7Yx6sf2etqgZCMT/3X4luOjWLeQv9oXhc0Y88mTrVGDuxtidB6NoCeDFcGofCe2F9t7zOzj3GhtEVOyrFcm60NbwaGNn2x3Gj6I6eolAdUwYmZ3G2bNaa+YyIMuY9vsWZd0spwlY/opKGoeRrw2aNmDJzUnLMvhFY03/amo7OpvMe+LN583wcdEtxV+EN/J9FgSRZvC77xbof4ueXZTRaAHZ8usdk27KZiojg6eiPDKXFvWGMD2Bir7SlQU75d4DG6TDuRFngQvLXfo4i9RdY+dn79f7Fk9oWanGsyeDiym1l514OOJ1XI+zEUy+9awVcmV+Z2cl8w86CnA+qqwpEyv1nDZv3qtcuOWjq314EMYcgnSrXSnGwGjYH5eDo42vNuG6fV1zUfkvh7wz99ZZo54WlxqGDt5T9eTraD5d/6v4Xxje1krspFlm0SzqvuFWOIXczbvdjkE8elM0k2nc3ZoKwGc0Lpi9XXwurG6aRRGZn6ZET9XAf8Gd4wW/0y8WEm7OVzXNSSRufoX3zj9a2b0PC3dd/dsjsdrkF3UiFXAiD6vl0Yyua1VOdoR42VV5XwYYKlC5udY2DysgL7vVAJRtV0s1qFiteaDFiC8HMxcZzhaS1WRFqL2k7NgLsCai/XFQa8/50W2XueUnErrEJ7JnBMj66v4h+83zvRMMW+2WzRap6URReY0Cx61y+45bG3YrQqJBQ7xOF1tPw56Qf5iO7Yd0fiwXiFoV0NZGq0Z1oJXIlUkbUcltB4zTkaTwrsJdhgt42mHOMeaH+1uzNmuP9bw8m66uvw+nt55Vf47rwseZOdVR9DPn0G6Fe/Eeztfa/oeRQf6KmN084Ajmplxo+j4HJ5s4WtohoaZaritNpSziJYz3+cHjQ3TSA7XdYh4TXQKed/ZWF1jnTPfLijkTFpaS397TrUqT8BJ9Ii5odzE3fPstrDalRuyryUt4MeoyX/2SfZpJFrslagqkuRwIPp8qIL54qeRat3aAwnOo2ENjuPokE2ByfRH1CPGWnJDpfhtSUj7WzkfPT9EsW69iK1qTlYmh08El3xVkf3+2FnUnKtI06BTmNOKu0xeXxQR2Fv4Eu/oHjnHLgnR3pASsqX7mi/xOYU+9C087bdD1mGXYPQuXJ1thUxBvZ3lApLXkc9+fG+QJiFFi/8iVmvK5SzRGuB8AYFEn+MKcdU+qJqgsjPZv/sinuvo4kK/uQZUjB8yH+vu3kN9TXViUNnuxiILHj/8ScJNvPi7Eus//7FcQebd+Pd612A2e8T2J/dujWN7TWCd5j2Lze82Fg/u1YFrge94Ci5SwA13TLVv+vaIa+ipxb8XU4BVWJ6JdX/QcrIvxwI67NTMq+uUzwt/Rh9PqsjeSG+IrdCuRvdIepKFHwSf/MMSYFM2YTW+feMBVhACKvqR6Wxc87e0FcNf/KFllP7F/PFeO2DvHZHpl/ea82W/IVm3K7b37aUx1v04Ig2+CtH1z6Ob3/daQtTZhkzv4jOatMzU0eu9NEYlhsyZPhQVVPOwo7n+Ebp2nqPHz/8xT9+5vFtXJIfjfvNkV33nohmlREff/uoxrCEr4Nw/iGASIMSZumu82LsOn/utYtm0fsW8U5seNSvXIM9cXmfcPqoN6kPXot3QQPCVXwaAGc6c4SI2kewdLw8ohbZgC16x+I8fVO6xpWMSlGg6fY8NBJl3I4a2XpW9cddS9G68HdnyncPf+ifu4e8arciCH7oBlD78p1+ssLe2ht/+hH/phoWJaJS8GXcpiuXji4SxDdlw1TlAp3kUry2bxONekyn0n09ARUelaLDGuwBNkr/pROVqeXXqLI1U7C3xdeplC/6QoC4tl9nMuVic+sgEp39qzMu/34A/nLzRlvkScnSsuC+lI0b8ftmxvz/10A3MrnzIovxBFctqgvFIvg56baPXP7w3zpe9CCeeC2zf1mbM6xe7AAn4g07x8xkM66WQrJSMHvHYIbdmuF8SkH1pYBaMf5zhZqawuQl04Iu9sv61xaAcWISn6rDvxm0ShDBEekOC3TNH0+dgSJCK6M2IxsKOvUirwEE8XFhYv+NuevSxAOithsx5aJuAJmKBN0XmbZl9uVyC8W9dJug33p/+IWN3F6LuqdZkr/4tKdO+T1Bj92/mHl5Txo9bdYZtV6//6Wfr+SRdkH57zMyqL7gc5wpVaDmvFPLGQE2XrEdY+D9ek0aJmT60Ncx/3kyc+LuzeMsPVPNK/cTwrQ4Qv+JU2kyD4zDj+k2ysb1lOfiNqjBbUS8LHpxnWCHA7Kq99Lhf4rVa3Y8OVZqnu8RPWqM/oV8RVuyWWur1pgArWCPiIHOTjdV56BHydzHZDinh84J/VAMPCdm96Mgnc82pqhSvaOFbNmdrZX9A7mvKWCASno3P+1OFdoosFsrJizPtdVDA8swDWfSqrg/Zk6KP0fXkN/7P555TOCoJkLCJWs5Zu7tB5rA3c6rTNWOyM5zguc5ssugH/DcfSM44w91J84NJmoQLerX0RVsy67FI9bIG9vRCLAZ/GE0O9XK0xHcSDM0taJQHapGbagKz7gbu5j+kYhiDy5cFi941etGz/2+8n68YzPMc3eA8VRm57e+vkrvLlWm0yUN2X/jJSAzPAat6XsgPPw6PZx3+45/esJ+DaR1cAexYPTJsB2I5f4si1VZOjlla5Ho36aL3gM2JS4veF8ZyGw0haAneE2K8e4sP7I1VOxmAGJ0qZXPi5jrofjNTvt5skXwW9Fxb8BgV8Dno5Fb4XGDovowFp7wNxh8fGLXvnuhiK1nj0UQJqIRE5Kdffc01onD1PvqCl7VsnJXNSWMtbP/pR7ymZxduslVj6JmPxlK6YiQls7f4r+eiF14KdG2Nil2lXWTNG/2QAOHGk+3nQxdPg+8p6liZDnMS6WDxoNv56G/DSrYzwrGbvpp0gJUwbbAkNp+uOdJ1rsSdeGWOVnxKGjHagk6j+R8+/30PmuPLw1Ro7nwk4d8Mx664YDFV6oDeX2IB3PiQ/+Y/Td8EhGe0J/a1YdbPPtXNY6bEumG5G8pnqKsyOh7J7vrZIbm0Pyns3EgiwVzcgul+eWCoO6zj6Vbb3XDzJAzb11tj5qTIwSzmWEA//LzoJ51I8nOBtnkVUa31iniS9zaGeyQ+mf5gIUKPjSqi6ABXckm7JpsRDcef/k2/Y4qscRXuAWnT98zSTZej3piQC1KbepRrJUV8VQY+mqQBU2TMX057Jb3A5igEP3+UDS68cvA/jkKwPHVoXPQuCF6wIcbFs0t2CC45auPOZ9bblbvGz2UKhgpLy6Pq2vEgUCkS8+0Bz+L6Hfe3tecCx9eZEK8/B9NEj6qafxYCd4rDWF6Vlgvz89SSszoxPt/Nxt44oXFlxqKH87vPTqo0kyPbmbdd99Pb0ZIvILjUl+ornhkij4kyXuW2EA8cNgoqxrdD3A85xv1+/ppw/FMuLBOubfaPX34m5030pCkRjza2AE1WGGwn3o7Bgr9DOK/GlD1m+8S/i56j6vVOpdrlXGRzeapq9auEJnHLtxtLRneLkL1Jjni96gifbDuboXCCL9UWfZ1D6qrwwaLOCLmGAdf2mSv/9KwdXx343CvpckXeKph/ABRPDjUKEE3JJc5d38XjWHon5G3uK2Io2OaLnT+gPFotLRCRAzYOhxkuM6+IZYbvjC/6Fnx1wVzw8d2aaY1VeNzpk04Kepb8bJLoxwcpivQM/fQP9OMLRrrZx7S72422nH9iKGjVUbnND9qi/7H91bxb0jtwffQ3qTfm7OYLnyIHqfDVwWRP9yYE8o6q//A5pd2+4L2av1XVFT4CBjkxEHcxcdFiT+xmfV/x5GaSri58EReT8meNnhrjHz4jtvAhcX9n3QX1ZhAsekBRDuvoBVrQazeGJUFEdPqzexj2VkD5C9Fy0ftPKCnFFTNjyeaSdihqdeFTxB3rqRz7x36GhS9TkJwW/fwVGIJPmGOdFU4JT310StGL/M7nz/6R/Gp8im6f2JqVjX4Af81ueHMLvwG/+59EPb/5kkIsX2W1NfcPuB4ud3beCSybjh114PznCz89m8/6TTyA2V3//uHhRd814We/ddhvgnHYX5N/fNvQ3ApNjycNISrmK1v0okzczy8TOAt3WHXNLOOqXDr/9Gnb2P+h0TkMN7BX58vCP6dgML97QX29hy3TZd+2ePXUXKR6YYBlcNSgj7Vz8S9f4DVjZM2v1E/QQYwuVGbbA5/WLU1BLw/kn94zqffHDb71xaTCcSV2v/wO+Kv+hNefw6Wb5baJoMmDgZiXcWvNF+n0+Kcno971M9HcBO4Pr1D0FuJgliiFjSq0Aa2BHUp+HT4Rkp+S9/O/Vl+vsgfc3qTGR3myu396wfeV1ixYAuj6Nk299j4kOgs63FqjuxoBiAV/VFa9xhqP6WoE9LQZCZSex4w9lBm1W73GmwXfSxVTT+hjfPvFH1h8fLb7FrZrolFtt+OcJdVgovM2EYhrWY01ZWYdqgu+JbvDYcdl04oaeNz7J9NhelpNt1TFI3/1H+4guWVs4dvaj+/jMNLKwbM2lbpb5RI5J4SV499JlmAdKC471vtnNusHnP/4OSHS/MhmeVIitOQDMXq9uDXvq9mHQW1skg5i1PXPdttCv3M/zNV8teNLIkOWjHFgeLZF1GTDxod+qmy8uRR5MF+/dQ+ooCPeyH+e1f/4nv0pjgS/rA5NpjflWlU5JZ6gq9Don18mLPktujrFfTyLvdirS36Q/fSKmb/7Hu3ks0D8+PbNhh+fGc/WRPdsvFt8rewjNG3UFst1cEBLvvIBnrlfEUe+jDGr9KZH41pyyIIf4vokOC3srSZhvvDWuTwzy/zlE1lgmTqXtc39hI5dfiHBW4itKXK4Av56uOHVFFidWGTBDZTNiTL/p0/WZir88s8YPP1V8o2mS3A39CeJ+6VK/m++UTFeyUU8pOVaXhqdL3wEl4zRkiOBO+BEokQM8yEF3AS/Uhe9kumttEYLHjqpdRfqJNGKXScv+pzmPlcpIU//EUz3jdGD1FQeOy34gyqX07gBJxnJD+/Olz/XBHsKrnjRa+Mfv1Djob2yRY+Ph8W+wW7PwLb6qS7n6JBixPZ/4e98W7PHxdNS/lTG6+hdl42HryaIfkeY8fX3JVfJp4aHgT54XKtDMD4KrYGuKSyiy7KAZnkaI00ZyjVdTYoQ0+vjYqLJfrSUR6kc/1vfhe+QH77lq4z7oFZdzJb9y6ZOPIoAr0lh7l05Zhweu1r9/1wpkP/3lQKezGssbGdqUQE4IF7JJiMyLNe3rXMP43Z1pd/N+WyNadxF8Oc9faoYTyOg2hufIDvrH+apWmGNZxrO8OfdfYLTuLNG7HMBmmuC9vM9q6zpXOit1rIvwqrtd5wl3UvSPs9sg0XfyazJfNER0k0wUyVNtW54UUsFN1RMcvtbj0Fv3x0MtGx1RuTrtpulih7QGg035tTYymhuj5V2nKYTCZ5qbfFAN2b1+tkJVGQPlPHy2FxgjdgNo330jOdvnmL4qmbCHF0qLX79OBXs0SkiSXbtu+mzvEpZ3euEGN65zKrHQ/eh2BQRhsj78uX7EaLcqRlO8xTxzr9GEKfvFzEbPqIxw0YP7cUumWlNUjm9H0MOgwlvQspMKPlWdW1QxIvDtv25ttpCM05aGBoHRmQWoHqZDzCa6rR4RfuS7zPrBM5jdWVbX3t3/UMfARxVwsR6rO2S/7kbB7Xi/IcV05SDefv+2lBK947oASpKnhsv0G4fJyO6H6+7Md4QBQ1XKiyF2r4xl9ebBOy6r5kHK7wUQtkBaEJ8YvrjU6A5/7wSeCO6Y976EZTdwb2aaDxfV3h+e3JA0wq1AOfnjtgfTbEmiECA0RoN5r4uPh+z7qIghcUtVYs/EozaodXReProBD9XUzzlB7GHQMu+WPtQw5r6a6XDpV1V+DtoTTb7R/ZAz+ze4CkYEmtqdcWGXbblzDGuG4szdZa0cR+HxLlOq46dD00E49ZP6fWBXmiO6lcI0XtE+HWX8oxfDUOFdv1JGLmHZiwP70hCagkDCUt9b9G4iiuwvecFb+RcCUbjY5nQ92FAIvQc+bQxpQKN3d+Vyt1ziGflJjsQaWjAyikwMoqFtY0eFytjNpwfiAuJWKn7d6qQ3Zt/rLEd/k7ohCJgOpy/3exP9gHS8VmTvTTuulEe3zaouOqJEeROPH8a4wLZLUnxXMEnG7/RfYZjUJ3IUd0esvnNlArGl4iZucvGmFYKdeB7vp/pfMj8rGP3roUiu23ZTbPTYBbMcwWJqlf0E7c3NJmoMFdhu7uzsNSHYIzOB0l7D3b+G085RWHewB1/ObGGV4X6fdS5EE9/CI9Xt8/453kNIcmEP7a78CHr/+65oyHTVIllryerJvC5QQafFZ2fXEJ8zBId3u95oIrkyN186Zfer3ZT4fXJZxknR5yjx4E1xCYXg/P1I+gh67hOkdb0fBD/hAdq/OFEnn9SEfAP5Bd4e0jBMuhtOc5vQ9EUYm6ZS2nLaSJGuvYS5iOFbfJE47kdJTR/IxOjUnjGnAl4REaVT3iTfXA8TS90QNtIN9jfzHPEUT5dtM/zumHb1V8fT/NzaMHTTIs4A6u7fr/3KtSw6Ew/Jt90LOMbB+Lm4i3l06WyKzSnRcdv8yLHUgk5fb1jqm2KpQqGI/R8WhMdoN99fbYviF9Oh+t0gcHiFTEUq0SsnIMCstspJX6nPjjltHTA4qWA5zX3uyk6Jz4a98cQC4s/+lxRc4DXsbQpbMqET+PnJILkCi1eW6tL9u02yyvyZgwJSfDZkskRF2j+HkysBMEuXvyTAy7fmSwc1haffDFV4HDRnGU/Xnzc5O4F/Hi+ky3KTS4/6vyklX/VkwXzIQ9G+ne0YT83DhYFH5VTPAQjfPengl3xEce95zoHlEpC+m9+UyBTEe3doKWSH1oWl1CkQLatDbYrEs1iVD/dkHc4HfDt6VndTK4CResZH1l4lYH3X+KJYPRdSTfrLoun+va3jHflkD17t918vl4e4JbtjUKi82wML2GP9OihkZ3iGcF0L5kJu2zH2RblBZ/vGqvgoBU7hm9nmbfOfVLR8yjcmb3Ek1H8m1zteQrWTGcPJ5g3J6OGzXV02CnabINZDNQEsrP5oatntbZ6dFdHtD65NpaY+u262vRN2I6bPcOXB47nAVMMGUecuZvy1c2nYi/A4y1ZWDzaTcxxfPNV5kkrrN1GMZjCeXuA0x0z+ggep2za3DYzWvwPsfzXXzyzOpNgfdIs4p3fBp+Kpk1UUYkJ8dZdlk1czg7LFbGeePBtSjGVbibyM/uA5QA8TkfBeEAjX13inP9yi2+avNJMA7+Jwyorng73/QlWT06J732LrFe6oECf5UnRTn3FfIoJ1GCbwZuY0eFjTeKf9EBt7Y94VWKMRlF9qXCx9wHzilVmic5c4998iKm97l1/dnUblvNIttY3smaWzweIpzNiVnU5lX3p6Vgb525Pf/F83AS0R42VvZZGp3083tzchZuemMT19AVSn5io6u2b4U3jBmWv0L8bSqqdT7b37xtNunWNkGZ8XliOT1I5f3XtskmDZkW2z4fZjd/+qkMG7xWxLF0M/sXv9uKUzPe+ZszTW/BQh1VzYe64f3W051WNmN8J9M88lOVk0+sBfvbudvYxmBGhJySaiODXzSi7WRa+OVRxv2F/5sHqpnb3FKD6tjGVhPrL2YJPVGuLQyyeaBHwBKct/D3TirjG82XNr4Y1KEeJTVcyZCWLLG1Ecvu0mTmexIALcd5ol1FdESxYQjYYhtWiaoQd+81/DORvAZ2CK8yLngb8BE6BDGoAIe2148NFoYKavuQVlWpcxnM9CiryN9qNBV62yJWfDED7KxDmurDr+Iz3EfRDVZG/KlCDeYcMBxxVxMyqggrR0+dTgGxH22U/xbJe9+cHCBvjTIx3xWMeqo2LzmY1Mi/70Hg4u/sL3NbUJHqWr4J2aF43sKl+pSuumPE47U8HbaX/eZiV2aOb7nlmw9nAf8xX/grEzd1BhV5MBFps7lU87y6XE2ja7czuTjmW3z65OGivr2Vmf1LTkrrkfkHb1uV4fV2FgfT0Ixfk4hQR+/LuyulW5D0cQ2EgvmB9rZF0fw40HyiYk9UQc7P1GvTtLoxhTcJLY6BLiEKz2BIzrHLenh6qDhtZipf13/JpHd1UdZvSPR574xbzSP+KoGmPMyElxnwM1PUNSDEvr2qMho/dLm1B826UhdelF3UcBxgl8SFg99oRgy+X4whcNGF2er/f8WTetqFWVJlMhX18zHr+zBPYV+ZCsc9eNw80MIF287xUu9rFEr6MKfw9LxXBi38ZjT2Z0ealbnC7l6JgzuB7+MV/yq8JDfp7+aLaelPYBL87GfXTTu1hwfeErCelpBh9fejUKxAs/inWoMooQd+iL6nsTTXij/DtQFmHDjnPfoGmF/448CZmzKy98Iqpd3j56I+ufeab3dqaTx9WoMPHiPFm0NzF3z8VCM18S67Tx1z8CcVwcN0d+a0XBWeUfvyANp09WfNXe6VQB+7AnMbKY7rgb4jujcuS5v7k/OKtUrVAQ0vCBS81PzxR290Gj7p27rrAuvdgv097PC54uud6UKBlfZmbJFV8n5/vBlYPgTEcHO2SFltBVUuAJ9uWRYZmcEYRyfvpQIIFz8w3NW7gefLWbD/ZRiYV6aGGfHe6k2AzlVm3I7mvBe7HYuT5t83YYl+qgWIfzxnsszl3wxx2x7ph5LNVsj5SvAokIWmp+u6KcjxqnQ+pH9Vs8RfBfE8FEU2fJ6eq+Xhno3TwAJpDy4gXjxWf7umUa3V0e5H00jWIL3wQnTXVJ7u08a1xk+spvOHlUNSoeUDXzmGG62crsN3Z42W1cmcJrIKuyC6Z9G5uUTaCMColieVURYw3eqHtXa+lcdHjYNQk2qP1aWWRcKPrvMe7RkdD+ByZL9TPoNXVl66ZnjKRvVMeylGTago//+Sb3TmYz7fqgpTBiYiXHZuAd+NZ0P6028QcC68RD2rnhu7xSEisbI4d1fP3CIO/UPA7Ky1u7i4qbMPN+4ev0CSqDCM5ph0VLg+a8XkobBjD256lqdShcSRfFV1VSSf2anZL8VC8KtD0sSCn71foBvmzVGVb8If7NqtyckIqwuJ/qfJ1NN7Hc6MDy99X4pOO8sYrvALMcTdhXgU2mgv9fAKNSpRsW4ll3LmvMHrmtc0MPeQWv74GE/zxdmTJcXBiUQ+9GwoDfCQE1edsQuuBwrcnlL4W/sAL8eoDvqZPOjq30Br/7o0DXIwbij5byxJLTw/Rfpd0hBxCt5vs08NEttteF7yAsr5y5gopT9n+P9KuZEtZZgk+EAuRqZIlk8gkhaCoO1FEQESGKqCe/h762/67u/R00y1UZWREZJGJdz897mkYOQG4URoRseI8c0ymF0FFOptE9BuzXzJ4x3DgxZziNNyac+keSjiLWUqkl8z7g6+9bOi7TYoPH9nK/tYLBaaU090up/6EuLME3tL/QlkUuOSXS9pqFst3bDopn1FtngT4WV1KV/7Sd6KuFtDfnQu97lKvX3zCtf/w0r09+mT59udUWfVwON/LAC2NtwR/+5Ee85uwHuH1C8Xs6gDHjvL1p3V9UDxahDq81ZskdmMNNrh0qfWdnIyfYlUAJB1kut8aajZoS+iApOM8RBHcfFod27vy9zzN7Sf3J6V6pJD1sxbSFc+Z34S5MsaZ/4+PLep+48DDNULSwHwwp2sW50AQvtK9ltlsaRJKQK/LGQfZIPcTudxstOo5HCRcUxFJWFIQDywKBU0w/VG5XENQcjPGO6zniDqTGaujyHzsrXjQLh9XAVK1GjWT7lst5niNIZBGa/V/sn4W6wLUwRZ8HEbfGrHvhk/hNPRnak3q4jNtG0z/+M+fH0MpFy5K7mY8Nm6c4re49R2AxUOhWKaq3x/O7wk69wFU/5ZN33/L0YOYvPbhVpbObHnyig1KrsdUc/Ir63eFJYAXPH4h6HFTTc3GT9HrF0XYaJu3T5exs2B5X7eh8pCknoqJ1sA8cl/qbOUvm7rOvKqMP7aEXd5Hfx7SyAbbNTekvLrPbPlEyaIgwXiTy4pnv7Dmy39+jem4VrXunw715dHDf/7NJPsNke3LryHcwX73Kz+8K9LFk6j/iZpsYbzVwglv3lT7qgYT34++hIePm1DO0Zstd8OQIOtAp1jY54wIlunBF8UE72reYEtZhTbE2hWFs3s2sznb3Qrkf4QjNXbRIVvOm6cDaQYXev3z36B2DDB3QfDvM91Wn1j58+u4JX+j5ZDfQKl3uxi/vzRN+s0x0STjJfj/1qfaHBMDSXsS473QdQkbP3cBNb46rH6RUS3nzdkB+9I31ITKT3q/XEpoxcwhvJRvM8abhqeu/I7upXRiU+U6AWjeycPh8PuY9NOdUvjaDwdfku7Bxui5S//4M1HFRK3o+Il5yJ1mS/Hztvir3oF1lnOIvSII/CH6bEtY+RcN9v6jnz9SMUE9cXvS8y+olikfOuhoj4gi1Uv/56/Aur/D5awUbLSbzoYzR13yupVt1RXfXwrWPtIIG981+8f/wljuw5m/dT6171UE2tuq8bWqDmw6UOUEcpLE1BJ+12S61phTzHp/DdETFsRu37BGb0N+0r/4GNTbpYCKSyUa7tXZXG6H0ABfTyL65w8sSZ01MJ0+Gs1MacfESfoEf/4AjhqnMdk5KiLg/W8WbpqyzJgkbFrZH1WTmtsP50+LcXOQWe+u1Fz5+WRwUgvPN/8gwwarPsvSnwKrHg0nYz2CTc3K/sd/sjU/r3y0WwcxqdQs5SdiO/WhqX/58EhGs+KNWr2iLjqk2Oi2z2ze7w+xvPrBf/wJMeCcBh3S+UjPV/3KFqs3OqSJgkqUa9+y5ZQvGpDz9kr9N3ski9+4nrJWiAhlUpmxkj86f34ndlvH7yejSwFZGAIiz9/SXx5K1kEiCjSsCfok4+X5uUP+Ood4L4iKSfdLJIGrDz8c5t6pWlKZNVCwh0jeeWD30+Q5KYq4i42xb15NZotKrqx6AO+n7aGaRwGFyHYOGj1IyymbKhookO1qnepuvx5hzh0P1vuhPmGC/4NhCtWfbVC6bzQBzdnuWMLKB/Df9bzrhOtb+MqV9FNmZpPr2DEEgRmRoueDTOFxGKFfjRD+i98JstFBnzTdY/PR6ZUoRQogZGgKjeYiRktgXq+Aiv0+hHFbodkVihJV1ywnv/pomHNnWdr6VqeKzczv0JiqXoDW/Ip3yyXupxg9i7/8S3GV5dV6nj4EvedresCDxsYtdjggWFbpM7QStPq7HDrfzi42o4OKhgepeXSMJSeEhLP7mVDLAG6nE2rcZi8Rvk5dg/q6OviYB021lPdrgwTjJax6E1UTN8oBcOsrXKa2Dh7KbiqPPvz9hO1AL/yJCx9XKXnbKYHuVFRz984CeL0zE+/z19p1hY8NuNn8jb4CyvUEOirJr+zV4sNvGtESPoIUVd7lSG1bov1s00sNN1u4Ubf+OsnSJ3qO3ptvRF1DfvdUO/06pLPNhUhypVfipXEixeDo5V98TKYRdCDc2I9s5LCsprrWlz89iXdVidAU35UrcpbYpJ5dctVf/kXy/buj9n73ShZN+Rnw7IqWYt0r/e6Pr9eV/8Kr34jon392PzZ3ajxbhgi+cYO84jm2wMH+goE+UB/ILtZLMzKnpT0LqrxxbGq8mMAmkPh/fIGU1XOqxiYpr3/8DxsNx9DkqaalHnYQhyqWp77Oc8cB56xt6RmNccUnS2HALVd9auyezz+/3IbHNeep5dnI38bn/F89A696Iln33x3kkkqheHzd0NQ87jW4whvT0+rfEe5x5dHrfTND0eXSanHZTUFczKf48uum/s9P+/M3qH0L3f7v/uDEVDdc4meKJjE5S6ByxxN1vXvNFpx2k5yeXxX1mG5Uou+IMXpZI8bBTXyw2bjKMbx/vRBO2rRDc6VdNVj5Bd1b8ZT9bmcuRH/x4GmClM0IvzVwNzgLBediJ8SR2APO3OhSb+UHf/UgVOzTJw7X/Dj/6WP/wx9phqOlpyu/hvhlvLHzs59ssqA30JqfsLvi09xz5R0ugsOFcOsOvqjTKvh3fRqElA3reqA/fRCcmdlvMXSOEm/xm0jva8f6Ipc9qK04wZhE52yUyuz0h9fUSauTOUubsoSWRmfqZkfHnG90zgHd0nHtIjn5MwxTgPxtJFJns6iM9LLtIR0dPWoZhs7GpybEcKocj76eQZktIadaEF3WLuGGoSNeZfdFomsXLltSqoog3KRwqssKO9F7Xy3zzbfRH59HT4iRqM0Sj/TDcsG6LGnVPNwGAyq93xGIfKGa/Ps9Bdnf5EQQd00/hV20qKsfTPeHrOjJazQU1M90os7+fei3+/r0ALVxShoMh7UrUtgaio6d6V/9aqG2qMG3Ls4h2S3h6qe6Daz5J1T+/A631Eu01qPCcq1vjC54Nmjt/RI2WfNIprU+pyYiT7FR7buElqrdwuX4UXGw96Fig+O3ioS1Hc1Wv3+6VG4HU202hI1i73d1/L6rgt6JYfU8XP78uhgqjbdxLLb7ZNmI9yta+eMf30Hf7LblQd1+HSIRdO+nKjh5yLraGyJujWfCVn2LHtrJwMep1KpJnEYLjdPrSn1T2qHtRWxbWPkZtWL5Y674Xf7tj5C+TR/R90t8ICdQDOwLJzkb1YimSv66hKFcbpA/4XAv/dNzhbD5ZWv9jABrcEamNZgng5ta6APLo6Hh8EnnCh8BFTvOwru35/rDPaki4A0Zk194DDNaXlwOJHrsQoSawu9eGBFo9cDFK36x8a9+YEGnhUoRDP645kP1r3564FHHZqEzSjXfxj/qNKKe8AU8Wyhq4/jnn5iM9accVdt2CFUjLdC85i/gynUY6xrfoh4/DDgLzSVUFfWSTOv1yp+/vD++bmyeBu4KztnYYs/nd4lIVC0HSq4a9qR6qbrqWZcgOdWRKOe1CwKvbgWkpPRF3cjus/ls9Dx6C7KFT9+74QuNpwQqPjkFftKP18+3Mxegxt8MdHfyaDKNis7DJgeKnd0woW94VQmMm+4aTlwx9DTq9QnM/uZTZ6j2iDWeWP7xmZWvQv/rde6u2NradfI9/thCzd5STlh90yCMtWy23bsC9GsfqEuXnf/n36CHUOnkBA71l798u5hpi/cnMNGWLi8OUsWoifKTlmwseyGGG4Q3ejiQsZqcb2+h0P+K//gSy+R797cf6U6WzmhmAAJStaWkKz/3mdy2zf/VpUD67yMFihGfsJ/xG5MdpmsAS95vqZ0L32zy5zsP3NwdsLW4XD/+OMJBnq0lFJZYFds93yf1dVVLekif774/WR8bSjMKQ/C+VTJFRzGAIT3G2CH2MZk35GgD/soJ3r/BMIc71Q01KSseY0v7IHLpOw1eqD7SZ+2X5tjKJUHc3B5w1FVvn52KbEFnC59oeM7uaMrSqQUsd08iSHrlEz3vI7AfLiXvolKrabK6KwySpFPT4hM0nflMUsy3bWPPVoZsbtyoUQurbagu+I05tesp3eUcGPg56s+MlS8qyd78oSFfWu+MXRES0KD4OxxmjWOKWXRJ4elChvVdRROq5HIIR0I70vmPtCIIZQHQqg5ChZs/JnkQeYBz7h/Iz04mc+rLQwu4aFzqGjuB0Wr/KmA53GeK8+Ve1f4cC7KUtgo1Ll1cLffXvVBe7/ZKbyfsomk50wLeKf2EQpeU1VD2hwekD/5F+Pp36Rd0LyJIurOFccAZ1XLB6AT9u1JIo3ldslgsJMq6vqHKClT9BLye8t3t6zA9PK7+stcdDaKm/tD84p37heP3HAyW9wtpz0V9G7/TK1Tc7Y1d/HmyoZMk++/38aU47JPJTPW7Gu6EEw3Y/tqPr00QAFXLHcX69potpF04xMkChJvUuJjsIbQAUlHz4dyQjrFt8ZmUuI8Twt/u236+UtZCdwx31BIuIqIud2jB+tolmc9aVy1q8/bUsBVK7NDt4Hf9XDtQuXFHfkP3RkRZpBY1+ZRgP3h9+iXdXxcoLi0frr29TF4YzJOi89893gW09mm+bxxItMzHhmizbMEysUG/XV18qTYjWw5tAfC3H03XOPjLILUL6Oovo6afLOaUiVWNjpsvpu72vsu+f/f3NukFB5bzMdn2uc+VA5LuREZ9l7HD6V1CJYQL9r3T1Z9cg7QImPah+Df21Wzc45P6eQtBKMbHsWdt81RAynMP+3Qc0NId7griGoFQnBqiT75pYMNONCSMK42xLuGTEJp8SShGWc+GvTAOQGpFCaXBVbNlfCz2RhbzLQ2f4pgRDW0U8KejTtqi8ZLlXk48hD+yx3btbJNxlB8W0Luc4kP3+PrdSZwLJJndQI380mXL3g5iCO6hgh3n5vdEzwKAkShPMgt+4zPd/AYgyb1DBHudLb0NTA3OO1sO+xcU/fIyzyEE2ZPDYSxYFb8XPgOiarELZ7XYMMYhMUTtp+5xkpYnf4JFPiHWZI9QRpssG9v7eVCnLj9QI0n1fp631IEJtwRbm32WUA6JAURT+QrZ6UjNJT5SBbVJblCdKQX7FPktQkH24miwsO/6lvvrBNKz/hBFakQ2QTKckHo5iuGsoF9FBPQTUGs0z3ArP5d+xQ8F/tbfOfdysoj15o4+DLbYqn9iT77bo62e3gcb+8UC5tCUjwge5lOmtqRX5jKdHEW5v3qKvdfvnPWJHi4wPt0E7znZSiZEEwP2qoiJsvPnfjq1mYFC1uo03ESGyfTmXiB9323Ilqp98kmzKAB/SnSMr4e6os8XV8IlkyOqX4644iXUlYpEaUh+E7cw+pBsBWpesWhw2nvVTOtOA2L6U9gvQZ8sxxo0YM3tQRRWmqYQ91OrrvuD6sXzg0aBKQ1KwA7DOVhLyuiiRv/wO+hcxKaFh0L5i8ddjn2fMly0qq3zFzJP2pVNru4QpGXNA7sn/GNzdHVKRJ1lDAXE3H6qSD9BrKf3cGzHIRn5nX0F+dGnYUO2A6ITVBbsPGvCx1tooi0SjQjOMn+kWpoa2fw9MgdVSVATblMzf0rFJVTXeKSHZ95lxDv3D6Qqi0/NbVehWR6+J9QcJEL3fBCgBT3CANQXDGFfDHW2bFDQoMdTS6jxU57ZlIl9g3731KT4erAq5jtt95cfcbhYgz9LL6eEZXn/qGdc1/XaH0ow+PeTpt1NSebXSwzBo88d3e8ji/2Lh19cMmx/xMhf7mYloJD5KBQ8Ve5p/6wJRGLuhdztXPmDZ1scEvj9FjteyJnzTcoD0OM8x/7Yvf0l2KktTPx1j59+GVVb2Z4cANt6htvzZ5PNVewuinNhLplqq0RT7v0c9FNPR/wYWiWZ/INbw9O1hBCG0y95I9GIUeQVBn2OOK3I/nOL4SfcG6xnr5bN4bA0ynl2H9TenvxsVHy4gxjqJIyqNjJFobZsJH1lDu+ct4dEw6sE0LZlivet2rGFoyaBWnMGaiSOkzCG2xZZlnXCDrJCc555PVS3W+lHX1U4mqznLi18bN/BodCkybTZn3ggG3LF7kH7sgWhLET3X+BhJz9/zHk7bAEdHOMbckXao/q1XAl6atI+BKfD2TKr6RXk5hth7TRuMsa2L15shfUUbNVG/tg1aQNr87xQlfJrP1/ajabwxDXIe8yMajGqb4n+7uewlY1kEhMFoPQfarj5oRotrX7XkCpLDU0PD8kfvr+rAvr9t87Smiu0HNqWg2IRl7AdJcmft4FvwEiPgPfjETFGRlNC6/1Ro9ofEPGNS6qYv2hLDwlX+YyeUAFS/vDwmR+xP19a0VDmKO9oaPqTuXy3NxvqvXUJ//jULL20AvRYVMnm+7Az9l0tmJVfUX8J/ITP+4eFbF24rLMhp34sR+kBN7vf4cOIhZ69/OChdHyQ4PhxT7O5FYI76t9Ohs1h4dB4vsyKem4Ek9qny8+f1/hFz7ughbCwfbX9qboGsj/P1Pj+ruZQi+EJLhmKsDNdhKqz1V8Hu2l3wIfAQiaVWBWp3+/CYWNrfvtZX7oBNmddWeOr9KeAnz212hxtbHyznC31R5agFKuCesDPJjkESgR+5rlEuslLNeH23aKVz4Vq+0r82Zc9C512TkWDofyzQIpWuTPHwtq2dtlWzWcFbSQ0Einf+2wmb39AWrIOgpjDOZt1wdVAfKMy5PZfo18WK7PAsp6MlM6vM9n7XrWoyJsXkRN2MSemXiykIrfDB04VEBFUPKGd6e+o6aacOb/9gwfRo+1xGPWXZCkapwTrfLmS72kazEV4PHh0f0URvRtD4g/9pwfwP8+S6lGuJVPZ7/J/P3cPoe7zVA8sdL0NKpF/amey8/DoENhghIjvXTZ0T/26zpY+YyxfC3+mu6f2F6+hLLqaP935XawebklPNu/jzRwv36MFWlY/cLo99Rn5WVKqfOlmJLzUPs05vzw6uN7rksxlMffsIRQAds1/Qrr0bUIPUxSq7HnZk40gv3synRseVUKwUKtp1sEMjnhHlw0zQ6VJD+bSPp0B9usokxs+DmyByhAgmhAXfnst7alu0hCWPEqJuEsiNixnWgJW5HfYPq6zOZXevYDwtRzooeu0hBil28CwM0JsdzclI6eHwcMwc2k4ve4CW/bvBRDxNhrZiIeln/swDNBGbH80evdgsu+TncApm5bqubUxu2fia8hMoy9RJe/bL6kjDOjWzxCKr5mvZv+2teEscQO1aN1mw9ceG2Qqzp0G+q+pBtcgHQglP+M968qMpXQBuL/i6I/foRb5+qR+LlJM7zfv4k+9fh9AwHwZjqOuJoue9zHIzScKt1dLRRM5RQHkOgayuR6sXnhMlw59U5MPFaXqGUN2wav391XBr2OcVIM/8gUqT1WMcfIs2JLwWYjy21ridz/Qk/bpEDjW15hs++xtrvm8g30/NNjZFFo1PLgiUBkJBnxd2qyaVJQogOpzQj2pKHymG24M+XEw8F8++G2wZUEVpxuqr/l7Vnr3Csa7wiHaLQf2W/Uh3H+hh800NH3B6c4FTNAIeO/XZzb6smGr0aPryeUWCxmz5KsByc3SsIvkqup35aeBo361cC7NJlumM+GR5jQhNs5fGwl/+sBqzw01mb/LhDC6NvC5JvOKf302H3a+gbjzxiXTW94mzG58CW024hXrTNGQeJGeJcibeId9imx/BLAL1XueHmQru+9qmseNBKh6kVCxVCkb1vVT5neK8YEVqO9+nypS1QUQ3gNMGbtuYg/sfolCEtpvc0K+O0H0LCKaO+5oMpWdOsRPyTDOYbKgQeQ/CpBM+FCzjvjqczolDfTIOlGvEklFscUIuHN/I9vLFFRbq0kC0J2yDkVttqslkV85QoNTrbPby354lnMJDwkfQ+FlaT1zT5IDVf1qqZ/xL5OZS3YF4aqIa/4w/VV/xlDHyTlU75ueTU35iEExohM9afJn7bXwK//wHdvky/rlecUxmvj7nv7xlYGcBQf16MkwTvC+YvKFbyCvhJ4at23hz9ZPLsGuNhp1k1djDmL0aOFPL79WvFieiamBe2Afoq78cM3XAvqS4Uc26PfxP5Y3FLDiEXWtqE7YNvuVilkEb3yuwUBi/xwIejepTVA8eT3LostJ+anpka56ut+ewfRURfD2BIVhkSymO4fKnx6HYxuY86GQCVy19of1+D2YUx2rtrLvtjq2Sk/2h6PcLPApDz02JdfIeHLmHJjtYqJBZ9Zmq+NggZ929ehNnz9oMlP3DvPySbCbxtt+dr2zpOjDLBCZ6Xk/1Glyh0+Je6JsmZP8vOWQo/qoHf/lBwKVwcPDCLchez93PtvpSou4s+pSV593jBBHM9SNJI8EPaIZzb2rgyq+5ZJqiWiyYf0+6EjGLhT36aOfQNw24Mr5j3x3SYTIosEEabL42FezQ8aceDPB/Cs4HHgj8r+flCPI+ZUJxUvvZGz5zgbkmvAky/f8NedIYjl0VUqo8c04tvpBxj+9o696b1L2fQ5GF1jURWsf/rcQn9Ry+myxxZZ3RdDDDqBZuj3Vg2hvDjySHfQNdgo9pNUtW9DDDuE35AMO+cqr5lUPoM1IKFke9zTpXW7XgoFeDnU1ozcXbuk05HtxHcri82j+y98GpCM1txPq//gEhMxF9O//f9TyGipb4E9Ul7q6YtMztQEf1Bs25fXwFoplA90gNgiHjBZN6ToSayN2P7xDwZhNs+MQUD5xSQPYbXsa3y7eH18g8vst9vNpMmIUOPaR6vuiysY/fvRLZpHqMd0lLMWO8Q9vg7Owy+bPuwA47F0Dl/LlWpFbBgEKlY0fqnhy2VQoKEb8Q7vh63nt2vFMfydY8xE+cL8dmpz8fIKkdM40f/HvhK75BlVc9qb2UO/RVjiNDUjP5hPWwrEwO1YVFth3pQ8nrs0z+lW1VH03Jxtfg/VIiqt8U7jZvx31keeYy7G9n2Dla3+ffRLstu3f38MH7btBzEzsOxIvABZA6b+bNuR7Z4um13UPIHvluPpDHuP38/uBDlclWLuA6sl6vxzal1288vs9mn9cw8Efv/QO6Gz+nnQ04PG9DOEy7Dw2s0K14F8+3tu5Pyo4HiApvTPWaqtky4VqJ3WxTk/6msgpmQ43L4edkRTYkD9HNNWifYI/vZMJd6ua989Og5/TyHTnvDs0nsH34L6jwj8/ZvK6PITHZJRUU+yTuXWaoP7js6HyVpSKtc1ZQdbTadfBh69+svIe0MO07kSwcpTNh2Ie1O+0TQhDqEXz/r4OYjnKI9k4ZeRP7YxycF71jWqn77f6h6cvW5Dx/kDNZDG+BwFUe+0XVXv3nl3YLVInVpT4ubdz85+fURSjS2ier7MsNpIFbzk9/emVbF7zrfKm1zt9PnMvo0Xs2jDSBOhh9Wun1U9CT0GpqNfVdrLsP7cIwRXbRFHOS78oi9TB1oE3WZKHnL3lb29DEarcP/94OVq6BRBpF3rf+XM155dTBwdH+/7hfz++/Z0DPPGNkHd/biI296eGui66EXnFL5FTbhEyi/BNg09SVHN1bi1UcZqBr6VIs/H35A2IJpn708P+QtwPB4/TJSfK4Vubg4oSCSx6PIZi/ZYSygIjVVe9RR1kEZ8Jlmih04vT8eF12PmiV8zan79BuEkvkuWD9znUN6yFE935GcIWG9BT5UN8TezKn6OrViIrNw7UkgQhqbXyqii88dpQj55cRv/y5yUWgEwsqSsyIykH6+m1BB5i6M+yk9vKmg9DzpX2rP3j4wqXChjb5twz4ycJ6OEnbkgt7cPm3XKyQSoanqD9Vq7+/MI/vk7TYzdnzJX1O+CLSbB1cadk9SdaOHXHOzZ2sGTz5KAUrvempAf386jYQ7IluF+eGj6NSZVM+/jxQNL8uFF8TSApX98mR/Ov5Ohu9Q+mq8k80NU+C9H3eM9W/yxF993pQlf9x5azqeQoSI4YuzlpzWFbFQvyniMiUp+80axMhw4enrbDz8BC/soHPHiqQrj640pPsj65o5XvUS/LHua87SNNOSt4olrtKRVZ1wMp9V0NueWqmkt3iBXwvr8tDXK+9Idfai0odis35Cc7Zk3RBwskt+eL7tmk+JOZHTpQU+VKXS6/MbapGh7ycmPTf/iQyJccXt0wYHyPpoTIfF4jZR3Ts+sz3ZxeS0TgUOFPuDjZhAYm3QX0TIzpnz5ekqSIYIpkRncbmFjH04JTidBa1ABrSpZZze8K9yUJxvr7m4yPr/eAVf9g7/Ct/UV8IQfW/UX+/J/Fvl2v4Njljjq7IWHbO4ISkHr7Epae7mh6l6UE9e2g0XCTykiQaZyqX6mtsIZ/XrXWewTkn4I8rLaPrmpRDwOcA8Uldf27VNPjlYXyileE1+QPG5+hYqP6bn+wE4zQL+c3tpXoWUZ09z180dRbs6YaLL4R7o8/zo42SPxjHTQnbglj9z2/gIDkHT386ZM/fuIT74J38nOpiDUXi7pY6ZMoz2uUDUkNA2AL7QjbPrp+wN1+7TL9Oa/+895fn/cAzq9IMP4+mmS58kGNas0bwkH/2f3MNM+DTo2/2PrtOn8oFBaD1V4aavRVkc2c/SvBfJ0QtoLwVc1ZNXjIm8MIu2eu7ssZTTkIvHrHAbmc/en53U5w7cWG2uvzf3L+OMEfPrhV7vfC/r1wcLo6M/kdy8WfCoVFiI76Bv/xZUqOzwCpr/2e+o36S4ZGf6fK6odT7WV/EFnrDSg5xhM9SNcCzTWnNvIaDzSR3DJp/vLnn3+IvZdlDp002ShIEkzxgxLExIH84zP4j0/Md2GKwOi+VTgzpUBLmzftn//2x0/YdHnjBV217kc2xyJA/IczAKaoOJGR3U20+kUaXKtOxAcRQnMS+VEBRb9S6vy6HM1HOC7qizE9lC7tIZvr+5Aqq/9MzUEpsknH1oRWv2Pl97lJzSW5K6teDV/ytTDnt+1If/GHV3zMmBq/CRRW16z1k0/y58+CbH4MbHzPe5PVnSegP32rXIXGZGT0FaSMzyP2ojur1voGUeZDnmEnE+xKPM7fEhXvmtBcd+qkf6AxBHzY8XR/0WefrnxUTachCaXb512t/hGBP/909YMTtnxl448fUH18KxlNLnKA1voW1ixgPrGIkaOdZ09U41ouWZJI56DS164b6/MhavN2UPF6WDQWljJbVr6kRmZzCYv2ytC4+tvgvkpKKjfNzRmUtgYd5xgbzq/zR7USHNhudStEExYzBv5oQQ7KJuSlcpf9439IexbYq2+yufrnA/rsjZGUx9uhmkV4OsqFmHIYzWlUrc9LgjU+cfCVhKr/HJcHOHgjhcL7/EEsASOHdT2xFaVvc/aW3QMBkzzso2iDqLPtbTjZhkPgLOySobdmQy39XKWHWKfmUvTBBGXzQyH6aNtk/uyUGK31KCJ5jp0JTvcsINCdJqy0+Nev8dpAxRkGNvEWEiKo+0m5Xa8Yr3o76f/0xB9fySmzmSDtuwWG4hDgILk07I8vwr/4ScQKrfWPEk1/gycvMY9mYz0CU3fgYWdctGwrXn1JPfTaFp9SJPr0I5gEUkk21nqJnyxp6xPUR7FAmm1pVfV52jYAPT6tg9GXfoKkPiFuWtp1/3OIZtErRVNPj9T5q5eFR65Ahp0e6YFwx2RWev2unpC3wa5vsooYFS0hK6yAlOevzUToFkt5ulxGuKxpfcYJC8Cf/t3vkglNvLbN4af3IVmu9i5jf/pgvR/qXNpDMqn3FuAnXBt8iU5y1Ym1eIfix550d9fnv3pxiX73k0kvApb6hY6b8P86UiD/95GC1OQjukvxZC583bagPOue5vr+1Asb92khIxXfYaX6X59croUC0UhP1DLnb0aSHmtAJNGjh293zCYvCj35LH7F8PapcjZ907hEF1ZFRGyquZ+vQBt0DhuOzDEG1Bm/T4Q2jnAJkcv0nnLCrYXwWdnUqGKvYvrjGYOfCAvWg32ZDVdX7MD66pTql5miebpoITBB2YbgXM79ot7dGsyq25L5q3DVknHvSA0L/kSmG7qYPyV+lCj7xFsi/oQZLRcePCBGd6Sh/dtXcyF+LDh9ahufzUJDgrKzCrTz2bI2h+7QcqWXBvjGULBz+roJb47jHWLD6gn/5T3G7F5d0EfJTDLQtK+Iqg8CHIzao0H2EFC/eckTupVxi/UghYScTl8Hdr+njs34jqvZE4kDvHPpqYMzJ6HXoxWjyXk8w8lSt+b0kbwTbFLtSl+vMeqnKCoC9bPzl3DzBLNabv3bUif8PtLDr1rM4WPeT3DRPwF2u+ti/s7+K0YvI7rQ/c9dzGVypQDeA99Q51Vf/I8nNh5kWrlQ/RWYPX/Bp0Ay5UmnD/RSMroznuubiK+AzF74rmYvuyvIdjkcSuc+7SfVdwskKvsIWwY+JZPwvAqQxq894c66m2x51amhwpcPxbtezxbhFdgAlWKH8jGGimXGo4Vq1HisjU5gziclkZDjOU+6j95GJs536QQiMx5ETO8GI6J6CkCCsqR6KRyTeSqvHrzIPsQ7HBv+ZJbPBwRS6FBLL/m+3dCdBhrKUvLTHsRfdu6Sgp5GDVEHN67YzjgPIG75DD+9OmP/Pn+MC8O6F+pV41KFwGd+StjS8n2yxDrhFH66Arb87OyzTa8TtfqARn27eCdjyosnFM/hhK3XICYsuWuFGnFhid10j9kCAb8A7eaQHOl5Sci9sUo44v4aLibe+8KM+xrqs70jfLkRqwVVjxYyM53JZls0/pzJWAFzqDWsp5rB5s3uNyldmxNqbHot441HaSmxpXTYP38MtFyO+wfsHJWFvLiWIE+9z6Nl/tWhmK7gaylLuHmRXYgdZ9ua/eU7eDBxfUqEl9clw66OU2AbQcOaX22z6fr4aTAmZRDCQW4rMmimpbwdu/q331notQb8LtcPdULSViyYwhQh0vHUnrZBthSGLEFNHzbN9J6Y7Nd7C2zqH8baGq/EONwNqJRgi3drgz2+aN8CUpYTxS4a7IR/GL8HpCL2sGscMn8QqyCEx7tBGFfbtZGuMGvq5n48UAzPkz817/IBoqf64RrPjP6EeICNMmV0993l1QQqdJJ0r3OaCmRgbMHtHd33Rk/KS/HLxst9tWgkZhLuSFyT4WxtlLnh9iFXMK+a7Yc6oGXu63A8eJBNSHIjhN4Pnl5umpmIeBMZkOqq/A+PZk56KLDuD7I1DWSyKLUnZVsxgWwH+kmYMqyvCTmti1+3fZQxzDv2atE12B8en2q5XTcEHc/Lh4Cd82gmZ/8EZJdHZKKNhAbhGQkQFJ0dSpbGs9nixgLZDxGFszWE1TK3WqpKm9ObYtljjN21ywK7kQpk8l6OP+7tMw/1+KE4OLkpWsKLZCDMkwcO1vVmJj3nSKBeQib1eGdM5U+Tmj4uyj88nJdOu8P79r5hfcVj9mI1B3NDvlR/qBHbEsvR0KeFA5l3N5IttLhakH6WE7UOpzNb7q4cK2c5D4no3ELGXu3TQGIeX8P3WO8SQs+Og7pIGqjv16SnddZFQHaPiKiHtvSXulUidB7xFluWc/anbRRosJ02IrX21r6fRpw5KJ28lK5442/v980C6/ehj8s6eOP0cBoIqy6hfv9dfPaU3RKqG/3SvTw1/64HWTB+WJ+8D2KmMt7hJb0iepgPL8Tin83BRW4fa/x4yZKJe+FffKvR89Ev98N3Qc2vcmjQvK8JW3rUwd6SAxpryama3IYY6JJtDuFRHXlzajdKrdTJgWD9x17JGElOgNhacsTc0CAG1TEHeE4ydvvdEZFUCxxlaxIXO8lOMNmxymoQr34Qbvciyabm3T3gKzsZfg2nXcIqNbaB12OROjJR/EEWgiuM6cnHeq5z/pL6DxupXX3A0eUsVF17N1oAOxTp4SCCSY5TVcMr8D0Cxv6b9CfYeyjc7l0cnIS0Z4neT/Iu9fnwEb1+Po35VPnbHwRObsp4fmYCPKXEwFrM/fzprtUNXJoLxu5SfKru0HA52mzMiCw+cfxlcqdA7TfOFh9qwrH5mcslTO9XSvVHNPtUEeEh7qSdhPETV4wFtXCFcsze2PdEwma5hTt8rNDDrvrZm8IyonX2fN7h/U2rkjEyr+H/AAAA//+kXUm3sjyz/UEORARSDOl7CAqizgAVARHpAuTX38V53uE3u8OzPC5DqGbvXUkV2E/lg2VBNbI5JtgCrcZzsINX0X9M48Hw2/MRm+T7bTCT9YTGH0KiDdHgUlX43KAmTwN7DJ+63WWHA3Rs2xTHX8ZBq3V9AKrLsxGs+dBly1cUClRfBY2oItdQco9sB713UR7wB8NwR1nxz3BxYjvYXeRftsj+I0C1QOdg7rEbzTeOCeHwNBysyzsfDcshK47k4IYEZ4nqHuTPAmAoDwHLQkrRYiKfRZfqqhCM6zda5dt7B55tqEQSTynqY7VoxRFpAZHZuVHHQ9NO8BF9ZRLFh0HZbf/hDlu7SeUXR+sd6hvwsfbB/krOaFa+goJUeVqwNGdDRIqHr3GNuIj4L94Oz2KpQYqOcdBwoeQecRj9268AxZyqsrhFMfAGVxOz5CtKMyVu4fwKe6w50yVqOW9IwNAjnlilc62m5zXmRGQLC8a/qUbr6bV1adHPNVHfr8Wd3el5hks8uAFiL4bKWsa5RehbS8Sxr202h2HrQXMSDaL7M3YnAlWClHMzBPv+daKzTGUA5kxGIvl6W81OWwogr/oTG2Zj0sMW7xD77HWiBfKh7y3eqaHnNBlbl57t5/DdFxBdgGL/scyUeDWbom8QuZPInBp1CR5TjQrlcA7Y/tdHNFtOoSAlvwgrasNUv1+4zhBnnoYt37tUyyK1CYJDDNjD3aGaQ9uY0ViLCjYjpoyWTLtySG2eDPFbee/OhyzaJAKpIP49VbPfXz4wP2lKpNXjsw1PezDYxREHh8Wr5usuZOE6j6dpSaSSkuFbaXASyhbr8bNyafQ4KvBhrSCAfOe40wnRUlRe6zDRy4hRH7achb79LsV2fn26y1tbdjAsjYUdR2vdSZb8AOJPYxCJjT10vP3eEvzZh9+Ip2oNWckRP4WqTKAvF3VIhWWLt9JvYoyrSY/ebMToo9sr8X4MV5FbiWtYqNBihdcldQ6CPvn3PN5TuUYEZ30CEW0VomeRGI0CKwd/fGZC/J5Skpq8B5J3OhFtlFy65q2dgnH7GljSu5iuknCf4XLbS9ikylqRh3YqUFmVE8bi/uv+vQ9QksObnGbnQ6ct3qPTedcQj4x3tT59nwJ6Vygjdvp8RJNqHnL02KXBFL8Dp2K0q17CV7yHRL+4ClqRaacQB/ueaMb1S6mU/AQU6Y9PwF9/ClpSGhcoyS9CIG7xdyQ2uv3nD7wsZHQPvgTD1zOCZTrp6iH4WBKUct1hT07N/kgdlYF+7xyCPWcYPdMyZQsb/pvY6PZTlyikjBDvwcR58+aiNmbbmp/Qz8Ybnq5IesArv/EnrFdb48cnshvoDh0h5o890UVgZQ8YM1UD8bQnFcWbxPW8wAlfsugR/eV7gaAwJ6ZiS9UQ97cONjyB9UPQRMPtghv0PTX3iYFcQPV6vN1Au9Q88fEdqxvfMQT82t2wt+Gf2dFYD06pmk7tlu8mfdclwLClhW3mbmTHe7Jv4ZD7dLNnBa0xF7HAnhHCujXIlConPUYSk5REP6WAll0ud2DoJ55YmhSj2feaJ1yd8hrM4klA88PKGR7FZ4r1WBK32YWPJ2KY/i/eedlROMIT9mOdYvPQRu6GnySRu84vYjqtXB0uxAUYlFzFFysAdWSPtQTGNJ239TZZz1lvSWTPPMLmjqFoUiM/5asl6rDpB4o6JovEwEl53Da8YmezvVdWiIrkQDZ7RWMTn3P4ex7n++7VVWYOAdwM5vEvHpGTaSWQ7E67Dc8YFaNwhxjYCxH++HQ163cnRU3iIxJI6jdrT+vEAqe9zsFRsYt+yE6EQ6+8vRHtpthoxq+mBTVyv8HSKmu2bvx3K0w+JqrXb5Xa5SbRXYhAtNblqsF9pDv0t7+6fZd7ZssXIC1FRe7bLN5VZsRAuMxvFXunKolmz6AafGccEv2Xf9x59zt1oudyCrmwe5r94TsUWuKJXJxHgNYkv6aIS5vnNCpV0VP0zhvIrUaZypT+qvVPv2Dll05khY6ULkpWw4cmGGv5/Zitxcu30OS9tb94ka2N6eSongWRSLtcytiLcJtQEaoRdp4XJ6J1swbi5/bcE+3Mtmi49t8n1MWdBPuf/FEp3m9HWn5nCTt14LqHvhJ2kDi8hlW9lt3Dsx64P74ZMPubH81o4ON/8cK52L9+/NMvXkuab/zo6C4nkdYQfHmL/HV5mH+/8wTvgW3++JO7/ukrjxFJwUj0j7oKj18IrbmcMV6FT0+v7o0Ddaza4Ohe5Gw4CdJZZLaJqbddNWYzf18sUVNOA8ERIhHNfnsW6J6RgsVWc3e+XcwGTEY9YWXpvIim5uKJ/JQ3+KqRt7ucPgkD/ClssHrFCv3jP6J60LdBjLWjTqebwaBjn9+xVx67ijK04pCn7I5EzTMVjVfFC/7wDvb7VaPs2ZZSccNfkyjFPhr3+nsWw+gaBXV+P0bE2ok7tFbSSPQTV1a03zk72Pgvkb7Qu/SmQ4I2+8LWCDe6Hq3Bg5QDMr35xOjX2L56cDB3O6Kvxz2dI98q4H7lGoz710J/+XgEkPLNf19N1VPzcuHgjd3rBMgaaFsagoTck0SJd2h4Op7eRYK2/Z0GhhfcVXleEtj0AmLxr8JdilAWxIs4qgGUR6eftatfwjmq3tPu6TsuiQFb6C9e+lVUbXhqVYCrocDyaLz6z8b34dB8D8EREtP9x99Czkywre/e6sLcIw7qXyzgQjwJ9LfkqEbnEZVY36WmShteuEF95TQcRwLrDpqwegCHBILl3oU9Pe0bBtTcWIlddU91Zh8hgz5fkyUK0Xq0hJwUiJ9n7ZJouX/Q724zOdTOpE7t0eKrfl5uwZ/9Y3e0P9nqX5CD4uQ9Efd1mOmSuUvMc1LwINLt+EN0y9+oLkNjEq8qoD9948/fsHXbsWi06g8IGUploliZpVLv5Ur85SR4xGx1Da1nkbsB7EITX2JJzFqWrw0QU2NP/D5+udS3egfwscyIKhEfEeYatuLAtbDpC4T+XspBQ2cuqoN4ufIRKaNVgoftiMR8anNPji9L+Fsfjo/ivVq5Cy9B/94diHL6tnQmhqWBrXY1MWTJ7MmfHrithzwP2oDo2aMTMvdrNh2++q5acIdugKaWmfZyNdLRu+ySP35I/HxUe9Y9loBWTF7B9r7cld/fNWh+b4tIVniJxst5noCWnYRdVSjQvD8vM3zFLAxKVA10nfpCEo6CHmJbP72jFdByQ5GydZ347c4u3TpCikftuMc6cLG64KBwBDl00+l9XTCiOX4/EdNFJEiS/he1wXqTILlXiJinD6l+ySKxcDpOP6JeoazI+2UDYl78SHytz6J5wxPogNWVuIxBs0muFgH6Q6gQrXg7dBZduRROdZYTg4/9iG74THjpWkKu91FVmUITHXB3k4xtbqZ0fES/Bn2ejUvwfmZUqvtjh/LjZE5/+GeogzKE2LMHEsTxr6LSe2H/7A3brb2Pejl/hEj67Qqste6tGvyP66HP8uKCtp45d9nldguPhvUIVnWJ/u0HsO6Vm75OK/fr9dYKoIaXlkhR36Jl238xydIz9q/vsqLhow2QXHQtDtTEzNDSWCGo7E7B7jfU+oXY9AbMqE8TZYZGnYXgFyDrmjyJoT6ZaB0kV4PIrZcJeffSnbP6dBa/lr2fZqFPs/nGQQgS971On1h6RFSWFAk1p72BddcJekbe3Tn43PJ98GvZvUpite0gPw7mdGx1jbKKn0qCvsgaeW3663xaG/YvfmE5SpWsc7rEQSWzr4PZ9L5ofhZ8g/B5vhH90an08McXyE7L8MV1pr4R5ZqF/Orx2ITkq5L8qLVwkdMd0Tu7RnN2+gpQJ/IY8M2kZXM1p9uRbI0jvnvKqrVmlAAOKxsExe1o0z42Xxb602chEC9o9PfPFLzoqU+Ll+TR8tZ4QAqOnhMffgBt+hQLL+V8Jea4+0T0db1PqM20F8Gc0VSrLe0MpNGzFRw2vE+39aFooT1RJSVwF51eavg6UrLhO4ZufzdgdDIQc8jP2Sp+7iVIb/UyvU4PpZqObwlAE2Igvr8NHs6M1w6u8teb2M0/qHH0B6is8xLwHiLuH7+DzZ+wekqUbL3XZoumbxpj6yr8Msp2IQuXmyhh+zSX0bTrNQENu9kKVjEfqyVZLAY2vL/lnxNqH4NciHuLuWJvje7VT9t9CiSk80Ak8Md+STFhoJZnDtul+IyOIpOvwoZPiVl6tTpPHPXgjy/54QN6xloOO5FUQxo0guyrhzu3GOiPr+rfqs6W8NXnEO/0Geu/fq/Olxs5w8Y3iOyeA7qwWbgiauMmOJTTyV215VEgS8Znohei5h4IN0viPAbF5C/9p19tL1AgW5/sPz4/uRG7XTkreaLl92s0H40ZRObG8huefmTUD5ISXK4+BFNBu/6ncqslxoHYY/vKAVrDbg5Arp5fHJyzFo1bfuZ7SVmw3rB1RR1JEIAVHiLWn9eqpy56nuEuxTUx4OtvemF5BjOg+2m2tq4B7HFQ4ErCNDjwn4jSJZ0T9KenuUVXR1T5lQYk6+6C7cKq3YYUoQYzOlwnBgSpokn6iuF0mT9//C6bR80NYMOD2Oh/fbYexdz7ix/YJvkrm+XdiQMSZv5U3aI5oqZ2boDafkO0Y7gNKjZp/Fcfmbg+uWULvnPGPz1dPgP81ZcY2OxpQjdXzWZke+1f/iP63jQ2vvjmRFq2En7V/NLT/Ytf0aZ3BXzwUFwG1mFCGx7HChMOdL2s+7MQLkpJ8NlRMkav0/gPr2CpjW60lT4HC7FapGFrLu/ReEoDAXY21ibxnqrRsh+9HWz1POJmTzWbnwuzPd/dJyGyC3U+V22KtLwfg1IpzYhGbDbDujvUxOYftBpRt5zFM6MQbF/S0N3sYQd/9Z9wl0tRa0Yj++/3jo/rTOlO/nVQ0wmCJcvEalmROoG2ZMskfrtTtO65+wC1dRyw81Ic9eg8DAeMU3Emj+3z5U/f2/RB4nRmv+mT1Sq+7Is70f0vojRKrRJK/fjCFs7aaGLI1jXcc65bvWnJVgN/BuD822MaM3fOxjQ9zsiUuuskTt99VKvlJYfGPfDYo9I9GojAGf/0l1ftndB81bwQ0jgYiAaC1NNJ6EP0OaUuVi1Hrg5l5RgIkkHH/v0nZj11XAaih/z154A99MvZlXLUv+GAdXrR+01/S2HWuyf2S2v33/6KoedNOxtb6jFJWhZq99cT7ZLb0Xy5fUP49pD+qxf95RPY1UaMtQdysi3/WmjT+7b6ClInKfkYaLfLL8R+aCL6+YzxhEMWusR+84tbYj3o4GDCboJTxWbtX33o068ecYzlS//0RoGJaw0boW67zCv0NXTr64LYloHoELBGCRPq7anWrINL5O8YoL1CXKx9Ppw60GIuxESQbexr+Tta/vR61aKfQFQqqTpI5o+FM3eqiVbur/2SMMcEGcLbIaamvLPvmGfOH77G9ttboul6azlxMAYOB6nwQ/Nc3zwog7Wb5h730bjpsXCxXuu0rw6aunpWk/zxJWx5rwOipdVpYL5OPgk3vjXI6ccTLtZjJeqTDyva2+kOsTSzJ1G+Zeo/+2IGy8DZj9XVWT2lDjytOcR/fGPjEwI6u/tncNj0h63eo/3DP/4NxJ5Oz1ACFuIYSz/pVpFm6p6Qnm4jyfXloH75IL6BssuqYJYjM/urT/7VP4i0L8Z+2o/2CoPyVEmw1fdX8GD9fx0pEP73kQI4XVyi9b4T0WNjzxAnuxfBJ3bulxN9KjwNmBY7P73t24sJDSQWEoi5v5/pcCLrTQzZ/kSsPHcQUTPLgDMs8cR0QaVS1r8OiIRVHPDJ89jTtP82oOKlnEByy36mJ3RGU/64BFx4F7Phd/JyaFf9S0IKt54ayF7hc90JWPN6311paRlcfr8URMrQpZ8i88mh56Pc48BZA0TVTNJEm00uxNDiolql6WHBsiPmxC35xZ3IafaQXdgMdpj64A7BtdyJ2/NM6/rB1Syc2AFKl4lxNttdtgR0buF+xHhCy1fof5/LTYHbPqDYSlM+onH/ZOH+CfuJhThXl+pgbafSeBUH2inuV/aEOiBsVxDXNb/9QOT+ht7y94DN7w3TtZ5HCeStDVWlbmVCqsi5GO8lTGSlkKr1crxOYGjbrJRD2amr2P0slPG5Q14il/TUpUUozlOLAr6RG7pkeTtDPhYWwWbSZ8SkigflkfpYb3FKB/wyOTix8zoJqXKsaJEHhXA+U2nqliqPqIfOJcrEy5nItfLul/FiWGCePZecv807G+h9LOGQoDDYx9depYOoxWDedA975eD09F6JCZxDamIbvUnUiVsJRP0eo+BwWST14PX6gMZdWRFnrJee1EOSwsxNn0C0hn20kMeigfrenQNeezXqQkVhBYuzb8HnTQ49/cSjgl6v7k5csWvdtTulFgzx5T61L/HdT/fZLeGToSvW/kK2sGYSqO5RJ9broWZrcIxDOM/j+u99rlmY1ogw7XfaOWtAlw+MAvrU0gPfXUmK1pLjOQjmF4/9y8S4xE13AbzfjITtbX3rcDtqghXYatD2GYfmsLUc0LJdQyQFpGp5MpyHrNBsp+5Wm9HyqnkNlrX/YM2073SdZd6AaddpwSEKPz0Vk2KC6kL2WIn0wl25MmTAGJyIqLxN1XGs9wAIR/oEgCXEnAqpEY1SvmDvNwQqnf04hCaQFhLs6L4fq/iaQNweJmyO98FdVGTfUH64TCSQzj9E3JT1QBHZXUBXG/e/O3N29u/L+piGb5f3z3eLU/iGxjHgZtFzB0h/HVIPxzRgcVyh1T66BbBvLQsmj5GyJaz4Eo624xJbfo7ZerjTAFnJ2Z5o3S5oGN95jLhj8MQu6WR3NU1ngDhSFCK3shdN68JzqI2dwzSX6O7OH4nZTqFSE7tKjeiMuuwJa8zG0+F7sqqDtFYrKhfOw9Hhd4pWWNsJLsFOwHoU6tX0aT+5qDmKQozx4Llz1v5akO6zjbUdqbP5ejvN4leyPBKIDBdN86kUeKY43omlIUOlfXxYUS1IFtGou0f9PXc1wF6VTeu7ntX1PFsGajjZwOaLVyMaVQsnwOH5DI7kmvbzfl0MdPcDgWgfl1fXr8WUkC2nOVgjvVAnrgxZsRhnmWiPwatYUNIGmampE0vO6mxwnkcL3vdJ2NarZbT9OAHceXu7tcXJlP2LD5/HAU3C8Omy1TBDBV2uhjT11TfqZ2JfOkQZoSAStxurCTlnBxJjn2D95O9d+orjs3jlvRNRXR1tM9ffHfzF61rpG7cV0zhG5ThWgYBVO1uyvJgBsqeNVUnnomH4RRx8mcAhwZvpqlkQ0hrq5TgRh22MaGtmlsDerd//xZ8Yg/MXz4m2D/yI9Y+/GiYlGyY2v1Q9/WjIg19qX4lk5x+6totqIJsLeSyJ8KoojjoFdBO9sBmxB9opQe3B6cZIAdri9Rzg/gbHq3MmATkYPb3l4Q19EinBqVGIPfmLl5EmpMSOnrE7c85pRV5SKsSVvkrPpJaeiG9zTYiDy3O2SCUPiDEomRDp3i6VUzOFc8rpxCk/arZul2aAl88W1pP5uzVG7s+wo6+cGMKxQEs6pA0Yk+URmVd6Sk0B/tkvNvGxdxdeF1m0OD+buIElRUzWbreuiYjJWdBAXb56KIinlbkQPV+qar7ftBxlx/yEX8ZRyVb2RNs/fwrYzb7/fV95cd4kRG/RnbyrHqItXmBXcIyozeeIg3AdmGlOxKpfmEa+wfvNSljnwzRapYQ34H4PHxin3CdbH/OvBoPu+aCTy77/s3cQ5ULGyZn5bEcthBk9/Tom1/W6UzuVSCW6fuQf8QLXzpZCM58gHSeEXdlw+9U/vms4ses6seE5cVczgRKeeiZMfWU5FSt2bwc0R1Lw/agY2YHqowHP/m1ghTNLOu+EuQXSdveAmsaMejnFN2g6aY83/EFpAnYCIfc9EJuRfbrlYwDBDDucXqqgWmJGvkHzEHOs54taHYvcKGHupifG5G5Ux3WszshiPIStUtRdojiXBjQfXtjIL1U16kpzg6MsG1gLuyuaD91NgZfcRUQv5iBbcnosYdsPLP1Q3lN+nCbhc0fPoP2iqzseDh8O3V/uE+PgcKSj6d4TQdjH262QuszmV4FzMBszIqr9daPvs85SuGe+TByuetFf5Y0G2vevY9DPbZRt+ceAyibLxNb0GNHp8rMgzg8Fxuq1qIZaljnQkfggDtJxxr5CroXvoGvbLSvqduPv18C19xySyUZfjWHfr5BHz9e0UJlU3V98f+p3Ydrwh7tG5lNA+6o94wASSz1c1HEnKG92CeA9VtH8vZ9i4K8mE8wKFP0spnmMtvi6iQw+Gq77bweH5oCw+/npLtuEYACzO76CZSeJaNjyGYrig44llxejVezelrj/bLdQzuqA2reUFLCypAqa8MyqvRCohkjPZJmEV931rWUWN7ES6XZoX5f7w+IvIE5MZRA5k7yejrBXQKnoJajTntKlYaYY/RxvILHvsO6ouFINRKp/ROdDIRoeFjf8i3/fC2dmPe4NDfr8diYheZBqraznE6bgEWBf9le6LJ9Egk7yMVEdI46o1g013C7eCwdjdHWP/NgM8IgaCTtFmSNSaGX+Fy+nmdkr9CA0qQXxvGOwmpmU0hamM4qYZca298iq+Xu/J6i7JfGEXPNbTYEZWMJ+6e4T/DxM15x7WyCR7yFYrrJMKdq5HPql7pVs/p/Nf/YwlNdiYqi7p8OjjWO05XdiC6Xl0u8ozxA3yNludax0+Mu3dAaV+NmsZ8vxAoA+d/6JVfgxaHnVi4b+8LbmebVLn4PeiTicNCJ/9imdsi/bQnZ8nrBDmxJRq7rdhF/iCQHCxpqRuBoa0FktJzJTKej41i4OersTDfbtbVJ/u6l8isPzeZ14/LKj7srdbmC3cUCkWnSqWQ+YGuRxXoNGpo269I9IgtdvULHjve90AeMdiBue//MfNC9vIYX0EWcTc/eratXYzxPm3beZeF1MopVfxISnLSMSiRdjSk6UVyCVQx6b2/sny8jVUO95G9tMkVDKPAYLzNViAyYZfu4//Otp0Y6YxoVT54c1D3Cqt1tVv+shWu8m6VC0E6bpSK5CP9dLKMHpSeSJKl+Tsu0vZCEhskHs11vul4dWGqgXrhqxmkeDOjnYjkx1wxMbmA5bvx5GgNfYFlhelTbqM0g1qK/HO/nDV4fPwGiiEMX+9rkVHRLazIDPXYv1bumyZc/m03HLx1PnvXm07ZcHU/fIgx176enyZ49/eDc+kgLRWSxvCO55iBPnxNNJDvgCfp4dYmnzh5FNnDNQ9qAR647maHLNYkXXMVCnrc2kOq6XrYT3ven41BaX6Ed0U0FdeuYm2v+6bDE62IEzxTM+3xTRncblbYGVBs0E7WggGmXCVmVrdkQvg11FXjA7XKIqPFYChXXpg9E92OPXb+o/P13te/HUAXsxfGxuYjYjCOf6Dy9hxa98dUblz0OOluTYG/sb7eOqrmHD88Qbew6RjyescLB4O6gP/mnDi/cVvpMhEoUzFXT81YwAzO7wCnZHmqtrIoUKVJg742TLx+x3CVNwb1c9YDH16HL1bpz4ZTyH2LOiqofK+2h//AQ75afKprv57YRwXkOMVfbXT1+LKUT+qjMTok6J5rL9GHDWVh5b33xym2pe43/rff3YXTT88emLryTEG4al/+F+MSCy2OOWl+/qoiloAjNXfxPDelz/c6p2Ru9l7Yk+zReV7ebDjB7vxsSmINhoVMtXzPfPhA32wlGk3d/vVSf2GDB6b/fEydQC9pfWJdZPbKulFK0C8usNtnh3VNsM7zfYDmqwvxxQtOhVqIj4Vv2IWRwv1eDjeYJAqI8B/DyCZseMDNia95DgwCp08L/xCodiJ2BvnUpKulxMhG19Gz/gXTI9ovQf3zBH3smm8idpMNa5QLLK6qoGHI2BT6nUf3ym2t53APxiP4kWed9okKeVEbf395cfqoU1bjng9RvhgD/4PTOfTA6lWVySwFknNBIxHsAIHYPo31PbU6KXyl8+wFo/RNHyO9wnJGT2Oq1OGWez0BWrmL7CPZbC3I5Wo2kSFFrDa8vHJJvLdjQgzZISY/9q9gdGHHOQq56ZxHOwRh+vynLuoh3hX/ze7D8RnuKrC5glaPrlMNIO7C5cp1lFXzS1FgkQ53s2/uNfpNNPZ5A+8zVYeqWmtNNPoZgebh4OyrhF69msPRicEyFuZXV9//NDVhyakzjtLovoLhFYAFYS2tPspkz0s8+7M7CNmGOZfzNoJgtfAr69f1gO92FFf/6N+YeHscYgREFkayg+n2/A24+bSvXueoa77wlYynKvH9q7pyDbi6WJzc58RNfDpYTaPp5JEMaKOtfLTYFeuGjYdDkpYvRj+ITpeeex5KMALRmjMeIcdgds+Ccxav1XV2yNkj/E+uaButbc64z84YEJfh5nl3JBmCIhSvxAPI8o2vhsC3PyZoPjpmetliHewG+agJgotdTD5q8w3QqOSKt4imb76nEoAu4w8d4D9ctNOyUg3VebmBfuG5GDvs4g9uVlYkmUR/MjnM8QxrOCZf8VoD88ArfKa4hpXX/98L2fEhFV6R2byTXM5qQNBXGX3XtinZGH/ukrMhkTgk/JOVvtnbii17v6BRB7n54wl6GGdgqeU1IddHU5PGVWTOUzjwOfmtVSeaMGhqZVeGCDul/c7Bf84Rnsof5VrTtBb4UlnBMcqQ1Ra+t69v7458Ss/oj6EM01RDtuIv6eStX6DqsYAF1fxJKFMZu963wWeddsJu4okuxHdCyhLd5MXAeYjt+aBIC+CYvdosncPz2PD/JOJ47Y/OjMyhPzxweI7xM7W1VjaOHBZ8O0v962Wbtb1N/wXECtVlM3f5Pg/g1rjN0Lq27/3wmKzlTTbvPXPlFpC8+szvDVYtd+oPdPCUy3uxKPn5qIOO5pQg98v07M4Ob9tPERMbv7++Bg+jf1N/hvDzWcamAlVtdoJLopQT1IMnn+6CEj6+FRCNVh52Ascmw1bfsHjpBGxJx5n84/+dz+4Vviyp+4pzfKPKGr45KkW3xfzX2YitF8iIja257KEPvRwk5tjD99tZp3SrmDxZgGYtrJjJb+UqzC1JR7oiia1DOPcA7FeZiukzDWp356h32C6s+xCJDW+NnyF8+J17nEeenvatW+1g7pZI+xwV2WaLb3xYwuCroRG+/O2artPpKofjiCX+aBidbHdV+gb2Cdsb1TbNSs9lNBpd7ToIe+QLTTt64Dfq6QcMPntU5CAba5mOSKj706RiD9y98TxINK582/BD4KBuJuR/wXxbUadIKeTvvXNciWwI1XuH/OPfFhbdVB2V2TP35KzramqYeAct1f/sJ/fHriS7fkN72FqNRi6Yz3Sylw9CwTI4m/0ew89xbS0BGIV7m0os86uyHqCG4g1ovuruB4LNr0zg3PfbMVk3iCnxHiLV762R9fAVy0hMhv2aKb3upAzPCnCRpvyJb5shRgetqOYMzs3VlihRTG8iUHnJ5idfGjOAE6kV3Q3GMH8e+8DmDRZgvHiS+5x2Mjr7CkX2aiS9dU9FYrrSBjRiL5yVNUWg/PG2qweCG6ght3pT8h+dOTg4ZEkA07pQThL1+O7amhi6ra0p8eiL2XZ6HDt/56sPs8LpNYTSld1p1kAPFal8jPIogOVfzaxqwuMQn7p4Y2vdWAq2ql+Jocp6q7t/cQDZDZ2L4Un37BqBTQ/toQopk2T7dDHQDpN9Xx3/7/Cs3M//ACkdw0zqjrerc/vEfwj31mdBa7FCR/aCYCPM6o7xw1aE68ENyHUo62+CpAGuFHcChOn2jpHm2MFCSkEzrafr+ax5AV/+oP9vwe3L7KFw7d6XklyqAdItI+lA5YUzNI/upPdPb2hoP2ZqsRV6kzRBff2KFuvulBtcWPLZ8L4A8vPB39S9ZPzzkOkaPFOXGM4vFnLymUi+ARS3yV/Xz8HVKAfQRT82PfGRUnb0VhPYzE6vKlWsNXKUBQvANs7XNEf7dMvP2t509Pyejy4RUIwrrCZnzZuyMjjk/0/DXlxh9YtLrXc/OnXwRcn3F0DFUsQHnfRjqt4hKtZsDs+C1/Y+N2eKNRca36nz+orRX1xO+j25//TEWGDv3iVMUssh+Fm8JXdo2YRiJnJOFtdvz6tKJZezYpvN7vH5EiUXK56obOf3wgYPcXpu94/tvAwy4T/OdP06Zvg66KykRl7VUtZTx08N2pLVGZzlHXiTeMPzw17fhE69d7cZ8Q+zayCdhx7GctYSxxqw9Mxy2/LUKyvV+R3RHtPr7p8Lh1BeoUlxIcHn/Re3n0M6wlk+HgvNyrMaf7Ejzp+p7Ki3Lvyd27h8CfPLrp2d7flZIOIodmwcaf0AprMUG4TgyWnV0c/enlvB4Y0iSu69vd8nsKf/Hwb3/p8YAa8G7PhgRrIrsHpypW8fQc5Q2fDNU62noI34vIBVwkxNvgY6uBTa/Dliz4GTUc2qG927yJkupqtSq7NRar91JOu01fp19tFCC0phe2oyfjzvHrA+jC7XEA66Qgqp+pB8Xyc4jeLU70zx+ZchGJoqpftOGJrf7h3iZOy76IurQNUaA0OdFst4/WuJAANj3gX72GRugBHLonhGj5+IlGznAtuAz8gCUDudl8ImsK55bziFQ831v941zD9aLtsHs3p2r544dOGHdYrxYDsWYAgKw6DINWfJUVTbPDDGdjfGz5yqrmrZ7F//FdOdtvJfhMSGDmhs9U56MekWE8FygSdqc/+8toPrQh6OI+mcAfpGh5xwvAP73Vrb5VJ/wOsxA6ww0nO7bvl28OgLb6GLFzyaEzVewnfGapD1hvZaL5gicWDicFT0ACWWX1q8wiZz5dsCW+lOr4HPQWyT/mgvNycKpjPTxT8POiJo9Nz6DAegl6RLUULKtiZYvdF4lIW1YMVlurt0Gi5k34Np6Kk+rwUdfEcs7Iz8uayE9Zz+blN7RIevVOwITuREc/imPQ1MObGFIoUqqlwoycMOmwuV6f6vS4Hktggp1NnMF4Z8u77uc/veAfn6FhZuz+/O2f3rOSXxwKmXnKsM8uPWp3AtfC6cZKgT0WNJt/fBGLD/4+/OnriE7+u0E1gSe2ovRA19zKJBDf9+sk5Npvw4c2I2z5MehfrUVnl/xa8K0rbHoU0OF0rFuhYbRfsHsyX3dd7D6GSqcxtqeXUK3VWyr+6qnb/sfZX74XH6cLEJ8sVrRufF/803OBjp06eN9SE/dmp03CpZqqueMjBf3plb9kd0FHPR1z2GeVF1Cm69yxFKVSzPf5gNXJqVH11T4cvF7tHWeKfqaLcl4Z0WfqC36Y06hSKuIV4vxYYKlEvLp2LRvAv3r24ELVLfySw2x8XWLfJTObCb/V25pyj7V3f40WB3mMiKfBwXdRLfvlon4A9KfSE2epICLjJwUE+xNg79UvtHnfHg3SMFKxwUYvRKPY0mCrL5BXfHXV4Xi+J8Ccj2ciCZCry09jQ+iZXCX6/fSm87VVG3HT07H2cnK6JD1T/tULAtEhOmUe1jzBMdMIUXpDdRnvyoXAdjyPVdYSsnXvzMFfPTCg+87PtvifgrjPHlt83ldDbNkcyNWPwW71jar19MUs+tNLXLGzXBqqHYdEvsiJ9IQpWyc+MP5fRwrQ/z5SMC7mkwTRy1RpYWUM7J7hlaT3qugXoRJb8ILrGuw1Q3Sp/3RZiO75i0TKQY3mPBxnMPROmvpTXKJJZssc8bEhY9MOr5TG89yK2BlXbF70phqOu+cZubl6DjrhnbvLY6CGOD3iBksX4ZctccdrYEzqkRhIiNy5359S0QznAD+EgO+XFO1KlExii7Xq1bk0MbkbuAsN8LZ+l43iKhZZZ2yCtjySasbGnCA/YbSAwSxBw8HvaoiV0Mc+AlOlelqdUfx8WMFUmTt1WncWQHCQNHw2orqnvG4yUJh2inXze3ZX5/yOAYqnjK3l8O0roxFSCA6Khg150SK2tSsB3odLihUj0qqu4C4NsIErE/eMVjS92b0E38tpwG6PSURJSAvRWvZ0WvpCpP3hevLAz1FGFHp0o9nolhziE1cHAr8o9PgqTQYIlzMTCz2m9FBdC7TmsoFxhPqKRk49wEvYPXFge6d+KfK7BiZfTVi1uXNElN4PYdLckNhf/47m0XEkdB05IRCCj9WPN++dwtl8ZMRmahnNXYMc4WZqJ3KbzdRdlYMrwPkkZVgfTzQaTr9dAv3olgGvBJm6dOySoPfdeWLtfUwoDbp0B/Ur5afr0Br9WuJHDJ7YjcT/HRqVWKJgwMzEMQ639oZr6N63WbbNfrJVfaETf0hvANACkf2+75fRXwyRId8bcVt2XxHIw1iMGawFJeS0WiAJVzGVXz7G2MHqLIxwBggzhmB9mrO1rYpBzPJttvj+O/dLsLt5wlBWB2J920Gla+qX8Pd9RXDeKiEdlwhaCBRrz2mDSOcogOsMIz69Vq+aZRAUeHN3j/iuxfeNImcGvLnMI6bit3TFNzaAzR6JOty7aBhn34IyMy/Y/6AioyGWbkjynCmg1qnMaM7cPbhErxV7xoozluWMCaVdVwV8gcxqLhcpFI/rs8Gy8365i2blDdykrxYwM2H64SOkIWjF1wnmZCncQTW7Dv3Zp5bYn4qwVZugsw8tSbilUwkwnxX+fr+ri0s2k7c87T/u+T6xkdnSJZFnVvTt4w/jj57RkT2wHqDJjIJDTwR3MkXJEo++ERFTNOOMYoU/QxzvEiLdvIzSp3vbAarrN/bNgKI1ryMJMLtD03DaSrC51N5QH+6+Af1cOHWtfmcHFOkZBXythZRO57MhfqzgO82s1Vd0iL4saIJl47h1hmomwmEAqb10+J6Hn4xW/C2BCKMX9rNJQyR9nApR+GkdecyK3DNDtZNge56g2FEfUfU3DQCzdsMGc9Si+ULvDuhc/yH6ZDnuEKUCB6f+/CL6yhv9sHbZICQZYif+ECN1znNGAD9hNWw/ZJkul9+5gNOtTgJa0R2aj7fMgcdXqkh85B7VbODEAHc3ZoG427MuCcKnAzhw/YDRFK1ars0lha9nldhzH6dq7XmZgfHEztimilUtdBgCeDjL1kjJ+UTtsPQT1AtJiaelJaLn+wyQ9KDitFOmbBHcIgBcHK7BMs11P1w+fQ6+sRyDhf++XBpwVifap+46MXvaVBN4qQMmza/EGMcrXT1cB7Aegsf0S9vT1nhLTvjid6ymz8tZVZpJrxrJxUKIa7WPaLE6b5stZcrEd25SNmTas4Onil9YO3JivxjFykBlxk9ysuxzxeq3dBX0tQ7I6+2y7qxGyyxA9GiIJKe3rPHkXSFwu0TH6mWU3TkbZEsQL0xEHF3F/aJeCwYKequCvZBXPUU/0YPKTJ7T8euZFf1mVgubfwfls3mg5aBWO6jP+UAuxar33Q59QwTUcbBpEhkd91emE4U1lMm1P/7Q3HlsggZS4uA6tE1F2IvQAhseXGxMddAPj58mgdP0EtaakndnS+YDdL3SZNqVVw0xhZcK8IuccOK/Pk9n3woMOEqWEaD7/uPSq+B0IKImwH/xZ75C5YA0MUeS0Euvrntz9wRZiCfioumhDn+f31JLDWrES2gu1kQSikAKiVt234x6URTCuZrq6RgHGC0/7XlGcjdc8XnfJ3Qpv3YLg8caJMg1nM3HXRKiP39m9EqItltTO5gt0w1WvbTcLvvwNWD6LgLeP4/R2KtSARn4S1C0q6keki/dwfWdJETXnj93fbNHCdT3jyN29mp7sv+Uifi9jSbW68GNFiPSHRDPKRcwrTP0RMttFryjXWBVJBOl1Gs7QWm8ADu6YEQkaxUDMepsEGOqp4rc1XwAaWKPWFKVvlqnoJKgrLsLtgafiejisykSXlVHnKLB1UAEcUCbP+L4aGnRotrUEtN5tv7l24Wn8tZo7fnCruCb0SJLbwuBesQ4cFQrm7TGegKrtThArjy6tXzBBRg7TcPXnD+7yxrrgC7qMSNW8apcctqD8Wff+CHBu5qryyD8vQ9s1feWrmNucvC+W08cJkuhjlcpPaPkwrywZMApm5VLGMPYiTyxIgupE90ac5PyEk7L7pb1w5lpOODNByZKVk1oDOauhFsT77H3lZZqZHSlgEp6tNgTB4Euenm/wc00TsRjieEy86u3wCWmFpwfeutS0fcMrpANlRjncHUJZksDmF8hY3cpdXcc/UUTKz87YPn0OWWz0fFPkMpzRPxEtCL2idIBfN6psbQGHzo88U2CYW0ULD0/bj9f9sVZFM83Dl+OdYuG+VVZ6LsITyLnv6qfiakJMMZcSbDkHbPFYcSb8EbsF2tFIqvHW8fewFfX8zSXryUiZbFqMKy1gl+zPan0z34K/iUEf/5+1KUphxfzOgXs8yC4K5czFihRoZO7Cla1xA81hUvC+0TmjF+05c8a7RglIlr4XrMFOXIL99J7EZ2lQ7ToU1FA6/S74BMf836exxvD429cYydDvjo7i5EAQRwOii3frUX3FdCjqBJiiRVHuzrVOUjKTMPuJbB65nRqOXCcpzaJe9ZDhNmtHAiYj0hwWe4VVQ8iA3PQ3P7lE4YXpRImf8DYnq5NNLQYPdEjFPYBdYtPNSvjZwXZkgIi89+XuiJ/HsCP0l8A6s9QSfvhPUimfUsstdBcOqs+g24D4wWC0ZdobnrjX/wiMluH7qG52AbSX4JG/vL9/FXrRECLawSw7Oyenvw3i5bm5BL9ZlbZjAQ3hW+28pPQ8B93y++KmOBJIHZUv/pZ5YH7Z5/KZm8Te1YbEA+6jN3ASbLlbKjT3/qxf8pIRnf0piB03RNsspqeLW/pMAHvQ/6fvXzVOgAUQOu/hu/uoUx7hpkjWpS3Fj3tYcC+/7ar5TEgDZr1W2H/7VQbH+meoFROjs1gDdHM2YYAXlcjIhluTNcHUWuopFc7FZDJ2bA/zAW8+sQkNgtBNIAGEsp3wYEoLb1nf/kfzvPJxtLNQ3Q9PrcuR/lCiec+lopcSGrAcOafxB/kZ7RWWf1EObJV4mOa0XVNkhzd0bWduNP3kw15V9bgmdw6iSNx6XHDw8JjfFXEOLQSWm3BVWDS7JAYfaZni2hq5V/+nwSl21eDcbQa2AWdFCwlOqD+VWIGzHANiCHmQ7aohA1B2HtBkApvUGcpaQw4X801GIImRaSMtBRQpr6JI9s2moPzroNjgh9YBgmrTDbYFsyn1sWX/S3OVkWODIS7NMH+q3X6dvMHRK+FiF3vJ/X0cL0HcO/JKShvsVsdLr/zdgRiibGRP8aKti6kqL4IJtY0pe6X2w51UF84E9tKkLmzeFIdmJ8emZjt8/XjbbNRmaQgblYIaEiSlwenNtjahadttOKPHwNQy8GXZvfoVz9DMXrpjYede1VUtCwEA6xFpNM6/B9pV7KtKq+EH8iBgEjCEAEBaRIERJyBIgoibQLk6e/CfYb/7I730m2SSn1NJalx6yzxbrGBbd91nOyuRd/dvr4F8TeuEOTNgM3PloewKXcXrPBnDsxRNxvyGk8ErvlztDpXgIPY3qi96qUdU24FsPfXE5JUpSiX556zwJTZMlYnomb8VsfJ39+5Fa+JxBgnF4/mS72MVGzmH8Uk//TEMfOHbGb5Zu13YE74tJxdbV6IOslsIhH2zO3a+KDbpHB4v3iM+d50phbdJbDbJoz6F6kNWV7WCTy2B4S1V7ZkROh31W9+qR8oZcm08zmQf3jOXTuQ0R1JJGiaHqI21PhwvjmqIIm9H+L0yQeAmdukg729U8kGka7vOqlJIJqrFoc4dcIVv3y48ickQrXUmBtmPlz506qXvHIgVp+Lc2pgtJtvmiYIgVPDWukGqpwur3Buwu4Nzf2LYJMPG7D0w0Jg9T5q9GglhK35QAHqsrA/PGK8HMXSh9NNis67EMzRTnGhXeIPRTang0X6DgPUr3eF3sDYgem2r1WwewuYHpWqzOaTkG0A3+cixe6hdqglLzpM+G1M7elSaWwMp0a+BZWFD3E8gkkX81h4co8z9ZLnq59aFIlQcp8igZ5wKJdRcAcg3d9HMsHsFTKfd97A4VGLZDspssV8VcseEfGJTTG+gsUCrwpuoitFsGqODm8+7wEUueyBXQg22SIETgWa88mlful7bE6piKC23uKJokx0ljIbcvg+1yW2ps0EJtjtbPglXE81g7baFCqCAXPPMnHcZ8dw9V866XvSJ3yi1puxNb+A/Mn5iPFAywTSPBVwdep0nQ9Dm1Y9DxxVPBHATrzDohOy4OFQHrA5Jk8wv2/ZBpKYv2EPHP2MHw6vjXy1rC2BRC8BXfk2wCU44cMmASXJXw8RzqbywC6q1ysNhhjD53wQ8NFKEJifwlEHZ+cDyFh5C6PRJHa//Uo17QP74S//SFmPxJIYIb898zoE+R1SJ7meGbu8qgQI03GPtqcm/tMjf/gdDxBk/ZxVOmz06vvzG5xpZ39yeP1mI9atsWaT97YlwEyxpvrnoIVLtlgDFA6Io9bhkGoTDNpB+kinnOwLu9f+9leVbXN6ausWTP32lkg+2FbUPU9mxp2WSpTIpE5kt/pfY2YdCeQ8X0S7r1w5bOWHwFOiHQHz+6MRoDjqnx/lnvg8nN1bJ0BJlQ1qhKbFGj1YG3ONw4UerpuDQ377I1IDj6x+TdkQq7zDLS/bFJMvB+ajIajgcQga8vL6vhzu/meSfeMT4C6+RU57Nt8BUBIaYtvoVbBG+AK/zSXHOPY22iCZswWhwh6kRrGbjTsUvYH8vK5HAHqr/97rvoBnSRSoxVMvE5jt2/K2jhk1cl7SWu3aCKACjfrzB7TBP94WaE4KxBoquXJwPpYKfvP5zV/HcP6+fASAc7OpfR9aMJ6EDMItvF+px84VYHI6L4BMyrTy2ZQx78wNEDiZjU9nl2lT524isC+HBGP5GZQk7tw7tOFUYVuUBmfqmRrA5uy4pFjQkU1chnNY6GZD1ff3pS2n4RGB6yhJRFTOCphttASwpYTDRmzvGLl5YQzV0rr//C2nj8ELAT7JDGx75AymHx9f9xO9r/lgd8gFC6q88EFyqKklEy5LB95IvK342gJ2VOocnrEWU81bRG2Sd4YPzRZc0b6hocbU3T0B/AsaNA7NBizAE4ff+tCbKZCMVT72oawuL6rA7JU928R5Q/dw+2ArN0JtCUljQ3u0PcKk+tNP637bv7aBis2LUGqdBdr6xy/pkXWlM/3ig4TzF7u3KgBsCKkg4ShYUHROWo1O7XmC2TJssc42O0YasLHBmv/peZcZYHpolgR3im1QxxFLNnlUrKDrRB72piVdW458asC17wPZXh4VICq2pr/8cVz5xOx+kwJcnSqlka5WJf35hVx9x/R8XV/ZcLfjBgZFt2ALb89gGJyiltvhfMOGrsWgKYEo/NaHNGo7hiteLlLSLinFfd6XjOpDIq37D1tGybR+9XPBtp0QDh5HS/vzUz6H60z4++HkTFMYqQBIw5GueByOPz/zNO2PVGlLrd8lOgvAOh+IBY8043+fv6LG/enF8Lfe8Nz7TzSu/B5UnatLHxRu8EHLJ4clOvCh4O8cIrF8dGg3tQugmvGm9i4JwOK2rSKt+IgWtuuzARhBLZP6MRH5crloDKJ3AxIfZ4gfCoHNj73twryRU2zPhtLzx6gnUr4UKWriwCzpU+7R/qSqClnxKFxCg2/gjk53mj+Gdzn1Ny+HsWbFOFdeNBytY+HLKz+iq14FQ5aHdzib6oNUO1EuFyvc6kBprt3KV9ys88t69f8bBTVNSPrhmK9vIx19h/p+MmXjPdgE0srf0NcDkjMfjY0Co0axEG8rb23Wrg0nySf8IpUDO4363wsHQyMd1ytxWr8Q1Ks/fvbjo854fN9SsPrF9BZwRrj6xzq0xKdCpGiptHFUnBQGwhRT64VhOOrkSYCxMXSMyg238glf2Y95tr5azGGH6VgikvTpMdVX/2Pyj+dFGo+Bg3/5Z1z1EIQ3yLDShXcw2G47AeWJCqoaYVVOnTKpcjnZLj6dErNkZf9u5JdbDmt9wOyZY+o2WPEBa1/u7UxHn+tg/3g5WMHfsKfG1uTg02nLla8qPfF40YbPY+X+8r3GH5SXLa96HG2GSsnm+TIUsIw3PDa2XALoSyI61DZBi8BL5ZwZxCaEO+NrkDemWsg9vX0OhCioqXbvLmxyHA2B7bJP6Mm/wEx4nJRcRtgD+LB0XTikIs6hH+MWY/KNwPRK3op0w8WFXowJhIx2UwRiPEg0W/0QYpRODNj3FFEPBYbDNl9FgnEjnumJqU2/4IUpsjnGCz44AeinVf9DjE4e9fwq6ZePchb/+YeNUa96zm/kQ0euVOt2s9YGhkNg4Q8p2a74RjhrX4P3tDuTH54uaz4D/fWwwVbx1BxWc1wHj7d0RzhrNBgNakUHa75D2yraZgt7jzUs9+EFK3tHKgf89BY4Ztc32Xkg1eocBESe4ZKg3W1q2PIM94r0eOxcJHz2brjsBiv98TuMo5o4bDRsCO45NGm26h8qM+zCYv+QiNyYYj+p47j8/DIiOPI97L+Z0sHvyZiw+pnscHS8bIDvvJioX4mHbO66DoGjFoZUCRStbBBJFdA/Sod6uvDNZlniY7jXDxxVsruaTXgAa71NP1DXtyJnwnu1ho0Uvem9vR3Kzpj2CmzkJMLn6kGdsR2sBba+ka9HBfJsPrhiAONsL+ATGG02pWG36uMarPidOrzINXe48m2cpXQTdm/NcOHmHMpkSvsPW0Bt2NLLuF9+fDKcL97OhqLzpYT5Rw/MF29rSfspkCkO9QgsnLWvwEGKCfkkZhlOepC5MNy6KTUcGYZz6dQ+WPUzXvk9Y/OXIfgbP2JjG8622ttQilUR6e8mDP/wYjNtXms830MG/AOC1g0FaLMcBW2wq637x3cs5ayw4XwuJFkjXUAV+yiV/YpPP72E5Pvtmy2XfTJIzz4y6XFRMVj9Qhuu9TlsuULD6PYKO2A1XEuvnyrK2A8fK1W44AN6v7M5LV86NC7Blf75V2M4dSDzFQGb863UeiRaDUy7plz3Iw/Yz8+slWZAG8/YZWv8NrDLqugfPgxmu9Y7tw3afo4ZWIwYuj+8RdMx2jit6/Drq42LjRX1jJ0Jro0i6GXpETDNb8is+Q2lG35fyCK+RzY24fsNq3lMyUaYkpBN+A5hLagbsj/mB7DiLQTnzdoE2jqrmSB2LQfhqHxwXrXXkMg2qODK7yjisdrPkrzkMn8kMjWU06wtl71P5BDvnxRxiQPY89rosI4nH2vb61ub3qfHekTmoeBjU89rQ9M2gnKyE5E0Xao1Hy/khyf48ZBkp2HqovzF2/V5zsvxhx/QDDrstbzhDPtLrkKNNAFOhW8cUiQqHVRbjyF+Xb/vymfAuj7Ucduin05LJYHgkOgINm8bdP3TU35+MH6seobUyWTJOc2/1F34Ilv9aQ7qUYrIbJ2Cnhk3l8DNdbbR3s2Eclj3H/xewoGeCvAtV746/fw9etqxj8agGr5hcEh1atdWU671JetP36t5LYNRSS82pARwWM3K9ViFIqoAIO6Dja6zAN91bxeu8YhvDWXOdDPD5c/fk82tn03X6a6CVU9i5ble8YJxMkFuiylZ93dIrvophhbuA/rTz10DNtb+x4+UtD8Cznhoi/z/HCmA/32k4PlKHIqykQ8ng30muNi1Tr4XTc7GwmMDXLpPSg9BmThzuKQB3H/wmx4ZGkN2ejyR5H1MlVrpwdZYD11JgjQ+YbMb8nK254MLpX7+YmU64mwOP60E1+5V+Pj4DA7Z3pVF5nb0gwSvz52RtKUlr0fSqEe/ZUYieq7gPvsSfHxuGzB+sqyDxiQ16/fRbMof1QQ2gmHh432xezaWlg/P8DhR81uobMqExYD3R0vpwYcQLP3S+9KLgxqZZ7UE83UBC+SrQUUFutGyRZUUwZN+L/CzN1zA8eZlgKrQNhRneg0IraMErN9PZg5t+47cHhv4MuWabJr3QxvZTjMgz/U7tA8nk7HekmO4fx/uSCisWzZ4h1YEKRMRRhs37j94nib5VosZddT0xBYZQR/uAZmo627NfpIszweF3lrYTqMxHI/xm4PX+yYm3FcgGtXv3wZeb4uPDWV9yDmrBxFsTmaP3QsTwHiMOwGocResveNLp2scCqHjmHfSSv4rY7xcqYCrHhtsVJBp490LEEQ5G6gSpF/AbE24A0PbDtSwn++MpYWtwuJclNi4RifA1pCUhlsvo109HsKF+zpQOnHlFRvfmLKJRQqBhckjim+5BjjB7Ce42QeInlI7zZYtTlKQjut8O7wasvfLU+DoqTXV4l1Yzkl9y6GRZjci2YGZTbEqbWDflh/qTOY1XAa3cGXFiA5EGOePQxzzFcv3cfQRj0+t1qNznkI4WBoNU7EH89LpDSwcLULytjv0wo67CLCHzKUHcBe0+WSHEIovoGPnvpP69ptRA+jl9CD75ltoM39ee0221yPW0VbQmOSkBqBF/cTudLZDhvsjAsXhqVLL+ZjOUicphFFsxqRjm5qN+GMl8KGjJ9ZO2C7JBqsxiDXXoVaSmc700Kj0N38njRzA7jm+IJSSysGq2h+dX/zCCyQQCQn4ZHPoHmw5WMgB23Lta92GfxUwuzoONhKrBHPNJ28Ji42EKiGYNfYlQIH3aSNSdXY4Z7jw3B2C5TJSNSyGfqZaoG7hh8RUZ3qaTcd6UuWa7+/YFKiZLRE8baS9qhjYWV6RM9/ZeorNCnd/6zN0e2sCiwLPFAWG3g+pMKiwTjgX62u8tnt9b8Fx1E18cGLdYfOUWvASHhoib7tXzzQ8i1Ae/AybF13RZjyLE9xbaUAmkodgUY0kgCXvMrQD5cEZur0ywcN+jPGZZlY4MTOJQXEVKT4r5iWcD7Ap5ODC1fTRpEdnFweTJd913fzbH4yfWANl17lhoy5R2BejqMJULg40zUwEOmzZApikxEGhHEdgDDawgr/8ZBh5p83cQ0zA7DOCNWL64W9+wXrnnwwP/ptN56ar4aR8earcvhkb1dgYwFN/T2Tx9nM2anG0wHBIe2xTe9SmPUATuAqfgrrKSQ4bTVEneLM1BaNbmPRUVVkOn+YgUK/8BGy+1k4KuOuAaQZtxWHWzmqgHTU3bMHCyZZumzXSOREj6u7FTOt/+aK5GRDj9/pwb3001b98a24oZOOo8hK8Cft5fchODHtV0FR5uLUyVa8vHcyW/Mjh8s0itBzEspwTdhJAWgoj4ZZzwubrwiY47ayKsPzYZfQSdAa4tI8LquzNA4wbcfL3ruieaQKGc7jDOtTF5CY1aNqFHzAZt83qaLkLRp/4EJLpJhmwFJM9de67tO+yeFykuPRe2MT3IVuo4vjgrogHeshrBXCPDusAXN4PqpcqF87CQ17ALz86hRiAWX6e7iB6b2aqf7Whn0RyVuWmtR5YHWU5G/VJq2V35o7U1eWdM4OjXoE135F3EQ892WeODba3sELd/FEz3irhAE/fHhLWFBdn1uJogojwHmqCBTgt729jKAAPIohqlXEYXRtwN33vl7+yaTKIDT+OcMN4LrbhLOq9DpzMkul1925Ao9369w9PCP/dbkIWHfsOKE/QYrN8dv1s2Z4EjUlssHJFr37QXGbBpcIINdKegrFtQA1FUCdYVyqnnImmQXi53ThsNLKTLaRGEej2OcHWQWblLPZqAIXN3SNwOncZ+5g7Arb7tEY7MVZBzXFqAknZedi86Xw5s0cXgaX7pugVV1PY1ZtBhzteCenNBhcwi+fXWya1EOKjqN7ZIje9Dqp8B6nnXoRsQplPIGjGPWL9GIZ8h1MBpiFzsbqt83JRDT/4w6vy4ovhON6HAdKd6qIdLcSQLKz2wZoPMI7amc0nuX9LRabzFHWnJHyfwXWCXFSc8LMOQqenVFCgfRWe1DvDuWTZXuSAIZMX2rNDkBFMOhVc48rGWRngkpWv0ID1FhPsGeQYshG2CsyKZYtd+vCz+ZUuNvAI4al1Q025JLEewAYmOnaM7K3NJVfHknpadr/xg+bEHUTZrTYdVo9HVaPzlNpwsnGDT+0tB+MhPkTQHFlCD9sHCUfvyiQYWFsH7YGmsummGQlMvwqj6rbe9PNGFAOo+4WAT355KhlfOT7sJ4XDTrXv14ffiwhuBVRQXQrbbAGNAeHp7Kf4kc5lP5i1nIIf3/s8HezM1rS+gqBKKtosTsMG8OJ02LyHCevI5crOfeEcFCS+UyS4L20K+JcqtQFvkYkzviUTq5hAvjcQ9sxXzehA37Vsfm8ufsploy3C95rC+FRfqc3NG4cMN7+C+pj4K15+nbH43nOgyuYFdWDLldTTmwa+eSNDc/ppyokfoQh3Z+pgz7N2YAwWF4EfP7Nor5WCVTxF+MNnO798+iV+1xX8JE1InyTS+mn77jt41zWI9tn0CBcE9AjuNp1Bj42yNnZ5XQpYX+oPgeX9XU63O4+Abcs6drqizn54Cld8Wx9KY4CcXzsV/vKR0U4um4t0MGCv2RrZZnrNhl/+vmDBwdr+AvupO+4RdM+jhu0l0cBiSIcYPq/LlWru4xDylw/1IX8VvvjEDkvIcimI5QosInaK4zmc2qCtYLjtAuwonMGG671dJEGnCbaVLmQs208CBBm0sQNtRVvXewNfjjOQRe0/WudfTj6YrqZGBHAjziyLnQuxasUr3jwyYasWCljjkcykMVgbbysbXl2JR7LsV2CAYNoANcxdaggfLps2QIjhkW1iqrKPD4bB0DvZX64fJArirpyr7FhB9aHm2KzHV0bU/XmR9Z2i4+f+jcFyOSk5HE7Nl7xabnSmsBE7aM6aghY0LIyawlLDvr48CXNaMyNSc6qh6NwVenh/Ntp4ssMNOF2JSR1SANYnxtGSA3y5rnjqOdOJO0gyTioNH9bnEqg09y747Uc7IXY4x25UwwjW1Zqf32xonzcI9DH16TGaJG0RD/cY9O3rs67fvR85/VRBPSQQHzG0yznzXAu28QERWg2+tjClWiB8+s3vFltJdp7QAEVIRYrbomVzp75zWPRWjHj7QrPZnk8IQDVDKFvzBVNxKQAx7+/UfOZLxraJpEq/8alnqS3baJsQ+Jt/pO4UbTkWbg6NSvMQ3zAxm567rIZCJaQUnc5BL8y1WEA9tVrUnLaVxr6gTCWQLDq2z88sJFPd5bDs6y2Sd83sLMqRsyXmSW80aY4W7oKj78pTGp4wsnXO6SReUeTKylNsBUvmkBAwCSY3sSHnxjsDds7FzR9/dwpxYSzquQX24VHEx2hKtcUuOAUuun3FKu+6IXtH9w4a0jsjwEi32dwLlg7oTnExHl9vh+hPIZFy7oEpOvppSEb3WsB8114I4MCsLe4rseH3SGTsjuuJmQsP72DlK+v4QMjG+CDIEVMC0jQPz5nN6apCU2oYmu7q7LQPr/Dl+/VcYkeeSoedA6WC+ebwQnylvLKpfz4jcB+pTzbRc8Nev3xjI8emms17vVBdBeHHT7Hy6fRyPiePFDx2bxmbo8Rnsyy+EZC2GkJNkd3LpU4CKNs56ql3tN7hskfBApRTYWKDXxaw3OIgkjmkSNiZJBEMlQ4q2Ljei8hnOPfz9ZapkJlFjJ/Jequj4FIJbNTxSbOVT4xGPEkw854CQsaO71lJbm/YvqWWwFk89mu+VsAjChTscODszO71w/3iA9vYOGi78hXq8AzNCTs8Wfpl1d8gP6MAW1yeAnYSdhtQboQa//hp5758S/7xKZQUV4chnShwYjDH+SOa2HDypgUkfhRjg9v89fZMoW1vdbKgIQDDaAQE1p/OwEcj2jkfMT9LULokRyTP3l2bXvrzDtKSG3H2PO+yrpwbH2rx0lF9X5hguuI5hYNiXKjNNjVgTlcO8BQVB5oVxzkbV74DFs6n1MnzC2j2L6LAEnQFVapd6TRX7aDIcaFlVA+8gU2NWDXyy9zWiL3Cg7PLpTQCD3l/QlzTWdrw7HoXctVzQ72HLQOmCo4K91YS4It0v5UDRs9mX6vRhhr+nmOT5b0JfHwfd+xZlwIshVzn8G4GHtb7nZHtNotOoPZAV4z3bwqWDG5E+PMDgiJ2+/HbNDY8ytWJ3hyyy9hIpwYS7eVgnenSqocXCNffR+gOcNlQ5V0K3UP7Jvv3dgj79tJEv3jFx0YR2By6JxuG7rnF1ng2wPJdTgvQi/pKIBe8++VgqEh+SjIjO4F+w25OFUtWhb7BNlRGh1WRuEAiHShWJtEHAiadIoJL8aCqFcQO/eHP+TMgHEu1W/7pgaPGGIIg32jsfLRtSEZfQbsjlzAqbbJKWvUQPu7wp2/zL0ohlxsZtaNxccZ4W1nwYeYG1lXHYFyCNwv00IfRE9BU0KZ1zoE1HshevstaEzZ0Iwno6lA945Vwjd8adMx44wNpDEDfEuDAcr0wbDzIPaSp8QqkeRc9qLFLeDboLI2g4hIP/fLL/OKKDRimk4sV0xHZ7Ng0hSt/Xfl4ng2Y2wjQ+PocfYh3x2FhcITQ9CYVvVb8nNT6KEDdWG+t+UaYTWWvD7B8yS75HpSt8+ObcND8DIcE2A795X9dazOKSVSW/bl/xXJz0yHZrX7cEPCtAvd9j1d9ctXmVyrZEn3EO/S+WEq2+xKgQi/vI9Ia5v2nX2rgRvsTHt1LnM1UaCu4i/ZnrJvL21k84okgUncU49V/meiedqBCkomtRVS1acVzOLY7gezq8RWOXNdMcNiPOcVPUennYANreHbVPeG2UlXWtpkF4sieHWKdNINp5ZfQlIU91jz/Ddje0RVgX7kn9bLqoy236WDBXE8Swk646+dRON6hkCcDdUK/LenDgAQG767ACB2HjBTXRwTbBdo4T80gXHhvDuTmdMiwlR46px9OWgKP2szQtB9VNs2jF+99R3qRPn402vj0xg5m3kOg9te6l/Xl3bp/4xP6a6NN56yypPO7sPDDed1DMnmHAXiJ9yWzrJ/YJ/y0IlT9wCByp1hafxJ2ENq9YVDFVRxtXgRZlcTNkpNs5Yudfzn4v+9H0nWfOAw6jQ0fEeapLSX7cFnxGQTPVCQbL+jYuHRuB9RR46imfQUwDM9PCpKHjVf9DpwZf5QEJqedSU/KS+urTz7lssWl27VTb6mNl8/X33exU6/4oob8qs9go/YYuzD0w2VmjQQv+0Ig8tF6Z+stPxGmXZD+9EM/oCwZJFVLe7KtBt+ZIr5OwbgH1z++2Wv39+pPDhO9rvEw7MAhhSveIg6OdbjA5qHAn591Ktcmcpi8VelanBhd9ZAzxG1qSRWYRHzj79+erXwMfhzuRp+qh/72F7Bf+dqiSjfYLg+BDZ1z3ZP3x67D5XIRBfDMrZJiJt2dZVj2Mfzp5YTsTmwqd7wOk+k6EBDpZTlbVzcCNyXzkNSWM2AdRTmYu6eKf37wLOY36ZePqDHPUr+YYwIlFz0yBC6dUbL4Wbzloppsaozz0eFIcSp+8Y4PlbvvF0TCDTS+AYdRYFRl/+OXk/Lh6aoHAOjesQFJ2Xj4uT31zmKEnQXl7VvFqt1LJY2CuwLL875H8urnDN1x70LDZzV5j/Ijm2SyleBdN0yq+FzFplWPyZHgJviQOA7jX+g0AT0GKpnBXXCmCJsubGjRYkMXvxq7GZkLiGdt6E+vFB5KA2nVs/R4fF3K2bG/KcRJrVEVDQtoYd9P0o8PmA8Rh1OQSS7Y1vYWse+QacutTCboX4oLvr72Zr/89HVXYxPdlFdZTg+/jn784+ePOWTFE+iiZ4ZOX1Y77LpHzR8/ER4EhjTMhRis/i0qPV9lXNHN/nqrO6NWzFj2qyfALNxX2LE4mNESHCS46kNqfdvQmbv20IDVj6RJzpdgao5ryfGSHKmpICWcP7x9B0m7OZFxI5iMN2TfAHs+1NCecSGjVpcE0myiI9plD0mb7jvFhpta+aJFWHA2C7v4DVKl/FBrI1kOO+cTBDf7oKBd+ezKefKTHEqX9IgmbVMBZnW+D4NlOODojQOwSKjg/uJNbTeF1p5nwYY81+6IMM9pvxSVN4CkXjSst/kBLMy72PD89AvCFssqd5fjnsCbMd+o2s2HfogFtZB//Mr0hDab1RgN8OcnrP5Dz9Q2aOTm+bSo3ZZntuvpvQDssdEo+vGxBG+m3/iwG7mg3/3ya/OBV2qfnh/AdhvFluWPiHHAb0fQv83Bh6tfSvONG5dCDHEMXJBe6eF5e2fsFRkVDGk9U3v+qOFYZy+ynydxIhMLxnLV83dI/fcGGy/K9ROLLAJ4EvwaZ5/AksZNAtf/R33sztqP/8OVb/zzFx9p0kGRt3t6MC89GwSznCCNgU2sWpj7OU/NDQj3gYExQvd+NmzlDVHfm9i7bd5aw0ujDy/M7v740jxpjS71zJVw1HSNNvRHoZZOel5QNMYC+PlfssUlW6x9B6At/UeS4LUut2i7f1NGum3YyWGtPLH+us/ZdN9ZNmzou6WKtqnY6o/e4VXWPGyBYc4WW3oL8JnCB7beh+fqR5Aa2rsdjw+KyWfsUTzu8LErZDSv/uW8DeIcUsYZ1Oiqulx8sjY62Ecx1T+PU8+2n3cKb0WBabz5VmzxX/sOWp6U0kNc+VkHGrQBB+N+o/E4H7U5ccUBvl8ch9iqV+blEQW/ehZ2Vr016Eoi7Pv918Dm6qfPu/XK8KrH0XI6XnuuEh0LBq5zxsrYpc4CUe0CWlRP6qqlpM2rXwrhseOxGhMtXP3bzT9/w9SnfnZtOQd1kD7RvObbqdBTQ/p93ts1szb91vM0X84Yf57ncuG+2gaGrfvBq9/MaG/xMYz2ab7ia7/qByUFWi04qL/vpJK63bzIa32LzD68swmATpQ2tfqlK99jJcrRBNplY2MtyanGnsVcy1YUWdS3liiblG3rgtUPolr0iMECGgRhcuJNtJNPN7b6Iwj2WMxw8JG/jH3MLQGrv0f9R8M50/qiJSx5xLCaExEMz7N6l8QzX9IjSVk5zQZ0IbQEgJ3n+ZrNcH0FFPfsSZUMXZ2pFaVBesymj+Jn9MyqQL3dpbW+iNXmWrH693vkd9eQWlbafvUbbDj6AcKHMN73a34qfvUc4s/9ks0XFxXSTucn7D0rqVzW+qT04KIdfWgFKeeCCyRgH9IFrfjYz9+msaSXzoqV3x2yGR6DBh6KY0mWh8UD9opQBdb6LzZdTLQlvEQDXKQGUOu0rZx513EIajc40d9+o1OZkZ//gb2XI2iTcRMg3OJ2wrjor4x4Zk3gxe2O+C/f2DtDgT2WMvKQeNzP0dLE4NI+L3/+/ywHZ+OPf7itFpZs5XfyWh/FP390YOMrl/GCPXyQ9ROYL67xhms9BDuN+QLs6HvxfvUvqVk+7X5gxV6Hemq3RIhMpx/Y2N7ltb6InVcfhe9ykzQwvDk6dbngXRIzFF0oH5mHJjV5gWmRzoL8CQIT7Q/RUWNy8hD/6jXZWp/4+YsgFh7WH78kkbWk4CNSmyREb8J1/kUIsEExWvkrY7IpwQ9YD2I87Adrr27XQb1cHth2Bz3jv9lXh+1wB1i/cpYjZPFngTXf3unJtrhs6oYkhaufRcpH0LDpyK4DFKJpj4RtWmdkuCU1aLaVTZ+hKoSE+2oQnBMpIh813IAlgX3+f71SIP/3kQJrPHzI15BBOb/6yALaY19Sz7I/Pa1AXUvxZAFqPLyLQ7iqEaB+V/b05rs8WO6cZYE83nqE5bt7yC6tACFoUhmf9FnQWLSZVIgkEiFpk0t9D8Crlq9P90Pd2A3DoWmkFJ4k6Y6VLWblcvalCDZxJVM1J6bGHnEkwWeUjDgO0rKfPouaw+6s1uQzRG/tXTylChZBoWGDE5SMv/O1JUVx/yXlnjuXk/rSIkCOeUGdINAyKup7AutxcyUA7IZsaSW0wBrWPdY3MWWz31kTLGMTY6sM1Z6HmE8gvGTGeqt/KYchqrh94H06kvDDHC5CbtnwcIEcRtYHafP+M6WyWoAMH9BJAt8lkFXIwXkicI4MZ1LLZQCwoj56ic2nZBe2FLLVt3uKd1HZk7muBugqrCMsvN9Lmqf7tTeT8CXTLsxCar0sCFDWtDSnlhKyaz8k0JM3HXa5Ta+x88Z9g1xQRKzuNeTMxiFypWhXXPBjlgZtNo97BX5k9qRIuNvZwr6JC3Kz1SjSQat11nLwAbgZjLof0oC5ztMJZlsfUnTlfWea7UCQwO5wJvtr/3DYRXhJ8BJXCtaPg6qxYDtDcDs1CIfWpyw/pnZooMG/PWo+WOYs6Pmy5DiQQiKdsVuOn/Wh/CwYHJwmXlZOl89cwYMZF1T3FFebstNFBGTJW6psdcFZ5H0eQEPvn9T6zX9sFBHcGWcd7errq5xOftJB4HAOVt8eKif4Sd9wvzVe9MSOmsPfnJcL949SRrJ+0Zzl2VgElEllUdV5D+XyQfcU+EY8YysXzowNQxvDkucmrC1aDJbN+rD18XRQ0Qbvd6zDqZrI+Tet8OG1GNp09L8GdPj4SF2Uif2077wJfj1FRf1ECmeajhsFGh9DwJqLm37SsqEC6pvkf+OlXYtyuEHjC4V622eTGR0gnL+3F9Y3rzH7+/yTsxHWykwF/El0DeiWio4NeFac6TxpFcS74YH2CdbADjv7HFaGb+JgryFtKQNvgKaW90QA4z4bfvO77kcy3eo3m3v0Vrfp+xVSjxzbcuFvZSwHKCzQ3n1PjGJnf4d+FGJsPPgyXHbnhwvH4zan6HA/lH2pcYsUPAWdNE63y6bTSc9h/4hE8krdBky8yFWy5UsO1pf8mc27J7Gg57GFOnbcO58nPd7BXU4D5DdFpy3iZVFlcdFv1D5jtx/aB5T+8o14Pe40mrZFAWv3xvDDFBeNvNJMgIelrLH1WUuw832qZH/pdXocVATmMDououcrHjZe6rVn19prADvfGBL3TgIWfd9LElm7XF9/8fTLT5H9dsmkgoKxaCMq4Kn37vp7hnLJloDAUnjXWAmUYzl/bjyU2Gtnk2V++GDmakP4zT/FyXvQJuVbqTAg9wS16/qQZ+7ZEH/2KZq1+BQKEr5FgG5FC0n3J2LL3ngOsJsWE1t79nWGD80MGGv1Ce0F6ViyMX120sHoOor0MGXDw8og3DyuPPqOF7/nPot6h5ep3SOxXmyHbXovAuvfSaMrS78AU0Py5GolEkvro7H9NhCh4MQP7GwHwpZeU3K5+RKbGtvt0C/Kwaigc+Q1elBJpjHRbHVwqFOHyE+lYkt4hBx8RulINXlq2ShQKwfhaS/Tk+U/yjnVMgP+4t2rn0PIwl0pgF76FKhY9/fcXuwBSsNSYDPuULm8c7EDj/aMsPXuo3BIEneQ1vxN9aPOwPJ4bXLQCFGOJsYxwN5GZcEaVv0vv4UcGIsOXje+j4+bOQmnk3ExoPbAI7UjwjnLTdBVkCeTv44HOOx8TBb4AplJWBfcHfbRGx8W51Qg0vF6dybigzf4FBtMD2e2BfPWL0S5wyAhrsaqfuxRpwDA9x+qR6ekn/vzLYVpVPNE8lJb4+fFCCACiU22kS+yrwL3Nhzs6wExcjszJli9ApeScvTQtNts3oR+IAvN54iexxfVWM17knQuLhrG9Hwpx9M2CaCHax5xO6/Mlk8wr73Jz/8DAAD//6Rdy7qyPLO8IAYiIAlDziKHBAVZOANEBVQUSAK5+v/B9xvu2R6vpZKkU11VHTqAuhl+BewO0xrGyfuy5rNmGD7bOdfS18VD8lVQBqYTBSm+OElYZ8eOL/ZyI+C29xwimaVWTv5udweX92vEOIYETJ5U9ypSxxSX3aXmSzFpKtB7OOC99Vk7ZnhKD9nVZ/TwN2jBc/IVAsuTfsZRTY4teRSJCG3lPVDzNFysydMaCT5uTYC4ejQT0RdcFaav0iO7uD5YJL54FTwaGsKGD1/DtLE0CLndNTh6pYR/99NYASjWM96fcpAshtMWABVtRcOidttF0L8N2IBwxIb1ePG5u1Uj+KsMicyFESQTbuALFHxtHD7lbdmXh6sC7cl3sf4MdWu5dpMEP3eZ4JX/WJN9ZJW2n8U7tdtLMcyDTSq44gW6//6/vu1tdc13+MCd1lpud7EB6/yis3xFCffRJobGLDMcWrrC/+Uzw+2/OLjTC+CGXBQwbnYtvRCO+XL7KjbcJ6qJhouit9S9vmyosdkmvOFpOyq7u6ud2/KIzT/vAMYjCzpIBcdBcIpYwt+7ZvzhI0XbTz2QXAH5TrGLAvt5VA48DCIB0uM9pViSF768XPcEN1EzEblxUDnG2yZTh0ELqR9ql5KTXjGhoN+fFN0OhbUQ8fiC7/c807BIPhY15CLfNZ8Fojn7c5Np1xqmNspnH2eRdLXW9RNgEyGf4rNlD/NoyGs7c3WkkY6mki+nrQmrKy7QhzuWtbjkVYBLdr3Rw1f+a+kWGUybJD+jBpO/gJaPU6Fd5WikjjArZR8rx1E7Lp6Lg3NaBDyIxxFA+7ijZr3rhrkEoQpfQN0iJSlP1jJYXg22ahRTy/4ECYsXFULnYJlodrcxH/8KaMNhYhhpHy6V83YqTejLiGJ3PF0AiweywHP20hFY12f7/HM7VTyZJnY6YnOuyjYDt3aUker8wYCRA82AGv4dsC0Vcktpe4nhL9/ad+Pz47sKTOQ3xFZCMJ9NT5DgsANfHLijay328jcC5QgeBFjmw6KpoJhw9iWK3b4X+fz1IwSPR0Kp13qOxZ7PWwOtabCpboI7mNvrO1bPZ8Wnzpg2wZyj/KXuNvYDKWu+XtrLRYUPHZlktoKAc9XwClWXooR0340MOPJDE1ibeo+07F0CvrURgr34KLEJFTbww5F84cGfOiTY4GBtr1BNIX8cUuxv3J6vfLfR1vnFwcq/iT/0L2g4j+vK99/Wq3qfQwAuywfNj/sJzCveAF1aCy6W+QgY2pU92MW6TO2qMVqmSGyESkI6NCXPp8Xvx08Pszn28C2Nc07OZtDAYP91kSRaYjv95ud1y6z1LR9qzd9UX6BAO4wNVqjBuIR6rK78iO4/SOVz/6e6cDN2Oa4+ecRXPlOBp6F22M/zncVFHIxQaWuHSBsRBx8nPBJYJoVBPkPaJ98r+eRwvbuMVmyUOQ+9+gVGKdKwVcuwZA/rTuD7ElyJEI4tX269ToBxjgVqNu1nWD62n6ub8hYQOlRJsLhb9QUnSQqpNxe19Zb9uNbUaNxifK+7cpY/HwJVlQjUsg0t+KfHAvGLieg8upZH+MvUtxJ5eA+fJ8Dsu1FoNrJLfKCHL1j5BvnpG8TulCa8n6sODiEesKlf9GSxdeZpX8v28BlQY5i+GfMhgraObTmyyimUPASfNAhQkxiitTzOGx0kB6AhbTe8OONwUuDKJ3Awvv1k1iJkQn4sOVlOwyUQC/8mgbPrf5DaOWMwDrdvCsPYEakVYq/la74EWHwQsnvnscW1ra6ASINfnIEG8JFFJlIb5RLj4Dx/+Uyco6AdVKXCdrglw5I4ogTJ46/CBpo/wfJRXQb0YLSokTncmh7LPQUVeGOyNa/Pdf7NHPzp3Ymu4y+XfH6HUGt8RvfiRx0YBgdXfat6QLbsYA/Tqe1dOEvGFpvWPIPlFR8k6BQeXvH5w3kdCx604AaheFBAyyJREqGZFCmNkuczWE5B2YF6+2cS5Vvh4CNXAoP18/nAaHm/wTpeVduGjyN1P6U+rHrdh8ku39B0xY+FX6v17mqiY/dcqeXsbAgBSmISGgWbPZd+enXdr9Sp/Loc1Y6aqnacLgScTm3C30vWwKual/hCHtWwmPajVk3ry6nnnZ7gs0itC0iSCyQzy2vyj58GThBRr9HeA+tflq6N3kNA21WfL2SnpDDZFRuy3XS2tX0+TF9b9Rc1NtvLMGXR0wbH227ATtfuy8UwoQmaQKxp+HTVYWnDFwQn6iFcN3xjvV+bQwVn708iYOUfn711+EL8sQ/0L9EPaxeuuQOLBx1at85S8pPmv4CZLjq1yugvYc/nXwPl3N3TlU9bdHqbnXZ86DvqKv43WVL/2Gt/WC2R4MlGKWuycgKtMyhI/BNUwN7dtYPj+/0hu1Jj5XzbGSa8KKaF7fjG25nJkw6rOnujOzvanC02dIF/gXscwQ0DVHi+OqD/BT0OrxoJpsMmjkFm7OOffgz+6e2dka+ZvmUWXfEXXryHQUvWNgPfN766C5ZtiB2zby3+sIUReHF4ptY7fiZkfjgCrC+1iyPPd4a51AcCf/vdduyEzwe2UdRNYIhoF4t2wPJbrMDzE6WoqY9ZSV9bR9UyY3bRgsO5nbmS3zW5bUe8RzsOxk5+IK3vc33tCmCDrXptTjACtxlt3udrMsPqnu1WPYIP5bIA+l6yO3jU4vmffp66112FaPfc04jE+2AWkjwGa/wSRX8EFo+tNtPQ96QhWWFxubKcHFK93NPDbee1bO+jHJAzMoj2ShFgdze24e/7941Dyul9zaWdF21Uihb/zyJy/sihquwARTswg4WNVq0WT2JSM0neCX3vviPYwvFAg9/8mlJewaOgZT/+vJa8n7G6+e5vkbL6ARJ9kx6U9+8HGyM7W5Pljyd4TtcWZ1YwgK9lLDZwRfGP/k13EowNoS9wyU8NEhZfXkvCA/wXv8LvecKMNv/48fFUkmD6huILrnhJpAuJhiW1nEpd+Rw1px6VtEYug1KQXqkBT992nqEhgUZFCfne5yZYlv7kgU9KEoxeVC57WLup+hSuZ/xyJ9ZOB5VXsH2WF7ShbQ/40FICfnq4uB84n2/SpYeHUprRvI5n8fpoVKXtdqIBut45TZdonW/vRm/UVYKfHoFdqpbUbCIyjMl4OoElU1qMHW6W3P1eTBg/8+q3/4OlkHc15M4pJ53XgmQ2PUmEFzmN6C8f9JfL4sGuvVOyFBXnnJWBD0krnnG58oWp7UAFn5rzwf4YPvjCPpX7T+8Cd3xZS/M3VvBPOMVE6kY4jCIY4M+fQrIFbM5lvVL/+UGGmJ0SNpw2OYxiM6KBYn4tbkpxBfIiCDEu1Ws7C/ZGVXe3P5060fTmw8OWRni06z02bdSA2YrK/l9+D9Ers+Y/893Bp6F0GFFPL5kIBgGmb1egzqbrAr6NZ19b+Qf1u/jQyjvY3sFdTz5EtmrR+uVfEGSnAu/X+O+N21mB1dTP1LlXx0F6+60Nr2XGqHFWtwPLz+fs55+inTehZN1PJ/A+yAmS988P//c8P/+vZK05kKBCJ8gTZSTAZBGYH5RBbYtNH0fB5r1a2oO/+5yLA9ncvU8yO+4CVb9/lTjElsuZhwYEinM80BWPg7EOlQWqtR+SSswg//mp4BffKr1sAYkveg1WvYd2S3/6z288ROEVV3P6sqgYVik018vsfn4bkfNPAeS//Ejz2NJb2b2faxga1zv++Ycfx6w91RGBQFE4tmCZJ0WFemBGq97/JmOoXjsQWnGLrZfqJ2zCyIbm8XlE7DLr5ap3Q3A2NRVH38OxZP0rMGGbvzzUDf62nPden0OlyZR/673GQ63Zn80f0qYrKGeiEAhP01+AhLaMyu3eu+dQY9xe+X4HKL1cCbheNJsaVykCCpK6GI6ffMS1ED0D/p2GGH7sE0QCQTVnQnHWIcxsSH76gf0lbwX+/HhZ/BTDbO+hCochyUi7+gMz364XwSkTx04fjcl8hUsK07z64ugPf4N/n7+d3l8cNrbF5754VP/411UyHnz1W0RVrLcnIryb1hoOf1HxWz9svm4G4Ic0MyH2ohKb2/2WE/ez/4I/qHTUKzqhnYfjMddU1fKwk0tiwr7Pgw2z+eRRg41RuejeaQHNVz0gtvo5k7dDJij16+8Vjlu7kCnKYV71DnmPyg1QezgJUPICgvWoTflPn8ATOt4pVoV+YCTmDbRgkqPMsoaBnYc4VQ+RmtCDg158zKtPA1rPn2lU7HDAyuRYa3kJMf7tr2WQrrW6/HUXfFj5OLtpda7Sm1EQqPQsoBb/2PBJtwY+rH7aNj0DBI5sKajbjdVA57xc4HEzhNS+qYlF/cyqIdzXPVlEqJRUZy6Ciyc42NyXGeDjZwfhpgoMRMrb1mKtmr/gnM8R1lF2H/hTwpKqv24LAjKThhlWfQpQld3wyv+s+Q+f7uDnT9ff7sJZaB/RTw8SeL1rCbE2Zq8dyWODo0D0y3nlD1qxCF8i0uPwn1+Fyu+HaPspbeWjEN7VBIQmrUv4BOzHp/2/GyLfcAFgO1ljA/1PfMSrnhpGq+xemoUTjPFBl4Y+a30Eejd4/fR6K6NjjCBppTN1hucVrHxCVVvno2BzVo2B+dY0AvN03FPTV4Vk8Yd7px1Ad8J7/GiCRXzMtbZsIcKuH+YW6Y4Wg53F0c9PaZnv7xS41iOw9yVN0oOp/8LHMLyIQO6ngL2HzwL+6oYSsOLZTw/A334O2JGWcyAWCwDvaY/dWtfBMg+HBhZiltG97prDgv9KE3r15YiDjWAGv/ynPlAuUHzoO8BbwylgE0g12dyTF5/hqVvgxWsNIqi5OYzMEUxwf4jRb3+B5213MOFanyCKbhcJr3M/ha8pfmDXsoJBelmZCrvl1xsiS1a8VQQYbg41kkR0Ctb6QgrjjHm03m52wz8/QVUAIAPAtfW6qL20o8ICiGCzYVj9aQV863akvgCGZEHVjv38YbRMwbWdzn99D4Hi1fRc+UIyZ/52VPvnbo/D5+5V8ukm5PCY2CXdf6RDsODorwYr38VWI5ys5fZlrvb+dCLZ3d7nUnQv/Qj/+b99L4Ix1EJBja5tQg9D6pU//1R1LtWFsKdhtrO3c03Yc/mJNPwZAa8udgwf4RP8V79Z/TGgpehEcW8/WiZPsg1pfe7owZtQucRHGMOp3UGkFTtsLR49qrDffnuyOehZ+/OXfvwHSaKkJ/KXm6a26lOkrfi23GrHA7gvkrWeE7YsMj7ijg0Ows7xL+TSr57x42fnszEDqk0iAf/8qzW/zfUsiv/8bwO9guELTJKDve098HWth8zF7laDi5/a9Hjp1GG5fvwepNnnjVe/AKx6NYO+SCX6q3+y5PNV/vEVa62PrvHJYJnkBi3ePB/mWuxC8Ksnskv5LFe/4wuuA9vjgIp1wqxn78FEtbdrPTULln7zvKvuXkRYz4V0kDvnG0KG7tUPj8ufPw3/rtIOu6fCaqVjdnThJJ4T+tMLqx+dg2xzs5GQ79uBuNwKoVNIDvlWNwKev3jf2/4DIzVvhsVUJwl4eNGwziozkU/mo4ARzTKsV1wOSP0qT3CtB9KDpwScbU6u8tPv2LStZ7L8fn/lp/hXv5klqlewUcME7fLiUTJmuT083v8sohU7Gvz8RE24iQSHVpAlr1vt+MCXQ4rdSNIs0p6c8efHY1+o1ZapH0vSNGvvINVodgPbpFIMyYl6/+KNypYdg/pSudQ5zHiYuuqZQtI1Acbvs1ayre6J2m+/Hk1SBhT5oQ5Y8ZEpGkLPWvlVCp2/T0a913scmO+ZjbbqC7wflQ2gzeamADhvFOoPlAH6IU8Ef/iXOmNjza/0FqqrP4I2w67l8/Gh9tC6kRc2sskoB1WIBcgfQUpm/3YGxFE+AnD6pcU+eBvl9rdefDk9sHPx9oOYfBoVqqP9/cdXaXMoG/V71F8UkftpzR/FHYpCx3G48qul+etq1WjBiVre01qf329+9WLqNXcJcB3O/v/nSIEk/t9HCk6OG1LfMUnCRNW8Q+/WXslmf+CcpIvK4EMb9zRFZ7dkG0sh0GrimV7OY9Yus8MhfGm3A+Go05IJTn4KwmW6IvbsaTt/70UODeJRqp8NfVi88lWot3sSY9f+6wJWMc2HrJ0pPQSi20oQf214OcUu9cNgE4yu0kDYPgOC/c1DGpZ0WRa4c4L1rtRgEyxN6t2hlmo19jf79RTpreyguEgJ9fugb+e5rUIQTEtA9+mjLzky9hC8oqZBZBoDMJWDb4L35XQmavx+tYt4Z5X2Og4CPijbGGwl8SBC82Mk1OabAZAGlin8vJ5bEut5OdDP8yiBdOO6ZCcRiTPaKA0cpdsHKeD9sZ7E+yOwIJwSeRLihIeIM5B9dkca+a8vZ3T/qrTurHV0f51PnP+pcap9qDIgVTqGVn/GDxFWH3IinJlOSQipUiDTrCFNIYoBMSTBBts/UcN7N2J8fjtnRX180xYftwsHHCrEA+eqybFuyCygdTmMUFzEBNuTuQu+nlZJwMqRhZZ8KpK591QRuFU8UNTpO0Cuz0MKlTOq6P64fAJ+91kFEU5rallRDngYZCK41x2jCOptsvwtzxCmr/6G3VTg1ijmqQuDGbwJ7wcdbDcBSuFixDp1zvhufcqQNZpSMRGX3mZrUV+uPBg9dIGGwmVKxr+rbkNubica7uY+YPdT7cKuYg6N42DfbiP3lkOX9hgHJ3xr2VUVavjetzJh2+0UDLd92cBLYmkULekczM+Dl6v14XnHQTldwRLq3Qk48smg4RtDzt/0ToD42NjYLlJmMRlFIXhs4zv25zIJRm28uLDfQBufB83j/Bt1BFocyIRBQeNdb49f4CoyoZGFXyW74CqGM36p1HQ2x6Rv8cGGS7KccWQZS0vxh8VQ3e7u1E27x7CIrayC6KFG2JCPXikju1PgLjNPeF+INzB9sqOttXpgIzY+zUHaiVMDK4je2KZ/brtk+tHWtE94pLYrPDiPz3cXmEvmI+neDslSRJ8FHAOJUJ+MHIycHRDQfJXR6Nq8h6WIHsvmG14J9Y6UcnYKixo2Wk/wZdNRzq/Hbw56ubmirdIp1nwvjFDrd4eWRmld8DG7DD6oJymhyDNfJT+9ovWVgvvKUnUbyHv5McLI3RtI9kt72H4BgmDspBbBRdwGn2sX29CyxRt2TmPdkvmQq1CSHAe1UsuG2fzjmSZ8zT2OABFA7r8G/cl5vdNCOMuOio/cEod+PtsENtqX/Pv8jK8ChNdLv6N/nywI5EhGHdwewUCUW4SCbZXtJNXLpRQby8ey2Lu6LLDZsy09Lp82oE3NbRgY+5kogie23Gsvd+iB9LPGZ5SIXjj1YLwYf3gPvk3CPUfXoVteKhq+tkO5fLv+BZX+pRPlmvYW51Ycwr39VVc8YMlHrL4nCHT5it2x2VosyxACe7XhCI5OZvFlu1Pgde91OAeXczm/hV0N/RGeqcuYx2dyDyU4sS6j1a1+gQm0hg73fwHGAfkUA1MjuQeCaG+xO3pWy1gQ5ICGmYdtAjYB2zQ+0txka1Nd6cZk0UfIQIPPEd3fvjl4UeX6hed3fSbS5ZWXs3DL7sBQ8BU9xycqx6Ja7tD06YLe13nhvB2PKTzvhC8N7VQa6HsMFlCJPaZuym5Jr5RtBWd5r1KPxTaXlPBEoHBzfRoVT3FgsQA96HjOESlC1ieUPx4EFik1sYHvHm9w4/jQQpaGuhCFg+jEsaeewr5DWsH7ct5+vTtcx0Pgbu4tpuygAF4O9JHQoamdjnHfgz/k2xTRvzpgqdM3cCHjEeubZCj5/ZhKmh2/Tkj8UqNc9jy5w/lZi2i6RTtADLU04e/v8NP5w3Y2JqbeSH8gO3Q+BTNETITwbMrU8BVrYNml9bVjtgw09Bo/kTN0f8H9uTnQ3/osHEwm7ALjjd1Bpe3cKpG3W/xbTZ1xcwP97mMQ7fnXfzB+2WrCTuGpBm+JvDESt9XAvHnWYcY3GwSebwtI30N2h58+S+i+uSgB+3iHDlSaPGHvT/q0M5czEUybycVWd50CPj7DGLyFeEP1Q+UlXIl7FZ7+Xg+k3a0kmN3H2wbv9myteKnxMTjkXxhB8UAPB7DerUq2NtxcnBuO/FwOhvzmxpDW4pX+HZeDRamuSxpI/hYkkQ/iMqoKHSrAPZNduxTBnCmTCg/5AlDcH4BFU9mD4O9iG9hd5KblArnFsNK2E8XIdTnlGx7CU3OvcSBIufVV79cUmvfnSGjhsHbdHxWwMTWpeT+dhqkM2R2yfThiM016/gxhrcPXIFkUv1vyw0dbTottgiOw7QeyEMQA3722WK+tv2QR3sYXlvCk41/+n67mo9dyPM0YacN5GJfmKwCzdjKKctzy8S27KfiNV+gqI+HKX3QCZeMAHASpORB37dIztIcah1FuJWy0b67qy4aF2ltklswLpy+guQEpVl7OMMmC5UOYBj31xfxlTXnyrUBcqnt6eO3fYAqWagS97wZYL5uBM9VnIZQMu0TbQyVa7H7mOuzOm46aQBJL3kuRDfWNjPAhL7eAOt+ggnkLnxS1uVh+pixo4EMje+pHyj5Z+EXoIB6nP9R+nKVk5Fa+wBV3AVF8X27nZu4XcG2nNwJ/jtIu5ssX1cW/1kQzsnvCnvaCNCBNGb788bjkfX0TQL8LWsJ9P+CjuS1fMAJQpeFwZcOS9LsanklQ49/6MDbuRLD9kzQEj0vKxy+fU+2ASIRgB58J0WRRhXfrK6Ll9b5bkzRhCB1BumC/3ZfDgnZLDP6+dE8NQdKHxdTlGr4v8RktbvQMaIbuHRjiz4GWynkEXJhhCKXT9KAmqBrO82YIoRY+JPSZFQ3wu6/UoKOnAr3WfMpflgLV+G602ErNcuUP/QifN2yQ3/wveVqOMDafR+yFOwlw6zQou/POKTEukq4cxyCG8Ooez9T15m3LJt4ymF0zhO2wry3+KGsfSJe7iYP77HM2S9wH166TcKCcQ84OhaXCP4dcyfI2ju1EnPgEa9PwqC2+jwljPENwxT8aQVyUU5AGCAR+/kZgYw/gaT2PL7hxn/4vvoItuxQq3A7ogaaVn8509sxdWwoYaY7gDPIVOTU4An6moVuycparapSPZ1AR5UEuw1LHOx/iDR6p/n5s23mSdxBsboqOi8tHK79N6jVwaIMaO5V/DRb1fs5gfH1ERHOE57C8h1MDqEj+sIm2fjlpsvWF72JXomXJs4BfxxrCEJoJ3XuQBf34iu5AuX4t7J21tl2C/Jhrhz0Y0WZDM2sW1PtLU7Wrgo1nYAPGxlmEZvA20GZ/SPhClXO/C/zijdEBjMm04iO0sttzvUiG8XGNX7jqGbIDWRUsqLyzf/lgp1/NRLTXt07B042Jsv7+bOouguajBkh2NppFTLvKQfiw/6irPGo+n+PShdL0uaJlEuxBghPo4G2Zn9j+lVy9NF+U4Jx1P74xsBt7v8DDdRiCWVFYy+60ccGPH/uR8i6Hz/MiAeeVL9gTv1I5u+7SQK3/M+ma7wf5l3/jwFTwXq5I+28+Vn6LZBmpnOx50mhOWW2pHUszYEmWMJhgSHE0UccS8/chhxuHAuwKvdIur00zwm18euKDlD5Lfrt5X/C9bU/YmH0yTP33E0NBdLfYKB3DElVfQdBJLIRGUlgDF+KIQV0u3xiZ3Zv3S9MImp98bvS3X2XeuzYsz43yu1uxXaRrBOH9IZypAemLT6e/SIdbXJ7REGeXdi4coQfhPfJwlnaPlv+peQbV7lRg9NXGdjH1TQ2xwUtqH25TOb+vgak6kwNwtPKFJZdMTztEkoCxdFub2MBWgn7XEOzvD32wHLmXwWlCMw4uhVsu5/r7+o2HoscNlfJjfat31ZNEQLNTzqaOEGwuJUCyXJFhVjk8wZt/ybA+Ps1WMtRE13zyLKnO77eE6S5SpDDzC9Jc53cwt1k9grPRVThyGsFasSSE8/6QYFMIzEA21xLdaatznOQxHeatd3K1q+wENN5uI2vex0CEtcJioq1HPMToWp7g5SDVFEtHmfOlDhkY8uhB5qZ6DhPxbiMQwCeiB/3aJAuddyeIp+6FL8qW8eX1uIQQvgYNiYVbldM4KT0wHxXAlj5Ow7TyH7iv6Zui/UtoV/6/6jclwqVyDsFs7h4LQMPugbTXslhce6sqrN/GQu1ON0v+2XsZbNcSgFVvULtol6EA6cZ2iTboDuffQQjBii/Yr29rybvxK1Baeov6HbEsLhO1AGCYL9T48G8wCukAYVwNAvXA+xAwLKoi1L0UE1UrKrBEVIFQL6QOiX/cHrh/fo5wf69cWq38bN688lw7XHofm3vlr9yeE6aDwzFsqa8Xn2Aq8QaCVY9R3F/6gL4sJsDX3zPG+448+UwMkP6nL4qNmoxz/uhhWpKGjIF1bikttgXcaqNEvd2dlnzYyg2QnljC0Su/D1x1T7qWbMUPvR3qx0Bf/jmFt7fcE8kCVblMd8EFuWCdyHI5PABTo80XrPGBdvRvSVjj7RHMPuCIRuXE2+7G3h3oU3+HTTa1fOJMreHyir8YE5Unb2e6F5py9y4/PwIsH0VZQFJYVwRvSl5+Vr4M/RLLGKu7a8AORaDCXFAeaHe1wNr4d2Fwc2z31A1cK5C7Iz4BCso7NsBuar+/eGeN/yH96ofQs+Fn4BGqR7zqFzA/ccegfzIvGFevKlimDX7BfGi0NT6akvLHZ4TmkvrYJ2MCprT3ENzxuiPgEPWcS93O/vE5vN+eRT5+PooON8NbpObKBz7g1rmgqxYH2/ucl3SOX3e4weZMrRkM5TTJM1TTQxghbet+hhHWqggf7p4RxWlOJSloHsJfflnzUSLfLOEF29NwoahD0cBW/IKaleb0BOsdoKmsQ6jG1puIff9umRebL/jDf8/w7nxAglfBm0JkwuLnJWAFCE14uHx97F7FMWDdxS8A6YVubTz7BKxsM/W3P2g2em1LG/3RwYCdHtSbHs+W/ql5Ci6nk0vx4bsp2ba5FuBW7QaisbpLlqtVKDAEBxv3t3ItKfJRh/NJuOFwr3b8Y+4+C1CF8x6fjINSTpJoSP+tB/X2Fjvjjwhz954gDaM4IJl+saEY7n2q22IbLNp9v0Ah+7ZoMQ5KworLuQM3UxRQp12/5fzTt9pSMsQhNsE8nkgH3gP7kh9er/GkwJipC5ndClrEzv90dSu8HLJ99qCcTgqvYe4FFwK3bVpOxeYUKsvzUuIzGT1rqdcSPU+7AK/+Ykvi0a1/eIfk63wCY3QtY2hfOEPvMt4nDId3U8NK0yKe9N+A7e/a6u9ZCfUSZCczii4n0BP8wgeQVRY7mkcfWnwnU6vDl5JukmaE/Mo/eL/6F8wCMgTGNbkTJfvbWtz8XnRAa+mKeHbYDj/8VDsV/VGrl4WB59rfAs+vp0uzG3jyuZnvDD7r80K9u/VOlnsfE3j0NzeiCJlXsqO3vcNkK30o7gNxxUs91VISyiSxIgWwOPtkcB9GJ6pL1h0w9E5fcNUD1KHuZVj5Uw8fzRJg/xA3Fr89JxMe+8tMceJdB9LFtQ6nYqzw5e9ZtUujSAUch3ZEnIpzySywgcBdj6is+rztbl66/PQhtV6dC+gm+RLY7ooHEg+TYc3sUihwgw4NdTHpExZuvQLcFv4kyv4TWiMfx9M//voX+S34p0+/KsfUW/H8a9ppAbdO2v/0ccsexleCVnRy0Vt4bhIiicAGaBvmOMjWi38ua2PxOm2v1GjQkbMPqwqw+qVIELewZZJtqXCzry/UUYcjWMbiQtQyy/fYTAarlPhFesGf3xGBdwpGa5OqkGTrvbGPI+FzpfQnmJZjQ1TO9EFkgZXD+x3LZDuX+1LclrMJf36hfl+kYVTKtobj8BipkclRCSC0bPXtLjq+rPyR2eZOgXNxl6mZhYSzxsMI/A8AAP//pF1Lt7IwEvxBLAAV0iwRlDfECz5wJ6jIS+WRQPLr5+A3y9nN0uO9INBdXVWdNKKk9nT3KE00+0Rkys+vdudBN3mmegwO04bR3W7tmKOUlzGKqruKo9bm1bwNma6tnI5HimLWPVvaEag9qDbhgvPhi38ZochmFnUVc9f3a/dtwOY9zPScJcXiz8c3bYmf6BAPMVryeYIYUYiqPhhMmuoSA/N1Lal+CoWEaWvYQN1KHMd/9bf//vz9v082R4itSTZAcwnga+Q3evlOec//UlooP70drcoaDdfZG6ALjxoOjtTmbPH30Pco0EiKTm3CszQ/wnBVW4oVfe2ztXG9wabwrjioydxzBdLu5w8u/Yg2m9l4L9UE2wU1V9XhVz8NVB+PD7L5oxjxfBd4qtwHL6pbo2vKlnlv4aHfDLp7gJyNptk7qk4Ch+5NQa5msT3cEH/5UbS+SU9ODnZao7Syz9FUKodkmKLPGUIpLakf35OEL/wbVpnrRPWbRckgmpsBhP18xFtVt6sPDgodnsZKwD8/jZWQnVF48CmZw7eB1p8sLQGPbYv3cVFwgpvSWrYASaRf9MeEjnOp1STzSfknZP7M1w8J1plNo29UNYill+mj0TIwsPtZ2f7UxodcW/KNRlN4SaTn+PGg+BYjkbQ1Wq7nUKPFn8N++FYzqVi/HpCHyIpEZE/8q67/lnkZPsHbgmrZ0I6h/vPH6COq/iqpGm8tWvoj1DqcRzTuwjr/+QnUy4QOfX+fFz+QWqFcZsOjJYefHsX7JV+WelhDsStNwp+hkfD9WKRgg6tQE12/FYtfYq0GfnSP1FckV4N+BwNOWe+OTKG3ng+g3NDlam2JUOevjD1kavzL11lYFf20fctn5K53eSTka9f/4fOPT0QrtjYqUveF9fPrscfLAfUSs28wGgc5Wu0uO3/1qx8fUdhRR4lRRbS7fobDyW6xP5xNnyJSr9RhSBGZN/a2/4rfiwSJXTn//IJp4dtIKd+nSI2JnsnpYV/Ce8wmwhf8H+b020FbpTl+JP6Zv9+hegDxqeo0Sq5eP01/bwbSMyfU2thjMl/lVP3nl1rZGPtzvEG5utpaGQ3XYZX8/Am0nfo9Nc63sicnkCxY9CA9NZ8s4VmmxHDp6zO2zFeH5uDy8UBv2CtqZ0/NxiawVzBZl3v0eu86PuyTZwtr5Xog8lmNs/W1dRzwcGli5+c/Z71hIGHnRdR4b+eK/vDk75vokcinIXmvXWogLahW0ebvlfsc7nOrHhVPokZmvNE0n4IBBkE5UOfWfDg7DFYOZ5UV0ffpHTmTO2VCUX1xibw3yv4fPtz7RCTTHL45k5OgA9x4IrY2L4GP47V4gI7VN/Wbd8Wn8xo+SEEG0EjKerM9KU8H0vXRpdYjuleTdy9W2qKvqXtSvYTfo30O9IN8aqwjbLISkiMs8UNtuXKqySdRgW5GMOKrFPbV2MxJBGm062nG1lE2O6yL0U+PylE8+t9tqBrq9wg0eh0FO5E/790R9sN5h724GCoG5yhXFn+e6rk3Z0wqNjks8Yzt52bo//FBJ9xc8JaE2YLvqo4qktdE3B9GRC/pdwOuxpvoW6VOz++UbyBGI2DfOpw4DSI0qepeUHD0Gg1TYru/HJ456un2vfP4iDStRZXu7vC+1z58+PWnxL6RsFXmczbEQZyjyTrdI7XbkZ4bTlf/+pfY0dXQXJFg3KhLfwg7SpxVZF2UKhydo0A923V8Tm/a7cdfIvl9qnomdzODHz49X0bVD8fitENsG+tkBVqbzVFfTvBVxOu/fsx4easdlDaTcXh8qLxDQeipTL/NkbHg32f4lvkPD/HOKNVkWPptYDPI8L2/rRO6OXw2aPFvyA+/Fz41QB4qFrV/fMPpRAe8WL/SnbbO0LTUI632Nyt8xoVU0dXr6EH9Hgwas9ZFLH/YOUDe4IgJDe/nS30nkPm5F/HVXCfzMhYRjcTSqanElPOebSwEqvmie3WZDbP3ZwHKqt3Sf/UOm+gDk2Y1OLqVWcLM6E5AU9cXitOg64d0fxPQ+nhrCXjfnS+XwT2Fz0QhUn796O/5z9Jg+02wWb0574S3+1Hvo37HUa1fOdt0QwBM+UTYb/w8+fz4F4gCp8b99Oyn+1lvEVq3DbWeaI/kQbob/9eSAvl/LymIHoeMhrdLXc3XkByg6IIVvXsnr+dXpgda5IyE7rgqZz0d/hiUz61FH4JRc77KrzvY9oYdScLDQxN728tuqNLBFkicz+VoHaGLqzSayznj5Lx7qQB99cVhBZCNLkylFqU3l6zFg8y/eRRMkJd2Q7fpfcuHPas2qFLoFweiEaPpqh07eMoyJ6goAbGg2U4Ar90F+2+y9dmTqgXqYXOie/A7ztqje4C/a8WJGsVbPg2ds4ILPDGO+EYzKcV9CeXVkeixva04Ca7XCBnZ/Yid+nn0eWNccqhb5GBvEuuKfq/6BOudI2M9PFTJLHrpGb6nk0IDzSsqDqkjwPXLzpF4+Z4rPvQoBu/yyGl0CqVqVArI4Rm0Hg185ZNM+50IgPZWiZ1bY1evtMEp/H2jiKhtRn1WTX8GHKZ4GXRYvCv21KcD/LWHPQ3eCU8Ga9BzIEd2wfvs7+WzoHEnCAaqRGoaRNmU0MMECaN2NLNdUk1x539gGrqUNNNjn32uvdNtKhYU1G1fTkLj2Y/Q9vEnUx/QPvmefSVXbXQUaTp3gj9ebW8Fz7W7p9j52/PvM+pjZMv5iJ3zgfsTm1+xJreli3c1sOwTfKMO1oZcEX7bfTJ+1TYTVHtzS53J1pPpeWIrEEF38eUiTXzOm3EDTcxPZHKCoOIDDnVk3YeEcBbKPU09kaDMu/hUv2Vj1uXxOKl/1xcn/Ma7at4bWgmWv6d4631INbOVcQAvN3OizJLuM7qXb0hq9jiiNbX7OUcbAvuaHQg4n45PwXtzhOX42JlekT9/FaTC8Z1RMnqnrp8NxEu4uNkDe3X0SRis5g/AK4PoMx+mZBal8KHe/jKH7rSb5PfiVZ7glks2NjV5y1dsa00Q34QxYsJpGVRy0j6otzYZdrS4y4i4u+wg1TYufjpn0WfKQ9WBWsWKOuz4Nvvz/B3gsgklvGupnzEWBw9oausdrVrXNwdW9DWoufeguDqDPwXi3wMl+9cH+86VVhQnQo56d1VTm930RMKVO0BarBK8deRTPz/XhiXuukKlxrnGWT+4a/UXP9gTP9wk8dAFII1KR63ZjpLxS/wj9Gz60OB4mrLH004GIHsbaADWF7H9Q+zgMpGebFypz3iMbQn0bvOMwL2MPmNWskG2uh2xNY1FNVb9ZGjm+u4SCZ/0RHqy1w78wN1hJ011LrncSOGRP0rscRRWy/E/6pJ/+A8SqefBFEWQ+d0d6/zzl4zxn5ACuQwFvXNhlU2uV9WA5MDDdnPE/dTQ9wF4eJRxUM8bc2gXC5ZH4kAjYbZNInfBDsrD+RqtIqqb8/CHanhdqEqU11pMGCOMaJ+i/yNVc9FN1vZlit78yQid5m0v8WZDQDht3vQ6Td9kHnRNRdHpoUfK/OyXqQsKA+9YJtFUd1EyK25yBiysD3RXh5M5DPKcwtPVWmxf356/5DMD7TSJ1GKHR0La9U1QeLCtInZTTLRaXaYdZK6pEM07ddUIG8mCtbe1sa/pj4rF2VD8zof3wtj6DBouaHwnizScL9tfPHZgXVZLS2yFOP1OLxUeeV7SXbArEX/u/w5aZu0n7HDTTTg1VQBT+IxEDg09Wa3oX6C9p2BH8wwZGQ/uLIL9e7jirai0FS3RKQdbRCL1tc6uVt+WT4r0PXeRrH1pNlbrT43qCkTqO7vsd/8ttBYojRRWGcnqvHttgBynCw2OOuJj/HEDEMW/NY3qIsjYL3+cpj3R/Xt0OL8yJ4DpFV5xxN0bmq4NL0DO9i7dz+G7n/eGXKCGBMdouijzIvm2rXZtVyF1PbPtp/i6B0iM9xP/ex5i9zyrpu5q1JrzkrfP9C8Fnzkikb3m4XO2+3v8iw8+0dmfLbgZsOmViGKR7qopqYpIKw/HKw44zUyqULOFp/vZYswEJ5HE7nKGbJcr9PpaP5MZRrNE8HkX0Xmpp8z4u8WQ8T/8+/uM4zDR4didNtHHq8Z+fvbXAh1eyIhUUXv3wzANMfq+hTu2mURMBs9Dod1icos2cyeY9a/+nB9SRTQhXCcM4/sDJQENiMaKPz7DbhggcighG35f+7xNuwO8XqWJ7WPFE15KTIdbVsjY8jcHk7HLtUbu52PRw2Q8ExbzsINl/EY0a8aZs9Y5EFhHcUn14PUy532fn6FyDznWW4fxOe+4Dt7hsMG2sPr4DFZKBwn+nnB0+/OTYalnWudcO2qnblPxp/L5AEu7kEjOY6rms8oJCBlT6A+fP9fVHED+FtfYFEfJnOJHtvvlI/7h38oI9o763Po+9oRnZc75/MiRlbRtJN9gqEYj/a5APog59kVnMAmLd7l2HIQc+0f58i/e0D3GIbm8yD0ZccY8kIc0w7fL+loxFohn0Kg6/HvezA0NB47knWBnQhmfKu8zwf2ZmBFa+MusRJ9cjWMvpvrZ2iBC1R2DiS4WniD8IW6ceAxWtN1EShtwTgf2IEA5OWHchoPJ2cHQ/+FlWPQCn57L4PNvt2lpzlrfl0/WcIQy32l47xU7tMRXgXr/ntH0LJ4SIrp1BBfzFRC1GQI0p42dgtTYOIIFH3/4j/Zj3eOgrWdzenpejI4N2xAtcEw+fetTACzZF9i5rpqMf8NDpB2mg48vL6Jl1L1nBLajcKC4LYuKXP1qhYwnoaSdcwNNNFR2kKBXudTDxcL/dADbalVRe4pjTrj/0uGRfGycvrc4YSc+eIBYvMU7NjfL59rRuP2osO4EQz8EOpWgKGyX6tmz9knT3mPg2/qPWtc04mtDiHcQ39UV+YokSAjdyylgRz4TNHmuyQInKcBp6lM0Nx8f8VJSDfSp3rcIwPryD+3lbm1cV3ccZvLX5MMx9iBZQUl1V2yq4WsdPlpePAiZFr7Cg0AqoPwTD+Sduk1PqumqQ96edPovPgPxmsNMBxcb2ccyRxDcCOnD60yEt/GuWF71OQJyZ7/nw9nmeGHIJUUasWb9NtmAFQfxLVqRdn7l5iRnICB/Y/5Ryz0f0SSL1ge8q51EmrAusllxsyOCpr/8i6+1mTk3SId6TYM5fPLJxRsCa9sSInYW7uYMh1MMq/h2plv4fH3O9u8JKnOkkSywZ8YHdiZal+kRkaHZ9N3V7yU4VNERh2KfoS6ATkX7ejpgfCusnu99sVSlNn1h/VJrGTvnvoFMF/ZRN51Q/+/8B+28jdZ8UyNGSR6pP3xqavvM+V6PBLUSD2ccNNnL5IZw28HYwBYfxXD0KRODGOw5jJcXy5hodX4dPO0v+b6of6qVvh9uWq3++BNtS70ipc0CuGbXkEaZPlYT/Lk3JFV5ii3nzarPU3wDvCpHxfosp8n8TKYU0pY0ODq6GuLiqjbU63c606N2k0x+KmpDddgnoBdnNXJC3xNDlackZAOajGa28mKU6MKHmr4vJJOolxFwfpzovsW7ZG7ZLGinz+pL3feh60f2XD+gbpoVDni35d/nMvVF9N444r7/SIZ0gwtAwbtfVtW/ena9HFPtLc07bIYfvZrSDS5RUW1j7DfBHq0bu25hZYyImgs/Z+72r9X8qXCwy7TJnL7ybQOnS3XB+m3aorU4nzfwpd426uAi9/WP39weuRA9M+ygKX8FKnI6/xRJmbHn8g+PpanA1NT8lHP2rhxwD/7hXzxMebRRke+tGY0utywjOdrVcL5Xf1QXWqnvuLi5oZrsBvrnG3n2y3+tCqIGe7y9mov+Ov7Oj7c//lem/gSn0dphPY3avhfrg6EtfJrqaWT1a1jtS/Sq8wDv5jHqWXOrBxQMtyM2vRz8QRmvDtKy/g+7rCqzmVqvElZ5adJILNxMzifdg5A4nP61g9GzYafXQIPMiT7i3kxmGscWMhLBx3rdkWx6fiJJiW6mjoMMGQkTX+ERVlkwR/Ic2pWk5FkOVNqqkZiOYc/Ou6+KtHK1wlg4K8ln+X8w/RawNZnrnqwsdkN6NSBsLfk9s0n21KY/+PTmRr4/lyzJEbv97bA1pYHPcVx4qmlfXj89Yo7503tArwgB+Ux2kYzyEJVwTrIaOwv+84WPoPbipcvvGfs5LiULhEv1wD8+Py3xr1wflzM2bt62X+JdR8ZVumN8nXfJj//ChXcSkXhhVwyeaYHegjpH6lW0E+mq5R1avqe7a73NPgs+q3OfE6wzhfoTPeYlqpTbjoZT0puTcug2IBVradHH74qIB7uDa9ky6ov3oh/Lm3oGqtRvAkt9m4OXuAMgT0Z1Vt/6CS6DBOt9bkcSyyfOFd09omRffei+PN57XurdB27H0x89T+a6moKyCuCJywSH55llU6lUOmBdR0Spj6+eufIHwGeeuPglu34VhJ8O6D6ssddcFjwY3iv0Xlln6vrBuR+G/uIBNf4yHKa130/K+OdAdPQISdt49CdD0wAt/BXvf/i56CM0D5NO46s8mgQPPoFtsbnRw5IP0/V5sKBotAxj/w3VaEyGgIT7zqenxh+rMdi4KtyL+owDTTHQtPA/9Wlv7/+Nd6U5PX54H8m1vUKT8tkZysLXyLs54urrwqb86WHqXrQYsTwwjlp7Nzqybo60r59cvEEmkIgot2eUra4ij7QxOd3JpDkH84dncP+m8z+/gTGiDojdw5B6bL1CQ7nPOsDbc0h3/u3a98ZOrhV/dbtFQyMTPsXT2wIcpSa2mpvD+cnUGOyQFCx+UZ4wmIdCDf8sjZrC955NvJkG4HZeRdy3GpPBzUzh8bCvVL8O/lKf6IRwNH6o42xZNrE3NpBvHRg51Iei4qKRdxtRkhps8FxA3Qq5E/zzP7RTYk5YPg0qDnczNn7174riANaqR6nrsQ/6si3bwJE0Cd6/xw8fY2svIRu6P2rfzkE2xyVYv/wgq1TY+r96DGnFchq2O88cjSQnP/xd6sGJz+n1LEG7qySyLkTkf2J4dqhmRwf7bddl//hH70o1tedpnQ3B/bH76U26nU9/GVtVxQfaWNWiaHqL1UdMzSPKv38ufvkGZCS4/kXorehPHIuPlC9+2gd1idTh3LNw8vP7/vl3dqjW/RB8rUW/Dz093hKzYuKgbSBtsoQG9aXLmKHnLXAtv0fILZ/9kL92G3j7a506wnnrs9UjKTVHHAwcz/VQTc+d7EHRiBkRjq7Gx0a5L36MjWkw7ZYXtZ27AB204xaHCz+ZvnK8+fGvHx/y+dOiNUr83Ykojkg5p0wLlFMpXDBugWScuvpO+12PqRVjNv30VE3HCvviXa8WPFhBBecQR1NpJfPmfdn8+AmZtHWctec3b+HUM4Zt9lQqLqunD6SFlGDnQi7V2L7dG5A8KbDF1HfGr+8GwHbb4le/kvG62u+UafikNLwUUj9c3TD+4QlBYqkgtkejCm8vcOn1Ek0VGxRy+OUbthywzRVuihiU8ezQrWac0XrBb3ju0zbqveDTL/wg0JSHIFLdd059G5dYQPeTfya1prcJHcz8AfskF+iuLuuKxe/TDrAh7sgq89+IxO+7hb7lzqfmzG0k5bdvru2fuIxGAa4VbwNlACvPtkTS6KcavrEb/PTU4pfefZ7ycwG+tkxRW/yMcT+LDLFH8fyHf1P71w3w3OQXwjU1M0mjrW6A1/0QIXctmdxg31I5Z+oNu7OiJE1+lc9Abp8vjV2e+OzbIgbKUY4j4T1/+YSrLYFE7g/4h9ej63yXqTybngbTQ+u/gamWkG3Lie7E8lVN39iNACmzR398kuJt+UDWbfLwGW6tOba4OMA2uwx462Q2mvHBbWF81xu68/7cipd62aG8qzNq+kXMyVfIVWXxZ6kXxS/EDc8blNa+a/RX/yS8DDb/+QOG9sdM5iZNCwteRpJPI3+DreQB2+fbxlGmh/0aUgdA0uo9jfxR5hMbjh744YxoqD1kk0KXA8QnK8Ou02UZLb/bh4bVRqb+UV4ndNFTiolXF+zVWlfN5Y0d4SInPbbS79BzMdpHiOqfmm5dJUimJri3EGXHGJulj6qZNUGNfK8M6f3HvwLxL4dvQg0cno2DOS35i97bMSGMjXlPY4wl9EbCh4ZOqJlk2Dkt4tLHwMdJCDKaf4JcTXzrFG2y4xd9NoTmcB+7gGKGW5Mu/Bw18Xz66VE0fdVCh+YLCv3p+bnEWwYVX18i3swh56x8GOhxigWy8t0QTbQILRDhQvDuKmCTDdxYIYfcJhri6zbh7XbrgPtYa3RbFYL/Ufw7Q9WkRDRidDQHUVJaMEPM8cL3qzn2bwJanj/58z5RxUxFsZDxuN6xeYFb9Y+Pzk2bU9s9oJ6m/FEi5H5LuhWFJ2fg7gmqJhRR7D2GanbN3IBzEIrRe9En03PMAEBwQnydvYtZDet+BUgwGmy2xcEfn8l0g2rFC6wHr63JmtOzhvJpWnjbaEX2q0dwse4n+sNvJh5wt6EofNDtNdj5jL6nSZOqWaP6Wc58Hmz9ZWpjccOh/7j1/OuYO5jJbb34F0ElKydThZrSinqiZlfDda4taD5ng3oXZ53JZ+kQa8LBOJGfnp33UWtBApKE90t/YPiqHx3mg0lpICSHav01ZECmLMX0Wev7bGbNrv2nBybtXveT/B5L9NMfeMpHn8nhSdJ8T2Z4KxQom57tVADi6oZa17FKuGi/JlRUZkx3zKhMjh/pALb1uVAXnFvSu3+Vpx1q2cdmqWpoEPUugPMfG8mszYrfPN2z9/OnsA3HAQ1NJQzrxZ+KlHe3ScbmBTGKYyfG9hQzNMmH3Q0W/YXdBb9ICW4Lq9PxSWOvPGUTc42HxsX9MVq11YaPdHu8wcLfI9nHtj89hWsHIpwItr0jyzjj2fAPH8L2seacD9NBM+KPQp2rXfkcYr6CVSB/qFd/ziZ9qisBxaddhu8OiNkg2uEHbCeJFr8T+UN+ez2gMin9p0+X+CuQezZLAjfnm7HhnNfognyNuv6r94dSOm3QoRvvkdacbMRj83lQrYu0pU/hr/CHIRF0GFpf+K8eYW9bh0sESz/J5/4s+m0H3/PXJ93S3yJNe4rhesRfIk556K/d7+7ww6doHfplRkvbsn56i/76CYwuL5IUFUuP5tp7J+TL6rM2flQv0hx4ZpMY3JjqhxzRvbg6+5x6jxQZf7pB/qYWmzPke+l3fBwc9QxRdjAMMLF0ifglTLOJHZHxLx4eTr5JZmVzbyFogilKjn84GQY4rmAuu4SGZ2MyZ8sxOtRvL4Soiz6cvluzgEvYKXivfWnCcbJatpwedPp09Y/f//oFDusCbPpW48/laQzQ4ndjS3gPnA6FR1DYR92//sRsbnXyz4/z8Lb2+6YTYvTza0yndtFE120AF5u9acBa31zlgXdEl0jwsQPVx59d5+UB1EaB8dVYpkqldAMXdiqjySM2WmN5ltDDUmRswf6vn/YKPsLqb7+L3r4p9bPbMwlOhR7h8y1v+k+pWwWoF8UkFDZHxIJIEH54hI0zvvF/+mHxB6hxKhbeeWEblDnkSAR221RtGd0/cLq8LtQXri7ng/Nqf/5dxMRd77PzIc5/eupffZhXxjVF2brs6D409IzgLDLA3todUcWo+fHHSPMeYkNxhh3OjTFPYfG/ln6DZc7iWVfRN3/dyaq5fdAUqMHxHz/uxfKKxuYgtL/+AP7h7fR8VSkc15aH/fduY9J8vNa/54d//HkOhr+z9jrOM95rxxv6L/89Bhjvs56gOVZPEYTHrUWkeST91KDLCoIvn8g3PO4WP+Gra+b66WJc600ynFe3AUyp0qkB6zrhlvcKQFxPhEhs3meDzB8WzJS4ERX6EA1Q3dPN6nR+krcQiD5JrcegLn7gv+uf8Hf0YP9a2Yu/80imdDgDOlK1+fkB2VwKOwOJq3u+6Bkt4U1y99Rj/WzJ0NazzwLoNrB9Njb+S51w8cdMA55ut8W2li5LNsLTCq0MimikjVNCAtO6oSQyHni3+F/zD9+J4XJqtO03oaUd7VQQvJBwL8/N8XwpDe3/WVKw+t9LCl671Ijk+2tOhquYglLW7xsNuubTT5VIdfj2JaP76l5V/dO6Goh155Lq3b7h3PEECc5k61L3vZX68bO2S3DX44vi4S+rZh3wER0fL8Cm9n350zpTI5SdHAv/PcUP53xXqdpUFifsvnVm0v1XqcFd0xeNokvZfy+KbYEc4wvGZWj1X0gMC+oedvS8Tw1fcl/qoP6OHwiVhyYN1THsnF1At9ZeSmbjVg6gzq876YUJEN/3Vgniod5GU2s5GaMBYxCR1Z3qsWOZ3HQ3A+gfssLGFn3R5Br5BqgxFTQMmhufO2mzg9509jQQPkI11Q+IQVH4KtpQL6+mTnMY3HNIsJ/KQjW8719PvZ0eG2r0clPxt3XsIFgJFt0eTW5O5K6lsPkqI3nTv0028mQ6akXQZYS7c9sPyfasw+ZaP3AQE9H/3MV4AmYcj1SPQwUNo5YFYGN1hb10tfPllTRsEMZmGm2+7rmfrVtdgPdMCxrCdWeu9e6qw2FVXMi0O9zRJIO7AcKkjuo7z+6JFGRnuDf6QJ95WPn8aa9aIL1dEGluccZ2nK7gm/VWtBL/jJ65M89Bnx46joSzjHi7T8+A/s4itlHQ8+X6bnAN5QabId32TAqyI1xPa4nquu+Zg4yUAzrLg4tjbZWY8/VSPuDvPMYRdY7Scn+lA2T3w4dI+37MiPunExRbj45ur+I+YSbrS7iOX5uo9XrkfNd5ERAPKM6P3V8/X9avAiJxX2KH7tqMV02hQ2SHn2XwOs2YHHgENsrDo/vTc2+yEu8mdAsfX2zbp4TP1809AslzXji02mvPK+u2QvnpziLFNHuTey4c4bFbRUT2C5PPWDlakLTRk4Z6/eczk4GztHRrbFUXL6G5XTvwqAUR736SohbcHGVyvI7Qbv7F3/KKDE8BbO2vu37aGdIR9KI+Yp2YOiLBNAlorE4qNkb5m83nS9FBtm++0XofO2jU1e8SH+NI0JkY5nQtTAYbt/tgrB7ynm+XXXVX+WyTiZg6lwVuANRBhQiKZrfnQskiMTmfOd19v2eUlK0bw+s4/mGLppLJAhaqSHDUOuoNOelZPRY7rTcjTIPyc/CZ1icl7Jx7Q93TbtPzroEYLjJpo+9F7xC74i6F2aAHvF9nDWKCd/BQxw9X7DT7fcb/vncGpfS0IsW2rnz5vUStIXQj5SZ+EiYP2gPgGijYrQW3n7T8aaE3km2c3RjPeOg9b2AcmghfOOYJb63moAlb06a+Q7cm57U7QGj/nYh2Lrx+ztOwVM/EdLH9xZjP2vFpQI+eJVFM0zdZ+GcUqEWrju7GSu/HYxoX8Pangu6bh8tnC0UdDIkeYYufqTnI+ULZd/qdCF7a+LywGwHJKm7oL554vZ9baP3JJGRzHJNuCkULrvLRxif7I5pcMI839OXfE42cbMrIK9Jzrc6vb6w/XIr4ynzdwL+8CjLtvHfF16bjgf1W9tR8jro/3Qoxh79VKVHrfWoyfnkfGGpzO8becW1Vc7PSdqjjzQc73Fn3vLT6B4j6cKL4E3rJlIlgIFPvZcIaJUnmWyre4KRtUoq7vwuaLs/DTsPR4JLTvjmas6cs84aN40zm8z6rpl31yCGOvmdqu6dLz2/W5oFcnIc4UOswmRSEdqDO1X35fl3N71P6ULeb3sWWHG97WZTsA6QaouS+uhlcdtTmBofok+Nd0zo+OfwdBRiyQI2WJan+O/u8S0QNco6GpV7x99tOARNJpTY9yHxM0t4ByUh2eH9qUDbW5xjgVbcaYeIG9fPm2KwAtssuIj/gPh/3iQAlHCt67o8GYtU4ETT2fkg+F7vt+6ZNBuRSGlPvI38Qsf9Yi6rj4UOWeEWzkGgMhnJZ5Tzafz2nTb6Ce75x6f57fy9LJogAEdYRmWWRc/I4PFVkOKUcaYeHYcrN2TsDKHpG87oqfHaaPIK0r20QZMi8HztpY8EHyTXeRibNiNJfCayU1ZdU/fjOWDw5G/Qa0gP1VLbjk5Z5HviX6A/v7+Uy+Pa2Am3Jd+z6+3VGZ3MKNJJsHaw/vDhZb6q/DziX7h6tQ7zNGBleEWy2hRXN+n5CxGRVAWgOenxBIcloZgNDutPuo9dT/KDlfA7E5+Xdb3IzcPKrF/Nt/uBg931zWrTcAaOodmSF033/xddVDO/cbEjfslvF9U5PYUyM/lc/0LyW8hg6/v5E2ifbIvYl9xq890MhKlnPyXAXbxMczkSmuuAKCR/2WoQw3qbUj6U0m8fzHlB8phSbW4mYfNvff4PmxGhe+AFpiemhuI0DbD3TgA97oydILGQrYnw9o24IJgGYekjxuTrbaGqfzyNIauhgI1OZz9PP3VL1Kddp+ChXiNxx1oKQsgMOiqYx6aYqY/j6ty0OSfkwaezcUpjjFjB+HMVs1ME+gv63XUfssiqW81cDaFc/IMpD2KNJuu/PcA+NO0HtaKF+bR7Y73jUlGfIqOWZHnrzLsPBebiZ3ToQUqQV6hkHUzMk099rHJDyNz6oXxI3WwXTBoCVFSaqJ2QVeUYvosXCsabxLLWc0UBl8E4khbqJgflwKlwAiV36aHXJpIy8qf2A80mYiaKKZ867vVuCc/ncqfniN39c6hE6tF2Pd+Z0z6j/2aiALXWFgx0VzIHnW0O7NJJKd/sBI447u4PEumnYFybg7+snyFH0to9EPPyFPn03Lwlup8ogTFbU6lM81BzJXULxNt562Xxd67Gmbl861SPXqSbDbAPNEZUJR949RVOjFcvn9kXdv33mMxIeDa0aMo+stZCZ7HY4W2jg2I3K5Xl/hUSekJ7OOlnfo9acHrpVKpuvXGH7fRQR8eJ7h8zpGpIG17I5nQpXAFHvfBwYn221HuuX97tfZP2rJ+Yt3mnupZ3I+4J3SLrqI8C3OlrYX43EHxHbFOqSL9i+4B2fI2UYoKn9CDumWydET/wN+iNzF4mSqydSom93P75F92EZ9KOtpA9gahQR5bIdE97ttyWchGSObhN7Lfy3I0i9VhE1Mynl8w8P/x6KgK31aejJFJQOyk6eRSBo9Wwl+scHQu6hxYaPwoyKps/Q7/6F5N5lRflsPXDxI4zA+Lx6WUwaBzkimjBug50vXZ/c045RNNLwk235fEiXd2Pqy1t+fOmvIlKvOHAghYMPhrtN5q3658ESL4T70l8vTdoqhroXdtRWXB0Ni16AfWo8I7aWAz4di1sNZR1t8Z6Xj4pV9HxQf/W6vG6+Fb/a1+GHP/jvKjYJedDRgq9Z1BiX0ddnm747w4h0hT5ZGCJyo0iF9Vwf8LYRh2o2b+4DtEkK8P70bExWR0YMj4HFkVJqZsbQsE//5fc2MnEyKzIGZK1Xj4ghqcv43qtT2Cj8SqNVeuP8+fYnWJd7jXB5hoRl0aZQv/ztE5SPVTZTWQiUq1byZZekmHClcg2oju81NcVh8L++covhvvd1uhevOuef5hpBAZ9NBKS2/MHbog/s9b/zP/0zT5JjgF6girrL751nOTjCUF3uUV8MBZ/+XncLbuHtiTGLpmz605kAx4dXRfaC91KnXW8IXtiJBOcWcql9Xo7Q5HqPYyyAT/LpXcM7UUy6zfW+p7arlhA8jS3eBpZadcfDdqV9/XRLt6JaVcyIbzpa9A5JFvwd/grHQbm2e0cSep+S/mktu7ijw5qexUuKludzhG+y5hF7yaU/rNCnQ3fN3lGHelBR1YxrLT2Vzr/rp1vvDxDvYhnbfawu+g82IJVWS9b2cU6GYHu7AW6HFO+/ldbzi+O3qMwfa+pHq3vCdPYl6qIn8fWid3zaQH5G9/C6imR0qzL2ipwHcukYY5xGTc/BmI9QwrmiTuL2fT/t1wY8mq2LTXN9NYmRiK1iFp6DreYS+aMQp8uSyo2PM32dJ4venDT74AL1YlhVc3CFHImfzzXqBqlNxr/rSQeuRj12bOeFxiidQfsTjjZOnizh42OtMQhxtibrMQqTzokFFcab6tDz/fTiTPR9CVmipmOLXuaek0awkIOVhIZS3leDbUYMlNd30Y9O63N5Z3zAvmh4ib9nMp1ejw1KHsEBh96z4IyF+wCOwt8RexN7ZXRV+4XaJfk6Eofgzft6P9ebhU9HX0mLslFNEEAsnOvob9BjzsTu28F6iwyy4ctQgcd7NKCr0pGG56LrWUtMB/Zv4UQ2V5dm03DfDuDR45mIm3Dup/PzM0DwfnJsrFc0GfOLpP74BBH0xxqNTOLkly9k4U8+a8M0VbN9cKDpvB96LtTYU9Hsvah70T3OrU5TkfMuXbpFyDLZm+IciiORfvG86M2+Q30W3AlKZaGfam1aIaPIVYyX38PlephQ60shfaSnbbbWO/2mfROZUz0IEj4pmXOG9ohlotTCt2J/f7szGOntFbG9skNdRvsDvOBo4ZPfqv5Qa5sVaiRDxcYdbTK2+1taiKf98uKo7ZiRA7PJT6/TjJGpeqWpT9T7/a9c9FKTzdm6OoN0WwZ/6+m2ZyXZnjXnUifU3VrnZCoFdP7xU3xZ+Pa00qzgHx/VVxZe/J23AXlzeuBw9TxX7PQXebBPT4T0C1/4+QfaJZR6ur0KJfrHP0eOW8IydOxXRXS1fvWG8Mv07keBJzWYm7cSsb2ITCqU3xpGcyfT4PNJOLniZcmJPLTUul5a/lB714LgEhBsJ+d7NepZXqOFLxAxwnXyD58u8jQtSyy3pjwd1RVK911O9dzaceIdNjtoJHsX8Wpath1MxVGjBiuo25haRrMPLRDpBnusXqTN6NYr6188RYq/Xyc0+vpH8MUXieTF32IpXmYpK3xFDrltJ2vXmQxY6hkOD4/S5G1rWuiZI5MGaj0m3+cqjaBBmwvVS2fMuugwbxBT45Q62J+qMVZIqTj28Cabl/VGLJqPBhhOIf/zR/i801faZbUXI/UBGiLgewZC1yCn4e3p+KwaNwSetZiTDdpP/iSj+QDq3LwXf6Cu6M2achiySKXW9mb7c3be1BDgnY/NRQ9Q22UFgtkRcOkKm37+yC8BFr6Et2fdRkOsd0f0rD8hTuQ5z5g7o1yNzyPF5neWTXKdgkK1Dv6TultdN6fw1W8At11EtMfd9NkmuC/1W1MpjqMXH4u1uYHrvqURrNo4m/P1MmJ8i57Y1sLYpNV736re+thQ7wF3PjrqeEOLv0XD4vFN+GxuAvjwz4bu+4Il3726TLWQSk4u+/jD2ZbfU1C/zx32o+ltLnzGA6uwT9gKswNa/IAdyjTniN1RlxE54jmC3lws5r/Cria/vDNIT4WDL6/QrCSWXz8QiXYZrb7nvucvOyCQjnWB3YXfTq/HV4JTFHo0cD77ZLo8UwtOmppG8vPR+nO4+aRwDqWI3nJVTn78Eubue6TuCu374fsIIvAuTUjDvCDZwgetH/+jtwXv2WFi0z/+G3lpY86P1WeFpNu1pbgM237KH1OH5NgPqd/NG3/aGq8NNEeckta/fkyyjzUL2YX5IXOw3/iTX2wClI3VSJjCXsv9anXw6CEgG83e8OG4DW+wnj83urt83Gy16Rlov/uT7r2umn71eck3bC/8d8naw0+PYOt15f6Mr6sDKNuiounCTzmp00Kxn1NJTe27NUkbHlIYS3hRP+dKNUryO0UN/E1ELTZTNuBCNZCYTuM/fTk9RXn1L37DW52hUToOOrKfq4Fux6UF+rkfSpjYbYvxdFDMj5wPO7T4H3j/9+rMSUBJp5VB45Nvrdk+WwfCDZ01Vcb2Ojrw/wAAAP//pF1Jl6owFv5BLFRAclkiICBDooCIO1FEQEWGBMiv70O9Xvaul+/UO1WQ4ZtuuBncqzMC/houMQhnHrs4Ro2209slp2j16vjVPlgoUeUNs6fA5YMabnNELvbEvDt9L/nc7o6y8/PMPJ/PWV8KZQ8/o6b0wy6nbhNuaaHA1WXEPPeSNz/xj8LjrfcUNTTwttNZcpW/vM+Pf8TbHBTTAfNYCURb8psJopCiPz4flX1g0Bq7RziK5YUcqBB4o66fQvUyNAEuGht3ffLCR6j9FyLa6D4i9vl4JiTLEfnz977zJNH4pehtnntC1iSp+nOxAyVXdxeyuwo6n14iOqKOH0V2WfwIS+02VtbzuSN+/ROjHqEdhtmtNLzk82iYY0dAvfGcWBC+BmMylDWGU168SVz9uDE9E+X2l/cy89deo5mcRB+mNtmz3Wr78tjCj2BpJ052X3hl01mObqCOs868tttx6f7ZxvDYBy4d+uLcFZ/nJYFc3b/YXr373mRmyQ0eg4cJWR+KbP7jD5f93lRa9B4//WiKQtHXWcpMK2OqnlpAXeWNWevtKr6umhw2O8XBcnToKr4x3eYf/u2Hl9wNfZJ84BrkPp1u5tZY/MXnH996S97SuLofwl/es/hXj71sk4JvhzLui1bmE0Su9c+/r5Z8dZa8111d+ICYvP5UvVnlOcqhd9jO0X/ZKKKmQVNZzGTn6IdoXnqpImVXacTvPxiNoMg1qiGKMJitG4mqW4xgjvqJ6dP6g2alzzU4J5eBLHiLRvaox796Bi30wysbk+cUq7v0ZlKxi3Uu3e3a3ZrjpaDPPH5mbP3GGvrzy8t+8qTOHJV//jjAVWjMzhxTNbh4O+Lfv67BrvbOVPPh0DHjy/xIOhy0BvQmvuA//VU+WZzDsv+pgC96Nw1xcVNeda2ynCa0oyXdxepaIc4f/nvjSScyepxNkejnrW/8lnoHFOsiYUmVfPmIgI6gy+87WfZbNND1Vvmn/7z1uM3G18qDv3yG8m6ws5kGd03R5WNAUsneeLy2nw7CVPkS/bkl1X/xZclnjW1rdDz7hh9os64i1hRb1Rhq5dLVgL2Yq8jIGxF8ZrXpijNxXh6q5pV3z+FsmQ2ur21oTJ/zzwL1FbyZT2vL+IxDrECLnnu6Pa5qzve/AqDtKoKVWAXEjDYUYZ9qT/IvjyouYg/rHxjkrje7bsRaUcD9rZP/+t3Ff0Gswp4deqR7fPhYFM1zipbx77PpfNkeUZgsFzmoOO5aK4zWYBTVC0fX0YvGey43qK4xYjhPvlG96Gl14WdivIYKLfmu9rdfsUDPvjf65d5FS/2D+NZwjqbT9aHD0xQ7ZqrfqyelzuoIc/nYE2PbWd6C35pyU19HKpHTgf+rn12GNlj8z9bgVrtR1NVRvZFdazzQst5bsFe1yZ63I/Z4Y/na0pIsZXi8rPmUyPoIL/Om07s1bLLOaocAFEDrvyM0FdMpP63PWef/VAzwisK/vCvi9X77gdtw9P7l7T929nI4WtKBjvUhqtYH/a6AvCst/CbPXbTRFaeAOcQas7MwqsScbSiczxCzy+84RxyqLEeL3qBj6929cQLNRA5rOmK//Z1BwdN14HoykUAvm4hZ7RDCGLY/hq3rtxuPxSsFdHVDYpF0Xy181KD9F85Mv6qPqM80s4eTJX0IxonmSZ+PZ0Hdnx/kb77HXXVv4HvfvYmRrWU0tqo2q3P5IkQ/CGn1tdt7A3/jaZPTAUnjfqWjMj56eNQ81xMftBjVRR9gWOqDf/UxmNoupt8L1qNFDyfAjD1j9tt/GdxyPQelQ9MS/YRORn95piZ06JqyJf/oelDGz1/9hdjP0+Qt+HpDq92uJs5z/6qmp3j0YQybH3O11a16L/oNTsLtRKwhW2W9vwtv8L6bG+Zwo+JLPjwi3iYrcjgbojeUYtlAHUd7LNwuP7TUXwo4JTeDIoftPElrT7rqk0dNfOXNeP+Xdy31BnJ0cMrH18oAYIbNiFm1m4qL9d0FPb13xFszES35zE3Z7qQZT7keG72jv0tY8kQWmBWuxkbwQoDd9UNXNSHZzPvDqIqlXSz159CgrD/WoGtdSuWLbVWbP/0iuvsTLq/yoWuXhlqw6FfiUmnK5pRpvpruVx0VIHSy6S+vSdUiYaZUvipOGqVXwiQt2OmhatHf+oLb+S7/5Ymcch8+sOQL9D09eTUfT8MH7O8aEXt1VD0eNesCrIswE5N0I5qHoG/hfBZisuRLiC/+RYEr3jIMYZO1tH/5EAmXHe6PXexN08ZM/vm9+Pl+oSbTfLqlrvymny4qsj8/838dKZD+95GCi3qzKPpd9K5H7tcEmC/A9pLQIu49Sl/9ikbF7MobEPsFWQ69sW7ZJZFf1eR9oIFm/i2N15Ka0/qRtnCN8wHLnd7ysZQlgMYoBOKpFUGjKqwFSHbtnVL9dc+oyKUPdNouZ84vYRV1lsbw25SrzMn3F/6JvOCG+i19Er077CKe7l+KKoxUZ8TpBY+bnxSQfmFvDMX2jEZashQMSxooFNsN55vVOYV24+TESGbeje/V8hWhtamJ0TXfrlveT6muvstu5Y4sl8l1xb+fY7hOaBr3/UcZDXqjK/H0NX5IogWYaNMS1310fFKPmxZNyUtmztktIxoqBUZKa9bk6XgR5/4BY9jEyYoi6fEz5tu0vYNJlR3Ddh9EPUvfJlS17RJHLpxsrthQAND2zbwiOnbz46oKqDo0Fl7tHxUfjO9xDa1jrvB8WTUd399IAVki7Ak5Ox80dQwAiWP5oWNFedVnvnaHaB2aZD/ZQvW1Vo0G866gxLyrm6h/bNYNrEdbonwHq4opvpKjKLTfLCikE5psW59hn2sHFrOP0Y1XIy/hhtFI172NjelRVwoK6dqlW8fzMn4wMxdE42kT29jYnLrnapmvXqcQ4BBNgZPEcBubmCWeU3VTFn3TrTkWjJy32qqiEhbuoIoHB4v8+jS4KQqmcrmYZ7J/kjPiij/nKtd8henK2szmMv70MIixTjxJ4FH/XPsK2DWWiY5R0vXmwZpRIhUnRubU8kaujz16X7ScKgM/Id5YYwPj7W6zOK5aY8qPtgzFeN0Rt1q7Xr/qC0tNwQqxuNkr3Qz3KIevKc4YqRXjk0a2hfJ7TRir651brf/+v29PAl1/yqljp1wdYbyXIzm8s7aaz6vsCL9KkkjgzFXFx99bhPGW2xh1nW185qXtmCvgmRgGZt2ctNIRzo9rxHwJSDRvtJ2pLvNN52tXezP/bAXIWxwS7L1pNBaXPFaYohi4SlfbbP4IcwjXB11hHqZOxs+HQwrgxGtGHrsv5695HGFo0ZFy6farlv2AV3vxVrPDFPTVoLVyjNZSVFBBf92jsT6sS0gMtqdimx86MZbHu6o5Yc2cw7btZp/OAjiI3Zg9zAJ/K5NHoSjRh27i5u3N3t2iW8eYgdhaMmfzPmxqNFbHnNlVL3s/f3jmsM3SlAWe1RizJJxCUIyRk92s2hkbamVGv2ojkWAz7NEkXusbNPdzTNICzGxA391NPWdxS+wDwtX02fg+kDqN2VFLAzTWByhAvwxv4qn6u+Nq38fwcU8yORyEdzWPiviBKUw/TGPFZvm38FGw5ZqUVexSTaWS3UEzvgUexUtpTJ3+ClVTuO+Z3/0qb1C2eYjS4vdi9krR0cZjto/MG1aZTe/vanwIxEe3sY0JCU+3aFgz2QW6C3TiB0w1uIw2CtwqZ0tXWhjySeqPDeDt0hVD2qbZ3CanFp3l9Z7gy2WMJm+HShB+Qkyl13Pu5lcxOqpMky3TP0+l6+fz/qPwRx9jyITCmGNZvsMrbg/ELXcE8YMZuSr69DZxLquTMQbvsVSMx/dGt8PmzCd0ZxT+8My70dibhv58VxX/fSAkE8Vq2AZzDMp6VWPY2kU19W+lARKLR2ZLl2zpqpA0f/hAzLMZZ984S45Q08ZgWTMgzq3jHqOq1F4k0HXRG9P1ywT/Bw8896ZkzNnjkaO/59uJohPNl81RUDh2jkzHtz7qN/UtRvL367O94o1VFWf5EVYvhTMH39Z8OruHI5yzpCVev5+72kG1jBS3LCjz3ytvPDvvGYwkm7C03pXemPlars7z8GT5wk8cPrsCGrf/EhzM8XLqXWkh8s4S20uPouPqzkmRtYeG6cG29KZb46VbZFYNs1iRe+OxrT6q+KUE7/B9jGbjILaw8AXOgmPC+Vk8W4BPhkm7yllFHN90Cl5c1CwrLZc3r/0uV8tZueJlfivOrHsuec1PJG5CBtSqpRgi03gembnWmDfy0UwRb94x+YePylluYf4tXXZOm7Ka91XQg2sdY7xKXJSx2J0ctSBL5HbVx2isvD4E46f5LBCaLOtnH2lQhfmDkNM4Gkw93AD2XkaJXh21iDpr14dz8vsQckhMPu7MjG6dbTPhjTEf0RSOs6ta3/eZuIWY8yEIRw2hD7XZvkBTtuynHC6rnGHRGHs+rchehr/9YV+uHp/mL8ZIEtMlHEW064TVsVbv2/N3GV/BYN+1HyPtZCIq4CiPZt2jN+Tfblfmdp/ee2/zy12RDglgHm7nak75y1cnpmh0fWx/xnQYBUERK8Mj3u+iV72myiJ8k8eTGPGbGt93RUQkFlCSy+RuumFl8VhtUqz/4UfVP8IqhF2de8zQrgWi03mTwwPrHdmPe9eYK/0qIqHXVeLzsjZG49GO8IsjTswgDKOunA4a7J6TRYWz26LvpTzeYROGCdtfK6Xqf5driRb+w/VeQdWy3hNk3k8f5pEHRN0f3/4br7NvRTPcs1zBkT0Qk32qal67Rgo3wZCZdckIEv1Pkarv695mtsJOaPjacom2j+eO7ekVV1MUGx8wdJqxwHEAvR+rske75vvAW8froq4AZIE2NitCFj3SiESIldxtMRUaivk0psc18E/ZEcd6cTS3206Hl+1QctTNn1eKfPWB+H3fMH2f3KLmcduIsFznRPaDbGa1NrEbuiavhOwb/2BsnqoCKHtt9swySFnNxX4bw5FmGTHnjYp+71twg0z+zFSxDK3i/YGDqm9lk9wDpnp9e/6NcHdc8e99OPt206xau6hm+2TTVtwupzuSbuoPf4fTuhuSVGzgc6YtndGZVnOatik4Uu3gt89Mj0rC6QievTuQIK73HYPPoUTlzhOxUq1bY/6Q513501PCuTsb00NKHUhaTWRkwZup4GMLa/o8YFmLaUT1xDFhPe6lZb6MaqOlvon+1pc+n+6LPhjWCpOjBgvt62dMrIxctDwPFbN4RP/0dnmvv3ilhTOfg9BM0fZzSqmgDGL065av0ulZsZjT6S1a+BmgcemXmBQAcVuVQ6SUMmLec/v2JtfbiBAW8poZZX2upkDaulCfnB8VPceoeu13F8HcTjuCL/Kt47G7daAcTwKtn0jrxKCWW/XLBQWPw1rJaq7LPSI62RBt84HsvQ3mBL6TciK60eaIJ/1tBuzggUr0/u54IE4hPJ5dikfDenT8lKszKnunY1q9Nfls1psceH3X6ZRdjYi2eY/h2MczCeYzM3p745qweXYK0aX7UDFrVehqvavfWKhjo5O0Zz6D+O3Jsv6UqJHTJkTl7iASZyBjRRXDTIE0rw/Dh7ThQ+2lOgTKEOLxoLYGC7L5DuJvlul2873weQpaGcr750vwZoe8Uf++Lbhv/DOLjWHDuf74asiZkclsURz5/LhuAOIel8yk2dyNunKKAdzr0v5O21Vzm9f4b7/gKFPr7g/vYZbSihnWx8rGgcoiaE/9RLQz6405+vg+vIb8+Y+PZumaOqhG754FH71E4/tejGri5jPxyu/G4PODz1COkUBs73tAYrHfLo09v3tcnzyeTUqzddDtnnlkt3EHY9yZUQ+DXojkurGGjlvpcwRzd/tiUW30bNwcogJOcXTC59+qin4dAwG2NWZ00/g/g+diGirHyiqIf25yr+sPCMCJLhpxfOuYzRqMAL+j88L9dyy9UXvpIXwuU0QW/kaDm5cWwBhFzLqAYlDLujggu/uJ/OHB+OyUGMm/34bg0dp380F5a3Bavordzeo3Ghc8gfdTXLPD9ed0myzfWYi6z5gseNeNBrVllDsGJ/vgiLPBKXcf0BEMzBNosVz8FRyVy9UV2E5LfmhStkkITWXrzKNXyahbpZXh6I+U+G0+G394g8RCKIm3y9doBEdKgMWf8N/Pa3YMCxX/pBteSVFWjd1Y1BAcj4S4uUN5nQJqtttAUZf1lBns221HdBX3N+JhmI2m2+1n4A8aExz/iuUru2sO2nfdsEu4Kjq6a+4CshP2ILjTo2xyVO0GC3+wrOu+Bt9IrgiLHiXm18j44KK0hc1m1ZPA+87RgtcaOIWYEQzK3Zul69GF0hhP5HlRNx1/hy0Ff1cbJItftKPn/qtBsq0Vui6dTzS3ybVBSRQdsCSePxVD0SNEeHw7zDPPu2idiEdRDd23TrzpaFT8Dz+v+lpjxiaovWlTfXqUn1+YOdUUeeNsNndw6XLxWiBZ1Qyxo0AopJgYZb3paHx4tGglNwWmTWB2867Q0z/9yC4JVhC/v6MR6EVgdC0962rULCOH8X2xGXZvj2ySL9CAtbFGpvmdYoxlE67BCMMnXlVM6gbFkDW0t8M7ls9d/2+9wCdqdizbXzaInwXWIn8e10s+8Yr+4XP6Tt5Mv/k06s+yVkNpzCfizWHq8SM/jeAl3wArwmiiKagejvK3Xv78/zSh1pc71QI6Dafeow+xL0Htjg47U0VG3y4SQiVK5h8WpNUnm7v4p8DHlyMWSvegmq+4sODbORXRq6mtmhAVFjpotyfR0RlXc6gra8jPFSYaXXnZusrTEmbnmDFvWR/DEXoMwj3fMs8Uu27O1zD+6QEq5VPZjYkl6uA9N88l79AzUZ5tEZRd77JEaBM0rj+uCb0htngu9yxjf/mEs14Nf3jEJ48RjKx8Fv7578W/FMjx3yHZ59TrpvIcxujdsvWiT7OIzzoIcNx4Byxvd3M1OftIBwBHY1EQSNmgHjcNVFfsEl/K3h5rjZMDSLsl7GDyuOLXhh/By2jAdqtJRcxV0hnACj08FNKJ06Tse5T4VYaHzfBGbH9aA5R7UfnLP/i6HN83YOlQ483hEkS0XbpWOKfjBYdd23Xjon9gbVkMb7XrIRvPWubDPkUH5m76GfF+97uhJc/C4v7eZF2ZxzPq6uOHHTp7j8bLC0RwL2hHljOt0fiESw5Ps0uoMFr7ahJfgoBgPgOe34+PN2rquEbrysV0XvjrbXyPIvpUeE9RrNXZKKvLXfQvdiHaJftmlJ70FM3G+0KqL/t08+un03/r49rwV0YPyqDBe3WTiaY+1WgouNxCmf+OzDjEScSJejeRG2g7dnzfiMF8DTUg5brGtD8/PdBRVC/mQ2GaIRnZL/NiUW529zNxpLPkDUozueryvuSx3rXVGMaX9dZxix/Dobo3pjnnLRhZOTGn2bwjlrl3gGh9NKmkVxc0yG2hwDqqXdr85Yl7cVqDnd1exB5OccXLD0uACmFBTL3bZVJQBxpa9CQuAtHzpkCaXPUvH3IMbvCRHW8l/PHbvvz6lfQefgWM+feKW/fhoUl9X1uIq5u/+KuAz+2U3iFTfhnDix+cdsk9BmXbNsQWz5/uH96VAonxC6u3aoy2YwLdo5TpusGD0d1yWYDFr7GD+2SI2sdRVPfyI2Dpw6ii0ZR/NSx6nLhnalSbMT2KqDWuiCrdx/dmGX4lGJvVhrnbd4TmaX+M4fSoKqY/5V9XDKH7z6/Ryf8l3vTHv73faVSIVtuqL6wJw7S6m1goMn35KIdihKVkw3YVx52o3qpe3fx0g9jDnPOJXG9rOLRSSWUnIBk/iw9TOS2eYlsx5rXyq+zRwlcseWh9NGEhE1DA1iExFOda8WEIYlQ7cYjFNv9V82G+3VFQrd4ULXhPD7rUKEveTPxLfI2mv/zjz+/eDuENTax9UyiPg0Kbs1tmPblICdif6EXcV/Gu2Kps9T+9zSyyqzs2n38Y1CGZmB6QLBu9GDRl0b/EE0zFo88UY6TGZUaMHTyr/k/PLPy98HFo9I+htcB7jCJFzZChoQADI+rcuiVfrCNeJroP09VdLhLUANEU8RFO2V1hxJicTFr4Dc6wuhCr2A7Z2xZkF9TkbdKXVZFM7uuni+Tv21/09d4Tr9/LCNesTYi35MET3CThH77felusGLPiOyx+mXablqLpNp4FQKvywXaH5Qhc9JgaoOPFpXysHhH/y3PRxTFIuODtuOobE5rvbGElrsKKbydUg7wlW7rwWcUM+b0GTw4Udny9sDeTLrpDFUwp2QeT3I1yWhzh8w4phoQzb8mHW7R70Afbp6+PMYKzSpSwUNZEb7zEG4vXqMOS3zLvaFfRn55V3b7eszOkSdT/6ZWUaJxoFY066SE7GrweckZX4nyK+kB8NMgYDjnzNi3lS96YoCXPYod35nY8YkoIWQJ7Evp0MsbZLHL47IwP22+mdzbpP+eD7rvswBZ9acyh0mCIbP9N+Q/8aGx1tUTfMAmImZ22S147FehroYzy0vCisZRXoBTCUiIvsrIadSY1MF2diOgLvvPxFYXwvto2LoJzwcdNHSZwfzcntvB1tI4fhxkEV/TxRzdPHedjo8EjKyxyvla3akhfzQdWhzIl3nvVoblR3QJyt8FkHzd7bziurw3EQuQR4/HTDL4qS12dFK5RcW1YxlpJxhLleCqYs93N3Rzqs4hQuDOweH+W/+ofYO5fW+IUUGejaFfjv7zfEo9etUH3L0XRUQe2Mzy5YgLZzIq2SQxmVRQ8aeEjiORrwnxVe1WztZkE9Jz6DfEyImSs3/1S+Pv7d/uXROslH1ShnOSF30I+7fBhho9gm1ScL2615GkjTKvcZPuV5KHFb4zqcD1WxDqcDxmXjlcAZb+5swOscDcVYPiw7tOCxfd7Z/zp+T8/hDeDXEfjfmXeYApvHwy8rD2+r18+4BxujKx86PpoO8ZoLRgBMdKcecOGOjeEv/NEnCJ8VP0+anLFuvdnhidH8cbXcuTrGZMbIX3v8qEXnzMk663ITr/tORsXvFSXvIBo8GiWzsiP8W/90xql74qdkg6je65Uix+uurn8hgIIeVXSq6fdPOqObQ+vpJ/JfskL+menJP/y0W3Dd9Gos1WDlvoZ3tAr7SYjrmuQ5KfJjCGujEnoIAcvLuul/iWh/gmXO1r4mCJ6vXh8p5w/iE/XDn+D6J21J3/jwtVUfvSz5AF8vDo9aJFXM/8ggjGw9t1DFfCU6E/50G2u54uL6LfklDu89+Zp+QRUG9sV2W06KWJ/fPp8PHq6+sWxJ70F3MA5LGJi19IvG/v64oJ4jx5st/7pfAo0b4ax1b2/fLXi/e51U//83zU5TWjqXLR0oeYzOySnExqa7iCjpzWsGN7MBR8/t+WrY2yVxDrhNmu8eK3Dwo/ElVJq8OmSClAposTsw62O+OUizvB9dA4WlCGJlvpXiYz47DB/dx/5fFG7EhXvYodP+qE2Fn9RwH18nTBY3x1f39lJBOv7PTPbvcucBXaSwy8FiVhqU2aLvlf+/CTlvqfz2X6dBYgOEcapGJUV1fbeByp5xCyiyaWb5+bVw2mwv1QKon3Eooelwd0Nli7M4t0Yi1avYRV0LY1yt82m9GIpyCbqci/JWUP8b3ynzx6Il2wib7hUxwQ925VN3DZDXj9N4IBjjID/6mtj/NiNy8Ud/r98ZbjvbgX6q2/4CSfemF7mEqXv+E0Mvx8M/jkqAlrqYUzrvuuOLvUDMAYvp5+lvjZ1MilQCmbIDmqR8ulQXEVAV9xjwb09or5ZjmxNAXsRv0i7jlm20kD5fX7/6TXK+h2GxR+xwN+p/HcoTqK61HeYKXxXfCwL7ah+rhsgeNvtUB+/40RZxdcUi33Hov4Pb5f5oaLQioidr3S5e6LXyM53Oj7/5TEbvjXIA11fxr/6sPCOjnhTr+dofGygBX+kHlnyYI8F4nLkZqk3BOrHQou++qB8sw/pFla4Gq2bESqB93Xxpi2GatxnSFNP09wv9VUDUVW6Hf/8GjOX/d4v+h7Zz4pjdffy0HgMVP2Pv4izwqnBbsbswuv1nZleHYts8Zd3WF+G+7969XpM1AQOn/7I/vBkJJdVDN2jkKl4OB+icVKs/i9fI4clT+K72dNgLhqRaVe7RFPtpRoUbuURG5+3iH+cZukiWmK8qSPH+/PPMNpSz8xCFKNBRlhHf3zVt/nsLXlDCQu/sXtpWmhm/cFHiv89UMXw1x79cQ3/X0cK5P99pOBUHwU8YmvuWI7IiETntmJ4N2oZN1Ozhpe3nOLtKmTMbdjpyAyuB3baUGSM8fG+UICZsKBo44jH9VlBmvm1aEHzgk/Wvr+jwA0YcTVpWC6eEhVAunfEt2wrG3TlOhjmlt/wtPy+HzkKMjS+eWPXa+hnM39s7oCfoUCI/DSyzqtbBZyrbeLh0BwyRlzFgmuCDWLnJKnmPShH0N98R/ZdwavZW118kCXAxGf0643nQs7Rq+13xNtju/vVESohejgnFj4i8IZrP9xRb1Uu0S9ljSZdvLvoRoMeb8+9FE1x/rLA80oXK82dRmN6Pazh2A4ec5MHdIO12rUwa2ubxJ2xM+afbikg7iuHWUwa+Nz5zhGe1fNG5dV8NqbmtKsB38ala6gpZXw2mQ9mqnzwJN5TNLLPTYfidjizQHC7aIBbA7A5MRPPifWLuvvumKqnVu/xiuRWt8Feo4Fjb7Z4OjHmDUUy5KC84z0hXHp00ye3TUh1XhAPfUZv2CayA9rRrBjJFsrSr+kdknP2o5OWZxEPDSNXsk5+sfNw1L1RvY+JGqZ7HSunWxUNxdDH259TmsR7Or9qzPhUgvE2S3I8Hn1vfsa5Bc1pfWCOKzpen61SgOV52Q78bzahvnIVbjYeeV6rsRq7MDCBz/RFLCmNovEbrzTY9QGm3IrTbihWtARNvrrLeHjRPDl6DrtBUojt8qJiTBNusNvpI9EeyEWzumYJ3MbeYNFBGToalus7nOVPTmzrGXAqvj4hMvMmZs8p2kbjxRl6oC/1QqXY7fmcRhcM61nTsZI9A29CL4Oq+Fi6xK2drOJPqofQfUSH7I4Rr+a0zS3A1W3Hduw3ef1WfDlwKfwv3qZuVc21d0jhY7OWaEG65vzenu4gAjEw95KDwTfPXEa3jxQS7XmxMlFf1T4qj87M7BE7Uf82nR6I1zeYX07XrsfOTNV3wh9k1wabqi8f2wJ6bboTS5qFqI8zNEPbpjmVLuOrGxvpEYMH+YW57/pijKnuAnjl+4sVTjaIe+g1ryzr+GCnW/qIptf38IHVCwK2G7j77/3+9g8j2fBDYzPOtXpTIGbOS+YG/cxCrei3qKY5v3kGL8l9RqejB3huhRta/n6Crm3WkP1ynY/4fU8mnL+XiK6+mGVzzzc5bGl7IPiiA5/eqezD6XW1ye5VfyM+jJqu3lzNJtnS56t2y66ECDYROd73dda/V54Abrwm5L5f+XxWbPUOVzV6st3B0tAsCE2Pvs92JCTdzGhZ/y4a3tVAMB5eESPJqVTNWVJwUfDSmFutEZFxvwM5SIpvTNUtOcKzt1a0FTcul85hRsFvywGLbRZm0zsdfdBCuDHHddxsvVlOyaaJXDKiXfqIR47jwG2XlsQvghea4tYpIZndEzHCCnE+1MUHzq/3mzlcqrsp0LQaasnKiE1nf1lvbgjr1DsRLAQzn7/vrQWkqTht1u+y67aNn4Lk1hfihxCgKYwZRQ95dSPk29wing5eipb5Imfp7KFNBDpVZwe/GOa3zvh9cmLBdAlj5tmpxqfb1LogqhLDc84u3aj9siPYZXYgNjUpnxa8Voq1blGZS2bX/uq3D3vTXhr72X02XsQqh7w+bCln57M3fyR03F4OZGCBnTPe9OULQ3qdrwSvRQutRVOpkT2OD7bX+Y8vfKMhhXMgBI8On0Mtd9AyPyzYOgqn4orIIGmJRQGRvpteWekARaLNXPlkVVKp3grYkdQgz/z98pbCvwb48DoyJw7W2SSvJgxN5Ul4LYVm9IdHqh5XIsMCGrupmh4uyp7elhhe8vO4qZQKrMNrxfZKUBlznRRrFV2dAzuP0grNU/SS0bL+mXW099GoBIWlBh/hQkypZ9F4Ul5HcH3/x+zn5ZmNubA3UfRwTzTwC60ST4/VDN1TwkyzPN3ohZJgOLVaT4XmW1Vj3exNaLlmkqBcBxV7R/sPPK2GEO9Zxt2ki7GLXrUQEdfF12xioZPDkccTCU7VlTeZcj/CIypaEjBjRPMrlDVIn4XNXHO5G9y6CjrIyno5oqZmHf9bT/2jMDDqLj1n4yksAFvdldiReEWTgdI1OguJz6xnLCF+t5EDV5d+mD0kk1H/8vGmvu7xgO9ny44m3clTtD/HR0au1dhxkSEdmfK7YeSXOnyavihHelcwYontphuR/SzR1D23WDxXBRo219aEs92eKDv6ddVe2W2E4IV/7HCjNl/vyrGEscqPzBU3LW/kqb+jUXn15PB+sWqKW61Q30WL2Q6UvTHvLKKjT7buyXO9xdmYF12O3kWDFz79VOMxspZG+WNM0iqmFXOkEdTzTq6YYetiNifS4aZEB4Mwd7zkfDoZ2xuay8OGuLW4jXgvtrPyVTaE7H9t4D3/xnPWRJuYQdV6fPdEPgqr+kl2t/SR8TVuaqQFfscO7xepZuQrLgziLDNjnI6IzdnHhFlQ7kyvpsZj9vcu/nu+3LP9aLairY+G1e1BtD/+pdmxgMGhJbNlKek2ki+OQIToRdfzkaP2fhxCVMqPK4uvcxCNsQkKQN8RXOOTjX4tUXvoVbKn+bX4Gf/mZ966lNiq94uanbdtFYlyoP09Ury5UgaMLsZzRbRhNDwJ1NUNPHzbkf2tmruB8DNWYycZmX2sJdR8i3wpiR1WxGIPnQ/HM6/BEr4mM0z5YczPadVD8IELu34viTHVsK5RLug/4gUH2aPGUbupX3gg5kmhGtH73ezV2+5W/hvPQTvvKDyl+s6uwhBxdv7dPhA+xJGRo6JHk9YvJZ+zUix6xM7msIQ7XO01w5t3okTjamuZcDbnG5bfebPgFw+V9FnadDbtxQLE0Qzwm1Jmrm9DxJvyvFZssfSIkUi0mo5u7IBZpwY7Zg+hmxO1dtGJvggLem/LPw9XL+Hl7UuGl/GdP8X6hpb1SRY86NrnUy2QLys7rKJwbUzVe0NRwsIrI0SeKqpvd7laTC4h5kZ0+Jh8SKLkBCLmZlvZo5Xl96Ab2GG7StM5r7pjrL6j7Ycs+I6mB9pQeF9/McNv5meb1/zToeW6yXz1ann8J1xv0BZOwP76avbUTXJ4bQ8yC8LVJmNkFdaorduRpnP284aDuplVLcAdRtHX9Hq4oBaZkSsv+N0gKmxrDUQvFIk/ueUffojwzZzgjw8Q90Y9AXljXZitb2XUe/uDgoR3WdE5bgc+JI8HRoxeNXY491JGCzRZW/w8CkTrPr9qXrmar/JNneLpeQt4H3mXFr2vXUw35J56kp87LphuFTJjDvpoiMbuCBYIKXE2kRatd9rNV74b+0UF90qrSW7mGHG71PEcNaox+CJxYHO0UjwV4q/i6WpfQyp+a4rux7njzoFjOGTHO8ueoh1tMudlqme3cFg8C6dqzqglQ/aoAroxVSPbTPymoP6Q7eiWBHo0SdWmRauneV7we5vxnRqL//D5dj1zPgzPvYAWv0W8r3EzeIYfCroU+Eub4n7pBr1d98DrS8DIvLt486LHwPgKV2Iu+3tz7d85ys9UJ/5PkNFoJAEGKcgxM6/zkM1DEq3RuOYC/e6NOZoP1eEOG8lbE/uiV+jf89ddLZBDMFl8/HaqglDQ9nhDRpf3m2Q9wzXxDYo0ZY16qWcj+uOr8019VEwZDpZiFcFE3L2nGVx5vRpQ8rPHDl5066RP9aMgm65L8NwH2bTX2Kxg/2qzU/jw+fQ66j0QLfCJE2iviqs4qxGSNx7RtIwjqq6/MURb9U6c4/cZ8d83LGEOBELR6eEi8RWOOih8AoL9qjFm4ftbw0NWb4QIguz9w8/s43K8ao6F1z9MJiO/HlfMuwtjxo2IKEi9SJTth7+7qctShMvtLv/5mYimbWLB0dMOJFq5Qzb787UH13ibJLDG2RhDSxvVeo1r/ED905gu2+MI9zg4kP1JMaPhKKwb8Ot5haVlvIfYLn0QXrpG/vTMLB8OCbSFG5Dg3dech9MOq5euN9hlb8xZn92VBkJrIxF/kotutlrZ+seH+nS3jVE2Pr2S/MoOo0XfcbkiFO0OzZkqmhREo3f8xf/8ssWkANHofurVhf/J0dw1aNTQOQc72fYksGWF/yg6FLBb2Xva/4SUs/7ZyfBU7hELjrYQcT8sKBQPY4nA9H20AbIrVbnPJzpFntt1IS4VeE5rSm7Hft+Jwl1P4UqCA/EfbNONbNreUZf7JbkG04ezn7nGiKx3R7JjxDLY5pkrMBrSRIXfebfoze4OyUZzWPrOHY+fpApgPLyfzM+Xu48VuSnh/qRv5ldPA83FNRzVKC57dtCPr4hr0+aGFOf9wI9+e+nGP/1elDOi/Xn99vg12/ngdqhj1iOfsklW1iV8vsmBOELbR+NxZDL68ytWkTRV/yGNC0ueQha8yf78JepvrU9sO+i6RpzHGG7VKiPawg/TI4QGedtPQTe59I7oWf7e0SNJXyzOmghNl/Iqg/s5qGynNjr/5ZdtAlzOCbOFb81pv5co8FQasbR9r6M+MARdWfCQ6E62lHRPhQ+uEq4wVZ9nbxYTS4QPelFm6rpZzc6vx7A5min94IuI+rf88tV2CM8EFwNCnLxGASpMbLa/2pK3vK+CWPoLmf2yB87TVVCj047usSilPOr//MIYkj1N+cHi/fbZhorc3ydmF9ejN4da4oJyFRuM+r3Lh0ceW5D0txJL1arm490dc+in4Ufwbiyi0e8lC9WWi5l7Rw1iuyf3YT3rOt5cNzGagBwKeKqJy5wYhR4VX3S5q9g608nQn1VntNaMVlG9pZIsJRW7b2QZLeO38G3RjcnHjpG6/iwXV3yDaP0Kzjc4bILx3/x+Bnl24KauPSz1DY8GO3FqiLarO15/D9ds+uMHIiKbYSEI0Uj5pUDrPozw6ovJkn8JClDRurK9bBxQQ+U7BqyhjsL+RAzeeLmA/n4/V7W11y/6Gbnr6oSFpJnQoh+cP/1ImziIs/n2SGto74ZL76+z2y35RA8BOgBeN9sv6t75oP3bL9SvHE8UXzRE4vbiY/UycK9JUePAvE9aQgxiRMO9FkR0bomLBZreqt7vVxba5BufkT88fMs/jC5vOLN8p+uduPZQCKVd+Uw/SJa34JEPA74fibnoy8m9Tjf4PpuRLHwdDejlUch/2y873LTWYGftWsD6l96ZPmpexX/CKYVkozvD6tRoxphLZQIfU+IL33w4T+V2DVGpaMSvtpTze65oiPVzjAV+67z5/u0dVNDjhTjbBqG/8fzLF8gu70eDOweE4f7s38T4rlk1f/porS56h0p/+ZEeTLr6UJ8qRnoyZk0s3Ey04Dm7vgLgA+orB26/4bBcnBB7c2sbNdybxGPGddd4/Pi1RfC5G9G/5+8caRSgOL1GKiqCk82HpdGsOA5f9pSfRsR1/fpfPUuW/Ilr5Gluv/68ZaRO5IjFbJOA+iE6Xb8GFY32ZlvD+DwHbN9ZTcfDmxujyZslmnSHozd8K29GdO/6RIvEglP8/qSw/702mOfz0xhy/6rAcEocLNzA7NaBIWoqsmWB2Nt3HP1s9+egTwobYulO1HFlZRzRwCaBvhY9NfLdYYYYnPV/AAAA//+kXcmygjgU/SAXAgIJSyYRARMURNyJIgIiMiSBfH0Xvl72rpev9FVhSM50k1z6vFZhNeF7noD4vQf49zx063gpPIZ7SKRn61Vz0KihevgKiJ5F/1TRxrDS5W6Mz4Lfyy1gq60DW+Fq0jgJ0my+qjPSFv+Fty2kESmA4sDhUVoEPN19teiRHMQd+I6XWPZ6+p2VFcQKW1E3P+XWkqfl0E3wARuF2wNWCiyFe3WdY33ZY/1W/HSAXfgi2ECbC5g8dFzBPs2FP7/Oh9jOVV6fD9TD4ZdP8hHc1fCg6mie7h9/cngXQE/zJALkGPkivLUr6ASmj7H4GXzunm/dH54u/rwH5jXNQS8vW1Zf3jkTpw+/Q9HBH4w30zaaLBAKsAqajJq80aOW4syFwZjWaL3o5V/eA0LzVpPV4fjms1DOLlyV7UBOl7LmSz5X//w0vnhbE/CNM0G4ex917FnUjsT2aDRgunk+NRNhZ83fA4kBCguPPj+tmnE7eC951K3Err8KAWvhTQdLvoQES/YtMXHyGCz5JvXv4Vwxxe1TOLmKTpb8BdBtWxC4+E3CbMPlPDNXd+jWzYviTrAj9s3lFPJUZNjfnB4ZRVstBcLShbtAAsvaFt1DiCZRJl+jrCpuRTsVala7p7oVdZxTAr0fn5HNnBo9eyeeDDKh2NEwXO2BQLVQhuNW6Gl22KcWR1vxpqr+I8aHffvNBgflDRwu7IyvZmhEohrSBlZD9EDyeJWrPz5e8liiVTCJmHaXEwC654aA16la+O0jgy+TBrRuimPFpVTwNOaMLd1eRYGzVblDMHUrhMCzFHrW0YaABxCPeNEH0eJHkLYbl4uut8u2wtcurOGPT03lcqmmjbiR/vyHjoQwGjP368Ca3EWMk/4aLXlYA5ucVPTnnztiH1tIs2qPeF0eqtHNnneYmlOBbUE3M8k9jTE0N2ZAWPZYVfxy/5xUR3VeNKD6Ppq/JlJhPvCcuidLBVIHagf+8oodVc8RC3dEArvWXUqsrgHaWHmkYKm/0N3+8rbmD1IR9I6r5XRut/EHyZ4bUK5F/stPs0nxQ6It/p+aoytkMwhmV3sEvxuEgGeN7f2lQz0dXJpt4Tti3yhcwV/enDbBm8/37UGAHrYLitSPxhnSIqQF1Aqxud80Pi8tMYZDcJKpocShz+8iU6GeLqXGdTb1Aw9egRIqzhNB9YX4VFnPG/jplV3sDYDVvC6hRoQPPvnRq6Jz6HQQw1akZ+v16ZndvBLtkdxeeBt4kjUdHh2Cj2uYYkcWsMXTV7WCamyrNAA46NmEdqdfnk/NqH1YwyMjDNDao0s955LNzjPt4HBQauwSUbCoxhQV7M8l+atP1b/5++PPYK150eDpWwSW+hbdzemrWvjAUYfVZiLyaUr7yaJTCt3kcKDBJSx6uuC/ehaHz2F+HywwZbFbwp8/jry2X/jWIupSf0Jvk3/BOHbjTVVepUFk4W32wi9PrPakXraEQT4VY51oawAKMrXTzRc/lyH+1Y/QankfdE0bEwaS7tGocibw3V6a7pdvY32p981T9FXhYSBbjPVLkPF2FE8/fkSb4sp8ZnEiwFMxtH/j9Vc/YcEjwb/xHCPzXcDT83nHu6mr+DQPsvfzo9RCSI8EUUhucCPOEqo/j8EaLRBKWhXUGRFt/K5oDnYMLHkr3W57wxLb1r3DTf3qsfn6EM79w2DCS77O6FL/q5h/12cti5WWbm/ao5/Dg3GX95VsYpTOffTn5y+qr2JXeJfV6PASaW4GAU2VNgPTdL/roAsrgg/0AXjfN6hVlvFDYjOLfPrxzdrd3fEyn8HgCW8Cpzh9EPlkqZzK1W5Ql7wD73XHtdpfvU+zuj35eNuSD8934WoSPFjo5+/ZJd668NITC1vL+P/l3amfbfHCH5n4m6/Z1IbYs4ymYtZo2yBGTk7tz+ZijSJrV1B9NgkN5IvY8803PMEuOd7R+m0nS/4EU6ipsU02Y3K0/uov7Hk54MDd2Fbnr59IXfJcejDv66y3op0Mqv1QYx2IAZ/DWk805e5zMilxaIkq36rAtAIXXyL3bg3iCDqgJqsJTYseo+mrhxB0jw32t/CdDaKSORCEZY0NK5kjrrR2Che+xwffrsGff1a3tEGTbYfRL69QfvWBQ/LuMmL6Pvnp7X/rD0u98qf3Fj1WWDOOBgT7p4jQHKHZog3du9pSb8W77RT6XLi5OpwO1+q3HrNyqR+D5Hz94mBwTxlbnh/+6qE+UE2+5NEODK5RSf/qxd5VuUGT3Bo0V5YXkeJ6mqGzCTp8GJRNNUGrs6F8fsiIpYoajV328MBSP0U8mG0uVeoYAG2TH/CSXwP2zVmqLfoDbxtb9qdppSZwx9uYun79BtP20rTAfpXBon9W1netyy74+XUr842MnfdKAxd/v5RBa7/VtlOugq21I3O6KnrOOJP+15YC5b+3FBhwjol02LvW3H9BA7ZSb1KXVmr0WUudDmMpl8kUVAInr5YSaDZMoIkevKsple8MNvRiUL/66hFjRzlQrVu9OszGu+FsjRtbjpns4t1TuAJW6G0KLu/xRd2z/s6+B2u3grrzkPDetXnVn+7PAEYhX9Ot97Ii9nQTG17TW4ekY2Rk/GS9VSjnWUGA8LxYo17ppvbR6wA7XTRZw3Pl6UCmxhYx621Eok1wDOlxfcf7bLZ81pg7E6LTo0RiG8OKpj70YFZt9tTb70+cfsJjC8UUlvhU3Ek/CywXQKAeWvK+H3HEjeswgHI55B1YimBN9qFI4DgmG6I2EQDUW7cq5Dz6YjuUXhFfBZoDhyR2abgHzGKiUxfwI60TMl0NvWIX/rjDmj85gUqdRNQZJ6ghTga6D9PG53Kv5dDX9ZjG5+cxYuZ4jeF7ogci9Pjh950c1Zo5BTbGG0fsWbHscsGylxHpMMt+vgYrArQPm/Hu3R8Bf3nfAdbNs8IYhIgz5zK10NveMMX1XeiJf/xA8NgXJr2nt0PG0od3B5KpmfToSZL/voirHO4A8Im0u3+jsX7aCVAE54atrDvzQW/vBIqm2+Lwlao9H6cjgteanw/18rxtY+50+N1xRtT+4mXk8ShSWE7SGgdzfIrY7/OnzHq8i2vJYkfoCfBrHnRsTTXwp/h+leBKCSbqLTOC6quzDo9N3eHgVIkRzcHR1B4K2WDryHN/ol2NYO9saurMH6uf4gMsYHQ2FWxq9zwaC2ufgsT6ajQQb5pFi6QYNOdwh9iqP2nFBBsheLIalcCz983YQzncoJsqGTaP8xgxL/NDsJmyI/oisah4fqwdWCJToKj7XK0p273vsLfVPZKsE7PmIEYhPMXoifeitFyUPF0RSE06IXV3F/yWK6qnxvOmwjsVOmDzMYRYOT/Fmfq7T251sWMUGpnTgOqVePbn/Pp04EY0GxxsUp0z63VL1M1RMqg9f9VsOrWpBLPjaY9QnVlgPgRpDYU8eVBddLqIv6pMh/knGcjGONaAbeFrtc7Hl0Ht7anjY3VvTHihlU/xiB+8V0g2w51PEup4Zex/rTlsNfPKasIyswfvQ+zXQJNvF6o7feA3HumaH34sJb+4n+8c3NRICi18rC7Un6cXQmBZ/wR2+hN038f+BF3dc7DLx6iaoisvoJUHEfXULqv4+x62MG1eAGP9lUedvd4up6zgjPOH0fTUfc0rbTkMjs33OgLj/tuHkCvPFTVm8O6nBQ9Ap99vqNgD5i/4A+FDSwJsm0FhUYiWWyZqIyIWiTcW3WtmDXVNOWPne834XD93ppJ98pwMfjRFLGFrDyCtTMgQOioY7+nXVuIojPAuz0YwJ+eb91v/iMPnq5r1eExBOLMCu3apVIN+Xd+g+K132DO5bYmNmq2ALeUHeoBJnI2q/b3D1kch4mndR2/D2abq3mMezhxb5nWJFROu8dVB0vypqqG2VB2KcL9D629h+XNyPnmQPKqBzCRqIvaJvBb22WDhW37bAbHIZqINSeLSw8yMSpKjfQ5fn0BF7PpsKkKOWgNF+TUjadApHwth0OF+1cTY/66xJbbPzYKXq5LaJ/kREZaoAcDqTiIaiz7+tEGmC4sC+dSS2m9Fza5NQCbcCY3r/aknDkcdwI9tg83TYPZcv6AU7tZFQXenVK/EPtVOKtSXW2YG4FvMruQWhGevp7rx0SpKV1ahHZumo/asd9mCDwIcNXin+6MhWez9NFrt6Fci1sn54c9DVNRac2cG3TVUz6SyRya8Z/IB1Rfoc9r2r5OGnWigeH1z/Wna5CVY+AIb71XlM9Z9S1iZ95puz0afUVADG6ZCU1DDOTi+mCeSA/e1v6V+jK2sjmtb0oJVXmJr2tbRfEsOObgESYOgbR36mR+OJQztl0NxIhlcPJSFqjVXd6B3wThakzSrOawPdos2t6NQsYsxS9As6if2PTRbU2QVJUzQLkC3QzT4fGtvzR/eYuSzKSKueUmgQsUn3Z5um4gRwQy0E17XaHT6kz+VRpKC+rxZ4T2ON9G8H+wTFAqQIyGUXhl31SGEffclRL0m12w6b175b/yxhT9uxVeBaIP85V2oH249f0oMrQDqR62p0X0iixn3B4G6sOuJwvaWz6q2jOGnuUzU6PtXz4KP1sCXlTKyNlcyn2LR98CAywM22RMAFip1CVfn2wcHGsEV0w1kw4UfUTONJPtyTy5g2K/eZHKGO+fW4T2A4GJYFB0ezCcL3oHDrJ6wf25pNGNvrGFxngENvq+vxVztfIK5EEOczh7KWs0EM1jwjiile+TTKz+a2ll7frCPT3o15St70N72LiWa+UoBkxuZqfXNkSniYsHnkTAExxAe8GHrDoCSEqhqdwljfBDgxZp1AHUoytWMzX44RaQ/miFY76UE+8/VAwwR8wVorz4a9ey10tMoF8s//k83mwBMLeMhwHvFIHOpfP2ZlhPSauu0wq6Z1BZf9BqYJbLHyLiZgM/NoYDfrXCmEXwavVRsuxQseop8vX6XTeeceVCk7E7z2+1U8U7OGhBLd5n6Hjr5pP/yGk6fwxvvWiBy/r6nHWyNtEESeXTRnE0PR70Z/E3ku6JkDAlUBS6kb+ylG7OXHNtMNIMyGx/fq8r6iAiXUDWcjlrVys1o239PsHlXF2yowrXvB6LKv/dLhBMeoznXRwZfsXmme3vVckbetQwPZTgi9abk/XRVuaNpn3km2mmLI25tma59iv0dpzhqer4SrAEWReDT694trZ7pL1WrSkugZqnsLXbflQx6lWmj1eER+pPSyzY8nFWTYjvQubCSBALQngTYaL20n7bNsVXOxSPFrjucOM+7xw1+dxOjdjC0FlsXXwIXPELqLSQV820WwnNsjxQf91a28UsS/vCdTJv6XLFNlAtAetyW3vFaaTElze6gPOIbWbH4wtnD29tgOlohUld+zZndkxjUN1tGQLwO0XheXzyYh8VMlDBtLCY+zwLoL489RcfPNyNzVZfqj0/217Pbs5fwjeHqon1Ifp7MXlzwQ94ABBBHtpWJ3JNLuPOHhJ5++gZlqwZsH+EO49x581kfcwKNwaV0575aMCu9yoAqF3vqCbmT/fBHw6uEEWHd3Pmk8HEGbrLSMe72kc+duxSDPBl35Mv2lc+tza2Dk3AQseU/aMZ7VZGhV+k2Rd/V3p/Rp0XQ6Z4BWtPDqx98m52Ud0w0QrAuZvWhy1RY7NMQO2qxqfgBKTWUfalAAPJvX//WN22ChO41eu6lSNxK8CbhmJqnoay+g1mGcBjKB3ZNUeWsvlcJXLWfgNrrnWOJ+29/grvXA2K0qUFFvg8j1J5zk2BLPrvR5O+OIYzSDmHrNPJskvxe+vv/hQ+shb9CeFc3MnWHB+X88zUhANviSnW0/WZMuG8KOGieSbdJzap5ezvHMHq3Od59Rd/nINjPcG6tNfXoy6r4sShKKB84IL3wvPgdnmAAehJZBJzKuifZWk1hfRZXdFu/X2AmxU2Gj7M6ElGGRiWOW7354TnG6XWXCbfoO0Pf0CjhtgR6ZnTABJdqdvCebuNovtYlUw7ke8GhElb9NNFWgFYfVPjnD+l9cG9g0ato7aWSz2pLNaG3Tgk2ACF8ls2DBH765qltTE7090uH1pQqeHeITxZXy5iBq5iqZNW/ULZZ/BhY+BnrmhL1fK95zY//6Z1vLv0UyECGipO/Cbj4QsWQ8FHB7/n89v4F3Fx6DU59/sTO5SlVkzCK0o8fkDYzo5far36Cd/I44O2N7Pm0q0kHtqYk462+nEo7KkcJCjfqEknv79mcy7IO8K1sqN5vFYuuAtEBrzDTqYl9JeIHPT6pH8sPyDxVXtQuekOFIbNw1t73QOCnqgQ/veq/gjefyvata7N7p9js9qM1v1x90D4k0PGlPb352KYGhAdhMyLV5LZf78kGwsptFexPmFvD20kTiF/xC+NGodYMt88cvt9xSU/GuwGkvZUQOtp3wsjUWn9i1qOB1TPn9JBgt+LnnkpKcMwjvJOfQ0ZtgxAQu6JFdxeDVfPLdQd4421MhuhTgSnykwBo0UvG1rdfLpbeTDOUgnlAclJ1Fbt+kjvw4rNKXGEqo3nRU2DYDhXdX4VnxInnNepFujhEABvT2izzV5tt8Ub96+z27S36MrAvKoYDwZh8dt91DK6g4CCWQcOaormW4M7dGYt+sjMCB+KoV6NhCJa7HnSyGjpaXZcutUZRz3oAkAN2hjzQhyf6EesiDQIje3nULZsL57u90UFyWw3UFL6i1Z1PXNAub/oir9XqBD58s3fB3gTgz89MuBBV2LxfFzLr5qufV+mUat939qZGOCKLrqXOhEAcEbbOuV7R1yTHYNF71Ezdu8+7Y7CCb6NMMRq8Vd8fPp388yP44NMlEh5PEnBZArAvf8NsukX1He4v8428kKNa9DWxBLoJ1OmJPTNAz74rgKO7EtFrU597LvSeB64P7UYtdS55rfLeAc+5TvDulBb9wLpXCW6VSbGewZdFr+h2h+rjEeMdyLSeb1zZU+pIrrAZy6k/R2PoaT+/5366JmOha8jadm8dCG+8B5isOe3AyltfFn7ZL/jxmuF6NAE9DPsDZ4qp5+CwPkHsirc5GrrlCMX82nRo2jE/6o5tVKqn8O0h6bBvfbIWDBNe7tDHwdMwfPK0AuePT4M9G/z2vitnANfjSIOn8bLmxM5L1RcnhTqbkFcE7FsGcwUMRFQyORvl73UG/FFYVH8vjb6iuRbgjXcxxXRIs1k2txK8OO4RHZ1D43exsy/AN72eEdU2JmD6dXNT87typ9h4B1zMCHTAgqeIf2xuTe0OJSreAwMH4u3hs9X2ZEP9VfY0cIdHPz3iJ4OTnvU0WPwss/smhopzfxM1ccRsri/XBC7+j+7pVoi6b3DoIHQSjr2F38dsN+YQj9Qn6/Wt9bnmJTNQ6OaJgFK9+7GJtjF8g2JD//Bx/ZAJUAT79tOz/rD/mCeIqt0Ob13bBYNmAgZL2YhxX74nwKhUFHBV3jZIE+DGGm5fyED2uef4okKH8+o9xTDZyRt68KneTyy+Ijh+3JK6U6hY5KyadzjdBJVeKlsDDH4GBxpydSOMwaPP9Xc1wEV/493aKfzZ9AMCT7Vg46PQ2tnshkIH2wAOQPG/k+5T57XOq/EwQBk+lGFDAzMhfPEfIVQujoedsTpbY3KaPFjqbxF9DAaqcVYEAT4G8kFKsq2rwQ9GCBb+RbJFmT+Bp2KDUriusTfae58Z1nADBDUGInLbRQzFuqqdL8Rc9LJtbc6wumv2fIjofhrciEnqmMNC1gqsU3yKmADTO/j9/pPxdjgLT2cZRK9rjZp3Z1hTp70bwCzJp/oQvXyqlncGL+54pHs2Rz7/fL0V2DbWg/AtY2C4fYVZy5Ze9yn7fC0e4kGGXWTdsHGJDb6pr2oCtVfzoM6gvq1etokEN9f1hAqci9niFwtomrBDdaGQfp7nvQSjcFqT1yV+gUkYNQk4V/GDNDDa1kw6Iv/lXYu/4PP5dfQgv6qEusVey/jkibKWqrOI3X3jWtwvmxDqr6LHzqvYAdJAAYJUnxPyXj0bTurnTofCbXRpDItTNNEiDKD49DbUkC9Pi59hlcNyhb+/fLOfwxUpQenmNhGGx9ZixskgQO+TM/bXoW2x0ziWcH2/JmT9/Pr+RIsUwQEXB6p3jRmR28dwtEf6HBGvP3Lf4eyLYBO4d+pjEPbDsl7BcRNgmnilYI1dYC55Thzg7SV/L11CtiVc8gZ8v8ZmP1WWQMCSh+F9elR9xo4Mact8onruSv24EUOmxsWpItKiH+aFH+Bmuh7/8GWwT5r+p+dRXvtAkNedA/NPPBAw4chnzDqp0Ez2mHp+c8hUCrpShRy22HMs19/4N7mG4g1oeMnvrJ/eBTTjDv3Lm+Dnmv7l0XYb9T/8SCDWdxci75RvND/eiQ1Xq+lFd+OWWiwJQw+qwYbifZSzfi57x/zxN7Y+dmRNr42XgHMnf6jRPBTO7Ip10H6aI93hKej5Q54H6BG+x+ahFfzBf19CmHqNjg+nLY0WvG+hFlUyxRhk0bxXvzX8bqUzxrJnZ2OKPhJwQkOjhtDW0dinYvjjO+oc4RRNX35sYOjO+uJ356gTLVlQ33nxQXddM/nkGN9EBdxD2FE2n35c/KiGBnUibPFD89YYlpNFMfrpS4vm4GoCX+TKDz9+eJj88PnHVxGx4CeBLbmJS31hmw0CTHMor7sOH/rt2uKbKPCAqZwFHEh5XzGySgLwyyPtZT7zx2dj//ErPe6XxmRHVQVLHkTW5zmK5nSfeb/8hhrq2eRCpF4kiDaJQSR3jcBU9VYMUVjullvVqj//Ax/+84Fkpfb7Sa9cHf7y6b0u4J5B/ZHDByYXfHDRpiLuSz7BzMsRXvJTazNZLoIrwx/JvPB/+cuPffqu8M5ZWRH7yiSES96ChoU/BUzTEgwtcJHS3e1I2JXbFk7QtqkfGVnU//zEot9pNs9yJhR6cYOPUtXQdC02EX8pjQnJ4zXgIA4Fn5RKH8NpZTzpXjY31p8f2RAhJOxgqPyz6F9oNesvWoMQgUle1zMwbLqcyk1QNOSjk2qs5NLiP1793MupDMlnBamBv+toNla3BLKPyaj5Ka/WcNWxAD91mmD3e3lb/OfXF/+Lf/51IvheQ3Lcm9RTDb9nOagIjK/3Fifarq/6XbhJgPqRawKvsVn9jT/bdGfSNuzoT7x/llCm1hZNmXWvpvh+lOABOzu6vWiwnydaldq6kRrSsfjgj56trtQaf1ui6auoYltiL428gjv+5RfTdZ/mP71Kt2PqW2/ndmthpnc13kVgC6bhy1RtqQ9hZxpRRnZivVJ+fsOdwqs/BV1eg2Lti0QE8okPO26coCMWBjW0bKyGq3xyQC+TiG6Fuc1mLclscNgdZLr4F0BNf5eC2gpXNPgIXjaZbk/U5X3Sw9YNOBuzUNZkU5dQJZI4m6/+dAfi+3yghwzufIG2VgBdOp6xfvQFa945Ract+QPiU535wutwG358TWTZaLLxekSesvhbAvCpqFjtfwgM5XNIUTwKfr3R/Blkam8RvviFRc/PoIQntOjzIpuM8a7Da+wzsmloERFLUFooQn9HrgIcMrZunzew5F/Yw6yppvP66SqLfqA5nK1qcyzaEtbd8CCF6HjRuKxP6MSnDQF9KUSz0H5dRa2PmCKfHSNm3M8D3Eb3Bz4vfk/64eNSn6P25Ig+3dfHk2Y8vedSH6ws0n7dEOQv90LW3Z5b5IF9R/3p4zQL1Oq70ZwcrkN9oDenXAE6Ko4M3G+lYys/fsFn/WDkp7+pvW4g58v6VRf/iA+bpTH7osdhvlkdkfooThWHWp3CCTo2WS/5EO+O9goueQmZ8PeZLXnSAEfPO2Fjma8DedfqT0/iPMsNX1zWAzhPjvarX/hLffX2h19fS1Utttrelny6LqjegOefPodWo32RqL2nvvvlvcoTq0R7mhMfNvXpDiVpCrCx1Cd/8+GnN3AUTQafW6ZB0F1OMVGQqPfMPokmPN8ik0zG/lLNz+5ENGvzRmQzru1oU45Uh7e7cMUHQ3bBfC83M0idVY/W5rP05yVfBPKpzf7y+aWePMPOaSmOJa+qpqBLapBX4wWf+XZf8a+ohVD15BhnDzOoJP/4WUHx2+yw9xvPatV1oBSy9R8esa6MTnCpZyIlmy2LH5WrBCPv/UXwWWz4sPG/rjatrCch1SEDY3AcQ/W1EZ7USG5D/yq6UIfcsgWkRa3QU+Up5WAeQgX7c/Tq/+rRthtwetw/Op8vN5r/6qPUfG9X1TKfTnBZf2Tqe6OSWkNp1RA23pLv9Na8WX9yKPcZQ+uNI1bTA5BU1d+ujs33Nl/4WR1gQpMEe3qy78VOG5ufPkCC5Fn9pPTMAbfdWqV6nMnWNHxlWf1EbCLqPH2qHx+q0NwpdEtAmFF8cGrVEUuDmkt9fpjDA4L/Z0uB+t9bChKfWBQXrQDeqwsIYa31NuL7s+Nz27sI0M4KRLHfrsEwVv4NnJM6oicvNCLuP62/71OPH6yIfkCgAv+xeaKaa28+PSPdVHPkZNhUn04vueFy0dSUBjjvx202B6u9DLvjhlGfekZU31Mlhbc2k6jtSbuMMg4InKH4wPtSMnvWf0akFkPo0tgiej97iZTAMe1mstK9LuOOsWNQ3aU1WUfWsyfr7Aohc68V+vv8tQslTRj2H4yLNuaDW44lrFCs0uAzX6rZ+Aw6RGn1wf60pj6TiyKHPkMtEe2LC6icP2ewfoAQH8wE8/HeCzfQ01rEGIMUTOMLSGoqog+S5rVb8RGzG/TVi4oY8Do+KYUkQz84ZTQIql3Ez/olhNDnF2Rd9xLvJFBB7ew9U8IzeYjopy8aqMenN1knWxLxnXRs4c2RZopfytOfY/x2NUEOS2zYe2QRLF0E6K00iM3zpPg02R5KiObkRU1K1xaZ9g8ZYrch2FAxriYj/uqQD2pN9/apq+ZY1wXoYGBQR9rRjE8uiuF697VoVtxuPtltvkh17HWPVpG+r5iwywLgJD5G6kRTa/bMfobW0Pb4bjoyICJKG3iXkEWxVJSc+vwhwOUeYfrY5lI/H9YfGSZKauJ4nb6rSV92zU8vR0fMOfNqyss6hqvicMLoEW58otWlCR/Op6JbuF5b08lrc3ictyeMX8ramo9218HLxTGwCzcdmMqSzfCTMJfqcnbOJu2t1IChU4h/85lw9roDd/u44p3lzBHPoCGA4XTJiXw2pOqLq7sAX829xBa8KhbZbN0STvAmEbFsP3xyLCLDC9cg3suCC3gHrol6p/sJmyhRItqBY6zl6YFQfOv1iB6MotVEQbBxqBmfiCXCt4GZiRgZfE30uQazENxbpcb+StfBZj8aNewZu+Hl/fTzyry6kL1MBd3yYteLfTIlkHN3ph5ohIi8pm0Buseqw47nV/68PfsqFFYlJcKyXkbP4jF8TseejL6pcP4t00Kt745OVkYW93M9HVdrQTv71Mh3gjWpiS5pAfti7Ja6UjH1kt7grb1K+JDGklV30amFZmYWdNckcTV8xaqE+/Wg0K01JRVXP8IJsm5eekunVibeikkFhZRleOsHUjaTVRTDVllfKDb6vur8QD9p/uVzokGhdf53m2S5mqeYUA8GTTWTTmegLmOEBsExq9kNSwdujpODk6tRVp+ddO0gym8xtpTjnA3I0WJ4N56cGo5c9eNOlhnUruWD2tRWOf3hm/roJkRNKPJxsO0ZGvvbmRrJeozYfD6WMFl3mNrPqvK/guO38FmoPtWlzcTZ1V569boNQdoqGsG4ig4maPARY33/uGVMfJsnuG8jl3p3u7em4hqf4LPmIZE/mzNgr+fJ0RwuIoyi1Y1Pdn1kslnmJ2puteUi1NINIXmjGHvRdsf/5jd2a4IDqb1Y7JwVM5ROpUVGZLv9fF9tUhW9JYfAV1j5zN8EJWi+zh7vrpep6gIlauFHKRneJdgDbXh2HXi6DR+qX9S2mnTfLmHvd18iIrS1fngGC1TvsXsKXDBzW7BB2g4BTl5jUAmn7B7DeyQBUrARVqR8fQNYa1+bHmLj4U/v+VUAxRNNJEjPW8+qxDTh+QU86sBjzUdcxRJsSkvGfi4lfdsyLYTP6DNQ17dLa3LVfIbYKrfY72oc8ftVhmDXrlYU/fBHD+42bJTnl8itR/05CzSmmJsSUOvttRU7FWYNzrJ/Qdr8Fq1WBbsQOuNbp1i2m4y/BdaB8P1i2CxeRTVubl0Hc2Rn1Ovnquet/b0DY/MQKPLfe8CrZlRhuZzidcpVwsnBZIEGOhRhz4I0Y9tV6UEz3Ho0gHNQzdyGzm89YCvwOB+V9+gBVywLBN564E/eHXrwEakm3T26rppRppjwuLfvNIX1EfSXEjZgsw17utNmxyJv7yRAZ/zoeLt6eNn0sMUTDJ62h5ii6L30OT8SGG5UGeMo1Kuxe31u0GwuF+z0mxcffuOFoB1hw5GtXmJ3867tyeuMLUN1oo36gSdglvcTthXBzFilGa4WmtzFh63/qBhyxAS+vf2TxNLMq6kYdAG6d+DhnTY3/tiEYQdfmhxRw6oA787jHcFuXRE00bXpzz8+XsVyRkNOfWvadGgFNiXsKF74umWz4MKpOEKkkRP0p+M5KUGj5wJGcT1a3zWDNjx9sIlEIRJ9/pinGeaG9sKOyayIuGFng4WfCJd115I+g+wCMTM8VC1/82qlD9r5pXgEGGzP+cFoO9XhG4SdY1OCyZxT5+/9us/c5pO2mlN4skIJx7wbQLfzuaAt+oes58MezKtOCn94S4NA0iO+jWACi+HkEhUGTj+rX19Qd942w/49Nq1JUwMXCnac4Ou7D6PljhcBaF+gYSv13xXvx0iHVDYtasdu1fP52EkwO3gORfajymbh6rTqOztbdBf2n37+8dFPrwRRP/J5Cy0TfkIlQ5JujPxL+jSGn/EqUqy03571Q3aHWTUJFJ3GsOLRy/TUSvtoiI7xik+fo9QCWwkO2MnfW8C0z96F0ee0x4fzc2mGrPkzPPWyj8P4YHAW1bIEVNGpsDFV2154tqUHf+thef/L+bH9CTrt0hvU8CzAADsizTMdk/Ty3u7FxxVLMN8JiABxJ/JWWlk29KllETbpYjWlnQGB8exKqlftK5sl0EN4iK4b7OixA3htn01tjOo90u6qazHnfgzho0gf+PZqUTQeByUGyzYzasnRyx/use/B60lt6G431Fn75pPzh0fm9+D105n0DOJuPy+9x4/VhL27rrKXrmD93px4217gHdi9QigOX741d8HhBCEQcrzdnm/WsLp6AnSFBBK4rP9JMl6CZvNzQfXk/sim+CsWcPn92Mhvo0WtQ2HDnPZParj3jzW/t3WteZKOcOzvi2gc6OxB3zhv8d7fyRZvR9SAXlUGUuwfatSf7pEK5HXhY5dJirXwxemnDwicz7k1uo0dQFcsCnqP+gMYSbPskrYrgm2L6NVU6FEO8Xu3J3CyOWCcnGIYl+2OGnhpBDF5Yw7mvlcITI+6Lx7SWwKJKQakja13xl58aEH8GRjePmy7IhE4lVo6ziJSzrVTTZ3G7trNmPcL/p4tuoejDHQZTWTeeCtAHm600jr/U6KVMLg9kbDUQG/n9eQraUE2wUCe5ViWY2psb3I09Km7mCz3svBXx//0xk//msf+Zf3WB1zvegttlvc72sFqBXX6yehhNCaw6CcPBrvuuugTqWLwMXTASm75n77jgntialpuntT6PoyePhXHhAX8ttiKgjJb9CTTbqf9FwnBreNcQeAOvJ3b00MX2P6ChxL07z2g7hzXEX9kCYQLH//hIdswm8Gt/AwpHj8XwL+TIKl6wXUkkv2z4tKHCuBMTJuI9bOOejNNvB//U+/z9KrZM6v5N5+JKE56NqSqJoHzIBXUyE5NNj/cbPXT4/RQnz+An1wj1sxML7BXXGxLWNYrfM1Qw/jTWdmkY3WGj0Bk1LW+ZcbM1YOA6Sln+FGYhDNRIDVAk6vhu9htAfPLaQUWPU/ULk6j+Vu1NigKH2EH1YJP801rQle/MfrzM8y6BwJ85EaMdx66+rNf3CT40w8X/XIHDOWhB6/6Kyeb6AB9HsiBA7rKWBr3PJt+ko7IBXYJdfqEj8vSO3iONU8BERGkp1ox85I0MMLSBdvbU+3Pkn4L5U5qdOw2Td8PK1s+wc64h0g4rIg/NbLG4KVMZex+MyWao/I4wGblzjhQQWjNmVy5kFmJii21vPfzx/AYqO0OU3MsrP57+Kw6+BtvLNBVX8+1JoHnkzTYmddtRaWOOdAuVzreitOyX7NzZ7gbux2q/X2RTRrKGXw3XxVblzeP5vx1Z3De6gF+Dsmhp4XZNdCX7iIOFn3LGT3cocf81+InrtFkJtiEimjdcdC8xmj+5ooEYe4+6fE3v0YkC7BslD32v9HWp5++beCBlhPdwfjGuSg23m99Y3zri2j5fTMsuW7TMIqlil/HjQ2zx6vB6CXtrUntshQu6x99dlc/Ys79eoI7P1zjPdo3nONCIyBaekfqu0bjrDAq/ccH5Dpd9z4ffdOFBspXeLvoSVHwFBXeW1CTPz3wmrYljLPgjHVsaP28m+cVODz2X3xglt5LyezlAG/uRxwHtw5MnSbn8FYXE9V9JeHTV4hWcFXgE2JiRPrB2qkhdNbQpaf++/H56ubdFDYHD3RAF6MfrzvFgTxMvZ++iahHaA1947Ily/yw6GC8O3heXWvs2eVr2WLjL72ymgxxWW997ldKAfdqF1LHp03GpC8r4fwqP3g322PU0itPgHSMnzgXtRn0u+3KhDrcSeQtKzuLVYlnwv19dVy+f4jYrTRy8HbXAOuTfu5Z3CSSchbCE82kU2vNPz/3+/uZT2k2re+v4vd98uO771yRUJVH30IS1a6cKhUywdHCFH3GPMu+NO1naGclQhvHNSxxvz7oMGlRjnfVywHMufQm1KdVTR37loOfHtaWvIEadW32PAVaCtP1RSH9cRP1DJnY+eNPY35JYM6W3r/G4Gp063YGn5X6XEP67gBiBxZl3IyoDBV16eUJv8yarixB8H7qL0jbqdxn13RYAXgy3kgotxfAvvuVB3ef6UaRsH71f/nM3iE2PmRJXU1YMm6wHXNIl/VZkSMLdW3Jh6h+St7RIO8PnbLoO3oAuW5Nynt0gahNM3V0YwTDpalO8LKfSlSqT6caF38LLbQaqEUNG0zm+BJg61g+3Rmia23sl9qB27ZHSJmuX2teF24AXpvWIevFz/e29xTAZ8xEirKr2s8DTwX4euqM5mfxEjH4qDu4j9ATH5oNzCbBsbqfX8Zey87WxFOGtNG8vVFI94o15FKbwxhvb9RispHN+KASeCwAofrW/mZzs2kQ/LaSulz8rWfsoL9sdTI/GrUN7R6Rvabd4f30vWBvZ0v+FLaWrS1+DBe+IgF+PG1SsORD6D3I52x2a9gBY/MUsPFeTpltxrEDyRjtSJfzov8uehCCoIypKQArW/KK+qfnaNCpq+xP/6Dr6BPFE57+THvCQCnbI1K2VQyIrqYNWJ4fm2Q6gOntCB7A1/lE3eStgNHyQwgB2aV0Ty63bLZmUqjxhzAcjHC0htzjDhTmZXyxXPL53g3LltuThPE6CABNttsSaAfTREZ/Zf58e3YxsGwrwfr6UQE+OJkK1bRxybshT86QubNBKlgWUr6rbzQ5XaPD8vm8YIdVg8UOo3BXhu+EMbq5LGLeXnGhF+CY4st3qngHjgk4NUaOt5Uy+2MMSwd6pLn/6aON5q9bKOIhwtbwbrPvyStyTVnDmdqFMFbsEzkICl5d0Uy5Ec7kor3D3Fi/sNnDwmL2+5vA21r8YIw60rfe1lShmFke1Tn1fcm5zq72cueK7ndG4c/v69r76QWq6xPLpoeYqpAEzYrAEY7+ANh1ucXjKmLPnDT/Y5z2Mhwr7YveU/758xMaf60R1rf2PpLoaVzBBL9dsgqPsT/nBxPBEGovjJp9afFGSlp4FZ4dRbrnZfRoZY4qanymBh2+1pJfzFppey/yxk+a8fkt3uAhvxxIs171/ZLveb/1RhJ1NLJhwU/NF6Mj1Z9nN5tfdxVCrRZjauXjzZqMFjTQWa9c7DVIjzYe+TQwnAWMVi/pa407mTHAC96htdLuK2mXFzeg3p8HUs/XspqulicBasoRPmfFy2eXl6jDTfgusf3aOb04Q+rAG73vqH3oRet7iGobOGh8UD/xhmo+ploANcmUkbBOtz2fk6MDosxH1HbCcybW5kFVf/5yHaDZ+jZh2v35B0c3DkCmVxDDakQPrBN/B4SxslKAzOiGnafErFnOjQR23+OL/vzzrNSPGo6FXdPjgr+bCypNWI3Bg/qP9xCN6/u3gJ9tU2M8qSGfgvX1DtVWazHelR/wNx+GnfkhXanIfQunTbA0PjJoOMqIL35JBxwHbyK756CaT/tQBbvj6/DTt9GUoyuD2/17JNKiZyaiCh1Y8h1qa6oaLe+jhuFGlvHeGtJsSCNpgOdtSul2c66q4eHYAtyMqk6NQEytb3YCDfzq+I02BDY9o+etA92k0+geJI+MX7dXCKNN/0Wz7gz+8MuHhvTdU1T3CeffCUpQsJOEkM8tiBb+v6vO0W6ou3JFn4hl7/7Gg6JLVFbzyjy6QHtcS4xvy1nkxe//9ApS0VMEw1TgBsKdfMLp9eNWbK/HLbiUN5nw0jT4RnxFzS8fReVvPcba1KrfY7ZHm0fX9TUydw6MPXOi7kGhnIfvCgJBu/jUwWIescMI7yCKl0Y23ewt+akrAVCfG7zLOPFZ4F88EN6Qgjbe62RxMKUzVIl0XvIjHA2yAEx4E8kZyevrOppuhaLCpZ5ClEQM+dySxAML/2Hfllnfw+p0137zN2Eh9+d0bFtY9xEk4vlb89mIjjmE67FCfMnDOA56DwandUidLFz50lo4zdqS99CfPpvco9IB0Z41JG7OVsXmsA8B6e8v8rjKy1mqTWFqc3a6Iu15v/fTcasiuP1EA2L0PvtMFripuX7s/OoNPlkl/QA35aqjDhlwP4NsW8D10xao2yh1NZWlzOAPP5b8p2L1jYVw4VPSrUhmTfG5WwG72WwxumXfjD92wQ0u83vJS1Uw8x4g2D/wiPfa7gW455g5eBayj394PUv6KQS0qE+LHn77/GAUHSTSlOKDsX33E/ZiE9Z7IlPkGE01rJ38BA9d7hJ5eb/zB8b3Xz6PddmF2bcESgMW/KDuwF4+K2s3gaI87okYbo1qovYxACpIGNYLxQebX72o/ixb+M7zK+OIlye45NcYv1EDeHFyZBUCKaeHQJEyfry8O3UlRgB9F78/R+WVQCMeAyJ/ySmbb3XawOd7JSB5YC+L4zvOAaJaSmZKnz4/sSaHB2gENE83zaJX9EBrBZWQVyDK/jRKzg02xzbFxjHz/F/eDOu7rVM/iFhE3t5NAuVLKOhhvTn64r5T79Cjs07kXx5L7WsApqeaoW7Jt74tHQlEc/zCi3+MpvFxqMFS7yMMG4++e3ZKKC95CVkZLujJ+7p2oX//AvRAtluxUBvRLz+n+x8f72R5VjfJ5h/SrqRpWRgJ/yAOKgJpjgiIrImCIt4AEQWRNWH59VO83xznNkfLKsEs/SyddDNs3O1KG1d/GUmFsGH66jfO1Z66SLthia3+fjDaR1uCSy5SYt9+aVGFjnMVl7C9ExuJXrAcqjSFSzUmRDuPx2XLc44B3m7csFidns6w6nX58Fh27HCjhbPGI+5vvf7lT7TpZN7MP/8Uo7/xSbn1CuD5uGWHgjsnw58eEYdvS/z9877QD9620JvYIaS428Ferk0K4tO1ybnT3s5wbEwV9gpW6f7KKcX0+sUlZIFzxIIWNslcbM7+Hx7/05f9qufQ5ntXyZG8WDCrk/n55/+rZ++GZu3x7UGzBI1k+lNLlvRmU3i/1JEcqbUplsGxbXTaEIfh32lJhqLx1D+/7S9/4CxdXY7gw6XDaOh5rVfvWQkjPq9V4Daq1gn2EUOkGHu8HzIUzHmQ/RtPZkegJ+v+yOQXeAdmB8cfmv1nkclhjDaUh4u+DH/4tMbTv3zWMmM9dOGqcyZxiHpEe3xaj5SqNKPSmA1oct6fWF79GmIGz0UbvcdbQKtfTJ5mfkzGc1lG8iZWHHJ35jQYgR8yWDjDJB65+cuiv+cW1vhFiH2/dZP341vwzfuLqZfusDbyC3Qk3m9PcrCVNumdvZvLj8ugYr7eLQH1NkxAfZZGxPtkTjLevTZFcaSE5LLmj6ZyQGcQxC4jWn55duO0b2MpPM8D5d9D37EIyfEfXjFv75w0Xtm1oTi2Y8d0aljFpDkRQK3vfn98TCsfltLKa74ab/RlDkZFsLJ/fNe4JmM3qlSMAL7lZc3/2d34qlsbhtwo2XFwaEL/+O6KZ1Rku283GYnVQyehHiNXuQesjrYqFFx0YJlUlGgK9mgL9KqMzHrI+27R1irK/8+RAvS/jxR8ttsPO27WPjy3eLNFThWqzBxkKZnJw9Ghad975n6NZzF3fV+hTUC2zLo9OI1yxymC0u6OzJ3m0pkzoQshyZcTnun1sOyUww5LnbHb462n2N204BijWfV6ulxNWkzm2gvVO3YW3Q/6gHr9KW4hySpgJyNK0EJP6Si9W9pjRJHn9F6TUEh+fsGMb3tNlmuX9eiuhuXae97U+l6Uc7hXVKBb/ndatnfN0cHryQ9v4/SDpqMeh8hI2jc55U6kDXmfztDcwoqdjrWtLTd7usLmwc7EWtzYmazSUqSXC0+m2X2oTfqpMgErX6Ayn72DUT40BqqoNGIu9alDlaCu4AfaQIwrTrU53EkGuL/5wjxUGsF+9rwe9estMq32NWfo798IHXe6Rk6Brgaz88pKsG90xGJ0ipNxI7o5VNeDwrzO+xT996Lq0uDhllni8HOW3eEWyebrDsQ84E/QLwtnQpd+QuK1t2cyph9xht/8tplV1T+nv/rEBfN1A3LA3pS03FGMgPQ6R/mb8Q7oeNMAXbAQs0QnSTKVdBKgcesNu7uhEdC+Oc9ywjiLbvMdJJRqnx7UxOAJXu7DQuXC5oDmyoncXP281LH2wiBSbmBkc7XQ7A2lin6bXGUX5fBLpnx3jMRNLQTEtMi8LHc+CpE2ijGue3Orje8cu1K2Pe+ZKZd9Mv4uIQZ7N81eO381bYuv8whxUNuYm9xtMMe3nJdJI21pftn/kvGTzhEczqbO/N3MUO2RG8AgBz0h4Zk43fOXX2GvexUzQ9Ms9sHLP8vf21dg1i+K0CC/IgHEb2YzPU5VxLPqYiD5TQtyXP/fmBWeAMMr3uJJfZy15fWDDOAYFXRWpGAZ96c8BTsv3/Sj+VAwdepzmC/xegnCvwQ8r5k2fBP/TuHs7hNWtpcKkpvxIPr0VtEOFnELnR26VDb6NmiK5qnDT9wXTNET4iy/tffcJvC2BKv+pxj157RFXGHOtL9+2m4RT8YVIccf2EkQiDPKghDBPVFs5pGvou1M767DSZJrKnty4yze99JuBNe5/H3v0DKqMJTpjtBaPFjLpKXEgA0/OfhzqtnS74e2hrbmNswoXlJBO7/awgvcDwt99Os6qxtsuCeqjRva7Dt6swMD8lJ2yClbQ7RDagNB7l+Z6tLbf/dj/7lKVBKwvSzsfIygINTHtVy6SUubXkLy+R4Sq79QNKmtEiPXP84kW8qnNmrcC8NZLjxyGENlqVs11qHFJ8xIyjnJjPlrDYfDxDE3SL8B3cv7CDTcerQP0mOwu/Wdu54a5ymTcLlMlRL8W28MZ22IhrY3rlCPnM8OzmunzfGJfcA5bQD/vEbqem5hvXQ6xBoOMt7u+FdpryndqWSmN++CsbsTEzTTnJhXQIGGIDlwcn9NVTyt77vnijcG6doT/NDYEU1L141IMVRMyHBjGrviow3slHzwfiGnYNu+uhZII2wxiOfZmeYPsoHcaUvvg+4t/+KruLU2TK3DfTHRzVjKbhkABi7cO41sUg5S5mJm3IKxmPr7EEMQZy+6S8xcW+jpOsupJADx/CFeFvVb64C2WoilDzdpk5P0OUz8h6OR8ea75qj713/7xbx8DWfO/Z2P5GeImXO4kmXsh0kHvQWPPURb70Y/LnpJTxabKO70SRauaFzpRcwfXfrdsdhd3O0HHPyK8Ea/XIOlOBVY+PrVxE5SXmnd5ahEcnq6f5nxPk1oxFdphE+6Edjf/Pe/S+aKJHMNEhAidFR/PHLQh/UUKjf9Epr5jYk6+EZUkqqlm4tmCeUNVj/M8i9FMkYO6tE3Od+ZdS/3HZ1dlsHW+VbMLEoFzdkhXXsJ1zL+6crizHM1YInG9x+zk1zTRvo42/JPVCqixtJGG/DcVqDwxzM5Xe8hoi/bbSFg3YhByNdalf7OB56MhEULKou5M9oYHZTNYcWPKpi3eMyQfetHYlmR17Foo8Af3tDJgLmbHzzGQO59S/yJeAG9ha/P33ySA9rSYrpYeS+L39Qm2iWek1lZqzbsfHqjRfDtlsnuxRaVwbUnR+VMioW+/Vxe8ZE4QxA6vfier0gYPhk5TfFbGyfzZaIw/al48+t/QSc9BR9Kpj0otYNAoxvcqqgVbJWcXNFcpr94FsTpi523o9ktQ9RIsOlQTCv+IGizqF3PwMe1Qi6PbHRmdGl69BDmBx1/703yD9/KyVurRNi7ZXq4D4BhBpepn7VQ/Gbbu2hdT7jMj20xqyfhDEjKZ3IYi1Gj+Byn0OVCx7DSOkW/xm/RSuFEfPqenOVyVGKx0ez03/g0jHaZuO5PEu2w6ExdPefyrVJLcvAVVZvynRdJjWamLFSnQJvVACjyH+qZ5pervozdV0nhXcQB3umLr42uMVwh35qYPITjWast4b6FnaftyGmj1d1oE2sL9vKrmfl8/JL5sqQc4MvGwtI7lJxFmC8urPjGnLhsgp61UyznXfojj+3vo01Xa8uj/q+Rx01Ugnnx3TNUB55ndnhMkkXfW1f4ihZhpx9nFn0TLiqs/5dZdZZpIz/yGezHtQpHq4M2mL/rFqoAa0S57E9JbwkvHh6ro+V/1kYdj9aakSh1Cc3Q8HbGkia19FXiHxYO+JOM++HTyo/ZlwlZ8rroX0cIAXnpnuFCabWhq+cPuK6Qs5WPBF8hRSOqufnEVNOZi+X3e0iSvVtmylnFIZnNzhDgdax1popfpVj2TV7JgXm+0Yd6okuzCSGC6rDlyd98DDtxcmHm0ob5+lB2CzZN4x9/m2gUBhM8QIfnbs8YAXhr9PT41mA1rxnv5WQqlk/q2ugPX41SUruZLAoP0jTaDNNLvSzqnc4QamJKyOfyKuj5XFVItMsHnZcfry3zQgTIy43DjEejoe1bcgDhJQzxuLRFMGeHqwLx+60So/XCZc9ZRSrZ89gRWyuey4Q5pqKly0uyzl+wqFOZ/+0/LB3pygIkS117Sx7wJqvUgBefsYLip70K/cOzmPvmPAJ3mb4sXfGN8YbkIi4KDljO+x2ap70UAsLBlnKnL49Gf9tkMB/pgZmunQVMKF8SKsRAYHrjsKJOKq+C/W+Wifo3nl/PVMDDV8bI57Lp+sAKK9nqOsDjdfaX6Sb8ajAGviNOyjRn5hv1Cq94f6P1Gxo0I1M0IKSTS8y465z5Td4p2h1uJl4MKyhYddqE4DzbhFno4wXTpLgz9Nu3TlxUx0srs1MMn08b4WItCznxaiPA4ynURLmqB2f8e991PNkB7peEPz2GFjjryDHT+aGizrfMhscZjSsfvgTje0pCNPaJyY5qHQXj+Oh9NMfIJ9qrgmR8Xw+j/HlwEzmZxa6Y+Lo0QLSrByFG83QGKyQUmWI0svPwspatcH7o8LbuL6Z7xaAt8+Hgg3urTji8BediPn3CM3yrzZH+WnGrzdN+DtHNhIbpn2eQTN6Oi9HK55n+lsZlYuZa1cO5PZiyHeuieeXRFY1uaDBX2y1J3ou7HA4dPzHjw+qlWbDvyrQ4YPL3/Ol9RzxkR2XGLEpMtJPoTYXqjQS6ORSCszy9tkLRu+mIJdplMTXbz1bmnVQmYTRlHQvF0pamMtyy9ftuXnpVQaZtd0Svzrozxs8rh0Tvl9PNVnOC7TU3cySmY0GC4XtP5p4EKqzjS4zeeSdLk+1imKLaoJPh5mi8GuqM3kUUkOOwdxHFbYRBQEnIjHsnBjRM1rLL6XWHR7syi6mRkxR551wi1s+xunF9HvjWzsPL1cTFmKv1B+HwnLCjvwFnDKdmhMc1OhKl6R/auBH1HDqxuhDXpE0ycfXhIw034cKM325Ak3ryFXR39idmctfMWXxPVNGbT2JGCjEsxiS2bGRNYYrLfLcC+cms//YbccbDvP7fRP3j10QfqO8M7kkr5cSN53X9SsvIjYmwpphPRL3pZkKzw1UFSf0ciQvOs5iPH9sEfb43xBDYNhgKLZbgHX0+REd2GzB8HimUe6Yw4w8/vywywYwOBVHP7y8ahjxTUfeLT0zT32kxbgI7hFrKdngRH0JBXyPmQS6Hlo6X/SmYrmyvwB+eePfltaz8oAK4nC7ksBWLpHcmAcOt0TqiE0fXWHSaakB0q9MvCr7aFJHvjMybmuKNshhJHVhhCU8SnMnJWbSC308SB0+4OeS0WaRgIZviAyWG+1oI/u6My8KbaDmZZ/LHt1e8/YjreiJHtRbWqiuPGMZznxCTxH3CKiTxsPDRjWkCz2v0Mc8xWvUdO4jpEY2xdsfS1zI8vDGMuOgn8GsYZs4l+HH/FOP3YuswyWrMtPLlJ2W8jynqC2tPnKlp/vE/aMN5R/704EQdWUdjjDlmXWiOlusx/cCXt80VHz7dbHZYQswov3h+/Gw0qqSMgXzKhFj38l40z95s4YN9jWi1Xzhzl+c2XMdAIwerxYgJUZD+my8P20IwK2I7Ssc+SlmYgeCwMHhz8N6VT2Im2OumP72kz7fmz0/QqCNeQ6ifkUSOJ0davjPdVxAqwo1ofJcmDDI3Ak/fuuSyxsNtVhwlQPW1puj0apLO6B4qzK1xY3gvjck6P7lcHjYv+v2+H0VffAsVynRP2N/v7arqFoP79nfsT3+yTaLTv3hCrPw5FOzOn69Ajp+c/fF7mhsCD6XdHP/ibbJEzjGDTyoLxDRfB2es6G+GutLfdNSEPqF/+vjPT9AtT1xGZbWEw9GMWfY3f/1rP8KfX6VpyT5h6jc3YBSOPLPfVot6bfZHWPUiczcc1cZbPdny5JstURX7o1VJexOk/esU0q+RWM6IvEeELhfju/otarFTdiP95xdhB9na1r8gXSLn6MK8Tr4G001gNeJyrmbavjh0e+k5nuVX1DhMy/i2W/V5/6fvGeZ9Mekt66uC8bsRpq18e/XbeBDD4ISFBZXdbB5dCvM14SmXPX/F1Ds1B6EdCVQWrkIyJooTQfR6rUfIjJMzOUmZ779aQhmOXnIwuJwv/OlvYtUZ57S7YshhGnZ38u3JDk1+dpvBHHqVXH2DFb2pbCPQN9c38WUNF7NxllWkyYKPl9ovtMV/yCk6hoNMkXjaB+wZBi64/mlmrhKFDu+d3rw8KdOTedTEThMjd4Sp3Z6JcbBShxbaZMurPiXXNV5MkfYO0bB58nRj6l+tObbpymfyjBHNYVq/F5mObNE/EWMx3ILtDrcYvPXJf/iyxN/7FZ5F8yVEc4hGz20ZwtrrhzjC/dhtSxqs+n7h8Di8LDQS7dvCNz1d6b4KLwWTlZmXl7XG0aHZBcteufu1HOnfEY+SBksHutECftsulnjtoi0f1Yik/K4H7DGIx2V6y5wCXZtgzB+sVBsraHT4yB+TuQM5dFu+nBUwZ/G6xvvZoZu4ylCLj5jOsT0Eg9qaMVBZ4Njz9TgE/MgOvYxLJyBW5i/L6HcCD3cBqXiX3EjQnG6ogq8S/VZ/qu4WobwLMN8FhxnqFDhjvPd7KSAVxX/6aDwrDx5+WnDE32D/DnqNe7noJ6oVMaKJ69qVv6KU/7XsYIDfbekjMuXn5ZVgyREv2p//JkmV9MDt/C2c9YrNGbwG5zRslVPXDyp1EeyeXxZFfLmMjB5dlHaDyI6W9U36le9DFyoSVjmzcIYG5y1UjA2Y5w+CM8eoU5HPiyY5OP53GTU3qqCwMM/c68fuVr9UR8lHvmB2Fwxn+ON7f3r4dNg9gtlo5xHW/UnF2yNbK9f44Z9fS8Xn56M1b5lXwIy0Au/fC9NWfy8E9fqLibc/FEubG8IWJmV5ErOJ92h5v+4clBMpmWIsezRJn3MJzywLmDPxQjGpw9WFKzUEzGF+V/T+fuej7TXw6N/77dMzF0sbrHyYTec5aWelU4HO+MKM84gdlIlWiR43ohJMLyZa8Q+kb/5siCp+82L+srO93np+sVurg/MNk0yH0yHS2KWSzGR3LaQKPC6Z/vnhdLqMJkqfik4lNw2WqZyPvTTJSkyyl/dIpqnCHKzfr+uHBc3+G/kIedmekROdivY23s7IjX6Y/eHR4DUTQC2cO6K1bYd60rAtCrvxSE73X4ka921d//g1I1EtaKv/6kI4ACG3kxOjWRU5Aez3I2On7SdZlg9vCbB/HUOGH3e1mELOzaAOhDvJ2kxw5lzYp7CU2PnnZw62wOvgnJuCSvdhDvpbLdp/+MGsdb+xYhhieN15/McHl146DxgEy7QZaX8+GutaMeUR52d2Zqd8WfMFMwwaPTH9p9zQXM4dSLanWUR7T7w2unlhoH1qEKKX9aAtjT9yILjWhTmvK9Lm4uRy4su3GJ1yhpcZtpGBLghuLPHMSfvnz5r+1qerHxnsmPle/ZqZMHwrJzQcs8gAGTsO+fOnKHcUY7hwm3Tlw13QftnZhJnLGqL9gHQ9Zz969DzOAzHtvbVMjzm1QVxuKrHP80nbd/Y1A9zWjPwb3wn1MfpbL39+2tTLrAS3vAAuWdg4//RDqocZ8a7dNxhP/uEDm++DY96Wb4PhEYWxtPoJ//CS94Ze/fMbaDce/IDKsknRuf0YRGPemrK61VtY32/1I07B1tMuH7lbjB3mHNQ6w7WYS3jk+sK0tWv5aMp1LkVfU2FZQ41kPlJcghj4CnPl6phsAysrkQqpxhKKBq2QqlyCM+9umXngrtp0qeazvDWrF90uYleM8TPlYOf3N8xxtduNmAo5rPqanfhhlyxSs6Wwuw0pudq7EQ03f8ik1R+lxbeslmbFG2kdL+J2+g/NZ721YfciG7L6e8FcICWDP39NeeUUTVm8fGRleDRrPkUNFnuyAPqmCfAUFmVBNzHNIBq3lBi0sLV5d38bCFFep1yffgq6zq/sqbVKLtlh7qhry7WQdd8zhe6ydxg2FQOqSUfkkPACWmzZiKDvdk+6P9a2MzX3hw9T0njMlZdr11XvnY6+m7pj7rMm3ahxd4yS2b6u+/lSDFRzM3QzuebPr0YrnzXgsM0jFl2+lTY/zq4CK58khjotzhSRYYZVn5IjjVnyl7+QbFtRid5zeUBhezbk1T/AKz47+0k4l/LK1+nIfzEa661eQnxIlZUfnoNRJX0Mf/60Z+5Lbe53Tyx9DUEj2BrP3QihrUjvN7b+u17vhmzC/jfKjOy6TzA/XMH9yx/Skateybj6S+hRVWTNt3yW0SraGSJaF8zRCQrmZmcZ8PMzk0r2JdZGV8p5EOvnhWkWlMHkkS0GTZZ8tuqvYGRnVEN/3gx4Ph29YBbyLw+rvmDBxdO0f3j5F+91HGRouFg1hYf1uZKj1/+W792QbXT6jneSaeo1mTP/bcu+/9ky7VBdnOHZKy3wG+VKsqf6QmN66Wukl9lEDjMSlrk5HCu4qS+PrL+/sP6w52BsogOdf1rhDMbP7KE/njeYGzdfZ24SJ4TPp46Ifr00ybzqGTjzeIsBHLkYxmd4hdiG4p9/vCiGl4Pf4ZhgdpCK3iNPQMrmu5CVH2o0jrY1yIs0MC23Nlr7+mUu4n6pzo7ldEJj/9qMSFU8gx1spgWTshN6WPcvlfNX1c2zlbRgZE1NbCUpgv53vMzIciqJGd5OLab4ZlfQZTRn//T8tVYlOfz6DX4/slFbQDfqv3wiFlikOh15NFfk3O0NOV3SLlnzE+6fH0mXH7Ci440Zy3/5oQTWK0K5Wudo9dvIucKONsmXV/nP33tx0y9gCSXcXz6G6GEzO61sHTGk3v5ATkViOON37/pIasScqccnH/zId5iR/ZMkOq16dj6oSSpndWUR953kQROWuEfELH7MakItaeqjoICR7xZyMiKE6BTXMxxN1SRk9TeW10HyYc0vsMfnWBbftjdCsOp2x0687S+Lco9bqVWjN93q7T2YANr0z++kXJtF2nLFRxPW/UzWeByMy2+iYHrWzNTYHpLF/KwXWgynWPlb1i0bYvpQh2JGjokwoTE1QUGr/8euho+DkW7iKyw+z+HvdJOWeuAbCkmTDuwlVAMa9+JPB1mva7o/nd/O9Jd/+n+OFMD/PlLwk96MGTjeFyy6gYLGbfZg1mR1iFXYAkjfr5g56Vd3JuhF+u+z5SVlMD2kywjHRLmwc5d+i6Y2zBbCbfH0fniRi2nYFiMavtoXw0nmnTmaULhSQkbMD/0F0+U7UbjqlccUmZ07moVUB/8gBCx7vqxuHGQbo192czDiMsNZ8KWq0GY/TuwW4rarBUcxgeyYTZeb0SSjt9u4SBHZiRzoZV7G4/tuwk2UU6bEB8tZpHdsimf7apNrcX47Q01PPgyHvGenkNlOnzphDkwUIqL2u6Vb7t/DjFJEeEo3kVPMybum8PWUilgb/rUW7nE+SA2zA+WMADlsKCoJbfTCwFvZ49HXQ00LWhTe8W7qjsV2l75aqd5AwNz0bgbb5vnLoTegY+qs7bUhMZ8RPLU2oB+xwcn0gucWccHwYUZQ/orF/515MCtpz0z2+TjTw5t7+adXjBzCsQyolaY64mN97aU1d2gps7RCmzxLceFrSjA39BqBIyNMbHTfa/1w2pcgNfjC1GZui/GFyxEShXswfKf3blFwcYUXf2hZ4Leq1j3Oa+Hb4FnSybqdlunCWhPqQ7knVqqX3fw4pj5cZudN7OygJbNDR0PO0LNhxFzMZFBetQuH7Hpi983v3Y1Hj/Ml9VN/MSDvHUxCaJfopRhrR5jtY1le4YKBf3kpBrkxu2me0x4dgJuZ5nRusWPfTEXuFUJCbso7mPbfcygbZ6rTmE0bNEE/9cBap6I77pUnS3M5uzDdNz6uDlW6sDcIBgqzKsXo6R6X3aiyCMS6Q7ha90NzgCkH9x49MdpdeWc8XfRcMto0p8C3i9b1jevCNRE+xPu5u6QzstGHd1oodPi5u2AJJLGHhP00nNg/0ek/pl0Ct6n3xG4LCKYDiB9xmtI37VOudcY2/bTo660ScG0UtFe3tQtec16I6d2zZOQ814WXV3+YY91UZ7cgxQebyzbkUClGMADfmqCIw4k5QpOj8WlfWnBkERPVoh7q7Ws8I3K6DXRr1V2xdLfuChf3SYk9CD9nmd3Z2BwSSWGnqhqWvmB6KPff0CQOGmVt0S5iBV0dKkzByWWdH+TCXFKXuWsZ9v6F+xEFdbtnhqwdnGEsL7ZMa0VlTqso3X5ZEA+EzBbR86xE/TPbR7DuH+bW5SFYJG/yZas1P0wJ1KWgL0eY4eK+KN4Zd2OZpWasAGWSRrARJM7QVbkLk1LL5Pn62N1wNusY1vkhx4GJ2tdD71qWH86bebD9DwAAAP//pF3J1rKwtnwgB9JJwpBOehIEVJyJogIibQLk6e/i+8+dndmZu1xJ2Lt2VSXZGfzJzXULrOn+TsCuaIyxkuAMy7mOsP1A93zt6gHCPLA8Isy4SWaOfwoAHZFLJJU/Jstf/AZxielfvs1iEKrgO3QnJD0Ouj/PavaGujVhsjsd1nyOX94dnh7Bm8bn9Gjwj/uSwS1eqUpeZFhkxbwo/M7r0d5hbcIeqmnB5X67EbGqarYC24UQ5rKPtXP5ZsvvTu7gao0XHObNzpjlkvNgZahXao/Hnb+m/WkHu34psX1VporsWnKHztO7UyzZP2O94WCEanaocND5hk9Se7jAvc/nCHATl6yRu2bQck4/IoOdxCgvoR085+lCeEN/GKQZLAeSvnCxrbzlak5vkwnfw/SgzuOgG/O3WEalvNoaVVvDHub4pWdworJDtXrV2fqp6lmaJ8egl9BRh6kTVkG2juIb4xpkQyc0zwCasOXov/nl9YNAsqwvJAeNxTiJWbN8+FgZDQdHA1NKXhAGquWQ6nnlwdqfLwE855eFupmT+fO6eASE89fFgetvt2LSbw2ZEx4pvqMarB7lICwe3A4HonSpCIP3GBIONdQ+faxhqQ0xgpeeqaTc8HGMW1mAsW1QivNHmxCHv0fws3ga9s2VgVnfy618kAVuw2t76Czk3yEnqMv2eyfhDkWn/+EJNtrLkI+CVFvw9EBvsoi5zoRd6vRwYVJLbxjsGGuQu4MObT4UOfcyGbn3bEK5uE7oLx4JvJcC7OyoQ/vzz/C5uSAEBjehxrqUe4xp+3MJLSf5Ye/E9ckchnOtSLdwxBb/dME8BpGq0LI2sLHVB74TZAEc7K9LEfPjquPQJ1D8B/fAVieu1RCEeQGdLAowXpylWt0meMNTVQpYtR+PfJy67gKiU/vG2kH0jGUmbgPzLCbYVRRrINVvL8EL7RDNx4cNGMyhAEswajQUHtdkSewigHGom9ipqxEs1YN/wIdwbhE3XRJ/TXb7EYppq1FHNxy2alxugmsfYhzkbl3NEX2qMLC7gUjL1a74jZ8oW/4g4f6LqtlwK0f5AH9A0KJxtSgJKGWDKwFWtd/VX65JpENlSO+Eu1uL0V7nB4JfTeZxyHvvnN2iy6is8SfB+pJ9wJrvBemQnC4lRbLXGsQeGwLfQq1St6vSasO3+1++IRa+V6MVpNGEXz4n2IbIGOpIV6B04HcNRkYUGz/B/0lAy64rtR9IzueLey9geNoVVH2aq7/G6FjCDu5yGsYEs1l5nHZww7ct/hLGftc1g7r/faIFJksyPezsDas5mehf/WB97rR/+IO2epgsqXVLASp2X9Ilop8vesUuUP9aI+InR8zHMchUSNQdIFJdBaA//XwCU7hP/9WDJe5NAe7FdcFmMa1gToXdXe7aa06EMTkAqu+iXtkXSYlDV/hUDH1xAZzDZYeaZ38b2odflHCo2bpZdm4y9NJpBzMRX8mBTHW1psr2Ijs6qRS9UgJmrSIB/Md3JgMni5t7FjzphYn4OuoMVlaLpPSFFuL78XfK12tnz9A0/IaG8v44bPzPgxc7sqlV62GyPg+PEZ72041u8cbm6/wIwHX5fNHa34JkdYYPB/oDrLA29Yu/fEYfyVs8UjvYZck6gtyCgn2wMToexYHej58MenG0NWZdOmO+vbVa4RavosFODHxu8RwIw0YYcYDOLluF3y+AsX9QiGRLyOD2768JVzIJ2L7fUjC5p1svz/e9RxYXuhUvGqSRF+FC/8UHlZZ6hfXMGdi/Fw826+NtheP5e6FWrHzZ7EgoAlm9RPQV3nufkD1BIOL9G7YRe1ZjcwTlP76JnLues93b3kGJ2DLhWocOnUid9a9+ESWIW8CWcLcDzV4h2C2EN2CldG3hrl87pMSEABFA7r+CSZ+qVTmQNqLa55kZ7B8/ao8WdoXd4q9YszhwqMoXkTLlPLA+2K9wneX5nz6Y/R9rYaCzJ5kOi+7Pb56UEH3u01998Veg3AqYnNISa7/4mS8nWnpQeLAzUcReZl1rqT0seTqiA3Q++XIyfAv6HzJQz39cBu6hNRZUpvVDjajKjUnSOwK1/j38w//tewuwENKQXkLGMzboegFvvnDF6F2uwyI8xhkazu+Lj8FTYiwfKwfIfMZjNxH9ZFKZa4GLHdvUmyTbEOPn+w7En+WQw/T6GCwdKgglkH2J3ByWgQVXQ4IV7wMCVomA5hfjHXg+M4q+a2znjaFfCDxS6UVNsGcG+YZQAFryqimaLmFOHD6O5X7tEVEK0DJap7UDhdQeNj7vDezWRqqyb7U9WS5uWc3D9XiB4et9QYfnBQwra5c7nCL3ulmk6sDfB1OFZrTdCn8XJqD7l2EqAxIWrK/G1WfwO0Xgdc321Ivz0Z9tpar/8Ak72uPnM9YbdxgOREbt812x2RPdDOy0JMeWYnwM+n4PPUhvRY7Nz5yDZYtnqMyoQxUi52HVbKj/4QPWsysxhgTdW3D3K44avT9XC6XoAasXkrF/iPRq2eoTkD69i/XI0gZOH28z3OKbSFdnNjb80mF4tWW0y06WL278X9nDfo817IXGfHrjGIg8YUSRpKJaHPsTgDY7BNipYA9Wv3+1siUMJnmHIclZGz8tmFs2Tze+UrF8HBwAA/eGTdicjUE6Hkf4qfgL2uk6GZjOvRF0wluL9Xwe/aV001px7iTBR/vrJdz0miVFzUCFQ6OYWEvuSQO4a5fija8ay8tCF/lv/exZ84ZZE7EFN36NbdVTqlk7Zjo8PF5XijOyr1aS2A6seBcgTiRNRXfassIND+kWv9VSnB8WLOjpSJi8H3LyYwtR/uJndd59smzn3eD+m/b4On2rZMVjp8Ob0DWI/3Aftn4iQ4LRfNpu4Uwc+DsfB/m0eyB2B6RaEqbEQAL37z882PJ7lish0vFDThW2CI96/cd/Q1fQqoEcMwLAJ/WpVUqKzy72XMAMCZjsUpgnA3vf4WGrx9jUdup257YlUKuCC1pPezmhuuN6IBoyiIMb+BjLUe4fMHQCjZ4zY/aXcl+bUJ3KClufxjJYI39UmNp6im3netnyz5fg79t9KPaO+7zJh5MHG05U/n3/5fs2RthJVki9TU+SKn2pUNW+aKtss79dUdiBKxwu+D/1eDsiRaObh0qRcxh9K9wOMqEuqXUsu2T7/s2fPkTVPQ3Y3PGtAKpXIOOj+PbAehWjFt79D0edR6wmXFBeUrhr05KmHg7zAX3tAuZZRPBR2xqlbnpqawx5QYLlDkZXPfgC8uHZwupnSMBcOnoDbpkKiEhEOf8anuLAu8O98GtVBDCftIMFDyNy0T68e/6iRXGhtF78Ify3GAc2J2mkpPs8x66G/JzFv0yASisl9FYIKhBt3JfAjKWM3oQrTSZKrQf46d5mQd5CwFL+kUHWnURqxH1pMN+o9L/xocR6uv4cmo4H2mBst/V9Mfq7rndg71aFIgHlFbGO48Z/6w8OXrOVrDpRVujXzkovG55MQevM8IydELvqr6vmE8kceIS2Qe02T/Jlrk8O/Nm6QLXa//jszQUl1PbZgTDQTMbYQEMHW3yT/XDdD9+NzwCRReNWH4CxnG9rAC50QEgBjZ0Ixj1T4ehmKzU2v4ldiRxALZdUet34nOAMHQf777WiyNVqn+1b9ob3PGqQ8MuHfH1befH3fZFyWHRDLJDd//FztJikMQZ58Br42hUW+invezWK+hYvsyZTFX4mfzVTeYTLbzTplk9g65VEQOggjRrITth88j9vqB+gjI0f7fIlXedMgSZvYrLPhmGt9gtSNn6K/+Jrbgcpg+IAL/hRBlO1qn3Zwrx+xhSd4rmiz+czg0D73lC06fGW1oEKD7dZp7cjH/pCe/IteKxnQt1Nr4xADd9wnaWZ7H+dlmz8WIbK2s64uDzUYTl0QyH3+dfCbv4RfNruOAeSp19QbZv/fLf9DH6u/Yo1KCf+rMziCHJUnqg+qMQnontT//AO7fxPMRC/v7ZASI8DEjf9u/FBUxZvyxN7L2yBP38O7qpHSo3b5Bsz5DMPcqzuyf0zEGPiB/kNyf5yRXtuhckyi6sKDm0HsBqGKOF/9+YO2zXLabbzy4R9f44Dq+Oj2PRN79P9OkDA3Y85VuXxN7D42WZw0wNYq9cS9Pl+J4MfnyU0nOrO6P3+1UN4e5g0q86uwT/oy/nH342FB8k8GGMBM3rQsGohCYwhLyLov+KKhhsf4ja/U8FxcNoeprjn46b3ZALliPpgfvozGlwZNsGDp4GaDNUvSjkONkfvje3NT3iiMZEOm79GA92ZwTLKrqnY10nA2mxJyWpn6u5PrxMSDARMccDe8LS6n396bi6e8hvu3Tyl5rsw2aTfPRmAtn3/+cH59NXXu7LVT4qFWBvGOngS8MPjG/HafPQXtct6+BqTEIFm4Bl7/o4CdEq9o1pxx/4U94EA0ONdYFuXrGT56vIdahW6oCGEFZsS+xLAY1Z7dMPvavrTL2ahulhd3VuyhMfYkV+zhLD1NERGu68CYWI3R7RuenjaLSYHL8ljwLZXnnx+Gz+87U2dqmlQgbnSvzHU36ggOyNajQXg9i4bBr0iHuOzvyjPagd1eNOof4tuOde0pQOi1PqhpTRvjPzx000v040P5vJ1agO4U9C81QcK5laYRijNEYcOhfBmq2QA8k/vqSEXGXOR6uafX7fptV0+G+7gwY777OlxfpbG2LnuLCutnGD3PM5sef0kE0otLLCXyw+fXfXcAzxmIeqsBwL//BpM7twfXzNu3eRlB/lqZBRJZ51R+dqN4AsyAxtcVSfkuAYqeMkHierweK4Wh3NiePZ/e6ol+aFaP5EvQQR8FyP89P3Nb0Hwdq45anPtmDNSljrwnvcQYaT5bAG3TICJ9dphg6xxzrLXWMjSSgANi9Q22O8qZ4Ba7YSN2zQYo5DHKxRVQ6OOfQqS2WbAgyKLR+zJowamzS+FoJAM6ojByDo3103lPK0StYGZJCzs6xWO/bOmWmkewNbU9AEGeqgw4lXJ7wLrqsP3q5T+6jtjkTgU4OG/b0goQ5txf/hw9fmVater5f/hFVC1HyJMk2W2Uk6S4dNoE3LYtYDN66ITuPntNKJTbCxGcVFhj+8l1l07MEbuLVl/64PYUbDzudbeGXzsVhPj8rXkSzRTFeRn4Ye3emFs+WiBx5Uo6EAms+JMMxTAb58rRL52tFrtsRkBp172pE5PPhgviS4pMX8LqLdPqmF0JBTLf3648Zg5Y02VVfjTd2iGn8lYFj/ewbfQqNT3VDEXzqdkVdxzlFKbiPdk8lfBBFv9of6fP/OnH3L6NahmqYoxT93nomQGKYi41Ts2N7wDImuBRObLBSz+64xg60Ufqvr7fiCwziMY6ngk/O3EBrYabgukdldQv7OfPhVVuQFcJ4TUr9qRTecpN6EyXO5oLg9iPghVhwC3IzmiW32ewuPdkWM4fXCw1b/FSKcGTmJQ4OyhFsP6Nc3sn789X3aqwR0sOoKhTVV6/MMfMAkNFNNew+Ft+ubkeibyn39BzeX3GtancUQwDlWTuq9nWdHdG2/7X887Pv66nz/rgodkdu8CjEanA8PFlh5g88PI/s8PW8/RG36OaEAzSLp8Ue1GhhI5ygTqTgRW22wtuPlvZN+PXr5OCOoguN6f1Hs6LzBP7LTC+9cwyHhphITsgX4H51R/ULvrBDDbjDnw0i8qRYeqSeYzfyj/8Bq1gSuDuW9yU+5xVtL0BYSEhruwhfxnZ//5ezn/p+dtXWwR2NZ/PcljA35zeSTCLLQGO5iqAH9yRQm4cLEv+sagQqk2I+rcajEfdcELwPIjJrawdkvY7nzvYZrLJZH12snJZzojeHPvEdqLdTbM4bVT//Qd+ZjEMpaskSTggjClSO/mnKjh7QLnUo+pOSkcI5XbEXB1nSfi1ejF5iU53OE9biARan17aFrdunZs+GiFzrtiysHyYNTueDTdpm+y3jPeg3mp+fSYrEbCj3PUKjEufOwqF5Pxg7krwH23vOi9O0us5U/lRUk4Md/8dhP885M2PYb44nX1SXzlIcRpn2G//+l5s40P2mwIqKnt3mz8cF0Pwy5m2L7Q3pjyXIgByZKIcMMnrLjl2Qlw9ZGCdt/5YrDuq+zA+Y1VdJYI+eNjgXLVBId6t/tnWPfAu//j13/8bZV3RXrY8gd73PZwulu931DkR4Zdmlr5apz3NbyhqMCP/nk35nOZ9fBS1A98cQPOmL/sVcgPBj7kcEnigbxhv/vnv/CcHYANnzkY5z2ltml5//QTWM4fH30ubjmwcBf2MNW0PTY9ARsbP9KBx66IiMFOyv/8FoUHY0Vfe4+CZT/QEv753/h5mhjl7kr751cgeVvvv/3X7YrmmWzrD/75vdYo/eiffhc2P1sxksLFgaJbjCSXg/nnf+AXlactPj6j8vbaHt/E78o2vSooIKAedu9ymo+Iky9w2LdnrF9DBYy/KuDA1YwwPf1iJaeldO3hbJmQOmH3Nj4nwzeVr1e/SL0ctGQNmR+AZa/fqBeeoE/++PBnNmQk6lKTM/a+72DUlARbs+D446xm5T9/KWw+b3+ugzOBcnoxyL6ymLHgJ/KgH9o9OtC0SZge7x5/+xVoPadfY77pUgwtoTOx3eYs2fzb+yF6oWyLB23gd+Z3hhniMHUDrhzYn596anOTXIuzls8nSW2g+ymkrd/pakzXhQTQ9PkIOyJDwwrs7coq3fiFeksG0T7KJjwky0SDaDn5azlml//p4QPlvx8p2CuORi+4n4z1IkBZnvfPLw2WvTy03/KUgmegKtR7imc2n1SVKI+XCmgSrj9jWX/VrBivzKHqffrkbDb3wqF7fC/U9U/MmKEY62BfWxo20Gj7s7+9TWafpBN9zfDtE73ftqBv8Is1rjATci0fEDpTltCoPH8Gho+XGdIvq4jUv2OD4mOxwmJUVKpi+c3o4Lx6cMrnL7bs7wimugApLNZcQ4doe4udyqyF2tEy8RF9fX8JtLiBwX2ztObSS1hALj0sbLSnDgQxYGktSPAr/TB2n5gBytcvCLI15hG7pL9kOVL9Ai/dPOPjKxiq+ay/Baid5iPVGbWMVRVHBO87S8LHhhtYu5QfojwGAqkb7lmy+EP/hi+309AODi9j6Rf/DbNdz6Fd6Rf+5OTyA0rnPY9q6dcPVNFmCy6z3dKwuj6MuW5PETwsT4keNdcDi1bogZLHqox11a9BT/JplH/lLyHijeBhBu2qw/sYSTjonnJOn+drAIVhv2DzzbtscnbrXZav+EBEls75lPOVDi97NNPQG/K8z5+TCRrMY5rO+z4nZRpeIGTXHdl5NyVp35Pryat9brG/nrJqrcrvBerH0cL55S4OCyZ6K1ujhwlPDoExxUdvhoE8P7a31Z2EVsb1Lr8D20AHj2NG9906g4S3+Im+p3lIZrG5SUDveptIj992Kke9WZAWn5JIbbqR5KMUg3MRTSSfn1ujrzS2lFYHKTZ40ubr+cbJUPcdi3qRxA9Te/cfMnvhHmMxVH0GbEmF152+UlOMvIQ/LzIHg/sjR/DX3f2B3l4rFJG9IuVFAWDbeKHA8IoNf9ewVmAfDtrvLMbqtdQMYfh9G/hOriZV2U035qiPWhjw6YOGdx6wxeD1CHZbtmlrbxpcLSwxWLxzgw4NSv35DT6OLLTXBeuVcxw4I1QjJdl7PfVftyuYiXlqFZeoZ+o6LcvJOa5lBd3kF8Zxt6+6oIgbGJaXgijeAHL6tPYINuckwqb6acHy9fIM6u7FosdLPyQLlUEL1ZNn4NBd8nze4nVvr0FM7fyIq/kNOg88/AxQ//CQwDRzjEBIJwU1L24aZqJotXKOTEIWnjdzOjJxm+/lQa3yGAKGbjsC9w9OpYn/sdhoH+aLUrjqHjtmtvhLJQ8RKJKDSoOrfhgm4I4WjI5jRZbtuSpB8BQInv17hw7Vm7GZ8EsNT9BqsHv+JcNfvIDJ0gocm63JlmTuV7itJw5Edq/IQSQq/PrfkBbG8PT7txIGQPuhI9b6rwFm+rm18CTHzfb/CZvcpSzAzTR5tN9TNSEiDSEYgf9E/Ef12Zy1qgQT9dIhWVSFaq53WgzrAwtRpbKGjSNY3rA4Tyo63XbV9vCBK0CLDyKaqwfRWMckbKE+PGwE6eme0yV5CfD8fRM0+6rK+L0Jkai+LjoRljNK5qOtprCITiq24mx78VEuSvAODwbOoXcw2Md9bUcCdJVqD2wM5CF/TVh5Z5dIxImT9fY461BOfgek3ABgs5c5DxhXfYtVO1MH0ecujTLQ4Y7esa8Z3OidGnhS5S9G/VQkPerHHpJm/yH8agb5GqawhaHBPbH693tsOS0MVfSk/vzMhqmO8hRaSxMhs+N6n5Xc/iKXl9whB4HnBsr1Lxno6+jQSAfvirHwKkOQYoDEYZx9Rj1xhva4nkgX7pOEw7u5gdFjVyHl68OExY+Cg28vMbb49ZPltc8deAz1gKJ+2uUUC7sRHpEQUGf9rsksKzcI8yiQ8eUah/laHqcU2sEjoqGMIWi95v2ABku9P/z2GRxVXWkyEFGv7S95Kxk3COB4VPDRevdgrnduDNP9OlJ3uqXJbDtRphzdLKDGzLX5Uj6HGJgW9Gic5EdjOlw4XUmhM+IwTkDF4LPVgd15J4x4pQBL5foXeNkHM1mVtqnmFbkr1IvZotHp9DHYrpgt5cU0A8EgPVSLHskRyI4xw/5dF0Fn3u4X6AXvC5l78QPWaIBEDrQsx+mGZ0tDqjt0+fiCj7UfGHPTfVKFM/cj0m47I2EEvkaAH+kHHws6VAvVfQJdop/R7tw9wTwHhxG2X+OMjN3UVu23vKVw0Pd3rOWrka96FUTwOO8QNffnflhkBlX5VKkN1dJflVCIVV25PC2KGMI/v2/d8/tvPPSoYg9Q9YRi+MvPMVW3+Ody66TCfdGrWH+I32Guj6fLv/Fby5kkY/Cb38oxjUNyKBrGWqdwMpB+opGqcfsxFqMpI1CdsUe+2/liOpt7Dl5MnWLD+jVsEfJKgtyLH6k6bG+XjvqLgA8RLWxpacA66QB24NYEAtXD39dg0+tFYFOxE8aX0x6MMNRN5f5VJRq4zS2f87DT/9aHejQTEnaOLjsoWvyKZqDpyeQ99fJfPlmv6zTQ3RSZipDSBR9TzR8WPs2lg7NyKT6W1wGsyio4cvRuauqePTbQv3jkAjxS/Xg0wawSyYH4ey+pXn2/FVGGxlOQjN7Yw+Y5ma1zm0La5RXiPcc3lk70H/B6uqxUdTsV8C/Jd+Aff/sb/3qYC31rZIupc4xPxjiLWg/jbP0R+OFlf0zwPMP1K3Zo/o2f4Ut1g4ANz/EZQ9+YxetBPjgXJ6G6fzFZ9+NZBgeT3bf69R0WEEELOvE7wdfpPed1rx1KePehSIt+KvJ2q9/wDFeCdvWhSJb6OqTATZwzRdW+MJYvN6SwSm4e3fhLQhvx9YCvy1nHBrEcn13Bbgf3u51GNWbXBo2S3QxDHhY4norGX2F9cYDmvU368N63ZADqW1fwQS9pODJYkdQ0Jfk1LDo9vrphaP3YKcFU0hdZm+TIRCvdFYfAh3fsDOLqz6Ph1qDsNYcs6c9IRA02MawC30Xt0zyxjT/KMKmjHgeecUjmBEszTJ56R239hoC49zIHfFz7SG0lnMH0FLanUXgU0Y2vJMsgJW/4ZM2emk7TGcvd81W5DM/21jUIJAszKw5ejhwlkgGijY872xHXW4j/1p8/OKkOM48wMnNJmU/2R77DSORqmul2BAiQBOsPf9BiWPrAtf1yh5g4H8IJrM8XJ7wXsJVfZ6oP/ZHNoSk1UGOyRY/RbTtyAjwEDz0WiexGfM6EVYSQamKJ2Me2wXID5U7RXjsT2500G9Px3afgVkAee87lnM/g06tgywfqCdZlmK1avSj9Ucmoj7GYs1q5ZlDyjxw1QNnmn/sp1+Gl8WaqmWoJaPcQm7/xUrQ1LhyX7kBgOMpP8lj2cjXLggbh7/aJsZ2oOJ9Pdkbg8g1/5LfxYXE3RRZMK2uk6gpLYyqCygPHbgyxKtdl8m9+1oVgsubKMRFTdpHhpH4LfNQaDyxWcs/gzSY89vwDbyyCNEjwHFkEHyNhyFkIdz3c+DS1Yn5K5qLuTLiPI406/Sb5zFhPoZY0RzT/5aNp9Cnc8Iyq46Ab8+H3gUAdVYOIV5nmSyVXMfy9l4Tabo39sbotMZTXo0x2of0cSBiOPWDmtUe52GYVqbrtoacQAWq9ruFAhve5ViwHIWwNJjKWdw8CWfVHHXE4dX1xNkUBit5rRSw82z5HzFsLF6dq0MrixlhykqvQuowYnyNhSJrmMN1B9rtziH1rm9V1e4qh0J4XjH2wzxe5MHXoXuYz+n0Y/g9f7CrxioNbcmPsTkUTjsXzgfXWbnyq35oUeMl8pe435Xy2fEQBMvPcYz2Rjv6K+rqVB1250xTdO58EXVrDude+2DppU7JULImArzc3HH4q6M+2pmZw48/oSy+BMQvuSQaQnXfUEHwnF2fhNYMpfxbYzkta0VO444CH0gtW+VDPmSE0KdSHwqb2gCO//dN3xe+jUl8qMzBf40wGttjH9EhZYKy0DwnIuoCjmsuVjHgKLGV+/c3YWzphmJW8tGB/3GfYH9Vs65qwBIqvzjfsZe8zm1ekrQCFqMDa6VD5XyeMH5BLXhP2u1hK2hVpMwzfZYHNW9hVY/CTSujr9Q1j47Y31lYPS5gNKkeTpPkZo7W2KVStSMemjVuwFN3gwUcnQ8Iv3pisyQsKMO9i+Z9eY6i9EPjCR40aLXUMjp1Ps1KFexdxJ8fNGV9fd6AMrzaaY//jk655lvJkGQUCaL3m68an//QSEQ4iGcahcUtgrt5mueUOY5diB4GHLhei6C4w5tN5JsprYDp1np+Fzau1ddErf8lW74+D8Mdfb0+Px9YJhFtXr88bKgjvsMVcko87W/eg6ko6VtODlhALPO6QW/aEWopOwAjFuwqN/ejSc9sGxpxbJx3U5SdES51WbCGXqoWohG/qkeKST+K5gkrD/070aCk9m9Kw5KDaIwPNN6blM5h1VTbC2sFesfBgak5DBk80+1IneC4504xdCvRGt7E/y1I1KCxSoad6V2qqHwcwlu9l+e08Dexs+DvpmR5Bk5Q+No5TAyiw5394jc3rrcuXyzOW4NO5K+SbakM18+OJg6tBW+qvJ6lq97XngMLV92hKwnz4yw8Y8ruCei90BrNvvEt4bZsVh+vvMYy9/HnALlMuaK6bD5tr2kXwG+YhDrB4yGdB12TYkGtEdmApwGqN8A6ffLanaRN0jHg0fSsTYC98FHZjzrxr0YDc2R3+6gMQPPrY4k/nqCE92motuO1hrylLcFZKC2ufaDGVLX/RKpGmWlbBWOUg63PC64bH6M28Wn/6CTvnxzJ0w34o//wXNF/Lj7HsgwDBUNefW3y2xnLQTP1wa1WB6s/lO4wwvZuglYYzkgYxNqZ9YCLgfvoL1fP3Md/4k6p04HilznyLh/lxcHUINawgcPteGcPHYgb4/v5gO6A43/ydFGzrRYPlKFesbF4XEGvvH5L9B2+svXGuQf2eQqymj09OOk55w/r2ChC3P3vDfLvPULko95l6KuF9dotFE276gYbBKx9mwb3JMDMejFppN1XzN1kuyua3YUPfN9XE7wYBltzBxdbNCoeVez0lIPf8gWz6E1BFk0yAZaEk/773fi09OcmDjmqlYvzx5VRu3v4JLY/RGJZHXJlwvPMPPHrvQz5z6kGA5SA62P8VmUFvsWiBdaY9Pu6VoBqtx5z+x4+KwbOio34lUK1XY9N30jCN57yGViphmiLR9bk/vvjH19SA0/z2r9796Q/jW//A+nqHCCLz8cLF+CmGWT1JHuR254kI8oKGpS+HN+R3e0okRz0l85+folmyiW3MY4PtosgENs/FWH+/jmDunt0DXn67GWNf2yektvg7RKrwwsfDOA7z4eZCuOlNJAT2lE8VS2JwnCHCpjh5+Wzs3khZDLvB9qLM//iW4pfynVqqGLC1tpQ79Hgpw4Z4bBNKvf0qeYN6pc/UzsH0WY0Apg0Zt/nZYF3xl4OhOBf02JWBMcdPZwQbHlKt/1Zg2ScPBLBWfKgxZD+wJHt9VSJ1OyLAtq4xJ/QelaTgOnxcP0EixFy6Avt9j8m6+T/Lnx9SYt+m+FCoOT9fGZGjQ18j3lJ6sH4r/g5u9V1AotLPbIlu/SjLvXhA0nBfjVF8uRL48yP/+Oj0DlkAutK40j/9zwXv9q1M6q9Ac3LU/HnLJ/iXX/ZrT4fFhHEEjUlyaaCZN3+8GpIEV09paVygb8We1j4Axgm5mx45DrO5RDG0HS5CtT86YE1+pgAslkVo5SsrGV/OwYFvMTniDS+GXt1x6M8fQ9GIdJ8E89hAmL0UsgtCpSKRNq6Q66cJByd0GNrVOsyHo5Ch7ZYmHViHrvU//Xe6S1XSuZX+gIfLV8THDPjDOGVLDa97YcXqZsktbVs9oPaCJk7JqfdnY9ci+LpcdWqeHDehUyQSsPkPVE2OmsHR+NACcfwycgVCNMyjodVwHxUaxnL2zvnBYjWo3rZPeLkJhvFx0HQIhf2OCPoQAEnpdQtiI/4gVtzsgRPkhYPHnxxi9cY+yeKkfQEiJarp5UqnZKqvVQq/2Qn9W/9VV83LP/2g35tjsnQBe8uRIVdovl0+yXos0gwo59cem+rOAdymz//Gg74q7tlMyKeGH/d4pFZQT8lyZZ4MXxxv0EQ6OANfPqsY9Ihesaeezj7bA8mEWuGYm59sMlGR3+of36ehhoHBonk3w/bup1g7m0YyXo15q1eZQh3fOhmjepIcuO9KjYa6mxusVl73PzzFnnU8+yvnfiWYB80BHTZ/p4MwNf9/Pfl3Mr+Kj6dsfizhdlJfke4VlpD5vx7Jms/79BxdoMz/KKU+HsV8kg5sB6Lcq2hYn2AyBreo/PPDqV2bs/9XP8DGZ/BRdoNKpLfrCny0y3CYhKBa1TlFEEnZG6MpL6p/ftVW37ERve2cT8NegKx5DuS98XOxOu3vMMD1nUhMjxPBjR8lMM+FT2TryBv0PV4jmH0bDsltv23pQqH/56e88fPNxuN+juHQgBwH2ufg9ylfC9DeHuI1nNz2W4lbZOUTTEc065pacRv/VMKgflDf2F8A2TlNAEnLPmjz3/74MgffwdEg8KHJ/ph+2xmu3WvbwpV1xsdHfYXHnxTSaIW6sXhPr4RfzUA0BC4EQpKNAtz8UyS6NTXIJD5bwCXPCTsMrjnxjkENFBTuiDDmJNn0yU5xfTlFfRsKySrngilntsUwksUd+Kun8vFihdTiFDQsX8BSxSRvf9PzO38+kAXC41CGFB80NVnSsBTgVt+oXX8in/z5i/maAmzRHTIWZg4CRFgvsGsEK1hU5x7ALf6pI/frsLSfvIBDtR1ZVsUALHCCFgh19YnxclONOXvPMix7wyHcz3LBvOQ3ArZ4+pd/bHpdCby29UozYK/DUpSJp0SNWmPNIyWbf1WXQRpdK7S2tuVPuelb8BH3EM0w04c5U2YZON2aUJt35qodisMb/iQjwfh8fbFW/7yRIuO9hPaX04v9HtLLAx5nZRufCnKS+g8J3FZZpO7FTKoJZIEFiPN6U/MC3aTt6sMDBFTOqcMJ6zBfXm8ObnyE2iydk7G7nB6AfKoPGrXPzf/bn5K103qkem4c8/nRdyp8L/wRSUm75MtZjWVoJ+RE1qmwfH48Jw14jukO52i9JuzPHzlrzYQAHq+5qGizqXzlHKPJVoC/DkSpgdH0LrV1gbBVDgsLZFDgkDShNR/Zo1shF4Qj8Wkl5eRWfVWAZa6kwT08MOpzlxre+4dE1of4rebgFr3hkXohUson9Dd/QIfx0fth9SNpFVNc1QJLP/yoeiKawe1Q7MFAgg8CTsq1mnu5K2BznyKq8VmdLNlX3om1jgOy3/TR9FP8DBoudHDeZlIye6+oUBrjFVF1y6+R+F0Pu2x/wWYFumr8ZB0CMPzCf3qdOc/LGy4WbTDyk2ey/p5KAc9GNtG4HI7DOt7PPUj1dcBa6lX59JqZA/JfIdONH7Ct62wEW/2QYpXdSp+E1aMFsQV/2AUxN7D3cx+Bze9FjD1bn7z9bwy96/2KFGgoPn3hawRl8jxg20gIGP/4kTSLAja238/jdHvLDpJjjL5sl8+/x+0OfeF9/8/+5NItIyzio0r1lW+MFaLGkf2hv/3hs99x91wAMBUVAtxcTJbP6gdg87vQOgHL/xdvG95idUg/jL3HawyjW1phXTpZw+YvFvAZCgo1f1b3tz/TKOknHilSvntj2b1HBwLhCpFwq6aqP9+gBKrPwUeLR0qwlmmYgn331khT7kOw8Y1Y8RHMcH77ioyl7CLB1xIaONoDPZnDJKv//GZsSIe2mjnHFSA+Wh/E7de+2nhfCZF0fxOmXhqw8vApg2cj7xB79zajzrMo4U/Skq3e8cYY3LK3YvNCjL0vFPyWUxcObPqSxiRr/M+5L7l//jMO6Wtgj27vwZOVfrf6kQ9fVdMR/PODoz0o83l37j2w7cdRTabmH3428OAcBRxC42lwsr+qYLxpD4y5Ws3naxzJf/FEatdwDdFMmgxmkOOIwp8fYJ6Pn1E52nWAsy1/5zBwGujfhNuffhi+nn0vpY1fUPVvv2CbH3hxokF6h/HJeBfnHbRJfaKv3H+BZaxALZtbdv7po7XKn//TkQKR++9HCs58OVA87H/+uiTdA1bvfk+tAg45kzgxg50Xv6ljXJNkfj2zO+yrZ0pTiT4YsXyzkZ/S/oBa81ewWe8eF2hVrwGB7vmr1ugcmfK6dxYkz9HLZwtPYvirdBfth68MRuFUxIdhDs/0mOPAWEev50CVViJ1RcsbWH4eYvl90RyMynbOR5SAFfpT4+AgjBWjnbMWgSgHLrl3Jy0hlSVncJaohuo41ireP0gmVDn+gcblU4D5+nru4JAHP7Lvrp9qsRPNg6+AS+n5cMbJIji+LtfGFGGT7aR89m4uBNHhuWCXnJtk+abjTtLv/hUtprsa5CrhN6BP8KCakvMJXSauhJKMGWL1zUmWDuQy/FWqi8rpOSXzTypMyH7hTMN9rLHVDJ0URK/igi1RfIL5YN1NuIh5QXiSj/lSPMMGamF+IX3s5Wz6GFwNjgFOsNUJJKcSa0fwU5MK7VD1ACvtdyNYLkmHuGdgDmwvVw1M27XHgTziZPa2WwqnWBuxughfn6lcnsJuShcievXVb7kuauA2P6pd6pD9zrOkwwnVFj01ZHvkOKUx9CDbkdVTnmB17dWDBKM9PsaFzdaQfCzYX/UPDlhyTMjuxhfKQWcEHWLRAeLhm0gw7MSQ+ulhMprnUvaw/7wlfFkdv+KeXh0pd/PSIgUtJaOHq23C6WY9kXAeVX+9SnYJjzSpURPeSzZ+6zwCn9co4mP1cZM5tHsCd4l4Ri77nqpZBNdWPrODTNVKnv21OE5v8Hvce2we2tlf5+6tQ/29CtSJDtBYL+e9BD/3EJGDClKD1bd8O5U2H6jNPaNq1MXOgzOMEXbQoA+z8HsIoG7vMdY43zMEM1QvShcgiB71rRyWKQhSmIujjW2l/Rhz9NvVsHh9rxjH/idZ3GtbwKGLfMI/XtdhIW/syc7n+kEMm26+Wn5Qg31et9Txu7kaz5/TqPSfUiLblT5/+54eNEk74Of4vIEJfs0HzMT6h63uaudLFR1b2C6kQVMBTv4cVq8I3g7CiaLhxlWzkZznf/kyFtQDq7GW971h31NqCs3OJ4tSClCx7RT7wQ+z5fHSUrlo/Zgo19L2mXYZVPg4xxQJ1LoNi3J+QxDueJke90rKSPhOY8gdXneiMNUchK9/I2DsDiZ2lDvw52UcVFhKtUqNqUuGsbmgAuZDvSciOArGWnfetiVuQfTdb6cYu9VpgXUEBj7q7F1NyAwfAHbvEZ+5o2ksV0x7+AO1gQPVezOmr68aPIAc0vCjVD4hWPeg9A0tFAUk8rsx/3EQyyzFJv29k/kRX3T4NB8OKh/3ga0R4nUotXNCffO8DuN7SQJwtdwaH7XcSlgo0wtMmo9Kdt++zNuLn3hgePoGgXsoDysnZ3d4OjYHisXsZCxS2UqAyLyPqhcSq373zkrgLj3FaPflGBOOqgrBYx0I9y00JpALkEHJqwzfn8VgTPPglnCpzyF2hxUk66QvFozqp4mEjAWAS2clgIj2Jjbj+DMsFzCucHneDWxueN3v3tFb0a61TjWzPfjjilai7N+/C1kvM2ewV/GR4XM2U+qlU8PYM44E5b7fMQSP99GncGv86Fp6hd2HJFXrSi+qZIqoIdyGt0stYxVWeX8i+7ux5qvNH3dwfSkZEYuuH2Yi/gLgBvuROlf9Xq2X2iQQ2Tce+/FMkmGImAW9IS2ow5e9wfbrgQPJ2jpkEAvRH7HCexCX4Z1aC3kl7A8ftvGiYmBvwBq2HTlJ+icRw8Y1uC3eQfQUvxg9s6+/1mUDpdsnvlIbHC/+WiTrBVZi/MT4eazzWQSvHvLHuqQp7HV/OQR9Cg/VocLba5bV6L4BgT/l/aJImCpAgp1Zw2vPNTgwwdcYr1O5/sPLpL45+TgwW4bWT5UoInlTjd4pQ6BlnU5tfWyM2QenBk5XT0OgqMxKzH5eCd+3+kwvz3oxJu1zXWUxbULq3q77isUABodntQ+QwtR6WDw36QFv9BYOnbbe6vX+Dtie9X/5ZQxO7ezg9v2wlaVftiR5JCmF9uGQ4IlXsHq9NkP+2JRod+FlY91RToc8/UJEtFwdhFs8PSDBwZ76Df8Bv7ezda3p7xAtZnsw1pB0JjymC6K+4hA2nZxxBXoTv2igr1ZOvXteQOlm7zDGrZDQm3sP4KLFmyS75GB9e4EADvw7RYfjKOXtdORM+O0MH7Hvog8MV3dT/puf/TnNOdGdToXmYBc0wKYxzG0MVTAKakCSh+0bgmvLDhAVx6aarrJ8Yp+HDoLPjLH1m3C1fB/FCB2am+jghkuy+M+iAEJ8qfCG//7Q9qYF2s4bsP3Qjgb3ED53KETTih/mJ2Nz+1E55bv8LOzFHmBUMoIY9LTJaahebIOtjbfCXs0NrMv7MyAuHmQgHYmO3cZwjdZ+PP7xE2yom6W81ScYZWdIFEVLk+UTu9lf/v6rv6vKQ0HWsG6T3RZvrIdzIKPkrVDn8xQqIkc7AZ64OcbJehdZd1qJA4wGZNimY2BMnH9+wOritdT/pQ7gv4/LCKP6ZRLu4HY+Gb1SAJwvr9RhUpzQhW9iKIptgX15P/vzC/s1bKg7YSy552rZ8Fa2frqEdaNmjJaVhsDvk2c0ON4Df3lkTQQXeLAxTplt0E/9kiFvtBYukMmzqZaxDuf4WFHt96P5ZN9lCdhiav0faVeypSyshB/IhYhAiiUyyRwVRNwB4gAiYwLk6e+h/7u8u7vs090iJFXfUKEKr/HR0+NBjJBWbQAHh0wp90wyKkDDmVKrpSGbhEpN0U2W9tgN20PP+nru5NspPlH94VXlxBmGJz+vKcYH9SmFhCXKBMZ+/6SWcjIZG4NtDAOvetRXN145HLvWk6DStOC+EV9oTi/CCWj9uAXC39+DzCsorpsXdZsqyuarLTYwLMWWqLtrkf3Do2xPjuT0uDjl3ni2DVRNcqF29H6V7DsWL6S3rhp0nKtnnPr+VJKKeyWAZ3BGwx8fa35vKXgefibjdrt3A0zg3wH7bTM2L/tLhbaPtx7wOl7CWdVogRyzzwPh73mcXh4Pt9/5jv2dXYaTNIU5nF7iPoALRP1kU+WDNCWUqOmeK3f+fsQJPufNB7uvocyIsbcJwpAY2EqGS8YrLiqgC/KaHlj6LZdQWxvxNpJDjf6eZmOekAtUgV8TIKKoDcfKtADJwisYBN1Gi3BZarn/2HOwX5jAhvL3Hf7wDztXz2d0txkkFDRlh4/Ja3CnppFqsPrdHttjHroLp6oB+kZKgXXPLt05Hp8buJ52LdbYctHmq1bUoLt1SrVTxLExq5EpqbLf/ONTJNQmTibq5GOlNV5oyi+FCrMEPf7jfyzoNR6d9I1C9QNWtGmu5hN0DrpjD33Vcrk7bIB5Kq7kvuLbqPjR5i+fBshfB9ms8YB6y4oD+TfswnEzX19o0T41dt2bnrHjYY7Epx0eqesUZ224W8oAd+8XUd3cLOH8dkmEdnNAqH8/3/spOYwd+uNPiyPLjGqZE8NzuCVExDsesfArd3DSbphqw1nMyCXMYzT7lJDf+ahqTKmDj1QmR53IRr1kY+0xT7pcpSO1d+SUzX+z3/Emev+LJ15V/Q2qqTti50P4bPptRAd+8udJD8k49FPxVR0oXRnIppqxttuGowfRHH8x5s56P+cJOcH7sWSka/ZXbbj9jgQe93xHD1ri92PRX5I/vRTs7HAfrnyVQJ8Fv3W9PXdpRClFdvlzsW0RJ5t5ceNI8kgWaqFzHtaPdpIgCD6YCNXT6rtA7TeS1Dc8zWfkaguU60ue/FkPUIh3IXtZZQzbxTti+9aMLrlFb08Gs8j+4j+jwcEpIDzsN2Qa0RZN/Dm+wDIfA+w+VbecTEkf/vILVs4blM3kdbQg4vmAvFf8oNJcgTR4UU7tq3Lsl+pDNmhkhkDt8nBzl6eMBmnlf9g2v305Sz/LgxfSdtghb6/n/csxh6IOeKx1llQOyW3wYFQ+JdnXb1ROl+EhoPh6oNhb9SmzrpwD200jEt5PVUaza3+CU6Oc8f38DPrpGnoShLJV4KNft9pifbsCxEuu0SKQW43xhqUgmWsBm94b99O1dQu4SBJH1/sL2Y0nKiSPO8L2/fYsJ/1Z8/C1P0fsTKetNkiCH6BP98r/9Bxi4DkSmhhOsLfmq2XzOn3kkynk2PipasjGfp2FrrQVVq5PLvyLDyn2nlzAeumgMRd6XVo/LxBO3CHkr5J7AdroFtHtOtEWkfwcSO/XK/ZOEXbZiheoenI37OXHb0hKYXyhiIUHHDSXRhsESdmIdt4cqDLpRT/j+mqiOmpvVMuPrjufYrEC8ZdPNJO2J5e+4skC/nc7EfH5KrTlUJ8jeE/cSNd8mTGneV3Q7yBENN/4VshWfYry7pxjV60Vd3LuB0DKKFyost+W/TJyVSBmjbbQoHxrPdd9Gwvdb0aPD1LUlDQKXgki9zGmqz4PWZu+ajkx8wX7aG7Q0DRLBeczOWDTWI/cCbnBAZJuIfbfOkbTclQA7qXHyPbLW+UUu5kDB/J2aZLqXr8ctZRD7xQHWFOcuifVxBa0HqWj1s6SGVGl3AHX2X2wioocDbevqMCs8zY2Vz65lMotgvfRkfHh6rGe3ALTQWJ2a6hRTF93WX+GTcD9yLTmyzk0LhFIb+eFlfqzQ9PppfPy+Dr8qKnjS8a1O60DdiQDNX8jLWfFzwGJv2IKupUfzWXcDECydqG6aTw1hrNXLBeNfVn5wqCxcu+pIPGuj7X70whpB1MAjJeMYB6SkM1zDgS6r25g/M0hZDtPXGByrTuNpn3PWBSn1j+9PseGyeY07VQUGI87NaE8lqsfMPztBzLPtuDW0u0sAHJtiQyrPzF+M0tBtH7eyCbQr2jxNl4tesKYUDdRRLYQ7DhwJcjDKvW2JZVJ+pJC8XcOuOYb9A3hTy9o1LdPvJdg97NeGBHcOr6mJt0OaNBH1EEc6F+KoXyzRY8WHZFSUKmd2aa7319+Cxw++p3iGS8lk+ZhIxryzSJozU8sb2sTXW3hSX3z+e2ZC6UJ801IibQSUDK1L+WPb1GV1e46OIZxIF21JADFUdAkPGgsvQ9thMmOm/rZbxIe3bb7EOMUjJ54dD/BzXQrbHtYC2cjaHn4tgcXW5tll5FH+eBROR5nwkWZEnaluSTSMfbO9NQaCtrb290Hqo/Urodi2nCC+guwheGBvZfQ9jRva10wRIaw/8k7bbEfE/lbX4Ky9zrYSnEI2moqISd7KDT2U1QCj486kd1L1ND0p58er/sW+8H8Qf/2465w8qAeBCWbYje0UNYcFqyVjYa4c5LpqFFLn8Sxe3TZ8TFKEHXUxP5HfbAZk4AH8bS//MVfOXePvvrnR3a6PWTsru6dP/2A79FbKSdxuwHUaXDCjs1K9P397iactCvGqm9CP9GLbyFle1uoZQpeuExto6CVjwecFchssDxBgljR1H/4NmvfvQk5n1T0epDG1W/UFHnld9i5VI22XMIoQr009kSwD7071zxXwxQdtjTQ2jsaaKMNsPINih9Vn/3DXyOJMno8H1V3uUVtANco4QM0X5NyqvP3C4qzZ2Nfe4Q9U9RXIOPsdKKHrj1k+5ts6/KqT2hwdBbWaPLTkbg4s6kVTHI2N+fLR7zpvoWPK58ju+rOSx4+NPSMhg+bK6VzoMWTjT3YEY2M9S2B3JmS4L2o7j++KnH7z4Y6nnTql/P2nqOlUADbj4vOuq1z3sCudB3qsfCbTf52ksCKdw7VBB2XDF/9C/p73v7qHw0febig1f8I5q49hGzv8CoofOFT65abbBjKIUHGYZCxd93U/VSxzQKRMdxxwu59uOZTCzzT0nB6eJv9lHanGEItp9T/DddsOjvBBY1gkdX/MBlvfbscHlCaQXMOrXC6i4iDFzQ1kUL4ZBP7yB8YxuKMnRrjbJmyLEC7erhhY1v4CJ1ob0mpmnrYI6LoLp/4IQgP8vyseDqvx0N4Hv78CO23zRDbX+iERlcVV30X9wsVtQ8chopS9WQFfa+ojQft2e+w+TY6jd50Sfjzf9f1ZeU4ZD8e9b8+JfL53pTTpaosiIpLSP2lTsJRSlCCkHq60njN38w2T42M3uyOPZGB1mzFiw6uoD+xfiBHbfouLxP9+f+6cLqyRc9LDtwwe2Cl8fyeRfHFQl83L7F/0xRtf+0ikF+XJ6K6sgvZ/L4cUniOYOOVb7scvfMC1P1pR52HfNG6g70dYM23Qffa6tr0m6oYni4uqROFUjkawZtHZpHL2CCZl7HVf5LgkVXUR7OF+qvwnuClbvbUHx73/17PSOKMzMnolXMSJJv1FbkUGxketMWNtACiL35g1aJ6ua9+zQckzpvpml8YE9ClgFVPBC86mtmMnLqCYqI+AayX5SAGGg/BuXpTFd1VjXvNWQCJu8kCAZ3zbH4wfcXf/QcrR7kvaXLWNtCc6hk7ohSX7HeEHKXf/IEv7s3RWNq3nORebyK2V398/maKKpMvV1B8cQ/hbjeOJlrxkWpT/+0n0byY6B5PCjWPcYGY2o0c+NWtImKtte78+51NKfr6j4BXtybjJvXdgDT+LkSiSlgu+cEMIJt+I9UMUUC7RPEccK9XETvmPLN5v3gJWv3l1e8K+1UfWPAZcoHawqSGu/Xz5esNNCKv8TITEm7gyX90rAaCps3PfVnAqt+oWWiJOyT2M4Hp2k1//kE/f2rPg73sHKn1q3dad7qeTNCeEND8FiuMc9ZXCv/qC1tbmdgY/doNRMUpxOb1wtAg35wcHr/PffX/ttnCd0f+zz/Hj8p8o5VvVeihFxY2C03QpgQvhRwM+p6Apc5o8m5BgP78L/gdGnf+81OVAss06KSx7P/qG1l4MLD7druQVa4pQC/RPpgBgnAKWimGzKwu1D3ybja5xX4D6BvXNJgqI5yng2Whv3qGfUneiAb5VkHT5ViSxay/iJyO7glxsvL707PuhJp2+PMzqPadP+UcpJ4KjaXy1I6piGh2LU9QcJd09Y9nd26/j/iPzwd9fP5li+KiHNWXAa1+7l17KQ/tJK2dAelTfFM2HYQtB+Kwuf/7Piz2qgbCNBMCzms6dxlV0YQn/9Kpyo46Yyfjvciy070xtsXK3Y+VLMD7M9vYsYWiX05H7YREW7Doab/Vyj88ly0vYviINnbIYU9VZWy3T2xKSt5Pr22jAl2qJ8Uv77ze73uQJed9IOAxXpuMkxaBfvpZ2BZxm40rn5ceH2X68+s1Oth2DDIXnemD4Fc43RfHhGTXuGs8GOX0M7sN/PKko7r57EMmbcUFSd7zQXUlHtjU47aClV+s/KBk7Fm0ErTO6UVTKVLZHz7BVt86a72CQ7O3hwiFqe7jYNW/qz+6yHV8svDJ/2khux9ehbzmO3pxZBmNo57WaHNLPtjxMrtfnAwAqVWsYX9zJyVb8+G/+LJWPGfDQBvJ5cpLoI/xBS3vIcpBmKMAK0VXoT/+J/35qQHrz2hhNgLwL4JO//1/cFALlAft6Z+/z8q3kcPb8N7YO4jMXdebBxWdPawTbGpzRMNBuAfltNYnr+G0FVMTTfzypX98Zs2XCViRRKj13auMvWLBQWt9l4zBje8H7DkKKmEysQ7dRyPyxuKBfMLzv/1PUiA82FtyWQervt2FFGMHZrKNqHVDPlu++qZBRbto2Fr1fP9InRoeD0VdB3m+tcX1zgW8c7sj4n3u2RzJr4+88us/Pz5kV6Gd4BCpO+wny6Vf6yvWnz8S8L5o//O/0F2xPljPPgMi97vyQcooXQJ+n/BoaUvGAyvaHdVGZ+hfW/FiArsup3/+5KJ1QiM/fq871u1acGn9HSaQwyCnzqZP2fy5bVP0PYoxQQp375n46BzoNyeBenK0c0e/OfHo2t+2VI9eyB2RCjz6VfAlqNWycJq4aAFRT59kWeNrxSMAtguj9cW/RzafTsUHnY1KxA7+xG77uiNHCiQnw/pXthBnnNwIri6H8D//bscpzt9+/atvIapT35JWvkkvT/WckZsZ/eM/ZLt1f+EA9XcDp/tmpI4UfRhpsKiCUF46IolS3E8Pdfn8P4MP9rv/faTgbU8d2VcXR2NatK3Q6xmoVMnTez/zwfySSdodqao4rG/6eSKy3kkBjcrvS1sC69EgUxXNgOMCwqY2ZQR8HMlUNepfuVg/fQP1Tuiws9dHl003t4bPJ7Goo54/5fC4+QGIx6wmux9XZmPnugrQtBnoNaTfsL+IkMCh3dRY28Y4mzRICXgX74CD7PYJh8P3QZDXikrwMfJC62/G9QQHHcckLkVZW4yltcDofi8i/V1fThcTepPbY9873TRWsyKQLvVBodcgPIfLxR4tJCXKjLWpBHe5j4kFTRFwwevJN2y5PW8npGxYEnB6I2mjrD071L2JT7Wu3GeDfhQvqC0+A9Y2zTX80o8ay8VX3mL70++1+SS1HJhNF1NFUpRsvMsKLym9OAXovG9RpU6cJ7fZ5ka4DYzZIm3XxnJK7BFR7at+3Je5BWjqMHb5rncXaylz+fylFjajH3HZ+E4rUFo44PstYu548BoJLaz+YVXcvcslvLoNFKIjYc/j1H5pJV9HP1eLgjaZfuFQp3MK5bPUqclpk9s/6q8E/lUPaFjukpI+7UMhn4TKJfJhOKDduK2Xf/dr6HBxWWbcarAj64CjYl+7JBnUjfwU3ScR9gyySQwDFU1LW63P65ZRLjgsANPmiI9iJbOpkZaXDL3HB8Ke5SFr3FeBvoJ9DCbk8+58uH5V+Ow/S0CzPNeWg/5z0Fdwj8HjPLjahLg8hkQqvtSQRdMl6vnCo/l15MjyVe1+uSvfBhbrfseeHxbZ3OxCC+JgPQWXWYQxc5/p8LIXgxo/Tlt/nznQ5SdMb8mc96wKryaEJwlhtZ20fvKjtgJTC+5BJXYq25fHTQ3qzSipJbz5vhuqZwUDLSKyKxIaLn8/23GmYa/mpnC63qwalZ90JLwwO277sFqCIBVLIi7Tzp36qXzB/bOss5ivjTvO2mmQ/V9XUsfbHrLF31kObOPhjcOqvDB24PgE9jlmwaLgJiNi1xSop05OxMXT+53hT4n8fVRPqkf7Q8kJcmFBa7E8QM3hnZHMP8fbw4Abqnz9JpsrGU9SY5tOIPPprZy/m3yDaleh1OZ3LVpST7cAIEDfv2S5fxGsvKrSnZzFVGHdD/RY+KeernNMYeCEC9k6gppx9qNMkZSoc7CpFS+b+3YD6OaRB8UKibKpn/oPGE1ckOltsZKli6oj/UZD7OcbKWQ2OZ/gsTZuvFWXzm1IrnlQuEOHzw7RysU8Xx3YkWmDldkCNuzOmxeqnONAtUl/ZSwPTzlq34ZKZk6osuXjPwDo0m3xUUBJOS83FINw38bBzj6YbNHSYiOll8eDHhN+DkeBSA0chhfCKq49bTnvnAKdA9UKkLucsledzgmy4rSgxr3bZbMn+A68vcNAzWRQ2W4nHhrkxuMrEJcjZaQ4yA64rZRhY90fzFRuJ8QPOCCLUf/6Nj33H9jOZxvnjbkeu3e7BbRGPeBjmMraeiqOwBov9C+e971zrcBCfIbdX/jThkeSptDlF4ytB7mzxd8pljzmUoWtWX5nk3Vktdzb5BnsiS+yxS00B1h2rqnnPkptzX+OnLupHxRnn8uGXlobKb4WBfuUV8NdehEGab9cbtTPN2k4eoJvQfkhCrVso89mT7zEcL8UQvCmbx0xMsw6CKN1puv6aUOj8QSqx+WHj5E/aK/7TZWQG9kuPu6JWvL3fZsDv01sbJJfxv72vyTqu3WWqdWEU9wVCuwYagljWzdbDjBZclSZGTW1kxHyD2ECpN4SHl9t+kKzdDoocNjMMtWLMe8ZdW4SVM/3WrKKa3c5dbMjX3yaUp1922yJBqsB4Xg/YJ0Ly3J6JJdUPqM8oTpZ0n744lSAU2gF9A+fFjcUeUka7YxanzxEcyQNDizsHFFrL8xa6w51h1gW1mRTK0PY6XO4gShoHsF2wFzIHo92AbU7FfS8rT+oD2izoKuXKms8WuFuVA8BmL3XY+fWuFpH8faEOiZj8qFq4E6fYR/DQygptppa1SY6IxWucLzgY6tU2tR9DUWO662PrSV/uNNP/EbQ59WRBtBuy3nYPQppSJUb2QUQ91OXK4K86d8htdTbUFJnf03hev70+Phrq54+5Y8AyuBr1CAf1Z0v2RSAMt8IEZN+Kb/VsllnAeIHNopHpQ1SMbwgCroHuXF+0Q/RIVlQ83rsybRDbsmUZ1DBd7/jMI6xmU1rQyJ0urwbbN2NqO++ZDiB3cgJ1aNRcMdZ1T6SChwL2sZ7acu8pAuqHqcfdZZzkREDlgKB5lVYc4pJ+23qUyUfr3NInb39ZstH0xtgTHgG0ud8deeTmHeIpt2ADcZ5JduClcL5et/hApySsTW+ZL0LG3zUfRXN7sh4QMYU0buNRTZf9d0HrE06YW19L2j5YakRte19DHZadwyXV7VaOEncYmWH+nI56NSC704yAnnFL+rdBQDOojy1SkN0ab0TagjDx4kIVl67Y6vMg/Tae1fqosRwl7DAC7zPz/WIXKeyKeS+CjBrPGN/y/cl80lWC+dAsWi6xMydHyaOYDjmKsYn4eeSkfImXE5STN0x7BlrX5qJqs9xS3L0a7LlTVpATeFx2D0vV434O8UBfr6JWNue05Ixtbyg5jU71B/SUBtWFwHE473GwZm/95MX5unf/sbFixzQFLwsE54uxVQT4w5Vat1JYF1nIaBT1LodxfuTtLs3EQ7OF1vjxeWZStutatLDtv6wRf85DYJEQ8FOe8mMMEvt5K+3FQnHvm24DLUIoMRPhtU0cti8r9oIfln0o2lynkqSDM4G6PE5U0zrgE2eczoh9d4KZBEnj5FYKSNQW9kNti+GSnYRfgHYWpkF9Wf4ZfNOyxTw4SEFG3TjWM/U8oSGvBqCvf30w5XvgqQ3Sh1wqX4LWbHoKZJU4UjVZ73LWCY3tbSf25maj43/x/84efwcMDm/mBnuFH5WwYz1A/bz606b4vddQoY8ZcHoam+NdTtJQPqkisFeJr9wKbyggO+uXrBJ1tluu8+QgBsVBfa99NXTe93XICaKt+7PO1q2rmjBRflp2FzvZ1rqghdno/SCaeWju4MTfECJmUmtWT6E3I/mKmDcptTQ949wzueqg9uzNsg2y3N3KsVSgadd+FR7nhuNere4lnnOf2M/+0msmB6TJZuxecBGlHRo+NFcQfImjbH52IzZYlpnVebuBxsbe/GdTepv0hGWUzmQbiWfkc6ceDmsOxeblWayKejOqaxs5oTI77nVhnfgpuiOz0B2smhqLF0cHb6l+sB6tH/3S+FnHbjgPrDpb3R3H2XOgo7TDQXz9k1cYm9sQKqOUbB5ogWNvxY6JCdwD3hh7rQp7b8fCA6igPGslu54OZ0HoOn1HnDX+BFO3+SmgBybM7Y0wyx7e/R0dK2hoebd3ZTTER05cFsho+mxHDV2DE4OyNonp8aaXxcWthZ8PvqOMHvnsFnhRRWI4Tn0uatZv1SlscDVSxT6NN6lO3Jj70DmmleqSO23XFZ8k1T9HWDf3HjZInavXLZ6vKPHBTHW6T+1kVc9Q/o3HBk3GGYAVvjhsUZGBfFDlhUA/TrLWHBFd8EhWEjWfJvU96ulcbf9YZDTU5BhLznI7jqX3ZJXfkmkJDay7rxTC1DXvl3a9az1EyeHHHpVWorVVEDhcHk5KdrPWx3jLtJDtjW8SlzjF7vnvY3mzfn0Qto2G//yudZUxqFGv1L7kd+jcrOlKv1pbY5V06I23u4gHOkLThcOUWeNZxpPSwVXEXcB97fez+DFySseYt88LVmv8m4NklHkZKKznC1r4Qa89jsGYB0Ya2fVfSG6wAXf1Jn0y9wccvBapBDxV3zZaPvLqmebE7V+whFN3gUHaOWf9NkJERpRmkbQ8J+UtJf6rk3mT0rg8bY0nF9M391Vu4SH7LR2aeH8TTn86Tv3F5sBV34VjW/WkkVnJ78Absm+H4pykqA88gb1YvfAFny1I8hPLwFfjLz4Wx8HxiX+kPmZ12xpsrsDYaBdqIIHXpuO7CSAE5AGK1Jr9EsYJzyot8GmiZWbGrfLjzxcxZeMVeO9sFHYbxZQb8TGRmi+NKKlMYAyXwnGgOWeGGi8ILcNd1jxrqjsf4q9gdSPF+zVoqHNx2GIkR0QLVju/bdc9MmckAvFRPYJMjX6fVkTKnOg2I2/Gtv7lXMBujRbGkiElnMRKYEsdcIdWzen6pcmOzuw6fka2xe16Ze9fbFA03cmvvtRUK78vYBy/76R6TsniBkdTdGKH1Sh/EVbXqWWIw+mhp56S9Cax83wQLtad+qe9y1b82EFzk8N/vRAOJHc9aColBN9uL9zybz7BCB21Zv677l16d/ni139DhjXTGjK1a7+8xuoXgVGv8+zYwq3fZXg43LTMjb3JEB2e+mp+w4/5WKg7wkdm00Q8G1qanROThOs+gv79fXez7qgvKC3hyeOikBB02BmCWTfRg6Kw4zKdluNG/THl88dc9D0DtwEHRsIcEiawWWnTClA2JKaHsPnzAb9tEshFYIRW60hI9JStCB1m1kBWGZTTvebI4ANToj1aEzcybM1E8Zj8fv3PKfDfR9AWB++VHk9SbZMX6qD2Vy1Pz7jsm/Bajn9LBMNOmJm3I37xegZhBV1rPMxHN+btEPhOQgCPvi14USlrQVP/usQPvoFWs09pAIiERuEm2xJm9N18FXsJV+s1GmhzfVl26E313yxit+3cEo8sUaPU/kI6jWfLlHHCpjYyaHX1v0wNve1B0f0Kmmwzj1iMZxNiM4fk+r6GDD2Uw4g83fwgu0f3v+mt4fyb/8h0/bisAU/0w6dL7sXtnxHcadsx3PoVfxyaj1YUO4iqbIg+G0yfPSrj/bPD9iZjzvGHnmUxC00C56VuiPTF33CsYvbFwTfxKR4EsRyWPUCqh9fnWqGmmuzLlgvyfvFPTXZdYeWZ7I48t2P/YArs7hs+4+lQhy0P7LjPjWi3n3awGSlmP6tF3s83gvc98KOzC9mZszueQlojgjZTMR1lzPbnaBl7Q0fde2ekV8wFtLKZ3AV7Q8998e/lnRLcDC0cTiUYq8gziw47Ajxns1lu8RSsq/kP7zTiHoyOpRKs0paPyLld30eaOVnNEXjki1RhwqQ5OlANbZ1Q3at3xdkdBILNrnyQwPs2g8gVRjw+dUCo2da6miXiXGweZED47WvXEhRvdGo9Xk35SS79xTxgx9gddvn5fzddg6s/hzGsTP37Cl3AnCzlhPBJ1M5y6jppO+jfgbvZ26iHR75ddY8fP75hUtnCjyseg6b+q9is0CWTs4fmw/GnWyX/Liccqg+w5dq37OHpm1/+cCq73B4nZ4hO3/vE6z+EnXVGLLR1wUJHTeJiz1eDDJasHMFf3o/yC5+z7aGXsFh8BuqSkWNRvpxYnCgcKkpXqWS3G6vWD42DaKPOiXhkvnnSFail44Ls3LCXSUfF+kqfuRgRz4fd8XLGtb8Sg+dMaGfRHwPVn+QKt3zgibyxfEf/yQ75v4yqvJaDZ3btjgYlLPW7svIAqvZMKzdJQst7Bwsf3qHpn4hr/upneTZ4J/UgdchbMZjU0s5f7JokfkJmj0xjeDrKg62khxnrLTdRTrc0jO9XfihnPbztkPcHFF6AKNgP823Gni4xhNbl7wrh+fhSf78EapL9qYvy42USCyrRXx8tIo7XPpG+ue36VpWuXO7rYo/P4pMmRWweWMsihQqvybgg8eW9dFJLNBFpluyheiSMWwkHazxTc+8kf7pwRd0bIuxo3o+mpWt7KBPDg5ORrZn4+Z+zIHXXxjnOd27037ed3CU2ZcaIjdn8+qv/tPbznvUy507kAaVNuPITjy9EE3y9AT5yf/S4MBPGcNBtEBZ9ZRI86L2DE6vBWLJsbBmHE9InPeLBQfdj/GF9iybbjt4oT8/2GtcjMbfa/rAOoGEeosbZX/fH+Vl+qLKk2/QP/6qqaeZavi4yyg2kgaSi6sE8mz5Gv3ZpomSvXDCyeo3sKO7W0BILy02Ng++nL82e6HePopU/fYBY0KgmxCFs0WT0ri7bIiIAE/3Dtgu1DNbDGPToFWfBTX5ITbeqs3Kh2/sv/FdPepU+sOr+yPao86HvS6hTtgQocmFcrKLqZLd9mtRLSh1tizyfIGR5mIwPX2t57jj6Ek+PKWgxF6nTfajTyD+XV5E3N/TcFoeF4L2R8OmfjZX4fDnbxnXxQ622+nd//kv4K59ezyPjmyoAn9AXvTQ6MmwDhp7t04N7DVW1NxvshW/fymkfmPgYs4NbQ+BmcK9olIwmuK+nN73VkKr/iZSI201xt0MCUJB9LHviXk23qaHhdCkteQZGzmbfY/yf/qKmiue80MWFn96k1zXfL0g592gQOI0fBeOUbnUeuTA48RN2AiSWhvZR+9gdFRY/cPBnbU+59DA1VvsNodDuPBbZfnzUwk0LmWzj50AahZfqR6+VHde9SI4h/ociOP9itju/fQgrohL4vJ0Q1OlcSkwJj0Dqd5ijUvU1wnOYW5SLS3EkD5a5SIX3+2WHpxKcjnROUhwFzxrbQSeMRYjV/iXP+0QFxmTy42HSq/PiXgUpJB1/buWTSWeA5RBqY21qxB5vd7K/8t+EuTYgbrUVGpoh4/GjM+Uyysfw34/CIh5t6L6qxfQg+QQNm3ehwAewl6lHoihNqux5MH94n4JwPVTztLJVsFINDeQ9vYbDfyPRLA+L2rLZbP6U5YEHJnuOFXPak/cwnUQl0kzNvUHysbRNWKZ1wOgjrW7ofFrsw9sk22JrREfM8aEswSn5iJQO5l+2fx7lrHM7moVgGqWbBG5eYKHmy7B+Xoby1bUHjH0eX0M7iCVGW2LnQRh3bjUttTKHf7280KcFmM+Gvsp/bxTsNqLiY3SbMMh8eYaDtvjCePYAESa7G7Bx9E/9PR6BiGbPOkCFzSdaCrbZj9cunCA+XU/UoM8xmzV7w7EIr+jR/s5hv38wkSKzi+TqlvvxVig8hf4OsOeRu1r0mZuz+X//D8j/GaIZWY1IXFSnmS/J59+9rWSwGTpQAaeu5fEsV8fGTZmgRV6efc7YRzzv/wcCMt7Rn/4hqIGLdSPr1NIV3/pHz9yD0vPpmtEArB6f4cdv5zRn98BbeHfqd0c3Wx26UGR//K9Yl55xjbTW5CmnS9SxXkq2Uw/avS3fvTYIBr2eZ7Xf/FDnysfmTfBxgGl3Rzon55gh166/PnxVLvvOI1lR3EjdbYR/flLbK5da0DkpRs4sQ03/FcfYmaO6flklNpPv503Mpsjh7ru/usudz66oNTvDLJc6xMb4TvxkikzBQcrv6LZiTflKLg6NI87uSc0uy7gX4IaW0fiIlZulgTarNUD4ciUkoOttPrlxbgOpgZ3iQ/T6q88GPZd7eCyYvESmF8GF0xf38qmN05qpOo++qsXIM5/fAe4Bdsn2az6lz2P3AnS0tTwYfdu+9W/4WAaP+L61n/Zs/kdSTC9DPyvPjrny8wBm2OHur6eaXMikRzl382OHjrCu7TmygS6t/Gj6nQfy+XPb4f+YxMZqi9aLvbXghOyXviPX4+bOy7QVuNFutZ7tHngP52sbo87al/qu7vq+Y/8y+IfNVnalax6kASR4/QMROu9RTTJfBNl32uHg/4SM7YQpQKY4Eith9NmzZoP5GP4OuP7eN+x5bwNJ+AzhPDheXmETHmFaxuwRMd5zP00xu+xCuvzwnpqey77KTagx9vRgpfxAzSL0t0Bb6t1VFv5XLvmK/g8P89gn/BzNpj16MlrfTBYp50z8ne95UW2VLt6hA0aXIjIm48NPT7alzvXl333x/eCxxYp4fIY0wJVn/uFPsyNF5KqSjfot0OY2ok6ZoN+klMoREuipuZO5SIutwTmZDhiz01ItiSDA9J6/2QD7bOc13otXCNDwZpy59HiLd8JdrZGsOM2B7T6uyrkAv/A+Fl/ezpdN6lkyE+LunJ41egrTCdg7Of9q7eOt4rvgKc6T1d+mS1VdQF4iM6VQO6aPcuMZ/1/dSng//eRAje8W9g+i1PfllxUQaVdY+ruHj9GFbe0ZOWanqhvjy5aKMYBePj+pHfpsJTjzfxE0F0eHBn0rZuNTvSK4LDWxLau0Ghz3YwLGpOXRWRw3og6drYBiGo94FJndkkoxzwMtVzRQ7UfWMPRToFLpDs07DciGy3PAnCGPMQnWWl7okmFCeUv3gSy53Jh800yE57iWSJyZb7QIqRtKlm3TYntZ+CEuwf1GiBGnRHJu8jZsNuQAA3f+IaxYR+0RSqVBS4zpfTwsb4lveLKQcKD3PEx1iyX15+lDjftzZPdJDzKyZWYBKZdn7FJPJ0tua8sQN41o+5J9915+8UdKuKYYDvOiMaCNpagm6UPNsV9zmbYmZb02k2I4ro/hfNRe1dwQvWMscfd3a6MX4mc0odGjRfUaHENIYb8IonYfmSc1tS/tRHKgb6DhUlvd8a5n/w9L6ykxl5rdFvy4LujJ2xK27c7HDduJO7cfsSH7T12aVB0CYSjw2E32bfZ1HJmBDfbVDG++6o2o/dyATrz+7Xx16y1bXxxYH+L9vTWRAsbNmPKA9WninqPb4tmrsQOuvx2fvC5kSuayBkCuErP9ZS7SbJOSN+pXLcANAh22375XBIiSnkrU/Xz/YUjt1MCcLI0wWr+voS7cTES+eN7CbW2ol6yvSTVoMPhStfv53KkS01J3k4VEU2xKxk9XYnE4roPlMNTKIdungNZtTgjkNxpW/b+XjlJL/c+YccuY3f+2b2JgoNn0cNyRW5bfxSAvnaCtdH8M2Th0ZtgEI00kHuMtPYR1wtoJoT07H1G7e6a/AaU1g6xpUtztqDfKZf3xedEtvohZ0sejjUcSC5R45qW4bCFpwJPmiVkdvSqZ1tPbEDc81uMPfunzdui40XL4EYi7MKLyxQiv8S8bgFrQnNAC/cfAAAA//+kXcnWsrCyfSAGIgIJQzoBaRIEVJwBIgoi0iRAnv4uvv/c2ZmdoWupNKlm711JlXeYIV9+MuT2Q+RNKNB8RfueX9TuX0X8u52vAjxYEcTakX3YZv8p/IRyRIb7GQ5T6so64Gd6RkrfnIzF91AHd9G0EGWK53ju73EiZ96oYpRLcj3tq1Xf2afbSLXp3udj9bYTsAjXL9Z9EhoMvWUTup9QJmTQXDB5UE+VNFNirN6zo8ceHeZgWN8eVNedR76IFw/BB3MUJK7703Ag2v0NLOd9JQrM1WF/ycQKso68CDiaX++jSBcBxolUofd2vUUS1BL6v7XHOM+8etlpSgQ4Xj3j5Dcm9WIPXgdOUvjG18B0wHxy5RJcqqbHqvPkappPZ6hIyYAoSuYqZr/1K0CZT9RN0jbi2ZOBCLm95WN7/bX1v/v9NL8LdY/RLWaBxvNwr/hnan/TF5uXtwyBe0hnaqevsF614S7D46HMEUej38CqC5/AZ9uu9GjO+cCcBnHQ8zxGjTuHDEHaJOyBLQxr3E4Hgj9FmfI1pTs+yVpUT3mlluAutS5SuK431sHuHfkq/RKcnYcqXzoy64qArzbWmawZfDwoPWwrM6d2bRvePs/nGYo7HmO1vO4B+QQWgUt2xVhf7Z795O5mwvFh61jje+rNWeTK0Lz5NyTE77OxfNu0h9xnKGlwLAJj8aCeKfnjc6ZHkl08asORh2LRl9jd/IsN/DuTq0G840BsLsZiCmuhXAXOJ4dneBiWFGsjDLmzRHFTtoAgtb2KB3bDVFWGvJ4vlyiBg6mm2Hq9Hwa5P4sMPmznQ9gaB2yPL10LEva+ERqJxFjP52mTpLYtAxOwjPndaDI80NYjC7rUOf3qbQaGhyhRJ43VeC98TiMoIHKwVV/ifA1g2QD57GBq4qbM5ycVCQjRu0S86X5yFj/fvdK+WU1PVjeAJTpJM6xJdcOBUO0Y3a85gsfL9UPYTRbB9JOaCn4XZSQ/LjrHfXD3fQCQ/6IPfToCvviUK1SeMaC2SVC+3IifAb/kA2qthyvrOxnocM2OPdn5tRwvzeUswyrjS5pf7xVYGnGMgB11kBqlzLGF3KIUvoEkolk6ld5ydXaFGDyHmvCj1g2z/fmUEMf2HSO5RvH8esoIBp5Y4eIgJDH7HhZekU5kwVrb194yXp48HGP0om49+IYQflgEq/h3xLoRasP8VSpVwWPWUWvug3wWTw6CybsssBm7g8EqkvkQPMOCBm3c53TZ9x24pJcLUu4Y59NsmAjWuzbCx8cRxF+eeBWEa/Cj7nTK6l/YNCu8uRMmfRecwNwvkg8dMLVYl+Wvx35floD2TDt8gkcbrPloFMp9a9Rv+Nus1YzMBfB5aqPD5r9zUKkixOfSpx5Sb1tjeEOG3v3d4qMvHtm851pfQQ+2oP0n+NTrxXi5MKDWGfv2Ix7WUtF9WJJGx/rHoGymUhlBYGsOvje5bCzqq1EVlCge9oP1O4xP4VKBXaj/qJN7OVvOHV/CNT99sDlH33gMAXTkw6+ckByeOsbKj8zD+61IcCx2GuOP0bmB7JmfsSaCgC0PTw5htEyUqlNg5wtoNQ7+xXuft+OY3HXCg733m6iVmAQQy5wtKHptjR1Rl+LWVVIR1uR9w36yTjX5vS/Ov/dtWjcCVvpyQpgKyoB153GOp89jieCzbVZyMAmK54S/6DAJry12DyXJ17JKOug1DwPx1fPjMeNbZrLO8w98ddsqpuebEUF9/DrUdLtp+Az1yQe3iGsIlORfPf7hM/W1k7F36JecxEopwM3f6HEYJkAMJkWwa1oP7avBMebLJCK4EDv6dz+8bh86sNkzdQkMGevgqYI/tibYGS29nuJU4eDS+AsOyP7LNv8RlThCKT7+/V8WuSJM+bCmt930qhfy2CGw1plMffvB6gWcigzEs7RJCpIwdJdp9qFqJhcauKnCyLl3IagG+Y4Gdl8Hdku9Cn72U4jYt4DxNFh5D82j+SIzHWg9lt/7Ve47XSUPDxs5fTziAuygoVJ7+KmD0BtRCVN92qFRu5f12G9bPIVRGalT63YsnPldAazifMdOrX/zgRxfCDp4QmiXQCNehcUnIOwrgQZsEeuxJlwmZ+m5x7Ygf+LNnh1RaQQHn5xRM+aHO8zA/vEXGg6n1Whnp8/Anz9qMjG92USaDK+zQIhoFQ7gvx/dVWy1tuhxnwFj9cPxP+vlv0MAvrV7fMMPVwukLvQ6Z9V57P7sGQFp98ln87QiZcPLSAjMjs1KOIXwAl4W/ov3HZWuoXySojc20uI69L/3w/3Dx+QWhAOYFXbowJqWD8T5neDNWvXYJKA9xsf6NMfj6VvpCuvGF7br1zVmMvVmsFfQGeOOHmti5nkKzQDY2Pk2JmPla3D/8BO2vu3qLeqjuIL9DtwJaNtrzJJ6TcCx0ya0VC3yVlLMLcwHzqQnvAfxUtjv9p8/nFj+BFQQevEfP/EeTDY65W/QU3aB2NB+6A8vXcHFbCOqaecuXvwv70MjVRGNfTk2WMREAT4sq0fehndWU3QgTHDYk9nm/Xz5w3PKXjaoGdx4MPbwQ2D5ij1qFyuOaYMuCC4NWqhRcbzRqDfBhezbt2Q+Xhtj5NkyKnPMTfQv/89hEplKs7tM1Dkscrx49fiG3hT/MH7Ck3cYDdLDS5CK9BbvVjDPWd4ALWnu2Pzk++391Y6iO8KRLF9TyJfwLoYwOC46Erd4N8q8xMm7iC5o5T8sp750SaF+ySkS7uqznuqcI3L4IiH+w/MLOCUpZA4WMWqUPesOaicANPlPmm/2w9xTDgHg7RwdXsnIumZ8heBIA4ueMxXEg9MgCOPITzHeqaH3tjq9gKg1LHxMT+4wwwYU8CrqNmG7BXojbEAJwVogqtPUGPYHf+D/rf96S/RhfFiJCV8vpGFvaWFMdAGl8r3ROKx+rjnree+wQjW1U8RXcw1m/T6PwB+fKzV+1bleSf34l4//+JdHnNSDYLWz95ZfDY//7J0eHPPCwLEUM9at7sVUtufFW3yP+UFVCuhbrYTNj6bX7GEqLThkxu6Pz7LlLgwzEIuuxDd3GzQEvmm5TbxS0E4Vt0aQ/T4Dtj0+afY8kXoFQ+VC7s1dsdc4xGM0fBAwtruG2iS1Gf/3vg/sgpEciz/2h0dgYhUm9fWXzg4b/wHssZrYPdDAWKWtRONBcsMeIdUwoXMoy/NF70gVaIXBgiwicP5OMwFbvl1fk0HgfifdES/MuGapkhYwq967PzxR79XXqMO/fOmmQxuzxCtKuHfgB9sbXpy5hOfg+V23qIewANM3kGeYRs6Ew5OoDbMlgR7u1A9AytJgY1VuZw4qDe9Q/26M8ThncQNJEwN6siR3YPY9K2B2ad/oe+p3xnhy1wI83SYj83b/y/3O+fD7SXV6VdWJTSxxORhziGLDnoxc4B8zD+fHAVH7YSCPKt+xg79zX1JzV3tg76mRq3xeXICPaf1gy1AuFZRU2aNHSf0y8ko+AtilB4yk+vnbBrXcZtjV75CM+YsfutsxFyRr93DxxeXnYXXmHw81sjVOjXHLltfLGeWNr1MNOIecLlEYgqDUr1i1tKtBlTrhYJM3PQ1y/VOT/dt5Qz2vA2xcJhp3YZJZ4I5OJroEkeT9kujswD/8d3wc85xYK8fBO/Z3RJhA6zFrqnoFF4pM9Wo9e6sdwxDeBPeCg6hyPMb086pM+g5SZ1ySga2cq4K+U1WawXPP1sVfLdlEio6d8xTUg/G9pn/5mZ4OihKTdxQSJdSCL9W/L9FoLtOMlGd5eSAlqjqDfQ+SAP6+ryntjo0s4ktYYVFDuwXuN7x/ksGRYot67eVQ0xu/mIr0oSckpc86Xptstv7iNbXGO6mXE/esYJyAiqz55xX/Fq9uwOV3Dzd94Dl0i3XM5M2fyaK0OzBV9YUHi5B8yT6IJGOe9FmFP6XbY/24c9jyjp8JGC/Sj9obnqC3Ivf/8AORilk3VvGFfCiEqUGzV2CAlT9G3L/8q3bQqRkq3xk8lFVIdfRq85lnC/nD43TTo7zp26YdqHdNRF7CIR2+xo6P/v3e3fxhbV2pAXYvh9S7Om/j19x/LfzTk+z6JeRrqFeyTKsVYrNAVjx1kV6Ae38qcCPyDWAbnlD++GFcxW+DurOgwsrLZ4yV4M7mopQgCNC3Q5y9l+p/+EfGakp4giKDDJ4kQNbfyLb+/PDPXv74toGmU7ze9ZaHufT9EXHLv8vpui/h7i65OAKJHM+YFSsovexMlHZ61CtRPRW8gPmmVvxePOqdWQL9c33Fqhsl7J89BxV9IuZxurdKpWQCKdY17PZqZSyG5xDZTtcMfR5HkK+VbxXwPWcu1i/gOTC1SwncClv4aF67eNa1TID8rz4g5dA1BnMEVYWTGvFEeDknNjsBbsCmb6KavxkGP7V6Co2Bnam26T+/nbaP4NEMe6yimg2z3nx8wPH6mWrFBefzH15122T/p5d463eNe7jpOfTU5JmxZl+wQvLuyTbIidZrF6cQ/uHpZMu3cyVPvrSPJZ0I7uU1rOlhjf7wDxE2vD/X3blRguevpvZPcOPZeliWHDdXRIT+cs+XZ/q6wiVLMNV/nyAnh0hX4em355F0U44DCWDZApdrTvS88WVGtHultGxfEu7isnrxUlGH4Lz7EG7ktXyBs1BA0q0+9k8vh438zXT/7ocW5lZiLj+rAFUQn8gslqPxqgpJBxtfRKIuFAZFb9mCSytJZC8Nd/ANh3MJERdtWzzOY90TiwpwaYFET1y05ISohg5rMZUoPh9vbF6NOYLR9xDgAEhvMNktg3/6LT3BZ+7RepdyEIkupM7Jm72h2EsJhOGRYfwoK0aWG2kA/3sd8BYPBgqyfQOj50fEBrBc7wDTqoT2+auRfVo/wOI+EwGufLmnZq7Y8YEnRvVn/2jn85I3nojPw/yzdSEJqAw2fBuBzX8Q90aonv/4/j99eQgCIF31rPt3vTJEOjhYU9XBzsUq4p28+dN3XJi1/eMPr7He6rZT2FjxqFFM+5z4rqor/vhYqXe6fMD0/lUmjARfxair3zWDaVVAKqkhvgY0A4uXzjrY+BjpsHwzZmTXOtipX0A9+xwO9I8/bfo4xXk2DOTveiFoFuyF5mSwhzqJIBV2A4JhOBvk5quVrBuxRBFWarbp1S38058Q/Nb1mjuSBf/yC9ji0YpkrVC2903xNrBuoXlvwXZFZ7RLhmaYn3QeJV995H/Xr+fkrPfy7g5cJJn5O54rjheh1bwJNeP8x/o0TBEM0KfD6t8gu2Mtr2B3QzpFyJ0GQjH2YQAG8KcvMeavYgtvxeFIvuNnGUao/Sx4AbWF3T98hB65CLb8jqr1JBoru79cWTw+jtgdqR2z02sRYPvUn6SW90O+hh8Q/ukjZHfkmbGoJlfCjV9u+rNbr4fI1WHXNB46bPh5dJ5qB0M+T/GxPwnxH74AfsWZeNNvwJ/9yEo8BziOuM5bFPJLQJRYLtYyNc//E1+P75n8xtqMV1KILSRhJdJNL/ZW1U06aP+EC5GfWZCvB6kxla8J7kg4t1a+noq4A0/jrqEvtC/GfunuLtjwODV2S7EN7slKKNz93z89fl8m514pv9kPsS1+/+NHltA3iNCtfdecxa2s88KD2tjYBj9MTxmGTq4igM7CQBxQXv/sd+M/JF+5/NVDgNCL/ulPyykMO0W3V3fDcxAs3zbsYKPHOVrKd8r+4VNgGw7Vs4fiEX3rOlnsVUrmy8mK53INBHgqwQ0Rv7t6S7oWJux76pAlZ+dhDZbegm6CdliTH8d8yWRWQqGPGuwfQ9frc2exlCshB4o90fFWeP9a0JSuwZ9eANbbda9DR7bu1EXHuGbPmV6h5t9MesyuiTf12Y8HUx6E+DgGXs2sEFiwm9KF+qdtkHDlHri/+tSmD2ts/uyd7k9fQIv8+OTsMp6JfGbfF5EL+DFYxH0S2Ks37g8vgvlRnzq48S0a0Z8e08xPRoB2yYVqhTnX/+zJwRSR2YgQYMMN8uDxi3KK7999TBujIvJbDod/eiW1l/kKzJcp0TD/kpq8ljiFvclj/Mj1zzAfaoDAQzFKokRynq85fsgg1/s9ETKnZsQ+WD0EigLJyn/i/CCzvIBbPQy97ZearzcZZ+BK15V69YF6IzA4BEUUD4hteJPdnaP+Hz5jS22+hNXDBF44qhTZuZWvv9MuhPOINIqfgxsv719nwfutTCgurnAYIJB5+LxUBxrs9xNgphMTiIXYpd71rrJVQ2MiT5/jSo/Sua3Xrb4ElecZUG2zp2X3sXv4SP0KJXzdGvO7J0QmzRn81Wtisq0/0PdiSuNftdT0qVelwsJHQE1l3g9rbv5SedNf//QDsLShLcLHoNRIjq5rTu5Q45QdQxl15q7yGOf8OGjgWUKyem2H6U+vtqMeEnaUA4MfBEeEuffIceBVurfXLUmX02wXI+b8kvxPn4Gzv8RInDvVWzzoZlA9Km9qe/51mCteTeVgdgKy2/Dh/qxt+m/gp9g7gNljblB3inev2j999W8w8Rt6zdPA6u2KGdtjVQB/+qzriOZWPzohoOzWhno6jb0VyacC+sEakZWEz3hWz+cEUHNt/vC4t5zCtJP8Cpr4VtuGQY79rQW3y2+kepl09RbPicLnckT1m1Fv+u2CFL4VKP2r//3cZyHIIRdLSIGuxpY650aocOMPm3Q+Dez4CyHQvvGLvD8GBgwcalfZ4ilWF2qy+fTtVFhfAge7i9p6I+6qUEltFGJLHZ5s03/WP70MrUpK689H22xy01vwfCrBvINPfRuEu/FDUub/9A+hDxsC0sMpp9cY8MrnPorYuS3vP3/rwcafqVHodfwXX6EIbhzhIeK88VohAZL7rUTSS6vAdGK1Drf6IvWOZZZv+qwAzrN4p9rm/3Nr+iI4FQhT3yNrTITk5sDNf4nsXf18VeTxCj9AIGgZWsaWZ/q7Apq+vtjbP2yw1T+aP30CcTnqBraNlYYX/jYhRbb8gSVeUsLwNYY0QdK44T1XhVIufLF/EJJ8oW3Z/suPfieQYX0UPoTb+hKpcUG+2C3g/qctBYf/vqWgmUaHLCvfx1RyIkc+VgdI/RyfjNU6VKaip6FAPc4SjAk35Ao9m8MUXTLVmH7HXwLPx1fw99kjYf19A6OjbwIFxNhqNDcL5Ew+UzU4r3Wb4cCFRiDF6DCD1iD5LXNhoFo/tF/Npzck+djBl8cvNFKyEoxGUnRQvpojDkRr8SgQMh0aR+FIFKwRMOZvq5FVPs8wMhJnWPwQVPDmKCP1fj9msOeoOND+limBfFDlS08MH952Z4nwZHzHqxLIBGrQtim+Lj+DQM8bIReZb/zUn29v8ZFZAcmEIQ6org0z6hIH1nGc4xP7ica0c7bZIsH+SbH+fBuM3Mo3PI37BbuvrI/Xfdrr8BGwgcAc/4ylOhY9OJ2ihqoH3mcsvC8y7H+gxYaYFfmS9ncV3rKbT2bRPXr7dxj2sLpUDfbCARrEaJ4maPbLDXv7QAfshvVGuZDshb03xPlyld4mxHy2IKF5vfL5nMsWeLxEH1uVOsXMVIsUdE8K0b7lVY8/lUkKH4ENEMvIxJb0+9ahIzY8zXzFjln7DgRwoeaZli/15rFfBFeouClPrfaWMsr/6hCedKNGiz0D0J/CmVOGILniMDhHNUsPYwm1Ojlhvyn5YY2WrAKiB3R6fMe+waRgdhUeWgBr8QnX89OKC5g6jUfvyv1Wz18wmgAHKSOCyLpt/TwEbs1joHZcZGzV4jwEwbk84SDLtlPN7YDgYS0SHNF+Fw+8MadQgI5F72atD0sOEgFa34OELfUSDevbf/MwHQ/OZr+VMTcO8mFMR4E0zrPyepyJBJzi3ECf98/01qegQujm5kyADmA9m1CooNhZC9biZKhXUvVXeChvjOpVVtU/YicmPNz6I9YrbA7s/WgskFs3HWudbbG5fo4R/FpVhF2niON51HkZ7I91j308SPm03+UjjPVDSlgTLzG12BoqaTT21M6ewtBYQdrCeGvMk+7GazyKTy0DHhcV9NR+HLB6Rbntou4BtviIz+c+gZxc+npP3Vfm5ov+JiJs7U9NDQGNwwCbM7fTXvBHr8vsD0tcOxEswVEgr85u2cz9Ts4BP0uDOtMCvHl/nBtFvmQQ8dxjn0/30IBwIqAktw4L3ozenPvv/9HBIvn8WsYE0sTNcbCgc34ITk8ZVNJxIYfgSPOlKacSSGXKoTOnv405PbszGKWzhoNX9M6n8V64QPzeNRw4vZEvx7wXQIBTEccOW+v1Jg4RZCnAOLiafT3vlh2E/ta23iuwx/pFAg4Ur9OZ2ufczg/3ykohi24c1i+azwSFTS3EaI5xAFfNWIaz7UAgth01ezWK2ZTQCly5Q4At/aSz/a6XrtBaHA/rp+5urHKWrLBa1JpqnP72lmchE/jhhIYaT/PIxutjFMDVbUMy15MG1oP146AyFia+fUQ3nsF8RGByuxe1XxqX93KWzLKntCPGj50KGN8cI6jWtMf2oTvVc8ueFjh9ypjqAGFv0fVIVawEFtQpr6pH7Peiw9RpPcJfiBcviuymsI7POXYEZniHrWAAxbLXEcMX2WBnPefBd/8pse00ICbj/p7B/rnYiAfzeVhPoQhhsNeu5Nm+C2OE+8GXbY+7k70ABmMypreoeBznU/NChpw+pJsPASlOVG+UHMxbvAYkqSE19HPPiHxIBVlcgxCf1NQahBrfefA0SEqY9d1OIQV1Ib+K6oWxb37qodSaCGpW0VM1fbrxeg1PKeStosTuRZCH+RPGPtT7xKL3fjYZD/OrA0eja3Aeq9uWDNVIgCs0lOL2Db1Vu+rRX/xHCynXnKy7s6u8PE+j5h653r56h6PSg7NFg/4VDFQKRBfs7ivGevQ8euvjmJmw+Ry/RBDO6rDcJ0eHx6s20dOLFGAEK4+UWiAe9a/SYoxhuJ0Kl607kXqgAvaudRO29rdG4OPsDKbYDxl28JPTZ6UmA5PjHQdTTk6p6gC5XppXUkBQZBISq8kDE0RLBQP+1iLW8cecXNwhg9dE3WH0OxgGM2TuCs4vw0dF85trVtHGUTgOqsjXv703l7lbwebgHLDbRa7BF5PeQLhrPtS1wnpYuizNZOez50njH57xJHxQJ33TaYdxKybGWhSzA2+5DrGXS2xY1laX4XKqeXpcMfA6pdzyPXQjjNJtLoBCcAMKWUaE//7aYdF2PZTWu2CQA1ed4tksfh04fYqYevzBBcvy2Mv/n+/9HkzqfTaVhD5Xqp7XtqbsdQ1hcrkl5FXUN4N1VBQg1W2P7FqRNybdFlVA9ATjs2aIManxmVfAQRQJdxz4eEoboIIN72DVOAwGnT+nN+zehYKNxG9jdvqmPni5zzPW0SnwluB6rpS4vF2xyy6fYRrO2JX8cRAp/uEdo5Fb8QDDx46sUa95Y4JDHW72jMCO9vFSnrkRBog62JEuPRj1QR6hlXAFRjoXDjMtghE8juSBOIlFxtiKignWkxNTc3+3PLbbX2YYGau/xf9rvaiyz0H911+xPX6QwR65dAX9S0ixVknUGC611IGqlU1qWwHdSiyTD6k+A7QTOW9gpdaEclK0F/qXf1d16hLpvvdbJC+eEpM5USM5C8kHLRCdGWuLrwDBZ99Ry6xQPXNt5EJ5aQd6bPbxFs9eHDTXsiKB8/zGjIvOsmJ99xIu7b4afn/riaxUoPi5T/OF23UZGKVYQzt5a9UFCpODxpE/Ukcd78YihrcGmj6vUz16foyJ+KsJ9hZwkfxdLmx14UmA3a0nZG5CJWZ+aUFlShYVu6+Pla8KsRs4PWqO6okwg3nyNFn5s6+gVaV6LsEtg+5H3CFFW+uautHPgeerr2B1hFO8/HQ5gUq+JtQBLzmn9Ll1jWnaEhueyxnLrl+uSgA5Gz0rla/X0xLwclWe34T1PWTr2+95KBydE9XV5gQEaVl5CE+cg/jaWWv6SpH5z5/H9lGxhYNLCj/qt0XVU1vYOMhUAJt9oW/qeMYCFyUFRe+XWI/6lzFPw3WFGz7DapKQuM/GEwLh099RK5bexmzZcgvvWXajFr2rYIbg5EP8a9/YeJofsOVzVw56+UCPt3DOmagGLhzW2KSnpJ/q+Vy+LHjNQxV19z70NnyEQFmdO+pAnQyzWnEETAlTqVpPL8D2YxRBN7tvjeBpZCztmBZQuN0EbKYh88Y7j3rwVd4YW9nyAutzfnNAPF4WAvnPbmD6xSihM60fMj3sNl6VmWthrX8G6hT+AfSulAkwrNqKzIedA6bCSmX4EvWKOq0EYjbxWQNxH0a4nJuWjVt+hGJnLkiy6OrN6JiG0kvPDHRApK7pYAwE0oT3qFbevvGiQcDBmlvu2Nw3unHg6GGFkZT+sFPdYsA0FxfwZ00yWds2NFb706lwkqZpy1/tsH7PZgsjeT0ROXv39WA8wkKhB9pRh4I6XhyedTAWH3t6PF4u3lx5SwGPshtQ17RAvILnuiorZ6vUdQqWL2B8ZnC4lXvq7g9TvLzn6Q2+eKdSfxFzMLu/NAVN5G8lFN9hJOK1Cmx8gGK+YwORIjzDSmIvaqelYSzMUwR4byqBvE+d5M3htbDgIFVH6pU5yOeCboODujAgP/ZLjcPswgJKUhDgszT23kJcz4RVIvBod3d40LHb3AMnpxcib3xnLtP8Da9avCPzFp9nuf8i2A7EwEF/PQ9raGkdrD/XARu4uhrrb+eXgO+NgTRFO3hr8j4V0qRPMzae+AXGSJt0KepGiabEZgbb+IayZFKCdkpi1BP3HhOwZWrsZjcyzP4tTcA7/0zY2/IpJdnxrTh69KWueT7ks1hEGRzNJMEu4mQwJntd3gZbvfDzwZtgwa/dFRipthJZa+KBmL+9+Y8Pot/49ZZPuxbwuOKCmvD8Ae9Dywnwlx4zjNaPHE/fPQ4Bhs8dtpZ5HNY6cgS5uD1KXI7GCrroFZqKp2oloV66j9dTOENYmkcJBweQMNacdRXs0YYn7XOQrz+JFBC9mw+OBrvx1v0F6DAfzpQeV/NpMI7uVmhKB45a1OgYEU8pB49XY8IolHxvH2UgguIDRvRUGa94LjmUAY4LQxq4QsTIP3/qBkL24GwYzGxxBCZ/64Il8feYdPdzK5cdumO83W/P970F42vk4MCtMvYbhNSHOMgYgouYs8lZzQ7mr4OGLfcge2TK/SuoTy5EBTs4xkFz7RKoPTcg+FhmtgzsheAffld3elOPrsUlgDzcB8X30gerXbk6uIi1igMy/oaf0TMZ8lZZYkMwwnpZHoos224jka7QAKB3xS1AsJ8set/i13SY8h6k2s0ljHozY+pPfsM1+ugE7IM3mMD4TKHykRl1PobB5mkoZxmeohTJ56Hc8E+YgtMcvrH7mfVcuLe1D4fr8UKtR/wb5sOilUozJh05mFrlsV6kHSD6FVNLZE68FFYogi1fIPDjsbHKt88KSfv1MdafurdPjzaEhyt3wf7zo3mH10FyZR6agGz53xuz57OVs3D8ULP3UExmcnBB1h8M/Ke/kOruy8A5SCa1JrOo/8VD5wBMtKNN47EuPK7wJwsZ9pP3Z6BHL0zhj33uqP8ue8BCuF9Fz4aYiB/DAGwisIXvQgmI0Ly0mATjPINVrVcE7pPpHbb4rmz8g5ru5TYI4/6egqMhqNSGL8UjZXfhQGkuP2xcgzv7w0+wVaSZausPxTQ9jAV4Stc9WZddzVb28a1ti3OEj94B1hN+Ha7wdTlX+O95VvEUcn96CvUfLQ8m/XOR//yRxq92GuhgRSPsrBiRWbxo3pCH++TPfumJ8bz3jx+UQeZSI0isYdHtWQcbP0F/+ISsuuNLk3c9YzwYobf632yGYdVU2Njs5W99//FnY5udOI/qUYQbHkQfnU055aK7DJNv2uAtXw5LLcrVH5+j1jN5ePMhOWZwH14kpBw+BWDNchUh5eDvP/5qG0cOIttq0dx/XjWVhlKH6zhV1HIPmTeuK31D/L69aOD0dT6RCUEYLU+R4uo6DuwBLV/mVKr/8cV4mkUXQh4DH+P1/AVzsJORPBGpxP3YvT3aaiIHj2WH8A2+FGPc4jUQnvCG8yKz2fy+PSNw1c47bLzgsd5veBd+w36hx7AeGbWYHIG6VXNsXNM9IOiSESiTk4zWPBVz8rZNHv7FP5Nc3XhV4pAoXLRGGI33HizPzBjhhr/xxg8M8kWXBkKd2oQ5LKqX0+Hd/eEt7Ie3U82aWNLB9SRWCBDX9ub0rM9Q58sPOgRHnM/XRyOIZ3M7OjRdqmGFx8/458/4eKrO3ujfwit8F+cHduv8wcg+feuK1tMvNjLpx5YrPJuKbGoF2eeLmU9bfgaaVfbYeC2/mq3C8SqH7KHQm9Pk+YSgmYLEEz8b34nrRYMMAq3Xtv1X7GAM+SSlUDuHEtkj/+Wx9NCUkKUSppq/Nt54s6wVWkYDaf6GON74ngjhtIneN8eJ+WTvinJlPBL0Yz/RY+OvbOSjwav0As6G95ffZNDWKdkd/Q9gx+ETQq5RdlSDaAGTH4I3XLl1RgrVXzV7ZXsLHK/TA63tMhrjnz1/GmJRZy5LwE/eSVT68v5Ft41/7Tc8CwXUHrBnn/lhsx9fni7FjHHUTt4WD1YAT2FKz9DYM5IngyON3fdMGjLqsbB7fSqArEwg0OT2jJGD1gDr0vnUNB4HNuz9L4KN8LSxJfMATOsJCcA7GDlRtNUY9rZ/X+GbJBNVzcCI11ejyvD44MpN73yz5fN7FXDTz8is6nY+1Xe7hJteRk8tntnv9ty2RHv+HonDZ/jTt2RgPYweB8mRywk/OxZ8U/2BfT5Q88N9t5Tw3/MdtRPY9Mk3lIknI1Dm+R+f4IB8tUbCI2GoiUgNXvb3nEt2Xn3O+RTFK5Dbtdj4dm384S3wQ92AuM8Ve8AvEQey3ovxH/5nvfjt4Nh9/vA6iv/yOzCfGqXm92fV031SVWX+RAfCtnglLPzDhRueIXDzB+J/oxksh6OBvXkkbL5fqxU41Dni+0sSwcYXLbDZP5LrXGFzsFsR7AN6IPw5ZflkBDte3PI9Pd2910AW/uLKthf+8HE0hmGRjX0FJaOdsX37XtksveYUSpKsUE8HRd3OiRpCHs4DTt9kF296tCW/tSem9phFxmj9nWqmg05P8uvGVusR66A5fTusesc3YFG/H6GRGiuB3a6r11fjiDCZTzXWyrcR73fOM4LKgTMoOpz7fON7FsR9FOG/z/PJxFd4v5Mveh1lM5+3E2yAOfhJUVnimAVtDqVP1An4FJ6kYQYrRKADYEDE1cZ46buP/6fPYfszkZgpX4eDf/jZ2PSmdcuv0IDOdjbVe4IpiPs3vH7SJzXY1WezUvEuVE5aQuJrvTDmBoYL73v5uuUzAxyIJDbSIL2P2LOLcFh/hdPKf/gSU6p6LCwqGdaaBP7Zw2z1XAnsb5Fi1zraw4K/lytc8q+JdtPM2Nrb57fyxw9XJeMAjTo0wo/Nf3GQ5td82TnPEHJKU/2tz8AQ2svQ5QaF7CitDH4arvO/53NucZPT/ZhFYHufZN/sGTjwvyGC8FPa9A9PfZOr1YNKWl7/+Axpu3cHiZs/qFl+uXrz5xZc3SZEjVuxYTpHJAKhTDjExp2WT5GyjW/Y9B9fnEE9XuRKVHbRC1FTtH6AvLjdDN66u6PWNZzYKLtRAt0PxmQ5uO94zQ9UhZftiMfxofDG9GbFG274Dgfk8BmWnxMmirttkfYEscz7otgSXuHt/+L1sIZG1kHwMH+IL5avt/Zm/4Zr00XYy8lhGHfnwQRml2j47uW6QfdjFILIr13qPz8voydGG8HnV7lg7YNtg9/wOvjJfIZ9ERyGMT3r6x8/pWpyinIKgKiDOQY3Ghw+kE3KIU+hp1KEgONUYD2uugX3Z+OHYOXAgYnq0dm6Ct23fKQA+kuzGSailVBzfGfecuF9C9Lpe6L6fMU1Y9opg7taJFRN9+98Cek7geI316idxrbBt4JlgpxvNGrId2cYfGVV5VHiFupdbr7B9j71/94fmTb9ch0pS+Efvq1bWxv420cSYFS2GbZrta+XTc+C2/+h2ZnLQSi7BwSn1jWwdxdVb76kSACPoz5R3E6psRDXsCBNBA/j5qDWhwAVQOq/G9Zb5X1YCmwkNz1nGv4UUs7EM/VDPxgOm96p7GH9Jfw8CQbzgKFC2Qsf2POUZmC3s9TAkD0VxJ3NzljH9b3tuTNuZNNn41knPwLK4+OO0RmbRp/mFP3DH/OBH9myhw0BrOeef/w57sP6W8FN/8J6lJyMvVv5LWz27EY1I1DrBUEzg/Yc3NAFWLZHe1D2MBFXE+2eezFea0pGkNpijoO9rOX0OEwRbDLFoU9bf+Sz+Qw7+Lvl/VYPeDNamnn0xx9psJdf8boXsAw2PQX7isUG0mvgLW36ATr4cpzPCW1EmHyzBrvxk4Dlej/of/ZMuJd68GhghKZimeGI8ca3l8forfJWP8DOxnc63ccdNJ4hwy757Yexaywdko9UYO0vPxeZ5kJ+uHv07K+mx3YXVYY4DXRqui6oSXMAI9zqLVQjsRBPgxAi0L2WgJr+4bkNgure8J34GD+9+hyvWz1ADl9RiHUl49gYstBVtvX702sZkzqqw9fDPyM5e7s1q7vOBC9PWP7p5ftAemR//GK738vGj1UespDXqPeJgceyz5hBrTcO2HSSxhhPZZHBnT3u8PlSgbzrrMpRCqRTjLZ4zm4rKqGyu7wwfvANoH/Pt0TOFS3rrs2XnDMEyL/gg/C9R/Kuj47cn96HNfTYDZOuZ6ryFx/KUBq9xaGPDmzxh6rjssTs6KUphMl8I99zW+dsCYYSHoOIkP48lPWkd6YIG63KaHAm67D6/Wn9q+fRAH4/xrJ2kggyVd/T01aP+PMfudYAICKxY2Mu0/gNo+/lTl3r+K1ncze9oXkNF6xP/BewQYUjKBB5Yv9KLt6fng89LeXoZv8e03yuAO/8O9GTWb8HQgwSwmH5JFR/kjBe49uxhP1NPdH0vh83PnlrgfFKTGpBrsnZ9TT+b10KxP++pcA5wxWj3nCNpRZbGRgHXFLrapn1stu7HUQ/KhJ+3dVg8u6hpYheYtBSVWaDPSbFhPRlS1TNz1Y+allVwv3zccOn8CrVq/z0KqnSRYlaYGvsMQGXA5VYVki5n6VhzG4vS8m+lxeSX05v9KfZCSFR7hbNizrJ55/h+bD/hg4O7lweDw2YZUV7eCppGqnLV2PSSxhO/h674uEBxvsNVPBXOBJiiszq6Z5PFXQ9p8H4Ef6G8fexILAuUCR1/RUYE55TBK+rt6do1dV4BsRJ4UV9Wvh0mR8ekfo2BcSvckI/ZZIzjxNDuGP8F5+SC2bMPxRQAoS+yNpIaOiW6qZDXT0wjK/FO2b79awrLNhjagzOk61LOuiyPljXjQIig/5ePidPvxmgvdyJYBoYB+GO+CkR95clZ8W76aFhJQyJZXIylvd0LQBwXI3s3v4O0Fu/CyE5jGdsWFphTEsiqfCh5TtyCK9PMDcvbgTwtOPQXAUFm4NATKBXzhQ7KiH5dK3jEFYg/JJ1FM3tlEl8hT1dTJr+7HYYd0vYQyYgjrpPzRwYtVALacQRIssU1Yxx6Arq431E/Loz2FziToaqwav4bD3xsFp3SYAnzoioKyWvfFZy3Yf5Ws7Uu7lZvohS54LnjRrYlSmpx7/1lp9rRG1RF7YuDokJdUV8UPyBr2Eez9wVuKyKSeEDnTFCpw4+Yj/A3v38ZOt9NSJFvxQOvsCn6s3d+I6g9LDvNLhQCxAheXIg30cHbJra3SOFKhTwsocWTSQ2GOvteKpgV7oQiarmDyMgTgYvNnci8KY7HlPMpITcI0vwyXQQmym7IPBnf94EzPjQzFWpxGi+0uRLJG8yd1ICnMP7jlFM62FsX00IxyUPsBW/FrZMxeJDNgCG1jXqcvJ+iYVsGc6C09WAYH7k3gy9k/Oix2V819R1Y1+hlalSP+fKuDufDgRGhf3AFn6Dej6f1Rb6PThQbP9MsO7Dt6B8V7nCXveqAB0D/gouKcjpEWe4nl8/QYSSeBFoYMFfPs/FS9692uJBn/WNsDmuLBeilw/RevRJvIrPBwSzpkXUlCsfbO+jUJz+blPce1dvTknLy4cafKm6G7q86Q9VpBS41ai+7npvjoqzqnCx7WKc1l/wz3+x5l6oPme3YRsg3ULx9ERkPknXeKXBRwW/70PBdiY7NdstJQLe8g6xgdQ1n6mlqTA7hQq+iNWJ0W78CjDJpBKrl4MOptttTpWvPfb0EvJxzgw0j9CWqgK7Dl68pX9cTSj1aMCnPnvVs3ef+n/r0fnw7q3y06jgS5UFMmZNxtbk2KagfXsGtu/6gS3N5Ouwz1wBOcd89r6Sn/TgRZQ71bf1ZIKzcMqP/2C6VYTZWn+mFlxbYSG85nfe7N9zBAsW8dgKx5cxQ7ys8BUKmOxYQwHRvbsDbzdaYP/0I/lS7X0EoCTM2LiOfTz/xZvq093JZ9iDfGCF3iiGb3To6+yvbGz5VIdWGBnkMzj3en2UnQ8PLSX4xOuzNx+0s6U41DLwqUgsgz1FYEGXvWPEicK3Xm63OVMO8AbJQK/LMAOipso39FS0f2l8vATnPoH2dYVoZ8Hao3ACFSS86FI7C1qwVHvTh8syOlRf7Hs+2UZhwjxJfXrO71G8Vle5BMqBn4hS7/Wc1z6zKMdJ+qGnBXWMSftfBNJIijB6vzVvXLgcybSyVGr5+DGMjHNmyHPvI9XbJAfrlXTbIKMypO6TtDErp3enmLvqg/PoIQ6LFGomPGN4wacIjN5ijx2RP2V1IHyQRYCW7wxB1b9CalN+yJelOhUw+vmUGs9Uj4e7FqzS574HRNrLKlj+4vXI4wTlaVN6a1HKPXjKZU0d8nK99ZiZkSJe2wr1vFsYLEx/pdQ3pfb3ezaf0LcHXNYECOYcFy8+nTll83+anMTKo+MwvxXL+03YXQ2hXtGgIDCXbo0WLJ5iulB1hrfp0qOvJH+9BSi6ALJrinGy2LHB7tpxhWMd6thGEBoL4d6VcmgnggMuVfLZazgTRtYTYyQKds1rWVeCargh8pa5KielBwuw5Ufy7TObfbI8t8Bu5/UYn4xuGDomjvD4FZN/+ZXd+l0E4t1Po9aVWfGXM10d7mk6Y/fwkI1pco+lPAnbxGatvoAVH449bC2xxT503vEihvEbzvW8Etiaskc5cXlDf6IcaiJeiIfdUvqw7pWY2rukr5fOUE14Fq8mYfPua8z+PfbBWxtlag2qHbNiH6ZwZqOHbwemDV9+GxRU6NkJ6XaixIvBV+K/eOzUZKzHAZ0QfBmjgk+C+zSmvXzU4egdPv/i99JgzMPomnXokMnOMK/Dt4DPp2/R+P9Iu5JtBXEo+EEsREQSlswgQ4KgKDtwQEFFhgSSr++Dr5e966XnvKeE3NStqpvcxO6J87sVvGHpxgoBpw00h1O3HRQr3Axotk5VzYQttmC87gOMpZ3Rz99mewZTfv1gMy2OgKaKd4A//DDFxxYQNWAyPB/HnEa4fZR0b68J/H6TgO6sdVzPqxO6wc9xs8bRaXPkc7/nCIL4fcLobaV8Ut6bChJ3c6chyqZgerrVoFaGsiWyVFXlgscGGLTqSZPr+VXPQdNWYBkfkRUjDYZ7sc2U4MYo1qNU4ixoiydcnpcu76N+HKX9DepPjqmboLgfHdlsgE+AikBxQYC3R/iE25W4xQWURLMLrr4DF/ynXsargFy1QVN4vRzjrLo4ZW1iVHCLIKJ+DL7Bwx3aAW4P7ysBRzqa9/P9cgbOUZBxqNa0H7T09Ib5uUiIxBEzuW6yQV3Gixf+UA433Mowfo2MgGlal+0dqg78TE5OsQNrcxaV0wV61DL/1sN8tq0WHBRpg5Q63pr89kxCuPANtDnwuuSb8OP84YcpPnI+YUVxoC8dClJJqzgd3o8hBgt/QRw4Q8oDX5ugOj6e1F6DTTCdw9qBDY9LpMr7s8lOHzuGgZidlnzppXOVepe/fGzq7FNPPTgWW3eF90iqts+gtVfiBVy1s4O6Hs7mJHWTr4b3N8fGJZJqLq85gdqQHKmhCFq5jO8Gc2Oy6NkbrZ6txiaE4U54YcM9XMvx/gVMkQxv/8dXuuQ8vOE10w70kK5e6QzuqAOX+ljS3Rce0um3PkBd3KhTbY1AApooQ1shJXlto77n9Ss21POkShjdbLX/SvEobMtw6+HofhbAuLXkDu7YgLF3130w6XBAMFY9hK1xLfRMZjuyVZJ3QZTNtQho7ZYSvBxRTHfPMkh7+bSqgNeVLqqedtTPSJCeP/wlbUmllO3AeYBObfn4Rqaes92kJerh3hRIEYgFJGnnPuF2/aAU8wbz0R0qAjJvioi6m5WUV3LbgqApBCJ9COPT7ig/Yf49Ntjq0gBM76wU4ephVIi/9KLuTnEO4WHtGTg01p+AHS84gX6eUrrkK3O94JOqUedCg7R1a67LXQjOFnNpuCq1UtzoewuYua9QU8q7ei7Um6jEL8qov23uPdOf4e2Pzy18PSUdBxJUn+hOHQrVejTFVob7eNuidRGNJnkDUYO/79uRbxZMRJkq9RtGFRLuKklHTl0D1upcYNO478rN9bRjEPTbgqj60wYbq9h5ENnCHYeyFHFRfRctVM57jPdlzsrJe5RnsMQTtk/5C7RmwghMBk1C8+ejmmMAUglG8joiFXovzvFRy2CisQJbfHj1lO5PGpAv6fGPb3XrEiSgOlKNugduluvXML8hERUf67lgB6xvzwL44cFtc6nBAK3HQZ2CwwWH+7apie88Qrj6Pi7Y/o5Dyc1XY8B5U6iougueyRVtZmqxmiUalnvYzzHXkbLwV4zceROQ5Nw04Po4nnHwhcQcUjYrEOfvjvz4A1nyuXLt2yeNRGqXkrhs+RJaeqbOLKK6P98PBXjM84OGJ7rjrPcPE7zgRsfxtjEDSdDOBvw+Zg/H0mpK+8GoZVUp7ewPPxkMowPUF8scS7tnzbBx84B0EM7YA4oJ+PaunSF8nEt8Sr8qoN2xc6A0hWuKn11kDs1DINDwDhLND0fKB/Gu+CANBIyj5MpK/sC795++jV74bfI05gQC8TQh5Sqte6JrHoFLPkfx/Bo4z9TlIpNEQ/iXL+jdMhvovJQ9ttbOrmxGp7xBLTxAnEPdSfnuKFlQSZoCIz/bgUYOv0/w8xN2V93lbXZ/xGDBE5KwlW9Kz1FT1HAYbALl3WAyTrY3GFjXF5LVg9vP7iOOoWk+B9Sm5i0dwcwK8NpnK+xfpWP9wxe463GAHeSiciyYU0AzvdhkY3nrYCyxHAIuhQLNqq1hzptSOCs6iBrs48crZT5XC6AEO5V6h6gGr0a+XOCCVzSMr8d60SMXqNynBIfiZtNPweYh/cZPqH9bgwWPz1CXyyvVgcP62fyeb7C7b3oyfz5Xk4JT0sLydbrRUKJtOoHy0gKjtzKMjLUGuDmJN5ha9xDbz+0rYLX5FeF+2ujY18sdkJrCJ2DI/Gn5PjV4z+fagFwddHq91CjowSnpYG6/A2w/Q7Ns431pwGyP6h/fLelQLae+eEf/+P0A1Qgqt7d4xruPFwXj4/vIfnoFo3sc9pv7280AErKIKOAylYOk9094H497Ii96heRqOqhfbH5I8zys+2nh3/DoTzG9i0Lai17mQ4WevzU1VNvmsyObb/h8dOkyPttkTLkc4OeayUSKiqFvH2nQAC1bLtJMXp45q3Aq4D0xEHbgZzCH5PO9QVf3CF74fT1RZ2fAaZtrVK9YmE4FOZxhzDYWdZvUqMdy5hAeW0n802ODUlILoKA/LPq3AeNbNjT487M8hYqAbu9eASlJZzQufIosfgHs36mA3cshXPyIyoMXzxEQf9xdvu5X+KzIyPexox4iPlVzgiD0BBtr5f5d8sD3pu1xLThkfKj7ftbcuVHj9TegPkV2P7uoqZTVmx7RJOdiQCZ6y5T7eNpTa6XE5dudCvLDK4yWfEWPu0gAhpdJaF22Rcmt1/4NrOVucpwL64D+8sfhhb7U+4wGmKD1yGAtWy8avaALOKKfEOiH1sK55N+DyU7aGArteMaffn0MFj74hBYcbrgQdNOUjp8TgbyAD7y3PgIf/CEvlIWvU+PJduZ6lz+r7RCRYon3pKaH+BvDZHNU6OLv9bwzhAzu+df74Uk9SCEXwBKvePGL6pFJXQa1WW5w1FinYBK80FAW/oIXvyEdpstDhuNu8ySb3fPcDx9/ghB+tydsaXcn5aduk0CQpSGZk1Ep6Q+fFj+PPHQWgVEiTx+OqLohSaAgmJpvokFim2fs71sf8O9wLBbKZyCxCp2aqdrzpsY6zDH6QKuWOJkvatzWW7qsp3T6xd+QeRM1V8xKp/3ea2DaaZzmM+j6+XSSz8qh1SYc2p1sjtu3eP7lUxp4olbP9YM3P7+ETM7JrMdzrYlKFPUnai2/z+n+bkCEriU9FdGbT+2GDepvvRrWPazFOpm9n7+FxBt7Ag5ORQcXPUdzKr4C3lzhAAAZH6hquqr8+W3KoT6JRPyQPGBIqARoPl4x3kF96QLDXtrP/8J+dhzqj9z1yZ+/u2ufMRAXP1CtL5KHJPaYUqaLE/rxI+yph08/y2UPwWtOzmifCy+T3t84Uz5Mruj5dviaC/5dfv4wApdaTOcTqQmAtyZFMN+N9ax91cMvf+PAh7ifN3bggLX6AHjR0+UAiFao5SA9qLEZejCh/XiDtV0OJOZaEbTKtk7U52q+YmefG5wdP/cBwEdREun6ifp2aDpH+e43lIYW9gHP7kQE1zmZiTTlj3IuZwCBmrMdNllxSOfIyRWwxBPWwMCCaaDK84/PPWCVlWzhE8oXWgmOpI2YsvFYMNDaw4fai7/SWWZ9hh9LqcnqYhf9+tDvNODM0RH762Mf8LZtEyB/zx/qnwxUbst3/YTqWD8xhuoOSMUsi3AcPgaO1hfX/PEDsHm4FfWj76FmegY12L8Sm4jGZ11OfJcnUPy4XyKTh29yG7Ab7BQLYyTtRT6t4MOBYK6/P7/9D5+VZDAk1C56diq2gwSOb22kunPH9SDMvQOMq2rR/Fn25SB4lrYt3UTBHgdR/d4b5gCfOlEQ8PHI//RJseISNddDyzu0my9QeZ0fOL1W+3o0s2ZQ9ENn0WiYaDDIpy2ETUQ4xeO1q+fTFvo//wA7/nrLyV3LG5jl9E742SEmHY38Ap83KcC74fEx+aT0HSzX8YaawBlKuns4T3h23wi77+WaVB4FCWwF50i9GOCSz8oeAdncaHTx63/+twGXz2jJN3U3+EYGwwsbsHVAijl9HnsReNamIi0zL5yPGw8CVvjXHz+tiesiR/n557K/Tvv5tBU9ZeFLZD6uEJ+dAfiwo9xC/apmNVtlsgLtlxNRXy+/YMIKs2BOjApHK3tlfptAS+BB2gH8458k5E/401NY06NbyRqkJFDLWhcf58GouWotXZvUGpDXfmWk65DKAnRIHlHt0nfB9MPLl56/sa6zEcxdSyp4OoAjkbNjAtjCZ2FssYq6uXHim/Ri+fBlRSO1N85yahvG6Pd8dOeMeqkwGiiwKzwJbRC8mEv8I+i/c33xk8ueuVMyqL/5DGi2r9dyXFbAZXpOMdsQc9G37KfP8W6ayp5dtUb7+YvU3qV+ycBt6SIkHyWMwitO21lIQ0jJfqaacY5SZptnAazOb596yG1NRjahBY+k/qLNjKjJdFFG0E/fyp8/wg+fSwMlrkGK0w3tKYuZr6pJ6uAAgRcYzmFtgaXetMx3EdD3ihjw57eq0uZQ8jjaG3DGJsJLfgsmKQQQrIKLTPO9WZZzYiAJGkmnY922nulMeGKBBR9Jt+S3Eaj+v/EzX3gWTJh+Ozh3aU/U7vutCaqaCR6S4ol/+n0Ubl8GndtVJBtHewHufJ0B2FW5x7gLpOAv/xlb/KDhcZMH87hvJ0WzNlsa9Vmf0qmeDpAyxaXRYI7l+DIb+MMf6rolN+mjKLTt0XEPZDLOY0kZU2UYiIcTjXdbKf1O/XCAF+O8IyuzIz1rCmOAoAcF+jiaDdawuzvQfHxi7D50YnZ4E3XQEfUL2rI2LEVCK0uNK0NFm5dmlfOaiA28XMeQ+uRR86kkugDkIDOxrvavdFlPAky0qaBhcnyXk+uzJwTv8EV9gTTgj+/+/OHgSup0NG6eBuUYJjg8+qdy5rXUwKVegHd7s0z5wk9//JBGuQBS9uMrRtorRFjqj6NEOh9uEngkcgxoOkRN34HV3naJ4rs6YA5QG4hX/h7rwTY119s3LKD5tVKay3TP5/utz6CnYoR4VwoBgetcgL1shVQftY05KMyFUEaej0+LvqAnpvlqb1QvmvtYDMYr3ArAtj0Ra8HsBkt+1/7w3yYFMdl4TCaw6EdseLcn4KviqYBDOKWL/v6WP/9Deav5HQFBisG0ensILPkIuxlIUvK+rkR424c+tjMg99Nqjltof5QD9hxvBqTsrtVP3yFxqWeNu/z5hAdF3GCtrhQ++g0TFMX3LBor+4YTeDoyGMBNSqZg/pjTzm8tEBDiofasvOo/fFHXxhvNtmWUG+uVN9C/uBK2HX3NWce5BOJk29Pf832vtzX76cllvp10NESeqa/bc4N+/gkTtq4FnxfNwgfzsAn+/BQKShN9H+Tb98z+EnD1gEHAuRGCP/8oVg4ujsHAzLlQM1ExheGBDx/9lNL2CCto5VBY/AebS7X5kNR049l46SdsVorFGUgv4EE6uEtKdrL1J8DbylzqZULaiIcHgbLzdbGxig583myVRv3Vc+O6KgAr1V38q1/+9E09+A8PwvO6ZTha/BHWIJaoP7/S0UMdjJ+l+8oSP/TnpzEeqwmM28cWrT6ZbU6S3ldgqXdg7XUyTLEI4w7SBBK8W1/VdMhtl4Gtew8ILXppuWg7G4BsrjWMTnupZFpQN/BSn0rs1m+tF0NkMHj/dBcaPrwazHXWeyDbhzVNFv01HXfeWfn59fTCYDrY14nAw9k9/fhLOix8AjTV5UCjev0sqbwG5H9tKdj+95aCww7dqLG35GAQ/TYG9S1XqPu4hSZ7FHOl6p33psGuPvTzk+yWO0A/M/UuwE3FwZc8WHiuiXFNSj5brseAUS2NQOPPis+W1ytAP6cHiorllOw7MRIVouhL4KrD9diYUwbjyxiiW0H6dEK12gKDext6XT1vAQ9K2ChEjjh1nGJKx3LbMWifYEqRwqtyOvOLBIRne8DGkO3BXN0RBAavv2TVTnNNWWS8ge93Cpqs3QaMB/WDgBE/dep26zYdHlvOwCsydGqEX4vPBbk7v/FjnBUa4DqqROjdHB89PukKzIPanmGjYAfrA/dNfudXCYibpX3Py/LqWacIwXk0Mfb857ok4qg7oK4kC63xFKeUZ4YEnSteER7c1ZqHHy2GIF+2JOTzmzO/aWU4tFZD5lv9AlxxGFFK8ctpoG1dc8qem4vyYntCpn0lBvPoBSL8BOIaWyp91zPO3yG0wnqL1IYsp6bLVwVwOkBsBdVyV/qHespVsyK0dh0DbGRVOcNlPtDmJK9Tdndeb4hID6l2UyH4fk7psutdzanzzk79dLtxQ5XXa4Jdf0rTQdytBHDw4jXGq12dDlMvy6Bchx2+zbMP2JzWN9W5dx52Hkzqp97SD3CVFxV5XS9pPW6rOlG0CLbYEsfZZN6RtPDiLod4tG7g0+n9NmC/2myoTYdNz5JPnsBPlQlo895/0tHeNx5cfXmCoDR/OEccMVi4uwIHL/8Y0OYaK0DgpUy1ugv69ZPoCH5n08Jotzf6iZRpBWXtbRAFHXn9ci+4gjJ2H2h/lDbBeLCtM8zrNyDtVeeAfawwhokHfDICtwPk5PYTNL/PPTW3L1iTSL0hsBWcAltvoKfS0HNxS6ln4dy/vgImrXYNfNqGjM3pqtRzfNsosCePC9WLQOW9zb4SKGsFIxDJoKRivj3Dsj6dKZKOAR/T5RDEFYUKNlq9DybaGhkYNvWI1r0n1TQ9uSJ8PSofrXWw6sd9/yYQ65uOSHxMwSTkJx/yHY5osJKjmq3stoGl5KU0rJJv3SmFUax+6/2Ip6kk6ZQ/YX0TZsKfy275430O4VawCurblx78xd8TFAlFq+vImUq3F0gOyZNamIoBU9fBsusx1ckUjjKYb6l2UY2HdCGr9rEpZ3S4PMEnZDeK6nFV0wn4GljWDxJM5W1yxB0G50t3xUZY+LXUv58+FKLPAS/rIZhQhS1F/4YqTtd5Xbe3KvPBUcpsvDtdtuncEeLBb/BJqPuAWs/0+2hBrK87igpxA6aoUM/QEJ0KR1Z9qqd4LflwXdx8wj1HM0X0TCqY16uRuvKj72nzfDZQbvwHWd5vzb45yKBxf5+w9yBGvam0cACZejfR9/XeB0xLpET9Vl1Cf/M9GTvgAFHbmth/nVOTXeXyDZz5lGFrukl83rVC9ltv0Zbcz5wdRM1SB7O5IJCITUmxUivg7M4UOzHW081mDt7gKqouLTZRDehpOw5wky+BfTF4wE47Rwa28tqRHtRvMF99L/yL52Q2q55nbFLUU51+yPYC63rW11oIYt/JCKweNeeaaxLViKhN3e6NAp5H2wG8rvOLRpUvm9N5nglERNIJu4WKSckwWerndu+pnxrP9Id/sAKOQN3zsiGhGZgB3hmXaBRdVin1dqIDb87+SXcn8VGygFoxfDwLA+Ni6RXOugcBTriJUCtHuime3sQAZ4+eqfbZ2nwMjYsG+MXw8N98Klurhc5DiWiYoFs6HVKjgEs+QJJTxOWCHzF4iC6m6H6WwaSrIYKqy2bC1mc3nTTwtcB0KGci8+LVT7W/D2H99O7UcoPUbJVt2IIHwyq5Nu3QT0yvNOUs7HbYeYCmnPnatuA9xhfqnU9OOuiqhaDH9AuRXyI1OYv8N+zkYYt9MDf8e8O5AtHFdBBpgkPKGhaQ7TZXLXrEy70u5cXs1OpU3anWDnq6doumAF8yrbBmvrJ+UrNYgcPHA0v8bvrB48sWgqNYoY2/iuoFrzVIrzHDv/kahPLZqJf8oOHD9GnqkXXfAZ4FolGfFG0/lmsYgtNr2ZLnWn5J0u70hLbF3ni3xAcfv7sneN27hbKGG/Mv3+8+VonPtnAop9/v6+Cuo7OcFwH9OnUHPcpPCJCyAT9+AeVEdOi9WIvBBN2sg4eVqWPP782A0J3nQO/y6cg0ZwhMyuZRwUs+MOroEk1JMH49OPtFTiOp3vHJGWIBJiWxyWq8aim7SNNFeVXNg1Tt1TVHVVMncBX1G1kpF7EnrrcSoXNlEiJ7EJtd/akymG6OIS53wzNtA4Tecrvc3YyXvx/zAUB4SuQ13r0qq+aZeNDU9uP62NeoGnzM21EGI5Emuvx9PTRpfoPtx/aRGFQ5J49ifiphcNRwxJBpirhPJnW/MWVsFM5YE6o/IZTSW4mUnVKlw/F8sbaH3SdGEsWrdLRcb1KSVdxQtNs/ayJ+kwqEl+RL5uG4riddY5J6Sp4m1j+XsW9XV5tA/FppZJXtU3PSBXpQ9i96pdb0sXq25qoMd20hIcieY03699MDcclrItK+TP/e5zW+rZC6yxgnoDY6uBEIRSvJHcG7K7MbtNtxQ41Ce5jspo4J7JQmWL6/6VnmLI0fLzRc8uGl5rm/WIkv/YTvSo/4V/JFBCP59qH65xL1vFXrDB415UBtWf3Ucz5wCC/5DiBVKi7B0O9SDSqi9CFTHZ7MaZ79BiajVlFtrVDOhe/5Dc3v1kRzALb1aAraReWeVOIdWBmcEcWeYOgLCLsYfTifBPkN9wcjpkZYnUym318OtLffigaSdA5oNGkVjIn5IQ9Fl2uydOdQ9LMUEL7OzXpub7MDn9kxpYGNRs6O25xBr6I6jjQ0cUZXpwt0wnWEtTl+puzubTVoK+iEredJK5m0aW6yE15KvINFVjLtPMUqNuaUyLKVlny7OlaQHFGALfeg8Vn7ihXIJdbiYCUUARNgG0NRFwcc6J6+SD5ggLVQllhTdl3AmzK6wdCHiF6THTGn7LVcbBMGLpkX/jrK5b6BX0pajM1aKWl/WL/hl+5m8uzZ1I/fx+YAtHu/psgaHzVjpfeGj7iayOqeejX3vLMA3S0U//jYOGqEgGIIcxpcvFU9VDQuVIiXu9kn/VZPvn6fQLJKGuwc+LMkXtm2IC7WCjZv2bJrfsgkCNFUYdx2diC53koCcVnMOLqfYE2vb2rABV+oEe4hnz+nVACNPQg4SrBSN2rSZfDS2Q31S9CZE3e2g/INvR1OPgcYDO4oOjD4sAeZP/0HTA92a8HymZrTiZh0NdwksPAhNB0Fr56s7KvAyjFXVK+zh8mcXevD/SE3qEV7UBLvEFQgeIsyRdG17OfdMMhwvrRXtJbVT8/4zZHguNxtDEou11PM3LcsJaCh9nNnpBM3TR9OqZ3RaOyMgE/w5YFtJ4/0x2/E01AZqnUrl/V0k8D4OcoiuJ3rNxE0PJrjkg+VZCwTijxOgl98AvOUREi4J2E5Hz0GgXDfnClaeW4wva9QhHka7qjjC3M6zs2HwFwEGXoUgQrIFkkEfh7Jh4YbzQg2C77DcXoIOGBTUG9YPHvquXh32I7Ry2zF3QqC4eMDtH7ujJKAahMCKfE0ivZrsxY7OPi/94c15Tbxhe/d1LUgJNgRK1qOp1Mow81w6bGn17o51qJkwDSNJLLgJZgUyJF66wwH273hB3ThfyDzzITij5oF4zI+dSMMFDvXK+ZczOcC0ouiYWsbvPqp7eoOyi/Lp066yc1JxFsBFrkxUG8jvHtSdnoHv0zOyOa6e6XU7q1hexiHN97fvknJb8Tywdk7vLHdbS/l8N0kl61TlSPqV/LY89kyDps7FzTq4uszmKtrLW0fERV/8cXp2SAGpMMIqLfohel17n1wqsUbzii+l9MX6Jq6fx16Ak6amnJZrgYYbc8xxebQBnRFugRsve5Lf/mG3ojlweWOBXw81AGgyXEgQIvDkeKsqDgTSYMgvcgaXfhcPV3QsQXbAS9beKquZPXrosBLThgNv0Vfc1hkmfIK7z5RF/7VryuC4M2NAhpl8JsS8N4iyCSzwpHmNels+9iA1/25RSvlZZSb5+HcQvJ+vvFOtmnPY7MJYVZIEbVd58nZW2AVVGpZwMFJu6Z80d8wML8BNRZ+JfbW7gCWfIS29uNispUQFEA/iwFSq/TF389bZcFsqAsiLPErsSpJ4Lbf35f4wSl7bVtJSfXndznr2vXfo6cIADYoQcrpXZevdKW0ML7GJs3tbRPMa/PugCVf4XC1nEq+4b0CHny4UjPY2DULxSuESz6l0Z1a9cyGUITiS8upv5tZzzKjsCAa5TPVLcvtxc2D3WDWv2YagEAAcxSu/o2/KBI/KSWkDOH1SU2KveUueHQOLLDEA0ZWkwLyvK4YfLdJhjaP5vyXL9VYUGNs09ME+FC4ibzoUYqyWAKE2nkFKAlLelLtof7O95sBi1w44sC+euYEo7iFdTiMNELmo6euxiWY6tUXF6/dmU/X/JtBOp93WA9VWk6+JypAdxoXLfNfTkt8g0W/UNOgZr/xvFhQI6Oz0Jq+g4Cv31Wo9tP8wLgtOzC7d8GBuWZcKJJKueTvSaxA/Qgl7H8lt54Lce/A+q4URDn7Vj9XLw2q9QNJVA9AvpQo8wZK9SaiP/4714psQLN9txi1VWkO9v3pq9jgKQHVGqXLfEiKvJevNF6LZjqHjvGGD8ZEpKDboxzkjg0/vwI1i97emBdlgg6LV2TYHbOaGsdrC37xrzVeVXbeIXjCJT9QM5dxPx79mwPG2VpT57wC5Zxhyrbv02FEK3NoTTo+mvOPb2FPfrpcFEOzgB57p9QWSZTOC39X+FAodKc7LeA/P6UPlDfibtrU31vq3QB72RsalPBdMjmYLoDvogib69zs+bL+AC2FE3b97g0GIb97YF7tUyR3uzWnYQMluDviHdrC79TTNC9j+KVDS5Mhm/nr6mtI3bWGRcNVR/v+tn7EcL17PrBv9++AxRmQYf14tbg9bfc1abp3A7F58PGNaS+TfQ/fTjnvYoyLr/SpR0biGEp7FeA/PX9bTUQx7uoOoxVK+zn/dPE2IQeAXXl6gZl1XwJOe7OmqHhde2Zt/QHuk3pCavYx+m8DSx/aoGLYoR83XfhirPye3z6wd9DnAUl+/JIaUy/Xg329DQDiIPmNH1DPehbw1hUy9Rz3GfCvXyDldY9ttIErbdHPaQP7mfo/ftbP+dcuwHTIZwKQu+6nlhQIdm3mYmu7Z+Z3NJivCk/7ikNk2OlaeUEIT5qrELGPPZNNfh1C174M2Fh/HjUfXwmEmngw6TXBSk/kKH3DrZsh7MQOr8mFlgdl+f8f/+/5wh9VNCpn6hj2rub7QM+gxaonjbKRmnzZRg1uuXNd3pdaL3gmwsfjlmPrOXzMn98IXPNT4MDXd8EynjNY1i+1t6EO5ig4JOBDYUCy69I1qFT3B7isP2o+n6o5QtFR4E5JPCQUr2t9/b5eMsT6TcaW8Vks+ql7gtGnBfXSUg0mKXtP6ud27WloO5eUnQ/FG+i9g3Gw+A3jsDIr+LryF9k8xnc5R+HmDMvEUKnL70c+fz/bDLafK/z5OSmz4ZxA9nI31J5yp54uR4WB7cowiaqhGGz6084AC77iZOHfBPu2pZz7rU2DL8kClk77Ch6T14OiMc3K7/2iEfDjU/Ki/9f+ZmrAsv7IpNxiQGM3mcA3QBWZirnmQ6cVE+BjVhO2j178Fu+7EBTn+xob7gcH44LvQIXxlhrrXbTwg1mAfDdZi75r+vnqa6HCNgojyheKJqOO2EENKXuqL34sQ95DAIv/g9RV3y9HfsKbwi+ah+/FOwf3sO0LuO3FDNu5G4LtMT5b0M3OR5x4QVyu9z0ZIB37Bimn67qervnjAKcNGmi0V1LOvskthBd4XLqAbUjPqvRS/PQt9dm65NM1pRksMZOx6eZ7cwasn+Befp6xsY9sQM5xY8C3UhXYVj9Hk7LIb2A8tmuyFu88mM9V5ClZGa6oVsw1+Nby0IBUEgqsmXc/YEphnCG66A42hvhVfn94HX2eAjXDJDenAQ0DFNaSjrX62PBpcPEbNPYhpFdmH1PeXM8yvMabmcgYW0Evq0rx4zf4YjuXkseGboGnI/tkvQ0ffD7dOu3H73Hi7op6lHPHgwLaUmr12aGfV9Gw6JNgxpYz3nomrfS3uuQLGlRUB9IWCQS0rcZpZgSZOUmXiqnafW/ScNfEYFIUyjYLf0abK97zWe/vLfj5l8hUHHMyHOsJT1o3I8FqOOd3+fNUWDPaNNrdq3pa3XMPTmkbLf62mfbi3bSACaYj+WC7MNnN9i8K3GsvGpCw67lYHip4R0+E0dxezVEI9Zti2wRT921EwQvf2xAe6y2k+k+PiHiG6mGl61gT4CvtzMm4gBOmLlKbp2auf/WMXBNsGkWvyORkkB0IEf6Sqj42gFsvrqlq3po0+OY0JW58EGCNTI9ikx1qaX/LNVCcr2vs8hjU05jpEqhO2z2C370KNpTp7MeXMbpPFR+vrsiAuy1V7D0yZbm4sPfgzUmfFGX32ZyFnWSAbb6yaIiMV0kWPQsXfx2Ji5/Ek5PsQec6SQu/fwTcM24Q7g1PoFpd7lOy5msFTpvPjQZV9amZd2KOMvpjQcPdrSmbzyuHsPriAUn+csSx6d5v+HnEnyWfOeYAtK8Ez93qQiNreJVTYryMH95g43b8gF/+Bgv/wz9/mhxm2MLf+7WdlpRD7dkMplJZY6Ttqp8/4YFJ9o+kHgw3nc/P8xuGc9CQ72u41oNufQu4+NXouawvdhT6GwyvYTLqii731FWjECy/T1SQ2cG6gakHn99aI9DWKJhPl+wNf/Wkn18/9nwjAWJmW3J2ItLza8su0Hogd5kvsZ+vlhOCIodHauOVXzN1JAZc52BpmX4cAUNOVkH8UjV6H6SbyRx7bqCqhk/UuEEazK9wamDlhBZN87rl4zGOF/wpjmR97SPA7SkrFKcSmqUedgL0BLY+uNbdQCQ19WtxzHYS3Ag7mS7vOxBT3/dgo0QONqfhAGZDqg/w+X1oSOIQBUt+O8B8n22QJBoFH5p0f1O9m+UjsNQLp0Mmwz89dr7U9/LHx5V7pJ6QfNrONUu7ewU34/mw8AveM1YVMbzG6xm78kcOfn44WI+uRqa709V/89NfI52aa3+XTilOJfgGN5NsT+Ij5Tb7ioAY0KVnHgQp/0gohPB50sjhedLSTTR5T0iOYUALH39M8nEVUQFwi/7ed4veuqP+6geWuk6Db+gYzXaTJwKaw82TMy1rJMU9bm402ByGni9+O5gv9hsplcgC0jCTQEO0KpqJgVeP2ycqwKK3yTS/vgFxgyAGS/2Lht9gLqdmjwyQY4vhE/WXLsPK4gdP3pXixW+Zen0tw6U+i2Q5HXv6sG8FDEk1om2ahZzyzBehmLAjDjaoMlm138bwp5/148riYpgnMVjyKVkJytdkx+2egR++6u56NBc9eIBbh5/IXogT0D+WU/lL/sRWGLXgu9QzQSKMIzb7UUuZSAakoMC94nB3lGp+qVsGf/wzUuS4H5hiSDD6eCG92BoGfHwVgrL47Qjonp5OcNc5QIiLGKnNXQCDr58mkBTRiwaA6QED94sDz0O6wfZ1VtLxV489SdfDT++DzjYCDR5xyRHHKjP5Pthlv/oVLkqwbLkaLxpwt3qADc+uOfnpy8XPIO3irzGvrFqw+N3oi+p9zy6jK6ur82VDehiJ/eLf3eBBaDG9RNtNzdHctz+/C6nzqgW88xwGNX4u8N59M05G+dn++VP3e9r2A31OLWiPEyUbpwzrKRc3Alx7aod+n1kVrBJwyQNAvqnL+sH3oAK1GI2ILPW9+Y0lCf70oLf451L5EZYjy+0aiQ48A77b5wi+2zjDpmv56bQTloukgu5AdeE+mkt+bOBPHwsrxGsWMkWCi76mha8NYFqnbQWXll1ky0sdiIs/DP7PlgLlv7cUKMP2Qb3QGc2h7/034EhxaOR/+6URxBSrUZzFVFfzc8p36lNRHRwL9NSDzmTKUxvUE+9UJJ3Wck9P9ucCpWC+Y1zlWr1+L418VufUQFtbOpcTN9MKnhB/IBYFbzBe3ugJnxNcUyPY+nz6nN8e5LvKpPkhC4LplkkDHDlTyJqdi4DlwR3B+6GxkHTaAPPhOOwMr+vxhsTTbux5+PZCGL6PNllXX9ucQvUGocLMPXkPm6qfJeMmKC9nOaX/Gs/BPAlWBhzftCkOv2I9ytk1hl5xg9hU5Lqc9bsggE3sp9h5nkZAWu4xcBzXBhFPu6iekjr3ofmlZ2rKyCqnHPodrBTljV35cOunkzpU4PuRZyTvs3fKbixpYPg+2dS4oCKdsfcV4blNLOyUPAu4eIMWtFoxQXw4x2D6ECIsJfEPDcy8TVmWfy3Q8qBC9ZdJfeugUINYjym2VsgDMzmiCzxf5RI9vI3J+e2o+eoxxQ5R8C2vO/vQHmBn+DG2D3zu5/wei+rmlRhEjO+oZmN9NcBrki16yKnL+S4NPKVUyoysyxIF01qfO0hu2pn4yg4Hs8kPHVQ3KMcRW04FD5fGgP8AAAD//6RdS7eyMBL8QSxARNIseckboqCoO1BEUEQeCZBfP4f7zXJ2s77XYwzd1VXVoXPUbRPrCTMSQiohU95ws6j+dhbEVITuUOwfHg3PvprPn7ZogKt/CDtpqxsM69wEQfrARPCP23o5TbUD3qeayJdt9H7+KNwCt+djIGJc3xF52IsA4XLkI+WI98k2QGWmfFCp4sf7IOaL+PmYqELNOghIF/0prqZKfs+9ivf3sfNn+gsmOF08nSxj6tZimrkDWE+1i2ZzZ+VT9cs9BC3+kd3j/WILp5xPMscZdTSxDUKVHGoOqi3rTfG0nNh0O1aykrUcxu49ehkTPtzN3RrfWNXQ25/LsHvvXk/Jx0kdQELkoCzhwsU7In2NK2JyRAmy81DC+8LoEPsJ1gBB+sTUV9yEzeYiqAgh+UgNMzn37K5VBVw4j2LtZ/6MZYvfBzkBqcZBV3ro3ateBLUVEYzxRerp4vO6LG6Wjrq+czKY9pFb+I0HAf/tD0v4OOX5ax5Qt5CrmurvXQYTl+7JpjA6xj7jrkWctVLcuK77xctOk3JW3oSGFVwYk+ZrCVxwcuhjMu28d7jBg5+T36jlTDoS8AcOsOYb3huOlgtien3LmWkJ1DQuvL8Mu7OAuHYnRNV8sg2myXIAl3q2seWQMmH56BfoL74wtG1Om2HK4L3VDJzaRcNGLyAicvaXcI2/OlnYl76hTA2fGrdblQx+8hQgrv0x6sRQ8Ik9b+9QfCIRu3aEalbOYgez3D/IRi3fbB76rwTphRgEHvHJIDycTLj/ugw7D8bXw/lsx6AbXoX9/v4ylnCYIxmn1yIShG7Ol/7NyYC0SaHmxR3raedYAxR8U+Do6lb97Fa0g4k0N2wY2q6eDju5gQ1ujutdm3a9xI99Aa4retjSA99nVf6I4HDhKfb8EowlXj4dlIefQ80dhD67GQOAGRU/uk/9E2KZEaTok0tFtPD7ou+kSL8q/j6+Y33F3+nZczEE2rmMuMejXO9aZw7kfI//4o/NsfyUYcW79dSm6W+8LQ1gZ9032BChTWZ1w09on71G6pnS81++KvH1J9NAv43GyJDzhvmTvyPuJ136WfO2VxB99qRGzFq/zXGbAQquO+wmetALbEQxyrjAwXvUTIydkl0KsQ8m1jh6MxafJBbgvgzpY5laNFm74PqHV6QsvB71d626wyloMbUEnTMWHk4WWLuDi8/vT+lPrvg7IHlGNt3nj6mfXhxLQW89m6pslewof2dIiQMh2g3fc06+bnVAFo45Us3xu58itDHRXGovbCrip6c+uCocvpsP2fCVj6ZuMESoeh5TfWk/+fiT4wx44/jA/h1ITTcOOiAcqBuiWOPBn8aTWqJFuK6UyaD1NO0LHfayi+mhMd8JfaivSHGbm0hgr7lMmKmyoPV54+j2NBJ2aicJjkNaYccTjj6R6q6BSJwAG9OpZ+N5K0wgpfwDR4b7MNbz+ACtJTjYkfYlGrLGFSB9WBYRFMkxtu3G5tD1mkWRyDWbfuG/ioOG3W4X8bRCyRjjSwmTGcz4GpFfT0h4itCnuR6xd5g2/bzVxBOEflTS6G6r/vJ13Q6UcG9i59Of6wloN4BB+GO0kKHL5y7aZbIquAv2q8PAyJ0JBXqiecAhRg2aob1ZiArPPbaUg4DGm3tQlSIbDWpZVt3Pl1IegL7HWzTstR9jLmdUMllHvBr3N89671tZSLXJAWu0q/3J89WDElibMWJS9E6IShpH7gucYKfMIaG57lvIUe0TEf+eB0deBaj6/YLv8hZqIm9LSVm8m0uDr+iv35+ZaLoVHf37/CwcnAiSbVlifz4qjEK4F+FyO56wVfeDT4+qcADj9HziaJ7CfryUMkHCnh6JNL9+/gRZ7yH63tTUkCUjb3TdkICvlg2Zm3uQUyQ1AtxvMqFqGp/ZsFtIsbs9nwPW7I/NljK/VnKyvaaR9PslxnJ370Qu+8Skjukt/sRfVR2O9/uA1cqy2JRynwVO9Uai6hjyybje74XCTtCpCzeDzRBLEih3kDFm94QxJTDfyM8yP9rZUV7P8gllKEu4jq742ffB0WnhLnhhJMY1IMrKBwewfGKsVo6bE0PTO+Up3n7UvN6+Pp1fvAj1h1hYtXGVzNa0q3a7PrCo55d3Y8KfvIUNfh/p3VFMNgebgaCiu1O6r5O3wQThFCsdGRG19KA3xli+SIqLfjTaPvJLz6T5UP7lNxH4wMpH02YdvL/HC/UG/pHMwqfNYHIJR93HW2Mz6SwVHD69UJvuvvWy734emj/1Wt84OafOb2jA3jwuVFOVPllm71AAcysjej3FxWBWbxVwIh+OOm5xSKboAAN4va5QLKt+z87KdEd1mRrUqs590h7eSIUl8zakXZ8XPbfXA3R2lWAdb/Zseq9vlUjNJvmLf9Yrfg3w8qY7/ff8FNMl0LcNYMtyLGNC+ZAheXv0aNBUY7K406MB4YBNarZLnrP9gMnOLp9LNLNWrSf3pVnwmM459VL9mC+conCQXoSQrkPHjMnZdhUSG52jK7/LadGVKaBX9vyXv8Pf+o4i8SNxF29zdkrmVPHU+UnWa7YZw2Nawfp5bAY1639KfI2R4e1FrJfeJp/1QiFwe3/ukXxt+56duKMlH0XhjO27vctHxB1lUO7CFC3JXLJhWg/DrPWY2v5kJ8uKP7DvkluUp1eRsZhfONmecIHdQtbriY0shozddexfyLZnHWssSLZVSU0cxvXblnwPlEuzXfVHx6b0RyJolseZYhJk9WR+GgJFV1DsKvTdTwc5CWDrqzXGt43DmN2NAhCjm7DxLmU0TXkq/PFrqmbRgS0CWOUfv6cRHMpk/uGlBbFk+yiTWJSz7Tw7QOpDTNMj5mpWU/DQ1ch+0Zi+Xj77XGULpojbUvfWvP8+3yHnbO3I/NOtflEJcVBYRhb2+6KuKb6IJ7gJEUedc6wlncWrprLTrIXus32YTGWn6LARfxP2TInvGVuPUN65xaXGSyr87V8+PvrzBodk8ZNNUI4ObJ53GyfpvB6xi3cDIDTZODrgziDldDD/+GfEhPiXzEbxsEDgSY6dP/xpH+0boVnVcKocTn94bsLb7jdY2zx5RAUBZDmya4kIjcf1y6qvIAKHx3uQaUIuRFVl73DTaLLiIatNNEH9GSyMr0/HYPzGuyP0is+RpL0vaMk2aQpQbRps7N4fYzq+40wROiJS8/Ak/QT7ukG48bxIyXU++f7V75UPr/xi5492fjyB8xw2kZLszGTgjJ8JX/trRpONq3xyA7cCPZYiamPyRmMp6SnUh+ZCffl18RtNf1coHhHD9lFV0XacPQ7OkZ1iqx6jeqmDRlXMm9kQSbLrZMrldoLyg7Roek+WPx+WkpNr//7FJg6XniYn+Q0O5t0/fu+veEIA3Z1PBCfzsbY0zQKWTu3pbTfbxhi5vYmSR6Lh8I8f9aoegeij3z98J2//vcgzj1LCP1iTUF74iVB4yoWItK78cY77E3jlYYtDR4vqj51Nw794DwW1yueLzzwwSXTGwc/59hN3bVtAaLGxeb+86+8s8hnyzigi3Pm1Z7P8kzl0HKIr4cvcMDYMvQIkX9gSNenzwibhshTwxCcPOwe99RfhSCZ5fGsRDeXulczp9u4h+TIvOJhNvRaa2zdDntw9o43/4/vivO8WJOzHYzSVS9uPDKlvuCToSKPwh9myPzuA9nzuUG3gtJr5X61AmWkK1DM0NV9+jnOFgooLNT7CzWBk/+PkNT8iOVUJ6n3Q1D8+F03fa9WPu04IQPmmdTRVloU287eTwXo6Apl70hr1ay5URNqrRpbWHNnkvlwLNqboY2P/E5NOAKuCX8x07KfZLumPvdDCqs/xXzwxmqkS3ExFJtu907Gp5IU3CnL+TvdxeMmn/OO80RfSM7ZH3NbseGaiLD+0nqrc5Wgs/g08NNXcg8zW0a2XYccVcM9UKRJOj8AYJXW9yMOCfVSyTY6mqpVLVKb+mdr+4qK5rPVFsXZZQuiLavkiRbWqqHdwqcGJJVqmcpYVrX6pNImZ42++jTDAxfQ/42TWKpqmqbjKzlPg//gPem+G2xVuz0sV8eddiAbhchRBCW2T6qFvMeFx4TmQgmeHV7/JWD7lkMJ3HQa1vzwTY9F1Q/7j/7QoWy7/zbFOoLYCQp02WfLR21pvdDyKU6RM1g+x4T6o8KcnA3l7r+dn3WdIKC2ZmhWv+YtHgYMwt1Js7KqqH0/1Q4DDRaHR7khIPtNTGKB42d2i1gyEen4n207+4y+OuPkmsxIfYriYCY0GR3mjuaslDp2jsMTByXzkPYShACPW2mgy65L9q69o9vxo9sJ3P6nuQQCzOD3/+UeLm6c6fFDr4cPKf5Y0cwksP/kVKUQI0Xy8lx5sz2VKQ/c8ILZx2AHY9K1Wfl0aC90mJzjOJ4faoflhbJy6E/J6VcF7tajySb7vVXC8j4U7YXdGU/75RbJZ3zF+jMXot15ZFv/2O3vI32QsZAAPQPC/U9xdSB1in5+nlY/NJWoDU1v5RsNGUA4t2pjcme43qoiYhjIRWqJN0XKN+bxLby8TXZ1lwGH60nzaL4MIzXj54IARrW7CYRfB7/Fyou3G1Qxa07xEPpxlMj+lU08cK73//X/ELOVU/+lTlBXvBmusLXu6YayF+648YPUqx/3coryFggoL4R1691f9HcB764f4r56xaq/osPBeRubz6eEzrvRk8J+tSS3dc+p5PFMTPqhS6X42EWOSdXVk63QlhL9tHEQqCaug6qeQ3q2z4y9yUFZKoD07bL15r17rQQlY1FUacOxSL1/BU6F5fHfUva4Xx70qt4IVv+j+efkZyzPfeSjQLiVVNcWq5632GMDrZIat7tgkcyToInqKL4YjOKi5cAO9hVxOAhoUrYDYjQQDNNX3SWQ+79Aye7MpD3Fjk+3VzdG05hPSEnYinGFnfS8uyxW9VKfEcTKraH5GfoREdNjS4HbN+8XQvFYJ98IjmtM2Txaz1xaUVPEXu9ia+/GwqKk8XDgvQk3wRdP7OBWAm8OJPsZ7V6/xGEPYiTr1s1RI6O9pO4D77kLVOJUZkaJaR/5ZdehZPkz+oJjaP76Hjf03QTOf2RGsz5di0Zx6su+cClAqD9R+a0e23MRngx5o/yIomWT/S+nP3K38iIbp62WQ1X8Gf+/E9LBxs2Te8WhB5wiXkbzye9ax/R3ZH9pjTLyrP5+r+xsE9RJhL3KuiDmnIIPqdUnI7tY2aFgIlOjPP7M8UzO2t1vogSXoh9U/0nNaTcoVtKh/R3xyPPobJ7uaaNUf2FAvck15T7dg0IWc2s0vyne68JCRJDb8ykf2vuCV7R1aYkyk5sSSLfadl9FuKlTqxIPtr/xnApxmBTVSahhtkXIEiFE2eMW7ZDqp9oBeWRdjXx0tJrbslSE9Ua84FXTOn4RBVuW6PBlrPgn1fA7girTo96aRdNon49U7xqhRcE7De6qgwdu0upzy2gav613vjq6vcBfiCzb3PGIz4ZsAHI8eqA63hzGJqnSFImt22MrnpB/K7pTBWn+p/ipFv6vDqAXW4B398/fm9ffDLm/ekeTeQzS/tq8B7p6vR013tBKRfb8NWvk49kt5MOZQ6AvpdXb2JPZ3HRrpKYxg/zFKvC+0Np/F8ZLCxTxSqq71RuTiTQOsfy7UebBnPV7KzILv5TRhf89XfVfMMwdfPdRwwokqm5LwmqJJ4vSo/5aWMcn3TwemIYxElv25Hqp2qWD1A4jy6O5Gu/p7SA6PPNZ64hhs9UP/+HZkSs2QsD89tupfIgtblq/+Z/WnJ4nYJA6bVv8VFeezuvorrc8a/dCC6O9+kSTPejLb01WGtX4QgVi3fm6OigfWrf2SLQfImLKjF0NG0piwTev57Hu5RjvSZhrGlv3Ml7k8HpRhjIyIRArx5ypwBvQbY4FAU4XJ1kojCf74NUqWez3fjxYHGkmsSHj91HwX40sFkwQ61efYrAXzE5locxo0fEIHP5/9134CvvUkoqh2asx9fU3B33sx9fn5kM8fpfBg9dcjpYwlRuJlbP/4Pj1/j6/6r94pxyG4/uF/P5IuUlFkvyTq3d9NPWy0uYVGCXNqCi1Z9XfTyVs1++L9B5WMXbKv/ufHY3vjar4YGPEAQf/mqG9cPujbXCQRVr8A6y720WSHdQaLl7sROz5/bPVH2z++F+2Q2+WM0peFzOR9w07avXv2uhcFlAcWr3ht9Gt+Fn/rweaixsaimlGGFHvUsBcs1z+/vIPeoK/oT38xRRxOiB+zmTo5qPn2z+8ZwvcLB9bF64VNLy1QliUXie3O8DfX51ygNX6xGp+kfM0/FY3YX2jUVumKhziQtaJeB6mHFZt+2mAhO8cSeQstQVRtkgMcwgdQsy+ATblcLsCP1xkbIzn2xOJVCxYav9d+R+ovPABBERxdGn7eQr9sd/0VtdKrxl4edz3LxrcF0Vwb2HvAj/3jHyveRvMjOvebvr6e4BN4SyT3Pce6m3hpQI/liPpivatH3eU8eeXzpNmkkJC//ty6frL5oBINK18HIeM9im+bFk2iOl2V+00ieN2vROh77y3/9RN1G4XJHHrvE5wk5RsB/rzyUervAnq4mUVNfp1aO65HSle8jl5eaNazApL+p4eon2a3nEXXbQOx0j/JVbKNZLncnDusegsbK58QTVXLlL/6dd52G9b5BBEIy8DCzvlksCEELoXPS42wExG3ZmdFukO6m2H1W+v888ePh/B+oYdVDyyqMU6okIOcbGYzR0OynUwo5NOH8J4hJwxJREC3HfWx9rH6ngaNE/3xfSKVOeTMPn1U0B+lh58rP57bTyaCGloJ4S+Y1Gzxiys02+01Av02+uPKF5A02AF2vlqaT6+T8F++s663H8I4bWD1I6NuWwts2tmNic4Lt1D9l0X17L/CSZ52VkCtFu3rNb6vf3yEwGh9jD88QZv5tsXG8WHnc/T0D1AI4hWHvxLXf/UHspqkOHy1t3oR5XcH52if0tXf7ec5rlPFnz8CDTfXT83et4ygUkX3SDRKN5l/bzkC+6zw0fwImPEq5EAAKXh01Lt2kT8l4SFV6I6PsfcSq7V+NybqHT5b9YHvj5VfmsrqL+Mw/ljGJhI8EXKK6gjAlfq1f2r94x+ReRP7SWLYQoEYIcJ+k2Cs+qtEnyY7YvVNjJ7tB3tQql7B+PI7rvrDDxxY93ftHxTGzBpNBTaNA179ITRt+mlR6rNwwOn3a//5qwPcqfqgMd62ySNyewshbVGoVeQxY1YfFX9+6er/qIm48qE/foitt9Ia9K9ePFIbot+8m405FVEF0vGbESHxJ39xMyVD93f2Wvmv2ouJNeh//aO1H+zk7JpFGfpeCpk6njAbdJx1kP/w1v6cp9W/c2V52pkBPaz+6/LHr7ddu6dFfeJXfmvr/9eUAvS/jxRI6Tahgc+vifFiJXhR068S4pEvRD+0yuHRFDh8HqWk9c87Dwru2VJVeAz5KLLgDeHyMNe72zf+GEYLB/r21VD9aGuJENqJBY9bGmA9yAc0d1n9hobFIhHOn4vPSiVsUeZ3Bt5fPj2imnwv4Se8y3XkounP2QYvyEaaG8nV4KM5EF0Olbb8pq4Epj98X78J5YZ2jRiJ+5xsQ06CeJsesPPVIWGaoAAEDQg0aIOpH6ObZMJe+YlRT6MuGV4PUsHgODoNltxB00WkVxDEXMJqdPF80n07HS2GKmPLPKiI5ac6huHLF5EsnR7JvPkcFmXMdxusLXbDmNE8ZQiC3w/rinJA8ztKLJB+7w915EZgYxk87iiquALbY/1K2JCHB+jO7ENm2VTQsOToAFAIDdWDPGDD8VtG4L86Ae9vDmZL6k+qrOF2S4PX3fBFez6eFM0Tj9hKly6ZDscPwPGkMNIY78Hv/GecojNY24gnbmMs4iaUEJ22WrTd+w/GEp8NyPC7Fw6VrK4nIy49uB5Vg95m74uYc1EnUB0loo/LScvn33mvwynLrnh/E975nJoHB9VuEGHX/2T1r7cIB1VmPvDJvn1rNvYlp4jtdKbGNHD1wMe9APyNPWh0uWJjIXucQsirFvaraVfPSm0E6DRuztRP7ciYOSQ48Bw/N6o2y4zmy5Tc0c1KDeywMvQn4yNXSB+lG9Was1dPaqpZShA7Ec7vW9QPTsJKGIr0SCPx6vaDnilXNKpIJYzEfr5RsCSiUdheSCESg4my7gzIFOQdjvajwFaH+A3bwjpjd2dzaG7hrsPAv1LstGafj/fifoeaD3fRbseSZGGbyVPCq7uj1uW3q3958jyByepDBK977fdn5dHIfDR9cUJiP6HH8e2Ba+907CvZDrXOi56Q7RQ5Ns3D1p+V2g/Q9J6v1Nx9y2QyygTg8lnnWvtq5C/ZS9WVr9k9CZf6+37hJrdFdzhSGqpWnbNNUcTwfpkKoUrF++z26CYkxm8LB6yNk7H9aR36Pn8nbOoj85fNN7Z4dPUUGrjVlIwP6DlwaSFHk71c8mF2Shk+Ow+TceZe9a+FkwpypKbUI4KeTCLHm2hV/FTT7os/75TnXXY/vUf14ns3SCuJE8xNl0ejoMv9cv/ACeYpaamjtYTR+3fTwZU+NwTpO8xo1DcVwEcXCa9UvLEcctuDg/uoqRt8fzUr9eGA6kgV8KXdBmho5ZjAt7p+8SH01H5eDs4EX08k1JYr21jSWy/AI33L2E9tYkzJzXPg/kQH8tmdGZs9s7UQC92SuvXmWzPZbd8oTTOdqs+UsnprVwBafPWoqZVuPRcZK+VjQDBp8Dq4TIpLC+yi63DoVx//9b5bEvIzE9G7c27YbHyRiKpXm1I7FSWD7s++B4t5rbE+n/bJpsv6N0ris0W9VMb1omQ4Q997dMHOju774RY7Mfws8Yo9dYeMeRqyDrRvMFEvNcp8jrfnE5jZhxBpPAqI+GPkwcsXEak8yUHk1GoyHPmDgm3I9zm56lIFn+/UYDN3ZDaxRsoAz5GK/Qq/6+md7d87efruI9ZSu194R27h/n24WIvzC5tih9zRiu80eo80mWsHSojuS0RNn74Yi653B0bzrEQcjV9oft8OkYIsdqKa+tHZJo19WMcZ37A6Srt+Nsc4Qxr7YKrKqZf8i//G9PfYNuJnPZ2KdkCLvS3JQyLYmJ9lZgJnthrG33eSswzJB/jtC0rdIq7ZrF71DJ76+40zqbv0jHDohDgwztTI0T1nxdE7gTZo6Tp42/QF/VyIYN6k9a0U7utT9b7XETTZk9oHJfOX6/4boIYrMA3s32K8TuQswMG+Yrzv3Xc+GaxJkf+oJWp/u9qfbcUXIZY0REOrFBN6or8FHmrWY1WwF+NjH4oYjj+LEGTeGWNXPo/Aup06mkQg1kPNygXKTTtQk+2AEVMnjvyaPcBqX1j5ZEd3Dp0/cov99OHkS624HAx8nWLze5jz9xmmSFnzE+f2x0ymWju1ytcTyHqXaeD/4bsyfCQPe5eDy4TrieMAaUCovRHjfsNb8wnq4OdH1dQe0BxwzwDOv9UidM4WW9reAyjlZ4zVzG2SufEWD4G6Q9RhXoyGTfltoBsvD7y/FZ3/u91KZ7fmK40CBv3wF28fBTb/6sOy1m9UurwU8cjx0Taqb7HcXPk+WibO9+fj71ch5psBdR5ukfdZ7Z5k8likqD0H32R5+aUF4KkqPfWNX//FBxr7wMOPsOEMYl3bK2yaXYz9ll+MWUdSAR8/s/E+O9+S6UvPb9iJRYGjh6Kx6TQzCx1PPMOG4cn5X/2AN6UJ9uo6N9rZaWX4fnFIzbXeTcrv6YEqWXy0Wy5zvtSH0xVNuedHCEvnujXi0tmt+IgLT+ZystsaJaKne4Wx23wRW158AFY3JNQcN2+DoupWQrg9djQc49FfVn6GrGH+RnWOIPm1pI1geFcvHPpBx/qVASt67tvY/Vz9mp06P0B+mfg08m5uLrweTYmQkV6wkZujP3/kIgMpjCwaha7IqO5NMbTH8kp9t6h6Ur2PKkSeDoS9jcRf8ydFQwAt2Yz1tp4+3S/eWcQ9RO36PMhyaVu45IOO9V/l+lPX/724HKbR1faXnlVkjYevG1G/dXS0OTXOG5X++RXBVxSNYYcKD63xRa0l2bGZI+oJ2mjeU5Ud9J71+ukEgniT8F99HQxGUhBTzaDaqTskk6eojjIf7gG+n09Bz9691cJZuZc0vfx2/XzpQAaFuvdIlALJmHibEOTv4/NaX9XkF4gu/OEr4auLu1488+lQanRTJAdelS/fy9RA+U4MGuxeh3pK64cOU0VMvGcWShblKHvosZ15GvBTy3r3Lbwhzz4Hws1phoSxzQeIjs0mmnJ1UxPYuQ68fl+DhloysAn3mqNkXpxhLZ4Xn96fZYbEy3XAIfcNDcpUa4LDPdj8i/8ufXoZbJ3vjC2Xvev5W9cW1GgCHPa3iC1uhWIUuMFADx9U9cx/JR04l1tL2CP51MxmWQv6UxmpLmWjv2xDUYbIzz7Ufelz3mHYNkA4RaFrfKElSmNB9txpj4v9eEKzoFUD8g15oP6jPhh/+KYcVTckJB6yeln5Kei5a2PVEaycoU0tg+qlW+xqA/TvY1fIQE9FFe0+5INYrh1kYMllijbWoUdUIjYBhcVXunfczpiKUDF31LB2hDtu+oTdn+0VcGzhP/1hLMWRH/7hk+afJ39oBfCg/VkHwgWx3Yu3/FUonm78iMB293V/WAyXlxwTfofWIy3vWEbdTy6JIHyO9fz4HZu//YgW5Zv2y4P7HOBPb/BwPtcvdJVOoD79R+R5y81nb8+5o91WsGlx3PjJ4p8eAfzh0+Se82TKjS6Aj3+1Mda9D/vt/RfAd8c9qeHS0BB2KizoehZ+VMXRLr8fK7eDqh476uXN25htvSuQPH32ODjZhj9PDVgQHJZPFPAZqacXXgZF2LIXDcvkm09RfAiULgqHaDEUxCaTq4u//cL6YxrQfOZ2JYSvfU7weXfzt+3SiSDxk0CN73itheda0Ve+jp3UEPvvcvsB+lSgYouGi0F+l+gk/7zkTEZLnPr2IVctZPOPkmnXbdgMXnZAQmbcouVmSvmoXC0T3CoKMX4fHGM+Fu+rzD1bkQZyuDeGkk85WNe78qFP8mGzBShoTw96c444Gdffi7KQXgiTUcrmlrQBwqNtYnXlewI9tldY+RJVueFdz7yWLVC8xXskx+9NzrahW6FpW3bYm6Nzv3SVcQev4z3sfxcn/513MYClLQu1Ky7q58aTnV3WqhX9+/+/+gbr3UyEdw9jz8DhUiTzYY7D6/aTzN2oANoe/A5rtxffTyVfcOCaxR7790FFMyee38rF4SbShllvLIhV65EBz4y66WLly8rPdiT+PnH0+Nr9ML2XSZFYuGBblrR8QttNBM/Ou2PnJIbG3EvMghmbFX1u8Mjmwv45oMWZh3Vjefkz1/4W5IRTTr2ucAxW9dI//h5NOk7qZbf1SznE8plI0fqa5GW3trhflr4eBp/9gXtpMvSb60QYjic2PTaBieRT0JCXsqv9BcuOBKt+J4qqxHXHb9oABr/hybDy3bH7lANccqJHzusp1cvL0ioFt3FB8XtWjLlGagdqM6ZkHPZGL7yzfQOnS28R5bIRk2k29HXg52+HjetRZEyTTyV0CTkSwTbCZNo+og6Vx3r+0z81wcA3soSPGb391d/0qWeowacCa1ahsu3bcwpwKySRXVhcGbnuaQC5YVzpXirMmrFBSP/qE9ZuqYmm53UJgHC8EiH0ynu2fB8T7KpLTYQ2VvNtEwkTMsnwI40UXI0l300cVOVhpMHdlI2h3GoETuW7peGnnNjK11v5Zmsk6rHW5Mvxei3++B6OlOKYbxiY5l99JoKAL/nAZG+SXfO+pzdevbNB5LYWCMQ74bA9cPnsljOgwfF0av/I3Z8D7hLBW1MCbIife7941i9D+pMfydT2B4Oq0TFQyjv1Vj1q+MKmHwbk3uKeqrl67pc/fNzZ6Ujmrn//0/+KNm0UrLL5UpPiyBOI98+QSM3LzrdRTyoQ2+WMHb416tm/yHfQt3WD9wme66adfiVs/YsRbW7CO1mifJf92w99L8oGQaxqoNKrD1YjjbIJfLuDrLPFaPryKB8e30OspDeBj5Y6meqpNJUGBqXQ6b6MLvXgfEMJKexwxXa00/xFGqwrnAPe+vOf8ul7NwLAPc2pu9aX5fJuAU3VYOLHql8nk+vvSB63C9XjzZP1zrEKlJfw3a3MbM/EfblpYePL96gqSzmZ95ZxBQfkgEaUpWiKPlUDKz8l1e54z+fzLgNEu26m6unQ5pS6UoXy7HsgT/F+yRdu0lq0QXpINUnd+6ue55SzFwrUOQd2snTfSlc2u+4d8d83y1lJjyLkOeyo2bJN0t+fbQYPbTpRa5pS4/enb5+p9iJykc59ebz35u6sFCUOw73rt7fYOYB+Lyf8ur2e/aw8hg5W/MEr30A0ts4eTMY7wVfmxWwqoYzBfR9f2MyOfr2c1UUCqyMJXfOBLaI83JF14TVq7A2pZw/plsJJK7bUhn2/6iMaoONQ9xHXHZgx73TOAqmDCB+cYvCnqq1bEDZDSN3WuRlzVIUnmA9FQPVrbeRsZ3oqDIdbQzafRu3nxJ5NsC6KRqP+ca8HGmjCP70blFNUU66YGrnR2Z2QLb6i+WcfA4VIpoFVdqj6afuwOljXQ+pUL5LJujMdVr66xuexX6pCvoODtzSSuRAlY/dpCcoORRdttvdzPfTmp4PVL6GF3yyM4jm0QI5FJVrizRMxieABrpedQq2gXoypOVoWsn10Xf2ormex9Ish8JozNRv54rMGVemfv0qUoZHq5ZBjB/jv4GKrbPl6jU8OMZfUVJXVgy9MC3lDjRagPpY2/fIpJRPe5lBQ+zV/fFIVyx0uwW3ERp7Z+US0gOyeCYTUu8wcG+TbSGARlWOkXDZpsvwuUQqv0/Kgbvbgepb4aFA8ZbjjUyNfjOUX7Sw0XguJDD/jicbBmA6we5SwTpU412TrOxF4uvajVyfU6sUVww6teLr6O2CMO+fU7pzp4hGeL6w/f+8kr/WKaip2enZpqhhON5ViretNtJjyVYSL/bWp91uSvtlt/QryMa2oGyg1m4zPUsHtyWPsSs0PEYS2IurCUiPS95rW7FWiBQnqNaRZ/N4k88x/VMTr4YeAc24QFYVrJXsKuWOHZ1z+W/U2mrv9Fd/2Lw0Jf3j6radDtP2FX39+fqYWNq7vRbN2XwzmKp/qn75zniD0Y2oePPjj41F5Ofvih/Tyn9+CzUIpjTVeLdRrxQ1j7Pq9RANNBKa0MjaXgeUMdc0EOyJ9qLlZkN/Z8zFF8ilqaOD0L2NizXQF9i16sps9GwmhBhVMjauR+S//sFCdIIONQ+T9h9az2xxKBf9aGx9PJ9GflvQ0gNOX65GILmGTEbeeLH/eOFrKMkumNZ7R/RjLVKf516iO5YcA51gcNr5BXTNjfqhwfpIrXuMHjcNxsEB9WC616K6pJ9nfSfAwti3G9ujWK98mu3V9VDf5Dg3fux/ArPlbqotb12C8xzjg/BfCHheifMlejg77uNeoTymf0PNmvegvakLCxM+9/ofP2lF/0Wj1M0loOAXM15FGm451/hq/J3QPXe7P70qIkXaTDNAQqqfd3php8iLKlVs8Mj+nLSKb+52DXlxuOPgZPGOlMGXoU2xM7CxJXU/cbhHRVHwcrB/mr8Henloot9dpF20Ex8sXLKsynKzkEW2sxlrruwSwia2BWsePysSH6cvw4lmMfbQ9M6bcMhXWfkAUG3frz88JILn4AzZ5zzQYFvsOrXiJTZwWNfMpLpCTwFpGJztn8nEjQnJxB7qX+F09/enb1V+knu+wfFY/YgDtl3yjdUyhz6rde4DkJ3ERP9W7fBZOGxNWP4faNncytt3bXKCXNiP1lKFJ6L26WOhJeP1P7+a74S0WyvM6MZIW0ZC0era5oo/CbbDZGF80xPLSoD/+679/F8ZQdayUZjQbbN8jLV+u+lRB+x2+2CxL05/00G1Qk11OhP/Z25xoH1VQMv3Fka0R8/2EA/sKnrvs6epXJfP79bmDEaoeQa7jJIt+DAJIh/cR/+H79B6fHFiTXEebvTz3q741QY70lEZ1ue+FSdo7oOCTilWBWf3iivsWfs1PwOGymdgUCGqLdHrQo03Rs36e+VGHOUEu9pacX/WLle7KwmRUv7xO+Xw1RhkOG+eCA+H0NRYZQwmxrh+w7aq1wZbXNkKr30LdZfT7idGwk//8rP1NMJPZ2NAWyq16JqIhN/ky744WhLdXhZ022/db07N0hIzT5a+/gAbCDoIMkzbQMNz/DKZ8Q1EOPh+f/qvPgLwCondqUyPPvvlcTX4pW7e0o1iNODaFGpTwmh3Af/k2ZsvNgtA4JxT/HnPPrnwSKKfsesX7ISX+cj28T9CY7v6fPlj9ahOSn8xhX683/ZjGPofqBlK83y4YbW/XIEDOTBiZ1n4gfXvqHaoyHkkVb3g2hpHMAVccQ+xJ3bZeEnfJlFRFRSSciI0GTQ/ukODv6ixJLfv97Y9vSAN1kl+9Tpl2ShDNPlv5jGgs/ukcQHxrHKxloeC315PIwbaSga74z6Y/PbyrxyBCq16bk9wv4HgsRWx8R6meYllu0L7dHMjGZ7RmPz8RQN1XR2xUnsDmJ3sXCrrzNfVUvWf0tN3qf34E+fPr/vmz/ShsceD0mt+/SjQha0NdbILG6uXexzKs/SJqbonuC0wYAtA84YgDoXsltN0rMYR0nKkpfOZ6zpajCXvfdrCqf0I2D8G+BF98ZDQyxU8/81o8/fNHo7r89PPLdCJ4b48Bda+0NOY/f+EYS08caJPgs3DvLvJTixA1s2PfLz83K6HXRR37B/ndM92TYrTibyQ/nnoiuLwogHL5vCmuNFxPSt6fUC5drtQxr/ecTq2jgjZ5cYQ2dlvPx2K4ou/jra7+duwvH7gM8js1bXz6Ho7Jgqm/oOkRPrF2YSpj+v5IlNPlZ1GzjctktvWqUNhpvEU8L5TJsqH0hP75u+eXmzBQf+ZffxJb74eJNsPFa4GmL5H6+WnbD3/95b76FXgf660xT41g/vFLrH34KR9vJ+2tiKlhYLszxXyoLRRBehP5aDPWl/pP34P7Tl5kE+8uCWm5R4pWfkRt93U1RtQMHvzxY9MBvx69XScpwgX2ePVrcnLaKANMkpRQOw/i9RX6T/mvnxlNz74fjdOrgNWfwXG84dGQdbsATBUqmtOoy7u//lYSlk/qe+eZzYfD1ACfpiWN5mFjrPW6Uj7F1sT+eWZoUH9J8ecnYoOtHnis3iIQscCo44Rav5lj/g5/v9fqXso//wEZoe5R1yJ9vvrDFVrrAd3HuuPPf/u5+sVk87y0xphequrPz6aBTDKDOoHfyovIH//4qr8gYurK/3OkAP73kYIk0Hpq6/uy7xQiqPJ+a5VESEbcz92nV6E9BfeI1fcqp3FiN9AutKNReGfGfI73J9Dy+kct/nDM5xTyCpVfocb7k6YlQnB2HXm/TRMiEm+DKIB2Qq7jn4kY8W+D8VUmwn3OBLxH6r2f4wGpwBclpbd4b/pL+K0OcJTyNJqCpMjn928jg2XtT3TP7nvGJre2oL3edhhXYumzZZFNcH6dHYmOntfLBjlXsP0ojzZV9vXZ5hwJ8NgpPFbL+MOansoLxMa9pO61Meq5UhsJVtaIbfqT/CnnRwmdcnCxqTwePYlF/w3LIrlYfx66hJwf9xh6XhCoB1pndPzVsIDJCsFZ2eyT7jrNFYRX/04q5a7V23vxiBDTZCUqO+okg7R13uBd0ozMVM4Q4+tYVSJtFKhf7b/9OD/yDKVXZBCFHF/JssvTaSfwH0yDbu/mAtzOJyV0ZQ27DQrqSfi2693SMmC1tGg/fEWHg4Czi2gn7PfGsvNKUMR45LENtdIP6vNzAFz2VsSE9Mvmgz4ISAqKL42KKqpZfTUAgqdg0OLgOqhFxS1GZVguFIeCllNRj1tUyFcDPzm3T+gyIQK385Tjk868ZJ7KKweqoufU4OUiJzAtV9imW5nsxitNxs/VkYEfWYptpymNSbc3Hhino0UNIXvX9MkkYWf/niLZnTezP/k/RhQv0B5ku9+E9eDovbmb3Tyh/puU9VSJz3VAyL3DT9/2++nv9/k7vqa+lyb+L+6ZiPSOe63xBj3ltvsrYAQ6dU5ZX09bVxDgFy6MsO91X8+CPhL0uzYe1k/MRuPtIKmwhLOGjeRW+EyRgjdom4sQkcNRT8RksUSItu8Tttf1CfHzM4DwnnfYMa5BPfWXooII1Rz2D9ulZnFiv+ESlm+q3tOq70OziaEu/kTMASEmXIMrdEc3JXJZ+Iyszw84bG+p3kgPRBnZpAq6CjeskW1dL+btaSLQPQ47rVsaXSgXBex6xyIT/xJ8JuQagKvoP7LItGfUChUTtsCF0RJ5EVr/zvFk/hnUtdtXwr5t30HPf7QIXd6tQd6SnkG6jNH6PLmcdNMMCit/HDZMyHu2P84CnLnL8299rJe6rgDBWo40aEIdiZb6XSASBYT32wPtJ91lFTrt+JnsuKJDS/O6FaCcj2OkC7qY0Jusm6jTszN2z+O2nmUuXqCWfh9yOypdPao/RUfLeqQglWqEaCb5BMrte8LxNc8T1vSvQNGpy1E8ITFvonosoU/1jmwl1Pn9+EoCgDucotE5lvVcXi4ifOabTi0SLfX8ky4Buh6lhBb9ZNTkZ9UT7B+VE/JNlrKlbPpSRt/zl5qQWTlTdv6CZm4KcZhWA1rYcc5QLeULdWtbZ5tqmgKQmsOCvYvz8OcNnQtFeJk6dlW+rSfD3DagNfuQ7r1+qcmknGTAZZ5gg+PVmormTYf99m3hx7dtk/l01mUFW3ZFtcuh7RmAm+62L2RGclK6/dhyWQq1EJypIVkCW3ztIMJ8Kh7Yg72F3ljOM8jJwaR/388uB2TBZXui1Mzini1Or3jwdF2TRicNJ9N3407gjNs3tg+6kiyqaHgwjpNMHftE2ZII+wB0VVqndrA7o2kytYCW7k3uW/zqx9wDWVYd36Zetv+wSbF+DlrEDcPRYT/4y0O7xShpLndCT2eVbdxgEcGoExk7YqPXAiJYQhUvNNRf+AGRAD1auB67kij766mfOJWoYB2vR3qlituTpW6u8KmcHN+4xsznYA5lObd3HBGsp9xPGMUrnrcp1l6vjc8g2jRQnUuRHnMzzqf48T1BLd0WGrHr1ifdvPNgp4opqfJ72VPccxLgY/Yk7aA1/SBZ/AEJZ7annrM9INIUuQwzr6uRXFZOzRLuxMFJ1G1qxEWZzMpxsuA/pJ3JtrK8EoYviAE9CUMERDoJAnYzQERARJoEyNWfhfsb/rMz3Gttl5im6nnfChUEMJqU+BYas3RgCqg/5Su514ZlLOu96KGNzJq4rzdL+/U9rhCOOUbaRVKyRT1JFmwi9YL07zseVkFyBQDHACCtDBxjFUSvh08nFZF+eK81PnavXLW/aYKCIj17cytqtur6LwMhNnzGYg9tCa7d5R0IZhQMy+TBEvpPwcD9Nl+rVKYjSL+uipxvV2XkADVNFSQhQntVtgfKpe4KoRjut/12ieldcS2YwdcTGVxq1nMTSAl0r0lKYv6RgWX3YXr4MZcmYMTwUVMtsS7AAnmAroZWZLRc1hykd+WCLHDr6aRtbwnybncnydGOa/oa2AR8Bf5N9qrc1bP2aBX4rvpdQD8+yaYlTwIl93cyOtrOx6BZdYcQR4pOAp2dY8pyBwEy3k1D4f0Vx3M2zQoYvx0bzMPK1kTuRgvCscDIXZpPtoh3rVTz9tqjg385equr3zTQFFFEND/eLtqw4Qp68LQwHLEer20ZRWAxoYGCgdPiOWBuNtwtNxedhOd1a89Y+TBSdTHgYGF4PZM6OaTjGJOr873GH/rQLurAClzACMc2W5gjTeDzJp+C56lchrFb/QD2O4kgE6nVQKFqV0oPmDEQ2uI9dAbnjHBSdy8SvA89oG8t5qAXOnfkqcnFW9b7pYfb+JIDfyhjssVvuVGNGM8mbbKeV5wABqKFicO0Zvzum1qAZ+YTYcHWQU1btfAV7ym/f/FroFJfFXD/0KqgBMtm0T0iRh1T9x0wMn8Ho/DErXJ4ay2Jpkfq0d5nVui8yISZThTB+4wOK7yV2YsgsRvoIu9uqWKBcYdZz+uymROeJbid0gkFguMM07frWrjFV0zLTDUWjzNydZitDu1U7VKvIheYcONZcrCLdlhPnppC+fm5kL3FVvGiJ0YE/XjBv/w/TLDtO4DOPCEWm+CNlzoGanDuyF++L+whBw1cSgya3qDUOvIWtCe++fFhTbOta9V1jN8B/cVbdeI4aDqdhpntecVl3yZQJoc5kJm2yZbMhRJspkomaDqM9Wotc6g6hwwGaefm3rT9nj++8l28HdENj75Sc8GZHHejGePvvml/PPDHu0tpdyk0kkommv3BxvrJigQcjx+J2Ed5NKZc0nq5UFIDHaXWHVZNtvG/eF31DhAdLqjgh1wPmO6SzpjJ1U7/4ruGPxjgXic6PHh+RjRcr95cJPoNfsX9jSCxQd5wqT+RmlWIBFvPGzCwdarBhx+4AXf9RmASr64NLRYUKGjYJZuwuFPUjX+Ruz/UYAHSs5dP05tF7mB86MjspgCqZSIS/6sSuppOV8DbqSvxsn7mev3xltczhHhPm6Gzdc91sLsmPopOwtPrgfkWoFYVEnFKN824pnxfIL6eI3IQLIWOp1djgXtT58Fo7jy6nE+WC1EpySRIe9vgirPTQmXvm2jXudgb8Zdr1P1Dr9DOH8Z63RtTAmuusDeeQcNMlTwC4MMfyU65qvXqnv0AZNF0Ju5wMGu6znSEr7EwkR5ubxNGRsiABtISw4Mcea3HZL5M2rAhjzRQjXczcBE4M+9o47FdTKdXHMD8ehEwa0ZwGHWHljKu0pwYUdQbdCVcqSZDMG88rA0LlhwTXmjAYb5j63gpyrACZXdxgpcVOIAzBM2EUfRIiDnkjceLH5GBH7JP0L61rvGiqFmriAfRQmYsvynG+k1SnINcoR2Ed4qnm97DxXFK5CnkDigd2FWpLiEKli2+Lf6yV4Bm5CYqiuJEp72SYFAeqxWZQ6kBLnapDcGtaQMhIidvhTrJQfAoL+jwaHQPF/ARguqi5eSkasLQSKLWwO9jlyI3zn1KhV1cwOLJPdHuIe8GTrVetqoQPcCSu9dj4RXKK3ydOkx212Sfca0lcLBQ3BA36kOtMaraBO6W1EU//TsZkalAP4mT4BKwprdenE4C1Xn+BhR9F2N7/hFKfv4hzqZH8Js7bvrHDXH09Kd62y83QNrVRRtvgUX8sAyUQ1NFZ5rvwUT3dai67T5DZlpUxmIfFR0816MQlOw7BMszj2d4cdJvANwLNUhhvU3lp1f8ib9ki/0kOrRKaSA7DMp4xbGFYcr5B3LKbGLQ82fU5euHO6Odnmoed2pe21u87UisttjXXCU8Tdm9tsdAYH2unlk8M8r1oTH4olW7ek4s4QbLLtkuLqlTbxQ9EMDwrvbosJ84r8tHefzFN+TeZVQvlT6FoAwiD6+HyTd+fAu6+hhidcgjY2Z27wCwUjsFv/nguudNBwZpdKxy/SFeDyO8AFlra+S7vTmI/D70/+bTJOEEpkp/R8Df6xOyavkbU9/pA8X+dgcSHG+XbLKaHoLKfY5YRsmpnq+PewDxhR+JraRjtub6Ld9u7gTBA6lz3e84cwWb3sVCH6GYTvWpURNBOxC3bN9x2wi+Dp+3ofjx9rCwrrqCRz/diAMmKcbpV/Shefz0xDf39sD5F/sCpohtkH7LsoxCnw1kkwY3opXuGI+DWSXwdbptjeLFY7bEH9YCnBUOyC37ypv/9P/SeSiqzcRbtvFT3y+pI7vOOsWrGx858OOpp9gQb1gJV8Ex+PDIzO5P8JtvuPMrnhyct1KPRez5Ck+3u0Y16zIM5672lTKnd2S/m5rSbXzV7fMBUHM0rBf7i8H9Eu5IYIF4u9iDuDBNXYccI2x4VIeFDT9JzCC91q7Zerk/K/jZ764kLC00cLcsFeCWXzC37ef50UEIfjy+upG9HbF1SziU3G7jhyabDPbWw0w19gH7Ra0xX/NIV31yeWzz39R/8V7eWQ7ZW+Bdr1VAU/iQWRarjl/Ey2lSAtgxpU9udInjdcC0hWNqvwPKiAdj/HB6A6tzJRCH6V/eeLs9wr/PS0LhePNy2kdw03PbXbWON3Gz1EHWeLTEy26nTf86EIJVueJ1THXK28ESwPvb0JFRPu90kdk7hMOcZGj/ZR6AWgEMYYYj85++/flN62PX/fIRmMS7VskF8y6Jv/PzYTnm8QWm365GGvJdg/zyrXpKjIA8ZTGmeXEO4BJDEekKtQdxXRQFFoodBnRvL+ADfdGH4ms4/fyUmNCHfQHCFFfElf2UbrxjgW6demQX9JTNq3rnoGWdD6i/q35Go60k2raVs+3nxMD9LENI+JlBt3FfxwsWHQkydxBga/PnJsaHLtxlS060+zs0VueuMeBVOpDsgXnPljNCK4yiZ0Lca3gZ5onFCeSsaAg4fjnGq1jdLUja2UW/+Zrbg6DDLR/i5Rp29XxZzAaeFVsnh5d9A8tVKlaFjv6EZxS2dDWycwEQKHLMa7pMyefbc/DykUUsf5v3MMU3LYesgShOfKhuPMVJEO6+N+Tcei2b3VGO/vSGFQ1cvPKuuOnbC0H7jO/pn7+58TVm0r7zcB4HIXAiLAfscW5q7MOcU3Z+rJPgKvP13/y/Fw8FKoxS8N2+X2WLuSJOC8YBP78vU6EjjoMuSb1hReGSwE0vkF88Xst6YsCmZ4nTioQuhPdKyHj2EUXvxaEiHcQVuAdBw/DsmR6nPG8FXD8CS7TYPmZb/NRgNpVDoDSXNZuDI+rArNjjj0eG9bE7RXAm++pvfW7xKgDgsRMQOjU4/tMzm59I/HwovKXS36H6rJkM7TLtXC9nLbwomqpleN34ZP7wuxnQk9dgzkm+gBSHMVKe9VEn0XZjJ3kN7EWeirAkt7CwM3K67F34fRgprpSBePMVIx1Y5X1PrLaqskW8uBCAu+WjzS+O5znZ9OrDP5BzdXGztZZ326HBIgjEC3CM2U8cBprHdx/0Dz6ic/6FNljF6z2YeRtnpFyUAjL3ISP7kx8Zm38Qwp8/unc/PCAPvwtA5T5G5PK3k4fR6+PCj0kbZMJoBPPb4W5AqacIcyRxh3Xp+gTU6KqR4BX/LnZLcnCS7peA9Q7DsG7r4ce/wSoy94x/f8QSxItNgzctq3qJRqrDO3f6Ev07HT3ppWQCqKXhjWwi+4DnjEaCmlrukJ0E53h5mXWvKE72Is5UdpSmol/+/EuCwE0CCxMoFZR8n/vj/fUw0RI8tK0L0H7WaZdhyYTnp3BCB31nAK6EqQ8aYyQoqIKCrg825SArb21Vjsm9nt1BMcH7uj+RKBTNYeMBSzH21T6QkstWqHq/fXj6Kjb2vzI1tvhd/emDPGgPVLgTJYFD2QbIqQ8V+Gz6DVRlqxE/KHC8BvW7hA9BOxPrXBrDwNaRDnvryv78omyxhOfWdVf1yc4R1JjWl30DCyzGgfoZ38aaplr78yeJc2iaobtbZaR+tOaAwvPSZsuangWV8VKN/PwPwt29BvgxxWTfiQ6drvIDwi0+YXnKR4/g4tH//Bx0vLTfevOzbGXzW358mGH9dWuV5y0bgksAPvHM18MFbusbIcrp3hLcHyu0zvyLbPkvXj02TaF2GF5kr+x0QxD4fQSR9baRz0V3j+JnzoEzc35i4W6LxvI5WQ1g0F7EveQY9Vi1Xa4oNRqRdU+OMRXM06aPfHfTm4H355c38DXhi23dYk4StVbd8nvQ+HC7aW2PE5BFrI0cZINsQfv+BsXYNn7xNpsn7d0AqZ1v6LhrekoZIfAV8Pmkf/5qvz0/uL9DntySaPX45yNlYPkwfAzeU2aMP39iwvr053fP6qFM4OGu5nh1L29jMdU0gue9DjDjjNYvfzCy1K43ZB8nHmz5RlCIP/rEtOprtvnP+S9eI2sGdiZIZTTCW/lNiNVfRm96Wb32y99/emawjrz58zMCeBOTePN3LvBWOhjtwqeQra9wmX/1EnKwKyPjOOFaQq/HEOljWoH1PlEI/eR1QMfd2MQzX40u3BopE6dlnQxbGlnhsc7v6KwuxKP7SNbAlq+IZ/UVoEq8VGqrfb8Bt8+NmJsTnfvVK4LFFiuABcnlpOtorMHiD37d+W+B+fMbk31ex5RtTr46nGsTGfwDANr2vQ4LcpG3fONu43MSlE2vI5OfwoHUl2Pzxw+2UHyN8cfHG2+Qw0f9ADJxhxTk9kXHwt2nYPnxiuSPKfEVFg/fB2+YcN0am+878QtWbIQWvHPxFzOv+OX9+aEbv/7qK16T2NwKzY+coZ0t6oA7C3YFwrfOoSOSY7oYpyOGaXGgwctyj56w39cjzLB+Cuheu2XTCS8pbPsnxVs9iC5X+cFAw3kSDJ/Nly5ttF9VKWV55Pe7cZjvVhn+/A9yPtt8NlxqEkLwuX4wM3Ba1lvaZ4YPfq7IPb/Mw5IkBoa3EhwCltnjeq0VewY363PBKs9LBj1SKf3zPz01R/Wy+T/KFs8CceCDWFy4uVDdA6eR2zeZ6ex9+AQ++LVC6Os5MVfXvQLVlxmSQjjVXpuUJ0HFUYeI4+WD13raqVcdOAvoAAfRWBW7b+FigwkFym42+pO8c9VNP5HdOkzZkkt2pwjG5GFZo2u8Ln03/vQklpl+ZwhwnVc5bt8I6aHYDFM0AAEUsvLAc2zOw5gPawkR+5UDPlsCjzLiMYXm7b5D/i68x3R2BhN2NngGop9+6bjFJ/AJLwlWH8aYYeduQ8iVAkKe3HwNkqiPVSHaIGLcUWDM3bzn/umhcdfWY/1qKqBnxYFoYDkYP70Bh9ns8NJFn+FdY5mDmz+AF598s59fCjbeQCHga/BdiqiFm/8UqLvuU//x31ZvwnSr7y0pkgSoMGVHzJJ91SuwtosZ92FEkBnl9XpbJAyO66Rtfpk6TEC6dj8/hNjiVwZ04aQC2kWroqO93xr7a80IBYmL0MmKrHo6PqJSZZrxjSLvnscUPy4FVF9WiI6fce+tNJpbSHzsI+thKtm01VfgZ39yyREfzWF9aKkF3xex2PzCh/fjOVWLxgH5B3k1vv4cjFAw0JvsLCuMlzbxbbD5TUhb/MGbvQ5Wf/WXGEvPevlo4Qx+/qi11Z9+zwPcJb3hRU9L4+d/g7y6aeTh+Ey8/urNm75Cx+HGx3TZtxe48R758SilWL2As+LqxHsvIlj7rYtlzeU22rcu5/3x7K/eANtjRb/LI04h3C6WsaQ6o+swwRvorTOLDPQS618+B8EjrMlj03NimDoShDmTBHzG92D2kx3zfx0pUP/7SIFX4j2xhYhk5AQyW7HuvYvlx5v3CNgdR7iLEkK0KmON+f0hAaynXCJPdXsL3V6fHJy999YhiRXpZCjNDTaXJAwW/j4Z9BV+FKinzDtojEKkXzW4m5ANdwraZ69mwO5rSqF19AtkffVTPMsmhJCxpSO5rIfQI1k4dDCYWYwOeMDZKpFQgXd9EDFnrJVBM+NWwJcWVcglqQdm071r0LIHPWB551yvY3caYRXWhyD0QgUsc83dIOEYDzldJ4L3ql8vyqO6NBh2VVdjh5N9qIbRFbn4xAHKNIMrD+e4CNZ1lYzpZPYWsCfVQTq/IVe1PwhwtHZ74nLPHizTe65U+f7cod1dYQb82sktFMtDQ5xRcujiaN+Lcjk/S8zumDKe3X6TpPfCDriAN4Gon2ADA1+Oid82Zj2BR5lCdleaJD9em5g+Vx+CLDwQTNOHFi87UOVqtphiwA1OaXxfk9tAX8u3Y6nDMBDWsCxolmUQKAYFFDPkYcMWFT7SZvngrcml4EBkR3tiyI0fE5Hdh3DPJ4icuyI25qEMFSDA7RWqwmg8yl7uCozYIcLi/jLWM3P3TEj8S4J053GJZx/PK/xkzhml+eEa9xK5KfBrlpSYr/lqNMkkQPiI2j0JpioZ5pVlTFC/2y/yb+nH286WFYpblyvSiqcYr+ZOtyGZUxLQLDp6dBhmRuUZXiCWuQbxLHB1qMxf/R0oCfpQSlGE1cdED8gUVDGjXiJG0M0kg2QzKcBqTkwI9CK+IZ0322xBNEpAwUbnoFYmI+bVbAxhZj80/P0uAZ0f3UtXWJMT0fHKBx6drh8LYgMXSB/IOe4eNc7hNv7IjnQ/XtpgYCDPiEIgNSpTj2Lih3C5zz4WglGm40JLqLAzfaFjuesMOgwShMPjHgRjlUQD9eV0hZ+AfJHOzdCbU2vXwdV/q2R73vj3eShqbUuc/bsxejaesdpdDyzauSAx6P5jz9Ad+gp54m4EI2esvapmzzs6flQ0LPx1KIG8Xu6Y6RbNwJ8q56CgWSVy59rw1tjdYfZuSFsJ5nGol0gIVzWsCzNQ5tow5qc8YyCIj4mYIQkH6h1GE2bhnhDt8vnQ6VvPNrT77kJsMbPiuXLdFMZhnxFDjBhvvrddBx+B1qHH22oBbbjjRWnTAeHle6TZTCNPgcAdMfIU+0DX3348N5MczOXyrpfsrlRQfksT0pz2FZMi7i2Yn28ruj/evFEdt5JXfk5XZHE7ACbFizrVVklHnFt5iXFR5Ca8KvEr6JcboR/jLFug2a0c2rfNISOB21dwtIw9ObAdrMn6GCAc9THanr/wRrsVZ+jFuxk5606jomzsBBDwLxftfNPLqBw+NHAit4no5biC9WQdgy1ljsRywDum59lO4EW/BcjbXlGYlwCl0Nm/JaT9fp9yewswvOo3sntvb4mEsqQraHlwyAqZzhuL8yOA+b6L0ePKY29430oFzvfQwqIi2t5yaw4hPPOwCqDU996Mt7sT+WgYAzZgLUo7oIVqfocBOhnSkq2qilP4/oIuoH6sU+ravQuZsoTIEB5LPJPqFKma/LgSX9PpMAuf0FQPskKQ8+YPBmcBp4P653Yi2qN36+VCiwZegG4SA14f3nK9Kq7sd/sIGcXd9ih4jSP4/f+FzUvQepbGQLO7PVC+7X86s1ujoTe79ZsJcoOyl5MCd1O9vYgnY2O9+q4Jtt9PLhc4gGl6SyW8+3pI9r4rgmU/nE0oSQ+ZWD6+GIJZ1iaYPmWMok7yh9lVXQ2yzZkn+nEpB7qL1g6cX3crwEoNvKmfj9FvfMkx7QpAzdoMQT+rNZZlOYy/31qywS9fmUZxpSN5FCPctZJHot9+bX13VSTes4hXgs+Aj4LcwpZWH2TJ7LMmv/kX4QvhuSXfbEm4vAN2VbXE2PsfunjjM4V2VbbkSb1TPRTU02E/fj9YlmY5pnDlUhmse4i0tCb1ZEynAPohMtDxTFdvbmWOgWbN75CJ+lM9ME1tg32n1Cg4mFk975L3rO6vIAvW09RlFIlFB3d72SCuHD5jPvnsCpg/TjvkCX7prXvNNKEnngcMNT0eVkf3c+CIjY3CT3MxsKIQCIqeSQOO7A+AX3jfhNyF6MTa5hdTW9Xhw7LvKHCfGhiFnVDC/nvh8FLa3NBU/SuFe+PMBqoYmvHKj1EOv4jwgcAHg7c+568Ay2elIO1dpcZ6NE0OshI4YeClOVgr2oVwh+eUuCAC8cxd7BQod/ZA9k01ZPiVPyGsJI9Hh/m7xsvZqnL1DewT0bKxHUh7rTi4HC8l2sEcgWVAOFK2+I7571DFK5a/6S9/oeLd7w0qaN4NKpcuIbo57gC3lmcbXNLoQRxW/8R0x7YrxJ1+Dxpw2tWipjUSdFwvwZ/nWIO1aW4QMrduRClJB7CNHwN6pznj9fwNPQyXewRaEgwESeE8vPt5H8Fc3ZXk8MCaR4PBKcFye9VY5N6KQQbZdOG2fhC6O029ENEOwFNUfORZXzvGJRQgQEX6Iv6ac958OSU5DEES4/Uh697GA+5f/Hb0wvHwdN4r4N6yK9ldYVpPHZs0EPZkDQStgjEO6mkFkxityLophL7ZZ7dCednPxFNUbljcp+n/eAYdibZmFHfMCpnD0ASq85Gy6bwjChSeAkOsm4IA5csqVflYOSPDNEI6Wlk5gi2fER+XY0yX+yeH0YcaZCdUjUdwNjSwaU2C7EZlholygQ57fi23+XjRdRAqqF6mK0Fmo++zBe9PJSzEm0UuSuzQMdH8FaIdIxAk7x/x4mivBEzK501s+e7Go5V1IyRm0BDv3ij13GSpCbN7buPV7r4D3VeBD25Z9CXO43021oNpt1BfP0kw33EFhuwhcEBllwSv+xeuVymQJZjweU6eXGIDzrj1IUjNWxsw6UePxy2/g+/ovTDrCIiuQdclUN616x8P0/etk6B8cQNk1WoUU5TPIbwSqyCOeUvoqkz5CpVgNQPmdUnpctk3KZRuEBCn6650dXdWCkvKCeT+XTDAyHYSSGrVQMcviIdl418oPvQTvghX3QALQPS/E2/PlVE3fiSp2jj11K27FOoOgVhBbgdWUe1dMEWMiEWGIjA7t7aE7jMQtngNvVUna6o+nKePGfepUfps5Bna9/uE9t+hyn7fDy5p+EAIWxGdqBUL6uxzaSC8LGfgW2xKUGlvNJh2xKaLKFgplB7lNahP5jVe+O8SQdP3I2J8c5fOwJYLUDDGiNW0K+haT58eMG/zhnab/hjHZyTAKhYVrKiNM3DfPE+hJzUJyfRzYYw73pxBSkGDYX4J6MzPeIVmWQXEcV7bS8lVwinW7f5CAeWqf/ljW58BTR9lvDII+srGw4H0lNhh5ud2hWbGLET3nmtMI+VhwtX/qETTn208Hz7qVtLGcqCid+4tqXIv4Xo3vsS27ZLO6idJoHw6n4ivy3k2C5+bBZ3IaMgvH49zommA3GaNoL3Secv9LGjwK72P6HiYxuHrjdcU+HEtEIOtQo9KRRvCr2p/ycF6GjXnDMoFchZTI0ODPFgnflRgmF49gu7MKROyQC/gHcRTwJwCOV5J+2jB1ToeUH7JDW/OxDlR+fKyQ9pH0uJpivtZsfv+goxtPDC1eR0a7Rcjh7LmsM6ubMPObhxUwBfrDb6czqAbJRPl5Cx743FSRiCW+4YE5SvwuI8qF5BaxQMZyv3u0dOxZCApu5AkHBsP3Y83otA9YyXYnej4/hAfvqn+Qt4EsTercmXBUrpFyJbvfTxv+UW13+IdN/rX8/hPVOZwPY8C8qtkrZfr+5jAxAlPKPCSY43P2f0GF8Y6BL/9Qfkg78F3F2jI7eLFW7bPg1E5PLGQ7GuDbPwKCQc94hgfzVjyG1fAamRW5Gz7bY50W4EHJvfQSQhkupqTEKrrHl5RMH9RvcWPBj73Mgw4vDzqrznGNgwkXkWe+Rkz8go/EhzPS4OCjU+IIYSW+oljK2gGZqRznYeuioJOJ1k+8DXWiXKDwUPJkLUeZm/TN5ef/sNrr9g1/nB9o7wg8oLlwMkGSRe9g4Z+pVjk5CZbKw2U0DDa/DefGcnCuoNdXQ9bPFpisvGh0qxVFqy8aWVUo/cO4sPuhA4rKGNanfsc0PuLYKjLeby2MzYB4yMtmKfVN4SOjhXEWfvj4wi8aPzRtgu0fLQ3IzsTR1XrQc6BGXPbfC/zcmhAYhsdcrNLVXf6vUygXGgP5JbZq56k9MvAVhBTDNlHOhDdfN3gxzYNcrWdR7ywz3IF2rQbiFd85Rj/1ncZiZgY18s7Iwf6kOAgRO1PT2Zrzso2iOKHTTQvTEF7up90sHvQKMhE4T4Q5wJusERrFrQxP4Nvm7Eu3PQnMjm3pdOLvSXA0M8Uea85icd3muvw9hnPKJgqbpjglcxAvj92yEqNltLLLjThM25O6Hr5vL3+rCgJZJsrH3BUyLO+rMJGHLGUk+S5xt4yvqAGhCfHIPTa+9naMOIFwstd/OOFKeUvDPw2xoJLmdmD5Re/KWvFCA1xZcz0+TTB6sTuH2/Mh1G6geVhsphb/YquMo4ElfbrDXOLJNWDVJecSnKLEncoGo9WFd8DP5cQSZ+Rm/FJQjE0hykk9p3hvLfipT3gIq9F9ngzQO/FuQ1MP4iQfpq6mMzPzoI3zt4Rl62O8Wz0s66O4GIH7GkV6y2/txAfjBNBvtpTcl+1EZ5S8US8oX/StYkMH2z7Kzi51iEbt/gPC0eNNj06D5h9GRKMYzYg/vI5xNP5JvmQNQWRHAspBGOQYgUWQYkR8qStK+bbvkHBuMeY8R8NWFu+63/jgXy+RoZ49LoWGBZAaN8V1FjD5JLDfdJ26Me3K83cFWx+VPAakyBbLhHbwCi0z8T39oIxhW/Hgrs0fyK3uToZFzxfOQAgPyOk06Ox9NVqqbkmXpCjal68CveghzoJS7xGFe+th5nD8CUpN2Le2GpYDF/xf+ufHIOZZITlVw4G73XAQLsq8fh1rQ4eKr1EOmU/2fwpbiUswbRH0+bfzFDpbPB+PGFAPVbKRjx8IGBDQwnW/Suo/+InFmcpGKxvl33Os5ZALk4ROWzr88s+y/mXH0gAX09v1fycgc86mbHM6ods1ipWAyoypqDehZqxig/PBcqlT5B2KmYwwi7aumaUO4QuulMvE/VG+HAePkGR9aLzF4IbbPrOQ+5dy+M1dfcMUJsmQrtb+DZGV0I5dPYfKZBXYaqXYFd3YHTO0o/vs1mibx9CtIboOB5fgO7WuIXRwcgxlJ8XSjvhiGHd23ssjM4Yd53njzDl7SNxN7+K2G+/h1YO1b/1Snv/pkFxb+vk6exqY6Gcpf/x3nq6F8acN00J6/wxY8GdVwPfH/cZTkWWElfKohrjBAl/fiZir168BAEjQK62MTm1aVWvYLyMUBPsBmWKytV/PLDtL2QOjubRulVceN5JNtE4PgDctn/hk3mtxAFgzFaHW4Kfn/e3Pub9d2GAZpM5kDpTrr/v3W0G8xOMKAgOTNbdCJuIhxv4YMh0RzDvvzJUQWC8kC8/BboslXCBW/xDB6FW6R//A2axkROT1/DzAyHr3GLyy2fzw7FNqBvWheiMszdmu2VnsPkDgepyh5q+39BS9nkukiDIumF+21YEt/zwx+f0TQ8RVHRLIpbMsjVxLjRVPfaoYP4UB3Ra9efGK7AOhuB1BXjbfwDXuRoAbWjqmXUXDhDTb0gio3c9V3skAO3s5T8/lc5f0gXwJQ4EBTLGGe3srASrc3KR9+DGYeYuWqqmjbMnZsvzdLxxiwLb9IvQ/hRjOivbW+ULN2GCEjkafuMFeckPiTu4dyC8jQWCQBJVzKj9xcOVBirlEIU7YhxtNIBDJCjg5weuu7cFeBHYEAqcrQSyn8D6LQKbAfu7bRJ7Trya6suj/PnZP/1MG1TUKYyy6zUYZO5Rz+yejYAtWjpCGLA1VdAFwnj27sijygnwMR+N4Jff6Y+Ps73XwAczo2BhPxVddd0O4AgSm9zdXgdzO75WsPEf2q3RakwfLR2B3BfOT69TXhSsG+AF9kN0VcMGVTXUwS7M7ygp1Db+cpJewUZlGKKLgBirMiXzj3/Ips/qxtwXBZD5r4+OAky9n54CLN8UyDZgSxdmUjT4Zh5mIPReF08/PdJ871XQHr5XY6m9qYLFJWXQcRKz+LseThKouuxCrBaVwzLuzhooRe9L7OOqxPgXL8UlOQby8UEHnOFv8eOzP/5aAu6Wwjs6G2j3Pg01lQocyZ/PZxdUdsJmXYQSCzRLvP758yMqhhSmHX4FHMfSmn6cU6smpawR6w2EeCaQ7UEwdQrRNz29bP474MHL+PN7ltk4pzBfGhW/Qp4FNNejG9h4fNPHUUyFY9FCvq9BsByPerb5wQw87wOAC8rptVAUuQW5+IZI+Oj7YYmMUYO9fR1/+SJbqKw1qtgdE4y3eDzz/CsBaqkLeL3NniGEnz6E1MofRFtBbVAlOVXQYfMryYaeBUJZha2qMCd9u3CXrZcyhQKsylOLjsD3vbnrpw5u+ZnY2cEzlqP+wtDF7Jlo4df0Nv/eglkijciPz50335NIUt5Ue5HHc3rU06a/1dw/yYEgs89hPS6iBovY8rActW5Nw2wN4JRZH7JrLSleRKAxv/FH+zKSY9xZUvqLpyhIP3rGn2O1AwNj8+TubxeVvN5YgPlLKJAbxqX3q4+InyYMCMLWShc1uFvw/MosYmof4s2EjAXMbuiJDhLve0vMpxiaGVzIfdMrHG1OvRqBvYAcVj/EInx/AxAF8oCCcfqA/syLm7+j3X/+okfV6JGC0G3GbXwNj/54Yp9vXSiOHT/MyfHJQLpmB7SHLTfMQ1ZcQDI1PvJV+jI+nhJyUMpjTKxkX3uznzUMuDzeIXGD3ULHLZ4pol3wW3+cCSwuO/jQ+qZfsgv5J13CMigV5Jotsl+7Cx3jnS7IEVEoMZTJyOZhGk0gLVxM/PrxHdbo3brQDvyeaF/BzOYe9zb4qu434NvmE2/+CaOmc7sEg8SGQBxk34bb/g0gOcvG9zG4gXJWueWfP360Wh3O3LEjBu3LmujmN4VVxvbBdf5GMd54EhaXG4OVOog8oWHYBHYse8FwilVjfe3kBvSn4r2t96qm0eRIUHGDDlm9Z8fUFfIL+PHO2dvf6DrvhQao46gTc5FuAy4fhQ6RYIQBYx4julTyFSuWp/JY6sx7vTL6V4Po+26QXz+cml/OgwudODyS6+WzN+jgnRh182c2Pb8dQexhBBe5GjDr7AxD7P1Qg/1ek9HJVsMYmzvdVeev9iZxce+8OdHMGTyZet1eeXzXczIxDIjGRiPHJdLqzU+BQKlNDW1+ykDlqpp/9VHiHQreW8/KmkBNcBukmQ83oxq+WvBE0gmvDLMA4nx3tkrFwERox5TZBLFkyhvPIsNjbxmN/EpSLY/l0UE7noe1rG6b31x+sPTcLiKuJ9KD+2wNmx8we9+kshT42F1z3Maa6Y3HYzzChC/y7XjN3pjldwyBN9odQgR9wXQyKxNOPW8h/3kU67UXv9rP39268rQxma7E+v2NRdTo8bh3Ugb2M1v/5XM6eHcGpIh3UJC/rXi9DbUOBe9UBWLdecMS1yZUD6kd/tVnZ80Oe/UlSTd0quNPvV7SOFF++mUnlZ1HTscSqr4oLsiEuhDP1fXRwufBfeOljj/Db//AW/sYySF/heDPn6s7Od/8FQ1QU58iSLrqiQx6ETJ6ZzNJTXY3HUVG3df0in0f6rutq4scstn445l838do0zfGlFSBAh+B3iG/aUs6DtNogc0fJQe1l2hXiVwLl1tdkz3XjxSTu5v+7Q8vpJbB/+q/wXsekIGPz5ic0euiyvnCYXlbPytOEAfGFYWYLxI+W5Nv1UHvIEyBvMUnvsglBgricyKHpXgaeOxOGIZ6AUkgya96nHF7A1GTh8gor6OxoJfZAHKtrz+9EE9bPQawp6gm+kD4bPWvYf//HCmQuP8+UnB7CQ2xbrZm0Bt37qAwSYT4rRF689zmEvw884wgITEGzqxvKdy/Co/YHbPGVO4zG74V6UzSfFhiWrS1AG4LPyC/X/mY3kt/hbrfiMg+8Qf6TheuBPr1NSNDknxv/ryNTtarR4UZ6fodliHnbrC9rTlBs9DTBeR7F9YmLpCxDs9hFYpTCZbTa7c9Tz3Q3dXzoWDre+KIYgvWS4Ia2HzDhjj1o6+Xwi9N1RkyJeDnt2eM4uxEQGZ3T6Q7ShSvcSinUJ9S/38AAAD//6Rdy5ayPLO+IAcCIimGnEFOQVDEGSgqKCKHBMjV70W/3/Cf7WGv7l5Lk6p6DpVUCM9O32R+vm0HflsmrBJoi+bhFGWyWMce4d7FSx8vpJukzqUtDhol8eY60Rvw5ZOIw6116cerddDg890o2G0OiI3yNguhXCljtpNqNHAvrUPX8zvEzk5a5+iIvQjR4ZqHEv1y9SiKewfeyp1RrL3tfrnfGaDzOH2weggLtgwmecJnkfbU6o2z/jOUoy9v+FePHedCdao8vj7oVzfHhmApSFBzJZTGK81CzjY777t3M4Bn8uYxdrVCp5omnSD7cQoNovOrXl5iLcIv3W6ov/WP/Uw8OUJhCD96VrV3MZ77ewlmQL9/683mCo0pFJK8Wy1G5g1SEglyF7QCfrx/OqIzh0Kgt8OHMKdRvNnvfB9OlZJRfT01N7HDUMJIG4Td37dnw2HjT1CYlkWEqXqg4VS9XPgto0kQP7+9Bbvlgpa9dl5b6jrjLAkpkIeZhX1tnIrxk2YSZAd9CXkq7JJ2vosicvjngR4U+8aY/w4mdPXZDXtD0hckUrehhPTmQar1NpWwrq+UuC+dKlrV1bPPzwZo4sX8t550DNMcbV/JPtztwodHsHDI4IXPGrZP30Rf80WC0FeLf/HZR27Xgp3qWbiv710/473GAYmK7G+99Dn1HgOansOH2plZe/Mu0Axg3qbDOstfxc4VYx/6LnhS7MwfNl0+kghk9kdCxyxH0/Xg3pBciJiay4chOitPF+lJssGGaqoFbz4vAtTy6062u0/GukPN3yAo3QCbTTawiVMNEVFuWxIunWK0vLIX2SpP9YwdJJ37bq+OFTy53CWztCGMDdJBA6aDjbXYtvuF6Y0i84tbUYO/PPTZ2s0NjMcRqKo8DDTtjDyEhVg1VZTqxTpR/Vmw8UkfCnLZ9mQDlxY8k7tTo5Tb9f/3jcRKcUtdxQg99vzNrryxuzuZy8s6RSL7VrDlApuGX3nUl50bWOjx4F18fd1ZT/FmjmWvHt4k/kVKMTeV5sv88RKQ3W+q0Hyc+ggc2n7wofG/66DtrQInNdCpJqGnzh5xvEFr/pN1f3W2Me1GKqTtLpze37/6Yr9hybASolDW6t1V0d7gXDqNmttXWHRfl0thUGwDH4pti9gjfuRoDJcHDX5lrU+UcCU8Xzeg+LTxEW0fR0sOj+IWH65bRa+FIrLAEr0j9fxQ1Kc1fkHM1yMhD8YhsuivRv77vth6XxN2MqMMwkGYqKGar2LOpJuBppao2NqWx2KWk08DASincJbHPqE/z/HhkGQRfkxCh+j5qBL4fScf2waA1yveUZK77EvDKjt92Lx/tzFkB3XB5jvjGY0rMwZOyE9YXeZrPafVfIPfdhYIqlpZX+rJP0FG0Jlqos/3VMDfDl6ig6hCzGMxu/GrATj7ES13Lc/m36cAdPblCOuHHV+Mj+yaQRVqJeH4y1YnVda4sD+4PDYlfb1FsSUnxLWvE/3Dk4k7nye42mNI+Nz7IHa6jgNUlq79y2eWcVcf5HovYfwYc8TsX/H+i19q/uxfsTRJIUKhuWIoDjet4AiZNLkq9Q+1Vnv/Wy4ZAXoxL9RmYVCwzbSEEFpg0bvSuf2szikAl/cB9uyHgoS1PoGSezPFyZOh6aTVuUx34oDN+jclI3cQUzg9DI164nMpvoez7ULlmRH2jkPEBA8V3b/f583B1Zd5Bx30h8IgwrY8JjNrPiEMiXrFlhZBPxvPJIf8etpSbCZvb8kJs6Dmn9IaLyfG6kxSpJcWHXFSHueaJePiyF/58gtnM+y8xX72A8DzcMC2m9fe76KhQXqaI09xuqnZ2F67FtwdpPgvP4bEczeoi74+/st3/oU3kXRzhB32C2FGC7xlDbmdmVLt+vkl7G69OjhmthxepebsTexHOimYzY7er0bWMx+DhAp+/8Om/pb1PjsVN3gYUhzyor7pGT3WBFnG9bvi/7YeqPQ6wc1bTLLv0FAM1aY6wb1NKT7cCEnmR3bM5CrbXqi2QTObjDrKpOvYzNg4cGJBf4/7E+6Pl/yvvrOjcCSy3UsolF/HALWJICnopcXHcDO4Wi1sHKOB+Dh62JGzsCa35gHwJK9xXS9dpwLKI7RNLwp134dEn85hFMtHTzEIT4VL8kmrfQlL753JZFW3ZD493i66BNEdpzap//iJJWH22mFPmd49tXnnhjCrd/Sg2QliYvkSoP72EnllFw1x6/pD19wo4X/2oXjdz74F5WA/w8WTfsk0NScRBiaQv/3xSNaPE/zxO43z1wGq0eAA1MaF6rbz1btsF7d/8UVd56gni8mJrigrUIbb6/hM6CfKb5C/4znkYjXo50d2zZFe+i2prp9Dwv3V9/50kcOVz6BdUDQ+3PZ9EvLya1ewiicSPL33EbuXwKoX4jDhD5+p9lmmZHY3UQez9cVEYqbRL+YPD5J+dXKqD72pC09fzP74zMoXFI/XZI+DP3zDEbbr4ZaplnyYjyWBq32uWXFZb9k4hoCvy3WLfvzG5mC7dURq/1SakL98usyKEyb4HOpszPVI6vpKJkLdvOq5Qp8TEs+FRwP50LNZd/gQpmkcqPs8vBJiKb8Kap+q1LrtzKLvtY8B17aqsTo/jWIYdQfgdAgf1E7EoJ4eKHrLK98idVNaqwmFGiRn23XK0fnBZjFDGZRvS6Yrf0mWJklEuaggwNFWletZmkoNabgyiVgkS/Hjz69O+uOjsphnCate1wb4XbAjs7ixdL6bHQHc3SalTvoOdNayF0AgHEQalNVcLB+7aqTt67gPGy1yEXn5nACby+8dCoEfFrvlWaXQmX1OzeL2S8hxJDFq6vFMg10fIyZg2kHf+Vd8QYXW77zsVErl25Cx83pO/fRzklBuXHQL9/bHr0kC7Q1+oZxT64hYz5JRctGKL2S+tpm3rHgpZ3vexmrRUm8OzugE/uFtY58nGRuDM0thOScL1WqdscmkB4KwRgusnYQzY+jFGuiCTiDJnLvJYEu7235yeRUrHLftx+IXVXBm7WG1NLfFFD8KAbY750xv9k1nlJgCh0xSAZG28T0ZxMkcEH+KC2qlncgmDH6MHiNxQ4k3twX9QgDwbGqX1Peq1Cd/VH356z8tcjn0uKedZ3Rglzqi7jqlS5gG7wS1XKXhczCdemrGbwvstxOpLoqD/j2csSOZxftLnej9TiYcnUN4es2RWu5d0ZdfVW7gOr1sig3tWU+cqpTyGLKGCOdr3Q+WhDTk36ob9e1bzdb9imBqB5Wexr3XM74GA6HmhbDqDhWb86N0gkvksxB2BKMdyTFBZB8eqPv7ekgQ4ncH83K5Yz0ykpptb78T2l89wH/x1G9M3QV6CCJSDi6XsMPwFOG3mxP8lw8shWmRSX0ZyS43PfbHX/7wANs7eekXJd2eUMspFdbL47Gnm0jUYDkfF3oYrp9irpmayu7FU7GZbL79ENlyt48OeULxIiT9lB2bG7zyI8Lm9kWSBV31AaB1P2QU86xg634Cf4oK7BbgMYbSkMAw7Z9YsSoopruox2hAgosPa3zOxVFY4DXiA9n/6ZngjFLYDW8Pq+okeWwTTRr0ssevcw9lNBfyR4DFjHrsh5JZT99peoKF0yP+q2ej71rl3mO0xwfFBjRl8tWCVg8tqpvO5DGUWoNcWr6AHx9pr7N9lzjyZnwq+NLEqr68hq2COK3t/vFT+ogfGfi35w2Xt4fXMy+7lWjlJ6F8q9p61TMLwBlfqP2OO3128C0C//AJw410iYvl7KSRtNTOQk9Pedbnj/vW4Hv4bAm6uL+a7eKpgm2Z3iiW9Zktj/MpR9qlnkJQNzdGl2d1Auc2RKFw232SFZ9KuLLyjNU+abzx7BURSDx9hNKZbnsSdJEBlui6RBJrmoxu/GvQFZUidt4bpeZk7UrgDy81GkloGLxhA8dRfhIgkVkIjniQ4JKFOBQy56kTUX1ZcCAXByu72tWH92uWEIduFVXLi9ezx3J2kO1ZD8JSRlmveukJHhfuS+OXfkNsPs0KunEfEx9KYhZLnlchWJeUDwXsmwnHi09OHhz7+8fH2ZR42gaMryCvFp2A5iSROLTqXcJAvKNZPd4m9H5FKo1/0eJN/MA2UNXogPF2Ifq8FWQLHQvdw14oV/UEHSpRus1S7F3cQ00V7yrBiq+k7/ilmNSWGshzpf4f/5ofYvGG5H7PcFAfhXopfy0HB/MV0eySKP2aTxLoaeCvfEvx6EGZub94WfW72jPnrJG/eAv5Vd8tYmfHcB9zmfD+c8cmvecyuI7v9aGI+OGxNnn7YI1+Rj03pPqIQJNkejEiqkeGypaNY7xllD65EB0eRU/0Y9uBrlx+ZPN83Ivltjg57FU3XvVnwhb9+Gxl8Z5/sWGbCE3vNFBgP5gutefQqHm/80P4w3f7nFr1UmXEQUl/yqgnbzx9Pt7yHPJt8KOH9DXp3YcdO3SNf0oIF9uveXMwCGhTWtGwHZZ+uB60G9TLZyA7u7fqebF6DcUe/6Vr/ajHc39U4JiZMtV+UezN54vjwhIcQ6wNpNK78lAboGiOTR8RtvtpksYJxHv2pcHpnCRM06QUyfsppcHZaNicVvsbiOOVUMvY7j0qYNpCGfoxjXwq9eRjV2/Y/pIzdRI+6menODhwOR/VVQ86aOdjEJGQ6T4No9jod24WafIff7BEevZ+oUok9Lf+2kJctJycowCU2hIOzXRBjJhLDqQ+NTSxnfUt10XJELreNGqeb89+iU3HgoB4J2yXply/X+XTkVfPCDenLvLm90bq0E6fc/wgNln9j50P5dFpcRa9jWS+81aMzjHHYfyRrt7CL1UO9aVj5HfdPr1hsvIB4bbZrPxRRH/1UV7/n8a29/aYTkYBKbJ0wg62+qQ71LP2z79T5lpN6PJsJqBvuKz7oSS7QToo8FinYN5dh9dH8rRckAykE0WKxWKJVGlC55EN2G+Wum61p27A7df6hMe4SuZ3yUn/8IzXkvUtcm19Tutw+oWyvzv28xPvBfT1K4vw4qIkgkruFaTHKiJTHKj1DjM/gxuhL/LmL0GxaCZbQG4ENRTPya9ettvnU64a4ULNm6QlO/KBZr/WH5yRW+9NdlM5YHSTRx2vLYoR710OdC9KMFbeUT8byjEEtDsdaKl8x3pa6x0Sz5lB789qfUhj8AdYf8ZlHV5rkp48988/oGrNvxPastcGvsazo0YQO4UgLIRD+5PxXW/dtcVEpV8K7zJd6B++sr6qBHi+SiA1hWMxZfPgS6sfSbhjnOudeTCf8HtzG/qY7D9+3ohyUqeA3VO5Tso/GO6ffqSO9Iv1jzqXgArXK8jtcXqx2a4/jrQrZpn6r5PLpuvP8ZEZ9TK1f5OG/uULCNoQFnHxLr7EFARkJo2BD8fFRazQTyk89/dH+Kl/UbLygRSqeTlQ9Zdgff50JEQPmR6psnDv1X94xjLelC8cTPBGK3/q4LPb2v/8XFL+ngKK6dulwRDMCT0oQiw9HjuXVOUprCf0sBqUHbQeB1r36imosoBS78dCZD+eaDZ9rZKrfj9QTfLLgl4VtwHQEo0aTfFjU89ZBOKhgxCmLev/9K20RP6dBm8FvOVmnRfUvuxTSIvxoC8PPnbl8zgPVPN/IZIOuHUA/e4HbHEKRSwJuBy5stoTsdsg/Y/vg0P7gbr9V0NTmlvav/3XcmHTT3bTuTDoWkxNKnzq4ax9OQjfQkDQdd/oC2+hEwja4Ye9nXYtOHa+pmg+PO+k4Y9JQu/5Uskrf6Ae93z2w13Eg3T2txE1bqGH2FVx3yC26fVPHydLv5cdtOqRkOdPUfIrhy4Crq0CamvByFj4LQywazHDl1c91uPQjgRdeudN/avw89h+M/zNakmofREfxdLveRcSrf6GolrIxdKmvxCu/nyjWOU5fRp3Nw11a8vGNuCmzwLfC6hLqpzMBxkn7GyeBDnYmxYOf4WlT4rTlvC7CTk1KnmPGN7MEXjRhKkaDlw9Eo+P0TSylKx6tZ672Yyh1X1rfSueYwMvtgKcAA44mXqB/S4VL/7pJew1vFLzwav1pdV/pl4y7Ff8fXJAjYNGzc2Ss8UtjiVyR+VN7y2lNatex/Vh3NFb/SI/mdt9m4EndPtQDCwuIX/xUedvNfzjN/yKB0gzvsWfvkETO7xL4MNi8+f3JjNXBp206kcccLlVLw++fEttEgTUf+vfhH2iuESH/iphnG/OfVfKGwdJ+dRg6+bMiMHYltL+qwDGtXeryfdhhtAIv46w7bctSGVkwt9+U9N/7pAw+2Yj77iPgLWHrunc1GSlVNNfGi4rf5r239cgG7baYkPkqT6s9Qalx9eFCDbR68VWxo20yd8LIWv/ZtnApQPhI/o0KnrfG9F3Uf70ANb17uLNPQhvJHwkn7Td5lew9Bg6qIi0LdUEf6iZ0p+Mf/tlr/76jL6LBq884kImioM3ZuGooHdSqHj1/5Egnjc5+IfGxnpw/hRT155z9JXTKtxvjI++9GZnwe8gmti7unE93g75AjFtXGx/a6EY8PTIpT9/RTgiFc3qXG7QcJddchQ3jT4/39hBXPsM8FnQdTS1EwdQbhWCde36QlNZCwKSKuaSzXWi+r/12t8MHZ9XP37BwiGHwyu+rPmP2fQoYuHPDwoV+0jRNC/qJK/6luwVG9jPXeoJVn+Ilst+qofVT4LKUjVqjxPXT1YuClJ9Gj909e9R5321CTxX7HFgdFCMtv7NgXNbi5YyXyWLUg0+DGf44sB1zt7qf8fgHJhG6HV8rnrIHiS/y+tQHssTm/sb5CBo3o+6Z/rod1GJnvDkiiPW6sUupgfK3rD1cvvPbyqGvV1vYOctAvWXaOc1LiULXG1iY3XQvJ5b/VmUD8cT1bmDxZrschNhY7d36l6h1klYflv0V19wiqeE/h7nJ2zEco+dvVTWi+NfIjCVTqDaRBLGhVO+QXa7Han65QV9kpJMQEl9Aupp6h59bP2bSSdqH0IkPZG+UO6bos9dCzFe6zPnvU4pUjd0PYJ7GuqxVLYdDIwj4Ub5BvXC6NmSVz8V2xU362zVp+jP38S1B/U/PXIJ4jvVvZ2fLPglVugcCxwZVnwcE8fcIDTkF2ofxTf7l9+rnseqgH/13IPkgFxImEhSnenk+QoGVDXchfrinS8WfulyECLlF+Z//cCfeZ3A0xAOu23c16wKHALc8znjw+pvTWkeKiDPk4TT0pH6OSM0RG8uTFe9vmHLfTE4tPKXkFE4JtN8nyR4llVDg2OTInbDZiu5RsBCqRNpMXGqL4LPp2esh43Ur/FMID5Sj3zS0dCnw8aYwMz6K+Hkt9azWCjdP/1L9aZsUJdEcw5/9XdZSMcWS/mtV3rUGBvsYiQCw7koHUUUY3O0kbd0+2mQwzcXEGlKJY/9tkUMaz3BKWV5MsS9Q/760fguH+49kwRFkaeWOjiQD/Kqr7YSqPPPwiYVzLqPqyCGZBONVMWF4y2X/pdCUPjbFa9v3nwJnw0c9rFENq5pJYPiDKL8qKYrjk5A0fTZRwYsjaFg410sbHA2zgk2U5mGuyaO0YtemgYFwWWL/c/p1rMhPIK41hd6JJpWzzKjC7Sgm394l8zB6xnCpfacf/2cWRz9WDqA72Br/X7TLTtYMB6GYzghtWdzOXQx4mnoU8WhDuK6k/9E9kY4rP2efUEGs6nQH955a3yPYbB6IHl3C/ez49arPhbR9fM5Y7W83Nf87DdglxpH3Y3qeMK8g1Yav++M/uuXqvdDB/+fIwX8/z5SUJ1Pm3C3FWs28+I6eLAIOurvHz/EOCLfQMyELRHPxyNi5hm9ERL1teW/UxLB+ghvNHV+SFPuEerDIL4NOPTFm0gn4aXPVXey4HtdSuyqjyt6nvco3w/vx51sMDoy5pblggZB+dCQWDr73V+iCOGS9utbITLqw/Vtvvf7+MZ6/6i8GaV2CQNv2dSekyf6ZO/6BKlrJuGUr29pm9dPCWWBu3CoSy2ZDTMwwFWyGfs1zEk7zEoqK5mTY3VUUM9oE8cyNdGPqPM1qBfDeofAGmRiAw9Sz3iRCdIkdzEZLPdYL0ViOnAhdMCOGnDeYFhOI13GOSTTW6LedBbUSv7OHxPr3/OuZtIeRdJQP7fU8uxHwr57msO6fmRvP1/FFPvTJH8qlcfqRTh7g9fEmdy/uYhGTK295TtIHSiGPYT7eCn02c0PEUjqDoXy/Mp68raLCYwgfoUIpLLvDt79Cd0eXcNfvCBvcWvfhTixImxZ0SZpNXIVYTNBgcvfeGR0VFAG8i1Vqf9+9/qyJ/dJulzzgZqBY3vT399rOL5SOwsv/eQ+TQmmzXvCbhR+6ykwBwHixIhC3rCLfhitWw7z6VngjJsZ62dzILAzwobiG6v62bHWwV7960GNCEa0hLkZolO1PWHtoeh1vzX2DkSp0mBFpGayWHm7gaqdtVDcPM5oFrYMkMw5LU3PQqDzV/Ia4GulOcbNy6iXmp8b+TvEBta/74fH7tXpCdHZcqhVy6q3TEudweHsWPjeszSZzyiuwD2PMz7AdU6myzXgAJsLJZcFb9hcERNAeHoi1u9Z6PVHg3eBfbRDWG1sVrfcsBCgdjnjsJ5ab1jsgoP1tahwrgoxGWP8deRDd7cId15fWfQGW5O2V/rAwfwS6yWrKYfEdKNTHCaQ/K0XcrXjuP58KwTIVR+0T2hQK9nXCeuSaYCQ8gYOz7nfs1PTOXDZpik+3C9lsUB+CNHj+v7gcpHfaP7u9UX+SZEfSiXrarKRgxs8ss6m9uWlsJ11cwyolPN6q5+c6068qst2UcY3DQau0smrdDcg+z2P8bAONuueKofs8XoLp0dxKno3UR255OsdWTxvLKhaShVI+9NI3h/F6+dcfFrylC5uiPr4503cNLzhxg1nnJGP1nNZ7ftS2ylnjHm5ZYP1yQGxD3ypXb2ZPtZT+0azdDOpwT6kXlLjXsLNzR3CERLU8+deR7DmH049e1sQZ49S4KKYw3ql2P2058+ivKFFTLUuvhcsPF84eJ1tO/y2L2DdNqQdahYpxf75EibMHrsQ6uaVYHypabIY1uCDMjwhHNRK9Kj12APKJfeIw89py6ZU3wtQlj9C5qwM0ayeskry3saAL5eXgoRoRgLEe8jW/NnV8+vsWBCBSKh3987eVBj7GEjebrBrpTlaspthwa2cOhrEudNPM79vQY8vPcZCsWPkEIgu9HinY2UnvnXyuX0XqHCRENY/NI/P4QiyyWUvbA/9t5g/130O9HoZw2kfcMUQn25PlN7rCw60zbtYdN7VkOkaJ6z2Nx0xZNcNWPfDh5pb/tO/zWRab3kyIWRCMqAOEhj+9gPftY2R8K9sD7Bd3IkeXq+WLbfrtUPv3diGuwVv0BjosYXyZgiIoF7vBc0+FkCW2QVVBdX2FvpSV8nnBDjRnp9+sRnhpA6yLVXjaejH1AcChJgajpXGTebksSjoFuCKas93kfS+4nHoYbkv8rS0pp/DILv9/T3Vt4udCPjtvaHkXzvsboyPx5o2iOCgEo0qpnjzWHbvQ1TgxzHc/HDFKDmJDnRhR6gpfJZ++qKyQjzTjtRShgaxh41KeEw3EiLE8Yw+jzMnm+VNILD5LMVyrzMNpHOyJXzAy32bNRsLjqfxjH2u3CTDFn4CcD5HqaWgMJm2SrLAZqxSUsytwbi/eurVTkjj/Duv8X6+AX0GAj0EYd139zpTEPr4GrbHTEZzrvMLau77A9Uws9BU7h/dTgotDVvubyp+Z3Engu8Ch+9rPi90KEXIzC8fTpvkhviuCW8ix0dKyLJXoAtZ496kfetk4eadqYy/JKovV0mpYdVedskk9pcK2BHtsRvdqb5+vhKZT7iT3lAJYkX4WJC2b5qwb3ylntb6KM+awlN/k3ZsiU2xRSseUUMeKtQ1FUTgasmIzb56FvM05jnsFnQOadCYaD59zwtAsLVwuGmnemEPYkmXkYXheHkevQ8ulEGeNTnBOkRpPUULLWFTaBNVM2wXyy++Nqi5QY/tb3Hy5onbOPDh7/uQv5xEfVmsZ4iOGqbYV+dHPx3cvQT3+/1KHW5OGEf8pyQfAAZ8b7WNvsCFvKFX5irkL2bUc8+kBQjdnUgt7kF0Wo1xig6wGcLmo//QiFJ8k0p7brAhDxr6Fx/pc3vDyrv/1kscnHI4btUXDnPN0mfclCd0804NDa0Ao++Ga0KAPZ5D8ax1xcJVzgC6b/mh8lsHcx6RFO55ftdj7U1MxgqL09DS+ik+5cc7mr3v/on65OjQ8IcrNMeOl8EQGSiUHRTqv0GWDem7JestqDQplm347UAcEj0Un+atX/Fvg8j8srHq/MR6/PJHESldq9BSlMJ6chRWwYoX2IxDWg+CH7jQS4eIbJi/3qLCdg6k+NywF9CJkdgUO6D5ak9UGK/xmErwgv1IPs7R0lkrZs6+rGz2xxfq2cDeDZWFcKK2bhy9UUdWh6JtfsKHld8w+RGHsnZcFDILqq3T5Kwo0vOSCji0brtkuMWvCjW2rlKzVWj9a91xAwL7AFXbQ97/41e/JDfC3QuuPSm8Vw5BZXH04DSuvvOXokIajq4Uz+8UzbZ48/ev3/1Hw5xCPY1aVYHhjddwvu2eiFzChANCWxcrm7udzNpH6iRVu32pkzsLIiveAL76DGuPcqmXkpMcFH/LhQbC3NfzM72c4If8Dif2VvGmYHNQ0LgIGeGeh64ez7u2lcyyFCje9h1bzguLoVlvgSuqZ9bsPsQiJHVqU59MN31pjd8J3G+8X/nPS++uu/cb2unIYftyEZJxEI4pyA+voDq6ngv+1Nvt+nRHTn0iWfUykX0lxaetHw5c2yKWbrIF9EDrwtvG1gthcXMD8tSuQ467UTR1b5rCH5/R9qqns60xOzLnC5RaJZz7aWuYLVh56mFdo+PKB96NfOc2PrZy89SPhnd8yya76WQibqVPTRW1cOfFjvofTdInXrMWwLOak8lrSo+6+SCBYpAUG/jOdEbCukXufnrgNV70ybx0BM3fzeMfnu4gmCzYn4YTLTJz6Dv1nmSwfD8DPti0ZdPK52GNJ2o7JyOZrNfL+qsP4bzGy6xYz0iO2yIK2fDp2KS2QQbbPvpSFdm4H/D3KqCg7Cj1shOnL59MFqH6BtLKrz2dX/mr9BdfDpe80fI5+wr6iw8P+ou+FN4vh/4UNFSLulZvzeLWgDj1DcXZT9TZtIMcnH66/Ktv3HHrlCBX32dI6qnVJ/EWKUjpthzFiXtPfoPkhXD8mbtws68cfb4V7wwd++89XB7l0s+BKwtw6B4Wddwh7AXu9y4hnRsLq1lJ2PxX/5+QahgfbqgY1QIixLsfBdtge/XCfZYGog3ryOuSWd4ySdgFMQWdOkyKa5LLewP4qvhifNc6b9rdaYQ29nvAa/yi4ZcEoRiOG4dabu6gHbL7BkQzQ1iR+QBNb7fS4HjuGXW6IvMmHTRH3s3KldqCq6KlFWYNce8+DcUf2/RzxFlv6L+/DtvV2asH+uIkuL8qh9QSsordw1DfYFmiTdCMY8aa5+8JK/8LmSO8kp8ArgXLe4mxGw1C//f90cXm34R7bB9ocdSHi47b7ZY6pNvWsy7/ItThjx9cvr7fLweMMynZfz5YUfPAm3Qxi0F+HAr8xz+n1jyB3DfUx/r90NTzeT458v5ETtgvhZZNZ+HwRBty40I+/r7qRReRiHhnMHCkLEk9Z8+5lB/F/UX/4Ycgv0LpxneM2sJOTOZ5F00wt5IcciadvelyNQVAj/hCzX62GTuqegwx2p1C/pvxbDz1uEMh3Rlk8hys01skZcjeaBZWou+PLf5OEWWaS3woX7RKJ9cfpOCFnooV/Hrp3RhtMokd93tqPLZbNv7pO/sqZ4Q1u7anZyS48H4nb+y7tV5zoTensK5fuORZ500PUyTg76Yv1i+FUTDrMW/+1XdvmOt1lPiHoMf2ifFR+j17JhdtCp+1+OJDwNBwhFFAUzq51CDyWZ/NGxpgOG53VHWY7glXJg2w6unQ6fypX1Klb/aG0EbY4qKmnhzjk8nrflP74hA07a5yjkKXF0NBdXk0ad1TQz99FIk8+G2/fDJeQspWVojcjCNiqaYR+P36Kty4/C9ZdrEcgUBihP3fHumDtniLuPoPBM7NmTElaxSULtWbOpvHmY3P9JL+xS/2ueurGFm8PwG9ri1XEijJjKvhBsIhodR57579dKK8Aj/wHPI7GHt9qGEmIG6pTQ+oivT5Oz81oOwnYYWRfd3u7t8I/fkxvLb0xe+79yYg2aJhjQTPYjmKykmSy1Be8RH3M9cGKSzNL6RmI1loknbTU+aZcqRmpX/W+h8tcnmbFlpGJ8Pj6TeQ0If6OfXs5asPtXF/Aju+TXwv9ro3QlYZKMecgdUXeTF6K6tOrt/dBYdvIULDX3ze/KMRznerLWa1gBie2uZE9plGCsorjw7absPoAc27ekjtfkDqWeqpveASTfi9DZG+S3fh/vVy2Mwv3oDs7q3RaGPwBdWlQoGVT5A5dBKPbZ1ag6oRLazq7n09Yrw+xIVvMfW++qtncE44QJ9Qw+HGVWtektUKEvFnY3ueKVv1o7D/8xO0/Hvs2fr5UKe651Aq37o+XvI3wPp9aUqxhIbPqc2AE/wy3ERL4k33L/8E7pGeiVyZp2R6iEouJw9JI5zIq2x+m9yKv+pED/HJ96ZbWuRoZ/gNGUg8elN8ulWQf7ueuu7TTOZn+jih+hgmoUBxjpb+O77Rsnc4fFnjeVjshIPIuJd4IJLVz4XrRnCnygs/bLGuZ7nJU1G4UYadN8g13UxwgrN7s6hvuXNPna2Rwqp3SX+DoCevDyEo2swdtbeijvgvDXJg0bYI2+iXFSQiBwBNbJ2Q/PFNA+slgkcVYsM3Bza+fdWVl5D7YsU6En2yme6DOAYv6qrRktDz9HzCN+MUHAT1tyY77/pcWwY29vT21pPVn4CdZVbYDvKB/XTWiYhho6TeXErFH3+EN88NVL2fMVrMLExBOBwpPtjPV/IPn87uLIW8VtdsHoTjSV7ziSr7gEuaJGkl1Mq3KzUzFjM6H8o3Wv0k6jxNqKejclnAth/LOtXswYh727bwnbov1QXjU0wnKitgePQaCp9XhpjcyBsp/9VfarHdKZlS79zA+DpGtAiev2TVyy3oH0ZxEKpCvaBIE0BZr1yF7+8hmSLCN8DxsULER2Yifi814h9/p2751j127ZMSWrm8UmP1l6brBCXUwRKSZ35eH3LatS1sZz+mTvQTk/EoFRZMm2aiGN30ZLQn8SbnSXQg8qz/6mnP3yUo8P2IveG7TwbityJMF9JiVRtCNFfdzZC2qWhiXMArIV3NCAoC80tDTg9qqhZKiz7lZ6LWJz4Wq14z0O90qrB7XrbegO9FCftzu1Bb43/9iOJ7g3AWn1e+3XlUcEsN9vrBp6qGhIRIm7b787dC1EtVv6Sw79BkBhp26z3zSBzcclTeloV6Nwhq6gvrQ6ZDt8PWWRi98XPvY+lSHFscVCf0z99A848vsHFep9yllmiJYpfZ9F+9ot1uQXde6ojArmayy4F/S4O421LzUm979jAO7z8/Bys1ZxXC4WouYDmzjo3CKRGdOLeCILC/VL90HpLw8zjIEF9+GBvpgmZ5/sIfv8b6a1Z0Xm7iFOg8bULh2V0QrbUmA+RxCb0fXL5f/eMY/viS2UgNG//8yj/96P8KX+eUKJ3Q8CkQ9lY+85fP4J7pHG64/qu3X1Q+Ebn5FnWZHLHRTGmIZjir9E5lBQ3353GCrt0gsl355VL1yIc1Hui1PbN62PN3Ea1+AmF3Qdan1rwBVF8sYedjOfrC/YabmFLrsd7KPXoDOfktnEuupbqQ+IzZY+VDJaUuXvsFBRUro4OoK5w/v4IJl9gcICzKKgTVOHhj8lg0+PN//vxqAhfSwCS3MWFVmdak75wQ7vfHlcwQiMXypz+uCUz/8SF9zhz07MeMruvjrf6rKzW3TY/N4ar2/cNmpXwvLR07P7apKa9cuj++ja0u27N//uozzTMC+V1g/+FH2ZNwYlHXE53XtHU+RontYnISfpeIE/DPqqemkPb6vB+EFlb/Y+V7crLQ1yGGXPs9QklZ9GK36jNk0Z9HEPqQYnIUVMGHexU4JrcvWxx5DCXckytW3L1dM5JVGmwKZaJH6afUq7+3gfroJzjfzKgnq18GdmbcQnndz127ZRJc01saKtbzvB6ZbTRwUuZh/+ld9fn+EiUQtpxO07xs+l2gywSa1znEuNmy9cqOn6PkuGzDvfZTErbV0ucf3mAv2IjJyItR+Le/5FX5E1usz6ZBXhDWNBj8tm4Wqw0RekQXGnXKpZ/7IQf4XqfyDz/R3PRFhfLUrKlGelrMaz1CnngP6aFgTb36GT4MR3n3px96Nrr7BfQQNaG48v/FPN3K/fUn5lgp5U8x+YjkcJmDBHuxU6FlP4mZ9HGDkGrRHtfDwXY0qf40PLV7zvLm8AQhVMplCeWvd0Pz01MHSWahS51HiBLq77cx5FgwqDfMOltYwfnAPhc5fD9eEVv99AnZG8XC//iO9fpZ0F6Lnoj7a5CwgxlJUvPMp9XPlRD7pLULvqukWNtHS/1+x+aCcmWqcSHIHGL79ujIZrW7Uu0cq/1UCaOPgpebUiW33slE86uL6HVzoZrCz2hY/WZkVvyV2pX11meodwMy788MO++d0v+0Mc0hOU5bmsRvPeEK/67ANydAfTZ/+6Upoic6du2WqkFneEJTZE/09/kftqjXs+FsNrAdvZp6ELQe/5CvOVLmnRwyULHHqjFP0Yrv//mv7GWGf3ogvF80zSOrPoJzFY1YB5V6TC2cDrpgiMg2ceWC7k63dYrauaQH+6kmM3L3giRQfCWfLW/WdKBHHw5a98RBcHrqq9/tgJRcdXq2f0NCpynqkEV7j7qbitPpn55b452Gn9ODTUvwPElSXH7++WGtV7VP2E6fNtycPVPnvKqt4PxKMdUs02CTm3Uu+BUriFQXb28KL+EGhbalYD96BgmrNZKh253zcRidDH1YD1z89YOo9jwnaO3fLfLqn2Czep3YP7/+qjwH7F+3NuP++FdYJoBxMw3eIn/3N3QxNy0NLlrlsRY0Ddb4xOtbKEjIsjyEST9ZNGaJwyiy+zckD1HD14Nx9Tp78Cz018/0hHNR0L/+y3LyWuywW92P1oIJlDZryCbXmj99lkt//gSGyvd4je41SITJoxbWqmIWH2G+l8Qc0zA/rlOfju4J3q+bG05nXBdjcmbdX38rXJ7nhC3l7MTofLtoIS9tjP4fvq/9MyIog4WG6+g2f/hGGHJHNpNzP6GGcRy5N3BOVr/nDdbz0+HD/LH61Z99A9TiTG0UuQUn4K0GXfM440MVbpPu9WnI/tUZCb6x7NxPK17Jq39F1bUectJOrCBSWwP7+Dd47NTdNLDGCf/nd7qvUQMWugr185Am5LERq//0FXede/r6Bpz8x28w0o/FUqt29Oc3YXVITH367ob2jy9h47cb+rm1wEJGEL2oUUsa6nK1V6TP091Txe2e3s+exBK+xFPoIa6Tel79BJSf/C+2SGUk/GioLah6YZKBax02KWkfw7o+1BMeHzY/VD0F7/i1qHr5Bv0uudUTVKfsiQ0sfLypux4H+E7td/ULvbpWq3f+F1/kT3/srt9fg85Cj8mv370LxvVeI5VOFtGy3H/1OVc8SVr9gxCNSl8Mf373/+dIgfC/jxSoHr1TMx3WECh/A1Tv+BjyXGsVnA7aEwKtcKjDl6EnbNQbtx9d7UVd/inVU5JcKvhVy40eUnjp891VG0Av/kJNN37rk7y1Klj6b4ctJ5CLNswPC/J3TYuDwyzXn++SSlLAqZTqM16SMY9/E4TqLaDp4azpQyTamsQZi4bDC8cX0yPOGyj7nU6tvdQg+oqlCFi75CHdBEU/fsrvxK5nI6eOPCs6w2cA1M2mSJ7rlLexMM+WXKCriQ912iF23MSWLF3khYgfvKsXbU2hvb2o2C787XpK9N6i3487Yvf3TvW5eA052rDbHd+0r40YZz4GNC+hGm6T3b6YfvZKiD4nB9t+puiCL3w7mH9bnSwN4fVl9ucOvjtKqXFYB+hbt9IAr/mFWL/yYT1Zw0GBtyo+6fXv85H6vcClOerY+Yw3xj78W4FDlNbUqp61t+j300bi73sZOyzf1FSZiwj6unTw4calxfROnRAJX1aFewWChN36AoD72gJWivCQEPL4AhDjmxCJtZ9k9rbb534+pQZ5xczxmBJ0LVB3COgxPmtolr6SBEVQOwRu9TOZRsPZQKWGHNbUL+2J/55C2QwMHscH6dX/ZjWp5O3HNgjfX3/93BQSgFpDgbXLty64XRRuJC2fKhye7aBmkhU95bA8qFT1LaWg4eLHoF/wL1zix6ZfxuiTIjo/zzR+P+JaqNJyQvt7oWC82728EeUkRCKtdWwj/oF+KCc+LKHIU6yjEyOJ1TtgMlHGV6V0PDYV/hsZ1BfXOX4dYwmJ3jLj75iu+19Pkt1MqLDuCdZvVdpPFqtSZIX0Ro1jHiSzVe0dtBV3BFsxnVl3pk4Efih5WNlYfjL51Qvkdf+oniR7RH+PrYMGikLsKc9TLUy9PP3b70tuvhAbfpEjteQlhPvtsPemu2VM0ARZT9WJKjVDc3dDB4KGEIaHgeYSgEPq9IvCPAtfaPo46Cml2xvCGcs3/SwlvgRsqA3S8oqDlqN0j8DWQMNhqw86i2+PDALvEodgAAtA9L887vqyQ3O4lfH9Q6Zs26DZVOUU4Ls5Yk2SvXo+h5wL/ZDHIYh70g9+9QN4JemOuln4YvSS1QTIYWFkFg5TMTpvaoETPBnW3KxBU3PZuMgOphc2uInvl491jyWzlF3sf+RJH6aLaEiW3X8J0wqXTd+g1aSdbZ2xra+XNK5PIHAf5g2ZfeuZMKlTHRSH5yPOz+dH3YtprMlp8jhhH6vHehhq05Bvl2ykyrTDaJmcYH0YyVex0/Gvmk5JHcNRar5Y0VMlYbQ9xvD9RhHZTFydLN+4NmCzC2ysob3gkQk3N3SK5zbkdpzLdrJ57cDJg5ZiwaoR6Y3HE+XL8MPpmp/T7NY5bB+lEY5rvWO/x9aFo9nyRH6O4I2yOxCI0waHdTlfPVZt/BCdj8JIbVPwkuW9YaKc4uGHo3O7LZpuRBWc6s2EvULK9Hn/vDYQzuGDes+e9vPiAAeSgR0iLrAv2ti4SdA1SRYu+DQnQ8ZuN/iLD0tjY8Ge56+Fdq6w/VefyTEdOthmGQ6ZKn/q1tlOrpzfJ4F6ff9L5qMi5nvnVxXYtr9tPUDCvf/Wjx4q0ayXY/puwbFuG2wNwUcfMu3hQngOdxRzZ6ufRWtrofjxvNJkxnEyTv9H2pmsLQsjUfiCXIiApFgyy5gg4LQTPkVwQIYEyNX3g38ve9d3AEVR55w3IeAGIzeqONE+/oC+uf3noMNeGJi7b7WuOZg3A7B/PpGDeDHrec6uACjEJ/rcYoUPgla06KcPfuIneeHhWYAuCw4sulhe3eFab0BBOiGud6JdHxWrp7JDzY359uh2m1prK3DawSL63vBRaxxQo8RqLv30IxDvCCfoKikeM6NtG4yW2SmQBpVOWS998qV/Y1i1ZUKct7fpxr2vJcjzVGWZNwJiB4mJsOgDMUO35zQoAwp/6tqhvaSavCF2PqNFf5heR3s+8ZN0AyHqQ1YobbD0f6mpwjXXqWKaWj0qtWhBXj7fhLwMpePZpX3/6z/rGljdvH99EsD6LSLh9T6iZrts8RPQ0yNHzbFrnj0CGewTOjBzdaNoynzSoIdaeMT0LTUdH82qQu0zN7EaVAqfv8gN1VNe1CTUM8J/7y+sqYlJKKk15/H1cUOeXZrE42PWUfvbziBN3x1GVBRravb3N3w7+qaN3zp1ozf5GVnjVWeGNQNa+sMF52YQujn2AxpfeoLhZecFMTp9Z07CwWjRuve3xA8ate67dXaFwmxMYst7mc9vqpxh/4zWBB/Nszmf94oDo3ltqSyRIOX2Po7h7bU6Cf7KKh9N4RGq+6n5Y3buc5M/qUFhUtlALH58daOHFRGEiIZ09Por36CKVPBczwXxjKGt55s29erGjVeErCLUDf1FDZGeWA67vF5DPdv27MNjf6vw9GVON9dsmyix8xnxWK/Lrn0H3qhI5X1N9Lbbm4u+j+jotgIJlnrxi64poLn4wcL+/kTT+qj8e9+xua2sXHQtlKBNd8yX3cgYtRgVPjT7jUGMMZfMOXzKIcgQyeQ6XSrEg+4roPXLtnB5Ha1g2tO1C0J6CumfOnx5n1iZDFH6jhmW1nHKJSxTEBO3Jm6XvtFYXrgMDTd8vLIDzxyaxp3BSPuB+dUTTJrHCENBPIaVjbFJWfUABVIne+DZPPdojpYf7czPekPM03Q3pz7JFQU36oORVLqkdKkPrML2QIUqKfK+CEZXsY34yHb7rK3HwdIAqu7oMCcvv8E4BFUMx2rckYsy4k5ADz1RSWis6PrUvwOWNQNGt732JPew71N6/BayVByqM3OGVZX23lzf1O3xFNDKsDM08ltSqYOvPZh+Vdb8s+ENVsLsEbBo1FxTAm3wUdsVMgk25yClt2eVwYevbeZozquePeldwd5uN9RT/471LJTNCJs/pOLtR4hNnshvin5+MLAOer6Ra3yFYQUpOW9u1ByTxi7hZO8QXSWyz8Wov5SQ3uOO3Hh/S8dl/sIkTDV9FCuWDk4sgQLn74055V7rpkyOfVC4emWas575tFZqH7WXd80csV6nX6pMGhRTqbE0yp9oso5dBnXiY+LWmoBev/727fiAOUr1TroaKwFGHHks+Fvtau691WwrqXKB32J9z6fO3CfAx5TR1WaMkBid6nL58YhCiLe20tFYrY+gvK4xHW286frFv6hZjB22Mz0zl/Qnfipvq3iQ8GDrwQbi2FHNwyEjnooQ/+f/P8mk0nnp50mY9gCldCLM/z5Fcx753YH3fa8RK9qhlNX26w3fUtkRu7wwPl22O/yrFwkt/YQGq9tnoOXrAOcWd7oNGTwMTH77zL+ib00nO86QUe0lsvOzsZ78yErgb6MBiyL3Zc5/2/gI9ml7+D2/lEfrM4B52a2IBgcW0GcexKBWtckM9/Pt6EdVtW3SHreMnHDJR3p9ygDB6kuVZxPUgqLZN3C0z8zsANNuetxpA2RcTVh9T13K5/vWARp8XZYJ46EeC8l34Hn4+lSe05JPxTeiYB5OGQuU7ID4R4lL9N1/MmYq2rfm94rP6CrJHks8Re/m1Ol8lI3fFwnGouR8JYcK0jVlRZH0GRBfhcrqd3+MPJaDHPf77xP9/JABp7zm2Jkz1RIkGdcfqzMHb+U9Idz0KdGbgtZz6tQ+HHZGRIfAOtRsw0usDrkiMnPxD/MUbhv4ru8xFu2V0k2Zv2vQSyNAjMfs1/NFDY1fnmBOaPiB1AC+wYYcOV4v9etPpBaRPbopy6ZXk0+vGxuhDA4f2mbSNR/3F18BPesafJj2K86aIRDAFTJEdvb5bS71V5B3up5JoK22aArkW6jonuTSaog9Pqdrb4Qlz2I+V22++KMbtHIwEIO7KzR35Vvc9vvMZk7GH/ni/7PtL5+eulw0+c/vyu/3lmiLP2Pi5uaju+XoxCu/pjnvdbEFL8EyXc0vrRO7udRUJUhU4honoV78l6XWXmiS63yI0qkJtgVa5jNGHxG6Ya10LpyzQCMYv2T+GaVcUUY7XjNr2pnmJOWDg6rQTCmi5ykdLaoK8Dw97vi7xhyNi76is3Y9MisZXunoDuIKro/Hg8pLPl7mrQ8gfB2mHfyrOa8dLwN82oUkkDy3HtFDj0GB7ZNo7SEPeImjGZZ8jbdCv05pTMwM/rSdz/z3xeVfPXZlaGw/osLrWyMqgOz8/CgJAsMzxZu2pfD3iBOCYdwh6RIHFQDTHGLcbaP7p/d1OZwXPbY7PsjJDKvH0yX566MElGguBe+lViwoojanXn4KEZp8H7P4sOJdu9036qcMc3Yw/qR8Pl6Tf3yAkPwgd7M/nM/w8xOLP+OTSg+ZuswvZnT6JxiVeuXAK7zv8VhJOaJxl7TQh5uJER0PSx6uGsRxt2OGeHdyYUosCpmGUhKChfi//B64fE9+etJPNDOU02NXY+M6x/WLKlsD5q/h0rkQtUAwhWVLyOJnrou/4788Ql9j/k9fqF67GZx3t2CZR3bA3ZPSg+YcQ2LBy0iHcPO9Ii/OalZ4H53/qxc43CPBRoy76ahgB0VW+kff/DybY1NUjbrkK2KuQAjmTJNG5K6DK52v89hNZj0a6tLPTPP6K5omPS/Be9oRCT4i1EzqNEO18gKzv8dGQ9TU7RbE3BnYv3z2/uwtdeETVEWajoTn0Q2hlhyNGftzySf7ZrVqlrMZq+vbLpgP4uOJ/J3f4s8z/gaLn7vCvZXdf/rUZtPGgf3p4S/6baTzvGw5sI+6xlyJBPm711sKTxcOTONOki76OwNzIoXpjyLrxvzoxD/9I7hNaLfwgRAtfokKn+sjmI92H8OSf1h0u21zen6XDiLHzY25ximrhYN5NCAOHJNY9x0xeSyOM1RHiVPpM9cd7ebGUOTmDzMi8w7RXm97OK/ihP1tybNr32ZTwLzpVRKeZheNf6v6jP4uZsbCotZy/roUFKJPprBICg7mKH8fN3ixijIrB50vvKhBs2UdSdoOavdv/t934rKEdTFrwUFBg/r90ab7pqDdPH3dlVLWzxe5Xv+sfMZ3SwBXjGLym5esj1wBQnZqiY/XL3PaYdP98RViCtf7cjBzN6LmZp0WPX/mPFT6G0KKkzH9y5z6o2t/oPzyoPOKgmDDNlGDqEFXdEtgF0zTVvFRmDQiM379vYJ9D03fPUi48JXxe1wn0GnnjvmJP6fjCvYUPp2msF2sJ/WwJnsMAnp7RBP367qXv9+bsrOEE9MXnrD4VWWrZdsj3b5eUT3f/nQDHHhdMKibbTAV2amH4rs3mHU8ntBoJ+8KwmNe4mmKbD5zzN5w9o4lRvS8TzdN446w8DE6OusEzd93gtH13gX4+9i5KVvygxr11ZVZ2e6Qisb2mYCrpzdir8o8pVHshyhV/Ybtlv4dUEVKWHgMcedU4/PITw7IiUhYkHItnz+PF0V2162ZZV636VgZFwvScyiS3V0P083fMGMYm2NBxYw/0uGzswB9I/FLUaXMAY+G+wjSepxotszXnnOtgu1Y3Fiy6BV/qdHxX/4XljxIf/0tbjsJq2ZemwM9uVd4kGfI8rC4BEOQvZ7quZQ2WLJsas6R2yhgDu895otf54K6yhDzaUR2oWjnS7011bb8jllp4Nc9UZWrLO2sA9ut27AewzZI/unjbZM0Hd8YrbIVqXTCcrr9r16B8vUVuk13Wc4fnzIB6dDdWeSl53xSgu79u1+m7dc9n9Utv/3jIyPwLG8LoRbgvhM69tMP/lHOFbon32DJc6lZ/QU7AQ60/vGlQze/6XyGYRS/hFwvNBgT4CU8p2Ze5gHu5hRbN/jxgF+emNnWv6GjWE3MUh89580QiCjybirdHoLlFLbhNAK95zP+XG0dCT+/u/Qn0U1DRP3hPhwhtEFnxTnGufLjq4Q5OYmSallC9OwMNt+bQ0gv7dJR/Etb+Om/qat2NyZNVKLOO26Y9ZGdXLhk5yNsNRpiTX/V5vQaS/jxIxIkhmkKlCUyWMJGJoZ4f6cMO8oRyFZBxCrNC2I/nuVd4oH5smSYPKXnJyx5nZ3W4S5nKJoEVXquErpd/Df/O74AXNl+Ma9/fbpp6Q/Qs2+DlcUvc/J3i1EThgY5fJ7Ah+V9Q4vfZjY64GDqaR2qG+f8Zc5h/64XfZkhisiH1mxj5GN5QQr67NQ/Fsg2T3mrcQ3KtrkSnzevnIWGLaLNt3DYPT7c+FTqj6tKxydiFlvfTK7v1sm2w9WB2VUz55O30p9qcSsqZu2GLh21UrF++Yl5BnmlNDu8ZvkZ0jWGcCbBeN2Zrfrjr9p4aev5px8/vhisvKoW146ewT3pAvx4FELNRqY84UK1J5a3wFNa4c0NZhu6hVdEXHIFQwNJVzbMW+ZfN6Z1rHQSnonxCa/p9Gk3b2QdE8q82FwH3MrpGV1HIcPD/t3m/ZI/0XM9FuQcuAHnN11aIYVmV7JXvTZlQ9b6inqiNfOX/LBZc11ES34g5lz5eb8fRlndT+0fcb/Ld7VVZ80gpZOPV5/dIx3fcSYibzBPxEGdFQyCjBL4aKhhfoQ/SDDBr8Bv8Y64QlXX4yU7Z2ArMLNf/mc3fQ3g79yW2BcJBcv8OKMlj+PpWCh1K/tI/jf/7Br5+cKrDHUlkR3TLn9hMB4pAyADdqjkzxs0f31DgaTeW8y/S1kwBqttDMVGlRiWHp3Jt/G7+fFzKvlZXDe36Ujh6DYC0eq11i157QhlXzKS2VpdU7epFVXMrYHYNWrzWTq7T2U+SRpdNxfDnL/G94mwfz0xK7xViBe7+gjJX2PhV38Q8qHe6j4kbbZlnvzozdcOm75yYlHEglC5pa0vTD0sfoUW82mLegcFLcyX4UB89fDJf/xbSaPzkW780UtFt6llWPSCDnhr5NLil6Dg1wMJi7rMWZKtHBQZF5dcpf0JTVsoZZXceUOlI1Xyt0z7Ev3y468eM/I2BizrC2zXUJyOejqctwvPYm5VsXo8PS8CDOxbEi1Bp7Rb8gH6zd/857cLk5Y/XkgvOPiiydyLIqxw1WLpG/JuXvwVyj9tTsH7PDi/O8+butocZxbttk2+4dEjg7pYDXiz+Gkqmde3MmLi0c1TOpjznT9XaGheHc6W92/WhtsNTL8SiDlOUcCL4nKEhV/ibSGIOWVbo1C/kfBl0X2aUm7l7ysUm7VE56d6QrOdCSPwo2IT/Cc/+bzMc7Q7f3RGmktlTkt+R2m3LlmYhCv+03/lE7kqw8VuV4/Nwcukhb+She/WvbrGJXrK9EOF8Gbwjfv8ONAlqcZ85Dzr/h0XIshZ/2RW9lK6HosXB77yJScm21TpUP6NFP7spMUs84NuRsPQwjxByvLew/xXP3Xh28RKg7YbhzKOwZyOQEz9XqbjnX5lWK6f2P0hy5fnd0WpEN4Y9ndpN1aecoX3WHjstx754yvqM763bOEj5mQYEP6ud5lXfvePf+Sv2flvHvN8qsFRf6+J3x14zvk1ovD5JDH+9jsjnTvrVCrMIQpzdvukE5WTTqEa1w5ly3oFR1N1g6fyBvbjrX2RXgoQrNFgmvQ8dSzdbBVYeOfiN+t6hDBNQNKMkvI+/SDOk+fySbJsYhlPq7RP9dICw1Ui5ijn3py20MjQfbbLKST3d959Xm0J59FviMadOR93xstAP95kC74eCIZ0M6C5OScShMXFnGkkVwqrooqcD2lq0vYSlRA26YaiXJFN7r03R3VZH6Ov3E+D8axsZrBno/nx8k4QXlyEck9jtmvVeDllEFG41rlIFetvrOnqFRWq5K7aH1/u+N7mN3QNlAfxOy7X0/cKFgTPeUsCQXkH05VO//Is5tnWCqbfPG0QZOzgPt5oXvIiosLpxYKx0Lh49uMZOimciX/9e6acYnEEYloCI9ZFSekQD0f4RL5KRduIzWk66iW8rduDOa8uziXcVrBd8hb58S+K9scMHk5jENe2oGYu6o7olN9q+m7E5dQG6RWCfnyozMdrOxghzBN4iOeM7c0Sgm/rOBb82XFLrFkuc5ZuJuX/+vGB9L+3FESdFRCnqHU0/AcAAP//pF3J1qo8s74gBiIiCUP6ngRFEWeAKI2KNAmQq/8X7/6GZ3aGrr1fQUjV01RSFaugg7ssRfSZPkx99LTFkNuO9NTImolRUTc9+OXgSAsUPZuVGl4Li9eUo8VrjKErpDQDsbGjBO40qrPUEyT40L4/xJOpAdSywBlq33FEu955+VNa1Bm0bCnD7hovYO6KIIU2+96p2b0+8bJqewIJSlWcyqWZ79e+TeHq/hIafFM/X6mhtVC+iR228vcARrQ1qpc+hUGENxNiNvYBhFFS5ugoR1HMLGAFkgCyBitSN+fdsn8hedl/fBp6C9fQx5J1MBYOMrbSy9aoPxYgbPbilSJN+/nTr+s/4JgDBYfv3xJ//55HUyscVYZi9lex93r44B+HrRGP28zcASXg1KMDdfRBY137eF6knTsA0hbxhTH3bLQwHCwfq9OU6DPlLoo857pNzZPZ5nPSXUuQun2AdV6qmlXi7Bk48y0jsLuX+dyayIDR/ftEvH8Lh0dVjgH0H+NKft3FzdlytAio7M/WuHN6NWsRNIHcUHvCzk5WfLL6TQHf8GmhzxTZPpHe3EuCHnpRQ01NnTFev0BVV1yaqc+zvxzMHMHJ29/JHLTy0De24UF+sCXE7sZdn8Zt/9/7NnTYSC6BTs3DdYWnw+lL9QlhnzyiuIPcrs6pnjcxGOOx+sDnDFzsT2/Xn+24KmQUc3v0q9NHs/5WuwWWsE+xGvLzMBdSlEKLkQvV3jsWzwcnK+Ani1yKxaRvpozOZ/ktvilFeXgCy/5dKfCgpTvqvkx7WHep0ML++XSxmVg3n+Xn21YCc1yy6Hub/buelA4qNsFoxWtpkA7Ewl5Gne9HA5ujboVwNAhaBgT80Y/DWbLG40jeu+CiT4/nzgPL41BQZ9QCfS1aWMDT82YgaVcl+t/9godZH/F2Pw1bLvcAruslQEse/cCo/q4BdIQ7QeLpOOVMPRwLeIMsQviKE329LTCVnqaJye4N83jt1bcFE9U4Yz3TECPb+oACbn/YhRXMx/cIV5gIdouV2znT2+JpckBKfyrV6fRjq8ANJYimUqDqFr987Z7R7vgbdbLbH/Dw1RyEILC/O3JqRz1mOzc24FPlfLIXy9uwTumQQljGAw4kNsXrcQIWMM34SDXKAUADtUDwcL9n1OrOS7484kwEpyJQUJ02mT8LE4bwpJ2vRKrtYRhtOngg2J1PNHi6bvP3fVLUND6Rn73TCPWgpcDPlhob88Njy8SYCC1fLXGxHR5coD0Tuak1Dqu2xcBaitpFvunSl+pXNunkVicQ1j/v8vd84yG+oFRy1VOFeg1Z+uo8dj3wK8YRfth99dm2YSkFWcHIS9kjn4TxLMJfPwxkH9ikWdT7MkLRP3WoAcUxHnbyR4GlGXhYMZkO9l5QWvAodR59+gw2rLPqDNZGIhBmJy+wlPWcyNwwGAhyxj0nMQcT0Oyl6wY2fbzMnhTBOTUPOBR1ZdjvDrsakvK9x+ZH9ePvLzlY8H65G0SsDuUws4rroJvjAFv9Mvq05reuKEYJ0GE5MfDl9ZcghQRj7JYuANOydhx8eQKP3dMgxv0cvzQoTN8XdTMRs8UfIg4GQypRi2ipz1a4c+DpdQqQ1L+pvgi/UwGZHsXUGiumz7tSNqD5gTHWlsEETIm8WeIXqUYwGSy9/56vBdz3zKe6cthKgP65BTdbHahxNvs82+IP0torqXKQWMOillvhGv1W7D6FdzPHxirC0TR56iSHRifXPn5Bwew5ik/UyefUjtK/+CH7UeF1xueSAaq67LB5eLTDMnXWf39vX7+RPy8lQtKUdgVZ3iWfL24jWpBv7Se1ofyJx3eFVyAuKiLcYwzA6pgkA1LdTtSQp2e+cN+aly1j5xE63QP/oDkWgu+h3lGvSg8D7Ve3hikZSrKjogVYbPcevPyKkuw+A46Z/OskYPbmjewLc8dYTCNBFmXRpRchPDXL7nCoAQe/PsoTmOrM5oRua5VeYV1LB/+9OzgRPM7jEwFBH4dxDo+vozTWKVaGItLXX5hZUDA7Dsc/udEXMiiGTNKmwthncFit5ReA31LGWM0jlx2qwC2BXrw8mhzlIKeN+OQhn/mMDIGMh6m03yIs/CPEXm0PzRZfCRzl+Yfth6EAYWWZBz/Z2aXolbnNyPW9BdvdZG79fe14biNmwbcyhNS1yJ1N6ufKQW8/R2RW9khf9xLQpGuaFxjtk3nY8BqBaW53+Pa5XGPGgqKDuDiUNIwmLx/TMRRhDoiDt/epL0Z1/oB8Aib1lKnyB3ypLbidPcH4DUE+cGbdyX/5FF7hqrOb1HuwyssACc7dZ2THqwoU78ZAPRuLbOG+vQClT2lgdYEHtqirBuXnpC7Yc0IE+AcZUvjjvzeqNLCO530BzvCTPWUifc0qnrqgk6QN/7Hrj7iZa/ntgS1/YFT4XzZP5U+EouO12JF2fdxX2CGgLy4mvXVsjkfhNRDoVwv3l19zNuwXCOlouCh9Xj8NUalPgM4XEw60atZn6ZnOwE0tB7FsqdnyMQ8R5DOXUd98VGA2AqeF0+/TIPaTdZ384ffZ97h/74vJDyBK2oucsF/Z5rAAw4nAnSQUzUGlNIvhuhdp/KyIWna+ZxuelWA2lHHbZQzjXh5fHjhNV0DDoHQGntNYBq/Xc4q98ZroZGl4Im/rhfpQ28fTAOYSOkJOEPgcxvi3xRNQOUGjuJruzfrOzgp8ptyHuoeTPayvZjtV3MUKDl31AEgQKaUs4M+PertK0Nffkl5k3z3k2FnWM1jemsXDs+Zn1DMJA9ONZz1cL41LLXEnNLOMugwepmjBEV6DfA1HzYHEKBMaTlatMzuJRqAXE0ckk8Rg/jhCDTd+Q7WA75tlviU13Pgj9uVGyjvdxSmohIrhwMQjY/tn/YJbPCNBeOXbKafXB04j/aJdMVqMhKPnQDDmD4qkyydm5uExA+62TNja1uNMuUIBt4dwxhalFaPuOWjBDMGV2v793SxkOCQwtKIJq5/QiXndiTxgTtqXYq3p9EVAWAFPxt9pFFSvZg6Rl8JnoidIPrJvPAl7mUhkzETqd9845zf+Dt/KL6QWVcKt0+vOA/t+8fEf/+22veSwuXCI1B/yzVfk+CJ8salE9Wl95atzijN5fbwm7FSHspmeN/8CiXBp0Te/JWyR+H4Fy9oDxM5JkU+pcfLkthoxVZXtBK2wDWKpyneEPVkD+RhVaQRI+d2j+9NeGnJADgfS7u0RsItafUWt+YGP5KmgXZcneS9x9noEaXLGwdtZY8p2YgLOP9GhWvgBA2sH8IGZgjjqbfi18QsDoMgsqaNyd30yl28EOPj26YZf7KAY1xVqE1OQtK/DYSY2FsGFpR5+3KWKLQczDqArmxlZZ+8FRuXdrpJbOgW9iGPQ/Bd/nHwiK+VytiDfd2C+rA+y9920GSrYQBiQxKPIx69m3eIfbvyFmoWmbaceXkgeCuxRKzrQeE0/dgY2/kX1TNv6L8h+Bq55MpLqu5GTOVxessHf1o3/LmCdL88IRPzzjGrKAcZyE9Tgpsi3v/+f7//uL8wcg8bWNwD7W7pAuN6KO3adXGf8sCMQ/q0/teI+w996PE4GM7G68cE10p2X9Bcf/b6eBqaORgmv7ITJcrqU+UDvlxYo1ZVi9M5hTrJxUaBkLD3WZ1KwMagHBPbJqNAblK38UPPfVML8J8SBpcqApOpdBH/86Sy5v5zFNOXhD38MrCh7oi+VsC+gHtcfrGMzyplSfBVos/cdq0HsN4t+HAQoxKWKpKCIBuHVVK9/8e4+bj0bmzsRQduNPdafitEs1HZ5GLr3Bc2XneGTX3i2oB8dDuQvfjc+BKGsiCENHveajfsCRHAapy86ZiIF1PlMKfDWg4I9nRvBXB15AuMSZDi8SypgVaAWsq8vNlkGmeoLt4MGHHh/+i9fkLfaQk+BK9YCM2kWZxxEGOq3B1YdwwVLab8laBxiDUkcfeur5PICbCuCqSPtvHgZXkQBhCYONoqYB3NAcSFtfJs+14xj83qMOnimXEHar7rEq8A1JdT6w0xY8uZ05mrUA4Q2EMkPPwRTLKAWZBfjio5jM+jkoOUcPDQ3CxvVyRvm7rtkoBqzGGvfVxqv42XloLcDlLCe8n7r7JQPXN0hIYcgE5tVenM1tI0+p877guNZuTs1fE76giRl5vwlsM/kTz+R+twuce9ODwsYTT5gPdI/8fSLTgksv1aKhJeOm3/xX5j7jvTO7slGXllaOF55m0aRinL2zfUAaqZQojUxdv7osvwDlNXQ/vCA/ek3SISkpXp4/TWrYl8ViP3jDVvX/dufm/tHArv9WaW4GD9gTp+/DtKfc6R68uZ85j6Wjzz48bYF87U2LClfJXS92MThZGn6ws65B7xKOiLg7+7DB8FEAM1O2AYNTn1OY5oKYKd/v9g7ZVa+F12/g+nu/aahkCTNmhxnDhZFj7d8UIOVL4/Jv+evqG3tr+5LFI7fyu+JJKrOMFfVUIJCIy0Snvw00CvWFWjLlUGtfgl8Kv86ETzu2TZr/kZ8ZugaD7b3Ra387YO1VycL3of7E5uqN/trECmFHG/zqvhJyXzWxnUie2TXUe/hXoEw20CDc603BG78g/nyMELye3QYVQA1UwncFhbPJaahR6pm3PBDfsk/lyxbPlmjL6eBjY+iraCVj394/HErgfqP/gJGYcIc5HavnIaK8tZXrh1a2Dsloerz6TeTxNczbFTrgHFdhM36XpsIbP4SvebGyFa9Vy7ypPYqOaiPzF8+lUsA/PklDsFlzGcdDhYw7pH/lw/+5Rt4LR8z2u2EVF8Ny7Ok23p4ky5Ku3gFqqrAz4pG+o+PUdW/AJ/0RzLtW7NZizQNYDk5I02hIse0i60OvPflQH5CHQ8sBnsLWvKeUc15O4wpkbbKWz6jyvn0jZfmKmag4D/rP3z8x89v1bFEfGowf84PTwQ9Fyb0PBWt3neJKYLYkCnVNz43Zrt8hYZzMf7xebaTiQJRpb7x63yyczYbbJbEXllxcrVOG/+tPbDlO3yePYWRaYYdQF8+wFrAe82fHpL+/BZ/4T02yf7P+Zf/TnLn5fu3hnhxW28EjMLe74pegrAvmiP5XaVMXz+lVkhbfOOgS6p8VrdZsKbm7HGA5V88U0814FkSMLW9/jQsq3BP//FtVAXZsDTXOYWvuc2wb75KRo4TM+CVBjqCW/6dnZ3Swmw1Axp2kpwvTHJ52Kw7E5ve7Tus8HQloB7jlGzxrzNhO4xxG/Yuts9HFpPbwqeAB0JIbdx9Y0b3SQT4XrSoMy6vrTYwI3ivzgr98/MYnocVWldwwnaQpU3350dt+oMqB//ZsMYIRDj0WkhtQ/IYg5lfSnB2JYrAfohX+Rhk8GtZOt34Yrw8t0EtiBchPvnXfbPwif6BahBWm94WfRYF7xqUkzcSKnz0Yd9w5QVSFd2oaTkmWG7pwkEg3Fwyk+MLMO4of4BH5A6B7Xn9ctaNEObOd9OLvj4ZEycAN40hxXhX5cuTkxT5magJNZP9oK/3/SiAzf8k83t0c5ZyWQuHBn8Q6n5Dvg7mowZ9f4G0WLauK9O1daAf7Q806O5cPGpmyUk1MxS0q6ZjQxb6I3Bx19Omv/J4lAwrkbb8i5YgHgb6PAUCfK9NTv1dZPjz/TZZcFdlPQ2VNdHX+RWcoejHHeKHKPZX+Wp5cK3eR7T26Or/2o9pwD/+bwZC3cz4+HtJebPL0Bn0KF61lXckkD8THKzXH9j8lxQA+73D/mIKgEXBVB8fTTVT56M3+XSSzqN0el4NHKBo18znkIwgpoeK/uG38Nl6NZYm8tByfem+kBCdgxtfRMfIi+N5d44E6Fett/nlIZBi75fC+5oDbIzI9dePkI/wA50bxY/ywJhE2jO8kwulKrTf8fpbogv0lV6nhhAuw1wviiRv10eV4B8Hws1pC5THucHmSDt9KWnRgs3PRVBoh2FZ1hcHd7v7i8xqq+nrR1Pm44C9jPrPDDRjucYCXG6LQ4snkAaaDAYBGz5iSxqVeI/WIw+AV2Hqz7EJmCt4ApAr/kLLLH/9l09e9XLDZbhsXVbVkwRxsS+pblo2IDe5SuHBecY03LfvgZFlEqRWWR2URAeck81fku16OFPtUVH2D9/iT+/+8y+Hpwjqf36z/zkEcVddhRISWsG/+PV/Hm+ssMqLgJ62/L+atT9LfVEdqV+IDZt7ILyAtztSxEkXK2d//tif360E7aOZXlpfw8ZQbByH19/Q0yLm/72f8MYJ+u/Jrcpfvt/0bBEPA/LPIBP9F+E+XhTPRnDgQWTWFxr4xG74+HTz4KNpZsL8t9ZMiUwLeBnfNTafMWnWbFw02PHkjObbWfJnJqvWv3/Xi8oFa1C05M8/w4mMxHjscOcBDc8udg71vZmPeBvE9Q0e9F50AiO6du/AptcwlqwlbmnyvkAPzgNW/MYbhA+aNGje3YiM043Xl4vZWuDv91jn9JKTzPQSEAyZRC2/PwwCw7EkDwdDxuGR2fFebqQUZlA5YM+ANaC7xV2B7rMDWtRk0jesDaRrfXPIIXSDprv7jgDFyRfQSoMerKdDXoLiPu5orBwsn2h+WPznnwBRzwWs2Bdw0LId2eoxObPXcwrhjjOps/kZkzyXHdjqLaipT3PT/95NAh9LwtCrenyH9XkJDPhZg5Ha0W/rShOjHloqb2GNBj0bMiHRoGmejogz5jeb49PTg6nSddQW8G+YurvpQSXKOySFfjswDKMZoGU3UgMClPfrd/Kg6loPau+KSl9vdclJ//hQtbrN4s6XBMyd4KGXaWCw1VMQ7Pr5Q+1TSuKFEvEF6exf0RzraT71Y67BZoA/HGox8NdHN4r/9Ck2Ty1YdDMVoQyJRQMvrIdJTs3sz++k/ub3zRs/BWqlK9Q/tMvA8tPrBeejztFQ1F8NdTLXAU759JFs1QVrZfaQQJY5P5rDxc03fHfkNRpW0vhvbViKLyDg8ELaP76zrKXjQbYzAsQf+zpeDqdDCc+83pHk4uT54awfR7D540S83oE/ut9PC1tldvDdfkxsCqmb/ePbJ8G/D532qjL5wAUi4ZXf4jOloBoI3NdIEa6eOWvEGw/dWRmoczqG8XxvMgMuZGk2Ph4z5lW9ApdsTHEYlF1DNr4r3brRpPc/P3qrv8Gu2e2oItzRQJ8iq//8MsRf2FdfgpjjAHOTL9aXx8xGn6QBrGdnxlZ6k/W/eASnybOplhhPnShDfJZr+ymRPRg/+WrvTz0sm1DFIZKbnER4nKFrX/c49JayGTkNZPCkRVeKoBHGtI37i/SxshU14zPXGeBcAqOkyOnZFy7Nn18LX4j4eFt/TadNZge54WcQ0YIIMPXZITA6ukH42375wwcCBY2Sv8/64u2OM1D0RMTh5O788U6FCzAOJ+1PP4OFl9dI3r8Orz+9DqbkXSJI1eCGkVK1OjsVGgemtC+IGIBDQ4hyduCOPO4U2ToAP1MuImg6oUtDtfL8v/ojeF/qFus9vfhreh+cv/WGFTosbMG61cL9t7eJpD5Xfbjuphr+ip6nQRQMcfXWkADfevvY8Cbf/I9dBDe8Qser89PJHx5y3UvB5u0LffoUwQukSt8R1u6mfGbulMGCqx/Yq4/F5pdODrRpHWL/BLbBiuWrkJXqRtEu0LhmdnMtkTc9g6CJR/BBVPpsg185ai1PB8zecNOgLWXKVh/hhpkthQWvs+dj/dQO+eLrfSRjH9ywqh3O/qy7OJMm+UewoaZv/709HxCseYJW0JN8FIxeg7Waf7Dz6AqwvgJcg3RfWGRxjB+jj7ubSvU1kqky/75sLr3JkTZ9isRv68SHNu6Tf/VhY3u/vR3WnOxcn1+yDCjX1z//OZb79q/eNexv6hNCNdNa0qdO4y9fZy6hT7oj9Qdx54/91lXa5HX9r56i/9WnZFGW/vxGMNBy64K77GhPlcuu9edo4l9wKseZapt+2PyK7P/VpUD8v7cUUHNVqOV4P7bUP7GDBq33hJ1Kx1+b90uBx535wsHTh/n4I4oFeeIYNDlGEVuy38LLg9xq9Fy2j3yC6FmCZ649kWwOB31OSm2Fx30sk/6ww/l0+qmpzLqjjMMfSQFFS9ZJi3PTSM3UGKzNzW+hpAGN2nI8gflbbrviZE0hTVZ+ALO8sJPysg9o4O6aZlQIUiS3Gd/YyWbdr8VoVOB+TG5ImopfM0vHoIM88QwkP97vnNb5pMGvKX+wMXkJWz51JciR9dtTy5jFhtEr6qAovW64NEzFZ2O/SFA/OS4OS5Q1L3n36iGbnQDfSuE4bNfXpK+5+2DjZZ+GOfx+e3gz+u1UHreVUDjpA7NYxYSTL9nQhWgvQv12eWP0RZjNfph18HOTJzTf0qteW8bayi9ZiSnGp9PQfQSlhgNeGxq+zJaNtmUqMN+HD2rits3Hr7A68uuupagr2W9Y5FGFgLtbInZtpg/rB+uevNcchab+MdPnjL5HWO+2RmtXBMAE91MvLU5VUNVMkb4AHipgcZqCer97469xMHeyIFGDquRaDXPZlRJIY7VG73W6xCu3Wj20pzoP91l4iFmsfyPg5S8Vx4TTwSHT+AJ2fmoT8HMeOjl0owOn5xxRAxlhvoT1OwW/wyfG2jN3huUoEwPYbv2ijhVZ+qHzRwcY7+mM9a40hoNB5w8cfhAgYQyHZvFfaQ2OuflG3zlyhh++u0TK9/iBfec5DuuJXEqQJIeEuiRpwfJa6xEm2VnHuFvChp5PmQGkeayQpNx/+lqRzIDEcBVqRO1m8V2uCjyupMOOGJvN2Lg2Bz/HLEbT5PT+OlTPET5bQcfKLd3rLF35Ed5gecK62JfNUhyPL4B/kkNmg2o5O5/OFgjvo4ofO8duDqffOYBHcrTwdvg3X5rTXMteJYkYH25HsF525gyJ0hzR3F99fbE8UsCDagO0U4Z3PhfpDUnN4RugtQcWYxn/hFIahxAj+SI1VHoLq6zvPQOJg4DADKWvCP2X7WN/fvNs7iwlkhv9eyJcMfQ+UVu13hUf/kEzUUv0HthHDsZoSLFT3A/x4mQfD7zxUmAr8+yc997nWf4+UkTxiT80DNUCgq/j+0Mt9aszpr/6GvIXxyZSWKB8bj+KAPeXI8UB/x7yhemnUSplrFBlWWtA90OfwB04WdR+zn68uhRHx+P+JG/5yWXMWrZhEEGX4hC/v81ymD4ZvIl7D6fyMdbJ3/26d/LFWlNif1IOXQAR92ipLn8TtlbPfQdzkB9JS6YHWJ5eLcLpyHXo7RqmT5+rKkHDryXSO09Bn+dSFEQoxy/09r6jv/q8osiHtylQ/1vjeP+IL1D6xW1KMb6IPpOHyoOyR3ysKvkezHM5C3Kiq3vqWUdn2xW+xe/aOzQIno3PRuOayNtnJG/r6ceVNw98l8yj9jF8sXGHXykEOzvEpmBvp7ZMi4NbfGJ13qv6fPwJH2gca0axO7T+8mzR1rgHe0gMhPNA0GNwJF0Ge+yd79YwceY7g9ZmOVveVxv+re9nxpvY2odePN/MkyL9fZ89HEu28rdVgI996JHyRaJmDr+0g1Fn5diao1VfuPLpgENaN9Q2e4XN86H/wOgmqdRMvz+wsEIvgVSIOwLfmjUstMnOII22XbRdUcXzKfFfUqOnB+ypcPZnolxGSWi3Cch9x/s/v/I8+F22Es5q1vH6/vrR3/3SR9whf3pUSyqP9kehhqp2fpeU3gwjw3rRIN+pOnuPSQKeHK/gy9lmgI79UYRPO+Cob9cX/xc4UQr3aS1gf65RvpSgWIE0mXdqvFU9Z4qGUtDnLaLWbp59SsGAgLOetl2Xuakv4RwFsupShvZnQwcHKYhTuMzOk54r0Omzf6Mc5EVHozo0MBv5OV/BMntPNK+56K/TJy2k4f6xqSaqK1v28T2DgzwX9FJXDaDt0BL4k2dK3KmI/UVi6QpIOLtYKVLeX5JF6eXw/GDY3NltTm6HMIHtM0C4uGkdYI4af+AiXABa3lcNTAPPpTCR+gNW+LOWCy61I1jTDJCZ23f67MDfWfJlgrGts2RYmmJXQMs+vpB4ZR5j4nVngeKZ8xgVnT7MtCteMAn2KaITeYN1td0aeutppN6usP1/8aoOzh1JvqAMf3gF//CtVDvbXz71TwDOQAg5ykd3WISLroB2vzyxegErmFMLnuH2fDEWL2s+eUctglIh7cja5t+B3MzfNohl3P/ld8ZgkVvA2o0QrVhs2Nrb8AJLQfDw33qe5vV1kXdV7BK2lE28HAPvA8httvEl7iXQtGc1gW5D3mSnnVZGYI04GHSmivObmbK5Imokh6b0wlpYLsMKawQhn10ajPwT0NvL/n6GW74iyy/HbHE1osBZ9DrENU4N3lr/VeDMU4A9aBYDC+efBi/8z8EZNGFDID3OkF5hRsNiYMPK31Qkb3hNcY3sLZ4bDy5XaNP7rpiHTs/FM3ycQoxRstxjNreXEX4bZmJvy9+zNVYtuPSDh7i/5w3Rs4CoMwg2xH6vDyWYPlIknvfk7/3O+PI6S3/8zFy8Kaef2lVg/LFUxJlD2KzJo+JgP6wd9glUhr/3DeLz+YWD67MCiyemHZQVqcNqUz199m3as8TPgMcOTAKd7ayvANNJf1Kk+0Qfp89ylkuWP7C5zhlbRy76wL1Br1T95ZRN958SQH2iOZmlVR0Y34sj/OLFpfg8aBs+7jLIc5eSWgu762PjYggrEHzwbTcpOuNM4wM5bdTow0acPnWQEyD8PXbU6piUT6v2smQ/MUM030V+eIM86v/ilawfUYmF/F0hMN4gTy0a34cVuo9A8vbjnUbelTJWnKEHP36aYf/+FmM6nh1PCjHR/63nPz4EH6qyp9pDrAb+eRg5MF6uE/ZvsPUp8oLijx/T0PGFZjUxFqFMRotI2ZM1M6AvDuwejy85plDQv+4vzqQrKgfqpEnEhqNfrUDbH3fYOnlOw1+Qb0if92elwVwbYE7F5yx5yExoefJ9MMkGmKH/FGckCPMSUyIdPxDsTz21xtAfVoc8eknxqxe1h1D3V0ZXDoZzfKa+uZv86bXWBM7E6bHzgbK/WobUwmrQAmyXwn1gtF5K2XqTHVrHNtfnm3lXAAqlBC3zXvV5PZ8jyP1OZyJX3QDm39HW5I0fYNuPUPyrgt0MnnvtQRXx2oFp47NQ4C7bloYTjNn5lFmwmLQjAfozbPrfky+k8PxkSNSOIF6L8GfAGP1SvOmDoTd4SfjTA9S7HC1/361VDevdQqnXw96nsnGGoHAVDjtWPDYM37MX4GSDUecBuY3fov6Pf5I5wspAjk+ngLnRY2rvBUGfsJ+IsKlQQv2f8/CXX1ZlcMBzs+GbGh9+b/yC38PnQy0+Tps1mnoepkn3I6+p3IEVUMUDy5HT0PJO3Xypsr6FF35wKCrRorNBkyz4uqOVnMfq0kwJxB9wFqOaKqfV/offYN/RiCprnuobPgVAk52Qlur7NZAAPQzwZbsntgy7iZnh9BmYXr6J3Wexz9fDd63honkfiidigr2bP1cgRq8Mx/vqx5amCHn4C/yNXgjvfBH9lJOa6Y3wFn9sjj86gqN47dAa5oM/FechAa+7klLd/8qMcvFPk97xh8Mocwx/Nj47BK/rIcd6pQas29YrtDFIyHc4cmAenIcHv1Pb4dNSFaAXD077h/+0tNGlmc5928lVeLfxP35+1vYdtNTJwAq7uoB/PVsBOieykDlbPzFT8IK2s8ERgVDTfd7/BBlIrLImaw+22eiuVPzFAxmvT5UJiTEHcOMT2C+fvT/L6bkEnk1eVH3liz/z3Izkz2k5UeWVZ8MvqNgKdZC8qHUNqU4vTqfAAbcuLsFg5QduzFYQnEYf48eJ5lTBSyDzfS1jVarA1gUg2KYGCTH2iXmNF+Hia9L5YoRI5GEGZukkFPB4AS6BVicyUl27BKJKOhNe/oYxXztl8g8PgrMZNcvS7msIWklAW/7KhWSzqA7wVdLbcOTYRECWQe8mSlhp1re+YnPQwEl4OtQgqqYLYbG85CJWIA5bZ4jXA3ZmOOtcjBjhGtBPn6iUq5hx2C7D9u9+FWBca/EfPx+Nfd5BPksactC9Kp8u0niBn2uWYnTyfbZfAzmDjn0Mya6/AZ2i5ivA38sdyM4gA2ClGxVw41voSI8+ELA5KECungJ2eCiB8X5NCVwoZ5DjXbDZtLATBz/XNEXCbp71FVDHgcPLTWkAtcZnc1sQSZ0mQq1kFnRilQ8IwjtR0aJe7WbptSqSE77IET9X6ralLiBQOtg3jPf8Gez/9MHf98uZf/FndSvhVoflSBYKqL/sQKr9xR9G6vvVrJFtneF44/jtFNGg0/vvrgFAyJ0cL0faDGexO0NTfy1Y9a5WTgtJu0A+ahTsr7uvz0rPs8Cm54gsdl3MUvUeQDEZBZoJd5WtXfRJoWYmC0aoM8GsMTGVDsakbb8v8dlQPEqImWjhtJtfbOaUcwLNiTpo4J7vmBFpaWVvjcfw0M59vha74ANn7mrQWxBagKL0JcndbZdRPVWJP6GFFfItLRMknuY2X4+HFUHOkUoakmHx13NSJLBlgUcTw9bjg61UEHJnqUDHQ9IMc2h0LWSFE1GNq1adDXuMwOa3oEMZtvkigBOSkqDjsMq4fVN8SyWTswb/qKqJqFk2PQ+jm6hujc0bff2RSITia+Sp4yWxv0yjcYFrlgiIfC6cPvOu+ZH+8rGqXu2BbI1WgcISmYgs/jRr/yIWtB+JigNT82OiBW4GwNuOaLD4kv91o6qHvXgDZMTdreE7SzmDS1/M1N3wd3rdZ25r8XVEQvpV8oUvZAM+v9+VyKFDNv9s7uQy1n7UYH3iz9PnGMH8IvywuqaOf/jLv7p83FOtKak+3w7Eg5rshWiEQxpv+lyCmdSfsI3jC6CX8/4Cr77OoZ2xrPmqyq0Envr3QPVvFfiMG7P5z3+h+lI2+cIKv4DuobawhXrX35/ysoX68pJxx7EWrJFVdHCLV2zACTQ9xaAF4VN6oOUuDjodh6GG7zCwKcrJ0rzPP6D8rXcaWu8OTL32iyAfVQphiHMGYb9TNVlTp55IRkGHZdMXYMun2LaFhz+GgmHBsXMRto+hAli3OgRs/JbwsWo2vz894t0kCbV168WjZP88QG6rvcVjNcwGCkv491n63XX9H5/+i/+DHH3jdbWBB6WPKCNw0MKBl45GD07oN9DgWOvDvFgzgVEo6eRghzbjR+6YwfaaDWTcOSd9z5nv9M8fw66o7YbxlPg1wM6jRizJX/mkV/oFTr8Z0RPjrht+1zw4X6IvLoKn7k/56ThC7nm6kL33Dfz9/ecgwDWWgATd6wGxL1vj59JvSO48g2Z5SI0nH42R0kuqGs2hax8ioJ8bwprKsXi1yisHLGRCqr+NOH4+V1cCadAPNLCfhv/nN8j9+xNQNymEYd5/ZgPyyuVDNCMfc9I9NeFf/jiRq9ow1FAe/vk57iCY8eKJUQ89tTaoj0zJ357PKF/4gpBdfCub2Z5yBOP0l1D/DVXQ7CYj/cvHpNz8pN8HxB+4C08hkcV3xVh2SkXYr/6Tbv5QTp5m9y9+0Hism2Hi4hSBgcEjGcXuBNjf+ur8zCb71yzH3+yUSnAP64UqkbgH40tMWsiZz4WQTW/sU9XJ5Dvhj1SDnO8z8yYWkjCDCvGFMeikftEzIG3DE/B9dozZ39mDp09EMFq3RviddbLkLX5wuJp1Pg8umsGW77Af1MxfinE7cgVyhTr+UfIH9Vd8wFi6EfUOOxyvCTZfMP4YKlZT7phvwyt4QC7XjMiC4wDBtq48RDfxgq2GgZjyvUiAfvJcitAQ5MdFphHsDPeI3XgnD8vfehGUJMY4vnENkZerAmKnhKSvoJ8z8zYXMsdOEd3ww5/j22eFF2vAFB9R69PE08/Sxg/RYfPH5r27C6BhJiU20XT0RzifW3jJzsmfXgeriKX0eCOHgDqlMOv//GxNpT3FAmkHervfL3A/Xm444UJX39ZHJ+dkG7cnv3t9LbGRgFNiXGiqz5+GZb3X/fENQmdkxqP/MTJgfi9nejse4UCH3onghq/YjQRXZ9P5uELu9xzRQZjUfN+1pgXl4XSnf/4o83pTgeF8OmO9Kc1mXo+HEp4CI9n8m0pf+kD4QO3unLF3MOWGDDcvgxcluhPakq+/Ps1XJ96Nvqa6U7rxMkmvVbblI8bG5zszas41gm5v5liVRSueZZfTIBGvVxwazqyvtJsScHXOmEjn+6eZVyLW8DqePdT7wmsbr7OzgGzbxj8/fVJ/cgYzjCcioUTRD3kPz5J9qO/UCpnMaJWxFF7a84W0f3xKvh07sPlt6GgzvSEEpRc4FFdhq6cU8XTzRgtsfhESftOoz/drRP7qI4g/Vkp8kFj1AZt/h9q3qsfLbZHO8Mz/chy8TJQzvigi2O3XratQXvrLzX+MsP0FAVbS69TMBB0duPFNcgy2QYKb3w8O5HinZjEJYL/xV1no6x7/rQ/qbl3qtveP1Q0PyHb/UNWrG9UL7hMvys9fYW+4HzSa2pBPThfBf/zVOnndsNqjlEEpebnUDVg9sGvtp/D1zBEROpblf/UcuPn12HeKjz5KduWA6HKWaKDsDLbpkxQaT0dF4PhmzZpTrgab3kdsrAZ/ic9tDbXfZcQWF7r+wbzNpdy+3yZ+wuwZT9dK+sB2G2RgO54SC6vNvL/1Trj7SWSjA6uzvOE11lXQbPG98wAisbfhf6aTW5l/wDtuub940v/8afmHVwGrmz6b0yni4bPldbKe0yaf8ZRp8EOzK3XVuI3nD5Iu8DGEAS6IZuabH8/BUHgSNPuiAEjDnWY4czcDb9fz1+KTCVJWCCt1P8fJ3/RALR3fdoPWLZ//mmJXAqCaV8Q+XymmwVmoITOmDj02/UzsaVT+/O9/+lSwRmUFu+XR0Cc9jYxenJcCNz+Mmlx4HubKbkepibeRRg4b/fl9tzsAFkDpvyi5dkntjf/Nxj7v4b6bIsQTwxmEWu4c+NWzEw2/6JivPdVeYKsvUB84UrPGgdjD3WCNm954xev6GkVY7TUPbZ0r8mXl/Q8MmXQnifetBzrowwjzU1hT/e/35GfvPz3ufODD3/ynSDaeSU727576hFH3AknpyRRnC2bb/XhwjabpPz24ap0F/YacEQkQa2bO+3ZQDy9fbO2FXbOKv+2Ihmww/OfXs7jfl7I+TTl9ln7ld4Y+e3I+4Cd174INFq2nGrylRYJVXvw2M3SNFM7Z1cXu7x40q2WsH1n/1jtqGWzns/GseBDdpAsOHm/ENv+NwNbPJoyry5UJ0dQL8HbUW0S//NVnVQZSsPE17BW72F9Gw6jhi909aoXzIR/W0EJQFkeDurtibhYzPUXyFj/Ygn3tT9pRL8DuZFDE7u11808rXv6rJ2VMu+nT7sJKuUh6HdVTbsW82/4c6LqvkDrdrIA1o4YIcWD9/vnx//LPVl/d4lVr+Ndz5CG4jAX+89P/6mf/9OQxjV9s5m+1BuWTqVHE+W+28b0M7r7PN3Vnoc0X78Rb8nBvbQKVnQFIJv8uf/iFDg7bD2/sJxJ4y8sV28JU5cu1klro1OZ7qyec9UaNegEm7VnFf/ezZnJ1kc7S4YC93V1p+gc6jzLKnj+McnJqlio4rNCqTZEa/Jc0UzEiAulY9VQbq8uw/ulf051CqiNDAKubPGq4fJwKu0KxMOqJv0J+3wITredUz1mWfwJJe09v8il6C6zf8oRgbQYtDm8D39BUvSPounWIdf4r+quo2R949gxM00uks3mf5r3U33Y2WTY9M7NETOHmlyApKSZ9HW5eCqswmNCScvd4/lmLJG/4RmaY0nh+K1dJ2uoR1BXhki/fJi/+9Bu2kzkYDl/PkeAfH3qM6H8AAAD//6RdSbeyMBb8QS5EBBKWTCKTCQIi7gARAZUxAfLr+/C+Xvaul57znkflpm5V3SFCRgNN7oEFz9U/f3J4s48FOMexkfD11fDor7L0hxc0Rn3nrudIaf/0PLZ+rM3WH+bW/2tLgfi/Wwrm87bIJL7c9NXnNR/0eyKidZnFrMvQqYW1fo1JpQik7oN9SGRDhEd6e6k8WwMOjXAeMoU6hqnW7GAsPuzXykGt957rdd05icgTE2Ezjs/DYb86Huz4LMPu1dGHNb7uWvD8fTBVn/p7WLJH2sLTyyjo/ZAc3eWuKytcfHXby/stwfzYlndgEE5URcQG09jMBGjAkMjan+thtekzh4O4sxAvCVY9awlJIE72MRJnVXBnCw0rFKw5widFcQHRrdyBUN55CDr8rC91JOUw+hom9uvdDqyRwSPplD4Ita+FATr5Y8/idRJ6nKs3KRtlqiWwZf2FEGpgMC/6mYDHrSvwWR/7cFCG+SuOyftFVTKcXLrUaQT3dZyQWb5VIUvfvAAFmxhop3kfd7woqyVbpyTFThE64MudM0EqvJGn+G4lbAJ+vaWsGFNzDTWwfiLdl53qSLBh8z99erWoBJPRI2w1VuUypUm/cPruPkgc8lWfS6S30HZUCz8GqddbmS8T6BJlpPYgOTqnpB0E8xSUFCXH78AaMbPgcmsxfSYkcpcMXXpI9dLFl8gm4XzrvhL8fS5nbGvbohLVbAmAj/mGH7p9cbf/36YWpf6yI9aeUe2gKTDQoUZVktvu3LRGJXXBpcFKJ3uMJhFfQKfNEdX38xAyxtkzOKpRTG25A8M6uZwBD3pqU2PlFZ1PJVCCbKgqbM8v350bWlWyHFgGDnOqZIfXrizhbhAe9Hz4he7cXtUCBPpOw5f59qnnqldM2IlowM5NXfRlpnIDJ7x/EvCgXbi8jloJYwE5GNFwABTfBwSZQHR0nMpTOO3F1oMDywT0vYQdYxpsFfhII0Tk/pzVq5cECYyXTsIXc/4OszEDTpyXPMGZP7r1URrWL4iqu4lRNqbZbJ7SGFLMHOxFBQPsd3cNUOXLmYh+FQHmqtdIzsYiIMNwMAATw48Dw4ncCdCNM1sH9m2gyJM31u9jlVFtCTV5hZ8IrV1KBzYoivJ3PrFpEEM/fLe7BMV3I2EjyDzAInv57uHt/KFn7V1k47578fB36HZYc5w2ZNLj/IUeKDXssiIdmN3pnLy7HTR6ivNFX7z0oIEHKU/U8+6mTlzF20FPuRtETgjnjtjMv2DfBNZ2/gbANGFR4A8EBRGHAemT9uxWWL7mnhrtMQgn+TmsIOzFMzWL8Rou5FA68tfNF7I3L13IDuSO4HIVMS6S47cetV+fwgDd3tiuHlxI0qNXwt8Hn6kHl4SNe70VgNMWiCpUcYZ5eSYj7GIhwo6XD9n39YYSUM4NxsjXGzZvn1diQTuSspM9sMysaeBd2idEkG5ueDC+DIm8w52x/jn17vIIBQQLj/BYNzIJLO1Z4WVlWE168fkqnOUhTKCHXjWZucAYWDWrRL56pY61zg03/BSDf7/HPk9XlhRyboFBMFpsLgcHLK9dW4FAdVaslJdsG+5qC8hPTkHo12mG2fSECGpfUccnW+8GdnLDndRJToZNQy71IYSLAcFz+GK3OjF3diLTA3d5bcn6Nj5sLsQtngb+SFb13Ndz0zwr2B3vLrn9DknN8H3wwLE8PDF+nk3GHTejyB5vL+pEtaj/4SHIL/y2uCsVa5rUay59etOhuL+u2ezOTg9ShXvSZ4U7xqDyMIHrrB+sqbE5cH3ACTAOzRqNNFn0OcvkAPbpL8Ao30XhEpw+Cfw6tUr1JondsTkqpYzCbcrWgY9hCRI/kZ+nQKBa4jf6bJ6CGPqvZ4NPxZqCybsjBZ6fu4y6D2pn68f7BOANIx+rQtWAzjIGB2oYAGpW7KXT72Vp4fmNaqoeSQVW3saxBLiWUGU/7vQ+LqUWjm5M//Ag46ifBLCw9jz1nvNU//LTNZWr7HhH1fJ+hqNpqxFUTiPFxmmTHJf9jYh/eGRcicDW7lA5cjbmAQ155VGPy6MjcMNzIrp+CvriesrBdr6RcGtItow3jkANiwDryvpxmc7LBUx4545N42W5RPdcR/ypewXrhhiwr2qW4z98/MtvbHdVSpmT4wUtDWDhPHtdAD014PDpozRg7tNUgPc7vWJ3uHtsXlA+grAHZ3w6gChc7YHkQDl/MfacH+fOVdWb8Py4DhSFsb9NRZwduOtONvYOVu2y70VsYfDzbHq9G6wm/s8MAO/wZ/K+h3iYq/vTBEJ3cbG25XN2vIoE3oA9YGQfUja9lzuEr4efU8VRrgMTC8mC8Hb6oG1mjK22VOXgDWOf8BXb63P203xYMm3F5/RQg3Y/IQ7+NGkmgtgew+U1yJUkgRvGQXgx3TUPVUW8no8haZf5VM9K4e/kc3rJcOoN52x7Ppb8kyJC7VlN3BnvdiVYRN4k5Ngdhum39vH2cS4Ud00Rst3lUUJuj65ox3FvQC/75wg6YbtrmfKdu05GYQL8AOa/80+vJewlqrbbloTHlLGDVQbyhkc016iWLXXyzmHL2gu9778KmMvr2sOv81axW60/fdZqkEriJdPQ7igsNfk9PiP0jkyjmvMwsmOolJacv88q6SG/c8ejK5gwM+qMyA9R0dnJzXbwZ6w+OaYWBbRRRA+OXvAiQHxa9bzXS0Hw7pGL7y4T9F/5CgIozYqCnV/cDmv8iFrpFf1GNHN6O2x4l0Jp1hSs7984/IdXUfn80svwroc1ur+RbL81H6OHWdVroGsrPJMsoPaSlfr6e7sjsPRSQu1XPgB2cfoZcg9HQnMQg2yc5QnBededqd3vJJ3UesbBv/OUf45ZSHVNq6AoNCr9lx+y1xjAk69hrK3gk5FEtEw4qfyOXtAxymZTOvmweKkX6rpCVy/v5b4DeL97Urt6RNn4eM4c+HRWSh/676PPGJxLie/viIzet9JJkQcFCJ3CJ3znn1xa6E8OGve+JJykPgH3fN9HYMblE58DtdJZjHMFCGe+obZvQLaYx76F90ezYDU+HOsuenc8II43UsO4XcP5MHrfbQo5pHbdKOHCV/oOjvYLo/fpwulzVWxbgv74avXgsvHvvG7niYZH9zQQiTyRNDX2DdtsBYxO9rWQ09riNjwrXHaKSwjSxmiorfNvd1GlcwAUY91TI122u+U3Pr7FIzmO7Jotb+wr8gO2H4rNQc3+5bu37Cv0YuprPR8PsQIlGOwRdOvGZcc9akHH1QCBWq31trrfTDkt7w1WnMIeWH66JtAmaI/qDa9mMZkreGJ+TBah2vIxwBVIPXdEE9gW/wzQ30F9Hh7oePgxfT3layO9BFajPVst/Q+vwU/VfXpBjzw7fCUrhk/9kfzD70l7+6uMcxJjxwS3cE1NpQHCYA5U3X7P0ZS54C+fo4MVHwZmfyIOrnN0o1rXufUKwa2F/ODv6Jk/uS5/un6+EMrQo4UfKIyz9r8RDvGo0uzN33V2UB0fhlYzU+N0fWdrJz4cuMU3dbXDAFY0Chx8djmlRqn79bKGW1NV/bTJGl6++jwm9xiqNTpRe8hXd3HMzYLvNZEageczqu/CAhLP8KhP8XeY7zyNtpboAOvKadHZ18x64Hr9Ce38QAFcSK+FvMq1QZ3bq3NX7hxK0P8lOY6WC9QXc7y1EFyTH36tP6jXcbwqMCnwCwEReQOt2oFI7fN7wGe+rt2ZcNkKb4/FoH98Yy41vgfb88BOsWjgYNSGB17xy0Ojexr1yfs6CpSLh77h5S6b3THrIZhFgk/x5eAypbW/0pZvqBof7vXwdbRW5sDzis1ay3R2whqEMfd0/vgI4GTqpLA2zS9abTCGs/arUgj8/EhVM1FcbhycWKxScdua5h0ZC5fRlE4cMklPxzVkZa36cBDMFmO0Unf11zCA5XypyI47T2CuQmJCGO9PRNx9hnoCpzgWC/SNqdGxKpxNW43/+D8O7CeXrdw5k2C7rBPGsQgB/ZphKzsn74wfvpGz9XSdGvhsqz1Gyiq7k4UFB1Y7m1C7vjUZy1cSwYTdz/hi6kE9ia4iwft9umLDaC4hJ97sCoad/qOusJ+HJhyqHCYvF2P8dYzhaKeYl1wCcxpnrRquMzfvYOpeIDoeeKqPGz8CHn8MNn360edZnjxYOMcYo7LMw0U9RRF8HQ/bXeuWpq+0DCr4xx+cwkBg8bpFgXZpltSt6kEfq8wzgCEJP+zJxabnSj2HHxXX2ASxUvO/4Ez+nhf13FVxl/ExELjxRbSWhw4swUVP/vFf6fayXR69ax786dvTB5dsfctiLJHxrWPkKl8w3k91Cj+dk6KHntj6atNbDrWPXlNz4CFYMvPXw9/P/BHxOpVsdo9lC6bqekCCN4/1goYmly+50OE//TLVGi7gWw4UrBJJdQ+iqwjSph+xNcIarIHTzmDjo/R0T97ubPJFAJWejzf9NLK1I54Dp692wBdBGrIxLG8FFJvEIRIFJJzIsjgwCQT/v3p9fKsjtF2pxRdzW8xvNscWSpq+EOnr5jWR5IcHwaEp6N26ziHZ8iEEfIWo8zwEYMSX9QsRO1BqSc05fCOpLGTXa0/Y1pNOX8/FV4Pv8NWhVWqAvro6gPD2YAbab/HNitjioR96H5p+O64m3uWSwnWfNNTVjR8gka97Mm/ad8TIXQeLJDx5eLuDhp6tnZEd2rPFw5h7OdQqbE5fAjtP4J/eUN7Jz51DZuVwLIs72UGAazYI3Q6esluBVf60Y6N4TUuAZftCVXAX6tXL7RQG9cumOhLKerGMwQLLcfelJx+AkOWSEUGhwy5VFDlkC3f5lBD5nxbJgjSE6zk9KrB9HA8Ur7/cHfezzAG1TA/UgXyhT45ZfKHnM4C6NqnCYVAsDfp+diPfzZ9iSg4bUF5bFyP1ddU56zHP8NvLwsb/NbZseh98Po8Uia1tZlNtT/mff4Im1i5hZx63LVhZfkUwwkdANj4jaUYz4ouY6NlRzHQH8hb8IabzHFsTUTH//h47G79kpV8E8GalT8QFvcX+5bc//0JRs00vw1aTQE55ai73lU1G7Xlw7919enqRHrBTsEDZtk8JdvteACt0rqN8M0sZD9qXgpn1Vwdu/h4223VymUS7BiScf8QekmVQRV6EoL6nLeGzx+ef/wI/Jq/Ts31RsvlrqAocyXcbTxA0cFTK+itv+EA1e/Sz5fPpBBAf/RT1dAyy9vl+EfC6JxCjZz5mX5pwpbjhAVmEsGX/+MMWX9Ra5k9N3msTQSzdZexs/093l0cF73mqUvuKW7Zufg9MQk7B1nki9caveBi9HzF2vsK8lWxhD2cH2hh9feKucfPu5eOnvFBEqx9jQ3XewUUQYuycnWt4xC/VkzPjvcXrT9cXgRopdM/yDf/z27ibW0L1Yk20oEvNlqwUevD3+c5//FuLjgkUq7JHR77W3WNjtB6MGvRFC7BgPS7Oh/zzByl+6S6JjB2CtsclNFSiy+a3vSEMjeOMtWV/C7fn8f3DEyTt/K+++asEmlEr03NqYXDIyrn98wsQxNkBsC3fA4+TV2rPZHQXI/sikFfKgvV4j7JBrN4WfESUkO+mZ8evoWrwOpxTambtO5u95tDK/s04USVrb/qSmbSHhiT9CL/5QxTfaw8GOLySavMDps9bEqRAtVaKczdmaydeLchlSkqf7HHbrpvJvtAyih61v95mf/kcSDFuN72KMraTSAELXyKIv7lZzTa9A9t8ONHTfvi6c/V9GODv/YzORCEfP6J+Q2Nt+743sLyOTgWJ6+QYqf5BX1bLNaWfzpeEcJ8TW3cYWtDRox/av6BUk2TpTbjeXxM+Hc0y2/hAAjW9hdjexXSYr/i7TRF7F+o702mYNn8JknOW/+mTenWxBcG5EFxqBH0LWHI9F2A5Kjw5bO93zNU+ET2xr/C5dqd6nL13ALls5xBBMnEG4vNOgexKIJrhI8i4Utu1sEFFhK2feGLs4lQzkF8xI1JRfcH43EaUGps1FD1MbeCM7sZDDryuZH+6iuFw/iUpvCzGGy3NeMw+q+Ua8It8Fd+mmAzs+jy1UiVfdljfcVn4fcVUANk5GqgrjkZ9uOvKDO/x8qZ//vSkqp9IOrwGC19E+xeOzivz4I//EPwPj5+lmsNcaR16s4NTffjDG+NRKdh76mL9u452CzpgulTf739ZFz0lDsrrFxC5wjaYj8tPA8VrJ2Nv55Zg0Z3dDLTtVnRlDfmhj3zXgxpU+s0/+YTLHVQEytmPIX7jC4d2X63y3/e74MYK1yhLPOnwXFp8utsfdx5/YfSX3yk+0Wu4BP6awkgV8J9/XZNuAQ5wDP+OreeQ63N7tYs/Po4v5r6qV/RJeRB9rJgqsvkNZ214pPCpPVvEXsx3WUNMB7hU8sgkJnXIpotV/NUjKHpe/PAwNvMIN/+M6jlVwoX0mQVT+mDYfsRxTT6RG8A2706ojdoi2/TtdoNH5WHXOn/YIGauA49e98GKM33qtpBzB2LZvaBjetDZYbV0A+jFTaU6cr2BvNJC+ss/WEnYeyvhDQ2IA4dR/EHcsH6snQ/bZZ6oto5dyLTqpQDbclt00I2s/uNPoN8xmxxlGYItflPYODRCnUtW0Jng0UL6nQNs67zqzkd3NuRzcgNU4fS2ZrA7apCT3m+yOq0STu/zqvzldyS/jSdYd+HgwLA9HYn0O4/DdOe88Q/PCXC7y7By25R63ftPqp8OGtv8RwRDk/pUv+C8Hv/4Z2gcZnzSw3vNUq6T4KZP0Becm2Gl16KU/ulTV92BtYhgAXc/3OFLpUxgdvoW/fFnJG7+74J4sQDCaW8Q8Vo0bPNvvzB3ziJa7iEdGDwY2p+/SPU4SLNFjfxY3j0aDbu1quuH6ONzcoMTAz+uRQMW/9xCURi1jG78FnSBupVUVU2lGtjp7jS+7RFqsuDgJ2uXbLGM2oFCb4F/+m6+FpUGZ9vs8KkJfTC6s9PCcJx/1HoO0F3TXVWBTd9Qd04d0O/C2gFXwqVU64TzMF+sxAInX8FEet5TNm/1Iuja/AHdjqaSHaUH/koFamJabPjYGp8vB/1vPlLMVsvd/DwJ8pZyJGyrrwyHrSeERaWHrTl+DmukYgStz/GK9oIVuPz8gRCyg8ToiejaQE7lu4EvkYaEH3jIxsKQEKDeXiJw5ypgEqHBwResauxWEXVnU61jaasfoJIsqJ623+9fPr14Wlmvn7sUwMQ/KxufVvVZXpdE3nokENc13/BPv0p/5+vM17rO868uhs6vLOhND49D+3deVfo0MBoVRec3fgGpJ0sYqWTS19Mt3/x6OUFiGnzrJQomHs7du6R+J49g8jlZgls9hj6H4Fe3j1Tl5alxb1g/bS2ic3tvIITmSOJZlNiYJSiABcMnipwwAMxdb8E/Pp8WS8Vm6ic+GGn5xZufom/6n0AWNjlWgs8928rfI5SLTEf8+bQHY9aLPvjLh+wC52Gdu3oHw/OgUHe4j2x6wwbKWz0MHd3tolF6+VUgrbCBlex43fi7wskbPmOfLNtF1G3Tw/4VaOhoaVw44+u7gVt9AqVFZYKlzpPiT7+i+j5qIREeuxUM3L0l33o36LNp2xG8Q07Apykmdbs83gRu+IOdQ96Eo1zLiXTLm4hqWz34B2GvQUUDr396aI3LtZe7O7fNz9aUTeZstPB4+d3+8jdbz8tDgYjv9/hkv9VhnacAyn0yrQRqtMrmQ0O+cFJEhLVO+A00l1kEt/onDsr7lf35j/KkcjscG69WX4SVpVDrSIgO+9zRaex+NKi0O54syF8YrZ4xgZrKciJ902SgYrhtIZl+Dbo/xBDMTeuVcvTOYqwFO8edAnW3tXw8K7rxC3fM6tCHR1wc/tXDWZJ8cqnBqYGdsdXqdssnoFq5F41OV3XzL8Ie+kW90bbnsZ7xRWqACVqDKp0K2T9/8p++yEAckvjp9vBp3KytHvDZ6mv4CyBwID3tpa1+O8yNfK6cEMFbqgM+brr+T09TheJvTVCn8n94SzX17NQzq5gD+6zWsPe76iHvnWgKd99QpPYuxgOXkTL402dk8/uzPz3/f7UUSP+7peCxCh05JmIZzjciVEBHew2F/uE5zNzlnsB7bNfU8H+Vu7BmLuT460nUj+5fnZE4nKHXIELRkfVsWSJRgvWT6oR77wV9LpfYB6qdEaxAqGf8cZgN+UmmF3ajtwzWo6ab8N3alOKv29TTEi0CRBZ800B6XvTu51ZfeJLxEaPuMg7sawomVMbhQk/a/elOUgosEOoWwG58w2B2bn0LvV/CI+Dbmj4H2SBAwy8JYiD7uMsFL6tcPycdu4w0gMbHQJO/I3uQQa9Efbk/bAM6+1zC6X3nAi5zUyS5FzMkYndRwHxqOQgnCao4yAoG2sPZ1SBJTzZW5ddBH+VeWWGZ+yZW87cZruMrHcUMmTo1VlcahtUbBNhNlUXx5bPUC3dmEMA0NfF51y/6N9vvDMifU5EwTsXu2Ea5AZ5eiomsFnbIXj8rAi0f3amhX+7uvH/AGR6hM2L1aCJ2YMZHgP1RdxAHXA7MJK1mCT1mjQzy+x0yIZAayLX4gHX6K8JO2HkKOB/kiF72h4t+pJSbpf3hkVNPvC46mT0rAWsndvT58Y1hPUt4B64tl1DDVPWa0zothUuhKdg4pzQj9rPs5bvj1Tjpsjzse9F2IPZNSJFx+A2UUjjDjGcN2eUsd4d33XBg8H81Yg9M9DWyWQGHpPXo1Sa4ntudakjYOwXY5h62e/iczK2jV+qp/sBI55rfNwHfhtNx4AUDWM72YMIwhDnOcsK763j4tBBdpwc1A2sAc7v4DdQ+SY8tATG9GxveAeeKefiyYMR+1VcSAFGjgKo2ofWco9aH71d6xBbHQUau8ZLKparfyDENRn3hJRlCfpkZ1pIrr0/vKkmgXT+3u04/PuiqUybA+PZ4kFV6Xtx1Xa+S4AneHQdVn+v8PS5KyUbzGZ+m2QQLvL96uBy/D4y7eZcRkh09KPpCSbWT+Blm9QMj+LiGP8I+SMiG11zN8KrlFlmp4Q3kHciRyPqOYas9rHVnvXYavFzXGcEkrLL5lHs5uCh7jE0c7cP5/WOc/BR3V/STngkYLah+91NwOm43ar/d6TkqgTw6+xzj69qxtfZaKOma7WKradNsVmgxw3u9Qno2yk89yUY6w84bf1TfKxvlC7UVhpm4Yu8Usmwt6cJDcywCrGv9J1tvdZRD+VkeyXE6VeBf/Dii5CK2tC0gq9VIUE0xxgpv8Wzu7pUj19wpwudrsLDlN9x3MJASHRc3tdfXQIQ8jF9ch7WrQLfPW0L5p+9dah6ks07LsljBhSYWPV0SFazBHCTQVqGPT4/7qK9aH/Nw+/1QQAqNLY/DbIHhu2dI9q+lu/w9z/Thi9QJF1avtWjyMBe9Mz3XgZnNI/dAMNNbRmDx8t1lvg6clCqlRi3rOdVLbv1a6EB/xWZpKfVSfAoC0zkfUJ2jQh+ND5Hg5xio1GCPir2fCfHgp2tbbDcXs16OP9GEegBH7OAGhKP8TLYxS85A7NTdsjka+hxenaxAuwfnuUfnmvUgUoiMVTLuQvorHwbUxQhijRpeTc3mA4GiEERWZ/zVM4usHZQ9GhPuxXp9dm5VL19ypFDvKZohH9mg4O2UnhFnMBCy9Gg0UKHHGzm0TsVYfJkU4IiCS0P5F+o071EPyKsTqK2iKWOecSNwWL0PTS7PH2Onu1xA8RfMWFmsfFgheHtwO3/4pa8Ht6uyLyc9pOMeXV+hvC2iLzzI5f6Bnh3Trj+CAxu44Req9ec5W4fca+FSNzNNDljX2RB3CNa7qtmmqA+sS7VylKv65lB8TybAgO0QeMpGC6sB6cD0l98mSjHVC212p+kq+pI4Hl4UPVGVrZ+bvAPH7OYiMUQqYEtsRnBEbkN8+H66SwKNCrafkqfap7CGtXuVjvyZFRHJHNqxcfVXCX484Uz1Dd9ZevQaALEdYbTbM31Jq9iE7XD+UO8xEpc8Hs0X2OrOH+e/LtNT2ipS7PVvBMdXA9bu1VqSWekaRqMHh9E9Ff1f/GIc7o7DxK5xCmwbfLG2Pd9PqJEEmlHWYXver4C9L1dBdo/FBQkwG8LxpVYx1NpmRbxGh2w+Y1TC7PVZsVYEZbjc4DYV+EP9lj924ZguWxf8HLwIy9HOZXBEDjyohkIft5+lz/ebZoDdIKVY36UHd6EGi2SDWCYNn7mZsfqZ5PDoA4BWoMdgni8jD6+jUmJtGkrAmouRS710CRAUCuyOl9vTA4U22WSf3p+MUW+J4PNkn6niNF09F9wyg49WHOkp2H3Y0rizAp8wErCO8+vwl0/kct7v6OV8xOHx9hQ1sHxXAaPLQQWd8D6XYPfTRUT+ngdRpwD+mnnEAT2SYbUds5G9q/Yl+/N+Cmlk+Iq85X+qBHE2zP4OrvCb7QWyg+wTrpFy1UBDnpe/+A8n+9G1oLu9XhgDx3aJzB17UByrEFsfvqoXbvcoxCvkVTIehxGwxAfmtmVFpG575od5Uu0Vgt2dkWWQvsMcCG0KXFmDVBVGpi+fz1UDIsMzoaJdsKkQhBm64yUjkrfqgJeKbatR7pv0D4+nuKor+PX5lJ7UJtsW5fumvOO6YIuXc702q5TD4gauqOZbXWdbvgHBHq44bFs0TMdM+cJWGHekjz+lO7n2rYVJOH3wX/5bwjFLpHJt7/h1SsRwSj3d+eMnpGzqdphLQ0jBsKIPEvNvoi95KyEY18qK1lTodVbbfAIb/3BA1ca3Vr6tFLn8PT7okDrEnculCCAQmIHPbVCy5buqJTTw5OHbNH/BcHgJFRCkClMli29gRmSH4POza7Gu5rJOLuU7kJkV1RSzncLm5prl0N0/aooe3KgvaD8R0Dt+R8+vE9k2+xQCMCUmUg2/7HoZBd+DO4N0pL31is65VG9hfkMFmfF9GJJ7MZawcV4NEV8Xzz3Sx5uDJ/lyxK67WWBbPMCUDja9gDZi7KnTEQre7oJPQnwKxxyYFtzdSmc7z/eh+fRcAfVhqim2Vlxv+XeF4qkj9FL3SsidMapA/nQ5am7ntysPtwDKxqzQpMCRy9B5mKFi+jIRJs1hLJFKU06GFaE28Duwak8SAetpn6ittPWwHj7hDj4cMabGvCKwRPRdyFt8IfxcOPdffox08YRVNiYD++PT3oV/UiVsdMbLw82D55jz0KGrycDE2GrhrOmnjT957gznmyOf5/SDzX3puqyQTh4QxvMNbb+nu1iK1cK+PmrU9LaSAP85FvDc3gA2L4ANpAidFT40qGDMdiUj18mIgdv4JxyJq63PZeZGUu8EHdkVP+Ryi+GkUDM+NtXC8Q36vbHb7sIDJkaCUocrPLmjtNz2dyLd7kdG+zB0IL5HBuLItwQsexYWHJqPRy2vP4HWqUIL3N/pDf1C8QS4Y9kocBybgsaZ9dXnzE09IB36kNraT9RXAYEGnIjkU8PhPn948v17TRapPP3DR3imH52as+Sx6fN5aDB5Rzu0c9VbRsyS7ODqrG+KIPtk6+WCPRBke5uq+s3O1lzsxn/8NZL3asahZPD/8a8zClV2QF06S8fbmpNUhgeXVamTQjh9EZqVZcqWQV3JX3xjd5SEeiVBtErNu4tx8mpfbCmEeYV5oMTUqZ1Ip0vXJjA2PgI+D4aQbfxvhTpbL9SMwcS6t1BHsNQfEBvmb8rYW9yv0q9KT4iH4RT2ny5RYPWh293FezU7PA6zI/8OzQXtjc8xW3Pd80Cr1heKGyfNBuP9EuCmZ6jx+ZrDX/74wyPC7p0NDm9hiOEfX5Cmea2Xclh5+Gp8DkX+T3O5n8Q0mIH+RE9dTWq2C14jCJJFJYebw9jc9j8NprEQ4KygSsZZ2VGD+z0/omM3jMNqbCz5qhUWdTiYstnA4Q4WoiCR9oB1d6GCs4Jjdnex816sbEx3714WH8MdLVB0s7UXbUveU93F5+392vjKKfIqnxaM1OyaLbHAF7BfiowA25Iz9rzbM3zv3nt8eXaxO3M6twOCVsrYC8MfY3m4bdLhnIHqXebXy4VSC0qtJpHpalTuhqce8EM8UcP9nYdpdy554PBEpzi9PwH54+fRPHzplo90vu2cBlLjpeON74SM1p4vvX45xKef3Gf0WY4IOJ3RE/mtjxk1WjuHFj8V5P2n14KPGUkPq6JY//MPjuWoiObK11h9TOJ/+fpjlToipqmjUxRFAdSI+yZlT+Ns+SRlCYIQBWgVDTXjTrlXSJt+x+nktIyazbQD0yPeI+GYzYDsEz8Gdv3aY9UCUz1M4YlAyOCLYjAHYHG7Fv09f3zpeateT3Kdg/mrEGwHyqNmaElmuNcNj9ofpa3XPuG/UIr0K8p/rz5b3oiPgXVvYnQ4xg7gLzz0oI5kjaprOIK5eL8IdL/tiDXYZTq7G84XxMPSoSMYVJcoxiWGwX63IuGtK/VycDUNWq96xKoTidnkdq0HVMZatEc7OSQ3kaZACOOC6kc0sq623hB2t+eL3sUj1hmKch9cb62PVR0wd/w1rQl1WBtk7u2xJjK37+FI5BM23+8x6++d8IX1rmywegU/tvzcqpHf1+WF+FtVuUtaFSZYuORKH65q18SQnikUFCum7t26gjUNE0++v5Pt7uq7mVXjKyUQqL9wyz90WFok9FDqsze1n1wZzoaoQNm6f2MCpR6CCfOuL10t7UjmwtHCFaCvA/tQfyOm9aeQNTERgPpadlSzi304P7NkhW+Wvqm7gootdxopsCdBQI0TUmvuhj47qe+yhTrO8gjJD78bIArGlZ6eTRMuqdaOUNAqmaL2V4Gxnw4m+FXJieLraoMFqh6Bd7wEWLsFpj7veNGHY+UitPkj2SgpHZI2/kxxew9qPmJlLm/6nIjShwe9qYgNnOZqwR4fqO4v2lpyw3CXo32eWNmSfJZGHrs0JgfOvujd1bQluOEXtrz+Axa79kzp26crgub4ctvv5biDB9VUqLbq+dAizY/ldPKrTU+f6sWKwy/c8IYcN325aHqegs4jP2oPHh+uVewm8Ex/OnWMj1uP0VDl8uanYXzeT9nS3IL8Ty/hsRH4bDqHpxIqPP7iTV+Ctf/8jH9+iSqMoTv8OlBJ9HmREIjeMqOb3wQ1cz8TUFdaRrZ4+If3qFfIsEhGiWRNTEOqW8/3xleZCZc3sunldmx0uvGvP78GK5f6MbR/etUeqpYcepiGzNjlCfzj80sk3dkiIqcHmz7Y8s2ekboCEhwrexvR4Nt6yi3awkz1PcLfCWZzdac8THk1/ecPMcUyYviOWwVv/s2wqPzAgy1+0PEUngeGdnYAb9GACfi+g5CTn74vY3scMJ5kvh7vw1MD6EofaPlNKFuiHCd/+E8dO5nq9fG9Gf/0ibVm/DBdsDj/8SvsyPDmrqdZgjBP2YXwpv2u2fkHNTjcCoPs56V25/jKbflFCqiNObc+Djq2jqKUC1jB96FevWeI5N/0rqm+tC1b1/UhQed0Vqli3q/ZAci7BpZW8ESCe9QH9nlwO1jlO5FaqZaBRZvsVPzDSztNe3fhoiYH9UImej6F53rOIq6H7wOzqMb7HJir+4+TcR0a+JL7fTg+SG3CuW7P+ETiud52tzYwUd5P7D7fid6zvZZIf3pGZ1xcTxueS/p65shhrVswK14Yw+hQnqmZvFd9nW8V98+PkDd/kQR1J/3FH5KMzzB8xpOywn3zA9Rm3y/Y+F4v7V21oudGcOqD/r3z8u1lvLA6SObwUiPIw3/xGQCx3vjELG3+M1YUVx/61RoFuHagQ/Ftu+dDkC7aPz3sDE0zLDw55ZAIlY4975XVlMv7zU8Uehr4r8ad9FxOoRIKMX3sVqwvUX5O4eMR+//w/CjTCEG2jk/sKvN7OJqG0ECKpBDbDvrVq79NEW58japRhFzgT7IPE/kqo+Vx9l1u82Nh0H0rjJf7yMhh9Yo/P4jiyYnqmVyVSL7zskE4L7XBUTjsNPjHl/bS/afP5GrFEPI3kxyixnFnpCURLAVsYoPb/9z1mMQarLc2LeO7X7PJ4ItEim/ZA7HDQdUPmz8BcC4xJC1yz9g2eArDDKz4ZO+Gmn3ZE8JL5N6xk8oADPzYaeCiyJh6LwGwv3iBminP2DBYFo45ufUwmy4uVQ1rqNd2nRT4VOGe/Pkjy8/tv2CfHXSsoEUF3PFuNxAM7kBsU6XhuJ6THJ4P+wgdm5NV832yawCeSITNc3UJ5+MUVfJHMX3C+b+tBfsYaDBDho5YqzVgerXNDNHuJVJnmoN6NF9pBbtyvP75J/pf/MOnM/FIyHxDX7f6A/zHFzO+0udilyOwktWhpz3YMaaRJwc2PU+gMdnDOPfv+O/7UDtjNzbXxzWFSfM2qUH3Xs09QPaFjjPM5LvlU/bjGwUeObHBFuJZ/eabWpGYcPWo3V1K8KcX5Q6fEYKOeM+WZfB4mO9WHp9Ds/7nv8rL/k2xc7ir+hEEkyM9Hcqj5St54VIFXgIsVseb//QGs21JjvS7uyH14HDOuF1MRsgvKyMcv4P14n/2AZhhuvvzl9wppWYDTSvviHDDIjgeeL2Qi4vzoMbsndwZ1GMPpnD2Md7Lg9tWd8pBT0B3Uo63dPiJY9jAywyEf/p2MmdHA3/41g+NMcznqv1CMzY1rPT2OEy7beQ0v39OZD2Z+rCcRgDhn/+qR7mnsz8/8lGdrX96Z7xzxxzqbL5g7TIc6/J9LSUAX/BAN32WMQ21BcA2GdCiVb9sWbhf8E//5ZdJB4e8XT1RRf5//eLRqUIHnq/ygLjNT51vJ7eCkO1e2GRv5Y/fIHjutYj+4Tk1UaiByHUuf+ddP5zDSwkb/3jAF+P5CN99++ghi8IaHfTPKZzv1uMLeU9u6WXMR7b591uLeVoh7sJuA/vovQZ3t8rZ1GM1LH/+R6ln8J8/N/IhKAGwuIyeVRNnyyvjAinn7l+6+V9sGHTsQHs3ztTb/Pshvp8LcTvfVNFkoG/+8fhXL8EmX85gegtDBDY8phse6JTYgw+bxJQxTtzZZU/9R/6eJ/rNxsp6+eYEYOd3HdZIoYHjy5RXuOkR6gbgMRzds+jBFxkN6ovVxZ39QxDBzMYV1Zka1X/nR0qVSqOKnqghPbzmEv7xcYfF/B8/bME+DiJ6gdnRHTc9DDe/jbCLr7PF+QYO3PzM7aK+Ixjv3D6HlYE0aiX6NxwVGs/QeronqrgOC5fEks0/f5iG4+ELiPfM0L/6wcG9H8NV5vbtn57DWlaErNU6JwHOTaoQKKgSct9js4PdcKA0bWYhG5P3+pUN6WxS5XEvw81vSmX7eSIYudwx/PPn/tUXdPkXuqPjKUhGpRNSD5t0oJemDaBAw+d23W0Szl6AHXA7qzxWteoc/v2eYF/gHnXf/c79q69KaxNLBND3OPR/9QehIwQdkTgMM86W+M//otr1NDF6kZgnWx8gb3yHstnxFO+P3+Izvc7DQkkZyfpAa7zVE4f1Y1+Kv3jCyh2+ajbEb09u0d1AX58q7tycFwVw18MHWzcssj8+9Yd32BtGre40URSgfDz7hF8mwsbnMhAwv/onVozdqV7CWCngp8h4snJH26XueUHyFXLqn9/vzqfcKOStvkjgfI3Z8hePj9ix6JZ/67/6JdSTOsOafhLdVZV67o/fUQvp12E9JoUGOTTk2D5ln+HPX4K2ER3x1YnEkJ5/UIGb/4ov324OZ/qceVleqjcZP0OSzYd5VmBDXhfqXaYazLPCxdCIT89ti9+rnv7qLZdZFPAfv2DhRcrlLT6xojkPdzHrawX3zQdQ43VRwkVOPyNkY+zRi3fsWNeiuYfD+2Ggg5H8apKPiwdP10D4F79z9za+sHg7Otnyvb58CCvAxqeQ4HQgHFzuZUCd393Q91ZpOutlxfnzt/Dp2RjhcdPbwHG6meoDroZVd94F2OoTpPICF/D141HAUddMMv9t5bWPUiP5jY62LdxMp4zSSCTp2cZKPZshvwbnGKa8nlJXjYdsPuq/Ch6dd4+qzf9aGAmk/6ulAPzvlgLvVu5IH7kXNvnCtwRrTH4I1PIuI3bScbDRgj218KkFc/95r7KRCyGNtA1W6JxHMNzuGrQgacJ++H0EUAmvExJO665e9U/VwGQSZWym2ASc4b9y+JZjgo2bXbnrPnEk4ABqkFXYJeHCGQcIIV9e6W04jmA2eL0APn0U2LgJ5UDtVCqA/O5b6o73G2BY00yA2HYfxg737tLn2gyHBwrRMjQ3Nh8lPoJdefpQbe8ywL55vS2KJDl2/FuVLcVvX8HcJCnVr+uXMa1PIqgkcokdsKiAf6m/HJTPTkF07D0w60LbwL1kGTi6CWX962rbAVJw9UjlfEqXdKVQgWdkP7D1kw51b/1MC968i0itkDuHqzlaCYSGwNFzm5wZ26dhCS/x28aGXdjZqi+BJ2tPMCNhv//UbZ5HKTiJ7ZmaDtHq1T23CbynP4eebn7qziR7jpCzI4wzsVf0g7VbhH+vfSawbL01tfT3mghVntSLWD4F+FhmB2fs2YTD7aD6QDe1iMz72tOPARlykP60kbQHfRimqSobKJFpT58SuA+rOSopdKOK0VMsuHW3m00kGd3tjM+f4OHSi8GvYL0IAr47e6wv58s2xREkb3pGh3RYit+xhF3YL9uU6G0gBPoFtHM9Rjv9VYeLvNYxdOcgpyf5M7ItPgTA7mRFkrvw2fJ6bP06wYlQO7WAzuYzaIFqnI7YdR7MbQXzq8H0agk4inzqztNT4kA+7CDiEPxm1Ky6BBBb8LDNrzeXlk+Yw5AmHn7g+JZ1kmlD+Cy3Drv8zPSZy7sRRlPxJE7kXsAsT/IXnOo5pJfnu2QrL1SeHLE4QEstyvr0e+dfcHkqmJpLVjNGYyWRrT5SqJt2B7BydWnA29G/45B7WfqxWndfycp0F8m7uQFE1pVV7qMeYvenTy5Le9kDapiOBBKfgXWXlor8PJMP1ZJiZQN1khV+2vdI7fLGAxIUpgF/cqpjt3ckd6yeZSqfK47iUzMrLjsPTAL2EopYnS2VHeXTNZFpOJpk3eWHbAoOC7+/Iyumzlk7smHX7nloLjjA1mlRwvn+LQtYbouK//BgXdPJglwe2NReoV2vvhz5wHXPK7XdsgMLFzoj2F0SH+unhA5zsE94eEUkxI79sNwxWRMD3Mt8T+byrTOiahmByifK6IX6BaPLK5CA8IwAPS+jH7Lr3UPwR84IrXU6siVR6A6WfgPw3fopbPXlPIBWHyuIO3TnejExSyDf05Da2ewN6/mQCkDH7wv11sMTsPHwtWAsBBUCds/VS3Gpv+IW38g7gLGex/HlgIoDInnXouxOL9fMoQC1gkhqIzF6DFIHlpNOyNoIjrv8QLKDyU2JCb8vHDDbx58G7aB6UhVJgK0fjeWwItClblZZjAgsSaH2FGfEPcioT/RYEdm5tIw6BYrYeOAUCAOJO2DjtzB3StrFgAblL9hzHzv9F5rO+odXiMjJe2DWk1qgWgSTGtMJAOas/yHtStZVhZHwA7EQEEmxZBIRMEFAxZ0oIigiQwLk6fvj3F72rteK50BV6h8Sqo4UXZchrqut5lfzrF8D2Bxjg1i/oczm4fy+o/xVPJkX35k1nbcthr/7Va0giGflmphaZs4nZr5mFI+nx1CgdMteOMXnNp6v5k8HYnYdFbrWqOZmfw1hyWdG3tuST3//b5bVFguM89qfT+9Ohb/1c98bjM9X82UCeV0wWZ53N/ZO/EZH93Ag5JgTPv/6xlOFwy0khtublvydNgAFWzV0vjl2Nq8E5w5en5yZbZbM5ze5F6FNGmCX/FRUI5zzM4KBloQ8XzLqt5wmMGjVkbnDofCnl3ucobg4BrGjeULf+xXN8FJTkT039tui34v0ht1MHowwE/nNs5wxPO+NRFfFKvHH9d5yoVtrbIlvhsb9UwnQX/1w4PDrRsc/tFCFv5JObl9adR4dE8Q85UK8Ufpy+p02Aohdu8Ze4g98VKW+hHfO5uV5Z3/xyVG27QmdjeiERu+R2ahNA5dOSBh8np64A9IjTAiJd89ujD73HGQDfYi7cqKOPYtrDfGc7EgOP8vi6yhyNRQfL4SQo+hPknx8aziEE9FLfWWNr8dKQDk5Mrxa1w4ax/Sng+PYiOzDrWi1Z7A8FLIsJ87jzPk4x3QEh3xFrGXe2E33fjODaK737JDOZTxdHvscLXhMDt/3F/W+XupaPYPCwuhH4jndnijs4rtB3LNh+bMfpyaM/DEQXAd2x7F8S1G+TmOm+8PJH3dlr6Dr/VMwt/kl2azbowxdaZq4f1tKzPfEk9GMVnsK94sRSwP9jnDkpzfxy9yy+K6wQ817GC/mpcYmHvMPVdB2a48kbOCa8RTJDdi2/SHWKist3qyWLW4lLEkyiGo2U9d1tbugyhSmc9mNwvauQL4dZVp+V2c0RhdCYWqaM/vL39FuYxkdIk1j5C2+4kE4qSHU3piRs5Le436jGA0aZCEiVmkus1qbbYPycXNgh5GCP7oFmWF3qAN2ME8V4ir3VQjupk2VdbZB/fYr9Gipv1Rtm8CaH4XUwr5Jj//yb4iv7qhGkbVjS/z8+Vh0ATynTUrw/L1ZnynoVbjJ1xvztFXG57/6+zPOe2Lc5zH7zQyNIONVS8WuLuIe3pUDgLOB2LpXoFb5NjPU3pxhmnoZ4oVVFNBz/bDk9473E+xy5JyeP2JGx7X/++7cBuy7Gi+zJ31/ji3VAwxcpqvkA5wdYr8Eh8YX2vfftzXXt6hX7d9lh8dk13fTkMSipja+TptfGqHxtYYzKLrikv3vt4ppWD0V8NBgk6tGScymI3bRr647Zmk87H41+53/5df+WafW7A+dAJZl31jCo3XGLt7SYNmbBrYtUMRn9NzIqK4/GvF25gWNm3wbIXEqe2bjw5fzF0ldkLHWsm0rbPjkP5y3+lcPpezbWv1G2TdwOhkNruM46KS3iDxU6tGPBLl+tH4g6Xewy9Flj5+5tdbr6OZC+Xn5NI0CCbEyQOYfXyS7Wm0r/qicCLVmkrDH9/3l31v4i4AylzL9ljQWZ2c3BT0oenYc3RcfD5WioJt/tNjDUwdO3S92kWZqW3LY3pcjH1d91u6xj/FSXzg7B029dAYvmb9pC78/8h8G5XFGzG9ebTabV1UAUbzXWLJK1R+da5TC613p9JOeGzSNt6nVNhhS9sd/592vCiGOrQiv3uIrG99C5EKReDsqDPuHP1t+jbX7eecSvBoJms9jXMCqPWhYDuHe9b2TvdWXz47MVTYXiwfDJYfH5mwujcOPfDz/Th4Yv6jA8GzKiqOxntH985SxoKWvio8bKqrix5+ofJBIJw1uj+GdupwF3s/I+oXPaL19bomRwpuPzb2W0fdl7NlOt6RF3yRnYPOjJEbz+PkjJdQGLZU3VNSSIp5c7/WGclId3OhxlU0DTQP0q6wn0+ntHI9ic03AH5IXe5inivMtaAkcN3JLleX7888RPaCngVI1NTZZ16prAHnt4AVvMn9avV4qeAr3sHKeVqj3RfUMpjw8Gf486qWL29ZGkSpLi/6yM64KvABw7zpLFn01DEkmwuPxvmKx+woVfw/v+S+fsZpjEU370pWBWpmD5Zdv+Gv9dboh7p5toisPreKfOBTh7AVHcnndDxWPkq8Np4BsML+symzan48BKkVZx5J/2WW8iy4RPK2DRIxq87CGyHgVUFz2Ktk+xA/i2vOTgP2ZENleV0pVZz4q/vQaM760zebXOAhQBsOdOM7mlI1BakQb9luG8rbSOu4DIRCh3UaYHWhh+pO3WTdqvBxRXeotko176MAqv2V4fIVlPFP3QtEfvq6xpHbTc3Ue4bKSekZm98cn1dkLyAjzmcIb/Jj31izAU8cmcS/tjOaT0ESQ/NARb9CLd5PfZQmqb/s9235dGk+62QSwF6ItHWViVWOVWeHG/J4ncthH92wqoHS00VdLrLjKkPHp6Ljawk9IdOgP1mi+jERLXw+PGIRj1EW0y2FwFYPsm03ZjatjUIBwXdtELzezxXqJekhNx4htt/ol/pefl6N9ZOmljTiPj2oKh1K1iacUeid6j9hBj6JIWIi5xce7HM5wtfiML/k5R7wU6gDe1Pwu+GTE0m1fKgC2KhLrEla8fxxGB4Q43BLHfu2snoezjbYj2WFNMJysTwqv+YdnB6NejtBl1xR1p26H1XcWVky8dAKy1qwl9vYH1vSHN5mmdMxY9BILTk0L5ugV9Fmd3/5SnzykB2WP6YL/Elm2lAXwe2I1gsX5/dPd0A0HGpWeD6nr9RTfUDbKNfn7Pco1MBHmkcZ2PDGQNL8DD3At77FNhyHmq1tWAgnsjunuPV70fpho3u92p6Va/zhf5/sZrCYBhm+dnq0RnG/w5uqdin982qFXHbTm8GW6I5y7+XbTI20ftA3xPLeuhhujOVq+TwzD2MfzPv3JECrik7j1cYu6ro8bdP9ZJnGva9xNf3pz4dd4fSt4xo6TW8MurlT8Sg91NoQKLeCtXU8sq7T83/NWF35PJ8FvEJeqrAaRIMzcXxrx2ZpuGE40b7CwqcSYqtCqkPw2R4K77smnmr0SbY30mGAdl/50DVwTVm75Zcbtk1RDtQ4jrbw6Fwq7au7m3Lbf2oKX+BNI744KetXCwfqS//JT/WnP8B2zNdseb7jiu+2YaN4qCunv4pfdKPkrEe6CIjPrTbYZD1dvFdZl8CH7IQ+qeeskKUiybbHd2hvi8XVUZhSG5sSs0JMyts73I4i0npgz9p94BI9SgC+5My9R+6z5XVUXhjRkFITiXE2H21FRv+alptqy/ljuqmfEL/3MDqXTInpUV94ff8HVm3zifiUrBRSb249y3Kf+oJRIR0+UpGx3uTqxrIkI4FWsRNpVB6PiwfC8q2+u3Il3tHVOVff2Bv+SD8z1Q9T16Rza2uWnKXRYi171j5+g8PLAkOuTz7n4MBGbnyWeoLrEC/+utcD82ljc57/st/58KVwbyJjb56+OHUHBYDPxQOVt+OmmX5i5sCl+jBn3OYxH6QMBnLvNABNA7L+XkeHaZR/C7jrEHy0g5ltp/X96bMkf0sfaD02fOTeVP38BS0ODxqQwG6irt0cysg6tVi3rAoU6Ayx+rm++5EOofe7UY7at99mgmw1G6fosYB69tpm43lueVs3qkQVpKfrDo01apK2LO1YfTzlu32trhrWJRqKT0oxHpWhvyFHbiOya9MuH5Nw1AKPhM/Me6xb395MOh1KxSfict9bCx3IIHDdkwW3ztibj9tThVxlPZnwut5hvsr6Fui5sZj3izp/bELconC9X4qTf03JEyXMgO9kasZ7dNe7//Js/fnZb6pM0C0uXtqnsiZMpcvdGKb8jOZGedBPdbevnEJSC1pAv231/P2vJzxHtmCKSYOH/0ye43WFrvN5U4R+cNUv9BzNJ13ThL9XgDUoOf34op3cdjXxr5vDKO5/Z8DH4+ho/AJz3mJMr291jRrgW/fFJvLmoL4uFn1DQDLZ+Mn/fJp0M66OtdczesV1+0qtmJY/lX/6yfdIK/rz4R3A/xNclPp9syg/dG+ki21PYqyXnJ/KIkPx2E3YRnG831rt3r819neHZGWe++GktmK4BxE3Jw+ItHUeAonmQnfvV0eB3cYIW/sZw174qepqVFkLPhYV/un9+8BkSOQqw5vgk5ptvsrzVKe3Ivjid0SC1PwGaYJxwq+7DeLyiskYLXrMtOcxo5J1jApXMihmC73KRktrRvuN1OU5leIhqeLwhMe01sg/FqOLa9nhTzGOuUZZ1ftbv4BdCX/8i4iVqEPONkVJw3nNOnGX9zKtqLiDn6x0xaidFf3wRHrfmyUINqVV7NX8mrEv8YVtlR/jErNvtj48zjPwPmhUeprAtxCuWPsUdiVn7c+GPL22t8maNo3ePUCtrb7Z73Q8dkvaXACFdYPg1IMcX2+mYaou+++MHSxeQkwlPdE7ZDukpn89gufB1xZ5531LL+BHGYPOnl9aC8634WVcEEFOq0ZUknLJe9pvwD89I6BDF59k9Vf/pG296O3HnuB8dOem1wv/if/GsO2zeAaLfSszQ3/Xq4n8T8+a849HcBQCnrKREPxoPzra+6YJqqjnDonji4+Mw2n98iARq61sTerwC0LKZMyPS22peVWoB/eCl+B13b9SrpAAQvPxMtuLRzsSnhl3kt7cvVci24dO8VwJ4qTeRKn1uVGuJWQF8uWaRLRuUePE/8d/9YG3hFyNRuI4M5YcJZsVgDeUWGvTdxgVzs2dhMSOaHCRYq5CRsVDi0W4zET12/QePcTrw2db2Iix6HC/4VtFxfQ6gcY7dPz91XPQq2PrrOgi2PVTD4oehP70v9Ncingb6nf/8QqY/LacSJVEX4FLkK2Yvb9HziFb5Hz8jjuyZMU/WkgDP6/ZHw/Pzhia96UaIAj8iQdK7HUdeh2E+qAqxxlZF9OSxEuB4avDGDIxYbD+/Gb07Z6CbKUl9jkY6IvObTLhZrbbdfNMtBf7qr96bri+6NCmgP0gV8xY/YNx+ZQosnIOlXpnVGK1CEbY34c1w6iG03m3Hs5bciorZ1vHQjX/xavG0wxvhW2Z/9VizoofLsHz/xuPL2bsobVWPma6Gu+lNdh6c2Z0T5x1hfz7IQq6O39bHsnuZO3auofjzZ5h+UEPErbv/BsTa4+Kvx9YUmGqLFv3BlnxD87Xp3//4v6Ges6rrnNQBuIiUmHb67qbrbL3/8aXVY990Y2ZLHiz+ELmD62byk4gBKP3wwyuhNPx/esI4FGu8EW8Ob+OfRCFGa51YQm9167/1tPBZZvqnO5o1EQlo0dN4ZqJtiW6iv7XbD2qy33XQ9YsfDPu3tCXbZf1Tf1fcNJJWT2YcMr3qhc0QQKDyghDFn/xR9psI1fVXo51+DvwFb1t1PX1jEmx9O5uOrRlAMaOK7e9PP+NRwmz0i5vpH/8c/Zsk/NWzBX+DrP/b73lvRf+f3y6jxAtgmvIt8R+643Px0gFgOVizgxxc/TFNsx5iYVYxmhwxm87dZ4bMHE943stGNa0/jKKF79NIWnfZ2FExAp7MyqIvHX/954d06xVjxiXfdXzc8fYv3ymsiGSNRiXom8XPZN7qO8TD+pO6ap7ucmLt9Jc/z+KrgGYvr6kyYCFut8nLheOtkmhDti7qq1pV4c5K98+fr/iLhK5mx4+Y2XH35pNsGtHmj49tnabhYztdb5Cr5wMjkiDFP7IPcxC7Zk03iz85nq1jjfRscyN2eKsq9pdvn2dr41XfBlzShEiAT/RTWLZSNmjx1wXNk4jA9sLXzFht1oL2VG45OQhGHbNWbW5oXpUn8qfHqR+Hpkavkcq2ruP4wzGPangVmkjMC0useckvlMhhQHbf394Se7VSwcXvC/GUl4BmfWO4oKH9i23fY2ENW+Vuw6PXdsQEe+dLf/wP3FxnbkAVxMB1bC3LOlj8Bj0ej/wVQDWYd2JkCfen9eptaxf5zMn+or78KfoODuoHN6Wj0G6ssZQuAcTKUaTf/FR00+C+MXRW8lz88DOnPNBF0IRdRtUD4V33q/YuQOuf8Zp+qoxtfc9F+1wLyX5KUqsxNPWGxOcRFv/T7P7io/G3XzNrm5KOf556rnl6TZm7aU4VD1e9Asd8Z1BhNTJODyZ14X3CG+Kdq7s/TfUr1Jo1cvGXfqxM/GGz1Kb95UVwQXfdZDuFAlkrTESXBdMaG/OmQFKkKQmjH4vnzVlW//z3ZT/Z9KVF30BhBAeydD20+kvwdsCePZnOaR7xYWZoBm2rrAi27aGj76MbaO6GUmIu+7dj7t8AFv1B0eH54gt/u//5oZSZu8KaVvHDVctP5RNHWgYZHnLuws9I9mzZT83+7l+9bU4JHaXzWPGLEM/ws0/ADCQcrNmutneY5zzEysqZq0nmYg7rj/f8h9fSTUMBCrrbzMzNcEb8JO1DwMavoDylhi/1vnHWWEwdOoXp1Zo/zdpET2cy2O7c7vj48fYyoncs4jGRfUta/A0I9rbHHtv7iKZlfwmIOmKmL/vDYz2E9P86UgD/+0jBpVcn5tH9JqMl7Sl0K/fAfHh2MXVOeQNvSgNmvKYCzUV8lmGnupwdtLKIud2zAH7slpO9Jgj+zIcBEK7rjq5+A7Wm63NuEX6WZ2J/xbabV7HrwWTJP0LorYqn90p2oD4bwOxpp/r9UTiNSB0Bs/TElsb+r7QB/Et1OpLnPWPD4XKDqMdPhunkZ2N9+dVw3UomC7bPoZvfwyuBld6XzP887VhsVroL/LVa482+OKFRO04KqgrxRvY7Nlb9RjBuYHTrNzOrMo3nI6vusPqWOi40aeuv8W61HGmItliQ41O3/L03dNvqRtyz88jmNE5K2K6TDfMieZuNl6ZR1YpaNjFlMmfNGOI7SrCTLc8DW8MtfoEaFLRmeH+5VKO7OoswCkTAisW7ih74Ude2QZgRV19nHRXgc1fl/Pamc5m7FVfuuQIOzg7Meg1KNk79s4fUoiHZx4dDxkH+pdBpy1sQyvRF/GDZGOTVNyUuFxwuwX0aYVNdjsQ/G99qvvkrG6232CJmmNuWbDfGDb7yHVPlzddxy8NrAp8YeSx4PWVEf+qagtT+jnT29F/FViUPUUXUDCvtG7LBu2YCfI47iRhCGXDq+3Ou2ZunQ/BYhhX9SYYD72A/sEALYp9DLDtQELwYBdkYT74hAdSorTHk4abi2+Jcqk7uXpjzQ6wb5ZIXkAQPlW2Hl8gn8ad7aB1WF2KPlhePQ3CuQTuqE3Hw6uzPqZm+4TvWlE55WXWT8oneYL3LFQlIteqGU5PdUb92C4IlsuUTq7MG3scxpSL6iPE03jxAF645xFGdVzemthqgaOMlbOecDGuup2OgnZ7CBQt5vclY3n5vcHJVi+mVhmJ+keZU+20LCaNTEmXTHH0KyMVsR3aRp8Q8VT8tFOoxYM4FS11/rFcz3A7rhBa16yK+WXkBmj/9h0KR7Swe11oALsQfuppIGk9rDQmwPqdr5ujI9nlQz4qGY37G68xTu3aS/BtcfVqSgxpbvuyxnws0dCZi4MtUjVKuhxoN7Yltu5F1NG3nciXyNWfBI/ihQfYCCrW9doneub41j0bioVQYB+IV22/G18xotH27T5n1VbaVNOVyAGF0PrLdz3tm3FvdI3Scvz2tD17VTU19PaMivFaE2PEt65ioAfqLJw7LXTxuJqVHdhNFzLL8ncWbYwBo1reI2dPLjKWHb3haEK7udO06Tvy+HE1Vm/b9nuRKbllTcBRKlPrGjXaWUVSj+il0GE+CzLallfpjBw8BbdTrh1meDv4Qs1GBybAS4sr3Vza8zCKBm7KZ2e7mtJw7O8mFr0kRfTE7tLi9FguVvk8jlXoL0NCsT5GqUflDp9JFWTs3KkV1qU24+yYy6s/ipoaglbZUNdSx6s/iVKvp1leXeL2t+bK2MPLO4oVgJbd8fj0LAqzv4YVCqHnZ/OZPQNpzmxHvli6zKh9jAZJ6ywjuSdXR+Xin4IMWsSWe3WiSkwvxWt8xPOtNN5W7+K2s7oZEB8PdVnRz2dhw3FWYONK1z+b1bizA0guZuPf3mnOl+daQvsQNIU7+7WhX5mdY6h/bVc5gjcL2FyDeNj3bGY3PpyTw8GaM1I65Egv8X8tWInSZZzN//Wz4v/WCg8FY3qIgaPLbiwore/Vinpt2Vh/Iso4K60GJA+jcjSdpGZlbHDu6+RRPv3GXRqP2KdcOQqHblqSffiOcbvaa7ZOjlnHVkkqksK+Gm31hZX2M8xSM7/vDDlOso+/qMggwZ+8tOYVjg3qQijfUx1ljuNBtXxTRXUH+avyy7fl1QLO4X4ew5BPL0HxCc9uMqfqE7Mq27usXj2SLQrhYlouh3hiZfPp6Leq0V8+M2h4QY5dXAmZaVgyTpevCpC+NtYVkR9/BjlajGKkCQq5eEjs9U5/dP+CBrESYqnliWvNufxBg+ZyF5sbMGqHURHTsXhfKD0A7vg7OCaCnLVM+KV42Xo6eCge7Z8ToSzeb7mKdozImD4JJ+UZjv+vOyK67iRjB5toxRDwRNtzOiP+RBTSXtO+hVuqMzpfBsPjm3IQouV4ZnVfwQ3/5A+Z2wOQP3yi2ji3YdrQnW3O0Lfm680XgAuoIkXwPTbcDUdF6G1jsIdShxf1sqGEnHmNi5XlmDe4+TmEl1Anb+tZkMdy2sxpWry0xixhlxWqT5hCVjk7I6DfdoL0+y6lxM2T278NQ77A8BFdcBlesnw3iR3prUaWNGGux21oT3KcZcoKXLfbKqOSXqqXKst6Ie+NRxU+fSdSabxowbzVX8awnKajyLglJvoovaHZIocO7Ni74tb5o1ozCrAWhlpWFr1jx75hUuhZt3AQPnvtF42qT3iEMWE0/dNXz7m/9RNvMIMaKlNaIfz9Qr19LptSKPxl9f0kIf3hztj0jnk7i2wWxbFZYPCq8Y6YYNChZ5iio2faNpumTRrBC44rtNSH3OXHAQT//dqLT55JWYzokHsQodoi9jnYxD2Ydw9N/ZlQ6iUrVD0FeI8HzN2xnPYRsxI7cgCjlCZ4rKDr22vQ1bLiTMZcdp2XQidSq1jpJiHG/yHGfTbYOknnb449vHa0B/bw7+so5xtIS/5l9PBk2tVdj9DaCbPr4/h0N5lOkUi6qqD+lTaKuDs2ZPNe6FjPb3obgZdsz03UqLeu7wNo4GB6zktvPHx1JOaMar75Um+KCzyf7kiAF2S4L6qD3h65iLtR6vWdGVcfZYOLgDKZfU7x65LjjddqmINVpREK7/XY9oY9Anb7yzDzyXRrhQ+cp3fhVqDTj1pq4FMqQ3uY3s/xctOg//vgtdbZ9vkZrVG9RD/DWBZKuD2+fKxwU1fkEPbt6B98fXp0XwrJemB9XB2upzyV81xuF7Z5rwqfU+qVwRNGLGPlG8KcGozPat35KDqlk8EkB5Y3I6xbTdpUia9y2nYluTuExIv9KNH/2c7shzfAg280oxsuLliIILiXMi+6a1R5ZlYMeNTkezU0Zj+4ZFJQP55nt7XttTbkw3uASjRGL//A0rUiDni/bIVc1rbMpSNMapOq8o+1aDvncUmYC31PKTBl21XhL1BnOb/VJBW6n2fy98gB9cuuHpfNrQGOsRSmU2s6hk96q/lzEuQznKhZwrtg3ztEtdSE6uT5Gn+c7G7dtZaKUGRXFiq0iHkbGTTucNhVx2/c9mwJdrdH46XWyr4WLT7F1bZCX7c60vl4ra1rqP7L5t8ZoDH0+rfZWC79N6DJfrBQ+mHIdIbk7X8nOeuTxKF1ogMzfcMFTbR+QyLjmoV1lP4nTPNYVS2azRKeNaBBsSIdYDI96rT1OnzNFxcysGStBhKpK/Sz1tcl6ZEyJ9rBvJVn4MB+92Ryh+DkpOait1tE7fzTgpNGa7fUirngymwWUtTmzhV/Ec9gqAeDfTWfGvoU/PZMigc8DM7K4juflesUjs8mCg7FGk53bKthm12C5QId4it9dDcEe7ai8R3U2uvSmwgXPLp4bX8/+8AOZrF6z3d47W6OUuyEI2iZY+IBbie/dz4R7WyjMO2yLjM/ZEYOuaRMjpW+h9V2LPNBsAegobEQ+7TbRqEk6b4gTIbdb4pVq9/cvxerj26OpPocjgkLgdFTrHV8Gv5hoB+ASfaq3FQ/ZWUd/+qvdy5U/23ewQZfbL/njq5NloAZOLz/AaWOK3ZToovqHb8Q7poe4/9NPm950GHbjL693+wPA26PWwpdPVe8J8R2VO2VPThmufN40LaDuFL4xqG1nUdLxGlBvdriZzDPqoxuzYan/mDf+zOfjziiQmRYVHsog78Zf/7ihxMXLkYfR97nzzDxY758m3TQMMjY2nwgaK7WYez3dqjnxphRexuWFi+X+efXy8fp+PdvENKUrGkEqau09awFGC16NF3opoJdeK0ICKC0Ktgkak0mPlVQofC44rQmbXnfY4X0JfEbymw2Wk57JCaFXxSvlF6Dwno9su1294ukyOMthY3tiF3u9t+YpeOWb3d30yBYhoxMDnNho0WPMviknPr3M5oxQcHzRb9yM2ZALY4r6NuiYs0dOLC14C/aVAQmiGXj/1PfRv+ej5bXDZ42kIfSDrhO7s76Im6LdwImeZMpvPvan6zptVUF+m2T/p7f75/68WHoelvtra81C9yr/6iGzS2vbsdEPG7DxrSHmqYxR3xJ3RmmysZmdi002C89UVBf9gJEW6JW8TuGOtuir0M1SvzpLWanou0YKHoc2tvquu5loTc7lP308Pfy9B1Z89vEk17eYW3wfwVdlB1zrGPNROH9cbanvzPt2Ah8nSxqRdlQmtr8Uaja6q1xEbihEzJOSnz+dN5cUMn/YMSN0z4hXfViq+NrIZBe99WosC++mLteTbS6qfI7SQ458Zy+Sfdh9Opp4mxQR5f4lB2pX3ewUFaDYuyxdsmLbH4/CY/7zR/B90dtM7K4jxI69Z6G/eXf8bPouqMeDvTTKV3xW2pOgmXIXsEPsev5Y9pmDZl9GS/0i1mSQXY/IrvjR9e468nfXRTos+gtrYLvZKPN1DiwWbaZb2uz/ksDE2rzVMoaR3qKRnYviT1/+W6/8PtsyZFl+ZKZMomyUnDZC/LYpmSNcaVU987yHy9c40jsLaNZLThvCgr90tVF0qzlHONwseMPc1d2qhq76eugpvzZUad/3eHykbQv1q9zhckWSbrgMmKJAXH1ouSuJNdTfhMJSb5h32UfxP323u11/ZBdceUa3YXVDW+eGmBerksWUhr3/8I2Zu5L4fea2Dhi3diR+kIz+qMyiDZW0vTL9pm2sVnw9IlU4NTbz8H60Zr4NdBCPuc/MWO/4/B5+Z1j4DZboKkB/ePAP/zPbsPyx1v03CIGGiWscLT5t1bMHSU9squqyjkTZPxUA1H/gxFIoZ6XwlIFNwoBvj2/P2Y+PkXa8ROkfP83mm792YDMeHUbsWM14nZbpXz34p7f5XnQATjdnjZXA9LPh8LBE+FbthuwfQoLoRo9teKVXiXxXzjkbv/dERDeLLoNqHNEfBn87wvXzDoijY4pYNe9cCIffmxzYRva7xMIFvK+7kpYwBIjvYvOOFj5I5cEL0OS5oalJRTkzd32w/VnSaIGc2XvRSbNFNMuJgeGZZiEJ/vyLWxlEKL6EGolafeajJ8S5+inkFSNX/9X11eQk8OzwhxzETVrxvfozQVLTDFe/X8vHv8+X+sPwO56sSdtYJrxUSP7pT5lvbVPtzCcheIh5xqv9B4PbmDWWtitj6bqimn/xooXcSjHf0zSBjzZzsnNOL4tN358CKD7J9HG4fPzeurV3WPwfltg+WINgpzdwjKDCGpfcblaPTx0cRTfYwXC33UQFSYf1+bZmmOd6x28nVKtCLSpktzlNMV38AYAm1hjJwanmPzzr9YtJcKa/qrl8NDMqavNAF30ZMzXLyn98vVs/3WWwDy5AQ+ONLH5n1Tff1kPGt/5g7tzsbJ0JjxKddeXMyBdcNPpaaoPwHCv6uaw+fNxFRotw/e4WfsK76U/P1O86woIb79C4mUaqedUcEP1O83h6Zvse/MLIyWHRV70tcwoLP2f7872tKCbtGVavtqD8DadqqWcCeKpY4GYuKB+oIJmomMEkZhSfu2Fz3asQucGZmH7+qpqvnypwNWqL+Q19dcsRvhYuh/2X7ZXDxprIqb6BokScitr4QvP3oxfoYaclcWzvFS/rw4b8HOXMcKRv/Men/tYXIR9d4Qyt3zOKH96D6EftjLhNojfkbfWg81b/ZpxIigPnh+ixe6i1cbdXfzr6BdIKI61CFpd2lYPWVdKz7DC7/vp24m/Y7bFEr+e718nvs5+o1mtosbT/XP1Zd90I2kd0ZGTRI2rCs7N6RsCxPD02aM5vYqhh9S0ynEpJPPfKCH94ywwne1qzerzoqL60DzpKgZbxvGWparyGLbFc/1fxic+11l7SiTKV3KpJDZbBdE5QkqiIs2x0Nw1We5Q96WrRq/NjvoVQzIJJF77Gqb3NHbQeHj7zNyH2RyRXAGV7nIgnJH48t8co1QLb+BIrHnjXf4J7pC54wbb+6MRzt4EEVnTtEbJRdL/DMrqjjek+qPCyYz7V33sP+3hn07dx3ll1fPFsuAc3QvTEtTOx1J66yoVNx7bWy+GSMlUhnHX1zBb/gI9fPssgFKuUvg7xi4+l9jThcTxfcI70djnx6eZI39IflqTHLuaKHwEoSdSy/Y6F1ZTtrhGIdnle9Oyxm9/8IsDi75Dt1Trx8TgcZVj8WHJ4uZT3z6bCMAnIoVKEdS7rSSrABY8ucbrrrhuuT7VBQt+nhOyHN2+LQxOgP3/LXPx4sXL7G7giZIxIMHSz7CJVHcyHiOWkP6Ah09cYiVziWN7io//PryA2S2hl+V+L6gdZhX28tYmuSR+fp5FF4am4N3JI3b4ai3tUgiEWN/Zc4j37dzmFRS9j+fgIK3b/iC78/PTEDo/N1I3evpBBbeKUHRTJt6SP7+egQ7nDxXWzj6knXUaUT9+ZmSsidnLQ+BSeeTgyr0nFuDHtnQgLHuPpVh/9Mbj+UuBf6fJvf6aNaeH8/R4jyq3xxzLRHCB5rf3jM59H8xjVW9i2i9+QZ+P7rTUw9JcH885bs5tX431UT1x4LftN12xu6VcHlAgXtlP5L2PJ7BVw6tWAeMYBxYyi1FT/+OhWePyqwTl/c7Toh4V/yWiigmYi85SnxHk1Zcdt+xCifaAzrPyKvptC5Uph22Y2RWqioZ6tzBz8WebE4gMgfuhqD4zdOmOueYo7et1ZMsCR/JauAodYimD/hqHEAvHNbxr3Xz9UtXz9iMghDG4+PfCriXDBfBYUhsD7AN9tpCJnwPLTa/xJnmmL/vmPi1/cmu9j+Vc/iZ5mUzavxmSEYrhcmCGVbdWY5OTBRR4zFrAAx9yulRqdf37OyF4n3b/9icrTEbOin8Xl9Xi7wyOPfOIcPKtb8Fj/8z+pKIkkmwq80YGlO4v+dizs/vmP4ol5+LJy5JiWj2ZUdVZHbK+oNJtv1cOBP//A9s77TLwtg53OF6FlOnlCxlBdyIBM36Tjgg/j67WdoRETg0XG5PksWI4IPNnjTcx9LGas6tMS7QOTUd4ojd84kpIgxvwLFe+RXvG//bWncQYWrC5FtuR7oenjtCOHa21Xo2XZOeweD5H5g4Gr/mfxHP3xI+sAyxDzvldVaI4alWc0ca6NuzPgayvj8/I86In0zZ+fSnxWyfGsBNUMZ3kbsxxPpfWn1+CVxycKbGNVP4a1FhjsAuJmxY7PfGvrSNLuNf6ZS9eIYqud//xJFnhPgth1i0yI1I+AVfuuVN1f/nFLwsyjMq7k6pg6UM7Cl+C7PXUjNlwdovvzxByn//lzkkkJ/NVb3/wq//wPqJr9mzmrZXALSR5vWPwP4vHK+uNTAVQqbMjhk2WIS3DqtTRst8SMdR/133siw9GKCFU/+7XFt9ZegXX4urDD70Kz+ci6HJb9D2La9cqfWvmqIKlKdgwfY2/pKrW3AWvNipjG1Fp9MeR34CG3yM5rsDXu1O6NttPjSvYV23Bm24cIXnP8XAZzeTFHt9DTav29Z/4uOVRfrU17IId0zwLuFmiS/wMAAP//pJ25trOwkoUfiMDMEiGTmS3Z4DEDbGPAmFEC9PS9OP9dHXVHNzyJj41KVXt/JVSXWNfaQ1ni8GB8M9YpRIYz5d9orrTtbHjJSm3L99jFFytZK0XV4WMvmdhWP3VFLjKqYfmwNWyUXpYs3CW/wsI0bYx++BOuWz3+i0cydHsY9tL3EMCuKzhqTfDG1j+9stUbjMREGKa9evW0Pz1qo07MyB//N8diJJ2YMzZGIqfD45yr2LRxXZGc6zmw8V4cGOpxWN+PWYbuhDga3d/88McTNKibAjUMu0xW42EjWORehZT2bjAp83sZ1C/N3PqVfTIP9Y6DrZVaGLdYtNimP8HmT2lor3sgDZYswyxecmpgwR/ESlFNuPEowlvhYxhXaTKhfP901JD0smLCvNeha90uqP3RX8I8/U2gGgSUWs7yYuxPH61rm9KtHwzW/GqY8L85UqD9P0cK8F5BCpK+1hxZnzuczlFM01MWVux9e3pq9bRPNL2VfsYXp63lJCGXiB7FyfwZggLcVhdRl7qrNftS7cD3IwjIrjp/k/laIg9cT62FPeVeJtR/+x5IvhPG0fDxw1k0ZBXqHRqpV8OArVfTsqH7Y2eKVdWxlvKcBqC4Tw2Cwtkf5g+76ZD+2oV61GqraTfnNjxOvoi955Jm3b2eCcA3PBDZiXQmXDyvh1U3iqhcIz+c+HcYgceFO+HInaJh+baDCpOqd4mQ/opkuVnGEaqtBRD3PC3hbE0nW43Dj0K97fNYdYEEPornCa2yoCf0fPNUeDr6IbbTwQdFIW+zfHBVoFVNa0DIzQ3g21wyakvnC1tTve+hMnZbC9n2mOCy+wwVwbURjxObiccPr4MsaBuqc8YeTJePy8Hyp92xfXiAYcqMVoQf0i2InV5jQkx4OmurWOZIGB0rWy9FVkM2NDL2Jv+dLXEkIritDxErJlZzcVruUH91GNuaNoUjPX4R3P0eCCluWFYrCHABEnO9E4k0hbUMqyjDeH+0aewEM6ChLveQ9MGTsOIsW/ONBat6ic0AO24QDHQwfROuhT/hbAqkbJKf5arpXTTSwG2HcK535yN8XOCJJmcHJiwRHncY+N6ALZtICWv6YwysZd4T/uF8k/lT1hG8a09IbbOiYHHBFENqNheqw9xIFvyjK/h59QfrbIzCRf5KR/kY9xJRfBYPKyPbWxJB/KZmiKpkCtWIh+pndrAO7mQYT6bHQftz+5DBqj/DTIgwwlH6HCnq9RdY2yeBqp7XLnYOzADCod4koQ4e1JXEHZuaDEVwOqMY7w/SkCz2S4hA/xYavE9/eiK9EMfDqx+F2CWNHgojeEZwfww8fPhc0or/JcRR00zaIfFa0qrH9DHCJEMY7/vilkkcuY0QX7yKorETw+4wzhC2WiwS7sOCjKmzz8HOFROsN1AKl8XMPHj/OiXeB5MZSulda8A4mUfs2j1XDc/JPUMnK0RsUMdPJI58Cq1Zjxgf3rhi7DLH5k71z4jsaiUIZ9spY0283F3q7snJ+lbc1QFPjuPRyiduSJa0saHrGwGZ3+sEiMLlOiQVH9JABsHA3tjr/+0XjfXnUDw+LkQrwyvDRjCzirDLXGjc4SATeT2cwPw93jm499kdcb87+k+8Vd/Cp05nP9nyATqn3e2IETFrynCIytaBzknw8VNOu6xSrrIIP6Z12Gb3fdlMmvcd1nacUL2Bt3CB4XbL8OAQtLS7oSLHk4GgsJ8RPt6dcFj3D/8FJ6y52BJ405oWMwvAcjV5MrmuD5gWqQ4Muz4hkmmi6i8fglF4eVS/fhy2xV8MujqXkVIuVbYGb638y09IkI5jtmz7V22Me0HRxRIydrx3V1jNhk/1e2uzZTg9Yjhk8Ur3F+Ncrb9y9rTbTmuxfjPvYD7rLwKaTHljyz/OAy0UuwGKP17o5RWDoVVotqpYNGPsRnKarcmkxPBQfq441PcJIGIfHEHsvxaMq/M3G+pmuWoPz3pgH4kamwXj58DbbDrUVTQN0H3xabQtHqn1okmyvC5rDcVHw2MdqC7jo/6OYCePJj0KrLfWjxrM0JOyAzUVeRhWXnoFUGjpnnqy2FkdQ6hWDRVMNGqe14rmCReB+SWuODhl4bAsZuJpO6+zMUrdHyAR78Yw7NoE+6RXk+VNLQKfRzRQO1iGYTkI+xya2ZJja8sn0+5mQk1md4u6t8+Stap+z0EeDyoOf8oczskB3oE/lg51hFgZyjCwrlBLOIrd4tQMs3I1ezgi3FFde0eDIA16Lv/VL/85zWw1Kg/BypNcrO+xPNCdu46y+u4L7BhWxLq03fMw7H4ijXSjzyaecia8/rgLNj3WWiu66o12ZGWD2DzT6mvEOwi254WttmRsZa+9Cb/73ZkG8UtkK3HyM1yMpaeHj5Sw9pdHdyD3MMSevq/C0YkvBIDTpcQHH/0Amyr5BVzfCjAS8QdMLRR6eGxUA7sat7f4U5bacMvHSGrfZTLhH53VIysabLn+Wm3Pj4Pfmr4QT1uWUPI71PDmiTaB6u3MpqMRrPBZXo/YLOOe0UkzGiBm5IGYd/hmNCxfR6CVRKF2GD+rkTQdgr11MLF7ca7h+t4FHlBbA1DvUn8Bu5x2I8iG8oJE4h2T5bndUrQT/Tt24DMIKZXNSDvqVYzDLCgz2onhCLbfQ731sLDxcsrOikaKkCzVY1exEg6FAhy+pKfevLKRvw323/qi+W//C/L5rC0G6xETL3xIQmMyoQT9GuN17LMROVwBhHbaY1wlL2s263XVwlOU44c7nqv1Ph55bctv+GaaZBj9RjkCsTRHpF3cF1ufttFA1Y06qouikLTTwTmCvUuOpBJij81N19vQ0uUrTrrvLqQaa2VoqMpEHfjsLRaVhQNv31dH9c8tHtYf6zmoXZ0z0ebpPbAO5ypAfMxjjx2fFvnZFxFwZP/D2PRkxjhyI8CzX1e0y7aAqppfAauAG+k+4nVr0Zf0CO9H4Y7xIemyUX3cZhAV4oXqcpaGPVi8AATk4GKfM9/ZfD+vMaw0qGP7XI/hXPiJAx95XCH5UnEVQyQpYZR/A3xwuyqc8qGe/543NdL+BGYnhSYUqeLgy/c5WvOQVpwa+MFAw7F9Wcvl+AzgZV7P1DioOSN8U11hce1faLIDIVmwPKaw0K8RDYKVz8iU389wuiYp4rb8OebJSYTO4cvR0KrUZMvPNnz/JAmH9BtXrOmdHPLe4UmvVVxXQ9M7L1joCaWoe4/bepQOjNLCRMhuvxaptiN4b2WXI+Fi8NUygksEVJjsMVLzazY/M9kDXrq2NNR/h7DLq/sReiiwMDqXVsbWJ+JhO/gnMpw/QzKTlyn/7RdUhsjKxP5zkIHFpAN2BH5lc8kKXjtfGw6RtPtYfNQfI40j7g87WnFJqMYKFWI6lEgU4sfAPM0V4S5YO+qKjK8WpTEc4F45k3rK3UyE8hx70OHeEw1++a/6p5fbVzHSS9YPAyMHmAO2E81/9XidFf0OwbcZkdqoKBNNxsy/eKfvJ9UBWW2mwrP9fBDAadIw/UZTBM+m1LC3DPKwuHbYAqc/6eTTmyJY/J2NNOfZZ9jb97+B7e/hEe6G9o6mN8qH+UHC+7/96zudnzFLzFbo6ThCcvJ0gbDy2h3oWvbAnm5nbAncsoFsUcJNz+6ShXOOgQZsomGHhqCalVfLwfdN/9IgOAKL1Y1yhaTVZRyO7hiu8vnuwBTjFA1738mkRPvK8ISML/Wei5pMMBlNKAlSjNhXtZiQkKmHb50kZPgps7XchaqEsXuJsG/YNZuFwk/h9+4o2LEPokWvJTxD+fzNKZ7cL6Dz4yf/+Qdq0NaspDGLPW3Tx9SudzBhuyNG4K1oOT5c3BeYOTcqQcj7CeJ+amvRNcpNCDylp/6Rqyx27M4B0ERoEfUrWeFciRoHhfLOSJv1ecY48h6BSIEzydf9jY1zJ17h05fvNNf0yCJG+pGBp5QrRaNnWyLM7AAGvZnSwym3hrG8OCXIBw8R2ZlWsG5+BSyK6W3+yquk54TPgPDDE+uu/2Ej+HD2v/iBW30jqScF4EOGhfDlLcrYD1gObJdnjSRZXasFacMMQbc8EE/dzzZLdihBwRILSfevHW71Kgfq+r1TizPEYXk4LYKCK12xfnry2aTVRQvFR81Tp60GsGhCloNs+j7Jsh7Xar6Lbxkg+f3BjjtWgHHPUf7zJ9TrXrY1a7lIQLDNbjSvNg3Xn/3kgREYHLaj65zMv6SxIVkrmQCrNobleciP4C3MlO49JgMSKn+zJ/OMdGNdAXZUHe4vH9JXeDyzdX+sAnC5n3bUWfuumpvVu8Px2n2wsRx+2QS6wtRcB3zJmnnGwG//T6u1Kie7JP1Z87Ufc/iEAkby5tfWFzkUcPc9O/Qgp/6/egqdw4/DkSKWgIGTkkO+lt/YqJ9rskzRQ4WHvboQLbov1gzBSYcHWd7jqJbXkJ1vnvznP+j2fNh4VPoGPEjqkVX/Rgm13XsOLF1SSHc1SLJEoV+C5kZWbLu/MmH+XjbBKhb5n17IJmWXInhmsY73+w4P85r3ObQeyYyGGDoDu/pDBFd80nBU34rwexocAn5yqGGD/kCynMoVaehS9qSW796win0QA2f+JkhstB2jtVQHsG+TF9IL4ZGx+ZSl0JTzF3aQOIX9A+lnmMedSjHIZIsWRs9Bjs9v1Ddsm81OfBlB6M01fZ93A5gz1etVs/QiJP0yOozY9c5/fpvkU+uGo6GOEGaUmmS6NyPobKrw4ILVmlBafsJ5uow1nJXLSg8n7TKsqGF32B7bmGJFTIZpVuAK5ZZviKYKdfWnl2F/yyNSP5x9Mge6mcNCKg44eIVFNb/ehxi+TmAk3SO8Das8dQiuRThht35l4XIYZQ4w0ZWJBmFZdb23ctBzqhf1b7YyzI2aq6DqiIgW7yJni8vuK4AvSaBmrapgPtNBhJu+R5rVZmCM+SFS7t6jwObFqBhza73QuNtywa7IzgML/IMHhu+y/vm7cJ19Fmtlb2sU330hXGvHszVTPCuIS9sH62eZayTDWn2iFbw3iHDgOLCtPyFWvSb02J09uOlt1BjWyFZH/dmaje4ddYW52+LN6f/8OFrqZ5ytqbcLFB1cT9RKD2q4nEo1UrZ8TKAfL8ksQ+WlfPFgUDeS1WT+fsJVnfxeoPvioQyMygGSZzNCSNj89/zY6To8Cj9CD20RWsPOVUf4LYqFYt00k0Wr2x4+ZMVD8pYfFvxOYrDVAzLHxW5YZgXOQD/vSmqR7lTx6uO9guF5U8lquN9qrsknh/lVsamBeeefPoROBQnNNj1A3gXlgZcLM93qdzaXrOXBvu9cbJyrczgnmlHC9izuiOgGfUVqR3dUPap6JNewZ2yq5vyfPmcV+4JFth/9H/8iHMfhYX6IHwLued/ToDPGZNHy4KyWEJUU9eU9HG5w/4KXe7LD0bWSs/71XUyYcL6DJ+FYWOWotiK8JRcbZ4dbGU6v1139xwsO2/AyInixCH+L6mF/2gtg3vQz+OanZqtfeUb7G4hgrVwpjRTRBHymiCI89eRHZsOsLWZ9bx54WOI/f5HND7EjcHt+2Cx5O6TvmcTQcz6vf/+P7VyVgI3PURTQkm357QU85FnYf4S3qh78xQNkfs04ROCdrfG59SBZPzJ2VPmbLNb1pcJNjxHtjeCwfKxnocTwtUdA/03hcjwJzZ9fJZ9b0Vbb+wOvP572T98x20UtCHfcF1sCUwGtXokJQ2+tMTp/oMW2/AiDZBho2JduIo6mlsJtf2I7jLVqHIe2Aav8rakbLDAhf99Pw1NNXS0fWFf00RWmhyDGezUVqj79PV7gULwQNVJPrub5ERb/1svXPodEQFq1wp7KFr1vemcwStPUDtYSEfZCRibca3mEpX9ANPBpF7JHk8VgN/R3qjfZN2RHFXHqHw9xid2wVZfXO/Tsh4IPA7cMw2DsEFDnJ6Oe3gjh+p1tXdv85j8etVyOlwCqrXMnkvVLrPnPbw7Pi4r9F+4tOml+DQ75waLP4zaR97I4Kdx1BUOKXg5D54LvEXKdqhK5e9Uh1aLVgS//zVPTcF4ZdWuvVGGhZdjwLnLSaJA18B5Ue3rY1o8qV2pCTbFCGobH2mIXWb7C9SGkGG28i8jfQIZtZ4xI23jVDIGLYNk7GvXq9FSx/sYQHCrSk1UWimQ8nHMEegubqGGRCdYlfjRgCueUSGEiDLR39VR78CSj+xrEYL5ZwsabSn/Tk5lFT+p9hWLtnbClf0wgiao+wuERHmgwTwSsG69V95x6Qk1rrBUBix78rSf1716UyTGURiiZcobTj5gB9gsFCLs9IdgC6n1Yr7EmA/7VRAhY9adayhCI4F11AdLaYgjnP96+NcioMzU3az5M0xm0DayJLNyAtR4u3Aw3fYf3TtiCxVDmGnKdrOK9dIyytSNDA2qw3SKjyDCbLBSkUELdkZr38BCuMHic/3g7Yld9X43e4XqGqos6qhfnX0bXpyNCyZQ4ap1eUUK5rcUS1zrC98/6GUZh5tFfPqE+vkvhgMWFhz0sWvoXL1Ml+o1y0JwV8fHO/fM/Kiz0c0StF/okG+93IDmNzZ+/S/793o3fUpykbtjzO/4FDaOv6bb+ydK9Jg98jfVHja54DvMQH1oYHC73je9a2SzGA4HH85zTt9PH1uRdvBh6ZHdB2uZPexM+rnDjSygfrbKa3aERQaL3jBrU6ZKFackIr3yjIiP17tU6CbcebjyNIsvSE+HcPDyApzql7vuQgPqvf7GftZT+8ZWpvv1iuPF4Uhk1smb0PYrQ6ROd7BxfDyXlvT//8Xsa7bJftq3fqprG8YnTW9llzYscSjj5rYCv+O4kvJGIAbzwmkHvW79jyeG7Bn5BeCS84qyaPIJrWIOHhFTLWcCWHwM4HaQSW8fMsKZKkGa4Ersmy9ksrdkJjEjlOzeixj6kodgfMwdK9q4iSsWjagm71ATh2xHJXIj6sAT35/2vn4NUur2ykWy3/l4Pd5nq5p5m3S2PUygvx9ef/2Ek+aYcfGeHmLo745hNPnncoQDBSqp7exnWw0WcQa8+LBpKp0tIr+lVh7uTA+kfL2dcY0V/PIHur/tfSJb41ADggZ78xc/6xpr+j+fuw/mQzeNQNJoRWBw2Rp8HTLg/jnDP7B3eTz6pJr1lnJbKHwMJwVRaa+/CFYarRbDVfd/hxhOucDRznuL+RYaFe79fcNPr1JgHZAnpW7mCSzFJ1E6Hjq1l7czg9vss9G+/jZveAik+pNiOd7+EBnJ81E6LriKpK6eKLiwQ/9WXvYvO4XJuTgEs+a+GQ/nyA8st4W244PFD9+NPyNjGY2Gc1VccfKXKmu7ONVWzaA7pJckpmBl3kuHG/6iz8YyZx9EM+9srwg543LKxrXsC5iMAdL8MP8b81+4M65wE2FMUPuutQ4SAUKYM8UCk1lAdighO11NKN/5dSbv7VMKN/1M3TC4Dv4Rf/k/fE46/yAMr+UMEE1so0DzT2zC0+dqo0qf9bv7QYHy8fzlw46tkhUU2LByqW5gS0yBQ+3Bh/b1POeiOcUj3g3kc6Mar4GnfhzQsxZqt73t2/sdToop/Z4tz+pxhWrgBWVdiJnwMJQJfjSdSj34/oOPRMYVVda//8lsy+9JoA0sXFMT1RmPNs3ccIf1WETZjdc/4tJjIX7+JXnY7NZyuaqlqpnU38cbbqvEGOgdCJ+PIspBHNt0s/whGdHRwXEk4WSieRS2G+Z4+ITSraYpOqvYTbQH/+XvS7a4ppEn2o176O1l8ZL0bsPELxNwhBPNpG0Ni7Dzpzy8OCzSVCA5nWPyrB0xc+lSFaedR/zkdAXOzMoLaPcyxe4IjG3+jhOBEphMO68wfRlU/5lp1MHiKy3W0lv6EX+rW/8A+f2ySf89fVPMKH8QkTObTdvPm1n8k1aZ3JtE/6eAgq3vqZE1pzWNlHv/xNJS2CuvbZ8PB6ewL2LWcTzg26lmFNzADwlTpkPzxCe26vi8Upa7LVnG9rlAs9ZG+zp/cWpXbNwILJh9q7p5Hi7zEgYdY1GMc9jqyxvdVXsHtaS5IE45FOJPD0fnzCzhBgmCNj52nw43v4qfbWSFrc7WG6md18NZfqMj+LvUwINjd+hdPQK1JewGO82yc7ft7so6mkML8vPUNtn7lKLRPGZALSND3ar/ZApNR1zaeiPd59A0H3ZNV4JnnZYunPGHWt4CQb3Y/Arb+wTjZywoVbl6w58W3arnVjQrjrLnSv/Wba3ftgSVwK4FrUCQrUPIWKLE740PzmKxVcdY7vL2DK+ru/bdinLgNNppaDUdObyTSn183Uicjo9MbGT+kFYSeeV0QCJdrOOdZc4UPYE40Kq4yW3cSH4F//HT0+c1vURto473BkaqQcMnhrYG67R3pW7kYg/T1Nt6YLgM1GT5no98s8X9zS4HC/99HCoh0RDi6v85szNdABdL829HAwGtS4osN4ReGARGewxquT3s2YZrjkNA4c5hwK2sCY6/5YSMTjpVAuGsLwHVsqLmHXzZf91EKptH8YqR2Qzgpx6EGtunf8OGemcNyTaIrbOvmTRRzEa1lnrIW/rKjQs83vLfmj/t0IE/QhKr78RHOWcAFqi/5jDogfbAJN10Nmof4RIo2lxmd0vUOGRnP2Dv1JyYIcW/C8/tVki/T1YrgXAtk9jQ4vJ/1sBp1eV2hZi0XUh2ufDKnSeDBdzLEeO9IEljrri/BWl0otei3siYvLWPtJ3MRPkzzYI0t260gre0Ltr1LMYxR773g7aBNSCSv3zCm4DKqn/J+IyD58tV85/0rdDnbJTv3Y1oSVLsIJmdXI30YCglz8OUO35fvhUYiMsG8k+IzKC4uIZxdf7NFLUIOorrSqSvKDVie7vsIuRLYiI9PVTX+chrBSdl9sW7aytByP4WDh8MxpV6ANYt5zRdCGXA1AtqhC5mDnylcL3eKwzWpE9bVnQ4D0sdk1V4kbJtxuEPurWs0B8N2ahv/Ghhl1EDXadcwZqyJDqS7tOJwvMQhGwYhhSY3S/iubchCiXRHe0bLle7LLqmY3vc8NHbxi+6BqjNym+sWKqeVIDUvOGv9dg4BMMaQSKZAqiWb+xzG5vBBXCUcAYvGNwGW/TPoXlN3yXpRdi/wNMcnRofiNjCwLiY09g1GynIbwzXuVRkmOpaoL68FW9ZB0WHhegTB5Whk7OP7Z1UbPh80R1mZTKNkHmHxMxZqJeemmu03huDyggCV5aHMZmf6FGo7/3Lq5C21phJ+ZnjK4RknhobYgt29DhNvr+PQiAqLFUoha1b+Cojq9W4oKLPuaXKQhTg8Va4lgqengudrelBjmEQ2FReZh2XFM2z3TZbxzcHhIco7EeuPGz8suQtsNeYShlg1TMOi7toStus20VM67rZbQOKj9iUowEY9uUBajxSCq4g/BCwJqzov7Y9wgLKIPUWwGF82S6uRE12RGM0tow/htO7oLHwQPBe2xYoPX2p1uw402gWCNeXtNYe04F6InywyLMGHa+EuLlL6XHBmLa/rrgWSx1FU9CTKZqX0ELxwzQlHv/sj442ZrPAjxk8kXFBRLa2ijxq8hyY187kIR8NLELx9JxUbvDMlk2M9iFx9Mh8JBxaytf2NDtRYOmDUxLXVl/GJg6l32eM7L5kZO/BYBb2WPjG2vs9kRYd8hhI3AARS/T6svHG4q/nNDv4+DyySEkOQTd0P3+/NF8y3CDbQVfc23tvXrlov3TGGl9AWKHooE+h4y+/hl9sfaPSTVIuRPp2BU68lPWjtkpGUK+/gKEQe4jF/zJZ2OZbaqRAzUk7uL1wPGryC/XDZ0YMc4nDxTE0FCnhpRHSTJhk/t0cMfZ6zqAv53lr1vJS1C2wRTlfhlm3xa8KbwS3YurJrtRpRM8JudgVqpkkEmHRJZfie8he2/Hs1zN9LKsLhjSsExckaVrdQdQX09YjtsZ7AVFxmUfO/eMZRqcjVyowOwYecm3/xPxCSx6K2a88VPVw4mvSJmsRAPqM7DsltV83WL+HgymyTIrv+JrOFaQ1VxUqoeRSDYX1+k1R76LuK6uGzGJb1HLVAaus9fdPQtlZ7vYtw96qu2E2iy7ByYW/Ds/t9oEWp8EDiBJVw8Q4WgiCqk5l/PmN1TBufRhPTsrVUvwUkvwpgU+fsZJI9dtd2zb0gknN+VavkphxofuyJ95r6zujans/wdHFDGtaqlpFzf3Ng3sMjzqZLCSZ+eCKQOJ5Gg0ozgHBJCg++zp6C3UvgWQwk+Qs81PseG5x5zGYpaVpoHOgeAen0BezqyC105L6lHj5ww5S7wIHD+1ARRbxM1Xpt4Qu6nONS/SEKWXdwCx5iO7hu+0NJFuog9S+f0r2a4WQOTTbCn6T79CqBjq3396eFoZO+sbH7fMD4vaS82rBywo55qQHbfp+apomH4HycB7bI9xKWQVDhICthMiecOENwb7sNUX/Yss8jGbyzIsPRO22Had57DjgVfIaDU/PI1rMZFvAjHp80PG+nfH/3kMBXq+/o4fqcLRbmu7PSimWJWOPpYAnbVoftkTyoU1sVIKekv/6rB7gjHzDnCrOh1DZ7ulfVY7jMFxoD+IEY7Qwbh13evnI1dvoazfZn3Fo4zxz676whFfe8D7Oqvhsg5xeEo3Xh2GjqGCmqql2J4EpttdjRWABJLT36t/8XaelnaM2HMz7EXBHO5ruaNTFMH0QSHkJGzGoXwzh/TRjXc5GtvzeQ4d9+2OpnxQ5VS2CjGydsfSaQVf14irS/9U8UXcym7fvCA0ZPwuvZYLG3eePgbLKa8KTULen4WB1FCuSV/umRf/tDDO8P/Lard8jE5ikDb2ifFKeynExZQY6gYcVET9xnCVkrjCY4XpoVrek2u1mNbRMKVX/AZut/h+ba8jm8nSQe60e1stgyt2fY3W8t9pzTmPXvyL6D6e69aXa0hYF0186G5PuVt/UqAHun0RWEjBNo4PU/ax0mpQd/9X1efSOUriJMQWNoZ1TTOgfr781U+CgaBePnZTtyqv4IlO7Ciu2mDQa26vqsNXt4o/4oD9m0fN0WYEUo8dPqBEYOYhSo8fXzo/riz8l8ottgCc7uyS74LNnwRcABsRroiNmpaYkmAy/YrYZMt3hMhvvU1bCQiYu9l9WGDAyeCMXH5UH3hiImzOPSM7x1RMP7GyVsUX+8B7d8T+PyUCbE7tv+r/7QsIBRNaS8xgE4Gh49TKcgW9h20b+/MyF26tKuhKg469C6v13s382qGsCg89AzIKLvMjmE7JkRCPQAd9gHKwZzmqpnqN26jBSp6FiSNc936DTki5FfNoDVu7RXy486Y+cWjhWLbNvTxJ1fYhde/IT/PkMdxvA248NKomp9UNOEhTjb+AAUQOu/dEy3iVBuIIJdkxbUvXeyxcKL6wGs8V9qbnqtW892C4+fs0mNi8QlkxD3OuxDyabhcJuzWc5ePDz1yhkbRyVnbF5o8KcniNrfv0C0yvmlJZFt0eRB+4F65BpAHLtX1LC8C5eD24pwdEYL75XsNay/uzX+5QfUdMY+46/Tm/uXD/miv2erEZHxn57k45M1MLIGEAShsd3q1fQh6dHTgfH5W1MD52nGxsREsBeqM7a4p1wxgXQqqLdhg8v5qjNp1b0V8mPcY/0E34z9/S1ZVofA0RaqrvO6AOaHWMMOdz0A9jkqJXzjJSS726PN5kE9nKGvuCI9rHhgK/NPKcwe7IN207hWsyG/OJh3+oEGyjIks2q6ItQn3sRICZSKifu1gLl7k3D4ej+SLV6iv/pAnWj2wDJH8hFI4yRTp6pLxpzb5641D/5JD3fVStiYBAgAky9wwIQ2ZFbnIXjschk7y3aE7AQEFZ7DJv+3H+d6v26D3l4tYY+jD8i6eitk4R4g5oA5o+cba2EdcyUCFQRVd+1noj3PbUEzPaIJU7PiBTVa1Ki7m1bFg0+dwuSkHjAiVBgW2bAiwBohpKb95LPtbwQ/JEvILtRja/FTlEMJvkK06KXA6IF3ZXB/ogeqLGCE6wNPL7A9X2rU049Nw69T4edVHMm8th+23P2l0Kh1ChErozwk8GATGEQ7iITfTwiZc+tSSHmxpqETGAMPl2iFnQQ5bG9+hsThhrg3PbFH8TiwZ/UOwO8U6dSUjYH96Qm1s98lNk7KNLDdA0Vw75cKEdg7S+i8/AJAkk7Ah+nUZ0s2ly+Y0V+PmKKLCSOrCaH3nW6Ef4/XalnObQ6ddHdByxaPNB+qAPRvGpDKAp9wlaUrUVH90WlSDVP1Ty/81fODdDgk83h6QgDvvokm6TBldABKA19mJNK9ffUH/jW3R01qWhP7fKJbAm4+tSa3zgsJINPDVTh+Z+hXp4li/Yuy+Ve/7/C0ri/s9joF9DAcVbjpS/w4DCqgvybsIcoHEWkn/cBEEwwtNMXWwNYtlrKVVy4e9G/xTCSEztbwGtwr7H1gIGlRv8l0Dc8B7Ii/oB1+r2zKdVNWF2nKsT71eiKu6TmFuRXZiABvAEsv16rapkuMUc3WKk8Q0yGx5hV78nXNiHM6tdqueKeb/9HDf/7swb92WJcaK+E3p6FtfobqW31ZOn3moHErYyIGiVBN3yGAYPOjNCS397B+gH+FZCg4bAZZM9CqDRy4fNUrtTf/MT13PxN+1lNKzbX2k6VVvBHUMSzpZdN7s5iprao+giO289GtJuDeZ5Afjho1+C8Jv3/5MVmWI1Fv9VBNh3a7T6Lsd4ipnDeI6guPcH+pRKpnFwdItn7n1b76nQinBI9hOY/ZGfjhp6CH/MESRvp4BedT2iBeMN7JGjXVDOHL8dBakTcY38XogEDXdLQ8WBX+6T2YhfwH23P5GtZG/jngg5iGBvRLws3vOYp7vAv0sfEN5vz8FWz5Ge+LXxPSQmnVf/k0qhQ/Exzwef3lMyJo6jshAU4QEN/xG+0c81hNnbfdUlfdPXxhujoskS7lf/FDdc3ag8UNDVVTBychpBA+YO0kO9c+ZXoj86Yvet3mCgCaX0fD6pmCFV9sDtwmolPd/WRsbfFuhFOzf9Og1BaLBc/E0yJwvaFOORnVevYBgX31PVG7CKWNTywQGi7bkVUqe7BYQqJCfRl96rxcvZpv53EF/vvRkM9+J1tzcq0QDFoaofrrK+Hydo4vWGnendqXOakYVZj353foX34b1aWotdsw6Egxl6u1jDR1YHKSD3/1dVg09A1A+AoGarpckq3fz6tQrDwP6PnbPhj/y38IRqfewwetPSXrH68I7cubhqFXhTR4ZgEIxm9Mj6eHtY1nudeqzLsZNQefH5asIDH4plcbO/ptHab2MQZwI+T0cNInQD0uvsJv8F0Iq4ZDtZj7Y6D98aCxvWYWkdwYgirJfex9LCmbF3QfwfBzJhrdCmZtn39Ub7S1iBqGl2zs18s22OEmYONxNpNpwFoJvJNwwsNWD9YHDfS//YVf3XK2RjY9Xv/00p+f6R3/84Jv7fbBZkV2YP0qpgyr93tP1LAXwwm+PmfQTKSiYab7mbTpte0I00T92NGT5RdYM0gq8UiD6S6EzHOCBj6vdYUvZ0TZ5FSaA5PvnGy3hErV0qjVFWbSi6d49r+s+67MU3+VZ+H4f/0j6H/1GXGo8LJ//nYvhBHeb/xg4yuqtj6rL7UzsgdiFewhxF8tJ6tsDGDzAyXUC4sRLjDcih8/aQBfE9xT59V8Nr/6q6GTaheiPeWa0eZaxaA31hAHWz5Y82cVwdciRtRdMrviDx/4gnG/Df6SdmXCniy7AhBPFd1fJiObL0+phn6VTNTc4nm4T58Gdk72JfHx1rF5veoqlOP4Qve1c7XmYxvof+uPD281TgQ/dV5wCUKHWoNTZmP1mnqoufOdWjlVANvj7a10xCv/6vV81fIAdkHaUoMz52zJdVNVk/New3qeeMO4PpVtUCLf4eAH1qrf+ASUuA5QL+7NQfx5bqGJVrUNH/+SjPbjA8FgLR5kej5qiy3ebgY71CeIPZFajez7OcLhZ080pVc3Wd92juDmbzA6gzEbf/kvAp7UpVt9K8LlSB6zbIlBSvfOXbKmbYasYuxrjCC2jGGMgkFVdUXcEdk5RdmoqrcG7tS4oT5IaPiVjRDBbjwQ7M13o2LnG2ih8XtcaHDdBk9anY6gKDgd/Vuv7s8/77sMEvgCLlvaT/4vXpHSwNYaXuuuBPvk7NDwJ+sZu180BLvSE6i9f0QDS6M+hQ3oKoqa2A5HKWl6eOLHD/aHzANi/hwieLmKe2rTGoK5bJQe7N1apN7Z/Ybkjxf1xhzSVD1GIcjs1x3Gqqfjl7tPhgXd/Aj6p1u/7W8QsnTaz2Dj0Vv9CSvqH9YZnjiW0qiWwnC+1S0Hs2yqye4EHavr9Yunio/bAwGZeIkwR/NRkwoCkdgVTciEq1aCh5rusXWOvezPj4LEDFXqw3mpqC86Vwi410r9i4OH5VaO26zo+YTdEVpsYRnkwV88OZp02OaFNS/4salNgDHobGxqEMFtPfG+8PbZLPBfHuTZQUMCfHwYuRi/EQbpGlHXuGoh3fwvvAXuD/0MQQPMnvMGRofV+Me/eXxUXtAfApEswDSsjSf2APW5Q0/nawHo6URs8KdfFNxNFnEfvggyV3jRIDe0bOq8j6f95cONl4UDw10AXTk0qKW+XUDM3N2uvyQNmXb9i63G+apCfRJNHLntyP7pQfpwzzQwyDaLelfLkCSDgD5qpSfL5PQEeMrvSeRn7SbS336O2BtRfTgcwuX3mYM/nv3XvwgXVn1N8Jq4PeKEwa9WWXoRdW99Gdn1B3OQ5uXngb94NdyXP8zNwREBVyo2zmmMGL29fAQPDddj1xA0Nrua8Z96mI2XdRusOwdAz/0R28zQwQyXaIaKq33QWuF3yNjtcQW//WtGXxSP1Yr2Yw02P4nEal9a60+/XZWAtDHRDO838EovRTByRYCDk3uv+tkKRfhNzzbpr/s0XBtvOEO5DO//4bUMPFLADMsk33p7RWTjgVBJyIL4T++H//xb5kovIu3jD1gQfujwe70ZiFMCZWDB4QrhhC4xDWpgDcRMjraWRmePPq7beJG3eYMA2jGkAZGc6h8Pezhyh61f8KxIGXxmyIksIDvvbQEJByeyHYkYt/6FnTGvmSD41NcUabdnsd0yOyF4IuoNB5/Xbmjsvui1v/oTy0bI5sKd1X/+zRI+Tib9+ZFCBdJ2yxVIVpwLHvh6qUHd3eWeMEGMbcg1qksxV/vD/N2/WoA7+EYDPNyTTT/JmijYHQ7er09IrNC2AeibEVsnQQhHG7UrfKQzxRs/C9fmmBRwkWhO/vzGH19TpZwXqKFWRUIkSkpVCtSVInfPBjaVZaO6sx7SPTEfFnsv86gFZ8HB+/WjsHGSewK4t6nR/cbD5vGTerCqLhF+6t6VLYS79mDLP0h25sna9JYMr3pxoa+3VFjCH6/c9CK1vl0RSi8TzP9+r4llD3Sn5jADw+qjf/pv8vugByzlEdYPz53FPkuu/u03BF5vJWOLJ81QLwxGBCO9VPTdewXc+DM1mDdUDW/sU3hpV4+G6JdYg3VKeLhWN4qDvODC+bOrefBxBvdf/2LLNyLceD3d+FayFHvYQ7sDFeKPyZKw1ZUhFCf8JnLm8tZinecC3L5UxcGhbStGO46DL6DsaWod6mpOEzPQbkvtoqU8noe5cGUVrrj5EggiO2MoO4+gaHc8xi05WesOTOJfv45G4mRVq+Lsgj+eSdbXSauIMVrxv3jKpeOuWqWfeFba4/gg3Nb/pM7Pn6Hbo+0AU9GEMzvwMhQrr6GoX2xAzzfQQ/92nKl+lhPATp/+CC0uOeJAYjIj43fqYSWcMHay/pAx/9JDeIuM/l+/iS5zewWjvmo4/KrE+vOPfzwZscP1nNAugj38jO8jkhWhAqPp7lKwxR/deDJb29tPhtGp9TY988kWTlDUP72LD4b3q/72D9Qu9E7Ujcetc+KZWsC/crIuzQ+Ml+eugX/9Y2x9tYRC9YPgJ2gDarPCqNb7u2v/6geSjG3w9Gtwz+D+sQts7WAQLgDrnOZpdYGPa2uwjZfnsPbDC8a/mWZrgJMIHrUrh634fAHr0t8bGH0LhN/B55SsbBk5mDqZuenXN+g3/aZs/SS63z2OYOPNR3B4hk8iv6zWWkct1bWN/2EnWK/ZUkUmUrI9yAh/ne3kb/1lzkc8to9rHP7FNyDVdiT/Jj6qJfJ+PfzTw9F0zofldZV69VcFFnWdM1eNR2/KwdZ/wvvf72Itw6+T1VYsSqTcfhqj8jN04Pp5jNh5NUYi/vT3GW7rR77vwBrES3c/Qv1sigjkzwFM5Go5cM6bGS2X+7NirlgGf36f2sENWbMxNzP843ng+vEGcfPfkLwLg75qtg7LTT3ZGmRyjMSftTIajqz8r44UCP/3kYLgEzREE3981qiCmkNK0ZWGWfxiBEP5pVZ5x6gZpHk4pxnLQV9TSJSmwtUy1MkIb6J7RfzPka31ubgrJI/nEZEf4ZL5pt9EmHKRg53upFjzPgURlL/9+neEIZxHMIiw6dyAWnowJIvGoxaK93tCn4++s+bxhwP11HcLDs8iYqPTyz2MD58zPYBfH05zfB2hoGoBWp3fPpldaOkavaxfiobboZLEW5XC3UskZFZ2fTadgN3CJo04VMfSt2L950oglVuPeulhqcZbrUAope8T1h8PDHgUeJz6ItDCnpsqCdHBvoa7B61wtCu4gewU6sB+El+klfadRevSv8IkHyMkdtE+a4cLv8K9aV6RaAQ2E6FrywD29IIDF2mM3QbYQiU+XbFVzHvG0Lc4ay/CWVRPZ3E7dUZzGHy8hoYLSy06jrwMj/u7Qeby9cjma7ddvN8nKna4KRhWHPeeyk3ODu8vXp2tye7uqeEPAeq36miRa9HqsN9LMz4c4ZzRT347w153XMRHhZ9Is6WcgRuEHcX+GbElOvgjFARpR33ZvoTLTzwSrUkRR31d2yXjNpQO7N6hhuD9tVlUJtvqeequOIYfGJJCXFZNdtYGWzreWe21e0QQ36BMfXbNrTHXrBiKLS0x1vE+o5e3UcDAok9qEqJUC/KlOzSuhCG2Xrm/i9nKrRduULzzl2q1TLuGXiW79AR/CqDZyhrAOEOl9um7ss/v8D6Dl9M6NBF2JKT95zrC3Cci4g8SBbMmfAOYZucKac/7aC1QnmT1wp1ORHDSN2MffSnht/V0VNSCAMY4znnVN9o33tYj7Ok3lwG2dh/UVvrLmpufMsMciQZayntWLd9j18KfWUIihJcPmHu7vGt/z9/21iZZXt6Ng4t4EKl3OQDW8BqJ4HE1v9in7SNkkpbmauTsXerks1/RCa5nyLr7nlqeXIfsoWETeF03Y0eZeECrpqi1KUkBtme+AfNu2avQe8uU8J6khsS+cRF8XcoY44vAJesOWfz/kHTt2qrCQPSDLEARMpQICApCEBCxA0QUVOSVkHz9XZxbpkmReey9MjN7VLAyQrRNkhs8KJ4b4aOaTx/Q+EWj1REL+C/b+05/t2tKB/mApK33w7uVrOfrbValan7Pn8T1HkVN65dNobxUITGT96Eed+GdwWKvyWwt3xWPT+agJb6mP3sOP7HZqsZmsybeBSxjoHonQl31rk+z/rXchyma/enub7q653MX7RLIPSv0mb1yEYP890HjfIzwVQqyetrGXYcOW3/Eh0eIjE6Ec6C21Ucj9smnLu2o10J1TxJfeqdmPw+OI6KtLCxT0eY5H9Oj/gElbPQJrYtj3hSqGyKxvxtE77VN3ea6UKGLaz3I0cZfPh/p2QK/KA7E6tpHz4Rt6IDw2ljY+Novd95HbaW45tJFfVg9Od2lUQVlQ0biFmGM2C1++JA61rgIb2HOT2b6AjudPsSIdMlgxy6PYfymIc4/YZXPpe3qkAVshXcuO9X0dzx26JSZJSnq9cddvrQr0A3tgKMg7oz5JAU62l73a2zW0TPiP0QaRBViYYe8UDReZc8CMfhgfFqZZsSz18pBaM9EYqlJYyz5qQO/72uCJSbk03R5lEj1mq0/kPPJ4HFdUdBI9cP7blIjpg4cQDV20UR+yi+fC3dpwepEeVrdGjdnc5Fk8JFam+Qr52VQ9cEr2NmbL8ZlfXUHd0wTGMszwY597IxRcl4rOCpRj7Wxnmr2vKsiGrzk7Z/CWEPSGA46Ct8vAzt7ZvTsASOA4591crCzW8ROklUo6Vfa/8efkezMGAIt3Pz5Zz+f8S+DaZK75T2Hnn3psmurnHziMXnO2Ru7DrKj8DQJkDc1655tCIlcsmX3rIkk/+y28Gr0r69g6YWolUQr9IdP2rwI792znQ+/iDJsc9fi84vLGmru54nsfmREbNS3DpJqZJAjVrV6gyScoX0SA7k+0i2nl1vOlGksvwQP5zcfxtMmhMfnXuDd4JYuW/AZnhIJffYKVUSjU9XB9Ukp9pKdjGjrqxsYEnrFoeCsI5rEYqUmxe5HnM56GoS/jw54gi5MW/cAOb0QL912dSD7Y39387lqMxFOcWtip0hZ35kj2cAPzEWReREaM4P+JQ+VfyTacEZojuh8UiwFfGI0ZcvpK1hnQIJfhjWp9dA87fsPGo/qkcTfnZnzdaF3cOPXNdZ/v8CYiDx/UDx30x9euEy96jEcXDnFxyu9Lv6FADlhkGHnS5rF/3cd1EXc4KNqdovQumsCYnm6vGdV89WrBFQ2aekDPevu8Bf/7hBbJKKKWUtre1zB+/Y1sEuKe8/X1k1D3+QV4T02TC7++SOxvRY71/cejcDmQW2pjLG2Ods5G8oLwPzVcmxRAYxBmD0FGuM1TUh2ThH/3HQRhHkIyeG6uRjzLrxTMDvji/fnx8UgRdoNUHvzFx/322fEvUunoMgTNZKouYQmpm0/8H1nD//rvTf9TBIVlCV/kcPlcHDn2yR3EN96Aes4mzkrk9UWotHIsflLK85/TuAgw/HPk/JzH+4Sj4GqjMUGH4WxMWoQmKM+WbglfrBhPX/zpUbedldf+JwVlwn1uoAl301qKzKDveVziZCWZBgr5sGQ0s+hhJ2eeROKNini6edQwKWRKn8KD+98us4sRc8bKPihmK3BHuimy3/4VXix69Li3Orwu+ET1rOH7VJL6xL4kpVJ8Jato1n3Vi9Aca/hfR1KeXsh+wzETtOwo5taTzX9qajxLaZLfOw5d53TpHwJmDhY8GwGJg+w08eClKZhGfNBpAmQbu/6Q73+GPTcpwyua2aTP34ygW0qoG98xa+0ZxpxT5BPIHa6hk+JLdXTUdvrCN4hItjpL9HnNfIAzvF2KdFc9XzcR1UFuvlwffUPz+7+fUIBfBzsR43Q82vi6kg2bg42metF01r2AUJdIMRcrW5c3O93jbrwSez7j8RtA2vVorLJyoVvlv18n88JCM7rMLXPxuDcae4fcPrBnYTH+sjnqIgr6N9au+wTN3K2ru8JWvgE2U2k7qn/UBqIwY98FD5Yzo6ap6MrbYHsnyhAG5ufl8nTuSV2TypEpznNUOwUDXa+YhoR/t45MEc7E+/tgfXU4WYFlV86BAdURPPjqpWqeYqwL9W71hg6s0vBDMKvT62t2M9P+X2CyvRE/42cmztusO6rom6ExN/Pak4Bryx54UOT9L6nOa8h9OHr5ZTYjXXm4n3b6EDJ5oxtu5IMMuzOHTrsLpx4NNgaLDkZiaxWZeH/5Wvy0q0ShndbT0JZSy67FhqDy23VE01qR05ZrbTo693oJHDhUPPGazo4xZ35H99prksv4LvbFRsYa9FyrsAy7Ribzb3krFgTDeg6GCaSnhQ0a8PUKq/LISdRXTJO3sd9qj6Mr0zMrIOIlHjwlfiW/AMAAP//pF0527K8Ev5BFrInlGyymyAoYieKCojIkgD59d+Fz1ue7vQqmGRm7gVmJmpvxq5nW1v2ITtlBDuV7gbjjZ8aKC4MU9c2YzBvrNCFxjC7RNxukpyM1t7+4WUiKSw0Z1TcrD98YFvSByxAdK6Qn6yUnh6PZz/6o73A7piN1OurXcLbR76Awy2csa98ooqcncGSN6O1JR/d+gRziIoO+PwjJHVHP8msw8GC+f3ywqj6+n1bhakLL8xoVvxY5EyW2Ir884Si4XZO5u1Rb9RNgRiBBR8ldNE+GozEYovAbpZ7Il506ccniHjrAjZvLuoCchDIRCz0JV9aLSrU+dXo2MJeWZXdq42A+NUQvXh9FrTneobqmu+p5xxBNTBfGFS91y/YdCQS9JfXK1SJygQcXIS6Wg6PU6SItttTTWpNINbisoH72g2wIex6tmylqwuiqymg3DCF6nt75QqQt0OBjeXcgtfnBQ0IHhWHBEsFPbOgvcB95HPU2Pp8TvY3tQbGtDxxMJNm5S/eE6ZG9MXaZqsFM9XDFIYV/6Du+3ztZ7U4aWqN7AQpF2gkottCDi7WwlBnPSMwCM01he61ONGdM8T98KTjE/bRYNDg87XBP349Fh80r/hhnVxewIn/AAQqULGBT48KmCJoY9ttOjBftdCWuKdcIKBvSjbDZSZQvLoGvZq5Y86OMjxBn7o3vO+CrFrciwvBML2yPzw3uQeOgO6RvFArvy75oslTC9Tn7Ybti3NNplEMa3CEVUn97aAEZM71m3qVbYDtfGI95fwphq/gomI9FXXGmci14a47Jtgp9CUhORfb8AzCF9Y21iaY+a1F4Jw9CmrnU9JPmyDl4PeyD/H1Q63q+xgUG/7wxs7c0J60+juDtHMCqhH+lUzDx/FheXp01PzxxYILF3jSSoUcktXVX/kwVG93i+61J1et62PBw1FxieJ6mvnj+/ArbGs0HVQPcL9434r+QBRf3Ad8yWZNlZXYokYHDMCPfGNDUU259ZGtL5u/Gf8E8B0Bqp36EMyyXt8gpMIT6wmK++UEdwI8vPEZu7XGBUyneQulEGt4jZ98tig6gvj9NMn2HkY9Uc9GCn946WE3rxWfHIwf30fbZeTZKKeeD1WDWNRZ+cwUN3Opyso7wZ7X1Mk8l0cffm4HSH/1fvKdb6yUpAmxu+xYPmXRKYa2tTtSjSk+o3Cr+DBNY406gdfkc/k4HlXEOyck/M7Tmk8Akz5PGkAJ51PfN9cffqe7BtjVwpdaBpvvzqfhWl+ZwiVQtSSZUXvfaBWH+BoBbZPxCK71bJLEeoDqoYmI4j3t/sfv1Vuh36i/nk8u7GwDLkm3RS+Oq8zp6OpX+NptK+rmdRawWnak336R5MlfKuZJSiw/TeX9h6/HamoGmJWjgo3xnARUrtMSonX0pKBsP/2cqkMKoPx5ETldJceW2dmPb9IgESQ2ZwUXQnm/oWTILloi/q5nsccF9en+lC910mWwE6OI3sStxT4rH1Jj11IIS3s7n8/7lwBLAnIkiGmW0/P5vAEr36LOi/L516kVBVp5kKPmehnNTuA+BF6O/hX7s3wGVHGlAYr2XcEWuz+Die/kBo7YOpKWu1G2nA7bUsFeDsgUNVU+Oc0lA2u+JfR4sYKl/h41+BZPOW4KJwr+1hvAjfpP/0m+N/gPr6x4n1E3amDwWl7Y/FZxPsWw8qHvci2ReiKAUTm8JFC5pz3dQR8Hs+kaKVz1D2qU8R2M3nSxoXyA62zqgYCpXnbhXz66XA3NXPWc60+PoF42jclsd9QC/j1A1Inh3ZyTxXbhvVoqJDpPMZh2VxaCVZ/A9vWyD+azOLmQ0upN5nAxqnl7KkrwO39Wfd+A6S4NhiLJnUfAK+762dgLJZTe7UK1T0HNJcJnAWaJSFb96pHMFb1M8Hj5bon01TwwmXL/h69Wy2Axh2mYXdVuNiINmjNnLkvaIdg8jh6O1//L9ts5hN+y3fzhL8Lv1zcHjd2LopF0Jns7U6F67IrQZjhXPaEAlfDHr/UjaqvlxT63H37Ah+vbYvxv/epXYlPrkvBgCUVUwMjnchrGl2O/OOzCQdV9jKTzxTFg9y9vQ7JzO2q8wRjQ20XsQG0+CeK/sWkyGQ0SbM8uoo78OZvEnZwSykpk0d/+s2Uba+rKNzESbgZYdP6SgSkXFPQ6Jrd89lNt7RIXCTjYvtp+eQrypFgSYDS8TA2jTiZeYbR2aVrxTT6fRckFK1/BuD9QRnehFcNG7By6j1EVdPerF0LDNFxSPSYMWMDlBiAEdNQtQZeTtf7AGlkJNYPmYI4scwlM8+GK90L57KfPvlVgZqklAQOJev4UezYc75sn2mT7GrDr3irBTx8JCoBMKgyuDX561+5Rc/kSSQcEVr6JpNf33C8BLz9//Agpa/2dOPtxA/vrcKF5/FiSMZlkBAkeMHXFnReIv3isbj2jKHn0gJjDVYJm0plYw82Yj+0sFxCdU3WtT7iX9dbJIOrTI8ZCugvE9720VPNyGWiQuq9qvkyoAdEx2lNb2Tr9kBvbUnkdeYqN+57Ll11sGPDErncin/uqInBOQmnOfEzm6H1J/ulvr0zG5xW/DY1aZdAe8gPWVr17qu3vBgpV4qLGlGY25oei+MU/9e/0Yk6K6UOYDZsIr/ifzdfjcwKi7fdEnOQiaZ/0XULV9QuqVx1JpmDMjtCKog8+5cKcL4W+i+CFaQ1GD+BU3bZSbzAxo5zAoV3A8rl+U9in/g0tu9PSz3NYllCYuR3VtJeUzNeepuDzPBzJ4ff7qu8p4Hn/vqlxfXzMsdoFxU8fp27/Nc0fH5F3dBmpc6NrVxk4ajADwo3qCN3Ad+UXyor/iChFU7/qiYLycbYp9nzVZ4JqvDsYQflCvZPhJ+NP//ndj2N7UbWM2WuCfXrvCZ8+fMbY23OBMAoj9brD0g/yPRFg12YWvVWKzP7wYsVtZyJj9dnPdKAN8JuPhn1tGRlT368IaJsrj86nRO4HBwaG8hIzk2zFsa+GKvAQ0KLtiDVbOlaEnUUfhlq3PrIUVCaNW9eAnOPfVz8gTeZXBWpI9Rlh/Uv3YB64iwvbW9P+8CyY06TQwKr3r/nPr3iaqhtQ6oFFluV2q9bP+7/9pq4380CsPmoJv5bUYJTFUsUai7jgh8/5a73pxzU/gr57GGSzxTQhXSwuIPKFHMmHC/jVXwVW7ymlziPZrfp6QeDsfWICBEbBojw1TnWlCiLBUw/5EtPrALvjdaQGIzjpA55CGVLuSYu3NifLfTc8f34EUbiIy1k/H33IN22NfbjZm/Mcdk+gmmbyV6/Zsr0av+vjsxrZycrnJxCJty1R5MgPpi83KDAi5h4bp8ecUAQbBa76FE6fxVDNixtE4EJ1RA+9rvUDdR/GXz41V/108osPBzTGR9ii3NrS/mRMkEqdS3d1POb0x+efzeKSGT/pP79i1cuo/7T5auwS7/g7XyjTzXswFZy1QMVzI5yJPgQfJ9tm8KRujD/8St44cAG6zWdS1t9r0sWXlw03n+5N3eY75svq38iNxvbks+LnfnsrJ7jyI6wR5RT04GpaPz2M5sn8XvmSDOGq1+JkDF/9Ul2KBirtqSeThw/BbC5ZC+3BNqgjRko1681S/PIJKYRX2nOndZZ8ZrUJEfj2FTCwIxm0p+xLbePVJ+2hjyZl9evQq+7qpG2ruIT4bpk/v9CsRWhu4MrPScO3ejBfLpqm5grX0fAVhkwMr74Lrm+npnbc++Zc8nv48w9wACWaLw47cIDqDJHePH0TFreaoWrdpaC7VMh70jzcGsBnMKF21fsXxwueQEF1R/HxYpm8Nc5XsOJ3bLt90Q8/Pf9Pfy4AMSe7mzpVfc49WXanuKcN4QoYVY+WgPJ7CP7yG9uYCuJWPjqbbGxg4BUVGkfOYX/1feUfiK767LQgzwDhcr1RHX4ujD2eQv3n55ht2IPph3/jdGtTvIw8WNIXhMALkYW6VV8dxtd1A+/Szlvx8rMa+hOc4HeufLyr9lW/WDBKodKee/R+gQmwzcvQ1EzIDHxa45V6ldvK/fsski9LoTmV76sF0jTSaPDWxmrFMz60vkOGLfup9p+s0W7g7qcztYqkr5jZcddfvkFb74gAK+Sl/Fv/x+q3rf5aDf2eBMha/cLpW7BYWf0OuldO53yasmMBtbyKaeCYYU7kKMhgGKAYh0nv5PNHyAbonwcOO/tnCRYz/UY/fQ/JBo4DtrVnH8aH54D3LxubQ0emQV31bbzq1cHsBhsIxAfosV50UvXkaLS+8vimSOpJCgjZZBycE9NCfU+UftVbF1B+7zrV685Kph+f5nRiUvzdquYI9n6rlqEuoUKU1KAT7i8XhhDqNCmdMCHT4znAXj4hdLgksbmUmd6C3vB2eCfu1i5ZS9b97p+ahpTl0y/epnBDKNbwO1k4eIn/6qOTwZZNxvb8BJ5jyaQ/CoSNMR8V6lvUQjI1TlvNqDhasLvwDt7Pn03PanGB8CYYAemmcs4n99Ok8BoWZ+q/7SAZRtGqgQCJ/POXAF39I1A+iEZd90pzdtYOVxXHz2L1P1Ew9SdugqGmQjTXNDMnFNyV/2fwgSz870cKXlfhQd08HQHRg2sG0sdzor7don7y1Geopo9ywuFBCYNvupCblBBNR0D/Fmx63a5HiCpZJO/dRzHJ4yZFMK37F5on5FWT1LyuwH/HBUbnLO5HS8cZTG+bDFsX6ZiTy+l1g8/uRYjg4JIt4g4ogAjSgyaDWPa0qOsjIPab4Dy4n3ruEnsdBPV0obHbW2COywNSdw5/J+OoGPn7xaZBlTxQYXMjPtkyvHkL3JmEqSMy3DP+ml0BNco93guUsvl7Uzfg8xwd6nFtlEzn51NS3WF/wsExaIMhbsZinc1BsC6bYkDefhDBp+DdsL+x1ZzZ4EkgbfMcSUXk5YN5OzXqfBIEhK4xCejxfFmgdDMQdQd5ZEzmti6kRMkQu2OOsYfsHKGkXV9kExViMh5pXauBbUBqLSfafzkrvIKD3pk0dG0+oRe9k8C2uiwU13ETTMgeFbCuH95trMWcZWHy4ft+vWOniDCbhT5v4C5YDBzsSWBOTQQhkDy5wp4iv/vxubtIEDxFDt1GxWUcY3wNxaYZaaBvjYDOSjbBaNlNFLmAB7MS5AjeT8Sj5uEZsGXPly10N6mGNXx599TThxK60bvFp3GoTJojIVbvW/VLtaEn1a15nyFUutCh4f3LB7MUlxy0h32JUV4rJntrRQjjMDzSE4/rakbJMgF8RC3FZZf2DGr5As7HTUyA+pWSJZpvEtQbU8XWcsL99F60KwRxT9B7OX3NsQpOLdAjsKdWkp+T/rdf+dVqcbgBdzB9m0oDt5Fgwj9PHVs83bXgKwUKmmvvnszdxymgtQwj9iXukM/bOnBBur6PoKSykYvpNe9AVVY5GSNONxe8xw0cq1iievK2+7m2bA2en42GQLJ95sxquSckciFifEqKZPGCQy3D5nCiWvv4mPPtfY3hgtsvtpXx0M+qs78BBx33JHUkl4kWQxpYf48a3NXvRUG2FBjeQoD3geaby6mPjioclphspEpLxsu31aCmowDNRf/th6E8RWvjsAm7l4+ZiE5NJuiFKqMI84eAKepB2AqDltPjPHjV5MdmrF6Dz4yUcdcmyyGIJnhWc4kU5t0IFuUQ3VRx2xkUtWCppndZWDAyvZBI8euZL1NnGCA8WwG+k8rNRauoDEiOjMO2YvU9aQzQQqVD62AFn1RTvQc2uD2jFu+b85MRv7MtWMdciOr0tIDRzPRUpU6rYls7faqlG0MC+Vor8SHs+2SyP4oPlWr0cVC2NZsOzgRV8OS5v/jp5NG0lH4jLThPvmpA5665KbU3CRjFNKyYYKYF2AWTQXjfs9jkpAcDuiJv4uBBvkkreNWg7g/dHTGp6auvvru78vaTngnbzSUYba+04HE63LB+MVfJdSALRLeQkMPbtSvWBsoCLD7Z4cA8kIB8QLVRSwf1pBpe22QQtrGv7MsrIKC1s2oi2xiqULpqWHvCXc+k1O+gFG9kJEltykglPgwALn5PLfGT9wwKRqiiGyJU968n0D+SAEE632YcPg510m2jsIYuH/U4bnu97y96p8BG5VXsGPJ6rF3JhhPUDerduDxgv+9/8Sane/kb5EuJDhr87q8m2mi2mw8cjCKobvUB77bDK5n5VKrB+aCPNNyFF8YGIRDg2n6IWm/1WU3iOBvwLB1c+uj5T8Iwl8WgFAJMOONa5rM8P47AkPsaW2g5JPNmq07gxPw3GdTvzBblkBXQTB4ZadLXmP/dP9l8PiSpT2c2cJkPIW9GFr2t/3d+AC0F5zeZsMuTPJnmWzSAdUQU1Sfk9ZPAax18f40ALcoJ9lRPUKGUp2ym2N+DfK7ehxvkPKAS2HBv9qsf0ETHDzbL665fxlaAsN6GZyKNJQOM3hMbfDfSlhprfRLntXFie4Yl2vahnvBP3F8Vn8xP7CqRHbDH/UjgLLyPdOf5oJrw80Wg07o6LbZOlg+XWO9UsH+q6+zroGL5xVnAhqZ3HOjfApBbPiKldsICr/kjYIeAR/ATv3RCKL8H08V4HMH24h+wxx+EZNoaeQzpXMwUrQrMGEaTpN5Pg0fxu17MLrrJCvzyfIcW3oz62RJUDugGdRDgAosJXfYa4COLjxiZ9zKYM1yHMPGOG6w34hwsJz+U4BY+HKppScnW84jU4XmhRG7aA2Ocdqvhu28q6p23+5wvlrEDhxxU2Di7r2rcbPkFmHS3w0YkhvnkVcMV5A+ckc4PInNy0osGl+/tjp2zPzBa92xtlEwYxuMkV6yp+ydU09qm7kYOzbkT5kmVv6607te7n8N3IqneGNdk+ZiLOQN0siEdjhpORT8KlukhlWCI91/yiFbLQxGPDfx2e4hRVpn90onF2ti5+xKxlHkw6ZdkAMXm9sR476SgcaQxBYIHJtKWt4lNWdUt0Hx9CwTATjPFNPJdSJ1OxYY41/nHFhwJrPUaLW5vMSZ++gl+T7uQum30AfMpmTeK/fRdtKRelkzp4huw9GaTbNp46Bd0mQzIvV891rfHIRkU/LnBG5BO+Mz8bzXd5EgAHxFZ1ATqLuca3o/A+71rEP+L1+pEfVhabULPQ0TyYduerzBh7oJxqU8VtXdKDKbN+0rN3WwAssrLoGS1SGSVvczpeckKcAqAR/Hp+6pGJUgQCL7nBc256wZM6sYWjDtrwff+O7D5u/Gu8LxZdjS43Llg5AoNqeLX2+H42psmC9kOwV++s9/+AbDr5BH49e4F4Xo89J0exJn6w1+u6us9H+2SUj0Vjxc182NZjXvvFcO1XuKkEOtgvL3jGL4fG556rezks/7INtD+WAuableF9a90b8Pt1nyg+XGkVS/OagSPeiqh7X6CbEyNiFMX3g5omJ2/Qd87bwOUMXfBv/ww2PdnB3sMET7kMzFn0t8yGC3ORLaQvpIh0DoXaq/NF3t+ywc0SiwBrveLNjgMzCmZBAiXQeOpZZ2O1bjh6xg8lorHf/lyb9YGACXS8a/eT1xmQNhZ5kSdKJqr9xLcDLjmNwT6e5yQG/814EaBAU2V8VCxVv9GcPkWd2pEqMkprseNMhrPK3Yf5SkfPTwKsOI6e82/Rj6n7W0D/cRj2HMjqxrqzGqg5ro82VqAJt/f9d62/KSGKhWBsN9yLoy67EODsrVALWyvrrLWA2rfNn7C9++slb1DJ2J7GFk+cu2FAM4IeaIaXFkNKqUGjBK5I4+tcwDimQgdXOOVyLICk7G2kKYA8TgjqbaeiYAukgHXeksNeRCqxtM1W43RMiBBGedqsD+LD/nrNsQr3uynkLoQzKp9wMYkesFk1VMMp9ljZKqOadBHnw8HJNI0NPjFp+m7mnLeTDscOndschF2G/gfAAAA//+kfcnWsjyU7gUxEOkShvS9iQKizgQVBQFpEiBXfxbv959Z1aiGLnuSPN0O2W9Z+2JH4w7VEnMmryxJ/MReZulAuPNnCJ1ju6cYOWU4O2vYAS8sROxp211Ywi72/vQk1a/3NGG2Md+BpKCU4ve1r0bULhm8xw4l82h4Fb2Vlzus9FWlwXpJ8/WOTgKsQDMT6NE8mY9+u4Ljc5WxdWmfbDkOrw6Ao5tRc135YTbUt6Fs85dGWJuH5fv0efhwSxOHZyWu+Fcv17CV14KItPX+/AAHtfqtE0Ftp5DEfDbDpbsh1O9PmC0fQalh93Bj7LWkALOYqBGw9icbW5Vpm3MoXLfumfMLh1RjYOKv9A6nMTvQwJPr8B8+fWeaYt/OfuEAU2GGup28iLpTtK3xXJ4qf/oleO/sXDy2VIDFZ6+hP75ddzawYNsOC/X8DA8Tk1debXYooGh1qnymfl2CzAQm9lo7AyyYwxTChKhEYsw3GTFfR+VUczLiOhBvfnZrTCf4GKOdK+VUcYfrn99B6xE1CTsM++bveuCbnf3M8Wa8MvhsdxVSpDDM/+mhj9Un1PmyC/j3eDxY0sZ/J5M1RDXAgVeTTQ/p+Z7i3wpfJ3Yh3Er9XIhck1f3gPZIabohWQ7++6g6KympN7T6sBzodIeb/qSncfDC9dXqMzyezjH2Sbj1BleLGDr7WMLhwf6G0zmROXl+CJBGd4dVs9OuWySJCLbUPB7Ea9saoOezNzVIk1QrUJ6FotWVTvb3dwL6je9gJqwRWYUVmMvby2fweWsvfHJLJa9N4XaFu6WVEF+NYSgKiTf/+VdqS75mruohGCH2aoVaZCUh28qW8DQ3LfWUYxMy02rR3+fTTb9WoiBHyj9+vq0XhXU6DiLoOamLX2I953/rA5rjZ6L6B4Xh8hoyAyZ+xmEjW7mceIYgwXpyR7Jfsh3ore7qgN7SZ2xwopuv9+uQQTn+AeojHg5zXOQQ/GDa/umN5A//4OaviXgJIvB2jXsB+TAOtvXJJ1RRbwK8T6SgPn3s8mXdDnXSDqcvRY1+CVcUHEY4YahjXfQswBcHoEB769rtS+HCWPBdBFklCaIOOttgplWZQkOtfZxv47X+6av3dBex9jT6cC5vxwKa7+GJuMt1HWYeHmPwvsYuxuT2GlbjPEjQO7YddVnwGzqyu3Py17p4aL0s7bAcgc9B4VaYOP22ak4e6bmB7Mz/thZ0bki6o2uAd/M8IDnozuGM1oCHxwi98Z+fn93yU8KsgFea7EqHUe5xesK+8XJ6mOpXOOPj7grfn3eHPWGqh/WbFv/0DA09Jwfrj5sEEGlfRD3IcwldeBHCA3geifzNvoDpU3CEnpO5+CBez0xUJvqBVGjfFO/mC2Pbqb5/+Ib2gMGBXIrFURNnbYiMeFjNztXl/z4Pa6qpVtRLDt0/f2IX6+/fegS2pjBqbHp1vbZGDdWdOVLPsqphzdLn9Z8eqX7pO6Qr8wPYHq5HakXvImS2IV2h3ujqPzwSMhIj5Z7+XJpa3L1i/uQXf3yDzbN5SPbstdOkwrA+f/geCutn3bZUiCJaomHIWal/LHDgjI46Yd4nC91PCjykaL/xzy9c2yUuoKBEbxrz935Yx50kwScKKVpPZZzXtOoy2NCfSAQxmMOF704jSNrKQvJYeGB992H/t37RLq+TirDTLQatAxLq5lmas8JtegisR4fY3uxDkkC5gFdTEnC38Sdz3qME3lx4xuj860x2eI8O8E+diI37UIU0v+EV6ONHwZF0+bJ/z39vLwm7pOPA9/YrNWg56RsBQJpwRbX+UR0nS6kuLgGY7YOQAj7eJYTlqlex3+w5f34Gu8oUhqv8kWvQVPUDR3cqV4y2Yw2PCejJfFiy5C9/UA6OQQnZ8sJFi+oVvHp+xBovCma3rWcoixlH3nR8DgTH5V3dGb+U8LK0hH9+Tw3Noqb6+/sNl91N7iC0PyI+3H6kWuf7hcC7nAZkR6jB9vyVXuWvGJ1wZJ7aYT5ir4ZVU2g4cE/pMHO7UwZht58I/7EAYxdv/cDldZFwMNleLoICXYEgdj49F+svWXT77P35W1I9cAo2PL8CMFATCa7UsaWJOgL58BjQc/dek7Vy/es/PHDNz86cGhdLINf1hChb3vTr9TBTtjyV2k9rn8+SkVrQtJOYADHKc3a3xhU2/vyj4eXzBqtzm3ll+zyiZs7BXP/82v5dBBhJB9Wc4fj1lHktNYx4/TwI1WSX6tXXG+y+dveEEtkm8FLWGnY5eR1mwKEYiDaPsfuRz2A+t/MHBknIqGdNv2r8wpukKPeBR9z45E2S1d4I+eMVUL0tL+HEDfcZGllGECdVZb7ss7kBi2qd8EGPWDLujCSGapvVFLmaWa1t60E4LK+QYv16YOsYBE+4WuyOdpIAK1J8BQK3vAnrZZOzupvWHqZzUhD2FGuTWBA4UNmlIrX0XDanUFA18KffQ54PwDYfLagUhk4AupzCOZDc+z+/jbO4HRhdBAdyw00iO7zvqzV1TUNlu76gf+PNN7nzhF76OaAZeGEuXriSU7bxx9e5wPnoqyVSh8twod7uE4dSf/YlSD6qgl3aeqGo1j8LrovfbHw6mCsmiQFYxBLqn+w4nPd5xENuyCUydlQKWfCVeWXLD7ATWcdhuseNAxeihDSiP5YwVrgRLL75Fevj0IWzjo0IXkIFouVpVNX8gPcRvJzwR5ZoCJO1Ei8GjCOUUlewvuFcHIAELymM8TkPZDbts7lWH138xg45G1se8SN/fIi4Q50zcsgbATyB4pGfdXkB2rbfO8z0bKAbnoTdpv+hCh8pAvanqtbcDRBkQuti+zg9Qrbl1394jhT3lFbrj/vyf+sFu+u7qjY/boFdKd5J0xcqI1KvIzWUFPuvXpAwJGBL3vCQ+GPRgVnwhxGIqXFGr8llA+0WTgI/DHPqW5Np7hsXK+AoNRM2Sl9g89GnqyLyK8MeYz+TTGkOlc/5vvzND7blEZ3yk1dMFtkUzSX9JhbM0BwTKbPebGqHB4K+Y/o0VLU1mZa46mHulkeyT4/PYX75jQeKG+vRsi/3AzP0KZP/8v9gLIxc3C2wgJ9YuGH/fvyA2SweDdj4EFuDtFZMq2mjyKnmoT//84enUORnhrj+wFWj8H2m8DO5MlnxtwwJaTVPrazzGXuRfAqXPNdW+UsCQO2VwybvYf0Kb7peYq/cGsV109opXCeWNEh2DRB3oZTBzJRNjFytqmj+LBs4WmZFRNwOeVtfrp46N1JMT/KohpPwDizYNV5HDf37Bmt4HSHY+ICa8SqCccNLtWm8PWEPSQHfWoYF3PIHNOceqtYhH+o/P4y+u4wLibPjIVRLsaV6/dIq0b4kV7j0aoMdeH6HTP9I658/QsqOjMNcX6ManI09/4+v2EmviCrEqoPj7fewq3jLQCAKArZZuw/Hyfn0cGfjkfyrV1WvIgKjy3nYzz+Esd+sOarx5gr6Vw9ZTSuY4SlbGUWbHlvla+fA43OW6Z8fnp1H14Gr80KEpfc23/xEBK+xBdH40Kg5hwHr4P6uRjgyYi5nf9cXZ0zDUe3E4fp9NjFodlGAjft5B9b28uzgY8pP//w02+ol//xgSnzP/MtHYYFCSGbfOybrzmYO2FX5isA3Us0VzBGEWfbI8ZY3smXLz6DuI4tueWy+PLrUA7+zG+Fop7ThP/8orijHloyHcPqrT+jLbyDHrf6wrjrhYPW49vRcjfUghs9PpD56XqYbfw7k2JpX0PEZIexV9iZx9sMTSjGU0U55hmwsDkxR33f+RXYxdcLlOM9PFXwincZADcFWLxvV87idMsAC0xTFUPagPExHbGx59PyHl8LxSrDjYgOIETsguB5zj4Y/+/3PjwIRn0/Uua4G25+f4RO2JCBk0DWJEc07ljCxoj//SgEVl/0RGsGk4Yy1pFq62m4glK4aNZN8a6TMZqKKR3emeu2r+fjymwDey3iP3ufyyiZghQ08O+sNm3szCOeUesF2xJFEpIRFf/U4BaZR5GJ/Z0/mqFkzgZufRfWmH9drG9SK7kcWPgSX2lw1iQTK7IcydY5HKWTxHHzg48Tqab2ZDCwcLgP4eB1CHDyLipHXYdti0aoVxs8nDWn9fvfQ1ZSGcDRqWb/pSfWCHik2Y/8EFv7a3uGRVhckXIIk4Q/mqIHT8wXIXlqdkN2+EoI8owtBmx8dM2eylC2/ILu534ctU++dXBqOh1RUhcOkvv0YpvVAEBtwYpI0J4biKuSGaA0i81++uzaSTa1l/A3sFsI7XPpdQ60trxvjOCig8A4jHMgPMV+f0keS/vSVb9rJMJtNa0E5a0oanU5N2F+X1IF6ew+wdhxObHGjAcI0EBWsR0OYr6/Lq4DP4rzHtmnqbMMjB5rhjGk4d2bC11erBjSJBxpy3XuY09dDgKvYV4jN9zpcY3TvYYB0Aynt6ZSzLX9V9yvqcDQpHVha/GngceR2NKqUPllA747wdikf1Nv083o6f+J/+b+evYxNX/0IeJyWmuqwkYbtDrAAbnk3tdyRJOTNNf1fvY9023xhETtE/+ol+nPwq3/67m++bXnYQEQbSDBbxZaYyaKHe//37mDVPDWinh5uSOMMjWD47h8b/uqMkcRvIAi4L9VeC18tHghWOH33R1qclMhcYadmEJn+jV7F3Vwt7XCOAGqFAi31q6ymP738f9lSIP4vpxR0D0i9ah+Z8wmAFNQ+sUmXvadwUXbYgsW+Lqh5yTK2ZDZ+wjmSEY0wqpP12DxG6HfziyJDyvOluxoGXItmQTIPJ7aY7CCBsYtj7AfXOGfPm+tIs1gSxIuePYiCdpOUOc5cGhr2z6xjgGuwC0qL5rBpcqK8UgK1IBWwaZgwX3a/nIOFlpY0ezwfFauN/Qfey06jtmmt5nAoDil0EjkmSzhyCWunbobvPvCxJeV0YM2FQqVnnoIPPn0P9GM6PVCViiPcVGRskfsfhKF0nXCAKzfn+4hHMNkOSZT7+MxW7jkFwOKkCl8ZM831K+V3mbT7kABt/lbkjd5IfSofCUfeJwZz0D4EoN5/XzKLTGPM9kpJNVISUlM8KgmbdFmDuVbeyDgtN7CaSVKqufaykLxrvhUZxc6AwiAeiDC7izntkv0Mw+snpbqklmAG/GuEXdIlRJWOyFxV/r3CB1V7bGPLAKsPaQxkwfhhpNeTSewuP8LZbTXsKHMyrG/0i6CZFioOk6tZ7XWvhdBKsxvVgtoPp/bSXuEXMZuGC7iFi/r7OtD9OZAsr36fjPV2cMs2f7CjLB0Y9/uJwOQSeThPLiRnT8v8/M0f7Cfjkv9ya/1AvTczqovNOiynwuPgNh8w4uZmmMyHaoBbY630xpqUrSC4BeDWBC42h7MZ8tWhbcC6CIQG+LOaCyqsGVLVCnBRP+ewSY+fBrzTrddMlR7Dua5yC8bLBKhhNmbOrMcrALacrNj5vcxhzfFbUbBR+zjduW9z4c9EA+gRiwgeSzlsASeUkH/XFbZv25YGSdNmyATVpE8k6/n4kY2ruhRrj71z8DIZ06qt19PpgLF8MsF6x+4Rik2yIP4m1mwAv28Pm2f/AAtA9L/G1vZ9fCnnHzA+HgI+hJYdzv3n4EBitPhv/IfVUeUCHmIhxQE6kIr48aGEo7HTyW46qmD6kFJR72UzUPxLRjbjk6RB6Qgb/LSwPyy6p8ZwudxcNPzUFbD9+VFA69a1+Dwmvdm/0JqqT7osaPLpu+qKekU7My1jes+iIFylvWXA3GYx1sQ1rBZvlSBsZYORnX375WsQ33lYYyOhdnFm5jyXOwusC7vRQ891w9JckwDuR9NBgnWAYC5RXUBJAycifUpvELHz1MByKQpq4psN5mzbfKF+nzp19vetZco49/Be9hr1d99jMoJXGqjJsiak/XSPZLFX+oTts+hwnG+9q0/NI4DZ4ieItekBjIBfUxXsvx9q3USLMeTqM1Tmz4dqi3M3J3fNUnhq7xx2T9nVnK3u+QHdM7WoYx0KtvRGTIDzfBNsWrOZEMUXSojj/PAPrxbTewpw9NIaa/4hD+fucMgAON4B1s96DBiXmj008EGl1neF5tJNZaS8LemAnoGYsek7PQl0UePgEBwP+aq8CgLrOgLU1awYUPsxFsB8IZMagvcN17xWVviR6Q7r/dmo2M8oaxCpzYX6YtuHc1P5EBo/8UHePMjyX3G79JB8Xh0ONXrMiVxqhTp/3D88LfJ5ET4NvJzMkSiWUrOFXPQMJqL1JruAGuaipimCylk2KCo9kc1Rs7uCfuJiHLhf3RS+hzpTnkop0UvfXtki9UUH16IqKEKynsw3ZZPwU1NSs+izkNB3xMFdf33QJNae5pIsGgHgPPkYD5wfrvFJN+AvudlYzycr2cdz48Ck1SNsu3abLFKfduBx9FpaHOSSEb58XOE7/UFqNGGVz6GqpzA7xQp1tJNuinfaB/B2pBjN2/gw7peWcLk8iwO/c/WQ3JSPA5/f8Ex231gcVoN7G7DlLjo1u74BYyt1HtD6uCYMxDWYw3YuwDbfqFn/loHWhloCwekb1GdRH843/BKA7wkLtRX1zdZCfilwiegZZb8nSeZZcDmYRpgR/seWnKTHvlaW2JKJzJ2McL4erwqYP2FIkXfAYJuvK8hOKcZeVl7APIdNBF+0lZDUPG7D8rldDbi6oYw92f0k//AzA8oN2z0EYA3i0lM2PMOBJt3/W6+abXTY+wXaIHwlx1KfQbUnUruqJnHjAQLnlwbUN+5ROFfSswMgNy9EFFp/mC/f4gkOkgawUwY4WdTfelVwy9vYfmk4F3X/+IQbn1I/mZyB3WkhwPQ06lhHNzthHxN18HiwdPr4/exwpgIj8AoeMYH7+Zysvbh48I9f7THmAfkelh545ljQ4BN+h/UtBxCe34lIDbr1aj1Br4Pw3HxRG1lmRY2HWoP7nFNSJ+hjLhufgb7rLWxoyomxkxNJkG84h0aP/SERh4tNoPraMWxHt2ZYKxSsSuyeLtQoxDpZNN5YVcPfWdi5C3M4lkieYYPaCPuf5J5P7vpM4XVe3jRkpwWQ9pAjWP3mC1p7d2cuubWWsOO2e9XzM1+RQr5IYtexL7bMU5lseiECkfo2sEt+Zs6OhV/COOoUGrRPmjOcQ/SH5xS3KgM/b5U4pf41Txo0fsiGePGPINZVn+KjqSdCfGyuMG0WDm/HkJjzBXMxIGsdI7Ctf7bvSQqn6RJTj+QvxhaNCHA9cWdq88c8bHb+rwaxYTyxu+HrLL++R/ikbEHC7T0OBD65I5Ca8ICj4pVWy17rn9B8RSY+zHEL2L4HvTJD6YQteU7CBS9SDOznDHGsKScwnZzPCskh0ag+QgWsVdVxUN2BNwKNpoOhIqbxx2//8HVSd2YsnpdzRNiX24ej+OKu8LAOV8R9n/PA4G/loAQ+M9XWXK0Y/Ckc/D3NN/Z126vWc+OtoJUtj2Y9W8BsqTxReVe74vDNXXLC+YiDV8Gm1BgeFzZtelWRhldOg5ox81ebyR1sepAGxX4Em361YHAlBxoGlrXxa8vB08eaMa52U8Wy+TZCyYn5PzxKRinUPDWBT4sefBLl/EMeO2W4Xt44wgdsTgaTO6h+ryOB22N+93wdQT441YaHP3Ot0dH6w3McZFFvzoC/jIqGxxs1xROtWGW+Y3gqfiI1rgI11wJxHmxMkJMdGpNw3oenIwBAu9Pndr26A+wlCJSdTYT9XWHz5Zs+YQILizrHwzQwLr1y8E+P66B1wVoip4H3L4eo/dJozkCKn9CSXwNF+6L9p6chu5hnNKv2fpj1X0nAcbUn7Hi4TTbDYCil7ThUM5UlXJ2uq8E5sjGRjfydjHQ7OLRNhOhvvobLLjUdmES3kWqJGAOWzdEVFNtZzsozOCZzcgQBvMzqnYhHPR3GGgUIVtYnRxySInPxH6UFFvEaYL1Jp2S50ekOjB3WEG+eyny/PQ9jNxvpNj+G9dxoKxTDGZCCvxfV/EFdDz2WywRKRWsy1zOecFnUeCtBgXyNYn8Ef9fHPpAgnJX9df673ghceylftfR6heNUhVRzGoOJ9kOeYckvFQ1e5c/8h1d/ekZ/aChfu0NXwtf9dqLB8Kqr5ZJ7Mcyy/oHSPPJyvn/vZmDI0kpdZ66T2YM7QdnZbkQWPLHhT2/JtZUciK1+cc6431uAJ2NrJNWWDlgOq3+FtZV9EKxfdsIPn/gOv7/rFwnbeC+73ztWTXmUqSM547BmRyuAP6kdMb7sIJtPTV/Ahqsxjl8fbVhbyTiC2/A8o51+eTJWEVODYPB07Gzra9091ye0LEypFyp1SD9mwgHSiiHext8c8akf//kFtOmf+YkDCTJdMumdPbWQp9GJg2I4NdQuEzmncjopoOEaTB0k7PKR49+R+vd6g/h+RYSAWCAbFoqN3ktzdnIsBZo3FlJXvw9Vv/kxmLj2kyj58znMRgc5YFkHin4k1RJW3sIjTBsxwX4HVXN+4mMEHwElGx5XOQuLagV4TQEOjvvC7Eq542FsaE8i/J4kX1J7UuBVdyy0Ty8jmL4G5MCmd7Hfx3uwWJ78hEN3F7D9GN8hC1cdqsI7WvC9fSjmnMvqDNeiXpCCP2s4J42lKX/6ZtN3g4BOwxGmS33Hz0fZJ0QM3B5Eh/cOb/9/+JW3XwCD63igj1xv2PySnQgyeDphH9MyZ7p/LECWtR71JYUPh9MMOGBxSkVRJrbVwnGXD3jd8xPFy4mZ//zK/QsRfpTpkY0P+ZUpYqlWaOdZX/aD3J4DG/+hOX7fw85S+RFSoxio7U88GF7WlYcdK0esYeXNiBCwKzy/TyL1uZNh7jf/B9Dj8KE+r1bmcrGLFUyXHUWLSyTzh5YPhC6X/K0XPxS1p0Ngewvu2BfbwGRUv9dw8rwB2zqR82nHjTzYYT4m8nWXJyzNTxDOUDnR4CiX+Wglhx7SR1AQIMuvZJE1LwJbGzFE1043hUkgEG78juY//sht7Q5F4ZoT0b/A4U8/wXc9N+QjzeuwmlxQQ243deh9GWnIvuYxgEWJZGyqypqwl3Xk//gfu0dtl0ygP/JKUPkELZtfp09TQJBvoINTdfFykePWEQbT/oWdNGRgknqcgXt4NzFWvqtJcuXKgeGgaBR1zjOcxX1Rw30UGfjCfTFbdom6wmBSeASSC8oJggcD9lX83q5XbzLflTOlJuKFNBt/07B4FrCwO4Ktk+TnrJ7GBpavqqGBmJ/CRXvKCtzZ3pssUC4G8jf/KowiBK2vDuaiVhDMQ7ekli1Jw2rHdIVpdGBU04+9uTheosEfCULsKYUNtvFqYNHvz/jPTzUJmB214uQf+XBuOUzq7tpAvdcztDxTuPnLmVMNGboUNYw3F3mnCKBU3AXNZ6Sbgsr/VqC+VEYdyb7kk+3Zo1LuHilRsigw2e+yFNthXSm1xzhl08NC859fIENyQUm3vG8EepzdYwMuLVtX4W5AOQuO1JComk/LqFuQtq1KftwxYnzYDh7U7ygm3SPAbE6+HAEHcdegz7xcQjpcuhRW9Z0nb9ZFCfPc5wgtbo+odi/3AzXZz4F/fhA1vJ/zCUgl2JnvH+rd7zskF6B9VDu1Q/KX9yxrZj3V8KPuMdKrC6CF9ebgLTMfhIv3j3B1W56H+/e9pzq6zua4L/sA0IuAqNGxGcyFcr0CYdgfCNj8/tyJ/BVsfhJ379AOV6uTxz/9jU8z983XEGYefMvqgVpv/szm6/c9g1bWGDYnmCcr5zvwHz+79/4SzlM0WPAq+BYNx581iO1Ururh6h6obltLOB3nHQK9umRUb5Kr+YeHMI0SD/Hq0uW/4OF3UNv1Lnk08Gmyw1J94Jbv0OgsLKxVdp+jrAzuD3tKfqyYmO4M+NBMlTTKzKpl09tAeIcFmaQj2fT1hODznJ1wSNMSsDPdOaCTBIUM7fmbjybXPeGn7g2iznHLmLhrLMB9jx525MJORLgLeZgJH+HQaKd3OOjPd6q6rF3JTNlsjh+Up+D7uxypN/BuJVQomJUWnTl86JIxmboLP0Liyg8EpcIN90s2RzAbNW3zv9uW3WsdA77we3r4+73OCld4Obk6NT4B+afnYPqubPyXX9LM7nuw5YE44Omr6r+ffQS/tWnQ0MzfYG1FCGFe3lf0yd9hPtPoBqGXvEvs2NV5YIfCzv5//nREw/isfw549ENBveBbVrMgaCkwb3xJ8/AaA/Hg8IXakmTE2vPdg9FrYQy5oOtwuOHJ1/CDGl4WjZJ9w22fv41XtO5P1G13Qz5Vk+rBR7CY1IZYGNYCCQFYDL2mrn9d2Jw0p+xffqVfRhwuQj+tih64HZlD6ZLPdZU4oFR8h/okLfPxT29wVKmpX/2YOb8RMqRQnY+EK0IHLJc55MGmn9GnCc1E4PgwBWJzWghX+weT/Pl3O/VK7BqUmowM1IAdF3pIvme/fDzEvge39UWWUZ3D/gK8j6wr1kCfwhKay50iDjA3OtFbnEnVui8l7Q+vaXjeAbB4j0MBrCe3R2xSj8Ne1rQIoCmN8JUU+3BKnFsPD9PHppqPjjkQ+3MEr3kjEza2ImBsiGZwLrwao9K7MOY8kAZ881Ohpf0dwXpsBg12niiSW7mLwkk+hyuU58FBrX9dwMJ0TYF/fiqIxP2W9/Uj2O1mDV/bVQ0XhxkORBeQkgvlGkbf5PeE7wDl5FPy+2TLBw1lFj+ErIqdmXSvRQ3Y8mgc7aw0nxrTOMIOHe74b33/6UelT3BE5Hv6ZCt9RxCQq+FiZynSYc7rWvrL03CgOIdqfsiXFFJ3ltEaCVxCS/OygrtGtkZJ/iHk9+Ephv1DUnEwLnLSjeK2heIlYiLuTzNb20/twOjR/6j2EqthivMzUjd9Q8SKE8LFeHYrhHeFYSM+RMkgnqMUqP2McfRlScWUXR/DLT8nCnsEYJ4+/lHx0P2AnS7QzHl8Nz2knxPFBiuSZPbjmajpqR+pMzqAzY10+MC/fOsvv5h99f5UzlvjuWxlxsBaYyHAJ+Z1yzsTk/+gsoOi7gb/5fF8iUsQqNDfriefTK3xLIF29xUCio6ryEv+XWHlCz9C7O8nn9Tfeoe4FWwkdN55WExmS/B7+0T4cBjUZDWT/AP7rrP++OTPHxz/+Xtvq8+Q+AhGaD+nltrfvs1XBO/pv/W58S/biz2zoF4PjJB4r4bduucEYMlvjbr70wxEYfA4+KbPC5FevADGWqo4ECbI2fR/AdabsjUiPY069Q4HZE6hO68gXiigZjEM+Xxqzp5S8Vgit3v2S+j7dm0g11c6DcveD5f3Vb3CjU/QZR874Wwn3fEPT3CQP7mB5PU6w+4KIorP5zOYtvWk/uW3vxlI1T9/veUFOFwgylfylgh0kr1K6hA7gxDEZaCaVt5hr2VxstWrHHAa1zf++39//+cPz0hz+CzmSKKoh4t7XrHrmShnUt+XSktO45aH7Njb8pYCgtwZaXTjr+bKhzceep1s4sOY6sOk8cEMiAseqLY+OzD96dcvN3tEPV6thAcvh4c9c7/oEwlc/m8+bXoV8VKOh/n2NVMlMLMeH9SmAWvYiBBu9aEtn64Zcbqyhr2UM7I/T3bFfHfJVCtNLDJveLJ8SCeBpZh77N9Tjv3VI1Qz/cTY1ewuZC/rKiiVz//oRT1GCesuTx5seIBk7vQJF40/OirYd+J/+rw9JAggNfoSyamy8Cf2zFHn+LhS7Rt+wP4+a5r6V28xdjnZXm9L4LYHAtWworPlZl85KIVfg3BPoTIZ3J08aP8+JnYez8ewvuT3HTzuwpWaeziGowd3mz94XfBh8ysrie4l2PIXJKzMqFbjd/TUc+RidFgaIRxj4DaA+8Ye2r80msybHwHZKcM0yn1QdcPB/0Ch+eyw+eXO5tx8+A7uo2D6l+8tm94AWpC8sZ1eP+a2PdGAiesxejzg7zCy8OxspzYK1DGAF46DODfq9Bne//T7yPlKoLSMfElRlD9GlbP2UW9z21GLucf8X365b+YDRl50r/75rU3P4sN8iishaKvxTy/h6BVut5BZR17e8ivCi953mDGMCrDpVbR6ijEId1w0MI1O3pYv1dX8rborFELIk693XZKhnboVNugbYePjX8HkrVUH1UB4Yw+L+3DZcWsAjVfWYj+4tdUaxfqois5zotb1887nCxaO8Aw1lXBkpQMbRhkpGO4upJp/RsK+kywB/lQhYsyLGLJ0/vBQfBsSNkr+nDC4uwUgUusL4qAdJBNygAKFpkmp3/ZdPu98dIcVtb4UFWEDNj8uwRQeQ3rb/N7od34DXR9V2IHuGyx/elEU7jkOPqE9MPCbepjbfEt91vCs+8u7vaoL8Aso+2qJ3DiFf/4o2saDwd6L4ZaXoTWs+HzcXg8qah6pb+R6zpT+tp1CEzs0ZMdiYEw7E1De4wn7zbne6pVAU9l7LvBfvvOnH+Utb8SWeyjMpbo+OTB0zxA7R/QB1Hk4xh8f/6uvzj9JJzB9v+atccU9ZzYzOrj587881fyrB0Mc3w7UbNMDm4g+eFDQExPjrL/lA+C4Ut70J+ruHyMR5fQrAQUEHFHlukjGXjxDaLNdjaT+VYd7oj8EcHWuMY2+vAfo/R5CGV9oTl07L9l0cmYLbnyN+O45sRW+wgZmS9TRh1zDZPirN3/RsjVuxvucKWfv8386pUD6n7cUSG48orfFZ9WSOpIH90jZ0fCanU0mzJdCOeXemd721M/3zQv0kL3vLj28y5ytxiO4wqzNLWq77pgw7tRlMC2eC1G6g1ixVPSuQNd4GzsrbJNev3saLEI7w3qyM3OGD84dxrsspGh30fOp/EkWNITKpZZ81obFPqYpeFrlA9sDQ8M8DRaEY/QUqT41j2oa8VrAV5SviCcWAmuZ6B7Yq9aOhl5umHz1rBBk9ksm66M6DawSqgzyr8bBzj5k+ZxL3ArVKvSIeClKk713aQltzB2wRl/9sJb7uwRo/3Sp942Lqkev2wpRmuwR85sgmddb30D1JtjYhajNaT6jDGgjndA+fhps4j4yAr+3IlHvo4ZsfvjXGCb6YaDmpzLN/f1RHyGW7Ct2bpOW7I19XEIspiv62es+H9674gPOyfeNjdeqJkP5rDgYeTtMdr7ZVWPDykhlfSagOfssrPYKSYKv1cywtrurAwnd+x32L1KT3XWckjm8WwWUXqKHMfDNYbZdpgBP71VUzbhPmDCdLbhzpxOR93tkMtTDGh7J602N+eGF6yUMOHgL3iU1/fJbMdkEmfIqywCn5HhN+keuZFC5xRjnrZyCOVT2hhrN7o7slj0d2LN9eOCplAl9nihnkru5QhgG2g+tDt2xtV5JoaxOqBG2/Z7fiaVHaGwlUyRgATA0PlZI2VWkSDCnZDWMZ6MYgsdjLU2ckMktiZUg6UrsXj41oE79quGr/AQUX9c4nKdDNsOCNhr2SQ1zMqmtATnvfiXdKSzD5fp78cr2fYirL06+3k2FA9v8xB68wmFF3DtQHCEXCKeTJunfMlfA/WF1sFYJX7a6YanBN7B87AzDvlrbrrCgePr52NUIyxfvByXoa22FrSOtTAE3IgEDHxO03x/aYRAwUWTDu7g4NA/xII7cr4S4aSIyyyehIudMKCGnRZiaa+SCpVfFFd7J2cSG0OBwNU1xhi9r6+1clEa+h0sbQOvGXf7Gu1p+598RHomN8N/84+XQqNUV3I9EXPyd2UJgODvvvtsR+ZwrIe0Prw+UP5KDZoBSc6Zct0JPUA7oWpDSpNU+8GB+dkuyzXewyq8DD9NJVak1J3fwy192AQrzVGLU3L1BZPzXUa0bvODk83PZPIVqDYXKEmjAnr45XqROgMXyKDH2VJPRGjgK/FpRQYNaJyZb8ZFTVwc0ZM1LHI6S5yH4aG0Tn+I0NendvxlwWy9k7+ptxaZKHf+tNwd+fmD2dkGnVEu1orkSbDY99lUPvyw0sHHgvXCxBs8DEhox9t4OM6fI4ohyPxs6Ei+FFs7t/dzAPLwG1NU6VIm1ZH1g1T59Il61gk1jNDtQHoQ9qjhdCBdB27oGzr89dWJSgLGCpytAxj1DDcy0XLwfYANP6etK6rLPzLU3Hwp04+w/PJ2mNYrgyeAifHjZTr4YsuCAvjvpOFJuVsgeztgAA18v9Lw/uAMzLOUIbCG7YDfnk3C2XaDAy/lrYTNVNTDvYF8Cw7cn7HnmuVrv73egPkNOw2azX5I197IP7LLkSe1h+rG2OeiNen+ggB6qh5ywZ/8qQSwdAfb3P6vaz/S1KkB92tTKjw9z3Q2nDp4kzqAhgkU4T2jHwY/ZNdQZvjMjVjxrSrO+ALXOB4WNelBmoH9lJ9RV5jxMP37u1M4Ovhgtajew8q7dYZoeO8S2+SpCEFhK7JOO6sfTAmaZ7EtInPiElBb4Jv3ZS61q4/m+jbcPpvdxKoB330ok918PZrSGPCyCdKZafDSHOTx3Ctxej4M7/oSL5+gcpABNVCsNPPB7fPyPP8TLp2YbPwZQ+UQ7jOrTe5ihna8AFe6AWKvfAZFfNg8/clfQixLWjD6+gIMjO6TYGyuSLHtRM9Qi3ENs5tfMnFLvlirfzAVYz0q1Yr+vx8FoRwcaneUhWWCUa/CzFAn1nz8/Hye0gwAi9YSWYziFK/5mpQLhzGHDoS+wzql9BIU5MIwwMsEsddIKH49Zw2G046rFSUUJ5lEwY/duvsxRSNgMyEttsOYJAVtO+J3B+tz7WJsys1pzR02hP8UZ2e9dg62MugYcWdvigF3rZLhHyR1kwVlFgm3s2TBVewLGj5NT1JSHZA2b3wr7n74d7L+ec+ZdAh6k006l7m2IQnb3T9ofHhJ24B7JOt14B2z72XC+C7l8tMxrCiMR7LHrQ2P44zt4P99TahmHXUXkstUA/xso2vmmV4mo3/KfcSxpzk1OtVSf0oK3htcxejjpwM4cSWGaKGe0y6rGpDmZAhhK6IeD72qEUzpaRyipxw+2QZEki/c9ZeqKzj5+LXtazaVtdOrHYi9szbfXMPShkEJ54PfUA0pdUcNSYriiqaB/7yfzAp6Sz90w6tH4MZf4go+w6LwHfnRfK1yel30BMVnPZH38hGSRxQcHdvtgoLY8vPL1vU3k+hl9qXP8nsE6no8fKHzGCkcXeKjm1GCxMvdhgnYmeDDmieAORpA/UB2PZbU19kihNqA3DfYyN4zp96DB7pARHCqtDuZHsBRAv608dWdxBsSo3EDBTR3hMKh/Yec97w4owtcPgcz1Q7aNN5TU+IMEo9US4W6nARDsX4FUKzyG85/+uObqgeK0rAB72OEdnvKyw8+kydhcPQwNFOaPbeP3qpbLW1agF+tH6kkOSWgzKQH0ds8fUV/bXdJ3LhUgSk97GhR1DMZdvkCoDTWPJCm+sA6fOQGE+XtPvfFSM/ZrPp6a+bseOz8esv7HrUeYL3NK0yfWqlVozgK8GbTfxsuqRHZ+EHgori8cBZ1cdQzwGdzD9IZAbXPV+sjXFPBX4GP7mGvDikxrBeZwtej5+LaTVYZQg45wE7ATHQwwcnLp/eEpEeF9i8gibMFXl/6nN+bUAEdZdnCMD33XJIxbj5LqcIeRmqApK37NykiNgxfC6Mo3+djKNQc7NkpIVX7PcEKCRiB/DSpqpWA7uJG7GtD2Pj018nuQ8O9hB5WNT6jmTFXFSmWGwOYkRl/qk89X42FcIcRUJEOm1zkTMJGUjFg6UpNPk6+rdyLq9L6lNP7jw02/wjTtAWpW4TMQe6+v8BUoDcaBoud7m1YjxGQ+I64fM7D0MGvUayCkGC80AEufNxqEaHciPOiXkEDxgMDbIhoR9mGSb3zygee577CRIw0IyPpCuLxWAQc73TeXu3R1lPcqaThIrL25XKyQQPrpTziA0nYKAAsD+AaOT/izK5iM7qUM/n5ZjkbrUOfTTwQGvDRUJVP/0Yf9jGgEVsfXKNalvFpqF8ZQP0Fuwwe+Yj/reoe2F1zI1z0sf37gAze0QrJ9/ySzEN8b6H+fJbb37oc1rR+N0L2XBxroVxJOaVuOUI2vH3q2JK0SH+/jVVWqs0Q1T+jZ8jhJIxDAECP1ZTf5fOcTBO/nuSXzNl6DdzEEuOeDIzWb/Slhssmy7S7nCw70yBqW/HV4wkj3b4SbtTBkD7OP5K9Sf6ldFlJO1+UzSm5i9fSWOH4+388h/+e/qGGcPFOYF1AoxUwU6hyXV/KzkycBtjD2WB/CLlwMtmRQ6XOPsLBymcD9pAKmiXTGRTWI5hhPQqSs9johUfI+1bh7JAGItMWh1tnNQuYJMYIbnyGJpJ9kqWr9COvsTnH07tKNj+YZzj/jjqPTpIPVO+gIbPqLMBio+fyI7j30YvOID6fhMCwoW1JYlt/fP384h8KtUPjrR0BD1Tb/8A0kZLCwL0pzPpcfiYfRtzfpwfGmimAHB2B13gl2NLiEM9CkCOydUcDh/TCxZQ7CDmbicqGB+z6Hf/oeGqeTiJT+KIPVlqwARlyzEpBaDWAhuvXQ4OiRBhyok/l+LGN4M22Vho0BzdWjd/i3PvGBanJOw2h+qobmcRSvuhzOtn+21HJWIVGWd1jNMrIg1Gr/tOmvU76elLyEhfSZybqWQb7s2mKG3zPtsBWP5cDK/F3DsmMrmoI7YP/856MhM3WNZb/1ml4MMFy+Crmzq5UvM33N4GP2DfXOFTNp3BBO8cSOkc/Rl8BojIoji5+cku+v/rDFa9YPvLVNi235q1RzqKgGMHx3IsvPs8Fw2skNrDr1jH27CQG9SrsSNt01ptpUdDlNi6KGp3Q/YFexNfM7T0IDTrkCsHY86Mn+6tEYpkWxUNcYZjCnX9uAyslxkDaRrJr0RFvhcqknsgddARZ45Jq/PAGbN4xNuvc0CE+TyROh8PZsNJP2Cc9hfkHy6XxOlrnnEWhWt6NRaqzDtr4icDNdlfDbQbfj2c140DEiIRel52qkr9NVtU/iRACcfyYNsSKA89x12Kw5aVgZxRrc/CVRkDQMazW+xz99iKTxx8Lp/hhjmLSHN+I3PUuq8Udg/RBi8mJcVi1h7VjQ0489dt/etiWWzob65+dExdbCdbeKDXyZYoYN4xKBFSZx/Idf1I0u0uaHSgFeHkZL//FHv6Yc6FYuJqsqloAZTvKEQu859KVe6bDiZkdgf5EIjqrXNNDLcmrA9n6k9jxlbCc9OriyyMW2JZUDu14Rp4Br61GPy59gNrCpqHg+fagL7zPY+EVTzTrlyU4f43AxMjP4578NVbUH/kfjBrZZE9OND5Klv1s8POvEIMtwGtnypjyvmsN8od5HbM0R1kMA1OFyIjwJkmGuS+sOPG47iNSkaT5XzwEB/TbzNJR6KxG2vAX4nunQP/+6f/DGEx7TNaKm5oxgadS3oGSttmBjvdsVQ+E3gnA0rhTxDgVkuvEWOEzVlcwb/k6XKndgWeKMfI9tYJK/fOdPr29+7/+RdiZdyvJaFP5BDES6hCE9SJMgYDcDRRpFpAuQX/8trHd4Z3dYq1ZZNDl7n/0ED9uL6s4T2PoH4l5zpO/rl7rdX1wim6kvW31IBfDUPED8G/k6PT32M+Cvw41EMq8AkrdcAkmgjMSXbi9v9Rz6gl3B51jbSbW3dA+MQNzw2xi5JojXfXG0oJEOMlbG9kjn7EauQO4YZrKpde+HwtQ6MCHLnuaae4NFXUMXFoTX/vE3/M4LsOkT8Zix6Vvvsm0pur6Po81PF+3suWB6Bgoeu6nXp219gat+XXBGXKueknBZIVbgF/tSH8XLl7tx0Ju1AoGPyILlx1+aZTyRwEJRtvmxAb8t45CtnjOeXF0XqtHluL3rOAAtfZJE6i5Vhn968NefdF/9gy3mpvXUOX07uOVpjNo9o6+fYdeCpxF8iQuZhlL0jVNgMXhAIDEssGRPMwdvcPGwaRqut25jfmFN2ghrilPqs/PKuV9/jLXbpfXmbr0z0iuXPYybXPRIInwb+PbT97Svnmm9Hm8VAwEOTeJLT4dyFJ3vP76EDTEzs/nRORycr5295aW8piA9FvJ0yVxiezuD8vOtP0Pj9jJw5mSVvu58LYJbfiJI73W6HuWHAPhrYhEdAwl8cidYYU+lDGMcJfGIrlEFt/6QmPvArrnGchN4uYcqvlzaQ80idJV+/RWx0B3VZJ3VSs58Z56YRXZ6Vhsk4299e27+yuZTi1PgHSKdeO/fFh5hOVCukoLYOU7pbL4rA550jJCE1oaSz3qaIAf198TOt12/dPJuhvfFDjAKjk3843XQ5JILUb9potPdZTSAuYcG/uX53CERI07PXUO0F6vHU2N8HfDIqwYVBy3JljHJFakNiEqssJf+6bnPe5hoCnqD7fpIAMjcFVt37ei9d06Q/ngpUUrRydZvrk4yw/kmuboWT2cUwRzq9QthnO6TjF4FvoBvfxUmhkqNvhqRoEE0I50orhjog7jw0o8Po7ZgX6Dz3GSFhzdLsROjKltf4X2QIHox/3hxHURnedMjYn65ozdzp4SBxEQ8Mb2bVI8fLcjh4W0EE3uLd/1qXuIGOjsObvowecurs5Rf3kP1XAp1+/t7fHBXgtUmyMROkq9wZ29Tdhq5y9aH2BaQQ1jAWrMUYDJo8YJS701TZ39ESp1T2f3yCJL2nzBba/KyYDhOgBhkX1H6KK8pUI9Nj17eqdOXi9YV0Nu1Pg7P99FbhZtqwNxwXOzaI9N/Qdsq0s4mxy0P6P1yRI4LRfjOiO88154g+9DCXHIVjFSJ0KLQnBB+8nmbZ4aDePK+Lxd66j0gt6Nu68unvLOQs3SCt3waLy//yYHNb4hmfYE+7cs1hKeD4BH0Oqr1OspEk8ZSV9E8nvWe94iLoKaUR+ILbajTrx2tcI/jaFqsm6pzF8dpYOsz2/G9L/Gw5U9oclNHTPGd1kS09gPc+j1iH2DV0+QW+dAatilPEj7Fo7DcEIzfiUb+/PfI7nOgv84sktCgecvPr5VX+cJBvlPrPz+HVron+qAXdLv/EKL7k5lEuz7ENA3YBsq1OBHlfB/1tXnfBhjxxYkcQrmK//jRU7fmH88C5JXxFfzpNzp+xaz5XT+sJpBoWUG8mSiuArWdWU8rC3ZgeblMBxoR5FjrDzEluxuKfsePn5WixuyPL+3khCWnPD7q89F73SFWRzzRhgw92fiJvLeSmmg7SffYy0WIAN3GMQWTxNakc0+OJN26inifsY+XYWxbcOA+N7Lx6Z7VIhT98gRqwudRn5O6Z8EKthfPSGbhTTtfC2Vg3zFWn9NAKWqOyp/fex8xof3XCFMwPiWbKMk7yZZOTBAsc12bBje0+uV4dAsI9h2eFuv5BjMppBe4irNEbGrBfvjATwKFfT4Q73oX6ZiKYghP6qARDfNuRkc9cKXTckPEzG27n/fLF0L9NdrE2XghNeUOwfDtPHHo7hawMNXiQ995wa1fVvqZOzN/13+CibbWU3bYTZBhUoQPe/LNKNy9O3j1/M/2SEjiLdcP08HkgS/EGFS/5op9JIHjO2BQGTldvYwRy0nlyYqJlZtxPKJT6MKTdm+xUY1CTMRXLchxY7VorswFTLsp0aBgtztsv5MZjJrIGKB/ZjP2ytcrowVMHVjpYUwUl7bZz79A+BbN6Q3uNOu2epCYm8sQpE5NRmGRh8CLL8PEb/3kLHruC/LVjWClhm6/DnwVQrbkRaIkt47OJztnoWYj9McvFrueXWgqSYlqxpZot+V5Sellm2QQrvXSwbyB8Xs4kcO9sT124+WQs1RC1N7Usz33kK8Qa3aFvu1prtuMP73g8BWO6LffN3tixkGGQybia9MAtPGKKzQd57LxDaX/OkaxgvmbjgSPtZr9eAFknOuVOIX0rZfjAgx4brocSW+hAVsebGHYHK/EQq4S82LtTr88QOzT+5MN8FW7kp0KBTFGwYxX7628wM558ghs+fCv3jxX++KATYKa9yIZQXWnGOTx0AxvPSTE/eVRxKhtWRPmWJxl014N1My7A12b93H4+SW2b7IU//on+TAIOsl8uteHz5VNZRTNX+zYfRWvyVKdIWBQT5wapzp35G8ufC69jgSR17LVCb0XvDSjTHC6ZzPKzc/7L09Mu9V+AKp1KAVvX4uIP9ASrLvlfP3jUz9ePJddvgLhqkcIyBqfDYKj+PL2e2JGeUVndIwjaeM1f8ezpDdn+FsfuIlwvaSQtvA0hyesAoXL2vT81iQnDW5EY8GTLnOAFMBc1544ziGNv2Ny1qCAJozxApKMcD2VwLa/haYjyfW1e6EcRofkRC4b7xpp/ULwp0enfjxQCrN1gHPIHYn3MvOe5E4ww0jUS7Tb9h8HDesCxOoZTtJ9htn4TRRLvuqLgU99WWTDwbTvsDwHPo59dQda1S0SmQRL/PNP+pdHf7xbCYMy7kbRuwOwbzGOMTnGdP+5nqHfaOdpN9ZlPNr17Ei/z7M1+amvnNYJcujwDNZk+d0vhifM4Hg/IuJM6Udfsh2jgN5MnB+f6yeCnApuevfbn6unMXtEQGS1Hdl4AlhXS6iAgO97JLf8Gs/r9ZCClNhfjLrhTOnecTZ/MXtUH5ouni+3W/63f/fb7+Ig67JA6paMuDwHvS0vKkBEdJqeldV4K6dVEpxL9Nr6f0CXvfBFIrS9jFjhc9Fpcr834On1/rbfU4Dh2FwjeCa+RJ677Ah+/RzsqZARLEcdGBIjyf+vKQXi/36kIJjRgpZx39bdKEkhABbZEyvOC29wjkULH8fDmVj5A2ZL5KgRvJVzNEm376rPcVF2AJ1sDnEvHsdcyPKSdE2TYVqqkYmHBdxdyZlzihgPZdlwro8WrHt0xl7leN6swbaDTXzYT7KVNvpyt78+xLeeIY5G+Jg8Zz6FeVmFU/0p1n6K9cAHLJ+vxOvilo5jYSRQ4YMOze8z7mdRryrJwStAoc4fKc+fFATzjJ6m+VCP/SfMvAlU4yRiE+0++nd7MBP6jp1MnPrZIs31HkJs0hFr14rvaes0HPxGA09U4dn2Y14VlqzNJ4APYlPrtAN7F36decKuEeoeFdtXBYLXbYcVJtXiJUCOD+Sh7yfuHDH1PPfAgtEhUAg6POZ6YRTXgNyps6b9nVNqXniVIQQU5Qh6/KlfB7tm4OvEnhG43nFP+jO0YF++NHK8TJW3YBFAuNvfd4jPcAmG+wB82L2sN7aZZ5eNXFZqcrwkj4kzWCVmD+LNgQy/q5B8LYeeMhd7hcdLdULz5/2qF9CcIXyJw4fY98CKye3zCOGVdyISzzcbTLafdfDaX4ppnwRCvTDXWyHM7uuIU3aCYOLqcwO7/NThVLgVPX3OuxS2DPsm2iNEdJXvHgsBnw3k4KE5+6Rp38IsNyCqbopKuRuQUmAbjjOdwzKma7tJYspkIvpUKPeaJHU4uPYPgyjeqtX8Y8JQnI9nBeNd8wLDl2gNqO6TiZ2LGYEpXq8hLPafB3ES7kEpJXwI1/0twCb8av1SqlUEYbdT0Klbv/r0yHkW7nNUoMV6KzrtrlgAdXsWEVMq7352RpoA6jk2uWDD0DuXoy+Y8YODo9Mp12npMQnImJli3MYPfRFJkMBbLrGTiA+qx13ucwj5PLtj5fI86yyVnDNEhqkR66LsKWmHuwF7VdhhI5CTfk+A58PHXv1gk50WsC7zbEDmZR4xetDBm5tQyeGBF64k6L0hm83nZEA+9RG+rInf8xMKBtE4vSXE0aOmz66cXGGpphjbh3Zfr3VcsrJ513oE17Wk6+lbSjvgvHISvIYu7tOVWvKne6fEdiQmJh2QXdC9jPfkbetxvSWqIHPkhUgYLQwdOSrcoT5PezQVFcim9fuowHBLXthB0snjzUtRyaLe3zFutikT4egmEDu9S1CpmDV9q9AFbt5Z2Oh3Xj33yJ8lCHYsYln3W1MrDBgY78se7fg+8ehanBE8984LJ/QeeU1RfiJginsTK1A06qXrUAEFkcTTKuohoG2oXsHN02psFNU7I/x7b8FLxmb4uY4EzNW7yOGYyFdsxnIf08IGhshn5Q41lynwFjckHBR5NG8WIsXLiy80SJ/KleglsQHhg7EDXYUhktAu8tbXVEzyri84JJTPN1joe7vSTFIS/+VU3pKWfg6t8MUS59vp9Sj0rgWFme6I4muYzvKJKnIa5zLW59sHrF0YnWG+v5Y4MLyjN1Zjrknkosjkeee4fjnpuQMlpj1hfHee2YKsdwff/S3CqnnL+2awe0Z08Ayw/inW+hMyMyPH+7rH6Fvs6tVNCwmenFUjJjsd6aIosSYf2uBErO+76Uf49hwouIKJDYPoMX/7PCLQt91IXPeY0rn+9gMctpF4uHwFYJEsVZP1284iyudt9MOmP2BtPx/izjkGC4mjCYK6zLC2NF22Wq/egBdViCfx8s289aMFFvSs9Dst+tWquWh3EMBxfURED25+xuWR5UOA+wPWw+ZN29Gfodzalj6BwYjpINnjCi5tq+JTWyfe6rCGAyk+nYjz8cps+hpsBYEUH7AR9T1tP89vBS5tpxL/HhwzdtjvI7CvjBX7+b2J5w9gEfRzXptia3fL1vM4OsB2TudJYtJrtvpWMsDogBViaGHpUQdJLgTUz4n2fNZ0lfbEgvZsisT9qod4zsQXC1svPmI3xjudWpQiSYbJRB7ordNRiKQWth2TEBOVd7oKpmDAsGFz7AlyC1atqxRpdpvjT2+8VdWWAkIDR4jh7R6sZvDJf3o7DdVAYxq8AwEwo/ImvpKSmGiHOBRpoQcIyMGJrpYTptAwPhYSv0XSDxjdnF99ELU/WzFtw0MKQZMKiJvqjlL7+VHANY5UrIzHIlv75NFIJ8yOxLCKSR9+fleeogIH3w711K3yO4Aj9yDWOWL6aZqUDipa8kbjczIpvV6gL5nWccEH8/Hu6ceoX7DOrzM5iI2+PfK1cvAGphT1J3mMh+DDXqEZm5dJVJ5qvCTZu/n5N/GeX4cuxyIcYPs1e6xESw5WsnoCVMcuQ41z5ryeja4rPHvPErvjLujnLuWuMOMnBzsBX9ZL30oTbDzrhAPfKinVRqWQiaUccPZIYzCvu+cVPmbuRtDNZOl8voDo148Q/YU6nYJPOECnKbqJG/dxvQjR2sqfOTnhRHRGMGN0c8Ec9cvUmId7PbdXC4L2qPgksg9tNut3poPbRAmi36wnoKICNWhc8hrxLEV0KVAswIP6/OCgClp9SeWnAzZ9xIbMmb/15MMBXzMSa+rJo4rVs3CrD2ychHdGs3ySgOODnJj1qarnUrcV8B17ip57P/Koal61P//RR8nsiXbIInCKJg/jvb/qI3CNCF4yLsPqW7qAQU1mRz7CW0p0ewz75W6XPqgCVcNX+4Hq71yBWeD3B48cUPalVGyHCp6a1534BXD6id3YkLbTDqjxYi3e/DKSl9Q+b++Of9fLdykN+PN7e3tfLoX4EEFxDD/E3lXbILvAMeBxfyZoeDmavlpwLcDnftfJXSwXr0uvpgubViJEsw9OvFB1z0DpInyIbkITzEr5XeEFVhFW1cOx5ufRZuHY8l+sfftbT5bPvEpe7GOSsO63H6rUbeGLrDk2tvv5fbrXFt6b+jyJrOBRPn5QB17L7IpNVEJA24KLwMPyb/j5Wj7x+jXYQt7WP9as7KjzJThcoZafI+y7lkvnBLJnWKsfD7uWOgLqOwABWXwciSqFNJ5zW3LA6HjrJB8NS18+nnEF6gWUW33lNYV2M8B1nwXEcHZzNh8fqy/r/FJgrLG7eFJBLoCHDAGSvPXas8xBTeUyuukkrPgxm5zwLMHWQM0U41bN5rforyDwv3esPZjGm4/nSwtno0gRO2ABzNFRaeR9dCPYkkHlDXJDBFhcqI4iHV3qlx2xd6jL+8v0JhrnTYdPWkFLp2hafXvbIqozTjpmpMb+bSL68n5eG+CXQ4HmZ0cpXYSxA4XPWdj01rEeupRL4RTd92gfY1ZfpVuSwjumHyTcXiePvNC4whLX7+m76cma2mEIqRN15FAt75ia7SMFCVWdLfKpOs9rmIONg4TtKfw5Xs3lPsEwwNF2Ppr+65/Bpt/YmW8raHv3UEB4MQjxIu3ez/ZXMMCRCXVyPRy6mOqLN0NZnQj6Hts6Xssiu0vvV/LB+Gn2/Zwe4Rn6iSBhZ/TFeGH3fvTLA3/6vCo0TOF0T2U0bv3YmCUpB/eno4/oXfezdmK/Oegz3p6+H3LYkNuRkSfqDCRami6msI+Zf/lqWx9se7UYKAafFxKcjHprBRsXll5ymaD9cXq6O1EGHgXkE82RaLzlsxaijp2x9ggnSrJGzUG+T0vEv8USTJDNIulWrhEJaiai43f5WlAWn0eiM6cwXizmGcLXTGM0M9uLNdLSyIHnvnmsl+QDFhpkK9h/Dw9yuEd19jtfeTlJzqYnPJ282ErgsU8b4qzuo197QeN++XMbVBno9K2yLvj5p3mcuIyGNHMgn9W7iZODjs7+NTuDX7/r1OHc0/HURtLda26IVdRBXxIqK3/r40QKJeuOl+MVOM4UItCfYTa9XXoHz7uDifr02n426BpB4aDeSeTvDX0ZTDOXbtu3yJ1rWdbUW3YFwLcvgw9FFWaLz/sV3PrX6d4dRDC/T5dCTsN3McEgfsXz/g0daMX5Ea3Fo80WbUAztEum2vSjB3MO7yGU2/yBzdIK+lnCyhkmV8vDBvHf+vt3vacxW1BXfc4xK4ttCOdTibDChrCfpxD6YJePIdnytr5o2VGCn7gg2Fh6O5tAK+fgvT4YjE+3UF+PpOUgzxhP7Oz0tV4/y7aF+WAlouaPJVu2/Avj8ptiXSkuWfdVxBCmkt+j3ZxL9LWbF0FObjeIVV6/gQknJQP0o7pi9TJp+l//bxhvi9jV0GZrwxxWCfJrg8ZTQnWiWD0H1HqKCbpeHv0CHSGHs1Gl2Da6JZ7YLLRgbdxbYoCLBtad1jZw0xvix6uVvTD/uINEsikJJPOW0S2/AH//WrCz36vxcu6tVnreXTwJdRjWVDVDRc4dIEzvu3OIl+wpdD//wNZJ1jIebi9O2vT1t948vjk+fIDq1UTS6WZ6KwwbBVQsfU/3l1Pps5g8UzDn92rTA1gvB//1gjfNxujFCgpYVE/gIAksFpGaVmC+rJILH72doyVZ9mCIzG6Fvi5Yf/XQNOm9ApDZH8ltzN7Z+kAuBHuCEySMvph9eZ5OMArjgfj7o+Htf36ceNEbSZ93Wo/b+cLCZy0cZPSkr14+OBCrrye+hucaLOWDheDKIJl4fJl6lHyNRjbSRJmknUP6pfxGs6zWQ0yMr/bM1uBxTaDUqAzxwt3BW8LDyYLuWlzJQeZmfS6qRZFr8TKiz7ns6s2/Erl2iye2vLiKF3luGah8rZgY8fSMCXk08y/fj6LF6Nlw8dROnOYYT+v6fdAlgn0KPObgEfs2vXTaOhMHGCvkiVnxQrZ2YXoGCnHdad/WrE70ZDFgDwuGoPPZ7L/L2XXgmZxWNPDaRJuNL0DHGUKs9Ptjv4qNpUnFq/kSrEfffuZubgGcpuqIZ/I55a6yhaAF6nkKJFOM//qtCG//P+k1MJaBYsEcPnxy3fxgTGrFhWL54IjS75d+uYmZ9NMP/OyZjYcINwaKiysSazBaOuXdo5O6IOGmlxaWOs3L/AxVH76wocdsP235HLowL7ANohnMFRo4yTh9JOLtBp7Ouq/OgJs/OtonvUZn8+N0sLBmjB9rG9Hux2MQM6q4XWxXX9ni48BwEE44djJH76Is6aCrcuUvf8XTxSg4eFuphQ/3SM/21thdobcoX6K8z6Qfw/JVwK+zThtv8DO+u2IJ6jwtiB67vD4AkkciPCoC8dTPAlb/KFXwYVxmbB9rK163fA5DxZixoYWqzqV1xUAVsyp5ZkKkL23laOAFGwMfjm2d0XNRNSC6Ww98iHoObPzLgN4hsrAZ+Uq9r9i5kbveC4l5+9oe56atAB/GacboepH7QYNFJ3cNo01gq0d65PMUHvcJIeqWJ/dv0IeQlDsJgeNYZIO5TaXKPPzEwcC3OrU/hxc0BDcl/inXdO58THOojHGJbSV9xcuoi63UHjV/YoJrmX3LB4Rwrs4swaQ4Z5QrRQ6yj32DLU5ZYjqPmJNMTm6Jt+WX9VVrArw5BwsH9+VW79uD0Px4Erkczbs+yGIbwb130n98pGfFp+yDLR8RNWOIt75dkEMzl5xp6c9NRp3eZ4FP9hzW6GXvtbNjslAjFwtdWJOvCbSn4adfxIpmB7Blw4bysa0PWGEni87a64Yg6QBCEbFbfU62b6FvfGC6b+dPC5saMB0zkzhvEm158ZrCx17/TNc+m7LvNwCcBL2jTAx3Bh6JotMZPg/Rj9c6YP5KbQp8XbLQCYBe7ze9lzZ9J0osK9kiqw8JuuJHJ+ZDTPTx4Q05DLTrBf/4CJ3k6/zLy5PsXbuYfHlRgtFoHomjB2U/rUdkSbvyNRE/kw19YtJZA/YqnzHSwos+/fzsvTgB0VuoZsuP/7Kvz2miG9+k/Zm1fnmGYNHWKJXz7gzNhFGmb7WYGdekSQE1tRiJEd90bz/ZUAKIISrqsvQOhsfM5eIKnwIJrqXfi3yC7vB3P5T8o2TL6aNfYd7fr/jCazWYpxEJAJCzP9n3oImXNn3f4a+fUshcZTOikf/nL1zx0eKF5HMFk0pLEDtsg/0/09LKp3sXYzWmS0bN+26bMuee8NZ/ZfPyPNxB6Z0vxAlufPblhocE4MUiBDGvKFvBHCo/focPVLLjJSbLDCt2eRPvUFV9Jx7AGSa3DE5UMvVsqgks4DU9D1jhnkvf1XHJQe4s8wiYPEOn19QOMOzVgWjdQafjYT6yv/pHjBby3gr8boVzHzrEY/FSb/XV/PmBb3+cevn52XIJRILxyMad/Cm7P/6gueeSjsq1y3/8juCoK8Dc1sMMwyCIiF0hxhv8a3wGfV+5BHkoi4c6uGnwyRz4iV16O/7Lf2O5Mtg7jkrMXQ689KufTd9wPQQGdsDCgxkJ+wuvj/LXSqXy6y5TJ9yUmkWMoIHA7+/k8KCl3qvux4LKPRqJVYsdoNKudaWAGggJbufoq35+cIBPESLq8XXPFrQXBmiKvElc+fIClPiLAIzyOuBrqYJ+EDKRgWgcgt/P9Y/PA8jPDcmvWvnzTyj98r1mdFbcNem9gOfefW2fD7MFT2cHWFbXo3n3ONHZg85L2vgUmuLbzRu4I4HgbVUBMWp2BPssiVjAzqmN9dGf4vFufxF0LZ2gJg1wRt/vbaoCxC5aoojWi3iWJUk11BDVG++cLa6c4GUmJdptvI9ObzWBQ2HFW/2y3rITyB08ejNHAz9bHvfj5X/36x402VC92zsMaWuQI1SZbGoYdYb2yYXEaq6j1wG/WqEmxnjjqas+ztPtBbtZ8og6CdBbT+qSwj4CFAe9WNfv3Ud6AcR3ZySXz5AuQ9hHsLqxLfZqj6nH7Dl3cu6uJT6cG7sej0LrQnYsvsT2bR6sXwNW0AvPK/njm+4II7Am5DwVAkPpUtzEAeRrbUyL31y9Zft/EIyPGisAFPqvXuVUQj3W1u8DzGwpSDAYL/F2fHq93uakgUK+nrGxB2y2XEfOEoUAFkDpv31lEvPNvsAi1KQCoXvaE3PODfoOy1f1x5fU7frMwQdeQeHKD6Lv9E/949ny5sdYF15mT5vvq4XFg5PIoX2U+uzN3Qy3/nbz8zpeh/7oA21vqUjUlwOlbnW+Q1gLJ3LzoF1zF6PloAmniqgPkno8d+iusE/WOzGC/wAAAP//pF1b+3LAFv9ALkJllks5h0wh6Q5JqOQwg/n0+/F/9+W+29fVE2bmd1pjjRz1s9LYZ5CumkPN06LX88NtcsSdrtVfPsHmxDx94HjzX0S4/74ucy6/BppMOpFNbm/CX+wzQPNHAqp8LSmjOrw+cD0LFTVPkZQNwUvIoeq2Ofb8eLs+v2kHcXU6+xvJEcMpulsmrHqA+kL80uaotv/pLWyngRcyvQnsv3oSPdkZp82bPJqAxwPGl1lVNd76TaZ8w4rwlwdpE5gXTm6uYkymE5N6+levop9BofbraaDZHKsEDlJ+wOHiBDUTHM7/4wtqzZ9rOFvltMj1JfDxqj80pr1Hbv+Hb2E3epqgbZvPnx7FJ15/1e/sObWyJm9vFGe7xZ1N7nYGy77F9DRKWT+u+QckzVn4x/eLnGs8rPoWG0341Qg/eByc7k/V3/GR1k9xfddh4eKX//e8h1T4NSiv+z225bUr07K+UrTqDbJ8oAtpLnQVrHzjcy4sPU3qQP3LY+jhk1TazCuVjfL6t6fqsFtfSdSyFERjo2H9L+8ioy+hmN4WwjaaVc+L//3I3e28ofh34MNh2p4lOb+WFQ3nPMuWNc9DQbvTqGkcoe/K8aRDHvwMsp3qA2IPYnHSWq/z+VQ89uyjlLE8fGwHJ41/1Zb2JzdAa77G+RiH2dwfVA8aunY3fBplzybFDqAX8hDH8slh7JsjFa4sVbH922zQYFHLQYfHJqHqsXV6Rh9kQqtf99maz/75KXmtV2FfeQ7Zkm6EFtb8xpde6xZ7p2496VXpJlZvDXOJCVIFdRvtV79/qCm51xW8mClRVfdylxUDONJXEwafWeNUT1uFmWBQCfDpnR5qnklKBJppCv68sAF1S9J2kNsE/ukb4XgwJ0inc009T5DcuSmHFP3NX7e8lSFRWJKiVe8Qfs3Xp7uaBWitl1CHTUk4x+llgu+9+WCPvttsvjoTkd2tXtJk+xnckUsupdwfpI3PG4vIBrPXpP9rS4H0v7cUNPv2iY3lYbp0SqIz8G3e0Pvhg0L64qMcwny+UpVKY09k4+PtW27fErmdg3ACiBf0GKKA4iP+hlMxBqmkr7tP9Hy4siWQmY3wEj+xVuVxvSTRtQRLED/+d3PZZnM10gKCVzdRVxVeIbOjnIfWtnOaLPzMxsAuSuS8nS3WfyD0JK4TAsH4/lHnabzQdI8nEygfqUTh4e6yvisHmfnF20eP1GCCPiktiGpeE+F9+oRLmyUFXKxu9uXvZ+v2m7cjgpmJXyIsD1Ob3FrW4fFgni/utgQxO4p4SQn5ESsjO2hDYxgcXGbFwZdr+86IkLkSsI4uvkCSQzYrLz6G5Kjq5Lu1RjTk3aSCcHLORLiLXD2xfaDDht9HWM8+m5A9nagEcnZuvqQ9e7Zw5iaByjMy0vNxghYUJh6kWvejdro9Zb3kl5XkKE+XbMLt1x3EU6rDbHx9bM3vJpzw+Vmgr8o7ONlKrTvu8y4GtskK8roZjja97JsHnnHJsReC37OuxID0Vxlj82rhcAu7MofXu6uoek19bZmLhw3bkFJ6qHZvl+k4MaE65wI1hJyvJxpCs5cGy8BeKZQa+dgvAlJ72OBrsLjZ1EV1IY/xwvnD7V1qtJ/fFXKEp0MP+dnIlkeNFBRJYor98Tdn3aT/GpjOX0wVHvbafC6KEvCjXXwpqUwkXDk7BTSPPfU/4NVCvVM82C5vm5qPyw6Rc9Ap0u9+b30xmUo0ulMHyJofJ+oS6mTj3rg7SI3Cty8Sx3GZCr8APmFX4GMpqIzfbPkIDl9iEIR1Ws9QXiVQCWtIdp/5bGJKDOjD5ZPPNWrtTpXaN4irOxvjMZPWvglF/nc95EUOskZe50cCnD5RMl28fb9cQuRBbIYhVrmzxngxiiWQu4BSfXhOjKYSBxB9ngesHKI9YgzaBo1Cd8OuFe/DMQnsBBlDi9bP74gpv6WSTDH6YpUbbm6vk+0ZrEwJ8Z27C/2yjV8FxE58Jzu0GdhYQteCLbIntjaXbTgdcMDL/kks6eEodNlszBdxI3y787/1s0gz8UF/2IDt03es571xsWF9vvjgIKUXHmc7AsUIv9QeAztc0LJNAEm24y9mq/e9vUY4DcoGbL5iuZ9U5dbBxzAS7AjvV8/ax9hAcYkDqi4PG5F1faJ7wsdYqV6FNrLH3UPNZjawkdz3bHG6zoRYL01876tvyPZNWwFyoMDZQ7xriyJ8VUi5AmHD+xRsYvtUh4bxnj+v97eEnxcH4cuh+GgtX8QO6vpWg/JO8elobntaFVEBK55hKzOammiz/oFyamt8nMaqHoymB6Tce4WqXdJos+AXKqqb+EQtet/27DGVOxSexRw7puUitkN7AkhZFuo7Uh3Oxi7uAD+6hTo4MBmz1E0Au4dhUcM2TEaTo+Sjad9F1HREmQ0kqBPZNdgDu63l9EOupQUc+7nAeid/3eY6B+W/7+NM2biz8zQS+WXOR6xFU11POwwFuE0nYnwt1reyUOpIxOA6fNBOTjiWIZKAjywXO2qRhnOmxyk69qyg/mbzzYa72ROo7+KJGrfdqyZNc41ATeK1uPhlGp1svEOUj1WsPmw9FJQXRMhvO+a/LhuGxn7PiKwdw4bazlqyFU+BDu+Wd2l4oxdG0LJJkFEYAjb2r3tGzctSoN3B8bHxPpnZfCT2BxJO0bAlmhAuTnod4KpsDv60TXG2NQ9ER+758iDC3vi4o69XAKVYiNSZnn24fLaeiU526eNnkKrZ8jomzR/e08OeTzT6Ye8PuLp69neeY6N5l11spB0GnR6emPXTLa8J2uB9hE1hp4TTk/QfFCYZEBFKJeOvRx7QTNoQu6fKdBeIfgmyULv3t0J3dNk24RppxW8iRuaDzd8o9iFNFNXnqCm6yyyQGNlltyf70z0OBXJig3Tw2w0tvPzkknCjx8iKNyd6XD+fFad24HXmRF9sW6UXpBN1JOlGB585z8Cd6uzEofEd6/j4t/5v6pYDuTQ0nP3x6z7KbWjMbPSFy/nAptlXOAAlmKnuXCS0xNJvtz/i6kJq9dr2dBc6gOi1+P3xW8gidwmAmqjG3sExQqbJUg7X7Kn4fCtusuV41yuQrtyTHmt+1pY41GNoZTvD6vJo0fDIgEcPLlvoQelwtnyekoS4X54RPqq8bDqz4AN50H0xbs5Pd9qc4wm2Q/7Cephf2RRtfQdpIWvI1vrttKnn6hSU0pD87UU61sKK99Al6EstCI7aJJ/4ZH++KS6+HvapuwTv8ySvfEsVrz/UvFccCjl7Wi+Mxc/Vnby3f4bq886w0Xo8Y3XSiigvviX2H/Olnutz1cptEB8xzk2hn0IraMD6XkqsG5PKZu1NJcgHMaRqe4Fwxo9TjBb69qj6Pv00dujdAYI6k/Hpt9Rs8uCWg+xmMcbPTtVETa08kM62R8/PR4dYM7s+/PGNlGYFYvpXKqCrrYiaRhT941dQ8DPE2l7+MnbDbx5sRQnxRZx0Nne7rkL02V39Vzk/MmY3L0+W71zu76Y4q5n2eQVwO2R7qrJNENJZzQPYiq2PPfIK3ZWfVST8sgehiu6F7FL+dHR7chxWf8HIprNTi8Df9wU+/CDJJr/sediJzolsamqiOd5cPvCH53lxUtwheAQfOOjsQ5V5ZzASfZED5e39wJbQ/VyaP7UYrt+7RP05qNh03AsmHDv18scfNWn3nxykwTCwouw+PVMO7gIbpElk8wkqbV0f9t/4+/yqr4bAPKZSb80KffjeCU0T9DF8+FDH+kXywoX7Jg58VdHxNw/r647GEwKg7hmwzX0HtuJ1C2rbctRctwiRwd926G98guJ9dCltyw46k7fw7SToaB6QvgMqGhj7CbY1Jitcib6/UMN+0qNs5jJWgHT4mlgZFlpPqvJswXMtSv1Q95j4h09XQ7FwTiu9XvQ+4ZDPsTs+suGM5uR3+SB5ymIir33AJ0WcUoi6yiL710XUiMjIGT3ai0dxK6nuTzKrCGaX8tT85IyN+fdSyrP0PRFperpZq5a7FEjXxVSVcZAJ8eb+ASrZV4qX1zmbXQt89OGKyd/gpQrbzZZfG+t2JdncVTXjV36SkuvlQp3oUbkMEkzgsFMTqkeVF87bI2pA98QfPo3btu798A1Q1NlC6l1Za0NAJkd2Np1IttnrhpZevPpSsgcZWzYl/eTbxxzlSS5RBxNJY7lZcmiHoPTncpazIVZ3Duiz+PPlSh9rJg1cBYbpq9igwkdjUbAxpexWHUgbHrfuMhvLBFdJMWk0NULNTkE+obtdaUQOyTacnUT5yItkef6wOHotsMfFh6dtFNjy+DBcvnOSQyd/Q6yuFQc26nkEX3/WsC3kM5qnRVGQZ4Q5VS/XX7iM06uRVz3vg3AMteXRbXgUU9WgeOUj4akWa2+HQMKKtuURNX9aByQ+yzT7vEvUrvgs6a8qJpSL+mwYDycRIolPVz3bhcMlX9sfvs4ctcohdBdv1AvAt9Kj2SM1EBm2nwT5VXXy5fLbsvl2AwWt/g7bW8l2t5osFSAfcOeT8+uCGOHaFvgHNKR/oQcaW79qZF/bWNh8Jkrf4nTyYPVDRHg1EaL4rVUw3L4BPdj8jlG4OBL0O7oncvm10XQSex5pu+fZ5yCTUOtUtYTSzqjIhnGC+2Z8lUJxc9509VeuON/OsSxznb36ERrOJ6do/vCIXqbTD/X2aS0Bv7q3v6x6cdm0r0he/YcvfLreZXPQtvCV2xxf3lkZLnF3rUDmWtsn+5vVC4J192H/mRjZpz9RW3L33MqKcflSnao9Y4REARQzt8PmRyn7fknFDmS+yH3Oy0eXOV/tA8FHOdK4bcuaPLqNuN0+9hnZvka9X/ndg7mIFOyOJ4VRBuUHnF919j/b69tdQE5suTJAwDjcWhpfRwdb9he+xMqUHVxaum8CVTnb9GQ9f+7sqXYD5dTVvj7ZVTZIez6FZ55v17PqUzYdNn4Kj2PGyCcyZbbQavNB5nd++eJHUfotF+Qm0ir1Rv3xdwnnOO5EFKph/Oef2XDYHT7w58+9q2pos7XUKlwnZ8R4xXvh9Pou6GG1H+qeHdMVzNepQFamhv6snbqQ5adxQitfE4kV97q+cBsdtEcnYyvVQ3f60NNO2jDHwv7la2vin38X9HEmy+nc9EOUrF2fPsGy+rFOG8xiimGO7IgWXFX1i6GhBCmhOGLT3dKwoY3NwcrXpJdfISJS90r+3X/azldtdk5fHq3+hqqb0e7F6z4h4Bc2819CqLjTL0wDpKudTJDxeIUMv7VSboPo6CPqyvWUdzsVIkW1sakOUbYNpaiFPo5N6q/zh+/0p/6HL6SUDzKavsHBBHevYKzVD1sT7LxXkAZlTB3t6bL5LNABvb53unZB+vRM2Kgc1M+uxD6S1H472dYOKify8e0irZGaJqkwCu2N2vtXXA92e6tQWpUqTRNOcpeIrF2/nNj3pQlxNePjyP/Tr9RurDGbOv1pQk05hk3/iUMqXd8xdPI7pOpp2LKFXx466Bdfw8b7t+9ncb7Y6OraI71ptuJOW78PoE+skGxenov+8gJZMlpv1SeVu6Txdocss5Vo7KRdv3jGR4LtBSoas4HVVJysCbQD0Vc/nrDpEU2KjIRlJpu06RkzbkRHXTFK1LiLRb/EdTLAN+EmsmXqTyOvvefA3sxL6roZt67PpIPfj6IVb3i2UOaCxDHIqC3u435qrkEEK777e3StsuG9SQNkxNWVqrZDMvJjEv+nx7CB2pc2dq9LLCvLYGLtEN3c6bp7xmgu7y9qrP6BPXyRAyEMtlRxtFe9yNwvRnZgMH/xMNPm7GPH6M3B7G89PsyWXnx4UAn2i1qaXWrL83lu5MSZL1SrH607meKhRBB1Dj5dXMia7RsKyIP2S5/m9/vf8brhtidS/bmzZSyvPkTw/fpzwZRsXPUEavS2XP2e5fKHjZkCSWONmrhUGDu+l+Rfnja6zQktQp8E6Dw6M3bEA4/mlottCL2Hihs/3tRtIvg6tElOcczOZUaN8+8MR766YJ+/zBlx9ccgDScrwO7KHwwuzg5lWzHyOa5S+6nq0xicTStS2/uAy5beVWE/oDtVS2tBo6UrHXjrlnnzp4doKbHuI22Uz1j3EpWJBTxSqDbRyd90N5NthY3DgdJ6Js20S1RPl/yQwgdfdD/5/WLE5KrN0a28BPj4yzb9J3gn07+8xKxuWGN/v281ppGkVO1eFA1XQklmNf4S7pqwC/F5AWUhJpEkc19P/rTzEKT5g/7hhXicPztYx4ceVj1Bzr2XovpjpIThtx2SE1cp8nNgDlnxtOYfGYhQde0L568Ly6ZfGARSemeY/vHpwt20CdJEVam1pyfGlOAVy6b19P0pDigatdOpgqrhfXqXoolNr0OQQLFlLnYXHmvCjqEKrXkJ4VY+XhQDFUgIz1t62Hrr2csv6QwaNrZ/fsJd2uxcyOef0VPdDbxsHgvbBGi4B9ms+m946HUrf7f8kabB5RrSIXtXYL2r0N8HaIMWI39McIsUA2fSPmS070oC6TEHqs6KrrH4/ebBKCzBn/ph75LZkCbk28qJZm5WaNNt2Onod2szsgtGDS37X+L/u177a2b1PO09HmlL3BE0nko011/Gw7wTFWp8Otcl8eGzoH5BH+q8F7OnK3+gNX+iB07yw6nJnw7aDsWLKt8vHw7Z0TcReheF/7FlAwnkU5jwTi8G2Xty7S6Pbsuju2DUvkvdR09+0rb7m1846BLdXS7w4kCCe+K/Vr8yh0dKpDW/IlCcSpd5F+3zT4/ov7IKiX9JRBDzDlPjnrqZqC+P5S/fprrMC9kfP/9bn8cAPdF6Lx847Nmb2srthHaohgT2W8vE9nw7uULrd83f/1PvFBFW7ZVfgYTf/UE1F0REryc3BzJkNRFuu0O/PSGtRNfJHqnrGa9wCTd6BG7qiP5OlVrGaroo8qS3V3wPnkNP9tNVRaBqnM+t/omwQxKDLSjBOj+GkBJjrCBjzKfesDn2gy71APaBldiY4iJc/bUNd7lUqVeR3T/9DKnW/qixGd9s+ip9CWimPT4mJtLW9a8gKPc3ephOP8ZiP2pB0cp0fT7XbEZPjwDacA+fbZ5zxg7obEJK7JZI7knVxOtPj2En2id8yByfLRzJOaTf1Ji69+tLm0voOlAaV/Gl6FFppDOSAmTjq1HbNhp3oe4nAa1SbtQZUrNmR9lt0FWRD/Qw2IZLevPVIXvaeNgp9Cmcz8KXQNWIPl7z9PBfPkKmRSb80xk0so1fufznNzzY/sJpcy6m9eCrJ7WnGPWDVNU+BL2Y0788cCrGNIELdBM168c7m50T5VHntSl5wvJik1YdG7gURvdPP8051w1gDo7ky/i39NTbLxEgc5/giFlTPa15m/QN7Qf2cZaFS7u8Wolvi4ZwkzfU82lQSninoeELTHIQW/M3+G7FI/7L1xgbIg/VnVNSPR8ENjGl4FBNgVGn/Pb1yi8eHGSx9wMl37l8M/QV3Piux4pVfkImvecBUv5drfzM9d1gSTzw2rLzu31nhmMUKTlstXvuL8Ird6c4CyoUWe+WHnP3iZbgnSywSbOINFE1ZMt39ziDmhMd+3/+QuJyHU5vixC21oPeze+kgKXw31XfpBolJD//4QnVH+M3m2bf5uDDX3Sq7p2x/105JYXYsz5rftllc3E4OdA87Se+tJqSLdN4jtHRiN5kE4jXevVjKuDwaWLFefJoOIm9+K9eYtivVBuG81EFedCAer8M2HDCfrDHt8qjZrPBGvsp5YReNyPHf36W+G2nQHqfMVXn/JYt923SohPreCL3PWKsjdsJ9J8h4kN57bRu9TPwVoy7v1xT4jJenif0efDOH94iNt/HHKjhxBSz6oBYqZcSvKNiIdI6n4e1vgbfdJSpyS+O1rMci/u1fkLWUwZDdl9KkGc8SWR7Eho2jsLljCKDz+jtbzNEJ3gqgo19xM9Wqv74oANjVq70+KReOLzsm4/WfI56fvrW5uJyqeRVb1PtYgWuqNpXHvb526TatxrQdGOwg49hJfT02NhrfeDjg8fbgi/xzVn7+pATOLrOjjqSee/nd1f4MO3bCFtBDGzUrfsOHsc7o7jfT+HcB7GD7orVUCU4uS77FeIEGzKNVAk7jLZRsNGR4SlX+pf//OX1oK0Ho7lb6R0Skr4aaXxHOrYb65TNhaScIc6zPVEu3r5msGuL/StzqvX/c/Yv/1/nDz0wKwxZc19Uea2P0ZOpNtnCH0n8j58Oj8Vnk7pPJzheux1W0DPS2Ps4dhCu7+v/y2OPgpHK5lRFvrDqy2VvfQIktdqG+tvzs2bjqJlwIZlMxIxSd1DEXbJb9SS1mnXnUiAAhx5Lsf/Tuy6d72MB3/07psYv6LUl3f144Oj3gD3KbVGrKs8OYqHY4OPrErvMxUsip/hbYfUm/1wiXs8BrP6PMHVGbN4e2QfGeOLWLRJjNkV2P6EV//x1fvXMCt0OHWxxoJrzXLT5LXWN5PSXB7apoGXjaVAq2H8W5jd/fDjxD+efvtb671x3BTwSadWvVL+9pJ6dkFsBv3QXavZV59LnaxxgOTohPsEvcJfalQDSJsS+PG7bfg7Vbocep2JPBJK8Qnp7Lh6Snwv9q3fU7IASHcydxf+r/85chnJo3qG55us/d2wqxZc3jnXwv6bl95PkKCL6y4NexvTu5yiyC2D78456e3+LhvGS+ogn5y1hneOxqeGOuvyX/+2+JupZ6Lx0ZGwdRFil1CFTgl+EGuWbkn3ubhgdeWuH/NQaCbfQbz945nSGlnyv1HFPlbv84cPqh6niN/t6MotdDGv+i49i/wyX+9c7w27MUp9f9TwVbmP65y/JvNZnhSiyc1jz93/+k08t2IHAGUfs59HAkr/8ZdoUX4o/RAin4zIFEDzCmP7Vu5bp4XJoLmKFOhsPI0ausyT/4We6Vc2MQRvp8Fcf8gfry1jy0tL/a0sB+t9bCgRZ2vrMLd8aG7Yz2XOPw4m69+67Rop8CeH+szbKzFu0VK9zKm+/txNVpPkVTmnbF1KK/B090rAIF1s6+8CRJaV6ZLo1n1wODly5zQlbRnd0t8dBmWB5Hhuqsw1k08fLCLKyTUqtopF6EhsLgPa0LVpsgPZTy/vOXj4EGtbd9a3yISIKWjLFo3HP+z3z1eoDZm6f/L/rZSW/sWEerwfsnwcSss0LNdDUxCfC1rpns7aEAaDXcsW2Jnz76edmDoxkuyVf+8g0hrQ8h9wZPviyyY5oW2fhAJjfqNQSsmu93p8H9x/l8ZH5Zr+gduKBb/w7eX1rP2y+bFpA63XD5yIvQZMcwYC2v/uems+bwVilmxP8xKNM7XSo6uV1mAagXyA4U9mQ0Rd7efIiLRo28FK6w6bRA9jYVKWHTXZky/7+C9B2r6dUjRlF05JwAOFpb2Aj89twfk5lCrLgrmedm5XL0k+6wKvavMkuONOQ4DaPAH2RhpVAOTJqP/wG3Th/8ZfXSdX4RJnX0+9mnWItTzVmjcUAHZ0NettvbTQfd4ME7vBaG7MmQs0M+Z4jV21+WNHelTvxViLBu64zfLi5j3BR5LsE4mWY6cE5/foFznUMm6hXyFRLn2zurp8P9N90h3G5PLV1/ByEb5ct9Qx0DOeoCUqwL9XLR8NHchfuOwVw4f0vNZipMaG4hwU0PWqxlb2RSzZWokK6dUR8jLavbJpmL4c2etc+CIOA5v2t/CCfxm+sl+oxHE/cy5ZPB97HofUGRlgvVdIcJin2IvFTk8NbT5GKYh8r3f0c/nv+olB11Fa2D0ZY1iVwA9vEZvTgwpH99jySvOfNF2/A3C74ZhM8PnaA1cO9RbO3HSIYQn3EcfB8hlv9o1egGrO9jpfqLkNMCCB5PXvsMM/uxMHXlmihmITd5BNip0AaQB82HJG9ekIL65cKWNn9sJ3Qe0jPh06BDfl+sVqfk3pWnVKUx+WTUU3gZbTUymSDFN1C7KQqz5bqV9tyVPsamYAq2aJ6r2qDj+GJyC/5xhYBqaa8lZ0cWzPqtXm7U0RULc8QHzy37WnwOgxylnKUuvIz1tjO+04Q4fRIffuMXDZ+fx/gDtbZF08cny3uoSsgztuEGs16Nl7z3fKg9aZBte38/btfB0aVb8hk1C93xpxYSXtIDlilnhhOt9clkG9T+CRCfubqv9+j9agffOYuPRvb9yuW8WiZ5D21tO9zoYpk+eEp9La2hJ/b9ysC4r1U6oX3oGfT1ixB/H0GjP34xRbN4yQk+EeFKteSD+dzrJWo/F4mfILokS2PfjiDywUPqsZBwxbFGAhooeeQjSGRfrH6WIWLmuj43l3abJHtNwc+CmpqVL4csiOQMzzH78WfXnngjp/PJgBFSQTqjpXKGHvUpuyIXU+tuDZc0n4rBXZnLvZr650jyt1LEayrOODD8zvV03Nz8hEr2x91W2NtrHbflKC9PJ4aX8d0F6Hbc9Cf8jM+yifkUivfe9KKR/iQWJ9w7Jp2Qa+jImO9rPlw2eBqko4vBVOrrO41I9Yhlmcrz6k1SV093/pmgOMP/7D6CPZs+SRpDqUb5PQEkRzOvthPUO/UOz0eodHGAyIfhD+QUF0dmowVj0iE6Ta8aRBdUT2rfVGg68/lsG56BE3z/uZBaE03nD9Ywzo1ggAe61uv/vhqtfmobId/86OrilYb/CGJgAqbxF+NULb461nm9qMoqPMrZI2RZ+ODL98wVgru0Q9bv9bl40td3zr8Tj07bK8+XG9GgHF0Xd8qGZZOXnqrouZBUXq29YIU/WSuot6D6ahvf92Avt4upf4GcL/yyRmWEH8JmPBDs20LJkQbW6F26Xjuu/luRMjhdaTGdY5q1v46AmOxvAiTJrOfpKsQoNZpkf/buYa2VawxhfmV6dQ01bhv2e2ngrpJz9RDx2PPNi/WgOJHNrZV/uuy4LBJ0bnqTj7aF8p6PVkARHRcf+PuThk1CuzszUY54kBP7IyUgcLLKqt/+JQ8Sc+8dD1evrtZhG3nr8bu5OwgV/9dqQ/yORzY7aXIRyObfCE/F/VE9wcR1v/DzpQ0bPz6UQJadm+wYldKLzrdI0fTm2JqjPZbG8LsqoK5KAwrx0bsyfDheKggaui1GS6oDeoglaIssrBdeKM7jOrDR6c7OWL3GIjZkD8TG/lzFhDKWevZdyu+ECePfVmKuWz8w4/IKHe+YG23bB7YLoLjyb8S2bYe9fwxjy2ko+9jLZe8bA68nQeV0k1UrXy13nK/Hbe/6d8Oq0bKZePmyvPw1LqOVK9TpU33qRXROv/xzT4yl6Wc0MrNQ+LoKVCafrbOUg7xefiHr4z0RWPCFj8u9Cj5Wb0ElFToIyhPagdnHM7XSE2gHswMqweJsWFnvgeETlyGLQJ9PbXhuUKC7yrU+y57dxGQY8LFeRfUmFrcz/qxDeAQHy5E/u0Ud8miA8Dcn6/U8HgxZN3xKUpwqTyqDLs0XNcbD3TmFaqlcMq2t22fw8kCoO6nRW6LQeZRmO3pOl/G8Pcq3x2igzphfBK9cNn99gno3T7w5w3wjFxjzdyv8xF7eG9rI3+8fGRz577Ia5bL/g+fYal2Nvan0urns9w2KB4owepz8rWFD0cVxbt+ILSbZPSdTXuB57eo/a/a//rxhngRnsK6BRAepbZwu+uEvtEU42MqlO70MlVdfg28iHE+//rlNNMOdiKP/O3p82EMKt6GDz1hnPytD84hnVTevJSaZzlk3VY6VPJ12L0otu9JzT7VKIG1797+53OTGLnJcgl1E4rUOr8/IVuvD71pqlJl3KdoHnSlhMf5pv3Tb9OxOMbSfHst2G3eTT3lymltXOZUvtTkljY9P1Ukv7P+SSjpTVdconeDWv6s49uz1MLJmCiHDK990oKoTJuHtTFBHnwqrM/wZtSOkIiOODxgN3WXkO16yURTtnypR4aSMbLDJgTnE/KpIfk1QUk5gOXudPo8XV/hqKl18Q9/853ThUOnPSb0zn5Petw4erg82EaF4yPsyfZe6f0UH/bNfh1/6m06vp9b86aC2PcJNZdw1//pM0DkMPvCpvb6rXH6tfDqJod6RUTRsj/eHXgVvId9dZnrxUyn8k+P+rRcnu6ywd2CXhGH/F+wV7PpdNVSORVMB6udo4RfabByOPti6G9uvKu1n7zmgdfziqqzI4TzIh0AXfy+9LfHtXH2A9sq9MK9wqve0IgK91hyJDJiDSu4pr/XGEu/1PlR9SReelGs4IOmJ9qQ8wOsmm0beZ2vkv1P3zAXJTFcs2NEzV8shcunHH3QDWWklttaaFHG4wQn1s3+m319NrVhUsJ+qtNVjxT9P/5Z9R49O+/byj+DJ614S3WFZtoE3gtgmvsTVcPQyETfhg41mRj4b8ncIZrFagfr/VFHtyrERMFIQVu4A3kXJwvNl4cdQ3HjBHoQHq67FOocSJdd8KMakHff69w3AcfeOTSMMzXjv9EnB758ivjkGxDOciyk8Ld+vHFK3CWPnjHC9LhgJUeWuyXWIYJKpTk+FY8xnELX24GlW0+8th4OyYrvUKljjhWeVT0R0x8vdQZf4ADetjuZZ0xgXa/+Syz6/slEA8DzQgsfuaOGJsvfTyieigBb9jHUpvtRW/78FHX12c22knsR5f4deRifIwUJ789vhxyHE1d/yYXkZx0naNvYJNKGHxDRG42Hzt14WA+7nTsd9mufvand0qPgvWuWy4IJ1pUfqG0vprs8+uaMePstEaFxTbbdemkCvxxfiWAKBybajrxIG7WJcJ7Es8su812EjFta/Pd8Ge6uCthyzVPd/VU1mZo2grasX2RbHkjfrOsHrfyBj1iq0FwppxRas9ljfF86lyEtymWr3sbY6dI3m6oRSjgX+/XgHW7ph6i6i4Cfek4VtTn0//TxOj8J7Bwno+R2L9DZWS5U56R7PV3TvADP8TL6eG4SxnJZ1qEqfndskbXR6eykqx++HejpqJnZRF68hBLHnqj7bD/aWD9HE163w5di6VszFiqvXPbRucbJr71mgxiXOaz452+l3S+cnNPsQfV5XbGCgiEbknu4g+yg2vS4GyaNLcLug6KNo2Ac3G7ZZD2PO+QRNcL6+XPQBBKedYjY5U59ooYum/2wlGaryAnqmxotcyMTKdEVleLDXesFtH100vWqfPCZio3W89eRoJVvfU6fpn4A7wfI0LcSPhB1FxLFaAiseLnqVadvFyUywb7+9j4XOmo9CVt7QGt+Qbiusms62s8zHLWb7r8s39H4aV67hunnABuCriL+BG0O11mTyNVmChKlQzhBN5I7/fNz01lbiLziL1Z2fKIxdk1itOpRrBtrI/TqVzt/6wEfXrreNztzJEAlLcV4+hnuNB3yFv35ZZ9qYc2e/GuCPz912OVdv97PAAf/eF3XcxX+878b6fX2ayBGPwxO+gESp9GaD/wQZY/eBN8tB+w7pyYbLH+/wGJdfth4eVY4/04hL7fn3MXHJjz2i9krreQ1rkY9pRD6voyO1T99rmyXF1rEim9kpbvmWNfGBg2FpXbydEAxtQWtddk++3EQ2NcNNUJ2rZc7X3nyz/d66uyvtbvcr88dGLsoIn/6dGLf/dpmAa0HQ146bfJ1dJb8W9GRrf/9hnPZrltaVvzVqp3rDu/m56OLXS6kzIpQm16mowM/2Teqe84J0faeNn945ssVtwtnW+nifeVUB2pMtqSR9tspsH35T78tvNOql7cp4OvJJeI0j9ov8Cb/zz+Q3U791nN5VhzwafSmR6vAtfiHN/rCfOz61NGW9yTHf/yLj1sMGiGG3YJL3kD/xo/uPDrBwbFC6msh1EPseBFa5zc2p7Pqip8kLSAuRp1Mw42GZYccDs7KXsF+0g4usfpCBRRYPPk9t6LbjurDQ9lBsbF+mLJ+Fku0Q2eptGmo1h+2tLf7TjrWOqK+Q2hGwpvbQnQLDHxI2jljCf3owKT3GY8sPmYrnvEA4WeHTxlXZ8Pj20nofWqFFd+MuhvNuEG5VDx8pJ/LrBGpG8HGbGNqX2iTjYt0BPhVypvq34PdC2eDpbK0O3pUD+yhnx8XhUhrnuZ/j05Y/3aTW8AtiU740h0qNgg3MZWa73LGf/kNc3vFg9N+flLd7upwsJ5HCa1525/e0zrGnwKAfWqRn3rIGHVdeQdma7r+Prn1bC6U6QOV/9HwPz+/8+iC1He18d+N+0GLkG0XxGlHwM7+qmlMMxsRgjNGPnyXuyZupUMpr/juL09ca2TN91B6CS4+9zYixG7fLIJFmjR6PSREm7XOLkHpbrmP8p+JVr91hs6VPWyP9hOxxnUb8AL9Rq1nqWVLe7vspNX/+1HxvmazhHsfJFEv6WXNC7eX+cLDix8WbPX5608v+NBcNgesHLW+/h2VDYGN2cVUJwe5n9iuaOH4O/2wcZ35mrwPpwrpudRS37igfiqeY4XYNG7I3tqk/WzfTz4K7NuGZLN6CmfveShASu5XeszEsp8kOYjk9JhesZdsc429PM+B7rgrycxDqU2DkzYQ68uDvLpqZGPaDTZKkmNKFe7iopEip0T+oc+osearrL2nHzjJpUp2r2FbU8dtK/ime93nqo+DpvoxpH987g8vPg2nrCSmlATqsK4f1k/8Wpb/8+9/+Z/4p09HImyxec5t1J4jVYTiIlpEfuXDGt+cY+izXPLllf/6xzvw5PhMMp9dNlRjql/5f9eH7e4nINb+qgFW/4/X/LKnTogC9HBejKZ1yWndMywWiNsmpilBZ0SdkJ3hqx2O+NTde5dZb42DHOojPp7ke79tlrKV9WZqfGHFP/a4Oia8TLjQaJdhtJva/QDgDoB12GouT178DujZZFiz3jmbafguwO6fNtW/VViPf3ytzoXs/97XTT+VW0uELJE0rFjG0Hd/+bqrfn4+E8KFMYpzHfDTzFe9S/vpy3YLrPkXPm769Rhevtb/8A87J/2lzW/r9gH0Fm8EhOGKWiLdJvRL7R/OballM/rsbPBi+77qE4PRRZg+YJTF3f/z05N6N9q/PBafriV22/oxJOg0Ci/yodFdG22liuGiprrPVr4ifTGYsPxU8V8+yx5XVQe4lB7V9JfB/uVJ6/PGdkZ29ZxVnwWFx63mL1700Vhwnj8yyPXTX0jvhiQq7AIJthLg43heu1w5tERnnw//jR+V3LsID6dmhF/1BguVXy71r8AhTWU8GX1pc4IcMlFqatpWm+e0C4DfXWdq5S9dE0OuJJKYNSr1fnjUOucifaDYDyrF8FYZ22cvDm2vwYs6uRKybdd2DszPeG2U/wzceaeELVyv6sfn4m7UqDkeY3gs+plM3f2cTRv3l0CYIerLGxa4812CYC053v7G57/z65tvJp8tURhO4P04EGw1IJwW5jWLy7iEPz4xjlGPfvxliP7lp4fCeLusOxg6DEfb8OUdv7DpC1qJnlcaY42JHBrjhkoI7uNn9SPIFapvVci7UFN98Hfffnbp5YMe5Das6we783FKbUhpIBH0bE1tmXXbRMEs23/5O2KLGTv77eXFrfpRW7dANQRGVWyo9si22XhgGQ9OsinJrmrLjD1Ma4c+FGN6mnaCNuzekwL75GNT75gx9OWcTwvY8l9kt7xZP1I3HVBRGDXZf4MWTQ0/x3BuyJ7s4/uAlm9CRbjiU4zvhoKyFUEkyC5G8V++frCtKm12+f7Pn9UsLdaDR5ffDhvih/zlhQT9+eVzJ6GMRbtGReX7pFOH3XSNqU88/NWzfAB3g8h58wr+8liM9b3vdrrbcrDWD8i+u9jhYjltgla96L839dBPheV0sObp2HtTtZ9lLihQbO8F7CTlLxuMxFj5+Xte60NvNBHpOaH+VJz9S9wt4RLLpSMvMedQ90R+PVnzZ7TmoRT78YHxZ00a4MGpJ4zXvI8hl3poft11el7zzt/m4wH6XPwPPvVI7BdbSnzAyJqI2Ag4ZMHrSEAqLxdShfyU0Ts+ifDsqzdZZueaCY9f3cgJ2oRUuakbNEYgp0ipHJUqdlXWy2AefBgkrqVaL/yyn7A/JCALxwBnq97balygwBXjmLpx/0Xr9z34COqTnj77sp7C7KqgP36z8lejkfoeKrKb5g3W6n1f//ElOuTuhmqKsfRERLcCdvyE6bX18vCP3/7p+30qKJrwFfYFCtTTBa89x7TB5n4NYh5PsSlhMVyGj8hDNh4yGr+uDWsDtpFQh6hG9Yf2Q/OoXyWZe2gnfGx4vl7SYRCletAz7P6+Uv0jWSXKkhn/1u8f0QT5YsrXnfjE5nbywj+9Aft8LDHetnq4pTg30TssDH8vnj7udA2OBJyBaFi5KwViUXm0//JMfHxFnTv9sj6A4sJbPlKZly1lmjV/+TH2n2YZLvvjxYY7+5rYMPhDxr/8iJfn09fxEX3vs0k9S5LU/dobth4q1VidZQP4uCFrfQC788tWl796qM/tciP8yzP+8jUf6PjKFmU8THL22Y3UCtocTfIDF2hzbjjsaXIXLv6uySEv3x49JjcXLdxzkeTvxDqq0WuIBpMGqpz8pK//W/XbXNyzHITtdCS7M9GYMPYLwHYOBeycm75f2h0uQS82Ef3LXyexYL6M3vwNn9KD5HaKfNkhKTh/8f2Uk3rxLzgBXklLbAezFK7rZQFx+42JeJcCd3mGxfRXD/J75Zq4y1fxONBGZ6Zqe7r9+a0OWCrc8ZrnMOaE6Cxrp0TC1u+5Ras/EkHWIkr45TGh0aX35k8/kokIWr88NbND9i/JsZEGz35AQg6wI9yG6slX7P/yKTi8ZIzN1V9MaXkmQLxaJfKYOPWyWzwbSBnDmldlGoumS/CvHviXp27rUAFIT/VI/fa9yYa07XPpfS1n7H/Mayb+za/NJzlhj/tFbit8dg0abg5d62kfxo6eWPzlI36l5c+QLjEJAOMMrevzmM1JeBBBrYvQnzopyyZ3PP9/XQrgf28puLTU86u9E7EJtGmC977F9MrzejbEVrtDfWEb9Krn52zrJncOIjvwqDF8xJruOTEH9y6sZ9OOUrgUwbsAjvMv/k64nsJpl6aqZNk2wt7oSYxc7FRCoCQafrTOES3lWeiADexIpKxaXMI3Aw+6R/b0GC/rW6sno0LGXhGw59StO310poDUr0fR1XOJOrTcFFBOyQ1bJzgglm8vC1pE80mPsSdqyzv4BZBvF4vI8TbqFy2YF3gfuhkrWvxGSy+dHdn6Eo5sJ+lVT0F1G8CSFw/rT7POpqE+6EDgPVGrMc99u7k6H4ieCcOH8/nKWJmNAVzvy9Pf7FqX9cFpE6CXMQs+t3GncGmkKAYWnq8EEj7WposhBPD4DTdqbg57xo5190Hbs9dhVXxI9dROhxLKq3P3d9KLIXoc3RTuMeHx4bYrXXJvZge0m9USvnU7REftrMiNdTGwi+TRpd9AOctnRQ9wdGMGmkjuq2jQ+Yka+NiF8z0Sz5KadfV/SLuSbWV5aPlADKSThCGd9CQKNjgDVAREpEmAPP1dnO+/szu7w7OWy2OSndpVtZMdHCn+O59/6k4GrZi62ARVmSzdcjzDvt/rZNk5ojkG45rC0ShqWnQanxNul8dweOEnKW+uk4gXEGeQgOqGNV/Z1+Rz5UTw/XABvkscDVgwJK36uOpXakYnM18nuTzDZ2OZNPtVHmMvt+6AwnqfdKw2E6n7vQrlkAYc2l9DMRgSfg4VSkWeqHu8BPPnPj5hPa1HejheFnN99soV+Cj9YA0+zwmd4VkBPbs+cHQ6+Iy0zrFTnQUzajgXE0wP7gyhuexPGC2BDOh+0WwIrKkmq9ycBpZwJw1Og/NAymI/BnLp0hlcefZFfNtLwZLqsAPLEQTU/FUumzNOgPA4TwSbS/6r19vDdUHzwxfSEYOyFZ7DGRIlqrHN5eIwC54WqouS77BPf2XNe78np9wibJClNKT8Z3LvI3RfZDsVaRW51H9pB0ueFKS5fzCYnb3Cw/3tjHDIv+R8kWLXgNoyCtS4vo1gLpP6CMH9pWJjDa2cV8scgTmYRBzVw2FYWthBKNQyQUAs9vUySadStT7+hQjbfI7H18Lt/va3mfyOCb0tx1alKYlwEC47NgWdyoGal2Vq1wc9ZydNk1XBJjLFeuzk4/GXzVAG0UItM9fNsd8alUq/6YkPKX8JBDpqilqPjwLfoi/Ppt31lEIBmBeq32TNJAg8W1jZiOIo/T2H7qW9+z88INJFqGpWr8ZV/a2gJqKlGcOqrUyE7NJV+GzmetDn97JSs5NdIvXzwDUzJtzAhP8GNMLNLVjOj7cLKf/BOCBxVVeF6HPQyywXX+0XAYvXf1aY3iHAbql2NSvLuYKx8Dhg6xANweQspahebOdJoHAA9fos7BhK4bsj6zUUzH48fTOYhdcD4sQxzFcWvjhYrldMzRnXwVz32hXuDuc91U7fBKxUnCv1A7WCHj4bZX+vw/UfvobhJTaX95eNar1WAxL3+BgMeDuC1LzGEgeavAsGxKwWvHeWQ8/dgoI5Pv/OcE2VH9ZIZOfMkQvj33xqnU23xt11AYr3uMfh9P4y1texrUp+kGOdzwpzzoSLDw/3YqUHq5jz7fNPdbWrguqtR8wllHoNdo6cY8uKFTabNruCXO50uuE5Y8T5NHDDE/oqbm2+Qj3wIXle34Rv7yWbfJVmIJDPZ3ptpCCZz95xhLl0iZCiKmSozyEuYKV5byKZsA/m7v14ArvfHUizxZPQLekZepntUie5c8NyIwqEedUwjNwc58s900v1HQgmRUeF5dM1TiuANS7E2o30wxr3bgPN3dukfnM187lvZAUK9+3Ws1WNw3KZqxWuhpBT/1d5QFAHQwRi2X8J/xrbmqHtWJS0m0ccPsEI2Pd64cHvMk3YcXOUj5yhcftcTXNaHIzz8Mu0UIQncLjjQ8+PNROy2lArLXgjIIjXnE78oIDFdipszoKdCEhY0fb2t0RRz4Z66cbIgocmzun2+2vKWdII+2TOsOXveMCgTSvQqNuh2OT+HFZJEHtFG2GGbd70hlWsBAP+hNOMSv9nJuKGh5CvX/w2HntYhXsRAnHcfTB+1yNjGS1XeElfA2r1xE1WHi6j+qJvh4bldGUsSGwCc+kW/RtPR/vVgpf9ucJGmowB08guBbc+k6ktuXdzWx8O6lwxYS3S54HwLJVhTHOR6uMb5IxFZFXmSOvJ4ntPNg1/t/R/QME4CrqAQH+AEJLhtOVjM1989Zv+5QfCm/nb3Na7Uv7w1Y2Cr7n+5Z+LMLwptp8Tm347e4Tq8rzjgLOaYD25mQxl8XEjXPV5sHUGtg1Pvabhy60jOT2KpQF/FzohMQ/L7ZbNLoafJ9/iXBDFhAknI1Q/b8Rj/Wq8hq5RPQj3wudBrfP9lyw86JW/eKdY5eNk5oL3DH7ocyDvetHY8uAKCKcIfDFeLihfD5wb70/H04IW5b0y5jqurwR3qadm/PgB5mbeCunoMWosrR6s7FQjeD37wZbfekbskw6hvR4mbLhbo+GrU8ogrm0ZLfVSstZNviOUoDNQXBj3fMnEAUK5cXzs5LoXLKFuyBBAqlPzwB3AYlA1BJT/YvIztRuYYXRvwVDJJQ7EYj+Q7wVrSoFePJrWk1azN2kVKI7qB1uqF4Nx11kh9MbnhYZWseSL6Ro+XH7nFj9ehyphgB5j0Jm+TqS4+phLfjja6rzcXELn7Bn0VJQr6HxHDmvKTU1m6NpX6ILPk2LNLtmW788Q3mUJO79vEzDFvV2hIP/cDU8ZW/Au0VSrlt7YTva1OeNTJINYkmJqBv6Y9Cv3ruB8edo0MjPN5KPU5aAz+xmSioiCyd29EFTUFiDVeGHGP4x7AbQUadgRFmDSjHYr8CgANCpPP3OIIu8MR7S8sQcfLCH3sDnC5+FzR3/5YT4X2Rl6dA8wykY1WAYmWvJwLBOczEKbrON17dRtP5Gp/11NXn7SBvrHlWHcG0fGeFmNoZtBg4hu+2GjZBx8aOKdRjUQT/WqhPkK+PrBUySOY7IceT8F2Lzeqe2Fnrl0yuLCiwgv9MZ2S7DIH6+DBTEltLv0YcAemtLB4FEO2JCbZZgvnGaocW3J9KhaUj3S9z2GBJQ3qr2+QT5+urRU2Cqm2BiHGazr/nmE1+3hFB7WdFgkM+FUHuwxDkVtAMw/HM+qHS14248R+O45rlCcGDbUSJMwWL734AmTFXHYVREJ5sMhKOFqSDk+PLL0Lz8QSL7SlXAXwayFYe9dwR0lKdaM2ahXq8haeHhVGo2sdisRH5Z2H3niF3u7Uzj8w0elLc5YiyMpWOpisIAUNxI1M12te/38a+FDDVQ0Z7bEFvl6aaFzbG50Wy9zwS5QwFrqJ6y99M784/vgBLMImyEUkylPT6PKAd6ipjC+AKW/PAaLN9c0ufiWKUg85aFRphxyzsqazJzcWeBS+CORIvgG23r0UOq6A2Gqsj3kkB9tNSbXB/VH3JjLMRcqeHHSGB+W9WGuoTyLat07mLDL/M3b5/teAVcULGr596Um4vjgwQmmEb0lbpdTTxwRaK/8gVz1hquXW2kr4MGXGjUBuw5/8w84uH/gw6b3pFWZbNAmnkW9fv9l66CkLjw3AcL62q1m90UJ//d9NAA3D4x51NuKdEQ9WX9Tmc/ssfTQeh1siouuqEkh+hDqQfTDdtJcg0V52g1MAQiQOuB93tMufALgpg3ZXawOrPdm7//Llx4HX8Pf/gEb3lKtPX8Gxvk+B27usyM72ehqesWVAtobeOKQJcswm2pWQLH/pFTvjh9z0bS7D0VErtixf00+D3qSwevtuxB2+KV/+WyEEw5zeuD5JiEJefpKWlxc9MYWDrb8LsIX3lkE+rUbrJUvx/DOlJ76Y6kk2++7gvOJ6RPc+NQ4SGsJJ4xyfDCsOhibY9DDYuSeNKAeDObpe+3U5zE30HyCJZs/dXSEvcst6LNb+YHdb7kMHXXeHp54+8PiCFwK1yp/4vC7vW2vF6wBQXWyyedjVIzNeoegHb976oYfk0nusYMwFKwIa3fhPax73ubB92s21FvDT8JCsyuVQSUuEiUCc3JrOw5sepgs+u7L5kzpMthVxML6VAw1u9q+DcNUnWmQRObA9pa3wsNbQXjDY7Bs/F3Nm51G+NdtPwxxYpRwASPD//jjUewM8Km/Oo5eByPhoTmvaowlRsioVMPcHM0eHnfdGdFMXIeahDMPtCi7kaW8NfkK76kBqdI98Nn6OmzzA0roaZc94pbywLZbKFfYrtQhsEV9Tp+tquz/8p3Puw1g2+dlcZBDjPrns271p5EBjgtPNOwu72Thu/dRfYkDJf5RSM15+j57BWTz8o9fzYU8N3DfM56Iy5XmS6j7MuCdZkXfbf8SHT+voLBqEym827A5uM8zqB63K5F098jW1DQLmHWRQ4Bb/uolziICWZ9CNN0eW2PXb/aEUqNaW/5I8s1/WWEqCCoNWXKqF1ZvR5Q7GlK3pWvOxlhEMDyUPuKOSpLP8pO2wLgfr/TUHT/BusUvbFrBxWF28YYJpnoIj3xK//HJmZNLS92Tp7DxVZL/81P4XXuk0e76Zc3DpgaMLvRHuPEjDPOl/MrqFr9oTfgvWLP1W8HM/VnUeLzWYUl1vv+Pnw7laLKf3qQwukw/Gh5uej37sqmpp4L36WHIKPu9Na2Hf/OvBbgdqsHca5DuL7/NH6jzedeFCITSM0MKV54Ymz6SCDZ+SaPnLCRs4msFgmxdaBCcDSBI/FdULrJOsJ2mTrIK93MIB9eSqBN9z+y3y1oIVXW5ISp3AyN/ftA8JHu0a2mSkJ/2aIHSPs/U+0zvfKaflgepwZ/pK1ZPAAxA879MSri7AW1smdR6P4/1TG5yAXdS4hEG2LVe6KMQlY2P0+vx1Q5/+gOe23dOtbugD+tkeCF8Vgxje3dtwfqijgJ993Yj++fhyuizKq9w00MY8VFpzqk2iXDVXghJf/ymHxUFHHTzRgZNfgWLuX9qIlv5lBav92zOyWLOwCgzjnrp/pgsn1P8hMLLTfDzgrVkPgVuBTa9g+nZSwdWTDOEeqvHuPD5ZzJGsUoAcn57jBCDOdn0A/Tnq4jmja/PgslDQO2ztjWKPwyz1b01qJ+OMkX5N8qlVNlnEBNX3/JdE3Tlw7LAn55yWuUH5iV7ImjuahNbpRwlpDyqPaj4F4edbzmZS9CUmbLx+41fDMnyiHQbrtoDYXuB8bBaH5ABdr4QHLb8NPQsfEHIlneDdWxhc5m0NVPPsP0Rbn+3ByHulhXenIBHNLBOwdp42lMVqq9C3quBGHN+lINcnf2QwPNWIlU242Hk8V/E2Wc5nyAqM/iRbzmOyuqVzF1bjupSn1LqvOJdMqeHxYbqSb7irBJwPc9XrQf70e4oGj9C/U/f4CvbEUbP8bDcg8sTXkrgYOP6rkwya6cMfoQdogfvptXSgLrun/54de9Hwn/qKIZ+y+v0ehmmgLiH/RWOUxxQkxCci5u/APB12VHPaUGw5Al6AhVFZxroURisCDwb5Ru4FfYMqg/0tfNneJwpQdIvlkzy+fQymDwvovi1GEBonKVTt3yOk43PrPI7QqATvZ5qytgnYwtiFwYf6KBmWz8mV4UGQmsrEYmBmazmbrbAhk9ELLi+7s/2YAHw8DlSb37fVAb3GP7pRywnHKAb/4f9WWBo3vTo3JP7CPijgSg+0/yfH6cqXvykwe+2Jov67g2YxD3AHkafgbzX4Qz/+RF/6+/ubgh+9lsXgfpNzf6XvBDY8BbrjeoMzZ9fePYuH4x0cgkWkkBDuY+zgfUtvzDO2pG//UntzV8hl2Vp4eYH0xA6FZuTJVjhVbRz1P3hr9o9QuV4Q3tqbf4qv/l58Ox3d+xvfuFqxvsVirrdUPvRREB58YkLN38N657sDn/8/w+PsNGEIxtPB/UI+vjRYhzs9GSuTCfdc0C0qC097ED888uvyILU/0SQrbtbGQL3mXdIgI7OhJZprlryY4GLM9peKVclGe75ykJQaWmwKPWdB9yLfinWblIwflEuwmf7PFIHxGQgt9mbIXmYEypaPqppHElHeIyLFzVQ987Z+4NseEenlBo6msyfEoQQNqH5wrYqJEnLzRQBj7UqKuLCZRvelH/jJ2zzM5ai+Mbgb7waYb+BpS4VwaZXyeIsSz1l4sBB1JUzNSSOmP/G9ymedwLUpwYabXR7mCB1Tx3b1M3ZD0KinHtU0AhxCZjvPuqU37k/082PGH50e5jpTx+hj66z1be8ChJVacjtIhh191CRD/ldc8Te1Brm+g3aEH6jilI7NZWEtYNzBPG9NRFYjom5SLFmgH16/5LxbdSMSThLwYYPZH+bvHpeXr8n5Ju1I8r+POSDQwBSqBwfEctgBOaztXV1QqFHg0Im+frwwg6SI6HovjuNw0y8MAN/8Xj5GBUgktWv8O/v7GEemPTN3zakWrxS48eJ9WpGpALziR3Ipr+HKQS7Bub5MyDCxzCA9Jqvo3Ix6QlHrvQwN39fUfZXPUOAsxpz3F38Bmz6neqb3yxeUWFDO657QkXxzRaTe8cgz7wbAVmpB//qC0+1kTAWwFKvflSdITW6HcWy4Q7rStUnyNUsR1/b1IMxd58icPfRiTo/vQTzlg/g40duxHouYs6KFZVgePqbfjAK8I9/b/ub/sX/+oynAvyGFWz+/zVgc+AZAFdyQcZnuwMDNO4Q8r/aIMqIrYD/00s/81ZiX0/NgbfuEIIHUggOuO1K7IMrOMgp7+Pm99UJkdvjU/06r/dWL+CT/rLsW/DgK+1PL2z+yoAgaJKWmpfZSQTliVpwMK4BtWoVsvkcLxWYrheTOonrJtM5fchKKkgqys+7qV67mllqXtQNYtm1HygvCzEg2VBi67lc86m1PRFs/g7W2H0ES0C88M8v3vLLK5+dAa3g1Bsa9dIkMp/2yeP+6hXUO7UxmJ+XxIJYg+E/v2l+gesZmr+HgIMmGACdYSEr2/ioznsf9s//5tyvtvl7IVu4cG7AmsciIn3UJcOY6sX+EZbvza+1E/5eJRX8w1+/zmPAC/FPgz8e3WiwfLRAiI+NDDn3o6E9Rofhx4VzC7b62KbXdvX687jszz/F0R6fAmZ/skzZ+CLhDLMKVjddIbD860g1ErX5/PL9J9xlh2TjE1NC1akr4OQ/dRylaZfQgzmOkPUZJIJfOyYfjEoG//yNg3G5/y9fGZqcoj8/zyriBj5tJUIp7Ho2v7RfBzO4e2P3exHqWfz0PYzJ+UGveagNi2+sRDWT3iCTmZUmrcedDWeOUwhvjrdkbOyKB9sZF+ze+8Dc/Iyr6l1zhxrVcDen8+Ecq1EY8tiU74pJ9EBbFTvhnzS7XoNa+qvvVSZfYfv3IDUl13sHtb6JqN2by1ZvmGZwg8uBQMgVOeMkL4anV3gjyvU6DPNbSCEs6HnAyNPjeqXPoYeLct9ha1LPdR/3WqOSw96munHkguE1Xwnc8AZftvrseg/HI1TjHSW86q2MwWBdoRWvLlLyKjYJJ6xPyP/eBqnSJDRnOYs1yGVqRA/Oe8c+cMfHYPNvsAucWzAZ7TmDysUr6Z9eWn5WbKhn9xjSY1xZ5p9+UT3LUChC0d1cd7k6g1B+MxocGM0nQ3ALeGlaFx+mcA/oHHgaiHW3o/r+MubtWOZPWIajiuOtHjpE18qFOwOOOCexUU9IwTM0Dp8Lkm+ybq4OTJ9/fj5+KL6er3/1UTkfCLbau8bon159mb1No6Gx82WvNy5YFXGPtfZ8qBn/AZ36uJrXf/lpPQp3BNhJfeNg7imbf2YQwq/zeNOo3m5CnYv4+ld/xM75TM3p8hYJvJfRj5qHXwpYKrQ+eHpxhthc3pO1TtsOjuTW4IO0Z4wVTerumxcpEWcroF6BVMWQy3YR4rf6hvSsyjMAR1Gjf/jFBu+Swa1+jpaU7sF0Ucz2Lz9Rb5HSZOYMlwNKJ75peFAbtt7z9PxXL8QWqW9gGcLAgN2eH+jl6ihguXw9CHe8AslO5eP85er8/+9Igfp/HykgCkoRHzSnnLiyq+zbVApp8C1jc/6SQoPBY6dT894rA/Mulqush0ymYdFJbFmlo6EO10TCZnsW2Lr7JqniHTJMfSt9JKQyjx18eccQu/yJA2S+ZJoS3bs9Rm7WBZPxiisVFceWurLdmBPWnAZe3iOmSTOcAuZehhLMRXNHik3TfKbDbQXptXGIVNUy+EVhrUAuyI7Y/OQNmG+DHUuNOXVYq9XQFGrWK3B/Snl8eB/3YHyEXazkfKdtb82b5vrF3wz2iXWhyDdDtprEK+B5xC52uRbmM//1OaDKlUSNm1gES8PMSm1+RYazgnvUNEGLCKmDPQT0S2f2zL1e4XylC1r4VQ/WeniOyt1bftgj+4GRp2PbMPEkh1CRIFNsjJMMd88HxBFYfVMM+w8PdXttCaCFFBCUKwi+khNBQj5gsLLqW8HitkupiZ6/fBmdN68u3uWJfS3LGFWHuoQjV5UYac86mF6CbsDpHVsUecndJGFxb5Sb8zuj/pvk/8YD30H6xk6j1ybrhVMB5xXoSJEMh82n5AShKMCO5j+BMpJDiuCplBk9PI3A5IP1dobVQ0mxGQrWsByDyQeFVfn4+rVScw68RVGX9f2iWohe9RLo0wgl+fmijhgfaqZFRgjtMnuTNw+4ZG4uJQQS1GvqFChPpthvU0U+PI5keRUhoKcYK/A0ryr1d3uQMHUvzbC9HF38MN9yQH5tXynU7A9YkwQxYIK716AnuDX17LsVjKb5leFKRkKA+HYH5r7LJ7wuSEL7z2OXf3P1d4TVQ06x+X4YCUHCqO1/83klO/7GgpWd8yNQQWnTQrMuAcP9z4Wj/JOx/tGvrA0KmQOKZbyxzoNnsrb6WqrT4iNCbA7kZMfSM7TkZMLoOfi10Oy0J4xWbqbOFs9TV99d6NQaQtw06oEUm+cjcB7BB7vd5Q5oIt2OkJODCxKjjw3WUo4zuLOKnEDNEoLFeMWlal7AiLETrDmj0RTChj0gDWxIc3K/3Xg4LS7C3ufxStjL1Vw1TqoSfexLzhZBWJTd7/FBVHdaLe+mpxGru4fsIHgYYEKN1E2haKMzNt7HISc4z3iYuXxMHyTNzflz8Rr4qGVIHd01hvEs6xCQUqmw31Fnux+mi2qzyg7O3Mio12EpRxV/EKDYjvV84Y99qWSxxKPMjaq6fdvOFc6/j4+Ua2nU6+zxT1UavTs25tObTXx/voLXTytxKqVRTWYPPuHf/vaOo5WIwutUqLfvfTtFaYTBdFRTHiJDVLBzjMWk+9BsBfhQfPEpzK/DemGOD7f5Q2AXvRPWHkwFivdfRcNqt7Kx0A2iprcAUgyKJlmvTVICRZwtas3WPV/Xs9Lv53WvY/2w3Srs6pOv2mp+ImBW9Jz0q2bDt8VZxEKDli9G8mjh0+5f1No5kTlLmRPDf/sFsHQYbjmF8Pv3trarKeZ4OTERerm43UIyR0ZSr+Jgd+Q0qlHvkc/3nsjw3m5NRtqzANaJ4xDc8JY6dTIODJ4WAsZAYYiTTj6j73fcqvLllmHr+j0kTD3AFT73qkS4u8rno++fYvX8Cm80MNDdnAHUGugFsCKqu6WwmdYhgLStqJ6UXzY5WJtVcK1Sap5NlhT0pz3V2OyuaOl294T8wtMZrOnxRF8v/QlYHggtZBy+4m0+c3a7Hzv10sUV+puv9X67idAIhTf2iCeb8/T0j7BzqoRaYn7O59/Ed1Bn9YCdYfdJVjEpShiLKiFceqb19FlHH+yeL4ijEDg5pbtUUWbzWNNn9ZsCCssDB0cXNNgwLlGyJJWmAL5PW+q5WjBIZtDYsIkSn1zl4sfWw/vjw+KcnnEwPPlhlePLDPIhTKgmwk8wz93bgvdiMP7FC7l7Qfv3+4iomIu5uJ3SQjNQfFTVXzuZh1FV5Lk1bGws/srW2tjH8PeTzzSzUjUZPyo19gV32lH/mwBzPWaggAb8CkiFpTYs68lTgCs6CrYuHsjn07sNleP7eCHq7WiBee5+NlSi1kSN0yLGjr0+q6/Wc6jD8/mwNebmQPR7mzTY01uyhv0k7nm/LBBfhDhnQu2HUKmVgbra58MW+wEzwB+hQvrrb8e2eD3C1c0cJONFBLMbpBqUXF6nkdE5/41X9FhKuJgehnlHphIaL6IQqVHOAbvd016J53tOA5OUdX/3zAaMh2uJDR43+SyuuquKr077t7/md2C48BxeOdLv9nlC4s/SwRY0lHr+za7Xykw74Bvmk5pH5gRkPzoNvL7PEw4+UpRT+d1Y6kLtIyLH1K/ZLdqQ89F+MG75dlg+6+jC2YxrtHLTy1xiv82AMp1vOI3FLpkWBY2waOInNqtrknRaz89QN9mN2nSe2SLl+lXFxitFkvzTmPiHD06p7bC+OwJG71ypqf1OxfjSXYLk3/y9uWmPgzvokvW8syy4/T9qqDwKGL1XPvRRcf/HX+ju5SAI7A5hbALbXGHBN2ANdgE2+Y9cr5R78kr8+EkYD4Nisr98QY+1Ru3lJufk2M4pxB3ycdSYj/qH1RlBDvgNWeOdO6wHJ+fgsDczosSVFoh7OawAf3tHSKjmdz4VfYUA07dbxlt+nvX+kQE/fQHE9y+as0clj9CgX4uA6DQFS8vpo8LIJcRxvHPrufL7WTEFK8Ab/iXi5AME9+fUpNFBZjm1PhcFbvmBVDcRmqu4N2M4xpcT1RTlW0/2g0/VU1ZccLCL3vmyR5MB3xa0yG6dh3q1KqsE1kIzxCxvcyQa04JS116oruNDsjx/wxN6ZDzQwvHaZF1dgUCOb09IuZMlX6/ptYXC8ZPiiNpLMrPo5AL5EzU4+JZrMBZCRPYbf6C3Tr4OU7a/8LBhL4g43i/MYb77M7y/uhP57cPQlBSblcCt+hFHl1UBq0E6EczhiPH98DsmzEi1VKXR0KK5OjuJ6NiwgW54tvB550QBJShsgXQhEAfnVw56pL8NCMSsoi6SP4ydDV6BXEMcGiivwFyZ4mvgIKGSBguLk3/7ccODPzwCY+dGMryQcYfNXe8xFpb+GWQ70ySfjV+K/jC2sC7TI80O4jefAXdT/sUDuyWvfAXdvoI5sB+oyZ8ymIl5GqGcg4kMJtEGEaLyqupibqGdV87B+G4AhFJKAnxYdCsYh+e7g5LwtREQljOY2be/QuWkx0R36GNgeibZYFsPfDi33ECu3EiA+Oo1aovcrh7jKZhBYA0BDkNyzLtbsTUK/45vjHaqWa92vFQw1MgHa/eODDTj3B6Kx0gk4uGnb/1T4nVvW/hEzerKki2f8kARVwv773Fr+mDplVqoxKfogjmTnbuhh70WQmx3lZFIvx+TIa/bM3Y6Wax/bfjUoLPKKflhbgLUfZeF8hfPRbWLNz2Up3DjM2RxWi3hERR9sPEZsuqf/TDn31QEmnreYyx9d+bCW58WvqrWpBo5hvkYUS/ebm05iLyafJjFjPSQTPsYiXLhgZkOrxncvnlH/vhZ335/MVyodaSvwOPZomR+C4yqPSOFqWLCOjFF8CyXCG3jz+dg1gzo7J/DX34J1so89uDLdwppHy+UsNd7garPoQmH53Flv9PNINA+Vjd8EGRpmN2PzsOPvDOI0umnYR6t9AkD5ehQf6f1ySoetKMKr65I9va9CZZs0BsoCR8b3S3jF2x66wmPCtFp8KroMJtC3oBDDzLssOgcrN+vJ8Nv+uip8+4dILxwHP/TY7bqayY7xY4Cs3V76CuUXsF60qoj3EmM/Zdv88QhMJwvJvaz5yeYf68ug4tQESRlX8bYZ8i0rfHtiIAzmmardrELrq4h4nC+WcPIvtUZhtPjR7UVEbBOV9mH0oFf6ePsXc1fExUzlFbNoIGw8Izs8usT0jq9Y9cRTmw5xE8ROkdXoPp15gMWS2KnXmR/RI/UkevRT6cSXnKhpcFPoGBOxZqH4V7+YJd338MnhrEN9s+8QeBV4f/4qVpZGUbfW51Mv+AWw+TqRxTJcpwItb4L4RDGF+wk90/AosN9BjI3HKkFPL9mgrsY8Jtfti54+nmod5ZowJ96qbAD9iObr1LVQnXn+PggdkOymFsJe/i0IeK3/c4EyGvgKjEfKVu8jH5TFZCRW4jU5THWNLDTEjZHv8Ea1bRg/YX3KzCuCcLWQ+DNZaJU+Zsf0j2N+zCf9p0FDk5rEDE4/oJRL3QflMVFppb6dJPZyv0MmulywK4dTua0SyMb8Oc3Rzi1dYflnaVP2JthgE1pdPL5qxw5sFuikjqlqQ28xfMhbAfyIep57wG6pHUK213AaJSjb0J27HhWw73yIcPw5GumvK0RWOm9JoqWKWBNImmG8E4VaqRNPPB/eKe1SkG9ovNytgcPGVz5BWwW2ZOxwE4rxSmN3Z9+BuuqvNM/vo+WB3ODFRpDBvhSsLD+Nvl8OX2uHPxc8QtbpfIZ5p0rrn98H60x5tkUw8wG+BMC+lz6emCU5Rw46J8GRyU75YsZcwhcAJ2pa0MNSN9e+Yd3qN3wgUVJq8HnfichJbKu5vjMLi6U0jHAN/JSwYZvHRTap0aRm7kBlR0lhuie3Ii68WWWSK8jPPJTTR5xRYZVcDiobPNFkX7jgzlUeRlsfANJS0OTf59/KJc7tYcVJYvP5ll93Ayd6u6DD36hjq4gK5KSehxL8sVFvxRyOmzIrCjOsIR3Dal2vfsQ6TF+EnYpNqW+8T+HvB5seQplCqX1KyGivO7DahK9gOvSuEjWPgcwX8aDBlqa/Mi84f+0DGuhbvxkUoWcBvT3A/L+ir4e+vSjnS/fG2vlbb8Tobjb+UqbqAN//sSfnheWl1rB8rJ8cIQfqjnTn1bAv9/jn4y0ZiA+2dBIkh119ecV/OVH5S++bOL9huWPX7WCUWB/cMt8+fs+/2BMFIdzkc8ctWSle3AzUozlwlavxAZk+YOR1TzowRxR7wjrRykSMPvTsNYP4wkmzuVoFgYfcxUP7hHcBbinrnN4BnOWsxjuJZpjc58QMF6Hqf+XX/rTOibtF9MUZMWpxI/LmoG//QlHpBjYLe9nQLLzz4cfvOhYWzljEG5kp8Hz/UJRcWPvYf4ldQF55ThTxPtFIAZHaPzxe2rektd/fKOkW0lJLfmcRZOE4PnTCThPz29z/dPzLH8xrENim4L0ezRAn5yIGvW3TUatKCuIRn/GONh3w5KWZga0mxHjwwTX4fXnP+zPmbnhUcr+4uMf/mbMOuTSY7EgXLzbk4hV1AwLL95jiD7NA5vi1iXwk0gV7JDdkjeyQEL19d784R2ZqaaZ6/SxMrhUvwu2RaH6Nx4lc8WYIrV1a0nToxjUc5xhnL7b4XP6PCGY+ClG7eZ3TTQutX/x7qrTkIzOvTmCqZFcVPexnKz7BzgD8r3uqFZOWvB7F99V2etlj21ucRLhk65XeJtSm256I/++ZoRgFgs8+fN7pFPsyECE9wONHmQHhjErFXXXnD80aGcun2jcaZAoYYpW/XMfupMDU3gr1QDbXz4AC1blEGzfh/b+zR5E2hw6ddMvOHh7krk6yq4FFPIH6unDxOb3LMvg0O8zGsLEq8mmN6BZhSuNBVdIuj9+2N/7DkkS8PNpmtIG/OVHq5HdYB6ev07xcn7Ezk7CyWolcwyPQV2hfXz5BePGP4ArlIetamKaLHnYNjxM8o8e9dXYukLINvzzn4aN/07DTDqgOb5LEU26hKp7aYXivh63t+kPAzNvPw1a5BiQX3zxTPbd2wqEra7hIG+moNfqqgfOvXnjAHdusBI/4QEsqEc14Zlv/llWwUfUnqlfmtRcnkKXwfhhGTQ4YTwIZNwjRbqMkFph7ADhVvarsnPNF/Z1uQHrL/u00NkXA311OQr2WMMNFMpXhRH5rMFs4aiAKyEEKaWJg7HiplmxlilD0kUb6+rUnjSozEuLmBb88vVTmKPS/8qVwKKTQIt/Xxsy1/igWa7DWtjwUDW84wNrw34Jljl2e4W73FfsWYYXLKfgMMNK/yTUPvx01m/8Hmz8h+JHmgWL2c+WusUzYX2c5uOjjW1w/IodmerwB+a1CNe/fEId4N0Dcv5kRxg7OMNY4LKE0uiDYGSGBXaf65RsfJaHIswP1LqV14RlnNYrG19GaxbsAUvQXoT+WZboH59mf/x882sJ9Mp3zfSw55XDrQhpxHhnYKJ778HR4Z5EhNmYT/X3w8GcG9402vyPf37Cn34QxmQCg3sZKthrCFL75h+HX5CLCszktkXccPkw9hNmXpG7kGFz5RZzOVh++8cHaYgdl4n1wyjgvfgZ2EpRyJZHb/CQy48ZjkYqJss0Hdu/eKTnKJDZfKyiFv6y747Mz2sD5nvfKsC7xHfsbn7kPMr5EwI/iunmR+bCBEYezok/Ufy5wmE8EqP6p/ey0sTmEur2FTZHt8HFfLNqYfN34FZfoX7wIPUfn4b3fa0iqTS1er6MkQbN1YaoUJUZLC3nkX/5Xn2QHZsjLy7h33ou4r3L6Z8+ldaPhD6LIgT8b4Id5LokwKhDkjlVvB//5W/ydh/ngNjxUsJrP99p5IkXxg4ze8IYiteNPzn5+qc3bpZ9RDO+oHwyn8CHx/MOE7bVi5bP2rh//Jx6ciHn8+A4rnL4Xq/Uy04oWLzielSa0iA0uIoi+AK7cMFNjY/b+n+H4c6VBkQH0UO8F4nJZBy8M+xOb4H6xiL86U8CT9+Hjf/waXsFVAaBFMvoy/Ognv4HAAD//6Rdy7qyPA+9IAciIg1DziKHFsHjDFARUJFDC/Tq/wf3O/xm/wVsN23TZK2VNNlhXQe8VHfM74plSrPNUCizvkZObAg5lY3GhZkfMXPOf3ES2w3U2Hyzwya3uOCzvEHPNmox8p+b+BcfEOLX+E+PZhHZ+yiYYCCmelHj9ebIHBjU/QEv3bBEbE+GN5pqNyVB62D0l0/6uq5KDCM9plxQ4gTm35/zS2B8z3Spw8nT546zbtC2azg0oA5owchDW6DhWXGAc7xIGL4hkQ9n65FDGTQd8fknbPvFIsUo60X1L9/Cs/JiwmluAh3W35fB9gZqUPv1QqKeypvxy0cgBOKSWcGFcHH2z4qLgjtzpOXRW5vnXQ1kCjrmy53uzfyggtPor+f4lRuN8BgEiNX4hb/R8WsM2OGucnxSQqfj4Z2OczyEW1Ad8Npail73Ko+C/NNX7Wnre70kIGcz8y+mPsiKs60bADymLCCXMi/bye71Dqmms2EeqWtjetzrN7xfTsQcltXlWCvNCVbiyWWqstcRQ3bmonZ1PzFPcAZj2C14DWPEPeJGhWqsiuto/+ydeVge+U/vhIcdKVg+fR+I16FuK9e3zfA4mC4fjX57QUrkh+REd9+SWUtCf/kjljW6jfim1xrlfH7eCXlodz5cde0Oq7PXMrwMCBedKHFhWlQS2W7rBPH3XhWUOhdd4mnH2hvRtfXBC2HPTO7V86CAcaHcYWlTuCZfb9Q2ZQeVwWriC8ePwVvinaB4nj/EXzRVy5ahDODJKyA/+2YWSAk61I1JvEgSfvpihGb9kFnt65zW8mkvwk0cjnR8jW47nvNmQEFpv5k2599m/lag6S5Wf/GwnPVR1NxIR7zeyoxfflTau2+Pys8u5nVwfk8K1fTLn3129lt9/+m1D7Jdx/UtgRxFIJyYetA+MR1KGkIbdZxolfNCf+cz54vp7/uL1XaxgJ1+Vcl1weOYd7XiQCmnI3HmwdE09ursb727me9z+hETSGtiEpvpSclPATJRvLwbRKvtOu46M8zgeUkjtiNY9mY+MiHRHz7ESC4h72Lpe1CWI5lT/FaTDpnmUjTns+i436il2L7KAb0Lz8Dnx7Hx3u7tcoJ+CwFRRX8fD4lo3n/5Ijbrqe20jlYOpCuyYk7kTAa7LmoduKO+yEG51794V4Ovdi8sz3icJZNBIXlEDM/nUYpV1pogLpMDTWe9ceiiqkPe50KxeJartFupgojq8+WGlxjbsZjfNQzSi1TMXzRmuX49IIOPRBZYxr2MxiFSm5+/Y3sB3VNmzF2H5/YL+Bgt1x7TfeP+/5QUyMJ/lxS8z82bdp25KdnXiA+wqVSbRd/G9aYKcAeF/14zvLSexrDLnzJcmmnNXEGLyiH6qI6CQHKZunv0Rr9Vmxq+9yjCVb9rjSkw51cab2NDP7zYefy0KG1YR5eCYVXXW/rwfAx9Pq7YNvnc0SQa5ACflq2Yum1NNE1EuMBZuejkMlxDr+73T11BdmrQ9eq0T6fsWMuw4J6JIa8f7aAsehO+r5wzXZY7Yzp6ZxP4Y3cl7qbbeBxvah3214yQaCRWWzkvt0Z3JohsX/My/r60wwVWtXYnu+xStXw7jAn01/KA5Rvx0sGIk0I2h+xGrE3m8WllyzL4V+3F1PEpxlPxPNq/9RDruH96PK4TDGcSf6hUy894vMwpaOf4cZnzPL4Qz5fBBZSPRYm+KCCld7o8wCX2KirJ5qmdEtQlIL1vI9PeG5r2TnoIUVcubfr1l8t02C2FUAk4MGLtmBzTb5eZsKz7iG0vm7KkFkiOLNfbIz7v3q3Ru/EWQLDMlMTDruBUc+auCvcVIV4f33g37y80xbFg2pJ6iCvmY4EeuGvYwV7c2zHN/TvAhm6Yd7cnY7rvVQfw6O4JORhqzLehJ8Lu2eSELJfQ9onh3oHF5YsW8JrQQAKvQ2zz3TB8WaveeJMXNhJMryB62+fptz73IRRlYzHTONGYw5dGwMb1PNsxK9GENRRB17kP5mF+bRmbggzS4dYSzFZKzHLtJoL0FipiBWXlDcIF7iA9SEg3a7dt+dB3HfoKL5kYXVSl428/pPdjxMpN0OLJ/+zeaPp+PFrstqz8nFRewCfAAtNqbsS9e+IFKOq0JYHYxe3wTc8dSISf2C6LznzsP4EO5fIpMxOyspzGyB8AP7szFqLcijsV0QT5y6Ijfn2Ccqr3RQab6bnFa8XEMRezk4yWX9MiV+IU6TDbJ5SSvWUanav4Q712IB+eBVNPUthO1lItlNNe4sSO9rt07LdTDfx84lg5kRfi6ktOwHzqJXHNpEe80VwA6fE28OIdX+JREa8SLHOpw3ylNJwttShZKqGvsfCwSmLWS7sEXZphzfxs3aPaF6cJZasopyIEn3acrs0A8pLWdMjPmsc3grtA+pm3bCetopRvA36Hermo6Cj6NhIqT58gwXaP0SJvvcEp5BCZeTtQlBDejje4RnJ10nRmPjYOn4SvJMCilUuiPfGWD+ejfEIG6AmW40FGNR4W4s8+yZXoq3Iy8/YEhJYWUVckjqckS1Q4XdmVkYORp3zbBwKUS7mnLNq1cd+EggP8tRYIfl9fxpB0HgZWDD5TrZr+fu+wMb9XwmyHmTHtn64P+IkaZmtuzbm5bgq4mV3C1FYkJXca5Y6c21CSLW/deW6XH0G/bOs/exgIpXc0nw+lvExSqgRXFyQnF4lOtCrmNwcvZAefvswxv1/OizQJ4Xw6rYj/Lg7pmJSSDp+D6GDuoSWnR+9sw/Ph6yy925H3fd/vFwjwi9PNS/6WnZf0Czi/JoZbqSuNLjheVBDKZEcC/z610/ErREqSLZ54QS6s5M/FBcP3ZG+Ie2wYf1doXygHtdGZ9rTsmDWaDjCfL81bkZXjuRtzuF+djBYRe6Ys146C4tzwjRF5/0x5XT8bqOvOpOsLF9HAGj0EbVJdtpdUZnRS0Lzh7UwT2b3kb0v7p45RgD8cB9r+zf/OA7zUowMoQ9wV0/cObzpXZdLLzagq6nTwVhc+M7dmm45h5Uq/+0rRqMl8ZEUVQQSDRdLvtWmHlyNf1ufTYcXsiZ4NtlIlG3be7kJ0ab1Ck/iaX4n2B4/5aqJ6g7nXnXkIp0CVxZ4ZXerWd/Seq4S3wWFu/Lq3VFhd4Ew329JGg1N+Mngrg8y8DzUQv3lToTQ+CSjchXXcr79uAQmvgXiXqPGGt4WFX3wlW4v55bQVAcOnCnV2Ga6D91WO1QnsEgd4WKwtY4BnayJFTQ/0tUWR0XtRMqA8SQMqd/GxHW/X9LAxk5NDtsZiY3y9KBrQrXkg4tzun7heR94BWlYatPr6SzR9okcNdb6TiP2snnyO5y78/I+lmhy9P3Ojgt99Uyb05MNYXh253A1XcjK2Uczx+RGixzG18EPZjO2QdIYPUS/t2cP52PFnfd2fFK0IbvituQ4fE2NZozyqPsyoegfVY2WfwJ72B4LX+auc0vMm/OEFvM4+ajv7r8vvflJun2yjZ5qWK0sX75n1vjzbQT8WEoyAT/Q7+99hUmMf6KkTmddmKqLp5qDCCP6JnN+GxGlRSCFAEy6JvrJNY7VfCDnIa0kn+/QmpD0kgY1mfEK2RVqX/XQtJnDA3JPEvpnGJHwHQVE+2ZP4g2aidZcKFZz0bEO5HZhlH6e7BJ6OsyKuoE1tK2h9hGzfWRI9279Lpt+oCXs91cnW+2rxcL9ZE4i3T4eVsv6m7LRoTZjvP5Vvu0XLFtXlBN509JgHpdZyqDe29BrziCK8sWP+vDUNfE/N8i9+1ra710F8EZVo9mMVjyIOpd//Y37Ay3Y4r/wOHZx7jTcH/vWoE+/mLjKtjpcqLAz+hJUKCL8z4u/TmI/xlWJU2S9n9r8f1L+07IJ0Z7MmTjMujHH7vGBI3W7Htkf95Q3K4mXC7I/x6t5vUi4Y6h3CFMnEiZcnPtzK3SxLbuZG8t9nOsVkKcJ8nrS77gbEZ3tB8qVN8Qo9dEN8bTQX5GvwJK5rHeZZd14IDyT7hAw5Nka8m19BHVOLkZd5MLjysnJlX8s7QvyjkY6hnjtKVPElVabVyuuyV2JDYqEDC8RJjUWtVVUkdkJMi5VdefP3dahdJGvaIMZifk5fDhSBq9DN7sy8yf+Ik3zfHRkO96ZT8m/xolBK5pZ4P3/z9N8hasbgRPA7NMp1yl41sMm3mVaJF29MrERA2qS7uMdNE0/nV5rDPVwaTHNPnM/4JoR8kI9EJS4vRy5WA6hbS6Wj44LBV7mbgXvGlK5nfMenr7eA9rwZ/s6PuZV/QOWaHZjzUbuYxpPzhoctmey4ohixbyWa8CrMCwn8z1zzv3036BXjCqNx+2kHTd5gCG6PD9P7NOXD735mBFW0MF5uOh5WSIf+e9JI0AYmWm2q74TOJxnRxVV9lpWaHXTF3jwFYmxeqcFztW42i5vOCObfjzdq+yGDOI1tumi2hdGviG2DXfoBMwL0bIff+fCHd8VSLQhtF7a1DI7thXTjLx8xlU9RA6x5T3QpYc+YroowIYOvNFovF208vHasQiq0mGB0rgwm3mQbzq8rMKuJBPRnL9b9emb4aIgpz/WNjnTx+yBkMQ+eCFx8B3RXT5ijeh+L+feZAFfNmPhr9myn98nwodlcGF2Kh5MxPZp7BX29xAQ32jHlH9e/I6N750zrUl7+7AF2ieHPfKbiVaQzFdYbG5h7vq/RCGkeoWwlvJnr4hWfblMjy+At90y9fE1P2G/JhCquKH/44Q+PnyRjS1HY43aol5IA6v2Y4zWjy5Sf096B2T+wi/n9ojHMHwfIC/2Jm+6qx8JXye+wr8sTcZaLNh0s6ruQbQuJbU9L3K4DeFXQLi5rgrN65IOFNwP0V3lLnGbtomE9SdIvvuFJKw7GWBndgMZuyMjO6Or48/N32/Cj42kbf+LhuXYxWu6tJXFCy0DrTr4OsNR1iey25RsN/f6rI8N6xsy6izKaXFwf0MXbGISc1B2iVwUmJKTDip0Xi9IYEn8QFJ0lC7oKbuf07z7367VO3K4w0BCVWYVmeyL2HG/mV+OTss11YN6rDdr10TAksEhZEl9NcmMieXj/4wNY0Rs0hC46yeT8kGh3Jgj1Ig5l4KodUwF3qJ3IYlujmR/RRXC8pmxPpAVcRTFg5MdPfKdK4FR/gpn/ZO3oY4ZBfygmicKuNXo4Cx0cUdoST1hV5eiHboIQHMy5ET5rx+XcJWgUVIXMv8d7kOUaAjinxB3CHHH9sYvkdL9o6OK4Kz3+wy9qHxzYpYxIPNSL49yFpLLIdu+924Ev9OmHvxm5vV5ptR7yHCEoz3i6HNKUF9elDWJ3y6nw9Zecwn4jgSfvRqKujqoxtdtgQOunkJFtIvYeWy7XDqqvYkhc/W2V7Fs5EihvOSWB5rxiphVYQJ4JJ/II/ScaPmWnQ4LEI3MWmsZXibGe9QBtwxxKd/HwMa/NL34Sf1zQdLKWToHKyyqnC1UvykFfBw0aLqeEOB/V/+FjQLtE86mi7W00sJrZSEsAmCkXtKXDRaXA3/jDglT24+m12bkw4jvFm+xilt3q1NkQ2GPAdOs6ldxxtxL0g5rNgxcbo3/DPCixb47Msbvcm5a1PoHP2JKuuPxuh8v+WkEEk8V0SSnaaeEpCzho2CGesHh732cfCyg21TdxhJCW051UC2l53V+I9X4aHj/llgybSreJdfQO6dj2ooMOC10kKgnzv3gFDth7vEbuJp7Gw9GBY/ZcM9NFX053g2H+4h1+NkOHxt1mc4f0ykO6XmprNNHUjtDbuS5ZIJ2TeHRPPEetWO2J5+lb3lWtdECbqdxiuMuVR4/+FMkufWC60Ja+0YEeUiX1IsLMlogeXb2DcG7rJ814gKMufZMIJKVYMLu1bSSuF+8Czg/7gBcMNUZftEYGy936Tszo+0Yti9DcmPu7J9qxfJTs5tgLuE2ZzhxpLqGe/RsMn+lAyMd9eL1V3SZ0mbQL7kw9jNsZj8h1fdxj8dYb8SSfkhr1eiQwaxlyzr/va4RYoTyIY5aK0WjfTkSLLPsyw96uOX1+riqIEAbs4t5G3n+PB2mzHqMT8atXg6brbesDpYcdscUiR/2r0BbQHZ4+m/kAn3hQ6VDv7ZFooi0b07Eza9glr+hPb+nut2BCM96j4aU8p3QicAHx9uqYekBb73f/kXROGjo9off4dfV9b4KtozLiPDdlnxQHEeb1ke0Pn878BwT/gPAqgU87Gl1jy/w09HT5cnM0Ft5ow7w/TE3eQTm6XCmAxc8X877XpuTac9/89Buyg25Aw3rIC3m/+xbkuwoKb5jjPcx8BgstORlVMT3vG3ovM+K4txH10usEaFNuA6L2Q1WOS1ZPsvKWUqbtEUmn3/cFHXoyvdyI7Xg8XCIgzmWkMz/x+Gac3uAdLiExhXVtdDc9c0GIgZBDlFvpkH6KO/jrY4yFBBcxA8cr0FeAnulWOHrzek04Wo3708Nm/UFLIFNaHyuJum7ZcrkDWFhpRoIbFUreyfsJZj6CpevHQWMQTOrv/hA9n2epk2UhwsltIiw/omc5iSXI8F69nnjZLGrO452iwjp1NYZnPWSa9TD5eVa/RO9ThPpJvhxQRPQb2zKh85qlI13g0X1fxH4defmd8RkaUR2yizq18Ui2joTm+MqCq1LwLrVBht2zzlnavvR4YLuMIqO6blm8Wi+MwdgvD3965D0m2JhmPQCtWD2yH56fyN3500vxUGDlH78szGWFZcRYOu/PBY1242B91jN//ADiqPzgDY/n++UUC/TywCDJ8t2j7zFa2TDza0autexN5VIOf3yKWAl8yhkvnNDMR7G8mSw+8vgtQNWxjDiKlKdDu66K33kwLV682n5EQY7Ody/FEbtHxlhV0QENl0OCwfRGPkTl4Q0j3iKMhIXt8XBMKerQ+0qnts9jpqndrF9gnRExKVAbHq4UZn2XaWbhcZ7row5h232Ibjxu5bgQdgVa7lZ32m6trJzvYwNL19/jVzYQNE4X8pZ/epdhxozzWQ+U6dsZiMWUNJ31She8MjL/4s14X0sF8Mc8O91hVcy/730E5nC/4U9FBj5EdvKW95oATLvtoWWTc0qgs1WPRK9+gSYedCo045hh0ZQsPuMjGd5qYtPN/Yg9ZK0iF836LSES9jzxM4WqomuZyXb5TozHL59s9BbzhIVoVxvD7fnOYcuyFZv5OBrSNwmR+0i2zFEnL6UzX0JDuNOomALhQvrehqjCw5Mkrqd5gnhIOxRmAmdq/yk9Zl5CB85KohMjW7acH947AU3PdGJuvk7bESmGDr2bBX/2R0PkmoC9t0782f9yMX12iLzPHTPhdOJjX9c+hFYVk3C8P8sBmV8bnJt/I/7DsMpR20sZXNKTwnZG56RcVPw7OtWgkrP31VKxfRWLH75h6kLe8H6SwwPYxSoh1m71McYtrHWg/WSw4NHevektShNqz2jAK9VVW25eLi4EfXSgv3g+vHafCmY8w4zd4hTzTXxMAPXbG4WZ7/LNQXqD0zVnos7f2y+m9wkRJxnx0vm84wHvu0wmoW6R7ay/0kh8nuDORPHn39NRep0WP72Rfguj9XpzG0+w2uU3Zqccx+InejQQF6cDFR9Nh7hq5zpYSuyRQCwjg98t8Q35d7Ul1lWf0O9+Q3bnF+L54uAxU3pQtF+SgQRCjtAbF7X40yuJU+56zneNE4EdX3PmW8sr4myyMhh5tiZqlqzQJK+VC/z2B22trP3pJ3J33EbM3fN9vHo/xgrhZmuwuVirHabHq0JFuY+YdfSEVDy6T1lxH5ftzLcOf3o1uq8zlxzn/Rblteor8Thg5qapYYh7aeyQ9TiFzL59TuXo448vk3P4+tNDhuda91Eoj5SZWlimw/sFFziwnR4sp9JM53yI/8ObbObLaIhM10cIZJeRR4H5uFWLGuApxcwWC5WPT7y7IyI6V7K9DLonWvcEwL88HpQPxskbYb2d46FxIRZV92hKE62BjAbRDw944yr8RlDudZlpaN2nE4R3igx7eyVY8bp4mPVsaB3hy7J9U3gsGRc6TM/hxazVK4iFT9mpyHRlTMf575tfPouu1OrPH/ensKM//8OMOrX4+pQH0j+9Ltgq6TSsUxs91QMhAeALEn/5qD893rWEdJqLOpW9qx7Z3s3ylo/t4ST/7Nk646bkF9k9yOprIbBtq/Qt/QZaB1Dcr8wTpE08OObNhKQiOq3P4jEenTSLkBF0HfNmPb0PK12C+6e94XVFBtTNfEye8w8Y9PO3HWM5nsAIjhuizfmvcSFohfKzR5+jNfrpdT+9EK+2KPKaW3wp0CqcZv7Vvcppv74XsECnG9O3mcOnSLgswGvNhmzvlev9+KXsma+SmYmzavnBykJIuktKFVzd2n7Gy/B+3Hyia3XOv0zb5TDrq+TH92b/nCPBPyG2HR8TnxaeOgCnF5VKoVXyWd+SlQCOKdMP5a78y4+scixR2kucv73vFf7i5TDetVKU1w4G5XN/MiM9vIxZD06gwtOTjueuaH/2oyz32yWuZ74yXr7BAmUPxyO3uUfID58p911XsHtWj4juL74LiR1tiXGHY0yd4z775SuYse/ieG1zbYJP1lDiUPpN+bEcM9S792Dmuwkae/uRQQXeCfM6faEvrYTmZ//Eyj84HYVoU6MnjXfz/s9d3L15sEo73Ml5tod2bA8HcMknIW6Xnb0hX68T8NfUnvOTLZ8ezekNsrbUGO4Xaju+M1uVfv5rN+fD+nP/7uDYHSpmLU95OWRmlaO/fNo+Mtu1oPUhZJRExIuep3Kahu9iM+cX8CYEt+TwOcqwSz4RI3M+5Q+v/PSGYUX4j//7MPObn16Zjuf2dPqtD0N9gnbKjrkEm0NwpYJ2NZHwXOtYCaDDP7zCeYZdCb4kueNNrh441dwkg7v23GEevx1j/r4IsLRYz/ksKf3O54/a91gx491MaddeIhd0zdpTfodV2oaRWMBJv2+Ie66qlhdyVSvn/nPEg1eU6XQnHcAP7xoB0kp+UnkOCTZ7YgvXG//pw9BZ7QVPEj2k3H0fOvTT9w7tsUCfRLAvyJOLiuFeiv/p0Y9KXOL1JmB8GsezA8vl9Pjl6+L+h7c+bV6w4LYWZz019MHaUgUriz3xph9eYLF8Id5TYB6PvXDeH4rp6bq003YTHy9Sva/Xv3yFMX29dwEHdXXENk5cPnbN8IazYhDmOvrdG7tGqmD29wwnFNAo9m0E/09Jweq/SwoS5dTQaqcpbb0nhgD3UwDMwU6SDlao1XCge4Ft3ezABz0jEdzXxZf5QVMYw554Ahjqw8D9TsvS4bi3RISt+ZWwoed8DB+TDtaqcukYo306luF7gnV4Spi7TL/t5EeOC6023amsvdSWv1NJgqzsCDsWRPJabUQTXO2lTSzi71H/Nr8uOJKzZd6uP6b1pt7ckRFHN1o2y6M3snVWQwPeFyMPAR/2yT5T3P6GqdC73/Z1mhtBN7vtEk9vHHBeTJ6L7l6VM3+4asY76h8XOL4hJol22KTj67ipwFkEHtHOpe3N6w83W/Hj4jFdruIx9YsJfP+mEfPQn+Kprs4LeeNznewE4W3Q+pa5QKkiMl9u/ZJXnXoA8UIvxLzpz3I0JyeE9EAzorsipPVWqHLQWBcxwo+7lFZryYdXpR+x1AMypuH1XKCiszjb1qxqxwxFoRJOrx3RlKCMx6BCInq9xoguLPr4+31EbCenezVXvepblhnYhqESYi5WfFzxWITvRvLxxl3d2vEWlANyboCYxuIC8eiQSxCmwZkddpGJRsO4TFDbJ515G9lKO9zkMown+UKsfZujrszuDTiSuyW77iEj+nJ3Hay9SSf+qnijce8+BuR1eGTGO7q3/dnNJ4Wf3JRYyufbTiwOc+VLcUw/9f02z3LuFyi76Ccq5tMa8a3q3+G9sXycNaXZ0perdcpBFZcsEJ4r3kXmEoOlFznxV4uTN4T5IUIQOQnb/dY36M0JrfuREMMMxXRUF4EElaUXTLUOAe9DuNhw+gYDMQ/7rcEHMXSVs/op6CtVupTehvaCvsHCINiRX0bH3u8MKs96083T/Mb9u/Z02PyqDKWVUfLHXerg9Mk4wQ+lNQYnu4RgZm1KNJ1+yun2Ok4gLMcvUbXuatCtKeXybz+1NRe9aXcPBkRx/2bGVrA5X3tdDclxsaGSuLfTaR2GVGl47GFeoL3Bj+Y+g0uMMjzshps3iPsbRllJCQm+dpXSydBMOGdxQnt4bXgXOqoq50avM4+do5TXVD8tl6qrYvicH8ZUb2QMhniaXzW7okE3+7kq9AoyXkdj7g1ij0KQ6J4xr2kQ6nf7ZwKbR5Wxs1KV3iSXrQuFvrSYSSBth8hc+kgcV1viUWR4tJj6CzwXl54FLhfK/kUtEcVBadKlcVXLtXSaIpCKz5p+O8MrubhJHfn+3KyIN5g7g++0IJPn/08e89AjKhWNC/HmEZAdeLxtcphUZfZvzBJE4k3McSXYvAETDZxny8bOy5F9GBWmlzEpu6ehXWB9xRLbzRmu0dtmE5r9BzNf9quc5vOHw9MizKTw5NzxEhuEajtilNhmy9i2btCit49Y3n3NduVfKZaPzkNlljGq8TpZuQvUCqJDV15182hyJS7sBcfGHAlxudoVoyBf6gdnpm0/4nFbCzWsK2kkifbKW96IWxcekrHD3NgO8fT55JNir1cfZr8eOOUX/x7Csq9WxOpxEpfzeaKknmJm9u63nJr7zQEFRIsYfCAt32ZFocCm8MjPn/OLsFsAraWJ0kR4xaNhhBMMy/xN7E9/REO9j1SY/S0+q+435uVHzGF9Su/UWw5ayXeyVimiYVV0Xd+VePbXDuDrTqbHrRNw/nxsOmQq4LDkXXyM6WjyDtTocWMaeRQeE5ZHQEuyLWjXREo8Xfb6Ce393CSeso/4pJOVC2VfD2SOR+jv/uauWDJVboxWFOsO4Otv3mx3ep7iSYnTDulpnZKH59/SIX8VIfQ7ecncd/Hx+OE9nVC8zVS2PQcsHR7iRJXuaF7YPkrUuP+e+RuWNjEpRPyDxmdnCKi0oyXTApXHlVvd5tmAWwWvnH2MhkRbXlCrdG92d743NO6KUVT8K1pjYafdyrGfB++oq3JLDzddK7mQCjbM+4Vr2zzFfP9kBWLlAbO7kZ9R/ZlLhu7Kq8eT6VvlZElPEWr7oBN9i+4ef6YfCa6L15aprH2mU34NHag26x1xzgux7KpPFW66b8OIgS5mPJ0Wg/Dzx1T+xd9GW5poHIwtcbq0MYaHriaKnmNO1w7uUxZ1KwemHeiUJ+vAG0spusMSTIfsnaoymIfcalO/q4hoczzMkW4PSGM0YpZYb9OpsR0ZlX0zEJUuGt5FXSODGOgPPG7dExry7m1DOAg+c+h3X64+/FLLfilyQnZtl/JwWgJKD11GVHu1QM8nJzUkItlRJfXLud/GcALTle9488ylcvp4eodul0JkwU7L4ulbP4f5PfQHl8Y2jHlFihA21vdJLCO/GoKzlF34CmVNdMHB8Vjsmrmxo2sQBztyzMxuXKC4kkWivqob4s/H2ClbbSqJOvtXnrG5BGPyAoaNfM2pdlwvwNYig67m+z5q3SqD1T2a5+m5DprKndopyofsiX2JzLKd8Q66Hu9X/HIN3xtsa6VCsIEti7flo52m9Hb64Se2V/Pc6Jv78oI0lHhs1w2Fx/bPT4FO+/WSqEf1Xc7+1oFmZy1/8Zj3X3TM4KgdH8yKN066LpVwgLCyRLIt/LHt4XvBMJX2yKzN8sDHblu5sEzGFE/Tsk6nVpAu8DG5xVSQvJQPEz6hVbE+4NG6LMqp7IoK9oJrMwz3ov3hIbl9n1aYq5sa8fKzKOQxW2bEeWZb3pOgfoPYR4zp4E8pD1twEI33C5r7LUrH70BEWd2sMT2IMYsHjMaDDGjv0M1GadHkCl8VjjfjjKW5MekodKGuICw+mO+EK6MzPgdJyaXyS4yI77wVjtsLnE/4xPT+hdI+jen7b712Pq35UO8THe276cBsLPCUd2fJhOJcZnT8tNTgHtIrGLI70EF5aWjc7b8JzP6EWcPuMt/HrwjWV94Tp8SqsQ4eAA5A8b+vHMXB0yTbZGUa/GqnGZTvJ2FOzVfpIJ1qFUL7qxK/Hru4P1O9hp+9Olb9+eENByRrp+ENYpUxbQIioXLIPLJ9CXY8qKkdgm8dcyqz+FkOSRDo4K3lBk/HK4nXWVSYKM7fjC6+7sqYrs2jQgd22LNz3uYl3S8+AgB7EWZpy/kVmaa/0XrzcOhqn2zaoe7nV2FgOux05auSPj/nCabh+aGnz/7dsrOV3P/hFeK63vqzjCa0VB2V4UXnesNoWm/FfBJOcBoK5WhzLdxcUBwQ/cPuaGzhfgf/EaazR32i7rVRKHiGabDz5bRKJyE7nYCKx5oYey1E4zL336hG7pfhJ/+0fdn74g+P0OH9fZR9oh1ddDv2GXOe2Yd/f/Hy9LlzYk+hw6fxsC8UX0pdKs18hhfu4w7hIPpM3SiBQeWydNF0z694ufkcf/gskuf1MT9T95w3N1mGCE1bYq7VF6rgUqggbZY1MZfml49iP6esmsfxd59b4V59I2gU32aRK2YpTdVJBlyaItuG0Rjzh57UwD7NkanDdkCD/zqZMN9nPC0Hna9/8XT6eiu6UMWnx5PgEaGsaCfmrwqbc1hFJ5gOrztdPO3Ra3XTiqCJVcRMPzC8AT/iUNEF7jIzO7beJDcU4IL2AXGG9SYenotl8eMjWDCkdcuHyT6hu97pbLZXb5V+VRG2Cm0ZvjKjFHQDqdBF4YLckFq1/dZKBtQ3HsHrwh/LTp9zUMNWehHt8Wm8mg7Iht1qHdDNbkj56JWTgMZFtCPBp1t7w+/3FBAscsHXZ8sl+eDOr9jXVJzti1ekiYC7WUEM+tmh6dW31c+f02VGp7K7yqjYUDIZxBkdtZzMnXz4xRvyw5/MtOxwbhrl0uOqfJU//AuP8Hth5F1hJG7NIUc/fK8LDo27u+Nh9POHP/vi7VctZBNQyzSCZdRKN9FEibtXmUnbpB0MVxSQs942VDrdXu14ySYfeecmIbtFo8ddiiBHiZMbJFY3DhIvQoWhWx1q4ks3y+gz/e6Ae1cQHlzNjIXtxc4gqM4xRnMRG7e4MqGXVHVkP2HN6I7SmCvw7kai96909sfDBaZ7caX3QvrG4+a2ewMvX3t2aaPKGKeP5cNlYX/wcBdn/vbanKBOpCszXiKLO8cWddgOhU22VkyM/vAEHWkk05ma7LqYe/eq+ONrwetOyiG9JLXs34MFs9dXXM5zoeUf/yTO+xWUfRO8Abj2NonhzhC3XSU1+t3vYH/6tEzFexku5Ggy/cMWnHvnmsJWEAKm3a5FOQrdRUXWYi5xm/H6VCRXF3741/6iW0lxe0xAPEoLYg/6M57tSZQFV9HZ7plLLW1sVYaZbzO9aRTvS4K6gsrmD6YvhwKN5xXOULVZ7Yg5rnODm7uLiWri5zO+XqaNOzzmLnkPkZnCc23MeHqA5iUeibd99HM8awZItY3OiPZx0g7AkOCuU525LNbaNVwgRF9bLGZ/XxkDf1bND59i8Za68TSuUYJm/ETIKXujAd07ER67/ZvopJzQ8K5fIVJVms/4eoW4ns+NvYUVZTganmmbgj1AdKE3OjyiyaMK20xycrMTvOqm1utCY+HLrnjuGSm/Qzte1MxFu+XgENxesnbqsdUBYXtMeeekRjNrPOiywjti2me7HcdcSyAK9IrKh/qNxvQsJRCi24dpTgyI6+0Aytps5sE+kmvwtJQLKO61wjA2XCQSB4o/e/zO951r0rIC3tCJ6NLKRMN+6juQaMyYd/be8aTzh4q2ghjM+kuPmLX0ErS7XM7klh13nKa+U/ztN3Zky5imxRoDFd4tFrobN8Y+2kwy07UnRVhMjXGdORXcPFsls78z6I8vVI9WoZKKwnJksTyA0TSY+QUiqP3h6+5bM6bX2bEdZr0LHZDuEiPrv20nUQih1/QnC6K1VA61bV7k2op//s011vIZhfDUsxfZeXb100dkaOWNz7zLwU+n4nkA+OkROGueaLppSEZJPcQzHlPRtNC9COlpkzI9v+xLHnUrV0G+YdGl/27abjSDN1iH+PaHz2vj5Gey/jkdaE4XLqIf2r3BPnAFHwWR/OlvKFluPyy49Edv2EVegyByE/LzV80dbVR0gHFLqmvio8HiZQHhG4WEmPtH2htuVkF3MBBxn9dn2tdW4cKz/cRkOx2uP3yh/vAMlaLVgGjftAMie/HKyCPQ0rXjRbZi3f3LrA9V/Hv1ngMIxvqJYfZ3UyNzDAbPe3Ka7bvrdeONBN2ucF2d38bER6mCaT0PrvrhPxe25g9fEXLlQvqH76N5sJRb7JfotRYOAgxcoCwYXSeeoOrcHx8j/lZ4taNo9QcQq8ueZEf69r5junzD6h4CU1mSGJxeRhuONQvxGpvftua78KKIS63Dk7JwyzG5IR/Joa3gzdfpU/oYqwSG1aed9cZV3DZRH6J5vcTorkU6vaWND8eDs2Hu7luVg/HJJNTKyKezXuf1SbXW//DNjN+9P/5zf6IVC5xXb4xJtVRh94xEEhCQY14cexvEcb1l9ta/t+PmplUwxxMWHPYWWj2u00Wp40FiW2zu2iF0VB3E8igQ+yStU7oIQvnnX4ldJ13ZGe5CkH96i9HLPKaayYrNZeXv2G0CtV0ZxmVQSBBqJLyLBR8s3uaQZacbHVgie0Pn4ESe+Sazcm1oudltFuj3/2+Gt+SsnN/PD7WzYt6QSzF9SyP+6bd4sTsJ8UAPNxU9Xzlh3irAiOPtNYTLLlSJl9hVO94uY6J0kO1mvrvm/dt8ukrRbTkzpM2xHMYPu8NBFZb0I39NNFZG7SD7WcR0OftTytpugnh7V5n59j5xd1jASW7y28i20agaUxb7B1TIL5vgbtrxOX6L6BdPXM89tqPkSi4813ufGLsrePw+aC4KlyMlu7uolZNNbxgVb53hSoxJ/EXiXZAfYXuhQ2Q56YqtDw0cb9qZ2AppjZE9nASqa7WhwgYHLTImYQJ89WQskBlVzHwWdoagEnWj9MZwPl0amQpVyw4/vXF3K3PoNfXJbHcLiPvDavGnZ5g4bdppDEmHwmuWsMBqKJ/t30GnrV8Ssz0E3tou+sNmuJMNneM/n/3RAtHnuGe+6u+NYdc8JPl88k/stPK23k8PBdLn84jqbTHzq6eOZPomZGd+Tt6UqrIEv/Pw+wCVw4AjH063cv3DZ3yIQ1NE+oJaMz/z+CizVEXaQU3YedanuVw6Mpz51ydq/N6k40O8ZHCSw4BpTEctO33QCRW9ExLjagm8Cw0Rw+wf6KKiFv/+9Os5njJN1/Ze08gIo471nO1S3PHx5w+OKG+Y3fgVn/HsAe2lLPjpAe13tu8/PY7bd4WPpZTc0Y/f2305xa89/labfbS+UlmQ5sGOun0H2FsKs1al1c58eQL1ownUTUuTd9r4zX/4jfna4hvzxVWZS5Rnf2Dfb2islvcQWXqe44/F7vFArpc7SF0xYbGpD970bJ9v1B8riezcldKy83MooLzaVywdB2ZwZduKKFscG7JdU7tcuTD3rfsYjA7WoUfdpW5sNJ8v/uOjSM4buaGUEzVe5+30oV0FZbM+zYNsz1zMZEmVuyhaMM0EFg/y+amjD6Q2RrP+Ku3okyp54R+xHKiTMcjx2UdB9D6RYKdBOq8vRKfVwmZafTG5+M5SF2Fc3PHLXzRxT7W5BKMVh3k/o3Rg4HRIkvyWEbOYGxWJpapUH40Rq7aElp+tJEPL9+3AHL2v0VBmpxqo0xTMcg3fGK/iNgPbdZ5EH8ac888ymdBK/5h4szv4Lb9p1xpO3O1oPfOHwRPfBZp08Ul2XydI+awXyz88b1bX+QkQggI127OOuf/S2tVivOnyj6/tzI9o9A/xcofdsVLYiY0b9NPnlFg9PWgXvvJ4+vpGJ2+H3CY/fbpLvqUNIVVHpk7HSzrF7qKAbHXzmTHrsbxeYQdCUzKIwQ95ymPjcgenvY500z0SNB77XYOOU+2T41HH6ZTcLgsUtHeBWUydWno6Wy5ayE+P6b04l9RKrwM8DL/A0t64tDwJzhGynFfFLDwULX89eQdrs37S+tOwmBXHlwmBv3wy3dpv4/Hs1sMff/V7efL42Yoy9H7vp7kLEEdDpPATFGveESdnYzyMeduA3VxGrLhnKxXNPvOhmvqadqvizdlm2BawLVSO+TPJDX5F1gRYvn/YnB/74RERyiDJ8agEZcq1kU8gmo7GkvpSttQdzj5Mi+lL91tXRG0e5KFCT9aFXpLNAbWx5A7IvlMJL578U3Zldmp+fJ6umhiM6cteb1DtsWIW8Uc+nvfV+8eH+ym/jCU/eccIDtbODhT1+TWGZQsZ5OLUEW/OB/7wtZwqa5c5WxGXX6G76GgJ9k9f8hAfrpP9s1e8uYvPssvKPESnSM6IGTtPY7w1mgjvz4kwT9lPvP+eUYVE09Xwb3+6e/UMQSdQEMsY85jV+y5EStTIxNU1woeOybYsnr+I7faXsF3h+0ZF8/3Eyywq4+63f/wpHMis7xmDJ9JClrD2INqst9bp8JbgwE578tOr//RvL8w3xGi7tv3T78bHJFJBwzkfYFiEv/wD/WqhU/70R4jttKRI++7T3ugXd9SlXkaX8dMpp8NU4F8+jK7Vt9QOC8WXoNWGO4mF2zue9ZMMXeobZ451fvDC8eAEnmEbzCveZ87lM4rgaFMDr1Kli3/2q9wezZkqOgvbfu+eh9/+4SGMB2+MPwsBfvke6f3qW+adc6o0Knni8XbVW5rnMQDb7XRyUR/PmH5ZXwH2epN4qqPGKxgOujLng//hp31SUmCAu1nPdr0fH0H3YhH98Yn+sEhMuR4DSuZ8kNHP/EG56s2SaNFu4/FpvXf+9NdzpWODmd0GoGqPItEITnhLLxsbwpcTk8NOu7XDNSYCmvPJzH9URdwPO+ogt6oGZsREiof2ehLAvUhr3ES7NZ+6x91FPz3sF0/ZHF+U+TzpwqsQ5221oPIr2V6pcti/0LTyAgkuRcKIvfUX7dBEsQ7a8xbiRXuBkvG3Q9FQuyu6rCax7F+b+A5TqxC2JS+5HPnTTcAX64A93hVF/Kfn//jALx82Wh/e/F9dCsT/Lim4Zimmq446xvAKuQPTS42Zbl7DmJfuVwD8wTbbWU3IhyVqJmgczWKXREuMQVPVStHTJWKe/bKNUSULF+R9fmLb7Z7zYRu7OirvDif2tfa9/rsVYJ4VVhIVH/N0km3ZBic4KnhQFpu0PcdNB0oTpOxUdA+jewkBoC8pVsRST33bl93VBvl8EaiSP7bGMA2XE5jK44Un4/hIh7NQZVDzkNJbEE/x0AnDoCwWykSso/pFU7NpZFALh5Hw87QNdhaVHG0k/8aSD7c4/34zH87D44WHJ923434zJaA8wi2VfcFr+8B3cojqa0qczVErOScPF965kmJ0j6t4sg/9G+imf5FATMKSFZvXG4h3i5hnHL58OvX9PMx+QZi9le9orL5uDntYALEcae311lo/KF2XLfAzfXTetHq8RKThRGRaXi7j5jINEnwPrxaPfm2WdLV85spdxT4xsmAb881jl8GZOB/6P9KupEtZWIn+IBcyScISAZlJEBxwB4gIaDMmQH79O/i95du9ZZ/uVoaqW/feSio7/Wx5i8A8Ex6nT0BmLQhqdoiTEhbH4w4fj8teH5+Ag1BJTB5b/edZt34aVfCcCjdqhXY/dD3Ud3IKYot68KaCpWXdF6KP1SHB8jKd5c5eBek2uDxYpD99hePxq4zR/YmNMi71tYNLoRhFjMh61f1hzdQ/G97Xr0bN5hWDUW67i0zh/Ya9ht/ri7lvRpgwazs7158ZA5ksy5YvdGhhQZ+ResIu7E+GQG2N1z0WSTgFUl2YSDZeRc3c1+oqgUAAdit1yeb3U9nJVq6r1JPr0fsMk5FDKMkFNr58OsxD4rWw/txM8oGdWovN1nJTgn2MIP+5eDSVZB92hPqo22dDtgyBjWB3+Ruwoyg1m/60t62U3sWn1mQJ+uru1ZviWLueGo35YZthZMMn2xlUX0Vu6G/HOZeltX3iW/OKGRtQvcL8aWEEVcccGF7ZF86dFOE8OrvZsp41G66o7agdKZI3HcchhOeKz6jzTLC35acAUahxGB/vZ51dlm6Uvddlxa5/ssDyeq+acrk9B2y93/32+aCBl9trIMCXm3h5r8IMe745oiU4LGDNLou8nzjvQ4Mm8hl1PZpI5D2+sVqGrr7uP2MBKnFxiUL+erCW+6cPpwM6U5WTzWw+cFEEsZ4jevVSmk35xUiBH9CSBupO94S3JbYwSAuGg1p5DXNc5Dmc/9gmSRHxlvtzNpV3As6E53UxZh53yuFZHwwicp60HTTqRLIXnTVsvzg0MJiMF/Ac5wUX0KzBGn6fLnyN+z986p4eIHsFXWD/tGRqmLqTLffrLYTK39knCj+MYNJUoZdpYrrY+Gt28fKcl0qxz58jta37WDP/dBwhvjYcdf/Ou4G+IbRB+/UVakuGUC9DeL/Bv/rPRyDylnrah3UPuUJ8Edmpccae2I2grAYVdbh7V68m122rNM0ZcZ9myv69v8sjkxEtnSVepsLYgQhbFUW//H2YxQrm5FNgT9UDMOufxISJ+2di63MJ41VR8x28n44mUeq59taxrxPFU+2c8N1zYMw/hASCOcUoVx2zns1ChrDmqife8NpjqCgjRZU9RurwdKlX+4l3cH3yKnWjU8K2/NYgaGwLqwY1dRr+aa0SHo8xRk3yqRea7hI4q01KhuP7Gs9ZdUtAcl4f9Ph3EodJbPQGdHnzxXg8N97S/c0tFL54O3tSpvoy3/8EMOzMEHt+onhLu09LGfdDh6by9acvV+NcQZoYLtWc/jlQb79Lpe7R3+mRK0Qw7NNOhX/1x6dHkTIwS2LLwfaLFKrJ95POCTtUAav2YxwWTz5b7U83Q3l8bgfRLNRjQTAaYN4pFlFEh8vm9r2X4dU5nOjzcr9krBDLC+Sr+YQNATkDZfjuQu6mrtQ1osqb+NsTwhC+Foon9Q+wPAoFeFknRt1deNC7o0+/UAmUmLRMrbdV9En1+z58PDVVPY3X6gvi1X9h63TWGO++J/Ivv1+fQNOX62wSuF0/Uoa6Zaw643I7eAUT0WPPjDbCXZV30TRg9BEmbxkCFUHnglbs3tITm9bTGSkkfEzb9Xf1cksaToGSVKBgcfSMD3Qywse3momQHOxYjC/we7hMrYKxnTGPPVPgQ4fcYoqNdsrG26gZ0FCeH3yC1iNe6nofQsM6QSTmzwNgvZykULTKnAbH6Qsou0s72JHJx8dblmVjsxck2J2yC5kNVcvYywMEJuU2OO6xe7O5FdwWbveHXd7/egsqMwFs+YjSFOJ4ZmHeQrHlH1TdlerARGJDWIxFTHHpnOPZAq0Jb5c3oLqHFEYMgHbg/Fw/+PfztNUXpXu0d6xOVlnPd24sgKbvxG0QnaRv92fCSPys6AM+uKZbPfl9H36e+YxNhhxKijy+Ouwf/4g3q7ISAYCBTo2Gd2phFPIbNHy7JfR2DGLaf4MebPFBxFnOwErH0lCkx63BGIg4Zq5HU8DdtBW7ReANLWYHA0YONqjjPIWBLOV+BLyfZNQMykM2JudzC9DpEP3inY2t4PbwWtg2zlR9Yuybka/8tboKO4n1Zks2kBA4eE+o51l0mP+CsYExbxOMXm/CCM+kL9xRllH9hEbGkj9BA9Uij9S/V+JAw0iUoEvEP4wfXKyzZ8r8f/F6l8qPvnbcvYf75+1OA3tpwTIVPoRqqwdI9o43sKaST+BO/ZywuivLgaH+jJTpDp4EnPMAMCCVmiJg1ceBuzzYXBHZBilV9+QGBjvmwCedwQ7qNdlDoGbr+tUgvCv1FYlgOeqLvBwQfI7rgoTicIjXKmGcsrO/KiKlLtX0V+/2YfRHjXPHgVUMyQ3ePgKl+mvYs7WesA14ZUqoXz1eGQseVw0Kcj5s9aKL1y/1BHnKdw66TAc4zGNJVFmctZE6Y1OzNbo/e2C3a4yN2/SpJ0UTVHC79Qlxzmtdr1rv+lCFUUgd9aEPvHPscoij9oODDW+mv2pKYHn0B6zv9lYsyEUGf3wT40v9YbP+CU1YHtGANRe09QxPLxNglL3JIbGObN2fz66CnmaDg2Q8xuI58VzYnR4Xir9DV4/W3/UGf/z2ZmNfHzW734GX3lFsjpzK+skKG/irz+bVrAZiXj5fKL3vHTUL91qvu5Zp8AwhpMgWj8P8ncoIapnrYGdbiruspwcC9C96/+INrH/iFym5u+twUM+1Tov62YDhoDf42EtKRjn964MmnD9Y79WdRxLLj6DF3w5IjB/mIJ78mcBwOqfULA6PjKZB8AUgVT9kYZB4ZOnOJTQ03ULUbIuYuS/ZlhJgnGnQcx99PSMQwtYHBj76ppKN35OLQH41PdKAlwAWcFYqWFnnPUU0t2Iyq6yAhy/okPLIPvpafHY93C1GiNHqwZg4xHfBeE8dfLKdOJuErPPh3VKu2EFvK2Y7p+HA/nPPsaZ++2GhdYhgcxt0qrsvWV8eaG6UjQ+hvwPedkWWnxJs7we7SSp6c7mqI1xoEdHg6O3rLb40EGXXnm4kO+tet6Op2MFdoUdRDb05FToX3h+hQ73O9fXt/duAx7ce69P3LyZsOwvxpHgWNXPXqNenfEyUYBaeWAfgFIt2rRKYEfLGgQxljxX18wtdABJSGtT0RP/kjMCel23J82LVYsYPLWR9E+PIeITZctumXO2ug0yWJciGNZAGH3CleyF7O4u9vlvUEprnxCNsFbmaoPfxAlUYhvg6vydGP6AP5R7kL6yv4mVgu9WVZCkPGUVC2WXsKLQtXGClY599NLYa+DwDkGofijU+GRjn2ypUbUGg+kmZa6oexBXszGeNlo1vNHLb3cB2Pxg3Q8p++AqlJpZI1E02EPqzwcHToL6x98BxPWa95P/4Ki4uz8mjV9k35Ryev1Srk75m15Niwr9LwlOzj+xsPnjQB80wSdSpvXoYwaPjAIuzI4H2MHvkvntz21Q0Dfuq8x1WdA1TxbAsiPE1cupF6/IRXrLyjoP5D+oTO7Q+3PKHTLfDOJBDb8jwWvs77LxlqR521+cMra9bYXsKCOuTbRek1xUXbMdjxtaqaVa44TGNpPttG0T8kCCnyz72gq71WLK/y9B7Px/0d79rNJQp1M1vi2C3b4fVWqLtLOnbitaNL/EGGkP4qL9v9C3c60Bmv0ngyeglHNiLDfqvzK1Q958mDugNDW252iOUwNPFeOOvP74J4iu8Y1WaRn2u7mEkb/iP1res61yA3l9ln8QDGen+ULNDv6aQoNgkh7HRAU+iXAUndvwiZrwcj0WcFIG90If4tE/4eDXwYwb2QCrs+wUPBkfMNbicLUJgT/yMfRs1BW/EKHWN124YucmZgTDf3a2l/B1o7Hg9qETmUo3FujfOt2VWlMTgadiurF689S399BRZTlqW9VCUK9CeFRkpyfjOlvHaN/DIrSVa4z0YFkUTNLjFCxHL1WTjgYtCOF7PI1XRVY1Z7Og9fKpVT2ZXZdmSiXcfLjSPcLgmExiP+n2EovaasX+uzGHa55cGDotWUq2y9sPYW1bxzy9wuWeVUT2TEPw9v7ffNnXNaCr84oNi4at5y/HqpICbfAP7lV8BVrtvAViduWBD3Uv11N5gDhNjbLH7Z2get2N2uh0kpVLvwLXxtJ41V5HJ16RWnxw9tk/fqkLgwJFxe37s5qk3xdc/expEd93j/4TZhX/fd7blizvQQVuF/+rjc5jH8/W744D1tStUUoHPhrHam3DLl40fP3RaVx6BI2vP//jvT/9Byl0iwp0up3p5pF0FP+3TI7ySGLFYcucVDDsjpOkuPHgbv2oBsZOWBkPdgulqnEv5w5eQ+gf56PViczBgb+sn6u89EtPVhCv4rM2Eo+s6x9tL2ckyaUx6TI/GsGwbHiFqdQkJwp9Yr6MWXMCJd/Xf5+m8ZGAZllXdkuV7Y4DyilrAKeVHAvW/l04ueSkp+yoLiPQ6uYAxGnEgfexcbCkaGeZSWXp4w88TdUYNDp9+jjXFufgrPn3sAkz3rtOg0Dki+Sv2q7fU48MAdH/+bPHwGljLBzYAjWtRe3+NhrH781wZdsQifBAYHgtxOcPiGh+xdSxeMS3tjw15eXFw++b2YCZLhaDrfjNsXLwgWyJhEMCq6HdseewZM85XVbj28oKRft78HHzJIW9dKXXeHscmGxY22NmNSs/NTQP8NdQKxbsGZ+rsxr96Og2PFGx4QWbMLDApr9pV6D7+/NN/q/5lLUCBHJCDfJfrweq+CUx9+bH5Yw5b4j3yYbn/JNicjko2dM86gmF1sX75W2/+og3zQJKwti4Z+/k/UJ7JRKR4BGA5bweXOk/9hT3cPbwfv4S7iA4I7uVVn7nJWeGfdTewrTdfttVrX9kfvi9yKWNVZz+98ifPxX/j96SdOHA1oUCzyuw9ulMYB18hLZF0uL6H1bP6+V99MLitBbDmp+8/PXhMUOixjB96oOlQpMd0tmPig8MKH3XzpudxWPUZBrOknEWzwJrxmOP1HT5yuc5Qg/1pRRn7xL4PUneBFNWXy7DksMphMeYx/ccfzx/aw9yFHenE9jSsh+C+AulxadBOq/SMnoxCAs8XVf/xk7F0+h6Q9I1++giwv7GflYyxOz5ufuKiNrYMele5oPLzFv/pSxjYl+CHRzVV+EfxT4/89NDP74NjeknopjfB31iJ5k8vEVj3/Zb/ggBx1H8Q3wOWja7KIACnpcJ2PwjZ+jytKVQjmNDXFh+znY0pfLhhS37+UbvxNzjUO4pxnU7xbGdNAv+GxqKGse7iyb3CVf7x2zwTm5pKVajBJQswAptfMjXbVMBPWVjYBEMbj955tuHt1ib42XK3bPG+0g7qyYQIH8DNL3MTGwAhmpCw3Pp4lkurhI/75UHj17Df8OVRyqwsVux923gQ8ucl+uUnNmxdHqbW0ytYfl4iEmmHsgN/e+5+/BjNrhpnPCR9C6dK3SNhOj7j+XWNv1Bcd2DDl7f3wxuo1R6ieKmWbA5Q94WjikS0E/GkL6fhkYArf2+QNKSpvjIy3QDeySN2wrf04+ch/PkjP3ydadWPkNhpS7WDKXu0M50E3B7fP7rpbUALsb399AViz4Gw6eeP9fz3iO1P2ukzZosBlwxjai80iZfwnF8ABvCJwz1uMrI/tQhc6jqnqqFW8fKI8AiF9naitmHO9fIGyRdOQqgh8LmbGbfFn9zsd4C616HSf/wPZsMaIbbb/8UrM3EEauXqosOmrwhDnQl/fMIqVxPMfMd8uOkXGoynaJidxpzhNdcHau3Km87s712Ah04zqRd5y0BMNYqgPYwVjshO0Nm5hgaAZIVIYZKks/sr60GcSF+kQHXwKJiRD+5SUSJJMoRh4+cE5k1YYXXzKzpOc3voBWhbkpxjJh5utAU/PcL1pgCYtvc0mI7GjANQvOP1vnsLP78bB0/kAvarP3RJdKqHXBKvih/I8GKdL5vfYXqrZ1WrItTxg/BnOtVrx716mN3fmCJ+OQ0zM4ZRtv3S+/H5jB1vDfynL3/6ahUftgt79mpIvuhuzZ0qp5I970Sp7Rw+3hTvTQRaFhF68ge4jQBXBWW+DpgoMe/WM98BBM/hyONCxJM3Pb5RrrSGpFK0enk8B+QjQN1sWuy1mZ3NOUu/UL4UH+zknZctsDqM0B+NE73b1wbMjR3Oiqg9ZwIXvR9W+/Q1wJKcVYorp/RWf7Y52VjLiGZyPerLIPEJVHbFNuUokWpWtqWg4OuXI5wSDcN61rULpPq25AphxVtDM5HB3/C1sNte6bBmjrr79/wN6lr1/HhA7Z8/4Sz8sk0F1XxQCvOAL70psGk9uy7cH5oXjb355HF+mlawzyMbm2Z+jwXPqmY462WHAy9+66w7yzf48ze9Im6yWc93EZgFqG/4ZXgMNs8QTs0eYXf/NvTZsh6mPOXQIftr1A3sppESBOo9QoJ4y7aDPa9f8ImTG70M9zcblcpAIDZnlabGqxjWIw9cQOIr/OdPzLfy7ALlFVlEKcYoXid2mkGmFSkZPeh740H1Ihheoxu1FA0N1Ei6FnIG3aGlrF/ZXN2TEOyClkfcnF29xTlYX2h/BAMbfmIN6zXoUngY4BVJdpt6vGgVOTxI29RZy/0M63JFMzj+EUogJ8zx8gbhV/n1G+yxGPQldvcIJpKrEd6UPmD1XkYP355Ybte7bv7re1Y2v4HsRm+ImQ5gDrgJGahica3TPyke4bs0G2ytngmIU2U+8Ecg0q3/V09e8bJl+ZVJSMx8P1tTXSFw1quO7ITSicdNX0ACBO3nz+n//O7Nz0b7cFZ17ufvjqZ1pU5XHtmGBya8ymlIT0+xzOYwv69QCoxtCwy3Z+yL+RaCSu+xW9GrN5IzqeD7uteofdmmhOmmI4F3aTT4gfeETbITu//6k6JUnnSxU2gFcLN4hBaSvjV/CxXkf/5Cf/2LuXSqFt41U8SuGzF9/OSjCTg+2BzAg5dNxVRBqFfcjG2Dv2Tz4Ecj3Pov2JFcnC1oNGZYHPUdOtwugbe8reMXbn4EGl92yWYLlAa8iPOLJtv73PwDGwRemNPgM1+ywYqMEv76GfjBMZ0V+uMi/ylkIsX3EwIGgGj/y3dHtzf8f55C6FqtT3/6YeNDgrL1Zyna/Lbf/SufMreodrI5fT5VxwrE4WGg6tZ//PlV4IwahIPoXnv/6pN8ihD18pgf/vVftv4MfkXzWec+7VOFfNvW+LX5YYNydHP4iOIJG8ZaxPP5Yfdwz8Yjdlp8A3N0lQ3Ii5xMtX0bZasc1Rr88Sd7ChCbjcOQ/vpxWP87dzrdfx9QuSkiw6fEGMDoXXEIy76qqe5HCMz5Xi9/9QKraY8HakVGBYW7fkbCOzuzjkSXbWSxdqHaNx+HsdfnG0A2//71i3546oMNz7f+hVIv4RKq4Ic3J9th8YTb3XYwml/Qrf/76x9eYOioiKIz4LYt9qSBrZLif37zapa3Clrnw4v+/PtVNJQU9ELGqFsEQ01CM5F+9YaIRYjixSvu9q8/S81Lk8VTWdQ59IOp/PmbGdn6ff/XlALxfy8pOBZpQM3zfM0mlKEvuINQIpDElU5LYuTw05YezYdtEPeiHgulVY8nel0EVi+yVdnKvIMlNZZA0Zd6oSE4pN8ZLW4+xmuhyAnoFq1G/PNkxWPZdQkMCTkTIDg2WK9i1cPkm4vo8Mzv8bKcCwke1mdN4+q5xmP3NCG4I1phfI+0gXT1dIOPWVTQZ7rfsun68guom0TFR/LihxUXGqesShAigHMr5h9bh3jvr2f01+yVjLV/VgFiJT1i26pFnaj6PIIzc1Oq2kxni2z1NnRk9YnTqhm85SR+KtAs1yu1yuvbW49eq8LusA3maDaL7e7BFHrPE8LHo4I9lvjKDS7QvGB9u/5eqA8reKZeQI95cqy56diNoOz9C5HGxYnXq/WHfs8DI1wKw0J6I4FgdEdq9uoIVnTLKsCYNlNk+1o8tc/lAgcvaxE/SF82OaMxK/TgHfGxU78ZYcuYwFhJjlg1Lt9hHdVkhSHXYazWj6tOlCr1YRvfztj9ID2e5rEIATwlAuK50gO1ob8TyLBzokaXevH6Ds4m2Dai0d/1TZemk8BXTXZUv/JBPerNOMORN1aMj6rIljesXEW/3jqs64ckXm3IemWXA4rE+S/0BOVk7+RakgzElYB4g16UqzI6EsNZXnc16wVigHZ9J9Q3QkWfx4N8O4RkPCOOCwaP9U54U2oueFP81yz1mDyhD7K3mKEyC6ctHnsXhtnjhFN/N4B1l28W2OO+UEMa22xhzpEAkIgl1sds783z2+dgmM85xZeIY4vVXHOg6wmHWNqr9fjhufxfPB7z5D2Q/VFJwJ/pP/ETBTVjRKUXqFzyF2JlO8VzTNZUuV1kQP1A1vXZKrr83+erf1KUkdP1jSBn7D5YvWVyvQzKJYen/GxQU3reQH/DRfXLN3yZtrMEncOjgh01J3pKQi6ex8N6UURH5ai/AyZYjc9E5DN5Cdjic11n2/sD7+EaYgPtJUDKimnKSRJSsjRvx+Mty/AhuuQ9NS+GyEbqnFVlzdsVB3tkDWu1nvv9wW4BvV3SoJ7vpprCsX+dyUflKdvwoIDyfWxIeexJxrx7PSuGJUCiUOgOZJJZBEsVetQ6Ln8e+2pIBv4+16krlWrGM8cZ4SDudljDTektzwTn8uW8b6mndn9gfr5aBFvr/kC7dz4wNny7r1ycrj5G9Tlkqz63X9h9jgPW7pO17fpOvnDDI5xcVezNMzl/YTj3FtaHpaonG7ESztfxThOom9loks8OMKbO1PAGI1u8IrWhxdgOm583rpc3faaQq7BIHeTKMdXOuQpTZT8jrjZbsFzHsw+jUTmi5Ig5NtcHWwVzkWrY6rs6WwJF2ShmxGP18r0OrNlDCNDZK5Di1UM9T2eCAFooxNYBlDH99JkGD0yQsXGNQUzfPFjB5Rpx1NnwkB4OfiLH0lRgDT3ErGvD8QujOUQ47aTXQB6PO4Ea8VbC149uWI1Bt5XPnnth7/4hgEhhR2A7NilFQiDpLOesGV4zI8a3Z9J6q3JSd0qXLW8kXIw7W/nbR4PhxVgoIsZcU0PIv3BQDX8bfMbXVBTkEnoPw8TIulOdSYgk0FlHBzXe0MQ0ssX89/ypT2NO78nnfAFu+gVItE9OvfSftoVa8HehuJMuOkvfSwLbT2hiRFIzHpVbkYILL0Zo0eKGkdeVREAR0gtGWpV7JAoTH7YA6xRXdDdMFytsYX3bYcQtgeIx9WW2EPWPP+oA0al5/3vMIds2vWjzHxjIO3gYcD34NlYddgWcmtYNPH1qhEDnkYyRuV9hHZATPWY1ymZ7Fjm4ny6UHrW4ASMQAIJzlHlksBToLVGVqNDZp5Bix9lnxDEGDZhLPNDAq4dhtaJnD2WUp9Q7sFhn+kO/QPUcpkTM7t94FYftIHhLgHjLZ7auFkp/8Uzjx+sO2F9epsrB7gEi6iTqWz5JoCxwTkQzbOKxvp0v0IyMBgcazrJlLwwyPJ5cA2uRdKnnh8YJsIClhjM1XnVmS3YDq2EOEWCveWA5h7e9R0lDT9dvrnPR+9OCxwVq2PfCHqxvC7RQdphI5mOP4lnJAAdPs0uxhpGb0e48lfDC8xHauUcr40LNreAZR5Sazlnyhv1r0WCSPvfYVnEFCDpoPpyLRKN67PHZOhtcBXx5KempfADGJsH24SloM+xKrjts+ZiA7e8x2k7RZOZVnCFyeIcaivcZSDR1OeCqQKQnYfjW8zrXBQT180h9ABIwmQcxgd9MKzBmfhNP57QdYS9wGjUyhf34hix/wRfi07sxBrbI9Q6aB+WG0f7dxksetCk8fsYKF1zCvKE9HFooteYTm28tyuYKVSrY+AB9RuNR54u13UGaNDU26SvX1+YeRXD2iwB53dvwlgMWL5BMaYOtobvGc+MV+Q8PEO/tTh5D5zKH9ew/6GuL7/GFsQyqZULkaR3e2bQ0jvGvnvgh+tRzHsXFD69wYBxY3Rufzwjzh3rG2L3Y+uzNZwhiE3v0KEV6xrlt1QLRTT3s3fHDW85XL4KlHb22NfKrPosfdwROIRQ0SNXrhucghPuL+SUf6/XHxkt32UEff97YEEVeZ2G83mBTkZFa0iwOc867Nhwq7YgxNzAwgotRQeT5JT5Xow6WWNYF6JTzhf7Dv+Ch9JAu3ITRrfO3fAo16HjvCLv9tNYMloUEBNHYY+deuDVb7/w2SN4BZDlE13hOnhDByE9qVMceH7M95UuF+JyJU3EIvNk6hv7hdZ19ahc7UFPOdXuoSUtM3bitGTNrowLfcp/T4PL+ZlN8v9qy2epvlIDGZlxM1gTYUO7Q4dqdhnGPjj7c+BwRKL+wOZ0iAf7w6vpujJqV4OEDtEyQmqZyrRduh2Y4+OueuhufXIUzboDJQ4QRMcKaPo95Awm7V2j3XN/13IttDodi5LD/uO91dnTGEfD03mNVf7F4aSdekLuT0FDNOlVsDfldD0PlJiMBmYO+4nBngNyzGrJeq5EtK+BkuOc6g77kUgKjqqQhUM3+gF1vW8J4uF2JvNVTtAze0RNwuDOB9MwhjcQzq0nSbNh9dgpqP/jKG5++oMHzsuj4h2+TScMbICqPqfV1v970tflImZrzAe1Olauv1ceXgMvEEzaPhRkv1YPl4FXrBbY2Pj57sUqUPz5riPgcbCAGzmJDM5wCuvH9evGFYAdEDjFS3/jXsOVjAo/zTSdcapN47vqYyBsfwvpu6thkvA7jv/qWsNNQT5bf9VCqHzIhkjhny7sTd7AJVxHtg12ULaqObuDrmB1GmnRma2iXsvJnoicNXpcPm5+pNoOhu13/1fPp/UokqP9FBf7Vw5V8zjeoJT5PT6fL5C3vVyKD/KGdqQet6+/6Idw7zxPFbzrW6xemAiBZQX/1PluuD6r++D/ampvxchKnEnz45UktM2yylT9kBC6z9aT2GibDkkpjBG9LcaZ6xVp9vVXqCL/x6OKTvRPjkWVOCfvz35Haf88ENGPeGdC5uQzrmsHiNXViBBbne8S+dCZg1epMgKmizNS5c2rGJ4+jCwukimSrD/Wml3I4P6YXvu8+cOh/eJB0s46f61djzLk+JPnVpDyCZiayFcy+IB1E2yQVmGc286prH4ay7fFDrfTNEtRzqAZKgLXW3mVEn8vvr36S+3GxPMG50Ap85FxF8yxMOpndB4S3HGPq83+3YTkyZ4ZTvm8QdysMfVY6uwHJXUAIqPHqTbmatbBi5gdv9Tgm/byaymSpf0QwFX5gn6cZgp9eMucL3erXp4TmSAyM1oM+sPXjqtC6yzr5ewl1vXyXYwq7+CRQm3xJtmRXpZF/eP8q5cewfI7BDiAhfRFp44PTp+baH1/C+edqDWyuZlfZrhej+s+sV2632Arz+MM/frJ8atjCz/nAsLf0Q02x76lQCz4XdD/rjU6j7N0Cl/EnfNnf1IxrCrWHTL4apN7eP8sOE4LC+CqorehSvGKCL9CRtScOUt4eRmfnf+FJ4lLChKbKJi3RUli+GobtAQreJKYygh8P8mQ+w63FkectuKOpoqeA9XGzU7niVy/x/ZQt2Xj67nowe6aADshN43G3TcVR4P2MVuuksbnXrAY8bZwgbiQvtmS1ewGkIQesTr7GOF7VXOV+O4rYKfNPxpZnSmAkfitCSGpms59KKnjoaoDduNXB3JCtMXt7pVj3Er1ea/dUHZ5T8djyka8HhlsTbHiIljg1GXmt+1JmnnigKtosuvNjd5OvVdJS9Y3SmDznTw8bzUVEcuuPzg7m2Vc2/KZH8Ax1NocnCPRCu6Byy/cFaD4BQJNqNNzxwZuEObeB4nA77JO48hiJzyV8PY2SNJ/5rRNTfq8H+pJEpDz6PZuvMVPhpq9oEGiZtwR6usLhnpQ4vUIzY0fDCkF34hpcJMU5ntgwJ0oxvz1qZfdvNiaDuoOPKrhQdRm2gxisSABJ+toj+bIo9Tb8tIergkOq4Ub1lol2HKjMN0birYqzNWMHBOj8vGGDCzz954/AGVs7IkW3G9ji5QYvvtpjzUd5vQR6tCrOPoHU+sUfMrIR/u1OGGvHLAdrX2AZPpK9S8082GcrrtsInj5vRNWn/AF03D1TcP/bj4Rl/VpPcKxGKEuxRvaKe/bai/AmQIz7K7X0r6+v6OCin37ATvGn6jzKzC+oQc2T9SxVNSkUOQU7++ZQm6c1G9+Nt4PdN9OoZsu2t3T8x4WptqzUxuNumNV0+IJkT1X6Ty9MMguhHKYhNU5HPx5LUyZQ/cN3bO/Q25vqHafC/XSjiP/qbzZKrn6B2/cjpWTXWKwC2kPpWUB87Hkv5qcoaYCWVUckvoR6yy/je1Af8PTv+5dPPNuKxZYdDkSax6vM9xEooe1g+/v8ghm5dwKDKWZk3vyZkRTrTtnwHWv3+wKmr61EkA+ptunlMmOCf6lgIB4uVAX7Kptf+aWHWV+b1CP9c9j8qRJ4YZoRcdP/ZMMXIN3cFttL+B3GyyMpwFs5nzDlj87ApGHfAz3vFRy8Hc+bT4dSgMfoccOXLV/nMX+bsO95F5+s1x8YKt1u4CNRXKruu3GYuJ25go/Rv//pHdYd35oScgOmBiXBMKPJTAGQlysOitcKpkdcE6W8ARtr6lIOc2G0AlDMekVfY03B5ifmsLu8AmqdsnM8X9G1gSa/Q/inz6lzfcjwOF907G31aGkORQPDxDog0W++oP3wXAHRlTtiJ1Fkb41ceYaJlI74ZF723txfDiuk5wgjaeMDq65O25JLrkGK1ODNj3uPymOMbuiz45D3w/fDA3LcNqh6m+L4imcoByedFpKmxKN7AlCu5OSA9rN/q9nfOMqye48pkZr2yBZiPceDt15CGr+Y7A1P1N3g9nlUV7Zd0M8l1JRhuj5pIlCeMf58gHCrB9gXcqcWQruVYJbJT7JEuNDnzV8DdarcqbeLwoyTO5KDTZ+SVtmmhq3RXYDlbpF/+J/Rar7dIP0LfMQkfQFE/Ho9lANLx9Z+PmVLvS3Rj4pLQr2TffKEIhCgAqdzi9WvpGajpxbbbJs8oqa4O2SjLVwjsHn7CDTj2fv5gfD3+8uafMB3+Oz9wy//8NWywFJdCg34+O9Ndqhs6qXpIhPQQNHoceOXDPueBruPPkzcph/I7//dj5/T3KdytuExUhLjreHA1zp9Oaclgf5UIexj2up0/WjqL3/Quvkhk3QKI7io0u0fPo7FZdruH/uEG8ke9FdFNZX9+y5hZzuslaljlkLsX3PsNePizZdarODcXFXqgVbypsN+ncHImyuZn/KH/fxCeSqjhdrXWwPm3po0uf977zAasTeI6N1A+fVYLv/8qPexvH9htB72VO8hHg67c337p8/DZVA9YZfDGW5+HD7tu6MuXKLKgI5AtykCsN129fc5PA7Diwa325DN/+q3vZfI8+LNNRO6aQX43RRYewlU3/wQBOfmrmLbrU8e75Fb/w9/uS1/xqXlbLjpebIT6glM4PXcwb8lyWkqXz+/ltwMjvo6YaP5JPGI3BcBYqEsSHgFk768u/1O5j61TgOZujH3q/fJYiQ4uk9/Nfkc5xu03m5AnWg/xaud+hAqCmn/8ffJtyX0z29EQBs8tvlZ8JYgi566adSXnz6H98uwTWEL43/6u037z8//ASyuwx2ANtHwKY4ew7r5o+AAyw/d4sFbMN8aIC8vX/poPyNb0p1D4IFxMlq7+M+bslq7/fOrwn031uvbYi38u/Am1lw66WtLWh+YjfagulnPNcu7lgBz7TSy9Suyf/jd15WApu3+iUW/MsyFuKba4XPTZ4j+DJB6z+fv/rN1tcz0nz4EGRHiaUg/K9jqB3mI2m1gDyitQMvKI8XJEumj3JEC/N7HPz4MSvv2HwAAAP//pF1Ls6q8tu3fX3HqdmnISxKavOVlooKKVbchiAiIyCMB8utP4fpu7/ROc9VeawPJfIwxZjInREYhEOmz6c15rnVHlXRSkM0z9YPf85S1foBNb++CGY3yBJ1au9F01a8mvbwrih19bnj/eGpMWPEA7ILWxFbov9hy91IENoQ4hLNDPpWE48yp+xe8Uoc+oTlZ87aEcykG2OXkRzoP5cOCa3yju8E9MUZTl4fvtgwQVJyIDfa2FeG8/3jYia0rmCrz4ytmrsU06eElWPlRrHJm36D2JhjB8tXEFk79NyYyqFtAzIeYgHX/6VPQvYq/XEIFSFmsoc+qDyybenBgmsoPHByACCZjU7swDOobzZKxBPPjnSEwdI8jxtvCAX/1ld3bO+PdLeyrt5dpJyjMUUEDPq7A1NqRD2HebfBuc8c9G4IOQTl47aglGlOw7NEQglWfQZ81H0mjYy0gve4VHIheyxj+ZifwRSVGLHr1Qbs9Kh141olAn8+0M8fTkhVwj5wBe+uACZZujHVQX5lgR/DKdEGXqAA3KPIYsa3Qk/PuE0JBPVzpsbmggInf9wQPYFOt/h9Ew3kdnPsiXUbkZzynzE4fIahrx0RZWm7ZwMv3Cdzz5Uv37UmrJrSRa0CPB/yrz/XjeDrUcNWnkSxQE0ydVOQ/foSU0wME8/G9W+Avn8nYKKNJ9s2LehOKAvt5WvWSNk+8aqWui3FpG+k0Hd0L7DUnpOHWeTGmYcNXNafdYk8rq2o2Ev8O//B5dRMCFh3IAs7t+Y3t8SqmQ2VSF7o3Y0NxaZfRVDVnHq7rS9H+DBhLQiGGx/N+xMgV82p4J1UI46Pa0nDMscmCk3OB7ZFTfvUq1sbfjIPx8HZXfSUwx7Dxcmg78Y6ik0/Y9PGnBh7JQ6RG1hsR/wY35W+9D6bwNUdxin1o8EtAuMvmxRgsLgrYRqcMbR/L3hTrz2WCgvzh8Q7fVEYUoTypa/2HRt6+ZXUmGL5y1nKGdW7XRkSLhBCsfBP7Idezmc6MwL7oOowrZZeOWCgcuO4PEeSNF8wB6BNgeHWI926lMuqcpQU+TfGKnTb4rIPVi0KFlv7Egf+JU6KndQFf/rLg0LOngKk+hLCN4iPGK76bE/GUbFl931H9+H6xJU/NAc5SOq/xuOxn02hzyN9BSdiqv37edMrgms+oXyoFoDvtwQNYf1RUh74O5uwxyDCyJH4dFJuwGZeqDO1uO5JprZf2mz0S4Zm/PFZ8akRLfOoc6Dj2gPeCIkXTXvZOEOuGhtSmVdKVn3fwvrQx9nzxDWZLNaCKWRlR9xp4QHhHk6+ePTfHx15Qo6WbFAckIwtwOLq39MdPodhmF3zbDuQfPPWJJQdrkk/T+Up6C6z61O/7AYsfoIRdJ/l/9cqx/LgIyhe3xUgdzHRxlO+krvEEPzGT0jX+FVB8Bz71NkEeLLdBV8AaH7A+Pqt+YKqM4HfvytQ4mrT/ho2eA9MZNLpH+wrMvbQxwKrv0xVPRaKSHDXloLE33R3QbC4/e1rjE/UXUTHHVe9Ug+VyoNh9VuZ0suI73L+4K9puBwR4rEQuXOsnGM1EAUvvjhzckMH55/3EPLuA1d9oEN9Lc+nlVwJf/rRQ+wyPjAl824Hyxqc0dbNt9X4kuwwIAmf+8I75fVf8f9elQP7PRwrKwsR0N/N3c/Fs14VoMSQ0k2ypKHxeQ2gapysR398oGDxj7KBt3670VOuKOT9VxYWCK1vUvLy0dCHlEIMFgY4sio6qyXpsLHDAqoSNm+BVA9fvCoBr0af7s8Knc0wrAjWLACKpwGSsZvsC9J+cUjs6xuky2coJzowW2AsiNxgTQSDwcjko2LhQPRXD4OSC60vA2L/mNFjmcS7UIN/ZRLQfyJwy+xvCQc9qtBzKLyDXW9uAJNnXhMNFCYbHWORQo1sbbcCxYnN0xCG8nxMRH3fTlM7ZCGpo6XmAKmv/DIgjeAXEd/GMd6VhRfPONBoQNk6CuNN2qlqkVDmcay7Cvvb2A2pcPQ4yv8hofjlxEYmy+QIlTrwiwZCHiOnd8aDuF8lEViU/0uU1FInqC9GHCJvaDMa29mKAJ+1MlKZ/mXMhi9yqXz/RRvbjato9vwXcxvcXtsrNwMZXFsrwUvYp3nHISyV1116U81mZsK5+rYql7l6D/PI8kY8Fd/1k4RLC6LblkWzrg8m6DbjANG46GkTrqS03PCFYPbFBtaME0ynoBgW+pNMea4Gtgdkipxr22ammqL+V0ZIEfgfvkeEjZXvUAB2GwYDl8WBgu/Fv/cT1a3ut9ZQ91jdlsIQ3coI0TQqcl7fWnG5KxAEnQxHFKOlM9k5DHugD2RNpfsX9RL7cHTqP+5cGB78x58VHA1z/PzLXODWnIegJLAkv4zzddmBWhJsGpu/5RZ1nBtKRtVUI154teF/t+WAiRdQChSxPanp8X01mrilgI5/u2NNvojnhwS6g3c8DtjZLHSzqkt7hQQgkjIy9aTLROp+gcVT2pNS8F5sMD/tQPW8BRSy60z3q1YnK+qz5FvBVSClR37sm7SM7mIB+LE1sCfJiLuSmN/Cyf6RELMVpnQXfXuB5I9f44QI9FXHNcnj1DxVZUv3ZD2kZHVQ5TBFRzTju2b54IGhYpy1Gm/xRTfEBWrBvDje86wE2Z1F+LZAluwix6yimy+7himDdH7rrATWnwkgyeL/OJQ43wAECX83iRonqMz1apmhOzXRVYEFWSoSCbzDMgtnAuXG/RLGOj5RYaZ5AhUKB7kDa9Ox8AwTmynaHwP0LwHLksgWGmnLDXnF7B1N11RKVpMYF2/ys9dL0jQ4wO9UuxTX3BdOuPilgaUqGFOUhsm8tNAjekjfBKApFk70vaQ7X/cQY9bia+aeWgdaIW3zm56Kfd6bfwFIxTWyHwRCNO+7oquMSyvS67Db92GggA+v6kkkPCGBr6z3Y6UqDw7srpEM0Eh9WehvSx9d5mvMFuQfoilxGuJ//usm+hYfm3qHmmYFoHoqpgeRtBIhvbjqbJaKGsP1uI1ROBAHmJF0DL5U002BvXioW2cECXo7QYMthO8B2SDQgrnkfn5TPrZrRLXWBbu9sJHjJt6Ib+pgA5YPyt37m2Ph5qOTVcYPU08vp+/B9uMOgezTU67ZlQHYTiiFG6RWJi2mk/Mg6Dg48vqNNP4cRm+9qDPlqsPHTndV+2m9icW1cKZDI383mbEnCBT6InyGJB141l1aI4Lke7tTQvBeYg9MmhqxRVLIRrkc2SfqcQV0cDIo4+dSP3KId4Pm6c6g1yFdGK1kbwIZmgABRdINhZCWE/VdKqWeFMlsu8zMHtrXXqWVuVDCkj68MoX9ZZ6WugzPC4O5va8O4YBNGHSDNuEGggmxLuLPTpsxtv66ig8cd24Y8pFN/RhlYn0+kvKXRItCTD1uz4LBrEaefQs/LQHcfLHq6GmujV93g4N0zzkS2xk06z/6hVDNv+hJp2T37AW7fGRTj/Ebq6Cmkf/7AScqBKNeZ7+nW31pwQ3NA0SZIgim+5yJAk/iixrr/kzEfkGqKJw3vw5ia08RNLmienk/Dpd0Fs2KOCMqb8IVdd8dHy8t6XuD18rXoealdNpKNeVLrwfCxm8aNuQA/87fRxj/g3fO1AdSr3lCZ+NeAtvpNDJbmviUQVjsRick3YZPQHhzV1C0dJ6/9bFJ1V8QqufEavs39o3p9Q62FcmxcSTXs22h5Xqdcjd5+hjVglWApS8CDKLyoiEu3HZuvVkqA/no26y6k1fjGx0SVktsbQc8zUsncPxJAN4lHz+/j13yHn60D85PvID5bhGiOwjMPoyZeqB0GYUqNq87BN/BeBFapYA7SwW7AR4A7vBcKko6Bl9UgYEcbI37zAd/XXp5AouYaDS9ZGYwB0BK12oYS1dRaM6XsNfmwHjSf3h/JK2Ut5Sc4fowRo/ad9NR45xZ0bPYi7M64ajr4naP8vtfhxbc5VSnllKpvNRxZ+6f5RVi+wxM/Cth+S3wwbmYugybEhPDR85yy5K0psOkbl+449E3p7VJCmJ5nDbv5zl0bKfolvNOkw/pcKoCMAuhAz6QDdhJzz6bCOGSwGsQLxqTGwXChhxoe7/eImpLWgWXHb4hyOTs1UWofgmFLOguMD0NGbR3doo+xHqk6bWCGc7D40fzcuhNsH8VCVBfoEf/DP3bPBrozMj/lm+kqQ8N+YiIRcgRzYw8ifEDwpfuq2PZr/LiA0sgTpEz1EJDqhg9QRHpDA0dyAnaKrgoEp8mjjmFpkSAy+Q4yt4moi+IAjNuT6cLdY2FYv4onMClF6EPx3FHsSacuYO9LlEOkpQo1QyUCk+3PjepnxRvvhyIOlpvETuB6MyciyfrMJmDeLaiujTl3gAxme4SWBVMXeRj1mzEa406JAbcrHaQcbL0aCxqH6nG/OWPTv4s9GwOtUUpLsqirx8fq+/ve4149U3yyHhGhMboD/AlF+ghjGrBzi3lgKTik9rM3K558xQR+za2L5FkjARHoyYWccoCoaSmIluZZWeBt1iLW13y5HC7nEsiIKet6d9HyzL489I8Rh4g1aim/t5wDqGTjhcMtwdH4qLEGpVisqOmQKmKP5jpA3yhmnDnQryZH32tQ2uM73rkGZfPWLe7w7A9vbHuJV82i/F3ACVcCKsfPM1raXXeHW9fQKEY9reY7vjogP7kOPWc1H7Vck/ugPm62eLfZbQGN22ML/YPdUpz2HuBHMjdQCdSQWp0tBIs/TwtUge1SB8B9wD7bbwxBMko0XM6vfryc5hZm5asnYnl4p0uN61Kd0qX74a3oD/9H+yrC+l010lUfauC6PnhXC7vgL97mZ+oiwZwhmMS8L+C9VEeyid8vNv78T7kGVzSr37qfi67joVzONfb9nAeDT1tnO72nJ37ath9N64UfdcW3GJ20wpzt7wupeEl1pJ6QHvDr76+3UA0yPybb7Ha8ROB7F8hktPkjoNkUHsBzF7U0ULDAxqm8hfAtTwI2rucwnWpza8Ef3rAwM0xhKo9IWfhdR9juw8DscrsLqAyxpOG3DRnjXzcXCOfTe+VDpJqdy1HexvyRYWddL6YxqMGXq0NqNoobCd/DYsBAKzBF543MekV6EbhReofaJ44w+jrouYo2rU/dVDkGi7xBigIgLdCGu4YmjbRTAsVJVCiytTdgT81QIGPHHGM3l83lc3Ev0JbDDnvXzbmfwgxxcJcmO6pPlxoscfYpAF8LHLZvgVPx4lmbVHHTVvhAriRYinWQkWf4Hxw0D81khXg5gfYJciT21TsYt26bwMcAHVJD+8tmfZg5eDsbA1EYpzFS3XYHIHCO+fPPitR6koDzEh3/8iX/orql6MfCXAfN7aNZNKwaLnsa012LeDAat66FptWb2BjjLZvyMW+hNXRnHFKhjr5y8XXAJj7NOLhNfbRw9xNRVzxE3tVVBHOndh3gL9aMf/5BO+BBCLdli41rOzNWtIYLDoInYY1Ybs+Cw6WDT4lgjLnrYPZtczfg+vc0ljd6L5yORwPqw7Cn9/EBq3kzizl8bOMP1pVSCGaj2t/h5/vykHLoh2oKXoarvrebgHzHoWZzYPUhHB+ajI1diVNaF5oGuUsUYc09XoOp7GwZNsbU4dSvbilP3rYBE7SniF+eVsS+kUHUjzOK9DBJfTQb8fYAjaO8x+jZ2KnAV1vxF08ocjd59YuHUKGcgMNN+0q/gRfXIMysiu6wKzH2vUILLGjbrfGJRlM+Xjpw2nsevl2HyRye95sLlLWrnL+tm4gS2NXwXJUWdae7Gcxy8bIgXCWhvVCgaNhoegy3t2BLwKUzTSFbBg7aOn+m/ke6BsuK5+DqH9iJOy2YOyOzFI0CG8E1/s3Fe85gFk05Pq34s49QU0Dptbewg69FQLSbsCihqANC8/lkLpf5moHSEiwaXXibkVFgLXzryP/zh4VXJwsmZ1Em8oqHht3XOkA+eT7onioum7uA4yFZPuvgh3FO2e24baAYdApSNJn2y8a4az/9A/HlJgRkOy3Lj6+hKQ2qaKr3KQ/8x6pnuGchYnbDDTAvd18iYfcKBskpRTDPFx7BbzsAhhX3AoNMoXgvMAYW68haNSvcDbVPSfXjrwZU1Sf/F3+nF1MysCwgJhDy12qNlyWkyyakxofwEfFszYcWuJVkE7w/KVnuJYL0nZwx4ocymq+b8gQqog1IWvHA8uC7EmRuHWHjajhgXvkfLAYZUcspjJT5OazhLTAkbG6LNpiONlEgq8sjYrA5pIKi+Hdwas8xNVY96Huoixi+5LzCTktB+tUAsuC1Mt/UzHY2II9tpIDXyUF4b8ZxNRBCFzDfFhcV07GIpsTSGngrPxV6l3MA5sa/hNDNXRUpsCPV+LPnmye+kMq0oznXn7ulzMvLp8Y+e/XzLhxj4GnwSGMxV4ORKDcZrP5H/SKog/mqTApY8T3WXle2drErGjhPfk44QU7S7/llT3BdD/RejmYk3G5m98PTGLUyZy7sIHRKqnAbMs3+ASzz0ing9/es+Rhgah6nBM53mKN8Cd8mi9tjBw3JCslLhb45/PgYC4YFbdZ8O4OGOWplGTK2/PDcz9Fxh+DwkCwivqHcU27rx7/88YdHBq7HJeCGwUacGKigb/vgrpAGvcirOBgpsxtxALdwv8e4zx3A0Em3oLjoB7wOhTPpT1+7xocE38bBYp3nUQKTMy/jx6XYREN1de/QMcLnHz+bG7vmQaV3IfVSxzbbo01kcPq4HKrNIUln/7qUKnuTD9U6TksHn79lsLY/CXbrhmODoSjcD+8hibgNoK9Y4UFGuJYIwrWvlv56daE2ljcaVGrJllmKD/BevHXsuvctoKlrG7B7PjOihh++WuLImuDYfSgOtnBKl7yxGvixrj5a7mncz5EBLLA+n5STawJx1euUdf9xcL+I0XSIQxFyu8LBmOvmqnWPQQ2Vsfbo7u0OVV9/uwn8+Ni6H9VPfwRc2fMUB6dVYq8THn4bkmLt6cOAioqSgQRhijS1LszpxZYM8h45EHnlm3SovBNQzqpOXUVZ8+VcK7AUM52m0GvNqT+cLTB/Lht0WfG0JH0qF/72z9zFJKXvcBpg35szWSC/xqM0jqF1TAmZibcPlua7FxVA/S8RwcUIpttmfwH38H2lYSn45px8Xg1c7QXnmLnRjx8CrTwu1CqHXToPXRSrfla+sT5WpcmGSj+AB40XbEj8BVDw/Bpgo+oLutc+ZKNLGfrhc+rfeoet+mAIW/HIE+h5ZbSQm1eD4Hs8kK1W2JXw8ye+llOk7JKw+luPlDQ5Nlc9ahDAuVG2tO7ps5+HdLBue/K3H8ad3E0qZA8ObiInJar5Ucw62feX7Ro/ifzgzXSI7xcRrvyI7t/3AEzK5XUHbvfKcbC/QPPHP4Ahn0o0f74UDMHLd7drPMbaxgQ928aRCNb3ow7FcjRKrGnA+6le1u9r2OTemwv4dtGDauNcBYugNgdokMNIXSt9BUIy3CHo35aJD26d9RNLdgT++IY1nEKg5J3Kgf3cjjh/nuSe/fghOLsCDiRvrBYzbRFcEvCk5njLozq8Pmpg0KdJ5H5nBsvBTAy4hCVH9ePlDOZ8l3Fg0A4IBzs/qCZxkFpoHKUJO88sTYXh/YXgp1ezVS8Zn0bVALTpfOp31ziazjK7AH33mGl6PZCAFfOggJd02OPg0lUBI84+UcTFPJC+y2TQqa3cglxe++NkO5tJH564kPll9oe3lk0AF9CKEU899akDUuO6gMdw2tBs1JWeHaZoUla9FhUPzgmWN/E0+BxKi4Zmea7YZ3stQeqG3j/1gU/y1eAf/1v1uvkdGws83s8idpHepLNzbEvwGg8J1eYJgGlvoYMy1q1Ob2t8mt79dIG3iL/8+c9Pj1Vcrd4RYZFQJBzq4vLzHwS2X59NLwO1yq6/dkQZfcmcx4JMoNGbGAn8rFWr3uKCVR9EfbUOrtjG6xHcSPMpOjttNB3tRoG/5xuflLCBy8BdoWhTIuBIjjmveBiErMfY/+YVoLfjXEOOOjORnxEH/vxhzQ/Y2BLP7N7w4UNXmBy6F51tNLsUINh9nDfdn9ArWMTuAuFec/bkIyAc8A+t0eDxnkTkEpksnTUxHtTXYBmo3AkxE7try8HTcvZoACkLKDrpDuAi5YMgfC2BdDvOjeo85zOSkd5EU394OJA8UgOj93NK2f7t1LA4KeuVyxpW03t6DZCm94La5dwD+hRbC3z7ByPNqjcOxnwI//TTGCY0XfXpEIqbrsKuohQmyRurBvv0dEXTy0Lpyv9ryLjSXutPijldaFLDcTbKlZ/eQGE7GoLz5OYYg/qbTtd3bYDL9Xmg5u3j9kIlTIZa7T4K2SKnA4xIW/SrF1B/Xz/M5WVdY2j3vEcvogECGiFSKFva9Ni87oJ0VJFy/9W3qL+VejDPflLC0tHvFI+cZfLK5ZvA9mgLeJ+NV5OmXImApWcBabmtDEYhF1soXPsjxdZSs/m66Q4AXF8vQtf8/odn/M8wYU9jQbAkmDcAfG0L7DwfRkUKFMi/76W61rXRYIh6Aw9zI1CX09po5hb3BLv2BKgvWd9g+W6tO9RhPxH1xA+rHvMiiu18RupOo1st3SsgoJT5kV7aTGBk99B45bRcPQRNAQTLpLsKRPig4YSLRjB9xwMHi0FBa7wX2ez2ngjRPQvWKWYZEA51G//xPf8i1wEzT84Ewm9/p3tvv6latb9dYKfLDdXW+gA9NLOhet/xhP2PJAWDcpw0+LK/B7rm275rd10CtbFYh1IUeyZKlu/Cgjg1UcvP12QJe2h/8S1f9V3y4MsS2JIWr4MVxmger6EBK1EMsPNeu5b/9IPjNH2p9ui1it+yKAe2afREYD5j7KoDDSZ+O9IgW69Az1hXVPgCBfWuN79a3suSKGK1b6iXL3I0rvUi+DjHHA7XfDYfFj6DHHiekPJIXtHEossFPl/HBz2XeRMN1kOyYAH6FE1p3rJxU5Wx+hocA+sq7MyFPBQIHy584EyM71GtFJYL1voM1SXvs+InpYBCInywu+pLi9jl3G/9cZi1SzVxPS6gzGkBDTZimVI51+7Az7dHrI2zGUirfqNewx6v9b26X+udSMm3ZEascLiKKdKXbPH3U1L0bN7psJUtXjFG6/qrr4DG/MIYmFJ2odqxvoCFPBYIOUk+4B0qBzD/9J3quTdwYpHmr94INvLhjuCqXy/bT2LAkJfeREafOWpbrbio8vV9wxrKSbXiJfGPb/7qtfyav2EasADBrVun85zULfDunE11UXyBpY7PirqRLAtf4k4zF7HgEYz2rwgfrHfFyAztFloj3+M1nplsLDc5ZLfoi9d8Db4//m2JrU+1SQpSWuJNB8ZveqPYeI/BbEK5BKseiuQ0dgKmnmGm/urHscN2bNy00fCr71HHrMB64miQYdDINXY4SsFEjwKBStScKZ5VyAjAdgF31qoncpbTf4OTdIEX9J2pjipmLtz5ewHs/thQozg3bN7twDr4KFaxFicFY6+Dl//4KVGmo9O/fvWXaOMeCNcPOyBS/NDgVDceRqfI7qVsCk/wWCcuDSoIqoGhmoOWyUtk0ejA5gC4CVjzBeK376GabkLXwNpKjVU/iQH7bJ8lMLa5TM3t3ujFqN/n/1WXgu1/PlIA8K6hHn8xAvI6zBbk849IAAtOQYt0N4NoFEciX1OhmqQDQtCoHlean6VttQjToVZx9x2ow09CROz7lIDPM7mRfHevzClRpAGe9hZBfFyDaHThcYLN0Bwwcu+5WQ2HqIPn5vomcsC5pjBmgQW/kHfp1RnDtTGb68KiATPGaRKZxEipA3M9A2TAdpEu22uzNlr5BHh3UF4pbdXQhbxfB9h8TIvJRLKX4U69qGhJsFwNUmyvjQjbArvL2+/ZEMYIfJJbQk1FSdiUIAjhboornInDo59KvrEg8B0LFTLPMfpWZxmekPXGR9pa5jxXcQjP7zPBWDKqfgYqNoAWGgs20ufT7O7NiUBdaF/0QaelWiCaOuX9mjHVohGxxcsNC+Z2dsXxiAwg5eaDh0HeDETw3YDRIY4c+BV5jnrGcozYFSoJGD6nE7br8tOTcLxb8P1dZ+WkpQXGWTom8JJ5EZKOShbM+mNe4G2bNth5OgujeXrKoMMVB7w7+VtGPiwpINFknbrX9FzR0vmU8DlaVxp14ymYvtRHYBJjie5z85ZOCbfx4b1CMw6m9LPewi8gLIjypVru6xWLvU8OT+4uxQ6+fXraHvW7erVhjk3TkftJy2wIx4Mt0L08nsAYsNGHgnGT8CFXuGpixXaAb8oKsryzS7Q+P4SVf+nIpBd3c8ScSmCtqoj6o3KJZp4rC4ibVsfHV0qjEXj7O/TGDcSoioWAOVrrwyyRTGpZ0iFYLpVugM/zfsNmu68BS1ucg8q5IrofD3bEVJcUwGwjhDECpGK59Myh2R8Y3qn6PWB+Kt1B4i/nv38fdV0lYHt+yNjRslu1NiY8wW2efagPrjPowm2SwCtSM6zHXMem5ytvlT1neHjnPFA1X9TjAQSHOiXCjL9gKONvB90xeOHwXu6BtH+6/ranuUCk6nOOWCrboXp14JkAz+pTQlRwgW2GE+w/10bpY2jHUDd5jI2ExsGoH0EOj4dog9Rh+gJ2MPIYjKlzonswgoptz/caVu4FYif0XsGy3HSymanr08Tj7ubkz/IdHqOo/tl3RV7uEgKpFc9k5mylZ/urflCpVPrU/O43/fDUTwheTTihGQplwK4Zp8DTRpaw13tWwCtBYsGO73kcbBIZTLvlY8Hg0Qioy/d9MCSG2K2zzCHidnfTnME5IID3mhiHt9PWpD5QFMh7dYyP6vsZkLt4yEF7Cit8t6LApPH8FWEohiP2HZZES/SRXKjr/Is+90GezlnAGrgMqoadr9kFBHILD7fpw8CIy7tgOveUQMFNdbo7dedoxAp3ANIoSRgnSZe2Z3NIQPFSMMYoZebM8bccFqXs4N1JYcESBYsLHW3ssJOJVTods+sAgL47052tRuYcXAsXolrg0BQ95mDSZMOA7LzEGMU7u5omvYIQN51OdevVpPNp0Qb13iILWwPZpYz2Lwgefn/GNtvwjB7IwQf3D9qT+UI4NvgPFqoqeZlE2TEaEYFPDPiKhhfZ1Oco+lZcMsFQT0ScTG/YT1Z0uKs1425oewtHk7KT1IDNw7Wp3ZzSiuWfZIHJbpqwdbJG8It36lczb9g61V40y3ulhkMRHdHXWI7piBvZhQ+vz4kQyBswIcF3FPVd2tQfu6Rnh/x0h27jH6nNqGS2ZVYUinXfFUTU4RCs65lJkxy/acBAH9H9JmxAjp5nrE/t0xyz66wAupQSXf2nJwftW0PNMhXEc6nWS1s75mGWi3uKyhqw6ZvuNVnxIhlrSnyMFu9utHAPjHr1JyFdtlVdKPV2s6At2sjm5+pOizrQ6EZ3J/8GpuTODnBz9wu8P4igGnVb9QE7zDq1J4rSOQC1Bk+8HNAdiW0wZ5WM4MnZjdQTRZwuF3Nfwp0aq1gv+os57dbZb3tO86i5xtdBYekd6FKLSb3pt+YvXquoE1yalzFn0v3GalQA5Aua1++f0Bk14Lfem3u7BXPA3i58PcYLan72Ns2ND3H75bBlX4N+ajDM5Em6EIwgyiO2B7ar6lhcsAm6U7DUhW7By917I756edFCtkCBbuHtsKYfsnTieYmH7TNU//L7MJa5q3DXyxUjV7lVMxi1WP2aGod9p1J61q63lDaHQKEG7zlgajZiB5vm7RBOJRNoj+6xhok1rxC5FXu6Pd8bkGw/BgHneV+t/uHDz/3mEJYXQTpjInHgEXzDP//setLHYKa+T8188oLpaJ1cVepEk+4if2KzPIsZ9M/zjTrY88CkbG4DuJdIwV4SiuY4S7cEnvtYpjo8O5XATScD2Fdlh+0Fa2zZEHwBwHP2hNvkekCWvXmHd7J/4Kjd14zAfBPDNkJ38k7PXj99n1YGTpNM6T662OakBIkDHZ8cMP4I14qpbWfAnEX7NV+gnpnqNQZUrSpspBul6s05scDOenWoXc4hI4/Xu4DCJmzo/nQhwXKJzBPUXPNCww7fzGEkcQ7N4rRb7W8dUbyjBrxE7hmfUgrZ8LPXk24F+AjPTTWN3D2Efjbd1+sF+146cBcexmNpkMUrrXQJvasP00RraWzvRrYsD92H7RENNFCTteSLnxr84ZV9zk4Vu/KghCQC661WlauGJhAMiN+dT832UfYT0t0cDsORx/bbMAMp1UL/93x8krYtYGu8Uh08LjTw4m/Q/+K1+3K5P//uVetjQRZPj/W+blUtNlIs6HXQpcFZ56Pl3t1d+Dncj9hpK9Qvy9EXleP+5KNt+PQZe+tzogph8sAHc7KBtK4PgNzwpHH5WtKBW8Y/e6Tac52t6zNogNWeKRYXG8zW1rXgz//0EuiMZ5lygOnJzEmDviTtLqnvKn2Rj9TRBimig/W4QLV9bYn8TgbG8mukwR8eDvf2KZrB6MaKW/oC+sM/RzmdlCd1bCTyxbWaWMgX0B28ju4GnkXEuxsdTMLJxPfj5FQtUl0IO667Y0eDgsne9iRCKNGcSNwRAdbe3BPUkFGg+QV8NoO3l8N7G1r0oXnrYJLLJQFppln0bptWyuJtMah9mad497raYDxxOw6+crqnflSs/nv07nCNx9TcR78bsHwJH6idqT1TO2Lb7SWHkxQTGrZ4ly735aZBOW9NrDs67OeTqPkqonxKd6qumEtt2Ro0Nk8FOy0bIhYLr9MfXjf78fuzLwMWPbCwFqlDP1f3Mw+3x3xP7WkTBtOOfLq//ALT0mLs/VYPYP1esln9aZ5BIgJ1fIU4FCGIhu91X6+N9PZ4txuriB5OmQM7uT8QFkWbdOIubQepPmT0zDYxq1PF0yBBygnvI1GrmG/O4o/fEHU7ftnyqjchWPEMxntw7RdbgTw4j3Gz2o9iTsouaYGDRkBe1stJBZ7UCyAXcKf7qCkZU/k2hu1tz/7iDf98PBHYnIM9+d6gk/LK8xLCX7zUTqpQTYkvlADCYUY3vYT9Hx5pqs+LIi73AyYqIYLiRvd/+Dcdss48KYla/xrnXU3q7+YDWOM73R/FU798qvsEc+WAcFy8imrpl26BJxV42L6/p3T5pJGifvJ7Sa0B9WA6P4sMru+HUfzRTenHFwS41/GRJk06sVau4S//74F6i2Zg2xC8svH5i1fmuAmfDjDbI0K+FfXm9zaNCNj3LUBb8RKBmVd6RwnZ3l3xUhTMwafhQXBqPLorrggIYB+KcF1PbNypYdJBvkBAsOzRfMXzPd1RDfrpUmG7Pn0ZE5d9DPPt4YrxPuCiYc0voH9nGuFe9ctsd6hC6lAdRKKO2q6XrnC5/+FdzdCEinilV8A6dCG2YuvJ6NbLTuAYHWtsIlYEbfNcEHT84fCXz5m5P/uwbx88jV/z1qRbOxMB2FlPVJlNbLL4XZVQn3qE9SvH+vnjve4w8acz1r7SwNiKT9QkXEwkrf6+kONUqzt2cbFjhgWbOKPPwF4xRuzOwhz1TJk5xT7LN2z4SwbY/qn5MLeyAsmL0EbLJTV8deWPNEsXo5JM7zyAYYh4bK98gh26hMAxcUbqH4sWDFkTiGDFX3/8hf7ix8PoEIEdjavlggMe6jtJQZxzD03G7mIGBTWU8b14KGA8XawO6pboYPfd+v3wVO8D/BzvLvZp11SDdHBCmHD1GZuyv2d//pKAZkIcx9kVj77movbjY0eY3H1TloOLAnbchcfmd0yDpa61Ah4u2RuHe3tJ+/aNC8Cd4y+OY2vDBsnCCnhuHYDE/LLtu1/+EoJ7g8ahCM3+52+Ythua1pwakU9/a2GnthXVdI2rxkwSLzBNjT21iqMBaCvsD5BEW4Hqm/feZD6WXcjF8YIURRLTZeVvgFpEx0GwNsqe6b2A3DW+kumgmmDSDrhVVn6P7XlTmXPwpBDIVd8QIUiKakpFr1H8mJWE3hI9Ze/tkkHHJiraoDQK2GrPILGZgXfcr2sI6wew8kO617deRTYXb4GJO33o833uUtJ3lfzTG0hxeLTREl2nHMqvXqY7YrVmt9hh+ePH2HxOWiDFY3dXEBVTjNgLsLnovRhMwlWju+IT9pMi3UWwfWQTXgskbL6FrwukiIho87G5tFV2h1bFr5bgHTjaQLTv8h2azXrrr+KMVDr4ZwSD2+dGvTTLqkkbzAHQudJQY4Qem8704/7si7rvtusfxTX0weGaZeTz+lT91EibBazrTf2HOkZzV0xro+qAIYjOn6CVWkMEwbE5IVX7xoAyUSlBX+ceDabAS5dPdVrAIXtyaMUzEWv3HoR2rJQrf3JS8sMLoYI8+uN7bGiTE3w3U0mRdz8Hn4NxiSEUxgmj646k3V08ZDCaR5/q3DmJpF/+WPE8NvtHH41Zuo1Fx6AJKsWbmFL1MN6VNDFabAi3TTr4s5xAkik1DZb+0n91lUNwzRcICrCophXvw2hDU1Rlh2dPDm6Rq3La5mi5PffR5I8y93t/NFtHt6fU/DSg5lQbTYA3gURZIf7wORq36qdfiMpiCPY7Gc1n5PaL0N4GqNYFwqdV7/rKe6UBdeDZeBAyO+ADW6z/7M1oQlyxvWQTqCMe4NjaXRhLMxfBmsEbtUZUsuk4xQpwvOFGH2QCPc2rYwzD/e1GfSeCYDnA0lFx0UrUeTi6SR7vAQJBwgTNRZqkxDC/JQQM5GjVb4L6OcYcvM3JE6MNqtKVvzVgKbmAouvny6Zy+IRQ8Y4y1jrJBFPpVhdYBfEL73VvWgefMQh48+1jl51Nts7+VuDvZ3SVdr3w4w/3YU+xe+71Xmq/DqfocucQVR5PbNa34gKfgr3e+rOMiL3VrQzjb9kQ9VE9AE1j7wKf8s7CetXnbOU/IgS6faZGnW2inkbjBXw9w131o/UwgPdKIFDkJ8V3l0t/+BusehY1xNslZdeJd+D29ohp4NaYLUJ9Oqm6K8z0+Or3JlvlHpAlgonkGLiRaItqAgBU9uSgHfR+zALQwPSiKdTwlnVQSfmRIS46iXpa+QLzJn5wUDf4hOL32w0mKd53IG5LisrPUJqL7SstgBx5oilTQjZJtZmAzSWwkAoeKpj18yKrq71h7dE55kK8eYBwIghbK14eg02VgzXeYU3hB9DVlm3AG0wDGlxmq2L/8G1+Tz3tVJsLVEACfnpxcRolxrb6OQF+ttwJ296Nng3wcodfSRRwiOxvOpRhuajCdp/RVb9Lh6afSnXVe9GSbu7VkPhqCU8bRcI+vbvsu8kyEfiX+UAUJ1rz4Wq/9lFWqRXVWjRli+FDUdDORF713emnJ6GRH9cuHJ90HAu/BD+91BNEOV3xewxOhmMQ6XV9synJFwLaE6rQ4yR6FRN9XwOCiCUaBLEChsbkXNiJ35IGrhWnUgqtDhpD7mArqouUpfIegX54HqhVzocAiKK1SPkus3F6nve9dB34FnZT52EnFwVzgZwiAuvpMGr2agPmNb7AuC9iGjRr14/p/PV/eiqRF5ua40W4J9vTrDTYcE+0Yu17V0ANa1d8WP2Fl2S3VtZ8ioTErszePMYNQC/eJ9v2Bhm7JpscHA/HDb18WZXOFUk1QOFrwFruv/r5JtcWpHKh//S8iqUwbMFOuq741XaZwOdUg/330WMslq7Zt7bpgLnzJerdw9qc3Sw/wDWe0ec9yUz6VrcK+OXnqd+9+tHl7zJc9Xa03DYtmxqwCUFoJyfsZI1drXqhDPz7MhCJ8Ho0JI7owHCDe+zwhVR1drdxYPrSP0R9MNCzFe/CeCgCetMMJ1ra4OJDaRQkbFHEVyNfkhycNCfG+0Ojsgl9zQnUun9Yj7CHpiCPGw0ILDSpg74k+vNHdpxk6ohaF1CRM1vwi4d4329B/cMvh8MjRcphwtWE9rthG5w/Ktms/k9qiCxF0zXnTx9bjKC4wxqqV2y8MzHqxRLX0FieBZqLXgxG+bzNgeKvcyWtzyntGWEd9I9MJf3l5TD+y/QOPMzOpv5xavo5M/kBbC6eRXVOiMCQlWHyw5drPYGAKcmVAW5PmYX94yEwV3to4G1KWmpmh03F8udNgbtdhSla9Rhh9SeYOzlC6sp/JPOYNVCz9fm3PgFzQppA9VV86ZETGFsuT72BPz3PvfZr426y4cAm8p5oa5RRxdKDJ8MKxQ69/fjNU4h4VZD2BMEW76JmK30HeLJ2G8LWQdbf4Nq6kO6HDU3Oqcn4n96/6rXoc+iqaub9QoE/fckxsk+/2MY6bKU6iBTvgzyaUk7L1RXf4h2J32Ca7Cr56fEUXaRDNTU7tQErX6HI6VY8jLIOdqATcHDRg5S225DAS+yGNJI7L10Wdd/81h8BTlajVS+uYZtjB6nKowqG864SAYDynlpRXPYz77cKIFdwpD99ut+eTzU4YStb80sZEcN8leq5uIQInI+nYBHq+0E5f67ZH76lR+WZwNMiP2gWCnzfooedKcddpFFnf7tV849PzaOfUWvT34LFkHpfEebwTKP+0aeTVlui8tsfRx9QSlb/AIn0julNK19s/njfBMbvyiezc1y7wOjnBIb2/YSDD/ICAXw1BYbb8ITNp+Yw8U6OjXqIM4lw7j0PpDT0M4BfHcHhbeH7KdA3PhyaQ0rv8sdh7D2zBpbngiHY06CaT3lQwm2efwitBQKYv9ueoB4IF6I+zSkdyqlpoUfVjmxFEUcCXgdafoF4xC6zHZPlUdqADnbDP3odRqwAX9PgqF2fPDb/6i1r/kazMwvsO2amo7Y3zIjcJBVbHmPPA6/cHKjFpVo1ZcQfoFdtdgRMgRfxI8lyeDm6H3oLN846eFQmEE4Dojugu8HioTCGK74jleJvqoWcJwOe9g7BQZNTtrRB7sP3e+pppCgyoNvXQQECugfYM0u/ovTZtz//wp5pUHPpL80A8bv1cfKW3XR0teMBoI9UEY936nTZlJoDf/EpFGGazpfXOfzpK9gzTwObypZOP72LsMfh0q/4PAZnEj/wxRjWLjOnR/HTZ9Bc9Tlg5WWtqmWWh8CmFStmvk4xvLrQpNHzsA5NSfMFrvUEqm/sYz8o0VWG0ofPqSF5tOod/rUoa30RCen5238v2xsPMe02eK3XscUWhQR6DRzWeG8Fa/w9wf2sc3StN5ljl02iitueQwv/LaP1/ZdfPRhfV719/NhfDrZn5KIf3lqiQHHhWt+itp94v++7qCtf+vnzHx4Fv3pPPHLPP74F3dqvVrw8RmxwswXmU9RiJ7vsGKW7jwFucrrOaVkYYPnmcgFA3JrU+25pNOwW6vz4Aypk68Umjuuhuj1me/w4NQFgK14E43nn0p//zhw8xHCuAhHJ6/4x831bYIUuDv3Vs9pffczrOJc6z8uhn5Q+K6H6LmwarPyTmnPiAMdYB6ui886U2NrlebV/HPZ4CoafXvzL36EwlGy2Zh1BYDkKIkXtB6LxGRNQxiXEaHevArbfBSWMGJGp00YHxt7qrIAV79N0Bo/ohx+A4CUyEiZ8Yux9lkooUelNVz0snTd1RGAnfHsivaRX+tMT/r9Lwf/861//tx4Q+N+mfeTv9WDAmP9bFSW68KUCuokpiboGBkbghQVKpcWJ6alKVtAlCEoFRfm5BSXxJfnZqXnFSlYKhgYGhtDlBkol+SWJOWhSXCALa7kAAAAA//8DAMKnEEPwVQgAm91U3w== \ No newline at end of file diff --git a/docs/cassettes/rag_1a0d25f8-8a45-4ec7-b419-c36e231fde13.msgpack.zlib b/docs/cassettes/rag_1a0d25f8-8a45-4ec7-b419-c36e231fde13.msgpack.zlib new file mode 100644 index 0000000000000..00533d8deec1b --- /dev/null +++ b/docs/cassettes/rag_1a0d25f8-8a45-4ec7-b419-c36e231fde13.msgpack.zlib @@ -0,0 +1 @@ +eNptdQdUU/vytSLKFaSoCEqXIhYCSehdBIHQe28hBAiQBJJQQhdpAgpBEUQg0iGA9KJ0EQHpIlU60uRSQpEOX7zP+3/3fe+dtc5Z68zs2TPnN3vmhOR6wTFYBBp1thCBwsExUBiO8oIlhORi4B6ecCwuNAcJxzmjHbL0dA2NMj0xiFF+ZxzOHSsjIgJ1Rwij3eEoKEIYhkaKeIFE4Eh7uIMDAuWEzbJHO+BHg/14ESh3TxyvDI+lpag0WFSIRxwsKcQDlpSmPIBiIDEhHlEQiGIVF5MQ4pGWFJOUoljEJSkmUaC1tRAPLxLtAHejxPPi4D44wP8lAEAdoAAgEMxLgcBRMPQvm60jGoOE/krGaw/FwiXEeANyneFQB8oHTp5hynJGY3GEt/9ZdDEUBoO7U3h/UxCKnHwR7kI8DnBHNygOToKhUSj4X0dCILnC4e4AqBvCC57zryhCCdTd3Q0Bg/7yi7hg0ahCCh4HR+EAOLw7/L/dJE8sHAOAOlEQhApdShFKEBE9POV0UTwgYTEpYWCJDwCLgyJQbnAsFuAGpdST4/6Xv/afDncozJVCAvjdOULOv4Lf/hODxhKytaEwXcP/oIRiYM6EbCgGKSFW/k87xhOFQyDhhFxlvf9O99v573SiwiCQsGTpfxBj8SgYIdsR6oaFV/9HMByHwQNgaAoHIR2YA0OjXRFwwuimrS3M0dYeKa9qhDXESYGdpL3AelAVjKSpspq7GtYRhHHQhEF9QXqixggoRk1NwsPFGwCSBEuKiYtKiEoCQMJAYZAwCGCARrlrwvTF8eriRvomengztIaXMlxVGgNxAauJA001kCpK7mgJCbCkqa+yNwQCh4kaYTQQED0vUUlPUXHzB1BXPFTUWwWhrQIVRnuKu0iJqmk7yfJQqvP0QjjIw/S0zLU13N2AYuLKGH0zbzdTiJqKh8ZDC5wU0FVbRQuqK2GsJ6ViK2Xh9I/yQGAQAPi7QgmgmBTw1/X2b224wVFOOGdCJggslYeBY90p4wZ/nEM5MpwnNiSLokN4V3suknJ4lB5n6Gr+W8KsWSoUTRLqVTGIXyPEYwh3pwwRWIwHJCEDEpURl+RR0zYqVP6dxuh/SrDUCANFYR0pMnz4t+RzYc6eKFe4A0n5f4q99pfYKZ38VT4G7UYxuqG9AWgMwgmBIqTfrf//3HAfdzQWDvhdNKHQDGDwr0UCgKgU/mvwAH/NNKHqf090+W8QGuMERSF8/yqdUP/X5Hj7+ng7wDwdHJy9vJFAaV8xUYQ93BPmWPE7xB2D/lXLLzIklpABFn/72/G3dEmU4wICQEAAEPQOi8MgYJRJ/XUe7mgMDoCFwyjrDYcnjAohoT6/xlReFETpJ6V3sjwIFMzN0wFu6GmvgkZSxI2V5XHHwN3QUIf3PgAMpS1uCCSC0tu/nr9XJ5aQJU4JrvlvAA7tCqcs2Vzxv5QBbPgnAgP/xf/rG/5NIyYtLV33v0F/U/2CSEuD3v8nCgv/ZzUgMBJb89+A3xQZQGyhz99oAMKBMMpPebEVc5SEgeBwKbC0NNwBZg8EO1JuaXEQCCoBh4MlHIqVVQHKUJgzHGD4l4QJuSrmOkraEOUqM8A/tQjQdf/XryUXhcaiEI6OOYZwDKUxBBLMDe3pQNm3GHgOhctAyZxQIQWThsGk7MFAuKOkKFASBHhA2WR/s/2fcrN+Leu//jSPcn61E+XUep2DO/qPM39d54ySzRnLdKrn16d0yd+DNInBkV8X6mFX4tI1WksHls/wUt0FG531xDT4qRF1GCVv8dpfNHYt3vm2Qzw92Fok3iradNtbnAo6wb883ugNOuSqFVDe7G08PdoNOt7fWuwNOrE5bRTdMk2eQs3X7qWeHJb4T20uE4NOCSe9hFO/LxQkTPy7CjGj4OOf5SPP2PLRnFvUh0k6OxWdTTgT8eiFOpW6JWEGfmWWkoFDvdaBChuWJuvSFpEOPXsu1ufUmdnoSEKWYetwR+2FW0WSSZtH/U+ntRt+ug2wPV8oL7hFun3dXvJZ0pPvwZ3NcLRr2LE06Bh/aFZhb/OYCjoeHz0j8p58cJczj223KwbsSx3zFqcb8PWhep3au5WF3S8S/e2u0Xt3yFJqz7yVNNoxpK6VuhWPdIFIIrdCv7Frv8e9Ho6mIXwHhyZ3UfOnTJqD57HUmRbrL0dr3+RZmUjK7a8867WxYn5jsDYzhMG3qsRYMK++C2eFMKY8+5mvCjn5I1KE4drszCpQuRmqG7L6SXl8MuGWBsStdMMihQSX1wnLmfTXStkeMcXGedG6Hawmt8LgprhrKtJ51crq7QJrPo0dGG56gXeXvS3hzbjAdKYr0Ck90L3Z4IK3yTftw/2EMjUWW9Qq8w8M7mRYYNhI+iMX5TdM157nAWrfJmphD/16ea/eA0VHQ8K1+Ye6fOohbdGt5g/avLB2EKZuzvqBnrMr4oJdE+EE8Velq81HgaIxdqMmx+T06uQvkBvSb51St3gKjJOmdFXrZmay67FvXdXDPu4dHu29ZlcA96IgEpfN/GdSClVl9wdfEjy4ACjVVsjVAir17yPfUJEF91VrLLjNVAzv2fizpFFr2629qt+aTKFZjLhI2Ge+4SUinfxy4Q/nIAz/QqSIfMK2s2kLu5elhdXrj7OHbttKI/sKCirDAuur8l9mppuS+Wftbk5ezL3K8XwxpMZzjYavejq4YTg3YUGQHBNtGd5z8eeS5ZWXg07abFcl+j20a4H6Pmi3AjopJB01ccq8S9Fl6EyB3v0/EdJbQ5OBuMqp1clQ9dROc3E2erGJew4vM1qbKzqTmVJNMJFhNT19MUd2dBrEm46MkrKc508zHqCi6C9Gya7mfJ/TXBrbBdGphmX213NgdvLyBA88jpTleHtHPiD9ou7IxfZGFawgz06tlL+RauirwHQa/En9Cnj4/KtzX7VB/nz41bj2j4lJxVaNqr0LFc1HIa/thJfh1AHp+hkiCmjXP3pM2cvaDOxtbo9NlOC6zL8Namhs70Do9uaR+DcM2bHR6ZshD5Ne0KaEBPej/jxAHb1xOmRXfNmwGyEZfEcjOuH+a0s9k60KL/DOsiX9Rb7OAqkPgjQPLiXx7/aCA3dkWkqijVPjkMwYYftJ5/jXiq/83m3hxjhMafQyysMt1aruBiJFzxgzcdpfi2Y/1ZJBp0sOcV8q8Dbv1jy8qTw/dl/8VSAJzyRmOY8+bOEgNBbgbd2vLjzvXb7biJam515k4TRtDRFmvKFGNFQDfsgpt59xStjUf9Ijrd6p4qSQqw8kzSAZ9b5rktK61cQ9eneM+3XOO9ZdEeHSrpNpEr8X6/Dcj1HM0mGTZ0yXrVzRKGoRuzxvV0cKh3by5AU8lnpg5BJZuFxEe6tbRPuPNaI8V6xXmC/9MK2QBPEeeX1UIsnjnRbP5bjoXFN5C8PK65iK8ryOD08b5wfuZl0cX7EOafs2yrhnefaadcXKq9HJD3kv25ITbw8o3lmLyJlTls6l/54zZAexrQR9MxFZXD+yqIYYlxrYDMURND9Vpdthx+4Mc7iYxjesFNDXVBrLjzRWiVrrvfiYiRWzLFLK1HUqLS5a9gsQs9BusYL7mCLLVWg5TOdDHuZep5n4mZM2HToSQauUnNvV+TKdFlZrN7Oj0h8awtXiXSdUb9SJSxvevPjAxJe6do+jS3eNOJ21wFnOjf+qHZUp0ce6EHE0ZLgiWMUo+TzGyIiZ5VImqpvHgj01aZ0tEyFBouozg3ctcwW29Q7ivjDNXGvwTy7N7Oy+f5bQlFPfTS8mTY6gev0t8mEZuDVoUY3Xjd1rgpUkniLD+lhkidWeO/Zj8qB2SpPD0ws5/I0eJ+ZWqg6Nyy+vP7G8MPBlxW/7WAG0kUbTko9H9ZNlrNuTecXXuI6kQ05SVO0jL1MHbDZQ/cE4ox14MMXwaTS8bSa09AryoAYpNhRss6PmCORjVOjFYx/s82E7oJy2ex9ikNxaN1jNwFXDSWtpbxlavk/keY1Jkflr4y9lmMupx8E/JhcOXJ5uEXqEdHzIsFC4YuPuvsLm6rfYmvvdOG9s3jH7o4teuGrHmrLP7oq8+bot2488D8Np095+uDW1qDjn2QDfdN6Z0muzk7VjNHpfJJzSJBT67xdVU9kvL/G/6Obn4j/26MsxrP6w04Pt/5NoGRO5Ci7T+ZwpHrRz/TyM+fJpz3pzCuPQWXk3tGbP+apZPHHdDeC1ftbDzpvxlmeRAw964dV+Dssbj8s14AohqTlITFOGiPs1Ke9Ubd59/U/Pb0RwqVwQeTIlLmVXH1n6vsY+bCm2qLktLN83aPFx/SzyvtM9TSZvt672ve2+qQMbvNO1dRu0wQ7bmvFIvYSpvTkW/pTOFEjw3QJChBK9J35KcAfuPDqfNplzXKmoUfJ5/WoaxGv1oLBaI5KS2Fjdy0ME1cJCRRb3b9uabtyPttB/3n6rw4ucNcJKWx3BMoPf97WA5Zrc4OlvMDSr70YxlPuoymtKmNmwqL7nqZZ4lEt3ueNtgltAxW0mO5u8b7b1qi3e8hkPfLUvy4TafFaTX+2/gWJk0WEsmF05F9+syRjKaTLGQHa5fG3DCsEyKkVT4kuyCfi6TUcstI0N3iXX61VoUsmM5m8ydeW+r2+yTGC8lPl+KYeBgearrnXrONlkQxqvaNQX5avpHwQ/n+lNr7tUkGg0Bl+siKa14FseN6moSLke4Cj72bjKVE1msgcJNChi/rr3lN1+MIoltvxNYgGdj2mZq6Wj9tqMxbmY7hAphntUXJPzXJgWBnU5BqhMLMsqdBQUvczmZ44FQWg3QZ2R7KgMF9WGytPl82uVVRULvXdRJwec96yCSB43yoaLFUre9BLJKlEb1B9OfoDO+Sl1+eXtOr/apt+S7ZOhnRQOpa+40LLuF616Lfr6KGsQ70+W5Qn7RPHrz1Y/gha6BdN2RWQKvmxmPN/aDayc8RRouR4hbElci0aBGcDhA561TvuHzudhHUhSJVWCxxbikwsD9+4FLafqWy8XCpbFnOPpzzLo8stMsDiz8AaFn9Gk+zkQ5FWo/yTNZsLQ53Pc5uLmUr5tgH16N7e/fw+Wav2rebxnAb+/S0JWGPaKb9cTiFF3WekgVIEs3/90z8RDxNJeqo7xwluq7Es+Q8mAzwXYbi0b+drR2m3WLIN15bpHgROskw4lJ1JolrVJqtMeInVrVGXOYido6YK8HltT7MIDVDHjIm75gujBMyJtpAS5pvi+0qf3UXkj/jkuBvXfqQJfzAtxshrICXeNqtkq9gqXJdLMwWr+iHta2ZXyo2OObICsnvb/Lmv95zCqyRt/IyRQS+BomFvsC8v0Mjt9dKjJ4tytTvmPpIBYS8MVvSDfmPNjDlWds24sBjZddOffzzaPOJaXwfYnrXf75vFdgSdvDFNCSS8PO66PpmU/aws7O41Tz9ZczzGfK3Vx5Wer135GtSvltOB7NIj1nUxjSPn8ab5AMjdO59loW0BmFvjNYX+WJhwyKxBa/w7jx+c4o3pqtjWjoLHhVixe+ildF3F023hVOZNGtLc5x3K7UzO8Yf9qwWCq0bnqyqsam3ft3q4R90JFy/tN0uv4WZRUBZxw1veL1z9M7czaeFHpMUYRYevvREnZ3gs0lS+uPQory8/BxpLkMX2rGg2+nw9zNzf7JXsJb/bal51tbfg4LHs8TmvU7uwyEKk+GtSX3hbsrTCdcKXSubLiVj5F3ezMMeX3NdxIMCejzf9n7CRXSTrPFZsI9oPXtjG5A1cla3FKqdrfqUZVnk3JnQHl3us1LWt7wPtzq07n3VV2vvbhgWc9S4amsBdkLolXFkE7RXPnGliYj7c/f0udRUWxJz4YvARGrR/eSvMSuaD+QixMZV5TI798WI2p27BVyzZ/lqjA+1kS1Lz28P45SJX4XdZXTxBjvAoaJ9ZnVHKiXEZ827QYhbdNT5f5er3PVj9ZzOsdnJFNK0eSw5Cj01VbBCR1Zey74KLLzRWyTE6jgSHmjLkX1sgmDialfXuhKQvUGfx3ceNW6SstK2qP4LNugSs3dmrMrL6mb2jfRXCLrlX2MTed89jqVMvD6/INNeAvKsYRja3akBdf+xvGvyEKfCzwGOC1AvUUNtD315X4sz+tNIcdLEDkKA3J0M4aZA6vY/j0AMO8Md0HRmvgND+33Q6dKDdCrLjLmhkYjbkXY57uO231kzeEtxsPWyL50wYQr58Jdvs+vXjRbtl7QMJYZ/omG9OsMKeCL/lnNufxSjzTw5ssEdpXMrxlUiIBS4Yyve9PH0zVaW6ryWdvm+Wfjy8GlvFoMasAyjYJibQvPh858hzok25UZtyeaaObOLdGlDi8BmjlM5HmpLpVJM54vNd8QVZJst0L/qBigFa1amjsh1M9oP+LiGXhvsJKIP7cOPDl8mzB4nh3+8WQ2o5XXLQ/p+rSjxeuEliyDpdl1Rdz7E9So5uZFSNu9ARY6R8suBz4BQZHYXX0icUDd1DqjJ2hEm7WEgZADB/EDoOK3FsXLLqAT81rrNOeGaFdVt+UinhNHge5cbb66B0Xv55a9+6SjefJthlndrbxY62zutEZXH9NLw73RHv2mXrpJ9876PRhU85v/MXG9xtP9BKMQW/KVoDRBgDgYGKuWdebc6ufKsx3mnoTYotX/RkWAjzPSJEW5S35LGe2D5I9AXYzKkMf2kq+axrKApk/pJIShHCcfyZFpaCywZgn58TmrzLcHEulZ6FtPk//cHH/jYiKxmHqnPmcHzRZr+Hu86FoUpTT+ncn0mvh2IoCTZen6+88piUMQrK1a1Yb8DyHZNYrVlr1c4da5D53VqGFKx7W2mWIET2FagnZA/K75CkD18zFWxNMxwuJeRND3ozbrY5qMq4VX/KX5HQ55yvVx89dLGitDuQVQGIwe5tXX+52cAXsxNt5+G7hmVgYeN5LkmfbsL5L1UxlH2AQmShOJyqDR0bRcaP3kLNWpS/Ii9X5NSPjRYnlw05693Xb1zp7k1cExaDids/Ok4sst8gJ8+omlcEPkTdwmY+eXprd/SJQddlaus00+yFyZKXL+CX/vO4dqaacqeLSkfLS5KZ6O+YYfvuhsHnn8Un9yCHWeeXCOK3lwr1qVqPuAy1W22OOe/m9jzi8zt30HPrEMTMe/iHe1OdRt/cgFkbMc4312jsYu0aekjuYT+jaW9YuqBCpsC0Ae6yqP6Pp3uLgmacr1+PWEgMIrSHeG/UIOY/wrr5u1QiLUAmwCrnW1kj+0PKzWujr4NDsbiwm2OBicKgyypKOU1BEykqWvKI7NAh8C3m84ca1IWWkDUQ+G1CSTa/sVQ8Cvd8fT/NfaudzbJAemhDyS4456Ci7w13wfpZlMpxtofa4uiF1FrRSZJ+w4vJxPCHgh+rohtvTWgs1/4hhlmFvL4b6PQzErhar5prDnCdgmpAUuYtQjFQ7zp0Sck7THzScYGmC0PAE0lRH0X0TDNscUSQ3/OhpzuJOefy+iChhWezECam9C37USBOrcndsc3/kj4tdIh6arPDJ3HJsFbtexURYmKKCwGvTqz3Hbw8WBEU5wT8/z/BdabK0xG8qSCFXuUVaPVU+2TGFpFI57cCvZl7bJJkjCy/tZK1C+NceftTpXdvszDWTaryZmtb5h7INp2tOUFTOIdnYePzOgi0XWKyMRNrxlLwyxbGq42J6dB6zyd81wr3LKQgxDA5Q4Gz3RR0niQB0j+fpSfVr0GDVUjaoN/NA44n32stYC7/3D1Q+DH4rzNqbvL2xk6g1xQnT8X443ewp1RUjpiZqlqT2o+mWTHH+nyhduXUVj2h/OQf+PE2OujnLdFd2pO1R93PbycEH+oIpGdH5ppojfyqLCx2Fz+jYkPU3qmm7chG9Rzxj3s+xtGw41ZqM6IFFFkXFTq8LxivyIevnNL4VK6odyBwcDFi35rsV3T8+0M6wnbibXa3QM9PJOhq7HhBvmt4kHSlf2P10qj+L29GMNJqcnQxqK7RQEYiaH4U7HhgJmQCmpFNMDNR1MlTtNQYjnsbFLYuNRsPvSw63cOXA8gieaeH+axVzF3+2HbULxVmqvNuiVXJhezQ/a8m4gDG6Y9Uy8Kro+Jv86pRLVsj3dgbRjvdFOX7F9iOj86k+1U2FC2j5sISf9j7XlFoFMfeeE7l5HolbNMqZBkvKsTtyUhVndhxmZugyS9sqwlu/vF3iuD2VfN+UxJzNx/qC7uCtiH3ROHVpwGi+e/3+FZuExJzDhUQ6daeBHIt3xUF1lcEYwmt+Dp6nuVuLS0qotMbA26WkVntlY+bJmZb4XY2SJbWaxB+0n+SPl5UaK7yjbnVlQMZXd+J00NkXvqrmyr7sWG6fn1h9NNOpZsbc8RAIMSlRW1iBAeOvyZklOSi8AYggVRl0rLWf97AnWX8gY1Kqloe5fUoKBl/wiiST9L9Jg8erIpLgBR26i9aX94D1MaFmj+wvYF7433YjDtO0xKyS9rfTLWtuIGLOXy5FadxeeyTZJtmiEuSZeT3heEoOPx75VDzq0PSpf7r5rH4ly+CLoGTqBnywlJl/+k3UR7Y7SiZMnSEsTzOXBohpV2R5v73RPDzJjleWszP/jmrzju2jmZCxJn/uy7Cr+pl/TgSnFekJxJ3MnxV0bzJeor1hkMgdHeIyVddauLr4LFxk6sGr2ynuc80DGUaFZ6+x6CzVmgoPbvXfWZiqqxNKciHvBOY6KzYusWjR39r9qAnUWXx5fHR6e22Zzigl3Pb0ce3ygZicWcGfze4WHCH7Ry+BoXPLYQLsCv41En5n+QXqQFSRXnP8JBGzGU4n24C3F+Z4QjfmPYT6PEIWdn9c3FhVLC0g8kSncSVa3EuMZSc/M+VyN5Chyau31FrMvnV+ICCQ6oXOtN7+ayKrUR61VE0xW3Qa+008OOvCglOj0+Tuqa5+clcfg5jA5SHrHkWeOqO3JVE9a+Ftc2teEy1gqVofJnmB62urcEYhx8sPD3S0G49jWW6siKbfg5pZYh8PGSVYcoFSUGnNWfj39GcDViGhfI6lCdYVSyYvZN8fbKaZlzVH6C5ICx1uyjVA+LiTt0PMK/rrzDAi5gx3BugWfkTUwbKYHyyNwpW9yn2/R69g59IXd1bL1o9m3Oqn8tnsGVPxvfvxm8VEy2wpP1C1QtKdKSsSU+q3aGWdklrLlkrImRtV5ZnJGxJfGo/65T7vnGEPUtn6mYb6NaafYu0btgfCnmVsJs2gT0sPAm2D0fXwBooKxLzJLJ+HW/gn3Ydkb4Qp56nO3xK8sJnuUtgyoDrq1vURLym6Xly5eLpK8/7lEcMnh0hfqduZP+eIywXfzeke7OPaE4styh1uXa9rmgId668HBrY9qk+J9UkIEh7c7gyyPY017TgxLDWQqeIZeq6RIEJMatxXNg6p40E9KvDhWj0Km5zwUopEDtSYHejTTcl1bPjZGmeWrl65zro7O9y7tDAdPxKE3y9LKzY+TBa2tPODO7xe931daAZO92rhO9xk/rhOJGcZf15Tv4TlMw5IMr9SAubjP9n5xi9ZrVT4+AV1YiUKgHpq8GHbQriUDS2RIttGijDGKV7mqElSzNd7JKOheS53pxWSGDG8FRZ40hsTW1tBOBJ1/qG91J5Iw4uytb6IP2Yu2ShAP6+bvBeEf813I/FFLZkUZgG53e8dzqk7N4aEAiM7JASE9XatnvT0ToEtD1+Qa3BxMZNI7If9469tKRlD+kH4vh0OF+14weSN+eiak5+G37HSXNPnwvate++yEeckHvteOz8SqJBhR15JZKcJu6LFVY17QT+hL3LiXJblWtIqvCN49E33KtPOl32zboFC57ak9XaT6pKS6oe7Bp9L9S7LThdR/lbEqbfBpwfDRMXTueqW6cHxzUVvWFOcbkvQEbGI6pQwHn8ax7+/LkE9JvjwpLfxdJchNEjBeuvg0inW+cfRxOnWuuLYVNGF00vdcXKnxJbTg5O+oOOVoLNnzpyenjtzBT3hM8lz5sz/Ayh9KjQ= \ No newline at end of file diff --git a/docs/cassettes/rag_2ac552b6.msgpack.zlib b/docs/cassettes/rag_2ac552b6.msgpack.zlib new file mode 100644 index 0000000000000..c79c610d7f9b2 --- /dev/null +++ b/docs/cassettes/rag_2ac552b6.msgpack.zlib @@ -0,0 +1 @@ +eNrtenk8VO/fN1lKSnukcNJCZZixzBiyZd/3pJTGzGGG2Zozg7EUrZZKirSRZCklSqgI5du+UBQi2iQUSpYsea5zhur7+/6e537u13Pfr9f9x9MfOOf6XJ/rs7w/7+tzuq6dOcEwD2Fw2OIXGWw+zKNQ+eABObwzhwdvE8AIf3c2C+bTObRMF2d3j7MCHqNxOZ3P5yIGWloULkOTw4XZFIYmlcPSCiZowSw/mEZjsAOQTD8OTdjICVdlsLkCvqoBtGmTDllbRwPSIelqQHp6ukQNiEzSJemDN3okAviJ37xZA1JlcWgwE4ir8uFQPu6XPhyFRsHh8dqqQARmUznoO19/Do9FQXWr+lEQmKirGplDhyk04E+L2OxMOgfhJ176u435FCoV5gK9EyoS8wLCGFwNiAb7Myl8OJfKYbNhLAKJuUEwzMVRmIxgOFs0K7GAwuUyGVQKOq4ViHDYF4E8H2bzcXwhF/7ncK4AgXk4SgCQSLzqDIwws9VyEYJgsiGCpq6+Jr4gFIfwKQw2E0YQHJMC7MnmYuOlfw5wKdQgoAQ3kajEbNHkS3/KcJDELEcK1dn9byopPCo9MYvCYxF1C/98zxOw+QwWnJhj7vLP5SYGfy+no0kgaJIu/00xImRTE7P8KUwELvnbZJjPE+KoHKAj8Qw+m8rhBDHgxMZvvr5Uf18/lpGVB+LO19cOIAdru1AseCQvc2uuNeJP4NHsqZQwgouOJ4PCs7YmbgsMwRFI2iRdPR2iDglH0MRrEjQJODcOm2tPddUT2uh5uK53EW7g2AWbw1Zknm2gtrUe3suOZWHG5RCJ2iSvMPMQW1uYquPBs2PYugTrkAQ6et7rKEFCik6IBcPRgqLJEegF6utYOwYYQsA6QTCDZkR1cfB2tOMy8bp65jzXDSFML1tri212lhv5+vggRwsHijPR00Xfwld/Y8Af5hG0CTj8hIVEvK4+Hv13aRIbTJgdwKcnniUQCOd4MMIF1QXvygYh4wuQnZkAh/Dj+zksEDyQ4wxn+98Qls+0AJhMvGnFY2hA2iTIHeZC2nhtXYhANCDoGuCJkLWjx0XziWU8/i0EL3vwKGzEH8DQchLyOVS6gB0E03LN/y3YS1Gwg0yi5vM4TPCSyQnBcXiMAAY78czqm/8yDIdyOQiMmzA68eIGnJuIN3C2FhdFhYfDajqx+N9XdOGEEIcXQGEzwjDTE29ilRMSFhpCowpoNHpwCAtPDtPVYfjBAqr/1YkpXB4HtQVVxkISMwjkSxMDk9DNBeHC4wh4HJ5wHeHzGFRQqWg8uBweH4fAVMBmfGFiowaLEoqWqZEOAeQT5M4QYrCpTAENdhf4WXBYANyIIcTlwUwOhXYjFMcDaWEyWAyQW+znBFMiiZl6YPK1fwrwOUEwG0nM0cOQgS//U4IHo/pRH36r0SWTyWX/XmhSFSpCJuvc+LsUAv9pDUGbhVz7p8CEigw8cjF0UhrHoCU2LgcPvv66/nh/mKSN19GjwTqwv56eth5JjwATdPXw+ngynG9uhTOnUOkwzh2DcGKOhbeTmaOtefEG3J9YxDlzsZ0kMYfNQdgMf/9sd5gHEpOYS2VyBDTAtzw4G+hyM/NOvKpPJVOp+jCRRMMTdfAkAm4dYLJJbb+Qm4mSNbaxRGej6WQH3FEwVYmfJob9k/DwfjQ3t+xo2qD75+EcfvJ93NvH185GycSpDtjMnjM70X7Kh7II+e5L3Z2xEtPWXznc//pbz/hQX/tpYt435mi7746fwpSqoeodl6qVB7/+rK74OVq/Y/RHX3t1xY6KcQ6tJfPHe9ftca29rY++9d1v3/Gzf994q9o46ROYaGs1Z25HqBCvHTCi43OFarZZ7WK49BuNWzWxp+tOrJN/fHIRCWqmT7+5l+HrmCe1InR13F6/p2HaA18r1n7nWy/n9C+3/MwPVzDVbNc6v3hTd6Nnf88h85mqCP+YQ6fSgpmnDjdkDtCPZXORLbGvrJLNQ0zDrJCdxjIafYsTUrcwK90Or9pLMrvx/EL0X7k45fBZzNSVd/ZVhdQmSNesHFq1QryJ10sISL4qU8PRW26/N2RleNI3pS1lFCjdaLXxHYLu1o438/rl7hZ3ar1RWvdGduVA0OOcRyMN5Li8u9qHNVNKyB57GtVfyTXuPv8iFXcq3DdqTE6mpS/17ZGL4Vy77apSixS0l/lLTdkZD2/zeKSiZZVTaF+ZktKtW55YNtf99bkXitWGzOo0vysd+6cqvJYzmEkcfKYymD8k13PygM21iKvPT3Rnmc1Z/ujWhmdD/NcJig8H96sOyBjs0Aw97/p90/4YJfczajWxuILXHnrvTjW9PHXFkFxlw15dNktCsmHjjk9rd+8JSxsmNJq2yc03U6iNPxrfETHqEKC/0t865J76V+t9iw1C50slbJS/3LfKqF/mWvy3qJmLs1/M9p1hmdfUJT414HLPPX75ml5qRHjZiO4s5Hi0R5XLVaXOmgPT9747E+5S1LTQt8597uULBr01LsWLiq4leTwKLVRStyEkJNUzCCZv+w+LV/X2F81WISa8itzJeBfLD+ip/riz7qNca98FC7VLRSPkANPEUlx6Xb3a09MRrcVbjTznuX2pv5TzMma+vtBQomlPxvqi2ypzrwk657evKP3++WarjIt4k/TZAypWtR8Q8iH/LLXaG6cLfY0gptDEal7FjM86lh8kt/dPrXJNyLaOUzvk1b24J/GCZaH2ksBrdd7RzuXD3aXyb6cXCImK0b4h7bNIZspbfbpk+stt67UGBmQpJcmrWmZlySi8Ih7w28QzHcyJfF/YZc4S+9G9KPhk95fqtC2m+k4JuxXLH2b1bfh+/OoBktTcFS/ij/Lr18W0bFhp5MV5fNk2Vaz45iHXscQYY9ZIVvP+vJQjGu44ZNFfNS6GghkxYZ/3xcXy9n742HCHfjRn0f6OJPrWoSWOS5a/6XQmqMhxBxJ2G7BX52Q2PY17RYp1bMgu28mIf7Exlu20L6Se9rm98YZtb+DNg/zWzNKkolumURVeS5hT81xZhW2Xo9IumNQ9HYIU93cqSGRV+zbc+BamayD8y+xW3qyh5+f2nWO37pNef/reztT2DVe8u2+Kd94bSb2xe3x4XkKSuPFI21d5zsqlHk4PhVrKlyn2R8jdvqqzPoSnUwu/XYxJrUUklA2W1slN9dPMSeFOyVORrNsZS72yfIcilPwqttefFU1eaiunEoZYisVbVnzYLtjnR0jW3Y2XXK6tK74lz+LMhiS9097i+7ZucrT+fIC81fz69RU119WXvHhVDBcO9YdwH2S82zfrZ8YGoXifIT7m6uvpTBtJ1+g1yjXL0iVnJIRfdlcZKbY4JXAeFTZtn69wt0fipVcZLMFeyjfJjt9lt3h1Rp2KJKl649mj3M+r/Q8cnDLSrFrHWXsSV2nnp58zeNjBJSyn8JLkQv0b8mkG1c+2RmTHKA6F9qi5FfeTYZ7B/ILw1mW5pWHznkGHF4fGP8IZza49sLDRQ4nbgbPomVXnMWY1z9mlcs/BL8/OjcbmbFedRS7JUX6ZErh+59q9Yv5zXlbcIZ7Qhs/eYu/f3FlceOr5wy97VcprbsKhzHJK/i4I8b+y+WvS3cavkiT9lrk/r3mO3ZkjLb48gZSR80Es4q5vpJyxE7HKxvBmhLYdfu8D8S8db4kVY5ar9WZOvzY1xlxroeBVWUUVfO30+ZRutYJTj6jiuV23bpd+ipjqXuQayi3qnv76gd9LrcOJGr3hxkKPNQ/xsHiQVGhrjNQ7rYx2nS1rQ7iltrPmJ1/VkXf+adBrGKNTZFlBjF2z3V5MxWnPVtXqOVL4x7eghTH305QskYpGWuWcMiNihzDF6c7ZC7d6r7+2jWzzXdVEWSFh/XCLhZzEX0dXZqx18NCnPF4UZ6Ic2DL8Rb74/KXjTayRxPme+rbLhzbEmpAGKTsPtDyi93UMPrvv+FJMYBTYyy49cHwD0U1mnuEi/KvPpYEnIpbuSpgbObv69N3tDgnSO5+wdiUWVD8OPLivbcaBSyt1P3x46dvldXsLfZHg5aDf4mNqL8j7l7x0kj/2dMRrblRX5Y5e44qtNWvwHApl6enOhFAnta8Kc2wOD8TlP7hA7LCaZ66/60FGfRk5q3Zz3Mw9CalzcZZ/DefPZa5sQLxtrJpvp3FZ0KoH+gr61HN21nD63m9uakoyP8/a7ks4Xme6ZuGskzbao3sQ5yOrIx/IldIItfCUZknS4Va38YsXjDqkrkVdft1GvyNB9B7Y5zUk2071qrKz5JxcGn1YOVu/dnXhxksD+KiND/mjChpaG9mX1KIU0mTupERs6s/ZrcdNei42Uyt1YNfADUeX9UPLotWUv3+/WS/54uGpxS93/3gUE3JEqiDNl0nqVEgMfLjx+rrD1qd/tp26kr1j75t7CVX1RLfizjkNskrm9ZYGg3/FVitf+/7pwNhS3hN4SkrhbZZGykYvxlb7OVflrrbu3ftGOOKvEZm19OKl+qSYwXdt1QH5SPpb700Xfb9KuehpLfS80bb65ZVmv3Wv9tpE9pzYLT3jOCNkxHTa9zH4rsGx6rEyGbKUpGdBTWXHpcjTyZcHa9fUHXUVO3p1poRn0B7ZYJKVG26Xfvuhz3YzDT/CAZpa+81tPkJV3teejAjH47zWJuuHbUvL5zOqBecjgl66jFyQ+ejHKZryc2BeD5Wwee0PODrhq0Gt6dq+saupLtO2prst3+8T+BTnsjbm+llTp96mAdkKcgCUytutZHhcoTb48JQe1dKtXdKaC27m+k/Z1XlFxXKP4ZB996AMfuRe74V8E0s1nES9OI8/yPBArvd8flufryBkdFSnPZON2p5zWrkkFxecJ8lbnFRb9bUJX+x4SKy6jWGuZNT9xLtBaWb/J2Vl+vb2a36H59q9ifi2sZNoPpV+O1L62jZfGT0/+8Hxb/KDjbKZvtU9ozH4qQtqB11b06m6y0q528f2Jiafj6oMyTLFjd7lb9ZKt03rFasgJ3eevldTXVaonrvs80BduKTivPwE1swfzTHjndTLSm5OnVTnW7c4OyL6uDsvGC8bm+O2492DFPe0j4Zqbq11q8JLjkipaR2vifjeHLgo68i32q6G0hvlD5x4s6fM05U6XrLZdc7oIWitxcnFxfbeAfPWsWUePGI/qyuT3SHOWbYvuerO/KKdm2+adKzZl/DU/rKAVk+/LKUTjbTuq9Pv2aaXkG8a/cTxTt3T3XeW20Ueg8JNiht+rL46/Ck1OVpgTFtWpURtGZ2e3MDxiSuJY2i7rt+koFR7ojM8/kRhc71yemrsOeOXeSarzZZUlU6T7myJT3mgKtXzQUWFqvR6tDiiW/pYJKe+6HTx/i8BJ8T1iNa5Kq60Kyppa4/qWEtc9VFQqtriMvCWnOnV9WlgCvOzTkNJq1HirtRFrNpVhPR4Zem3xPD8h+/DVokrPjl2/8eenZaX1kpFCNucriUnrDepWdd1cWnEk650RTeG8a0X44kJmcFzUhuydrcin840vswNfPXcLKrfQ7nGI4ly1ah74GCz+kHbLy+cZ7M0hQUH1dz7nBQEh25UtkZI9G8cLDyeekSlQlX//coVzfd0xITXcUbHGqfEMDWiXynJzXHyeEbb1Ni+Qp/JkwinLjzZd+O03ed6Tcu7bZueDFBXvbk6jaxnc3ewtuOT89aDvJ2ZXz5b6/Q0a2fNPSmtEvPDtn2QlXLLncc65LA6R1G7zc1cPpJtcUD61MGZMSsKkKp5kUvKq7fHVZ8Q9+zedu9jVdua4DIni7GkuKiQqUu+9zmVyCzJ5+2e+TOSEh9c1vPmwx7SxdqQew2azWlLHybNDK6uvmDSJjZDjJaiZln6mHicLKmo0Zd071yT4gKlT81mvquo+2G5fodB5WnfLnv6hdf75HYEqSkPfb2+Rj1Mr/lSckbz5WVH9nwYvLqjp3QeVAi/T2Urbl0/ZZt4DsO49nXbK8LzNEfrSCMnQw/h7Ttq93I8dpINfFeVl/PGL7RWT5ldVL9g5PlZUnslU/baD40F/SkKXrVrk2Tub6HH58V4jV6XeiR3mLa07vDcg47d1uuhSJZDp2n955zTrXH897EhrdVqSneeEsSiBNY3yaSx6OARQ/zMO3eDnzh2NDVCUy8Nq9ySjPmocOOs2NmTL54pzdaFLNoQMcuXOXWf3q1W8vWq3xlsWt7glL3T9csF0tYvvrm2c9sTesV07sty5LbRCmM/LSlaSIvmVYrHJCfZDm4W8/qp6u7KHzusS7nw8NE7F1K+VxlSqDBsZ/jutO+m/vPiZ+tlXahhGxfIZtS4nxUGF1DYJnOO9LTKRRiUV91qkjZeWjIwo0Sljhq0LquirL1p0fTucFWHs6TeKgnLGzer6/IYdQmJ7dNMxecv6xjZVtv2UmONcZi0a22bxNFk5+TLej6BgX2FvlsajG61HJ1yo/pwptqTw0s3EBslcOZhko+yVxBmpDqkf4yYV8mEc8W+Xmvu+PlhcGuHZqvY3Y6VppsufB6VMrgscZbKT1/4VX6HYtNPyff8+5cr5N8la5lIRATJmjbl5eRkFFecfrtkKSvPq2YWKZGz/Yc08U64+N2uWyFiM4jf88u97+cdePt496GM/dee0SrMpdbZXzqfpmxvJSR0Vcot22eaY7STLHdV7HlKoJ/skaNP4lMdTYzPWB1k7iCeaY3+FGzbSxm/Hj14prwk3bUmVVpjdNieRi/zy3459dahFVtbitWP5IS3PY/cVr3soxvOo72Tumy7iUH2UK2h2Mc5jY/dPldD04zut1TjBFVXe9Tqx6RrfGMcdj3Uz2K9kb88vfrwwdTja87eGns8XcO2ZKlGURhRPoXnGlxdkpDKl3xRUyovFVxMzP+p8SnlmrFBnNourcPcmNpVjnGKV8W0A3tffKjwve29c9B57vMjLlr7G+RhMV916DN3yxutqqJjdSHqp/GvV2ebZB85teu0cqFB/fndmwr1odo6uZE2p76UtQWSpr6jUa8361rF+5TzhkZa3rRushqbl7TVZfNgXfbHxY/XKFeeLKDz95krFt1ck7ZU5sWy4vUmj18tfQfJZko4GT+pClj8ZWmU6gWN2/mhNUrK8t/6+vi+rV+2e9gmVm5K23H5jOzm73AxTSzrxr35CRH1Ce0/l1QeWZg1VBPoZykUh2rON8VJQy9HVpV6Llpi7mUaL5u5fdu7x7uoGSF11ITbNNlZBupf3ksvDqdH5a/silZ8IIyaecb4su3B5xVhCdzUBqtHamFF+E/OnblT6Xrj37RG6Y6jSeTvXr63Si/MuVFhnVqRWTol907B1jjHGaYlw5H9zw1j7jcKv09dOkP4KbJnqtuzI66xJttxHuP78x4Vb+nft2Ofc4WB6/IT8SayX4Jc/lp3uKN7ZHv/495sByNjZ+LYj4Qbz68oBPdknP3UHBG59727RFCHxH3asbC/TvYXe7Zq9XwljZ86b7wKn4+3yEgvG7adNm/Lkw+378nxL8Th5Lvk7tUsLPhZ9s24S65VUqNfmBBSX/h2ln+RQ0FJctQJtTuw+/XrxBp8hiTudWoBY1Gk+CWh9olTY+dPf920ceuBNrWxr09ernFvz2952dqYNrNOYmZdcLSjiha5rz102oqtzVoLjD63ll2f/17plm95kfywteXTtrzdgnAy9LOdk3NO5kymmuzrm7mI3hnXDemrMxWCLN967pc/eOTKgA7R4esbLVeh0nahqne/b8XmPqZ6ymd7mvV41IOeN957F56Tyen2sXpOlJmf80zrnK9fs2ylkwQU+CJ54wdo5x19x6Wf92hv6ls9O1F+jt25rvNxiqMzIvCXrc9YWDtX7ptFGqzNCduTG2HX2V+GYwbm6e7qTTU+9/Mpw2TA+cpw7bD5LIv68K/1WvA8Q35bQtLFn1P9SV92FwcZF5S1v/eOlMtOKCo2XzAnLl/Srp27buuTwZfj1WZnN6y8U4i3lB3s0GloHFGaQ1qf9jT1xKnKzvz7ozHt9Pkbv2QGD3yN7a9yOm/zcc6U7cJ3J0osqu756M5+Au+M3AB35JjvFetyMXT3eqHFNFgSI7XeZH9SVN9j7yOD06a435rfdM7m3uZbSI3XjcRuuXvuuirM+Kk9P/56r2LyLHrltC155Ssy9vgyGx9MFZezUYo54bS38eP5lsqXCWtUiz8z5GbB796O1W6r29zfrb18C2S0jJfhVBF5fPk2Y70Ct6fp4fDn3IquyPW35fP7Ym1uBJHT7w7HCMq8ztr6bznfrH/L2r0psTPft2FzwLovtG3DsF2sxMdOlntztV2RA6Pm1gKtB1c+hOm1qleYFhHWlo2U929vZBdP9xnZV+BR67Z92XtD055dDkmLw7Irfu5yHpdbv/3wIp2RK9GkKysaCPnLTrYMP4li2ut1DiXkOH/Z+vxNXoeEbrIn7WlxbqrnyM3Sd+0nT0UE39ise61TLfPcl3sfitbFLb3aEH3i/NuhWkHpi59q1T79145tKhZv9W23ec2O/jhaW1IxMv/0mja+/pNNHZwteSsak58kwMQ3UmuXDfflXzyn5rRCpkCm5N0LDzY7hD4z4dTG3m6dbNrUaXvWzFLv/GuzAe69wu0n1m4/O4tu9Q07bel/5zt2nZu3YuzjrpD6oaqFQ90LNkxvmhv+/fhgvF/sbOnsJ5SSpZTxRzln9NJlTnZFPg5lco5keNjuT22Cos20pKZ+aw66VTGS9HYbx0isVXmszX7Oj8iKj14e8fkj/Fc9MlPzb6mdtQmegayXLpUW0E/VhzU/f7tPa2gd3mgoS2Xs+7xpw03CzeMPTmXMC3zby5/eqXjmhObZv+6lp225kHaSZHQywzTKTiW8obyQY/dNeWOlQU/L90VZEhum1ATjzylLWTX25h597766Ut9onrbKnD55VxPDXobx5kClc9Xbfxieqq1Rm2GbZSLc0nr7VKraiVdHlByPflneGfWX7MsZ7s4lJy4ug9+38EerUu6Ua0g4WL3dSx++smx7fXZAwceQ3V+KczyWcMUphbtnvmBRTx/cqJpcqayk0uNlQv4xBrserA63OhZaf6xg7V2nFoOqnQ2kh7VkfusUi/fbMxVvl49ntZWLN7Y0ZxxNvHLieWZesooy/XbZVCRMd8qnL5HUm1qrVNeX9cReHZbS3W98Ibv24mqXFIqTO++KQ3YIp23H0CVhUDZX4+Cp4Q4PJZXnd2DanYD+oRmsU6zuqUiTv2DG2es2n8YEC71Lh737vVm6gTMSgqoNPnx9c+i43vGntoc0N6rP5N6sqBQSy4aJsSbiGok9UMxR2WPkG/KmlLZvYWlXkiJHN0/JovqODlfNv1A9Z13PCwd908x4q7G0vB8+K1UZPV0f1Qf75aZdq3uW6S248ebeX9Ej/psgzZ9DW5mUV2IOj5VOXPju/cx5B79yMGJH4l5STr9xTJ1Yk7PstsUl/mebwyWP3k9viPjSH2fiWClWMWKQNONhdc9H7gt7hXGSmJjY+LjDiScHM0znWw0a79kWtF93+vyb77XORc0nrnbQPh41TRVa5ykOP+9pWXXKwX/TydLzH1p6DHOW13VfGr6pMDjTI0S67l64O2+jc/CFYLicjlhlf7/9dd6VcAuV51TYxvfteZ7XKY/mC2fZ89L1UiqzEud1VvEaPOY+qtrt3nPdyBRJETeG9jQNWhwgdPVJkRM53XaNiJvK+HPd2NCyhi9jHxsH4nJPXLli5AtJBs4OWVh0SPfbs6plY98ur343w2dtAWWU2e1uf5VnmqD2QflV00a1phpr1Vefgs6d0Y2NZU4P2NZcYqXajutU1FMc4dM5N5rVWC7ix31VyHSdLTrLPWqWcxgqPnd7FKoLZkLFL07QjK7fGYvrFkIW92bfDZPv4pQfthg49Wbzg8akr77n65/CJTovnsQ/StnnMuWp9bQQT58RCdxMqV7x1T6aOkP1DfkPnC6aHj66u1Or682CN7HKYfd+2q/9Nttl+iwHybvjxnfLjuvGiSfnHSnpKUtdcP+T0xb3kQRhIDmqP6Bmht37lq49zWLCNCvqDrjQ2Gyx0PCMhsqRGXmrjh1YXzlIMxgzUpT2TPWxXyn9pitKftwj2jLJQvbg+1bFKWauwamRP/Vm+1cXX0obmnUpvkviiXHOu016x94qWrftqJ5H/BT+TQLNtYSY+YbRcy2QmNj/4aB79f/+oJtKp/C1wN9cJoydcmCnEq9mF4erTpzkIeiRd7jqxCEgekbticAQnw5D/hz0RI3BDoC4DJgKIxDHH8LEQvkQnwNR2EgIzMMkMbOAdojCx55hNk3Thw2Bf7b+kJAjgGgcthofCmJzQrBx0VQNKFCA8CGEIgQvwcy/C2pM/M3nCdHVWJQgGBJwwdSJ2RMLiIzlwTCEwKgHqJ0sSiiDJWABQRqEnhf+sSZEQVAfqAwwDfzJ5SAIw48JTygzY4ZQhAhmkY8qsIkdhIAooJOCQBiW+qj+4SAajd96JxSIfloxAjQhgibkHAzzghlwCCpKgRwcHHFcDpCFaRBFwOewOSyOAIGwU3cIESJ8mAW0mINUcdjoK2c2bAC5MCls9DhtmQ/bDMLSiB6aAg18YBMkQAQUJlMIMdjBHGYw5jlbCAFNXEQTMmNP6GbDMA1BY4jFP4Qu8kEIUXgwFiIuEw0qejAK1vdA9VrA6FIchIEmFSxtTqcw2CKHOYIAOh9SN+d4GEJeMAOC+RCFqYke92qvguggpH7oXKAYmAGUU3hAPw8o46M44sNUOpsB0IJFFWaDCFPR99i5K8SFedhFCZBDCGBJBNpQzFPgjgeItUiOgQCHET5PQMUCwYF8BNp4ApVPZ7CDMOchP1EQsPeYhIDPYDLCUAXAZz56jIjeHMCWEPCxk1xUijbhNgwc4YlCjC4FRhAWiDOKHhAuhIHaxZsMM4gEhJ3VorYD9xkBf05kCZh8BhBHMwOyQQFYmxjGVNGBA0wGiOiEOEgEdrmFy4MnzJpAGeY55g8ZpBL1FKtL0bkySBtIHFoDQNpDlCIEUvemcP5Ij84qCBQuAC6CmQxCBIdymRweFv9JK3kwBeGwMdVYZYCo8RkAVwAyMIVKx3zWhGz5kD+DB0r3V8AQzEhgDvCP9S+eT2IGixfmNkAljJ71Iv8QQlAQYJIaEBUYg6GGAuKL1jeWcQEPFmEBgdFLI5MhgKggdH4wtM7KHVL3AzNpfDpOZKRIcBUEEGeBjtJg7j/GQhh8+qSHwDAIDqYwBVidgThRICqTAqLhzwC2qQczKOCNCNOYUhYlkIMez0PBHD48WUG0Pyto0jhAaDCkTliFKgVsIFpVBKc/ioTJAEzno+qOhQutkw3eGzV9fNgETR9VDTDghRYwWrtoyBGBXwCHwpygKSqdAQejOsAUE1RaXRtbTIBg1QcMwyFcmAo8of4qIXRTMIRgTUBZQDdwRFS7HEC7HAGfyWADn1Qx9SFgUJQPNicYZmqgzqvrTASPLmBh4AX1JMKjG4xwBDyQGwPUdMgWhTUbhSN2LQNTKIo+LAIFgy26JYXGK4ACfEORCTRpa0IOHLCqB8xjQSyYhRomKiYWIDcgoKMJWbt44HQ09aBJejVDeU+0BigbOOBXKU0EW0QpPmxdTcDV4Bk4CuzGzHb5g4QsRSgAc0U+oOf8DLYAsDbgXB6MUTtqOrCGKQTsAjYwNAlYSFE+gdkIgCu2r6H5muA3LBUcLHt+gIlQs0QTJ6tN5DRYbCJBINaAz2CmP46KZoDKmFwKcA2Oy8BqAqiiU4IZwGEqOo/C5jOFoti4wf5MmMpHGZVLEdUsA8EsxBiIjxZiAFrjwCYe7A/yPWEOF0ASIEoUJkuwlQlRvmShs1CeB1XBQfgaEMJBoQ0IksfHNML+AF0MNDWQGYOFap3oPuBfvIj5zoRRa9gClh+oKjQ1GJ2iKUAxhRURHApTBVj4IctQED2+iAaRiQFsl8CKYBLTv5mVyQkA3iCAXlCdtr+xboCu4IUiFp2J4RWbIHryB/BBMz8xVQN7bWYLoeWPRfX3ZkqDEZAOP3iS+TBUo5oml8VYiovCBN3mwWzQa00yAYoDtA1AIBzawfBAeQBDDKDw8D8eochIDVEgJrsATMADcxIdc8S2Q3eYKbochY2K3pkBewPYaIH8VmL5O5pAzgXUCWMCqpGRmpA3ACkLbcdExPhHc4fecFJDoInmE00fBYMNum0BP0LQrRKgAlA65jL775HB+pQ/w4PQQRMiQhhaNiCu2OuJrf1fMzBZKagRk8gRWQjwALYqTbTD/OcstE2lYJb6o/XNBXyiIXKPDzOZvzWif/yC5y9R0X76r5lHU8el8JBfxqApQnsDGNQGhSkCH9pLg9YR/OkDWmn0N0rZDBpKxuiTL4OGvgB7EDoOfoENGVgu9J0YRNBRCi8AQYdRTWDPxjSB35gmFoAR+sLTzQETFdAYnD+egxk0ePI5MnKzCIQT6wEHYSYNLMrm8Cd2bMavNvYXULGEhdAZYC/8vU8Dygdcx5ugdFG7jsVOwOOhIMMm8WAmyiNoUsxENYlFJQCsj5twDxgBOAZkbjKvk0vQMA8hzD0NCPMKgwXmz2Tif4drwkq0jBlYGU3oF/mLDTp6untgzISVB1jAH+yw//JdwxHd/MIKwiyYwmBi/RlWLQ4g61hhAIWAXlGUoqQCum8m6ii2KyB0Bug1YX4IDFCPpV8DNNOA12AIDTG6GANwG4+Gloat/59ARrEDAAW+b/xgEaoALtCNAuUXERVzAevDoCcQQnbuzk6akA1qB7qPTAKOSkEbL3STw8oJCyxaBZg7FmCnZGPs/qvE0dCgn4MQnSHa3xloVVNR+7AYglnm6LDNxDA6x0oUNCD550yRqWhBgP1CxJ1o3UxiCbsTiZIPWBqm/YLNH7aKWGGC1bByE30zoY0CkymYtBtViNKFjSAgAAiCbR4K4fDQrwF1WxQpkEixAeSO8s6fva6ofkVfVViF8xiI6AtWd4KKwUaAtmIef1piIGrL0CUwUKFbNA/jEfQzCc0S8juJk9cX/7Xd/fW5MpEuf4zr+HxAiQKslhCEA0oDheTvthOdJeILCL2irQHZWmj8xjsoKw1Rp8ELEKCBFS2ANnZAPxyCA6QKOvRQCspkWG0FCEDhYN6gWxVnIuDAA6yBm/jomwj+33fH35+xrhNf9QYQ1nICDPzz49Dkzwk2MJPrLwC7D7Z5GKBX4HkcJoz+nwIaMdXIv92bD+DycbqoDBs8EcBvYAVMYYEH7La2BnqznsVF2QH0N+AtXpP0/6/N/0+/Nk/S5bLtA9zJrsFhiCaT425l427rFeCwjc/k0qmObLPgjbSwbevXUSxdHH/fSyf+ujYv1LYIo9oLzPF6wvX2es4Ovqxtttb2+PVM/UArRF9T03+buyCQGci35tnhNwbZ2AfYBrsLrHVYQoaOpZ1QT2jl58XwDwyAzag2DnxtR29zVnBQgNnva/OeTCcLGhnvZ2/la+3q5OLmuS6EhvDsg2E2nkj2taaFEmjkEHNPkkPIH7f6iXpk4n98bT5TV5uk/5+7N7/gP7g3T/5vuTf/n7kY/1925z1TB0/U+x9+6z1L/7/oznsWSZ9MxP8/3HgHCvCsf3vpnQLr65L8STr+eCJBn0jBE/z9qDp6VH28HlWX4K9H+++89E6i0Ija+v6w3v/1pfcpsr8vvWMnF3w3R04TfsbNdi+uASvKfTkrJb/p0JcrFAW8ZBdFYYq3P/PplXOxui8zPu1Qycy0DW+4I91Su6x12Q99cXzdsZkK9d4C8++1s5qyWiLL5XybeyPLA188GKjtbErorw9uyXdMXuAzbpVTnbvmnvn3c3+9tSndvZ7glaqVn1LSw1lYEr9uRnN69RVi5/dgg02POU5xBx+cOTZz9JSY2NqjnIGFimWkxcc8q+9HqRZbFpJNpuBjI632L1jqurjOQ/75NpcZd7qf2s1SISz2P/NZwaZyncNnF8mrhdMF65pkdUdJUXuo18JrNLLSZ2hv6CF44hu2brpaZD37jrpXgXm91LBORlSOMqXJe3rl1AbB2uLU6WWvv3UrNdRUai4tz2CuU5Ba7LL344c5ZwrPr3qSpRs9fGZ0TeXIJ7IrnaJw0+37NJk87n0X2pzcB0fm+vsqyegvTrei638w/pHs8vRo7SzXVVc9GbrJMQflPkTtpCtuTjviUSlzY1uBuPpfrvaei8OiJdQKnrvTW8uWhN+uUifmG+5vOd2b06dsVELYhlP7uV9F/RB/hJpUpuN6MLvAeV6Ub9uWu15qWw+KDzw02uvDLSonv9RJqS0riG+L9VjfpTUURhg5HdiavvHbt3edj4UNKdMLC58crr2/S11uRGLPQncHj4MFDu8Z32aJzi+eH1BPDwfp/1/u+hn8 \ No newline at end of file diff --git a/docs/cassettes/rag_6281ec7b.msgpack.zlib b/docs/cassettes/rag_6281ec7b.msgpack.zlib new file mode 100644 index 0000000000000..92a7fb7d961c3 --- /dev/null +++ b/docs/cassettes/rag_6281ec7b.msgpack.zlib @@ -0,0 +1 @@ +eNrsvUlzHHmWJzZz7PwAOvtEsopAd0QAgY0kmGAVSJBJZoFLEchkZSey2R7hHhFOeLhHunsAiGRTltOSmQ5z4k1t1nMYValK1stIMzpIo7E2m6MO+gJtMtMhb/oWer/33n9xjwCXXKpnTJULCUS4/9e3r3/5u7O4KJM8++d/l2RVXISDin4p//u//F0RfzWLy+q//e0krsZ59OuP7x7/elYk/7g1rqppubu2liZpEmbncTbqjpJqPOt3k3xtmpdVubaxvrHZWd/p0J/hKM6qtd/082j+n343jsOIpvvv/ubTMi46+/jq9X84iIfhLK0Ow2w0GIdJhu/4q9/uDwbxtHr9j59U8UW1Nq4maTucTtNkEGKRaxf45E8ump9O0ptf7a13b7STCU2+dh73p+0/Xvtj/vD6/yxjdjDbjL5+/W/jrPPpUTvO+Pvt3z2Nh3ERF6//N7PN8/Pz7ijPR2ncHeSTtV8fPDp+/W96f3Mnz7KYD+v135zG8bQTpslZ/B8+nY4K2mPnQVbGg1kRd57KMZb0zv9UxOWUDjf+b35bVmE1K//yN4M8iv+v//N3k7gsaTH/w+NfmCP6f/7Zf/Xvp3ExSUpcTtmZ5rTB+et/z5dE43UG+Tgvqr2V1d/9qnOcTGjF/8dR79rGta3tzZ3Nje7Odm/n2nb7s6P19md3e7+LL6YJvfb6H45ncTvY2AqO4mlAt7QV9DZ3N9d3e+vBxw+P/14P5ykdDj38P/bnVVz+r7/qfJxU92d9s5XOg+j1P7YOrt25vdvbub69u33t9vbGwc7uTm+/d3d/f3dn597G7TvX939zEFbx63+4VyQ04zVvxp1dmnS7hxn/9ledo7g4i6PO7fnrfzcIB+O408/LrZ2t7c7tx0e//iwJX/9tr9sLzsIiS8rxb/np4vXfyJJwI7/5LCzmr8293s3oSJNsRKu+F5ZVOnerPnj9jyvb17d7m9fX48HmTri+tUV/Xb9xvR9dH2yEYX89unb92saN7Xhr8Ju7x+Ho9f/S2tm5Hvfi4aDTi29c77X+I2Ypyw5dflXkaWc/TfPzzuMiGSXZ63/zx3QVd7CF17++/+D4Egj5NYH2619vXt/6+0NaX+chrXaYxNHrf3gWR+2A7uGTWSrntL69u9WjI+ab4XHNvK//dhJeALP2dtbX/w4fErZ0jufT+PX/blHlZkDYVJRxtTerhp3r/9Y8dkgIW41f/7a3sb3Z2/z7i860yC/mHT771795+ODo6O90G537CeB2nZH3XxLMFnSw//c/++f/77/86F8cPL5z/PmTuwFmuvXBR/grSAls9lpx1gqipNhrhbMqb936gL4kkL71EZGR0C6pxWuib+Vj4FqH7ik522v9qvPpPm10MiV07qdxKxjIwvdaD+7uxdEotm9l4STea50l8fmUUMF78DyJqvFeFJ8lg7jDv7SDJEuqJEw75SBM471eOyjHtJ3TTpV3hkm1l+WNYYu8n1elN2iSRfFFOxjmuHM8XCVVGt86PHwYPMnPCSmjYJ92nOWTfFYGTMDK4C+CwyT96YebN24e5qOP1uSV2jyn8fw8LyJ/piydtvkwQaA6EyIRaTtgOkqrrmIi0n0ivdW8HdDVTaYV3UorWKsPG8XloEimgD5v5NuzJAV2yGhlcE50O8AOVtKwGMV20oAnXQ3CMiAQoPeLmAch2EvjIkjKgK4yz1N8CLTrEnYTWoYpVpQPO/SfflMGUTzJS1r4bDDGeDijj58ctwP6g7CVEIc2FIRZFNwO+/P9jx/Qo8BxnjsriWxhvfFFOJmmcdkNjsdxMM2xHbpNOoQgH/IOCOzjLCqDfjzPaTDaH60HRxOcx2naOS+Sih6gBU+TGMup8oJ/AOWdl7wAWjsR70l5kzYdDMKMxgqG9AHdbIgdT3HNQ0JPGZw3SxA6Cco8pd13P+BLD47mdEmT4DF9BNgMHmT0Li2xM1UwCR2Y8D0EJb/R5n0MZ5mwYMxZ0Wb5kZ8W5Vez/CZtryAO2aZt4Dgm9A2N15/TkcnxEzTxd3mG+91twDRNTEzDg4dDZuHBMyIJeDQlhAiKON1r0e7zjDhq2grGRTzca30Xpi9AyYMOirwsc6aTtAwae47tm8HXwpKIQrk2KMu1sprTPY/juOpOkqy7cy3cGfZ34s3N9es3Bv2NG/H17Z3+YHBjO7oWhps3htfW17duhFsb/d7GZm99m2jaxs52uB7dGBKBu04coqRpwDVHBAHzvVY5Dje2dzp/utO/1n/x8EF2+It4/OzsYRrFXz0eDvaPwl8Wd1/cvffpxSdp/ii7+OTzcq8lZzKlP/MwCtwKW3RHNCJ+x/EJxhHAkwRx6Y7LYuA2/KJcGyejcUr/y3a3+zfCeH1zfWt4YzPq7wwGWzc2h9u961s7w/XextbG9XC4eePGYKe31d8abgz7Uf/aMNy+EUVb0XY83O53Xyzd7bPtYvTw7k8/3Nq8ebyx8fXd07VPP396tn/0y7z4ejL4/NPqyeG1jU3+Ps2i48+u9WhfHwT0T55hz3T/6YuyCxp636yXUOtxdkhfrqzebN36aE12X4OiZADq8w4ANAzP8OzzaUx8p0s/tpaMUxF/o59ZqJuC5JXJ1zGts7dz0dt5n2k6/EZ32gT6N0+zuXGxufFe0/Abi9NAWI2J7xBB7LzzCTVfWhx2Epan7z5eGQ7DIulME5JRok4V9rvl2ahBLoj6TGIi5GmNZny4EW8QOjaenZSeDE4CaRrfufy9LDfAAhD7iBFIfsY/H8q8VT4imbttP+5W+bTD231pP8M/UVJO03C+GxCOxTftV68+kMHXvNGbM/2cSHsSBiuE2YSypWyVJATMvxtEYXG62phsl9hb1fgM/3Q6lbxUjPorGzfaweY6/b+xenPJk3QaxVye3NppB/h/u7f0yWlBYGie3ehdJzla/rix9HHSOIj12Rd629skUG7v4I9rS18gVYK4qHl+hx7foad3ri99WC9Sx76BYeWP5WODYHT6o3faJ7Qg+yxWjUXvLD+9PglLcaGP9jDkkmH18i3opEm57Nb64eB0VOSzLNqFgrGit/gOg+1mebXSZQjZ3e2QinmaVAQ4kI/6YdGpSI8+fcuE68H6959nPJv0l83DhyTw/OatXYYuH605JDWMLSzn2UAY2KJyXIWjSZgR0SxYTR7R78TefpZEex937t873tr+7N7tX+3UGIX5gdYXRPmjvDrmY9sLhmFaEionw2DlX7gvgIt/dE5ieH5OJ1KFh+Gc+OxesPDRX/xF8MWXNz/4IyNKBVjMyupL+0R3OivHKyTxziBBlas3X33wR/zM1Rfl1XaQkdAG3XVllY5LvyDoHyYj+vKqvx36/WVwVbg7cYnnyfTqrqw+eEXvvvrA2y0TS5IYSasHZ85Hu6wN+NLYm1QJT8KvDfIHQf8Pgj4J+pdAB4QZDyxCovcDwNzyp2dF6j38XUX+5sA66W4pxhBvBh5k6WLMO9NZn8jgOI6eV8nE34mb+Xh9fZf/Y/GVf3rjkBO1uLz/iHXh6BxwVuwOwiLyRilnE7DsVkMdN0+/H8pfMsgfUP4PKE8oD4i0vFm0Ft8OnkZ/8qIkCLn1AeSD1s8ZUC6q1m5gMZsl3bCbF6NWm59hckEP3C7iMBoUJFwckhAiXya0Dfx2V9ZGj33BIoORPtzbeOoBPd0ywjsQPWFw3Q2CXmA/BljjhSdMB+zHmMlf5hsIkCipr9rBd1rKxuJS3oyQ32WJizTyAyN6fVmXEH6cq0zzEc4XRkL+BtZYUqPecbfvcTA1myNm/gNB+hEJ0kn241Gkk9n6+sbOdyRLDArWqm2oBIzarXbQqpu18QnPiB980zZ+d8ZtoAoPqzz8dh7N/wBh/yVD2Lff/NX7AtZJ9oTuM8MRHM36o5yewC6jmJ8Ror7L5ymL6BMPO6X7ys+zQMChCstT3EKVB+UkxNW3A9FZQ9o3XSmPikPM6AO+p+EwGSQYbUxz8Ud0P7LgCxmvGzyNh6mItrygIh4SEEzYVOJWg/OPaN44JViiy6Nhywk/zx8Vboycdh9Mw5L0bTm4dpDGYZHR3eWTYEIMLTyNS28qnOokGOYFnXU1I9Cmw5/SW/RxEdN5JhO62DOsHcf/1czCGb1Mh1jE5SytaB8PCbKLeXAEvzJMQzQZf7IbPAjO81kaAT3KJAJ8pykPlmQd5UWyRkyychTHwRPG3cAgBH3O2DerCLu/xlNlcxYsCEMyqgZ0RTxgNzjMs1F9NcdjQljeEjEcB1KC/fh1EE6VjGCcggToxFzNACtfSUiXz4iFr9IG6NwmoTt4wTsCRNIakjyiY8yHQDQ6x5ThcsT0JuMHC5zfGd0bnT0wMOZZhrg7mpUQ8ixMCcVBWWZl7EED763E6nhBdqz9Jw9Kvkn6pAhrq6vGYQVKxREBtASGBndg5zFs8mWwIssdk1bCw4/hyg9C+pCAqohhmUpwTavwiA7SGZPPwawosCxvPqBlFNM64sGM53eH2ibAhBcc40O9on1WpPLUVlvms2KgUEq3FneDe8moG/S6jozQfb8TGekGdwwRCB5n8W5gycC+YCKkJHod2EjHTOCdYi1nIGIl8HsuCNEN9jMdmEAy4uWfZvl5cI6TpZOcB6He4JRmCEIISkQEjzHugU9lgjsIUxGAzWd07MHKnfz4ZvAsToKY0JbunIS+jVW6BRBwepOGpUWEMM5GzmkbVPFgnCVfzWK584wua4DP5UoJAvlAifEEuIA61Tm2V58wZ6mK2YCPIQ++/eavqzEM5dg3U1T6+9tv/jW+EwyM+VJo/pJwkNRgHnxWKaTllqjGCkgLhFMoV4IVFeZ46QwCAq+sxKpp48nIf3FCRCahx32KK1/zUKTiB6mAMD9OF8ChLlOgr6CnRx+YffAecVx0oIBH3FVBtIcePJZ7IXT4PMy9O9lctYwVq6WjiS+mac482S6Q+AYJ2zxwTrjGQJ8AlqsA7inebjd4UBH9LMrKnZXQIsNE65s2gMJHxTtWjg4QbTxU4ub5SUJCWgyDSkhHG4O045pnQCgAQEl0hFakB2CY/O17R8EK2F9UjTuySHlwNSAwO8C3Eckyze+YfuoOaWEBqNcsVKZMAlIa0mkME1rbylkSBqECMg86CV/k8DgGZyTLGKSpsWazuIgwOVjprWJQyAc8q0CShxlpchoHJ60jPi4gx68+/9PuyUnW656QaHjSegacBbriyA3j5gdp/UR3MQa98jM8vbLBk82YbALkOuU0HtBOBhZvwGZvBnGXSBSNTRsRhGW2NKugLdG8PDwEL7mPjPhF2sbmVzb18MazCcMtoRKgcT/LwYOJ5WLAKIESNqBlT2mftEyWj/7kSbBymMxqMNp25KuI0zlLHVmN58hdDCCzgRjSHEBa4plglsRZk6/phanSya5wTDOtIQECrpaYHuQTELWDmFkjLsyEyAUrTw4ODpl/G6xkv1kVyy/DkAgUEw2of325EzO5wYcuxMZKOTeAVaRDAALTjJRRYQGBiJQ90d+xCCJiLNdkfKkaoVha4GwciEEx+h4vC1nvhyVBtDlPvpMRptH921mYk0NAIm6CC26s0h9wcCqLzULCzDC1akc3uFuWItmn83b9WJg002kQeAmvZMrt33FFYgMtoyxnEyO7hWdhkhrRhshcxGt24MyLwsIJeAnmmMaa8zgfJ3T3CbSfySTHPQaDuGDRiEOd6PUyrmaEbv0Zccgc0oBwTwFimQtgfQSB1RN6jxoCLKtTZzQ9CehYWiWyS4i4qXKByzMfFhGV4KliLYcQaw6UZfmWgciJw6AqSSkKRQaRlESXQSWQRniPcY2MzEQavmGGEMLzBOJungJuQeVJjcqL1LC3c4jLdM2JKhZxUYCcFHg6PpPTpN0/jfdpR4t8RYIuGD4cA+G7kNWBQNC0AHpmO+BC9l5lZ+VUMakfs0I66RP8Wd5XI1xETIg1VOZVOQsMZVVeHky4BPgxRFtoNbQ8LAFnruG+Tm6Os7OkyDOoLsEKE0NIrc+S02TKfnLlNiSkEokieEpjnbIS6dIQb53Aop87D/hFY3D4RVwhnkFjyenKUCSeEFcQMkPXPM3ldMGxSXsyvBREWSdkgaBNN0xclABIpNGK1d1dDM/cdTfodkkUHIi6iJ8f96Ghh+4D/L/yNJ7GzPwYByAklasixG4QXqv+joup7e4FKwOQFrAuiJcpQhY7OGzSnc6MzCPHez+vSPf/5X47uHf3s7tPV41Cy/DdmYSnhmOZF/bT4TMG2bvZWZvkzT4pa9NVWu2DCd85U5LdoAmcTHwJx8c4PNJr2OsJGnj5Ai9dSVvviFDnFNIt3z0heMawQN908gzYS2QWfFPRyh7+t9/81tK+ghS6szhipCLqcQFIXzmiS8wCsUARC6JxxgbDgMZswMDcuHBEjE7LmvUnmmfhhBBElcplCrbVZHBNHvFxF1meJmlqNHte1pgtJlaEf3ooxBKcWikrdl/E5/hWxXejoYZGvAE6F3PzlMHYGvJLdKmwGJ4BE+iBC30axw1SUHsfZzQbqS2FD8QSBJwXUwCrSXgbVgWJ1UQWAXXUK+Hz6krbU7JFUeBdjeNZAf45CK6M6SneUM7WX2aak3DOEBTFooXTdhaoDBQK0h0riFOkEgrxJdlUaWOe6UHUL9BYLE4yxsdNAu80nZEkV1MU3OVZmFlAlCXA1lZoAzVyO7ShBFEM8YcAmxmGrM/i/Vx0MWc1IhoA+wgYJ4EQLXJgKLooPWxV6UOsz6dEY4Gn7mUrK0h0ElM4n8IwVwWjg6jAoh/fOEkUsE6yRhTcr02awHwJkxFbAGOiqjMwAZFnS0hTrGsO2dDDij94cgQRBqKV4TU8cUrqhRBdWj6db5A7MgqgbVy1kRvqcgKrN2r1G+fnTGTO8w79XFkbKSYBgWeeDNDUL4QeTMOkwIpXhiQaQYiyd9HGytm+ZWcETR7NEoYttZWJgaQ0K8aZrzLXzLwXS7EMRLALsaRXt2MCtFiDZJrTDghr+RlS2NrKzmelnLmxlmEldNzFXPmlgeUt8JYaifZJPp+BYRpLLjcUtV4lPJzIjEkGi+1LACtxw78Paljzx/2ENOlEDSD3bwZNRUZArAhHKjRb254huVg2tnmeQRCG2mR0cnB4IiJT0I2MpYpEJZU6pLJkqO+2lXRlJL2GlgAO4ziCjE7nxeqZ+T1AOJCx/afW+joMrhw8Hwd7wcnJy5WLdjB/ngQkU/CfXz9PVk9OXj1/mez1Xv1ZdqWtRPnKxRUMpNoLiS66kiv08hVzMdi6UF6xr10p9Eu8JpqjWvixBrwpSsiVr73nWNxFEhHDML/VUUYTBWN7HW7P+9AfhG3YjRNbAV4BpkmpORX8E67Ey6JrPxnFX9GmX2ad3iv97eQkyul+zFe9K+K7UNMDra+cTWHaA6SDxnSqGQOZ41vuwO0NKtpBVONtn5xU4YyPH2dPO+cLwE8v8BP9IcvAJxk+yVbdLZycpLS0JJC/X+jf2ZWGsQyLo7WJxsXCCkFZlBCLpVPPruhoCKVkPVi0ReFDumrEiyYX6gSq1Hxorpju0WdYaiWNZvSeSksCrk4TrV2OmcRfNMb0OCspPDEos7NYIaKQhVHfoOHbJBQn8oLNWLD7sUgLqZu0zrM8idj8PUwqQGA7IHQGvcNdFfFoloZF8rVaB2GKh2krvEgQ8yYqQD7qwGSTJuM8jwwH9u3NfPkkAsAcrhOyC4CYTGU0pUE+ZXq40o8HIVQP9mAwnLIQrnSNHYuAnIUzK1fbYsglsCZ9lYWQ8jRY/0nQCbZ/YslFlZ+SrBtEs0Kldl6haiDNBSuIJkVNdlayUdPQSBz/+Mkx4zgdV8meGwkHMmfHNvtxnQph4/KRRCEzgJnDUq6wbUSzGl7hdume2g3gExGyDgkeDBo6y6+TYlWwq4r4pNLkiTgCPCRdYA0LZB7nBmaLUwDkJDoj025Iiona0oY6qJhEzJSRXRSMEsohWTzGXdQ5B8s7uZG74iy6FL8gz6YjWCXHk+AAYlyayjWs7B8QryLIoMFr++CYC+VVLNPwpuBGQTJHJ57SrUZxXQpjUwK7PgZydtYRpuqSkBPgoF1NwsJXOCUxlvkUHzcLcHpSHZ/6SOon7OvifROrASwqxp9hVPlyuS7vNFg+Veya5SizHSvcj2I2ppFqVKXmNNvB/gH7xWmlmZq/aP12l+Zu2V4mfhX2VBkxiW+OeC/D9XlshF4g00DoZobrVhIcR0bzEA9gJPKTGBg8fwjLNNbgw3qD+kTYMSwAKG7TyuNSBICkugE1MDTIlMH2sKFVyaFDOiFabvBwZ1HTIKn1DWC2KmryIgYtAp+GAoSw/Y/nUxjdSrXS8lXPPfjhj5wDAahaYTGNSwF4Gqu7LMzIr1C32PxCnJCVaRIA9Hjxej8eh3SyBVuaRUNk56gqALJUc/GGq5v1qLtAlyQ7luOUAAWAHh875ARY2AJ76LgCwtrKaFWJKqd0dG1Drvl9usRiRvw/VEovzj/IIKwaRNYI2vdlReaXFovN+uktls6xFjNnk7XzwVpUZPACtISjDJFVA4KPB2JRZPeoI1gwG6TEJnEqhrBJuDoNiTRcmig3iFj6CiF4IyExrCZMgHIl58s30Q0eeh/TSepkDPEbnS03BZhpFgMZYIqwSAKACIsOhIwJ8Mf59emoLeDJxROZK0bmTOtPwiKPPHMhZrp8/V4OyXFHQ6vg1jLWotL3St89CFaY51YGfNUzbcDTAqd4ruTRBnG2mN4kWKvtGmzOgxULBV6wzYJJz18JAP3TO7dppKeHf7YRrBzMQg+ne9duWrVvNgVa9yGmBWXCgq/xQpMACjPZ08NVprQIL8qYwPDy/cPlXfpEkMg1L5KOoWQjCy+DbnkKfxNLtuL0yodDnYQRQ6MPJgBxBCsYA54Y+u1ddINnYw4xqgnCU8RgwT1h0NNj7sw3/UPlLRFpthrfklnpms2Uhs5eE5+/wgkNvH/QpueaN4a98JbpIY/fKclUWPQtgeLs5bvrBo/ZTFkzyUGqK0mDymCKOW5sJlHsMbSLr2N/8w6DxUkLOTonrfo6MOfBLx+J4zCE5Bx+HXffzgu8iIfj83zXROas3E6Y82enwTyf4cJJE68gc2KCcZxOxQoRREU4rIRPa9A9Ma5vv/mrM0fJIG/QjH1Yi5wCyhFZYvsFVbfeZokuguz88MGTI/YMQRzPUDsk9JQNXU93lWTp+VTs47p4/cvwI2eG8vhzrKQYHGrAtyeRbfSXRPGIRgyhqTARNrEfd8K3piqDCSOrzEIUEGjx3mbFoZWVbokaYKQKNx0XRMJKuJAbpq32XevCWQg4AsTHUr1DBF+ZxI+SWSFteRbCy0cUT2xWcTVY1XAdDCsJxLQLojpE+RPiKGcQ7iJAqFm3bow2CjMdQTWjfhrCNYqLE3tUSOLZeSA5goTbR7M+RLqRIZSgunSWA6R9mxF1fUSZ4sE49z43612VCxmH08r7lrNUV3GwHOR1DI3RgPDR8UMOGHimNjNz5g8quelyMejpXO5Tg5RoZ+E5fkf8EM0NKiogMwgL8ddbA/cgH8GXbZ0aJmjT8gIJClMreHcx9A1Q0CfSFJ/JFHz6JsRsoF5YQaJrcF5OymDlYcIBMr0b2zurCq7mIjbWO5vr9gpOMo5tqx3PIR3P7kLMmxgVOMDMPx2RnkiBI9IT9nHl4LoQ9NuQi0Y2TEyuPoIjVIJ7wgisVsxpGWJGrUo2y4y8gvkA8marPm6R0AjhyqIWLXv3JLtrPHNrmCMNxZVbj9tDBJuN9xuyzsKU+QwEs22iGo25ewzGxs9bg7cSEAhEAwj/Yg9BUFLkCw9WEjJAKTMYNkBalBgM1ENE9MCHYLcwE/cLH9rEbo/pVcQSdG13OBCf1BA9y+xKVfnSyA7xMcmGCX7Yo1CZqBbl8hoUh+seSAwBx8UUQnZC4l5QhgvGfA0SQdRsPydmphF314mVKpp/7ZQWpn+ySOLyMR+qcZvaIE8xzMGYwGyFlGP6G57UBt3xESqe9OMoEqeF6v/KHwCsRXiu0TH+VUG+od+ZKdJDIoWQ/ByKi+7mErQMy2Whp+zvT0oVnjWAg2C5LYHf4nJEFZuBaim8Q35kuXTOoWQmoi0uFoNRDf9aHgxq1QcXAgx/tNgs6Ct2ACi+SkglCt4ECK5qxpA+hLVtNgkecCzHE7Z3VMQA2CG/AqYsVhi7EI9wADfOOFxHfJRyAgoKun1el/EjEhvd98MVofaJbxH+OkMCL7tq0QoclVKFs3YykC4g9DmULklExq3xxie6WxQnKDpT3W3p75btiKyuGBukPS3okyAGYi9nkyFzr9jwdI6EohlwJFB7wN4zxM/2YR9d2X/0aPXbb/6Vr28zU59BT3KvpmD20+B0yRDiqYtACobOnkJXTBRjADJdVkq8xzMO1aD1zqaIGKMFwzhfXzeTWFqVW1FZF8gIJw+P7hP3yAesgnaAocL47oflGOG+zGETpDzAUsbuW/nGuTadylvSqRL5FlxVviZWWHgpa16//mxwGhvDE2qZcPyWjRR2xv9sRvDCrjrzSqLKgAkptUEE7lENpcPmH39ON+Nd3CM99Uf21B+Pg8/jcLwqYfcDA2eeFKseDxgMaKAX6vJBYCVYjzFZqE7AH+sG2OiQ5VmHSM2QfohiB/R8lkT3C7jVcJmpGNE1QB4nqL75jCWIdOhcmTycyj2Ii+T1TnN6kuCb58eS+7MkxeWJY1xlIBg4Kt0NWxGAm4g05tAiEFTCI7rHwbK7NieqKDXGvWZsyzSR/bJ7uOq8kCx9nHR2sUtAb8B+TGw6K6JsYNdUg1gVLw7ZC0ejIh7ZCDqbd2CtxzSChEoWsdhFaZxfHEjgK4LSRGdhFyeqeHFAVnD/0dGzYOV+QquktbGf+lF4low40uEIoBWwg1MxwGThOAZgDNcMhoFEhKlZzFz/BAibsf1ExY8C16emLhsiJ09ooFeoAzpg5iALjTL99pu/LpMLEpNGfM6sH0xDUU0RqT2MQ4ZYtqBx3JpZku4YMBGVhHHevlPUNihVESfiygvQGLdREU7HpY+Q/bwi0cK8pGEKJiJlhjgMC4x6SfqoMcknUQRKxS5868wRHgGCBrVDAEYNCZ6B0cSStWUzHANSGllVMZSxTOcCoeXZReTn+2U4yqG3lxoVU4zgX+K5JOOJVF42avMdMXAWghdsieDMIAVVtkHzDG0S2aokxWNyyeXCaXWDu0DeCUcsygLFwGPOErZpk9PFEhUbTzULCRak0PN9Co0ChWg7wuCPnSI/wowtKT8mQIjRUTN6SODbf3B0FKzco6H6eX4a7D8IjoSSQ1MRYUHQADnxfIDqSeEo06mXZ5IJLY/g7irZ72iWaJbPsV/nMZ21gL26ncLg43BGggzSnRJIGv2ZjXepxrNSfXrWC4DCLAOY1MWvgaBWH+xkS8YvozIEbZiO9mtrg2OTFH4xVNfIGo7s6hSlo0Y2tlSTotyIisDmla4RsyRaPqWTFfarD+C6oyTi42QuOMhR47A+pp12OCuYVsgwvDa+cDOYhCwkWVzfJi1iEJIEsHKkhG+R/ynf4yhmEpxyF4ojr8K4lZFSRCLAlFSdJWfJ8rN+wCKCu4rgygWiEGi1cNET6YlfXrzCJ3U7OQtsgRHY4JAnNZQW+1U7oPeDk5OCf5eYiNLKGYqE1thhUURCAuwY9alpAEnQSOO2b+ml3Z2ai2Wkr+p3MUABJjigLZBBUbrRtDmypctJXG0SqcNyVoi7TlTOn/fWF1w7H3M1nABp1xwvs454mXhwKnyrMahkG3kmXc88zoa4rNMnPXUMDb9EXR2SET3bIGznu5Jf9inyy0yiWVL6dgHJaZL0g9EsEUkAhTiJzsca32aVwn4MJU+UQqbs7YALZggfN9lDVs3I+5CiSk0/AN6MVI0d5SZ3lQ4mmI7nEp4vOrUxy7CtgWa7i0DOqcZClcae7wXCC1GFaRaOopBFIImhrnm/XWCnMSXjhvYBEoadMushhg1kE+s46fKn4uSFP55Iozi/SWSK09QEOg/TXDwCSpTZnAtmgy9Z7hIZgFBsEupyOYQBi7e6CKxSoMV0QYiwl9vmK3KxGovewn0dUzNYMOJq8PDpLw6DlV+ExRShfF7WWVv1X5AoEjMeEi4Cx54aM1c7+IWJ+uXbMGkenPXAkAPfYN4p55M+7N4ByxdV7AzBCyH8OGJej2TsBZLlgZyoSJ1XkoLZCLSi1YnTBhLPBOuMXSC7JiV3prOCE9E4V4hlMg7Fhc1Esjz4J7oW2Is1opcZNhttTRaEOodkEpZmythOqTKdukQl0jqK46kzazB8lWy4tMciz5EuMkYS5wCu/JykBzFTDox5nD3o54RIAA5EzkuYyZzwMZJ0DxNUAl7sx3doUDsniIa1KQQOQiYhMbCXT4SDegakVPP2GvEqiK7EZTBzrwh6S87skxPkfG9iCEUfhgNsSHNwStHJvHi8stKYeP8hE67DuLty7XbwCR0k0nF6HRF5NP3ehGjmkt6q7v+CI9ZsMS7xw47ZJ8jAZ3dJWkECM6cIo6o+BLZ+povHtZTD3pUjIeztNiO1OQBeg9QyScCJ2KWPTMlSo635XbZASwpJ2wUBWyUCl+UyZOmObyPa/ngfKU5MlvdtVLZNq3rIQHUzeAKC38gcxTrwnqZuENsnEf+07iQywIJkEYEVDXiQtdfoJ2cWy8HZuCZOpQg52dmGotE5CBlDPDbUTI55pZcVDiWMzKTzmTDORl65UGMbhYN8cGZ+ERwjqVUgCP3v+onPoAKlow6LKeRgfurwepLORommvTwmik2iLhZpbRlYrSAJIkLyyEUTS32FhTD5yvBOL3ncxPUmmTWCddW24JMxe76GkNiAzL5NnopJf4bQTfjBtkuzASEpCBc0HjH9vraTElTj/mwEiz52v3IEcK2nHy0kR2Az5rjC0iYO+AlyNDGCcIS6mewySY/S2aBL4I2KIzTDwSAvxGbrBfcEXt0XzebVqDdrceSq9/WAR5dZ3gjn7/WWR9l4+18eVLN4KOzCFZYEVktoJgCwJd482LKRgHhsj4XG361zGqZE1is6hWQvH9LxFi4DsZHta1O01eg0hAwUVqIOxexlhlZvoU+CYuitXbkj+BHawYODdmBsPhI8w1YfQyl5gjnf8zA+XwyaR6R7bNgIpDPeJu3AeL5sgigiM2y04K7EQRJGgYZDEBcLLe9dti1WLQYg9bFiw7vBFy9PWvjxpCX7QKZuEiEHF789TyJ8QDvC93Zj8+f6ZYlvaXclvsZIRMF4JPYPnEhJXnzw6dNDfnQWJbn3O3DO/P7q1ZeCqjofEcs4RUYT0S+9wMSPU9U4MpyQpPP40VVITSEglVgAq+uYogn8EjgKq9NsOkc8E5/KiObv6PZOWjXPVuwFTLHngbcnrmDhQ7wfayWwx6Wr5PBNcaDL+LJf/vLhp0fHHEXE+I2oFlMswvlzJJ6YLu3ly2DfYj6jAopmBa9eGQBm0kLqDMvvbJrDi+Nkai0AGulIgAebPo5YQ2a5DCmh89ChjMAOAdTVimkloIrgAgENcOWKrX0K8Z6o/zz45OjxI0QPNpz6kHNEVJgDtWzkLG/nwMbQMEXSnUDlqfyoL9LhsD4+Q3oLtDK4r1/jnXtyaLBrem/KUjnQNlFRdRqKq8jssTMRX0ocWbDx1lr51KbLicwsCehtcRYikNaaT2JHvEsRnowsG6c1i55SI45x9+r8GLLUUS8IP8TqPqZhWZ0N2YYYwWFRVpaRS5mScQ4hHHDUDQ5msYHhZnCbiWqzVEyJ/jBJDTmH7sM++wWy8zGphNkCcbUaAUsgcIzQB6JR1WgU4l880uzYm5cMLfxK7YyLuzRhos0lCPzUZiOpDBZxE7jsmKEjK2w1ZocRcR7YSDUUFmNpCsCEuBywQOzF7JdjiNfc1V2ln7uWjp60JFxBPmN4EqlKwxis9Cx3fdJiTZ7DFhY2rBDZuF5GBWPRUhmV0eGJYLceKrwV3mkKLOCkkCvPVMQy+F1JabJyhnxho7hr0Z8iPxCx8aSCOpA8MxHOQkgMcCSZiZ3XF5dAiC37Uq9UoJcuoQeeT8KyBREWbAktdcyXQQdWlyJ4gIUw4XG/0om15RieWLmCHjjmLeI7Qfkjh/L0rXy2zxForBHaQe66s6TnnkistCVun9MlMiSJhTLMynN13wOIr5aOMCiYhdCXaB+SrcrioOa81U5GKJV3PNAihYiFJLTPy8QU+GHAb96AoRFK9tXbjhVCEGZz43DJW85aMIRtBcS1LdurYnVOCYJbk0oVu0cJALdWg6dG5DShnIaoaupMuVwENWXTJG/XSrGRvyPMXUreDO7Zk0pZBkQQsDqRZqUwdOvTRQZozNmGhtOx5r3LVTDuanreYF7PxDDUEgDHKdxMtN2pSeqPhJa4/l1CyW0oBdCuhHlefB4O6m8y/3lQOQHGZCI0AiLYjDOZzDKutiTh4AvVl7QW7U0mAkeV0aP8/Wh5O0M3JRzHxCwoGyzQt4cLqDx50LmNcMeVw2SJumNNo1I+ScrVGMtvrXqSKGkdp/NBBWRzt03P3d5UpztHzarSq9a70AHa4jisKwzpcEU839jZ8jIQI5ID89EstlkRHP0TbO9ct0p1aUr5eCola5PWHRoliLOM/ZgZdf3ErBzTCmsWqJCgLAolwVSqA06QYz3OJ7bsIX0G/+XM1mOasM94TNCLJHrY/f3PofjNkMozgxOj0rqkdudema/bC6lbxu/lHKHYnRYHZHLAyfW2pBjOpbY9fGhlLbEWyd0Ym4S6VmZGNasnSUb5gPUlW9xqghQitqilVufcIP5WxrMol7JnqnJiiROttueMIAn/zIC5JDWqDqcPtCyCAWQHK2yEMHTALEkIBZxgtSInfuUphEOCE5nqTLxQCS2pVDsxLxMEdVG5TEfSGE/wUGPl8XdlxbLgAWd8D+fLD3w3SIZsvRa7Csf4N7bjxwyo90BPQSM6rJF1kPjgbKqGMj6r103sP2I6dXS9ZkrAuEqhdxvJcCrYMGHmWonsf2CwGbGjbOhof8GqS4CA5hIFwrVukqMy5sibdSwXbUdaLkySG1A3MIWt4RA/dHrNcVzk8MBEX9COuoGIw3JHPI9nZ/GTTDyxRs2S1ozn7McjHoxGaut1V6Z0DsygKvsAZbRiOkc36cki8okgSZa/wTYG64Ouxz1LQLbdwfHiGvWmccHGeSfUjiEXNSPEGm3YPG9cQ/mZgdgEhoaddiJJzOEizpuVb0IUlCjzxsq5jhP2qh4ruxMDLeYyZoRCNHfD+CPAbAkqGnxMSUGIwYuI0LEvfsg26rUx6cbpGhy3ISFsZsLAaLrpqn+nOAgJNmb3SWQzf6ZyXsI5nPE+qRDnSSdxVBGDoB0ecao/y9UHSckRCHMp1gx35OROQYe3crsIl5kRm2WlbMEFU+tE9caGCbW3qapphwCVkyjUds7h/CIslGMj5nNKZZAXoxAB5+U844Q3Oq6omI24vhGvWWATEV+c4xfI0AJajpgmXgXZRCqXcZGCtiniUEqVR/g9jFifzq20GxnxVCqtYEa4s0wEMLJ8Y6kY6EqmWKsxF2kjlM5s3JNYw8SMZlVsNQk3NGwmHSixjY37ZlTRIZNCXK6VnoOxoLu8Dcmj5B0QYV0TucoEwjJbrNeGVOUgFEOFUAUtt6TuRevycGvGMDZpTAO2nFJGgvJoxIhQy9TVgBB3rKLTktakxYDaWoXJ/C2aU9uvx4QsHa0yF0ultlqVEaUarhQVyokKazDSIBfOFMan7i8Uat7i07SIoLIiR3LC8oRGlBCimDaKX9yNV/rpZoDgRODOj0VydR4EhGgitp4pyc00F1XypdKZDOv76OzScKGyulJXztmV6lejP5NM+RRJSCyLS2lnjT6y1fR4zXLDahG2AoSpwNGoN6oF32rJVKX4RWXviboaaTHwmw/dx0y+PJ8g2KrxtGG2YRqely4kaMDyMhe2Dl7M4Je2Upx3VmJmNUaB23lyaotcrWj6NhLNEFhj0lwBDvHE1pcdWf9i6aijR2k4PDNDUJvn4RaC07YWu/ZCzIZXEdob1/O+mgKMNgrcBgZwdjNds7oaHwDQs7hqMyOrc7G2tZtAQlUurpX7Sm82gXlmqcIquWixCU9gvYeEXi4xzFS9LeitzEyIBIzm7LAyZS4DTo/Abgumz2zS9wStCSLgXPK5szI3SkwRURRHPa6DaZi1ohdclZX9LLWp3AXddPbsUKP9bnrrDhEUOqSpI/1SqVkp6Mh68k2iJ4PYoijnY4InSI0jCH3+vhAUT4QR0AQXumFR6ndhaMPiZiXHObCszHbwWB0ARErETJ9K3gi2I7fSTwgmw6nJpZ5bB2FkHPnw0KpuKgGThmMAjzJHUWQYA9usLJSnuhwBOMgIunRxyE26wRanSdFovZ4nxmzu/GQ1OGe9jZspa4WUvppj7AFYmuVqmPFM7rw0Y5lwdVH9MmBsrRARl7O95i2J11DEL/SysalJbm/zmvuK3QDtYFsjmPEwp86FKMZhZE1hDxuNUa0GodwPij9hxsdqMCKZSlv4HiHxTla/+OXKE1IM2gsyFJfCgQ/Xj+8QQ/3GdnCWFBxga2OwTFq87UmgOfS16tjS/xdaSpqcGReetfmIm5ouiT7t5xd+Hmq7FvIMgk1bIsDzdqPgo7G8kvEmNfF584Mi9CPENPsahNTOfxYHXseSUoupCPHEu6PFyYxcZasA28xKU59Ks8GMYWQSo1pXUk5Kr5idKyLKC4sX85XLysv44lwg5jRhuVgFU2O4JKjpJNOsPJJ04nCyaxxhjRQgiSJCqrqasUxyy6phnQPWacWIVMRjrbNoEFpmIz3HW+XSCpkSdRyn1jCIlG0nDrU5nAhZbmi/zYpdLRLB4mmXRDDmNB1b0k/teiaug9QRkugKdnw2lyEhQMrXntqcG6aYuwT4XA7YSEFiQuRjZgGr0f9BIaldDyxQcXrAWb8DtogyqE+QIBRyQZqn8vmuPFBp+qBoTAgIQv3sAWdVPLBv7fohkKRMZRHSNdh7wbkiJs0QNbNOA3bAySliOl3RriMb0D5NnoLklqn0bzhamVQqgK5JJkStU4SF5V2POpcu11GSRWQrbEBwNt9SrK9ct50ric/qjRD4bLW8nTliw7MKcz4dGVRt3BIWIagiR7mCym+bg47x5oaaTy6GVzCzZMjrqeQImzUaibufEQZoEI/B8N76urjF9N488FV50CsbuymPlmEqHTho3bpq48Es1axhU3f88dZ8QGXnRij36rQgyS+1o3VdNWyte/c0Ftq668o/q6fVKw2oPNCvuLOY/6YP2wkQfeWl3aKengnHs1lthg6LncJWGeMZziSMCjW8zCGbcrm7wcsH4COSIa28+Vev1ItOE//qaikmjyqPQp6bZFBubF2Q7FzuBj14UJyf34X6e2JG7epw9JltvAJ8VUoKWQI2rfA01pMw6aUuhblB7uXEu6h3uPw8rcNaOF6zLr4YdDe1GlCD7dSCWRest0/YylePIIIzfZYpI6w5i1C0QUqhVCZJx1E0k2rurxwoMyuZVNfCKGyKMsxISK22HBKVD2c2lt2rt4CMmGSwqgYKpp02WErXYhCZRx2zL5ozJeYmDxmuBVfgm2PMnph2R3ck7dkVOtY+R2yrj4rwPNNsLMCYzR21RZ9c4wQt+iUZcaQjLJb/tk2bNNqKExhcdya2ZWBW8YXYWSWGUx1MZQkXy8jGDywwLVuovi3lzaEV0YMpezal91Oz1ROXYkE4j0440HwkcxKJMcOoXUMjqxCpp3hWufCzCWwnI60DSghi20aJUPjyZbfbffWK8cVFyUBdgm835CfCpANDEXzCL1+y9cZy9/0HcA36BiR1CxeeI4FdqGF6jioAfRwzb8fPKbTVY+OY4x55JcZ9DrZL1IvtpewChlSEYI9SGwOYGq3TWUG3YWoeSymbUWKSYzJEqY7C1DkPhfJ+/Hj/8GgXDWKam+OCXj06nI1Lvtug7zalaveW/LUtf92RKCAkefDI//XWOvEfeBgkbkVMARws7wl0enALn9vMcs62TCbaAwFB0RA7jHhSJ1bsuuJGXxvs7p7rdc4ypJIE6k+v2SRRGZFoPOdSBFw4RpQ4bV7kMem2a4EikGjyaRT1z0nx5LAYngP2c3jguGDyo7x5u1J6FmlI4rcx4c8acFOyvCqW0iifQfL+asaxdNo1Q59jY+ZJC1eAlJRy1ne1XThpygwnljusELYfcVyAvdr0SZSsoM84/umOvsXXqBk24h9CGIw0oIZNAtGDHCwD9JEYGVoLHf1tMbKQVkhiWYzPxezy/Fw+8V+eFal5FQE3Rjyww9HxHXHRalAB1gPxBecwPpf2ed5gchxuNBMeaX4X7dOOvYU2XEIqaqMr/Vgc/zSe+8Ppc3Y8ugaO5rOD8Uu4ShmqdGPtwFfIPu7azBF/9saJuV5TCgHgacztXrggBoEEPnte2M/8192nzxvnLW8hlsOOf70bSFMWRSd8jEYs8fMqf44P/JHld+/ENYyUR7oBITyM7Ciws71xBEkggnEh8mdnc0P03tMjtlkP2Yyk5/vmNWzYJMR7oCYMb/w7v1f6L4rWwqdt3t5E66swnZNIeYeYGK9ffn8Opua/Lb+bF7dgJKigQ0mZTvO2BnQsvK2OAFD02o3WBt02l3kMq5N3lfj1srVgmGE+mJVunJ2uhkXFwZM5Ma6MzwbfqoXp+ZQ/fsvRXrOGkDhgaZApin7yXGOO3csNfO1d5zJMUXBM8rHQAYYL/Oa/VocCgsKDnGgw03i+tPx5Jr+5lzYI8Dj4646JPVk5Gs8qRPCs7ioleW7iUuqo5SIEabanJgSViacxMZuAC2aBDEq2OqjjXiNOW2JpfEOKnwTHvuXDRogwT4F7YrO7HRiL1b6ztwPIR05AFdFAo+S3unxxgXFdPfFM63et14UXf0cEYlP1h9vIsXVQoVtC01zN21i4rGG6XgK6nySWD/VFmzuI3d4xFRdN6QPXuNHM1E9GHZNZ6GoS4j1OUORDUZXfWqLqgR2edORCFGQx2q1JSsKz99ZwWOlFMSCJniWRfqzxPRxLZYq8E8onE43a0sgl7cVmClqipEG9NoFEEmpqNgdCmZgAessLS4XA51ynpKWSFGMjM+5p5OpLgKg2NOOA/hoW6Dd+SCsD/279V+aQJMTLFx0VyvqzFDuKTk6yjpjRpIwM9KN5KZ9aK528zmTItN2U0QbeBTf6csrz5TQOT2vLNTGBcymEMzfxgIRlr9pOBjLbdby/LhzV8hzk58A9C5CHBPWK/70rIFzLozFpRhw6D21C6R96RHdT0uTLejdaNhWKQq5lTyTdNZbeWOfjnLveGYZslR1jXGHXm0YDiAS4aJuEst2ctO55lpaEphSCGj9N7RfX55UtuShuYZwZUsKulnaC2mIIKnJ2oNALKr/vIs+kHGxdc+YIaY5W5FGM3bNUX4lmkyEb4I7z4hJRlzx4o8D5e5Xde3obz35eSLUcOi5RW8z6CQlIPTvJvuDLRz8quXhRFQ3L5EhK+QJYyZIyewVrhb0ZqJBJzLXvOAwmhw+dsRd6nH9c7Psh9DjSwA62PM3N4NoMUAyCpR8vLt4MH/fY4hMCUQX1OPCrdp6Yh41udnyk5bOVSJcDMmwuUJyq56HqZFywni10NrgcB4gxBdXqBycouHBsz2K9B+nYRxp0cMQ7eUjz58TcJqzPi5RAcvdnd3ww5Do++F4Ls8RGkfuFFlgzNgrS2y9Zl408X7K4IyUkbzvHXW56GJgrs2EDCzsRO4/YR43P2ncw4SH0QjOW50G5SkNvQB5txpQ0TkJGlsgf72PpjCaOKxwNhttcPB4Xm6M1L73RSIcwMdVtE86lHnjGFQxJ/91ZBBgcy50wU+WZrQH1HFO3m+ZJtb0ykJcdFpvVFw7sZ+8BfC9fuuy/3rrGADL3zatQk0DE0mWm1X42qfDkjPN3eNUwEuWSvBym0jDgxWwyNUE+jeaHkqnJIPECFh+uGOidwdKppSAOI1saD8XckHCITiUtatgubwOcIg7GUa+TzT/yWzXkfQL8gcnnDyv65VQnINF6kngdd7R5q2DRScZxC3OxftCRxSbm7mdsPoG3l2mb0gevfwhA4iWKXojH3ITqMXa9CtwXztyPFx7BQWU+whJoFhgHdQXsyzUyFUr5YMz6Ek5OTloqymtXXUtxu/iu+76k4enyPZBGcNkulmKCL8gLNow1HKuB35xXp9SOIzR9evd+MP8QccwsvyJIwVUVMtKu+k8mfkmBfjzkil6wn9DOCA4g+3ypLhtTCbeM63TR70nGXeSc8ZllF0P1J/yLBN05l1XdKts1Le71dzW7MtcacQcQj+OKEUuamrHiKlIzP3yunWNZXOcsCoER1G88hTHMFIVkCDOZW0rRa2U2Eq6QqX6lqB7gyG2kovhHGvR4oXO0VyWX7xaysqEEEh3ulBoTy86rOo/l+Cp5zDsoLaUUSrlesdhPYsvc2B/LVA34blLhuQQP8eqa8bDvlbOv+fZDOAwGp6w1aXUNCajUgiLdpnyiKXnWcS3JKpa9eckX+4eHelh37bdsXZcMPm49qcWwEDfOOTcMMv0UpWYELf3ETRcvpa1pTF4gMmFD9IZ1ZZbuPTi8+2j/4V3jYODqYIiDkXVkItXY2qpj/ZyL5Yjv6XD/0cfmbaxvNvVXZ10mNpOQvmOXsvlG2OOdxwd3XVcqTiswSyOChC/tbUuLPxsdhrIvJBrMWaDmYncJwtA4WHWU22JQtYK4Yl03gQxhpe8wVck57fpJLfnY5GhjX66rwnAGidfAE9jwIw7+HsSkAkWS13XPXJ09CC4kaysr+AmdbD6w9VHN+SeSPXUmTrEFNGWy6rLc0lQ3B3M+11OOq8HCS8b55HndE9PDi6sIVYmtIsQgy+pe16qPuUP2QNJoEUOYNB0SbUvC6FRmEp1fl99gQZJS4Rr34iWmw5dLfD4cmaSiwv82cp2lsXakCjHhxwrwDfrLqWdhwAWzTNdg9lqWl1A03xdsgB3X+GkZ021j4wiY22VgDFNJyRUfGJDdHadSmyVn3IVJQ1VsSf7WAYwCndVgwstVKLvVRaWbxRiP6NA/OXqHMfQUuy9Ke1ifu3fCKJJgIr7NfpHEQxfLbtPftGySnprXv9LcgoxZiTEDY+qI0mFXxQxjeOLo1n4i18C1AGpL8mK9azjhqvm4OE2DVyIBxghs5oSn2vItD684bgPMW+uj6NmsqSUDTmuxfiCgth+nlddHCw5UUu+wIgRlmTu+Y80BmVoI8OD7q+PvIBuceKLE71c6oJl/pGFZs//RhAT/xP6zEBN0w99TVKAxfv/Cwonjyd9ZXKAxvoPAcPXt4gKfqxUZTrI///M/x0QnIj3IB/LQZYIEtCsnSeC3H0SUoBl/IGFCtvhDCxSLmP37FCkAyD+4UAG9+wcSK2ioH1Ow4CttCBcKot9RvDiRdIzvKWDoKN9DxLC7+EGFDB31u4sZ9WX9/gQNmndB1ODLP3mLxAH3kwgd/KMneFgz8YekA/1W6ufXXBOo5Mn9hoq29PgR7Dtp/QB2FZSCeXcb1L6bQi3QDyXA26X0MkX2y4bD5kh0Hxtu2lg9W5RnaJWFq7kVZsF5wD4oY9ba6AafJfG5TMrOXoloEguxN6W0Kao1FUE6kWmVKc+ZWrXtAH1XR1I4Q+aeTSNXOCJKSph9u2LOvmMDEU1bAfO7LEYokuf8cVs/bVjC/cliP83IBL+ncwUxU+OmjGt3jbZbCQtmpow2TK02TTcsuaWmIuPpW+zwLMwwL2ML8cS3W76P0c+yynMbYSaBj5Lv9XsQF+/9SFLi/h+kxP+SpMQfUmb7/Uuc/9lIicfvcmo/mCj5I4tq4km44wovSRvtUS5gLG1MiFJyE5BSU+xJipM2NUkaab50B9kqXhJxO3igoMEOE692izbu4fjiUPknUahajykpkrdryhibhlTma9tbTqqja3kzjszVaqjS3XcQNhirqPZxPUSg7Uq86AR+uY8yNlWBbaaeF7U+lhw5BkDFgcRvaOvnjfVp0PMkQrEuSbj0svWYwzQzhGy9YvYKcnDUBPIIyu2cK+hlJIuZvi/incwlKJr2vaxvF/f8lmCdWsMpU93NZKtxPVN1lrnKQ5pWX7BULwXSpzlqJQmtb7S54jA3U8mdexHQ71ALwpIxxuVFSN1iA4IEpPXoJJv7wlEpxPfgmhMxaNclDJnAGYadea3tdkxYZ+LUpMWpodI2UVdaYYj70BYi48A+TtAHuIwQVM0yOvuNsbJScsOHzC+kgkBmC07ERZHDV068WaeD85hOssj7GECK22vfRC5sz35s7865bbfsAGPRMT31kjoIFC9P49gN7mianbgAFWBdFbOFVyVJwQ5gU5qkGLRfhswPAlFRzushy3n73eA+3fYZ5HTROWrLrtW/ljJe4qwNuVVFWMqkKJLAgo2gMAugcqiSYDUgBsz0lq91nPS5JQ0pHClXJbQRhxJRQZglZQWspJD5dGBVIhq5GzaXteDWW4ae8hmC8gkp50hbOUdTL9jfE+BZqVtwJxHrIKpKxaiOcEjHgA5yK5/MMtPZ/Ntv/tpPZd53OUD7mvz6rxGnnn77zV8d5shWqiqSHdfWUh7rnMbtjgj6Zv1ukq8RblTlGkburO906E9e/Rot6nFxkv0c2s4gjV/iLTykedNVghZseySwvnElHEc7IwpS8LP+lvDVCxJVASJ7HES/uDg8M4fHHg9gdnxA/IAwB5/QkeCDWSEjfJdtMkt7atXN4Ivel8Gz2FYdo5Pmwjdysxy0qAnuEk8B3bD0qjKAGHEpEYsnUi2wC7/co3hWoF8JStKfZF9sfBl8HubeTOhQxi0SNTpyNzhIk76EUj/RuiNHeXpmy+Uc8lSNAvg8VVj8KjkDHycRh7P06Nfdjc317W5vfWe9pxU+EDS3+SXdx2zZfu8TCyilWllKvKxsTiRruBfHERRAvHrptBvd9Y2dazvetFvNaQmM/uTJbnBXyouwnLBsdzLpY+2rbqk5HY8p9/im7W91e72ta9e8dWw3L4Fr6+wGR/MsLkbJ1/WiGxx8Y6sDLLvjB3cOnzKaYvCdL/32NTz8fpaRojzACNxGaNcWqqyCz4TDLvSYwrifzIhqbVyXFjgY+9qXFq1RTrmLPithgp42a+WY+MTa1s5w2Nu6EXfCrcG1zlYUXeuE19fXO8PBVriztRGHm9dv0DjXvwyOSJ3MTIruIXLtx3oUQ/RXAduEtauRaSg3Ec0hKg98it4QTN50H5t0H5s7Plzc+LLRwJvW8cBr2x6zhDYQI+mh6ScivcNtf8kDr6n8wqX01r8M6m1e0NUF3VYkaoVIlxhNEZj0ptYtKqpr1YWlaN92XNDJQKaCtXYRGhQxWyFN1+TLz2uD0Hd9fWtrm89rg8+rR/TqUXgaZj4MP4v7oykBsWRpFR2xTBF9NoyzI54ye3RSiWKoqPyGJfR6hMo3Njc3eAk9WQIRsnrPDdCy/cOH2krp0lYdNA1eJwpUb8eB122vjt0FCoDorGNWe0jQnhC0nUm4v2nZ9GYKSOvfurbjU8DeFkh+KC1dBVGfjTk90SCkpAqRbokOoT+j36dBb5NRcYMH2P7SK1QJJNfylLsESrdrRVWxvs5+rWzqm+nV+vWNrS1/sTtf1hoz0GyuZO6uZQ/7D7Q2st9GXvJRiF/dQ1UMqQ7k9aV4C6Je276+7i+ECJBf7445hxTZ2jVXjpUwXnQaeKGN3VB0pxRT9tuujU5ie7PGQXpEuWpVq9D/xOSPe8TKqyEFdYOvslZYEqbxS3n2G9ejaKDrIdL1SU4i3NEMDMmvY0MrWyh1syupQ1rr5civC3OfsfG2KTXxlmVsbm35y9gg8qbZ0E7wUzEIzOHI9fzqfFzQDKQlreGFDr2B94mg1IPxlwyyn9HxPi6T03CNCE0n1mdPslb7gyBoISX4DgrctoLdoLWzdX1bPk8yg8st+jzWp2G+fTLro5hhHOELJ6Qdr6/v8n9/6h59iAKoydueFKGztfuSfqFffw6LDN54wqWy+Rn6GIY4fCoSaQDxtEXfvOIhoNvdJcip5o+HT2TNzdGI0PI3OtzPE17Vd5FD3bRTPYpiyXyPubyj9N1bsoerJO2bj4mO5XYEfwxOynvMtnt9lr4lEfqtKx8SsBAffj4F7e3Sjy1++xVW/sGrDz5ak2z5W/TTOA6jWx988FE/j+ZiK95rtYIk2mtV+bRFT5hHMUAyDFZSdFo+ImILH9oorh4QI15pwQ/UgSIct1aDvb09AEBxSj+bXQW2HFYXU3V5KiTodsMoWrmKp6+u3pRlSvTz+0zGJUbfabYiRsysmbA5n9hSuqSTDsYPkeW+cnVFXFwlCTZpXnRQ63SCijr0/urVVXk0Lr/bRj/wrsI/6YdhNf4kvCBVSUYlgcrBR5KlhMJ4ZDf44ourV662A/rjy3bwxdWTkxX8dnKyevXLLw3EqFfHvUBv4A994wt540vvDQ1Mv1sS8UXyJGnScfM7V6JEH5AdyWOuw4q+RWLi9H41SY9DJGp+cVW2ipmz3P1cVvM0xg8QIBH5jZ/p+K9+6cD35gf0p14THehdGH1xuiDaK1eRAkYvrXAZAIKNW3YF9lK4IJF0H8iL/TRdaU1eXHTUNkyovNol7g9XxIox+65crLrLvejCtJNVd8Wj5K43+JO94Oo4LDsvwourrxSy6KJ9bJMfgrIY7FkEnubpfEgiMPD2bNP9Okmy7ovyZ9oOudyLy53WrcWxQCv2OL1w7UV4FsqngsAKRR3zWVjOswGtqzb9IMI0xESTs6KbxdVaNp2sockdbePnm2txub1Gg3cmk7QzGNMN0sP+Mmh7oCDIYxPaIb+1hF58lIVn5gv6UT/lb6LEfsP0z33FX4fBmNBu781krqUWzNN4Tk+2xNKxB/L60w83b9wkEhus7Kd0M8H91dYt7+OP1sLGfOUUJbPdejolyT1A7MbC+OH+rKpQ8wVEEtSgU+UwIdaWU9nl6BKOV5cMJXOfjXisCYkkreBikmalbJz2fX5+3j3f7ObFiBjR+voaPdsK2Ni819rYagVj9MCt5Gf4iW/nF3ut9WA92Nii/1pLJ8Q/ADG6kzyjVUvxo72Wlu+6AzpnPu2YuewHID5EF/Za7Ea+fAbv8Rd5kpnnb136wkfcTAhwu9FD3v+1G/s3ghu0lR7+7XXp083gGv27zv+ah74GOOLVS04XR/aWgy9n/78+90FSDOC/oR30aL7BXP4u9lrbOFv5+g3vY6rgoidvzfE3neaG/kp/b2IUPPQ+Y2w0Btl4r1G2uhs6jvyEkba7O1syFv/0Pmu63t3c0a3Jj7yyG91r12VA+fF9RtTRdGmbOszG+4yx0Rhk4zuN4k5K91M/KtnvdzsrGaVxVDzfG8e7BGM/WhOy2yDca6DcHl9ZI8bi/TpLhbTG2azJYtJkySTvyHeUtD+BhnApWcfC+InmIt1im2xorbmo77FKtoCdEQczq92XD964Xn3mn2bFovK741VrDjPQn364tXkzWFv1mezam3YiL//TbKQiMddtA0LvGw8dD/zTLHQYfmWXeW//l29cJX3/oy8SbJcUtBeJgEI3nE7dOTa+eONiG89+x4V/tDZLVZJdI/nV6MtxQT+JP1kkRvzcggqnLjjzOSwIHTgRU8G6hqzMX9cEZplr3Ks9wdu3u0WxuSeXOfF0reOertqTsnmoSVyFrVsHXCrzE/RP3hDj6GYQ/EUQ3C3hq4G186l2EzlOoOtu9hB9x4/ss7FmN/DMMNBwlOja46nNXOUDow+YHHXviE1dEU92HjRl5ztN2bkmr+ugLcKjvvQQuiNBZ+Uid9DZbn2wVBNJ0A+OuJO59bcCcA2IP2T7UEcc8h1ELUAybKGRd9hJw35Mkp/0IdGk28fmkVtLPwZwLiLSO67FuvI79GfHBFvUF3PHPINeEy7gonXrki94QcvOxvzzXRaK0I9OLfSjvkguBHVQ+/7W4mff66wabrD6/Ef40pUvbt1qfGBndsTizZTwvS+wOs874rS77PqOz/PdQEp2+5fnffzjXB1i51A3dNnqjjmwjpDRrKvxwfe6sUl4kUxmkw4jLIpiok1QR+h9Z5JMy/paHsrjwQNu//1EHjfOopWHD54cEYF5h4d+D3eNvlkdbrU3K+NL7xtPqc/uU3rs1qVffT8aEpZxp5S2So2leA2XaHbvtx8F0JxjqGN7Yog1voGrl7Z+IrS99LvvdUauzLIsqOy4esn1xb2pv0Lr1pu+/V4LbBb37ZhG6fXVXVr/uHXr0q9+NHSwIYMNqHOf33I/fz8Q12iuxkTm01vmp+81icuRqU/jgplat9zPCzLpJQJ17cw9vZd+FIHolhHMPlgiCWpcPgk701u3Tbxvsy71yjJv6yoX9+Yi3UUtKySxBaUV1FAgUpqWN4GwlGBjlzGyoAm8qx+UZCdxoeLY2m8c5xJXKOGe50TFMOx9f9NI83wcJ1l4Gr4geXmtH/bn4Shp3bpNP+x//EBWghrxsdRBRwsSDkJTvNEmy6ZTlcZO4sA5rSAqTTc+Q1wQ/BGnacdkaw3yqXQ3rXJpc4rEjblt4jsqwkl5kxsdauNmrye6DdaVwV2fLG6nV3Q/WpsS4JAKArvJcon2EnGVDiyJotjK5WE2gGNXQF6+ImWgmBFbe6PAfOtDwTZoMQSdD7JmP5hmeJMMoH1VTZaLKarOj/y0KL+a5TfpYAvujScJdxragcQchVMExLsg2F05C+AZsPwjmFaz0S0nDusH7pGjWZ8Lc0s4fS2c+dhGm/aLODwtpSGxIJgpUImQeikL2Nb0KmlFI6PinhFIy6BkQ9E4J4zDpF0zLqkvKjQDy/K6b2hjGYL1CZc5dssCrER5ox7ksjAxCcjmsPXQRNp7sc02lN1NJSHSiKrR5hycItWWVK6+aZNsQre/mlmcoJfD1PY+0w0x4XObM9dixMrFS0H5Pr9xzW7wQOPsTUuGwLQfTVwAW2pC1laO4vgd7Sl+yMBmp7fdkQhUS2touDVmqOhacdd9CIBnuso9DzmUsWyu2oQs2zaDvEDvlg8b/Xl2pYeD7ert4p1tVo+NrjFtTDk/hu+N8yZWTLbBaq2oFgOA0KqYO8IlORIK8yGIE92ntl6TOEwXWOfnJUiST8gNUTQ34S33e6y9ZpfcsANiPpPSdn+1U3NXOO6VfVEVYb1QPbenLgG3HO9tCy9qsid7espgRXY3RmIhhie8Q2w9Z9VMC5LZC8noXfVzMU1HnHoWKALNXQd2dwdtLyNDcp7oQlB+31utH5LIfaeXHJr8nExG4uoVKmvIa3cKMwC72vda7GXaRXOan9xsGbotGT+tYI0GGSYjWh9mviXdRbqW3nMBx3chzLREbxjLWy6xUFxqfHh/9nLZDHX+sr/YzX2GpFruTcNNy0up7KeVgvdNYxnb2RcBo9JltTKthpgTo9FMCIuYYaob4jNetHgss2i8/36XDWz2usF7/eGoGIR0IpY5AnE4Bp7oJqRJxc1mKL5FWpavVu7kxzcXSWpYXCRn7HMN+zT/xnqv2+vdWN9s3fLi/BHKKeQSOVp97Jbr3VYhOr9HXsx/FQ/GWfLVTDIv44wwduASOho9P+us00v2Xqjm+9M0gixRLWT2/rTgL7isJ5NxLUeIhPgO96zCJDPXD9BcVaxUZUEKEO7L6cuFAT/04uWWTNIZtZ+M/Bdtp2RPfNC2wxhqjOIAQs+kOZPmBU1B+k2Rckv7rNRkm22YkpUCz1NHmxv5EPa6g5W33bLNdGjd8sL7AXxyy0Ykxr77fpaX3aoL+nfNd7QNue0dzyVDpaiOPfXSVOFk8bd+fCaDhA9diqJqYfxy4aEymOr1tKXkhLStbHZnAkhpUKseoxHPb987ClYgFRIx7mgxYn5wFQl/B/g2IqWp+Z1LKpUyCKatrbZQlNqow4TWtnKWhBD9GTV40En4Iue8hTPSQux1Hi+k4ZklRihfvNJbxdC2a6FWs3cYx9mOH4G/3fopeqTcPOLjA/r96vM/7aKagnz+0Ro/1K49/MxkDXP+nsq8UhV5MCYJATPQMD9rDLGywavSHs4ggbYugJ8NelPatdQm1OIskk+Yzyo4pesr5OlNRU1tCdvGAa5srvoB+VL92h7kvhYdl85N0n0P7bW1tD3tW/GDc2neC1s0MQbxTLMFbGk7llXEKdevZZnfS/HzK+aypROEKJfETOIvyddIfVNWadr36rINWRPEsRk9B9wumbiXLUdj8wBWnhwcHK76GYjaO8hLR2RCKCX1BSHNuIqZqLsn6beKNqLoARhta7olqKxk2mRjYSFKoDVnHXBjO8CGyw/GduQLeQBh6bYRIp+rdFY00+lZ1GZjSTeRbEaATWPV/sCDU1n8kg6YrmVeu35MzILodAh+RTjUbufuzitO5eV6GkbHCs/CJPUSN5uN73lRnENFmJhUzEfMuUgF66Q0Gd/wg8YFqw7alRltz2ZonoeGYzlnp7t2a6a9dl0oavpgFtws7y8OLQxZl4WOGlotm69gXEpNPRGTgp+jZfdC9zYpAoVuMEFSqe0WxWfmovQyBDsdudH+Qlt8C5hLByyrODOvQsgugyXRL+QKoxoJzpG4RNo5z4vUyAta+KKeUKwlyuMzuTrHr0OuaLHX4maDLZbGDCnidLr3IEUbvfXu+ubOxo1LGDcwfCQcc2lanra7Ai4zXwebt+A58HK3ucGtlGTqe83+6qTepmeFjeaUrnsrBhM2LPlK2ke3NG3h6w1xm40tJdcYicbPktNkCjJm2Dkpl6sm91+mrEQrNHxRJ7DUxJ0H0YKBZMYvoLxlymN0l6K7Mf2aTbdL6Jl5Mc3ljE39IxVZwLd0Wpbe2gGXfOByKpxzLbnLOgkgiKgBqfMIYyS4YOan0twuWsp9sD8QOxZ+fuw6YMoH6Dm38jSexix+MK5D4C1XP1A+SvMU9KfVSRn+vp8qutENXJNGbovoHeoLNjUkWh3LZvR1cMfShFiwR271fl5N8+qX++3g3t3P7j5dNfY7RtiOSfP3XthPh88YB+9mZ230Vjsa59PVha6a745C2rh9r/W8TwBwuhylmoo020aJ4I69Xtucun75fi/dmBHFlAqI8IPyF9wCVUqRh1JkRB50j3W4Jjy4IkcBCkFqQNC33/zWDGr4lWRiRAu6hM1lfS+xSPNTiW9wiuxPCS5uaoasT5NAUl1pGTRKIhFtWu/I+fZE2XpWmscIHAyWp0maltoFCbvR5kVWT316KFySC48KS5WCCuf4VnVUY7oLjawNAljMzVO2Cb1PLqUIgvbgxAyYQAiIK5JUJ56193FGNu2RD8SSUNd73KjL3obVOsIGMdZKdNQr4fPqil+0XrRg3tU4nhUQoAbBlTE9JdUfppWp/YA6ER/Fk1uAWKkti7xAgjv6bIFAQ23mwjQhd+8WjijlElUOlhOp36SzLU99m1lhrm0Zjbr+riRqk1h5ms6415WnXDuYsKD43qTDQfwC6VAMUOhvO/BfIB9gLe4KvCKG0pQy1iooDDCGps7FIuIcENL5C+If2pDTdgeGSYvJwdRSIi0LXYEgzruXrRQrSVbMrnzqLeWsUCqEhFipgWN7tc7YWErUuzZpUtqCycgbJxY5wwWJ/iZVQAaxOEuykm2wEODQB5aFf9tDDROn6Dqkha1KKaRnGZ+rF2xB0JKyJaKl1KIUZ9NYy5Od5x36ubJ+QUxleskyBukX2h8lTLhh2cpQSh25G2lzEafU683NXA/d0dmgLT4XsVi77iN08qvaHrzW1BvWyyjy20rUXWgAV7a/MHlso7UxP1fEqAbGshq3igpLW6IIq+G8KxWGLsW2DjGy7ycVcC/XGjP0eTUfreH2SyAnFIudKjY4aC0fkNVA3kJt4ob/p8HgBXurLQXicc87+f2b77AcLf2x3LIgmFRwUdGaF8qwPhwgDvw8s/V/1FynVTm1hBQfW2Uak/gIydqSvttWFpKR+hhaRmTLHmjitfmdK2+a+IPUuimHwZWD51x/5uXKRTuYP08CEoP5z6+fJ6snr56/TPZ6r/4su2LqB165uGKK8Imwreu4Qu9eMQCCjQ9sg7R2cKXQL/GamIPUaY8V4E2xAVz52nuOFUBuMYgH+S3X3Hls67m4HXNdUq1waLZdzaam2FxBgCPkRWQDXlYWnIzir2jLL7NO75X8chLldDX6ee+KhCKoPZJ7/kzh3gECg4h2qpmU7bCSgztqe3deKyLe8kkVzvjcceq0aT56/PQCP9EfvAZ8gKq/z7NVd/4nKa0rCfivF/JXdqVhjse6aFli52DZk0ArSki+ocPOruhQAxwtLkhsNcL7dcFI6U0u2l5vEQfSMHj6QoI646KZVM6CdKPlLa0dqHYnZhJ/0RjTE2tI84/BdZwFmyuy4uxqRfU9+6IiAlfIqtijwAqWUxLzIDzLk4hds8OES2q1A0J80HJcVhGPUCdFM9KluzeXF71IJvBUSO3LUQcm3DQZ53lkpBXfucm3TxIYbc5MyH5qYqOVUe8H+ZTp/Eo/HoTaS9tvkKXEFZUHmBktnFy52hZHGsF0lE9YDixPg/WfBJ1g+yeWUmh1z2hWqM7HK6ypzc1lK6QmRU1hUrpRMy4sUMuxVN+AxbI7yNd0wHJNivmsnXMdl+dS+S0hkbiE06qPUh7eZ2+PUdLhtBfh13EH3uiOOaLWLfOFNnSEq7peEead4pfCDBUgp8mgXBuPO0U6HrZuyTCunrM5MwzY5NcEV9+PS28bRaFGY7gASn6/3cBGrepWQw0PKQ234deTbCAFwsPUcKaJ1scMPdR8b1ZteOMCq17GK5fK2RDRJDfhPvOA3NbuDG1JQ3SclDp1ififTftps0e2tapQxcpfYUpQW37MwnJuhHZt3r2UgJHobMSH5QWZPBFi/+DmO1kzelsbvW06lVphKCdEhNNpmqgEwQI1nwq3ZM3LshNPCU2iuK4CsNHTryVlA3PUcHGuBaFZVQzNTkRJTFgFCKclQmmlJWkoaoSeecfnE1OUjppLvcDEFtGGEdj4/I2NsFxuJHSWL+0orXK82ZfVgUcxOx1SotSpuZZ2sH/AoZO00kzdAyg6arbrF74cSuwBh64YMZ1BgEQjxt5zW8ZWylZKdWjAjTLLODIKuoQSRSK7i+XS842z8Gtt1KxVq3+cI90ElCX8y2tqCFB+esg4i6HBSgwtDhvGBzl0CI/EdZuUxl5nJ/IAc6lSvv2OtGdnUSlHe8DlKADIXxU7GGFLv1i79R1MfIIUi6RjOZJ0l5KPaQgn83g+hQ+lVCccQyYBhF06f+Q81SB5XHq7AUNAK+PYlc0adS/kOmp0ryRisYmMBEqvebipvMmOxNyrzipkWeDCwKmRFM161C+tS5IDlNuXGFZgCkMJZE/4MFyBd0AMsYzKmCISNTlx+WyVAPh9grlihqa6KjxIPA/kWtakI+vT6vuaBwtilvqY9dNbrMhy3W6dsykz8sFaysHYAOAOR1kOm4qVRh6I54aDvBy5hknQ1RT2y/lqtVtuc67rKn1bCnckjjMu98utzpU5Lt9KN3jofUznqZMxmm50ttwUkNJsIXiH2QCLsOjkWszRi5KkA7fgJ9cfS2UvOdn6k9rAoxQKrMvX7/2jciKTIbOIpTAW5lq3g7sHwQoLc1XgU4i215ZeAVXCJeTRBoOxRKpJa1fbNTidBysWIrzY7AV/g78SAP37hV31rnfWe6g3JXcZwmfeQZHppFr7cDalDeBMh7BZDeJOn3WH1q1P79zWEICnh3+28VaTeW+n1yOZ5tq1G61bB7PQI0O9axjnpjXi8IwBTxOUCet7JvYt51JENOEq8y7E9GdMV/lU/Zvnw/fZClFCPju6Handy6smEJwiYoK1OonoyIdDnYRxVwM8uYYvwkeNY0JcyxZEUBiQA+VrSiBKqcMqbCmIJ3hJ0WjvrnlLxOysiWPJrAR9Zsp341wdY2/+XuLzNYgoFkVo8fsHbVpLE1hxXnys3MbdFWwS8qXI6Ls5JLhKux0+Zq9Ozd8ATalEtXSYcY8bB5Yo+TAknK/8/SF/q7N+vSMb6IyKMILBbe3DcHOwyED3N++wugOUk3pj9W0uqEHvMv9Gp3eDVCIbL7v2YRTH085XHeWIi8s4+OUju4zzEJp1+DWBw+9FWHhbaK2XO3pJYuj3Cav1R68H1a7cTlh0zk65wwHht6lsiVMax+lUTMhBVIToug1BtxS7HYlnams+c/xVCuG71uairXI2h/g0IWvYYDtJNYCRAGmbHH6yhAh/92K8rVt+8yJW62vlO7ur9YDfRp7sQirsdwj1bQ5Zj22Rca2M5/whnogeq3gDqW/ApEASiugvSQQQqyX0psIE6dd6azMJUMuOSaCpzM6UqtDRe1dl3Gy5xu37FuyjOCvxRiONQ5MY1GoqPaK4OQzwys7TVlepjR9ZSGoADadNs/GA1WyZzQ+tX5FmSiiDTkyDR42rwarrxB0QQR9xRgoKJczShAS4s1j6VSHXTYbUndNJwKFENJSZGV1sJcKB+EtCUuHOAfLEoYhbHc36UPtGRiKRjnAo4ugc0bo+4rUxgYf3uVnvqtzYGOTAfVvlxLVW9eRtVkXt6DnV5BgmwcbpBytHxw85YNQ8+0y9PwvX9KAyDScWkivOBUY0GQL948/xO/IHaLkQJQQMB2EhcZjWvTzIRwgptOELrreWymmumRKHKy6k+gBw+miNcKbtGHBhJvNloMFvQlauIYxrUnqS07ScD8YaF1h257TzWXcQrj2EvlSstW7JD0HvxvaOmjcYX8xFb6x3NtftFb/h/DlxZ/nxH9Lx7wbNzB4xUlfNXveiNKHVRXEa9lNttQpzRBvq0MhmtwjwRYgwkzD0MIJULT6ZDNmE1gQ1y4yCUkoZTntyPvoTI4BOZbGflt1InrtrwpPWMF8aaq5zLVMpKb1UpyFbWVgqOZPGM5pPZtzEYwiO/Lx1FCu9gzY0gLlCbO0IpY98ncGqQQZFZAYjAsWouQwztIZ+EPny8cktzCSzrnpJWA8mdp9MZyPWpmvbxCn5JJLocGaXrHYjDeKVKBLZOcFoUmuupOK0Jt4ABgYSHsph2IVQw5BEOBgECyZIGg9sW6QtzR7Ka9lDssrvJ69eJ3lVqdvXzujCfEGHX7B5PIv5Nk3Qmk3Uq3f4moRTbKqZqdkgxT7BQJu2SPvk+U1tBGWL8FxDuX14kdZBCYty9JCoGqTBhxIAdNPd/iL9CctlOYUc4pmUqsdrgDBhWVtyqyU8yrZH4uZZcbC0748aCjj5wmSFcBbvZVmBRgpYnpVnDRsuJ5Sb+YiYUIkXX0mKJKtxfyvkF7wpmU8FobeX7XinKhzvLy69w8R1AerYPyGP6IKWSPn5ymthpRCtF2S7HyGgiqSkYN/PTtLeZWI3LQ07ugwsxYbiSLwa6Wp3BtkXWqijgSXp7AAsvhLde1DbuwldXTQTxFn33AS4smaC39b0Wp7XBnkug9Cl0bWI7RJ+QbYSGZ+i6zxVTmOQYXF+swuQpZjYyHZsvUemwQUXoWKLE0S9DAmYfXg+V/YfPVr99pt/JaZ9z+rJUt6s0D6v8n4K6W8anC4ZR4KMIhDhoTPCEzgTrR6Aa5aV8tLxjAOHaeGzqUvuaHQ8k20w36MFunWVdTWkmU3+bgd/iArYxG07kFhZFHo+Dssx5zFa+eHofiO/zr51ZN4K7stbqyypJSjaAI8QbMQ4eB1TTtYGgjlbZymdToQ4qqAkHl3EdNVipPqzwWlsHCRjOnPOy7Apri6SIJtxy0xuOCevJGpiMelvNuTUPWoTbWx68Bv8nOU0r5LhfA3e87k7L7qlx583Tmzfg7xHCjGPLMQ8Hgefx+F41XRCVazzNE4cBg5Szc7aOJdF4CJGUQ/6ru2s32pX4e/0SNh+neVZh5jEkH6IYkcLOFaSxIYCkUeAyFRc/JqzjjvR4M2Mhdx06ILIeDgVzZHFxQvnLo6ErTw/1o6ef4AL01+axXTYyiu1pLMpGiQL+ZYcrQ+eiM51E5KOsT4BIQs93YDP2VCaMSBFWrmaZHvZPWKIvPwJfdy0KGRlH/sxadpsMGT3vxYLiE17Mhj8wtGoiEc2t8ZY2wLrgeWeZAnH4ItHkMb5xYEk6yFdRQwNHAVWEg5p9sSlwNY0qq5vounKxroDtvuPjp41YO1+QttFoU0EHD4Kz5IRx9QeAeoDDiZTLDXFQ5wMYLzI70g9eEhJF3lu7Fe3GLsCySHRD9WEwXDIrbwz9gaoPI1g/bG6b2wWjzyhSRyhoKyHpxwOrDl3mhtVJhck+4/40lkFn4ZiazSJs1rrXLxDnPViltcNcIzSmLIkouKdXxrOoRGIBZeYYOm2HIyKcDoufZrTz6sKzRTlJb+HM/HlGQKGLXYo1Oijxs1O0gUov3QWN7EvwsvBJqDda9lJsUB7zjOTL9KWzXCwcmkUMqUbmfYTZfQg9sWzi5rMcMKAncMYW2ocN8yEOpcUfFHjGfuY+b4YYwpBVjZjc+URxR92CfMsbVJDqiTlBsN84eXCiXUD7tE74ZwnWaR4B8x5wlVsytqw1K6tG7nKScQ9t128mFBQkK22o1b+2NyL14wtlURMWDvTCC0U8o7MAKE7/Tw/Na1l6IOkLB2i3tt/cHTUwNR7+g669Cw0+xIkzafqbNWYC9e22rjnhQlGiDaSroZm0+ZAStuSUZDKNjz+OJyRgI26LGi+k/RnNqyadmU6YVs3P5oQgAWhX2qlZUXAzpHe50M1b9SGYqgoSWdJt/a1dVmxqwS/GC5jRE7HZnSe0lFfm/imZVzciEonzCtdI9FLRnNKRyzSkj4ASIqSiM9VGhCRtlo2xrTTDmcFkyQZhtfGsGQGk9hRdHeoDfCOcDPivnAdCzbN38E61ibsFFojlpFlDqS4b1wDpI6UqyxKGSpdcAIpydm5izPnccAOWEbOkjKvOHxr2eXxnbN+qZ+yjOcAILhygTBUOqMrJ4TuUfzy4hU+qPu1Wc4PjLJw5QQpILTmr9oBvR2cFPyrRMSWVjg0LaCNldQiPAeF2hFq03L7WNEi274nlnZnmqsKAavqlw9zQ4H4Q4Xq5aVPoNp9rwyOG01PGzsUnIiPXuoh2kFHEqcEC8zPe+vvEGGWdAWQ+mhjBjhDu8C19WssrErfwQ6DU8fGnXfkurvow7HoIfL6F0rvweWxaHe4uzQLOI29SNESz0frueFpc4tboLX1Tc+0kvfQurX4oRdAuOieqpe7fEMdy+/lpmrMUndVmbpCEgdqraex6foHOXuWiGw7GIdQ4GPNmLFWrH4MKxSxYSMaoPdpRKoHD2KqgViDQs49nUpNvQdlHKldb5Sb2m8EOMF0PJeUdLE2Glu4dMcmZozctanmVJQmwMFL+haOXLr6ealJtK2FWLpctqYTm0hcJ0dI2DIk2l5fn168Y9kgwoh94LSR71gWCnho9fMX+eBUIgERCwy3nDxUjuM0Ndm1wzQPTU9P7IDdrZB+8CVrJiKcEo2chLp96Q2cp6W1PcC1ADauHawFzEPbp11aNr8dhVGsfJpPEVatHb8HggVcrnQQr+kq1kabN671tja2r5tPOrxlhkiuE9/0a+vqtaQFnrok+8Okc0+K07SezY02me+TzG0aVrZu1Ttu2nI7bTVWgkurQP9Qem+iWrg4YNrBL2zvTICsqQNhSyEwir2pUyebXZqp9oAdbvupva6lFARKuEQa/CR1yxrJH7pKCfkxOgb3C41derhWQexMZwVX4uHiJpz2yumasLpLKQj+ieAOnlLN+mTxmL2RpkSChhfJJKw/lLGdUrUpDbCTRGLEFjjjtHQzZH+bPR55Dh2ZUNJsgDjWnGR1caYN2DJOQjaHj54T5QH0Ix/dj4OfExmLpCKEiXqHtOrHXmuqOBdNC2sTCRCGzCJiED0+F85AQH1g3mQjoB4JbrgaFn8rQtKSCxzJOXKZSRJcij4sq9iWlu0oxdzjZQyVlaaT+w+ZrAImeSvXbgef0HHCQ9friJqhRUpNllwuJd80ArbgrBp6biZL5di+MceWMSjaXUpj81S8XMaOwJI8109yiZGW4Nobc5SXIyjNSG2W3pCarQk1mdTpiDj8FEWjSs3N5ffZYyrFH9R4ZNMyrTUAt+bKx9krv42UcFuaaf/woUcI3tzn9V2Kcm13exsb20Qo6p1kXV0uDrvxivaJS+K9srm19SuqNvvtZl0guYFd1IUQ0NUQZDnGGhfk4n9yjzYPhOslhFy+0Kbx0JUI80D+MMxfnAVJLytaSAqOKYpk8t4aFSv9bvGs5mgRMNP5QBnXD1iIzey1E04TUmeV6t31Kx8a4le6kvVY62IdSgtCJlpnYZ1evAwkVw6iQTXdaTqjUVAtWn6weSiP6QXSnnGMi6OhjgXAww/DifIBscwZ8t5Rp3fN2BM7uAW2e1v7tH4icxWISM8jl00rNXUXstkrI+95xS9NTmuSWQ9NV029Pkex0GRouc3Y69viNvFZnMImQMSJfX+BHohQdSSWmXAc/b62m3J1oR6Caxr8vgUR0AcYyaTx/8feuzXJdV1pYi9+wq/IKXU3genKxNl7nyskUgYpUmI3STEIqtUtkYYSVQkghawqTGUVITQHDnt8Cb/qL/TIakf7Mn7wm2PCEfPkB/+Bsd/8S7zW9619OSezgAJISjNhaXqIypMn932v67fW2hOJsZsJQZcklR/epiwBZTqkLcomxsrAlkOIeWmK6sSzuKvqUjk7pwu1CFGwdE9Pc56WFO4UjbZPNTZ7HGCXE2ZeEbJvEVpzOTPfMMel2x8hkDciBgS8ScQvNmVPxO/q9HpxRCYDqdAq5JfHvCYeKqVzSWdHk2R9njaxzFl8ZyzpgAcmNN1TNbbwoZyK85wma5IkL+VKNAfIQ1Valhc0Va0AFlU7brp6hPjLr+7waCkS4nD24Y8OZ9HtwFAAOB4ij0YHz3E8H66e7UbMg1REAUbVKcxXZhDxQSmbWUaYp0gyW7EyOzqI4sE7N3SxhXCxIvvSnOFYGS4K3S64FYZ90+W4M/vl18jwecA5Hs4O1scHh/j7/vpYPspU5bs04ef37SuZ94FMequlgFHQU1sA8uAA0AP5+LPPPtKXLo/XZ+mT0h/79OLFl6Ra6EN45Gqj2V6EbdlmrsugTgvo0dVi+pEybkQzaMg9I7w3WYViOlv8SOUamD1VPEekBtbg0ezgB/GX78xtbgcj4M6qCAkBlAHzI+6OEhEmlezEaalstAj0I5yRzXPW+PLjn937HBESIFWK1Y/pfDNqJJen/Xp2NxEx3BNUcn3xIh5qUElhc1DC4THSHz5eP00WW4tBk8OoHnhdaoswPVOBVwjJw3yNeGLkGL11AeahZ0lOhAJkFQRHP/ZT1dHlBD6f/dW9n36i4VwTiKVK3RRcn+t1SwGbmM6PEgQfxNVmonaLizKu5XylhJmQUPmVkv3ZT+xr/c0HXDR1txW/5FARkrk29Qk1O8/yHOcnhD6sjtPxKcZ6UZKiRSxPUNIrf4uSqO1fGYRIipUs4avMoraU8qPqtdqMXD5GvBA5XuTBj1RsbigEvAS3pXYDFROu10i7FCewvUgiHnNMPz5TnVGP2GL2o8tVPN7TmJ4YzJOInrG2h+tN5DFqiwAQ8jWp1I/XX5kiUlLqpN5CclWcgjyg/WNE0hSIXdD5zOKLtH/k2eam2l2DGPA3HQIP3qg30QLUwxuDWbNAkOkSnI9AcQh3UxebBTVqWxZ2fyKMWa8P3Y7A3+CqWGKzOyC4d4zsHhAcqp9xAimGG2Q0aX88Agew3wEhujNRO8KTTcfdiZ4KU6Fwfz4lObDFVK97sYo8IbJC+y5AMIadxJ3i/L9fHnF7I8X6jmLlKFYJ4ZoIS9c9VT+Pwa0kWfE0rU9jcLg1u+dIpazY46SedkqI4Syc8okRUYJJFSsM2LidzdX8ez77UAcCEpc/ylIfcrViLlK88DkWQL8jKbkXSQm+5bO7CGOBJSQ18n5ccrz3KcNkExn9O9l9HD26rJan22cGR9RT/9Y20xk7l0u1E8g8mM8LMrSl2xmtDGlisTxqPSG5XIr+9ny7jsnecVOmOxBJjjEYAwrqCFUHQTTFwz2/yjazh2o6VTJ+yOldrAydQYqQLKYXq/zq3pNb35p9FiX3GBy3Q74t9cV2v0gfC5gw6VnSCo7LyeqwtmXeCz0IhWgOEVVjLQ3hcLmlbJFAW6lwUGK6MEndQUbZ983XcvR8nD4gUmc9kci4ByaRl5UJPIjdZYR4zuCR8KJ6a7fq2aUDPl+L7yMZ7YcXWaaKUeoTsCesnScnl6fIVs/Y253s9Vba5/tINnvvIuq45Xys3EykxAQ+R7Sj8d/zrxTVtqOOivo7f1d0ltdMWlz1vq41XcIVqmjyGTFZO1NZRwfgKFc71fB51upVyYfDM6Uha4Jh8xBFaEYc8wEs83nebQcK0UPZIuogvq2LFETHIuCePbpcpbh7gLRnTdsnI9E2pvkujAawFyTYkVwbOb+rEl5saAYadWSEIzPvUs7q8ZLps1jz50Rz3D0+O0m1l+SZwnMuU9b3E2CzHssd0GyG6vktn6tSfqlpJy7Vea6gcXrobea5ssTs3Z0ELhHKkXE+OjurvAOqgyyHqYqFrstoevowCY80xnJvoo3NXPqXUf8c50k6PjuCUphS6J9otgsYrDc7AZhP1xo1+2Qek9bvMQq017YJeGHq29Xl8RnLd5hJQOd9YsVusqVwjb9xS97ARhDvyp5UI6+2EHxIuhK7L84zTGGR4sVlI0lUgMgoO3GZOV+jd5Qpx+zymDexshemGsYfyylfaBELa8mimO6MY75+Hq2s5YIVwm8KpEBKvofP95+UO7P1QzjvaPJDJPlkjiWo0JyxtjQGIk0umKN1eQ+frJ4zN5ESIoOp0EQaHSu5rNI+Q5V2YPzqziSTjYmOYFCoiwS/Lg7+I6A+HmZOeA5tcqYhhlvR5HOoBhZSbUEIbYpUM27PvqJXuxZPK4/AuHqt1rOZhlB8pA/nbtpujqsD0igiOWXOhjuhPsLNTQMoDH5l+oNCVDTPRrLBZ1/UIzQorR3aWbmIybPVpWLypNIH+ARX58B92yYoJrzECnNSHuajBCabzClFOo7n9fnuqO286DGJEBYSe1wKzV1KX1cUptJyWOQ1OHGKaZ94gU6Yym25S/Z25hNU+mZA5575ILO8LofhCtL84tkbbdyl3FkZzcTsx4uSuMwjEXeeija3UgYt1B8IuYfwi91+fCYC5G0FNi2FQpxGIL30+fRWufe6PAzGgwP3OOWueMpVJDvNDsP1xSSixKAkZYnScSHSN0CMjBorUSIxSf3VdUhfVl/0DVLXv6SjSUWflABydfLe+dmz1xXLmqAZH989X17lI5hWBkg5SWPWYjOXTLwsLphFZi6XHxkDzK+JcGPKrNvHUVlF+qeZjExBFLPt81MkuZGjdXx++WiWloD3XTH6SEM0Y9O8nJnTrYvafvtwSwW27/EzUQe2K9fdVoAbShppqP3pI+TTZLo2ywO4ZYUndWZHnVVITVTljncce9+zFPuWUHuale17hGworCH7ypiEbsViNzm1cnJboaqHUOTTBH+nzXlMuj83z3Cu/bZjwgJHUOiILnHpjaEZZn1OzNKFrXh0Xub4eyaVwrSFld6mIlFy7wsL6zmdVE8yvXlJayGJu+W1N7hL8oDnwWszKSuNgfmzHUMUxUePQKdGidAMRXuR0ufTPjSbj3OTH86Y2T7+S9PC4azIcW+Zy8cE6Ok7Pz21MiYrlgAZJQc2LpCLAmihNMoJUblB1SnKSAaW0EKkNVY8Xueo+iCKSS3Dwjm+Up0A3I/gs9zetkxyo/dpzVtQIsZz5lIeOekI1m1jqqeWvIvpUDaXbLZEdKSh6aZzdFsbOfI7GQpD/rs+tQIyIvBDQWX9UcOHp3ItGDM337w4SdaMGWUnxbqsgsgoj8mWWBrOfW3AFBmMgske5sdgPAWCRGWsiMnQ3h5uls+2GWJ9BPUP1Vdnv75UXFNSSoq1ojtkbGi7JvUNXqjv2fpJyvZ/U+nvLZIETT6joOaYnUvP0Ookldt7lCAsmV+UxBKhQKcar1BAqkgzD5MZ/nAH9lkUEi3aLQA+sSxQChFNEDvkkJOzYUiWD/V2nK4uDiHJjMWYw2TA1Mtlwp3Vj9kWvfGiQK6irITSkhHoB90/LvkHqO8I9nRIomESDElPWfrJ3PSxpNMMId46+3OwnEmJqVKKP9GYh5z9L3uVJqnwJ2oPgWO6a6ChyZN2juJm8LuORpD3sQgvTk6tpSmHxXd5qkuNXHooAzu2t4ysbnn5YaoqfvhTZvnLX4LHMSO6Kh7l9DW0VUi1nkfFeUU+vaubaBlEPb06i8stgHpQ4+AsW5m3UOgZfXkbhszrvLnLD9ZyxpdPY0q55wlWcRyxZ4riMXsPY2sia9PLfJrJGpuJdwXK7faJDYcHWEVMmwgBCCeLWY0sFNKac4UUHNo/vzV7BlvIkQb+WwbiB2ZJTcuRCGcu0ICe8upZyjYhGLsmjXgtkn3wGOXjumJIGMP56td2GHRSJ2dpk7v8FXyFh7PGou/0ZSQzWWrNkqjAkEf5SatJpzXurMa0ccmmR6lkPUXT7Xx73YL2ry8Rv7yz/TLxzhBeVzgOde2Bc3tyuFc6RrJsBfCUyEp6Hn0z+2p9jpCyBBqPSQ5TzXTLiDiqofqIRrpz9RF9FSEMyahMjJKcNXn64Ow3Zb6rw1GwoDI/WXC5P8Uq2C2w6DXmRWGFaazl0fmyhLRb/jzlL6l/beQpzc1I+FhmWyZn0RYe7XYZJdtUPDAl7om59C29R7ScGqR6e7Ityo7k0lsY3mo3wdv2okjhgXQK4N3L7W6FJ4OKE2K8v9T3NB+L/LtantyJuIBJZgUCfTUfoZnSY2T+rSipHMGwRBP0+eqxleaJpItDMTNBMY295aGK1CpIMbtJngrLhHtWCrCMPj5lLhWhyrSfjPBriU4tbszJueepXot5HCL2UbR5kbjPgRKZDoyo3ZPV6SsLdn8WUwPk9QWXuSP3CqUBo8BKFwj2D7LwnrLudlgPx5Az05aOkNLqCF4d3KYTzY6gz4tV/Iwv3OGbF5Z1hjYKhf1qiU8N/N6Ocr1YO3fKQJGZrNaxhmnD24tg8ZimRtP4P5kBxsAdGFkTbbB3Mu1Vm1AMVGZaENP7ovywXV+YKnGbodCvXPOHU1xFvml3Cka4zal1GFPOJYCtMDu+tnRBobgtiqRejiuNpw2yGiRxn4yrx6B5Nj5n4+b2I7KNF/orEm8NZrz5F5uL788j0GZpqePoQlIRYv0QQ7vg4md1e6cY4OQBBe4HMp1b+UwYQDaSLFdVBCjYESlumKkMRY23wFe3yw1KhugUbYIRabI122ZKClC2d7u4RvQaL3lysg7NDEiptVfsfCrXydJYn63ITgr/bKpLabCZoiaMiTFlquvdrCR8uVi9VCVlO0oppYVKYjRAyhUSmRFtl6kiA7r6irBp1juI8/p0XAzvjon3X3+ovJW5xUzs+tsXhqKScfztW1vW2rw4O15iKKKuLDW51bmoWds7M3crVawrLmbCfeVQ3UKiHJ0D3cfTKPEhYt74jIqNai5fPlnZisWkRjl714QZcouKSb9/1QYkuBLFg0nt4VfXiN8Rr74hhDZYivCJIDAK9nkz3xhksh3f2KfwgbwaP6sgsMvTWZYdk8NFk2syc/FFzD6QuUrMO1euuZKayy002REyMCUVU5u5JkZLIpAWv7lMQa1FBkkN9V8f3TIbIPhXQh7bWIwdsdXHQEkhRvt5TBimzuVcZDXhyE1WF0Z/9lDzRVrOsnlE0B7oReJX7/GrVFTxDaT0l3TzikL0hVH2Xo5XnP/4fKk1TLe3715enM1//OnnB+/oXwDDC8FWb/Px+fLZqeXt0Gufsi+lxPi5LLiVWGDuFFHjd6u6gtCjCJeZE5dWcgEC+zlwBtorvfmpVwb5GNBiu1WQwKOEzNsRkVLx40OWyFWbhry4AQRITwCMY6OVRHJlRdpah0eWKMJWAxwQlgWzchoAOgnokQBeZAj5idpTH1m1LqFU1tThqILj118vFosXL2LxRqViGcv6ivqhCpnSH3z99XI9V2uzQq2+/hqW3yR53v1QATWlFfrFi8WNvyNYL7qSgUxabp5pxsIHuimYfJmrJlWFW60QyYFBRlSaRnMIN4JPDMgqleMVkrm10tSx6trTy3PZu1hskamsH61jEoJTjTJ6tNxkyA347o0bP/7p3Y/u3blxwy12pociCe7Fixv+iu+8fCfUUquo1vyn4T833iOSV8Pb72jT/3ldiQCivmkCTGn5Q1BmoYUAqbbneUo3h0Q+6xMrxK1hdiriRpl4zFeA1pBjudDhf/gQEEgcgVONeZ8ZUm3kENGSQMK2EdQ8Q0Zk2lgYG18KdIesTAt2h6Mb8wgYrXu2lvcVoYo+1F+qoJOFrtYnZ9MNvoHCb5rxgR7/GExn2NctlCy6aY7PLlWXVBOf1s1Fhprvhfr79ir8InigO/GzLWrR55y5yFIRG6WNX8epVmI6sVWASmlxNM+mPFO4sm4of4bdtHB9AgzucATMCIA/1QTwaGvPcdnwlz1QIZjWm794dPF9DlZ26F2aXn++eiB6wcrepT32/jM+3G388nwzbVofxXYP+TiKmdNX1Sl2X/bnvu7z/Yuz+4ruuX92mvpL45Ntu4f6nEquYI+xZpAI5z71hZ3Rpc0o+sSzyfjUBr+zQnrcGV6h5GX6Exq2pj+yp2nYcq4+NkI5HbgR0KuG/mT1fNq4PpqMwhqZvhkfp3HIWURwQhpE7EYP9n0zHRRjuNEqFgc4t+m4j/H4DYd9Q5PPb1TE/WwljBWJh+1VrbSwun+eHu+2nb+7f71jxyYVczp9mRq09pJG1i9mPz9fX6wi2bK3n+kzHs19lys9LRrHs+kJW/1m57DgWep/0HK/y+Oyb/V7vGm/N5A1Qe22x5MZwZh7/IeYksbC2Skq+rcD9Mbz8in/zwfKXSIdwCO0ut1tNu/3qw+Cqh93FTwtiuV7IonEZeOj+yqc7HaQnpbjvtxs8Pp9DTQ4fVR0Uatl9WL2YSzRVfRjSNsr+jFvtYoO0+5wlc8e3i9fmV6I1xtlE6/E5+rCGF8IffINl8EG9fDs6PLKyeDL+0t1jxUDaxeGt1/NPn0uotspjoL93Fwg95/imzc/Z12yfq9mUDUjn7WH9xF4ttv09TiD65H0/Xj2+bPVKjEzXEx9sNvsNa6bkJAfnYl4A/Epnvyz+6d8MKLvXqgD4hbei3jmm/ceX14otvzWncwU70e48z5qrB7L6YjsaRrTjc9iIBfklujTjShfCKG4uanoWZYfHyEhBYK95M5rKuLZ56XBPMGSIdUpiCAsmln0hdzNDm6lOI+yTkz5nPGnyqH17BiaXQTnTwtn9vsJHIHRv0clPOYG1wIf9J8ZtWDcRS4yuKKgG+XeIptfmf/j7KH9MOXR0em+F4syxcSWG9Hm5Oqtj9axpwfrR/OYFScXLNLfIVkPVsVMtsm9MYbqFjpKhpVyMBpFtTx6jAV6H3C0KOGyFP3R2ZbKwIOVocoRBxCzTQkJXZ9YxIHh5QHWisn5VjqYScJHWXxV+iwlHfD3EZ0pPyuitFTvytipB6vN2bMbCU77AQO5bnx9Yyb/40kmWCcSGX6Tv51cLHubJ378avLSl++PH05+oTa58uW56VYPhCjKqhx/cTqnB4fpl9Ws83yLh8k/lJqYNG2nYXtStn9UHJvRobHXJm1sn66WT/ZMPsbPPGee6ecxdoaXWn/+4jCvr52M/cs7lcF3FKXJkJTE7LRUfjubtqiXdJVHhtFxjDde3Hifd3CUGiDmX0AIrRovjIn8WkOeNmfL4+2NZMcV7fSdV5ic7p5enJ3+dLt+stSUEym/xsE7SpJifgxYnOBfo0XXcvwyaRU8qsvZs8dnG+TtNTE3mWqiqR9YIQNTUh3d8ezBclp2bIlgCxQdFOdZzK5p7sOYNTklPqOjVHOmRuADC5CMote1FoNi47NXYrkTivqTHP/BOnpj6yXCKBF5hLaip3Br6ArLAKJBxu9l8JnwSeYjjOancsZcg8LQhN6fnTPbtII6zThVzkWIQDJULV5qmPqlnK2CuJyfjSUJ2seKkx3v5UVUmOxFpXXQ/gFvGhWoxf3Q5GKoaQJA95nCCkET1UhVrj1AJ1+c3jOMLbwkz2PbjKsxr9i2jE0l/KCkRnA/QNQiNUIsxGhXpBt4k1LzmmgRHgsbjPK2eBaIDXu2NFsT6lDD9ZTiWHX9pcl4dUFSXrKyiQC9fF1/vrL9XsNQ+/XXy9k9zPVjGeKZSBUnsH1SPBT9/G/eKw89smPr95ZheGU2rNlfW9WLaM9dvHhx/aGnCNdrjP+eUd5XbcadL05FJonbnnCXO3Ol1Z/ew4jfK1El+tJTtW+mPHS3vjj1qrlNcbuTpWLDxHEXj5coLEOwiq6dtBZ2ly8Dra1+UtHYk9XzGK15GCMbDIuI2yotfnH63u6JkxV5b3lqRkWYScfpk/JMpot0WBQHumqd4KLeWasffsun9+uvc0YUV1l4DcSms4ulxbLTrRCHRv/10w2FqVMkKcDM1BZ/xlRiy80TjP/XlydPY/mQ5cyqEymaNibdwYn5tRrMUQemWKe9XTMlNC70ZvWQpto1cNEX589N0NVM0ibvHgPsbAjOlGShrO9+9kCuyVHMsbe8kA9PrANRu06spHMR/Ypr+MUpAJ7PaTeWBVvFWJQfwvCsMDbQTqNAMdRZZixn5mtN20kkYIxgwcV7MctfZEe5vP+JIkriE+leulAnjHUPaFeUgzWPtbY47v8LbLUpajyjmaAv+O3iu6Atn+2f6Z2Zv2Kue+9TqaTxTj02rPyEQiDziBFUxDyVJPXbvzkfa2Ai1BdFceZc2lHZMXTCSZkm8MHqIdL1qxlZJv/iRRrVjS93pEBCKWJFt+1qTJAPC7TmCcw6yYkIKS5ypBN8YExFhpyM/WqLG/dGn1+SbiHJEXrRRmIEvQ3HOFww2yzyy/iMYjDnVuqLZ1MYoq6iCc3LC57smPrCeMwo6+Ya5Y4M4nE8jqBZbjGAxY3vpFE65UWWRajpg+f8N1d1w1lQJSjSH0aCZh04BrNiYM9WXMELvlasleUZX7K8HJ2yJ6vEcQHSwq4onYkZ2ZDdWUSMkaPnQVEgeYQvXKpP+OgJlGzLsMlQGkstWmIlC/nLspokpBuj8xPrLeLE7370ka3a++lbOEaZBEVuQkocryGhSDKAs/Ngo7l1eeHLzDgZu35x9mQV3awo+CDc5EhrvsWk4Dc++PCj9z+5+/H70YeM3PwKL+Y4TimSpYpZj+05sg0DJHHjo7uf/Dj+Wsd3+bQcXfKNp5wsaoeM8LH4LVn4ez/9URqHvpbSnsVBvkz4j5cvNjnXcR0AqjnXZ28f4ME72skO9UjnCcQmRwHEVLMiFz2HVpNKWqw1FgFxUI/OUoL0URk3el4jBnN5Yb8BvTvT9Fo3Ph0ll4q5uHQuuSK4mmifp5OrYsYnZzPsomikx2XKjA/iIUlLjvpjKRVgmX0H1q1Usyru9JqJKb4izmKHMoA15Awjm41NUR2+KBC4ujjaoVERz1AA+NAM0qBqguaLdUrQjMsBHXyRjANnmb7MmPNIg0rWU5f1YaKasjaXjNkdi7GLGx9a9U2D8xbpxxShJdLM8lHMtHBefou8jmtqxDL2xY13yZh0BPrN9vFh9D0fIQk7jwCc4ucX2yuIaAnsitcqb+bPtivZeZ2+xj3cAcFbbphFiXAJJS55UY3G7VnpxQ0Nn6EZhYm+rIFo2zgdnYwihnm7uPjNhU1Z2/hElv6v7l2jDVvLxa+3acn+Lv9meXxMpDT29MH5evUwB1ymzCCWttnWLuXSzHvBNi9oB9M2rUXEGG1MXorWUQQ9PVhzM5D3bTSkIqRwdDNyHuEchRNvF6XdlQbJIc/CaPhJqLgAwFOlCSYHvWFrc9uMTGnDzc6l0VYPVhsdQsz/Ng0DFe1YRpKxg0rhbPvHeMCYyee9ZNM5NTPPK/A937oZ5RrizxenfyT554vT76ZVtcd8ZwJQsVr/IUhAnO03lH6+OP3Diz9fnH5j+eeL0zcRgL4XhleLP7qscXxfnP7qV7/SnkTxk/fwUb+/SnKhppoFF37+VuSWL06/HcEF0/u2hZad6/yHlFrkCH/rYssXp9+W3PLF6XcouOhmToQWHs43lFr0aHxjsYWNfAO5JU7hWxVc2OibSy6jQf3hRJcvTqeyi+65EIOXSC7qLqW8on8VksrYPv+92ez//S9+zzKjIw+U1itZnm/WWgVjdZoSXuC334JJida8b8+GdzcPgi6Ajxn3lpMMgVSX5Qkf0WOq3ECXZ2rtLux5hcmbszPDtxpfn8/gmDTLoF/M/ma9esZ+AYUg5JZ2+kmvX623l8vNqC62xq4D3ZHejZWNDmcP5Aw8YlpEdn/59Dgn9Dteb9UGv4Bf4b2Ero/lVeNnjockq/AG5sk/mbgkyr5WZdx6jArcPMdpjPlNt6vRgZC1Fj5xfGjcVa3ap89zZtWl/nURr+yTV7hDIOOAy8EOf1IaiL9tw2litM8STppIf2Qi+M6FzA++I9ny7p9ky/8YZMtvT8z7o0ip/6HIlp9fZ9W+LQH0OxXxrnbAxLRtKQnvgZaasb/fJGVb0dC4rN9d+HgenfHKsJi0kGxUUN5aViuROFl+fL05tvRDc4Y1pvQ6h7MP7TDC+1VkzbTq7wjFYSTQxABTpqL4QIW61SQhfBF7a0WmQG2KxPGasPFIY8pY8s+ScCPKxeqSIDM/HMAjEYBmidUYlHKYM25aB2UCxe0qFklKeRyKYLHHzKCAC2HXcr0tEt2XKQIeSKMIGY1l+4pcDuCFk9jrXL4JXmKgHE9UmNLEqs/sLpyKdBnLc9NbfcYAI5n3eHGZK1lj7TfEwqXatSyCvsxZEJfMyxldozlxraWxOoeGwoJ2T8801S6ZTirMzgkDsBrLCaKiqXxWFWe5xRXOQYlmx0tGuXEKv5SZWu7TGD2YgoKBsxLGrB5aSnLFKUoR1xEZhmP2PFV+MHznKkJSVeI9SwJcylrDGr/0Jqd82QriZcosPVCPNHYJagmQBjrELVMuPQR3Y06v05QmbnV+fqYIDJEirDuFG8han5890AZYg5HgNtZfBPKhOBUXmvKPM9C2XraQnxXBmHKKrw6/LJbuPUuoQN+vHfqcjnunDcYNppZSWDgrTpX5tEtkkomtBn9myoAzzRr9EzkxX6n2Qk1sNP5RSTFmkqZ3f4miucstO9XEZhDSSAYga3PZGaR+JBIFmAg2/vH6AQp9iyq2Qf79BD8mjEduJ7N6JcnntKQltwhvVpWRqehOdGqRS2ANlbySPyECgOsY6/KUcxpt5Ti7p1FWYRL215uwiNTImEG8t6Yh1qg2JCXEBOLbn680NdpHqMq2mN38q8tTxJXfStXsy6Q9d3MY8V3L4YJ3NGRrY07Mj840cPu61d7aufwX63g7Ls9kgD89f6lt/j9VzfVos/paO9E2mVhImPKFaLgr0SXepurw8nlE1UOThcvZiD8qVye982tRIvTAvx3j0nbnmN59rsCVPAgdYPpOuKoQj/SdLH366vJ8Myt+9ibLSdnkxX65JJskNHFn/PsNDl3Z0PjY/dJ9Ofv5KqXyfnW9RbdwbqhCquyH1KS8agB6W4IuwqbUfrEtUtEpI0E+xkS4WIdgYScUmOZPVpfnWgqaJRzpZ/ql/3L2d8uz6w4zaFnIqq1cGubnmoJCRmlpNrd3Zj/arB8wFudTy/x472zzVUpw+hHGOSlIORrn8vxv11+pzCnCOHJJyMc7uWtLnZhcZb8MX8oRvbz+FPyi8q2mw52u9E/kdm2ZgnwjotF2OkpO4IPV6ljNHjfs5y8ds/W1M+b6Ncdcy+mouy6NWa7zX356Z/Y+s0RCqN23rhzxTzX7itzYJDfIxsT6F9dZeOt8ZxLNa50d76pFFVo/pEkgX+ud2b3np6vzR+u/H2dXBKowpUJ72bn+8L2PPgPVziNrv5wVddIX30Fd9jiHu+n12b2j5Sef3Em1RS5mf0N59B7j3ZXNMxyyHPxfXQqf9j1LuecJdF/ujllrdJUVNLePRZS6XbcPH7p6WM2X9VE3r4+Pu/myr6r5w6N62dZ+tQy9rPg3b4PUzYbXfzm793h9empZhj7S9GePF9erjOhC2xZH4KFW6dZiPGp9n+Tp4PE9fq6691EpTk00i+scYut55xAPchNF2F6fvs45drV3TZrEh6fzqJR8toJ+dkRXz0ex4jPmcXfz6AyVhzVz+MV6w2QyrzjJrvpyNi7V/Ro1vmMBby2qTZSicHw6jhTo+rIK3WZ2sHR+e5nLYRZ+s/oUi8FB815vj85XcMfYrb4GnU/Dx075YqecsNRPlk+Wp9cmOc4J/R2QfNeW4uerB4+eCs1hCoXzOc35IhNFYXtOcEHaNGZJfGg0/xrjT31i/K4cv/DacTHl16jCHNnt3Y8+vjN7eXXnYoy5b2GS4yLLr1GdOfadijzf2eEzij7+HJanz0Xnk+v5FSMVNa/G59B9rnNHrcedO+pqFaZEb1Gp4gqK/sy+V5kQJYufPX4+X2+NaM8Zuzrfns0fLrcXB+/8/DFSpUQSzTD1rahB8u0PMch7q6czF0CYfTGURjn36zBuK4kU+YWVbLkjF/HdUTEkXab53VG5o+sxZ3Swu2at0ujV6fWHmkoJ21Bzta07SYS7+6HVXcPlSHWET5kp+ANNZMk8x0Wh4GtSZ+17dxbCCMuqBa9R7CBJd8xjfideGJ0G6Nl8Qs84J6QU3tIde91za33ujl745Cjr92tkC48FvmOysoI3Fum61TyFozuq+aK+4VeqAy+djJGv0WSEU/7VmSj39y5VhCyz5b5Gll2b1k7O3juMOLfks/fKRLU/AQl+N+aUvOYctLudOXjhppb/ajH7BsnJXvcXI1rshY+NoyDfKGb1+u+m3m+Ibm1AQP3r4dmZGs9jmIIo0nM+OngHbsgfXG5GX14sH23tK/lSk05eq7y9/uz26ebp7YN35L8cjBqB3qidhOfGiZYmxw++Yeu0HRy8g3+/YVsiVsh5pn1Pmiw/fsOWkyVAmk1/j9s0A9vpMkehLOUwLL/C/v1gmWNTVl8dXKfjwsziqrlv5svjr+aM+ppvNie345HZPl0m+wlMUAfv/Lv/UYajz+2VB+fFu+/cPQa+A2bfuxZFdkYDa/6VTm407lMtnP2a465k6M2cC5buBlfxyrHP/t3//pKxW3LS93NbkyH/4LYsud67Mh4IOtf8weWFXNZ4n36wnOa6VPOwzPNMlTWNFjyDrel8Fe1Rm+UDfQGNIbHdp1dZ9+BEf6YInvODFHc/Xjr7GkRkDR/6bSQ3uf1D1Wrelub/3FfWgfyVu9APNCGqInh5vnkbTf55WP65fyj/t29P5DF2Rf6dmu3kERp6LOqkHvW3hWD8uT8a33F5YC8flZdKPqbLkKiU7tRXgE+pUfztA7dwB8DAvHumZtRZNWuc1/9/MPvNyeYOXCK4FZrqdVU0g6Y0QdXoif7v+O2Dj+t6WNR1e1gdhXrR+OawmrV+0TT1oe+FFcUP/GdTHYa+XfSDP5K/9P16Nsd79sJsPn5/bq9L83O+L+3Hd/jL/DH1Mc+d2K9m+qof4juzyU9SL784kQseFoPvDmsvv6zrIxeaxRAG6VfVX9/2h3NVdNo65Af2B/pbeNfP5I92UYduNheNuQmH82HRVP7I1Yu6aqWBaiFq9My3i6GTL0Xrret+FuRjaHT0i+Dqo7kT0bA/bBY9VqmT9sLhsOirYTav/aJu/KFzMo7+yDWL4FvtxA1t2Wpb+VmQV2XidSWzkjbrhZcf9tK/NBPULtUfysOmlUZ1EdpD18kwHLqv++5wzkHLyzrpGu36oZnNdZ1k4+3zkfbQtZ3uTxcW8sMgw6/q+An/lQXidKpFKwqGDL8e6plbDLL2Tnpv+qN5Kw+bVheyaqUXJ5PrW384xzzkc+MXIciwum7haxlmu/B9fSgr2vduJkswyMuYevoUOlEUdHN8s2i0P2laN7hfeJFcpd2hOWSvMmkvg5bWq0WoZPe4MzqYtutlCeSjs3WWc4YllYOMEc6k9Vq+bdlJM8gmusNOR62D1Oku2l7WUbroZIgyQv0gt6et+UmWcNE1TldQfqzdyjHRd2yh3SL0R/rNcOjlZ77VE9N6OSKy8r6ftb1Mtzls5D1dGBmPl4WXHrpO1qLpFk56Cm7R6MfBLXr7cDSXE95h52RH+spx+tpzJ+032nPVhaPAlfdCSZpZ5+TE14dYkZleCFlEfPgFEiYnwnFbiFBkzMs/DMXfrE+frI7Xp1eR/GfPni3iO9kUeJfupB+erE/Xb6ur49ul6+Cq12Ynltnm+u/D9vSNR/on5vFNmUcvd7BvhHkIUex6bc7LPexct5l3zaKSEciz+Mie/OLEd9WiUR6jP3B6ucOg/bdy24MMUimYU8ZTyYVVGiJdht6lBzI/ZQyYn9zzNtR6S/tB7nkrH12nNNC3LaYn5LbpORwvxOZIqJjcXb3VQkDT4GbjYfo4tlZ05BZjW3TCs4RC9Uqa5OYPQgIXdScL45SBNUdCD13N77pmJrRE2QMZWT0TJie0P348kn+E0cr45XklBNgLSRMCbJ+EpFWhkwE4fd72HBKWTnhYJ9ugDEJ3S2m4DLvtsBbKJoWOKmvphvRR1qqqdH9lzm3Tz+RrkDI8ntXKCRr7tNH5SVNHMm/X6viM8yppFD07fbQ2lWLL9sumLypZj7k2rRxD5jHoAZXGhzrE1//4pFK+OF5fXEUo+S1J5OWDk/XFD78VcnhtUvgncvQNyVHAdLyIJG2AdCrncmhlZHJDWyf3tlbyMeM/9ulIhQDvIIbIBQmtOxQBsOkwuV4OswqdrV4zFSJ15EK7qh6UplFaIFJAp687bUdo0lzkI6WF0uegd6EX8cm7jUhcvQpuIiU2IhjKb0T0FIITIKC1tddFFyFVqKF8g7+P5DrVlQoq8rCrSHf8MKSP+NfpRPFmmNkL9o1cyNGbHnOVydhc26Y7FLKmF1fue+MapRyNDF0JsasayMKtiHNyi72HeOZUKoR+IJ+qWn4p4p9QACVYKk4qgTmE+CRtLnpZVpH+Wqc/8rJ4tYqEmzlEKn84KOGXDahVSNefeZHq5n0tDbcqpKuwDOWjFzFMVzXIDIR+qgoC6Q4SW9MPqqKIFOqwZ7IZ8fMRD0AD2ug4UJyE9JFHoALJFF1CHdcq2DmV8lQhkq6ElQyuV1LXyrRrpduq5sgqC9nXAeNvGWXTKaNogwqXs06G38pjFeeDNNwKBwvx45FKo60eOT6XQyMkv2+G/Dm+KXtbQ8VSGbWWmUmnPfQsFWFVuK6HcASNpoYS1um4O9WrvG5KnT6Ctzi5JU6F8E51iF4E+3CkJ9qDBQntlg2VvXdgkL0uFFh1bR9xgGoRwZXx6q90CDLxhu/pIdEXZZsCGBn+wZHBp06ugFdlEerLcKSPVXOTBRxm+JK/CDO8IPt2pNqD9KL/CLsWnUuOlPIi4dgy0FYOBj8dyaS0f+FYspV61WXYLd7BeZCXvNMOlQzkDu1DkzrU8WJcsvHysptxjBz5HF9T+RpkJfVISk+9ju1I72AQRbSyW+dwXQPIpH2Wf9uht/sqAs0ML/S8nq6eFe/JxyM02Ofrr2+LeGSf7CWc3dDVs7k1xk7S1edH3fZWTlCfacEVo5ixXfuEMbQDx9DKTcO7Q/zEd2wIwYbALgNGYC+1eszQWxvXx0Sl4PNHvvjHlxIU/6kl0K+SE+L3WZk6t38WTx8//eHln/SSsSDgqhZEmyL1IBfONRshdNLhRk1LnVz7Xv4VLjnvBqEqJn03QWV54+OtUgVwlkNlGK1cbrnpYOP4tAmtMiT+slNiKT+sYMbp5Eopm5KjptRZqQw+Hs1btRmAmjkRq4dWxeCmHdJH4+nSpMxl6HR8SucDerEhF0/i3GSSTo1BfzDR549+ZbRqxHb59OlVV2b5dL2I7/DarE6Pr21ylj/m8v//dK3+yPJ1I8KTHHUn2mtXCUUX0bevoYrSGtmpxCzctpGfirIM9bkbej5oRYYahFUOA+6bXnR32ItMWTX2sRb2ov/K1VVO6wIMdsJJemiVMiARPWae9moRq1vnN6r91jJ6uXkiXm8GavlzEXoG30CN7Z3KkvLDRtSCZoAkI6p230BWpVwjem+lKvSRDrDXAWIgKjnrCF3g5xqShP4RjiqaKGqRDNQ6DLnycK4EQJa9UTXZ0X7QQ+bCSoiQJZp818uw5ed6MFTw7lTe0+bwu0HXvlPBbKY2ix6MGabmzZwWV8jSg3wiP5XJiQi/EXlRJfamVsFwo2nXa9A5EZFgBh8cbeSdMlyhiYOD0OmEjuJzJydAp6ZWazk6ASTZiYTfqjwFu3ivJHDm5FRXsM/ywZHQzG4IKjqJCNPp0AfVbJog71ZqqhepWSi5nDk5aU4lFPlHqLcarQfaj71+agaVSWWO2H1ZFAxAiDFGoBNVY5NKGfzDHtS/OOmdTEuXW8V+FcVE+Nb5eNkpKje1KkVqCFdRNYgor4qaSs0d3qayI2+pICsqgONvnTIC+Y3sG43vsj2y4tI6huGUV8CboIsq/zphLaqRtF5fleN5qD/oVUnycv1F2lGdRcUvtY47PxqowyHSrtWhIaMUfuY68D4f4J4IkJnkwHbcs6CTUM0Nk9QtbmHvqnwb+9cO+loFV6/9SMsijos618JHI+KjjxKxCOgzffkQUq1su7DNASJ73R3p+A7RZDPjGljDNn5Ryjp/pAto4vxMTiwoga40dJeuZmPQEp0bpiusE/C6VjLRXs6FEhWv5i05Jqq+yMVU06DK8dAkmib/tBM5s8eUKyimLkAvHeBScKrx93Iugn2K26ieG9GxBmyFw34OdX2IIcdDYcvn1MTWHMLxlD6JYij7qXY1RbOpjif/9HrWg2yI7KW6I2rV5zwXEAujJE2OiXpjvKiJqncLaVPHg+gwcjBVKcU6i0JTyWWRTlQo1/uk7jA1Hjr4Pw7hihDSUA84ZyqVS6OVzqfrmiMhSDzVvm9m6QqI6iLLKDfABwdlTX1ZQhWCp5tODmj8pJ1JBzxHeLNPe6f6q1oYeXMwsbjGOD5/fInkQgtMnC9PrnSE2/eLk5Vhoy/PN394J/jLZZJ90kcWVPxM/p8wxP7aEgmOgSpkffsTOVFLOardIf4jsvKhm6tBe+70ScP/8DG/+Bshzf1dJWKgZPzuMOj/GzcjV6g59I+905f1nMp/+IWwgrCctqA2orr9G6865HKna/2y220oTwR6eOjVQO+Wwonk//BSdbjom/mibT+CBeRQ2fZSyIb8H7+fC72eS89y9eT/4rPayfPuX8wXouhXqrM2IoDJoZefim4w5NfwWehQF3tTFuY3tdqx9D8wJPZhWTZ/KLQM77Vq5Iu/0w4/0p6ERFSbWvjPYbi7GBZxHmouc+rkdc0vPlbyCHeBKCNquJzX/0JIo59jXiq94K8jeVfb9oH/FYa7lOmqg50LKE+rdiv72ugKByWoXubZv/ziFpCy2wSQ6TOLTIvvaZQp/74xAZ6NMWfAz/zF0dnT599X6G09ux4w6uAdjcHTXAcfnRkWqoDt5D/1f5FCPHiep7SDwDt7fPnoDC2/hAJN69P+RH4DYOJfvKTl9YU2q80/XT5dnZ+cHU+62Ff3Vl78+Ow400mbXbHgqQb2xdnTMW20pAn6mF6Hgx/jyednT2c3724uZn85+/GtVPBX3purY/gAoXL5E6Omn6yeS4Nps4Q2CTU63XJ65lZ+FgD99FVV6UmZKFGiQ7UHmkNARmb1zd8725ydlzRPSRVIk778k2rTztu/T0fQjh/W4sYPWE+U32xWF7OT1enl7O3Z8dnRJSoOyTq+z3wt7z7/8PjmW/r9W7fw+vrh7KZ+vFXUL9HPC2nzbLP5SPOkvz3bnB0tN/cuzs41F5S09uHF6uTmgb4353vzGKJ9cOv743bOTvmGtJIyP928NamWMmp/+9L2D6fDu7VbSAX/pNmjWPy91QYw97ubzc23lr/UY/KfyTk5+PKtW4uHZ+eaC+UmYx1nb79TjI7PFsvj4/c154XWJdTjefPgaLM+enJwWExqNZ3VaqHQQvnVj1YPl5ebi5vFUPV/Xy3P5XzJwmiCAV3WuxcX5+sHlxermwc6wINbi+3lg+3F+U03+aXu2j9j8P/iZHlx9PhjLXF6862bzDS1ncvVvjxaHc9PzlBqYMbPt2SyeH21nY716hW7+atfyiV468++1lD849XPPvvwvRjmfXN9fOvFW1/+6pZtx4enF2eaZunmbtv6vxh3fWd2sD2RK/v4YOe1F5OJvmB+/O9yrNMedxZat+jtt2dKBg72LZulHFhYvpt7mojq5unlZnM4438PZgfXnVZs6+nl9vFuQ7/63p99vT5+8asrhxyXT/8V4hDpwohA6Kk7eU7o5UuIRKZ61qYdt1feZ12y1OiDs+PntuBKad+Z9VU1+5f/Mvca/7Cup+9O1zsOfIFy7Yuv1qnatWwQPm1WB99/2U/OLM2IvO+KN/fuyEt7YzD0tTurDnbo1NV7dPWmPJYP84szTUoh5OFqsiRbMqJju7sCVvfJ8mS1YMKl1fbmwfHyXPZ7uuh7fqcdyoHXwgE339JfvTU5k/spupKnOeYgQ3xro3HG5Q/3bsJVvcvc37zr6e9sR269ekd2uYmmJXgH6R8KXnJTPyOPwWQjUPMsJkgSUertWXpzoXlBTi80OWPx5/dv7Pz26Z7ry/yNdlhuvsUXyinmn00XUb+Zc/x7X1+fykA/19DOt2d4+a1iTIkI6Bfr00c/Emq7w99f0th6dfzP3hpvoOzZ5+uT1dnlxc3pMb7m6EbUUcPXhJKUm71vljt36S3cpbfkLh092DMMvVH6ylOkxnuL9c2+Wj9ayrnYxybSl4v0owVSnerY83FZqKL9HpO4TQ52HHBa5d2vz1cXl+enU/Yw2Qs9ROfL00er3fPzmT6eNox35SbpmdcTaaPbFmf8+3u64A/WOKbGPISc3YtPp72k142uyN3CaLZXvyhbxgFjhJPXNHztJXKDFl61KuW8AW+93mq/mB2pJEWxT2n5y+ayf5Tg0uVxSlShuKH2TIjzYyGXIJm7FDr/kPWS33u83hzfzId7l8aOuysID5Jn4/ci9eSGpz3ub++lhOzVf57Kf5Qjac8Hn99996P3D67sl9P+hh1ed7VedwyvbjeJaQW/ua0cTvW525pe4Z0b/+ofLVHtf/17po/83ac/vff5v748X/8fUZG+3C7WCzWiPbYUDg/0UN7+nbb0f/8nR18f4PPBndkvv9YaPKJBa3CkfLZv7m/Xf7+Sj06k1PXp/aMzUZfl48PlRquZHRw9Pj87Wd4305t8cVAtmsUgHPQAJrfz+xb0r199IrdEv3l8ptHku60sn67va+JQfZePjh8s1P25XSEodXGP/9799ENtZr29/1T7VWp8sdua9b/dbu6vkB6q7PHPNmudxoGtzJzl8w7sm3I+YdEuWnzxaHW2fnr/eL3VxuQrRX4L7zi4EFa0vViePNXX1Rozr4a57z537R0X7jRqUvZV2/1lVd2pKm0pL8nX+vtjTXQgPPL++hgzb1x91IUHcyBj6lVzNO/9qp83ywfL4cGDrnrw4FhbgeKoP3hvo5Gu9zQxH/jTgTT66s080qyyIEH3Ly/Z84OhGrrwsJsPfSU9+2U3f1A3/Tz0MpRaJlH19cGfNv26m972lfuON/098OT30lba/n+p652yId4/WT86Z9qvvBaasO/uxf7Be0WntVVxYnWTnqyeY/EeH93/u9XPfrM8+/WDv37S/PWn6/7xJ5vfuAfv/vVP/v7yF/UHP7rYtN2Tn7gHm6/6dx8fvPjHx6ulJjX9b//pZ5pMAk6A3/5v4z24jQX/N3ePjlZPL+bvnwrNFK762//50d+vn2oCx4cbmebv+fVv//U/v/3P/0lEjFPO+bf/9GS1ejpfbtZfrf4nkzzmnz9/uvrt/ypUdmOJGG9rgvL/JX79EZIB/vZ3zvnwP8SUj//V7zVF9OX2X/1OSfb/9X/+oxUr+4ef/nWcw3/3783CN7dEx9Lt5uzZXGSjY402l8X97e/0iLxiIL/nOf3tf786/ers+RWT+d2PZNK//bcfnK9FQO2QagG23rhLsx9//PnvRFl//tt//77s9KO11igdj87Yw5zc4cqvbXbT5fkH1/zb38wxxPnl0+2FHLaTuY58fSQqplyA3/5DqMBJ/svfa7rO00f/5usDruHBnYOfPjl4cTWD+vd/VuJbimQ7X7nbmrP5WA/Almzq//lvvj5AsmtlU7+sXdcfzur6cCZH1FeHs6FrannSuNDIw05hyDM3NK2sWiOP20Y+e33R1W6Q/8aPPrTyjuvtY9c29lcfqh7f+NpLT955NsVfOe3MheB3ftdVoeKbtWt0kHK8tIG21zaDDkB/FeTQBTRRdTqRQf/T4O0gDwKG2rle2/FeJ9PWMhyddNDxyyGQuWMAbTPoLzqZt8YlzDrXyK+6OtSHTMvRdhyHBpjN+j7oh0ah1rOm7zt51vahCVwUh3fRx+B0+fRt3w89v677Kn3ErNir0xFrV85jOQev86n4m77XLUGToRYWcqiwBp21Dg5LVHd4o+91XZrxSnjpTWYz6AB9XWHwrU6z7UIf+FrLjjp1n3NrQzvEMXUtdqzVIcjHVpdamJn2Wun7GBgWrsfgasVczkLTyRhCVencWq+j7bzubKeHLjSDTqCpWl3/Oq58OW7Z/UpaD7IU8k+vbn45TNov1rF4s+n18HAY+hbf7XTCvdftsRlVeph1Wo3ub1BQkRymSseHgy6jR08V9qjD/B0GW2HtdTHaFhuEO6Ern8ZV8VDoiBudz+DRpMNBCMHWtXOKP9HTJ+PuG9/YdHxf60rItwOe9E1lW9lqfIu1hmWsm6B7yK2pKxzQ8WiwQy1+0Ay8gXpk9I7WMv86TqXBnXE4SU7XRWFNs6Aob+lqsFteV6ALVYPTOcRf163GUeqI9Umr6zPouLqmquOcGqxw3w9xZ+rQdjYvh1MVNAhJRgVKIfRiEKb7S/xhO+B8p5s19G2lg8BJ0c1retwCnfyg29X23vpQUIosQYezOuAQghZUVdCd1rx+ehYrnVC8qXIce1zTbtIXhopmST5CXhFsRkvaORmdU/y6HEvfjE4kiBQ+y0XQNUFrQs76eLrcoFATDlgjEuRW9BWplsfNxQ7J8cAtFrrgudSa686OddcpukNOiZ47kDCRObFFJIsBAwXhkPsb177TQGRdo8bWXeFZcdhdcFUcbKsHk+2GugZ9072Si9zGMdZ6y0FNO8Xx2dHJa+jqlvROt03OndKoVncy8J7qKrmAaYOotBhnx1Z0Eq7R8bAz/KTqsQ5N59PS4nnbx3GHGleQvxEu0tpS9NqSC3rqhFTp2uM+4cC0/GCkiifh+kQKx8N7XFUNtSDvEx2gimRPWY/rwqAbXisFa53DtlYt7sdQpdukR6PRxWYPYWjbdHrIJfRE9nq1Gx+3OTilJb1GgdhhDbrJg+x7D/rs4kjcENrIOmQowTanq/VggvHL75oAAUFJHYhQsVQmA3Q4qIr5l+13kSk0tcOUOyxbo3gdnhlhWkpNeCgayCO4CSXFSxzOrp+eqlqIZxOnX+kJk8OFQVfaHok7/uzbdKoGp0PkdntdBll4kPam7tI7rcoEQoF9PJG7RJwr24S+LzdH7l+wlRrA93yt3ZU/byBRGf3nF+T4sq4OBx50Ce/i8ioL9rsUCGytqz22zafT27Zd4hjSxmBbiG4a0P+r960ngYGckGeCdfT14NLghe9gneoGDAed93m1cUpdhavYtWk9+0z2KBOU68HTxoXkcnQKrLRv5Upr8+Bf1geYddvHs6VYW5Vgq+KoeEprWJwsrAjfayLVqXsNxpP54EtQQ/4IolQH2tjHWyD3UTvZeQ9kCtN3raMQh2vSRDoh9LFNxFyGGActnDh0uS+h4h3IWzO6piZo5Al4jd6zIZEloKsRNYIUHJQaxvsGCS2AIgsddnb1Ou8gFHpyDCN2VYse8PKAYwAa1g0TgYXcXkSjJrUkn5xLUncendNwIiNvboi0qjN5MvQ4Nj5SWu1ZiFhdLKAKHR3IuwcTAuHAunEtRdxuTE7pkthf7JAsBo4lKAevijBcnB0waZEvVD1p2irsCpbaYx1brcGffVu96i6BUxkVV0rtjK4VLFmEK4/jiwsF6tOS3IEbDqBDOlUnEh7o0BDiBYNogeG2VU9JdUicRRYLt63SqBJ5uYVK4G0eKuW4LPWQzAwNrwFYOmRUaAdolf3atYUqEEB/E+1x+7QuU7N6SJw7F58kO3ivOlDQ9m1YAymKr8P4IIluU9l271k3YTfxYpWNkfnJf9ty9dsaJw4jkMFAyN4ZAWUkUojyOJXz2elJLkhIpG0IIWmdumoOChxoZ7GqIGjUOgPUa9EbSPHd6LA01PXAhlsXaam0iX3T4yBsrU33azQ2kFRclBoSna0cDpgx0yQzh06FlWZwFUQ/XJyO1D++QqFEaDz4atNFnURVyGAaLdUTEyz4fKRkZD1bhMkBBwskBGKjtNYmccp0e25zraehgfrcV3UktHJ5VVigzuIGqlMajmHina8hKnSQTqm9lGwqhCaNZcBRafR+c66QA6TzPmtzdQXJpE3yOhRmilyiyfjEjfVISN/u9dlwJ6vqE69lLyKq6ckbpkYOijqB9xiHYiB9TneZnINch2zUNRN6XPMIUOGLPDgeXzaV7Qw9KHIFbWt08akctL0r1Zy67eIlavuS0kdFQ8HmxlIbEHvSzjpdNNdQsyE32+mRlz+uVUOmDbtMcQVxQnH61WwS98W4cIDi03jQFeEmPgndxmqmc+x6lww9EM1qCG4gqI1eAGGS0F7BXBq8ouF55QORHiGZqjJcPFYDky2XUNd+iPctgOb3e5WUrjxHouJFkmBr0gst720uIiJC3KiUyEQJdGdrekcDFIwyIih5UzFr9Nt5RwZCIgnDmQom7UtalFOBB1UAZe/JBUCMKtPj9APkV7KWGos2mMFQCFJ4JdOV9a+iJclD1XJ9ov17Z75//G5yTOrQUe/ErldJkgX3kotJYWUAfa+p2vjetlU0r3ZE5ztXRcOBsHXweBCgoUpiIrgUVH+NelBVn2tX7SUWBS01ww4uQnBUHCb20X6A7EDDxn4LkOijzZjk2kHqcLZ14YVqDMEGDV2v0PJEc6PsWkfDhN4kijO4znKfm6Ty0T4ClRoyqwjabXonU6KSqMlVbONz9kJaXV7sOtkbxnJnSRt13eTE9VFMNGrHacNOVPdNMfmo6NVdnbQeNlhXOHfKJSueqHZk9Gn6UEUmLMewGuwn0L4haieDWgsa5LFtVT2kAYEvlwQVh5QGddOCIlfSXYzyJhdpZ4tpcrvC5tGbJC4npTYClRXQcuftvLlwxaUVKT5cfZL3eA+CLiyotK1SB0FZOLcqb0OdJck+yi5y23uXNDYPAddR4nHRCOIgCIMNyhpEckk5Vp5WSbYeeheNBUY0IZC4ATeU4jSl8wpMq26qJJHT+jG41DMkq9ZF47goU13cLGk8mlp8DeeBeoTbyIBpPKuy4YKyni65VzpjB744DaUAtitoCVOMlsEBHgsHhUIuIGZHP0LYleND0u1dP3KOtH0TD4VJ+3WxLySfHapMyGEYonnQBZhvYCGu63RvuaUQoEH/RSeDV6aHOAyxqiPd2GfcFzrXR3pGaWBIRsTetJMsBbnGRT7tsZEYWe/d0E+0vv1XY7DtDgM67eCEInfZw9/MuriHl77kyJgTpYpiueiQVWQ7dtij7lBP+/32biIEjdIkCLdIJ/JxNTIM0u0DaYYa7ysk29C5ttu1phub6ZNTzvX4UQvXGM0pNDuLRIGFhGhXD7sXytQA/hJHEUe4FU0vyqVykqq0C4EnB080zrnYhbrB1DD9CtYTmGA9XDVQMpSxdZqjbBZ9UpC+mpqiAkiA2pnLBw4rYE8qOPkaygCgDz2VZ905GAu7xFDI1DASXMc4VKwlJdk8X77Wx47CWOeCrDNEhZTvup13u2w7qYZmKJcit2yDI/vCV8PehlSnb3J78KYJT1ZC0tMOW2xLG+ADM3kBj4VY0eLY4SzAvgUObOJEOQ9nFLCGvKWXsLKNkO1ztqq4BrbSk1f5se0HmMT2NNPab5NlGpYQMqQKUnuHa+tJ5npOLAslk4NmxzdRQ9nLePCaoaI2CpNIcfpwCeOpG52p6SnMX08Oaf71aLrx/biK9r59lFbjzzAfG6DvbH3aKq1netaQyoyehYoKQl3vWvfdAOqhnK4eYAumuOMGmCN0sdIp5LBCHI7c+zASfri2Qx3929E3X42okLlLBx6L0FZZEAjAP6BV31KoTkpFeUDZ0cRZgXZNqmsC5T04gipYWOgFpTG0MFXKi8Ye22hjh7+C3moaMOGhazq6GNRiXNONFQk6jfhUs1rv4knrcdXqrkl8sWmrrGnTHKoHHH76LPeVbjiRGKLg43GBOQwZO36OIdBH4o0PVvSr4uaDx0NegWJbm1M425e4nJ7SCYwBcGp50bVpHWgjO9bzoUw1Akhg4xzzAVfjdAblsvXQdqUpgJ9tNui7Bwk2rTHTy8JsQn014zmC2a/g9gmQCmH0hcMzGZ5hasOK4IlKcX2xjvtkDV+V2sYecsLzUuzy7oF2xMrwfBWn2bgjWmgCPEWuhUObNCjTpCslimsx/CzP162ZC8shUzg1CS0bcNG8vjk0vJFBE6/EQaMLDjMkCb/RPCM7UgXl9nxRh+C7Pbc6ygq62HLv6KKFcNW57G6h1auNYmIFsa3pryHzqEGpH0nxcTXAcr1dOZHJh8JaowPovKZeMwRDYZugIEBqBf9JMEkDfh0Qz7yR1Fi4rGrYbQwAUw91hA+1vTJE0ES0Svm6r4FJmprySnsUzzRuLaSOAXJcqfmGEMfhaRDtIlMaethAVFPQD705FQyuwVNgUJqhjZpY1gEMR0Aqo+esgUxGJQ14EVtwSFQDL9yQDBsj9QpyjCO+C/pDZzJ7FNZB0RuYTvKhJQTEzBM+Ukszf9Sw0vMJyIx5s0qjKzagATe5gga4K1Rx58EDX3Fa+2i6uvIWv95Zpn2NPgS4CYWOATnVwKIBhAO2acCJ4NGMnLaPBpCujpSAW90EePWyk1PoKsWPhCkTWcGT50c9VgQU2GZaqMOKXEl8kKCluGk8SFne6gFSyQ7aPBquimhSQ1sK0iLdwwfQpsGQM3Ingadrk2mGDKZp24g3G7JAznPhYMt2kR/XNE3QSYxLPGRx2ox6FLv6Pp6wrq67EcmwywIi1rjo3zXutkfkGVog93D8eJw5GThrvEtQERXNhF6FHeYCk18HBmtEONB01prG3dnVq8fWF2KrAqwPuEID3DRXTAj6mYGSvKr7EH1xYoC1kv8OyTaVDOHe1HR23tAiNDTjO8t99JCgaEMbghvDxuJ+eXNQR+/H4LJ9fff1jto1FwXz5AKZS6imcW9IymvgrtLAzuVyCeLU1t4lbXuAtI7m7aZjoQF7tPOPJlv4s6L5KlOhkq4SR4XzbqeAroME5TKMaOk5GHWN+9MQpAVvHVqMll/HrUCjoGcVlYI9xKWF39qTsxbWmR4AtnYAIrjBAgN5g3nKZmU7M3omL9EdbfduCyUdwos6mOJDnY7EeNT9QF0UBkEgF3wH2mjvUdElHE6OAsThnmjoash+0XJHQX2Vw5bKSYd14yUtZB468outyazSUWVoYefe1zXPS/RE7OcoxtBEF2+i/hFbTy3gCI5OR9jdXEhVvk4kXqh1N3Is+K6pjH/1kFvHpv2O3DpiGojaKUmw6QigvlHWjWJlxJ+ApAUaddJwOFzY3nrjm9AtdMGGgasnG9R9U3YI6ZbovoFf0W+ZMXUNAL0wzUnHkLkS4jM4MrysSOD0kJ/Bh13BsAShKMDgSiQiGCGM1m1y7HoYswfvR1ab3vDLwRggMVKG1eSg6GeG6gOB2LXJsLYzQi/8FQNqo3FiNFlD7BbQ8Gz8Nj25hW+hSTZZ4TVNUlezWYF2QJfES141CGMG+ARz7BPSEXpx3QxNUtJwCuHBpULdwKpInKsegE75TgvoO+eQIbuF7avqYDBt0oSznbnPxhwRPJsxjrfhGTLprwJFrUJE4Yh+7Ay12ockDjSArPYR9kp5wlE8B4IHJuKhjTA3IXbKEDGHOCzD8oO9cOxEemWbOA4LsJ9tEm4V1QYJA8R2MCm9C/k250HTN99hKwY/eqOviOzp9WThPds+yngw5Oa3vQcdbrrKrBlUHyC4AIRo+8LOW8AeIlrOe/gQRjsHBlN1zRiB3KQz0sCv3leuSo4LHPQ2asbtwMCTOvr9vIwtuYqLiI6IJw/JNUg0wwBQZ4kbp7W3T/pom5WjbFDgpY20OWhqU1vPoWboBiAxvakDfTK15v3FK01l4SRgkdxdnnfDp1+xtgA0+p4MpOeahfFEeKVxQe0YJ2G4HjqYOAJZp3l/fA1YFUHf+cj5wSXy54wZRN9rQxGDonQP4jmAaTBwYXzh6b+iZCxvtWXES5wLHBauqsCPW3DRFmjr2oVdnH4ojieNWKFNTtm6aQp6VHoJHfCYykYSeCmRP7l1NIT5UJViXUvIswmxxZUQpa6L0DPncBLTbntYcoqX2wGufRtRDVmC8IeqpZeHqBeY9SeTHZoJoYTiUXV5igQu0t8fb/EQTQTcggoI9wGgNXr84Beuap/QRgFASV5ZxgBRauCXWr9BhXo2PxFTotikd6/roGgQS+mSWc3OJqUEoO3BtQyRM2RUZAdduWGQQbNXKvquuuMpHDMcNlSQkrpyxCB0hJETlNtlxGrWCOpka/Sus6WlxOlCA8MKTZBwYuxGzdRhb2xMRsOR9/WZwDUhXdMwRCGcZri6T4o0nb94dVcfpPYRGJW0P14mywi70SpZbS0Cm4a2ilYYwjWDGwr645qBAkgWdSzShVKxF+5N+6NueNPB0dYO8W7RT6HJf2cJxQirh2ExM1EUip7EADniyQhki9G2MEsk6Cxtl5QMYfPo/MiiJKJlbM0OhdChOtnhLdglmUVGy4QDlkmQIw3F3Du0MUB09ANQdMTbTWcL/ztN+nLhQxRDYpQQ3N3JFFCb8NON3Hxy8EHD62B2Md8n8qY59SHhCI3qsu2SwG0cXviUhZzB2tbtNAOa1jJKyfuRXVGuijLApu2akj+1Q9XHkdcJXa+fGlh+apNMTURi7BQBTb4e9gnLpCBdDU0zOjcGaiId2C2CZ2XINdxRLWPKInflPVO8YByi7A5QrIA2ZUtN3dBwCeMJpAK6PoWT1ru4kDrAjEHBveGaIazCjdFQDqoVuSV/QhIDbTKGKCaEW/G20SLSP+D8hcAFQ7VScmIwH22B0BR0IE384BvgNIVhUmsCAabAAXEUUbiFmoLZ0jwmb9OQROSx2zHdmWZp39d0TDQ0HZj1yDeIzPA1tXuXRBPXUXIaGoBnGlBsM+py7Yk5I/lLtrloHATMzgTPPk3BgThC0BiGLIMOhPD6EOkriFdtOH0zm1lMU0uxyiXoZQBdp+ATwr7Dg9jhuiu3xkJVujpZt1KMpC2XeSEyptpCZzJl56xzRJ9MvW/KI0jqa1Crmi7aOiRkT2S1tJ/R9dGl4IsGLm1e7Ro6OgN6cvAYlVtAYtrBlGdwcVhKEEIcKXfXwkQsJz8QvwHFBcYisAWAPeo6n72C7QlzrfuSoxU+K5HMcEbI0xFjbceMyw+LS2HBhoRIwBWhicDR4y0iuI1yodV8yYgx3BMVw2iFxjHc1rc+wccaiBuAEtcFCIYeLRtpMPhOXiyN88KdpbEr0PqJe97QhtT1CfeuZvdhh5I0REHyp22XjlXjVNyhwR3nJHvEQzayGtwcj2EDalrjni6S645kqOtLC5rZ/e1cdDGgfjw7WY2+1D6MiuDqFyALbLfoBNFkJFfJRVdU51KQhYhaoyHkAHhHlKiSGPN41JUrrqscLshkjZ8g+XzqmKaQJsbV+6ap3GiB7TXlPwwYRaRgngUNpXEbaLfpGbCTPIAMRm9dGIFMuEVG3cZwv0kfNQ2E7MNXhnr2SeAlz2ozbI6ahMNJp7bPEHEhKjC1efi8cDgpdpWX0Xdmd0ob0ASfUZF1ZHBNCyEvz0DoBGx7A71U4MJ9opT1gOvRuzrZxKCPE5BgTooKdFPUuagHTs6xUBBo3ZyaOXYphrkKxkfz/lvcG+wTfdT6k7yWGIqnO6oknQxmMVBX0aTRDf6A+FWyMiXOzTD4ZELsKdLUPhm+K2IhyuaKLmVYqQkLzyJzY0tootNwhUkTkAUQCo4bMGRbkdYLnHkGi7iXSQOFAODo8xkA/KLpDgaVom2oqYhz6UF0kQNkz+oX0T18TNckYQ2ZPSckXUargRcS0ORAAhEvKlQXQksF5gJv4B6nGsXrioweTQgLq4h8iUZDnA2DZQFVJoTYZ6CcReQlWbcwAtrtLSBhtQt12ThbfNWwqQL66D8qHERC5lybODotiqMzPcA1GC/DXj263uNdMLGZ8jTdkUQIMcCKyQ4QwfsyT3XjBuJYo3e2NMY3ZoyvYWSApDDulsIWPfx0v/GEVRVPA+haYHA6MO2AwhXh+/JOE+N3QkfwYZui+MvMCRk2JINLfYuyC7liaPswMitI68FM+6IgtZEd4iB2Sayy0HXqny3hRClgVGSA6ISBUs80Lw5qXIeoQAsy7wivbHMc6YDQga6bRHL1UZVghx1wsGQunu7oQFxHAcRg0Mj+c5G3FqlehropcykMTc8kBhS62uh366oU/iD6Cc5jjhZpLIQMVyPhYhwl+aEdYcshVfISURqDbF0ZEHWIRgXuHyebbp8PQ3JXWQwkVQGuxtC2L4NXdEMxHaKJGTuCLWrqKkWY00EWmC7nVRkWaHTok6pL8VBEUY4JjBMeI58Qn3JmEtVnRLAFumaUmwZKQkFL1n2hCM6nzC5lPGbaTGFLIU+FaS/MauWT2GPi4QRTzVGbZ7unvtPlLEg8Db3F0k7w+cS15KxDsvBdsrIzRDLjRk3qotTO8BKon3UXb0IdGMiC7rMcb7iTPfFsTdskn3od4+EYfc7Q/T2/6SpYz2TaPsFsgQzqXUwBNIAdMAzSXCMdqLcDUpABwVzBK0DGewIymxg5XXbNmPym7+tyGQkzVcBopBC+ynF0fYewBOhTgTY14gJSXw5SQmh7ZmvhyQhNMipwMHo06sn3SMw0pUEhuUXoRGZ/Sud93ZfZvLrkgev7HB2NTW1zshEqHYO5UaGWd3VfQrxMWRVC0pQBR5brhjtbUENImrENuv8QXTgkgx6lrLZPan3Sn9hMBMImzJFDXpNCCS2zeDGtDdmSM6srTKk1zXjUgRnNWpnBoMs5AOQXXYRakJh0/hrJXDgJcr3QmAHNYCvAzF4n8KM8qh4wPDNhNm6MpyvWqQx9t0RDWZk01C6tVy2JSsJlhyZn2ghkNx0x7+BVvBJU57GRXcYtjtJT1e0IHiqnpjL5wnh71iYtCU0F3szBMsA3x0qN804ZjrutALFIXvZW81BFiSV0xH4xhqSOwGeYe3p4V+IBaopArmb3JpVxjpZLgEfRklDBuUsDUedH9ppMr0cbURDJISGCoiuiq9IZqaLSZvOKZBLIXvmp230Ts2t5oODSCnQ/4hZlvESOlcX9ukbo0b44WWd7McE6ZI8EsXFltokA3zipvm/aqCrDCGHD1Ch43RxYoGo3sdjiWInC2UdsTRtcl7Tdquv2xRgQhfiSuE0kCXsZWrQYXznRlwJEhUz21fVh3uT/tYYLjYB54L/MzAQoX5G+hmHXQygROLs8ngaLBGfpLCSTdkyIRE1djdMK5eRRJVTEoeNAhSaMc/hwq336a0h+X+ei4blyLhQGE3IXwkAJdcOtIsJiN76yb2u3h0cTeMfeC2A1l8XyJuJYmPMBS91YZj2oyYwz6elngVmDxmsLBE44Bg+9HbpMTw4wZPyni4l/EC0+JGBqH328+FbNWZ39UJSrgbFdULx86IoXhdvX9l5jVqza24PsyWSbBI3g1XY0Fte5xl/xVYUQ1+IrIftAOvSRnRfjBdwIRlbvXbKB9aPgZuK+bfMtYD3hlhFh3XjnRtFDSENn+N2aaS37oZCPA85i3RP+11Zx3bmmYzRBjPds4/rQy0ucZ5Pi4fswigC2PeAYGOOPSxiG8f4lGYfnrO8ZvIr7Sr90M3Jh+zaia5phoCDp040VegX/VzMCZxS6b1VXyOgGOyjkpBy/UDewujCkCRJJ5aLZps6BHMU5prTFTKogHlU8kjXPX9UU9NwjrpuRQRFeCKZdoMUal7JYQRRuhqopZ9u3sMSS6qdpmqvK9KEMY+xcpFS2VuQnLoY8p98zFB+6QdFKmgj10CJZYt+EUfo3HzHOclSZyydB+oosW1FVA7HIybhg7WgRJD+ltWqXSCH+TI7hsp7kndv1JHYJN7OTA5YEuA0dNd7khCjpXkdNPOGWLZVXQgywU3Pxt9GeT0rb9G15ZUZI9IRBL2g4uWnXErzE0Ke2GpNWQjW8KGP9eLE7N85EYWHIyRVJMlAS475L3JxtFGJDmYjJUmBkV+Te2TO2ZGdEWRIe9S2SB7z0FiyV5Y0JqaPjqkdqpBxKQxQukN7K6ZIanLIiU6AhprKtI7dMTMOw1WMeAmJZ1cxAHL8X1QFbx/tP+27S0QxUYF5fqFuuu3KRGOww7B4W3kW1NIek/BR3kRgV7ErPNcvbYXhVQG9NYOkLgSXmGcXkgdXhWAZkAMtiG2NFimwzjLCkGLeHsX/X3dghr7OHn2JCNrg0dakH7z3eRebRIk2chUDR5jNy+Vo0FeW/rDcIqU8prRnCCUt+Q1U1bV/5lKm6HIFHFKKZ8S69LecZQmLxIqieb5zryhf5ODRkCdN2gybPK19XpKcuMSyy6QhpKYd4U+iIqcPksjKIpEvhImaIYf5xZ461mPSiWM4YKZYW1TW0idJAFXF5PLOjXSsUDRKfrKNiiI4wnsRsRz8uLHVmLOojQtsIAoKYi+ajna6d/CIxHwJ3W9g1BvC/KfORle/2KjpUgmH0bQcAnIophgF525n5BIPSatJXqDnm1wIJMDd+hdiWhCYhHkhzSdZjgYI2Ld+MMxu2TEoTw2YzTyEX9DvKDFc5xn1bFHC2JFc+6ZQtNYmmSH4Uk6+XKRENulAInUW45xiGxzT+THTTTRIOyyh82TjpT+/o9rDpTU0Kxl6opTBHPsNu2yqB7ETOVo7Q09xUJbxxC4TBa6jrmp0y0vnQtyn3k8XzZNNE1zBjRjZ8Tc0g2TPIXEGeCOhAq0xIGWIsEV12BcBW1ZJAvLorxaf3hZZIJVjtvCkRSVdXlq86qhOyK21Cgld1slbREpKlz86n3DuWfDuDaRSZ35aIUTrnNX1q1MwKG3BgEtbKxd8Ie4aaRJxb38ToI4imYJTM6T5EhEfxsIPzoassQCuxFcuurQ7SYRz/X2ATCgxMNPRN07C6rk25xvqMW8qIpbpPolYpQcMIzPcKe3jh/hb6MoxzlAxDQpe6Io66vTpYPyWVwhzl4MMIjZTkpQVmJP8yj//EKMnEhTx9xc15SWIfKnevts8wLV42gpbNF+d158YUlDCvRZOxd2WqzZ100Ii/MKWG9ina6gIjUGO2tKgOwA+OwwYdnrEoJrM0BLjuLNhEmhdREgtWJzJxxQnwLApiXj1aUBmx+YplGOUf7ZK3wQZFmOQe70+oPK0GvJBNxnoDx9EzHzEaodVTFnqPITDOI5jsPU350GRng1VnMDkBh5cmXZ8YLGGJgehl7APYP4Ufkt22C/WevFulEdl8vw1PHQyf0Pgp1H5brfEc1Iw6tfw7ZXNlGBZ3uNiWwIIn9egEoWuRhdudAOdCxO2ZmgoOhalDzSPJWdz5+BWxX76LWTNpKKzosGbWrEy7agiwVtQjTQ26E4yoO1OzOLjx3MoEOnnoBvJuE+LDaCvjNZlj0KSb0pDKtepzUifISVMnFhFdFghchUg1pzOBOsz8L/3ubCztG3eDsAXOrzy0ee98U2cLJy2+e24a+ZVIedSDmyEVf6FHk+CpnpZ5MDksDX6fkeN90yVPewFzwKq1idO0zN8Fe0fJrkvRkecBfENWnhp9nWNEnVk1wXMGBO/JEDufK+PATj00VRLSgEBEtMhriFHjBNEuKfbDjtt4mhiT4guSldIg1A6wxRmigWgccFGqoDVuvMgcuDPDELOzNy0xhn3tipvRwVTnaWxPNojMkYTzDwm4GHyXa1XwjFc8xzT6wh+pgnmHQNaRf67K6ZjDFLjQp0Cn0OTsSU0ueEAUHCY8WC40N7KXOcuQ5/YsZjAP7R4zFylf4+pUMCcbamAbUUDSKByWttAc6ov8ydTjRQTKuCXXu2SfZKhDLplhaiqdYdAXGLblWAOAueS6BEW1jcYs4NxmRoW0W11HjRiB+jtZePr8tNwEmI+g+Fu6XGKeqlD+Rb0fdFgGMaR7ROgIKnvFlJgJBFWkji53okXiXdcyzJXhLcQyjMtxZSw7WZZdPI8o2Q6uNY0IBCuJcF8LEWtdn3MMDgyEAES0gBMz7V4M8kPdgb72YytvBa9SAbcYD6XjSAg5q/q9MyhKUDTMPFnkKmURlsZlJ3wd8/Nz8Nj6XShJlOFyhsaiZIvlgicODSZEgmSU2pWJ0SzJuiu+AlFtUD5tx3EdhoSrYMeyu80wgvDWHnNrebWYO84YTc46RRdNYRHzrG3S7JGfw24OJ6jtnXO5PkupnMDRYxAuV2StbxlnYUnfE9mznHpVQlX55Go0070bYRaLImDWmiFy8n4WwXEljs2olKtSEB1TPEOc7xLXzkbFWEcpcl8N/UIkG+VQ0zhJKV2bYhum20YSRISZi5fbMmvUnU8mceybd8O4lEffu9rwiV1kG7All7QFlirmUs41tboiF7xFU1AIBWy7Ar+DXAa/ne5JNMzt69P2DOGUNTAmFPsQEeCt5Fgy3/cMZfHSdIiBFMF72ilpAMguNopIRFBZLQo3AVRathhYeYyJhgIR5ior/dTlPPnRatvUPqZxEFWRKQZ8ypbWOmJxGG3Y9hHtRe1X6Fw1goNB1+vbfdwrWI4h0DGl7lU++8xnPbiRtB+FJq5Dn+TIUYrdrqpL9ACITiHtOSuA1jChMz2BQw4QJG6LueSwbG3tRy4cK9HFBY7ZntuR3m+XwZhW6CYpVPaN0EZiKQY8UYU5oiZlX+ELTcL8pWx/ZqIPOZ86c+MzzKVO5TVdN+0s64gpD2xCDjQ0czLqnYU969oyBkD+3P2eMjUvvru+rQ7b7mG2JEbRvIUIkHQs2oX8AtGwZGEGNYD4mWHtqa1mOxYTQjMjHNdYc6uXtvU6sFImc9W5cVwX87j5LrqFfdullAAR2Qr89eDhgBdRsqOJSG3Xwwi5zdRLVBgcwkH7xvsyv6TPgfayU2HSkUmaO7Wbco4Ry/NMCyISaavo1I1y1Jf1UULbIW1wkWWIWTBDwhHQ79C2KRh8WrMjQrgM5VuUYqxDQsd049yCo1DubkgMVEXXGJkcYyU6CAlmUCOmP5MT67ahQSk5L8pCHjBQ1JDAPbMC5agQCoKpco7Qww4FkoYRSK2MJffGvOVc4L7SqmdpXwClCPQJ+klFHyHyfapZadVVEarMqoxEeKGzxueCj1ltzHivwgrCE4XxZ8hYLZc7ed9BSUKVkaUD6zaBRRiez0VnxZByV0BKahxz9qNAiqNTBMh/FmCBjxHEox0Y4IB0ugjLtQQXDDCtrG4fwLVYXEb1w3ykkVHWWEGU6JJtCMwIZcR7AaJpgTdprXjFEFfXagk5FqplCmgWc+pZnphDI/DLMUd+SCenqmJewD75zFRV9XsyybN0ad+OAF2WPIbeftTaVIinHyWZ5SKLblpbsDGhLVQuxiB7zypErBuMBd6tzQA5DwnYm4bAEi52qYtDlKybtM/SdVIrypJYqaAD3q1DZ2aJFCXOOdU9czj7fjctIluW28+0r1Vfeix9y/poBYrX3EgWd5Wqi1pJXWZQBnFONVKExidTpuX9L0MAunac+6C1CAeXGg0GRM9ZtCuXTEyWyADw/95icKJ50Vze0AlS0AhOCnkn15/1gXioYeJqEyso0qU65iuG+Y1wIxsWrNzUeXBHWLqaSFdTfLqyLraLYSKNg6wKgZwm0EK0ijsO4R+B50y4yrD3KjpZaOei6myxfSy62A4jBtPViNslRQysKJzhMszPW9j/RzUX95ZKqEIJrC/5X6yQ6mI1mf3I0xYC0jUysJmr3lT2LpnHucSU/RAFBZ9lJrJFTidOVTMfGaqHwLUy3864dhUdBcYlCylXqKPeJ1HdfcbOh55MMUdm13Z1d70EVCGolSeBXXiOS5XXAuQnQ0Z7uMWsHDl2mteFVaAsMVtoxjXIKdg1oDlFhD21zLZtx3l2Ayvl0ndJJ9xOONBO6fUi6xuEfZZXz+7XjuhA1+yOQNTKQFvWkEhSN0ylgBj0yxi5npiiXLh9X512x/JFImbXZQBT7tkcdlASJ2XbcQsGZuiqM0wX16UnHC3jrVigHBKHuZORCWBPJfiYQp86OaS2fHUN7eXMv4tz0TU5pykT6LHUKhmYb+qEXwTVGJVZiCgeB72dfg92ZyKrz5XzCPbwhi3AdKAQMXcFy99IQ8xdTeenH1KpwwTGIiaxZbhtKje5U2VGGs0VoGTJUnJy2PCbHmSzjSnVmQ0XkiViJ6nhj59Z+q+chGP/kjClcy717GBliM7ca/2syz/rYxwn0+gPo48xn3tj8bPMPhsdWYBHVoSBs9CD/oW0hlWqU8OIP+buNy0B4duu3/ddkcsp5RbpWMueYGkQByPyZvNOpYS6EUJoGGI+ltoSkMCdjYSFsLYzPM2zGC212JRbJIb4FqIS1Rfv7Uox4tlE1YGQ7SoiYr2POfvj+gr9r6bHjtm9y+o8taHhXDUKu5JryySfTH5DYSHQ8cRagLvlaJuOqgBony+30mKauAEpiSe7YC4mRIgFSyY5Sf9RW4AN4vyCZTUoTwSDnukgTkBLjYVN9jBcjfwVqD5AljUq8zpGhw/Q7+KmijzGTgDRTj9ufWCNE4ew+n3Nw7BVNo8H3sFKFij+gMEUr3gk/OlYupxZ7RrHFMMwfkBJqwFOsq7jcKOgSZ9SNnGbdywNyxuaBFUi9o27rcar0jIWMY+6CIXgG6wGaGENGq44+YGo+70b/cKexLHbUawHov+vHjtARy8ZezdZz46t5KGwheINPrCBxKNKvH4xEDP15L0F0+2YirsYCPlOSnJpTpsr51PTT/ua84mDjXbIgfJnV3fNaK0aZiOpmUp3t3Ffe6ve3rzinFpbvpucaE81Og4oRI9y7XOx+XK+DY2lPMuN6664OPQ5l7fCTQZUxMbYK3gQBxJpfcPMwKMx9ATMvmbn1nIOza+GZEiaThJ2u+98kimAzY7ZZBR2tN5wnkXZP3ghOnol048tjQbyou49WjwYVx6VrO+IAuuZQA/sqy5b0ZQlSIgCLNO+SfT9mFYNDO3HDwLlxKrqYB3403pdb73YYcp0KXIDs5nAFTLuj2GwDVPBXdlpz6p//eQst8HqASH0L70yugDXHm4fq++Q9nhLbTymO6KZVW++MKOBdQzZ3z8dzf2OydJcbiOs04I2PCwo0OaHpi/HUSHvcNMOLIj8ZqfRuVhoVAPLaHEa9TIMTEYEe9Oe5l/FsAkMJz6IHIzEK4kQPdPLQXTZL3q9jLR1XcSH+sDSKKEexc40VroM7tB2lwM3yezGwBBRjCKgug3MakJUbBZnRPSHSrDvchbROFFoYOrNSFtEhgW0rZRG6To29C1jdZouOSigR3jWjx/pEMwnLQJIlwp1EjY8EuqnEIYo64OUINNRdE61TPDXpgTrUAkJwmGT0VTNk0iLI5MX9HBIVMAWjebmq8HZFjCSM5vZoJoy7sInxbYFmCorRrEezSTdCLP6VXTVVdVUuxpoI2f9m8aqliB3A3KZwicApousOD39EmbAarj55RqGBlWOCsdPCc41vbqEhjLysa3CZOWsAPSkvLNPoSDMU9l3ETFuaBYfbTydBbywqz4XBs85eQKzDExSH1p6Xpg5rJQTPZlVqmlVBp/BpGBIrw62yKGPwFlZIMZ54j8Qsn28zITcJfod6ORvd69y+Tpyw+S37Mb4fhT2Nno6/oFWQYmXjpHAVM47JOvsKob2kTxErxhz3jEpJnXL/ELheqNhedJf6GHhqZnsIA9RE9zC6Dw6c66iQ4svj1sCFwssUTpdFYKjQ7oYvso53gnTrLytvXMMgPQjtXrfDuSF2tG/J5uQQ8zRBKqycMyqVvInqZ2BWWm8tVA38VTgrwZpJ5omjDMxFAFrjDpmpgseYC3LCZQyE0+NQ45QtJSen4jEo2He13WStOFtjm5v+Mr6FN9Be2ThlbFcFDlVxsgnmVJ2jEnpdAwlDtB1rCe8J7iSyYDbocnV9DJRbF2V0E072QZQnd1cPzSaJXQ+TaU5+qMFesaM5gQqY4qtZTn2qdlRKpSYrqP2Zi0KYWRqvXoFskNiZFz1TFGf/YaF5W9g3qihGVlLhz4VZ+Dhzce6TyouTx2spMKGIbP//3YBeHPTSw4W/IJwgubT+mdBRXWqhtAwWb6vIlyoq1LSQ7KHdErt+NlrwPghaWvfgrA1ya5Ij27Xprqdrsqhj/kaGKrFCpe5NtUB7fohIemrvGO5S/W0d2VvATIkfHVaDgHTh0ehHgWLBYj+FHNYVsJXo7BkktXUDwka16YL19sSbOwrdoRVDszs2yWXA73DkBlr3zF3Rzw1Wobc5HSZMcpFgX60RGwSZueTqZkIHMgsPqVYNQfI8OaT6yio2o1zrfvToqRFedX0hi4VLrryhAdaCgvheYAnLUW7ETO+Zzl2/Z3e4iWjVyCDw3znmBaK0YkslN6V0rMszwgJP1rdfXEhlY/fmsWhzqluERRZdNLv2QniRq5quasyoMoiZEZhMwT8GjUtpwOJTrQDFm/NFCEvdEtIG9O8DGGUgizPf8+KT93cV6624S3KJa/7OhUXek3K8m1fvbpnhnkWTE2Bu605TxP+DzKHC6OMwgF1I4swmAEKSVch7skWC7wu4qdpcyIqYqir3fooDEoeoKrVDHnnYhP4gCLlo73YNyJLDk667lIxWkYrEsOWa1OFdhxwEtP3WhL6aU3twEAOQuSHJnbjaiRvLVOgR//AmMDwTIaBGScqVsVI4VeMsajNK9qUjLgOuTpzLmSfDzJKVdQE5LAxUhkkqGL9WOxh5m7QfYbOZTbpaVCBf4Bu5RT9UbHQUZ8KnxaD6hiaW3eujvenkBf6DmleZZNTkr1vm7Y2jHsbzduXbuT9C7D/7tPcQii7T/VnRxTQ4D8ZHVdymW9wuV95TXukDjCrB9ObD3XKTNLyfDOIgQF+NEAA0za0uAqMy9fjNzCYEqIUodHEUxszcmN4eUeJ1RU6HHMZQ3UZaldGYRGFN0JrwPwARfAP2i+jJQgXwwMLWsgyMShAFInbIricyU5S9HP+BZ8a0DakGm0Gz1MSBV+S7zqX4qZgjui7ER+POYBjmvGigEDtRxF6hqRK4R88B99hB2HoGMU4RGwv/4zxfcTquZFZzsgrzWJFVDtGyXD1kGM2Xb27sJZFxSFCoEuDZQhfnhaRsyI9ROB6wp01hDskeACMCxZRtweiTeMAwBp11Ub7Hhaxa1Lw8I62YVmcWMGiTYkICnHHaooFwCWKZSW62t4hDqhlQG+uptA4FLEzCwUrutIJNc4SxoAcWe+2GqWUcsarcxJ9WE/6htjaXE4quDp5PHtWpApdjsxQvsEUaLRiNwmsZbnzgSYth2kAsnZ8UxkK7n0ZmOosPXdqja/ComgDJe6ESQHN9pjPSa7IVGSIrR1YF5Rn5rzO+ThYACKM0gG2qJ+Z6+55YYaxtkxt6SXLOHMzzaZIyf8IBmphKq4fAaeLFS8qiLMuqXCMKpRgoG7AnYrJgNpkU/O+wMqD89eWrrhPqW4r2l5YGZxWrv30ywBSQMe3xKE1MYqH1WdZxHUvdS3AhWQAbI1SW8wLWtTe8NEobyZJA1dDEWOShhioByDVLkbLjXiA1jCrowpj/AbYaQZsWBJJpuZF1eIWIRH2vKtdum9cZGkuQsDa0Mei0URS9e7/Y++tw6Jc2/VhAREUCUG6FVSQGpiBGVJJ6VRApBlKYOguQUIpUQRpkJKQEARpBBSQlkY6RaSl68PnAWQt13rfvd937/3t43ds/9DDmee5586r7us6zyNwD26QKeE4yv+bwD+ZWAxWM//KQeM4ZDuC/2LXBbOijzMhodzcx1mKIPoTOLWg1P1trk8UJR7Gb4+BF8E2wGjsUU43QKMOyBYQnvvX6ME2DiwZIEkIfpQ0/I9aAicVCvJrn2gJGAf4DoKT65e0B3lQAeHFBeOEHhdiwzn+4GQDthewOCeag0CPw2EIsN4PwPnh5gDPDshfBAfguH6V3nCCzBonLmD+9/Tqt6k6WVMO4vpzgoDS3L9wxKBg9Tx4XQRSQR/X0p7s/aFUP+S3PFa43JDjMhmAjhsKAao+QcMDAuKSgFBQIFjNT8f+mB7wJ+8q4vB1oCgJceDsgfeqnCDP0CERNkj1dnwd+S9GlSH/MJ76z23HX97G/xYD8leP/jutyBPB2kOP93/CoPzL2f5fZ1X+eW7+awzMExH5/3+sTBA6/182Mw8+Bgh/eP4dYxMG3sv+R4zNE8HWkz2HHIpYMDMY7MjhMh3aeOB/oBBQfEK4/xDZ+QfGHxgmOWn8cUJg/53W368d8dMEBAGjODj+b77+Y/P1b5vMvx/zf996/gfC+3/chD4RSPuvt6NPSPJ/0Zg+Mf3/rRb1b8v8N8b1r/PzL1nYJybk3zOz/9zQv2lr/1nl/udNW7BEgwvO8f/EaH431P/c5r9hrf919/7HTPZDIu0TNvtvmx809v7eiD+hRYBkITg39GTqFQB9igC5XcEPf912gZkWINAtgvuInvswwQMK5jFwHR5uBLBRQBQDMM/qXw+cc4KYN/+F1xWgxgLzYjn/8t73CFr7D/iDoMvxiw8YvBsDBBbIvfmXV5KH5d1Hl2MwKOTkxSQCpFTnAK/WTqzmoUKDHxUyHfYDDj0ygoE71z/3AwYFkVZ+oeRCYMd3KOBzIMciWBUHO0ISAd0ACPcxYiIXQAZzokNHOdtAptlxh8DiV9B84OBE/Clr6k8T8pNmFyzM5/rT3SzXn/iDAGioP+9tENv9CHwI3D5A2iTHEQ7iIfMCgAYN0qyCSY8QOOIPOgXsx8mbb5BrA8TbA5fimHTvOOvr374z/oudyH2IYMBzVA54KMw4oL8bfP/TLhwMCuIP/Xf5bRCwHvv/HLf/c9yg/00m//9O7+Z/kSMCIpL+1SQD18XAD/6/OsI/bKP/Yo/sf8zl+dOtPpBiAAXR7w8xdoFdzQmyVYEJ3kC144ElcQTi8ZMg6QgoAgpwOp6EMTjQRSC/AIgIAnKrHp2nQ/BMCPwP6OlQMJeHG6yLAoD9eACD8CSR0bENwckJgCiA38HBlH2QyRkUAXAwKR5E0QLNj2ObCgIB2ZPBEPAv7OlDJGuuI3CwQ3kGJjP9QuI9BjE7gW4BVIWA3gHiyIaFHlJT8hxDaHEdfA49yc18iF8GWg9/AX30iwYUBHsAiZ0OTgT0yPCAg8R/vzBDDmmhgN0CiCkokBZ0NCpOnuMiSRgU8osunucYxxLGA0wLmOcPBdPxjyGcDznjwZoN4MBBubmOAGnBBQcLgI/xfmDHTgkcUE2g0gYzmEG2KxA07OQmBDMRTxR0nADmOcwH/wk6dJgvBHLeIE5QKIDwNohfDM9cPCDQLuIYdvYQA5EbUD8gdMvBLuT+nZgL2MYHR/IYSArwXLgBqwoE8OThOAZE/pluBkLrHkdKQOMVdNVgIHIdBITdOU5xA1mzgYS7E4uN4OQ+LlWC/uIv44Yf1ukcI1L9DgTDCdQrnAAKBDGUT1CjnHznFxDJIYzM4Rb+M/fwMbcJmE91wkY/wgXiOuYIASeR80Ri0CGMze9EsoeMBVw88BOR+d/5BkDII0Cm8gD7BpzkQ7wUoG6DC3TMoCDo28Gcw45RCf8i0/bA6uP8AyQzFEz3g4Fo3z93LoST68gfQfwhUHCEmAlA5xzaSSBsI8hMAKLhHDomgHkJ7nJgtwF4QaCcBZlijk8IiNICA+gPjogXQI4CCITzJDgUFzdouf4R/gno9XG2AhzkQD5EjETwAHr5sGjwQPQBCR6QQwBIwPQ9AkQ+mEzwFwGnAmCIBiDBuY+7xQlgVICYXAdHHQJCxv/qCGhPA4IIhJNE/AITPFDU3EBUG6grBWuEfh4rwGEAiFSOfucEpCYnoOmhsOMhQ4DDD7h90OOS1n84ZNC9B+mjOI98sl9v//2k/3oRDqqc43f+6eT8ehUC0j0DCDPH7/8a4K8HOblA3sU//NDhcp94CkSNBCntj5uDHuLH/nes24FIBQBDucAqHMgxHD+g1n8eR7CIDvo79fAhnC+IUX8EPg1oKoCmnBsGLBLIXgJGbcBjDuJ0gyIKJBfmACrQOYHaE1CicnBBf6PoBvYU7BC3CNAeB5KC42+6xQ0GJ4FiVwhQtgcSoYBhFDiQbAsiB8LBg8MD7DXA1wb9Ag4EGBr5A6U40FM4AJMJcvgAiMGAJoL++QtAWsN5OH6hk/CAOCs8xzXNv5YIxDmDHcIrgYR8AIzyP530Qzx+BIhNCkDswX/r+CGEKJDpDOZFAbbkf3okx6EoCGj0AqhIfz8UxD8fyq/jDSIsHkIlcgH5ywdaF9jJf7UWR4qZG6zMgBxbDHCwvoQDiBoC6vg/P8xDfwEO+v3wvwBL/zVKMEX/n2xHBM8RIQBINw1UoCEAjHMoiJR/eETAEmaeY0v/94MCWNw8MAgM/pumAFPM4CCSDTfHEbISBApFcJ/szsGIgBIPHpC0HYjzcgHI0MfzwAFWfnOC+ggCwurAj2l8gIMOmB+gHIQdwa2f7BHsZI84D/fCCS2EANAzYSBUFNAjBAQEawMiVaCfAwhxsHIXYFuFH7GSAbuL+xBO55AOgBuUG0ePQMGaUsDiAnqEAGuYODkBM/PAagZK/TkOJhnwnf5v5v6FmTshmUEGIGDagLQ+AF8YLPMGgT6OXezDww+go3ACJdfgfB1hjR7iLoIGGcj2DCAXnDBJf/er/sXDDj/GfQBWDP6PRBonFBwhaMhyAJMA+zvdCCDTcEOBqNHB2QdB0yDcYHjpeGBQCPTQ3wFuHHkATGTQjfgPnHSgOAiIeoGg9qBS/zs5BIED7EOHbDAQGOhYgRdviCNGhp+V8oD3DSwuJ0iJCoQhwIDLIXXMb3occJNBTwLwIeEgoiYI0X8IhwD/Jcf+EwsF54acUKPwQw6+YwayXzbCr4UC7krAleICuItA4IS/XCYIUIcP2JqHFz0/NQ0gahFgpAG8Ugcrc4AAKRw0wA5c8SNiZxAtHQLh4vhXDIWfxD5cJ/QrDED4AiBFTg6R++QQeY4MIQj4LeCo/9UAYQC7IRRUs4fqFYS+5vpF7PhH7QpHAMhHwNYGGZHAlFSAeOjvdDkPHMTa5D6i3v5jm1wcINIH1yFJPOA1gEM6psoAsQYPTFTgUuVfM7eOJxEKBIhgMOg/OtEgdQLHMQMzWBUHGBe/hD8c9qv6CoQLAYQ5D4g+C6wSCFnIwfNHYGDI72Ys15Gq+b+J/S+d2GORCKgacLR/xRp5OKW/0baCgSMwY5nzCKbg8KQcfAToqL+mW/33jMyf6TIA9DeC+x/MJhx6OJsHtgP87yQZIKX+zAkM7pcT/s0hQO4hhzRoRx8CLfwCAgZD9IAs4+I6TlQ4yTr8k06B499Vuj8LggE7C8HxjxwJCORQ7x5Iccjfq9uTDHKAnc0Bqt4jqJpDnQUFfFNQaYGymwOA/QWDXP/q4UAci27Qk+H+x4fj8OhzwsBoLuxvdyoMcQjLAi7RISA1yI/EBcBVHFJJgj7437jX/+54flNFfxgOAPwFwp8AtigcUL4A08EhwPnfju53XhbQUweCp1AANpUL3Pd/ICc5ULQg0yvPvyPQEL/K83/uEQT8Hw0SACcDPb0/QVz/KboGA+JYgEUOATOPwGJ3zkPzgRugjwaYkTkPa5M5wOwLGJitdnjXgYCfjHoA6OvcHP8M9eTvOgL+wsEPANFqxBGjEXCTB9ROA8YPjAO4gztoTfNATV0yRxkgzS7x0l2yRTrasiLN9ZAGBiYWRqy6BrqsHByclw4eQVroo35+pm2IsjbXtf35sJ6uDZIbesktzRipa4C0tglJNkbZ2IZm61qasKEskRa6Jmz6KPMcXX19pOVBq4cNhL42cjaxZKEzQBqa6doiM/RRFhZIfVsTlEVoxn0k0pJV18zEHpkKvhWaq2tpaWair/vze3ZTG5RF1sHztkgLW1ZbJ0vk719n2NkgrVl1jQ6eCC2QP+jETUl2BSdbY5QFHYQNCmfjyHVktbHVNbEwQ9rYsJrpHvQn1RL4vvTkF5a6+vcPGmG1PxjWz56lgi9nn3wGZROaIqurL6/8hyZ1rfWNQ1N0rc25ofknP7e2s7A1MUeGpoko/P5zh1/++jkuNgiEjSfvDw3bOFnoh6YY6prZIIv+8DLS1tqJVR910EZoIkf20fyYIS2MbA+6cuDnIXheWSNtLFEWNkjv1IMXbe1svJIPVgPZVJ9mftDEwUhfyksfLePQKbJk0YOVCS0Xtzb5efTolJGWP48e9GBz8kK4eGGcdBKyKlkihz+k8pcLkadirWthY3iwGGJHC5+mb2xncR9pkCHyl0te+nPJD8bzcwDWKLODD81QDqwoaxMjE4vQRObyP32NdLRE2SBZDzsdmqXGqoS0skPa2LJKimaB248V2NehhX+9q/MPH0JZG+lamDgDXQ8tB/aPg7Ojg4G+nYGBsb2DOQfCGcplooe00zcsOHzF0hr1sy8/GzO3CU06MECyD785WsGMg/niYIVwsHJAim1srU30DzbszwmxRFnbstog9e2sTWydQvtYzHUdf+5WgQNh95NtnoOPzsRC38zOAKlspyeKMj9YYxs+OktrpBlK16DEkdX6YF3MTMxNDpYX+NsaHLJNaPJPdq13vz9gi7qPtLAJTfv59cGfipNPWCN/tv9zEL+a+ZnTW/bXDx01Bf3JSAuHlfzxKRvkyd5AOM1t3v3+wGETKQcWh7lNluPRC6wmBqF9DAf/0dblMITwwHURetz6+oYIGPxAw+jBdaFwfSSS82coO0dEnFVEV98YyaoMbOPQNFF1uZuykiIZygfNi6BQ902QT/vRMLS19Q219cwF9FASknf1JG/KImStrMyVZGXFOA3EHZD6yrd4VGQczRRUYHfEDeWNbkJF1FkhPJw8P8EcuDhZIWwcbBA2CKuEtJSzuoqtqYgaTA0BVRe+LwrXltXldnCAi0ohbayd78pZiEO41biQtuJmNioG3KI3Le+yOSlxyiFFnCU54cL6cEMOy/t6bGr28oo8BgZcarY8qiijgwXVtTUWYOejO9jDJgczI3B40FgPDhoreMygR8eMj84A2AYCbH8Uq3x0t2xtLeUtzJz4Ds7nwX5CHvyra45UNrFFCsihLJB9YQdzYGdvYiBgIuHkKH8L4WxhY3PHwsbAWkEBjlREONirmak5Wh3ISMNbNlJqZia3RHVtTkzCgSJj5Tich59JGsD++dX1f7FXhWqsJ+UGq7zlz2N3sI4WKBsLE0PDVGWk9cEZCs3QN0PZGRxoCGtk6sGaK91UDy2A6yP09eEIDk643oEPAYWxCh/I3qPWjqVM8k/1kqyHMnB6kPrz5FkYfTx15rQrbQD2KeAPhkqkLFEG/zPf9ZXrcgIaqVKnGUYHH7iee0GXMJZ1+sLN0NbT9dvTaYsyzZ1m93SkopO35zMXdraF9nY20yQz+Sn3N3viPQQnOfZW4mfz69zK9ldyhPZXaT0Ovl9ZGJ7e14jsMdlzDBseK9pZR266TawI7W/V7C8829f4cfCgq7JDCJ3febfH9nGYnR1dqf3KTk4yV/XQA14rKFyezDS1Nrb3m6tGGX/X4isc+EbA/NUG9kpgvLyHS06arnwJP/AxV9d0CT/fDR4keUMRAl2fTYCq962bWOrK51URJ9X1c5KXSLedRZSWYydPnxk/ZbxVztdugF2B4QPpsLLwMOVYsTJ9H/HGMTk5TQLqH1nph7AfJit3xpB5tst8Ua2MUKnPIejRmL71xfhYoV5etrvMMQjUKexzxNyFuJiXe7pIyX6gxGEZGVsMnygeTrSXLX6IifPsa684k2uGw2CxrBi/47DkO2EvpBvmFmeycvOGp4RWuEJrQI4t1UNZrBw+qxD88Sffsh6cf0/x9clW4b2vgS6DFO/y5fG6uIo6GvQzuZ8srPCsjcX2oBA14TpKDegC3VHTstDLb6k0P+GKtbe9aXk8S0ZzW6iG20Hoq4jgx7zlByrClNSku2/4mbG02sSSnDezTxGRYD7IT7WoZ2g+R1YqPP6cig9lpo3v21KGTysy6ngbO3m8h/LUk7O3SrAVA1PkPzydu30KXwZ1USwbd2rH8uai/RtyxULfzFaWYt7cb/MX7rTeVGb1YZ3OReCRxvjskrEOOxVfV6xobcD7XFr09VMYxrX0S13xEQFyT+5dura0hTeeSt5XK8V9U6dUHh0nLTgcmoWhQNx4g5fTdrcWZoyvMRF20WOTUq0sJ+xmrbZtdbLB56vKbKYf5nOu2C+0k2QtFY9cqA4fwnvdYgz/9GDH3Ygbb0ZSklSsZCV3kjg6aiDPP1U/lWKRiI3mqcuEKpEHNgaHipwkPGlOYMruPXqzcEFu5u3L+qZQXoWhaV7B7qsEsjUXfR5f4b8mlss7G3YfiSVo5uFnPuLt3+ZG1yCKFBiKJr0oO75CU2+08rCh4OG2bdSEw1nND0N6NvVFnmJ9bE/eb0cprhiodD010znDnjBR35TWY9pW3UHNLZw5XmD90FTHSK5XAN/dS9RlfzlVNtlaKvyWBmfHmx/hXgyEE4IBYrjsjGYEdUnniJ7E5OWzcjO5wCfdx5OGEvvz09pV0j6jN667XGJ3kMpgmpjFe+f+RQk2MPyeX7bwdPyZaYVS/+2wGETsDcwnT6Ja/X+M/ygwcDyteENAq1OpveIu7sBp9CreuNahmI+DmhWVvM946yTGWXk4Bp/vVAVjPy38nOaXcsuy6/KlzTXCZlUa29zvF7HyFhO9Nm1jeb/Ow3CNXp/JKCSZpECnO2V2tjCarYFVlT6KNY6mA90pgKEHDzpTn8i+2OGvZER5I3+AzvXFhG/7JVnS3v4A6aAAfLvHz90SL2pU3OhAWG4xKuSQjHyR9s0TjOg6X6fgEzGoSffEObUopiX3VDN90ZNbzPSxzXxM742DLnVNCn+W+MrInMUW5SVQpNyBuEX/4P0uJGFwqqq3zDyF0LglMW1raHE1z86Pj6Mp4FHIrgW+4Zzd2VF5dqt9QZXGot5B+tOJPhtFDqsv1LCCOMVRwgac77roms3xZBG0j8qmZmViotG6LhVaFpbKM93fwmSK1GE3zvQodSdIylAJZ+1/KRtEFp1I+v25QYfrIr1n06xD1yn64VjaXtP5uwwvaCn2v9Eytpq1vqCXQmu7rpysRsDIEZbFOvL6BzJr7j0PxQZqpEaglUzg8d5Y+xcqWZ2hN3hn+crlIqMicQNz15K1zLT6XMWMTssO8V5W60KhJhCTuHHv4q5RvOvVH17Q91Kn2egsoUlxzxguOvUK6ftqdN71ygCN9JntmaBFcybsF9nSFPvu+KVJyB/VDTqY/EHBPqtNduU+1xbxxmuxTcgwoj6/pamK0jbObMcswNoMHNnewsWWeN20rbG/9mjqh2PsO1vrloDzc9PrMrilHt9sncYJOSXxch3iV43lPrehhTDcCdVzDHkc85r+yebr0aTJtlcluS7ksZ97clM3qVyrsC+nP5QjbjEe77qgb8w5zEE1TC+2OZ5BtN5yTk17hV1wiLBRfwhLy9O6vFpbyECGR4+8YJlRQi8yz5iinUnBPgaxo9nKI73rm3rH9FakD8vYh1fsD3Z3YhR5zXh0nNjId2Zw3zYGpowr8t5SCMfDXJMrR78V6nm+1qhFrOpsllYnGm2NxpXwzn73GFvnQklsvtj83MreqAp+JCNG6URwg4pAkjsFQ2FVrCoj9ruz6akjVLUcAaX4QwEaxP5EMrwbTuGnMqfmmlLP9J4poG29LNCdBqXgeMfAofgYaybOXJt1up0xF8IiRV3MTXZzy91LkVk790x/SIXtRdzFftS9z3FpUaxDYZYJeU/8Fe2s0TQMhbD8LiJ7V3Y4KWRy5hLSebB2Xoy78N6duu6NwwC5EDQVLRfC2loT7kLkjIf+qVdjYT2XMhmTsme5tr66k+JcDv0V2r7xqhv6jRuUrYqWTwRXLrs2jvu3XCtTHNTYemODRiMiFavxLuAacSJ+y9Z7cddPswL5fu9PNYfe8y+4fvsGyXjb+0X3bisqyjK5j1f8RmyfiZq5+Uh8mMj1yl0yFZW9VlL+ytkdw9ZNneBs20houUvhyCf8TrdCLVjQVxLPpwnX7dZ7VG/3dKd6luprjNSEqZkZNnRg1ujb55WbUbtNzQXgJF/vNIHTFjJ1vBPHJNBgiwoRGZDvGFvQhYXN9LOHeJKnPUvYGctrmmnwlbepqHpOe6EZtV3xfJl+qHia48a0clPvRf4rNDRyC6y3IzizUiNMEblp+DjRTW5i8Z9FqGy/KTHquHRcVmzzucH0nbPmWhjb0AAzFE2VnMaYxeD2MPsF5tHwV4Qf5K7OdBhLEQ1ExklZqbpuhXLlnv/MUxKaLmMCS//MhVFMEtiLgrW1dvVqjfQFcoTmh3J2q1xFb7wqh41VRBKN50YgArtg+rgozaf5s9j0qFjzvS0CG2psjbnzo1dUbAuWAom2l3B3Yo1SnuDrPz5PlRuEusogYarZnC4w9WY0FMu+VrRzurPHQG3YtGQ5Uv2RHrWt1Hvf04+kyoPIUphCQ7C0rj7ORF1WMpPjhPaooQYcDEXUgnCxr7SIlD2Z2e3ckkWDE3b2Km5+0mgVeli5e45q5XYzYQ4rwULn1VVag1t1edKsiHwjrzlZQWdlY3es3GW8UDz9p29WBrOeC1ZadG+8ftyHyjkjJNhTt0DDghtOSFDMpbWStuSrwizlw1zkIyPG6JWiikOai4hMz556K1dfNZ9LOeHjr5ByAREyf+qKHKTdgokgGt/c98ZnRxJ1thxz0YplTa/KXV7XFm2OeSGcB643MNGHiodx+roYLd08MoKCn72RT0Pe8NMPXu+xyeQSkT2tFpq91Sg05/5s88b5tbP2ozcXVAVwqrCCCbtvDuRvqjOeuSE8rztb6JL2nRp/O56mPbMl3/gMnCthU2DqYjkeY7SR6rhuVABFYcpIn7xT+EeFmtfS+KqPchtGfM9cJJC8RduMHoi1HZyA9Zkalq/ZRFJAhb0xI89zV/zDQM9tr9aIj7qzCm17jBkMD57mQ74uuJUQPeNSq//4kPt+BXZdSF4Vx754r7ODTWsZkrSaXSJHdIh6TsvVxJpO/Ycl3fCltZesPaFqJG/IxqrKYt9TdUlga0Jbe6XiNXmfBql43eOU3+ChVdpn9EmojL6+byqTFiCt0nbuTHUD1gRTfsfQqfHbI7nUcd5h3F0mnmX+et/yyHfWxtEXjfAWl+pl3F5MJD7BT49vf1dZvv1hThdtfacJ+1VJsp5ijExVdO/Z2I0f/fIDoucSZju8yiVpMydPL1CVeUxwRVWoyW+2JWM4zjsRLyS1suphz6AW4fdgZv2GHa13X8pYljGRaG6y3O20oURPkOMWKKGFIIvWffwMXbKZOMsV07QiWBbrXD5bjTs/G3xE4Fzvt8GWnxevdpbE0Ze7Zo+MOgnRK1Gh9JwwxGPlPcNbvIdv7dhyX2u17L5wzxC10E56GFt0TSLMnPLs6fVpz3Lb+2mBQd801VfPUJq8er01ZKOwUcUjYBUfIRf9jdvTc3x9o8mXGUlql5sAw7wa2CGrjJso2cA2hH+KNqP5bGBCX/fI5meEEq8uqWKGIdG9/fj+DjXHfPU+ZrMynmpE4JDOGVW1ffm98Ilx2RrVOJ0vNDkerfGrXhGNOu8h/RVlJVEFzGX7Wzj9Y+c5unGcs7P4pWNL7TojEK9CC5ysXBgEWVLiJZ6ojxTfH3pIdZvN/JnpjH3jvIkeX6pmLXTgbq6Z6POLXyRlp4n9iZ0M8dS790TqT80nrHbxyb6p7o7Y6+QdoY69/W04oEwvYvw+vklY9MXXO9wegWn4IeKCCgOGOab9tAySWquP/Fd2utN0pTAWF2mwzLAoi9POl5IXVHaHYxfFhuIlEdK9e/UBV4Nv8HF4bqXVKbeWM+oVVO1GONTwJzRx1P38om+v8lx+kFv2mfpOZX7km5sO1sXbA5eyrOcK04awPuYyI+O+syXWfFQ1tCH4jp3k4rd+WWmVlvZ8q6Z/Hr4Gd+2r9PcTvqx2lIKnG7e3rekRDThoWO8XIsym8d+sWN/9XhNA+3o/4r05H0ztLfnctKovgs7X4uZ6UdIU6xd2D9UYi3PXWh60K+NWnhcrQHG9zUxZDR/fODsaUtmlhFitntIspZNx9Syc4LzTvGpXWR/iMjUS8yksNK2sOUGJQiA0LuZ9rzkWxikN2UsdX43MfPvM8SfdUpVRvRa9vfMC5F97ysVfVwiKZw5ZcqTEiFgtb83yWFm+VjVlJFZ3OlU84qUXlBFKdQejNA3tWnzdw28hTItnlnbZdCj6RkNotz42dPDd2zzHV0Etrl98lVxtF6tWe/lCpy7CaDEsndL6G/bjwrxEG77Rl66LeW6FW2Uh02j91mZ0Vo9MQ2r5KNBFXoh8e6sbSvhGltGxcJ7UeaLxY1LOFXqdLu3qC4lYMr0sbBcFByifD5u1pb92ZZm0zCja6NW+nfsdPcf7KgXdN9ak3vX46Kga6qgKlbS6M03PNiXpyvGMSr4lFWW5nplvVaHrsF1gdh6WwvaPcq8x1jLL/Up0zeDeWzyax9mS01JtG5VlpTydyfGao1OfHr+YW5osdJHIOvedInsXz8o656uoajJV2wBF+ieGq4za7F4jJV/mZ24/r3VnIgy/7lvmoYgqnI4z6BjZ77ouS7RqW6Iah/l8flx3u79nSLiNOyKiSHJxaVtgpiPNqbaqpBnnQ6uEZjNH1LlJ/Xk9szJa3MsLqNm9Lco+C7kF480rmR5Lzy/Y98c5hqmzrkc4BE3ooQtKyU73sOeZCDa6FwuEUzE3K1+99+HMx6jtwDBV1eq3la62vs2fFCx83hKUD9z/Xjds2bUdr00mSysW574qgzIyOGU98Y1ASlWubu1RqP/glK1Xf9ccNsdjnOhllseJHVC8cr7qmsv4KXaj8C0j54X2tiLiHk0dX3kJimvxxVuzqtmbvhN56ZkpSd2nWhP1FbnY3sb52DPfMKmhQBec7JR/vOa2P9ncWBeyleKthaXqgQuRNS8rJokockWt4TNosoXYBmI3uLufvnP5ulFBXbzA+YqIx9m7SaRLCcRSX7TjeyeCTUWjOegU3tZd/ahB4s3kXIhKmKFjbGxwWZPp5sXbkONo/0E8YSZYb0RbEmLy0jTstEBouP5VDbuep8zT+m6CIz5VfibNoqfwu7Y3IZ7ikZLwqEDPigHLB2pPsqG2wjyab4x8Lt4/Jz/Rk2MS1py4LOlNw0etaftU3U+3aCv9KyVtrHF6HdZpXcqFGWTxJ+I8SW/3Vd/2zV10FrNW9Cz5Mx/fn/ZzzxZkxs9IvGVVseX0bNAc/u7bhVUN1rmIJMuYqnIbIWM+mWFTrVbpqfxpv35vwuTG5mGkQjftmTVBZBvO7Cb6OpP0LUvfi+fdV+Z1lFP4H3lani5Vzp9NsMchNfvBk0S6G3HxxkCpNoNu7Ffl/E4YtBKetm3nMRMy3Xatgmlvs/iV+QWokWOtyyyNeJOp5eXL9Cu52wVfTAlYlBoztb3tnG2r1kgXvOV9nvu1tk+IFeI3fu17ybTAk1Vs+fL8ytzUDdjcjlQkAcdpSnJRster7XYSHr27O+c8Kh1eqt/3ORtFOZSA9izKfzDH+pRqJbrfAjInZ/WayMQ77rfy58W+uy4OK/DdcTHdeLezmcQWuLDnNomfRuqxkuh+G+ZcZuPdMt/N5qnrdao/a3NtqpANK6gHl2DIidNt40Np4HikWWLvavlTpr2Q9Zm91eAOuz3bEa3KzuvygUMvIijRB+1IetrhLgwK8SRlHLC6IpxhSKorjajWCIE+T1OQaaOd3c6KUb1B/McM1MaTU+sFqg1iuaW2eTysXjlizQTfO2ygwTkpvqp6vipXyz8UIu/XW05qvvGWaLg8Ne3y4BuyPi9JsnBoY/y9V+uDIONxOCnKVGucsox57sGqGZntG3kbnDhC7kSTuX0RGlb0QIcuory9vI4+sWWpr6myIl12glFvR6i84rUfbTt8YU93iaFjbmbtckT2yN/f3/0QgvuA6/rQzle2W60bclNGIUnkzg1ahZLUyhL+kUWa004bjRFWXTUI3GCqe7uq39XvnCGT6xJW32XLKJ25oldETTvPUuG4uwWjsx5QaxucpfioqbsWsFx+tooPKSgwN6UvipXj+dioHWsMHfoV13v6lEUmA913R8wZDipHmix+sTnGN7YV/M5nZLL7z3zplHnplL2FU9ZUOtsqJG/0yF3P8XYKjkC8ab72x8Hn3k8RFksZwzqbhVfJ7wWOBocELa+aShZhhzHm0C1nVK6ksolcOz18eQ13nlrRyF7qWv+MjKaEQlkXiiCMX93V1XHGq2Ui0wZrl/Ne9zZVAn5dU95In7kpNJa0KN5xxlenEWVmSlpNFpSER+kPz67ToohkKt4spRoSz/6g1bigbDUoNCLESzke3rG9FPfkPEfCFejaEg1LSKLV++1X0M7lLBt529lkqUyhGwcmzENthTOZWs+CxrGH2lZ6yBxHCpO0zFm6PG/G1b/um0sP5s/AF6rMGcW5UdthcqtnmwtDJm0mtwU/Z29hJ3sI4UVNOpxUOS3kG8Ieajf5ZQXCPPRpxq5Sb3vDy23fWaqCqtZQZi4g/Ztrg9bkwt4jluGmnmlzvueLxgYY4pkeDdV6Lg9WLCqT4NSYuU/QGBYZH2Kc8wo0anznIpy7TN4//51PX1r5pnFUx1ntkmUC2eZmqPvK2S4v0aDwzdVVB/i7uTbpYUcmvohaL6HKr/om4rC0+D28nMdWwjmXjcSekd3GjGFZ9f0UojOj0XYNBneLYi+HKoS8iNlClFkM49whpl4Ps9XbyFStFsltj1hPhrWVXzmLxz3+OipzyU6x2zXhfTXljLUMx36PEKSwe4mn0uHUwpp8lhY1jDCj7bK1IyHz9+vZ32TLSqLtFwK3lWSJMm2t8K3RtlbWHlE/CqTZXRrlRSX0obxM4y7G+5l7uOtdzsZEoafV+k2WxuXqrlOiJLWEl1ZoIWMXT4fX3ZkbCa04J0qZaRSwF9YYO9En+BaGndFq53xJx7HGOyNzv2RLFUMBfyxisZuniy9CKDOhTSS+yogqNQnViblRq/RQvl89wHBfBmcjuifOge9Ueb5Q5+KnN8HzQUrZ7rtaj8ZERXMSC1/Opc6jL96ZI9+2pklbSCHBrI+16NAu19H+hLk48wHzraDgbERzeEmuZ8VDLl73VXX+dlFB/vzRnhy7jL5v2w7DfrtvVFbn0BonHDz8cJX5XAKiaEksB6ipvvntvsD7zoJtyY+P/nZGVe7Lj7yI0cWzfN81376Kx8ckC/PeYug1VO3Rn/jxIoGyGK9rhaMzPWaLnIBraoQ2fo23b+DmlRc4hLdn+tf1YqFVGlVBzi2ffyjXP8N7Nd36nIKAf3W1gh8tbSCfyV07QdCqNe/0LL/PVIhrTuowf7VA2dVR7fyXrQ0EiIRXRew/hk+dOrW/HxPd8MZLhtBnOKXI/qH/LUZpg6cNzKcvDpy95IVxTgWNuH1h6MG69lpGhAXZY6qWTc5Jayan8TtaeG147DLuK8GrIfKyG4QKSI9XAhXL8hh6Pu350ZQXt7KmzTdmSHvveRmXfOAhJndZQgi1fnYZ6BvaWqn5xo+KGcDJGNGufO25v7O933tNbXchCH36fvT377HoLS/pMS1FozhXY8rL3yfKnR9920+0Wrrr/L2g2P3BbFKNHO3ZrjKeHEb/TH59lySHfHu95rPZt7PyNNlu86KWEl5ea3GVicYd1eyWirK9P0MjPeV4Py0NUUzAv8439qPxdrfZgOy5YhoVlgGpcwvU7SRol5YkA3fzlsUhAcJkD/ia1u/VjTfy1ibcjAhl5e0eqr/6VuWhs0iDFknc1ruubDTX+Kgb+BamzjtZrNa2uW8ErEKKkupCILzvo4JI8q9vvTK5/RJPzE3g6WtVmn53B0uci9pyJF820abKKxCybY39ot+flb9W5TPf9HoaQt8+H+AgMMUeLawxpK22uKIsW9csd+bZdzfD+w1pcY/fsudgKOmNrQbcTbMzuEWnuMYwBGO1KxzfwxAcXg8mz3JLYFoL9ayeM5SMyR+b7ZgWJH/DUQZLdfo6ietkx/K8/OXAo6Fn0DF6J8nc3V689nsLJKsRLgQ1BGr0S9CFFqE7N5QbEHfolzIURzu6g64qCFsQXI3pdu6J60dPj5Tosyf+tFPKx3fqrj4064VtJXUgcpKZ+zTrUojM4pZm3tmbJjy0Y1dFpldHnz56sqkrZpn2AVbJ2iiMkNa8sSa+H+T8nuQ82bxWdcyzxZatPHnNtgEi+qHU57OJiAGVazjjMiqjb5f7h/jvLDezOjTZV77mYc1/gl6BiZsfJt8ZjLqZG5oxg1cjlypehMqWfRxLLq83bU4j+5kx5IIFZm3hgt90UNH2DJrePE5T5sfrY37d7DzxNimQAOfHLRgOipdECoYe+ifdkZeXxK9q2gi6xC/YRpASgZ6t8vjRl17TxvGMN/T1r/k0C/EZZ31rY3SCUVMV9vZQwTJ5vG8ftnSGWIecVecZiE9zYD+yXGnjmy68luAYfGFKbCyxvbfeyzX0xQ3+BbE2Ux8ZWturyWba580FiFvnErJklBNowyRYhUif4lxhiT+ds1g+RZ9IGNUaIjdWsmJMmJH4hj46/MUXuR9nHhed4Rf89OiJ2+Kk2WU6XPM0z/ZvkcyssStWkoVvb6iq687ULHqSltwVSMvpYvqxJfbOVlH7k0vqYPNA9I/7CczbIxOfR8aVOtX1pEelJl+k92Em5Vkk4ajJ5etOEAm9eTAhW1wsNhx3qVN27smi2PnU7vpA15UHIfZu+15vmoimKDWSkPOkpa8avvFYyaffDXjN+Hz2eo7Z2Hid7PT2nJXnwDfsYkFFdfwkZZaR21eJ88SVxXac089PWg37Nw1B118JITSxOjrJa/VJMitDPSgTSGKuc31xa/VzH85cxk32p9aETFzesk135T9HaGPBF801royjI13tNZpUPqXczP7me+PtG/Xmu6LPKK+iO76YVvvKDNOIfyv2gATrTn75VSVBsZfUCcareFZtxre5qeYfZIU1LoqvXbxf4lhn9WhL8Wxk0j0B2zuWjDccCJyf4gRkxA6M3ks0qL83pi2AoIiWVX2fL82cITr6iTJbJPKSCHRILaED8fImveJizeWa6ywzWgsL3lQka9L0tYWv6mTbYJNrOkTzCiNLXXIalSNlfHxNxKQKrZsmSVec+9UeCRDbdemxPA9OldbL0cJy632nf66iwaaEPp6J4sVNWoUFby+TMmlbX0xzNHkZzZey+EVTeYvnH0R8eL7ZMDJ7vejsbezsloAXLdaDy9PuK4NZ2SsY0dM3adOcu6q25zGWKEaJcUMGL90LUXqhkEJ1f88Nw5TgewzG/MArCSrz/ostUTEcK8tlnePcxmbklfp+tZbGP7RwXTEyHmyZbTt1k1cOsiF6ZXPa9kZj21987le648JuKH7F4RUpm3QgmxK7zrtN3Y/r35d7WZ5P1Bdul3qnJjzh/fp8R9y1ddfxsvUE+r1QtC/rDThBkzjsOmQ1YbtjDhuP6xpz4giUEAymauq+ixeZMSTG32djjbfF6/iofKrW33rVNzJE+mkn2iv31TemRkHmnaE66UBVbsPUgURXu4WZzxcD7anLGM6n2xiJvo7jnQ7Kz6QLecbTjq/13gkRHETo/vrp149Eie8JZ/HwIrOV6GnmjG/HeyskdnfUfhpNcPxO9QPtadPsUzZOv4Q8ShjpJ7uspxqv3e87t3Fh2Bffb3+MlN8je7r7I4B9bVbV9a0Vi6VQt7fxnFPXZ7vxvlfEgWQe01u97PEfZnoWlr7NMa1ajhQ/njdBXnDjzSlryOrEeTgWMY5zl4cmP0kawzrRMfBdgHnngxHKG7DLL/Vuv4A5EJZ4Ep4lCmgao7a66sR6wzBcvqA8fVamrBvBEiznKdGYNUvv9pZ9YzVNb4nejrJOko7dbk5aW05gcT6jeZb6tiVjA6HQhq1GRMJpyptX9hLbnoxEo3latVyaYm8RGexzo/WqqSEJWFUUe5b5IZaFmkXmlmNflz65CzpV2uerM6tLcatBzJ53PMVVKAzJhwUtmBbz0tUv5LyOCt3Ieg9V9Ca/qbtUUSaP+7TFtLWwZ0RBHs+JtC27jKvdQTV1hZoanbHXn7NPkDNzypLGRsfN6E3yozkZ7E2dqi2rXoI0p+9v5ASWcZhjBp+Gvnq8epM4FufrF6L31iqnjEotl05BZqDiT3Qdk0hwMI0HV4Q/bLqmiphnLD+AxTymZbovsQe3VcgZZgsnbenF05kTttxlobMRarqGg0f/0s7SsNCdSICZZhbznZOTDlyr8q7gUAjiu7hVw/ePZze//UDAvlorvtH2aPVdnHz4depOqXpIydaT2j3MwLRlPdFpTVGXnLCLZn28DdkmM7joFsqLRe8jkHmtAiUEKUSBdis6/Uv5Yx3LH6GRZgvoHRhun8RZfamQY0RcfHLsZTkCXD4OEtT8Z/WyOuJpHD28YlKccNrbkko9Cz7b1ZNkB9rgqKJ9rx33X6BhSpp36wvzxJyU80nIbeMliXsvn8OJNVlmzjCjV/OFW05Go8RNwGR4wfPT4gyRdElsm3EMLbqaWO8FoyWZpGB9a2FmKkxDtiZpaBkqla51F3lFRgp6Jjj8ks01fb3o8TfzUXmqo3RBRiTn9L43774UnSDmVjn/lWh1wtbuwkvTRhmjyAJlrTj2Nq3auJmQ7qw61R3rm5NpnmRoz8rYyeJYUZ4ZBhrJPjyy0RQJ5dQos+gvqVelNJWuqfHqj90xzFDOyeDdmBFLErRC0eCX3rKv9icjdn8btHpN+/GXSvkmLv1MTdqWFrHsovEHL7RX4vJmKtJvDIcwrqymJDjMZLrTvcUln1fMFB9b2NLK73ok1FN3wS8j4byyNSNFY9wrIdfPOFTd0I/X7wyUhXLT+DAsmTaVajam3bzBHiYg7SeX724kRera7qplwB6IoL3jMIe5KshSb6/4Hf4lfxGtpk67dcm0K6kLdubeWl6wbrz8XBiFH7rbmj9XK61rS8j1aYakSQudjaXq9lzzaqyvC3N4lSMVKxsfCd3aBi8bXbkevgW/54tZr1tCv6Fp9mXaudj5QYbXe/RRux9nPmTItxkav4xW37fLSeV/MNRNuXMtgHFhuOsV8119WFPhF97oj5rXrsm3NjRYUL2+myvEZPZpl5PRPrRr6EdxIwkvfxnpl3SvweyVIjqvV5QPh6bXiSujzGssQqnr9yrOvklfpzjbGbBEH6x5zTxzjfIswtC+ajAthicsISJ0uSIr3UzSSJCt6AFaejrTC/np50M2EFLPkOGoXqxLex8wRGntENN1AULoZYk6DQlPO/aKV0ukKdH4E19FZoQri7JH4t/4/pTDzhk9zQFed+p0iOPD6zc7sgcpLdkqMSDiPobjkIYMbY8qiWd3I9VkX56KllB+uqtQaI4PpW0b0vE3y8QJLlm9WzBSMeOaas6IuTR3udhTexKjw1R68R2dAOxFMOXHW4W8hTt5lYJtC+54GvdW3yd+IeNYGqrt/AbZ3sR02raKVd931cgQTFNR71GrutSRbAxHDaD1K1RPfO41lV2xHiKQKyDOS59dtvhEwr1TQTs6i477Yl6ramH98feutZcr07Jkez9MwxNcBMT2zIXbJ/gj61g+L0eEvuPQjHioPqG78h73/jlmBvTwqb0Oixp+UWmHGYVR6Pktz3ojzy8tJQTr0XFfgp/LemblvGMQFaMsF5JvxHFmGcJTRJqEKroqjg+vtFk7T8U8UzWr0ZCbL+jLkXJrcz3VJ1dBCFm9M9phCrkXZnzVojc80894eThyVZXWqWil7dvoII5lyNtbaSmlOX4tkkx0GW8NXPCLYkh3uU/DbK7ZRPhVzyow3M3VCkAVvpUpn2tqk/SYbrCeTSjYwXlP1+rupfZuuGhu8BayzdNQLczi0oKvgdAN6xk8Ftf5EmO1HFISryvyDRBBiy+rnqRoUAstCI9c1NZoDitxyeSX2oLHuAyF2lY31qpwvBrrhOOrt/QTewjP/pD+IkOrNMvbE/GJfr6afHZvo1OOYxtz6u1H1vESG2KPTel7qvblsMKsTRcXxKCC1auZ7zkJ8uqNZd47JsUrVGL+4pm1NSnB/Tef1Z09Z+VkSNHY1Lfgympgqh0Jv2+0THZx+2y1fvu48xuje8pUbti7HcGO+iVLvkpD/R5Leh/rXAaLujgf+pkxXnTfMow/X6hnm8tYmkxE8MzLkzkj3+xrgkxU0dhVFq+rxWeotZ6Sy04/69zZIqZRebMqvgd3ENp91BMwfoXCYqEVfV5ZiLPo7lfWnlQUNq3IFdsCOQgtSori5dcr8UzDIdxjW34yHltL06pXFVGiI9FFH1mKa/3rhGmrUl1Yz9LsikAVxe6Mzja8QIyGOZbBn2DJTI99suz06F96x23DoL3MBcnByNwuOsWtEvlUQUxRMCZ4+vKNwG2YjbmKmMhLBFrZ+BTXCqMmbanIt8sC/HVmdVhRuE9dgtpH7eMXvzl+2FrPc9+2pAgI7xPWLaCSQL+xNafq6JzaEy6/LvtoOeh5+4fdbwVzpBI4mJu7WRKfJXYF1oKxZ+7n5A9+bPwyxJItGOV0rmNLOuSMUau8R493drkLVyW5TqRrzo/Cp8N9jsVYVzfg06zFku5VEkxNmAW5tOcS8/oNlSGS7ATCSyLuPfsva7AJ5h7iShpqrdun5J/bzVBaur8Y0l4g2PdNPn5vK2fdhBRj5xsTzn0f5L2ybkz/pwb5mnn2bS/efTuNyvmcR1D+xX9mqlCJI8Lm5ZWZl/PDC7uSgmrTAku13oohombmtqTelDURr2nstld7PKsd5x+lC8bY8/IYP3mrl3jBThN6YbdrQZTX/UVm/nNBwbAZzM2M+aXTo4yUdciLO0te1LSW3FK6LNWYMXyxu4Fy66UhOPERVrWO0SyK7DEVhGqzLLVP+X/stFMR4pq/HBMeoKyDcUE+Vm7V2Y5HLnVv3yGzECljfGQS126bBsf6YHJuSginduYOr9CN81s89LO4S+KbkXdz+XhZldN67xu5czH1TC43ncd7KXjP74qPyHLwYlJm59foTK3HWonP8mkr1ViL0tGmFD40FXWybXfwaNFrqlfAseZCcrw8EERvIhwXgpycw99/RPo33o8QlxnSFCa7M7A7m0MUY3lNKFhSoK4o/NFTt7XnzBpXHrrGZTqfmy1FC2YeXFxUW1cvmnv1sDuStB2i3qUY/7nbazFroHe14uzLmwnROAxyM3kbdhorcgo+WAYfJdNon1qsdn0fThmjGYjMw76N+rF+E62ESGEgSytpzyr4GXamMgOXqgsPa3M4y8PVD9Vm16dno6YLr9DTMCAUx70p89hPd4TQfv5gtPhDcvsOUUIKgmOuv+LH0hM3rfqNHRutdihN7BkVCZP6wsQgObvwYo9d5ylaZ8SKMbSOve+u4WCw8IqSbgvpTkHPa0Ganm305tX4r915pohCFlLNYeOaHwSRr3Pd5XCQUx6OcCM+zcAokcQy1UuX8/dEsMMYxUadnC53ZxndGV1m/aQnDONcueVW5i6BkVzBpM5pfmk3hPTcay9ymvMYS8+n/TjIq0k9jGhWfJ4RV5XSQjSHqWlWL7zFIptd8Fb75FeUlGquh9h9Q+yG0k3Zn+GLJBfsWDN8jb+pU8uxwmV/644dd1zaKiaTmCPdNoO7eOyqMQ3d6jAhe/KV9KvTvB9G2O2CTJYGH3WXKrh6evtLd5ZzNm2axVVVlBOVZUywffNSInB3DaL+jCR/axEXM5IRypq3nvl5exzXO4K0adM2Rj40prLNsEto6bOXdwuFkepLGFVrE+vzQuo+xnD65ZC5LJ7HgTx46QZ3/YwKzV+9xh/nMk+g4I2fxCyZvawpS6zSPpUmxPPKYTLzOi2D+8dM5e+imV92fwgv3y78qmwWZOw/WPLghxw+mSSs22/8NtG+YzP7fnc+bQTmTX3HYvx7gnnMFQl9rbnD2zah7aQxUc8QK2TXx0yFpHTK5Vxels9JQNe2dtEppYcuNKZjiXp7X0YlXx0kLGOb2HrmkUOxfGb2gfaCeMDUnpfu1ILKDRMa3NKmNwquj1hZxGdR3A+v4I8wfkKjX6UXGS809Y7Xqlkkz+nLLaQi5lZzvEC05JnTGvAJvdcJqzB6ewE+jK/VGFR1r1Wkj9m9TBgJZQyB21TIPcpOvjWVX6kc96Q99qGBU3d+09cMzrHdKPf3c/FpiGGWWPx5IzQjWSnD8i2xZ1thyuSfVPSGtmcNMllKIqQY3TRYhLLox88T4jbdYevjHhtI0uChHdk9a8O9LRI7k6pcjWDSTF3R8b+icp2k4POX6sy+BXt0qKDBA9fqxneU5VZT7W/KS3NmLo7wUFgZB9STyAne+S7W/Sb/CsmyEoLGKjI5wP78+vJpofKFrAEUVHZB/CGuLXPpPR9SvXKn1yM7udmOi6q+bCUPVIW/1pXSsj/yjZCv/FrncFX5I839GSO0eGGiF0SW4W5fJd2uXdW7uDGoxQetCGHzFW5hudfM7x5jsU5WcE37wnhvp3l8BvTGbMADdTJGzbU+WhqMrNjJuLnmuvzJB9fDrcVazkRPS88l37VHW1nX62ns6rrqNHD21pNvfM81Y18qRjFfKFSuf7HP5IayFdU49aZprVakj3vWUPB6GpFQ+wc2zcvuCBrKXBkHiehnbjl+lx/BCsrKPYsli9e73+bj8rRdZCIZ3esu9XPXrkJ6fN7fqGr7wYTJ01InVLle98wqUqGkd+AKtJXI7EeZVXWW7F1k7ASN/q0nMRyoteuuesjzMB6lwlkc5fgf9zOq242v8NqtqnSoOsN3x6KbV5W1h+XzznDPKk1dvKmN75KGnzjBn7wpptF1T1CbfTmENBpHOfjMNtGpF9GlovY6LftkuwkEbfSSkdpkV/YnKaNWcYc6I1DcK9fPqdylMXbjHHhlo5IkGqBqfanfwmbCu/IjxYRmob7vaBb/J6SGT7T7gr/QipEUFj5GUlLjWjW2hzsWw0phrdfk/OrQUDna8sbG3kyjWYmc0+Z4pEGmizQ0KjbxQVpsWaQqS3nPdkmK0J44VJ26jcxgm5CGmXKRN0ke9WnL7/VAEFKKvmfdGFvqpuigA7le3/PKLVQFozy7eYL2/gtxkZiOm2sj1zltiktmx4UxiUkCAvw/TG9T4prcI/FYqah03Ztxmrk77L/PwinY00P4yaAoQYo1xdmBvf8cWwTyo+0ssZUznIRMbmvFM03aLsTZg9/OY6W+b0FU5IU/U67q/odm29VpXA+aa41s2F+lNuzJhbILr07GZN4gfWW7mezv5G/hVfWItkKN25b2taJ7WaNFEbvbNQfv1O8L5PTB3yadKxVuiqTZonJjA3/IyIhmeml8mevj9zDe1LOFwkW7qUMU34q5PXV5ymnb7H26g2u/Tn7nRx3/cOb+FOLZQGdtQ0Me9WfVXfTiclID2hJZvqV5z1CSyX3Mn4Hz5HsN/W/KCMvoSNEvmYTXMxDQYb96R4R1htjglue93f0N9y/5fKo30kozSuOkiEJDi51WSObCiXemyDucVTPShnfjlp0Cwyrw47Rbd5M0bkJXrp/12NnO0L26+0HEfU+1/ELpbf+t1H6f4TtNzkzl9qwXuwiezBoNT+0498a27VHjBpZZR4ZcCf8hVBkZ6sBCxnJtW3Jz01tU2+Vm63rKtqch2b21d9MRrupug+ju67IqLdkCWv4em5Xc55L3yxU5qFVxNV1y/CAVUh8edi0V6Lpfy3Si5NxNybaDcxWFZDqHbnzAwDRi4rtrqLRSp3uGuHTtwWbR7BX1jKkzn8y8RRnf7y6Tb0z7yNFPj26U47/QdEed61298WiXxb3y3g5V8v11NSKPnWDHZNPI9JCsr32SybD4jGG56fWLQg1DQkGbBqVfyBjuLETOBSkKXtyF+c72Bfs/H0udfhFBdLf5oVICzmJKnDD56TBnWxdO1wIDR7ML1brCgVqsK2IxDVgCD8v0xANxodFPV4WdiRknyDVPyQdw37ZUl1d3dBTla4kgcqZ/KSmh925vh492d+eD/NUYiP4TdfYHhbYSesw19eo0Dlvcxt2XfHJ25abKCe/csvtCXaMcS74yv0qdsFnACNktf7RhNzlc5aIfUTxwpmnBzEU5fGaEi9Vtx+LhXY0bPLcsRrsrqBafUvF4O5uMYVh1O8XKW1zgVfiUS2+YKLpZ4GFOBa0tS23k0SK8KxGa+gbldmWLhfkdz+rNM4PeMTPBbuNm0pUJMViEXLHamANQaaoaLQtW+9clsi2LsBDiRlxqkqzMhFSJfcGqT6RkedxpWTQFS5cehIoSP8r8OJNWH2LeqyJzTrVr9XHvipNyW9CmxFS8g3gr/2ZJVcnrYYPhQHZBu8uco1cy0LcbF6xvxRJhv6sSLZVBpxAalMbitcWaun/TK1XERss8xR95vpFqacYQeW4jmNCHjmJB270bgwKL3jBPG+bIWcbpI/OKXfcmS2DdlQAz0but+IxRazuZX2Lx1dwICQvdzH9km7IoXF4lrnYSsa4QmMJPqWQQzLPdbq77LHsXhnOLvFCmkiF/15b3ScnzmoE6iVdpAa8ffLIounaRtp8vMQoVmRBETKBJO6i924g2mhAinAr/YrCDHtqOj7rY1fGEfSivHG073Mg3nWicUciN+oekhncoA4UlKV8R5hXyL7VmBsSK0QNobo+FE/n7Qt0bumaxPtu8uxplirc50phDWvbVUn9P58pHg4DNU18zKG0nlkhl5xyWulM/rTftfZMQXHXuTEe683Pt39doCHPhw4ytjuRCrymdhq0rVbF3JUqXOBo/LXzwMEt2WWdvKKs9YbiTLIGvnmXnHM5dTxjPYpq72Fpy7+SYZnKw9WJZMPn4ulcaBQO+wZzjy5fwHNOKgG7OAXbOtvRHJuUMPIzCsfF9iYs165doLj02pAiaGNDGaRk7v2v/UojQKoiY+2NsciFdjE0swil1Tajs1D2zK1ys91kGxGZNldaK966E49kIMAy/UUrrWVbmn2KOzKDG4bEhEHqh+kRkUGzW4il+85iPmTvtN6ZUK58mb2vsCG8xxenzC9fhczXJ1Znk1i1nejBsh1xYehnxhnO72n3rB8hFXRjalBHMvF2fn3s5Ms8FMTUqYX4qTc+rY779FOIqiETyT0CWpjtI86MtBDx1C87qoihi+jYYHpQOPf/uJwEtn6hCS3npvlHMCjFstg6iF7Q4d/ezjmrA6gcrnYlmmbKaVAnXskHeNkvnNOVdLdPHzPnotq3hBMK7Cux0t0tKMi2YVu6wnw1aDi/wpw68NnC3na3PuJZJh5PE72tH26QMUdGp6Kr7ZIIG3FEtDtK+2wIzM9HLj9jtwkws6UJb2Lboxuix+bEmvztfSlYTdAy9Por5456ZCaJl2qD/0zqm14d9grGyzCgHB5tTzM6kqbh+6M0jmXjJw7N+kTkfW33wX1M/Kabm5DSJdjaRyq7SN8MV/lHaLf3s7jbdOeEGlsYJAVQd514d/ngUz+736RBi/u/PWvlX3ulQQA0fzyfp+GrQayw/eJuH56NLdW34+qvp7YT6qq47gjWoyClXq3w88mcv9zeW5baqNBXr1e0vdesyu6yx3t7qCRHJIHXipGZ76Xvm/ru8KnKcFm/j4C7o03iWdJ+BF3tTZ887kw8VeK5s8sSH3sFBMZts+a1kNGZ/+bBV9ugtX/z25r13V28tmRF1BAsZBwa/RDfP/VTfYqqkXyHC57l/O46hKngQh9KoQWcsXgAyvN7Um+uw4bU196XTtJbChlLo9KvLz3w7JJ5tK16cQzNTz22Y4Rnen7rw3R7/+kWPjWgh3+WbHUNfFD5UM38rinrnleh6tfaN4yO1imbU4ji7NEvyaIONJm36dXPZXCkzkX7oOE65j5tEQdpQ4kyFW51lTzXPkqlLD3umvCWGbdd5e/9X3hGDe4aX7HvFavvSxJZn2fF7e6ujTIK/XZl7+oKndtCO+nFa6wuZWPGmSleOXf/s1dyGGpViHwGCYb7Hqw7X8K77t7JHGN+5yLCyAbs48tbwaYF+p0580IX0VN0IhsAf+oJGM27o7/y4cOLMjRfzuoRvw7Vto8q9y2gWZyZvfDImC9dcyva7qBrlbPISA3HOvJ60nSLWY/e6WrKRkGvEe/FyilSWeyk9D2cebXu6LMvNcMcyivpsdXlRzutl4G2SQJQ9mJ6YaeM6DYXW+ykXKxW+p+cnUg5j9k47t5XQwh9gJiSKEVX0XPCGQAn6+zjLOcQq1ZaDVrhCbWDK3BD6946byO0FzK1+xAemfg+fy/njbtGLWQR2i2HvGBLXB7vGii2VUwhII9zR/z8AHkDhv0fKeXPBCyKoQMQ4/jYKZqusVHkEkRxT3NTNkHT0r39R+Th88LjeNBV4b9cl7tm/9Ys6zxrsyJgz7WTIfKquKkVKds9ZIK3f/KcXJkgacUVC69zXk7LOTlAcyUQvu/qdLMtot+rmdXuS29e28kXXexM0SAeWPlsF06fIVtAUpy2z+63FxXTfyXCVzhLtVIrxPGzbB0qd65k2/VXjki2RDIU77URMvFrlX+X09FAfr190fcmoMQtJGANbjGcoXy6VMauO6SEyjDiUlAOulydUhepeHgnDm72JRcUBH2ae2eEm3Yp49JlwQ5+PVDFzu0/4fFGjCTT3LZBgyLf8u2+WF2JBV5D9rq9rLgiG9tdvGfl9/x/e1ECfiO9vd5zH5rH7p9ds23Pq2fJ6Z3txbiU7XSwJDzQRCmXlPjQWbPcN4qGvxUoaKU9i4GbTLxI/eKqQ6gmzelvgc1lVnnI2Rkz7qc7w8KG9B9kaLpRvlB3mgn3WoVLlkGEhSvEyLg1V/+oLQqNw+sfX8GH9HGHli+mM7fBPbxOtSHd4ofsghs/oeEx3RIylax57EO70E9Oeusf7qcm8v/lEDP33hhpyvJNShTYJVedwqhfjVVcg4Aoz+2KdjLkQVia6iWuBmB0LDb55iA+o3tmeaH6I8GQ104Qc10JMr5q2/455sYJArkKyG9p9PW9MHkMWnxS2ywexnpTPTgJ7mkUSuua+/+kBH3o/tIiVUZZM6cVfIZ+/NqEYNHk+qZs3VX71Y6ZbZ/WMTOxDa0Y7dpN8gc/uI3qB82F5WA5t0080gQI5dTowYwreyfLTI/Bxic72a6XNeXXYyVDm5/MffzkFR9LQBucrKhJfTPjddTRwRsMIN1fcGzQu+wheHk+Z9y6bfmK74qVO1/JDAWGbCyvfiCGKJU68yT/kmywsbTh9tRfTWufaS8Mkn6Azj2Ko9N9vMrlC3YLKAkKuye3N2aK+NSVrbjGz90yvOZ0WD85PD4fb7BHzrisNCUARDsQUDq2xnMSIAo+f/c9xXeVsGLY+XNZLRvabzuzZnW0fYJi3hfyLt3bKCcr3xyFYEQpj4vkqQwuWA/awg3NOgbEbNGq+JlZ5OBuDmSQxGtMTJt6tEvtB7DsZvYg8EO8X/+zFow4HY6MzN+Au3izffQHpfwAAAP//pJ3JsrKwFoUfyIH0CUN66UwUEHEGqDSKSpMAefpbnP8O7+wOT1l1Skmy9lrf3sZf1mGcNEb8V+/BAX9eGF2SoGD447jQ3HsZWVpnGobC2ZUgEZ4TqavhAGZ+aCRg6JFF7Q9vmstNzVYw8UmOzec5LtbcCHrlIPU21tKnGaw3+dbDXs0uuDwotCXwXlRQjE4a4pFpt5yeBAngGsHEnnNbAtLXJgf6en8hC4gXc+Uf7AvPddng6NBygLq0EiAKJBWjm/4paH4tDOjVsKApEN4ts69+BsMqdHESuOswSR0jYA8fE5ob6jB2Md8vuNqvN+Ku9lqMp/e3g5n8XainVIlJ9EPpwPfHaAnXLlrBvFaNwF+90Ha/riB5cu2AHLwu2FY/FVtf1lgC4Zh8ibw7zuZ8r9L1z/+jxQ20YvY+GgGq1+voJav7dq2Z1qg8J9TU0Qxnmy3LNIh3oEer7uJgmSdLUC6n8YFDig4BW5DXg6wXdex44qsdlRCk0LB6hpg0T+a6RNqq6jcY0kNxr4PloOs+1HnepHGzozERSeUC0SxPm570bGrui6/8yNzRw136BOz9qxLVuLsK3fTBHFPD1QDfGQtG0tcA6y5rKvh89BHZhUs7LASrGbixwEWptOeHVbnlHVTTycWGKUhgvL1FAQZXSadap0ntImlGBFfgMRxcK7ddyryKlMvnDrEZykdAOD91IXocyi3/v8BY2pkEN/+IPgGz4/m3vhz4e+6E7Xl1gF4Vs4HPUP5hQ8ZRsOqJaABokZ6s29/LVi9gczpRql2/K9jylAsG/16S5aiHwbz5DziNQoS4qOmHxYnvDvzLv6sWtcXY5DxRlRxZFEd5VSzPMXS3S6o8pIj+A8zTAg1gy9qBxgelGARZzB0YvPYuWfbaFMzNMVr/8h5G3LNsFzSYJbw5k0S1IKPBeLgmIdheJ3s0WcUsn1/bN1BuFnWEFx2GX82Tv/pOjwkSYrr7uQq0KqLTw8ySdowMyYHEKGrq4H0Xk+dlscBzKg0ahM7MpsfjFwLrFHwJt8f8MFT6PZc3vaZmSoaBVGfXgadnaWJNqq2WxtPp+1cvicBv5fRcSiVcWO4QJXzzbMVWzP2tB954WLx4HrAgWrU3Nl60H1hvCggury6lfvjmwSp5xIJZqZ/p4WT+4jnsTj1IHc6mPjPrYi5nkIKNDxEuX1Es7n6aopanvMPB7du33147OPDQNhOa7dNUsOv47aCJAg9Jh6Qq5rqrTxDfkpK6cqwPbBxlBL/clheB+W0ZPopfcKvgD6lZXw3jPWIcnCXPwe/6fA3m5CU1MDEciv1TtLDxHTYEnKPviiM6SWYmNq4EThHH0DBFXTzAQH4oG6+jYTYV8ah1z5Oy5WsaLDwKZhJzjbrxQMILR5ctUgdGYHR8hFHfP9r5JMIG+vPLx9FXK4t1fiXkb/2Q0lu0GO0DHYHkmxM9FrYT/+NhYP85Y3O09uZEhE4A+JaW1FOvr5ipoORgaLy+9MCQEk8XQ5b++VXUCHbApfVOgtrF4LEmYlSw1K98tf+eVOocX1W7fpcqV0ll6jjclVK7hJ6pqZlwMnBgjRKj8iUu4Yu/gz/exJYSwREupYXos/+Y7Ot7OoItke74eCj6dk3er3C7s+pON38SzF3thvCgp+iff/g9HjVSufvY09D53tqp/AYICFddo9nLCpjY+/Osplpz/+N/jAu7rAfOucH0iPhmWFXL1v7yGPKZqRc8leZMFVmEqV14fDAOGGxPXDCxEfUuWJq77IM/f2LxucjIQLoZftNHhdEXS2z84yuX8Z1Qd/Pfyxl+EpXvtOWPB5qzteNHyEZSkGrKT8NqF14F/niDtPGTkbeWB2yQhelpznYxqUS5AgXKDwSIh5dJwkeew+adH/DR8LiW1tudfUqltuiGMzNY78/CgdddsSDxHN6CUWxcBQ5haNOSrCVg1zh34MZfqbnp97o+WwLrffRE63POYqbAUAJVB29UF3QQ0Gg4OH+897/6fZgbAl9xXG7rm7UkLQ0ELS/z8D1wu2FFTZyAPz4UVoe44KVbtkJb/Tho3z3u7cRpawoeDTbJuqu/5rzfJjK2u7yw4Q0C+Fc/C30VkfznJ7ju68CQPB+oqpLaXGs7qRQAtIiGahcCqeEsBGP3leGY2GYhdMDP4MaDkWDcx5bxOVdBsZ8PNB4QM4eJH1xoVG1P4PcqBisv+T70YnegR8Cf2zFHqwKjOqoRr360LR/xI/S3iYerPrTDfK8eM0ieAY/AOesYc4KUg1t9+C9/XDkPgRm0PHW1OSnYNbw2sBedCeteMptLv7s94GUhEzbL9teSc+ImwO7DKy23/bt6ug/B1g/A2QNPjMK1Uf7pNeKXtZ2FbpHgnBx31PtNbrvxCgeWMbug3cb/yKwOCFT3SKf20tcm457vBqBRDjG+2735U+43Av1KX9AS0AtjQho0cHmWKiHfoQ3GnB9T6H8dY9MfYv7KvDopqVbd6eX4AfHQiWYEt/yCJE68FrO6+0aQqw/55i8PrUDkPgLD/LY2Pj7H1InOmWJ7oYtmLdeHyfOAAw3+Z9BjYyYBrdu7AHtt75DlC4aBzvLLgdPDaGigZDxj9nxS4PtRFUj5IXNYk0yPoFOgDrt2DM1xeUgGtKpRpwHL3WBa254DNJBFJKRqEsy3eFDglr8QgNWVbfXDAVuext6rWNtZT4L077yQXdrVxZLexRmmnT0gDvFomPOvnqkbDyb0EI8FU5M2+9ef0ObsEXN/fjpGikZNXi7ZMsdCCjd+TXH52wPx4e/zP75D7W0/CR2HOUXnRRMbGy9nVyWo4NvREuoVF4Pxluq64D18GoqKcgqmv/4Hyrf9IncZWEkVr+Avf6bPCrBuWun4x0fQwmQ5WGUxstRu8v1//G1sjvkMOuV4plh5ma14+3UQePMa4PDm2e36lydk2L2ww5P2Tx8seAneNsWTxA/zxZENeD7gBYfcRwFUaLsHDK6Kjpio1AHDH+SDS3I40lBfj2CtmduATc9xvOXX5c4THyj9oBB+zIZgvjiLoRrKnBMONHI78lGSw/15PmDfDu5sHn6GA+U8t7Hb1iZYaBDmIHZ4SjWO+275EZxgVvs9dkF0D+bH55xC/xZF2NzOP1dFwQq2/Iwfr90nGLd8A8/zKaLZ+2cDdvMkB6qR61HDOO/YdDZ/UClFcqcaGZ2B6b2TwWudDvSP361PtKvAn974WCuG95teDKjv25x6ABvxgiSSwVDYd+h9WNV/PAS8hqWlB7N/Bssc71KZ2wMP7dJOj/lPODYQVEtDnYOWFHyT7l5wO6/oc/6axcdWmQBtPRAR483FZH98M1RjRMQjOMRCr0Qp7DJtxQjNz2DLrwp8J4JFD9/2BCbr23/hWH9iwh5u2867qprh3/s53qoxJuarrSB8ExlbST+2rDSOpZzA5YLIVBP2z0+LIo8wMvGvnUr9tkJZiCDZSV+DiX/13vW5FyFdq5sz40MJLB/Vxvi8S02urzIf/PFivdwNbHSjdnNKvE7R1p8aHxwXwYyrb+i99bNWMEkWvBwMB2M+Og6j1l2jP39GDzqWC9b0pxwSrC04SNJkmLXuGYHxEbb0IX0btqrW0QBjuPFDUvbBvOUtkJ/m75ZX9GDmoySD3/PVRRKI1OC77Y9//SbeZjqgAuQgVBAz0U2pkmB5u+1L+csHHC8YAUt3XAUvtDniY3vxg8USjh34co6GUXcQGJurywuyOi6of9Q1c1EJ38FztsuJ6k4a4Lf9Cj5WadDDxrvW1bmEcONf2EM/DrDWThOQ2M8Hdumjbef496vkrHZ7fPwYnbn1o3woMQsR6X0Ebb/xG3XzRxRNNWIj10hQ4U0uooFeHAK28VNYh/WHLHn7BuNgnL7q9v9peNsvxXKq64cK6e2EUUnMmLn4OYOjO2Kcbv25sTBxAr3YH/71a+bNL8G7Ux3J3tCFgt49TYNytHXUezEstryYAMexEUV9vxsmYJkIcA1nEgArEazz7J5U1IY81o3UKES4NhLML5cPAQpXBe/r9Iqgbgkcyjh9aKl8kBoYzc4Z61HcmEsxcghwtZ1TV3qxYiniN4FJEiNqdInVziB/nMB2HgnwOaX96yeB9ZVfqLM/XOP1oRcdNBsnonrHvFZ8e9cI1lMtbP5hBOuFYRcgfB5xaJv7gWlYa9Rsv7uheVGzYg6s07/PQ2/beZ/VxzP8l9f4AJjtrDnfHB4r7UCvWbcEG688QTXyPbLs/LpYYnZM/5+JAvF/TxSUeiMSThph23UtqODYiCHh5LID62+3dYhmZ6GHdW8C9hh3DYS2QenR+BUFI6Vawul0eFL7BdSWWLtKg28e3JDSLy+2jkdeAuw7Iaz5Oxb8Hr3cwdL+7BC7yib4piUSgATZDq2J/I2HyL4k6sCCCzVeVsFmP9+25PsAsXEso2JVeWO79Zu+qRevsBgvVlaC98JF2O49OowgDBPwnM4/sj8Gv5Yt590XHC1UUj3obgM7oQMHdA2f0E//KuB99epVHVHrUte99zH1RhFC309cfBkzNiwOv3Aw5/Qv9azPL6A/WCfwwTQNGxXnmOygvx3YvtEZh0+7iafscH+AB/FFbIS8HI+sRghUx+pN3Vf8ZnQXcjmU36pP/d4f2BzsCg4mQyEh+dxKwxDj4AW93A6pNV+7YLlESQQNIx2IuO5btirlyYeaeNZwgKAAVpCbnFrjrVEijXD4pW9phq/nU8FelbCCjGqdS56LJmy8LMDobpW/cKjogp2a74blI3+/kDVhS3F68uP5xJ1WOUqQTe2btgcLh34uFEl4po9R7IpVdlkPnXR60VBILDbf9z2ER3GfIyECykD5l99B3zxl+M4n2jBZOchl7dTe0DdWqmA9e+sJwvVskDUyh2LFRpYAM03e+DLvw3a+JC8JqjWUES+VRsuZ8X2FQYUaNHHTZ6BepEZQiY93qh2PosnWIHsoMLn31OC6qGXiMDbwzu1HrN/TZlj0txLCrE0reszEMWCZrVXwNsCOalSm8de8WwY87yUd2yLvxWKpt1/4EuYPjhJvFzS/nbyDQ0tyxJZdW6wZeDRAQOcHNluubpcABiE0rBUj9bX+2DJ6Vao2ULdJc6v0mMvk2wsaydEn0HmW7bybFw2Wo9LjQ8CbrXhYshf80WeLpFf8BtO1fT3ggPMUo08wFosWXUY4ZGlHmtHtwbouuQbTdHxic7n6xagh14cn61Mg+PLbot832y3zAe0Ru9QIzOu+btTTS7hi5+LvBvLLuBF6Z19F0hNZbD7e8gSiz3BG6j5n269oGGh/st5bb/j9K8bb3ejU7PG8ImX66IylR2BAfOLuhMd3MVjOnf2CzCoCtKenL6DiuebUt/tzqP7tD8VUjL4PT9o2M/60jWIGq96B4cNqHOBRD7iR1hLkR2jRx17/AFJ+JgQhwGcCb+IpZuYz7EFbRjr1OOfJZk+QFaBHXw5bJ9Ng7Lg3JWBXtYGz4qu2pIdTD9/3BmHz6skDoeGUwDEvdZp0FgsWYT7O8LLmJXUikA9MvzYjRHI9Y5NHckA7VVZgEt1/NOTs2pwHqcyBfNcUambXAMznetZAlI8zttlVbwVtLB34lWMdyY1Ni02vFDiJWUC314f11exXcPTpgfqarrYzrmAEQ/c9Ujfb1+Z047heZcvvgXWRz9u52kU5TMLG2PTIjyfYChkEl0TC19vejhecqDm4tdoV+/X4CoijHHJoZQ+NHlqrCybpU5wgvO92GJUPjbGk+Tqg/cUZWl9WAcb4d9uB27DrsF1kHJhuaJ8DmMoIGzL3asd90higtdQLPfKJ1vJP1HSq/fg223p+CvZyXiUMMpkng/J6sDVx6xHmR94m/MU7BxPQjiWkuagR8Fu0ltbit4HpzzWJdF0Q+KfPdfY60UhAaszghSggvR99soi7Acy4byrIbqeY6iX9DdMNiTnc2wXBRzmg8Wq0v05+O8eGBpbwKjo7fZTwFZUvmnTDGKyVds3gnx6EwYTaTb98qAqcjpayy4qVATeCnfLIaNABcxDMIWhAUuxUxBBnBl8n2n5vQ4I19T6xXqzLXW2k9LhiMqHXLZgf9aGH0nQxyf5B1mBpr1oEraMVUmvtfoDZ/vUF77P0piclbIplTp8KPN0eLcYftrIlSaoOGD8nQirUw3jVBCMBq6xf6XEhcrwOFu4hTJ49dUWrildzMBtV1DIFh84TtqNNSgSA3AN8cD7ndnwI8wMG69dB8yPtwHzELwea0tHCbvG9t/TNBT1U5L2FuHF5sIXutlv7vUuFTcwnYF31rvp7XthnOGy5vc9m2NfdHs26vBZD+uFHyJ+7M/aS26VlF+ds/dP3qHBHczGn0oWf+Quwj5JT/Fdv5Yt3PKF9qQrBuLZ5A5OwMrAt2k9zSvegBPiRSbQkJx6s6cn8gu39kin9uqaw7SewnT+sPXfn4U9vgCj628TdHQzEkwQO7LKgIEty1rcJqjkC8A53ODC0QzzP5JzAcrd41OxMe5jB6r2Ag9Ibkg5YMlfxTFzwpzcWsJaWVfllhYs25fg8KJCNt7vfQcMpVsR09xd/kKsguHLwhM9GnbGVM5qT6l2HL1H8ez0wae9p8p9fCbgLCMbNz0As4w8R9duzZdeAjHB3/s4IfPN7vLwSAP/WC1+PyT2mBii+4GGmHrZesWiOaekISrAfSqq37y7+mVPiQ/6nFtTQKgMwORVLZauHhC07M6afulHghzlPbHGIY+RbeAb4q3+o172C6EzQoJxWmKYHDYL5p6Od3LmJik2JqwoWHnYPJajChtq+8DD/Pe+95CB8zMQw+BQEWwCE2ZcaMzUZa/gSwab3O8J3ozzU7sFwlPZ09dA3/wxstESHgOMMerzt54Kt78KHovyycR43TTGacmyo572iU2w5Lngd9q8csvslx5aPxGH9FroBqzeYyWJft5lweKhA9VVuZFeIh2FpzHaGc/w8oDnpj+YyTbcIHntoUsPew3jmLDFUjVVr8MmidPtOR60B8BBC6l9vZ3M0TT1VpelqUufw4dksDHMIS5og6i4CKtixyCE8P382dfaKzVg/kxke+51JrbepxzPXcw/o34471F38XUuf3Sn92y9/fqpdiR3k4K+ez3VXtsyT1krlz68z4r+1BQS7uWlQkoiIPRQbYDFoVcLnndtm+kPIllrmS0CiUMF4SYthPOLRkZ9T/EOQs3VThHVdAmFX5fRQfE7mCqdvCpeV47Gr+rFJHxEQYBNeEN3qg8m8sq0AA+5Kn7zKDdPoVQlk3MEgkmhphfgYhQrekkH5p3+Cej6n0N7vIXXtzxTPtt9GwFLSJ/bejV0s+2YSgGoFNeGG6B0w6WauinpychqSE8/G+GP3qqcTg4bz88bILgMnGFIpw9rhYBXL6XtTFDtEO2wdLW5YuAffQeH3i+ixz5OBVr6ebLeCG2T13uZAnt9qB9+YCPhQzHrM1OfdB8LoCERR2nPRT4PbQ0M4/MiaeA9zGUrdUnleSbBdHyuTnlWQwtCq3thzMAMMqPMDhoV+orhbdZOBRVUUcF1L7GvftCXw0FowVxtIw9OKWy73fwJcYOpho3kbwWfotRfc1gMbWtWwdaqjDLr84mF3wXzBTn0qwMB7KFQ3z605V647QpJ8HzQXbK/lc/ccQvFFVCTEwwuwOJMF8FMFjaJTfgY/IFxd+O7bN0XiawEMuUoIXMeOCLvvhXZ8P0gFQEVGwuKoZzO/yyA0XD6lx+wUm5NXh/NfvaORXifDcl+es8K4/oCNU6G1wm4nNfDzGQfszsgcRKsjHahN6lIzGs5A2K3qDrani0fkGj7MNbNDARwcWOGoK2dGGr1w4fy+dNg1s188vcuLAp93gaAZFl1MjsU1gvggHbFLtXM8Bo0lQDltMA7uQgPmfPcJ4UtGAbatj1J8fvCXwl8wvsm+/1Gw+l3qwHbubHw4AyGmMuTG/wAAAP//NJ3JsrI6FIUfyMEBVBKG9D2Jig3OQFEaEWkSIE9/K/x1h5ZlAbL32mt9oQjcy9KJ+p0mV8TXP66SOucUx+3pV01jfNrBlxTtcRQvQTAVlpDCg8wUcoAn0Vg6O9vAl7l7US9t99n8aQ8PqL99A9t+U/Pv441sGs0O6xOt2Fh+z8NurS8+f7NJa30BnKejRkOqqoG03fYJ+Ox2OvWrM2GDkLYq4P2MZpAVbPZMcYFqqo//8tVwTLRFyepTjX3J+lWTmp9rZVnKYe3varLOxzdcoKoiRWu9nqkHd4LaOw/JnN+ErKFLVwNHCXRsQdnP5iB8EVCrhop2viUak1V/NsqkGRWNrq0bML04QIiXYLseryfvq4vAJpy/RGyLmq15API8ik3Q+/1s1r8WnFzpSNXs7THpW3wR7OzlgMBxiQH7JbsEZCNiRDImJ+iDeK/D9+PvTfLT0jC2+9NUxXxUzr/+n8bxWYNMTywiUC8Gi3YHZxAfQIz2emIZ4mQHOXx+3jN2NrLWS4fUHmD/Z0dYv8hpMN+q+gGgpVJs3YomYMPclaC6bgWs0+LYT+t8eZvake/a18bLJIclvNKOUP/oj9m05q3yGN7o7ZVvwJjEiQrJ19RR3ZjMmE9GksL59NlTrKRd1XO9UdY86Jx6teL1AoEFZBEjVwGAz7sQbDLXpOFmGXqWyVoLHmIsUpv9tQHPlwj2sPtht/XPPZ8/CGbN4BL5dp+Nf3oQvWqMmvTPq+ZYC23+zi0VO/pUgulX/8nA3qgHfNlar4ABQQ+Vn9mJROR+6XPv7RTuq6KhSdY+e8bzNXBG4mDtfCzA/KtBA9Z557a+ULUfs5eA8RAPNCC4zSae51Z+QiQtWYwl+h4FmTahQA6xrgdTJ7+JsqePHIHzXBoTutm6sjunAnUOcdAvSv9Q4S3KbWyUz002zj+YQnHZ813ZPBAsexd0MK9/FfkrampQ9+I1oHuRF2GVUPTD7aOYMNby5J/fImbSLXB8qDektL9dP5hTW4L7+SdT6xQLQTvbeIGDqz/JvBXlfuR8Bt7815M60fmZjU1j+pDPn3969bu4RAXfz9FB48vGjHmP/g2OES5WPWVLPRAVcH2gOi3mfhDRJ4c32Tujvk2fGf0twITKXf/RYMqHbHbunQRe71NMLSh3MSP8reEY9AGO3ufSWLLf/g33u5SgOd+MGUunOIXJW4YUg6Dp+f85KJaY+PT+zKV4ll77KxSrx4Sm2Sl6fr93QP2kBfq+h9mgj+9bVni94kxXvzGzn4KtwDHbk24Pk2zWHsEGdHKBsNUWNZgN5yrDrjdjmv3md0Ws6zUHfJ7QcCHPigWTq4PFOt2x/Wr0fumGewiHUgxx/dq8s9lHgy6jqvZxwv3aNGe7Go6x6WJeDwbXgw7Wo3Sj6vBuq1/0vbpgg5cD2WzrmQ0/XwkB6EKVut8qy+ZFOcgKHeiL2scYgyE9H0x4rN8IR/x+LNyfw/3wEjFa/VteBFeZ9y+1gqaNx1EZB/kVZD41jt3bmJP4oMLZ+/1wNNmoXx7PzQYUpJAIO8SQNarknyHXB2ovaOD6N27A6sfBoNY9kxzQ8CcXP1iLRKUn+SXM4fle3RESL8iY2Zxf4Wf48zAWoM6E6hbWaz1jT2tTRla+lhhOjbbI/Fb/9Hjtd607LZz3jbbM7w+23KioxqlMc/BXRTZ1j2UfkP4+PZRxmwZIxM9b8DxSIMH7r9LJxhvtYApc3Vfka2jT+Nsf4u1BiEwYPh8Ctt5PkddvVYJttozU3vdl8NvG0gTen/1E7aPsAkkR9YPyA+mD6ja1++UgXQiEwtAg2bXCnvPJK+B8DzUnkK79NkHinf7xINZUgZaCKgI12Z76d8+0SHgon+aRYxMNf/HUEeKCTtArbPJ6mZ5K3oF0qx8x9yNsbDW/g0XSHKg9f2NjGXu3BbX3PlMtvwkx5ysL0KTNFi2SKGWU6MsC3KSUUKupQrZ4u40E403wwUZ88sEMx7pb9Yznj00wBqVbQikQZWrMty6e6UJkGNmdivrk9VeRV3iHYDL1kHzYrajIEIn8IYO4onohblkbJNcGvM36il1xVIIhft5SWFamhDN47wLWm8EZ7PTygi3OK0Sv4zxL9N9oz/1hs3xuOSiK8k2UZ/4JxjrvEBSrfMI+hlnAnhfVh07BMBJOJ7sXUr+QoOOlJtpg6DF2Drcn2J18kwb7KgqAE2TXNX9gj/Mh5nzLs7L1dgg/HGwz4a/ePPZtqBLqx/wJx10QHiDaVxOSlPIApFiMfMCvnxrhgwRDicsWFJfP//O8CaMJOvKYY5Ts9v3URtobbsQNQw37c415gk8XcP5K0KWtwHfVx1h7JPTazddgJn24gVpdxQTEFWVkLNIE5J4gYD8cPhWBirDAi+V7FD/HdzzfBaGF22wa8eOmsXiuyaYDq99MvXEbc7+KgOB/RuqfgJcxUb13UHkVZ2r1ctCv/mjvVdqDIhF+DSY82g6G7nfA+KFIBjXDSv7Hx7T8ds5GdsFXaOXWk3yVKo9p9pQ7uFVTmfD5UQ3HxcyBCNM/agriCMat0V1XP4WjevHY8PTuJ9jn4pEM02vPptEbWpn3E5J8vovmqq84T3dE3MXHeHL+hhTy8ye37TPoh2vrJSCrDzWCDrYB6cpyA7WLnVBX8z7VtPu+GvA93P8IS6nKKBB8BG52esXhVS0qxqiXQm+TYdJcCw0sH+lx+OfH5Gm77SfFOEow9pMv1jnfXX8PD8LxhB1s7eOl2O/9/UUfPtTJpiJeeQIQDSyg8Xw3M+bMh1rh+Zmu9b7cnLsL3Zsy4/CUprHEP6/nT1+m3bKJbsZJHvvXiXy21l8gICU4rTyZYiHcVbOyTXfgmHwuGJU1y1iDUAJX/mre5Dle7N8CIa8Pej72Y7UMt9qHW8LXPwSrCFh1jxBYebtt3t7xWN3Ug/IUlAFzv9XPh9DfwZX/RAUMATs6RQv3NM8p93/GwvL9Af4dr1/sz/lUkcx2uZ4Hb87Lq37KRz8EYmJDHLHXJZs2016HYmJCfLFudc+GuSxh529vBCxSEbOMYHuPq4NGo5dNwbSfLQn2sP1hZNlRwKKPhyAq/IbwvN7PXmEu4FCmjIB9FRkD59Wwk3IH4yOHj3LeLlAVxAcOL/e2Io+oK2H3Gl443EJasT85rhVPfKpkN6GqZ0E86/AaXHsE7O87++cng7NEsJ18z1UbMzeEj48kcz1v+jUfQ+6/yE4cnwZz5qSBZ0MnlOfZgH2EoAVX8wQ4DyrBst1WCdDU6ECd+98no4nllmBTm2e68qUR78gZ/so8ot7Jn/ulSaPTPqKaT40Hkvsx3XQ7qD+HHGv3CcQTeXo+pA0SqP8FDpB4/oBGu3g4YFsWcP6yQHhIK8TCBzKE2XYmOb+ELV350wQvcrPmJbLw6+HrLSWMxehK1SKs2Ng+7y3c2uBD9T/5ZizTNW5kvr5CRr5T9xT2wJaDQM7/rd/Ql1Qv8POXjjRSd39cf2AHdksYYsz95qjq3mldPyDbYVINAei5DZ02lpESL33Q+GGWQC9uCqyx24lJQPV8KPtxRM2rd4n7dT2zkytE1cvR5v74LkEXNw32uf8ijSIhOYr8HtvdfDWoDuIWRlslpWb4zCp6vo4leOkPgLavPAcU26MMeP1R9WMsFfvB3xms/hEd0pmR+SmW4EefFZqi6BbMVvm8wuhqAqxdTnG/ZLK1gQ94+WBchXfw84XfAS43d4eUq4aDaaA/GTbyI0HdqLZgLiYcwpgMHQ7VQwIWFxg+/IPehYjiU4gXdz7vYFVyP8HPf3HYD4F34Gjo+8pztgg7tln9IxLRw4qnqcyn3ThdM2zatxawT3dJQP61HGwcO9UQiLr4a54nu9gXWb9jdg4bh+2QeCtsY7Y2wxWi6VNwfwiy7vVoEjirNEXCr/gZ3ebnEMDX19D2gbyMaWw/QN4vdOUr0jKnOpS0k4ttSbQMEkzh+T8AAAD//6Rdy7aCOBD8IBciIGmWvEWQRAFfO0BEQAR5BMjXz8E7y9nN+p6LCelUV1WHDkpuek5++vvL79YiRH6HyWPhl0Is7b8wpdlSzzSTeL4WmY2mz1PFchbm7pDonI+MpaSmEe4Tz8dqf0TZE/ZkL5g9mvfGNpG/no+IZq+clv3qcTvv6S580ijmPD5zSPlwJln8Xb0BOq7kdeTzxAP1EI/+doiQrWkuVe9jHI/vtMpR6BhLz6oZ6/Onb0ZY/IJB7G9Wwf/8kUo9ecRkeAxGqY4vYMCsU2dKj394ipJgFQ9yMkhopBFw6F2lKXFPM0OsJo4DdiF+KV5Fw6/exkM0WCp1dh+j+OOfk//Z4rUpGIiZY8iD+VUuy0WxWsuHK3YD3hWkoaNK5k54MiL5f5woEP/7RIHVfEPiSNJDp3V+4uDx7I9UzTevmJlkDOV12VZ0fz+5+mRH8RcsXh+pYoyPgJX+YYRsvzphqVzuGUFbzQIhPSfDe3VO2NQ12hFJJ/eLBffeFQPOuBFx116hGqSs7RrvyYPvXgXM55nYDlkV1WiTJxpNjy4NhlLyS+hPQkmc4zVHzNupB2BYmqhCixsaklfxBd3zNzjffmq3l81UBP5+fpCdldSMiWpew86wQzzSQkTME8QDZI85I+7dPQXzxC4+Er+yRPddPBf5qUlriMzjm5x7U3bHw3RL4IJji1j11tN/84Hw6zhEHc1XMO/Vywy3E1wH+cZ37nDiYEDefh6IXdhXt+sfnYTiLtb69fQ+MxaEvgGfxNtTzdUFxij9diB0qUK0UysgpuipDSKIPbXIZXLnD/YryI61Rg/h+hXMm93Fh6BB9iB8P2X7e558zuFO9oI+x4zrv1+EGtUZuHg1x/1pxDd0zcYP3Wc2X9AkQiIE/vFLdPFF9b4u4yM6CUWN1zsqo05EGg+vXH9QJbmfiqnI6wQ28XiiSWyHMRMKe4DnbXxR5aNOMT3gAdDqKzbDapNLwee1zyUZNm1N3O37VvTZKPvQsLIhrkM1l7ME9ybd5a9F8Zzo8bi16hUU52tLvDujbJ5XXAh0Z7ypXkY6GyG3ahQlWx2vT9sKNbFU59Cj22YYsVS5s7KiI0yCvKZ6pNJgmj4OBvYuc+Jsn1rM0ut6QEi7RhQjj48HqdjfIDWbFTmMEkKs/wgZ3L/zm5I0xjGLdGEENqnHJZ63xXwJ/RmaSL0Ok3xWXR4yDyPCwYNckWAE389aLWWjm7lhtS9IwKWn6wq0dFXhtdxUwZwfoxr5mXPA63vqFKz/rHP0Ta2aHC7uWPTFpjuC9uJtzJduiLoTz9vSy2iB6KZkuJu1pxkSH1YZ1Udog2FG+wQx8H28XdUXd67v41f+vT9T0zeITvfvID1etTFIAme5k5bEA3TCuSSaTux2zOrEQORJIjya6bmYtAyXsA95fRiBiei3f9f7dajRcypuA+bLDwke22M+fNIi1MfVVpvBOyZPeoDnsx07KilgOvYZz7ZksNHc30rISAtU28kZ6w2t5mGZz/CSmejOwnQ5AKdLE7F1aa0P8upjodM8twNvDMsZtUxOIaUeGeQLlAH77L7cNvOLdJjQt2Sjs7vl0juNEBYOO9NlonnO0b04zyTRj2E74qd7gek6h8R5QhVMeRWEci3NEdWvdxJ0v/Gyab3CkKddOw7dhgd5222JtuGDoru7kg/vl/+gBrW3bBrSLEQ7pFK6e2YCG16T2EHDqmag7slim0cdRCDZ1WMQ3ttD0F/l5xEFV/0zrCvyaKc8ko+o8lMP87v8xabRrsOtnFvxgh9qPH32nQ9OWq2HpvzowWbmAwd+49V0UheTQ6ZBWp5PdvLU6eMzWWkAeuGQH16NntKkIIibhGLy4FGfJHIIL6MBzHGM1wdl9Zl/eEx3hbbczuJsEhh8qyIkPWhoHkMukg+zfRy4V1ToM597/m9/UPvkPPVp6cYK063XqOdWB3farGQF0CnqiA3SqpheEIfAxQUZpNcnL1j3Ubjf87B8WmdFVw+yCM+kHPHIwj4YheUbiAzZKk2TtA1G+3HLQHtuw+HLLA9N+NPlkutCRt1Z4dhklpsKkjP8m5+YnZhLF7frfZAV1W6nocIGKE5aU6vSXu0gf8YbQpd9Q23DUQp2930FTuZyS8TnGyP2ku6SKEQvb1gr4txOxbSN0Gt0VOJOUxPP+KEuLZfJmxqXgI+njstCacHXoQBfb+f+6EVLRQFRbck3E29lR1l2oy91befhzq5Ea3TdkTMlVli4zd7GOWSPMcNgOhB0PQ5WcN7fd1S1SBO01mxaYH/SHG/SSAs2uoMroFtPp3c5sdg8fLkI4O4fhvDoFAFbp4cUqZv4TMxmXbndyg5mZEsXHb9M32zZXd9bYA33ExaPKGiXeNeg0aItFpb47WB6ltBciE12Sv6Kx8qQASUb7zRcev7IfngDqbJVqWKmm5bx8SMDDA6mSiA0qJh3jxIt8UpIuJZRz9HSAGHXdlgcUhpP0SyH6PyhF+pF67VbJ2HoANHnHo/rTxPMquAo0qaVgR7OuEMTsXAK0yo1qCGlvr5ReGvpCj5viPsmKhJUJIZgaP6GqCfO09lwUjhZ6BKF3q1dUcxNo1Zos9o8KE5SN5j9SeVBKuUt1e9Lhf7WH0MQXocV2a2Ua8EKq+rgvL5yePPWtIBPSZqj0T6eyX3Zfz/832rbtCJqdOGKplpZDhIy/0hMa8LulD2mRHZvZyB7nqtQf560DLov2PS2S2p95EtrgOIwpsP2WmHGkt1oQPNq+eH4oU3RDHl8AGosJz5KE+k97bdHcP3vCUsxxnrzm/8PP+0hJcG8CwoJ7nJtEStuPHfONm2J5G/zoXZAS7fvLxsHjDsKiA5+UbBZzwdIrK2GPxdasnlUxxJaxdvRyAjmmL288wj79UUjCx4gJs6nrwwv4U4PeX/TJ0OrObQpbiPeePfBHc3bK4e+pOYwx5eAzQR/vpAhR6X6N2wD1vGnGWgkcVS9O+946nfdAX23xYWYt9UJjWUkr4A+24ko0XOPpraTHSQI0kD1vYLceV0Chrf7iuj+sKL6Z+3aX2g6SaSmLuU/fLlITQsOXeI/pgM7l/DNwCGXFhqX3t8PHl271XUQLOnJJq0ta7l9w54c1obRzmIzJuC80hc9SO8rGi+XBEPTCxVVi9nUN3txk6G2bbhf/gnoFT14aWapMfDoDPpofaQELXhGyPPmuyNab3mgBjEwk8knGO2XG4Fy3l6IfnrumOBFniIt+DDApub0v3hbLjQc5NNaaXk+945wV72QeJOE9G6PpBvI4ujStFFmVr+D40EGrUyIGz7u+tTQbSjFn9ocmLWnxbS3cYY4baVT/bZRdF4E8MFs7v7A79uz/rkJ+Qri4+pMPbRTdLrSHymKHb+k6qS9XRoWrYKkUncxf1K9mOU3xqM0pMehuDo64tZGJsG8009UawqhoGFRaJA1Hh6Ea2e3M5W8C9KPznXolVUXD/ixl1D9EbeD8LiWqHObty+XQu/+vS+29ZQOFjwkBuN9l1pqaiGv0VtioTO4XTgSC5p25QyTUvbx+NJ1B653xybGaD5Qh8ZaQq/++KTOoi8a8+V0SPyqB7xSaeZOjzq+oVtTbah5crRi9jwRQPRvAznTrVew8fGoYLpRDdNK8V1hczhUoO1CmxplJun9JFkKCqe5wa/NumYsVg4iOjBrhUXDyYoxUY8XqL5GS/bF9ovoha5H8NY0Ju6h2bNlv3VgimmJ2SEv3e4GjQ+fo36n9uYsse6jugZ8X5JIvU5hxVzu2xLEqW0xnB5i3OnPYwmX0Nlj8VLRYr5pZi3tkj6jliqYaM6P/hfWZVPRRf+wIYxVHtpmvmHUWV5ci0jjYHWTebwVB1xMjzq4yagT7tTuX21Ld08B/vCo1CQ9EHj7NMCSrwjJzhd3+uzLI5Sd/8DCK3q23IYPeLD3TkD1rFn49PABeNjWTKzTUUTDMHyOAIO6J1g6zu1QaZDDx46kga/W75gN2X0GeVfGC1856My4phayLjMji54MmqM31dCoqUu8Tr7G7LE9z8iR9H5gh4m28zEyO1TeEkyU4bov+vvNCmE7ST1VRT4MelEvDVCa/k1031P0+RlxlVSwVhpo9N2ieRuICXyMqiXewBn6ZpvGFtj1/YjFY2e73KmQQrRqhSvRrT0pxsdTwlJ2OfdLvnkh9th8RYTx2FOr+6pFp25uFVonxp3urih0px3elNBlLUd1Uyp1it+tIZ3Mu0NUHrq2S4q3AeIrUchpNF/xXFk0guBibYlDxA2qxtM+A/uT5MP6rQ/BtMQfTG1VDNPCB+npG1noxYmrX35wafQQjd9+JIebKcYsSYcZltvuMITrV9wdb4n/46/0aT/4oFnWH6J4dSa7V7RuqTyeSqBcamEGvl6woytitH7IGyx79BkPy9cqiAx+91u/YC5WZiqtwsOWLvo2ZmI4pOjzaQRy4Nox7p+v8gJihWWiX+806M47/YhUkn5wflAQmwwt42E9jw7xFLUuqCUXzo/f4nknK0y4WWgFb2t+4LW6uQTM3xYaeKe7h2ftNcbz+8blqLxHgLdP12/7o7ett565ehINjbE+3+h+RDXqbUJKLmfsQtczuFTt6G7RY2NYNyHabUKDPhf+NW0wXvBO3g5zfa0D9nx+JZhCkVEy58tRQG88ymG/ulO3+ibF1GgyRhBhCTdh4aMlf6QwP6iKx+KYoOk64BA+UnGjlqyIcee47g0OjyvCa7NyWHW5mV/oTM/CktSeCqa/xQt4Nq9gfs3VqO5YKUpHt/aIUs1vNKbS6wCfzRgTzTh07fI+FFj8kkEeB5cxWRAu8Iu/AzzXRW919YzSYM4x873Mpc95GER71CndeYaNZuWWOeiRzjkuR1NGE/+4AFw+q9vg8k+1mHirPsKrSY+E8IbWjvXh5cCYj+dh+1gXMUtVVZMNLg6GznR+Dl3bQXdXz8t4TcRxxVGTmJjoNNLfd8RpFX+BU2sfhvrcuKi/DlYI+PQlxC1f+3Zo3PT29/fRie9Bf63qEuqjH1N1s7bR137uV3Cax5bY+wtBPz0IC79Z/JArm/Iqvvz4D57azZMxfzPaoL04m57dpxXMlm1yQLY0wuh0zXX2nKvl+ravR53dTkON1dUjPJNqpPhkB+7f+i76+V8+kinYR6uPEQ2zc163HRCHA47XCVU2eKOPkOMvisoiJ3a2NnRumjoOdSax8Aa/5ZhW4p2HG6QXqt0CAc0iwPGPf2rc1whYcDNWQHID8HYjFO7o5TwG9WLf6G3RV0x+KV950TvEDbFXvGk/+fJv/RAV1JZX2hakRd9SPXynrC7FxtnyHV7hSuP2xcLPc9gpoUlvaZSy3/qiH57PvakU9fbxrJF8ON/Iq8/AbdZJrGyt70cjyur7LqhxvRi/8ZE7mr5tH+y0Cm6psyNuNp51poy+D0M9X6jp5Fox27M5S+dtvae7Yl22rDfzWT4kd496QRTHf/FlKaZO9pl9af/48C9/Bu2J6oPy2VrQm4mNGTPTgJnVR4G3T1y633tS2z/f1wOc9/FuoKK3YXThU8i69i9i5JUfd1Mei5CdyhF/fvyVvEaMXqOtDoND03Ysd7Mty4G+J7vD7u1Ov/n8+PvCT4NJF5zhz38gIsI6P9HiJv/8Rtu4d/q4014Z+Cm54WxPvjr9yjYvLXhGT8r5xfpi2t6khT/j0Tks9ybLcwLFYU6pvrOCYGqy7AbNq+Ep4YPBHV4GV4HwlhE9bO92+4cHumqa9HlPv8XMk30Ci/9GDuUtDIRDFzlwuH6PVG0easwVzQ3DPXB2w3QQ9jF/4qD75Reqrf3SHQ1ZSqG834CYQXBu+x3eVDAQz8Br4fkIppDbRLD4J0Q555bb94Hjw1WMTWrkGxnN3FnM5OjYB8TcKdtibGuL/8NfWPy+qa4tG5kHdRqq82pyu5e19Eh6qx59WI0djAsegBY71+E53quiV4aMk3761r5lQtDVsWSgKojQsBbUKqBrV6kB47kntjS58Rg+dB/0ACp6/O3Husa2hO6y+OOrenneuf4fX3HOhe/+4cfrUlKivHZ71kzDZ4WOzzShzhOseKRco4H/OH4xki+e+xdfPz6gGK8T+1bWJwLOEJ4EO3TVMvOp+j9/Yph/ev7pBxGw7/mJ809UBuPu/A5BfuItLqNZdzu2PSrgm98DOQz6Md4c5C5Hz9N1wGP9yPX6E2IJHZixoopeeki0T1IKsWebJOUurrv56b+FjxNld86DwbzUFlr4Ez1EWxst/gBAhIhP7Ft2jfnhOlbyop8Gmh5yNifvS47Oxnc5fm3GxSyk0Q0W/kNs+k3beV1yGC5dfyb7Nh2KeT/4IhxKvRtWBLvxdA/jFDJHXNPbC3Zo0McI0CSs1+TwetlsCpprCOdPf8FlfcIFw5fIQRXAgfpS2bJZBO4IUmE9lveXFr2W4UriDyuVeofQKIQFz5ApJiW9tixAM0/UFDh+LQ/jeJqCMfDmC/z8NDXfqAH/02f5xlbw4lfq08/fFaxu9ecXj7G9spC+vgfEawQlmHXO4yGrjxnVFnyjr/1XhHJeYfrzQ2pJxF+0OpTRsPgdqHeM+AuPvJqJ9jiiYj69RgnO6zNH/vwXFXP4zw9zrZVXUEbsGUV7g6M78/l2u53W5GAX34C65yhhvX3JRghjS1z8Hlkfb/3xIr8fqUd2t0h1N+JYY+APoBJS7Kuiy99PaYvPSUo94dIWC187SrL92hO8Dws2qWo3QI+iDSWLn8jaoaq2cX8d8dY1dgG3/D90N+szbH2Rb+niV6PFj8cPeeW2f/ydXYrj3/5Y6hsY8Z5IB7Tke4G37wMq5BUmerpiLrUGHwNoVUK98anE21++2XhtjzNu3RSTL2xLlNznAo/hO4/Hw3RMYOF/1ApnlQmnlNOQZiQfuvhHwdApXApzMgdkh4+iO0e1P6D8uXQWtNQ9WvJnDd4p9jBQJXSZXLIMnu1XG8STs3a7afPs0ClME0qEpxyMWqEnUEtjRHSZ7II5EtovXLgzRwyO8e6oz8kNvlW7dBm/fIO6XXpkOpK6fDG5Wce9cb9mkOTnkTjHCgeNm2/yP39QG12hnSvrc0PpwdbJ0wp1d3juxvkPr/1BM2K+lPxKXvQHNbSDq8/MiVKk9iM/sN05Zd/kVdSw+A24v0AZz4kfdSjYnHmKNwFmcz7T288/JN7akVAv9Z2GvPI4DM3LlGJmBi2G3iEm0aOjhCjhOAXatuXo7ha9dFpf0CipzepD97OFi8k8TTNoTxRST6EZGqfNtUMpAZ+ers+9PhlW0MHWeB2oqpR90EXXYwjmpE9LPWOIGf8dEnjLrfj3e/NK2IdguaFJdupwbOft9+NAcz5GRDdkJdjYl2yW50ev4lemHtHmfcgSaCtJwGM1vxlFgv2FUmy3uHmzuZgPljmDkB2P9DBKMWOlhniou5bHa9E7I9aHrEMreXRoUu/the82hx8eU9PfWfGkmM/y5+9RhZkvVOejDBCfe59422fKmJuBBUn6yqgSPRvGDCPyQUtMc+H/GpqnzE/hQ40vNd/ZNpid7biSr1p6G3o67RhLQ4ODapwTsgPODjbD5qqB+D4SeqsZC6ZYynLZbckDy4+yDIZuKlL5Vx+Qza4s5tiCWioF6hJ7Y5FgdPDKh9ZN9jS1r4rL0mnUwMw4i5pefW+pGFYpUlB9o+72LRbjLGsSEt1BJrrLte2QP9sKnqKaDqsz38ZzN7UJ5Ln/XPQH/OkledD1kCx+FfurB5LLFxOLvJN2/u7aXKq7hieueG/iH1+R0+qrE23RT3/1pS3ffInFfDUQqrVQonzVSosf+9Qn9bipf37tMF/uo05n8VD+8JLij+Uu/qrNoV+9pXVo7rLpng9w2yVXkg4tZlP0nDJUzoCJo1+GYDabQpJnkaj0p/e6U/EPAAAA//+kXcuysjyzviAGAiIJQ85yTBAUcQaoCKjIIQFy9btY7zf8Z3to1VqlQHc/hybda6pcTtoH7VpeZ/sp+7SQU1YP63zfFv/q+fHKNUjedZeE/MXjWfhIREH367Bg5n2gsSsSrBO9TeareTRhLZoE37Z8+Mevd2J7+4vXgvp3DcGx5xw0m7NSkFsJOxCFrx+CUXUeWMWZs/zXP022+z/3F0OHo5bvET7v7mwiwlVV7kfHxGl9Cv21teYRiKFMKfqpMeuyKTsD+BJu2OH3Blj8p94rew1qOH2d3WSu31cJfhcY0FI3raQ3EZTA7xLn1B/tKZlU6/mRw72HiZzv9GYfetAGX2r3ZMcJQjML7pXAjZ/TYNxrhujUkAefK/bI7hHUgI7ibYZyq/nY1nl3EFLcPiCn5j3WnklWLEHfjYdIWQe69btBL39gBOP24CI+6PKE2srg/flh9NEt34J5p8GDryl+oq/vvfyVl8L4/zOj4PC/3yjY5Tqm+jN4GR0reygnwaum1s1rAHtKUgddSUcUIzEBiz2fEay++zfFkuMwxlF9hnddxOTd9Ffjo3FJDNfX90c+3aFM5t35Z0L/LmqoGi6xMfURD6HVXU7UacR7soRPtMLDt5Kw/iHyMDWCNitOMR7pQ3137L2fdzI480eGdnxcFQvJ1RpySDiSQxI8iiVb7E2tXQbEr/Y6LFZaqPCc22+yttXemA99XsKYlyPy1TzQDMYFOfBjBy12qg9j03U7w20aHqRqO3z/fs8MJ7bYODlLnM9WQ48A7SeJvB+rM6zHg5+BV9P52NswZKFI5yDnjZT6zitnK9fvanD+3Y/4rsePhHG7NoYxL0U02MM62casOJCilFLzGGSMaW6Vw9/3WGM3qJNhEYq1VIRkaijSw3BYZOb28HNVNMJCaBSLhW8I0OgYolUCIVgS5Torkjk+cB4AFUDqv91rQOKqU+Hd5VTsOlEDOvd8quE5aWNqBN7RYMpSdUqU3zqM3xcRDE89yqB1Fq9I7AdpIEoJZFDjQqDuT5DY+BtIB96+VtLsnvb+dDeWHPLhgVJH/RlN/ZjdEkKSdxh7edDMqQI9mH++Hrb2xpEtYsoRONNspKq634HJ3qcqhNXaUn++6MXinwwPIkA/+FiEe2NF5t0E22e0XW+yv2QXCcSzkxNh/6T+7J1YrwCnFSgWzp9kOnXblB2b1zHSr5axR6OGlD3gMX46geuve2scofjOOar+pqmYqbsfoSMc92QVj0MxlzRowTzpCw3xt2YM/Zqzokgwxn7xMI05Ooxn8DPajvDp+zcsqm31cBBTdbtfWTN+018ALW7fIlL0XiLOhrxCQUW/LT65hH0eRg3ldVSxY9wtxvbiXAGeBTp+IpGx5ZGJIrj8MouIOxsXrBqBDb/vysTnQpsBk6JlhtQwP9Ton3ExBStyIKPeQN1X4/qr6HgfaAm7FNvKwxum9m73skXv217udwG+ulhxisHmHB9vRQ5WCCReXm9nidpQGsD0S2JeYc/ZpealMYbltKz6bm69hvoH45awvRrFyprsWnIAn7ahFx5ysLROARFW7QVWu3tJys8jN8TgaDVjbRc8jOxTRP/y+SeMCQddoU/IKlhWwd52FcBcHS/4REdn2CvbmRZOw8a/+rJ+Yu4BUzSUSNFjLqGOn5/BV3FTarfaxNZBsXTo3LY9WelRTJaZhlB+2kuHC7AvGjo6uQdPP+pgc+yshLEjCeA01BfqLIvKGGvDCAq5cKZ+1r8Ak46xDWchqbG+e0sNfdKMg1VqOUQQ7z+DiJo6QzReTWoS0WHr0Bg8NETvgi0U5smq3rMYbPcXvUxdYmSGswynNmupmRl7n+H7e4Xtt64pPsxTMxfXVwxBeB7wMXnZPoHryVNq0x/RWvIfY/7Kni01r+OJnJb5zGa/vnsgdcEHO+Zz9OnZy2M4Ft8rVtX9k62Pu24rzkGYqCMdy+16chPeC3uHBL+hyfDq7wjEIGuw/zwHzZJSR4Weebti51Zpg0A701M+TvvErqerBl9KYwxu7vBG83tvMh5bPw5SdRywDePJnxmtz4r4XQ9o10wnttqWq8Lrct8TeqoebH0/oAoRd3wRnkS9P5p2r0NVqY/YUJwRMIRrD1r38U0z3xXZIsTxDKDMFmxOqPWZ0Q8Z0K+PhHBb/V9Up6lBO+cLguZHa8QnZ5lwq8dI8K4LmBQBj5Cg20LDM5AAux27aHvnNKfHYX0ni3xzSjgGfIJvwTgY3d21RPnqlTrVitMJCD+REXmwWIsOsOsBc86rrgxBsqfh6MU+q3ZrCcX551D/OSdgfMW3HLbv2aLH6Pj21z7uz3BNOYUoJ/wFc3c2Uvh2hhcNofsaZuruCATORyAwkE7JjAU1h8JJsTESbnvj9VOLB/gk2EdgvmwdbkOVFXGsKD1ZKC0I7JaHgqr7nSx07Bqm55oE0W6b+p4/RrAIcb7K33dtYq9zjGIG8TWFD6H7YRVz6kDisOvh+GhnjEH9YyvSdgEcrbFGTInNYo3DqoN4jHTEzQpmom5dHPgSso5qgspteOzO0P8KGG/5wtbsJJVgtVCFbUS6Yr67Fg/Fk2Ri93V8gfH76z5Qf7QmOVSvxmjvbijCX/TG2Fv1K5i09OsALWZPihj4Devi8R+w5wKPhtMqsoX3IwgpfRKMjJ0L2Jq6PTwoxYRkrboVi/COPdi/Y4Nql9ACc12vEtSni0N9gzXNvHtvMwbkC6V2d7/4FAmVBE9XOGDvZLya5S6feiDyrCLztcoN5gqCCvC6ptjmTDdh1U5+wO33kBH1YbPhkQ2+jePiuI6Tgh66i6mEDgiwp8ryMInGLpXTqJApkou7wcoci/CyRmfCjYNqrHqQQhjPXk4k4b4AWuaYhzm3l7F96Gp/SZq03fZgZUh6tmHDdN6wZWuyjrTgNZa8eelWQ+dh60RyloLNxuaQCyE/UXTOKzZe1NyGi8+ELR8XxpJA8uAkS3sc7hp92PjZKsOy9zf+oRf81d/z8Om/Hlj9Gnrxx0cOT795UOs2683GRzL4ScQfUa6HuJmCV9vBYD+HiM+L1ViC19iD5o1/ZBmlTzK/ioMJlqOxQ0Keasn62e11AAxxh/UNX1fR0T/KrpYeOILpEayDPa7bmbucug0w//InhQ+u3mMjRonBopa24CAecnR4TWrDXx97JAuhOFH7s/sO8zfUaviju5lIjagkxH5VtmK1wQHtV2nfLGUVlQpUFg8HTun5y/xotynpK/8v38dSD3TYNrlHvZ/nJu0luT0AVz4DIitv1VjfC8ggmzKElhwPjOlKvYLvqF/R210Sn41CTiDPkE5gdeyb5Tr2Huh3pwjr+8OxmXfnlwmnKgpo8Hbnhr1CzoGS/QBk17q3QhT3PxUmuAJoSXe6v+7XKQKrPzLsy8PDWOOrc4YqcAJSGGHLWEHfpgx+E4/RFRkGD3ZPCcxxblPrydnGQpRfDr0QGGhZZp7Nh+gUA3uXq9R2qpaxc5uUf/hEz7FbF0T0uhK0P/mODcS5xWIF7AwC2XGoGusB2Fc3RuQvyA7Uf7RiwoogQBDmcYT2uXZrSIVID6xPyyOu9u6ATSsUAaV3QrVFHos5neJe+aunYlh7gKz1VYLvgB2wC/XRH7+VI4P75+piIzWLYWaXlwfPMcdTdQARWKBzdKDB1hwNuvZNxruIMhmlD0zezltoyFo/JTk/8xPFTjcn6zA2NTSUyKY2nknCwp3TwvTiz3/3y5+sTJKhhraZSbngDaKSnBE4nHoDB340JkTczmRmbY7QrO53jOlHvQJ/+sS6q0EiyDfnAasTnHHwdqOBnnMww1NJXkj5SrUx+78UwopcJOwmAVcwtwAi0OUrpfY7HJIfNYcI/PHl4E3pNrXZOYPP437GhiIZPnOkXALH5+FFhuYDk1U7xQQaonOhdo9PxbrWVxncDD+m6vu07Qnepg7vvqpIXVyFxZrvnxmYRF+jlvS6FOM31CrFOxUcPcZP1WDntnjI8JTrpMiqPlkfhiP/qw9+VnkFP3EnGVqPs0GzGmUDX75bGWrX5kJgr+2MtS91FYpMM/BjdafkE7gRr5xShNB+RAEj4qmO4fUX2tgykzegN77jQSbVH2wKEBgDsvUS/CyuwebVdxJ20B9ncDz2C3rn6atYascNgHVFMd74N2COH6fgZ3w6JGnCyyB68ODA5at6NP3TkwRAFX7C9ILtVgvZ2r5uEixea4zV3fnVDErnQNhUT4Z2VTKz2VwCAjn8eFOUdmaxX73Alv1m3KMV3UFCq/chlmlxTXHIKQ2bv3Odw+O9+aDDgXcScgv4EUp2CajO7Q5gLDt9htcyeFLkHrhmup2/OpQu+ztZK5MyNnJrBv0TzPFtFwvDzC2OB/PH+YbP5fORsE/1yyAwH3cybfygS3t+lr/f+IV9VXBBO+0jE+bd9YtaflaG5WQeSngLjAoHMbwX//i+4Np70m36lb1714YbPtHriEb2i3dKBx5dp1Pdcq1BAF/ThlQ7uxifKo4tft6LUBxrSk7prjZm95tJwM/FjuK9rTd8dGjP8HlPANrwy9/0gghLf3lu8dr4ZDRtCf4eYYLRLaYJXazOgeeWnqjXpzYTfqVcwVeXa2ROzJVNG7+E9Lw3UDXduGS+LuIHLmozIvYVjsnaUzcH/vi1sG6DF2BufHZA9lld7M1RMcy7opeAFhUtDqrJLRZhLDjwxzcBc81mHZfjAx6avEKsLexi0wcqPDyjI72849KnYayqYMNHAtSdlszfSpUhHNWJQIjWgjhqGEH/Zvr0UXt3Nl/BIz745/MFR1HuGANJ9jJoVx+h01nrCnbjnApmu/5Kj7/2BdbHrD1gGsg79NttU4DLdJ7Bpsepfs9btrS/AIGtPhD4VWKwKo3wDz+wFWoQsM/Dr/74DTau4hWwT9ir0MsPPZrJG4DpptEenCpRpkG5r9jAppaD2a67Yv9oTAVR97cHZMO2pcZM3mzy95oMw+0NUre9+s0iFPIDlFYSYPUiCQl9s26GiJAdPvZe1fScIkrAeX0UtJ/E0zBIJkTQedML1e1L48813E7QFMcLDk+CPbBBi1IF7+uAWubBHMTxasfwcWAa9e07Gf75A8VrjqntxZqxHsvxDNWdpNPbT5BA4xCw6ZG8oS4X0WZ25ShWztsZfduLXwbZ4g1s9wdxmdgZ61EfPHh0bwiJu+jDRmOsVqWvJYcWBjOGecMHgDLRoypHajBe/R0PYmV9UD8zG388jPNZcd7TheolOhZT+Zs96BcPm3QFeRtz0Vcd/NioJX/4OL29YwQvw6pSL30hJmz8AUCFeTgMmNrwW32FV4sENOzraXuj+I5Awa0S+i5j7k+a8Z3//Aai4K/Oxp9FJYBFiVBV2Wb8dBdpBDteu1NfYHSo3w+oQzzGOlbP457NNWY13ElLQkQv1nxxXxsr2Pgr4fv8NcwYux10uG9DlN62ALtkd0laXZjSm2/axiyfhQBYC64wOuBds/EdFY4f4YXJMn38Lb88WHSygbd4ApOVJip04qDAKVdFAzMpTuH5OvZYly7Yn2hfqyBxCg9hNMKELORegtL8EWrZL7dgOej7P7+D+sWj9efi+ov+8hE7hyRPpgYbuhLlRYeRsBPAPz2vKKNDdf5pN93LWUaoKtWRejf/xhi+T6vMaeILLWetS8gjqTNZ8MsVWzy2msH5HjJ4O556tI37BL8+gpwcXX4r9m7+AaxtNOewDn8Z9ujWcdvqBeSMlsO4OuBm3QuGp8AFNNhLFdFYBIeZSnU8m9iyLj6brF+eyZs/hMMN36cePU1wNc4nmtkTbmYMdQTFvV9gLzlZPj0nC9x/nuZKN38HrGd2bOHGd8mkx1wxdt7QQ+n7ljd+goqFNBVS/vw167E6zbzFK3T6u4+PF9c3xGEcKjnMEkKW6fH2V3qLdAgPxnnLt3ZY521GRocAI9L2fTyuXR1cLzZBw5Z/y0lPPvC07A5EGZyBEU7hZNAcbQNBK6gKMoxDDS87OUPv7fntw9hRlZb0CcZ22xrza4xbeF2ee7SoK/bX6vVRZfRTXOyLOAV0xwgBm56kT1C7jFZuHAA/JRFFmv9ttqMJK6A9ldCO0+/JfBftDLpy5tJb7EnFW/t9atgT74SP8bPy585rOvDWmpka5CIDxvLpA6vsbpDd5i+vWRF58F6Md4w2P2B257mFG/9F3P4rbyekjiIca2ugVq2vyYv3Mw44hf1DkobrguLQjOTztgVOex7lYqyruw4CIL1xtNXXRa47D1zbZ4T2Gb4X1CwxJ2/4Q6ZOdpKF/0oqpEexJONWv//4Moz5eMXhOEdAzPfXHIRJI6H5WskG3atZDKWjfdvqQ+jL1WARyM61is3Vjgfh5wIH1v7pjjWrvzck9x68zLv+gZpnxQQzuSgRtOKypNrtF/o8t6geHMSzSjW99ZMVafvgT89MYpwfkr/nA64Xk+D7NWFg7S9qAE+Xz4yUTu6SJTwcOVDnvx3a/PKEKC5fQX1oB1oik4Dp94nRX3xi01j3Q2cqenSwPh8ea2oQJQzVrwp8Z2emKZ24ZhZ4O/rzP/BTONvJ/GVqBGjQxvSx1Zv13SUjtPYTo9odQNYdlJMI419n4xBSteC/xouHmuMwGm76cv2UDwds9QiJH2FTt17TK+Xxd6RB/bQa+gl7HZrbGzG28uiHcRryGsaLtCd/+mKLl1bqqyqkd0jVZHUUepbF73xA4ilLisVPfjrUmVDisKDAYDgMYjDewpLMsR4wVuhjDcTe48k+2yXNEqB3DA2pjpB8putAn75kw7FEAlLSSTCGoV3+6aF//vjycC4pfHziI3psfsX6py+cwvzRoDzVxj+/79orDdnV1uSviOxnaCz5k9BnURskiOcaotN4I+19AGAkz5KDEXYfVEtvRrL/yPVHadLyTfYp+BZj9PP4P/6B3cAei/lyyAJ4VBuVSI9s9tckDj6HTQ9hj2YB40kHO+h0hBBGLjnoRxPJh4uYjTQalb0vPK3d4x+f9XktSVhXf0ugPz7m5m/KBdGGQoIncH9TNRJpsvFtGb6IfKZ/+mUW0LGGxk5tNj/IKeg5OUDw0c2A3vy+BWOx1KXCmUGJ4n3SgdXtvxBu9ZceV+k6rDpQMhhmp23GlLGVAV2RwKb38ObvF2P5GGzo3U/vzb/RBr5QOhX++XPaTAj458du+IE3PuvPvDu0wJ+nB9qn/uJPJKpEKPShSF10pmDpnlEGd79swYHs2ca6/1kfaO8ylZok8vz55RwIfNunz+a3Oc2+0McK0jZ8/+svjHWqpNDf44UI8KqA0VS8GB6arKI55fyGDvu5VUJz5ZHY46VY4lixwWoFFUa2kfrL9VbPUJe+Md78RDbdz7kEzg++oFiQLX+mlHuAzU+j17kqm/nPbzw97ZIeR34YWPEJM3lZbAeRTX/86/f8+TFs0/NjoVQ6tIa0p9ahAQVjJ0uCFVFS7H7e2GcHPU3lB4sJ+faeOuz//NiPLep484/ZXz9L+f66kvBqjXy+QG4rw3eVow4Ml2KrBzV0JRVR/D0yY71ZqwyhvCxIuqe9wcaB6cpf/8lfGwusvev1gHVdRq0qSn2WHOZRSXANqLUUjbE6zceBnMUd0L7jDH/+Gi8RAu1pIjYMlC1pqXbg3j9f1EUyaebSHwg8e6NBj0sUs+WuJfU/fHE3/iP84TWe84J6zFQYVczOhD+qzBiLlcH4Jrz3sBmv+Z8/29B8myH3G7CM4OaPLZa11Io0XmYiHI+dwQ7d3QR//tTGb4zpqvj9v/iz60YtlkfGicARrD3Wjy+1WURjn4IJ/s5YB+6SrFl946B0ohbe9FgzR4c2hVOt/8h+e56LzLQOJt5iEQq4k0HgRbb/+eXHYbUS8jBUSdn0Cep1O/PHS7k4oFg8Hh2cyADT7L9N8Ienmtnth/lVLDZkXBNufvmrWbxZNSHnnHn6FOS3T2B3eIBmvOT/+pXLSS9asPkb//J7TvmylLfNtuR1LX7FWmXoLEvjdcZ2bx3YMOIEyjvgI0R91S+mJquJciilAKP9Vx7IW1IQlOfUIv3P+yUMf8MSXH/YRtxoaQUvvGwZ/vVzWwNSn5m6PUPt4udUf5Q9mFnZc1B2hj0OfHEw1mBcti1M84zvKw/ZGP10Xsmb74KD7iYnC//IUmgs2RNra8qGvuVvEaBecKXHuYID++vnbPdn0yeoWXxv2wrsjQbOO6cp1rm68QrNdgX2hrotVtgdSrgrc49iLx+b8R7hTv5ZsEECbxF/jU2Hg6E58//6N9811TrYztlCkf3jwbL1k2HoJ0cCUSUarH48O5BH9p4ctvhl58/hvEe7PYeUEz6yPz9a2bU9IMA6nYy5MQROBpd3Sc2t3/jXD4Gm4UCsZXc6LEnz+Fev0PSrjsZYKJ0up8HpRR1N0LYtwECF4Gk5JLMGt1nPwrsE48Uy6WUpDH+Jd0IHwrvWkv43O/7Mq4b8/5lRIP/vNwoy9fkjchKZDXPbNII5GDwahgZtevyVA3jbdmej5BCCeRUDCRSzMdLwGZYGMW9xCYe3cKd6fl+H6XSfcziF35xAzekZG/quhSAnJ3I4PfqBJhGQQfSVDASPWmusbePYcJqGmpgnnwISe/cMZlWz0KOpKcYEf64Od31a4lBem2GOx2cElGeoU08IP/68dLsOFFT9EIGXh4Lu/ALCbjocyXsv2kx4PmEGf86qUZUXn2C+XzRTMZbaQgt8JckkorCG6HU0qGrv82S17o8ZPkn7w8k13w+r3Y8qHKWziQ3eMIZVyK78oa4jgq3O5JM56YYHYKD1qSkfXmzdvw4xbLXKxXEffRNWKrcH+PzylIiGIYBe5WgOgrJysSPk9TYV6SPBYOYbrLdX4rNXqfLKUREBxZyQJcOVXVVYGhcVu3GN2HKsTqPc82tE/Z/VgvnzPXeKoecyNhFafdYuD3Jw358DNmF4bSZ9/sVyMgsP0qaqyabdr1aVBh9/+HiDeTHTKzEPWpoNGD3BiS1Fc0Rw1zBIXbPbzri28Vmur09IfT5OwMJNF1F+5mmGDt/fzWfvqZegaN5S7Jd4AqM2cR+occoFq5dPv73ixBFoC4FL1ft3BJN8WFp4jA2LBqKkghVZkg3vwFawJrSXZibJb5WTsjHRjfbAWC5hdpbHy24iwt3mh+WgTDmUi5qjR/H9Mci6qjzwXftNuLcqJbPVb7vf9+uKfdkP/eVC8xKyojIocmBUMAmlEfwuZoC2ASDF7A7mCl4HYtBjJqUGi8lhhLXw0fHxym97WtIuk4eoPZIxVy2wl4pEBaLqWhil4tCw+PwdIbFChx6Dr8721lPiYApMnZpBKrMlg1IgK/oDk1e87oxPw6QO3OM6wciam2TezU4Ew0WR8FGfjsX6uLgpqEN4xqf6ojfzl39JsPx0Z8QZexfMbeqbkFtHOvGuF4JpcTsEF5752IIgTIh7381gDB4W4flAaCb403SlbAoHI2P/AyvVKw7Gz06l1vsoDhSd0QitPNihXfU7gpUmtb7Lal6leXbxjfl0PcnKEpUrkXzwHMbo4NcwdHIHCa5BhoXjUgmutDexvp5+Bd3PRwm+bUDJvD4sIIy7icCURj466FUPFovnTOirrYEfYHcAs7GPdGitrKfm+QrB8pePXSnp2EeWZoz8q6rgdb+zEdWkJFl9KY/hmcKOiKR/JRMYoQhqqr3wedx9mtecZytUQbPg45tMBpXHtlWi84dSXUu7ZNHjoYSvflCparHUX59mtMIptRSMmrFuZt1Re5A9q4HMSIIJ/ZZyKg9zh2mC3TZZ6il3YPBiFSkXLLEtnmL4fUcXenxzXNGOyS2GW3yQyUT5sOqlssLaow4NSoc0C+cX4yGb3wfshPzN72nb2Mqj8C2kKNy8Tb2xUqhqnI7YTn0Zc/vdHFmoO9hVLseEfTn4gNfC8XCRuFayxDu5hpivvtSuzWJYfvfEhPNePtKj+anAdHnc8r/4wdbkZM0y3Xkb/D0v3K9rsV7faq78XumIda9ADe/mxgg0O22IuNq7ZpU/yAbLhN9EehQVmIv30inU6UZs3oITW6UzX8FQmT7UGlTKSPaOJKUTHhO1Pn4OZvFIVTDwUoXEQFmSqZ3qDlph6dPn4aUzYc1/EVS9ssV+G9EtPjsIB+WmUz9DPpt9mKawcAoOSVn9bZag3atw+33o40yVMea/dwndU9ohsqfdwA5eX4J5Lx3R28FFs65nXwVYWiWMXrxfsFRNeCB1RkwD03KGDR9ymRt8F+t6Pg7LRAQPei6Iqfu9fcHsuYUDu1LWiczFQUEV3y/l7XmR7XqK9ZsWPPzdFvtf/M5mn8TwtLwA1T5pO6zufbfC8AVmIrpLm8w7KyTgsu8fiNvN/bBKotiDLZ4R4GPGWI1NW3HuB4MW8k7156bfcXAquztFzfHBFvV7FGXbu2Ksz64KhLZ8tbBKN0fWXcxigbJnQ3q5VWTe8G7ayYMNzYv4wKiwSzb/Ur6FTJ1ibLreBMiHv3V//0/DSA0TXj3OHlzvV4Gwo1MX61e6QzkL8BW739uRzYL4lkHlF2+MT0Pnz3MiR3BuW4b9ppC3eBdW4Lvmm2zLFptJi3PuX35hTpCSydELGZiyt6d69i6KmfvsUxCdW0rDm5U0czTaMzzsgzc+2a8BLNfHS1YGpdCxRq6fgbX43ALosweZnUpv5r0BgsO5u/sUJVbO5ux35oDc2C39w7Opu+stKMWxxNhTbs0q77ED7nGVYK3/XBjdHyIePuW8wi4faducMqkH8ll7ofYVMjAendWDqfG4YG3IO/bT51ekQFYEGAXTy197SYTw/jzZVNvqO9lHM4LnNpAR+AZ+Mm7xczidngwpEV8lk9GMFfTqp7IxdGX4vSa3g099ZkjYix9A79qFBzoxK3q37RNYW971ALZuJdXULv5XP+TEDWcCz8dgmK++3QEluZ8xfr6NZD9Ejw84VZWITXrExphlhQSez9eHamlDwXK0jyMEw5RiVX4e2dJU9xzKcu9S7Vefmsl8SkQWCw5gt/hefHZ7yB2ovmFJg457N7MJzikMormgmv0a/vANHR49cpD4MG7DUs3KA4xBaWGXFT5YJqJ4ELvDhK27fR7oLVzaA9uJJT2CX18shkUIHN77O7bPHEumDe+Bs4Z3ap/WT7IY/PsDN/yiRhN4xeS0DxWYg8Wjuvs+k0qpgQ7/5U+fZckss8RU/r7/6JFfsQyk7WDpiXfqB+XtL15jONxTmf7dn6XRnx/YQegRjpHPMKrZIYAqeC3/8mEa+u4s60jP0Np9nwX7yJIH0wi7SDoUZjMvhkagZJAD1pzfuZnLnwABg98IscLvEvZZaAA5GQXkm85hIZ4LAuEQxivZ/n9g4U6L/uEjl+tSM8rmOQCRdHBwuNdWRrZ4PYQCNpGQKi4T7qjmIVY0l6KrjBnZr2sKTe7m4OAd8qyDbPjA3EkIRRILDebjgyRv8UHjA/oaNCROAAZP+2CzOMtF/wR4Bd6FukQuTvbAXw6KKn9QU6L+9C2bjR/N4J7OLbXL2fbnqxxWwLtMLj0elsSfv03FQ0CV73Z/D/6UP3VZ2fgy1cjVbparOm4d0ouILTHkWB/k5ePfZ/3lawZ7lY4IrV+k07vggmGeurT7wy/SV+lkvGNDlCH/lFrqXARgdNk762R0a+40rLmArYX8WQFxnzeyNLcPY6CA6p/+wL7qv9my+/X6H3+nwT1YwdKWrw8E/g8hea1uzaJk2QOeMj1BK0hpM+s3bYREuGYUldQyxMuVeRBbRYmWZJuRtp+xBOHTXrEOfZMt+0PUwmHuMZpbHgCans4yNJd+62ClgbHC028EJ5iOFJ2JYSwLfTiQz4ojktXXuVjQqxiBxb0y6sDv0iyC5yJg2qygx+FrF+y0vmtYXJ8ayd2P3MxEaKQ/PUH98XQCs3yKOLgctJJamdgkJBGqUsmOqksvZ+GV9DhXSuhmokX/+Cr1uCqGQKwdcrheG7Dww8rDQwJO9C/fheyx5rJa6x5ZylFu1ti7ZHB73vjh8d9h7luXh2sjpXj7vQOZ9OwBL68jh3aldDVen4l5cJRSE/tOcGRE+8m1nO/zA5LnbDHoe6olOM3cHoeZRovhqZFUPjlKRP27UYG5tXQV3r7ohbXzIDXjpm+AdFVDmj0KlQmVxrXwvaw//Md3fuHLD2AYycPf8wBsf8h4OEnl+Z8+YK5+9pR8+OpUW797MFefwQPwaa5YfQyL0eFOL2Xs9B0OfkhksxNwD3DL3Af6xGI/kK552fCv/jou2/s/Mmhn+EZFQK3L4d0s045DgO34koyiObE5kOoafk+qiW/r9TtselmG6JIEWGeXsJk7l57/9BD2N3yY07fjQBmtHg5P5tL0QnYVYfa1T4ilaVIsE1gkJWdeh70atcXMXpGu9Af9hVZ6HpqZ++xSyNn8TJM5XtlkJ2YJ+/Po4PNDs4HAcakMnly3IOXLNCY8lRVByRgPVB0F5U8P6vDzdiwacZXLeOerlvCRyjxG8zr4xOqL+k8fYG3Ty8Tu221PpRzg4Go4xupLcQTtsC3oJRONRASftIXKlb6p5qcVmIFa5VCNlSNFgg6T+X5xbVhimyBQ5FIzapP4AZ+jtsNG9oA+u8G5/NPrSJTHd8HwelchXfAVG+t2BnqvnGX49hxAxI3/zb/mkEL+7ImI802JjbCuKziHRki1rHSLxRbsFmhIsCgmjWEwIx4I5I+5TjY9UQx/+bx06pVeyKI2/Md9iKAWWh1fdvuOTSxfVlj084Xi7e+pECob3/kw6h7OVjGboExh25sM62n4Shgm2QhOY9SSSP/+jEV/VghIIP2QUtH8gUXnKwJYc/3tekt/WdRr9M8vOPu65YvcadvSV4sq9jd+T0pR5uAx1ixqvsKEbfmhA/PCP7D67ghgNlZzqClcRISHlzFKQ2MFu70VUY37FWxWVEmGAstPONROkHWftGhBVOUfbK4JNGi7pER2f4JH5pYvGBvBq1ds8uvIrH9dY0pU34RX9XLD6pK/BiYrUw/PEfhQ+8wlhcid1gB+0Kvc9HzFyN9n0IYH0m9vPSxURTOUbM6iRn87JGP2jjroaE6EmHemRQ9YkUJNgRGaStFMKpkVNiztNqB4qVS21+abDosH90DtDwlgAiMvwnO1IzRMnQugU38wwe9hXIk4rr2/1bdI2eFnTVVjmIp28y+U4Bcp1EMFHrZ6J0Iud0wcCgpp5tP1JgFDz2SK9tRpxg3v4OaHUS8tl2aOi0cgZ9VrwcFffv++QvdX36gq05s/W/2wgr96a65JafwmIjh/fJHqUXtIJhoaFQAPWJN5FO6AnakXyFR1PLR/LDiZ+AdnQz2Oe4ytX+t/0RrUMHdOBKPEkgHpm6WFS/RYqfEsDgM9CoiHpE0TdOCjl780+JzCsCsjev2KQrOq0yeFp21LkjwFprFEpIJwD90Ev3V7BlNd3mz4uB4Om9/wTT6J/fpA8Up67G3Pa32a2QpnZ4aofhdxwsBh4WH56c/UtcY9o3VleXApg4qInuAMywqHHEpHxaMmMTxAQ6IGykcuCqyTSmom6fm0oX96Ozh98X1BXqzy9n/6glTz0Vjfrt3Cp+hg+ud3LN9Aq2CRoBmbqdqCPz9Svknhh3q8q7G9m1wCyEtPTGahMAYmoUcEvtpOQ+9FmYblPlY9zE3jjh1dvBUb3nrgM3Xff/7QgnanWskyA2H/bdZsvvlPB04z3JPD9/ZllMN4hqMJOxwYEUtYU97OcIFRR+P6wTfr93uWoWyo5V/9LpbL45SDv3rg03BKyFsKS4j47IpD215Y1/CO/F/8l0/OH8N0lhV+GAt68tOKsR8xJMDpn+d2vSbbb/UDlnFu4ONl/Plz7N0d+ZSpCb2PUlesVnAf4cdNEeLL7PGfPv3DGzVbr2BF6cGD1uMZ0U1fNOTPXxPMxP6HP2smhyvc6i0NgXgEYsu7jvIXb1Z22m0zL7wKbvGMA+5QAxJK/Sqz4K5i1B9ODZmSWw1iWEIaCYXxn18sD2+b1C//ZTAOH1doCGtK1f7esOX55DOA2hRT90QAI/LpFsi8ZTGs/uUDMqwefh+Up450rYql5QYCck5O//HHOSosAjd9jvbW4ZywcswyeAiuw7/6zypFfsiOoiNqGZ5gsD/+tflX2DkUbbP5syUk4dT/8U2fHQ6vFIyiIfzTN8K7miR542dotlhqjMpp4eDmD1P9GX+btZc4KKUSY0Tu8adgknJ3oD11DfaHshyEv3zfrfwO//ELmtYXDubXdKHosQ8H0IPT9gY8DXH4ZRoQdUeVlOY9xjgMDTz0ndXE4P6INFpaWblt5RGlP/wkx8vo+sLZPObw+swLAls3GpiePivpk18TxPu6ZYhHMJmwu3UiLnvdBftz6JhQi70cO9Otav7hw5++XJfw7XfzVWzhHQccLawnKKbwfazhUX5TfJQmxObXvkWg1zIeW6krgrGL5whOcHzT+HqyGvEJjjPc2aqBo/gXGuusHx5w+hUnajFtYXN9WVt5So8KddIf8cmsLw84q1GOKq0xwe8buDWk3chTMzr6jWDGjIN6klC0fvA7oRkd0F/807Dd28mEXgkBN11y8G2q42F0JLeGMP1EG56VgAa64IHN76U2VIHfzbZQwamSKTmQjwjWhs09hMcmJHIcqIkgezIBoZM5NABObIwutEQA0lLFmj4DY0JR3sPncL0TkKGBEf97QzDfZ4f/+Iaxz3TAsnhP3fpiNPy3qUQl0GhGqvXxZmSyzyvg/T5Bu1C+JvPzcmr/8glFBWHFn98JhG+bY0clERuDtMphqO07wm1+MN3PWAbifLqQXdFqiWjfeg5GintDihtzbNoX+QzZWf1gdelXsGx6GG5+F3UamhbreMAPcBhvjKLd7DW8HgQQ2gJy0bz0Meu3/gTQ5Mmkt8dZG2TpzNfKhn+EE76VQYun4UAleZ4JTOJrwcSDeoYnyS7+8bfpXIcI3j24TVG37sMc5CMB40WZEBRUd1hI7kRw87vpn96b9spZUgCSc2oy2PqMH4AJd80CqeXgYmCF4nBgi5/Nby2LrzXLKrDXg4w16/5tRlUG6b98vkdqWAhom/mLXzihTvSyBv4IhDMUyqXDavcOhnkWYAZ08WsQJXUubJbrWIXz+y1RL7wOBasXGwFDmFOsbfpm6x+If3rwn7/3pyf/+An1Nv9b3PQb5MSditZf0Pjj1bd7uCtONyRFr/dADqYP/+ob4S7rN1mexWwqRUFjQg4GVyzdC0mH7XpxeA1kfzbvj+of/zNFc2TUeHYlPFW1SFExqMPKsmMKBbifqVqXL7aq3DeH9yPdTijZt2J17/tZlouKow59/Yx5p7kZfPqnC8Wbfz//8Vf++/DoX79KpFdyhmL7fKDd7jcUW/+IQK9dA4z3nVusSZE+wJ8f/8dXVo7OuqLYpCK759so+C//kkFuaneqyd0BTHHE+n/4h7PuzZiquT1Mj+RDDYZQQR4fPVfCZSehLV/8lX+fP9Bd8pmap10N1rHbtmjswgO1PaFr1tvvEkBYZ0ciDLzO6I/4EvTqu4J2K+OLQSoSHah9PVL7pe6TmXZfD16ATNEu+hqM+cJXhGEkDdjb9OVSjJEDROf3xTjd3ZvPL5bqP78Wq58xMZbDOKb/+lEXKphscfU231aKfsj8nffJ+948CZR564f9zY8lf/p342/U2fTnkppPGRzY7kY15WIX89leROiHZ5FasyUmZPMPYRfyO+rdOq6Zp+vlA/e+aeP4lI3JNAR1DZdmtmm44Tl7Plvnj79hJ/0hf4yFCilnf5vxtfET9tTIGVb6wdj8T/v/AAAA//+kXcnWqjASfiAXIlPCknmWICDiDhARUJEhAfL0ffhvL3vXaz0qUPmmipVx5YJUhTNfJQHY3NGbhKu/wBFfjwE411KxSBfhAE2FnQOAMqZdVF+HMKIwJ0Wwn0piLKIqXLrVIl50jeJ1Or4n+LDmF3Fv9YlO8m8L4Z7nITnaZ6L++dE/PaVU3YXSpFJsKPjXMQCx8473/OMjiWLvoMDwjuPIukoFr6EpBJy0tzc7lHzAfn+QPnl0XGNZMyFaLwXy7esd/OlpwNboTLw972ZphlI4Z5mP3LEF9C+v/+sHI4TbVtsGgy7SbJg80hrb1JiHLqtQIheXKBOuWvrnB2xn2DBsjcn7h4fa7/AkHhegYs/nDlDJe4hkkQjeUrDiJJHpaCBHrd09b/7xIBcHA5/wKo90IQYv2hM0kZeamreuTh1IAz4T5J3rRzFw4eJL/BhVmCmlZlylLKxgLTYLUe93HO/9OR/u/Sf8er1IS2XGZ0WO5E/kwfhEt48RbZI5FDfiHKenhmWv82ErSj1x9vxgO+cTBFfmHiHHz82C2/UOjGIxwodiP7WqOxQVWM/Og+i3mI8nzjrW8PJTMiQHfBkv6ObkoKZKTB7b+hrnzwH6wHqZNgl+p7lYyyBK/58dBeB/7ygAz34jzlWn8Vqmj494Og8LlozOawmsoQylF35jqLQcIEaSB4BotU6egjRqi9NyNfTtgATCoQ69hWJnA4FpnYkzzsd4vSyfUBg4jQvgabmOa7S6AWQESIjPMQhM51d4kC5Pdw4Os8J5U3gQdLhORCRefzA9GvF+CMgHb8hUQ6VYvXT6gIotn0QV7HGcAvI2Yezc3EA6lyldGeVew8Y7T8FyabjdEUoJbNeDSZyXEIzLN7N4aBfPM5Jf6bldXTurgCGImCiSstFpqTcocaMCkIE72TtxEt3Pve9TdLcvX7oclaAHPyYtUVBFb7o0ONxg1WwVBpnjAoryyYWnhdsdAknj6ZuNLHwRmgRSeebosH2KBTyeJx2dr+mFTt8M8fDv+61YXcBmHV++tD5Sn3jMMhXLjQ9dWOXADnjm/WlX8s47uF7NlgQfXwaMH+lQOiRCHIwLr3grs8o2ZPX+iUIoil7zw9cDsPzZDoSRa8GI/FCW+gcjE3dkMm2NSX0Ax0mWkRExz3gLjWcErq0XY5Jfn94CzCYCR+52//d9S002FVbD/UTUeKjAQh98CX9TZxBHyTZvcbVEhNLp8kVWs3dI9nqBv/6ykfPXnItF4EQbVpq9ESfTAm8r81MgvXn9jNybdWnXwT5uYNwCEZ8ypmsXipUF6PElwQfv+wOry6EAWozl4cP9ZrSUNcUE8kMWIbm79vFims8cHNsxQ04r9WC5fQMIAjd6EWMrx4L450cClSawkcvOM1jeQ5UBy34xBL3Drl0Y+OD/7hfSmETXNtfnTXhQkgtxHwdu3G51xoLPGIH9lKs1Xh/vcw9HNguI3VCgbZ8XcuE9fnJE3S5GOwYgWEBsLHZw+Dke7e8fpf+7H+g8GLZGL6JTwr/6VjmX9fDR/bHC+JQ9lPyarzdd4O0Alvn7Ijbp03iamGGCvyW0kKWeTyPt4/0/JbdYCJrmQdr9fvowK98WUUOiUSLf7yK0wOmFlGgyipMFnA8QSzYjhph+CmzUGg8d9YCCQ1K+YzxKr8PxSkyJoM570o121QcuJnoS07GseFFKPYXnwraRH+QNWNvagOBOgyZolyiJl650Q7AIrU+QSptie68wh8f2lxFVdBaw+je7hkd9P5eIvR9HQqZkgJqNWyKvrjYyXJ6r8IxnN6CqNtJt+Z5kKPLhQvyPqWvb6yrVID+Eb6KUjelRlU1NwI22iG7z1wIbkxgRGOKDHUis2MZTiDVGcn+3kVhX2YzJ6bvw0mZfLkSvfpeCzCir4Ps4dyhw9xkMx/kjguHWusS8ihvdyE8MRG7UANGO3o9SGJoLvPGCSazAqeNt6bMDkK0mI0H86igG1f0D3evyC7Y1WMaNGlcfAtk2kbzjET0gp4IX9r6is/wbY8Kx/QHm7oFHTmrZ8cks7QDax+gcTNKwtGsUagPwuauN1F9ybfslNDA8s58anSmw29U4Zy7slBtDAgZE3qJ4TxMkLQBYpJh6eL21GAJZsYgiaU2Lf/gBBVm76fuU/8u4fZfYlfx9eOqW/oR2ueb8rlhuCtJPkdRugxSo0MoGSpT8UxdbovITFJPHgm+nl0q5X2v7MPjxZyKfBz/e0iXw4d/9lv3vLZ6z4ZzAD3UvOAxmJWZWOUsBYm5HYliqoG2P3xxCrdY/eAXGWfthQwohW15YEuifY7sc91NEDv03QeZFaeKlpFkFhm/vkP15jct4fSXS44tzYnaz9scvPuxPhk60eL21W6urEN4eFUZIkEZvSxfThzfjeycmf9cBdzViF4rZqCPURsjj3paTwvPn+SLI/D0A5dgagu24RChgwObNJ0xUwHltQCz5EnqzWUwhfHe5T0z+dvK2zxam8FrkkLjedSyo4sgfCcHpi+yLQeK9/hug6UOAsf55jtSbuQO0fNZCmq684uXGwQBeDsudXHD0GrG25Tksl/MdC6GnUuaPT6YrD1BazYd45n0rgO1gLkHY5l+wDVX9gWwZswHIrELbfljYp/xKHXIS5VDM9rCEUiSQKliC+VXgmLE7mAAeEft50OmpWW4RVOHCE5U32HGRz0kIO35mg9ZluWLQVraCc88kKD5zL0CfZZSAQzgf8fGZa4BRSj2B4Fs4xMQvpvjdijWA5uOzDwuYEN28wvcFWWQMcpG0Ztx+Ry8Aykl0Arrj7aKLciZNgd2hJzXf3sosXfB3vfiC5mF85/2kw/15ENU+9XTTLzEL0ygfMfPqfQ3f6pCBLP0JAZOvH225W3b4h9+B+IUTpWm3lBDr0YT8I3bp/JmTBd4kPUeZGh3G9x8+vfRUQmejKcAHShEE/aoSpFe/tei3eWbgx3oApHTlyxtE3PBwUT0XH/PrU5tsnXXhXD+mv/fH/TXnZXD6BVZwElMznlLb6CAmjIoS6MXxekzjGo5sHmCObWyPPgs2g8kRdiQlzX2kQ5RDaI+djw9/9aIzkAWJzPj/8J9M5GaDydURyudtbreVnXWw6wcMonjQqHZ91uA5My9y0QRmpB9Dt6F5vxeBwHdDSyT5kktyYeTEGj6PmCTsqIL++siQypzHYuH7jw1vq7sQV3kOAN+lqwovh18eDLDF7YY+DxakYigT20J4XAOmHoDKf7vg0kVwxHP+CWAgdQHSFPXTksMiq3DnQ5KpUTXOXFCn8Mx2NdHY8DfO0NEnoL7VhqjDNadU+WJZ6H/enZiBao14LK0SXr/JF2WgUzystkMKu/pY48OivkZi0riTmKDIUOC0ZJzH/qFD+xieiZy1qrdZ1TDAkslmUvy4tF3Uso/gmP5a4nT8r5gvStHtjrIMHp3TtItjRCasDeON3A/4jstp6mvgBnIUAGGc2vGPf1kbM8hw5KBd3ER1pcTuGsxXgFBa59f9fhdFsB0U6G0iHngo3U+IIF5ktf5+LTMILfVE9Ns2FuMRuwyEKvf641e6ZedPDpegs4huHU7xhjhNhwBYbgBaOWwn+VxGwtE+ywHD3tR43VRxg6jepGB6Kc949c0iEssuxsSVq3c7s4GfAeFdpcHR6LOROrJZQ7bzfFwqb2tkuU1JYTkNKZYa76wt15/uiluo9EQ/JXPRv2aGFQVjHonmceW47usHRDO/4fV4eLQbG3WqtPMv2vlmXFyt5GHrfjQshE6szaGWbQCKSYPUvjA0mstFBbvHpSK2HmngtDBuD7gNXILbXUjB3++HMXzxxOP72/jb8QlIdw7hxcOfcUbxYIL80yD8jfV6xA8xqmGkXkukAGPWVmOUPnA2lGTXgzbgdGNwYfSSbKLU+RoTkxYdyJszJJ5/69pleIs9VPapoA7bd3TbOEUFlOoyCmbtA2hYyLrk6UBFbqlu2vJoxgCsRsURz78mgLLmlsILGuS/5xlvUrkk0OsaTOyb1rWLLnQlfKq5G3y4qiuW4+UJwT3uWCIrvKmdJGssYeCGL1KF+Wmk+DF9oPx1dRLUgddS9ZZgMGgnB8NGZ+LJ7eJSPPQ4DnquWePhANZJGjTO+fs8j9qvsw4T+9OQwO0SumTmlILLB+hIVY+2x6hlHcIkac47f109Znin+O9+kQA9T9p6fvMdYPW2Ru68zSPePx9+G2c/tSJF7YdV2A3GztVFmsveCswkvwBagHshVQcz/fMX//zIrd789qfP4gLboM/QdV8vJL79eujBi07Uvnh7VGzWALDh0wvE3Z8s70FMAIL4S4LiUhQjGu8ZPA/DCdkPcRjJh6kYIAhaFiy88hs363zKYMhtIxYfhqVxCduqEowONT4J8VpsvvirRbs9dwht2qKRdXiWfK/wacBWc1VsccNl8Iz8B1HurVdsb9XYQGWlJmZ13/JobDI5OB4nheTnWKYTvOYJKB78hej9M9K2dwRUcCyAghRR5b31J44feIKrg5Tnc6HrbVJriY9qCckQOnS9FYIP6TM8Euv0asA2C9/ujy+QsgRWPO1+E47p1iC9GRXvhM1LIGVZvQV54pp0bZZnBIllmOSmJIa2iQ+ph9NaRcge5tSjL+crAmWdTkTjLpgu6BkvYA4PxwC8JTD2Hwds8Pg8psQMZI5u6aXegA+aMpBmiRYko3UDd/5AxgUEgKqWlsPIxTqytWvcbmx7D6HokzvZ/Yu2dEDroaxVGpHjzwqmQ7yakFiWGXTNqGicqU0HuPMV0Xa/MD9SoYFPYfGRT0QGbMJS6zBJ6jMGJ6oU06xFDEzf0oycSmljbGF6gA9y0IJj+KzayU1c9+/3EN96zdpSNlYIG627koqRFLC1GpHFb+ONAS3GrV0OmseCGzwWBF26tiB2+GTgXj/EJeyXzpI1VqDsLhgpx4M09hPTYLiYSRUszyzz1m37ZZB+7SspGc7wGC1vTXiYtn6/P5gO5diUsL92N6SewjomK9AxzKteQJ4wTuMPqQwLrKynSO9fL7C2Cw3EsuNldA8d6u31tvzpaWSMbyOm8c2YoH8j5e5fPvFyFYRcTDf5hoJFvoBVC64V1EdtwOwVNu1UaIYIQv+c/OnvYs37yRTra9Dhm+e+W/JrZR9+DgeIlJN1A4Q1xRTAHLP4tJVePLWSzEq73wkkZZLjSTSDBEap8kCmafvjGl4mHrQftSC7fgIcdzUr+MrUA5Kj9zSOEplMML2bb9BKxhFQEHkQhuNJDpaj3Hn4zE8JNAXXJOefGmub81ByuPtdfLSw+l//wUeNhBnBz9q1uQisuJylExaO7Vub/3ZUlVN7I3pClx2fHRlIldoGzH2pAb1RvYPY11RiHq5D8TN8xgdsdn7hnS/H7XrxWRG05xNy7Uwex7saDtB8V8Y/fzSzR96HslZqJOXvOmUCMpsg4+0KXbKajbeHmO87VqRT0MWi7G3IKksxASIif/WLm+7dQZ+GlCibLXn4AIQJUEynQKKgHzd7OmxAdR4eZqc3pvOiJ6r0NdkInX96Ayj7fm5QWDMlgM4jArR8LhssO1EmjpIrdD0dkxAWJ++KF3e8tOvPC0XpXrBPYiacRJfL+RfAsp4mco5unDYppZ9AWbvqqLNlo9jmwnXhZFAYcN/16y30sZRQ+cEK7fzfEuwfU1DDxxcpl18Yr4kkmQB43EacF1fR1XYeG+A1NSQ+mApvgfrb/Kd/22JuCio2jxC6v+uI5F/AU8wk5wg6+fuDHtL6KyYWZB9QmDLE7ZT/tJV/ZBmUC/9OnqM/eMv3d9fFdxKfUTArN+93m9xGzCaDIefB6LVVrT4LvOwNGMYyOkDg+gr/8OIf3+3+V4eWLD7QWfuk3h8+icqPewbsa7pry+1rHiCsRDegz/fc/uGV9Js+BjGyLaHLeP0lkDE3Bdlv5t1uEnhsAN/gTB7h4/X3/Pc9rAuPueJY0/Hv+x/Fb8Gsf4zGKfY6GbK1zgVwZfN2vc7jAiDrBcROZTLOf3njJU5UUhgVpltEuwG+wrAPgJM59GScMxvu+SpyuUUF7F6v4Pa4EmLt/oB7OV8eFvf3AQVlKsdUki8ZpHidAsG9qt5is68DDOn7tusxqZ37ETTig0ANlZh7gp0vWWjVjUO0fX2u4u+bSDXcz40unFe8SPvMQcNdrv/wefy1cgDJ1j+QTYfPfsrkXRdLXxhJlkh5O2RV0YOrNYGAubBv2nP8sRT2eibeJdIB9XAhgubm3XD1PX+07R64CZwu5ItMw7j95bEi8Mfi8ec32+72HXjw56e93b+sUc2LUFDGNOgMxW1fMTFk8BQ2n5zN9wImxbvp4K0vNbn/1ee2/XJY3L8H/Gayi7YhztNh8H6L6Gx03jj85XnNLUqRXcCrx8YNl8P984JTtbjeHDA+FtXlcCboKCzthkWv+cuXiFtLUbH9+WV8REsgRv6lYIeq72D4HSfMhQe2/XnfCwsdlQsxL758TwiYfoCv0o/Qxcehx8Us0qHwilX8p9c2e2IXCI5hRdIbm8V73gEhG35c5BEKvbX8uiwMpAcirnFLvf4vX5+doMcRc/bi0/tp9xBwtY3yq+d7p+/DK+HT1V5IvQ+6tvK+5cOYEV8kyJKwpS+HiCKjdjOJNnQFmycaH9G2Vh/96dPp+7vo//Ipy9fS4vWHt3/6W45aSGk1WRNMSqdDvvNU29W6Ex0sEq73HczSv+sRfK60SFJ/P2BLYlWFPpIMYnPNpdgCwY7g1btIxMfckf7VA4DV6mEhtfqYnstzDh7fb4GlR+iD9Xq4q3DXt8hkC1KsPuuIIgCGi497/+Gfv3x83wXx0yjQ5vkDWLDrGbzkT2tkiCJ8YCjnP6TlwzlmtfiuAtQdLsHiTSzYfPFVixrHQHReINawqloszHjtSYypSjXcJksgMSsxiZMoVbyKniMC+oyOxD1NfbuusW9CYc0VhIL9FOYelR1gGv+OEDXfGrXDGwPrnn+jMxUyMF1dd4MEpQTp90WmK4obHe75N7H2+sGvz7ABL2TnXd8cdr1fYrjzDzGE+FJQ3TB9qH+ka8Bnx6GggnqEwAl+4F8+RcrDZkPJDM8AGkDlv8RNg5fGCNzmQnjIuL2f4Beb8SQHSAZqEdUVNE/gS6aSNCiHSF2utYbDtC/hqmQNXg+6BRa3i/cZbS4iZ3EL2s0Tz5+/+iBe5gw7P/GbOEmRhMxujMH0l29LvyvEH5CicWWrtZcalleRlfHruPdDGKC8qRsU+sMZd32iC/2r0HB7cLt212uqWOWCjTSo5y29r2MKdj+GUPg8jJSx4w6iJR6IqZz9YmVW24ZM6hDct+zirWDwQgA/wwvZN4Whf/k0zJHr4z++2JpTxMLzAXE7vhvjZiyCDdJg+pFs+gGw3HXiwkkwfiR4W1BbPwdXBmUGr/gkXV8aeXpvHWYlNpH8QQdvklpcgr969/RCoCvvIx/axeOMNEMywYkvYQVCitPgZKl3b1u+kgotn7FQvuP71JxzHyouosQfjkm7xOU9grv+JsiaNroVY9DAld86vFbVOC7G3WH+/A/xwySjy1W4ln/rO9h2vbnnkZHAf/wDQfKcFSs+jfwf/+/6S/fY+iZiwEjtimyhNsEicJUvLqcrj5SD/qXb59WaMHNUA7N9e/QWr0n3/I+wmPk1lob3fBdUQ3EKgFI+d3wZXWi4v5TY7LOM6Z6nSleg9uiv34bJvRZhf7J04tpZPe7rWYbxua6IL2zvYh7s4wIPML4SzYavcQoPVxsOnM3u63WO5+PX3uDlq2r7+42Y2/kEri85CLb65WpLc84DSKkpI+8WDPH2Xpkcsr5o73j0iPf6SYSdX9EdhWrMyJIq/uVv5C68EV2nflUlzZ5a4scxLQiItIPE5KWKgo9f7/Xz46GqoCbg9TDRlsEUIthGaU7Qe19xM7Qn8BFpTwJ1csat4q8pRP4REv05sO2ubzNwJ3WNon190fSkbDAS2AeGcK29TVUtBh5BPZMzysr49Wy7XDKqKt3/ofluaWzCDEan0UHqFC8FOd28Ab5DQ0A+gfq4KnULoVabH2R+B1xsTCc2MJ5t919/k8WiVoMPqRBxrOTWUt0IfMDqw5P4bm2BVTm+E7AIvYdsN/gVuMwl/88PoqD10mLHewxmw45RWtK+XbftXIG//Ffx8aLRZVo+0p7f4pnIfUzF5hpBjiQBvhVHmTKcUGQglLMf8jbGHPEEpu0vzw9enzQFK+xNHXr9pBJdNodiecpeDtElCpG754vrIxVq2IjwhjwRv9rFbzZfut9GD7m7v2clXzOlKPfXgFnus0fO09YDJSisgPUUycOrlefi7seJrz0fxV++ACv2WhONSTqPBsBcpN1PIusOzPZfv+bv/ZYTyBoRts8HXEYzC7i9v0TTLmmk9n5c/+n19nxeQ+lwlSNS7fnsT1kvPlii0CG3vT/0L7+4vc8GXnjFaRkpvrowTPQBXSPmGK8WUD5/eQpx9zxhQxafgWheKUFHUBf/+DZyJx092cNSrP1Imz+9i/76d6s+bxsM6feGufnNaziXFihx1sHHIj+28fo4VQfwVC8eeQ5eB7bQuIXgt0RWgFfIFdiZI/z/7CiA/3tHgU4NNjgkJyfehpuzQGOkH2IQdt8TK7k8nFMrJaZ/88flRN8BFOLkTdwl0Ef6bmcetgOfE304H+J3lgMdRG0sBzBtpXa7h5kpts5Nwosj1ePKjycXvuujG4CTegH4Fj5FEDjfFiuCbrXbdvokkNGPHJE1r9XmCds+rHsvQ7KdphTPAr9BFVQTXqzOaYnu5wFUV+WD5Ex0wCoUwIf1PmX4gL1fvManiy7t34evasuOWJSOKTxfFxmV7XWMMXoJiSge4oqY3DDT9VutjOSdoBAIg7/vUUqaFH5hd0Jo+4TejJpOhW7jxeisoAfdLt0UgaiID/hoiYgun3suwgMX+qgqv3hc3vTssuPcvYhJL99ia65qBo/vmiXa4zvS9fjdE+Yz+BEZFqZ3mvY93kpSR/ikuH2xHD0+g8ltvRI/g0y7TIZZw/W4bQThszNuxixD6VktPHKjp6StYpY0kOsKB7kmiFqc5XYOle9o4vjnscV0orMP57B5oHN5SMD6THtGlEf2heQy7tvNbLMBfhJTIXbxWcBiv54pSMPwTC4ldL0VlXkOEr1/BWDgTi3ulN8C49EykP4u1gLf5McBDgy/BlyZSmCew6MJuXO8EdO9ld7+/G1oD7VD3NvzPdICSw2MtuKKVGF2tPViCwv0GsZAXhO3ceeLqQzN5HEj+tG9gSX4nHIgPj6EBNfTqlFevExSeufeSB+L17g+05qVTkeRIrvJgmK9iYcDdI2HRvRH+B6nIHwxsDPVEMmy53mLXqwVHORzTbSX7LandxM2wC5hgLyBO40T9rIUPquNR2ealOPaF4UreksuI6tMJboxnmjD5H0NiernXLw0ottAYXjyxJJPajHfklcJi2rgSIA7AvrPr2QBw5sYeWcSxhQSqQer/SsRGgq9OIW9NEDBWAb0QLkAiMkLNVRX7YObKzWLzdDKD3hIxS3ozBiMq9DoLBQyUBFNsm1tSUmQgYPuXPGF0Y/ePHZPDFuN6sFBsrdxHSyxAc213qf+PC/akttnG+YStIm8hqq2PY5NevxqwCDn+kbHaWOyA2wjcMes4vctPix1LQZbnASrddaKxTrUFShP7wjpjbqN8xZ6DTC+1CLOQzmOM9ssnWiFMQwG/r4U6z5zRujizkNhYzzi7XPQZBAcQoagK3cpTt79G8GfpI/IGzmpIGWwDvCheWfMKOJVI0UUJuIaDhUyPg8hJtGSMFA03hg9108fU/OJTNi0+hWZJw3GOOxVKO14QFxG/tF5lk+2VFdvSORqqsYlzUQGpMsBIs27aGC4iX4E75WnYDYHSNs8WxzgWbvxROPSLd5O2SOD3TbVSK1vP22FuI7gbf55RJ1AEc+ADz8wPxkl0ovw5C3jAbKwfSRPosn8rK0mc46g3VkNOg/Oz5uDqUyh+hOj4PfsV215PmYX2vZxwsLogxbH7ibDy5VXkFMqHJ2V7iBCiX3nyL1f8vHt/345PLp3mRihtY7kYDol5PqiJ4aodCNemrUCFTc2eK2uWbGxwVsHapnckNmb2rhIz4sqqfbthMlQ6DHXy1oKBSjKKDD5L/2rF4jTxSbR96Z4p3586H/4gM43qminJLMgPMVBFzTSM4ixcl56iUYTJk6Bhnb5+RoPr5UmYyF8nOPNIoAHjyFsSUKPlK4v8k3g/vzxellNbXq3mi9dZi0h6KWeYlqB8AA/zLb8Pe/ipxx+KTw9A53YB+sdT0Wv+JI1n1hyVtnvuDznrw6JgDXMrTFXTCkxM3i8v67IT9zvuPCh28PcCLN9z+8wfrYTToF19qzgaMRVTC6t8IGKXa9EBSZXzOtPWgBsVgaLBT95VGKtiOe6u0NksTi1WEncEH76FRHtYBOwgE3oIT/0DIYq8y3WD6ab1G/MC+38065qYXbwLsUpljBgPXwJskk8MqOHDzzxNepe+Ahi+foiBqMwxeyySy71a2gh7Vwe44UP1UHKj3WDvK8RxusfH5Va4qAg0EawRES0we/WkuCg8aj9qwdQhryO1Pwdx9hHfghPsd8hM148j44/D8LLSU7RmUmM+HTtXRNeX84JD8t39JZmsDv4LUQTBd0mFiSSUxZmaQJR/JRzbb1/qwR+WyXH5GJ0BUWr3End236TnU9GKjm9+4f3wUaaiRLdjwLRu0c/fGx/H0DhfTBhGA8npBzYMl628ODDk3XWEDq4+bj5PD/AI9VXop4SdVxmkNpgY9UqwJdyaCmXPwYx/7avQAzMdCR36Nd/9RacJoS0+b1FJXS6LQlW77jEq1zNIdjxHi+y52l//CY+1juHdDFzKfeqbBk8QmKjIAtsb+cvHXzVdAyw9vxp69vGOjTo0iNXayhYsWUuMLg5VZCZ4ULxBzsmfDVFi0+JcGh/L/JNYT05XHB0Y5PSx9ULoTgRHel4n1lw/1YpOCm9i3RnyuNpPDAslFb5RS6X1fQ+xS/9AFzeFEz3+pqodRbhUwJnLBHwAAOJjimEfuPhmEujeBGnXoXgcAjRXo+UamgR4aReFuIwt8VbHgNjw+O9vQbgPTXacrsmLhyBW2Khzg/xBrqz+Y8/lsZ4FPRpwUgcQ/UbiDbQPFpEYQqba5MjWShmuv2+3gQIvZQBD+ti3NcrhOLoDsHOF+MW9uoBTqykoOeunwjD4Q9URCoSVe83b/7D+9d5SjAo41jbSieawI63wels3ePJUYoS2FFrEyV1/XGVMfHh720MyLjXckt5ecwhmWwb6S91oLgUskliUC4h87yIdMqKefnTDwEjZK03R0cll/70x+NCF4rPp8sBEmHSiGbxhsf2eV1K/Tv84GINp5YCmiRAjJ1fsKxh4636K8zAjo9BiLnRW2vhOcDqoDto13fx8kXNB34KlARizuvx9jCgDOFyJXj6WS9vc1Knh+n3XhP38PcfoifSYXHWH0Sxzm28GtKpgyfv3CDtKYvelNq8KDpOXyGLmViNWkfPBsZxs4mpvauRJBPrQlMVJcx8mGdLn2s9SHu946UzznS1hgQCy/oEBMWVGGM6sjKM5slEyIvxOGpTZYqX5/OO4Vhz3p/eFLn+3hMldMuYvC15AhDThJxv9OUtqb2IILwjTM67PtnXrw6URj8jCxgTxYr43OAodCryJfapzVai5ODpDTryzM4vVn2NUvC1hA75pzGOCfaAClelcYgKTdlj5YfYgVqYt52vHToxX+cAz2xFMPdMr4CufZb91R+xJ1fXZnKzeSGP2DjAv02la3R0MpDt8xv+9DIpDlwFnOF2Dl4HFhbzcIP7DgavxcvMtcUSHRkTyFX0+cOXdpuFZYOUFg9iufKJLlGKMGgf6ZME2PsVNLhVNpzttkD+LATaRuA4waLqOeJKnlTgh8Go8DfWF+K22qLRpIQ+vPzkE9F6L2i3X8jbsKprROx3Zo4M246RKHTikWiVvMV02JhI5H9mTv70CCt+xw1erqKy+5EYzB8MNvAo7ICoH+cBln6ylj/+wsvV1key4znwlkwmN2BMYMp5z/7DKzzs9bZkp8yHh+1+RJ4jeR7D1XoH9CG3ieHjCHBUqQ4A1e1h76DXlAxlP4niaA8oDk8Hjeim3YElY7KAOloGFlY4sODI/wairqAFtDwhF7rJO0NIe/1iCo/Hj+hdQxdlsAbt5x2cZdgsfYieI7O1M5HSHOz8hkc/bbxt1yt/9x8v6SsC9IWdA7idhjORAzKPhHkVMtTemEOoKxJvE16RC43GD5D3MfqRjtGSgd0/BsKfniqZrpL+9NQxMiZvKUXWBJ33ddD+ee0S+88MaNFHIyo38yPJTpsIVHWByIwWrSB+MvpCoKsDVsTHCWxQd3wxa0WOKP76aEli1gPUfnNKHE0QPXyQhwaenr6OnnElFrTNfymMnLnb8VbVqAFDX/rTy2f4XLWlcpdQug9uQ+TYZrxt/twgjCBTEPVKzXgZtksnSW35QTqTieO60M8+042RAs6/+3RNcbzPSHlVpHrdwdirJNKlZ32L0R9ebrOsVuD2GybiDRXRVhBMPngVISLur7S8NVR7F0YO6YjPRG9tXs7ZR3jgWEVaLat0euVm+U9f+zt+TS/K74nc84T8sb5pdMWDDPf1T0JLWjR6jTUeBo/OQIF1CQrCMbIJjzrzzw+0dNlsDB+FG5BA5m8tNbJTBY9m/kLOehC8jahSBv78iMH2BljfTVbDog9iZPV2C6ZGLgNw5McBL1N4H/FHLzGIf81IZESuBZ2eRQ8oDB1yr3onpm3+SmC7aZhokfaK8YYyVvzpOcDC0ZljvN4dG3I5NxOZ+cl0O0raAhqnFpC/RhP4h//Hd8MSpIjHkdTBmRe198SRKKLY29AKIogd/4zOCf1paxel2R8eI2/mZkqta7qJ72dOAu5YxcX66fcps+zNRXZxdosJPQwd8nxAApG9HwF+XE8QcJfoipeh0tuF/TEiFHiNElN9s3T603fvw0tH9nZ9FjS9PxpYpqVEHKXuvEFnhVDMaaviPihg+76++AoGsuoF3XQOKM23xBf/9Luecngkj6IUweVbFTu/TuP0yMUA7nqE6DcujRdelicpMQOABfzOC3psPgP8TBQT55PjcdHevw0WpyXAGwFx8ZkccYHX+C0GawkHb8lOoS/F8PdE5xXgGGvyb4B/ecKfP9jxPIdHJAnE8UfbW3Mrr+BH+QnEIi81nifmzoilljpk14PtopJch5e7WBMn1D90Ao4RidD6HQj6FpNHBRbIf3qSGG/d82YfsQf4p1+kufmCJV+FGrKF+kPB5955k4IqGbCs+9zxvxlpoKgd3PGKZFqYtdObGi6Ubg8D6fLrQzfBIhMwVV7CgzvfwK6PP+D7q5T5Tx9M0a+vYcQWDPnjOyqwVAZlKOr4GExzsesTDPO3ZAXMm7nR9fi6R9By7B6VR72J5yc1VcgMNUV2ct7iOTIKE1TpgWI+ZTSK/feNgeY51bDwVuR4i/Q6l7iUC4jml7d2G+ZrCtP76Y1k5lcDMjZbIs3t74JeYz2NeHjEGShedAqWq92NeD2mgxjdLk/kvSfVW7qJ1nCU+QizG1/TFfBhB+9ZZ5MHbkiLm/EBxT2PIEoOhXGeZcmF7aZgoiHt563Iz0rQBoFLrPje0cE6nliov14luv1ekTeV3dDAOi5d4rnp2i5F7/j/+H9/P6C6KXeQcVgdmeTZeEtm7P9IEXSfGLd60aj0pBPc9SZykVkVtP7yqchfrDtCA+PSTX5sH6gL9QOpGqsD8g2NCB6Zn4fU9qDGRJtSE7b1I8HCX/2Bh7xIcQGXPV/i6HRtWlvSZWZG7rdM/+UDUHw6DmZVf4lX87FOcLx+a+SXV1psUv3JIAczl1R8arS/l3Nnxd0vBdJZaenWXVr85+eJ9bHjYrtDLoDXl3ci7q4P//lnE3zm3Q/IMXeNPV6URcgijXTzrseWTPq3/r2DAThcQAgl9psHq78+RsJc7iYIvR/dZza9tbn2+ebv92BgSXm7lu45A1YXVij2LhqdxT6t4Kw3kMiPOCyorD1KePmpJ4SiamtnR64XSN+nhpiv5KNN+3oRusMkY5YdPt6X4T4dfABWIk7VOwVd7DIBVQppAJlxbJfU5nmAH6DA6xd/4/9ef3jAxFWbSdv9bAZdxDvIrS6th98WzSF8DkdyPiWzhtv1+wHglaWkdD4dXeGh8cH6pSu+ym7djr2ZQLA+TY3oqghBL9/NFOjUYkngXswW2x/tA/iLcSfy9TVq644f8OwsTyJ3FVMM1r1PRdylGv4mHT8unCOo8CXm3T/9R/NSHuCTT5MAPuHU0p//+cD3dBiIfuc+YI5Pdx0I3rVFvvnxR0YbQQbh7IvIa6YfXdmG/8BoYQD+AsMH4lecUlj22g1peXD2GHTWbIizpNnzg2tL6egl4GhmL5IZ4U9bpOddhmiDJrLPKi7o5NgmrJycR97PkOlyGGEInpJwxuwynCgtoiyFmXsrkD6cq4KG3zCUdnxGuhd32nZPXxhMolSTICkbun2StIds40nESOu+WF65WcHr7F2Rh8Ok2P0ahKPwUYlT54diilILw8EcLIJ8o6CrErQJ5CEK/tantqqe3otZmkKy60lt0TdDhkdPyokL7naxWYTy8Gccr1hE5qHYX1dh/KvHQCoPDN34US3h8WhekBaeKm07St4icEs2EFSr80jLCnxgzJkf5JVx7C3nut2gzes6cdn7E0zKMVEhaOBCbkUXjuthVDrA3ktE7nvetGqXNASR2l2QPp0xXdvT6kI7hBidbaUo/vI20HZPiume72HE+yJA6BQQJ3ycC/pUhgGowVYSOz837YZsU4QzGKJ/9cJGep+JbvbmMIXkNc6CJ4Rg/33IPJRevBCllyH8DgryY/cAljTbGMDU1ozObj8BXL0XHb6OxweSBfVb1M5tN0JTmQWCO3LtehPZA4xv8EIsLcjieaEfHRpJH//Lj7bqtMmwu3UD+usHrJJ3rqF3jVyi0885PqWZbP/D28JL7zEdGzGF2e+xEI+E0OO6cFWlXc9henwdtC0aJF4MjLdOgvuXLSbb05Z/+aetVBo9WYmSQTS1FVGifYDWn77Y+yXorgsqWEO1tqVQ3Dws/k7ncX9ei7Tn4QHzO7Mt/usv7fWM2d9zBTufYsCUBx6LVx7QRUGVCk5UiIODwcvaiX+PDeSL+hm8qzHxlrIKedBj7oDBOXXABs5rDXd/hrxK7Mb1bX9M4RukHgqS0y/epBpn4KQMbnC61Ys3nW6yCoq8z1Cx9xf2/A1D/dWWBG1Hdtx2PgSAaV3kY+FK6bDBCIyyGCEFPKSW8OGcCGVTVch2VVYjLm9sgkqeHpb2/Ixdf54Ot5R3glOnawX7IHUuWeC+oqCV38W2PfMN7n4Lndm5iOdb8ivheP8eiYPfYtFTy+Ch1WCdOOzh1S6HYkvgVbBZgjLuNy7TSa9hh949/lWoofRhKCk4cJGPzp2T0a8RtSw44+dMgvpOwSJvy/an1/BYifrIBOGLhUYyxEjztYs3/+kPXWZnZIfFrE3M+db86U3MGV9UsLgkPdywUiL17r+1CWzrAGUhL/EpF/YdymfPBRe2W4hz1nE7xc8lkGYyrHhdhXbc+SuXdv4gFyc7UHw8nxdoXV0nmNJWGvukvNR/eXVweuueRiby6EC2VlvAeof3X3/FBX9+Wrm1OV28edv+1g+u//KnDoSmVMeVS/R3cSlwL7MqvJX6SryLTbz3Xj8gu4EUeUcGaVx98ES4P09iTa8hXv/y9I94+wVwzytIlCuRZAXkFfD1UdaW4lAuYEw0E+390Hhj+XsFRVk94SGe5YJ7rv0A9vx0z+uLdjznDAM9CyPiB9lKF0VQc2H300j/MMeRtAsjwrunnpGsdPeCXiitQSFsc7Dlb1osDKeJcNfjgdDTd4tv7TJJ4v0TIpMdPto2h34myjKe0F/ev/SGGIK9PpC96/3BjZqDJPL4jfQ9X6eZwYjc3j8gqXuD2vR8zLY4PNYcf7nYGmkg8jxATFPjQy3P8a7/fehmXw5Zx4oW+B2cVSB8nnekH9xQW7M16OGfvjObOSm2RFGwBPGaECuTjh7uQGZCHUXR3s9Z4z0vD2FClhTZnvqg+/U2cI50Dh80nozL7WjXAKiREnRp1XsUOOQAt/DRoLOFgv/2p/70IIqrPP79vIsvUceLgnrmtJjb80k4+ROLecEqwda+5kG0uCLCa321wZ6/BH/9KrxKD7zrW1D/5XX4lUOh/XlaPEl/69mBzinGkhsxcM//iEpAHJOT1W/Cg4303c/iAqOVRn967J8+3WCi2dKq6S0pdv08BBcugFMQh1jwx15byVdlhP1+BS3SHO3UX50GXu58jW7ySY0ZgQ1TySlpRAyKLI0uFeFBqk4RXnY+2Eh0TMDIzCdkc1cL/OsPKubhhvSucNphEc4ykPTkgizyauIFF1EIXlY8B+JzWOMV+WH1rx+kjs6n2L5il/z5V8z4xlr08sZv8P/YUSD97x0F/IP0xNHi574HQ1lgvX5soun6vd2el42Bn/uAkJyoV7qpJhChHWuQ6ERx480zYgamv6dDzlqiUcq5mQn90raIk0E15iaYQahVp0+w3Jpl3I4wzqXnT7oj9ew7HsbHooHObwIBMO5NQYUPtmH7sSuS0OeLTutSVzC0SzVYb1YS00jvbXis0jORjVgGMy8fTPFxvKz4SLKTN7DCz4ZV63T49osO2tasHANvj8AgzliCePY5vgSk0P+mnn1iCuZ6kET/zmPRTC/alm+whp+J2MgFUuAxdlKJ4HvKy+CNHrAdKShDuGf1yDxaNaWd0qtwsLx3cHyMN0q8qNigbCQC0sioxlzfLR94MtwB8z5I2klbg1Dgi64K5jxK2vXKhhl00kElpnGxtU1Mllp6TDcc1Fy5FGtULTL8MfqE5IASukatm0CXVgxxuSMYf1Nz0SWc3BGSf7PRrr3lLECSuTsKmiuhsy41LDwbZwm5t+3tYfHuMvBGgjsyQc61k3xRIvCWGZM4j4NAMac0FYASuAZNL4jj4tSWDv3KLkhmTxnYYrBV8KuMdSA5RhnTi+T6gtMPKQqYuqOzVAwqTPusQ9Hefd9mLo+g6IYYWYepG4lQKQ08jd4ngPmoFQt+OSkU3skNPS7R0NL8eDdhe7sKRM7kPl4BEhj4kOIH/kbGOq7hk13gfr1Bfx2u8QZeug5lPUxQsKhzvL1el4P0Susnyib9422cwSxi/qY6UZ8uGjdPUWpIyHkKpD44g7VSPAh1bT0QNIhSS8EqHsCanzSUPg+oWN/f3gS3161Ddn5nveWd9y70X+iKHCYb2sWAhxIeQO4iS+fv/2HpStZW1YHgA7EQEUhYMs8SBETdASoCImMC5Onvx3/u0qVJd3VVJaFiuo2PBUjHTiTKFtGYUJBEIJfKDicmHwBiM1UIde51RdoP3ePV42MO+pujI/eh8eMvutxMOOIlRhkNzvkqyBEGOv97Bwl9K2DKnwGEUYa8gFvFbly8t5xK7pahgJWCiZLZdnx4lDwRLyCrAPb15SUBlkmRS0IRUC91sagaBt7Xg4yl+tEWIBaxivxmvNWTKat7CvOeW52fFY8bCczgewA2Fp+K561jfeOAsjAhXt9JNS6bg/YvyEwv5Jn+S1vw9yTD8n18Ez3hjuMmTXcRfsTaCrA6jGD9gUsldENKkS69U29Ft2MJ1U7ac83pg843V+EhHNiCON56izfYUBX+2NeM7OmKcpxzsg6vZeUGlPFAjX1H3aAeVxEKD+IPLHcDt9AvXAsZdzf0puRZhpJSeSPxj5yaz7ryYOGjUDzi3j+md4xPbxc4Qzcg5fwzdoW9JrC+Xr/EXEV7nMWEVMC5Uz/orUsUb61etbBOYpnIbsNq/37v+4uiS96ADRUhB+1tCdEFa7dx1Y3JBr+6ZIgTIqJtS2yooGfNCS/flwNW5ie18K4hNeCtCdfbUdQrwSe6SzSp7zUyQjaBe/0F4kO7j1NcXRlRTSCPUDzW9VzaHw6WZfcI5uyzxNg1DgFgmK9A0MAv3rLBcBDZS46Jdonf+WSwF1aonmkScMbF9ihjNAVQE1ZFV+XZ1RR7iy2qosQiTXD0HT8PHHw+wiM5HyeSk0gvbdha24pchZu0BaoCDws2fQUHlwnjway8f/VH1NquPCrrBRbgQ5wJGiyFbvn2sMXkN8nkpv0Myv2SWYfbsRyRUQgLwIkW3qW5rJ94MI0fXa3HtYVn3bsjy+ZGOqI1UsEXiSnxgoefL3kp8dB6qDekPzUNcDt+g3OiVsRhLSXHhdmqIJrObySfvJ+3Jbapw9XmCObmTBuPummV8McWMzIN1c/X8M1sELpaTTRLVcByJioLPuLHQnqlncGi9mcZvMUtIg4ZT972Cjwe3mPTJ2b5Ssa1utsQoO9wJO4nNMHmSlElQYt/IL8WHY3rC5cBDPMTgqNyyLXVY5UKXsOVQ5b47Oha2j0HgRofSLA0b7rOraxKQptBEpBqf6Mj3kJ4e/oGesdjPY7dN2Zg8AQhcVjx6a1j2omglboT/p6OMaDhUYanwxbIyFXvr3p6nPVCur66MZAuipJPOiv5UHnJPlIbV6CbwgkpCJ3xGayb4nq061URekP+RroUivmEn9EdsqwP0HMNTnT9sm8ZbrS8IePzONJvVhkDzMcqwfAN9zfgjYhh9coEpEDllc+BbyRgfB8wMaBa5Wv26FV4JU32t3+UPZ9+BVjHZUOh0p7GVdBnFez9Tsxt5EAv2IcE5lMjBBx0+Ho5vJoG/uEZ4o2u3rDmljB3Bi6Q7ARrW/WVeSmy7IionT3F9LZcE3hSt2vQtEoZzx478cBsAg6hZxbUS5N7FZz4yg+241Uf+72/JMQ1TbBlD+UfPkhdHwXBrCUaODK/YyuKk+0Tn7PGerkJGSO+QnPEgOpZTiyRptCUgwAfv7cu31xl4uHlGLHIrOGH9mNGfTiBGSCnmsWRGqSthKQ/uUS+VyKYsy/bQqmaTuQlyA6gtaploK/OAfHPr9HbukTZ1/cuoAcRNzrHQ7mfWOVaMLTKUesCrpvgqzIPRDkEVb7oy8D/zVdkr+ZzXL+8wQDDye7EBA6OceId1T++g9Dpq+Vbf+MHYOXeh8ggU8GaPWkK0/57QGb+cuO9H1R4kZNncHg633xBKkyBlZkwKJUrzudpkDCcl+yH9M+m15tZeQEPDdHAcOURWEizRNKj0LxAYqZH/nXK0ASh+/MxG1osXW9BEYBUzHjMM+o0brHss/Aip0/kLE5A8WVRIwh4De39/omX8sDaElJWDaVc3+crSHQbaPk2E2WO+nxuAStKbjj+iB+R1998kaFEu/ZvvSlplFKGHXPLcdsXq0awx7vQslQt2K6DPNIPx1Wgen0IMpSnPW6t/ahAwb07dP4FWr1UVvQ/ninvpKpXepVZSXQCJ9im09lj86JuYd+cq+Btnitve7+CDHz6750Y/ekcs++TyENBeB6Jiw9rTXMrygBQUBaww+cbrz+N8YHevBS8422+hOodwnXAZ6QcloSuVRFHkvLWV6IdC5H+dv4Bpeg0E0e92Dkt23CAiCeYoBhOdNaVYwCPg6UEAitK3nZORAZSmJbE3fF36biIBX/9sDr3flzy8ijCPGu/eJvtNF+R1zPwKzMQLz2DAQbfVwbDvARI9aVzjF3B9uEn7a/If2eNtuzzC+58E6nrLdK+f/y3vt0EfPx2lxF/PhcIvzJnBsv9chkXIC6tdCuilOjq3QGEFKkKHp5REPt1s0fKHjwfmrV7wZ/cMCn9nkNfOt+sHHkBYCj5fWYVYv6iIPn76sF2jbkIcpivAm7vv5U+uApe9zw2D9Bcw8KjDcSFky7EdNaztv7VbzvN9s7/Uo2K/Z6K9Xy6mM9sn24M5BY43VeeOGxPwSKMe6758FbJ+aJ84o0/Myp45OKV+PPdpeuYAR9i4dpiJtxvUDwVPoGH930jJneXNS5XTzrM4mUhj/DlAipJtQv513gjZgN9bxV1ZYBb1XTE7IuLRo2fI0Kk4i3gl2OyO9AWhLt++H8+DsYmQ697eMh+3bp6KfWgArrcIvwp969i7vMdePBBA2H0Nm/LmWb6m6fBofIgwBe2aGDN2xu6bMrgTRAZBRS0H0GIpr96cAU7gHvqOLG6dxWTtLAr+AG/CauXCWvTYGwqPMX7HfuhT/LF4BsbHoKnRhS5t8Hy22pRUg0LE9f9+oAN1TsDTupyRW5c9zHe9RA05lwmaMcXkh3YAqKmCfc3URVdV6PHYK9fZDW1lM9KL2TiudNcLNm1Q0+VqJrSn/7zTJ/x6F9/m7IfoJsYzNos458O76ljIJ/hppzKspuBU7L0RNuDgmjw7Tl4qaMSd9aER3puzz44bL5MIqZxYzoIxh3EJe8Fp/nzoMu6dAVo8/WBnM+oedt84ETIl/2EXDfRairbRIa73g7SHV+W63rUIbWqA15O52TcuqJNgdeGyj++sB5GxZaap+UgHS+KtyyTUMHLJfL/9Q/W3IGDx5vNkLiFn3rnvw18Qp/f8UcdV10aODBIyohZy+G9mV5lDnq/pEVIYcwYx7LOwVQrzkRhDmZ9ui3PRFwSJUBayyCPcmbvwi/iU2K9lXIk23jZwCcdr8j5wCmfb67Dw11/ELszab0w2bGD5drYJO8bLyac+bHFassrYp3Tha5TdTGljW0gMdz8qw3Y+7lgMk5HLN4/rfeHd/DC3R47fw09uu1v3g80/Abg9kjjVbBPKbyV0QEFld7Wa7R/NsP8xjmx0i9X45A9QXAok4o87boH9HGiATxaFxaZt0uhLWRORMCyAQjYfR7RxtgSadfDBFUepOT3jDC4btULBVVc5VQS7qwYszwl6kW6xYsUDDqscKQR+9cBsPRq+xIDZnLQbV2OI7692wLuIT8Bf4w9in++XAB4Z22k1Oxv7LlZb//4Cf7j39uaB5GonjYDne2oHLevcYbQsU5PzHvDR9v8yy+D26UTSHav6bg+Mv0Om0JukL3X48CwmQv7t50QhIof+H0jQwRjuXTo/HpXYDkPfAX+6sGJGaM+6fljgoSgCSkNewEz874zkA2vDjJywazXS66Y0nBTCTm/3iqgA7vH0TLvASkyPIzL4PopPInrd89AFfOViAm3H+ib5Hzd0LjyMmdCOB3aAEbncf9my8eGLMofeBtPKmXb9p4A/ToWxGaag4a3arJBcz4fsNCOs7Y5kiRC/vAKA/GzPeIpNOtdLxdX4m3xpM1f8kngYDlfYmxHB0yhm/mgbt0XMnZ+1X8S6Q4k+fggytcA3qxsqQw5wl3wmnKexx1FvwKvD+Mg51lYeX/8einspreEGWu4Amqd/Az0YSBisuPbVN+KRnzegzAo3pmuHQU5myBq2pDI98taY+Ga8zB0vz6Rb+uUb0t8lmHpTQrRw/tLo8JrdxDrsER/fG4jpvACUohrDIwcgXXXl1B7nVp09rfvuP+/FP7tn4Ne8kjf7X5DrdR14mtE1jbnyHagP9sySSPU1Pt8sMHjaSzE3v0ZolhdKJ6SrQ8O7P2QU0rkSYqcS4Ea6c1506mmLazyVA7oReW8QeHWVPzrZz8iTLzRNjcBcS9XLEi/MF5O7z4Erl/axIpSkU5IhQnwX/GF7EZqvhRlVkEqPQwM31njzZ8kk2GduC4yy7MXk+Xdt/CHyit6vqPXSE5uaIqh3fJEtSRN+9EDbmD0sFuS7n7Gtr0uLGQ/toqcscjzxZRdHfytp9NCLu8/4aj/zbdgqx9jvNXLqsP+4/YBFRzdW1Pm0knhXCOkvLmj1+FvPsBbEabE0n4GWI3LAcPJOB4DiQWKxgmOnEjaPHh4mi2lHmglbxCCxdv1caeRSF59OKUDJuoVOJQW8QzB6wMd9LQjeWTj6gqB4RZSAA/pmg8nZShgKt55LINx0nq4v7n2+kTc9WALltfkYtjXrkSUdSnpqTavEySLVyD1J4Tx8cpI6h//QKZcWTmrlmUGo0G/kguInvmR5y93qR2HOljz3yNfPT5ngcnpCbIaZaCYgdwGN9Q1CClkGFdmskQI1MsBmd/Xq14XxluEXS/uKZZDTgfpNknDj3lh0ByHeiFzwYPz1bKIjpePt9LLQxSPAuMhw5j0fF2DIIUTX/rkFd76uPPHWIRb1XbnbTrN2mqXtBD/+g3OfaIN00kaAPPoK2Sc9O+41qUbwFRIYhRlE+9RaxNNCCXhGgiS5eVLtWsHrtivWJHK1k7tY9xgHFntnpqpa5Rx4juUwqkmmh0fY2ykuQp4dyDk/Fs4jWZgcOFe/8jY9fVmVpoPrlv5QhordvlUFHYA7rfzEPC/02lcnyyfwq96CJFiZDdvsWwvgceby2Cy82OSPFEE+XKcML80ozer69bBPz+u3f0CVp/uLfz8igApN4uN8QyaFuz1S6w0Oefio+0YsPMbZGVslHNlizrIPSENuJ3v/fEzyVQePQkeLdGIuKX//N2g+10N7xT7n0zqhoTirbt12tp5hQmL0+NGPGN6aNs52eA//n6IoQ9Oh0vSwd+lGlAQCgBMwukrQ/Uq/rDgoYYu7nucAEA6Ik/GNf/8DQ6uriQg/Wq96HaAeQaVl6MiTbve69VjGxHs/58opabVnHwqJqg3hYLyrxnTdf5LlasSF3/k3qZzmDf7jV3LIcbpisFyCRQXMsMrRzseeiv7VHUpGTYBn15bA+bwltmgwqGGHHKXY3oxWhGebqeKqAcTUuwqkwi/DYcDAGju0ev90QKs3gHREc/TKbrwJojuukKey2TkNG2cBeRZ8w0O/Hceab/6Llhz0KHzRVHi466P/uYfXlz1M87RqDVgxllEzhf2qW2c8HEl5aX6xNvUCqx4y1v4p+f/+MLmHC/RnmpzxmCfR1RJ3oFYkaQL1shy4y3sHBkMhpyjs8Zx8eL/nBY2rmMiAz2LeruP6QALlJl76kVAV4ydEMKBK5Ai9x2l548owk9SeX/+ND1euTCDDywFAVeSJyWDcL5DHEUGspdjEmPhnHV/+7/zn7Sm+/kEGET+g7euu8RHp4MYRJJ63/10O193vxM2DPMjlsYpo9B03gt6YtgHz2Peegv/qypQelhBO9+OSRzSCWpPcCKW/ls02j4ZE4xPriFyUc4xAXPZAf99ltH5t6TevDqsCvq3mxB/doiGC0ZJpPbQewE9euu46orkA/f9U4iMiaRhRxhbUL3fL+I+lVFbN+fewdAbV3zkrw9tPS13F+58JDBc6TT+49M7nyJ3lraAxFdThbsf8s8/p371ioRV6kJ82P3R3d+AMHAP50A84SinRfxlYPRwWxRcOzjid3Z7wfYwegTds2ZcrnO1SbP3M3C/98s/v3uTZxfpXi95JDzaDETx8AmISdhxTLvDC6Tg/SSWbI3aeqm/E6Ri6iMzuETekt/hADVneSA3ZqNxcWtOFoTonqDcAAkg38yy4exWJfk7v9nn+wC9axoRVX9f6Y7XG9jPhwLmeovz3S8spT98TFQn2K+O8yIcCcvjA3t/59RLsQ4Mr67I+VLHYGv1oYH11SfBOrOA7nwpANeyl3EZVOZ+3sK+4DvlS6QrfEOXdqiGf+uD4lEbORYnCaRmkRErN8BITtmRgUV9J/iw86MFqWwCOvt9JY7EC/U2sgGGNuWOQbifz7FFIQfgRvwHCbzOzhfvN/3bD6I4VhkvykOtAFv6MdG9OwUTVFce7HwTF/n5CqYspBk8nLNXcLw9lJp7Z+8X+CrifwAAAP//pF250rMwEnwgAptTIsTcp4SND8gAYwwYYy4Bevotvn/DzTamqFKJmVZP94gZEGNlkrbXuwzsh9NjPsovTvuHH8IhD+cjvrcRHYRKgVfrMGJ1x8/tQkUESe5SYkSuAZbU/+kSY/0QUcWmzAbF9nqoqrDBDkkD0In8R4U5m2jYjWtaL7HsSPDMJwxBtcl4G85jDoj394bARs/eotyyVtr1EWL+6ZPBJm6Qb3sLW8E31eZZ+wiQzJ41T4GGwJYzzhVK3iNC7K6HTn/6c/cLEUqeUzhs+3kBdn0BB7pxyaheXxi46/Xz3h4FFuXshLD/MRs274yRrdG8VbBZTgFGxeMZbYww5nCPz/nIH1qwZGGswFCOE8Q3J5eu1vMrwGd6S7H/8rpo1/euoCTjD8npJg7bxF8uUPk93ghyllcfDWF0wa53zwPq2eFnhQsDC8o8iXkvlGizJ5DCiRQ82fUWSpdHeZVfvWhjvPsDG3NMbSiqbxfr+EuG9fiZR1i81XSeZWwMXCbJGwytKkLcA881HXW2g+77e8culOOM8ve6k+Xj5OHYds3oOCe2CfVP1WKVven1kt6MEbwMZkXM95aA9s+vvPYiIQagbTZN89hDlB/e6Ohy72yVLKGR/+LDlISPt/Nf/d/5Y2kC9tbO4wtpNbkMm1NaD/RWcgie3oaJHfn+9abr9ivEPz1dYCIWtMHZV6SdH2G/i0swmYGrQBnNaPdfDtH6e5D+rx5F8l6fjtH+J85OvnDoSN44ogd7UUCElZEY/WPL6HzNF3B7kXDnszePWrwei0nKtOTP3xqKQtpgUavzP311jajPSSS3KTG2Rql3v7uAlRufyT9/DDPvvSV1eSHJvK/apIlU+n86Ctjj/24pKB6CTJzJtAd6KfsGEkFxic0ea20tfyiH/akUsJ9XBl1T4cbBLmxH4n3rMtpULh8hrc2aOLB3o6391Rf4Ab8Jm8kJaqv4GjgQS99hBivYJ++SqYUunSOs+2+U8aL3u0PZywPiarU7UKFdQxla3oPgLpG86Vs/XLENLgViD69P1E2hU0Dgnc9YfXeCR1mNUcAUGT5ie6JpUxwvncy4r4bgG3zQtbqeG8jcwjvx9YYH875eAJVHjNhTGdX0g/QUvrRVQ6IRN3Q15+gIO+T3OD8NfDaVp6QAsmDVMx3Gnm5JIkI4DDcFW5K9RpNmZy08KwrEPr9CjZQ3j4FhW/LY495vun2ptg9avNyIWnIa7aI3ECB9WQvi9KHVRqdNIWD740w0Th+9hZC5gx6wU4JLKclWPYtG6NjnBKus8qFLF5RQRp9mIH5efcAmqaEvU3V7YZNcem+YuMmGDff5Ij60gmFDD5kByOo6XMSPLRr/3m/y6wU7RtyA7h2FIai2yiWO/RQj6hORATept4l2udsZzz/PPmQPzULuZvwB1MtFDl59PkB9ADxKuc004dKPmJgx22mL2LktCB7XBt8ymR1W4vEMvH0Ecz5ctUabkiocpfwoHFHe0BRsVtpdADshgv2L2wxrEOQNYIVlnb8PZaJLexMWuD+foSJq3q8NUlUKyvJD8PpJ6ylaOx0a3GRg7TFDOlcyliCjlFccx/21HhkcuSBw0jcxTJNScgFbCYuHJKMFcrM3NteuhPIvDYkti7rGvT5bBb8slbAKRFObvvVuOZMkx+pFv2dLWA49nBLg4dPhe9TWMv/FUPaKAAce6TWKpf4CXrmskcC6yZQ8mEyBXVrDmR5Cv560M+1gKrsddgr7q1Hu81Ohypcb9pIHzeZqqTjolY8fdnXiZfy3H1tgZ502189SptOYvxpgYmCgrSD8sAkPw5QfoLmS4PwetEW1LiFExzPzFy+AFMIww/lwvmEf8022vLLSBE6ke0SzmK/WBNJwl065JaAfI7vR2gYX9SCMmUp8PdbAhq4CAwO1rdDyPhyGTgLuCNSkJUR16Ck7vrhFkWW9Q1g5/5xhlR5XFdpOqBJXdzzvV0HUQieR3Fk8Pw2wzgK/gURgN2xmtu2x5HA5Qnms3zPoc4VyjmTkYDAbBmv4adFtDAEHzO/JwcHATN5WUXIEo/fTUXVdVbDRa9PCg3nrcTzfqoyo/F2FF8NQsYXfgTcq/EuHbPZhiC94uwVxKQV5j2/suckKdkpj/+Un9p4yrX89lK6ApLpF9CO7ZXSoPyq849jd8amvySOpFdClb0gc5tFr61NDPiht3sFOV9rZJjwCHWQZD7BN3xVYHVF35aR9rgRfsaCR8czaUHw/nZmLMNAm9goqeObdAzZKlaNk45QeurF7RsKTu3kbLIQYZs1lxB7tThnHMLcWUg4f//a7XiyfXyBr6iM5rZhqRHcLBLyr8kDTusze5gvxDLwneszT5E6A3kMXArL6Hk7jKPAW7flIYVupb/S3HvJSNU7C72Kdp5mf6k0EsgnL7YEQf0mnYc3qEsIhZg5Y7Tu9Zu+2XEIp/u6X358N6A+6MIPlUJwJ7oLWo+OZdWHi75cEzU2N6FCWCpSfR0Rya9OiheaqAg4HvcBWsDfxk9ppYP7cFjS9RF+j3IZ0MJaJhe0qPGXLS2RVMLwWhijFtadjY7AdaIbTZxYd5uOtgkQXuEx8SUxOZig1vTYHKF1FjHikDIv89hSwLXGBFoXpss0+hCEsziaDxMbMPVpEdN7HlPNkx0c6j+zA/cMnPRVxtJx3W4WTOZ4402iDUYsOd6n6kpigh7cOi8lJLdjxhyR84QzrZTBU+bPOT2zH/bGmlv3LgfI038TRzsLQ/30fYo0mdj30ipYlFTc4goNNTg8xjLaDxc5y8xWuBGknUlPu81agHs0Qq1nIgUV7vlIp4E78/EtmCawf6cxBfygKbPCpHnUfP5zBZyI9dh+TP3SWf1hgWt147Kf4M6w/7hFCatglWi8ToVN1TVrYJduIHcVvMgLWdwu7EchYSea+JmzXKtJffKvqValZowEL7BZpwf5N+3h0aY0KZLj6EQffk3o+ywyCzqogrKXZL1vTpyHBff/J7eGdMi47Vy6kbNEgrA/3aNP5hvmXD1plMt7Udm8IZ7VT0D7BiHbEZTrYHHE7c8/Mzqbra/HhEt8RUZS402YQP69w0JE8C/NNjTbrrPgwJf6HBP6tr6naCxCmHqbEesdEW+9vpYAdU857PkzaFqCnBOpRRYj+kh6Q7blbivybYkMLaLb0Z8aHnRUPOLhHh2ytRKcBARt+8ekVnzVaCPUIl5cbIOYIlHrRWz7/xw+M7dhoza32bXg4gxE7RhODxTlVDFwLp8H6gi/e9vpsJTy6B464ZYy81ZPyFFzP35D4plHXYyOGFaiFR4kExhC8gQetCy3mFeI9nurN1aYGrld0ReNQWtqWnIgCr+VRIclWyN4qx2MIiSJYOHpUNiXX7LWBHb9J8a430EWytw/yzlOsMow0rPfDLZXSLm2JEsHfsMldXECxO9vE9Y6HekqqeIYJO76x01M7Iwg/EPQvYYFx/NOzY7eFjDz/Ng0bP7XeJZYBwZgq+XxIYZOtRSMiePnxOkaH161ef7F6henrwKKUh6Se9QuE4H6pc6yNlyFbR0Zt5NTNa6za5qmm1zhdROZ0bsiOv9GWcakNhTpQ8T3CmTfcjxKEcLsE5PQc1mgc0Ipk+9eY8zr+NvDJF6QA7j4eiUOSbtj+8n2Gtk50KNFovdtsBTfpMc9EEL7ZmrIhJy+JVSByWL/D2v0kBJ2IzfBJVVG9rspgg9v1fMPuvBBtveplKBv35IRkJXSGsfaUHBqDpyEa/rphapZ1gdV3ionBikK9xnLZ/cNruPPtDdzCK+yfpvhf/sff3ALU9ilHy+NUeFMsdz143nxhXpGFa/YXu3cwjZFPnGr+ZmNxC1Sw5zdJ+F4e1jZ8KVJ8GWNyW96NRptffgfuEFVI8JIN0MA4uBDxcCT5QbfBQruvDnDfr0Sx+K4eQHeq4JVtVWItcAGjS6gKk/pekhOtqEfXWqlkaMbWLEeop4veHnL4HwAAAP//pF3Ltqo8s30gGiIoKZrc5WaioIg9QEVQVC4JkKc/g7W/5t87zT0cro1JXeacVVT9rV1x6TPJ6bAKFPjwfEvfSmzx6W1uBfg8zQ1tA/HRTf1b/sq1axb0rmrPbr68nRlW2alY/NsNuE9/FM7ommLelH5OVXFdQaM2FV76P2IeCasSjGrJH1Te18v5R6r4dX90I+7qfI7nX4rarN/Q9fA16z//BUH1fvg97V4xd+9Ng25aIf3F53qa/QBDqHgT243JoeY83IsgLGMONff2M0f0i0RYHd2CJvjmIOlaZ8Y//kQ8u6r54RGdoF8HHlWajpp8Op1b5VSHOjH3oxtIkXU9QRbsOfOkjRfLynabKrFyC5kTjFk+91mswL0uVriTd0Ywf3CeQJ3lN7wuDQn14acLUejQAsvr6hjM0hlE2EWIMBdpZjexVSQhtT4/ifZcPeo/PoSO41nDkiM4wVqZawGmy+XN8L2d89HdGBJcDOdAzD2AOZEfjHBKr4Qc2LvPZ9EQe2hSsSRXbqkxPblNA+YyGNN+1kY9zudGQOJ7/FKe5V7e8dCWwJk/wcIf33wITSjh8lvVuIzIssYsDBNY8jud5ccVzb+WV0BnsMhBqfdoWOwBrkfGFolm1c3lyf+iWZNbQm7kVY+b7XyHe/9dkXATfOueF74B4pS0tPLf63q0siiDzL/XeNZ0rZO86FDAXjJlovm+y8cwzA/gmxlh3lP/dDNnYgXKke9p/1vl+Xg5niKg5cvEm21sorWRmXcE9JgxLyKK+ck8M1W0/Xpie3bbc7a/Gw4kDvaJt508xN3818BFhTPRCv4w52Bvf9VMj2o8nyaDz7ujG4J5b9f4u+DF3o0zERiubKKvci3481fgENVUWA8iGpRLYYC3+dxomeot72lBKzjvwGTFvNrxqbIpRUHwaYg+kTgYWa03kBznkAVlq5k9fxADxd9dQMLXx+EDC1YCbFpdp96us7i0t9YilOTnEvdjnOtpjHJNIc5vRfmtVFFbjZUIf3hmp7jHfE4P181fvqGbYMWDQdkjgEYaa6Yt98fut3z847uMvMttPT0v9wb4/VQym/Ra913yAyQbhRCzKdt8UPZcgBcvEnZMHyOiWbDs13BWGX7C/lTzfECZ8nyUGtGT8FDP+5s2glBYZxZ8vRKN98jVkHt+n1jOv8+cD9o+gk9evtmCH2OZxXYGx9coMON6qc3pt1qdoOJxxuxcXdesHOMNcGN8MOt5PHTjIEsFqnsNY+G0jO2dzxTAuckuleaL0AAJQPa/zX98UY/8L9kn21U9/OkHf/HVkdQ7mo/KFAKVdmesLvxsSCDNlEm4fen2ruTx6w/vTc3rTI5JeOjoFJ9OgKrrme2T+BHzNrMALefDItd5dmNxO0nIsN8qsZX4hfrXc98gZa/7LBBmCfVUTxoI0LYlbjaVNW2vQQsru8nIzj+HNT1enRD97tKMo2stBxMqwUHzNcrwWU238dA+q0xlceSyfcD8YN7/3qK6v7s1KVzBCuRRv1VQX6KQhWqtBuOTlhgSkvl0ZW6f6I//Q1FVHKtSQnMa/bwTXMlloN/VLPMlv4ogvucv/YZv3s2rnUoRnQWLwkPfIjbw0ldT7XTBY0QWSbKxK2XJ35inJzXmwjyJ8DpX8YKvyo5bzAnREn+JIYRNPLzUu4SW77NEO255X7OxUG/eV2LBW9I6WcgaBS6lERN79bBzfmNmCwvep6KiR2iO91MGyLpFzDnlCLUCOryAhJQyErykmiofN4QfjGti4qrIx5xZPSAWmbjp+C9nVQguWHEPzN7M26BvjxKGE6Q6cYA9EN/yJEEt0oCR+Hf5Z8//9AD9L3/J8eSrajcfl5cIv/nk3cQQfebv7x9+Hr79KlSY3l0Y3n0Yp9c6MuDZOQbD87fM+dSXDchbquL5uKnyKU4OrjrQ3570l+QdjN/9V/jTlwjuzrybBEdMYd7TlDgP+o15tqojqA/3PbHyB6t5Vw/G1hO+IbPzSe9o2v1EWPyBYTkTu5Hq9wY+3lZkwTYz8nlljT3ccQ9UWeWHeFDTVwTpbtsQvZEnNPYv6QSsKFwWVKpmTrmuAmzZbse05z6Ix3WsYOW+2evM+b5vaD65tEFZor2J8x9f5uWfPsd0msz1hMAy4OXBkXg7OUUt4u/D9iSMBnkQweDzFBcnReDhlfnUp7xyX1qi8uNjxtxMHS7rr9sGQq0b6Ls7m/lYX4YKLfolpspOD7iG0xH0gf6YZbAh7vbw0JDVK0DsltUBt6qfCzoZG7r2+5M5r6xND6d6dcRrNbTjVsFqhGJNdZm38DOK1H0C7l2zWM7w2ZTS7imqgf5NSCJNPpd3kV798QGG108Nzc2vi+CDxB878ioO5OcWAYyy+WR4wUejrq1CtMQX4lteZzLJPzpwEecznnelbo43w1IActcjoVrfTP7GYYb0U/VjhjTY3XrRF9WXNh7x+hI8l3gTArxdnDJ/6475NA6tgB7fp02cabrns/o93NGK1C3T8rzNO/l2DYEHwoO5pbeOp9s9ceGPbxt3Jtfz54IyJOpaw5b42E3vh66gR4sc4lQfly/LlTBa8D5V2+M+bw2poP/00j9+MYebA1Wvl/GOV/ZR6no3jkSYd78fC335guZztOxfe2PC3Fp9mlNVCi2KfmuL7K5bGk9P9qxUsbIVgjeZno+988vQ7lBjylNF7VhUtg2aX1JBN5fNsvj7HraoR6pLCC0bc+o6/w7uGqXMaIxXvugJd7TgO0Jc/xLIbv5swDUKk+wNdqvZ7d01iqtZBvMre4+UJH32kKwoxpInO53UWOgAKJHjBU/Uf/rEXUHd58wCj08dW70wAJXsM/MNQ0BTLmwU8J26pJDl2wV/2suav2fB3Furm+sfbg9/+gwJ6Rt108XeVEjZmz5Z7IfzKhRdsB9v/b/7ec60ROuXxlh8K29ofNJvCOtw05HwvN7G/JuKFLKHuiaefP/VU3L5ZmjcPwvm5euGT05sbtQxPeF/+v1AN6tFg84Ys6P30xziah0CU7KAObG5C+ab8klhjvcdljufobY2a01dnocsenHAPW/bb+k91MnDEaRlaHBiAHavG2Y+9F89/i66oS76AuWf6N4tevAMF0MuqVzby5ohL0pAZGxDUWOIHb3JVfYXj4n7qE+ILXj7D38QY9evzZlGoaMkUoXpuOB3vjG8wz8+6wYrbvaKsFvWHLEbltMQd1PWbWYQos2Zvp+10c1HZYuh22cq3u7kDR//+HxT8Ykq8S6MufrY9qDfb1tCxOhjTk4cKOjUGhoJfVnmf/laSY5jSGyKazQ1h4sBMB/2JP/UWkyVdo/B9Dac2GKYcimMvz36EKhZeF/b//A+iOINUVVKcDwMu6qHFZ4zZi7nM2vCq0K2pWvMXviNvDG8CEUB0v/p5SM6EgWqZhkC9TPMHF2utQGvj3IiPugj6pfPFQ+fXHIayWwOpX4sUJCJCcvj9xxza3cM0bSOv0u+0eJp6KMeBMVImXGMKvNf/pA1vGWh56fmHPjaV4UjeEt94ZpPk1a7EO+mHSNZ8jKpL7t3mGD3YbvOZ3ze3r4uID3R6S9fO3witjXDWeVXWi31ni5ojgosfJppe/OX9zcjVMAsIpHgfJrQlFzKTKlK3yPWNST1rNi3UDkJs0HV8LzUlzBN0OR+I3LLhqCmQ40E2AiTydK0FbvxT/9g769Hm2kS4nnjlwa8Gzcn9/Fc5pTlvf/n/5jr3S4YrjttVl/nMmYPfLuYf3xPhaPg4c3NKtF4OliG6t6nE17fpSQYFz0OPNt1Sbbofd+TKGqQz6sVlaNs3/HVyxHQ8vuZURzMmkv7uwPJy90TT25v3WiPlxIqeGT/8OU/vWGdfwSshkv2s9e/6M+e2EM4oH+fgz/q70WP23Y8PsoUkH7SianbzaJfyglaHf2CGN5qHdMPDxKwMGyxWs1hJ7kv9wRAmt2i379Rb7tthSTxKzNnyVeTeDNPkO/sLQvyNs5pdmI+dN1Fw2jhq/K8tVt4JonG3PO7DLhiXkvwn0nEFr3wL15/kYQKiXJy+/BefZoa7C/JC5fP6yqun1u+DBCuKLMUPeKS0x98WOoHWGk6bPJt6mTw3h57RjJ4xeND2hgQCR8HH9/+bHLz6ln/9DEzdqGeJaWXYMnfjPQrJWfieVCUY/dSmY53rGZGuxFgN66jf/XOeXU8z8sa4wOJnWUI5QHxBvHaqlnyud4Crl1GESCdXWKfrXPcVV/LQn/+YJO+rIel/gmXIFqGDKgCr/L7LkThq33Q9+LfDIXbF6gCquj3i5P8L17As+oivPK6Cs31XQFo2V0hO5uF8STeggRUOYmJYe+fAaVur/35A/F29qublnokmuXwRjz3+I45/9xGkD8JUIjGP75gN3AJDgfinPIccRxmIWy57GP5ou35mL6KDOUzZoR8r1kwXaJzgxwj3hHPeFix+N1/AZCKHSzF5ieYi9WM0Xm6u8xxBMfk93h5rQT9BmbJ7hzPq+NtBPo8L0PmZMaZMG9F9N6UBTFMR0RjxOsRFj6Hw9spC75G70dQJDAR//YY6umTzA7SnVdDom3TBPOST9VGmmuiGTKYI8yKAuNjeyOOcOjqqfUuBSzxCyNmPE16qbwZsCb+8NMwaM2Ey0+B0/plkOX+zBE/8lSt48/9T5/vxtfdfcG5IikdZWsw+brQhD98S8JV6wXjPdIMcMvMwZu1WAfTT3pEyqJP0xUtm2A+t9cG8tehJ4EoVuaC511Y9Bm6dveaKQvzJEGA/Ix4oWx3/ZN+MQif9sJCvbv8tdj4yMLC9s8/gvH13L8gefn7f/hFNtWtsx2l6Mi09WX4xxfQuCqOi366rmf3sz/BbWlZ326s1hztrdzA81FpbCevp4AewqcPF4G9cWm/vt0nxjNF/5+WgvX/bim4Cdxn/l095SPjAGCKGcFKWHxjxq/zC0ZzTYgj+UsXeea1MFB9z/TDu+DTvbi7sLlbjG63OeXzDmcZBLYUU7Wyunqy2LlH9d7o8W+beB23ZCaAZ+0zPE8fFvc3/Lyrl4bvacoeCq+Ge+Sq+5VcMPP1Yea83buzIkTSi3jbUjSn/nRNUb3vEmY7Hxr3l5s+wwtOOVWd0zno+ysSQSq8JzP3zbkeD/dfBe9IpMwf/KCr0/pdwuZ2t4nh2h4f9nZRQZVUGd5uc8ynn9aIsBc2N3K9Xeqcm99wBifnW6Jp9YsP3j0bIWXNj/j3DTF5cvIT8BJxu2xanbqvOngVJIMxEb2LdJMJsFXQFg0ChTZ4xYN7cDegjmtG3I26NsfXMtfs/lq5LExdGQ0nPXPBjvQ7c3VrQNOl6F/oo4sucS9Ja85GofSwohuPBcNM+GgDL1RteybEFsp1R1EefeFZai4h7mafj+rsjMjJHy+i34RjPZLLqoRLjJe37KiDWG3HL3gEgY23Y/WJx5N3wZvruYho9Vm1XXtlE8D61R/YsYuewdw6qIVjOdoMG7CNX5rvl6h9Zm9iHJhe8+d6TGDl/QLysKwuaKEnPtzydUJFMfh0tHVDASR3m2LB+L7ywTHdBLKqkPHmLUvxfJ3MCG6qGDBvW57M4RY8v/Dwq5yZ6PvNp5OmiehZqjtmecqLz5WiF0jsIo/tO0mpOTlXjjpe8oEYK5/Wv3A7hCireMiwMqKc1fbyLrk93+gmPcnB9EO/EtSxzpjpzjyezc/hu+nS+kkC+UwCrlxfLgz0JxPN7oqA01+P0UW5dET31Y3JJXmZC2TPN+Kcu209HB7nLxzOK47zeSzq+RVNJ2VzK2x2W9t20Llp7EP1u2Nis5UXS3N0ugPqzIGqY+Ka85Z0GSoiBxHNLvp85BdjBKjLNQvpyqknsSpEeFBri6+xgPPJccRIfQwFIac302oea5cR9qt6Ryd/E/FBkI1INWynxMC8YzBKoiwBNviRWXYmd9PwvAJSB6RQnserfBgVfV459Joy1+M+Wk87I1MfY2Yx/05f3UTw04e+hhu9f09iN93TNkSbO7ti4X4rzf5nNl8QV48jRUnVdDPK9ET9s1/cizpar/t5RD979fuz/2Diy9gykm8NPE/TFc2H3CrBXK82VDisnOB1uXkjOmvLnKBneUGzl44nUPvkSLRNk9RT2gp3RIpnT67Va8VZfwMB9a9tQSzVYsumzvVLRb/5ynYP6RZMN/9wUiOlLJl9W7rUhe1LgS59Pon5C/VuGppHiC6fq8x0ca3VL/N9EuDl+HcWWI/MHIynKUEjKDGzr+Y6nvqMCejluHfyQHzXzUMJo+IWs0uc783MZUF7K+jhhw6djdvb7Cvn0W9nlVAMuOQB9XtyB8+McnpXLk9z2ltBiMwqz5i57xQ+xOtWhMQfPsTuHmDWV3aawSS3NyG1qMf8pHg+CmwxXjb33swe21uKhMYaiDdWn3wMxvWoaGd/x3R9FcRTsvdSELsNX+aynoORZwKFrg11cv3EwKfvfFLAvTk3orWaHQzopvtqpOCAkX1lB9NQdQc0Nv6VBPOz56OtfQow1+oGj5q85W3r3Q8QH7sb2z+VZzA57r5BrKARC4ZaM+Vs80uh348P9nDVuZ6a5zcFLv3WRFMPNJ9slb2g8YyOrnXem9Sx7RkdTv0DSx/amD9+/J6QZwgOI8UeIZ4kLwDZ0H2ibZ5TPs/RqUCzc90xw+hPnGlH+QWlhZ54vZVUNB0/BwCQ7Zjh+i3no3K69ugSNfa/eP3vPEgmmMwJv596sLe8ReXnqWHl+74GPFObLwoJMimkezXgenErQb2mN3bUFSeYoV2LiOrHCwuO1Mq5s6oj1cRVg5VgHuPx7O43aLEP+mxAiAd/UAV0+G4/uDMvVT3De2zU3emTMKM+z2ggR3NWt1tJY4G8bLecg7wE+bxVyV5wL8ESzyvU3ouR7eheQMt93OEp7g+E7HtWt7eMtSgt1wIxjEkJ2lHWQe1asSN616Gc71G5UV/DMSNhur+ZooDiFI73u4K3vZEFw2RPDjx5dCTahe/RiK0yVdu7m5Obc83i+XD7uPBDFRBvnC7BXIS3GT38MsfM5a45tbuDpF4+uUx2VuF1PNYe4/Z4d9/sMQdmMGP/YKCT6qRUWfKpFE9HiqDaBCS9JH7Ab2c7RCE5XJk33ipzfKcbgPv7eGPYGH51u9IDB2T5dWNO5uj1DP3OR+K4A8qKPeLU/KED/Gz1Rw/25WP++TeUCveoero8UWdxUQNt270I3l30nKv0ayB9ki64j32ft9f51ADaTS9CCnOKh0N2SFXNkFTinBsxHwP2uqOjrxTMPwbveLTmW4lObsBoqQaeyT79OUJkGju8aZs4H7F7OqnxvjiRR3KsAh6I0gaSwAQ6biK9W1qrMTS58GCePsnxMKoqBTfYfRfAsI/74Wv3aJULZ+a2F7MbBXhRGIa0JnEUfM3p2CchvK7phyzPk3c8NzewmYwXM+6RhtaZNPSgPOMIg74T8l9Bzi+QBklnRFrZMXdWXQRn/SPhlbR65+O1i7/gHz5nKvIuC6hYKBmoI7FxaT+PNVcy9Q54e6xx/yw+eWet7QQI8wLif3PczcffPYN9HwnEtVZuzbTgZyDDHny2S+gbjaFiZCpI7okY0rsIZvOTflF8/N0wk2MlHpOoFpVdDD09GwZCzH/HvYrf2YjXVXOq+W6vhgi1DmXBfKmWvSUc1OfNikksMQ2JfVqVAK/H0jKgit3vh34VnNRsYIGViXycw15EYk9cpt/NhA9rGlpKuJ57Zrg+MWfxblLwtuNA9tfgFcwl60r0+6IbnleaZc7pjwhKfMg8guula5+nhYPMZ5ETsp9Ezt3zWKp/+fBTvpWcS2tbQ6erSOj6NgzBE1qPIpCvX1otQwSGOuxL1B+NH1Ykk5v9yi2Mf/67+/k9n4Rtv0FLfMS9Rq1gRKUmoGQ4O2TfVe96umS6oCYr4c12yWaMWRfZFDzryVjaXsx6LPRyo365uWZuO6qIpdUJw4xamxhSmaAZfq9K/cEDMZskXcyf2z5Ct12LiX88tN147XsB7nIUsd1juqCRnIuNog7xgZGcUDQNtdioN+G+Xp4/Npl2XL1gwV9k9yOzybQDjWAdWRPdpMsei0PZCH94hYX67p6PgmI4qCnQnQpK4eSjX3oRaMkwsiWfxWzruwKKOXyIvuVDPDv2fkRvyZKpaAcfPr3TfAQ9SCwSlHZjTj+NSlCHmYEXPISGoXlgNIVth7d6H5nvbHmLILsrKbPsw96cr/OyVypTLkyj4i6W4SMZIJAmI0H+3tSMnFsL1JXC8Nyrcr3E51HhdwXjJpQv+WRUNx81Lk2YWRhFzR4l3FHizV9m7PIj5398SipuEh6ZC/m87sIDpPxxo9LLQPG8/v5alF/fnNnOzURrdPN8yK/xHSPzYtT8+N5HEF2iC3MvpVi3tPUyOOvHJ8Gr88DZV/m4cILRZFkgn//jA3RjC8T+85d6gZPHm3RgJlzsTrpOQYTKD+6o6lyVBW/6I5I3z4J4gqbHA8FPV+3f+4nEVDPR3DzNELIw2uJbZQXdTBlut1piO/gDjm7O8XSlcFHMhCJ3tYt/G+uYQOLnEbFobaBZOwYFLPl84U8sGL6c4r94gYV7z9C8MVoJ4Y2KyS6ysDmdnEeK1u+OMGOSHgEXVqcSou7xIGa28mMO1TiC5H5MojG3iOczwRL6KUpEdvvzZI7fqZxVpWy/jCz5Zt1nHwDl+fkQUzbPfLyy3Qv64y8mgfy4dvNnpBlE3STi5qOe0XS/pAp8NqeMVgf27P7+jZyR1syUxMacD5e0QT+4IbJDDa9HvDMNkFyU/vEr3j7edgNLPiSPOahNrt+oCBtfbJiJ5pmPmrsN4aruN8R/7ATUnXfeDCuG73jxj3qqCXFhF58MkmRLSTm3ggoZiuCy0OtHzv7i77l+dSw6iA2f05dBlb7+uqSQad3NkoQqaJ/OAYu8EdH38ugzZbhKNiG/Zqxnr+gjSJkisL1gTnyej6YLd8M8LXx/H1Av01tYzg8/FUMN+nGpeUSKuCYWb05oOJkwAhs/DjPOtcn5LUlKuK2uItP9X21SLTrNEFlJzVzcLw09cGuBefOdhVTR4z98BEVsKni8qGk+X679jLamkDK9X+aKSxIq0d99yOY81fPKOGVQfr2WhAuf5iQNKVr0Cbb72buaO8IVYGsdBnbAB9yN95Id5Hh/P2E0yGtzrqB30CO4ZczinRK0jqaV6pI/WaEea5PDj5yQ1TYh0YqqC3oZPUXYr547uiahxqfJjXvosSUyT78ZuYzdZwXtTXLIfnxf+EhOwQvkjTxh1blm+Xi/W1/4yweuvHLNfvhdDFj4DIYFbw1Ba2igHwKZ4O/1iv7sHdqndcBjkZY1Pa26Bv74SpqeLkHrGJ2L9KkyiAnjCrHb8XpAh/PvjtfbnudsF9YKRAkYC19sunlHagr+frWm4lsY46l5limaQkPHU1NbAf98fwm0z15hZM4iPm/0Y6Uu+Z/tjorZzVucWX98lthVt0V853sRWuIr02JPCuYPOzugXh2XOdIVlvzRVzCFmk52+6Dp+Pp1KFX/AS3TmpNiMn5VXhCv94hZWlTGw/ti3KG5EU75L3zW058eQzIwmXH+/gJGEp5C1TobnB0fWfynP6H1O1HoxlLMfD5p4jLUzrCIKQljx85u7IAlTCe2+BMfDiUFWPgWXW+lGxrPptbCfUOOuC6na/ejbGkh1D89fpOwRBM/lgns3TRY8OSznpTjVdmEFcZ4K9hNPd/PbYoWf6HiZboufDI9Ifkcx8wm+dhNP8FyIbezjjnhPJvs7PWZcpbKBzEXft0v+QxRLUmxEo63eDrpkQ9pKQtEb75ezFoTSfDKzg3lv1LqBq9Us7/7Zm5KJkRrN09hcIP3n3/EQ/rNJdg1Ssms97Yz29dFaNCqOLRYMUSzG6+tcQI1OxdkWPv+cl6w7KVMrvgqaM98/oxNhvB7sEkAWOK8yb8zeOZrJDur28bzRr+WCn6NDnNqvOG/tJXuf/oe8xh9oXH2fQwpi05MW/Dg4D16Cxb8QXaD+Op6zTcqCK5OQcgc1AGPBq1BnzdF+A/v8EylXyTl65DdiCzm+V4ISvjj03vH9+teFsJi+/sId/yZ52M+PtedC59NyxY8zWOeJL2AQol1WD11EuplQC5w6VwSfXTM+gddbMCqaFZUMcS6m2cySWr9gJLZInVqaWNUospWX4eE8Wmd09qNM/CUnbF8v67Hyz23IMZ5zPanLuGzly89rq1DiVOtvOBPj4KbG22Ycy5+iKtsOkHj9gkG3diafDKHDJadAcz8JX3AlYtXgSXwEwuo/qileZnCucQLsr8evHhZr1rANRka4p2+Ti4+uVsiPWivzFEEkstJ0i8VDOxRWPDfWrO+FrwjbOHBF6ucfz6pAV26D4llBztO6aAmsLU+BnGL7a8ehE3eIAM1M5Uftwr9/R5VEZ85caZ8NOff5reURDfVsmeBdSxg2xbe6/ueeCfI8/l2TRIkdq87uyzfb1e66fyn1zmlGE91kIcouFoFM5GcmvMhfW7gZYseM9zTtpuy9SlFr2u26BmHMOfH5t4gebPfLW8tG8ELL3s87JcRM3ezIVz8LXsOZZ2u8Wg/p7p/kVeiHJ/MwvNhGwbcf/nZH55gMb3ezV82lXc1GbSJ4Punrf/5c9XpMnGyoOEvVLqwXfg0Rnmroum53gvA/Nwl+N4TNKqDXiGJXVvmtk0c00fVCuD6/o+ZptjkU5/aJ3gEno2l8LvrJGl799FOSzEje0kx22knVeAWo8v0U7IPkHGdNxurfYUkft2sTlqttj1QTTNxT1dNPX/YzQKoqzUL7SkxJ/egbSB39DNGczMHfA4VA/74wfUkS+ZY/pCiJEOX4/WiXw0fcVWi3TcQ//JLIJfDWgPjGn//8fVWFf0CGjfTmfUWbc6+66cCliqeWZxby1uideMq5tN3sFTjdNFTvTv4j0Qj3q3b5Oy53pzQYk/MxTejlrH7W/TzwibReaDxHz+Hciv5bLfPpHhKP0alHL7ow9z2SYOyz20XnfX3Mpd72TsTda31xy/pATsvs/v8lFZ6QZITp1JMPq7CnQDVr8Dsfu8Z7xkXBZj22xX9UHfbjRabFTT/jIbZ4u8Z9/fycwBZT0tWtK97x/ark4QOuqsTc5n5Nc/HwEddupaIFW2OtbTdazMczt0dC6uDW1Pz+xNgfbzv2D9/V7sRqwXxnH98efF/BxZ9ku1Plyfn3+1Ngv7Qn5im1RZfi/fv5h8eliStqse+SArkXQJMwmfxiceneJVAGkSdaM88qnvsvVvI0+RBvNvFzGdb+Yxo3PbyP77yp4eoZfzdE/NBd/EfPoe6xu2Sj+uuR8/sAAs/ISa1fyZVZSGF9Yse6AZPck3tje3Cyo/XVIzUhMu0d6R/+ey+1Cd+z1GjKj3tA3Zf9I5N2e0xGKkaL/UbjP7hny/FBjFe1miyZVeO8rP6M4sfqmwOl3T8Qnygd2aJwadm8QpnSO0FRHDdQjdMOyOFrPIrpjf1y+wPt0OoBrvdhy14LZ9W+vcAXSt1jHjGhc+Pt/2Cxf7YokfF83ySLVQqhUh2v5Mcc0eDFpnrC6ZLPerP/5ItyQ8pO3ePwpz++MXY3CnxGLWQNO2EErk367bg4wMf+owB0sNP+h8eewVjBsvnJFOGpXno7Sz563Bi53TbojHeVK06DBYmxv3SLHpbXEES6ED23XTOuTW6Dvzpn8bUix1/bjIBHf3XjmVBXdZLPhbBLVtY8Izeia+9R+H8erYkXPD4mG2HCm3GnpCHt1vwNBoP6mbq8J+9cR7RowI5imIWuKtPPMnqJwKBHGwqLPGJ95muQXEsjuwW6g+zD7pNhUbrscWwqZyA70HBcK4PCXvU4jPnTaFYcAzknI44uwaLfwFaBjthqbZo/Or8tEV3eQPEpD6Nucq2CQjNcGE2CTUkm7/Egp+drKikCCynr5PRwp/97B1NM2UmvWaQdq3FdJKW5hSup0iNUpIsfx/nY7YpMGQP+UK57KJgstpDoca8jZi/FgY+3UIFEFtBzrSTcePTSXNFWLG1i1GpaZzaymcGc21s//RqU1ztfIpOgn4hRk8/fGx+7ztsbmNG5RkQ53NQ9oiwICDBSnl2dHh0BfoGyoZoiz49kdOKorpen9huEK16eryuhWy/Tl86Nicl+B7uz0r1Z+VBjF1omEw2E1DOWlIRsv+0MX+dpBEJ78Jkx+2vQstIAAvh7WdDQnuSgreMwq/yoNdlb8r+vuhXnQTHp5WRItbKnPofI4Q/vbeWRCeYX0uLfPZ4GhQ205qztB4qiCwN0zdJuvwPX4L+eIZ4saf6NaJNBMV6RfF5VKV8KMjtBddvukx9lFYBnTwi/fF5rCjzaI4/43ZCf/pGiJNv9+3IbYNWnvHE6md366jjPCy0CR4HKu3IXLPv+rdRPhvVIoGrVAH/Kh8fAvgqzMiaNR+vXd6iff+OifU8pd3Chyg66L7O9o7f1tMh/1HktdfLv/rsn96ufjaGTcz98xD/6W0AUvGjs+uzgGsHegDv4uHl/lX0x//+9Kq/eps5L/VDdJZCn0RHF6E+RvZBveVPnRxv4s6UH4/Oh3V0dWizxF/emkhEK68L8DYW6z8+lSE9EOiSz3k+Ym/4ojWWPoQk72XK8LlN1fd6rsh+TVg3HbI0Bc+qGZ30dcmnoYYGJWOESKjRVzCjPGthqQewMNbKeCQXuYJL49Zsh7oUfZd6NjQ5PBa84aD+J/xO6E9PJDuljMdNsHdQfDQ4FRIjDXjA3w0QWj2Z9dTMWnzfJIxWZXCn6mmEgK/fPxEt901CeUODGZNbBAteZdn3+DK7aBQrWPjfP71m8h4vC/7qt+Llg+tx52g+DPRSMU+XoJuUg/sC/GY2Vj4SQvRDzfH/NaVA+t8tBWLfcLZLhl0wPPRzAW5e7VjwsPOgO5zzEJnd1sCArL7mD1XOYLKykdlvdo6nzV0X1eNVP+BZ3lU1q21eQd6eM2IQ8cjHvnBbCFLVJybamDWfB0RBmS2FeO/gGo99obXqvuz3VGgOOJ7FWBnBbpnFyCN/mNNuNzmQJfmVaGdlDHr73msKbeWB4eRLzYHKxxYES1KxZBdn1L+zsIQ+szravJskHg1dM1Sk2gpz9kYTjEkLB/hdl7fE14drPTXm0lWiqhmWx++lpoQnLiBTUciOvBLEX6e8VELRCEkYhn3Qh5+NC/LqIVF1tR7q0UGuASrZI2IVlpjT1y2qYDffd3gaimfHvfjhoIdYPdi/82idwxc9GS3x2n+IfO6P2RfcVbxjYVf0+fS7Di+I7ObI/IOq/Pd7zcw2WNAbXT3jeXYhmDYBC7NHYfJON79qz92eGHp95PNtbDMlT4YMr5/ROp+UwRahz5WO7J75J54CtLfATc0dCdohz8c3O5RQjHaBe23ZjBavihC9qFgzc3M2+bhuihGK/pGz3fi9dGO7OTVwmvYnpldHPed4Ml25zaMfwf2T1pQo1EfveXyTSyHs4tExDo5Kd85AdsGq4fRZ0AJVwvnJQoaKfHSG0IAmF9/E0J0j5+c+j1Czer+xmneDOU2ndQ/t7/1j+lPU8/UH3hXgWcL0LXvvmud+nSE7RRazVOfFZx5Ws5ruigud5Z1Rz5+D3yA23hkLz28I+uenuKNvKn2w0h3bfC4Lo0BPSyrZ7uLvTAm/BPfv/Ii+u2to1NwdII2+VszYnZ9oPI4HDBFtj4T0Kav5V3u8gP3OFIuTearn3T6zkFsKLvEb0Y/5+f44oKgQj6xYzneI1luM9tdPSPzm4sfi6WxFsDfOIbPH27mbiPkOFXbFlBjdc85nOxY0ZDiezoy9V5ld7AYH+GXClw4H+xbMzo8aoBegkWPuTmZbTXMB2/60YUT6kfr1LMM7GHmhE/8sZ8FI4hTD1YpTtksOn2DE6tdHaM4Q096rMR4U46isStd/MCtQa7QMEozUoH/7zMnjxvyZZ92AxknfmB+VOpivLDrBZ7VtiCZZh24+p8IBRJpy5h7mTcDfFa/UXR46JJDirpuD7d2CkQIjoX4P0DrbHE/LpvqKbtbSphtW5g/Q8v/jbX/6dfPpUUUQmeiI5bci5yzadhi9U/1FTNcxzckqjgYYq71OUu0g83ag0RcUbbclZj+Y9TqOpoN63c0pw+BhNInn56jC6YIwCjY+Gt/fvkKVcHliMbBjzl1LtmDU3oyiLFgG06O9g75m/WG64438u/24IsD1i+jcS1U9fa9eA2W7exDnCE0we7VvocfcP4j+CfRcdIyDBQ4Hh2677Jd/ubuZkdRla4zsX4b4r4sbNbdQhpX2qsT8YgQnODvlid3Ccm9O7+FXorOKTsRgwhxTeSXMf+dL9ABpiB+wiUElBFG563c5K8xVutXprBF9Hz1NhgQuAu6GPXMv+tecfp/fC5qhfZP98veHc/aO1O+0+RKrf1m1pCaSAunufiHusXVN3ieoBcE0VBb4tcL7OnBLOK+GE25ZrMRzso4ilAjkjIVsfzfH3AtTUGZHWezpkM8vkpQQJ2ZEpUp3YmnfVS5cdm7CMj32+OT1noV+5vpLdL3V0OTxo6WuL2+ReQ7/cmaIFSDP2Lr405x38fBQ9ilyysRhdnB5oVH2NRHakbbMO4TbgIkg9+j0U2Nm6lnEaW8mX1ANGYi7vqbdmBLrBK1x/rE9O9/yv/tDs1NOxLq4r2CcupGq1Tl+Mi10DuaQtbcTWuwf82LP4/4uvjIU20pEfFf3gxFbY6jWPa2YFxzcpevfvSuKnW2Z68AHTeZ+MtTXNaupouVXPt3O6xTEFDgxkBfVVFpFMwyrVU/nyq3iwVilArT54cduf/59buZInZLLSG9LPBzt/qsp5xU7kR2jl5w/s1WBbvq2YIFyRt3MgozC/uaExClaJ54N9hYgoMsq63D8moO5nzTVL3wP387yEMwRykKY9f1EvPz8M8W39C1RmY8PYoN95vT3nhsohDgnzuMsBVRQ2g0I+kUl+CBSkwrvZAPL/ZOgf3TddPDVcPMw6juzbBrz8TeWjQqfFSLEySga/H6wFN+hHgsOF2S+P/6vga3tbFjQuUEsRaKBIRKdiGC7uy32HYQoS8kVz9NY1fO7U0r4ms8P05BUdpToAgY6uhQrz5ufs13QOWg3Fzt2sinn/+JT1AVH/AzMkc93WUnR0/mWeJwfZdcL8mkDj5k+iN1r526s4FsoBX8VdKMNF87VNt+gdnB+xJY9ux6qXi3gJNIT2Z+3y9rH8iQq2SxkDL+QEDPi8PAvPxPrsBXN3/Y+SGiAS4+Vs6wE327Vv2Ay2Eh0pzmgaZNsRWC9ROl4K7VcXvxZKXX9wY6BeeDjuU0jQGOD2F88W+63R7CyENsphdwx2nctxGIak/vxSM0p3d9OaC3IIhbCCzbnj141Sui5AYuQN3eTXaw1UC7nLV5lz1XwaierQQ0r3myJpwFX60CB93B6YcUnVzTN7buHgjcFHd1nab4a220gyo0jXUv9ux4l9J3h8/01f983+/dXK8EuDZu+y3Sds0RBEYyDy0jm7H9oePbHO3CBzFR8b075dIpvEWj9uGKG0kfd8PF/r618ekvE66dfPXXSu4GK4ifl6BbXfBkmqYZlGuIJDXrHzjcewZScR7YvP7eYLvFfZb8LJebNNnPpe8mWlqLuseT3T9Bf500CJ+sZM5JfmTkabmqgYtwVzGnuTfzPnivz8aTTU9RjeXrEPVyKV7LcXxaMmktAcTzHxpIzvfm8xEv0Zz9aI2uxON1EClXWPKn9sd7xLK2yEewisxhWZtrNWjQAWvAv5olomtO9e6ewxDu6SbzUnEznqUGpmw9ibPQK0QSqA3IdsiOafNXqOS2VEzKYo/97fuqeWgde4/eFZ6k16vW3XPBsWmdMG9yy7ot3mcH2vN+w60q41sOYP3v1d3l8qdCye8wUuZagcJScoscKBePuMDrqt79/mBMc1nx6uPod4rmJl3xTovGbbRrA1mNPt9prg+YVlzZws7OCGTdc5dPl5CVqenlfyL657mP2u11ecObhmRzdVDcHYzoJUOifHG+nzuum6aRSWPxrwfurYNo3g4+W+Ez81Trr5q+XNKBdkhWVJ3XX/dkberpFSYz2M8cz0tqNIqSFyuxzuzaX57dU1/jsiDWhVz3e7pBBmc8PLFaxldMNvksQ7k4BlspeituPIlSAnwZmeu4eTU7fcgtPwSz/8KI5emvXQZUjPImDbstg8Os5hAUvEuu7e9UT/d3abWHmOV7PxO5GlX038J2UL7MNzeI/l7wtkFeJxDy4epx58cVBtV1UTA+zKZgOpR7+3c+Sr3VT0pkuKF3etHQch7GbxdxYKDZzsXqwVfNL4gNWbyYr2C61PnEfbcJQkZ1lcB5ir3oS8XoEvUp1dghCgpb4cYDbbN2IdxR+5ug9RAfGE2F0DpfBnEPRt+h5UktmONoRzcL7rigLfqQCeJSP8f5wUKefOpJiOoTdyHYlBcfkNp6+lV7T6RtR+DufvdP3vE80LYEo147MAbHh375OW1CEz5bsH4MajHWUlpC15pVYa1WsKRBfQUv8JlbSvYK5yJRMOayjA9GGt1ZTg70BTKsz2D45DQG7l6sUdandknBVF8tq2zZEzzYviZ+HbfCIXhcM75/8WvBlx/ukFSN1+5U3bNfMu1zcpF8R2uv9R/TV0n902C0tpCW+kL/nnYrdOQPTEwwsHI806ML9w0fauVvRbaJtgyG8PH0UZK3PLP3IEX2Re4VWk7giu3Ul1//8YZWOiwqYrdCIgoOi/uVH49lV8eibXxf2thrSje7LfJrboYc/vGZtQgvxR4DuMK+GiZhLvPvD/+DsIpuYSOPd9DHXDcDpjNieBAWfcuxlMPRhz87Nx47XO+I5/+xdKoiUjzkZsz/8TnziXfkMt0qBJOVnghGh9VTepjt82Nws+Tg3x/tQpOglRi8SKr+iY9L3Mv+Lb7tj8gk+WbNKYFztGFb0+Mf7aIQQpqs4Mox6Wn/U2lwGl5KZfp7aJZ7cZO3AeqzWzNGqNZ+X+4bVaKz++EwwDaP+RVu4bQh+7O7BvMGJhPbDPmTOY06CecGLyLE/Npb7QK5pw40SdvbWoaz1Vnn7bKs7vK/9i7nTxa27pn6UUK6eD5ZOy2KUQFhZyO+PHjOXZrZxLR5GOBQhId6YXGvuWisL3sx9sWOhPOOR7b49Mpilk/OSv+ZGyUr0h6/z8xEFv5X5BPjTS0x9bSDxjtIM6jKpl/dtb3z84wcDnHvKVVKjaYm3cD+vb4S03ioe0tOQIPe63hFnwlJdi9d4/ItvZL+S1e7Pn+HD0w9dj8q6Hp78eQelb7dMX/yNH88yRrWuVsv9QNfb95cGIgwcr6SQ1FwMLjMEZu0vU4BYQE1JFeAnaj8qSutXPe+TxAd72XbqPT0vnyTdk8Dtuh1zH2q6LFLJDVjFD2HBs1+04LeXyifKiWlEBh9unZ4hl7k7dkguh6APg5MPj7y4001+/wZTcLj66DlVT4K7D80nWR9EWCUgMONjGDF/qKv0/0g7k3VleWYNHxADFJSEIY000iQoqDgDGwRh0SaQHP1/4fsN92wPHa1FSD311J1QBV8zfREx+7x9ov/tBeg/Hh7W8rEw5/SbXiEZy4m68zv9T1/WfECwbhI+Rd4WwVh0zkgd+3DgpwoEsHOS9l9+WmT8kWCT0JqG9hgAAhxlB2/ZfKXmtosHLmqmAENLCujxF89jPPU726ot6nrCDfA/kZdANBOBHuzG5DLqby74W5o/fKh3m3h+RI8M1HnxpXotLTnjQc+gdGNban++di5Z5VUDPO0ZRUuOKj64eQvU6xMSCW5s0PG9Na6D3AK0y82dSbpaaSC/qgw7P17C9IKpCdsl1Jdmf+DarRf2To5sajfmNefNkhdwt7x21L2MqcnkkEkQTyOi0dPU4rGExUvxzY9HdqPiDmw0Xz1Y/RUeG2vMl+/7WEKorYO2Zr4flilTW5AsOMGaH2DOjUmCyjVdLli3xplzmFSKEt+7Mz1I20M1ne7PAKy8jJqnN/e5GooKNHNmUH3nffio0mIHf/rtL/dhoBsoEjBdnBFrYV74X6ZEBKpiBrGv//WcF8HtARsD1PRogRRMqR0m0Lo5B7z622r66VO68VLUX8+ez5rxVYDS8j6kGBYtlv8cs4GRZWEkSBc0LFf5GIEjfbj/eMdAgL/2hNiLFH2uKGeXRjnDLoMtDSw155yT9wijB8L4kHsb/8eDYL48cnyaHp+Kr+8fhnkU0PyT+PHiOHsbpvOQYrTmR4J1KYCD7fXUyETmM0PtIDxxdqK//Mae3TlTsRshGk2uNizFc/+CsiZKNGisIN6e/9QAojsLcXDVRnOWzURSBBiq2JbWSX/C470D23u0IVuoWmCz+ms1zq9nAkDvD/LXvhWQQpVQz9V7nxMO+l+9j23vuuUrT7jCxKAxNk5N6Q9LMxCo39/a6pfVfMnELlHtbGfh87Vk5uKN9QE26a1GCow8sPx41VqvYSzW7+FX34K6237p+WqdzfkkFwi+D5fXf3zykPWaYm+ZTbU3icwfLwbfG62o9vMzN9WO4Kr3aO9PLRhILba73E0z6pz4n0mm4tXDjVlyit8SNefKd0u4agYi0f1lcvaWCUyLMkWy3TZg/PrfEuLRRNQLQO+vz3OFOLMRxqeamhyKb+kfT3PmVh7G9PpIlPP9csKuXjtAfp5vGZRTW8JBHT5ydm4QggYjBtp8pENOzo2NoNDWKnUiIPtcf78EgMUOkUD6C4Zt02xLcCbtibBbVprzed6gnx7S0MYBUJjgjeBOtRSn47MdZmkDZzhO40CGlaf8qwdWnkKjFhUDxTYIYHD0fCLihQDuW4MHfOHukZWHVWStX2HgXH18KD6bfGo2SwH3xNvhwD8PYEkyPYJKttmv/vRQjR/iPoC3UI962aL4w2/9Nkzb0Lvydx9W/tyD+LY9o+24q6sJe2vXCSFk2Mq+F58d4rOhrHyGBvktMOWV98JhSnsc+QHly/arz/v7bZ/SENKJ87J7P5Tz/XaiTnt0hvm6f0RgJgL9l9+YTvX/6h9R8wVOtKKDwLlNNtZPycmcfvG1rhfNmlufz5Kxk2BNvS8+2E0Fll/98Kt/9Lw++fz8fQcwf2gZjRQhqnonzGxl9XuEPZYyX/avWlKMY6tjd6jceJOE8AzW+h3NJy0yOdv6BPYq7ggY38P6xayrQG07ajQ42YE/XzU3kRWz2a9+/WSyIlFesIJySf23CMzle1vK33nJytedeHnj++OnN/gAuwNnr8XO4Kp/5G/dP+Omntk/f2otl3pg6pftoHHsdRwm4tP8+W9Y0OxNRLF+Vys/PsNCpW8CtWMOWIWUAqz1Ow5rGMYjYUmrzsOTrvEpDmOSz5GqcUWjYcaf5sZ9pzZ4PK45PXrblPN950vQ2BQGfV1iwZemP6+HG13mpHLtypxEuFWU1e8ipn90wGMmBkC5BXt6+vM/8VK/60LJl1eO/gL9ZvK1/gbWIloYL2dc0WwDEhCYsk8N8C2rSTzrUF39Dz2Iy2YYx0vSwvDGAyKs5wX88gTRzz9TKyCWKV8VflYydbhjvZ+XeJGVJ4N7a+19ags9WLLdPYERf0X0eKn2Jkne/RmUY/XBTvSS/SVKlwC4eeEQfjJic76hIvmv3lz1hlH12isr78WW2F6q+q0/X/BJHg/6HnSas8ARPChanoB/9eCchJsI3q9WikPv9ADsV297ZnhEXdTt/eXSdmeYm0625sfvwM7TK4B3tl4BG7Z2vrX3J+NfvbnyZJ+7mWnDPXzvsKtFN7AU7vSA6dylVL+ixZ/mcCKKLXQWPdzcg7mE76cLXGfnIMViezB1xbaBwe3pU+Pkn02WnrMrWPk2WSL5ZLLXgrJ/fiC2ZAZYWQmPH/8nm3X95ygYgx9/RTsxTIc5yXfnH3/8t1/n73kFrgZWiPKwvVxGi+9CZAwh4ad37LNt8pr3vit5pOj3Ucy9j2yD9Tf1rufepKWcv6BWRBr6TvphmP/itoENfdWrPnv+lu0+o6o7pUa9p9bHK7/X4M2FV7I7O63Jt3dx/seLzJPBzXHhLgHNEjVot7NcLv34x6Q/R2wO3IwXKqs9FIWbQHij83hUpEAC4lUQ8I93s6xtEuWY3lzsQORwqavZFxZ3+KYaRm8+tJeqgQ/i5WhQLvlAmMSIWqbsg5FXq3xC5jFQ5MWV8VvqaMWheJPg8dm69N0f3yvffhU//4zR9vka5scrzcAaz4hf79xkGDMErex7wLGdnNf+kXUP/+jcUE8ByvA7H5OIFU300LNN3oWbzvu9LzSvfolNxbWFq37+e/4pLbsrPDvZCfvwO4ClNPRC/RKp+tX/w6LPswCbQ1MTmG9Gc37cvqmy5ht6mPRvNU8VbIFm6CI+Bn+dT8zA0GAu8oyE7+n5228eWHk6WvwiAnN1jkr40zPtTWZz7O20BTZZu+j5QOM9IVIPr9njQnXjq3HZKkwDPsflQdfzM769zs8IZIubYWPLzhUHtrmDefrJEG8jc5Dfh+EBCUkmakiYrXqoKNApegcty/5TzYI0K/B3nnK1F4svVfQp1Dtr7zibw6yStOIjqCvfRGS7IxUPy8qD0v27xXYxSjn7VNlDOZFrRG1rvwX8mw+Foueuhm9L4QzSvuo3aj76GUY9feXLnJxG6GXJkb6LmcbjELbtfrHRjM2Pw/PZ4jsD3juaogX+6Zyu53FKlpM7tUV4raZlOY1w9fvUHtIm/hefKHVCqj+MJZ7Ta5LAH5/dBXFrdhY7GjDqK0zDIQ5j3mq3BvbdX4fUUzb5CxXDFprcMDGOuQDmy1KcVenqbIlwiQVztMbWAGN6Hojcb+R4rW/gL3/iYD1v5L4Q2zC53mKqfco5/+VrqGjWnuqP9ylf91ev/H+uFMj/95WC44PJSBLvtJqCINEA1vmBhuKKrG9BDaF1qgpSdvdLvPBlOMPWeK9tXR8aIA8mRNCTHgU1TfMTr7NSGGRVZ2EvPAzm4sGKweWqzqFy/1QVr/SZqV1y2aE5Pvd8mqdFUk88F9EyJvk6CYLM8HvDjMx5rAJCxMSDn+Zh4Kh7s3yKxbWxuevp1Bvels9JQUbwEesXPZx3gj+4rPiq9VFP8KE/NeYivDdEqbGzI+qGrJ36HbeA9je+o8WAr4p1D+8KQ1G5UEuJy2rebKQC/onpCadRNvnsrXY20GYvxQd2vvvluZpLWLJzgPZ13scLbF8MHPryS/XDkA0s2t2vEPF9jb0omf3F2C8FrGS3oYf3RaoY5c8Uyv3YYA8SgXPTTNfZvYFDg+V4M9um/6QqMlREPRZ+wBcoayM5/yQRkjdhNVdVHMF9VKXU6pvaJyBYIrhPMoy9sjjEc3ZQbCCEzQlJDMo+26tHDYL2OGC8sUo+O4W+U2dsPPFxv9+CxS2KA7T/YgsBN+ti1sv7M+x72FIPX7DJ57/2AIMZX+hhI5aAf66nBjqNYFO08K1ZX5S0B0yaVCTeH1tAUuA3MP36R3zwul28CG9IoOyLkMB89KrZmPcR2I6YEvl+QIDlxn0Gt/Qq4qPUzXw21cMM48UcEMx8vWJ9ZH4hEJ0MlaxpAUvguwR8++FI+ZTXiu/O7gFa7ClTL5B2MS+9s6QuXxnjg/IRwDjPuyvE/NuQSd+U+XKooxHWkiiirDLfA4tvC4MDlK/0OO4NcxtsdAIWb/OHDQ371YRk7sLWrzK0Nyp54LfI6OHpmPg4A+pc8b/eEcCy3g8F9WWKGbdlG77OuEHSTdAHWhtWAd4n80GtxnsPi3QyR8UxvB12DPkv5kxzXJCvLbZRk/Q5+/t+U6hv/D8cWgcnn+FwiaBzP/xhf+SWucRoKeDQsReS689fzpuTSqAhbRKc3OwI8P7RFvA1aQE9HF0aT34i2DCOrIRws3kM7SEFDCJ7Y9HLHdwB3zXbFr6wOxF6EV7+wtTSEPffd07t9jHlLOEFUVPP/eBj+HZMnt2iGYqo3mAP+tVA9dk/wNvtvUHQ0cZ8UeMugHnc3Kge7og/uUVhq7/nda/HljcJvBWwj6BODfkmgTmtmxS+sDeR3XsvDywMFAQs9PhDm3mZ/Xm5vFyw2dw6bB0H3eToCEa4rhfZvo5jNWVZKAHsbRP86ljps7tQRHAz5XskNEkfs+dqafO+tCke2t6kccG0328iftwi5/WpEMAzvs8IVtOzmgWKRpBvCoL2+trI2nn6Kbg+U43meFeAmV70VJ26Wqbo+jdyHpyfDJZeZuGjIlcDpf7eBbCXUvIpr/uBvqS9B5MWLKT3HRj3r9flBdj0LfCp2EYVyTwuqUp32WLd3U8xa1v9AEv7g6hb2368xtsXmr1cYXSxKzDGL7+EdxfesJbHTz7xpTpDoX0cMArbwGd9e5HA3bUCJPXg639qsU1hGmGb7AyUVpyvs/WGUqKID/iZd8uxkFT5OGNsZUPCZSsXDdDKUYoEoLnVnHc3CYpVbtLDXjArJm2VHXQUbbXc1qfiRZkmMNOkF0aBY5oyDqNU/ds9Smo+VurD7ycNPs5piECQw3huDDDC/SetaEyfkUn7+pb81gtbj7YauF7QFrALb8j8pma82GEcwFpSRXqMF8EktpeMoLUTHd226ABYGj8VkPjSibqtq1ZTa9530P0TO6LmZs7nUbjN0DBMGx/rvM/ZNty9oJ7YOeEF5cP8vT0KsMt7FQdwqw/Ld0cN+PJjiRoGKeNlN+EU0pdtU2fRmNnt05ME1uel9hSCfNY++kEdfHND3Vqyc6ZxvVlnF1n0bAlOPsuVkkHtcq7J0h3Wb3uy4QAYkiU07eAEhqm4C3B9XxQJUVgtsfgy4M7jjK6dt3y2KYkB3T+1Q4vVtTHj16xUOj3WELyHHPDxsY2gu9tsSPnO44Fj/d4D/1qN2M6ilLPMAxK0zYuBXckWTfK+gExpmzzEbhBk+bzZ5cEvP2P87NtKvqYjAdo+aJF4hT4fm/6TQWqfAmzm5Zvz/lEUquA1NbbFPyNeijpMoeX9zdhb9ZR86qEBx4IAap3WRqDd5tH89BB722fDmWc4GfhSY0Qi2WGfmefSgPu/p0P1Nf9vm6+N4I2eye/vgXEU3jMod8mMj4dzXLEwYAE8+Z8dDcogqQgXNKSW2ftEtmnwMvm3eRXgKcQl9YvrWC0CjVxIPc/EIWYVZwUJW6XotnvEnopX0XX/AiEaPKxvtBrwu9M2oBviPzSPVI6523w2ykP/GNgZ8cHnUtPuYAASQO2/2q6NDEWZD8vJdw/wuN7vNQxixHNHMklZ44eaYlrkUzckV7DmV3L5+QtZ7BIYHNEda4IfDUvLhRRsFQehdvxW/vr+WijcvnuaPOLDsAxeYayzjWsyW0kXj/ZGfihRnbloM2qlv3hu30Btj9r/4rGv3wngYTf+i3eSxs8dMHfUoJi5G3+2R61V1YOsYSsNBH9sDE7Az3+EJW3yeY/vDRSPWY72r2kaFre7KqAPQgGH27HlY2dPnmJcHGGNzypmqUwUYJ0+BTWSSfanxgcQrnqP1IE4PtPFpw3HT1vj+6VQ1vUrFJieDieKMus7TMv51kNrvNpUl04dr1tcZ/Dx+lywRl58zTfpDC5JS6mZFhOn5+czgYbKTIwvguC3dbYEcNUbMm9ynfNp9w1U5+37aGhv74GFix9A7r5i6iVlCeaoiSSINmwmtLp/40UU3QQe+/ZKr+a5iltvttesdFTob3/LyRQWoLoGGM3pyQeyJ5213/+/+oOhmtG1aGH3+0gpNlr+Wy8Y6oeCeqve879LloL7fkeo+/c/AAAA//+kXUm3qjAS/kEsRKYUS2aZJAiKugNFBEUETID8+j7c18ve9fKd+67eEKq+oZKqMy4YKOcYsUduYC98XtOuprkG4tyvXUm+TjrNF0VQ9q6Bo60f3dJZvlx5gEw54fX304mP3xV4c+tQx6i7dL7/cgJprlG6E+iPLfGYt0iabiFNXTYV3e5o+vDHJ++Qv5vp67xddcVrIqT1LRg/TpxDxfcV9U3HKybWDQacpHahVtjuTPEbThkkUfjGLm1PwVIKlCAZFX70PozHYHnur0dATwxEjukYjOihL+qxJWvJai8O4+T5HQzL3/jWTjZ/h42XwO34VjDeXmRzlM6oRysfJmBOn2IWbYsD8zDucI7CepjM09mB/scdqXaYn2w0X0uNZHT1qS2feLa8D48a/eXHqd646SRIFKDrYwvHh1lngn/nMtiqYOPQol1KjHK9tT6enmQoP1OzqLdn+cd/6G5cHulvZ80uRP3k0oO3q8xFsTeKgod5wM5QPopvZM6g7lLNxEHvFEWXtL8XYNrVkRIKUjEmUZEhK2AKNbxNnlb5wV4HyTmEWsHHMUkjTSWysteTaoNWFFM46Df0etsHHL77MZ1/bTPCykeoFi56sH1vqhzOQlji3QaexfePT032zqBG3tsDVfXLqGjF2YuWSxChqRihAoMJHbWPIAfkNcoj7H5GTxQU1s20/n3w/gk19T7KM5gKO+LRijdE4OU3WkLVA7DrfMDGaXixaXrNLzXlpRpnJPgGs3TcuuhUtj7WhYPH5s1Gy0AxjgpZnpe6+FV8JUCA30AtS4HmHVySBQq15fDumujDZF3QBPuT1uCr6inot65Pdc/SPTqYSljMQ1ryqLwFOvZfWEsJ49wQrfyJ7jguHfo5eVoq/4xn7F24A5s7JuTQXK6A/VtzQosQ2SESfyTBdiN1xVROb061mteW4lWfLCe2vf3FM84rfT/8PNuWYL+RTlg3rk3KtLMkQOXK9XqrrQwYKI8ErXhEJhqRYO7MgwSnpYrohdhjMBXHPkFYrXUcmIWbCq9xHuHQxzV+PF2tWA5rk83M/jjYHx5v80+vQu4gg0DzU5vfH36gwTtjT7qM7EtLr//HX8U/fiPdtxfo+GTEeiHQ4V++/eOz5mNamqXgVAN6XzvQe02dVDxOfYg+QxlhUxxPaF75Mcxk6QlNR4f903fkkj2J+Jv25nIuRA5IV/zI/DbNlJ9k6ionjYxY71K3mBvrJ6DrqOTYW/eLBM9UQypQB9s7khQEui6Ez64OCDruHEbTQ9ki//LWiWi1ZrHs1kby3H31vI/3rbkYeJ9B1bATEeXNgn7ut1QgfZlnbKhHez2S7NRITcYHDa4dRQtSTxPggQ0Rpyxb9k3yKUGc98uxlWdbRLXzJPzlR2r2Yx10QnUfQZvcC71vRxfNz2vUwZqP6P69GdLF+6qO/GxLI5LifB/MyXpEAY1aTQsrFJqVr12Ula/ivFg+A4O5u6Ezjcm/36dkMlzw7dqjQWu7hRBd9wTyn6xSz2brUNuBxP/0ImeMt7XXlkyU37UesH+yy2A6LON65CaSo+QSRGyWp9FRVrzCK/8pZj2iLlQp8QgtUNgwqU8yuC2PKw3W5ztX6qMHfWsseN9P8nqk/5ujlW/inbJ/N/RPn5bf4BSJG9ALmnWuD+f3OcV/fJxYTpOo7U708a5kfTNw26sC7aOzqFZqn2aBrovg3cg7ujsKtz+8llR+iEK8P84vNMvTy4HNVJypHnpLMflneMHz0jY0WGoNkb98ufJhHNxcGfWSPbjAolqMmGnqxVjTRIPt1RX/+SXdOu8MTg6LIyaOJ7ZkYu7DANuM6u0rTDsYTglIQjVF8v7xMafrN3BQvulSHCx1hcgkKNbf50UKraTgZ71jAkXYf6hT7T/Nch7Si6qW2w+BBsXFVBZTDtll4Ei/7seSHE+O0p7Ilxw5emg6/vZa4+P4pPh3dsypfNEI9bO+x6teZfNue+rlYL4+CD/oz2BKhfuirPtJ/bFsgzlzXuGfXqOYtw0mnl5DCVxGSbQJb7W5bKpEggs+K0R96/dm/MPnv/j2r0+zYfHM+eBbHReB/jCLZamvMZK7LPnTB8PKpyzoZ+lCz0VjDz+36hwIeSukyRo/5AjnWvm5Q7XyoSda4njoFP/wTfD7pDise238SFrjFVsQ5+ydkYOCjEQ54N2J/zJW9kqO+tQjK1822bL3ThX45fCmfmYG7HtokgwchF0i9sm2mA554qiZeOmoN/eTyT6qa8GV8f66nqah4sLnf/4WfuzuT3O0wq0B5/OdJ8L81dhStPUEWpRtabj2MZgT+uMBBU6Ag+IcDFQW3gKEWfij0e1cIJaM0wSX7NCTan+CdKk86GETfXgyE7YEy1LyL5A/j120nPOqoWLe+1BzxZHcdb5OhzVeoOgrh0yG9Uqne+iGf/k+2sbBEIybpbnAjR1fODbf+3Qu7n0F5sxSqoN+YZMZVgk6fItztGS3BS2nS1QhtLFzGqb3F6J69elAbBaROpY5N8tBIs7f+013t7od5hcEBK41bGixXWwmuo3tQsHdPJy+1DZlsxjHEIVmGU1yXg9Lc9crhUMVUP9kcwGbi+8RXbxDRq07/xuWt9uNsPolpOtcdZg65dqCM6e/iPVjbU7PtHEgWU/CFisfZjzyCPQh5ihe/Z5pCcFS0UOL8CPPzWblS0d03agJjqT0EcwvOkXK6U42WPe7bzA7W1dBlPMSejWaczMrYeog94lsIvGsY4t4eEowtfqV2h+5SOfkXLTKqq9IQ4caMXun32DuRgdbkRgEy0VsJRT71Yms8RHM6SdYYDEIiZoH905pXb8d6JRTjHVrUBqq6vEITK9e2JmG1GSImMufXiCNkTrFotiigkaTOTiqnXMzN0cvUcYP9XDgDPt0Ol9zBZmvaUN9JTqi+W7/DKi+okw2qz80mWGXQFsTlVq9yYrvun614GtCQ68SCnY46AIwOe/xqj8HwSrVCjWi35LnzTKGxTSd9h++jTstLOTbl9PQRnggbJdeOCyMjNM//hSIT70Rt9QHJIqjQm+ClKDVn7hBnot2xIlTM/zxDyWMioX0uNHZ9OhMCUgbadhVl+9ARtSPCFKzxPjlJ8OKr0ekXmaT+kBKtsTSIYOo4n9Ul6ne/Nj1akDJPJUmr/w4LMbn3CJrenvYSTbaf/mRvL89oqnUdsOiBany5w9Qz5j9lP/pfAUwTy4+hu3HnMSg85GZIp5IuY/Y0nWeBRslW6hxzqth9TM0ZM3lERtMfgQz7U+ufNkaRzKT9yOdei7QoLHPFt71yTYl5KMr8Kef0+1+E6z4zivTY/fF3p8ejW5hhNydmVDsRrRYOH0Xw7wlObXUyG1YkOgGSiCIqTdLNfrd5GuJHq/Ng6D1eQtFdKkU8SsWEYKqbpjJoIZ1vilhllGny9/37xjk2F8mNVgWpz8iJY1s+ufXz71IBaRemEnX9Zirv27Ayo9p2Ph10f/VBy5zcMf71d/5XbedAfY3y6l2XXhEGkm6yVlWHrAuPyM03++bGIm37Q6HnXJIp1u1XdT1+f7paXPGA5+De5RmMpAjMenmoEkoPpQ21sQ7Q2v8WWpAjm2kfu9m0P/xsaMuCTTJbgnbru8vBK9rQI03ujern++ASslCjW2HAvHpcD787Y/DyzZjTi3lYC8PMRLsVz7Mm3Pe/cUfzRosN2RsLjdUP696BIp7ZjPXXHOUnNwTPgk2RctSwgtMQnIaDJYXTN9ycwGtOHnR7OfZOozqLYEN14TuttGLTbfpECqrf059FBqNcBFbBT2QHGHDjcvmj98AeT64CJBjD3NduRpAZS7UpmcWdAiTDMnKc4OxR6Vi2V8mgNYSy0gNMi7teT+dYH2/qXY05WBZ6kOCFN6/rXrkOUxqzSKwflVMzxzHBoozHP3xY6zx3N1cbkLOoVI0ePzHL5drtrRQVrYdAfnug+0pqeGvXkRL0kwmnRl7oWEaI7ri+cDb8XVUVv+abOrvN+27znP+/HEcvm/XYfzz39b4pn/+1hTgpIYuPZ6oZh+9lEXz6r8d/YFaqx++vt8aWpQX/8/vJK97liBDlsO/ephJuJsQwe9z8enhZtXDynetf/yLhjcjENd6ifyHr77+rlLyl6/EbGmwDhunmTKvJ6icuJjMBzcNtterbKGtaGR4n1daM33rm/Pnp5JNXQgNuxd+BNXEvkS2qraY+ve0qPWQ3eh+2TwC2vPLgto9ItQ9Xfdo6x6sDj7H6kG929oVafXbFJ9WE9aDi2UyuxA12GQXGnXaDw9zy7495BxzI6lwv81ffCLJolFUccHUjMNVMWDh6zh6WcqtWWYSGyrRLwv2gmkwyfTJOjC+goaj/qSms5EEvKKkoU0f6qdkC794JWSPz4+I59OChofzzFVFwVrUh8Il/cMP0HfWDsfayW1Wf49Ha72ShnnwHNq420pwez9sou7t/K9+k6NkTRbiUbiZ08g9FmW/SAY+XxO9mfrsfkRk98ioN/hOsDVOXQUr3tLA997m5MG+hUKs8+jH1BDRfHSOaLYWE2vKT0LkXGw4hW0eUcTX66Cb67bToEmjhjx/yTdYKo/vIfCaC4F3H6bzsa9u8AxemFq7K0s7eSM46H6ITBy1R7/4/fnrqz9EPgLdI9LCV4Fqmr+rn3Ep+j4O2n/53govfEoGy+Kh46JdJAXFGJDmrteqfcrPFG/bgc2+W7fqK3C+dPXTG/Ft7CuYvkr855eky2dqfBSfq280J06FlsdTccESK+mfn7G9PwsO0MOIIlW5Z2z5vMaL8ucv//kp01chR8hu9XbVO3azVdNnBBxm3F+9yOz037EFu3tgIiJChuWv3tJ27Em1Ue2DpXSCEH3fe3OtFxmBeC/8UG1w/MDZ6eGjqes5F2nb80yNp0+b6a7pNzg0R4YDyboHrVWqNZyTpIiYydNixSsJmuthR0OLusU/f3v1F2gQKSzo5nnv/PlH1OrqPl0yPN6U1tqWNDJGGH77zufgluR7ukeFNfytF538bkee8pOgf3z2ahgddreNiXhBohy8PeVBVL2lAxGWLIJXYlypZr5/f37giJTveYsD4640E0oDA63+C7Vk7YTm7fZGkC+UFbUN9VVM1dC1/1eXAul/HylQjOSIg4LfmGw/XUJYymFLnVJYG2fPOQ/c3O+xtXjc8PtyhIOyCLZUY6nVMPv+PKqPi1rTfXZ/DsPRejtQm3EUgf9p0ik+iCGM2SHBLnEO6bwhBwfwR07x7gmGOeZUN9S0bniMLe2NyHnoNXig14HeX0Ft/jq5Joibuz2O++YZsGNVLOhk4SONTkWOpiKbOsByfyeCpDcB0cshBufmUfKsGrWZJqu/wChJOjUtPkXTiS8kxXw6DvYdZSzm1otbtbK6lupC0JpTR04uLKfQwPeffi9Y/aCS7M9vGvG19SzYBSEBjUpg46hoXVMs4nMGdw8KrNtrmUwp5QgOhPakD25ZQxAqQqDNK4wUbn6b5EbkEU5lsCergWxOQ73vAFetRz3DFhhtdo8Kln0+U1wuefMK5kSQpWxtPHLuk2bJH3mlPJ7dhV6P2EPTcqIVPDP6joQ+rZuxHvY3yG78g/Cv73ltPF/FkPYnC+OQM5rljNERhmejkFbz+3SxWESUdX8jlVWo+Qr4mwFn715Rtr9dgmWnuxrE7etNy7N/GhaO33EwWv43ogMXD13yzC7QcNcn9vD7zsZekpy//4/P1X6XTmam52pkC0cast1l+D02YQhUrW2K9e2lWEi3cIiTBYg2mXE22U3oAKTqxUdzS3rGttV7UpIhSQl/zbfDfKGsg/4Q2dQSziKiHrfvwPo4NZlPWt8savv01agTauzS7Rj0w/xyofGSnnzH/omIskgdasspxUH4eA9LtrssUJ07PtqG1DJ5YTSPis5/dtgO6WttD9W6kGpFgA3RYcWCZeKAfr14+NxsfmzZdxXA3/toesY+WEapW0BXvwU1g3Qxp0JsXuiw+WDqbXO7+Pyt72nSMw4t922y7X1XKnsk5URGQ1+w/fFZQyNECw784yWYPIN0CJj2pvj7G5rZyJOj+n4KYSQmh9/AuvaugFSWPg7ob0RLv88VxLUCoTgzxIB8stABWzQkjBuNsT7l0wjackkpRsXAxt3aCJu8FCWSRk8tlt9tcTayWG5pdBd/BdHQRoFgOuikq1o/XfJ64iH6kh12Xu42/f3kmwU0lzO872+foD+Kc4Uksx+pUZ77Ytk5YQJhHinYda/BQPQiBPgR5U5mIWgDppufECR5cIngrLOlt6Gpwcl25Gh4QDUsD/MUQVjcORwlgtXwO+E9IqpWdjSr1YYxDokR6t6vAadZfQwmWOQjYm1xi2S0KYpfl59GderLPTXSTB/meUtdmHBHsLXZFSnlkBhCPNWPiB0P1FySA1VQl5YG1ZlSsXdVXmMUFg+Ohgv7DEtgPI4g3V9vokityCZIxyNSzwcxmhX0bYiAvgLqjPYebeX7Mqz5Q4G//XdPayNJ8bXJ0ZvBFluvrziQz/bgqMfn3sFBtYA5tvUthpt5l6kj6Y25TEdXUfLHQLH/+J6KIdWjBX53L8U7TrbSCdHUgJ0qYqLYwTxMx64wUMQ6nUab2DCZ3uYV0nf9hmypOqTvrIhDCKZUx/iyfzX0/uBqOBdyTPXzATe8hPpakSiNyHfiFkZvkqPAi1csGh53fjPTV68BMYMpGpZwSJfDCzRg7fVGFFabppAMU6eu7wfVq/sb/QSmtCgFJ4rmMP6YMzqr8b/8HfYeYtPCQ6X8xaNd4iCgDFed6uj8mcyTdmGTp7sEaUV7w94Rf9kcX9waUXf5RQJi3jA1ZJgg0bM8+nXrlSPedi4g34Ysasl2RHSCxgLbtyZ8uEZrI2nRiOEk8weqZZlRzJ8Dc1GThi/CbV4smDJxidQ1Hun+XvYF8U/DDanKElBz2zdolsfPEbV7idAdH4ZoQbcoBPUBYzRU46tYNihs0e2updT4KvdiKsShRd88Mym+7K2GBW7X/+EjjhZrDGbp4dawLM8v9Y3Lul+7fQ0G/7zTbO1aMT8eYgQ+vdt0t4st9i8evknNsPMW42BZbSAUsQBFgq/KAx3uLwKxWPoRdz01weg7FocEfrfFrh9x5nyVyhD0pCxx8OufwRLaagcTf9nhe1DHzVZ2JhfAse7R9vTeFHOTeMuqHT0yvawaTaX/ddFXPR7wbeyUdAr23gvuniVEMB6/6ROJRrJaRAa9/3DWkN37msBXyFusF4+OzdG4tMpp9m7U2R6D4qcEkIMY6SSKmy42ReFlOUj6yBy23aePRMNvBNC2dYZ3ndqzhaMmgZfmjtRIXTdlDHcdsizriF20NsqeeT1St1vpSx9N9DPZwJ07eDuBiyNh7Vq02R15IBtywd5e+7AFoSJC+Tf0sVue3ua8HbeA9q7xibgqG9DrsVwIumvSLgK3x8Uyq9kF5PYTY+342xSMbR+82AllTLWmi4Nf32YtTHWvRqpUXob53G00hSeeQZ6/wmgWo/nU6G89+61spJOYKgB1cFOjzRe90NLpuYZUWWpptr9Jwfj5XhTQ8+86S2tu0LLvOg6qRVyi7idJwbwNAwN+9AB49zsgxsjPlNC6Pmo0uz0igXHOFPMbb+k+5ZqA0SOqQCpvPj7xPxzM5040lDkuexqZwWQun+3VgdfOOkd/fGqWHloFeiKqZPO5OQX7GGH/x69osIRBypfDzUKOLpzX2ZDT8Kt/0g2uzmDj/Q8LA3sE4U3p+TDFyS3PirkTwhwNT7fA5rhw6Hc6z4p6agWTOsfzN5jX+EX3XNAiWNiu2X5VXQM5mGdqfL4Xc3yJ0RHOBYqxO52FpnfUbw/2ZO/xPrSQSSXWxOrns3DY2JqfYdaXfoTNSVfW+KqDKeRnX202Bwcbn6Jky+stS1CLTUV94GeT7EMlhqDwPSJd5aWZcPfs0MrnIrV7pMEcyL6Fjrbb0HCsjUYM3KpTcuZaWNu+PLZVy1lBGwn9iFTuAjaTZzAiLZ1DbM7RXMy64GkgPlEdcbuPMSyLVVhgWXdGavfbm+yZNx2qyvZB5JSdzYmpZwupyOvxnlMFRAQVT8g2A5uaXsaZ8zPY+xDfugFH8XBOl6p1a7BO5wv5HKfRXITbjUf5I45pboxpMA7vASB432uqx6WWTvVgl/9+7u0jPeCpHlroch1VIn/V3mSn8dYjcMCIED94bOzv+mWdLX3CWL5UwUztu/YXr5Eselow5bydqPtrOpDN83A1f+fPwQKteN1wtj0OBflaUqZ86OZHeKm7m3N5vvVwyV81metqHthNqACcF/+O6DJ0Kd1PcaSy+3lHNoL8HMh0annUCOFCrbYdmuniijk6b5gZKW22N5fu7o6wg1eAr/gwsgUaQ4B4Qlz0GbRsoLpJI1jKOCOincZsXE60BqzIz6i7XWZzqv28guix7Om+77WUGLXXwmgbEXb6q1KQ483gYZy5LJoeucCW3XMBRPyNRjbifhnmIYpCtBG7L42fA5jsc2dHcOu2o3ppbcz+ngYaMrP4Q1TJ/wxL5gojug4zROJj5ps5uG4dOEncSC366orx4/xaZCpuTkP92zajZ5AehJqf8Y71dcEyugDkjyT+43eoQ4E+qe+zlND86p+DadDzEQTM19Hvp6vpopdDAnL7jqPtxVLRRI5xCKWOgWwue2sQbtO5R5/M5CNFaQbGkFPxav68KPhxSNJmDH58hepjk2Cc3iu2pHwRofIqzXjvvWEg3d0lcHhdErIdiqe54nkPu2FssbuptGa8cVWoMhKO+LJ0RTOpKFUAvU4p9aWqCphueAmUh9HAf3jw3WDLgibJNlRf8XtWBu8CxrPBEbKXPfuu+hDyb+RjM4vMQHD7UwUTtALeBa8T+wWy4ajxrR/I+ZoIBbPkiwHp1dKwh+SmGez63cJBv1i4lGaTLdOJ8Ehz2wgbp4+DhD99YHWnlpossAshii8tvC/pvOa/oZj3dmAg7rTxyPSUtylz2kBCm414wTpTNCSepXsN8iaxcUCRE/wAnEr178cb2cres5nm30YC1DxIpFiqVIzr/inzM8N4zyo09N93E6vqAgjvAKaCXTaJD86wxBGJnKc5ocCbIL5XMS1d72cylR17xE/p+JujdEGjyL8VIIXwpuYr5pv38Zi2MCDrSP1GJA3FFiPgzcOVbM9T2GytNg1Bd+tXJGqz0yyp/CgRGt1mnd1eD+O9nmu4rY3jhYelDcw7Si40r0dHg4J/mMxcigsIF0Vc8cMMVv2ZwCtJT5GabwY2tfUtAcWIj/SoyW9E98dv/ZffsUM+bFjuF5ygic939I+vjOQkuGhAd4ZxincNk898C2UjDNS4bqtgtr5yDU6z0aiXPlpzFONbB396+bHmi+Wemhp4e/Ym6soPV7wW0IeMX7JB33fwtvyxgjUfUc+KXynbFt9aMavwuQ4EMpA43EeCnm3mEJRM/sCK+HxUvmp2oKueHrYnMH1VEfwdQVFUpYvpzZHyp8fh0IXmvK9kAhet+2I9eY7m9EpUR9n1Wx1btS8H40FuF3jX+wGbkmcUPDlxLsxONdGwN19mp+Nwga928elVn99oMjMvh3l5p9jLku0we/5JUvRxFojM9HIYX1maw7vGA1G2zE2//rIv0eugHf7hA4HG4OFmRNuIPe92wGxd6RB3Ur110JLNCHE1Q91I8o+gWzyjefB0UMWnXFMtFU02rn8POpBfH4m77DZMIG5b8OTySz52GiOyaDBBli4BDtRiXzA32UwwfysOh/4PBZ93xhHkfuuU4mVwC7Z81qsdmnAny+f0MedYYiX0TUao8Sk4tvpBxj+9o696b1J2QwlGH1rUQ7I50KeQHNV6eq+DOJZnQ9DNCaFd+h3Vw3hnjjySXfQJbYXus+ZaLOjmRPAdyxFHfOM386oH0OZHKFlueZYOHmd3YKCHSz3NGMyFW3oNBX7yimTxfjD/4bcB2Y+a2wkNf3wCIuYh+vf9b7W+RMoW+CPVpf7VsOmeOYD36hWbMsejGSWyga6QGIRDRoem7PKLYCP2X2yj8FdMs+sSUN5JTUOwtwNNrmf/jy8Q+fkUh/k4GQkKXedA9V3VFL8/fvRNZ5HqCbVTlmHX+Jdvw5NgF/P7WQHsd56Ba/l8aci1gBBFyiaIVDx5bKoUlCD+pl3x5TRc0+WefY+w4hHec18bTW55OkJauydaPvhnSle8QQ1XPKkzvnZoKxx/LUj39h29hENl9qxZr6jkyhBNXFcW9KNqmfpsjw6+hJ8XYp7yyeDqfG0aIN81l0OXH2Hla3//Dkhob7u/z8N77bNBzEydHInnTRfxg7tF0+OyA5D9+rf6Qz7jd/PzhvYXJaReCXq6rpdDu7pPVn6/Q/OXazn445f+Hp3M753+DLh9zmO0jLbPZlapFvzD451TBj8FJyOktX/C2suq2XKm2lFdrOOdPiZyTKf91S/BNtIKG/L7gKaX6BzhT+8UQm6tVxB6Db5uK1Pbffbod4LAh9ymwj8/ZvL7MoLbZNRUU5yjuXXb8PXHZyPlqSgN69qTgqy729HI4x7DZJUDoJtp5USwSlTM+2oe1c+0TQlDqEPzLjdHuBzkH9m4dRxM3YxKcB+vK9WOn0/zL58+HEHGuz0108X47AVQHY3R+OXnAzuza6xOrKrxfeeU5j8/o6p+HqFl6Q3fw0ay4Clnxz+9Uswr3ipPesnp/V76Ba0Sz4EfTYHuV792Wv0kdBeUhvr9y0mX3fsaI7hghyjKaRkWZZF62LrwJEt6k4un/BkcqCKV++cfLwdLtwBi7UxzO5ibuTwfe9i72ucv/w+/Z2C7wJPAiHjv66Vim9811Pfxlchr/hI55Rojs4qeNHynVTM3p85CDacZ+FKLtPh977wB8SRzf3o4WIj35uB2PJdE2X9e5qiiVAKLHg6R+HpKKWWhkamr3qIuskjABEu00PHB6Xj/2NuB6Fez9udvEG7Sq3R5410JryvWoonaQYGwxUZ0V/kIX1KnWW9RazWySmNPLUkQ0pdWXxSFNx4b6tOjx+gffp4TAcjE0ldDZiSVYN39jsBNjIJZdktHWfEw4jxpx7o/Pq5wmYCxY84DM76SgG5B6kXU0t5stpejA1LV8gTttnLz5xf+8XWaHfq5YJ6s54DPJsHW2ZvS1Z/o4NgfcmzYsBTz5KIMLnlb0733vjXsJjkS5Oe7ho+/tEmnXXK7IWm+XSm+pJDWj09bovlbc9Re/YPpYjIfdHUoIvQ55MXqn2Uot49nuuo/tpxMpURhesDYK0lnjtumWpB//yEiDekTzcq07+Hmaza+hxYKVj7gw10VotUfVwZSDGmOVr5H/aK4mfN2iDXlpOCJai9faci6H0h55WrELRfVXPp9ooD/+W5pWPJ1MH4za0GJ13gRPzkJa6shXCC93h90xyYlmMxi34OaKRfqceWVsU3T8lDWG4f+yw+pfC7h0Y8jxnk8pUTmyxdSNlGB7aHQzemxxAT2DX5Hi1tMaGRSLqB7akz/9PGSplUMUywzam9gYj1PK04lQmdRA6wpXWa1zBXuQ1KM9ecn/d0+/g1W/YP9/ecVLOIDuevgkYj8+T+Lc71cwHVqm7r2mLJtjqAGpF4/hGXHHE3Pupbgdd1rNNpkMhJkmmTqR+oarOGv36z1HgEFx7CMmu2tbzo0wAinUPHI6/U9N9PtUUTymq8Ir8lv9rtHioNeufPGbviDYTk9saPE9zqm9mf/QdNgzZpqsORKuD/+OLvaKPG3tQQmbglj+Y5fQECyTfd/+uSPnwTEP2Nbvi8NsdbBZYuV3Ylyv8TFmL5gBGwhm7DtrR9G3O9aMHbv0+o/74L1eY/gfqsU489tvSXMhy/00vwxGvWvM8xM833o1eSDra/dB2OlsASs7txSY2iqYuacbw3m44iwFUaPZi6a0Uf+HMXYO3GvoZ7RVILAqzkOyfkUTPfPdoLLILbUWZ//nQt+E/zlB68pg0HYPRcOjhd3Jt9DvQRTpbAY0Z++wX98mZLDPUTqY7ejQat+07HVn5my+uFUezhvRNZ6A0oPyUT30qVC84tTW3mNB5pKXp22f/j55x9i/2GZYy9NDgrTFFN8owQxcST/+Az+4xNzLkwxGP2niWamVGjpyrb789/++Ambzk+8oIvWf8nmUIWIf3MGwBRXR/JjuYlWv0iDS9OLeC9CZE4i/1NA0S+Uut++RPMBDov6YEyPpHO3L+ZXPmbK6j9Tc1SqYtKxNaHV71j5fWlSc0lzZdWr0UNeByc8HVf6iz+85seCqcmTQGX17Vo/ead//izI5tvAxue0M9mr9wX0p2+Vi9CajPwCBSm/+wH7cc6atb5BlHlfFtgtBKcRD/OnRtXzRWipu690uKFfBHhv83R31ueArnxUzaYxjaTr+9ms/hGBP/909YNTtnxk448fUP33VAqanuUQrfUtrFnAAmIRo0S270xU4zouXdJY56DRHzn+ez5EbZ8uqh43iybCUhfLypfU2GzPUdVdGPqt/jZ4j5qSxstKcwale4GOS4wN99sHP7URXNhudStCExYLBsHPghKUTcRLtV38439Iu1fYf11lc/XPR/TeGT9SH677Zhbh7ipnYspRPGdxsz4vCdb4xOFHEprhfVhu4OKNFAnP0xuxFIwS1v3EVpw9zdlf7BsCJvk4QPEGUXc7OHB0DJfASbDTcbBmQ62DUqX7RKfmUg3hBHX7RRF6a9t0fttKgtZ6FJF81ykEt79XEOpuGzVa8h3WeG2h4QwDm3gLKRHU3aRcLxeMV72dDn964o+vlJQ5TJB2/QJjtQ9xmJ5b9scX4V/8pGKD1vpHjaZr29HgnPBoNvI8g1cPPnZ/i1ZsxUsgqftB2+JjhsSAvgWTQCbJxlovCdIl6wKChjgRSLutreZ1mtYugQM+YuPcL8ME6euIuGnp1vefQ7SIHxmaBnqg7l+9LDpwFTKc7ED3hDukszLouXpE/gZ7gckaYjS0hqKyQlKfPg4ToV8s5e5xBeGKtgsYJywAf/p3Z6cTmnhtW8JXHyKyXBy7YH/6YF0Pdc/dPp3UvAP4CpcWn+Oj3PTiS8yh+rI7tXN9/qsX1+ibH016FrA0LPS3if6vIwXy/z5S8AkgprbrTebsSW4HXcAPNOmG48BH+5+G1AZ9o/b4WdvvTpUAnp8eqUn9D6LdlgBsjJ1Ptdt0KJgUxIlCbuInOm7EslneB6NFhYEPBEJ/RlOcPXp0L/xVWF4V1N3BviFeaY/RtKVGQaz7dwTZLRwa+Vu/Ya1+TwAybsEhiuuAHJDYgj+qhGJMKFqUZj2FFyR8JFin0zB5V/m1zt7bEn4jcs2Sis9YLfbjmYiPU24OXDq2qFlqRjjvOiMWKuAD1ZQD9SRu1zDfWinr9ubg+6fUkFgFVoXcEi1EskmPWNyce6BbRcE+vL2Ufya/HJaI/xDFUH02H6q9gPzfxyTPthoacq7CBep+9OneysSi055fHuX36IOdYwrp+EQfF1JF1bF9bXAz2zfiAhSPgYbzzmtI6FoRsr5dEy3Ja2vOJOuPkGzhQm89F6Mlj7VQlfvPFG3VyGRMGXRL9etfQsPdfWY0uvtH4MJ7gHckWJr+0m1yNKhhRi19t5isMKQQehhb6l7Uy/C2b60PFllmajiTOWzxAJaEO02n6fmuFPT8ufdwGs4h2UTts1kEHxkI/3wcqR8/K5b9Sb6h5rqJcUTCYzqZTSeA+2h2hIfAS4XBkzp4SJ833WeWXix0uTnwLlo74jwMDQP31oHCVTzWr05osntljoii7k4tXjEK8fR0j+DG/p0onG6Y1H0dY3ifhJq6+fWQMnhKPrwenwhrP8MYlvL5u0FAiEv1CwhoiPK3BlJPT6Q9Bz80j0GSw17UnkQl76Rhabyd4Lm7FDh/SQWbM307wlliDPtU59O6ojkBO9hL2PK4nbmckketnKMOYSN5ndZZQTNRn2THEfaRK/bLevGGiF1TrBtbMZ3xdapUOyxrvI8emE1nm1+gI/qJPJrdwshmtGpwrsU1Enb7XSDoU/AC4a6YhOdbkc2ohg7sVz6RiRzbgDkDVqALbxp2n5zBptfQvxTubRCKFV4rtur0lJTDOgQhPFMzYOf4fIPzSeWjTX+R0U8UEY8O1qmJpCdXo2lWkmhjOXuMTSZ+mj50wwjE9+5MpKruzR82lgxiX9CwY522wwTfqwZ1T/xIxahr6FwwVwG+b6iXvQU0GaZkwLAc3xSfxK6ZN3WZoWSKtjRIuTBYNuTLr43gHHo8YGLO5ZwvECAP4735PadU2Xw5yN/uFtuuF5vbDZoFtD130zq7y0m3mFwvcDaZjyPOLwLq0zECPNYKthn/ChYwn5aqOts9jQT5GEz9PrmBHWz3keQXfUP0oh7h8KtyGspVyRitySKJ96mkFxGNbObxJUe14Xfkh1E3/LTNtEqqh0Vky/TM2ds2GQpF34nAkn22nL73Ea3vd0TyLwQLn31jlKYaT+MoMlOeqzQHzHpGZOto53RKXqECv5pMREA8MhnM2UVx0kEgyP2906XcWy9gfujhRK3iYrrrrg8Jslq807bvZglyvKBhyd5kKQ48mvonOgLXLwciXVRpIIa63uJScifiqoVn8635VaiBQInACaJ0FvIqU9U+flJvJ7P183YLbPmdSDbyZTfQWDnxoOyvFNuXXYbmp38xUPetb9g8mV0zf5eTj16qciQsmvJmERg/qc31jIgqF2ur+VuVw1be5tjdGFwzRfu3AQaXt1QjfswE67cDlARhQHhzSwrG/VwL9g8npb7BTs2aT0rlIQuYyKiOGtaFvwglqX+Nfjq2G6KXroY+X22kGAEZaNzlMWz2r5iopvpE0zZWXOQIjy12TvQUzIlx0+D9KUS6F2+7YaF3FKJX4Zzomm8CYX2ecFGqPU0U/C3Ybye1YPd+Sm0uWwI2HLwayjjoqHZT1mOZBXJhvkZfHEr1G80PZZ/D8KQx1U7BAy3fyOGAXviS8Knqp4trfhQ4u+gSCbi9FSyVxRpVeuBS6xNeTFYORQ974RrScs2fc8DdOZRsPo8ok2PenL+8clOGq/fD4WHzYCMcJRf9rGuP/dRu0fL7Pktw84uMgwKnwZjgUVMKt/WwTk3BnJ+34gV2IO4jpJZkWPxUuYFnTwV+YMk2p0w1HLhuaoHusk4piIHhBuv+YD1hXLDs05uP1ueD45cupV1TJR08X6VI/XMJ5u9xMDuIRtMnW676pN1jOkdo80Ietis+G6Z7GowyOom/6LR/d+jXt60Cp+pekO1llzFBeKQKmMHDwO4m+wYT57xauPVDhI3ca5sB5jJHloMxYe3dDf7hn65KAtakkWNT8PZq6Ih5osZwnRD5GKImnXayhA1napoZBcIN5qqpsc16wpi9hxzy7eLjyGt2pnD7rTcvSd9j/7GvGcljNwL2Sd44HFwnmJ6IunDlzSkSX0YevFe8ltf1Ua19b4oxXi4l0HSM6e5UjcFSjdsLhMdsh4Mry4vuiaiPdNbl+KrEQTBF9V76lz+m06MvFkfNK+TsBItGudo2P/XmGauXdYt4IbTR712oCdQ7KYh4sfwWkzeoPlJiTCM2e0E6tQ/++JePsXH57dHYS3MlrXhMrdwxAyGXdYBXqco42rQMsYjuFZQqG53u13hZ0EVfb61yJvWVTRH0gzd1qhTFEY1+Vmv+3FEioMRbi8BJd9g2v8chVF/SE6U9HpvpdXxd4ObeXthu6gRN4s130ClKphXPR5MmbuBKS3VVsX3gSnPcRc8OdrN4jioXawHvGewCamXY0XIRTXPbH4cjpNP4piZKGrag06uDKpMGbK/58/tJxgz4YpBp+K0v5shMS1JX/oLt6++F5kvixgAH4UXD+jAHbLPjsr/3OeJ+lmMKtVJ3yD1JGrWbsQv+8aHrYevQHZdGA/klTYLotIwR762Dq65prcFwDX70L/8t+b5WgD9c79jurq4p4LCq0ZUfbOrIMR8ML6l/AS1fOt6Xd2FgJgkqKPqJYf92mtOfuM1qlEVBQJYpbk0mYPJCDuwvkTrqQzMd74dY+Qr3FIeTyqdDmS0T7GGycKRzp2Y5kUuGiN+peC8ftmyip3ZCZnA3sLFwdTrvl8+ITCfjqfvrNsGUtaYEpXx8UM2staBf+RH6zlxOMTzkYiq2kwuyGUvYtFDYzM9yUmCJ9gkRbkZj/ha9cWEGo8PGRWwC1vZnA/RiDKOlKPyA1jpr1fOYjYTTxiT4bhLJQrOg5Gv+KINZnZ4K8FjY4T2hHzSu7y/cTcGhIXJCJIJw0KDWVstXSxJzRhD7aiCYOpF+yzElwnMOwfuNHWHU3zEBce0FXbjrvPJXqSHpDr/gKzodXtdnLiEbEvhCKPyXT3wJyoAGk0H3b6I2o7h7RnDhgxMR/Z419KzJISxPPaH6kwVsxuSaw5w+HGy9lWMz6aM8wfHONLzigfn7nPQOOSD8cJTELWLn8ZLAYp6eNFn3cww3IkHmIWpp5F0P7FOnGx/ZDSuoN8T3dIx/Jx794VscLn6zvZNtCen9EFPtdTLQfJC/GYQXPFC7u3bm+v0Lmi72KxJuhhn88QPEzD1Eyi0A8+dthyMc3zuZ4gunFOxH7trfeqP5sLVNsXp1Gnz1W49XvTMIl4zx4HflNhLuR2f4iwe47+97MsnaN10061UpVvja4YL/yE1/GK9HORp1H4ddzDe/W0gz2VnaA/bCW1mwTvm20Gotpb4fHdh6SiIGGixGtL02tGFMjjqIxOqAr3Vzb+bMkY5KdZju1Dd3mkn7+dL/4T92B7U1x+RJW6Q8yyvZCmiL2sNZukF102QajBY259SaMyXvlQs2Vv7DzKEN//CVvL9PIaW/SckA8YuL/XfoFGLcPDrwPqeJCC9qoOUcNAqYNUPYtG2dTc/kfUH7Y1RTmwsBzZ+T3sNrnmWqtfQ4LKon5GC96lMkepGClnMVTvLoJwv2mKqay2WjtsizmhnvYhYWoi7eSvjOkGM736bB9Dx3muocpYriqNWb7R8fiZaLicsmQ4yemCmB+vZTHLLtGw2c/tTUo3FQ8O5osWJUrlEpq/qux/pT1c2f86wm+Njvy8pXvGIpX8YC/SxsqR/uT8Wv14wbnDy/pjayB3Nq+VMEbuzese3/xGDMjm4G+vG3oeGdOA2/rh+srpAjZeVfczDmOTKxitaft8MwhJEC+e2TRCJfVgPxow2PaspfaNj8PDSx0engcWJtNG+CJWCn3SigjUEeBD3rp8mq2ifwKjcydeNYYmOCAgeteoruYlUfRInPDQC+a+iDXV/m9PruE4U9nwbW2yxLWZqmFiCuwFQ/bN8Ba+mhV8uNZdA7nlnBktuooR7sA732Lg7mJzn76OCTgjRzWg0T54wtXJJWI2OXf9nyFqkG3/ls0/CS/Ng/fnTmFfyn14qVb4YoSZ4W1V+KOiz/Ie1KtpRlluADuRARqWTJJCBTISDiDlARHJChCqinvwf7W/67u/S03Q01REZEVmVaVlui955I9CBmcs7tiTCj2cchtiLLjub5PvvS3iBr6hzWDRpS3szgwimjvznKL21e7xsDGvcm4/16thGXFuLqF0+x86gUh2OaK8DiN/hC+/Aidtp8XbQ5azn1SfLtyLp3K1Q+3wVWArx1ZhVFJeDH90DNzag74+OkEgiR8cbeaUwQux72JTpzoeh3x+ylzSd1F4CNd+EfX2WVngrgR/fGlzRJQeS8K0Pp51+k7WPImXCfLMnZXHqKLxatp0OBeXhObOeTOsnRj79Cd0MBxnvq1uPWfLiSuFssrY9eIjacEw60o/vGfpWqjLu7gSG5qddhtdkcWD+VfI9Ev7lg3QnaevR3uo5+/FP/lGpHFr65VOo7YO086WwTozKRFr5DRjF0EdX2yig14/bkD3qyjeiPz6xeMqF671X1lOi5CpZgtFSbDl0+Km1xQ1dfr7AVBCmbnFPhwt7o14RkktHN1cO0YFPMK6rHyZqNo2GVUJvjG+MsY1q76JW/+OlITY3YTx8tep1wvTZE311my6jwnjM1e7pj/VWRbeSN3Zd8nqrozJWwT+DGnkB9NSydcXVQROk7nfY+eO/lyIokVVAZ3YNwb/2Ahge5W+jGuUd8QH2NGP9VDUgezxLvI/LIP8/noYez5mz8VRgYaMbjp4XGwQk2b+eHNjJSA+C+FHF9vopRp1ToiR6KVmPD9EyNda82BcPkdHzlnrwzzIPqwtlvkT8LLOjYV+YB4qWRw/5wvEXzsxg5xCeIp+bN69C4WwW+NE2jS+M8fXffGvT0z69ottO2bsVa8H9+HTYP1SufSLeUgP5+CbU6NjLWuC93J1vZlarN5rs8P20QG2SLTGsF0KSL9xUy7jbgQ73m8+Flxql4P4oq9ciS9cvti75TVpVDnczU0VJaNgVXKS18OR1WTuMOnA0nLVtTtzHu+TQrnQ3jFBbUt0w/p/Z1OcJ+twAr/Z1qDXmcZPTTR3e476J+9wllSA6qRG2+GDuyzqwVGuTSwNH3eWHjimsA5ve8oQdd+/72tw6uMz+psj6ZeZ9gjyAOcya9SWqP2NPTKhTsjSsRFj08fVZOChx2ZyLKmNSDLK5C4Nf3lNoHQ+s2m1STUXhTbd81P6Yzpe+vBffVyaKqtz1FxLqXBMbYl7H3uZVoqleP/ud/+YQ7Ddq8zmQQc9U7Yi25PyLmSscCranzorICoTPmRdxISkzXWF3NEWPls1TFxd8lg3/Hf3oSvW3M+3HatlGnBIL8i5dUnblB+9atzMPDrb7Ueqwqtvg1gMTAo9TmwzwaDyQsfv4pxceB5QN6HVew5WOFqvvYZrN+fRCR43BB3W/vRQwYIqJrNAlNL0dN47vxasAy31gWeE7re/1Qod9821vCaePlNbzRoq8Iv/ipZIyrALpO6qm+vX2jSb0/ZvRbf/riB7e1do2Rf1kaV53mtCbeCrkICV3vlz0RnPFdXRrYvYlL9w9L0Wagsg3L+JDam5VuVuZGhJUxNNRUza/DrDAg0nX1DrH+Kat6vr0b4+cX4d/8C+k9DeBj8CrGl1BH82dkKbTRg5Jxq7zYyKZDiNav6kaNjueiMTZyHW55Q8hWqx9o4f+hNHsviazTVZazRnADOOf0TB5P8VpPu0yV0eW4NbCGLL/jQNoJcA2Onv/c2itGXN56Q3wJTCIVms54QWl18RfPrt5Z6aaf/t6GUYpNyZHzRru9fSTH26e/7lYfNLbCrkIiF6RUWWka254Kr0fySs5x5IsUvTaKzv/5Ddbh8NHo5ab3sFm/JWpm8ESjeTNFEJlCfPZy9I5FK9FC6U4QqNFmeT1HrupDcmhDn0SVHXWlRV208+qY7Jo+yXt43jIwpJtKxPOt0EY0fwFpTX0jm4WfkWO44aE+3c5UOViviJn5t0VvEtypXuzf9XRgvop6WzR9ieRSNKuYK9DPX7eTxEMslzYlcDosVeJWXM0u89Joj38APQhcmE/OeVcBPhBEzrezog33qATwY12iBn4X0bTf09XPfySziL8RiwJphCW/4G9YSxAV38YN3nh9WfIXqsMu+SdFUpjEWOaib7fgKQ+6slewJqeV1gcpt0KIGy1/fDpDPT8LgQO6Ob6wLeSx0yx6XnIUOcXm6nCJusv8eqJzH/fUWuL1vPAxOIpPHiu2cYs2qIJW7LY3RvfC46nN9MpcaJrjvDw/5Fu33qykxe/039Pa07ZBNGXo820UvO/MZz69ZlTAoq/woh+1aeH7wFkbke6Fs8/GUCqzP7+Tf22Pzp+/OD+0kDoc0h1OFkpZ2nXefhDX0av7+VkQXrPNwleeWq9ESQiC1+7oT8/PpRGAJKutiBU+vjrTTn5Xv/Xlvz237b6cEFpSoe57bCtnQFN2DXyw6+SD//gWh9N09+c31PhZT2gn8vDzG1zjVHfTD1/RWn5S/428nBzlOYSf/le24wnRaSxUkHO38OcFD6dZl2/I3D5F7A3XZzSmVmhAPPknbF7aR/6WxECHnfeIicQJcj3ml/U/v0IZPtec0aDzYdira7yf0y6f2q/rwi04NFh/jfd8LvQjwNE2DTIo+zGaLauq4H6a3tT5eJfFz2UxxJfQJEIQpOiPP7rO+PzpEzZsFJcDbxIjAljV8qnAbvOLf1TGpcFmqT4KklyCjG+hMXWzfv0StPhdPi/yqrO93FyCOGsr4r1h9zU7B/ebKLXhg/p0VnN+WNkxmPGIsH67p9EXyycZqaetjt1zntaku9xE+N7qPYEz1TQWvGAFeVmdqX68aDk7TroAm+POo5lmltrCpypUqGbvD9vCrKeM5uNvfVOLv3Na/8M7/7Yi2DvMgcPKnSyCbKVXmi75je64H3jI2kgjwliObDKVSwtJx4M/FZ7EmNjUMxw+55Hw8fVYM21/GGHBd+yn2I62Wvf24XZMQxrf0VGbiqax//TdoeG7juUxmyVZuhhEWLsRWyrbV1DfzRveL7WxyOKHQZTO5yXfNOV/+aFF/5CXWYwO1e9bQKyyz0t+TKnb2+NV/PYLdqT4EtH7Jf3jbzSJr8dutgFcwJ+sp5ooyzkb9nmA1GPiYCewlHqTIltFQx3vsXGVwWku0I1wOT+/xFdWm45Nt6BAswY8NgRrj5imPm+wxJNl/6+iWdyg8ecXkunlWxr3y8e5SGmpvJMP0XQ9bwM4NM+M/vD/z9866WqM3SSy821XezqqVUXDaofRcoHvZCAo+hPVr9q664SMr+AyWi71bpPiVNyRLPPBARmnfItayd/JcLkm7sLXPmwyPytDTD6xhve6cHC2iz+Brqx/UL8fUT389vs1iDzyvhUcot+zZKOkXDtYp7st6/2PXEqCOllYuQSPaLQ5OgPdRC8fzSDXW21/mCF4PJ4/PMlZMZsh4s8PZ8ln1t1z8pENYcHK5UrepPVqmgrSUQcBy+/dd8GT1IWvcmsJp9Yt6/dn8QnWg85kO2h6NP7wamXQZmmcsukWf3Op4j759CIaJzQkQzyKZ2Fi1BrLgP3lR7dX50CQ1mdsQn40SzHoBr6eE52xk23bcMZBgPXou2ZzdNvPv/jm/+Ibu19SHdZdqOB9s5e68e4GOrgQxFj2xJQNh4d9g4/hDjRT2aZ+/vzX4FE/fbQSzXxsGrJCSz6J6tw4OP3iH0HySTSqk0+cz7/89P9zpED87yMF1uVlU+sR2toc5YcRlDO50/3VGzvGnbC9U3Xhi81seHctLYs38O9apLYkhEtvvTmV+tP2SDUs2s4QJo0B+4+UELjqtTbGu+1yS8rBPopvWzTvdZPAux5eZNyq1dK7xgmRSI6hv1szySHlty9gWH/fNDG4FC3PM8Ox4UVs7EfPYebRmgVu2JTUZ4fEIeKGCKgMHBnLiMPOVOJSl/R0PlGZvstorK9XC/TibhDxdEpyYouljC7viWFXf28QPTbVStLpZ0dG3QAMQPO/xGyWE6OH8Die8LGY23xsy6AHyplHIiWj2H1BaQx4lyqH9XO9i6bnY8WDdwVCuIrP2djlwgq6y6Rhb5RjNLZT3kKWiSVV9+4np48Mxejyxhssm6tAG41hkGEr4cL/biOcD7Y+FVItWgE1t5Jcz3tly4PysR8+P9utxiz7YqGPrds0D8YEzfxDDiTffoo+UHgvS9QaYXqlFjU2Quf0s6bG0BtrDzufJqvp1vwI8A6eM5ke+bZm9ONb4iUyVdJYUhFN3XPOEGabkHqe9ujGxkksSCfdWXpbPbreeg4VRGEX+Lvi2WksxVwMkTa52N+AjZjsSMlvvLF3qWn0LdaeD7ciivzdx5c1/h3te9TM85O6w2HOSe6+bzD65OXzz/U6GvHnocPlngW+VM8vNgW9PYPLdqn/2rJNPn2hX6HMfWfUeJPGmYQqs0CLvw2pr9sHGqpzV0E05im28O2IWHnPdQhfd4Namql1bLN+plDGF0rWe0Hs5rOTNejs6hURkOCz6ShKPFLS4IqPH1uO5tHeCfBQPjusCw+uGx6D70MW5WtfVKq3Nh2lfS/Wq3TtP8+9gKbSS31wS/9DDXkjs+nhWDF6P6OadMJyy+asXSy4f/ALG3Z1YbNCvypw3Kz7XBO90GSEAYEoQWt8+PilM8vTKIB+SCKqGgHT+nhLARKNGoQ7DjLi8m/5lrb3a4xNRfW1+U509ze/FBe3dTfY720CwF8IthrSO9Ob36UodKSBGiT6Lu9juLDsHx+dMwd9izG018t6JdSqMKs0i95gQNnWX22Yk/d6fSFoPG4v/sQ7NZriW1fCboCT/zpkcj6X6bcC88A7VB7TIZ+kILLRWuIPZB2YU96juxsgWq5u2IdYcSZ1kzUwNLxK9XBy64H/HkbU+iEj41RcnFHnnxV0TWdiveIRm3PU3eBCwpjw7cuqN8x8qkgYRxdHEzvWo09S8ocXlp8Z2iD2r0L6+/u+6DpzeL00cJeeNsb49MznR6yM0vH5dKiTugIj9zW2hVv7uVBnbA2N3bnNjNpUsP7Gs9lsOhlWO1qQ0VyN2rh5NgZ6FsMea69Ci+aLGllihKvCR58m68YuH1dok8yIYjXaaXP5id9wOZ8mn3/yd0bn3chLX/G5tIfbufVWEdobugbYoPLq9syHw9d0wfQNERtnXndYQW0fqDNw2AtEVeN/eLr3rxJZf79tPoVJaaDJNFTScyRCc3Y0fHQ72CV1bvzASO2FNgQhTbD3va+d6ZDqobS760eKvTeqWTMpBKp0e/Fp5D5RQ+9xgxY89jltPDizP8gj2Gl7wGo5CDW1rjUAMd423YvXtp4CkjUQOuuBqvuTweZMYglEt7TEhn/JouHlFjb49luk9if3ou1FvDzBXt8HMs1xnY+OlbvAxu+Z6k30YoykkYGO31TASvS5R5PwbFUYR+eO9ybHswY9Ygvud071/94/KlEKz8M7pPvPy+iYtJJd1MWQ4BBFUk4yKgdSV/MZVcIsdkYSPN7oXSQq9d2T2m19fZNIXbxKKD5vQmccD7vlyENOCcr0hzND/8nAPox7usx3PsYNCCA8RAu7jH3ykZ+c8IfnVK1e5ZKyyFogiexSf9d2bNT5voLnQY2xORSdw4ZBmlEmb2yqe7wc8QRfWrh5F0yvtxNo7GSOonQhQUz9QKtrxoxYR3LeHHGwVdV8LrbLkatydfN5VXUdPrxeWqiL1CKi1i6159u9i+YX3eN9V5ja17oxAQSTm4g4sLpj9n5KAVWZjL1wl2mjGH4NYNi9YkUaX/ksWZcG9v5d8j9T1HW/9Q4VaWQcM/qpm3QvAkpk+USPzm4VdbFfVmjjvBrqWOahmz7J5wZFrQLGw9nJRzg8nsDtVEZ45p/QWDZ9BfzZFMhLvNr1lmOK/5tPfLt7Rr7x7EEFXruY2FxfqpqtN3IPyU1M/Z3pTHm3CWgK5GutsTErS2Od9pBAOdMNNQ4frx6vlQDwmrkWJ97Jr6cNnVI4g3TFBx5r9XYqkwoif3XDRn0w6m15jwykUU7E9j4wnSFYn96Q5cVt+X5dk63Mx5Bog4G1uD5386dvVAjDJKJ2d/BzxrtmC8t8YePSF2iWoxUv2uq28stWPjs95+xHtD44N2xoxpbRg3UIxcdBz7B78apu1ixaQH+KIipfy0P0ikqUgXzfyQsfKOvmVHkhopkm+vReRw7jTqYNn/I8EXCd7XIL86LD8Dg98O/7JEonAb5P70ot2cEdL2Rp88dP/CKbUHdZCqW2TWzTyzPstb6jzvzjK2RM1qxucrErgX8/RAJm9UWTNZAVgqVKhSMYlsbzmu+L+Tsb/VEc62i8F0oMekB5Xzqcym784f0Pny/d1ssHtzQJPIKrhA9qsHe2h7ww4HhjtS+4lYSIR4MWJfpRx/ikSvX0QkdLigWfp/Z96PNuKpMSjlB3/lPvNnW34INUxjn9e75uVMflMko+YothpeP2twkkbGKDYg5cNKv4bkDIIcv/hjfG2FiRFOXnsqfhsd50xJvKEhikH6o+Q1Ejy3ihtB1e/vu9NbuW3yc6FJIe0rtVUTZvVySDR/fF2JaEmU26lOi/z1TbX+J64qF4wuMMN+zz27OzMWejB0G3Zezd3KKjYlEVAHxOyCYeVMatV5kFtTJzeN/7nDbthVWCQudC8YHzczZt6C5Dnw8fEuG0/tRDOQ0gds8sJTNhuB4V8tD/xn+uCiWaZRUJKHfRmZrZYHTzaE8CHPH5QVaKKmtzSOInWlftlh6OmeUwvlV6+PH15uzOjPzirVE0CpXtZp9PrgsC8kLvhl2h4NDYXx464jE5UefrP53xUJ1aaX2vNKrnxywa6qfRA0jJEdtfqJ2JWI0uQtVL/hgd525otKKFcNRzarhHFfHr4GQg9DYmf8cKwrprW92k5e8TcYkX3wgLBYRagemhGOx61jfxE9peRv4n+d1SyCoAjht1bErthY0oOPqS3JYn6g3JvZt2VzEDHoSlMaBbR6P1fFU/Pkbm0zGpl/Ua7vxMBqqBFNf9Dw9PZiNgnDUG6oV8uTXg7W3soSKpx74pLDACYfJFt/86k2JLGUgTWlFffAnaNElBA+R08+kh0zbR5F7XPFptbgNBn0bsfnoFdO+jktV7Nhm3O8v8D1+oiTqlmycjtJG/ZTpVN/Erb3/86odHpkCHjuxHjv+Lr2pw/7IunzIdfvzl0IKy7K9Ylz4p+BhXnhVtXvc3wOGYfbGnSm3OogeLBW1FVuTbzzs0qv3RhZV4zPzVEq/++PVabmR8/Cglmg9h2KBPmgb4Gu5EjZDjt4Rk3AXYdE9jTSbdDsFER53qr+9Y05Mtz2g6rQwCr2GMiAqu+4ufOFGlNPoeurOBPn6yI5L4aPMp1wYV1LmZ8FGPJYfc7kcLHhvyJkJ4NDq2u4kxhCZZUe/brGpyLk5vYfoaO6yeMt6Z62LvQrmvO1KfE1drCT62oHWqh7VB0dG2f4RP0NcKwoYUexpL9l8ZNSe1+OMnnRPGT/C3k07l4SV0AzrbMxRVsfJbPjrmE/89LJ9vq7/1yq0iToTUvdz9mb2KaL6wcokHcYSTJR5v9sl4A1Okhj/Xpacx0xcEqcCCRX3X1bSNwE46LHwPG+6xQnTBcxEGEWNX67758Nk/S6msN0vvAqVCc307GSBs3jvsCtEm/1z7OYZLtaQIXtNKG/atE6J//GU1dZ1lH22Yvu2WypvoUrO14RD4qFpHdq9kixqZWRxS46Sj8u150rj0sh/RnRAD6wvfI5zr9bsFf/1Jvi6wy+YYCp3wPtKDg0PXVvSE4h7bVDl5DZvztikh5UbAcpVv6iZc3Z9o76G13ygY/Y2PtHE+DXVleoporckzgA4bf9pi2k0aqVUQSRRSRVT1qKdXfYZlfWDtQaqIvE7Xt3jSsgNBhbbL6cplCWjd26H4+7Xz/jKXOix6mOb896a9tluOg3tszGS4uUU9Bq+LDwt+UU1wPowe25mTUHsql8Yzbj2NilBAs9UirN2Q1/F7Zcshi+k1tTuZIJod9B40L9xTbb1rumn7nkTYjEGMrbMWRWNYXAiizoEn69qKu4Uvz9LpdZHxL56z4+4lIlct7tS0PrSbjf5qQNYmFTaW+LLBylCCFDs84cxbq73jOLMEab4DVXeqkc9Po63EZfx8UZCWI62eRqCa45nwix4e3jn2kSGmB+zkVo/oS1R8MD/PyBc36UubEVYCyd6WHnY1rkGM03UXNrvTSA/PsHe+p4PMS794L1Wa5Pz2B9xXlvXHB7poXoVwE5Uc7xlwaLqgbwV3fv/F3tUK2Lg7WxysSWZiL7uhbqrfyRMu1nXwx4Gk2vTOTR9+/GoZ747gXbdCC76QXYN20Xi+vqq/+Xeus6rNttiosKu8PVYWPb4d5bICB/Y77LyfPpr3I8dJtq9y2IqDFesUoS3APtI39Y4bP1r41A25ySGg8roancUvCVHpqa6PugTV1FkaTW2EafbRpgjZmNylFELthqkGqhVtl/0Kxtrlqc1Hx2gcMxDQvYKlPydF3fTeKSEYYnagXnf+RFTl1B4W/4n88GCiRuAD94pV7N4sH3HjYQI4qOWL/u3vg6kk0g74C/auxyCfEmNcSelO6agvpS5a9FkAt3w4USs6hfmcniUeHQfz668T8YVI+Sme0NRiSVK/3tcjdRVe2pjJDtt706zndXDVYVm/+Pl8PdGIP18DvZ/HGtuOca+nm3B6ijzuT/iEHnz0KajqImre94Tfj4PzrfWgh6ouyJ8fNUW1FkDq5neKBTbkv/GUhnX3XvwTgpp+d9dREb1Fwt4l1n7rEe7ViseWgvN8tKL2vVuT1Z4qKfqyebddjZBv+JniFzrkU6MVzY/fkU2aa4g3W89Hl/N58leRqLFxMisdmnl8Yle/8tG06IMffyZTs3dR82V1CTyRc1ws/lL/Sl4VzKWYUjlM3hHZ3ycRrdxHSEZ4Fw51lGMjjdtW9jm9SrRWHY4Wcpq1gfdNybThFy/Rg1NpUOWbrv94RBY/tmFjs/3y0SC2pyf4nBHRAyUeG89u9YTHUUHUFYoYTZ/9s4LXXq/oKX7W+bTEA2n5/1S9z662UY1rAyATA9vupqknbZxFuG3mnh60eERz0QSteIk6mXqHk9xt6V4OJLmtTmTznEOnX/QmUnlU+pDUXj6ZgcUh30gcasrmg83XWhDR/tAFWHb6pQzPtgS03+YpVY1L2LEWnWRprQsUp9nERVMT35+IPOMQ+8Q/oGfj3GxEHYf3q0XPsrNyCNDQcCpN4CKz5sdX/JOL6UkdO43O23IFh3VPFn2p1dOH+5biaw57eiBt5bAJLILCLGKE905+N/GiTmD7rTrqt98m6o/qNoN7VHK0KGdd2643Fvn5T3h/OJaIZLIT7hr7YtKf/h+jTOHFVBMVqgnxJ5rva2yhpl8DdZQ3Yyy+dwXahJXrT+pJR1NmuTPyGyRjnQkfZ6T3uAWbB4zlMfXyeXhCDIKVUipfvxab+/Riw8GYYiL0r76bwX6UYBawovq0XeezmYgZaCtH9n/+IbMTLoFfvKNDaaMdp+khbLTGwpePLzvbn7/ye/8Fv+uJm5VAvMupQuNTrrCpalcxOt+9E7X87O0sfCeBJHzZfkf1pQrUTnNFIek3/rs+vOu5z75LpmltYBelFuLRZFo/vCCCkmZs5Ksl5drozh8ebhe9jEZVOtHU7vfO9JIeKnQ1l+GbFxDW3q+HAGXy1l4arb66Sd2ELULvllJ5Y4saI9+bDF6j7rFzcDZRq3qmi2K2MqkmGbEz2SdIkRCpOtXJ4ZZP107MYLUpBlIRwM5kDW+Ay9vb+AkESsTJzOLh+8RXn8+fL42NqpAifORzwiV3rxtlJvPS7S00GA9li77ZVhnRO1gaswnpRhvEvKpg2PYGvTjqkU0lTQyUhuOeYu9a/P7fCn2RJfvl6qMxbvp+VvDozCPh/SBD9IlrQNc2KKiK7CubqgvKgCSqu/hBVTc+000GmV4j8vKsRz7vmUvQ8j4/flXP7/XMQ29cMLaUVGTNL36klWv+/JRlfL8qLP7yLz4hekVDhm7Wu8KHa8Oj2Yqr6qfvfbT4jzQ/URGktsypM22naFZB93dS3pwxRu8HGmKveUJ7tbdY26WRQ1d2Xfzxm85TN2hu7/IoXUntkNMan6PtucY26lWrpKolWtH889s/6utLD8t63NGTE8JXaRt/XvhzWwrnChb++POzIqLisw5mt1EJtyF3NtJ70QLBZkOVYrajSXokBpylR07E6aF3488f1j/thYwcHtB4o7ElSWSyF780cKYwTl2008Q1tVj60AY8tiW6vBmj+iyv2NV8OCNk7jPDTqFdIiK19wru6flBurt46Xq1v7hQKyOHjd17afT6CNqfH+uvb4n5zz//088MYjYs+2nX9JcV2W65h8PEYcjgh4c2H00Rm3D+hq/qv6ldlYrD//janBw17Etpz5ivb2JwBm/jr7ohdmZvairAyd7G1hh53ezJUYtWFv+gPz+JyeK8VO0+Pcgc3L+IlfMgQq/aJVbCjHNGzjs1qGkc7C96H42OFbkQcqeff2rXS/7DgCySJGre8k9Hg0ElEDw+GZmO9w9iUWQFKHPVgnor3EXjLh4B5lCNqb3kZyZ/G1q77zqjVN05L9bzLLfAHpUeGxvqdGPizzf4HEqX+vrn0c1MCp9ALr2E1W5P6rFVkwa+R73FLgUD8fGnB1SLve9/50dVz4fHvv/zzxz9YtUzJ4jcjt/kK3oIbxEbzdRO4BBwHalgZ7Cfv4EW/U+X73e/54dMup/ISN9LlcRgAnimt4Sqyu0dNeZ3H4jlrklxsqFd9/NXUTDeb1R+LVWFFv8DPL/s/XV95LSFP8wgu7NHeL1XIr7ClYoWvMYWL6k1Z183AtLT8YSTxR/cxiPJwC3HF817tu/G++CGKDLvkt8tzzc2HzmRSBYiX0qTpzZr1qcQ45eu4YvEvbTJ39ghUnj1RXGk7XN2cYonEuXa8UckkZqm3rP4+W/UciuJMZWzexQ77xYbl/oaDT8/dKMZNjWX9Tj6kjMCqlKZylOx+8Mr0L2lCgPd5tG4xidLrNJjvujVHx9L+798S2Y7LGcrNMYSvKV+wZ8MzZJ1bNHPb9LB4LV5w7cAB8NLyOJPaMze71LxF8+HGSw28d2lAf61hj+/bWgUfRQXP8wX98HHGV3DiWGVr2PsJaNYT0ZcPkG6I8OfkmPc0eeqXEmRpSBquxurZovel+j3DuSXrySTEVrST/9zmUfq+SNVKxQKnx15gpE4/PM8FHCV1p6//s7fBd/Kt3TeBT3Wk/vQ1Ue0GWEe4wxnRhwy9tNrv/kMxnSI5oqtZ1j4D/7lVxj9GPbffvo9b1OeH094Is2hVmKZzuKPGlCvsjV2XeccTd8VcNIvH3SZH1U36esXwDioHZXhDVrv2J2OlvzKT0+xl2pcW3Spav3Hn39+uA7XHBIaLnxuSOVDAoq4Dam15FOX/IsLy/qhhlU/2FzsordEs4+A8dG5aiN5PCsQ3O7mj/59z/gfni35ZGo6vebw/MMK/vSO4V/EfCq9wIf5cUv8tYK9vPc0doPFT/7z85gLO+5ffqgPIza5JSbo55cox7uJxtSyOZQMY0EN70S6qaQ34/86UoD++0jBMJk36kdLr/TSyjlY3YIzzS512U1iLTXg+ud5ubssOcy7OTxEl+JOI3WjRWMRDCMY+1Ym3TGuEFH4qkC72FCweQjOjMXj2EjYHmZsnvbvut+ubiFyCi30W/FRONO1Z4ZErvEbyyfxm09xu9PBINqWGkiMnLFbHzPJDEYfX0V/100ZWlUoIVKD9freOiwxhRScifl4eX6Hj+I6lnh7ePtNtaX1iI0xQV7C6T6HeYr6jdc+IVYDD3sITI3tszpE8e1q+aQ2VxqZVxaAv5F1HBrRs2O7vclBaR4yvDc/oTPb4SMGKG8KtqbNp6uNt5iBv1F1bCiTHvHNoRbhsTllWDUivW5L4fQG3ncU6oRoRuTBr2X4nI49djpMI0YDVkrWtGZk6kqJdZvz0QWvQDlV2daJRqOdCoiPwtMXd5PKtvfK5IAKBUd46DBjm/pcorlQDIwj1NUssp893MUlZXtwj91UFhcdzF1NsHYQwoiqnRcA0ZdeU79TcINty+g8CKIv+i+rG1L3kUFoXnN64J4KGts3ssXU1I80Hc3MmdWNI0J4lHO8H44s6o/fVQLd4FT+TvVzbWr5KUGPi33D+mObMOa32Qqe92xHzn2z3ALA1xhcqR2o9928NWpJogEjF8c4WMobzoFziSG8vtfkoO0nRnabLAWABqjidV03Dd5kSBz9pNRp+HVNoQhiKeaw7ldQsHqCJJilTLl7GGMba6M4QAgQ5BzFezLmc1OXvZQXkoYP68/YTf4qdcW+qjfU+jS9xpZrh/D7fVW0HxqlrZCIegAM6zcydKMeRj6cRxjw8T679aiAqMJDuLjUc6xd91aV3ICHkLvUVBeLDae8D8t6pFp/aaN+GD0Lqtw8Ye+FypwFWE6R7NrEZ9axylnBXVw4RfcZu8aMc54XDIKytq39XYnMeqwmOZC28+2NFftxdybdKt6Qyh/d50bKdf1LzALQy4/tj8lUOr1mti36rU89ObxqytdNgkIPGpoIU6tR4F5LSLaJ3z7LUz7Sh0LWLye8ED4ym6VKw8hL3mH7xfi1z9nAb/jlcLAZ+ZuOig4xJdmStp4RUVMy45xhdRdCvFiacurmjN2cdAXo+Xxgz/QZmotnJAPmV4j0x/GTs0JuUtQFq4/PXidBm+tvaIMq3yJ/99QDxkgYGtLL8j9k5K2uZn304UEXrQOOG7uvRypuepCbU4svRfDKWb1LE4gwumMvJzqi2fVYSuJXb+l1VJWO6+uVDMv7+OWKeYhpX9IDjHqKDW6rR+OJXWzYC92L7ollO32UiQIcu/BO9/PO6Pq5zXsxyRFPdpsYaWNRcCJ4Ca/jw1VR2HT6hiUc02fis3qJ99s0t+H6kWsab4VrPRo4McBZDbkvrda8Q/3gZgP2Hc/ndFWvp/P7lMHHtSrsOtdjPXc7hYPhyI/4wFSrnljf+3C1p6WQkv2Kmn7qCDwnmlFXzyrEwssIkHSg4axVST6JTukDLjdnfyLjs+tPr64Az5i2/rT73B3mC1YrHY7tmXBr9q4JuJkNJivO1BiGM5td/PRh3vhX8s2a41J4S0l25Xdbk9fdXqqcyPcnUsqJUsdqrtFktS4H0sZUqGenct7n+q2Fm4bvWN8KUjcZ5cxBbcY3erQOYc3v02wW9/PTp/eHwzujFk2jCNH1TWUlS/O3q6xKUVgle6ydBsUZ816xROnERdTea7ibtHPJQcnS2l+LRd0x9JVcqM3kRrYf16zZJ7caWPa3X93eVzRttHoFz7Do6amc9127Qp8AAbNtbJpUQdv1mWslcQ4Ueu62XzS2Lp+gnlbYP/fNu6b8SWyADzYONsjT7/rrV5fBfncy1t/VzhktZeej85klZFWddcSVbibCN7IDsvt4OzZ6lm/AVrYMH13WL4edRbsFCb19/MOf8Qy1DTLhtjRhp06b1+bqBooYE+ogctX638/TzNL8J9rJaCznRBZLXw6oU7WfnLlRFEBYkyfZxj5G01e/hUhp+zMO113CpupzaKB3eYP6hY7zcbtKAvTbz9y+FqOpXAp1jZbp+PO+spw2f+2egNmj9HdeOERDp8kl5OBNftnMprZJPmwF50eS0L1++zrzg9/KoD2+Aj3k96aj61eVSJ90MPH+2TvRZER7G6QwE3yusfuO6sWBB3d7KLEmUcIYc5tWVN+uj+29aEQ0b1QDcdpoUIM8SU0vWtGDTPgtljW1q2fi1zJUz/aErd7jIjZ5fIbEe91Su3zjuqei1KNlP+J4a+nRpB2YJWXjaP3F22nHlKXQ2u2OHdEzo0mRHxYCbYuxb2tWTvS3dQNeb7CPHGVwnsoJl2CsdB2fi13oTHO8B3TStjm1ynvt0OMajN/6xlcZHvVYn3rxNx/Yel4aNg+FKcDjYt1wkEylNpzlLETJibtj2YBjPqqnIIahlXbUiiykEbYU5qbVKSDTKs27PuTeAuzMK6ZqXhM0+GNbQfqO19j9yFM9cHu1hFq+NtiVepFN++qSQmoaR+ry1HC48d5Z4FBT98PrvnGY5LmGUCqGRo0wmB2K+coA7lsq2JmqvTP8DwAA//+kXcvSqjyzviAGIiIJQ04CckgQEHEGiAqIyCEBcvW7eNc3/Gd7uMpab2mS7ufQSffkL4Zc+/keq5fPJZ/N/lhCpQoj6ieyHQklyEboH7fB5yv6sLHEqQLHtdWwUn7cYb7uXqEsh6mIr4emA+P8rG3wXaSSqsWvHmZqGRKcYrGiWPEO+eLwciq9gfDFxitR9UPaCyn0t9L3XD2XiFav1YDj2mj4OZ+Jzv7Oz+v4lNBfvB9OCingk39ekFDuJXcVC96GWvQ60bsO7XqJH3oGr8nRp6po/qINPxvA8VpEjeC95gtw1A7eK+9JTwIbo+VEXi/YOQOHPvGhGOZ5Svkj/sYNdnLg67OzmAmkQMToteHd+uq/Eni86oTaci2yvslOIkyq3MDuFdkDf7l0InSc0iDyTvAA5blVhBI+RhRdl3vN9L3Mwxm16T884Y+yUkHijxifya2Nxg6D7cqZtEPMfX3qWZs+K1RtBVH1+H3qK/DnEfpR9kNQ/5k67T5HDyZk11Fbfxkum3WfB+nIe0gyhwrM7WD+y19UFZrA3bfXswlOT8mgf3g/f/UmkcDimggu3HlgF/8tgKW9uPSUWnU+A8nN4Ddfj0Rqjx93w3dNTjCR6DlqnsOsH6H473xq23kjQqi3UN6fVOwiJ8mX0NTJ3/fH/iWnOeNYqgFw21FsCcYpX97KnsCjD4v/zstXb2L45R4a2fH8HLFXlXagPI8j9v33uV4eIzBgu35r7L+detMjfQm1epudidYAzOLZlKDXN4Aqphuz9UH1BtbKsyMvmKv5uNvPL/gcEoueBYiiERpQAQWH9lTr2D3/w38YzpczVlIPsPVQhiPcFQujnvtYanqlmQnH8FhSf1TLaK3zpgQFOOvUxyxn65okBbiDW0fEy/eTj0VfNdCzxJXIE3XZYePD0mN61tTcdwpYz5KrQWKcA2oO+SlfZMuo/vCfSFq/q0fzYLeQQ72ClgrswfCsMA+tYEXUlIsxX3QqBFDaeQhl0hvqs5K0Jgxv1opG1GaAVpGRQZDrb+qo5zOYUcj18JDgB1ahgnU+H882nC+di6+7NM5XTY1MgPsswf6zc4ZuiwfAbi8Zu95PGdj+dkfwPtALqtLYrffXX1jBuV9ibBaPqWadCzPQXCULG4bWDEvKgR42V9HCZw3l7ixfdAfOpUcJv32+fry3As988qJu/pLAmCRPD146tLULz7poxR8/hpDZDr623GNY/RzE4HlqPezc61fNqpdkQnuRGVnHaeeuyWF1gOMUBk4Pt9fQ37+BDfE3aRDcWyFbnr89hF19uGJlf+HBEveLKW/nicAtf0527wlwFH936mx66cCU+ws4x9sZSZryqtfnkbfBnDsy1mai5fudgdN/n/MbXhOJMV5+Pbov9XPSsGX/eM3yn5445cGYL6zktnkH1ozP68XTl5Vos8xmEmPf2m2DD3oug2P13mO8Hyx3/qFCAoddymhwlX4RK+s2haefirD+ztecCMOh+VtfGoRKXTP9cgnlPzznbz3I6YGkErQsH1EHblde7q4mSOIQRDh77kPArF3aw8E5aIRDpB/6XupSiJbmhyOcudGGXwHc+BMSoVbrzIvyAG78adNLfj0SeyjFJTMxOix3XReE0N26WPQjVc7Xd7R0UV9B6/gm2NpHHViHcSWwqU46PdkpYVs+UIC2ruwfHrG9HCfShzcsii6HCCzxQfGgU+MPRQ5vgFX6jiM0boVC72DqwXw/tho4VAKmJ2Ur6Z2FnAP7oRQp9tTWpba8GjDd7xLqzNdGZ1M0d/I9bGysJskEZkMsE+HJPy7UT5/vYf6hWISS9xQJ9AW1XifBG4FUVCcyw/wdsWDvVsDdox+SnfSVr9a7WY+IiE9sickNrDZ4N5CLbxTBpju5e+tZhFDk8wf2tuYLqxC6DeguZ48GdeCzJaMigvrQvGgc56K71vlYwurS1tieuRnMsD848Ev4geom/elzpAgmLH3bwsmQn6LNf+ml79mY8ZnaFWNbfgHlkw8Q2wM9F0j3VMDNbbNtPUx93vQ8cDXxTAA7710Wn5ENVbVWsTWlT7BU95yDJNnfsQ9OQb4f1Tcn32x7RyAxakA3vg1wDc5Y5VJQk/L9EOFiKQ/soTZjIzbFBD4XVcAnO0VgeQonA1zcDyBT46+MxrPY/8Ur1fUPHMZ/+UfKByTWxIz2u8vegKAsIHXT24Wx67tJgTCfjmh37pJ/euQfficjBPmw5I0BO6P5/vkN7nxwPiW8ffMJG/bUstmvHAkwS2yp8VH1aM1Xe4SCinhqq2qmzzD8jdJHOpfk+HIG/V98NfmupOdf+wPzsLunUgB2DfUus5Xz57URJTJrMzls/teU2ycCeT8Q0eErNy7b+CHwlfhAwFJ9dAIUV/vnR3nnfRkt3r0XoKTJJjUjy2adEW6DuabxStUbp7rkLz5iLfTJ5tfUHbHrAu72skMx+fJgOZmCBh5q2JG3Pwz1WASfWQ7MT4j75B67v4tVhUBJaYQdc9DAdsJX+O2uJcaJz+mjZC02hAp7kBYlXj4dUFwB+Xk7UUce7OFbtMMLXiRRoPae+rnAnMCRd23CqFnuJf2n3zoBNKDT/vwBfQxO9xVaswKxjmq+Ht2PrYG/9fyW71O0fN8BAsC9O9Qpxh+YzkIO4Q4WN+qzSwOYnC0rILMyb3w2Y8y/8CMEbu7g88Vj+tx7XAyO9ZhiLD/DmiS9V0AHzg12RGl054FpIewurkdeKzqxmc9xCV+G1VGt+r719Tw+YnCbJImIykUBi4PWEP4o4bGZOAdG7n6UQK22iz9/yx0S8EZgn+YmdnxyAfMfH9/iiRZbPjiopWBDbS98kBzpWs2E69qDCon3DV9/gJ2UtoRbywCq+6uoz/LBDKD1Azd07GikM+1QpGD/hiZNIqsDK/DF8W9/6N0SSM6aAAdQ1tY3VWD+zp+/1K2gp94/2C7NSF8j0jnQmRyfMKn9DPMWb8f3LtSwdRVqvbfBr/3jl/TE+tqd/84HiZYv9u5NCNgYUUHCcbii+JL+dDr/LjPM13GHDcYdGOkA54At/9PLITfB/NBtCR4Ux6SuK9Zs9qnYQM+NfezPa7aNHPm0gP9VKtldHw0gGrbnf/njtPGJxfumL3Bzm4zGhtbU9M8v5NsC08uNe+uLt5s4GL76Fdt4dwHj6L5a+Tde7tg09AR0NRCFv/0hnfabog0vVyn9rRnFQznUjBpjKm3xh22zZvqw+blg95sRDh8nW//np3zU20L2hXp25zmKNQCk8UQ3PI6mPz/zPB9PVPnV+nBIDRaCbT0QCx9Zvv/7/zfUeX96Mfrbb3gZgieaNn4Pmt4zpA+KOKzq5eyy1AABFIKDSyRWTi7t598KqG5W1DmkIVi930+RNnxEKzsM+QjMsJVJ+5iJfL1edQZR1YE0wDnajy+BLY+j48GykzPsLKYy7E/xQKRyfWWoS0Krpk95QMezpilkw6Nojcx9Bw90Lmj5GKt6Hu5+CRPdTnCpvGk02adXIG/8iG56FYx5GRVwsbQHaQ6iXK92tDOA0t36ja94eR/U7eb/dwrqtje846nsYzCdApcGQTrnUxFyobTxN/T1geQuJ5NTYNwpNto7SqUv+q3jJfmM36RxYa/T4HvlYWRmE8VWog8rQYP2x8/++Kg7nap7Bja/mN7D7SKPLUsGtMWnQqR4bfRpUtwMhsKcUPuNYTQZW38kkzMNjGqO3/hEoBynMo/JfOexywwsEUn6DJgam/8xB6fLKk2n0MV/+Wfa9BCEd8iw0kcFGB3vNwPliV5UM6Omnntl1uR6djx8PqdWzeqh6uS3V49bfcAamGsZDtjwAetfvnLnU8D3cHi8XazgbzRQc2fx8On+6o2vKgPx96IDn6fG+8v3+l5V3o686XHEjY2SL8t1fME64fbY3PEpoG+JGFDnwh8Cb413F5BYEB7Mr0kqTPWIf/rHEghx2FK96K9sdl0dgd16TOk5uMJceJyVUkbYB1hd+z4aMxGXMEjwD2PyjcH8TitFuuPXlV7NGUSM9nMMEjxKNN/8EGLWbgLY9xxTH4Wmy7ivIsGkEy/0zLRuWPHKFNmakhWr213XedP/EKOzT/2gSYf1o1zE//zDzmw3PRd0stqTG9X7w6L/wu0K7CsYM7Lb8I3w9rEF1Xy4kD88Xbd8BoabymH79dRd1vJ8D0/37EB4ezIZDVvFAFu+Q7sm3uUrq6YW1sfoipWjK9UjfvornPJbRQ4+yPS2BCGRF7im6HCfO7Y+o6MiPR4HDwmfoxeth9HO/vgdxnFLXDaZDgRFCS2ab/qHygx78HV8SETuLHGYtWla//wyIrhyEQ3fXOnh92zOWPvMTjS5fj7CqnzNNGhENV/6vkfgpG9PSkJFrztEMgUMj9qlviF880WW9gk8GipPlbzQ8hmPYKu3GSr1Ajt2Z3zUWthJcUWL312te3M+KrCT0xhfmgd1p99or/AXmCWCEJT5onpiCJP8KOAzmBw2Z1G/6eMWbPiduXuR7wq48W2cZ5SL+ko3PchdIpnM2fBhK2hNR3qbxfWPT0bL1T84UHS/lLDg5IPl6u9s6TiHMsWREYOVt48NUKWEkE9q1dFshLkHo52XUdOVYbTUbhuATT/jjd8ztnwZgn+/H7HpFy2ONjhQSjQRGVUXRf/wgpu593aei4iBQEXQvqMQcetJ0Een2Xn/+I6tXBQ2Xi4vSdZJH1LFOUn1sOHTn15CcnH/5uv1mI7Sc4gtelo1DDa/0IFbfQ7bntAxurvBHtgd/6O3TxPn7A8fG024YhVVVb5k9duA5jW80X/+1RTNPcgDRcDWcq/1AW1d4LO+q7d43AP252e2SjcizjcP+XZ+O9jnTfwfPozWb6t37jq0+5xysJoJ9P7wFs2nmHN/nru34VFYHaxoF+zOcBsUQa/rgIBlfSNmLxWU7ri6klWsJjZ1UVXBZpkywglzGrEZFxC2gsaR46lUwYa3EFy4bQi0fdFyQex/PIST8sFl87tFRHbAVqLvNIr2WBsWSV5Leb91bTOV86Kv12NA5AgfnxTxqQvY89YZsE3mAOu7W6XP1fmxQlt8KPjUtcs20PQXQzk9iEiar82Wj1fyhyf48ZBkt2Paqvw7b7fnpaynP/yAVthj/7c33fF4LTWoky7EmfBNIopEpYfaz2dov+3fd+MzYNsf6nq/1zCf10YCoZoaCHaVA/rh6St/fjB+bHqGtOlsyyUtv9Rb969886d5aMQZIot9Dgdm3j0CudvioKOXC/W4xR/8XqORnl/gW298df7z9+j5wD46g1pUwVDNDOq0dldv9SX7n77XylYGk5JdHUi3RlZaXiPG94qoAYD4Dzb73gb7vq88uJ1HfO8oc+e7Fa3//D3Z2gX5fJsLDWx6EivPxNb3MElnyO8wJVt8R+RmnBNo4yGkf/q57wBnH//4kZINJ8CbD32V/z9XCuD/vlIwaKlL/YO0r1mun2Z40LmQ1GCEw4S+0TYbT86oz31vYL3dHAd+LFZTCxymiBUvJQTzvlapHoFzzQYETam8cGdsx6CMllK/BDBdzz0+PzOcL5l3l+Du10RYW40hnzjyWuWmAx1aVOGVU8eubTmLzIR6flFtQnl5QakbKMY/2IPRlfIW0qv5xfjt02GtaMyDIOVs7E61687jRQygxl1nisadVq+8uWqQqseF4l0IwXp4g1RS34ZPpE5s3HXf5gQSKSjR2FVj/ftBx4OTOr7wLYo8IKj2p4Nn5TNQLN0bMKVzJIKRe/+IKKxw6A+Lz8Fx/RREXpW3Thc1cmBHBwHJjLMY++l+CPF+CRGYnikgT/44gt+d97CuPMf8W7oBL8uhnVHXns7RbOlFAI+cSan6kE2wgs6PQTieTGy9ycRI44Y8jBWhIFI0knq6sUMHO4m74FPQEra8p8kDx3I3YBWoh2H6nBwJ7IcswuotaIZu2lEITesbkvHqvPO56/USmO4dYCxd15rCrMrgJOKJmrT8Dktttx1439hATwas8nlc7hw0w67B5ys5g3WHV0fKLAbQ7pCp0Vxci5c0XZ43bGsNrZdtf6GW/zxq16U+HBIIZuiYBFGcFbk7X400Aftv/MbBmm2N+ysIIRLDD9X0OWRzb55L+FD1BxHt2NpesfTbLPm8ofrtcItYpQWeHKTQJmuXfsA4d5dEPhXLGQFl19fdKyclDA68Tp/ibQBzcY1fsF7dEC1wr4IDvH8E2Fx0nyLpu2eruxoKZF+mY78pxfxX26QH92v8IquxWZS7VdFkx3yesAuBEC2ul2Ugqc0SO2tzrtn7c+2B1WCdoiaw8pXEGYTG8VCQ9qG3bESVnULXS57YUS8+I1c3SkAe8B7VXr3lrmH0zCRZ1xPsvkTNPXztyoZbfGJXCM2cQScPoC6GMuKft4+7AKaa8llalW3/Eesi8V3AAe4cfG7dGqyJk6xSHnd79C6lRV9SZTBgdzIP1IbV1nVB5mOYufuJan0yDn/xsjMTklDHBlm+Pq+BJq+fXY7VBNvusld6U1LNwMBecIu2xtl5DJlHFyJokuXS0k15kC3wQvUzsgZyiXMOXlFzwfqkj6yXjncFnnPxhPGX0wELgGNDP78PBAD1PSyZdxGhO3gZtprfTifoLvLQr/qY8CcnymfjbocQLMUBHZ+lOoy7LuDh034kOMp/drQqvV0CX3pRnJhCzJajJTZysQQtvYrb7LvLTbFlD9kWVrtWAOsrjgoYnt07Nt+QY+2d2SYsykalYZ94w48iVwOKtPuh7bzl01MrRug55pVqx3WbfW0cUoCuFsW6XuJ6HVMQgEuV66TB4DvMx0/fQz7J99TTjg+dJE4yg5xVMxHPlwWMYI6lrbHbiPH8m/TFTLkZCPNSUO/70XTqGRoPyzdVsGJoaU5ecVTCt63w9NQqkT4rS16CFI+IhgduB0ZJ7TpYdeMNn4bZAevF8HgJlHNIT7L50Hsx+I7w0WkQu7iT8sXZtZzcXMKE6lYmR6SA+/XvPGA3vu1ZrxwjTc6sBVA/Ewyw0nqqYOftQjRrdl3PhvjjQCNqI5mTx12fZaiPkGwtsZjtDy6J5rsE+N+1Qr+z/xjItZcVcT3aFxq+v5do/zFQLGpVP6KDf23d+RiXEB6fHo+d8srVnVz0GvTgfKRGLz/zbpofmWR/lgpr6jq6c5S6HvjuY4ViJCiALxpqgDkUHtTfdXy0zI9HC5KvE2AzCcOcLe9j+rf+1GzpmK89UjVZ7IoSb78/nxylbuWm8XSKz9p2PgwjBvRqfAlpEXHpV8w4oD5Agqhlay7/gt4Iq0cOyWLNMViV7YVeNIkE0WDeD8Pb2GVwOV1EJF50jR0epWWDiBcRNf365rLwUzrw91kzbPTyLlpvJlDAR+5kmh4OQz6oPajgcopEsrvnXL0SwxW2ASM/fEbK4LKP50vQKuIvxkh4AfoVQwj5KY8R4X/UnaCWk60ke9/w1o1YAtl2K/bKsNL1rst4wHng3Up0i2fGlpBUIbyZiks4Oe3zZTwdOHD9JB36O69vdtJSmAeCh7WDuq/ZQLMYKIH7Rj8ijKw3MLThI/YiGqZi4q45Uiv5G2YR1j+XnLGMARs4CYb0DN57MNe80kPDylQE/D6q+fHtCPBUsDNWfPJgy2srtc+kfpPx9xTYdH95M/Q6LkCS8DpE0+ybBfDzjscK6Ra2ZANoJSyLAlU0W68/Dr3x0Pk0Z1xK3yv4ib2gQLErS2pahyWaiWzP4LNfK7TOWpiPjyUrQXtoHHzr8kBnf3geUkCxB6dTtPborEDxUu6wetQDwE6rpoFaCgXqSGEXrQbmHXj3CwMbJq509t43q1Sa0gEjfnrnnSG+oVxzSYfdu6NH9Gv3DowPtx8+efwDTJS8A9ie6js1p4LUdF10Dg7IwkgWJz1aokfSwIfvMXp6Ym5Y9m87gbE9HrD3qc/67O9BAK002OPtUoy+ZONsQ5CRFzXG5Tcw4WvO8JPBO464d53TW/GoQA76mHx6inL2KR4aeBaXHeKEodMnyeQV+ELxjK1MofrPtGkPTgchpzrj3/rsONUqdcPeJzuP/7KNL/QQS6aPjduvjSZxWFvZbB8+fm6fryd0aGFXmAlVg5xzada8GthJ8LLh5TengVOsINIODzQUJ74meZl2MNiREs1vuWNs4EYRfo5fF/uJfsjHURlbsPFLqr9SnfFF/IQQXSITGyf0GdYKCQ2MEiWidxjrA+PHoYdgGRWMjOhRMzVrUmixxKLGPN3ytRSvBXwEzptIc1sxhriPBPr6YuHzKLbu3Cdp+w+PLU1YAe2rloOrdXphezx7bL73Lgels6MSvky6mtaXaobq2/SxuoYwX73y7sAdeqtY5956Pm98BbasSqmVGGrEBy8cQPfrdNgJh1Wfoy5M5Gy/Slgp/Iu+jsf7C97PWYgVPj2zKZbupnSDdYrNYhfXy8ELJLjxIWw9VkVnwD9ocMMnwl32bdShyzEAy+vmEL7brpz98d2j4MXUP7WPfO/sCJSEC3gTLiNc9IWSYcJLsjXG56SPO36eFwSObuZSjaN8znaGkMHbS4jpKY8CMLZl3P/j87ulPUTrcfx0MJOlEmtG/RrIPXwLcjnzBs4qCw/LBSstbO72QlqvHQE7H9MKMo+TkLDF51ilGoH71H8QoVlOAzGUXwv7W6NR7WZzOjHzigNMkCzqfx+g7l9sb8vKbntFuz58d85NlZP/4lFrGzBMYZnbQEolEfuvyqnX0m56qCLniaCg1DrJZSkG2cJdqG7kkr6yHmqA7OUae5e4dEcenxv4ckIO+87dYavMoA2VOr6Rjy0G+jwqTQsVJe3p+esp0ToUNwXENjlQP7R+9VIcqgzqTREjYXegOXObnwlwjkIU6dWbzd2dT/7OPzWTcM3ZB4JQejmVtemBlg2xlhJ4qASfGhxW9NV/FC28opuNwNM4gOWN3OoPT6iXnsJhv/EfaI2nEv08rYk2vSRI01kwsMWfino69U4Jt/yEZs1Y8sVuPq2UH9oKre9Br/db/pDr2+2M1eW6uv2svAw5L9Y79phb5PR9Yhzc1gvZ58sFzDfaCXBvly3Fr63k87ce5+Itbs+4smgJkaH8xT92P3svWndPj0AZchVhXbDLZyjbAbiEnYetxHjnVCG3QCqnn091cbpH4/5xayBOjjeyY90csSMWnX98RlNXT18eN88G1um0w26pg4iFwluQT9uQmzsRPDC7x5sG9UfBI0kJlrwz7lvXIn7fYg0H1d95bOBbmlIkRLe3y+6HUgSGDBCBMlFZcziPBNzmr0v1Xbm9Yn+aBLpKFuKzpxnRvPETYOsmh/GG/yyLLyVQmIXQtBeLmnGnFcrVae2patdVvZrDaoLL8rKwps8rmPv9GsjZfpawoeSiSxrgdlAKlpjwg7oMLOiBBrPISPATs8El9s3pwUF6PGkmvG45baYXgVu+RdGe7MHiFr8KDh+TkoN/NV02AdUG1N9zWANzAJix/8zQyL0e+6ui6vuyWuEfn//Tg8O86QkAD8kFq5ciG1a1sxKgX6rvtp9S1L3t2ZZ375JSd+/fhkXsOQV6jVji676Ya1rgxQFmMibYCX5HfYmcLoQijCyyjz6hSx4/TYJ0NE3s0vcCmousrtA1CgNJ01LobMdTD8CdN+K7hYWhN700haPO9dQ6fa38b31hYodXaj3nFsz4rfNQOtsqvZf3FRDTjXiwexeUno/PAnQpQso/PHTDx9sdqlVVZJK72Z/+qee2jDv50uIRzZdGdYW/fCA+7h4SI/VcU73NPUj9A/cPvzY9Zf7hF769+7wek5DExz31IFVUnWcLDCsBbnz+Hz+b8ZxkcNmVPrYDzcwFJeW3hp3JDVtdPrtrtiAITwc+p4nXemBceduB83526DN/HIYV8vMIA/a2sX/VJLCgQyXC8/fjkH5ge3cqDn0Gz8bvQTjvROpfuqQFiD5se1V9F9gC2FYieZ1+2GgNK1/U6JcBBJMbEdxflS/Wp3LkVVcJ2bPyV/e/MrBl70I7bLB5BPOuSwX4DK4rNvlzAPbb3z/uvVdKz4zdXFqtqgYfzEA4cJhXz2eOifDG5zw65ttsWXOQTOhNioaE6+XKyH11X9ILJTP+279/eh0LWk7R47mCcV/GNtw9+hM+7yKTHT6AI5B500KN69fPh7/4vF9CQuSrJrHhclMcoOWDR089U+oFRy8JLEX1wl4pmGBylKEBw7zwWHk4eUQlehGkv/X+0/80M/4a/ZYeOkjCzP78C0APi4t94XjUZz2nJXxH9Eg4I3oM5PDihH96LP7oDpj38p6Hl30yo4vFW/pi/k4SvO+OT2qiJhpmHPAjrPh7QZq04oZp09NwejU5fqS8C8b+GmtgwzuKQqFiP2u/hPJ12npRMBfmtFrPCvzqEabmd0xqFr+lTNr4AepeTyU/bPoEmnr9Ilvf5WG9tTEB6kU+4+mxJO5y2rrC0XTrKtM8q3wGL38G1eVJsQr3KlupjkMg701r46+aPl+Z0cJXpu/J8ay/GN2n4gz1y6Wk2p/exAEkMHJ2KuE92ETfrumMvfxjIzpibgGznE8lLMpExHpnVsO6T4wGbHqLnirjE63PkyLCTZ+S9fzqwWLI+xiqjjHR86Po6nH5FivEN+f15x8Aoht+DMcennFO3xe2mlBF8pecbtiY1tYd4ksdwH1wOiJ2kbV/v+dYOtyP9Kby04lqT/2fHqMoI2XUyOPR/vPriCAfu03PhLGkYWjhZEmLaApJFYCmO3aExWKst+B3FmH1uG+e4TREn/F0gPBdmyZV6c3VV+XnStIweREJHDYOvXa9KLAdI7rh8w0s+jNFsMCYp1YmH6P1V6Y22PgOEeJ4qIkFvB5s8UJ97XsE03M9VYB7SpgqDwfk7BAHBQxYbVPfzb55Y+/mUt5TBMnegFVEH9yUijMeWur3oRbt2clJIavpBbtoCHRmyaIAh7cik/V3r3LmVxRCFnEZ1lJo56NNf7G0+Y+EK184Z8Yn6cFr0a/YeMW47nN5jaF4fS30UX9eOhmPlwp+94mCjgltoyVpJgPulcaldpMTl7LHxZQOt/dK1b1VuwT/3FSas1HEqR1/h3lPhuBPj9D7scb6+v08e7AEbUR1+WWyvcpcE45YOpApslt9No1UAInh1dSZlsL95w++nICjF5M59fLFexuOXP0j4vFb//MjweNkYbQYyzLMeC4zcJ2wjv29CIdlOPwkuIMvhZ78vZQzWehiKfd/V3R4ziZbRaRUchfY53/+Bx+JvwK2RSViLT8c83mLV3g7CzxWm/6nD3/61tb2e6r6Lw9ImZo4cNkVPo6RNLiMSxwDNg3SsfNMgD6pFYBwH58HdHhNl2iy9scA3i/6h9BdWIC5iJ8cFFVi0zPfNmzhm8aQL3IRY+d4cZkgaPcRPIdcJ7yYC+4f34R4gT/saspX3/hjAFLuqlBzzEP3+8cnhceBUDVzr2zmgOXAMMg0aqcTzbvDHfBSzcUd9nOG9bU1pRfY4hutbZPX6+ebzrC5BAlOxdYEzAaHER7yb4PuMK7rTQ+kcB9YR6rw6Q+MmqyFMGaXA7KOx3Zg14CM0I12Kzo6SNKJD4UQ9EM6oAoHWi3Uw2JAddIy6is/5i71z5Og5fv1v/2aMu8iwaf9TOjZCKKcJY/QALdGNGl6vjbuwvNgK5amOjUVqERbfkyBnZkP0l+IxfaVFLRAig8m4hrvqpNZ6Uxpw5d/32c5FC8NLof4h+ScYXdOkamB+okbioTBdv/xoVrwDSS+i75ebwAMQPO/hy6DtdsbaLfVB9gRzzYUUKzgVN26CF7MRflbP7zVM+oh/CQOPPbHI1k2PsXMxS8AF3Ea1hJOzdfs8glhA42SMPVlswNt7wSe63dKT9f66P6+StXISW2U+ORIP3c9PdEINz6JT8Dr8nXGaye/OeZQp+Mv7GBDGIC7XxrUMF3KNrzi4dszWmxWMtj4B1zh58jH1D2TD2BseiE5LGKMA/00gd/35QVw80vptdklNT/hnQOknXTb/MnKnfVBaKCmb4OSN70wvtxbcjwbYkvmO5pqWi9eARPP5LBbnPjhTx/81SOoLw2Oy9qfncLKFxF9wN+iz3nbefDb6x8kV01dz6Et9nA5JD9qu1HPiD/VI/TX3CXnDV9YH94EMLzDbfDHWPynJ+0JmFi7yg0bwv0UwBNbf1hBVMoZ7I8vqWFQwnmQd/qEhDaRNv1HvSg5uOycrqH8ta4qVusDiNiU9RJ8HGwFO2JAI8qPdS8XSfHAWE8Wl7GpQ3Au1546IGrY337++TVY3fINm7JKglo7lhhT4ZnP8Q31ULxgARu9sneXUZhieNVSgEDXKmDzK1qYeLFFcVy19WpbogkTO7hS0/+e8zWX1wQi9YXpfcsHrHncWwiObU43f8D9iRmRAL3bdxp26Ykx/WZ38A4NAQGd88G60Dj589u377PLpxkewuOfX+LRSAF//iJ8tyJFXDzfhi3/GvDOdiFGpzhzl/cjMcD2e6il8EfGJMRaKPfaHp/ym64veb/ToDrvjc0fm8HaZFMG3j33RmyrJzLmnzkJZOOLWq9piRa9jDpovc4XjD7+pf6XT52paLCuvU/RNAqfBJpL9aRbvTCaUaVk4Dn0HiK9AxhN02WV5UW7ksOmZ9lWX5JCZrZbvc5gH55xHUhJe8bm7kCj2UsurWxms02LrX6xRsrPAFv96q+elK/nEwfh9Xe+IKhL93qRvln4x8fxNey+bBUDSsDu0Z1oFIu8O4f23MH4267Yey+iS5xqKaQXlCuKrGS78ngttsb/CGC8tLd8oTIQoDwdyq3EfXPZ5OSzVLudgfpe6MHXx8dOciN5xRqNEtb8+eFt3D8IifkfWLwBmvDehT62H/1xWJlkNnAwEU+C+Lnmy2oTWzJslcf2FUpsdS/T+s8PfewhYQstQ+ePL6Ol5Op8dkBqS398kVNyzV3vWjhCedqX5Pjnz1oh4UF7et+xelqJvvHJrX6wdXF8pTVY728+g5wtzlSpd29GJydfod0qA/ZyY8/m388UoZNdCNbORVrTDxDIH1/Cdu9+wApugge9lzCSlNqBu4rIrv7xDdzslHq1Dy8JgP55w+jxDNnCySyWYZCsf3pJp5v+k737wcPaBZ2H1cra7C+fYP0+vIc1rEl1zNlrpps/4JI//7YN2oFIa3MeyJr/CrmwbvfNf5VB8Vc/camu0/OzfNfjXz66kFuARK17g39+glEhBy23YHsCGj8gMPX3iwaIZvl8vOYVWF5X54+f6FQXquSPT5NbrHVbPqlEaFvOvPkpob7Ii8XBAcoO4dOqrAeaOC1M3b7ASj8arvCH55uexG6Q2y6fnT8ELv692J4g8e7GVxJ4cIWJvDnW1Uv3tEZov+ERSfeiHUgNbQT+6vsB1ISIjHZjA3TPevLr9V2+iPlQ/r+6FMj/+0rBfXx05FvvQb0KIW+AKfVrqonkA6bfvUUS1DtAT7pydcdQSgVo5OKRPp/jfljxoQtAog+ICPOuiBb1l0C4W1cZ+/efoK/yaTZhEYUxOqpvaeif2ruXT3v4oa7hR/o4uk4GS2ctsN1SVi/c2YnhEAUcVfWvpc/dEguQcPOIH2taDzOwqgp+sPkhP/C8RK99IDXw1jYGVpq9kvMXz4TSAVkvQoL3hS3Zl8VgrKsX9fRZH8Zk/hHYQ+1GwMcfh9XouRXqJBnwaYR0u8W83aKtIowd29OAEJz3BbyLO5Oa1F1remWGeEzR8iPlAJdo1pPtVnDV7bGrR0hfpVLJ5OFFc6zbydFt+fChwdU4MrL/2qa7qqnWgKEFF/QK40+0jM36krH5kCjm8zqn3hSPMEXsR+ThmbNxzX4jRIvUES675tFEOBuC+/D60ajvlWj51jCFh4Qb8KnTBn1lg5eB7GccsDcB5M5hwntStm+u+GK8R32uBBFCVx6e1MxEJ1+ai+2BMlR16rfJN/od9MUD7N0zekLOdksaODMcZyhTJOSBu0RVhSRLkQMC1nSbFZQuEtQXRcGm+dH0hXsvIwj2IsJXFX3Zd1HeDdxdiE/d+JXnTHqqtswv0pVIUHAZVet7BbvX7OJy+33r53h5QfMpPakX656+7C3T2Gab/qjyfAruUldcCMfm+aR+TJdoxYdXAG/ft46EY/6uVw+LPQRV4+KT8cH6bLC+gnPYV9S8vXWXD8K3B+e3ziHujXR3Vap0BbrEn+nJtMd6zosxA52oLdg0+QtbC/ZLYFmmFPuckoDl2HwrGI/nE9qJqhT1P1qlcpRxDXZuH1NfRnww4XxCJ3pCd3GYA3kaYZdAFfUP5+WyivoQng1OwNp37vIZU+8FuiYrqfqEbr0NCS6hOCxPdA2+Qz7fd28IDXZ+YYzvU74YP06BwV5C2CRQA4IQQvPf+Te0k+KuscMaeJO8GzpEkT4cKuNcQlPwLBy4ns+Y5PgjTH2hJ/v8ehxotH54wIH0Q9jPqti6Ik3bncN7RE/C+1cz7a4nsjiwJ+JxMDNaGecCfg8MY/xQ6no+PycPxqdDSe21UvTei5pWqmXJIO9dd8jZuYxL6CbpkbweUweW665p5O61utirh6e7RG1pw3sbrVQ93Ib8Y10+I4g54Y6uT/PHFqdYNbmq+Tt1/dUDYyWNEnida5fInCIwKh3mF+QKn+FLclvYOHeDAIOgbrH/g1y0SYRGDmRdp/qSIsCE0tUOn0/q4/Mi3YblQOQRfOTPioRPm4LllANJelF+pXcQvOvl0WUZ/Hwyn4j6+KqXa9wZ4JPcPKpch7Fm2rIS2OdSi7Eknuq5GE6NFMa1Rw7NKwALSgQBqr/UpNa3HdgKz40Gt/hF30Nv5KRrZAcu/jtHx2g5R7x0PAfgWkIHScEDsfURP0fI+MTCXnT+uiMkwITaw3EQZwcnNsP7rpc+q9BTl4KMjbuPC+HesSQ0zmkwCBZaX3DvnCQknl5OzsyHnIKgcY+kCs9rzpBZIznKQY0k5/fRl90civCchw+sxDbV15JXMvlacg61XXkcFscSGtj/rjpVD22ur8/8roCvbnpkjW8ffQ45b4bANCd62vaPlLydgRVNkKqC/qjX+uWakBLpQc15HutVa+sVlLvHE722+F5bS5qhC8kL4/SKalb6Ygv2xYLwWYYRI0rrjVKjVind8GJYAo6UQJWVO+ISjneZZxo2fGTd8JffIqHSFQInvbtge/il0cqHVw0+J32iivrl3UXnDQRy+sLUDgfgLgO1CVxvX4sc7Kxwmel2AXxH7eG/f7slqICuSJieLvMObF0SRDl5OSOxDn2TT6P8E0Ez6x/qTmU6MD84ZvDqhQIRC+DovNolCNY6dAgDnhi10XR0oNJ+VbQktwtbjsceQif68lTXlp07h5ESyuc8eKDy96T6wn2mXvoUbw0b3881okosJrAwVwHxzbHOV/+gIuh3C6DWZW7d5fCKKxjvWIpt7Vy7A0fUVB4eJwsdOUEc1qKcJDGibwF73tj8O08g/4zmlt/lnBb+/QV+b27c9oMM5HHiXlLXNzHOvLGs5/30kIArvHqsJrcFUF61OyhM2kzVwgXDN3ylBIIxjbHVvAJGd67Ow6rLB+p8/XtExzQU/vAB7amjRXtRTiTIEWAR/sdsneJLWsAZyz4+N7QFROUnEeKBr7Bz4mZ9aOyi+JevLRCAaEFSVII6rQtq8KHJ5qyVWqAp3YRN99myOeXhdq/7cSRMzlx9yoWiAqxUnngrMYDuKfk8fK2VhbH/VfQZNL4AB/5GsL8YVzbm6VzIX3N8Us9KsmEGblnA0DIo+oyToi8z1ykSczIPq99t8NNZjFugDe8WxTZDNTvOOw8K045iQ+BEtlgiF8IBdz128HofVnTqS2gZn5rGnBlEs9R3W5chzkUDf1MiWoiJAqH/MIjc2DEbS+XlyFxHL1jpf2cwHV+g+fsciXky6+xCQv4vP1Lj9Sjd8TOd+aMqa/dtvfJ8VflJgkUUxBTzPdMZWJIQKhVHyGHd4ZxUl7ckfZKrR334uOeL8k416L2KDzVzK9Nni1db2InyTE24dow6QRYfN/6HDpfZ1Mkzv2jy++s7OIRxwca7/uD+8hdV048xzDdNkEB1KEfq896Ur2l31aAQ1BEib6Tr7B60GdjwkJ4+fBpNlr/M8ngnCfWqqh+mRxdmMtlNAzV67QC6ZH6Psix5BtavYeauuBp5IHyXI93ON1iICjlI7VZAEJWhzgaQZuCYHwNq7rCr/4s/3dYNJHqHSz317mjAr8AH6AjvQr7uHNeEokPof/v1xx/fY6miI4mV+mCNSSPxJFSxv4uNmn1v8QjeUXNA83SFLtOKXQjO9veMXSAf9GnxzwGs0RRSlZd+OlN2PA9XRCFWPkagLyjhBOjcWY/9eW/q6+3xncGN372ITMFbH5tDqkH5W83YOuk8Y2T/QPC0Wwl1nN9JX44NrSB+3gxqdZe3u0wHq5MOdXGmujFX7sbfQ8l5Km+0Vx+HYVn5uwBBuqpkZWeXraHZtZIi+TGpdtkBLNe00MAwOjaSEC7cdf/iELzw9xyrL2EeFuOCelie3h+08NJZ50fXSaHFTzG2o13HVnHUKlksbxp2N/495WvXQiG7FhS/pS76VtY+BTvq/JCopSHY/l4HfLW+krW4v3N2bYYRFOYsUGzZajTzuTLDW2a26A3hJ1o68uugFyk2TmQ1rae+yUv40LMTkqqIr6clkBH85K2OMRxpND+/M4Hb3BeM/LuUj6eSGsfm6gxUw6rEFqN1TAgD+44jX0X6Wh74GPzxvfM3F9l6lIbx7+8Rgbrh8PONN4G1zjnkk/6+9e/z/KXQn0eL5mfrwJZ24Sowv1UOnwUe5svymXvIw+FBpKtds5k0gQAuydZY1zr+BvbqJSjJrh6Sj3iNclaHfQ+jJfSoFj1eeqs7SinPbbDHvl417lIdjgQe+pajZ4uDYFnNrwItRbsQ6fhs6i2/FJLTXmxsbt+XcUTN5AsrCmwlfQ8W3n8lUtXdBwQ8TKNl+Y0NTN7WgC1dUvSlt2Zbfsa8jcPiruYjz2YHvsvbDi3uT8/pe9+hP72Evocjry/qr4TAmXIZwb5p2YYXIgw0x8F/+Lw8I06Dqf1lROK6uytc2p0ALlEyIP69DGD604N/+csrTnbEdPeMwHNSJyLmSaBv68WDk6f0OPv0gJETikppvdwvWGv9nq2isXCya8MC+9NEhvV6j1cYJLTA7pX/uUtmJCMYTUOntpaujL73Lw8ccxCQ5fP+DMujC1PwLLttMNRXcZdXdfPgEqCZ4lcrDQxf0lL6w/NlVox8usadCel56yIwkAWwPf4J0J5GjP/40Fxtr74vL2ajv++72C9T3K7Ix1SF8JMv5fbGtwx1nazmjMAwFmj+x//V7zbb2NNfnNyM9wtVRU0Z5knhEaxdY0cvW/6Y+RKOoHYc5d95ZmOBVrDlc2qmua3zpdI50Lt9MmqctTKfYp+s0mk6ZeR4T+qI+bVZwbUPcpxo5wLMT6wm0p8eNPiwBV18i0Jw+z/SrmVrWZ5ZXhADOScMERAQMFFQ1BmgIiAihySQq9+L5/2G/2wPXbpUQh+qqptut0jIJUkeyTwpuIM9Dw90u7l/h5lb3DFA9tsguTLfnL1xd4Ox2BvEsCvHltuyCozmTg1qWbs7GHUoRcCHuwEjo/aGJRpzAZwd9UX3q17AwPI1AcMmwnc/s5KfI2gF1OpQIbLTvpL+Zf16mMJuT29qugf0+Jo7gJ+3HX2q6jLMoRP04Cf2JjVP5rX+x99cGXnUl7RvQgVYNcZOa1S684beXl7WuzO8vZwhg4JtKDe9moICvDQkzAyE/FhPDRzMb0/mNd4tInq7UH1kNo7sDU/mLjyYcMVLqLE2DueWmQsg800PH8ZgDsff1+1AmW46HKUlyal5ZmfANx7G1l51c1aPPfvDNxS9TJbQefFTaLafLX28i2rgaAKLxsNL+A9fLIuGSvCXv7ef96emwn0nwPxDXOw77W5gobpOAak+/j/8POfh0QSrHoFESXLy1Z4g/LveVm/SkGzFj25Yz90eaaUz84WwrjTeAR2xp2hiOJl0Rsbl4m/RJn47QPpdlhhCUotIWu2Bqa9F1lSx77GllzwcHSUtwHZ/vOBttNzCcbVfeCpnn0bJ3gv/6UciPZjEeJ5Dmz9sOzVup6eA9McdAxLu7BvULM+jVnTx+VyM6Az2B9kkUmkiwBrlaMI/fWN/HEhOo1+3aPmD69R/TteEdvp8hhu+8o8Vny6LFLe6VwYWPSDwrckiZQ04UdGnjllVA5sjv4SKc7pS7FhtwoxQKvXlYzeHzUBOXGpnoQT5HnXYTQ+XhGBQIBjZG4+60X0AfSBXPnDU25Vmg0pyUoe4B8ojeKPlaivh8k1zCKdBkYnIv/Mw+96rgmhdlPX3+emyaVoIsmFDwLI/DKs/lrp/lnZ06woop1up7WB9bR4Ug6VP5tZdLBDs0I2Qc1yFC9pVBej9OMGB0GnhoAe7UY+flwtu2oHV9HSpC3iQkvuan3/h/DXXxo2XGuHHNeL1v/y5xje08P0AePcxVD35TNMqkZd8vBwODnRf6ovebUcN//A/1M5LTn3tSAaCdtUTnNWuxqYwWTkfqp8FD9ntRVS8Wxf3He4V3O7jC3krLbAXp5cZXH+fYgFH/He/xz68WMVEpP2Lc1Y6IIDirF5wsoAxX/N5AXeR8cORsXvz5U//WPkSWt5Ja8/GNSrgys8Iv1KY0xsf4D+9p1MKh8+iOsr/9CB/RnGy7GJ8+6dPHU633p7jkd3APA0RRuzwqFkIaauLFJvU9+wv71b//ccPfLaphtmKQAfXfEixc0rt2Tp+G+glXfNPj2SbTyjA1Z4pIkET8mA7B8bz7Tp0v/J9ybfrBoTK60eUNV/yc/fqgb48M4xUNR6Giu4gxOE4011onXK5Lm0HHn8ZowHF0rCk5ieDveU+0OwKKGGT4SPwfttnZKzXw0L4beCbORd8Sn0rnIRIiKEP/JEIRY1CntIjNEDVhtgyur7uA3xvNaV+7gn8bX/Jsvtaor70cY7t986t2ao/ACWFA319yk1OFPlGoHjJFHJ/3WHNrpagg4TWMoF3RRomkrIMeM98ROqM1pb+xT8Dq2RPfD2x1p6mbDxD6e4D6phznJC51TJg7soTveWemSgK2GWQP43nOsW2yPsuOjA9FalA8e5TA64cff1Pn6G4vPacDoepATn3axxwPajn+wM5cMWvSN9RM1/yj++Dbpl1vAevU76gEVjQDImHqOJJ+b98FYmuSnerfjlHsvk0fq/kisC5BPm8uNSEm3iIkP6Eh1y5+OYNymxwsEWXZiBddFgAc/cO3UriAeh7pzlDaR3kfMmiT8i1KTxCzY8NpEmnJ19syYHQNc6QCM/ZrFkvfUWIFulLxJOTDfMNjTqc1OuZNLcotudVnzWal8axF4VjMnuSdYaq2PU4rFgfLiHzVNi4Xo/xbt0jkLzfBeBmY6N2zcer/mTqfLPD//SajuBHBv/4ahg/toCrVWr96VE4kmIpob6uLEDcsoa6SiHU7H473YyH6vl4exbFhJnp3oGvs+zTaN8cckYzqwfCJPhIDok8ULV6WuDwNOZVL3nxZeDGDV48e0Nu1HwNBI3cgrFvk5W/nPly2nwj+DjNbxpkVjcwfkwq+PrlGSrocxgWlQqFdgyFhK56AF/1iQrgkMx0r1k45F62fRrSIGKMTLSvF509Kj3/ne/4j19waguF/vrdMwLuIcup/tr78LWZttgZ0l0tZihE4O0GGd2/7sUwyq98gdf39UCteB8na/x8wjW/kU1A1JxIpYz+9F7sPUEK5mPyg3D36g3UTp1kc3Hr93CefhFGz7kc5nOBBZ1X3wXN+UkelqZXz0C/Va91X9HH/qsHAPItXfTJL/d6SaY5gB8lh0QEqlFPpRJ3RrrIJt72eZCzr3s8G0817Yn0pxdPhh/BUK56ovLhXCuuPDJdA45FC/fQhgttszMMouuBvB0GgDyJxRMm1/MJ20W4BfSWia2RWfyIg6sogaHVsxgUX6X94+u18h2PAZyU7EJDu3qAmU+bVncKScW20m7zJbkZIxj12V3xpZAsncYagy0swdGnr8JlYNunMY/jAUfF+WZThuoRwmuC6K47ZZzTm6bCuZZsbFVyXXefZ9fDOr62RH/JcchfxX0BORRGotdfK1/+9DNrs9fw/v2l+ZyZ/QJ294eHve60Def7sq/gOXQvNJRFa2Djkgnw1H9Of/WKkMk1Jvoesc0/fWA57qUnJFv0IvPyaOtliBoZvqfcJIp0sFZ8NOngym4Ir/wQVCL6ubBMrR9RyDlL+Kp/QOXhv3FEn+GgtJ9Uhv3vaiO5HM/hTARfgGftUyFdWVuwRet+g0va+fTYq9rAHhpZID0VWwLzLLG/uqJWWuWlgIDzaRgY9gAEwLNHujt+h4QD986gFFsuknrysOltbSF4a+qTntfz58Eodfpy/XjYVss2n5fX8waTk5+vesM+5Ofu2gNhbgvsPbexzWPNdI2LHM1Eu1mXQdRP6gj/9N9AI2I+dnMh64jiZOXrfs5hfQ50/1veiXSlVs0LNbVgXygfJODvCNg3cI7we9kB6uqNHM5nUTmD4SPENIiHd8LPW8+BSa7VNEpLlM+3b3GEH+UOkfxasP2vvqTH6Y8oeprWNIv0AgI5eiLpEpuJBHTLMi52PiIQP96cDebFB1f3mfzDE396vfanH/+9luQTTw31bV7XxeozGMWnSMD2+ptp1DcuX3DViP/0b+fH/XC4H8kN3BzzjYtT+6sXptInkDejQ+9//ARp2Qjo79ditPIDQtsshe9zLdPd9yrxJcsyFX74/PvLX8lMuc5ggTuTPm7ubZg134nAO5hGIk/3T75cMWpBuZTeWr94Jn/5ClbzUcbeaXMBq55b6n/1Na94ngex3mUR/OO3+9AV8yXbDhXsaaXhw3Kza9FMty7shndCQ0+o7VWPvgHmhg7Sx7oexgzZEbQ9d0farT6FnwY6BA47+Y1DWawGFriGDNZ4hp3csGxpSE8p3AxVisOklfNpJw7xnz/9V68TRFcE45T+8C6LPvY/frTeD7xz/WhY82kBe/+YrPzqHXLBTBvo2rlFZnqh4Z+eaIRRQ7EnFSf+qc4XF9zmhmILniEfh+9nXaTZSthqC72e3zuuG64SuuivnrXcZTmCQZv4dLuMck4voXgGfqK61EpGDMZ7sTvDP7yzSxIj54arisaqf+FLd8rAX/0E7PS3Qq1N6NsrvrrBh2dcKfpa48CpaVXGyi/wbpzMkN8oM2G8VVTqbQDLx/3rg+Dqb/Q1vCr7r36jr3oeGrpLYzOaBR00HqT9y8+gq2QmwBrRmMwfdsmn8hi44Kz2NV71rVxM3r8COAt6Y5tsvUEJlUqH8Wz21FfTH6f9FSz6Bzuff/iJUzMo4c3rRGyteJjHULT+9COKH6Y9zGOjV3/5gVrkKQM2wHfw/2kpkMX/3VKg3p4Rdcd1AJaoLiXEYvggwnDn9XhOMxG+K+jTE9TcnB1B10PnDWd6V1Faz8LGhvD2+AaE4XUXh/fIzkCoTg/E2wet2c3WC/gWjoxuz6U5zEcrbfUfBhjvG7Z2FcpTAL1+ojToJbcW7aZ34HQ/u9TJPsIwJkoMoXymBDuuIA9L2SwyvJ8VG/ujswnn61st4YV+nthu210oW+PQQMPJEupvoi6ZD+54BKMmh9RpaZdzIbmq4Ll7vtFPu0c5vfx0C2THJSHawWzr+XY6FsamUQQcTP0RyN1TU2E3npK14DHk9P0abvASlSo5i6d8GJ/0REDqpB5Z2lDmM9n4FfxU+Q+BezDw7+/iESjBDSMb3z4m80m0RUCGy4n636LnXDy4hbHffRqKWBJzlmjl2QiPZY+0zSWsf3pzEv+uhyz+vAvpVY5uwDwsXzJMXAxJ1hIHZMfIwO7lwDhDXevrv1tU4/Nj5IArIfLB/ZLd/94H5JblI/QFGONgc9HyHkaFALS8tRGv0yzh3zAYgbawgZpzpw0kRfszfIpCQZ2S/8LFA8cbfD6iJ/WD3w1wS2pF8P00M7XFrE6Wat5FUGrPL4zmC7fJeRTXQd9eRzbKaA5itCdnWHW1QGbCH/bPdMrKcNBZxHmjSTYZgsiHQ+sLNBq8yR6nM3MgTOaRHtJvFy72/ulCR7jt6PEaeYkyJvgGZ6PEOPySl80L81lBt34pRBbmMe9aZXhC8gSQ7iNlDlmidWfdlrdvbLvjAzAPiykIL2hL91vVsHllsh4cyMvB+8vM7EV9GmfQ+F2JQ3lKQkI1zYWFfdvhnKs+n/e/hsDY8lQimrFl9y2KFrDaKzVLtx2W5ACPcJ5dQM3zLk46oO5NeN6SC0YsWfiY/MwjFIL3izre8T3MzuK7YLnEB7ztPH8QLfusQrQEMfYiUobkVrwdw1NCBy3l2xpk+fhooZigDpul69bcc9+OUdowpq6gvzk/MtMCAo09JEbbIWEy3PcgzStCgxTyYYo/WgDeQsxo8F6fqpei97LZ8julOzOmfKnj7Am/xpngpH79e10A8KueaMkS1V7M8hQZZ7Zr1q61jJNdFiJggSWh9mNsQ14PxgI3lurgi3d3gPwz5hEOKDcRm3VnUK58Y4LfDdUIqosEur/7TTfmEzvn3yuhCu506FItRCN6sIF90zo1ctB72BFeHz47j8MRhnyr49gAYv4rXXGB2isg+BC+nvUSFwhCvD9r9HknYSiqEmngcFB6on0/KFSY+Ot1v3bPOOpi256jn7bA8XeU6KvSK0BBn5jw+d3MZNENsZ6Rei/hyRN7agN8SJTDNDWgeO6v2BbSqp55WJowiKSCopQNOQ/rroViZJmEnY6dPS9j6UOliXUyQ8Z4d6/0GL4vmwcOQkfkXBpRDFRQLWihuwufNVFToXsbG3w6o8uwjNG9ggiVF7ozWp8vn+cow9nyU1psx284AnVrQvO8wXi9H2AJtx4Dy7GRMbL3dsLab3gDKnR9bOniJlw+pY6M+1myqdWex2Te/8YRXDUD0f2e5eAbCYceWo2VEq3Pbvl8prIPlHzToppe0TDt0NLA27qEbFh7Jpmqb8+w+vU9tX57eRjrX0hAOYyYYr0vkw5nSQHFaaPTQP05XA7aqod7GYU0/CriwHwCfehGJ4zmzuvqqZHfBPZLbWHMyNauu68UwO77hagx99EgDQcUaTF2KiSbTTcsbqiW8NBfbDLTXWfPXh4J4FKOIZIXbaqndLk1oHJbh3q38Jmvn6/g/GEx9rxhyFl2dGRjEJ4nJDX23y5ru4QCRjKqf7EGxtgDLlztBW2MVzDIZi4UulpGAZH3lzhkhluKEJ9che6/xB7m66sODG1ZBorhI0gU/VC28Iuy/Z+/AB7rBwvOt/mLPUGn9dyIxVlbBvCk0eb7At2aX4xKKn8YI1VP5mK0WnCNly/eMloMy3ZzMuEpUDYIbGsbSB12S1j6bkJx3avh3LT7DrBpHfSaKb+aM+aqADSSh/f8MQL2KsYjgNDZ0L0V+PY8bH0dNn5fIr7jSThHn6sJevlnYzQcBXvs/FsPA8sJKEo1ky+hffFhnmovbD1OCvgNBzeCsdA86AX0+4SqG3MxtvkwI/m7RVy5/HQTQthfCBvGLOQBnXQ4Nd4dXSUF2GT2byrodp2FrfJd1SwfN0d49++EuvHNrUmhJBHsk+aBXdBf7X6NzxA0p5mUFWA1X+x9AT74alEb0zgnksQKuNs1E/bNTVN/VZ2YsHjFNsVXQDi7xjtf0YRdgm1X6MDUmoSBN1ok7F9e12QG9onA7lRtsdUdBzD623dn9O5nwSj9XsA48F4G08a4UlwIdT3WSnoDtw5wpG2eW5tNx0cK/uKTlX3skFBlGP/hFeR6tj03b6LrzD24aCTIyhdPNnpQsROkgTztcloTO/jLn9Qu+w8fVzwFpsfTo4f75wvoRY1GIIR9iHe1PvClTEsfeoOYIwm8OZ9vQgVhewINNe1EzPkpmHx41TYIB1Yggen8Hgr4eItrCwwXw995CSu45gtqrvmVF0eh+ctPqDzvlny570EP9nGDyebTKjX73lQC0P3UIaZXas1rEvr68Trfie7cymT2YRwYoX9I8Wu3Ow4caxsBKJtvRdRXE9lTYg09HPdMp/ajZgPbl78nvNDvE/umTO3lGO8heIFeQMtiX2oyDaez0T51hDbI/9jkQx0dBttKRPO5LOtxQhhCRqo7trMiz2dZXtbxo4pHvWAxh1l5KxksfSdBovH4DOPveyxAYxt7mh+PI5ghGyPY/n5vaoNbxXn4ziMoj48BvTvFACt+SAHYLm9ElXqwmSD7o774pwp7FOT14hi3EX5CvCViRkSbRSEYoWveT3hXchnMS58x7W1MGTaZ2uTkDkoVpsuUUieWpWSO65pBhRGMnfL9tJe7ggLAm6ONAwcHnKvjOtUobGS8deuI853EdXg/9DmZFflUT9mLIdi8JI8G/Xiy5+HgIoi1W0B35j7L/+XndOP3SEDqODTy8G6hC+aABmxuQ8k66jqkdv9B3YpP5xzfAm10EUYGue4GaVY/T7D51RfqCCnLWeffOtV55zlRzek+LCbWAtjL3kStxZZqxoU9BOlmNHH2/sGhO2VdBYU0f+LgNT3C5b39pLCGh5AY5PoZ2DmNZYCs/rrGq/0wxYlN4NhNL7SZn2m+/LQnhPNdT6hdvln+u8FHA1Z/xlGV1jV7T6ebseIvNKM4tZdCK1tDn7Yq3q34Yzlt3yqE56uFVHmf8JmFMdTIoH/xXr2ONhluqQhtK//QYOoZH23JCmBgGk8iLpciZO3vyOA7rTgCx7uViHMhMmi/Mky4VNQ1++xkBH09BgholZGQHxjP4D756cpnnjWvH4MLj+a2QFJwdQZpwHkDz83hg21aOvbf+auPt/whemCJA7sRpQXJaUeQ5Hl3ztPzBoE/fIz023foHse7DrA4coyuPzlkpmI9IdMUi7qjYw9SnIQE7GNLwza9kpqdBrM1DjK2kCgcdD6inlcGHqFE3SiZAat/9gi/74JhjPydLY9Au0H9kgC8izdqPTt0GWF9Dz74MF8++TzhrgfhIMUYpxoZCMm0I3RQKuLdd7u15f1eRTDO8hB9kpM9LK73YHB4v74Yu8c2+W3fsWCs95eu/jOIrZQ6cP2/SA8PfcLfkQHh/LTOdKsbLZ/cYTKh29gH1G8u92QWoNAAz377+LpV3zU/rCXYJEYZ3sv5WC+f4vWEHNcZtR7ZlLP+PFi6Gf3Aiq+7gdmS5RufStjgSDPCgVxBIkP+lQk2T8cunO+mmsGjuT6Fglo3nHdIbyFFmwMNtxnK5cZ4tYDWQUkkM9/lDNYIwVN/1ZH825CBeRimcPP4pWs+s2rZ02zTmIpLTrF2eNVLNviyYt2CKyHw/A15NgsjOCR+gXdCKtg0PW8iSJLPGUdzZIXydnO34KKeOX6wgA7zW60s4+lo63wwPeKL+QxFuA/EE5FibOfiUctj6J3dJ7WBq3BmV8UInPvvQYz1/k1ivRlBjN4RxZ1cJfOGaTGsD8cWP7qY8YUE9whWLIFIWe/PeARdB+bZAXh3s6acRmh90GnNT6YdCHw83XIflrw44NPuHQ2cie8eqMnhhXg8LetTk70Om9dpprZxXvNdr6ZwdCOMrVOF6iW/5RkoXkebaCnccVa3whmo+qbAWz9NwUjmdffu5XZHLbdsm//u/RPk8j2jQRD2IS2SEMLupQjUl+N9PltHXYXlt0EEbJ7FwOC3g1DXrfqf//EVa8BvZbo0b8wg4WDsboZwLQOMwvmai4PEIlCXak0Px6EDVEheKpg/S0xtX+9ywm5MgEQ5HHHA6admAgdn+Lq+RsI6otejPLwbGGO3ItWK5ydb2GXw4t8UuvOONJ93wVUGD/UlY3RXymERoso0RO/8o3F3f+f060tnOBegIxw1xfDHfwF5vWICWbA+NaNserDmV8QxXRKenhUE9YtyQs2vWer2D/+Pu177Fx8nV8iesPqtJajNd7Fb6XPMjPU8qSUFPVjyrFtAO+cvJLpCOnRrfIdRxhVsHoVHOG/IoMOTcv4gRVJA+C8ePLvao2H4skPlLz6p3rXE4TYjyRCZiWNUJ30i7/rwSybZy1KQFf0J+yryAR8vZwYPvX7H3m9T5IxGuId+VQkUf9RqoNvgN8Ivuu2xL3nJMGUvFcHHRGpiHKafzSK0d2C3X2x82I4in3jYmTBaFxmiVCv5D38aF/Ci2mEvj3k+bca0hAJZ2cFPHnKauXOj7/tzhAyH9yEpG12E/fNKyUxgPIznWxfBwHjaeLewIJG+L9LCzQ7cadSsJf8PrHTo4+JK789KGwj7nUzovzcdMYr6WzMyVxX083NKd439rof6pRbQ4KlK5J98D5dRGy04SiTA1i8eQ3bjWQquetVQT/I+gL32sgzt1w3TdHJrTu3fu4SrfkX3F/1Tj8nPP4L0iFx62Nab9Sm7xxPcy/1ItPfSJBzuMxX2/ezgql0ld9UvHLiub8f7l9zwgVx+MpDmn49fxagO9OrPOvzTixA8e/byQ3cRDlWTIJ23x5Cw392E0h0E1ISsDpfqeV2g27Q1kk6Gmsxsv2tAIp1MNDRmn89+pMd/54lk2bQA5wQ1AEY2IZHivxOmfXP1L74S44WhTa9cMXVHyHZEFE9gmAaBPyHP8zuRwDsBxMSar6b2IcdPJfM4i57vwBDCLsTenpkJFQ/uEz4f6Inm1koGunaHwa0NRDRaxEsWLWaWYb6zBulrvGCndhLhZk4SelBOTs30+x6B7DW0+PDChb1QbXZhlM0Kddf7Rb+hNUJ0yH945a9gvX4GLgktiXgSpXUxhuaA5899IOH+kQbufzpVTzThSoNEEvJ/57XifZrezq3N1Y3JYDx/ON2Hzteep9Ik8B14TyLMT39gSfMpITlaP7oTazHnH4Ed//g6KV6uCuZvs0/h4/CLaaQ5JWDFc50KtPLpP32O3LJ1eRPSgzV/VDbbNg/rX/w9HPJnOGKPmDAJigLnm2dRzz/ipnDliwhu6/kPr0MwVG2C/S3V+OdPX6Hf+E3Nen3u+RsGBN6eQYnEfbS1WdKu8bZ9VPRw/XXJIp/VFODzUJFNzQ81pRbMgHpVZbzaM1j1qA5ciYepHwCb/xrxnMKuG7t/ehJHSJfhpu+3qBudjU1EJ4wAPKs3vA8dL2QdfyxQqJIHdfeX2OZ/37/+X6R5IkyYnnIZ9gq60y1T43DeD7qrC8B38R8+ki+Z28Pf9XdY8fcln+SdI8Ar6T9ot48I/5efbk+/JGrzNYGc35IbNGEoE0FLvVwE6taCFlZsvGupHP6z18Nvniiu5kMO9lZy0zdyZeKn5hQ52/G9CLPNqFD3uyX/4bk/fcBUZPtfPNeWdxDR8BOa9rL3ehleFHWhZhZ49iTLC/rHJ7etxetZ28WmcRktvuppzbAsiroAJ+19YhyHbuXnjwAUXuXSXZQ4YSf5ngX/9NpCc0rOtm2VGfr0QSi7qcmfPzNIvHCDRrYdE9IiZ4H4/KuoL5tCsnxopEInizi+Pu/d0NFjf/vn30yZSE6nxYtgI5oZTaOgyJegY6a+6st0/xSbgbZ5z+BQmQbeLrbHmXH1dSDoLUOsdNt6xUtnSJSlpRHTlZDz5ZdCj7drPArngW0+XQ89P3rRl3tsc5Y0U6ULaCjpFrIjWH7oJAMpK0rCBgkPf/FVryF7053Q7W3loz8qWD3T7R8/GWgwgxUhOD4Nn4ZUL/KZpSDKrwekyuYzmcjGL4G24Avij/pYT+zQpfDXOBVFwz2puTn85L/rQfSuoGT83tQRktcj/stvvJuco/mXz/CfPy52ODyB11NK/uKhZDpdBV1T+OKwOL3taT8sLuy+H0j6lX/M7W5bGRF+IUIdmIdM/iIR3taNvY3w+gC2+ZSdwZlv/ecPcWAWxszqD8Vdc02U9qEGMHibdOUv0B43F7MBG0nosbV767lknOYnvM3YQ2yQaP07ySdk3P2c4FCrjHy8bScHDkJxosW2PtVyxbMWFDMWVvuecmr+zgU8yRzTLX4MoCuQU8JITxbqx7waCGuEI2TBxfv3//hXrxq4eS4WmW1irVPizNuffkt9fv7VM3c2qt4n7QPBDZMSmtejBR/lpBG7TrN8GYGWgfS7rqhe8dGsvzYuxKf+8Mf/h6WMdxmQBKdAAil9wCbnZkLjRQBSL7OVjKlSWv/wDK75NHQ2+2ZQqESOpNU/RP3cPmHwbnfUjV1Q08NiprC0lBa7AFrhJF0+lj7uOo0IV7ANf8X3K0LPrn0aokfFWeeGMTh5yRmJiW/mcll9njDZXxkBUy8M9H69r1MSjwV+keVdt1AIIribdJM6JyMY2BUrC6xck1BXWqfmo8nXYchtnTpjFefzIIBCl/dCTkPnXdeLux98sOWbHQ2P9yqnmei4/+LF4xPmNauiewxhya7YiTc94H/2cKBWhuo61XN6vCkyzGP+RM3J6Otxe6ItDJXpROTgGuer/fhw9V/8Fx+XY1VZYE+eB2qff3M9eodWgH7GTbTU6Vh/aou64Hf1FGS8cBHOB3/u9ZUP0u1ifwFbomKEj8v9SE0//dn8QeUbjOr+jT7L98yZW/0YWPEkAYe8+sufOuDCa0OM++fL5+Ae9fCuPjfYi7HAV/3mCVf+Tt0VH/HLd+yAUlSQWuVtstvNOo45T9SABpf5sc75L2VjxY/UOYMgmZdud4PS0w5plF7wqo/bN7jaD3XNxq9Z5Qkl4PU44du7HOopZTaCu1Mx0luwoHxptnoGqge+IFlSpryzdn2sG99CQ32jeYlCLfEGtRdx8O4hrFPQpKejUdvD1BudOV8kSS3gKaq2GHfTCNh7iCwoT831n540a7vMBCteJ9r0noapuv5UuPo3ev/2Ppi7U6JC8tQg9oLyUk/4Epl6u06F8m/UsqVWfN+gPL6Gtd4YcLLWi8Ar2tv47/zp/RKt+EgT8R//H+nbKkCuv3MErIIMs6jqJVzjFQ4P8cFWnkg46s13S7GNmqKmf/j3vPU31MaqBxaFPjLoHPgTGTCswRz95gWmXLTwJcZ1TvTp4oCqewtkhlqb8zavGAyab0bk0UA5Cdq+h+0sSDgKU5B0zIC6/ne+f3p5r9OqMGhLQ7y/dHpNjmXRQxZ3OX51jZLQFW8B5at8iBhPLz6nFhvhU7y7FGdmDZY/e7DMW/avvjE7VB8NAUcyPp8XkU+tJQZ//5fGgrMHC9p4N3ii2xOShBcf2K8yCMxB56ElnppVn5Ag0Hi6pfsbpXxe+QmwZftND9erkUyhfpLh3/t2LHs1f57C7p9+4oinvGbxbiKw84crRa++z4lUhxZY8x8B1scJ5TI+3P7TEy6HIxAjtHWNSjSSv0W/9ZC5WqPfZvbAvjnd6/mTFBHEF4ZwdA/udf+Hv74Hmf/pDQP73hgBJyX9UPd2dkM5Wgzr/9VSIP3vlgL0POb0kF2ber4fyBGWfSTTR3AJBn5fzMhA/kSow3UpH+h4WmD12rr0KVgN53Jxd+B2sDwkCs8AsOXrWaAElY9dKHI+V5N7hn1c39BczTknqfPWIRzqHz7UEObTHrLKQLdsT5TNUeK/AkUMFpX3odvbY8vH3VKroNboD0cbKwbsbpx7+JIkTkBZQbBEny2D8O1c15LyNlxeVC/BANUL3cGw50t73h/h6V5zoqN4y9nY+zK8whfGiKuGTSkeKljdfZGe20zmJLrfEbDyxxn7zesc8o91LWDTAh8HbNPU9Hc3GVQcX8Lm4Vgn8ya4pfB3uWg0MoKy5vDmC/D+W1K0uf7Smo8DiGFwfa6DKg5iPWklLOAragMahVqXsJ2zgRDs3Ar72cer37cPvsHTDyGit/k6F4GdLHhkcYgdXn7r5WWyIzy1xx2NvglPRnc0C0jOyxXv8tM7XKLPnsFopBrSbxHKWUKPDCYL9dC8OEnN4j7sIBv7G/mw5y7v7oPfq/USlXTfvv2ExnOIwPZ5kujarZP80lArdA+cN/Q290I43b1Ahi9lv6PYP+3474WGGHhSMWE/PfKQLfM7NqS22mOngUveRT/UQ8WSasIzp8v53VAZrHf2lvrMMxP2uiwy3EBzj69XkfG5+Ewq/MT8QpgfRTUf8cEE7mNMCF8O0kBvwYaAPLiG1MzyKe+LeGL66f7mhGe8r+edZVTQDXcUb4OO1PMiW0cYFHZBtFk0w4XupAyInx1GtKHeMBdAJXDXLEcC/a7nLPqqZ7h+P/bZG4XzTwM6PH9zSqbg0g+zBXgFr/tVEm9QlyxQnjsI3zlE3XxkybwRD089O+U+dYxMDIfNXWIwK0QP24a05fKydRmMM2FCi3DpONtdjA4Mrppj34j7nGycqwNvhrrHLz/dhIv21E1I3VKm/nL+2kM6/0Z4VQ8idloa5ssSR0/4adwvktt9aI9LOTRQL4InxXUKQxZtTk+Q7N4dDv07rSlOhAIMe7mh3pKZiYjr/QhvpZzgrS9dhvmlWO7G6UudWmmD82HcK/qf/eBg03GbxGMfQXHSeurOHkqmHwnPcFhYR6PzheXPl5eMkOw8SCPo/sCye256eGVkIOpeHHIeY0+EZq++ENxfp3BZ3EQFnr6dsMumsp7qgVmGrTz2RMQXMxFfy9uBYbR3sH+7mVzcc+sGn8WzwgEHh3r9/k5f/Q+fYCIOPGIIwTzsH9jk3SmZ4pNwg+Q6lvTBBTln+6BuIJCiAHufMx7Yh36PkB/OEo6aWbXH9pHHkKPNSJEwezaR+siB1TG9IxlR057HE2jg+0p1or2VTbIsZCFGVw4nUn+upr20Q3UDX/5aCGXzdhD5RyVQuKhfemfsl8yjaegAXZ4m0ubXMIy/h7bA4FwliDU9SmZtn6QQC8qROs2B2eMozTf42hst9u7fIFz9eYHGhW2ouxyfCWmVTNB4tK3Rkmk2kOUrc2C+tzViBJe+nqC6tvQEWw+Hhrm2WORj+fd7eCdMbbjADxcM7kgbepiv2z977KF7lbdE2suA0x976/BZFBV1IqcC/LU7HY3c3THsc3u/dn3rENpCNxHpYJmJLNNTZHxZ5NAiB1bOo8eC4O473vF2o7U1rcClgN4GbGho9F4t/1rONPGX9kgyfjSfaqVrQFPDDQ19J/87fxcoAqVIW2orkVPnrUJyZlcanU3Ap7jbR3CzOSkUNWWUL3/+43/aC919J5/z++KvU0kOd4z4PgPs/uEllPLdnu7mw3eYd5ZUgg+JzohdtRksFdy2xr2VD3Qf2O3A4vsOwsT6vvC/+7HpX6lum3uDunNR8fZ1O91guPgbIgWfZ8gX5/T8Zx+c0TmcXZhZUB00RPGGOjVL6hIZ1fG8Do6muU01arfwte+2GC+Cn4ib/prC3Ck0en8rr2SGk10B2H1LlK75dLFOWQxzfsJ/n885PiQmPPcXFXVBPQ3za7iX4PgGFtI3xncYRzbG4PcVHthbRGIv8HUsjSwmGVLnXrCbv/yTPsWaGMJBSRaMH0+QRDQixlKe+AydcYTIp4So/KGEvL31R/h+Vzb2zjVPeCUuJszyUsJuqB7tZbneG7DvOpcemfVKlpgfepjuExnNhpXypfWPBCoorqgZvd/2vBuKFNb7Y4HN1l/4XPTchMHxqGJPkLtwgbLWwwT/LhhlpzAZ13xm9P69p95t/6n5S+s6uNz6AxH9J6vnVOfk/wAAAP//LJ1J07I6EIV/EAsQhYQlk8gk8QUH3AEqMiuQhOTX38LvLi3LQovu0885JWko5EwhP30e7vISwqIXt8gSZ8mi8TO3f/2Ifvonm+HeVV9GECBfeNXWUizPAjhJ10WbDE71bKYfGW5OYoEC0Z0szGK70M6TUKDgvLn9qzfwiNER3974kcwoZz7cTGmOstv2XjMWileoEXX6d7+ZdzRdeMZ9gtx1AQqt/YHCxyuxIrDyy6JEQ6HGsR8T/ersACaqzSAl3ZtYgvAHuHnhMXQiYxcpXcg5mdgTQ8LxBaHuOFmcnUz9n14ey1Hg9NXtSvj57jpSsC4INhdnOsOqsDW090sbrPVVgjF45CS9ipcEi14TwZv1DrHaTiFY0vaQQqk9oAiu+vjTf7CfmxGFXbNY9OX7MTi3bIe10LU4/TSXELJkXQRwl9ucf46nSDvRU4Bub6zlxHvkGBqzcCKoq8oa34NaBuYLE9wthQkoOSo2TMC7Wuehn2xfwxdCo5ZrcqBxzDEP3jp8JsMBpb2BEnbhkw8Biw1ks6VdXzeuxg/PGuluOI1TqBMJluXBI3r+agLcdo8YcqP5I849jfjWFGIbxg9Vxh8Rhwkm+00Kkbu5YkB9z2Khm5TQbZtLtLRDAHglqSYY6j6LIHQ+fCDj5rs17/IDHfPNx+LTOfZhIsOK6J7Y1tPHOQ1aUT4xpiuv8DCUSlj9iSfcp1474predVh0F538q89QvBdwIZOHzHxwrBkK6wqn6X3FQm/2NSvqsQAQP9jv/nC2O98Y8HCZRqzd9habkOICbgAZd8u7sOgmhwIIdtYfcbzrGdCN6AzQvx+SSBO2Zb4oXn4GsB1v/+pra+VuBtOp2ZJwOb449dAOw+3BESJ2FR7WAk+XGMpxdiUGHD4BZ/uewtqaSbQR2O9YrSvWvrke4Q1sd+P3HowSPNXRGR3FMQffEH5VsG/oCaGsdEa+D8RKlbr0jfRbo+XsWgQmsDy4j770AsZ/1z9pVyPa8l0DGMFFpP70qW0OV873eiSotXi6orDN3xY3hcyGcwsNdBaPc0CYGMbwsBxjhJbSAvL1ffK1v+TzJsGlUcZxyrRG/fET6Sq9xtWBhfCe348kyvW5pvDPy4BUFyly3J7Vw0vs14OOXRXpyyZdn7KnKUw73KLo7GmAi3JjqvcPvZKzlkkWv5SNqbpsCMnNlWeOSU8ZqH0lwTuobcDCZD8GiS4MxAoCIaGiXkWQ8zMl+w7ZydKxRdAug/whXn/6jjN7bZ+waVsZhfxr8M8rSyQo+j2KeBA8kyndoRKCsB+J2/Xvkd1v51TrpcVG1nHQa5ruUAXK2ohR0IZ7sG0PTQdlcwbEWvmcecZfpwW0dJHHNGrRzybbwcutviE9owbYist1Bz/EN6IvvG3G5sc32bMQoleOXECLd6gC9xtcIik393zz02OJlohYWpByzvrahd4pOP2rB1pEOxUE/paR6JblOS6A3cDro/4jutBJ45eLuww02J7IX2AW+a//tTqMWuTz7m6t/uv8uz4yfvxXpQGFl9mxkZ5G3TiKzcnUVp4meho54xbK+wq8myJE9jJHI2uzZgLhlJ2R5RcwmJT57gItH/+Qx+oqX4jzrqBcVBaJxNLLNwXVfXjELid/3WSObLL1BpIwd6NB3FvJQuLYAWYiBEhvvjinryGSlCizdBTmwEyY+D6eoZyHS7RZjodaUoq8gEQy1EhM5+PIrvZHBVolywgJVyUZ1s9DK+ggcqi1HbHssAzo9QSQs/b3wujGV9vxFJDMi4JgqVhSAJb92cihaRhwFJe+ah1u758fsebi5T/hqAghHuihTObNFFXwmuQNclf95yuPgO7mp+v3mcclriQHCrf6iX48T9f6V+7P2xWZmW+Ma73rwLxLD4Tui538+Bfe+FfCEi8PNYOvtAS9oC6RehcPiXTXii9Y3yf2vTHyYdVndRkLjHSmkICSc1GBWslscqTJaFHl9N1BqdxKqz/uayyeDl94rzpGAvFRjnOVqVdIlKbHcJ1vS/gWbQjxixGdNdlI4W2S4HZfHCKJFZRzRQAfQOC/984g2dcD2Vfnx8gr/TvA7Hz5I1dqbWsaVnUIX6hK0PG6sJxWSq1DpOsAK835PTJvM0AYMF9c8xJ7lMPj8IVkf2yQ395WPZh6GfSycyVeEF7HaRpvPiTmX46OaROMVJn/XBidfYzTLp4DamoaBCu/ov1PP1d/BJaJ6iS+b2YLoynA0Ch3GTmt/UDvr5MDy1bL1//Qw3o2qSkA4WEH5NIGcz2HO0+Fj7K5olBTTEBX/lNfB+Pxf70r7eX50/to0xxkQJXBNpWV13DfnlH98eCu+vlh4t20GLAiNM9a9zC/eNueydi8uJjBXMARVrJXlMt3kUfanFwemGruyfrpGXx80uVf3sAYVifAHscj8dlWBlO1z78QGdcjsYPsPo6mvWmUQM6yaGo3mNOY9g5EUWohp81czi+WxqANpHDNi4qEwWUq1eOfoxFL+Dxyyls6QX4o6ogHTmsxmFkpfD4Pd6Lfp2CdT4QCFM0DcV2D5ZT1yASBc2L41JzWRYZm8d2JktQikxcC+MrAo/Bf/qFdEouizWVS0dFe1oOpH9ZyB3EIt6pPiOezAXyYwXbwjNsE7ft54HPs7CVwgN8/csiuYb7EFXR+/YHlVDCC3zyGac0Kcuxs35rNpMA//V3nwYUv6f0qwc6uJbwtRRAMMXx9QcPOLgq67zf/xx+jJzXksNBtPoWPp/3zm8RYLn85k+tygF2salFEe7EexNQ6g+Lz56F3YMIch/e/CPSK/kKx+Ez5mqcN4JtIX1T4Dkp+ed+//O5wVJtxCj/O6t+nkZyzxKqZOGk7mLZ5QsLm9s2ZqRcd5FrxiIBXvcapeNs72AdbnbjC1QiY/EwqzRUnE8VLM9X0ZW98WLZijoWzp/G5VR5rHnNAJKQ2AfPn+g3BSTsb6LjyCf1s4t2Pv348FPCXQxqQBPYFK65IOCdMC5VLJdwQ6iDOOfF0W/v9Hksr55z+/FRD5hoF4kOvVz2QYQ2vRxTRykmWXX/b/fgEU20b59215x28jIyhA3spNd+olwGmpZQg94Zv9dz1XgZxkZTIYWqf83vfrqd8dOVvfiXzXd7bCp2GlBxvpTROd+8Y//QEA7FSANuDWYW9H3rkfotozSYFn379hhwXHiwZtWUMlfnqEkMzr2C76jd87dMuGv1wGFc+CDXlKYhED9zL2MUVEsDjElxxo+ldQiareMJ9UgjEbqqmZnF/sSEyRRvLedADHPcPB3wqOyDWwg9AKrJPoe1fqIpmAd5r3oXKBJ0iN7CkkaGePrEX/vzUmpc+Ap7yawkDTan/5RnzfhEZYM/y9U//aPf3neBrV9ww19Tcwq0mZxBtxykC3layuMk+lXLN1Qx5i6IkbXHfXCHOhg+JPZ4E7NMBBpXzJo6EfvlwimoDw2QzntBPr2fP/fgwUXYjCelTGz+hpVYwNypKbLF61/QTexEEyuKTH08SZFRP4GTUR1eYddbcofIEjfw2IcPND2BBJ6+Dc9/siO3/eTWv9OoLim+TEysoY44/QqEqaz5L/Ch+A276/qR0h4dGfvNPQmol/8sHTO2PWcxL2g6uehlJAYmCHXKSJzRe/QFFuX4ctzB1IZS0Zk+iYN5wyqazD4PjulhSe24sAr8FhPHFyZHnfvOcVB/jqSG13ZDgvNkmZPVTioXkG/Ib7VsvVcbO8LZJRuSkn2nkYrSPANGHhhieEia0DR8djPJzjKwqAPXC2rABgV8dyePHX6H4V8BPQkx0vJoni679C3pjTjBjczGSGCEJ9EAYyNE9ahaebLcDXBpMdKZCmJNiCAs1CZxLtMvPHzDsMCngY/6GBDHUWWTlc9DGy+XnRwH9qKUO2w9UyM/PLxUyGKz59hbxdjlyztZTDZ6XWMBy4B0BJeXRgSK8YWTfBWSxiZsycHFGyRHdjYR3huFC77nViFGXQjAowYP9BwAA//+kXcm2gjgQ/SAWKCoplswzRJnUHTgjKFMC5Ov74Otl7/oHwkmoc6vuvUkVKsddSMOZDlrPr3Y1aAFmeKn3yynylsGVxbEnB/cblrO225lIvZ2vWDtCXv7Vo1NVX6jl7FFHT+z2QshpXlThufvS5cEgqBxRSLF768vJ0S4qZH7Ah5+Fn4z3oQAAzg7weXKPWtlvOgEQp1ZYqx97b7jHYw6lwB5Y9p+KNlfp/Q2vu2ZipZIexS8fwdG8pvSH3zO/x+2WouBGlbOvezP9jOPytEmicrYuPOYrHgDTHzkOvFvescbWdJhIvln0C79c71JNhDelJXV5ySr78/Q2ofpmKnWP9qZYZ6t9JHF7NSU/PjsZYW1CDKsVNhZ/oG/ErwzTXqPU5+J9uWnUNSBtvYro/S0bxTRXev3HB0bp+u7G9Wd4oR//wONl8OZ1kK4kz13PWFna+4z3enwAYuKWmuehjBlvPUf0KLWI6rNaagzfTj1Y5vdIHbDzuHMOpSvt32sPay9RQj0vtz5kh3kgkzTtvOruZO5Pn8IWJD3qq5LrN4s+Fe4+7TYeqidEKIrsCFtjNKNxvddzWPgXdhb8Ii9wahDS5E4j95UW4+yoN4nxRhIKdbllA1WSHJb6PVx72PLGO3dugYeUYMtN5oLNrOj/8CGobxvGWD/uJTX67qh9tkqPQcQEEPz1l7rvb6bRuyhwKEr1Al9t4Iuet4IvWHYcLnon8vpL/rxBqVH6x0+X+HsgJ9NeBHK7KeY+u7zREXkSdbxn5/WvVbpF+3a4hlKVWohF2n0vmseVQu/c4eH1fczJ0Nce9y8fmT+WDMcQFj/JY97Ee3ULTdZ4pF38LVLVaQTnBDeEHy+Bt3Eaff/Dp3ATeK+CvizT/PEt+vMTZvrqWuB3phxOb/cTk2Z+Z9LwFd1QsuFejLyfz6IXMEQNXsg8Rt3bCakHWSWHscbaBBdj9Vsf+4lcIDrvVRU0vDqG7BicinFOkPoXDzf7so2n3fZag1/5YxgnBxz3PSQCTK82pkGmjtpk2mqLOuVIiLjww7FRtAccg3aHDamhMcOxcIOPtZfp3ZG/XvfzC+y59bHmmZU3vdLBR4vejU3u0zPaP1yCgi5s//yJSVNk8qfHuVh5e13VchH66TWa/XbQSDe1D0dr/lB/rj1NuPhugo4h52Ebyq83OfbTBXirD4zP6sub5xPdwnFOX+HoEgtt8HpaoZu5W2MTjEM3GjucgHAw9PDjaatucrp5BelDDnGWX6ru+5LNB4jHnUYobBM0+yHH/fAIqxnO2R9/WPQBqqaPpe48zltU2CQh3Jxvy/oVXr+QHp9H6nFnh7HeftY//S6ceb3z5mwfXX586i8/TIJ6PqFi82qpEahyQXARqmApVktEPqx+9WMouTe+orjANmPqcDnBon8tfoOpTXwmi6i5PK9EqPIvGn3RT/7q445/ndFQ7bn65w/gH96O92d5gmRjutj76FuNXobz+/f/8K9+nvz+kEnPZJqwISU5+rf+TXyMjaIjaIrENIQgUUyymgbSjRU6CuA3bCRNkOiLntDIkra5Oxi/5SruMyHvQVuVMlVh846Z6T594DcjIat5Mop+zW4mTJQ4IeW6APVQXk9bIc3u5MP5vEdO5q0XFz3wb/8jbgYXjKdgLfrOLR5PfQYooWL10wOK6cXpKuKF62XhM1LMqvjqisn7XpO+fk/e7EO7BeVeWfhwsoNFH9NUuDutgi3pVHYLvgpIUCmioTSMMfE1M0dxqN6wvuhf0w/fieowqtZ1E9OXFeoicG5AmHu5aEN2fKnS/7lSIPz3lQL5ddJCiQSTNjyEzbiLenqmnit/u+ns8jpkJceorj1fWps8zyo6ze2LepJWsZFmtxV4pePTMGSrgn5dqwWHBQ+Kj11RsneC9+gUDICVE34WM5PaEGGaGDhejY02rZAmSJz2TbANeC6HWTi/IZ4+T2pb3Ltr06flwtHwjtjKJgs1r0FVAR9Bp9FEVG/Diw2IsfkE7KaW582sWYVwL2SPGpW4iqcGvb7gZeuWlPYEaDSeQg1dR1FY25yFJvX+ItAr4o3ax8zU2F3e9qBdszXGmtF0U/uCFUzy5UH9/pyzaa98bUC7rUHxvMy29gOI4EE3q3AcvEs50pU9w2GnJ9gVEcfI9r0l4vF521HVDmqN3c5JCxt3mb3W8jOb+eZ6Anc/6+TzXG/RUJ33iaR/3CvZ1uTTkSuXAqy32+tvPdRw63mEnX+JqWtYO9Qzhnx4KuYG23Kke8I2hxFddD4L2T3MutE46Q9wJP1Bjfqla5tN3OiQ5fae8C29oumFGwDllbTUCrCJ6OGGIjDHbU8Pw7X0/s7LYfhBRB7jYqwLKoJpbKxQDFu1GAU/fsCU5jJWDbpGjH6+GcTHmcOhnnVsumyCDL7G8MZehJRifKy6PWTP+4oa8mCzwcvPX2QedQcXzy7WRj2MblCC0oRVN67K6ZDqe3hf9x2ZDXvoemTtVeSds4aq8tOIRzwWL0jSg064ez4wRoQ8BNKeKL6udwfEPu7hAa5bPbEaanUxwnvUQd4NNVX0khaTdMoJbMbQo2EiGTF7u6mPzMhtsPzYxiXbfoIQYnR5YnuTnLtJy1sR7cppE66vny4ejztIwArCgKwSqmt/8feJzDv1L/nBm/ab3oZ+/SyxEWKHDe8k8eF04zhs77eCNhvr5oG4lbANV5VkMPa47Wf4xbM3dXrxt3+aXhKseIgvWvE+iqjzpS32Dn1TjOZVbgF4qQu51rO8YTWdR1BTiRLRXqnabInxDErOfbFbbi7dEn9fUO6iTab8LDPhs7zC5x0qknG/c9D0/qohX3Quo87ZSb1bs3NCqIz1AeN8XGnstAk4VNr5O3z7RdyxAcu6pF7zkMpytC8YiuMXGOPuQ+1h3nZjdrlEYLC8Drun3qLxGLQn2JabPTY2Y4XGjpNzNHrvE9b8m+HNVj3MMCgbI+S46axNdp5mIlhnM4RU+sYsMoMbdMQXsXd8Od3cbvkMeYFi4eLzZMX4aGkG+2kI8T3WWTxnUbqXkpVmUavs5ZI1xrkHTVESsrMSF83qegjFcuRdrKMZs/G6IhwMPnoTVIueNpfZ/EbQmQ1V6VbpeqObH8Bz3zsNNrazNFbiCJAPhFiRN6TsZf1twsmwL2Td61XB1Hs6o29gVVQzk0RjoD9bKHvdItXYDWVzdnkTQNlb+HgI+XgcrTeH2m5KqCNyY0FHQ75I3+T6wZ5iUDQVipJBchwqwvXKpxyb6uvCcA5M6jlnuZjGK71Ae86WRudW1c1SOkXo8NlES/yby3lc9ygRrl+8XKteZhmiHNrbPqZ+57kaGwzfRS3Ba7IR7Fhj0XzPYTe/T9TThGM3z9lel+a+/5Iz/sRsupdFi6hjz4QztkU5do/bBVrxeaRaLR6LKUntGqmmHGDnEgbleNt1OnRb7UqD6/LKWX/Zt7/z9x9E6VZ+sEmAmNQnxStWmcA3aQ4Bfzpj7S6YBX3hVIWX9riGjWpEqJpPnxap73kf9gX7djOXfk5wHH2guOPWbMgx8sHNkIa9gQNv4OJoCzXJEdlAhdBcaKkAu87PKA5C5o1RHYsg1KeSLt9H89rf35DV3A+kjJKq6OqzdkI79RNTP5W+Rb/gFer5U0lQJp4Rk07BDEZTa9Q8WgeP+Zt+hq/4dahaVJ+id44cB1ymr8l6yU99xC2NnkOVhsL1oGorNc4jGNukoNdXcEdzdRBnJOSWQph8Y4h44smEm5WW2EUl6ajanAm4Yl2T72P7KeZY2wIifIKp5n71cp4frgt+6R6wj9yYzXFtglS/S4R93RJQrzoPXxo+koOx8YrijeJNXxBH8xZuWap4c7NTQkDxqIS7JR5JftG+APOlw9fgMyC6mnwBvaPQDzssfBE7g6tDJF8yqmrRoBF7vAswFM1nyd8fRlK79CH1iuUVRW8WX+kfAAAA//+kXUuzsjAS/UEuRF5plrzlJUFQxB0oIqAiYALk109xv1nObpbWrbqlSfr0Oac7ad1OYXP0z+T5kfNkMmv1BrCUA8bp+vBq0az4MaFPKCJNQ+ykHTpwWCwRgdyWZKSKzAFH7R3VvXRj/OE1Mj5uRp0BMn/dXw4pJSVY3WrEWMzpl4F7zZRwmqKdQaRAl1E+hAH2Ov+QUO08EJQfz0HIZ8o8fAcvkuGWBhm+V+YerfhyglKaXax9ksWf42VM5URSVepDwfvkuhlqCIoFYzdBbUKCZx2DFYc6dopz2Yx/+LeeP7w/htuC9KJwAmMd/sWWpErGtm86AA4FZCdMFmKvzy6GQa5vZKP2vv9VRpWAWuga9U4PVPymT5Mj+Ziug5bmGxvuXVihTaGfsbFvRoMZoHDIPd3vNFSwW/BIyQCimYZkc2hvCSHBkyjWqLb0csBvNu3fMvnDV+pJV2yQ6eUC2I/hGy66sfPJyIQairWVivtpKWMf71qDm8KN6sq1KEj8jnjE/HX/Vn4xztTZwKEgPP7bH4pzTVfej06kh3KHh9l77N/gXnMF+61rJD3/gBZJHb0QVn7Cgkz7pwg17HWyOycyG6Y5z9B3ohM+iBuvYHuixspY/FS6L+9Ow/LFdpRWelJs6Tgb5hZNgTJG/ZP677go5hCajQK/xiPTuVoMttm9eLRQ3w2rc7X4/RC8MrTNAQjo0ttYwikrpavqNvjwcVWffdT7G504bU9+5rgz5nCR5D/+8IdfjRCdtRDKdP8m/J7iZubdxVT0TzgTkuxNJAz8XQRvW9k4fEakoLr/mWQp4c7YLI+WsbSbYIT2QQPsNWJrkOlYAGrux3e4VJWacEvwNGHWvltqYs736Vx3NXyrJSRiWPwShj5aDbFr8GGurbcAaZUv6OjuMdX789VguEEm8M5ui914HItREp8TmlFtEgm9VZ87bzgP4T57YVXyD4jChN6If+hPqno3zX+XBW+D8qtxqCzP58Bv7V2F1nZr7MaW6e9+2PCUR8sTauFSY1PnOCa8vV+GcWImybj0rgMlRA4+ZlhLFshnG36vuiPQ2kfEB7IdQmfWFnXoVy3GPzzMLO8WMowDNtlu3sGH5CoOq65s5kvTinKWGyWpsPFN/uX3Fc9xxLWv5vdDdxvW840P9Pb1F67wUphKVaIX8xT61CT+Bo4xRNhwr2Mz38pvDtpDdLAtai9jYUodAtfqaYi+W2OYp2SXQaV5Ed4feGww06aAVr4ebr25L6YhbTOY3P2VuvZYGAtJiwlWvkhgO4MxLcElkL+48Qnfs8ZnlrBRJcPacNQ2iq0x/cXLRcUCNWvxVwz7PI8hod6WGrutZkxs/43hqZlCKF5S2x+jA+ogvispPmw4b5gbVbQBNbSh4Z4aBbupkMGma9KQyEvVLB13sCEc11uqK54v8rfeQNENXOhpjlbsyuv3jXyzcEOWokMjvPH+Bvk7GnF+88Ff9V0HY2PpFEfJMJBayks4qbmO1TtDRhffnryy5gsarh1fS2nkDrIO8ZNk6Z4YJLiIAbpOThcuyrVIejvROjDaUaDnNV6nzbc/AXcQWAjv9omIsM96ZH32JvUaARrqLUulQNY74bbIDETXfIViv97hPSchn+3CEQAS0hGhn+ZmNMO8BOPbXbAR3ZWBJVdUolUv0fAY3Y1Fq11b9qLJxKXaDwabs/GN0uedC2EHTcHW+EJB9Y2xe7+/BvbCxxPgRG+p1W1HNGC46OCbVxcfNkHOfvW83UhLHu+xkc2hT8nYeeC/Oh9n5vHWzP1VnxRTVRDVDwXfTFcOKiRMgR82z/HNfuN9p8L3VI5YDeLn8KvxExQbj3t8vSSn5sdcZYEh2IqEl5eA9VJLeFjXg97e7ZMt9rZoUbg9q1j/5fPASLgJUfW7JjTUqyGhbLshUCivE91bzdtnfhR3QF53TJ1GeyTzdyYjovZ4xMFdrxiLfi8HDvh6wnqvP4v1Da2bzPE3IWTf7NN0naOaUrlcnbAlUYjo5VeIkN7ec3hHNDbm9TzB3Cc6YTYYTODHgw6i3o3UOq88l4xNAO/T+0q2PKX+HAjzCEwRj0Tkf3Mx5ZLYwR6hBTuPLzV+m23Lg9l+SyLkrujT85IQOFQfiQjfUEOLsM86udKciD7uu3Fguk8XORviigaL4LHpuDssqJN7l4a3r20spvy4AY1q7t/6LENV5ChrxAcR3HozTO6uktF0zhDGGj8Pc2oHHGKX6UDv46AV/JNWuVJ0X476n2eSTH3VpbAJMEeY/P4mk75tQ8ga+RHOZ89Bw7FEEaizY+NMOEkD3WWdjOK5l3FwPYvDpLtVCN/pN9G//DBGhkD+zi+9ioeuqYZ0zOXP5lxjWxFe/9VbK/5Tuyi0gUmjlipFNsbUSUmaTI+LH6Lfq+rwJb4LycJSO4CzFbnU3lM8TH4seLDjryUO9GOazMJ2Y4N4eRJSuQfXX/D7VCmtJfbUunj18Iu0zgOr9lui6Pxp4Nf4AWoPjCD99EGj8GUtTDWCcHsZUENPvtvCwTztqL/q+9+70TOwWPam5kt5sYeQfG14QEDX+Lw3tLzeOiSVMkc2h2PbzIaiL3AMVUr9g6UZfBz3PLoH6Y2qXGs19IcdE9Ss0UNpeBM2S7x6UpLWrqhZR8rw8x64Rd/TbSSYd96ILmPcgmE8diF7y0IycsfiBIpyn0Om2U0zj3OjgvqdTEJ6f28I1rnSoW37H1Yvm9pYFN2I0Sg/DBps8JgMf/H9px8OKx8e9O9xRM97ntF9kU3GqG/HUFrzD4H4+BkWL+Zs6K8nhvdbY2BzP06LMr7eWrjtqYKo9chttOpHanuc4y+t4xAYcVGSSY2nYjHk5wnK1Hpjr9Qb9qcP4f3RZbo/of0wXW9ZC4ukehijzccfr07dom192uCXjsVhOu10G1a+hN2XaxekSeX2nz5L+fJWLPVrvMnr/mPz89g15MwpjuwOQkltf79ldOMWIrycNCLz7274THB/HsTrYCnreKqT3xMxEZTsTUO++sbF3F+9BWTlU+KgtY+MyGduIzdO1lJzfdiXDMEvR+GrKqmx+oELY6IDl+dNolpsTclwO/U56grZJteN0bF5SpQMGuNh4rD3P8YC7eCtg1dSbB+PEZpzaxuhYBZP2L3tdoiK4TOGl3OKsOYu+2SuvB8PJ0Xc48e5Nhqh+0gtzECbcKr3wzBrPhCo46jC4eeXsim+fTnQ7leXusXHMth1yXRwrmUaCit+TsPGyeAhTSEt08fOmBues0HSXwkNvJeNRq0OPGAHKaDuRyb+LHxiD5rTaNOLf30n85+f994tCva++SuZvzgjaN1f6lyD9zCvfB99U3SgBnmL/vSWjhxwfhGT77oetMZ3HXni/kNYNwmI5Vh00PmMB8IXxbOZa+utAqNOSPhIFxmNu18Kz3bKqeVc3UHY1TEo7QQYP7y5TyY17FRUGe2MfXR4JaPyECN4ZE2A7fbM/IVj7whOOtfQ66pv5s8pqyTsdzV1dr7WUOKpEaD97UH3n0Ey/vQNWv0pglb/4se7so38ahxCtPqBC60sHkyjlCl+XG4FcXcFIF+0RxoExT4Zx6Kq//QODtqfbPRPJ8hQKF8r7Gy73piZapB/fgRFm73Pil+Yoj//1v3dcPIzInHdv8LFtibR4jdbRoX+9G6iDE/EVvxBvWjyVN8KfvJb+R8S+WSmbpO82Dxnc4X6gZ3oX0nypz/qEbR29smQJseBW/0OmfQ5xdr+JPjsT49H23gkovM6+CgTrI1sft8bHLaAfa7bmCaYlCo4XP2bJbrUPXqGH4EgaXNIKOHzADZ1fsG65Rz++TeKFQd6+D3VAfqJ9zL4Y0bYDbOCUX6LVFjOpw9OdlvNF47LN0LL/BqwueqzP79K5kQpw6Z10Rsm71CGpHfE04vV2D5hSh/IUan1WEWwa8al1zwYquEWlujaoXE6djJKYzpT3AwjY7nFhSBYzhunvc+SaejzHOSl3lLVoxljBX5HYFUba8Xrpz/2VZWC4313//jDdNgl6T/9qsaOxnaOJmXwlduJfB5bsSj17SWGWnBrqu2mwF8qLk0h0BDG+ztfFfPLqk+Ar+56BSKQ0SxlZYY+u0mn+Te3CrKkmQ3mYylCsim1ZOG/Yg0nRd6Hmz8/GmS5hR06bbDBxyKirp/WUGX1kYisE//+/oZq052pKi283634DVW6Phy94vN4jU89vLxlDn+DIzZsxWt4hi8hlFLzNkw7/XlTOJRd8H6N7/FikBKt/I1advP1Gbt3I9I37YJV9+AajNRjiJCLVGyOefgPv//OWzi3tZcIgVZNf3i74skbTacDMYFc/R/280/tz33NceBcbykZYvQslj59npTTZTEI5x90tuv5mpe+1ywgz/hX+bTAJELZ2sIePHwRcTdu4pU/fecFQZywB88R5TMgDa/5xyDdRlMVTTiM1HCvQcPl0tTBFEMecsj/DM10b3OYaVATBQwdsRVv5V0DCn0wgxRkzVfK6vdgu2RHtOQxHlEljTt8KMN98hWzKgI6cmdasl9nLMchnGD1K7Ca9HPzq/F388cvcLiZJX8WktFBzaR4RKzEfTG9XgMnP+rsgPMedv5sf3GAVv6PV3+hYQbseDij7ICtkjeKWW3r+g/vMeYdm83vRs8R1lhNV/3iL689zyuObp5xaImomUx5zIFXo0c4XLdx8qcXYNXj//zLWhJPPJTJYJFNsm/Z8qkqAGriOJwmQSlIHNc8fK63auV32bA0Ad/B6TIZ+LLy1WmbTzdg1AupKjYbf3iPUg4zqkyqr/WtqX+lMTI9Dq0FjXFYMk66of7Vn+nq1xWDEiYjzOdMDd/f1jfmfhQntE3eiAZFUCUvlsyj4jouwtrObdCElJsKYfTehGzfBP6cg+Whh9F72Pq9z8Y83hUd2ns80MO4ufrCWr8D62OZ+OCq1kDzax/I3903InM9umzVMwuk+oKxpxWSMT87S1aeuXTF1mTc0WTfnR6sCiwaB1xYMJP4AJdbk1H3knANC37LCNc0tchVkATUVZUSATomOtkOl8Pw3YMSwupfUzMVwZjnTKpBCacAG+WHJH329Es4575Ptqu/IKx+JFRHa/kX/3zTdy2gZNGooZYJ438vq/+rz9FzzC8G+/BDibJ9qxApzArEsuYB8lr/wn98c9VfG2DiZsa+6XUJlcxfCt2OfP/5ucvlcsyAKfIRezSymqW4GBx67biUmjgoEjpnbQteRd/Y+TLV31nnwYZpe7hj1XmraOUbI1xL6YW1rJb8iXLqouy9X4j/6lEvldxamFzriv1r5vn8cQgXtNYPQvT3WdIjTvmSJAzltT44FpdogeGa5ORdFFqzHOIph8dypjQoxacx+XLhIAFFPd4XWWTQ65KpcGmknHrv84jooqo9dLFhY/XAzcUifEmPrpdni52d/2z+/LR/9ULLuX6btzn9cnhhcsTBOVX9WarjFC76yFP1kzYNaaqxQ6t/8a8+OBJ9GWGeBzOc6/GLFjM8VFCGi06WNtB8oeFnXUHIarHvzFNDtFoz4a8+WApWlkyn58mEx3Khf/yOrfU1D6JtNGLjaQr+tOKzHAH7hWg2Tg2Vt68S/vJ3+IzCZNHdYh3sen6RJU1xsdDenZTsWVTY8r1j8lPFqIKdmuRkt73ZDU+IMKLP6amGnzVf9qv+gH/+2Lo+U/qOAkUT8EiE7OMUs2iur07b6oV69ubZsFXvyUlrVvT+cVVjjrTKgcnuRBxyoCbMewQ1jPLdIB+0YQlLml8NsaQibHUXxZ8779TCK/YY3jfmhGaV3N4QzPIJe6dHUUyt40/yNggluuab4rtvjxF8Dt4m/OJPgthN5fJ/9YdizQ/djwa9tLu1iNRVVRWTd2P2/9VSIPzvloIapzaZhEX3SQ17FWw+AarvzR7NYakHSkybhrqj8EO/bJ1Nan3Gnj7uj2fDPsrYQdZ+bWq8+JaRL+f0cNjlJFz2Zs8mK/gAJFa1wQf3FPnT42fKQH9eTsaguA2jxX3ekO2/JTXnjDa0wlcTzIAqNLiixHgJySFHMs0f2C48LZlDW5MVOyY6NTi68VnVZCIKoHiHyng/IxZaOIPGQmS9RbxjS3bf3cB5RSXWNhwb1t8TgrZzWxy0xccfHtvjKMtC5tGy4iNjwZ+hAr7btdhX11urNL5t5Gje5IQD59UM+BtWUKXnHuuLsr7reH69UT1LEg2Z/WSjfK5CVMhBi08/MWmW4ENCiIrNlsxZ8U1ms5BucBtCjXpZFbCf71kmnN/7taTpOP5yEH4VtDf5Rd1BiIrpvjvIqI9VJ5xsqWGkq1QOLO+nh/JN7dCk+NsKWlG2sGuG77/vC0i5bt5EjifOIOVuyuCnvk3sPxeZffxQNKGk0w9rB7RLxhPhOliHlpGdLG+bUTz2OcoX/KK+upbknXBZ4PgAl16FjzEwlIc1xGkzk/kyHNjE3xsZtUT0iFyofrFYSmGDgAUbayXas1+QGrLy4/wNGcYlRtP+9I5ADLlkTTHNMJ1jxklLOBJ8zS7bhOa4vMFePtqhlF0eybSHnyhb2/GE3adwRtM4xKWSKZ1IXf5iFlMnpB3chkDDDj4zY3z8Ahm2Uy3ig8qliPz4dEGf6+1I7TS3/YXLoxZdva4i0utyRJOeRh0cT7Cn+b3qDdZqHxEy8lWx6Wy94Vdwka2o6TsOIfLlgW11o4atXC8hzxuULV3gqnLxOASheHl5yc5Ck61I6nVDduU8I1o87hMkZT1hfb73zTTsixNMAhWwuRWbZJHUlwx08pxwe8Ze8saXMUTr/8fBzadoUd3LCfbP44najoybSZqfqvLIF4vI1dT604VIG7A4EmNbbEgzdX5ZyVe+V8NGekjFYj/jGCxMtuHimE4xSe43A0UFju4148PY4FYcVM0lJkpids13jY9terNbarp4bIijZBk6l/t1tlR7S9jGM2uY39Qk2/ThDpzeRzelkMOWWu1zfcXhs2ygsHFOgxGpyTfofQKNid4EBd+XP2+ly0aadwTwvrkt/lI+xRbJNHvQIC0Ev1P87TplJcqoOtZdMmn2MYUDyhje68nep+U+X9BePQrYFQRrmIPczGHOficcS4qBKP+Yc0V12x77Uxyyid+NAXxOtxMtzOsBTScdKjifrBcO3ug1LIgbTxB8r9Lf54aZOt+Dk0brL3R2zULKspRrMzXJ53q7NLM2oBu8nccjFOZbbbAKHUPFWSKb7i3W+GP3KFMUt88nxeVWR/zlLDjoW+oKVef61Syq+zghMeQTrD+VdZb8tfMABEXDh/dPMeaqfMmQmqZMFPMUMzbcqw60rV9itayzgrnLLKP+olr4wN+nhG11vwb68c6E07bLsGy7ylHG21uiNjHkgRA79WSnjdJwSczKYGfJuYEybVzsfvcYzcRknnL9dA4+zIejsXB2tMik9zMiK9czY+EdExjbtsXm2J2KRX+db4p+cV3sVh++IUpbn0C6F69wct2qYd9f30Fv6BH1hGvhM/y1qz98wHsSOP77IvERLJvRoAlOUTNt8S5FSgJry07JrxT3aIJ/5R4hN3Q8W2h6L9HtGOyxOtZOwrzNROS2FaMVP0dGS5pnSLCEgPq6OxvV/kQiKM8LoybNOLYw7xoBp8T9Pzxvd69WROP3/SRt1W39uVpeBDpqTCGCtWu03E25om3dkp5e3a1gbj638ExOH+w4u1Pza/OeQE4PAt0LUA3sybIAHbZZR3V8qv3JncZMMlvaUWcsy2LJJfZWagFtQvVVT8k8VHwPF/b9hudUS5uFbs42EMFXydPwt8miQN3/rTc9XpHX9Iw/5sr12mehGLyWhu1TtAiIKQIO7gX1e8l852ibNBFVO5360+NrZojndyfslDuzWGvMPRDRd3D44+tmaW6HEY4+nMIpixEaiX90lN5QI6wp5pQwO4cYnrtTQB3zXBQ//SMD+CV/W/P39B8AAAD//6Rdy5KyPLe+IAYiIFkMERARhCAo4gwUbUBEDgkkV/8Xvt9wz/awq6wOkOQ5rRxMkh9UgCivCHbZd8Vb5d0dYV+cGqwzZnH2Gdxk4/ghDyQ3CxHvvqWrXcrdBTvGrqho8qc7yHbInu7u2zlnkPYlNKygwSrEo8l8/FaAheSMLbk9mvNLIgEq2JRTy8I0b8k+bLX+8/78+N8ct3s4o4bcN2S9yYp42p9JhFhCblT/GHPfrNrWUeVYgoB1D1bNONketbNZmmQzf77m/FxOEBdPsYc9MAxzxIIjwWyNT+zJZVt9lvGPQgYljqNm3Q+XgJ+17m4YeD9CYw4uVAF0D8Oldpq9EN0F6wIMwe3x7j0f+HQ1NhIi4GrYEtranOmgTmCFlGMHBWez3cxfHYzTwSLTzD59veApOHWU0F30p1bDWN0KlHTWOXgLGapod+kSFGV/DTVlDFWXr5ENPzwJusSu5srtM/W9eg74IH+q5e8qheM331CDPjCS/55hqoVHbU99Wzzl4zwpDRr8z5bu/rZBxfcdb6BgLKfmqVHyWr6UClq51SNYxauOf8lyt+1FtVb/3uf7KkmqPm0WEkULgv/45Ptn9Ph47jma1d4zwPg6BKfO+txXN/PZQUhBpLvL9hZ36XrNYDeRB94Vfxg1+uGZoDkerxhfqcOlZbyhy7TbUTvtSj5bdBMCuXg53oVb8FrxO2aQyh0n0+GgV8vhxKDdk6OFLysVELlfNhOkrJOofmOaSezHiWnVAVX0x8dzpp9aBIlWB62zFns6cakG/dB0RPNEUk3KqUuXJSVW8JoMKx+z9hRC4c8O9k/nXU7s+dag9mJKAX9KnTmf0+dZxdFKIZB4F3Nu7PYIfpNKdDvWK2/B8w5e7OoG4u5JKvrTY490lpb+MivxkA4WQnZm4MPjeq94uPFFVZCqNmBc+5p833AbPXeTQzbdZ/bob34v+BOop5Dxaf1Xpyiq/m5EWQsi74bo2SGHRTa1T12HpovEAEJF+GCHCIC4pyoB+sY6os7j/fbYrz/kUhSpI5JLxYTp64LIwpawjWZyqpVHCRr62GKrdnJvnsWNBb37XpEmzfTllsG20ypRRYHCBdV7N247oJdxXeOdqq76922KIlBM6YT38VAgtntnDDxdGslGlt89E+5/CcwxvQbzZD3QFJWahGpD6Rd/YXE+r9YZ2P5gEaSVZkwWvQTfUud4wYeYsCazQKgqhPf1cazo3z60tZveNoGUZ2YuXTWBwWkHmAaJrZq93CsBOmzWa+wm4WSSwKxT4KvTm/qLHhq12DFgUe6LaetisvOjOyQHWyYSNa98VleuCCKLWrxdW8ibitvOhvUuvNB4RdecjWUCaL+KTerP/mxOj/VOAVq4JfWtM0Ms6v/OYLXjgwg7bVvNR2Itq+pvpyB+SzVi5uNegKE5FfU1385Z9Gmlf3rvYASDOSvP4xG8m/T8j4+W8YQmNA6L/ijRPN+nSdulhC273Ncx53vOYNHjWDe/ByRu7VsCEVReQIqG51zim+OPT7GvjKPJcFwNUAnKGoddOfaz4+IJ4rFsA3T6Gvm87fkdDMM7BsXCL99kugvwd04oYbbY8onSNFLrRH1h002KvH+gXIHizvV/833akhBAVsUiKBf+/KdXSX2I8cLfiK4xs2Ez5THVM6bGtD4td+1G84zdT1hWk/fqUiSMf2tsX7tdzj+Xtw7dXTewW7w+8ewwnEES2CLd3nqnl4Tpz0WSJJ9/+hCxZCeLiDgex2ZuB2gotW3580c02PsvzqrJf6lG7grUV7VvPwlXKYEfXjrOWqxq+dIpEMcvgm1PZSYRxG+LQiaU/55/0e8JeKUULX5E4s0nNV7aq75mwVrI8mreraYa7tERYzd6MbO5XeC+WfQiPmrnjBP7cZvQq75keOHL+PvTK7sVOeNt3b8q3m++BXwlvaXF3Lz6UZdB+OE1tnQa59xtpgzox7nQSzd/TNZMrgS7M9EW/Lyb//y69JUH7Cz6Yq5Yr0Mdqjl2venu8eH2cmGQ6xM+IWvdz2rsErj9tSZOhYL8lxf4f+mGaJrfxMyebzXKz9gN1u22qYbv9ZEgl6z3NJiSbbwGqktatd6Yi/8x4+nHb9oKdGrguvamx8meUHr5BnRfHiM072LlDg27U3x65HY1N1Irwae4B9jedet+HFKtQ841JMFr97X6yXuVKdS58qB37ayiyV12Jg9hQ4laveqK5T4vYDA/e+ro70c+dZ97C3TnTtR4jarJ4z9D/M2nQOxSuR+MKHWQ9hDyQLmuh5zJ4UcBxoctfQyPNZryG2ZoFgcR76XhL57TY+yi3R95U2+KCB/naarB1N0T3joo9Xh3+hMhdzEOJsYsNBU331L/xuQPG4s/Y8luJcr+JxPIrz2CXkMJQZ869Pb6SP370AWZKjfS9/d9+zmwDyo4mzD++Rs+1bNugJOHFfbxuau+ix9FWioU2PfEoJoGMxMhkqsA73vw8jVcnRLklZhTS0k/1fDUjgH86YlKLVHpe2au7xPEUpkTLTmXPatE24AM/Cf1lvkvhkyWIBGsA83fUYLYD38X/gyE0qb58MsnFj1CzXdT8rmrVy5yDpFARBOf0OwL3gtdPrsIe9bBQzx+GGd0rHIxWJ9OeTw54qD+9Guwvv2xioVVZUDQpTq9VVfZoyDsWlDlzMXehr3zYZudHLgV3YVaBj5XXDR5CE+P+UtZQkODYaTL89qHoDm4p2p4bo8Tel2uZVAerHdPzL8zQF4GKj2m+YmLjvLO4Djf6gCeyK+oeOUWkMSrAr2L+n7uHeEMuRTQYDN/Dh7/zr0DxtU7UGdDfvj+TdCSpwUixh+vu23FDv38pSH5O8Q/30EC+SZv8Vay0pglo1xAmvQJWd1Wu2r64KeBjvQmBFpoNR5rj1sdfYoiIOtVp/JmfwkZ0mljEf6xa489tE2G4LlalpiNn36sk/L4T099l3xo9kuD/BsftyD4y0cZ+TqkWqdgR38vF/UseEC+h5Cap2RZkqIdj8ibRIM+j09sEmubtxB02VKSQn4/N9JL0nrrrVL3NVleq17aQFn4D//8PL18t65mKEsJEsyu4qq0P2+YM3zp3jB35nRpeAdD3sz04Al1RRkCBUa9tgjH9q0fszAUoAv0iFRF03EmvP5EWPwbxu7zHE+fzzOBeChf+BAE21wK+Kgj7yyVQX+4eR7/ta/XtYGt09Pkk65mBRQO9zAW2mO1xuTwghe5noPafXpo2ha3Dj5xccT+wQrMyejSOzzUOafYfN5zLhTHM9R7tcV+JDY9797fFuUevgZ/e5RV/O8ZZhA/S4WIa2esWvJMhZ++o87pTRG9nHRJs6TRp1mpV/Fs7jctLLtrsL6OzErab0Ph199E22jHfCq1QwmLfqLbY372eOLrZ/jp118+VN5vagSf+H4kwq1JvPnHvws/EYnGG/77/oC26S6QbqrhkSWPRLuYrOmP/9ab3By0219nYuvVPhf8c0XA6qokSrTGHqtT/6iu+lINmGGNfSt/ywEltYVpZNVDPJ0FJCCvFCN8XIm3mDfjeEbBNY2DiRjfakqYekfuXn6T1Y2aFV36X2VfYuOtm9/iOQycALQCKpq5YYYmcftmvzyM1NdVmS+/T2Cren/YOtE3J9qxMxD/i6V/enXEySGARitmegxQ7jFzvoeq6JxSfDzlGzS0vHCR00X54lefnArEbCFMVgY2Wu0UjxRUGzQPJMLu2t0bN6aZIV/Nerrfx3U8Ke/yCNogxD//4I1E5BP89LK94k4us1iLYOl/fCzyIX9rK8f99ScZ3RrnqkdpgPrN+0i3T7TzZEOSJ9A+QoK3i6rkaX4V4Hx4OfRBfSmmti3eoR/eNWm1gCCW/q0FuD27B/VDyzanbXFqgXDPI+vT3yPm8krRQVPBxA+3pjkrHooFS56/nNUZxfxR5TW8nKtKtGGU+fDNLyL85mtEfR/902/7z+mG7ZEr/URpGP7L75VoTb1RqSyCaOs+qKeUjTndv9hWNV0QsVH7iTd/spcBQ1jTX/5lzu+lhPzMph1NGL9wOl/XDGpT4dif/BiJgdLqEEuv/If/nDa7cUC/vMViLeFDKikRujvBmXoyc/spsZdTiNbODp9W4sQnkofFL2+i/un8zieyLDlNae/QIGoKk4lGGkHBp2rhz2PM0odWIJVlPt7F84ZPpbZ9oYfK819eHU9GFDqos/Q0EK+rMp4ddz+BNkCMncuuR7zw4gg2m3wXvKToxSflVGbA3sOJ+trDiSX7cWPAKPGCem5P/aR+Wx3Yd7DxBdQsJvtv2sCS3/zqBWiSte4FT2/y8WG933mkhUMLfpF7WEelbrJTXhparFdbItBmx9fzNDVotft7UWvJ97jYMxWFiWb8y6vmLEwBto/DBge6Vucse/MJPmVhYRxRr5KSnSwh4+UCPcZIiQdxfKvqMt/p/jxALjpOzWA/nBLqVOu/ip93hoEWf4792hf6EfHDGUh+eNH7tU/iddjopTbJo0yDpxRV7H7ZMJAt2SISmG41X44XEWyfWNS9LUtCpiKetO+kV8tFaAdvnsINAFy0Oz0WfZD/4+cgSF/0oTx6k2l1d4bN5/YKNtJ12SVsiwUseXTw4zcu8fkIdHSyX/7RD9VafyFCPB+754mggeRpgYzanZc89WES55RGagHT5afvPIb72oDGeGbY8qhnUkNaMVj8Ay2y5WD/Vtm6muYJEt4P0HI+X7UJebGUkVLy35wWXh6hoW5qIhh+1XNHZSr06udM4s3zlg/ytxtgyOsZO4+L6ZET7xJ4hdd3gLRoG/Ob+WyRdoZvMCc56WdFtl4wOB+LHkS5MqcO3QtY/j/FFpbRcMrkF+pX7xOBJL96rLrvCHodLzQgg/TOu19+KPdSQxo3m9C8+G341evwqIA5iNv3BEueiw/T9YBkVOwNFNYCI9pRHLxZ650EFn+DrS6VF3zGCeBe64i2Fc+ejOxggCV/wrq++ebctGUXFn+x6DmDT9LcE3CUyMPH3GPxjI1tpn1Lg5PUX89oJiJiv7yL+lw79cQ+3ODHb9Q4iS8+Q77VQe2yEhu7+tt379oyYOFHvG+AmLN1VYSf36bHb17HEz80DL6u6QRTGSXxtBNpg1L6dahvWROfpF3fIG8Uz8HjKlacteHhBUC0IBC4veVrJG8lcC/yhdpmpvDhsbEzUI1UwYE+lov+lqWfnyTQI4P/w1/Rjy9BFFglpzxHDbBuCGgcSdeer5cl0Ffef4ms8x0nm6HRf/o4WPjEnG9O1EIffTpyL70u58G4N9DiXwNhbvR+auWihWkcAZvXJkI08fXFL8l77Mo35A3nDhyoVooWrKuT5zH7cZpg8efBLJ3VnDAhSxELhzM9dFfsLe3905cYL3nqXNudiqqNqvz8aj9ck7kD0YxzQoTn05zYm9bouZ1ietSsdNFXXwlo5o6BWDmP6lePQ5Cv/rAnlX0+3pyshffm+aEGerzNoXpvg19+R3ebTIj7820raUveSver94rP+SsMNVs6Afav9RbRe39u1CWfCjbdlZpE/7u2sOh/oo2a7JHNREp4CtdVsBk+PWdvsM5A2MHEobf5MwkvbhY0yRMHKxezeDoT6OBslR4++khDA5FvIXrqk7fUQ200Z/qtQxaM0X/5pGjySA33KzdYRauxYs3d0zXnHvWBQBMTjbcpC39+je7p8R2TjUVStP14YoAWfzJ1q7sAThfmGM9pao4UmA3gr2ZqXekrn15/Zgq+frv/q1dLxuYRgSOEIXXvest/+SDID1EiajEdYnbsmwHi8dVibOEr/z0PFOEk0d3WKRH7Wo7+y1f+6Zm5YW0C9Vf1A/UROt6MnoflYGVvoEv9xBz2LbHREHwOQZeEk1cnjBWgCumVRm5toyXPc9BmlbsErrmYU7mfgv/XkgLl/15SUB2Pm0ASD6wnDz3U4cHzLd0b4tbjR68e4HlfPYPV9YNi9pizAtHr7UDPzYji2a7vZ9hyMaGBkcQxdzc7FRWw98hLkV+cX/xhQn17oHjv9mPPWrFR4fb8U4N7cZQrothpAJDub4EMhlp9zVUxgZefM/pYXzw0K6fdGfSdrWE9fu/y9k1UCWgbP4I6MY/52KPMhnm/lMxV6xrzP7E7Q5GiLT7oX17xavicwRvbEPvzvkFTWbQC6r16i/XtCedfdUAFBFUb0fxTgjdqmn9G9jl2sYGy2ptlf7ARNv6kAEJRrlh4mV1wjS4MlAARkw3tF0C4jjb1Sk3oab+aGazT2sZ3aznYKLQaBnob76kftsScnD/F+b0vma/7M5+iz+kO2BbveC9jGc0Df1oQ75bIzlvdciYMnQ1jt4volvHeHAdfUWAd58dAsZ2+6i9lmGr2hQyBgiO7Xz+/jgPDtFaXLc8E0Wv2yCBzJxP7dnlH3IOPA6LAn9gsRJ4PV6yEINyclrprMUE8VdIU4rdMyGZmeTztzbWrzqgt6WPYbBG3ijDSsr2yCtat8a7GW68NG8cqdtgh62884dOpgLw+lzj3X743i7OmQn2dHHpUsZ0PZdEC7Ccy0gOJPjmbvahTY7i7+CRvJ5MP2qAAT7oK46sQc3a/ExFoe3oQOSgzb7iuiwJ+4+/wdo4xe/OohKtYqdgrtaIaAl5kEPGAYc8a3X4CF2dAh9qkl49Nc1Jd6xSGt/vCViEFnFbDJ0HnZ3umd0Pe8Dn8ai0Y58OdrPfVULFV/bEheYbbADaKj/jcmESrr8zBQXzNOF+FZQPg2gdsGcCriRJiQLtrdLrTJNpTu9cV+At0EsxQVnyujO8d5PLZ4y3Ca3Mm2d8Lmne+C2Tj4SztUQvpl9UJ/77X+r6vFCRfzpR6ku9y8pCdGjbGEpGT1TUf4o4RLclWObbJSo7JtN+kEB20G3ZWoxaTvEAEovJcEIUe/xA7XPw75E2X0v2OXiuefjMF/M26D5j1Wed8Gb+rZuM8aHxTHjE/bTYNdJvQo7tScWMeI19Al++0pYf75Ysmo2G1lk7tlR4vt7U5MItYaud7hMRW7nEWuncVEU9WA7EZ83zaXjUb8e3zi22D7Xrpdp2PgHAeELXmNJ/XaBdBbAsu9kVDi+dy5TgQb942PqDuE8/xSbe14/u+x1nO9lXbnfoSLEmLcRSNTT7CZrDhTu4BLrT3MWbR1X/BY1496f543ObTnbUK+mYlw0Z+mHKq8tZAqS1P2F0/ipgG1dxoPZm8QKv+/qoZz0qHZmvUsflcztF0PMkCZWYRacSXZ4qbVd+AKxGy4GfUT548OcD4/UZ1N3fzdTmuGTzX55paAx+qKXsrITxqscJmQv8QL+q0gNdNCLGFNWSyp693kN4ODTVXXd3zMQprOOpSjvfK5FXMG7MEBBWFeL8gwiQrXxscEWvkfYreeS85kMIzcjLsh23gTVW4ktC/8dFlN87qF5pQ3Dln/MNXSZajTjOgfNFgH33jb0YLAS5qd/nhvzmdCteGeusNgXTGy6kDATqCSWIH44dDzXnY+Ed1wswnYrYy8u+w2R3BT/cmDZr14HERTAJPidlEE28XxE8tPSpa8Rzpru8H3q7UPxesr3TFfna1e1Fo3RSpK7hTq9Y7c0aSK6L9FwPeL/NjWmfEQv1F3lD9qSBO5cdL1w602BGkO6M3t+/IAj8T9nQvlna1vqRuDbvgbuLnQ3p5A5G+Orjr05HqkSzmfDhsgx9+LHi2qzi9xbbWiLJMHTeZ+mW+FOirygoOwu7bM7c2BKjjR0ldNCwRqTyJWmyDSx/puOoZO5c6+n5XNcXe2eJsIKGt/d7PfebUZMl2PkIU6i11t7eXN32NRke4Mxqym496JabKioAk5EcarA9GPMQJtsFRXhVB0b0ymS+eRdhxsLCNuW/Sh30pfvMT47/k7PFLHKkIGVGMD/8DAAD//6Sdy5ayPLeFL4iGnBOanM8QFETsiaICInJIgFz9P6j3a+7e7teoskzWXPOZgZX+UIDldRRzeCzCFbkkfNPfAU0uLO7qgPTDcRmXHxRY2NSJS+KjphvCXYl1WDuJgzz1VAZrld1fcHVaMxbEZWzwYz3d4Q+mN6SZnytYtOaaAS0Zwl1PhHF1eWBCSfQ7EgDvRbvYU2slCdY4ToHlGIvrVAXo83tGNEEAD0Dwv1uCVWWBDu7mryd6K3rGUkTjDeAmG5FbQm5c+Arl4NQsKoqd3xtMGeubMPD0FjfTejR+nO+zcNDzH/F3PRCkIRn+6ons69WMqQpdINSPEQV5Spot49SXchWriPing2XQymMwuCvqhKpMjMfljcYKHFQziGl7/hor7bsaHq99itI1x83U+29V2d5uQ2Jy5IOtbH+8LHplRDSXVnSpDtf6n9/xI0cyVuH+6+RjtyIUKWGRNn/12dQnF/ngPJRbxYIJKByskAMed/Cnd+BvfwSzgegaPa8yDK77oMDH9VTiF+BDmBz5B3H3Ww0n5RrK8K+eiyEJ6Ob/JBMcnXw/ok9DsI0fdYLjYXgSCx3yUWg5foKj/PzgxXqy5UBPDx8g6VGQ6/YK00U2QhlqL5uJp7MOx+/6erTwHQQDvnPDjthdgMHuN5ArtrXRT61/kpODMOHXxZLKxTEUHyiaqKLyyRqB0Ewkh0ZTGchctXUkgX7OlaaqCUEblIIxtJgOfhNbRW521yhuX3T5px8Rqz/SpWoPC8Sn+4UcATobi5qlLMhXfUCudZPHiRyWmyL23IE4rxlSUqGWVVbbr5HfnMpxotcjhtzvfiPpdCsa3Hu3DnZZvRJdc7R02c7LHdq9XhPzyDnl4kbhC8Z1uMRKsE/4+dN7zmBuMXezvmDFx5sv2Rc/xvQ8FOlqXhoM+cnKid01895vrJesjn6A4kzcH0ng96lEZNHJuSuYcq9fHjCylBDtHdnGOId1BXWN6/7t1wXpKQO25ISQ+3545ZD4dxHs30+8nAQ2XQ4frgbveiiJfzKIMU/mu1bc74BQMN/cdDk2Swwixj0Sq/alcsJjuMBEZbxdr3S6/NKlUHTh3KHgoqnjVhGrg7diTUl8fYSBkF09He5+br8hyhq3xZFu8FclPrH1cjbmd9vd4HjmJGIwFz4g6N1O4KENV3wUin6cvOSzKR+iLzE8SlqAmQ4woFmxjFSkfsF8QK0LHxwWkGfBOqCe5jLwTz+dtFoCOvD1DRpsfiFBkwkB/p1+DBAf/gfz+9/H8yPC4Ekl/V/9kXWUeOnnhhD99a+NWxJXaWV4iiWPxs3kMDYDlv1JM6W7FwHPLYUPieWkxJqSoZkqaSzg/e4XyDIm1eA81X/J3hg8MSOpmG673oF9f8U8jWCKjeaZQKJUl5hhtx9ddcC9YHUOfhiY+RZsT8aw4RGyD/Knd7yprKoiSa1LHkuQ0DUzcgjhUCLMj0+j5P3WZ0BGHBtLwl1PFxpxFdh5CvlfQQq2xM9kyNPWIdedZ2ZscTJYaliggHte6Ra8GRtU+TfAn+B2DbC57XeTgzQi1uJcguXCVXfIVtUVqRBHKVtR7gTK82YiFLMi2MbkYcPmyRyJ7yXTuHEtFcGf/+8e1y3dDpx0h9G34ZBhbm25RIOjQmZQIdJ5zm62towGYDzxEO+TqNLp/jUHuOs1pn1Ix2mvX3APEhNltfugGD6lStYOb4J87aoam+2/J6g9VocY1eMGOPNx5SEqKxeF0ysCu5/ywWhfHVKufZQusrtfjIPWAIVH6W1QuQ8W8A4/IVI/uhCQS/ZN9rfYH0gt0ypdplY/QSPmcwyNjw94YiY+fPFvBlnfx5dSxZAgbD9rgXRGFoPV6n4hoN9aiCkv1AH+FYkJL5rIEKeL97eEb0gGux8i5u1Q/30eHeKjyhFXk7uGaILFw9Px7qNy7eeS9j9pgT0n2Sgw883YMFAn5U9PLlbxNFbPWnp4Gy0P/fVfQtIWQmt11HjDehtMW6JncMhtDZnNZlLaPTwf7v0W+YLzSenGabHyxzen9r2MeHzeWtixnICsL/sqt19R2DCYh+SPv9IFIu4lt1K9xOv9oBlrHKMaeA8X4YP4COl6U38FLI17jExD9MZJso6L8uefcjL3JY2Lcw7vstejcOel/n2+ttByhC8ejTCnk62WIvzjAW+OFLq2wcL/+Zl4sSMrZcvfsVa+h3rF4qt4gtEDpw2yJJtRsvM9n5FT8W99//r/6sJfCHb/g85M1BtECM8DEL1rhEKX2PvdwxUP/3hjqR11pM86aOHOB+Qczg6gycCaMLn/ahIu+ES343M/Qv8OH6J7sgGWXN0WZaH8RLTh8jaWP70I6eMS3xP2Mm4gsHioG6mLB+v7CTb/t5rwuQQD0VdpGbfg28YQZJ2HELGmZtffEOK3tD+yO//oFAiiDzEbH/a3SqeAxsUjA4OxBcjf6i8Y78JTBP0xvaFwjA7Blv2mBOQP/onZ/NbSadmcBOgX9UUepNsHg59+EG4TB0m4WkH6u6m/27/1tfXt02CRXAaoHRoSy2bGN7O7hoysX7McIUUf0nWZ1QRub7+J37NwDtaJXmxIJG8lHkSWsTyWuw7v5wbi0m2FYHbhO1Sy55AhW5thsH7fCw+L29clqirz//IAOLGfE9FwPDfrngeA72PzYu7srRRLZpDB2dtCnC+C0Uy7v5IjJyTEcH8JoJDYJ1jd8iY+0ME3iNOzOpxO/BBLhdNSeq6TG5ytR4ci+ng2mzl1A9iH/BHTEH/jfGlpCJWP7cfwfD0HK2v/Wrhwp3jnbzROwaMq/ngGy78ipIMw8jcQFZaBZVfKjJk0ogg4+5SgYF5fYDNujgiIw1xIKIkRZb8cl0OlesxIFV9u2u68++e3Ysq1tCGUKVoIkrSJDzC7ln9888dHJKrjNNjK9HIHux+Nl88VjRt+YQZ6Pn8lXrmEwQ919xusdIFibqnQH//bwCN3Kz5gzAYzAAsD2PJ7jlcTbiXVIIXw9+o03HVhBnY+7WHdBSOOzlEwLvyvaWHGvMV4LYwx6P2r4gLlKSH0uVkO4GaIK0B1EMSKngmgzyQxhMVdH3Z9N9MpGvbga3S8mHJRaUw2e+hAK1oxif3oCfC8SjnY/TB5Xo/6yPrP8QR9Lg3JH89v7+uawPF+P6MYYVruvBPDP39tBoQ38OkOBlidvd/f+jX778vgj7gVQb4SpmtweicQfb16fo6xaiwi1HP4nAWKjHX+/uNB6LKRgtDwIsbCk+sEimW4xPzoDmDZ9QfsfhGhyxeUa2ZUDJwH54R09bqk600GMVxtt0bOnV/SJZxSUQkOjI0X7fBKp6f7YpTdr6E/vR9Te0hA9oYByff+TxgnDaGFVw/58jUr6bM22r+8glhM1Afrh3EGaL2HGMuXaDC+jaP58HPleLwdei/Y+VBXrvGvI8kgG8YmedIdKM3QI/uhS3QNQurKPzeGJIYCSOdGsHzIDDrE0hwpgMaN1P7pI9EssS8XcPILUHZ9gVvnfQzmkRsZkIdMgKzb/ZXin8In8GJueszX04viSv7x0Bf9JGaurDly8oODykUoGBT8QiMdMs59AS0UKYqvdjpuhUsnkH44jJs1j5t/eVBxCFmSvxlE6TDG/l8+ilDifMd590/Qf79ZzCeFT6nCBItMrQWR43Y/NdO+P0HYqh/kPLYuXX+NFcPA+eikwE5R0vxen5TBWAIUSc1CZ+Yo6ZCNOgsfCtk3Fsm6biC9ntQ4XqKwxB38yXD//P/xwlk5Vn/9BnmaOgXroKkJxBt9oHj3c13suS/4x4P2np9tolrb0BZlnuh3y242A9Na3tf3nx9fzfieyWTqjFjceYsmyxDCSa1ZLDzKCLD3rZdh1588ZBzpCJaglwfY1x4mGuiiUbx9xBPY81gU1us54KwXNeFhTT9o99fN4hSv5Y8viFYYo/HdSGnCl9PfYkE5/wLa+sMNLMlQ49V/fOg6gpMJW82bcNZs7R9vvsCzvSfoPH2NYFFvGoQSP5vIOPlmygri2wYprPzdn9jNopdVBs6Xe0AegSOXaxdZ4R//IGNaj8F2sW53YAvPLBayPkgFTYhYkPCVR1TQbsZyFsYMmpf6Hasgkkb8kfa8CucvLFwjly5PoXrBm5e/yZ9f2fTVLWBy4Kb/eKx8KAno9Bjgmq9wMFhgcv/yU/ze89GFywQGxh/o/su7l82/x5A7HgZ82PVmq7PABe/j4pDrSfFG3klXE16110huzPearlXc3WROs3Lkvz5DOfVS1UG1YM/oEoZayj1PaICXZuziQ8yKlDpNJALPbihmRyFP1+fP9YESBgJetaEp91FMBYCM/42XF3sy1gNqfUW7nz/ERne2WbfnxYdSW8Yxr5vsuGgnmwFn/XhEpvNejW33m8r9kNdI3Vb0X5639yOkR7cLXcKXMECH8AWyE+2UzsHpd4Lz+GKROZ4KKkB5qGHY6h+CULCW4yddF7ifr8R0zyMnvkIZDN/eG8XVVQ/YL6dkcPf3GNQK02wfyR3ki8i/SHg7B8ZqHKoNBnbw2v22DPjbuc3hX/0azCU3lhVUA9g2VUAucA+glY1QBGZuH0i8tC1dD+fbPz9NYr8VS1IrKwbPmaPIDcz3uKJ1GZTojA4E7f1rry9T+UzBhLccBOkE27cLv4/FI9U3bJstHVcf/uV999zpjA0EEQvPffYk8adWGsrsV/Rpy+GErF7/jJvxswoYP2WJaNb+SHJuv2T42TZvv4h4BZPqCq34I34Vy1uA0sVhYgbMNnCJVaUTWD4/E8NeY3t073/vdIZD10HbKHjyuF26kYpv7aToF/2F3E/G0bX/3GyYv9wcIUFExipErQ31c8sQzbejkj7Ubw6f/vgjVhKVdMqe1R2IS74g7Xe6jGtBRQz/eNse1i2dhst1n0qiY+SBFNNO+aks/MuPdGAEzcQ3XAVi6phkz4cpvU7Ql/db0PHW+kVAg2ht4V8/RnueOX/fIivfv9wWq4NsBHQ+FR180KtG0mcw0mn32/LOm/EQ377j9BhmWWYmWcWyH+oj93pb7l+9Ir0vFGM9weymSFxaY6GUbwF/TKcEfmnix8rjpBg4a3gf/vXD5MVuwc8bcx7avVojO4Cvhu48Dp2KMVGw9lFJj/icw+JRhTGYDQL29YAwZl8dQan+oPT7qm/Qr5Uc2XoZBVhNreKfXrup0Brbfj4I9nyb+PGqGvyU8jncCFHj964PWE5VXpFEt8N/fnEeNDcBa1EVxK4nlXLL7CZw71//9P/vPA+eyPNKrO/Dobv+bgoEx4b4jvIAK7TcQvrjnYCPBroeRer/O1/a+TclqV2flKMlApIhpQwWmo4tAPQ5I0fzZaPfeU1u5sM7lnKWN9awFPu/80pkKS4zEpY/dzDw1Bbz2gwNXMlvVh465ozcn0TTbup/zL/+8oPoY0w7TyhWpL7jbs/ftzo+q9AsGANZ0nELqINrF3780tz7vVqyTe3H8HWFCdJPc5fu+YEIOsl/kHBsLw02FUmHt3L4d14TrPdU9WF9Pl5iOHnnlEIWFlCbkYQb2Tsa1GGLBEYWjZBN5j79thyDZV8LMYnc0Ax23uhBwLxa5O/+erl9ltNf/WPBthOD+8srxKp1UGq4DwP/5R2nCK8xn2hbOiG9hPAncyJyRr8rCbmWNmRDv0GaCbd0m67tHTrupUeedmnHbT2qi3IIaBuDPEUN3f2Z9Lc+TtaPJQ6+UwwYZcuIeu/mYHkdlxzWFvvBXGS+UnrXYQw3MquxsF+ljJOz5CoJqjvk0C4p1+jjqvA0ew1xuk8PnqzTq4Dyyg/5N/44bgYGNYyR+iGedjEboumDD9E3qImZ31qw8VS6QenDL/EmT6kxffDGw8pVZ+SkjtCsz+amQhF4XMyOJ5FOn1+I/+VLUuGYlJUk5Q6Mox/t500joNEryRRF2KfAt74YbMfr7QYPTXImtjR0wfYdLy+A2y0iQRgxzc+tnTtopuYQsyvRxxXffjW8nPucVPX3G4zn9CZLe7/aefk1bspP5f9fjxRI//cjBZlXpXh1D266RvPYAXFJdRI8yUq7WZJVyM0Vh+nLZ9P5R58DlJeJI3egftL1wYUL1E6BTpx1v6vz2buTfLjfchw8n11DuWhheePYukgD6rVcFipAYJ+8hqD+2oFhyL8MJB4nIO9yWmmvv58hFH3CkODQGelq1J0JVbT1MZ87GtgOy2eDwaesMXeJ8nSuPy9dSW9FiDyVXVM8xEMGHp1nxEANtYb9JWgftOfckakrOqDldtFhTJUmBt4bNrN7CX1Y2qNHvCzPKBaEtYcvAdboskE8LuDFiOAlKRD31g2lW/yGLeDiAiOr/7Lp8uvUHPbujceraMKSYODKUG2dHlmH39tYv2bkw1ZkXZKs82Jsg9be4cg0GV4OtkqpViovKAfBipeqvNDpWr+hYvbxRNAZdMHKRI8axnyYkWceHNNt7qUM1soYYYYNb+WY+U2vvJLCQjG5cON6MgMTZn19w+upN8s222IMytjdBy1xx5GamzdB+xQ0yJUM1GyD8m4hDZmYqL7Elhh+L3fgoV4nV9KHYJ2+wx1crppGztATwAfSuIL6K00wF4S/PWJlGQAa/Yb+vr951cMNWobao7ICcklFXztBx3y4ETOVxTjGog0hxQbBIjKCci6+rwJuaaAio7iemu1TOft6Lz0yCODo9hF9FqpuckDeBEGwGvDHw8uhXYlpRLExk5xTYVXce+SzgE+nn6Dpyq3JBeR8mgdY+aKNYe+VDQmq0gDrqQvvUP/ud8MV1qOZLt319be+RP+oSkPKazIpfrUoKLRpQbd0rHzIC7mI2UvzCxZszhUUI+WOdOsxGyvvjC+gjt9jjO3DftcOaRh4L3SOIF26GrQCnwxqd9mL10++pOvvWCVQpPULBX/7M7pcYzCrAMfwy4jlIAjSILeyUCNzUpxAaNg4FGv0oUTzhbrp/Um7KyUMQ+IHhwzQfiI21Njqi/TVUtOlu8u6DK7HA3GtQR4X6d7zcMwZIY5NwxiXm9q3MNdvDxKBajDWWy5DeEnqEcO2bsHKiEfmwBhvjYRPZUyJWVgMtK9jSDxSvJuecQMeJqp9IRbr+mBET7VXTjDbsGjHHWjHrmzB1NoFsSqmCNpIunWQ9ptAXKfOwKoeb74cVqGB7qeMlFtQ4BOAWOKx3LyLctQ56QRPILdQdNoyYwuy5g5lClNivqeSbv2S3OGYPAAy2OXWjGVyHuDrWGzoNvJdiQ9TzShQAR7ytVMe4FIO/tOTCP8+4xIuzxe4FncnniprDXb9gZDThgiZmvQy5qh42Qru3h+c6Ve+Id5Qt/D0szJkYKNsVv7XylLH6w/8XdS1WfT3MwZ2MTzxuO93soC7Kz1/bIaQ/psBVfaWw/NZEB8i+91sw2l2gUhfLxRUQE5Jpz1vMF6hh0wimQYvf/en7WEcEt35nEbCVdILGmc+jeGplZuvhz+FfH6aPjrt690zpqdDNLzT+MDrNSVi6UE4yxOMhW0yyi3Yah2i1Bjw4n26lHrD0EIDFgZ6vicHcC6nY8V++R6x6kpr+KKUbhCUryUGntYZ85k+OmjwEhsvWb00c/KDKoz5OEPeLUaGkJdCC0Nue5OovT9SXAO5AMQTBAxW5bsPJj+5ELd1QMxL8zOIKLk1SC8uJmljH8v528U1sITzF6Gm1QPqZFUBbwP7ImrwUBuO5IouX+7JE/mXV5DSkIoiWD7M+F+9OknaKvPlNhAtWYZgg88rC5vv/U7+9INeD1qv8EfKIT8IHuVyU1+tos6sTtCFqiVfMvsR+jWL4+FQeBS/8PukNB80EkswHbAlalyBy3ltUBAoTUBx6A2wPrIfogbzCCYd3CBc3vhFtOpqB4J36GzoK4JJAu8Nx1f3YnmlC+I3spe8TWnvzxg8jVMbr4ETAeo8jhU83hSb+I2mUd77JLJi9uFE0pkm6Rq8bhW8LuonBnfK0lXg6w1WWfhAvg82Y4nspIbsM//GWfadgkXUPzZEQ5MivV32ocDfSwWZ0apILLhCut6sLVHuGb3EH0Y7BWvNdBnw4pJBTqIIzUosNoexCe4xPKrvkir7lI+Ha/2w9A6u5ZYv7wHEDB6QOrJus5Gf2YK93xP14XhgyZIo+/v/iEtuabqSr4LhMAc9FmddH1dWPmUwjsqNROLpDbZCUwaoJCHBywWLdOkYcAPGMiDk1QgGNHTZCjoO7lBkKaihh5Qx//QuJlE+gSFtihf0wluLlX3/UXGx7uCcnQ3iliIB83p3X+B06BKExg8xqHKZezhMPvi3H+lRO+fw4ZgQFeAQjsNmlAMYrG+AwZMcKTXfmq7kw+GLjBarzbrq5qIc0+cDg9QvxoVybi93BhYJGo5vg3aXJIeB24bIu/pTOY1d2cmJLJ5QhPic0tyGJpw6Z0O6+Ts32A40EQQhf/nrR+N0VwELWRgoxD400jivqVXBzLun5FzhENCXSae/foz5u/or1+SzxorQ3Q7Ij76tQXtucMHeb5CBMn385y+8Gp5JAYhWco/Vg2AwuwoTFDvBctmP2NjSvJM8eZ7o4lDAg86YRBK2WxLgP/0158d+cZG9v3V9EQfYBeE7Bmd+aGj8jU/ya312eAWqVG4bTmz4S9MO6eWol9xX1XOF+Zkmul6Zhn4Mk9SQ+8UDCYbQGufHyzvB4B1ckPZUnuWPNLIIHX6bsXhjZ2NLSDTBW9edifZ89HSN0EeF+WciMf+NqpGameErmog3LI96TLchJxCyh2uJHl/YjevpbCzQHO8+yeH33vxaY5UVaiCWBL7l0nVFeg/LyLdisRQRoBwUTZjmvkbM7KJSQbFbBlhcHiEDsddgG5qZFS/Hd4HCtDgZG/ueK1jLV0JCt+yNlf1dB9ihaoq54YkbevSTAjr8MpMouRmlkEuMC/iyRngrndxY3TKGgM35I/HiqDZofxlbIOtjibdOvNCNZJ4Jpt8liRfu0dKFKnECHm9RjOEXzwb587M8NWd8EOxPQ0ebd0F4mR3iEr8P5t3/yFehjom+HF1Ay+G6+2Hrjs+XVR9ZTN6y5FebEit/n88T+goe7kVOTiWYm8URmAEIb9dB2qH9NMvuJ6EmThvx83s/Lt0sT2D5hR6JLccu1/reMkq8MTwWluRO171/AFkdNOS/ryewZJs9AfEOCZ7uaxMsVzoMcPc3KL6tpFylRGJhfTYN4nFHL9jXw4bK/ZDEW1e8y/kCG1k6abWAv/LDCgZ4Khk4cuoRGcIkNPR9lFpIHP4RUzIOY3e2PjF8IrUg9rE5jwK9djrUuOc++H2pjb5d6+TPDyEtdWW6cbjJ4V7/xGMjO+V7tjzBNJMUFM9PkBLR1xKleMsX5BLfNdbHS0sgYW4R0robDaj5CXgYTCAg0bGyDdY5KwncilIkuv0mdAHy1oM1fJVEZU6/kh444Q7FktGJ/ZOWZoPsOYPJwX0g53kLgnXKfxvc9ZkYYmIaK5Mn3Z+fwd9bl46/OtiPIDGysCR4TTn9rv4d6u+j8vf/BZuxyCw0qvyH12OrNXy/JBUMfr8ZGYXnlHxZeDx85b8BC7ICRppzIAe5J9vI08TMoLFlihI3RBdUgakZt/zZQ2gpbIMiiQcG3nBhg+f328Rb6fDB+lg9Bv7xkXkeMaUvQdmAm7EOqgjQ6DxZbxOG6R0ihKpTSo9L1oL3mLBYSYZ45JIf1MG+/igUs3Rcfq63yXu/I8mhu5QLz5UiJKHdY/6esM2W1A4Pns25QCbWfoA6hxMPjZtdIdvn+YY6xhnDvV/FgHLayD3l5AQT64z2n/fo334GSciLSFOmsVze3JGHyRIEGIJXCdav60BwAXlHHEkS6WxBzgb2udSIOoRSs9yPbC271cXHgvjx6S9hDi9JLKGOUrnwRhYE9Aa8XySjuD596LZ9zqoSWBlGqqbOxvLs1UlZGVZFV7XtjDnhVxF2lE4x+Lk1aEq3UKH+XSSkQZFSrGl9Ds+X9r0/UkXShfefFUzMrCbJ3fgGM6x0+K+edj0KFmuYa1jdMSVudHCbRX0HjLSd/BShzBgBOTYVBn9+Hwn5QunSFT3ceR03YtIGi9NxECSrJyLr1TnlkgFtg4dMnmN+XIddj+wEXCirxI50rdN/fn73K8T/3Z6ULu7NltXvxcZ0euopnzZJrfye2m2vBwTG68Hrwfl8WZCpHtdgC4xhgeyp3afUydrf/pMh9yYaivDPGrGNQixz8Q3HBy4ey5GDi60w8cklarYB0FoAx8Ab91ug13PQbPYam+BJrJCoO19vgrD+02fi9/ZKR/NjsAqbfV944MgMvotwzcA6fyFeDvkU0D+9UI7RHQM1fI+rkL0L5Xx0PsSLH1E6D+NN/28/RYNGydEvChBodkNc3JVgre8TA/VRvyBnr6/hj2f3+kW7XwhwMuoymF68jPTikIz0apgvWFrDHfdSKtOJfyU3iF+JSnKXuZf4sRUsELUYxLV4OoPlzV158FKiG/FwOxjfrix9wMttjmL78BpxWWg8UDFPkC7ytUGOyu3+j2dQgJWRiidblnSS1AgpqChXeFN9JYtJQBy6dMG2+xNFllCAhZ2nl9MsDiA+kAtx24dXso66bnCWMSS6ZEfpJpyXE7hQXtnre0tn1ikSuPuDWPxe7fRXF7Uv96oUxXyCviMWuoWBereEKLoSpvwN1d2H5fbYiK/b8zh4zikHsRjh/ZG3d7rwfaXLW3EVibOabDqTRVxg5x4WfBhWYZww+cnAsvepcbcubWgvtRAuc5UR7WQWwSY8OBlaXBbhsJL6sfcn7w6WXCni7x8v1ZuQy0MvPUhkSiHlbSZgwDR2WiyYLjV2fj/Je/0je5Uf43quTib844+df8qFPtEENeUwELXPniXlzvwd0vY1YaG7cOXGgV8MeyQ+SUQU2ow7D0DLOVHkirRN8Z+fMNtDjJdz3gdU8b8b0CrQxHt/H+evabmQHAqZIPaWgiWyixp8JvdG4ibvx0lk6v0RF8NBrnPyRjws4wSbac7Q98StYHs9Xu1fnhFL/Ecw5taBExjMtkKplNl0PUfHAnpk4km4BSrYbNnzIdTNN0EvU6SzEdUt/D5amZTbQwEbd5j0v3wNy4aflMsa0T0P9HSk9v2rXC/RNMCHxpooNb8GWP0062Abq/tb28ozxcUCRegAVSTBgcfNnteEkAqbj1CjnukcMEcdnt6fMZ4cATTzuc5EWBVVH3Nwbo0Z1tEC7OyWxRyfLOUCCikBe/6BUH5wAe376QSoi424Nq9Duqzewih5i3Vkwdk0WCoZd6UDxzMJxsTd+SGqoPTlnmjn74aOjHgHclTUJJsUx9gecn4HOw/F01HV0pVFZxkU8xD8+f9gomUowpKbE+KFn/Sv//LActMXVuRhG4nms7zyPZstKdrHL90CfmLhugglCr+VRlnUDvlf/RPD/Db018rMBqscCXFt/rhx/RKthXZWZPGcDHhc9v0OH+MV4HnnqeUSPjYwg/kX09Iy05UhlQh9qZP2en80dERrDPWmxsReZWVcFGCJynKLeaRfqWssAPEhPEXJiAxrtMcdGV7g0wwmbqSso3ONviaUyNklqdSejPUpJwl8LZVEEDs8Dcod6fAvb2BevlrSBVcnsOc5e75k0oU5axic0zzfedhMFzpFHRza3wmvyhSUiy4UPnRQiIh3ZYx/66/I3GGOD43KgZ8x/nz4rpeKBN7xWM6G+a2BsfSIVE1H6Wx5VP3HX2ivl+UqfCo4TS1GZy3Vg00AbAUu6eYh56TJ5TaUr1jZeZJYbMEHpFG0RP7jSRovfLp+a2OCIdCumH31UjBdwEOFrb9gYv3KAHB7ngXDZ7hgYfdj20fUeUjfx5igho1KWWOHm/yXZ+7fb7D76/sf3yEXBGdjEwSpB0pB/gcAAP//pF3LlrKwsn4gBgIiKYYIiNyDgLcZoCKgck2APP1Z9L/PbM/2sNfqtiOk6rtUUnWgWHiKFQltu/jnR/vxt+9n0f1eQMfXC5ln1FZz3YoGvH6fippPi7DJcVQT9rFL8eF8mNA816YD6jGM8J/+XkokpyiSjB/F5+uOzSoNCRQQjNSpTr7Lpns0wZllzh+/QEN+3iZwFBYV61JBY1YNVg3vmkn/8d86pa3/9Bh2ukXvaTP8TFRbb2X1VytGuuhjwcqP6aGv5vgf3rrGZY+9j7iwFlLLkm3vVgfPd6DrE3m2gfz5yXjlF79sTKPJUVRD48lu1UNzLSIOGrdJAilVhYrso1ZDCaYSPbD6mY1D/4n+/f+DMn8Z/e6vKdQ7UaCHPjZd0ky3J5i53GG3nzg29ds8QtfdQcB//iYbdbNGL7PQsD1OUcU8bxuixy59B2XIVf10tVIO3XdVQxSqxBU7BVnwjw/640djgjj+COD1JhW3hQDNj1i/QS2J1rp/K7ZspnGBy5fmwezorjuXn0b9y7/YUQrcz/VNSeHIRRfsnYotI5W1XgE5kwDrR+bpQqRaEXBGRQi/7Q7oYzlBCHaxDhJe6yNTJHAhJD55BrQ77V0xE60UDZ/jIZiemzW/DYcaVv1NfdNPWX8a7gsIjlXRJHCkjOeYGgF6LShAj+22Yn/+1X33brBzGRgiAukTKKL7i9orXqz6TARh3/hEirca6z6pEcHKh4LtacbulISHC6qPVUj3lhuy0Z+/N8VM+x3h/e6N/vw7OF0Iooaw3nrkvk4KzCYTDXB4YzSeKA/g82dsZU1drfxDVn6X4+lfPp+OBtTwx1dNDrv9Uj6Y+K9ecN21Y9XF/vWLRI5/E9FNNTbh3SjC88WdyHvDh4hdss0Xaj0+BFy55PE/vq+fvhZ1FQfQIl/0UvnTS79w9DKyCYZUPg77D5lBitmqV75wV+GJ96/Hup6ndAG3uln0+HM99qtezgCX97PGrr03XeaxSVbOoSlhe3sP+vGV38mOfErpr76AZn8mN3Q8vAQizl0Uj116uoDnbTaEG9wxppd45tCblBG1S9Zkk1hn3h8fp4EnWe6Y7441CpG0oeolddCEcjDl2Y4U6kulr8+HyyQptVB3QdEYiTv515OHxI0Q0D8+L9Kj7sFeeCRYX+t7bPqGnfIg/T1YzDlzeSTLDSwP6Ug2az2KsvJtyhJf+QRxZVEt435LAN1OEVVfL7n/ukn/RNn8OhB+rV9M6sYpkVqaATVzvvjjC+q//QyLW6z1tl0Dp2zDSLjy7YWOOEWX6sVhO9O+1bLZk2K3+tX03GE9FsJEKiGOpIoMS+bpNNl1MtylEpHtygfnlW/u6uM7pHitl039/TzAtm0eOL77ji6as2nCiGhLzTzk++F+ekdKID9fWPvltT4QvymQdxlSwq14QuVrmspDk1T4yXty3Ka9+PzDR5p4EecSt/0Cqrmjiu1q27u/yzyVyPX4K1UVoujLmn/kWV1+2OF7153XKePwME0czDFE8fI4Jjd4d9GRiA9J75dPb3CgleWezKsfxmTzPsDdIxFWFfLQV/4jA7qGH5x61T7bfpW8QBy5AMY8V7jr94/Q3SeboDqsV2Lk9QrWH99c+Vg8335FCrKgjMGKb1kvlPwF/uJz07SLTkq03MBufH+tX+71lS9+QWi9Dl93dy2e3tnTQN/1SqV8DVV3htPBhHNy1cnunF4rFkTaoqx6iIgrvm+z5aXCUBs3bFwr22WZddPWrs1jwIZXmc3isSr++Cs2LpscrfXkBV7HguKnoVfVkmFzQiF/v+Cz69nxPPRjCJxWJDj6Nl7FO4ejCJ1nHrFfe5G+di/sUHisVexuxKCfPCe+wD6X7EBZ8zXri50M+9imAXsHW51AcLeU2mUZaUucu0TnlUZ+EeNFbf4x99URhSr0F9gG8qYR3JEvLl+08lWsHfw3+qcn+nliNGP7zmV9DBqseuk/9Qm5vkWQOA91zX97JpRiM8j9mXPw3tF7fQ65bQkl/rGAo1ehWm7VRpWpbGnYUZ/Pfjp8uwEKRq7YzSu73wYX/wtMw8dgCTm9n5K7miIwjojaVJL01Z9t5OStzkTYGj9Gm+ybyv/wcvX7h+dkJvLKf6nztn/VGG19B/6XIwXyfz9SMKapQYPPdkS1NmQeFPXPCLgyNN25Fbc8fJdbQD30Ut251foSjbc8pnfK7fVFIHoITKIH6p5fWkU0ydfQOLzyoLB2X30S0OTIX87JsHv+mL3Q2J0JRRV6+ETg0C8Cd5cgPW0mqtqZEf+aU3sDv6lEanCF2RPh0xMY34cXNt+a1i8i8kWZEcuiuWSoPWuxeAE2pwthF75zJ73dNnD0rC/hymPhEq27AyTq+RPAhnTuol1CUSng9MOqdzxXRJeUEtZBzdTjkmvM2h+ooDL3h42NSF0W0PAJ6jdqCQ+rRHvs6YLUHz5h91rgmIgPw0HqeONxUKd3dxG22UUuRrMJAEKr+vf3vMp2gfhmHVvyTASI4ZJRs9we4yVXtyHEvH8MzJ8nxG2rJ6pyNHBKeK4dqkHo1BKKr/Mh8xSReNEOpwEYI4zafP/KFvH5sZSfp5ZYtQ+BTh7Olof0Ma6NM30JEdFTShiT4E1t3tzoI7YVCdS3SLH503E8aX6rwpg5NQ1K1MVLpoY8HPVeo/o5oBkLcxJCep11+tCu94xidxfIKmR9wMPWZgwHyENHnOEA3cSbPuP1WILaST3OoZF62qyzfk3+qVOzeJQxEZHPA2uHgIZBJvaTHmwB1F+j4dBKPmwSkGSB7JtaINkzi+f2ZXjAFjvClr/dZmOz3cuQBHpF/T3a6CygtyfITyXCKp43+tzEXQfq57LH7iXs0KTN0wJfvjhSe8rP2aIF7YTMKThhXz9seoqnOUfp6X7D5iddqkXrTuvocPdB0O20ZZ24G3jwH7c3tvzzTidZdishZuKW7MbTj026EUiQZnfAHggWWk81RrK6VWbs6+8dG7LPnCi8qxBqyFe1GgQW1kpq1QbOFfjFk8DvvnA8yjwZlEFwJ61yLaRy7xq7l72KROF+akD9SHdsvoOunzLHtsBv6TG4OcaxF4V+H4H6zWca1ImgD3l1nlBqyB3ej7RyZ2wiGX6OORPure578hevqnzoyLfOZZ01oXWT/fSiEoAy6Rme39xmbGeXBt8Pr/+LF/m2x9gKXrtqDvZNCv7XF7CKiaLXWhk1INtBQfXbctbH1mVfiOVJpuanuFRz2yQRMFb2RLLveibm38VEsbLNsPkpxJ7hrrpB+jpeqHvuu6rJMjVSYnSNqFmVfd+3U/aV/eZKqHv+fCsWfNUbSo0kChr3oOmLkGoOjMQ/4PsUjvEHN3YH5tZJsH6jzKVt8EiAP2BGzfevRGOwsyYoPtyD2stJ1gcxvE5/8RCQny/GRJySBdj2e6aW3YzxlO3fX2CgYWrIadk3whbV8EVPh9pzMbMld+UUfrpDApRoIxq0eNQQU94Y28spdRdBWC4Qi5VF9zPq9UX8JgEwpcJkZrszmrRbZCo/fRdg/V5kMWuRYkmy65zofrKtjDVK48GYLgn2Nr2lT9rd+cLRSwjW75trNQc7dQGVnSnpz43VT2L3BTnF5ZFw1a5EU2563/WUoo0tm8xx2z7jAX7HZcJ7Wh9Ro51vJvhZ2FDLujVs0YjxBP/G/QhXgcEmbdOLMJ7BwWbxtbJ1/R4yRfDwzd15MZ93eQI/nZqkCGqoRjy1HjDxblAVk8faT/jUIDl/2IHkBWk/aVjToChch9pEriuS41qGNHIlHHzqe9/lRz8B/ngd6H5Qy3jSV0tF3pMDDuoJx3Mz3Hj000uO7peHHc+tNxjAB8cfET87ghbx5w07xmRELZc18SKcyhr53fEazMuyjfvweQxhTJQ99TbN112ELlyQPygTNt91wQZh03Xgn/icGhKp0CLw9wT51Y6n9rxz3El8KTKk1teg+7m5MJKNqqUU1TPBqsvRbNFMLQC/aF3qAfIYwwpooPYhwvp9xyqKT0qAUtUsAth4LprbMzjwRZFG99PcVUuW2xqY2ySn2dkLsr5FXof8yBuo5XwPjOReKcFxf91js2idjLVIcCD+qFYgFhu158WzcoFifErYLDZqNYj99Qnqwq7YHqp3Nf49L3NrJdiTM70XsL/kiv+bLzgoBTPmta0XIbVRI6zaitZPgnKylJ+pH7EtLA/G1oENMP6ElISWwaq5GUIe0nPvYP0afzOizWEJqQUJ9VWPi9v25QWgsisNdiTSsmmlShBDktFkM7n63A7BghgnNdRNosJtRNcIwf/elWC3JOCy0BE79NtrAjaUkuh9O3vG3/cP+E3Ko0k4nhZQF+WFvZ2ox4MwpCr6+bQjKHla+jZw1sEUn8MhqIE/skk4TJNy9HYmkZyjXc0NZz3lNP/5WHXKEk3C0qz8xDSo+e4MxppYu4F8tkT8/O1J1mKlmpTv1rsR2BDHZW15yVEspx1V7bO6zqIeLvAVRYsA+OsIwNLlZfllp1i/6HvGWjm34LvUF3yplzCeW6bwiHf0Fa93n3gRotiAuF90atn3Kpubr7PAmJMDtYd9lU15KnryHx573PvXL8LhVsLPZD9sOcvIplwuOYjROw2AO4xxo8m3BH7RW6AeV7f9og19DvzxzdP9JIfVkmvlRV7jL2i3b65a+VSCvpPhY9VKDmjJSGtB/LvYOCilNZ4IWuCrTC6+D9W+mrTLbr0FU1bY456HXmiixYF/8eCn4BKhtyOQTXLFe7LTe9Zs9oGS6pxGBnCMnhfvVIQvyh3CrfjV5S9dhZ/HNLKb90K1CP08oZ+nlXTdvz1rnz0AHzy2WL9KZr9ohOeUeOURYrG3dIafpwS+U/7AN+sdsLEZ7QT91pu83o69syH3XQdSn/tS91zWfaehkwlHfevQ/XxxEMM3NEF62zEafJQTm7HgebKcGztsOZe4anI23JDfnAm1rMxhi742PjURPLGKzZRRXHQ8qOMXCLvmXrxk+5lXxupeUPOnPPoZ10IN5uJoWLWKkRFtNxlwxOxFPeX606fcNGpFJZOP8x17x+QP34r6Y2D3nknxlNvBF6XJoSWFv4G401L9gmQ/dPBqArI5oFYAvyMnkcmLH9Wg1bUFajUVNE6+vks0kA34GT3B+6FUqylf9BTk/GUT7qsytGi3MgHZUE2q33werfh5Qb/nUSYoiVR329jyBYr2HpB2MD7ZouU5j8aknrHqOgedCKfyq/wO3TaATWPqrCmLQlnxMmB3OFckTx+A/McyE0WduZ4I+5hT5FNfB7zCWdkYPswS0miZSePuvIxhryXSV4GYWp4rVUNGbpLMwLtiPal6nWLGnpAaQ4nN0n7rc1uKA/jE3QeT86nRIL6fMqigZ9RypHk9gtmaEG/JnRqcJFaLpg4d+grma+XvO31eD5rJBRxff3ytJ/p05mCsPg3eD5+yn5tKnZT0NvaBZGUdmzHO8n/52ayQjqbso4rwCzOgHjh1xUIqShAXqUnXeNBZe+ElkNNrSA34XftFy+qLHPPaJhB/2Sue9AOV0BrvZEfOddzloukAE6KE6lfOqRg24+4P/whIrYpIzo0EMY4U1HKnbzblh9xEavnDVL94PzTj3RwqJhe+8J4+dbYNHo0IR+emYPfK9H4RxnSBNDnNVL/6Zcbag7IgJuQ5vjObVJP+CmqkjjX802uTMEQa8vNuT9A9u8V//GQduuxjyy14d2zMxoRj0FGq30KR/e0P8D+PM7Z8+Z5NQuSIoA65h0N/k2eLpqsBFIKdE/FjQMZwmAeI8Y8Yq47+7VnbcSqKa16l+eZ5ZUQQlkTxf+xC2O0iszn8Xr6gVt/bagnX7qKxTpVWPotXvuUOwsGKwH+op0Byr8T9y7egfpsdPqjdrpqyZD/AePcY9rgRV3P7qDzwH9wO2+yZ93OTywMy0TegNlHMvhEPhMBR/b6pnvGQ1SsfQD+N++L9HDeMCP5kQlyLKrYJLrIpy6QFiirygnbsCnduS24AVbJ32Fr1zZS/Yfqnh2/O4qMh11d+53gC1q++Fk+66+dw1I5vrN+kuz7pF6oBEzc5Vl00rvllJ/6L70v9An0SsMVDUdgO9jaqjkhWN98//k/9fZiySf99HVAL6YjdZFvEk2DJC5jiZNA7O4vVJCpHA/zG/uKg+NnxolXZDVT5JQfkzbtsbqpdBEesbv7eT8VwNBLk3+rrOoiO0xk2lgaNiXYnp1my3ZWfW6CWwQabJT7oYubaMoyNXhLJKfaItd2h/MdHVC9W1v0YLSixPy32Vn3Pa2b3ROpnOOE707v+n95Lo2n+x7/mVk80kJ+bKEDJj7gk36UeFENi0Th5/Nwlf3TazkQ3M7Csee9SvLtrkBqWg4NyUGPyoLgGOUQGmdbnSfLhr2vLu/rjS/20+iEoNco0gI35Q6yp7QL8lIT/4m3RGvUJRfP84lWvVI3wiZ8o9acnPrET6xux9Tn4RVQh7XA8xuv+1CDVtBPeL5UfL1ly4lB6PyKsesMZMWyfu11B+BMN7XcTL/n9k6N4x0f0zm63/h8e+m+GCEu+vt5j8pDkWIn1QNjzqU7xduTQz8Xv4PuTs77RxGyBdf8GYmnvdVGTfBVMxD2xp1yPLsOQaeBHWk3Nz/DsWeCqRDkey5ruh4/Wzy08buB/M4UMHIt7FmovE+LZ+f7FN2JNunvC+FQVajnFym/YuYbxnqKA30DsLo8ES+DnvE2zpJv0Ka/NCGL+dw0k22Pu3L6AoJ//Lv/8A3fRNc6BlS/9P14fx+8fH8JBda2rRStOKRwtE6h+4x76kG1CVRmHR06D4v2JKRby5+7ntDZVrUnVp/z+8BCv7RZq/tQxIytewu95kIP+ejrEtDkWIshaN9L96Btoydy9BGPLXKpaYOlifpY5lKaxF7CkaPW5KW8hWvGRTP6D0z+tigHx9lZY40te87/F/9ufIf5c9RlXyRdkU35hXyXQL/kSd/A7pgUO6t05XoQiDBQ+aDfBbfUXaHNf/Yz1+7tXd5/NeJEJpI/rSC27bLNJDMwIxqsp05Xf95OwKRt53V9U9cKsGnLukYPfHa44+DaiO+O3bihjvzNwdRO27qQXvxqteipo//wQccoX5FeIxzYzvYrhTFn+vi+pkuTt9mFiDn96mqruUV/13L3543PrfuF61h78CIrv7kB2f35UHhEJyQaQYF6cs0u0y01E6qwTbM+pj/78AMSmLqKrn9CPOJlV+Fn0Rn3VTDPW8oEh+9lzwt7KX4km6Bqs66OGvCnZjK1cgqNXitjjOr8fxNchReOZcwJvs51chi9diOQzuqz5r0L/9KsfLz751uqLTSL+hei3zw4Bul7beG7NiwqrPsRuUg/6pM1quIvFMcQG50zxP/47DnFCDUWf2dxE+w6NZH5gsxaWjGI/CoAxJyOTNamu+JdP1C6JcVDUv6zR9OKpjBdpofp5Gqu5Lc0AfkFS0YQbSMWa+y0HNuE3Vu3zmo/x7gJHrPyw6pyXvsnnSIaifLlUdWPXFXCzWMp4EysarP7mpLfYQakjH+i63mzRXo0M6bPkiGTro0ubje1Bmvk8Dt663ve4uUtQTLsuKNzll016c2mUkWQ+1s8HO95i8pBBbc8O2S1W4rJmGzkgP/br+m6rHm8uDfzcrKWGkjvukHtpJ6eX30I9ZdPGk8ZOi+Jfui95L1+asfb6SSHmM0y+q5+zCMUtgJ/REvJ8f/boz99U0rg6UQ9Cq5+EugMoeCWhevq7syk3+i+on9Je8UqNhTY7dlD8pCCYXKGNx+Y+DcgfWBOwc2dXogBqio7O70BIlZTVknudjNgCMQ7d9p0tmnRQIb345Z/ezXhRwSZ8Rd6iaqDwrPvzN1TunFPzcxqqRXdGD+Trcxuwi/2nh94OWp8X9bjTORNFz9dktmmtgPs5fNwHe6mDv3zjJpqPpLxBCZi77oEtpz0iXtjrA2LLNcXrftUZ/r3Tv/Ws+v6Dlnzwa5BVq6aX1e8WGjXSIJ7gSS03GXSKp10Oa37GnvI96XOzaXNIT3Ozfv4PLfmWOoixS0UavN+itq1+HqifZE9zpcL6jOuDgcbIaFZ/2fvnH6Gj9fCwTaIyZngdFMern5nsmNpUc7skIjoeFkTtRZTjuXVRDWwTSqseuWXjH98eX0Donuyqasjf/PTnv9LVz6la/EZf8Bv3G/Bc8e2n3BTMP31EVS9e9ZBvA6SXrFv9kB6R/FGut2j3A7W88cKWHA8yfJc0+NMD8SSWW0keH/mHqjbjM4oP/d8t65q6F6NkrDkWPCqmscTuqldYw4UDxFK7D2a2E9CgF/QL48WKcL7685P4qG9IfqbyHx9h25VfgxzPj6De+YU+CUJpyEXNvGAehZ/7aY9bDYoxWusV1qRPQs4kpPa9S/UseuqsfeU5Kuhmj/UL7+gMTxaHfsbji62Vf076a2uiNX8HsDmf2D9+GE/L5Z+/Rf/wOAYnXvXAJl60ty3Dz4ifZDddTvGy6gGU3mXAhtLzbo+XKFdYzx9pvPqdcxM2DfgN5ciOvmq2aO37CT/N/gTi222qReMyE9ITDv/8mYzX+GVRxpg/UfcyHNZBLzb5+/yAe+t6NQm5e0NH49ORBLRt9mnMwlRSLF8DdrvnaBFSxwFVPnaBuObDZc3Xyp9+XP15l2hWNgCbg44GHxmjJS+FAtJcFf7po/nPj/3zZ/XUfVVTVofJH98k7fTJ4rmhqfiXr7HqCm225AGkUHTLD/t7Abms1dzon55VreCNGF6i5z89/Jevp3wqb2jl/9iyth930i7qF37m/Yr1c/3pl/wac39+Gd0P/bca9IkLgBHHIjObKJvEL5//80v1G6e4PZbtEsVoLOnqF6K56ZsLFL+D/+evV4tgroOJ1t9XrYeLtmGDRbR+fgArn1mEoYyg+NQ+9mD5okmXxUlW388XVf2T6M6tcpDlguT7gGW2pC9C2RJY/WEyT7comwR2+0J6TVnAkuStT2KJ0798RSY8v9xF/4kpMPHj0fhif9ik/SbvT4//ywdLfhJTUKv6hv/8TNbYex7Gk6VSy91M8V8+R6tepPZ0OWWiYKUFqL9OI2IlvRnDWmuhVT8HbyLu+7Z9PwgwuL3+4cMivh4NKt6XjKx6NmvE/pVL/vvek930Qdmgt9iCuOfc4Fk9rGrG4hjA2gCU6udDG0/Cu+FkBrANVn9WX/Wgh8aoVemffzqH+2fyF6/UXrolZk0sy5A+ziPWM5zrvyaWpZ1/+16xPQl+tWjEy8F/FSk2YD6wLT70Dqilt6GX3+2xjqpRRUXlEE8ti6/cSahsDn623GID1ZU+ablgwG/PzoFYL1M8iP3rCX9+sJtVp2wQCun5V0/BcUZu8YhTowRWLi42uL0TC81dIuC/LAdfSvvt0mAraeD3+w2RLE9lMy7SGvz1CNDKR7JJCMKL4v9+AVX9B+cO2ixNqChjfa3X0fif3xezZq3fzed+0qfDAOPN0PGd5hpa8knuQLa/E9ZTd1PNTSQ7//KTahmsp2370MC/GAF20/KCFi02pr/6QSDhStSJeCU1MC5Z+c/DqLpcEQKQ74sUsHuB4jmMuRxMQV39lEpHc2sYpZKeHxr1Vn00rfpHUStVpe7Kr8c/fFLh3uP9OOz1JR9EA2Srs7C30Q9IzPEggUqdB5Ecf+zXeE2Vo1ll2NgA01mjliEab02G42RzyCbNrnNF7SwXP1Q7jyc9eZQwxp2NPcWIGGskrYOjkyp/9d1+Eg9fAn4Xv6jqGvt1EPMiIf/TPv7VB4m2zQvl581asJs4Vo1/fD7VvDv2OM3NWJOnOfrza3M5q/opf/Uh+L/NE+up9ehZ43SiPF7IemXzN2S0LZQnpP73Qs0yOurb9XnvfkHRU7N62RVrQkkCXr232L3fxPjThEWnyO7QBvN0WweHnNsSflElUNUep4z91cPX/IxXv/E/+fZPn5m1Q1z6b30KxGQm8OmnLLGHf347rPVsoo0xB7Iz7Wl2OdZoytueh99xmqg9G9t+yarJ/J+6FKD/fqSgcaGk9ms5VqycqYTAKnV6dEM5my2hN6Biyo5i6jziaccNMgq3W0YPtyvHiHs85aBeNwb1vHWWT1S7AZzVzAmmV7GvtpHDy/Iln5eAF2M3Y90zjdAwvyUyWQPRl1iGADQjNsj2aRB3POQ7HrAYcVS9H7JseZrKJNvI6QJkDn4/uFxG4OiLJbUNLnFZ6wUSKmRSYde+O9WY22MDrdYhssnQkW3jV2ZAguJvsNXEErFqdCLkiM8Su/XvzAYAEUDuv+/sLdAMzy8NInB0NkmzB+PphbETstRd7MPdk6soyWhghNdqur3NEM7vByIL2b3j2XbsC6oarQ+U2Rmz4eVLHezr64j3Mc70paCyA/RYnqj3WG89uUKgoq0s2NT/ro1D7qqgojlojDVFaGy6V0EBNhaXgJVNiuZN6xVwzjyFmq/2zYgaqSAzUWyp/3r9XDaUn0SxUAx4D9uyGm/504Jk7VJuPi55Pyeb+wJVtLOo9zn/skGAjQeUCBus3g8oa5+PXQjInyQyXW9FNbwjfUBa7WX0dVnSjPEwD/B1ig2NpNys6DMKF2XMghOB8xWhQVGjBjryFLF1C4hO7EnmQN0PR5x3kxu3bkgDGE2TUIckTj/pb75Ez0rV6ZlqP3cuXnOx+9oQYf/VLDEbeIkgabhzQadbjM3ViTRy3aqMBpU3uHPhfx0IT+2L7N+LVvHRbRnA6JMg2ByOfDxxySQq2eweSE/dXzaPVy2EXBx0+rgtXdY+3Y8EzhsN2EvbpO+6bVGD4So11a3BqkQn1zzl7hxk6gbKHRE5Xy2Cl+lS63bQ0FZoVA61UlRiy76H+qL4CgA+RGIAUxxW0+/mPeGNhp7sDC7RZ0cI1/fJL6QIQiUm+QpxBZUpDk7dKRY15eYAEHIlPEmEnj5++xLY27njv/8nsn0rgcU/IyLcDk3cCs5oACduPtQ/hjhjnH0QYYvuIrbHpKzmulpUtIj3gHymR59N9f6rosCICHXCLkBL9JZuYB4thxrZQdV54v5CcN67gQibqHWXvJ+7DSSvE7X0jej23fZiwoznJxnSwo6Zdww4sJICBW03TWykd6eA0/LlqH8JpGrojt8JHDEv6cmwvqi9HUYH7k9TDwZkSz0pzCqA37B3sZ1eq35qh5uJ7vGSUCvgE50qS75AgW89WfTRqeamOySAnfQe1HlhZA03QoduT3zGpiWQbJY9NUCv9Dzj5x09qkmv8QX2t42Hg/4hxZ/jUzag/7iYas/F6dk3r2soj+2OOhvxEw+v9hhCe9tJa5eBQ7xNw95A6/4g1fFUx4uxryJY8xf1XP7SD9z9kv+9D6oPGs+Y1tAnhF6Fgi5ksjvKnuqhYHLjQNttnX5rNs4FLr/PlzpuyLPpX/xF0kKN5FZlVJn2nDLMlRQ0X1mtxNtvdoA7J0dy/sqmu/g8ypGjRgFWQ57qg/UTIri/8COAz/kYC95uldzlJAUcv10y9t4jEz5ClpPrzg70aTiu982Hi0r91t1W0y0vGuU0JCrGUy5mXRNuNNjNt5AeSTLpS/97PGFnmjcCblno0+QmROEfqoIDu8+q2ZxvKnS77TVAP2+uppsw5JCfzJxcD4KYdXeutKB5fx3qaZaZMfz4pKjVzIAaiOB1NuF7tawln8bHk5EtX68CeZg2LvbPULrz72QXcvlTKzJnh0MlmmlSwjhv4oDrtCSeZcBfaY0fevTujd70JEyUNMTfdfb34i651g3Q3pBE9QKp8XhwSL57Y97E53u77Wl9uxewCyWP8Gf2y0bbsRP0Pe8KIj99hpjJsYuif4KKBixej2x2LqBQHO7UsfqdS0MXP6F6zDW1XEHtp2TuAXIXpKCbnQUtxi2P5NyrPtQ1Ky2eh7YIlMOi/rChRBwb32JXQv+xMT4ehEs2TG6+PmnEB4s7qLGYakIEaBwwPRGtrpZU7Z6ofgYbuueibzXrr1cgi7U1Y9NTcEZP86yCeWMNYfJ26efCJw5YAd/hJ8sDnTyXVwmeFj2xtckIm7lQHZQh9Wysv5alZ3kYFsrTTzNCH5dB/w+eHYsfXvPLeiy7LBQ6kg92uPGK6HvPDNRelyf24u6tL/vxVSPxflGCXXqtqhbXTQT+xnXIL7uedMpOXYk+fKThwyay9fkP3/e324tGQWn1UyrcZZD964P8LgcpXpqg9oC/TCq+xnhyly64N2jNh0QJYYOGkHIhTMnjR936J7ApNmwAw+Ed6nw9u295Bir6dBoKOpJ01fyRbh4It0TA2vk2sTE9pDUoiTRQZ7vF1bq+YveHV9fsOrtz6arLbt3PWC9ftP/Dr51u8xq+R++dy2qqFcojMmtsqrWmL/42COV/eHkz4nha/JxD4SU4k2IrGdUUtOENvjYXBWyhp2qm2SOBVjMCnEfvuOo4dAVQd7qAdWtoehaaLf/3Pv/h9XS2Hho016seLJtshxbjss/hraY8tS6sZcS47J/KO/N+ONruy5i9+mTNukgKuM7dVKMoQPiHz1Tz75nLDqd7AvQxB9T+yVY1HKSI+4tf6n1+Dzanz0sKfV2X1NROUFGjWW+FVZqO9154RMOxwSI8bx7Gp1OpVmL1sDuUidszyePu7S5qkk2ycSC/AME6my7XSqKkk6NgP+zaeKTGcAHKbuLKtzp9CC/LE3RjeFGHy/Zxt/49ootoU0PYL9V0Np1A3i1VR5aY32esTEUJwCp0+hdPNBinUtls7yo5ORxh/aPNE3DzRsR52ibVMBz2t3UwSEfDG6vR8tRuDvDbyCCb8/USs0M8WMD2jFKnurxj2ghnHo5yzP/Lb8sryziE3TfDbjvp2eSCKkOVNw7Fhd7qK/+UIXPfD2xLdlGRsT0TtBH5mEy4FPXp7FAe9EPsUWtv6Wi7I3mI9FcZBVLhV2y+Et4AcSfssfXzrvo2tPhGlr1pwmp7fsRTwrgFsUvywev701nGHQzknLlnMA+7rT7m2U4D7FYs6GHUYkGw0hBtX8+GKJz4qKZoDCU48p+ani+doY/j1QlRTGQlkGRbdJfDID/hZh8XImeFiFhvtyU4mbmn2rh76SR8TQ7wGtvSfT2LepvcHh1MfMrhI3FrxMzhB7DdwEBxcd70g6t+v0oQYgjg84yq+bE9NmB8gx7bQq730w4iA8rj0SP9/tT2rEjuGnS1fcTHw9C7y4jeBkoFwQ/QNo+r4WTSCwwv+U7N1+Lry5UDAupVMbCXLi/W/NJrBL/zEgTF25j16fBuAV5E+uFjM6loqUX/Cb+3RenKt7LtLVQ6OAYK0L09iHp7Z9iBfqom7EnZqZoPVtYhrWYW1bbxjc1F6V0Qu6AIWwOFbJ6N06QE9bJg/X4Q2PwsDBN+DpdizykfiEqHl4ykMJ9peDzZTBSGnQHfMyro4d2MMSuSk/YXb8ED38J45pJvAkr6BTIIhK+Ye41MZCOro2Z0i7OJuz+f6H0or1QFe9anhN4dwGF7pXrIt1W716wEzUFnUE+Kvtk3KM8FxDsyU0sXO9YEyeIpKx/EVmiO+nI89AtkYbsPWkOwkOgV5wjKZTMTJTC3PaupU6Ibf++wVZ9rNufHiFekQ6Pgp2u++vHUsIt800SB6kpWZ0zkZkBvRHqshr2OJqytJSPv+CTKZuPqwvNohQhiqcY3fXNx5+SiibA+X+zyn3e25IZQwoPoM6m56O3Ol5tuIovPI+ye3m5P35smgMU9XqgdvXc6ce0hhAGFcrAxOFufxqW/oSmWZOwJHzubi7WxcZ+es4Dvn37MiChx6PNsUmpCBv3sBzYPQe0dMI66e8zQlBTwE6MI79Gn7ZfCCFM5sG8nqv7mEU1c/+aRgplFrbf8zJZh14hIOb/u1D9wl4ptsnuA+vpbBjQ8KNUAkVQDJyofjOl+cSev7TiQzLWfeNDHiH4OrFYiP52xuzgym88D4mFIAxs7Zzj2dPOoNVD35IgDQX1Uszp2BhjDq8FqcFz0MT+mIsx2+cbWE3WMPK6qDNdG31P3vmzZlNwaCw6/ucC+mv6y4W//SFNqUevU5TFLnO4CTelsg2UbS2xY8wtok90ShauP+kzNrQWaffthF40vxpZafYK4qU7Y6Z9lRrfxLYCYvjrsv2alan7nuYFm3zGSnw+f+O99opU/Bew3r4du6CWHVtpirNJJr7Z//LQ8Hjx8/J7lmF2r+AtMbc7UehkXd4m+FxU5xRRh/61fegaGvIiNhgscVOdtNuwf7ROyqV67xLAhG6STI0P/lE7UK2ehot9ZW9Cqv6n7RIdsFgU+ktFIcMD1j1tMcq0c1iMOLnbNqowXQe8s8J/mnXrd5Ga/hyKXyDi1AjaFvHWXxz0bQNUiHh930drY/jU2iFomR7EUFYihKS8hnDX73/OZjx4hKObVdzAdTzaa7xN/AU8Ln1hVx1vcfDfWF8Tqa2DVqkrEplINwD5XOlavbxeNhRsnqNmbJrVoIukz7DpPXs7Jg6ZU2qE/vQAoknLsWKWPFivP/70/ao+JVpF8PRK8qJ6MDfQx9O9+vH6BB0jW9/XoV/xNgHfBW/nOyRUGchAh7KUPEWR1ytpdIXFQc86FHtafF1OvCsU4HS3Sy1HGRvbQNThEx/BvP2XbSyCksOe+jO61sayoe69l+A0/6U+fxcTYhDew7t2TaoVR9WMLNwLyohywdXqf3FXfXeA3fCSsXm9qP/XP6/KnHwlkaMyGzJYc2BqGhd1A2bHpkqMAmm2Y0nh2y/gfvqz8hB5Ob7EnNikcWN8fdWLc9eQrLBIIFb3QP39i2lxmU0ltaDCW6m3805RDI6PWvZMeZXY2WcEuR74efelREzW23Xb7AFmyU2LzmDq6oD+8m/ynl9TnNdFZ6OIcrXyH7nm67wWLhaESJwfnL/+i5Rx/ij89RbXDSXaH40fQIHSVgNpS1DPWlRv5n1+mHI+1O/th3sHqr/3pk3hRI4uD7cfaEXRftmh21sbjvbx9UXuhZj8fTFXcHbzNQPVFAjaarOT/+Bs+ntkeDXfvUUDrv6940AdhHeQhEKiPoOGXQKhOurDOgT68N76nRcBYV4wmEjmoA+VpVPoU3v0Q9fdgT5hmiWyoN7H1p1eoQx5ntL1u50VZ+k9K9Qj7ffecvAHW/In3wv7mDp2+dxRVC3l8dTidTdVpdtDqJxLpdihZbzS5hHyuftDDLNGYUA2r6KWXR2yWL0cn/e/8hOjGIqpuJaOfbtttCH63/+E9cTGjap2kENTTgp2NeMi2fBMXAGedC/ivbmfTxvgQ8PVtTJZxitlYSeWitOOTYHflF2LNlkbZ/UYx4Llor49nanbACaL7z8+Z84Olyg/vFtN0Ix7iqd4TFQ4D0gNpzafz0bINuGmRRTWy22fbJo9UgORxwsZhmP78gic6BndMhHsxxMSdmhScd7KhcavvY+Efn5jceG18zOts799EKA4mBDP62FU3INRBsKk/VBt/Tb/86QVHDQMadFqSTUw8JTJzyzlYAn7jrvpKhODVB0G1xgcdQ3xDmp3+8GFKVHcI2jBFz/u1pc7sRIjPbMlSzt/fM5izIGSzI9xKWZHLOBgMocrm/W1OIPTeiFxw6bqE9g9Auff+0Jcy1mzKgvOEnO0HaFA/Py6p2dLBNr0eyOpXIpJUUwfnjHUBxLDtJ+fXEcTBwcLHLPgwdl4H0QzpIlL9Bk7Prtvd9M//IyBaLsH+sMCYeSfq3Ywbm6bXIoEViB2RL8FTZxlaIth51/M/v6I5yJ8JVG37Dvh6nqpuxXNY+l+Kj8bpp3fm/jbAs3Yf2HbukrvyVw58u6qowdXbfpFStYbr75lQFzYSW2KZ9yBJAyFQQsZXwxN9ArSul3xcwXS3a/zKdBw+VE+LHWpa0smQbr6YqtYQuNJwsG9I+rp7jAvddgX08VT5eT+3WPvORTxfzlME+VwXNDpYBNWP8KlCQRONPt+z5Qr07pTwNvt55S95TwojvKF3kbiEWULMGNnpk2x6fIqvT/+esawlMtDWpUFHHgLrp9IKkJt3IlWX9YRmdDnf0CJmwYovN51GVmnAJ0l67PJk6Kn/2AA6fBsT67X+chv51yag6esRoivbxvOpNy24sTDEr6ecrXqMk0B3lPwfv1iu0EqgdY8bxdFNY4vvDiXUnHXBz/4hZctzuRbw5x9Lf/xFen492D/bnCyPYma0PbYRLJfXlh6N01GnQzle/vg9xpcW68Pw9IM//KLe5xn1U4lUQ5EORkgvy7dgy+edE6ibp0l1zbr84eMkb+WtjTVdFNhUb2IHPW8Bxti5j/rccyEHljxieriAXDGz0S67fnpPZDN+A306SlaK/vjJfZFm9s+fRexWkP7eepX4zvYpaBstoL7Vs56eMkuDimUeNj/eTyfGxX7CjaN3IhysNm5XfIDh8+2w55t49XvtAl334vgPX5b3Iw/A3Qs6Du7tURfPwD/BognBzlvP9Ul/Q4kIDA/q3BbMFrR95XBkTyeoHa7N2IzLCJ2uwQMbh+oTL3/r847pngbLvtPH+muIsltej2s9Y9sLozaYwHNHQuqvl1R/9Yt/+ddtd6QfXLAkSLvnQH01Pcbb3bB/KivfC5RC7jNKymgCfsuvR5Lf32x6hBdVpmS7oU6zM3umPLga2PWxoUbdHDJRvZAanT+5Qa9n9ma14UwcSBMIFBdeEq/rD5UqumRkHqaeLc7zocFhSC4BurdeP718qYHX3bvSg30X+plZtQi1fcjx874sGYWj/5W7oHqR7sDlehuiUySv8YWP/fOHmDLZHMy9u8FeJVf6Yu5DAmyPNbr/6gTNpR9/Ff7x6bBj3bWKUb9ToUhnL+DQ2oWj59Yuza3UY9y4jj77wV5Ev+KrEd4Ly3jlH5biZMYen7hsRsPVOYe78vcJyV/+o+ZAOeS3uYxXPeMu6uVbg94/CgJpYWczKncBiK+9T9XD5uQ2ivbJ0VM3BqreIFzrXab8zy83NesU0+LSi+jOR7e1u2rdzzh0TLhkzY3eTrcPW75eD3A5cBa2QGTuVG5GAs+qnv75W9M7eRayRaY9tpH91IfpUZiKkshDsI3NGm1NKArFyf2M8OwbZMuV4wc4mJZGj2J+0idi50/486f18lLHy11VNFmsagMfSRK6U9D3nrzuT+q+jLBiZvewIJGHHXVhLGMWP6wQ9hVTCXS/wmVzgmUkHcyQ/r0fdnqkIhx9vqRa80Q60/Hd/Ps+RMpfabzIuSrCeHqs8dvVOst+iQlPicTUOMNSzaWf1RDxLgt20c1nzNgc5L/8RW+bSK/+4aUpOdHKn3JE0fVGYMU/7Ft9XNV97nGIy9QrfoQs6f/4i1ICYfSgi2E2yOF0+cevT6ey6CdBHm7oYBKK7fG709lLO3SwyX8e/qufjkksaZDIlkd2Ql71JDtbDeyrWQ2m1Z+ab6l7+eO32EVZm02Iiy4wETIGwjbnqkFszBzubV5jE/eXbDnHYwHNNkpXf3bLRmurSMh/+QybD8PUh9/NyCG+ByPFqz5tnbVL5vU9GdTZ2VbPzP8j7Wq2luV16AUxEAFpGYKAImDLIyo6A1T+ROSnpe3Vfwvf6ZmdC2Ct0iRNuvduMlIIlnqcblcHO2ahept/fAYpjlILuP7MlvzNevyzF/3hE5Z9gtQ+7bZL19u0hX8qKf/dh9hOVIqx4P1o0A9zLQi4NkC2ugfirR4MXWd5GvDW2xXGczwEzPiEEcTDwyfabhT2glcgY5yNAOfTw4uX+qAA/aQd8FJ/2BzjVfMPz02krBVEAi8J+gU/4QPXGOjtyd3+7sN44Vuz+WjmW4Delxc1n8UqboM12oIfP7z58U+vKMiNA+UHjIagFEO4RxCskteXblV/Gt5XVx1hO7xnvM8KmI2U3xS4Xgafu4fIj4Vm6if4sos9feZXx25auz1BbZbWdB9WccyHt9/rcp7/TpmkZj++LApuJdm8nzd7foJ3CJd4xqGw1Hr2I0bgwmdRFOIpY99L3vzqk3/5mI3fDv3wDXxMCpbxjQhvYLiHFr2Uy2BI+ejfYPPdCtQAVa+7tXZv4cUtJno/3SbAiibxoJbOBWEyLYc5dizp/5IUwP8tKXi4b0rNw1etiUICCLjf3mnQuENGIvsOoWyBlG4d2QnE3d0QKMVDSm2waWzhFpYGt7fbH31ETSWG4qn1i2zbQkjKjJptXDGDO1ZbJH1CJRDilV1hlbYUu0/7E7O9u7wyvFRH6h3cZWL79HRgVJoxzS/kkLEkT0+gF2uE1AfbZeLqXHuAvYLR10d8smHcmB7s5pVPjL37DXhZYwcwFnvYPClc8IP68SDZW9lPJZIJVA3mppZDH8fyowBEcZIrBJ9ipMckX7oQlEoBBxTd8PHvLoaZN1YFnhegkXa79Il6L0fOgZ0/OOiur5qZddaDtudbwh++PowJbyVAgOqhOSyloZ2lTQ+ti3JF2ui59dpZvXY6D8YTPUSNF8vd4VNAtegGevgb1HjkayOCEdXvpP8KlDH1O81gMB81Ra77EWyHIh3mz1alzruqMnZL+GjQklPspp9akMrLQ1DVmoW99jsAjqoxBQlEKaoUasZ8G8o5XLsfhMPdUxWE6/sGEkf5o9ZR6mvmv+UZXnV+o/j8l4AZR+IGD/K3p/F+Z4oug1IPrXbzIfM92MdC4b0Hb8moYLPdNRlfbUYEvSYpsSU/7EFkS4r6fR+6iQemu9aF0HkUe5ritBzm5x6luhKdKzRbfVlz5+vfwFFDHVJi415z8rFPcHIeBVofU28Q8h/swOPPF9Qtj2GtwNJQwLwfLzh8vUqbg8q8GqHufsnFmVeAvWbWwcX/yDoJimxZjwNrtT6i73md11RDmg+8cvtE3Ktcsb4VdKGwKUC00ZW6441VwD4YH2jtizVgK8n19GOfp0TLNdn+kmEMYRXKJfaMdh0s/uhDLkuQfJ7aevHv+wxniYbobGgaoCnUCzhXjoZd6wxjcQFfaaOdzy/yPZ/6YMaXkwS6a/vB+5VtA2W76kLYPHKB8evwHPhiXyhSraJH1mwD5ZSZV1g0iYl3kO3t8bnRPTjp9x3d3TbF7/97uNpfEHYbgLJpttMerGqjJmvzNdRzB7MIFoFFcBCdPhk3ou1uRcHOpDZTiD1xdr4a6HXaY/PhG4uK6t7CqtYtis35ZPNHMIQwqvyQep5ggmrJOAMv2Kn0GCpWMKkF84173dj00I/moPhlpsDtvfIxTsg7WOLvDC85sej2Qi2b7+EfMt7bqKT2/iviqccdhx7fU6TVr109X8DcQlVTbHww5zQbGStC6NiOgc8v5mfjt+xSuPgTRmqt1O/F/gbLkpIeM3/IyCiXEujCICfGPvnEdLSgDCvWYWyvtDQQtg0gvE5bn+iiaW1hfSYJ5B/9QABrHCHGjedBJ08R9YXSxJxejia4NZcAbZ62BVjleAU8j5eI8BbwbPbPfgojaS5o5O5cW0kSdobq2Vxmb3/JIOzV+Wro7a5Ha4l18XxL5B1UzuxJZnf3tvnGv0O43p4CjERT1PyrkieQUXPFgbaSYvaIHB9ikifU/jMMwCP7T4KLfbF/zycxLvEFj/0zpYfy+LFFB8MOHuG3waZC7WBypuEKN+lxSflf2Rakqs7w6R16Ioflxp7k61OC66GQidRfs5i609WBy35gG5V6zOvVw4S4ZBn1cWrVLM6s0WA8s+hxn+wzFuyqM7S8nUedzWYr2OWadOrW72ya6qvV0DtTKelohV/Y1vIr+A8AAP//pF3J0qM6s3wgL4yZVCwxYGZLGPC0Mx4BY0YJ0NPf4Ouz/Hd32RHdHTKqyspMSVUNrx8hpLqwYVtOVubMX3cKynH+4M2+t7mIj5dQRTf1zHyYth3NbwRgf6fLEZWxQXN6OkVA3GVWers7d/OubEVUtjuXhHaodMyaNjUEz4PFAn3/DTg8Uhm2+1ojDiNH3rNlVlx3Nyq2W5v28ipOCkEQmUObsmkLtlZa8S8eme7mdTEEdpuCKN22xFtXvJs2elCrZzsWmC/SIGvnHt3g6kcTC5zGTTY88wy4aPWdYEXuAoq4YAN0+E3XZmNwwavcFpSyrlkydyvOP4frCsxf9WF7fZ8n1CdvC46O1GMZJivpF7yApyX8sFivzECcTDyDdJhLol9+Ph/V7bGCo5r9SKje24TLflRqGLSB7A6un027c6Rr7u5tEAf99EQculZEuqd5LCTaIWnhug21glzuxPM/s1n3RvCEWyGHJHhWUzEjdn8D3q1E4hyuGRpO3+sNGZX7IoFz9k3uttcK5h+mxOWiEwyPz1oG7+phdtX3Dho9fhdB4BeL6Ug/JxN54hB+gC2CtapH4/a5uYPzmSqs3qsk4C97PcJS39i+3LnFLEqBhUpZI2QfxWXxLx4XPKNC3zuFENefUWvHPMCT/jqY8340LS1UnQajdRoXszh3uRq5okr88XoOZsrWKnpI1pXyTTwVXUCWWY5dLhCztN/ZrF3EXiO5khKcow+ajrNsKS/nljPzeayTIX2dZlBA0Fk4OieT7obzE65kU+FV4nDeFSpYEEgFJX6ratlb3T5KWS5wRYLH9Oa/ly2NCPvZzLBXq9n8ud2e0Ab0waxdMwfjQT3moD3mjDkLORtza6v+q7eWd074v3xLpE+BN6k+Jb31vryXI82B6Zr8zHjquT3Ix/sFo/3tnYwrRbmjbUkf9DuJQTYNQnGC8ln1eArOEhp254sOxLnJdJbiGHXnpqMQDq+UBJeDloyTmoowFngitreb0fiLaasmcnenYqIpXT8Neqt1+qsg5vnxSbj/ZTn6vbst7oL6mXXqjuYAfTLhjf4Kijb1DBteq+xK1865LP74Glr4JHPKMwvmfrsKIcMxJbakE3N2+c0GKuc7LBK35n98VHvPO0zuWnrIxnJ9HuG+SypmdtEumxxdxfD5pDYzimlv8nt172EKHzdmcbEvxndxT9Hf9+P6FBYjvU4CGiK9JG7Dp2DyKFJVsv7UjNT1JZn3Y2BDUTc28U1DCnpV2KYQMfnKrP7WJPO7OJSaQ585I88qDMTArgF+qdETc997xT9+mv0qnWrrCpubk7RzYUM3EiFWeOyoA1es/uHPyuVeIdaADdXcnBizBqIG/ecpzLDUV2IM5M4nFl5n2FPlxLxJ/PIxnp4XZD4PhF03ehfQfrvCSL3zCzEP2oPT2zbL//gfJe/GyLjguQZURYeoqt6HoHkq8gx6EmVUmsS6m/Ueq+gfX3hMbzS5+q8HocMdltU7Q/QkmbPWaECYftMv5hg5EIGx12xiVc20WJB2ia5r+0k3HT8G43gkMzxNSrG22YjZrMpJDcv66LDwm/nxWeVAo9PAHHQ0giVen2AP+psQNj+y0XBzH65ll1LOCErqJd7gL7+l2+8T/Nuft0M75mBy6oQTqmzYK6cPC9LNlVNXUlrgzdgQ/AtP5qiyzwzdBHt2UHTxrx6e4L5pz0Q3XnPGo6gf4eWzL9kxIhfzdcct5BNLIHuf+7z/xoqP1IA6S711TPH8Hp8ozGKfLusxxzQ2AaaT/KWr8Tp10yoo5D++SeVY/KHv47NWEXvXIh6i2Oq+vS9SOCn1i/3pGVqY0KI6MAtmFfs9GrJum6urwzP60z/msCvLEOw1aZnR9342n76Rrj2So0bR45UXY/XenWDRH1iT16jjVvl5QiFeU1p+Bb0TLmfBgusnPZCDHOwyZoTc0q5+PJFtfT5n/Ds8LkjSojVzTNQH/KUU7z98Ima7+gX85xU3sB1bxVWwKgoeCk2Ewv6cERyXn6Qv56BCDqsy4kvF/b/9HY/PAjd77dhxFvU2uj+eK7JnZChaZXsT0D0xBeb5fEymIFm9//5/gnlsJGPufu5IsmN3wZdttinEZvyHH1zfj+ZAn5d/8YzRG9mBKN2jUNtZ+Zrofb83RydmJ3Q0byMV3saTz732sZBgeSHxq3OLOGbrUF3Ws+gxmvHN/rEMGus2zNLkC+e5iSK04AfRxxvmrXxfXo3YQ4yV5VozfxURBtRpNfn7XtMzKEut18WUWK/JTzY2jmQtmp2SePWOmh07mi2a9t+EeBu9MyfEtada7pKM/NvP4/7lA//l0l/9SObT92LAZ87OzP4918k/PDGlj4KXIW8Fu+4mCoNy2DOzbGY+PxcL+V3sHTpefi2iZbOlmmjSPZVz1JpTvn7LoFZWS27ELZKZhFcbXv7wxYsFwcf3j8uQi7vgn97ptyddADFpvniziSmfg0TzUeP5ORZPOkOc1wTUP35xOW00zvutIMILWSe2xR/N/ObrWkXeUQjYoi8yXtPxCQ8Zx3Qtry+8qeIhUmzqXsmffpgN5LawOtwjDJWqFnQ0rzECsQfiBqs3597ndofjvd+yOBbHYI57wYIhMkqifwXbnNbjCJAJ+EjMenfKuPTuZDiiz5sFq9cW1Vdt64NHJCDW6HYBX49FD0913jPr+NCD6d6u9T89xXZlMwbzN+sMpGTnE3HVO+HjanU1oJc2Aa6KfWBSdtwZAF34Zk4kNgkvxTSHtnJ0XFUo5DNzZBGdjy4iwZn6HY/MqARf0Djbmq1uCtJcRf/03tlp9qj94xPr1WUgIS/NbOy1TkTM+52wsvDTLtxucpBDz/7jA2j+vo0KXa+uTBUr1NDv/tFcoHH5Ikf2ERG3Gs8AwFWA1ZPuZ9z7xE8t3bQ51fxP340KFiJtqeckKHdBNjYPVwTloicse0w6ErWgzVExwYVd1Dvjw3i0L4jFak1CRd6juUvgDr5xlRe9mpsc54UBi3+Dk7XpZfxVXDD6Htya+V794oOwz0/olasrFnr1wxxw16vgczkndn+zi8kINRFC05rZa4o/5mC49Qj68b0n2OVNMS/6AKzt2mL+whfnhb/+8VP2V694Kd5z+A4jUCT7w/LWuzD+6j1Fn72VNcZRWCGCFgvf2yFzfj9nHcEWEbx5mk4irvuFDy3+k0FWTTCy4y2Cb5Pq7BXpZrc5vxUB1sW6WPyyMpjFuXjD2X1XWD7FXTb+8WfeaRyP8dYwN67+o+B8eIWFYFUlnUj9Cs6s2uHm+8wSGtdpDln0UBh2yRBMl7Pag3cCi6Vjp3V04UuITyuD6VKZ8KlAC/9wBZXsZrfppkP9vmiX48Mivzfquum5OWAt+5U68W5H3ZxUVl+gDYUTuSvywKfRjGvQL5uI2SodOU1ejwscnU2Pr+uKF13yuuuAcGSwrOMhkowQ2aAUb8ZcO1yb1PGGO7DPyCi8XluTP4mogr6WGbnDS++mg3r31b/4DBNH7IbtU7Cg2f+eDIv0y0f5jC5/+o0YC9+cb/jXIy+lMTOMaUBM2Sk6PGF9xsLYPTrGKumC+HP/xdL3uQr4UfdKVa++T7LU32D+4zd/fqK5vwXJNJeuD8+43NC02A+cThv1DQ/JvmLVDiGZrca4oPdlAmLqL5xsyvXpBuLhnrF4Z+fJqDmXEK5r67ngd5sNyg6NCD33NxKe9F836rf6AmJ0ygl5o3fX1DozUK8LKQsE2prN8fRq/+1fTFaeKXoSc4EeUU5we0LJOK3gBtN83RK9Pcsdw0zCYDVGwQzxYQSSjEdXI6yMmJ1o1643Ds9ZRaERseByeGR8+Hnqnx/HnFSnxfe2TeU//Uy2dOXx4rqNXeUa3FpGDtcR8dRqXO3kehtiqHfZHI/SwQDvKAa0iESKmPQ173/4SIz70eNTr7V3ODGSsq1jm0VveypFynH8MPtyLLNlTtNJ2wbX4E/vo77Khhkt+IfFvrcQ//OHH32HMYyOaE6v1U4E3swN8+odDoa5hxn97OhJnMdkJ3O0Uk/wU1YxZuW5NNm8bNPi3zL9FJ+Sfne+XtCxWwbryvdrMfVaflef6rj/52+y7W8AEPjNwmufBAWVvpYAqx46oifuIZD8u6rCvdENZohBgUaPbuI/PkOVRe+OYSKp6u4QpBiSZSSOR7kK6fNrsH2pXjOxFz6ANo+5wqoxXjgljrJ0jYuejKyrIFMqfAnhTuhIwpAwNHrtowdLHCe8+eVvvtQfFR2INP3Tc9Orjy0w7pv9n/8RjM4u82G9fqyYscTf8IOrrN7mOSFGsR+L0SplC+J5fC5+4j3j7NphFJ3ZFlMtxd3AXycLnnG1Ya7x+mV3w/JLJe3ImXn0ZiTsETQCaqfaWvzGgtPT3IeojCaJ4dPmWHBHkmM4PH5rtg12SjFaYieAnzFv4Uc+4rNq4z9/ctE3fbDgpYF20DCML3LAx+3JFcH2M43Y6j3upnh6GOrnpCKmL/7xdM/9C7LVkRIv1TtOlW0swtr76czZxKHJ4zrzIdHznpAo3iL6Lq7V0tfJYOGCV/VNMHStuKkyC0mXmFN1tkT47r4lI0Etoz5S3zqqg22x6HspaGr9Z0D7w8pffTe54WY5Cqr7A3Nv5XDJnF0fvslxZvtUtzPekSxHtx9ZGnl3Kp/5vl6B9pRTOocfxLnKZwoLnrKoeB0K/riIOlQmLch2f8NmP3Sy/a/ezW7kdGPzeV9g0lbWPz208DkXrVlekTAuS5O7dNEPM11jyJFVCPP0oAhUc03Vq8+K+VM4FlqDj2h+N4OOrZVc0HD8DZgLU5mxx2VlqOr1fiQ7+S6Y80GNZ+jI7YA3UzmY88oxVuBYts7wqZAyMQ/5rJ2HNFnqXWYOZ2rr6JBSh+3ozUFc8HRdY6urudRjzRwPw/akLX45nb+CmY17xQJ0PH5VKkj6hKYq/sawftdvFpxp27H1JohAbbKBcqfhy5Vc741+dvxk/mmTBXQY/RviON4zp2yGZCibwILRru5YOXRS1sLVw6h/Vh/8mbZ6wNu7Gqp3afMhf37nVLiPCtB1fJJs8RMmr01TpFSbma6jUjelE3rdkYUXGG7yXTD+4qqFrYe3xFlN3449yUr95xfuROfVLf6+/w+f8RblxT9/cQy2l6We/ILRvzQrdfGviN6vuqxpUzdFwVVw//lF/P0ca3jZcYPF4tVkPFZtFaL9QaRK5kdo+tMjmTF0dHQjP5sRBxsNW//BfHX96v7pT1MvDJp7Z7Fgq5VxQ39+z+Jnd2MQmBEI0kZnxNlVyfyHN3k+u7ivVLWb6S+I1MMYFixtuFiwT7HvYdlPoseJvgw6kEWIhXWNp7V8R/NrFT6Rvc13dC37tTk+nEiF+sIniqgWB4J8vwHsHkLEgtmRsmF01BCtd75FFvxL5r2wdHVVTh8qkN4NhpO080FfBhEJmnxBk596+p+fRIeNviuW/AH0HrUjs6R4DGg5NDGcOvXAzPosFH2FrxVa6itGy/naSJ/XG4BIgarebki4Aor4j3+HxH0XU8ZFH/z9CuFKM78Jr6WvDYfL1mfWRTELUTqPtVZu2pAEi38vrFc4R9bweLEI6VLSHaY41k4rJ6MbdLTQnHq+DU6OXljUqjNiG+sIQE16+Rdvedl4FCpYh2yp7wX7Zk0Ly3kUwVe/NWkjVU+kJecD1RjZF4IdKyIE5KZhJU9P5vx3XnWo0AE/tZR282geIk3QRY/tkPJZ+PftCaJRpn96IZvS13NU9PLck/06ZXzaxeMdprLmxApWdjavliN2oqVP8lTXN3PuDJfCn197DHaC+c+PW/xBOhv7Q8YQy3z0CW4vqla7sOMXLAugr1XG9h33zXnhQ8gL3wqugz7v+CBrLYC6XROyNjD/O69F3jXAVB27TdZK57HVrEYvWLrs5zRs1xV0zSws/sTA6b3VanSCdb7Eg8z59+xb8Lu8auqPjoz4iqxCkIuwYvq23XZCQHJRi09LV2Xj5SRUTq4WJEL4Jnf3Q81Fz/YaVuqWxDvETS7ouqqlw8sjWwelWb8e1RNkQngk3qJ3aEfuMgouPWGX3xO64Y9vL3qL4ZNe8vy6Q5YGNVD65tttMt2vQYRs6l+Z932ijG0PcQ2+kcl4vihVNq8cfwX18UmJrihu1iua+4Tl/GbRh+9gyuQjhfPlsXSJIdycfh71ITNYh0c1qP7Ob+5gPXIHb7zV15xfoxzDHz93NZkn4/kbz8rf+ev+s992G6n5jnAoSszsyy/vxj8/dfGj6PGX62gm0diCtWllZjpoKtjf98zq5kDsqsEd/xwOK02ppJmRaZN0Yur51h+fZ+QzHrIxHC+n/9fgA+1/XykQdqPBTmI1mDzY7Z+qud9XzL8UYlen8sFCa5RqzFc2p2R6yDrVbH9E7LraVnz0eTFqT2/0mD90n6VxRx6rfTJcmUVDbk7D97BCcvldE1uTHTSxq1wj+yQc2A3ST0Z/2j0G71d+yfY7WEnfXO4A605P2NXbfBB/dHYNsSJ9qOLXh4IqPyrCJvlsmfvVc3NQN8RHuiDXxKFWj4aEZxeQE6LjKddSc8zuRQ80rSwSsjkIxuMmvsHvqmYEJ7VfcBRUOSiPec1s/xV3PP7aPbgsIMSB1Rz0W05G1LOZYrk//5IpYYYN+cmdib8ZOz55j7cIXWHtmJ+LdjFXyyu8fa4qxIh/tGgfvw/VjCcFZm0FnnDe3krQr6WGp5/xLMY6DWrI5ErAUpfeux5f2zt8nksH21XZBqzORgPQ0WyY28j3ZfbTIhm9q8Qw6H438uMcabbkImJ9xSLrSmNI1e30i6lGf1Ewyd1BhX0uKyRcYxUNy+teyINgImZnu5x2vzJW09EUqSpup4B6l8KH2jmNjPB9iWqK7jLyJIWww1NuOpZ72glWfK3Rdb9eJ8356M4qaFNNzFV+KXgl7GL4SbpNTterhKahKSJ1uURLVzfqF+zjtj3cZ+vFrMpxi+F0v8zqUzm7GB6AzEbYZRHMxjzg/lh1yZS/bjrqkWhRWbhPaDzYig+bUTtRlF8jRO9tfUP6fQKaxL6MGmLNvqbXUkxs+1YH47pMRSj60WEep2I3nB/dRRVp1hI8XvSA97a73ArGMyNm4SfiSlMFuOaXNxam5x7VW05mSJNOxArxIZjKxonhKnYCCYKuSlosHUYwZIiJn3+3iehfNzP89tKOeczZFlOe6T200nhjHloepcwPIwLBN0/EUFWTC47y8VEkDDleZdEx4FfB6NV3ns1kv6l3najBO9RArRpm0cclm9vqUGuinJ7YdqqEoJfdUtWu+dJI8RvrJgMpz+FY+x8q+QagYX0hPtiBFBED8yabynuWQvGsHBYu33eUrawEoVgZxCP+PZhf7wNde9U7Yvi8WGRvyTOQ599VZr0EOeuvBadw9Q8C/pL90M2b/lBqxrMHqvi2E/RD4JSQF/GDWcp2j/j7TlsQG2vLztbK4bS7jSdNeYxrEljtFMzKTZURkGjFdJ4oHdvy3oejBx/K54tZbM4V1hEe7jKeXjfBnCvY1mCLdkV2QhKjmkpBiR7m40kOuW8lHFN/hpX9qYm1vz/4kPd7AKLs9uy05Hf9jB86GmpsETNtTDTTqKnB825fvNEvidnLuhGj0wQiVpb9GxpHg6Ux+QmrrzLg4+r8lmE63Qas7h9iwU+rww0uGfdx/84qkyXhdAfI0hSnSz7O0ejN4H+siF2an2TO769Ww1CHFl7rp1vGOHqJ8JQjjtFItuaGtRtZYfrKopOlEXOumygFeNxXxCWnsGDrzeqJhsfeJDFayXy6FmS5XX3SmXtVjaDH+c6CNd3HVLy6cTGmu539F69Y+ZzAnHdf+Q22RysSzlzvpCG1Kw00XuPu9N6aYmkeKDhjWxGcnL9Jc731FKJTkVPlXYTZlIVhDw3Tb8SXp22y4ZZbQxkad7bdG9du+Iuv3XpSsZ5ObTCX0b5VuyqxqJDqPGMeinz4bASXZej45nz0JBU81VSw9lqNwfgXP22d72j5KhJz04hjC96v+mKlv4O5DA0fgX7XJgtjM0im2u5SSMx5zwyhX2WMcNpDfL7tmX38zsWU/lQL/OmiknTJZ/457FPw3DRif/lP92p0hwcJPeaZuhPwj67b2m6bHNjuvI1REyY3F62cr0ZCW+syzpCy3NBcrqHqu6M5v9PxoiUH2LPdzaizWWxuKro9ep89v8UuYY+8NLR57fbEW9Y/JbpzQ9vVLSbbSHwul99QDJ9mnKk6vapi/glKCz+/tlk2ko/5bz2nUxPgOfEUczJtP0SFkc+E9FQN6up5OwEPozOVv3oeTF4VPNU6vWfkAWufT9tDkYPSiEfiHdTlYZ9/SP/Wi5N2YxZje2UlOorph/ht2/GlGSoFFM1HvJniRza/3tce9KqvcVznTdJNwzWCeiPd/vALLfUuBXKmmOHm3HZ8JXSC6sT3ijkJzxP2fq9XQEuVYjhab9Rtpc0dlKw9siWeu56uKQZNOiQs+HpbU/jF0zJrMF5mJ+++3cz5pwKppCey619DQXff8a3t3zOh3P/JvKsKV0eCI/csOL0/f3wDUElIRr/f677rPYeNMGbiQLw/voIffAShOXTM7W3DFMySzagyE5vYsREX7coIMTpKF5GR2vma43lNWtBvXUywpevZlJm5pcXXt8TM2L+gsfxcDRCH85H5XSgms/KrRNDl3Q+jR7U1+zM1bmC9Vz9i9Cfaseisu1qRoImEDy/IxvO80FLBSkmQu13Hz7Nsqbi/Fcy8rHnHvm1kaPSKBkbU0UI8JrILpFoVjKySkvcaE30tRfOH7C/9sZg/+/ryxxcwHKsgmUw/e8OnmWcW2pmOxL2BXFgPrsYIEq5oik1sQ9C1hLmjcuD0c5goTEI1UE3s1W54Ne8eAoYKLD8eefBb4hkpt1In2bcLiulTtYayet9T5og3KL5pb16g9l43gk/qd3k1swz++NYJOQ+5kXXWvcnh8ASJncrxEXTR2fXhZT855r3/NKfvMUjRX37qarvQoCi7w1M5umzhL7zfvNgbhM1xS3aPr5vNzYqqIMNNZ9Z2WxTMj+gIb0gfJENVFYyFUkWIpqXFDtRMza7dR4aWFEbOHN8A3jeXFNTm4+2Yv/CfLuxlH90O6xfVtsOOi8liLjJ6uRCnIHOw5GeNds8Lohvza5rCNNn4jy/iVtwezDmZfwao33tLDFIp5pStLz2gg9iybd5jJC77g34q2bH97zMGA1x5CPZJPDArL+tinD9JCWKf6Mzs7JpPetqG6jveucy/CIiPD2z2YKiLMMJTVEwP2aXLzcSQkONzZ0rPLDXgbs8CFedP3vWHwH9C0PclS/Y1zoay3KyQJthLI6vZWF4Zbm+wMtOGrpK67cYU2htM/vnMwsNsm7Pvyjl0hb1j+9fgo5Ef1RgOeSBRTcw2Ga83Zxl8XpRYPLzdYC6dwtCaYbW8An+won+jW4qOTSgSvP0cs4k9PUDhLy6ZtxJO3cx2+kkrrObOnMtN6qbT9EvhXnuc6d1LyHKMOhuaVczYLnCLoM93TgvRzi2Y4abPjlbgtXB+2W/6InfVnJ4bQ4dN+j0RXZFIMBWJTOGPnzAUk0wiz8gHpVVbZqhqwQfLNHPkG3JEHGvIi2kxAuHc44BqQHeFmDmOAfff7kmCbxd046VSL5DMsUTwediYS3zrsOiDJZ+7jPsRncF7dAqzD9OQjN58dUEowGA2T+dk+FvfU/S9v3ofCK3bppD2efgfX5zIB5DIXmvKsMq6KXP4DdZwjZkF5R71Jjlg+OO7slvduz6HfoWMdozx+1heOWPuEIGzOyFmbQsc0KH8ltoBGXuyE4x9MdNrGKkb+t5ibh+8QPCc3wxXPxGwcmicQJxVpQQOqMNwlytzPgyB9cdfSLLg7e8YP26oiOiM5XN/T+5+t/WBXpVheUW+7riuCj688reHu4Wf91QyK6A/80L0q3Pl8w45FnzPWkaIGX8D+m5tQFyuz8x4rDgav+KvguXJ0IIfu2xc9KfaPr9XloaXGg08Ekpwvs2X2NwczNH2EgHx9nkmC79GXKd6CNLxvsWKfw6Tibv/6U+2qzs3kxBZC+h6vr7IdjpSzoYUl2jh08QuZKMbzffpDpVuO8wTWRjU2nNUQVQfOjPL0wVNr6amyN4YBxbaWpDMYTzM6JOVM3NP59ykHEKsfq/mSHxPFbvp9M5tGJ7JhWxBuyajSQ6h9ocn+311LMbym5/QU8JP4r2FQ1fWZE6B2clATJvzog12kwCv3e1JFn6RUOd8yaGe64zoTrg2uTkOT8jkUmDXQ/MzKQ0vKXCpNIi5PzfBvKOLJV/aElVKu09G2e1V8ERRJXZvnPk8JbYK6iVdM/vwdk0xvR1G7f1OXDybg5fN4luO0YsjF8u9nQdDWWor9evxDIvl64y4iocQmKFf6YzuNGPeunmi01oMmBVeXM63gEdU1rc7hVhE5vTJI6qx+GwyR8lmc378Ggpa4yQE3x7LK+PuG8IZ8g2xqsuez8w71KB1RCP6PLGAZuKW/vFnss9qPaHHrL/B8r2ZfvmybKiN25Jfrseuy/7zdTlhdGk0H3NbL/g/fMX9pWDecX1CrLuZoK0hixm28pbT9yPR4fNrXQwLP56qPU/V+6T7xG1+UjCcSnSBbWLVzL/EUzYWCo1QQ+YdMZ5EMbvHcbRgw6oT231dN+MvJ7LR0F1N4rz6OOh/ZyOFo6uGZCdNdcBiMvrwDFROtt9V083LVTa4C8SjfUm6ZK6HTw1rlvyYtb9rvDm9Wwu1HbNwl12ybOogLeHZGE+Gq9MxmHX0zv/qKTGPq2fAys2UgvLcpFix4w/n6laJYF+sMTF6WQkWvFnBwnfp3FTPbM5W/QlU8b1mr0fcJgP6pm/t6pEXcZtd342H8+qGwvqksNDu7UAM8f35t19sF1zrhI/bR4zWoZCQA2SU15f8Y2knYffGyowqzrfLFag2uN3oqFQep0VWrYDc0J7gasdQrW5QDpPIzhhh7WPOCx+DN1k9mLPNfnx6Daoh//Evcnx+g+G58XU0T8kZQ/2OCrblpY+kWT0xSx7djuXyqGuDvrsy17XiYKyDxgAwXissvuHM+UrDd3Qeovd/9SK45S4anocLI/pJTaZ7yk4I1LLB2p1sCn6MjxeUbj8h8S7PD6KzM5RQmD8HaxvFR2On6aD9wnlkWFhvgkkyfyHAaqOxIIqzbo4/zQwP9ubsj8/yL/2ctLB9FET3biVnQ9Ct4GFcPbJD3302u/VjRHhsZCo3u7Ab5vcvRAse0Tu6HbvR0eanig5Cy0xbN//0dq2gOUix8BXNbDY3hQufTrmTPPGUYM5Ej/7F16IfbibtRltFqtw1JBDSoGCON4Z/8YgFRXgUvX1yZlj0MrMiKnc9Y6iEQBEIi6XaC8SfMLUglf2JEf70gzooFBeEr34mTj78Ot49HzE8feFJnsXxtTwxcW2YgmtPZ2LhbtR+2Rv6lFMqf/mBL36VDIN4s4jxiXAx/W4sUhNz3JM90F3Hy42SQrVaGvv68spkUb27wUOPX8S1oh5NE2kAHu+fh6VM7lGv/ZIchVVICGHID+bVJsKaHaIv2V+yMRnVDX9rg/S8Ms88hAm/wnCCDStPxK2FX0LbXD8p80s+s2MVPrJBZkUIG+PZk7/8nh6ercOn7h/M2ZG9ya3LJUSLPl72o0BcV8FHyYTzBV/rgAeQz1rsxznbhUsXmiIZe036jh3xt5vQ3JB9OqPbg/oUMLEDnhzvNtwM5jN8avRAuNY7Q13+/RJvLRq37ddHkY1lDGY3FvNk30B13ELFcyxzPtx81ULRXMnEWPwCZr1nAbEdubBQU/RO9CL3re2Mc4WVud12f34bXB1rw8ijYN34MvILnNVLwPz949QNwekigNZ6NXtU628xCTEJ0Wcjuv/wYPYiPYcbefu43MYuGl/Bzvir7xjemW32+kMJofkEO4LzQ9t1gS74IIjZCZvK0+yGKg5b+OM/4gqAD44MM5TQjMS9raSg7ZN3qu5XgAlZ+NFolr8RbVZCx84H9847phs1LPmy6MV9x/T58IZPVs3kj1+NU12U0IC7I5HhtgHXqYths0Y6s15bt2BfU1ohx8QH5kO6TTZ//qNW6yt651WU8d3x8AZpErdk/wremcTbuESLH7HUP5z11W1rwPp91qjUfkKkBLfcB1qIVyydf0632SiTDMno70kQ3D7m4gdXyM/dLzsueDDciHmBWJ5ChqeAIb7gGajnuGV4zXbm1KyTSP3U9IHVl/FJ/vAfyeVvTZZ6i8QKvBrh6IzxsLc6k//9/vx7ddgfX+Ju4IvA4qPJjqboZpt1kGC04C3Z++ax44+jbEE3RTuivyqrkNJt5EK04RILRxeZ/HiiPajXLCWOXBtJrz1H+c+fYk5BYpO5Rh3ChuZbtr+/b3x+t3iFVkWTELK2025c15ULxwaLWHx7rtl2vzIC5VbpBAfF2xyDYvK1B8s5VRc/goqTloOesR9eeuYiuraPb7UFky71WwAUQOu/ROyILRv96WHvFIFJnXOUa6H4Vtie/sZgfn/6E1ryh7jfPCykBX/QeJsvxP+pqJiHdxpDSi4fYprz0xzlcIXV3SOtiPs9OJn05yfmv89Em8NlyzdLPfjHd0Qb4mIzDFD9l699uuGDunFceGu3GcuTL5ks/toUKi3PcCPuPwWVru8YvmKQEf0iCl3jTuUMvqFG5K9eNQtf1VTfXWMt2unFZu+MolaG+p25t9U56F/klEJwYCUOWaR34yv51fDd7Gy6Xvyggei1AORhSvSLO9MUtZ2hwoKf7LL4HRykNofISfbMLkctEDoPVtBtPlc8LfWaZobWI2YfBuK61hzQc3q/ILNtEOXi0kxsOc/R4sszx120FZM5cxxdfZUtJzovV2jeLxNiU3wKmSk+cDAt8az9+WGmOa+CqfJyHZLDas+wYa45iy/xDGH3kZkVhTgY8h/UsIMSEfMnYHOM3WCGhT8S24a5W/RZCAdCc/bvzw+9u0H9624LPwm78ah0FOVH60H2y/f7O6+C/i1ZdI0bPxsdpfGRXBQt8S3xs/hfvwoK4z2zIxLnbvYPia/5Y/ol9p7knL+C5gLByimw+krsjp6jwAaXqCpWh26b8VW/xUh3nglzyW/irXJqStAlMyZ4bL5JZ7zeWAtirmDlLRyKqtrjFeJyeyYhPwbBYDl3AaUgiiyspyPvzTMSUSJkH7Z1JyH5PWPlguq5zf70Yzahy7uE8Bctg6pzxunih6Nsn3j4o9yu2Sg6cay2It2xbbCysnHjXwDGu2JghT+mbJ7Xhvrn9/yrL9JVTg305y8f9eaS8D+/bl77PZaU/pxJC5/V/vhY/wAUTN/HAOgeiz7TFYmZcwQaRYu/hNemwDqa3q7znx9BD5OkZFTbf9+IXMaCkVuumqzLqxKCV6lQ7XX/LoNH9RoOuN1jRbcgm87Xmw32Wa2In722yT/+rIZJs/h7W3OTmbkNp1H+UFmOziZ3sJeDM08R2wqnMhm3VSLKzswjutp81sWQOegCeR665Ng8ZXPeq9FT88uEsL2s6gmdVWW5ohScyd77dGa/8EOkRNqaOa9+NvlKs+9gHdcVcZb6wp2b9oTpdBnYMxB22SzoxwrJsd+R7dkqM3ZGcY+CV6Ww5byTS833G4EubWPiL+ed/WD0gDR3bIju74VuKhsSoX1cEixL6i/ofWljw4JPGEUx6oYD/l3Ar67KwodoR//04OnCNwv/qLNJfcmluo2NhGxnd9XxZ6zcoG3KGwkC6BY/eapB7A86Cx5SlYyHu9OrQ2Zf2YK3Qf2XL4v/TiVaScnsXToXqeXliJHl2t3klqMATZEw4hnswyfGHAzELwviSqoTLP7cE7b5SWP6S2r4rOlTpYkd7hiRd+uERwVYsFtzFauXbW82wwAlOsqPAG+kd47mytVqdAArp9VF2mcjnef4nz4+d6aUzG7/s+DvvOP0y4xiQpe6BPzwMfnzy+a/eIvFNsday32etsdTDMEzL6k6QNVNR4EaiNSG/Fd/i35LV09Y69tk8Us3BQ229VtzVT8i+8XP6mRvG6FZ0w32GIR39gsgH0H4Guf//Pq/87QD6fNFX3tBqU45hj89cs7veTYufhs6pflnOT+1EI3k/gbH/rohdjk+TPGYbEeUV4/733ldMO14JIJ5dmOar6hnSt91VUKUXmQqcvGO5sfv02unTx2Sa3meullHdf7HJ/7hQamuTr5y61cvFt5/bz4qO4oRuYoybbWLmPRvaWuAZb5j9iLDK+NfKQB14R8MC+Eu4+/L4/91pUAS/veVguMm7xjp1r9gnpLmDsW7XTP7CV3GZUG6QOPHb+aa5yQZX4/LDdrikbJUZndO7cCq1Ie8VnBt/Z58NJr7Cezi1WHUPH7FHB0jS53X7oTVMXoFfNrQGH6F4eF191VRLx6esdKN+yPbZSQ0595vBVSkhcQ8yfY7nh27WH2fti7BeT1mPU7QDMFQuSTcx5pZj5caoyhDHr01h21CC1u9wCizLS7jeFtsAkW2QBc2d9xPnycaz6/HCros/NF1c/4Uk5NsfXiFQsqOypEkk+gGhlqayyw1vpKz0b96gCLlMRGPHqtk+qb9SjZuwRlPljeb9CyTN2IPdGdbLdskbBqEHGSVcMzLq5tMDcpU+BW6h/PhMSTjT35awH/7ke3X8ZbP1t5NUfR6nogtSQ80KvbNgknKnnRDsz6bno99Bdt9dqJt7Gd8+JhCiXYhSYjdiDRjMq/75XlpgVe4uKOZtaseTaekwcIjtDq+VosK0npuSaj2JBl9X3PhEG97ok/iN+C6kKXQDOlEJb88B7XQRBUsv49tT+We/46jbMCAS5sdKgoBM1MWgw98RWdfe6DZc2YfKMFrsoufDp/39GNDezY+JOTJLqGr6+apKQanWIklF0nKN5Fh30h7FqTKYFaPKW+h/bxlcprdoBAefhlpN+tUYw1POWfK2bFguNoPLB57PZjPspPDjiUlrva3nPffMovQ59VLZFd8vGTcO+3SRUM6Yo9/D8UooXOtHrmiMr1Qx2B+7oY3+t1vLbGUegzmsXkbYLxnkbmRAuZ8Oq5l+Nz2mCo6Sk1eXpdBG3xUmCM8oqI3pMaHEWJMXNwZ3Sj+7uJimcVkKwS+KVp7/aQ1IQZ8L695Nw1hmEIm9Q5xtPpjjtFvVcLz9T0TEgfL4Ixz/YSuiQK6ub/O3UTfxFfdz/mDObG8bLaDsETrrKyZGzRj0R8/h15rP7lMxWAMgmU/fbBo3ZFH/7iiAb7WHS5S+SN2s7wSL6JdDfVEKzw80SEY98UrgqsiHhjurkIxmslx/Jcv/ZP5aDbn/LY2nVvKLLFaBXTSchE0x0lJEP4In+6vbao+6yCm2jl3Ar49dTrcjzHDIrOv3aQd34D2q43Kdmst5XS/UHZBed2oxnWrE7/BlaK+UZZbWTcUjFPf6ZDLpc7MoUm6vjrhJ2RduaYS2onmXDa+AWpiA/6uNYHTZnZrZO+QSXYGfxcDtvZ3BM27J0dhZ5nTmbAWfqg0Saj7b86N+VWiO1L3bP/RioBSYvggf/c2jkIaBU2f/QQgKk+JxX7vZLzHJwMe1t3F+f3W8TnCGwPkekxYYB3nrn9PSYjOtleS3TazE75X2QmS6qPT1bfNs/oUJD7qHoFJYQ1qNwvq5QaHXaUwIl0O5iTntYyouglw8cJS0a7elxx5U8sIXn0FzsWdrgO6zx0Vvs8tF+kJqSjf6JzcHs/OHMbOy2Eqj3vidTNK5sGYbIjKh4XFCw+RkI5aCJi1FrHi+NNNJ9TPMD1uJrEWvG5X7+itbc+lwbZWrQT9jGeqrd+/E51Po2Dy1/OjwmO0UuanQ8X5I45E7bZecQy7Wx8w0FY6eLZREO8uy8U8s5MuWxKuqLDg7VSqRIciaw90uTOZzc5mt4L5pV2o9GzabqTSL0Te0qjTPRu3Yj6VFgXsXDckiEeadF3EbfC79MncTd6afD0rAkrm2qWd9JSCnmgbH0i+vzF7oq+E/+HDsl787Pgb8YpPJRyS9kGlfeWZwhLvKHpIX4Ifl28wl3kF8vUTn5mDdqdgfibzCQopfhDy2JXZKKFXC5tdmbMUWiOYlLBNQSmUgvhM50XvvRGFn/Z+MSwOBaLhyirh3AoVCS30NfvzkM//8DIpr27Wd9xRwf7pMsM0q4reP1wwqnljMMfoK3MM0KGC4exvMXoWViFdfn4O72t5ZKdHOZnD9nOeVSmt9sy7ntcFjxGEyqNYh1jjetlNvpe0aGO2Ntm7dbnU6/UN8TVv//LL7NzSXcGyf8S+pF8+JVkka8/tR8CiL53R7LfbETa7Kser00Y15xUTDNiwL2C6zfROvMbDHSgJ1yyoNh/0e7tFCq/2BniyasWc97SxYJdOmAWaS/lwcPsZGVX8YqEx2xnzb9kT5KuzIoTU4nJR8BbCtI0Bj3DK0Pz2QxEpm3eKlV0vZ/WwEyz4NmaA+XcyOk6Km6X+/T7ncxgzariNDlbnPFlILLMb6xh01It6SJO7E5ii56gukjTXYVtD59nAP3cDhZ+REPu3zMr+3p/LlcHMwoq3n5IpeDyfSIxPBVnwP+jq1rJR3fgdce7bnSncxc/S9WSYyd36XPhYf3RB+04/m/ixjziTzTBGLasyttdPjsnnyp+h1TOTGOr6iKhHuqWRGzWIV5meWTv3+z9+Qky9Gf7VJ4guR6Catk2T6RN7l7/8/Vd/Z30DorolhkNXS7zxFsZQxclbY+7nIRZUjVYiHIQxJsl8k3hzmKmLzApdiMP60ByE4HiH4uTXLPilLtp876ceovJlUUHxmoD2fi4iIVBn5nI5Tti0qWKQpPpJAnU9BuOLBCVUzBsIkb1jMS14q9o/QyaGWXLO8mKL0e+TXVi4u4XBdL9UEUygOISk3DHZp3ypsDFrmzyxteFDqRIDxnhXsO3vx7LBWa6UOVJqkyU/OuZslRSZ5QoI3mZ6IXF1VwLqD4y5DUv4KJfGDZ01VSJB0mw73lVTq52jU8SsR1gWo7DbhdrreCNka7zUhPKLPsJOkl7M1SOb8wGvT9CLRsj2xioseqdtQhVK08TX1dLV5xbLEbDqccby398HTdTRqVpeXdRlmk1HT6mhn59ramyOz+xfPcok6tDoEfuFtHs1NZT1JWZe+nkX/Ds838hqAgO3QmBlgvHJS9UgnY7hhQ+o/+Nj9e+j4tf2Z3Nhs/nUwGXxg/lvnfFpluISrR8fC4sWmZPJMNkT+XZ3x/Lf94jeoQjn3+FK9huvSEZ1TO4QvRUJQwxpN3pMz5GpJyqzg0MZTN9cGSE/rHISvPsiozvJo4jAZUfcSx9noh6gJ7T4XrEtv32LOTFlEc616rNdd71lw/1CYyjxvqJAFcXsndJ2AWnyG/ey5aFZjudK63JvwtLMZd4Xv2//V/+Ifwz3nG2WwWm4LlriXN59MP4faWeytSyMhOELcqEikGLJJDIHARF3gqiggAwJkKvvw/f3sne99BwFIUnVW08lVW0r1mD2+wO2xjxylp2q+ugbywXWXaty5mR8buAS7H9YY0uozRetqEF36jvVgnjHxqxGhqhKXvtPT5FIm3YSUScPy7/jC015WKgwi+uptFX/Mb/XOBTom3ULCpa1af7MAXQ2umEXfdVqudlsgHkqLuS2+rdR9uLNnz31kffStL/1gHrTTHypGfbRuJkvL7RoZY0d56pn7KTMsfC0ohN17OKsDTdTHuDmNjHVjc0SzW+HxGg/+4R6t/Otn1Jl7NCfflpsSWJUy+wEnsM1JQLec4hFX6mDQLtiqg1nISNhlCdo9ighzfmkakyu/VKs0pNOpGO9ZGPtMlcML+KJWnsSZLNTCS/Am/j9bz1xquptUE2dEdsl4bKp2Qg2NFL5pEo6Dv1UfFUbKkcCsvnMWNtvo9GFeE6+GO/Oej/nKQng/Vgy0rWHizZcmxOBxy3fU0VLvX4s+jD9i5f8vRUdolWvEugzv1nH23WWVhDvyKoaB1smsbOZEza2KI1koSY651H9+E0i+H6JCf95mn3nq/1GFPuWo/mMHG2BqgO4cWfdRxHeR+xlVglsF/eErWs7rgj07UpgFNnf+s+or9gFRMphQ6YRbdHEnZMQlvnkY+epOtVkiPrwZ1+wfN6gbCavkwkxx/nkvfoPKs4fEAc3zql1kU/98inJBo3syFOrUq7O8pTQIK76D1vGt69msTFdeCFtj23ydnvOC085FLXPYa0zxWpIr4MLo1xW5FC/UTWFw4NHyUWh2F3jU2ZedjZsN61AOO+uMppd+gCCVj7j2/np99MlckWIJLPAJ6/+aYv57QoQwlyjhS/9NMYdTRlJux9gw33jfrr8nAJCUdzR9fkiduWICunjhrB1uz6rSX/WHHyt8oTtKdhqg8h7Piq7V/4XzyEGri2iieEUu6u9WjavoJQCg8/xsVHViI19AIDkterV5bmL/taHmLjPnc96UdGYA70urtfz+WCnRNxFdEKgrW4S3apTbRFIY8P9drlgN4ixw1Z/gT7P3RW7+ekbkYofXyhmkYL9Nmy1gRfljWDlrULlSS/6GdcXA9Xx2ggkPznOHCTCB4Qmn2gmbgOHvpLJBK65BkR4vgptUepzDO9pN9LVXmbMbl8hahQ+pvnGMyO2xqco7845dtRadib7pgCSR34tvL6t+mXcfXwha7WF+tVb63fdtzXR7XrssSLGbUVj/5UichsTusbnEfvdX7WUGvmCPTS3aGjb5QPnM1GwcTS//cznxx0g8Rph761jNC0nGeBWuYxsv5xZTYmT2aCQt0PTu+72y0m779D7jn2syXbdk8/EFvTRaEDNvSkxooq5DY69L7GKihwN168gw6xzFjZWPblU8jWG98mWsHJxWU+uvmGvVRZaeiymr7Osn2Hj7xoyrfZyjo5hDOLbfmG5LvdoCl46J40vpaGGjsNs99trHbATGajRjLSaZS8HJDTF5HerPpqrpB2AZL+F6sbxqTGcvRKpaK1w1QuDxqqDq4LIOR7Wbs9jRDuYfGCcePTnIY3YPOdAoPvqR4y/OURs7woLTI55o/F06BmLk7v5L16fk6PB5vt9bXp1fNyoAdWpWnnA8DcfyDxbvFOL1zMPyLFEMqx8Yvxmpoxo/bySja9f0OJu3Fpw+TGlTioLbCHYtuFCkIvXbrEVlcj9JUZCc/Z37dfvW8IFL2jVt0fcF2/1s14cY7h2XE0Nuh3QoI+og8TXvxRD9WaLHi86IhWvUiuzDOdwCJsFlFK/UTzjpWLiPGyEo3Q1CVrtE8t/tYEuFv+knvH89syByoD5yt+JuApQMv1e8p/eoiqrHTTFBtuBeNHS9cSJjCb+QRPxrfxiTPa7qZ+9NuXQdXuIML7DsScuPUxwNZwPtlysRfPR/3Hw/SkONjfLPiOP6sGhajzNZBdnctRVxpKKp8Q90+B3lNHB2u5L+JTijzCs/6IJ6i/AFoYHdl/rEZT8V+v8UWAIe2XeaYv1mMjf+BKUvZeKNbJN0FZTCQmsodBYI6sEHqU6kf1L0ND0Fz89Xrct9vy5RP/m476wc78eeDmbEicyUdYqC9aqVkO7c5rpqFUrjySJc3LY6TGKEHfUwF6pPtiMic+BEKxHTo7mt5q7R//5xyM73RoydlMP9l/8gG/xW64mYbsB1GkQYNtiFfo2zc2AQLtgrHoG9BMNPRPJ2+tCTYN3o2X6tTJa9bi/M32JDabLi5DImvrPv83a92BAzqUfelHEceWNmiyt+g7b4afVljCKY9SLY094S+mdueZ2NUyxsqW+9ruhgbbaAKveoPjx6bN//veYxhk9nU+qs1zjdTNxnHI+mi9pNdX5+wXF2bWwpz2insnqy5dwFgRU6X5KdrhK1lo4nqjUP9kLazXpaYu7JLOo6U9SNrfnsBSuumfi06rnyP5z40QXKy09o6Fk80fubPjhycJrJlkjY31NIben1H8vqvNPr4q7Q7mhtisG/XLerh3YCxmw9Qh11m3t8wb2lWNTl0XfbPK2kwhmsrepxuu4YvjihejvfXsrPxpKaQjRyj/8ufspETvYnAoyV3jUvOYGG4ZqLTytDBJ2L5u6nz5rY5/4ONxwym59tNpTE1zD1PBdeRv9dO+CBCItp9Rrhks2nW0/RCOYZOUfBuPMb5fDAyrDb8+RGU03Ae3gBW1NxAjKbGKlVMIwFmds1xhny5RlPtrXwxUft4WHUEB7U7yrdxe7RBCcpUwePP8gz3L1pzMjYsBx8McjtGabIXYI6YRGRxXW+G7dcitoJSjDh1I1MP2+l9eU/e/sddh4HzuNXnWR/+O/6/iyahyyhkN909+JdL611RR+PibERRhRb6nTaBRTlCKkBhearPabWUbQSujNbtgVGGjtVgh1cHj9iXWFnLTpu7wM9Mf/dT64sEXPqx04UfbAcut6PYuT0ERfJ6+wd9Vk7XDpYpBe4RNRXd5HbH6Hyh2eI1h41dvOjt44Huo+2FP7IYVap1jbAVZ763evra5NzfRJ4OngitpxJFbj0X9zyChyCR9J5mZs5U8iPLIP9dBsov7Cv9eaBZsD9YbH7b/3O6Zr4fx0dKs59dMNJFv/jo8ZHrTFiTUf4i9+YNWkenX4NG0J4s6d6WpfGONRWMAaT/gvOhrZjOz6A8VEPQJYr6pB8DUO/PPnTVV0U7Xda858SJ1N5vPonGfzg+mr/z2UWD5JfUXTs7aBNqhnbAtiUrHmBDm6f/MHDp21iuO9/+1E53IVsLXy8fmbyapEvruC4tBRov1+HA20+keqTf23nwQjNNAtmWRqnJICMbUbd+B9rh8i1NrPmZvmbIjx13v4nLo12G5S3y2IYxMSkcpRteSK4UM2NSPVjgKP9qns2uBcLgK2jXlm82FxU7Ty5ZV3Rf0aH5hQDjlPLX5So/16felyBY1I63qZCYk28ORKHas+r2nz81AVsMZv1Ci01BlS65nCdOmmP37Qz2XtunCQ7BM1m3qvdcElMEB7gk/zayKzna056b/8wtaSJzbGzW8DcRFE2LiEDA3S1c7h0ZS3lf9ts4XrTtwfP8ePj/FGq976oIdemNgoNF6bUrwUkj/oBwKmOqPJvfo++uNf0CitM//xVLnAEvU7caz6v/xGFilH7LydLmIfx+ChF2nvzwB+NPm/9RS08Qmpc+KcbHKKwwbQN6mpP32O0Twppon+8hlWmL4R9fOtjKbwVJHFqL+IBCcnQDtJbv7iWWdC7W/44xlU+85lNft3V4XWVDlqJVRANLtUARS78L7y49mZf99H8qfn/T45N9kiOyhHdTiglefetJf80ALx57pAn8KbsknhtzsQhs3t3/9hiftpIbpnvL9z285ZRlUw4Mm9dKqyk85YcHwvkmR3b4wt4eMcxo/Ew7ucLWxbfNEvwUkLkGDxJg0OW6368+eS6cYMn9DGinbYVVUJW78nNkQ576fXtlWBLp/n2tjivD7ve5BE+60QcBmnTcdAi0EPGhNbAv5l46rnxUcpT3+8XqODZSUg7eIzfRD8iqbbYhuQ7ltnXQ/HamqMbgNNnnZUN559xMStsCDRfT6oLicDm3r8+8CqL1Z9UDH2LH4i/OzgRe9irLI//wRbfWuv+Yodmt3D2ib9rnvYX+PflY8uUp0EJg68RovYTXkV0mrvaGhLEhpH/V6jzTUtse1mVr/YGQBSP4mGvc2NVGy1h//Wl7n6czYMtBWdXRX6+piEaHkPcQ78HPtYLroP+tN/4h9P9Vl/RguzEIAX8jr993tfUQuU+7/gH99n1fuYw/vovrGrCMxZx5sDFZ1drBNsaHNMo4G/+dW05icv0bQV7gaauOVL//TMai9TMGORUPN7UBl7JbyN1vwuGf0r1w/YtWVUwWRgHbpSI9LG5ICU0fnf/Cd3IBxYWxJSOzm+nYUUYwdGuo2peUUeW776pkXFb9Gwucbz/eNu1/B4yCpev68tjnsu4J1bHRFuc8/mWHqV0qqv/3h8xC78bwIlVvfYS5ewX/Mr5h8f8TlPsP7xL3STzRLrWTkgcrvJJZJHMfS5Q8qh5VcxDljx21NttIf+tRVCA9Zz2P/45KJ1fCs9mtcN61bNO7T+DhNIkZ9Te9Pf2Vxet3f0PQkJQfLu1jPh0dnQbwKeulK8d0avDTh06a9bqscv5IxIBQ41H/gS9NOyaJp28QKCfn+SZV1fqz8CYPsoJqKrPLI5CIoSnY8fAdu4TJzf64Zs0RftDOtfyUS7Y+DEcHF2CP/jd/udbP/N17/8FqI69Uxx1Zs0fKrnjFyN+J/+Idut00QD1N8NBLfNSG0xLhlpsaACX4UdEQUx6aeHupT/T+ODw/5/bynYDJ8fmUSw2HJtaYtkq9MopsGtn/tFySX1Up+of3fnvi8fMpFOXuHT6Oy/oiWJvRf6HSbJ39KFVFM+Rh1czvmGGsaliZbP96iCKg4/rGbt6DBi9jVsrvmJHoux1IaikPy1d+2HIPFdZYTqvQyPTB7oTeebqK8rNwUIuhrj6o0d1uxFAmcVFGzpuNJGhD0RPcaP5PcVe7PeO14CcPYsIsnxLEXzMbFM+HrsTYQXHh0GOFThBCmPsbJLGNP4sRbl+1Gm559y1uZK93TEOzHFBtERYprVmlCcsqP/vhYtY8/wlKLBiEKfyxIxIteWdig1FpcawnBwRvUshMjSyYhPY+FWzayWd8lhvy3WDtZBYzS78eB8k4S66UF2yLJ5L+K3+f58zpPK/uus9Qn9JUkJJO8xm9G1t2H38x2ylM3HGbw8N2F9/9i+Rb2zvFmVSzJDJla2BnHmXLc/YBk7BQfNwDJiHCwDnX5cg5W9844W7+Csp4A5hM1gq/aThdwdqpNT4tfreA3nnxKC+Dvo1B/OZC0E+RXhed75NNhqN42OO+UuNXtXJ5s6UdA+FAyCPHUZsR6pZ7T4/OH+7/7ZJ68zOn3LjWSPz4LsyxCy5bxsfJSq7w89/sRrP+zkeYF1fmFb/ErV4g7LS5Lf8cHfl2Eezegl39HF9k4+C2wu+zefslacfPJDubZclKuP0kwk/t1SnWo+7SABsxO/1DvQYz+SqlIRsH5H4NhY/fxu1hR7qdyxUvdFtvC7yIUirxp6/LRUmywPuZD1qk4xfLVsAb434B4OAQ2fNM/YLB4NUKVQxL6ga9ny84UP+GYZ+CUW1GrPjZsaYv3xocd9uaCeF/EHWCBeifgAGs13Z/uBRm80fNqkU8S+77RGglT0ZPsaVpOLhDvirscn4Zfz3mFbmX2Ab0KHWrzZoCE05EE6t0ZFnUlX+iV88TaEN/ONAyaFbIJLkoLus72PiNA6Q2fwBZLazZ3sLqneH1whiCXuMLyoOb6VaqfCxgT5mGW+xIx3RmX8TrYjoz+q12GbzRuZ5uI6Pj43ZtdqNq6wQc8aJiqL8ENs7D+mlLX8hA1lqJz5VBoqrPOB2lMXIHJ4Cga4SRoTuGpqttOHSvw3XoexcPupQVsdMZEUVBFQjKbn3JfQk7og25fNKuZ5ywtdt9sQu3kuRuwlKzF8f4GMnwXfoQ74Soci1zv8ECotmiv9aIDkyRtsX2uoRmHxc+SGzkDV8/jK5uoZtKjW3keyyctPxn7xCBC/MhmbWpcydmyzBI775upLNpw0Jm/IInaS9KB+95i1UZjuLZTDgLBhbJxqfpr3AknJ3fIn9S6j93OjxCi/3h9UHZ19tgTtaEO7+/ZUXefHAXczjw5v6esfHJMyqpwfNvzCLsOn7EajaeqbGEn/AQAA//+kXcuWsjy0fCAGAiIJQ24i1wQBFWeAiKCIXBIgT38W/f1ndmZn2Ku7RXKpXVU72fv5xUS8Gx0Ydipo4Tx8bHxVu4PX3UqZQImrN0tyw7dOcnv4C6BAvVut53sLCgVURb3ARmh8Dard5QxyS4SxvvD3ZtW7ylZ+Xvb+w4N8W1+tQkBbIWVEBzbLYuNCHTgtRQeziVe961xlDaITyqKE90YHmDwEw2WH/Zuhx/vjLL3lwVxv1Bble0yqajuypHMata/nwZsv+3rrhewy1GHPBExSFxN+Bv5Mc936NaP2FFdIL1mHdZf88sbQdBlQ+eVi1d7rjO/PTgV9pXMx2vb7qBhhIv+cc0iPP9bFTLSJCW/asyUH5+UNy3k324owihk1pdux4bnglYL7cRRxqGcVWF0QQmh2H4Va57oAC96dZDix6Ye9Da/mz+flKtUHZNRw8W9bL2kHt/iAPfnVxEy7r5lCdf5GtVrPvOkC+hnuWz+gQYgwYCr+XeVdcn5QG0eJx5QGuvB7cxJq6ssaDwMQMzB82YfIozY2Q2I0HEwE84OUcM8bTBcPKwQiX9J7WNVDr3rdCqZPplKH7m1jb8QLglcMe+wFPmb9RXv6wBJ/FzIdNJQv5+J0hYg7Uax+7hr7h19bPMTBFDVsjUdBVcoXDrb188jXKRFCeJckm3qavmv+1qt8FOyMCBa4DsuEVUnxhCWmXnMe2ZTuLxnc8ArbW3KNYkGHkMeCSvXU1fP1mcwRBCkjhHcQH3/uGqnhLokf2EqzdzO9X34BzRMxSCkLTzCKslSDfTYRIrmq17A3Kzto7gSG7dfBytlLU2wQRZcOY2sXeoMjwhBOLyelwarvczqYMZGN21FHNZSfbFZLlwP0knbUm4TSo65T9+CtJG8c5GLPvp9X+FYwE2JqDo9XM8+8+YYnVa3QLGcJYCMaV/C6WyP2WO3Hq5emGUxumoCfY9Kw+e1e3sqGj/iICn1gtxMToVr4CQ3JemiWoyzU8NlyM9YVzmGLMLrzQUBLj/ZH8RTPTKw6xZLWH7ZddWhYm1EbnhJyRHIkOgbJWAchlXKRautWtWWLD3Bb70Ti8k9O5HPUycbdv1L1ZBy9hbHdChUX9Ng7nXW2WDceQrtbzlg35YHN4wNlUkBGmyafmeXrOtEQQq8ysFEkW0qCXi24L7kr9XfJwNjvYSCgN2Amcbtsp6CDzARanQpY1a5XRg2n2lIOzQGbtpEbq4eZC5j0cSm+T+dm3MMxgesqfLE5i/eBiXmRweKWPvCjFTQwv/PUgufPDlPzGS95G6WZDN+2xqFfzE35QKYblLd4gVEiO4a4lWuXxfx6osjhazavjZyA430ASBBUhdFMW3vlI3syWbzgF6/c+pPgw8QMn76a2yzoeEi3+1tfWmb+0ozhNePgGZwWevr2iDHhXr2BwykLmTXJYyMjRgp32uSjnTCBhtXXWwRvHS0QVdB3WP/46Q5/9gh2ptD89nEcAm8vfdGctkG8zPo1lM2R/yDxMN6MlSx8D9zXeKJ2qwrDHJYSksnjNVN0aYKccF3IK9PpEpJbnVqx6IJw6zQ7a1hXCp4x3B9k8Iu6HH3l88tg4ys3Af1yhy0+fY3lb3+hqV/xdukgZtcephCIYold510NhHuCFhpzEdDyWWbeInJbpcoM6FhXz99hLvYjOXxgjNAS+Wq+v+3KGk7l16Jo/WrxfqFQh+l9yaip40e8vAq+hZpLNAK+aeEtLmE2ZJ0bbL1kO0au5bVVLuKnwhYPjaGJtdlWtniAg+7UD8TocwiMO7piN35O+eJkZ10Zp5eN3bF5DQsCVQiuUQ3RfP6KOS3TWVQ2/rPFs5PBlPGcKZKz9XbMtI5N+ziPQPBZAIE8OrLZ2Xqj/72/N5uvYeO77T/8OX5c0xPrsJcBvoE9EvmMDKMy/yBQHk+AuFlmHpX0UQY6SkK0KtyPMQsKJTx5yx5ru67xpvfvNUL7/MrRjh0ejMm3kwqZjxas/0zL6FnsQYB46UdPz4pr2LJ8efhJ3jlNyn4ylpekuvB1rXOK0fGaL631s+FFGnmynj0vXn7uQYcvA7o0agnLZ2W9rPCV+yq9oKIe6O/hIdgcyIWiffjZPJLXLGuPCWNnrPyB3aewUEJ7J1DNHfi4/931TumxyshHNE9MUO9tBH8BJ2B14yt77e2V0FZKkVobv5jLZLTB2XdOhCyFbfC8uszKJ2lz7HHdOrT1XbUVsH5Fwmrb9IbS0mt4rEoBn7ZGZ7N0b2ZQfPcZNp4hjGlyzSKgt4aJnUwxYxYcH+Fh279/+Aj+8bH8cJuoGzgy+0mt1oKZ8+6kCUcv/+PLUoX8lhY7sQI0D3YVxKdCpoaUzA2V1+gNo+jWoZ1ob3zGCXnlA88IG2K1go7+QA1Lp74TRbGVbb2/Ryiyh4S4iybFvzDLK+Dc0wiXm96Zy4eWQut9Msnya1qD3Ku1h6JgY3oUzRPY8NoFS1OoNAp/15wYihv+46ujxN3jVZXkFIZnycBJ2QeeoJxSGc48jHF8Lzg2ApUPFfmenZB4W1RDeNpZ8aePkfCT9wMFR5WDMZHNTR/rBqtUJ4Gp2Uk4/kxlPnNHf+P77otAL/8as/A4uHBObhH1fE1sVjKrPGw81GEsLsdhJbMtQqfqnK2b/JGJyXvrVW8nEJuitjK68dutlrKNTzr3bKhDbioctc+EMXSVYbxdHyWYf08eawWCzbCLfzJ0abtim8uP8epnPgLN3jXRerh8mqVyrRCQwGLbwUvLIC9oj//0tNeHBhPfUx9BYYEKxXFIm7m6qUhROphhFwVvMJuC5sLOvbYYV2M3LFmxmjBzLkd82wMUz3dUlbBOtSsBVpCC5ZU8r2CbT2qbQhQzAJsO3DT1R+9BJ7M+7D421L5mRi2o/9jkX70OPs8iomZIq/if3tv2Ow3v+NzMsA0l+OHSmv7x0ekR4hKIe1Kh5RDNwyqfsx6E9UWl2/vnfMVuVzgb0gWbem9466PlrkA79AN1Q63e+NTHBtvzkLz4R0a1sRohLuwn3vhyzg6PuYCGBit8PVXqMDcCSGGLhCdK0UlmnaUhC/x+0plGr8IFy60GIcjjGeEz/xvzudWrFr79qKW6r64G7ZfPFf75D7oRKPl0DAYZCD210PoNu3h50V6CB82Kt1syNzBPemPBNkU9mT2WDjO/FVqnH+FDkVSTfEnf1ISl9DCwMSE3Zyg1WsU8tpT+8TORT/YrMCB+U8eUTjH5Gx9717pICM6/eEmqpw83/U6E3S5p2nBxM9ifv0cCx+nA5vvW+Orthy0+DUtpMEnGLTh3ZoODz3Jj6yW6E8ApRou+f3i6+qyEj6Pk0ocb12x9DZYPRaurtyP/RrPco5cOjWt/pNoqoGZFzgKVY/12EHu12GDb+IPeB0+yKyWXrcqlr4E7PUqsbfGPReUpBHE/FNRcUtQI+ZL4//SZ/Qhrgx0uOYKSvB3hU+xHQ/2ZmXDJLIGAzX+a8sOhgJs/Qt3fcGBk3+su6M+fI1U7rjAYVjpfVkA9UC+NRG/9LqurYKdFSMmTC/t9YKpDUGkfsq/TNh9Hosp/+o3qw+02sIhqK+QuCSPrz7S8mZhXGYr3YSZzmblgGZkQQmE63/70LKAcCZCMM83D3fTSBj5pbAuyYiDYS6OrscUTH2z6bBvvPVu484uTz3HKYTSyhtHvdCnB+3x3yAREnr3d1AyBmYUJfcJxHdYXG0o4sNDc9N525Ms7l+DBizzilOk70Pv+V8ODUgz4vOHHhJihgkd6SNHyljUmrM9HL7NdZtBTJ3Qxe5t3BFCqBNh6sSJe2lBG8Hj3ORxkwzIs2s6V4NFs7kSe+5ktMrzVcv3KXqi7dBYQ90h8A+3JN1ir39ib6ZquMHwMGfYC8maLfaqJYpXcC9tG4zS8KM8VDL/qhxq5E3ib/1RDOYcpjh3vGa8r95vhJ3qeqPvdQ4/mSccB+Ek8rNdH7I23ZDsCuvkXgbMEgOkk2aqCvX7Um6cPGMtvVsI5dz2qXRa52fTrVWn7GdB42ZOGqfiVKHRJTBySwY35P354M1oZSY+w9hi7+TXc8JWq0UqHDxyDEFotSmkw3WOP1ddnBNRTRcmB7jtvUjjWQmEndJs/ahhDAEwbbvOB9evOBvNikxUO5F3S0rkr3hyH91n5VvWTbnyA/fa5VMt/evDsJekwa8BN4EffqrQMHtrer6jlac+dac7qMV72Eu4BU0JKjW28WkHq3nDzr/DpOg/GuEY7EZzhatPgfHe8NhayUH4+yQE7J17xfsVVkiFVI4uan9/bY3XJ17BXdg+yoytqFu1U+XLf0i/iZGHHfvnhUP7xNQLdQ+Rt+ryHJ67y6UU73T2iGkYFD+cmxKcQBsMCxyAC5qvycMGtIpse4amAMvMxznazCJa9dOrh/rX70GPNL/k//vP7XlVqXPZms1c5MoP0chLIqhUVoIIlh3/7kyKjnL2l998ivIF4Ioew0ocNXwgMCLHxn/8FBGsNIamDKy6rHxvWVfQrILxqFR9tK/To5ae2kDyazU/LEjAVKO7A5sds4/Xz1gfNW+iF3UJx/xVyuvktcKvcgiAz/JheUssC16QLcXR9xGCt7WMPyfvaY9spxWbdxgOg6/5ALT5DzRrXDQcDdDz9G6+FfkoeFlCBWPOfkcEePSeBPz+wASuIx1dYruAVxYz++V1rPu5rOc78Jw5TU8qHnXQN5UngFcIHe6mZrUh9K6Z6cCmOV7Nh4Wm5QjR1K+IX2Rj4r1mk8uf7/aGR3/fGzIiXQilqW7KLSNasuW24oIovDrXz4h2T393t4cvg3A0vXmCmz7qE0KsNaqL71EwdnVLwNT8GvQCsGSzT5B522dJQi5g5IH9+9C6tjjiyjkeDh5drBqcjhujd3/fNEnQHDmQHziLLNePYahuWDntw9/HxJmQ5UeeHDf7yE8+7VzRzVD9FuJfWkh7p98h4+mM1LEzeJzTD7bA2zdkHqtMZONfeSbM+r28L/vmjmvX+GBPnmARu+ga7MBq99bb4EuhEssMu5DVjpmu4Ko45ToSLKW3+4Z+k6hf659evm16Ei6if0VrJFzDzdOdDzW4nciuG1Fu6T3L90z+IK1Qci4M9p7BffeuP3xsT9w4jJd4xjprvj+wJKr+I8KeaLnXmb87m5eyr4BB3bxxUbTks6p2EgPrGgwg3QY7X9PpqFcm7UnQYUMPoegmJ0tTlE9t7rskX3mpd6DVYp+bTr43ZuYaFUmd2j4/a6eCtfcYVf/mRf347+/OzTh9Pp5ZgRGyxqsyHsZG3RAp3dfNPDw3j00Vg03Pj84dCWIz1jnpl1w3LH7/OvOKOz1fBHMYg8iyw3xq1mSAG+eQbl6tiuRGkVnhIB3IGcQlTvXn/6UmP7eKXDLtC3tOjzn/z2XKaq+J33Acpf37ZJTpvfM19ouvbocZvwxN4zK8ROjfW2xtlcpT/8JH6j+qdT+8rSCE3tj98DORpYIt0juDG97HOXl82ZulSQ7/dnzH2ZcWbLuhuw9V+1zSkCWoWvXCvENlVSC/0ewTT3TVmaC6KvfkFU75e6d3601sUX8wpHjb8l//8hdPmD8x4FiM439U9LY1yNpi1vlO45auwvVg5YM/s3YFt/xLFjWuwTFbTw8kp3uQH8c0gqR/WSn69PrFFnq9BFM2p+os/iMWvBazn4/sNlr5ZqQmEOSZ/+vqPH5knODRzJKDtyt6Hx8b290v8tXs4c86dOvetSni6vFTFi9bjX77MWDY9LSuPB6AId2o+RyxKQM24lfqcszbDzvN7OCz2TFOVNMYqfIn15z9Q/7cYjH1QH0FuZ8tUveWMsSCQa/m2UyKqllnPZj2QRmBcuyNOwsCL55vvZ3D9mphm93gwPo+XxinvEPrU0x6ffNa6RAf2cTW29p74j68Tmcd7FaPnzQXTG11dZfOnac5ZyjCVtbBCPtkal+wSD8wa0BO4SxUdrVqhsr2hudLf/sR6p0KP2YJawuN8WLG/E1WwHs9jAQvvwCGpu9r5+lbTHnDodaDYuehgz16XNwQWfhBRnl/eMvzePixGS//nlzMlLyVYjwQgkYfNwDo3keGLCxDW0l8dL+Gk8TDdiy71fS9jix+QFGz6nzr2Thyo9jaKf36/dc6nZv7z22vRsshhGT5gjnrBhAS8K6yxm9EQJO0ysJvRgbqnuWbrpo+V5GYI9LjFk1WCc6mMdtZS9/Pum1nwuQ58q+qJBD/Y5eT9CXTgXJweH2XvZixzHM6w12ybIvfx9fp40JCyiOoZP/JEYEvLGTz85xcYwSNeRDHm4W2EJk6Pt2+8HkSsw+P9B7A1Kf7AIM5UsMUH9D0bcNOTjgsr6TlQb+PnvYnnHq6HvkKKm63eiNrJVw7tsCKB40E8HYNGgoIq76ix8bNp/a7yYWlKlaoH6QmYIOzJv3xGtM3v33oDc3KJ6Jn/+fHIe64IHrOHqbPlm8kvnDJ4M94y1Q7R3Cx//OMi8zY+zgcy/MU/uRZNi+wxfhprsOtEmJJihy2rEId5ko/zP75uDg9t+Jf/3PJL2JRun2FULxOR+d9g0+NdjRk5vrMZtsrNJysuIZiOR6uH/Nfc03Lo3Hwph1iFm/9GpI0vLzJ81v+vKgXi/32koPg6LnZ1YQX9bqPEz+lxpX4Rfhl9nmJbKR0XU8y/PMA8hCN4qC4VTVqDGUQ9RSHcvRxGxt/J98aeDxOIII8R8++dMZOJ6ODzeFsEAPvlEan3OPidSx2xeF68aS9ZK7yIzpv6WjGw/mlnJry1lUsvonhgRLhIENaBGePokvzA+AyQC2XJ5ZBMKmYMUj1YcFoUiQieWoH5g7paHndljRHeu7EAb8UIveJakMOrVPKpjssr0HP9ivWzojbMKVQCzYhRag3BZ7tFalrAqKIMn6hje3upbkzYvT8iUZLmEc/3peHgWotn7F+vJlsaqopwMBGj1oHzwYp83IPpZhFs0oYY8ym8ylCv+xr7WlCweXjyUH5pJqBHjw/jeb1pHfyI4oKdc38bfksVpsod/gyqfWk7LAburpC/1AeMhqfAfuHwDSFPWIMEcXh5a+0pBUQv1cXHZODZT/R7Hz7Pwxlr2vs1TBzNi8Pucpuw9q1uA/02fQHtphSwq1S/fH2abQL1RTewSgPdWNVTFEEuKffU6DTW/GywWjCY+T1NpGxtyPDqRWiepA/Vt/lgbsnJYEdfMRqK4zWfj0OBYOfdPOw9B5L3BnplyiOFkNqJvgPs9bzLB/ccqdSO9y2bollF8MqTdLvFFsX7Q3pJFclXU3rskdnMp8Tt/61H9OJ1T0i9PpM/gzoQbl/3zRJ+jldZQfEeoeUusckztEhRdqmFDmGhxvQq4e7QpcuMdR9dhwXTXAdPa2uEoIeHofPrSoKvJUKEOd9nvJ59yEP1FDwRL/FyPCiXqwhVYY5p9rQuxgvDqwwP9pTg48te8rVa1EIpE+5CJGQXbLnKQQ13h1Gmx++5McZWpSZsXnlOFq9850z4/DpYcmiHUZp8jXmMDtYBspQQ9jEjjz3qsJBlcIfYDwvdWyd4myGchZigeXf2JtU++0qfaBU1ujyPf6bWyvB4ciFGiv5hK3LuBVSFNSb9tIc5zd07AXd3f0bicrIbtlfL7t9+Af55btZtv8tntt/9e9/pVkT6Dr3oRC37/gNUjW8+iLL1i+0bCo31OLkmHDV+IGPrusP4ueiFkv9eEXbn39FbMXhycHg8H/TY3x/5vJAcQT0tAIK+6AAxok4EdmN0IQd4Ugdek7oCsmtUEwDiA/joTFihXwoL6v6e1w9zDRv/2uPjOfGadbw9XLDW/BkXKrsYLA9BB94OrHFpy4630tS9AreveuxTgYtHZkWqUvp5QNGEKmMbzxX6O6hiTzUMYwESgHD/zgJsOEXbLBczj6BnLBeq7oRbzBTES3B7HtUm/GKrUGQSiAE/0+DxC5tVTR0Z5quVIUVsfsNKy/dW6Chb/+YnX29dycHZ3DNqXUJk8DDNO3AuAobR3tYBn2VRpkzz5Y515X5mdK9UGcB9eUKH6dTHiw1kUz73nwSH3LfyWCSFurJoq41t09BifuIePSyrOd/Wm+EJdz6cYbEbz9hhOQ9o9xQJPO6vGHvqo2fDD59MmNBYwzaABKxnK9t6iXUXtEv7c7zOqrTCjzWU1NlrgbFW+zpTHPI6U/OnJgNdE5+HHOkf2BCiXcNEU8/kSTGzDX8SNlO8HQn6cQGZNbYHbFedR/gyLweKOa0Fo193krS2J0ztVcz//j+FT9lPsTvzD0asGmbw9TW/RJg+AeM3PAeTYmWkty/EYHh62KCs1px6S2cZq+KcZfj3PBHBJp8eU1sC/rIVvvNeqrH3f4cZRHfXxt7Vi/PV48oK+MhGVG1Bma9+LxEw9OiJ9h/8yZlT171y5+Ka2qI+ekv1PYz/vl/AfDVmPAQIHs/XhiyQlwY67cw3XHeXA/lls8t6bufbIELwReMnO4J99+QIHJ4nSLWtGDSDz7EGwe3tU//3ilkPltyCpuc0BLacbLAh0zgY/saSFoJbgWU8jSVY1o6jTpVzbPV0PYHdfIeIrZfSY4f0kUqBOryJ/Pa7YV3GyxXiE71ju+2QsYZf2YUlfFf4zvKEzclV45UTQgu216EGq7THPOzDtabeKfONPQ8ZglYXHLf4oQ3belMVUd16Xe61wJs900bwzNwC+zEbjOWxZD584SKneHn3+bRe3RE0zoLRjsvRQDz7HUHupkc4OOeGMVh5XsF69+noEXv3ph86c4XGbYpIPQyOt9b458MDdD5Y3x+/HuMh80H7pV+sndNTziqxKZQv6jENvk2cs/hbpeAzDi5avrRtWHmuePj5ZT5F6TE11vVirLAL5BZbQ3BsmHi2QiXenQiSpM+HzWLwcuG1kyOsT7sYLJFY2zAKEh0b/CbJHgIXQQo+Ns4urWysJeJVJX9MPvZ8+ZuPcXMcge2JP3r8Fjlj65svoRprH2wW69cg7j2XZMgygpQH7hjrIpmHvG0mOH8vGhPyaKmgHHkR9u8TMliN+hCu34lQ5xuc8rkMFxme16CiTu5GDe2e3Ahg+xupKpUkH90Sc0Bq+je2rqbSvGepk7ZOLTeMlGJqiK1dbOgkl4G6rx8Ba1bYIezBb8D6+3g2yOieI5iRQiBCjlA8R+ZHh4Oof/Cpa8nATCOZIfwFJ8SP/sdby8uDk4Wf/cC37vZs6E83ELSDp02dt7b3vlnuJGAbb7LkUW+QW55bsGkMGZuNtQxEXzkRao+spGrjTvm4fA8R7FIrQLuhP8VLNNsIMnCLCHNEFPNfuk/BNN/u9HT3w4ZZyeENL88ywUGz6jHZvg8slmTB+B53xlLomqT88YnjY7GNJbm4Enw0dkNj+ftii/R9uuD7lWVquwtrFjH2XaDn04GePqqYD99ptuHlWSTUN10upurNhWBZ9CcaunoFi8Z5BcySM0bK4QyN6cqGFkIMCyLLCm0m63HP5NPjLJAsv5geqY9xBV4FUCkq9+ogHqI1g602AfTaJ494RKfhDXeXy/Q33/HeU55vkAbBHR8zvh16mz8jaN/PCO1qZhjrJ/ZbMN4LkTrJ92BMpkZkeZtfHPzGT8xkzeOllHIn7AFb29a/N4PdGF7o8zJR9iZV74InySKM+ZPprQy9ROi8rIksUHU8MfyurvLdNUeKhQuI52tfiLCy9JJacsoP7wf5ZLDfPxcyHawmX+5aMW5VrkK0VOsnZ7d4RcrKXjzap2vH5jp5hPB9up+wwa1Z02e0NWWvc+vtlnPiDXh6uHDj2yS5RQOYleQrgY+RVUi2qQDm1FZaGLS/EJ8MiTaE1KGuvPJwq4KVXxvGj94bgO56xicMzHiMpzyFtzuzsePCozEbj8GFLNgKyn7M1VtpOUZAz04ZkfnsaqzvRxSCB6eNSLnRYJivRG2hVOtH6v8AaGbZrVuovPQW+97pOZAt/kP4gc6/3//O2b6DfvtQsD7XwUDM860FoW7F1ODNLv7HB94UInrd57GxuLEkQzNaKEp39ddbpHcH//EpSdR9b929LfGPj1OzNZg37T7HFV7Dm/cXPxoy3i4ujIE4U/wUX833VonWH34T5Zw3xgjPy6gsGI3UpIoA5vdnNZWzeicUF5rcLKYHW8jL3x+2R9vJ93u17GHE+RK94nkFbNeCDtSpdP+nN+Yva2xlW0/kIKZiPj8PXQj5yTGRJLCHQRj6ifL19xUQ9/owj0zWp4LrlxI0c9/K2PCKyLPphvgEWrNZ/T3/htOyk7DX6Pumm6VOBkUgPelti79zF3kSSAN8RyAlk/Hb8BHo82aBb3pwKJOnCjXtfcfq7fptmm9TF/DVUQurj9AdZtMHFeQPskWW+Qa9cW/kJcRiGFB3Go1BiBTfBOG4KwiTvxqgrcyrML6uKlYfGmjGz7kcZRIsCj49q9zoG+27Qke+3ZAQyg1YhbZ6g93LYxRvfIld9EcKsXORsIvHvUdKBFWw8VmMa/bHx9IVTAFv4Nug7JufermYync1XzjIolMsaOZUwIkjB4wXV2/Y7CsE+O1TIVy5r5oV7bwRdKAq8a2ODMAedVpCEjAF7ba/n53u0oNlUZ80efiEMdCEEfxm5QUjI5vA6sxTCcht96Zo6k5MUNxUBLJ18ZE8OD+2/vGt9quaVDNfhrE3jWIGt4yYWHv4gbGEZZP+02fHTW+OmlSV8rUkA3nNt8L440vQqZyFiFZ4Y4vQsPVvvyGh9DBbYG4XABdA6L9wrxoqdm53rRGTxONgcig7qr+WNp49tSj/9CQ+lp/9sM6KycFsTys0ndsc0OSRjXDB/ojjCGrDxvd7OIe/AxLJGzEWcQsHF2226fGcDA09X403lHwK6FHU3Zz96V08Wi0avdOuGS/HyAfmYbwR2fILg0UA+fAACp3e4mhqxlfZc/D8cCn2b3cjFxqq8lBbn5gipQgGItvjCO8UldTNqQfEn6G7CuchHxtu/2DLJ3i9t8K8LnVCsTPGJLpa4IT3IWLx9ZeP633PQ+FcR4Qsdwl0bDfr8jW8ePjev+dhvbM7D1+aBeg/fTg03SgrGDHqHC57QDd9CB5efcNWz10b4n9NDm56h564pjVo97BrSPc5wtp50yB4vnNAIIY8ic+3NAzHz8uH//E/MR/Inz55utqRLKLVeqzZh73yFw+PL/ucr549hnDTtzhgre2x9qitSjfnkGI/SABr+cwERRGq9HEW+k0fRbIsiB8d22N9NnrNaCt4ayClvhZANp6CiigTerXUHuvFaPl9iBRvuFdIeCydsb2/CNR9ulKzUHZsisekhJzEm0h8a0K8JkGvg55gi+rY27NRDF62YnX4iPb8r4n/9NEf36N4q3o2O2T3hnO/fxJZsV5Nb8vMBh/pESJ5Gpuhf3LmVa6khm36f5eTX2ipIJm6mij728GYf1vVuPBZ7bHxmWy2ZO0zAXFz/tFAdF6MiN4QglxU9kT0dhpbvgdkQ31RDVrsTGNYz1YkgxtnXyi2oN3M2k7P4MHpQhqYXDusprIQJTTI+o8fkH6QKmDx8ER+G596LVMSgfM3uVLzZhRgjct7B2IZnal3uTWsd5pfC48nG/7jLzNP1UxO4hLiP300xZ+1As/DucATNN5gNm4aUjZ/DhdhURt0hpYK7/5zxsgeMmPzZyQAs32L9kQ+GPS+ZhIYv/yNSOwZxWNydUSo8SdCrWji87nq5l65pfYPqyfoNJvfJcH9L+4Jr75MtqbnYwaDTHDxPX/L8eJUcAXb/iCy4zyaPz4MBB421M68ZZishiXwOT2v+NQaCaMp7FqonvAT8W2keyvoDzb4w2tDiJ7Nhi+lvHL9FVUPDQysdsUKopfuYns3PcG2fwjUZnHGDnx18fY8EZ4esYA4ebsF548Ugm9h8YQrkcPYMNEZ3JMjRM3lYBi8ttNTGB5vZ2qRN2GD6gsRXNOuxxt/HObUFt6gudZn6vE7nK+ptR/BkZ95rH0tDOakaFYoEE2musLuzSI0YIVHiSP0j8+w+yBBOLLugRMzEhgbMQwPaRNYZG9pr+GfH7fpDSKFZwIWfz2/lZ4KH+pMJzdeXu8jJ2/8mayRfc9X8ahd4WzaIbWDJMhHPJ/hPz9lzzWWNzU6IeChJA4tbvcmX/LoUCklFUqybywWz/gn6fAY5l8Ca6bla1aKBRSOxMd637kNwSSxoLtXML0JhmfM8mGVYfWMbSK87CWub8nBBb/Y7ZFybnM2vj+yBZWm1cia6kXers9zCTf9joPK7+Oue+L1Tx9QrTeWfMI01qE8JhK1b92NsdpWr9DX8gDr8FPno3J6q2D8ijfqEjkD9D5IHNzWO9UOD5r/rMc9hX9+nwNPVUM0g1RAph8R+6et8Ry/fiqooPMea3nkevv4W2Vw4+dEnvkHmE8Oz8GMlAI9zvap2dObkf6t/+1K08EbfTrOUH2uLVVPkzys6TnI/vgA4hKC2LKX0Pqf/jKyABy6POv+4hW+vmIdiH4/j3Are40kR3kbs+v2LkzO4oP62Ulgw1+8YruXT+2vLgDi+qGubH4R1Wf7A6YgV1WY67yBnXGqm9W6zBW0r2qIn06fe+sPVi5QD8aZ9PvbLV6DqtHBVcgB1S/kPEy77lBBTi4bin1x+M8P/oj8gr2Nb61qUtrAEoYegbqjjBq32ZbX3e1AHdY3bNl1Sw3lU2RjVC1Nw97tT4cB1kwENzxZeKIVyg4qEtXzfRNv8cH682eQkqTvgcVETw7ZcMioVuJh46N8KzfBzkFyT2tjKa+JBPPCmqh7Fn7G8J0kFw7C8YddDFpvKbHMAUx6jbr2hXjEqLEP78kJUufwbhmDUdfDb0NV8ttJS06W2bHgpmcwSghhs3IaVbDxY/SxkRSzvl9aGRiKie1dffrTj/Lf/JKfeR8Gpll5AsMfKQm/5TtWXkYZdE/Wnay64sYLWDMdnrjURErVrt5YdXMH68K7YcwJYsxmiFQwBaKBXd/aeWT3GCW5S80AhzvtC/78DtCuoottz8tzgqXfChEpCfnWkcHW3Et7aLykA/3zQ/7x52wUtyOVt2Bgi/A2ld7GGVJMzhrWJDEg4OBRRx94vRhCgjoO/OU3sP8ttvjjZpAe4I/63mk38EjTesW5RF+kIMmJl0jxLbB9PnrfDAimrDcseWT9gzpHXY/5zW+ArllzCDT6fpjilcugdBNL7KCY5Bs+tTC9rC+Ktv3AYFR1f37Nv8+bz/aWQty+L/js7garxscKzvpuq4piQzC9HqMK3uc3ISJ8WQ0bvoEIo7cRoVa5XL1Nr9uQgq9NZvN6HphRZhbkX9fdpn+P+bp8WAZPs/7G2NidvN/P1CzlOYj7TY/Z+SJ9by4kRPb//AKPEZJw8B5nd+rMZdxs8f0Kr2ZzpGb2u3hETR0JgOGD//nPLPEHCxpXk1Gnd7s/vSrD5lqd6eaXNfMp6EZwiGSAdsD85H/xXd7yNWQOivdfPEzhPD45rJe7x8DO+NdBowoz+rRqlY3CkHRACd4J9ZvvzKY/P5cou5CsmEfD2upbFahXVNCgr3g2KgmVD50zjtTklNHb+OF//udl+kyMXgBL4XGfYJxKnw9YyFY/XBjznIDrJ/dYYU0cuO1WnsiW1sR0zdr1Dx/JzgnjXPjzO37TNUTdNVMH1nPPDNSIrH/xaxjDkSB4VnOCDt8vNeZrn4jwfUAH7ASHdmBuWkCALx5HmFNYw3Kcdz68CKVG/+LJsiy2Di3DvVA9sg95P7x6Hrr2KNGTrExgOQdshQr3dGlQCZoxX4BfyFPrrPTPr59HXSuh5E+AWs932iznbN/D43M00GXyWmOuYFnKw/MIsQfg3IzFca8DalUpvYjFavyNl+LUk0/x5yUMjBfvoSyL1RMfd/UxZ0J342G2nyrEb/7Vlk/Qldhv7/SPXyzz/sdBzfAlxJyiHcbcsEUAtRaSw+afi0NuS3DDO+xLJz3nu+LeyksxnJF8XJP8z5+BD7RckHjU1WHm5iyDghS86F++alYSKh0+v9Qn7BNrHs/NUQr//HbfjWdvhmncKUGQfja9CjyWOmMNOXjSMSI6bpYVVytoOLughvU8euOoOyVwCXlTvM3vwhOngOYknwloime86s+zCrQfeqOlHTtvvhL7fYCZbfzzK+lVOvVgyi4j1ZJLx+Y/Pr/5p/T4p483v0qpfiWlQTZSr+8qpZeTK5URi6DWzJu+hpqg9tgUDCdnV+FcgBOLazLNauix42i4ynpTPWydDyZjIkpNmIDjCauS2Q7jIZlD5ZzX4R+/Yyw65hxoXvcccZEnGO9G8TowXQpM7fOxzJf3stOB9Do51MzUMv83PofJfBEWX518LG85r/jf9IB1gmq24XcPsN1fKK5ZYyyRYppwJzGOCP1dyf/5l0r6LBF48VVOwBJbf/qXakea5eNWTh64J/NOHfH7yZn0C1Sw+R+bf7s29C//suENAfTo5//091eNKGL3njcWz3AisOaHDrtycwLiOeze8NxpB3TQn93AWhnqcBBOPzQLLx+smmJuVyZsTAutGABJgl6FeRh12JLTZFjWBrX/6eEckXwenhBCdBUbwocWGLZ4qP+/jhTs/+8jBe9ptMmy8n1MD3Zky8dqD6mfY8dYrX1lKnoaitTjLNGY8JtcoXfiMEWXTDWm3/GXwPPxFfz97JGw+dbA6GhNoIgYW433zQI5k89UDc5r02Y4cKERHGK0n0FrkPyWuTBQrR8SVvPpDUk+dvDl8QuNlKwEo5EUHZSv5ogDydq6S4mZDo2jeCQK1ggY89p6yyqfZxgZiT0sfggqeLOVkXq/HzPYc1RsePqWKYF8UOVLTwwf3nbnA+HJWMerEsgEavB0ovi6/AwCPW+EXGTW+Kk/a2/xkVmBgwlDHFBdG2bUJTZs4jjHDvtJxrSzbxEMA+FJsf6sDUZuZQ2dUViw+8r6eBXSXoePgA0E5vhnLNWx6IHjRG+q7nmfsfC+yLD/gRYbUlbkS9rfVXjLbj6ZJffoCXUY9rC6VG/shQM0iPF+muAtLDfsCYEO2A3rb+VCshf2aojz5XqoTYj5bEHi+/XK53MuW+DxknxsVeoUM1MtUtA9KURCy6se75RJCh/BCSCWkYkt6bfWob315sx85RSztg5EcKHmmZYv9eaxXwS3W5EpT632ljLK/5oQOrrRoOU0A9A74cwpQ5BccRico4al+7GEWpM42H+X/LBGS1YByQM6Pdaxb7BDMLsKDy2AtdjBzfy04gKm9tujd+V+a+YvGE2Ag5QRUWLdNn8eArf3Y6CnuMjYqsV5CIJz6eAgy/RGvLcDgvu1SHBE+1088MacQhHaFr2bjT4sOUhEaH33B2ypl2hYa7/mYTrut1OAWWXMbxv5MKajSN72s/J6nEkEOHFuoE/9M731KaoQurk5E6AD2MwmFCsoddaCtTgZmpVU/RXuyxujepVVzY+cEhPub/0R6xU2B1Y/3hbIrZuOte5ksbl5jhH8WlWEXbuI43nUeRkIx6bHPh4O+STs8hHG+j4l7B0vMbXYGippNPb0lD3F4W0FaQvjrTBPuhuv8Sg9tQx4XFRQp/3YYPWKcoXNuwfY4iM+n/tkExS+3lP3lbn5otdEgu3p01BDROMwwPeZ22kv+KPXZfaHJW7sCJbgKJJXd2rZzP0ce4+fpUHtaQHeLBzntyJfMoh47iHk0z00IJwIKMmtw6I3o5pz/30+2lskn1/LmECauDkOFnTO94HzlEF1OC5kHxxpvrzLqQSHMuXQmdNrY07P7gzGw1nDwSuq82m8Fy6QvncNB3Zv5Msx70UQ4FTCsc3WZr1JQwRZCjAOrmbfzLtlB6G/la33CuyxfjkAG0rX6UxP5/yU7++VlUIW3TisXzSfiQqbWojRHOMArpqxDOeTDYHUdtTs1ShmU0IrcOX2AbZ0R2fCrj9cobXYHtad7m6scpassFrUhmqcXnvLs5AJ/HDimxpP88jG62MUwdVtQzI3kwbWvfXjoDIWJr59JDeewXxEYHK7Fz29NC7v5SyZZU9pR4wfOxUw/n2MoNrQHp/2ndPMLXtawPmUMdUBwt6i65GqWAksqF1eVY+c6kWHqd16hL8QL14U2U1hE59zbIvM8PaNrehQKnsdMXyRDXbWcx58hU+JT/YbxGQU7hnsn8sJ8WA+D6sTShAGgnYlz7YujBEKgy+fPO5OBBEMxmRMtaR4HOdT80KGnD4ONx8CUjhUfys5mDe8BiRpIDX0c8+IvE9FWVqDEDtqag1ig+88eBokJcz61owtQVPIr6J6Yeybn2YotXcENavoqZo+3Xi9hk4KeasosXsR5WH+hLEP9T6x6L2fTcbD/GrD0ejeOI/VKl861UiAK74pxW0NvVW76tEf/qOFlGtO1t3ZVV6ep1FTQK4nVHU4Kj04WzToX8FAD4Hkgt19xViPnkdvfRwzE74/xy8RxbM6LPfJ1uHxqk3UeZECjGDlkdKIxKP+9bAYYxhuPfhk604OPVABqxvdhO3p2yDwsXcGU04PGXbwk9NnpSYDk+MdB1NOTqlqA7lZ3q+kgKDIDkiqJg9MEC0VDPhbi1jHH3NycYcMXhN1h9FvbxjMkLkrOL8MHxXv39ywir5theOginz923tzmbsVfO/tPXa7yDX4YtLfEO7eH+paYTMsXZZmsv0RePL29894Ej+oO3zTaYdxKyXGWhSzDW+5DrGXH9iwrK0uw8VpeHpcMdh6UW/xHroRRunWF0Ah+A0KWUaE//7a7dZRDw/rXTTInquceDaLXwecTxFTj9+7YFkegvy/8d7vwaTeZ1NJ6HOl6nltG8pe1xAml1tCXkVzM1hHJRFS/eSRXSvxxqSfJBUQPcH4rBlSTBp85hWwlyTCHQc+ntI3UMHGd7Bq7AeDzh+nhl1dKNhI/DZmzjf1wct9nrGOnMBbguu5UuLydsUuu3yGaThj9+CPg0TxD2+9Ad2KBxg+dmSNes0bExzqcFvPCOxoHy/lmRthgKiN7cOlB6M+yCO0Eq7ASOfCYaZFMILHkTwQd2CRMbaSYoLVsWNqCnfLYzvhMsPIWP0N/6/Noso+B/Vff8Wn8YMM9sgPV9C/xBRr1YEaw6U5dKBqZZOerIAO7HT/6309A7STOG9gpfYO5aRoL/Qv/q7q1CWHu+C3SF48JSZzokZyFpIPWiA6M9YWXxGCj9BRy6xQM3Nt5EJ5aQd6fAvxhmcvDpprWZHAfn5jxkVnWbG+wgGXp74afn/ziaxUpPgppPnC7boMjIdYQzt5K9UFCpODxpE/Ulsd78Yihbc3NH1ep3r0/BgT8VcTCBZwkfxdLmx1oSPC7tYTMr9DJWZ+aUFlShYVu6+Pla8KOb3h9Gg4qifiDObJ02Tlb30FrXpo5hLcMuh+pB1StLVpqBv9bHi++gpWRzjFy0+XE6jka0Jt8JJzSp9DDf+HtGvZUhVIgh/EQkCgkiUvEXkVAq24E0UEVORRBdTXz8E7y9nNss/ta4NkRkZEJlmb5l1g03M5c95080kNgNuHj1Lj6+UwB7xSFseKsK4DtlR+x4O4cw7U0JoDEuV54QEOnBPytbPU9JmF1r98Ht73kq39sQxe2ucdlg99ZkOvUBGt8RV+MsczZ5jVDN06v8BG3D3NaexPC6z8DGtpSpLuOhxCFD38DbUTuTIne6+84XK9nqlNLxqaAB18wN93hc2H9UJrPXeVoFvf0jhHU84kLXChXxKLHtJurKdj8bThlEda2F66yFv5UYiK8thSBwzST1rJETSmTKNaPT4RE4Y4Bvd6WRfB09ic30N2A/F8FrGVRcwbLnzYoY9aYWxf5ydaHlPFIWn3NxPgX5ueGX9mAc64vMh437+TRZ249azLV0+dm79FnStfRYjKd0mm7cZB483OFHhKRkmdt4wSNvLXBnAXxbiYmjcb1voIUmvNoWzTxZvCXRbJT+NqhtuQ1DXtzZ4ATXmP6sX5k8z6asjV3HzBltAY5paj2wViOftipzwniOkuvsHXHhWyvN+RuexfrQajPI5r/Xr3y+dovSFWlgNRrlVX9+Y9uql0S1vqUFQns8OzFhLpLtDd7u/Pm0pvvsFOcQPqWjZKFvRYFnXh9hp1nRvLZzQ8rtCfC4G6wnZM5moaK/TBG436s5Sjyf1mGWpi38XGn+8wEvN6iVY9QDHfsp7IMZ6glNmT7rPCNGfmqSJcmlIk1WHdShCdbjb0crmjXpGjfLrR9eCgNgrIl30zczu5cANZDgJ8lIfOm4nrWVCmIh9uLg6PWnaeOuTk9I8oq96Ziiyv4KQnGzKt+Dwp3SeEd09MHHSnY79Ett5C/Tr12MTlyVy+G79AfGf2pLm9e29Jq8NNHo1xwuYDP9EQ66Mhx+0g04zsmclWvaHOVzkNN2pq1iNXDSlaKzV2r2fST/45S1GVv0bsrfWUkuuuUh0j/lDXOm7zSbrFVxisNMVuyCloSAVDWQ+2euLHnbfQjJ+bEzIzfSGK3iQ9sb6C9U8Pht/h482v93KD3YJv1ILjC1XbNyfCN9tdcbi8lGT8CDhCGB4bbM/T0C917IjK7XwvcDGYC2rjZ2SpnqYXhHqZkCyHaAIorJ2Mgy1KGWuOhoaEcOWT+2OQL1+Z3CCsmheO+33jLcIfMiDvj5TuFuthMo5uFrDkLUdtaraMSIeMg93JHHEYyb4nxFcUg3SHmB5K85lMBRdeEcdFEQ1cMWbkXz61PSECOpoms944RqNv6Hgv85eEtJfjWyna8ILxer0d33U2JKfYwYFbXtm3FzMfcHBlIcxSzkZnsVrIn1sd2+5W8ciY+ydUH1wIb2zdsqS7+wJpHdeHcJ8nNvfsGcKPv2sbo6kH1+ZSRO7uneJL4aNlX7oG+pNqDQdk+PZfs2MK8HZRYFM0o3qe76qi7N1GJu1NR4heVPeGAmG06WXFr3E75h3K9LNLGPUmxrSvUsESvwyChKBCIxoeGagvhVHnZZpsGvtiXdcYZ6Fy7IuV/0QZOkxRhd3XZOTi5V370J92f9S+J99+2s56oTZD2pKtpZce6yTaImKcMLUl5iTzzY4ktNaLEH15bC7K+bUAeX98jI3HOiK/2wNsT9wf9h8v3ds+t7Kr8GAhstZ/b7g+Hm/lGg0vanVemJCJbF107bYm/vkvpLz4CnK2skXt0brV//DQ2SIr3NCm8Vgb7Rb4KuIV+2n16unOizL4stcl7D6zgFgEwiJ5e8BEepkmYiOBN1Q3NSBi89QTEgzThBatXkJ0GS1vu+K7uuoParl/514chEuGdqao0T08VY8U7R+HCmv+YvMUXNiPP8FblSeqL98wodl2uKGHfBLIMm9qtrCXb8Nw38d4522hHvFze4Ln37HEv/tZpEPE/fwU6t/fPBqN15/yy0eaPN9jT3s7HqC1k5BM0p/u9XkkpL/4pQfG894/fVAEV5eaQWr3s7GfDLTqk/DHT8hiOL48eqcjxr0ZeYv/uU4QlU2JzTVefs/3n34217MTp0HbSbDywfBlsDGnXHxRIP1kDV7rZT/XklL+9By1H+ndm7bp7gpC9CeH6vZ1Q6yZTxJQDr7/zde9ueMg3NvvcOpez5rKfWHAMowltd3t1RuWhVaAq/OTBk5X5yMZQ4B4fkgUl6ehZ3ewfYXTqPHTi8k4Se66NQz5GC/HD5qCzXrqM5EL3A1t5dG3LnGwK9oQn+GpmsOK10h8wBnnt+ueTdX5EaOTftxg8wm7Wlj5Lnyibqa7qB4YtZkSo/qt5dg8ZQIi4d+VgEIOSrjkmZSTam/x8MM/i5zcZFGTiKhcvMQ4HC4dmh9Xc4CVf+NVH5jkE/41AAbdE+awuJ4P26r98S3sR+dDzZpENtDpIJUhIu7em7KjMYHBF69wG+xwPp3ujSgdLeFO/fGv7BfYvYZfPuPdoTx6g3+OTlDdjnfs1vmdESGrDFXv6AebV/nL5hMcLVWx9BsR8tnKx7U+I90uOmw+52/NFnF3UiJ2V+nZafJ8DMHKUOpJr1XvJPWsAwOkd/qWBibbmn0+yhnox0gmQug/PZZtmwJYJmOq+0vjDWfbXsA2G6B5BThZ9Z4EMNZ/2Dk7TsKngisppXlPwy/7rmuzvkWj7Exeo3/oaHq/+qagd52Rzc5/IbbrXxFwjbqhOoQzGv0IVbBwyxSq1HjW7HkVbLQ7jfdwec+DOfzi+dUQmzpTUSB+9A6S2hWXT3he9Zew8lkQw/d23XrG92v8+Mr4d5swjt+jt+LBguAQZfQIpsBInvaOPLSfI2nIYCTi5vkqUWhfRQIWJzBGtnqD7L/Wp5Z537Je8D8hNOJjj22FR2hcDqGIvK2ZE1VfzF7Y+5cFKpKOVLMCM1mejabA7s4Vq99Zsfn1fd5g9c/IpBn7fKwv+wJWv4we3nhi3/Pjz4DU84VQ6l/9z99SkH03OxykOy4n/OTYUFHjjn0+0PLtZTMX8O/+dvoBrf5kBQrxlBAVef7TExxSTvZA+FDsayJRk1d8gXPJxquPOZ+FyYKU93Jb9XZt/vgW+oZtH3KvE/aQX4QcunZegn/8n3XSp4Whff34epj86juyHjql1udr1+Nl1DR1esVbwla8Emf+7sLKZwis+UD8TzyhebszsTcNhE2XU7kghzo7fHnKElr1oo3W+A+VOlfZFGyWELqAbgl/zFg+msGGl9Z6Tw8X79mTmf9zlb0XffFuMPt+VkyhBNl8T3h//pzYJD+nDGRZUalnoFv9nlItAh6mHmcV2SSrH20rlf7AdD9cY3Owx/EGJe0NelCeZ7bY98RAzeHTYs3bVYjFnTCAmZkLgXbT1suzcSRIp0ON9aIyE2HjPGJQt5xJw+2xy1e9ZwPu4hj/fp4OFj7B5UI+4XOnWPl0hBAQc/CDhkWBExa8c5BfcSviQ3SQ+wktEKIWoT4krj4kc9e+/J8/h/evkSRM/Tgc/PizufpNy1pfwQQnJrLoPdAYJF0Fp1f2oCY7+WxSS94F9aCnJDnVM2NuYLpwEZTTWs9MtCWy1Mi9vG4w2d+ifvnenLfy45eYUs1j0a1UoNZl9C8eJrvjCrT/3DLs2rt9P+PP3wnm/GOFm3FibOn2x0r96cNFvXKIxm04wGvPf3CQ5ad83jiPCDi1KX/Pp2dhKCjgcr1KNpSWJj/2p+nf/TnnpMmpMFxjtH6fRGgEhrb8t48BXsWe/vjUJz3ZHSrl+flPz5B3W7VA3PxOreLD1Ws+v9HJbaKwcUvWj8eYxChSCBeyYaPnY6yuxzes/o8vTage/pRSUjfxM6SWZH8ReXKbCVWGu6H2KRrZoLhxCu4LYzJv3SpZ8i3V4I/aR7y7q7w5VuxWwcrvcEC2r37+OlGqupu/kXqiVOTd7bYWvJsn/PC6XyLz2gK6W9+Qv80fb+msroKlaWPs5WTbD5tjbyGrTXV88XLDpMIQRyj2a5f6j9fT7Ij5juHxUf+w/sJ7k1/5Ovoq/NoSRtt+yI7G8tOnVEsPcU4Rkgw0JehMg+0L2Khu8ww8jYYhcpwSLbvFsEE4mt8QSgd6Jmk7B+gNXdZ6pCL6za4TpJKdUmuort78x/s20PFzoMZ0wjVj+uEKm1oiVMuEKp8jWqUgfXKd7rNkb/Jv0bZQzjc6NZWL0/e+umjKIHPzOnLom0zwqf/7/si4+pfLQFkGP35bv/d6z59fsghx8b7ifa119bz6WbB+Xjg5U9GLRXsHdHi7JvYukuZNf1koovvOGCl+j5k5E9e0gaaih3Gz1ertGRtvtdrON2ymZyNnOn7d5JxJR+pHftBvV79TFaD+EH4aRZN5yNRA8aI79jy16dn5KDcQsYcackerNZdhqTIAwzyT1Z9NJoN8CSp29wsOj9gyuyyn4T/+MW35gc0CNAStgw8//Zx0Uf0pYfW/sBGnB1NwS/8NjcDOVDcDrZ5DsNYRlOAc/iF779EOFR2k0mKFm4cgJUtNyYCyvZTjQFD0fF18HUNzVR362Bv3fLIeUQvfc96t/YCK0cLK459+pIGgPJNFELGCVj8F+6rNetLpqJJX/yDc+kqSTyltJEg/12bd2kjQfLpsjV88E+6pbT0amJGl2lY0YLzq7fk+eIuy9g+ws+qd1vBxC+YjYtglX6Ef2sY2gLzkG9Z/9fl21V3g+4tHj/5ieWzzpymAs8CgluuimjRbNMDab6E6ScRk7MUoRO1zDqjlbx/rQVBtBVXqY/zw6mOyrP0AJXrGETbUK8eGiEWuuj6/n1/LmNxSA553/xgq18qtWd22Fnp64vzPLxcC+X796Yv1ev9WfazxwCJep94rQR67voYr6J25xZaTNuZwKG5X2OyHDT7+lShvW7t01FtoUByueM7OS1iAuvl7YnznG0R/9zfHzimcl807n3POFIF/wp3wnUfytot33M/vw3p43/SjYVw19YcPRSQP3uzQe4tW/KHaMM8J23lZBpBOZ/I5vuuczUFfwC6ICemOfVGPRmtJ0OjllQZHsvSL3x2WXz+PBvB5mfPSyhK6aoZAD2s/4pc/Sq0jRCSyT8ypyJIK4s/fhbr27lNP1maswDpFMzZG/oNYr8GAbiF5YP9E/ryfnw+ennF0jX+P6T53Q1X+GenBqqueEJNE0M+vlBoPEiVLct4V0J21A80uwrDqyfMbmc/UojZwTc5Oh+H9f40USP97pKAIrAUHK3As54coIueVF1RHhlVPrnBtQZOZRNAjrnvCXyJbVVTfpLksT+Zik8CC4/iQqO782R5RmrKCv/P9hL38Ldezch58eeTXs+gvltPPbxUZyMPLPdyUTxlRGum2Wu6ez3CW6bf+Jq0UwTm42zS7Smm+3C+5D+ng77H7uuSshTji1MW6coTUZevN3Wsp4KFKIt5Vc9HTFFAJkquxEPZvlpBvHZRQ6VKDjfvtiwb7vHfQX9duCOk/IpsfxyCGyw4J1Du+tGQxDk4Gr/hsYz8qb/1Y8acICVyWky54pPl8a5wUjpr/wSG64nqB982XgSYPItcvjL4ytzegUr0F78hUmVNbz4aa8F9M7VItzfn5hzrlcONO1FLV0ByzQDWUfT2p4VKZcj6+9wRAvGUZEbnjnC+ymL7hQm9TuDHHgzm1pZgiXlt0wvvnDRrz2yOCdzrE2Cjqq0ka+6DBdZUgnlI++tm4kgGNOV4n04Mbm+VASqHILYqN/jsiWramD5pS1kRxJItNasuu4P1ddjQpvm+Pfq2pg+sp5n7x0M9BwL3BKlxC5oyGCbsVpED19zCEmyYw2cTOjgLzDBrONhLuFx0uC/DEjGlQXp4503PDB3vgKDVf6rVnmzpzkVo8DBxsS5IMF4Qc2A9uTH0oxYTtL40F5cO6UftPffbsfeROSOr9CzmJrlEvcBlbcBzHx85f/GCL27FYtc+pg7O/eIPG/r7E8Bq9C8WCsvdGVmARfc/uFrvokvVElN8ZzDuw6SO79uYU7y4lcG4BoUQ8Pyctca7g8pxLYJCdfEEkvYK1OaXYKA8hY/LfzkDxXuNx4F6sRIinqVAPNzjRI3eSveEmfVMUXa4XbO6gyUfdsiLg6iTAVnlfzEm3Zx8E2rNwaW9tPhyvTqR4bjPjGx8Amv4StC4yKStqGEZtjrlb+ypaF+Fqy6FIvs/Ph8DG36+LxQvE2O95cR3aUq11dh6rMkNUp2YpsZFWJSJ+aJ3Q/Idz6qkXnMx3/ySB+9RFuqvUb75Mt6ey+UrpnRacQthkMdEGKjRqKJMXSdhfUmiot+aY2tE58JbCam5q+R73NMTXP8Qe8jZSHpf6Q/3mTVCz3WixupFEg+KH0nnsnc6aSu6fA97fmg+alKB6w20sUhpq13O/5N/8Ddt2GxAhPp+Spc93Ker9C+BAShw2C+t87HNrRzi4aks+GdwEkO1vKn6s+TGyYi8C0OMD22qnI2qdp0x9/kkdPV+5xFvkdfHo8HJyrI8wodk23utbqWKPrc/p+YunDpQgEcJShKxnnz65AZ+EG9K1cm7O6tu+odDAJjZGc8vY1fENiObHJnQ2Eu0bLrU6FGz0C9Vkoc3n7UHnVLDvmFqp2Jhz+lLfKLLDiXArfjE4ohD05MRjZzuXbBKXIwEuEjERrh1F49k6OJD2jxv27j7Jp/FvOCF9Ps14t3G7ZEH+1gavn85kfCso77jeaFSV33dhdTidazoOkgEO79pkDINLPbtj64PUPQgOLEbRMupHW/VKzsL7/XbHlnmPXED8uliNwSeZ6qi8qms+k+2Tm/ulJVqm7ndMC0Wr4ZNpca8pbDVDDcWlq/OBCX0JlwN/oLtgeiMmyLwDlzNvU+9hZ4juL4MFDzHy6bGCOJnQrruiq3frCF+LRi44r40jJ6rWUDfZtWxK1EuMktM3xvrB0XLKHZChPP8OG2om6r2nxkea4HIWbbrWB8TMh9RAH52O1E/9dz2349Kq3L194ey1k/ppfugWiF32h7Xb35AvStNWyvfsbMnG/8Q51XM3BCq8VarVQp/PXibfYFPdJup/Ay55JcpwkpuHKpPpuY4E9K8QoD1szuHtGxTrWyruG2lKVVOXxQc0Ndc0Vg8Kl4TVNsrZ8mE7RZbI1SBLWmlsoc/PFZld6YbyfsMl83MbcWolDTO94kuBhss9qtQ/6zhi/XsQ6+mh3I3f54dqYB8SWhzLCYJemEIqKB9vjnHiImw1GCehmZjzYXkRaN3BwPuPBCbbclWpnpMdwe71ouasCIkFfocx3tnRvhakP6lCB5qnpD++ynx8zf4NnbZ7nvTruFcTab2L2pT1OJjYt+//TtkAGeZjvBeO33659zhGXa/q1N3sjPpjJK4BhJso1npQTOpnO06RjOwQcitezLIrdLC8mgbrL6Ey13wroD4NhEjqouTkezl2cItbPZwKLLLWRFwEIqwHF0xRx+bZLS2QoqtN5FP/Zgx/Kwk9qCRThxb7ZH49ogwCc/Lw/fB2vaZTkpsayUIaGm2k1hPEEcBb8ALsJ5fBpM1NDv/hyWG/KRKq6S8brgi9MG6CGs2swDwchOUTwvdy8Cbzsy9Bob5N07o710tMvArWv0/QwQZz4IQvKH9WMoZIiMuaqTm14BImLj74hYEmubqk6KAELXac7ITIY5FSEDXhSg96LPcDqWIJXuPhQn0Y1hOVzb8OoDQ8ukvcqJ75jrvC9/sRsJNIf2xRTDOEq9adMX6lqfnv+r7ACqoZwuTNR2lq1V3FyUQ4mWU+s3G2kWBkFU0P4qtmwLIS8e9rSxTwE490x0uhiIeQYsu8i/XMnm4Ff9PxQw2rvicV858VVIc6pParwf0oQpIiNO3VcP7Dq+11HyrYFpqMc3NYzLbbuzYIrXmgwUcuczJhlCrHr7bF/v0dJTN7GiVwEY8p7vYkr+ShHWA2ljtBa/xVJQw+WqarhO1XQ/vBr85v2N1PR7LM4mKy/TtuVSV6PLCfMdFbz+2QoJcuItm8Ut5rW2G0QbxdM6oleW3Om8O5hHKKTBxsPqo3CRnfIBIvYih6R9mczM7woVvS9B++/cPbUXf+cLDiKUsPnQtve/gjpSFE5hDX4KBIuCYhIHtIlhenTSDYQk11Hbbe8jgmxo/fhTCXZ7Zwh1cEsRieaViXjjnTa3sDsl9PbbKjT71s7T9D7i0WhxBsqvybKE2KepIGIRmuczLrS+SqLrx57B1kMZn8rCZQQPxH9UnQ+klVPgXcrNail5dn9fOPf4Tz9b1aqjdEpS9alBu6HWksmWLeTei3aFdKaaShVz1/t6RC0uN7pfrmm658RQ5h2LsFNdOb4QmbjudBz6qSDNy772f/VRrqZScL2D4Wat4CLmJZSb7Oys+5ftgR6Q3bU4axt/U9b+XPIfjCFP779+ngHgp5eLk5ke6vS07E3FsXtXMR3edzkHzxjBtkb5kZjuckyOcgEN8gatsr+XIbsZ7Ksp2gqi0X53To2XLalrG68sUQat9ComN93tD9vSj9xduItUlBMvMDwvNbJZmlP6lE9PPRCCxsYZOwdyp4in8vfFB3vrdUQ8/DEcIynC63W92f9C/A+aMZ2OTEjzfnt0cM3d+H0kNe6Kaw4pPqTNydYnfc1/Oz6zI0XE97atY3Led9RdfQOtZBnb+iq5d8z0XKqh+o5Z8faPlsoACyx1tqnSZSk80pF2Fz6B7U3HYqo7KZAfxVxy7cHJQxIZbLW6BtTwr1DvIpn/NBK1XnfHmGirAhjPYvmwOHXXKsn4xDvi15eQFQjzfCLdoOiZdYdn6fj33nErDt/n1twe8CjB9TuvTT2UQZShXfwromvFHXQ9XBqu9CNVeAkf7DlB9+kZq/Z8l0/YtOELfhFRsKvBBd+SFSv8kJr3y+/uZuH6J3eNqs+Wh6gv56vn/4hnUs7DymUYlD72XA9Bxum3xchDlSg6FZLZ53zUgV6j54cXDDPrKHfLqdLQPO8kML30HnmLOk6+tYUbCl2uUG/Sxz2JCPe+GIDb7eeiNt0hR12Zz99BAbSTArsNZXsi+tjzmueKdgnFXUi+JdvmVCMKEuYxm1ynts9uGNPyGO25W/es8WiUsnKJ43A8eGYXpiXzgG/OL/Sh607p1jLanFNJ7p7/rZ3lJTeFzjeK0HP0v7DuhvZ2R4r1gm+le/8vmW4yi8cd44/ik2CHdfoPam8ZPxYRUE8NUXaYGutKYTusZo8jiM9QqWnF3mbwVr/ab7/fbFJvOedDA0+RTCLRFyumgOgdZmJPwbuoEtXsUsWPEF48eeIkLOrPzxQazNVYjet2d+Bc69AT4Ohp1MWXXSQOfLK9ZqwcubF5PXsyfLBf/i/XvHxwYpb34m+WnjmkIGmqIObWoRWd0N5kTooQAzXz9bX/b98n1rPqz8OBx2ZWHSCcUxSnKRw97x8lczCa0jVhL2sWNzPhrPul3AxucdIp0zwSOm7vhosTKO3jPZMJdiq/LKMf6+sM6qV7KOCl9/eoIaE32ij/Udbv/0z94p/urpczZusB+cGNvxcdvPv3jYKy4mvWCvLXhtl0Fh0TsN1HHpp6hyCnhtN+Na728m2Z2r9l+9DaJ3W8/O/lai6JOdsPbji9a3KSA1eh+HcvnyVn08QXv3NOy/5APib72y/NMHch6L+ftXL8Jg0mlxKL38azpLB2ZXuXj/PBveV8uQARhfK2pn3Xv1ZzIbgu2VYk+WJ288LOOgvNohw14zBD09kmMMp6YT8b4++r241jO0SEtApnc15UMQ9RXgsx4Q6T43JqWkHlQx70fSHy9Cv/oxIfRReqTXaJP0omJ6vrI+P6ppaFdPrZEQWPwlwbt02iVzogwpwKGTiOxKxPvuBq9FwBl76h98x2RM0gq4X4rwx8eTH9+A7ugQbAvevZ53wdcAFW4bGtqab7IySW8wZ7lF3UrS6/HU1QDfl8tj7PFbNq76AT3vdUrN9+GVUyMxNJi2uKCW0PE98ays+OnjcDg+nv046uYJaGdy2HpFfj45xeRD27tqiF6PPRNWf0Xp4eRie2pCk7mnOIZNJ+7wQZXe+Rw/975c7AqHfNPXsZ8VWS9VZff1qBPPu36aJ8FR2s8mDeXvwnt0l6pEOe63R2rhCOeN9Nct8DgqKrbz7WDSRQ049HFOYshWf2TJrvMJnby9Qj3pLXi0sBQfhfX1S3d9ZKBF3cwn2Jr+mwaZvUfT09mm//D51HkPj/W85INhqxmucvHPY3q2r+DlD8W6zNk0t6/dfoGGDE98sguOjWyUbWXNV4pXPS1ksu3LimJc6b4o4mT0IzmCk7dTqMbWXoE2cDFsRcENhfgsJqO3TW3041Or/2AORa5c4bq9NdgZdmdv2vh+oax8GYdp+WXjsdEl6MdPRTjgLz2VzQhgI+3O2LJPdsJO3CcEgj8+4eRUyYehSyyAkG/I298GiKaHyoX6Ip1DpZWRx37P+yLsM7y3Gxcx8bW7QjVb+1DCRzthL8co1IJEGbZN1ap5QvWbajofmfrEN5NV7xXw4dOJuvzOSpa7IpWAJZ/R+AJdv/CXzFL0dStWIClSQowrf4NzdrzSVZ8mc3atG3C1BpGfHzbau5JXDsc8o87695flSA2opr8bTfLDmzHRrib1X75aD78Wys3RQbt7egw3dKwQa6J1S2cbYXr2zi9vvuyARz+8HDW/zFl5aN9K2iaMCHWTIXa/lByEsh5hfTDeybS0PECwMS84vGlfszmb6PrP3z1kuwgJqx+onpDhhBxTpmQ6XrUYbto4YU9fPv3y5AcNVbrShHdbfpmjLWwqZbvxH/Q0br/mkm7a28//DefNl1/9Tdah8N3EIWqGsZ7cRE2ReSsDHJ5HnDNLzA2UXWS06j3DW/2Zq5p6xpNi6TN47ILuVwgD80SO3OnidT8/z3ldCowdzWDTjB888u7LlYiPs5d/X/FXVC5PRFc96KIpNgoebapiIvOufXrT7exrSM/JAYena5qw73QQ0U5lPraVefEWgSrVjw+H9WM65cxhuq88v1aCV7yo2ehdCVrOzYfq25PSt/xYp7AT3YoIWXPttxqV1i1mwR82n6feW0zdCf/9vsnMMJeYUFfQ1F6NnYw7IJ6dHQmKFzLx6kea/FtrDSSk25Lq0S39+UkasGWxCCd+hHz2IzmGxTdbIkHvmqs+qiC783htofBsKqanC938+eJfPi5N03eKq71R+BVeA5s3HYioNdKRGrcvrof9LrfRnF0setVefT7sgiSSV76IXS52kte5qif4/f/p+Dey2a9e6T/+aa/Pu7eRnkH+d3viE3c8JvSRp60ytCeLhueR5kQ+ywCSazBqV9uuXiwXbLT669hRFyUZ7/jSAD5un2QpD4SteH+D07jyvbb6mFNr5ARc0mzXLb1DT18XsQJh/w6xt1wm9G12KP6nb1x3wTnLn08XFQxp9Fcv6DuVDag3q0toPYa69V9xDGfSDVhXRJlNtTnz6BQmNXm51o0tuSsBkoLwht1d9qrH1V9Unn/ehsj2LkE/PagUj3parzdkk/DqXTDJxgvL1FgYS4tMAfNWBdR/yV80R4Nhwbc7lRjvdbXuvm8thF+871wLEFFM00fl85ljf/WL5v6uxOAZsMdpLRrJdP34V7CaUicQbIxke7+0HEzFJaDeadN507DReeAl4Y0DpI39qs9KSE59TJTsEaMpo1YDTsyV1Fr9iG2U8i6s/jzdHaO3uQQQhT/9Qi3zq+cKX3scJFteCtlVvf386BBW/waHJM3RRK/xoG6sglGPyMeaf268DHllcFn7F8RkH38SoXzYN6xTMc+nJGfw8xep6+zcntFIt1QnDgSsa4Zfd++0jgAr35nuN0VQzxk4ClKOoUudD9eabOAGCyTp0a/+ATVXvzKE7K9QsH0/nrw5V6H5+TNr/aT5KB4NVw0abP+eX09OJwPQGj94v+9zj8hfYoCAwoWwvZn2q/9s/PwKvNY3b17SHBAcWone30qer/ghgtVUOvaDzbo4fjAsdLM6i7z+tkI9Fko3oWb2SqIYjz+0+PTbQYHqjsiW902G89aaQDCuFTbP309N1eK7wL1+bol89d7ePCvihPbcJ8L7wRMQmW5PCXR/86R7Wbqs/risKWu/je7JsTdHOZhSsJxqT8N3MHqjfU4lIHuuooESsISu+lP+Oz9OROStMadfXQVAjnamhfgRkvbYQ/rz/375htjoxQP4NxyHZNV7/Kaj65bvT4St5zSaPdfeO0j7+y3kvqOfb8VWs9RINdSQT0XLm49G08BbOAT/1S+BfVTQilcY34NXMnNPh4NDCBdq2ad3zuJLVcH4hRd1h9fLm+zrgQeXB5fuT+e6Jn3haMAZfIz11/eczw/rNEDxLIzf8zNXPnMCMIyQ7o4WSpZaPBPILggR1WKUkVx0XQiz5o+ok0aTwbznHVr7V4St/gQTxqABzhBjrD9uicmv/ANWfKcJTEc2j7p3Am3xwlAqYy4nmnU1YCenHjV8UWR0v5c0gFLz1pFzHpGym1zVr5oXvXsl39MHyBzSk5THh1Nvo1Vfaih5aB/qyg9iLqsfj1JPe2Izggr9/Dn00xdBYH/zaVZ7ohzLbxUK4jZCSwBZiNb8xN7nEidEGDb8P/9SE0Hq//Uv+PydYvOvXvJxwuOa71gI0Sa5oMEb4wLuR0vG5ktVajLvmauovmbRqyM1jDyo0IG6TRLCOPFjTm+t1ZB2n7mwW/Fv4oQngBwbn5DT3kYuuKXcQoC34i9eGUuBVeiK5Z7iO5+yr7b960B19hM9XD3bHM4mu6o//2yz+70CUJ41+PHRB0633nS5ZxVo3lkLm53Z533fHjokTVudTKu+XfpCM9QfHsY/P8/PdqCYn/SJi2Z/ZmRCfgmHpeFwYF52TNThuKhku47UJd6nfnKb+o1+9bIp77HH+lbv0Ko36ervmZ+z/CRQCU8H6/zhz5wfS9eoa73GUXPLPXYkl+hf//S4+l0DxBnA6sdjrWl3aPpiI1Yzdtviw7Y3PCqEHcAy4pAabXTvp7txjwFNOzVUbXlnTkHUl0j4azy8+mWmqB+1N8x9M676Rq3JGs+IHj4maT6uyNb+O48070/D+MSL+QQTa8Bheb727zQkhvFCYHPubr/8Q9N+l1vIsaBe/dtdvUTnr6UkkMik9V6QEDpHHWyk/Zke7huUjIsgx8g/TCn156HqR97Pl/9rpED+3yMF/o0raPibMmamFCFSywrVmtY3mVE9S7WY0zc1P1KK5tq7xJAd9zPVU26fCKw9OSDM2MIHV84ZU/8ygm7WAfCu7Tds0R0koqJ9pHS3Cb2E7aw4VmGYO7L5pJE5BmUZQ7rzL+FR2vTJ1J3UAfU7a0tj0y/ySb74lhJvvoyGUzclQ/y6ipDyWUzdqC375WIAh6RISrAmiUfEpCMBVJubnqjfaK7Haoqv6JYsKFz8XvIIP+9PKOdDnRrPqk1Gk08URPeLTm1/3JlTImLjd/84GF09Z34fTWAXhR9292aDFjFxMrjqnz3W651rzgp/F1Fy0kqyPeVOMudJEYL47TE+4JxHxLvqJyR7hREKrhSZ9KjHIhynUqOOc1PZJHhlCuYzqYkQRm+2GEMmwZ6mNWGJ8UJMTJKTIlXqQndhtL7VbpwnpTj9TWQbBby3fr88nIOBx7qjv9mcJycf2qJXQtXUL+bCpcINJaYE2Os6mc3ssZGU0zkLQvmxLl4/bLsMSPf9hFxwFGqmN7s33CwPqMHxmjeIBwYwXfQLtfnPuZ9PWWKobqGOOLjfk2SojNKGMZf4dRFcXY8Bc3gkfpwOX/jS86Z4y65qa54OWEOumLNJPUZgBvaDNJcsrumzrU7KUN++eM9Pszm5TtHC8dMRajF+qBf1czLgOtTrW3TJtp9d8bJatgoXqifyMYenZTkwOzgOhcZtTaYdwgX4/T3Huq2m/TCH04LScyJRQ3p7SARLjwFf9yZ2NcHI2SiZNyjfxY6AeZXqd9E/SvjTt234qJatRzdJk8IprBAhF4uhxRUHHxp575Lu43ZofDX9APmhO9L9UkE9fL9FjMhRzLHOrnoiEqeZ5PJ92+F79XzlrJsvDYTPTsJ7gyjJzB5bBY7FfKOHswhJqxYXBdEpDEIBrb2DTXLJINFZRm1F8BjdHo6ausyA8IEve4+xh2Gge/U75KYV65E9thJMjYbDbbDZ9KTl7QVuLvoS2E4JWv7Ujw2HwyOg+/sQ1PM+bRtwvlJCsTp1yZdel+smG6w3zZ+7yRtM+/uGu8HxZGMKO3PrkKcPn2y60OBo9IiFZ4+HPn7H9D8AAAD//6RdS5eyMBL9QSxERBKWvATkkSDYiDtAREBEHgmQXz8Hv1nObpZ9um0hqbp161alYmTGxFh2+OZwqvqKql3Pu8v9MzjQzQaV8FItgllM51ymx+JJ+Nt4cJmB8hacw/hJ/cbb1aRWvyKg5QehebeN/lXO28Uoo/DAhqI4tfAtNQeKanTFVoXMYd6pZJQeViPjoFEq1nvyNmjU708YLeGxXpWQs2G5iy709KRKtgafyYAb/lCj/B7AIi9+AuOgL7GXO7d6TmnrQOqlDpEezY6tt2+Vw/rAJmpO4pARZ6flsC647ZTkuqtnjXNDGF3SG1bTXqsP5Tp2wPkIO9TbJACrXpmhbAnmhbqHj7QNogMI4PSkY1OKQsZmK+vBSg8x1r6ZwNZDVsSQSdppWu9dUq/wuVE6NykR+ERNRqILb4JmeFNsixc1EoLZjUEsyBZNC1pnUy9NI/z0B5GkZ5G5M01vNpifi0kIr33c+b6dGhrTz43kTVtmc8dKSZ6Ew5twOVfX7LUoDei3wTyHq1Uz5lqMyIEPTlTvUuQyWz3zILudPtRuxQNbrcdlhZUcakROgBSNcaIYcs7Rgfru48XIdX9xoPwttpakiIKR1zUTtAddoJaq7XQiXq4axGB5UbOJXsPKUT6A2pCq2FXbk9sbSO2BXFgWarNYYQfORSb4+YMu0lM0DbqnAGspbLw9D1iKwWhgfEt9ejrxhb6WxhrD7p11iNOUIGMv/esB7wAwxfFOBOxmwBB2x34msDSsaJ2cuw04ES9kXq33MFeflwdX3nhSK/Cv+nC1vRG0MqtJ5qjjMNNJUaS9prrYXNMmm0/G3oOLd8iowccnNsmeEcKuXJ5EPPhUX967voKDKB63QXif+uvYRwny93aHxpN51Vmdg/6o7d4Gjeja1CRGdS9/G6+kv/3eJ14Tg8/upGDb42LAPriU4P1uA3y234eMiuN7hb4yv9Ainf16pRddgUchYdj9loearP7ayNU5V3B+VmpGjtZ9hE8kKNTF0weQDd9AcA4g4hXFGUgx3CpYLHGL9YsAD0Dwv1jXq8odC9DshMPv+6KF1kkPbqzL8H2xr9l8UfcrPNLhhOL9cgd0sx8IXBAhoLZvd/zZn6ErJg3cmHdnx477Hz5g7z1rwxgntgmFWz0Qpk1oWPbXSwnhorCf/bARwK8NZYG7U1MezvU8aIsJ42o1yH7jG+NvP1J9HEgdaSc2PsbHCKR8Sgm3cjygdx2L0L7oGmrwBddDFpYxHKqzh2PWtNs9zKV2bPPTCWvdhR+mwzRAaG6DTJXEN+olJIYiAytysGlcYPYugtMMqiZdNvvgdZodvgXc9g+tinhnNDu8Cmk4Twr2Xzdd5w/NOsvTbIlY4apJn8yiEqElkRRx4aGsSfzyvGMMPgHiTpKiL3F5DCQ+G2tqcn5Vj565NgDC9EvYvN/XbOMTMjORjvUuJW73W39i3JStuBDWbK8VvNRUtwd1+K8xrFLii3BvryKSD8cpIgxcIJAut4bsrucsmg/TRYNAG1QkSNHKyP6hEaib8YoE67uC1lziFH76vUgV9fzSF3J4hHB/6Ryq07UZFuDPHQTA8rZ4mNdzQzIT3i31hsPnpuj9/OFsch1VpbM/zEUVpbAQt0HxFv7Uq3i5Kj//R6IMs4zCZ6RA7pk2ZH9Ubvqy9k4J9VmsKPpMtF7LbUqPCPY6Oor3Yz0Oc5DLv/j7W++5BG8eloOJsLEvO321xaSF0ocE9OTEN30VhT8H1vjvRVXDurnk9FX+4T0ZBUOsqfVoRikIHUTgrtfrxbgtGjSyfUhV9znVC1iPK+QekYLVSzvXq2ZZOfSMk4+NR1hFq/DuIBRk6Ybx6aUM8+kJtQOq53zjQ3E2K2EQyH/J+4/AnkXZqih/20UIsYvV9qGw5Q/zM3i+nQ4r3SsdVmQkVzjdguGH/5lQt4MGjOCZY4+4vbtyV7mAjiciGnUp0Wdy7jn4wcAibCoUd8aLWkLTi7sfHwR0RacKhu5+IQTJM5hg97GB8gR7etp/X/V6rcQWznHJE/FAbZ1hqZPgQ4M89cxAyOi9QAQ4+2tKcfjYMdJ3ZSoXrHCw74RFNNfacwaXWntjDXBVRlyrmwGofIDPe81w56AVJLjhG3bn4OQK1yDQoKlwK0Z/o6xT80M1qL7zjLqmBdlymGoOlOE2RSLTNb0zuzSE1nNqqHnjen3OiGNIFTLO+KJlYBiv98aBjzt5ESHeur71pBBBis3XZn9TTcUL4cA6YB/t0qNdLz88Dh7PHXUe75fOliRx4Bavqbr9v0nqsxK4N0Xcfs6GmT1HCOeuS9BO2X2GJX0LKxTXZiHCc7tbdvOno9/sGmo8Qi2aGxKZcN8/4i0+qmBVJh4C/+iNFOW5Uwv2e9ZkTck86pRQGAiLEx5cC/1NuL6eorEz1UrizDqi9iMi7jTohgLOd9NDS4m9YR6kcAYerBNqwpeVsdst5yGSyjM13u7Mpjn4rD8+hIZc5dxxp7YEhrHwoc5hOzX9/R4riL9fGZ8Rc2ve1C+2fJbWHns3q637zx1D4DmChHZdomXkT/4Y4Il4heoXUa/3JMwd+BWiHdaF18zWB6ek8j4OI2wbNc2m5OmJcPkbJ+y5ghpNDWk1uOU3ZPX3aTZ/5BrJFzW2sHe9nF1S/bUV4LVDSLWkiLPx9dSgnA1Xiu1LiRlj3qv4xS+s/OJ1ozACT33nUK193/XVGb8SlN7tSK0KtcP47Jf+Z0+/+F6PixmWx53ufbYpAKHLLNdwAM69D9bkbz5M+WW1j/uaftHnMU7D5j+VGFfTjiqZXrlss39xN+qM7Berq6lz4TS4H2VA7eXFwPIOXQcMQHngR+M9h/XSqorsVgklyzeUo2Vdyxm+CjGgbtJ3wyQKDgK7g/alrpJrjFRu40FjyC843PIXcj57Aig0e6KWo5RbC/gVwd/6Zwssox9+AGd82tjmj/3AVjBKP3+ixl0a6nXQY046JAebMCndRcOecgi+yMOhSvr66uOffEbQ829PrMqvJlpDUnBQ940nEuuXlvFx33Vw2PUtNmRAh+37PfiVOJ/aY1HrLM2rDsbrlcOKxT0idvPDCp5c1aXuklrR3vqcbXDYgwc6vN+5vpAdqIClBRjN91vL2sZRbLjFKyI+9pbLm10YwmdwLLHfmThafGYLkh05LRLk4Tt8h8IRgDOTC1qcQ5N90rzvIDM9nf4p58Zd/2RqArb/O2Csnb9sJs1rBcfzdbu44Hiq53n/gHCLp9QocqNeFt7j4Q3zCTXuyTqsPpCUf/mO0dXWwMvzWkBXW2aqTw8OzOqOxtAuexWfH/mnJqqQebCrgE6RTfN65RxgA3qbILYxf82mOaArHM30ijZ+P6y2GDTyx3hdfvmvO7sDICKMTY0iJzuAyejvDeD6OaO5XfTs2xCiwXVX/GFDE2z9x9dheignesKwcmmq1gI0vWuH/yY/YawJjzHUAsXFKJ2puzTnRgJbvEZS8Nll7MppV2CZUkK9Xa8PByyVkrzlT0gWqOvO78vsybtqeWGtGPthce/EhO7XyanOQTFbDorRgGsrHvC2PvUiXlQTgsDJCV/kxrAK25xxq2sFipbwPqwX8dv84weaUzSMvYpO+xePdHZOdSqQ0JGlxLoQ4fyHotlWx1VKPvmDXg+eHq2rv7bw2koHJE/OK5tEu+KhfD7sUFUZanQQFGmG4+vvRF49l9Rj+vAbEOFwpeYF5aB/fkHxDw/PvhVkZIGcBurEY1T7UJCtl6gsJN28rmj96UMkvNogSvsvtkTbYvunqRews7iQokfrse19WulZpBL1TdCB+a9yEqj00oCYeXpHXZQlFShfy4Hqz12brTNfGuCu3RFWtEjP2OZ/oO7jG1av3CcjibcLQNE9roiPK56NN5AL8MOog5h+mMGYRW4A70+xo5drTqJmhYEj36dUpz/+9wXlxYMmqF7Yc5zWXbJzJsLufe9wrapRNDp23P34Gr7c+IataXQspJ5sh9Cl8KNT/lMG0J7fEJ+xPDFGsrKV5OJkYSfeR1vLn6scn0UiYeytb8Am5buC0qAV1W/1Y1i/az9CzsgoWrjBHDrvnjlwB7oVY2Vn1Uy9TIr07fgvNcJvmw3fUxHC08OhVC1UUZ/mgTTgLEcYHd9/gjtKryqGRd+K1KqlF1gGtw8lRdwutryoir7h/Qhf5OkQ0Vn0gcXffQpybhqInH72A7sQCcHmKllYZwPTB22vmfIyfwuMLu4pOqTtCKEQMI6sr8qOVlWIPOhwzbjFp1e0gNsK4fma6zT091JGANLbf3xSV1UWjVrt5dLf1vLxyxdmc55L+YaFhBrv6cwWjr5i2IRzTe1f/rdgl4ABaA9qiAe5Zh/ciXDLt7HxbFv28xcQzzjF58v3nK1YOnXgupttqr8GFczIbwoQq/qL/Pgekz9LAG9LeaCKxcnR+ONT/CRY//Kt1+v5J0JRT0WMmsOqr22dtiDodym1dk/Znf1bO8u9r47/8Grj1xWQ1zjAm38C8vyyHP74x9Gq2mxB/iGBHtdD6tx2f2xeXvcYBo/HjshyseWD+wVBtr8dqH9azHrWhp6ALT6T3XwJwF68nE2w6b04qNJbTcX05Ekeu5jUvMx/YBVEtYTecq6o3pJwGBolWMEhhSOZD0xhQt+VCdj4O1mMb+COEq+J4MfvfvrF9GQ9D/Ys7si+NvesDEMpAHeR7rEJdsjdVK8R4L9con4Pt1PnxUWCFDQ6Noq8GX766PF+rVaydD2vz/3CV5A80IUap/EN1jZYNeAr6wvBKhnAqvdjJW37g4tWvWa30zdLoeAYf9hQHQ8caSAa8GiMfzhds8DlN70Kkn74oCU/7Dd8Xq4wYMJIDRZG9aymxPvpsfScSGSYP9WYQoHvT/QErlnNPBPHcEWOiP08uugzk4YZpmmRYN08nTKST7oE/R28Y4+X4oi0ddrADZ/JbsmYy77lw5Dkb85R9fOp3eG3Hv6Ou2PduDsus6MqgSy9mz++Nww/vTI6EI6qG54upIH/9AJsEbVhbDjSCnjR6NEYPP70f/YcuoeFHIOn5XbnQ5/C5l4G+FrJebaM7csAhy63iLzpQ4ufOAq8HpUMP4meR2ObmjbkjDulv3g5F1beQlf4rFjb6gGL0V9a+Zc/GsGfCvh2JARs+ga9fPk42vT6Vd4vvkHPqREA1vW3VFSd5xtBob3ULGa7EbzVbYqnBU5s0U2+gtc1JGjnElbPPvxI0k9/0aWsrNcjfzSgjEofW+NBq4faiQzw+DMSUm/xavVR2klXuWuo/1374Z/+5HgSwhse1iOAL0fa/Ila1P247Y4kHoSxKlPnrnfuwmkqlIH2VbHCLh/2BacwAdOfa6EtX9MP5ocq4Lf/ZnXy9aVuExPCuk5Iu7s1YK3bWpF/fMfQrlsODhoJEnt3picgXOvD6Xk3gF/4AsYvE7C1Vl/Sv/gC5T8ZCOV2hOmyt8//8I4eraYHGx5i/y1KbLp/BhuyJKroT5/f6gkFuD+YQU8f5T1MWcYXEGn6Ec2J39SLc0ls6NSegLf8yf3lW1Ans0xV8RFG0x+/l2AWPouNT33q335KznvKqLm9T+PxdwiL+DYjzkAGYzESWviWkg82dzeDEetxX3/8kNpT986YDw3uhzf4p18tG78CX+FqYLzIo0vMI+xg1rw1rF5zkhEdv8mv3oLVe1lGC/dxDXBjfUYqt7N0RrKuhZueTj6bfjGtp3P64zvo/VFOw2pdQQUlHBjox38IyfwrsJLdgRzz8JTtPVm3YTozhaxfmYJ/+tYvnuK3MgykOR8EcFzWntx//i3Paw4lZlpU3X/4YX2y/QxwBf+oB2ynXjd+AhuZRgTUYBpm62jmMJ0XhV4E/GAM+WoJ81cQo7I0I3eL1w2Mq9mgcb10EX0VpfLjm4Q9H362TOqtl65noUJyttzAFF2+DngUcU9EEzu1QMezALPgT6LqQkx3v28lA5qcamJ1/7kO7MFFV6i5i4bER4Tcf/ilWc4R8Wc9iyb/9Crk893wEIjzq7vsVRHCguUOzfbg6S4v42lKHyjnaBaFha2/egvE1ys2WMi2KQpp8NMjsPe1RJcpAnHApQQqWYuxr//tz6anUWRW52j1WbRC/Yl0IvXVq57l4i6C5ipaNJ5EN2LfUxHAJlxrcrmXSnSQTLuFozq7NC+NTzQeGmmWdscXolYhYNYf+cWU65d5wqfrLnK7T6Dzx8MV7dA+OVZsGf6aVrIReFBXHMZh5Y9TA/b19EXM45dhlP9YD7d6IP3bLpoe1ZQgoImHGxGL3TejfQeuQFirF3X+hiWbb2WhgQgHK87NFWf/8tW/kX/QLf/V56k98bD9tiUCm948Gl8u/vEpJGU3rx4HKZ3h0SB/2GJTqW/12QD2vWNu+GywPU3XBJjDsSLzlt+xfrm0oJ/3lDrNdYpm4ytc4Wu8tSRM1xR0udBd4XIxG6xdaO/22CMhqA/LhDXbUaKffiVt/vur50XrbbXJb/2pZgTBMBZ4FeDzsx0Z3OIzcy1AJEgAQuKmX2/7GwJF1jDan3jOHePTzQOtvNT01I2qy8rSM+HmT/gUPCR92uwFuNfjFfvmHYMvuEkQPh13RbJerzqTt4tTK22McJr6fTZfnFwB9t/XxcbBq6OxqLL0V+8l40MIwfK9BRDc4tZEo9BeBqYQS5TnzJZJnQI+mx/1oYCKrGD6pPRQz/OQdXDL15EYah1gey0WIH8zUpzS9xpNwXEd4WB5GU2239OtXgzYy+aJ8Gd79fb/JfioXmTbP6+e49MTgV0wagRQbwXkPeUSnF/SgCqxddm/etdd8IPt/VOX3/YbSL23R/OpT8BWv0CQ8nz8rx62+X/182/qxtyks0t+6eDGf/7FM3ZRUwGGHXRpIugjYKYnlvAmhs0Wf1Ug/PKN/6elQPrfLQXSeHxR2zMnfRwGpwUMSSb1ne+wDYKYA9kP4oCq8j2J2FmuJNnEAUdvA+j1VaqUUb6xXkbCbS8O9Hb65FBwlyfG5V2p9+02yGeXRBo6noQkm5kelfCG2AutvtuCKW9RBasZ7qnmHh02f5LWhuxc6vR+jV13LmJhhBNbJbJfk9Rd7+4Twee1MZBwOwD9ZZprAh/7qUD87TwNzGttD3rt34nsy+9Jnz25gFBa9Qtpx0M5LIJWcNLbnCm231PiLjNnxMB09BPF3pevJzF+BNBOC4h1SayzRX1yHDgEToTN6jYB0jF7BX/TXiP87ezXc1jfHah/6VbiQkY236HTw1KSWmyJ12KYb/JYgu9HXJB4idtoLdawgV57O1EtR2m0YPvLw6QLDWxmLHYZX0ADGh0fIjYmAZg/hHCAY9mHuvq9i9b4/jVAx9wS1d9VGDoTeQrEakCxsUM2WMgfymHyEDP0sg86Y8Wf4sh/ETaJhIt73Z+u3RX2mhPg05Utw3J/Brx8eIca4YMnqtepfmjgPYsGvd6pxdg5cm0pk7KY7LMMufNeXXpICiUhjnTG7qKz69b1hO7YX0kbsTFvNHjRLANrEdMjQio+lRt4N6nW2CtgCgA5LLYc0v9zlWx5d0ULufoLsB13ms7wduzcix+Y8O7lUK/Xubah865m8mF7bVjeMrfC+/MxEiGsc0Ae1spDf73skHzBp+jggTKV36BU8KMJhGwV3m8DVKDdBgFpgjuH1VxJzTIo+JRPvbvQrzfD683RyDrF51qI0/MIzafSo8U4mtlcfTMHwA5/yfHRvNjKyX9XieP0Gs1sD0Al+aoNatNsKJ7XK5vvl0qS047D+Jyjlz7jIDeOm31jRQWNu5R+3xxfT9HFUe3BiEheWcIbFx6J+NETwCRECbAyX8SnQu8B+/LmCL34iakrnyO2GCuvAACkC9WN6G9guVoV8MY5FKtf46uvB9wEUgTFGnt96YBmUBwEaxMRjPFNHOjq7jRJ2K89Pbv2VWfqW+rgdwp4/FsfFu3CeLdLMo+ei+2stdYcUzhz8YnsC71n7D0dO8CZ3In6YV0P2yH1Wf6TG0L9Ct4YE5ekhJx3teljNqxssLnRgV87u1PTnjXA4zcM4OZv+KTbasYLcdJIqWHy1NBvO3cdj3884Lojj6rlaulMlSQP3urFwqZNyohlk1uAn31h2HUZbcc5hc1B1XFsFS2bHI8IwD7d/M3+6mhlH9rAMtZdqt/vVTS60ZOHYe1OqBd83iXWcshh8UYCPlsI1KxchB4u0vAge6Vs2DIOHxHGN6IT+AivOtnBqwHzb59i+8G2u1n/rBBqulNhd8hf+uqPC5JwnBSI5/slW4eGkyBQZ5kat/NUz0fbHGGxawuMknM1bLlzD2fS3rGuq8d6Do5SC/e4vVANvax6DR+nAp7PgoNNzXNdVmUPBIPbjmLHLaG+huu7h2XwtalxhL7L7voIoYGKLz3F7hWwVPdi8M7EAq27UzH0ItIS2T2FOdY2/J2fAxdCT/0rEfd4lGClL2bDbDfgn/2xJZSeEtzwjqqTYrh750A9eDTzPdYF2EWLst/N4JS+JuoY4vOfv8ph8pWop90nfWLAbuDyzhrEfcXbsKjOIYGCy55UD1nndhnuUgi85IjPkeYNPJtACFLOs/EJtDNj1+gYw9CFBlY5etdXdyvJ4KH06WOdOzCbRy/54RUpC2cAQ65WObx6HaYmr3H6uoNXE5rH4Iz/mnfpzmfhGwBpARY9ZY95mF8ci6HWORZV2D5jM8iaFMihx6Pj+PnLyOdcBcDEIUeqJWyGGYG9AZZSfWFDFt4DdeFZgcFn/yb7XeWCuR91AVbDDlNt7d7Z9JXCFO70ywO7OSQ13dsgANhT9kQ2p8Cdp6tSgpVPrth86LSe51OhwZN0xjRojSaiD+WF5HN7Fwg8qWfGL1RewbbfGN2fesSu3SzCyxhX2Hb4i0vEum8hEmaI9fk6sOnvwM9QjHcPjPTzQ19T5wFhZ/I2tsVTCca0PfMwfpgm4WXR1g/d3uJAkqQICVy7H9bdR7bBeDwe0Y5WIJpCfCvhbHgLThD5DoT4VwTebXLBTjDvh+WgClfou6ikKLcUd/2czz2U/ZOB7ffwV8+Q9uPW5X9BKxn7bOnRMZUU/rxitwpGRnLGF+AJlhH7GLRggd3dBJR/nrApBzyY7udAkYt00qlpmvWw3EpphLSZ7mg8qV/GzpxeSWQb8arnzY4NzqcygWKRAKu0r93ZcZVA9sz9hJiImogopLWlocARtssMRjTTXBPYinUlwm8/OPIqoKLlN5xLB1gT6VCK8urcz9T7CO72/akB5nvR09/nFz6wEYwOZYnd5SIzCv2TAG/3yxWb9TC69KLwAdSvzydGy+wP062UCOBP9ELE5fV1Z5gODqDNvqa6JOpZq2m6CHfVuidLm3sZBWLLw/wuEarE4R8bjyspjvfnc8Sq9bbYWmZJJUWHJEbi9xvpa37OiVQOkUFtw1ndeZcoGrzk+YiVyjTZHHPvFV7rrUVg8nfRFHvZCvye1+gZ3nW2wFAUoZxDCWOWR4zJntEAN01ddLRQVi/SFaQgjbiebvg5DN7F7mDOOz4SwhoCysoHB+H6DrFS2eeM6KrWy0/h/qVGcv+4dHntBFi/iYkVC1fRYs7H6ngcPJM6bpnrM35nHdzj5kJzWzbY4u1HAoo+p/RUR43OeP4ayj3Z7tLTvEGfQukmymfwpejwyG4DE5eg/Pk34XeemU2GxXrYfC436oy7R7Tw7y6F85lw9PxoVLaQ3lSgvYtv1KLHT72e+q8Dlne9xTdOyqj9HVto7R83qiryEK2LExSQnSsdvZ5bV7U5mAW8kjdH7XMRRDMK4AidQZMplhR3YH/ynIO6jHVqVn9D1AUNUOCaOnvSbftF/7okgL1VRVjD+xObm+1Uidjuo5/9s0F2awhfzpzTf/snG2cCh66F2DRtU59BNqZAOlwc6rXVFK3n+dFCPsAGNbo1y9hpxORolc8VLaxT6vn8Uk34mP8y6sTaJVs5WeZgfON9ml3MTJ/tQ18BodU4uvG7jBZ9GUPwSp///Hf8Pd9FIC4SjuEhY9doiWVHWZ6ErZzDGJ7iCm6fx4ZXs+Erh0kIdOckYK109tmiFTKB9+adIynphoFduYspXQT+D1u5dcwmwF0kKOf8jNZoKdk4pwL6xWNqubMVrRv+wFMf3VEWJwJj4W7lJGvGBT4XklbPbGIhTFmuYfdGDgPrWWvC6FCV1MB+WDeW6DpQvrWHLf/o2Rx/CYLt+vijmHhpPRvvlsCiLyg+y7QZ5kCKPHhwlRrj+95mzOonHhK9n7HelBKY5yzmf/yaKikK2MpDs/zxe4pgUEbLF68dFEp2QqnIUMYOy2JDUgchjS+Yq1lNoQMSPf2iKX69XPZOJBPOiDvQ871tfp/vgf1nHsny1cxhVQixgV8iE7tDUdcU34QrvPOIo/ZfqEa9uVMM+aiaKz2lJz+ay17W4F74ztgxxN3A2F5wYM6tZ6q/xMI9/PzxMfztsU9WN9p75WTD/TO3cBQv72Guw+MItzEkGAW410k5B8aPfyLGh99o0YuHCfkdybD9w5/u0TUALIqKYzm4/vDcgI017LG6f+4A5XkoSciqRcK3DjesW34FEbR3+AQlGpEbURTJCe4qjTY8ZLUBZli/RxPj5GnrbLd3cgBe4R8S1eYG1nQfxxBW+xbrx+atz5cmTGW+JwI1gicZZniqW4Bbx0Fypu2izy9+b3x44xdHd7KyyxXaz3GP5OhoRCOnfw34sT4Gmi1cZfPZO1dQC0VELUwaMJWiFsM6aG/UlV43t1W1pgLhBBi2LooCDtPicPAPWTE26wnVa+21imzcjZaIolVHcyZ1MyzfQEVzM5vuEqwlJ9Vu/sEG9teBRlepgTbenX/83t3whECQ228Er8YjWgpsFHDtlYHej4ulT+g8GCB6RCr2f/xoUDQEBRd8/+E7adxmlZYdiMnuwdqI7vivAAtHvhGB1pU7LeFwhU4ZHLBvq6h+W+k8/rN3n1eqbLm5zIEGQX/Y+9qfYeaSbmshWy1s5Lem/izCLgXOH0CE+3ud2CJ9JQ5cRpSQXZnp+p6BlwekG1tRGz9vbOZv25RBfHWwHWidu/IXMktToyLqS/0rWuJD7gDptqzYWwyt5tv7JwWO1D/R3v3uhuLv1K+AP00XNJdrN0wMKA28ReBCkf/FbD392RCcdplN1ZFTa+Z+1AKkhsFTR1eVbP3adgILKqxUf/N3nZHTl5M2/0BSrBAwuFBVfnwOzZ+kGqZjz3tQ/sQ1mivTBPvl00vQfNo8WQbS6fVrKRRAukQla2dMbD6/zibcG4KL9dNXiHoemhX8hkzDbpweo+Ey8B3c8nP8sydGU0WEd0OWyOFk92wud3wDvGyX01Po37I5e9sN+MD4D1sT7mp2+WOCJD3UgSrc7aKv7h06YK65B1nMy7lexyNXwDxVRMRfH54+icp2kYcJT6hk+wzMVSeVoIzdP2q56xksZa2tsnlMI0JfVM1WEdWKrOTwTHVOKME6l4skq/VLoVHIbHf/afkR3gz3Pc1GrYB5notEsp/87sd/QLMf7wm8P28V2v0dfTDyt4sAZd8yqOa7JuMftx0HRe/Z401v0td3OcbwszQYn27PSF81TZd+/J8WZcdl3yXUCKxNj1C7i9Zscg5mAy4XYUbybH4BG/NRgb980pMOeb086yEFfGlK1Kh2qrs6FHLQz8wY68eqGqZr/eBhcJMpOl4IyRZ69T0Qrsc76gyPr5cmOvTSj7/Ywv4TLXIYhPBmRBSNttyApa9FDvwhv8Te1XhkA/R9Hk5Y7dBs1CX7F1/B4rhocfxmmJVzwEOjuD7/6UfrOYs1+Aadg4ON/6xxeiZw/UovJBPeB8slLx14+Ctj6p//RsD2Ngsgmz/Vxq9LfaWH6Aovy9Wmlm+8GZvm/gqcQZHxSSmqbJbykwJt523inj/+gTl7f5Fk1DnGj6mY3M4py+LfeqcP6RNNhWQIxxupfezulnnjY0sJOs9QN77RsgnKQQf2BvdHT3tFAEwFqQA7os5oTcJd1sf3lwESex2xH79Ulw7rKMB2ur2xx4hat/54RPD7eNnosD+rOq3p1qIH/ySyPMXrQGwzzn9/j5gpX+tffgrSommxyrpyoHvGOpgfywAriRQOSweyDhaUX8nOprm75d8ebA6uj3/xjFUneWvBcVKy/F0fLuNKR4LuszOoqTl2vUx/1IBvUCn0tBiAMdFMbMm8JoTs7nsbkErEClS0q09z8892V8krK9lTnz02m51Tb/GghFjQFOpx7FavH95RYPv4HOk52S6Oe1XnCm74RU/P21dfn9nRAZ56K6miyma9HNTHCJ1eYtjsL220IF4TwFN4MYxgoGT8HWodzKTIo17R8YDdiTfCtvo8ibTbDiMszmJIY9ha5JCcMzBv/gTUiF0Jp1vpMAjrmoCXYpc4jBYFLE/kIiCA4EC9e5INq646neyf+Ada4i6LVmNQVxBV4QefsbkMU7AqsTTeOAeB1vuAubnMBcRtcKWPKe/rzR5D6PeCRt005iP6fVo2xEN/o0oYS4yIqNaA+6fY9E8KZneUDfUf38P66ROBZZdaCG77S7FgzAM59XYFQSyN1GrUC1vvwrMFD3B6ERDNkvuh9GscN35E/fj10smmP0P3ZIc02J/TaDnuwAr+EC6RtPF71rNTDqw3HTAmTuIuf1XeQF65IewgOwHMvnoprF63iBzvXQvGlcAS/PQz0zFU/XC/+w40eS3Y9CMto9UsJ1BFQ4N20eXi7u00McCWf2BduUk13TmaCUeNz6jVflF21PiHBESh3W185OTyTtnlsNt6fWtOKNlq5TsJHOdCoXY4Wu7Gf2aI47Sgekx1vStijkCily3e8C6ar4o1glfah9hVJpMJHXulQIuUBMe8xrkzP0qKVJdXffMnvl7+PJgAFX0bisTrKZoS5xKCVsYZ9fNYBqOz7zQp3ql7vD1vtB6OdQJzPrxh47QDbCG71oO2QwOqwftDnwVFTGCRtkdsZks0jGV/TeEWf6n2KgW3r33UQdbiI/3pe8v2/vCYtQ0Sz7kPltfhNcLccTXU9hczEtjn04KNj2O3lEZ98fmhEF9/9omE7rEHE736CJ7eeolPhdplizDdYngzLpQqW7wRuHDfQjY8V2o/2LOebmVqws/tOmP3tKuGvlgWDn40X8URJyhsjvwkBrPIaWj4lKY+S/m7h4bOT0SS3KUeq26t4KYHEPnR53q36XtA8i87rA7E1tmmh/74NjLEdozYLx/b8l8i8QeWbfpn9csnidBGNps3/RUUf3/Kpq90Lmu1oIOCe/wiUVq0aLHmRIJb/CA8Me/D0l5kB5r37kMOHAT6nF6cEKYkDgnbd47LPrcEHUmXqhib1jNbl/ISyOOEdESQTNyl8uwRfKeQJ7Ct/OhgxkiEP34NojWvl/xiclAlkYn411fJjiG+VXAWoUa1JTRq3ngjA+yvo4qvIHCzxX2dZrjrHJHIihXry1AnMXRPTkjd3RJky1suHLjp60guQ5GRcJ26H9+nf5/Lq/7FO/kyeskP/4eJ9EgByHqJ1Mmbth736tLBVva3Izgd2fLvtpcOSvrBpzcoGbulH+2nx2Nrf1ZdwdO3U/ZDw1FXv73Bp72JAtz0AqydsQtmy69TuDrZGbHL88s2fbT78T10BOc+Y5S+TGBEzR3bcd8M7JUXBSwDFm54rQ+bfxa/58HGqoT6qhgoBbI1qdjx1uSnl/dw0OkL/fIvJgvjFeymdKF2BpXs8NN7Rr95Yc+8OQO/H8QVlmXJIaE76u4+eS4F2OwXK+FVzDb/U8CE3ZWiroo3PMSepBb1Nkjdr9j8VUcTWBkWScN3BFCljQIY+A9IjaGAbM6kcoW7KVmwPpHLQMydYsKVhs1W74jddQe3ei68nKn/bvhhPRyHBHTiq8ZOFvYDS6fGhGipdew84Jf94x8b3qLlgf6G/VAnV/j2nBVJw8Cx/i7cWqiFEqKuUB/rSTtzjrTxedLuYxiRX31ue36yf4MSjBtfh3y6cyi+7zswC8qcyPldJHhbr4gfBqeRfvVEzQJ+tPhOc4VXUf4giN9by+iQ8+BxTk1q7FDH2GRq7Q+v0cvZjvjIUNR++RB14/SeMZQcWhjKw5MkoqVH6+1u53DLt7C+8QnBUNRU/sWvv0O/Z71LAIF+6ZnY/rvqbPQhF8P3S0HYRuRcsz9ZzGF8XOCmt9bZ+8ePRz+/0WDLB1ZFn2ZQSF5G9ouRgTE6zAYspOub7BxdihgQCQ/uR+pi9W0OA/VaG/34PhHLDGbMur4VqD1KBz83frx025FpxTcjsrthUrPVLRLYHg4Jgtp9cqeNLwBxtDxsf9Q4m19X/r98Z3veYfTDuIWbHon6Q82z+Wi1BvhbuZVq3xTVi/vyZ2k+mh41O3CqN/tOfnyEwMl86z88AfvlfsD65WFlC3q6ASx4IcH+t8T1L/7AtCYx9l/dvV4FqenhHzrFdNN3h2UJ61h2lzdP/X3yrllzTwkoFZAjQS/P0fJtJAStP3mHlofH9FcheTwUvUdPnaRH7hz5QSzT4y7EzkuotvjdGmCwd+mWH7juVLmlIW/6MvbDt6nvEe8IMKOgRhCexWGrn5r/+Acy7sIwiwybwBMQIOw78/qWf5Xg3aYXrDREH9hptEa5GmSMb9/Lln+4ng239d3qB4W+sFZVIJunEW/6EJj3w7zK9R8f4PjzsX766ghzqjxoiA9d9EDnwQRAXWVqFlnImDmg4qeXbvqPEgkbH/rxQ2w2cqfTX7x4xBZE3+W46EssgAqKl09K+Mid3fWcyinIm/S18V9lECJz1H71o60ebGcsSVEKPrdCorbDLzqdFg1KP7y13n/zpt+dJWk+Gh4NNv11/fHrQ9+daFFfdxu/tbT/a0oB+N8tBZUAIqrEiwNIHrESJpozUqvfPbKFP5edTJOwwKfreIgGvN5N6JO6o3o8DYCqo9fAZzAZ1KjB3h2XWONgnp1aasuWGh0kkZlQIr2HTfU6glmb9QY2J+1AAF5v2TJHjxI8d0jHqMejO9pFXkJ7d33S7OnqgGnkSUBVLx5i8eSCmYWpCYbWaShK/3R3dOUjD/TofEMH7A4ZDfpfV1yFMa4BjBbRKRRIl46np2M9Z0S4iwZ87VQZvXXU1+Q8cBVchlGjbuKds3nuaAIvki7i08PcTskkEgJJkkjYdyQFLN1uM96XnqNDv3tEa1BsXZGRKuDzdW3ZertgDsLDpcde2QWACXVtQsMS39RPXb6eRs7PQfJCBUY2ekVrZPoBpB54E74oOXe8124AMz5oqdKJHpt2cEbwVBc8doIh0OfB5ODxAG2BntWj7grj7nWVzyS9YBuMvb7Mzz2Ep0Ztty59AvqUhA6IHoKIoPZ5s4Xf+xCEQ79D7OU92MpHUQf8o/TCWIrqmplkduD6UnSat/oHsEKaR/jtZESv+p+aLZ/8T4N5FCfY4rVmWKJIUcD1b0R4s5doSK4cB8fk+sCxGH7YjCSFk/+I/UfN3cqxkdwBD+PEelCrNbA+lxGNYWhBE6ugP9Ysy6IEJPgdU0drkL6Ke8OA+2F/p6dsWMC8VHUCbE3Qscbv/WGez30FmJNsg0gbp172sWrK30OO8IVaIJvUQ53DZ+CEVKmvZ3dqoikHnZ/uiCALbrb/G20JNNqzIkEf6UywmTgC7hUfsT0Rni2V1JSwd9o/rMYqB2brAk242Ru2pv0wkPctz2HEf49ISnFUz6UbILltHyJ1SX6ouzKiV7jUzwuCk1YNnXZ/CJIQNB0Ofvu76gaCj/akY9s4Se7v7wF+pRk2bokAmJ6BADjJ350qglFGDFx4BXYC+0M0U5C7rkZpyqrkPMg+q07Z6lfnDnjwj9JzWdfZOhYkhD7vn8j4rXcuQ9gRARfMFjaO6oVN5qwS8FkefxjFE3Pnw6cyd8KRk6mr9HNED3DgoDlIAK2il2RUkAIBNg6JyIt3qrrnn7wBZye/UfWv1CLWfXcK+MsURJ12XcBiPJ9Qsq2nQ9WqeehU+Yt5KMAqRNTnpYGV5/EKD1bWbSVCUo/716mHy4PxZPHNoCaXOG6hl/QCETb7WbLTAcEdf2qoZ7jfelUTLwBWYfA4Mh1/mHIWEsiC7oMvra4Mq1F0I3zCnlBFFy199d1MhFrbSdjRGqLPu9Cxoa7oASmrgbHZf9kmMFv/Sb0r+bD5nCQl0JNQ3e6S7Fm5xBqEqZafqft+nSPGId2Wzkt1J1XMa/XykQMTcpnZY1R9creaDh8bZMkV0EiMW7Z9vwR6p/mjXpEd2BQorgN3flBj53I9RXx4ckcAtD+T6t8W12wv4AoseL1h9WmcwAQ+HYKWICX4JEpAZ8cx7SEK7PlnH9k6nN4JrOv7TPgNj8n1iRw4OOhIPuePBcaou0jwlXgyttWbMRB2sStIs+SNFXyWGFuTLoW7kFOw/2BNvSz+pTzax0FHQi9bw9pKfQdv3z8bW9H1xmauIQ1orNajdqzTaN2PeQnjIMbU2dEXm6PLaMNTcgJoX0cvMDdlieTgZF2pf1c1tnfIAMHrId6x2VjHYS75KgUT8TE9p9tdnMY1S8AruxnY5tJnzSTcieAPD3/kdqVY3+KBAYeBV7AOn1E2B8/+Cv1UoNS8Go0+X/k1hn980uA4VG7DAr/gCq7O7Y8qWpsP6zFJrzA25Bib77vh7klNBHi2bZ2mxvJxJ2pud1Hu0oLaLU3dZUgPAZggwf/w7HXZ72d4++sw1pxLkzHPbgvQvawjPUeodmeOAAmO7Z9E/eNHqMn79V3hn4YGbITtXv/sgiKEdhASMl9ixuZQHBC8emJPczESIloFygpH0gxU1SXIxsgqeCl/9ABrQDOzOf/zTeBpaYcN9LCHOQuPHCTtcMOOeGSg6fbzdp6rjHHkvo16zu2mk4vDlWC/Ay6Yj7dgls9Z4GCLS87s8MPvHI4TtWwuHA6DpQbQeAUAfVohAEs9P71fvML2rTAjliIJwhJGIdbypI1W09BMcDseJXrugyibnp9PDxONFhhFcZf1fJR14tPJ93SLzxnJLl0KnULZU+U6cfUiICRuZ6wOiHPfLhDm6zGVtAMeEUg4152H7N6CVvN8anLPcvh+q2MuCTWhaDBPn+if/8W7RKH58HGjxYK9DX7vd9UFmU3KPrlC13mF+OTEC5vVSSzgyIf2Zn/3erXCfQfvbVVgxTyobH5XLAYGHhh22wG44/nwSODGl7DzvqWsp3bCwQv8+NTc4t06HagDo3KnIG5+L8N8LYwG1FrooePpnkZDx3tXMQ6uGF9lh8uI/a0T0A5NhT3r/hn+rW/jjBH18mcTUft6L6EEv19qLtHkzuFJH4EC3wPqRAHq3x0UETz66Qujq91HPbUDKF+/mYVNWXCjOfZBAPggcqkaReeM55q2AfTk3LBmCFM2FxJJYbfTTGo/XKEe+X0ZQnNpko1f1e40DS8FGq8QEPbYR+6q7NwYwCDviaAMh5rN+9Q5moMI/kPalbQrywPZH+RCZEqxRCaZg4KIO1BUUESGBMiv74f7fr3rXS/vQi8mNZxzqqgKf79v6Q2vi9jCnXvr2M1FG01fOyHwLQIrvBvGguaLcmigI8eQ2upHQ9xPywYkbqRXyFf1jo2iW2roVhwa+ocH5siNbvAXD/ecq/UTbZII0EkSsZYnEhvwh6Rw4M76mq+imLmG6iviW/Xxo6/9YpnVdAL+fnvSy6eQEFM6kGHYOvcQ6CSwOZRIh+K6OlMrfKpxH/AOwHo+hIuxW4yOd16QSFIa8s9vVczPR1SBtdU16sdxVE9JN2rgaYuB9/4dxUun5ycE/XlLLeH5Yd24555A211EdnmUo93P9wZI3W4JJbjsYlosjg3OZquveG9g0yIdbaXOqhw7FjcX1IueHco0e8Bm1fn1oC/pAE427KhB9Vvx65GcwgnwjLUWvevlcastcF+2gv29HzL2mPocjbU40NuKP9gmr5s/eyK7t/Cplw7LwzqYkVA/oKM31bdUhqvUfSgO7xT1yvPb/OFl6rbbDi3HZy3Kn61h4vh4StByWXQVXQ/lQA/XV8TGE5UW5WHMV/LJo5wtbXdc32L42Fi3L1a/nHdMBolfBIzX/P+ub6UM36dch3NAP2h5sogH2X1M4dKQvh+CndABc/OM6mrT6dOzuxtSErsSmXnax7P9EDPI8g2mIe/s9CnYbVvQpeKD1e08rUNUby5ovxAT3o4PPQ/Jq1Ty6NEQxC13nR1m/QSDkGMi6McqZitfQav/E668HGtmJ8cKDge+CUXyTPvZ+H0iiEwzCdHD09mN27UR7GKdD91ZvnrLoxEz1G/gQAvUejr7CIoPk7GgkJfDIp7x1/XhKw0W9obnW+8Dfg/wl1/8gAY6b0lAUE2mlv7xh8oUfg0c67mj+/771tn90lXoVZwNrFtMQ3OZgfV3vqF/ehG2NHLVKtVBeK145+ut+dZXVjwQMmwixmqTldDBsi6a6IZ+VgLnDaH0MglW9lePO69d7f/sy9pl9e62ZTbs+/6+5ldWfDp6FVGgfTfhEvtLveILW7bwNiL1r6H978ZOA6judSETt+zYkpPcRg+DXcPFDkRvWLLUgON5CXCQara+dJIhym9TFWhwjKyYhMFXg6KVRmy+zZo1Vm0BSpv3nZZ0H7C/+0T+aZsTebQvMWsyMUFCcDCwNbpqvzPcNoPJLS905Sf1FKTyAkm/uYXcHO2Kf/ljUxgd9n7dGa3ncQPHZy428WyjvpJOAJ1gLRRLXVgsSgpvSdHampqxfC5m/NVCOLZyQhZuN/bMKMMcoX4ssNHXH31B30BEx5p1OHRe235ic7mBt7SY+EBKFbHc+LQKPpcT6bNNr7Pf5fSGsSn3YWs5VjFFGxqKeXApsXN92/1wHLRJWc8TY6fa99N7+7GgjddBs40f6P/8/bi1KxrzzsgW9SzZMG94549fFstRuHYoaoaC/p33vPId2NRyGHIBF8fLLUZP+UTChLCilfUpY8kb1CxVSfWgExqM+MiDF/mULKMx6zMZwUY36d2Q34pv5us+A+D6TidL7J/q/kRaH0yJaqTu9009vC5TCxuDv4WGtRPrqbCOlWLIVkk9blF0dkJqB1T7aOTNWXovWPm5gtOGWURZ8RITH0uIztujhEMX+Hr5XJIbTNBFRNQhiBm7hx0SsUAJ19emTt1su8j19pzT8ojmYuF1LUV5z5VYO2kq20VuVsKKzwjQ6cLGwtz6cDOEjAbUNmp245I1mioB1r2P0bNpd7Lh9/JVrAVz0c8mHwygSI+aIPukFrsGc2+kBdGbVHaQ6ZOFnxvIF2P8l7/++BX4WtbSPZ2mep46L5KV+0tc77splu9xHcS/2mN4RMeCexwTH+UZuRDh+cu80WDyWw61waRZG98ZuVdfC5SZnLGx4gfGbfYDYk2qUx2bBVp21eFv6oSHXaG89cuKn9CKn4hCHjimj8PRV8Rz7YfSqh/siHx7o/536ik+lGdviou5VBJVW8gmWN5oUobnpNxXSfUwbzJ9pEAJhND7ROamQyG87bCBjaCdsXsX9JoFWneDNX9j83AR9PfXct6gbw/7cBbhHU+Hm5P/8TMazLysjwZbGiCp9cHOe6Bs6YjQQGgwIVyCGfVEP6knpQ2ybQhxPNXT73VvwLFdndpRm8VDpZcqumdthle9qZjSyMrgXcQmDcVg389/8WvVa6ivfT9o2d6vKuKbyMBJ1L1qtsn7N0p4YaHmpizrrsoWX9Hvj7XEbZiMU7zPABmXfkISPeWY4aJOQPqlPtUNmvZLGWkdcO6XkLd/vRWTJSIbNTM/0/3m+UWEIrFE97om5NHJF48lyf6NvocqoKEym95yf8YbJedHjpq/3yFeNLJoyjY41SH3cFixSN4swzm7SdQUUiHu/vDysRUTGl4eCet8x57gdlAeZMfNYf+6bZEtPXvyxKHFXK8dPDuCyJ0m3D6mR8GcdOggcpcJY1saihFZHxeEmYvx6fY6scWD5wnqwHlhjdM9Ngu2JkLYbmLqaL3BplWfQ1lf76n+9sR+0i0pB5w1AjVfYoeWT4BtNJmXMWT3HdMXww0t+NOHylXfmz88awHVEFA3jjLGpCpIQCDEo/rnrntT/5VVSKLPm8wrf5//8Gf6lPbU4d1bPLrmcQKRJJSq2Tmsh2B8VjL/8nLy/jwytNjq0VdW/oZt9VMhxu5WB9350ZPPer+TcmYaHMzjETuf8thP7cO9AW9iGgqZiGoSldmCsJb+wm3CzjHNjU8HR6216GnkF0atQLFg3uYoZCx+9DMFOsCDuyrU/KmLzjwwN4i98JVizurQbNW/E2whPVN8/Vy8KXO1HC4+3xPpCGI9/8UfM1UdrEe/bT2d8FVDqta9KR4Pkbf61xvupw1QLzvv0FworQo0i8rVfj7euG202x9+W/nDoV8O1j2UZNL6dM0/Na3Wt/H5cn8KWWqk9cI5YQqrXrTa+6ZnauwNioqfN1zg5RJPjfRbG6UqnlTz9lEMK34AXgKFOn521oenl4XwPn9+9Kz+9mzePxWC0AmJ1M59tOp7jJPWTnwCr6OlzxuRiPIa/2m4qPbKt08p+OcnxTp6G2h5260Mqr89UNv53fvvkqMKNodNTdVsU7MZRUsJ2cwi7J+fv37g3IuM3tJkkk12TNkCCur+8cFHwnYxkyozQWizqwi65N9ivLl2JcdNd8NuwkH/m4cyR0svZTi/m3sktD9Bg5UvhNul+q67nJ8DrHpVKHOHRWcu/VTQ1n1IA5vnevqnj2pRNuDV/xB/3iEZOPdDsCsrT31tyXDRIz5d8WHrer08v478P70JW8Pqzx0/wRQNDQ2jp1z0K75EK76kurZ/6WzJnhkkvtyRefQOiP8NQwlZ/9oT8bk32PxtqgQ8GD3Cfg2t5zf3fCqd1B7wzU54b6ILN4CuvT8r/4/ZXLe2JXOzeAqVmc91FopnC+n9Rqb67jLodWOcCYhcs8G43dT1lG0VFf6e31/1wuFP75ykyqH6ms8XyZNEqPJti3W1cfU/PUden486fd8VBM2FD8K956lFqRNPG8JkKLYOwv7+jIpp/8o0GLR+T+3HtI1X/p/BudBCsgvGWz3x4c9H/L18UrxUB4/yo5gDbwY03CR2V0z4QxL04Y5bql7yp05/l/wtu7lMqJGHpj5tzBdRfpobkqUTRG9Q1dsGvMG9YudubBk7oKhBLnc0sJlOdT0n9kLQWJg2xq/gqzNJV0sluAO//j+3mDQ5koFIrAxnhVj6wu4twL6weqqpo8o43ihk8LFwwp68PbNZNnIVVv4T5t/ioC9bq49gzb94byuGvrw3RYVqTHisCpeynlWFlsjihgfpvsXBm8/e+gpC/RuofxSl//z1j98YQ8n6+TrwESRbqw5/9/HssbvKTSBv/U04PQbJm7fFzgb7DC7d19tEF8Yzx4MtmGTF10081tMlRHOANepdv2ohNh+rVLzA+JLbwxj138pvkFtqO+wL2ReNbFl4JNrGi1pqf6mZ/3tVylqfwIEs7T2mZFEJD+n5XfmM4TH/96v+9DWya/ZCQZePyik512mEsXjbT8/4m0AUpCbVA8eO59vPzADbqkkEqbH16XG8+fCI7BP2jkFY/6unyBqpQrYd52LOutoGfe4udB9QEwlptbP/9B4c7rHV/9NvDPxj+NDwE2Pr/0crXw0ndc/Q3M+jBvkvdv7weU1685NLq35M7ds1QfN9N/J/ejY2CrVhk8rg9q+eFDpqrU9ifCjR66W9qNYQr1/q77jIBBJG9yIY8fz40ha8wb6SZRybYirx2lK42VXYZRuzEGrUWEif28tffQENq/4m/923etz+9InooSULUeBTLIpDT3SUr4uymgO17Pjbz6t+ILe/tKPW3d6wyXD8JxxePmBjPNhsqN5XCypeiqnzKed+rVf5ymIaGQ7FlHiLo70TELWrifVn/yqWLldVwD3ZYEuXdv3okn7zp09j03lHHtcf//R1iyNKJzyKwcmiJ6z2QbosVvVpVOXNX30Iq9JbqKfb45Qra30nZIFjF5RjkMGqn1Gs1Q3rZH07QHp49tQ43+qY9E17gzV/08Op4vVFn00b9CK38V+87f74IJM1oIdR/zH2jKUO/GXvh9LKjyalKkqo3IzH4XYUV3+WCZrr+5Fw1w9lDLf6BLcoPGK9+nLrfXKl8gv0mmqG0dd0Si4WQENEorxg9v7ps2EcCVhLJr5480YhoqnQnb/4HbPT+yQD7bcXasUnzRP8x//aqy99nozEVnCCEwQzNQJtrtd8YMNYHGx8WL5BvOaTJ4j9nFNvH3/6ZZFPw189DFsJ/0HMIqIL/+6fo099wUcxgT/+4rUi5616piuvehw9bN2+X/WAJ9CXpeHAL9/9vOqBSMpiIYQw02LB3vIcZOfdhzqWhuvpLhYRsuJDRm2Rv3nD/pWpENRdHDLFbuvlOPoJyrlWo6Z8Pnnz4/tt5R+XHHBZR8eYxUqxoHtwfPzjU6zdHDsFb3bmGk+e8V++VlpJuoX86D7r6a+e5WctT60yX1sK0qsKY/ZiOIC7gYTdxW3Bdx2emn/x4nKTXBi5e7nqA63Otl9DBXEuBWx/M1oMX2v/Vg7cRcd6avD9ENZFCEkTqyE/dZd1MfavgkLrH4TjtYtONTOo0J++9ccXxka/uVA16Qsbs+TW43bpREVqfBOfDMPrSaEEA1SqEdND357q6eObb9i69m3Vy3s0juK+BPnM/XC8xjP6nSUfAkl8ra889UX3l9+5E/ekeJZmtrCjWsGjyZ/0T++fVryq1OetifenjvOGMYhz+Ps9Wq5QfVqkqwudYCzUCW/7ghNjfIO1/rK2FCpoQrBYiP1Kl4aZPHhU/UklKrnwS4PvxfaWXJbfUOVKS0QXtTo9ri37a/2eanlyZYNlFq1czPRI1Ze0eHNKEk35/7QUwP/dUnCj80A9YX8tevthiDLHrJYoXY29+aEWBlilGoTTXL88es4OJTQq66jTqkyfN8bnBh90aKn7PR3R9DugCg3V9MRhLOxj/rC/qvL5HrpkoxYAFkDpv6JHH/HJQJ9weyASa2s233/dBh6mxmN3LxaIlQlS4ZsApZcmNItZRksClyMuwyUT7t4kqLwF++UaUqe4W/X0yeMUBJuo2PPMp7dwL9kA89R5IVcUOZs+WzsD6Vyl4XQuv/18CAgH/ucD2OW1kL2ToGtgUeFJD5urVk9X0rQQvqcdVidFLJbnjagILhHGDtMKjyrbIoPuAy72U7mPhxe5WZBsEoFiR2P1r130Eu69Q3H8ULj4ffb3HQQ/tifv3Xcf81QEgpCYQ9jeB4+RbdS2oOZyRwQPCm86kCMonKEwitHceDR59xXaftCBLBd41ez1pCCa25dDDz11Cv7UfBJl/3FVjD+HQJ/vYWYAlTci1vPbVIyHi6MB29RxKHuSwebFfqlKFpw3WOtHpadburvB1FA3hOP1GzPLvnEo0ZqGhlwfskkd9Tfolm/Q/K7sik9vSgT9vIGjezlSC8LLuoGCm6jhfHp1jJgm4kGd/Du+pbIXz9MsyrA/yyXFJnl6JLwvETyXrUTgxVNG5kXcAJ9vc2ynblnPknoOYfuRDtRZ7WN0aK5Km9eFEVYLU7+Mz5ooN3q9k0XALqMNyTOpjA4xXe9fn4Pj1gJUJQM+KplfzNHnE4EUHCrqxfKlb3ftR0NL2r2wj09yQY/RLoFrnljUdoqOLX51NoA33GHdO2SyKenKHJHYsrAZiFpB7OjAQT1KOtbkuiym8uoDvBfDCbeo1+Kd805lMC7tBRtAg1i49rsWdulewHo9+2yOE5KDViIFe/JuZuzhCCIo7VBRx02OfX/6WSnITGjxwQPkTUcJEsgsZ08kynkx0eOJA5cIPDVfv7IYvzszVb7J+4k1pNfxfDtsJ9TQDrDrSW/WXi6bBhKH1aSPOYZmITz5YNhaQzY0IjF9kAHAFFM/lKpHiOZD9tpsy93VpIfOftXzVekJQHj3wx3sh3hI36cOzsbVpqGlbRG5n06qwh+vMsaVfCvmnVAZcGj6koYOn8W/08stYWlOp3VxhdbzNDl0MPEJwurzSdES13WJ+sdFJIJK+n6Kd9cKduqFD9PzVmSDlx991NImxs74EnTm3HQNXp52JzfDJfVwcAYZXY/2DudeDN54aVAHp5c448f1cVvfap9t5UXOiOLwh4rniIMWAilfCJLspvgVp0UEqSrO4VGOnvHkoC8PJ0HZU2csWDx16JKhlr5jmqfUrEdI9AySk38hD9O+xPPp5d7kSXF+dL+djeJf/Iuw6q7NpqO3JM9Xg0rAjO5LU9cFR51s6L/TgINxLtEkS8dUuY+2jv1P18bTcDpUMPtXj5o1LDV1d9wGMquOsM9Le53ekaNBzQ8Wvh/SXz3d2kpW3rn+pt7p0Bbz61yFYnzvtZDhp4cG7OQplJl4poaIODZvm6iDY1SWWOWEpP+u8QXGy6BTcza/bH5dPBfIVeSofR96xvhNoEFefWxqjkccT0PxG0AuvQabKVPqybxqPFgJB9QUD9M6GNv0gQnDh+KGy2qS+U8Oso+WkHuuVmg8Vn0uPyZm02C/+9TMSEQROfWdwybsh2KN1zniQs8gn02i1pzP6S70O13G7u+h1fyoPJ7oyt++VLPY0JM7DTiIzlZBYFiSf/Ea5k7E9CRgFxFJ433I113EJ6TrBUv2j1xWPspEoLSRt2zW9eznOirw4XfbefN+Niv4vTKeRvb51LPNIiSw8X4zdc6phOjjKLlAts2ONIH7KqhIqAHkV30IbdGnp6GCDVQ+qE7DfBsUwyL1MhR7yw8nwbXZdHDeMhj7lSLo50c9LeljQdc8tcL4dzrqs7qQEqb9NaPJ1jZjNjZhA+T3/FAN6XpM9GnoIHWSHu8bWe7XeG8B27xifLDOcTFvOlSi9JH/7e5z2LLPig5qpeIw1r9Mp590nymjssRY07aJN/Pc01eWQ7bF6pc84p0zSgYcefcRzpyO0bynwxvOi+yTVpo/62Blt0W9wgM+2NXbIzzF8OffWIWPUyxaKhM49YZGtWe/7j6WuhAE63zHgTAYOgtNOwNuGa70tlxv3r/f9zs5SSi/t/d6Ongmj5qWC3FUxg9vMYY9h8pMPmNT/f3q4UUSA6KzUdDYG+KYRfHWR4kz19Q9bNt6uQxpBXFamiF/ZXMxzK+TLKfWR8Jmhb/6tAtyG069pVHXaaZ6Pg9CDq8tqLgIr3G9fCV8ko97H8Ldan/M5W4apBwh2Pc269QEcbopaIs7bA+V3zMUZDfEXt2ZBu+0rKd3ASf0TB8O2fAbXZ8famyhv+83XqkaM2kdLCZHTxcXe+OiUyk6JbAjvBQKYIXFu7lcb9A64ome+vFefwMSnRRlsyzhnExNP70GZkPyEFjoxvsJDaICLqTcQPDe4SqPubjZyObP6kIuOXz7VuucAfjn70aDx7frl/Sot/A57zNsCZ+0mMmx6YA7pCn1fOsRD6s/S7rkxWSbXiav+5efDXegofg4FN8UxQ14AXUI1DWKmd88VPmDzBbrOG+9JeKqFN76xww7qjb9cii0jfL3PGhsrt5A2m0jG7ba0MvxUvSz8Qw7mMV6IILRHlB7CzINbIFW1M6OfT2n+reSU+srkXr9/ukWRCp8mNz/2TcisZ01sPH6mWznSdHZ16pvitOEzborMWVz7YQ2CBz/okFqNf28McYS3r/+TJ0jVPWKbxrYvM6MOgYb+6HJ5Awljx2jWMqIvpSRZMFGmhqqrvY4ldscUBUEIeH0SauZmOxcOI5jj82DcmPT/fPT/uJjONEbp8+O+waozq1GGP9yEH8+NzdQtYcQznz69pYZDxzIl1Sk6m83xEsFU6TczcMjjIPg0o/Z5zSgUckMrK+DnTnNvLXy6g/UfzpGPI4C18E+rlEIppDr7K2IKXj3VKaacCb1tOsCQLtUF6gW2b+YnvAtF8cL0fE+4t1i1k7iAve7+KJOaLue8OePjrU1CDod2niSBTGHb69uqVkWpKe7fbiBXZblNLiHS7/mGx8Kbl9Qv65R0Xylw0nZIyBh5wVi8WNPWQX8S51QUDlc0Ffn2qDZjxLjrp294fbdb5RzfSqwfTPf3ozkYy77x0rFlpm2jMbfMQd7Ejl6cDGtl3fc5iA87AdBFzKt8bIp4St3E1UTccMmtwQNofkd4kIKO6+d4bP84WHqlHPu7YTfx4L8pFyovyViTY7eqURG+TDD9nvw9dmtdhsoxjeiRqPYOveHR8IRLKyJE/WIPr1bJT6ENcakGmOG5cCHNX7jYMNF3uw9wEJxPcZUVb8KW0JhCNHu8bn8u695qZkIuhUa2BeTfT1dRZVHposvBJbtm93Mq8tJROfeNOeKr/5e7RNtps95XZyk6TOPmQul0zGyrWQohvvN4sR8LgvqXOouXnoveSvVrZyo3RXbfghmJwK9IhwRNteqngV/PqFhSNXw5RUO4hxEOfTWlYQ6kv4udn/55NSeI+yX2opv4J7KK1/De1P+MPqMMl+uuXONw2y46pQFtQbsGryw9dxde1Z91RNa828ova2ULc2TP6FYnQx8fmppPTY3LkWstThsTP7eE6Qji0CfIQ2FMT0W7M7whOKUS7D1KrRixXciQi+403MWbrzvfFcB5HG+YOPaevUcS3H5Z78Yf/N9sWOPo6GcZjcmfMdrtXARrwQOu+dMja1tFoLONW/wSbYhVSYoOo1OaQREXA5YP3GPgmo514H2FE/hgEXdm5Wj80Tza9iETPNoPNLwPQFv2MOKh2gxlPkoIuL2J1JQaYznFxJ95Bau8w9PsEOnasoxFRV8XvnDELosUk76vsQHblPFizvlFlrzQfg5WiePmZM+waMjQiit/HoA00rkU8E/sdpXFzS9HKrB+8R9qf3Jn/WsOWkDZfu06OnP39f8I26pkWHdyFSPp/cXB88P6alp1Cbj3JJTpT9/hGHh4lnKsSuteDf4cJIaL+jaRLC9qvY65ehaEOnbnwBdXz+sj9av7/abXwvJzmuw5icRW4Z6HfyppS4R4revc66m+mj8nJ9E0aujPr3v5xBZ73IMmXzWYn6ND2jIKSJfoz385x9KSyrsaqXRC97l6cOB3p74H77jz6mGkKiN2EDhT2cpKhr5VtkRVS9e7NHYz58I5O9I5OR2jBfm/Cxo1HWxWa33aEqY+Ea7R2CHeV1KcZee3g2qSXwi07HD+txmx6cyXTmPqrdBiJunBhYc1O0d6/1j3880Cgh6aUFBLb/kGNnvDje4uYee+tS0e26Njwjv4w82bnxRsIt4JHLeL1fqFe0QU1GqfNg+OB7rPz8oZuVAUyTgJ8FhOVYeS5ysBdW4eTgRUYJmX1cjhWNGS4PdFTN2u945xF6RRc+4n/vux71L+G1iDpuS/CiYfe838I5DnvqmIOsk4rpEHiR/i10lKvtfcBUTebocrlh3pLc+8W4UKd+XQEJu3EbFdCDXDVr5KOEeeF2EfMMn6NSTQ4O60L3pOd8BhqlQsGY8s2I+D9scZNtMaew1uOfJw13g/EQiYX/nlba3NxLKJSI79ef0bL0fOOiJSt3Ppylo4mQdqM8NCoWd0eizQ0+a0gv5HTtdUNfE5kCG5Mjb1HQ2jT5Zc8zDqi9Q26dlPCltXsLzEXn0MTjneCZ8TMCM1TwU9INeE2OsJtgkJUfVanwW5Pu4J//4TfCGQ8H2t3MDQQUxNs9qWJB2b78hNKWKmn/+N5U/EdLNump4CDS2O1z2GtyTyx67uX7VJ8Z3KkTydMOB2909FolDBBIuzT/9qOdxLmbweL0aeqA6ILqep7jiX+qI96Kfoledgn+BB/bCGLPhSsh/8aZ3H0I814dPCH981p5uNuJeA3Kh/hrnUGEbWnxl8+LDqb1E1B/LJyNcdpERu+IXNehQsEXSNiGK/N8XH/j52M/mXhJBvowH/GSR3zO2rC3vLD1g492tQyW/DsAQPzd45WdspuzKQQdaTs6BWMXU93wXRvwrqeUqUc2Ut1qhle+v9pZ7rLg9CITnOqY+9tOeRacygkIJh5At36CeTTXbwK5VPZyCHOssePMWLOMdE1ZGLVvS0/sNpg8OPSzK1WPlFMgysGlLuHD46mzVQ9Cl054ECXspHmyrV6FMXwuR1nw1aqdpguUulOTClUoxZem5hTXfYnzf7r2J2zkW3E7PB7XrmNUMbocTHFyXYF/7dfGMPZSAuXVl8oevqemVAxLOzTZE5PSp6UWSW1kXmUHx4Oz+4rUBc3UIQlR1Sf/74wN/37/qgcWw5lNp1dfCIXh43lJGswFHW++osfvuiwWyIEUrXqNe857YlGDvCX945WqMDuOspNUQLUubTBUzvB2eVryDZYViQQl63le+AO2ufYeTJi/ezJ03IjrXbYeNKOiLyUrVDYj78Yn/7mdwxc8G/TZHDtv3hdbkL76Vu8L8px9NR3SOlF2W59jng6SejfJD5F/3PqwtD1o9nf19i1a9l7Bk1/ZjRW+uzNq7TjOfbgpafGZZ1o7RiybX1uuHXjxXEFWXH/mqHC1m3FIXRfPHo2YgVgX7Wv0NXfRNhLXCPcbMJB2PkiNn02RmNppQtEr2/DpLoajserE0aQPLgYXhxTrH8dzcIEGQ1PeQOxNajPWQnwBCoaBWlB31WfClCMa3cvyLhx4JDDtFs/gacGDq52L4CAcXtmn/weHxPXps8JMWrfiFLNB5BSs+kogEFKv//Is1zidB79/vHCJ76REb/FsLlZU9w+U2Xwv+h4UMrfwy/P7hK/dQWyAFZkV9eR940r33ZGS80Qd7d91H/PdxTmAvYQhBTVN9Kvr3IguDXlJcNy2bWzZkYJt2RdXqIPSzvLYMG3a2o9r1bjKWnfQBjTjGREGNGnecbdswdzJe+bjhcSu/RelDHbD9Uh/xpGv5BCS+nSneddeYDbMzoCB3IvqIOqPnnfTpoj3mg3/4nHzsTwS/Wf2SVYbUp33fdRBIak1vOXeod9+rfINX3oU4xIrpve+3kEf3Q6nR4HQi+lwQc4KLDhH1l62BWl2deah+dIODyFR6dqsmDW7Xc0C16qTEy1B/VjzGgj9+W08Oojya3OZHHd3/9P2KJ5WW+gY+tXHTT/SzI8rJzPfU+X1lNKQf9Eb33qPUQKGjE5u/c7AlxCHiThnQoN/HDuzCX/BeU381k82HL6/PT7jmiPpfGKWubCdLHCbmsWFT9OpTWPVP7HJnvfjL/3C9KDU1FXJh01+94E9P3sdYi4X3sgvBvO5sHMTba7+UgwfovR0/ZAp4vp5+tZUhSF530mmlUf/xH3nFK9iq7YAte2WdsjH4AdWXb9DPi/3ToOD0gug3PYt3KqidwhsVCt/36ovasAltpHq9jf/41iLiPILWeeqh8rJDNON1cV1/HG7YcJeOzebdn2TyvCQEVj2y28Rdhbhg2tH7hS3e7q/+wiX4vNrTMx7rU5vAi18o1vYnu1/avfr+47dEXvXkhRc7969eQ7hVnxrSd95Jv3yTYns/8h47LW0lm6fWo2ZvlH13GconJLvXDh8upV3sOElXQVPm6A8fFdQanTXfRiFh3sCK7j6+RUCiOoYrHon/9Do4suuI968r3y8FeokwUbmgQa5qSLhVogqHKNzi8G1X/fLUOANk5Wpj9ZrVbOK/vgX3sN1S76k43mCGmEAHao6Th0P7ydhmHJqLbqQhv6n/6bVKv9vLIT8ddX33UGMDnPrBheiMnois3y/FyWMO5cPWrtu/eHLcTRFNHK/WmXvd2wo1+3VRwISK6SqtrxBJRMZOc/W8pTHrXOa6nsPGir/Gn6fc/uEdRz/9Yvp6fjfoLz7jz/5XjPa5tZBA8j0Rozvz5m2Ttf/8+VDlA2o/eZzAlgzO3+eLFd+d/vApAV56efNrKVVws+sFO/5LK7rsl3QQ3Y4Z/js/LrKyEkn9Zod17RjrK97k//JV2J1Q4HH+7m0AictzyHt6UgyrXg3nRfTJN9Rtne224wbmk9CTOeK7eLrpO15Z9Xu8V7KhmEL6TP70NXpd/bX9CNiGz7n4kp12E9Enyy9vaB9Q0duLp4htUr2CFDM3RBtK9MnVfzbKT9sLEQkWdRYVYglHlRuxha4hW0LJdGVXOx9CpRjDmPuep0oBeO9p/DvN+l/8huyc19jRT04s6Bd5gbWeR/NX73rvPDrKymtKorV+pHq/NjtWyqMbBGxfN4I+f69yCU3z6LHv9EvdPb8vV7lVbkS9DSXe9Ew6W17xBtnQdNGXvM5E+L7DI5nmeq/v0CSEos/dMbb03bsnZ7mo0J9evfjJhFa97V898g8v9dPpFORQ24H2x6fraRci488/Q2nntPp/n5eXG9mmx6EYuJ1jwOGaR9iTwk4f1/qXfABKCDVDpK969hNA/ozU1+qmpjy8LfTrmgM1ksOhnhtVfcJbFAWy4ue+m7mrCJ/D4pLNsfwVc5tdn6i5vgecbO1P0ZukWltuwjzc7uVv/Q//4acrkim+lwXTN/YCQ3AbaRgLr3h6F1yE3v6U/uHferq8sgWJkaJhf9Xfh+F0eMJhQzSqNb7UzwpuG5hfZIND8ePp02VjvCHDyQlHI7Vrir5aprCT+saPebrrizKlKTy5TYA10zfQGq8a4APiY+2SioiG1isF4ayEVAu/awvvKdfgOz8eRH687x6zdVlV8pnrsOaHo/6b2nIA8xm31O+Pkc70azGgFd9hd3p1aElPQwMrPsJFDg/GjPTIoZsmE+ono4ymVW9Cqb25kS12nvFUKrKGIBVVGsX3Tbxcm3wBbujWFraYq6e65N1/v/+f3pmfYUF/f//L/4I/R/AI/QO2F4crpmB2ToC3S0s2WPnofaXF4Z+e8R/+h3TIUPUbN1ijL14fdu1HRZvE+NDzjeged5V+E4hbPgn5bdx70/yYN/+vlgLl/24pSIhrUG3oKRrvYe/LFsg+UVyVQ6ST7gNsr8+OBkOw1SchpiG8u1ak0Q++bMqBciB8Z44obSEyYs6cD/7GvoXLsRhj5n0OBL6D+w3JNhTjTqwcAxbpiLB+P36K4SWMKUS74Y4N1h7jidaBCkWTBDSNXFyQ5eu94Voigj33Roo5H54yFB4SyRw7lc6sXMzBiU8Vxu+f388fuKpwuAjrYgQ4x0v/O06Qb/MkvDsL8pjRcQl4ouVhNzeW/nOJDid5OoUvorCiZQTbvwjudXrBtlRxiNWz2UhGrRchSt5CPSTgEPT6OQ7GlxfTl+UnyCDf7wY9nG9dz/Z+VCm0K/Z4L72UdbfKr4FE2VYUl7FTT9X3l8sRX1QE6eMzZmLiJxALoR9yg2F6XHnyW3A/zomq09OoqWyoOfhbVaeXY/eOpy4ZbTT78UymaqvqrBK1mwJesgs3Y1WtR+i+oTKiGuu2s3axZLwGG2XwQmY6iA3r56Fo0gCrG/6wvsW+uaHnm7eoI/zCepjOuwycJ4fp9XA8scmyJhnJnedSp0nfHpPV3zqQqU4JJ+yHeq7ungETlDG2YUzjpdKePDS5ecZXd/eI292r3UDh+Yya1zBln/3UAPAv2aSGskmKOfyVERLy/IfVH3wRHY41Lz+0icP67iXU7PjVDODrcg4VXQ+8afd6bpTxeBWomnBhPSffxZdPFfmGvBN8a6Y0WqcY09fGqsALHisfhxN0yNfpZRLKYjlNmwh5eyHDqtB//gcAAP//pF3JkqM8kH4gHwwYI3FkM7slDF7wDTDGgDGrBOjpJ6j+Y05zm2NHdVSBSOW3pJQJFnVaW4BL840GV9cjXu0zHyq5icmvkRGbX+9rKMUMHrDzrs/D+m4sF/o7N8P+7/HQu/aRZzDgOAG799CPVmPvCVC1oiM6uvw+oh0PA6jxV5/I6eeoj7eFxMfKAwV27aXV1ymMIVS0E0aVKIVgme1+hbUIeuxdPJjO8u1TQ0QuO4ojuanoa1IVOB7uDTX9pmTtW1OIPPbvHXbmIKrWA41HSFFTYjSBCYwLLnv5DaIYI8NCYB2/4ApqJDyJ0LYg6v0v5GA9lG+MaaqBBaIP2Udd+6Y+eVjR8gbKKgdNY6CFIl1fBvkTgup7GSniLgFgeePb8Hv6ztQ3qjYi+2dhQ6O83rfnNauVvZIERtnuSXEk7bzFONstHKqxxfHKGsBaiDXp1O0jMt9SljLbHCRodwrFqHesikXbXHc++IgI/vwvW1GY5JDX7Qk7lvmpJllNTBhlxoof1f3J6iBjK1zicMXK/IIeeZZaLR9Q2lJU7W6M5JOvwKh/1IiERlN9A9y5INrmGOHXaACym9wSXkPPoC68QEZ10YPQcuqQWoZTeHT4/GZ4SE8En7JMYYeKXEJg1R8X21rqeav9yCDwlGCkuE1XsK7V5MLJ0EbqdJ9vtYRiG8Do4PtYf/ZBugg+vcPBdSTsi+a3WnnnJMEu0WKq246vr+hmrtKnn3jsku/PG+8/GcHufA3xc3ce0q5z5x08/BhHCsW2wYqtgw0vWlwh2fl1YOHqJARB5m2XOM9WxRKruMrb/sYhExZvvi0kgWP6+KJ5uun6+pIlEw53G2B9oUs0W8cPknVtelB/AQywui4M+VXmM7YyxYo40XJGuHfjC0Xc263WNshrGH/JiVrx+kqXi/Ysj5LAB9h0ztawTF02gz6AF/rO8wTUjR7soA7iF76WtwbMc6QaMDoPOWEvlLFFvy8CrJb9ig3J3yjm24FAwn5Ig6Yah7EO2hraLxRQHNiiN3/NUwDJMgHqnZ93/VBg/QpkYY7w6yH7w5IbkgLP3JFRf/8uhqXowxEcq3OIiqqC6dSdpxBOhhjRE77kYA3UOgbWXX6Rw46764PbxQFYj9kLu8P3zgi6oRlKgu3RYIs3dtunrrS49ETP31PjTWd2bP7wD7s2eVfTyttXuNs9AwLOfDcsBzOrwUOWvtQU/Faf5es+h+Ph2tD7ynw2uHTQoGEvLWHieNQX9jOb4x9+KleOVISLPgi+rkDHznRavZlWJw3OO2W/dc15RF2s6FcwSbsaa1aQVnPZ30aZdlWCZDNr04XGZITqHu4pHvZvXUjiSwKbX6dh3yjeYM0nQ4Fo4Aey68twmNkOFmCODBvfmf9gdIsHGHTaA8np3QKHkhsVqIwPlSroVAwT225xZ+8xxr6xaB6JV7OAl0sJCa86PGjM4ZP/5Te084hezfdPmUF8wwe0/+SDNzOxWyEXSxLWrvsnY9/E2Nb7EBCwczOwmh8xgOMZJtSuE1DNaLFDEKHqRJUqHrzJebwh/JaRgM28WPUZjGUsv8z2Qu0T16REadYZojwv8IncA2857ZEgeX2ZE1nrS325B8cEmpeZ4ecuPekrMLwYOnJxpY5lqgMfEQMCYdFyquPyp687Kgjwoocu6o29ygSo1BAWj31Ofk1dgeWWOwrUzsWIL8f7mI7tGJjQU+2I7E0FgRGURwQ8JRypZZiH4TeiUwKPtvymKAyVdD5cn1dw6k4jWSUmslFIahO+J63B3gXVbP1dbAIWlvgYa8iupvZxz0Byc0vqvjDnMXowClh5fkpEwde80XQmBIPModSFpjeQWfruABUHRu1HkTIinbka7hvAo+WVwWryhUkCU0BWbDjcGjUHGhP4yVVKzxtf3PAygGePONhOwjWdG40IMJusCjE8iemYwE3VHO47qqtfnC47TkvkjZ9h7dogtk2b9cHOuCo0uxtjtfLbIK3+jTXqXLJ6oGYECtjwPsWe+9sP08PMTRjetQ/Vf/yHMSKVUO7O3rzNgj0Ny7JbCqjFrUmfSHei8amPKxT1lad2MryiNYkvMXAfvy/VxQjp5H/xk2IaS9HixK4B7yiziZx/unRNzzsD2Nm9o4o13nQ2/+wG6hp9oIMFGm/Ypb8r2PIlWe4TqZZ16URoC3VGH5VnD8JhkALQ7ucvknOq6wRYHw7suXdJJEzwf/hQ3JMVmyy5VEzb2xzkfneENaCG1fKwFB/yU/KmFuqv+rrMcIVjWlpIkMuEMSzVOTwlnETVgn+wJbeaO9yvokDjCNJ0ugfHGNL+qWJv1iKwrW/+9/fI9Us0T/CEUpKNbe799VvY0Xaf6A7nUN8TLmhawD6nxAXQu/NEEqcgXf/2c8AJApGiEHrsUK+JvHDWZeO3SrTo9yMHRbI1jrtoZUrjvLPBX743gn3ESDywVZ4u9RMxsjoDb2AOwkdxPaKPptps7vL7HWZBrSAa2LE+H66XO7zqYki12fB0xvzu/odvZO6O72iB50MDrkEdY7/fjTq9+qUAK08/EugRZ+CzOEvg/cBdabKWeTVZQ52B+FtVZFEZ1ud7na9wpuuZqv5jYOswmoa0514lVqFdgrlLewWOiFOxq3JFtO6zLJO290WSTfbDcnvdJYiv5Ur9fl6jea++DFhUTKZKszTRyjtnEZ6Qy6FdNWfeotVOBn0LbLPcq6KaYcpd4YaX1NaaLJ1jZJsQl6ymesYvjFr+rpX+vsfuiVtvrl6mAe/YOW8N8IehZYdDD7rnQaA4P2Ewk1HwYRMXHXV5R2dcOrt3eNGSCnvnp+CtUBl30I3fPnUU8zIctu8Hh8ViaO6toz6X/YsA11tMfKt+mjfvvDmWd8Zd+dM3Ve/oUi3ZnXTH5/H81qfKv2l/eIGtXWeAZfYdH5690cGvq73zhvaYjICss4GTpyACco36EXS/Z0Vte0GeIF2POVyP+Qtj2YqH+f5VJKjkBqZ/+N0ar+MIw6pBZPZOQTQeIurDMekL7L3vE1gMp0Rw4wfY/Dti0QufRLZf4EbG8Oh53HUNCrjpJawe7bWav1uXuBlmEcbrHkdj6DxjWBaWhrTLORqW8wgJyIJGwfbDmsFy7pUYfCPvRebpVul0ROcEHsvivPEJ5e/73WH3dBes398EMKGNhT/+jx9ccKzWcBYCOY7tGCMvDLaStl3Do+OqaJ1fd70taw3Colrkv/j1RuloidCqugq7viUBymmzK1fr4YmalY1sGdlsyn/65nn58YyGm+WvpeYTOxI3e7Ophzk888aNMJU5+piV0ij5e2ojkEtSROVGa+GKASU7bqpT9pdfn2KeYfw5FR55SVELU8EbsOo7q07Xe1JKW/5Bsn4xAas/TguL9XzB5+BZREwD28TH6EMIjIws+pcvgZHIiHM1Xxf2WZb/48N6gc5e86wFEU6Ud7Fy0+z08BjmFWTaYSHCZ4iGGUnWFVx0q8U4knJ9eN8VH17l4IXNT1FGJCTODiazlZADFzyHcT0tGTzw2+DEXZxVc9Zc3H96xXRikZF8LnOYlNVEVfv7HTY8E+G9D390wx/wp5+AMX/tv/0P6j/9u5OJh55NlA5TtAwxrI+mj6paYWn7eGAXqoXww/6mT2j/Fa9g3xx5rKuPW0XXEJow9rIQnza+Q1UbQ/AbLgrWyqr5L59vfBhH/L1JO/xMrvA5/DgErvcX6Dt9McWNb9L81kbeYorQAO467rF9avy/9blDnXx4egov1CMn0dzBmBsgIUA8Df/ypbpLIoy1rIwWdSYQnNnDIoe9hsEyNW0G2tI/kgXaJVvSdBVk/5M/iCzfxKjtLzMnawlaKfqLDzjeEvC3H5NadQf+ubIezsUromqNmPe9JX0DoPP7YUP+Oumw6V+ga1qIz2Pwq6jR2hr8w3cMybma4VPR5Oy485DA/AOj99UrIQ+GCz3t8y6acDbPcILVlg+1Qp+vYhWAwcl59BxHyyPm0OXwN00RxYlEUsKeDMI5Ymd6euqniuKDaMMMlAd6MsqLN3230a5wDQi2ps8wEC2KY3jRZUwOu64GjOfbHMjidY/95Yp17qmIORD2EcaOdVnZIhtmDI3r2mEdzwVY0lQSwO9YrYjSbVABPO9ryHHKlWrXmNcnZXmaMI3n4t968FqtZmDjj1jnbb9az+/SlI3744bxJ/f05S3lPTzaQUKEWuC99cJdCVyz9UGt6lmmS3ftbdg1Y77ldwomXy5nqF/cgSyiJLJxuJgjfAf3D7bt/Q8sTtoWcHGnE65Uv043P24EvryXEND7Axj1T2yDgK8AkvgSseUphCa8ObBCdV4VQ3NZihjSzMX0LLs/r7evRQsPqUUoIubbWx/8uINlFEOy2+uWt3Y6gmDTa+hTiEo013dwB7KwRn96Mt34jgCMvajh0z53ouVI0xG+L8czRbfXh61WAmLoiYaHvZ2bsUVt+BWwaAwwAuK3oqdqn8HB9STEnc9TtWZWdQXH+CRitM9Wbzlp3ys8pGGAlcb9DMy/6Su03OhBDk/l8Q/P/vCIrNapj1oyZy205sKjKk8f0ZiHfg8/eJaxze/aiNV1a0AqxBq9yqzS2ft2N+HYghDNoH1FM2Lcpnc/FVmBulZk6J4znGUvpspUXLcSHV2hW2dnev6MLvvHL3LBIPSi4bKas+9PgS/HqPG1Mzi26eXiD++wvtSKxy4/14TuY7ao+TUQELhwb0BHvq3Uu3rj5ndeNNgW/ZmewqkcNj8M/YvHnagf9I79xBH8xsOIDfZSvOmgF8GxN6yOcOfzeVhD4kCZrL8SW50kVLP7EUJ4kY4WRoCX9ZHM1xYehLONvXT9pExoAwGquziij+p+ZGuwExW45QuqE89g7Fu8C5B6iKHd5t8svQ5NaZLjA0XGrR1WAQjon39yPisnjxH5EcK670Xqk+uO0b1XJXL35AXCSI0ZJfI7hLfav6NfJ90HMuZCBurDdYc2vIrm6XApQK/HNc23+Fj8Q6DBKYxytPfXUzTrn9iFJH5Q7Lg98ebum/qAVC8Hnx/yOKxaFCQyNuUTVV+9EE3b+sHB/qLNLyOMZSxdgVN0Ez3LVej98w/KCxdQ+4MT73CqPzVwzFQiS8E/wGRRV5KwGShUmY94EJfwvgNnDjDEiswEwp/fV8otQfxLkfVmCuMdWPurQc/B6kUsCuUaDg+tpEbAldVvyFn+x89Qkxxf+nJmOAetFaoYEXOvr47ZiBAd0xj/PR83qtoMRlyZaK5iT2dNkNYw8K8XtE8+VbQ8LHtrET07NAqBls7fs+aCiR5cfA7qpZpcV8qAqCEHa+eDwngaNyM4ZWmz8TOiz8YL13Dj6zg9aBUbSlHLYco1e2qFOo3Y6VWPf/4b9b2jxL6Gn5cAui+ELZQlKWsiSQF/+P0P//7yGZ/L3sb/u4p8f48EOuZTQtM3ePytR/OnF7EnN0XVE7QWIDhvUyGKvhgW8WiIYAJDR/VelhhN3GsP1ZtiI2nTu9RhTv63v3FuFEe2alGcQKM6atjfi0O1ZKHTH12Pmago94pHwr4qQVilI2H4nVd07w3JH79Emz8ZsVP9aeQ/v+T0RAKbJ4Em4PyEgNqbnt782xns407f9Om7Wjvzm0B5aI/kZziKx0NPD0DexS02nSasmOXveniVLYAWDWvD5gfv4KavSfIyNCbkk6/Bcxxj+mzsPl2CGxDhqbO2/Sx43syRuZafkmqTkVxzsO6ryxW8aX4ky+q5jNsDN/jDE6psfHX9tmoJP734oLfffQ+4OigaGVedh1ob7qN/evLA3z7YsiY/nbVJbuHJb2yqvV0vWlNPXWGTWLeNDxgpCw5IgxK6Dnjzf1OG1E8sqVf7QxN4ydh00S6FLIlPiNZueA/z42HZUNg1LmHGzq3+4g9WdfOjWLbEik3exQTYrhbsG+RYjTtPTKBfetnG97SUL+YpA3dF4Wmkss6bNr8Gbn4NPv3ub8Ck/X4V/tbrj99vfosGJ907/eNH8+Gc5fBtPAp8bg9+utaLRGCWcwt9b/4v17ZLvx3/PeATvlqRUPNPF4yiOmB942e9hi0Bpr6R0K3ekc6X5+sOajWYqEqR7q2XpY3/+AZ264QflidPd5DXIhPjZOSGJbfIHfz5v9t+1Zu1mDlYXgbyL3+zd8yV4EFfF+ql8lrR4UNXab9KArWQOIHNX7ThVi+h2/uy9bHPbWnzE7DiHu7VeJa/69F93hm1jw99+McX//Syg/QuXR/7u/sPf9zoZgzzgJIYWDYZtnz9q5ZmKHfyXz3ld0MBEDoIbbgOqoPmOAZ6b7aeJuFrsdLzEcr6aBSNBt3H90v/9PBkrt3W183w0a+3g4gaJFzh7qSeCGgPYSqY/f4KwzqKiLT566s/Hsc/vCDZMpcVSw1HhA7d/TBaro4+C8loAmFRchrczs/qT4+DoKmNLV/f0ym7ylsXOHZB++MtjBhWDqEk404k7Lc+o/X57RSIy22y01Z/Ey4H4P7Ta+E7PukLaj47Wc/HB+I2fGRGD++QPPqecDLTdU46YhGkP/GIk82foZ9T6Moal33pgzu16dp8jBY48mP959+zM0ISKGxb2fxPpeLgO5z//o2TQnC89V2FHPSN+UL1+4X35gGFMfznz269XOZD9EMwF0xC4L5fwBTgjy03rNc3PlB49NWV9ZEsmoBP2TNOV6qWovzpKY83P8pbx3fbwJTPGgKN4s3+4g+8btuga8XcjiTr5g5GB3AhY6EaA22CqP7Te1Tb1oM5x6sP/uoziHv3w9RdSxtu+IjVgj8w9pocBeZtpWLtHX91onTUhEfnYBLhU2jRGJ2kHXzNtKSbP1cxfnU14I0nF1sWMHWWnJkJq/jbIIG2XsqG9KbIW30TPUAqgRXKcyN/wyzGl4H/MXZf9UL6448bH0unzp2hvOlDbKQ3oVr207mEpzb5kXkn/NLVflx3kJeW/l99ag4qsYf6+5lRtL8oYP7zO7uG5NjZNUI6p+MgyjlXaDj9Sn3FnGPmQ/ulkm1/7QG9abgAma5F2EI9pxNyIQJs4rLDWje8q8kUofnHt6iji4eq/4T1Crf6LnXi5xhteJrDOTw21DQ1Uz9EgRNKf/7vHz5MIF3u8l/9fHXzb7WweT+DSzDcyKGhvLeAOBThmUMELevTGPhjZ+/+6VeT4SIixfPTQzHIAVU3PjkGlVmAQxoE2Jmiga0PvoZgq/9RdfMj//QyaDyhonbd8um/9f5/HCkQuf/7SIEVm1/qN/c9mxj6tvDT+pSaIheka3sYIbyW15SafaQPwllu7xCakketr71W60MENpQv2Y1eTt8lmi+XWgPx7TngM3vz+nysfQI/mXHE2pBW7HP6XCHw6ZFiQy38dH7UQ3sED74ki6B26ZwhLoBGszXKauS+Yvv4ZkJPQjn2mw0yQm61gaVPBnWjokqX13fw4eO3O9GT/W3A2vC0gNzkl/T0nvporo3ZkPkQcIiFrl+N/a4LQcZ/39i4NWE1x+SZwEU0MZGL9y9a8OnOQfNgHbDTvvdgPcvFVb5KjUn28/cTjadrOks7xxowPo/R9vxVD+tnJmKjG2NA1VOnwXloFIzYUa5GIRNDmHyvBs2Me+2NryK8g1wOfIzCgxHNjzHdSpafCB0ak9dHnnN8GD9uMzXY0/YWr2YQDLzRbFW0hK07J8+gLZRHqkHFqzq6NTK0n8cRG2k/RQRrhxhWlpvg854qgxCaUnjMk8cTHS7amH5zGkPYG76ANTNPdWJekivcK7FCdcX+RCyLOQXyd7ajemBewPyrXhmofNjRSDUrMP6qVw7Het9StYobxvbFdqpqngSsxogB0oezILdyIeCH/ta8ybuld3iKu4ocz5riLd44BrCP6wfVgqhI2d6GORxGQcK2cpgi2n5HEXKsdAjcvjeJtWIHz34BCS/JFVh/dxKC6oRuVFdNnXGPm6fAWjBO+JTbM6DRTZQgppihPYBS1feeXYCpsC2KWJJFbPeTR/CwQYZdlAzeiJt9KS1UqMjoHhVdSGcCpeuFN6ivLX20qN3HhgfbO+Gzv3Up+DWmBPzPgUdzaKWAWJJzhWf0UrE/FZG+Hi0oQVWZUoqvQjN0D5DUEErDA4nPuh/Y463NEET7ePv/TF/Ex74AHLV/1CN+CVagaQqs/F2H7YPwSTnQaDb8eN+Souj+rVZu10NYzhxHxt0pGdbQlALgGzGmp9RkKZ2jOQFh8JaxrthqKkRBq8H2pb4J3OKnDcRbDdGyIuz1xqSvd4EfgZi8KyI57OqxLlbJvhxfIf7bX91dPZfQvK0WOWYfGq3W+tSgIdsa1mrRArP7vUE5lsKKKjvpHa35uJQw9s4SVcvjaVho3rvQ3q01VYH1qToAjya0Eq1H4jp3HpHbxwg/ZVxQWwOtPlv3J5J6+6RQJ9OQt/Cl6sopT16ENz8DY87r0EMSqA41ptsUzcdB1sDBPbk4GEXOI/51ucu5BeQzx72VgYHD6sv++vDJApoSzMQCPhSZ32D03bf69Hm9FfjAZ42e5KLQmcJpEqCtJ5B5e585EG+N1A1vhkQza8Aylo8afldTRvtpm+0qTWsG306iUVXYe6AtuxpBS6cGduy08+bVet9B4ZGCevGn0pkXXHN4CWpAXXT0U9rbH1PW5EnB7s+y01o/YgnsBetC0ZsdoqV2bQiPchRjNZ54b6qfn0YO5ZODz+M27HyO5hiKB3OmWrB+hpk8Ug6o+1XHyJsu3hpcbzmsoiBAAi6HiNRt68PHwGF8r0nv0Vq+ENig0cFeKR1BV30uknyrvRL9xvDLGHTiOxxbfsUn7Sno1PD5HHK/JMI6Vp7RbOVqAU3eWYlgXuWIlSAL4E9736nVfIV03Blb4+zMOFI9+gUpA+2lgfMlDuij+QrR7AlQASiRA+zhiAMErN0Vpoe+JPvZVPSV+SaC4lHjsaNebmxOT6gA2TYCU3V9O2LZ/lvDb8dfiNQ4X7AeH68Cfr97i1BlViIWi0/7Lx63W68JWB7hUMP5VZwogk6XMk4HIrQu6x4dtnx1mH3FlNPg8KX2Sf5WPytuexhP3Z3q7fUMZiUpS/iXT6Kb73pb0RTCPef52BEPqieIQr5Ck/dWqsOE8xaJ6XfZGNsBq/lC2T88kLtRodZn906/or11NXHPeMtfARMIS3t4AYFGHx11qoVkI/mLNyKJ3iVirOTdv+fBiCUwXclQ3aFxfSpUu8y1x6os0iCqfIjtW3ZlzNwnvjTI1wt+Pt8LW/hjaMhpyHp0tKU+XUsZjPDndyY+xcbda8nbtyXaOgK19F0VEWWXtNAqgzu2dKVghFRAA3HHfKw9m5wdxt07lr6zK2I9MBfAstnfgYcpP6i9zp2+qEd1halBKUr49uatP+vcS/xb7ejdiON0biMogHfDt9jU2K7qlDeI4U50r2jGp106K8dqBbf76YeNnFOq1b8uV/iHx6vfD4BSLbzCSE9mrB5kEq38Y4nleBru1JOHVWdvMNtScl/Xbb8cPfKzzi10f5Lyjx+wvPys8iG8C0iSZxf03SIZ4O/vC4GjVcI+4UrI+ZOH/Rh41TT2WIRr9J2xbex1fYpZHwBNpgo9zUsUrfl5DmV1P+tkH65D1ajvZwK3/UyYt0vZXH6YBM6BmOP3VFWMFfa+PDazKuG/70fmr5iBjX9QZA8RYOpN7WG1YzOhKtHAoTu4O7jFE+GlvKxi6TqaEHdpjcAddhErXQ7CQi1njGez8KhxnWb4iJptUMx2JJDM0IeODW/0L/+13aus//CNqqDRGKvzOBdjKajQ8awV+qgkfQGvmcYhOZfOwwzuXfmHV4RAx4n4TpcQ1DWjRDHHGR6fDncD3oooRsC/HIYZP3IJGiUM8dm9mfqq3KoeftR0pWfzPEdL/1IaqGaHgEjR3hjm/l0oAMAxoZr8PekCTOPNrm4SimdT8bgtv0H/S/fYu+1M9i9/inV3JXxs3HV2v90UqFb2AYeZA7xBI7ECSe8f6Zn7TtXomRn54xvIC0RULdyPU6SXs1eIeBA+0eLqfAC2/UyRbA3s334D3jRSI+eKagyjLoc3sdKpf49xOuzjmwHlR1hjO+81QEB/VODd3b2poltntsbSXMsEtjdSr5IJhFIGBPxcqmJzbd/V8hfvdZrI/9ZjvUwVJ/f1eMa3+06u1vuOaOBVEp0seUiGTv3MguROBBNQpnHFLHpsIH9fdlv+OzHOQq0ECexv1H8mPpvNqbShqJ1Fah6jZVjpNUyk5iPv0RCl7kCOFidBpE1fJD5UtN1SD0M47r2Yat9Hp9NV3eUAs++N6nsQDvOKcQ89MXjid7rdyqyacpWmU7bHevSb0/WS60i2zukLHTMN6ROY4gxS+HnQk5qyYe6QswO5ZhGyl3axN3u7+i5fo8XBhpYTwKrau0KOFQ4+Uf9Z0W7HQuiU1ULdKmeM0cG5gzTbJxi9r3d99n5RArX9cCKX19XXac138XFJXxpGSrXzSD0HJaxFxd3Wez/M3Oqt8LMrbvRqNtutIdXyQVpFKuHv7ywapxM/A6tGKUXmT2TL/uuHIOkQQkD47ABNrReEnE89QtjxVbFYvNiyjBWR3Kw3Sglxt9mCrwOg2ldwI8Fsh+CPb6GuNG22OJKVwfy0F6mlKwprz8/ZB0a/NcJtyzqa2/TrwnyPLlR5Q4XN657s4OdydKiXVkXE+qOSyNmhqsmcSdVALrmHwBHfU4rCQx3R4EmukBqiSkO/98DKvcYAVGsH8MYv2dzdpAAaQSEgeakC7zCaeAUsExzqdV8PHNpvLUExrnKMf8I1YvV0NABQK4hPuvBknRLrJqxemULuwoXT11pUOPjenyLsSFcDrH/833tEA5k1x4vYXD0VACI53vTWOixigH3gQbvC/qReAHW+vx0E526hp8/yTZc4u9zlJX1r+FTSHyBPpoSSkksR/dNby+csxBCoH4i9QCTVfLpGM3wF4Y98lPfTm3e8KULprqT4xB+8asUsJ7C25Q/W4hamS9tXK/C13MVnY/ardU0bAebh70Rkyf3pq3IGd2iR2MOW+5BSppFAg+ut4tFui6c5UE47KPL2gJ2iO+mb6ZPBD2wCbNysJRo789kfK3gYsDqFcFjia6fBjY9R49rO3orZfZRPB5/HySs56rPS67YMdUXFqfZQ2YwxqUGB6222PPeLphulMWwZ98L5efG9+fLM7sCH+hfJxa7dujxNK9xdHg9q7p4dm1sj82F/PmIkEif0VumjB1IL6oWmsj+zRdJqDeqgkwmnlB1b5++cQ3RoXlQr5lWfj9k1AWMDJnT4vHN94lUtgwIyQsTb5rea1MQu4WNarxiTT5OOVZgG8O95lj7Ye1N/CwKopJpD9tFM9FHVnw2on7mIDe6tVAf15vTwBMw9NRcPgHFvThrE/Cch4hKdUj43ux38dWGEDp/dO5pyGuzgG2AH28/araaYlSFo+bmkiuZ46canM3B3tITsAzKzIcVmAH8XpaXBLs29ua6WK/i8ZR2rYn3a9NIaQt2Slu19ThVnoUKUj8xqKfqBs76+vFWAy7PcjnTIAljNp9uCxdEbskzLC8z7g38Ff/vrlvxW7996hrLl/OMfc5tOLui9vYuxSkq2kmG4gz/+dHIqJyLx8yjBqTR80lncAjZ8FEHeStuRjaBK2evijdtgnhhb/lbiO3cxB9PnKaCPeFDADCxbgqug+tiizEipn2g+qKu2o6f6qg6LOWgEVu/khGatHSsmssMdSnqzJ7Jqifq6T7gCpqAYyU7V3uncGlcfpmyO6cl6k2is3HIn1x3Ef7+vWi7YqGXtyAlIWJ08pX98GDzZj/D33WtYYRon8OjlF6rGKGIMXJRWRkP+w7q3A2A+sZcCe0926Z/fwWUIhrAxiie1zcxkKzNeIvj7+3/8apFSKYHk/B0p3uKn7ZC6A5DjbST4qs8OXmysUDFIRV2xXwdqWloNu+OHkKP3MqPldXcbkB0+NTXl9BeNcfMxYMFfIEWgDL0FflsXeq/v5R/+9qRiCjRvs0Vfkmt5bHpMHFSn64969TuqZnPqXbBIypVa4/LTF785xrDaLTP1L4uYErl9j7Bv2pCmm36iHQ3bf/rHsW7BwPLIsWHif1Xsa6HjHe63lwJWQff/1iM9QLXQ5E3vYDfl3+nwuyIBbPqMnl/Q8xaffAis1gFgdUnWdPVHLYR9Hjc0y/dmxEA8Q3DYQY2qtVwMK4xaE3b7wxWfysCshvpe2PLmn+Bpy/eso0kP+O6c4IyexmHEb8uH6bH+4WR/M6LFEL8SuGYKh+22jgdGtfAOQahHpN+e708PAFnZ7agRqEdv3vTqv/12+4S1t2TVtAIgrTfsmAKN2vlS7GBj5jnGmx6bfvO9hTvJeFI0nJRIOJ8d5Z8/dvcSvprc1ER/fJNonCCma4j6Gmx4gj3aNdVQZZECiTh7hCm/slpalVv/vhda7l3isSL4CeCcwxjNd3wZGJgdCRSBqRGwICXiXW9qIMtXRNZgVSuONDCD9tV6kd9F81N2SasV+t9pj4S/fAr2QSH3cfOgm/8TCfzjmBzRsSjx6/DrwRp/Sh8qqeJQpeee3ijx/fzHr7E/lsEwW/cLgr9v7NDko0/VWmayBs6/v66fRylay5s/wl+VGXhjbNUkDakGwYh1qli4qgj//hB423Hd5o/YHm/gnQiKc7vNjn613j//ctM3VE3pmi6v1yrBg2u5ZIofl2E2DWBLxt60tvf9VP1+PWUQ9MGOxu3pkLKbLkDZ+woydmypj9Z9ZCB4fcEjPT+5W1Q3LjaA+kEreZDtyG7JKih19CZTNeNdtsyz7YM/vqNkkj7M8XYr70RkB13W+AqaXXww//kR58PPBWt5vibwAkINtY99wGa9oyH84x/GxKGt69fOBOX4DqlH3W80C9kcyq/8/sHn6lMPm//SwIdundG6/7g6OZ9VDSS/wPmHX3QUfqa08U9CigRV2/vtAH9Yx80PLYbps3sRQJvzgqSwLMDSeWUpH3l1oogdXwN5dEkJv5yuUf3m9/o8vcztfncvIX7jrwu5wkTihuBF7f0IvdkI73eAlyH4x+9m3guRPOSXlqrGDwHxiWMb7jnHx1q10nS+fIwe5IrTkZ31BdGmb2cY9sNEURjr3jydG/Pf90dzvPfWF0xcKCAzpGf31uikkR8cnC9JQAQIG511OxBAJt56bBqH58DljpOADiln8tuxMKL+Zy1lN9q6aLzKchibJx2ln1Jd6CnzPTBXmtRCrrvHeMtnm36EEFzf0m7Tb49q8BPX/+Ov1Kf1xNbO8Qz4G/wYB+Q1VZu+XMErCH5UUb0WLI8klcARPLausd7bY+6bN+GGr2hfYTnd/BgXAAdA+L9evc+LOrPNRexSZSYwyl2IvWOVRQs5pSs457t48xtxtJQ/Y5UfqmNjxTibEZuj7QqhKyUUZYvk/fHvf/kXcQXHpr1xasDmt5J501+ze+Pv//zhv5+P5y4WIMs4B6dHA+gdu98gnG67+z9+wrulUEj3S2hSfwDHiOVewME/P9J8q0nF6Lr04O6LNQ2rlUYz/aj1P37uSuQcLULYFrA3kID28oeLyM6550AigYn4z3JKhZB2AViHQ4o9f47Bmq11Atdnusda//pEq35+51LlmG/s/OHZrkKc9JYdRK2H+dPXnPsIQD9OItbe/XPoRHHnAys2vthh7jKssSQ20stWAFan5cWmkvAm3J3OH8JXqPMmPokFuJPMJz2PrwPgjZlvZP/D89iNVE0XqlzKpb1wuiDu52TD9r6tPNbydqRz43M8OJbgyd3uZPkAXV8mJveSylpE2s3PnTH5CbCIoE/f4eoNZPOz5fiWDhi92SOd8XZ3uPNNm3ydqkuXv+cvObLb/NAx+sdHXnVrY10M83StHpoL81YckFTXYzqVP38Gl7BStnqSDg6bPoUSCU1sL9E3nT100sDmR6N1kL76qhBJg0WoWBifz6FOX0eJwFrUXPznT9LNf5E2fUOWb6aCxVnfLvhIvUeCl9jobBSoAf70ePx2DG8+sZsCuYsx4bOISo+J9Z2A9Od5RH4/CVupscxycK11fL2fGFiA0eVQqs37pm/Rdv5XW+E81ApKSnX2WGwtnLzVKwiINZVNl30lQiWccxoeX3TzawsEf+6k/sU3YIIQ9xIsXr+tPtR6rSlv9YS16LHxc+BAUvER/vMnbwUr2ZJtRwL+8F2Jxlu6cmZ6hxv/IF/kFumsjnYtMaPJEcDRlc3HLEvgRdM7uvGjQXgoQ/Hnz2B9Olopi5Bdw4uMLCSdQQfI3oskeCE9T5F0Iunvpm+Dr53cwrh9eQNnhPcr4JTvnZ7XT1jVWZ6JUFfsF7VuXRVNn691BcainalB1kWnrP9m0D0jEWtP61XNq/W4ws2f+8cvBcX0NPDB75GqT1+IlpzGO2C32Y5aVSWC5medWumHfh7a2w3Q5910b0CGpTNGTe5EByLWJRA1LG78atCnYtz3MFKzAbH2embr/Xcz5W2/Y/UdLPoivn8CWHfh4U/PVeMfn1G7/LV1vfbYvN4PO1BPwpPU7+jDCDNuW1ca6UHd/a2O5lPF/ePH2Gt/XTTTuff//E1y1MizoqyfMlBP3JMq3YNPZ5NPckhh9UAo5zlG87KboavrNiK/bGCsV8QVnvhg/lefZO4B/fO38P2tSsOKt4m4m/+z+bM7NrcRx/3zM5fT9xKxulFWOPBmQzW7vHvL7XcwJD48cgjeY5qyIw9nKF/yG1YurTTMsaASaO4fJRluihGxSbmKcKsnEqHjtHR1HfSfX+H+mm5oc0dNYLbQG1kyvmcrlZ0YJtrzgu1TbkSC9PECablEIfaqJ/BWwQ5m+VByZ3I4TtLml3t3yEXKisO4zaIpWm0CC7WYceqes4HNvmLI14g5W36T2VJwdPfPv9bw6Oh9WU936D6vZONHtrfx9QTG36NGtbjN0lXF83ZF7aASbk1P1bjFo/yHZ1cSUbCIb8qBrf6JBEdeGD0PbQBd2l8R22dLWrlmQ0DN2QrODSMDrPLXWPSV4kSf1aBF67ruV5gXg4KY/ZKjxZoUF976t02VoBf19f57mdKhEG2M7SbVV8o/TSgoSoxEJR71hTZJ/m8/mKi2AX8M/RY0iDjboJJjSj9LUwJocwF1qAbYdO+4Egjq7oWEnejpJNyrIjB854pxRfKBcjqQoPQm3Ob32t7BvA++9Ke/cP+cB9rFDoH/nyMF/P99pKDsJgXNhK/Y4pLZh+J5aqn1OHXDvD9us4M7qpDdaIfp+v6lM/BPUUb9r6tEXNA2LbC0DNOU7P2IXi6GDzuIC8L1oGBroBsuNPgyx14qO+DH3vv78ekOCeHEbxjN64c0wOjrhp5UWY+G8iFCOMu7nhrXXh5a9Sxl0JNuNT5tKXzpwaGBjpHb1H01xVC3XlVAzrl5iAvqEMxexZewuO6/qHAqLVqEVTZgX3Mr9gVuqVoTzne5JlmKMXmDYb0gLZRXhzjo3EZnfZ6gYcLv4aDjc5pIw8I311AqZOSRbXhXNPM1r0ArjiZsWz4DVH84d0mbF50cdy/qLdmolnJwPZvY2LWHiklLcpWyodhT/FHfbOEgzuH+fXgRCd8/6bLGwSyf7hcOO8PnkU78Esay9FIC+iRC5c23sidwflUEreUpYTP6dgHsvPSIjplyT+mbTzkoByhD+9enBP1DOdfQ0awLKu4f4M0T9E34XZMA+/FDZL117DiYF0GKn3i6VAQLQwBv6apSJYgHfal2O1vC026g+KpbHuuVToSSZj4puiaPdOlNfv23ngb3/lXLRR0lyJezgWAlPgGJQJbAyR8TnA41z3pxHHv41pOWKk5VpvOX8wto3E4lPRFjGtjtxt8B26UR9q0YVE2tOT7cjdcv1p7HU7QQLt7B1z5j6GCDWzobDWcAzS1aeolSnx14ZZnhfg4TjJPVYCu5fxr5Z94NrJz1dzq/H1wGz2lj0dM4KYBho4qhxxUmvof9vWLzouVwml4zVhRviWaUnTkogmUi4fW319fP9QuhYnoi9l/UAUNxPyHYX3MLfYcbrbrkWjbwwswV2yf+5/37Hn8/33vwwKbEs2wZbLNqZZLJ3rTqByS1N++NrcskVqvP7QuwUzWdauVJYh1ysgb079tENfWbDdxBWgLIl6tBXeNXVSwDBQe7k2xiK7h7YE1RYsPvL4/xyfbzdHW+zzv4W79IlWowa6RaZdlWTHTkh4FRrpczuNubFnUPD4XxN2ob8C/+7ATdo159XdZ9cl+2ElRf6hN36ndQE7CAnRVObJFUdQQm7xQIHis8dGBcbPmpHWYiePwEyLeUSvjQfUIqnHspW3+zKcO35qD5YbWAyflYQOAZN3z5mtrAKRq8Svg23zGu6lYnYTIYYBHgj6oUrxW9veMZJAE0qdcGpGLZek6gOEsWEScX6bNAmQ1boCKcn/L9QG4hSKBzFRhWz7E1sNS8QVlLQESxoGRgxZPFwdV6hKibI4kN0RsTkIZujNUcIn3+9ZILhfx1wdbTpvrs6b4P7WYmaBqfBzDJxycEnyEMsDGMe7aqr+cKZ/BlBJoqAkwbnoLk3bkRR19H9Q5vPhXgDxVPeg7bQ8Q+XuzCy0mZqDtrt3SxH88QFmu7x+ZyTtL18b4iuE/inlrfmw3Yy3ZGGNdswKfVFaOp8VoTGr+Dgf3AqyKavx8N/F72VwI0UfOEw6BCWYfFB5tX7Qdm+eEkcNynA1raggNkb8MZFFuXDouwelg7U7oD3hev+MS/DY+JT5bAl8mX9OTyS9qkU7HCrxwJaH83x7T3WMaBw5M74Xj+GtVBG54cZLq5UM/PWsYc9kzAhh9oGZv9QLXhIoCkNiIi/tYMkFw2IbyyKv2XX9ZEXe7wgMQzDln/HWbJfRcS/wr21OLbKR3dR0bg5XXWcFzHLpv3VemD6qRXFPnow4YD8URAP8KHlJ+kGWaexBmslUWjBve2Ku7lpS1cuk7EHhtqwA5IDmAnJBrF5J0O84emCdimmKL1YpU6EQXbgJTbEWryxxWwQtiV4HHbBVTbfv+6a70Erl9lRNKs8RGFL5WT59gABNb1OiwoFDVo7q8qNQ9Q9Npy3plQX+QbdvPHvqJbfMAK15RuNwf05QwZgY/o+yQpGwzGsXEkUDUCROMFLtGWH69wGF4Her7Jldfvwtjf8qCK0Wcng0Xc3yRgQtmlngKsgXWco4nrtVex0r1W0O/yH4Q4Ujgcg2sZMVVAIkRGxdDf9zjshtNV3Mc6Q2PzOevcsfUyKVP8F5qXWmX83/6G3U7FaPUOFTObXwmrMxaxkWjbLWzE38GzqFySD3cCFlvbE6Dr5ReVy0+J5ltZEjnFMf8PX9gFxBCI3x3+731MDQZwlX8jtouw8ObKlBLIGrRD1C5PgHX9t4HqgZkYucJcsWZ9hVJweESoTjQ01DavtDJ9XK5Yj+q7vuXTEuZiPv9bj/nyOjagtusRe1p4TdfTYWdATTgLCPa/A1tuVDHBj0b0P7wQsCNATfwf0q5jbVmeCR+QC5GWYUkXKQkCth1YwYKUBMjR/xc+7/Lb/UdgDJO5yyQz2pGtv0VarT5HXdXM+tmTXJU0PvOVJ0i3b4XVisWtIJhfHaSPpDDHtajVh2czR/WNtrgttC/qXpvloG7y7Zs4cWT+iw9J/RQkesefajii5x7aaluS8BM51XQZqIcs6/5i609SFZ+VtE8gfn5GPC6CeZbk9jhAaXg6zqXDnY/r9jspvndoiZuPTjXut5mPhtWwI8VbvvzyS4zO8ctjBCVVwPd3dAYtOisYOUaStidFs9X0NHmM7PIU8V8+GaLAwqg4nIPxW7gJ4sXWJXp7ly3Wy5OH9NEz2K33MB8eLM2BqacHsVydVb04aS5UjZJQZdN0xSAnawzi+LoRy9qOFcUr7/3DcxbohFjD6iSqP3yjb+/hVmMTn0LFcw8TI+uhTDmx2yMK103KfBZvUbc7rRP0vl93ZMZLNJVNiTVcvmSqjaPHWSWXscoaUySWLEqc8rWJEUyVySJJoFZbuJcFXDQHZrzN0bRxfQpx0DiYh6tj0UnqmMCp3gtsPYi+JUwBytGYCjlzk2bfjmISDIrbRDVz6g6qsR3NEorVN8Z8rzwQ1SCVwUf3DTFutVsN8jr3VQjjDwscYyros2dvONWZQMzRmKqBTL6NonYxsUAjbTUu4ZDBMQwbsjv0y4L5N09G9uF6opK9aqoO/PqpFiRfsfAbt9bwSlMMtH26xF5iJ51WaaUDbd/uvL5zxbvulIGRNQozv++z9d29nvUv/slaobLVe4dtAiZZFixMX7tCEo/rGpxFmTNfyd106nxvUqck9THbZt9gbuw+wSGWJHz4JFYh7iZf/+PbShcNwfRY3RJIWmoxY60G1fA1t572OJaUmQrfoUlVnDO0ZhkSIy06NFjIfmurgxgS/U0zROn+8dRmvKeL77K0+O12ryFd2S1zto1qjWXqzpMrHwUdVvYV9T/+OZ3FPfHFkVvDrAdQrw43Ejl2zMelM78ihfeVmdfWa4VJ1H1QMj1jlzrtg3oK+BFmvkU8y/1aA/j1GxI6LpmXC7Y1PgXDRUSsOrywijyY7Ps91D7WMsJS+W74IF+iDH7nNbSSGNEl35So7UXKdGEhWFMuX+YubiuF+Wvkc0FNJ1CB5QJzPuSJZn4+TxT0aqZXyz0frNevRDA+WfS4PtPaQuEb9M76sHDOV8MgnHMw78cj85zVOpAQHK8gR6zGpa3W6dCcmK6KChdYuD4WVTOyFsO+HCcsnYR1NQjHLET2bl1i1SJTMY5VJMLl9LGZ/77iVoT4eYWdIrrEUV50HtSzDbXbPKvRiwe1ZewdZqg+KAZxxVeQ8i4y6Y9f0HvtusEgJwSDH51tZo5GMg+mOoWwydM38cT6i6ZuxTy067yOGBy1AVOeyl26MNdj+mHtIemiBSXcgqdGguSGAz7zBzjfl5xF+vFYcLsqPc0+nE8sHFqjnW7b+xvd3uiOuV4v2jHL33dY9d+GhIUecGpwewHCx3zR/srcQqq97ROute3Qhb1OZr3wfUIf0hxr/vnBazL5LoyLaUuiuyy2Y3yLBSQsXy8qKME9GCdridFF1XVWuMelNVrrRkfqpOr0uJbDglv0FqraZfUkISRRO51PxwTWsXMkZuRe0FR1tqwpUhUSqw3f6bh8Pz1N6hYJCdlybgR+Ue7o7B0nvJj5zfSyWhn19t0h13m9446MVy1VH1emB+9PNUq1bqql++bspyfGz1GX//K3fAzGYMrlnQiuVB7mV0trznObJ9DqwQ5zI5MsagqsQWpys6n2ehKrh6i5ozl/zHrny6e4j2Vt5tN42FRl2lcb2MMJ3QwS7NRn1a6ka6xm91Fhzh70dDRiOEJiXS4UrMW36LbZ3oes/lTEFE9WJeVkzGHeP2I24RdNRV9PQGvhSZzN1W6n3WSaf/kdb24V6tBu16DF04tJoWzuiF8+xz3Ellj89EFL03M0ITOKfWZ51s6aIh8J4AmFxHDBTCRIRVNDYt0uNGzToZhUO2iUk6hj4mXOO534eXXUvnqZMmsyWPDjFyidegErLlmh4bVZTup8fqnoTHU7HIc3RmCfNQrZlgbTYzFRUAl74FFsvhYnSh9Cpy/gd16qfuZ3sm13Ep0UvuNDOYg2IrJaMWwcM04fq0OCrjnfEyyTR9FLnnKEWQ8x3FHd4lEfHuExrhlzp9u9HZ7ezgbksSv9WneJs4tnUDjHH48Z7wtJp/E0mH981xtjmbf8JmVo57Y1HY9Kjb7pKRBATkST/PyT8YZYp+z7/YLZwUSK2e/JYd0ahHm96LbTQPW7Ful1zPTafQd8d4snLWphYtfNzULC6XyhKMshZ2vd+qQs2PVncMTMIVuyMwOWnM0McbNzCZ7zOcuypNGqIT8Q3+txQX/xmX8fLlYOXh2Mq/c5geylJnRSb7ToBp80UNuTwMJQlCo6f98fv2Jm9rkFw+5EEoTeuYzVqfXSYWUHHVoYusXyfCsgukpbHWCDBio0uzQY1HRawKyHSTDzoykAOQaGu5SZmvdoh8biAsx6nBjS3qiEg2o0cFAuHln7MuMcTStT+Qj5hrnNcdtOM54jGjcEK5prprTxdjrM55Ul3zcE7PI5ZrA39TOWSJMGk79+HaFel3s6lWOaDizRc23GGyo1hpEOUvy8g/8+DQzDLgzGUiuu6FGd37R7P/pgMq9whd//9w3ZqaYNsBC5m2uCxU2Yo8Fbah0CdhTI4eSx2Y9IBRj46Uoet9pth2XVhLCK9ZJsh0/FxyRsTXnmW8QRIo33SX/OQH+HGzbztbb78dOHkz/m34+CLq5pgxaB8mU/vSjsn1EOn8lKcBlN++Knj6Gj9Q6XplSi4fmpKOqUd0ScsupSGm62vqbx7Eu83qfWYOVpDLg5lUxH/cjpbXt/QkL5EqtHtbY63/je0bweEjife9BFyjjBPdNexLkJNP0mYasj9e5dGbYKNRi7j+zBmnTzLPIyDsZ1ifdg1xEj68Z4pH/45E6nBR7n/z9tXttM21wsj63TQePv60txUSkdc2Ye4sTqb/niiJayazO9NCGdTv2BQhsVE3GW9Mr7xCJPSNfmm63P1avlzf5iAxiswMvD5RRMuO19tarWNfNUmlVDdX694X4eCbtts681CZNS//w94iaNWPEynES4GcY485GNNR105w2Ol+hUFEo3kIbPRweBherPLy3GTqv2kHD1xLzPBIhnm3MJiSNmtJvxb8Ir7wlP5Zgy/2bJP3/F/dNHRrx2qu65le/aThFcKm7TL+ddqakQnaKYePKoWl3/PsoQvxc1McKOBJO4zM/q1q5N4iXmnXe/7zvjI9NXTVh1ox936DE6bI6fbTtV4SJGy1c2d828LYNu1tvwyx/ON2mK/u72KooWNGM/PtAVGTVhdT9FzHiNIu/Mo/wGKTELrGyd8s/PQOS9MYizOEzBD4/++LO7POCq++ivI+zlRCQEv9qgX4eFr87xSgzfQmha1FaOTKIVZJPyczG+bvJbLGR9zWK8c1pq32uMwptYUxQ0Tiph+rHVbn/WWRpulog75FT/+adhprmtFEWrCT5XxZ7PzwX1eda8f3yMmZ9LgNREGTvtY5D2x/fbQROPOvhOk896V7ekbzblwBpdxNDvd6iX0vf5j5+eaLwqpnsaJNC9hfaPL7BbVpbgHtYFcetdmIpce3foXRzQ3FUh4eNFbvZ/+h7KokzruKY1eu5jl2FfjKuuOTETndDFYEeSmmg+TwOsE1Glw5ZJfBwerQfTptuwy+cjpJ0uLTxUydj4+ZfWqL9CGe59oBKsG541SONFELy0eTD7kMZtp3XwhGY5fJmVL8Nq1mchvOx9QGY8C7q6y0R4v5DHzGXg8tWzedVgnK8V5gvsIdboDxWW5UtnulEuLIrDa/nLR1TbHXYpW96PCfD0dqby4SYXY3dWdRg7nTEz9T/p5Nm1jkY45bPfEAQ/fFWnl9nN+GoU7UdLc82PrjbxFsLyn382+1VED3SF8/6oC3C0zR2Vg4Vk9cYQ6HAzrBEr5qYNaIETH3FfLgi+TF4qWoLcwbtuGmahW8NnfdLBKC4+JHILrfrz92x/02D5a1vFStJ4iNTXa0uVe0fR1AftFcDoC7JL4g8fD1N0VdtXcyJOEq/5mD2NBUhNOLD4bemVkE/bBcTXISG7uoO2uzywAN04VFhokI6E0ycVYcS7HT73+x3n/ne1gK2ZBsQl6FgN5428gKTtLHZVk3crDa5GgU1RSBzb5RWPX2eKROFg4Gn2b6ZT+D7CiScd8UOuWN3mPvi/9dC3XA98ejv4jXaS+2ThyRrTt5B4e0Sd7sByJzmg6ZKrAL96iz8uGZr184RmfsycdsdazpzCRPv15cc33tVA134Ms55n4fOZtMN1f5rgILI31rrTAY2d1u4VZ3HPZ737Kv7y+2n3Sog/1FUwMfNkqw7XMFt3/lzf6Nei+m3FFfNvXwfNfi4G5StNWOX7czumJ0tQfVRumHMJUMqKD0nAEfcOM4aPxXmxzWzYXSUNl4TFfEhuWfzHZzadUlcduiouXAT0oUP0jazx9oJS6TN1+PMnxiSsTIDSOxBLGHrr05UrFR0PXkkOAghoWl0fnraO10dmDY1ZjBulj9GwmnYsvHXPdPZDMLp9kwMzNzqf8U+Z0GswTvP6Kj7B+1CjIvGOxNvuveJ7y8Uc9n22YLM+TyU0aTqI+wTYZrn5tFy29RCFR33BbN7bwepryUc0+7s0tz9WNaxOCxXcMKgY1o06EO/XTY7kHVrgP3/7NahvNPsbbFPghNcf/ZXDlNUGfs3+FsOUuRBqck+IsWbF4K28BlIsxBSwAoiGtzD7+UHMCo56xY+Hr6vGmxTTL6/dtDN6w4Zv1dyJt7DuaVdox7nx/9Zit0DsLYYgvqLzog2ZtXytKnpWjSdcpnDPXCm+VZxUk66+1PeL+OgSVPXPDw757oGXc31oxe7eFerkitkG723Od7rvg/O19lRb9xWa/dF5nMpVn+sd0Z/fh5J4CEloINtiyz2IcCGWxJyHlKK5fjdpcz4ifr7N+B+eL7ZHSoJrt+bCj092pwqIqeGumCb1m6GTgz9sXYxlML70xwJeGRWJrWsuEv1R9WH211ky50e2FIMzfMWjSa7fZRnUIkM++tXfInq+BGyNDFv76euNuaraP74s3dqKKs7zUTUZLF31cPVec4k6QCvn5i1gdRBCZtnfEk3wvjXK2rwSFuVWz4cQ+xlooh1gafYfu8biIqSNz7G4kdN00MyPiIqysrCw7ux22GZXD835jSqd4rUUihn/CvNAF7dVX/30GNLfeEO3ebyrhuzwfAJjl5n/iW47BuT7BDRmA/P8j18IMz5Bci0ysvYI8O/spyp/+e7m7dBw3W8H7bZ0Vsze+nolJR/vCvtJsMjadLt2lP2zC7/6aSiHJZr5mPtX39xctIH3IhxLqIbjgVkXcwpom2mCxlz1Sxx/tS2mbvXx4GU8v8Red3Y1FBxqMJbvgfjfqGvn+lWJpLVdMTzXm14z/1TbRJWYJy337fcXX5i4S2ZCmfLhgRsXnZzwQ3RXsFOJPh81rFfLNa2SaJOOOxvtf37gnJ9efJQ0jiH/Vi4jj0/Uii+rkiHdwpUY8frVcodsa8ghrtnm/LatlxEL+c9/ptpOsyzBN74lSr6HkLY79dmOxxq56ms6xnM3sI81jMu8VIGNN6wUalv81SP+nysF4n9fKTACdmHOvuv5SK/fDspnssUroXYLwQLzDpFZeMxbXXEgLoyzoPS++WD+6q5WQ5oeSviW05lt9vCwxotvvAE9Vgfm+MnTGrSlW8LUfhriepFW1DjfTCiU3jWJNqNWvT7TXlUjwWDMGsmU9nnyHQAb54jtNzvT6mJ5baqCPZkEH4RVMdyS/A3XVrKYq6hvxB6JGgOvpxyzRVS0/ev6GfhpNzem0Ubd4mQHgJrRkem96GjbF87O1Qp0csim2jeIbxeJq6kHbaLyi0jVZO54A8p6Msi6CJftsH5favT9Clvif597ayweXY4W/HwhZ/OzRlxwbh0aJ2zgZSop8yx1aOD4yjyyDo+6JYbip4Hxu7To9KYraxrDsYGPxBizN0At6p6vNgTvLybWaYWrwe02OjwN+c5Ov/XR6jnB4b21iPfqz5y/Vk8dNvG+Ym55r4LJumQLdXVRNOLxfFExfSxiaKurRzZnYV8Mz72HkfjhJVZ0iFJ+bgsA4bMWiV7gTUrp7QNA7U9KVV6/0jFYLu/KmO1t+ki4F3A9ampgfhexbbIz0ah+VBWKqPIonKt7OvS2t4DSwAIxjQ9rafgcsOZE9ookG/XRfkcjLbXla23TVXv6tuO7UAGMCgpiHj5VIUgxXqhmPpQE79ZRxVU3vmv4ujGYEbp6wfAUJmAdyBdPyW3RTn382iM23ncsed6SSiz31wEpl0InRJIeQY9yipHMKous0eqGviinIUxYXjFioYzT1G09cLiskZN+9QI+FOET2SyUMTxuDecpjZ8aX10Im79/Najr94AK95IS61zu28Hl5R65mJ2Zvc2jdHRLxUNLWZolIRt5s2NeDCFWA6Iv3DAdwvIB2vz9mJWm8yuG29JDHUOYBPo9q8Sh1Ya/733InQfi3Tf21Jo+RKwsOyUYLq49wDs6tswYmF5xNDZntKGow9DdbDReAQRkDN8Y50f8QMPLQ3d1vzwjcuT5oh3VNFSBd5VN65XuoWmrXmJYm2ASXFudxZPz7QhRcEgw2LeLNUloxEuNXF50OC7faHQMbQ/wWWyJqWpBNe6w4EPb5cn8dpy2XVh+AR7pXmL+ET84OxwrCnQzcTqKm6HovSdzwYvunJj+8Y2G92Hho3U0PIgtDKt2ermXRHWumk/ClzZY3XCQbdVdtx/KzcLnwyeqTVVauzuytibE6ekOFC7duKBj6N5TrjaGhxK825J8t7tVrbxPTG2f3jISEmNbdV3l2Nr5cOyZPkgETYMXeagnoUG8ZvWo2JBWc6O/94fo1jzrnNXbBD6fOKaLQajS6ZNUNiykaE1MpIgBHcj7jLJkrLEgCT6XNOfUgJdHNSOiWyHa2rc7yqfuS/bz+RxGv8phebvauJ/zHf/elvOVgnpFtXsPQa/5HYVk/ya4uo6ngJeLEKPdVuzZ2hGDdHouuKztSfcl8a5eFu+mRyVk1WIgQaEerVG5n96AR3xjwb1l8yw2EEC1iUflCZSiTuyzCs07PeKJZGPaHfn5DL/4cE3eF/y++7hI8sXlX36m233XwPJ4JJgb2quqveXga/llEFnQtt903OpyrnjfsiDr9aeuOkiF52//2KacLa7t/lmD554XxO2il9UdzZsPeIclRoSd246yu3RRcrufWDqSJO0HXGPkRSUn+sfv0bdwLi7abYWeedtGb+uddTUB+8cD2c2W9DRlOQAK8YE+FazyXtDPDfrhg5/4SXHe4EmANgt2LDrZm6rFlVGDigxCvM2Btl10XjzVNaqvzHcGr11VelOC2/Q2Mbamjxpzh2o11grphx+BeEM4QbmkbpgVKU0w2FarQhqUBmWd9Cnm+I1h0dwT4r43q3bY+nqCNhtNnfONgNhOYiLM+ECs0Os4De4BhYu2dGknaRavyXwrf8YfZlTRlo/8IF1BiLqQndUmmOP/rmtCXhhUtSy9GtRKtKG4P9+EvEy15dmpef/Fn50HdjttX58EsHGNSJjfBlQr8tMGAT03ZK+7TsWzRyCDc0A7Zi2uFI2ZT2r00M4bYvm2lg6PelGi5llYWAtKlU9f5IXaoThXJDQywn/nF5bUwiSUtIrzOH9c0ca5W2TDh6ylzreZQBq/a4yoKFbU6m5v+Lb0TWu/cavaqIsjsofcYKY9AZrjwwP3ahK62nc9Gl5GguHlFGditsbaGoWd2aBl5yvED2qt6tpllsPZqi3iyFuZT2+qHmH7jJYE762jNR23qguDlTdUlkiQcmcbx/DeNAYJLveyGCzhEWrbsb4wp/C5xZ/UpDBqrCc237/aYYNVEYSIhnTYdDlfoZKU8FxOZ7Ix+6aarvrYaSsvXhCyiFDbdyctREZiu+z0evXV5DiTD4/ttcTjl7ntVDElUWP3M+ChWt7b5h1sBlW635bEaNqtNeP7gPZeI5Bg3i9+MuZG3x5+sLC7PdG43Kt/5x1bSmkXomejBK3afUEZRhg1GJ19qLcrk5hDIVlT+JRDkCGSST6eSsSD9iug5cux8T0f7GDczpeKhPQQ0ovWf3mX2JkMUfqOGZaWccolLFMQE68iXpu+0XA/cRlqbvp44QQbq69rbwIz7Xrml0+waBEjDGeyYVhdzVdsygeokLrZA0/WsUNTdGjvaHpWK2Idxps1dkmhqrjWHoyk0iml8/7AImx2VCiTc9Gdg8FTHTPes/U2a6phnrsBZbt3mVvcv8HQB2UM+3JYk5M64FZADyPRSGgu6PLQvQOW1T1G1+08ay3supTuv2dZOu/KI3P7RZl2m6m6asr+ENDSdDI08GtSar2vP5iRq0v+WfEaq2H2CFg06J4lgT6/Om3PMglWxyCl12eZwYcvHebq86CajfQuYes0K7rRLvtqEu71AKsL0rDyEWKLJ/Kboh8fDOydUazkCufQLyAlx9WVWkNSO3c4OGtEF4nsczHqTndIb3FLrry7psOcf2EUxoo+zguW9m4sgQrHebbxfau3YybHPqhcy5nuLic+LtXKR83pXTFXrJbpl6qjDufxrrM0Kp5otPdtBlXiY+JVuoBev/j2nXiHOUqNVsrNhQADjjYsuCzWFd+8tUyRNPmM32J1K8bW2ibAh5TRxWqIkBgdqjsYdFAJ2SztdDAXyz2orzymg4NXbTfzFy2LscvW1sYqJOOJn+rbPj9IuHOMYAVx7GrWbpeRjYYQ/+P/n2TU6DTH8yiMW4C7dCDM/z5Faxr4zYX3basTO1qjlFXO6w3fu7omzv3E+HhS1vi3XyS0jQPq7XabgV4sA1zY3G1XpN9gYPLbZ36OvhUdnThDZrmVyNrPhmr0IzuBy0oHFkXey5ouSrwH56Dsft8v5dHyCGCd1guiw44F9FkEMWhlZTHT+3xb+tE0XUmavcLIAd/5QPOnDBAsvlSdrz8Lqu5cwdU/E3MCTNvxcaM1kGExYu09timfbooLNPh6LBOGXTWcJd+F5+7rU3lK73w8fyMK1u6QsUDNdoh/1PiOvttPxix1nhV7K/mEcknesGSjGu2Uuq2PsuH7IsFwvnO+kEMVGbq6oEj69IgvQnXx+3+MPE51MGy33yf68SETDkXFsTtlmi1IMq4+dmv1m8XmCeGqS4lRn2k1pW7lw25tRrQP7F3FVvyOtb5QRWbN/GEaQ6WG7/IWY9FZqO2Y+esavXQCxHxMfjWdtND86QnmhqYfSDXgK6zInuPlvH/dgVQicgYvZdn4qovxdWUD3IPdhzaZlM+NR30VjKyt8W7cLjir+2AuKWeIrJ3j25r3X0WbQ34kgb5Q0BjI11A1NpJHyz7e8CldbgaY9SzmU9kUMz+6QiMHPTG5t0BTe3+LSrfNHObOF1lm/p8pP316aAvR4j++K7/fCtFnfsbE1dVHN9s15i4GljVtDbGBTYJlupheeiu2013X1CDRiGcehGrmX7ZWbUKL5NMuSsc6UM5ozs8YfURo+6XaenDMAp1g/JL5Z5AKVR2ceMnscW1Zo1T0LipDK6WIHsd0sKkmwPPwuOHvEnM0zPiKjnq+Z3bSv9LB68UF5I/Hg8qzPp7zrQ8gfF2m7/zcmpbuJgN8WIckkDZeNaCHEYMKypPoza4I+B1HE8z6GitCt0xpTKwMLvraZ/775PGvEXsy1I4fUeH1rRAVQHZ/fJQEgbmxxKuuULg84rmyN6yRdIqDEoDpLjFvjtn+4X11748zHjst7+W5cerj6ZHi9VEDSnSPwuallSw4R01BN8UhRGj0fczi3YK3jbKttc89LNjOvEjFtM+TP3+AkGInt5PfH4/w4xMzP+OjRneZNucvZrbGJxjUauHCK7xt8VBKBaJxmzTQhauREQP3sx4ua8Rxu2ameHMLYUxsCpmOUhKCjfiffg88viU/POlGmpnq4bGusJlPcfWiqmLC9DU9Op1FPRAs4YHVH5/JZ37Hf3qEvobiD1+oUXkZHNfXYM5HTsC9g9qB7u5DYsPLTPtw9c3RJs4qdt58DP63X+DyDQlWYtyOexW7KLLTC33z42QN9bmstVlfEWsBQjBlujQgbxnkdMqnoR2tajC1OZ6ZvulyNI5GcYfN04lI8BGhYlKrm5pdnDG7PFY6opbhNCAWbs/+9Nn7s7W12Z+gGtINJDz3XgiV5M5dtI53PjpXu9Gygk1YW17XwbQTH0/kr/0Gf57xN5j5XA63Rvb+8KnJxpUL28PDn/F7fgVUQALO3tCZJ5GgeHdGM3chgR3TuZukM/5OwNy5S97jnLVDsXfjH/4R3CS0nf2BEM18iQqf/BFMe6eLYdY/LLpelYIe33cXkf3qyjzzkFXCztqbEAeuRezbmlg8FocJyr3EqfSZqpa2U22qcn3BjMi8RbQzmg6OizhhF4U82+Zt1WeYVp1GwsPkoeGyqI7ocrIyFp4rveCv05lC9MlUFknBzhrk7+MKL1ZSZhdg8NkvqtFk23uSNr3W/uX/21psmTPrIcFFQY267d6h2/pM22n8egv1Xj1fJM8vdjHhmy2AJ0Yx+eVL1kWeACE7NMTHy5c1rrHl/fwVYgn5rR3aoh1QfbUPM54/Cx6q3RUh1c2Y8WVu9TH0C6g/Pei+oiBYsVVUI2rSBVUIrINxVFQfhUktMvMX3wvYdlB37YOEs78yfPfL+UrTsWV+4k/psIAthU+rq2wdG0nVL8kWg4DeG6KL22XVyd/vVV3bwoEZs58w81VV0TNlT5XXK6qm68UwwYXXCYO2UoLxnB06OH+3JrP3+wManORdQrgv7ngcI4dPHLM3HDf7O0b0uE1Xde0NMPtjdHCXCZq+7wSj/NYG+PtYeymb9YMWdWU+zx7epaKpPBPwjPRKnMW9SGkU+yFKNb9m6zl+e1SSO8x+DPGmVOfTwA/ufIWHsCDlejF9Hi+KnLZdMtvKlXQozZMN6TEUyfpmhOnq0k8Yhnp/pmLGH2n/WduAvpH4pahUp4BH/W0AaTmMNJvza8e5XoIynK8smfGKv7Ro/6f/hVkP0l98i0orYc0qKqunBy+HB3mGrAjPp6APstdTO96lFZZsh1pT5NUqWP17i/nM17mgLTLEfBqRdSg6xbzfuubYfsvsNPCrjmhqLktre8fWyyashrAJkj98vK6SuuUrs1EVkUoHLKfKP7wC9eurVEnXWcEfn3sC0q69sWiTHotRDdr37/8yfbvs+KQp/PrnjwzAs6I5C3Mz6bXQsh9+8I96LNEt+Qaznkut8hKsBdjR6ucv7drpTacj9IP4JSQ/0WBIgN/hOdbTnA9wO6XYvsLPD/jpiYkp/hXtxXJktvboOK/7QETR5qpRZRdYSIr6wwD0Vkz4kzsGEn58d45PYlimiLrdrd9D6IDBzscYF+rPXyXMLUiUzIN0lY2Twep7dQnppHU6iJe0gR/+W4bmtENSR3fUbvYrZn9ktxBO2XEPik5DrBuvyhpfwx1+/hEJEtOyBMoSGWxhJRNTvL1Thl11D0RREbHv1gmxn5+1OcU982XJtHhKj0+Y9To7LMN1wVA0Cpr0XCRUmfk3v+xfAJ7svNime33acY4PMLJvjdWZL3NyucaoDkOT7D5P4P183tDMt5mDdjgYO1qF2so9fpm7276rGV8miCLyoRVbmcVwPyEVfdbahQWyw1Pe6FyHe1PnxOf1q2Ch6Yho9T277Bbvrny8G49co8MTMZstrxY31stEaXG5Y05ZT8W4WRhP7Xw9l8xe92066HfV/ukntjHJK6XZ7jXJz5AuMYQTCYZ8bTXaz3/Vh1NTTT/8+PmLwWJTVuLSNTK4JW2AH4+zULGBqU84Uf2JZQV4Sku8usLkQDv7FRGXPMHUQTLUFdvM+a8d0ipWWwlPxPyEeTp+mtUb2fuEsk1sLQNuF/SI8kHIcL99N0U360/0XA5ncgy8gPOrIS2QSrOcbLVNk7I+a3xVO8xdeWb9sFpyQ0SzfiDWVPpFt+0HWduOzYV4X/tZTGVrTyClo48Xn/UjHd5xJqJNbx2Ii1o76AUZJfDRUc38CH+QYIFfgt/gNfGEsqqGU3bMwFFhYj/9z67GEsBfew1xThIK5vxxRLMex+P+rFaN7CP5L/85FfKL2a8ytYVE1kw/XcJg2FMGQHrsUsmfVmj6+qYKSbW1mX+TsrlLnRLDeaVJDEuP1uJK/K5//jmV/Cyu6uu4p7D3aoHo1VJvZ722h3t3ZyRz9KqiXl2pmljYPXEq1BSTdPSe6nSQdLqsT6Y1fc3vE2E/P7DfCA5+Xs9XsC61jV/dTij6SjF8SJpMYRv50VmvNbZ89cCiiAWhek0bXxg7mPkKPU8HBXUuChqYTv2O+NruU/z8bzWNjnu68odNKnp1JcOMF7THillIM1+CM893JDxX94IlcxeWyDx5JJe2BzQqcJc1cuM1lfZULd4y7e7opx9/+zGhzcqEub7A1jXF6WCk/VGZ/SzmlSWrhsPzJEDPvneiJ+iQtrM+QL/8W/z49tmi959fSE84+KLR2ooiLHDZYOkb8naa+RUqPk1BYfN5cH5zn1dtsdpPLFordbHi0SOD6rzo8Wrm01Sy8rc6YLKhq6e0s6Ybfy5QX79anM3nb9L76xUsvxSINYxRwM/n0x5m/xIrZ0EsKFPMs/aNhC+LbuOYcrt453BeLSU6PbUDmpxMGIDvVYfgi/zk05zP0fr4MRipT6U1zvodpe3yzsIkXPAf/qufyNMYPq/X1VDvNpk0+69k9nerTlviO3rK9EOF8Grylff8uNAmqc585D6r7h2fRZCz7sns7KW2HRZPLnzlU0EstirT/n4ZKFycpMEs84N2Qn3fwDRCyopug/lv/7TZ3yZ2GjTt0N/jGKxxD8Qybvd0uNGvDPP6idPtsmL+fjlKhfDKsL9O26HcqDm8h/OG/eqRP39Fe8a3hs3+iDWaJoS/9c75ym///I/iNbn/9NjGpzrsjfeS+O2OF5znEYXPJ4nxt1ub6dTah7vKXKIyd71NWlE9GBTKYelSNtcrOBrLKzzVN7Cf39qd09MZBHswmS49Dy1LV4oKs985882qGiBME5B08055l34Q58nzCNpZtrCMx0XapcbdBtNTI+aq86t7BWoZ2o+ynPXSu2g/r+YOx8Gvic7dqRjW5stEP7/JEXwjEEzpakJ9dQ8kCM8na6KRXKqsjEpy3KWpRZtTdIewTlcUFaps8c17tdfm+hh9FX4aDEd1NYEzmfXPL28F4cVFuG9pzNaNFqOx0BCFvCpEqtqXoaKLV3TWJG/R/Pzllm8dfkV5oD6I33K5Gr852BA8J4UEgvoOxpyOf3oW80yxg/GXT2sEGdt5jzeaZr2IqHB4sWA461w8+vEErRROxM8vz5RTLA5ALFtgxD6pKe3jfg+fyNeo6JixNY574w5v+/pg7quNCwk3JSiz3iI//4ui7T6Dhztf6XRsqJiH2j06FNeKvmtRqwaQXiEY+4fGfLx0ggHCIoGHeMzY1rpD8G1c14aLEzfEnuR7wdLVqP5fgw+k/75S4NlySAx+MVDXOG0NjzNglh1ql3dJ8bC1XnAbpm8Fyrtzs3MhXwodO4TDrRrVvf+E0/57xWL+1lHdYi9BH4ENVF4cmDVNH3cBVsW/WMvtZ8DqOMDwPEGLF+PxHvTSscwhNKaCRMVlRNPpes4gmaQTMxePdzok+EVhbI8G2d5uTrEK6PMISbs5MINbQTBJcVKDexa+hFyLFvWRZOiQrTKbLt4PMeXcjnTYXssCT+4n5tPk7wS1c/ZPEsQjD9rzMsaa5fkBI/1labGxVZ+g6lwjgSYsUGesRAD0PGbMOBy+bcccf0I3zudXFtq9elnjy4XvRV4w/3IaAh5YOQUTvWSi28GmGs5rnCAUuBKzdysz/VZHCuoZSS2ttu0u5W2T3SFUFgEJfXufjg5/6togc4+FIX8WvN68SqT0i5Csef9Ix7v0PwAAAP//pH3LtrI8sO0D2RC5JTS5yZ0EARV7oKigyDUB8vRnsL5/jNPZu7Wbq7EckFRmzTkrVAkimNvkRhT/WA6LGu1MuBL6+lt/9naWIIDoZ/Lkqx3d4W/9gfmNeaQQ/VXP1cAcpYoSgi00qz5xe5ZBp/KPqL6ENiDu5zHKjYteFEnW0Zjjs5HBwnVcmn3KuFjKxkdQ1m8ZOQjdDgwRTC1o5tcd2tfcrZ7CZEUKne0Oa7/QS+j4PayQ+7otNfYVGqZTwFr41b079aMl8Ym8aD0cDepiXzu7/vL7anfF6XcrIs7rwdYb95vB6EkFdi/GPLD1pGbw5sop9extcMDHzO/wkpoeRbLU1XRZo1jhDYnQsHicwLwNSoXWMCpU7WTbZ21zaSE67D3s6+QC2JkIPBQvokNY5jjJMp3sFygQVbG9vCxjCa0dB2T3228UJAKsEcQVyumrQmtsyIB8DiOUhWR5kUna+sK8CrSCsfo96BZUbI4X+IKv2jeQEuZnNuvv/g6OaS9hlR3sZH18bg60lcBDazl1PulOhwiisZuQkDynYkkj6QWjK7RQ+WouxnoyB1Em70NM2OAVydLlRx1WHzXBPtqhhILrdYYdVnvsX2I4UGd/XyHpjA/W7uW9/hn7Qw8C1VUptmifLLVeVOB3LQVqSldzEHZHHe2Vq80TKiVP8AvFEkHxMN9Je0qNZHHSxIRW41lkiQ9Xnw3hsM2OEgasX75TwsCn8MDOekpbIyToEz0YEZSXpaBom9Q532d5Bg9h1lC/znmx3lcM4czQiSi2NPpjNQAP7Jc13vbTrdfY6nl5abfGUoXg1Ae0VhE4t12NgzH0GHslhgg9upT4cYZtsSqnmSjWQBSstYTz15XTU+WmWT+qR/1k/DvP/LVPEDfZkzE0/Ta2YT3cULV7b40kr88V/IJ6T/b39pesog9k+aGkIpnACfvEPKsc3O2GjgjfiNSzu19aaC/uDzXaCIwOjBf1bz+x2xcGOEAfebB4cT4tLjGs2dGJL3D8IJHMUfH2V4xfF+WObANJ32c+kFt5vwBaX57kFWl9MsdiHkCx0gTs7m5qcbBb2sCTt/DYOw++8ZX6qwWD30EjgiqXYP68diO8PZ8+drz96NPKwSW0Uh0isawX8I1OcS5rihBhvaOwGEXT1WHMlRy2cwbq9tQ9ZTCd9i9qQxgZTMWRDHlllKh6yjN/PXyoA4X7N0Tzo6f1fL5pEcSZmdKj1zBjMZbJhCAYY3w8GZY/31O3lZHQfJG8z526FbLzC9ZaElBtODf+mF71FLxf0kDRFH2SOl6uLTTw5UEd6DG20o6s8LhIK7aH77dev/k6Qw2GB3qsrcqYhEPyguc+3lHt2DjDconnO1zKAyE7fc8ZbHf0AgBY3GIt6T7DUmcNhNb7dKDq74sBu3Gwly9FdCf72OeK9dlkFrxdhpIa3vVnjGjYE5CuR0QO8yMY5llGMVC8dKTeXD/9ZdjHs+KpwCevpQ18bs34HOrlZU+t90ssJh12FcSpUBLuVtvFUrq5BXd5UJJ1PSE2899MBrHxuBDeeO5rJvczr4i7j0vTdn9KZp9cK+DJ5ILuU5PVC/wJERjOuzfWDllVfDJJjGAewRualXIEVFSsTHpO5IYNLEb1Ol1lC/rifYdv5bc2GOFmU9Gm6/sfPjDLu0Wg+ugJDqfWZYc0kiqwxS8tT17gE+v15OB2nkntKlFBkNqoUFYXBVuADRueVSVcb06H/etLBUIXex78ejuXWi/bq+nf3/P7aFNNsexk3fWGBad8m3V74PNkaqTzDiaPOSLANZAxy/cil39n4f4P71euO8rg7/mflXY2lvoZtBA6wpM6fOf54yUIRcjevItRqEcJ2/ALNDSxKArvP7/zD7oF+YsuYrOsdkUHubVVurDASDjFqzGLL9mD20xwtOwkn5HH5+RA4s8DtaaLZCxj6cnwyK8G9tOnaLDoWUGlzL8LDg8XBPjHA9xhPPhXajifql7YzY+hExng73wblIZeJW/4im2g4Xp+uEcEDmk9YNyWrbHqyTY7TuY/2Nvnbd2yn0gA/EQWvZkxrenjPJB/663fXxNY+/wkQhyJOjLUe8Po4gwreMLPhHGezJur73zAx28sNK96xZjPXyPYfo6MHm/+G8yPi/OBW/wg3mrNZHz6pgejA9pTp2duwvyXz8kmRvjf+V14NVPBTrJWxKNZNebg1Y7yUK6IolfDG2xfyzGAaztQO5j3dVePqg5e4iT/O4+859YVPJsow5itF4M8bylRpnvWUn+HDjWJQ7WC12vRoXmYhnoQmhWCW58b1E3ILWE/Fqtw6daG4ntrF+x16z5Q6bCKkbqKYLrEc6k8Q9RTPYr4ZD5+21ThA1pgQ8hjsN7PFw7+kJ9TlM6HgtKO/eMbNPBMPllrvc1hfDQXHHs0GJjurQ48XuKU2vu6MtbMUUXwnRaJyMklAQtJrBK+lrqlVqP3bH6aTQklK/bxUT1Bv+XSZwtW5cthVSlHtjS1vl2Cm10kKf7dX///+/IfbCXEprkDf0r9oBbxmprlp4kDqXacsbWIfr1sfO7f+fRpUCWTT8YMcNP+TD1H//7tbwztIBixHgtOwumt6oEW9z/qnPU2YUWIza3Lz42WIHkljJA8g2FZXNDhJTVsrL6PUvZcIlLtLiaF8IRiDuHtjKirfGM2FCG2gPo8ethwvAF0J/7lwZJcLmTg5V/xx0fg5+TsUDuEL39513WuEOAQrJ34lzF+uyKFb6PdOg1fr8ZaPfIGbPkP8bfsPpBZfFtK2KWIHnNPBPNeHFqYowPCiGBQkFVuVcBf2wS18bQYNGqcHozG5BJgVJ9kpcGhh6/iqaGlJanfbngq8Xh3wu5CV4MEseOBbf2pu5xBMeu7ooH586JQz28JWzzmO+Dx0e7U2PjUJPVXE/CP0KOmJhwZ737OBAY/QUMwuIXDeuPoDDj35eGbw1UGUx0WwH50z4Rv7u+BHsvvKvdIvNP0fQoStpRCADX0CAkfVgWbD6rvwNdjG7+RgpcxoMdHhX/6Q7sur4Rt7wc/J2+3xZ9urAdRRX/5hR7TjiazPQsX8DrLHrXeMvUX/wRisOVXQmU7TFgpL3dlum2Dd97dAlYMcQAukZCiTvGhwSwDNCBUTj0hIx8OPIZ2ANd8NmmWHwIgJGqswu75umFPGI2a0w47CLMVJVj97Zth2eNAlYZgMLH5a4yErScnk8+hfiRT/Z2GhR24HL7iLiWKLGRF52EuBY8hJP/yDbHjtwq3fI9tpORsZO9CB0syqvQKCqvgpts1kjlRDrE313ufNmkH/+Wjs7Z1zQv32QxrJh+xu1+JsSzscIf4GTfYsYSoYI4omPDOdTdsUcU3ZjsfZFg+Sx0tcIwGXl60FjpGtGDT/faMLuU+AN1lHLFeHUzGBM/l4JkeDuhQW7pPBknbwTMVDmSJ2gJs+ZmDvWCGFPdDnZD8VUTwHjxaxFxlLqbxOgXg0/J77OSHESzCVnI+fI0coyPR/RWPp7vShyeNzAWlBvvQuwOTE51woNYjm2l7+kCjDBZsdNcLY5zlQ8h/igcOWe357IEtHZL1qiHGa19jvtCUwL2eYxo0sZesQkNMcAlyB5tnjQML/O0j+WhnKo1Ndcfmx0X9wPs1f5Fu4JZ6Cef6AnmWLIQdC4XNV5t64Cd9NOwehBDQtilb0Dr3M9rH38EY7+Gwg4ZiH//4NwANQPK/WM/ei4DxyyfYKr5XNge5of/7PYUWpPg8LmoDjfF3IcI8ivVqWKiCz0NeUO2rYmO+C1kJl1IgiD+YO3+2lZUAKcc/0t4vfN2N1wmBzGIjDlX/l0xS/r785RMkmTGu14kcKzjIt5HUHHrV5LvTPvB5edk0Ou6Qv3jMcGCweCWSuFL1F4SLEnimo1H/MrKE7uVwhHtx96Gq6Xf1PD05CJtyuWJnBV+fDTXPg4ewatRWLg1Yhqpr//Hh48B2Pnttg8i4hhlotpe1nt1arf6tz9/5ZdJxsIB6lUW0vf9Qk/dVB4+XpVJ77w4F/V1aGZzW/Q9rw9nyBacaWiiu74ZamF6NGZeqDJGmR/T41aphkfLuAg8X38LeXa2Kua/SVRrkYiTcATt/+NkDbrZeCLgG8YlOmQqdyj1SPAehP36ppIJ9b0XYfp6J/4dfION9SlFxDIpFjxUdHuXpif2+p2C2zej+p+cJLwU3MKdX/aLcg2dLbRufgfCJBx2e26EmC7/MxqJeixkWn+WHHWeNGJEXt4U755jSv/xFnSBCyl15WAS83aZgc/3Y/ekNxC8lB6jvbrOTz5NA8Q+eC3Jf8Q7aXPag234YG35/oAh3hOKy8NmUDToH56XhN/0ZJsumBwCp79OGZyNba/2VKdXIq4Ql5Q2sv7tEwGobT+zL7VjMD9zLYPMPMP5cxmJyhE6ExHkf0AGlmbHlB0+Oq2tPKge2BjOCxYTRTh9p4JWTv7o9yABdqEkmMBzZ0nRt8M8fS+NRqQntmhlUA/qSfuMP648dPRj5N0ZNmjrJskuqVdnwk5q3+pfMf/5ZE+UMCU13L+ZUvjlgMA5XxIR8/cNzBKdzcKGX+fgzWkM4iKCKTmTTT2YyTobPQ+H3OmIrDzxjvrnEhBf1/MV1ENvDGqtHR95J5opvFyOqGT+cCPAaZcEZ3GnJFHfjDDa9iv2r5RmLsWtLeamalJru12MT/3AdeDXuIX1a1CuEy1tTxQfvNURyVG5oPZCLcIsn0gZZbsyfaTVlfDdmbKrmu5i/VNLhm6mHrZFyl8xAewcw5i1MLd06AbZg9w7hvTHxpg+KOc9eGdSfMMcovZQ1Gc/MgY2uIrQvD1X9D8+89htQe30q/j/8vt4ME6Pk+itYth4IcDOaEzHX9sn87iCCSXJ2sJYrK6NHjWvBrich9Xn5l7DaszJQM/FI0ZK9DEaTF4JLQlSqepbL1kr2CXzWyQk7eXExupRTU5gvpbPx32e9Yn2EkI5eQE2j95I1fxWx3McHiWrcbqhnzN0v8I/fqiKUk/WH+RTmdgtxsfFhRnyjgal0elHPR6L/z//T9uVAvvJqDNwsowimsLpQL1Qsf2bm9lW3cHX/+QlL2Ic92PAQiUy+G52TizP0FrH755eQ+7nkweZvUuya72HGsqwqxfRNqfoUejaPWiADJAUqxTvs+sz99B9YiK8AJToeisWmYQyEyYT0LO0uxqpNnAk/uxtPVSLtjMn2d6UMji8V7W+SlJDU6VaY5dUJu7fuxqbmYnvy9vtod0yHYkqcuwzNeiioOb0NwF5U0WG9xj31ILvU8+EO43/+MWdEybBWrNHhuz0qiKd1WnTj9RvAdeYH6qZ9xdhbvLUyz4EAxe0F1as3rqlMRXDBqmd1gGX3KgJJJu0xliZ+WFJOvcg17uZ/fisdUs2UN7zEgdvv6/kUkBl05q+i1njVfc4CbAZBFXtIMRPDP2Q2p//FExLnNDHW4R7xf3yfonUJgRyGXQav5Q/g8L26PnuchxGuUptRY+8IbP780hxyz89M9Xb+JouqqSlMH71OvcNxGdYjm2XFXvwfGvpI8icLOi2okuqD//j9wrP7B8jifkLy+z2ApXYWBPe7d0H2mawnW376SH/5NnztQE2EyVhhFh1der9OYBjjhavA67OW2H5ANTncJncGViVF1NPtY7HK4dbla55Teg7Pb2OtGFHhhkc4FlYx+Rd/x1orqf/QvGFSH8sdKq8i2fjzFzBjr/RyuANHdBcAHuh4UXXl4voxDQRA66UcX/KfX4CxmDpsIL7fQPbmXOrLbZD0KWgu8HeSVbKKRAOjwn8I/MppQO+i8Z8+ki80FKmRn+t6mbhLCn7H84TW3dsq/tUfeAMQfBxYaUySkJfw/BltfCnTL+hPZi1CKiQA4y1eB3XUVdnunl9qFnNVtx9viIFvP19k/n0xWxPpl4E/fWjWpV0LWz6HXrNfyKohwyDwSV/wHCkVRrsfqdnlrenwJsVXJD0/sr+6y8mCz/5R4+B19fy//A3V2yvBl3Mv1NQdnBjQ0Qnw8XW8Jcu7HnJ4aoIHPWWzUI/ZpbuD1K9E7Ih3wn6xcEihGH4GbLPEGw5dHurQyR8GeTeM1WuqmxYIUP2hliFdiknI+hwAudyuUEJhOHRKwiubfsN//gyn6XIGk5oTsNra1TAdZZeA4EwFtGvAZDBhiloZWT+bzBseDn9++IrwggQJDf5ffQCI9/ueno3YBGRfT9k/vh6oijEIh/s1A5t+J2zzkzY+kULtlh//+BUjtCMzCE9tiKr4sdS9HRgXSIBHUN91v2FN9cCE59ocKaa9XKyWQQi0Gsf606ds+OPH9V5jaG/CL2OOuLfgrZ1bagKv82lYfK0//xZt+rFYFnUWwZ4YI7VCGA9/fBMWrf6g/q14J7NwQP2fv//PH2OC8fEAmvMEDS+KB9ZGBoJqm/2o6ksk2fjsHUo9vaBFvt4KuvE/eC6yHlvaCHz2SnxRGpF3wlZQf8CyqKII89tqUXXVK0Auyjf+59dgPbyy+adNM2C/QqXoQxYw34XoDrNwv6NBzr+SqXakAKQ69dEh3zXJ59orO1CvUU+TSXKLzQ8LlPBoy2QUH3qx8bMV/KRGw/a2X+umj+ElyBwk39WtKyQTSrjhN/lwRVEIkS5xwOcPNVkfEhjI7cq3MF/uDi7FkSTj0Es5FPaBRZ/vX1l0snTKlb/6k+isM1ik/mn942PhBTyLJax/EK7avaXmZIcGg01uQqKd683vTdjiXnIVliS9YI9+fmy8Fg6Sp+94pDcvxIzdRbmC+y/eU/sboWHsj3UPzqF6RPKDNWzx3LIHYGgajEdzSaYT3zrQsF4z3viBsdBKXUGXXWx6FLqSTS+TXZTdQYAEcudmYOu0VNAIJx0fCazA9FXgCLv6wWPjYT8TMq9bl1ovOtPwSgNGzwAEMo35GVWxkbPZ3Us9DLS5oHfQpfX6t15/9TvzgFvWxug7wlo7BeSACAIbX0RA4/sdkTe8Z39+X6rZM9lvz8/C463980v+1SOnP3wL9m8de652B/NviCNlq/9ho/fNgv7Va9qXc8V2In2M5eauO7DFM9mbjpiMp1vlwHmv5NQ4nXbDoH7HFGbC4v3xGzDP6kcF2Yl8sC1yabHc7cKBw/Lb4y3+2DqO1gd+6tghMNdX1rF4aqBcEO5vf5M3oyWBp/JVUP0hFfWcH3EKZzmvkdizLpka65bBTX9hQ1ChP16XogVqRBoi9drks6ZXciiF5WPzC+717F5CBzpjE2Irux2H9fuO7srYMYp26WVXL/W3uiiP3S5B7Fg8QPOBXg+hxCv0r564Hj4/D+6sh0RE5O8GVkejBXubeFj9rkOxusiLlFn9ZdguwrhYHvKTyK7wJdhVviv4tSNMQdM8bwiUHPXHQ33bwaDBDXY3P2/J4b4CfhEcCUzfXULEQ5vJ0ZGDVD3MP7bxzUA+6m+K1s2fO/CSHMMiPYk4qDxStx6IZeWiXr8EXqeinr90UeE79d5/9a7hENYUwszTK9IPfAUWJVdL2JIXoO6mZ9c/f/WyXI2ty1xjUBVHorJL9AAB7w7A+McvZPfXU81gNVgf8ucDT1NGqbVzaoP+rff/5UqB+L9cKVh6lYantWNM/mUthL/yQKTBd4ql/7xMGIzdGyO5ggPtvy8Pju/gSNPWjdh6IydOade7QVO8u4PRL/c5SD99iYDHBGPuRX2FhiPIpJNcPIzetM06fh4VrGVmNkw7x3vJZ8WCpFKkBMxlAD7wc611qh4/E1ikt5iC5y08kOHMN2Dd149Wnk99SEPVqhmVPEWUlyz7Yj3IVb8EVqDC6RJfN0rdJbMSjyPcZZ6JwCn+ADI/HzoclccHu9fPpV79w5tXOHLmKJpysZ6/+q6FjSte8SkVVH++0bcMZWA62CuTBqBLrhKY7D8+LpeD7E9qF+5k9/n7YtfzTsPyFoQGqmdywAimNmNpKTfwA7WY7OTh4be2cRChgbMPxvEHs2U59S1036cRcXUS1vXe1T9KeuJS6ll56g/SV61gM8U19W70w8YjZ0Io18qdms7yGcYAxI7iStUdfS5+N8z8WxPBXbyI2A9VA6yDUltKIxZ7epSvebKon+8I9caYMeIjMIz14cHLf78X5nLIFk8NTMB+vzsNwav2F82IWuWm1CZVH/Q9MNI8dVAm3zf6PZfUmN3TpYenLmqR4YlCsh6OvwBcPajhK+EMIPyk9A7L7uOS9S4+jKlh0IEl4E7Uim/hsIjG8Q5KmCfYz09OsV72OxVYY/miemlZhpBJ0AQmWE74CASzODy4uYGfIweRAMFQLw9ObMDf+g1l7oAhxi6Rkx94YI/yY7G+ijQHPGdvjXHqD2BWG4/w6lcG1kczTMa271WQJbBCh/DbGSv/2VLc8lapTsFYs9z9qrDZ5T9ss7eVTLvZ3kE9v8Soo00H1vyBR/jmLQN73ngwlptpjrB49Cds2c8yWWLktqDsGpfwhNcLBqVTD/Duo+FTs7NrYafHAbw8JQurSkSK+XKZK4XQWMB6qsv+egbnGU5VLSDhiH1jvVrkDp/5VUKK+f4WK6dZOxmfcYjg6WYxNrP9LHvHBeJQF+V6dJNmVdjUmEh5BgiwxPzB7cqOj63PlWOLCl+BYgJ2Ilye9v74e7+r/WI5D3qf5aQe4qTbwbz2b9j+/IRk0aYGgePTfeDQPdrFweqqWSn7MaT4Mwj1/IEWgt+l+1G1SYx6qS599YcXZJ0vqGClqK7wab8pRuE8FOy5Wxx5SK4qRatcDXRn9hf4kh8W9YaPnzA64Uzi5q9CkXt22aw/AQ/34Zzh0EU/tshnq4QD73o4V6q4pu/gtoNLtvvh4NchMK6GGP2dd/p33plonVvY/ASFvIhZ+iuyKxFyvF4jIvyO/ujziwzXQD6Qd3I9sHXRX0g6voQP+l6K0WfhMqvKhkc0+K044bbzKHeteaW+fxT9uckXD1bOxcduEh+G1alfvDKdlAO1uaMzUAGYEB6/xKGmean9pXOOFyXZlTZSYrMHA2l/HgjW3qMBiF71eE5fGWTGgDBmyXH4228o1/s71s6uZqxMvlRQcgijR0BqsH4VFEGzt320q4UYjEAHnHxSnzzWqvw4kH15yKFwlx1sBL0+LJ3xNaHGZyZGbukl7B2tgWyfKkbNtHoac2hVPHSyQ0hux61EzSM6wk5CBcZXZ2GLsacB2NaPov6i1mvH9Q3MO0+jWBU7wJwDK4FpjXvCq4U1rIWQXwDbcwG9G/zbWNi7eMlQVAVstupcLAU+p3J35jEBmsL5fSB7FnTNu4cvhK+S+eFsJSq+PdKTdMTFNis1U+guVqmRh63firM8w5Otv6j6aDRj/Spb4/b7XcUnxBgYfV4SoeKOCjUOSVK0f+t7cxsem/Ud+as5jytgPy2n3jk1igW3ZJsFlmHqKvHsjygsEOAWdyvBrsfk3/l5OgNDYnM1AC/LLIX7572kWz8jYy3edAe1A6dTnZOjZLpyxQqeT/RAyoGIPkN8Fsm5zNv0+IlWNnuTlENdce707tQ1mG6mSeCVpGG4L/IYLNqxXcGxiTyMnyMDs/OKeiULTgz7J/dTjCmbLlAgH4TzSmjBwt5JBYd43qE12uk+Lasyg2tYCth3vnohxNI1gp8jD8nMPq3BdN+15KiqIuxb/WVYbxm9Q/lwfCFWG74xexnWQXP+HTDuqTEsN23Lbo/vCXVV+QVr9utK2Bjnifq3vV2w6zb4Y+buVyTdLhoY23F1YAmzhCZnYPuM6BIPSFBOhJWtO6zisnLgvYRPrCu/FazQG2PYnA2G7Wu4+qPwWyMYvwyN7AXhN0wv/yYCg4kH6jTdh83I9y1wKyK47UfNlh8fRFB3LA/j9/wypqFTU+Xt/zwCAqFO1kLqS/AWAhufuH4Cb8iWC2wU/kv2xWlNJliiHVS8g4afnXUzGFjfkbLFF/a0aZtdiAmEy5WrsdpdQf3VURfD5ncChPsJuJ5tC6kwBFaLBKJ8it+JE1TY/BKA3bd9Lxggrg75yHXwRQcwmYgmzfCJzBv1D1c2rE2xIGXL11sjV7sgd5N5cHte+rzwM2hr34nhR5YQtjv/lsz0xo3Q/7AjPk7WmTEoaC9wORk+2gvE9lfew3eYCSnB6jVibAhvSiUjqvOED0ffmJ1SreTn8FCwFd+mYbw+JRUKXq8ieXTCevWFZQeNqOqwdlbVYYHirQHF0ryw82Bblx3StvBsly32s+2KEzmnpZwFCcPG7xwYc/ATZJi0zydVFXtiFKzvWLla9gObfp6z9XKdG5jHxpmGdUnZdCdqACPXL8i+8bVhdqp2htJOcmmw5/RhUX7blalCLClaxltNE5NCaGDY4LIPVWPxXbOBx1TVafzQlHr0zjsZTtyyp/b0kAuyqJGl+IIWIt5e9sXvcZh7KPiBTjgQqImghycEfqeZo3aX3sC8dNNH5pLgRiPPoWx9XqAHwcsp8B9/pIl+5eUxsrR/8cxiwXYgKR1GEWnfgxBEig6284EtIf8UI0TBHWZPW6HhkvD1cvT2Ikz2qkvA4crqRfc0HZQftyZs41eNMOilvF83C3XD4/73WQiA4XuHLXPv1Lx2BZn8MvmV2tQywVrbLxO8iXKh+TD5gJSRP8PXMeOQrE1LPW37Byfs9tSoA3+YbW1a5XE8v6haeYa/Spy+g9rjd6LG7zf5dIkrAvdr1GEkD4o/F7L8grs+D7CB77diPdy0UvkdfBXteLswFt1zVbAP0QUtZ1fzD9LzFcD34xATWLJh+6z1qit/5y9s08To3jIewfTbPWgYXtuC8JUGYXeOQmziA0w2fmZBKHmAsPERJQO1Y/MvvpD0OoBk5eKbCR0Y3vDGl0HfSx4PI27N6BHGln+AvFZCt7rN1Fa5bhjVSIdgfToKtt1+rJc59DLwt19+tuwSNj1JD/6ed76lqj+uTvaCRWhhqhbcgY3emRdhNXhnijZ+z07eu4Q1Nustv2kG57/xC4Zy1VDcKlm9iovMwf6ufklHrD1Yhk69gC1e0F6M3WItgPyB67J3qCfZi8G2xnkQLPybJIpwTmiiYgI8P6ioefrZw5pMBxU89nZE1Tu+1qMkDA7Y8gVNQfAqxt3tYYLvsyix+1jqZDm++hg8Cmpi/LIPw5I+1go+32VDvVw7gsPRoStI61eOS/fcsfUMHjO8Ap9iSxi/xXot2538IG+EA/Oks1USawSBfW7RQrl+GCUJxCC8fDIa+sLOIFntIvlj5TscgtX011uKESw1UGCNcl492NQ3oTPYZ9LY7Q6wIAk96N3FFqdp9fQ7uck+f+eBnkcuZcQkaaso97eNrdge/+NzVO9M7HCG5/PvTypD8miWjW809er2JwRSlUTkINx1wBsdzME+0t9EYH3D2Iy8OyS+OJD2wTQmqCBy4M7WVWy5+dYmCOklSA/oRYM2XPwt3yPl/ThFVCvAFfSjw1a42PGb2uhKjU0fQBhFnIezwbQKob7JBHTm6OPweaYF4dJ3oByUi/Knv+rlwO4vGNV9is1Dfk5WZPeyHKythzg/zwGLuiaD8Zq4RHx9RUY+gXOBO1BFZO8KYcJfzPICy5tqU398R/UiHs8N9LVcQoeVqgUPtGH9x0eiNdzVo9B7OUQvB+Ag2H2TxSa+DqjBHIqbVDe4Q356KWv5AVhjymBsfGOGmz5DYoXqonusr1I5xXSHneb1SZY1K1Twi2WRqpzjJaOsDiMEa14TzlhfgN529xSGlybDqqb6jE+5KYda8AjJjreBMb3hlYcTnkbC6mAY1g+K7vDbvHwkb3glnL89BC5n89tXwTIgl9whcHyjI1mGyKknasU6nI5OgvjCmg12H0UHlupy3eYmbY2yo3sjT+qJ0uOS8Wxc5wf8d954dbLrRUfvSNHzNEY70mo1axVIYHATrljz3jHgejkW4cbv0YJgWjBc8SrwjqFMFulIi9W6OBb4gGeE8Vt61fPFuMTw3PMcto94MMZv1ulAh01OZpcnrP/bv/NtnDFSnxaY0qLKoM3Je4zU9les7dBb4CMDRPac2iaz290ceHM/PC2cu8ZWJlrZX3xjm2VHsMi9yMmf61unTiFe/Dk9KCU8nh0LJw5+G7PwW+M/PwXVp9e3XmKktYqYBvW00KH32U2HPXwUk0nT8GwN4/XxkhX2M3L6p0epc2B3ZebKKxKb16dg1K0QtAq5pA4qF381fmP8x89pfk6NhPP5RYTpx7qjfU/rYXZK5wX12xxRf4arMf/QNqignzgkn5tPsUz825LVH9yuTIqKcbeLOVeu3bOjRqsjxl62RODO/ujUWvcVm93PLMJD/2LUU4bEZ97xk0EoNhKq3t7OWHf3byy7P/5CbdZbYNz4EIhLGZK1xE29PO47Cybj1oVy09PjxreBrP4i6iU3YfjGSOvhdNofSHflr7WA+CgGJ/Ca6YaXNXG/8w5kj72E+D5Wi6UzJhO6634liwjJ5p9FrbLxPWpYzaWYvaGL4H6NO2yeZscXju/+Av78puPzRA2Gv8iD3TkO0bjzM2M5eoIM52o9Yd/KzgOxpG8EMzrs0SqVa8E68+uBzQ+g2P0GxdyL3gyna15Qux/qYh6M4g5lubKwedFdn786uw+0P6mCR+fwAatyurfwdalEHPp3WHeO4L+A51klmrl8SCb2Lqp/eKKicWG/9VaYgKMPkYbhqwXTU3UjuL5OOtmLrgMEQDRd2fwXIkkuHebrkWQgE8QZo51S+tTTTA/G7BZi5/FWwXq9ZzzY9DsRNj+lZyLKYM15PPrGqleT762zwDWwjmg5x+9hCTOlhEFlOYgzL4bBhrRU4feb20RqpO0KwGuwoFS8FMSGORy4pP/wIJq6gYagMwb2x+e+aWwQkT5tJkzQzeHB9n7kWx9OhtC5x0x5jsYeKYG73+IdlIDzbg1SVvYaCI7qDOq3ANHcO5zrpX7EIhC/6Q9nb6gX9GVLI/wG35RwpRj4wvATty5i1gHB/N2DkXltDze9RK7u9hX/sGOecrhllMa3way5jzBBMAgJwuilsnpe5/MOTFyo/MvntZlLO9Dsq4GGKjYLbnc1oaI7fUCdu8aDf/6srnj3Cfxu26zxbO0BWgSNPBtfq5c3fHKQ+6QP6lbnY7Iy/0Wgs64m9XEn+9vfo2KczIGATC63fD4gyM7ShXp0H4ASBlwG55PpkyIBwGi1ImlgezsiIj7Ymy2R2oqwTIwnPS5vodgGKfRQ8FoVHTY/gqog88Atd0TSot9pWL7tUEEZWA5RBKQb7feS/cvX1LfevE8jYrUwIngiraKH9QEJ7UUxDqpEHe7sb8/bjvIuSV5IHoqe0Vh6xuB5wwfy599t62FBj3wItmD0q1kJ37oycWyP3duzKhadJyO44LOJ/QNi/qKLPA9uY6Fu/qhctPQGCZDVb0TD5xknc3o43OH7+9I2fSUV8zOpIQhypSDSkDrgcM/OHIzqNsX2REEy4V1GwFhdXBpenkEBYukZQcM5yNjm7wpgf/EyHb0E6+9kV4/v7wf+8TEyXUK/WO37fFec2w1TKxwHf3n2Fx46twJT/Vx9fLLxDfnTDhaSN39sPRxpALfzi7X7RRpIAdYPbNzLGa3D1RvmQuwz6THtA3qs69lYFLjwMJrsjvqbHz5BJqWwGsYrvqqDa2znpVWe73uD9vDTJ0vDOA9s70dL9dmwJX15LTTc/Y48YHhk5M9fPYqvmMbZNuhl+InRf/i6/d7yct0VXuXfhA5M0wqu+h0s+OevqGtY1vOfn83MJcb++XNks/+2KxhxwYX6TvJOZhdbFXSbMcaWESrJP/7SSUFBvq7285f0IVdCluwqqjfQNRjeR6tyqaYTNuZmZnSnxwhGrltgr/SsZL7slB2kPzfFHneYjbnqQwR2/Q79xxcvV7H5w1/Unc3X1slkb4H1JZjY7gejINX0yCF3H8ifHjAEdwd2cif2Nxr6RKnJoBsZTONdRghZdEM4BdIHzFHl/sMvYudtCl3uyGN71e4J3f4fiEn7RqJmjsbqvCOiyC2vIuF9UBP+UJwasOUXNJq5kcyB0sdwzLsc65ufupITjKBx0CVqRlHp/9VH4HxqQ+wo+lTPXNI5UP3tFDJXWlUvoj0REOS3GzUsygM+uiarcnb0Hps/gdbTsy856N3T5s+fTcbDvWvhN3QvNDRZkyzfyV+hix5v1FGxBxtfEGGVN8mmP9thOVZyDit7dql+sqth3fQoVPbXEwG4y30mVWIGK136YjMMGmO8VpoDXldLpkgozXoNdn0K20XUkGydWD1/VVKB265zkADXwWc/KS3hPYUjNsqn6/OX86tUsK4ccbm3yppajdfAYxN71E2BmvASn1iQ8+ueCJ0vJfSpaRcF9P76Tw/9q2c4WeLTo4xubHIEvwIfK9vhwJIlg73sZVS8mRew91PdYv1un5QFUaYT+ZzWxZwvsg4jDm31hfyTsJ3Zp/AxKQG+VedjsVQ7uoOTmlDESTuhGH3uPcM//YWWQ+6zTR/I3p6sVB/NqVh4Aa5yftjXaP2h3u/54NmA/PRI0Jr6f7M2+Qqe+mxEl3A3+hPX31VIjcUhy+bHcE71WsE4ShW9bPpotM6q+uf/UfQk8fbJXdrK33UZqO2+R5/R5dfCLvyVNDjdLDDL6kCgsj+f0CG8O4OAOMeBk9mcqH6VpGLjkxH48+Pd+yizBUOngcSXB8T23WuLJShC4PceWrSKFuw6gwZu8UUeWz1puq5+CxNJe1M/WeWahKpcQe4RztTc6odz7auRImq7gijPgIBpAm4K16enbH4QZoJYZt6fXqCFtJ4NsqiZBbf6ChpnmdVrnguff/pR/373Nbtfw/lPz2PV3eNk3r+OpXIsvwXN3rAq2kV7eco/P4oW9r/6FrTc9oL16v2rV5KaGfS/krv5A0E9h7reKH5i7am16dX5HKneP/2GUYzY5r8RuPT9hO1XcGb8n//wt5+1np6L5TINGdj4Gna9ezys5mhW8NMtHj0emFh0j6eFoLPOJrXjda5n7rxEyvtOEfYi6Q1GfGJ38GQjQVLinv3199M4Je8cDafS4cIoexml8k2IhobzZCXcn37489vds6mCNRk+IhS/cke4MLB8oteBDo5JqVLt9tHrgx+OHOTqucDuoP/Av/N2GHoBiY/3i618pe2geT1pNAjtL1vKmpSw0sGXBs74KeYJfSzl+4UukW/UBNPJ7TLY3oborx7sf0HB80Aj0xk7j/79n98RFcoXawqi4H7f5yu8ejsN4/6h18u4qpz8vDEB+/uPagx7Px7/9AFGz++JLcdt3pNndiLFyCXJ6CZkheAq9dTQ9bRYRwesf3qTmnrMA9b7jwoaKPrn39bTyZdeyjfljmjHDMPf9Fskb3hHiKhbYOXSN4JZ+vrgcBQPBn3uJA9+BSvE+MOJ/hZvDSxBhGl8vhn1DOy7JQ9fwyJiQQ/1P7zL1TNG7PebjCUt+uxP/yHO2t+S5eWfZGWrh5LZ3dOEddYhll/nHU+NmS4Fu5DhDh93wdn8jmDg/vjSAQYSza+c5I/1rDTg+6pr6qfhvRg66xCBXcd7SDqHWiLcbw/5z5+h5/Db+Vu9oIWcViXYYW1bMD9I1/9TlwLpf75SwIGfTXbR7mwskaqn4GLvZASCSiq2ThAt3MHvlbyHamSdVDOiZFEk0ufbEowZ3MoRioGtUvtz15Ll9D4FMHetCNXCPCdLvB9MySp7hB3ytIfDaPQRPLCiwC4ZDH/rqDuCPAtDGtTGe2BHkn9gIARPem8oD5ZIe/HQ5BSGZG95bcUoEMskxxPVb4M7TD/z1QOu7jSyPpZ6mEU5vMNPXjpoPXauMRsryeAO/q5Iys8CWAbdX6GQtmdse9j3x0ocPXiATYB2hjYbTJ3kO0zEu4Wfgrb318X+6bJsdIR6GTmCTjY+jlRkXI8fIi8P5NmtGeTG0iNEciJ/Pgi/HgB4LLF6Lrqk15qllzptedK/9yXbtC3oP70L2S/3KmGBb0FoNKWJlvPvA6afoTvK6zbmGNPHa/ggfmjl58kRqHUCGRunnKWQfWJM3bzTh9X6skgZNEawy3dNMpkyeYFM3CGsvYfKZ1zq9dAu8xYxu12NxdsZLVSCr4MTjfZ1m+RRBt1dO1Iv7jzjkL5kFZzo+qLmWWkGJnOFA4VgRDROXglY25/Sw7Ibfew4KUkWTrV1aH8VG4e8kLGVJxkBf+ub57+wmHnoe2As7i5JRUc12MRWEzIz06ktX91ibd16lWUm1RgJLkqo1fM5HOoI0cDkh3pWL3kAPnJ6prjQQDE/RFOFp5fnUlPXVOOg3QEH4r1c4WMC8bB++rhSLups4nzk1UIgh+gDe6beqPvKk2Htx5MHThnSsYu+32T+3GcL9jnpsSf/FmPl3amFbLAfZP9MumR+SNXrb3+x1/ZjMV1VP4YC3BlICFKLjd0jC+DZ2h/QKO46tko0UyF6tpjsC61I5uNlTWH4kGTsy1IzLMwYAmlhYoazNPNrTlL0EviosLBe3/Nizbs8hkIh+DgoFzZs8R4B4k0OmYU0HVY6LpFCkz4lFSbmsGTl2YNdJV/J4tZ2PTvMesHbvFbYvtyqYtw/El3Rz8crkrmWDkuYP0VgX3gP6wszjYOjapliTK2MQ2AEYCHmu9nbU/2l6uQ+ffoe9zzsu8ce4+nSJozRawX/1teP3zmYGTA4BT81jdqWuxisi4452M4PtRA26nG9wR0snKdOgP7lCiqtsAevVXexzsZhmKPbyYSkzp9kzzBmk/eUVhhYsKc+v12kudBiBdXp5FCjm071qreRp5zs+0oOqtol8/vw8yCJO4yL+PCtybOTc/gvnpjBJeMiBy9of/c29ctvZkz2K9uuosSIHo97D8zKMxvhub2fMZrMFfzs8S4DcIgibBwPn3q9/+6NvDtkb9Lm19BfVt0c4eVZZ2Smdz8RKsrx4vMt2tj4cR1YZ+QgWEkNj7G1lwFzoxevrAGyqA93VbIOfXKHc/77EBDwps/K9USUh9YaWMVRUjPp4sbQ/1kPAq3uZsRdd3eAx3MtNjTqDbMnORVYWb/i8LIUBus4sYTRsy/J8BI/A1svTgqle6hjjyPdMANYx7IwNgUO2rasexFpDiR68sP23WPFPF75FHRe05K9kXzrubgcPGhblkzYhg8MrI8SVh1G5FEdsmR2LoUDrOPjga1LaDFu67MOLr/Hkzq6K9ZUSqsZCJwnU+urSMlk7XVVvmTEo2EF1mKeC7kHpZY9aPoAHVuWYyuDNVm/WH0/rUE4I1OEY6236LfF0/pzwhjeIiPGNrLThIXB9/4XTxT1+6tPDEf9KFkUi9TYt7dhDbooU46HnUjtLPsY7BtXMey7ww/jQiuKKX8oEN4yvqBHdZMIt+Ycg3JpY6xO/4+0M9lWldei8APREBHJokklUpkoYNUDRQVUygTI09+B+zT/3m2eMc6uZBVzfiusFAVqv6Fvg303ETPPWVawLtY7mOsLs4e48HkasJMCgUhZILVqVPdFUsEqDnu8TLabVNpWcghdvZKYjd26+AqnV6IKN+bhr2zdzb40XzEEmTyQzfz/ORnG07ozc5PYByTz0V/kntq0VsiSMrtELJuuFB5raUfR9MraarfcOEgJpAdehTua8vUkNoB4rRKjGN7+3/Oa+wvxJrZFbIz807r2iEaCTgyLr7XXOtX83CxydYKFPz3851PNX82AF2jHTe4NVwwLFYtkA0GJBuWmyGAvWUgCb7kzx8kIOjTn05xfcTQUEr2huR+RzW4l+rznig0L8doy7/PeF2y134YQP14u2T3cwh9O67oExmWXXZ8JL6hXnBIktTtK6dsm7bBb7jzUTlef4Dos2ilv1hR0690T/1OkUWddZA32jyr71YN22m69ANpcL/C8F5xzlxgxkqw8oouVvjCnpA738LyeJqItPnlbTTIW4eHigarDfASu3O4EpVF2hFyqpz3f5Xsp5fvQ7mi+mjbFuH3uBXXJryl5LK7zot5qctT8VQ3MYM9zO7GvUCLdxhrt6XrZdiI0JxgaNWC7jGXR5DnuE9RNEuLpPL0QRd5uQAMPEdloWp2O0uuuoJfu28RaL6OC0hpCpedOw/RF2af8EGqh+nKBsGRa6mj6+K8bLKEMWLY8aWjIFaOB92vUyeZmf82xypVcmdKziaWnNfLutdpUsL4Rg5mbpdUuN8/BUbUNRvTDFcHvX+XFhnhLUrrWKq2YHlWq/PQbHeozQ+zD1w4wnr+o6utOMZyQY69GS/PJ3nzqZiVCfgJls9eJhp5VO50/4k3x76jFU0urlG97noCjHhbEFV6kGN5QZZCcl29m/PTa8TpidXGn5NevoqlupgYWIo+Y10nPaNpu2g4dySBgujYkn6/jZgD9eFLxPGFq6fVzD+G97rfMcy5KQZMvGqA0coM8aiuJurm/gtSJOrvuy6/J5CgI4adHg4X5TuneczyYzERlVjvFLZfGZQz+6bhj20vYmEOx3ArIwc2dBQGNUZchXUOHs5iws3d8m9wcLnuF+2RPi936xfttNmVoTIUDHb+N2fbjUx1ABnqn4zK6o2WufvdooZa3nz4zp0WXAlrHTcm0swN8/NWTX33AlrLizb25flDbiB0zj+3BHJPHLUO6YERMe7+1ggPnAmTyysHPIhTNYUStgfJh7JkRPTmioheIaJUuffaL7w6hYFJ45J6J9vYR72tLz1TRHES2WfMs5figASp0+c008/ny+Xv3/SAe5Qu2QYrUjspnoJC41p4q2vOQ8u1B01T3030YcS96Ou1cTVJpKmrMOoxTMaVvyQLaCCpeVl6ZTs03u6Hzl6wxesplUa2So62+Lqwk1h25aBL7wwW+ii3g6nSIzHF4D9lPr1P15ZScc/bI0eMZiZit9If/y0/Y7toLViV14tO5CkE5LdI3FlNwTF7TR4iK9XnPAvy9pUvykhOQ/f7CgqoSCnae9pO6leiZGMfHseDP6FkhvW9aNtczszegxPA4eCusDPmynbxSlGH3vcXMmfXbaKBNByqIKvOU3veXV2GTwwY/A3beJxpfqcN5+OUHu0yHE5+kTgkgegyM4ejwSkdzUWNghbNmf3pIFBwRhuhC/+rnrCcNiMh1S4fd/WMO68s5AXjnG+ZV5ZROpJCev37NbNEOo+585v9+fjzr99FWSAzUfIZkC/vR5I9926CffuUP0FrxsNYztW0eFvOeXe3zlHEFXrV4I/v1DqIhOh47MN7il2RPBRWvl5FrEGD/iVUNdn7HkS8pWyFcEj2qCn+8P9MJDPW6YcHdepq8wh8FKRwVxFyqBlq9B9H5PQ9ce482ovsq0aBt7tYcf0I6YKlt4HE59gTvhaU/if01UfJD5DDL7068FWOjUqvXOpz1VcIn3k4y7GjtkW0Q22jVRF4CvFC+eHEmnTketTwDF19WbCs9NH8166t1Xi0/zE2OK/77eYoY5xYtf/Gq4tceEodWZJeozP/pJ9ge3w8qCX6Pxl7DNtjH1YYq2qeN+v1tSdd49Tkx317l0VCBHv78Esm4KaZ8xVMJQtL0xMuv0LLHvqjUm3vbksvk3/j4fahPWATCggT4C2nnXi8exAudMhNBmQ6ZhGN4r9mWmNsqNPujoQmwk94Hsn3ud5Fonq85XEjxZX74UtC7yqcnfA98T2wpslqRcJIpA+pu7Fp1esE1thfAhHGFJc9kRS9ZeY7e7iNkmB3eJl9EuwAk9D0Rq25vEW/GeA+N+56IcZ50Pk2BkYN3jk0SBCJGw1wP4ZvnT+bNn0dnL4MA8UL+Eu11DQp2JMUF3OWqIOYDtEL0w/MEc39nNly09M+P7yRhjcU7qtF404rLz7/Q2b/7Itwiivb2o5+//lnwYO82yk/fOnb6admvvxjiG3CacGe+6/54g+uWFYzcNdWfnuWKgvuhH8rnrx/089ChH09Y+kIX/fqVurGtllj+NHBablgGAWs0oplP3ZdmfalIt9uV2JgU7exvO2Teo3DmHa902uRCCKFmnMjmpvUmfw/gwdCeROLEl7alRnHMoOEXnYqtTItu7ndwkC1Cts/TN6ICPVQg37KKWBvO0s4PzwNU68dAp+3pVlDWrfcQyVbGHjtvKDq4pR3M/p5Zbx75LNobH/jxCQdyu8i7fp+peubYJCihjvjGtw2QoqjC0ypT+HSwWwBXiCy8lHTmj8ZDliDWtDdL5U6MWL3fJbAK4g8LpEXl9+8XD9TDQ99jMdNNxHF3lwDTtGS6/rZSaec6EhSv1GPa3H+4HgQXEGPv9vv70qnrLzfYb+mFCm+bFOPLaAwYw/mtv4wJc3/2bui0GHds6xgy/+X73/fzNfnJh+KKLGS8pS/zPwWKhm5dXuDqbH0WZGNUcKs9liC37zf+5eP4yc4a8IQt5w0gt7RbX1UZQTwt2bbRM5P5bZaDKpoiptHhFVVzf4ens/BouVW2s36BG4q1y46QV3AwRfWx70CLjzLTo8o0J4HJDjqzOsG8X2/a+fO6wNRZEX66h8ls6maq1FTfB1gOglXLnqHhKcVVbInlLsxUrJIIw444b7zYbkTOE7631eAch8RJ7lt/iiwaQvgVbhj2isNnf2yDeo8vbBcuWvTTI8r2SFZskyoT7+ITBDDrD6YfXg0aVVsHVSwOV2Lc7zIa6nTs1EdtqaQVRoZ+/AO8LF8TbZn2f3oc5etSIla9+PrFmVgYXs+2pctk+45GeVOLcK2x+Zev/MUPGkilIeNh8zDQqp+ij3qgryVzpPMeTWOXWOhxBQ23TX1M6+y2+KBCf6pk1lN+Oeff2rQWJZVvt4pPvvvU1Jkvsu2sp/qtasWAeKuSX3x3h7WbwYZOOtP0a8UnIWhLuFwtnWwknZnshncStIZ7Iva0HdqJuR2Fd1N6xDpL1J9m/qbaWYWZbXmVOfluZcB9fTsRjZ0O0XLmlep3rO9Eu77MaFDSOIH9aXkkjuUkUR890ieEpOpZOPLS5HwpU5RsHyrZbRzd57tmFYMj3UYsHPemv9w8ZQdizXhj4bNWTWa1x8+vPtD3xzdadu8FDOnLubJDmwd8qQsvGbw3G4jf1MeIX8f1B/LcuGC4CR9zvN2zCfRjrDKzoAStwnGo1MMlMLCC75I/ZU6RI4IPI9tOUedPz88Jo59+1Ns8QM3Z0y2QU6LS2gkeJmvipwLOnSezXnulU/VdziNkecvcz/Vocm++i/n0DGvKv4rJu92J7+Hrrlz6jo2a01edBsrFiUfmVpcTn18MdWC3uCQs2wtHv3MlPwdj85lwzzduMcAtpeg+RG8sOzFOJ93AH3jqSYelzSotBknpml8/Zdvp+vGH8X510IZerkz7XrC58ndWowb218DSfXHyx0T3PvCqpRvR/dPSnDy7NZSrlvf0Td0Nn1Z+4ABF8RsLGVpzho6NDY/LuSezn0hH4T3FoG0CRGzPZO00VUsFinC/Y+dZP/SfcsCg31DK9G9TFFPoVoDWRy1gxD9U6Me/UDEOE11L7JmK1/MtXr8TnP/xUMq6MYSDbBO6Ug4kXaOXoMGylQArVRmmy7dAS1BUOya24dvRWBqGiDz7w6nUkG9KrddjgHL0yz++K5nmRoHnHh3o0h0Vs9Y1J4NaEe8YpFZNv9/Qt/7yIW5l2o5jHu+V6JlrZJMqIf/GPpERM/cdm/VAIaXNMMDTeecz721MNvsdJcgKZ+bz36JL5DYA9/im5MdzhjI9lFCbmsfScLkpxLm/Q8MTnbjTfYrKlVpXKNXDgHnefGXF6ZmI8KhtlYo/Pe8Y2xxdKiwQndEnmq6lMKCvUUWMpNtlWs88FA6r7ovHun5H3KMTBUtccLxgd61YloYhqQGrNOKeCqcYRbsKFCk6VMQT+NsfwnN0gePe+7LdIByiKdjmJyjzC2F6+vlEnXlEBvIfzok43jblfEvqHOKhMojRink0yV1qoNdBPjFyPn7M0dHcBOqx7vC4eu79YX1dKvNFzVtaiWUR8dWpyoAmu57tHGUfiUx9djCmn5oZB65FP74L+u3FyUbnJ86MPg1hd+ot/OFKNmsdY4D10QhIMOd3ex1S++eHiX0L86LOtADDR28x/uXf8hcf2XNtMCP67FD/ugsKWqfLhPz82XC7pBVCVsPZDkBseUtoALuz1TFnyOqIH3xmIUdtv1haCGnEv1H9QZ5NfCpPPiAJ9ckJGneRYGrqg1/V6br78wsmF3R/fJV7S531FbNvQVUMK/kjwGUx3ihSFlrRyffQ+uMb64Tc0aR2yIN3pa7oaq5HXbIKOgiObDHr5x0aE9iK4ODqzrTFxyj4ejx5P73KtjMfo7a1CwBF40BmvlKMqu0KP/6EP1JUtnzfCpXy0yfuzK94RG8ZtOtFTcgV92io7xf8i995RChGQ5leP2izYSZdD03JJ7WNG/j5z7XwYi0PcWnDT8+R2krSaYmfpz8eu3u4prlcfPeiqmHNIrdWL+dF752z9k5Cynaz/6lTlZ4gHXOdbTTbTGde14EpXDyyZ6cxndSOezDzdebFVYv4jk0G9NxriJ1t9n6XK14F+LH/Mp3H4A9tGuZo1lvsV7/bWd+iznRSpkW3bTvl3SX48WkqX7yE82doOGAuvzo+2QctXWkuSZQ6l8/sBNayaLqtLUN8hpbZwmGLuHD0FPDsktN19mp5ewidPfz0jpVW93R4LZkH8eqxx3CZQn9JXzeAuT4xa9Z/PXwOTxgmFNFh5hX9XvNOiHlbhaoLoqE+XVgi9C0u/vkna1kkSkpqGbN17BfsNskynOSAzfziWYzZSwnBkx4as5p50X9t6Td1RDcJT4f+E41esrAUUTTmixLm5/HLz3wNGTu8zqu0ri03+/lHYpB4wbk4xU/YS0eFWO91bw4//k+y+orV7/YTcTXcKaCV/ZPdY6Fv+5m/QbR3Luxh7tqioreDpFp9GpPth1DOz+2qBIfmDY2uhRL1JxXjv36lt7cQTct6PjzoWnsSLqScD/Qux8jG+w+xuZKZS2nxnWDVlSkJlPGcTqsgr2Blog1ezX50rjcXNEQJxZOfD+00eaXxN0914NYV7DvEoM79ECMrA7NrpW+CBItbRH/fD+lgX/aiOtdnEqKGoq66iBSq1jYxv9diNO601xOWymKNf/542MhVApt76+JnPy+tvZbChNSAPOln77TRFNXXGGikrcjmKwxmO8YvCZrkaJDZj0a0+qqVctXk45/fK+V7YkOt88e8Jeg1zxuNRn0pgcWs65LxbhuLFQRCesQL5h45jw61BQzZC6Lvar0dsmsI6m27FCl/oTwd+TP7QHjeBQQXuy/qf35wnn+SbKMd+IToIKpt+BTI/jtveW2bKIPXQTnhhX9wOOuGpQ0z/6egrMaIFdieYE95SlH2vvjs0N89OLKowIfNfE/IHB/q5bs6EfeSeyl9f4QY7aU+Z7O+8Gm8LfZ//Gf9jNftMF1F+PECspUznbfxeM3Qb159ljMd8VkP/80DW69YFcMnUS6oM58ms9JKjfr7Mx1gnocSNz6dotnPUZBjfUv0X/9779gHWeoETGvL3J/GfijVbGxCvHY+JlryjUtBuJ1zZrzZhzPpqAuwPe5WbPcyPD5IYHrQJGeD+BSZ0dJWyAkArWSmFxlpl95rH8I3+VzpQrd5+jcv/X+OFCj/faTgOsk1XV3Wz2g4UjlHJl4YONov7+0g7s4XOJ/cgln7b+6PvBwy9fQJFLaPzx+T01M0QFBiyvCKN3wc47UCxZ2ZVHwtZHN4jqc90t2UEg3ATKVVO1jqnc6L9eKXiqaVYdrwqlzGyMcvi36MRxmwAy8WKvedWX/9/AMblawIrnddyz+2bIPWtTu2Mc53v1cS5KDIdBDxT0eCBu/YVBB8LxJGe9cwhzBtZbD2T4o5St/+uCPjpBb33iQ+pyVip1VoqJ+OX2lr5mtzPF9dC7zFTSHJWfCRmPoJVvydHdF1vdPQsKlEgF4BnYRpxlG13PoG0GTjEl19LM1ObbQJnre9TfTby46m7pF06xTbJrMmX2nbKWhlqPvcYWT3HotR3HJAkCQ22QrNaH7ShWCBtE3WlIs68bsqvlnoHiSEqnrmRvzxdWJUSfGZWebu7A+LKwywAq8j+srGfMmttwzNyvSwiHwRDTTJBwVfB4O26usVcTlUShArsiQm+2ZRLQuBhrZLNWa7xXJnrhgTB2WxvN5YsD6MJh0C54Kmel2z+3tvtdNWIQI6VOKFWbZuFqJRGwmMmaERa5uwlLr3Z6OevaAglzq9RU2zdj0gexsYtpbfljEGA6QSL6lw4ze/fRWliNr9t8D8Sqg5xS7PoL1UATu4lBRDJeiWQoJNSFzx6vrL98bOgDZKw8wrwaZYfj8X9ClFk4RB2KJx67Y2RBHcSHqjkj91y3cF+NBfmR06LRqqcV+C8b40xJExN+uulDy0zXlAduN8kij/KDKiehwy3aWsGG642sPrkayII4rA6eE0JupTN490lYSdOUqKCiCNAyfG5SCZ/Su/XMAt7vNdp+89qvNNKsPpeL3SSbnv/GmaDoocyMGZhHlzM6XzKXsqLh62ZNMPNhrh/GhgXH2uhNSDkFKargJY7+UnMzbrdzvob4jheoi+lL+xnLaPIR/gYNwcOjEraOkrVOM1b2pOnGo5FbXzEAzYHaYBwyXK02FzC25opy0IsUk8LwL8clG9r4UD/ir3C+oc0D+LPtys5hu1X35/77RQ7bzFjZB5i8lUBBUopuH6xCmrJB00lg1wLiZgW+v5LnrVSgaog+7LzIUmoCmLjAmidD2RYBPxdHqyUQK7y0JiGs07nY5FfAP1/lzRVb/J0V/8eGvFx3ysKkQnp1RATwghmuRIfKjPuacW4iYm20M48vHbngUIlYtJsqPemFO4BglOD7EmxkFm8+/7BPVrLnxmL5WtyZ7PbEI7dnHYZnfR0RQO4QVcHfZkcz135mTMp8Lnzw+HNDP4eF0ODmo/C47V/eHpj7/nmVz3a+ZFIy+mYm1LcFsHW7YtQjsdOvGKITUrTiF77P1xOLSikmhPgznOvS/Gm/OtwIP9ROynoxVj9s4oJMOtxcUNZ2ZnvakC71WoM4tfc/66X2gA77qqiFvu7GJcfdc2mCF0xCMlijr1fgkB3UQL8019TIe4bW5w8NIMC1cx8FfeIW3mt/RUotNOiNj3ebXAXMdADGYFBbPLNyBNo5hOXvctBh47AqgBO1HxwRtz8I55o+5uWGPBfW1HUuyiTHITtsWixVHEk5VVgsZWR7qsvJzz067XkLeWfRap38hktwY3iD5qmbk67lMeWEcK7RS82WV3/3K+OasZrL/hQLTRubUToFcAc/6Rhzkt/TpPP6JyVVYLfHhEKh+FbxaAeNsv2daz3eIte1DCXL9wYd636dTeggrGohzYZUnmt1pONYZCyEsSHB9LXifGs1Pz4ugxcr70iCPXo7BJO4foIa1R/+tvPWOEmZkx+H1/WO+Vdbd8MHzH+XxKWRXQKj36eB1hHfHxZMfQYb+ke3jd/fECVg7V+ykx45057VQ/np76HrQ1VkUs8G7aTwq8A3nLzLm+82QVlAiIGxMsLLg5JvnJhqrdvllw7ahPr9fyg1xd2HdDNWho2iSVppyC5oWhe5Roqh+Vo9i5aRDcBdB2/iZrfvFLSCSs2p4fTglyXfQhxvx835FBL2DHaU3cYTEh/todZNVfZTssQ9pG3UPPT2BU5YQlg7XpsCX4CeljHilk4TMAEUDuvxqPcBDg88XN3D+EqEvGtQPiED4ov2HB59BhD5a6pbHr8euYw/loWEholYSYQrL0R2bxWLWoY7PofrNTXtwvN1jtEcITMk9oGHadBIdOexKjb5+IlzvrNo/8QwxyRvxud7wHKDN6ly6S851zFowx3DfulmleWRdDJo4DehvZim1C4c3H0h80uEMsz29RH9pfP1Gfw0Jgu+2KRKvjfW2g8TPJBO+WOqrl1/aJhK+5xvT3PKjeh/Ath46EbEXbyfXsUg0Oxocutos+YrG119S5/zMtPKXtsBdggk+6kKkA/B1NsXYwUEnvu1/8R717rStUHx8PQpDn+lQVVw3KVvOp0beUF6MoXLP1ASSddqu2Q/yyRzZg4b5mfrWV2qHX3QmQcOZ0bJVPO4RylSBfNYDpcsfN8f0+GGjNyUDZ2s14n8nyAH63S6kSTPMWjWxy1FmfsF897k95kcNnLyVso5epOUp4b6uCWIdzvGyLqZyUG2RHdMCFVJkmn/sNChcwkaiqcNuvUu0DldwJtDm9n37vu8cKLlH/Jr/+N0ZdelGeU3Umj81lHfVJMEvelenRZ1lU7fC05AS1E37j9e1zMcdbpWA4FdqEp0RuTF640gXK/XKJ81lvTVKVa+rze33jZeJRf3iOWQhI5hbZVuGTj59Jf4JF+oAc++GD2uVDzpGs5PNb5acjGjAVMNzfwnxE66aadPd8hSp34oIRLmh8KA/pDfzFtWD4KnbmiBc9RY23r9n2saH+8BYzGdkKXzODPNxi7OR9AIJFa1odG80UfWZWcDvijA7k3LaXc9Y9ofQeJV0/doG/YteXCBt1tyK+zw7ROMcDJKx12Q5VMed3k81HdIUd2cinTdTdkO2AcHx6cz6f2/LdiBmYbV8w4kykmPvvBOtNTdmuaLRI3BKco9vdF5k952/9XB5DUK1BY5eMxD7H23YAzd6rVO4Nj/OL8rTVSzthXIX7Gk3GncbIubsb5mpV0U7LdyTA1VufmDVMGI0xe2XqHF+Y3EfR/+uPsbneEJ13l5b/9HSwk+5Mi0qTS2p7DGB7EgO8rAva8vXJqWAwzM2snwJ/gOHoqdsheRN78fR9nimbAMnd9ojnz3O23E4FTbEymB3kX86l9yqDbXVExN4h3tIs8ia4GqARwoUnp4feOiG/3G9IvJ5cc3imfqw0XlhTIftiXxwtLwHDervMiLoXahaWMN+Fh2yCZa2IJtj4nTIeF2eqHM8rzpoo8oCcYwuL9PNEPL1nDrTlO2BO0GxQ5eWRg86v5Ii/0XqDxNWz1KDryoydUudjDqmfBEhZNhFzje/anGSMSrShyp5Znvj+1ZPP7990VJ6bv/oIW/Y2mT0oAe/f76sBl1csYMHXjym1n1SAyZteDAN/p9NuRwIUpguX6ebRTafbuu7+9GusLvRUxJd2/6e/tjjS+RLXyaCsjtONJiosfZ4nXgLQfzAetLFPx1af6C++id8pcjHRMJ6U8lWfyOVRPfiYycMEt1A7Ma/wYpONdXWBk/WWyba15HTWfxOYfNox+4R6Xr/kIoaneQVi2d8+5a/1YlK+ebLBEkR91Lzriwb5e14dPv++y+ty8NTvstzhhfVepdPNDAJU6cW8BctL0tZ6PWSY/Qyz3h+7/fWPXz2i/Fy7aPmS2xP89ILSD1MxPttJgke5F3G8/xq++FW4ASlqNmxTF7TgQvjoUHgZdbo8epwPVfM1IDnJIUmzeRGFk64MWCykDq/qtmsna1bJByNzmCdCwgeLRAJka1mh1ZKY/shkb0Kr9OwT7zU6aZcIr0ZdX9szHmHtp1Ozdh11wUyfbOfvV50OoqZO6mYkWE8P6XiSpQyaMUspch015fezO8BLeC3I7l6f/EE0RQHJxlMlQRR9Ob9FnEIuei0z63RfjDvGHFAqQ6H9wcr9uZ4GaB+Rnln+d9v2wvYpIU+iJiPJ+Y7oT5/HQ/thcz8ypar2SmDWwySz3ok4K4K98vjegGy+apOy+7PDyKuthqovs0uZVbk3cKQ+o6+fXwvf9ryrPWfE/PGD1bPT1vYkFUS/9ut/ev06KTVdJ4lnMhzHIRjUf9Fnw07p+L48nyiMcIintaWn4uYWZMrs30nSexVndtkLqL+eFlhepQOii8v+hNzisSC6g/qi7aMNBeDwYAQNIRr9usK/5092jeQU00Ytbmj4aJS4oXYtOB4vAyxMK2DuW6uKqblIH1Bi84Bv30eTji8snZBzLk94uTp5SNpJEICJVYPpU9ShIXs9KPifqiMG1KnJz5b3Qad2rPEKtbpPNWt3gnAhTFh+mVoxLn3DAOdRdET34nXa+3UVIJ3zCi+woEb0uGYJkqNTxswV7nhdOK95S8v9wc7rFTE5jm97dDhWezIP+P3uW1Y2mFBYdGjcrqCquGigo+qG2K9XlzbnWv5AITxLoh/Ql49fPy/V12F8YOmY5/6Y5JmNRvFyYFdfdwtqKfcEZM05Mf/sHNCURJdAPb8u893VZzvNu0dCAenfaO4/rB0rLDegNOmLuXfxGQ3WWgPVOX9OFJQGUE8kf68cHGNFh8wzognhjwdNZL4wN5pNxMsTlZH+GAVmuNkiGu7pZYIXT17Mn1DOxzOLNWhoGDJrg/VCPOK3oDR1OjLPG68R/ZJXidaydWCbe1lGY2JUHchGrjJcfXPUNf3SRt/8smHkMLloBD2gcCZjSIxjaJuDIK330OU+xjMfSTtFq7Ey62dGqnNYSDF/3tTZn9O18pZQY2vrEvohH0kghbr/jQ/aU40i4YYXt4uTjpf3WKpdnZzoUnR3Zn2wXQXm+kWcoHmj0S0CW/k0yYTB7h5+9dmtBFjqtsaMyby1FTb2JzXp9/nspzfF6JyiD8z1hq5mfzka5i1BdUC/zG0DKZryk3+BLfuazLPeftHFbX5TZ55GyHbRp2N5DG8/v0S6UpbSfhttnqBJ5ENmf4mm5v21/niJLneR335rlCvsvlMwil8qZzNvAsNeDBQVuZHSOR7+6j1uNNqOivXEqrFOImY699esV7kN4wu7bHdclSab9deP1xBtV1zb6udX3Tav6LKBJOKWcLvAT8+PsXLm4xp7DZr9wdxvFpwWOVKgy11M1Uaqiv7msArmIxtUOlPCh/zMJEgkPfnjQ1xzrBO8TpVGZn7TjrrUSmiOH7zaRNuWY8EN4Ri3hKLPK4xE9b7fq8TtWkJ6VSq6c3s3ED6wKx6/PU7H+EYuv/rPPPfSF/MRdOvPnzhTKrX9jqyHn74ingpHf9oMCsAt4Tsq2e6r4NsvGNAeM4suhnE+Un0Q5/6ihMwlol+sWpM4q7Vyk4lGzm0xBfcIq9/+VTBzrCo+TdNVAW+z1Zlmnw/pEqlCCU8nvGPZX5ktf19FAfKbsGZOYqRoNHo3Wf/qpZskjT+KcXlDxUh7tt1E22JIY7GB15I7zJD2Ihry81dUSRFZZHfbN1F3pYUNQ1FtyYaehoLZ1lDCRXvdiX9/XcyGL4yL8vMzJhdPRT/Xc8WctiJdTkWFBi2IThAvn1tmX16TOQ3HXPzjEerMF2lY1Mov/rBivdv23W20CRblFzGXfz5o1nuNsvD1nG1L2SuW5ucsqceH9SB6q9jtQ49Bgr/4DNG6mPXEoMz8mWiab7bN5HQyTDWq8em4Tfn8ipnx54e9tizbUaKbG1A5n4/EPdKCibdm5olyw8L9o/R786YmoEXyiV2FiZhjfNsmcL2e9n/1fKWyGAOfujvxteHVrmxLLoFhJSKuh7/FtPcc5afXmB7H2Ef7Xt3DRT2oeLxu974481gI609OyHjuOF1OQfbjQYz0XlwM9KDF6llSLSoGiYtW8lIw4KeXFsr5aw704JwApKNNl3Hp+QM2LjE8ZWITS1x8/Wl1ORlQJE9ErM9iSntLyi7K6ZheMV8udXM58wlEbgrHyqg2nD/5IEKUoolsXKEt+IffAXaxfyZeoiLUSl1toJ2mEhY8ZMR/8QKGrQ7EsngadTd6bCDtdz7TLactpmrqNbjrsKA/PjJ+/eaDFunSJBoedSSuzm4JqPVb6to6i7ppe7nBdrmI8arcOIXUXIQSkZ7GxN7mu2hY9XGuvjV7T8X9Nzd//gJSbJmYV0aJ+kdVDoCFx5p5/RAWnf1Icqif3eHHT8xf/MPd6yUsp3vLnOb5A/zpxVTKzSETbhhNdPLYZoEEzg16F9Hs5ylYvdt2Q/M6/f4e5qb8yIdiNSVwKV82s9giKMQrSj/gee1AP3M/5V+p1GAlrkviYIkXL6ksNIXLh4C59e6Jfn5RrckWY/DW53Qc20CCmzBJZBvZxR9/VcfFixFvedbNFQp7T7l7TMLjRwmiMQ+DC3J4cZr50wsNrqN4yvfsRyyAdpuKwol2II0Tp6IkQDHu34sQDZAIP77k9wmzS7CdW03lI1mj1VIyMzXbeVdmDcHGH1DRNaiPhj0hC7X1q/zMRAhkfKbP7pi033UXlbAbkPznb3t78Az0q29NW1rtsM2rD9gn2yBa43ZtL4i4g9v5vaHTxjbbcdMhgB9/NeNbYPIfj7zmW+fP73RncXUDkw87YuzaVfF8HZ4Kggcs2ezPUm7gKkPz66h4NPJvOo7iN/zzf7ddb6LlrZqCtY73/3hx5+WRB9uD2mJx5qnDcePnAFx4EJvPW3OS6IJh2xgx+9VzZuPIQLHv7X75bi630e4J5X61JDvrfo1eTXVtgMdRgZfmexMNZ+f6ASlQK7brbh2f+X0FUpvkWNzxY8vfZmOAcMy92T3m7fjjH08zhT8+10kReiLkiCnb6jZJx0cqhspNPH/YzL9425rEA1foBhbM/L49nbfZes5vphkqMmd+3P3mJcSWngPqX3Ibo7kes7kemIy67R7Ki60ScvEHn9/NL/09T/wdrIk36tELkbCva2LQzECrh61OMPsR5ofo2q787TqAB+0stl/nO3/YL8MYUpfkzOR6XPzyR0m03GCaedEjtnwMT/jpcY+fpJ8+rNBivihkB+nK72Y/DDNvo3y3N/nofcL54oXmxXC6W6HuLC5ukFvYYM7F/MwX4p0GcO7+hmm+x6Px4swbzWd/G3XLD6LBPcV/84Olf15Fkyouqp+fI0aaRbwyau+CvKOSY5QxLRI/q1KAul0ylpSDnHaX1/RRLWVrM+16fkYzb0pU976hBPviKvrxub/5gql+I7/zAg2r+OlFLCA2a9murEKQWXTH8G4v0RCExEPHrS4R3ci30e/zRIuMNLj+LAT/N19VpvKkUMReXdv85g9yTSle4XXbDiQdTz/+xYzDpudsp/BAdd5InfUO44MXaMFP35ItOwztyOgzVs2WFWSeJ7bT291lv3gi2hkeBW9Pr0Ct8NnCnz3T/KHcjhoSD8s3cY5kzX966lfvSNB2RlEb63mL72q7p9LYz5sgx5ai4dHciWYJm2KMTloG7yyV6CSuXJ/52xGrBxD1H+/3h83NytR5vkhhOJz4+IvH68lz5q3TZfGbX4J5KVJimJu1P+lKI/70HXOweWin1SUzQMTtjbib9N3++BK4VrwiBy9eR2z7BQ1m/kp2n3qIBnYfJFUd8xft3u0lHZbDoEFJHzsW7PpivshBPIF12txZEG4eRf+bt+yGtUx++oJHO+WmzvFJNMO7+qNdHHJYlG/ErMdOi0Y1eXfAu1PAdsGq5nWFhwba19XCS+vyLeitGwPYHEL5L36H+mV9IHt5Jp37vTm+Kc/QrKew7NUoan3xYYEpCUf8OeaGyRtV8358i2zupRWtZr+NPK8emNmSvJ1M75WheT5B8yD0kVRcrxl0pmHTgZ5Kzt2VUir70sTMVL/cZJyxeE2TrUu0YrAjaQq3J0gkM2G+fmrTYWV+c1h5rwbnM/8aOQ2V/+tIAfrvIwWNrm/pJ+l2vG920g2t/anCi/6rom4xugOkxVdjXi5XaCD1OKl3cCJ2cXRmDm4WxCAYk852ZV0WbfxYDsiw2Bbz/CoUA8/DEjb/AwAA//+kXcvaqjyzvCAHIiJphpzkbIKgiDNRRFBEDgmQq98P7/qG/2yPXesFkk51VXWSRhtEAuNmIQHBOoUup4zoXlL6c962MsLXy54i2Uur8difAeTr/cjSruy7+fQ1aqR+tZzoxHh1ff243f7ej1mf/Izm7KfrCC6jQg5n9ENzqek9UFOMsfK8JsaUKfUJVmj4sL22nLmV19yD71q+E98eSp/fynUJzsm7MVvFNecnpTmBme2fxHJeur/ZKtse1STd4O9PCNBY3NIGtLdpkgsmL/65ha6FimI5iXVfLkrbHKUE7V6/G7H8FTe69T5xINePMnPk0F5O/aR3yL8hZ3h+2JyLKi/gFT48YhWD60+7eg6U9JONeLu8T9uYZo5UereZ7iW6wT9X5wQasT1mf6SbP252SgMyhISc3rVqiPitCVBKDSGZ7/GMr96mDt/odKAboboaY7wdBBh1ySO3d/CuGsyLEak/fKXSSIJ4834uluehbegAm65jL714QxTdVHZzNpeOG6V6g+iTc6Zds33c1VNNZVHf2ER7r25+v3/UMzpYzo5ctJpU/DCvMDzJ6cn013rpjbffFsD0eaLgSHHWz5paQjtlZ7zaLhezSkeeQMy9O8PNveezfr41iF/bEfP7Sczm9h1jeO2VgeHMkvnER79BeH0Qib/OBb952ZsVXNtxSyLfpoijsnOQr9AV3vltnfWN8nOQXY0BMUs98Vnq3+9g9FJAnnIY+m2Q7gBkq42ZT7Yzn46XXQPT69nRQ6kdsvH7G2rUhmPEDmn1MsZrGgVKnq+OWNl+FINW5X1GhmdidpiNqppPtzFVoihVmfp+b9C4LUcHAkW4kAvf2HyL6CqRdyfbw8oT3og+TwVVpIoC8b/R4E83+5GicaX/6OYvfn+pqipT1dZM/50mo8G8mWHKfz3TUknsGP2JDlwv1CSkxTvElvlS4sxkhER83TF8F3RUF8aOqP5X4+Knf52UTRiv6IuuN36fy5q4PoRNskjerdGJEpnBP3cROXwU1Rjjc5jDXQJ7idffUqJQHDhl2GHWJXb5nDxOb/RUqpm5l/GH+CR4PcI/MySaMjA0QZTK8FNWMbHWL9vvN2QroZuiGFTIPybvDcun0F/fN+aP7qPq71duoUYRZObuktCYQQw8KJTOx3J77Pksnp8i3EGVyanaqTFv5yCCDyQ63m2PdsXd0AjB17cnpnbL+anVzpOQyd2A2dPq0fHDLAaw59EHz5ubUM3S833b5fKlxuZs9vG4jp8Y7Vsw6DK/Pr2dreW+SP1BxWRERi+Tmwep/p0phAfPn93L1YKz/07ojhheNqn51wIC0Z2Z3hfx8SIZKSzxx4gk2XFfjdINnPsw4u386mOqefqsYH/cLPOZVPQ2Tyro/cgJXiPB773HciosSg7E7QeFf4u0nYF+Hgmuj/jVTeWZqehwlkyG3R6h6XF8rVB+qRq8Rm+/muzfNYCnnK/JwbqX2ZjSU4riQ/FkB3uxCX6hjKGet1sqiJPP5/z81hW3X3ppxicU8wCGAClr0PGPGG08+WsJwP34HZ0XfJq+Zzf8mx9mQFryeZe/TPgVN5N5x3LrT+O1k4GaQswymBkfM6lYQdFuD8Tqed9NRsMbZIZnTLy1SZaK/VaU656GxHBM3RChcAHKPPvSHZeMbm7HOgUtUC/MtmLm89cOBFjwmMW5X1Rj4NEElWFdEY3k26wPPHqCjF6OzPqeC39cT9oM1mHWiPH99ah+9f4MZXYSWNLSt0G/bF8AzOjBLDcB/1er+g3owxHovLJP/uivYhPU1zQu85uh0QrTEGlTe2Lkevl1c10pLbzdX0HFx+lj1On35SDlIiXEG6PG6O90twK8JiK277eBz7UEJah4PTErGTN/So/mDd1aKaTb8pksz8tMVD8dlUr1ZvB5JnIL9p/+TGz8eCJeZ30JHV6/yWEqTohNrttCPzXLxf7EqOZ2F5lK5Lgpsewj78a5197KrhLORMuVFZ9+m1CHn7qjeG2+rW5qu58KppTKxPjRTdxtA+OGmrAqiLe/82rcP+gITxuJeDPnY8dX2BXhUDGXYdMr49kJXIwWPCXBln67IRA1UJQikNjNGokxbnabFtpEVQnZPI1sOqGv/IdnxPk8zIyfc/mOcBJGTJ1WJzQ/fUVFGdq9mCZdTxk/hIUIV1O2cKUVkjGp39uMDmJl0/kyasZWlOwRttWnIpbgGPEst0KooPZRMmej7ozJ3GAB8WszkrNQXf3ZqqweHqL0IQffffFRMr0I9FItSVru5IxfTo6jXNt5S5Ghlt2/eFvGh77D5uLPyY/N8DmFCfuL31ndGCI61BOwPSleFZNeXgjjocnIZZ3eq8FrZxPtpTImQSq71STePw26xwpmuu2DPyXWWoT1eXVgpJ8rNDIRyTBKpUV3xVfO6AevRmRuEptu+Bz8N56r4nRkdp01iKbCtpEntLaZYQm8G3dyFkCpblJiHkhsfDSnl+GQP24suLSZwec2oxCeEpc4r9fUdSVGI5T+90fXz3VR9Qe30kEVvpT4/XjtukPYiAAbK8UlkbKO81+YQpXdD8SfVZszNd16yLPXP+LlIPp/eyCWEguhk676/oxOsgVbvxIpkkTF6K17l4NzXD8pZWbFJw2Ojawo3Ma8T/punHRDUEKzXtF+4Q8L/1y2459sso+Xxo2bmQmQl9qehPQTcnoIcYjSS92xADI7a0XHTeB4OA4kWEtp/G88IQpvLLfiLRq2Vnf/l09JwqJ4Wse7GQ2fs0IMrUh9Lg3nHEmW1zNnqr6cN6wxYddfO4aHw66ayvNXlf/4wtb/thWd6msD22ZzxE1XBt0mmzIPCYL8I77+iPkvltQU4Fs47H7De0P0D60JS76mySffIAYD0v/wiLhW0vJxrs4y0qbmxB4t7fnbtn4RoG/KmEuXxiXVQbqDQMKePfHnVY0PQ5KQKD0MFj3wUA2TrACi7WASp8VHf1o9ill5v9gBC2YZV/24kWowPo+Kud+58Ol3u8Ow8BGmxctF8A/d1yGZ3i8sFt7Sy7KbU7BoZlJWT003vsJXqxTyO2X4J2yq6Vov+Vd6hhid7VfGpZcewr5dGXSD4I54jhOsLPFJ9HVGOm7S+A1toqt49eS3bKDVTZKfH3JkxuWbVFPWfPN/eG3l+yPnAXwwVBZ+Ymn9Ljl/14mILsF6g3k4vapptg6SLNWc0UntSScGFDygDGamRbqW9QufUYpP0hK9Et/V7NCkRp/v2WX7ydsY4+5zSsAhbkGMIvz5fNxgFdSpRFT5KIUxlfz4hoK7y+d+qoxLvmMiCYwHUy9eUvHN85cC3QQv9uznio9yNpygKaKOrjfPKpsOl5MFbnQe6A6Y4DendAuQHShm6lnM/BkKbQV3kQd4E9N1NyTv9gbv/pEzN7jU/tztPyeUm/mG/cPLzycuAGeFyo6H8wuxwugkqH7qA+9u9drgJ0FoEe6vEpYnQ/iPj7nrzsZKWmn+JnqbInpF7Z7Y00qpuHIZhT89RvKnfqjmUkoAcJ9JWDSEMpvRbwQ06K81FkXB7sb8fongEiibhZ88ODXaY/Gnf0hwfn260T+dT2Dlvx0xNRniOpmzOyz4x8x42/r89VZWIIH2IEG3P2fjc4zE3Xg1Rjobs2TQyAIB2CM6sIW/ooUfCPLs04g4cCZo85e/nsJiFNtDafAd/tZoorctHvNK7rjBEgmOxb7/46d8DtmVogSSmU5rzY9HcppluMqlTrxInLvpk0sR2K/vEf/x78leZymarq7LrOOaxn/5AMYPdajA1gbnP8TDXexEE3HM/T2bb4/ZU2o5KrBQtEPGycoylf4lAQnL5yHmZz6dFO21XKy5i09ZUztZCYteIPa+LLPZPgQFeJ/YJFq5myq26ClE5Tth9nVOqvG2e0ew8GuWn7WompJ3m8KmxOZySlztRGbp/+FFzkyDz8pGFUG4i4CzXM/R/OjqAH5n+cv2p4MWi+tXKYDez3zJl1XMtuvRg00ZmMRTetvo60eUolvm77EAs+33UXdrgEB4J+ZV+sSz6LgndJ6eDt7tdRLT/NzraOGHZOFPxjSRRa26Qs8I0oDTcXRaMPV5RaMhrBBb73MP1d+8XBopmZ04fAQTprzrifoTTGNyvC5BTn9HdN2Vm6zvxDxBG7n8kANEwBm+w+IHzArTDmcNCQoCC9ZnOOA//OOiikqAh9oxojYxn8zveFL+9G4XPVvjD+/BV/oV06q7mm36q5VAV61yClhB3didHIDS//yY+8BJNllcxcrZShqi7/W66pvnqkaCWWbEyCo3HnPZFWEGsyBk4VO/6lT16HnpNGLiCnej8tlJMDXyCYsLHxu0Y1rDhXGOi1j9IOYc8Rvm/nxmj/v09On2l6Xyr0hNKv/5MftjVkOQxZh5kRhVowMyhmuh13gr1ALvyUleTmF9YuKHzZOPSTKdlIV/L/rvtehJR4fHyfoyovxORv8BNVLSdXuhPMQzmsTpXSjififjTxG/US+kVQ2FY5B//HSull7QC96yfXjEFf9c1ZNyOMsm7RVWovH8JgKcY0liOFX22fz0Nzq8WqiJ1sgBH93cPMFmo+qM3Mehmt5xc0NPz5r+8Nenz/VvhBbJE/PT4hPP3xtu4eB3d+a33eQ3Mrk58JiaLeX3UxLPhTf1shWjhm4XfddfDl6C9PV7Ygfn1aKh8J7eP77aPp9v3s+aU8Df/As2vqBB4S2goFOvTN/rViWSfQagXbKeDr6rcf40WSDH3LkTM3pqMRW+cgHdVNJ/+mCQ9oWjDA8to61x8Y3p1/cJXMM4w1NXT/60OikWerJ1iZXj+mKM+nuqFVF6Gng62T/UpouFbT7CGzNQV/n9Zrl2J/68A7o7m59u7Frf+ePnbI/80BgzEwJI7p8vc07tK3vjNQII6D4gJGxbf7StX/gXP6SJ9Naf/PW42o3NjAj+GA2aqyB6w1szPZJ9o4PRuIJVIOswakTLnTen51oNlYwnPjMW/jUIzEn+4hfzk7fvNl3APUU/5REzFiN7OMvvGnXieMfrcrPh7QixCAt+E7IKdM5N41ai0tBj4sjhN+75IevheJk85pSmGk/I1lQ49qNB7qZtVbQ+oBwSLYiZxsqKc+1N1H/5z2q2Vz6fooDCcLrv2cKP0LTLcYkUqboSm+3O/pz9PB1O/l0hzvGZxUMKhxzR23pHr+MvrLaLv6WErtgT49qv/Tdec0CLPqDicpCoba7+CSg3arYv1z+Dk0zq0aL/iK79ym6sH7cURv9RLAzJ8bvdJQ5hnwUS3a3sO2dz7pTQXZ8aFs9I87l4nm/wMSt/0QNatSmeuQpdBTnJzfU9ZlmgJH/4glH5KmKKfuNKGf1nwfTN7dRtPVlTFeeXOsxMNWR8Vb9oIezblmnNZeXP46i2gE/2BcvJ/Mlm0+8alHxtkyrrR1lN/vYQoc/WPLHH5r70Jo/MXnHEVYqnYOYGN2lWw6e9AiHi6RGPiz/4xx+Icc41nyVn446WfMfsCF7xEL6aFk40RCxgmmPwa9InUHjYw9vF/5uztYnBXf9sYt2nJOsH77qCFXcI7ngaVjzdRBj9+SPB8TOjxY/BoJd6yQ7V2eEiixJLocq0Jc6Nud3Av8+V/Jc/g3x95ByVlSfl34jTV3zzfGZVvxDQfRcR83cJOF9XDgXUtw+Cw/CDJlOZC/jjm8HWT9Gi9yhUVvBkiXiU+M9fSytI/NWb+cZE4lGU5ARStguYQR7L/1+Ojabr5oK36/Tebf78lM+1NImaV7dqfISBhfh9qJj+wIdul6/tAD206IdfjmZlogBTqjjfw4Hotn83/uHhe8pTpqF9Wk3emQcQ6DAs/pTSTVWxkhazNqJoVr+co6BZQf+Sga7o6+yzjdCEMGZBR8KVKWV8gFQEVfjQxV9wjPZHTicUWFqB+eLHTPY6TmFZn/S1mx5+n0kNyMI3uRL/I7/jefzeAdD3xv6935BZkQmGnN8XgnuuRrce1T8+REz94Rvz+ail0FrR5g9f+XwG7w5Sdrvh4UI+WQ+skGAgOCFB15j+lv5WDnK/SU3FYvgZs3WWArgd6g3l4aRV20zkJhgPVyN7JZSq+b55YJh3uw8WFn7x5+ehUR0Icd/VYPSW3b9RYBkFc2/10xgWfENr8RsyYpwkY6L4riKrkV54vM4DX/KxAMp6pePtoedGz4LFL1U2LbOj61yNimMn4F16Aavlc4j7JZ+iX5VvKa+lwhjPb1uEVWaVzLeuViXu8pcFjYNXf/WPbrzhCqPo4RyJAanOxzG19L/4obcTyvwxSrIRnlEWE70sXX+W18iDX9julviRu+H6eNawzl/Vope0eDsqO4r8wmP/8tP4mtcqsqaDgfvza9+NmsxHaHkdMpOnNtrUifmGy2bZkrPFPp8+vTXDWpp9clg/9IoPEAr/4tsJZoSEv3wvn4KKHa6nA/r3e72eDMyNS5kt/hwoj/7qMHe9+hr8snYDZKypx/RYwNn4/H69v3oGCbL6gMa2w7ncWTeMeYrmrP+u+jtsNrrOfJ6GHa9ufgPlWTwy1Tdj4798YNkWM4TikY0ihjc01Tkniz9nNDvq6H96mOD68s7+6cNrlCdY7j5NNubW2frzE0k+jE4mLv7O33zi1e2oIn50cx0aJ1jh3ctzjXYj7Cl0EK2JJhCjE/trI4Oob+0lf9/9meyzFRJKs8PrZm/GwtFT38rvLH3/+CViq/GJwfscTbL4010vBOFNeffPnBmMK1UTPIcAUntbEJ+nY8c3QhOh/GNLtOTnwJ9GWs4yuqOIqB/b7KbGj0JY+ADTbeqhuRiIiTy5mJlZ7ZZbgd6bFTw/hyOz51eQDefP0P/zj/e3yK0EB+QA9o63J+bR36PxmWXwV/9gf/4M1yu/h+NDlzBa6iPTe7OZQaJBinfHTqv4DrMaLf4mPa61LptQfMKgFFha8G6PxIVvQtg+GdNmZKPFn21hS601FVt/E3NRIuNup6kXZr2twRjW8W6Ul/Egf3zkz1+E4VJKdFskakWl+BjAQep1KncfJxsO/W0FUti67A+vJ2cVmgrpX0d2eMKbz2ZRlrt71V+Z+/J+xmxufjeI9RmzQHoK1e8dFzf4Vfft4scKxpTfJxH9GuVGrMW/ZSbN3uBYtYelrgwq4fHRV2C9HhJLmu0ODcjWdOVx7xTm2KHuUyOoV8qz9HKirr5fo4/PaY5+mXcmZqpl/uC6ha6EMpaZ7SArY2+ml2B/98Kf38qnsv3I6J//9dy5xua5MmQ4foszObzyVTf/ff+fv+LdeVExSMGBfTM5xFaI7QsXdqEgXkSV7VUiZTSsa1UZ9GpNlZO5rpjYTuFfPYGovsn9qTdMRympN5MlH2fTS7j/03t0vW0kvujxEFh1Ff7VJ3n2EjDYfv8kqjteqj5oQgkWv4IKt9/sN9fhakKbfxO8ndyqo+3uZqLL5RER9eBmVfe3Xhc/k65XgY6m7fjCCn51X+budZLx6jDmCpNuA/N/l3O1HIGVAINv0O3qy3i/bnITrvZqR7RVfu/Gej6Gyj1eY/wRb0YmnkHPFUOKX2Spj2RTL44S/Onpv3rVVMSeACMPUxJZNxbP5kUUoaF79vc72u7TY/rHL8j+s1nF/SM0LRDWrUzXz/uRs+npi1AcQoUseqOjS/5RskakRH95RTavkhtAf0p6qiz1PfbnpyVv/UjrBY9G1z3c5cm6+P/qWQyVlQP3xHHZ6Ru9s8mMplzWN/szXU/VWHEW8xWchRdi+MsOxix5nwLEzy3EYtjNfLrshRK25zkn2K8sQ1z4Jqo3+sz0vE4yXpPrCTrh86Lb7Kci0VKnRFn8GSqgMq34Y3eJ0MXd6ewv3//zKxc/A0tm4//VS1YAZu+xkH5GNEZd1IJ/EQ5MM/e8m8lOpf+vLQXwv7cUvDtxZkbp7BD7OL0Iqy/ozM1uXz68o7yH0PYwc1rthebbx57B/woTs99+Uc2SxEw4TjgjwaSt/FF4PVV0D5MTlddTH3PebSwk6nJC3B3q/NEx0hyGQfyRw8epjOmdiksvtE3H9pdO7/jxUp9QTkyf3dpcQ9NZlhrYZduOVg96zwafX3KYLfHDfP8WdPNy4T+crGWn6NhQNPuH1wgqFkqG25UZb4uDGsJ8rrZY9oTUn8nGMBG31TvZaz9m0M91jkCx4ppZ7yyLp9WlHGFzSs74piQm2swbukLbqcV4W3yjbBaMH8BNWF/J0sMkmzGtKFjdx2XO52tmk3UpbnLvZRYxlLT2f/v0cEcwRZxO5HCK2XIkTrLDvGf+dn2puHyoCyiT+5GQddQZvQOTqkS58yG4rDN/YIfiLXseZXRTu47BdzZxIDY5YW743fpzoK0LqHgdE6OwCeLfzVUF2ct64sbTtxt/qRlBVlU3guu3xQXy0QQIv8+E6E+xrkb4PUJ057VKyGG3N0S0V0UgUdjT9f3SVq36/hVQ5L7PtJsodP2DJDXMB8+iSqc0Rj99LUAflZ4xt+4IDWLiy/AYvjUhjBzi3mJzpMxqZRJfr48Vu0bqDCD8RuZKSYR4vREtuHxoSYWoG6vxIJ3fcEJ5jjd+vIunZua1vC3UlNlaP3Vc+b5VoNidWFArojGF/CUid+YpMTzVMybd/CZQht5I7O3z7E8SpD10kfel0uf7zsav8mpgfUUqsdsjdPTQBCfkqsKNeDi1Yu46XQPOp0voixyEeCT7e4oU5DrE5kLRjfXWC/++l3n5YjIaw/GtLM/D6/WiXWgvyiAZkckM6474PDjlXdndzDdWXt4lm/zg84b6FLvEzq67avIsC0P/PR+Z6W43HRO6UFdo1AdUEvYuGiUhNZFOgpBCTAw+OdGjgPUKcYqa5FLNco5WIP6KNcOqoPlj086gXINKx8o+32Wtq3Y6sHv9Ii4qjEyIP7sQjESfiGavpmoCRXUUNJnAzKvMs2GmZbmenGzDjNvjk/UKgxYQe+6JI8uYT8V0ougvPg+d0vhz0U2Fsr9Od0Z6Yc83u+1eANzqAXPQmPvzaw0U7V9UoG2+eXXjx93pSH/sSmJbFvOb/KwA0uSfyIza2lfz5F4llBk4Yo6wdzl/64c7ojDMzL/qOt/8opelPINLTkfnVaHq4MaWonxHnyTWTzPGw5OUSFVuFe2OvDDGHJiASsWS2WE4nP15dww9yFYbysyPrSHeieodqPmMCTl4d58Or7GAzbbWmJ1UbTxO6tmENDFa+knRskXmpxYyHq4u/Zvvob06ufwoPY1u2EXtaPlsMTIuk4S/3/s2G7abXQKbD/h0vN5GTrWpiWTTuuyYut2/q9ktNiWK89OdWAfJQPNm9dThsj2lVN6//Wx+SIOEHurv/m+8RstVUzgF8oOo8/HX9Y+mb6ESlZD5ej11E0xnCXRVsNnf+p9M0wt3x6i50fWmUTl1rzvzbz2T4BF3aCb4GIBvfvbEU2axmmLb0WHYOStihuHPH2x/5YHK6Z557z2tZjFseiT9pIEZDfL4VKdXXV6FescMuSpQK9xHVYlOuc0O27qJxwx7JuqXfl9OevXRLNwlHTR2eTHCyBD3pLdCFHTXDzH3j9Sfe90w5UKYNlS47LHfrBopQHngfvEBbkYlRM+rBPVZWjNHqxR/LJPPDXkDZJjnWx2xPaUmvMzmzfw03qH36nFYQbg97Uk+H74+5UnYgPgr18xEa7PbeM97iNBn/LLgXeJuFF4XFe4v8FgiGsdsLDIplK3rOmb72m2MEfQuhb05//DqZGnd5vxqa/RzDh0zo27sek2b3nCdbh/2F09zahSzgrbpg55KSuM53sglWuaXOLzr/b6qeg9eHH/ojm0NY+TCgYIUQMny3zXwf/k2aFD+6Td0falYNjev2oG4OodU/H58NIZR5sFcjSPxnfXeH3P4ish7spLoqHx3c/ZuKXJZ1RHzztJuQI9bD88+OBC3Pa39UT/DCMJk/ahSfVa8Z2unQP56dujmxdpujIMqgMe4icm+VQx/KC+vGmJDd4hzXZnGVj8sqnvJNz6T991ErLCG7ak32NmRjny+mAcREvXnksOvLKphagwHHkp+ZvsUsap/G9dW/oWuQYwaBP5WylSELs0d4mtjmfUaOd+QE0XXJV/MiNIEh398g+2HtEX809witE4KA8OQ/CrOHi8RmC4bdIU03RB+U3SSRUBATL2J+Nhup16RwoAwTTlXFa83K1O+3NIDSX9Rulxsx1S0tn4n3EeWEnOi+BSuuScRPTbX/FOZs6QUbNLwY69/u2mjOz18huZJoXAmo/3jR49PuSJaNJXV9CtMSfa8nlH+6ht/0E12gvoeFCS2P3o80W/cQ64/XCz84X8/Km90F1cK3eTyJ5vK/WUFc+TIzI31vBtzFujIv5d3Oqv1rZr4+ZSDMV0soquew0ddXG5AE9cVVVxJ5KyrViJiXcyZ1rvrjAfhpYBwm+zxSi+e3T++F/jW4y+/Vnxn257MN+8HObyvssG2/buA9UtM8dMujlV/TOUCLf8ec9s3ORf8tgZc0Q7z4exk4yH1TaTyfr/wKZQN12ZKUXILEnLUPquYPqSPBDp7pUwFxvzmJa5lmFa7A/O3bpPxY/iT0cJv6G48Fnx+1XXzl//YvlkNGXVtdgfpJe4ZweyUsZoEGApkJxhFP5KN3vjrYQqAkPB5rTtmvthJfmw9gflfy6tGFUWOVKlPiY7G0FRzLqkiZIr1ZY7hbOLhXml3OIi7iVn5NHLuZNEJnvpPJc/Pp/KnXxFIcsFVyu7K1c6GTSO/wcv3PVMjHxuj3Kgz4M9jZu5POsTTSbiG0FZ1TYJPqiC+7fsSHRPjQjT6UKv593JNFN5djX79BPF/8Tyo0pN5bf76h89y53yu5DAcNsYkoFcI1V6PludRo4ksQwRr/Cq4vGqvapwtuCPdkRlz9Kg2/q3H7DXG7D6NtjGlqDAhMwWHXJ6XTzaPd6eGw1WpaY1pbEx1QGdgX1lc5sOJuVbclt5Vck1HtUr9cVlPyINuwEJ7od0fXkO4swOqNHzbzdyjN6i/5QZ/K/3K50u77SG8+xpu/vjX53IS0WnjKDjfSagbr7fjTeHf85tg/3TrJr5xZaR4gkpwotwQk6Jdipb1Tvtcehvj5XBrkDevCd5lqhfzH+Et/MWbZnhi1a+B39AQlWeyv04555G5bpBWRhaWggT7mwgHOcryoibuPdzGw9046egQSB4hsnSoNkgsZqXIXZ9KlzU1RmoddPQy2zfBy3kLhg7aXVHD/Er87XpbzeI2egPa3h7Evh8ENOgPJQVbuYnMx+TIRynTVdBuCWU2ehR8XPIZnItEY0EVad18FC9v1L5WIzO1uarGraA4u6vr7dlBuG/RxE4fHX4O6fCUZgdjmhrfA0tES4lzU2e8TTIdZEkZMP9doOsNA1tIYSJn2jOMDP6IpAAOyiFi3vnrGuLOk2a4oVBmf3x22nuvFpTqMDGzGMxMKECfYYkfKkwB5/w5RKNSP9ZfgueD7Y+QTXdlI8MK7zyl76Z4mCTkDPVA4ZMqvF09uxvS16lNHD2yjJlXwh1JinPFU34r0cQzJIB79yixY7r3+a32Ad7V6OGqBgGNC94DjswNwc4uNhiplAY5m3LPLFeW/E8XK2+49LrB3Pb0NIYs0Xv08mBPzmJdZXNrIxU9HXhhRcV9Nfx20QoeW0fAn/eboEFqiQnvavZwd5VmY3ZuiYPSbUFomLePbv5meEYdlmWiZ3fXny3rtoJbQHd0Q7HsD1b+FqFe3wNmpXNmTLGtqgC3xsXCt3TjsdBbvHtvbio5jPotmw+3olQWfYq5tGq6SX5fHPj7XVWr1KDfQwnKyaoBI7i8fK6osgfHUxgyNdukGf1c5RDE6X4hZ3Ypqnk12AFCJ29ihv0pY9786hkEdp/ZPTFdY25kAYv318ojf/Elxpu5QBTYzFQ4H6vxPdkrdO/ahrayMmU9fcYm2qJTz/ZzsOfiVziJ0LzXa+IfuWqMtnhtUTy9XbyN6d7g4tPpYT44f/mmQWNzfEuw4tGFwiHE/uTsyE0uLCLgbehdlnjZ5bDwCbxd+PSiz2eo77hg3it0MxqcNAfigNbk0PBL1/PBjVBsXffMdLU6G1+u+5bpk3/xGCAtFo67g/rHZ+h8fvCsKxoiozoqdKI+r1bFXvK1RN9dUjIveUjZmONdCYZH73jkdsrHad5hWOYbi/ID8zlK9qbynA4aczfKOubbT2Giqy68ma7Wcjelv/yOus0tZp67atAyfgDBa7CXXueJv/BzWfpsTyuy8FFjGU9rd7+pMwmsh2JMrxS3KE20lvhd0fjDKO8EVJzuA/FPzSfjPD+GqMXMIO7po6MxywYZ2puW4u/2ufGHQf0JsOATS/Wo9rlHfBW42iNizJ+NT5U5shT/VYWLXvGySaq89p/+4egaGuNGdlRE5q9Ai+7+jn+2OfWg/w5bjIrjvlvwCMPWMA/MqI5qRvU0wop7OlyYdgzabDa78QRl6IzEW/wQ7uhmBHInH5n5U47+pIfXGtnx5sfI63uJPxu2VmH/6gX6WfhZH7xvKVwmfUuFl5sYP1AcR5aV0mbqMp8sP3wSpLjYo5sErtW4PbUtbPPbC1fJ89qx+xVatArmFX379wPvO19YwXFYURZohzCelJwFaFVdG2J0yZwN+yku0Rx5MrPRbq761CEjWDtRZ5b8wKhf1ic0STQQP49YN+tr04RZmiqmsZjxZsFPecrfe0bEfDR4cetNcKM8XPhDW03UdjE8SkcjpApI1w+zNsJ9uDJ2jCa9my+PTAL/9QqJq8V6PK27zwoeMXLolgtqt12dNqe/9YzvbJoMtsQv/HyH4DedeoNtP4WlnFv9yZzr6u3PkvS1/ul7nb8lxL93HQBvTsuW2pdTLX7HCQTvG2LZr14+i7bxCFyliFh6d87o4neBOrwE8j4XZzTC7xyiszVzYvfh3A1ZVRfwHASDmJc99fturgXIH9ODuG4qZN1dpW/oT/aHfiwj6Djx2Ftm3ZFTvq+Dbt5eVEsZ7pgzR3ra2SzvB+lfvt48R6Ebj7NaQ7fcMmiGoWtMCUYyKnGxIydpIxizq1a6fPSYzva7rOn6fmcFf34QsRf+MMmje4NwfRtw/hg7zp1GdEArQ4thrV0aq36jEhb/hrmeEnTis09qeeGP5DB95+7PfwSLly+8+dzWBrutbzpsnpNMi04SjdHA0gk2uc7J/nN7GpQSV/jzy+gpe3bdP/w1prPFwlhTYpoazQy7tX3BdX+1fb7wSyBtYCx+yT6b+/L8hgzlE8Pi1+z+6WOs3tdk0S+cPYfb/MfX2N7AdjzumkGA50Q0oi/8bcLDt0T1Og/o9PntK/Y9dzVgp/riprm7nbD5rlIgmyIlwek58uFv/fXrqMHz6Wv6G2WrROhUOB4LvMxB/77vz7/ITs0nnvz9y0Pa7USZJpZzx+3TDEoWeg8sn7+uz5PLSBWrwQHBevGsxrG/CjCYxzsJvKzhfZtXLdjx9seMiX14bzE5gkOKn3RSpvPil51u//hIv1U5H2xf9NBXMw3iJGqa9Zq2q0H4jCdiJ2swuujihpCcf8Cw83hlU1FJMijC5svU1bgzuF9ZGG6/zqS7dF1k0+JHy250D4k+xqUxB9q2gPQjX5nh3b7LerdH6M8sI2ofcd6rpWn94SGxHkHaTe16PsHmyyIqS/DNFn6EYfGP2OM+7vjP8a8mepJIxzzag8EdobihbTB2LOsKxxcZxCb8GvNGv57s+YJaBqYcKFqGxWOVLvfmNB5MqAyZ+hBwJk+jP8uy03wwlJXUzR/1HShd5HwZ3j5iPv/5TenrsmbOO3/wP76G1klpUP6gkE35Y/WWZf1skv0wN/H40OZZOeVlTGmi3DhHB/f+53eThyslaPo8H7k8hn5CN3W1r2aueAUs+oFK9YNX/fP+SBBRG5Gphyns5v2aF7BV3R8Jjq1fzQtfUK7mpyNapO+6AVtKK1viLmdGYth8svJeAD50e2KTk921dIP65SL+jkpVg+MJHx5L45nIoR/tR/xyq+wATE+OSSB6Zif05lig5+XHmSXodrx1naqBAEUnhgfuVrMR6DL4GnYodR6veKT9SoY3lr7482JtxbD4TlDK6i3ezb0Tz6of30GZ8pYZS77jK/tawq+xbszTvAPi5uubgF2aJTlc0aka38axBbIOxH9+Vz9dKw/aMJHp/G41Lp70XQKPsPAJiQbVZyp3C6TUzlIS9LZxU4EcoF14s5i1Nx2+3duAIf1IV2ZbRd9NwSzf5OuWWliYghixYXtaoe7zeuP5Uxz9yV8aLQTJbaZdcfxUTPteIjCfO4vY5v7jz+84kv/xPXPJBzNX9BKW57Pkrz5xZlYK8rjb4/Eh4LgfUt6DcT9FzJzqKZsm7RjB9bK9/PltfMMzJMISD3gwG8/ok8O2R73+ZIwYluALi58AlRJOTEu3K/77yyffy0bBu36IOs7zawhX6/D6h2dUkpiFjh/ZYpqEan9a8OZvfRLrgV7dx1trPVr8AOa+m6Ibw3lo4DMtW6wrbvqTvbqFsvkVcxYYzQVNDCUSKLV3Zhhtp6xnH/n+p2///Pmq/3lNLp+u6x05+Nu+ouFJqv/0GHPwtOnGPronaIkfolb87Y8Pkr/R4ofiuew6NP/Np3siF7rgv9+TjybCX/7zZQHQfHI3M5zUOPtXj6CPNL7BPbIzWo3eodqyx0+Artvuicu2lUGNT7hSILiGxIhx2TEx/SWo7TrM1DZWOL0egzfaJ7cn3gxzk82JQm8IH0yNhG2soN9R1jDgrd0QHeOxG437skf1d8nYH/63weu9gsaDlNmWRQyeXCSKLl6VM1NUMZqNfVfAwQTOjLYwjG1FvQD2u9YnPlw0f6pyFSAyPykV/d0BTUfZDeBqfjtaG/sI/ePzv/u4/9NbvPfNHuTzwTqxv/eZgjhYQbe2JoZ3dxeJv+ZQQL5NOrbgtc+mtqihcjJCpwPOKz7lYgKLXmcxGwliIN/oPzw5nF9bn149x0O3pVm5tLe77LfapgEa5u2DjhtYGX0wrTAqcbljjm29/PEU629FVgdMyLXcx1y98vxfvcc8tVY14MNZR101P/7Wu89N7S7KS7xScO7cmI3YTqD9yTb+Pi/7jJozjDCi05X8+QOz1BkRfJ/TieULvsyBjHTwze+eyrX5jlt8frTgbOOABEZgGcvz76hgXMPP5tbE9cp6JCB52oodzq+LPxhKK8L2RA0s7s2Gt1OYnxBijz3DcCTGVuhSHXqVNiQonMn/4+Ow/pAzs2/KF40xP5swhm5CyHm19WfP9m7wYdeaOa9DzYe/es8yXsS0As3n41sLYNHfZNGf/kTxvlEWvCTYMg+oX/wVmNM8o/N2JcZT0rgABdonDD8Smo1a0+WApSEn/uOuZuJMdiH647tu6O9jqnaOBLtNuiMYjsyg1+3qDu+tbxPDyY58tgP5hE6rTUb2FMvGICsD/nu/xR93jBHRwlMWfsz++NtjtqUGFn3OnIgtjeKuWqP8+WHWQarQ9KcX6kFI8HrcA+Kvl5ErS/34L19U0+7Xqv/xIzt7Vn29wv1yC/GOkHF/55P3vEdwfe7W5B9/KFfZHVK9Hah/H7ZZM6kP6w8v/73P0moX//EFYqzwJut/K9FRztHeWfg86/qflIxAJHSm6S+S+FDmVIWlPkZ8pFTxUK89GUWvqiLuFs7+VKdHFYrpJi16UPTnx/S6K3/+mYuKKp7lnK+gwv2Id2tZ5aJ2lAW0tR4e8bNHG08ch7ry8lZ74porkc+P6XdHS/yxfV3tu+3Tav7pCWauBBdt/95/ZdKEivvi1vWCPFhQqQ+J7VulMuZzeHYAfeYv/i31+xkDKf/8WbavaBFPP0sUAFtjwf75OSUpVvD/2VKg/O8tBRey3+Ed3n6MMTBeKQynIGK3Y+ZX/Hl5OHL1MI/sdindTCiO3xrSLbap6DASj6/OK9BltjGzmT0bo7t9W/C8eh5dV6dPPCYldlBybAzi7NIyZu7TdVD8GQATQOy/CAm6l+uPoibJoP5wz5w3eHxOFovS/vITI7JsGVN5unmoSIcaw+bkduOLX1Rg32ZiDjOaaliPdxPCwRWJ85hu2S99jxSRC+moZAUq35wdp4Xq14u4nAPXH4SnH6DreXUkgT0E3fRpOhniqrXp5vYt4uliaCHIjYHw6nGc/NEYjqYc+a8dc5a/x6szULgWjyOepY0as9PFkeEYuj4xb52LikJqMJSkKvAs396I0ovtwVOfMmZuT2c+39S2hV3/C5h1MZ3loHo6wm5jm1ggscnF8CWoKPOamqkrbY+G88teQflVllOFV9QNmdaI8KK/CfNj3sdUh+NJmcXyjje9ZWTzucjewLtaIs7gPrMpCkQMy/xQseJiNRbHKQU1/xFiKsrg9yz8YFh/rxjvbL+sZuSRAsX6nNItrQtj6mZRgmgfmiyyvBEtHQ5boK33oLw4ScZ44d4snyPdI5bteR3rdFeHuXAHkg3eNhukRzkr6i/omWc3nT++16cQrmc4svhkQczjzTUFz3U6Yph0G/O6DSNkTOOeClfrE4+v8h1AqjyAmXrF0GSjIQKm12emwl2LJ/JlM/o67xdReR/4k/TZhlIYtVu6c3nUzZyuBbh70ZPpPq7iwZcDAeTXaBEVpbTrj7qzAvN1edHOeL+6kdJND/32FTLcqjmamwcFWb2/bWIduIY2h/etRURFV2ZvxTUf6gwHMJxwtPQS7+LJzDcBap+bmuxvXzXe5nglQOIGPrFprfqbHj0C2IeeQw6v860SvjG15Fu2XWMxKVnVEnbtIc4wIfu2uGTbFb30QM5OxXD/E/3foR8BGiUS6erFvYzLo7uCny3GRK1h60+TnjmQfqyS7L1B97e3VKlRP+ghsc12VXWPwT6BlRUi0ZjlxtsVfRVKPYeEHJ6k4vw8Rvpadk+Yrt87zx9Nq4wU8ZzazN7To/GpVomFHquVgGchtn063WoTbFfz6PicB0R3q7sKtBJ85knI6/iTOO2/9aLw9uSL4fVMldJPONG8kVeUn8dCWR0OEpXmwxGNnzBdwd7lKV59U/xfvFWfwmXWz3zw6YXUlZKaAadiVpd+F5SNBdZx45KHdPtl1S6RRHjpxgFL5/eHj7R+pvA2o5ipNVz8CfzlluHOonhq1l1Fw6OGYbMfMQlTy+/m/dXNYSCKTYyNoBvDpGcemhJdoINtu4grgWyB/2tjutV1XP3hIeo3ucPU5GXxJf4i9HvfJbwrpyqbvadS/uET3mzDPpuW9SvXWlowfDY2GQ/TXwLVqLlMTRuTT93xGkGXRTPbn7VTNX/L0VEua6Uh6kVP0XhSc4rqbPckhhuOHSt2Zo12bn9m5zxCXbNj2SwTcaHkgXTL5njYRXAoXwnx1X2MqNh6IYrcfCKkOn2y7l1PiXJ1jCtxsajwcaN9LbiMusXsnaIg9n+kncu2sjAShR+IgYBAwpCLcidR8IIzQERARC4JkKfvxfl72LMensFZKqlU7f0VqRzLd6tu8UjNgsbxUlzXBoqPlscaUGzGB32C4E8aDXoSWG+ub8WbobPPQmrI0jCs/L7woNDRI3Uk8Wf+GEKNoitgokH7vNU0j7kAzIW4Yu+c+cOyGLGj7pzfAaPU/gIS8HYE/V8XY5f0Sry8qEng84QGevCWYVhC4ZhDI1tybG75ZNrdDahKLDGpfX8vWadoSQ7yaFCw/5Vnf45DmAB3rCxqCZE8VL5n3qAacxTb5bkdZvlm9HBE+Ec19RUMwn7QcumvfrnPaWarXjsI1s7extoRSwPd2esoKa++xJZuBuyXdkce+r+vSANN77OJp5wBb1/uig2HdeaKblqrnljVIjbPtP7o0Q6C7Xlhs6sYW1lxNODnuLtQLypEthIrv8BFX3oavvcx6755kACphz52tGPtj1Z0JQCcrxUOXfQFbKqlAtiu6WEk4jeYOij08NQqOrZV7mjy5yw9wC0fo333quIJf+msnFjZYtN213p7fhz8NLRAPO1YTMk3bODdEQ8EKvcLm066t8JndTtho4p6RidVb4GYkQdiTvjJqF8VJ6BWRKYHP3rWI2l/CPZmaGD7at389bXzHKB0OqDOtfkAdj3vRpAN1RWJxDnFy/MgQLgTtykK8On5lEpGoJ60OsJ+5lUZ/Yn+CLbfQ501XNh4PWcXWSWlT5b6satZBYdSBhZf0XNv3NjI34fD3/qi+W//C9Lloi466xETr7xPfH0y4B66Dcbr2GcjsrgSCN10xLiOi+0U2bqq/jnI8cMeL/WajCde3fIbvhsGGUa3lU9ArIwRqVe7YOvzoLdQsYMf1URRiLsptE7gaJMTqYXIYXP76w/Q1KQbjn+fnU9V1klQV+SJWvDZmyyoyu0Vu+JHtfc9GtYv6zmo3qwLUefpNbAfzhWA+IjHDjs9TfI9XEXAkeMXY8ORGOPInQDnUNzQLtsCqm6/Jaw9bqTHgNfMRVvSE0xOQoJxGP+yUXncZxCU4pVqUpb6PVgcD3gktLHLGa9sTi5rBGsVavhwaUZ/Lt3Ygo88qpF0rbmaIRJXMMg/Hg7tX+1P+dDMf8+b6ml/BrOVQgOKVLbw9fMczXlIa07xXG+g/tgV5nI9bXebzeuF6qGSM8K39Q2Wt75A08ET4gVLYwpL7bbd1bnyGZny5AKnW5wibsufYx6fRWiFH476Zq3EW34+wNd3v8c+/UQ1a3srh7wTPumtjpp6aHurgKUWU4p+r3Fbj8qCQVoaCB26j0lqwU/hS97lSLjqfL2M4BoABcZHjJT8ls3PTHKAk64d9bVv6P/yOjlBB3kmRpfKzNj6RDzsBvdMhst7iGdSGNLffkGVj8xM7N+hBEy2TWUR+JXNFSt59XJrOUTS39vkg/4UqByxv9hSy2tMVVYqENOhQqIQPQbmqLYId976o7bI+HqRW90C9o0zqCMnRixUl8iBFveaqPfNv/U/vdwV5UivWT8MjITbbICdaPyrx+ssawkEn3ZESqugTDQYM/7inb6eVANkPTAFXg7PBwGcuh+m72iI4NlWKnaWQRoW++B3wOrPGnn3hggWd3dAqvXsM+wc++/Ajol/gruhS9D0QvkwP4if/Nu/rvVzM2aK2QodDQdIip82EFZeTYCmZg/saIeMLZ5dtZAtsr/p2V28cNbJU8GBqNiiPqhnueg4+LprH+p5J2CyppVvkHSahP3RHv1VuiQWTDFO0XB0rWwfqx8JnpH+oc5zUeIJxqMB98I+Quyz3V0ak6mHL43EZPjKs7kkQl3ByL4G2NUPDZuF0k3hJ7FkbB1C0aS3Cl6gdPnkFE/2B9D58ZX+/APVaWfU+zGLNstqePTQ7GDMdieMwEtWcxxe7QLMnB1UwOfdGHFfpTPpGuQGBI7cU/fE1SY7/S4eUEVoEuWzN/25FlUOClXCSJf1ecY48hqBSIE1SbfjnY3zT7zBpyslNFe1wCR6+paAI1crRaNzMEWYHTzo9UZKw3NuDmN1tSqQDw4ikjWtYN38Clhkw9n8lVPvnxO+AMIPT6zZ7puN4M0d/sUP3OobSZ29B95kWAhf3YOMfYFpwW55NmgvKWu9IHWYIfgtD8RT+52tkTlUoGSxifbJ5+Bv9SoHyvpJqMnp4rA8rA5Bwd7fsHZ+8tmkNmUHxUfDU6urB7CoQpaDbPo8ybKe1npOxJcEkPR6Y8sea8C45yj9+RPq/IqDOau5SIAn9jts3A7UX7+HJw90T+fwIbjN8fyN2wMkay0RYDb6sDzD/ARewkzp0WESIL6cFBDe8oz8xqYG7KRY3F8+pIV/urD1eKo9cE3OO2qt/a+e29VJ4Hj7vbG+hN9sAr/SUG0LfMiaOfrAb5+nNmqdk12cfs351o85fEIBI2nza2tBwhLuPheLhlLq/qun0Aq/HA5ksQIMnOUc8o30wnrzXONlCh4KDI/KQtQgWcwZgrMGQ0k64qCRVp9d7o705z/o9nzYeJL7FjxI6pBV+wQxPdhJDkxtL5PfTSfxEvhuBdo7WfHB/lYxc4+SAVaxzP/0QjbJuxTBC4s0fDz+8DCveZ9D8xHPaIigNbCbOwRwxWcVB8299D/nwSLgK/kq1ukXxMu5WpGKrlVPGilxhlXsvQhY8ydGYqvuGG32jQf7Li6QVgqPjM3nLIWGlBfYQuLk9w+kXWAe/RSKQSaZtNR7DnJ8fqeufjiw2YquI/CduaGvy3b3fKY4vWJUToD234wOI7ady5/fJvnU2f6oKyOEGaUGmZJ2BL8DlXlwxUpDKK3e/jxdxwbO8nWl4Vm9DitqWQK7UxdRLIvxMM0yXKHU8S1RFaGp//Qy7O95QJqHdYxnTzNyWO7LEHt/U7OKVxjB4gxG8nv492GVph+Ca+lP2G6KzF/CUeIAE22JqBBW9a93Vg46Vl1Q936Qh7lVcgXUPyKixblK2WKzZAWw2AvUaBQFzBc6iHDT90g1uwyMET8EcuI8Smxc9Zoxu9FKlbsvV2yL7DIwzw0dMHyW9c/f+evsskit+oNKceIK/tpYzkE1xIuMuLR7sH6WuHavm6tL1JJ3BhEOHAe29SfEbNaYnn4XB256G7W6ObLVUr4H9YCSH7WF+bfFm9X/+XG0NM8oW1Nn58kauJ2pmYaKv5wrJZC3fEygGy3xLEG5kD940KkdSEo8f97+qkxuL9Bj+ZAHRiUPSbMRICRs/nt+7DQNnoQvoWFX+uaws5URfspyoVgzjHhRm66HD0l2kLTlhwW/4ghs9YDMUbkbllmGM9Auu4qa5HeueeXxWsHwvCtk1e1PPTfb5cL5TT5QHfPWP30IrRoSmm16gLxKygMnF2a61e9srljHg2P/s7F+qS/+HKt6BbuLuCOi7fU1aSzNUrSg7pHUwJ6xqZ7zf/qc1ewDFunw6P/4F+E4Dg/zQ3wTkOR9T72fPsaLmnsXpYJoO0JTJf5wh8cCXpN4h4NbLWV98VkMGHOuhSfhVJrVqHQivMfXA87Ce+VPRZEo/3hBuF1eRgQnEuF3URzsTkcBzJt+Bp/83G71K89ofwcBbOQbpYEsGoDPZFGE5558yawbjcnMz90BD1P85y+y+SH+CNyeHzYq/uDT10wi6Fjv4t/nsZ2tELDxOYo8WrEtvxXAQY6J3Yd/r5vBXRxA5mLGPgKvbI0unQPJ+pawpUifeDFvhQI3PUbUF4LD8jafpRzB4oiA9p385XQW2j+/St73sqtnCS7FH0/7p+/YwUYd8HfcB5sCUwCti9iAvrM2GF3e0GRbfoRePAzU7ys7FkdDTeG2P/HBj9R6HIeuBav0aajtLTAmf99PxVNDbTUf2K/sgxtMQy/CRyUV6j79PgoQlgWieupI9Tw//PLfernqO4wFpNYr7Klk0mTTO4NeGYYamktAWIH0TEgaaYSVGyLqufTns0ebRWA39AnV2uzjs5OCOOWPh9jk0LJVk9YEOoeHjMOBW4Zh0HcIKPOTUUdrBX/9zAdN3fzmPx61XE9XDyqdlZC9+Y3N+c9vDs+rgt0C9yadVLcBYR6a9HlSvIxcFyuFu1/JkKxVw/CzwecEuZ+iEOlXND5Vg9WChfviqaFbRUbtxqkUWKoZ1p2rFLcqZC1MvPpIw239qHyjBlRl06e+f2pMdpWkG1wfQorRxruI9PEk2P30Eakbr5ohsBGsekulTpOea9bfGYJDTXqySkIZj+ElR6A3sYFaFhhgXaJHCyZ/Tsnej4WB9raWqg+eZPTYgAjMd1PYeFPlbnoyM+lZSVYoNtupc+1tgL2oaCMcHn5IvXkiYN14rXLklDNqO32tCVg07289qZs4QSZFcD/CvSFlOH2LGWBfX4DwdyQEm0BJhvUWqRLgizZAwGze9VL5QASv+uchtSsHf/7j7b2IbtSa2rs5h9N0AV0LGyIJd2Cu4ZWb4abv8NHyO7Do8txA7icp+Lg/Bdn6I0MLGpDt6VGWYDaZyEvhHv1O1Ej80F+h97j88XbEbtqxHp3wdoGKjX5UKy/fjK5PS4R7Y89R81wEMeVEToNRoyGcvNf3MAozj/7yCXVxsvcHLC487GHZ0b94mWrRbeVQtVbERzv7z/8osNQuATUL9I433m9Bch7bP38X//u9G7+lOE5tv+d3fAF1vW/otv7x8ismB3z09Uv1X/kc5iEKO+iF12Tju2Y2i9GwTdmbc/qy+sicnKsTQYfsrkjd/GlvwMcNbnwJ5aNZ1bM9tCKItZ5RnVq/eGFqPMIb3ypIT52kXifh3sONp1FkmlosXNqHA/DUpNR+hTFo/voXx1lN6R9fmZr7N4Ibjye13iBzRp+TCK0+1sjOcjV/L7+Olz9+T4Nd9s229VsVQz89cXqvfllbkLCCk9sJ+IYTK+b1WPTglVd1mmz9jiWHrwa4JeGRUERZPTkEN7ABjz1STGsBW3704BTuK2yeMt2camE/w5UcGrJcjMqcLU8PFP5nB1Q/+tQX+1Nmwf1hVxO55lG9+L/UAP7LEslcitqweMkz+evnIIU6vbnET4UHtzCRqGYcafa751EKpeVU/PkfRuJPysFXFkbU3umnbHLJI4ECBCupk+46rOFVnEGvPEzq789Xn97SmwZ3ZwvSP17OuNYM/ngCPd6OX58s0bkFwAE9+Yuf9YVV7R/PPfpzmM3jULaq7pkc1keXB0xIHid4ZIcdPk4uqSetY5yaSm8dCd5UmWtvwxX6q0mw+fu8/I0n3OBo5DzFfUGGhXu9CrjpdarPAzKF9CXfwLWc9vSQDj+2Vo01g/v3vdC//TZuegukOEzxIdp9Y+pJ0Uk9L5qC9r9qqunCPPFffTna6OIvl/bswYr/qNiXrl+w3ONtChce3/Q4foWMbTwWRllzw95nX5tTYt1SJQtmn17jnIKZcWcJbvyPWhvPmHkczLC/FwG2wOOejd12hGg+AUCPy/BlzC12F9jkxMOOLPNZb4YBAkKVMsQDkZpDHZYBnG7nlG78u97vkqmCG/+nth9fB37xP/yfviccf5UGVvFhAOODUKJ5pvdh6PK1Vfbv7rP5Q53x0bGw4MZXyQrLbFg41HQwJYZOoPrm/OaTTDn4nSKfHgfjNNCNV8HzsfepX4kNW19JdvnHU4Kaf2WLdX5fYFraHllXYsR8BPcEFq0jUod+3uDHo1MK6zpp/vJbPLv78QBMTZAR1+utOc/OaYT0UwfYiJQj49NyIn/9Jnrd7RR/uimVohpmYuCNt9XjHfwsCK2MI8tCHtl0N90TGNHJwlG9x/FC8SyqEcyP9AmhUU9TcFbUr3gQ8J+/J7/dLYU0zr7USb9nkw/MVws2foGYPfhgPm/XkOg7Z//nF4cFGnIAhwss/9UDJi59qsD051D3OZ0As7MqgGri59g+w5GN33GP4ESmM/abzB1GRTvlah3qPMXVOppLf8aFsvU/sMuf2vjf8xeVvMahGPvxfI7YCrb+I6k3vTOJ7lkDoaQcqZW1lTmPtXH6x9NQ2sms754tB6eLK2DbtN7+2CoXBd7BDAhT9mH8xyfU2/q6UpTaNlvF9bZCsdJGWlzeubnK908AFkze1Ng9TyYpxIGHWNQi7PcaMsfXTVrB/WksSBVOpT+T8GT9+QUcI0Ewx8fO0eDGd/HT/pk+63Klgcp7tfDWX6jJMdn3cDugsPUvnoCak1oAjnMOODv2SbyOhpDC/LL1DbZ+5Sh0TwmQK4jR53Z4sQXGo6ZuPBEf8+DjD5ojKcAxLssWT3nMzE8JId/uvgRs/YNxOiwrlLl5wY4T3evl3rQKjLL2Rv/Wb27stQemwK0Erl4Zr0DOOyBH9ozD9jGZq2ytCby/vBv6Jf2nZpy4XWw0dSoOrF6P939+XU+tjIxWr2f8kNYQOsZtQcBfbv6cZ+0NPoAx0aC8SWzd7fkA/OOno8tvfosegDomLQ4UmfhLDu8t1A7Oib7kqz7sP87GG9NloAbDl2x02yX6f6YUyPz/fqXgocETDh7epaZTDCpQvXmNXujiZ9VDPB6giIBHWPpYh8VGLwVcHG5HmuZhMfE7NQQSu/1iffBPtfAQrBmU2aWnjvn8sLV/BT3QBuuDcZr0w7h/gwSk3ifH6HUyMubpsIBaX2VEGhSBzfoMGhiZJ5kW2ePAmHsILXidjReiGD2GuWVFpGjSlVGdjHc24d+jBGW/lmhGtzcgRVGVUDrwN2yOn8jkT7XMQWDdzoQUosJIwLe9vCsNDVuCHzDya1cRankgk1KEfLw+5FSDB8c/YYyPe382xvQGIuPZU0PwGzbVThSp2Vr4GOOoZ4TNrwJkVnfDx++n9OnNkQoIodwi2fLaYRKo6yjmqN2IIvg8W7X9o4C8kwlkCp+GKej0d4K7Vy2Q7ycU4jnrhAtsnMeV+nFkgNk9xgmwhvuPiEv/GeZA9hVoP2ydmlr69Wfz/QqgPLID4oL4E9PrgQawzOwPdqxFzvpVdjko4vFBPeeixosvHyWYQ6VFcvjowFIfwxsEl4RgE98bc91BWYOvk4KJGPgrGKYYlBBzDqS3o9tk9JB9ezil2QM9LK+t5/FRH8C9/fJYz49nf3lWxwKGwWGPo1i4ZAyg0lIPwvFBNS+LTXY5KxC+796L2r54YKPYXrZByNaE4Jlw9boT7xtCZRLhDnsaL5eT0sGVq2sk1P05W8+PnQf+fr93eO4YO2S0By8ueWNzr94GdvV1Cy78LUR7fB/9OSOpBCUTS/QAwne8nsuHBqE6Ckg8WfqwFKXsKKIsz0ge4tqk3RglcPuber3bxqtnnzRolEGFpvBZ+Sxvo1FB9SunjkLmmu6k8wyPh/mCLyWP4rkvLxBa42RgH1Qvcx1KDao5EV2iutT2hZs9O6r2owFGbWeb+wR2HDgF4YOa3X5vTnHS8XDdXVascc9sEHli8XD3egvYfHc8YHmbjooogxkpUz8Ni3NKKnhmOk/US7bL5uNzPak18GysG9gG+zLYlSDcD1+yfC/M/Ikf7wI1qZGw1gwmE1zrPKqwMBXEbrRjE7+c193teR4ROziGuU6nplVbpPRUG0S+pvnnlsD9w3ij3ShSfxHaooNxCB80H5YsZvsMl2CW+xENhRFkcytLHkwu7Rnjbf+KtcER2CR9imTxVMZrys+zKpx3Bg3Jtxio9GBou/uMw65ojvV0DR6JJM2ZhRjvefV2q40H9247YD13q7gDaLUg74YHfDVyc5hr5xRB/xo98VH+Pc1FOQcjlE8HHR+/fjKsv3qSlEmCGlKyqz/8i99w//viDGefbKEOTCH/+ZgY3TcJqa8zgvgc8P/2W8ckt4eG8fRomLhKvHoH/wCUffGhx0uzALpoawD+1qdDtzOYdV6r1OLaN+QzWN9snvAYAd9GGnVMGw/M36st6PdYI6IetYy8UjeC8snSqSsr/TbodYVq/EwwPhv+bViH0uGglvUUu5fsHrPT6zZCctkLVHe/wcA0weOhkpY5tl7Xeph54omQnuwSzc1ggmW6OY58PQQ9Pn7fBBCzLVc1TWyK9Usp1dt+8GCyA4Ds5uw7TJVXKeocjPVmafl4mM6VAvZdccempu3q+SMxEa7mbNLQbZuaZb9dB5dmiOgxd72MGR1L1WNkVvSYvMphNlo4g36/STK3PdRLY8oG9Jfsjg243XUerlv+FY4PxC3JaSDRnVQwOVwDBHasMVllhb3i+alP8V5SszWcjwkMOwawdiVWPZZxnaj7Lr9vd8U92eLDVASp982xS71yIL5yCCCoXj7F7xoMkx3YERSi+YwfZ7sGo/ELU6B/3jo9yorh732tdKAMuhnjg+mw+ZjkBCQXzcbYbzBYa0McYWX4R7QrrM8wk1PXwKzxfhRlzg5MD9G34Mq9a8IKe6r/xVdhtzY9fpMxG4pXycNDkl6xyVtyvBTpKwK9Z67UFQNsLses7mBOeJfeZKOPZ/H3buA17kts31jlTzu5PyhQ9QasmY9mWIymdRTbHXwkKWQe1laRCrjFH3aPX1gv1Lzx0Hw6PUVC/mZzoz4PIFnKFHt91IHxijoD/GCQbt/nkS1S5pcwq5sX1Q1frJdjNvT/6kF4ec31+u3vs2yh/oPk8qD7jNMcDcYh96BOST8+HZ7KDc59IGKzuLyzRRNjB6JPf6Aaa/DApIRTgCbDMwK8nvi/w3YK3DDFGsm9OoL1S9ULFPPsSao2TsB62+EWXHchxq6wAzFFY1Uo+u13JUofdWw2m9EBfWZZ1NnWf4t/Hjb8csEBcEp/PufmrF5j60bYlk+JHL9uMKl6gv3YLbN12QEebs8fG7ous/kDnRU6kRpj98ifsk9Gz4G6xS9+pb4IxvJU5NDVvPf2omHPlmf+VSB3HBoCgaOZ4jF/c9KhzVfqa05kLr+KNn/5Ej8yWGSLxlAAlk/+puheiOY06ygA4V4a6f0tzMOiIGgBpWtlxPh48lfoHBC0xQhjQ8/0rLlg/gKp+l2xBb8Vm1XHCSBVzQ5b93nwfwriDwCXh5KmgSFlBPoPB5bZ8YNUVSjB+rrBG3gATqD+rf/WyzV4pODr3i20w53uC309KABc3B/6yL+nz6jdWHDqCNjyo8tWX7YVuFjXGYff2Pdn6J14VZWSGz088u228HSfAO8R1viCXNGk9imvFHI5D9Q98nO8SkVawNWAPJnptPr9vhwsgCPDRIKsGOb+sfdTGHYLoPpRPte/2nK7v/2Dnev6BevlLHGwor87NfeqWC+M9QnMjpGKPT0ibJVvzQl6+9mj93H3rsfh5fSwi4sn9UfRNofvUFig4UOPWvfZ9xed/iL4TVaITe18qEXrwmZoDtje/m7qYYUnCQ5NgmgSHQLATq9iBEEBftjNNQwWPPQO3Oon+fJ3KxZ3SplA/V40W73/+uyj+pZyjMRl05/jFq+Noxqn9xfbn9Q1BeMLDtB9ZgTbQArjNb5FCLba6YDPqgezNQH9pnfSNzWjYV+vz5fIg+vc/Gj4jbf1Ph9GuN9fTOpmkIsn6HgBpIZpUg1F8zBfvGKGOTzesWnuc7YURVmBo+mLRFXsDxDeJ61Q//7/Pv+GjJ6flgW7mQ6o9JZftpJzp0Av5XVspkEBlvFq8vAY8Qv6rdUxE9/2i4N/8bPXDglg34mM8Ot5V7L/OQd/DYUeAuE8qTQ8cb+M/ul7//ipqMOidFjtU1TBZImvWHdTia15L3PgswspUVVBY3w3dQRuM52x/rVf8fpsEwK/992E5k2f/JTINSDWVw57QYKG9bF3U2gqnUrYW+gGRoLwAuVhG9StNgObp2jZWqS7D+JZtNbrHXIcfLeaT4NtP89G/RXhUPOHPz0dr56+5n96EuN3+jCXTd9DXtBk6nS2C+baSU7glJ5FGuzPVc28o56o+Qs+aUgks16Loq/ALB8qfNz0AGOKE8EHgAK2Jiqy+VRtD6iOUop376+57OTKAm/e6sj8tPyM2udEhNYgMyS4xeqP/Bzn8HM0Hki9RJANnjGvaroPSnoNr7Re5XvZQjXtOXRiixnz5+KSws8sIqxdeyFjYmt0YM6u2yBTgc+WhotT6ES7mIjL88zmfUFyuPkdJCcRz8bXZT+CzLICNBxMDczJ/pmCZJ58qu3dzhynqyvCOXcehB2cymSHSi9Vw9QvaN/tX/54TC4E2gIGaCG1kDF+dguYrFZDXVfSB7GBwQr33wOHdbWp2SS0t+4vHqjGvUfAymBXgVtx0agZSUO8vANQKlWJK2wW9jQsEyYnKLxTiSgtutfjIRc4wDsPAeO56f3F/FQFzOb9hJbkLpp/+g9aw/VH5v3xxth0d3II4T1Hcy7fB0LdlYAyH02yBu+3z9DqGMoDlrvNHw8x8bipANbI2dSf7yheFk4twZQFHWr74+RPrvUgsMwknup172biFXcX9W8/O91TM/mtnqtPiWRo9tDub78doAweA/VTH4FF/+EEqhJXYtsvyUC07eICv3FcnBgKAJMT+i3805urjsJ6D8Jhhtv3xYFp7we2Lz8HGBmEEvC+vVifV3YBvwI9ov0NNjUN2eUGPXESkaxmSzySU9koL+Lm2C+wZgqrcomg/AQJKgRrGBZtFlrFxdczdo/zy2/+nh8bxgW7X7wA8p2XTvWS4YGPwrob/vlj4ww0rP3F3/G5RurRdEV6GG0dLEqkG5DcipjM116I6eYPwfPHU3rwxtJn+/c26DT/aPh4UTqf3GzFg+1zvVGsXScwCd03gqh+5lTrTKeeoZfwIPX4N72wYwEWEAy5Yk3VGVtO79dT30o8+MzajtoYuUPjaYoD78n7TtT10TO6+Qugf2odqYPnDEKwvEZ4SmORmri0Bn54P07KD+yuRAh2j4whAg5g8tSaGoLN6iV6GhYgjGuR8P2UJhP6WoL9vjiiVTaqjPhKgMApbFYEPkWVrcTHBgxTWGOPF4phPT+2V3Tcg4H2Ty722fg4W/Kf/8jmpvJZ8ZYL8BZyHfvv+ZtND9D1oAxCeau37iCa3ZLCrL6nRMRcwaiNTAVs9Q5Jpo1rMpQOhM8scPBVLpVhEbrvP/5Ajbt8HOa+fivqpkdJe9TeYLm6h1x9t+2VqHk41MPxjhLwQOxLg2HJMrbFD8h1Rad6z+VsqXd0hBBec+pu8cQQYQf1z+9N358eLzcLiH96jAbNic8G3J95+MebsBYM2RrsWQvXcgzoIZd39b/nJZxdRnoNSvXGQ1L4mGwXEect+yseywLGyiWhOIKXeuWp6fzpL2reKsH/i2d17pmGhON8N5fo6VkQc9DHRlsGwxqf+B6AS0qoP/7ibH6jkJerKPFopOsPxovl3oLJxbCxfaMntn6nZoR18Cmp1Wd1NjaGQsCmD2mqv4x62vS14mKQUWyLPJhdAxUAXFd742v8QD4y9KBwKCg1tcN2RAMYFeTt7ZQv90HmrDoaUlvYGWSdhmc9+VydA2g4Fj7QZj/M4jeBYNOrFLUZi9ciezYK7+YugSi8Z8T4ChbUpDvDRiUajOh9SMA1Es6YvmcaL4f6wYPfdCE4uz1jRubjo4Bpp3A4zA+u33V0uUHBHEqMJU3zxdpkGnzAakf2WBfAdNd0COxvWm/1281EnvoebMHpR81fqpvLO2AlCNTiRP9+70JOfQvhKajxVZ5ITHkaejBQ8xO2QbU3FxDUBZQqhVFv2r/jX7J/JbKJShNfz6Y3rCQwbwAbTYi4ILfB2gqpBKudHWLnud19bJDt1CgELTUcZvm8Ptw06I5CQ0Rne4VyX+QFLP2BkiW82vVeWxX0V8//8aD5s9+XUPVDh4h9VsfkIUfGX33Dhy2/L3KySrCdUEA19DrE+02/QnKJB4wns2KsLz0ONB+5o8fwoYH1GO9z+G6yiZqb3uh3cDHgjgYzIdXyq2fXmzd90V6pP65XNnNaqsEHvi74wCVRzKfTrYXevj7STc+DachUAtP0dKebHwFzKroH+P4EkB4ijQ2Lp0HvTw9Rfy5nML+uvKFs+xFb968zkD+eh5rTgAOvnur+fTJyKCpPhepn0xj2ZbAv1T/euellQKPHz4N1DwzyrNf6j6914IaLC5LdQjHJFC/lHy+kUY/smv2aEUFnOQnY2uod6TrbAX/1489vrQmoOlG/KSkNFCLV48bHZHKVXCR8iTGQhxhaCssjQKRNT9Pst+8hf69auvnV4Vv5A4I2/1uwlw06Y6dq6ODsyxdqtTpg5NloGx9uf9S+tSQevhMhQFReCtkV2DHn6Qwl4MRrhXax9mEdNDnur57TYDS0YfbUyfv7/vSYRAFYv8yL4OHzq+nBE4xhiiOLg6Dmm80fO0BMVHCCYtEeaWhYarZcUW+AXuxEalS7TzZt+hmy58Gj17UIfEUfiwt8epTDtr3Gw5LRRwAh3j3JEEkgm/H3Jv3Lb/v3iMwxvlclfFsgpf/8FBNkA2r9+UbWqQLmx+i3yzZf+xTNe9cxRX2dA3W5tQKCttFm83gJKxDNhY0tSbbB/BFaBWx6i1rtfTXHXyMimOvWSq3lgrOlPOczFLGDsdVnZryoxtiB/FR11NnWY94XbfEXj4S76FpMX6l/gj8sZtggx6O/APdWgo1XIZl6ZT0p4X6Gstb71DT3EFDrus1Ne/kItfCmgtlxYQ/ZWGkEfIptdv42heSZpjKZm0qP5/JUFCCac5vetvgnnsY5fzyRwOtviinuHyKI+9+TatwTDFNRLo7atN5Ej7I4g+HUuQhSLtOp+Rktf/qVNw4WTeyTcVCebO0624Nv1zJwqHaTyV73tYc5tO/U64+CSYTvBcKiAiuqsq9WL89PmoKRmClZhYsd8yB4F9C/vBA9Glb4j2/DQO9zIk5UBPOzuVhg+lUeUk6WWy/TTfPAvf3wZJ2gMeyBYwXgWEVfqieNCxhjbQq+wnTEF2s5x+PwfkSw3Sbu6adVrZdnra9Q2S46yTRnNae+KRGA03PGGrrpYAn4sYOnn1sh/k/vjEmygjrkZPTF99Fk2RQ0W3YeEe8JVb0su0WUN55H9vbum+33mV3CU1+B7fOe9W/z+1C/SSnpq3vqLxznb/2I7IoWly/j5Vm7K0i/9YeUw+7uLw/RtODdVWbEN5WbLUO+Gn/8gXD9drH15SxB+Ex3Jpq5i+yzVdhrMBUfZ6pR5QhohWZH3fQIfWnVe5g2PglWqkDqA2jVC3CLCggzT7D1kx7xaPT6CH8g84lKJHMQ8O9cwdszHrGrdkd/YSs5/MtX7Je+zRn4kwfLULxv/Y2D351fJ6I+sznCKfx6bF1MTYRJHEhUK3krE81OTuFKhz21YAji2dsJM2hhb1CHw3c2e9q6+T3RoRv/AGuikAso6idEn/WcxGzTM+pegD3Wj2oFpmw8nMBvuhGseRnzidl2K4yMkWLr5VCw6Z0GHt+vhPAKewB2amCkxKMmUmt51yaZIhUpp7BdqaPsmc9a6S0qh/t2ZC8wknjl+XJUN36B7dtDqUf73Itg4zPU9H8/c/nz//XwDHC8V2/1+qXCDZhy3CAeaFPNml08QkzLK32NShkL8yHzoAur1z/9LYxXn4dbPqEIFqesGy9hCYYmRfRQftOBqGbPgeTSnPGfXmM7IRDhbeS+SK57Odt4mASp+lkJz70vjGxVAc5yN1IkGErcAP/jwTBQLBrKC677Iee1f/zD2vLFIj0vDjCMl0e47Mrq+Vd9WhgP4Zd6ujvGfzwWRjooERdYS72EQgehMJsvIkojby7X4JyArb+BkX7bpsyaHAen3/lI75v/WfBQeWqNZmfjB5f/8vWNZxL+6R2GVfwcLsAaAPvX32RipRIonKlKXfFhsHUnvjwYnCpnyxzAnP72g52Ue3rDHMf++k3yDfAxmUu1A5NyeXTwLRQ6xRsvXt9eI8Fmexk5DJ+GP953fgvn8DTRgMvjYQ1ZevnXj/zjIRMJnz20nucAaw8c/lcPBYX8w+6Fe8d0droUlJKoYveyTDW7WrttSjPl/3h6Pb6SoIdk/YZIUkCTUZXDN2DQXU518fquGUDdAW58m/q7/j2s71AWoZg/nn/8Nv7a55MIuaudEnW9Pup548Vqxowr4YL8C/78HiTHbEfRoQc1VWL99q8eBiXU2Mrt3A6maXRHXLp7ZmzLP+CH+eyf/lwaczFUxMY3vr9lnbHyFOTwpeML1rieZnN9NC8Qcx7E2BYvYA2AU0F0CxCOnDba+m85ByuuNvHGM4chvpiNjJa3TM30tE21eLw0cDWzjCwG/rK/fq+6O12P2FhON38ub/NN/rb7xx+vMtk1PI/Sxkex/67jYauPPSBXxSUzd3mY/3jvn145hk4GZvT7VsrGL6lDM9Uc9/mTB83dhDg8Lf8BAAD//6RdybaCOBD9IBYyJyyZRcAERRl2oIiAigwJkK/v4+tt7/oLKqfGm1Tl1rXddMHjVc69MQSwobHpGpQufHb5jPeyY8QCdegN9jHOSFvcLSAamxzC9ygypJ32I5iuQezCKkEE8bflbrGd2hTQGkqZSMkbxUzORBnuf8BbWmoPCJn0KP76X/RO+K383SdtzTxPGP36u4z0X6v6XyMFwn+PFMxj1RNB+4jgreKhhitWExoG5N5OwZaK6lW48jSwu1u52sqvxc2lgPB9gdsF14yHlya+Ik6b5d8uyr0IpeJYotbGXLzYRFKhMUEXH5JKsdZ2X4YQIHXFug1jsOAaiFA5Mp+GHB7j5bknE5RUGNM703q25d5jU+diXrDr2IhNbdATeC3mC9UX/TvStHgv0OWEAPHfg9MyfmfpGp80L+qF1pHxzsoK+JHFkYiLPYzzcOB7uL/lFurT+tWyqnIJnLzsQI1ut1qUo4ffLtP0hD1vwEAQ10OjOtVk/3a/KfH8yIUJSuHYYl+nHJho9nCh7VUv0sb8YE1nlCeQT5Yjkr+6NY75id9g1JIUbYerzYQ8fEWAd60rDmitsbVxbxNs4lOC7d/511NdX7TcTCzq3gVxJLt8d4Nd17+oKbIingPA89AIKEe+XpqXS8WeofYNShX7U+OP2zMfQvUxoB02paEr2fmUXdS0FAF1+3FqJ2nodUisYMGmc1wA9Xf7C7xXnIcEbzrE4umeX8ChSAf6p++tIofpTx51ROUClsd3IdpzdDmqa9EunmmC3qDNmIZEdr3EJB37SNW5b4LLTQGApMNz08z9+42PuAXWWPqHCJI1lKmr7G7xVFcWgoO9b7Dx3TvBtJuNG4zD+E7DpFZahmrpAl9DwSNl6zmwvbfaV0r5YVAvztaWAaOrod7Ve5oFQBkJflsJ8GtHpT9bsmfMaATMV+bSwmgIoFXlTpCsSEZLTOi4dqvgw1VdKgTYNDJ220ioCqJyIYvOP9jK8c8KopMko5thC4Ce0I1XqSI/sEmLW9lHScgD92lNaMTnymJFrCxweLkm4r3fL7sxUHroNQUg7Js1weZjM9O08LNgH1x+U2S3PQepeJeo1d05qyvVKoTivujw8QzzgGmyelNXSXDp4ZUdrHn/2jLY+bpD8avuArZE1AX3XlgwCi0eTGRZOk1eql/Lp3uPqxEIHNwpNiWilqkleYZcCA/37Yx9LeDiv/jVorai9HgfSms5ZYa4243LAwGu+oC5VakPd0eaIq9B+3ZZb7kNes4ZsC/tzFIM3SjTfvajyH7ffi2A/QQLzz7TQzXsLVrsjxv0E3T+UUahQFzqxgV3hCOy5So3/rgHZO2yHwSKpM2Np4T6CzxzuyPaKqFpl1J5TMCYSIVY/52sFfFGAr1XEiPptQ+DrcEKAV90PeOEnYqYOrxagOt9mLD19FRruOyMSDuqg05Dx6NgbX8ft53JvCAuFG3AqkGdwK0ec+yrr6ic5GproFLVJhHTAI0fPwAFeEmzTYOEitYAZHwDUeI/qGfqH7ast5ML7xX0fkSVj3HrwNmH5qtwMa62JmCz1tuqFgoZDcPvky1r1HaQ5/BEUeFfxrWUMIItGma6r66RxXaLV8G6UT/UsGcpXo5CeYFfBZ5xeXjUJZNqYMJ4cDXsFl3YrhvO3+DnvzQOH++SyddjDakxeTid6sFabLJT1YUoInZc8xlvjKc1ML7MxV7yBe3cx7MPd1WFMT6c7Zh1IvLBZXEFup+6zlrffTjApH50f/FeTsKLNmC7ZhyilRVa7AqXBaqdPmC7VrR25XoGYePMFemm6jtueWKetedoc0ROb8HIFD9p4OJ7e1qabhOvvMJqWG1mj734ko4k6r0E0uBFMZbaL5s11nAwDdIRu2lA2tWZZxlgeZ8iN3rpgNdzwIGDXlk4PEQW2HaFBuHheDKpgcvcYtrk3tT41jrYC4DSkrTiIxhjJFCfAa9c/XNeQKXPB+xwyQS2Q7ap8GScMdXVYS1ZJwc+8NnmExDyXbxmnXeGqVIw6psnGwjfy9jD86q+0drkbbBKr4sJLs3pSjH3x7ohGT4smmnDThPura3u8hBUp9NCQ+85gwWEmQn61bKoW016K4QLToCj2JAm3lVma6yXiYp1v6e42b8tcv28z/DTX0tsid0drEbeV9CPrTNiYqeBhSzLG+prRzEWFwUw9NREWF+7FEf3VWhXJeJrbaJC/5NXt9M3U3z48wcijjIs1+4QhcrkeU/U/+y1oHHgoTT/WBr6LwuGg/FQ4eMmU5xK/srYJ+V8BW7kQO0iACOjvWmrJyPCFJl2z1goXhOoxs8C20Z1BFt/CwYw3tYDLaa3Pa6d1gzwYj8E7IgaYrN8a0xgNhXBh+65C5ZQNzM4F1qGQ3WfxtsWhDYADy/HrsM6xr7FOsDrGHbYTLOhXcUl0KEWShl1zapmzF45GRwnvkbSSzSDqeOP/R8e+ZPfSlxz56DcAAv/8M64OFovgyxFMT4svmOJf/6oW88PPsTQCehdeE6acTsi/MtvAbPgS4Z8Z99xUG/QIl6iqfC95yYi9mPYrkdm8tBPwjP1RHCNl/p8n2DFSR/sdNvVmu7bMMGazm9sS+AZr+ZR5cBMMp1ebCqBWQByAw3sv9EbE3HcDsdjpm5ektBgSr1g6XSFwMfH2mHMHVe2HUIkw4SzSnyYhKfFmixCIKiGE1Hs+FGy7N5EmnmRRWw6p4E1z7xBGte6MvVfzjauxXHc4GP2U7Trvmqwbuarg5qq1mSH5c1iM3y+QaA0Od4/N8+S/vKVpLshUcQpA4t59m7Qr9MGPb/7VzBFz+0Chr2u4vh16a3tELqqYs28Q09fKwgYtHsTdk96/FefS2wNCex806GG5wrxKuWkgSQedeyJQCi/pulUsCKfHVJBppdb4JxU7eePVA/vDmPHaRJV+x05OBr5Ml5bL5+g+FxvNJ5m12LnU5TAp5wjRCP9HbMrlDe4g+aemqrHxZOz8CoMRqKg1ouzeM3zPIJVx+lYF99STOr0hcCvntN9dbetV1S1F8ixzsOp05vlpCZ6DS87KUTL67xv58/9PgBF5wLsBdLuL55E8CmNAHtcdownqdzpMKrj3xKIoLAkXjc67Vfv8NHocPllEleDrUXVD29WvyeHNYE/fEhomdsWm6n2ht4mB0Sqct9i9HbpIGnlHmkpswKmn44V+MPD4atqR7bGQwdHVTwhVQq3cpWK2QRpyQN64A4REPHHEOHcn/q/+AGLmngNUPSpxU6g5Na8tKsLM3e2sInBNi6kszuYdVtAjxrkAbP8qNJOaI+Q3KBPO3lVkcGHWn2QGr/4caneQgh97buiXo3ycm7OJtKUfjzTMBe0kYnf2VTi0BCI+jSykZ0KM4FzQRdq2+zEhA52PszxcMaOEUjxbGRPDsjnnNF9IssWs7SuUL5TUSDmrF1M3PpdwK0NK6IVVylYS1xvMEnciVpSOjNGVrUDR1FbiJhir12HAz9ALzMtGnDVhy3C69PAxT6leH809F/9/NQwiYMLNgNWtQtTsQ5b1M9kwE91ZLHMLWrfwpLeU51Zs9sKmRb0rULdUYbx1Amhrz5uKqV+eBnA8m/+VXWC/+oRpV/9DX/6o66Xn8H2fkEPXuVTSH74upyE9W5C5dg2RFS3MN7I92bDr1HH2Juun3H1UFpAC3hXel6u9TjnwXuD1iDPNFxCp5W8y6uAw6XbsHWXIou0dhgq3SXTyIsr3oCVsCJgL8UB6bnbJ2bzAm042E6D3YPngaGPEg9auvnGZm9UI8vP7AzdZ3z54ZU0Xth+fWvdkxMI55GIETn86H94BUl0VsB0ygweImbrFMcwtNYLP29gsCSVMC/dysU865VWgsHAx3ik1vPmyBF4gg7RG97Scdh9nlD75Xvq6lBlpJWTXoN2nuNQFedyqLtTqJ2CQMTu4nXttu2SWj3c64GGZWqNPDeZHCxevY/x5E8WG93CAycxfqObSJR4DKXfXemH7/8BAAD//6RdSbuiPNP+QSxEpoQls0wmCoq4E0QERcYEyK//Lk4/y3f3Lc9ld582SdU9VFLlPPfJUK1B6MDr/saj+TmBgQX7RIDChfDUdj/7bOJ+ag6orLywwaVNNopdV8KgSDt8eLlaMEdhnsBd+33RIFAfARO6r6YmSXJBwHCMWEDfkId6XghoYO0ZEDQrCaySIqE6nSIwirlaQvBKdWrr3CFbP9Ovh2e5aBBXIDJ0UM0KeGgYQOwmfczx2199EL9GGzs67QEzDjknteWSIcXuK7Zm4Xn947f06emHeB6MvAWJO+fYUMI0nr1XKgGQqXds6wc13vhCBeQ269H0p0d2s5aD31Bm+PBsHubanfMWHESzpgf8UoJR+75z1VkqiN32yAbyohqCn/NRxSZ46UxcXqkDhbXcGl/D1aS0NRyYPfk3DnDEBXMGLgTq3dbo9d3Gw3rCDQ+/vRfix1cy6oG2vgPDT+/96TtAtbOdw19mBlQDz3fM3t4Pwd9+GKgujxyYT0koQOeDRnL7+31VmoawslWHGknH1wszR+sv/xM2LpopqrLEwd+D1Wgn1h4QDfBLYZyvE5EfzTEQBeGsqXZBLKpzPwOIYiEY0EaIp0HL9eayKywIhN0HUP9mhAM7vC4pfBakxCjOo2GNob1CzcE3bLKYgeW7ghYexZeGvad4C5jncSnY8JHs3ukpIFc+imDWyx5Nq+g9rMrpbah/epQTdkI8LvndgYlnWNSpdGtY5ce5Un/HZ4zN7TywDlv+3/rT4I+/XsUuUprvGmJXubCMxfI+grfsG9PD9xCaUxX5CD5hpVFnpM2wnrLLRf3zd5QtX62vpCEA7uKSWmGIwaJdmwLSMflRvzs69eywOYV//A5v+PqnB9REXRhFX6rV++V4acDnDfdovSvFwMrrZYTq1JwIJ65ONgv8qVKvRy//px952U0M6NvUQF2X1+aMx3cCJftQ0yBO0mB2Tz8JBp3pkVdSPcxlEh+O/Pn0X4rGKxmmayfMcPMDsPkOL8HERKGC5+JTkA2fhtW9wQcIWvYmSng6gRkyIQeXg/Kk3ucrm0suW+FfvJPBe2lbSSnV4LM7pOjtOtdsMS0/h1yinWiqdrf4e5vmWd38DbLTZSebr/KyQuO8K5DgXlMwbXofnFwBU02v96Dzzg8Fot1wQ8OtGM3+7t5WqCTkgbHi3cDmd42wC+4KDrKmDGZ2kBu4V6wLKfUfZey5MSGXYoWo9lhnf3wFKFupfSiAFaxrYFnwJjwzXHM2BnN6/8ywiisOY9ufs0l8TBqU7FuA5qLcusQ9tOaP72Fj9KJh/vNn1OelJbJiC4Dgn86Dl/jG1NcrBJYoMBL4zOqSWtH6HMZJ6Zx/foy/+S3MWvcpYECycZY1mrnu7mIBy+uFUltXpnj582f0HCN6dP1nvHx/jgv7Q1QhSe3EbE26+gTmA6L4eLOOweb/uFAz6x9RtnwwQ8YV4OQ2v//i/Q9fE6aERCmyfpilyNmuKPKMerZD43nzM6EuiITq+PYyWbJ6M1RPkU7mePWG+XwLEnicHJfije/Shp5ddTdUIjVvNm9u/hqCwwt6ON7016bvXLjFO1GVwWfUuw6Scuy6kuLbtTcX/V4Wqq37x3/6kAhvVME/fY2KqK03flFCe5hH/DDOFhPJKjvQqLBDTarswaoYXAX/+IQhiJdsvfXdDJffTSDTN5gC1lRfH2bS2G2z5KeAbOsLhPU0ov3ImeaW/yH802POp07rv8//84+2/Z8FFmmqsZtV7GVXM1jTUj6BTQ+gZpDybNMPoTpXloidb9IOi1Y9ckW87xjd8C6mzvP2gJ+dnlO0Apix5ZVa//Dwz38b39ts7uL2cOmxeH+DoT52IQy9VSefIsbDP73zl6+PytCDcdNfsHHDC7XZ58TI+9ES2I3pAyNRKDPm7CUFPrN3SbgPPA2iINwNeM+5avNzPlsjZasC0bvnsM9EFJP+kvpg85+ww658trzzBYHt/4/gxicWMnUfoL8eaOsKcA7WP39nvI53mjzKtSbl547g/NUw9W5nL9gXSzrCm4AZ3fhDMB7arWsCj0xsxd9poNpTLmCdceq//Ci76JbCL14v//Tj5n9ZqrCzB+pW0btePjPXg80vpkFxcoNR7XCh/PkfBz3ns2XTw/CAk4xA71Sz0XQiKG38nUjK6R7zW75Vj/lHwifx/ssmqMb5P/86cOc+Yxz1OGhntYUq5bTGxOC4x18AJEDbv/z/549ouQLhBMgJH9vybDLmzx/wh5cC7vO6V+m1gMbVLyhS8m1woyddoI7dBl9Ed8lYpl5DyCflF2Nb1eLOMI45vCvlg3D6dQXr+XlP4F2pHmgdvXXTH1UDG3axaKBj6S/+I9AwKycPJpJ48XJPAbHofak9xj9zsuTsAXXRTqgdzma8DFroy+tcEapp/A7MC54syH+cJ0Ulnw+D5wmpQjhT3PL5DKaP2veKLh4SfBw/gSk0n30Pg6N8py7rg5iePnICF6A51InXU72cXm8eBtmxI8Jb9Wv2GuQQ8MtjosfvgQVT5JsC/Ky5TW90ktngXQcF1MFrIqujleCvXgGO2NQ2v2NirD6+QzBM0R2dcSYH5FAND2Xz68kv00ZzfJzlCJg/OuEtvmM6EtGBX1yN2BPrilGpkgxoPpsnNdRvEjPyCz4w4tQjDlt6HObqeg/hU25ajLnzAOZjN/Hg0HGArN+XX/OkRg74itT6t5+sPnbob7+3rmB7wDNwrKBx+DQY/dVvhIZo4P0DHFFKlRsmyN0h6LqXQSB70njstVsPGubkaGlPIFgNVVTg5Ztfqe/uHEBvD7LCfofPhHE2BfOpmnl1wye0j5NzsL7qxwgvVzRRYzyGdf+ZaCtP2udNT0q/bHwTlnABhkOYxfEZKzoeQVu+fLBu58d4lgqlBK0NYrJ/P7euSmXvbIOjE5zZmRMvVeyO4DTPO8IbngeWXRFyf34ytr76Uk9OJShwmXKEH19vrGd7ASkodyqitw5rAZFCasB8cTt64H4d2/x5CMbZPmNvNM4Byzxjhn9+F3ZrktHNjwV44g5kfu9pzf7qKYmnWVRTd/uYXHbe6Q/PkYP7fFji3WWFT5k/4fOz2AVfF71SeFdWgx6z8G0SCHwIWluOSYNJUrd6NnPwn37f9M0ssIcmDznzSO3e1rg/5REPI29EOHSfMWiZwyy4R/BDn0b8zVrj7EE4zhcZnzL8HpatXgNXSyZkb+Nztr4f7QjlojKoYRUKW3bdWqgbPyRFsiSDoL3dHLrfS0yW7/oOVt8o0j99Q733bjA73n5bSiCXd9R44daSaRvUcXh9TBps+uaj3RkHz8K5IR0HNTCLfamp7tUaqKFLIRPap++C7x18qDkbvrmKt0KDmVZG2HZbmrHNbwP4iDEZxXcXr3J2MlTjrBbUUx8PMP3tN7LqFrWrCGKmhFkJhv7Tbf61ZQpH8E7ADVUDtjF6BtOtCiLw5z/HtkHipeHnXs1j+01Eax9lxBKsBzypYkPkJzgH87e/unDT70jYvt/aO1MPm2v1QR+7OrB/fofdihc06uKXLVqdcsBJlJyGn9+93vhHCWMl+WLLFQew8ekERJeDQzXc74e//AVuYxIg+tytwciNPvePP9vz7W2O6X2cYdYDD7uFXA9Lbs/RH39Bk/KbwSp+DE31XcnAjy1eyeZPyJufSir6gPEqfnztn5+o3Q5TPVbXM4JHJU2xRQc5+2ltmQN/Flaqtb+hXkP5k8C3VrzQ2vJoWNpX1P9b/4y1CyOjyj7wstuHyG4Vz2QNiXqFAcWmesLfgpkbrAJ6j19EzaIKA4qmYXvCIURY+0aHgZWVO8KrVPLYCEkF1tzoTvAp3zS0e+6igL2GBcHtfGC7FbA5FctpVO/hK8L63/nb/E1wuL8GbN8K2/zi/iSoIfeeEcNjElDv1kpQqEwLVclXGf75C/ks69S8SZY5M3AsodQ4JrWfV9UcJ7n//Pmh6EpzCNolP1twmEqdZrciNMcBay08iHqNbtY+iudN3wKpkk2sces3nn9T2sN8Bjo9WEv6h7cQlteEUgucvvESXeUElpX0w/qYd+aWLyWgOfmOkAKRmu5mrVAPSh4Q4Zu09TJolgspeh+wHwncwHafCMI26QPSYX4J5pAlCSyvzY0ei2dgUsZZJRhERaahUb3ByIlSAf7021/8zIG/PNTophU0Dc0jWJP2808PIbHcpSbztaPy/xl8IAv/+0pBaCkv6vlnEtBP/0iB821nepQ+CKzr/hSqg1rM2IW+G3QNiF25uLYemqf6ZS457E8QfNSGVPZNYTTj3RM8eocX4sbQq9d1XAqQHfwCh+UcB+OlxCnM1vWOj7fvNaBkv6TwuH4JWdtjbc6fa6aAdZVe9PZ9VBnJaysF9/ZJcMrAdRB1tyMwW+c7fUj+VhJ86EjNBfVOPuasB5/ePM2qcBBrjIBc1uwqb7PjButM7U+Ch6VTpATIUnLENmK0XubpqYATO9o0VD6neBFaTVLz8H7BHjv9BjpMagFVaBEcyosIqN1nITxkao4RsdRsvdYzgd/TK0O8oboDaUO7UbNdIyCzlSZAh8N9hQLgEPUTZaoZinchfOTNHYlryLOVpocUlp/oTXj+Kcb0Ta2Pep9WSL1ftIKBl/MCHK6VSUMf7msqzg8JxK9ppsg6N8FshSoHcLpM2Dhbq7lAW4tg7z2eWC8wZiuogwYC2hj4eOmCeG1POQQ/+/vBgc++gBZXmYeHlinoFN1dJhbwWsLHo5jokZ70gHhrOsMSLDO1003iYCVA8CQ3HsV2EbDV+1YtbJuHhvVX/AXTXc8r+CyfLb5+h9qkkdNE6or3HdVeQRZX0L5BOF9OB+onh33A3O0WeBDJJTaHWjFZ+ipCeBzdC02X9RPPqraWQOf9lpoCSbJV4gcFOK0Qkb3pSPHiv3MJGgKG2Dhf8bBGcvmAT5otqBIunTk9f9cUEGE4UqOrM9ZzVbnCdeE77M1iEazXiIXgpkdnshRLz9ZMkyy4yjcJ7Q6/p7n4p9sDhlw64TA5nMEi24MFHrHJiBiIRrY/GUMPUvt1JhM96eaK81cDU4Yk6i5vByzd5QthXlYakqBaDoyXLzncnysRO1pcxMtLlCyJtd6VHrjsZ66p3UdQ1cseO1lwHlanOeZg1zGVmFh0mbCXCwts603DRPEzHqUXDorVCWDt8PLNhcblRWW0wWRuqR6Tv+9TNo8jUiq7A1OX7i/gopMZI9Ca5l4e0QxTuGc0uKTngKWqLuzcI8zoVRu9evXecaSe5XpBe9y05hJ2Jx6m5u1LnrK8NZz3Trkqyw+T+km61mzoiAVhNB2JnJRltlBnRSA8aAG+sbeb7T1iGrBJAcPYLgZA9n7WwtpFB+pmAYlZYAYI4FPYYmsVSja+H44FVbNNUPut12B60XOiHl4uh4/O+VczNwxXKJ20CufAGeJFow8fng5fH/uS/2HsctOg+qkmnh7gXjA7ysWpEhozw+n9q2ZkxTav6IdcxMc6CmN2nYUKyHJqEqX6WWypn4sBi9fZwu5t6uK+TdmoykGfI/54HePe6XNetlV0I4C+34B43apBBe/z7Tw/zMUE3ArbGhXkzvlOPPuKsoLeDmyM7SPJyGhahnouuZGUU70zacrXjiKEDiDqW03ZsitiTcWXQsM2FrdXRELfQNktFCSaztWcSg9xwAbOQB3tkwGG9muo1iZHKarH+9BfI4CgshspDm/5N+7gL//A+OYO+HHBetan+kOBt+uXw462v8dLc2odSMTJpIdmzoK//YAwNTKqRW6QrSnSNXj+IgvNA3QH8jXnC4y+3ojxvn3Xc6mlJXDoeaDaqXrEzG4CAcbJZqH85WP1uhiwSo4uPT3jXz3XRPKBeozPZBbTKlu73SsFP/v3wYcffzbXl6VCMF1IQ6otv61ASguYSyYm784jw4CWXoDVCSjkFa33mIRYgfClb4NazPkTr2E5FyDKqhlv38ecH7+yBOjzmaiRL162NOGJwOOEfCTvFjiMCk99RTi6C3VYD7LVI3oKqX7bEfGBG3ON5PYBtSdscSBvr7r0hyPBcC4fhA8rBla6ZwawJbijh69nAf55lgToMeuLtglctQB+D05pMv2Ftah3svV1vBB4HqeYetkX1EuuLQR+H5pOr0KYBpQ7v3tVXzVIjyQMzKW0xOYfnh4V7jnQLDpGSnZwC4wi5RfMt+yK4EVrFdI0yREsXYhD8JmSE9YjJpir9862xruPZTsvgE3OqZTUDc9peBX4uM95T4HNXe3QrnidBmb0nAYGcLPQcuotxv9O7xGujLti/QSqbC4bPoQqTlWMzsISsMWHPFzS14F6dK3qmakrUg/3/Ux2k3tmjJRjCdlU1FS31OPA325HAbQDq3FY/d71qFffHtzHycG2loUB+zzHCOyIeSWd6pzieZo6Ddr654mDup7McQ5MBLmmZ9j9zHLNxDEo4aMYbervbqE5P176rBJpljECt++w3O1aUsNdUZN1O09z//06kM9PGj6dm1O27GhagQGmCrmlylqPt9engT9Oh9j1GjNb86Q4QfRpJrKzHhse7hkPwJiW2Ci6Z/C7ys8IjO9hIT/1tpgsq/0VvtvnG8mjqcXC2vYWrNVCxe6lrILPrzlIwPmtOVJL2zZZwIEZ3h5ySLf8NsyqrSsKjh8+kh6HNF69TjGgP5QqYeI6ZvPhXRqQsOeAneU01jRNxBwuz/mKi6jr6iUZzw4QVMOiLszsQQgv/gVYxfuHWNi/60VQqQNPUhnTyBhJNk3CrYB8AleMLTizacun4CLpObVD18wIV7UzOHmjQLgiKdlSV+4DjF/g0cNjeZvj8Ws6f/iIgF+52ytkdQSZra04k53JXI3r9iquIDY1TZkPxmeiIVV8H22cwtE0/51fXdpmjef4PMyPl7fCQT6mZInFMWgfjzVVz0P3xIZ40AeRs1ilXsLsTe3MeLOpcfUEnj8uwrnFPhlJ7SqC0lPZU79KDtnsH1oONq+TiFb+qdQ9np4OrNFQIvbkqDlc5efpD5+RxFzVJJI38+o35QJ6lPZjNryp1YCu4FO8xQ8g1fXUw2evIRztV2KueR2m8EtuhPyt73i+KS7kU6PFPut5QA12WeH+GRcIAieIF5jcLLit57YeF3NipcWBWzLwOFCysp4Vj3dA6Do69q65n80/14Dwsgczdb66EjffPjfgp/cJEr58xKgeyg78pjCg6c45s7U6eyeIz1FBQ6tqAFl9rlBW9/LA7le/BRMsVAFu/PIfn9n4IQdXtDB84EarJoZmNRD0J56s5yut21sNOHitvm/6x59E1FkW7N3Lj/o3zhy+TngvlQ0PqKmpfsz3h9aVNz6M3Tlk2SjMXQTuhF/JcgJVPD5/LwMWTy8l0dmKAiEUkh5u+ExEI4b1qOjPi/LpXbLFTxkLmSY5sPwmN2pseuN3XjRDHTtnQJxirOa08Q14e4AQo+hAhvlUphK4Ds4ZO43kApbxWgRPqiyQ2ZbvwfC+iyNQ5rWh3l98Ypy6Sri2DnayHJtiUaQNHLiywdrwONYsO+4lZVtPbDw/OuD/+Mm1fO2puT+UAUvnbASfzpK2+DZMMftFLlTCQaGmsIsZc7v5AXCUXKjZeUNMld85gT+hmggXKQeTQO+XwKOoQOpd0ku2rPuzAMU6WQi4XR6MRdyhAFPUKDh4j0U9B+luBqu+S2hQzfw2G/dNlOYVidQJq3lYxrzbXkm7FtatLKpF7ty1sJ77kjAdHdgiS1CB9vFqEVbgcSBVL/DwuTXeHTyKGbNJ/4F0wRH2dks+LA2ZNJDLto19z7JNtq2PcuHSEpvCjoFN3z1g7CdH6vweNWD8TfOhdRou2HVZD/r93hn/9CEBwVUDy4jBrMQ3f6C4f9qZEDlUgfMkG4gXLl+2ts/Agoe7OFM9btAwMrni1cyLfIoKu87Wvc5LQFF/Jka1egtYe8ouMD00Ktmz1TPX+4/7KMUpAYjP8iibb2qKoL6TMT6CUhrGM85SaF2UEc3tsYlZAa8VDOFZx1G+dDEd3jiBm55E8F0HA1MeA4JD2cf0sIBb9u/nxz0VsSmezvGM0pwDF9mOsPMb9Iz/y1/nkcYEELJ1KUA1ryrybUByaQ/1LMzvk0qbqqRm2OvDPGH1AZPbbNB8JAewnPDWBU3YxziYepYtshpGMFQT8R+ejXMQIPnnCZAeVIfVK/cwNDCXBsWHVIkGkeCfAeIUvakmv2O2fp+TpOzKwCDr/hQHQ4+lCiYJCbcWs8Dc9JUEjoNV4AumIGi44p7CZDBlpF66IBMkT+Lhs+VSqg/RjpH18xhhZkJI7ftEsoW1wwiLqPhRXZ+bYL3XPwRVi4TU/j7ses/KkIOsbB163/hORx0lhOp8OeAYW3O2dMqc/OErDfyzD5iYOQb07ITDRky5jCRyIsFUBR0R1q8WEFdofeBp+ow1QThk860NEqiEnULNIYLDEo9AAgIKfzRMupCN/OfJ/a0fUTY9nh67Rw75DPnU6BM+Ju23E6D4LZ40rLNdtvFVDdTy8Us9GN/A3L+fI1Tt2cAWci0gtmHAQa5pGfUu3cLWa3bm5Ki9IYqevA1mP5gv0HyWHn6W26zkv38/uPkS1p5GH8zTMqfQ3rPndj7XbCXO3ADCOQdsFOlr2PwQCVpF/aNa1DfZsOAQyfIhsxDT0Q+s2OgNuOkV/FBLdRjRxW7+8jGBle0ME4sTAdTrGiJ181uWrlN4+ELOGwfTfQ8W815tr5allD7GnVuPp1yv4PslZdTSPq9gde6vC9wNcocNc/5ky3MYV7jhL3U5IwMbvhPw7r9Hqucdx0b1LGlw+30EbP4CM6zHBU43xcUHuE/M/SRsr5j4+k0NnqTmeo1ACH++sqIt3w/TxldUoihfsvHxenkmNwmGS3Pa+K5aj+owfSCMF5MGhHTZrMLBAaGxMmpi65StRriOMOfFiR5msx5m9VeEoO3phCZ6egeTHN0RDJfPiQZvNQ+Y20kpPBlnSKT6oQ0CxidfSZ33gT5v5uOPr+SQ6I8b1ovyGPMX/x3KcRq+cXDljGBv3qsCFvedgBhuhmylipGC73XtqGNkfbx0l4mDr4DbY+d47YI/P+NPr9LXKe2HRRMlCXqaOSOFM6ShnBbpAbPnVyTq1M8Bs9cFAlXeGf/8pfWuBoXy4zMdKdwnrinZyw+gaCCmFk8ugEmJ0MNUlTuk7NpumDY8hv3CC7gsnNL84+egyQ9XjE9dazJDHH2A6lLEyKrqYeoOOwHY6KH85Zd6tu6jA7LnT8S6QOTh8+ApBI+srBGfLk0w++a5UXUhutADO/lgHVcnB6ESXIl459yaKVRy4E3dbsXegiBgPOpSMF3nHFt8KLN1vY0f+LgcOjI7flKvG19TbFzMZNz8wpV2lgLkvTvgY/VirN/yE7zgn0k+2/kcmV8+VBLoEVG4/RLMFtMS9drCLz061TeYmeG1cMNDbGs+qVm7/np4kj8e2e+QwUT7ii6yskoRNrd4Yh/RLf/0HlrE02WY6+b8gLrhdUTiDMAWthgFXOJAxuhZuxn/HEgKxN/Ho9cH7uJNT1hQLD1MqhO7DPNlVEuQywcbqSelZew8Sj1sdq5Ps1pftwEiXgo/nSNhz33s6mk1tsEdzvtC1AolWZdLD0X5i5dQMfbZfA4sDWp3eiI8plnwz/8Aw6WnqN1VwZ8/o1ixIBDuUBy3Wcr6CNvvxccOPkI2v6/CqLRNquGwfF0H/jLuS1VBS4OdR3o3abu7rvB2/XFIne7rMJ8VVICXFiKst0kSMFE/FTCFIqPHuu4Y/T29XFkRY4ijLoupMrQjVLhWpqE/pMF4jvsZbn7TH3/L5jnXCHCxdsZ/eDWVVY1guk8+FO9vlvkvHoyh9qnTJEe2yJ5SwHv/e6CdMkE27SxhhdWxN7C2+c9fx1xXGJ/FJwHX6VOTantlu+ExdbS9HNNhDXmwFEJAA/nmD39+G1xeik72pnwC86U8PKAWhTo9BNdfNl/axoceUmWy8JeezSWNONXWmycNSvtvv5sHrA/++Y+/Z3tqVIKy7T+OtQxn9B3OkeqpLKG6+I4CpQplCY7lF+C/vy8un7u1zcr+IAH6Q7wc0zgBGz+i7s45g3/6eZ8FK6legRTMh7t3Up4/qcI4/p7BJM+JD/1SCP/hPeOGWwhf7JZiA7ltwC6oCmGu+ACpZFfXm/6cwYrFjvzTG9rx5kP+4V+oX/0+YPWegQQvlhThBBdKTIvi9FHPlVFhzYoMxv789rH332g9ablJvvekAr3gIPJWwmLY/NUH3Pg3dX5ek7VW8wjhcrufkTibdT1bzQPB1KkPGCtTDv7hz+a3bv73hS3zdJVgHKse1tqiZrN4szXQpa8LeUeaWk+r/EaqUXE2dr/RpV5OezWXaxNS8jwpLfjHt0Obu6KnZDCw6QkNOL85p4Him+Z+NTQD6m41YUd3BLaGK46UOxHWv3xs0uwxasppnywUPSOfCfs9GpWfTDDZxaaw8U/TgrtrfiLCb3jH49mYIihlzKPut15N4qysgS9ljoiEhmKYrXAPgRwHI9qBcp8tOw/5cvdSED18H0a2b9bNbbXIHYfTqQIsWI89UJTsjf/80xkdXoWy7rUA8UUK42XkhPAvfyPgehyjW76CT3IDZG2LciBcM7tqjacE6610DpgBWCW3pQHpn37h+51+gZ/PvsRH1wP1muqRpMw9Lan9KBuwF8Y0go/0qmPnKH5MmtplD0ViVkQuf83QbHpIfZ9gRG8bPtO35rswc6yW/vkX685SXbA325raaSdlY7/TE5V+Up6wPOWC713PSyjoDx+p0gexJcmyD2wrv0XE/nFgMt0PhApiDTXaQquFL6lTOITvH9Za+s6YDVICGy0hSMimcWDoA0cw5cc9dn9eHax0qXtVCHQbv5zqDf78BdAvgoD/8iWRVKOHYZgRsuRdwdiCwxBcR/+AD6gibL22mqMqi5DTQJa/w/rHZ78Xwqh2vq5gVs+S8S+f/elhFlzcEfzYLSDiX764qWkIb8giqJl31Fz8jm1d1ewQu+rCZewdShGUcmGHHb09g4XdGgQy7+Rj24h3YHkWXAtrcDtTR7w/wYywgOCLzxC5fj3XZJcsTba2UhyBf/WpLV8CNAUr2u971WTpD0J4778PbOvIqhftulegvduepP6Gd8bEH++CPz3s7+RfsOL81oDacbKtHjRklGN7+Oc3kuya/8xl85MhwaeeXn7DZ+CVpArV4OZK9PCxCaBLHH9Al5OR7F5RZ045H1TwFcA9YgUOa+I9TUWtHSsjfLo4wVxqp0pdBUunkWAGw/Ji5ah2ybX9F598CT0L8vFywgF964CdP3cJBmlIsKnPBhDfvYpgcrq51J6/b8ZSScnBhvd0+5yJaMoKmNnGSlrWSyaJ5DKF3ymW0CsWaDbVmp3C7vHV8OVoETZfxn0F92uu0c0/rZkNTkRV/QOlprHnAkLLxoc1VzE0EvFukjAYGviT+jt2Ms4PVgm56I+/k8VSjzWJ2l75q2dhd9eO7J8fdMP+B32N/YMt5r3P//kJocU+8cIytVH8byBTDLAIZlVTKrjlH+QHBQMr18w+VCU5xPZj+cSjFaoQFrld/dUrh3Hqzj2c38534/dN3bfvKFfTWU/+1admdLgVUKSHFO3NNo73ZZHxYKuPEeU2OcECbTeC2/kh+sn1wPhA4ekPv4n0jfjhm7x6KEev1d3iLRymxvUSuFwwRXMvRfXUnYpGKS5NjPrNX2XcMYrUxvo4dKuPZLPKhwkkLmjoQZXHgG77BVfTDHEADTFgb+teSpl/0TY+FwN2HX8uvHCPknpX7psNqLMcuOn7//T0Ew4bfv4APtynIFgm4ZXD17wNul9NnZEBKz48HSGi/+pZcfspQVmjgXpv7z3MZ+4pwFMgVGi3v32C1fv2Pextz0YKtz8Ha+T8JBWfUIu9MukCdi6NCg4a0za+0Nczf/vxcNh9cmpmn3Krd1cRrO5pjw1NN8xZtT3lnz60uloa1oo6CJqVPG31c8Kou0sa+PKVHRnHMGTrqEwhlGNvxJqjYnPICvBQFMvZIx7dq2zsScBD1uGAWFs9e08D/QPh887903Oj6BcSsPfLk+Lc1hm7RHLzd94okhe+XoegX2Gm70/08ed/s3ZKIH7Id5ornzne/NUQBI/kgbb6XEyRUT7+X10KxP99pcBvn5C69T405zMAF/DxiE3a5D0Fi7LDFsz325LekoQtiY0LOIcy2lq3f+L11DxH6LXziyJDyrKlTQ0DrnmzIJmHE1tMdpTA2EYR9vw0ylhxPzjSLJYE8aJrD6Kg3SVljpIDDQy7Mz8RwB+w80uLZrBpMqK8LgRq/kXApmHCbNl1GQdz7VLS5Fk8a/Yx9hV8lK1GbdNazeGYHy/QieWILMHIxew3tTN8976HLSmjA2tuFCo9cxV89Oh7oJXp9EBVao5wU56wRe47CAMpnbCP60PG9yGPYKzzXyL30ZWtXDH5wOKkGqeMmeb6lbKHTH77gABt/tbkjd5ILZRKwqFbbfehfk8BqI/uS2aRaYzZbimpxoUE1BRPSswmXf67lXUn47TcwWrGcalm2stC8q751mQUWwMKg3gkwnxYzGkX72cYpNWF6pJaghnwrxG2cRsTVTohc1X59wqfVO2xjS0DrB6kEZAFo8NI/0wmsdvsBOfDT8OOMsfD+kZdCM1LruIgTs16r7s/CK1Lsg0q+HjB9Lv9UvhFzKbBAu7BonZfBx46B5Ll1e/j8XPkJbidH+woSwvG/X4iML6FLs7iG8lYYZnV3/nBXjwuWZdZawX13twod7MOyzl3ObidB4y4uRkm86ka4N5YK72z5sJW4N99cG/8AzaHqxnw9fHXgHURCPVxtZoLyq0ZUtXycf4p5qC5nKoGvC/brJn6cgrmT51ZMFomQA2zMTNmPV8+sOV4xU73Moc1w29FwcbHw5fd4W0u/JVoAD0jEcFTKQc/wAkl5N+fGtv3PhmYpGnbSwbVpAWS9WysZCNVl3ztsXv1XyZjWr3NejofMZbPJlgf+HCCYhMviL+LHzaA7tvDpujf2Np+H1/KWQXG51PAx8Cyg7mvjg4kxg//7f+wOqqcw2MkXLCPjqQmXnQs4WjsdLKbTiqYKlIq6qNsBoq7eGQz3iwd6QQbXFjYGxbdVaON4h/Q0KkrYPvrM4fWvf3hrSBu9i+0XtSCLguaPPqu2/yzop15KSP6SMINQveWATObRVgT16Be3FWC8CcbjOzse5etfvTg4Wfz++z8ysx5LncWWBd2p8eea4elSWMf7kfTQYJ1hGAu0SeHkgbORKpKdxCxU2hgueU5NfHdBnPSaAio30Knzn67hTiOcw8fZa9Rb/c9xSN4XXw1XtaY/Kr2GS/2Sgv4K/IWR9k2u/rcPH2YLF6M2O9yBCPg14sK9t+KWnfRYgwd9Bkqc1VRbXEe5nRYkws8/x4cPpyT1JyttqhAW1ws6ljHnC29ERHgFG+CTWs2Y6J4QglxlB3/5avFdAsBju7lgzXvmAVzezwmAJweAOtXPQKMu5g93LqsUeu7QnNppzJU3pZ0RIUvJmz6TgWBB9Q4OACnY7Yqr5zAzycE9KBZEaD2c8yB+UImNQT3G6zZR1lhJdMd1vurUbPOKD8gVJsb9cRfH8xN7UFodOKTvHmwWRL3Ww9J9WpxoNFTRuRSy9W5Ovzl0zybF6Fq4O1sjkSxlA9byE1PYCxab7LzqWEu6uWCoHKVDYpKV2Rz2OxS0E9chP3DVzeF7/GTKIVSSvTW/1K2SH3ewjWvc4qQrMfzXclDME5NSc28TwJC3yEHd336pHGkFeYSLxoB4Dp5GA+cF6zRWTdgF99trGeTFe+juXFg/NNDbB/sX7xI/aUFz5P7o/lRLhnhy2cK35cOUqMJ6mwOVP0Ck3OkUEc766b4oL0P7yeK0bztD+O6SwmXW5Ef+d1BD8hdqRxYfIMr2X0jcVgN7m3AH3fTqdn2DRh/UusCrY8+hIHoA+bgN+dgO2/U/HTLQD+GWgLB6RvUJ2EfzHf8EoDnCgu1FfXN1lx+KXAJ6RUlXUHieRYOHLyEmBG+Y0tGLqf+oyyRJROZOxvBnJ5SBcxVEFDkHjHYzusKkvMFYzcpb2CegyaEL/qTkNQ878NS3VMDrodAxq58qOJ/+TMByh3bPQRg9aPSVbZ8hn1NevwXr5q9dYXofG0QvpJjqYVf74n0W1WTHKIBAqe7+NQzHmEw11LRApCZNyIKP2+Yb9+8AEdJA9gpfRwvaremCv7xNrZfGs5E3TsVcMNT6sWTM7AHzQV4OY861tHdjlllohaejlsjpq6zg5kKjMAUPCMC9/M1XntxceEfvtpjxAPyPS49cM0xp34VbI3CZB/C6zsWqUG3Wa1n6LYQXpsv+oWWWVPjqX7AY84o+cSoMpcNz0Df9hY2NOXM2NkJJcg3nEPD5/4Yi8PNJlB97Ri2w3szrDXyVyU6nG/UyMVPvGi8saqGt7Ow8xDmYCyRPMMG/ULsVfEjmw5rcYHpvLxpwM5b4+djhmDdzTe09oeduWTWWsKWQ08Csitfk1y+SWLbsi+2zHMZb3whBKH6NvCBdGbGTrlXwihsFer/CpoxnEH0l88p/qkMdO4qccqnawrqN17AhmjxTiDS1e1VoKnHQnRqUnhpFg5jn1bmfMNcBMj6iRDY4p/te3KB03SLqEuyF2OLRgS4nrkr3eY6BM3O6z4gMowCH7b8Osuv7wkWlC1IuL/HgcCCOwGpCY44zF+XetlrfQHNV2ji4xz9ANv3oFdmKJ2xJc9xsOBFioBdzBBHmnIG09mpVkiOsUb1ESpgreuWg+oOvBFoNB0M9XblbMO3f/l1UndmJF6Xa0jYl9sHo/jitiuoQ4q4bzEPDHYrByVQzVRbM7VmsFM42BXmG3u67dbrtXFX8JMtlyY9W8BsqTxR+YOW4uDN3TLCbRI6FWxKjeF5Y9PGVxVpeGV0u5Bmdh8zfoCND1I/349g468W9FNypIFvWRu+/jh4rqwZ43o31SyZ7yOUnIj/y0fxKAWaq8awsOjRI2HGP+WxVYb09sYhPmJzMpjcQvWbjgRuP/PbRR6QDU695cPOXD/oZP3lc+wnYW/OgL+NirYNsjLFM61Zbb4jeM47kRqpQM01R5wLGxNkZIfGOJj3wfkEANAetNjWqz3CXoJA2dlE2D8UNt++lwLGMLeoczpOA+MuKQf/+LgOfgewlshp4OPLIWq/NJoxcMEFtOTXsA1O+f3j05DdzCuaVXs/zHpXEnBa7Qk7Lv7Fm2AwlNJ2HKqZyhKsTtt+wDW0MZGN7B2P9D378BcL4d95DZbdxXRgHN5HqsViBFgyhynIfQiRUvineI5PwIe3WX0Q8aRfhvGDfARrq8oQh6TQXLxnaYFFTH2sN5cpXu50egBjhzXEm+cy22+fw+iQjHQ7H8N6bbQVisEMSM4/8nquUNtDl2UygVL+M9nB3UoIixpRK3yDbA0jbwR/62MfiR/Myj6d/9YbgbSXslW7pCkcpzqgmtNsJYunPMOSX2rqv8rO/Jev/viM/tRQtrbHtoSvx/1M/eH1qZdb5kYwSfonumShm/H9ezcDQ5ZWenDmTzy7cCcoO/sQkgVPbPjjW/LHio/EVr84Y1z3FuDZCAxq/EoHLMd1K1lYSYXg52XH/FBFD/jt0i8Stv1edt07Uk15lKkjOeOwJifLh530GzG+7SCbz02fw4b7YBy9Km1Yf5JxAvehuKKdfisYq4mpQTC4Ona2+Fp3xVpAy8KUuoHyCWhlxhwgPzHA2/6bIz734z+9gDb+MxfYlyDTJZM+WKEFPA3PHBSDqaF2GcsZlS+TAhquwdRBwi4bOf4dqn9/3iCeVxPB3xqdDgvFRu9eMnZ2LAWadxbQg/4Y6n7TYzA+2AVRsqIYZqOFHLCsI0UduWgxK+/BCV4aMcZeC1VzLvAp3BoVky0f1xkL8noFeL0A7J/2udmWcsvDyNAKInQFyZaLPSkw1R0L7S+3EUxfA3Jg47vY66M9WCxXLuDQPgRsP8d3wIJVh6rwDhf8+D0Vc85kdYZr/lmQgqs1mOPG0pQ/frPxu0FA5+EEL8vngYtn2cdE9A89CI/vHd6+/9CVW6NqPx2P9JnpDZtfshNCBs9n7GFaZkz3TjlIkp9LPUnhg+E8Aw5YnFJTlIi/euG4WwVej+xM8XJm5j+98vhChJ/l5cTGp/xKFLFUa7RzrS/rILfnwIZ/aI7ej6C1VH6E1MgHansTD4aXlfKwZeWINay8GRF8lsLr+yxSjzsb5n7TfwA9jxX1eLU2l5udr2C67ShaDkQyO7RUEB64+C9evEDUti6Cv7v/wJ7427qw6I8PnFx3wLZO5GzacSMPdpiPiJzusphdsjOEM1TO1D/JZTZa8bGH9OnnBMjyK15kzQ1Bi/AD0bXVTWESCIQbvqP5Dz8yW3tAUUgzIno3OPzxJ/j+zA2ppHkdVpPzP5DbTS1630YasK958mFeIhmbqrLG7GWd+D/8x4eTtoun7TaW4tceQcum12lhCgjyDXTwRV3cTOS4dYT+tH9h5xIwMEk9TsAjeJgYK9/VJJmScmA4KhpFrVMEs7jPP3Afhga+cV/Mll2srtCfFB6B+IYyguDRgH0dvbf16k3mHeRE+RDxRpoNv2mQFznM7ZZg6yx5GftMYwPLV91QX8zOwaIVsgJ3tvsmC5TzgfydvxqjEEHrq4M5/ygIZsGhpJYtScNqR3SFl/DIqKafenNx3FiDHfED7Cq5Dbb9amDe76/4T081MZgdtebkjlTcoRwmdZc2UO/1BC3FBW76cuZUQ4YHihrGm4u8UwRQKocFzVekm4LKdytQXyqjjmTfssl27VEpd88LUZLQN1l3W3IVzPGF2mN0YdPTQvOfXiBDfENxu7zvBLpblz0DLj+2rsLDgHLin6ghUTWbllG3IP39VNJxp5DxwW9wof5AEWmfPmZz/OUIOIq7BlXzcgvocGsvsP48ePJmbRgz91CM0OL2iGqPcj9Qk3UO/NODqOG9jI/BRYKt+e5Qf/i+A3IDWqXaFzsgf37PsiZWoQaVusdIr2+A5tabg/fEfBIu2j+D9fDj+W2wS091lM7muC97H9CbgKjRshnMuZKmQBj2RwI2vT+3Ip+CTU/i9h3YwWq18vjHv/F55r7ZGsDEhW9ZPVLrzV/ZnH7fM/jJGsPmBLN45TwH/sPnw6O/BfMUDhZMBc/aBkVYg/ibylU9pocj1W1rCabTvEOgV5eE6k2cmn/5EF7C2EW8urRZ5z+9Fmq7/kCeDSxMdlzqCm7+znaleWE/ZVedZGU4dNhVslPNxMvOgE/NVEmjzKxeNr4NhHeQk0k6kY1fTwgW1+SMA3opAbvSnQNaSVDI8Lt+s9Hk2gJWn94g6hz9GBN3jQW478nFjpzbsQh3AQ8ToRKOjXZ+B4NevC/qgf1WMlM2m2OFsgv4drcTdQf+UAs18mflh64cPrbxGE/tjR8hOchPBKX8EOyXZA5hMmrapn/f8VKnnwjwudf/H01n1vUcD4bRH+SgpkocKq0iJG3pdFYdqaGGJOTXf4vn/c4tS5A7+9r3Iiyar9cd4QjP++2K2VlA/3gOJp98Q2Z/yU6bpgGTDySBzF55U2RKCIuvYzPkpB8wVhqEMH3fph+zf1DKWXiF0Is/b+Ju8mMrovvm9L9/2uG2e35/Lng07Z15QfHOuapaCXCu8pul6HIAWuTKd7OicUes56cBnVfBA5SCuiZoqieF7QdfeB4sRpVSms4/Pa9wVPZsWy3atM9704OPYHDYBhK1He9YDcBgr75s618GweNyf/rzV6tzR9CgNv1orIJtTTnSzyn/5rEL3obvMp8m77SbeUNixpf5+U84/IOxrSOT76h0Ry4YzhzJYOJnnJXIiVVJRgnQyv1Apa8fOXTO75vEe5OtzZgjaMtsWEvIw8vb6Zd20cH34DS/6NCZHDVn4GXLlbFu2VMdkDPcGJaA2IZ7dj2c9HxU3ro112uGjgsABu8R3cH6KSlY9OauVZaWFQLcJyG50LuC+ti9NjDqsw2zfLxLgdYcQ3hJyyUVXaUBIdqQg+Pd+xL89s5CuA9sAd/JcjxUvx0Yd2VrwdrTNHp9L0LUL49ohEveurjyLwMYxMoy4JynglBTJt/XdGCx4Ba5VKOJBlfYLsRnkNAzk0rBPvT3hJ8ApzR7y0o8+UHb4FpG6WhsTg5TrLAEk48m4WKdpH3p2DtY4+hG5vk986PRxCSky1vyFCP7hBDQi70l7nBPWp5+v/rs00hguFHOH8tzAtmWL/EYqlLM3s55BDeLHgj++hGSFbQ/wOahmyTohmVcd1ooQ+mlEaopey7GKvu6MHw00ydoWt72h/SIzYlvqJZLKhrsZz1CeDMEsQ9RGLfaMUyA2XBCwkLEuTAWzQFO/pwa4hEA3mf+zvDwLSJuHVgO7z5lA1m2Z8QW9zjm/oFTM9k3HXM7Fwhe6lEGZ781+wvum7encVT5mpxGYbeisgcKfOpcJt8ZO3KG3zXUVtvgn4+X3+QNAhP60/2U476a/vVm3XyDgnst5fS1/F1g7qs/SjdFlvbmb7xBUqkbrNbesR0csdFhcc1CEkWtGY9OnGawqev1vJ7M+WD3l++9qT9DDzvQwc2zr9imaKp0xPCW/M3Paf0VitaINVx9W0HpQTFRPSqSCtbLj8W2yp4DTW09CX7Y80z1l6yC7qvnEkAxdif+v4PxajTr2d8wL4qw06MtH8FhYIA597ZN+b48ekYuE51eb6dfzD7XSwmlJl8x9G58NHwu5gVO6wk+KwcX8U1c7+Z6QoL0KbU0/Y4c1hcQMnI8HkE/zSdz9rc/DvT8L19PvoCgAeJ0pB+dQjdWTPpFxG3V4PAOTGed1sSrxCGe+lUu2Hfjh8zjm8cz1zNaRtngdDQMGzhsjyPZeg5Ohd40b6Oi+27yIQvxWXvDHYLU7Vh4lS/OKKOrDL166ZCoS1Ztb8kBB3QLHvi7zhagn/m1kLhHzd1lHcvg5cqwEdsCZ6EqpX/v08SrWNZT0vJr4SRG4JwaEpllCUZUahBO/aHJT38Fdev3FzZ6Kqhy7De58LfDyVwn8ZryqZ4MGa11MNx5Q/xbIom5H2E6SXYgW2tTI/FaX1Qj9+UfO5u7MBb1+SmDqR7gpbTP0GDJO9cESq394/MqijHAZlhQ3c1P6Kc1wjX5YTcyq0AZUG7cssy532IvUjodv9HBVQEqs4ixEsN1c5GgjgqbSs9plyS42Htw88sc4j6ej3Z8LT838LipF+YosEOdBxdTPnidSTTllZGGtzeY/AtWR2Hno/3beeYx3BIcDaWKugPYlkAqDh5WXhaL+ZRHwGl/IixMfZDXbeRnUC2zBXEK6ejwMpNrqIRB/+f3hok3gBXEH7JJLpkzgldjw3jrCbaLSNF2Ah1dmECsMtcGHupajZdmn7WfP37vJN8IjErQgt7v759gxtHKzCuvarYW21365y+VkkcEe+Et/8tbE8+SiO8PuRpUeTfzEglfyEVzPlhO/orKmle0nMDwDiZexaNn2K16I/cSJuHem/zSN+dFXl+giqBMC+8yTBv71CMscRESO/MvoPfGvIZmoH6IRzQFDQtpDKD9OlXED65VPoaHVWdq7rNn60v2SfmZqDt4hJZJJTqyVrTdEhsELs405z87FkW/1IG8zzG1+aAhkfBMhtrH1on9lo+xgItrAELze8YS3ARxj11gQLUsE+ZXTZ3yhY9vMGfrguE7KsGUx3WYwB1i1ynvdX7tl/8BAAD//6RdSbeyMBL9QSxkkhRLJhEZEgVU3IkDCiIyJEB+fR/e18ve9dLj0ydJ5da9t5IKbHe4JC5sX2j644uKfM2J/w42HUe/oYV8I37Zjtcib/78bq9sfPJEmlRO4TZO4U8fhct8cGi9GBa/DM9BKeb98veoZPae7azczLnWXq4gT7HLAr6/dZwbR4qKazyQXX2slnolMnT+Wra4Lv7OH39cL34jcbbRzZ7K7CGgrnkExN3jN2Lu3bX+8vG/+ur4U00K6es5MtxO15xvuNXAos///FT7rx4MJL5EzP6mER+o2Xkgm4lNyKm95B0ShGK98E/cXN9WoqzTj4o05AtUX1e3pG+VI8CGryqsts8qkKh5l1HmZjELP6KH2PUawJqcWc62m7zgw8EdHVjyNRabx8BneAY1nKawYfd1BUn3V2/+4GlDTIFIOdeO3vv/6lKg/u8tBcIcD/gn3c827yvPg6gqDeZqXsp5GNaptoucI8uP6S5XiIhqeN9cl2Hjl/Np8q8F8C5wmCt+ej5TXz1Bz/FIFXmtJPxyUkM0ngyH2KX35c0ryQyI6OdIIutgd/NqlE/gIDlgbnS2ArZeqQ7UJHcZ2ZyMbsyvlYP20v5J/CnEiLMlRB0myMxMNnc+sMO7gNE7jxg9M9zxqCtUFPx0g7nF3bIlj/IYkNStKWjzIRjVa3KCsnm4hCQPno+nNZ1hHxCfjqNUJJNPxAZku8XEuhxbNNdTYKCcLqeoyfuZtAn6UXh8nxyL+5NfTs6mbWEgrkO2xf6b9+kO+wi2jGLVyUw+wGbnI61z1aUxRcC5s1djSE+vlpHOtG2l7tIQjMnMiDFKRiJbj/kGcyFqmP5i3jXSDiiKbq+CmPpB578wswWIxi6gSNF/Njv0RaiHoSVh7fS9Jd/jUVXBu29PxNqfdUSlo3+C4ku/lP/CIZm55KRwpcQj0fFsd/x0EmO0zB+u4+XudkH+eIA1/Uh1+OBkyrq+gpCeC2afP1vEX4dWA3LeFIys6w+fxvb21qJ075ObLia8/ft/w/pKSLqRjvn83UmunvedQCXtyJbGJ1GFTo2YsGMa6QlzrxaA/Wl6PO9Hw1a+Dt5rh1+7ojxx2rKjxyoE82Wd2U66K8Gkgi4DrkaJ2Sd3SOZQow/tcC9EEoWym49KK1ha9EifxL87VcDWa1ZAKLs+277iOBjld93DCvsmwWeGOlqoZxfK9/tGX3VVBON53BvItOQz1iLDRfyg+xpyojYgXreDbvwO5kmLm61Etays+Q9qXEBxeG8JueofPobR3oFQdnxiDXepHJPx5sDN/3jEUK484FUZqrCyypIYxVTaSvrctkipMcWagH956zSRv37dtlviWDzulMtqVwC83hGd+kDiQ3eoK5BfImaWP3rBnERbGTbtwSTe802CuXp9R7iK+Y8415OVyxtDwbA8Dwmkm80n537Zg4IjTIyos23pqVuFnod+TLW9tSsbT3y7q90UGszbPLSArTryBqSEFpa/Vsr5GGUylPVax1ndPBM2Sq0HafN9UsEu7XySnEiFn3cBtsX7Z9d40ueGDodfQchr5XVyddi4ut6JZ5KU3pb/xQO4bSEzvPt6nMV3T4PgoL8I/jE7YdL+pEEd7PMFsqk962dD0F/vpKFIMHHHqrXqg7YzbXJKIOWUoUyAene/Ucm2vyU31lEDx/e6Zd7h8UOTGWqNlguMY1VttjZ9jzYF545MYp0SL+AL/qBvXuwJjkNe0uPx6WuP40XACt6vFktu08I+MnYsPGxxKXlnp4VnedrSST/c+ZD1TECjemKY2Vc5mDfGCsN5/RGZr8bPgJ3cQ4WWHqq4+MRGLmVdX4O+XZWUXYuTPen0LgPHs812Vt8nLPdue7BsNyTRJnHzWYzkK4Jpsom/E5xgirWwRsh2MnaO/G3Oj4IfIvk5Z0u8JcFUnZD2b3yieDkVeHOuFToMU0usj3YsJyV5+foGXIMEgz4ls7tz35Cfng9mpeJQfk/uodb/1k+U5Gt7dG6rArV1hcj2jp1SFiPhqtH84bBNl9zteX0yG0A7y2K7Jr91U0mYAN9NVbOof002PVyLTGN1gphlzsjuv85ooWl/IniI1Cno80vR68Mx/hB8Gxo0obR4AHuKFV7JlW2L3elqaNn90bBdOE6IC/GxgItZJ3gsYy9hQXmo9OH4ypl5NL283z/1G9qVZU8sJLTdxNZIXC5eYCxMNzbid8PTgNpDTjZ58w6mLDc10HR/YG71Ip2yXLQCvMs1Ko6Pz19+9MG/fwyyi6JXN6dpPqMwTDo8Dtc8H5rmqEIRVDd28uSK9wLkAlxvu4Rgz6PJgg+uXvGDTrDlnZL+Hme9Ri8IEbthejkP1s8CV+M9i+p7V3KjaQH2Fy9lxpl5OXN81iOjWkdYMqsh4Mfvcigv2xlks1afaErbzx49ucKJvxpsxLUxm2FnGwbBCRaSedduRehqeSRkXzyS4daXKirx70usw+zzMX1OV0gtf/f3eT65WE9hO9IT5b1vlbPGFAs+O/IlZLY//DdaNkb6NFuYUyYl7cf8zOj7bXPmyGZkz/Z3N8P3pX/JJm6PAf8hTUSPYy4w3xbCgG/MPcDGSt503p/vnK/VykfeCAF56Fchpy/mpbDgLcELvrD0sw/hLOGEmXpr2NOzPu+RGD0ZXkkbrxR10WnBtfYvlrvMLf/hsSmDSbZcSbsZVJxCYmopXi14TcP47sMST8TufatjxVoMwd9mxd/6sf/wXj/ehh057neMT1shrvTDSnkuv6fM2/XqlP43HwnsYzMStjF8j9KNmb9dYrMwpCeFGGsDV6/1O5k+59Uebu7tTi7P2QlGWTumcB2EmOrhRS7nTTbIaNvO3T+8mMdw5cJnHdbMpuyYT3lXvEHu1JKQ1S7iM9HeV+1DggMW9OsjGQclP6HoVhaY5n5Rjt9hl4Jh1W8WHUDoKBMjA+ZZY0u8W8F4880MxQEVWajNU9DvPVfWHCQGJFgVv6BtZ/+E/BXqMMC8CybDKU/gWvFraW5jJGKEkweypfUbT+tony/rSQWuHAgLYFWi8Z3mV8jut4bcpORU8gFmD/3h4R+fmu7hT4O5XRO2mWdWsvdlKVm4uKH84u1tnuJKgK20URjJV/uul9YHAPNiKHgdJxfeuB8so8tRF5m7rDc+09jTsWR3JOS9wWnfzikctmnKnvxtJPMm+8iwP+Qdc7unU8qlt5Rklvl26Fsr2+IrXqF8FzesH0AouZ9be5TSckeCWjGDeclfiH1Fhx3GZlOOp1/oQCLeJbLwzYAtjXl105tNumKbsZwl4WnAJlINsmty6EYjuBfr59DFJKTLqeiFr+p6uqEML/Ol/PE5ZJ8xibJLndMwPvrwPN9mLHXJPWCqUsygXN2Seea1L8fzmFmwT3DLnOfaT6SfSUADpGQslGlZjsHGGNFpZXB2SWYxn5/Eyv7whf6ecxVwaf9Qtflpa7hzl0bXr/OB6kf/l7LUnLZoitc7DMIjsHCJhnc+IJhm+Bl+TXz8NHP5Pdo9BNvmiNc/7RxMh6vb6pGFj2RzaPx8OuYbgCJXYoquypQP602EkXX0TTou+Wkkq9UDLmu5IZE7G0j2DkcR9ERWie89d+WsPTJBq3iiYzFDUjLDt2uhPF0PZKMdLFveeIEPfnTyqYAU2Z6Dn3cFHL6fuHkUVU5pnluwAcegKkFmJy3rD7nyz2TRUOacBxxiOAeeQLyrLZbzQ85O8CjdmPbaPNlTs3RpWPg2FjF/JxNp2hrC0S9IcFN+SaVYfQ+W7YTMj0uK+k1SjLBK0+UU6tooZVcpMn2lTSqzFz47LniP6rw8YKjbOp/Qx/bB7JyezvX5kzSmNs/Qvh975vfdoRzH0T4BPG9n4uk7Jx89aXiAs9XPdNoXQcAv+2+z/gnph5k8UvMh3P5idZ+ELbvurV03hVkAqMnHDbOGi2crl+9V1cTuumZRoZXlL2hoi5xE7InRSk2+4MH1n77gxtOzZVdpMsCPKiXX8ifzYckv2jasOyza+3cyZHYSo4qbW2ZG7yPi9ybGoFv2+t/7IzsfUphTyshOF9Kca+N+BPbSrsRb5mNUzNcJrdrSoqK+1fPpHGs1sDnY/+Hb0ojc3MNz92qYf7XMfHaf61GzLnGP28qt+RhKvwzNsHKIgdCY8/fUiDA52GFWpw0J20uCgJ7DLyaY+CPi7KZ6KLiLEiGNTW1+fgYVWNHlzNz5k6KpVSYf3teXjtfqc43GwHV8iH+aSLXIqBHftb8avgo6ME/fVQnHfMQwRC/EgnYF9ixvOgPU+lGSrRNq+SCXxkO/xo7AyG+jokUPOXr9/AHVqRGU3NEcgMfhkJCQkUPAr2dUwdvAM51d4qORsNsIxRE1BNdD0c0ITw08X1zAw+mO+MJnWxhe15GZVSPxmcQHF4nRndFLSpyc//GFL58ADEDzv2tmnY8zp4X6dLUnr3Taj/M6p36xdte3Pf/Rl31986nP5je8RPdLXFfTknl9jixkhGig07w1gs5e7+q/8SLhJwgQ+31IBQepSBk++g0afALNn74lwXl9s1+T7dboq8uI+GpnJlK7e8bAOmB/fDBYnl8AfONHHBToxNkY7WUgktFSKY3u+VQXuIb7TZuJXXV7m34PpgGJ+JTo6m3LNvt9tjXwI7licSMdk9n7OQ9U4u7LHP80dxPXuIcW/sM20Xaw++JWj8iSugFb28Ox7EPplenLayoovCn71PNntPBNYt62asc38cqAt5BNVN+KXTfbX3P88zfwSm95ziZ8w/DrXzWemaBxGhwuM6Ta9UGzpjknXMnqEKL21hL3LXyTMVUKS1/4PJ301gj4ov/AP3cn4hhxlC/5y4ffG+fMeeoK/4f37+Xu5d3xCB1v00pDgSQfqe7OBRrvb36F6tS47Lz1WT6vv4xCvzFGsln4IZPZ4YHuxtxgcW0z/k8P3bRqS7DOi27h82+t0NF24QePbqpOXNPNaPdm+DqMaDwIqqEXXJyp4odxMOfYdmFvehIz7+9NJ22FuIa7S2Pmu2Am47EQRxCegkmltB1s/s1FVddSNWO7t1hzmpTIRcxe7enqaSb5GDfOjKb31WFeXKTdjOfcRam7F9muOzq2sqw31OxWLgu9t80lTXw//usX4UuPuGkcWu0VGzOxv7+NPb3c4x7QK86YJwQs6KeiMpAx2Rkdt11n02LVWWDQ1ZvSjRuUy2sDnRPvsfA1/senBZTl3Y+RVMe2FK9NDGvQVGzraWZP6dWvkOvhAKtpEZa8eG8qNKvihcX70Qioea4LmGeVMX8nVAF3DryB+8F+EHz6lfnsz08fmVMS0U8RRfb8rCcLcuGmk10pH8pxh58Fws26oLhOHzmNeXxFix6kY7b/IP6nR9atYi94c7NH+U17dN0s51df/bdrotpyQYjUkNyy2gzm5XmRN0UmKSals/vuFFuoUmEiyfmz5UOeTBpcgqYhrqfFyVTLaxlCUyiwnCwXGf35U4tfxzbnIM75y/RCOIXUY0GemoEygObDwmeoXj5PeSvKpNdaob4uW+qbfCSu58IPn2tio8HKZ4TXLWy9h0GMai3YM3XYiLL892P+5l5zrq/LBzoMvMXrteai0QiOb7S7nwOyC6JdN5ZDlMFnDwcSVruXvfAXDSS9L4lZVE0+5pb+0FLj6JM/vGXutK6BvtoPnZlw5by2LQ2+Q7VhkeB4XK7Wpwz0Tj4T6yFuct6UngxXU/YWvfRIeH2dCj01zj5zwNzYUlTkMQzD3iGn6Py2/+W7Zf2zf/6KTu/iv3y7XfyC+jhEM/yNh3/7pslQ0fcbFr29zNe2VDa/dg8rSE2SNdWOK/6salD1cv2nP0t2WZlv3cugoyv75HVifG4dmK/thXlSXeU8fZIWSd+3zYLFn+XbWRTQsv6wtGmu5ZjtLAeWeMMa+9Ul9f2NDNwOPlSunBWafwkZQWiTaPEX6mT+WR8XhKtxZgG8U3sSkyFEytuxySajWpdpJbXUP3wlhmQnQ6usPfRZ4xr/HJJ2ozRjQ7Om0mLu4GoJk4RxhnF/3jNj43/Qgj8tmlX5QnCz99BHkAf/D4+ZLeMt+sc/21O6Ycc7Ufh8dOABQu+ExN+80pz/PtsK5I+wpnp2qZN/8bXuW4ttlCTk/d9rEgsSrov7O2giuZrhZIgisYvvu5u9X3jTOmdEWJ0bEsxKNJ/00vnGzLjE+46HVSqAqWCFLc9b9qfD/QFgp9G/8eL3fVnDl7SIYTmlwbg6ugacD8cn/v00xe78rhKg4PLM7NcvytUHGjKIz/KKOM91m0/up6nAXq0UQlabIh8M0ahAuyRr+hthzWf5fmihXt9yPEZs342Xl+jCh8fAzCU/z8Izi9Gk1hX+jIc2mdihLf5+HzkW0RBMz3QK4c+PNRZ/adFzolbtVzEjXmbnC//xoZmjGzPFngfMXu8qOH9fK+JBL5Zv4ZntoViPN+ahXZiwCacY9Gcfsiv7ueXo6zCCLBNG/E/4tMdXsrf+4Z1pFCihrHynEFx6n3na1iz5BwmatvhrWN+Jdqds39cYfvP9wJypIHykq/e//EfRWjdtae81NdRBnLOt6Z/LfoM0F8KH2zKT9rnNolRqYMbcYeapeCO+fcf7Pz3K/vys4b009l/3jcXy/nHinLPjG/3FgzjcrJzjvo9h0atkq0omn/PP1AOuZumf/prFz8cAZSw1uv7Ju3J646oGWY4Y2xTRYM/ZsOuBaJAy1xTfNre8RgDWCYzZw15DfassF49Ns0KtTWQEzS5Kly26GfqXj8Zs5zswp/qHKupt1c3mmb5RNrAH8UV8KFkqC/Gf30quSz6VRT1vEYlBYvf+dbAnKReLPzym8mD1iLa7ydDFV1r9rcdc/osP1fqyf/PJMkWqNP0yvxnOwq4cx2fTIBmCC7O2B6lTbi8cQ7Gb7niwjgebz6euQHKnlViunCdii/7Vu32zJ/Zf/eCTHYx/+T6IT6ndLfwEPSR/+4cXAXet9AQ/9YporTnbfFKQdgNrikM6Lut/0U8VanoDscDgkA9H+5yC2S0X0Q17jfe/zzr9w0NmX79+x0d5eGtq+8HMfQvbfJTWF/jz05nhhmPH4801hr/60MWMJjRdy0MIj3Ook2CtmwH/OjiGry4iKowSL6koE/qnr4i/t37drBtHCu/3/suC+zoNpkUPwar6ZmwrKWEpLnoMZXy9wu8xb/nco6OlpTRO/j1/T1zDhdK4fQm5v1X+56fpZ9P9YWRPU94nY+pCUoWrf/pksCLBQFPKRrL709+fuA3hGN4SZpRxk3O/6wV0Li8p/VwjKWg/2cXS7r6ss9Ax644rGQ2RfN1WVKavb/Ln5/7FJyF9FeT8yt7hn/5i1mFu+RicqAjj2yeLfjA6vl6NLthRdsLN5qHZzS4tXO3tH7Ysufkzn04BbWE79ie2I9RF4qReG5jSYWSRaNidWH/0DP78pUo2B7v781/DrepjWfoq5T+/uT5gF8ue7KB58XthVWdn5qgrK2/jwHTRUm9k3tc0u6k71DWsvPDMlvko56REzj/9vn6LNRrpqm1A8KKMkcW/Eevjlf7po6Ue9UVDcuCxFppQMHzpXHuqcVGgRR8s/KHmk3G7ABxF+iNWKkalVCs6BrZrHHZtvk4wL3oIxCO+YOB9wenvsj/pKziZuF3qIf/4Pn0qH7K7yGvOomSO9emdOez4GSWbdr541Y9u8SP20XmXMyvfJ3Af145tnfCaSJV7weDA1sS8+C5bknhX/OlL5m9eYr74HzeoN6eJjtX6EfDFL0R/62s7xC+0+PEFbB9NQXCfnhLeDQ8N9TnZY8X0lY69TCPUsdY///CQz6oQC9pn48JS/3knY35pelCtDyP24qfNfWL34FzGE9mIRwW1xX4za39+ubfUc+brYxjRoq8Xf7WwG2bU7j+/xUHVMWDOgbeoWPUuZkL/sCdZpG/Yof2R5e/rlPRYEN0/PsayHdrx6RzP1d/nmfk0i4Aeh2gE70deWDj97Hx4PWwVXoIPdHU0Udf/+ePSZ3DIIXkUwYKnGWyyKCTxgqeU+mOq38tNQqyQvHk7desW7vmWEyMOi6T94/P0WxFyXfyTOdebExy1NqGQ1S970b/Oenc/BmT31Z72nx+tL3qamPf3pxtLW+2RXJiEuZrzTcbqTh30LNPtv/kYyqP6hutoecR6qDFn3Saq0dGoV8xsm6Gbaty8kRumMlas32xPWnjxUXoqW+KH5dmeV0QFKOcpxp+KtgkXLr8HoM/FJsHjZHMlkTQV/eXn0NpAMNdFkaKVxlX6+OA64J34lmGu52qpvyPOk+hXr/tdkDP83o98MnpokceCgBjur1j88gwDUx2NZTY6oPmV3R1o91nOrEptEY2u1eP/6lKw/t9bCgZcbrAYvd5ldxR+HorTXGH4V5ZBfymXuw2ea4NtXysdzVt9r0E12hn9NsJU8vSoaRoNuhJPzwdJRFXyLW2+/Rw6CZaQ9NsMZs2flAwLW+XSDe/fC0Pptgdi7+womBRblSHiMNFJdepyfpFfD6mUmux2+6p2LxoNBl14XmmjBVI+vN5thfblo2O7i9skw0tPKnh3lYJ54AfdPH6vvqZu6y3NoDgkiluPFOaAEzpvvX33Xl1Qi+r3VSRhY9XJzy16DV7+dk8Vzr58FsS+gXOZd8S0VDWfLr2C4bM7bpmruzygW2OM9fXRXBE7Gio+XwpRAN5fTOLKvdHxq94I6BBtROJJqllOtubtUd3KlKL5qpdc+AQufL+bMzOfD5bMgXR1YJiPIl39zgZX1niq4KhpFzzdd0k33uWyhb/5+binsOtvKVjwvHgOuzx/r3xeX5EIr9p4YnjZccd2Z7SHtI2/JDBObdCvwWh1ex4jikbVSOSDsg7hbicp1tqkD+Y+OLfQ+ItFGCWfZNx7ige3s1qw7ftkctqoQwafz/7ELpd009EV6mJQn8+ari6Fak8lHrG2QuqeHLu72PWjJVuwrqcf2YNWdHOyxjKQtCrZdvsLba46eQOba/5jW5ZEeevOGoD7Yj0ujpZly6uVX6OfdLXoK19K2O5m54CiZ2+s3uxX0JDfxQf7uVeX+LRtSV7HorYjd0Sc3aYJmHYcMTr3V4N47TpCFPosgxxtb2xT8xufaCPfwPgeHeJfPDufj9iaYb6/17jewGCzzz3bg6M8RqwEsOJ9Zwsh8mjcY/mR1miSz2WINlbhs32de3a7XjsenJxwR648eNkc7UmI6lexIs5ql5fTJxk8QO+HRPUrMTpRvJAC5bw8E+c3HkuR9OoDiCWuWYTFOaHP8uZAzfc/4sWvNJBuZTvCtN6NZGumYz6/TkUK5VcqSKBLHZrmumih3Iw3ZoRZm/Oz/fCgT7yYXCwpCuQu+qXayT8KeBIuVjKG86eC58V3iCdc5nJUT1Ov/72vKqvC5ob1ElZuBmcWKI6UtMHe9vWPOVkMG4ZRTmr5mNEeyIou8xlw/zGp+jkvApYt8T76g9rAqV/dMcsv63wZP4y2J2iJHw3HQPxZRa0rF/tCvH0zc77+tRUo8XnHwv5h8DH3Hy7KOLUJ/h03fDwQfdTkwHaxslV+yZwA9aE9fQ5YOrO4m7j1PYEQixXJ7nRjt1B/r8hUNibxTx/fnsSvsIdlvCl3vnHHuYc87YDaN8Hn4hP0Z9F5wx7GK3kqqzGf8/nwhkr53AnWaMfHSLeLtf/tOO5/g59zt91b+vbxZmwbZlrJv8a9RkNsXFmACoa6SdNltDGbI/GgOOTjrxg1PXNNH+tHXgfTrVwa0+yMjIXX39IoOQIX/j6/URu9bPBnLUOePXUWyf2ez3tiga7OAiK7wfp2y3xRMK3sQYIokbpfd7c0NLi6wS6hIQfTI6I95J5XErdQimDU9FMM0Tvakui5yoPGb0irPfqjQVzxY9ndUXj5+sVnA9lERyNR1oOpgX+aBObHO1JOy/frq810Z8t8IUbUtgf8NHzyt/6U+0aP0dqhH2aesrs9KjTIQDw0Bjs3wqHj2vjC+s+rBYYPF7dj+9UvRX2HahasgzQY71lyAieVDmRnQIf4g3YFFA96o6V+u3Wj3PYu4FO9p+p029riV+z2yKtAZ77xDnNFlk8pOKlyINtGOJSduzEdXTUsi4okdMt+eV60nQ2HHDZRmo/bW+qAd50yZjbRHQ2nl93Cx+QWwXJ8SNrDpdFQIOgSC7/+IZAeRL2iaev0ZLc9fMtxm4kzvC9SROu4y/PRugCgIxNXVNKdLBjlrzPCSQksZn8vj45vBP8KrQZX5vHyU47aWhBAHz4ftutFP5l/4PRwCZ9nYoBmlBIS0Ulb8iHbN4KZDGHdpXBX2jvDx/2Tc4mde3jJakrMtf5Fo9+QRktucUqc5HAPZrQ1b3D42TbmQdagaXgpMlie2FFdfvBy9gRaoLeevpjLnqxktAmatYvsHPPePpWTIz5jFBqswKupTTuK/GaEtN1/mbEXHT6763UNG+lpYy3tGz55+4uIprY2iFUfCsRP8Hys0867MfO5n+0h9HILkIifxD+dQzS/96sUtfO7WOLfCHinFVdwbvkJv+Otk8xKKFTabfxJxPXrCvH7RtqDvfcos+Kj2XE/j2uY9tkNK5dHz4fQ4T0cj7+cSi/bSpa/j0FarXrmXtQwmdRPcYNlPslWER/5eL7kBbx6ynBRuH3etZk6wyo6v4n/FfYBt3w5hMjwbeIQ+8lHNbleYX16EGIKl6VEZhaZbqaeR46/KsknXScVbMz2yMJoy5Mx0oM3mP36xoJT0JZcOo0ZfKrsRRXQ9nyyornXf70Tk7P5HrrpvV3XyG7qhtLL425PaeJmaNwBZhk7NvmUJvgK1rJnwpNe927SSH+FYStLWO7soz1CkFRAVtvXf+Oz2hrOv/xgLng/F17p/I0XO1hqlk+mCw68RuwQ0lkVmrjFTqhaBW/mT8675Nvqa6DITVR8W+J/9JttC4K4bkg4bm+IVZPf/ptvYnpCQonnnGC41E8SukOB6JePy6mn341ZtEo7Xg5lijbS3SZ7aSBl85a629qfpIxZyu1X8t3cxzB/+wfzLrHfMW38hVp/e5i4PCDLFp+eEetTNAOd6ntpT8lhHMHmrUWsHWH5/JouJ9DD7MS2ATz5SDZnEZbxxN3GMDmPt1KDkk/lsMch2OVMfzgPKDbXgWH9sLEncfcRgAR7zuzPzwn4NbtaMH/pg0Tv8VCKzGwy4MaTEzNmr2Bompel3UeIWJYHHeq95W7IbRFfSTSJCHWS2hig3awvlZf4E5f8AeFy6NRoC6Eby+v8QMXZO5NEOtc2z/x01CtL1Yih1HsufT+7Hlb8cSLhWd2VHBPxASJKdsSUXkM+NhctRmP5yZjBM15yKbk46I+Pzah1+fw0qxvq7vaDkWZ+lrxTTz3Qo+Ix/K5YPu/j915P4EOJlSbrkk1HqiLdhhuee5Ih+TUdTvrlEZnsut18crrkU+hvNxNf7qMRcKK2FDn3Q0Csl1Tn/ATnG+i1XeBSb9donvZ/JVRzJJgl927AdFX94/d05bv5r37YDqR7QaUPrkt5/3heBKh/W4dqTTh0ExL5SavP5ytxTcr4XAyahS73c4hfm0hMuMdCAYmH1iBEe/9KOrP6Ck+3+ODxeROTqZBTAQ7R6oe1JzHRsK4FF5hyYrSof5+cB5+xgPDj/thGbj/l9DxgC3V08siCL6UisScFayvIeLxPY8Jt3j/g+Fj5ZBcMli3pVbNH3Dw2JKDHb9DW+FcAzOHMdgq+dSN2rBCRb2ixS6p2NsdT74D9u93xqkJ1Ms+szrTjfHsSXHQ0WPRGC4FzU8ju9V0ns3C6neCj0z2LaoHyf/jIKxGwRl+/hEpvrQV4DHfM0aPqWuPYymh67Q90xIegmzvfsnT5GHYsffRdwtPjrEGaFTqV5HZTSskxc8GMmYr1EE3B1IppDd2X2LTtGy/gu7mK//Buuet6trl0UjPISd8Qz/SozRY9hVpNuGJN2l2CXqHBVcsPj4T9rRe26ncUNuIXs41zDxJeyKsReEzueNKCTTA2lzlGlXBYulg863x8r/0Z0eBXso04Vfnok+Kkp+IjJOTtMz788fXKaSvm4vsjGPU4xoBP1Z7ZT9fnCx8+obH8ZmQLPe9GfWwLWKtlQqcX75abJpCPhrdGiO1IDI2q+jtpZTMcsZJ/umRWpV6Eez03tGZDj6rKLka0xCMec6wEVMxFA/3pLT/tG8QDx9BgPW4uLP6Cw//4nfbHlwzQinJ8Fqz60y9kFx8PaIzyXIN9XMv0ufDhP3zS35me0ZX5fCcL/3OA1Kfon76Yld1zD/Z01KmWPrpujNXeACGWK7JxPZJPCS+uIBLtSDZmn/KuXS6SsYzrhHtvfbLlPjg3AOtRIbv7conOHz8pZ3PDNvPNS0Y1WbpUJEVPcLUO8uGo3k9o4/1WxPHH0J4X/gP6fR8Q2/nOf3zhjZQyFJjXVHOwtMB0UWguRwJuUdYt+XP8yzf/9GPDz5Oq4/tHW/RF3NHfqrLQw5Qtgs21yaVht3/ry3r7w/9u4QMn7XH9njDVClqyC+sosrVTzEKHPHJ+sryFn89XsuvFNln8iAfcHtXIwqsjoN4f1BbgeKFsd39bfB+m9z3SdCKzXXB6BFMTjRbK9iEj7vvt/ItnLbHckYpnlPIpm4tQ7waU0Gp5/mn2shMs75ONrFpIdjMT9OazbZml4DCX1UQP0bjX1xhtt8aix5oU+ev8TkMj+9gjFUwLjDWUzIsUSKarcvSAC16H59DYoKnxMwpe3kX464efnP9G/wHSqLyxdGzEYLkB3gd53G/Y5nc6BU14hhqh7LBf9Penm/dB1yBGrRWWHbtDXRXPJ1DP6MXM+GUjJfPTGY7z44nRqBYJ/YuH5thsiAdxao/9GIxQi96D3E2lRiMrMwPtRKqxzV645fP6nL71ToWB8r/1MqdxpT9M0WKB+34GI0NKCtvZclho+Fs0O5VEIfsVD7bkp2Tk+SHUp/31hgt86Mrpo4qOLlQVXsbzzce0yQQ42aeUhS87Lvtn8a1gIFeNfjnboiHuX6N2zc9PuubGM5nTl+6j/dVDzIq3VTJed8YDXld9w5b81c1U+WD0Fq2Z8uwolgMWiwoWPs48m/Rd3bpLVxT3UeHXwt+q8qo9wAz6iDiWm+b8eFu/NS7XNbNf0a/jdIdSJFyvvz/+XkqpKFswNQeEuxvXknGrbBy4PW8fFq5GL6Ax2r9BiY879lCltmPBZ3yDJix3pf+tl/oRuMjW0pgka1503LB+wh9/Y4ueK/trO7qoOr4vtL86Dz75GXVhxW8n4vdNE7CrXgDUov9Y1j/LOZMNDf3pQ+coygknYBlo8RfwZExrTl+i2kJ+USOSfJRX8qv2GxmgWVvkx3auPUPr9pCCcSCJSw92Lai2AC5pv8Rx35T34mN8w8dAEYkG3epkN20bcJTbyPyvMAYsGUsVrkpM2fbyCJFYbQ1XF0TUMP9+MsoZ+c2sTW6oMP+A5pz/8FWGevMdiREjO5l25+wBgulof99fSvK5xCCxrcKsjRnbk/pUHuiP3/m5WXXzMr7IfmnZP37V3w63HmAj7BZ9a9iSJxWz/v2uQmaX702uiNNyCvi0kYn9vQjdH1/T9SN16XTKdPvPvwB/UzGGV76bSIdP58HJPwtY2P5uOWtsUUObkl2If+XfZA7VdQZUwwcW0rNlK4J/deG+W1XE843SXuLT08b4uqN/+r45SGEP3ykG5qM+Dmb0ucz/fs8m1xmfwtZqUZxeFBbqeZ9M210SQot3J7JR5SuX/vzQ+ChuWfKDM++FpQS85H8WWN0GidYqUNHiP7INW7OA800uw/phpVS+RU0+ZXu1QurjMxEbPZyOHd5186fHaeNjI+Gd+ujRwq9Z9Ht5gey3oqejPQtIdDLtZKTCzoLQ/B5xGWQNn8mPA1ROU9Giert81h6JBzuIV8xPxKQc13d1wZ/1i35K30B9c7oK2vcUvdkf36UPYePC9iS0zLsUWzRWukJR6TYHXO4tg3fW9qFpsePeWThuAVHOIwrHb77559cNo4wo1FBlxPO2Jp88qRnhsztvqbr4R9TNdgI0spSyzfvz7Hon2mHtITUj21563x4ah1Ht+9VD4ix4T9HnMINojAEzm8pEo2TqMvzhv24qLporo4rBG60z83a/lT1My6lWeYw3EepvGyR1CldB69Ubw/ZsB/JDG2a0xC+ua+mM+h7fvLWeK4gRLQ1zdfEP//xdsovWSt73B36DWa0SkkavdzcuzQpgikbAWbCukrnSHRWQ/sYstJ5lN32k26jFx6Sn4+KP8hV7WfDHv9SnZJdiWk2Nrg3zn/8xddPwLUTo8zpc9EKUT7vD94aSlBJGfucCNYsfj4yxFZlztZJuGjrD01XihcQO/KD8w29Qi+ON/eW//n3OfTDL70A1EeWo+ZJb+sfHiCkxv2vloBBgvMo2Rv4IyfA3P4v/wpzuJ/OGPsceTmFjE7eWFDRmN02G5773mbGTJpuL4fXxLx9E1saxZ8m0LdAfvsHIfvW1f8rb9GH16ntmE7FMhpuJfPTHB4n5fOez09wNuIWSy/7wgWr220ea4prMMNPCZqtDRuH42Bypnk93/numnxOoWmmQ3X05wtapJwqpdDJZoH9xOdyp0f/zo/U/Pza+e1ir7JHR/vozbGXBbyRmXcv8hY+3771yguA+1yxocNNNuyOetVZzPph+tt5/+VNJ3IDt7sEDjZdvNoJ9kgXm3ekn4N/HoGph31ByFRFCw9ddX2H9UHfkmQdg8/7+oWjxN9nznL75+KyzSkPbS07cR+qiH0qCHs67+cXwpdfyP36DVmQbYhi3Nz6lomyoYvZrcX28HVD/rPcV7LzHge2EfOjkP367Xdc7EkbHsRzu4cWFUzBj3ORBgOZ6vHjwpd0Nw+JvTL/hKGgPT+nxggdoUuxRhi5hDMM3w/mc0zmEj+wHLChPPOdRePdQtH/ecefMTidaK1sFU/i5zJLKJmenUvVgBeOGpeuLGcy31Axh0ftsR5GHegiSGjZd8sDTov/oX/3ibzz/5nvE7/gN5Wkrk4CEJ/57TI2BMhR7mC/5je/OKIaLmtXET0ResgKKWZ+2bk8WPpcMTaRaQO7GnVluLwfjWelkiODaMXymViItfgsa30NJKzedynF7uzlowScq2qtjt/gFBhydqSYL/pT/9HVwwi/iasdbN71/PwyHJsAk6h3zjz+4MKt1QkJvLQeTo8iVtvEFZ/EfqoBvG3xCNzatlnw4250XHU+AJDdlzsfV0UxRWKBROlrMrLxvMu7aQ6r/Lg9OdmznBpNbVCrAelYY+e3Kcj4xLQN7OuvEPqC3zYvH/oYWvwrz3cFPxn14uoH9+rv4qvFs0aGqDMVd/jK81OuUKtbSP3+Hmds0RtzsshDUXxew0KmthMvyI9Vm+3gkXh50/M8PB+sQ11R8md+cb8zfCE69XOZlrl+82zZuil65rDHrdFUD+tm+NfjzM8gxN7vpqB5TeE7oQrbaWenG449WSF8dCVaEj8inJNzOsEJWzhwNPRIeCGcZLv4wkD99M93bVwbDfj8yg1LE+VBVKRSNEZLTezQTZdHT+kMPJbb4/ck0mweq5/x1pnPraQHdKkyDBQ+Z9QUHjbpoivCTMoscnvvY/ufHibNCGA5fh/KPj+m73ckl3qbyyjmY5nktK6LP8tQJbZlZNoaNnKpkG8AKVcv602U/OLDdF6RFT30deB/y5SI9ue6omIMFvntb9K5oBVx/ODf4brTlSKpI7cF4DS5s2bXCWqa5wch1T4SFr+L1aerz4dz4e7Tbn6e/epjNV9E6g0WvUK2XP0m/2/hXCCXhged5ntAAV+sEysW8MG8zf/iY3LmBvJ1J2TYeTvmiN1q4SqVDwpc9dxRaTNEpX7rsPvogWfSsrIvgCQvfmW3asb2gL34nS074iPifv/T3eseNVf4r5BuAtLlRKvxKO/jj81qp3VYYrIObz9HDuOqwgR25ESMt/+o/sEJGTpL+kCC+O/M93JXmvvCBFxr/9N8fn71aP5+Pntm5kK2lpUv8HXV0GX/UbtiNuVsJ51xSC+OvPorHP33yMjTQP7k7ESuouoC/HcmBpb6Dh0F/l39+EeqcZYvenx/w57/caTowR3E29mC6ogtLfYZhO1+OgO1MGanzxsXidT/yEfCsQfY8rclWjk1bjnKhR5WlaVjobk7O/vRtp7oqCa+5xUXRaEKo7s6DYfbS0PjqojeqqOgtn3/ZdNztZBQaQ0HFMaH8n388tLeUuRW9JHwVTRks/jvBn23TTbo1trqQ7x/smOsMDXdvGnUa5REeL1u1ZHNZ+f/XlgLtf28poGVWkJ1gbdCg7JwQprVRseOZg91fnbSAkExnZkrygNhTOTtr66L/qCS4sT1at/qBvoMRs0CYvsn4pW9Zi/rCIuZmdSzHNyR79JPdB9nOj1M5f53jDV6lO+PCwEo3o8/qAdO2Hpm9iV7JPB1vIsDRubH9DaZyMHPcIIYshdhyJaHeOKsUVuTyY1ErvtC4RURD0SHNqGXol2B+1/teLwGXeC1YGy49dkYPtdyXVLuyOhk7sXnAt3EnrDXfdd7wrF1ORbwbupq2Gz7+tncHpEoJ8cqzKJo7uQLtOe5Hsnkqlt0b9keDkMGOJO3+k/ehmQug6MqEx7Qxg6VR+Am279ajpRnQnLnB3oWPhvd01R6Ekq9DK4QN+yVkdzmskqkLqgKqoT1jne86Pn9HloKEXzdabI2s45clxNSL37Ao+e27brcfBe0R5VuqWkrdDbfb1YDgV2JiubhKprvIHmi5dpecOW3yoZ21GAKbPGlDIt8eFX+7B5S8boR4FkZTrJAR6a/mSEjBSCL5yVhBttbezL8U2J6O+8GD1bWkjGTXTz4PSuZC8spkFnhbsRy1UoO1POUbEmZDkfSsfrVQ3S8rcr/egny838uHPgQt4GGtFza9Xo8P5CXIZxtSbILRQ8hARfC4kihUWNfst5cKbqNC2Fa11vacmbgA2KkTVvbERZLjNQ+IboeWucorLMWDaITw2q63zFI+KmKzoTlaqupfLAdDgfqr06ooXZsR8zrN74a1vMNICZ8lFtzYD6ZE3cVwTOMH2aiVxRXxUu0hTOUNlb8+K/mXHTUId71BazkW81kNZRWVB2ONNf/yRvOqD27IHFqPRNJas4deEZZGNZsjbZ+WnjAjuy93+aicQl2tu5FsgxDK/Soh5m/ZZC+yWgbcCIx5ujiWdFsJAHKdGMTYzWvE67N3Q7ATzgS/mMp7Xc/2KPuJQOwwvnRT9ywErb2lX2I2+6xr/ub3lRkJOeai1E0mOzwA/6wjXeVBz2kZtw3I0/lJApopyew8Z1FvHteCBfO1zccDn+TVraUHLDXRhs9+SzGMrgeEbPZDOeLrtAf79fsS7/kxOtm6NikY3+DLvPfJS2b0UW4wvrIIr6rJypunrF1BG0hP/Kel52OsfmtQ9PWZhM/nKx+zLirAsrWYbR7NDtFm49VIuTVH4sTWw+7T9c9BiA7/Ie1allUFluUHOVAR6WLIS0BgdSso6gwQeYnIoxvorz+B+97ZmZ2h4YpwAVVZmVlNlUncw2XP+axIJphkcyDxgjdcfdgF1F2VknSVPIKZU0sDrrRAdNFK+Zg6kQ2Pg/GH0e/63KumQe/4lKgv+CB+2P1h6aYdHuQYZbtuELdVCgd8PxNCr1U5+LuqgCu7F8T4kiLo710sIh5zhSnGudI5jp8rVFT1YmnEu258dGODgilNiBltvKUl96Xwp/ozM3q1LKdcCimk93pm3vSwggl9Xj6Q8W0xor0OnMaRhJHS4wvD404uBy0u7zLdl0+iGCenG8alRW2Jw4u4q3FAlWpoDdJremHK9rN2J3o+3OVCGo5Elx9lyakEEZxqSSDm3riWwyGPWkmPi+8yp8TR++oaS/DoiEMsz4uCabcNTVS8ysUi3H3iXkhdCqFT/zF9t8119g6vFxjyVc+89s112h4ZoGAqNOLJoxEIYZOckEtThrM644ja74DKtr6rmMPjv3hKEl8B5QAue53rsz48NyxBSH8uS0xvd0Q1c2k5WBEmWr7sfnICsQbVzwxCsgGCeRNte/ioXMMr/UXibZvKGxQe8oyumqrueqmcASqRCgyv+07nezExEdlWmIT4pbnj6itWYHD8Yfig3QP2uG9byD0J4/H2sLt5hBHQtboYTB8U3o1lw2vU4POFYCle8yFJ3BZJ80Vh1umkxIJ3u4hI6b0Lse+z6XIj/d4RXBUB7x786HL9uTpJGQgNFeX5WXL9KfhQHBML766T4P7yC91TuqPbMQ+D7XbUKwlrX4Wdw5vnLvW3QHe9/GNKb4TBmEy6A39JJGBJ2SrdNpdSKn2vqMfj/uu7YyDKK1TmzoEowW3b8e5410B8HDSSvF55MCeWZ8OBfQY8Dle15FdplEDDq5EpXoXcycLHy/6k0IA2RdjE7Cg7G/SKtBrD66UGvC80DEXbleSYXw/BGHhSAljrFLw+het4HptNAZIcpewY5ZM+h83FB+uWPAnWswb1w76vUOSVM1vqTTzLgSOh+pREdNt4Xsw3j7mFFXU+hJzCVzzqR3MEyLycmJ9jqPMwwBH6fNZvyo+ZGEy04il00gHwTsiO5S6ZI4Dz6vVhWM9szuPps9lfbqNLrpg80JjtlFEOM+HGlOX6d3CeUpkZXUHM7HZ1lxXyJ/ib3xHRcLHh48I30OrrZsQ+r8588l2/kf/hfTFt41nnfgau/vf6Vz94PDEB0mcRMBeLoE9xLPtobq8esx78q/N32PWghy8girAvOV/rVgaW/wr/8YutExQeFFXlsYRYLZofaueD0tsUi3+QIi6JbQqR+row/Xa4uPzg8PD3mWh+9eH8Ih1GqPwsILfP3eC/v0f7UfJwr/jPeNoLqic759UTT/E+XnbzqT443N0zJYFzScMm8eE53wkxeRa4U7CTJATCLaVf9+EFPDGPBqI0Xf3wh/NsxwXo1uqTHPL73Z3x2G1+eEGnh2MivuNqDYdHFpJAixWXDbgoIPfXNVOEvc6HQYwdaKo8JY5VNy7tBR7C6nuQGPGFgnP3ujXh9cbnX/0IaNWZCYSHt0nwku/zhcQUitdLpFJ2KYKRWLoHh8vr+4vHoN/vvtq/fLo16A/NvYBCuA2BTn78YSKm7cB9v7IxXPoaDWfX84FEF5kc/HPPpz0Oe3h+FskkkbzrnUY00fl5ctn1gI7xkB4V+stnEm//Du6IToYIlfg9kT+gFufHL76j3++p8R7Fc7C8VfpJkElspLFg3lqkAa6UI3NC6vHtTRYzeAdgkXAcDzo/nsQVeqfoQZz1dEKz6eUF6mx+oUjnOufqQynAr1ZHKtoPQadjQ22UB6rHPGmlu61mzidI97sNO2YHXg5SkWey8iF/lHOO3ca93iOgf07Ijs/Aj3fn7bGFhQ8yz7ic4vEl9Bpy9/VmwYu8bLLSCMEz5hfdfIkWb2NWXqS/5HpiqtgW7qy/CIXtZnVn+unilXN9dzP41RstH2r9O7UHAKoTSodbV5a9MCuOnIXFno53dHenOK4lya82MjGzO+2mHH8r9NY3iGnSTdJH3p8k5L3EEu+DAVAvzLYDP3zaAx/KuepwCmvWqsQ0pHrhA0STdvJ2olQ77dwxK/0eLl5jsnt62Qbzu0s2KARNpcIX7YLJCcZajqsgxIxejXKH3mcHLv6QkgM+BcF8JWIC2tu9ECMyDZ1/WH+CZvM2iP6XT2gav+tK8iKUMGU0v8FkS3kl3zf7GG9eTRDM0bIreZJXB6ZLHy0WpitO0bptJaLG0gYN21GvoRYamV13/hM1cBo1aYTiTOuRdd0yp2mG3WeMmCezlvfX+nhHv79XmR64Y00vKWBt9FjaVGbHxqBu0K++7Yeu4VP78jyU5X1FjqeVHW/WoVNAe7tlmKLu3I2eKvbQfjKffrRPGvePu1bJx+5jkWM8aag5OMoJPgn0VNyQC2K7V1DA97322aFy9gFd8Pz/8zGwEVfu3Ygs63Ze8AbFjacGKzRp7y+Vt2hw66OvRdBV2pspi34StCgLZaNxbGJ8/1gwXs+rCjxkYPY6nD9u+3dXFLm4FDXm1spGo1SpF/l4eukY3V+dO85rsYJKHBNyasssGO/doQD0lxi4qhOr2yraHoOyO3G61F99JpNSyYteYOTy6Pi/etWPhUisZQt2d1vXS8vaTLA4pYM77/+CFvwKjuwC96z84YXoiIeITkFtxKO6cGV77SlEfbpK0K++Yw1mbRLcme+3+9Nzcr7yBKJVLyvYPsLJlnez+Fr47srtLtJhhvf278icvfKN5w2zM7CD1Yh16VPEvUWMCALIJIokGvHJ2q9S+IK7pY08yyXHMalRe7tmeBW2Srd5q4B/+oFhtEy9yMqIIq58QqbEUaHT1XoqYDcv52/64KBP803X4JOseqKUzNM3GbEkxLtNzXCwOyCB02f046cYcq0N+EX6G5Ha0A/dbKs+KF+7lwFl78jkXzx22bOR/natRZThYuu7zdBQ0MY/TndOV8WDntgOwFGa8Cr5+5YUG1kI7LK5sFTPi3h+eeiOcms1EHw0uuCz4CFI5rqkWZ0FiBlpfoc94iKN9Oqqj3+P3fiPvyoLn9v8/ILX2+5wOemKy63K8dHNd9YUfnwoonomr6XRxNwc5HKEk6jB/j1bxBT8S7yt+00D2jY0mfPMrW57hbUCwS7nNM+fMppvzaRBtBMJIavO1oXx64ioGpob+1NyTx/rYd2jfP/HiLaK6o7DuTThZpkZUUZLQxsLWSJU1h2T66J/xtv6uALH3NyZbT9CfWhmy0GNftFYWuWSO5+3bLXY7QSjS7Iq59K/+L/4Ypo7De4cRcSE/h1xchxaEvTCcxuC9j5emGU2Oz4mz6cB+SrUiKFJ+5gv9w8dUTOwuD4oMW9t5MOvvggjc7t5IDdPdu2TR5Z4ccd9aW0QDS4Se50/bTd7ei2AEHs5W05uB/1y/2F0HZ0tfJ7z9HVS5MXvoaOrLUcMenpCJHsiRtpzuiyWuI8wyOZIV7PdcHaRli03mZezJR90non3Gt5vS6Y7f73hU+f2meTum4gtflI3ndP5AuPnscKToxVuv/q2GO2S9sqMtU27oXclEWYWBsSon7lO79dzKO9mOBCjW4VovqAXRscuz5lHP7U7fnm9Aucs7ZhxKnI+36+PEGXnfMaw6B2u9A1Gc3uf8QhxEC/60QN+6gtmb7NMH1ffsZLLkxwwsuoad4RT3iC6qh1iqZbmtsarT8Hg3oct+jWe6GmtLW/NfanAX49yapYjsXMU1Fho+rX7ncNNg966mJMj9ix3IxGhAOtW6GzR3yXHzL+DiLUSv686dselnqMg9Kd/9YRvDoIHGUwaoQd1xVvwqQ3nMmEkuQ9ZTOXgcfrp72VQ9BTT/D1UUma+AmLB4dDNxkvaoLtdXPCovjQ0PW0phEXfMHOvw6J3Yg2gIw9mRnzu+nk91rB/9zkzn+8ATe3LwGjhB79459vi8xcBjCcLL/yQ707LkeOuAZM9xf7C+TfJQ5isJsTxuQvRbL/FBC33c5lyqLodZs0Ii75kWH+RYFqrrgZyTzlNNq7dCcczaCh5dxWe78eSf6fVaQZapiYVL2xfzotfgfiherKbv778/JcNoHt9ZH/kI3d0eT7oddxHdBsLdslmZTZkcX1z6frgK+UGnTzpF+8kVEQeT0Iy+9LhUhL2q6dT8QnGH/9gR+z+lUt9CuWfnygv/hYzy6EAVPaY3ZJq5JwP/gXCpaV/iLdE3/70ZYMJpes2OHcTPnQREhRlx3SwxXhGknMC87DdMXutN4s/pKSyZZ075vRfLx5LEDXoxzqlkvVRu6Ex9UYWsXFk17QOee+qhxpiXbtgqanXiO/Fvx6yujkQX7oHJcvEUw3fyZaZ8+ca+vi4vTfgs90WC/y174apbXukiuMfu392qc7f7bIYcHd50E1kGu5PbyJVu4vsz9TjYFoPiYhsW+goj+2sW/TCBrK4UBb+4qD+5x8fha5mxv59QMOCr2inFmfmCH+45HPPMHIGM2eK996U/eWd+mhlSSn+Ln61YLxSE57zWafi91i640rd9Si89j6+y/Ozo/rLotCkiUnuDBnuP//nk+xN/Hld7/GYESJJcvL50FX/ztzpWPMClIO07EYmyxSm9i7ApZBODB8NN95kJPUl65bp7HiCbbzowx7dLCMjRyt8oWl39Guonq83s1/lX7f3+uQOQ45Mog/qn7uzT20F6+3wYI7+pmXxyr4pIu9Hwn7+U/+1ugQWv4SuPUNFm59/vtqf+n/+y3TIjRMcqnq78J+G83U7KzL+KldygmQ5LPK8mujHP3CCS531W9GHYt2f2FFS+4D1+ZBCf739MVX82h3jgwsQHsplUcQnDSZ/l9pw2ina4o+IAX/tXiYcs+y7+FNvPnPNzaBqPi1xrsvZH/R2RkSi841Zuvgt+ck2Gvi28GBE+l7dOc08CllYv/B+h6duvpQnB7Zp01Dkg6Zv9jvD//E74uhvXHLD6VfIrrSQkXyd6+N+F7XwTldrjHwo9OHn/5rXtc6MyKzcqd8Jd9hodsi0VWSWY+q4I7pKT5VZQq679KFOLUrvpUcMth4Dvjl8BDhmNSHms/4LJu9+W4EQO4hO4a3XB/w4J7L29iRmdu5XH5mfbtAzMV6MCA3qhkEMHPjr04R5xblY8De6Q5jNE/vbOe94evcvEX1E+0Yj65OX0yB+M2jl95f9/CxOYqmH0XQAry/3Oe5fwnyHKHnfyTP4jiWvWjeSfvzVzXhcjutQyyTXxjXdmNAHY+pkGbyu1gELF811F79hAyI2j0Sr0r8l/gwPQYZz5iTnLZ+usNbQ5ultmLv1lhaa9DZgNpwvji9P0RXUyK2BC6uOHHy/Dua/29QAM77Fr/66S39k869fU5DZLHs/yzJ4p/sHntRV4k7jSovQ0g9iTlO/0GgtU17Cbkfou/H6eNIs+QK7eXVY6ss55nmV/POfKF/6PZ/qKytgyX3NzlcrCnqLeHf0ix9venzi2eCN9NNXTH0ch7hxr6foVx/J361t3fkxyA4sz4cEP36n9BlGX8FI6Y7112AsYdT+6W1tcbL6g+DOUCs3TI4wRSXbRkcNLgMHZnSyvPiBcrt/M9NlpnwgOrerU/PLz4V/ugG9kNaA9etJlqkot3h8dGKD7nrNqZgGiPP40Yzgs+2W/H3f37ITX6MP5/tfitdPmbrzUBYKmo+GQ167XYD4azck8C/el3yfoR5XcIrnicqZagXsnAkC4Psks+PQ2fz72mYrSbL0I539txr8/ErZe21kKo/3KhjW6vmOHkISs4uGfMStEklowf+f/xf/02sLXrBjfnE58zRLQ5M/xkxx9bfO3e9UyJWfDkyL9me0+/lJP3/aCWmPJq4nABse35la0KM+vfvah/p03+DVKtkHZRgkM3gG3TOTvx7duC9TDH10uRDz708Ohuv5KP74879+x/x9hhpa+DyzzNZB8/tWj3CRgTI9a0/uj2+jy0r5Pz98+f0VvDK3Yvq5rPigsnMilbl9ILYm/LkTWhbX5atTQuMd7MuZnpxwbxV1sSwySfgoy6oEv3qDqyIoZ+mv0OSlH8KsRY9wdMYhRGahMq07YT6fj9IGfv1H4zBc9EnfPGsorxAxPfmG5VR8DpH8JcIFr/gt1/m1rk2EvmzN/pj5CsYm1h0QIJapiDQWs6E4Vfvf9f/6Bfy86SW0m4U9wyms3OHHj4ybHDIlkTt9NI57Ecj7pRGVlDvU+CKrYb2d18RG6hWNfTbf5cuwK4iipt+4PziKD+fyWv6Lx+nnJyx+FtMHdXAn3XZ71BNMFr/LRNzTuhmF17Znyv476+MYHEH6+R12gPVuKD9jAZNPtzhb9OIwVIOJlutlVhlOvGH+4En/6tPNkLrpWKMC8FM6MfWdtTEliTyCOeELMe6CH484asVfvxJPjtp0i78oIhqEEl2v+rxkdTgbSLqZjCz9upJPl8b++Vf//Ozx+ewSMHPLxlyqG8S8MMPycv9wq79xN1WXk4D6d/rAn7/nu5tOcxNBWva7JV938VB+WgdVYi/QrX/2+Lj0l+QS/CNGGUfd9NpmgPxKkOlm6dfMr+ybIPOKnlR2r4rObbj1//iZDPSDmPgaT/DT05ZqFe4s/bUKPA7ah7lL/E1fs4lgW229pd/7Cvjm0Z9gvWUPLCkbyx3o+S+CZ+IcqHxrHV3I9+Idlv4bcW3r0m0tydvAuMud3/0LEqcZjX/9YHvxr6bj5+T//GNm/0HK5ytCKzQVgsoccU3QdPyokiybD4Pdlv4p34sXA3Zeflz8yQ+ftLiM/qcjBei/HylQzjjBG/dV6+P+U0tSkj5tZhjVJ54MulXgL0sRM835i2bnPfqylsYhM+zwFYzOu5Ok3/eH/TPW56EeIyhwmjDr7Lv6lvCzBOOBW4TscsfdFblqwFY9bpgRerI7D99vi+4NejFbzVE3IN8HCDU4sFeB5nhazWUr2X+aRo6zZcej6iQn9PYazF7n9ambaDjXkN4Kl36Da9PNWGMK2MRYEW+17XVeb3sFRhaZdGfJiTs3mU5h1KlLXPz8xOM8IwyD6Q10Lc1cn9IznOCanHLip3cn3lYe9+CB/BVTkuzMOTKnCjAmM1HDRnd5k04neJzWHX3fDDv+Hrc5hb/rM8AckXs8S8lfhqQ5H5nW6HrA7aMpwisdBEaKqAzGIVczONGmJ1fv+O16J1Pv8l+4RQTDUCHaT9sIZtGXmd0Orj56eO+ga1z9McMfmTuGNR2hPo8rosV+HfAiV00wgb0I6U95PL/X0grS9/pGN9PA+bDb9T3ge2kS88Q9TukTiYhp7ILlINb5NonGGT7Tn8p0nFz5tElWGRj2VmUpAwvNnZKk4HfHgOkrZxfMGhyrZe56TRTDLtz5+SfW8D3f7gTzMuJcuh8FyHmyZdZotGju5NKB/oRmKgOuu9kRbjM8Zbwj6rMs9DFTVyl66Spi3l22yxkO/giqXQdYuBAJja0yCiAMQs10XdL5zvvTQlDdW0kOVb6PWZPYGoQnKhMbBQUaT8tb/5LzrDAf8LYbP7VWo+O++BLntjE5Y+7ZkxVj45Fzc9joA83XteRk3h/RXeXDB/Asig5YOBHTsgM+X7aRg56Z0DAve4QlO7J2Ax9r2aVTfPZ6rwT3EU0REvCWrIx48O5dDx5pllXB3aebHeop/553pA2ZvumldwH27ugQozUVNPZyOkPKpZhYuJjcqQnPjvTQihetpgIj7qZRBfReecw6P0eXXzsdw0Oq2+Ut5VSngtVWsNetgRyr+VHyizCu5O/Lj//l23R6ne7QXq0Xcet21sf9K7Dl5iNVdD7rqOt1nqfryL4VVDbNqz7vBN+XV7X2JFr8XN56U1eaNKufiNgu6pZzrvlGnqpCYGp1euijPooeHJXZYa6BoRuXI4QwrNYeFkOLx2N5cxyQgvuJYW+tx5N2+Gyg+C67prfBp+O0vVEQ0DulU5bm7vxanwsplC0Pz8J7q4+ZMEVy/OFvKpvJWp82xP6HB+T5nEfOfFv15eX50Co5lW5zWWknOXcUlaXFmbjTlZ42MJrPmP095xPit9c1AffPH4lSS3k5WyEx0S58m+xwrDbllETjiJqvnBHXJ694UnF/gc/FeTLrbNX69DgMJqizbtGv96ZoSi/vArydYpGH9qjRqOSWBnOMH8y0UplPZJWKcP8UO7zMGe9Y5xANDrG4YV7NzYC/Dd2Ul/+HHaND0TUenmwIgr8Xzgi7oH6f5BLokE4E6y8WjEdIW/TaNQXT+Wp5i+VBEuA67NmxU42YM+yk4HpVQg5Rh2KqraSNlLy2I9GLXVMOlYcwUlZyQFxLnIMf/knyudLY0VQefIz2KpZP/unJ1GzT6eNoLoNNN68vUaMI6ZOgL4tvpDZhKguBj3+6eweXry7MRumHD7K0jtCmUC5Mg/XbHVt3K8BiJLDTZ5LKEQ44QtWl0sk5XA3uvFNvF3hv+ogE5d9cdvW214DLj57o8rcJ5lPZJHCpxJYOwTTwvtZuIsDp4+LZDKtuiS8bTr7/ZAdvK5fjLTd8QF+ybBeaso49b6UtB8YcsOOhZWgug00B+LHsDrxvLvGY7YtW5odbzpR1g2IaodBEdT+/mdF+CGryzm3QYy+GzIkPBHHx6xtgOORLJ1tuY75TDAk2+UVh5tdNyvfAiQCdO2nMHlYXnWdbpwb0cW506tgRjRd01pActCtcSqURbGqQQ8guzGRYby9xp+DFEid1yNxz6cYT6Bxg310MotK2QaOXsAh5vfbCmwU/ZjdBM/w+8+ERdVSGFO+1uDHJWbtv4zYaz4Y8lOs30d4pjbkmZ3d5V6xDyhe8m+39fpaeZn5hfwEAGEDnv/icHh65ISeLBzZuhqQclVDTwCMtIY5Q12WvOpcTTNFeIPbgK66wiXsDOUVwZEv94v0sXimMkLTETQ5yzI67VQWReapZ2Juoq/RVnUhed3GJ2byarg+X163trYmJF955xzbRo0H12WzpO7qeY47NnQFvrAh4nGa5o794iA6VjzcbvuOTvrVPsOA13QTmQ582530GA0gncozq8zIo766AfpoFpqwmLdjldVfvF7z793v9wzBPkOivnHZKUpWzbQgCyoJLShLxMMfcvL1F+R4LiNllUrjT5tKOgD72jR0ypgb8bW5CMMb9H/M+rygYrT+6QthNCub06pmP1WESoYuiiGhCNOpMOeeAAhBSomy8oZweUqahJH3ZzAtLsZvVv4cE626bMbLwHU4fIoY9PVzojlOlW+qDDdZN4QyfaiGYHvLZR9e4/mN/x1uqc1neKr96QEE9e2jXVPEIZCcfmS7tcUx//MS5nXMspOtN+fVP+wiVviQS7e/zV46nZQXXkItfzGt7KumOf7W9UTpXctA2Uvm947yWH1r2wkWqZTHHaNbgIIgJcbGvxfx52Yvo+tInomPT5WM+Ugfdn2hHP7Jkd4Nl2DM0s+jhTXt+o+GhcQGs8qEznI/Zv/qElu+J7b7zeA4rVZSLnQfkWJ3bbrzfyQzy5eZj9s0+waTtpgy65uiT5+Fdu1zvTw7any5PdozivqyO07mVt9HIGbkeLuX0mWkEOiQThvDOS3qL/+7wpTFiHoZ3Od/8fYteWFry189c3ndKArfRVX7PX58q60SR1h58Ym/ulT6/rOGCjDc54+3U6TqnL7+Xo6IRKDrfzXi3decGHbPPijj7/FCO2UZx4Iffp8d75ssorQ28ulVNXOXzLdkygRJt45dFnF6d+BRTyUc/fFv4lv6rV5BIroHLOgjLQXq+ABXfxGBPWyA6W+IRvUgVMv80TCW78hTQUc8jZmx8m0+dSiUYjM2B4ZukuZONDCx9XyvGVA/zeKbXxoFPSB5LPdij8WGuC1j4KR7V8s/dTptIgeGQPf7h6WReHxqgOtGJsVmmECl47EG3jgLOqzh1J3mbSOhpkQa/xVpzedzwSJaC6ETcervTvy/x7v34Od5vdkXwVXF1AbWCkqmCKfB5wSO0TXYMr0vzFk9++mmhEN8V+eXftBqO9v7btR3R/ma/HFQXmZKTSTmzn5ofC3gtU2QnbkFTGAw+3v3Bh0Q0bbLwU86RYYcgry97hvXtPpiLtzfDM8+AORE7oPH5eAD0aP/A+dEmwXikzR20F1/R3apOOv5WHxvIw/uZBfLaD2bVaZr9gp8M/wlJMNabvAKfvG7suJZNd3ftXIzOoVLhrN2tOuamfg3rk/tm6qHPY15G22VqUXuglf92XP5eNQVsibljOHbd5XNWSMhNY+bE8R59H1KjQJLcPXZJTror2IawgV11W/TBSgpmeV+t/uHx39F7uDzvsYkWPUKsWrfQwv9H0M1lidY36vV53/YZNNsuIY5HS53Nk3eHPZ0aQi7Vu+tT+9hLS36RdN6ZaNzGy5SHT6hR28+UuI3EagNHWqrEND8GGm+5d0IiX/0RT/2EfJxnjoHnbGLObe2iHWnzWeYUMqLBRnE31iH20C8esVzJfPjh+W3KG7rNaykehnZjwEEMDOL0noAWvJEk/TQKzGFZUc4//dTVY8vs63SMx7CUM+kvdD+Unb9mKagn14aHjiwqnJ4aF7T9PZTutU3IA4IxXvRNDabUlkTXpRJN93B7gQW/mN3hSGe3yz2BWQsoRd/35DbVYS+i/VmbiN4XeTcaQ4pB+95X5KefOVYvlSzi7kzM/ekdTLzpTyAKw5OY+7iN2fZ4jIC+m5EdtPW6o0m/M6Adp5jK28D6h5eof6Z/zCPNo+SH2pOgaO07uy76e+ylIYNEf+ZEd7YamkscKWCyFjFj8gw0C5piouYjVswjPiuHJR/hp0+XeAsmpzon8jo1GvIIOr+jo6XawF6HEo/qvdG5ztQ7qPMQE0uWmo5Jz+oC5/fSFKtfgz69BTv6F0+Kv70jPoFko+rq34jL1woXHOE1oqLLFXbclmE8n59PT1r0Hp3oq0SjYPQraU+tC+XxZHRbY/Mq9r94DW/3vGwvohuh+K1dcbc7fRGTnv0FtY61Iw73pXKY4D3DpoyALfHqfotsQ+F8nzZ4u+DDHG1Rhd5tbFLx4J5LtprJCV5Y1PC+OjulIO/7Fcx4cyQ/PNz89My7myi9Lni1Oz/OGQiigNmf3bUu9525kEdkasSqWczHcdWs0O3t3slyv/lsjIEA/d4+kgNLRPdb+U8KAkMFOU6gx3PYPxtkvNGbGO72pE9vcWrA/84dMwxpivtn/u7BOOZXlrhCXs67FdXQA7oady8WuJS3rgl/QXRj3vitYvrT+8XfaBPlEQ2IvdWHAEW/b5b4O/JZUytbNsLxQBwdE3dyvgikn7/h0Wgft9NWFMDJxJy5X6NwR8s2EpnDcCe66/aINk8/la17HC/6vOk4c5eRsfKjZ8R3riVffbSTbEpN+Y/vz/VX8eSfv7LDqub+qw/3Jynx5pp99XHFV4bUWuGHTmJW8/l539bg4u+dHTLJjJl/3RWoIM5Iw9v+VE4PxalguiU+0xER4yZvojtcnHeI5ae85ZMmXzRpuHz37Khhlc+T2Bo/fYLbBV9m99JowLPrkQrC1QxYen5J6MffpYXPLvhcwxL/TBOik767Ng8AJlkuUUZklIufpCEbRy05HB+sZKbXiL/4Ygs/WU65ZbastZbPbNEBvd8GLqDrZ/UkB1VWu03eRBHgx55SrtSiXgtWW4M6qxbR8fxCdD88l3pTAH3T0XD7fAARxW/lStzddEejOHZ3BK3nsGDh6+NxP9z3TL30TGXKjOjp6wCMZb4m6hZNiE+HA8D0yDF5L37EdNx+exiKWl5aLK07HMVohdJNxYjDBK+sQDpeUBvQHV6ZoxjXu72bwb3elD89h1iTtxm8upPPnGq0kbD/cF9ed0eP4d4a3PGWBpoEaYYxd8Mz/1rHzofr53Qkl41Vcub/dbO0fkYXYr1FjfPJWnvolaoFc7/kow/3i2eikgUW+fljnW0+WxBjNcdXsS70IXCo/cN/LLB3H/C5GVvwutAlNtqc0fh9rcOfv4OrT1ij3/fIlB+cqHm21mngGSuw8otFNMV68C2szndZsugFr8x3EFBeZRXqpWLC46e+duOKxhWcbVBYrMy0nG8n+w61//Lxj8+N31tXwShvfXJ8Knk3+WEsQvPxTowgW3aH1HuMkmnqgG/Wx3cn5+NQCGCTMt/scSl00iSCHRk1Ubuq4vyW9PiHX8S9OqugyxTSguvVycLnV4s+fl1g85iAGD8/j3fPAo2Qtsz9IuTOxWelIb9N1nTKr5E7VaRP0RK/9AraSR+Re25B948pO4T7Mh7jtvDkalwFxLlksT7qe3cFLwXWdMXpi89wiEYoenKh34WPDf5pf0fX9Ppkuvy14yE4uA3SWl4vvx+7c/OMUiD9OqffQNiVLGONCX/5keBZdhyXl0QU0C8fv5p05RyrSS0ddvXITEHYxiOAVKPFb2LWy7b59v6gNZztlUKI8QJeqyfdgdt729Ptkn/8pYwRbKqpwlt2DvTPZV94MnZmjNEqHPg0DEMo6b6bEve838azDaUC37S2fv5JTAOzTZFzk7fs8XTNsv/QNIT4cXmw83L/hoeiVaClj5As/oc7fhouwPfUGcS8kMXm24y9fJvKBrOvcA5m/nkI//LjNhKC9miZuitom/XiL6ndxnmXIlgFZeRvf3iV8zkzU/BU5jGSKEHZ//ilUSQq3qfauhtr7SaBfK41cgy6uWtgdzIhv5lvvC7QHIy15Blg/9GQkMUv531np7AfYoXoyom6Y6DwCsRNm5O/Q5Tr/OePolkI6B7Sa9z+/Nt93/ckNOcvH3vWZJCIhk0821tajs7ZhAWfsbglT5131nWEpV9Afv5Ue75JPfqE+4E+Uu1V9oSpAjyMd4wlXW91tpPjGvpU2C7+2ToeLS0HmEobM+W11srxOl8yMLXqvviV+3I0wzJF6sxiLPrdOxgXP1KO8lWxXK8fDC97N//z++xN+XVnKV2NyKSngPmxpQZT8mw1uLZsoBufKMsr9GdbFCQs0PvC1/por3poqUeMJK5YzsawLDJDxzUjfWwGm2eY9ZKpisY/P+v7kiUKqP0gyuWvHcyRWAmICHXOvMkJgs3z8VhB4xaXxX8j8VjZpQ2V4zMs/ZFZ71tFFH76iG69C+54tz4C0A/rsdSrZzQNLZg/fUX+QM87LkXchMunk/D6vD6V03hoQ7hHaUBXUvrgc6cfehC9+kqs4dihmi8zZ6DFDrMUt4onp397AK2YYoGNU8DP6UZBey1+EE9BGlr0awrL82KqVkqxIG+0VA4O6QdL+/zd8a07t+gt8BDL2UDQ/JaPPbh3/77UZ5PPQy1GiBBRZpp+UrppXXmtdPl8JfbTD7OUHAr43R+DXFR3jFZdD6gp1ou/HHcjT/c9sneuw6z7nemDk2ce/PnL/DPByePqutsp8AnSI52Yu0NDUnoZWvwAKkVSi6bFb4DcM2W6D7Khm9/SKZVr/+mTePGXJnl7keC5er+IptdOOTfNK5U+1/xAJ/uTBVyHdQvbrWmRP7Eau/nPlnyU0cuBhUt/4dffQln20JapEmY50fPJkOtTFOK9hlXEaZKn0HzwibjfMdQ/0ebrgIkuO4rGq6tP+/qSoMxvHdxnet9Ned+mcL7FHtHSv0PMTS+T0Gp7lH9+gdtft8srIFwnTPs7l93YsyyD/vSX0g8uJn26u2MonyfNY6rYdcuRK2Igsr9ObHmefHfZtx788NvMGe6W62vQmD91drl21G3dIj0haKXFXyp23XR3xRA2Fa8ofI6nYFqnrQPa69DStlAoot/LcwXejsZ0NDahu/XuZS8vfJy5d1uJ536SI5RybP3zlyZeqjOkd/xi7gtXbitoigHScTqRpG7UeJO/cxuOjFyZZZ0b95ePUPq4WhZdZcHkx8Id+V/zxvBb/er9M9E9WbZOlByDbCinJu0l9PNTrzejienPj3gJgFmy6J+5KWD163/h7TpXuLDbuwUqlPxBjp33DXqdfxPUBv2O6ONxU0476QqwTY4xOwtmyJsZ4RUKz/GZGdfs+8+fllecX4m29Bt4imkrvQT4DwAAAP//pJ3JtrIwFoUfyIF0kjCkE2kTBEWcgSICItIkQJ6+FvevYc1q6Fp3XSUk5+z9nSQHYX3dVcZPl6tV+drFm6LgGuQrEt87hc+sF0ZWhuLlLX4L+KwODdatxKxF/QgRsO9ZhFgldgOzcObC7941MbLAM2cqksY/v45R4Hb5fDrmCF6WUEbgdXe2+A0aqJwUHWvS9c1WRqcGsPLmbDxMy7mNxyv+4WSgv/rNIooNkamkYoxfPInnlR8f0JdS+i8+rVyitXBpPyvaGc4xXp/hjwOjXC5Isa/lVo99d8pfPcKW3IfHMghlYM7+AVvO1LGNb15gTc8nanwUf2CpXRHlL//bvRR60+NZ6coW71EbPiu2fCdPgs5k38lu4y3cVt+E1plK2KKfMV/eIn386YutnrzfGrexSGnckGJfW3PQqcV1Bs7ETbiwMrLVT5EEV0G+4sA6y8YaxPsImsv3TQBi53yrR0ugjUUZvaJrNqxCEFhQ4hN+a5Qcg2WAfgJ50TGwJx5NtiyiFyrb+GDtfZW9+T0YPbzN4oXUdSoO5BylPrh9nJSwajT++M6mX7oHPjpyMYyZ9lShaYsa9fee4M2GEI0QjkqGTzOmbPUupQ6fR1Elh/hq1+tIffsfD0HV926s5yhEf34D+5p1YvxHUFP4Dl4fqm58e4JO8ZAl/sJj83hMcvEvf1e8rWKNzyrwOwzC1mfaXf/Vo1Y++rZ/fB71N65lm152oZRTnlo0O+XsdtMI1NwB/3vfi3U96//XlgL4v7cUnLCoou8HX4156NQZZkOKaRpXZk5Ak0rg3TVHevf00BO+zn0HuVnw6ZGHYk2it/WAV+3woyrU5Hht4TGDU9ef0SI3gbGY9ZDIrx8HsNcUIKZPMVsBl3E6PvcXZ1jl43WFn8hzCWTnZZiU3zjD+8k6UPXt3gHtjWsBTJLyWE+qzltPO6bCr1gQavPqG3TK5atCvuWu2NxnurckUaWD5014UXf9CsZ84R0EhXPkELF6xWDNpoVAURIWHHDNB7DzELrK9vyEZeRdz13wneEU9D42nFs9zGXztiE43ReqKc9o+FlB1sJ6sFeshnISr2k5Iai1uzease3Fv2fwisCCrhDx58dcL4lhFhCfpYIIlZsYSyt8EFRnmFLUJLIxn05yBire/uHjcJXrdfWXBnqlnqD1ZXLeKHFeBm9qz7BXaKU3jfd3BGl168nKOT8w8j8M4efkHLEXPUYwIbcMFePMRTj/9tYw+91zBwrGrTR4tD1beeMD5f6Z1PgUXt45g2csAR1wNrbXsKzX8TGncLrMEhEOmlATZVeVsNyNFb0dEi6n9/cQQRPXN0IS7xSL12eVwWMXpdgqYjmmfrMTAGx0D+cvSD2WB3WrKON0pba/GjlT4vICpdU2aBrlDpvLq9EAuqss8t5XRswfrNkG7+9+h2TjJ+S/Vpj8w/BLBLJ+hsVbM/dRQO+on6lZFTNbhVAuQOCrHdZG61KTujEFcDtaT3xsezee+O0UUjQajOqSehzGoDUlOOJDiN13KHnjuwoteDeCkjC1Og+rUL1NqBXDE6235DEQR04lkF+GASmBJg5smvwOPMnepTYe7JpluyOE4eczYb+VftvFw6kPoBZfCEFPyhYBwA566bnGWkGFfJluoa8EWbz/N96CtZBKFn+5TtY8kPJf2WsXWEjRA6NFeOR8+8UdTF5WTLrZw2AN1F6CjauGGIeNNMz877SDhPd5it8n3VuEoL5Anh8UjMrVzAVd8RDYkTOH/Z4ehzl2bAjfzvhFIsQHtkzHd6OMNbqTuZOWeOJf590ev5OAnrwXNqZqO7UnjFGAnTdS48W4BCv4vJsDtZ6JNswvqeSUh76TqFYOhjddOnmGc3plNJByrZ5iP7TgAx8LbITr1RNAE8qKo/FPHL1Mzhir8P2A+f10pa4UQja40q6C+ndHsanD0uuSt1bBiEtEsge7Kp4Py5oodwOXRHY+hrdkKdvBAxsr/NzeT1tOYaHgs1wgUQlCY57wq4HSK/eoe7jdcgZ+iwmFnYK29ZbV5ZzlOixT28Y3+UnA4mq8DLeTANgAqKtX5pYVrPPJwKZJBm98SaWgnJa8JHCNQbx8JCGC18dhIsttzxvd6SJWUA8FE8E59fN1zF677eIiTO39XAHWC2EEE8+XaUBpPKwXZa6UQgof1J3gkS1CMCQwmpBH1csSGcvgGqPyWfQO8b8ag99PK0e4B48XPjmN6k2jdNVBXnI2ff1+yGNJfr9A9V39sDpYVr4uSr6DI1kJ1pV1zsnDNlKgJDbAx7vbGXN60C1F358ybEtTztZdfowg08qFBnIyD+P9GxcKla0H1eeIGGt16m0IL9sWhS1ezflZJ+DCTI1e0u2KE0H6lH/jSaP60Hpz0wMLTndUkf1ivuppZ+EKvJTxQs+p4tVsDdURJskSIqDUM6gx3KdQPt87AkS591ZVmzIQKN8TGcpFi4X7vrvA5bezqZU9dsPyNnMV+ueGx250wt76ou9ScZPJpC4KWU6Da9eD26XysTZtW5pslHbwXZ51ilZHz+f1KslQsJUjPs7utguXrwhcpiCjprZzAL84VQFybdeTRVO23lwBEGBwUyeMq8MI1mUStl3VnxFv7b68afs94hDND3oNPhcwXJEvQPg4p9hIy7Ge5yzWFb/bGguczMSbTmCQgaLHW0m7s2LxMOouzGQs0sB8DTWD3GTDsEpyeqqfvUGEp9jAN2fnOBBeHGCUpz3Q6TAg+B2LnN3aYybXtHngE2icnP1uVxf2R61E02AasSBLYQPn9MaIGAfWsJTWaALps2//noetnFCu0G9iAVXT3a7ZEp1nZdYCm1oHLanXOLBWqJGTj530TuJuSCIbTne/wm5KRm/ZWbgEWCokaofJ3djejw6vrj9iOzXn4U9PwD78CtRfY5Cv3QXpct9dOjI7fsEmt9ZNuBbsgDE+dB4NXQ9C3TltjZJuxrBEeRvKdrXfk91wfxvzNzpH8jQcaoyPzteYlQvVgZTt3/TveUjbJzPMz9kdGyVqvCVPegmu1S8mAqmfbD6ErQvfz0bFyXkh+YgJlYF4rX9IyNoyZt98H8Gp8b845Tkhnn2n8hXCI367+DH3hv10gDA4OE+64XmDDRHQ4YGRih5FIzIW3TmPQPzddfKDR5XN3yVQYZh9O+xpRwSWe9+3B7YPBLQTuLVmGIqZvOUb6t2NH5hvgSP8N55akzrMCs8QbGXZxZ43DvUUNosEG3YesSmOfb0k2676OexFJJbnHatq9dvAg7of6NEhd285gUGCZGYetvvK8dZdX3GwaHKDOuXpCFZ/CUKwfSaEn1KPPR2nABW2X9has8MwTVuTeUWKB9ToUDXYS7dkyKHfB//po4lUZgjXfpdQQ62WYU1SHUHrF7Y4cXAVr9ZrL8vj2ttkId4nXtO4tJTbdmq+zsh76OXtVKIdhjuMh0YxlqVLEJSw8qA4u5Vsbi/9BUbcRcRBojTevJ5PGeSkt03dz4mxpVsNU/k63hv7T1zH7FQqELw++ZlqV4uy3o/OFTyK5ETxWqgGf2S2DMUouqHlF1BvcmeMYOIhGa0VwExQq0MDLszS8ClbYDw9I3sFrpFDim19rPvC+IXwKb9LfHS3Xo3a/hJC+D0/EX9DIF7drg/h8XEEWNtjJZ/v10aQzt85xpfH2BrL/qN3ip7WKmk3fSgIz33zT+/ZJ+VssPkYRPCnzirhOPaJpz/9mGqDRpGqTPV6NocVOM/7Sk+jMtYrjPoQ1GabUsMOHWPOhEWFP/9ypffzuuTrQf51kO2xsN3C5Q8szOUGekMzYHw4LMOMjqqlYOkh0biIxG3jqBNB6DQ3alxnL5/0JOHkL5BT7G3xerFGdIFn+tpac7c0n6/neqc8ineAT5E1eqvkhxeFegumDjyWoN05RSfXcvOm6m8r8ZBPnkGj2ynY9W4TYF/Fe8Dnq86x8dHTerVR2G8lqISId86oRTz90LZlKcN2edDrRRKzCqqfTKeIRFbNRenLFcOT/MX6r/LBlv9bkLzMGNvvSfTmY+HZIPuWArVIrbA+Vp0etq94h8AFiWx5sGML7x94o751hIwlHliBfOUjbNfrl23rIwKnnRtgzZB4Noav86gsCBo04Icyn8LYi8Dl4tc0fLamwWFCJbgzHzZKD8NqMPjtVGBTMhKw797DwrF7D4+PEyBNhKaYukqp/+kXus1vYw2exxbajh1hlc+e8fynP47mPiSccwf55yL/MrDpf2q12sLoPQpGIIxhQGOAti1ayogAA2lMtnxZL0dyy8AW7zZ/lGz6fGhBvZ4LfDpOZs454TMDR3rfenVnX7Zksm3D7mAEOFCshQ0nMw7/6Y3jcj7l1CFuIR9T4UdEpym9+YGWHlbe2aInvX8adDd7KoQ+/8M2zyX5TAKrhJt+Rmx/kMCQ1jAB4GXXZN/O3ea3fi7s0OeO7fv+NbAvkm2grzuOHuP+M6z9O6uAN7QDmee2YyPiqwLcbqzAdsUtw2q28gOuyu9GtfjSsNWUftbf+sZ2XDX54p3jAoJTvhBl7e4GawxhhOaJy+nRlpt6enNKJhcB16FK1LHHyj2/QgV6Jpnv1M6X91eKYFO2A7VzSzaW3cFNgJ22Gokfty4e39FaQnvv5thJvnVO3AT0MJ2rF93iR77YqdUpo3wzkWC93saiwsCGhyZiaOx6DsxckUuwZHZAjZ/oDszw0ANG5avAm98Bq/EzSnDlTEzeR66ql+mWIqhI54Ha359Rb/FMgvVe9bC3zS+2l0UTiG7dULVMPvE6zJIpO6h10To8AaBXetdBA1pKxKvyZbMwdNutYq2J8cMZ2Pzpev3P31DfsU1vcURnhXe8C/AWj8EqoneqhMVLI9v6Ad3f86fQ5LDT/RYwoqNtgbi/qdjQv3osxka4KpFl9KR/jlW+/uq6hf3zUqNx6gavjo1wBklvpYQjRuP98zedJT3xg8O2MVKXf8CL/5zRvA+O9fK9dhnkptogyqPtwXj0H9WBuw89VblnMyzPSJ0P3Mz52N79uriFURWBS91Fmz9514zvtPDf71HX940tGV/08qEJGXapyAG225cNTHQgkkPt0Jz9WnkEb+3eoOnZvL3xdSQ6oAI2ENwJDVua/cyB+zTEBI7vsP57X/CF7ycyP16/ej73wQqdcgTow0NxWG+mW8F1Peo4uEhxztRWJXDjB9QVijNjB5ffQWR/fYo/65ozIAgITkHnIxmFcf5P/73vdkKv36UBTH8hF07Hq7PpJ/uPF4Sw3hpHaaky1DO3L01lL+o8VsUX8dbXc5Ugnwsh9WzWxt/xSS246UkinGL+r7GcpPzW5IUE3/6COVtPFYz565E6l2od2OHRtPD3TTLqtfVozM/hcoHzunzpKbxo8WKItaq0suRSr+C5ehirsIXrC56pgw4eePdTB6F4ff+otq/qfJ7tMQNBXtyQ0Gpntqx3Wwcu31TUv9R8vQ64lqHjkoUGfmB4PL/YrSzOb4JdjZzi9XAzU/gqOIF6d7GIB78ROOiezlf0+6qD8S+fXdaXjJaqjQzy7QICpIpcqJ0575xp75sPciu90OjcnJnY+T8L1o6qb34orLf1kcKLenPJHq43Y5bR05KbWc1ockzbYTl5WgnTLsip/lZVsPEnHwq7PcI6XlswY/KV4ciDjKxdk9TT91pmcLT9C9Zt+mJrLk0rdE/xFfFAarxVPbs7oHbDhZABv/KV3T6ddOzClBa/yxwv6cg6sFtaheouF9Zr/44qeAzCGBf7Uo1ZdEsLkCyBid9BmuaMgyqEf/ksKoWXQf78VZPyEjbeHgQkRUIL/XPLI+F1noflEPMhOIu+TtG3Ouas898mXH1Tor5oB7kwvJwC3vtUo6HW/byh+DQ28HXHwvrR6z3W3QmCeVebWH2liI3FfSJ/fAcb5n2Kl2R5rocRg/Cf31lN6W1B1h097MtaBFacDgUowJtg9OIm0N8VLMFLe2iwFiWonk+nNVOUT9sTpXxaA2fSZYU7EnOojLQQrHtZzZTvfDHIbL5Rvd4VLMMiEDok+1czFtI15uA5vTSId8jBI+NjzqAf0BxrN61gf/5U4X7HOzW5ch9vfMj601M4Ph9wvRp+KYDNb1Oz+PLGP3/zl19VtY/A/KZXBK8lO2GVKJVB/vSnca8R1W6eWotraI9w70gqvm35UjxLzwiuNFVpcTdHMMr0F8HZqTyqmyYeBGKeEHjMvx3V9w34N75gm9/0eI39fH6x/UXeeB3e/v8wVjt5hvjqzWhe3yIbr3XWAOP+RvTI24YnHnutUa6FecQ5fAjxfN0rEeDuv55uvMOYhny9wOg5PxBFa1Cv9+JhA644Xbb1asTL+zuH4CCLAdn/6eHTDqjA1z2LULDT82m8b79/84/2fb8f6B//2NYr2n9Fw1gvoyOBP96kDnIGyDDPlvKXL213WuM1v8s6nEEPsJGIH0DABVxgOxQ5dcwIGyt8fTOoujtEj2O8GH3ywQnYfz8WNpXrOf8khl/A86B9sCWcrzkjPWjl42PUMSbfJl+9NyVwPQ2Iau1za26w6ZfzTt5RbcuvrPt5Kyxtckfjy123W0Wendyn8oHai2N5wksLffj7XjLsLbvnMNfwR6D/1htqK1UADg+99qElkStW59YGK1gSFZ68e4LdmR9iMu8nFYz5s8WW9dKM2cpX8/DLV5Me+7fl8XnSy6A529vNNDmsl43vgjXGDWIZ0WpOv5a2ErSPB35t+WGLLxLU1OyE9uOd5pt/5MDv9f1SzepEj6RrLsBIQiH1FYkME3g7M8T3b4bi3QkZ9JuLIXT75klNZ3znS/osLFjfznfqX98D+0lfCOEi4Rf+W6/vP9499uCKHvLeMdZySh/Q5duK7LmTxWYpEhHgD+8EqyD5/VePb36W8OpxradJ8HbwpnaMbvnIWE6P2Qaat3uQ2TvjoTk/7R56MX+gp8HT6pXG4ypvfJT6bzke5luGoOxw7YVaP2ka+h1SXbjpjX9/z873XwU7S36S597T6z7kkQu75XLGnt/rBnsPgvnHG6k/1LIxX+fbCBquMBFDesz+8qvciFNCaudW10xXsxSkHc7Jfiod9ueP4WWPvkRqhynvp0NuyVs+RfwJIm+mrlKA5yN0qF9rxFuv9tjBb+O06InxOMx/+vyvHvL6irVHoemukNaljpP768h4ydEQHIpkocHHFthyd4oMVEnskeqWwGFwAG7g60Q8Iku1DoRH05qy+hwwdhvnWS9XKUxAv3/GW7xrYhLp2QjKZc9TZOxFTzSzUYfiXBMy7Lt3vRbGOwJyyd8IJ/Wa96++8NCh9E//L3/xQJ3M3cY7HI8Jq5IAeGkfaNwzZegPJyKAja//+XWw7OOLCoNeskgs3IWBXWFhA9OPjtQc1Af408NQSVxAneCkGcubU1IAeLJDW73EW5q9JIC9qPKksukedEvqQHikuUH28WwA4Y8fJKfbG1vx3sh5S4EQ/OPH38fXW5/VU4ff9BNSPf5V9dhDtVBMvn7/6TvWVeGvAHal7Kn+dLYjT+lG0hqvpX96gt/0IDBvkUtt/6XEW/7cgVG+mtTbvU/GJCXoIh+EPYeiaz7Vs2AbtkJvtw8S5lc/jLn2ccHGqzHOvWtOcJ9ZYNOnWJObyVu99u7Da2EdqXecXx576UgGjzZS6anJy6FctsYuOTqGFAlcNMxNz0w4VL5H3Z3/i9nv2Jbw8zvzWDOFMR9NNDXyOTTe9PS9fNjyVz9oRk/FAcZ+vbjcPAJ+zQbUjh1hvVim6oH30ze973aWwQUiq/75FatbYk+80rsKodPeqBv6qifK9tZYIZwMJDhYz/ueaS5A5sQ2/bJnq8eKBO5OU4b1z3D2FvEwtHLR3A2iNJcqnxFfPf78G9U3PsxA6hZQvCsxNXExGqNH0xIGWNb+6n3G+Lo9ur/4T8A23qKuZhnkkiyllvG4g8lOrR5mKnxQHD+fbNM/Jdz0Cgpr3NfzAx06+MdXgyLl61l+yj1cPmVBo02f/fFeJVZ6m3TEKti48QO4xXciH263eJSfawf6ywtjf+o8Y9FzNVHMYm9Rv2F3Y8pNLlK2+YlN6ycb07Ze5bIeC5p7o1fzjO8JgPumxMibSE1O4W+EhsUF1Pyh1WN7f5oBbZcLWZ5dDljlHiKoj+mdHBRxGJY/fXxwQoKP6jGqZ83Oe/j+Kjt8YsKZ9RvPVYb74URVx9+BX8YnPfTdh4NDugj1Ip9H/9/6XpTnWrObUxEo3chWXprOMRHCtYCVfl/JW+Q8Nu9YZcMnUVyq+Y3Butlusr/1jPEbJMP0V8/0u6mkxsG5sb96q2Lpo0/vemkac+rOq7LxM+oU3t2YPfjsQHuYVqq+UgKmvLUf0KX6CePClMG4X+4m8MLmSw3/1IDGcr0Ctn6j4HyrF3erqYf/+PHLUXVGzcNrhsS63tD6VlU2ezSt4J++fT4bzZuZtiBYgJpgK2vVmC7RfYVbfZG6d94alo1PgnMsy3irB9bz5TN0ysaXsKPdf8Nyh3cEVBSU2ErftJ5vILehM/JveuJf0jCuph7BbMgwdmqHxkSlAvnjGzS4LemwxbMebPU0tIT2vZ7dXTvCe4EbbHcXztjm23iYr9YbzTED9Zx99Ayu1RCj3XDXDIG5ZQm8S6FSlHjffHbCawZD46EgJXsfAK1A3APX1A2K+Ck15v1yt4CFoje1yb1hc7jY//QRDgbpBtZDB3SYWuZAi3DbMvV17vCPbxLZuwXsZReN/H9tKVD+95YCye/PiLPrJCeXV6EfBG/wqX20o3i97aEPzZzpFDuFPCwmeZkHXttOJbNAZKvAldZ2HAdgM6Q8my9Vbh8Kr8VU+3gvgziJKsH1UbrYOr3gQKPyx8nxdOFwIDmdNwVVVSn8s/lSlJOKTSa5mdAbJURf2RsDRvyhAZEo9UhWzRSwYE1c4NylhOxiT84HZdl67XiRhz372AwLxeV4IJrT4aCc/ZqzlMGCYwdHrH0EPp8MQ45kCg2ITU416rkqxAieA/VK1VL3jcXknAssfHHrNRxAb3lkXgIytNtKPGWez33FWuX2lDKcx3LGqMC0Cu7fhoUOT76Pe3BqMxjvb1+kGKPmLalTqHJePb/YD+U+JmMlJHA8f0+EikcUi32j23CnLnusH1I3Fp+n6wV6n+pHpJQH3tgpmQ6l+npGwiEKPcYFnQ6/4JtQQ2t+YAadximGfnhjU+4TRhdcPyBr+zdW2/GV0/1e06GXIp3a/P1eTwdwe8hVxfGop+4DrBViPTxZUoFxotXGrF+1EZaX2kEiLu2YOZfqAhcu/dLomM/xaF1fCBaHjqPBSXMZ/1EECb40PcMn93rM2UscMyC/egenM0rqxfUXWbkP75K6j30Zr+nnOUPrmFX0+ARmvZBVv8BS3JVkxOnOWG5axIFauDY02BfnehLLupQfTKkJ9149j7g1zmA6EoVaNxHUS/wRJSjPqY3PmiXmoyYOiXy7RipW823X0Dj/VEgAbKj3WgNv6uJvA21N5QmfybbHJrPM4BW3BM27owzaV/K7wAXBB/bhYDJyXg7hgdWKTXhHXMFKS1kCwV6yaCjSy7C0xs+HE38UsAXjsa68u72CqytX2AqFVzzvlPWhNF1lkdrPIJjYtXvA5y+fsNXPbiy4VqhDh0WUnlR2yKdrfghhtNYS+l4rLed092IDf9y32NZPVzCF4SmEsQOeiJv3J2/l2rWHCx0zosAfB2aS6I0SBacJo+mz5ozQwIdFwYvUj80Z0Pzw5aCSmj7Gpf9is76WqiKlxEBNdHjES7q85T05nD2q0pr3vm2hZ4pshw0C0w/WU9lLHQxq4YoDHPQ5faduB6OiPNNwd8zY6naHDu5cTqHHBmoevf/eDzDUVYWdsDgB4UPPgrKNHw67g8ZYC8pRQWdZpsE71wGj2k6VV16qUTAsNngewK2AWXcNkXxezZhNj0uh7KRDhTWJNgbJmIEAVR4lPpPJM6avN2Zwp7I92hmuGfPT69wodq11NJBjNNA4lCBs5OqA1Yt7YH2w6yNgT2aLz4OW5iuV2h080nhBfNhUxjxJDYIdP01U68SFjb5VrcrKvfbUub0aY4XXmAO3a6jSU0+yfB4/oDhY+uRgFb0cwMbLOVLi6x6Tw2XHDf3HnxHk0GqiF/lowyouCoEiFt4U6S9kzL387SFPPxl1lir2etcKVUW+JAnW7Vk2pufIWVAvZYKRO0z1qDZrC7f5Tk/f6Qnm3EAS7K+Qw2q0F4al/KAMli8O0hPJJm/pnXIH/K/+QWv8dAxqoqpVJMl4Ys3qjHjRBH+FN/8pEHGhApiu+RIpfnS5U/e3vzMW7VQbNm/7TfgnaOoZO1UHHNJW1H05LRuNY8gpB9am1CqzJm94WFYKuocvtOznMqb788IBLn6c6fnjvbx5yo8y1Hf4grHD1wMT67BTPmLyQ1z11HImGacdfBjBB+v8KNar9pBtuAuqhGIlvwwsjLgUtoXRYfd7bePVvPoPiMPpSfaBO8UEfHwCJAwO2M4TdyDz7o5khzQVvTbnHozplCD4pXWD8TXxGeOCUgede3nTgLe9QTh/DQKrndySWGt+bCXxsYAH1qRYFSk3zGeNg6B2YUqPQf0ZGLmdbfjZ7w2KbyWLR+AOFZTy/UDWr7swtnv3BN7Sd4caXbLiv/93iBzhiHVp4oz1GDou1E/llV7ZSanJo46SQ5utKtVGH9RzoXkPOCu1tI2nmrPu7UYgcfcyNuszyGfhcePk70W6kT2bzWHd1U4Ez4sGUfeTwpgtkzYrEV4saixuBpbf/SwAzpws6otOWi+cK8uHbFB/aN8fEFhc/yDB5GwNVLvtP4yZi4+AyEcjSbu7avDL62vCMe+P6G++rK6VqrBSOZ3qXHCK2VXICshuICFgVY/D+hye5d/6IyKEEVjwp89kPz1nVD2cS/YTgnUG16Evsa+nzbAIw9lUnol9pMaXpd6CP1UK5cduJvWclGyM4NLAl/BoaBAhiy182l3AYoKCesbBBGRFtw4aa7qdKhMjMM6gMZUItgLqy4trzE6crzAb9B8+ikU7zM8QXv7yJ1rz6FWvQZJkYBtPnCXKN6ZvuhuhO1svfEznd92lLtdAPXgl1EuXmS21+k6U/rv/IsWT1Jq392YKNM7cYYtvlXj8F2/r6xm/AjeIN/2xxfu3hL2j2RmMvi4XKAD7Su1uCvKVIN2FpQhLbEnfA6A/7+vCRvEjrIL8FLNaaWwQPmsfe1YtxbOVaw/Qwx/bShRyzNJa9CGfYJ367XIYqBqHKXxcegcfJ7usu7neLgbk+ytRbncHrNo+X6HtDJjIj72ai7cc6sDMFx0J9Ft6/+KtN8oIu/sqZ+tRnnbgFd44pDzp7M2XyR7hnAgHsvvi0VsJOF/kVP35+HHo7XjZmlfJ6fCwsSFVaiz6fbaDIa33ZL1tV6GH06eFSm/uyahroGZ7Li4gSd8B9Vb1U5NP04TKl++uWJ/EtzeX7biDRQM7ImPYM9YDwQe/M3uh1X/4bB0yZsPAsG7UUbJjPIePPIPbQSCaXx9fg33bYwv9KLmjQ8yWfLk/rBWG2jPH1mTN9fpdzyP4yzdHgc05uXWqKwtsnmkBT6lHkuoqQSyfeCTexi8bpoM8Q+Wbt+RyznxD5CWTA0+dEKwaqzywyewy0KIR4fCp4XpOmfpQVOz1aDG+FuM/9nYqfH0c8dO5nT3CnEcCBKmA2Lrfv2CIw3kHg9taU3ulrbEqndnC2RQsinbdqZ4X594AYyJPqqWviDF66kJ4FceIorPGwKjoCgfbcNKxvsX/VX46JfiFVU++7BN6ou/DHhqHGdOz8W3B0gRfAUaXV0yWLV4v4fVQQX6XfLZemhJY8/DdwPFYX0l5OKuAG55zpEz1yUC7U794E7mMKvR3mYstXrFyMkjnB1wmQ0NMPcTDv/gQBceJ3OJrAWYyCT2AVhtut27th+lSwhbgytWo6l+NeP31owqEMXexZxwa8C2Pdxleh67E2lib9aaHBVi/+gabrUI8miYSgVN577ctqdqwYCV5HN73fUzdgWcG3fIHSLhKxyb/Yv/0vFIJkU+dNN7Fq6HnBLrdeMC4veuG8OsbFQ63YsYee/FsMONJ+tNXhFTmzxuPOnkc/O1UY3jsLsZ2s9oDAvsG/9ZTzLl5sgNexYdEuUhyvsWrBPw+voB95bVjy/3wseCDz070T/9Mj0aSAY/EB5r8MQPLs0IV9I0PQushdfMl/uwlICP8Ifw5hcaQj78EznIY0qi78gZ77DMLXASUoIMwCcb6xZIFl6+pkkyTV295i3v3L55T9TcBwNb9WoHNn5HJ9pHBUFaZyjY/MCoR3fRSFUHnLifY7CMR/PMLXuEZBOZhmK/oYfdQaB8ORceyr1dLDUPFp92e7LykBvPinJu/8UTZPP68mfPvBVTHXqXBX/zoXmAEHDkV2Dyl8dZIQ1bh/fUkFHPgBIRjqLmgv+446l6YypbhIOnwXkoxzp/n57Bo6prCHg6M7EdzNeZIPG1+63Pa/MknXy8fO4KHb9WiRUZcvI2PCbv9OiDRfI1G693VGWDO5bB73xlg3PQ7BK/pTT0DkWGRi86CYSOtNPTc0uj4y6OD8C5KhGUPvp56QyCw6v0M//PP3I4QKBjqSu3kxYEZRu2ooMCfNv8F2WjzSgrPt19NT1pBh3VmdQeHuqwwtriTUZ/OVQG+iLVbfA29RdFuEUxfaYKtNyriUcO3Asahjqjap5HBWdeXDx+/5IqPT9AMS5vcIeBkL6T+03LYrOnhDi7+2cCeUEZxK5ltBa3x+MZqqY/GAto6gn/5xN0ZQ71oaVvAbFeoiCssKWeHndmAQyMGSMgkyaNtoacQDXGEFm2Z6tH20gb++R+Ebmq+qq6TgaOGA+ydZy5emoAKsLwuO/JOfvd8DV92CYLvUSFQrYZ82ua3bDzOB6rnP7tmbeFmcH3Oe2xYdGSkVx4rCF6uTcRt59iqhGkFKyH0sXnwrGE9HuMW/L0vdYtHPDxcVMg9rIGsuzrI//nji2lw9GhVP4PQoXwo9J1R0hUDFzPH4Waw+Q3CbXpqPe/EGT6DG6An6xcNosC0Ep6+261c/s4ZWLJ7duBu3BWMQ6Hc2iD9BHmL12j3OFjev/Xx8Pg9EqbFAmu5bVESbuMOW6rLPDadWxnCMy6w38UfMB/1tvjLx2jzCzXZ9Bs47lRI8/DceGxeAws8L9Mbu20feuxNdwQ4Bzz/e17h9szaP96Bvri08/VFrinkTy8RHfz1atAmvEAoHEcP5/ZhN8wZ8DoYe4lG/RxYw0RWN/kX71d4t8AcifgC8/DBkdzLiLcU+5GTlXfxofr85oZlOTEV6NmiIM6903p1a5zC13e6U3vTm9t8g4piZCr19ureGzxaRODJv17UVIY4X97KL/3jL0S8jSfA9CSMlG2+E5Yqn3jVTy8dJPFsUtSQR/3nD2Ccdh1iHr4PS5wuKQRn20K75Xz01lcomuDUYokoLFo90h31UmGvCJBoV0/5iNAED9t4obE8WfmfXj386ZWZmCZY7ofJBNwpe1FviJNYzM1nAQ3pOmA3WxW2JL6aws3/Ee5Y3dlyKxYXflNvT73XKQHzH3+wv5Sj6C79htkZsADUT5RjpyjLgY1jkMBzmxF61NSnt/EsW2ZuSxF4wpitVlCsMH0qK4HnjzqwJ/358HlKZTLjfgQr1ioEAjXd0aTMmnhJfDsFL2ruKDJ2RT7TjiXQqIcXdj+vyRvbCEWAzaqMvz3J4mH5vkrgHs8VvobB3Zs/318GFyvRse3G15w+6Q9BV7kfMfrKer7d0H6B2ufKiFb7b8BYVF9gczTp5kfyQXAL3/qnf01PerH5ebC3EqoTU2fzu+xPr6pPicfZhZVsFS+3DN78l4DR42AZPOqnEWz+mPpT0TGi3bAMZIUQfIxIN/zFI4DMNsb25jfajy/5sPv9AFK8961eRmvX/vMb4fb+uNG+2hB+QE8g9/rk83V/KODmPzFOeMVgl6dYQPhNEGnUm8AmlTjNn/8kyllU2OQfTfTH27DBv2s2jx/2kMcyibbfZzPurMEd0Cz9jg1SfvPv6VeU2/WyPboE5B6T+6CqSkjfe2rO+69BgrcBQXcmJ9TboRSzewEk4NN+Ty1X1L3+cnrv5D9/Ys77kyE6lyqB11q1aHq+nMEQrIULn4l7JIdSsIBgqWkIMu6u08CT1GEKVFVWrGNa0aDCEJD7YKvwF/sG2t+F+/CT2COEQ3j0MDaYO8z62qmgUgUdcbpk5WKyu3bK9QGu2CFvoZ6Fx0sA9GLaFItHEs8RPDTg+jhcqZsop5juTDOFaaou9LzxkE543AT4DaoFSWp3HIh4uaXgL9+5kmQPLDevD3njt9gWTMyYeQ9dqEdejfbevvfo6VdUcmFJBk0/qVHPhXAVoJSoPU3gTt/4VKfDlhY+un7bS05iiiTwLXcOxaH3Y9vz6hCbw0DdY2uCBSwpB9F+X5Dn6+PECyRtATsdQuwnxynv7c+yAg08anza4iO7F0wCG++kzrfMvPns9xVsHsWFHq8mYfP3JlWwvLIdWe8M54IWma0M049BVYZPgMNO38t7OS/wKZu2U+LNZ/fnN2l2PiEPKA4e4S71Gmzm8+qtyJpKeMncBimadx7o87eDMlkOLdqXouDVGy+DzfdYITgVHVjhNecO2/slEKc77/MWRRf+8RvOQX4tvl7zRfFC7ok1Bc9geYq/Xr6YGofdeXQ8xk78DD39GFE72HdG+/2OLtj065/fHxZ/Ck2lUVBEBLe8e2St1xUUza4j0+3+A6s3QwHyp6dI3Y2/09shu8AJvnJ8/My5MX71awa3BIFNcJ2MJbLsDv7unkkd8k7qP70kF4eeQ4JbHrx5Nzhb409JoF54No0lNOz1j98TRdm/46WJM1OenTKigaufcvZF9wr88eG5Q8OwXfqI4P4+lHTz0/mk20oD015rCEe5Ggxanrdwfa57iiyvBD+bSwQolm2JZPr+sAVnkDvMCXfAJiznmJ3njPyLx4YzO7EQ7KoQXlip4I0X1gxNEfeXn7B78Hk2G8dQgCwIbfpcHhJbJjHo4QhTg+q90Axzblgy4A/9HeON789//GfT61RnuukJnfyQoHvRJ2rs3ko+SeHawy2/4TDkQ4NF0lWGG5/C6VU1az7jfis0J8ZTjUnE+POLsAGMIAhKrZ6VOVDhxkdQO1nzwC71j8A/PylL7329vqHOwTTVF7IW/cebrHsvQR8dNPQNVT4XJvUxwtw5IewlQIzHa9RHUBnXlNSievHGfnrb0KT+nQbc8xqvZK5XaKdZRr3r4+Stz/hXwNQlLlJYFHl0z+UF9PRTRNghkfNFrS8qfF/UaJs/Elg3HiP/+fFghL43I/SB8sYzKTr1Z6/blQ8beP52TLmaaP7zXFwBNWwxWpxIYJTc7jZ8hVeOHrHOg9lMtRaGz7f/V3+Ix/Ta28AWij36ckfFmHig7eDraXrUXHk1X5aobJWNr+GrL+GYoqy34HEmCbV3Ic5ZywsFfF3Hlia+fozF2j6voPV1HgGuPxgbT3DBy/t9//FluvkjcLNKHlv0qxoCyF42fMVagA5p/803fVkAk6I7Dv70+/fnkn960XOaC/iXrz9JO1CnuopGv+kduPFAehqbGAxAMyt4N3KFWqGwz+d4NVW4UJJR99GJ8ZqY+wY2vDBhD9EbIObar2CaXO1PD8R/8R7C7wXhl8PX9XQ9ewT09OZv/KWM6ZzdVRCvhkYNT8ZM3I1hpGzxh/o79+oJafAbYQMWQn1QasNi3SsJ+hlk1MFxUw9/eqzj6YSaS97VzG5ipBxfuxsR57Adlpm+IHj23Bmt3ZX36PTVVTk+pC3Vgy8G00+Q7MOsuxPVroUQTy1BKuQbGOBw96jBKj+1EiSfWaTH2vrW//zl43e50pPy/Rl//PCPL1DDyAyP3gsgg42X0z+/yi6WkUJmbI19dWXPZiUNd1AWbs7ml1aDfeqAQJoZDmJSVebrnl91RaPZghgQHbY8r7YKJs0M8eZXN6q7J1BWRkKjUTuBZXiciYJeQYn1oS/+eBGBYvai1F0FXIt947rwb364QZ7na1eVnPLHQxw76nJmFPnjT49TPNIuHx/5W1byg+gTYYU/sCaT8YC3tO6wblltvYpwiKBjsBajy9QOI7/IEDqTs8N2GajD1qWXAFHcHbHvG9y/8QK4n3OqF/3RG5ZJW6FhXo5kXXwXrL8bCMHBWjuKrefOoI3UCUD+6RVFlel47fZ9YMLDgLf6AltjbnEPet2eyEHQX6y3gmRVNr9JT/F1B8jUla2S7R4qfX4ArTvx9ij/6rXU/la9QYO1sP/8MNa3eLQaejxC4xEfAiGvUf5ZXtT65/deoxkZy02YfAguOcEneqzjMRPsC/zIuo7t4+M1LLMvJFCtvjq2cZHGK9AHEyTxamKraHpGQ6CGsNDq8x8/H5hqVwKodlKLvVsb1GSr9ykbb0Byeek9tuUPkC/+StjGJzk0miGQHCihYItvbe1IyV99GluXKjIWxTeFP71Jbfv58JY2v4bQm70tX1JqTBx/2+oHUouLXfet5z9//BEvPwRpR+PxcKp7qDroh+Y58wzhdXAhBAOLibvxGVZklgmm/tEhxr9rMKqnSwQGyd826gKrFna1Fv3VL6jW3I6GOD0eD6hnTEEwusvDEhrqqoi5FNN4TkpAruKiKpLfnVGHC+nPDxf/z5YCmfvfWwpmc+3IJxgPxkimOoQ8z1n0deHdnB2mYoQAB0D4vxi2ItWl5ztmNfcW/n32XT+K54EvbUULG4/qsjAZ4+8kd5DyK0afyNh6gXRDDx9uLJCxcB1vDXe1BeVWrWjQN7pHzu3oQiBpPD3u3wVYLga+QOxRnjqmZoK54S4pdJVUx+eEx/nAzmddKcyt0PN1z/lSXzsZnuWXifbC4zXM4VGx4e4xM6qC22gsv+PXhm7+vmM1XQ/emh86HRrOA+NMOjj5tx/dDvyuoUif6ququ7/v06NPgQONNsO6H7QCnlUjRjsget6SzVkl82r6xNr74bFVuWYytMffhwaTIsTs3B//PQ8O/OTtrQfaI2g8jI7sTtXbWI3gbkNFvLk0qJXPsC7W8wHT7j1hjT1gTmmJL7CZhprwwjsZ2CcdCxhE/EI1xkhO5dwMAXesXfKdDvt8BfsmVISCozj4JgdGu+RhQlN7RtT/vut42s8nKOdCfEWvN+zZ32dILCnHt3dZse37EqCcDiFWD2URE0TeOnw2TkU9L/TAGlilDs2H1NOISsUw+6VfwOASHaipbb1XTBLa8GtnZ6wXGzWvbrkA2ViV2LuHcBh3blbAe7R/kUlqVrDNhw70z/OBmvK49bacdxGYRVZh272W+a9sgxAWfHGkVjORer7sSQQVeIsIULYUE4d5BGM3edFT79y9ya+nB7w1xwHbX16Jp7ccrFBUxhrbstx4/8Zv0ozzdmpkAPOzgR1o7EDGAeW2U47vL4TZebvBZrpp8aJxTgX+Q9qVsy3LM+0fRCEiklAi+5p4gSJ24IKAiCwJJL/+PfB+yq/7SgsX4mTOZTITyIBLhvuH1J8cJxWUHSJSNxsNg/5e6+LDwfrplYB5EJwOSkZxoYYcX/hyIHcd+puXQg1xX9dsKscZstpMkRpLljEKGXmAR6+P2G5SWM+CH99gq78cBAUZJYvg2gLoPkcLX07Xqpj/eN/BsI0dan6EIWH6O1vvQtm+aAROx2E+zGWlaluXYbMlXsFve72BC0IMzfzzBjwQ8xz2G7/CKNGngTPcQ5jNuY2UZ5MZsyBdZbh3XILYth0MAg9xvrmHjUbvn/TKJ9f4piB8ihI17xca9C8aM6CitCTbrP8Msx3nMzzv+pZshY0GWIp8BVwaZ1jjIw54M9c5XOS+IaoQ2GB7KhmDXSGNCDRoCJbXRjmCdqhnIsWYDxyI+1jpH9OBRpvC5TMtMhE2vV1jJ9AdPs+XPAeRSHK0iwIl+CrSg4E1PnFG4baeYTmksHpzGyNvSBL26RUN3mlwpfoDl8HivlUROj5aSOvhIRnvR9GFxXknYuOrvw02NgNaBxGG1AyPpGZ3r3f3pX4/Ups2Zk3iLg/h7rDr17NLHf/lA3gfmivF+IE5+7yjCpBCrrHxHPxhpxRhDNPN0FFsCHUyt+Zj7bLLRdL437ygx2Lvw3V9scfsJuFwgyRFm/2eGvL3yxfl5B+hlaZbjD77U8Hzs6vD+Y08tNtoGz5ug4sNHwfNoPlnOBZ9Ax4Z5Iq1EEj/vvX0DlQBalufocp+1cao3ToNtjz3sDUf2LCQxYzV9GOXCIAtrXlidTE0qsce4x5y492Bv0o9sodONf6x+CTsmQwf02cktRdRzsX3XwnrsruSjxO/BkLct6gWO3KnSCCvYj4Grx4GL9Eii8wlwOAhzqB4gD694w3hdLtOfbkrLcPuVH/BpL5ZDtb8jzzvr+XLMw0QVPKPR+QAzcl0da8VpM3ZoThw7rxJttkI0dMPKObGUCzCXpFhEcci2e4PCmdT2MQwmzMb33nTF4ujirOMXXdLnWZ/MSaRZTpM398M28lzO7DvWNoqeroBdcVcCxbrykLloAYiUX+/V310OXhVc0hRdu0C1v5ZGpSwmBJhe3GCJTvtbvB0nxWKznsDsDxglVq8koiI1WWX0E+eV/A1ngDWJKcPlqpCIkyuqYzDpA7rOaYjgkd20+lVbWcwJIkYwzeuQrSEb8tYCrMwQbApzqR92LFBaJWLYMiCkOzE+TzM/tHP9ldRcrHeuHL9PWK9A2b/BNjo44/xBTA4QrIBJiHnYAPYsdx08Jttd9jwmhdf8dz/t16ODejQnK1YhCcBFUjJwYuzr9Z1SrKfr/g60ThZvhZ1QS/6AyoO+2VYnqkRQkOV/2gei179Jv6SqidpaVAlpp7BJYN2AD7klnottkBPb20Kze3+hA/38V3z0/Q9wsbFCpK+pjas+SuDro5FooQnqx754VCqESV/NLrfXwNvbpUMh2t7ItXlcOGzcapdeLNHiUZSoQ0TWksK1RimOHme5HqaKvkIj4e3hkOxMw2pKMQGNrap4+J1EcH4kFUfnND8wub50/FxulYMRnT8wyc1NBPuyUdRVdGpxEH5MMG/9yfXk0zm89Xko1pdcyg7o4gtc5zBYLtqDH7fZ9yDtibbEZnQOWEdBwftULNUPEsw6+oJiS35FtN3V5hwh+IvUT4noZjOqEvh4eQFNGz/DsWy6OJDxkmDiNAc7Xo2tL6H+4O/wWb4KYdvcDgKUMuphh1x3tazio4yvATOgbpfXg9L/AxHkI52h/b+qwMTTjwbHnCgo03gqJyJpmVCt7Hv2NU+J4MNvoBAUp897I7JB1B1hBlIrWiHQ/MtJHP8yhB0zp1P9UVauyR3lgnHTvsgFvj7YlnEMoe7Yqdge5pSPlv9lcABehO1Q/s18NcBSxAnLSJjasxgab6vHCw7fEPs+dSN3a4++PBzVivspNWpWOwDOMJiIiG2izbi7MmvCD49w6IaPyacR+O5VNf8iHX7ZQRL/6e5antwNmSfHrYF2d4VG77A5UStRdaSXedqJrj6WUr6LGiC+SF8O+BgtCdEuNBk2XZvE8o3AsmmudGAp8EuVwJJilBx3rkJnxqLwbA9OvhgOgpfksI+Aks5pziwj0YtPsLtCEdTs6l+OVzAciqVGTSF7aNO6PuE5RyUcMmwQQPhzDlTLsMRyp1/xm4/8np+Sc0MD9jTCQg9aMyt5N/gkzwI2bFPnSxZPgjwvbMIUixbTajHxhPIvHodVHgZa2Ls17uo/dKkj+mIwNTdWxOmsZnhwPH4QD9dW4GNg97oh+fLfvQQTGLQ0SD0bgaHg51CtNA3oT89cPgEOrw41QFbfmKCbSLvCejekkogz168jU6irrp6JGJ0aApjxnXX7q/XnOLoaH8K1pL5BmlzcYh0jyqDIi21YTGN4b/9zHDa23BmPEfs1YkFvQyZAq9qcSRM3jwTYnkxgYPnc6LYamAsPT/1QMsnjXy0YqgXUdmUoOo5wodv3RjTwfVt+A6/kGppLALmPL0Y7ksvo6bpScUsCXsbnKXogd37mxvzys+gl5QXpPjTX7KF6pLC5mgmOJDXksqgGSFc+RbhoZoafFuQBv6+Tzf7czGnh1sOckN6UazteM1e3/YI3fsQ/sP/lutP7RdP1OSPHeBv//gAeqO1FO+TLeelrzDFPDxj6hrEAGL83RDAikildpTWNQ8FKoBWrx2yq/do4POmE+FX+CuRFHabYZaiyIWXvzKmf2X4Bez1R08QnB839B0lPZGivKygpVxS7L7GoWA//aVZRKZ6v0GDtM2sBnq7UsaOGSyc2+g7w+decbA/6T5gS+PKP3xD8pof+OkDZ7DU3Q07j+9YvwfnjsCaf9D8mT8JM9eLwvanaYMx8I1h+xr28z+807ndguUqZgII/LVLpZjXwaOunAHgHwysfTVvoCMMCdjSbEtPD6E22EnQZvVaF2vPp30B//bzUTJ0bI6WAZbtaWxAIIkRjkzscjbFR6YKfwxS5zBEg3ieEhGS57PGQbgrjUULtQqo5V7Bluz2YBbVQFdEUnNSHkwYTPW5VNZpfAnZcAgKbhXOCOD9/iCCdroGRAOdAM9ZH1E96eqBe6xJodzSCFuOdRv4gJ4IFuOfie/es+dTz08d/KPG8NOX9eINffqP7wfalw4LkWYG5dsIsalrjUHNRunggQQF1mlaDlywvw/lhw/iQ6iDf3zwBc4n+hAuOJl3L6uD56SzsLXt2oE7UsVg9hTWI9pFBxp21W7g1tMLgmVSFEy/bmz4lx9qon5PmsFr8Sv+9OZ/eq48TzN4HLUb1h7XKSDSyXFBPfRHHHaLtV4c0MmwedsF9qXr26CuKYgAmnKKLysfnA891GEApDO1qsOBS8dy18OL993TVa8k8zH49j/8xMbZJMWCNm4FxOZVE54PVcJMOvVALIQch2oXJvz3+VvhisgCFHvgH0h1UFyO8MfXh9HSjwTiqv1QIxHDdXDpHkFjesxI+GhmMm7fawnUfUfUDR+sXsDjIkLLOd2o19HeIN8WNFDP9dUi88qAlz5jMOyKDZFGsQUM6d8GAkWxqPm3q4ZFLSMF2n/Ixag5tkNfXRIRvEn5xpFkkpqHkvaQbWHJsL/1jID75K3A7VaycRjcTsVy9FIX0DyVcLjBZbHIphbCo6sfkfj57JNZiiwXrnhL7bP95XT7Skz4el1MNPl0BOyT7iuoOuBINkK9A8tIUwQ210Wg7qbOE87q+gbsNjxi67u4BpmPbgZiAdho+/mrwXi6/zHlWHyOhKv7gJMdL3t1f2kxDaVFCkbloR5hnSwyDpucD6Mj0hiGjbShOrdtIIq7tPrhFdqctn1Cg1tyg/D+fOAQuF3w1efAhKW0j7Hh208+Zu9UgKfn2vV+AJHBlfOTQUFFJ+yU7AFIeZ4YWKrohCrZxsmwW86u0ndTjDaGYCT859es/J5ajS8a7Bx7Kdgo0RN7YAPrfipHBrTZ7akjabt67IK9CZ/+LaKPc7Xwcf57y/vz1J//7Xc+oEsI8+/Rx74nvgra2vHasnENaFRKWz5fN4YAy1hZcKhbijHjRWz+PU8035V6olMkAdaZ6yVi5FL88Bdap/1EffB1AmYNFIHffhUOYPrp3XivOa5Gw9Hf8wnKpgS1ZvrDxspPSdzFCIaNuEEcXD8DC8y9oOhfjRBh+ZRgloTFhsfj+0qxjyI+FyCq/vlPWqj39byLlx7ycj0ilLB5mBEubcUs7hVutLkKGJalFnanYovE+wUbn+m8sH2lXe549XMCol93JtDdT/QvP82HuasUVZ3ztSsYF7MtxAhqAn1RNxakYXlSGUG/hYxIh6cVLF0dt7BEMsYRO3UJPeqhD+P5hHEqD1bx00M/vo92p2uVkFADFcgaOFE3Oy8Bv719E/ZH38fByndotvnL4enDA8QP9m4Yo0jR4MoPsRsRsV4SeSFwim9XpFDmDuxQVxqce/SH8SM0h8nbVBJcSJ8gFmfrGYEIKtC7Wc8f/+U8yu4adI69ToN0zhJGZyIpPR477K2X/o5N62bgXPUPambOFHRQyU5w4y9v7AIuGl9imSLQ/tw/eunLweCenImg2vCUHvC54rTKoQT3r6akf9tcr1f+TcDq99BMhILBf37fb70uMUMG+9OuCPTmuFC/ZWUxI9zZ8KuMJZrHqwrYu77cYJbUb7R/ZnQgRPmbgXPufaS1pVUsPz6vfz4t4kyPkuX9rgRwAdDA8dOdg/5GtzZc8Y3q2Z8SzEDujz89hQ1w/dRM2NEcDGq7RfsWW3xRpHSGaKQ3bC1yWSzbU9PCrbcJqTsY74Fod7UEq/5Af98wNvgCqgz4Dryi3cofZmlvtnBJOUA8NO3g5wf/8jmBplEm44eFOjw9kU71OHsNvVx8CVz9XeqAT1DP4XsW4PWUfbCjN/d67p77FuDW+5Av2NzW9TQJZAVW0al/4IFbBSbKzy8KVj9jCevpofz8Ue++FAPbPUsfCjUysTW9/sObn76mpho2CQfiEkMjeZSoTNhcr/FoK67RQWqcJljQHx8+NWGALyUTAItOUIPW5vxY/TaLc4F1ChxN3SaidEYB+DMYAj889fDiA/FTz5o64MagwbmUkjVedRCJY07/RqNLlihoS/jjOxhvX2CGZHMCPKoc6kRrb/L6fOCueQeyfCDmO1o6p396NT78HQKxRMMM/sqbSB32qYvxrpcuPAStjsPxNfAfvoPV76SHMyoKdghq+5cfcbLGy/jligl9Nddx6MJjMo/LawQNG8Z1v6f1qvdCeDg3CU5De53qG+xtaIH5gQOntGr+9rMbrI5MoJYxusVyJeMDrPkOJ/x7KMTWN3TInE6lLrvt+QTO8wlKu+31nz/BcXex4QUIBrVY/ii41XYE7DfBjPaHlzYs/Z/rQ3JQEqJ8Y7PmB+/SQO/iXKjeymmypOY2hwVI7kSK0npgRdS1kCrsgg3+fSX0XEspyO/SgtTJbJPFHMNOWf1mHHUqMqYf39cFXcJ+KSoF4/pFB8e7npHy6g3BNN0NBgUW3lc/HiVbI3728FHoCdl8whEsaNB0CLARYOccx8nCY6mCX/rnYHuI2DA/+q8P0/eQYYstc0FX/ANRvFswejIYvOFXlmCiXq7YkXcTZ2DJYhi568WH5ucKlrB+3yDs5B1e9QJYmp2awfX9CFyPt4H/0X2nRHUSU4cd/xIJ6a8G/PSlxd2qWPD23ADffv1RzQvEYpv6L0Vd+SfimXiq//kDq57Hp/CjDdIoHEP1D8ghtUFhGFuJ/DVA+/P/qLk5pwkP0hYqP77jbSITzECujmDvT4RaqV8X/PIesx+/inbnr1mwn396fL9f1NofFMCfkhL+9DDVNQUbDPdVAz9QTCju+MFYgvP1AT5RdsWmNuvB9ufvje3nSZTHKQ3YY7Pz4b4MMuwX4h/gu92hhyo8x9je3tVgfsFrDPNYUqjtP6di2TWkB/l6EYT/CsbkHz/OXfFL4+ezCqa8Jzpc5K6hh/M7SqTCgSawXgyROYrHYcAkaOG9bCqkZlQdyHMaCfR1+EfN6Wzx7SVT14ts7BAJgqYWfPsqbPAtxyN2jygDovbnaPAVpdXK/8Rito7NqMqde6bXw6scuFKYsbLyc7ryEz4Lfn5TfnzHe7jTMA3RYYRT/LjSKMX7ZNZj1YREewbkmx7OybyXIALW32miPlZ5QZqDDuFQBXcEHrt5mMaXj5Sf/z5/te8wk0MtwTk+73EwnutkzselUsv2uWAHgx1g3y1uIPANA8nb5Bh8szJ7gLdnQwK75V2zgyW08H2t7tSnzK1/eu5XL8JeR/1glvZhq6z6gmLd2Q5sCscjxFPzINtjeC9o+lfLUBiWEEd9UxkdP3glXP1XnG+92uD6SW4Acgmg+vRknNmBNsOfnzOot5qv/paiXnIrp7r/5yXzXe9ceCX5jrwLgycfbb1oxJFxjdT7/VBvf3xlujxeFNPkveJVn8NjrL/IfPIqsNzzQ6/uT3SDysk58Pmi3hWwXLsA3+Y/Zowr/1Gj/VjRYm8tgOwm6MPUtZ11P545FezXDR5oW9Nf/UFc+TXUvzrB9ib4FuxaLzfAHna0xn8Oluy0ucFOK05ol+/borOODfnnN1jTCxXzLt53YPW/kVKICyDHuO5+64cfx5iCfq3/QfFZ59g/pJeACbtPDuMhtf/L99uibaFifQ7UW/Mn7zPdlWXVvVPsCgMgid/OcKibN3XKY8nnsDRv4FdPiw7UHESrmUIo5nWMLemV1rxl18de4W+OQOH4CWs+ZwX2HY2pL3hDwg+abMNwG5dof1p4stY/Qxg+JYns8r1dsJ/fe/qGCVrWeifzb7MMxecrJ2D1U3dPiSF1q4gIZ7NBjLWeJMNQkx6If8HZGDNj9b/Uu4MgcF1jG/MIwc0fkpB8RDLo1v8fBCe1+em7YZL02IeXsxUTqWylomvNtPrVL1f/tgGLOZqdukWbE1qb8or57d4g7Hs3/6dXF3GsS4i4O+FfvYGIZmT/6klIFKxTweSDOIKfv3d/TPXQVKw9AStMm39+5NwX3IU8tDdoHmfKZ7PauXCtt2BD/nr/1V8vQ1lRTSwlY953ZQgfoq4iaSviYMUTTQ3nOMNe/EcDbsUlUq2RWeSZvN3gW8bmLLOdufvVKwyW53YF7XzeIfyCPufdTWvhvgjwr14CZqmXG3gVRZe6KYFgATCI4f/nSMH2/z5S4MrtQkpXUoNerpMZdm0Eqd+6ebGkzl8Du9d+S9HxeDaWuKcxLLjypeE5qgx24oUIN1G1QfR7uBXz/WHbILvcNIzMdTAx8XUdls0tJAr7/g3z39smUCbVldp3/zvMV1X2YdIqd8LaXCu4brsyrNY7me7vZV8M4j5g8GYFNkax/VdMqeTZsHpmDg0lIS06Iu8rsH4e6av9CbBGGDso3oIvUgcA+Sy8XjdVi7aY7JDcD+/j6azDf7/vLiGDOwpAIKjKkjrma2dUyvTMYPp2E/z7ftY21waWxjfE2A/sYOlfVNxf9Y+HhNbfJjOQGIGaFR2wn5ppwuLZkZSz6RjYdLU2ISWCPiTDWaLeuAtrdm2PGYQdWbtc0SuZ77fsCG+VcsOh18Chn12xhJSECXU2Lw+Qv28WwnHoUyS/dWAw3ap8INGJU0eOm2HZgfioWsHZxcY1qpOlswsGJN/DRHDFZ71M++wILuy0J6ft61J8dnZyg94Ba9jY7recaaMhQbMTEeJecwe8XPgMxiUE9KBIFWD5rhThtYgu9PyNTTAzUSYQFkynYXGxBmLPRwnaY57h4PwuB7rfoBYqR8nB3uetDCQF3w4e7r2O3eCvHX7rBy6CvlBj/b6J+CVTy8nOsSuY34EtoVaqm1ZA5DVE92TZW3cBJFWbEsXCO8C1ZcyhePO+6LrPDEBS8OpU12sFGm1fkjEq5gbBoKpKHG1fabCMkhmD8C3m9DBE94LxPz8F/uF+xHYzScXyFiIZil1fUXtCUT39bV0bpu/3jM1BtPl8VWdf/SuCF+nIaQQjVcEJqElu4mgQ165Joy0hP706ok7CN5mK66BD90EsGuaxwWe/zUY4QpljK2LDf/+3m+8KbIDgU/PD+8xgeP92WDu1Vz75eScqv/hwtr5UzG9PFcHj/G2p4xLHmE1zXAcB5XsiBJ1dcHQ8EjUMiwDxBPwlnJh/N/h+ODna+v09YB25I3B/KRhH8nrXpgQWDSq3zY28zXJfj/fb8ajsPE+nEb/ExWyQON3cr7GGli5+JoyyHsH7vXVo0L6khAj+gcBKbRQkt0sZ8EIPjrCpr5Ra3ysMJilbcrgd4I1mnlMH3LgVPhR8bFF7gMXAcp+64Bev3vAwCrIM9wxeZTit5RqRT6/nWwIcbQyysaFW7y4HPYboXStkuBlBvRhckZU1H2H9vvcMZuFpVuT+S/H181ZqIhS5D2NrF2FPq8ShVyDT1Hbj9zRk/dpZiHMZKm8X/fJTMBU9uAE43SE1WH9MpurvlUHKmUw9VwKcHXe3HqDgi6he0HfC8Q5kcI2ff/mPV0Fuw/C1mZHk2dZApYdMgDn5ZwQV2xzEv0SIFWQYGtWsUkuket9L4JrkHmHf+R5Q/Yp9WDxOJuKVktTiANlJkSjlNBiUZ7J0ndhBQ5oXXKz7i/mvHYJ+FLhoVx7mmgmfkqm/+DCeAwr4WRVC2MilhLF7qOryyaoK9GOeUB+9vjUXR9WF+yuysLZAvE4FYJX6LR8BPlz0yphzXdGhJpeA9HvtnfCYzAyeldsHR5/PeVj6J9OgMLc9usLPN1m+k3SDy4s9CGqiA599d+lUdtu36/OpxpqvTfg4I48cx13E53YdxOffoUsfw9ol7ITGCLdFcKP6/loNJArfEMQxr8n4zdRkdkL2AOXRtbBd1XE9u+LZh+JyXDAup3PAonCCcIB9TfGeGoPkBiOE9eXeUmwJqTG72iCCfesW+OnH92JOLvoRzq69oaFffYIlQDECKBE16iURLeYPrYg61ceMXiRX46R4Gi00Qsci4Lr/gNmojBGseEfNOqH1WxsmE1YjV9Du+JcAXoFNBpg6trTot/dhkfqDpMpkIyHRde71LG0XAk/9IJLsDA/1rJ1EG7bVl6GhfaXJwqJnC7b1CdFjk6ZDp260Sg1f6ox219qqud69GDzcOx3j3n4EK96I8B4uDjWb92tg2+vRhQ+z8DA6nyU+3eM03KtqTLEjx2bNiDCL8Pq0D4Sp0xfM/n69W92qHRyMcm/ML2VOVX8niQRO76mg4rh14fkkGwTc3ahgu9Uk0/KTi5PBqevpKQfmnrRNjN12KY3X1bIbULRCQqN84wRzXGcKKBV9xu7z3NfTBfgKrGvhiTZvlgL+cm0bpqUYUq8K/+qdMHknBTGdYzyhsWD9eQOB8RULHN5fXvGuGtrBs1v4RARNPdD9qKUwW7OcbHpyzY1AH0EjVxLF38MtWddrBnUNn+hTHo41d7L4BJ+ZWuLwfLom4s7xEdRzo8MBhMj45Rf4vfkG1tpSMUbfXXpw5raEUUDvA2+z16hetnmNowHcAI82GoKGVkQ0+LSyQRW2E+ByrFbLZ6fV/LrfZpC4EsQYCl7A2sM8qgxvjljfX/V6EApZBqceXVBz98JgKVVThihzHZr43+cw/y33FAbvxv+9rqmf4hNwhjygxg6uEvjzeYD+/dxgWxHbmtFz4ELxa22wa+qvhE4H6wbzi1dSL+PusLWhNkL49bY4NOxlmM5Jh6AgKgs1Yuts8HkQfWgl6gWJ+aYr+Bm62Vr+tCjalEEwn9kjBUOCz0gYaiGZd1ncwThObXroYPUvnyg72d+ieVN1A7NKASntmd6wptxtPp7nroLOLMxUr2MWLKfjLQQpiQRSNQMoONtumBJeLy9yfkk0mVuwnJQ1vgkU8gEwCew1WD92FyT1c1Uzbzzqql2SktpLJfJpXT915X/YFLgXbIdkyOC9RSl13zoI6N9MWkg3j5laTrGrF8X9CiD6+ifqxiIv5m/bmT/8JLtIJwlPOGvg19EhWSz3ABbkX3O4xiPVHZbVPEdrl/xU/WEnPWnG7g9ZIyiil4mN/cE0eL0JMggCFVNf5Ntied1lbR3cfcBGOI7GVLhxA7kqSCu+f4x/+zc0ZhXBbrU4qwjL4PwNfXwYbNuY91V6hOPTuxP1Mr/qGUaRDuOd0iOJJTiR2m2lAX3jU8IO3dZgvUlLkNPTHz2fUcknPXFEWOl7TB3l5gY8kFgOKvRxyO6d7wf2il0f/vLzSbxta1JlOwaL4ZiTGwjaggaSksP07++LNTL5gVTAqgfNaKhEuRV+sHyDc6tW3ZNjHHNxxWsm719BEmHfq58Bj2JUwVcz3rC9Hu0gFp7YL7/Qa5NuCxbdpRzq+aHD4XrEnIUZbMGKN1TzxM8wuZebBP274BLY358GOX0sBLaFd6PWcOuSb6aZM/yXP6DgGZxVS6WqNgjI3K5daOyKH/C3f358fPpsjRh49fGO+Br/Kz+LlfK0/9Ioqf9qttMUBWYFc7AO6jZo/Fw3YXgfOmw9Pl/O0HTVIHpuztgetmax9Yd9DNtrY9NTL90KwquYweNylKgZPxZjxp7SwZUfUPv1mAGPNMmE7zYOEQ8SnYteZ5cwbJMdEdPhFSzKHsegrQZG3WvgGLx4VikcLq8bAcZjDroyt2LoQxdQ13OMgFMvOar2GgD6Q+gBiyMC4du6h2u+2ydzNT+r9e5hGXFJ2A3Lcm0RuD7NA3WVrRlIPz7vAWWgUbY1apEHgQZF/SjgdNg2xXixFRF8TIqRWGZLTSzhHEO0zxrs34o+GD5hYUMB1SHh7vNmsJ3GZGDXzMdRynbB/Pu86FjaOHaGV8HGqyGAcqp3hHv3dpiTix9D2ooVtqnpgRlciw6UQrojyzqmknyPgr9v8tTAPz618vkT+KvTBK98DUz7tM0UNN4QKXzlXTPtqSKoxd6FHh5vBHaPvdaAftzO2L0/SUI3LPDBj0/+4msR+LFXxgsfV74KhuEaWDKo/D+Nmu8lH5allzpwy2lP1EF8DytfPoH0+8hX/qQbU+PfGpCno4FP494FW80zEQyFW4eRX5s1/Xs+XGi/PBUx5WEm28MzvUHXrk9o+eXPw/vOwKJkI3628yEZ8+VVqpGSLdiy3kXBD+KcwYfCJvIQim/C4rvXQmi8/2hR0MbgR7gNob3VP2s8VWBuwT6F3695pebflSajJZ8FaNwUC7tVczRG2I82WPkERbdlTJbGP60lx0rHRizhmiuL7yp6q65d0A426BjdbFB1d44jQY8SEkcthOQuGFjbZ5ax1FY+g8vLvGHkTl1BHvJLgo79Z1Kn+26M+TF1BLq1FlHTk6qa9ecdBKHw6JDwsvjAq27vwzV/UM8D95oswzmHe9MU/uEZL2bGlLNpGWv+lYcRmbMEj3piUNzbQvDdn+QGTil/rvuhDvjr+igBC74e9naoNFa/wQXn1i2p1T9U0PU3fIT2uNtSSzR3xkL8cobK93HGCMNp4JtSGaGNvjo9dIEbjOHTkOHuKujUl6TDIGnq7Qj6t15hP4gbg8mWSKAzwxkxdfI4f5ZDCup41Ff8a8FculCC8Pj6YDOpGWBX630CB6I8sW/6UsCDa3GCp/Q8UeuMStB9fUmE5utxJyC+s2JiwZcpapnmaK+Oa4kDIFM5pZeJRiyeh6XZhzaY8s7DRpfcwBw11giP/v6PbJtTnnSJDzqw8nHsd4ENlurvlUO0zxsiXKsWsGnqcqhmXkcPwXUd9sE1qDpd+lpPTPvG/GR9BQ1nFigWDB9sywE+fn4OIX5fcN7LmwYqCmHY9UMT/PQZlPuBUq2r23pmzkYD86tCiG12UzHyW/EAfttccAoFP6HXvKt++EhRdrcMxuYLgouSj2hbatxY9L9cV8rjuyK79lkkLLq5DfzcFA2v+Y6Pl22VArlOBKJo4Fj/4hF6fY+oPz5R8PWFTQW+kkYpav1zwWibNOA5Sj4+TMcvmEYpPEL+0l8Upblc8zE6mcrnb3jjw8b3jR31iiP0N+EbR672DngraeyXX6lJjbDgWddAGEdIoEarv9Yj1EABRQuT9aIybeC/fBPTuKDR4fuXzDfw9tW9W1hEmNoeTAeoVtDKkgeBtPgOvZiGrhK3fUTout5E/NxaKBXFiJ5Jgw0u7oMZfI+go45xOweseAYt0CuUY0/Mr8VgNx0EK3/C1c0IAdtgo4IPlx5x4AxlQF0yNj/9gvFJegUTEWIbGiY9YSSha8JuMYTAjfYW2evZDMZhHkbQfOIrxe18KHZSXNmqPWYZPXuPxuik7TLC1S9BwprveKEbMfR5OeGrdNwOU/3hPQh7/4Xefv3mbNt3DazQ26H6j//pV8eFfTkW2KkCMfjH753L64WDQdkUH00XZXiEkFAz37jJbPKbDwY73mAk/70Bm0L1BGGT/eFVXwbfVU/B1MlUqrVlbsx5+Wf/nh8pm7WZyPOOmfq4qhNikenX/FIPLtA1X0V75E4D7TTzAZXzZ6DWyxL5d3ueMrDmU2yfpKrgseYd4VYN9zRU7KZe3MtNBL2ThIStz0OUmy3AY2Ia9M80ymAs3rkC4TfY0mh0J4P1/KnBp0QkbL4XpebuRtXhPeQOtf34McxEXkrIn7NBNZdaYPuJq0ztFyjTwzP1inWKhwC0+ipi+yLvBqrbmvLLr/iA27Eev3tyUhLPc7D/ErlBonAS9o9z6NH7Go/b3MhmdcV//KdIFeef+1BCqW4fhDu5EvDVz1NwcTtQXwPzsAgfXweUzzK9+38bPq56Ge5kd0t1sZCNKT+90M+/Rep8W6fSFJMGNNJh6tIrGv6tV/nabZByDZuB+eUhV3fk6NH49/5UOtjqODr8tz+Tlb9WkGo3gZT7zApmdZJNoI56TJQuaAGVlZDB7PLQqJ1ZHz7ermGsiOV9oeY214wlI/AIbpZnYx+9vHr5u6YSECxZ+OdnsMiXffiHogD761RalvZ/CBxHj+B/fsYNTD5Y8RYRtUe8jx+bTGnS55Vsrr5b7MLIJBBf3hfs3NhgLMtFzmEpnHZEmlA0KBpqGBzLAqDFPilg/NNmTf09P8Bo5POqh5St2AyrH+IYC2XGDapN96JBcIBgvm7ewj8/w1n9a8YOdPznZ+pUJ5y795sLZmGdukCXKJBmF5b77BsoZO6vFV/1pAIO1v2PBnV85CyesaiMQ5fS0yDaYNmBPIbnqfzDt/2hAgvaawoAI8M4fJtpwDDLxX947DtXkHBjz8L1Lnb5x8846+4mA/TcWkT6DUUYeuACp1kvgln5Iu9PnQIvzjfCmj3ui2UrZTf48zewF4FhLKQh/cUH9uKbyMetISG4SPabbIKjw4evkd2Aqh4ptXX6B751OqB//vdv/8zi0RThDZQ99Qe74cvPfwDjjJG0G+VieOzdBmyG+Iy2/UPlzEiVFvz0/YF9GW/66TLu2SnJyOpH8H/6g9CvSu3Vz5PSq8Yg+2ZP8sOjMV++JRzLK6De6n/xxoxi+Hzfrljr+jtY/lyUAYPdekSG+pHM72v2gIClImLl5RQsPXq14D27MjZdRx3I3Zwr+A/PDwk1FjMtJHDLpx4HcmfznX51fNiPu5nM424CU77zbXCrL3v006PMadZJ+SwVsWkuJVi0/NbBKX5mq19+4eL5mZnKO5TUdQozTZb1FA2Yw8JGqg+MQK7Ii6ionFO0n21mcOV4MX9+O45cBxa/fApuZ8GmBwDMejf0wAc/vfm9y31C7MMrhb3az9hd6rjg0kMeQbtxe/rjF+xCE00lnwPFzmyJa70iP4K3tyTUUtMOLN4t7eDKn6hP89CY2dW5QULD8vc8fN6ccwms/A7tsBoWXDpcO2jvU0LeW/01zF5nVz88weH0jorZ3718pflMEo6miHA6PsYKNF5tIH5yD8Nu/b+U6oJTHJw+kjH+/p8fPty2rhIwO16YehekhtTSrkyWZm+ainGTLRwklWiMuDDsnx9LD1s5K9gffDx+9aFffqzZRB8hnNKTvuqTspj/YvcBb/SwkMU+5WD9/T0oqi7E1wmighFBlsBVjUXqcI0NP74Lvvjr0/DjVMmyPb8zqDCzQZt2lw1zzi8pGIptTe1+rgb2VOsOgv34JpPW0JrO6Gz+8Jce3P8BAAD//6Rdy7KqvBJ+IAYiIglDBOROgqCIM1BEQOWaAHn6U7j28J+d4apapUI63d8l6b6a0dIVyXqEmzOxoibLj+8nQB/fCzZOhHeXXajFPzyBFXaYo5Vvdb98jjYSf8yEerx70IoeHRnt44cRVTBzWEjKhPhtWmhsDC8SvEj5lxqNZESLMrgCfFeoRIs1VdlkKZUAlVg50EeyrfpB9b/BT+8gmbnssmb1H+SNX2zIc9VzG23TTWC7Vt89KL8R3W+Mz2//EKn3ofbTF6AdzzV1lWrRmB7oJeSN9xFpEZgjJrqXEFa0uyI0vFptEh/3O3wwZ1j1OsimivWF9PQ0hx7Rztf6m50Y4KcnSI/CBeyHZ5rHe0TiV3gxst9N3g+v/fCRxlJ0kuD3XWL6q6fj085qINQHgCr78akGoX4FkBuC8ueHVeSsD2egL0TC+rwOYlYftiQp3xGseD3ot9LHVgBzOogkAKposJRegNb3fP7T4+e54zpJDA8vfATeW2u7jSHCuuRCbCwRzSaZjiJ8beEer33V+0lnZweKm0Ug21Xvme173kgrniEv6WhFK79tYJ/tKrIPwlM2jAnKgXbTMsLud4stWR8i6M9LRabdRewnkQwiFKo6x1lHPtGy+qMgqbeMek0EqvysDzEMIkOjvvC5sp+fCld/DG03xRDNvnlM5KBQbz883g9qvhvgazB8tGEJBfP+y/GwwFed/PgA/flZP/wIpFxzqXitRHjwtip+HIVXRPbNo4bvg33E3tlSop3O8aq8+sH/8BNNK/K33ocxsMGiCvgOWJOGVEvDo0Y/STtIK97D5iRgjaz8QV79AKxehr27fKKDBZNsMulj5bfUebcQpvVR+NOLG/JtDfjD88Ev34dgM/z0V+rGXRnR/chZgG7uE8VnWYxWvMHDmRsY6i/DjrHTM3fA1ex97B4h0OjKH2TvVUarXgK1P7wVPHHypy+wm+uL8MItBLvrZeOJuZoKW00OEXAPkFFJThZQ7kNGwOrP0WqjpX/63uq/VjO4SSkMP41PT/mbgLmRjjq0jy/z9/zuvOLx/6tLgfDfRwpu9wyR7UAsbXoHzILLW4moqt+CiFVOy0P0RQa1j13Apg3oFthZhyNN0kOqTQdFqWU12wDqGm9DmxXMOVA6FTE1zRNjkxk5Kqhyi2Hj1nju2Jo8hM6Hr7CCLkW2SIZkQMu/yGiSuX3WX6NugHLnZzQuh6c2vHkfghaXW3xU4nFt9X0zoHRNeCIXT1OblimJoS4/32jRLs9suvL1HTYsIOThR0s0Dfw0yRwnL/h4UVqwdPtOgkppURx8X4ZGr8J6ylb0HjT9siNjbXv34HV6vtH0Iqd+Pu2XFMrPwCSSx7v96HtWAcPmlmFrfzlUjOGnAz+FnCGQR3W0GOfxA8l+XG8ppEFFy/37A7H7CKmrnVu2xOM6HGXLYWqYUr7eynMKeIIcxEdL3Lnjcaee5WG4c+iVPQd32a4W6wGlAj0U1SbqkmUSYXt+92j2Gr0i282rkHMFeVi7r42m90/7Dq/Y+hJOO5nuLDDXgIfx7ZNJ9f2K7aOkgPnhwOHDYd5owwPwEMqJscVm935UjZeGJTylQkzNwOr6toMaJ6UgMqkLYwXMDWs/EL3NFgmmm2nsbm8UkHI4xv4sfrUFDoePPITrqfciKrSlhXMu63mEyHLRvH7JlK8Fr8tHpUb9jMAgNe1ZovAaY7febrTZ2NQDTJgZE+7iTYyBTJIk0xNaNDO/y0g14nU2uC5QS91qLgtFnAKxyg0k6c+8Ys5zcWRfIAA7pTJn0+shc5J51xTqStXgvvtRv0MoSjnWP9u0n/rEbWD1jg3yhq1S7erVcpP9TYTg9n12aSpKHmwJ9VC7yfps7n0Lwfb87bEtyxUbv+rLkgv37FFzNAVtcTZKLNsm11G9Nt6seQfAgg/G6VRbdnzfxYfpLolL88Bx/YwY61G1wPvDxAgqttEzvLAPnFoxxPfw5GTzclItuKCmpVYoi+54GPoAnsptRu1Hgt11fwoQBSqP8eF60th5bgfJfZ4X7HhHE8zP16LK5/jRY/P16tbPBzU8x8+eAE+qo/m1CBPstvUBzf5+Bkt2nqXNyLtv6tehx6jj0kQkr2FtjBo42rJ5Dzkod7NDZPLtwFJsHh4c9+hEFV4ysmnPhyHE2h3Ri5vSbLyf9RR4Pi2or3CaK7zMXQP9NGfYr+RnP0X5/Q6nL9tSd0LEna+PyZBfCTiR7VbbRczlj3d40nqd7HhX1KYF2qHkhicVW08e9Qwmwxk8hmnGOTQqsASfhwOfw+aLj+3DBWQjozPsHqZEdUOzs/l6iQMof08ekbf9AEZVETqJJoaD9W/NRfNjmkvZOr0P1DKvQ8W842GA+FLz1PmeuJ6+ILRA8/Fkaom6UM19cI3ht/p6CITuXI2boOogn++eRLIrnLEHdkIoKX5Jbf7aVovBtwFMB2NC/Lses7/1O98yCdHCnqN5zHUOhNgsKfrt35uRL2BK3jl2Fc0Hk/ZODJg4XwOb73MQLbJy5+D1eDCIXE2VuwxdlciuYt3Jtn30jHn7gEAwpRjdFduoJiOXIKz48oHXfO0ylBehrEguI1VwPFeL9cAcXB5bhTrhMWHr/lYhqC0TKzo1NBp81UYODocIozp5VzNNuQROSp2S/vC6RFNWxglITsuNHr7HXT/uaq0G7b3+YDycanduv1MDhQ9uKBokqs3T9SuAnjMC7HqJ7M7NJi0k3PUtGovnV5sv+qmENNEdqtrdo6fuhkvF9tZd6YHPd6DfpK0Cv9Xbo4cdZWASdw0Pmw+SqSpdjxovcKgEZuVFOMgf22yx3u0EpeHRYpvM1GW+P+hg4mSTyDubz6bmtZHgxd4f6eN8PWcs3xVnuC2nI9YFZPeU4asD+Xht7KiHpTtu4weEAXzOFI/KF7B7GAjwvIyMOlyw19qDRz9Q9uWINEypojX/lr/vw4djXVbjcCk/IFq8JzaPJ5VtnddI/vb38+2r2nyZDALX34/kvmoYK0+4ADIoMNm57JHRWrgqEheOPUZvYXTn3lcQtM9owU6cHtm4HE9IJsFtXH9/W81xUvMyFMUc+bOtZVtfIwO8fcqJCMneinbRGX7257GRMbYy5rJHCjxokziiWG/GbIgHVYe6/HjjIzRv0VxVmwDq5hGi3f2xB6yTkhTuzOJO/cP4AZRdRQ62ZPTwIc6ybKg3ggjbY3Ymk66oGXu6gMCkgBPWb9yLTY3gNHB9PuxsvY87oyITwLofUZpCHE0suDdw12xvVOEKpWc7YkGYD3lEcWGfoskEjQHj8wtQzUUyIzpAHDg9ljf+/T2u9UVub80VK6NZVNOVH3KgatwOa1omauvzGTDcvRf0Bm9c0bWe/L4PP07bjI26FIiyNDxb7B2+xJ0USQ4BwGC9T7q1K2EQ7jHUPashND74Ee0+fgfW+CC7ScrAQodCl8VbXGMMdjhijktTwMfqgp3cd/sGs70OQxvr1LYfQk/mYjOArZdk1PCLfTYkp1MD0HEf/uKdDY3gdPCSWxbOFG1k7JORj/Qx2xLbiflic9aTANh4Q6jrmrSfvv5Qw2hrrbNpX4SRLRM/kKMso9oRDYwlX0EF5SwN1LuWu54G4U6EDtl9Mb7xkcYeKfP+4vUqFm9taflrBzeP+Ep9a27APOYehEqj+UhyDzFYUtEjkFPeR6xwa+Nf1J2QPF7Bg4DT3QcMiIUqC1jxsO/MNzaVRLJASpUNiUFvrTc+0wlwUKvIBgIlW5aPCuFVri5oB+aDNkvzHsHHsMxIyPf7aCkTxsuc9VEQKTSxor96twnCL9VPLQ+WXUBiGL8Fuh7B2rClGrEFtvKYUK+8PTPm3y4qFKR7v9aLNlo+q4k+3jkbncc97KehIIq0m9SB2kNdsSW8PjpgNUuE9Xh8V6OsCgqI4y4h9mmpqkXtHA8qMAyordy0fmsf2jvEYfPG/ppvxm85JrA4eD3WuI0ZCVKewR/exPhcvdmkvQMDFgfUY9UBTTXB49MAGGUvsk/MA1s2p5Mjo4dRYz8ZDtHulLgObI+3M8Wfvq0G83uJ4Q/fxhb2tEG1Og48tZZiY+AV1o1mUMNffTYuRtkT4/z+QPF1bamRO5dq4RqmwhOEkCJrd+inz1iEUM0cG9sOyN15Od4QoN/w9Ys3sHx3HyTfHa7FfjVVGs2rRw36vVbjQyfKGeW1jwfqYHpjrVM4lySmF0JzG+/RLroZ/e7oTQQG4ymlRr6/ZTT1/Q8AqfImM4PEJXN7KqCuaiaiRpNHzHlK6712/UT9jn9ryyoIw8YDOj54hpwNn6ODwP1iuKQGTwHM4CSXsDRPG4ro3YzIpLAc7j+gRfIte2tL/uY6yM16gNHiwojYxHPAcF27+lh2lI1C1nrwasoXbKOXGTHOrnmweV/vWFU+XT/TKkCwjtep3c5T0uYbmmp5xUPou8cNY1HxLsC6PthJ0p07FYsywJnmIfUP7qZa40sFYXbp6Aqys/YZHwzZ8q8yPeyUwJ1SoXXg9RbY1G0dT1vX3wJbHHdYGz/fiLA0VOBRdk1q3B29Wh7SIZH9SXhgDYBjtLMqhcCMkBf2JSi5LK8eH+gAkJBCp4a78472AKxpTrD+mM1ql237BrKujnCo34Jsjg8OhNyll8g8+1m/+GLvAb5wzmRjZZHbtbNSQOOUuIQtO74i6HVY7/EFAb5Mr5HRN+gCqQP3J9aW3bln3OKIkngPGEVC0WbsIDQNnGGpYY+9Vbbo+DQBkKpvitVt0jPesxSoWIJAtaM8VVTZ7xbAGY8KzSveqKWmjcH6PBjXfcp++RWKdSSSsB0tIHQnnYfHXnlh94ajasg60fvhVZyfH6NLL5JnSHd4+lC1SrqKXY6yAb/nZEuNLrSyae9CD9T9KFK7cqt+ALeWByzKDgRa/eSSK/fiofjEKvYU+9Mv6BKksm6aEONLaFez2t4HeM6KK/anL9RGtm88uO4fMsb7oSf7TpfgpfI4bL8kseq5y2OC5scpsbVKpF2yiBJ02/yMrWjI2FLW9QLXfExD8RpHlPo3EfKa5GHXbxuXJZurBN3X40Z/z7uEfZFCzfg0CLabpl/MOSQwL+MFLSte2upoCOCt+rzQJ3cuPZm8OoFHvROxb80W6D4Sv0DNexjYpzHqm2KxBiiCh4Pxil9/eBNEF3jFijgO2lReg1Ba8z9aXpKm8T56feRNEvVkoJt9xfbdkkKCIoPsh1oDWxLeFXBkhw9i+tN2WciLIdgIXYCPm2S7NrS8TcDqSYk9L9+C3t7dVTifTEJgR7yMfWolBS/EKHX0J9cP/GhPQJiuDvVK8OlpZLsdKHfMoSqLNHeY4nmS5UTf0qBZWDW7y0v88SkyH9VslVelEjQnWUJyss6WHi5dDQ/8UqAl2oB+llVBhWu8kF2xGGzY82EAh8tpoAq6KBGLbK2DD6XsyOQoLJuz3dWDM72HOFiSEQwH7TrAnfqcsHcqjX7c3M817Ge1oGppbvqhM838Ty9w+EeZUS0TEfy9v5fX1NWqoQm/+KBY+KjufLjYKeBHT8de6ZWAVc5LAGZrzFhXNmI1NjG8w0Qf1kFhuuryHLNSePZihbp7vonG5aQ6skQ+BjW75OCyTfpSZAJ7ngzr+2Oxq8Syp7031A+vmrv9CpMDv59Xtu4Xp6e9ugj/+PEpuEfT5cPxwPxYJSqosM36odwYcN0vKz6+abQqXQIH1pz+8O+P/0HKn0PCH8/Har6lbQnfzcMlWznRo13BnxbQc3pAUy7Yuyu+agCxkob6fdWA8aKfCum9LSD19tLB7Xb1XoedpR2pt3FJRBcDLuC91CMOL8sUrYvCSRKpDXpID3o/J4uWQNRoIhKE765aBtU/g+PW0X6fp21FHUuwKKuGzJ+YAbqVlRyO6XYgUPuuR9zuhShvyswn4vPoAMZoyIP0xjnYlFXST4U8dzDGjyO1BxX2726KVNk+ews+vq0cjNe2VaHQ2jvyzTeLO1fDTQd0c3qv8fDsWbP1LQBqx6TW5hL2Q/t1HQm2xCRb39ddFuBigvklOmDzkD8jWlhvC26l2cbNi9+Aicwlgo7zybB+dv1sDoVeAIusXbHpskfEeE9R4NJJM0baadVz8PkOt+aFUvvl8my01lnYnFUr9FTHKtheAjWX3Yt/ojY3fKvx2N9SsOYLMmFmglF+Vo5MN9H7j/8t2oc1APmST/bSVap6s/0kMPWk26qP2WyONsiDxeadYGM8yFnfPtZBLOXZ/O3fatUXLXj3RRGry5yxn/4DpYmMRIwGAOYTse/QfmhP7OL25v7wJeRC2iO4kRZt4kd7gV/zqmNLqz9srdeevNl/nuRcRIrGfnzlK035v/g9qkceXAwo0Kw0OpdyMuPhM6AFEveXV7+4Zjf91Qedn0ptWu7Hzx8fPCQocFm27TuganBHD+lkRcQD+wXeqvpFT0O/aBP0J1E+7Ywcq/ptipZXcLtLVYZq7I0Lytg78jyQOjOkqDqf+/kOyzvMh3tE//Dj6U3XLrCwJe2uOfbL3r8uQLyda8SppZbRo56L4PGkyh8+GQq76wBJX+jHjwD7Dt0kZ4xd8WHVE2eltiTQOfIZFe/X7o9fQt86+798VFF5e8v/+MiPD/30Pjik54SufBN8h3Jn/PgSgVXXrftfECAOuzfadoBlg6MwCMBxLrHV9UK2PI5LCpUQJvS5xsdkZUMKb07QkJ9+1Kz4DfYVRzGu0jGarKxO4LevTarrCxeNzgUu0g/f3rNdXVGxDFQ4Zz5GYNVLxrp1SvguchMboG+iwT1NFozjJsGPho+z2f2IHNSSEZGtD1e9zEksAIRwRMIcd9EkFWYBb9fzjUbPfrPml1shsSJfsPtpol64P87hb39i3dKkfp23XcLi/dyhHW1Rtt/GD+6Hj9HkKFG2haRr4Fgq6yCcwyOanpfoA3cLB9b88nJ/+QaqlYsonss5m3zUfuCgoB3idnjU5mN/S8Ble62R2KeptjAyxgBz0oDt4CX+8HkAf/rIL79OtOwGSKy0oerekFzaGnYC4tvnS1e+DWi+a+Ifv0DsAARA+7/REzb+9LFu+zlg65222oTZrMM5w5haM02iOTjdzwAD+MDBBtcZ2RwbBM5VdaeKrpTRfAvxAIUmPlJLN6ZqfoHkA0chUBF4X42MX+NPqjccoM6lL7Uf/luvGoWIcZtvtDADh6CSLw7ar/yKMNQa8IcnzGIxwLRtmQdX/kL94Rj2k10bE7zctZ6aXBFrzPpcBbhvVYO6oTv3xFDCEFr9UOKQcILGThXUASQLRDITRY1dn1kHokT8IBkqvUvBhDxwFfMCiaIu9Cs+J/BeByVWVr2i5VWng66PPKrs75jt9jFtwI+P8J0hAKZuXBWmgz5hH+SvaLlyL+Gnd2P/gRzAfvWHzolGtYBPokX2fAmezdN51TsMd3HNcpGFKrqR7YmO1dLyzw5m1xemaDsf+4np/SBZXuH+8HzGDnEN//jlj18tu5vlwI49a3KfNafij6VdSq57pNSy9293jDYGAg0LCT16PQSCNymCPF16TORo61TTtgUInoJhi/MdHt3x9gnvcqOLCkWLe48mn7wFqBl1g90ms7LpztIPlM75G9v31s1mWO4H6A36kV6tSw2m2gomeac+JgJnresX6zeeJDkpFJd24S7eZPGSvhQhzaRq0OZe3CZQ5vIc62EiVqxoCkHGlw9PeDns++WkqWdItZ1JDYRldwmMRALf/mNip7nQfslshft7/zp1zGq63aD6p0/Y83Z2p89R9UAhTD0+d4bAxuXkOHCzr580cqejy3trF9HuHlrYMO7XSHDNcoKTVrTYd6OXxtqTFMOfvunmUZ1N2n3tsixAbc1fustg/QjgWG/WwZAvXZtM82ZI4x3aZHMJ257FKimAr1xDJOziLJuE5fIB7yhZj/hcX2uXSx2ByJgUmurPvF8OW+AAEl3gnz4xxcXJAfIzNImcD2G0jOw4gUzNUzK40HOHveKGMLiEMTVlFfVUT9oG8jrl0FxUz2wqr0kAOL/ZIn7KLu5s780PtN6CjnUvMfvl4rcp3PfwgkSrSd3tzszvcC+iB8Wms3bVvqAJHL6EEsgLUzS/QPCRf36DNeS9NkfOBsFEdFSyNcQ3WNyn3sGXuyvW37us+utrkle9gXCD20dMA/AO+BHpqGRRpdGvGA3wVRg1NhfXAMQuMw94A9jR1f+rRjd/WpL0zES0yzwvW1JNJnDSypZwQmFHw8ovIAGC+tPntD+9e9Wz0SaYFI3/6buDYV6o3RYHtuYDA16kNKDHx67IpuB+XaDo63dsvfgNYx+8bSAotQ47Jb24AzmREr4uG5Va52kAs2bYIngVeo1vaxfbUbIj58+f3InFUdu1Mi0BrmeX0FzUwNQ4uQLuX2+mP/9iKuyygVfV2GHHCZk2vO+DAfitvyqAezcb87GEUCv5CVv69pxNvRcOcPVfsC06OJvRoE8wP2gc2sdn351f5uEDVz0CDU+rYJMJCh2ed9OTJut6rvqBBXw3uFP/PZ2z3gz1Av78DHzjmcZy7XaWvjIZSf55B4ABsLP+9rutWWv+fxwD6JiNR3/8YcVDgrz6sxStetvv+eV3cTeperR4bTqWhxJEwTpydfUff3oVOKEaYT+8Vu5ffZKOIVr7m237P/9l9WfwM5xOGv9uHgrcNk2Fn6se1ssH5w5vYTRiXV/yaDrdrA5u2HDAdoNjMIUXSYfbHS9RddOE2SKFlQp/+MkafcQmfd+nPz8Oa99Tq9HN5wblWN4xfEz0HgzuBQew6MqKal6IwHTfaMWvXmAl7XBPzVAvoXDVTkh4ZSfWkvCsQI+qZ6p+7kM/dNoUA2RtXz+/6JdPPbDm89W/kKs5mAMF/PLN0bJZNOKGQ/Cz9XK6+r8///AMA1tBFJ0A3696bg0bOcV/evNiFHEJzdP+SX/6/bLT5RR0Qsaok/t9RQIjEX/1huzyAEWzm1+tnz9LjXOdRWORV3fo+WPx0zczsvp9/1eXgt1/HykQOeRR7/26ZvRjoRQ8T8WeTP34YiNjdQKXa+HSyGnaar67h1w+561Or1zGqumpqZbM8FBQ9UFkbeGtzRlkkjGi3dEdohli6Q7C+FMjMNiWNpzetwSm9y4gm1tigUm1S7JehNuhTedftXnTcCLs5GNJn4UzMxLfjAl8xs0Lu0KvALoZxhi2+8BG+9SN+xGeYA6L96Jge5tuwVSrJS8Trj2hvTqYEX9ZaiiHNzVE1auQM3YSvwJo9XUWBwd3EeGTkw4MUKZUl58amxfT8eAxrx/4tJx6d7bDdwpMbhtRvLELwPS8USAW1sYc33ewtgYdUph1bx/7SoP6SYz9GPY354z1k7ewnh3sBTwWF1FUWIeK31r7CaS74Ey2bWZHS4h3CCJbOmHj8hQAE9X6Dk3bGOjx46yNDR8ZAbyEKPWS+qBROhwCaF21FkE3+WrjY+QnOXa/B+yV309GtsBL4FEcDlhn9Sebzvo6q+reYmxheono+9ZZMO+XEzZcoDMS6egMtHNNkVDtzSr340MCLXd/pBg/3Ii9UPABWdNv6PE0Cj2NlpYHtRvIVGcDisYLHibYUWXCTv3dMUZ2iyNflbjFDj0l1VShiMgKpxHEZBS4QmTvkRTsLROBrG779tlOixwnDcOhIbQRGwFngYfzSKjjzbLGhMRD+y0HYySb+w5MNz+I5Yh/vai7f89sLLzBAnt7F6BPOI5sfjmdA5NxPuIgCvqedZkuwC7QZmrbcZOxk3XowME1C+w+dht3aaKBh1dRyalNJp4tZ/GSgMpQBMS1/oZ1l6EuYPN+ldTkdy8wmK6fgNqZHvgRZhX7xTs0YytHO7wdtal1l1RudzGgynJV2ZRq7R2Wmveg/ulyBjSnLwQrK6+x0lGJLfqk3yHIHypVVe6Utdkx/8Da91ycXz5NPwHYltB/LiM1DxEfsa+uJnJvNzw9ENHop6GEghReXAFbj1RlS5OdBnDhXhj7z0Ryx4avVNl1uoyIHrLdbRDoOrQEpaVH9hGqsTifFDm0iwXrycXM5sf21W3Wk+U0XVJfm4dTkMKOVgH53myqkctQl7AMAky+fEKyWQijSX7djD3Ze9QDoxNUKfT1xqF4lL8uO0y5BOStolElvSnu7va5NfDFiIyt/lK4S0qwJ30j3FI1y779MpDEgdDoEzRFQV9NurxfJD44evjYVqdofmySEnLZ3GE0bU02EyB+IEu3Or6vazo58+sDJaU0sLJcS0Y+C7tDq7lfaaBWx2wwYiEEa7xS9R0f3en7Si0YOZmMlVnEEYs3cgpZAgR6+O4kjRwyT4GEujMCAmvAEtmzB/Hdc9DN2vFsJuUXgvscaljdgypbHvGYg2D4bLHpyhd3fiYPBXDN7o5ENeqr5XQjBrDqL8Am8QtG63emwmCH9ljtWykaYw1IwDlKPMVVFWvkXtzPUuPsc+w8ZAF0PrqXcKOLCOfu+dkPZXgl8PhljPz202TklSUfUr3ASE8JINd830EDFCnVro8dm8BoTrA91Gec9I/Gnfwg4OTd7nVFwt2+snln1RJcb8VRQ1mmis4IdjDqzy41XXmrURxJBdTdScfWHdCIfSyUQF98Vigq8zqi9P4tIN3GJvVlccu6NZ+AqugkxN0Du2KgtRpoC9mZ4hifoxneXmc4l4GOjcNJ1+jFJTHYn59nxN13b23ITeSAdBeesf4OHz3Zeo0H83anUVz1nDvwYdFAUqkILQ8iu8taL6A821+KC9VmfKq97nCpXIw98wD64dvbClSugbnWiwvY3ZpobRQMPMSoRNypVjsBQsswfvktmz/6FcIPFSlFh+YN6CXKEBTeOCefZwldxpmi8otnaoseB8ar6HBAibKeWrXXgyUu5Q5mQ5FRNQijiBGiBTBkTUzE1P5E7H48KDBqUxkfd7FRLUPOpbCeXkeaquTas6kIUjnKhB59gbPTFnPt+KRcdjeyaI+aDVJ4OMNiEmt8IK/MnZ+lK8HwY+hYy8k5mkl3FqBj8irO1nw5vx9NDTVuCJFE7alnt3gjgreivOlh6941PjHfdwDGu4qtR9mB+XzLGlhXG0YEECA2C2E2wbUeYWff2z39wscdHhI7RLA9mZkQd10Jd4dloobUsqwfDy8DkslQsHERyozwqPTgLx/o5mmbTbVeC4AXTy+Kxw+oZlWyPKiZygMbu52TTUv5KMAG1ho+umXrLnTzHeDNutnUCN9vQIvUvoOU3USq9MYnml4Vy//yKZJut348LbsEfsI4x3YvVGzciEnzq48Ujzmrps87d6RH/YFYhW89m/Kj7sDz4Mf4+JmbaAJGksOGL0p8L60FNEO3zpZzlgd24CPsF8ubeXC4F4gm8+agbdulVWHv6SVGQ36Ppu8rdOC2jiNkHjU9m8TEPEPWxTX2JONSzfs298Caf9BU34/9QpIpgUrN3+gtjrieenBS4UW/DeTqnQtA+OSmQ3yb7tQ9u+9/z7stnjt8bOCW9YX1HmBRnUN8VEQrmjanUgGRd3WpYx41l88RU0DUxy5WNeOWzUzOQpjn5EltsV+iqRfSGixv40Gth3bNRiZnATzeHUq65vplNLOPKlzXC//yAYvNMobqnuvpiqeyv3y6jZdV0o74bChT/QPrd/LC4e/9erkmwBX/UI3wT22878cOdudkxObR9TLGmZMKmT+H2Lp1C5veM1aAxPgNxt3gVNMTXDwYp58DWR6fy9q1aQih9mpeqH4722oR5kshQ0s3cKi9PTBL37snPjndofp+BxidPamDBSdfqLI9VGxyWp4AX8N3ijr3A0h+OA5S2YMQRa+dxfjWXRKwPh/a4fHokto4BfBJTYdMX3lmS8HCBfaOe0YX3dYZ+8Vjv9kDipP9JZrJkPNwo24U6mh+77Lj8ZmALhJ97GzZqRqjt1fA0PzWaKMeXtUab3eYC+L2h0+0mYP3BgTbqMe/eJ3rV/2R1vihhyCoNDYFXAedohQRL8gdW1hIPGC+WEn2pBnYJD/PEqTuqNEn5+4BIamUAK8xRKz0hpExx6s5ybX9EW1xenB36VmWADHukN6bhTH6fEsxUIrH4w//kLk5cr/9hbX9tu+Hw0PJAbfdI6oG8wcM8eOI5KTf7pAYizZjUQchKMWNjhXbN6I587U7WGLzgd3lLmeTZhZE1uSo/uMDvPh96bDT9z71D6aqscIaCQCBNJOP5DzBXDPrDGlKNDLbJqmWYNQEaS7OwhofXUXmfTvAhA4Rzt2+1+jtc+tg735UMgzalM0XcyfBF8q3CORx2LMf34ER6rA5myc2bbJAkg84v1NUvd5sSS7qBKpLGa/vP+rJoRRFaI8kx7/6tkDhZcB9BXmKks3oToJsCWA0jBNV7sOlYv3pAaF+vVnU9ujAlplKAjgRiWDjLIJsaRWsQ7NCAdrb+RTNdjgmQN+8HxQDsc5++B9ih92p+XknYE4TGMOOKwN6WO8cszQtJuj6uo3dF91pgxrdaqiF7oGaRer233d1U2CcdAwbycSiWTGZA86ResCqtydg8nJXgMP3PVNV0ZWeL3YnBPH3TAg4qRNb9OZaQzc+PXECegn0Oy87Q1X3dHzdvNRqSvdSIX2kkqEl6nfVAglEYkuaI6nf86yt+JTft/upxdci1HrWSNEdvrez97f+RHwVHQwOeUiunGS6O7+iKUAggohI4qiRpbYhPN57TH1linumCvYE96X2Qfte0NjyNMQarHwS8e95dklcgAYamvBe8aWiTXG9GPJtKUYCJWPbzwZbj/ysfEnd3ykY39ftAHV30bGp3rRscXapAqtTK5EBtVW14pMYBv57S7UVHyyR6p2lIhkQDYvNrZ/Gm8+B0OUKArKjoI3jhq8hT3UXX7+9CZaBBI5cts8a+3phVBOWZkt2oA2oOW1sxmYEG6gFPsO6/O0ZWS+Nw+gjYxTCdx1R53ziwba8HfHl0yrZbnGmDqqP240U8avR2IONCJqmm1M9w6K2wC8+w2P+eWCPAcsln9ZbjwhZGdmGeumSNyxj6D3u/C9+AfFeUrgeAdkR9ioe0axHq36Hty9qTGZa1a3Pp3D/FlWcWPHsjnVFPuBx40S0v9WZRoDY69Ctrie0W+PhV58Br2kpEiTnydjRdQLwPJV7rHi5yra3ITTkXXPYYc3Eb3eO/W5ZL4eeyPvyMPplxXfg9/5clurZRPyLAa4oS7FZhFq1VN413Au3T4qV40OIWt29CqD3jBIxEx+1sftMFrhLG5FiHSwVDQeOk95d01Dllt20db3Jn/7AD9L733qs+Z66zSnQlrk5QqBcQxOVxvUCGL7AEoz5bKCeaiKgQuJ5QKgHDiN9X2YTgK8C3pzzlRRH/sXGnTVIYoSmPdpgY8Mm6kY6PHybhR5PRuay09ryexKtAj8+N6OffGXngQM/1DhN6zCie65IZCT7DjWA9QH0/Jk4uAH2hXonqXBZ/Y5UcL1VHNqAl8i6uADdj59R1PobMDbcTQS8NGI0e0XkLuEz4cCWyjF24MWpfvrIj++Q3e10dScxwTHs53OHVVG+R3Psr5ZGPXDUMtyqGt8XMEC7nwOMw+s9mx8fLEHrU61ckN+4cyQ0IXwsNvrhkWw88I8YZMqzIwt9LdHo03CA634jcvI5ZW00zClwLumZGoebp80H6KAfn8LucFC0rWMJJQj875aA0igrWgTpB0i9Y1P9+akqsnxcDh5beqB4c7LAHBgXBAm15/XWLgeWjd9/QP0Gh7URaN7TH95e8yvVVzo6wEXqYAKuV2xfxZdL31ltweDALWh3a8qKbHV2hp3U82iz1m/+dNl08AkdiF1j40YCScQEHNqPguZUqgDRJz3fZ/rZWL+P65c6UCzZYyPECL3v2jRtOgfw+t3Cxg1/wMq/lj++tvlGH5fYmsrJLx4/MLonc0+ywUdwh68Hqitc4a76QA7z3e1Cf/h5MdKawKf+NKmu3R4ZE9DlDKrJScmcShobcm9WACqNLzbF4JONwylJwX5+Gbg0BDubS/rMwREbMlasjwNW/qHC8NzGOG/9J5slelgb17brEaH2nfUvlNTQ+rxsalnyKplK8QectfJFvVe7yabcm1V55VcUVa0PppsslAAMhzN20nrJyPcREfm8jyzs795FNsdus4BVj0Evq8lchh+vBDb+1aNHsztpM99uC1gGIcZOcDu6tKa2BHu3VrHx6adqxTsN/BYMIIHPP26TAn61cCcF6063BzNtUh4KX2fAejBusqn2buuIVDVCoBH7atr1owGfoLkj2Q1xxNfeaZBtzchQ0SOUzbIv3vegL3hstI99RUzEeIhMWaMX05Wrwch7S1ocuEeblZ8vbgVDSZSuE5G/iqpNGAJrv0/4gGZBJWeN0uxjWC+QUWcjxGzCemHIqnh40HTvCRob/BuEVv0GWHMauxJa3PDQjJ2czMdrXk2qOwzgjY4xPZb7INuRT56AaMthUgaOm/3F0/vmS9QJ1H0/3lIhhpdo76G5p4s7PnZ9BzfjV8Pm/DlmTHFfH/h8KTe66n+A9+IYyrvtscX2yjf6H//e0OJEvQDuXUqmY7gOpmRIlp6n7A/vUL850at6q7Lvigf2x+/MqDvYljtF3EMAdnstCccbdTSDd4hAsz2oVHtTBUyf0VUh3/vU77x2qw2hg6a9H3p3GodIypZ7c0DyJLYK9qR3q62DDwjc2gRjN5AaRrf9C/70GcSf37tsWPVA+H7oMdXLXeES3pBjeKs0n4D1/fePfWDIKctErEsxzaZXBXLINds7NvV6AuzLXXN41g8HisbjDtAPZsFPfyH7vfNm7J3VjrQp1IWi++7t/uJHEi4jh7UrdLOdSs6iZAu3M3af91f1Kuk1//FdeuQs3ANCtBAGT6XCT/GpuPz24ImQD9UU+/f4EG1fTmlBu2cBddih6afWlRJYmFFBVUHrM1aE9w+U46oit/46RWw++gv4hOccHzmLVqMqWQgWMVMw4qaju7sKRgkqQnuyrPrWEH94Ha7H98l21ZNJa8scJBd4X/Wwdzb735EH+lwOWN3WVzb0EyWgvN8WJC3pqK35zAGj7mpUpTcn2iomsGDPpgQ/Ru1bDZ09pbC5xx41f/qnLngirCKjocrV0qqRHS0EsTd09OAlvTvNg5f86UNrEwA22+dvAk1bH7D1fQfatIlqFeb7uEL7pajBfMQKAWlLVKwZ4q3/6SPge63fVC83jTsruFHAflY+9PJxVny9bwn0Gl1EnBV+wLiYKoJOeTdw0glDtZCTVvz0FewEr1GbQZV4QB3SG/XZdoomPmw6sPobZDPKpjuDd4rAbqfuUClobkTB7SP99C6qOXa84i3zDFZ9jrrnaMzYoxViWHHYJTzlhWhwi6MARNXNyKNs435GY0JA6N4Vqg9ZqI3lHsUATsGdHo5XriePexLDF7pviaT5vbbwycmQ1w5rZJ92jsvywrxLM+Uv2BWYBSaSizycVPFGI+dA3OmauUh6qtpt1RcVxl+kGw9zkdewGXKvair2GQJzGepkEbd8thv8EydLSL/SQxQCNm/f+xJOT87Bv/qyxrsOp7tJqFdaIVskzxLhci1dtH02ERu/liVAGFEH28X22jM7uQjSGAwXGjl27C7c63CWL9B8IfqVDj1rlk8N52AbkzmNmoy0iqmDl2D1NB59u+LX/QWez2+HAhgW0RJeBwP+4h0ppQDmhJz1P33k4c4lmE/SEAKNjiFWg9kAv+cF8c2O8GEz8uzNjgqCmeg+f/ihX5yxcmCZXxV82Ha4/9Vn2F99gypxO7nTb+S67oU1apfDKdpdeb0E6mO/x5aHWm0uvMEBu0MYoH3P9aBJ91IJ0EXZ0nS/HuE/PYbir/6oflJGf/7WCOLk93fGVr0RjCe0xQf1ve2H+Gl6sB28K43D0QdTxF34336n6HBwovHH96JGehApkuaMaYlsgTgzXujcVJJGXaeDoN0vLbWpqUTTo0wmsCwWpklxZoB2Q1FDI4qPSKx1DcyeOpVwH6clkj8qcJkCzQXiNICI0/flT58MZR/yT+yhtuoFyVNE2doWNjY3L7VfLpwVwte2c6nafF8//8+RV7yLtYyvIjaVaQojFN5Wv2mbzR7LCajnwxvrlBcyIkGqw6Et18FZpzKa3OLIw7ski9SrJcDYZnifoRLd+rV+PyOSdZoHZ3L7UrsYcbXUyieFt0sOEO8ejlF3O4wqXPE59RTTYau/mEL9k1jUeWwJW5ATlDC82AI97mRVE17fVvrhdZqs6zlK3zOC1ra0//zOWbsYBOzdJUfLK/e1LRliHjbM5PHxV//NcAnly3TP6fXzFtm7iCNVSgrEY+3pfxkdjm8dsO5c419+W1b8A7Nn3mK7fpv9aI2TCpv72SPc5WP1k8P6Gqx+ClY3X1kbVz4Df3qDY+Tfal2vQl7i4wM7XntxB3tzvkNtgxZs3A8UMMcbIOy4IsA/PLwgiRtE7tkZ1KvQi03hiTXwKnwnaj3SEsw8bVJIXt+CiATP7nflG1CqtxvqCn0BaHqWRTBGlrbqUYf1CJAH/57fKFlSLa0tQ1ictwvhqrWt3Ivjlp8eSpG+V6MlY5IBb9FrvcKW7yL29fchXPcP2qK75JJjnX2g5fMRNlb8Nl9FFcqlJIVUHyLH3ZZW4fzeL45ehRyxLNhLAMnYwTaxb9myew8N1G/nGKe/9XW2gSr3V2xg732j2bzWJyB/Dhp15csLsL0ASjgpG5ciHnnR6h8gOMvJd/VrtGySv/YkL879hs8rnlh2462A3rZ3qPLN84zJ9qICxTqZWLlaVT9YgRjCvg5EekizKetL/UXAT0/2hrIC05knHGhwkFLDKpUVzxW8dH66NdVem4nN59Nngne6PVNrPkga1fNClW1pCaitRSWb4YnPIfdACZIeWwR2j7ny4IAkgL0ykMBMi5GDhgwtip77B1j0ycvBpEo3aoltqc3RMCdwEOqZ/vyy1W/pgOs0Gc1ymWjf1Z8BuShof3pou831/69LgfjfRwoKjvpUWw6pxvxzosNX/uERF7iMjddy58HB6zLCxPYExqc/EigKxyuNruc9m95m6kH/BDXqbU9KNnHO/Q7yNiNkvh5RNdf7ZwDch7/Dh8PBjuiLXAtwkYhDnYvHZ2wYqxQiTPZkq7RatTD+kYDdlI7UMy8RWD8fwWpjPvFxTm2XXO/bBdKjLmHTsw+ZEKdFAWB8CbB/P9Jsrl+vQva8zTod9ICiiV/2HuTL4Yl28vsLxncvIiC/Th2BTK6zgXyDFPq72UDLjlXVMm+oBz9PRcAxhyYwHWhfwKaOY1QqSZGNsbt2AXh8rliLhCNb3HcVA3ZEKRKDDY36QYw6CLbSBTuV7QB6E2wO7qf7g57kvVxRzzmk8Pf/S5j3bHKkgyd/D7mNDBI+svktFHf5e83eRBTOpjvW8T4ALyHBBMDypU0Z5HNxGzxiJDzKiM2LaNdQtOICG+9irOjjOoiwTd0bNgtkA2GSb5ykQWfGigd0xmoVQvjxni4ZO/UI2Gm7QHhOywPi14o/lwOI4XH+dFTdL0U/z37pwOhY6dRmO5gtVzhwkHjExcfX/0i7li1leSX6QAzkJglD7nIzQUHFGSCiKCKXBMjT/wv7G57ZGfayu5Wkatfeu2LlpPUL5A0e8u+sprbJPWM27rMOqv15j+bPYAaDlBQ+hG6hYSs0r/k03s8cSG7Ipi6nrneFncgRbpn7wImstWzJ8qUD7dwdqdZsOnOavEIGx8uyJ4LvJPl8uJQZtJy1hC7pO56snBsg8Y0d4T95Fk9uBhr45VsZX5yw6+ftfusCmXg1xau3PJzXu03+4unF+H7i/KQAY+dXVL9afT1d39URiJmYY8/IBcZ2msBDa3gPeN8ONVg+x/4JK+8jYdvkjJjJ1tuBLTx6pPvOz5pRenfgRzqE1K7vct0l9vcF8/MlJZL9+PYtygcXFFNjY+tyntm8rQ8dPBhzRLgppGA5r4Mfo731xue50ANe5s0z3H2HhgCnzQAhzIxU9u5PhOVq0k97Z0TwoR+3eI2feJq/oQXlI0yxu8Y/u/YHAv0QnJAovMVg2ZTuAkrieFS/2KSehGNbwIs813gHFQfwl0YXN47lnmih9aI5b4DEQXpp3zi5cd9+KIqarHsuk42xPILRH1ACgTssFClek8/JI3jCpLdPiEUdDCbuFBLoDWWGwzXfmGpqqfoAywVj8NByEXp1CjEudhTdbt98UthjAfa3E9FGPon1d9g2R1h+rwSbaSuw6dz0Gaw39h17rxyxX74qj3PV4ruxq4L5JPolzNDOwDtD6uth3D1C1d1EEr0XvJYvnx2IgHq2SiJCmYC5MtQCGtfjCxt2KObjvUYIzs9kT88RuMfseXZDyEscIkqgcPU4Xm8VtLfPGxo7ETDmeJEIrcfRRXPw1diU3/YRvJcPC5GER/28IUoJ30k/U+ubXeK5lQsfJCehwe6a36ww3hw8niwPJyHJYuZXQQGkGPtoiy7feKDfsQXl4/LE4Qm8Y6JFHFR20ltE4hofX9+rztA56m8awOcjGBtURvAz9AladGLkEiAdB9PggpCiPEJzSmY1hILxcvDF3aj9MrCXqE6fzY7YoT3HTBcSDlp69kBsL3nmTOthHWSUZlT/6M9gOuw2CaS2o5Dl9TzEy/SZC+g0g0bxpjvlY3qKXChFtUN98k5rgmlUgG8yH/7w7Bc70NyZOd0fXbmejQd2QLOzTYrnkQNUSK8y9KWMp8bVqfspU0tju+O4E/atogNE6jZHEN36LRFx0QbLDsmDcu0fF4zycshZMnApSE8bhyx9SM1pWJ4I3kgCsCF4Nph8xQsBXVyLpmLyCZiVPDvIsHggoNA3+VLYU6M2DeyI8DhVPbkc7QoqseGSD0mEnNlnSfnhG9kqdz6gNNxa0C7Oyvo8ab/gA/cERZw9qf0tcL6428hXv46iY8QepJ6Udq5A6n59alXtrp+voerDR82/sOue+Xq6l/cMxvbDosk9CepBf7GjutZLbHFdUy9I0YhyzMoDtvZbPZiHbRMpxD4NaAsEMZhx9+1gTbGMtrl3NZdXXjnqkQ4avjdwMek0VJE6K5GGs1w8BrXDVRVM3+JIPpbY1uwbak+1vh4L7CxLHSw8AzxYWkNCKnT6eDrNeQeUdPNCG+V8rckXPlLVNw4l2mS+kfP7w60ACZY9WgbPlL0v2hXBeeAstKlUIWYSbSzoSylPgxHifvjtzyu85oRrkWgOGubPYBMXPkaLOPZjNRYy4K62hfffywu0ZHFb4DREo+ZBeAKyiaNKXes19dJ18HyyqRwYDJVPs+P1kc/VmMjQKLsBe7l3DcaRcBqM1Loim3nkGBtTX1FkuytwUDze5tR4tFR+61NyahF3eipnkAWeiPc8W3oq2qiFuclGwg/WKV/0uuqgUzguDXK5C8av8ZShy381jMDdjdlodBkUDbnF+7HaguEEAwUcDBbh4Pxa+cktWo9IZCkOv6cQDFVevWA2PU90D50+n1KGzwqIuoZM30UNhuHmDUC8Pe+oz+XOfNaz20DZbgt8KK5+PfG3dIA5qwCBAtRjsXa+LryQoKdOf/dzkes//F/9h97mAGayDQnE7q6lqFGUYAhngsCddTkSX8LQjzeEI/g19g11jo4T/MX/cJADGpYvzeSPWF6AY/knul9vhR5zkWmwHxYeG285zpfAhj68iUeKTf/ZBX98Ty1MheojfwqWxH40qvZwW/zje7/XgR5eGIGb62IyIikW/Dj84cfv4s58JwlkWenh/bYY42Fpuwqs9R+pvrBh7cnhQ9XaBBdsPz2xXxzraSgKu5s0XBa1fiVFQSBnCqeVr653uZYkA5MaivTYhzRgwoRb8PzWiPqYmrGID2IFq+3JRiDGNB8Uz0jgt9M11D9OwGRjasjg9QpFbNRIiKdvKzjg93yIF7p6OijbCZ6UwUeLlmo5T7/vFjRz81zje19TSu8WTKfyTb3zqTaXPL608JHLE87UwDfZfL1psOM362D1idZTFU1nONKqxZasuT/+1wDnko/oUT3v9aKW3RnmsaPR3+8vO+hwoJheNj3Xj6lugx1agJx/ZGwIKgBkR/UCKqn6ovYl9YAE5bmDg6D71DpchGAKaMTBw+26oyGO9/10B9sEPvirTL1r9wxGd3N4QT08MbJd0nc+hxX/VLOR+9JQKEA9eyL3AuSNY2z5LyOgg5x3EDywgj1qOjkTn1WjctedhWbrruaLZQcvaJHGJNzLfphjGaQlVLf4hvhAeQXT+eDL8JOMD+x2Keup5qvP7ePhVrjMXD9mdjknqnQCCIflqzJZdpqRKqidjAB86gFv17IP98LOIAtfWqzL40sHBzuGpP2QUz9+0gGC/S3+UC1LhZra5TaBh2crYf/OB2A6rFNxTrfqg3U3MUzhXD04pebvLWHChoGJ9z/GH/675LyPp+bjpaDnSUtgwJGaGScrlLOtJ2AjK94984QeQr4/baiund1YmI1Zgd3H8un+ms9xX50fCzS/H4fqwm5k4008lKoBeEx9QT7kLO8m/w+PJfMZ1vRYHYtffaY7X3jnKz8XYaQ+KuzHshwvZywfYW1pI7b9+ZRPvE8NyC6TTY3r/FoHp18icCI2wJjVTi1uSm1S71utxqejRYJlPqYQ0uz8xZ6kayZD5/cZuJf7DW3E/asfL5Wbwi0yfXJd+cu08klYBCUhW2nQTSJ1UgSq+Glg+8lL9Xjg5QTcchZRfV4QELWt7m5ze7Kw0T2QuZiT9YJXWYpp8I15QNRv9oJhFuvYfWZbxqYr94LMeJ6xdT0R9u0N7wx+eLPiZ7w8dgZRVQHaRMxrESx25j/Bi+NHbNpbGo/n6gvhxT23WD85M5sWztRATfcydtOjG7A8dUp4UjOEd6I6md8iUAyYxclCb/Ss95Kd6A4sownRxLdgPB2X8/IXH3/6IoZjCe/63lv3Z6insjBcFVNgkBF1r3oJ3n0Ct3Gk4N3ExTn5fjcD2FPpiA1buuRTvDtNsNaTL75r8JrzycfiYEu/ClJRZ9XTq1iISt8PgZYZ69f43yaw5eAe6xtq58K5+nLwUb546t6c0pwVOWog2hsC3rmbW99v3hYP1vyhtvqQ2FTvwASMeR7wTx/Mh8s5A0J79fClVEY2/PjTwb4nv/it//YDh4u58jWzn9ll4mHgwTv23g5mpGj0BMpnPBFxWUxT0oWCg9lUnahRvS797IV3H2qkrLGx4uP8XCdNpMg8IvbG/j9+WURDiS8v6dW3sDpX8Nx7NkaNkgU0Obmdsupn8pm4OJ55fOLBEtkWjfuta5IAmDzM3dKldjq8AdsnkQVPPgcJiJUpJs3CR/AbSjfqSp1nstgo4Z9+sBZzCSal3T5h+EQCmpcbBZOXZRok2TtHnDF5wchtnwTy2dQjQfvW9XJschmc3KNMRFkRzGWjER4qed8S4emd+xH5SwnOKpkQrx+HnuVCm8H7w5lw+DT4YMKO2ao6tHUa2F4NJr51OTgqlKeOz/b5PNd+C1Y+T6Chp+aEnaCDsQ9Cil2FmUPlaA6cp/2NyNOpy2nQHf3Vgkvwnz6n4ewALZdlxPynH6z/rwO/+uqM5S5nQm340Dq3EUW+qYM5DsMX3CWlhDUEP2B+19wCh4MSoGXvR4GwuV45sAHq4Q/vO7nVCrhl/gN7+sSDbklICGUS1NQWiQVGcRsTEA1ciO13eapHvMcE/OK5rd9VzfbfqYHzhG+oPcdBMH3KJoVmcfDR9mMP9TB8thws0TpYd+9H5hTQFCr4fQioefIfgM2vfQSKtj3Q+6r3x9dwnYC9swNqSKzu5zk9ZiBl7hdjB4gBbc/TAqMLuRHleyhAd3NtHnof64iextWMxWPEMmh8Ah7/+APTTu9FEZipE/lrHPrp9ek4cDG4ishVpIPFwccIsqzwkHNYp95It3n5+SXkmNxcRg+CwkExCl9I9XUPTNtv7Khn5mxxuM1O+aI1lxJCEpuEs2sYjCfRL0D8JB8a6LzFiKTdRRBcJIrevKwG7eqvKN3dPxOy7tekavYEttqI14sZHDAbbJrge+Nh/F3xmAzePgVi615wmn8c1rdX2sCeFjI+87NmThZpMxjsopx6QiDHy2V3ioCx9QPqyrFl9ivegnZIn4hu+7SfPLo81bW+0V0n6jn9SF718xuwbt3VeNCzwICfwtKwuQ/bYJz3nQsOStMRwKI+XgpVsiBomytFj7w2maclESTKzcBY0pV+hNnJgecTOJNFjfh6+sbJC3qqSbD3mCcw28KrhKt+RQAfTj1LH4H2yy/S16IJ+M09T5UP/3axHRRizLAeijB3CxfjVY90wjd4weut3VEfhKPZm/dMBsb5VWEPCGdzEdvOACeZslX/Gv/qX6x0GfZOPsxH2ewKcA7iEt184b76ocfwVy+ILHN2MFR524Cfngv0ZGOOgW6ff34YzU3hw+bxeqpAbEgayg5EiyWzM10onbYIG700BaN313i4KXYdEe373M8qTTTohEwgwuG6D+blfVeU3Zc0hHtNRjA5zT4DnPO4Uhw//Xry8WOBX+9l49vL9ExWnb8LEPsrpXu334Hp3NSpip7HN3bt+vHLvxcYLy8B21A8g6H5eBk4YvGKjmmjslG4vp5gb/QTRXq2M5fcObpQCPYNEcr+WU/MvU7gS68umfaNzaRCElpI6StFwmL75uDj7wJOrX/HeNMJOdldW07pwldPL4bU96vf0cFogCENoJHHA/Q5A85ZdiVzkkfsE/KtuAXIUciGl4yeyKfzAi3Lea/+XdBPXnY0gENPFTajDpoLzw0OWPEISaI6BeMLSfy2KqUGu/cJgEnLXg1gdphRf1Skmj5HgQOf4ZtQY+Ybxp7m+fnbX6pFUQ0Wt2kKuDxbSk0WVkBAp24A7xpa+HzGeTAdbhfxH1/jixCAwhg5kL75EZfBUwbzTjBkiCVexO7lO5rLsrg+ND16X/VVY344+9aCEfc6kY2t2c/L+6LA7YnjaPDmToCdpb0D9r6G1ylaYT2f5csA1/3AYUbzXHzOnQvKaEFITtVvQCb1wIEVf6jbpfGqD55ncIzthZ6fAekn6R5mIDHWb42u/uZ0goGsYBVx5Cl/tqDffV0NRCfjSv3PYteCqXEJDHbHHOvV5RUvrIQKuKILT7X4bfQjtPgX5M5XjZbuXgnYVdShErcORZ03Of3sfbcWrLe+SV1PP9XTh3cUsN8lAcZthEwqyp71p69F2m7yRXQXEf74sit8m2A5vdMFgPZ1/dWbfhLWTtXqb9DEfdvxrIzVGZ6e0wVrMCX9vOBNpoiTFRAxKFEs6umUwXX/0WbNj2VZNBf8+LvsDWK91DFpgXU9J2g6Y63+1T+wUK5D9epnjuqrX356jurbqa1nM2gaWKiyRr1XThg17rBURHapkeLZ9uontxGwPYaxOcrvYDhMegXthlsICFytn0DpHYH4nDDeyXBv9p2sIhh8eYfi+3cbz/s+QD9+RIPArfo/vJQzJSDP8I4DnvInGSqityOx9mY9W9BrUlf/GPXfOGH8jz/4ieDRoFeXfrz1DwRsiB4IVsMSiD/9vdYLNO+0xpyPj9GBt5paeF9MU77gnRPBBqIrxfwFssXZzgNc/576N58EQ4jd8OffkZqFGiDyLQqhsXUDelMWms/WSY3gVhDf2EibGxtU4VQAJXASNK98f+LVRwFVgbOpJz6UeDa+6xRoGz1xUAdP9jh0mgPRIBc4jD7flU+/S3AVA0x3luj2ApMqQ72aVCWTq/bB6n8QsK4PRdU6ZSZlu+RPT0UHqoBxDCMNhIM4YLNHu2C4gO786+9Qs3kP+TJDOYPH9/f2V++kH5+O2sOMDflzZSTJDQeobeuRdjdue9JxYgvvzufw00/1Ek/dC+iHd03qlV8tmEYl7DtrwnZEwmDa2XwHLH7VY8erHq9+kAx//Qeraj/10MxzB0Wf46l+N9t4wa92vQLxCagT7r753MqJDz/4PhNFeQwBO/ozpwxZ3VM8bF3G7mHugF5KB3pf/XMKyBMqRA0cNL9FkDM1bZVfvOJs3b/Z4B4GDO4I4bAwpXh+DdflD39tXr4F0v7uJnCtLxjtrjWYb2gXgSvBOV37b/Gqj88w66M3DQ/Hrh9Se3bUz1eNsHdjUjD63KTBxfUi6r6uImi3sfKCVqGl1PtM+1r8Hj0Ii7PTkJ/fvbAkbIH3ShE+lOknp8OT+SA4yDE1VXWs2WAGHKxSxceeZ479aHy11W+A3zU/tHqtnz6YlOdCNvabNxfI+zws0qmje6Fk9ZKDh6hafF3RnRP6NePkyFLW/gfdfbVtPf7wSd+mKsaZ/4zZqo/+/PQNHz7q2R+cM7yZwo1eD/onHpV3I8PjFJ9+eGuOtb4k6oY4OrYv6ZdNehZof/rlBJ4Ke19DwQUjP6XUGctP/osXKIr6B4edNgLWWtj54yer31hPfIUrWAhw/9cvG8iidUBy30eMHGIA8Vnorerwn+jPH52Hh/xUzu9FRWDlG8umR0fZ4zdP+nudDOzFK7quYQRp4vXfVi5cUNdyQjXBPoGfnwXnk3bAljgM4OdX//GxS1A18VxWMgRe+GKIdbUTsMDYcVB9xB1h0klgvcOmoyrt1Qz7pkvYPAztAp/bTMChAPVc4HBwhIdbvkN883nli5HbLSj7zKa6mzyDOR1tRY2kl4WPp3X6wMT4M7TDW4zLp/Myh+wjVHC23Q5bic7MBcHNEyZu3WGD+S1oP2WTwZOaIvrLN0qsTQfWfig1Ym8AS2HLDTixS4+mNnaCmZCiUH/8+AIan1EFsenX31vxA8bj1Qhl2HnyB1uZRsE8vuwFXjIlpiv/i8dPvX7F6bQ909XPzbtClRy4OdwYDZ31K1GH9/UIxslWqf+6NWyay5z/60d46eZhLpq5LX96imwSsek/Gyo4cMDJncjixg345BNCaIjlDu/xye75icEzBCrv0jCjIB72zhv9+tVkstvBZCHf8sDIuRYtsTcw5m+UDpoNMKg+ekmw9uOPYPXDqFHkRi++b+r5/5pSsP3fRwoA3jXU489GQB7RbEG+/IgEsOAYtEh3C4hGcSTyJRfqSYoQgkZ9u9DyJG3rRZiil4q770AdfhJiYmdTCj739ErKXVabU6pIAzzuLYL45AXi0YWHCTZDE2HkZqVZD1HcwVNzeRM54FxTGIvAgl/Iu/TijOE6mM11YdWAGeM8jU1i5NSBpV4AMmC7ypftpVkHrXwCvIuUR05bNXQh778CbN6mxWQi2ctwp55VtKRYrgcpsddBhG2F3eXt92wIEwQ+6TWlpqKkbEoRhHA3JTUuxOHWT0++sSDwHQtVMs8x+lZnGR6R9cYH2lrmPNdJCE/vE8FYMup+Bio2gBYaCzby+93ssuZIoC60D3qj01IvEE2d8n7MmGrxiNjilYYFS7u44GREBpBK88bDoGwGIvhuwOiQxA78ijxHPWM5xOwClRQMn+MR26/npyfhmFnw/V12OMyfFhhn6ZDCc+HFSDooRTDrq6S9bvMGO3dnYbTMjwV01lNNu6O/ZeTD0goSTdape8lPNX06nye8j9aFxt14DKYv9RGYxESi+3I9EpByGx9mNZpxMOUfc9qVFYQVUb5UK329Zon3KeHR3eXYwddPT9uDnqkXG5bYNB25n7TChnCMbIHu5fEIxoCNPhSMq4SjUuHqiVXbAb4pq8jyLs7x+v4hrP1zRya9yswRcyqBL1VFqwQ4xzPPPSuIm1bHh0dO4xF4+wx64wZiVCdCwByt9WGRSia1LCkKlnOtG+Bzz67YbPcvwPIWl6B2Lojux8iOmeqSCphtjDBGgNSslO4lNPuI4Z2qZwHzcykDqb+c/l4fdV0lYHu6ydjRimu9DiY8wm1ZfKgPLjPowm2awgtSC6wnXMem+6NslT1neHjn3FA9n9VDBILolRNhxl8wPJNvB90xeOAwe+7BWtL9bU9LgUj15xSzXLZD9eLAEwGe1eeEqOAM2wKn2L+vg9LH0E6gbvIYGylNglE/gBIeoniD1GH6AhYZZQLG3DnSPRhBzban7AVr9wyxE3qPYFmuOtnM1PVp6nGZOfmznMFDHL9+8V2Th7uEQGrFE5k5W+nZ/qJHKpWePjW/+00/3PUjghcTTmiGwjNgl4JT4HEjS9jrPSvglSC1YMf3PA42qQym3fKxYHBrBNSV+z4YUkPs4Cv0IeJ2mWnO4BQQwHtNgsPrcWtSHygK5L1Xgg/q+x6QTIxK0B7DGmdWHJg0mb8iDMVwxL7D0niJP5ILdZ1/0Ps+KPO5CFgDl0HVsPM1u4BAbuHhNr8ZGHFlF0ynnhIouLlOd8fuFI9Y4SIgjZKEcZp2eXsyhxRUDwVjjHJmzhx/LWH1lB28OyosWOJgcaGjjR12CrHOp0NxGQDQdye6s9XYnINL5UL0Ejg0xbc5mDTZMCA7LQlGyc6up0mvIcRNp1PdejT5fFy0Qc1aZGFrILuc0f4Bwc3vT9hmG57RiEQ+yD5oT+Yz4djg31ioquRhEmXHaEwEPjXgIx4eZPM6xfG35tIJhnoq4nR6w36y4ihTX4y7ou01HE3KjlIDNjfXpnazjuEoP+kC0900YetojeCHd+pXM6/YOr68eJb3ygsOVXxAX2M55CNuZBfevL4kQiBvwIQE31HU99Om/tilPYvKYwbdxj9Qm1HJbJ9FVSlWtquIqMMhWNezkCY5edOAgT6m+03YgBLdT1if2vVbzZdZAXR5SnTNn55E2vcFNctUEM/lWi9t7YSHRSnuKXq+AJu++V6TFS+WsaYkh3jxMqOFe2C81nwS8mVbvyrltd0saIs2svm5uNOiDjS+0t3Rv4IpzVgEN5lf4X0kgnrUbdUHLJp1ak8U5XMAXho88nJAdySxwVzUMoJHZzdSTxRxvpzN/RPu1ETFetWfzWknNk+w5zSPmiu+DgrLM6BLLSavTb81f3itok5waflMOJPuN1ajAiCf0bw+/4ROqAG/9d5k7RbMAXu78HEbz6j5xds0Nz7E7ZfDln0J+qnBsJAn6UwwgqiM2R7YrqpjccEm6I7B8qp0C54z7434+uHFC9kCBbqVt8OaHhX5xPMSD9t7qP7V92F8lq7CXc4XjFzlWs9g1BL1a2oc9p1a6Vk7OhnYRIFCDd5zwNRsxA42zdshnEom0B7cwwum1hzQYNOKPd2esgak249BwGne12t++PCTXR3CyirIZ0wkDtyCb/iXn11P+gTM1PepWU5eMB2so6tKnWjSXexPbJZnsYD+ab5SB3semJTNdQDZEynYS0PRHGfpmsJTn8hUhyenFrjpaAD7ouywvWCNLRuCzwB4zp5wm1IPyLI3M5iR/Q3H7f7FCCw3CWxjlJF3fvL66Xu3CnCcZEr38dk2JyVIHej4JML4I1xqpradAUsW79d6gXpmqpcEULWusZFvlLo359QCO+vRoXY5hYzcHu8KCpuwofvjmQTLOTaPUHPNMw07fDWHkSQlNKvjbo0/ElO6owY8x+4JH3MK2fCL16NuBfgAT009jVwWQr+YMpq7/L6XIu7Mw2R8GmTxnla+hN7Fh3mqtTSxdyNblpvuw/aABhqo6S6Y57WV9eMr+5Ida3bhwROSGAhkOqhcPTSBYED87nxqtrdnPyHdLeEwHHhsvw0zkHIt9H/vj4/StgVsxSvVweNCAy/5Bv0Pr92Hy/3ld69aHwuyZLpRHAZ1vdhIsaDXQZcGJ52Pl6zLXPiJsgN22hr1y3LwReWwP/poG959xt76nKpCmN5wZE42kNb1AZAb7jR5PpZ84JbxLx6pds8yk/kMGmCNZ4rFxQaztXUt+Ms//Ql0xrNCiWB+NEvSoC/Ju3Puu0pflSN1tEGK6WDdzlBtH1siv9OBsfISa/DHh8O9fYxnMLqJ4j59Af3xn4OcT8qdOjYS+epSTyzkK+gOXkd3A89i4mVGB9NwMnF2mJy6Raq7nkLvMuxoUDDZ255ECCVaEok7IMDaq3uEGjIqND+Az2bw9kqYtaFFb5q3XkxyPqcgLzSLZuuUDJZsq0Htn2WOd4+LDcYjt1tbjnRP/bha8/fgZXDFY2ru47Hv4MI/4Q21M7Vnasdsuz2XcJISQsMW7/IlW64alMvWxLqjw34+ius9xJTP6U7VFXN5WbYGjc1dwU7LhpglwuP4x9fNfvz+4suAVQ8srMXq0M91duLh9lDuqT1tVguGfLq/+gLzp8XY+61GYH1eslnzaZ5BKgJ1fIQ4FCGIh+9l/1oH6e3xbjfWMY2OhQM7uY8Ii+NNPnHntoNUHwp6YpuEvXLF0yBByhHvY1GrmW/O4k/fEHU7ftnyeG1CsPIZjPfg0i+2AnlwGpNmjR/FnJRd2gIHjYA8rIeTCzx5LYCcQUb3cfNkTOXbBLbXPfvDG/5+uyOwOQV78r1CJ+eV+zmEP7zUjqpQT6kvPAGEw4yu+hP2f3ykqT8PirjSD5iohAiKG93/8d98KDrzuJ4I+Q3Ou5jU380RWPGd7g/isV8+dTbBUokQTqpHVS/90i3wqAIP29l7ypdPHivqp8ye1BpQD6bTvSrg+vkwSj66Kf30ggD3Oj7QtMkn1sov+Kv/e6Be4xnYNgSPYrz/8MocN+HdAWZ7QMi34t78XqcRATvbArQVzzGYeaV3lJDt3ZUvxcEcfBoeBMfGo7vqgoAA9qEI1/XERkYNkw7yGQLyO6K28vme7qgG/Xypsf06fhkTl30Cy210wXgfcPGw1hfQvwuNcI/Xw2x3qEbqUEciUUdt10sXuGR/fFczNKEm3tOr4Ct0IbYS687o1iuO4BAfXthErAra5r4g6PhD9FfPmbk/+bBvbzxNHvPWpFu7EAHYWXdUm01isuRdP6E+9QjrF47188d7ZDD1pxPWvtLA2MpP1DRcTCSt+b6Qw/RSd+zsYscMKzZxRl+AvWKM2J2FOe6ZMnOKfZKv2PCXArD9XfNhaRUVkhehjZdzbvjqqh9pkS9GLZneaQDDEPPYXvUEi7qUwDF1RuofqhYMRROIYOVff/qF/vDjZnSIwI4m9XLGAe28CTiU7/s3bI2KVChtTCpazJgxMxhrdrLvCo0xc2MYM9MsdlKpRIUUKlERRaIslX3J1qJNZcmWKFQUsvPe9wx9+y6/5/f7/5//e7zvcTyP4yjmOq/rvM71c52367yJjV9JhzU16sbfNVN4W1INJNurCJ6uz3+j07F2y5dy5wqZb97Klc+3Mu9almRIpzcsJzwus2g5P6c58yRRAiP+QbXpTuAYdn2hDE29+uO3y/lrkyXzeps0lCuI0gq5iQ5Vn11KDz24n1hK63rA937X1Iftd5UpsQq3w2fe8horPG8vn3mjuLVhI2aVvdfPipCago4Xs7W3UFNj79b5eTvbmr97EKSw/bvI6PsW22w1qfCiaq2j2ztX2HWVTsiN3v2iizBZl77zXJJidhh/s6zaqqNsq59m+SsYiR91M4yxVekGD+wdQmO+BtpeZtIzVzewu1ZvNc4OemyQaz0bobm8LCOoqbP9RvhZc7sCncDNedgUHW80//ADft7oqmne29Ox38ZzHOOftTq7DVrIBB1OLU4ec4UvzC6zMbivfPDDEzvdqZdPWEa3335Zpx4yP4ZSHo5fZ9zYAqy47l4uTRak3AlS5I2nv/x8ZzpiLt34onDRffdqi02WlPITMej0yEiv0bsPS+39rLM/GJmOrNpMgbVdTNbJP7VnY3NynGncYV3kg7A7zU+ir6cUVG3mueIjijX8fHdAX/ubYvnNGWrJvIOrrox+4nVYan3mt0zDNgU3V9pgVzMqpcT7gJC9kIgOa1ogp3mjrPCqZ2tutanwnj/1WHws91ValUTA1I9bMSsjo9RPOmiJ5/tVWGBNzn/KSk1Onp3UvQmLmR+T3tQ2Jtz1bCy94YlFlbxS0/KIalUCqzWu9Mmjm+HfNabtPlmQFeYG6x9/utvaNR2g8MNXVm2Z+Uvb0iicfRrK9kez192tLipT3c8ZK0yulXrljX2az87efNSnbK9VuL1mTohM3aZLacWR3zRPvc+y6yuFv2SUDfc2ygDfJqZeUra8T7EZfR2+PrPNi690+fbHu7/XP3/5wF57TtcuYW9eV6OX1tb7+IifanvH7beGuMzdyS113DiyQmOTmC5BKMQtOrciAH1p9TuKYqvAYKSQ6l0/z7of1QYjtd0XDmwLujeA3LGCXtqzj0bi04QP6fHVzI3vC5U/4Xaq+7X1oTf7mh/iik2ow7x8OtUCz+xT+h8hKyyFpXa+HOwSyJ1Joo+oZfqfVr7Z5Dj3NryvUVDCVQuvrHnSUlhyGEbMiTdDanZMiwzBArvLvpkP1XqK8HWGzLQA8vHm+0Ksu4c9WXF+ZSOvxVrzMls0x4MUC/EnbVkPmZG7Y4yUh5wPHfGvKu+tvH86qexNjkj8cP7WwZxy3kvynRs6+64cHy9WbM06rC/MmtE/43j31My4xMbJoBMl00brnL5rHt8bNyzhiUhcmFRxmlPwjnzHLE/JY3T/DDL16i5HOke8+35z8A7ydU1a12VKYfDeuBVy58S7667Ds3bxWLXGG0ePhSnwvaicvb2reSRh/Pq5T0YnHgxuHyQ/F0pSaTxzrLgqU6Kii4o0aSznN5lJ/zy1IaXffWbfSpjRN6/d52PNXz0xq+rf7GQsqCL5dJoc9wbbmec3tJm5tVNjr+qaiJwLijFVGYiqKH8n20leluIT5W7Jfl7Rpnz7/MNBl7tsLdXLnwruhglqVzxQO7uW6Dx3nq/CSam66OLLfN4U9OQFfd6TDfP9NegQRFZex3rW+PCPawOZmcXTZV6NKvs108unI+rPyBJSPRAz1ChdgfnAs5EfHvlouvS+02rYXfghcZ1lrfuklUSBeJzjYf/pKROvj0bJIh/jY4h92lXPFccFrJsc51PC03qk9INcOin7nhwP/xnpzVKPOvhMv+tdOMz91DKd6+HXULj1fh8mTPjf7WPsOukgdOYaK0+yIiu574f0kbAHRs1BTdY8+i8PpDMcW1S1n80cLBYJWVlyazTPNurow70Wa46w/aWwwYW8o1GKyIHsiGWirROvWdPT2toXGqLNn31XIA38VN0jqvx+W87+mU57q5o2QSOf8pFzX8rPF6bIbi30yVcRM+F/cWyisahMtw4xkCFw8nPetU+K2aMP5R4u2xki4rRnzkgb35coeMtlQFs71wMn4pwXj9hzuNBVbmTHG7eFsnGpaMt3X5zbWZXvp9aO3xsBmqjWhvRadNDzV9XpNHZ2OD40ZbojTcZVK75n8H5aXzG5tTncXFhXXdM90+tL0PhKoNvzyd7t1UPfY9Wu89eIfrtb42jT0dpRd2RKb2H1eN3e5w7lK+Ovrfhsj04OIB/LF7thHZtnsAYfMxt/vvsmbnmn0ZnHcmNY+ZFXc8LDjuWwhl5Dfr6V5oNXFU8t/IjbIndR7fpbQbuPT9fNjqwenoEHzE2aSnQw0vXF78gXdIm2d49ZN3o8O/zjaIMNxpU5P3u3VjhLpPxqUFVdyeregyEf1mMSgo/3Z60/Zq3la3p1cqjs3NtPSROn81ZNC2Wcm5+lSy0AQUJUD0/bBSR2ziVplkfZ8/l1NflHbjtTCNO9iT7aR8J3wS/wUmOOH5/Tk0jy0cCMqN2AY6O9bPN/hNl3Ux2JUQ7ahk6jyxMsTsUWD8o0akiINlNC53MsK5NjM6xC7fBB3QJ1CaOutO7nz5mKc2oPLlNU806VqbdtfP7AI/BjY57hKb1c7VDmeveDkumaOnm1JQ9a93XxSud0nMgblx2i0cmuxhM1JzIy35NmD/NAfyncxbXxTpqqRMc7x/OdyruP72ppRixfzqTwHUk0znGAlQpUxyKl8uwWOu9lF68v86hy+1b2KYX55clUWN27622H19duV/WXZIQ1tmSw1YfvU1r29ZgKyLxX2Bxfq/Zaqry2n767SvVbNPpT7/IooEJqj202z5CjsFKniFjamGhXN9xdpfPBcnJLQtQkKXC7Xaef0vO2ax+6ZI4cv378tGJYtVzNslfNzj1+cfuNefb27fXr2UWTryLbIUOObuuZZZVEHZUXHkEA4zvETubMNxR+lg4W1q+vvFL76Y1j2jR67gyt0XpOrcbNgbp9XP+a7wvf1CwjtIt4L/2hhPhwZkanSSO19eD7wD33z+62OKhf/fOtXO/0w3i7cq26DL3Gyg/8YNbpI4ZmdTLbwq703FJIJiid9a4eRY39fMdTglUvlCp9u3vM4WD4eG6hzo0h+m3MwvnHNdXFHneSAyxWjPRqug0rrfz6mZqw6stu7a2ON5R3wuUPVGkU2wo4f1hnG/sQ5wLs14zNVOUZTMrmobqgpAsUQ82KQ25v9BL/qnl7+/KTsh78cPxeNffob6JXPAg2d5n3i7VDthiOrTo47afz83llhvg7Z6c5w3jUqbE3mcXXsOvNhG6orWeVj+fwfAkZiO+Q3b+eqKa6pSD6Bi78ZaHeNZlXInVG2XLraeS8qrTHPD0tW92PnulrUv5hEdtTcs3qCoASe/ngeFWVVJ4zENF05jIuT6E+ISIri+de0OTu1S/f1BalqAtuxfvW9K5sn074zNzkuOUR0NvNvOVkQsuJ0dpb6CJS5KYRH3gxV7RhVDxfTc52NlKjKdfNWUxNrV90A64L++KyTD7cK0Y88sRr0fr2O2b9PvQSZtgyc4PLvJfqzexN/ZX5nhjuvjkvbDHy+qja8ooQZcyORo+GMYF7+7/F+GaeSF1x3mfrNudWOQMf4Zj9wLTs2vjPb8o/vDEITypNTBpgszpNP2xok/ziVN71UGFh2QjSd13EgHnQgoWRSY15yd78kcd6P2fR7459l+9tnwlaOFApp7vuQ4DPKtc3R826ZIM/UUYnorFvFb8HzJ8x4n0XbDH3Yci/QjAn0xZZ+v5kQf6rDR7EFrdtZ8z3Re6nVRmYtCQnXOS7BO+V4iHfEJ8plCV4Nj3qnuMv3lMitGV99DrvbGJQ5f2rDF4gYM1YHHmNdMVrvml5Vck7ERJFYXaKimgFK8rqO55YF5n8rpXRUvi7XWe9L/db7RkO/nBvPv7z61aeugRRB4O4W0/sbIZnF+oPRhvd7w1B5XaltPSx2sw3CVQ1Wb2kH1a7U5Azg26wxD1qKF2H0EyirtJT2/nISzf1lc1lu8oRLRM5+kpcGM/1UIdY1Q/hr5TOMXeKP9x+Wsw0ow+9uds5pPDYbKzM8k/i85o3utsnhg+jjlUavXl/79wG/mnK4OFZT8nJQ2Wuh4WPPjojKKPnX+Ypo73gtFrroK9t2XTFTP/FNx31z4evwyIPf1kmE/oa/2TBdbqOOjnUrs1BF36eRi9T7RF7YZ6jmQzgEBtgsiIyfAGWF42UZmRgl8ZmkFu3e7FYdKaaoiKBTkYwfcksLwSFQPUkehHIVASR5qtIpnrQ0t1ppMDKTC+AQAIYzIgseybAgOt4AlRWXAE0m7MOTg9URCJQCJSSaq4OkQjQWXADKpFGIlM943I8g8h0BRgJ8KAQWEAGlxyXR6DTKWQigUWmURW9mTRqlh6NSgWI0Oe4LB8AoMMJFLIfcJMBMOk0KhM4lsFkEVhs5tF0kC/wtCHTF2AyCZ7AdUvTJeHOZOpQWHBbP2JcK8ILrSmrhsGgZdVhvgRNJSxOCYlEKnih4Uq4fyC0wiCxmEw4KASLQaPAdSgUmj9cjwGQQEXJBAozLp3FYAOl/zjNmLt93LXdt4kgAVwBZwXSgb/rWPKPyy0ZZE8yNe5q0V+o5oQAyNBxacpI5D9vbM7xJ7Rx2V/oBgF0GhP4TbIM0G1+ACMuk+1HJtIY1HQS6Iy4MkMGWQGmpAKzBegwJaQSBoZSVkOh1bBKMCNzuzQHMiEuC/QqzJNG86QAOUQC0QuAE7l7xN2k0uCckTt6i1qbAVRPlldcGgaL5YTNEdBnDDAG2njrg2XB3ZmgIWTVZJEIFQQaJ6sgCxoHAF2LBwLoZAbHTHgW2ReQVaOyKRQFWXcCi+iFB9eDwYsHd/Uge8qqBcsyiQQKgGfT8YeY5CAAD+7g6QkwZNVQkIf/oFJZXgxQfSaeQgZDFCQrLxFJNH8qngr40lmBf6zGgFSI3dJsDq9fA3j3QBbAlFVTQuJUUFglZKiCLJkKBiSVCODBuPZkQoKBSQGAagB4AhkPZhwjEA9QCe4UgCSrBgWPgiyN4YkngkJxNCWRmYtEDzC+QCrTi+aPZ7EoeDZ5aQGLQQA3YJEBBp7EXrQQiRDI2Y1Co3pCGQIywHCE9aIxWIsDKAwoIBMgMED7/UUGfxrDh0mH2DKJNDqAh2QiU/3IHPWWJEHjmSwaA8yuP68ODf3XYKL578AE/AeOMhUZFF9FkDWczqCBHlCEQIHJ+r8o838iyqD+t1BGFYP5M8rwmwXLcqMM70VgeoFIg0ViMEoEDxQaDSijsCrKgAoGi1YmKmOxykTAA0B5EIgojAqRQEKilTwwaBUVd2UkEYNWBpSJJKK7MgBilC+BSvYAIxRKOTKYB86yv8IapHKDmAn+BI6wwG964DcrzqAdCDBQLMq6gkBHBHMSTGfQX6BUoGqgxGwimGLgCh9/AoOLH4uxBv7s/B/tZcwGhTPnLvrv7sll+u+UW5ylIPvf3Ya1tEJNdj+NDSMwABiBCiMwmWQIRFkwDxoDxsEVMIjhBCrTH4A8CmMRmD5MBAxEAxjLCwBnQQEJEehkAIxEGM0DxgBA5wMg6sE4WRHAgrFoMC4HzpolrgiYiQcsENybRKPKs2A+VJo/h86dqgDzZjNZMCYhEBwksP4ycUkCBgDAmAAUhdDmvoQAsi/bF+RAgkFQ8hs7SBYimQkgXKjWi/urwYKXRAmFuVD1uMKCo4tiQ4M6nMVqstDhQmez8H4EBhmCXygiZJdWQ/7nLoHMv2RYPGhBXzAq1GQ94Nx0kA0Fv1z/Y1ah4IkBBBBAbpw5rn+H+nQrS9t/KBzBQ4RKIHMg3g+lCPi6AyQIkZmc3GylBXMFkFWDOTujcUpoBRhaBaMAw2IxygownApGRRUcwaqgwP+Rrq4KMFlfEHgp4HRZSC74L35wAokARyKVZMEpwCLq/1IaBtYKTEAZIxu6hNKdPKvTvWhMVtydP8uYS+AeHMA/HxxZxH88HzII/+I8+TdQnMWGzjEC9xyzBIXQMVG0CgSNSYWhEBhVBDIvAPQWmG0UCFah3IvLoHPoJb8TwOPaB2QCXyyh4jK4i+/8PofGjLthTiBa2v6JJVQBxN0gMHyVMfm/jzPYVKjSisvUs/r7dovEP7ZDI1AohMrdPzFmBlKJcTc4BcP9Py0G8zEQRG+QR9w1ZAaRRvMhA3GtP/B4ogfe3VfTnWZkcsDdRMccZ37okK+NubmBEsnQHyDaGqvYmQVQrOywDoYelp46GL39cJSKEgew0UpwFIJz8sONTPcF7bdjees5YZ1wmP26PvqqeHOCsr+/qv4+gMkIOmBBNUQpO6EBliGFaUdS1tehH0AE2ihZAHpBJkqqukRVDyTdxx3h5GdprUIioZ1YKo40T3UYKB14ZpE0yUaBAZbGuCAqk+lAZZIYVlaqgDXO38+J4hRwCPSghzFznxOFbKxPYP4mHhqjCkcuSqiMxKgioa87S7FBWTywUCjUf6XQ6ORZn67/vzw/0dD5eXvpXLT7xxC8a8cAMckDDMNftVIm0YtN9QFI/6IYKiFwT/nFExgchKoAGrd+AIuAv5ABbhGwKHTcbSe4DRc34Cb6t7mJB+fkdFzRP2d0/uIksBIFz9ogjuhxZZzM8Q8K8CcR2SSSl5+/LxIXhEGT3QE20aNgcQl4LkGyQMx8mXHXlVB3FglLoZsFmgsJRyHhSNRDCBaJYKZC9qCDtTKcCRBBNGMFxrUqgFgOpakmGgX6E/SdOoxMJVLYJMCW7a5P8wWDm6kOozMACo1AKg6AQ1U+57kAzv1/ESnB+g0LLn7w9wksmg/4pBOXieVEBrL89xkMAOIP6fAHGwwOhyv950lLrKApOBy6+M+zmMDv0qCUfJkP/j5hkcV1JPN2wNJsOJkU17od/IAnuKPcCRglJNoDifJQUfXAYgCMKsHD3UMFiSMSVEi5eoZwPU6NZssJ4bhM/f0WOuYmekVO8N9jEW5Jh1wJ0qk0JlhEeWTYcqvDLCKFxiaBeMsAMkBeNjr74wpUiTgiURWnjFHFeuCQGCxcF0SyJW6/IjcdAus/FX21UjIy0cI8nC9+uyBT8XvFxf0hC1H2PvtS164xdkJ/2+l29Hqkq6treGR4pMta4cymw8PVtHcD307xC4iadH762a+9MP4Of/g++YJnb9fC7PhEyea6ioX6oK9xpxuhz1zy3HhqxfOF4aZSk9H6tFmJivbD+IRUI62Fuef42cP4qQqVudF3Xd8fHNPXcJVZeTG/RvDeFzur+lWDYbz0dQQ3I0tviyP8/c9Ob1pNsbvYebQgN+NthKzGegM9lKdWYl9vaOBn759nSy/kSyE+zegJ2eAOm3Q42VS8l1A8stl79cWaXpLVxPbs7s1GywoNO5ARJXNRF5RvU4qFPqCTiWOnCBe7AikTJcvyzpmtKV354UwnqyC77cMhetVbqk2IRpjK3E1+9tFUG4m8HVMyRAfjTfxfD+pVK5WqJBjt2jEyuIqf96vJz51nr64y3ZR6K7j5vv1hwWEePktkniNRCxi29XySsNbEuPRgV52VpOG27GBSnMGtc8cPWVSHj68S1hq58i3udjCdESYnuGEdKSJ6YKWw0uuPNy9pH1x5BbGKF3/QzIslH1hoii1z8NYYvostuXfXbL1G5UhY880KE0OaRul1AbnLz87Sp7wysJqRxxQiM87cvf1joFgae/7c6et9vf6dLiPu23wmhNfsua5reXXLRbeSW96PWidyUMDyh5VW3rtDhEMEEtjz1+ZWS7Fd+4gK/BfUrCZ19HO9y00/vfYsrgShslj7+F2Vtvcvql5b0G8FdrClb3zSWtZosTGPWlWw8Xo2Yg87WN194d7QDOqK+IawMVrMRGo/IW9DJFbEL8Hct9i60koDs363Q/uHbMbZmr4MEY3mPl9Dc8QOyU3DCaKCqA9xs2roXvH3dza8YFs6y3/If5p2yQx5pmNLh/PJ6KrYV9tHNCv2sfoPZKeOCjbY3Bc8H9T2KDD+036525neulHjbRPNm+NE5P1zidmxF7ISpogi9/2ufCh1uTP3Q+uL4M5jvsde1q2sJv94sDky/3082fV5a7b06qLS9ddOedb8uKjLWFYxJVRjsjLTKEo+1rFpk0xs2ol8jc0+DYO3Kz0tAyc6oumCLRqbLlTm5k+cKIGJIrMKk4q7HgxdLJzTbfHdESWmRw4X9L1sWGTWmHly9Nr3hHY9Ms+U9LovmI72y6454fRkadQbzeOmn+5+Rh/a5LuiQFxShTRQfnx12V39oDudUsT4Ni1K8Na0tm2dgQVf9z/c4Kwivz8jadkmvyN3WI8/i/c1i725F6+0HZuJ0M3HPHMzy3QSrPlEctNepkKLmnQLz/eXbfaz2bWjwy/hQvkp+D3K401JRU63+kao/gGHo+vDUp6VCNP6h/TFzIstE9/KCI+suncGXvEm27dOWmTMZe6aQ91Mz1XHTOGG0Pnq/jPvql826a1aYRH66J0h7gR7Rks5b1pDqiiV+PCpzfAqK/Udy9nCC+Ny0o38IT+/fBeiyW2Nff6jL0+d0LFWnqhR6qcRuxZfY9h3qYdhoiga4BVhtUcqsqpJsUfkwPOJW8uJ7U4fZm8ds6PIV28qXN6f9AgX4vVMlLd0T1BCsD2ff63dK55qnlgrR8EANPHihyvpQdEDTOGiN6zqb0nHgJ0qE1JtjhfTvNuLnpTOBAU33Mub7DlWT0IruqXwXIlsz8kTuZsX3xMlNCawk7dm266fj3tfJESi41su3/9qdEJnTMvdt7YdqIRHNNXT8/C39Aw+Th/r7t+f3Sxh4VqYlAav0VJZPr7x3QEpZK9wE9nm3PKoYdZbUpeA/KfHtjO4wZWpjeqSIe8nxBvbp88hbNQk8oLlt77ZnLP8lsw+0VKjvgTpUz0RZkoSm1yCxV9+PHIpq+tmCVqCfo3g07yH9uHWelO9pi03o7EOz+6lGq2uVHjUdr/lhK0cza7lTJzeFb8EmwO4jpGa9UFItv/F4ZavsIYvFymOGjes/dRqRM8WRWj7Ssa0VsPCJ78bjm2WOXJ/RCXmWEx+oVt6Cl56g4FU1WTkqrGA1C5pcVP743zfeD+88FmuztbaHivaeLx4gMD3xSZlhVXHWbnOk4kCZm8M+6uemZGKE/32P9fX9BgJxpXYwR/DXGdvSLrda5WMrPjmQuvxT1xFVRmIu37ObxnzRq5oRQ01421TtuiHL+U7wsVKdJEJ/bF8Uh/dWiQjje9InmBWtJIq173nV/4MpFrUpmVXjTyUTy//nstqJeL45YtLIyUmvQjmxoFSe+jVSa8Bmsbb0ilnRYq1Obao/ee2x1H0dacWUGBBdI5w9MxbU6/RAbGeBvN+HiycMhJWcibBtTVyx+mcgEov5ucs8o8IEa19Yzoah6VnUJoDwsoToobVW9FZuI0tgoOu5l6VJjn3m/DLg6+53iwLq/AJ7b3dUh9XMzi14vXUSFQofdOkmNZHR5GgDf1wBbOP1l/XPBsoUD8ucO5BWY/zbJZosbU/b3IV6ZVzZ/LrXWu2ufZvK9G/LZw4v2fm8vKfLuti19zPk3cZimZorFJrWmd3I03DyjVsV/wJgeGX6TX1kT5X1z2tXbaWHXOoKdDmkWIr8SRyGyDeLfdgTVlC0HrzARPFvcvq/FLTJMUSGgu0Sp/icWLquxP2BHWJoCQKYbUXD2yQLNlfw+ONej1CRHbEdmxx5FlTujoqd6po8Pn3V5XWZqGYUkyb2OCQlo5Jv6VASuCL1xM6khLo/GEnyf5h3fcl28PZC+7Z1nWxdrZv90mudZ0eu5PIIk978oTNqobANV0dNPmCrzm/OHMqMaXlZa3gO+myuyoRZ6vk6GUN7+tYNwPFTx6XDPPRG8rJFj5YNAyY4Mk82e3wHSXpAYGjtV8pN0v61/mohAjaNa7MiJxwqfJOuBwdW8Rr0zkjlzF/9HRByWGYQFuPGlH0aWJYp0CyyOxjz+b7Jc5dnsDH+bEVhds/8icUHcm9mUOvbTKM2aP8pX/zudBb7u0Pvon+rFYNJ/1EJwu2l6aK5XrV2salOc5M7dsffMsUDBTRwvIsN6RP9rqR+ymTq7/a9O9TFA8Ze3d8umRll2X7ckGe6RUG1Q036t7ztR5PUl/+UaTC9/nksx38A+e3UZy/FygMHjxPuOd8p6X0mI8BLWqNXkWxdN2Vp1s0E4JDRU7Po2b7312uzr90pJ0HV7yAiao6V4adHZTcpgIva30TzPtieOx1r0dh7dkNetRjjCCN0MtAa51xeOKP0mtF68brFL5YFjMYZ8UwFUwX+PXNkd0MP+dBjJ6Q19PQZQ8OHUS92WY7Oj+yfgInnI6fGJ4VRgkBNaNWXVdtVbdl5x0ePxF3cVd4pf8OPeykISsUv7dXo583jLnijVbMtdTAy41R8C9izaGTg/dKNIuwH5ma02kx/l9jGe4yD5V+Hh7q3VCPdhnfMGAZGyRuWZ48i+nErZnJsEj0V79IZ/Qufyb/7lbLzpS+1IP13559P92nMMWL3GsbG9guKVkltqaa+OAhMft8AaDbsGtr4H74pUv+PaiRt0ynVhd96z1Ob2biyxmTn99LXM7sW6dkinRXnQjdO/6E13F08gfQ8l7SLMfMbVncUK9A4gQx+muuWXbM24sbnOr1lNe+V4xWr+DD/dh48kMOReqJhc0BqZRXl7yF4jfmN79DXL1y5Kby2xyVx2ESVSShZYPba5846W4YviEjQxTtKCsK+SaUFDp8vzCl6AkjibzsfIPULT/da3dnRz5WITaPrylBsESCdLQEEsM7n8a/Xpl3F9H9IkxM/8eE4QPzTKeTq4I+R7Rvfr87xtuBD7NxTdyPPYJmWS4bQgJxW98/NsqW8boWaL2mvK8QL3pLNbVncKHByK441uJJYUSXaff1Vpts77ZXOuHjdtIv7c7rPND8KlbU3FCkk/PGcjUbEZjXaZnRv0Wx2XDFsYrv049zvnluK3mkHWZArzPf9yAmm/8H40AQRmlZZDoaP3C2fnX94yanonP10fSWj2p+9QpK/WzNvobsLVFjQ/cv5Qjt6X4UkTy4vXdmIOSHHPIkTueD38/qi/eHL7p8vbRM5tR3k08ToalVzBCfWP3dJRuVpg7oCYV+018ulHxWNFI/z/8oOnRzxfOwKETWKslvcW69PSNvGMXm+lPn74VPGH2ZGD2YL7yZZhPJng91TQra95POOKb+9nOJc0JoXtne842bvrikqNAe80rxNNyxjPp5EVCo687Oe2ornUbNdmRdZQppPjyNTFBtVrw0szc25ula55n+A+b4PX5VMc+36LzN6gnLJuGqivSlGuMLDssUo2H55J4yj89uCXNb+D+Ry1/Mjb+Fp5dJFf0ISp64yTiebWRheVeAGfDQOiS4r9PRFMHXcit3089HRrSn5S/X0UcJkuNOEdlk6cdSJMWCWo+GJ53v+YpObveIuOT+FB4/Gkcyxm861vYCNT3w6b6u+eEPcxOjJvWunkM8lcVp35I3de4t0eMTcS3Ks2faThepNJzInjdCLlMniiRbh/d0fPksLbx7dfUPXLjskG2Wv/WFs7mXibpP5PGUWtu7VuPZWLccfFaU7KczI8LohpW0VYdI+csHNhfJuYRMRYaubhyQlQuWuTNrkHH9c9A6FZ1s49OtzY1DksPJCkdT3p+d/PTOITSrZmSczy41xaNwktC9u0ej3UmlKJUed44mpLWli7DgyxsTGxx8pF1s8C7u2ivi8FTYkaOjKQ3XX6lP9hxR6OxaP9iM+VL/olAQxh8VNzmnuqtEhVJr5Ci/77FWeE7I7picb1Z6V1I1gwmfRIJNxwa2RvemYBT08ij3hNz1gvgor88JL/OTsyKWr3RTRhuEB5CWayaXSed9mx4nnKeGFGCfNBFfnKVIpVRvw56qLyVTZtCnX22t79SJdCifFRnJUQovcnY09R/c+rASpz+ohg/Tfu8fMvpEJe+u6Qpk59kU0asV1w6PiW6bUD46KisgATxaLj+0pWH1JRvzwjE7xPkuYEsLkSTudV8eaVQ+qDdtI0Jxf4VA598bqJe3ex7X92zZmNrqzlyUlrSW/4jWW5OVGzfsaMYfza3Xde0DtmG1hZeZivT7RiuR9+0+KR21XWz9yawjSo4yK7+ffKnsp13G7yZ97pmCYafIbOXxJzMPb1jE/pz7qIqXCTpt3Jw7xmybPrhm14isd0vKQ6XNyc8Vas6xNt1L96h4WltI+jE/9TPvytmrG4M+7a5psvn0JnVKM3owHl6ydlJ2jZDqlVcPbuqs7NZll18qnTB9EImcesSruRLrHMm+IDRynK9a+dO09CZqbXop/8DpAQflUtSV9M2zY0mtOL8d7zd5HDOzV/tyIfgN8SFtRXj5JK/6DF3koh2IlsEHP3W1Hw/y3KlbUbzlpsEZlSRHjXD/I7dYMfwbi8ryS/au3SlPuRMWQD4ZeyxaUfrQLFm68561DN/Oe4+3z0YJdXw/tENb21KM7T6ephsl1Tk6G802/1w97H5KLTZ7+/WAjyVhpWPrZVLeIGvrHTrsz6/n4btyL+emmGxO6r3gC1UousCjzbCfT88qrT979621f6BEXXXAC53vq7FO2nu3hNibjF6wehx6e+V44MV05FzahPC7r22xodWOK+fmb98OCncYVVyojnlbaXlK7/CYpNnmCy/01vpJm04I2kUdIUSJiuy9Px3a19YeadwKjC3bKhzwOSx+263P+3P9tMPgEsNHnw0VHRw/mViZ6XhlV9uGp5eP/8Q2lOie/zw/EzYe/c3iIiMoBT49KsO+4bHmS6eB0csbU0ErzzaJ3q4Vg8VTvbbSmtsdAive16fOMjPatteUVq/+KjD1xlJ39eg+OUnpomu29itLLi3fzG9a2TZaF2zqP1sX/iaRv7MLUawiJXnZjdaohW26l2/W1/92r6sY8VFxhIL4Jk3eO4FKl77UPEz97kzKq3sVPz/pMZRwa86I5jP8JU+kWVDUbqLcQEZx12i/l7D+Vfl3UdJitE632iTY5JP7q3QXbjbcKE3Mo+YaPVqY/SqhzCtRmPRyLrvYTnyj4DLJrbVO8BX3DwT0YBp9NIkdLVs01yXc70mUP2e/MN6OfX7C5mHIKZKPDDJwS6nxCwFsz/my/NiCM6Gt1II9g/sjgnmdbon5ebPT5HDfeF4/t+UJvvb0bemKiI8GEWu9D2RdXaYdKmb2JC22Jn5Pd+/JyzMDtmV8Bmr148VdLUqFHpd0Ji1k7II/FcjMyO+fI89dM7pOnvvmqAiIt7L6Ys7fnhfy8B8/XeSjVdk5OnBdQ6imxrv9WpRwraPAjVCNbXn9wUPDn67GmR/7sD9Jty50WsTvLcHSbxPa8pPFqedu446kMH2m6oqcIAe1obFHbYcUHbczl/NWaBx65lzdQ0RKRjA3EMUc9k8PxCIq1awUm60LhpS2xDwSyJYxvPf8Yd3tfUICR7YSo+B26b3l3bjPjR3GE/WvcckxCY3HJkL6v8ekft5LFKB5dJ27cgq/st3UiHeV8YbIcxbFL/tvva18G737nk9iJkrj46mTjZm9N/MHXZUf3VHU0mNk+FWEbthepI1F2lpkCgV+ydIenrkdoXiwXvwcq4ux91TBGp/JqxHxBQ9uhHwSEDP3NcrSDiMcvry80N1jgrLvlGj/oK/1++eM2ozm4e6oxIi7Ltn96n0b7DZ21M4MOw+1+uVf6DmgTTKxx/aprLXgCZLZIdv1Ej33RiYkaLnTlMmBdWmKmwLknY/69iojXjuXDNFbbS60dfYOWD9JtQugBcmYA5Ib82/cXF8bNEybnJLzpOG6cne7jIufu/CTOOK91XD1pSdxG29Rg1/7ltgvXPG8ExSSeDlhVRd+Rv/KWR3i/EA7Xru2d9+uLU2jDrPxjtmH/Jz7hS6zAwSfx87PDtk0i2fGSjlFOH/33q0yIXCpZlumnFkpEJe/LaL6jJAEuyRU7e4hke7+bY8Pj7V1F4fK5wR9j5knufhEVXzvnoNPK4iUB29IqC56hAjt14x/tiWinHCohWz8YuEH2WuVV3VdW8wGy6+h5/p2n80LldFHet1w00sJRs0OZYrEpLN5Q0rGEhWPf5yYvYS3xhZveTVAh20unUo9Ldv49sx+6dsbm4+E7f/Um7JKO6TK8ejAyz1lI5mp4V1dikMzqWd2aaStW2VZcvWs9M5dmwy0+MbHDoy/Lx1I3DUmuHMiLjqHNJWxffja8qdP5s1TCWo8/ceKjoWN70Q+PuFYC5YNPL1jpxtDdKPr/dpqT1j2DliNGpf1JVbU4EQ17sHujsm9++qcpJh4KuMt6Xg8ufWu0tUOyeziazec7V/Flh76tnG+Z2X+HUr4953v15jjHRqG28f43s6eVZj5iusQfRCeR9DRw5pqp6dtjN6RZ9hec/KNpcXBw8CPgYskUuuOQdm8+hYT52A3r6kTgWpCTc7hXhqn7QxaRssLNDAwdSnnZkT67QwM1WfqpFAWUqYyOYUlUyxkiZ/ZYfBAYnj7OseK8BMvnbMGNPYoNW9Pen0+2Zz4svj+LK3cpzNra3KUeGaImkFN/Xncyv3f9+M0+Vd6Xv7oRWm/fdZNdT3K/GBix6s7YQ6BDpsuDNb0vlXcwgikPz19ySyxxfLixkh+l5n1qs9POHbVvaw/ueMHRWBNydGLaUK8Eh6InJldpokx92OuBQxG40OlSgaZR1+EYsV/rhmotja9h0194mesEXAJtS+0TIgPgcXc8riiNJukGkspEvxwPUaobl2GaOWjlrSH+1Il58bkN4UoNkZjSlE5czAbfoqm+SPf5KANNzp35Omr1dYNXbWfDeRTmxwfstJo0K64XGOvSJiVe5r20PqNdnlVW9WjOksaX4WYRPOYejDBFdPituG14sHxSJS24pnlTd8LddSlm+2ZKA2+cUTJ1oTJuyiaRyZvtoxcqcOFztNf9XiPb7r1ErMGvuWdBt5G+vHKr83bxDLG7gyFCxw1iyFMfJW3f00x6DDaUGdVcqMZ+MYTNvfy9afAVUbm0iuTBF/sn/F0aXBphW8tcRFiDeKv6/w8pNpwjBjpJJMSc35nkUSjdjlWZl+rWMHrc/iUs5onE7YO0ETtBL5XE2lf3z0VkxuAtQTIF/wcfht2wlP3IU3fxuzjBQt1P4mr513ckzdisPNjjtKn6uO+j/RrFv08XJVuRAvKw3r2PHm2a9mLrrrJF+m+qvn3b+n2KDdHKpoRpvp8olKzkjS6IjZEB6/wntyitcx1wnR66GTl/bENpwp+LhRpV0x9thPPDq74sjD59bq0WZBosfIs3fLdSZ+wE1/b22/LpTmo3aQ//5iID/RJubow/TUiZz5J4lhDd1eFLe/CeG7F/DS+QnyZ+UxD11BVOCq1fmFyOI1vIU7j3EJ3YM9zlIDSdoP5Ce0FrSMjE/dpl4cnK+qLmrRruhZmdyzgvEcmWs42ziw8nM0dj5kfwi8Icfsf9Zxmb3bCeHj+9T12xdI1NpuJICPoNCZI9eRcZHM6zxQ5Fw1t/HrB3E406Aqb0zBBBxgsMnRLDluk4KFGMfAjSgEmS6RRKNw7NTybDfVUwGTdcUicCtpDBY5TRRLhGCWCCtwdg1WFo1VVVFEYFSUkUhUDXWtze8YIvtDd6SI3fzLLCw+KTSARWAS8B5nCgnrV/iCRaES2L0Bl/ZlExTMAJpvCgkTEgJ8X77J+MWIuzlsaX+Ly13HQRtAQ8vepZG7X29JUoheD5kvA/2rug8kiEVgEDlKH2wuEX+owAEkWNCoAUaCLeainDMbtN/vFhUAn48m+dM7tP3eI5I7g9JMBnpB8CFvudx0rE4gNmYmnQ/syoUuiv3Nb3J/JpPzRxfZrznYK2R3aZtHrcO6tu+wi5Xd90AhlhDKH4AnQyPSlvj2QxGmJAwnQZTloFV86NB26n4UjcXAlFbulW1oECo1EIlF7kEg1JFKWEyNLJgmG1kM2Be3LwnPDhYhFYYgqaHc4GB1guABYIlxVCVCFYwnuBJy7uwrS3Z3E6YLw46otq/cr5KyhCDLgjIdCvRReZKiPj0wkUPC+ZE9uA+FvRoB6WXRY/0pqDBqNQyr/ITXkHR8gkGM1LyJ+P2AfQKB5u5v6YE2tyKpeFpQAlLuuqXEQ+wDGUJ9FUVbxMUa5U/xUdb3+aMs48afOvj8bX5Fj6f+wsy9tt+Luf3F//W8uxP/eR4bG/leu5SNbYf94QU78axvfv5FjqVfuBkD1owX+C13+kwaAdD8CIzCu1YB7Q6/wV+mW7ne54PcvyYva/dU611HYsgA4R0Q4m85kMQCCLxySnEwE4JwWkuto3J9uZHODZbk2lFWTtfSR/V/1Ee3+131EUIsb1DJKpwCcS2QuFq/c/3uXHATHiz0WUFD+H9tY5ggxJjNhdqBSMH0AshqNSYZo2r93mhmSPREwFAJm6Qe5D/CHlCTAzMzM4XQayBpUlMBm0ag08Pxhwjg9SzBmIIitvgiICciTCg1ZUgE1mBWFQIWaEba5UHVgHC9BkQ1ygOwKYzPZYEoEwshg1FD8OApRA2EgJzpoch3qIm8qAJCYkE05FvOHdAD1DFx0IQlGp0COhMIS3P/vqoFb60F9ipAWYFSxPb1YsJ16NDt1mCNAhgEsGIGCgHJFaRfMi8CEuUNrQcYwKCxIBAbIn9PKyAkGgOhFJYP+5EQLQPUCDzhonNO1AgOPGE6bGegaGI3K1RYIWIogO9A13HmgA8iLzY+QIWgwF7YSEkVkeZGpPhzlYe5cI3DGOTPYLDIFrBxABqDOUBs0J6M4W7BZHKSAZpEW1QZARRhcE0NbgRSmL2hnMCggczGhgxP8edHMoCVgnE4XSHZQfbLn7wt9weKADE6HPAN6AzrPFskcVl6gAhQyaNHF6aAjwO8Agw7mBFcsjtEXNefogwNdCWnKySFuVw7oNtBxUGiDs+24LmLCdu4n0H5zD3oXDAxOgAqGAiQyaCIggE6hcZL0l5Qg6ICAyWFNAzPbHbQaVIDBwJABCEQvjs5gGoLZTmaAyfbLYEyOkKA4oH6+f9F8KWY49uKovdS+z/zbJCYUBJyZCjBu/z4oCgG0L5S2HI+zGQA3FrhN90smgBFB07kDMF1DW9hOd+h1BJYXnCskd+IuGBhx+hCVBJ5qf6VBJd6ShqBgMMCPQGFz8gy0EwFGpEA450EGZdvpRyaAI9yY5jD1JXjToOYmmB+NBSxlEOn3DFoSDoQjALYTtQtiCqIBd1duOP2WJBSyDwBzkbXlmAvKE6f9BxAuLlQUwgUsDlxkOSAE5S5kcibb3ZMGHoSciaD8II5CPMAl2tDsnUqczdjMJSiGM+kAEdSE+CuFIMxXhwEIELJA3qAi3NylMQJhNDaLQqaCOsly2PuDRK4/qDQ/gKIAKb8TvWg8L6hFGsbpQOXGow3ApLEZoG/UINFhJlBYU6Fw5JyKHIZc6wPcoIBegYJ6TCF7eRJA3aDIBDkpIWBmNHBXO4DhC/MFfCHBuMnEKVRdqGgEzMjKDo5GYGFL8Mqperh7gGkDeP5KpUVjcyHFhYpBgFgNfgYVBeXmiG31GwgZcKMAgn6ODhDAk6lsELVBzGUAHGiHRAeloQSC6AIeOZATOCaF8ASgMsFw5ZxEkL8W8Y3jChrHe+4gEkFicRcuZRtXab2lBm+wOAG3YwIUD7DyAScQyUtbgVgDp5M5OQGy8iL4kWmcc4tzIFMCubaxAcs5sNyBEJVO4OYsmcmRkINALCgRPaEcB2ViAB6gvxfFoYMhCUYU10xgqQvaHer5h1ZBOA9mBVhUKsCYNCi0QYBksDgcAQ8wusiQa2A6ZF+I62JxAfzCRY7uFACShsr2dQezCnINB04hF0AxxUkiIAAgsrknr0EA9CzIhUHmIoFzSnCSYCmm/0BWCs0TtvhoBvI0+SPW1aAdHKGIhVZy4pWzgPvJAwwfyPOLSxU4wzomv5U5vw5TEsAE3eEOLCEfJ6ohTkvbclCKDoUJdMyDq8FSagkJoDiAygAmDA4VJgwwPUBBwKeU4N8+wkLBZxaOIZaqAM4EO46SEM2ccxzaAovPJBwqd0wHlNeTCiXIH0wM/rAmOM8KzBPyYqiGhiJgUE3nCxVQXGD8rfyC+kPlmbDF2hJyH4ETNtCxBerhDx2VYFSAkM5Rmfpny3DqlN/NA718tRhhUNqAduUMLx7tf/XAUqZAQixFDldC6IF0sSb8+yqokCRwJPWA8psO4okCVz0WQKH8wRH64Vd4/pqK+P0NAZgsWLxDD6Gy0Aru096vznlP8PmJ8xsF6uJTOrdu/+3JD3ptADrswByFHvARKr+e0GL+b9v8//dt839tHU9XwiGx/7Xe8XX/5tFR+f+V3vH/SnP4/1jfdzoajUT//7zz+4bq/1Df9w0VnBIO+7/R9X0Dq6Tq+4+N30oqBAyBoOyuilUhoJXcSUruAIAhAEQMBkVUJqqi/mXjd5YtyF6P86bHuTZe/qVXPVQwdKqppy3O2i+IiaDQbA2NbU0cPc0OsSh0L6I5VcfvACnokIMuwcDK/I93KZR/veoRqKQfRDRl6yGxgQ6mWEszvO8hEyNTpANF1duQqYpAeByyZXtTvFlGjH3IAz7Gpp4mfrZsI7RvIBltsC8QG2jo7kj28PYEdIjGZiwl8/16vn4+njrqHCzVVFSHcd46BpiaixkCBzMEzs0PzFJ+qIPFMWR/TcSf4VAdZsxi0S2plEB1MLHAWALA7wRfwBasUzWh33K2nl96ocSeYqFPwiHdTQ3xRtYWVjb2uv4kJsPUD6AilXF4I1IAioTz17NXMfP3/80IWJzy318o+UP0/6ZU/wMN+ipYIoBW9QD+8wZ93rE/GvQ5f5qAZfOE2o5cXTqzZ53GkxOu2jaTHgXGL39eGntxHbnTewdK7qGAv2S78Oyw4I5av1VlI8h8dHJoqTnP+ZzmdefJhVIyHayJPp2wgpIu7dTXHw6tX2d0dmjcZ2JyaENF2U3ZPTdDdLYNZ13cKrMl6gbyhdy1dU/vRJ+0FMseZ+S7/IzIXOGagLXOyB4IyXc6G5VwW8fBeRLNyxMw1JUMtwuwcU5aPxxp5NFxte1gNI+dbOKaGxfh0auuR20i7xQ+ofUtvp8/pHZzUkv/I7cNmEf6yy72tLjrSk3jjnhpIT9HWMmpuYVHneWlrOb72YYzu6onSGEG8q07rXEsU9m5Lsn4snK7/2lJ4SPvdFRaTEciMsQjXin3Kqas5XuL3Xg393OToPGrIz77Ok8sSzfQnv2iLq+stvkra4Cel1Tlz5vGf15YUjDih8gWz++rkSoDaS0vJMrcHq85k5PDu8nJxvOH6gOeffSCV7rtgVdKzlwZ+RKWsnzoLLuT+Dl50/cnbJ2zl5Jufoyr+FAomtAeqvtM4oeS086slDIznvmfJ1+EtuRslB3eYam96Y527jJtdslDdT/0Od3rHaJdt/sXbL/ukfDd0nUlfuPathfvN/e/SwpNjXqu8HmiUFQ0I4ly2HUOg4g/vPhXJ5z1AlLsQD//Pz7l63A= \ No newline at end of file diff --git a/docs/cassettes/rag_d6820cf3-e14d-4275-bd00-aa1b8262b1ae.msgpack.zlib b/docs/cassettes/rag_d6820cf3-e14d-4275-bd00-aa1b8262b1ae.msgpack.zlib new file mode 100644 index 0000000000000..09146a28c64dd --- /dev/null +++ b/docs/cassettes/rag_d6820cf3-e14d-4275-bd00-aa1b8262b1ae.msgpack.zlib @@ -0,0 +1 @@ +eNrtfHk8VO3/N6W0kDaVFk5atJgxg8HIctuzZS0V0jFzcJiZM82ZGcaWSiUtaKFdRRQppVQoRZb2TSJFWhQqCiHKc50zVPd9f5/n+/q9nt/zev2er9sfzDnXdX2uz/r+fM65PmN9uhgR4CjGkz2F8oSIAGYJwQW+c326AFkjQnBhdBoXEQZg7FRnJzf3FJEArZ4dIBTycUMtLZiPUjE+woNRKgvjaonpWgjXF2GzUZ4/nuqLsSXVWJg6yuOLhOqGkKenDlNbRxPS0dfVhBgMXT1NiKmvq28A7jD06eA3zdtbE1LnYmyEA6arC5EQIeUnPQrMhik0mrY6mILwWBhxz8cPE3Bhgra6L4wjerrqEekBCMwG8tTKjE0NwHBhwuk/83gGZrEQPqDbTyIhyz8U5WtCbMSPAwuRDBbG4yGkBhIyghCET4E5qBhJk65KyIb5fA7KgolxrUAc450C84UIT0gRSvjI34czRDgioMD+YEbCeSfAhJmtlrMEKJMH0am6BlRadggFF8Ioj4PgOIUDA37S+OR4/u8DfJgVBIhQ+g2VkCZdfPr3ORiecNwRZjm5/YkkLGAFJByHBVw93Zzf7wtEPCHKRRLSLZz/vl3/4K/tdKh0OlX/7J8I4xIeK+G4H8zBkYt/WowIBRIKCwM0Eo7S0lgYFoQiCdVffHxYfj6+XGNrd9xNaKDtzxRrO8OWAn0PCxu+De5HF7DtWXAo3VlnKQoLbGz01gQGU+j62vq6DB09HX0KnUqj0ql0iivG49uzXBiSxQx3l2XOkuWYndgCsWYKbAO1bRg0DzuupRkf09PT1vcItQi2tUVYOu4CO9TWWayjL9JhrDCHgySwTrAl6mgJUzERI9BAx8bRfxEEuBOJUbYxy9lhhaMdn0PTZVgIXJYHczxsbSzX2FmtFBrQghwtHWAnvaXOBpY+Biv9f2OPrk2n0Po51KPpGtCIn9MDvsFBeP7CgIQUOp1+QoDgfBBdyIY0oDKhCF+fCvwQuVOezgXKAzY+5mT/y4Unp1oCn0y4Yi1ANSFtfcgN4UPaNG1diK5nSNcxZOhDNo7upyz6t3H/ly541l0A83A/4IZWAy6fzgoQ8YIQdobFv3T2fMLZgSUJ9gUYB9zkYMEUTID6o7yEowuu/GUYCeFjOELpZzrh1HKKqxQ3KLaWp6SBRyFjOiH3X0d0Tv8kTOAP89BQkvWEK2TkBIeGBLNZIjY7QBzMpTFDdXVQX0TE8jvfv4QvwAheCGJcPOGYNuN0/8CA62YAddEodBqFRr+MCwUoC0QqoQ8+JhBScIQF0EwoSajW5MIhRJga69CBPYHtFkEoj8URsRE3ka8lxgXOjS+C+AKEg8HsvBCKAJiFg3JRYFvydz9S4gmpDLD40t8nCLEghIcnpDNIz6Bd/X2GACHoEzL8IqPLZDIL/vWkAVLEFCZTJ+/Ps3Dkd27o2lz80t8n9JM4RsNPhQzMpqDshOrZ4MKHjfgivjCTxtZlsbW16bra+iymtgEN7OVrwGbq6p2xsKZYwKwAhOJGunBCuuWKJWaOtha5yym/+yLFiU9mkoR0HobzUD+/NDdEAAyTkMHiYCI2wFsBkgZouZqtSDhvwGKyWAa+ur5MXx0dmj6dYg6QbIDaT89NJcCaTCzr0ghz8vxLpqipbR0hQ/4MdQ+1n3AuL68hvC92aZBd8vhxi5frfJq3ev2xGG9v76iYqBiv8SPS761tKcKeNn7aMlRO0bb23dcG076Opz5rL6J7/F/X9fV2dOZPLy3sKwv9mLDtJnEtHf7ekVx4v6/lXoFtW1lK78TCmrU+ick2Jn3f7/v0rvXpLtT/3va07vOlDZZG3mqj9+UUDzv3wd25bExTpCx/ErzaxilwybqhDXe3TRvLcd9Xu/78mbTKaHWjyVYWdH+TpLevIyTvA7/uKNiTM4X6rsdC3pW51vbFctfC5xO11k0PHLuv+DXbuXN25svpNsMvWL+gRed/j92jd4qTJ/9K5yCrfQu8r07C6cwfnr3TYVzB6Ffba4XnM5+9WsO/XslzDTeK1P9+YqhofbLrxOw53WqsZYunDf24yqJIu0A/0Wb+nNamMUNlP9p+nbfjyBj7acknwyouLl07rEVmiBMt24NlgrS4+d9OHG+7uGBVXamzsvWszDB2gtXJnRvXLCmK6hgzwqT10KeEU2F8QeTcYSqT2NFbG0eP0H785sR+01WjD1HHyPqscggQakgu2DOuLAs0ajnLyD931mGy0bXWyIoThbbWmFHBMbm5B+7u4HcHpDGMYzZoxqRtP3vqS2OeKmP3zm3H3r4OrvVq9Z0V1Dli3MJj5k5HZuxbnX8y8EZ1ZxYdGXn5mnPggvAR4XKJoh9Hv4+dIvJ+y9IcusfQucvM8kzgVft3j/3zrgGozDPdeFb/2fMH1x8v4Z+UvBCpHn9nMvzmkqnZvOvnpx7LpC4UhS3y7TvX3EM/NEElsh2L60xugLNVYhgK4kRHbp7LNWcj3ckLltW8yhTsKH6bpmBU8ZZr7UidozytJVFxGP1VQq+hzusJz0+rPBA5eWq8yrmTst+Btv3FjBeem7dej380u9W40E7YsDIzuW1YuevFYbtDn92Q7Hq3Yu6p9EDz2I5nnRXTExQ0gs+wMuP3ZCR2sxQuig+9KvA6/f2LyYdh8zZwNzwsHV2Efrk0PSbn+S7U+351purY3ILJR7f4F3/ZZy4YXtgtX2w7Ot0mViPe4940tfiUTTlG04PKm05d83eSdL7Yyh9WZTRtz7UzOZ2b8iFFWsaFvXl1l5r3XfhuXsWdE6tkgUYN4x6wznW4mb657ejnxBoLVKZbddIH3Rc1B7yzovgHVelPjDfavzv7XmfNNO6o8xOU9dmNVzeOvXLWMvR07RTWrmcmnLCZKc9m1UrOf1xxWcVTX2NF2t7h08TrTgtvvZ/wtkLpybld2rMZ6VTzHN27qx3Slw8rfsdebTpcH4vtWh2VE6xeIXadP+eFOHHP1S2Uc5xb0/bmLj/5tpUXHLJ2a1nk4bv5I7CGZkslxzynpEq1Ea1jzm2nFD7J5JaqKrR7fT+6rLSn/ohH+ojyiB9FDdufFj28ZzFm1JKIG0+tmZtEPSZ62d+MpuQmsy7fcW0Z47xozkjRiL6Ouao3h4Z//fBZHps7M/7+l7fZi+AX4zVYRgVio/jxPsXWb/fXC2y1FEMCop0XTom5fk+rXmHl/c6TI1k1y1/1ntzgztEomnZhZMPeG8zwgLuKsgULQxPDlg4JLnF/JFMkE+/sMSxEh7Xv1aHU0K2N+IjcJ8KiT3s3IPP0O6c889iXEliTe7ugJzSs/Fx2V/2GMraO1urDModiarKyFc5m76qPlW+XmydbPGv+11uvHyTG6OyqOnDxo80ms3YTX25JDXKNEn2vjJ/tc9LC6s23DS8bVmRWTFzifWFvCqXYRH9kx9SnK6fQXo+4h7ruHBnbIqxk18lpvLvl1sNsGp18c5Fy+PPOCTdrvu2kuhpOzA7TmPlketbIk2p2igU2bxNVt9RHO2hPnOYVNuHhm3X7M+pO5OtM5B+FgyoWYq9OTra3uDfjxFbGsrvnkm3GXtO88exi1Sa3uZh71fYEi0PiRNeVzBetxZNDaaLgfS1VH6HyD/s4HkbHXcSGxYo7cqNNucpx1UVQVNdn6/bpausuturHbYjLubA69bCPqorVlOtdMWPaQ5LrVCfYL9045JPsqwdBIxeJTGbHK97cmNcID/ngeniU84sdc2s3J8k5PLFuuH7XgZ2XJF5x39LYrzWMme9OuQV59x5XXn2uWjmm8JMXVh+cNIan35hwbKd4OH78jGJhMS+t8l6m4qsPV+dEKeWb0xIb4odMebO6Sjlm8WnlTXhhNfvapOdD9d4jyUtKUjKvt17WSL36+YywmsUcqpFXEDOxKwB2XCyZspBftPcxghlVFnR7anFcHBm5NV9n3YrlT9rSRwcF0U54/fZK+4C2RqX6cscGGQaF0xqZvz3RuzpmzraskGsB+PsM9Eu0goldu5nRWtUeunHjCL1OReuimToZzKlVw5q8HQOu2WZdvOczMuyo94krkYVBEa9PVZUlFDd1j3rc3RobwZ/WpWTyxkMhVKWBounwxuXjuLuN5xdtlNt56Uq9Z2+GYp5LsOzB6+xHnrUHH88fN8u7YVa+5akRST8W9hwY+dVrUvy4i9kaXs1bBUZjDO9Ncj+eYuTsHTl/1ya5loepxWUxQUcm3SkZPl4Ut+aexPWGVjVrM20WMuHl3EvjriSGTnZstNX6Y3ipODlFWSnx5nmTgjs+TKVFCxIXhtYp0CdegEr2rVRRzl9RLBNIf9zKor2IfzHDQ2ZcwdjYM925Tfc/P7rm4hChW6D7TKmp2cTMtsFJ7rDkweNOM+WJOjkty5UbWsyf58+OEvX5ZrqUxru7Vdopj/f+1n46SYh+85eJ7DUIpxh7LzMeEnbU88H2LUmHqx6WDHuqeuWsfvSO63P5V8qflwpPSCZs3qgcGWTRnJU5YlVuC2Lrg8pk1lDm5KeGSNpKPnJO5DdMCtIPH+Z+c3RaTKfX9cDEA1vjc2Vda3vmpv1Yv+18/lpI7lm9IUvxTlJkrdxBhd5b/hUX8z3r/JE3P9pHXZj9Zmhi7rozJ7L4Jfes4xbqfWiYvjPipG/NpU+KX4sMothfdQ4OqylIVjoTUOKWkOLR0223IuykPXAUxQtXM1bTgjIntV483DX2o2uDndaE8PanG7/lj65zqhk5TObbKKui8uOlz4dUb9y7aOQbhULu/a67c4Y27p7F8fx8XrNp1W74nOfpqoINQVZY7DiLwjzV0kN3ZhgnhkUobPtB7214eqAoZ/+6GhlmXp9u7PWdVxi9Tcqz9ClXqp+EyT5oaX/82u9CyQ4VC94GQahRxAGkunRxVNKXgqO5kzpKNT845QkEO5R0C3EvyrHpMS8FYs8mXQv5gDsRwy+tWUV/Msut7Ufr5E7miFSfzpbeEXR5pLjNue6Im8GszOy1HZsS9s2PuhY8x4LRZS2M8PnjtVGDbCQ+6olJ3NFkyYGbsZQPShURXU3n8o1zGW9w428pccEf4wW+ape1v65tfq1SpuPVodLoFB86wenqwV7dWua4nrQlScGL9vEFr0fe1Xh6smre4bfJq8o+3f287a1mtyztD7d4SY2y8nWlcUWsS5dZmbvPI+bl82dKVlD27w+up7dW4survSxdFi5/0rPrqqDr/fOJB9LfTtK2p/kadEb80XFb1qOt6wtS9VzZIcth9fCE5tdySZ2srR/POGTGVe5TWV5moTf+udbWRYVDmF+mbn6VxZlye4nryimHH+0PlN81NafiKfXIoXUn9Cqz9G9FTrzOlh/eNLvk9nJzlZbjamosxRdXcsM/ye+NaLl44XDubcFedPju8iknxeZHz/a2vrlOnd4xLp8qVAg1M5FLiqq9s+vx6Oyz1JcPIpUsv3RaX3JMX755TOj76JrpzxfEBS4bojt1XMKXhcMcMrxUwiXMmc9v2WSqBRyVuIy7+vaCj+JJg+T6pr5yG/e8+CW3L0TX2b88Vu2aGfjskVlUh7vqQ/fdZpeMPyrlVpTnmmU9cRorokqya53SGmZoVViP2lD4+dutrE/+s/JvmEZa8Usd7S7FZQ79IlgZqqs9PCZVx6dxR9nYslv3lufuLNvKr3pjKC7T1G4QGb8tz5wR2958cX+W/MKXN6IPNs1+3dMY/mUubTPT7JX4a9G+iy37vD7uH6625bPtu86I5Ot4eFC85YL8qdrdKy3kIz5ZjpQ/uEMxxjI7eL1OxPTC+5Gx1Iwxyp8SVr+ub30iyHO07N59LqrT5kNn26qcEdMx1xjRjwjvvaF2X/mCDYsq3+d7JkZkX/lj981pH7wO62O3ZKfIlJ92iv26D9EsfZmZfcdNNYWX6SE8gssbX95GSzSo0Nrf80d83J3xnj0NKx19Foqvx92fYVaZUR+ZyWZez7WccnPX+bVqeTpQDlp/xe/96sTvM4a+Q68++N5RSUm9MiX3S+jBzhOCjZk2S5zOyuEhl13Cw97WethTh1SdPDPt6w0b7M7Vh5P4bbByx/LoTFT11hS21vkSv/Lbtc+H5G6e7Re93/cOZVdbAnuxz7QNzx7QvzW+u2juuPbV98422zJv/2aZa3kpnw5Oq/0j32KIgndu9lLc7VuufvmmzB82tOGLWAoHXaLqX3x4rzpiwdiiL8wo9Wa3jGCXPTvOHGCZ39bw4ZS4nXXuyGSszvLJiFV/t711hE75aGzMGnbOyMbpuXO9wrtjIsbebFSfG6Z2utcq7dj70En6ZpmLt1VX3GxWbjmouf7w8x1d754ui8gobu0Y4p582O9CF/xyQb1RzXL93GR+wk5M3mRGHdzHlY2LDwtbV6PUdJZ59BGrpTty3fq2w+XHHi3qql+nWVs3ualC90PZgwvDoKGxCV3fDebn63NKbDw07G6ZRGWFL4jL+uRscSjZOAx+pxBm3944c+vrw7qaFtmcc/K+FqFDOI93jhgunuvMujp6tZ6OVVQIe6TxwSuq2Z++dcC7eeHnGbfvsR7s4Ew5XDSLsaWsAOX06Gx7NLOs1ixm2dVehdYs7ahcTw/74KaZl68xLZsMfSJNnweHt93Wzz5rP4pWu+Ow4pHCo2vbFWd16q1vU5ebiNwYqdE8o3zsflfHC+3u1N11yIwqFntCwEUNms3VJotvrgoc30dUnZxzjWUa7vcT3t4d3m44tvYM3UTVJLjVpNJ29FSVORU+68+UmXu/RWYxTEcMt1do4G7VRu0WbFaNna00eXPGOm0PtdGfNz/UE5teGbpadeddTetahd5rG2/3XD6+JP7r9zcGPmqh2xZXnGnHn31bNW5+q3pg1eHL2tMP3tcs3imcdi7Vr/BOyQX2lx/dX7MP7TgyNfTdguJ7ru+eJHcbb23aRckf36U+Tt7g0KNLJ8xGvzQXXd1f0Gl/KYbWfUPWeDTDM0a0R75145AivXffVKfxSlILhjZua1ymV0A/lDq9t31vNVM85/k0vw0OSw0/7Al7wrqMjYq62iW7qIevsM8doGXYqnd1NRtD/eeZF+bNOGG1XX+vh1FU8LqTwrihU3Ov5OT/MX6eBud0ZAi6OX7DVi3VNb2oau05F7Uh887dmt0bK//i85o5pqZOSiLfjhTz2Cm1bb1bRY7vi1p8txjGZ84+FvImP7KgfbLa4Se0krJlL5buniwz5NC5rBNK6lnJ58L2XKfz5W5Mh77e2aE9ecfZSpdgycTSopAHZp/HMpab/jEjfKlt2x7nWxGnRndI9qXSvqd0jnj68Vl8RJHH6O8/Tp0KjVrWptVXFFd5zWmLxdp2ZYfpex5YjBer2ncOc49dB8cqKvxx8VvE22c1MYurkfbhM0eEvI/cNevk+xVnxKaRlIkt6+82567q2Jx0Ld3j0PxnKncObPzKKM833/3+R09kx9ZPS/YJQg9TvrWpiY77jftQa2Xz8Hh36Ogd9xRPlShBu3gBM7GKmmWSwudlyb142rPZxQVFYz/KdT9xMh/bZjdXWTX3qNvS0fn7R04fan/tWVtpmH1wb2nUk6ShtXXUPP0pygdWYzdNGPfO5Ti8baj8w1uJdSMvWnPCNGPZ0xLt/R+KLyd/9mRnlz7a9aPLrznx5HcbLKjlQ7ZCxTBF986rVmpa89saAkZYHtF4GquqhNWuLtkLdd2+OMa870T58YKkbN4Zmxt9vR8n6slOvLD34ffMPPcJU4cNV55Zspwy6uLKkHrdm0HGrBdVM4wnJV6sT9LYubSvo4Zxf5Pr5fAt7CA1mmRGweIHcoz63Vdy4s9vj6jmnV/YtCI6THb5SSVxoChlLvOTzOP7bjJhR+9UFoyKfmMVPT5wZcaR4aYRSg63U+KLdy18+XrzgZ5GtytDrAzLOvLqqrQv+O0361qi5h727rxaj8aK7+j3ozbH0O+fPLSQCdXCt3G7T/2Q9wvu2JYbZHKttq3xmJF8cXFgzdHYESUecscjjGZlN4Q1t7w7kuC44dWKvealEd8UxJWwk3iajtO7JVvur+7wYEda4gajskKXGTa333i2RstjNj5SttBozV3PonoWTTkaV2EpLVvxrTGees3QWavC5Xyz9oy4G3KZatbn7l8uPWUnL7duJiuW4p76+upL5vubLxZ3lj1mHoxLvLmhM7zhc1zy+z9Ycphf3c5DW3xG19jbyI5ZrBKzc0new4aTldcqty44F5SUTjd6s2XzzfTXJ3KavPVunNYysRCkiQsjVGbnmjJobkvS5SUfMkxbek5Fa60qm7BTWCf4Y8v5cUFdR6J3nb90PPydnJIj1ybDNBJee2DkBV+/To7dFsWGJq7L8/uCkrSKlpexSdFnvTIbFr1VcZ/6oqSnxbO5Wpyzp36lKdt2KeOt/vglMqFqc9TrHup8f6IWHjpyebftykkpWtNCNDzXc1/rUR975jfzq133PKt93ehyO9k9BAtVc0SUp+YcPzG5JLQF6+qe648x684s8OqYsHPPV1Zr4EzrsftvJ0w9yQt7zM1f2nfI/3RoeNKBxDF1Pj2Wh3aYsX401viYlry2mz/jXtuy3l0emWvEng3yB0Qhw+7H/+htdq2YkB4/ZXm05+fABfqdcvuLZ6XPdShAEnJmRRdtl58oyo8wPLtG4WXDrFtr25+9zIvQyAr9HPeD7RUUW/j55XfKN02Fq2EqiUW5N6gRDca77s6IvgqvqUIXP+j7ggaMCSgqfRan4vQxYufbBTuyI9QsaQHHV1scDqP3NqcrxKWKZMPz25O0Nr7p7N3v48LIm/GokQ9NL+hO3qZ+s3L7CtVTUyvWRa549/rwGNPw6x7rGx8uvNKanhxVV6fV3JO8fb5RyqQxTvlHdqjOmz/NymRIR/vKjucFjUnz24fN60zYmsXuTpvdcnTknds/HJNhQ5mGDbkbIjvm0W5t8igBZYPM6/ZtN8PNt5aJn5Vscnrd6Ny2+MrbpMJipqLROehs+9ynHz33aiVtSatkb9yFVp/VPvJCOTPv6HHPpY/iC9Z8mvqjfnTOaU7U53nPxzn6LCtvqWkfUtm7Q7PnI/OF4qWobNjMgmFvmpoydeucbOua4s1PnJasWot8adzHZlfPaVLPLquy9QxbHdC9SWIof88zKsBom7tVVdvV80a60KIpnhXU1FNpuryg7s3yGTS1awcPC9Xy5J18euZYXZrYMnuSR2HUpoeeGY1GC7UrZu99vPugI+th3sVe7GpQbcbMg7ET0sMNrYrLdjNHr/i8gmk8dLT/gTcBnJpTO1YbTKY7rkp68eh05DLJsml7mopfV2rNEEj4d7btd0iqcto3NWaoV89kg/ubPOpKH5ZtnvOFIzcuf/2+FHnZiX7UrJ759klxF+OOhjRt9YmYkt+Er38QwZjwdVxjkYv9OUbybfFio5D9dLuIK/JDqAzdk36HtHv3GsRzcoe9OhYnXzopTfHajaqUy3bJyt/bNaaFa93cqltAz/oOuQ7lGDve4B4MVTleOyfb0rCktPnI0l7JEMOujmZno3LTwgPFS7Xg3rl3Ui67PDG9ev3Z9RulTtiQQqWJFe2LwmBv3arVKo+1VnXE0E21to+89/mC2SLViqU43WhIBzV/ZmLXWTrmly6bqTa3YNme2m0fLWQ3Tjv5UHccZcZTIx9X1VujP1bMUkprP90cJbfeIQ7u/Kix9DHH6oWNSqlz/vEK5JNM5PeHj99Jxtg4qo7eO+zBih5/r3KvasrMfC95YZPPMbOvawzKN7Bilqsdjts9L3fiTdOrDDW7aqXzj3f6HN5hvDlxZiOm6C73uYiFfXx6R2luI1QVonH+a0tl5CZ/88uYpavDmz1LFoknHtnt5Xtwqi7jR7uH6payhM+tDca5X9deT7XBQrMZ/vW3784f/qCutOtBKtcg5+JJ83q9ihgtB7j7bVBscsZeo7pola1howK7ZpgM9+60/9a8+drFdpUt57/25ZoWdr93n5AZVvihr+vjMVWHUMU8vV6+09PNQZGbPtbUnJqbsszwBP/+myQfSdDhI33fPkZn/dg7cUP5y7pCN9m+jjOFP775FE4Y7thTXtd8PYqeXNbX1ZIypC/BaGffS0n9fbqc9myrH52mfSbrWjsvYgdaugrLcu+ZFtf19c7pYwa2dlbtuNnTd7n3TEfcj2afPnkZmb6+oTIWy3tP1EIyMv+Hc+wF//tzbFYALNQCn/kchDzEIA8dno11DVPvP6jDiRPtMPX+Mz7iCHoFJoJgAQLBPAjGcRQXwjwh5IcJIHJ3QIQC8/BghDi1gIQwHoRToaU4AgkDEDCLOGMjBvgowkJwCPODiINUFBEjbIjcI0QICTFISoFcM0CVCtn6QRKwNxvjaQihIB4WTI5Lp2pCgSJcCOGwBNyEhX+ZOMCBAEEgHCEkITbnwiEoV8QFFNgQcSz4GzmCFxaKI1Qvnkv//oaQB0EYxSF3IBRkiRBaw3CUGDOFvHgWUu4NIWvUnwrRqZCTGBGIUSSYEBKGHBwcKXwMkAaCwiIhxsO4mAiHyDNzCJfgQoRLJYgAmjzilhMPMYScOTCPOAyb5cUzg0grEUeegAKhV0iEi2AORwKhPDHGEZMC8SQQoMQHKjfj9dPmIQgbJ3RKaiyYkAHIKek3IRvicwhDEseaYP+/iwa2tgiAUR4hBfAqkX+AEJpngbkvgjwQFEKEEMyhEoe12vOhABiHfIm1gDBEuAUbFgD6AkBMSDoDwgrgocCepLcgvAAY6BjcJ09NIT4iINscgGkgjCeVFgkZ8CB3YBrpPGAAlIcLBSIWqQgM8hJp0+gsYQDKCyKFh3ylSiDvkzNEQpSDhhIEgMxC4hCQOPcntxAJyXNYYha7X2wECCKQqpjYCozgXKBn4BSEunCU4EswoGagCYg8aSV4B+Kj/r8v5Io4QhRMJywDrAH7go/SYZJUABCAgwKN9k8HhiBbU/ggJqRskUrvl5yUhwlMSUhKxpD0VBiYDRiOcG0w211qIhyatwLGfjOPznwIOCfCA65AsAxUhITwORgZpD+5FCAwjvFI0hiIbF+gNSEK/Aq4DAKzAkiZQRiCaEcFINh+KgwnmQTsAPm4f5F8wGdIfZFiA69EiJNa/G+TcMIJyJmaEAswQ3oNDPRLhC1pcZEAkfoCjhAtHwMqgFhAdb4IZG7tBs3zBSvZwgCKlEnpxPkQ8DhLYpSN8P82FowKAwYkBIxBiBjmiMg4A3qCIRaHwDk/FPA2T4zC4I7Up0miXDgQIw7XITEmRAYiiP17BA0wB+AIgebR5xNEARpId5W6029BwkGDEMhL3Y1UFxEny1espHp58ehUL3VNMECCEBG7hMpxka8/BnOkEwH/AEcJGmCJKTF7nja5mQgfgGIKzkdYQBLWzxAiMH8RhFABZAHaQBBp7GICCYSJhByUB2RSJ8kHg0GpPXiYGOFoEsLP0+lXXoCISzoviCepP7oiOCYSANsYEqxDtoRb8wh3JJsqSIJS7SNSp0B50h4nQl/+MJCN8ExASZsKOWBgV3dEwIW4CJdgTBpMXABuYIIOFbJxdqfoUBnQALyaEbgn3QOEDeL/M5T6lS2FFC+eLhVgNbgGggK+SbadfwMhK6kXENBPykAAPMoTAdQGmCtASGgnWAfccCQAXUDKIYxAqpTAE4SHA3clMxFhr358I02BkdbzBUhEsCVdOBBtUqHBZv0GAroGeIZw/CgswgIsdGArgDUUPkrGBCAVAItRjMxbZELmSKS6cUX8OAhLSCAqH5bGLIqTHJIIJCQC0Z+IccCTAPED9u5nhw9cEniUVE1WIJVJCLzkEqsInAdRgeFCTQjHCNcGACkQkhQRP+BdKGEayAzlElT7iwvkJy6SsnMQghueiOsLooowDQmnhAkInyKDCAlBWCJp5rUKAdoTSmEQ7x8gswQZBAM+/QtZOZg/kAYH8ELQtP3l64bEDh6ExxIrSX8lF0iv/ID7EJbvX6pJ3jaz/a3M+ZlM2QgOzOGLDCAf6dUEpYFtSZTiE25CpHmwGpRSA0hA+AFRBuAQhShMBCA8ACOGUFjYb5dQRISmVBEDVQA5wZ0UkhhzJNOhG8KRtjaRo9J7ZoBffx4RIL+IWP3SJpjnDOIE7XfViAgqRNR0XKKAkgLjb+UX0Z+kgUP9tSVhPph0GyJtATmCiVQJvAJAOiky78+aIeuU39WDB4AiROphRNgAvZK3+1P7Xy0wECkEEwOeI+UQ+APeXxP+fRVRSMIkp35EfPMBnmhKxRMiHM4visSHn+75c6o0n/7V8oTp+LAA/8kMYSKiNgClqwDmSJ2PKJW91ImPXqBSJv4SkI2yCTAmrnxQNnED5CBiHPwBCRlwLvHpH8SJUVjgjxPDBCWQs0lK4C9JiQvciLix1NWBnCpio9hv12KUjQxcR0R4S52wfz8gIMJhg015mLA/Y6PsgQLjp6OSBgsOQEEu/JWnAeQDrBP0Q7q0wCZ1JxIICCcjFwkQDoEjhFHMpDFJasUf7E/pFw8wATAGWG7ArgNbsEkJIVI8TYiUinQLUp4Bw/9SVz+XRBijZBj105fKSw46LnVzJ5GJDA+wgR/IsH95BsGkfVtkQJiJYZRD1mdktDgAq5OBAQgCeCW8lAAVUH1zCEHJrIAHoKDWRITBCPB60vyaoJgGuIZAhIqJzVCAbQI2ERq2fr87MuE7wKHA04kvIvUq4BdEoiDwRQrFfID6CKgJJJCdm9MSKrSY4IPIIwMOx4KJwotIcmQ4kYolooAUxxJkSh6J7j9DnFAN8bQHBaDS/I4SUc0i+CN1CFZZEMOL+4eJNdZSpYGZv6+UskoEBMgXUuwk4mbAl8iORgJ8wNYI+6fb/MarFBX6UY0MN+kzE1EocDiiAb4JggRcLBb5+4OJIM1DwZiAeBqYZ0t4CiQlbAi5Ebjze60rjV/pUxUZ4QIUlz5t6vZDMUgERCnm/jsnhtKyjNiCdCoiRQtIHCEekwgr4b+MONB8+Ndy9+fjSr+5/EisE4JnXF8RGUs4joHQIFzyV9lJrJLiBUQ0WGtCtpaav/wdhJWmtNIQ+IsIxUo3IAo7QB8JpgBQBRV6CEwgGRlb/iIQOKQ0RKrC+hUOJCALuP6Hvn7l/54dwWOsGQn9hkT7uQDjIMQDPyGvesSfetb9+UKKLjGHB67o4C+ggcBcAqoEIsA/QC4unwhtUJyAmzSq/j8d6//TO9b1dfk8e383pos4FKdyMDfrxW62Hv4Oa4QcfgDLkWcmXskOXbPMHLZydvzVEq73s2Ndom0ZyrIXWdAYkmX2DCcHH+4aWxt72jKOQaA1bkCl+q1xEwVyAoU2AjvayqDF9v62YjeRjQ5XgupY2UkYEmtfD9Qv0B8xYy12EGo7rrDgioP8zX51rC/lLLFkM2m+9tY+Ni5LnF2XmgezcYG9GOHR9Jg+NuwQOpsZbLFU3yH4t4Z6PQZT7993rKfq0vUN/mst6xP/Tcu6wd9b1qvJJKcF4BvckcbLIgJXAa4IjUVCP4rBf72H/b/SpP7f1n+eos3Q/h/egH7c4L+p/fy4vgHT4P+m+fy4vh4Y/5f9574GTBZdW08fhvVhFpvt56fD8KXpGejR/fR8mXT9/5f95wx9lh7DwA9hEP3nf2o0f6Z/gw0LYVBFgLpV3VCdSPwskFgoZhb6QicWzGC5ars6GljTxdposCtmIGLZiRx81TXVMd9A4J/9K6i/XilTSQ8GE8g3Ogig+TM6DTQHMoo0oVBoenQdMFOauH1AdeFPvAxDiffOPBGHA2gEYCiLeCftSXzfio2EqBvSNEF9yxHC6oZh/RlL/WfVTuw68OJaHVyAIkmEwxwptQhNdVDSEW+t8AHyYEcUD/CRvgfrn+UdMWrU/78a+SU+UeqoDzKZpa+yB5vUAy8eB521UXzQiQwPOon7a5FBJzfmN+hEJk5yiJOuQSc4GwsefOjdf+I76OQmXxkNvlzNE2KDTuj+RoLBJrfmoDM00Wky+IT+2eQy+AKbOL4ebFJTB52Z3QMG4SPmz7a9f94nDIanTPBp0EktwsFWg68CH3Qim9kOvsqEpDEIs9bge7qUdtQPwucOkvCgew/+q1V58FUpg/TtqPTbP4PvkOtnP/M/z9j/8ca2FQ6+2IYHH575IoM1Yw9CACe/gTbopBbDAuI7FYOvHie/fo7/c8r1H/9uQcQKGITF6OCzM/m92cHYaSb9UvY/SDYYenAGm9A//xnAIDz5+PXPD/6J7f/4l4WDrt+K/GbpoBOa/B8kgxDLiP+58s9r0f9Egf+9jOq4EOOr/yalp6XTEivvUaP+F5Yvky4= \ No newline at end of file diff --git a/docs/cassettes/rag_e75bfe98-d9e4-4868-bae1-5811437d859b.msgpack.zlib b/docs/cassettes/rag_e75bfe98-d9e4-4868-bae1-5811437d859b.msgpack.zlib new file mode 100644 index 0000000000000..f61ca4ecef6c8 --- /dev/null +++ b/docs/cassettes/rag_e75bfe98-d9e4-4868-bae1-5811437d859b.msgpack.zlib @@ -0,0 +1 @@ +eNrtenk8Vd3bNyIqUncpUuw0aHA4B8dxZMickLEQ0nHOxuFMnYljSqUSFRpopDKVoYQoQ0KG5kkyFGlQqBBCyLv2PpT7d//e93mfz/s8n8/zx9sf2Htd61rX8L2+69qttTeDD7M5VCZDNJvK4MJsEpkLHjjH9maw4V08mMONTKfDXD8mJdXezsk5hcemNq3043JZHD0NDRKLqs5kwQwSVZ3MpGvwcRow3RumUKgMX06qN5MiaGKGqFAZLB5XRQ9yd9ciamqpQVoEbTUIj9fWUYOIBG2CLniDJ+DAT6ynpxqkQmdSYBoQV+HCQVzMb30YEoWEwWI1VYAIzCAzkXdePkw2nYToVvEmcWAdbZWwDD+YRAH+tIrMS/VjcrjxV/9u4zUSmQyzgN5JFfE5vsFUlhpEgX1oJC6cSWYyGDAagfjMABhmYUg0Kh9OF86KzyWxWDQqmYSMa/hzmIxsIM+FGVwMV8CC/zmcyePAbAzJF0jEF9gBI4ytNOwFIJgMCKeurauOzQ3CcLgkKoMGczgYGgnYk85Cx0umD7BI5ACgBDOZqPh04eSr02WYnPg0WxLZzulvKklssl98GolN19HOn/6ezWNwqXQ4PsPU/p/LTQ7+WU5LHYdTJ1z/m2KOgEGOT/Mh0Thw0d8mw1y2AENmAh3xF7HpZCYzgArHN3338iL7eHnTDSycOU5cXU1fIl/TnmTGJriYWrIsOT44NsWaTArG2WttpZLYlpY6u/wDMTiCJkEbr6WjRcDg1LHqOHUcxpHJYFmTHfCCTXhnh232AlfmZr4pbEFkW/lrWuKxLpvpZsYspo6OJsEl2DTQygomazmzN1Ot7PlaBJ4W3s2EFCAgaQWaUW3NSOpMHt5fV8vS1ncDBKzj8akUA7K9jZvtZhYNq403ZTu4BtJcrCzNdm02387VxQbYmtmQ7HS22uuaeelu951mHk4Th8FOWqiD1dbFIv+uTmGDBjN8uX7xKTgc7jIb5rBAdcH70kHIuDzO3lSAQ/hhXQYdBA/k+JKd9R8IL041A5iML7NgU9UgTQLkBLMgTaymNoTT0cNp62FxkKWtc7bp5DLO/xaC153ZJAbHB8DQfAryGWQ/HiMApmSa/luwlyBgB5lEzGczaeAljRmIYbKpvlRG/MV1Zf8yDAexmBwYM2l0fLYrxlHIGxgrs2xh4WHQmo4v/PcVnT8pxGT7khjUYNT0+DK0cgKDgwIpZB6F4scPpGOJwdpaVG+YR/YpmJzCYjMRWxBldE78JZzu1cmBKehmgnBhMTgsBou7xeGyqWRQqUg8WEw2F8OByYDNuIL4JjU6KQgpUwMtHMgnyN0GiMog03gU2InnbcakA3BzNkAsNkxjkijFQRg2SAuNSqeC3KI/J5mSE5+KB5Nv/lOAywyAGZz4DDyKDOzt6RJsGNGP+PBHjTaRSCz990JTqhARIlGr+O9SHHi6NThNOufmPwUmVVzCcrKDpqQxVEp800rw4KXto03C4vAEHyyJTCD66GgRCRQtXSJZEwce8ZqEa6YWGFMS2Q/GOKEQjs8wc9tibGtlWuiKmY5FjB0L3UniMxhMDoPq45PuBLNBYuIzyTQmjwL4lg2nA12Oxm7xBbpkIpkMfujoeuO1sAQcxgQw2ZS238hNRcga3Vj2pCPpZPhWyysrx0iJoP9mOAdbL8grLu4InYjeGrA5+a/5m1y1vq3ZufdSlKenZ0RURJTHX1IZj3f3VDJfdX47NENcxqr1048Oo4nBV167i6gnfd+3TYwNDpUsrSmfqA3+Gn/4HvIsHB4fTC5/MtHzuNSqvzZlbGF5y26vhGRLw4nxJ15ju71Gygnj/a/a+m7uM9P3VJ5zOr9KIu+Ls33t3K5wUdYi0k5LO/8te2Z0PDqsOI/mfLp1b8G19IZIFf3F5qY4X8PEj+/DBJ/9fxwtPZkvr/5p1FTSkbjb6o2rY/nrhRp7lvrPO131nmI/tDLr7VLLmTcs3mAjS8ajT+pk04ol32mdIw8cIp1uE9CGSmbmHrOZXzrn3ZFWbkFW87tdrIoGhmOofjhh/PIM3t5kx4W5q0aUyds2Kc74usO0UrOUkGC5dlVv19wZol+tfqw5emGutWLylZD6oq27JXpExOywuS5kQ7jHyfdBwl9Wm0p3tNXYy1msyAqhxJtfObZ/15bKiMG5Uoa957/FZ4ew2OGrJRQWUSJjOudIab74cPmM0Y4559XninrtsPHjqgpuWOPLtvnr91zHl+Rdt1msf6c3vP5yuZUFU7/0kvjqs4+Oskb80vEGUfvUotKPXM/+3lmshD9x7PClj+8DWz16vVcEDEnNX3/JxO7CstM7S674320aysHBs27dsfdfFyoVKp7A+3VxfJ48z/MjWW3GST37YWOza/63rT+98C2+A6iy2Gj/dULz66cVL7awrgje8JTSPhnOvLdlSS6jomDJpSz19byQDd4Ted2juPMLFMIHmLFDyR2kXIUovDQ/wZZe7HDHXl978bptLe+y2EerPqZL69d/pFvYqq+SU+xJkJHAvYsf09N6v+D1VYWnPDt31Xf5D1PO2GCPvFn2xv1gTEXc85W9BuWbuR3bs5L7JeociyROBDffFRz/5LY6O8PfJHqweah+aby0auA1clbcycyEEbJ0Ef/8u1KPq+PfDb9IrNlH3/esZk4l9fvNpVH5r49TPZ80ZSnNKyxdfPGQb9X30ybsmeUjklVWczIso1XjXB4rKselHMjXXxpQ15V9x9dOMPQmhiXRqK948s61/KEDJZAMNvPGqeK2m92nb4ybNNJXRcuaUiMk6GctCm3uZRzsv9iX0GJKFRlRWvRF+03LWc+cCNY5JdxLg/3Wn65/1tqlSJ9dsECOQOm8vX9e2XWz4Kut8uTjzYa0kOUpzStaBQVf3W4puBNU3dJPzVTk77nKvf95wcd62Zd5xzVX4jPUTfK1H+20yXCVqPpE2Wk0k8CMHt4ZkR+oUs93XLvqDT/h5O1DmDzafcVTha5XPvYyAoN2x9SGJz0qkWJ2dJvJ2hbbJTYoS/XOzTuCKX+ZRa9Rkh7wGL+4rWa0/YJLhlRd2K/KjiOvKp89Np07e0vY3VcWxAO8UUOd3J/68oXJ5FsPHXvm2m9YNYsnNTG4WunejNAfX/okmauXxz35/jF3A+nNX6pk/VK+ftxfXlUWH8+0s600ZIL8Iu3Xy0dVPNZol97+ZOjKLHKL67uxK/ucaaqVijdmdZy6Swz1eyQjWro+OCFkq1hgtfNzkUqROHsXiSAt8ul351ODYzo5UoUvuZXfTu2D1xCG5JtdTqf4txQ+KB0NDqnLyx1u31dL0dLYmSRyPqolJ1f6eu7x9mjJAfE1olUr1v64//5pQpTW8cazRV8tDxgPGHrTq1vgO5jIx7WsXK8rpuYffu572+GWVb9wi+eNUymYKkPCrMElr7bLY99LPaY6HpsV3cNtoLSJq3667zRK7JqTfG+DXOjroQX3Wn4eU3fUW5gborr85dKcWVeUN8uUWn5MUDrUHmmjuVDRI2TBsw97zmS2XS7RWsi6SAqoX898d2WxtenjZZdj8Nse5SVbzrujdre5qPGA02qmc+OReNPz/ATH7cQ3vVWLg7G8wNM9jV+hui+naS76aQ58vSqZo4WRRnS52KZKKGK4z2JgqfKeol5C7L7Y/Bs7U5O8lBTM5SuGo+YOBCW3KS2w3rpf7Jvou6cBszbwDFfGydzbX9xJEvvimDTb/s3R1a0HE8VtXlp0VDyyoRQn8t2emBn49IYQS5wx9yHPsTS5nXlNclHl3zyY7YGJcxmEzvhLx/gzOWnXZMqrGOkNj7Nk3n25vSpCtsQEm9ARJyb/YWejXNSmq3IHOOVNlDuLXs/Q+Qwnb6lOyarovaWaervvGreJTJyhWlwatXDYj2S7SSC/nlV56gXM1G8oHXHXoDnY4gtbfqy4H81adGgCBxqiY6S9Rxqs/fo7ZdvrbDtE8Bhab3jJkQTPpqhVh3OC7vhxPmdSv0dKG24eMNbfrTSKM+iU0hmSsahcrpVJXNIo0eVp63fHKqfosdeskIuel8vCywPC3mc31sZXdY3MfjHSGx3GUhyWNfzgIh2s0IFRs/ng8HX+o86CDfvFj90sa3cfy5QpdggUPVdBee7eeu7F2vkrPDtWlJhlSyX+Wj96dtYPj0Vx84tyVT26Y9j6c/UeL3JOS9G39wxfe/yAeM+z1KraqIALix5Wz/yLF7vrscDxrkYT+SB2Bbzg7eqb88sSghfbdlppbJxZw09OkZNNuFdgWPrQiyi7YV3C+uA2adzCG1D16e0KciVuVSL+uBe9ZOybuDfLXETml86LvjZS2PWk7/kdB5sw7VLtZtmubkNjqw478STB0xdDxnILtfJ7XOU6ekxel6yM4E14ZznUxDk7NWyW+8vz58DVRC71p69I+JhuKMbAc5uBWMhF96dHDiUmNT6rlnilVHadEHm0YjWrrO51DfeyYMHB/XLhAabdOVlSOwp7YCsvqkhWC2ZVSWqQoL/6K+1ySceiAEKohPO9OelRQx4V/glnY+IKRR1bR1en/9p7uKBkNyTe3K5HlnmYGN4qfk567L5vfVGJe5sv/OHXwOwbKz/MSCjcc+1yDqv6sUXsep0vHUuPhV3xbrn5TeZHpW4E5YfWOYmW0mTZa37VTvEpLqMjm91CrlgDoMjcuJ25ExuQtai3KGl43lfHjs0aC0IHXu3/WTKnza5lloTIz9nmlXVpNa/Fmvaf2jDrg3Q5/cnwo1UzOk+soLn3Fah17ThBynO/2li6L8CcGT3ftLxYqeb8w2UGCSFh0od/4cY6Xp2tzD+zp0WEWDyhHV1xrAw/1iW3goApa3oZIvq0Z+DFe58b1UcVTBn72MH6YWfhpppNEYnfSy8WLhqsUftiV8xmH5XVLud4YC4tjXrL5rt3aZtK+j0Mm3lz1w7cyxVO/b96Fw8RpVK9hnrGpHCScFW/fdsFJ90VWbm7Bw/En14bcSdwlSl+2IIb5rXxvX6HaDhn9kvD2IvJgrP3ojFfZOvDhrvySgwK8R84Bj9TYgO/xrG9lW9p/tjd/V6hVstjUKHTLi54gd3tc2ParcT5o+lbEgM3nGax3896pPrqSuOapI/JO2q/Peo7/FFtRBS70SlO0CInVyE7v5J88xY560QBbFK3drnADXPmTGA7rreB49rkYeaw3vXl6PHb7OHPrxeezfi4SNMa6607FLZx8IGoS//wd7jxtZxNjs3OmfHd78UTh8gxX6/ZZMU2nFZwrTXV+eu1RsyGcjHi9yUH3+XQ5B9scdwun/T8jL/k8SX59a/UL5zfc1mnIYdwP3xhBUVyZtfK6geuJgo9acrKZJk3ZYWh3yRPhfUU3UgqfMA+RZ15ok7+Ct/k4vWx3g8V6ksH55eoc6WDjQ3FEyNaHx5/MSf3uvrbp+GyZt+HLG7aZrgenBv8ObJl6et1sf7bxLSXzI//vl7CJtNDIVRAXP76vmWWst9FgcP82x9veMlc0U1u75qos3Qujtvy4EZkm/XbS02OWf7Nz40jBp2VnjmfML5p8FW2sL6u0Djnpd08nrogt9UuvWOZRr3F7H3lfT/v53zzXVFy1yjcnFVju/lmbNaM7+ztwdqaM6NStbw6j9bOq73/2LXwWG0Mq/GDHr9WTbODZ/CxLmtZ9EB30ZkcyfVv70ae61r5frQz9Ptq7EGi8Tv+j8rTRT2nPb6emal8qM/q01BYcgUnNCDObF3JEs2R7aaSYd/MZkmeOyoTZZYbuFcrbGn5k/Bo9cy5ct/id75v733JLrY1GzmRFzFk+WWof0e+1FKmYxTvV5jnqeDNP1jsfRsaPpe4J4Tllm08cU/xi0cSgXlfVF6k7qpd9I/TsFrN26zch05KKYwsF+4FjqTBrcPYBN16jTOjG+NiH/7lPtqx3dZrPb8i9sky44bM9vAsCrGi0Ez+3vGC3crFWlA+tb3M5/POhPFlMz5Rbz8dH2zApJbJF34PPjd0mb0/y3KL3XVxTtAth9CQj60u1upijVeuKf64a8l8ePvZIlY/SW7QNTKLqnRfnqJRUO1T96D1tVjhwZU+kWe8H2KO98dTNnkp7mt+ivvZ+anIxHb3u/GhfqtaT99ukTvFKd/OKbZuLDEVk/YszN3KcfpZSKg7kPXLEjtzA1n6nENE+5svn5Wk1s2r/E6MUOl2ygx0OHn02lmyyQNVL1q103X7wSz8zhyvzGiVT0d6pbTq5jDn7qLkz+pcWrjaI3QkKmzevU6V1SHKV8fM0y99Dl5EMM7adLip/l63XM85tb1Jr48Of3q1LSyzqndQzDk5yefGMOntunb9FldCYTIr/hhT0nBZG2mCLhobFxKyp0W26zrx4nNyz0j4nr39SXWXnm8Ybt+j1tq2uKte+0vt0xsS0Izo+OFx3bUlBFq1pYvq5vuGETmh62Jzvtmbnk82CCF9kg6xHuhcHvM+SVvNNJeWJ+ltGixGe3FMaiZ/tT359pydOlrmEUGUWQbnypRyv/0cJJ1ghBbgHzwmPz1Kk0+qXIE/VFtKpY1qHX6+vLbVOGrb7THp3hzNiEJ3F+vAruW37hDNuvS8wo1eB4b2PyDkXreejW09miRzofzi7gGZFUM6e/tVxBfCd2epdi+rm3fG0fbGgLP6iTZ4WSOZssCvSBVrebvL9KejNM37ubpWfl5nrarzk/iPj2YO6M1rvYYzVDIM7DVssJqzRGFVvdfea7Umnh/hFXgjqZnW0h30GE3q5nUHlaJXyi4+mLlH00V5Tt/BZzp8o7IZO5WOPVKzaJUeu7P/weittC1xP8Y/6HopBx/eVH9tgNP8c8f8tb0q/o1JtzSXnnuiVnWMq5iX6lP+sPoG5fuvkR+5549eWBL8aV3VY8dPL5NHDGK6jmNK/hpWmS+pe/75zcvGc96a8G6fKR2yvhmFHbkrajAH7x7FOynZu1+sUufTTyVFRnVq6YzOw53bdEpx51OXjg2caiLyV71W9Nlns1Xvy8mQl+RbzNkRt4dFN4yypE87A7YM2fGprWV/sO8ak/LiZZfNjxBOuehHBO65wo2dsaSwLL9k419rVGlXw4OoB+P2xWgo7RqjKrXmOSiLrcm7v3IsWvJN365VRkZ2sjzvwRSTaPnW/rEYnu3nyh7vQ3pxWSsvBX0oCS8dWKyc9BJbXbvtzdYTi0XEzuflXJZVyUnOCzlZgWOJ310K/Xh4VHPx0esNDoGChTWVQU+N++bhXY02LgvdatV/0v5+WPacQcHpVOx4ypDUq6/NcWGVLnPGf2VnB0ds69eYqIxtuGN3yHT3gJzN0pNPTf/iK1kPSThH7yFFy0hvLPoZ9rG5JWpTEzwwc7lU0Ofw4yuufHa7xjcKxyzs2fuou3DH4MHEOxku59c2Kzw8u/8Hvq7E5MTnX6PhgzHftpxmBydhfvYr89J85n9pNbd8ljYSPOfoY5nsalnoOMNvObO+ZZug/HVt8hgnvXllVWnlvK/iIy/tTOb1b14tp1R40WnrnJIzs5bOsL7T3F8TYh04VhPxMnFGa5t6MUFe7uxO5j1D/OO8fJuPHQ0bPWXJd4sj1RYoGoheFWie+VJ1K7nPnZJb8/z4r2Gf7oQr45bMgJ4vudL1EjLOQ7fNlTXW9nf4SZldUH0VrSTLbN1ZfQoaflA012Ticl1aaWIu45rl3Ymxrwt1RBfeOPVsPKvYecESiZlyy6tdMbOLtge1a98LMCC/aVxmsCihqD1R9djWicEW/JMDjrdCD1EClLGCZaWbnorj20+U5ccVHAlrYhSs73KLDBF1vSLL9+elrCZ+E3nxxEkk5OLDhtLZkR/MI//y3555YaZRmKzNg5S4quPr374/eHa006lMzFyvdrC4rVHzhs8Z4+Etys4hnwqUR1XdxqnjFy0vUce/uWjAC5q4H2NPZP+S9AkcPFwYYHintb/zkr5kVZV/y8VoqWoX8bQw/RW5HSHdPZ8uxNvue+d2yqQm7Kc0v4Fkx1fUsvu05dCTnYMulHAzju7snOBtet0Dd5t3abis5MwSLdff9ci9sp2MlYvkKJBlt7n97IxTv6Nnr1HvUNCtuSz2rniWskXek1s12ZslxfcsJ0djnFPf335L/Hzvzaah2hfEc7EJ9/YNhXb0xSZ/3kgWZ/q0HTt/yGtOi7Wl6NxNClHHthQ/67jScKchZl1eQGIGTv/DoYP3Mt5fzu/y1Ll7VcPQlJ3OLw9TWFlohMc6bcmQFHzJNOoZzY7U2FG74Bi3jb3xUMH8gOELkccLbqaFfhKXtaVbZhqFk3afnXXD22eItvmQTEcX3eH1E3Z1en3P2+jEyOseWR0bPio4L3lTPdrj3t3Ezz/Zvt2IYrUV/5Hw1xaRYOVVKm3PtMZfKocGz3Idsdq+KEVDMUjVfS/9vY76C/eSblaT48nm1vedDg+SnYOYwcq2sNyS/LTLi6uDe5jDI6t9mcS2a+s8BhccO/mD3Ou/3GLemQfxS64wQl7QS7ZOnPe9GhyaeDZhbpvXqNn5o8bkX50tXkbV7zevXfa4f9vYcZesXXz3DsmzvCCJJ3G/xrod6xdkxMm7Rrr3+a8jDImfqVqRsdqmFI7PXxFZeURyIa8kTO/6Lum3HSvu7x5oflscppoT3Bf7i+IREF3e93Yc81NN+naIQkJl4V31sA6D44+WRd4m7Wqkbno68Z3qN9evsqY5VsHua9ixj+uO5oYpm2H90naaJoXgxrozpGNTeaKhJQOJGvs/DI2d8XLAFy973smClpaOJB9WuddwxE0pe0n9nnC3T++T5hqFVrjs7Xy2vqw3IzmirU2jezT5yFr9lEVz7UouHFVas1bR3FBscGD74OvSzsS1AxJrhuJjcigj6St7Ls56+OCXbTJJT6RjX+G+8ME12PsHXKpB2yDyfuDwvVCTmFp+c/UBu/ed9v2byj4mllcRZfTzoOsDq199dT+lkXgovYGy/zi16brmhTdyWcUX09y3Po8r3fVtya/2OflXaRF9a17Pt/XaVtfTMiDWMHZUbfQr8Y3MzYhckrEp3tooNWVJzKpci5aqgy/ttuzYDX/vPE2hNK3qUsmtbbRyD9npN3JAoCf52D3CT/+ws3lj/+0CfW1og7x7vXpqdro2I2DkoGQmVvnOuSSucrGkndfoKvObC3tWLnIpjzjwzD2zU3+9Zv3KUy9OnLMlPysuGmPeDmjNXH4uekFGqJ55Ve0J4hy3PjeiwYw5vmc/+NFaso/u1F2Ms92R+Ob51fBtgm2KJ7uq3jdoLGMLWA8Pn7FJbLQ7vSRqhsfoYt0nB1zaap7VHlz1nSY+v2Tv6RRJ0YU+6jmja60TY4tiLwZ1xXiFyZd0cfY+DcMv+DG/s9LBOg+f/IC/ST/oDG5zWJmkmDpe+4rPec2xU7pxtEKJd5diJWsWpcvcuduYcmtzstz4gKpiqMa9GO1SXM445DiDZmB7l34uWCGtdVWumV51TfeFrWMCMb3hwW57/Tqj8rNVWzVIY6sfptxyeGl0u6K54m6NHVOsXHZh/cCGEJKnduNOhRcaOwajcEYaR2Y97rthvEGpfisHpy82qF6yPGH4Oo7pkyGapby6dNvJ1sNfTUX3K155pj0fs+yVvpej0v05X+tXyKYPXO2OEN9rE0sa+qq69QXN/I2lQo19SVo9/E0kfPzZi0+CuZa2SnNOSTx1G/X1qPNowiwv8ZDkdnldMv6xS7duHznKVTkp9sSawoX3jG7jlTc3yRa8OOaVdNTgYMLyTqaMs3hfJZn59dVD2dWdUGOQasGPnobwA74mt5hmjjYfTm7ZwF944YSH97kl2vhfAy5Kh2rj+3o7DAp/7K5ItWQG5+J92x88WjvzaVvN8NNUum5+0RWTdp36KA0b0sjHgOjkzFP6bZEKMSGz/YeXGc70HLL+2X3wTtGAwqGCHxOFRuUjn50XZIWUf5kY/npJySZYplhnjGX36mBA+IGvLS3Zq1O26V1mPfmQ6CUISLow8fNrZM6vUwv31b1tK3cSnRi8Vv7rp1f5gpm2o3Vt3RURuOTaieGeFLGJeP1jE28F7U9w4porzX8NGU0Y7ukdKmKe7Rkury18bFTVNjG2aoLo3zvUePTe6MStsWuDsb+6vSYkRUQmJmaImLqOXW6FRET+D+fY6/7359hkPxJXA/zNosHoIQZ66NA8zylEZfKgjoOcaIeoTJ7xIUfQbkweRGLDEIkBkTgcKodLYnAhHyYbQlcHSjAkBicQRk4tIC6JE8BRh7ZyYIjrBwMp5IwNGWBRYTLMgZg+EHKQSoX5MAVC1wjiQlwmJNSAzpnSqg5Z+UACsDaFyVDlQgEMZiA6LhRVgzgkAXgmcf9FZmpxNgxDHBhxAlmXTgqi0nl0MJkCISeC0zQhZpCpHFjdg+HBsKD6qkM4dciOD7P5VDgQMZgE2djYYlhMIAuMJvG4TAaTzuRxIPT8G+IIOFyYDmabgqgyGcgrOwasB9nTSAzkYGuFB8MYQiOOHF8CDUiMIB6HR6LRBBCVwWfS+KiFDAEENLFA+IwZk7oZMEzhIPFBvQ9EvAWGCybTQYFYNCQpyBElWN8Z0WsGI0sxOVQkhGBpUz8SlYF4ARDC8/XjQmtMmc4bIBeYCsFciERTRw5eNddCfiQO5I3MBYohJMUUEhvoZwNlXDSxMNmPQQW5QTMPM/xIIGjgPXoCCrFgNnplAcQaYjKE3sJBU2hwBrEWylE5wGEOl80jo4FgQh48TSyOzPWjMgJQ5yFvYRDQ96gEj0ulUYMRBcBnLnKgh5zho0vwuOiZKiJFmXQbBo6whSFGlgIjHDqIM8gyEi4OFbGLPRVmEAkIPTVFbAfuU32nT6TzaFwqEEcyA7JB8gZ/CodRVX7AARoVRHRSHCQCvWbCAvgWmoUGfdJz1B8iSCXiKVoPwhNeFHTOCFaBtLMwRRxojRuJOS09WmshUCYwA0ABMRmECA5i0Zhowf22kg2TOEwGqpoJqtQbRI1LBbgCkIFJZD/UZ1BSoHKpbA73T8A4qJHAHOAf/V88n8IMGi/UbYBKGDl15fxDiIOAAJVUg8jAGBQ1JBBfpA7RjPPYsBALHBi5vjEVAogMQucNQyYWTtAabzCTwvXDCI0UCq6FAOLMkFEKzPrHWCCV6zflITAMgvkkGg+tMxAnEkSmIZzlQwW2reFTSeCNENOoUjrJn4kclEN8JheeqiDK9AqaMg7wCwytwa1FlAI2EK4qhNO0IqFRA2DIQ8UJDRdSJ65u29U9PBg4dQ8VNTDgghQwUrtIyDk8b18miSYUBPYDTkR0gClGiPQaTXQxHmeKVjEcFkwGnpB/lxDC3xsgWB1QFtANHBHWLpMtgJg8Lo3KAD6poOoDwaAwHwwmH6apIc6v0ZoMnh+PjoIX1JMQj44wh8ljg9zoIaZDVgisGQgc0QsSqEJh9GEhKKgM4X0lJF6+JOAbgkygSVMdsmGCVZ1hNh2iw3TEMGEx0QG5AQEtdcjS3hmjpY6HpujVGOE94RqgbGDf36U0GWwhpXgwtNUhCyp4Bo4Cu1Gz7aeRkLkQBWCu0AfkxJ3K4AHWBpzLhlFqR0wH1tAEgF3AHoIkAQ0pwicwgwPgim4tSL4m+Q1NBRPNnjdgIsQs4cSpahM6DRabTBCINeAzmOaDISMZIFOnlgJcg2FR0ZoAqvxIfCoT3YjQzZUmEMbGEfahwWQuwqgskrBmqRzUQpSBuEgh+iI1Dmxiwz4g35PmsAAkAaKEYTIHW5kA4Us6MgvheVAVTA4X7KBMBNqAINlcVCPsA9BFRVIDGVPpiNbJRgH+zYuo7zQYsYbBo3uDqkJSg9IpkgIEU2gRwUEwmYeGHzIPAtHjCmmQMzmA7hJoEUxh+g+z0pi+wBsOoBdEp9UfrOshK7ggiEVmonhFJwiffAB8kMxPTlVDXxtbTWtZfm+mFJgD0uENTzEfimpE09SyKEuxEJgg2zyYDdqiKSZAcIC0ARwIg3QabFAewBA9KCRk2iMUFqYmDMRUF4AKOKNOImO26HboBNOE15TQUeE7Y2CvLwMpkD9KzP9EE8jZgzqhTkI1LEwdQvozOo8zxezTWinkrpEqB5rsE5H0kVDYINsW8CMQ2SoBKgCloy4z/h4ZtE+ZHh6OH2hChAhDygbEFX09ubX/awamKgUxYgo5QgsBHjiT/d0/ZyFNIQm11AepbxbgEzWhe1yYRvujEfnjNzx/iwr303/NPJI6FonN+W0MkiKkNwBtKJtEE4IPaXs9VJA/PUDXi/xGKJtKQcgYefKiUpAXYA9CxsEvsCEDywVek4McZJTE9uUgw4gmsGejmsBvVBMdwAh5sdXRBhXlUajMac98KgWeeg4L8xSCcHI94CBMo4BFGUzu5I5NpUw1GL+BiiYs0I8K9sI/+zSgfMB17ElKF3bMaOx4bDYCMnQSG6YhPIIkxVhYk2hUfMH6mEn3gBGAY0DmpvI6tQQF9RBC3VODUK9QWKD+TCX+T7gmrUTKmIqW0aR+ob/ooO1WJ2eUmdDyAAv4gB32X74nmMI7WGhBGPNJVBran6HVYgOyjhYGUAjoFUEpQiqg+6YhjqK7AsePCnpNmBsIA9Sj6VcDzTTgNRhCQowsRgXcxqYgpWHlMx3ICHYAoMDnhjcsRBXABbJRIPwipGIWYH0Y9AQCaLOT3RZ1aBNiB7KPTAGOTEIaL2STQ8sJDSxSBag7ZmCnZKDs/rvEkdAgX26QH1W4v1ORqiYj9qExBLNMkeFNk8PIHAth0IDk9JlCU5GCAPuFkDuRupnCEno7ESEfsDRM+Q2babYKWWGS1aZ9MyGNAo3Gm7IbUYjQxSaery8QBNs8FMhkI18Da6wQpEBCxXqQE8I703tdYf0Kv6rQCmdTOcIvR+1JKgYbAdKKOU+3RE/YliFLoKBCtmg2yiPIZxKSJc6fJE5dJPzXdvf358pkunxQruOC71VvHlpLHA4TlAYCyT9tJzJLyBcQcllaDbIyU/uDd1BWasJOg+3LQwIrXABp7IB+OBADSBV06EEkhMnQ2vLlgcJBvUG2KuZkwIEHaAM3+dE3GfzpuyNygZzNpMHIJ7sweipg//jblzzafwJA/PNL0Wj6bCRGKmF/u7Puy+JitBEZBnjCgd9gXZhEBw/oTWk15FY7nYXwAehowFusOuH/X1n/n35lnaDNYlj7OhEd+MEcdRrTyWKTk5WLr80uLo3lR7ZlGPO3U4J3bTMhmdvb/rkTrvP7yrpA0yyYbM0zxeIF26zxdjZe9F1WltbYbTRdfwuOrrq6zy4nnj/Nn2vJ3ozdHrDJ2teK78Sz1KILqFrmmwV4gYW3C9XH3xc2Jm+y4WraupnS+QG+xn+urG+lbTGjELHe1hZelg5b7B23mgRSOGxrPszA6hC9LClBOAox0HQrwSZw2o16HTxR5z++sp6qjSMQ/3N31uX+gzvr+P+WO+v/mUvp/2X3zVO1tTRx/8NvnKfp/hfdN08j6BKJ2P+H2+ZpBDyB/m8vnOuQsVi8LpnoTdTx0fHWIhM18RRtnBYJSyDAWAqR/N954ZykQ9Ii6PrA+P/rC+diC/5cOBdB/quZ61jhr2gsXTa6/q5H817yl7s33NuiTeekZbyz9ot+9u3+hmhfyxfxCbqRYyGnb5AzDu7gGzNbXxwfSLIUOapYJOYSUlBs3d71IJhqtDu07FerdlvmOLk0ZFMR9Vsf61XaPsXFB5xlnVvWBzhaJ4opWOtX8lZrr8vM/zjI/tXng0uW2agqs98k4Ljno2vpMU2PDrXvD3As2uu1QiTiU7t7afWBuQyJF30BaSu20u7lPI4V8UiwXzd3q5tMyq0+iexVS6orvs3kyRY5S8ewd0lnR8Tl1afOjk3S3FP7OuLiNznsAme3HwsvxtdKLbXduEF6z3f5Ew/eKtSv6RTXcR6t2x3sKFWq6hryQSpv35HE24Mze17ljYjIKzZSLhHqrjtcq4+Y5VpzecO9Zc6vkw5LHykxlM/Y+JR0NyF3NjdSNbcv+xNuTfBh/NpTqvIJv7Ysd1A/IyFyiKXf3L7Sy0C0evvPw5jaRY3RsSG+Se/D5a+VrpkIIQxnmM4+1vluzYLMu5W2l+7LSeqsltCGssfvnC8t25zuec31+bzReVsGE/tP7ytYa52mOubRtosy2EIuYTvirRgbvSxEyg/qDk6svJum5pmXc1JrUYVdTLXDE89jIcaJ+Qv8vOXVB58QHkxcL5RRYD8lXOR+2u+xMN33bNW5Lcn1l1u+6RaecOpYnlKls8Nit6jwkKG5bFnkGQCD/wWopw/F \ No newline at end of file diff --git a/docs/cassettes/rag_f5ba0122-8c92-4895-b5ef-f03a634e3fdf.msgpack.zlib b/docs/cassettes/rag_f5ba0122-8c92-4895-b5ef-f03a634e3fdf.msgpack.zlib new file mode 100644 index 0000000000000..2efa24570d409 --- /dev/null +++ b/docs/cassettes/rag_f5ba0122-8c92-4895-b5ef-f03a634e3fdf.msgpack.zlib @@ -0,0 +1 @@ +eNrsvUlzHHmWJzZz7PwAOvtEsopAV0QAgY0kmGQVSJBJZIFLEchkZSey2R7hHhFOeLhHunsAiGRTltOSmQ5z4rHNeg6jKlXJehlJo4M0krWZjjroC7TJTIe86Vvo/d57/8U9AlxyqZ4xVS4kEOH+X9++/tXvz+KiTPLsX/59klVxEQ4q+qV8/Ve/L+KvZnFZ/de/m8TVOI9+8/G949/MiuSftsZVNS1319bSJE3C7DzORt1RUo1n/W6Sr03zsirXNtY3NjvrOx36MxzFWbX2234ezf+P34/jMKLp/pu//bSMi84evnr9H/fjYThLq8MwGw3GYZLhO/7qd3uDQTytXv/TJ1V8Ua2Nq0naDqfTNBmEWOTaBT752UXz00l686tb690b7WRCk6+dx/1p+0/X/pQ/vP4/yJgdzDajr1//+zjrfHrUjjP+fvv3T+NhXMTF6//FbPP8/Lw7yvNRGncH+WTtN/uPjl//u97f3s2zLObDev23p3E87YRpchb/x0+no4L22DnIyngwK+LOUznGkt7574u4nNLhxv/V78oqrGblX/12kEfx//V//n4SlyUt5r99/EtzRP/Pv/gv/sM0LiZJicspO9OcNjh//R/4kmi8ziAf50V1a2X197/uHCcTWvH/dtS7tnFta3tzZ/Nad+f69RvXttqfHa23P7vX+318MU3otdf/eDyL28HGVnAUTwO6pa2gt7m7ub7bWw8+fnj8D3o4T+lw6OH/rj+v4vJ//nXn46R6MOubrXQOotf/1Nq/dvfObm/n+vbu9rU72xv7O7s7vb3evb293Z2d+xt37l7f++1+WMWv//F+kdCM17wZd3Zp0u0dzPh3v+4cxcVZHHXuzF//T4NwMI47/bzc2rm+1bnz+Og3nyXh67/rdXvBWVhkSTn+HT9dvP5bWRJu5LefhcX8tbnXexkdaZKNaNX3w7JK527V+6//aeV62Bts9dd7vWFvK+rF2zd6m+uDjc2drcH14eDGzuBGFIabUXjtt/eOw9Hr/7G1s3M97sXDQacX37jea/3vmKUsO3T5VZGnnb00zc87j4tklGSv/92f0lXcxRZe/+bBwfElEPIbAu3Xv9m8fuMfDml9nYe02mESR6//8VkctQO6h09mqZzT+vbuVo+OmG+GxzXzvv67SXgBzLq1s77+9/iQsKVzPJ/Gr/9Xiyo3A8KmooyrW7Nq2Ln+781jh4Sw1fj173ob25u9zX+46EyL/GLe4bN//duHB0dHf6/b6DxIGG4Zef81wWxBB/t//4t/+f/+64/+1f7ju8efP7kXYKbbH3yEv4KUwOZWK85aQZQUt1rhrMpbtz+gLwmkb39EZCS0S2rxmuhb+Ri41qF7Ss5utX7d+XSPNjqZEjr307gVDGTht1oH927F0Si2b2XhJL7VOkvi8ymhgvfgeRJV41tRfJYM4g7/0g6SLKmSMO2UgzCNb/XaQTmm7Zx2qrwzTKpbWd4Ytsj7eVV6gyZZFF+0g2GOO8fDVVKl8e3Dw4fBk/yckDIK9mjHWT7JZ2XABKwM/jI4TNKffrh54+ZhPvpoTV6pzXMaz8/zIvJnytJpmw8TBKozIRKRtgOmo7TqKiYi3SfSW83bAV3dZFrRrbSCtfqwUVwOimQK6PNGvjNLUmCHjFYG50S3A+xgJQ2LUWwnDXjS1SAsAwIBer+IeRCCvTQugqQM6CrzPMWHQLsuYTehZZhiRfmwQ//pN2UQxZO8pIXPBmOMhzP6+MlxO6A/CFsJcWhDQZhFwZ2wP9/7+IAeBY7z3FlJZAvrjS/CyTSNy25wPI6DaY7t0G3SIQT5kHdAYB9nURn043lOg9H+aD04muA8TtPOeZFU9AAteJrEWE6VF/wDKO+85AXQ2ol4T8qbtOlgEGY0VjCkD+hmQ+x4imseEnrK4LxZgtBJUOYp7b77AV96cDSnS5oEj+kjwGZwkNG7tMTOVMEkdGDC9xCU/Eab9zGcZcKCMWdFm+VHflqUX83ym7S9gjhkm7aB45jQNzRef05HJsdP0MTf5Rnud7cB0zQxMQ0PHg6ZhQfPiCTg0ZQQIiji9FaLdp9nxFHTVjAu4uGt1ndh+gKUPOigyMsyZzpJy6Cx59i+GXwtLIkolGuDslwrqznd8ziOq+4kybo718KdYX8n3txcv35j0N+4EV/f3ukPBje2o2tEqm8Mr62vb90Itzb6vY3N3vo20bSNne1wPboxJAJ3nThESdOAa44IAua3WuU43Nje6fzZTv9a/8XDg+zwl/H42dnDNIq/ejwc7B2Fvyruvbh3/9OLT9L8UXbxyeflrZacyZT+zMMocCts0R3RiPgdxycYRwBPEsSlOy6Lgdvwi3JtnIzGKf0v293u3wjj9c31reGNzai/Mxhs3dgcbveub+0M13sbWxvXw+HmjRuDnd5Wf2u4MexH/WvDcPtGFG1F2/Fwu999sXS3z7aL0cN7P/1wa/Pm8cbG1/dO1z79/OnZ3tGv8uLryeDzT6snh9c2Nvn7NIuOP7vWo319ENA/eYY90/2nL8ouaOgDs15CrcfZIX25snqzdfujNdl9DYqSAajPOwDQMDzDs8+nMfGdLv3YWjJORfyNfmahbgqSVyZfx7TO3s5Fb+d9punwG91pE+jfPM3mxsXmxntNw28sTgNhNSa+QwSx884n1HxpcdhJWJ6++3hlOAyLpDNNSEaJOlXY75Znowa5IOoziYmQpzWa8eFGvEHo2Hh2UnoyOAmkaXz38vey3AALQOwjRiD5Gf98KPNW+Yhk7rb9uFvl0w5v96X9DP9ESTlNw/luQDgW37RfvfpABl/zRm/O9Asi7UkYrBBmE8qWslWSEDD/bhCFxelqY7JdYm9V4zP80+lU8lIx6q9s3GgHm+v0/8bqzSVP0mkUc3lya6cd4P/t3tInpwWBoXl2o3ed5Gj548bSx0njINZnX+htb5NAub2DP64tfYFUCeKi5vkdenyHnt65vvRhvUgd+waGlT+Wjw2C0emP3mmf0ILss1g1Fr2z/PT6JCzFhT7aw5BLhtXLt6CTJuWyW+uHg9NRkc+yaBcKxore4jsMtpvl1UqXIWR3t0Mq5mlSEeBAPuqHRaciPfr0LROuB+vff57xbNJfNg8fksDzm7d2Gbp8tOaQ1DC2sJxnA2Fgi8pxFY4mYUZEs2A1eUS/E3v7eRLd+rjz4P7x1vZn9+/8eqfGKMwPtL4gyh/l1TEf261gGKYloXIyDFb+lfsCuPgn5ySG5+d0IlV4GM6Jz94KFj76y78Mvvjy5gd/YkSpAItZWX1pn+hOZ+V4hSTeGSSocvXmqw/+hJ+5+qK82g4yEtqgu66s0nHpFwT9w2REX171t0O/vwyuCncnLvE8mV7dldUHr+jdVx94u2ViSRIjafXgzPlol7UBXxp7kyrhSfi1Qf4o6P9R0CdB/xLogDDjgUVI9H4AmFv+9KxIvYe/q8jfHFgn3S3FGOLNwIMsXYx5ZzrrExkcx9HzKpn4O3EzH6+v7/J/LL7yT28ccqIWl/cfsS4cnQPOit1BWETeKOVsApbdaqjj5un3Q/lLBvkjyv8R5QnlAZGWN4vW4tvB0+hnL0qCkNsfQD5o/YIB5aJq7QYWs1nSDbt5MWq1+RkmF/TAnSIOo0FBwsUhCSHyZULbwG/3ZG302BcsMhjpw72Npw7o6ZYR3oHoCYPrbhD0AvsxwBovPGE6YD/GTP4y30CAREl91Q6+01I2FpfyZoT8LktcpJEfGNHry7qE8ONcZZqPcL4wEvI3sMaSGvWOu32Pg6nZHDHzHwnSj0iQTrIfjyKdzNbXN3a+I1liULBWbUMlYNRutYNW3ayNT3hG/OCbtvG7M24DVXhY5eF38mj+Rwj7zxnCvv3mr98XsE6yJ3SfGY7gaNYf5fQEdhnF/IwQ9V0+T1lEn3jYKd1Xfp4FAg5VWJ7iFqo8KCchrr4diM4a0r7pSnlUHGJGH/A9DYfJIMFoY5qLP6L7kQVfyHjd4Gk8TEW05QUV8ZCAYMKmErcanH9E88YpwRJdHg1bTvh5/qhwY+S0+2AalqRvy8G1gzQOi4zuLp8EE2Jo4WlcelPhVCfBMC/orKsZgTYd/pTeoo+LmM4zmdDFnmHtOP6vZhbO6GU6xCIuZ2lF+3hIkF3MgyP4lWEaosn4k93gIDjPZ2kE9CiTCPCdpjxYknWUF8kaMcnKURwHTxh3A4MQ9Dlj36wi7P4aT5XNWbAgDMmoGtAV8YDd4DDPRvXVHI8JYXlLxHAcSAn249dBOFUygnEKEqATczUDrHwlIV0+Ixa+Shugc5uE7uAF7wgQSWtI8oiOMR8C0egcU4bLEdObjB8scH5ndG909sDAmGcZ4u5oVkLIszAlFAdlmZWxBw28txKr4wXZsfaeHJR8k/RJEdZWV43DCpSKIwJoCQwN7sDOY9jky2BFljsmrYSHH8OVH4T0IQFVEcMyleCaVuERHaQzJp+DWVFgWd58QMsopnXEgxnP7w61TYAJLzjGh3pF+6xI5amttsxnxUChlG4t7gb3k1E36HUdGaH7ficy0g3uGiIQPM7i3cCSgT3BREhJ9DqwkY6ZwDvFWs5AxErg91wQohvsZTowgWTEyz/N8vPgHCdLJzkPQr3BKc0QhBCUiAgeY9x9n8oEdxGmIgCbz+jYg5W7+fHN4FmcBDGhLd05CX0bq3QLIOD0Jg1LiwhhnI2c0zao4sE4S76axXLnGV3WAJ/LlRIE8oES4wlwAXWqc2yvPmHOUhWzAR9DHnz7zd9UYxjKsW+mqPT3t9/8W3wnGBjzpdD8JeEgqcE8+KxSSMstUY0VkBYIp1CuBCsqzPHSGQQEXlmJVdPGk5H/4oSITEKP+xRXvuahSMUPUgFhfpwugENdpkBfQU+PPjD74D3iuOhAAY+4q4JoDz14LPdC6PB5mHt3srlqGStWS0cTX0zTnHmyXSDxDRK2eeCccI2BPgEsVwHcU7zdbnBQEf0sysqdldAiw0TrmzaAwkfFO1aODhBtPFTi5vlJQkJaDINKSEcbg7TjmmdAKABASXSEVqQHYJj8nftHwQrYX1SNO7JIeXA1IDDbx7cRyTLN75h+6g5pYQGo1yxUpkwCUhrSaQwTWtvKWRIGoQIyDzoJX+TwOAZnJMsYpKmxZrO4iDA5WOmtYlDIBzyrQJKHGWlyGgcnrSM+LiDHrz//s+7JSdbrnpBoeNJ6BpwFuuLIDePmB2n9RHcxBr3yczy9ssGTzZhsAuQ65TQe0E4GFm/AZm8GcZdIFI1NGxGEZbY0q6At0bw8PAQvuY+M+EXaxuZXNvXwxrMJwy2hEqBxL8vBg4nlYsAogRI2oGVPaZ+0TJaPfvYkWDlMZjUYbTvyVcTpnKWOrMZz5C4GkNlADGkOIC3xTDBL4qzJ1/TCVOlkVzimmdaQAAFXS0z38wmI2n7MrBEXZkLkgpUn+/uHzL8NVrLfrIrll2FIBIqJBtS/vtyJmdzgQxdiY6WcG8Aq0iEAgWlGyqiwgEBEyp7o71gEETGWazK+VI1QLC1wNg7EoBh9j5eFrPfDkiDanCffyQjT6P7tLMzJISARN8EFN1bpDzg4lcVmIWFmmFq1oxvcK0uR7NN5u34sTJrpNAi8hFcy5fbvuCKxgZZRlrOJkd3CszBJjWhDZC7iNTtw5kVh4QS8BHNMY815nI8TuvsE2s9kkuMeg0FcsGjEoU70ehlXM0K3/ow4ZA5pQLinALHMBbA+gsDqCb1HDQGW1akzmp4EdCytEtklRNxUucDlmQ+LiErwVLGWQ4g1B8qyfMtA5MRhUJWkFIUig0hKosugEkgjvMe4RkZmIg3fMEMI4XkCcTdPAbeg8qRG5UVq2Ns5xGW65kQVi7goQE4KPB2fyWnS7p/Ge7SjRb4iQRcMH46B8F3I6kAgaFoAPbMdcCF7r7KzcqqY1I9ZIZ30Cf4s76sRLiImxBoq86qcBYayKi8PJlwC/BiiLbQaWh6WgDPXcF8nN8fZWVLkGVSXYIWJIaTWZ8lpMmU/uXIbElKJRBE8pbFOWYl0aYi3TmDRz50H/KIxOPwirhDPoLHkdGUoEk+IKwiZoWue5nK64NikPRleCqKsE7JA0KYbJi5KACTSaMXq7i6GZ+66G3S7JAoORF3Ez4/70NBD9wH+X3kaT2NmfowDEJLKVRFiNwivVX/HxdR294KVAUgLWBfEyxQhix0cNulOZ0bmkeN9kFek+/9qrx3cv/fZvaerRqFl+O5MwlPDscwLe+nwGYPsveysTfJmn5S16Sqt9mDCd86UZDdoAicTX8LxMQ6P9Br2eoIGXr7AS1fS1jsi1DmFdMt3TwieMSzQN508A/YSmQXfVLSyh//tN7+ztK8ghe4sjhipiHpcANJXjugSs0AsUMSCaJyxwTCgMRswMDcuHBGj07Jm/YnmWTghBFGlcpmCbTUZXJNHfNxFlqdJmhrNnpc1ZouJFeGfHgqxBKdWyordF/E5vlXx3WiooRFvgM7F3DxlMLaG/BJdKiyGZ8AEeuBCn8ZxgxTU3scZzUZqS+EDsQQB58UUwGoS3oZVQWI1kUVAHfVK+Ly60vaUbFEUeFfjeFaAfw6CK2N6ijeUs/WXmeYknDMERbFo4bSdBSoDhYJ0xwriFKmEQnxJNlXamGd6EPULNBaLk4zxcZPAO01nJMnVFAV3eRZmFhBlCbC1FdpAjdwObShBFEP8IcBmhiHrs3g/F13MWY2IBsA+AsZJIESLHBiKLkoPW1X6EOvzKdFY4Kl72coKEp3EFM6nMMxVweggKrDoxzdOEgWsk6wRBQ9qkyYwX8JkxBbAmKjqDExA5NkS0hTrmkM29LDiD54cQYSBaGV4DU+cknohRJeWT+cb5I6MAmgbV23khrqcwOqNWv3G+TkTmfO8Qz9X1kaKSUDgmScDNPULoQfTMCmw4pUhiUYQouxdtLFytm/ZGUGTR7OEYUttZWIgKc2KcearzDUz78VSLAMR7EIs6dXtmAAt1iCZ5rQDwlp+hhS2trLzWSlnbqxlWAkddzFXfmlgeQu8pUaifZLPZ2CYxpLLDUWtVwkPJzJjksFi+xLAStzw74Ma1vzxICFNOlEDyIObQVORERArwpEKzda2Z0gulo1tnmcQhKE2GZ0cHJ6IyBR0I2OpIlFJpQ6pLBnqu20lXRlJr6ElgMM4jiCj03mxemZ+DxAOZGz/qbW+DoMr+8/Hwa3g5OTlykU7mD9PApIp+M+vnyerJyevnr9MbvVe/Xl2pa1E+crFFQyk2guJLrqSK/TyFXMx2LpQXrGvXSn0S7wmmqNa+LEGvClKyJWvvedY3EUSEcMwv9VRRhMFY3sdbs970B+EbdiNE1sBXgGmSak5FfwTrsTLoms/GcVf0aZfZp3eK/3t5CTK6X7MV70r4rtQ0wOtr5xNYdoDpIPGdKoZA5njW+7A7Q0q2kFU422fnFThjI8fZ0875wvATy/wE/0hy8AnGT7JVt0tnJyktLQkkL9f6N/ZlYaxDIujtYnGxcIKQVmUEIulU8+u6GgIpWQ9WLRF4UO6asSLJhfqBKrUfGiumO7RZ1hqJY1m9J5KSwKuThOtXY6ZxF80xvQ4Kyk8MSizs1ghopCFUd+g4dskFCfygs1YsPuxSAupm7TOszyJ2Pw9TCpAYDsgdAa9w10V8WiWhkXytVoHYYqHaSu8SBDzJipAPurAZJMm4zyPDAf27c18+SQCwByuE7ILgJhMZTSlQT5lerjSjwchVA/2YDCcshCudI0di4CchTMrV9tiyCWwJn2VhZDyNFj/SdAJtn9iyUWVn5KsG0SzQqV2XqFqIM0FK4gmRU12VrJR09BIHP/4yTHjOB1XyZ4bCQcyZ8c2+3GdCmHj8pFEITOAmcNSrrBtRLMaXuF26Z7aDeATEbIOCR4MGjrLr5NiVbCrivik0uSJOAI8JF1gDQtkHucGZotTAOQkOiPTbkiKidrShjqomETMlJFdFIwSyiFZPMZd1DkHyzu5kbviLLoUvyDPpiNYJceTYB9iXJrKNazs7ROvIsigwWv74JgL5VUs0/Cm4EZBMkcnntKtRnFdCmNTArs+BnJ21hGm6pKQE+CgXU3Cwlc4JTGW+RQfNwtwelIdn/pI6ifs6+J9E6sBLCrGn2FU+XK5Lu80WD5V7JrlKLMdK9yPYjamkWpUpeY028HePvvFaaWZmr9o/XaX5m7ZXiZ+FfZUGTGJb454L8P1eWyEXiDTQOhmhutWEhxHRvMQD2Ak8pMYGDx/CMs01uDDeoP6RNgxLAAobtPK41IEgKS6ATUwNMiUwfawoVXJoUM6IVpu8HBnUdMgqfUNYLYqavIiBi0Cn4YChLD9j+dTGN1KtdLyVc89+OGPnAMBqFphMY1LAXgaq7sszMivULfY/EKckJVpEgD0ePF6Px6HdLIFW5pFQ2TnqCoAslRz8Yarm/Wou0CXJDuW45QABYAeHzvkBFjYAnvouALC2spoVYkqp3R0bUOu+X26xGJG/D9USi/OP8ggrBpE1gja92VF5pcWi8366S2WzrEWM2eTtfPBWlRk8AK0hKMMkVUDgo8DsSiye9QRLJgNUmKTOBVD2CRcnYZEGi5NlBtELH2FELyRkBhWEyZAuZLz5ZvoBg+9j+kkdTKG+I3OlpsCzDSLgQwwRVgkAUCERQdCxgT44/z6dNQW8OTiicwVI3Om9SdhkUeeuRAzXb5+L4fkuKOhVXBrGWtR6Xul7+0HK8xzKwO+6pk24GmBUzxX8miDOFtMbxKs1XYNNufBioUCL9hmwaTnrwSA/undOzTS08M/3whW9mehh9O9azet2jebAq37ENOCMmHB13ihSQCFmezp4SpTWoQXZUxgePn+4fIufSJI5JoXScdQspGFl0G3PIW/iSVbcXrlw6FOwoih0QcTgDiCFYwBTwz99i66wbMxhxjVBOEpYrDgnjDo6TF35pv+ofKWiDRbjW/JrHTNZkpDZ6+Jz1/hhAbe22/Tc80bw154y/SQx++UZCos+pZAcfby3XWDx2ymrJnkINWVpEFlMMUcNzaTKPYY2sXXsbd5l8HipIUcnZNWfR2Yc/9Xj8RxGEJyDr+Ou2/nBV7Ew/F5vmsic1buJMz5s9Ngns9w4aSJV5A5McE4TqdihQiiIhxWwqc16J4Y17ff/PWZo2SQN2jGPqxFTgHliCyx/YKqW2+zRBdBdn548OSIPUMQxzPUDgk9ZUPX010lWXo+Ffu4Ll7/MvzImaE8/hwrKQaHGvDtSWQb/SVRPKIRQ2gqTIRN7Med8K2pymDCyCqzEAUEWry3WXFoZaVbogYYqcJNxwWRsBIu5IZpq33XunAWAo4A8bFU7xDBVybxo2RWSFuehfDyEcUTm1VcDVY1XAfDSgIx7YKoDlH+hDjKGYS7CBBq1q0bo43CTEdQzaifhnCN4uLEHhWSeHYeSI4g4fbRrA+RbmQIJaguneUAad9mRF0fUaZ4MM69z816V+VCxuG08r7lLNVVHCwHeR1DYzQgfHT8kAMGnqnNzJz5QSU3XS4GPZ3LfWqQEu0sPMfviB+iuUFFBWQGYSH+emvgHuQj+LKtU8MEbVpeIEFhagXvLoa+AQr6RJriM5mCT9+EmA3UCytIdA3Oy0kZrDxMOECmd2N7Z1XB1VzExnpnc91ewUnGsW214zmk49ldiHkTowIHmPmnI9ITKXBEesI+rhxcF4J+G3LRyIaJydVHcIRKcE8YgdWKOS1DzKhVyWaZkVcwH0DebNXHLRIaIVxZ1KJl755k94xnbg1zpKG4cutxe4hgs/F+Q9ZZmDKfgWC2TVSjMXePwdj4eWvwVgICgWgA4V/sIQhKinzhwUpCBihlBsMGSIsSg4F6iIge+BDsFmbifuFDm9jtMb2KWIKu7Q4H4pMaomeZXakqXxrZIT4m2TDBD3sUKhPVolxeg+Jw3QOJIeC4mELITkjcC8pwwZivQSKImu3nxMw04u46sVJF86+d0sL0TxZJXD7mQzVuUxvkKYY5GBOYrZByTH/Dk9qgOz5CxZN+HEXitFD9X/kDgLUIzzU6xr8qyDf0OzNFekikEJKfQ3HR3VyClmG5LPSU/f1JqcKzBnAQLLcl8FtcjqhiM1AthXfIjyyXzjmUzES0xcViMKrhX8uDQa364EKA4Y8WmwV9xQ4AxVcJqUTBmwDBVc0Y0oewts0mwQHHcjxhe0dFDIAd8itgymKFsQvxCAdw44zDdcRHKSegoKDb53UZPyKx0T0/XBFqn/gW4a8zJPCyqxatwFEpVThrJwPpAkKfQ+mSRGTcGm98ortFcYKiM9Xdlv5u2Y7I6oqxQdrTgj4JYiD2cjYZMveKDU/nSCiaAUcCtQfsPUP8bB/20ZW9R49Wv/3m3/j6NjP1GfQk92oKZj8NTpcMIZ66CKRg6OwpdMVEMQYg02WlxHs841ANWu9siogxWjCM8/V1M4mlVbkVlXWBjHDy8OgBcY98wCpoBxgqjO9BWI4R7sscNkHKAyxl7L6Vb5xr06m8JZ0qkW/BVeVrYoWFl7Lm9evPBqexMTyhlgnHb9lIYWf8z2YEL+yqM68kqgyYkFIbROAe1VA6bP7x53Qz3sU90lN/ZE/98Tj4PA7HqxJ2PzBw5kmx6vGAwYAGeqEuHwRWgvUYk4XqBPyxboCNDlmedYjUDOmHKHZAz2dJdL+AWw2XmYoRXQPkcYLqm89YgkiHzpXJw6ncg7hIXu80pycJvnl+LLk/S1JcnjjGVQaCgaPS3bAVAbiJSGMOLQJBJTyiexwsu2tzoopSY9xrxrZME9kvu4erzgvJ0sdJZxe7BPQG7MfEprMiygZ2TTWIVfHikL1wNCrikY2gs3kH1npMI0ioZBGLXZTG+eW+BL4iKE10FnZxoooXB2QFDx4dPQtWHiS0Slob+6kfhWfJiCMdjgBaATs4FQNMFo5jAMZwzWAYSESYmsXM9U+AsBnbT1T8KHB9auqyIXLyhAZ6hTqgA2YOstAo02+/+ZsyuSAxacTnzPrBNBTVFJHawzhkiGULGsetmSXpjgETUUkY5+07RW2DUhVxIq68AI1xGxXhdFz6CNnPKxItzEsapmAiUmaIw7DAqJekjxqTfBJFoFTswrfOHOERIGhQOwRg1JDgGRhNLFlbNsMxIKWRVRVDGct0LhBanl1Efr5fhqMcenupUTHFCP4lnksynkjlZaM23xEDZyF4wZYIzgxSUGUbNM/QJpGtSlI8JpdcLpxWN7gH5J1wxKIsUAw85ixhmzY5XSxRsfFUs5BgQQo936fQKFCItiMM/tgp8iPM2JLyYwKEGB01o4cEvr2Do6Ng5T4N1c/z02DvIDgSSg5NRYQFQQPkxPMBqieFo0ynXp5JJrQ8grurZL+jWaJZPsd+ncd01gL26nYKg4/DGQkySHdKIGn0ZzbepRrPSvXpWS8ACrMMYFIXvwaCWn2wky0Zv4zKELRhOtqvrQ2OTVL4xVBdI2s4sqtTlI4a2dhSTYpyIyoCm1e6RsySaPmUTlbYrz6A646SiI+TueAgR43D+ph22uGsYFohw/Da+MLNYBKykGRxfZu0iEFIEsDKkRK+Rf6nfI+jmElwyl0ojrwK41ZGShGJAFNSdZacJcvP+gGLCO4qgisXiEKg1cJFT6QnfnnxCp/U7eQssAVGYINDntRQWuxX7YDeD05OCv5dYiJKK2coElpjh0URCQmwY9SnpgEkQSON276ll3Z3ai6Wkb6q38UABZjggLZABkXpRtPmyJYuJ3G1SaQOy1kh7jpROX/RW19w7XzM1XACpF1zvMw64mXiwanwrcagkm3kmXQ98zgb4rJOn/TUMTT8EnV1SEb0bIOwne9KftmnyC8ziWZJ6dsFJKdJ0g9Gs0QkARTiJDofa3ybVQr7MZQ8UQqZsrcDLpghfNxkD1k1I+9Diio1/QB4M1I1dpSb3FU6mGA6nkt4vujUxizDtgaa7R4COacaC1Uae74XCC9EFaZZOIpCFoEkhrrm/XaBncaUjBvaA0gYdsqshxg2kE2s46TLn4qTF/54Io3i/CaRKU5TE+g8THPxCChRZnMumA2+ZLlLZABCsUmoy+UQBize6iKwSoEW0wUhwl5um6/IxWosegv3dEzNYMGIq8HDp788DFZ+GRZThPJ5WWdt1X9BokjMeEi4CBx7asxc7eCXJuqXb8OkeXDWA0MOfIN5p5xP+rB7ByxfVLEzBC+E8OOIeT2SsRdIlgdyoiJ1XkkKZiPQilYnThtIPBOsM3aB7JqU3JnOCk5E41whlsk4FBc2E8ny4J/oWmAv1oheZthstDVZEOockklYmiljO6XKdOoSlUjrKI6nzqzB8FWy4dIeizxHusgYSZwDuPJzkh7ETDkw5nH2oJ8TIgE4EDkvYSZzwsdI0j1MUAl4sR/foUHtnCAa1qYQOAiZhMTAXj4RDuoZkFLN22vEqyC6EpfBzL0i6C05s09OkPO9iSEUfRgOsCHNwSlFJ/Pi8cpKY+L9h0y4DuPuyrU7wSd0kEjH6XVE5NH0exOimUt6q7r/C45Ys8W4xA87Zp8gA5/dJWkFCcycIoyq+hDY+pkuHtdSDntXjoSwt9uM1OYAeA1SyyQBJ2KXPjIlS4225nfZAi0pJG0XBGyVCFyWy5ClO76DaPvjPaQ4MVnes1HZNq3qIQPVzeAJCH4jcxTrwHuaukFsn0T807qTyAALkkUEVjTgQdZeo5+cWSwHZ+OaOJUi5GRnG4pG5yBkDPHYUDM55pVeVjiUMDKTzmfCOBt55UKNbRQO8sGZ+UVwjKRWgSD0v+cnPoMKlI46LKaQg/mpw+tJOhslmvbymCg2ibpYpLVlYLWCJIgIySMXTSz1FRbC5CvDO73kcRPXm2TWCNZV24JPxuz5GkJiAzL7NnkqJv0ZQjfhB9suzQaEpCBc0HjE9PvaTkpQjQezESz62P3KEcC1nn60kByBzZjjCkubOOAnyNHECMIR6mayyyQ9SmeDLoE3Ko7QDAeDvBCbrRfcE3h1XzSbV6PerMWRq97XAx5dZnkjnL/XWx5l4+1/eVDN4qGwC1dYElgtoZkAwJZ482DLRgLisT0WGn+3zmmYElmv6BSSvXxIx1u4DMRGtq9N0Vaj0xAyUFiJOhSzlxlavYU+CYqht3bljuBHaAcH++3A2HwkeIatPoZS8gRzvudhfL4YNI9I99iwEUhnvE3agfF82QRRRGbYaMFdiYMkjAINhyAuFlreu2xbrFoMQOpjxYZ3gy9enrTw40lL9oFM3SRCDi5+e55E+IB2hO/txubP9csS39LuSnyNkYiC8UjsHziRkrz44NOnh/zoLEpy73fgnPn91asvBVV1PiKWcYqMJqJfeoGJH6eqcWQ4IUnn8aOrkJpCQCqxAFbXMUUT+CVwFFan2XSOeCY+lRHN39HtnbRqnq3YC5hizwNvT1zBwod4P9ZKYI9LV8nhm+JAl/Flv/zlw0+PjjmKiPEbUS2mWITz50g8MV3ay5fBnsV8RgUUzQpevTIAzKSF1BmW39k0hxfHydRaADTSkQAPNn0csYbMchlSQuehQxmBHQKoqxXTSkAVwQUCGuDKFVv7FOI9Uf958MnR40eIHmw49SHniKgwB2rZyFnezr6NoWGKpDuBylP5UV+kw2F9fIb0Fmhl8EC/xjv35dBg1/TelKVyoG2iouo0FFeR2WNnIr6UOLJg46218qlNlxOZWRLQ2+IsRCCtNZ/EjniXIjwZWTZOaxY9pUYc4+7V+TFkqaNeEH6I1X1Mw7I6G7INMYLDoqwsI5cyJeMcQjjgqBvsz2IDw83gNhPVZqmYEv1hkhpyDt2HffYLZOdjUgmzBeJqNQKWQOAYoQ9Eo6rRKMS/eKTZsTcvGVr4ldoZF3dpwkSbSxD4qc1GUhks4iZw2TFDR1bYaswOI+I8sJFqKCzG0hSACXE5YIHYi9kvxxCvuau7Sj93LR09aUm4gnzG8CRSlYYxWOlZ7vqkxZo8hy0sbFghsnG9jArGoqUyKqPDE8FuPVR4K7zTFFjASSFXnqmIZfC7ktJk5Qz5wkZx16I/RX4gYuNJBXUgeWYinIWQGOBIMhM7ry8ugRBb9qVeqUAvXUIPPJ+EZQsiLNgSWuqYL4MOrC5FcICFMOFxv9KJteUYnli5gh445i3iO0H5I4fy9K18tscRaKwR2kHuubOk555IrLQlbp/TJTIkiYUyzMpzdd8DiK+WjjAomIXQl2gfkq3K4qDmvNVORiiVdzzQIoWIhSS0z8vEFPhhwG/egKERSvbV244VQhBmc+NwyVvOWjCEbQXEtS3bq2J1TgmCW5NKFbtHCQC3VoOnRuQ0oZyGqGrqTLlcBDVl0yRv10qxkb8jzF1K3gzu2ZNKWQZEELA6kWalMHTr00UGaMzZhobTsea9y1Uw7ml63mBez8Qw1BIAxyncTLTdqUnqj4SWuP5dQsltKAXQroR5XnweDupvMv85qJwAYzIRGgERbMaZTGYZV1uScPCF6ktai/YmE4GjyuhR/n60vJ2hmxKOY2IWlA0W6NvDBVSeHHTuINxx5TBZou5Y06iUT5JyNcbyW6ueJEpax+l8UAHZ3G3Tc7c31enOUbOq9Kr1LnSAtjgO6wpDOlwRzzd2trwMxIjkwHw0i21WBEf/BNs7161SXZpSPp5KydqkdYdGCeIsYz9mRl0/MSvHtMKaBSokKItCSTCV6oAT5FiP84kte0ifwX85s/WYJuwzHhP0Iokedn//cyh+M6TyzODEqLQuqd25V+brzkLqlvF7OUcodqfFAZkccHK9LSmGc6ltDx9aWUusRXI3xiahrpWZUc3qSZJRPmB9yRa3miCFiC1qqdU5N4i/lfEsyqXsmaqcWOJEq+05I0jCPzNgLkmNqsPpgZZFMIDsYIWNEIYOmCUJoYATrFbkxK88hXBIcCJTnYkXKqEllWon5mWCoC4ql+lIGuMJHmqsPP6urFgWHHDG93C+/MB3g2TI1muxq3CMf2M7fsyAeg/0FDSiwxpZB4kPzqZqKOOzet3E/iOmU0fXa6YEjKsUereRDKeCDRNmrpXI/gcGmxE7yoaO9hesugQIaC5RIFzrJjkqY468Wcdy0Xak5cIkuQF1A1PYGg7xQ6fXHMdFDg9M9AXtqBuIOCx3xPN4dhY/ycQTa9Qsac14zn484sFopLZed2VK58AMqrIPUEYrpnN0k54sIp8IkmT5G2xjsD7oetyzBGTbHRwvrlFvGhdsnHdC7RhyUTNCrNGGzfPGNZSfGYhNYGjYaSeSxBwu4rxZ+SZEQYkyb6yc6zhhr+qxsjsx0GIuY0YoRHM3jD8CzJagosHHlBSEGLyICB374odso14bk26crsFxGxLCZiYMjKabrvp3ioOQYGN2n0Q282cq5yWcwxnvkwpxnnQSRxUxCNrhEaf6s1y9n5QcgTCXYs1wR07uFnR4K3eKcJkZsVlWyhZcMLVOVG9smFB7m6qadghQOYlCbecczi/CQjk2Yj6nVAZ5MQoRcF7OM054o+OKitmI6xvxmgU2EfHFOX6BDC2g5Yhp4lWQTaRyGRcpaJsiDqVUeYTfw4j16dxKu5ERT6XSCmaEO8tEACPLN5aKga5kirUac5E2QunMxj2JNUzMaFbFVpNwQ8Nm0oES29i4b0YVHTIpxOVa6TkYC7rL25A8St4BEdY1katMICyzxXptSFUOQjFUCFXQckvqXrQuD7dmDGOTxjRgyyllJCiPRowItUxdDQhxxyo6LWlNWgyorVWYzN+iObX9ekzI0tEqc7FUaqtVGVGq4UpRoZyosAYjDXLhTGF86v5CoeYtPk2LCCorciQnLE9oRAkhimmj+MXdeKWfbgYITgTu/FgkV+dBQIgmYuuZktxMc1ElXyqdybC+j84uDRcqqyt15ZxdqX41+jPJlE+RhMSyuJR21ugjW02P1yw3rBZhK0CYChyNeqNa8K2WTFWKX1T2nqirkRYDv/nQfczky/MJgq0aTxtmG6bheelCggYsL3Nh6+DFDH5pK8V5ZyVmVmMUuJMnp7bI1YqmbyPRDIE1Js0V4BBPbH3ZkfUvlo46epSGwzMzBLV5Hm4hOG1rsWsvxGx4FaG9cT3vqynAaKPAbWAAZzfTNaur8QCAnsVVmxlZnYu1rd0EEqpyca3cV3qzCcwzSxVWyUWLTXgC6z0k9HKJYabqbUFvZWZCJGA0Z4eVKXMZcHoEdlswfWaTvidoTRAB55LPnZW5UWKKiKI46nEdTMOsFb3gqqzsZ6lN5S7oprNnhxrtd9Nbd4ig0CFNHemXSs1KQUfWk28SPRnEFkU5HxM8QWocQejz94WgeCKMgCa40A2LUr8LQxsWNys5zoFlZbaDx+oAIFIiZvpU8kawHbmVfkIwGU5NLvXcOggj48iHh1Z1UwmYNBwDeJQ5iiLDGNhmZaE81eUIwEFG0KWLQ27SDbY4TYpG6/U8MWZz5yerwTnrbdxMWSuk9NUcYw/A0ixXw4xncuelGcuEq4vqlwFja4WIuJztNW9JvIYifqGXjU1Ncnub19xX7AZoB9sawYyHOXUuRDEOI2sKe9hojGo1COV+UPwJMz5WgxHJVNrC9wiJd7L6xS9XnpBi0F6QobgUDny4fnyHGOo3toOzpOAAWxuDZdLibU8CzaGvVceW/r/QUtLkzLjwrM1H3NR0SfRpP7/w81DbtZBnEGzaEgGetxsFH43llYw3qYnPmx8UoR8hptnXIKR2/rM48DqWlFpMRYgn3h0tTmbkKlsF2GZWmvpUmg1mDCOTGNW6knJSesXsXBFRXli8mK9cVl7GF+cCMacJy8UqmBrDJUFNJ5lm5ZGkE4eTXeMIa6QASRQRUtXVjGWSW1YN6xywTitGpCIea51Fg9AyG+k53iqXVsiUqOM4tYZBpGw7cajN4UTIckP7bVbsapEIFk+7JIIxp+nYkn5q1zNxHaSOkERXsOOzuQwJAVK+9tTm3DDF3CXA53LARgoSEyIfMwtYjf4PCkntemCBitMDzvodsEWUQX2CBKGQC9I8lc935YFK0wdFY0JAEOpnDzir4sC+teuHQJIylUVI12DvBeeKmDRD1Mw6DdgBJ6eI6XRFu45sQPs0eQqSW6bSv+FoZVKpALommRC1ThEWlnc96ly6XEdJFpGtsAHB2XxLsb5y3XauJD6rN0Lgs9XyduaIDc8qzPl0ZFC1cUtYhKCKHOUKKr9tDjrGmxtqPrkYXsHMkiGvp5IjbNZoJO5+RhigQTwGw3vr6+IW03vzwFflQa9s7KY8WoapdOCgdeuqjQezVLOGTd3xx1vzAZWdG6Hcq9OCJL/UjtZ11bC17t3TWGjrriv/rJ5WrzSg8kC/4s5i/ps+bCdA9JWXdot6eiYcz2a1GTosdgpbZYxnOJMwKtTwModsyuXuBi8PwEckQ1p5869fqRedJv711VJMHlUehTw3yaDc2Log2bncDXrwoDg/vwv198SM2tXh6DPbeAX4qpQUsgRsWuFprCdh0ktdCnOD3MuJd1HvcPl5Woe1cLxmXXwx6G5qNaAG26kFsy5Yb5+wla8eQQRn+ixTRlhzFqFog5RCqUySjqNoJtXcXzlQZlYyqa6FUdgUZZiRkFptOSQqH85sLLtXbwEZMclgVQ0UTDttsJSuxSAyjzpmXzRnSsxNHjJcC67AN8eYPTHtju5K2rMrdKx9jthWHxXheabZWIAxmztqiz65xgla9Esy4khHWCz/bZs2abQVJzC47kxsy8Cs4guxs0oMpzqYyhIulpGNH1hgWrZQfVvKm0MrogdT9mxK76dmqycuxYJwHp1woPlI5iQSY4ZRu4ZGViFST/GscuFnE9hORloHlBDEto0SofDly263++oV44uLkoG6BN9uyE+ESQeGIviEX75k643l7nsHcA36BiR1CxeeI4FdqGF6jioAfRwzb8fPKbTVY+OY4x55JcZ9DrZL1IvtpewChlSEYI9SGwOYGq3TWUG3YWoeSymbUWKSYzJEqY7C1DkPhfJ+/Hjv8GgXDWKam+OCXj06nI1Lvtug7zalaveW/LUtf92VKCAkefDI/+XWOvEfeBgkbkVMARws7wl0enALn9vMcs62TCbaAwFB0RA7jHhSJ1bsuuJGXxvs7p7rdc4ypJIE6k+v2SRRGZFoPOdSBFw4RpQ4bV7kMem2a4EikGjyaRT1z0nx5LAYngP2c3jguGDyo7x5u1J6FmlI4rcx4c8acFOyvCqW0iifQfL+asaxdNo1Q59jY+ZJC1eAlJRy1ne1XThpygwnljusELYfcVyAvdr0SZSsoM84/umuvsXXqBk24h9CGIw0oIZNAtGDHCwD9JEYGVoLHf0dMbKQVkhiWYzPxezy/Fw+8V+eFal5FQE3Rjyww9HxHXHRalAB1gPxBecwPpf2ed5gchxuNBMeaX4X7dOOvYU2XEIqaqMr/Vgc/zSe+8Ppc3Y8ugaO5rOD8Uu4ShmqdGPtwFfIPu7azBF/9saJuV5TCgHgacztXrggBoEEPnte2M/8192nzxvnLW8hlsOOf70bSFMWRSd8jEYs8fMqf44P/JHld+/ENYyUR7oBITyM7Ciws71xBEkggnEh8mdnc0P03tMjtlkP2Yyk5/vmNWzYJMT7oCYMb/w7v1f6L4rWwqdt3t5E66swnZNIeZeYGK9ffn8Opua/Lb+bF7dgJKigQ0mZTvO2BnQsvK2OAFD02o3WBt02l3kMq5N3lfj1srVgmGE+mJVunJ2uhkXFwZM5Ma6MzwbfqoXp+ZQ/fsvRXrOGkDhgaZApin7yXGOO3csNfO1d5zJMUXBM8rHQAYYL/Oa/VocCgsL9nGgw03i+tPx5Jr+5lzYI8Dj4666JPVk5Gs8qRPCs7ioleW7iUuqo5SIEabanJgSViacxMZuAC2aBDEq2OqjjXiNOW2JpfEOKnwTHvuXDRogwT4F7YrO7HRiL1Z6ztwPIR05AFdFAo+S3unxxgXFdPfFM6/es14UXf1cEYlP1h9vIsXVQoVtC01zN21i4rGG6XgK6nySWD/VFmzuI3d41FRdN6QPXuNHM1E9GHZNZ6GoS4j1OUORDUZXfWqLqgR2edORCFGQx2q1JSsKz99ZwWOlFMSCJniWRfqzxPRxLZYq8E8onE43a0sgl7cVmClqipEG9NoFEEmpqNgdCmZgAessLS4XA51ynpKWSFGMjM+5r5OpLgKg2NOOA/hoW6Dd+SCsD/279V+aQJMTLFx0VyvqzFDuKTk6yjpjRpIwM9KN5KZ9aK528zmTItN2U0QbeBTf6csrz5TQOT2vLNTGBcymEMzfxgIRlr9pOBjLbdby/LhzV8hzk58A9C5CHBPWK/70nIFzLozFpRhw6D21C6R96RHdT0uTLejdaNhWKQq5lTyTdNZbeWOfjnLveGYZslR1jXGHXm0YDiAS4aJuEst2ctO55lpaEphSCGj9N7RfX55UtuShuYZwZUsKulnaC2mIIKnJ2oNALKn/gIs+kHGxdc+YIaY5W5FGM3bNUX4lmkyEb4K7z4hJRlzx4o8D5e5Xde3obz35eSLUcOi5RW8z6CQlIPTvJvuDLRz8quXhRFQ3L5EhK+QJYyZIyewVrhb0ZqJBJzLXvOAwmhw+dsRd6nH9c7Psh9DjSwA62PM3N4NoMUAyCpR8vLt4MH/fY4hMCUQX1OPCrdp6Yh41udnyk5bOVSJcDMmwuUJyq56HqZFywni10NrgcB4gxBdXqBycouHBsz2K9B+nYRxp0cMQ7eUjz58TcJqzPi5RAcvdnd30w5Do++F4Ls8RGkfulFlgzNgrS2y9Zl408X7K4IyUkbzvHXW56GJgrs2EDCzsRO4/YR43P2ncw4SH0QjOW50G5SkNvQB5txpQ0TkJGlsgf72PpjCaOKxwNhttcPB4Xm6M1L73RSIcwMdVtE86lHnjGFQxJ/91dBBgcy90wU+WZrQH1HFO3m+ZJtb0ykJcdFpvVFw7s5+8BfC9fuuy/3rrGADL3zatQk0DE0mWm1X42qfDkjPN3eNUwEuWSvBym0jDgxWwyNUE+jeaHkqnJIPECFh+uGOidwdKppSAOI1saD8XckHCITiUtatgubwOcIg7GUa+TzT/yWzXkfQL8gcnnDyv65VQnINF6kngdd7R5q2DRScZxC3OxftCRxSbm7udsPoG3l2mb0gevfwhA4iWKXojH3ITqMXa9CtwXztyPFx7BQWU+whJoFhgHdQXsyzUyFUr5YMz6Ek5OTloqymtXXUtxu/iu+76k4enyPZBGcNkulmKCL8gLNow1HKuB35xXp9SOIzR9evd+MP8QccwsvyJIwVUVMtKu+k8mfkmBfjzkil6wn9DOCA4g+3ypLhtTCbeM63TR70nGXeSc8ZllF0P1J/yLBN05l1XdKts1Le71dzW7MtcacQcQj+OKEUuamrHiKlIzP3yunWNZXOcsCoER1G88hTHMFIVkCDOZW0rRa2U2Eq6QqX6lqB7gyG2kovhHGvR4oXO0VyWX7xaysqEEEh3ulBoTy86rOo/l+Cp5zDsoLaUUSrlesdhPYsvc2B/LVA34blLhuQQP8eqa8bDvlbOv+fZDOAwGp6w1aXUNCajUgiLdpnyiKXnWcS3JKpa9eckXe4eHelj37LdsXZcMPm49qcWwEDfOOTcMMv0UpWYELf3ETRcvpa1pTF4gMmFD9IZ1ZZbuHxzee7T38J5xMHB1MMTByDoykWpsbdWxfs7FcsT3dLj36GPzNtY3m/qrsy4Tm0lI37FL2Xwj7PHu4/17risVpxWYpRFBwpf2tqXFn40OQ9kXEg3mLFBzsbsEYWgcrDrKbTGoWkFcsa6bQIaw0neYquScdv2klnxscrSxL9dVYTiDxGvgCWz4EQd/D2JSgSLJ67pvrs4eBBeStZUV/IRONh/Y+qjm/BPJnjoTp9gCmjJZdVluaaqbgzmf6ynH1WDhJeN88rzuienhxVWEqsRWEWKQZXWva9XH3CF7IGm0iCFMmg6JtiVhdCozic6vy2+wIEmpcI178RLT4cslPh+OTFJR4X8buc7SWDtShZjwYwX4Bv3l1LMw4IJZpmswey3LSyia7ws2wI5r/LSM6baxcQTM7TIwhqmk5IoPDMjujlOpzZIz7sKkoSq2JH/rAEaBzmow4eUqlN3qotLNYoxHdOifHL3DGHqK3RelPazP3TthFEkwEd9mv0jioYtlt+lvWjZJT83rX2luQcasxJiBMXVE6bCrYoYxPHF0az+Ra+BaALUlebHeNZxw1XxcnKbBK5EAYwQ2c8JTbfmWh1cctwHmrfVR9GzW1JIBp7VYPxBQ24/TyuujBQcqqXdYEYKyzB3fteaATC0EePD91fF3kA1OPFHiDysd0Mw/0rCs2f9oQoJ/Yv9JiAm64e8pKtAYf3hh4cTx5O8sLtAY30FguPp2cYHP1YoMJ9lf/MVfYKITkR7kA3noMkEC2pWTJPDbDyJK0Iw/kDAhW/yhBYpFzP5DihQA5B9cqIDe/QOJFTTUjylY8JU2hAsF0e8oXpxIOsb3FDB0lO8hYthd/KBCho763cWM+rL+cIIGzbsgavDln7xF4oD7SYQO/tETPKyZ+EPSgX4n9fNrrglU8uR+Q0VbevwI9p20fgC7CkrBvLsNas9NoRbohxLg7VJ6mSL7ZcNhcyS6jw03bayeLcoztMrC1dwKs+A8YB+UMWttdIPPkvhcJmVnr0Q0iYXYm1LaFNWaiiCdyLTKlOdMrdp2gL6rIymcIXPPppErHBElJcy+XTFn37WBiKatgPldFiMUyXP+uK2fNizh/mSxn2Zkgt/TuYKYqXFTxrW7RtuthAUzU0YbplabphuW3FJTkfH0LXZ4FmaYl7GFeOLbLd/H6GdZ5bmNMJPAR8n3+gOIi/d/JClx749S4n9OUuIPKbP94SXO/2SkxON3ObUfTJT8kUU18STcdYWXpI32KBcwljYmRCm5CUipKfYkxUmbmiSNNF+6g2wVL4m4HRwoaLDDxKvdoo17OL44VP5JFKrWY0qK5O2aMsamIZX52vaWk+roWt6MI3O1Gqp09x2EDcYqqn1cDxFouxIvOoFf7qOMTVVgm6nnRa2PJUeOAVBxIPEb2vp5Y30a9DyJUKxLEi69bD3mMM0MIVuvmL2CHBw1gTyCcjvnCnoZyWKm74t4J3MJiqZ9L+vbxT2/JVin1nDKVHcz2Wpcz1SdZa7ykKbVFyzVS4H0aY5aSULrG22uOMzNVHLnXgT0O9SCsGSMcXkRUrfYgCABaT06yea+cFQK8T245kQM2nUJQyZwhmFnXmu7HRPWmTg1aXFqqLRN1JVWGOI+tIXIOLCPE/QBLiMEVbOMzn5jrKyU3PAh8wupIJDZghNxUeTwlRNv1ungPKaTLPI+BpDi9to3kQvbsx/bu3Nu2y07wFh0TE+9pA4CxcvTOHaDu5pmJy5ABVhXxWzhVUlSsAPYlCYpBu2XIfODQFSU83rIct5+N3hAt30GOV10jtqya/WvpYyXOGtDblURljIpiiSwYCMozAKoHKokWA2IATO95WsdJ31uSUMKR8pVCW3EoURUEGZJWQErKWQ+HViViEbuhs1lLbj1lqGnfIagfELKOdJWztHUC/b3BHhW6hbcTcQ6iKpSMaojHNIxoIPcyiezzHQ2//abv/FTmfdcDtCeJr/+W8Spp99+89eHObKVqopkx7W1lMc6p3G7I4K+Wb+b5GuEG1W5hpE76zsd+pNXv0aLelycZL+AtjNI45d4Cw9p3nSVoAXbLRJY37gSjqOdEQUp+Fl/S/jqBYmqAJFbHES/uDg8M4fHHg9gdnxA/IAwB5/QkeCDWSEjfJdtMkt7atXN4Ivel8Gz2FYdo5Pmwjdysxy0qAnuEk8B3bD0qjKAGHEpEYsnUi2wC7/co3hWoF8JStKfZF9sfBl8HubeTOhQxi0SNTpyN9hPk76EUj/RuiNHeXpmy+Uc8lSNAvg8VVj8OjkDHycRh7P06Nfdjc317W5vfWe9pxU+EDS3+SXdx2zZfh8QCyilWllKvKxsTiRruB/HERRAvHrptBvd9Y2dazvetFvNaQmMfvZkN7gn5UVYTli2O5n0sfZVt9ScjseUe3zT9re6vd7WtWveOrabl8C1dXaDo3kWF6Pk63rRDQ6+sdUBlt3xwd3Dp4ymGHznS799DQ+/l2WkKA8wArcR2rWFKqvgM+GwCz2mMO4nM6JaG9elBQ7GvvalRWuUU+6iz0qYoKfNWjkmPrG2tTMc9rZuxJ1wa3CtsxVF1zrh9fX1znCwFe5sbcTh5vUbNM71L4MjUiczk6J7iFz7sR7FEP1VwDZh7WpkGspNRHOIygOfojcEkzfdxybdx+aODxc3vmw08KZ1HHht22OW0AZiJD00/USkd7jtL7nvNZVfuJTe+pdBvc0Lurqg24pErRDpEqMpApPe1LpFRXWturAU7duOCzoZyFSw1i5CgyJmK6Tpmnz5eW0Q+q6vb21t83lt8Hn1iF49Ck/DzIfhZ3F/NCUgliytoiOWKaLPhnF2xFNmj04qUQwVld+whF6PUPnG5uYGL6EnSyBCVu+5AVq2d/hQWyld2qqDpsHrRIHq7Tjwuu3VsbtAARCddcxqDwnaE4K2Mwn3Ny2b3kwBaf1b13Z8CtjbAskPpaWrIOqzMacnGoSUVCHSLdEh9Of0+zTobTIqbvAA2196hSqB5FqecpdA6U6tqCrW19mrlU19M71av76xteUvdufLWmMGms2VzN217GHvQGsj+23kJR+F+NV9VMWQ6kBeX4q3IOq17evr/kKIAPn17phzSJGtXXPlWAnjRaeBF9rYDUV3SjFlv+3a6CS2N2scpEeUq1a1Cv1PTP64R6y8GlJQN/gqa4UlYRq/lGe/cT2KBroeIl2f5CTCHc3AkPw6NrSyhVI3u5I6pLVejvy6MA8YG++YUhNvWcbm1pa/jA0ib5oN7QQ/FYPAHI5cz6/OxwXNQFrSGl7o0Bt4nwhKPRh/ySB7GR3v4zI5DdeI0HRiffYka7U/CIIWUoLvosBtK9gNWjtb17fl8yQzuNyiz2N9GubbJ7M+ihnGEb5wQtrx+vou//dn7tGHKICavO1JETpbuy/pF/r1F7DI4I0nXCqbn6GPYYjDpyKRBhBPW/TNKx4Cut09gpxq/nj4RNbcHI0ILX+jw/0i4VV9FznUTTvVoyiWzPeYyztK370le7hK0r75mOhYbkfwx+CkvMdsu9dn6VsSod+68iEBC/Hh51PQ3i792OK3X2HlH7z64KM1yZa/TT+N4zC6/cEHH/XzaC624lutVpBEt1pVPm3RE+ZRDJAMg5UUnZaPiNjChzaKqwNixCst+IE6UITj1mpw69YtAEBxSj+bXQW2HFYXU3V5KiTodsMoWrmKp6+u3pRlSvTz+0zGJUbfabYiRsysmbA5n9hSuqSTDsYPkeW+cnVFXFwlCTZpXnRQ63SCijr0/urVVXk0Lr/bRj/wrsI/6YdhNf4kvCBVSUYlgcrBR5KlhMJ4ZDf44ourV662A/rjy3bwxdWTkxX8dnKyevXLLw3EqFfHvUBv4A994wt540vvDQ1Mv1cS8UXyJGnScfM7V6JEH5AdyWOuw4q+RWLi9EE1SY9DJGp+cVW2ipmz3P1cVvM0xg8QIBH5jZ/p+K9+6cD35gf0p14THeg9GH1xuiDaK1eRAkYvrXAZAIKN23YF9lK4IJF0H8iLvTRdaU1eXHTUNkyovNol7g9XxIox+65crLrLvejCtJNV98Sj5K43+Nmt4Oo4LDsvwourrxSy6KJ9bJMfgrIY3LIIPM3T+ZBEYODt2ab7dZJk3Rflz7UdcnkrLndatxfHAq24xemFay/Cs1A+FQRWKOqYz8Jyng1oXbXpBxGmISaanBXdLK7WsulkDU3uaBu/2FyLy+01GrwzmaSdwZhukB72l0HbAwVBHpvQDvmtJfTioyw8M1/Qj/opfxMl9humf+4r/joMxoR2t95M5lpqwTyN5/RkSywdt0Bef/rh5o2bRGKDlb2UbiZ4sNq67X380VrYmK+comS2W0+nJLkHiN1YGD/cn1UVar6ASIIadKocJsTaciq7HF3C8eqSoWTusxGPNSGRpBVcTNKslI3Tvs/Pz7vnm928GBEjWl9fo2dbARubb7U2tlrBGD1wK/kZfuI7+cWt1nqwHmxs0X+tpRPiH4AY3Ume0aql+NGtlpbvugs6Zz7tmLnsByA+RBdutdiNfPkM3uMv8iQzz9++9IWPuJkQ4Hajh7z/azf2bgQ3aCs9/Nvr0qebwTX6d53/NQ99DXDEq5ecLo7sLQdfzv5/fe6DpBjAf0M76NF8g7n8XdxqbeNs5es3vI+pgouevDXH33SaG/or/b2JUfDQ+4yx0Rhk471G2epu6DjyE0ba7u5syVj80/us6Xp3c0e3Jj/yym50r12XAeXH9xlRR9OlbeowG+8zxkZjkI3vNIo7Kd1P/ahkv9/trGSUxlHxfG8c7xKM/WhNyG6DcK+Bcnt8ZY0Yi/frLBXSGmezJotJkyWTvCPfUdL+BBrCpWQdC+Mnmot0i22yobXmor7HKtkCdkYczKx2Tz5443r1mX+eFYvK745XrTnMQH/64dbmzWBt1Weya2/aibz8z7ORisRctw0IvW88dDzwz7PQYfiVXeb9vV+9cZX0/Y++SLBdUtBeJAIK3XA6defY+OKNi208+x0X/tHaLFVJdo3kV6MvxwX9JP5kkRjxcwsqnLrgzOewIHTgREwF6xqyMn9dE5hlrnGv9gRv3+4WxeaeXObE07WOe7pqT8rmoSZxFbZu73OpzE/QP3lDjKObQfCXQXCvhK8G1s6n2k3kOIGuu9lD9B0/ssfGmt3AM8NAw1Gia4+nNnOVD4w+YHLUvSM2dUU82XnQlJ3vNmXnmryug7YIj/rSQ+iuBJ2Vi9xBZ7v9wVJNJEE/OOJO5tbfCsA1IP6Q7UMdcch3ELUAybCFRt5hJw37MUl+0odEk24fm0duL/0YwLmISO+4FuvK79CfHRNsUV/MXfMMek24gIvW7Uu+4AUtOxvzz3dZKEI/OrXQj/oiuRDUfu3724uffa+zarjB6vMf4UtXvrh1u/GBndkRizdTwve+wOo874jT7rLrOz7PdwMp2e1fnvfxj3N1iJ1D3dBlqzvmwDpCRrOuxgff68Ym4UUymU06jLAoiok2QR2h951JMi3ra3kojwcH3P77iTxunEUrDw+eHBGBeYeH/gB3jb5ZHW61NyvjS+8bT6nP7lN67PalX30/GhKWcaeUtkqNpXgNl2h277cfBdCcY6hje2KINb6Bq5e2fiK0vfS773VGrsyyLKjsuHrJ9cW9qb9C6/abvv1eC2wW9+2YRun11V1a/7h1+9KvfjR0sCGDDahzn992P38/ENdorsZE5tPb5qfvNYnLkalP44KZWrfdzwsy6SUCde3MPb2XfhSB6LYRzD5YIglqXD4JO9Pbd0y8b7Mu9coyb+sqF/fmIt1FLSsksQWlFdRQIFKaljeBsJRgY5cxsqAJvKsflGQncaHi2NpvHOcSVyjhnudExTDsfX/TSPN8HCdZeBq+IHl5rR/25+Eoad2+Qz/sfXwgK0GN+FjqoKMFCQehKd5ok2XTqUpjJ3HgnFYQlaYbnyEuCP6I07RjsrUG+VS6m1a5tDlF4sbcNvEdFeGkvMmNDrVxs9cT3QbryuCuTxa30yu6H61NCXBIBYHdZLlEe4m4SgeWRFFs5fIwG8CxKyAvX5EyUMyIrb1RYL79oWAbtBiCzoOs2Q+mGd4kA2hfVZPlYoqq8yM/LcqvZvlNOtiCe+NJwp2GdiAxR+EUAfEuCHZXzgJ4Biz/CKbVbHTbicP6gXvkaNbnwtwSTl8LZz620ab9Ig5PS2lILAhmClQipF7KArY1vUpa0ciouGcE0jIo2VA0zgnjMGnXjEvqiwrNwLK87hvaWIZgfcJljt2yACtR3qgHuSxMTAKyOWw9NJH2XmyzDWV3U0mINKJqtDkHp0i1JZWrb9okm9Dtr2YWJ+jlMLW9z3RDTPjc5sy1GLFy8VJQvs9vXLMbHGicvWnJEJj2o4kLYEtNyNrKURy/oz3FDxnY7PS2OxKBamkNDbfGDBVdK+65DwHwTFe55yGHMpbNVZuQZdtmkBfo3fJhoz/PrvRwsF29Xbyzzeqx0TWmjSnnx/C9cd7Eisk2WK0V1WIAEFoVc0e4JEdCYT4EcaL71NZrEofpAuv8vARJ8gm5IYrmJrzlfo+11+ySG3ZAzGdS2u6vdmruCse9si+qIqwXquf21CXgluO9beFFTfZkT08ZrMjuxkgsxPCEd4it56yaaUEyeyEZvat+LqbpiFPPAkWguevA7u6g7WVkSM4TXQjK73ur9UMSue/0kkOTn5PJSFy9QmUNee1OYQZgV/utFnuZdtGc5ic3W4ZuS8ZPK1ijQYbJiNaHmW9Ld5GupfdcwPFdCDMt0RvG8pZLLBSXGh/en71cNkOdv+wtdnOfIamWe9Nw0/JSKvtppeA901jGdvZFwKh0Wa1MqyHmxGg0E8IiZpjqhviMFy0eyywa77/fZQObvW7wXn84KgYhnYhljkAcjoEnuglpUnGzGYpvkZblq5W7+fHNRZIaFhfJGftcwz7Nv7He6/Z6N9Y3W7e9OH+Ecgq5RI5WH7vlerdViM7vkRfzX8WDcZZ8NZPMyzgjjB24hI5Gz8866/SSvReq+f40jSBLVAuZvT8t+Asu68lkXMsRIiG+wz2rMMnM9QM0VxUrVVmQAoT7cvpyYcAPvXi5JZN0Ru0nI/9F2ynZEx+07TCGGqM4gNAzac6keUFTkH5TpNzSPis12WYbpmSlwPPU0eZGPoS97mDlbbdsMx1at73wfgCf3LIRibHvvp/lZbfqgv5d8x1tQ257x3PJUCmqY0+9NFU4WfytH5/JIOFDl6KoWhi/XHioDKZ6PW0pOSFtK5vdmQBSGtSqx2jE8zv3j4IVSIVEjDtajJgfXEXC3z6+jUhpan7nkkqlDIJpa6stFKU26jChta2cJSFEf0YNHnQSvsg5b+GMtBB7nccLaXhmiRHKF6/0VjG07Vqo1ewdxnG240fgb7d/ih4pN4/4+IB+v/78z7qopiCff7TGD7VrDz8zWcOcv6cyr1RFHoxJQsAMNMzPG0OsbPCqtIczSKCtC+Bng96Udi21CbU4i+QT5rMKTun6Cnl6U1FTW8K2cYArm6t+QL5Uv7YHuadFx6Vzk3TfQ3ttLW1P+1b84Fya98IWTYxBPNNsAVvajmUVccr1a1nm91L8/Iq5bOkEIcolMZP4S/I1Ut+UVZr2vbpsQ9YEcWxGzz63SybuZcvR2DyAlSf7+4erfgai9g7y0hGZEEpJfUFIM65iJuruSfqtoo0oegBG25puCSormTbZWFiIEmjNWQfc2A6w4fKDsR35Qh5AWLpthMjnKp0VzXR6FrXZWNJNJJsRYNNYtT/w4FQWv6QDpmuZ164fE7MgOh2CXxEOtdu5u/OKU3m5nobRscKzMEm9xM1m43teFOdQESYmFfMRcy5SwTopTcY3/KBxwaqDdmVG27MZmueh4VjO2emu3Zppr10Xipo+mAU3y/uLQwtD1mWho4ZWy+YrGJdSU0/EpODnaNm90L1NikChG0yQVGq7RfGZuSi9DMFOR260v9AW3wLm0gHLKs7MqxCyy2BJ9Au5wqhGgnMkLpF2zvMiNfKCFr6oJxRrifL4TK7O8euQK1rcanGzwRZLY4YUcTrde5Cijd56d31zZ+PGJYwbGD4Sjrk0LU/bXQGXma+DzVvwHHi529zgVkoy9b1mf3VSb9OzwkZzSte9FYMJG5Z8Je2jW5q28PWGuM3GlpJrjETjZ8lpMgUZM+yclMtVk/svU1aiFRq+qBNYauLOg2jBQDLjF1DeMuUxukvR3Zh+zabbJfTMvJjmcsam/pGKLOBbOi1Lb+2ASz5wORXOuZbcZZ0EEETUgNR5hDESXDDzU2luFy3lPtgbiB0LPz92HTDlA/ScW3kaT2MWPxjXIfCWqx8oH6V5CvrT6qQMf99PFd3oBq5JI7dF9A71BZsaEq2OZTP6OrhjaUIs2CO3+iCvpnn1q712cP/eZ/eerhr7HSNsx6T5ey/spcNnjIP3srM2eqsdjfPp6kJXzXdHIW3cfqv1vE8AcLocpZqKNNtGieCOvV7bnLp++X4v3ZgRxZQKiPCD8hfcAlVKkYdSZEQedI91uCY8uCJHAQpBakDQt9/8zgxq+JVkYkQLuoTNZX0vsUjzU4lvcIrsTwkubmqGrE+TQFJdaRk0SiIRbVrvyPn2RNl6VprHCBwMlqdJmpbaBQm70eZFVk99eihckguPCkuVggrn+FZ1VGO6C42sDQJYzM1Ttgm9Ty6lCIL24MQMmEAIiCuSVCeetfdxRjbtkQ/EklDXe9yoy96G1TrCBjHWSnTUK+Hz6opftF60YN7VOJ4VEKAGwZUxPSXVH6aVqf2AOhEfxZPbgFipLYu8QII7+myBQENt5sI0IXfvFo4o5RJVDpYTqd+ksy1PfZtZYa5tGY26/q4kapNYeZrOuNeVp1w7mLCg+N6kw0H8AulQDFDobzvwXyAfYC3uCrwihtKUMtYqKAwwhqbOxSLiHBDS+QviH9qQ03YHhkmLycHUUiItC12BIM67l60UK0lWzK586i3lrFAqhIRYqYFje7XO2FhK1Ls2aVLagsnIGycWOcMFif4mVUAGsThLspJtsBDg0AeWhX/bQw0Tp+g6pIWtSimkZxmfqxdsQdCSsiWipdSiFGfTWMuTnecd+rmyfkFMZXrJMgbpF9ofJUy4YdnKUEoduRtpcxGn1OvNzVwP3dHZoC0+F7FYu+4jdPKr2h681tQb1sso8ttK1F1oAFe2vzB5bKO1MT9XxKgGxrIat4oKS1uiCKvhvCsVhi7Ftg4xsu8nFXAv1xoz9Hk1H63h9ksgJxSLnSo2OGgtH5DVQN5CbeKG/+fB4AV7qy0F4nHPu/mDm++wHC39sdyyIJhUcFHRmhfKsD4cIA78PLP1f9Rcp1U5tYQUH1tlGpP4CMnakr7bVhaSkfoYWkZkyx5o4rX5nStvmviD1Loph8GV/edcf+blykU7mD9PAhKD+c+vnyerJ6+ev0xu9V79eXbF1A+8cnHFFOETYVvXcYXevWIABBsf2AZp7eBKoV/iNTEHqdMeK8CbYgO48rX3HCuA3GIQD/Jbrrnz2NZzcTvmuqRa4dBsu5pNTbG5ggBHyIvIBrysLDgZxV/Rll9mnd4r+eUkyulq9PPeFQlFUHsk9/yZwr0DBAYR7VQzKdthJQd31PbuvFZEvOWTKpzxuePUadN89PjpBX6iP3gN+ABVf59nq+78T1JaVxLwXy/kr+xKwxyPddGyxM7BsieBVpSQfEOHnV3RoQY4WlyQ2GqE9+uCkdKbXLS93iIOpGHw9IUEdcZFM6mcBelGy1taO1DtTswk/qIxpifWkOYfg+s4CzZXZMXZ1Yrqe/ZFRQSukFWxR4EVLKck5kF4licRu2aHCZfUageE+KDluKwiHqFOimakS3dvLi96kUzgqZDal6MOTLhpMs7zyEgrvnOTb58kMNqcmZD91MRGK6PeD/Ip0/mVfjwItZe23yBLiSsqDzAzWji5crUtjjSC6SifsBxYngbrPwk6wfZPLKXQ6p7RrFCdj1dYU5uby1ZITYqawqR0o2ZcWKCWY6m+AYtld5Cv6YDlmhTzWTvnOi7PpfJbQiJxCadVH6U8vM/eHqOkw2kvwq/jDrzRHXNErdvmC23oCFd1vSLMO8UvhRkqQE6TQbk2HneKdDxs3ZZhXD1nc2YYsMmvCa6+H5feNopCjcZwAZT8QbuBjVrVrYYaHlIabsOvJ9lACoSHqeFME62PGXqo+d6s2vDGBVa9jFculbMhokluwgPmAbmt3RnakoboOCl16hLxP5v202aPbGtVoYqVv8KUoLb8mIXl3Ajt2rx7KQEj0dmID8sLMnkixN7+zXeyZvS2NnrbdCq1wlBOiAin0zRRCYIFaj4Vbsmal2UnnhKaRHFdBWCjp19LygbmqOHiXAtCs6oYmp2IkpiwChBOS4TSSkvSUNQIPfOOzyemKB01l3qBiS2iDSOw8fkbG2G53EjoLF/aUVrleLMvqwOPYnY6pESpU3Mt7WBvn0MnaaWZugdQdNRs1y98OZTYAw5dMWI6gwCJRoy957aMrZStlOrQgBtllnFkFHQJJYpEdhfLpecbZ+HX2qhZq1b/OEe6CShL+JfX1BCg/PSQcRZDg5UYWhw2jA9y6BAeies2KY29zk7kAeZSpXz7HWnPzqJSjvaAy1EAkL8qdjDCln6xdvs7mPgEKRZJx3Ik6S4lH9MQTubxfAofSqlOOIZMAgi7dP7IeapB8rj0dgOGgFbGsSubNepeyHXU6F5JxGITGQmUXvNwU3mTHYm5V51VyLLAhYFTIyma9ahfWpckByi3LzGswBSGEsie8GG4Au+AGGIZlTFFJGpy4vLZKgHw+wRzxQxNdVV4kHgeyLWsSUfWp9X3NQ8WxCz1Meunt1iR5brdOmdTZuSDtZSDsQHAHY6yHDYVK40ciOeGg7wcuYZJ0NUU9sv5arVbbnOu6yp9Wwp3JI4zLvfLrc6VOS7fSjd46H1M56mTMZpudLbcFJDSbCF4h9kAi7Do5FrM0YuSpAO34CfXH0tlLznZ+pPawKMUCqzL1+/9o3IikyGziKUwFuZat4N7+8EKC3NV4FOItteWXgFVwiXk0QaDsUSqSWtX2zU4nQcrFiK82OwFf4O/EgD9+4Vd9a531nuoNyV3GcJn3kGR6aRa+3A2pQ3gTIewWQ3iTp91h9btT+/e0RCAp4d/vvFWk3lvp9cjmebatRut2/uz0CNDvWsY56Y14vCMAU8TlAnreyb2LedSRDThKvMuxPRnTFf5VP2b58P32QpRQj47uh2p3curJhCcImKCtTqJ6MiHQ52EcVcDPLmGL8JHjWNCXMsWRFAYkAPla0ogSqnDKmwpiCd4SdFo7655S8TsrIljyawEfWbKd+NcHWNv/l7i8zWIKBZFaPF7+21aSxNYcV58rNzG3RVsEvKlyOi7OSS4SrsdPmavTs3fAE2pRLV0mHGPGweWKPkwJJyv/P0hf6uzfr0jG+iMijCCwW3tw3BzsMhA9zbvsroDlJN6Y/VtLqhB7zL/Rqd3g1QiGy+79mEUx9POVx3liIvL2P/VI7uM8xCadfg1gcMfRFh4W2itlzt6SWLo9wmr9UevB9Wu3ElYdM5OucMB4bepbIlTGsfpVEzIQVSE6LoNQbcUux2JZ2prPnP8VQrhu9bmoq1yNof4NCFr2GA7STWAkQBpmxx+soQIf/divK3bfvMiVutr5Tu7q/WA30ae7EIq7HcI9W0OWY9tkXGtjOf8IZ6IHqt4A6lvwKRAEoroL0kEEKsl9KbCBOnXemszCVDLjkmgqczOlKrQ0XtXZdxsucbt+xbsozgr8UYjjUOTGNRqKj2iuDkM8MrO01ZXqY0fWUhqAA2nTbPxgNVsmc0PrV+RZkoog05Mg0eNq8Gq68QdEEEfcUYKCiXM0oQEuLNY+lUh102G1J3TScChRDSUmRldbCXCgfhLQlLhzgHyxKGIWx3N+lD7RkYikY5wKOLoHNG6PuK1MYGH97lZ76rc2BjkwH1b5cS1VvXkbVZF7eg51eQYJsHG6QcrR8cPOWDUPPtMvT8L13RQmYYTC8kV5wIjmgyB/vHn+B35A7RciBIChoOwkDhM614e5COEFNrwBddbS+U010yJwxUXUn0AOH20RjjTdgy4MJP5MtDgNyEr1xDGNSk9yWlazgdjjQssu3Pa+aw7CNceQl8q1lq35Yegd2N7R80bjC/mojfWO5vr9orfcP6cuLP8+A/p+HeDZmaPGKmrZq97UZrQ6qI4DfuptlqFOaINdWhks1sE+CJEmEkYehhBqhafTIZsQmuCmmVGQSmlDKc9OR/9iRFAp7LYT8tuJM/dM+FJa5gvDTXXuZaplJReqtOQrSwslZxJ4xnNJzNu4jEER37eOoqV3kEbGsBcIbZ2hNJHvs5g1SCDIjKDEYFi1FyGGVpDP4h8+fjkFmaSWVe9JKyDid0n09mItenaNnFKPokkOpzZJavdSIN4JYpEdk4wmtSaK6k4rYk3gIGBhIdyGHYh1DAkEQ4GwYIJksYD2xZpS7OH8lr2kKzy+8mr10leVer2tTO6MF/Q4RdsHs9ivk0TtGYT9eodvibhFJtqZmo2SLFPMNCmLdI+eX5TG0HZIjzXUG4fXqR1UMKiHD0kqgZp8KEEAN10t79If8JyWU4hh3gmperxGiBMWNaW3GoJj7Ltkbh5Vhws7fujhgJOvjBZIZzFe1lWoJEClmflWcOGywnlZj4iJlTixVeSIslq3N8K+QVvSuZTQejtZTveqQrH+4tL7zBxXYA69k/II7qgJVJ+vvJaWClE6wXZ7kcIqCIpKdjzs5O0d5nYTUvDji4DS7GhOBKvRrranUH2hRbqaGBJOjsAi69E9x7U9m5CVxfNBHHWPTcBrqyZ4Lc1vZbntUGeyyB0aXQtYruEX5CtRMan6DpPldMYZFic3+wCZCkmNrIdW++RaXDBRajY4gRRL0MCZh+ez5W9R49Wv/3m34hp37N6spQ3K7TPq7yfQvqbBqdLxpEgowhEeOiM8ATORKsH4Jplpbx0POPAYVr4bOqSOxodz2QbzPdogW5dZV0NaWaTv9vBH6ICNnHbDiRWFoWej8NyzHmMVn44etDIr7NvHZm3ggfy1ipLagmKNsAjBBsxDl7HlJO1gWDO1llKpxMhjiooiUcXMV21GKn+bHAaGwfJmM6c8zJsiquLJMhm3DKTG87JK4maWEz6mw05dY/aRBubHvwGP2c5zatkOF+D93zuzotu6fHnjRPb8yDvkULMIwsxj8fB53E4XjWdUBXrPI0Th4GDVLOzNs5lEbiIUdSDvms767faVfg7PRK2X2d51iEmMaQfotjRAo6VJLGhQOQRIDIVF7/mrONONHgzYyE3HbogMh5ORXNkcfHCuYsjYSvPj7Wj5x/gwvSXZjEdtvJKLelsigbJQr4lR+uDJ6Jz3YSkY6xPQMhCTzfgczaUZgxIkVauJtledo8YIi9/Qh83LQpZ2cd+TJo2GwzZ/a/FAmLTngwGv3A0KuKRza0x1rbAemC5J1nCMfjiEaRxfrkvyXpIVxFDA0eBlYRDmj1xKbA1jarrm2i6srHugO3Bo6NnDVh7kNB2UWgTAYePwrNkxDG1R4D6gIPJFEtN8RAnAxgv8jtSDx5S0kWeG/vVbcauQHJI9EM1YTAccivvjL0BKk8jWH+s7hubxSNPaBJHKCjr4SmHA2vOneZGlckFyf4jvnRWwaeh2BpN4qzWOhfvEGe9mOV1AxyjNKYsiah455eGc2gEYsElJli6LQejIpyOS5/m9POqQjNFecnv4Ux8eYaAYYsdCjX6qHGzk3QByi+dxU3si/BysAlo91p2UizQnvPM5Iu0ZTMcrFwahUzpRqb9RBk9iH3x7KImM5wwYOcwxpYaxw0zoc4lBV/UeMY+Zr4vxphCkJXN2Fx5RPGHXcI8S5vUkCpJucEwX3i5cGLdgHv0TjjnSRYp3gFznnAVm7I2LLVr60auchJxz20XLyYUFGSr7aiVPzb34jVjSyURE9bONEILhbwjM0DoTj/PT01rGfogKUuHqPf3Do6OGph6X99Bl56FZl+CpPlUna0ac+HaVhv3vDDBCNFG0tXQbNocSGlbMgpS2YbHH4czErBRlwXNd5L+zIZV065MJ2zr5kcTArAg9EuttKwI2DnS+3yo5o3aUAwVJeks6da+ti4rdpXgF8NljMjp2IzOUzrqaxPftIyLG1HphHmlayR6yWhO6YhFWtIHAElREvG5SgMi0lbLxph22uGsYJIkw/DaGJbMYBI7iu4OtQHeEW5G3BeuY8Gm+TtYx9qEnUJrxDKyzIEU941rgNSRcpVFKUOlC04gJTk7d3HmPA7YAcvIWVLmFYdvLbs8vnPWL/VTlvEcAARXLhCGSmd05YTQPYpfXrzCB3W/Nsv5gVEWrpwgBYTW/FU7oLeDk4J/lYjY0gqHpgW0sZJahOegUDtCbVpuHytaZNv3xNLuTHNVIWBV/fJhbigQf6hQvbz0CVS775XBcaPpaWOHghPx0Us9RDvoSOKUYIH5RW/9HSLMkq4AUh9tzABnaBe4tn6NhVXpO9hhcOrYuPOOXHcXfTgWPURe/0LpPbg8Fu0ud5dmAaexFyla4vloPTc8bW5xC7S2vumZVvIeWrcXP/QCCBfdU/Vyl2+oY/m93FSNWequKlNXSOJArfU0Nl3/IGfPEpFtB+MQCnysGTPWitWPYYUiNmxEA/Q+jUj14EFMNRBrUMi5p1OpqfegjCO1641yU/uNACeYjueSki7WRmMLl+7YxIyRuzbVnIrSBDh4Sd/CkUtXPy81iba1EEuXy9Z0YhOJ6+QICVuGRNvr69OLdywbRBixB5w28h3LQgEPrX7+Ih+cSiQgYoHhlpOHynGcpia7dpjmoenpiR2wuxXSD75kzUSEU6KRk1C3L72B87S0tge4FsDGtYO1gHlo+7RLy+a3ozCKlU/zKcKqteP3QLCAy5UO4jVdxdpo88a13tbG9nXzSYe3zBDJdeKbfm1dvZa0wFOXZH+YdO5JcZrWs7nRJvN9krlNw8rW7XrHTVtup63GSnBpFegfSu9NVAsXB0w7+KXtnQmQNXUgbCkERrE3depks0sz1R6ww20/tde1lIJACZdIg5+kblkj+UNXKSE/RsfgfqGxSw/XKoid6azgSjxc3ITTXjldE1Z3KQXBPxHcwVOqWZ8sHrM30pRI0PAimYT1hzK2U6o2pQF2kkiM2AJnnJZuhuxvs8cjz6EjE0qaDRDHmpOsLs60AVvGScjm8NFzojyAfuSj+3HwcyJjkVSEMFHvkFb92GtNFeeiaWFtIgHCkFlEDKLH58IZCKgPzJtsBNQjwQ1Xw+JvRUhacoEjOUcuM0mCS9GHZRXb0rIdpZh7vIyhstJ0cv8hk1XAJG/l2p3gEzpOeOh6HVEztEipyZLLpeSbRsAWnFVDz81kqRzbN+bYMgZFu0tpbJ6Kl8vYEViS5/pJLjHSElx7Y47ycgSlGanN0htSszWhJpM6HRGHn6JoVKm5ufw+e0yl+IMaj2xaprUG4NZc+Th75XeQEm5LM+0dPvQIwZv7vL5LUa7tbm9jY5sIRb2TrKvLxWE3XtE+cUm8Vza3tn5F1Wa/3awLJDewi7oQAroagizHWOOCXPxP7tHmgXC9hJDLF9o0HroSYR7IH4b5i7Mg6WVFC0nBMUWRTN5bo2Kl3y2e1RwtAmY6Hyjj+gELsZm9dsJpQuqsUr17fuVDQ/xKV7Iea12sQ2lByETrLKzTi5eB5MpBNKimO01nNAqqRcsPNg/lMb1A2jOOcXE01LEAePhhOFE+IJY5Q9476vSuGXtiB7fAdm9rn9ZPZK4CEel55LJppabuQjZ7ZeQ9r/ilyWlNMuuh6aqp1+coFpoMLbcZe31b3CY+i1PYBIg4se8v0AMRqo7EMhOOo9/XdlOuLtRDcE2D37cgAvoAI5k0XpKJ8f+1963bbRxJmv/5FDXwdIs8gyqhrijQljw0LdvqlWQdUd3ubksrF4EiCasAcFCA2BwN9+zT7J99hP03j7JPsvFFRGZlFUCKutiePceeHhF1y2tkZERkxBebSAgYEpt+uLYoAS4cUs1pE01mYMUQElwaJzuxZ2YVRyqLpRyhOiEKCvd03uC02HAnY7Q9R2x2O8CuAcy8JmRfI7R8opmPxLgMt0cINBNhAgI+JOKXJ2VLxG85v10ckcpAEFqJ/QqZJ+IPZeFcLO0AJOu5nUQXs3i/LenwHmi96c5hbJGbRBXLBiarA5JnsRL1AOQESkuxElNVyc6isOPapScu/vTVvpAWPCH63sOv+545dpBQAD54MHs0V3DJ5HlSXmxGzDOrMAIM1CnuL/XA+AdZNLPGw9xGkumIuejozBR793cw2MS4JCN7oYfhPDIyKHLswqtCfd8wHPvej28Z4bMnfex7vemk1+ffr6YTuqSu0jPb4ctX+oj63aNO10gFzAk9UQJ7HvTY9YAu//zsEV5aT6YLewX+o1dXVy+Fa3EdtEeWFdBeaNvSyZy6QZ0a0IPREvgRN24ECBq0zsS911qFDJwtfwS5hs2eEM85UoPH4NTrfWG+vO9r33otx53SCQlhVwbun/jdiUTEnbJ2YjtU2loO9BN3Rilees0PH//56DlHSDCrgq++gfNtvEaa9LRvvQPLxHidcCbXqytD1MwlaZtjJZxPjPDh2fTcWmw1Bo2IESfwGGqNMF1A4CVGctIsI6EYIqM7K948QEtEEXCQhROcnGOfQ0cnCrz0/nT0/ROEc3VcLCF1i+B6ieVmAza5O19bF3xmrtoT2C1WblzLsgRjFpdQ+gps3/tOH+Obb2TQcNzmfClN5ZDMqapPnLNz0fTRn4nrQzmx5OO0deWyosCkJ3D5VbQnkqjOnxuEKBzLWsLLZouqRco3qldZtY58lHlx5LiDg2+4mK9eCPwSH1uiGlYx+ejV8C74CdQrK+IJxvTZAjojSCzwvl6Xhry7MT0mmMcyPd3aTqaV2WNgi2BHyPfkUt9O36gi4nJqq96y5Ao/Bboh9o8WS4MjtsPnmy3egf2TPVuPqTbHwAT8dZsghNeqjbQAnPCaYNZGIGj4Eh8+shcH7W44YtOgRpSlYfcz2pixfOTYkf1veKkosNk+M9x9Zbs9cQ7FNVOgiOHqMmq1PyGBHtvv2EN0o6NKwp1J57VjTipUheL181TYgQ4mTt2dURQKoRHatgBi3bCtuOPQ/wOXxPUNG+vbipUTsYoYV0dYui1V/WCCW4VlGWqazk1wuBa7haQsKnYb1FOpRHw4nUN5uxGJBGMzVqhjY+35MP8uvYdoCLO45pKGui+jZbBI+YXnPAB4JqzkyLASfir3DjiMhS0htpAHZsj5vacSJmvZ6N9o9pn05MiqmNcX6o4Iqr9TN3xG6bKAnYD6IXheLEMr3E5rZIQnOsMD64mwy4L0t8t6asDeeaV0Z8CwHN1g1FEQLYQOwtEUJ1u+amxmJzCdgo33pXurUr0zhCNYi+mqbF7dSrnJnvfMSO4mOG6DfSv0Rb1dpDcJTAT0zGoFE7ezaFbt4l6AEBzRnEVUxFqqh8O6FtnCOm3ZxEF202WT1D4jyj7Qs5bxZRs+wHBnUCQj7vEm0QyrAHiI765EiDcIHtZfFKu2xsmuHMA3y+JzBqN9uGpkKhOl3nH2ZGvnbLaeM1q9xN5uoNdrap/PGWz2aGV0XLc/mm7GcGJxfDbejrr/Lt/Aq21DHSX11/+KdJb3BC0e5FGSAC7hGlXUnhkJWLtAWZsDwBZWu6jhfqPVQ8nnA08LQ5bG6pvHUYRqxNEzgKKh581yWCE6oSkSHSTKEgeCaEIC7uJ0Xdq4e3bS9tIst0ai2sB8O0YDthdYtyNaNkS/peterN4MYtShFrbMvAXR6qQQ+CzJ+TMDxt3ZYmZzL9E9uOesLer7jH2zzmgNAM0QJ7/ufSjla8BOrHF4DqdxOaHXnjeZJbyvNgBcjCtH4+eD3mnmHeY6jHJos1hgXFrdw00rPIoxVubG2Nj0SH9t9M82TtJkMWal0ELoz4B2wQbraiMA83yKqNnXvgGt32IUyG5tE4hoU6/L9WQh6TvUJIB+zzTZTWMpnPJvXiUfYCMwa2UL1Mi7LQQPha+Y6h16ZlOY4Xhm2IQlwkGkhU7sIucjegebskGX536Lr+xKVUPzMVF5gCQWWpJGMe23Y75+MFZWd8Ac4dcGUjAk38nldkrZ96YnfHgnJj+OJO/00XUq1MNYHRp1IrVHMOOpuw5fl5eCTQRGpG4qYiI1BytNWqVthipUoPvVfgfJRkVH3qA4LxKf6zLhn7LXx0mzEy5Zm/QQYliTJt+EavBAwhbEoU2Ga5rp2Zb0atPiqekRJK4e2XqqbgjFI9z0w265TVwdexoZT07qs/qdiD4ik2sb4Bj8XPgDR1TUkw1rg2/Ook65QCqtr7SyMuDZOFJReRL8gc8EyyX7feskwCfc9RWWTkVsPrLOZJ0+2UjHdr+eb7Za6QVkYlxYhNnzogB2qZx1GWHKDodGXvNObGPaO6dAM4FyKzbZ3kZ/YkjfEtC5pT+MLI/hUL8C2z9De62JW9OapdZ0zH6yUOwuc0rizjlpcyU2aOL+7CF3wudid88WJEDehWNTQRxibhzpqc7zPXfuMTwSjMcHuBOLXXEuoyjbaXNgOF11IkrUlcRNUdpORPoBHiOtwlwvEQNSf30e0pvyi34AdP0NFXUy+lgAyHJ2uFxcvK9YlsZAfPxqWVx3RtDNDGAxSQ1qsZpLOqcsYawWGZ8WPyMG6LkmhxuLzFqfGWWV4Z88ahmcKLz6cs4gN0Rak+X61LNDIOsdPvoMQ+RJ0bI4m51u6uT22+a35Pj2nV2QOlCX4fAuHNw4pRFC7eenjKcpcG2KA1hLhiccZhudlViNUeUmGwd7nynEvgJqd1HZPhOXDbg1NGdlAkJXSrKbBlrZHltxVg/iyHPr/i425zbrfq4nw03utw0TFu8IcB3BELunMWKGmS7FZ2mlI24OL5v4ewGV4m7TVnpXFAl3915pWM+8kz1J9eZCrIXC3BXXXt1d7Al403gUY1Fp1Jm/sWOQonh6ynyqBYSmXrQrC58v9iHPb2OT9z1Btjd/xbTQ9xyMe0UubzOg8/vfzzWNSSkpQFrgwLoLNEkBkChN5ASj3HDWKZGR1FkCiUgTHnGznI3qw1FMsAzTzvEGOgHvfuJ81pRXuyA3WE9TWQWux3iDXCokRxWxdVs31bmCdwkcSrWWYl2PDts0TLq0rtaWM76TemHQv9O5JpAhgZ8VVMk/qv7hNl0Lt1kmX09xrKxpEGU7ybo0g0gLx6QWXxrp+1QdU6gxcCY7aW7zxuN4kEDGMj4ZqO2kKi7qxsV6zOofZ1/1fl7Dr8kqJc5YyXFI29B2S+4bR8R9F9PXFu1/F/x3T1gCwGfg1GzQuUBD5cym2zu1LizNfuEySw4FmiNewXGpEp7Zt2b4/obbp5NI1CnXcfAxaYFsiKh1sWMMOaIN9WR5iNUxL1d9lmTaYkzfGjCxuFS40/wxtVObLBSWq0RW4tSSxtGPdX8z5N9wfkfenvrCNFSCEdbjpn7SY3qT0snjEG/0fslbTifFlCvFzxDz0KD/NadKHSj8jtojjmOYNeah9iRtycnN+Ny11YJmHp3wYnuoVahy6DxrulogcumEGjbRt5St1rL42VTlfPi9oPw1D3mPE0R0KB5u9xHaSqwa9Ag/L7NPb+omSIMI6kUv1jU76rEax4dlpZ4WEj+Ts7xKQubRb5nl4ynReHFuIOUurVvFxPiewYtH7T0SW2O2NizmecPWpBizVli5rV9rc4SAIWJqR8QBYRZ4CaNQUGlh6EjBcfaHPe+CbSFjBP4rAvGxWlLtcFjG2SRo4Jqa0VPINmIYmyYNsyysfXDC6eOGTpO4DcvyZyUGdGq2sJM8bB7xWWHfSzX6Di8zmEmBnCVGgZE9KuqUanVa3Z1hTGunbDq1KetFNK39+rYJ7d9fIr65su0y8UYT3lc4jpMkYj+31/2t0jGDZcOBx/WslJPHKPXeTJccUmadxg3Ioc2ZroiIrRyqp2KkW+KM6I1xYbBGZfFRIlqju8eLf7h4V/1WsCA2PxpwWj/OKOgq0Og1wUWRDNM8luNl4bq0K34e9hdbPwo5F3MzAz66aMuys6CE080qjWRrkwda4B6Dpa/wHsZyqi7V9ax20o40qbe4eeUmwFu9ciA8GE6B9+6i3szwpK7i4mK8PdV3F4+F/pbFbN/4BXSQFcTRF3iEako3kfl7RlIZs2FJTNDL8kxT8xjWJU1RM4HTja3poRxoFYaYrexJhSLhLlwBVqKP54KlQlxZ7Cct/zXLp4IdX3Zu3+Zr0RMH4/tI2jxJ3Ev2Euk2TLx2Z+X8nQm7nxlogGZ8eZfZp3XFqQGNwCpHIDx/LAtvSeuuxNpvu5yptjRmSKsxn+rwapoBHQH3nVF8Ji/sy5srRZ0RGwXcfpHiE4HfdQvrRcvZdwNFPBqtCcK0+bSXg8UNTA1g/F977MYgM9CyJmpj9xveC5uQCVQWWBDV+4z8UE9XqkrclVDod475Sdevollp+85GWDfQOhJTLkPAtsLm4KuWIyhObstJUtftTON2gjQHiZkn3dVN0LwU7kvheuwnnm2yoN8I80Yw4+4fq9XnvnG0KRQ6To6QIEJMT7hpKxn8Rt3eSAbYuSEC9zF1Z6+hCXWQNSwrHAzEQUFJxFlhqjI4Od5iebUuKk4Zgi5qB42nSa22TQsK4JZ311lGcmpcCOU0OrQgINnS3jHzNl2npMZ6Vsp24pzP2ryU6jbj5IRRMcaFut5EJZGXndGzWVLqFqQUEpWYaACLFWI2I7Fd2owMXNUbcZuWfAemX0/byfD2Vbx/+xB7q2CLqdj11yv1oqJ2/PVOLbk2V4tJwU0hdaUAuNWS1Kx63wv3bMY6Z2Fav68mVNeRKFt0gHmcG4mPI+Z1n4HYCHN58brUETOgRg16V2czlClyOv3gugmw7koiHnRyD787R/yGePWRLrSxQoR3BIFWsM+HnY2xTLZxNvaUz0De7T8LJ7D13GtkR3vgAnBNQS5eGfSBZlcxuHPumIPVrGvWZFuegRZUDDZzAKNZEQjJb9Y2qNVBkESo/3S8pzZA3r+s57G2RbcjKfWMvaQ4RvvSAIbhcLlJsmr9yFVWp41+cQK8SMUs840HbQ8LSR4dyiObVPEDpPQbqnlHInrHKHvUxCv63y4L5DCt7x6sVwv/26fPe/fxi53hiWHjtHmyLC7mituBZW/RlywwfpMWXFMsCHYKqfGbWV2Z0XMSLjUnFppygQX2JfsZoFY5zbe1SpCPOlrUNZwETq1n3oaIZJMf9yVFLmwa9GLFLkCgADaOtUaSwZXhaasVjhUoQkeDd0C2LKiVUx2grYBuGOCqcSGfwZ56qtm6iFNpUf1WBse3b4MguLoyyRvBxRpf1nfkD4XLFD54+7aY+rA2w9Xq7Vu2/FrJ8+AhHGpcK/TVVbDzN3HWM0fJ7JlUVBdALDzGpHDnXawamxWuLDmSgxtpvNIQzUG7EZ+JsWcV5Hi4ZNaamtpkXTtfL2nuTLJFgbI+nRoQgjmijE6LqnG54X13Z+fb7w8eHe3v7ITBRvc4SUJ4dbUTXfMsomfELZFFNZE/qfzZORRPXoS376Po/5EMSADB2bQ4mIrlj4MyHS2EPdW23LdwcwzkM51pIm6E2UHENTJxe19hbw0iywDNf3jCLpBMAnPEvHvqqdY6EEFKINq2OajZY0RksbFIbLwr0PUlMy1vd0y6BkdAed3FlN6HhyrXgfNSOJ0EGK0ni+4E73DiNyA+yIm/CaZT39ealSw5ppks1tAlYeJD3lxGqPksTj7XV/lchG9gJv5ccy76BjOXUSpMoWLjRzthJZZDbAhQFhYHOJt0D+7KmFD5jGdTw/XFwWBfWiCIAPwTJoDTWu/zYuNfegNCsFhv/ni6+lwaSzP0lZhefyiPSS8o9V2xx766kJubha+XVbdo3DLl9uW2ETO7r+JQ7BXNzyvM86vV4hW8e14t5rY+2z6atiPOzwl2xfYYLYaBcF6JvrDROjsZTp18r9M+2OA3RgjkLuEVYC/dT8Sw1f1I79pmE109VkbZbbgy0Oua/rq87BaOW51WaCHdN81t2w6iRQ5OsI0w1YCwX6npwGnDTgZfHPZz67Z7wrc/sNk7AJ+vIOI+K2ljZeBhfRWZFspXS3t7s+zm2avbkZ0UCZ/T7suiQaMW27I88H5YTlelYVv69gXuCWluW1z2rlM43+tSWPmPDWLhe7b+EdL9FhO3bpx7fGi9O4yaALvtpNMjNuZOfo0uIRZOqcipXwnog/sVWfyfb7C7GD7At7jUerPYZr7fTQhQPw7gPE2K5SFJImbY5NYrCCebFdi7brvXVcWvv0KgwfzUqSKBZXXlPTQpupx61NP2mnr0tBqiQ7c6XsqLk1fuK90F8X6tTM2SeI4jjPaCwJ2PHAZt1MlivL62M/zwVYHjMadhWaD+9qX39JJEtzmTgn6uRyCvzvnJh9PZ0Fq/S49VTbPP6s1XHHi2WfTtdoYwZ9D3iff8oiztZsYLEzc2i73FciMW8vWCxBsWnwzlL17N5UaLv0fEHThu4dD4M+8ena1X8C3f2282xVfG3XkbN8aJZbdFete2aeeZCeRiucWc6RovXxZCeeXapGeN/HjKgBQc7EVrHlDE3nPXYG7dklmqgxNBHKSeOQs5aA64wXFOG51Y5HOJP8UODdpRb3YSnJ86h9kPrHMEt/5QlHCDDY4EH3J+ptxC4i6aJIOlCLpG7nXQ/Fz8j8WJfmhxdNDdQ5OUyQBbVqTN0dKbjqempuPpqW9QcZqERfiOwXp4VNRka4832q66jo7SuJVKYxBFVYzPeIAesDuakXAlFf14UYsycFyqVznHARi0KWKh05lGHKi/PDtrGXC+Eo3pAD7S4EPpU0g69r833pn0mROlBb2r8Z06LqvFxY51p/1GArl23u549J9QsjjrGCYjT5qnnYWlbwvFt1+1p/Tu++2bnS9gk3Nf9lW3OiamSKMyeTH35QRH4Jdh1rms+aY9H7JFdIpWaqhnbvljh2xaRKOvdcqoz8vi9ZbOm/iZS8GZvjSxM7Ko8flVvxlfpYztw9uVwTcUpU6TwGI2SnKfet0SsUjLpmXcOmnjztXOA1mDLWgAg7/AIbQwXugm8jNCnqpFMal3rB2XtNP77zA5HcxXi/n39fR1AcgJi6/Ruw+WZPAx2OLE52ti0VWMXwGt4hPVwrs4W1SM26tirjXVGFM/+wqpM6Wooxsne2w5dStWIFjHi44VZ8+ga+rxoUFNtsBnclAKzFTj+CAJSFrR68jFAN/45lSi2AhF/a6J/5A8em3rJYdRcuQRl2VOCmv1rlAEEAQZHzbOZ7RPCh6hMT+5PZYxcAxNXPvFUtCm4dSpxim3L8QErKEquNEw9SPRlsNclou2JCH2MYeyzbpcGYVJXwSvY+2f3ZtaCWp5fQBcjHOasEP3Am6FzBNhpHLHnp1OXsyP1MeWT0kuTdkSV6OnYrUbmyruBy434uMHFrWEG3EsRGtWqBo+TbLFA2iRTyy0MdjbDC2Ib9hFobYmzkPNR082jhXjT0Wapcss5YaRtQzo5nH9odT5nrKh9u3bwjvivj6mJi5Iqpix7VPEQ9LP/3LoEj2jY+O5IgyXasPy/ptmvTD23ODq6vZNtxGut2j/kXLed03G/os5ySRm2q3f5UZfxeovp4fGf8/1KsFL57BvWhy6vRfzCJpb12+3M1RSsPhxO7cLTiwjzioYOyot3hy+xtFa8yc5hb0uL020Zt9ENqgvIq9WKvHF/HCT4mhEDou5GhXZTNqGT2p60h2kvpMc6Lpx4iPqjbH68hNT79u3DSJKONDwGhabFqtCY9nlWME0Tc6vzysRpuYMUsA9gy1+IVBiRfWa2//zenZu0ocUnmYngjetAd1hivkZBnPOA+OM09aqBRKaF3RVnoipdsp+0avlpQq6QJJWeXfCzs7qwWlBFtz87otjWiZjg7FXrOjitVZAatdMUzo70a+8DF/M2cHzUuzGNGCliUX5kg3PcGNj3qkcyIQ6U4+JZt4CtlM8AU0ECy+8K6950ByU0/tP4FFi7lD1VAUOYbR6du0ycjBwrFFiu/4XPNWqqAmNNgw9kKfBL8Fbnm3v6b4XXdPXrevJVdJkTZ2pr3yHQzDyiDJUjnlyWeqnXzmPEZjI6gu8OBssbaPsqHfCzIUJPC5PGK4fZmTq/NWVbdXOyw0pUFwpTEa3umwz5L7jrTljs449RGQpzuxIM76QmIrG5aR9rhbsHLWub4BbsHIEFlpLjJDThgkTF5ttguZlvuZkMEtN9SW0SRsiRlGF5mIllG2gL3SPaaFuTjndkbp4TNoRNEXNDQh2fpFC5VCeZFkONT2+lL9NVjemBShBhv9IJGijA5tgVm7YRSkjuJLXnLFSnPFC0svJoeystDsuO2nxrIDPGEQ2RncmEaN10HPsJEhu+RcWOBMev2YlWxE2JZRGoUVdX0lH/lJUE+vpJtH5dut14sQPHj3SUXtgn/LBqICg0EqwwPEICWWQAaad4wrYurLgXWScxnd9tXhdmmNWTvhAu8kYOd8MKPjONw8fPXhy8PiBOUNmbH64F0s75iKS2YxZZ3qf0YbZSWLn0cGTb83XaN/63G2dPRu3mCywQxr3MfNUtvDD77+27cBrFvbMNPIm4d8sPlOkj3b12FXTx717Pb5xH5VscA9LT8xsmigAAzVLctElazU2pcUUsQgcB3W6sADprTRucvJqfDCLlX7D/G4BeK2dpy1wKYPFhb40GcFhor20lAsx48nC41kkjXTiQmZ8Y4jEDjnnH7NQgC76Dlu3bM4qM9NTAaZ4I34WG5yBt4YGYaSqtIs48OUEgeVqvMGjjD+D48DHxTAMKgCaV1ML0MyLg3XwwBoHFg1/8QTzCEEl0+6Rdd9yTRqbtcTstsXYYOehZt9Ud14HfgweWiTNFKcGaWHpPmVcx6loxNT2YOcr2ZjQAjypz/rm7HnMIOxCAnwovlzV1zBR17HLLKtmMv9clzTz6D7iHvaZ4RWVoCiJuwSYSzOoyuO2jHSwg/AZMaMI0JcWYGwb8xZlODHMdbD6x0q7jDKe0ND/6egWZehYBj/Xdsj+1nxTTCbiKc1zeryclidNwKVFBlHYZh07i6XZzIWUuRI7GMrUEjnGqFJ5yVhHOejpeCqTwbhvrSY5IYWtldHgCDdROGZ1ibRbIkiOcRZazbdCxYodPCFNCDjojo7NXTUy2QlXOxeirY7LCk0w+G/dMFDSjqklje8gOJxOf9sf0CD5HFqbzlzNPO/w7/nkZpRbiD8v5r+R/PNi/suUCnvMLyYAOaP1X0ECkt5+pPTzYv7riz8v5h8t/7yYf4gA9Fk8erf4g2E17Xsx/+mnn1ATKX70Hl/i+XWSi2iqjeAi159Ebnkx/zSCC3fvUwstG8v515RaiIQ/udjyYv6p5JYX819QcMFkdoQWIc4PlFpAGh8ttkghHyG3mC58UsFFCv1wyaXVqF9PdHkx78oumHNiBjdILjguFXkFvxxJpW2f/8zz/u///F+SZrR1AoV8JcWymiILRjm3gBf87ScwKYk179PZ8A6aRsgRwGOJe2tAhphVu+kJT+XEFLsBhqdr7XbseY7JW3qnhm8YXy89PphUy2AUeH+ZlhdSL7tCiMut2Ok7tb6Z1uuiauXFRuw6e3fYd01mo753TDRwKrCIUv36fNIA+k2mNWzwAZ8rHFrvepNe1VxLe4RlOaeBTedfd44k3LpKN27dRAVWl0yNBt+0LlsEQWNN+8Skr7srrNrzywZZtcCvlVmyr99xHMIyDu9ybIefuQbiT204tRvthfWTFk9/RiL4xYXMb34h2fLgd9ny/wfZ8tOJeb+JlPpfRbZ8fptR+1QC6C8q4l1/AGNg2ywIbw+pZvT3h0C2OQW10/od8BnP6UKWjCSTJpbNGZRrRbUiiVPSj0+ricIP+RLWaOF1+t5DJUY+/XJQMzX7O4fiSCRQxwDjQlF8A6Gu7ADCO7G3mmSKuY0DHA/AxjFiyiTln4Jwc5SL5iVhZH4+AG6JAGKWKNtOKf0GcVMrcAEU69IkSbI4Dk6w2JkgKPCC0GU5rR2gexci4JgK5ZBRk7bPwXLgvbATe92kb+JTYvZynEGYArDqha6FOUmXJj23nFYvJMCI+t0eXMFKRqx9Jb5wNnetJEEvGhTEQnA5zdFoA1yrMFZL1lAkod35AlC7sunYxOzSYXZYNekEOaMpXUPFKWpewk1QotrxrFGuDeFnkalpPbW9B21QMPtZ0caME1qR5BwqshHXxjOMyezSZn5Q/87SuKRC4l1YAc6i1kiOXzlNtnjZcOIVyCwQ1Clil1gtYU8DNLEWyKUT3t0E02tuYeLK5XIBDwySIrQ6uBvQWC8XxyhAcjCKc5vkX2TPB4cqVoD8kx6grJsG8pkTjElUfH34pTN0hwqoIGe/SvQNHPdGGRI3aEuyYeGSccrF03Y9k1RsVfdngQxYADX6O6KYN9BeRBNrtb+VUkyQpOV0v+CkuUUtlQLYjIU0YQMsa8uwS5D6mCQK3kR44s+mx5zom1SxivH3rfuxuPHQ6hRULyv5zF1esifuzVAZBYpuhq6ZXYLHEOxV9ieOAJBxNHl53D61prKN7qmclTYJ/fUhW4QtpL1BHE7FEKtcmyUljgnkpz+UgEZ7xFnZAm/3T+s5x5Xv2Wz2LmjPQRNGfKAYLvwOQrYqPcR8tEDg9m2zvWU+/cvjeNcMT6eB3y9vtM3/KzTXcVW+RSUoU4CFaFNekYZbki5xT1SHm/thVA+AhRNtmI/c0bHv/ExKBAj+nolL2+yjffcSjitNI9BA+4x2VWIe9hkNvX20Xlae89mHDKfIJlfb5ZLGJAHgTvP7A4jOLahNdj+GL70fSgvl/e58i2EQhqNBbDP7MTSpLDV29FaALnGbgv2idqDosJEwHqNlXJKHIFAKZZ/mJ+V6iVTQksJRzpl+jF56fysWt21mjLSQg2wQ2mY+BwQFtVJhNut97+tqeiyxOE8V+fFoUb2xAKePuJ2dhJStdhbLv07fQOYkYZyxJOhyv6laoRPtUdmP8Usi0fXtuxAFgygDHG53pL+j1VULBHlFolHdbaV04JuynMDssaOf39hmrWujzcl7tjkh6kiGQ9tmWs7/8nTfeyAokSzUbhtXafH3QF+hFWvlBpoYk//iNgOvlW90In0v2onCQTCIs2hkO8F4rfve0eW8XJ5O/72NrshehRYK7Sa6fnj46Blz7aZl2UvPyZMe/AJ52U0fDuzr3tG4ePJk3+YWWXl/EXn0SOLdsc1LOKTb+D+taZ+Ocknl3nRg+HKzzcjR5WbQrM9IlLqbZCcnYTIq/SIZD/1kMhn6RT4Y+CfjpMiSqCzinEb848sQ7qbNy196R2fT+VxRhh4B/uwsuF1mxDDOMocETpClG8l4YH3v4HQI+U4uoXuPXXGqo1nchoi15g0iHtFKJGF7On8fOg6TKExtJx7OfaOUPCtZPxvLUc8jk/GZ+3FQnS448zCQw1fTSsBk3kHJ4eCl107V/R45vk0CbyTVFi9F2vHl4AiOrjdl6Fazg8L5bd1c+o3w26hPJhkca97Terws+ThGV/Ut+LxtPs9U5MxUSFvqk+J1Mb81ywlD4r8jBt/VofihPD49J54jEApLX8z5JBMZYdsX5wI7aYKSeKI8/xbtt3Vy+0O3/bTXtpMpv0cWZrPdHjx6vO/dnN3ZaWNTN22S7STL75Gd2dRtkzzvb+wz8D5+zpan56Tz0fJ8I5GKwNV4zrrPbdao1rixRsMEwhTpLZAqruHoF/ocMiGnLL44u/SntTJtX2JX/XrhnxT1qnf/hzOGSjEsWsLUa1KD6OmX3Mij8twLY2bMkdOUFDv3+2zcmhLJ7BeasmWfFuJXrWRIGCb/oJXu6HabM1ewOWYZeHQ5v31TbSphbWqTbWvfinAHDzXvGi8Om0d4LkjB3wDIUnCOnUTBt+TOqHuzF7QRulkL3iPZgZXuBMd83ywYdIP5md/hZ9InhhSu5Tj2tnSrdW62nvbJFur3e6CFmwTfBqzM2RsduG6Yp5h0WzlfcDb8TnXgxs4o+2p1hnbKPy1IuT9aQ4R00XLfA2VXu7WB2bsvEecKPnvkAtV+xyz4K4Mpecs+oLqNPkS0myr+VeB9BDjZ+37R4sUR7WPtKMgPilm9/bu29h3SrdUREL9OFgsYz02YAinSvtzq3edjyC/WVevhqjit9RE9BOjkrdLb47O78+r8bu8+/SuNgRHog8qx/txM0VRk+8ZHli62g959/vuRZZFYQfQs9j0q0r38yJKtJYCKtb/bZaqBbV40USgFEUPxhufvi6KJTSnf9G5TsWNmCQd+lPrF5I0vUV9+Vc3uGpKpzwtrP2ETVO/+f/5vag7u6yvHS+fd+wcT9u9gs++BRpEtxMDafIXOtdo9R+Ls92z3gJqe+jJgdm3IKF7bdu8//88NbVdw0gdNWZ0mf3GXhhzrzo0HYp3LP16vaLGa9fRF0cW6hHmY+rmAsoZowQXbmpalsUdVxTFe4MIY2O7pddY9PkS/gAfPsmfj7ttDp4+ZiUz5DP0ug5vc/RJazT0q/g/RQCugX00VuBATIhTB9bK6x0X+IS7+EJ3Q/7bNCd3mWaG/XbMd3eKCzkidBKnfI4bxh2jcXuN0Q18eu4uKLu1isFwKM/WG3adgFL/XC4Owxz4wXy1gRvUGXhpG+P+e949Ztc9HIrwqAPVaOsVwUQCoat3Bf5N7vcdJMgqSJOsPxnESpFHaH3hZFKRp0o9y2orMhfypBv04z4J8FI3pF95PPJ/f0xc8v/2+r69T8b68T+Wbd+TL5tLW4TeV6FceXo1G5h2v84mt5e8zWuBxMIqG/SSiL5NkHMZpMIpHVC/U3yjL+z4UnSyJmxv6g+sLojD36EcWJPHQ80ljTuO+PwrSQTQOkyAZZFTAICA12ouyYDSkh6T1JknuxXQZp2h9EIfJ2A9JNMz7aZDzKA2pvLg/CvLByPOTKEjSqB+G1I58HKZBHGWoJBxlbqnZIPJiepU6ngyoV1RmEkT0YU71UzEx7FJ5n26mGRWKQcj64ZCaEXL1ST7s+9JoehmdTrjcaJR6PsaJJl6vx6hhmA0xP8M4oA9jav4gMVf8Lw2QdGcQZKRgUPOTUeKFwYjGPqTa03zsZ3QzzTCQg4xqCalzeRb1fe4HXadREMfUrOEwiBJqZhZEedKnEc3z0KMhGNHL3HV7FQ9JUcDkRGmQoj4qGhOcBxFJrlTuKO1LrdTpiBpNpQ+CeECzJzODxmTDnIaALkMdZ6IzHlIiZG6hR6Un9DSTStIRTWLYH6LVaCS6G2Q5jSNVMaQmUgtxQasnS+SKhjAYpiFGkD5GtUQmeEcHOgzifIwno35En0UZKCaLiERo5KPcy3LqbtpP6T0MDLUnooGnGoZDGot0GIRUUxwGKS5HYZDrxdgnCh/yzNGM5INQuo+ah1R+ipoHw3gcy8hHxElSbxgSxSd9HhEPC4IGkS/+zoDJlnHcJSZkNubi1+H41XT+upxM59ex/IuLi8C805gCD+Q46cvZdD69h6OOT8vXeVe99XaiyDa3f59tTx/d0t83j4/dPHJag3lKmwcxxWGO4iJah8NwWPnDNBhQC+ieuaV3/j6LhoMgxR6DD0Is7niE+jNa7TE1EhwsxMYzoAULHkJVxnlob1D/sDFw/2idZ3GCVZqPaJ1ndBkOwQOjLOPuEbtNc2lORMxmTFyM1i5WNTFQ2ziv3czItC0jHTnjtgVD2rOIQ+VgTbTyR8QCg2RIAxNiA0vHxA/DRJ4NU494CbYH2cgSjzY54v3mckx/aKOl9tP9ATHgiFgaMWC9IpY2iIfUgBD3s1yaxENHe9iQpgEbBGYLPJyanQ15LLBNEh/F1jIc2Usaq8EA80t9ztLco8fMyvi2l2AnSPWqQv+oqDH1O8zQPt15wRpJz7aXWiY4Nk0/TXowoPHwUTR2DOrHCARKhY+S2Lz+27NKejCZrq5jlPJUWOT6eDZdfflJ2OGtWeHv7Ogj2VHM3YlIJMlilk6JLkcZtYxWaBbSuk3APjz5o1djCAFRyGIILZA4C/skAKZD7lxOxAyhM8MygxCJlhPvGuTMaVLwApIChng9RDnEk3ySj8ALqc4R1kJO4lMUViRx5RDcSEpMSTCkb0j0JIYTs4CWJREGnYRU4ob0hH+PaTklAwgqdHM4EL4TjUb2kv+G6Ci/GXv6gj6hBdl6M+K+Ume0r1k67BNbw8Kl9Z6GKThHSk0HIw4HKcvCGYlztIqjiMWzEFIh6wd0NUjoSxL/iAOAYUGcBIPps/hEZQY5DStJf1mIjyIavAQiYeWzSBX1R2D8NAEJhHR8FpFU5+cJFZxBSIewzMpHTmIYRjWmHhD/hArC0h1LbGk+gopCUmjIc0aTYa7HQgAp88ZQGsqUYC+FBAbMMkmXwME1BLsQUh4UIqqKtpJRmIPVZdTtBHwbag6NMrF9NJh/UyvTITaKLIZw6Q2p+RndhjgfU8EZ7WCxuRxDGs1AcnKfiIZYfp6OmmvzJs1twioWZNSEekaV5qxnQYSFcJ2M4jFrNAkrYUO0ewi9KsKkJPaS95aQVkkIIXwIHSInwT4eg6Ij3oKId9OE0tyHvEHmGCjeqhO9ZAJKSATHxouv0ATqeCrvgUjwIk1TzBsZ/2GS4ashLYEIyiKrL6MxbkNzowEcefxQvog9foHmbQztgWrBH9quSeciksJeRDs2NTQjwpCrMXUK9dOORVOJpU7Nzvgdpgd6KQpRIdhAU6FepLZCtJfbRRNPL4eetFFa7vNjUb5GNJIgSaopR9vGWIMxKaIDXXUhL9eY2aRe099slOt6JYHG4xdyWZ5h4jnv0eWYC8yb5Y+3STzSK32JaTceJp6vhUkldunLJaY9IwrKG15wTSs8KVevuA3ZSNqQ0Urjd0fmSt7RJsTaBKky5hboSxnIjGvLzPioqBRHzaW8+NtLCfD/RAr06+QE87xRppb6Jzg/O/9y/bte0hYEwkHGTFtE6hEtuDCtiNFRhRVMS0Na9jn9pV3SH46Iq6j0ncaQ5XUfz8AVeGfpY8PIaHHTSudtnK+qOMOGJF8OwSzpwwGbcYa0pLBNEamBO4PL8OXYz2AzYG4Wklg9yiAGp9nIXuqeTkVSX0ZDtA98PuZatMnOHdM36mQIY9CvJvr85ksGWSPq4vz8uiVTnE8D844sm3I+ubXJmX749P+/L6vfWL5OSXgiUg9Jex0OiKOT6JsnrIqKNXIIiZl225Q+JWWZ1efhKJcbGclQI9oqRyNeb1joYT8nmXKQ6mVC2wv+0tLFThvGbLCjnSRnrZIaRKKHF4m9msTqLIwqaL8JtZ5WHonX1Ui0fJ+EnlGUshqbh5Al6cOU1IJ0xJIMqdp5yrKqyDWk9w6gQo/RwBwN5IZAckYLw1iuE5Yk8CMeD8REkZBkAOswy5V9HwyAhj2FmhyK/SBnmYtHgoQs0uSHOTWbPgdhQPAeQt5DcfzdCGM/hGDmwWaR88bMpubKF4sry9IjupL9lDpHInxF8iIk9jSBYFgBdj1hPkciEpvBR6HYyIfYcIknjkIWOkPio3w9JApA12C1JtKJmSWHJOFnkKfYLp6DBXohUfWA7bNyY0w8cziKITqRCDNE00fQbNKY3h3AVE9SM3FyojmitBASCv0h7g2j9UjsxxGu0hFkUuojzz4NCjeAmDG3AB2FsQlShvzQG8nfZ3lI3cJwQ+yHKEbCN/oT0UyJcpNAKYIhHKJqTKI8FDVIzUN+W5QdeguCLKkAoXwbYiOgb2jexPhO00MjTqVzM0LsFXyagEGlvyFtLdBIsgivEnn28UEOJSmi5U/SDnQWiF+wjodRq6EhExGqxoEGtZL2s3DIe18U8/FEzDITEexQ5ixGJ6C5cScxxRnbuwZRZupHBXkCwTVCPVQyieOkzmV8RkPiY2QkYhLQPbzcZ6mWpp22zRGL7MlwjPb1ucjUkzHQgrX9pJQNozEGUMV5jyiWOQFGmnWXYSKFsZYYhqPuCKMDEcaKOpoTXYCpRDBvEZlAfaGFCdMg5HjWJNK0+XRIcmbOXR6wYhrGrJeO+EghhMafE13EemWmESc3pGONeCpCns9RkvS5yYYodPhCmNjSPh882StSDGk+YVeDNxt0PPqTg9ZjmhCaSxxHJNDnIhlAHhiwNCITnMZEpCZC7ybWhoMH0mGIMKGU8jiTQjOgxUKVQCjHesJxGIyHIZ9/9PkoglhDMmI6g1ROhQ7Qn+EwHRNDEqqO8tSzS4BUFxpGWgFRHLKyhrMs4gpxJMd0RKDmCpVRBUJH/GZu5w76KyyMsnK4Y2aMmXx+e4lkhQQTy2J27UG4Pg9mpfpGr5fVr38IfrNMsk36aASVyKP/ow0xv7VEwmQAhSzPviOKKohUh33+h2TlfujDoO2HuJPKP3JbHvyFWHN+ACbGnEye9WP8X7sYWkJpPzqLQrwMOqV/5AFtBXHRLQE2oiT7SwQdstioGg+HmwU1HWE9PM5hoA8L2onof/zSoB/kqR9k2SO2gPSxbRfENuh/8twnfu1TzbT06H/mXhLS/eG/+QEp+gPorCkJYET09CnpBqPmNb4mPjQ0tWELi6oEdiz8w4bEPC7c4vvEy/i9DEY+8x0qfISaiEUMqoT2n358EIwC0w+Yy0Ic8obp3x+DPfJxASkjMFz6yb8Ra4x87hekF/41pndRdhTLv7ThFtRdHLDLANLdQVbTvKYY4RgMNaJ+5jcvXMel7K44kOGeRqaZ9xBlKr93Oo5nbZ8z9p/543hxfvk5XG8T73aOUb37iMED1sGjhfpCOW47zU/8ZzjE8WXTpQ0PvMXZ+nTBJd/Agbr5ab+jb9gx8Y83lDxdoVgUf16cl8vZYtKpYlveW3rx8WLS8EntnTPgNgf2anHe5o0KmoDbcurQ+5bvPF+ce7sH1cr7F+/bPZvwl97zcTDc41C55kqipl+Xl1SgnSziTcSN5rV0T4+VL2J2/YwGgwEopaNEkQ6V9YAhQC3T/OaHi2qxdHkeWBWzJrz83aDK/OzfLQkq+fFY7Hwh+UTlSVWuvFk5X3v3vMlivOaMQzSODwSv5avLh5PdO3h+Z49fn554u7jcc/KX4DqgMhdV9Qg46fe8ajEuqqPVYgksKCrt4aqc7fbwni/v+SZEu7f3ebucxVzeoFIs8tPuXidbSqv8+sby+93m7W0mUuE/tvecLP6orNjN/aCqdu8UP4JM/jvRSe/lnb3gZLEEFsquxDp69+47rZN7QTGZPADmBfISgjx3e+NqOn7d6zudKru9KgO4FtJXX5cnxbpa7TpNxX9viiXRFw0MAAYwrAer1XJ6vF6Vuz00sLcX1OvjerXcDTtfYtb+SYL/g1mxGp89RorT3Tu7gjRV+7S01+Ny4s8WnGrAk+s96iy/Xtbdtl4/Yrs//UiL4M4/v0Uo/qT887OHhybMe3c62bu68/KnPZ2Oh/PVAjBLu5tl4z8Td73v9eoZLdmz3sZrV52OXgk+/i/Z1m6NGwONKbp3zwMb6G0bNoUcCBTv5ghAVLvzdVX1Pfm35/Vu2y1T1vm6Ptss6KfP/vntdHL107VNNsOHv8QcDF9oMQhQ3exSXC9vYBIN19MyldzeuZ4xZLbQ48XkUgccnPa+lw8G3n/8R1Or+aFVd9/tjrdpeMDp2oM3U5vtmiaIr6qy9/lNnywUZoTeD503t87IjbVJMPStKxv0NvjU9XN0/aSc0YW/WgCUgtjD9WyJpqTFxzZnhbe6J8WsDARwqax3e5NiSfPdHfQt36FCIngkDti9g6/udGhyO0cHe/K5D9TEOxXijN0Pt07CdbVT3z+86u53OiN7756Rzd0EsAT3Gf7B2Ut2cc04Bp2J4JxnBiCJRKl7nn0zAC7IfAVwRufn5zsb355vWb6C36jEsntHXnC72HzWHUQ88aX9W1+fzqmhzxHaec/jl+84bbJMAA+m89Ovidtu7O83FDYtJ/90pz2BNGfPp7NysV7tdsn4lq1rcUeErxEncSd7Wy831tIdXkt3aC2Nj7c0AysKr5wzNN4dyW/2ZnpaEF1s2ybsw8B+FDDUKdrekEsARftQQNw6hG0abEd58/GyXK2X8+720JkLENGymJ+Wm/TzDLe7BfO7tJJA86BIbV3t0PjnW6qQD6ZMprp5EDs7Mne7tdjXla/Q2uLW1Ne/SFMmDeYWdl5D+NoNcgMSr2qWclkBd95vtK+8MSQpEfvAy2/qy/ZW8i7tkpPlCs4K1XvEnM+IXTLL3OTQzYeSL/nwbFpNdhvi3uSx7eocxsPg2fw9ST1Nwd0at5d3IyN79885/YMdCTX3nh989ehB79p6pdsfWeFtR+t92/Ducq2Y5uw3d7HDQZ+7C3iF+zv/DzUrzE8= \ No newline at end of file diff --git a/docs/cassettes/rag_ff01d415-7b0f-469d-bfda-b9cb672da611.msgpack.zlib b/docs/cassettes/rag_ff01d415-7b0f-469d-bfda-b9cb672da611.msgpack.zlib new file mode 100644 index 0000000000000..8012a1a14c145 --- /dev/null +++ b/docs/cassettes/rag_ff01d415-7b0f-469d-bfda-b9cb672da611.msgpack.zlib @@ -0,0 +1 @@ +eNrtVV9v3EQQV8UXWa2QkND5znfn8zVGeYii0iIaFdSChNrK2qzH9jb2rru7zuUa3QOhrzyYTwAkSqqoBR4QL1CJN3jgC4RPw6x91z8hqFV5hJNO55vZmfnNzm9+PjjZBW2EkpceC2lBM27xj/nq4ETD/RqMfXhcgs1Vcnj1yq3DWouzt3NrKxMNBqwSfVMKm/cLJjOeMyH7XJUDIVN1tK2S+a8nObAE0z88/cSA9jYykLb50Z1u47xqPvD7w/5wdPn7Dc6hst4VyVUiZNY8yR6IqkcSSAtm4bhzNz+wqioEZw7j4J5R8nRTSQkt5uZ0B6DyWCF24ZEGU2Eb8MWxsczW5uAI88Ifv5+UYAzL4NsbH67AfXmyUVjv5i5vzvr5eJ1GQTCm75GSrY8mayPf93v52ButXeA4Iw6WMR6CsFoV3kZRqJm3qSHBRgUrTHNkdQ2/XHjsWle++ebdxxwdGOHZeQV/7/HnC8NvaJEJ2Xz90znvFttzF90chr5/ceGtdp6u8NNz/it7lTLwArJjHBvyozmpdwVXWh4lOIzm6fta9MhoSm5CRUb+KCDDMBqOo0lIrm7dOvxUsOYUp0oypbICnnDGc/B4V6N5JJXXWr7bXHZ9HWRm8+YwmExa2nyOM9PIgT8v/bZPl+ykEfX70/54jfYoXg7gaGPYq4Rurym2ogQaybooenSbWZ7HGI/kjbFqKjIa7VPDWQFxXcX3jXgAMVbIMtA0GroJP/dKm2ts38SFQIqiO1w5EzWTsYSysvPn0QF6XbrV6TbXM0O8PbdgaDTy16bDychf9KiQSEjJIUZeZ8YBw6XAtbMQMxHjxul5DJJtF5DQyJGnR5XOYo6g2k4TYZbOFPmFXpOrWWxtEddiFWBxi7FDATpO6uUNJWzeViuUzNyGYIKgBZsrbZeGYYAADTCN93cOw0zpHVO5tIarCmKHSchd0ba3QjKOjVUat+vl6MXin8Vk/VVigl+0moEuygGm9iqtcAIDJwrG/q8y/0WVmf4rlbkcBC+rzFvX92nHsjhnJkelmfhBMGLpcDyGcDiZhjANJuOQh5NJyCGFYcr4MJhylvjjURqMp9Pt0OfBOISQJ3w7BNSokkmRIkPdygncg9v0Ga3R25HY4BNaLP5s4s9HrfEWCozjIr2LQsdxJ3GdcV6ICltDxDXHFcOInRnTnX4suYbPt1+r1rUawW11QW9as0v6quaWp3r0TcvYVUREP1M1YRoIk4QZI5yIWpIqTVpdQRJ7TJoZuIkSy8yO6RNUA2JzwFOOkM5RCUAmEpUSDTh8QNUj7VbsWWIV6TK0MausffJBSuZYO1HyHUt2pJq1/u5oj9yrjSWGzdHI7LmDKwQagBhwLHTFS7YnyrrEDAlxUvJCOoeFCwP9O/LjZf2I7K+gLMgdudmBResStjNutMERdS+XqrbxLtPCya9jBF1Fu/l3Ie76Vxcb4w2WyIqIpl63DnSBn7uvnWqBbwzYY5itPXN38RcRsNwq \ No newline at end of file diff --git a/docs/docs/additional_resources/arxiv_references.mdx b/docs/docs/additional_resources/arxiv_references.mdx index afec022d344ef..461399688f617 100644 --- a/docs/docs/additional_resources/arxiv_references.mdx +++ b/docs/docs/additional_resources/arxiv_references.mdx @@ -13,45 +13,45 @@ From the opposite direction, scientists use `LangChain` in research and referenc | arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation| |------------------|---------|-------------------|------------------------| -| `2403.14403v2` [Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity](http://arxiv.org/abs/2403.14403v2) | Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al. | 2024‑03‑21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) +| `2403.14403v2` [Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity](http://arxiv.org/abs/2403.14403v2) | Soyeong Jeong, Jinheon Baek, Sukmin Cho, et al. | 2024‑03‑21 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts) | `2402.03620v1` [Self-Discover: Large Language Models Self-Compose Reasoning Structures](http://arxiv.org/abs/2402.03620v1) | Pei Zhou, Jay Pujara, Xiang Ren, et al. | 2024‑02‑06 | `Cookbook:` [Self-Discover](https://github.com/langchain-ai/langchain/blob/master/cookbook/self-discover.ipynb) -| `2402.03367v2` [RAG-Fusion: a New Take on Retrieval-Augmented Generation](http://arxiv.org/abs/2402.03367v2) | Zackary Rackauckas | 2024‑01‑31 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) +| `2402.03367v2` [RAG-Fusion: a New Take on Retrieval-Augmented Generation](http://arxiv.org/abs/2402.03367v2) | Zackary Rackauckas | 2024‑01‑31 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts) | `2401.18059v1` [RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval](http://arxiv.org/abs/2401.18059v1) | Parth Sarthi, Salman Abdullah, Aditi Tuli, et al. | 2024‑01‑31 | `Cookbook:` [Raptor](https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb) -| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024‑01‑29 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb) -| `2401.08500v1` [Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering](http://arxiv.org/abs/2401.08500v1) | Tal Ridnik, Dedy Kredo, Itamar Friedman | 2024‑01‑16 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) +| `2401.15884v2` [Corrective Retrieval Augmented Generation](http://arxiv.org/abs/2401.15884v2) | Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, et al. | 2024‑01‑29 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `Cookbook:` [Langgraph Crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb) +| `2401.08500v1` [Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering](http://arxiv.org/abs/2401.08500v1) | Tal Ridnik, Dedy Kredo, Itamar Friedman | 2024‑01‑16 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts) | `2401.04088v1` [Mixtral of Experts](http://arxiv.org/abs/2401.04088v1) | Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, et al. | 2024‑01‑08 | `Cookbook:` [Together Ai](https://github.com/langchain-ai/langchain/blob/master/cookbook/together_ai.ipynb) | `2312.06648v2` [Dense X Retrieval: What Retrieval Granularity Should We Use?](http://arxiv.org/abs/2312.06648v2) | Tong Chen, Hongwei Wang, Sihao Chen, et al. | 2023‑12‑11 | `Template:` [propositional-retrieval](https://python.langchain.com/docs/templates/propositional-retrieval) | `2311.09210v1` [Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models](http://arxiv.org/abs/2311.09210v1) | Wenhao Yu, Hongming Zhang, Xiaoman Pan, et al. | 2023‑11‑15 | `Template:` [chain-of-note-wiki](https://python.langchain.com/docs/templates/chain-of-note-wiki) -| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023‑10‑17 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Cookbook:` [Langgraph Self Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb) -| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023‑10‑09 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [Stepback-Qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb) +| `2310.11511v1` [Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection](http://arxiv.org/abs/2310.11511v1) | Akari Asai, Zeqiu Wu, Yizhong Wang, et al. | 2023‑10‑17 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `Cookbook:` [Langgraph Self Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb) +| `2310.06117v2` [Take a Step Back: Evoking Reasoning via Abstraction in Large Language Models](http://arxiv.org/abs/2310.06117v2) | Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, et al. | 2023‑10‑09 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `Template:` [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting), `Cookbook:` [Stepback-Qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb) | `2307.15337v3` [Skeleton-of-Thought: Prompting LLMs for Efficient Parallel Generation](http://arxiv.org/abs/2307.15337v3) | Xuefei Ning, Zinan Lin, Zixuan Zhou, et al. | 2023‑07‑28 | `Template:` [skeleton-of-thought](https://python.langchain.com/docs/templates/skeleton-of-thought) | `2307.09288v2` [Llama 2: Open Foundation and Fine-Tuned Chat Models](http://arxiv.org/abs/2307.09288v2) | Hugo Touvron, Louis Martin, Kevin Stone, et al. | 2023‑07‑18 | `Cookbook:` [Semi Structured Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb) -| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023‑07‑06 | `Docs:` [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder) +| `2307.03172v3` [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172v3) | Nelson F. Liu, Kevin Lin, John Hewitt, et al. | 2023‑07‑06 | `Docs:` [docs/how_to/long_context_reorder](https://python.langchain.com/docs/how_to/long_context_reorder) | `2305.14283v3` [Query Rewriting for Retrieval-Augmented Large Language Models](http://arxiv.org/abs/2305.14283v3) | Xinbei Ma, Yeyun Gong, Pengcheng He, et al. | 2023‑05‑23 | `Template:` [rewrite-retrieve-read](https://python.langchain.com/docs/templates/rewrite-retrieve-read), `Cookbook:` [Rewrite](https://github.com/langchain-ai/langchain/blob/master/cookbook/rewrite.ipynb) | `2305.08291v1` [Large Language Model Guided Tree-of-Thought](http://arxiv.org/abs/2305.08291v1) | Jieyi Long | 2023‑05‑15 | `API:` [langchain_experimental.tot](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.tot), `Cookbook:` [Tree Of Thought](https://github.com/langchain-ai/langchain/blob/master/cookbook/tree_of_thought.ipynb) | `2305.04091v3` [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](http://arxiv.org/abs/2305.04091v3) | Lei Wang, Wanyu Xu, Yihuai Lan, et al. | 2023‑05‑06 | `Cookbook:` [Plan And Execute Agent](https://github.com/langchain-ai/langchain/blob/master/cookbook/plan_and_execute_agent.ipynb) -| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023‑05‑03 | `Docs:` [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression), `API:` [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank) +| `2305.02156v1` [Zero-Shot Listwise Document Reranking with a Large Language Model](http://arxiv.org/abs/2305.02156v1) | Xueguang Ma, Xinyu Zhang, Ronak Pradeep, et al. | 2023‑05‑03 | `Docs:` [docs/how_to/contextual_compression](https://python.langchain.com/docs/how_to/contextual_compression), `API:` [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank) | `2304.08485v2` [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485v2) | Haotian Liu, Chunyuan Li, Qingyang Wu, et al. | 2023‑04‑17 | `Cookbook:` [Semi Structured Multi Modal Rag Llama2](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_multi_modal_RAG_LLaMA2.ipynb), [Semi Structured And Multi Modal Rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_structured_and_multi_modal_RAG.ipynb) | `2304.03442v2` [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442v2) | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, et al. | 2023‑04‑07 | `Cookbook:` [Generative Agents Interactive Simulacra Of Human Behavior](https://github.com/langchain-ai/langchain/blob/master/cookbook/generative_agents_interactive_simulacra_of_human_behavior.ipynb), [Multiagent Bidding](https://github.com/langchain-ai/langchain/blob/master/cookbook/multiagent_bidding.ipynb) | `2303.17760v2` [CAMEL: Communicative Agents for "Mind" Exploration of Large Language Model Society](http://arxiv.org/abs/2303.17760v2) | Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, et al. | 2023‑03‑31 | `Cookbook:` [Camel Role Playing](https://github.com/langchain-ai/langchain/blob/master/cookbook/camel_role_playing.ipynb) | `2303.17580v4` [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face](http://arxiv.org/abs/2303.17580v4) | Yongliang Shen, Kaitao Song, Xu Tan, et al. | 2023‑03‑30 | `API:` [langchain_experimental.autonomous_agents](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.autonomous_agents), `Cookbook:` [Hugginggpt](https://github.com/langchain-ai/langchain/blob/master/cookbook/hugginggpt.ipynb) | `2301.10226v4` [A Watermark for Large Language Models](http://arxiv.org/abs/2301.10226v4) | John Kirchenbauer, Jonas Geiping, Yuxin Wen, et al. | 2023‑01‑24 | `API:` [langchain_community...OCIModelDeploymentTGI](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI.html#langchain_community.llms.oci_data_science_model_deployment_endpoint.OCIModelDeploymentTGI), [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) -| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022‑12‑20 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [Hypothetical Document Embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb) -| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022‑12‑15 | `Docs:` [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain) +| `2212.10496v1` [Precise Zero-Shot Dense Retrieval without Relevance Labels](http://arxiv.org/abs/2212.10496v1) | Luyu Gao, Xueguang Ma, Jimmy Lin, et al. | 2022‑12‑20 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts), `API:` [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder), `Template:` [hyde](https://python.langchain.com/docs/templates/hyde), `Cookbook:` [Hypothetical Document Embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb) +| `2212.08073v1` [Constitutional AI: Harmlessness from AI Feedback](http://arxiv.org/abs/2212.08073v1) | Yuntao Bai, Saurav Kadavath, Sandipan Kundu, et al. | 2022‑12‑15 | `Docs:` [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain) | `2212.07425v3` [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](http://arxiv.org/abs/2212.07425v3) | Zhivar Sourati, Vishnu Priya Prasanna Venkatesh, Darshan Deshpande, et al. | 2022‑12‑12 | `API:` [langchain_experimental.fallacy_removal](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.fallacy_removal) | `2211.13892v2` [Complementary Explanations for Effective In-Context Learning](http://arxiv.org/abs/2211.13892v2) | Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, et al. | 2022‑11‑25 | `API:` [langchain_core...MaxMarginalRelevanceExampleSelector](https://api.python.langchain.com/en/latest/example_selectors/langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector.html#langchain_core.example_selectors.semantic_similarity.MaxMarginalRelevanceExampleSelector) | `2211.10435v2` [PAL: Program-aided Language Models](http://arxiv.org/abs/2211.10435v2) | Luyu Gao, Aman Madaan, Shuyan Zhou, et al. | 2022‑11‑18 | `API:` [langchain_experimental.pal_chain](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.pal_chain), [langchain_experimental...PALChain](https://api.python.langchain.com/en/latest/pal_chain/langchain_experimental.pal_chain.base.PALChain.html#langchain_experimental.pal_chain.base.PALChain), `Cookbook:` [Program Aided Language Model](https://github.com/langchain-ai/langchain/blob/master/cookbook/program_aided_language_model.ipynb) -| `2210.11934v2` [An Analysis of Fusion Functions for Hybrid Retrieval](http://arxiv.org/abs/2210.11934v2) | Sebastian Bruch, Siyu Gai, Amir Ingber | 2022‑10‑21 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) -| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022‑10‑06 | `Docs:` [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain) -| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022‑09‑22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake) -| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022‑05‑26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake) +| `2210.11934v2` [An Analysis of Fusion Functions for Hybrid Retrieval](http://arxiv.org/abs/2210.11934v2) | Sebastian Bruch, Siyu Gai, Amir Ingber | 2022‑10‑21 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts) +| `2210.03629v3` [ReAct: Synergizing Reasoning and Acting in Language Models](http://arxiv.org/abs/2210.03629v3) | Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. | 2022‑10‑06 | `Docs:` [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/docs/concepts), `API:` [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain) +| `2209.10785v2` [Deep Lake: a Lakehouse for Deep Learning](http://arxiv.org/abs/2209.10785v2) | Sasun Hambardzumyan, Abhinav Tuli, Levon Ghukasyan, et al. | 2022‑09‑22 | `Docs:` [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake) +| `2205.13147v4` [Matryoshka Representation Learning](http://arxiv.org/abs/2205.13147v4) | Aditya Kusupati, Gantavya Bhatt, Aniket Rege, et al. | 2022‑05‑26 | `Docs:` [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake) | `2205.12654v1` [Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages](http://arxiv.org/abs/2205.12654v1) | Kevin Heffernan, Onur Çelebi, Holger Schwenk | 2022‑05‑25 | `API:` [langchain_community...LaserEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_community.embeddings.laser.LaserEmbeddings.html#langchain_community.embeddings.laser.LaserEmbeddings) -| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022‑03‑15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL) +| `2204.00498v1` [Evaluating the Text-to-SQL Capabilities of Large Language Models](http://arxiv.org/abs/2204.00498v1) | Nitarshan Rajkumar, Raymond Li, Dzmitry Bahdanau | 2022‑03‑15 | `Docs:` [docs/tutorials/sql_qa](https://python.langchain.com/docs/tutorials/sql_qa), `API:` [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL) | `2202.00666v5` [Locally Typical Sampling](http://arxiv.org/abs/2202.00666v5) | Clara Meister, Tiago Pimentel, Gian Wiher, et al. | 2022‑02‑01 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) -| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021‑12‑02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy) +| `2112.01488v3` [ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction](http://arxiv.org/abs/2112.01488v3) | Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, et al. | 2021‑12‑02 | `Docs:` [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/docs/integrations/providers/dspy) | `2103.00020v1` [Learning Transferable Visual Models From Natural Language Supervision](http://arxiv.org/abs/2103.00020v1) | Alec Radford, Jong Wook Kim, Chris Hallacy, et al. | 2021‑02‑26 | `API:` [langchain_experimental.open_clip](https://api.python.langchain.com/en/latest/experimental_api_reference.html#module-langchain_experimental.open_clip) -| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020‑05‑28 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) -| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020‑05‑22 | `Docs:` [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) +| `2005.14165v4` [Language Models are Few-Shot Learners](http://arxiv.org/abs/2005.14165v4) | Tom B. Brown, Benjamin Mann, Nick Ryder, et al. | 2020‑05‑28 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts) +| `2005.11401v4` [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](http://arxiv.org/abs/2005.11401v4) | Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. | 2020‑05‑22 | `Docs:` [docs/concepts](https://python.langchain.com/docs/concepts) | `1909.05858v2` [CTRL: A Conditional Transformer Language Model for Controllable Generation](http://arxiv.org/abs/1909.05858v2) | Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, et al. | 2019‑09‑11 | `API:` [langchain_huggingface...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint), [langchain_community...HuggingFaceTextGenInference](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference.html#langchain_community.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference), [langchain_community...HuggingFaceEndpoint](https://api.python.langchain.com/en/latest/llms/langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint.html#langchain_community.llms.huggingface_endpoint.HuggingFaceEndpoint) ## Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity @@ -60,7 +60,7 @@ From the opposite direction, scientists use `LangChain` in research and referenc - **arXiv id:** [2403.14403v2](http://arxiv.org/abs/2403.14403v2) **Published Date:** 2024-03-21 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) **Abstract:** Retrieval-Augmented Large Language Models (LLMs), which incorporate the non-parametric knowledge from external knowledge bases into LLMs, have emerged @@ -113,7 +113,7 @@ commonalities with human reasoning patterns. - **arXiv id:** [2402.03367v2](http://arxiv.org/abs/2402.03367v2) **Published Date:** 2024-01-31 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) **Abstract:** Infineon has identified a need for engineers, account managers, and customers to rapidly obtain product information. This problem is traditionally addressed @@ -159,7 +159,7 @@ benchmark by 20% in absolute accuracy. - **arXiv id:** [2401.15884v2](http://arxiv.org/abs/2401.15884v2) **Published Date:** 2024-01-29 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) - **Cookbook:** [langgraph_crag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_crag.ipynb) **Abstract:** Large language models (LLMs) inevitably exhibit hallucinations since the @@ -187,7 +187,7 @@ performance of RAG-based approaches. - **arXiv id:** [2401.08500v1](http://arxiv.org/abs/2401.08500v1) **Published Date:** 2024-01-16 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) **Abstract:** Code generation problems differ from common natural language problems - they require matching the exact syntax of the target language, identifying happy @@ -293,7 +293,7 @@ outside the pre-training knowledge scope. - **arXiv id:** [2310.11511v1](http://arxiv.org/abs/2310.11511v1) **Published Date:** 2023-10-17 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) - **Cookbook:** [langgraph_self_rag](https://github.com/langchain-ai/langchain/blob/master/cookbook/langgraph_self_rag.ipynb) **Abstract:** Despite their remarkable capabilities, large language models (LLMs) often @@ -324,7 +324,7 @@ to these models. - **arXiv id:** [2310.06117v2](http://arxiv.org/abs/2310.06117v2) **Published Date:** 2023-10-09 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) - **Template:** [stepback-qa-prompting](https://python.langchain.com/docs/templates/stepback-qa-prompting) - **Cookbook:** [stepback-qa](https://github.com/langchain-ai/langchain/blob/master/cookbook/stepback-qa.ipynb) @@ -384,7 +384,7 @@ contribute to the responsible development of LLMs. - **arXiv id:** [2307.03172v3](http://arxiv.org/abs/2307.03172v3) **Published Date:** 2023-07-06 - **LangChain:** - - **Documentation:** [docs/how_to/long_context_reorder](https://python.langchain.com/v0.2/docs/how_to/long_context_reorder) + - **Documentation:** [docs/how_to/long_context_reorder](https://python.langchain.com/docs/how_to/long_context_reorder) **Abstract:** While recent language models have the ability to take long contexts as input, relatively little is known about how well they use longer context. We analyze @@ -451,8 +451,7 @@ steps of the thought-process and explore other directions from there. To verify the effectiveness of the proposed technique, we implemented a ToT-based solver for the Sudoku Puzzle. Experimental results show that the ToT framework can significantly increase the success rate of Sudoku puzzle solving. Our -implementation of the ToT-based Sudoku solver is available on GitHub: -\url{https://github.com/jieyilong/tree-of-thought-puzzle-solver}. +implementation of the ToT-based Sudoku solver is available on [GitHub](https://github.com/jieyilong/tree-of-thought-puzzle-solver). ## Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models @@ -490,7 +489,7 @@ https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting. - **arXiv id:** [2305.02156v1](http://arxiv.org/abs/2305.02156v1) **Published Date:** 2023-05-03 - **LangChain:** - - **Documentation:** [docs/how_to/contextual_compression](https://python.langchain.com/v0.2/docs/how_to/contextual_compression) + - **Documentation:** [docs/how_to/contextual_compression](https://python.langchain.com/docs/how_to/contextual_compression) - **API Reference:** [langchain...LLMListwiseRerank](https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html#langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank) **Abstract:** Supervised ranking methods based on bi-encoder or cross-encoder architectures @@ -649,7 +648,7 @@ family, and discuss robustness and security. - **arXiv id:** [2212.10496v1](http://arxiv.org/abs/2212.10496v1) **Published Date:** 2022-12-20 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) - **API Reference:** [langchain...HypotheticalDocumentEmbedder](https://api.python.langchain.com/en/latest/chains/langchain.chains.hyde.base.HypotheticalDocumentEmbedder.html#langchain.chains.hyde.base.HypotheticalDocumentEmbedder) - **Template:** [hyde](https://python.langchain.com/docs/templates/hyde) - **Cookbook:** [hypothetical_document_embeddings](https://github.com/langchain-ai/langchain/blob/master/cookbook/hypothetical_document_embeddings.ipynb) @@ -678,7 +677,7 @@ search, QA, fact verification) and languages~(e.g. sw, ko, ja). - **arXiv id:** [2212.08073v1](http://arxiv.org/abs/2212.08073v1) **Published Date:** 2022-12-15 - **LangChain:** - - **Documentation:** [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/constitutional_chain) + - **Documentation:** [docs/versions/migrating_chains/constitutional_chain](https://python.langchain.com/docs/versions/migrating_chains/constitutional_chain) **Abstract:** As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI @@ -792,7 +791,7 @@ publicly available at http://reasonwithpal.com/ . - **arXiv id:** [2210.11934v2](http://arxiv.org/abs/2210.11934v2) **Published Date:** 2022-10-21 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) **Abstract:** We study hybrid search in text retrieval where lexical and semantic search are fused together with the intuition that the two are complementary in how @@ -811,7 +810,7 @@ training examples to tune its only parameter to a target domain. - **arXiv id:** [2210.03629v3](http://arxiv.org/abs/2210.03629v3) **Published Date:** 2022-10-06 - **LangChain:** - - **Documentation:** [docs/integrations/tools/ionic_shopping](https://python.langchain.com/v0.2/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/v0.2/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/integrations/tools/ionic_shopping](https://python.langchain.com/docs/integrations/tools/ionic_shopping), [docs/integrations/providers/cohere](https://python.langchain.com/docs/integrations/providers/cohere), [docs/concepts](https://python.langchain.com/docs/concepts) - **API Reference:** [langchain...create_react_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.react.agent.create_react_agent.html#langchain.agents.react.agent.create_react_agent), [langchain...TrajectoryEvalChain](https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain.html#langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain) **Abstract:** While large language models (LLMs) have demonstrated impressive capabilities @@ -843,7 +842,7 @@ Project site with code: https://react-lm.github.io - **arXiv id:** [2209.10785v2](http://arxiv.org/abs/2209.10785v2) **Published Date:** 2022-09-22 - **LangChain:** - - **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/v0.2/docs/integrations/providers/activeloop_deeplake) + - **Documentation:** [docs/integrations/providers/activeloop_deeplake](https://python.langchain.com/docs/integrations/providers/activeloop_deeplake) **Abstract:** Traditional data lakes provide critical data infrastructure for analytical workloads by enabling time travel, running SQL queries, ingesting data with @@ -868,7 +867,7 @@ TensorFlow, JAX, and integrate with numerous MLOps tools. - **arXiv id:** [2205.13147v4](http://arxiv.org/abs/2205.13147v4) **Published Date:** 2022-05-26 - **LangChain:** - - **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/v0.2/docs/integrations/providers/snowflake) + - **Documentation:** [docs/integrations/providers/snowflake](https://python.langchain.com/docs/integrations/providers/snowflake) **Abstract:** Learned representations are a central component in modern ML systems, serving a multitude of downstream tasks. When training such representations, it is @@ -925,7 +924,7 @@ encoders, mine bitexts, and validate the bitexts by training NMT systems. - **arXiv id:** [2204.00498v1](http://arxiv.org/abs/2204.00498v1) **Published Date:** 2022-03-15 - **LangChain:** - - **Documentation:** [docs/tutorials/sql_qa](https://python.langchain.com/v0.2/docs/tutorials/sql_qa) + - **Documentation:** [docs/tutorials/sql_qa](https://python.langchain.com/docs/tutorials/sql_qa) - **API Reference:** [langchain_community...SQLDatabase](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), [langchain_community...SparkSQL](https://api.python.langchain.com/en/latest/utilities/langchain_community.utilities.spark_sql.SparkSQL.html#langchain_community.utilities.spark_sql.SparkSQL) **Abstract:** We perform an empirical evaluation of Text-to-SQL capabilities of the Codex @@ -971,7 +970,7 @@ reducing degenerate repetitions. - **arXiv id:** [2112.01488v3](http://arxiv.org/abs/2112.01488v3) **Published Date:** 2021-12-02 - **LangChain:** - - **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/v0.2/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/v0.2/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/v0.2/docs/integrations/providers/dspy) + - **Documentation:** [docs/integrations/retrievers/ragatouille](https://python.langchain.com/docs/integrations/retrievers/ragatouille), [docs/integrations/providers/ragatouille](https://python.langchain.com/docs/integrations/providers/ragatouille), [docs/concepts](https://python.langchain.com/docs/concepts), [docs/integrations/providers/dspy](https://python.langchain.com/docs/integrations/providers/dspy) **Abstract:** Neural information retrieval (IR) has greatly advanced search and other knowledge-intensive language tasks. While many neural IR methods encode queries @@ -1022,7 +1021,7 @@ https://github.com/OpenAI/CLIP. - **arXiv id:** [2005.14165v4](http://arxiv.org/abs/2005.14165v4) **Published Date:** 2020-05-28 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) **Abstract:** Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on @@ -1055,7 +1054,7 @@ and of GPT-3 in general. - **arXiv id:** [2005.11401v4](http://arxiv.org/abs/2005.11401v4) **Published Date:** 2020-05-22 - **LangChain:** - - **Documentation:** [docs/concepts](https://python.langchain.com/v0.2/docs/concepts) + - **Documentation:** [docs/concepts](https://python.langchain.com/docs/concepts) **Abstract:** Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on diff --git a/docs/docs/concepts.mdx b/docs/docs/concepts.mdx index af2ac5fbb59d1..2f48f14297656 100644 --- a/docs/docs/concepts.mdx +++ b/docs/docs/concepts.mdx @@ -97,7 +97,7 @@ For guides on how to do specific tasks with LCEL, check out [the relevant how-to ### Runnable interface -To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below. +To make it as easy as possible to create custom chains, we've implemented a ["Runnable"](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) protocol. Many LangChain components implement the `Runnable` protocol, including chat models, LLMs, output parsers, retrievers, prompt templates, and more. There are also several useful primitives for working with runnables, which you can read about below. This is a standard interface, which makes it easy to define custom chains as well as invoke them in a standard way. The standard interface includes: @@ -116,14 +116,14 @@ These also have corresponding async methods that should be used with [asyncio](h The **input type** and **output type** varies by component: -| Component | Input Type | Output Type | -| --- | --- | --- | -| Prompt | Dictionary | PromptValue | -| ChatModel | Single string, list of chat messages or a PromptValue | ChatMessage | -| LLM | Single string, list of chat messages or a PromptValue | String | -| OutputParser | The output of an LLM or ChatModel | Depends on the parser | -| Retriever | Single string | List of Documents | -| Tool | Single string or dictionary, depending on the tool | Depends on the tool | +| Component | Input Type | Output Type | +|--------------|-------------------------------------------------------|-----------------------| +| Prompt | Dictionary | PromptValue | +| ChatModel | Single string, list of chat messages or a PromptValue | ChatMessage | +| LLM | Single string, list of chat messages or a PromptValue | String | +| OutputParser | The output of an LLM or ChatModel | Depends on the parser | +| Retriever | Single string | List of Documents | +| Tool | Single string or dictionary, depending on the tool | Depends on the tool | All runnables expose input and output **schemas** to inspect the inputs and outputs: @@ -236,7 +236,7 @@ This is where information like log-probs and token usage may be stored. **`tool_calls`** -These represent a decision from an language model to call a tool. They are included as part of an `AIMessage` output. +These represent a decision from a language model to call a tool. They are included as part of an `AIMessage` output. They can be accessed from there with the `.tool_calls` property. This property returns a list of `ToolCall`s. A `ToolCall` is a dictionary with the following arguments: @@ -256,6 +256,8 @@ This represents a message with role "tool", which contains the result of calling - a `tool_call_id` field which conveys the id of the call to the tool that was called to produce this result. - an `artifact` field which can be used to pass along arbitrary artifacts of the tool execution which are useful to track but which should not be sent to the model. +With most chat models, a `ToolMessage` can only appear in the chat history after an `AIMessage` that has a populated `tool_calls` field. + #### (Legacy) FunctionMessage This is a legacy message type, corresponding to OpenAI's legacy function-calling API. `ToolMessage` should be used instead to correspond to the updated tool-calling API. @@ -380,17 +382,17 @@ LangChain has lots of different types of output parsers. This is a list of outpu | Name | Supports Streaming | Has Format Instructions | Calls LLM | Input Type | Output Type | Description | |-----------------|--------------------|-------------------------------|-----------|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| -| [JSON](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. | -| [XML](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). | -| [CSV](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. | -| [OutputFixing](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. | -| [RetryWithError](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. | -| [Pydantic](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. | -| [YAML](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. | -| [PandasDataFrame](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser.html#langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser) | | ✅ | | `str` \| `Message` | `dict` | Useful for doing operations with pandas DataFrames. | -| [Enum](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. | -| [Datetime](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. | -| [Structured](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. | +| [JSON](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html#langchain_core.output_parsers.json.JsonOutputParser) | ✅ | ✅ | | `str` \| `Message` | JSON object | Returns a JSON object as specified. You can specify a Pydantic model and it will return JSON for that model. Probably the most reliable output parser for getting structured data that does NOT use function calling. | +| [XML](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html#langchain_core.output_parsers.xml.XMLOutputParser) | ✅ | ✅ | | `str` \| `Message` | `dict` | Returns a dictionary of tags. Use when XML output is needed. Use with models that are good at writing XML (like Anthropic's). | +| [CSV](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.list.CommaSeparatedListOutputParser.html#langchain_core.output_parsers.list.CommaSeparatedListOutputParser) | ✅ | ✅ | | `str` \| `Message` | `List[str]` | Returns a list of comma separated values. | +| [OutputFixing](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the error message and the bad output to an LLM and ask it to fix the output. | +| [RetryWithError](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryWithErrorOutputParser.html#langchain.output_parsers.retry.RetryWithErrorOutputParser) | | | ✅ | `str` \| `Message` | | Wraps another output parser. If that output parser errors, then this will pass the original inputs, the bad output, and the error message to an LLM and ask it to fix it. Compared to OutputFixingParser, this one also sends the original instructions. | +| [Pydantic](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html#langchain_core.output_parsers.pydantic.PydanticOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. | +| [YAML](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) | | ✅ | | `str` \| `Message` | `pydantic.BaseModel` | Takes a user defined Pydantic model and returns data in that format. Uses YAML to encode it. | +| [PandasDataFrame](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser.html#langchain.output_parsers.pandas_dataframe.PandasDataFrameOutputParser) | | ✅ | | `str` \| `Message` | `dict` | Useful for doing operations with pandas DataFrames. | +| [Enum](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.enum.EnumOutputParser.html#langchain.output_parsers.enum.EnumOutputParser) | | ✅ | | `str` \| `Message` | `Enum` | Parses response into one of the provided enum values. | +| [Datetime](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.datetime.DatetimeOutputParser.html#langchain.output_parsers.datetime.DatetimeOutputParser) | | ✅ | | `str` \| `Message` | `datetime.datetime` | Parses response into a datetime string. | +| [Structured](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.structured.StructuredOutputParser.html#langchain.output_parsers.structured.StructuredOutputParser) | | ✅ | | `str` \| `Message` | `Dict[str, str]` | An output parser that returns structured information. It is less powerful than other output parsers since it only allows for fields to be strings. This can be useful when you are working with smaller LLMs. | For specifics on how to use output parsers, see the [relevant how-to guides here](/docs/how_to/#output-parsers). @@ -501,7 +503,7 @@ For specifics on how to use retrievers, see the [relevant how-to guides here](/d For some techniques, such as [indexing and retrieval with multiple vectors per document](/docs/how_to/multi_vector/) or [caching embeddings](/docs/how_to/caching_embeddings/), having a form of key-value (KV) storage is helpful. -LangChain includes a [`BaseStore`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) interface, +LangChain includes a [`BaseStore`](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.BaseStore.html) interface, which allows for storage of arbitrary data. However, LangChain components that require KV-storage accept a more specific `BaseStore[str, bytes]` instance that stores binary data (referred to as a `ByteStore`), and internally take care of encoding and decoding data for their specific needs. @@ -510,7 +512,7 @@ This means that as a user, you only need to think about one type of store rather #### Interface -All [`BaseStores`](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows +All [`BaseStores`](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.BaseStore.html) support the following interface. Note that the interface allows for modifying **multiple** key-value pairs at once: - `mget(key: Sequence[str]) -> List[Optional[bytes]]`: get the contents of multiple keys, returning `None` if the key does not exist @@ -595,10 +597,10 @@ tool_call = ai_msg.tool_calls[0] # -> ToolCall(args={...}, id=..., ...) tool_message = tool.invoke(tool_call) # -> ToolMessage( - content="tool result foobar...", - tool_call_id=..., - name="tool_name" -) +# content="tool result foobar...", +# tool_call_id=..., +# name="tool_name" +# ) ``` If you are invoking the tool this way and want to include an [artifact](/docs/concepts/#toolmessage) for the ToolMessage, you will need to have the tool return two things. @@ -609,7 +611,7 @@ Read more about [defining tools that return artifacts here](/docs/how_to/tool_ar When designing tools to be used by a model, it is important to keep in mind that: - Chat models that have explicit [tool-calling APIs](/docs/concepts/#functiontool-calling) will be better at tool calling than non-fine-tuned models. -- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This another form of prompt engineering. +- Models will perform better if the tools have well-chosen names, descriptions, and JSON schemas. This is another form of prompt engineering. - Simple, narrowly scoped tools are easier for models to use than complex tools. #### Related @@ -708,17 +710,15 @@ You can subscribe to these events by using the `callbacks` argument available th Callback handlers can either be `sync` or `async`: -* Sync callback handlers implement the [BaseCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface. -* Async callback handlers implement the [AsyncCallbackHandler](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface. +* Sync callback handlers implement the [BaseCallbackHandler](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html) interface. +* Async callback handlers implement the [AsyncCallbackHandler](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) interface. -During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered. +During run-time LangChain configures an appropriate callback manager (e.g., [CallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.CallbackManager.html) or [AsyncCallbackManager](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.manager.AsyncCallbackManager.html) which will be responsible for calling the appropriate method on each "registered" callback handler when the event is triggered. #### Passing callbacks The `callbacks` property is available on most objects throughout the API (Models, Tools, Agents, etc.) in two different places: -The callbacks are available on most objects throughout the API (Models, Tools, Agents, etc.) in two different places: - - **Request time callbacks**: Passed at the time of the request in addition to the input data. Available on all standard `Runnable` objects. These callbacks are INHERITED by all children of the object they are defined on. For example, `chain.invoke({"number": 25}, {"callbacks": [handler]})`. @@ -734,10 +734,10 @@ of the object. If you're creating a custom chain or runnable, you need to remember to propagate request time callbacks to any child objects. -:::important Async in Python<=3.10 +:::important Async in Python<=3.10 Any `RunnableLambda`, a `RunnableGenerator`, or `Tool` that invokes other runnables -and is running `async` in python<=3.10, will have to propagate callbacks to child +and is running `async` in python<=3.10, will have to propagate callbacks to child objects manually. This is because LangChain cannot automatically propagate callbacks to child objects in this case. @@ -779,7 +779,7 @@ For models (or other components) that don't support streaming natively, this ite you could still use the same general pattern when calling them. Using `.stream()` will also automatically call the model in streaming mode without the need to provide additional config. -The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html). +The type of each outputted chunk depends on the type of component - for example, chat models yield [`AIMessageChunks`](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html). Because this method is part of [LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel), you can handle formatting differences from different outputs using an [output parser](/docs/concepts/#output-parsers) to transform each yielded chunk. @@ -827,10 +827,10 @@ including a table listing available events. #### Callbacks The lowest level way to stream outputs from LLMs in LangChain is via the [callbacks](/docs/concepts/#callbacks) system. You can pass a -callback handler that handles the [`on_llm_new_token`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any +callback handler that handles the [`on_llm_new_token`](https://python.langchain.com/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_new_token) event into LangChain components. When that component is invoked, any [LLM](/docs/concepts/#llms) or [chat model](/docs/concepts/#chat-models) contained in the component calls the callback with the generated token. Within the callback, you could pipe the tokens into some other destination, e.g. a HTTP response. -You can also handle the [`on_llm_end`](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup. +You can also handle the [`on_llm_end`](https://python.langchain.com/api_reference/langchain/callbacks/langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.html#langchain.callbacks.streaming_aiter.AsyncIteratorCallbackHandler.on_llm_end) event to perform any necessary cleanup. You can see [this how-to section](/docs/how_to/#callbacks) for more specifics on using callbacks. @@ -945,7 +945,7 @@ Here's an example: ```python from typing import Optional -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field class Joke(BaseModel): @@ -1062,7 +1062,7 @@ a `tool_calls` field containing `args` that match the desired shape. There are several acceptable formats you can use to bind tools to a model in LangChain. Here's one example: ```python -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_openai import ChatOpenAI class ResponseFormatter(BaseModel): diff --git a/docs/docs/contributing/code/setup.mdx b/docs/docs/contributing/code/setup.mdx index 5e983d30fbecf..c5ad124f5916d 100644 --- a/docs/docs/contributing/code/setup.mdx +++ b/docs/docs/contributing/code/setup.mdx @@ -73,9 +73,9 @@ make docker_tests There are also [integration tests and code-coverage](/docs/contributing/testing/) available. -### Only develop langchain_core or langchain_experimental +### Only develop langchain_core or langchain_community -If you are only developing `langchain_core` or `langchain_experimental`, you can simply install the dependencies for the respective projects and run tests: +If you are only developing `langchain_core` or `langchain_community`, you can simply install the dependencies for the respective projects and run tests: ```bash cd libs/core @@ -86,7 +86,7 @@ make test Or: ```bash -cd libs/experimental +cd libs/community poetry install --with test make test ``` diff --git a/docs/docs/contributing/documentation/setup.mdx b/docs/docs/contributing/documentation/setup.mdx index 2ac1cab73767b..edbcb3ca1b07e 100644 --- a/docs/docs/contributing/documentation/setup.mdx +++ b/docs/docs/contributing/documentation/setup.mdx @@ -12,7 +12,7 @@ It covers a wide array of topics, including tutorials, use cases, integrations, and more, offering extensive guidance on building with LangChain. The content for this documentation lives in the `/docs` directory of the monorepo. 2. In-code Documentation: This is documentation of the codebase itself, which is also -used to generate the externally facing [API Reference](https://python.langchain.com/v0.2/api_reference/langchain/index.html). +used to generate the externally facing [API Reference](https://python.langchain.com/api_reference/langchain/index.html). The content for the API reference is autogenerated by scanning the docstrings in the codebase. For this reason we ask that developers document their code well. diff --git a/docs/docs/contributing/index.mdx b/docs/docs/contributing/index.mdx index e91c70c5fd15f..e8f7b892a0578 100644 --- a/docs/docs/contributing/index.mdx +++ b/docs/docs/contributing/index.mdx @@ -3,8 +3,8 @@ sidebar_position: 0 --- # Welcome Contributors -Hi there! Thank you for even being interested in contributing to LangChain. -As an open-source project in a rapidly developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes. +Hi there! Thank you for your interest in contributing to LangChain. +As an open-source project in a fast developing field, we are extremely open to contributions, whether they involve new features, improved infrastructure, better documentation, or bug fixes. ## 🗺️ Guidelines diff --git a/docs/docs/contributing/repo_structure.mdx b/docs/docs/contributing/repo_structure.mdx index 63e180696a3f3..30459d55784e8 100644 --- a/docs/docs/contributing/repo_structure.mdx +++ b/docs/docs/contributing/repo_structure.mdx @@ -50,7 +50,7 @@ There are other files in the root directory level, but their presence should be ## Documentation The `/docs` directory contains the content for the documentation that is shown -at https://python.langchain.com/ and the associated API Reference https://python.langchain.com/v0.2/api_reference/langchain/index.html. +at https://python.langchain.com/ and the associated API Reference https://python.langchain.com/api_reference/langchain/index.html. See the [documentation](/docs/contributing/documentation/) guidelines to learn how to contribute to the documentation. diff --git a/docs/docs/how_to/HTML_header_metadata_splitter.ipynb b/docs/docs/how_to/HTML_header_metadata_splitter.ipynb index e7d6df55cc93c..2b336ed884402 100644 --- a/docs/docs/how_to/HTML_header_metadata_splitter.ipynb +++ b/docs/docs/how_to/HTML_header_metadata_splitter.ipynb @@ -13,7 +13,7 @@ "# How to split by HTML header \n", "## Description and motivation\n", "\n", - "[HTMLHeaderTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/html/langchain_text_splitters.html.HTMLHeaderTextSplitter.html) is a \"structure-aware\" chunker that splits text at the HTML element level and adds metadata for each header \"relevant\" to any given chunk. It can return chunks element by element or combine elements with the same metadata, with the objectives of (a) keeping related text grouped (more or less) semantically and (b) preserving context-rich information encoded in document structures. It can be used with other text splitters as part of a chunking pipeline.\n", + "[HTMLHeaderTextSplitter](https://python.langchain.com/api_reference/text_splitters/html/langchain_text_splitters.html.HTMLHeaderTextSplitter.html) is a \"structure-aware\" chunker that splits text at the HTML element level and adds metadata for each header \"relevant\" to any given chunk. It can return chunks element by element or combine elements with the same metadata, with the objectives of (a) keeping related text grouped (more or less) semantically and (b) preserving context-rich information encoded in document structures. It can be used with other text splitters as part of a chunking pipeline.\n", "\n", "It is analogous to the [MarkdownHeaderTextSplitter](/docs/how_to/markdown_header_metadata_splitter) for markdown files.\n", "\n", diff --git a/docs/docs/how_to/MultiQueryRetriever.ipynb b/docs/docs/how_to/MultiQueryRetriever.ipynb index 6a0abf20f1cc5..4b093af87dba9 100644 --- a/docs/docs/how_to/MultiQueryRetriever.ipynb +++ b/docs/docs/how_to/MultiQueryRetriever.ipynb @@ -9,7 +9,7 @@ "\n", "Distance-based vector database retrieval embeds (represents) queries in high-dimensional space and finds similar embedded documents based on a distance metric. But, retrieval may produce different results with subtle changes in query wording, or if the embeddings do not capture the semantics of the data well. Prompt engineering / tuning is sometimes done to manually address these problems, but can be tedious.\n", "\n", - "The [MultiQueryRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query. For each query, it retrieves a set of relevant documents and takes the unique union across all queries to get a larger set of potentially relevant documents. By generating multiple perspectives on the same question, the `MultiQueryRetriever` can mitigate some of the limitations of the distance-based retrieval and get a richer set of results.\n", + "The [MultiQueryRetriever](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html) automates the process of prompt tuning by using an LLM to generate multiple queries from different perspectives for a given user input query. For each query, it retrieves a set of relevant documents and takes the unique union across all queries to get a larger set of potentially relevant documents. By generating multiple perspectives on the same question, the `MultiQueryRetriever` can mitigate some of the limitations of the distance-based retrieval and get a richer set of results.\n", "\n", "Let's build a vectorstore using the [LLM Powered Autonomous Agents](https://lilianweng.github.io/posts/2023-06-23-agent/) blog post by Lilian Weng from the [RAG tutorial](/docs/tutorials/rag):" ] @@ -18,8 +18,23 @@ "cell_type": "code", "execution_count": 1, "id": "994d6c74", - "metadata": {}, - "outputs": [], + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:08:00.190093Z", + "iopub.status.busy": "2024-09-10T20:08:00.189665Z", + "iopub.status.idle": "2024-09-10T20:08:05.438015Z", + "shell.execute_reply": "2024-09-10T20:08:05.437685Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "USER_AGENT environment variable not set, consider setting it to identify your requests.\n" + ] + } + ], "source": [ "# Build a sample vectorDB\n", "from langchain_chroma import Chroma\n", @@ -54,7 +69,14 @@ "cell_type": "code", "execution_count": 2, "id": "edbca101", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:08:05.439930Z", + "iopub.status.busy": "2024-09-10T20:08:05.439810Z", + "iopub.status.idle": "2024-09-10T20:08:05.553766Z", + "shell.execute_reply": "2024-09-10T20:08:05.553520Z" + } + }, "outputs": [], "source": [ "from langchain.retrievers.multi_query import MultiQueryRetriever\n", @@ -71,7 +93,14 @@ "cell_type": "code", "execution_count": 3, "id": "9e6d3b69", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:08:05.555359Z", + "iopub.status.busy": "2024-09-10T20:08:05.555262Z", + "iopub.status.idle": "2024-09-10T20:08:05.557046Z", + "shell.execute_reply": "2024-09-10T20:08:05.556825Z" + } + }, "outputs": [], "source": [ "# Set logging for the queries\n", @@ -85,13 +114,20 @@ "cell_type": "code", "execution_count": 4, "id": "bc93dc2b-9407-48b0-9f9a-338247e7eb69", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:08:05.558176Z", + "iopub.status.busy": "2024-09-10T20:08:05.558100Z", + "iopub.status.idle": "2024-09-10T20:08:07.250342Z", + "shell.execute_reply": "2024-09-10T20:08:07.249711Z" + } + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:langchain.retrievers.multi_query:Generated queries: ['1. How can Task Decomposition be achieved through different methods?', '2. What strategies are commonly used for Task Decomposition?', '3. What are the various techniques for breaking down tasks in Task Decomposition?']\n" + "INFO:langchain.retrievers.multi_query:Generated queries: ['1. How can Task Decomposition be achieved through different methods?', '2. What strategies are commonly used for Task Decomposition?', '3. What are the various ways to break down tasks in Task Decomposition?']\n" ] }, { @@ -125,9 +161,9 @@ "source": [ "#### Supplying your own prompt\n", "\n", - "Under the hood, `MultiQueryRetriever` generates queries using a specific [prompt](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html). To customize this prompt:\n", + "Under the hood, `MultiQueryRetriever` generates queries using a specific [prompt](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.multi_query.MultiQueryRetriever.html). To customize this prompt:\n", "\n", - "1. Make a [PromptTemplate](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.prompt.PromptTemplate.html) with an input variable for the question;\n", + "1. Make a [PromptTemplate](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.prompt.PromptTemplate.html) with an input variable for the question;\n", "2. Implement an [output parser](/docs/concepts#output-parsers) like the one below to split the result into a list of queries.\n", "\n", "The prompt and output parser together must support the generation of a list of queries." @@ -137,14 +173,21 @@ "cell_type": "code", "execution_count": 5, "id": "d9afb0ca", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:08:07.253875Z", + "iopub.status.busy": "2024-09-10T20:08:07.253600Z", + "iopub.status.idle": "2024-09-10T20:08:07.277848Z", + "shell.execute_reply": "2024-09-10T20:08:07.277487Z" + } + }, "outputs": [], "source": [ "from typing import List\n", "\n", "from langchain_core.output_parsers import BaseOutputParser\n", "from langchain_core.prompts import PromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "# Output parser will split the LLM result into a list of queries\n", @@ -180,13 +223,20 @@ "cell_type": "code", "execution_count": 6, "id": "59c75c56-dbd7-4887-b9ba-0b5b21069f51", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:08:07.280001Z", + "iopub.status.busy": "2024-09-10T20:08:07.279861Z", + "iopub.status.idle": "2024-09-10T20:08:09.579525Z", + "shell.execute_reply": "2024-09-10T20:08:09.578837Z" + } + }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:langchain.retrievers.multi_query:Generated queries: ['1. Can you provide insights on regression from the course material?', '2. How is regression discussed in the course content?', '3. What information does the course offer about regression?', '4. In what way is regression covered in the course?', '5. What are the teachings of the course regarding regression?']\n" + "INFO:langchain.retrievers.multi_query:Generated queries: ['1. Can you provide insights on regression from the course material?', '2. How is regression discussed in the course content?', '3. What information does the course offer regarding regression?', '4. In what way is regression covered in the course?', \"5. What are the course's teachings on regression?\"]\n" ] }, { @@ -228,7 +278,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/add_scores_retriever.ipynb b/docs/docs/how_to/add_scores_retriever.ipynb index d52705452662c..989b23594e19d 100644 --- a/docs/docs/how_to/add_scores_retriever.ipynb +++ b/docs/docs/how_to/add_scores_retriever.ipynb @@ -7,7 +7,7 @@ "source": [ "# How to add scores to retriever results\n", "\n", - "Retrievers will return sequences of [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, which by default include no information about the process that retrieved them (e.g., a similarity score against a query). Here we demonstrate how to add retrieval scores to the `.metadata` of documents:\n", + "Retrievers will return sequences of [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, which by default include no information about the process that retrieved them (e.g., a similarity score against a query). Here we demonstrate how to add retrieval scores to the `.metadata` of documents:\n", "1. From [vectorstore retrievers](/docs/how_to/vectorstore_retriever);\n", "2. From higher-order LangChain retrievers, such as [SelfQueryRetriever](/docs/how_to/self_query) or [MultiVectorRetriever](/docs/how_to/multi_vector).\n", "\n", @@ -15,7 +15,7 @@ "\n", "## Create vector store\n", "\n", - "First we populate a vector store with some data. We will use a [PineconeVectorStore](https://python.langchain.com/v0.2/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html), but this guide is compatible with any LangChain vector store that implements a `.similarity_search_with_score` method." + "First we populate a vector store with some data. We will use a [PineconeVectorStore](https://python.langchain.com/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html), but this guide is compatible with any LangChain vector store that implements a `.similarity_search_with_score` method." ] }, { @@ -206,7 +206,7 @@ " ) -> List[Document]:\n", " \"\"\"Get docs, adding score information.\"\"\"\n", " docs, scores = zip(\n", - " *vectorstore.similarity_search_with_score(query, **search_kwargs)\n", + " *self.vectorstore.similarity_search_with_score(query, **search_kwargs)\n", " )\n", " for doc, score in zip(docs, scores):\n", " doc.metadata[\"score\"] = score\n", @@ -263,7 +263,7 @@ "\n", "To propagate similarity scores through this retriever, we can again subclass `MultiVectorRetriever` and override a method. This time we will override `_get_relevant_documents`.\n", "\n", - "First, we prepare some fake data. We generate fake \"whole documents\" and store them in a document store; here we will use a simple [InMemoryStore](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.InMemoryBaseStore.html)." + "First, we prepare some fake data. We generate fake \"whole documents\" and store them in a document store; here we will use a simple [InMemoryStore](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.InMemoryBaseStore.html)." ] }, { diff --git a/docs/docs/how_to/agent_executor.ipynb b/docs/docs/how_to/agent_executor.ipynb index 9c59f569e4341..657a6e5b37ca3 100644 --- a/docs/docs/how_to/agent_executor.ipynb +++ b/docs/docs/how_to/agent_executor.ipynb @@ -17,7 +17,7 @@ "source": [ "# Build an Agent with AgentExecutor (Legacy)\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "This section will cover building with the legacy LangChain AgentExecutor. These are fine for getting started, but past a certain point, you will likely want flexibility and control that they do not offer. For working with more advanced agents, we'd recommend checking out [LangGraph Agents](/docs/concepts/#langgraph) or the [migration guide](/docs/how_to/migrate_agent/)\n", ":::\n", "\n", @@ -49,7 +49,6 @@ "\n", "To install LangChain run:\n", "\n", - "```{=mdx}\n", "import Tabs from '@theme/Tabs';\n", "import TabItem from '@theme/TabItem';\n", "import CodeBlock from \"@theme/CodeBlock\";\n", @@ -63,7 +62,6 @@ " \n", "\n", "\n", - "```\n", "\n", "\n", "For more details, see our [Installation guide](/docs/how_to/installation).\n", @@ -270,11 +268,9 @@ "\n", "Next, let's learn how to use a language model by to call tools. LangChain supports many different language models that you can use interchangably - select the one you want to use below!\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -805,7 +801,7 @@ "\n", "That's a wrap! In this quick start we covered how to create a simple agent. Agents are a complex topic, and there's lot to learn! \n", "\n", - ":::{.callout-important}\n", + ":::important\n", "This section covered building with LangChain Agents. LangChain Agents are fine for getting started, but past a certain point you will likely want flexibility and control that they do not offer. For working with more advanced agents, we'd reccommend checking out [LangGraph](/docs/concepts/#langgraph)\n", ":::\n", "\n", diff --git a/docs/docs/how_to/assign.ipynb b/docs/docs/how_to/assign.ipynb index c43bfc9606bdb..59e4a0ed3ec98 100644 --- a/docs/docs/how_to/assign.ipynb +++ b/docs/docs/how_to/assign.ipynb @@ -27,7 +27,7 @@ "\n", ":::\n", "\n", - "An alternate way of [passing data through](/docs/how_to/passthrough) steps of a chain is to leave the current values of the chain state unchanged while assigning a new value under a given key. The [`RunnablePassthrough.assign()`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html#langchain_core.runnables.passthrough.RunnablePassthrough.assign) static method takes an input value and adds the extra arguments passed to the assign function.\n", + "An alternate way of [passing data through](/docs/how_to/passthrough) steps of a chain is to leave the current values of the chain state unchanged while assigning a new value under a given key. The [`RunnablePassthrough.assign()`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html#langchain_core.runnables.passthrough.RunnablePassthrough.assign) static method takes an input value and adds the extra arguments passed to the assign function.\n", "\n", "This is useful in the common [LangChain Expression Language](/docs/concepts/#langchain-expression-language) pattern of additively creating a dictionary to use as input to a later step.\n", "\n", @@ -45,7 +45,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/how_to/binding.ipynb b/docs/docs/how_to/binding.ipynb index 563fce7d129bd..c25f038e2a377 100644 --- a/docs/docs/how_to/binding.ipynb +++ b/docs/docs/how_to/binding.ipynb @@ -27,7 +27,7 @@ "\n", ":::\n", "\n", - "Sometimes we want to invoke a [`Runnable`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) within a [RunnableSequence](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html) with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use the [`Runnable.bind()`](https://python.langchain.com/v0.2/api_reference/langchain_core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind) method to set these arguments ahead of time.\n", + "Sometimes we want to invoke a [`Runnable`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) within a [RunnableSequence](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html) with constant arguments that are not part of the output of the preceding Runnable in the sequence, and which are not part of the user input. We can use the [`Runnable.bind()`](https://python.langchain.com/api_reference/langchain_core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind) method to set these arguments ahead of time.\n", "\n", "## Binding stop sequences\n", "\n", @@ -49,7 +49,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -183,7 +184,7 @@ { "data": { "text/plain": [ - "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_z0OU2CytqENVrRTI6T8DkI3u', 'function': {'arguments': '{\"location\": \"San Francisco, CA\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}, {'id': 'call_ft96IJBh0cMKkQWrZjNg4bsw', 'function': {'arguments': '{\"location\": \"New York, NY\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}, {'id': 'call_tfbtGgCLmuBuWgZLvpPwvUMH', 'function': {'arguments': '{\"location\": \"Los Angeles, CA\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 84, 'prompt_tokens': 85, 'total_tokens': 169}, 'model_name': 'gpt-3.5-turbo-1106', 'system_fingerprint': 'fp_77a673219d', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d57ad5fa-b52a-4822-bc3e-74f838697e18-0', tool_calls=[{'name': 'get_current_weather', 'args': {'location': 'San Francisco, CA', 'unit': 'celsius'}, 'id': 'call_z0OU2CytqENVrRTI6T8DkI3u'}, {'name': 'get_current_weather', 'args': {'location': 'New York, NY', 'unit': 'celsius'}, 'id': 'call_ft96IJBh0cMKkQWrZjNg4bsw'}, {'name': 'get_current_weather', 'args': {'location': 'Los Angeles, CA', 'unit': 'celsius'}, 'id': 'call_tfbtGgCLmuBuWgZLvpPwvUMH'}])" + "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_z0OU2CytqENVrRTI6T8DkI3u', 'function': {'arguments': '{\"location\": \"San Francisco, CA\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}, {'id': 'call_ft96IJBh0cMKkQWrZjNg4bsw', 'function': {'arguments': '{\"location\": \"New York, NY\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}, {'id': 'call_tfbtGgCLmuBuWgZLvpPwvUMH', 'function': {'arguments': '{\"location\": \"Los Angeles, CA\", \"unit\": \"celsius\"}', 'name': 'get_current_weather'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 84, 'prompt_tokens': 85, 'total_tokens': 169}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': 'fp_77a673219d', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d57ad5fa-b52a-4822-bc3e-74f838697e18-0', tool_calls=[{'name': 'get_current_weather', 'args': {'location': 'San Francisco, CA', 'unit': 'celsius'}, 'id': 'call_z0OU2CytqENVrRTI6T8DkI3u'}, {'name': 'get_current_weather', 'args': {'location': 'New York, NY', 'unit': 'celsius'}, 'id': 'call_ft96IJBh0cMKkQWrZjNg4bsw'}, {'name': 'get_current_weather', 'args': {'location': 'Los Angeles, CA', 'unit': 'celsius'}, 'id': 'call_tfbtGgCLmuBuWgZLvpPwvUMH'}])" ] }, "execution_count": 5, @@ -192,7 +193,7 @@ } ], "source": [ - "model = ChatOpenAI(model=\"gpt-3.5-turbo-1106\").bind(tools=tools)\n", + "model = ChatOpenAI(model=\"gpt-4o-mini\").bind(tools=tools)\n", "model.invoke(\"What's the weather in SF, NYC and LA?\")" ] }, diff --git a/docs/docs/how_to/callbacks_async.ipynb b/docs/docs/how_to/callbacks_async.ipynb index d25dc0cd40cc5..4e977852eb79b 100644 --- a/docs/docs/how_to/callbacks_async.ipynb +++ b/docs/docs/how_to/callbacks_async.ipynb @@ -14,14 +14,14 @@ "- [Custom callback handlers](/docs/how_to/custom_callbacks)\n", ":::\n", "\n", - "If you are planning to use the async APIs, it is recommended to use and extend [`AsyncCallbackHandler`](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) to avoid blocking the event.\n", + "If you are planning to use the async APIs, it is recommended to use and extend [`AsyncCallbackHandler`](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.AsyncCallbackHandler.html) to avoid blocking the event.\n", "\n", "\n", - ":::{.callout-warning}\n", + ":::warning\n", "If you use a sync `CallbackHandler` while using an async method to run your LLM / Chain / Tool / Agent, it will still work. However, under the hood, it will be called with [`run_in_executor`](https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor) which can cause issues if your `CallbackHandler` is not thread-safe.\n", ":::\n", "\n", - ":::{.callout-danger}\n", + ":::danger\n", "\n", "If you're on `python<=3.10`, you need to remember to propagate `config` or `callbacks` when invoking other `runnable` from within a `RunnableLambda`, `RunnableGenerator` or `@tool`. If you do not do this,\n", "the callbacks will not be propagated to the child runnables being invoked.\n", diff --git a/docs/docs/how_to/callbacks_attach.ipynb b/docs/docs/how_to/callbacks_attach.ipynb index d951247749a0e..8115da5a4a472 100644 --- a/docs/docs/how_to/callbacks_attach.ipynb +++ b/docs/docs/how_to/callbacks_attach.ipynb @@ -17,9 +17,9 @@ "\n", ":::\n", "\n", - "If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the [`.with_config()`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method. This saves you the need to pass callbacks in each time you invoke the chain.\n", + "If you are composing a chain of runnables and want to reuse callbacks across multiple executions, you can attach callbacks with the [`.with_config()`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method. This saves you the need to pass callbacks in each time you invoke the chain.\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "\n", "`with_config()` binds a configuration which will be interpreted as **runtime** configuration. So these callbacks will propagate to all child components.\n", ":::\n", diff --git a/docs/docs/how_to/callbacks_constructor.ipynb b/docs/docs/how_to/callbacks_constructor.ipynb index 73190e2170260..20cc043d63ff0 100644 --- a/docs/docs/how_to/callbacks_constructor.ipynb +++ b/docs/docs/how_to/callbacks_constructor.ipynb @@ -17,7 +17,7 @@ "\n", "Most LangChain modules allow you to pass `callbacks` directly into the constructor (i.e., initializer). In this case, the callbacks will only be called for that instance (and any nested runs).\n", "\n", - ":::{.callout-warning}\n", + ":::warning\n", "Constructor callbacks are scoped only to the object they are defined on. They are **not** inherited by children of the object. This can lead to confusing behavior,\n", "and it's generally better to pass callbacks as a run time argument.\n", ":::\n", diff --git a/docs/docs/how_to/callbacks_custom_events.ipynb b/docs/docs/how_to/callbacks_custom_events.ipynb index 71a05914bdd0b..429824c34e82a 100644 --- a/docs/docs/how_to/callbacks_custom_events.ipynb +++ b/docs/docs/how_to/callbacks_custom_events.ipynb @@ -29,7 +29,7 @@ "| data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. |\n", "\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "* Dispatching custom callback events requires `langchain-core>=0.2.15`.\n", "* Custom callback events can only be dispatched from within an existing `Runnable`.\n", "* If using `astream_events`, you must use `version='v2'` to see custom events.\n", @@ -38,9 +38,9 @@ "\n", "\n", ":::caution COMPATIBILITY\n", - "LangChain cannot automatically propagate configuration, including callbacks necessary for astream_events(), to child runnables if you are running async code in python<=3.10. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n", + "LangChain cannot automatically propagate configuration, including callbacks necessary for astream_events(), to child runnables if you are running async code in python<=3.10. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n", "\n", - "If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n", + "If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n", "\n", "If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in other Python versions.\n", ":::" @@ -69,7 +69,7 @@ "We can use the `async` `adispatch_custom_event` API to emit custom events in an async setting. \n", "\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "\n", "To see custom events via the astream events API, you need to use the newer `v2` API of `astream_events`.\n", ":::" @@ -115,7 +115,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In python <= 3.10, you must propagate the config manually!" + "In python <= 3.10, you must propagate the config manually!" ] }, { diff --git a/docs/docs/how_to/callbacks_runtime.ipynb b/docs/docs/how_to/callbacks_runtime.ipynb index 895427195b260..a4b15416dfc55 100644 --- a/docs/docs/how_to/callbacks_runtime.ipynb +++ b/docs/docs/how_to/callbacks_runtime.ipynb @@ -15,7 +15,7 @@ "\n", ":::\n", "\n", - "In many cases, it is advantageous to pass in handlers instead when running the object. When we pass through [`CallbackHandlers`](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) using the `callbacks` keyword arg when executing an run, those callbacks will be issued by all nested objects involved in the execution. For example, when a handler is passed through to an Agent, it will be used for all callbacks related to the agent and all the objects involved in the agent's execution, in this case, the Tools and LLM.\n", + "In many cases, it is advantageous to pass in handlers instead when running the object. When we pass through [`CallbackHandlers`](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) using the `callbacks` keyword arg when executing an run, those callbacks will be issued by all nested objects involved in the execution. For example, when a handler is passed through to an Agent, it will be used for all callbacks related to the agent and all the objects involved in the agent's execution, in this case, the Tools and LLM.\n", "\n", "This prevents us from having to manually attach the handlers to each individual nested object. Here's an example:" ] diff --git a/docs/docs/how_to/character_text_splitter.ipynb b/docs/docs/how_to/character_text_splitter.ipynb index 49c7e3dafd1e1..ab82464c48fe6 100644 --- a/docs/docs/how_to/character_text_splitter.ipynb +++ b/docs/docs/how_to/character_text_splitter.ipynb @@ -28,7 +28,7 @@ "\n", "To obtain the string content directly, use `.split_text`.\n", "\n", - "To create LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`." + "To create LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`." ] }, { diff --git a/docs/docs/how_to/chat_model_caching.ipynb b/docs/docs/how_to/chat_model_caching.ipynb index f153750db3574..b305223904cac 100644 --- a/docs/docs/how_to/chat_model_caching.ipynb +++ b/docs/docs/how_to/chat_model_caching.ipynb @@ -28,11 +28,9 @@ "id": "289b31de", "metadata": {}, "source": [ - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -50,7 +48,8 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", "llm = ChatOpenAI()" ] diff --git a/docs/docs/how_to/chat_models_universal_init.ipynb b/docs/docs/how_to/chat_models_universal_init.ipynb index 71af6a8e02c2c..0b14538b85ae7 100644 --- a/docs/docs/how_to/chat_models_universal_init.ipynb +++ b/docs/docs/how_to/chat_models_universal_init.ipynb @@ -11,16 +11,10 @@ "\n", ":::tip Supported models\n", "\n", - "See the [init_chat_model()](https://python.langchain.com/v0.2/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) API reference for a full list of supported integrations.\n", + "See the [init_chat_model()](https://python.langchain.com/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) API reference for a full list of supported integrations.\n", "\n", "Make sure you have the integration packages installed for any model providers you want to support. E.g. you should have `langchain-openai` installed to init an OpenAI model.\n", "\n", - ":::\n", - "\n", - ":::info Requires ``langchain >= 0.2.8``\n", - "\n", - "This functionality was added in ``langchain-core == 0.2.8``. Please make sure your package is up to date.\n", - "\n", ":::" ] }, @@ -44,19 +38,48 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "id": "79e14913-803c-4382-9009-5c6af3d75d35", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:33.015729Z", + "iopub.status.busy": "2024-09-10T20:22:33.015241Z", + "iopub.status.idle": "2024-09-10T20:22:39.391716Z", + "shell.execute_reply": "2024-09-10T20:22:39.390438Z" + } + }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/4j/2rz3865x6qg07tx43146py8h0000gn/T/ipykernel_95293/571506279.py:4: LangChainBetaWarning: The function `init_chat_model` is in beta. It is actively being worked on, so the API may change.\n", + " gpt_4o = init_chat_model(\"gpt-4o\", model_provider=\"openai\", temperature=0)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GPT-4o: I'm an AI created by OpenAI, and I don't have a personal name. How can I assist you today?\n", + "\n" + ] + }, { "name": "stdout", "output_type": "stream", "text": [ - "GPT-4o: I'm an AI created by OpenAI, and I don't have a personal name. You can call me Assistant! How can I help you today?\n", - "\n", "Claude Opus: My name is Claude. It's nice to meet you!\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gemini 1.5: I am a large language model, trained by Google. \n", "\n", - "Gemini 1.5: I am a large language model, trained by Google. I do not have a name. \n", + "I don't have a name like a person does. You can call me Bard if you like! 😊 \n", "\n", "\n" ] @@ -89,14 +112,21 @@ "source": [ "## Inferring model provider\n", "\n", - "For common and distinct model names `init_chat_model()` will attempt to infer the model provider. See the [API reference](https://python.langchain.com/v0.2/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) for a full list of inference behavior. E.g. any model that starts with `gpt-3...` or `gpt-4...` will be inferred as using model provider `openai`." + "For common and distinct model names `init_chat_model()` will attempt to infer the model provider. See the [API reference](https://python.langchain.com/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html) for a full list of inference behavior. E.g. any model that starts with `gpt-3...` or `gpt-4...` will be inferred as using model provider `openai`." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "0378ccc6-95bc-4d50-be50-fccc193f0a71", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:39.396908Z", + "iopub.status.busy": "2024-09-10T20:22:39.396563Z", + "iopub.status.idle": "2024-09-10T20:22:39.444959Z", + "shell.execute_reply": "2024-09-10T20:22:39.444646Z" + } + }, "outputs": [], "source": [ "gpt_4o = init_chat_model(\"gpt-4o\", temperature=0)\n", @@ -116,17 +146,24 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "6c037f27-12d7-4e83-811e-4245c0e3ba58", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:39.446901Z", + "iopub.status.busy": "2024-09-10T20:22:39.446773Z", + "iopub.status.idle": "2024-09-10T20:22:40.301906Z", + "shell.execute_reply": "2024-09-10T20:22:40.300918Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_d576307f90', 'finish_reason': 'stop', 'logprobs': None}, id='run-5428ab5c-b5c0-46de-9946-5d4ca40dbdc8-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})" + "AIMessage(content=\"I'm an AI created by OpenAI, and I don't have a personal name. How can I assist you today?\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 23, 'prompt_tokens': 11, 'total_tokens': 34}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_25624ae3a5', 'finish_reason': 'stop', 'logprobs': None}, id='run-b41df187-4627-490d-af3c-1c96282d3eb0-0', usage_metadata={'input_tokens': 11, 'output_tokens': 23, 'total_tokens': 34})" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -141,17 +178,24 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "321e3036-abd2-4e1f-bcc6-606efd036954", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:40.316030Z", + "iopub.status.busy": "2024-09-10T20:22:40.315628Z", + "iopub.status.idle": "2024-09-10T20:22:41.199134Z", + "shell.execute_reply": "2024-09-10T20:22:41.198173Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_012XvotUJ3kGLXJUWKBVxJUi', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-1ad1eefe-f1c6-4244-8bc6-90e2cb7ee554-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})" + "AIMessage(content=\"My name is Claude. It's nice to meet you!\", additional_kwargs={}, response_metadata={'id': 'msg_01Fx9P74A7syoFkwE73CdMMY', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-a0fd2bbd-3b7e-46bf-8d69-a48c7e60b03c-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -174,17 +218,24 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "id": "814a2289-d0db-401e-b555-d5116112b413", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:41.203346Z", + "iopub.status.busy": "2024-09-10T20:22:41.203004Z", + "iopub.status.idle": "2024-09-10T20:22:41.891450Z", + "shell.execute_reply": "2024-09-10T20:22:41.890539Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content=\"I'm an AI language model created by OpenAI, and I don't have a personal name. You can call me Assistant or any other name you prefer! How can I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 37, 'prompt_tokens': 11, 'total_tokens': 48}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_ce0793330f', 'finish_reason': 'stop', 'logprobs': None}, id='run-3923e328-7715-4cd6-b215-98e4b6bf7c9d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 37, 'total_tokens': 48})" + "AIMessage(content=\"I'm an AI created by OpenAI, and I don't have a personal name. How can I assist you today?\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 23, 'prompt_tokens': 11, 'total_tokens': 34}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_25624ae3a5', 'finish_reason': 'stop', 'logprobs': None}, id='run-3380f977-4b89-4f44-bc02-b64043b3166f-0', usage_metadata={'input_tokens': 11, 'output_tokens': 23, 'total_tokens': 34})" ] }, - "execution_count": 9, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -202,17 +253,24 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "id": "6c8755ba-c001-4f5a-a497-be3f1db83244", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:41.896413Z", + "iopub.status.busy": "2024-09-10T20:22:41.895967Z", + "iopub.status.idle": "2024-09-10T20:22:42.767565Z", + "shell.execute_reply": "2024-09-10T20:22:42.766619Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content=\"My name is Claude. It's nice to meet you!\", response_metadata={'id': 'msg_01RyYR64DoMPNCfHeNnroMXm', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-22446159-3723-43e6-88df-b84797e7751d-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})" + "AIMessage(content=\"My name is Claude. It's nice to meet you!\", additional_kwargs={}, response_metadata={'id': 'msg_01EFKSWpmsn2PSYPQa4cNHWb', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-3c58f47c-41b9-4e56-92e7-fb9602e3787c-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})" ] }, - "execution_count": 10, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -242,28 +300,37 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "067dabee-1050-4110-ae24-c48eba01e13b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:42.771941Z", + "iopub.status.busy": "2024-09-10T20:22:42.771606Z", + "iopub.status.idle": "2024-09-10T20:22:43.909206Z", + "shell.execute_reply": "2024-09-10T20:22:43.908496Z" + } + }, "outputs": [ { "data": { "text/plain": [ "[{'name': 'GetPopulation',\n", " 'args': {'location': 'Los Angeles, CA'},\n", - " 'id': 'call_sYT3PFMufHGWJD32Hi2CTNUP'},\n", + " 'id': 'call_Ga9m8FAArIyEjItHmztPYA22',\n", + " 'type': 'tool_call'},\n", " {'name': 'GetPopulation',\n", " 'args': {'location': 'New York, NY'},\n", - " 'id': 'call_j1qjhxRnD3ffQmRyqjlI1Lnk'}]" + " 'id': 'call_jh2dEvBaAHRaw5JUDthOs7rt',\n", + " 'type': 'tool_call'}]" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class GetWeather(BaseModel):\n", @@ -288,22 +355,31 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "e57dfe9f-cd24-4e37-9ce9-ccf8daf78f89", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:22:43.912746Z", + "iopub.status.busy": "2024-09-10T20:22:43.912447Z", + "iopub.status.idle": "2024-09-10T20:22:46.437049Z", + "shell.execute_reply": "2024-09-10T20:22:46.436093Z" + } + }, "outputs": [ { "data": { "text/plain": [ "[{'name': 'GetPopulation',\n", " 'args': {'location': 'Los Angeles, CA'},\n", - " 'id': 'toolu_01CxEHxKtVbLBrvzFS7GQ5xR'},\n", + " 'id': 'toolu_01JMufPf4F4t2zLj7miFeqXp',\n", + " 'type': 'tool_call'},\n", " {'name': 'GetPopulation',\n", " 'args': {'location': 'New York City, NY'},\n", - " 'id': 'toolu_013A79qt5toWSsKunFBDZd5S'}]" + " 'id': 'toolu_01RQBHcE8kEEbYTuuS8WqY1u',\n", + " 'type': 'tool_call'}]" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } diff --git a/docs/docs/how_to/chat_streaming.ipynb b/docs/docs/how_to/chat_streaming.ipynb index c1bd12be838e9..20f6ae0353f32 100644 --- a/docs/docs/how_to/chat_streaming.ipynb +++ b/docs/docs/how_to/chat_streaming.ipynb @@ -18,11 +18,11 @@ "# How to stream chat model responses\n", "\n", "\n", - "All [chat models](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) implement the [Runnable interface](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with a **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n", + "All [chat models](https://python.langchain.com/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) implement the [Runnable interface](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with a **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n", "\n", "The **default** streaming implementation provides an`Iterator` (or `AsyncIterator` for asynchronous streaming) that yields a single value: the final output from the underlying chat model provider.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "\n", "The **default** implementation does **not** provide support for token-by-token streaming, but it ensures that the the model can be swapped in for any other model as it supports the same standard interface.\n", "\n", @@ -120,7 +120,7 @@ "source": [ "## Astream events\n", "\n", - "Chat models also support the standard [astream events](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n", + "Chat models also support the standard [astream events](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n", "\n", "This method is useful if you're streaming output from a larger LLM application that contains multiple steps (e.g., an LLM chain composed of a prompt, llm and parser)." ] diff --git a/docs/docs/how_to/chat_token_usage_tracking.ipynb b/docs/docs/how_to/chat_token_usage_tracking.ipynb index 8ba8b9b9b43cd..84948920e8c2d 100644 --- a/docs/docs/how_to/chat_token_usage_tracking.ipynb +++ b/docs/docs/how_to/chat_token_usage_tracking.ipynb @@ -42,7 +42,7 @@ "\n", "A number of model providers return token usage information as part of the chat generation response. When available, this information will be included on the `AIMessage` objects produced by the corresponding model.\n", "\n", - "LangChain `AIMessage` objects include a [usage_metadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.usage_metadata) attribute. When populated, this attribute will be a [UsageMetadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html) dictionary with standard keys (e.g., `\"input_tokens\"` and `\"output_tokens\"`).\n", + "LangChain `AIMessage` objects include a [usage_metadata](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.usage_metadata) attribute. When populated, this attribute will be a [UsageMetadata](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html) dictionary with standard keys (e.g., `\"input_tokens\"` and `\"output_tokens\"`).\n", "\n", "Examples:\n", "\n", @@ -71,7 +71,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", "openai_response = llm.invoke(\"hello\")\n", "openai_response.usage_metadata" ] @@ -118,7 +118,7 @@ "source": [ "### Using AIMessage.response_metadata\n", "\n", - "Metadata from the model response is also included in the AIMessage [response_metadata](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.response_metadata) attribute. These data are typically not standardized. Note that different providers adopt different conventions for representing token counts:" + "Metadata from the model response is also included in the AIMessage [response_metadata](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.response_metadata) attribute. These data are typically not standardized. Note that different providers adopt different conventions for representing token counts:" ] }, { @@ -153,13 +153,11 @@ "\n", "#### OpenAI\n", "\n", - "For example, OpenAI will return a message [chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n", + "For example, OpenAI will return a message [chunk](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html) at the end of a stream with token usage information. This behavior is supported by `langchain-openai >= 0.1.9` and can be enabled by setting `stream_usage=True`. This attribute can also be set when `ChatOpenAI` is instantiated.\n", "\n", - "```{=mdx}\n", ":::note\n", "By default, the last message chunk in a stream will include a `\"finish_reason\"` in the message's `response_metadata` attribute. If we include token usage in streaming mode, an additional chunk containing usage metadata will be added to the end of the stream, such that `\"finish_reason\"` appears on the second to last message chunk.\n", - ":::\n", - "```" + ":::\n" ] }, { @@ -182,13 +180,13 @@ "content=' you' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n", "content=' today' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n", "content='?' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n", - "content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n", + "content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-4o-mini'} id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623'\n", "content='' id='run-adb20c31-60c7-43a2-99b2-d4a53ca5f623' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}\n" ] } ], "source": [ - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", "\n", "aggregate = None\n", "for chunk in llm.stream(\"hello\", stream_usage=True):\n", @@ -252,7 +250,7 @@ "content=' you' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n", "content=' today' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n", "content='?' id='run-8e758550-94b0-4cca-a298-57482793c25d'\n", - "content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-3.5-turbo-0125'} id='run-8e758550-94b0-4cca-a298-57482793c25d'\n" + "content='' response_metadata={'finish_reason': 'stop', 'model_name': 'gpt-4o-mini'} id='run-8e758550-94b0-4cca-a298-57482793c25d'\n" ] } ], @@ -289,7 +287,7 @@ } ], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Joke(BaseModel):\n", @@ -300,7 +298,7 @@ "\n", "\n", "llm = ChatOpenAI(\n", - " model=\"gpt-3.5-turbo-0125\",\n", + " model=\"gpt-4o-mini\",\n", " stream_usage=True,\n", ")\n", "# Under the hood, .with_structured_output binds tools to the\n", @@ -362,7 +360,7 @@ "from langchain_community.callbacks.manager import get_openai_callback\n", "\n", "llm = ChatOpenAI(\n", - " model=\"gpt-3.5-turbo-0125\",\n", + " model=\"gpt-4o-mini\",\n", " temperature=0,\n", " stream_usage=True,\n", ")\n", diff --git a/docs/docs/how_to/chatbots_memory.ipynb b/docs/docs/how_to/chatbots_memory.ipynb index 02264712627e7..aa6e7002ca706 100644 --- a/docs/docs/how_to/chatbots_memory.ipynb +++ b/docs/docs/how_to/chatbots_memory.ipynb @@ -23,6 +23,17 @@ "\n", "We'll go into more detail on a few techniques below!\n", "\n", + ":::note\n", + "\n", + "This how-to guide previously built a chatbot using [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). You can access this version of the guide in the [v0.2 docs](https://python.langchain.com/v0.2/docs/how_to/chatbots_memory/).\n", + "\n", + "As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into new LangChain applications.\n", + "\n", + "If your code is already relying on `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do **not** need to make any changes. We do not plan on deprecating this functionality in the near future as it works for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected.\n", + "\n", + "Please see [How to migrate to LangGraph Memory](/docs/versions/migrating_memory/) for more details.\n", + ":::\n", + "\n", "## Setup\n", "\n", "You'll need to install a few packages, and have your OpenAI API key set as an environment variable named `OPENAI_API_KEY`:" @@ -34,32 +45,21 @@ "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stdin", "output_type": "stream", "text": [ - "\u001b[33mWARNING: You are using pip version 22.0.4; however, version 23.3.2 is available.\n", - "You should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.\u001b[0m\u001b[33m\n", - "\u001b[0mNote: you may need to restart the kernel to use updated packages.\n" + "OpenAI API Key: ········\n" ] - }, - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ - "%pip install --upgrade --quiet langchain langchain-openai\n", + "%pip install --upgrade --quiet langchain langchain-openai langgraph\n", "\n", - "# Set env var OPENAI_API_KEY or load from a .env file:\n", - "import dotenv\n", + "import getpass\n", + "import os\n", "\n", - "dotenv.load_dotenv()" + "if not os.environ.get(\"OPENAI_API_KEY\"):\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { @@ -71,13 +71,13 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from langchain_openai import ChatOpenAI\n", "\n", - "chat = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")" + "model = ChatOpenAI(model=\"gpt-4o-mini\")" ] }, { @@ -98,34 +98,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "I said \"J'adore la programmation,\" which means \"I love programming\" in French.\n" + "I said, \"I love programming\" in French: \"J'adore la programmation.\"\n" ] } ], "source": [ - "from langchain_core.prompts import ChatPromptTemplate\n", + "from langchain_core.messages import AIMessage, HumanMessage, SystemMessage\n", + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", "\n", "prompt = ChatPromptTemplate.from_messages(\n", " [\n", - " (\n", - " \"system\",\n", - " \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n", + " SystemMessage(\n", + " content=\"You are a helpful assistant. Answer all questions to the best of your ability.\"\n", " ),\n", - " (\"placeholder\", \"{messages}\"),\n", + " MessagesPlaceholder(variable_name=\"messages\"),\n", " ]\n", ")\n", "\n", - "chain = prompt | chat\n", + "chain = prompt | model\n", "\n", "ai_msg = chain.invoke(\n", " {\n", " \"messages\": [\n", - " (\n", - " \"human\",\n", - " \"Translate this sentence from English to French: I love programming.\",\n", + " HumanMessage(\n", + " content=\"Translate from English to French: I love programming.\"\n", " ),\n", - " (\"ai\", \"J'adore la programmation.\"),\n", - " (\"human\", \"What did you just say?\"),\n", + " AIMessage(content=\"J'adore la programmation.\"),\n", + " HumanMessage(content=\"What did you just say?\"),\n", " ],\n", " }\n", ")\n", @@ -136,93 +135,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can see that by passing the previous conversation into a chain, it can use it as context to answer questions. This is the basic concept underpinning chatbot memory - the rest of the guide will demonstrate convenient techniques for passing or reformatting messages.\n", - "\n", - "## Chat history\n", - "\n", - "It's perfectly fine to store and pass messages directly as an array, but we can use LangChain's built-in [message history class](https://python.langchain.com/v0.2/api_reference/langchain/index.html#module-langchain.memory) to store and load messages as well. Instances of this class are responsible for storing and loading chat messages from persistent storage. LangChain integrates with many providers - you can see a [list of integrations here](/docs/integrations/memory) - but for this demo we will use an ephemeral demo class.\n", - "\n", - "Here's an example of the API:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[HumanMessage(content='Translate this sentence from English to French: I love programming.'),\n", - " AIMessage(content=\"J'adore la programmation.\")]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from langchain_community.chat_message_histories import ChatMessageHistory\n", - "\n", - "demo_ephemeral_chat_history = ChatMessageHistory()\n", - "\n", - "demo_ephemeral_chat_history.add_user_message(\n", - " \"Translate this sentence from English to French: I love programming.\"\n", - ")\n", - "\n", - "demo_ephemeral_chat_history.add_ai_message(\"J'adore la programmation.\")\n", - "\n", - "demo_ephemeral_chat_history.messages" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can use it directly to store conversation turns for our chain:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content='You just asked me to translate the sentence \"I love programming\" from English to French.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 61, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5cbb21c2-9c30-4031-8ea8-bfc497989535-0', usage_metadata={'input_tokens': 61, 'output_tokens': 18, 'total_tokens': 79})" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "demo_ephemeral_chat_history = ChatMessageHistory()\n", - "\n", - "input1 = \"Translate this sentence from English to French: I love programming.\"\n", - "\n", - "demo_ephemeral_chat_history.add_user_message(input1)\n", - "\n", - "response = chain.invoke(\n", - " {\n", - " \"messages\": demo_ephemeral_chat_history.messages,\n", - " }\n", - ")\n", - "\n", - "demo_ephemeral_chat_history.add_ai_message(response)\n", - "\n", - "input2 = \"What did I just ask you?\"\n", - "\n", - "demo_ephemeral_chat_history.add_user_message(input2)\n", - "\n", - "chain.invoke(\n", - " {\n", - " \"messages\": demo_ephemeral_chat_history.messages,\n", - " }\n", - ")" + "We can see that by passing the previous conversation into a chain, it can use it as context to answer questions. This is the basic concept underpinning chatbot memory - the rest of the guide will demonstrate convenient techniques for passing or reformatting messages." ] }, { @@ -231,128 +144,97 @@ "source": [ "## Automatic history management\n", "\n", - "The previous examples pass messages to the chain explicitly. This is a completely acceptable approach, but it does require external management of new messages. LangChain also includes an wrapper for LCEL chains that can handle this process automatically called `RunnableWithMessageHistory`.\n", - "\n", - "To show how it works, let's slightly modify the above prompt to take a final `input` variable that populates a `HumanMessage` template after the chat history. This means that we will expect a `chat_history` parameter that contains all messages BEFORE the current messages instead of all messages:" + "The previous examples pass messages to the chain (and model) explicitly. This is a completely acceptable approach, but it does require external management of new messages. LangChain also provides a way to build applications that have memory using LangGraph's [persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/). You can [enable persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/) in LangGraph applications by providing a `checkpointer` when compiling the graph." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\n", - " \"system\",\n", - " \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n", - " ),\n", - " (\"placeholder\", \"{chat_history}\"),\n", - " (\"human\", \"{input}\"),\n", - " ]\n", - ")\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", "\n", - "chain = prompt | chat" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - " We'll pass the latest input to the conversation here and let the `RunnableWithMessageHistory` class wrap our chain and do the work of appending that `input` variable to the chat history.\n", - " \n", - " Next, let's declare our wrapped chain:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", + "workflow = StateGraph(state_schema=MessagesState)\n", "\n", - "demo_ephemeral_chat_history_for_chain = ChatMessageHistory()\n", "\n", - "chain_with_message_history = RunnableWithMessageHistory(\n", - " chain,\n", - " lambda session_id: demo_ephemeral_chat_history_for_chain,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - ")" + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " system_prompt = (\n", + " \"You are a helpful assistant. \"\n", + " \"Answer all questions to the best of your ability.\"\n", + " )\n", + " messages = [SystemMessage(content=system_prompt)] + state[\"messages\"]\n", + " response = model.invoke(messages)\n", + " return {\"messages\": response}\n", + "\n", + "\n", + "# Define the node and edge\n", + "workflow.add_node(\"model\", call_model)\n", + "workflow.add_edge(START, \"model\")\n", + "\n", + "# Add simple in-memory checkpointer\n", + "# highlight-start\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)\n", + "# highlight-end" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "This class takes a few parameters in addition to the chain that we want to wrap:\n", - "\n", - "- A factory function that returns a message history for a given session id. This allows your chain to handle multiple users at once by loading different messages for different conversations.\n", - "- An `input_messages_key` that specifies which part of the input should be tracked and stored in the chat history. In this example, we want to track the string passed in as `input`.\n", - "- A `history_messages_key` that specifies what the previous messages should be injected into the prompt as. Our prompt has a `MessagesPlaceholder` named `chat_history`, so we specify this property to match.\n", - "- (For chains with multiple outputs) an `output_messages_key` which specifies which output to store as history. This is the inverse of `input_messages_key`.\n", - "\n", - "We can invoke this new chain as normal, with an additional `configurable` field that specifies the particular `session_id` to pass to the factory function. This is unused for the demo, but in real-world chains, you'll want to return a chat history corresponding to the passed session:" + " We'll pass the latest input to the conversation here and let the LangGraph keep track of the conversation history using the checkpointer:" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Parent run dc4e2f79-4bcd-4a36-9506-55ace9040588 not found for run 34b5773e-3ced-46a6-8daf-4d464c15c940. Treating as a root run.\n" - ] - }, { "data": { "text/plain": [ - "AIMessage(content='\"J\\'adore la programmation.\"', response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 39, 'total_tokens': 48}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-648b0822-b0bb-47a2-8e7d-7d34744be8f2-0', usage_metadata={'input_tokens': 39, 'output_tokens': 9, 'total_tokens': 48})" + "{'messages': [HumanMessage(content='Translate to French: I love programming.', additional_kwargs={}, response_metadata={}, id='be5e7099-3149-4293-af49-6b36c8ccd71b'),\n", + " AIMessage(content=\"J'aime programmer.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 4, 'prompt_tokens': 35, 'total_tokens': 39, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_e9627b5346', 'finish_reason': 'stop', 'logprobs': None}, id='run-8a753d7a-b97b-4d01-a661-626be6f41b38-0', usage_metadata={'input_tokens': 35, 'output_tokens': 4, 'total_tokens': 39})]}" ] }, - "execution_count": 8, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "chain_with_message_history.invoke(\n", - " {\"input\": \"Translate this sentence from English to French: I love programming.\"},\n", - " {\"configurable\": {\"session_id\": \"unused\"}},\n", + "app.invoke(\n", + " {\"messages\": [HumanMessage(content=\"Translate to French: I love programming.\")]},\n", + " config={\"configurable\": {\"thread_id\": \"1\"}},\n", ")" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Parent run cc14b9d8-c59e-40db-a523-d6ab3fc2fa4f not found for run 5b75e25c-131e-46ee-9982-68569db04330. Treating as a root run.\n" - ] - }, { "data": { "text/plain": [ - "AIMessage(content='You asked me to translate the sentence \"I love programming\" from English to French.', response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 63, 'total_tokens': 80}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5950435c-1dc2-43a6-836f-f989fd62c95e-0', usage_metadata={'input_tokens': 63, 'output_tokens': 17, 'total_tokens': 80})" + "{'messages': [HumanMessage(content='Translate to French: I love programming.', additional_kwargs={}, response_metadata={}, id='be5e7099-3149-4293-af49-6b36c8ccd71b'),\n", + " AIMessage(content=\"J'aime programmer.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 4, 'prompt_tokens': 35, 'total_tokens': 39, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_e9627b5346', 'finish_reason': 'stop', 'logprobs': None}, id='run-8a753d7a-b97b-4d01-a661-626be6f41b38-0', usage_metadata={'input_tokens': 35, 'output_tokens': 4, 'total_tokens': 39}),\n", + " HumanMessage(content='What did I just ask you?', additional_kwargs={}, response_metadata={}, id='c667529b-7c41-4cc0-9326-0af47328b816'),\n", + " AIMessage(content='You asked me to translate \"I love programming\" into French.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 54, 'total_tokens': 67, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-134a7ea0-d3a4-4923-bd58-25e5a43f6a1f-0', usage_metadata={'input_tokens': 54, 'output_tokens': 13, 'total_tokens': 67})]}" ] }, - "execution_count": 9, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "chain_with_message_history.invoke(\n", - " {\"input\": \"What did I just ask you?\"}, {\"configurable\": {\"session_id\": \"unused\"}}\n", + "app.invoke(\n", + " {\"messages\": [HumanMessage(content=\"What did I just ask you?\")]},\n", + " config={\"configurable\": {\"thread_id\": \"1\"}},\n", ")" ] }, @@ -366,80 +248,44 @@ "\n", "### Trimming messages\n", "\n", - "LLMs and chat models have limited context windows, and even if you're not directly hitting limits, you may want to limit the amount of distraction the model has to deal with. One solution is trim the historic messages before passing them to the model. Let's use an example history with some preloaded messages:" + "LLMs and chat models have limited context windows, and even if you're not directly hitting limits, you may want to limit the amount of distraction the model has to deal with. One solution is trim the history messages before passing them to the model. Let's use an example history with the `app` we declared above:" ] }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[HumanMessage(content=\"Hey there! I'm Nemo.\"),\n", - " AIMessage(content='Hello!'),\n", - " HumanMessage(content='How are you today?'),\n", - " AIMessage(content='Fine thanks!')]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "demo_ephemeral_chat_history = ChatMessageHistory()\n", - "\n", - "demo_ephemeral_chat_history.add_user_message(\"Hey there! I'm Nemo.\")\n", - "demo_ephemeral_chat_history.add_ai_message(\"Hello!\")\n", - "demo_ephemeral_chat_history.add_user_message(\"How are you today?\")\n", - "demo_ephemeral_chat_history.add_ai_message(\"Fine thanks!\")\n", - "\n", - "demo_ephemeral_chat_history.messages" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's use this message history with the `RunnableWithMessageHistory` chain we declared above:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, + "execution_count": 7, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Parent run 7ff2d8ec-65e2-4f67-8961-e498e2c4a591 not found for run 3881e990-6596-4326-84f6-2b76949e0657. Treating as a root run.\n" - ] - }, { "data": { "text/plain": [ - "AIMessage(content='Your name is Nemo.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 66, 'total_tokens': 72}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f8aabef8-631a-4238-a39b-701e881fbe47-0', usage_metadata={'input_tokens': 66, 'output_tokens': 6, 'total_tokens': 72})" + "{'messages': [HumanMessage(content=\"Hey there! I'm Nemo.\", additional_kwargs={}, response_metadata={}, id='6b4cab70-ce18-49b0-bb06-267bde44e037'),\n", + " AIMessage(content='Hello!', additional_kwargs={}, response_metadata={}, id='ba3714f4-8876-440b-a651-efdcab2fcb4c'),\n", + " HumanMessage(content='How are you today?', additional_kwargs={}, response_metadata={}, id='08d032c0-1577-4862-a3f2-5c1b90687e21'),\n", + " AIMessage(content='Fine thanks!', additional_kwargs={}, response_metadata={}, id='21790e16-db05-4537-9a6b-ecad0fcec436'),\n", + " HumanMessage(content=\"What's my name?\", additional_kwargs={}, response_metadata={}, id='c933eca3-5fd8-4651-af16-20fe2d49c216'),\n", + " AIMessage(content='Your name is Nemo.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 63, 'total_tokens': 68, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-a0b21acc-9dbb-4fb6-a953-392020f37d88-0', usage_metadata={'input_tokens': 63, 'output_tokens': 5, 'total_tokens': 68})]}" ] }, - "execution_count": 22, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "chain_with_message_history = RunnableWithMessageHistory(\n", - " chain,\n", - " lambda session_id: demo_ephemeral_chat_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - ")\n", + "demo_ephemeral_chat_history = [\n", + " HumanMessage(content=\"Hey there! I'm Nemo.\"),\n", + " AIMessage(content=\"Hello!\"),\n", + " HumanMessage(content=\"How are you today?\"),\n", + " AIMessage(content=\"Fine thanks!\"),\n", + "]\n", "\n", - "chain_with_message_history.invoke(\n", - " {\"input\": \"What's my name?\"},\n", - " {\"configurable\": {\"session_id\": \"unused\"}},\n", + "app.invoke(\n", + " {\n", + " \"messages\": demo_ephemeral_chat_history\n", + " + [HumanMessage(content=\"What's my name?\")]\n", + " },\n", + " config={\"configurable\": {\"thread_id\": \"2\"}},\n", ")" ] }, @@ -447,137 +293,96 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can see the chain remembers the preloaded name.\n", + "We can see the app remembers the preloaded name.\n", "\n", - "But let's say we have a very small context window, and we want to trim the number of messages passed to the chain to only the 2 most recent ones. We can use the built in [trim_messages](/docs/how_to/trim_messages/) util to trim messages based on their token count before they reach our prompt. In this case we'll count each message as 1 \"token\" and keep only the last two messages:" + "But let's say we have a very small context window, and we want to trim the number of messages passed to the model to only the 2 most recent ones. We can use the built in [trim_messages](/docs/how_to/trim_messages/) util to trim messages based on their token count before they reach our prompt. In this case we'll count each message as 1 \"token\" and keep only the last two messages:" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ - "from operator import itemgetter\n", - "\n", "from langchain_core.messages import trim_messages\n", - "from langchain_core.runnables import RunnablePassthrough\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", "\n", + "# Define trimmer\n", + "# highlight-start\n", + "# count each message as 1 \"token\" (token_counter=len) and keep only the last two messages\n", "trimmer = trim_messages(strategy=\"last\", max_tokens=2, token_counter=len)\n", + "# highlight-end\n", "\n", - "chain_with_trimming = (\n", - " RunnablePassthrough.assign(chat_history=itemgetter(\"chat_history\") | trimmer)\n", - " | prompt\n", - " | chat\n", - ")\n", + "workflow = StateGraph(state_schema=MessagesState)\n", "\n", - "chain_with_trimmed_history = RunnableWithMessageHistory(\n", - " chain_with_trimming,\n", - " lambda session_id: demo_ephemeral_chat_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - ")" + "\n", + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " # highlight-start\n", + " trimmed_messages = trimmer.invoke(state[\"messages\"])\n", + " system_prompt = (\n", + " \"You are a helpful assistant. \"\n", + " \"Answer all questions to the best of your ability.\"\n", + " )\n", + " messages = [SystemMessage(content=system_prompt)] + trimmed_messages\n", + " # highlight-end\n", + " response = model.invoke(messages)\n", + " return {\"messages\": response}\n", + "\n", + "\n", + "# Define the node and edge\n", + "workflow.add_node(\"model\", call_model)\n", + "workflow.add_edge(START, \"model\")\n", + "\n", + "# Add simple in-memory checkpointer\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's call this new chain and check the messages afterwards:" + "Let's call this new app and check the response" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 9, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Parent run 775cde65-8d22-4c44-80bb-f0b9811c32ca not found for run 5cf71d0e-4663-41cd-8dbe-e9752689cfac. Treating as a root run.\n" - ] - }, { "data": { "text/plain": [ - "AIMessage(content='P. Sherman is a fictional character from the animated movie \"Finding Nemo\" who lives at 42 Wallaby Way, Sydney.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 53, 'total_tokens': 80}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5642ef3a-fdbe-43cf-a575-d1785976a1b9-0', usage_metadata={'input_tokens': 53, 'output_tokens': 27, 'total_tokens': 80})" + "{'messages': [HumanMessage(content=\"Hey there! I'm Nemo.\", additional_kwargs={}, response_metadata={}, id='6b4cab70-ce18-49b0-bb06-267bde44e037'),\n", + " AIMessage(content='Hello!', additional_kwargs={}, response_metadata={}, id='ba3714f4-8876-440b-a651-efdcab2fcb4c'),\n", + " HumanMessage(content='How are you today?', additional_kwargs={}, response_metadata={}, id='08d032c0-1577-4862-a3f2-5c1b90687e21'),\n", + " AIMessage(content='Fine thanks!', additional_kwargs={}, response_metadata={}, id='21790e16-db05-4537-9a6b-ecad0fcec436'),\n", + " HumanMessage(content='What is my name?', additional_kwargs={}, response_metadata={}, id='a22ab7c5-8617-4821-b3e9-a9e7dca1ff78'),\n", + " AIMessage(content=\"I'm sorry, but I don't have access to personal information about you unless you share it with me. How can I assist you today?\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 39, 'total_tokens': 66, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-f7b32d72-9f57-4705-be7e-43bf1c3d293b-0', usage_metadata={'input_tokens': 39, 'output_tokens': 27, 'total_tokens': 66})]}" ] }, - "execution_count": 24, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "chain_with_trimmed_history.invoke(\n", - " {\"input\": \"Where does P. Sherman live?\"},\n", - " {\"configurable\": {\"session_id\": \"unused\"}},\n", + "app.invoke(\n", + " {\n", + " \"messages\": demo_ephemeral_chat_history\n", + " + [HumanMessage(content=\"What is my name?\")]\n", + " },\n", + " config={\"configurable\": {\"thread_id\": \"3\"}},\n", ")" ] }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[HumanMessage(content=\"Hey there! I'm Nemo.\"),\n", - " AIMessage(content='Hello!'),\n", - " HumanMessage(content='How are you today?'),\n", - " AIMessage(content='Fine thanks!'),\n", - " HumanMessage(content=\"What's my name?\"),\n", - " AIMessage(content='Your name is Nemo.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 66, 'total_tokens': 72}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f8aabef8-631a-4238-a39b-701e881fbe47-0', usage_metadata={'input_tokens': 66, 'output_tokens': 6, 'total_tokens': 72}),\n", - " HumanMessage(content='Where does P. Sherman live?'),\n", - " AIMessage(content='P. Sherman is a fictional character from the animated movie \"Finding Nemo\" who lives at 42 Wallaby Way, Sydney.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 53, 'total_tokens': 80}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5642ef3a-fdbe-43cf-a575-d1785976a1b9-0', usage_metadata={'input_tokens': 53, 'output_tokens': 27, 'total_tokens': 80})]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "demo_ephemeral_chat_history.messages" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "And we can see that our history has removed the two oldest messages while still adding the most recent conversation at the end. The next time the chain is called, `trim_messages` will be called again, and only the two most recent messages will be passed to the model. In this case, this means that the model will forget the name we gave it the next time we invoke it:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Parent run fde7123f-6fd3-421a-a3fc-2fb37dead119 not found for run 061a4563-2394-470d-a3ed-9bf1388ca431. Treating as a root run.\n" - ] - }, - { - "data": { - "text/plain": [ - "AIMessage(content=\"I'm sorry, but I don't have access to your personal information, so I don't know your name. How else may I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 31, 'prompt_tokens': 74, 'total_tokens': 105}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-0ab03495-1f7c-4151-9070-56d2d1c565ff-0', usage_metadata={'input_tokens': 74, 'output_tokens': 31, 'total_tokens': 105})" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "chain_with_trimmed_history.invoke(\n", - " {\"input\": \"What is my name?\"},\n", - " {\"configurable\": {\"session_id\": \"unused\"}},\n", - ")" + "We can see that `trim_messages` was called and only the two most recent messages will be passed to the model. In this case, this means that the model forgot the name we gave it." ] }, { @@ -593,114 +398,84 @@ "source": [ "### Summary memory\n", "\n", - "We can use this same pattern in other ways too. For example, we could use an additional LLM call to generate a summary of the conversation before calling our chain. Let's recreate our chat history and chatbot chain:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[HumanMessage(content=\"Hey there! I'm Nemo.\"),\n", - " AIMessage(content='Hello!'),\n", - " HumanMessage(content='How are you today?'),\n", - " AIMessage(content='Fine thanks!')]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "demo_ephemeral_chat_history = ChatMessageHistory()\n", - "\n", - "demo_ephemeral_chat_history.add_user_message(\"Hey there! I'm Nemo.\")\n", - "demo_ephemeral_chat_history.add_ai_message(\"Hello!\")\n", - "demo_ephemeral_chat_history.add_user_message(\"How are you today?\")\n", - "demo_ephemeral_chat_history.add_ai_message(\"Fine thanks!\")\n", - "\n", - "demo_ephemeral_chat_history.messages" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll slightly modify the prompt to make the LLM aware that will receive a condensed summary instead of a chat history:" + "We can use this same pattern in other ways too. For example, we could use an additional LLM call to generate a summary of the conversation before calling our app. Let's recreate our chat history:" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ - "prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\n", - " \"system\",\n", - " \"You are a helpful assistant. Answer all questions to the best of your ability. The provided chat history includes facts about the user you are speaking with.\",\n", - " ),\n", - " (\"placeholder\", \"{chat_history}\"),\n", - " (\"user\", \"{input}\"),\n", - " ]\n", - ")\n", - "\n", - "chain = prompt | chat\n", - "\n", - "chain_with_message_history = RunnableWithMessageHistory(\n", - " chain,\n", - " lambda session_id: demo_ephemeral_chat_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - ")" + "demo_ephemeral_chat_history = [\n", + " HumanMessage(content=\"Hey there! I'm Nemo.\"),\n", + " AIMessage(content=\"Hello!\"),\n", + " HumanMessage(content=\"How are you today?\"),\n", + " AIMessage(content=\"Fine thanks!\"),\n", + "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "And now, let's create a function that will distill previous interactions into a summary. We can add this one to the front of the chain too:" + "And now, let's update the model-calling function to distill previous interactions into a summary:" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ - "def summarize_messages(chain_input):\n", - " stored_messages = demo_ephemeral_chat_history.messages\n", - " if len(stored_messages) == 0:\n", - " return False\n", - " summarization_prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\"placeholder\", \"{chat_history}\"),\n", - " (\n", - " \"user\",\n", - " \"Distill the above chat messages into a single summary message. Include as many specific details as you can.\",\n", - " ),\n", - " ]\n", - " )\n", - " summarization_chain = summarization_prompt | chat\n", - "\n", - " summary_message = summarization_chain.invoke({\"chat_history\": stored_messages})\n", - "\n", - " demo_ephemeral_chat_history.clear()\n", + "from langchain_core.messages import HumanMessage, RemoveMessage\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", "\n", - " demo_ephemeral_chat_history.add_message(summary_message)\n", + "workflow = StateGraph(state_schema=MessagesState)\n", "\n", - " return True\n", "\n", - "\n", - "chain_with_summarization = (\n", - " RunnablePassthrough.assign(messages_summarized=summarize_messages)\n", - " | chain_with_message_history\n", - ")" + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " system_prompt = (\n", + " \"You are a helpful assistant. \"\n", + " \"Answer all questions to the best of your ability. \"\n", + " \"The provided chat history includes a summary of the earlier conversation.\"\n", + " )\n", + " system_message = SystemMessage(content=system_prompt)\n", + " message_history = state[\"messages\"][:-1] # exclude the most recent user input\n", + " # Summarize the messages if the chat history reaches a certain size\n", + " if len(message_history) >= 4:\n", + " last_human_message = state[\"messages\"][-1]\n", + " # Invoke the model to generate conversation summary\n", + " summary_prompt = (\n", + " \"Distill the above chat messages into a single summary message. \"\n", + " \"Include as many specific details as you can.\"\n", + " )\n", + " summary_message = model.invoke(\n", + " message_history + [HumanMessage(content=summary_prompt)]\n", + " )\n", + "\n", + " # Delete messages that we no longer want to show up\n", + " delete_messages = [RemoveMessage(id=m.id) for m in state[\"messages\"]]\n", + " # Re-add user message\n", + " human_message = HumanMessage(content=last_human_message.content)\n", + " # Call the model with summary & response\n", + " response = model.invoke([system_message, summary_message, human_message])\n", + " message_updates = [summary_message, human_message, response] + delete_messages\n", + " else:\n", + " message_updates = model.invoke([system_message] + state[\"messages\"])\n", + "\n", + " return {\"messages\": message_updates}\n", + "\n", + "\n", + "# Define the node and edge\n", + "workflow.add_node(\"model\", call_model)\n", + "workflow.add_edge(START, \"model\")\n", + "\n", + "# Add simple in-memory checkpointer\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { @@ -712,54 +487,37 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='You introduced yourself as Nemo. How can I assist you today, Nemo?')" + "{'messages': [AIMessage(content=\"Nemo greeted me, and I responded positively, indicating that I'm doing well.\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 16, 'prompt_tokens': 60, 'total_tokens': 76, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-ee42f98d-907d-4bad-8f16-af2db789701d-0', usage_metadata={'input_tokens': 60, 'output_tokens': 16, 'total_tokens': 76}),\n", + " HumanMessage(content='What did I say my name was?', additional_kwargs={}, response_metadata={}, id='788555ea-5b1f-4c29-a2f2-a92f15d147be'),\n", + " AIMessage(content='You mentioned that your name is Nemo.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 67, 'total_tokens': 75, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-099a43bd-a284-4969-bb6f-0be486614cd8-0', usage_metadata={'input_tokens': 67, 'output_tokens': 8, 'total_tokens': 75})]}" ] }, - "execution_count": 20, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "chain_with_summarization.invoke(\n", - " {\"input\": \"What did I say my name was?\"},\n", - " {\"configurable\": {\"session_id\": \"unused\"}},\n", + "app.invoke(\n", + " {\n", + " \"messages\": demo_ephemeral_chat_history\n", + " + [HumanMessage(\"What did I say my name was?\")]\n", + " },\n", + " config={\"configurable\": {\"thread_id\": \"4\"}},\n", ")" ] }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[AIMessage(content='The conversation is between Nemo and an AI. Nemo introduces himself and the AI responds with a greeting. Nemo then asks the AI how it is doing, and the AI responds that it is fine.'),\n", - " HumanMessage(content='What did I say my name was?'),\n", - " AIMessage(content='You introduced yourself as Nemo. How can I assist you today, Nemo?')]" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "demo_ephemeral_chat_history.messages" - ] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note that invoking the chain again will generate another summary generated from the initial summary plus new messages and so on. You could also design a hybrid approach where a certain number of messages are retained in chat history while others are summarized." + "Note that invoking the app again will keep accumulating the history until it reaches the specified number of messages (four in our case). At that point we will generate another summary generated from the initial summary plus new messages and so on." ] } ], @@ -779,7 +537,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/how_to/chatbots_retrieval.ipynb b/docs/docs/how_to/chatbots_retrieval.ipynb index 757dc0cfcac4e..015e0d3445679 100644 --- a/docs/docs/how_to/chatbots_retrieval.ipynb +++ b/docs/docs/how_to/chatbots_retrieval.ipynb @@ -71,7 +71,7 @@ "source": [ "from langchain_openai import ChatOpenAI\n", "\n", - "chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0.2)" + "chat = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0.2)" ] }, { diff --git a/docs/docs/how_to/chatbots_tools.ipynb b/docs/docs/how_to/chatbots_tools.ipynb index 07fff046b306c..4bbd425579609 100644 --- a/docs/docs/how_to/chatbots_tools.ipynb +++ b/docs/docs/how_to/chatbots_tools.ipynb @@ -18,25 +18,49 @@ "\n", "This section will cover how to create conversational agents: chatbots that can interact with other systems and APIs using tools.\n", "\n", + ":::note\n", + "\n", + "This how-to guide previously built a chatbot using [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). You can access this version of the guide in the [v0.2 docs](https://python.langchain.com/v0.2/docs/how_to/chatbots_tools/).\n", + "\n", + "As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into new LangChain applications.\n", + "\n", + "If your code is already relying on `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do **not** need to make any changes. We do not plan on deprecating this functionality in the near future as it works for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected.\n", + "\n", + "Please see [How to migrate to LangGraph Memory](/docs/versions/migrating_memory/) for more details.\n", + ":::\n", + "\n", "## Setup\n", "\n", - "For this guide, we'll be using a [tool calling agent](/docs/how_to/agent_executor) with a single tool for searching the web. The default will be powered by [Tavily](/docs/integrations/tools/tavily_search), but you can switch it out for any similar tool. The rest of this section will assume you're using Tavily.\n", + "For this guide, we'll be using a [tool calling agent](https://langchain-ai.github.io/langgraph/concepts/agentic_concepts/#tool-calling-agent) with a single tool for searching the web. The default will be powered by [Tavily](/docs/integrations/tools/tavily_search), but you can switch it out for any similar tool. The rest of this section will assume you're using Tavily.\n", "\n", "You'll need to [sign up for an account](https://tavily.com/) on the Tavily website, and install the following packages:" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "OpenAI API Key: ········\n", + "Tavily API Key: ········\n" + ] + } + ], "source": [ - "%pip install --upgrade --quiet langchain-community langchain-openai tavily-python\n", + "%pip install --upgrade --quiet langchain-community langchain-openai tavily-python langgraph\n", + "\n", + "import getpass\n", + "import os\n", "\n", - "# Set env var OPENAI_API_KEY or load from a .env file:\n", - "import dotenv\n", + "if not os.environ.get(\"OPENAI_API_KEY\"):\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "\n", - "dotenv.load_dotenv()" + "if not os.environ.get(\"TAVILY_API_KEY\"):\n", + " os.environ[\"TAVILY_API_KEY\"] = getpass.getpass(\"Tavily API Key:\")" ] }, { @@ -70,14 +94,14 @@ "\n", "# Choose the LLM that will drive the agent\n", "# Only certain models support this\n", - "chat = ChatOpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0)" + "model = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "To make our agent conversational, we must also choose a prompt with a placeholder for our chat history. Here's an example:" + "To make our agent conversational, we can also specify a prompt. Here's an example:" ] }, { @@ -86,18 +110,9 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.prompts import ChatPromptTemplate\n", - "\n", - "# Adapted from https://smith.langchain.com/hub/jacob/tool-calling-agent\n", - "prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\n", - " \"system\",\n", - " \"You are a helpful assistant. You may not need to use tools for every query - the user may just want to chat!\",\n", - " ),\n", - " (\"placeholder\", \"{messages}\"),\n", - " (\"placeholder\", \"{agent_scratchpad}\"),\n", - " ]\n", + "prompt = (\n", + " \"You are a helpful assistant. \"\n", + " \"You may not need to use tools for every query - the user may just want to chat!\"\n", ")" ] }, @@ -105,7 +120,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Great! Now let's assemble our agent:" + "Great! Now let's assemble our agent using LangGraph's prebuilt [create_react_agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent), which allows you to create a [tool-calling agent](https://langchain-ai.github.io/langgraph/concepts/agentic_concepts/#tool-calling-agent):" ] }, { @@ -114,11 +129,12 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain.agents import AgentExecutor, create_tool_calling_agent\n", - "\n", - "agent = create_tool_calling_agent(chat, tools, prompt)\n", + "from langgraph.prebuilt import create_react_agent\n", "\n", - "agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)" + "# state_modifier allows you to preprocess the inputs to the model inside ReAct agent\n", + "# in this case, since we're passing a prompt string, we'll just always add a SystemMessage\n", + "# with this prompt string before any other messages sent to the model\n", + "agent = create_react_agent(model, tools, state_modifier=prompt)" ] }, { @@ -135,23 +151,11 @@ "execution_count": 5, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", - "\u001b[32;1m\u001b[1;3mHello Nemo! It's great to meet you. How can I assist you today?\u001b[0m\n", - "\n", - "\u001b[1m> Finished chain.\u001b[0m\n" - ] - }, { "data": { "text/plain": [ - "{'messages': [HumanMessage(content=\"I'm Nemo!\")],\n", - " 'output': \"Hello Nemo! It's great to meet you. How can I assist you today?\"}" + "{'messages': [HumanMessage(content=\"I'm Nemo!\", additional_kwargs={}, response_metadata={}, id='39e715c7-bd1c-426f-8e14-c05586b3d221'),\n", + " AIMessage(content='Hi Nemo! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 107, 'total_tokens': 118, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-6937c944-d702-40bb-9a9f-4141ddde9f78-0', usage_metadata={'input_tokens': 107, 'output_tokens': 11, 'total_tokens': 118})]}" ] }, "execution_count": 5, @@ -162,7 +166,7 @@ "source": [ "from langchain_core.messages import HumanMessage\n", "\n", - "agent_executor.invoke({\"messages\": [HumanMessage(content=\"I'm Nemo!\")]})" + "agent.invoke({\"messages\": [HumanMessage(content=\"I'm Nemo!\")]})" ] }, { @@ -177,29 +181,13 @@ "execution_count": 6, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", - "\u001b[32;1m\u001b[1;3m\n", - "Invoking: `tavily_search_results_json` with `{'query': 'current conservation status of the Great Barrier Reef'}`\n", - "\n", - "\n", - "\u001b[0m\u001b[36;1m\u001b[1;3m[{'url': 'https://www.abc.net.au/news/2022-08-04/great-barrier-reef-report-says-coral-recovering-after-bleaching/101296186', 'content': 'Great Barrier Reef hit with widespread and severe bleaching event\\n\\'Devastating\\': Over 90pc of reefs on Great Barrier Reef suffered bleaching over summer, report reveals\\nTop Stories\\nJailed Russian opposition leader Alexei Navalny is dead, says prison service\\nTaylor Swift puts an Aussie twist on a classic as she packs the MCG for the biggest show of her career — as it happened\\nMelbourne comes alive with Swifties, as even those without tickets turn up to soak in the atmosphere\\nAustralian Border Force investigates after arrival of more than 20 men by boat north of Broome\\nOpenAI launches video model that can instantly create short clips from text prompts\\nAntoinette Lattouf loses bid to force ABC to produce emails calling for her dismissal\\nCategory one cyclone makes landfall in Gulf of Carpentaria off NT-Queensland border\\nWhy the RBA may be forced to cut before the Fed\\nBrisbane records \\'wettest day since 2022\\', as woman dies in floodwaters near Mount Isa\\n$45m Sydney beachside home once owned by late radio star is demolished less than a year after sale\\nAnnabel Sutherland\\'s historic double century puts Australia within reach of Test victory over South Africa\\nAlmighty defensive effort delivers Indigenous victory in NRL All Stars clash\\nLisa Wilkinson feared she would have to sell home to pay legal costs of Bruce Lehrmann\\'s defamation case, court documents reveal\\nSupermarkets as you know them are disappearing from our cities\\nNRL issues Broncos\\' Reynolds, Carrigan with breach notices after public scrap\\nPopular Now\\nJailed Russian opposition leader Alexei Navalny is dead, says prison service\\nTaylor Swift puts an Aussie twist on a classic as she packs the MCG for the biggest show of her career — as it happened\\n$45m Sydney beachside home once owned by late radio star is demolished less than a year after sale\\nAustralian Border Force investigates after arrival of more than 20 men by boat north of Broome\\nDealer sentenced for injecting children as young as 12 with methylamphetamine\\nMelbourne comes alive with Swifties, as even those without tickets turn up to soak in the atmosphere\\nTop Stories\\nJailed Russian opposition leader Alexei Navalny is dead, says prison service\\nTaylor Swift puts an Aussie twist on a classic as she packs the MCG for the biggest show of her career — as it happened\\nMelbourne comes alive with Swifties, as even those without tickets turn up to soak in the atmosphere\\nAustralian Border Force investigates after arrival of more than 20 men by boat north of Broome\\nOpenAI launches video model that can instantly create short clips from text prompts\\nJust In\\nJailed Russian opposition leader Alexei Navalny is dead, says prison service\\nMelbourne comes alive with Swifties, as even those without tickets turn up to soak in the atmosphere\\nTraveller alert after one-year-old in Adelaide reported with measles\\nAntoinette Lattouf loses bid to force ABC to produce emails calling for her dismissal\\nFooter\\nWe acknowledge Aboriginal and Torres Strait Islander peoples as the First Australians and Traditional Custodians of the lands where we live, learn, and work.\\n Increased coral cover could come at a cost\\nThe rapid growth in coral cover appears to have come at the expense of the diversity of coral on the reef, with most of the increases accounted for by fast-growing branching coral called Acropora.\\n Documents obtained by the ABC under Freedom of Information laws revealed the Morrison government had forced AIMS to rush the report\\'s release and orchestrated a \"leak\" of the material to select media outlets ahead of the reef being considered for inclusion on the World Heritage In Danger list.\\n The reef\\'s status and potential inclusion on the In Danger list were due to be discussed at the 45th session of the World Heritage Committee in Russia in June this year, but the meeting was indefinitely postponed due to the war in Ukraine.\\n More from ABC\\nEditorial Policies\\nGreat Barrier Reef coral cover at record levels after mass-bleaching events, report shows\\nGreat Barrier Reef coral cover at record levels after mass-bleaching events, report shows\\nRecord coral cover is being seen across much of the Great Barrier Reef as it recovers from past storms and mass-bleaching events.'}]\u001b[0m\u001b[32;1m\u001b[1;3mThe Great Barrier Reef is currently showing signs of recovery, with record coral cover being seen across much of the reef. This recovery comes after past storms and mass-bleaching events. However, the rapid growth in coral cover appears to have come at the expense of the diversity of coral on the reef, with most of the increases accounted for by fast-growing branching coral called Acropora. There were discussions about the reef's potential inclusion on the World Heritage In Danger list, but the meeting to consider this was indefinitely postponed due to the war in Ukraine.\n", - "\n", - "You can read more about it in this article: [Great Barrier Reef hit with widespread and severe bleaching event](https://www.abc.net.au/news/2022-08-04/great-barrier-reef-report-says-coral-recovering-after-bleaching/101296186)\u001b[0m\n", - "\n", - "\u001b[1m> Finished chain.\u001b[0m\n" - ] - }, { "data": { "text/plain": [ - "{'messages': [HumanMessage(content='What is the current conservation status of the Great Barrier Reef?')],\n", - " 'output': \"The Great Barrier Reef is currently showing signs of recovery, with record coral cover being seen across much of the reef. This recovery comes after past storms and mass-bleaching events. However, the rapid growth in coral cover appears to have come at the expense of the diversity of coral on the reef, with most of the increases accounted for by fast-growing branching coral called Acropora. There were discussions about the reef's potential inclusion on the World Heritage In Danger list, but the meeting to consider this was indefinitely postponed due to the war in Ukraine.\\n\\nYou can read more about it in this article: [Great Barrier Reef hit with widespread and severe bleaching event](https://www.abc.net.au/news/2022-08-04/great-barrier-reef-report-says-coral-recovering-after-bleaching/101296186)\"}" + "{'messages': [HumanMessage(content='What is the current conservation status of the Great Barrier Reef?', additional_kwargs={}, response_metadata={}, id='a74cc581-8ad5-4401-b3a5-f028d69e4b21'),\n", + " AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_aKOItwvAb4DHQCwaasKphGHq', 'function': {'arguments': '{\"query\":\"current conservation status of the Great Barrier Reef 2023\"}', 'name': 'tavily_search_results_json'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 116, 'total_tokens': 144, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-267ff8a8-d866-4ae5-9534-ad87ebbdc954-0', tool_calls=[{'name': 'tavily_search_results_json', 'args': {'query': 'current conservation status of the Great Barrier Reef 2023'}, 'id': 'call_aKOItwvAb4DHQCwaasKphGHq', 'type': 'tool_call'}], usage_metadata={'input_tokens': 116, 'output_tokens': 28, 'total_tokens': 144}),\n", + " ToolMessage(content='[{\"url\": \"https://www.aims.gov.au/monitoring-great-barrier-reef/gbr-condition-summary-2023-24\", \"content\": \"This report summarises the condition of coral reefs in the Northern, Central and Southern\\xa0Great Barrier Reef (GBR) from the Long-Term Monitoring Program (LTMP) surveys of 94 reefs conducted between August\\xa02023 and June 2024 (reported as ‘2024’). Over the past 38 years of monitoring by the Australian Institute of Marine Science (AIMS), hard coral cover on reefs of the GBR has decreased and increased in response to cycles of disturbance and recovery. It is relatively rare for GBR reefs to have 75% to 100% hard coral cover and AIMS defines >30% – 50% hard coral cover as a high value, based on historical surveys across the GBR.\"}]', name='tavily_search_results_json', id='05b3fab7-9ac8-42bb-9612-ff2a896dbb67', tool_call_id='call_aKOItwvAb4DHQCwaasKphGHq', artifact={'query': 'current conservation status of the Great Barrier Reef 2023', 'follow_up_questions': None, 'answer': None, 'images': [], 'results': [{'title': 'Annual Summary Report of Coral Reef Condition 2023/24', 'url': 'https://www.aims.gov.au/monitoring-great-barrier-reef/gbr-condition-summary-2023-24', 'content': 'This report summarises the condition of coral reefs in the Northern, Central and Southern\\xa0Great Barrier Reef (GBR) from the Long-Term Monitoring Program (LTMP) surveys of 94 reefs conducted between August\\xa02023 and June 2024 (reported as ‘2024’). Over the past 38 years of monitoring by the Australian Institute of Marine Science (AIMS), hard coral cover on reefs of the GBR has decreased and increased in response to cycles of disturbance and recovery. It is relatively rare for GBR reefs to have 75% to 100% hard coral cover and AIMS defines >30% – 50% hard coral cover as a high value, based on historical surveys across the GBR.', 'score': 0.95991266, 'raw_content': None}], 'response_time': 4.22}),\n", + " AIMessage(content='The current conservation status of the Great Barrier Reef (GBR) indicates ongoing challenges and fluctuations in coral health. According to a report from the Australian Institute of Marine Science (AIMS), the condition of coral reefs in the GBR has been monitored over the years, showing cycles of disturbance and recovery. \\n\\nAs of the latest surveys conducted between August 2023 and June 2024, hard coral cover on the GBR has experienced both decreases and increases. AIMS defines a hard coral cover of over 30% to 50% as high value, but it is relatively rare for GBR reefs to achieve 75% to 100% hard coral cover.\\n\\nFor more detailed information, you can refer to the [AIMS report](https://www.aims.gov.au/monitoring-great-barrier-reef/gbr-condition-summary-2023-24).', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 174, 'prompt_tokens': 337, 'total_tokens': 511, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-bec32925-0dba-445d-8b55-87358ef482bb-0', usage_metadata={'input_tokens': 337, 'output_tokens': 174, 'total_tokens': 511})]}" ] }, "execution_count": 6, @@ -208,7 +196,7 @@ } ], "source": [ - "agent_executor.invoke(\n", + "agent.invoke(\n", " {\n", " \"messages\": [\n", " HumanMessage(\n", @@ -233,25 +221,13 @@ "execution_count": 7, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", - "\u001b[32;1m\u001b[1;3mYour name is Nemo!\u001b[0m\n", - "\n", - "\u001b[1m> Finished chain.\u001b[0m\n" - ] - }, { "data": { "text/plain": [ - "{'messages': [HumanMessage(content=\"I'm Nemo!\"),\n", - " AIMessage(content='Hello Nemo! How can I assist you today?'),\n", - " HumanMessage(content='What is my name?')],\n", - " 'output': 'Your name is Nemo!'}" + "{'messages': [HumanMessage(content=\"I'm Nemo!\", additional_kwargs={}, response_metadata={}, id='2c8e58bf-ad20-45a4-940b-84393c6b3a03'),\n", + " AIMessage(content='Hello Nemo! How can I assist you today?', additional_kwargs={}, response_metadata={}, id='5e014114-7e9d-42c3-b63e-a662b3a49bef'),\n", + " HumanMessage(content='What is my name?', additional_kwargs={}, response_metadata={}, id='d92be4e1-6497-4037-9a9a-83d3e7b760d5'),\n", + " AIMessage(content='Your name is Nemo!', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 130, 'total_tokens': 136, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-17db96f8-8dbd-4f25-a80d-e4e872967641-0', usage_metadata={'input_tokens': 130, 'output_tokens': 6, 'total_tokens': 136})]}" ] }, "execution_count": 7, @@ -262,7 +238,7 @@ "source": [ "from langchain_core.messages import AIMessage, HumanMessage\n", "\n", - "agent_executor.invoke(\n", + "agent.invoke(\n", " {\n", " \"messages\": [\n", " HumanMessage(content=\"I'm Nemo!\"),\n", @@ -277,7 +253,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "If preferred, you can also wrap the agent executor in a [`RunnableWithMessageHistory`](/docs/how_to/message_history/) class to internally manage history messages. Let's redeclare it this way:" + "If preferred, you can also add memory to the LangGraph agent to manage the history of messages. Let's redeclare it this way:" ] }, { @@ -286,63 +262,35 @@ "metadata": {}, "outputs": [], "source": [ - "agent = create_tool_calling_agent(chat, tools, prompt)\n", + "from langgraph.checkpoint.memory import MemorySaver\n", "\n", - "agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then, because our agent executor has multiple outputs, we also have to set the `output_messages_key` property when initializing the wrapper:" + "# highlight-start\n", + "memory = MemorySaver()\n", + "agent = create_react_agent(model, tools, state_modifier=prompt, checkpointer=memory)\n", + "# highlight-end" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", - "\u001b[32;1m\u001b[1;3mHi Nemo! It's great to meet you. How can I assist you today?\u001b[0m\n", - "\n", - "\u001b[1m> Finished chain.\u001b[0m\n" - ] - }, { "data": { "text/plain": [ - "{'messages': [HumanMessage(content=\"I'm Nemo!\")],\n", - " 'output': \"Hi Nemo! It's great to meet you. How can I assist you today?\"}" + "{'messages': [HumanMessage(content=\"I'm Nemo!\", additional_kwargs={}, response_metadata={}, id='117b2cfc-c6cc-449c-bba9-26fc545d0afa'),\n", + " AIMessage(content='Hi Nemo! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 107, 'total_tokens': 118, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-ba16cc0b-fba1-4ec5-9d99-e010c3b702d0-0', usage_metadata={'input_tokens': 107, 'output_tokens': 11, 'total_tokens': 118})]}" ] }, - "execution_count": 11, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "from langchain_community.chat_message_histories import ChatMessageHistory\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", - "\n", - "demo_ephemeral_chat_history_for_chain = ChatMessageHistory()\n", - "\n", - "conversational_agent_executor = RunnableWithMessageHistory(\n", - " agent_executor,\n", - " lambda session_id: demo_ephemeral_chat_history_for_chain,\n", - " input_messages_key=\"messages\",\n", - " output_messages_key=\"output\",\n", - ")\n", - "\n", - "conversational_agent_executor.invoke(\n", + "agent.invoke(\n", " {\"messages\": [HumanMessage(\"I'm Nemo!\")]},\n", - " {\"configurable\": {\"session_id\": \"unused\"}},\n", + " config={\"configurable\": {\"thread_id\": \"1\"}},\n", ")" ] }, @@ -355,39 +303,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", - "\u001b[32;1m\u001b[1;3mYour name is Nemo! How can I assist you today, Nemo?\u001b[0m\n", - "\n", - "\u001b[1m> Finished chain.\u001b[0m\n" - ] - }, { "data": { "text/plain": [ - "{'messages': [HumanMessage(content=\"I'm Nemo!\"),\n", - " AIMessage(content=\"Hi Nemo! It's great to meet you. How can I assist you today?\"),\n", - " HumanMessage(content='What is my name?')],\n", - " 'output': 'Your name is Nemo! How can I assist you today, Nemo?'}" + "{'messages': [HumanMessage(content=\"I'm Nemo!\", additional_kwargs={}, response_metadata={}, id='117b2cfc-c6cc-449c-bba9-26fc545d0afa'),\n", + " AIMessage(content='Hi Nemo! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 107, 'total_tokens': 118, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-ba16cc0b-fba1-4ec5-9d99-e010c3b702d0-0', usage_metadata={'input_tokens': 107, 'output_tokens': 11, 'total_tokens': 118}),\n", + " HumanMessage(content='What is my name?', additional_kwargs={}, response_metadata={}, id='53ac8d34-99bb-43a7-9103-80e26b7ee6cc'),\n", + " AIMessage(content='Your name is Nemo!', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 130, 'total_tokens': 136, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-b3f224a5-902a-4973-84ff-9b683615b0e2-0', usage_metadata={'input_tokens': 130, 'output_tokens': 6, 'total_tokens': 136})]}" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "conversational_agent_executor.invoke(\n", + "agent.invoke(\n", " {\"messages\": [HumanMessage(\"What is my name?\")]},\n", - " {\"configurable\": {\"session_id\": \"unused\"}},\n", + " config={\"configurable\": {\"thread_id\": \"1\"}},\n", ")" ] }, @@ -395,11 +331,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "This [LangSmith trace](https://smith.langchain.com/public/1a9f712a-7918-4661-b3ff-d979bcc2af42/r) shows what's going on under the hood.\n", + "This [LangSmith trace](https://smith.langchain.com/public/9e6b000d-08aa-4c5a-ac83-2fdf549523cb/r) shows what's going on under the hood.\n", "\n", "## Further reading\n", "\n", - "Other types agents can also support conversational responses too - for more, check out the [agents section](/docs/tutorials/agents).\n", + "For more on how to build agents, check these [LangGraph](https://langchain-ai.github.io/langgraph/) guides:\n", + "\n", + "* [agents conceptual guide](https://langchain-ai.github.io/langgraph/concepts/agentic_concepts/)\n", + "* [agents tutorials](https://langchain-ai.github.io/langgraph/tutorials/multi_agent/multi-agent-collaboration/)\n", + "* [create_react_agent](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/)\n", "\n", "For more on tool usage, you can also check out [this use case section](/docs/how_to#tools)." ] @@ -421,9 +361,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.11.4" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/docs/docs/how_to/code_splitter.ipynb b/docs/docs/how_to/code_splitter.ipynb index 5c83a51428daa..7d65451595d0c 100644 --- a/docs/docs/how_to/code_splitter.ipynb +++ b/docs/docs/how_to/code_splitter.ipynb @@ -7,7 +7,7 @@ "source": [ "# How to split code\n", "\n", - "[RecursiveCharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html) includes pre-built lists of separators that are useful for splitting text in a specific programming language.\n", + "[RecursiveCharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html) includes pre-built lists of separators that are useful for splitting text in a specific programming language.\n", "\n", "Supported languages are stored in the `langchain_text_splitters.Language` enum. They include:\n", "\n", diff --git a/docs/docs/how_to/configure.ipynb b/docs/docs/how_to/configure.ipynb index 6633fd8bff2b4..3864a9ea80d63 100644 --- a/docs/docs/how_to/configure.ipynb +++ b/docs/docs/how_to/configure.ipynb @@ -58,7 +58,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -99,7 +100,7 @@ "id": "b0f74589", "metadata": {}, "source": [ - "Above, we defined `temperature` as a [`ConfigurableField`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.utils.ConfigurableField.html#langchain_core.runnables.utils.ConfigurableField) that we can set at runtime. To do so, we use the [`with_config`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method like this:" + "Above, we defined `temperature` as a [`ConfigurableField`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.utils.ConfigurableField.html#langchain_core.runnables.utils.ConfigurableField) that we can set at runtime. To do so, we use the [`with_config`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config) method like this:" ] }, { @@ -281,7 +282,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"ANTHROPIC_API_KEY\"] = getpass()" + "if \"ANTHROPIC_API_KEY\" not in os.environ:\n", + " os.environ[\"ANTHROPIC_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/how_to/contextual_compression.ipynb b/docs/docs/how_to/contextual_compression.ipynb index 02dd941fd85a2..5def4035eeec8 100644 --- a/docs/docs/how_to/contextual_compression.ipynb +++ b/docs/docs/how_to/contextual_compression.ipynb @@ -227,7 +227,7 @@ "source": [ "### `LLMListwiseRerank`\n", "\n", - "[LLMListwiseRerank](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n", + "[LLMListwiseRerank](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.listwise_rerank.LLMListwiseRerank.html) uses [zero-shot listwise document reranking](https://arxiv.org/pdf/2305.02156) and functions similarly to `LLMChainFilter` as a robust but more expensive option. It is recommended to use a more powerful LLM.\n", "\n", "Note that `LLMListwiseRerank` requires a model with the [with_structured_output](/docs/integrations/chat/) method implemented." ] @@ -258,7 +258,7 @@ "from langchain.retrievers.document_compressors import LLMListwiseRerank\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "\n", "_filter = LLMListwiseRerank.from_llm(llm, top_n=1)\n", "compression_retriever = ContextualCompressionRetriever(\n", diff --git a/docs/docs/how_to/convert_runnable_to_tool.ipynb b/docs/docs/how_to/convert_runnable_to_tool.ipynb index fa12280987482..0497582920f43 100644 --- a/docs/docs/how_to/convert_runnable_to_tool.ipynb +++ b/docs/docs/how_to/convert_runnable_to_tool.ipynb @@ -42,13 +42,13 @@ "source": [ "LangChain [tools](/docs/concepts#tools) are interfaces that an agent, chain, or chat model can use to interact with the world. See [here](/docs/how_to/#tools) for how-to guides covering tool-calling, built-in tools, custom tools, and more information.\n", "\n", - "LangChain tools-- instances of [BaseTool](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n", + "LangChain tools-- instances of [BaseTool](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.BaseTool.html)-- are [Runnables](/docs/concepts/#runnable-interface) with additional constraints that enable them to be invoked effectively by language models:\n", "\n", "- Their inputs are constrained to be serializable, specifically strings and Python `dict` objects;\n", "- They contain names and descriptions indicating how and when they should be used;\n", - "- They may contain a detailed [args_schema](https://python.langchain.com/v0.2/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n", + "- They may contain a detailed [args_schema](https://python.langchain.com/docs/how_to/custom_tools/) for their arguments. That is, while a tool (as a `Runnable`) might accept a single `dict` input, the specific keys and type information needed to populate a dict should be specified in the `args_schema`.\n", "\n", - "Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments." + "Runnables that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments." ] }, { @@ -180,7 +180,7 @@ "id": "32b1a992-8997-4c98-8eb2-c9fe9431b799", "metadata": {}, "source": [ - "Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:" + "Alternatively, the schema can be fully specified by directly passing the desired [args_schema](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool.args_schema) for the tool:" ] }, { @@ -190,7 +190,7 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class GSchema(BaseModel):\n", @@ -266,11 +266,9 @@ "\n", "We first instantiate a chat model that supports [tool calling](/docs/how_to/tool_calling/):\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -285,7 +283,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -331,7 +329,7 @@ "id": "9ba737ac-43a2-4a6f-b855-5bd0305017f1", "metadata": {}, "source": [ - "We next create use a simple pre-built [LangGraph agent](https://python.langchain.com/v0.2/docs/tutorials/agents/) and provide it the tool:" + "We next create use a simple pre-built [LangGraph agent](https://python.langchain.com/docs/tutorials/agents/) and provide it the tool:" ] }, { @@ -362,11 +360,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD', 'function': {'arguments': '{\"__arg1\":\"dogs\"}', 'name': 'pet_info_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 60, 'total_tokens': 79}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d7f81de9-1fb7-4caf-81ed-16dcdb0b2ab4-0', tool_calls=[{'name': 'pet_info_retriever', 'args': {'__arg1': 'dogs'}, 'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD'}], usage_metadata={'input_tokens': 60, 'output_tokens': 19, 'total_tokens': 79})]}}\n", + "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD', 'function': {'arguments': '{\"__arg1\":\"dogs\"}', 'name': 'pet_info_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 60, 'total_tokens': 79}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-d7f81de9-1fb7-4caf-81ed-16dcdb0b2ab4-0', tool_calls=[{'name': 'pet_info_retriever', 'args': {'__arg1': 'dogs'}, 'id': 'call_W8cnfOjwqEn4cFcg19LN9mYD'}], usage_metadata={'input_tokens': 60, 'output_tokens': 19, 'total_tokens': 79})]}}\n", "----\n", "{'tools': {'messages': [ToolMessage(content=\"[Document(id='86f835fe-4bbe-4ec6-aeb4-489a8b541707', page_content='Dogs are great companions, known for their loyalty and friendliness.')]\", name='pet_info_retriever', tool_call_id='call_W8cnfOjwqEn4cFcg19LN9mYD')]}}\n", "----\n", - "{'agent': {'messages': [AIMessage(content='Dogs are known for being great companions, known for their loyalty and friendliness.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 134, 'total_tokens': 152}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ca5847a-a5eb-44c0-a774-84cc2c5bbc5b-0', usage_metadata={'input_tokens': 134, 'output_tokens': 18, 'total_tokens': 152})]}}\n", + "{'agent': {'messages': [AIMessage(content='Dogs are known for being great companions, known for their loyalty and friendliness.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 134, 'total_tokens': 152}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ca5847a-a5eb-44c0-a774-84cc2c5bbc5b-0', usage_metadata={'input_tokens': 134, 'output_tokens': 18, 'total_tokens': 152})]}}\n", "----\n" ] } @@ -497,11 +495,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_17iLPWvOD23zqwd1QVQ00Y63', 'function': {'arguments': '{\"question\":\"What are dogs known for according to pirates?\",\"answer_style\":\"quote\"}', 'name': 'pet_expert'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 59, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7fef44f3-7bba-4e63-8c51-2ad9c5e65e2e-0', tool_calls=[{'name': 'pet_expert', 'args': {'question': 'What are dogs known for according to pirates?', 'answer_style': 'quote'}, 'id': 'call_17iLPWvOD23zqwd1QVQ00Y63'}], usage_metadata={'input_tokens': 59, 'output_tokens': 28, 'total_tokens': 87})]}}\n", + "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_17iLPWvOD23zqwd1QVQ00Y63', 'function': {'arguments': '{\"question\":\"What are dogs known for according to pirates?\",\"answer_style\":\"quote\"}', 'name': 'pet_expert'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 28, 'prompt_tokens': 59, 'total_tokens': 87}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7fef44f3-7bba-4e63-8c51-2ad9c5e65e2e-0', tool_calls=[{'name': 'pet_expert', 'args': {'question': 'What are dogs known for according to pirates?', 'answer_style': 'quote'}, 'id': 'call_17iLPWvOD23zqwd1QVQ00Y63'}], usage_metadata={'input_tokens': 59, 'output_tokens': 28, 'total_tokens': 87})]}}\n", "----\n", "{'tools': {'messages': [ToolMessage(content='\"Dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.\"', name='pet_expert', tool_call_id='call_17iLPWvOD23zqwd1QVQ00Y63')]}}\n", "----\n", - "{'agent': {'messages': [AIMessage(content='According to pirates, dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 119, 'total_tokens': 146}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5a30edc3-7be0-4743-b980-ca2f8cad9b8d-0', usage_metadata={'input_tokens': 119, 'output_tokens': 27, 'total_tokens': 146})]}}\n", + "{'agent': {'messages': [AIMessage(content='According to pirates, dogs are known for their loyalty and friendliness, making them great companions for pirates on long sea voyages.', response_metadata={'token_usage': {'completion_tokens': 27, 'prompt_tokens': 119, 'total_tokens': 146}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5a30edc3-7be0-4743-b980-ca2f8cad9b8d-0', usage_metadata={'input_tokens': 119, 'output_tokens': 27, 'total_tokens': 146})]}}\n", "----\n" ] } diff --git a/docs/docs/how_to/custom_callbacks.ipynb b/docs/docs/how_to/custom_callbacks.ipynb index d1564b40d1ff8..2579f8b8ae8de 100644 --- a/docs/docs/how_to/custom_callbacks.ipynb +++ b/docs/docs/how_to/custom_callbacks.ipynb @@ -16,7 +16,7 @@ "\n", "LangChain has some built-in callback handlers, but you will often want to create your own handlers with custom logic.\n", "\n", - "To create a custom callback handler, we need to determine the [event(s)](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) we want our callback handler to handle as well as what we want our callback handler to do when the event is triggered. Then all we need to do is attach the callback handler to the object, for example via [the constructor](/docs/how_to/callbacks_constructor) or [at runtime](/docs/how_to/callbacks_runtime).\n", + "To create a custom callback handler, we need to determine the [event(s)](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) we want our callback handler to handle as well as what we want our callback handler to do when the event is triggered. Then all we need to do is attach the callback handler to the object, for example via [the constructor](/docs/how_to/callbacks_constructor) or [at runtime](/docs/how_to/callbacks_runtime).\n", "\n", "In the example below, we'll implement streaming with a custom handler.\n", "\n", @@ -107,7 +107,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can see [this reference page](https://python.langchain.com/v0.2/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) for a list of events you can handle. Note that the `handle_chain_*` events run for most LCEL runnables.\n", + "You can see [this reference page](https://python.langchain.com/api_reference/core/callbacks/langchain_core.callbacks.base.BaseCallbackHandler.html#langchain-core-callbacks-base-basecallbackhandler) for a list of events you can handle. Note that the `handle_chain_*` events run for most LCEL runnables.\n", "\n", "## Next steps\n", "\n", diff --git a/docs/docs/how_to/custom_chat_model.ipynb b/docs/docs/how_to/custom_chat_model.ipynb index 2a95b97d285bc..09a34b521a2aa 100644 --- a/docs/docs/how_to/custom_chat_model.ipynb +++ b/docs/docs/how_to/custom_chat_model.ipynb @@ -16,7 +16,7 @@ "\n", "In this guide, we'll learn how to create a custom chat model using LangChain abstractions.\n", "\n", - "Wrapping your LLM with the standard [`BaseChatModel`](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) interface allow you to use your LLM in existing LangChain programs with minimal code modifications!\n", + "Wrapping your LLM with the standard [`BaseChatModel`](https://python.langchain.com/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html) interface allow you to use your LLM in existing LangChain programs with minimal code modifications!\n", "\n", "As an bonus, your LLM will automatically become a LangChain `Runnable` and will benefit from some optimizations out of the box (e.g., batch via a threadpool), async support, the `astream_events` API, etc.\n", "\n", @@ -39,7 +39,7 @@ "| `AIMessageChunk` / `HumanMessageChunk` / ... | Chunk variant of each type of message. |\n", "\n", "\n", - "::: {.callout-note}\n", + ":::note\n", "`ToolMessage` and `FunctionMessage` closely follow OpenAI's `function` and `tool` roles.\n", "\n", "This is a rapidly developing field and as more models add function calling capabilities. Expect that there will be additions to this schema.\n", @@ -145,7 +145,7 @@ "| `_astream` | Use to implement async version of `_stream`. | Optional |\n", "\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "The `_astream` implementation uses `run_in_executor` to launch the sync `_stream` in a separate thread if `_stream` is implemented, otherwise it fallsback to use `_agenerate`.\n", "\n", "You can use this trick if you want to reuse the `_stream` implementation, but if you're able to implement code that's natively async that's a better solution since that code will run with less overhead.\n", @@ -503,7 +503,7 @@ "\n", "Documentation:\n", "\n", - "* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n", + "* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/api_reference/langchain/index.html).\n", "* The class doc-string for the model contains a link to the model API if the model is powered by a service.\n", "\n", "Tests:\n", diff --git a/docs/docs/how_to/custom_llm.ipynb b/docs/docs/how_to/custom_llm.ipynb index 7681163983dac..d56380332f4b3 100644 --- a/docs/docs/how_to/custom_llm.ipynb +++ b/docs/docs/how_to/custom_llm.ipynb @@ -402,7 +402,7 @@ "\n", "Documentation:\n", "\n", - "* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n", + "* The model contains doc-strings for all initialization arguments, as these will be surfaced in the [APIReference](https://python.langchain.com/api_reference/langchain/index.html).\n", "* The class doc-string for the model contains a link to the model API if the model is powered by a service.\n", "\n", "Tests:\n", diff --git a/docs/docs/how_to/custom_retriever.ipynb b/docs/docs/how_to/custom_retriever.ipynb index 3bda108e2b1ea..66939e2e569a5 100644 --- a/docs/docs/how_to/custom_retriever.ipynb +++ b/docs/docs/how_to/custom_retriever.ipynb @@ -37,12 +37,12 @@ "\n", "The logic inside of `_get_relevant_documents` can involve arbitrary calls to a database or to the web using requests.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "By inherting from `BaseRetriever`, your retriever automatically becomes a LangChain [Runnable](/docs/concepts#interface) and will gain the standard `Runnable` functionality out of the box!\n", ":::\n", "\n", "\n", - ":::{.callout-info}\n", + ":::info\n", "You can use a `RunnableLambda` or `RunnableGenerator` to implement a retriever.\n", "\n", "The main benefit of implementing a retriever as a `BaseRetriever` vs. a `RunnableLambda` (a custom [runnable function](/docs/how_to/functions)) is that a `BaseRetriever` is a well\n", @@ -270,7 +270,7 @@ "\n", "Documentation:\n", "\n", - "* The retriever contains doc-strings for all initialization arguments, as these will be surfaced in the [API Reference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n", + "* The retriever contains doc-strings for all initialization arguments, as these will be surfaced in the [API Reference](https://python.langchain.com/api_reference/langchain/index.html).\n", "* The class doc-string for the model contains a link to any relevant APIs used for the retriever (e.g., if the retriever is retrieving from wikipedia, it'll be good to link to the wikipedia API!)\n", "\n", "Tests:\n", diff --git a/docs/docs/how_to/custom_tools.ipynb b/docs/docs/how_to/custom_tools.ipynb index 11668c3191810..3b9c5b1118df5 100644 --- a/docs/docs/how_to/custom_tools.ipynb +++ b/docs/docs/how_to/custom_tools.ipynb @@ -13,20 +13,20 @@ "|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n", "| name | str | Must be unique within a set of tools provided to an LLM or agent. |\n", "| description | str | Describes what the tool does. Used as context by the LLM or agent. |\n", - "| args_schema | langchain.pydantic_v1.BaseModel | Optional but recommended, and required if using callback handlers. It can be used to provide more information (e.g., few-shot examples) or validation for expected parameters. |\n", + "| args_schema | pydantic.BaseModel | Optional but recommended, and required if using callback handlers. It can be used to provide more information (e.g., few-shot examples) or validation for expected parameters. |\n", "| return_direct | boolean | Only relevant for agents. When True, after invoking the given tool, the agent will stop and return the result direcly to the user. |\n", "\n", "LangChain supports the creation of tools from:\n", "\n", "1. Functions;\n", "2. LangChain [Runnables](/docs/concepts#runnable-interface);\n", - "3. By sub-classing from [BaseTool](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n", + "3. By sub-classing from [BaseTool](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.BaseTool.html) -- This is the most flexible method, it provides the largest degree of control, at the expense of more effort and code.\n", "\n", - "Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n", + "Creating tools from functions may be sufficient for most use cases, and can be done via a simple [@tool decorator](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.tool.html#langchain_core.tools.tool). If more configuration is needed-- e.g., specification of both sync and async implementations-- one can also use the [StructuredTool.from_function](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.StructuredTool.html#langchain_core.tools.StructuredTool.from_function) class method.\n", "\n", "In this guide we provide an overview of these methods.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "\n", "Models will perform better if the tools have well chosen names, descriptions and JSON schemas.\n", ":::" @@ -48,7 +48,14 @@ "cell_type": "code", "execution_count": 1, "id": "cc7005cd-072f-4d37-8453-6297468e5192", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:52.645451Z", + "iopub.status.busy": "2024-09-10T20:25:52.645081Z", + "iopub.status.idle": "2024-09-10T20:25:53.030958Z", + "shell.execute_reply": "2024-09-10T20:25:53.030669Z" + } + }, "outputs": [ { "name": "stdout", @@ -88,7 +95,14 @@ "cell_type": "code", "execution_count": 2, "id": "0c0991db-b997-4611-be37-4346e660506b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.032544Z", + "iopub.status.busy": "2024-09-10T20:25:53.032420Z", + "iopub.status.idle": "2024-09-10T20:25:53.035349Z", + "shell.execute_reply": "2024-09-10T20:25:53.035123Z" + } + }, "outputs": [], "source": [ "from langchain_core.tools import tool\n", @@ -112,22 +126,29 @@ "cell_type": "code", "execution_count": 3, "id": "5626423f-053e-4a66-adca-1d794d835397", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.036658Z", + "iopub.status.busy": "2024-09-10T20:25:53.036574Z", + "iopub.status.idle": "2024-09-10T20:25:53.041154Z", + "shell.execute_reply": "2024-09-10T20:25:53.040964Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'multiply_by_maxSchema',\n", - " 'description': 'Multiply a by the maximum of b.',\n", - " 'type': 'object',\n", - " 'properties': {'a': {'title': 'A',\n", - " 'description': 'scale factor',\n", + "{'description': 'Multiply a by the maximum of b.',\n", + " 'properties': {'a': {'description': 'scale factor',\n", + " 'title': 'A',\n", " 'type': 'string'},\n", - " 'b': {'title': 'B',\n", - " 'description': 'list of ints over which to take maximum',\n", - " 'type': 'array',\n", - " 'items': {'type': 'integer'}}},\n", - " 'required': ['a', 'b']}" + " 'b': {'description': 'list of ints over which to take maximum',\n", + " 'items': {'type': 'integer'},\n", + " 'title': 'B',\n", + " 'type': 'array'}},\n", + " 'required': ['a', 'b'],\n", + " 'title': 'multiply_by_maxSchema',\n", + " 'type': 'object'}" ] }, "execution_count": 3, @@ -163,7 +184,14 @@ "cell_type": "code", "execution_count": 4, "id": "9216d03a-f6ea-4216-b7e1-0661823a4c0b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.042516Z", + "iopub.status.busy": "2024-09-10T20:25:53.042427Z", + "iopub.status.idle": "2024-09-10T20:25:53.045217Z", + "shell.execute_reply": "2024-09-10T20:25:53.045010Z" + } + }, "outputs": [ { "name": "stdout", @@ -171,13 +199,13 @@ "text": [ "multiplication-tool\n", "Multiply two numbers.\n", - "{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n", + "{'a': {'description': 'first number', 'title': 'A', 'type': 'integer'}, 'b': {'description': 'second number', 'title': 'B', 'type': 'integer'}}\n", "True\n" ] } ], "source": [ - "from langchain.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class CalculatorInput(BaseModel):\n", @@ -218,19 +246,26 @@ "cell_type": "code", "execution_count": 5, "id": "336f5538-956e-47d5-9bde-b732559f9e61", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.046526Z", + "iopub.status.busy": "2024-09-10T20:25:53.046456Z", + "iopub.status.idle": "2024-09-10T20:25:53.050045Z", + "shell.execute_reply": "2024-09-10T20:25:53.049836Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'fooSchema',\n", - " 'description': 'The foo.',\n", - " 'type': 'object',\n", - " 'properties': {'bar': {'title': 'Bar',\n", - " 'description': 'The bar.',\n", + "{'description': 'The foo.',\n", + " 'properties': {'bar': {'description': 'The bar.',\n", + " 'title': 'Bar',\n", " 'type': 'string'},\n", - " 'baz': {'title': 'Baz', 'description': 'The baz.', 'type': 'integer'}},\n", - " 'required': ['bar', 'baz']}" + " 'baz': {'description': 'The baz.', 'title': 'Baz', 'type': 'integer'}},\n", + " 'required': ['bar', 'baz'],\n", + " 'title': 'fooSchema',\n", + " 'type': 'object'}" ] }, "execution_count": 5, @@ -258,8 +293,8 @@ "id": "f18a2503-5393-421b-99fa-4a01dd824d0e", "metadata": {}, "source": [ - ":::{.callout-caution}\n", - "By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.tool.html) for detail and examples.\n", + ":::caution\n", + "By default, `@tool(parse_docstring=True)` will raise `ValueError` if the docstring does not parse correctly. See [API Reference](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.tool.html) for detail and examples.\n", ":::" ] }, @@ -277,7 +312,14 @@ "cell_type": "code", "execution_count": 6, "id": "564fbe6f-11df-402d-b135-ef6ff25e1e63", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.051302Z", + "iopub.status.busy": "2024-09-10T20:25:53.051218Z", + "iopub.status.idle": "2024-09-10T20:25:53.059704Z", + "shell.execute_reply": "2024-09-10T20:25:53.059490Z" + } + }, "outputs": [ { "name": "stdout", @@ -320,7 +362,14 @@ "cell_type": "code", "execution_count": 7, "id": "6bc055d4-1fbe-4db5-8881-9c382eba6b1b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.060971Z", + "iopub.status.busy": "2024-09-10T20:25:53.060883Z", + "iopub.status.idle": "2024-09-10T20:25:53.064615Z", + "shell.execute_reply": "2024-09-10T20:25:53.064408Z" + } + }, "outputs": [ { "name": "stdout", @@ -329,7 +378,7 @@ "6\n", "Calculator\n", "multiply numbers\n", - "{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n" + "{'a': {'description': 'first number', 'title': 'A', 'type': 'integer'}, 'b': {'description': 'second number', 'title': 'B', 'type': 'integer'}}\n" ] } ], @@ -366,24 +415,39 @@ "source": [ "## Creating tools from Runnables\n", "\n", - "LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n", + "LangChain [Runnables](/docs/concepts#runnable-interface) that accept string or `dict` input can be converted to tools using the [as_tool](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.as_tool) method, which allows for the specification of names, descriptions, and additional schema information for arguments.\n", "\n", "Example usage:" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "8ef593c5-cf72-4c10-bfc9-7d21874a0c24", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.065797Z", + "iopub.status.busy": "2024-09-10T20:25:53.065733Z", + "iopub.status.idle": "2024-09-10T20:25:53.130458Z", + "shell.execute_reply": "2024-09-10T20:25:53.130229Z" + } + }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/4j/2rz3865x6qg07tx43146py8h0000gn/T/ipykernel_95770/2548361071.py:14: LangChainBetaWarning: This API is in beta and may change in the future.\n", + " as_tool = chain.as_tool(\n" + ] + }, { "data": { "text/plain": [ "{'answer_style': {'title': 'Answer Style', 'type': 'string'}}" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -428,19 +492,26 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "id": "1dad8f8e", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.131904Z", + "iopub.status.busy": "2024-09-10T20:25:53.131803Z", + "iopub.status.idle": "2024-09-10T20:25:53.136797Z", + "shell.execute_reply": "2024-09-10T20:25:53.136563Z" + } + }, "outputs": [], "source": [ "from typing import Optional, Type\n", "\n", - "from langchain.pydantic_v1 import BaseModel\n", "from langchain_core.callbacks import (\n", " AsyncCallbackManagerForToolRun,\n", " CallbackManagerForToolRun,\n", ")\n", "from langchain_core.tools import BaseTool\n", + "from pydantic import BaseModel\n", "\n", "\n", "class CalculatorInput(BaseModel):\n", @@ -448,9 +519,11 @@ " b: int = Field(description=\"second number\")\n", "\n", "\n", + "# Note: It's important that every field has type hints. BaseTool is a\n", + "# Pydantic class and not having type hints can lead to unexpected behavior.\n", "class CustomCalculatorTool(BaseTool):\n", - " name = \"Calculator\"\n", - " description = \"useful for when you need to answer questions about math\"\n", + " name: str = \"Calculator\"\n", + " description: str = \"useful for when you need to answer questions about math\"\n", " args_schema: Type[BaseModel] = CalculatorInput\n", " return_direct: bool = True\n", "\n", @@ -477,9 +550,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "id": "bb551c33", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.138074Z", + "iopub.status.busy": "2024-09-10T20:25:53.138007Z", + "iopub.status.idle": "2024-09-10T20:25:53.141360Z", + "shell.execute_reply": "2024-09-10T20:25:53.141158Z" + } + }, "outputs": [ { "name": "stdout", @@ -487,7 +567,7 @@ "text": [ "Calculator\n", "useful for when you need to answer questions about math\n", - "{'a': {'title': 'A', 'description': 'first number', 'type': 'integer'}, 'b': {'title': 'B', 'description': 'second number', 'type': 'integer'}}\n", + "{'a': {'description': 'first number', 'title': 'A', 'type': 'integer'}, 'b': {'description': 'second number', 'title': 'B', 'type': 'integer'}}\n", "True\n", "6\n", "6\n" @@ -512,7 +592,7 @@ "source": [ "## How to create async tools\n", "\n", - "LangChain Tools implement the [Runnable interface 🏃](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html).\n", + "LangChain Tools implement the [Runnable interface 🏃](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html).\n", "\n", "All Runnables expose the `invoke` and `ainvoke` methods (as well as other methods like `batch`, `abatch`, `astream` etc).\n", "\n", @@ -528,9 +608,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "id": "6615cb77-fd4c-4676-8965-f92cc71d4944", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.142587Z", + "iopub.status.busy": "2024-09-10T20:25:53.142504Z", + "iopub.status.idle": "2024-09-10T20:25:53.147205Z", + "shell.execute_reply": "2024-09-10T20:25:53.146995Z" + } + }, "outputs": [ { "name": "stdout", @@ -560,9 +647,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "bb2af583-eadd-41f4-a645-bf8748bd3dcd", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.148383Z", + "iopub.status.busy": "2024-09-10T20:25:53.148307Z", + "iopub.status.idle": "2024-09-10T20:25:53.152684Z", + "shell.execute_reply": "2024-09-10T20:25:53.152486Z" + } + }, "outputs": [ { "name": "stdout", @@ -605,9 +699,16 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "4ad0932c-8610-4278-8c57-f9218f654c8a", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.153849Z", + "iopub.status.busy": "2024-09-10T20:25:53.153773Z", + "iopub.status.idle": "2024-09-10T20:25:53.158312Z", + "shell.execute_reply": "2024-09-10T20:25:53.158130Z" + } + }, "outputs": [ { "name": "stdout", @@ -650,9 +751,16 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "id": "7094c0e8-6192-4870-a942-aad5b5ae48fd", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.159440Z", + "iopub.status.busy": "2024-09-10T20:25:53.159364Z", + "iopub.status.idle": "2024-09-10T20:25:53.160922Z", + "shell.execute_reply": "2024-09-10T20:25:53.160712Z" + } + }, "outputs": [], "source": [ "from langchain_core.tools import ToolException\n", @@ -673,9 +781,16 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "id": "b4d22022-b105-4ccc-a15b-412cb9ea3097", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.162046Z", + "iopub.status.busy": "2024-09-10T20:25:53.161968Z", + "iopub.status.idle": "2024-09-10T20:25:53.165236Z", + "shell.execute_reply": "2024-09-10T20:25:53.165052Z" + } + }, "outputs": [ { "data": { @@ -683,7 +798,7 @@ "'Error: There is no city by the name of foobar.'" ] }, - "execution_count": 16, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -707,9 +822,16 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "id": "3fad1728-d367-4e1b-9b54-3172981271cf", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.166372Z", + "iopub.status.busy": "2024-09-10T20:25:53.166294Z", + "iopub.status.idle": "2024-09-10T20:25:53.169739Z", + "shell.execute_reply": "2024-09-10T20:25:53.169553Z" + } + }, "outputs": [ { "data": { @@ -717,7 +839,7 @@ "\"There is no such city, but it's probably above 0K there!\"" ] }, - "execution_count": 17, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -741,9 +863,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "id": "ebfe7c1f-318d-4e58-99e1-f31e69473c46", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.170937Z", + "iopub.status.busy": "2024-09-10T20:25:53.170859Z", + "iopub.status.idle": "2024-09-10T20:25:53.174498Z", + "shell.execute_reply": "2024-09-10T20:25:53.174304Z" + } + }, "outputs": [ { "data": { @@ -751,7 +880,7 @@ "'The following errors occurred during tool execution: `Error: There is no city by the name of foobar.`'" ] }, - "execution_count": 18, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -778,7 +907,7 @@ "\n", "Sometimes there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns custom objects like Documents, we may want to pass some view or metadata about this output to the model without passing the raw output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n", "\n", - "The Tool and [ToolMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n", + "The Tool and [ToolMessage](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n", "\n", ":::info Requires ``langchain-core >= 0.2.19``\n", "\n", @@ -791,9 +920,16 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 18, "id": "14905425-0334-43a0-9de9-5bcf622ede0e", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.175683Z", + "iopub.status.busy": "2024-09-10T20:25:53.175605Z", + "iopub.status.idle": "2024-09-10T20:25:53.178798Z", + "shell.execute_reply": "2024-09-10T20:25:53.178601Z" + } + }, "outputs": [], "source": [ "import random\n", @@ -820,9 +956,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 19, "id": "0f2e1528-404b-46e6-b87c-f0957c4b9217", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.179881Z", + "iopub.status.busy": "2024-09-10T20:25:53.179807Z", + "iopub.status.idle": "2024-09-10T20:25:53.182100Z", + "shell.execute_reply": "2024-09-10T20:25:53.181940Z" + } + }, "outputs": [ { "data": { @@ -830,7 +973,7 @@ "'Successfully generated array of 10 random ints in [0, 9].'" ] }, - "execution_count": 9, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -849,17 +992,24 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 20, "id": "cc197777-26eb-46b3-a83b-c2ce116c6311", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.183238Z", + "iopub.status.busy": "2024-09-10T20:25:53.183170Z", + "iopub.status.idle": "2024-09-10T20:25:53.185752Z", + "shell.execute_reply": "2024-09-10T20:25:53.185567Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[1, 4, 2, 5, 3, 9, 0, 4, 7, 7])" + "ToolMessage(content='Successfully generated array of 10 random ints in [0, 9].', name='generate_random_ints', tool_call_id='123', artifact=[4, 8, 2, 4, 1, 0, 9, 5, 8, 1])" ] }, - "execution_count": 3, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -885,9 +1035,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 21, "id": "fe1a09d1-378b-4b91-bb5e-0697c3d7eb92", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.186884Z", + "iopub.status.busy": "2024-09-10T20:25:53.186803Z", + "iopub.status.idle": "2024-09-10T20:25:53.190718Z", + "shell.execute_reply": "2024-09-10T20:25:53.190494Z" + } + }, "outputs": [], "source": [ "from langchain_core.tools import BaseTool\n", @@ -917,17 +1074,24 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 22, "id": "8c3d16f6-1c4a-48ab-b05a-38547c592e79", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:25:53.191872Z", + "iopub.status.busy": "2024-09-10T20:25:53.191794Z", + "iopub.status.idle": "2024-09-10T20:25:53.194396Z", + "shell.execute_reply": "2024-09-10T20:25:53.194184Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.4277, 0.7578, 2.4871])" + "ToolMessage(content='Generated 3 floats in [0.1, 3.3333], rounded to 4 decimals.', name='generate_random_floats', tool_call_id='123', artifact=[1.5566, 0.5134, 2.7914])" ] }, - "execution_count": 8, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } diff --git a/docs/docs/how_to/debugging.ipynb b/docs/docs/how_to/debugging.ipynb index d1bc2f1365fd3..a594ebf15913a 100644 --- a/docs/docs/how_to/debugging.ipynb +++ b/docs/docs/how_to/debugging.ipynb @@ -49,13 +49,11 @@ "\n", "Let's suppose we have an agent, and want to visualize the actions it takes and tool outputs it receives. Without any debugging, here's what we see:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { diff --git a/docs/docs/how_to/document_loader_csv.ipynb b/docs/docs/how_to/document_loader_csv.ipynb index 890006cfe4a91..e8b89df72c555 100644 --- a/docs/docs/how_to/document_loader_csv.ipynb +++ b/docs/docs/how_to/document_loader_csv.ipynb @@ -9,7 +9,7 @@ "\n", "A [comma-separated values (CSV)](https://en.wikipedia.org/wiki/Comma-separated_values) file is a delimited text file that uses a comma to separate values. Each line of the file is a data record. Each record consists of one or more fields, separated by commas.\n", "\n", - "LangChain implements a [CSV Loader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html) that will load CSV files into a sequence of [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Each row of the CSV file is translated to one document." + "LangChain implements a [CSV Loader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html) that will load CSV files into a sequence of [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Each row of the CSV file is translated to one document." ] }, { @@ -88,7 +88,7 @@ "source": [ "## Specify a column to identify the document source\n", "\n", - "The `\"source\"` key on [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) metadata can be set using a column of the CSV. Use the `source_column` argument to specify a source for the document created from each row. Otherwise `file_path` will be used as the source for all documents created from the CSV file.\n", + "The `\"source\"` key on [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) metadata can be set using a column of the CSV. Use the `source_column` argument to specify a source for the document created from each row. Otherwise `file_path` will be used as the source for all documents created from the CSV file.\n", "\n", "This is useful when using documents loaded from CSV files for chains that answer questions using sources." ] diff --git a/docs/docs/how_to/document_loader_custom.ipynb b/docs/docs/how_to/document_loader_custom.ipynb index cc151c8a21b38..890c9add2b484 100644 --- a/docs/docs/how_to/document_loader_custom.ipynb +++ b/docs/docs/how_to/document_loader_custom.ipynb @@ -63,7 +63,7 @@ "* The `load` methods is a convenience method meant solely for prototyping work -- it just invokes `list(self.lazy_load())`.\n", "* The `alazy_load` has a default implementation that will delegate to `lazy_load`. If you're using async, we recommend overriding the default implementation and providing a native async implementation.\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "When implementing a document loader do **NOT** provide parameters via the `lazy_load` or `alazy_load` methods.\n", "\n", "All configuration is expected to be passed through the initializer (__init__). This was a design choice made by LangChain to make sure that once a document loader has been instantiated it has all the information needed to load documents.\n", @@ -235,7 +235,7 @@ "id": "56cb443e-f987-4386-b4ec-975ee129adb2", "metadata": {}, "source": [ - ":::{.callout-tip}\n", + ":::tip\n", "\n", "`load()` can be helpful in an interactive environment such as a jupyter notebook.\n", "\n", diff --git a/docs/docs/how_to/document_loader_directory.ipynb b/docs/docs/how_to/document_loader_directory.ipynb index 32b833ab14d88..2f646e5368269 100644 --- a/docs/docs/how_to/document_loader_directory.ipynb +++ b/docs/docs/how_to/document_loader_directory.ipynb @@ -7,7 +7,7 @@ "source": [ "# How to load documents from a directory\n", "\n", - "LangChain's [DirectoryLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html) implements functionality for reading files from disk into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Here we demonstrate:\n", + "LangChain's [DirectoryLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html) implements functionality for reading files from disk into LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. Here we demonstrate:\n", "\n", "- How to load from a filesystem, including use of wildcard patterns;\n", "- How to use multithreading for file I/O;\n", @@ -134,7 +134,7 @@ "metadata": {}, "source": [ "## Change loader class\n", - "By default this uses the `UnstructuredLoader` class. To customize the loader, specify the loader class in the `loader_cls` kwarg. Below we show an example using [TextLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.text.TextLoader.html):" + "By default this uses the `UnstructuredLoader` class. To customize the loader, specify the loader class in the `loader_cls` kwarg. Below we show an example using [TextLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.text.TextLoader.html):" ] }, { diff --git a/docs/docs/how_to/document_loader_html.ipynb b/docs/docs/how_to/document_loader_html.ipynb index db35d839a8cb2..b0f963ce2ffd1 100644 --- a/docs/docs/how_to/document_loader_html.ipynb +++ b/docs/docs/how_to/document_loader_html.ipynb @@ -9,7 +9,7 @@ "\n", "The HyperText Markup Language or [HTML](https://en.wikipedia.org/wiki/HTML) is the standard markup language for documents designed to be displayed in a web browser.\n", "\n", - "This covers how to load `HTML` documents into a LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n", + "This covers how to load `HTML` documents into a LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n", "\n", "Parsing HTML files often requires specialized tools. Here we demonstrate parsing via [Unstructured](https://unstructured-io.github.io/unstructured/) and [BeautifulSoup4](https://beautiful-soup-4.readthedocs.io/en/latest/), which can be installed via pip. Head over to the integrations page to find integrations with additional services, such as [Azure AI Document Intelligence](/docs/integrations/document_loaders/azure_document_intelligence) or [FireCrawl](/docs/integrations/document_loaders/firecrawl).\n", "\n", diff --git a/docs/docs/how_to/document_loader_json.mdx b/docs/docs/how_to/document_loader_json.mdx index b88e37aa801e0..83af3fdf93ef0 100644 --- a/docs/docs/how_to/document_loader_json.mdx +++ b/docs/docs/how_to/document_loader_json.mdx @@ -4,8 +4,8 @@ [JSON Lines](https://jsonlines.org/) is a file format where each line is a valid JSON value. -LangChain implements a [JSONLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html) -to convert JSON and JSONL data into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) +LangChain implements a [JSONLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html) +to convert JSON and JSONL data into LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects. It uses a specified [jq schema](https://en.wikipedia.org/wiki/Jq_(programming_language)) to parse the JSON files, allowing for the extraction of specific fields into the content and metadata of the LangChain Document. @@ -41,10 +41,7 @@ data = json.loads(Path(file_path).read_text()) ```python pprint(data) ``` - - - -``` +```output {'image': {'creation_timestamp': 1675549016, 'uri': 'image_of_the_chat.jpg'}, 'is_still_participant': True, 'joinable_mode': {'link': '', 'mode': 1}, @@ -91,7 +88,6 @@ pprint(data) 'title': 'User 1 and User 2 chat'} ``` - ## Using `JSONLoader` @@ -115,9 +111,7 @@ data = loader.load() pprint(data) ``` - - -``` +```output [Document(page_content='Bye!', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 1}), Document(page_content='Oh no worries! Bye', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 2}), Document(page_content='No Im sorry it was my mistake, the blue one is not for sale', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 3}), @@ -131,7 +125,6 @@ pprint(data) Document(page_content='Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 11})] ``` - ### JSON Lines file @@ -144,9 +137,7 @@ file_path = './example_data/facebook_chat_messages.jsonl' pprint(Path(file_path).read_text()) ``` - - -``` +```output ('{"sender_name": "User 2", "timestamp_ms": 1675597571851, "content": "Bye!"}\n' '{"sender_name": "User 1", "timestamp_ms": 1675597435669, "content": "Oh no ' 'worries! Bye"}\n' @@ -154,7 +145,6 @@ pprint(Path(file_path).read_text()) 'sorry it was my mistake, the blue one is not for sale"}\n') ``` - ```python @@ -171,15 +161,12 @@ data = loader.load() pprint(data) ``` - - -``` +```output [Document(page_content='Bye!', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 1}), Document(page_content='Oh no worries! Bye', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 2}), Document(page_content='No Im sorry it was my mistake, the blue one is not for sale', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 3})] ``` - Another option is to set `jq_schema='.'` and provide `content_key`: @@ -198,15 +185,12 @@ data = loader.load() pprint(data) ``` - - -``` +```output [Document(page_content='User 2', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 1}), Document(page_content='User 1', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 2}), Document(page_content='User 2', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat_messages.jsonl', 'seq_num': 3})] ``` - ### JSON file with jq schema `content_key` @@ -218,9 +202,7 @@ file_path = './sample.json' pprint(Path(file_path).read_text()) ``` - - -```json +```outputjson {"data": [ {"attributes": { "message": "message1", @@ -234,7 +216,6 @@ pprint(Path(file_path).read_text()) "id": "2"}]} ``` - ```python @@ -252,14 +233,11 @@ data = loader.load() pprint(data) ``` - - -``` +```output [Document(page_content='message1', metadata={'source': '/path/to/sample.json', 'seq_num': 1}), Document(page_content='message2', metadata={'source': '/path/to/sample.json', 'seq_num': 2})] ``` - ## Extracting metadata @@ -309,9 +287,7 @@ data = loader.load() pprint(data) ``` - - -``` +```output [Document(page_content='Bye!', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 1, 'sender_name': 'User 2', 'timestamp_ms': 1675597571851}), Document(page_content='Oh no worries! Bye', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 2, 'sender_name': 'User 1', 'timestamp_ms': 1675597435669}), Document(page_content='No Im sorry it was my mistake, the blue one is not for sale', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 3, 'sender_name': 'User 2', 'timestamp_ms': 1675596277579}), @@ -325,7 +301,6 @@ pprint(data) Document(page_content='Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!', metadata={'source': '/Users/avsolatorio/WBG/langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 11, 'sender_name': 'User 1', 'timestamp_ms': 1675549022673})] ``` - Now, you will see that the documents contain the metadata associated with the content we extracted. @@ -368,9 +343,7 @@ data = loader.load() pprint(data) ``` - - -``` +```output [Document(page_content='Bye!', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 1, 'sender_name': 'User 2', 'timestamp_ms': 1675597571851}), Document(page_content='Oh no worries! Bye', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 2, 'sender_name': 'User 1', 'timestamp_ms': 1675597435669}), Document(page_content='No Im sorry it was my mistake, the blue one is not for sale', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 3, 'sender_name': 'User 2', 'timestamp_ms': 1675596277579}), @@ -384,7 +357,6 @@ pprint(data) Document(page_content='Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!', metadata={'source': 'langchain/docs/modules/indexes/document_loaders/examples/example_data/facebook_chat.json', 'seq_num': 11, 'sender_name': 'User 1', 'timestamp_ms': 1675549022673})] ``` - ## Common JSON structures with jq schema diff --git a/docs/docs/how_to/document_loader_markdown.ipynb b/docs/docs/how_to/document_loader_markdown.ipynb index 228703d5b14d6..385d3f687aaf0 100644 --- a/docs/docs/how_to/document_loader_markdown.ipynb +++ b/docs/docs/how_to/document_loader_markdown.ipynb @@ -9,14 +9,14 @@ "\n", "[Markdown](https://en.wikipedia.org/wiki/Markdown) is a lightweight markup language for creating formatted text using a plain-text editor.\n", "\n", - "Here we cover how to load `Markdown` documents into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n", + "Here we cover how to load `Markdown` documents into LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects that we can use downstream.\n", "\n", "We will cover:\n", "\n", "- Basic usage;\n", "- Parsing of Markdown into elements such as titles, list items, and text.\n", "\n", - "LangChain implements an [UnstructuredMarkdownLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) object which requires the [Unstructured](https://unstructured-io.github.io/unstructured/) package. First we install it:" + "LangChain implements an [UnstructuredMarkdownLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) object which requires the [Unstructured](https://unstructured-io.github.io/unstructured/) package. First we install it:" ] }, { diff --git a/docs/docs/how_to/document_loader_office_file.mdx b/docs/docs/how_to/document_loader_office_file.mdx index 30e6fa94d89e4..6d2ef5faad005 100644 --- a/docs/docs/how_to/document_loader_office_file.mdx +++ b/docs/docs/how_to/document_loader_office_file.mdx @@ -3,7 +3,7 @@ The [Microsoft Office](https://www.office.com/) suite of productivity software includes Microsoft Word, Microsoft Excel, Microsoft PowerPoint, Microsoft Outlook, and Microsoft OneNote. It is available for Microsoft Windows and macOS operating systems. It is also available on Android and iOS. This covers how to load commonly used file formats including `DOCX`, `XLSX` and `PPTX` documents into a LangChain -[Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) +[Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) object that we can use downstream. diff --git a/docs/docs/how_to/document_loader_pdf.ipynb b/docs/docs/how_to/document_loader_pdf.ipynb index 1424887acb35f..4daac5a7f56c6 100644 --- a/docs/docs/how_to/document_loader_pdf.ipynb +++ b/docs/docs/how_to/document_loader_pdf.ipynb @@ -9,13 +9,48 @@ "\n", "[Portable Document Format (PDF)](https://en.wikipedia.org/wiki/PDF), standardized as ISO 32000, is a file format developed by Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems.\n", "\n", - "This guide covers how to load `PDF` documents into the LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) format that we use downstream.\n", + "This guide covers how to load `PDF` documents into the LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) format that we use downstream.\n", "\n", - "LangChain integrates with a host of PDF parsers. Some are simple and relatively low-level; others will support OCR and image-processing, or perform advanced document layout analysis. The right choice will depend on your application. Below we enumerate the possibilities.\n", + "Text in PDFs is typically represented via text boxes. They may also contain images. A PDF parser might do some combination of the following:\n", "\n", - "## Using PyPDF\n", + "- Agglomerate text boxes into lines, paragraphs, and other structures via heuristics or ML inference;\n", + "- Run [OCR](https://en.wikipedia.org/wiki/Optical_character_recognition) on images to detect text therein;\n", + "- Classify text as belonging to paragraphs, lists, tables, or other structures;\n", + "- Structure text into table rows and columns, or key-value pairs.\n", "\n", - "Here we load a PDF using `pypdf` into array of documents, where each document contains the page content and metadata with `page` number." + "LangChain integrates with a host of PDF parsers. Some are simple and relatively low-level; others will support OCR and image-processing, or perform advanced document layout analysis. The right choice will depend on your needs. Below we enumerate the possibilities.\n", + "\n", + "We will demonstrate these approaches on a [sample file](https://github.com/langchain-ai/langchain/blob/master/libs/community/tests/integration_tests/examples/layout-parser-paper.pdf):" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3b5c65c1-1f12-4dc1-98f0-9a5b2bf8ebc2", + "metadata": {}, + "outputs": [], + "source": [ + "file_path = (\n", + " \"../../docs/integrations/document_loaders/example_data/layout-parser-paper.pdf\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "d5a5bc0d-4e92-4c0d-94c8-5699c5a2a2db", + "metadata": {}, + "source": [ + ":::info A note on multimodal models\n", + "\n", + "Many modern LLMs support inference over multimodal inputs (e.g., images). In some applications -- such as question-answering over PDFs with complex layouts, diagrams, or scans -- it may be advantageous to skip the PDF parsing, instead casting a PDF page to an image and passing it to a model directly. We demonstrate an example of this in the [Use of multimodal models](/docs/how_to/document_loader_pdf/#use-of-multimodal-models) section below.\n", + "\n", + ":::\n", + "\n", + "## Simple and fast text extraction\n", + "\n", + "If you are looking for a simple string representation of text that is embedded in a PDF, the method below is appropriate. It will return a list of [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects-- one per page-- containing a single string of the page's text in the Document's `page_content` attribute. It will not parse text in images or scanned PDF pages. Under the hood it uses the [pypydf](https://pypdf.readthedocs.io/en/stable/) Python library.\n", + "\n", + "LangChain [document loaders](/docs/concepts/#document-loaders) implement `lazy_load` and its async variant, `alazy_load`, which return iterators of `Document` objects. We will use these below." ] }, { @@ -25,36 +60,82 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install --upgrade --quiet pypdf" + "%pip install -qU pypdf" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "0746557c-6f65-43a4-a15e-8d270e6c1349", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_community.document_loaders import PyPDFLoader\n", + "\n", + "loader = PyPDFLoader(file_path)\n", + "pages = []\n", + "async for page in loader.alazy_load():\n", + " pages.append(page)" ] }, { "cell_type": "code", "execution_count": 3, - "id": "7d8ccd0b-8415-4916-af32-0e6d30b9496b", + "id": "839bde4a-e490-413e-93a4-cce4468f2f34", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "Document(page_content='LayoutParser : A Unified Toolkit for Deep\\nLearning Based Document Image Analysis\\nZejiang Shen1( \\x00), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\\nLee4, Jacob Carlson3, and Weining Li5\\n1Allen Institute for AI\\nshannons@allenai.org\\n2Brown University\\nruochen zhang@brown.edu\\n3Harvard University\\n{melissadell,jacob carlson }@fas.harvard.edu\\n4University of Washington\\nbcgl@cs.washington.edu\\n5University of Waterloo\\nw422li@uwaterloo.ca\\nAbstract. Recent advances in document image analysis (DIA) have been\\nprimarily driven by the application of neural networks. Ideally, research\\noutcomes could be easily deployed in production and extended for further\\ninvestigation. However, various factors like loosely organized codebases\\nand sophisticated model configurations complicate the easy reuse of im-\\nportant innovations by a wide audience. Though there have been on-going\\nefforts to improve reusability and simplify deep learning (DL) model\\ndevelopment in disciplines like natural language processing and computer\\nvision, none of them are optimized for challenges in the domain of DIA.\\nThis represents a major gap in the existing toolkit, as DIA is central to\\nacademic research across a wide range of disciplines in the social sciences\\nand humanities. This paper introduces LayoutParser , an open-source\\nlibrary for streamlining the usage of DL in DIA research and applica-\\ntions. The core LayoutParser library comes with a set of simple and\\nintuitive interfaces for applying and customizing DL models for layout de-\\ntection, character recognition, and many other document processing tasks.\\nTo promote extensibility, LayoutParser also incorporates a community\\nplatform for sharing both pre-trained models and full document digiti-\\nzation pipelines. We demonstrate that LayoutParser is helpful for both\\nlightweight and large-scale digitization pipelines in real-word use cases.\\nThe library is publicly available at https://layout-parser.github.io .\\nKeywords: Document Image Analysis ·Deep Learning ·Layout Analysis\\n·Character Recognition ·Open Source library ·Toolkit.\\n1 Introduction\\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\\ndocument image analysis (DIA) tasks including document image classification [ 11,arXiv:2103.15348v2 [cs.CV] 21 Jun 2021', metadata={'source': '../../docs/integrations/document_loaders/example_data/layout-parser-paper.pdf', 'page': 0})" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "{'source': '../../docs/integrations/document_loaders/example_data/layout-parser-paper.pdf', 'page': 0}\n", + "\n", + "LayoutParser : A Unified Toolkit for Deep\n", + "Learning Based Document Image Analysis\n", + "Zejiang Shen1( \u0000), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\n", + "Lee4, Jacob Carlson3, and Weining Li5\n", + "1Allen Institute for AI\n", + "shannons@allenai.org\n", + "2Brown University\n", + "ruochen zhang@brown.edu\n", + "3Harvard University\n", + "{melissadell,jacob carlson }@fas.harvard.edu\n", + "4University of Washington\n", + "bcgl@cs.washington.edu\n", + "5University of Waterloo\n", + "w422li@uwaterloo.ca\n", + "Abstract. Recent advances in document image analysis (DIA) have been\n", + "primarily driven by the application of neural networks. Ideally, research\n", + "outcomes could be easily deployed in production and extended for further\n", + "investigation. However, various factors like loosely organized codebases\n", + "and sophisticated model configurations complicate the easy reuse of im-\n", + "portant innovations by a wide audience. Though there have been on-going\n", + "efforts to improve reusability and simplify deep learning (DL) model\n", + "development in disciplines like natural language processing and computer\n", + "vision, none of them are optimized for challenges in the domain of DIA.\n", + "This represents a major gap in the existing toolkit, as DIA is central to\n", + "academic research across a wide range of disciplines in the social sciences\n", + "and humanities. This paper introduces LayoutParser , an open-source\n", + "library for streamlining the usage of DL in DIA research and applica-\n", + "tions. The core LayoutParser library comes with a set of simple and\n", + "intuitive interfaces for applying and customizing DL models for layout de-\n", + "tection, character recognition, and many other document processing tasks.\n", + "To promote extensibility, LayoutParser also incorporates a community\n", + "platform for sharing both pre-trained models and full document digiti-\n", + "zation pipelines. We demonstrate that LayoutParser is helpful for both\n", + "lightweight and large-scale digitization pipelines in real-word use cases.\n", + "The library is publicly available at https://layout-parser.github.io .\n", + "Keywords: Document Image Analysis ·Deep Learning ·Layout Analysis\n", + "·Character Recognition ·Open Source library ·Toolkit.\n", + "1 Introduction\n", + "Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of\n", + "document image analysis (DIA) tasks including document image classification [ 11,arXiv:2103.15348v2 [cs.CV] 21 Jun 2021\n" + ] } ], "source": [ - "from langchain_community.document_loaders import PyPDFLoader\n", - "\n", - "file_path = (\n", - " \"../../docs/integrations/document_loaders/example_data/layout-parser-paper.pdf\"\n", - ")\n", - "loader = PyPDFLoader(file_path)\n", - "pages = loader.load_and_split()\n", - "\n", - "pages[0]" + "print(f\"{pages[0].metadata}\\n\")\n", + "print(pages[0].page_content)" ] }, { @@ -62,27 +143,26 @@ "id": "78ce6d1d-86cc-45e3-8259-e21fbd2c7e6c", "metadata": {}, "source": [ - "An advantage of this approach is that documents can be retrieved with page numbers.\n", + "Note that the metadata of each document stores the corresponding page number.\n", "\n", "### Vector search over PDFs\n", "\n", - "Once we have loaded PDFs into LangChain `Document` objects, we can index them (e.g., a RAG application) in the usual way:" + "Once we have loaded PDFs into LangChain `Document` objects, we can index them (e.g., a RAG application) in the usual way. Below we use OpenAI embeddings, although any LangChain [embeddings](https://python.langchain.com/docs/concepts/#embedding-models) model will suffice." ] }, { "cell_type": "code", "execution_count": null, - "id": "c3b932bb", + "id": "a5391b1b-2b1b-401e-a6ee-381b7165a54a", "metadata": {}, "outputs": [], "source": [ - "%pip install --upgrade --quiet faiss-cpu \n", - "# use `pip install faiss-gpu` for CUDA GPU support" + "%pip install -qU langchain-openai" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "7ba35f1c-0a85-4f2f-a56e-3a994c69180d", "metadata": {}, "outputs": [], @@ -90,12 +170,13 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "e0eaec77-f5cf-4172-8e39-41e1520eabba", "metadata": {}, "outputs": [ @@ -103,13 +184,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "13: 14 Z. Shen et al.\n", + "Page 13: 14 Z. Shen et al.\n", "6 Conclusion\n", "LayoutParser provides a comprehensive toolkit for deep learning-based document\n", "image analysis. The off-the-shelf library is easy to install, and can be used to\n", "build flexible and accurate pipelines for processing documents with complicated\n", "structures. It also supports hi\n", - "0: LayoutParser : A Unified Toolkit for Deep\n", + "\n", + "Page 0: LayoutParser : A Unified Toolkit for Deep\n", "Learning Based Document Image Analysis\n", "Zejiang Shen1( \u0000), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\n", "Lee4, Jacob Carlson3, and Weining Li5\n", @@ -118,72 +200,752 @@ "2Brown University\n", "ruochen zhang@brown.edu\n", "3Harvard University\n", + "\n", "\n" ] } ], "source": [ - "from langchain_community.vectorstores import FAISS\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import OpenAIEmbeddings\n", "\n", - "faiss_index = FAISS.from_documents(pages, OpenAIEmbeddings())\n", - "docs = faiss_index.similarity_search(\"What is LayoutParser?\", k=2)\n", + "vector_store = InMemoryVectorStore.from_documents(pages, OpenAIEmbeddings())\n", + "docs = vector_store.similarity_search(\"What is LayoutParser?\", k=2)\n", "for doc in docs:\n", - " print(str(doc.metadata[\"page\"]) + \":\", doc.page_content[:300])" + " print(f'Page {doc.metadata[\"page\"]}: {doc.page_content[:300]}\\n')" ] }, { "cell_type": "markdown", - "id": "9ac123ca-386f-4b06-b3a7-9205ea3d6da7", + "id": "ef200c75-a141-45d9-acdc-261e4d632d1b", "metadata": {}, "source": [ - "### Extract text from images\n", + "## Layout analysis and extraction of text from images\n", + "\n", + "If you require a more granular segmentation of text (e.g., into distinct paragraphs, titles, tables, or other structures) or require extraction of text from images, the method below is appropriate. It will return a list of [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, where each object represents a structure on the page. The Document's metadata stores the page number and other information related to the object (e.g., it might store table rows and columns in the case of a table object).\n", "\n", - "Some PDFs contain images of text -- e.g., within scanned documents, or figures. Using the `rapidocr-onnxruntime` package we can extract images as text as well:" + "Under the hood it uses the `langchain-unstructured` library. See the [integration docs](/docs/integrations/document_loaders/unstructured_file/) for more information about using [Unstructured](https://docs.unstructured.io/welcome) with LangChain.\n", + "\n", + "Unstructured supports multiple parameters for PDF parsing:\n", + "- `strategy` (e.g., `\"fast\"` or `\"hi-res\"`)\n", + "- API or local processing. You will need an API key to use the API.\n", + "\n", + "The [hi-res](https://docs.unstructured.io/api-reference/how-to/choose-hi-res-model) strategy provides support for document layout analysis and OCR. We demonstrate it below via the API. See [local parsing](/docs/how_to/document_loader_pdf/#local-parsing) section below for considerations when running locally." ] }, { "cell_type": "code", "execution_count": null, - "id": "347f67fb-67f3-4be7-9af3-23a73cf00f71", + "id": "b448489a-c1a5-43c8-a69f-1c1e7bc26b69", "metadata": {}, "outputs": [], "source": [ - "%pip install --upgrade --quiet rapidocr-onnxruntime" + "%pip install -qU langchain-unstructured" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "dc403c36-25a0-4fc0-b31a-cc2022f8e5a9", + "metadata": {}, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Unstructured API Key: ········\n" + ] + } + ], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "if \"UNSTRUCTURED_API_KEY\" not in os.environ:\n", + " os.environ[\"UNSTRUCTURED_API_KEY\"] = getpass.getpass(\"Unstructured API Key:\")" + ] + }, + { + "cell_type": "markdown", + "id": "12a024db-bec2-4f21-b4a8-dd6b94fd0d21", + "metadata": {}, + "source": [ + "As before, we initialize a loader and load documents lazily:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "be0575c3-566b-4e26-99c8-ae69b53cfb09", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: Preparing to split document for partition.\n", + "INFO: Starting page number set to 1\n", + "INFO: Allow failed set to 0\n", + "INFO: Concurrency level set to 5\n", + "INFO: Splitting pages 1 to 16 (16 total)\n", + "INFO: Determined optimal split size of 4 pages.\n", + "INFO: Partitioning 4 files with 4 page(s) each.\n", + "INFO: Partitioning set #1 (pages 1-4).\n", + "INFO: Partitioning set #2 (pages 5-8).\n", + "INFO: Partitioning set #3 (pages 9-12).\n", + "INFO: Partitioning set #4 (pages 13-16).\n", + "INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general \"HTTP/1.1 200 OK\"\n", + "INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general \"HTTP/1.1 200 OK\"\n", + "INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general \"HTTP/1.1 200 OK\"\n", + "INFO: HTTP Request: POST https://api.unstructuredapp.io/general/v0/general \"HTTP/1.1 200 OK\"\n", + "INFO: Successfully partitioned set #1, elements added to the final result.\n", + "INFO: Successfully partitioned set #2, elements added to the final result.\n", + "INFO: Successfully partitioned set #3, elements added to the final result.\n", + "INFO: Successfully partitioned set #4, elements added to the final result.\n" + ] + } + ], + "source": [ + "from langchain_unstructured import UnstructuredLoader\n", + "\n", + "loader = UnstructuredLoader(\n", + " file_path=file_path,\n", + " strategy=\"hi_res\",\n", + " partition_via_api=True,\n", + " coordinates=True,\n", + ")\n", + "docs = []\n", + "for doc in loader.lazy_load():\n", + " docs.append(doc)" + ] + }, + { + "cell_type": "markdown", + "id": "a9f20eff-3df7-425d-84ab-70a76e5f22ce", + "metadata": {}, + "source": [ + "Here we recover 171 distinct structures over the 16 page document:" ] }, { "cell_type": "code", "execution_count": 8, - "id": "babc138a-2188-49f7-a8d6-3570fa3ad802", + "id": "35945b71-f2ca-4480-be18-c8fcc0a7035f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "171\n" + ] + } + ], + "source": [ + "print(len(docs))" + ] + }, + { + "cell_type": "markdown", + "id": "619eb7c5-69d9-4d8b-9aa1-fbdd015bb8cd", + "metadata": {}, + "source": [ + "We can use the document metadata to recover content from a single page:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "648876b4-a686-489d-8a82-d7df4e78754c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis\n", + "1 2 0 2 n u J 1 2 ] V C . s c [ 2 v 8 4 3 5 1 . 3 0 1 2 : v i X r a\n", + "Zejiang Shen® (<), Ruochen Zhang?, Melissa Dell®, Benjamin Charles Germain Lee?, Jacob Carlson®, and Weining Li®\n", + "1 Allen Institute for AI shannons@allenai.org 2 Brown University ruochen zhang@brown.edu 3 Harvard University {melissadell,jacob carlson}@fas.harvard.edu 4 University of Washington bcgl@cs.washington.edu 5 University of Waterloo w422li@uwaterloo.ca\n", + "Abstract. Recent advances in document image analysis (DIA) have been primarily driven by the application of neural networks. Ideally, research outcomes could be easily deployed in production and extended for further investigation. However, various factors like loosely organized codebases and sophisticated model configurations complicate the easy reuse of im- portant innovations by a wide audience. Though there have been on-going efforts to improve reusability and simplify deep learning (DL) model development in disciplines like natural language processing and computer vision, none of them are optimized for challenges in the domain of DIA. This represents a major gap in the existing toolkit, as DIA is central to academic research across a wide range of disciplines in the social sciences and humanities. This paper introduces LayoutParser, an open-source library for streamlining the usage of DL in DIA research and applica- tions. The core LayoutParser library comes with a set of simple and intuitive interfaces for applying and customizing DL models for layout de- tection, character recognition, and many other document processing tasks. To promote extensibility, LayoutParser also incorporates a community platform for sharing both pre-trained models and full document digiti- zation pipelines. We demonstrate that LayoutParser is helpful for both lightweight and large-scale digitization pipelines in real-word use cases. The library is publicly available at https://layout-parser.github.io.\n", + "Keywords: Document Image Analysis · Deep Learning · Layout Analysis · Character Recognition · Open Source library · Toolkit.\n", + "1 Introduction\n", + "Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of document image analysis (DIA) tasks including document image classification [11,\n" + ] + } + ], + "source": [ + "first_page_docs = [doc for doc in docs if doc.metadata.get(\"page_number\") == 1]\n", + "\n", + "for doc in first_page_docs:\n", + " print(doc.page_content)" + ] + }, + { + "cell_type": "markdown", + "id": "41c07f49-091d-4197-afea-c36f30196f31", + "metadata": {}, + "source": [ + "### Extracting tables and other structures\n", + "\n", + "Each `Document` we load represents a structure, like a title, paragraph, or table.\n", + "\n", + "Some structures may be of special interest for indexing or question-answering tasks. These structures may be:\n", + "1. Classified for easy identification;\n", + "2. Parsed into a more structured representation.\n", + "\n", + "Below, we identify and extract a table:" + ] + }, + { + "cell_type": "markdown", + "id": "4cccf340-e272-41af-8280-6e97ca687d45", + "metadata": {}, + "source": [ + "
\n", + "Click to expand code for rendering pages" + ] + }, + { + "cell_type": "markdown", + "id": "c9afb64a-eee8-4965-a9f2-176b0224926a", + "metadata": {}, + "source": [ + "%pip install -qU matplotlib PyMuPDF pillow" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5cedb6a7-bd75-4270-9d49-b6806f7cd7c4", + "metadata": {}, + "outputs": [], + "source": [ + "import fitz\n", + "import matplotlib.patches as patches\n", + "import matplotlib.pyplot as plt\n", + "from PIL import Image\n", + "\n", + "\n", + "def plot_pdf_with_boxes(pdf_page, segments):\n", + " pix = pdf_page.get_pixmap()\n", + " pil_image = Image.frombytes(\"RGB\", [pix.width, pix.height], pix.samples)\n", + "\n", + " fig, ax = plt.subplots(1, figsize=(10, 10))\n", + " ax.imshow(pil_image)\n", + " categories = set()\n", + " category_to_color = {\n", + " \"Title\": \"orchid\",\n", + " \"Image\": \"forestgreen\",\n", + " \"Table\": \"tomato\",\n", + " }\n", + " for segment in segments:\n", + " points = segment[\"coordinates\"][\"points\"]\n", + " layout_width = segment[\"coordinates\"][\"layout_width\"]\n", + " layout_height = segment[\"coordinates\"][\"layout_height\"]\n", + " scaled_points = [\n", + " (x * pix.width / layout_width, y * pix.height / layout_height)\n", + " for x, y in points\n", + " ]\n", + " box_color = category_to_color.get(segment[\"category\"], \"deepskyblue\")\n", + " categories.add(segment[\"category\"])\n", + " rect = patches.Polygon(\n", + " scaled_points, linewidth=1, edgecolor=box_color, facecolor=\"none\"\n", + " )\n", + " ax.add_patch(rect)\n", + "\n", + " # Make legend\n", + " legend_handles = [patches.Patch(color=\"deepskyblue\", label=\"Text\")]\n", + " for category in [\"Title\", \"Image\", \"Table\"]:\n", + " if category in categories:\n", + " legend_handles.append(\n", + " patches.Patch(color=category_to_color[category], label=category)\n", + " )\n", + " ax.axis(\"off\")\n", + " ax.legend(handles=legend_handles, loc=\"upper right\")\n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "\n", + "def render_page(doc_list: list, page_number: int, print_text=True) -> None:\n", + " pdf_page = fitz.open(file_path).load_page(page_number - 1)\n", + " page_docs = [\n", + " doc for doc in doc_list if doc.metadata.get(\"page_number\") == page_number\n", + " ]\n", + " segments = [doc.metadata for doc in page_docs]\n", + " plot_pdf_with_boxes(pdf_page, segments)\n", + " if print_text:\n", + " for doc in page_docs:\n", + " print(f\"{doc.page_content}\\n\")" + ] + }, + { + "cell_type": "markdown", + "id": "91a9e09d-fed1-42aa-9a8e-07aeedbc5388", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "6b44ab2e-52df-4af6-9950-b3f5b46a9b47", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAPdCAYAAADS42RBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhcV33g/79r39furt53dUvd2nfbsiQLr4DNYggJIRgSJpPfzBDIhCQk3wSTDElIwgRIAsMEyABPMI4B27HBG5at3dr3pVu973t3de173d8f4l661S1LsrVY6s/reXiwqm/de+5SVedzzueco1MURUEIIYQQQgixYOhvdgGEEEIIIYQQN5YEAUIIIYQQQiwwEgQIIYQQQgixwEgQIIQQQgghxAIjQYAQQgghhBALjAQBQgghhBBCLDASBAghhBBCCLHASBAghBBCCCHEAiNBgBBCCCGEEAuMBAFCCCGEEEIsMBIECCGEEEIIscBIECCEEEIIIcQCI0GAEEIIIYQQC4wEAUIIIYQQQiwwxptdACGEEEIIcXvL5XJkMpmbXYzbgslkwmAwvO39SBAghBBCCCGuC0VRGBkZYXp6+mYX5bbi9XopKSlBp9O95X1IECCEEEIIIa4LNQAIBALY7fa3VWkVF4KqeDzO2NgYAKWlpW95XxIECCGEEEKIay6Xy2kBQEFBwc0uzm3DZrMBMDY2RiAQeMupQTIwWAghhBBCXHPqGAC73X6TS3L7Ua/p2xlnIUGAEEIIIYS4biQF6Nq7FtdUggAhhBBCCCEWGBkTIIQQQgghbqi+JEzcwBlDC01QZb1xx7sVSBAghBBCCCFumL4kLD4EyfyNO6ZVD+c3XFkgcLlUmy9+8Yv85V/+5VsqR09PD7W1tRw/fpxVq1a9pX1cKxIECCGEEEKIG2Yic2MDALhwvInMlQUBw8PD2n8/9dRTPP7445w/f157zel0Xo8i3nAyJkAIIYQQQohfKikp0f7n8XjQ6XSzXvuP//gPmpqasFqtLFmyhP/zf/6P9t7f+Z3fYcWKFaRSKQDS6TSrV6/mscceA6C2thaA1atXo9PpuOeee274+akkCBBCCCGEEOIKPPHEEzz++OP8zd/8DS0tLfzt3/4tX/jCF/jBD34AwD//8z8Ti8X40z/9UwD+/M//nOnpab7xjW8AcOjQIQC2b9/O8PAwzzzzzM05ESQdSAghhBBCiCvyxS9+kX/8x3/k0UcfBS607J87d45//dd/5ROf+AROp5Mf/vCHbN26FZfLxde//nV27NiB2+0GoKioCICCggJKSkpu2nmABAFCCCGEEEJcViwWo7Ozk0996lP87u/+rvZ6NpvF4/Fo/77zzjv5oz/6I770pS/x+c9/nrvvvvtmFPeyJAgQQgghhBDiMqLRKADf+c532Lhx46y/GQwG7b/z+Tz79u3DYDDQ0dFxQ8t4NWRMgBBCCCGEEJdRXFxMWVkZXV1dLFq0aNb/1AG/AF/5yldobW1l165dvPzyy3zve9/T/mY2mwHI5XI3vPwXk54AIYQQQgghrsBf/dVf8ZnPfAaPx8NDDz1EKpXiyJEjBINB/vAP/5Djx4/z+OOP89Of/pRNmzbx1a9+lc9+9rNs3bqVuro6AoEANpuNl19+mYqKCqxW66xUohtJegKEEEIIIYS4Av/lv/wXvvvd7/K9732P5cuXs3XrVr7//e9TW1tLMpnkt37rt/jkJz/JI488AsB//a//lW3btvHxj3+cXC6H0Wjkn//5n/nXf/1XysrKeP/733/TzkWnKIpy044uhBBCCCFuS8lkku7ubmpra7Faf7VK1zt9xeBbwaWu7dWQdCAhhBBCCHHDVFkvVMgnMjfumIWm2ycAuFYkCBBCCCGEEDdUlVUq5TebjAkQQgghhBBigZEgQAghhBBCiAVGggAhhBBCCCEWGAkChBBCCCGEWGAkCBBCCCGEEGKBkSBACCGEEEKIBUaCACGEEEIIIRYYWSdACCGEEELcUJlghlw0e8OOZ3AaMflM12x/n/zkJ5menuY///M/L7nNzp072bZtG8FgEK/Xe82Ofa1IECCEEEIIIW6YTDBD7992omSVG3ZMnVFH9f9Xf0WBgE6ne9O/f/GLX+Sf/umfUJRflf+ee+5h1apVfP3rX3+7Rb1hJAgQQgghhBA3TC6avaEBAICSVchFs1cUBAwPD2v//dRTT/H4449z/vx57TWn04nT6bwu5byRZEyAEEIIIYQQv1RSUqL9z+PxoNPpZr3mdDr55Cc/yQc+8AHgQmrQrl27+Kd/+id0Oh06nY6enp5597137142b96MzWajsrKSz3zmM8RisRt3cjNIECCEEEIIIcRb9E//9E/ceeed/O7v/i7Dw8MMDw9TWVk5Z7vOzk4eeughPvShD3Hq1Cmeeuop9u7dy6c//embUGpJBxJCCCGEEOIt83g8mM1m7HY7JSUll9zuy1/+Mh/72Mf4gz/4AwAaGhr453/+Z7Zu3cq3vvUtrFbrDSrxBRIECCGEEEIIcZ2dPHmSU6dO8cQTT2ivKYpCPp+nu7ubpqamG1oeCQKEEEIIIYS4zqLRKL/3e7/HZz7zmTl/q6qquuHlkSBACCGEEEKIt8FsNpPL5d50mzVr1nDu3DkWLVp0g0r15mRgsBBCCCGEEG9DTU0NBw8epKenh4mJCfL5/JxtPv/5z/PGG2/w6U9/mhMnTtDe3s5zzz130wYGSxAghBBCCCFuGIPTiM745gtyXWs6ow6D8/olwPzRH/0RBoOB5uZmioqK6Ovrm7PNihUr2LVrF21tbWzevJnVq1fz+OOPU1ZWdt3K9WZ0yszlzoQQQgghhLgGkskk3d3d1NbWzpn5JhPMkItmb1hZDE7jFS0Udqt4s2t7pWRMgBBCCCGEuKFMPtNtVSm/FUk6kBBCCCGEEAuMBAFCCCGEEEIsMBIECCGEEEIIscBIECCEEEIIIcQCI0GAEEIIIYQQC4wEAUIIIYQQQiwwEgQIIYQQQgixwEgQIIQQQgghxAIji4UJIYQQQogba3IMoqEbdzynBwoCN+RQNTU1/MEf/AF/8Ad/cMltdDodzz77LB/4wAduSJnmI0GAEEIIIYS4cSbH4M8/BdnMjTum0QR/829XFAjodLo3/fsXv/hF/vIv//IaFezmkSBACCGEEELcONHQjQ0A4MLxoqErCgKGh4e1/37qqad4/PHHOX/+vPaa0+m8LkW80WRMgBBCCCGEEL9UUlKi/c/j8aDT6bR/x2IxPvaxj1FcXIzT6WT9+vVs3759zj4ikQgf/ehHcTgclJeX881vfvNNj9nf389HPvIRvF4vfr+f97///fT09FynM7xAggAhhBBCCCGuQDQa5T3veQ+vvfYax48f56GHHuKRRx6hr69v1nZf+cpXWLlyJcePH+dP//RP+exnP8urr7467z4zmQwPPvggLpeLPXv2sG/fPpxOJw899BDpdPq6nYukAwkhhBBCCHEFVq5cycqVK7V/f+lLX+LZZ5/l+eef59Of/rT2+qZNm/jTP/1TABobG9m3bx9f+9rXuP/+++fs86mnniKfz/Pd735XG4/wve99D6/Xy86dO3nggQeuy7lIT4AQQgghhBBXIBqN8kd/9Ec0NTXh9XpxOp20tLTM6Qm488475/y7paVl3n2ePHmSjo4OXC4XTqcTp9OJ3+8nmUzS2dl53c5FegKEEEIIIYS4An/0R3/Eq6++yv/+3/+bRYsWYbPZ+PCHP/y20nai0Shr167liSeemPO3oqKit1PcNyVBgBBCCCGEEFdg3759fPKTn+SDH/wgcKECP98A3gMHDsz5d1NT07z7XLNmDU899RSBQAC3233Ny3wpkg4khBBCCCHEFWhoaOCZZ57hxIkTnDx5kt/8zd8kn8/P2W7fvn38wz/8A21tbXzzm9/kJz/5CZ/97Gfn3efHPvYxCgsLef/738+ePXvo7u5m586dfOYzn2FgYOC6nYsEAUIIIYQQ4sZxei4s3nUjGU0Xjvs2ffWrX8Xn83HXXXfxyCOP8OCDD7JmzZo5233uc5/jyJEjrF69mr/+67/mq1/9Kg8++OC8+7Tb7ezevZuqqioeffRRmpqa+NSnPkUymbyuPQM6RVGU67Z3IYQQQgixICWTSbq7u6mtrcVqtc7+4+TYhcW7bhSn54oWCrtVvOm1vUIyJkAIIYQQQtxYBYHbqlJ+K5J0ICGEEEIIIRYYCQKEEEIIIYRYYCQIEEIIIYQQYoGRIEAIIYQQQlw3MgfNtXctrqkEAUIIIYQQ4pozmS5MAxqPx29ySW4/6jVVr/FbIbMDCSGEEEKIa85gMOD1ehkbGwMuzIev0+lucqlubYqiEI/HGRsbw+v1YjAY3vK+ZJ0AIYQQQghxXSiKwsjICNPT0ze7KLcVr9dLSUnJ2wqqJAgQQgghhBDXVS6XI5PJ3Oxi3BZMJtPb6gFQSRAghBBCCCHEAiMDg4UQQgghhFhgJAgQQgghhBBigZEgQAghhBBCiAVGggAhhBBCCCEWGAkChBBCCCGEWGAkCBBCCCGEEGKBkSBACCGEEEKIBUaCACGEEEIIIRYYCQKEEEIIIYRYYCQIEEIIIYQQYoGRIEAIIYQQQogFRoIAIYQQQgghFhgJAoQQQgghhFhgJAgQQgghhBBigZEgQAghhBBCiAVGggAhhBBCCCEWGAkChBBCCCGEWGAkCBBCCCGEEGKBkSBACCGEEEKIBUaCACGEEEIIIRYYCQKEEEIIIYRYYCQIEEIIIYQQYoGRIEAIIYQQQogFRoIAIYQQQgghFhgJAoQQQgghhFhgJAgQQgghhBBigZEgQAghhBBCiAVGggAhhBBCCCEWGAkChBBCCCGEWGAkCBBCCCGEEGKBkSBACCGEEEKIBUaCACGEEEIIIRYYCQKEEEIIIYRYYCQIEEIIIYQQYoGRIEAIIYQQQogFxnizCyCEEFejLwkTmZtdCiHEO0WhCaqsN7sUQtx6JAgQQtwy+pLQdAji+ZtdEiHEO4VdDy0bbk4gcLlGCQlQxDuZBAFCiFvGROZCAPDDJmiy3+zS3FoURWFgYIDCwkJsNtu822RzWVKpFPF4HBSwO+yYjCZyuRzRWBSD3oDb7cJoNF3RMdPpNJOTk0SjUQKBAG63G51Od8ntc/kcyWSSkeERKiorMBlN6PV6rfx5Ja+V7WJmixmj0YhBb7hsubK5LMFgkGQySSAQIJ1KEwwG8fl9uJyuKzq3SwlOB5kOThMoDmC32d/0fC+WSl+49ulUWnvN6/Nq10FRFHK5LMHpaQAMegMms2neMiuKQjKZJBKJoCgXLpjRaMTr86LX6a+qXG8mn8+TSqcYGhyivKIcs8k8654lU0mikSj5/IXIXW/Q4/N6MRiM6HQ6MpkMyVSSZCIJgNPpxGwxY9AbtHs+MjyC3++f97lticNvtVz4brjRle0raZS4mQGKEJcjQYAQ4pYxNjYGBDj986fwl7m59957MZvNN7wcmUyGsbExnn32WfL5PC6Xi7q6Ou666y5MpiurIN9oigJf+V9/zG/+5m9yxx13EAgE5myTySiMx0P89Vf+mrq6Ot773vdSXV3N+Pg43/1/3+VDH/oQjUWN2O3zn2NraysHDx7kscceY2xsjP/4j/+goaGBdYsX8/SP/pU//uM/5s3qntmsQs/4MD/+t3/is5/9LFVVVdr9Tacz7Nmzh97eXqqqqjhy5Ag7duzgL/7iLxgfHyeRSLBq1SqWLl162WuRTud5adcbnDlzht/8zd/EbrfzxX/5W37jN36DNffc88vrpTA1NcXhw4cpLS2lubmZyclJHA4HDodDq+jO9MILL5BOp6murCTW2sfqzZvR66+8sh2JpHllx2scOXKERYsWsWnTJjr3H2ZiYoKKigruvfde0uk8Tz73AkeOHGH16tU8/PDDFLvmBgH5vEI4n+LvvvNViouLWbJkCUWlpZx74xUmJib42Mc+RkFBwRWX7VJyOYXR0SBPfPsf+exnP0t1dTVW64Uar6JAKJ/iaz/4BjabjYaGBhobG+k8uY/R0VHe+973UlBQQOdQL9/61reor6/n13/91wn4AphMBjKZLIcOHeLFH/6Q3/u932PVqlVvu7zXktoo8f+b3MvRZ39IbW0td955J2vWrMHpcN7UAEWIKyEDg4UQtwyH0wFAZ2cXjY2NGAyXb/W9FhRF4fvf/z5DQ0MA6PV6nE4nx44do6GhgYKCAvr6+nj22WdvSHmuVi6XY2RkhIaGBtra2mhra5t3O4PBoFVyCwoKsNvtmM1mXC4XjY2NVFdXY7FYLnmcsrIytmzZAkBnZyd+v5+ioiJKSkp43/ved9ly6vV6rFYrbrdbazmeKZ/Ps3nzZpYvX05hYSFGo5GmpiY2bNhAcXHxm5ZtJqPRiM1mw+FwkM/n8Xg887aMO51OVq5cSXV1NZFIhH379hGNRuctG8DAwACpVIr6+nqam5uvurVdLZPL5cLn81FeXs6aNWvw+/2Mjo5y8OBBjEYjgUAAp9OJ2+3G4/HMuy+dTofdbsflcuH1eikqKqK6upp169bx0ksvEQ6Hr6psl6LX6zGbzXg8HvL5vNbroHI4HDidTjweD4WFhVRVVbF+/Xp0Oh0nT55kYGAAp9OJw+HQeqnUz7WiKMRiMfr7+5meniaVSl2TMl9rd5Z7+R/338mffOA+PrJqEXcWWFjjkt5K8c4nPQFCiFuGWslLJBOUlZVprbGhUIihoSEGBgZQFIUVK1bgdDqZnp7m1KlTLF++nLGxMZLJJIWFhdTU1HDu3DkmJycxGo3U1NTg9/tpaWnB6XTidDoZHR3FZrPR2NjI0aNHefHFFzGZTCxfvpzi4mI8Hg/hcJjq6moAzpw5w6lTp3jwwQc5ePAgAH6/n/LycoqLizl8+DCRSAS9Xo9eryefz7N161ba2toIBoMX0lyAhoYGKisr6ejoYGJigkQigdFoZPPmzXR1dTEwMEAmk8HlchGJRFi1ahWhUEiruM/XM5LP5xkaGmLr1q384he/oLe3l02bNs2ppOr1ekwmE3a7/UJahvlCio3FYqGoqAi3200ikaCzs5NgMEhdXR2RSISCggKsVisTExP09fVRU1NDV1cXiUSCUChEb28vvb29LF68mEgkwvj4OMlkEovFgsFgIBAIMDw8DEAsFpu3sqfX66msrKS2thaj0YjL5cJms1FYWAhc6J2Jx+O0trbicrkIBoPU19ejKAqRSITp6WmcTqd2zywWi9ZibbFYMJsvpLGMjo7S1tZGdXU1RqORgYEBvF4vOp2OAwcOUF5ejtlsxu12a70+iqIQjUYZGxu7kN6STOJ0OmltbcXpdJJOpzGZTJSVlXHo0CGsViu5XI6CggJqamq059hoNGK1WrHb7VoF3u12U15ezunTpzl06BAbN27E5XJht9ux2WzaOVxMp9NhMplwOBxaalA4HGZ0dJSamhrMZjNTU1OEw2Hy+TzhcJi6ujpyuQspWel0GrPZTCqVwuVyEY1GiUajWK1WDAYDRUVFjI+Pk8lktP1fqgzq+ajBgHpObW1tWCwWli5dqp2v0WjUPh/ZbBa9Xk9JSQkTExOMjY1RWVl5ye+Hm8XpdFJQU0MgEJg3EBLinUqCACHELcNouPCVpVaW1EpsMBjk5MmT7Ny5k3A4zCc+8QkaGxsZHBzkRz/6EY899hiHDx8mlUqxcuVKfD4fP//5zwkGg+TzebZt28bixYvZsWMHTqeT5uZm9uzZg8/no6amhr1799LR0cH+/fvJZrOsWrUKn8+HyWQim83icrm01uRQKMQzzzxDKpXSWj3f/e5388Ybb3Dw4EE8Hg9+vx9FUdi8eTM7duygp6eHYDCI0WjkQx/6EIFAgF27dtHe3q7ldK9evZrz58/z4osvEgqFaGxsJBgMUlZWRm9vL8XFxbjd7nmDgFwuR19fH5s3b+bpp59maGiIZDJ5ybEBbyYSibBjxw5aWlr46Ec/Sk9PD1VVVZSXl3PmzBlefPFFtm3bxvj4OJFIBJPJxOjoKE8//TQPPvggnZ2dnD9/nlgshtfrJZPJsGzZMlpaWrBarZjNZsbHx+dUpIxGI0uWLLlkufx+P11dXQwNDdHY2MjJkyex2WykUinGxsYYHx+nqqqK48eP8573vIdsNjtnH9FolPb2dl599VXuu+8+bDYbL7zwAo2NjSxevJj29nYGBgYIBAJYrdZZqV+RSIRwOEw2m6W3txez2cz58+epqKhgbGwMo9GI2+3m5ZdfxuFwYDQaWb58uRZEvplAIIDJZOLs2bPz/v3CWIEc+Xxeq4SqLfTqeY2NjZHL5Th06BAPPPAATqeToaEh+vr6yGQynD9/HqPRSC6XY2JigomJCYqLi8lms9jtdoaHhwkGg/j9fjKZDM3NzXR1dZHP5ykoKJj3nr2Z2tpadu7cSUFBwbwpXJlMhunpaYxGI2vWrKG/vx+/3/+ODALyuTzRaJSBgQEGBga47777fvlsXJtxF0JcLxIECCFuWWqlo7S0lHvuuQefz8eOHTvYtWsXdrudJUuW8JGPfAQAs9nM/fffT0VFBQMDAwwPD/O1r32NF198kXA4TFdXF+9973v56U9/yurVq2lpadFa3P/4j/+Yc+fO8d/+23+jubkZuFBJAfjWt75FNBqlqqqKj3/841RUVPDYY4/R09PD8ePHefbZZ3n44Yf5n//zf/Lggw+yYcMGPvnJT+LxeNDr9fT09OD1emlubqa0tJTGxkZ6e3vZv38/1dXVrFmzhgMHDnD06FHuvfdeurq66O/vZ8OGDTzwwAPodDqWLFmCTqebN09dURQymQytra2YzWZyuRyhUIjTp0+zYcOGea/rfPtRlZaW4na7cblcrFmzBofDwaFDh7QeD6/XC8CSJUuIRCI0NTVhs9nYuXMnAE888QRVVVUsXrwYs9nMz3/+c9544w3uvfdeVq5cicFgoKqq6qpTad544w2t4rpmzRqCwSAvvvgi3d3d1NbW8uijj1JaWsrPf/5zzp8/z+Tk5Jx97N69mxUrVvCpT31Kq5xv374dk8lEcXExjY2NbNiwgdLSUozGX/186nQ6ysrKKCkpobi4mMrKSv7X//pffP7zn6eiooJf/OIXtLe3U1FRwYYNG+jv7+eBBx6gvr7+is5Np9NhMBjeNP1NHYCtBiJOp1MLmkpKSmhubqa+vp5Fixbxuc99jmXLlmk9OKlUiu7ubg4dOkRpaSm9vb2cPHmS++67jy1btvD1r38dr9fLihUrcDgc/Od//idvvPEGd999N2vXrsXn81FdXX1V90x9Xi/1nqmpKQ4cOIDFYsHtdvOLX/wCvV7Ptm3brtmg5mulqrqK1c2V6HQ6vvzlL7N8+XJcLhdSxRLvdPKECiFuWblcjiNHjnD48GH6+vq46667eOSRR3j11VdJp9MUFBSwdetW/vqv/xpFUbBYLNjtdtLpNAaDQatc5XI50un0rMpFOp3WKvqA9rf+/n7Gx8dZvnw5AH/2Z39GaWkpOp2OdDrNE088wcDAABs3bmTJkiWcPn1a20dTUxP19fX4fD5tn/fccw8FBQWEw2HOnz/PyMgIq1atIpvNkkwmMZlM3HHHHZSVlWmVwLKyslmVoTertIdCIXp6evjt3/5tCgsLqa2tZd++fbz00kvzBgF6vZ6qqiqmp6dJpy/MUqMGEiqz2ayleOh0uqtKgcjlctTU1LBhwwZcLhdr167lz/7szzCZTFqQ8lYkEolZZdTr9cTj8Quz7fzyPHQ6HTqdjmQyOWtbuHC/m5qaMJlMPP300/zhH/7hnGOo17u7u5tAIKAFPBfL5/PEYrFZ78vn81rKl8/nu6oB7adPn2Z6epqHH3543r/ncjleeeUVqquriUajpFIpCgoK5vScqOMJJiYmtF6TYDDIxo0bWbRoEcPDwxiNRrZs2cJ9993Hq6++ys9+9jOmpqZYtmwZ69evx+PxsGrVKr74xS9iMBiueBzGxV5//XWWL1/OihUr5v27wWDA7Xazbds2ADo6Okin04yMjFBaWvqWjnm9HD58mJLF5ZSVlZFMJonH47/saZIqlnhnkydUCHHLGB0dBYppb2/n7//+77U8cJvNRllZGQcOHEBRFNrb2wkEAjQ0NFBUVITNZtMGujqdTiorKzEajfzVX/0VU1NTbNmyhU2bNqHX62lvb+cb3/gGhw8fxuv1cuDAATZu3EhlZSVPP/00Pp+PqqoqioqKaG1tZd++fWzZsoXy8nLy+Tz19fUcOHCAcDjM+Pg4wWCQl19+mfb2dk6cOEEoFCKZTPLBD34Qk8nEM888Myu1ZNu2bdTX17NixQoGBgbYuXMnmUyGNWvW8Oqrr3Lo0CFCoRA6nY6HH36Y2tpadu/ejdvtZvHixTgcDu16TU5Ocvz4cV577TU++clPUlRUhNlsZmxsjDfeeIPDhw+zdu3aWUGE2WzmoYce4jvf+Q4tLS2EQiEymQwFBQXodDrGxsa08RdtbW2cPn2a9vZ26uvrmZ6epr+/n97eXk6fPk00GsVkMuH1eunv76ezs5NHH32UoaEhduzYQX19PalUil//9V+nt7eXY8eOYbPZaG9v5+jRoxQXF8+pLKfTaTo6Ojh//jyjo6Na6/0dd9zBkSNH6Ovr4/Tp05w9e5YHH3yQWCzG5OQku3fvpqmpCYvFQnV1NaFQiPb2doqLizGZTExMTGjHOnv2LD/+8Y9ZvHgx/f39eDwestksixcvZu/evdTU1MwKABRFYXR0lIGBAa3345Of/CR79uxh8eLFTE9PU1hYyJIlS/jOd75DPB6nsbGRQCAwqxI9NTVFb28v586d03Lx1eeoqqqKu+66i0QiweHDh+no6NCCsb6+Po4ePcqWLVvw+Xzk83n0ej1jY2O0trYyOTlJOp1meHiY3t5eGhsbaWhoYHJyklgsRj6fZ2xsjLa2NoaHhyktLaW8vJwlS5aQTqepqakhGAzy2muvsWTJEu35HRgY4MiRI5SUlGj3bOYUtIqiaPtVxxfEYjHC4TBGo5F169ZRUFBAT08PnZ2dAKxatYrW1lbOnDnDyMgI9957L5lMBofDQXd3N0899RQf//jH8fv975geAY/bw9DQENFolOXLl2ufM2RRQ/EOJ0GAEOKWoVYuPvToh1hTbNdmaXE6ndjtdsbGxsjn86xbt46amhocDge5XA6j0ciKFSvw+XwYjUb8fj+PPPII0WgURVFobGzUKk+/9mu/ht1up66uDofDQXFxMQDvfve7iUaj2mBUl8vFf//v/52mpiat4m00Gqmvr+fhhx/WWpyz2SxVVVXYbDbcbjdOp3PWYND3vOc92gBKs9nMokWLsNvt3HvvvUxMTJBKpcjn8xQWFpLJZPjgBz9IMpmkrKxMmxmmvLx8To46gNVqpbq6mi1btmiVeLV3pLq6mkAgMKcipdPpKCoqYtu2bTgcDm1wqdrqb7PZuPvuu2lqasLv97Ny5UpKS0upq6sjmUxitVpxuVzcddddZDIZiouLsdlsfOITn8Dr9eL3+ykoKCCdTmvjKJxOJ16vF4PBgNFo5IMf/CANDQ3ztpbr9Xp8Ph9bt26ltraWsrIyrTK8bNkypqam8Hq93HHHHdpA11AoRDAYxOPxcO+991JRUaENSC4vL8flcvHRj35UO6bFYqGiooLCwkIeeeQRioqK8Pl83HHHHcTjcQKBwKxgC8But/Pud78bs9lMaWkpVVVV+Hw+PB4Pdrv9whz9Xi9333032WyWkpKSOek9FouFlStXUlBQgNfrpbS0FJ/PR0VFBR6PB4/HQyaTYePGjdTV1VFQUKCVJRAIUFRUpJUrn8+j0+l45JFHsNls+Hw+7T5WVVURCARYvXq1Np5DHaxrNBq1Qboul4t8Po/NZiMYDBKLxbQZiRwOB36/n3w+j91u59FHH6WhoWHOOBP1uqj3zefz4ff7qaio0AZZl5aW8qEPfUg7R51Ox7Jly6ivr9d66+655x6WLVuGw+G45GDom6WoqAhf5sK6Bh/4wAfw+Xxv2jsnxDuFTpFh7EKIW8SxCKw9CkfXwpqLpkZXFEVrAdXpdCiKQigU4syZM+zdu5fHHnuMoqKiWTO6KIqipYhcvC/gil+fb5tL7Xs+uVxu3px+tYw3q0KhDpxWZ6K5lnK5HLlcblZFP5fLaQN21Rz4q23tzeVyZDIZLBbLrPcqikIqlZrz+tVQFIVsNovRaLzifaRSKS24eSdSZ+G5+HOhBhEz70E+nyeTyWA2m7XXrsU9ezve7DvhRh37wIoMSwxxUqkURUVF2vnfzLIJcSXemd9KQghxldQKiyqfz9PR0cFXvvIVHnnkETwez6yW8jeroF/t6/NtczUVoUsN+LzSIOJ6UccuXA/zDXS93ODXt7pfuHAt324LstpjczXeas78jTJzFiH41XM73zXU6/Vzzuda3LNbXUfGhMnkARsMRH/1ekv85pVJiCshQYAQ4pZzJT+uiqJH17iWx//9PwFozYEucn3LJYS4sW5mRbvQBHb9hVWBL8Wuv7CdEO9Ekg4khLhl9CWh6RDE51+wVQixANn10LIBqm7CUIG+JEy8yQDgQtPNKZcQV0KCACHELeVyP7pCiIVFKtpCvDUSBAghhBBCCLHAyBxWQgghhBBCLDASBAghhBBCCLHASBAghBBCCCHEAiNBgBBCCCGEEAuMBAFCCCGEEEIsMBIECCGEEEIIscBIECCEEEIIIcQCI0GAEEIIIYQQC4wEAUIIIYQQQiwwEgQIIYQQQgixwEgQIIQQQgghxAIjQYAQQgghhBALjAQBQgghhBBCLDASBAghhBBCCLHASBAghBBCCCHEAiNBgBBCCCGEEAuMBAFCCCGEEEIsMBIECCGEEEIIscBIECCEEEIIIcQCI0GAEEIIIYQQC4wEAUIIIYQQQiwwEgQIIYQQQgixwEgQIIQQQgghxAIjQYAQQgghhBALjAQBQgghhBBCLDDGm10AIW6GTDBDLpq92cUQQghxizA4jZh8pptdDCGuGQkCxIKTCWbo+ps29DnpCBNCCHFldGYd1X9aL4GAuG1IECAWFEVRyITT6HN62qo6SDnSDPQPEAqF2LRpEz09PZSXl9Pc3ExRUdGs9wanp2lpaeGlF1/kz//8z7FarQDk83li8Tjf+j//hzvvvJMlTU0UFRZeUVmisRj9fX0cO3aMj/3Wb6G7gnPI5/P09PRw6tQpXC4Xbrcbk8lEJBKhpaWFRx55hNLS0rdyed6yTCZDOBzGX1Aw5xwUIJlM8pMf/xibzcbKlStpbGy87mXKZrNkslmy2SxOp/NNr204HObs2bM89dRTfO1rX0Onm3/rTCZDJpMBwG63X3WZgtPTWC0WbDab9tpTTz3FHXfcQVV19RXd/xupq7ubE8eP09ffzx989rNz/q4oCiOjo3z9a1/jQx/+MOvWrkWvv3xwvW/fPtLpNPds23bV5zw5OYnL5cJsNhMOh3nllVdIJpO8973vxe/3X9W+MtksoelphoaGKC4uxuPxaJ/rG0UBcr98Ts1mM3q9/sL3VCZDR0cHRpMJo8GAyWTCYrFQFAgAvOOelWslHo+zfft2xsbG2LJ1Kw0NDXO/UxSF5557jnA4zJo1a1i2bNl1L1d6LM3oD4fIRbMSBIjbhgQBYsGJx+MArNq2mqQrRXDnNEPtw9z9wc0sm17O+Pg40/kQ5eUVAFqFsLSyFHOZmX99+l8xlZkx2yza38w5C+WrKsj6cuiKdFjKL1QkFEXR9nFxxTKVShHqD3Fq+DT/ue85PvWn/0XbZub7ZlIUhXg8zp995v/jT/7kT1i6dCler5dUKsWpU6c4u+scD7gfxFxu0d5/8b7Uf1/895mvzTzefO9V36e+Pjk0xS+Ov8pjjz2mVQJn7seGjdIVZSSTSVLuNJaKudfnav+t0+nI5/PznotOp2NqeJiR4AiZTIb1i9fPuQfqtoqiUFheRIm+lPjPE1grbdq+Lr5Wg11DBCNBTCYTyxuWz3tN1fOf+X51f/sO7qOhoYHli3713vo7FuFr9GMt+lXl883u2czyzPd8XGrbi6/dzPO/1OtLypcwkBzgUPdhrJUXApeLr3lNZQ35AgV9QI+lwqpVYmeW/+LrXraynFwuh7XCesnyzvc+RVF4bcfrbNmyharyKjwBL2t16/jJT34CRTrMJZY3vQcXX6/Y5CT7Dr3BF77wBT73uc/x4IMPUlPpm/dazvfszLy285V1ZkA0c5uZ/53NZgmOBxmcGGTJkiVYHTay2SzjIxN8+q9+nyVLlmhBgd/v56tf/SoGg+GyZZvvsw8X7t/M63vxs36l+5p5LjPPd75nd77n9OJ9qfswY6FwsIi4I0HancZ6ie+Kde9ez3PPPUfCmdSezYuv/0yXOq9LfRYufo8QtyMJAsSC5Xa7SSrjs14rKirCaDQSDAZpa2ujt7eX1atX4/V6MZvN2nZtbW2kUikCgQDV1dVz9p1IJBgdHaWrq4uioiJqa2txuVyztjGbzdTX1xMMBnn22Wdn/W16eprJyUkWLVo06/VIJMKJEycYHx+nvr4ej8ej7Wvt2rUMDAyQSqXYs2cPsViM+++/n+PHjzM1NUVzczMGg4GjR49SX19PNBqlqqqKyclJent7qampIRqNUldXh81mY/qXPR82m40NGzbQ3d3N2NgYuVyOsrIyuru7Wbt2LZlMhgMHDvDd736XoqIimpubKSkpedOWckVRGBoaor+/H4fDQSAQwO/3c/jwYeLxOI2NjRgMBqamphgdHWXr1q0MDQ0RDAbJ5/P4/X5qamo4duwYwWCQsrIyqqqq2LlzJ8XFxZSXl/Piiy9y+PBhli1bhsViYenSpZhMc1vwTp8+TTKZZHR0dNbrU1NTjIyMMDY2RlFREcXFxXz/+98nGo3S3NyMTqdj+fLlJBIJOjo6GB8fx+l0snHjRgAGBgaYnJwknU4TCASIx+M88cQTNDc3Mz09TV1dHYqiMDAwQGVlJXChp6Gnp4fJyUl8Ph+BQACj0cjZs2eJxWKUl5czOTmJw+Fg6dKls55J9bnZs2cP1dXVF3pCMhlcLhfV1dWcOHECp9NJfX09LpeLdDpNb2+vdqySkhK8Xi8AsViMkydP4na7GR+f/Rlpa2tjcnISg8FATU0NxcXF2t8ymQyxWIyWlhYMBgOFhYUUFRVp+wUYHh5mYGAAs9lMOp3m2LFjxGIxAoEAyWSSdDrNhg0b5tyrTCbDa6+9xn/8x38wPT3Nli1bqK2t1f7e3t5Ob28vNpuNVatWATA0NMTAwAC5XI7CwsI5PVB+v59HHnmEH/3oR7z//e+fdS4AZ8+epaenB6fTSW1tLdXV1cTjcQ4fPozZbMbn82G1Wjl37hxLly6lpKSEVCrF4OAg7e3tbNmyBbfbTX9/P+Pj47jdbsrKyjh48CANDQ04nU5GR0d54YUXaGtrY8uWLTQ3N1NZWUkgEODuu+/mwx/+MA0NDXR1dfH8889z9OhRmpubOXr0KOFwGJ/Px4YNGzCbzXR0dDA8PIzNZqOhoYHjx49TWlpKZWUlOp2O0dFRjh8/js/no7i4mLKyMrxeL7lcjhMnTjA6Osry5cspKioimUyyf/9+KioqcLlcTE1NkcvlWLly5aznLhqN0t/fz4kTJ7jnnnvo6enB7XYTCASIRCK0t7dzxx134HK50Ol0JBIJjh8/DkBTUxNer1cLas6ePUs8HmdgYIB0Oq0dY3BwkIGBgQsBe2HhnO/Fi6mfx0wmg9ls1q4HwMTEBIODg1gsFu27QVGUS5ZLiNuZJEWLBUetnBrnqRDqdDr0ej3RaJRDhw6xfv16vva1r3H06FEAcrkco6OjFBQUUFNTw7lz5/jXf/3XWfuIRCKcOXOGn/70p2zcuJF9+/bR29ur9UDMPNZ8LU2pVIrW1lZeeOGFOX9LJBJ0dXVRU1OD0Wic06J37733Ul9fz/DwMHv27CGXy1FfX88LL7xAe3s7BoOBfD7Pt7/9bdLpNJOTk8RiMWKxGN/5znfI5/OMjo7y05/+lBdeeIFVq1aRSqXYt28fJpOJwcFB/u3f/g2DwYDdbmf79u2MjIxQVVVFcXExmzZtory8/LIpFblcjn//93+nurqakydP8vzzzxOPx6mtreWJJ54gGAyiKArBYJBEIsGJEyc4evQoZrMZr9fLG2+8wenTp6msrOTgwYMcOnQIvV6P2+3mlVdeQVEUKioqWLJkCcuXL6exsRGjcW6bx1e+8hVyuRw1NTUUFhYyPDyMoihMTEzw6quvcubMGZqbm9m+fTuZTIaKigqam5tZtmwZixYtQlEUvvnNbzI+Pk5dXR2xWIwdO3Zw4sQJdu/ezdTUFKWlpfz4xz+mqqqKkpISmpubWb16NcXFxRQVFbFz506Gh4cZGxvjyJEjHDt2jGXLltHe3s6RI0cYGhqisrKSr3zlK0SjUaxWK8PDwzz//PNzzsdgMGCz2fj617+O0+lkcnKSXbt2affyhz/8IX19fQwPD3P48GGOHz/O8uXLaW1t5ejRo3R0dDA1NcU//MM/UFdXh9/vR1EUUqkUiqKwd+9ezpw5g8PhwOv18oMf/GDW8bu7u3nxxRdZvnw5dXV1jI+PMzk5OWsbv99Pe3s7x44dQ6fT0dDQwDe/+U36+/uxWCwkk0meeuqpOS25RqORu+66C7fbrd1TtQJ34sQJ3G43kUiEkydPcv78ecbGxnjyyScxmUxYrVb27NnD9PT0nBb0iz9DM7344oskEglOnz7N//t//4+2tjby+TwHDx7k1KlTjIyMEIvF+OEPf6gFg8899xz/9m//RjQa5fOf/zxdXV3E43E6Ojr47ne/Sz6fZ+fOnRw5coTBwUFyuRzZX6YDqf9TW+t1Oh2ZTIaRkRHa2tpob2+ntLSU9vZ2+vr6GB8fp7W1lb/8y79EURStMv/tb3+bz33uc4yMjHD8+HHC4TD79u3jm9/8JgaDgcOHD/PCCy/Q2dnJwMAAP/jBD3jhhRcIhUI8+eSTvPTSS+TzedLpNJ/+9Kf5l3/5F/bs2cPg4CBjY2OzrpHNZsPpdPLCCy/Q0tJCdXU1p0+f5mtf+xrZbBa3283PfvYzOjs7aWlp4Vvf+hbNzc0sWbKE//zP/+T1118nGAzyzDPPMDExwaJFizAYDExMTJDP5xkfH+dHP/oRdrsdg8HAvn37mJ6eftPvl56eHuLxOA0NDbz++uuMj48TDAbZt28fr7/+OitWrECn0/HMM8/Q2dnJuXPnZpXr2WefZceOHW96DCFuBxIEiAVFreTDpXNqbTYbfr8fj8fD6OgoPT09RKNR7f02mw2Xy4XX69V++Gf+KPX393P+/HkikQjj4+Po9XrC4TCxWOyKymgwGKisrOSuu+6a9292u51YLDZvGoWiKFpesZq77na7SSQSZDIZTCYTbrebfD5PZWUlJSUlFBQU4HQ6URSF6upqjEYjY2Nj9PT0EAwG0el0jI+PY/hlXnI2m6WwsBCv18vIyAjRaBSLxYLZbMbtdmM2my/bja7T6ViyZAljY2OMjo4SDAaZnp7G5/Nht9uJRCKEw2FMJhNNTU1s374dq9WKx+PB6XTicrl49dVXsVqtZDIZkskkBoMBr9dLOBwGwPLL3HuHwzErBx8upEREo1HOnTuHyWTC6/XicDi04OXs2bMMDQ0xPT3N1NQUBoOB6elp7fqr246NjdHZ2cnQ0BDRaFQLonbv3o2iKPj9fvx+P3fffTc2mw2TyYTD4cDpdGo53mqlr7+/n/3791NcXIzdbsfv9zM8PMyJEydwuVwkEgl8Ph8+nw9FUejv75/3+VB7hxwOBxaLRatMOhwOwuEw8Xiczs5ODh8+TCAQ0I7V19fHnj17aGlpQVEUHA4HPp8Ph8OhpVe8/vrrRCIRYrEYk5OTJJNJstms9iyaTCYUReH//t//y549e7BYLLjd7lllNJvNKIpCNptFp9Nd6JFLJnG5XPj9fsxmMz09PfOmc7hcLoxGo3ZP1XPzeDy4XC6sViu5XI7h4WGOHTum3T/18zs+Pj7v5+ZSKioqGB4epquri/7+fk6ePInZbNZa3gcHB0kkEtTV1VFQUMCZM2eIRqNs2rSJNWvWUFBQQG9vL3Ah+JmcnMRqteJ0Osnlcuj1eoqKiqirq6OsrIympiZqampmXbN9+/axa9cuotEo9913HwUFBRQUFJDL5RgZGaGlpYWDBw8CUFxcjNfrxel0EggEWL16NStXrtR6IVOpFC0tLeRyORYtWkRBQQFjY2PauIqRkRFOnz5NT08PZrOZZcuW0d/fz/Lly9m0aRPLli3Tnq+Zz5zZbCaZTGrHV8cIqb1Ag4ODDA0NMTQ0RG9vL263G4/Hw9DQEH19fQwODvLKK69QV1eH2+3G6XRit9vJZrPafVQbLNQg/c3uY0VFBR6Ph4GBAWKxGPX19fT29jI8PKw9P5WVldrzrpZDLdfg4CD9/f1EIpErflaEuBVJECDERVKpFIlEAovFQjqdJpvNkkqlSKfT6PV67HY7FosFq9WqdSMnk0nt/dPT04TDYWw2G6lUioaGBux2+6xc6jdjNBopLy9n3bp1c/5mtVqprKwkHA6TSqXI5XLAr3Jgx8bGyGazmEwmrct+Zo+BWolV0wEKCwtxu91aha+4uBiHwwFAOp0mn89TWFiIz+fDZrNpFRi3243dbieVSpHJZLTKmNqLks1eevrVXC5HPB7HarWSSqUwGAzodDrC4TAGg4HVq1czOjrK4OAgZrOZmpoa2tvbsVqtWK1WLdhoa2tDr9djNpu1fcxs7Z8Z8IXD4VmVBkVRSKfThMNhjEYjFosFk8mkVSzVtCeTyUQ+n6epqWnWfvP5vFYZVq+Bmv7i9Xrp7e3FYrHgcrmw2+1s2LBBu0Yz36/T6bSgLRQK0dfXh9/v1yq2sViMgYEBTCaTdt0dDgd6vX7eoFJ9Pv1+PxaLBYvFogUd6v3P5/NMTEwwMDCgHUsNnjo7OxkdHcXlcmnPitVq1Z6fnp4eTCaTVvFramrSnkG40MtWVFTE6OgofX198z4Ler0ek8mEyWRCp9Np5+ZyuXA6nZjN5nnPTb2f6jVMp9Na5b6wsBCr1YrFYsFoNBKNRhkaGtJ6CtQ0qJllvZRoNEpfX5/W+2E2myksLCQQCNDf34/JZGLdunU4HA6tcrt582a8Xi+jo6PodDpWr15NY2MjJSUlWvCoDlo2m804nU6MRiMmkwmPx0N5eTl+v5+qqiosFot2XnBhDFM+n6e8vJx7770Xu93O+Pg4ZrMZv9+Py+XSrpfP56OgoIDKykrWrl3LkiVLaG5uxuFwaPdGTUmyWCzo9Xri8Th9fX1UV1fj8Xi0RgGTyURtbS0ej4e1a9eybt06GhoacLvds4J89b4YjUaKi4u1e2CxWPB6vdjtdhKJBNFolGg0SiwW0849Ho8TjUYJh8O0t7dTVlaG0WjEZrNp35lDQ0Pad63L5aKuru6y97GsrAyAkydPsnjxYlwuFxMTE9r3OqAFaGNjY5csVyqVuuzzIsStTMYEiAUrl8uRyWS0Lvh0Oo3RaKSnp4eTJ0+SyWR417vepbVMqz/mOp1O217tGbDb7WQyGdLpNA6HQ+vOr6+vp66ujlQqNScdRe2+z2QyWte7WjFKpVKkUqk5rW52u53m5masVivj4+NaJRPQ0gaKioq0Vma1Ih+Px7XKqtojkMvlUBSFfD6vzUySy+W0Clkmk6G2tha9Xk9lZSVWq1U7L/X8M5mMth+j0UgqlaK3t5fy8nJ8vtkDLNUcdTXn99lnn+Wv/uqv6O3tZXBwUKtUP/DAAzz55JM4HA62bNmCTqcjEAgQi8WIx+OYTCai0ShFRUVahVKv118YaB0KaS3rer0eg8FAMpmks7OTZcuWaYGRTqfTKv65XE4L9tT/9vv9TE9Pa3nkDQ0NJBIJrVU8Go3S1dVFZWUlLpeL0tJSLU+5qqqKM2fOaOeaTqdJJpPYbDatEh4KhRgcHGTp0qVaOoia6jQ1NUUmkyESiWgt+9lsFr1er207s7xqxVi91upzOTPNRH3e1efMbDbj8XgIBoNaq63JZNKCwlQqNeceZ7NZysrKKCgooLy8nEAgoOXYq3/P5XL4/X6+/OUvs3fvXs6ePYvBYJg1W1Uul9O2V599vV5PPp/XPkMzX7+4V0m9DtPT04yMjGgDUtXnWH3GA4EA4XCY8vJyFi1aRD6fJ5lMzhkkqwbTsViMSCRCZ2cn+/fv54Mf/CAvvvgi//2//3d8Ph8dHR2cPXuWTCaD0+nEYDAwOjpKPB7nc5/7HEajEZ/PRyQSoa+vD6/Xy/DwMA0NDdhsNq1iH41GmZiY0MZlqM9iOp0mEonQ29tLKBRi69atpNNp3ve+99HU1KQFEYqi8NRTT7F+/Xq2bdtGIpHg1KlTxGIxTCYTqVQKk8lEWdmFgfgWi4V8Po+iKPh8Pj72sY/R2trKj3/8Y0wmEz6fj8rKStasWYPP56OhoQGv14tOpyMajVJdXa09V+pnbaZ8Pq89W+p32sXfE9lsVvv+U19Tv3vU3jG/3088Hsdms2n3MZvNUlxcTCgUoqKigpqaGu0+Dg0Nac+c+qyoEokE3d3dnDp1ir/7u7/j2LFjGI1GLXjOZrPE43HcbrfWezmzXIqiaGlkQtzOJAgQC1Zffz8HOy/kk4+MjLB9+3a2bt0KXKioBINBDh8+jM1mY2hoiK6uLhobG3E6nVq3v6IobN68GYAjR47g9Xp59NFHqa6u5plnnuHgwYPEYjEaGhrmDDrM5/OcO3eOvXv30tPTw89//nO2bt2KxWLh1Vdf5bnnnpuTc63X63G5XHzjG9/ge9/7Hs3NzTQ0NGiDAt/znvdgsVioqKhgcnKSV199FaPRyMjICJ2dnZhMJo4ePcrJkyfp6emhrq6Ovr4+du3aRWtrK729vVRXV7Ny5Ura2tp46aWXCAQCuN1u4vE4p0+fpquri7Nnz7Jv3z7OnDmjpRQtW7aM559/npqamjld9bFYjLNnzzI6OkpNTQ33338/2WyW1tZWwuEwwWCQ/fv3s2rVKqqqqlAUBa/XS1NTEwaDgc9+9rM888wzZDIZLBYLZ8+e5fd///ex2WwUFhaSSqU4cuQI58+f58SJE/T19eHz+SgsLGTHjh1s2bJlzgw+DoeD97znPXR0dDA2Nsbg4CA9PT3acxAMBunr62P//v0kEgnWrFlDY2MjZ8+e5Y033uCOO+6goKCATZs2EQwG2b59Oz6fD4/Hwyc+8Ql+/OMfs2/fPiKRCGNjYzzyyCMsXbqUiYkJ9u/fT3l5Od3d3fT9corYu+66i49+9KP89Kc/xWazcfDgQRYvXkxzczOHDx+mp6eHc+fOMTk5yfHjx+nv72d0dJSSkhKtYhsOh9mxYwetra10dHRw6tQpWlpaKCwspL6+nu7ubg4cOMCdd97Jo48+ynPPPacda+XKlaxbtw6TyaTl/qdSKQ4fPkx7ezttbW38j//xP/jJT35CMBikurqa6elpFi9eTF9fH4cOHaKjo4Pu7m7i8ThOp5PVq1dTUVEx61kYGBjQBiTv27cPq9VKV1cXra2tjIyMcOLECdrb2xkZGaGkpGTOAGGv16sNPHY6nbz00ku0tLTQ3t5Oe3s7x48fp6ioiD//8z/nzJkznDt3TmuhX7Fixax9TUxM8POf/5zTp0/zF3/xF9hsNsLhMLlcjt/7vd/D6/Xy7//+7ySTSS2VauvWraxZs4bm5maCwSCHDh3SBr0+8sgj/OxnP+Pv/u7vcDgcFBQUsGLFCsrLywmHw+h0Ov7kT/5ES/EKh8M0NTWxcuVK/v7v/57Tp0+zatUqNmzYwOjoKK+//joAjz322KzpTx944AFeeuklXnrpJbLZLCMjI3zpS19i8eLF7N69m46ODvbs2cN73vMePvrRj6LX6zlz5gzf+ta3tNShdevWaYOGP/OZz/D4449TVlZGPp/nrrvuwmaz8fd///ecOnWKv/mbv+EjH/kI999//5yGiWg0Sk9PD319fezYsYOSkhLOnj1LR0cHp0+f5siRI7S2trJ8+XLq6+vZvHkzr776KtlslqVLl7JkyRIWLVrE5z73OZ544gnWrFmj3beJiQn+4i/+gpMnT3LmzBkGBwfR6/UsXbqUnTt3curUKUpLSwmFQlqjA8APfvADBgcH2bhxIy+99BInT57kU5/6FBaLhdOnT3Po0CFOnDjB7/7u77Js2TLC4fCsci1btoympiatV1SI25VOuZoESSFuA8n+BP1f7aHss5UYSoxaq6PVatXSP9TWSLWlWG1xNhqNWrex2tql5srHYjGtVU+n02n50up+L27VVFvN1JZih8Oh9QSk02nS6fScGYXU96mtYZFIROtlKCws1Fq61f2mUilsNhsTExNaHrXaEqsOtFNbwHK5nJZqMrMlzmg0anncakut0+mc1atgNBq1f9tsNq3VTS2voigkk0mtxc5sNmsDpWe24On1emw2G/v378fj8dDc3Ayg3RO1pc5sNmtpKmqqltqqODU1pc3ylMlkSCQSWnrDxddf7R2Z2bpcUFCAzWbTznXms5HL5bRWcrvdjslk0p4VtTdkZs+E+rqaxjQzfUotfzQaxWw2a2lb6vmoKV0Gg4FcLkc0GtXGbqgtoOr9Us9LfS4ymYyWU632IlgsFq21+OIeJ7PZPKsM8Xhc651IJpNEo1GKi4sxGAza+QKz0m/UfarnrKabGAyGWbOs5HI57VlQPyvRaFRLxVJ7x5xO57w9AWrwrT53annUZ1s9XzUNRb2/allnDgBWnyv1usycqtLtdhONRrXUE/U9drsdo9FIe3s7nZ2dhEIhfuM3fmPW/tTzM5lMsz5niUSCfD4/63OgtjZHIhHtPWrKldpDY7VatZZ09XN4cTrgzM+h+p1lNpu19JdEIkE8Hte+s9R7rj77atqR+j71M6o+i2rP2aV6AqLRKHa7XXsG1M+I+l2iPssze6fU706j0ah9D83snVF7Kua7j+pnaeZ5qNRzUe+3+j2sfi+qjQlGoxGj0aj1dFxcrpkBqPq7UfmHNXOmJBXiViVBgFhwruTL/FLzZs83p/alBsGqlXy1AnQ95pxWK+9qpfJSx1crRvNVqi5FDTZm5rJfyfZXcgz1+s3cfzwe56mnnmL58uW43W4KCwspKCiY9T610nPx1H1qxUo9V/XH/0rKNHOshnq9Zubuq/uFX40HgNnBi5oKMXMcwsxyzUwFm+/9F1+bmedwPb3ZsdRnRr2G6jmoFXWYex9m3tf51ou4Vi53DWdSy3o1z/7Fx5o5n7yiKHznO99haGiIsrIy3vOe92hTvKrU7S7+3Fxqbv+L/34l5bzcvi61/cx5+y9+38xzvV7U5wlm35OZz87M66A+Y2/3Ps48/nzfy5cql0qCAHE7knQgIebxZj+EV/ojefFA1evh4nniL3X8+ebHv5yZP8DXevuZA5VVBoNBa4UvLCyctxfkUvtXAxyYfa5XUqaLeyIutd9LbXOp167m/TOpg2VvhDc71sxn9+JreKlrOt99vR6upPKvertlme9YJpOJQCBATU3NvKtzX+o74kpmzbpSV1sRvlTFf6arua5v1aU+k5d7dq7VM3Wp7+Wr/b4T4nYgQYC45SnKhVV0r7RTK5O4sAhNpC9MIpG4nkUTV2lL04XxFUxCbDLKlU2qKsSNtblpM6ZfzmIT6Qrf7OKIGyA7fiEFLpFIkI3OnZ3o4pnKhLgVSDqQuHVNjkE0RCaT5cTJE+Syl5/+D0Cf0hM4VoA+L1/UQgghrkxerzC2ZpK8Ze50z2aLmaqqKgr8BcyJAZweKAjcmEIKcRUkCBC3pskx+MLvQlrmcRZCCPEOZrbAl74jgYB4x5F0IHFrioYuBAD/5U/IF1cQjoSvOB1ICCGEuJYMeoM2i9isnoDhfvjuP1z4zZIgQLzDSBAgbm2lleirG/De7HK8AyiKwujoKD6fT5sW8HaVz+cZHR2luLj4hgxmfCeZnp4GLsyXL4QQQrxVC+vXU4jb3ODgIOl0+mYX47pIpVLE43GSySS5XI7+/n5t2sCFZGpqisnJyZtdDCGEELc46QkQgtnrAqiuZEq9d5rx8XFqamq0f1/qvK7VOanzas83H7p63Mu11F9qHzP3o9PpCAaDRCIRLBYLxcXFjI+Pz5rjf761Ha7XvbvUWhFXMhf75fahutR1CYfnpr7N3Hbm/i+1byGEEEKCACF+KRQKaSvSqiuO3g7Lxs88L6PRiN1ux263X5N9T09Pa6vDOp1O7fVEIqG12BcVFb3pPqampsjlcvh8vjnrHmQyGcbHx/F4PHg8Hrq7u0kmkxQXF8/ZTy6XIxgMAhfmcbfZbNctLSqXyxGJRMhms/h8vlnzjieTScLhME6nE6vVesm5xxVFYXx8HIvFoq0WPdPExAQGgwG73Y7N9uaLE01PT5PL5bBYLLhcLnK5HKFQSFvB+nZ4joUQQlxbkg4kxC+NjY3x27/92/zjP/4jLS0tvPzyy3z2s5+lv7+fTCYzZ/vBwUHOnz9PZ2fnWz7mmTNn2L9//9sp9ptSFIWRkRF+8zd/k+9///scP36cJ598ks9//vPE4/G3vf8DBw7w+OOP8z//5/9kbGwMRVEIBoN8+ctf5vOf/zy7du26bPmeeeYZvvvd79Lb2zvn7+Pj43zjG99g3759ly1vJBLhueee4+Mf/zgnTpy4rmtAZLNZBgYGeOSRR3jyySfp6+vTyvC5z32Ov/u7v+P8+fNks9lL7iOdTvP000/z05/+lMHBwTl///GPf8zTTz/NmTNnLlue/fv38/jjj/Pxj3+c3bt3k06n+f73v8++ffu0MQQzKYpCKBTihRdemNWbIoQQYuGQngAhfqm0tJR4PI7NZqOpqYmqqipOnDjBzp07Wb16NU6nk5GREUwmE0uXLuX5558nGAzS0NBAYWEh2WyW3t5ecrkcfr+f6upq2traSKfT2O12PB4PFouF9vZ2MpkM5eXlvPbaa3R2dmIwGFi/fv01T9vQ6XSUl5cTi8VwuVyUlpYyNjZGb28v+Xye9vZ2QqEQJpOJsrIyfD4f7e3thMNhbDYbNTU1TExMMDo6SmFhIYWFhfh8Pm3/fr+fhoYGRkZGePHFF/nEJz5BZ2endg0KCgpQFIXBwUFisRhGoxGn00lRUREDAwOMj4/T399PNpslm82SSCRoaWkhnU5TUlKC2WzGbreTTqe1Xger1TrvuRqNRgoLC0mlUvh8Pq23I5vNcvLkSfL5PEVFRbjdbrLZLEeOHMHn81FUVITFYtF6HfR6PS6XC5fLRSaTYXR0FLvdTnNzs9aqbzKZKC8vZ926dezevZvKykr8fj89PT0UFRWRyWSwWq0kEgmGh4dJJBI4nU6Ki4u1Hovu7m7Gxsbw+/0kEgmGhoYYGBggl8uxfv16rFYriqLMG4BezOv1smHDBnp6evj2t79NWVmZdjyPx0MsFqO3txdFUSgrK2NoaIgDBw5w7tw5li1bRkFBAWNjY0xMTKDT6Vi7di0dHR0kEglMJhNut5uKiopr8EQKIYR4p5AgQAguVJbdbreWLhMIBEin0/j9fjo6OiguLiYQCDA2NkZ7ezuBQIDBwUEymYyWcx0KhZiamqKvr09LBdm9ezc+n4/KykqmpqYIh8NEIhGmp6fJZDJ0d3czPDw8Jw3mWp+XXq/XWnwtFosWbExMTDA5OYmiKLS2tvLQQw9x8OBBUqkUFRUVuN1uXn75Zaqrq+nr66O6upo77rhD27/D4WDJkiVYrVYOHDjARz7yEaLRKGazGbPZjMPhIJFIsHv3bpYsWcL09DSxWIzNmzfz6quvsmzZMkwmE4qikE6n2bdvn3aNIpEIhYWFWmXeaDQSCARmpd7MpNfrcbvdmEwm7HY7er2eVCpFLpdjcHAQg8FAb28vJSUlVFdX89prr/Hggw9is9no7u4mFApRXV3N66+/zkMPPURnZyeRSASXy0VPTw/V1dU4HA4MBgMGgwG3201TUxNvvPEGY2NjDA8PMz4+TklJCVNTUwD09fXR1tbGihUr2LFjBw8++CB9fX0MDg5qQQ5Aa2srFouFWCxGOBymqKgInU53yXO9mN1up7GxkeLiYiYnJ/nZz36GXq/HZrORSCQ4e/YsNpuNTCbD9PQ0Y2NjTE1NEYvFMBgMnDhxgunpaaLRKOl0msLCQvbu3YvFYqGoqIiqqqq39gAKIYR4x5J0ICHmoQ6qzGQyKIrC1NQUkUgEk8nEvn376O/vx+12U1NTQ1VVFQaDgcHBQSwWC319fRw7dozu7m6OHj3K+Pg40WiUlpYWfvGLX5DJZEgmk0xPT2ut083NzeTz+eu21kE+nycUCmkDa9UKsjpeIJFI8OSTTxIKhTh//jwDAwMEg0FGR0f5yU9+ogVD7e3tc/ZdUlJCRUWFFiDZ7Xatcqse96WXXsJutzM2Nsb27dsZGxvjpz/9KZWVlQQCAUwmE8lkkqeffpp4PE4qlWJ0dJTu7m7tOH6/n0WLFs0a+PxmwuEwo6OjWnBmsVjYv38/R48exWAwcOzYMcrLy3G5XHR1dXH8+HGqq6s5d+4cgUCAw4cPs3fvXrxeL2fOnCEajc5JnXE6nTQ2NhIMBjl37hyZTAan04lOpyMWi9HS0sL+/fupq6vjueeeY3R0lN27d7N7926am5spKChAr9dz4MABjhw5QjqdJplMcv78eZLJ5FXdY6vVSkNDA//1v/5XnnvuOVpbW4lEIgwODvLiiy9is9kwGAwcOnSIwcFBampqKC0txev18vrrr3P+/HkymQzxeJzW1laOHTtGf38/oVCIVEoW5RNCiNuNBAFCMHsWGp1Op6VhHDhwgLvuuou+vj52794NQEFBAdFoVGsRjkajHDt2jB/+8IdMT09rAznT6TTve9/7KCoq4syZM3R0dGCz2QgEAnzoQx9i9erVFBcXk81m6ezs1NJdrsd5mUwmamtrWb9+PatWrWL37t2cPXuW7du309fXRyAQIBKJkM/ned/73kdFRQWDg4N0dXXhdDopKyvjIx/5CO9617vm7B8gEAjw8MMP86UvfYna2lr8fr+2TT6f1wKcfD5PLpcjm81qgUIul9Om+lRbnu+99162bdtGXV3dVZ+vev9OnjzJK6+8QkdHBz/72c/w+/3odDptrIDRaKSuro66ujqWLl1KQUEBL7zwAp///OcpKCjAYrHg8XhYtGgRn/70p/H5fFo60Mz79OEPf5je3l5eeeWVWeVVz1fdVj1PtYwGg0FL9TEajbhcLqqrq/nwhz/MsmXLLjsYeD5Wq5WlS5fyhS98gf3792vjVdTrrl57nU6H2Wwmn89z7NgxstksHo+HxYsX84EPfIDm5mbe+973Ul9fz9TUFPv27bvqsgghhHhn0ymyzKq4FfW2w5d+H77wL1Dd8LZ3pygKBw8e5I033sBms1FYWEg8HmflypUsWbKE4eFh+vv7mZycxOFwkM1mqampYXJykqmpKTZt2kRvby+Dg4Po9XqMRiPZbJbJyUn8fj+VlZUUFhai0+k4ffo06XSajRs3Mj09zcDAAPF4nIcffhh469NaKorCK6+8wvr16ykoKAAuVDwPHjzIvn378Pl8uN1u0uk0S5YsYcWKFbz++utEo1Hcbjfj4+MsXbqU/v5+LSVk5cqVdHR0MDExgcfjoby8fFZqyIsvvkgkEqG4uJj169dz7NgxqqqqOHbsmJYa8/DDD3Ps2DGi0Sgmk4mCggIWLVrE0aNHmZ6eZnBwEJ1OR0NDA0uXLuXIkSMkk0mqqqooKipi+/btFBQUsGXLFlwuF3BhzYDt27dz3333aTMAhUIhfvaznzE0NEQgECAcDuP1evm1X/s1nnzySSorK7VZe4qLi3nttde47777aGhoYPv27bzwwgvAhQHfv/M7v8OiRYtQFIWhoSGMRiP33HMPRqMRnU5HJBLh+PHjnDt3jve9731MTU2RyWSora3l2WefJZ1Oc/fdd2Oz2RgdHSUej+P1emlqaiIejzM0NER/fz8jIyMoisKdd96J0Wikq6uLTCbDtm3b2LVrF8lkkvLycu68807tmp84cQJFUVi9erX22ssvv8z09DQlJSVs3bqVfD7PoUOHtGs4NTXFqVOn0Ol0NDY2UlhYSDQa5Wc/+xmbN2+moKCAgYEBhoaG0Ol0bN26lZ/97GeYTCYCgQCVlZVUV1e/pedSiAXtGv9WCXEtSRAgbk3XIQiIxWLEYjGtlTafz+N0OrVBo+l0mmw2q/3NYrFoA1pdLhfpdJpUKjWrNyGbzWI0GjGbzdoUkPF4XNt3LpcjnU6Ty+Xwer1va2DwfEGAoihEo1Et91uv16MoitZbEQ6HyeVyGAwGstms1oMxczrRVCpFOp3GaDRiMplmTbupTk1pMplwOp3E43FMJhPxeFw7d6/XSyKRIJvNagGSxWLRtkmn09pUlna7XUu7sVgsGI1GwuGw1lKutsTPFwRks1mmp6dn3SODwYDf72dqagqTyUQ+n0ev12MymQiHw7jd7llpQn6/n4mJCTZt2kRtbS0Oh0Mrn9vt1u5PLpcjFouRTCbxer1aC7/ZbCYYDKIoCi6XC71eTyaT0a6R1Woln8+TyWRIpVJaT4CaQpRMJlEUBbfbrfXMmM3mWdOvzhcEhEIhstmsNogXIBaLYTabMRqNWnkBbDab9tr09DQulwuj0Ug6ndYWmnO73QSDQe1aqWM8hBBXSYIA8Q4mA4OF4ELru9PpnFXZmslisVx2znm10nw5Ho9H+2+1Yni96HQ6baaby5VFdfE5vNm6Al6vd9a/1et38bWa7/2Xmrv+4jIVFhbOu93F1NmB5jPf6zPLVFdXh9PpxOFwaOsQqAHCfGVXBwarFe6ZLl4X4eJroQZC86X7zHwWLr62b2a++zjz+hqNxjnb6PX6WWW9+PlVA0khhBC3JwkChLiNqK26tzt1Gs/LrUZ8pcrKyigrK7sm+7rermfQKIQQYuG4/WsL4ranDuKVzLYLLdpGo/G2n81FURQWLVpELpdbcItdqa33t/s9FuJWoqaR6vX6a77eixDXiwQB4paXSCT49re/LZUiIYQQN4XL5eKee+6hqanpZhdFiCsmQYC45VmtVj71qU9JT4AQQoibQq/XX3bcmBDvNBIEiFuemh8uhBBCCCGujCwWJsRtQlEUBgcHF0RaVC6XY2BgQFtkbCGZmppiamrqZhdDCCHELU6CACHeQdQVfq9km/m2O336NNFo9HoV7x0jm81y8uRJstnszS7KDdfX10dvb+/NLoYQQohbnKQDidvOm1WiL5614eJt1UW+Lve+qznmxe+fue3F+1UX5brc1JfpdBqz2YyiKNdlJoq3cg3V1+e7phe/fivOnnFx+S91njfDW3lmr3bfV7u/a3W/r/dzczX7v9JxR1dSzpv1ebjVP4dCiGtHggBx28lms4yOjvLcc8+xZs0adDodPp+PoqIi/H7/rG37+/s5e/YsS5cupaKiAp1Ox7lz52hpacFoNPLQQw9d0WAvRVE4c+YMp0+fZs2aNZSWltLW1kZfXx+PPPLInH1kMhmMRuOcH+Hvfe973HvvvXi9Xnp7e1EUhbVr1xKLxQgGg6RSKVwuFzt27OCuu+4iEAjMu+jU29Xf3097ezs9PT0sW7aM1tZW7r77bqqrq+esQ9De3k4oFGL9+vXAhdma9u7dSzabZfXq1ZSWlgLwzDPP4PF4WLFiBYFA4JqX+XpSFIWXX34Zi8VCbW0ttbW15PN5nn/+eYqLi1m0aNFNPaddu3YxMTGBz+fj7rvvvqar++bzefL5vLbi9ZVQFIV9+/aRyWSorq6mrq7uLR//0KFDTE9Ps3HjRjwezzWvuObzeU6ePMnSpUuv6LOeyWQwmUyMj49rK0anUil6enpIJBKUlpbS0HD5lWF37doFwOrVq+dd7O16Us9BCLGwSTqQuO0YDAYMBgNDQ0PU1dXR1NREZ2cnL7300pxtdToder2ecDg85zWj0XjFP5Q6nY5AIMDY2BhnzpxhaGiIhoYGiouLZ7Xq5/N54vE4u3fvJhaLzdlPaWkp6XSaeDxOPp/n8OHDjI6OcuTIEaLRKC6Xi3PnzlFVVXXNFsqaj8fjweFwaOexcuVKACKRyKztkskk+Xweg8GgvWaxWPD7/USjUXbt2oWiKAwNDTEwMEAmk7mqlXDfSdxuN+fPn6evr498Pk8ymeTIkSO4XK4rWin6etLr9RgMhqt6Zq/E0NAQHR0dbyn9qKWlhYqKCi0IfKvUdUCSyeTb2s+l6HQ6ysvLL7vIXj6fJxaLsWvXLuLxOA6HA6/Xi16v5xe/+AU1NTUsWrToile4zufz1/W8LkVRFF555ZU5n2UhxMIjPQHitqMu1pJKpYhGo2QyGXQ6HUajkdHRUdrb2ykvLycejxMKhQCYmJigo6MDr9dLMpnUKlXqvpLJJKFQiPHxcWKxGEuWLOHUqVP4fD4qKytpbW2lsbGRhoYGhoeHaWtro7KyEpvNxvT0NKlUing8Tjqdxm63c/LkSRobG7FarbMqbXa7HZvNhtVqxWw2Mz09jdlsJh6Pc+LECSwWC16vF7vdfl2DALVMY2NjnDhxgkWLFmG32+e0MA8ODqLT6SgpKdFeMxgMOBwOAEZHR7XKUzqdRq/XX9NW6hvJbDZjNptJJpOMj4+TTqfR6XRYLJZZQdDNoAau6jMLF8YOwIVB1OFwmKKiItrb26mqqsJoNBKPxzEYDLjdbqLRKGazmWw2y9DQEBUVFUxNTTEyMkIqlcLn81FdXU1XVxf5fB6/34/f79eek+7ubu2+plIpCgsLGRgYAH71LGWzWV555RUaGxuJRCIoikJBQQETExOsXLmSkZERstksZrOZfD6vpboNDw8Ti8XIZDJ0d3fjcDiIRqPE43FSqRQWi4XCwkJaWlrweDy43W5CoRBr167Veg2mp6cZHh4GoLa2lt7eXjKZDHa7HafTyeHDh9m2bRvT09OEw2GMRiN+v5833niDxYsXo9frSSQS2me3ubmZRCJBPB7HYrFw/vx57rjjDnp6eigsLMRms9HZ2YnP5yOdTuPz+fB4POTzeQYGBtDpdIyMjGCxWEilUnR0dGj3wev1Yjab6ejowGazab2CBoOB2tpajh07xp133smRI0ew2WwUFhbS29tLY2MjoVAIl8ulfWdEIhFKS0s5f/48er2e4uJiFEXh0KFD1NXVUVJSgqIoxGIxYrEYjY2NC2LFcSHEBfJpF7e1cDiMyWSitLSUsrIywuEwu3btYuvWrQwPD5PJZPD5fMRiMUZHR5mcnJzTQq/+2Kut/L29vVRVVXH48GHKy8u1H/yGhgaWLl1KLBZjcnKSzs5OALq6ukin00QiEVKpFHV1dYyNjRGLxchms3Nabi0WC06nE6fTqaUM6XQ6BgYGiMfjrFu37oZcO7XXorW1laVLl+LxeOaUdWRkhEAgQHFx8azXjUYjVqsVq9XK2NgYiqLcFitpVldXA9DR0YHH48Hn8930AOBiiqKQSCQYGBggn88TjUbp7+9n8+bN7Ny5k02bNuH1egmHw0xOTrJmzRrOnj1LIBAgn8+zd+9etm3bxtmzZ7VKrtlsJpPJcPr0aeLxOEuXLsXtdmsVxjNnzlBaWko+n2d4eJi77rpLq7irKzrn83leeeUVXC4XnZ2d5HI5Vq1axf79+6mpqaGnpwdFUXC73QwNDZHP5yktLSUUCpHJZMhmsxw5coTGxkYmJiaYnJwkkUjgdrsxm83s3buX2tpaKioqOHPmDGvXrtWuSTAY5OTJkySTSXw+H+fOnUOv11NaWoqiKOzdu5cVK1bQ3d3N2NiY1lv18ssvY7PZUBSF0dFRli9frn12x8bGmJiYwOl0Eo1GiUQinDx5ktraWqqqqjh06BAbN24kmUxis9nweDxks1lOnTpFRUUFoVAIt9tNKpXi+PHjrFmzhtbWViorK/F6vZw4cYL6+noMBgPHjx/HaDRSUFDA9u3bWbNmDW+88QZFRUUsWbKEHTt2UFxczMmTJ7WAI5FIMDY2hsPh4MCBA5jNZlasWEEkEmFoaIjp6WnsdjvJZJKuri6CwSC1tbUSBAixgEg6kLjtqAPfFEWhvLycJUuWsGrVKlauXEllZSXZbJbi4mJMJhO5XA6DwYDf72fFihW0trbS3d2Noijk83lyuRxdXV1EIhF0Oh35fJ7e3l5cLhcNDQ0YDAYmJiZ44IEHUBSFXC7Hpk2bWLJkCU8++SSKonDgwAFCoRA2m42CggIqKiooLi7GbrfPW4GMx+Pkcjm8Xi+FhYWcOnWKSCTCpk2bePDBB/nFL35xQ66h0WikuLiY973vfTidzlk9D+r1yefz6HS6Weeh/q2oqIjly5drufR6vf6KZj96p8rlcqxYsQKj0cjRo0eBX+XL32zqdc3n82SzWdra2rSATW0Fb2ho0HoyCgsLWbJkCWfPnqWqqkobf1JUVEQ+n6esrIxcLkdRURE1NTWUlpaSy+UIBoO0tbUxOTmpPQ+KotDa2orJZMJoNNLR0UFBQQGFhYU4nc5ZgaPX62XJkiVaClVjYyPT09O0t7cTiUTwer0UFRWxf/9+Dh06RHl5uZZik06n2b9/P5lMBqvVis/no7S0lMrKShoaGigsLKS6upry8nKi0eisWbRSqRTj4+OcO3dOS0urrq5m3bp1lJeX43A46Onp0abY9fl86HQ6ioqKqK2txWKxEIlEqK6u1j67Xq9XG6NQWFhIQ0MDJSUl2Gw2kskkbW1tNDQ0sGrVKm28SC6X49ChQ9TW1lJfX4/P5yORSHDmzBkqKysZGBigra2N0dFRTCYTmzZtoq6ujqKiIrxeL263G5PJhN1up6CggKqqKqqqqtDpdCxevJipqSlOnjxJS0sLJpMJr9dLSUkJPp+PkpISSkpKGBgYoLKykoqKCgoKCkin05w+fVoL1oUQC4eE/OK2k8lkCIfDDA4O0tbWxurVq2e1bun1ek6dOkV7eztms5lAIEAwGGTPnj1aa2BLS4uWknPy5EkCgQA+nw+LxYLFYmHHjh2sXLmS1tZWjh07xrp169i+fTtTU1OsXbuW+vp6tm7dik6n44EHHqC3t5dUKkVZWRl2u51UKkVvby82m23OgNLh4WGt9XNiYoKtW7dq6RNer5f3ve991/0ajo2N0dHRwfDwMBaLBZvNNqcVf2BgAL/fj9vtnvV6LBbjyJEjKIrCxo0befHFF3nwwQcZGxvD5XIxPj5+yw0MBti/fz/JZJLp6WkcDgcFBQX09vbS1taG0+m8LgO0r1Rvby+Dg4O43W4SiQRHjx5FURRWr16NzWZjYmKCkydPsnHjRuLxONFolLKyMurq6jh27BilpaX4/X4t0D169CgdHR3cc889GAwGWlpasFgsJBIJ1q1bR3FxMdFoVHtPbW0t4+Pj6HQ6ampq6O3tpbe3l1gsRi6Xw2g0autYdHd3a+k4PT09dHV1UVZWxtDQEG1tbRQXF3P33XeTz+fp6enh5MmThEIhvF4vW7duJZfLYbPZiEQiDAwMMD09zZo1axgbG6O3t5dEIqG16BcVFaHT6chkMuj1et71rndRXFzMuXPnGB4exul0ai3hH/vYx4hGo0SjUex2O5lMhoGBAS04UFPf1EHA09PTTE1Nkc/ntXPq7u4mkUjQ2NhIfX09bW1tWrqS1+vFaDRy55130trayqlTpzAYDJjNZhYtWsTx48cJBAI0NDTg9Xo5dOgQXV1d2niTZDLJ6dOnaW1tZXR0VCuP1Wqlr6+Pnp4euru7Wbt2LTU1NQwPD1NeXs7g4CBDQ0M4nU48Hg/9/f00NjZy4sQJbDYbZrOZu+++m76+vuuaYiiEeOfRKRL6i1tRbzt86ffhC/8C1bNn4lAHEgaDQdxut9YKDRdaboPBIAaDgVQqhcFg0H5k8/k8RqORbDarjSMwm82k02kMBgM6nY5sNks2myUUCmmtqvl8nsbGRhKJBPl8HrPZjF6vn/W+TCYDoA3cnJqawuFwYDabZ7Wiv/rqqyxevJiCggItBcLj8ZBOp8lms1oLfUdHhzbbkVr5VAf8rV+/noKCgrd1edUBi4lEgoKCgjmpPIqisH37dlavXj0nJUYdAwBgtVqJRCK43W4t19rhcLztFJpUKsX27du57777rmhGl7dLURRCoRAWi0XrIbLb7UxPT2Oz2bBYLDcsjeLEiRNaBV8ViUTI5XLodDpMJpO2YJxa+Y7H40xOTpLJZAgEAni9XiwWizYuQH1u1X2pYwZcLhd6vZ5MJoPNZtO2N5lMmEwm7T5Go9FZz4c6nkVNIVOnVJ2YmMDlcmmDYW02G6FQCJ/PRyqVmpM2piiK9hlTP6fq+Ae110Ov1+NwOAgGg1qZYrHYrOcynU6TSCQwGAzYbDYSiYR2rXQ6HdPT0/h8PjKZDLlcDpPJhF6vJxQK4XQ6te8Ej8dDMBjE4XDM6gVKJpN4PB5isdisY6jlUf+npmqp90StxCuKMus+6PV6YrGY9lylUiltYbxgMEhZWZl2n0wmE5FIBJ/PRzgc1saoZLNZjEajdj3U77NkMonJZNKu9cweuus91mhBepPfKiFuNukJELcd9cfu4jx19W9+v1/70VMrFDNjYavVOus9auVj5nt0Oh3RaBSn04nb7Uan082ZIWZmpfDiXHq1BfXi1nU17UitWKoVIjV1SU2/mZiYmDPz0LWkVvJcLtclt3G5XFit1jkVer1eP+t96rSsF0/PeivR6XTzzmp0pTPBXG8X36eZga36b7Ui6Xa7sVqt6PV6nE7nrGdaURTt8zEzBcxqtaLT6WZNZTnz2VX3M/P1oqKiWWVS02vU/anUXiG1YjpzH/l8flYPi1r5n++zM/P5uvizqA7qVs/V5XLNOtbFZVAryBefg3p9Lj6+ev1nDnpXA7CZ26rfE/l8XrumMwOemf92u93aaw6HQ0v3UtMIZ56veo3U4P/itj2fzzfn2qjXcb5jCyEWBgkCxIIy88d4vtcv9161oqT+kFssFm0mnCs57uWOV1xcrFXQLq7gq62JuVwOj8eDzWabUwG/kT/iZWVlMtf4TXKl93nmM6TOTjOzZ+ziit/b/Xy8XRfvY74g960EvvOd16XK+2aV4aupKL/ZtvOdw3zX/OLyXmkP2pWUcWYZpPIvxMIkQYAQV0ltqb8eOeCbNm267DYGg0FbmOtiN6o1T6fTUVVVdd2P82bHX6gtl2ogejX0ev0tuz6DEEKI60OCACFukpkVuYvz7S9+7Uqp86vf7mbO/LLQLNTzFkIIcW3JCCAhbpJcLkcul5tToVNfF0IIIYS4XqQnQCxYw8PDDAwMMD4+Tl1dnbY4UV9fHwMDA1RUVGAwGLR5xIPBIGfPnkWn07F58+bLzgaTSqV4/fXXuffee+ddJXfv3r0EAgGKioqYmJhAURRtRVCr1TprsaN3klwux9TUFDt27ODee+/F7/eTy+WIRCLs3LmTLVu24PF4ZNGhG+jYsWPaarErVqzQZr25FtRZcK7mfiqKwunTp8lkMtpCfTdKPp8nmUzyyiuv8NBDD73ttL3u7m5isRg2m436+vprVMprJ51OMzY2hs/nw2azXffZfXK5HK2trSiKQkVFxRWlmalTDTscjsvO5qXO+KTX68lms3R2dlJfX8/g4CCRSASTyYTP59Omf73eFEXRZlpaiOmH4vYmPQFiwTIYDEQiETo7O3E4HLS2tjI+Pk5/fz99fX3YbDZMJhNvvPEGw8PDpFIpJicnCQaDl03HyOfzJBIJDhw4wPj4OOl0es428XicWCxGIpEgFotx+vRpQqEQ8Xhcm1L0ncpkMmlzk4dCIbLZLMFgkJaWllmzjogbQ139NxwOX9NK4PT0NKOjo0xMTFz1e1tbW9HpdDdkCteZ1DET6qrEb1c+n9cWXHunmm8igespl8tpK5hfCb1er02XfDnqYnRw4V6qsywNDAwwNTWFxWK5Yd8vaurd2bNntWl3hbidSFOdWLBcLhdGo5FQKITf72d4eJja2lpisZi2qurU1BSnT5+mrKyMoqIibVXUVCrFxMSEVsnJZDKYTCYsFgtms5l8Pk84HCaZTNLe3o7dbp/TG6CuE6DX67FYLHR2drJx40acTidOp/MmXZXLMxgMuN1uHA4H7e3tOJ1OKioqiEQihEKhWfPHixtDnbvfbDZrLfbRaBS4UIlVV9lVewvUNS/U6XQzmYw2T308HsfhcJBKpejr6yMajWqL2oXDYRRFwWq1zpplKBKJaP+dy+WwWq10dXWxceNGbXpKda0FRVG01nl1Xn273U48HiebzWIwGHA6nYRCIe196iq5IyMjeL1e7fNmt9tnTaurruORzWYJh8OzVnPOZDIMDw9rq/QajUaMRiPpdJqCggJtP+p5mM1mYrEY+XyeVCpFPB4nHA5jMplmrduh1+uxWq1MTk5qn9t8Pj9rrQ412FcrlWazmWw2i9lsxuFwEAqFZvW0qPtNJBJ4PB5SqRTpdFqbflcN9tS1EtT/j8fjs6Yy9nq92jVWF4JT1yJQ/99kMpHP54lGoxgMBu04RqORyclJPB6P9m+dTqetFREKhbTGDXVtEJPJRCaTmTXl6Mx7kkqlSKVSs9Y+mDnGRV0kbenSpdoaFdlslkQiwdDQEFarFZvNRiaTIZPJkEgktMXo1EULs9ksU1NT5HI57TtWXXNFvQ7q2iUz14RQy2i325mamgLQ1k3Ys2ePtmq2uqZDOp3WyijErUqCALGgpdNpxsfHaW9vx+fzUVZWxsjICF1dXXR0dLBz507e9a53UVNToy2ABRdWy/3pT3+K1WrVuqqLi4upra2ltrYWvV7P6Ogon/70p/n+979PWVkZXq93TguW0+mksLCQdDpNLpfD7/drP0DvZDqdjjVr1rBr1y6Ki4spLy9fEBX/mQOS36kzFKnlO3HiBHBhIavBwUGWL1/O888/z5YtW7DZbExOTmor/A4ODuLxeEgmkxw6dIi77rqL9vZ2LagrKytj6dKl7Ny5k0wmQ2NjI42Njdp8/4cOHdLm3g+FQixbtozh4WHC4TCZTAaLxUIul+P1118nl8uxbNkyFEXh0KFDFBYWsnLlSo4dO6YtJrZ582ZeeeUVbfGukpIS1q1bx9/+7d/y67/+6/T09FBZWcmaNWvYvn07VquVZcuWMTExwdTUFE6nk9HR0VlBwPT0NF/+8pf59V//dU6ePElhYSHFxcV0d3fzyU9+kkOHDmE2m7FYLCiKQlVVFUeOHCGVSmkrDh84cEBLGZyYmCCdTuN2u1myZAnf+9732LRpk7Y418c//nHt2GfPntXSozKZDLW1tYyMjFBVVcWGDRt49dVXtfUHstksABaLhbNnz/Le976XtrY2BgYGsFqt3Hfffdo5q72JDoeD+vp6urq6SCaTWuX2gx/8IHv27KGoqEhbgCyVSlFaWkoymaS6uprS0lKy2SwHDhzA6/XS29urrYj9ve99j/e///1YrVaKioowGo20tLSQTqdn9VamUimOHDlCcXExIyMjpNNpzGYzdrudsbExwuEwhYWF2O120um0dt3VQEJdA+UDH/gAp06dAi6sbeByufjOd77Db//2bzMyMkIymdTO784776SlpUXb97ve9S7gQvD71FNPEQ6H2bhxI5WVlYyMjDA6OqotfPj666/z8MMPMzk5SUlJCVarlampKaampli9ejU/+tGPMBgMrFq1ivLyco4fP84dd9yBTqfT7nlfXx/33XffvKmeQtwqJIQVC5rJZKKgoICVK1fyG7/xGwQCAW1Bn+bmZpqbm5mcnJwVAADU19dTWlpKXV0dixcvRq/Xs3jxYu0HL5VKMTo6yujoKJ2dnXPer0omk9oqruXl5Rw5ckTrCr8V+Hw+xsfH6ezspLa29mYX57qLRCK88cYbfP/732fHjh03uzjzUhSFc+fOaYtCjY+P09fXx+rVq7WVgEtLS1m9ejWHDh1i8eLFtLa2ksvlKCsrI5fLUVdXh6IolJaWsnjxYmpra8nlckxMTHDixAlGRka0FlBFUTh69ChWqxWz2cypU6coKSmhrKwMj8ejVZLUFYOPHj3K2bNnGRsbw2638573vIfS0lLcbrdWvq6uLqqrq6mrq6OkpASz2czk5CSBQIC1a9diNpsZGBjg9OnTjIyMEAgEyGQydHV1MTw8zNq1a+cspmcwGAgEAmzcuBGLxUJpaSmNjY1MTk5y4sQJEokE1dXV2Gw2XnrpJZ5//nlWrFjBmjVrKC8vJxQK8corr6AoCg6Hg5KSEu3zv2LFCkpKSli+fDklJSVaL4zK7/dTW1tLfX09hYWFVFRU4HQ6tfELLpcLh8NBS0sLnZ2dWopdaWkphYWFuN1uzGYziUSCjo4OHnroIQYHB7Hb7bz73e+moqKCXC5HRUUFtbW1VFRU4Ha7GRkZYfv27UxNTWk9lQD/8R//ofVEwIV0nYKCAuLxOL29vSSTSerq6igqKmLZsmWMjY2xd+9eTp8+zfr161mzZs2syq/BYKCkpISf/OQnDA0N0d7ezrlz59i4cSMPP/wwixYtwm63MzQ0xOuvvw5caAApLy+ntraWqqoqfD4f09PTlJeX09DQQFVVFXa7HY/HQ2lpKeXl5TQ2NtLc3Ewmk+HFF1+krKyMBx54gG3btmllUbdfvnw5a9eu5fnnn9emyFWfS6/Xy/r16zl+/DgvvPACra2tNDU1sXz5cl577TV0Oh2rV6/m3nvvZdGiRVRVVVFSUkJxcTGxWIynn3563hRPIW410hMgFqzR0VF6e3sZHx8nHo9rq6oGg0GGhobo6emhoaGB5557DrPZjNVqpbOzE4PBwLJlyxgdHSWVSuF2uxkdHWVoaIihoSGtGzqfz7N06VJKSko4duwYBoOBFStWzCrD1NSUlpYxNTXFhg0bCAaDN+mKXJlMJsPIyAj79u3jzjvvJBgM0t7ejtVqZWhoSFtJ+XYcGOxwOFizZg3Lli17Ry2UNjAwwPDwsDbA/NixYyiKwpIlS7RWznPnzrFmzRot5ae4uJiqqirOnj1LIBDQeqry+TynT5+mp6eHO+64A4PBQEdHB3a7nUQiwfLlyyksLCQej2M2m9HpdFRWVmrBa0VFBUNDQwwODhKPx8nn81rqSjKZZM2aNdTW1pJOp5menmZgYIBEIkFfX5+WUrJr1y6qq6sBtBQcnU7HyMgI/f399Pf34/V6tZZdu92OxWIhEAgQDAY5c+YM3d3dTExMYLFYtJ4I9f1DQ0M4nU6sVisDAwOUlpZy/vx52trasNlsrF+/nqqqKs6fP088Hmd8fJxIJMK6detIpVI4HA6mp6cJh8MkEglWrlzJ6OgoAwMDTE5OMjAwwMTEBAUFBeh0OkKhEMPDw+TzeW0Q7/DwMPF4HJ/Px+HDh7n//vsZHR3FbrfjcDjo6uqisLCQUCjEyMgIoVAIm83Gzp07OXz4MG63m2g0ys6dO7VUsHQ6jaIoJJNJYrEYfr+f5uZmLRhTU6I+8IEPkEqlSCQSwIXP9J49e7j77ru1wbhGo5GxsTGGhoYYGBigqqqK2tpaTp8+TSwWo6enh2XLlmnvb2lp4cEHH2RyclJLizx9+jQOh4PBwUFtwO+qVatIpVK4XC5tXEEmkyEYDFJUVERRURHj4+OcPn2a0tJS+vv76ezspL+/X0ufGhkZ4YEHHqCvr49IJEJVVRWlpaUYDAai0Sijo6NaytW2bdsYGBjA5/NpvSddXV2cOnVKC8rsdjtHjhwhkUiwbt06nnvuOQYHBxkbG6OgoACn00l3dzfJZJJsNssDDzzAyMiITNUrbnm336+0EFfI5/Oxfv16ampqtFYto9HI2rVrqa6upri4GIvFwl133UVpaamWj6rm2j7wwANYLBY8Hg8ul4uSkhIqKyuxWq1anq3VauXRRx/FbrcTCATmlMHtdlNcXEwul2Pbtm2Ul5df8WC7m8VgMODxeNi6dSvV1dUkEgmSySQFBQU89thjWg7x7UjNX1db2d8p1qxZQzwex2Qy4fF4tPL5/X7y+bz2/0VFRTgcDu3/7777btxuN06nU6uwPvjgg3i9Xux2O5WVlRiNRq1FeuvWrTidTtxut/ZZANiwYYP2GaqursbtdvPhD3+Y4uJibRuDwcDWrVtxu9243W6y2Sxut1trBV+7dq02C1EkEsHj8WjpF3q9HofDgdVqpbi4mPvuuw+bzUZZWRn33HMPJSUlWsUzmUxiNpv56Ec/is/n09LUnE4nv/Ebv0FhYSHvfe978Xg8uN1ufu3Xfg2/38/69euxWCxacOdyuXC5XKTTaRKJBNlslsLCQqxWKwaDgYKCAlKplJYS9aEPfYiqqiqSyaTWiq2qrKzE6XSiKAqJRAK/36/1cPh8Ph544AGqq6t573vfqwULq1atorOzk2w2S2NjI7W1tVgsFkKhkDYuR525Rh2How6EzuVyZDIZ/H4/5eXlWk9CNpvF6XRSUlJCMpnU8uhNJhObN2+moqKC+++/H0C7N1VVVbzrXe/C4/Hg8Xjw+XxkMhkqKyu17zSz2czy5cu1lMpcLqeNdbJYLKxcuZJ8Pq+tej7zGmYyGS1ALCwspLKyUuuNdbvdfPSjH6WiooKtW7dq3z1+v5+amhpcLhcmkwm3261951gsFjZv3qyNLamvr9eeZ5vNRjqd1mYXcrvd2O12dDodsViMXC5HIBDgoYce0oIxvV7P/fffj8/nI5fLodPpcDqdFBcX35YNHWJh0SkSyopbUW87fOn34Qv/AtUN1/VQauXqWk8Rt3PnTsrKyqipqUFRFO0H5ejRo9oP59VQFIVXXnmF9evXzxqUeDtKpVJs376d++6774bPPnOznThxAkVRWL169WW3VSuF+Xye3t5eLcXE4XBos66oLfXqrDrqazOnBVUHqqr/Pd9YCDX//lIBoPpTM/P9M4+vzio1c79X8nmb7xzy+bw2YPRqxm3MPIeZ4z/UsquDp9VjXQvqvtXzb29vZ2JigqamJo4ePcry5cu1lvyZ1/Zqjq+el/qeS52D2lp/qWs283qolXr1Wl2834vHzszcx+Wu4eWepfnO61L7mlmOZDLJwMAAu3fv5rHHHtOej5nbzLxO8x1L3ecVj4G6gb9VQlwtCWOFuIzr1eprNBrJZrOk02ltVpGZg+TeinfaIFVxc82sqKizoVitVq1yr9PpZm2jVqberPJ1qWfschW2+SpYM4//VgeWz3cOaovz1bq4kj3fuV7rAfAze0rgQk+Kz+djdHSUuro6CgoK3nbq2cX35lLncLmW7ZnX5OJrPt9r812/i+/XlZT37Ww3sxzpdBqdTsfSpUtnNepcSaB4u/ZuioVNggAhbpK77757zmtms5k777zzLe/zSufivtWp84cvhHO92FupjKiDYsU7n9VqxWq1yv26DtSUpkWLFt3sogjxjiBBgBC3EXUe69udmgu9EM71Yvl8fkGetxBCiGtLggBxW8rn86TTaW1wrrqYTjabxWazXdOc3mshm81y8uRJamtrtcFuwKzKnk6nI5PJMD09zcjICIsXL54zR/WNqhwqiqLNea4eU6fTYbVa33HXdiGIx+Pkcjlt0OXNXr9AnaFGna/+Ro7bUBSFXC7H9PQ0fr9f6zlRF7SCCyl+6uBZdbGv6elpjEajtnjUrT7/ey6XY3JyUptB6Vo9D/l8Xpv56FqmRqmBfSwW03pDhBDXlwQB4rakKAqpVIrXX3+dlStX4vV6SSaT9Pf3s3bt2ptdvDkURdFygNWVd2OxGEuXLuXcuXPaojpms5ny8nLGxsZoaLi5g8ySyST79u3TZgRJJpPodDpqa2tl1owbrKuri0gkgtPppLm5+ZpV+NSKsjqrzNU4c+YMHo+HoqKiGz54O5PJ8MYbb/DAAw9olcl0Os2ZM2e0nPBwOKytPTAyMqKtEJzL5XA6nVRWVt7QMl9L0WiUoaEhbSpOi8Xytp4JdeySutrx3r17efe7362t/HwpiqIwPT1NOp0mFAphsVgoLy+ns7MTm82mzRKkrviby+U4ceIENTU11NTUvOXyqnK5HKFQCJ/PJw0TQsxDfqnFbSufz/Paa6+RzWZZunQpOp2OlpYW1qxZo01Lp/4wJBIJbc5zdVCu2WzWZhlRt5s59d3MWVT0ej0Gg4F4PI5er8doNKLX6zGZTFqPhNo6m0wmMRgMWo8E/GrGDHUl1/Pnz9Pb28vSpUtpaWlhaGiIYDCIz+ejqqpqVgv8zZLNZnn55ZdZtmwZHo+H0dFRbepACQJurM7OTm3RrKamJuDC/VHTw/R6PblcTmuZV583ddpIg8Ew63lWn/dIJEI0GiWXy1FfX6/1pqkt5up26rHgVzPo7N27l7Vr1+LxeIDZvUfqTDfq+6xW66zPpMViIRaLaZ8Pg8GAyWQiHA5js9m02VmMRuOsyqnamhyJRHjttdfYunXrrCDg5MmTGAwGamtrmZiYoLe3F6fTyYkTJ2hqamJyclKbwlMNAhKJhPYZVxQFm82mfS/MnHVGHeivlmvmSsnq90o6ncZqtaIoinYf1M+yzWbT5u1XZ6yZ71jqlKnq+B/1nNUpW3U6HZOTkxw8eJDa2lomJydxuVzagHC1V1S99+qMQOpsUOqsPzN7QiYnJ4lEIhgMBoqLi9m1axebNm3SBpGr33Pqec2cIWhwcBC4sGqyzWbD5/Nx5MgRbXFB9f4vW7YMnU7H4cOHASguLp5TDvVaqNOiqs+s+oxEo1HtfqvX6syZM6xfv147x5mzAKn3Ri1vMpnE4XCQTqe1Y8uAYHE7k19qcVsyGAx4vV4ee+wxnn76aaxWKxs3bmTlypUYjUZ6enqIxWIYjUYMBgNHjhyhrq4Og8Gg/RDX19cTDoeZmprSFv8KBoO43W6tQhQOh4nH47hcLjweDwcPHsTlclFYWIjD4aC8vFxbEEddP+DUqVPaKsUOh2NO2cvLyxkaGuLs2bMAbNu2DafTydDQEJFIhJKSEs6cOXNDr+fFdDodfr+fgoICSktLqaioIJ/P4/P53lGLaF1r8wVe74QWRr/fDzArRWN6epqpqSkymQw2m41wOMz4+DiVlZVaakxlZSVTU1N4PB6y2SzRaJRQKITD4UBRFE6cOEEsFqO8vJyKigptASX1nqv3OhgMEgqFALTPSl9fH/fddx9erxe4cO36+voYGRmhuroap9PJ2NgYkUiE5uZmhoaGCIVCmM1mmpubOXLkCHa7HUVRcLvd1NbW8tJLL7Fq1SoymQw+n49AIEBfXx/xePz/z957B8l53vmdn845d09PT06YGQwAIjCKQaJISmIQV6tb79lea2/vtOe1Xbavrq7u/vTeXbnqyuWrW8eyd9falVZhTVJmWJFiBEgkEhkYDCbn1D0znXMO98fs86gbGIBgRGB/q1Cierrf93mf53nf9xe/X/r7+6lWq0SjUdbX16+ZI6FqK4w7t9uNTqejo6OD1157jXQ6zf79+6UCuMD09LQURqtUKjzwwANkMhkikYjUCZiYmMDtdrO1tYXdbqetrY3l5WWGhoZIpVIolUqy2Szz8/Pce++9ZLNZOjs7qVQqrK2tUSgUuO+++xgfH5dGcblc5sCBA2SzWSKRiHSe5ufnJV+/SqUin88TDod58MEHpcEci8UYGxvjvvvu4+zZs9Kp8Xg8xONxwuEwvb29UmBOOCA+n490Oo3dbqenp0fu7XfffZdMJkNvby9OpxOPx0MgEGBzcxObzUZbW5tch97eXsxms3QCAoEAjzzyCGNjY6ytrbG1tUU+n+fee+/lhRde4MKFCyiVSv7wD/+QvXv3YjKZiEQizM7OYrVaG8aRy+WIRqNEIhFaW1upVCpks1lqtRpOp5P33nuP/fv3S3rYSqXCT37yE+lQpNNp8vm8dK5isRg6nU5S5o6NjfH444+ztLSE1Wqlr69vx2d0E03cLWi6uE3c1VCpVPyP/+P/SCaT4YUXXqBarbK2tsbrr7/OuXPnWFhYYHV1lampKVQqFcvLyyQSCfR6PYlEgldffVWK2ABcvnyZAwcO8J/+039idHSUfD5PKpXiT//0T7FarUxMTMiI009/+lNWV1f51a9+xYULF5ibm2N6eprjx48zODh40yUSTqeTM2fOkEql6Ovr+yKn6xMjn89z5coVjh49SiAQwOfz3dWRs3K5TCgUYn5+ns3NzVs9nOsik8mwublJuVzG7/fzs5/9jD179nDhwgU2NzcxmUw4HA5eeuklBgcHef/99wmHw6hUKo4fP47H42F0dBSTycTQ0BD9/f3odDr+8i//kvX1dalyLfA3f/M3smTkzTffxOfz0draKvntYXvu/st/+S+EQiGSySTz8/OcOHGCtrY2stks8XicxcVFzpw5I7UQhFrs4uIii4uLzM7OotPpuHjxIqdPn2Zubo5XX32V6elpLl68yOuvv87p06c5dOhQg5iZwE4Om0aj4Z/9s3+G0+nkxRdf5Ec/+hHRaLThO/F4vGEcf/EXf8GVK1dYX1/n5Zdfxul0SqXijY0NKQL4yiuvMD09TS6Xo1AoMD8/T2dnJ2NjY8zOzhIIBAgGg5w+fZqLFy+STCbJZDIyIv3CCy/wH//jf2R6eprl5WVeeeUVGXzQ6/VMTU3xyiuvyFI8Ab1eT1tbG8PDw0xPT2MymTAYDPj9fk6fPs2+fft48803mZycJJvNyufg+vo6ly9fZm5uTgZDYJu2dGhoiO7ubpndMJlMXLlyhQ8//JCFhQW5DpcuXZLRf6VSyVNPPUU6ncbj8eDz+QiFQrI8KZfLYTQaGRwclOrDW1tbOBwODAYDr7zySsM6jI+P89prr7Fv3z6i0Sg///nP5Z5+4YUXmJ2dRavVMjo6yuzsLG1tbXR2dtLb20tPTw+RSITR0VGcTidnz54lk8mQyWSoVqtS/C2TyaDT6aSQWBNN3M1oZgKauKtRrVbx+XyEw2FpeLhcLux2OwcPHsTn8xGPx+np6WF5eVlGOYVy6PPPP8/Ro0dlTangHxeNvEKVs1qtEolEgN9wZYs0vd1u54EHHsDtdhMMBnE4HFit1ptqqhMv9unpafmi/LQaAl8EdDodg4ODfP3rX79GkOhuRKVSIZVKEQwGqVQqtLa23uohXYNqtcrp06dZWFiQUW3RKGsymYjH4+TzecxmM9lsVhpjorEYkLXx9aUt6+vrfPvb32Z5eZlAIIDD4cDlclGr1chms7JUo94grRcFUyqVPPPMMywuLhIIBGQZhsfjYW1tjcnJSXK5HDabjfX1daxWKzabjVQqJZvihbEmorwiI/XUU0/Jpvl0Or2j1oFaraazs5Px8XHZ5yBK9U6dOsUDDzzAnj17CIVCrK2tyZ6b+ob3RCIhS5jcbjfDw8N0d3fT3t7O//v//r+0tbVRLBY5fvw4zz33HNlslnw+TzAYJBwOA0h130QiwcbGBktLS3i9Xvx+P1qtVpbtaDQaCoUC5XKZlpYWent76ejoYHV1VaqUj4yMoFQqWVlZIRQK7ahiq9frsdvt6PV6IpGILGkUa6/VanE6nUQiEex2O5ubm7K5WkBkfAqFAoFAQK6DGCNsByuefPJJyuVyg/GcyWRYWVnBZrPR2toqFaGLxSJ2u10qQweDQZxOJ3a7XZZ8lcvla/a2GL/b7cZoNNLa2so999yDy+XipZdewul0ylIhhUKBRqNpCFCILJjI6hmNRmw2Gy6Xi6effpq/+Iu/4KmnnpLjaqKJuxlNJ6CJuxLlcplYLMbW1hYDAwMMDAxgMplIp9M4nU46OjqkYqrL5eL+++8nHA6j1+vx+Xy43W5yuRwKhYKenh6sViuRSIRwOMzS0hIPP/ww2WwWk8kkm2HL5TL5fF42GR48eBCXy0VHR4c0xLRaLQ6Hg0KhcF2e+3A4TC6Xw263k06nMZlM2O12KWF/OzgBtVqNZDKJx+PBbDbLko27HWq1GqfTiU6n+9imyC8TQvE0m80yOztLNpulpaVF9rl0dXVRLpcZGRmRzCtms5l9+/axsrJCf3+//H5PTw/pdBq1Wk17ezt6vZ50Oi2P5fF4cLlc8voVCgUjIyMUi0UAhoeHiUaj2O12WQtfv89bWlqkMSjKd0Rmwmw2Y7VaSSaTUgtCp9NJx9vtdpNMJuX86/V6Ojs7pVPT09NDPB5nbW0Nm81GNpvFYDBIxe/u7m55HysUClluVCqViMViKBQKaRDWQ5QQ6fV6WbojnicWiwWDwcCuXbsYGhqSkXqR6TMajfIeWVpaYnFxEafTSXt7O6lUilQqhc/nIxaLUavVSKVSslTxvvvuk1mYTCaD2WxGpVJRKpWkg6XVamlra5MlOLBttFutVoLBIFarVa6Ny+XC5XKxtLTEnj17ZD+CRqORvQoGg0GWzlgsFgA6OztlGY/b7cbtdpNKpdBqtXJeOjo65DqIa6/VaiwvLzM1NYVSqaS7u5uRkRF8Ph/r6+vs2rWL1tZWyuUywWAQs9ksgyr5fB673U6pVJL9J62trYyMjLC5uYlOp5P9SOJ5efW4isUiQ0NDFAoF6bi0traSyWTknhCOhUajwe1243K5pIPRRBN3O5pOQBN3JcSLXZQEeL1eHA6HbJITzBO1Wg2TycSuXbswm81UKhVpcIvo4969ezEajfj9fgqFArlcjnvvvZdUKiUjigcOHEClUslIqE6nY//+/dhsNnp6emRToTjXTlzv5XKZarVKqVTCbDYzMDAgo3GDg4M4nU4ZoauP0t0qlMtldu/ejd1ub4gi381Qq9U4HA4cDsetHkoDHA6H7G/J5XJ4vV7sdjtqtZpCoYBOpyOdTuPz+dDr9bLUYf/+/SSTSYaGhnA4HFQqFUZGRtBqtXR2dtLV1SXPYbFYMBqNtLS00NLS0lBus2fPHhmB93q9lEolBgcHZURXGKwicltfm18qlXC5XAwMDMiGVeEYKBQKrFar/O3IyAjVapWOjg4MBgM2m43e3l5KpRJqtZquri7sdjupVIrdu3fLLARsG/JOp5OBgQF5j1qtVpRKpTREFQoFFosFn88nr1tk7arVKlarFZPJRFdXl7z/Rc34fffdJzMB8XgchUKBwWDAbDZjMpnkMeLxOB0dHdJoVqvVMlIfi8UkcYBWq2VwcJB8Pk80GpUR9paWFtkYrNFoZDTdYrHI9bBYLAwMDFAqlejv70er1UoHtru7m3w+z+7du0kmkySTSflsMpvNtLe3S4dPQNTfZzIZrFYrIyMjALS1taHRaLBYLPT19cmm8fpsRLlcljTNarUam83G4OAg5XKZ3t5elEqldIYA+vr6ZBnZ4OBgw3NSOKqFQgGz2czu3bspFotybkZGRqjVarS1taHValGpVOzbt08GUFpaWmRGVygzC0ezUqkQDofZvXs3LpfrjqeIbaKJm4GidqspRppo4tNgZQ7+5T+Hf/EfoPuLp8rc2tpiamqK6elp/vE//sfX/F1Exn/6059y7733cujQoU/Ec10sFnn99dd56qmnZLRvJ4gX8fHjx3nyyScbotG1Wo133nmH+++//5pI5t2GQqHA4cOHeeqpp750+slbDVEvf/DgwZv+TbFY5MyZMxiNRnbt2vWVyNrcTqhWqywuLvLKK6/wgx/8QDaqXo0PPviATCaD1+vl/vvvvwUj/WpClAgdOXKEQ4cO4fV6P7/nypf8rmqiiU+CZiagiSZuAiL6+Y1vfGPHv4uI5T/7Z//sUx1fpVJJGrsb+eWCEu/QoUN3NQtPE58vtFotjz766K0exlcWCoWC/v5+/o//4/+Q/38nPP7441/iqJoQUCgUmM1mvve9793qoTTRxJeKphPQRBM3gZtpEPssTWRKpZL29vaPVXpVqVRYrVYsFsuOLDz13O13M0S9+FfhWq/Gp2Vf+irO1e2Cm5375hrdGjTnvYmvKppOQBNN3AYQdao3870bvbBuh16BLwtfpWuth2gCbqKJJppooonPgqYT0MRdCWEk7WQoCqVN8Xehxima4Xb6DBrVKgGpJnkzUaR6hd+dGs4qlQqLi4v09vbeUG1X0A36fL4dI+E7NRx/ERANylefT2QivujImjCEvyxjWJyrXC43nFNQxn6ZkcSdrlvs13qIvSnGJtiDdDqdZMaqVqtS8Opu1neA3+xZ0Xx8u16v2Ge5XK6h2fezHlOQGNSz3gjWnFvNdCX2dC6Xa1BSb6KJJr5YNO+0Ju5K1Go1CoWCVMcMhUJEIhHi8XiDIVcul0mlUmxtbcnPSqUSyWSSQCDQcMxqtUoul2NxcZFEIkEikSCVSpHP5z92PIVCgVgsJrUErkalUuHChQsUi0UymQypVIpcLketViOfz0tWolgsxszMjFTJvJUoFotSATaZTBKLxSTTyN2ISqXCxsYGGxsbcv3D4fBtkZFIJBLEYjHi8Tjr6+ukUinS6TSlUgn4jVO8vLwsRaCEYbi8vCwpJD8rBDvWTk7JrYZ4JgiF3i8CxWKRYrF4U3tCGOXCGcvn81SrVakQHIlEKBaLn8s8ClaieiXlWq1GOBz+RKJ3wpESz6bPEyIQ8nntxU967ltx3iaauNVoOgFN3JUoFotSkfSXv/wlL774Iq+++ipHjhxhfX1dGinFYpHNzU2pxCkMI7/fz0svvQT8JkolBMH+5b/8l8TjcU6cOMEHH3zA1NRUQ2R6p3+ZTIbx8XEOHz583Si2oCg9e/Ys7733HmNjY8C2UNjMzAzj4+MsLS3R0tJyWzgB6XSaf/Nv/g2//vWvCQQCjI+Pc/z48S/MwLrVKJVK/OVf/iUvv/wyq6urrK6u8tprr0lqw1uJ9957j/fee48PPviA//v//r+ZmJjgo48+ksJPsL2Pf/GLX+D3+xsyG3/1V38lOeqv909kfD7uXzweZ3Z2lmQyKc95o3/1+Dy/e71/xWKRn/3sZ4RCoU/0u5s9r9gXQozqRv82NjYIBoOSmWZ8fJxMJsPly5c5cuQISqWSpaUl+Vy6mXm4ep3qvzM2Nsarr77a8PszZ87w7rvv3vS6VyoV0uk04+Pj0kH5LP/qx1cul/nLv/xL4vH4Zz7uJ/2XTqdZXl7ecY6baOJuRrMcqIm7Emq1Wip6Hj9+nEwmQ0tLCwcOHGB+fp6JiQnMZjMWiwWn00kymWR8fJzu7m4sFovkgU8mk2xsbKDX67HZbNjtdlpaWujq6mJzc5NYLEYikSAYDLK5uYnNZpMiQjMzM/h8PnkOi8VCNpvl7NmzGI1GBgYGrknDazQavF4vtdp21LJWq/GrX/2K++67T4r5CF7yWw2Px4PX66Wrq4u+vj7JAX63shYZDAbcbjc+n4+enh42NjZ47rnnMJvNt3poPPnkk1SrVUKhEKOjozz00EOEQiGi0Sijo6NSn8LtdhOLxVhYWJDiTTabDZVKRSQSkXz0w8PDkmN/aWmJiYkJWltb2bNnD9FolEwmI7UEZmZmiMfjUnirUCiQzWbRarWEQiEpbFWr1VhfX8doNNLW1obL5WooTak/f09PD+fOncNsNkt+/qGhIfnd8fFxKQpVKBRoa2sjHo/j8/lwOp0yAygUaIWzH4lEpJpsMBgkGo1KwahgMCi1DzKZDBaLhWKxyPDwMDabTZ5bZFxyuRx6vZ6Wlhbm5+exWq1Eo1Ep7CWuV3yeSqUwGo0Ui0Xa29v5b//tv6HT6XjmmWeA7Wh0IBCQjsTCwgJer1eWAOZyOaxWa4N2QygUYmNjg3K5zKFDh3jnnXfkNQtxuEgkwsbGBn6//5p9YzabSSaTrKyskMvl2LVrFydPnkSn0zE0NMSRI0d4/vnn2draIhqNUqlUcDgcVKtVVlZWiMViFItFqRMAEAwGpUaCmC8xr9lsllQq1cBuJjKca2tr0gBPJBJyzoaGhtBqtaysrJBKpVAqleh0OjnXQjNBq9WytrYmn9XC6RNCdltbW6hUqoZ1KRaLOJ1OlpaWeOutt/hf/pf/he7u7majcBNfGTQzAU3clVCpVLhcLlmvLf4JtU2dTsdHH33E6dOn5QO/v7+fEydOMD4+LoXCfv7zn5NOp7l48SIXLlwAtkt7lpaWpNAPbL+M9Xo9b7zxBqurq6TTac6cOcOuXbs4fPgwoVCIXC5HKBQiFArR19d3XR7q+jpuhULBwYMHuXLlCqOjo4TD4S9h9j4eYoyFQoG5uTnOnTtHKBSipaXlrhQNq1+TYDDI6Ogo4+PjtLS03LCH48tCvcAdbPcDCLGktbU1XnnlFWB779psNkqlEnNzcwQCAWq17bKQS5cu8eGHH7K4uMiVK1ekeFYikWB1dRWfz0ckEuHkyZNcvHiRubk5RkdHOXv2LPPz81K4qlgs4vf7efXVV1Gr1WQyGebm5rBYLLz77rvodDoWFha4cuUKsB0JjkQiTE5Oks1msdlsvPbaa1QqFfx+vzSKxVjFb5LJJKurq/j9fjY2NhgfH8fv9xMIBHjvvffo7e3l2LFjLC4usra2xuTkJHv37qVSqXDq1CkuX77M4uIi7733Hi6Xi8uXL1MoFLBarZRKJVZWVlhdXWV9fZ1EIgFsl9WcP3+ey5cvE4/HCQQCvPzyy/T391MsFimVSqRSKWZnZ/nFL35BpVLh6NGjLCwskM1m5TGF2nhLSwvt7e34fD7Onz8vVWuFqvLMzAwvvPACmUwGl8t1TelhoVCQ+3FqaoqFhQVyuRzxeJyPPvoIgF//+tcYDAY6OjoanjkKhUKuscPhYHp6mvX1dVZWVohGo1SrVebn5wkEApw8eZLl5WV0Oh0ej4fTp0/jdDqZm5tjbm4OvV7Pe++9x89//nO2traYmZnhjTfe4N1335WZp/Pnz3Py5MlrrmFubo5Tp06xe/duDAaDzCZtbm7S0dHByy+/zLFjxwgGg1KMzOfzcerUKZRKJdFolPX1dTweD++88w4Wi4XJyUkmJiZkZvUXv/gFoVCI6elpTp48SaVSkWshhN1aWlpoa2trOgBNfKXQdAKauCuhUCiuoctUKBRUq1WmpqYASKVSMqqpVCrlCyiTyQDbhsbW1hYOh4Pu7m68Xi/wG5pOoTosXjgqlUpmBvL5PLVaDYPBIKNlSqVSvnyuVuS8EWq1GgcOHJBqpLcTVCoVDoeDzs5OOjs7vxIUpQaDAZ/Px/Dw8Cdaxy8SQi24HltbW4TDYRKJBMlkklQqJVVbhQOXzWaB39Sy6/V6+vv7MRqN0vGpVqsAOJ1O2VgrlGeNRiOpVAqr1YrVapUCeYVCQRrtos5dlHxotVpyuVxDGZWIEFerVVQqlYxai6h9sViUvQwCKpUKtVotj1ksFsnn82QyGemUh0Ih2V9TLBYxmUzUajUSiQTVahW3283u3bvRarXUajX0er28do1GQ7lcJp/Py94KEeF2OBykUimWlpZkBsFsNqNWq6lUKmSzWYLBIF6vl97eXux2O0qlUh6zXC7LeyWXy6HT6UilUigUCrRarfyXzWbZ3NykXC5jMpkasoDZbJaNjQ3W19dRqVSsr6+TTqflb4XjEolEZPT86obbWq0mzyn6jkqlEtVqVfYRiMxFuVzG7/ej1WpJpVINGT+1Wk0kEmFrawuLxUJXVxc9PT243W4UCgWBQACtVovJZJJrIhy6XC5HIpGQqspiDcV+9Pv9hMNhqQBvt9vlGEqlEvl8nmKxiFarpVKpoNPp5L5TKpXE43E5rs7OTknFrNFoqFQqMlMlVLWb5UBNfJVw60NYTTTxBUHUsIoXgjBgEokE5XIZg8EgX34Oh4N0Oo3dbkev18sXjtfrxWAwYLPZUCqVlMtlbDYber0elUolvyuMCovFQrVapVwuY7fbyefzaLVayuUySqUSq9VKuVwmFovhdDqviSKLMYsIXbVaRaFQsHfv3uum9G8FhGFmsVjwer10dnbeFhHxLwpiXUSpgdfrxW633+phSYj1yOfzsuQkk8mQzWZRKpV4PB6i0Shut1vWPRsMBtRqNTqdDo1Gg81mw2g00tHRQaVSkcJ1Go0Go9EoHWVREuXz+UilUg2GfX0Gy+PxUCwWJftMqVTC7XbLv9cbpGq1Gr1eLxtkW1papMEtxiIMcfF7YUQLdiNRLletVrHZbCQSCXk/q1QqTCYTiUQCnU6H0+nEarXicDjo7e2lVCphsVgwGo2o1WqUSiUmk4lcLifZwgQcDofMsNRqNbxeryz1EQ6WVqulo6MDrVbL4OAgm5ubRKNRjEYjuVyOcrmM2WxGq9USj8fRarXo9XrJPCacCbVaTWtrq3z21JdPlctlstks+Xyerq4ukskkGo1GOoTCMXK73ZRKJUqlEhqNhmKxKOdOlDzl83lMJpOM9BuNRulQlMtlOjs7yeVyZLNZCoWCXE+j0YhGo5HOW3t7OyaTCbvdjs1mIxQKkc/nyWazOJ1OjEYjkUhEXieA0WjEZrORTCZlpkKwV6XTaVpaWnA6nfLa9Hq9zF4Ui0V5LHGttVoNo9HYsGZiXDabDbPZzMrKCiaTSQZrVCoVdrudeDwuS0GbaOKrgLv3rd1EE9AQPRQRuIceeohqtUp3d7eM/O3fv5/FxUXuu+8+mWLu6enhm9/8Jqurq5jNZmlc7dq1i5WVFdLpNG1tbRw4cIBAIEA+n5f1w7VaDZ/Px+bmJm1tbdJAGhwcxOVyMT09zaFDhxrqyUX0TZQVqFQqyuUyAwMDxGIxbDabjEDeDhBzpNfricVi+Hy+Wz2kLxT5fJ6Ojg6q1SpbW1vSoL1dEI/HiUaj9Pb2Eo1G6erqQq/Xy1KQRCLBo48+SrVapVQq4fP5cLvdtLe343A4MBgMkhWrp6dH1vEbDAacTidbW1t0dXXR29sra+zVajWFQkGWkNjtdlwuF2q1mu9+97uSYaurq4tKpUJ3d7eM8Iq9r1AopEMhruF73/seExMT0qATRrCAyAIIx7pUKknjXK/X8+ijjzIzM8PXvvY1WltbKRQKlEolpqam8Hq9PPDAA5TLZSKRiCwTdDgcDUYogNVqBZDZEEA6I729vYyMjKDX61lcXKS9vR2lUolarcZisXDgwAEWFhbkPhGGrdVqpVKp0N/fL6PRoVCIrq4u8vm8NEgLhQJ2u53HH3+ceDzO5uYmLS0tchxms5nOzk5qtRpOp5P19XU6OzslQ5PP5yORSPDYY4+RSCTIZrM4HA7i8TgejwdA9olsbGzQ1tZGZ2cnZrOZSCRCIBBgaGiITCZDLpejvb0dvV5PJBKhu7ubeDwur0U4bg899BCbm5syMp/JZHC73fT29rK+vk65XGbPnj14PB7pMHZ1dWEwGJibm6O1tRWLxSL34srKCt///vcxmUzMzc1JR8Rms3Hw4EHZD1Cr1eTzSDjCwiE0m808/PDDbGxsSAdIrK/FYpHzvX///mZjcBNfOShqzR3fxJ2IlTn4l/8c/sV/gO5d1/3a7b69xYuwUCjw4osv8ru/+7uypGInxONxLl++zNDQ0DX197VajXfeeYf7778fl8v1hY/96rn9MstiCoUChw8f5qmnnrpub8XnjVt5vfUYHR2lVqtx8OBB+dmt2OflclnuR5fLJTNqg4ODN32M+jm8mWuo1zz4siGcoluNz2sObofr+bRj+KLH/rne2zf5rmqiiVuBZiagibsat0O99s1ApVKxf//+HQXA6qHT6SQDyq0W1LlT5vbzwu18vbdibGq1GqfTyaOPPir34mcRivskv7tVa3E77YHPYyy3w/V8GfuliSaa2BlNJ6CJJm4DqFQqent7P5ZZR6vV0t7efl0azi9bvfZWQZRwfBWu9WqIWv1bDbEGdyMbVBNNNNHEVwFNJ6CJJm4DKBQKWX98I6jV6tuCl76JJppoookmmriz0XQCmrhrIRrDoLGOVpQs1DeBKZXKhu9+lrKGTzNOQVUnmC+uh0qlItlQdhqjYEP6PMZ0dZOcUqnccWzinKLZ7up5FahvrvyspUz1zE9fNQgV150+u1pj4lahfv8IJiCxZl92Bqd+vurLlm4lPs97oYkmmmji06LpBDRxV0NwZWu1WpRKJfl8Ho1GI+n/BO++wWCQrDuCrk+r1QI7GwzCqPgkxsT1GkuF4M/y8jIPPvigPO9OiMfjnD17lkcffbRBHOrzRrFYpFAoSKpSAJPJtKMOQDweJ5/P097eDmw7BUJ7oT5rkcvlqFaraDSaGzY/N/HJIag6BTPN57Uv6vfsJz1mJpOhXC6j0+kkW4vf76etrU2Ws13v+J/lvFej/j63Wq23hdFd/6y5WjX8i8Tt0tzeRBNN3B649U/DJpr4glCr1fjlL3/JL3/5S6anp5mcnOR/+9/+NylUk8vl+OCDD/g//8//k2KxyL/4F/+CsbExlpaW+PDDD/nxj3983eMKurpPgkqlQjqdZnV1teHzQqFAOBxmYGCAsbExTp8+zeuvv87PfvYzAMbHx/nxj3/MuXPnZGNwJpP5QqPgoVCI999/nz/+4z9mc3OTF198kcnJSSmkdvV366+pUqlw+PBhfvrTn/Lee+8BkE6n+Vf/6l/x6quvUigUvrBxf1XxwQcf8NJLL3H48OGGKPNnRalUIhaLSarPT4K//uu/ZmxsjHg8DmyzCf2bf/NvpGMO287msWPHGjjdYfsem52d/VzE8cR9/n/9X//XNee5VVhYWODYsWNSNfnLgnjura6uNuguNNFEE19NNDMBTdzVcDqdUhSnVCphMplwu90olUpsNhsul0tqAJhMJlpaWqQS6vnz55mcnMRisVAoFNBqtTgcDpaWljhy5Ajf+c538Hg8kru6u7ubcrlMLpeTgkA+n49gMCiVL2dmZjCbzXi9XpmdgN+UKbW2tqLX6ykUCszNzQHQ19fHyZMnpdPxZVD7Wa1WKRqk0Wj45je/icViueZ7q6urKBQKmQWAbZXX/v5+8vk8MzMzfOtb3yIYDGIymXA6nQ2qp018PriaKx+2s2CJREKKnKVSKRKJBF6vl0qlQi6Xw+fzEYvFpIhdNpslm81K2tWZmRnS6TQulwu3200kEiESieByuWhpaZElYIlEQka3hVDT0tIS999/PzabTY7TZrOxsbFBIpFAq9ViNpvJZrOUSiUikQiJRIJcLketVuO9997jd37nd3A4HJRKJTKZDDabjXQ6TTwel4Jh8Xgct9tNpVJBo9FgsVgkD744p8vlwmQyoVarWVxclMJSer2e6elpKTzl8/nQarVEo1FSqRRdXV3yfJlMBoPBQFdXFwqFgmQyKUUFAamiKzJ56XSa1tZWDAaDvM8rlQrz8/OEQiGpzpvJZAiHwyiVSlpaWqhUKnKt3G43Fy9eZHBwEKVSyeLiIocOHeLKlStYLBapAlwqlXA6nVLwKpPJyLKrYDCIVqvFbrejUqk4cuQIFosFs9mMQqGQa7d79+6PZSdrookm7i40nYAm7mrodDqSySSRSIRSqUS5XJYlLeKFLUSHNBqNLF2wWCzSYBGqp4VCgdXVVXw+H7lcTr58Y7EYhUKBM2fOYDabKRQKKBQKzGYzx48fp62tjaWlJaLRKNVqVb64d3rZOhwOMpkMlUoFnU6HQqGQRvPnGeH9OAjV0Uwmw/j4OF/72tcwmUzXlCqFQiEsFkuDLoFQWxUKrfF4XIr0iPm+UyGMZ+EUCkPqVkPMrVifYrFILBYjn88Ti8XY3NzkwQcf5NSpUygUCux2O9VqlQsXLrBv3z6mpqakqNXY2BgPPPAAc3NzJJNJVCqV3LMnT57EarXK8h6BsbExvF4vtVqNxcVFDhw4IA3yeh0HIZi1vLyMVqtl7969+P1+otEoMzMzlEol7HY7DoeDbDaLWq3G7/eTyWTo7OzkwoUL7N69m+XlZXQ6HQMDAygUChYXF6VzfbVuRP2+UygURKNRNjc3SSaTOJ1OYrGYvC+Xl5dlX0U+n+f8+fP09fURDAZZWFjgwQcf5MqVK6RSKVlaFAqFUKvVGI1GWlpa2NjYYGtri+7ubi5evMjBgwcxm81kMhn8fj/ZbBaTyUQmkyEYDDI2NsauXbsYHR1Fr9eztbVFMBhkeHiYRCLB3NwcPp8PpVLJ/Pw8DzzwAGfPnuXxxx+X5/ra177G2bNn8Xq9wLYDkkql+NrXvsa5c+fYu3ev1HUQzxaVSsX8/Dyrq6u4XK6vZH9NE0181dEsB2rirkc+nyedTpPJZGQKPJlMylKDnYw4lUolI3iBQIBcLkcikeDy5cu43W7MZjMajYZUKsXW1hYqlYqzZ8+ysrJCJBIhmUwSj8c5deoUWq1WRg1bWlpk1HKnl26hUJARQqEYfKtezsLxicfjUolVGJmi6VPU/l8d3RfKqO3t7YyPjzdkPe5kVCoVkskkGxsbxGKxWz2c6yIUCrG2tkY+nyeVSnHp0iWp+huLxVCpVJhMJsbGxnC73czPz8u1XFlZQafTsbGxgVarxePxYLfbKZVKrK6uEovFZKZL7IOJiQmq1Srlcpnp6WkZadbr9Q1OX7VaxWQyEQ6H2djYQK1Ws7m5KZWCo9EohUKB1tZWzGYzKpUKv9+P3+/HbrczOjqK0WiUGQO3243P52N5eZlCoYDBYGhg2aq/z2HbOQoGg2xtbeH3+9nY2JD7XK/XEwgEmJycxO/3o9FoOH/+vMyQBAIBzGYzExMTnDlzRq7/5uYmfr+fVCpFOp1mbW2NyclJDAYDgUBAPnOy2Szz8/NSX0Gr1RIKhRgfH8flcrG2tkYqlWJpaYmFhQW8Xi/lcplEIkGpVJJlgzqdjtXVVelILC4u4vV6uXz5MuPj4zLLkEgksNlsLC4uAts9GisrK3g8HunwCWXgVCrVLA9qoomvIO78t3ITTXwMvF4vfX199Pb2YrfbqdVqXLlyhWg0KjMCQAODSTabZW1tjUOHDnHp0iUymQx6vZ5MJkM2m0WpVBKNRpmYmGBsbAyXyyXl7Ht7e7FYLIyNjaHRaOjs7OTxxx9n//79aLVaqtUqGxsbO750L1y4gE6nw2w2s7W1RTabbWAt+jIdAo1GQ3t7Oz/4wQ9wOp3X8MGL6P7VnwtWppaWFvbv388LL7yA2+2WEdo7OeJYrVbJZDLEYrEd+yNuNWq1GqVSifPnz3Pu3DlZZqJUKonFYthsNlKpFPl8HoPBQLlcplqtylp5lUqFWq2W16bRaFCr1ZRKJTY2NnjyySdlI7so/6nVapTLZSqVCpVKRR7zesq2NputYS+I8T3wwAPY7Xampqak/kAwGCSZTDYcv1arYTabsdlsWK1WOjo6CAQCKBSKa7JM4+Pj8j5XqVTEYjGuXLmCXq+nWq0SDoeBRt2JYDDIuXPncLlc5HI5UqkUSqUSu90uWcRUKhVut5t9+/bx3HPPcf/992O1WgkEAkSjURwOB319fTzxxBOyjK5arVIsFhua4oXjVKlUUCgUlEolOScAbrcbk8kks475fJ5qtYrL5UKlUmE0GnE6nQ0sTHa7nT179vD8888DSIdDzLe49mAwSEdHByMjI3LcX2a2sYkmmrj1uHPz8k00cRMQkcpcLodGo2FkZIT5+Xl8Ph+BQACtVss/+Af/gEwmw8DAAGtra4RCIbRaLT/84Q+x2Ww88cQTqNVq8vk8Q0NDtLS0MDIygtPpxGg04vF4iMfjDA8Po9frKZfLOBwOnn32WWw2G5OTkzgcDlpaWvB6vZw9e5ahoaEdy2JGRkZIJpMYDAaeffZZLBYLly9fxuFwyIzCl4FIJCLnJB6P43Q6r/nO6dOnGR4exuFwNHyeyWRYXV2lVquxb98+/vE//scyuqvRaAiFQrS0tHwp1/F5Q5SgDAwM3OqhNKBarVKtVonH4xw7dgy1Ws0jjzyCVqslm81y3333UavVeOKJJ+T+tNvtfO973+PcuXM89thjtLa2Ui6Xuf/++4nH47JcB7Z7PwYGBpiZmWFwcJCenh4ZTVYoFDzzzDPEYjGUSiXf+c53WF1dpb29HaVSSaVSkSV3fX19BAIB6Tyur6/T1tZGsVgkk8ng9XrZtWsXBoOBkZERHA4H9913H+l0momJCX73d3+XWCyGTqfDZDJRqVSkA3HPPfdgt9sb5kU4CFqtlj/4gz/A4/Fw4MABnE4n2WyWZDJJtVplfHycQqHAPffcw/79+5mbmyMWizE4OChLhbxeL9FoFLfbzdNPP00mk2FmZgabzUY4HMbtdtPd3Q1sR/0nJiZkiRSAx+PhO9/5DpcuXSKRSJDP5xkZGWFgYIAzZ86wb98+Ojo6ZO/F9PQ0Pp+P559/nlgsRiQSoa+vj9nZWdra2mQZk91ul/P99NNPE4lE2NzcJJ/Po9Pp6Orqklmbjo4OHn74YY4ePUpXVxcbGxtyzdva2u6KbF0TTTRx81DU7uSwXBNfXazMwb/85/Av/gN079rxK8L4B2Q9cD6fl5E4EfVSKpWy/l18T0QVlUqlrPEXEW6DwUA+n5f1zSLqWSqVGn4vInPlcllGO4FreP5F3a/ZbKa3t7dBs0Cr1VIsFuWxs9ks4+Pj7Nq1i5aWloYofK1W45133uH+++9vqNH/NCiXy/KfKIu6msLx7bff5qGHHsJutzf8TZRXwHYkWURO8/k8SqUSrVb7mVVmC4UChw8f5qmnnrqmBvxux+joKLVajYMHD8rP8vm8jCaLvSrmuFarUSgUuHLlCjqdjr6+PhnVFlFoEXkXmQRA0nvW/7dYQ9EzIta9VCo13E/wm30uvifKx7RaLeVyGdi+LwuFAjqdroHLXzjdGo1GOvJiH4nzqVQqSqUSp0+fxu12Mzg4iMFgaNiL4voAeY3iGmq1GuFwmI8++gidTsfXv/51GbUX96y470SGUKPRUCqV0Ol0DRm6crmMSqVqaPQXayDuHXF9hUJBaheIzIug4hXXW/93cW6RsRHPBHFvVatVtFqtLIcS2ZL6dajX8BDrqNVq5XHFfSmup4nPETfxrmqiiVuFZiagibsWCoUCo9HY8Jko/dkJO7HfADty2u/E7X09Y/Rqg/fqMen1etrb20mn09IouPq49caY3W7/XLngd4Jarf7YBt7du3djNBqvGYdSqdxxfpqsQF8cPk53QaPRMDAwgEqlwmKxyD2p0WiuuSd2ctDEd67eu1f//UafiWZ5oKHB/Hq6GDfiz68v4RsaGsJsNqPVaq/Zizvt4/rjut1u7r//ftnELL4r/nense302Y2eKwJibDut1dVjvHoNrv77jcZw9W93GptYxzu5Sb+JJpr47Gg+AZpo4hZDo9HImvuPM+y1Wi1er/eaiKeA2+2+KYPk80B7e/stMyKUSqWkev2q4XrO6o2gUqlobW39AkZzayF6bj4t9Ho9vb29n+OImmiiiSbuHDSdgCbueIhmzTu9sk00Hn8cDAbDdb/n8/kkg83dDFHfnM1mv3LlCyKafrevcRNN3ElQKpXodLqm1kITdxSaTkATdzY21ijk8/zqlVcoFZsUd0000UQTTXz5MJqM3HfvfduZpXofYGPtlo2piSY+Dk0noIk7E2YbaHXwo3+NAfgHt3o8TTTRRBNNfLUxfXznz7W67XdWE03cZmiyAzVx5yISZDWeIVRWUSqX7vhyoCaaaKKJJu5MCK0JpUKJqAZyqyp0qcvbDoDrzqRFbuLuRtMJaOKOxWoedp+FbFPfpokmmmiiidsMRiVMPQBdNybvaqKJW4ZmOVATdyzCpW0H4KdDVboVWRbmF+ju6cZus8usQKVakd9XKBQo+A2H/+cJwa+u0WhueOxtzu8ySqXqCxnHVxm1Wo1q7W/51ZUfz7T0cahWq1Rr2xoQKqWq4fMatU91nnK5hEKp/NtoYaO2gjimWvWbx7K4pkq5gkq9zRmvVChve1Ykef9VyqBQNFzTzfxW3Lf18yvXV6jaKhS33VxUqhWp3lu/Z3ZCubzdw6RW/4bNq1QqoVB+svn6JLje3N4M5B6VehBXrU21gkrVbIoVmMrCD6a231NNJ6CJ2xVNJ6CJOx57zEoOWcysHr7CQJeDLoudWg0qlYpUMRXCXWq1GpPJxOf9nqpWaywtrdHZ2Xld3nOAUqlMMBjE5XKh1WpRKhsHIoTHPumLVIgTfd6Oxc0eVxh9X8QYbhaVSpVsNksul8PhcHxmqtRsNr8telYDh+03qsjFYplcLkehWMDj8dzUXhICUFtbIUwmExazpWHti8Uy2WyWQqFAS0uLnMdKpUIulyOSikhqULPZ/KkF0uoTv9dbo/o1v9H3bnyebYM2EolgMBiwW+w3/dtyuUI6naZSqWA1WRvExtLpDOlcGthm0zKZTJ95Lj7PPZtO5yiVSigVSmyW69eAVyoVQqEIKpUKt90tx+D3b2EymXBYHNf97dXXUC8M9nGoVKqkUttzazPbbprid1twrkgulyObzaJUKrHZbHLui8Ui0WgUn893zTOt/hjQFCNroonbCbdPCKWJJj5H1Go18vk8//v//r9z4sQJ5ufnuXTpEj/96U+/kPNVKhX+3b/7d8RisRt+L5lM8vrrrzM7O0uxWLzm7/Pz86RSqU98/nK5zPT0tFQx/bxQqVSYnp6WqqvXQ7VaJZ1Oc+bMmR2v68uAUKT90z/9U8Lh8Gc+Xjwe5/Lly/zN3/xNw+elUom1tTX+7M/+7Kb7UGq1Gq+//jpTU1Nsbm6STqcb/l6pVBgbG+Ov/uqvyGaznDt3jkwmw9mzZ/mbv/kbqtUq//bf/lsmJyev+e3NQmSr/H4/kUjkut8TYwmFQlI9+NPgJz/5CRMTE594P5fLZfx+Py+++CLnzp1jbW2NcDjM+vo6v/rVrzh+/DinT5/mypUr+P3+Tz2+SmXb2VheXv7Ux7ga0WiUc+fO8eabb97we8ePH6dYLGKxWMhmsywuLlKr1fiv//W/cubMmZs+XzgcZmVl5aa/L9b/xRdfJJFI3PTvotEo58+f58033+TkyZOcPXuWhYUFSc0ci8X49//+399wv2xsbHym9WqiiSY+fzQzAU3c8ahWq8RiCSwWizR01Go1er0et9tNd3e3jBg+8cQTBINBotEoHo+HfD7P+vo6FosFk8mEz+dDp9P9bdlOheXlZRQKBW63m0qlgt/vR6PRsGvXLiqVCpFIhFgshlarxeVysbGxQTweR6/X093dLcdYLpeJRCIsLCxIIy6RSLC1tUWhUMBoNKLRaPjJT37CE088wf79+zGbzczNzaHVaunu7qZQKBAOh0kmkwwPDxOLxchms+j1etRqNf/hP/wH/uiP/ojBwcFr1HlLpRJXrlwhHo/j9Xrx+/309fWRz+fR6/WYzWaSySRerxez2YxKpSKZTDI1NcWvf/1r/vAP/5B4PE6pVMJkMmE0GlEqlaRSKTl3qVSKarWK3++X37VYLPh8Pux2OwqFgmq1Si6XY3Nzk0gkwr59+0gmk9JQLBQKxGIxOjo6KBaLpNNpOjs7icViuN1ugsEgyWQSs9mMyWRCqVSSTqcxGAy43W6cTmfDdZfLZVKpFBcvXqSlpUVmaarVKiaTiY6ODuLxOIlEgmq1SltbG3q9noWFBSKRiPw8k8mwsbGBXq/HYrFgs9mo1WrE43EymYxch+7ubukYhEIhyeXf09PD6dOneeaZZ3A4HA3rs76+TiwWIxgMAhCJRKhUKgSDQdbW1lhdXaWzs5NKpUJXVxfFYpGlpSVKpRJut5vx8XF0Oh3t7e24XC78fj8KhQKXy8Xq6iqpVAqXy4Ver+fYsWMolUoGBwcxm81SvTaZTMrryGaz8r+DwSDlchmVSkUmk2Hv3r2Ew2GUSqXcd6lUinQ6TUdHBzabjWp1OyMzPz/Pnj17/jbC7SeRSNDb28vExAQqlQqj0SjXQCASiRAIBAiHw3KvZDIZEokEU1NTVKtVgsEgbrcbi8WCx+Nhfn5eRvLT6TSFQgGLxUJnZyebm5t/m3FTks/n2djYwGq14vV6mZ+fZ3Z2FqPRSGtrK3q9HqVSKe9TvV5PuVymv78fvV5PLpcjFAphNpsxm82kUikKhQImkwmPx8Pc3ByRSIRUKkWpVGJra4tkMolarcbpdGKz/SYzUCgUUKlULC0tcerUKfR6PV6vF6vVSqFQYH5+nmKxyO7du4lGo6RSKZRKJQ6HQ2aE5ubmuHDhApFIhN/93d9lfn4ei8WCwWCQ+zwej9PV1SXvb7/f3zC3gUCAfD6PyWSipaVFRumz2SzxeJxYLEZvby8XLlwgHA6Tz+fJZDJ0dXXR1dUl70GxF1ZXVzEYDFitVgwGA7FYjHg8jt1u59e//jWJRIJnnnmGWq1GMpmkXC5js9kwGo0sLS3x8MMPEw6HqVQqGI1G3G43KysrKBQKbDYb8Xgcv9+P1+tFr9fL57W4p8U+c7lc2O12lEoli4uLVKtVent7ZcYil8vhcrmYmZmhvb0dlUqF3+9n3759XL58Ga1WS3t7Ow6Hg8XFRbRaLb29vZRKJRKJBMlkEqfTyfz8vMzMiWzzwMBAM9vRxB2DZiagiTseCoUCg8HAgQMHcDqdsvxHsDVsbW2xuLjI1tYWFouFiYkJbDYb8/PzjI+Pk0ql2NraQqvVyod3Op3m4sWLbGxscP78eZaXl0kmk8Tjcd555x1KpRKnT59mZWUFi8VCJpORqfXFxUVmZmYaxnjx4kVWVlZwuVzyJR6Px8nlcoTDYY4cOYLZbEahUEiHJZfLkcvleO+994jH48zNzXH69Gn5cj579ixzc3Osrq6yuLiISqVqMHTroVQqSSaTJBIJFAoFFy5cIJPJYDAY2Nzc5MSJExQKBU6cOCGFyIRjI17I5XKZeDxOJBJBp9MRjUYpFArMzs4yNjYm59ZoNLKwsMDi4iIajYaTJ0/KTEI2m2V9fZ3Tp0+Ty+UYGxtjYWGBhYUFRkdHMZvNjI+PE41GUSqVlMtl3n77bQqFAufOnZPrEAqF0Ol0xGIx8vk8KysrnD59+pryBqVSiUql4qOPPsJqtTIxMcHs7Cwmk4mTJ0+SSCSYn5+XJQ7Hjh1jcnKSeDyOTqfDbDaTz+d55513yGazXLp0ieXlZZRKJbVajampKaampohEIg1ZmCtXrhCLxajVahSLRUZHR1Gr1bS0tGCxWFCpVDJzMTY2hkqlwm7f7mWx2+1MTU0B26U/wmgVf5+ZmeHy5csEAgEWFxc5d+6c3E9jY2MEAgHOnDlDNptlYWGB5eVlLBYLx44dQ6PRSKetfq4WFxeZmppidXWVSqUije1cLkcqlWJ9fZ18Ps97771HOBxmbm6Ojz76iKmpKSYnJykUCvL6FQoFWq0WrVaLXq8nFouxtraGy+Xi6NGjRKNRadjWl/IsLy+zvr5OsVjE6XRKpzGRSJBIJNDr9bS0tOBwOPB4PBQKBSYnJ+X1FotF/H4/c3Nz6PV63nnnHVKpFOPj4ywtLaHVajlx4gQmk4nx8XE2NjYwmUxYrdaGXp5KpUI2m2V5eZlgMIjf7+fSpUt89NFH5PN5jh8/zrvvvsvi4iIbGxscP36cyclJkskkRqMRo9FINpvl1KlT8noERHBBlDtpNBqMRiM2mw2tVotarZb3qljXo0ePsrq6SiAQ4OzZs/JYdrsdo9EIgNFoJJPJEAwGKZVKVKtVotEo5XKZo0ePcunSJdbW1igUCnJuP/zwQ/lc/PDDD0kkEmxubsqsy9LSEh6Ph+PHj5PP57HZbLS0tOB0OvF4POj1elmqJcq17HY709PTrKysEA6HeffddykUCpw/f55wOIzRaKSlpQW328309DTr6+sNzvLY2Bhra2tMTExw+vRpzp49y8bGBufOnSMWi7GxscH4+Dgul4sTJ040ZMVqtRqRSIRiscjY2BgffvghU1NTJBIJSqUSmUxGPpvF82x2dpZMJkMmk2F6ehqdTsfFixeBbTVqUf707rvvkk6nGR8fl+ePx+MYjUY2NjZYX1+nUCjgcrmuefY20cTtjKYT0MQdD4VCIaOwwsCqR7lcRqlUotVqqVQqBAIBbDYbm5ubrK+vy+/U/zafz7O0tES1WkWpVJJIJAiFQqRSKebn50mn00xPTxONRrHZbLL+3Gg0kkgkZFRXYHFxkWg0isvlki9uv99POp0ml8sxPT2NSqXCYrGg0+koFAqEQiEymQwLCwsy4pxKpUgmk4TDYfx+P9VqFY1GQ6lUaogSlkqlhtS8SqXCat2ur15ZWSGXy5FOpzGZTBQKBenM5PN5GcnWaDS43W4MBoM8TrW63XhrNptZWFgAtqO3S0tLqNVq/H4/BoOBdDpNNpvFYDAwMzMjDcRisUg2m5WR7qWlJVmWIAzhRCIheznMZjPT09NYLBZKpRLlclnW11ssFpaWliiXyySTSaanp7dr+Osg+kCCwSA2m41oNEoikZBZllQqxebmJpVKBbVazZUrV1heXpaOj9FopFQqMTY2JtdNODTbNeppisWiXBeB5eVlstms3E/z8/Po9fqGOuparUYul2NjYwOdTtdQ8x8IBGS03GKxyH1TKpUIh8OkUilMJhPlcplwOIzFYqFcLrO+vi73rMjU5HI5LBYLs7Oz2Gw22S9Rvz8ymQz5fH67/+BvS4WSyaR0YmKxmJwf4VgVCgXS6TTlcploNCqNXYVCgUajQa/Xo1AopPPscDi4cuUKxWKRSqWCUqlsyIhsbW0RjUZRqVQNUfN8Pi8j7jabDavVitVqpVgssra2tt2grVJhMBjI5/Ok02ksFgtjY2NyDEqlEoPBIDMBfr+fXC6H0+mU0fera9YLhQL5fJ5oNMry8jKLi4tyH05PT8vsT6FQYHl5WWaXDAaDLI/L5/PE43Hy+by8HuH8lctl9Ho9LpcLm81GsVikWq3KYIQo85mbm6NYLKLVahuOI+ZCZC7F3tTpdFSrVZaXlzEajUxNTTE9PU0oFEKtVmO32wGYnZ0llUphMBjkGosMXTgcJhwO43K5GB8fp1arYbFY5NxbrdYd+xCsVitbW1tEIhHS6TQzMzNYrVbK5TI6nQ673Y7VasVmsxEKhWSmbnNzE4fDwerqKsViEYVCIZ3Y+v0s5lNE4evv90qlwtzcHBqNBr/fz8TEBMvLy/LZXiwWCQaDhMNhnE4nKpWKeDxOtVqlXC6zubmJTqcjHA5jNptRKpWEw2HS6TTz8/Mkk0mWl5cJBALSkWptbSUejxMOh1EoFDgcN9fL0UQTtwua5UBN3JUQDXNqtZquri56enrkQ12hUFAul6VhqlQqpcEnjDYRzfR4POzdu5fl5WU2NjZIpVK43W4ikYjMNIhyIWHE6/V6MpkMlUpFHk+lUsnosfjfhYUFurq60Gq16HQ6EomENKADgQDBYJB4PI7L5ZLnHRkZkYazw+FgaGiI9vZ2gsEgFouFeDwuo421Wq0hMrVr1y4ymQyvvfYa999/P7FYTDoHTqeT9vZ2TCaTNMzE9Wm1WsLhMIVCAa1Wi9lsxmg0cunSJXp7e6VBGY/HUalU0kCvb7ysh9Vq5bHHHuMXv/gFAwMD2O12WltbcTqdcs4TiYSMrDkcDnw+HxaLhdXVVeLxuBzDlStXcLvd6HQ6makQc15/Xo/HI8+t1WplA3a5XJYRZ2HcC0Osfr0MBoMco0ajIZFIoFar8fl86PV6pqamWF9fZ//+/Q37TzgsYg+IKLswoCqViizJqVar8jtiHsU6iN8oFAqsVisej4d77rmHRCKB0+n822b37YyY1+vlwIEDaDQaaeCKYxsMBmlgRaNR2tvbAWhpacHlchGNRhkbG5NlPLVajXK5TLlcRqvVYjAY8Hg89Pf3k0qlZMbk2LFjdHd34/V65XWLaxHrIJwO4bSLsjIBMUatVrtjs259o7JYF5EdEPMuourCGPd6vXi9XpRKJaVS6W8bubd/L+67arVKKBSio6NDrosovRFzJxzStrY2vv3tb/PKK6/gdDoZGhrC6/Vy8eJFWRICYDAY2LdvH9lslkAggN1ux+v1yvHncjnpeBoMhr9tFA5RrVYxGAzSCK1UKjIC39/f31BiqFQqZfAhGAyiUChkiVUoFOLKlSvcf//90tkUmQex9/V6PU6nk127dtHa2kosFiOdTqNUKuV3rlfjL9a4fm3EdWg0GlQqFSqVSt67ZrOZSqUiy/1ECY3X65WZor1797K+vo7L5WL37t1kMhkuX74s97pGo5HOgnAixVhEE/3FixfZv3+/3HvFYhGVSoXH45HXptfrMRqN0tEX11kqlahUKrJcL5vNsra2Rjwex+12k0gkKJfLcg7Fs6lYLMr91CwDauJOQ9MJaOKuRK1WI5vNMjg4yNbWFg6Hg87OTvR6PYODg1y5coWDBw9SLpdZXV0lm802/N7lcvHss89y9uxZqtUqHo9HRhB9Ph/RaJRnn32WXC7H7OwsLS0tdHR0EAwG0el0qNVqNjc3pZH1zDPPsLW1xcTEhKwlP3jwIGq1mlwux6FDhygWizz88MOyRt/lcjE/P4/H46FUKsmI9YEDBxgZGcFut5PNZtna2sLlcvG7v/u7LC8vc8899xAIBFhfX+fpp5+W12SxWBgZGUGv17N7926WlpbQ6/Xs2rVLlqB4PB75clcqleh0Og4cOCBr/nO5HPl8HoVCwbe+9S3K5bKsLc9kMvT29hIKbTPgVKtVIpEI7e3tDQZcpVIhHA7zW7/1WwwMDLC6uiprzwcGBvj+979PMBjEarVit9v57d/+bWZmZmS9v6hnBvjmN7+JRqNBo9HQ19dHKpWSjhX8prSjo6ODzc1NDAaDLBETpQ29vb2kUikqlQo//OEPsdlssnwimUzicrn4vd/7PSYmJnA4HOh0OtLpNN3d3TJzMjQ01BC9fu6555iamiIQCGAwGPj+97/Pyy+/zNbWFkajEZfLhVKpxOv1sm/fPoLBIMFgEIfDwfz8PF1dXbJ0S0RNnU6nrNtOJpMsLCzIUqF8Pk9HRwetra0yctva2orNZpOR1p6eHkZGRpifnwe2HSKBYrFIqVTCZrPxxBNPsLW1hUajIRQKodFoGBgYIBAI8D/9T/8Tq6urJBIJdDqdvP5vfOMbtLa2ynsvnU7T1taG2WyWmbLR0VF++MMfyozN1Q3kDzzwAH6/n+XlZQqFgnSOhKMtHDVRKtfe3s7+/fu5fPkytVpN7gOHw4FCoeAf/sN/2FAnn8vl6O7uZmtrC7vdTk9PDz6fjwsXLuBwOBqcR+FkiH10zz33YLVauXDhAj6fj9/5nd8hFAoxOzuL2+3mmWee4fz587KPRK1WE4lE8Hq9dHR0yAixcKwtFossDzMYDJw8eRK73U57ezvVapV4PE53dzeBQIBvf/vbsnepPtIsnNBqtYpOp5OR8nK5jNfr5etf/zrBYJChoSHuvfdearUaa2trBAIB9Hq9fH7NzMzg8XgYHh6W96nI0p0/f54/+IM/kD0KwtgVwQYBvV7Pt771LWZnZxkZGaGlpQWr1cpv/dZvMT09jdPp5L777iOZTLK0tMRDDz3Ec889h8ViIZVKyT6D9vZ2RkdH2dzcxO1289xzz3H+/HlqtZrMSjqdTtbX1+nq6qJcLlMqldBqtWg0Gr7zne+QSqXweDwMDg4yNDTE5OQkW1tbdHZ2snfvXnltbW1tPPbYYzILMjAwgN/vl6VmLpeLoaEhlpaWaGlpIZvNSud6dnYWn88HwJ49e9DpdPT09Nz4pdREE7chmmJhTdyxuJiCey/AhXvhkKXxb2JbF4tFWb4gIrsiOikiSSLiqlb/huNa/F6UEonoYX10VhxPHKtUKslab5GFqI9WVatV+U8cU6BaraJWqxuOLwxm8f/ryxVEpKt+LOLYKpVKloz09/c3zEv9d0TEuT5qXd9PIcYt5qCeOlKlUskoer3TUC6X5XWI41UqFRklE5+L34iItzju1eep/424xvpypXK5LMcpos8iWld/DaJZvFKpyPMI46F+POL6xR4R/+ojqAKiYbZ+verXWxxDzJeISorShvrjiLUR+0Yc++qouhhH/fyIa6vf31dfR/28iDkQxjXQMNb6e+LqdRBre/V9Iq69fj8Ui0XZd1A/v/X7tr4vQVxrfUbmRtSXYh7F/qwft1qtlvfc1Wsm9oH4vbgP6q/zajYscW31FL5X3zNX7xlxfPH9+nGMjY0B28EGn88nxyXuKXE8jUZzTcS9fk5EZqn+eSD2pFhn8ff6+RFrKeb96j0pnhNi79TfdwJXPy/r13Wne7d+jcUx6+exftz111r/DK5/ftXf5/VZK/Hf4vf1a12/J+r3ovhcrIG4tquf+Vdnpt5//32sVivt7e20tbU1/P1G76cmmrhd0HQCmrhj0XzIXh+i7rq+nr+JJpq4PSB6KTQazTVMXk3cGRCNyKL/5Wq9iub7qYk7Ac1yoCaauAsgot2inv1GgmU3i1KpJJtKr1frWqlUZDRSQKPRXJPp+Lixi8idaJo0GAw3LWT0RUCUPtTXXcN2JFlEfNVqtYzAXh1J/SSo1WqyxEqUwNT/rX5ustksOp3uMwuhfR6oVCqSYrZ+vavVKoVCQUZT6yOoV0dTvyiI2FYmk7lt5qseokb+RhBRaNGLczP3g9ifIotyM0JqIvMhnh0iqi8i45/kXv6iIMrORKP/1eQPO0H0sojnUalU2vGe/rQQvWBNNHEno8kO1EQTXzDy+fx1X/ilUkkanIJfXZSHfBIIQ3J1dbWBQeTToFAoSGMilUpJ/v/rjX9zc5OlpSVSqRSxWIxIJHINS8+NUCwWKRQKci4EZeetRDqdJhQKXSP+VigUiEQiktkpk8kQiURkj8KnQa1WIxAIsLW1dc3fSqWSrPMWc5NIJK4pzbgVKBQK+P1+KRglUKlU2NrakqwpiUSCbDbbwJ70RaNWqxEKhQiFQp9oL4o9+Fkh7p0brZNonr3RGMrlMsvLyzctuFYqlVhfX5e/iUajko70ehDPDsGWVSgUSCQSbGxsXPMsqlarDQxi9Z+n02nW19eJRqNyz4pmY8GG9GmxubkpNQ5Ej8vH3QOCeWt1dVX2YQkdh6shHNqrIZ7JW1tb8h7MZrNyboWTlkgkbijA10QTtyuaTkATdzyurrevr2fdqZa1/nf139np3/WOW/+3nb5f/9+Li4vSULr6fKFQCL/fT622zeAxMTEhjbz67+50TVd/ns/nefHFFxvoSW/mGq++zpWVFeLxuOSUP3Xq1HVZQnK5HK+//jr/6T/9J8LhMPPz8xw9epStra2GsYnIYn39vUAoFGJ9fZ14PE48HucXv/gFgUDguvN69ec7/Xf99YvI/Y3W8epjRiIRTp8+zaVLlxp+WywWpYrwwsICExMTHDlyRFLN3mjeb3T+I0eO8NFHH10zv4I5JRaLkUgkeOmll5ibm7vhXrh6z9xojm702xvNda1WIxqNcvToUVZWViR1a622TSl6/vx5RkdHef/997lw4QKLi4uMjo7e9P17vTFcPb9X7yvx38VikRdffFHyt9f/7Xp7sVqtsrm5KQ3M651bfHen+a135s+ePbvjvbvTNdf/PhKJSOrTarXKyy+/LKkyr7ceAqVSib/5m7/h5z//OVtbW7z55ptcunRJ0r3utGcqlQrJZJL/5//5fzh9+jShUIi5uTkOHz7cQMlbq9UkbefV5y0Wi1y6dIk/+ZM/4Y033mB5eZlYLMY777zDpUuXGB8fb3CoP+4ZdPV8nzhxgnfffZezZ88yOTnJn//5n1/Tg3H19YVCIY4dO8a//tf/mkKhwMTEBFeuXGF9ff2aZ6ug/7z6uvL5PLOzs/zFX/yFdIzGx8e5cOECb775JsVikUAgwNGjR3n55Zd33N9NNHE7o1kO1MQdj3K5zDvvHJbsJKLhUKPRsLW1xaFDhzCbzdf8rlQqEYlE2NzcxGQy0d7eTigUolgsotFosNlsfPjhhw2qlJVKBYvFgsPhYHR0FJVKRWtrq+TAPnfunKSNnJ2dxeFw8Nprr/G9732P/v5+SQUoqCrffPNNAoEAv/d7vycbXWu1bTXNYDBIOp3mnnvu4fDhw1JoJ5fLsX//fqk0q9VqaWtrw+Px7FiSEgqF5DUKJU9hZPt8PorFouT21mg0vP3229x///088sgjGAwGyT2/E+x2Ox6Ph2QyycDAAMVikc7OTqrVKrOzs5TLZYaHh3njjTdwuVx0dHTg9XobqCFXV1cJh8N0dXVJdVsh4qVQKOjr62NycpJcLkdnZycOh0MKn6VSKXw+H7VaTfL/C0Ym2OaeP3bsGIcOHZKCU6IkZffu3ZIX3Wq10tLSgkajYWJiQkb3zWYzxWKRhYUFlEolnZ2dmM1mNBqNpC31eDwNSsXCsJifnyeTyWA2mxkYGODkyZNyH5nNZgYHByVbiqBNvBqBQIClpSX6+/tJJpM4HA5JIxsOh4nFYvT19clIZDabxWaz0dXVxdzcHLVaTfLrl0olyWpUX+K1uLjI2tqapME0m81Eo1EGBgawWq3kcrmGvVitVgkEAszMzMioajgcJpPJoFKpMJvNeL1eCoUC+/btw+l0YjQaaWtru+49fPjwYcxmM7lcjkKhwP79+7l48SIPPPCA5Os3m834fD5ZGrWwsMDk5CRtbW1SQTuTyaBUKrFarUxNTfHUU09JHYx8Pi/FrzweD+3t7Q17cXR0lBMnTqDX6/n+97+PxWLB7/dTqVSkQJbAuXPnpGp2MBhkeHiYWm2bFUk4i4Ly891338Vms+F2u8nn89xzzz34/X42NzelWu+ePXvk/f/+++9z8eJFfv/3f1+yEm1sbDAxMYHZbKanp4eVlRXS6TROpxOv1yszCmI/GgwGed8Eg0GKxaIU2ROsaRsbG1L4b3h4mH/6T/8pL7zwgqRCFVSay8vLZDIZHA4HW1tb/Nt/+2/5X//X/5W9e/fKskNRyvZP/sk/kUxL4lyPPPII//k//2d0Ol3DHEajUeLxuKRjTqfTUsehu7u7odSmra1NqlI7HA6pyyDUvmu1bTrkXC5HIpFAqVRSLBYZHBykq6uLn/3sZ+zfv5+BgQHJSLS2tiZplaenp7ly5Qr/9J/+0wblZIPBwMjICC+++CKVSoXJyUnS6TTPPfcc8/PzhEIhfD4ffr9f6qY00cSdhGYmoIk7Hgqlgu7ubmZnZ4lGozIq/vbbb1/XeIVtw+PixYt0dnaSy+V4+eWX0Wg0FAoFWZLywQcf0NbWxtjYGJcuXaKjo4PXX38dg8EgRbeMRiOvvfYaWq2Wubk5crkcpVKJqakphoeHcTgcUslYGO0///nPgW1+dp/PR1dXF21tbVy8eJGjR48yMzMjjbIPPvhApuqTySQffPABgFQEXVtb47XXXtvxGsvlMj/+8Y/xeDxoNBqmp6d544036O7uZmZmhvHxcU6dOsXJkycBGB4exu12SxEl2C77qOd7b5j7v+XaDwaDnDhxgtXVVanSqdFoUKvVvP/++0xPT2M0GqVgWT0OHDjAN7/5TYaHhzl06BC1Wg2r1UqtVmN1dZXp6Wni8Tjz8/NcvnyZ8+fPc+7cOS5cuADA+++/z6lTp0gkErz66qsNa57P5/H7/ajVak6cOCGFq06ePEk0GuXcuXO4XC42Nzd57bXXpJJxW1sbJpOJjY0N3n//ffx+P4cPHyYQCEgn0ePxYDQa6ejokEJfAplMRopK/frXv5aMJH6/n0AgII26v/7rv6a3txe3271jnfLw8DBPPfUUQ0NDHDp0SBpdhUJBCmu99NJL1Grb5Q7j4+N4vV5ee+01Ojs7SSQSzM7OUiwW+fWvf83a2ppUPRbo7OzkzJkzMlv1yiuv4PP5OHbsGIcPH75mL/71X/81m5ub9PX1SR2Kl156icXFRVZWVnj77bflsVtbWyVdpBCp2glOp1MK8c3NzWEymXA6nfzqV7+SVKtvvPFGw75LJBKsr69LjvujR48yOjrKysoKk5OTOBwOvF4vp0+f5uTJk6TTaV599dXr7sX+/n58Pp+kgX3xxRdpbW1lY2NDOmr1549Go2xubpLL5QgEArzzzjsyk1etVllbW6NSqbC5uUkmk5FjhG0VYLGPBA0rbDPuOBwOenp6GBoaAradeMGN/9ZbbxEMBnn77beZm5tjamqKK1euNIxLiLdNTEwwPT3NQw89hEKhYGxsTO7lX//617z55psN+0CpVPLDH/6QyclJjh49SrW6rRr91ltvMT8/L5WAu7q62L17d8N+ValUtLW1YbfbOX78OB999BHBYFD2haRSqWvKrN58800p2HXmzBna2to4fvw4ZrN5x2bpWCzG+Pg4o6OjfPvb30alUvGrX/2K8fFxtra2eOWVV/j1r3/NwsIChUIBlUqFXq/ngQceIBwOyzUMBoP8/Oc/p1qt8vbbb1MsFunu7sbhcOB2u69hAKpnvEqlUpK6V6vVEolErpslbaKJOwFNJ6CJOx5KhZL29nYCgYBssDQajYyMjDAzM9NQU10PUatsMBiw2WyyJrtarcqIpBCXEc1xGo1GRq9EjatQZq3VavKzSqUiZeU1Go0UnpmdnUWpVBKPx8lms5KqLp1Oy+/FYjFSqZTMaIRCIXK5nBRrEtHXy5cvy2MEg8Eda5BrtRrhcBi1Wi0FpYLBoFQfTaVSmM1mOjo6mJ6eRq/Xo9VqpRosIDnIr1YhlvP/t8qvvb29DA0Nyb4GkZUIhUKUSiUsFgtms/maBkehiisij4BsSBQqn5OTk9KYiMViWK1WfD4fCwsLMqvR0dHB3r17G17iYk2E8JNer0etVkvNg1QqJbUaNjY2iEajaLVa9Ho9KpVKRs9tNhsHDx6Uxr7YC0Lc6mrHZmVlRa6JUDkVhoOgPRT9BILjfKfmS4PBgNVqleJa4juRSIQrV65gtVqlsrSguhQqsltbW1gsFtrb22WZgxCGEvNcPybRUC4EzERNfzqdbtiLm5ubFItFjEajdEoymQwWi4Xu7m56e3vl+AV3v0qlkgahuB/r0d3dTTAYpFAoYLVaOXLkCL29vWQyGbRaLd3d3YyMjMjv19NPOp1OeX1CyMzlcqFWq1Gr1fI+bm9vZ3BwkEqlgtVqvWYvGgwGKSQXj8fZ2NiQQnjieSAgKC4LhQK5XI5isUhraytms5l0Os3a2pp83ggqWr1eL+9dUTKk0+no6+traKDWaDRotVrK5TKFQgGdTidZvhKJhOwh6uzspLOzs0HvQdyPBoMBt9uNXq+XdfBCdXhoaAiTycTg4KAMIoh7pbe3V/LkLy0tyXP19PTQ2dmJ3W7HYDBQLpcbep2EErvQExGN4blcjmq12tDoL55R4XAYQPL0C6fCbDbvSGwgBPva29uZnJykVCpJ1ebOzk527dpFe3s7er1e9oMAmEwmnnjiCRYWFlheXqZUKhGNRvH5fIyMjOD1euUz/mr9g6tRTwaQy+Ua1OKbaOJORNMJaOKOh1KpxGazSWNSvMx7e3tljWk2myWTyTT8rqWlBZvNRiaTwWQy0dbWJl9sBoMBpVKJ2+2WBo/RaCSfz0tDqVarSdEjn8+HUqmUiqS5XA69Xk+tVsNms0mjL5/PU61uq02WSiX0ej0Wi4VEIkE+n8dgMOBwOOS5RAmDKEERqq+5XE42/AmKulQqJUsUxItMqVTS1dUlDSERHY3FYhgMBnQ6nVQLrjcigQaHSqlUkslkyGazDS9JYaS43W5aWlro7e2VCq3C2PN4PJhMJsnF/nHMHl6vV9Yq63Q6jEYjmUwGm80mX8BCJEscXxg8u3fvbjCmhUGkUCjkGFQqlVQYNplM0gETUWCAbDZLtVqVJVh6vZ6BgQF0Op2MMO5UK14/L4VCQSrsRiIRarWanHOxRqLMQTiDH9fUrdfrG/azSqWSe0Wh2FYT1mg0mM1mlpaWpBGtUqnw+Xy43W68Xq90ZkSdt8PhkMaMw+GQfOs2mw2DwSD3otvtpqOjA51ORyaTkToFHR0dWK1WHA4HfX19ADs6NbBd4lR/LyoUCpmp8nq9DAwMsL6+TktLC93d3VitViwWC7t27ZK/qdW2tRuEMyPWSSgfC2GpUqkk96bRaGRwcFCq8V69F4UzK0TQ2tvbpQK1cB4FbDYbOp2uoTfB4/Fgt9ulFoNYF8FOJNSBxRpHo1Fisdg12Uq73Y7L5ZKliUL8rN6Y9nq9eDweeb31+06v1+NwOLDb7fT398vgiMlkorW1Vc5Hd3e3LHfLZrOk02l0Oh2Dg4N0dHRQrW6LkNX/pq2tTZZN1mcH65+FFotFqunq9Xqi0Sg9PT3XZILcbjeFQgGFQoHdbieXy2G32+X9UY9arYZer6e1tZXu7m5ZDuj1emXWcnBwEK/XK0X78vk8mUyGVCrFfffdh8Vikerw3d3dKJVKBgYG5DgtFosMfAiIBm+TySSfNV6vl3g8LoXLhNKwXq/fsWm6iSZuZzR7Apq4a/DII4/Q0tKCUqkkmUwSi8X4xje+gclkIh6PUygUGhQ3H3roIcn04vP5ePbZZ1ldXaVardLR0YHdbqerq4tkMikVcBOJBG1tbdLIE1G2Rx99FL1ez6FDh2Rd6uDgIKVSiaGhIVkOZLfbpeqvTqejq6sLr9dLpVIhEonQ0dHBoUOH0Gg0LC8vo1AoeOyxxwBkVLO7u5tYLCa/VywW6e/vJ5/P09XV1UAzqVQqef7552UE0ufz0dLSwuzsLO3t7VitVsrlMrlcjscffxyNRkN/f790OqrVqqwfj8ViqNXqhnryVCqFw+GQpQM9PT089NBDLCwsEI1G0el0fOMb35CqoMIovREeffRRqtUqpVIJj8fD7t27SaVSuN1u4vE4xWJROgkPPPAAZrOZbDbL6urqNZR9er2e9vZ2wuEwbW1tlMtlqtWqFPbp6ekhFArh8XjYs2cPBoOBS5cuyUxMd3c39957L5cvXyYej6PX69Hr9VIt9Hro7e1FrVZjtVplBkNEwkWWQ6fT8a1vfUsquBqNRtm3cD2Ifgej0ci9995LMplkcHBQGpgej0dGkKPRKHNzc/h8Pr71rW9J9WzR+yAQjUbxer2o1WpKpRI+n49UKiWzH2q1mpWVFRQKBV//+tdlD0kgEECj0ZDP53n00UdlGYowmK8WthKYmppi9+7dDQrLAAcPHsRoNOJ0OmUm5sknn2Rzc5NAINBg7IpeB7fbLfddf38/xWKRcDiMwWCgq6uLbDbL8PAwhUKBjY0NbDYbHR0dO+5FtVpNR0eH7Kt4/vnnmZ+fx2azSQdKoLu7uyFSL+4hu92O2+2mvb2dcrlMIpGQgYFisUhXVxfRaFSybm1ubjIzM8Pg4KA89sDAgMxMulwu2trapKMgDPeBgQHpvNb3o4ieGovFIuvxL168iFarlf0Pfr9fOtZdXV3odDrC4TDhcFg+r3w+H7FYDI/Hw65du0gmk6hUKrxeL48//jiBQID29nbpGGk0GoaHh9nc3GRgYICWlhbMZjO7d+9mcXGRhx9+WAYXRHnNY489RiwWw2g0cujQIeLxuFQXr1ar1zhoIghiMpl48sknCYVCHDp0SPZZieeA2+2mtbWVaDTK8vIy6+vrDA8P83f+zt9Bp9NhMpl49tlnWVhYwOPxYLFYsNvtDA0NXXPvFYtF1tfX6e3tpVAoMDIyIrO6e/bswWQyyZ6ptrY2kslkQ99DE03c7miKhTVxx+JqMZab2cpXl4p8WiQSCX7xi1/Q3t7OU089JUs1bqfb6WpV15v9jfh+NpuVTBoDAwMNL+XrHftm5uDjOMc/6xxeffwvck2udy2f5Zw3mp+bOW61WuXkyZPYbDZSqZSM7l5tdH+a/fFJsdO1zM/P43a7r4kMi3HUK77utL/qv1v/+Se9jp3GdqNjfF7PDtjuYxFaAfl8nieeeOIzHfvzXMv6Y91oXj/uPrv6t5/kvrzRdz/tWn/cddTvv08yzuvt0aZYWBN3AppOQBN3LG7VQ1aUAIgSG61We8vFdL4IVCoVKVQkSnmauP1Rq20Lx9WXhalUqk8tZvZ5o1KpXDdL8FVBsVhsMD4/D3G/Jm4vNJ2AJu4ENMuBmrjjsd3Il8RoNMpSi49DMpmUDZkqlYpabZv3XNRU3wiigU80690MBKuMyWS6YbpY1AkbDIYbUip+GRBN0TdSeU2n0zJVf7MNcqIxT6fTYbFYbkr9825DsVgknU5jt9sb5rdSqRCNRq9hKfk4iL4CnU6HWq2WRqVo5s7n8w0MRkKQSqiqWq1WWcLzRePq9RZsXtXqtkLtzajcftkQ5WmiGVSU95RKJdk3cyOIdRBlPfVr9XlCUJSKvpedji+CGKFQCJ1OJ+9x0TegUqlkqZNarZa9QuL+FroLom8Ktuvvz549yyOPPHLD+1mU6IyMjKDT6RocoWq1SigUauhXEXOl1+tlD8xOzEE3A7FegDyGCHRc/TwXfRv1173TPCaTSdnz8VV8jjVx5+OrG4pp4q5BtVphZmbmE9G1zc/Ps7Gx0aB2eubMmWsawz4vCA5zQW0oKBkFM8b8/Dyjo6MUi0Xi8fiXqq4Kv4kep1IpyWwUiURkA+X1sL6+LsWsbgZbW1vMzs5SKpVIJBIsLi6SSCQ+r8v4WAhWk6ubxHdCNBr9wlRAk8mkXO965HI5Tp06dUNq23oIbvq1tTUCgcA1aqiVSoVwOMzly5cld308HicYDEqxM6F+/FkUXUWvxqdFLpdjbm6OjY0NeV3BYFAy7+Tz+Zu6N4Wa6+cNISh17tw5YFvBNhwOEwwGmZ6e/tjfp9NplpeXOXnyJIlEgrGxMak4e73zFYvFG6p17wRBG7q0tEQwGGR0dLRhXWu1bSG10dFRstksiUSC5eVlLl26xMLCAh9++CGRSET2k6TTaeLxOMeOHWN2dpZcLkcoFGJpaalBhVj0NGWzWSKRCAsLC8zMzFAqlQiFQkQiEba2tgiFQqTT6WtUnAUtswjGXLlyhUuXLhGNRrl48SKFQkEqeH+S+aiHYEKqX69qtcrS0hJXrlyRAm25XI4zZ84wNTX1sffE/Pw8m5ubt1zhvIkmPi2amYAm7nhUqlWmJydl1EapVMpolmDPEZR+wkkQDZPwm6jcyZMnGRwclPX9IgpWqVRkaUV9mYWIZInvCFo/Ue5QH+nK5XJStGlzc5M33niDrq4urFYrsViM2dlZJiYm+P3f/30qlcqOLx/BQpLNZmXEVDB0iPGKaKN4UYosh4iuioZaMUdiPsRLPJPJ0NPTI7nNhViU2WyWETMhaqRSqWRTnGBQUqvV1Go1efz6SGQ+n2d+fp7V1VW+9a1vSX7we++9F71eL3nTlUolarVajlWcU8ylWEfBXnL1nGezWRmhFA24AvF4XBpWvb29pNPphn0j1ler1RIIBKhWqzgcDlKplGwavPq6UqmUZB2qj16KCKIYnxhHuVxma2uLU6dOcfDgQbmfFAoF2WyW48eP8/TTT1OtVuU+EOcW+02ssUqlIhAIMD8/j9VqxWg0yub3YrFILpfD7/fz0UcfMTIywtramqS5XV9fZ2Njg3379uFwOOScK5VKybNeXwYm9rigpRVrrVKpmJmZoaurC4/HIz8XYxD7QaPRyAZpMd+iUbtUKjE2NobP56O1tVU2I3d1dUnDrFwu09/fL38jxif2gkqlko69EO+qj7yLub/edV3v3hVIp9OcOHGCb37zmywuLmIymcjlcoyPjzM8PCz3vIi0iz0r1nVhYYHDhw/T1dXF5OQkNptNMhWJ8dQrHsdiMbLZLH19fSiVSvk3tVoto+IiAyfGOj09TS6Xk8w77733HkNDQ3K/lkolAoEAZ86c4bvf/S6FQkFSF7e2tjI6OorJZEKtVjM3N0dLSwupVIojR46wb98+uYZ+v5/+/n65x0UkPRaLkU6nmZ+fl03KU1NTWCwWme2xWCyUSiW558XzcWxsjGeeeYbV1VXOnTsnnz/j4+Ps27dPao/YbLaGbIHIZon7Np1ON2SEtVqtzOLMz8+ztbXFvffeK3+/vLzM6uoqXV1ddHR0kEwmee+999i1axe7du2iWCzKPSKeP2ItZmZm6O7ulussGtqbpZNN3CloOgFN3PFQsE0xmEgkWFhYkAw4fr+fSCRCX1+ffAktLS1JGkxh6E1PT3Pfffdht9uJxWKyRrezs1NGxUwmE4VCAb/fj9VqlUwRSqWSaDRKMpmkp6eHcDhMKBRCr9dfw1kP2ywagpkGtjn4fT4fJpOJc+fO3TDKJaJkJ06ckCqpQutAp9PR0dHB8vIy8XicXC4HbIsw5fN59u7dK9PX0WgUu92O1WqViqilUol3332Xjo4OnE6nZFcKBAJ89NFHPPPMM0xPT6NWq+np6WFrawu73Y7JZKJSqZBIJPjoo49oa2sjl8thtVolVaPA/Pw8kUhEsrq43W5+8pOfyNKXhYUF2tvbsdlseDweMpkM4XAYjUbDrl27rmlYTqVS7N27l42NDeLxOGq1mr1793Lu3DlMJhO1Wk0ylIj5PnnyJOvr63R2duLz+Thy5AhOp5POzk4sFgsrKysYDAZ27dolKVjz+TxvvfUW+/fvp1Kp4HK5GtiBjh8/js1mk1oEQjugs7NT6jTEYjF2795NrVZjc3OTpaUlWXIQDocbygoEm8zm5iZbW1solUoOHDggryGdTpNIJMhkMrhcLi5evEi5XKazs1NqAsB2CVosFiMUCqFWq4nH45TLZRmhVSgUUi1ZCB/l83mMRiPT09PY7XbJ1CO483t6evjwww8xmUy0tLRQKpVwuVy88MILPPnkkzz44IOy3K1cLrO4uCi5/zs6Onj33Xfxer309fVhMBiklsLIyAiFQkGKzfX395PL5cjlcoyOjrK6ukp7ezudnZ34/X6y2axk4lldXSWZTOJ0Ovnggw/Y2NiQhmYsFpPGsphTh8OBy+WShn8qlZIsUaFQCJPJxMjISMO9q1arJY2koPoVAm+lUomLFy/icDgwm82y9Kejo0OqQAuGIcGk9du//dvkcjlWV1cpFouSfz+ZTJLP5wmFQpw7d06qGlcqFZLJJLlcjo6ODt5//30cDgfd3d20t7dLA9XtdlMqlWhpacHr9bK2tiYNVtjOSL700ks899xzeDwe9Ho9Ho9HOo5qtZrFxUUsFgu7d++mra2NSCTC3/k7f4fR0VHee+89fu/3fq+B978ewWAQn8+H1+ulWCwyOTnJu+++y9e//nXZB3J16ZRwEgUNs/i9EFH7+3//70sxsmAwyJUrV3j44YeB3+gTRCIRDAYDw8PDvP/++7S2tkpmrqGhIVZXV2WGtb68R6vVMjIyQrlcZnJykmeffZZ4PC73lkajYW1tjUgkQn9/P0qlklwuRzKZlOum0WhYXV1lZmaGQ4cONbBYNdHE7Y5mOVATdw0Ep7zf7+e9994jHA5TKBR46623eOWVVzh16lRDhH1mZoatrS16e3ul5LzH4yGVSjE6OkogEOCFF16gra2NqakpTp48KUV0pqam8Pv9HD9+nJdeeolSqcQLL7zAj370I6anp286EiSiRkK0TER5d4JCoSCTyTA+Pk5fXx9HjhxhYmKCsbExXnnlFRYWFnjjjTdkJLxeDOvw4cP85Cc/4a233iKfz/OLX/yCP/mTP0GhUOB2u6lUKuzevZvh4WGpW5BIJGhpaWFubo5yuYzT6WR9fZ1f/OIX1Go1XnjhBaLRqJz7trY2xsfHyeVyOJ3Oa16GsVhM8pjXX5Mwzk6cOME999zDq6++yksvvcTp06dZWFjgpZdekusmoozHjx/H6/WSz+dJJpPMz8/z4YcfMjc3R6lUwu/3Mzs7y9zcHKFQSBpBHR0d7N69m4GBAfR6PWNjY9KZEUrPf/Znf0YqlWqgTZyamsJsNnPu3Llryj+EoRuNRnn11VcZHBzkjTfeYHJyktnZWWZmZhgZGeEnP/kJf/qnf0o4HGb37t20tLQA8OMf/1gq5b7++uvyuK+99hqjo6PX7KXTp08zOTlJW1sbf/3Xf43b7aa3t7eBKjIajXL69GkpRlWpVOjp6eHUqVPANtXkrl276OrqYmBggFdeeYXLly8TCAT45S9/SaFQkBSa8/Pz/PznP6dSqfDSSy9x4cIFaQi/++67+Hw+uru76enpaXD6kskk5XKZCxcuSEXry5cv4/V6UalULCwscOLECbxeL9lslmQyKbn733nnHcrlMhsbG9KR6+/vJxgM8uabb3L27FnOnz/P0aNHOXz4sOTob21tpaenh+7ubrq6ujh9+jSZTIZcLsfExIQUwdPr9YyOjvLyyy9TLBb5r//1v/KjH/2Iubm5j713LRaLdGhFpiUajTIwMMD777/PiRMniMVivPjiiw33snByXnjhBSmEJ7J+f/qnf8r777/PhQsXiMfjuN1ueT+aTCbef/993n33XdLpNC+++CIXL17EZrPhdruvqUWPRqNcunSJt99+m9///d9HoVCwtrbG8vIym5ubBINBqbkByPkFePrpp0kmk0xMTEgxL0A6biaTiWPHjl2XMWf//v1Sv6NYLPLggw/y+OOPc/ToUS5cuNBwTAHhaNeXeyUSCa5cucJrr72GyWTCbDbL+2V1dVV+T5QW+f1+fvzjHwPbWV6R2Tx8+DCRSIQTJ05Ih2qnklG9Xo/L5ZLlaAKlUkm+R9544w3efPNNPvzwQyYnJzGbzSgUCiYnJ4lGo3R3dzcdgCbuODSdgCbuGtSXaUSjUQ4fPozT6SSdTsvUuhCFUigUWCwWCoUC4+Pj0hhVKpWyPKNQKEhxrGKxKKO8TqdTlhvBtlEwPDzM17/+db7zne+g0WhYXFy8qTr5QCDA8vKyjMjNzc01qIrWqwALA0lwqddqNex2OwcPHuT5559HoVDw7W9/m5WVFZaWlmTJhohWFotF9Ho9Q0ND/NZv/ZYcg8lkkpFR2K7bFy9ktVrNwYMHefPNN1EqlbS0tKBQKBgYGOD555+XtJMGg4HOzk7m5uZkSYQQ0REYHBxEp9PJ2ttqtSqbKoW4kSh3KZVKGI1GhoaG+O//+/9epvaF0aRQKGhtbSUWizE1NUU4HMZqtRIIBABkaQzQ4PgJFdlKpYLf70ev12O320mn08zNzRGJRNDpdDLSVw+Hw9FQ8iMgOOuFaJEo0xJaEqJUJZ1OSwXVerYejUYj9SEeeughufYPPfSQNDjFXqpWq+TzeVlTLUpzrjZchXhY/Xnq6Qzrf6NQKKSTd+DAAZ5++mk5h2azGYPBgMlkYmhoiMcffxyLxSKF+YSRKzIN9Xt+cnKSQCAgy8iEwJIQJhPz0NraikKhkGUewkAW4xX3dbValZm4hx56iIMHD0ruea/XK8v+hPOg0Whk07FoZlUotoWpxHVZrVaGh4f5xje+wXe+8x0UCgVLS0uSy//jyPOEPsPExASlUgm1Wo3b7Wbv3r08/vjjDSQFWq2W9vZ2/uiP/giLxcL09DQLCwvy2pxOJ729vSSTSa5cuSJZxzY2NigUCjidTkZGRvjmN7+J2WzGbrdLIb962Gw2RkZGePzxx3n55ZdJJBLSoVUoFHzrW9/i3LlzUtk7mUyysrIiS8Gefvpp2traePvtt+X+BhgZGWHv3r2cPHnyhnMyPj6OyWTioYceYn19nUgkwg9/+EP27NnT8DwQEGVQ9U6A2Wzmnnvu4Q/+4A8aSpk0Gk2D1sv8/DwrKyuS6EH0DJjNZoxGo3Qw6kuudrp/vV4v999/Pz/60Y+kOCBsO7JHjhzB5XJJul2h1Hzy5ElKpRJWq5VsNsvU1NQNSRSaaOJ2RLMcqIk7HkqlgpaWFrRaLYVCAZPJJF84tVpNKlj6fD7JiKJWq6VacCaTIR6Ps3fvXlmi0dLSgsPhYO/evQSDQWkki3p1ofxpt9vR6/UkEgmsVivRaBSbzYbVat1R9KlcLst0czqdxmg0yjpWu90u1TgB6aA88MAD0vhUqVSS/31kZEQa2mazWapV+nw+qdYbi8VQKBQMDg7S2toqy5dsNhuPPPKIFDTS6/X09fURCASkQnE2myWXy7F//34uXryI0Wikq6uLUqlEMBjEYrEQi8VkaYnBYKC1tVWWpIg6esHEIdRk9Xo9KysrFItFHnnkEdrb22X2IBqNynIch8MhU+7ixarX66VqbTwex2QySWYbm80mKU3rWWZSqZQs3xFzkE6n8Xq92O12CoWCrDUul8sMDg6Sz+elw5DL5aQRIAwzoTItrks4PaKkTBghWq2WYrHI6uoqDz74IOVyGb1eTzgcRqfTyX0nSlNEmVYymZRq00KgDLYNps7OTjKZDMFgkIMHD0rDtz7qLBSVhbKw0WgkEonIshPYdiiEkN4999wjS10EQ5ZwtlpaWti9e7fc4yLamc/nMZvNpFIpKTpVH2UVwngej4darUYikZDKsKLkq62tjXg8Tj6fx2q1YjAYKBaLkqlIoVDI8qJYLEZ7e7us+dbpdLS3txOLxUgmk1I1WDD3KJVKOjs7G3pY1Gq1dDCEMFUymcRqtRKJRHA4HNLZGx8f5/7770etVst+AYvFIpW5RdlPa2srGo0Gv99Pe3s7JpNJKlwLiCxTa2srDocDpVKJ0+mUhrhQsNVqtTidTiwWC16vl0AgQEtLC/39/bIJXCgzi8DE1eU1QiVbPMNEj4AICLjdbsbHx9na2pKGsc1mY3FxkWAwiN1uZ8+ePdK5EA3a7e3tdHR08PDDDzcIBtYjGo0yOztLsViktbWV/v5+2SfS1ta2Y0O+cFZFZkKUxglFd/GdaDRKrVajs7OzYZ8XCgUsFgv9/f1yj5XLZUqlkrxHW1tbCYfD5HI5jEajDEAUi0Wi0agUYezv76darWKz2WTwpLW1Vb5HxD2t1Wql+KDZbJZBg1gs1vC8aqKJ2x1NJ6CJOx4KpZL2jg7Z/CUUINVqNUajkd7eXjo6OnA4HKyurkrDQqPRUCgUSKVSlEolDhw4ICNGLpcLu93OgQMHSKfTdHR0UKvViMfj0pgwmUwYDAapmioMts7OTpxOZ8PLWUS+RZR79+7dsg7WZDJJteDOzk4ZgaxWq9ew0xgMBqmMumvXLjY3N8nlciiVSmmQDQ4OEgwGZRS2ra2N/v5+YNsgFhHZ+++/n2g0Kp0Ih8NBLBbDYrFIY6tarUrlVYvFIpVtQ6EQBoNBGs5arVaWRIgynasNU61WS3d3N1arVabxH3zwQTQaDeFwWF5Xf38/w8PDKBTbKsWCoUg03rndbgYGBigUCng8Hvr7+6VyqzDUxdwKx0lAlKuIBsWBgQHUarWMDGu1WlwuF3q9ntbWVvnb3bt3Uy6XG1SWBfr7+7FYLKjVavr6+uTaeDwe6ZDkcjnuvfdeybwUCoXo7u4GYN++fbIMzGg0smvXLtmI6PP5GvaSQrGtYpxIJCgUChw6dIhgMNjQeCyyXN3d3ZJdp35udTqdpHfs7u6mVquxb98+0uk0xWJRll6IyLow4vL5vHTkTCaTVJcWKrM6na6B776jowOtVispNdVqNbt27ZJ7wePxNFA0CoPdaDTS1tYmnRFRBiL2smhsF47f4OAgxWIRi8VCW1ub3KcAw8PDsnFdo9FIJWyVSiV7ccS9K6K8LpdLquiKqLFo9B0YGKBcLsumfq1Wy/DwsOwF6O3tlc3KV1MIm0wm2bAM2yVZmUyGSqXCPffcIx1mcX7hZFutVnbt2iXX0mq10t/fLzNa9XC5XHIudDqdvL9E/b+4FnHeetpivV5PqVRCpVLR398v511kCBQKBQ6Hg8cff3xH3QmRbdTpdORyObLZLFarld7eXiqVCl6vV6qs10M4PzabTWbKfD7fNVk3UXooVLPhNxkgk8lEe3s7KpWKXbt2yXtZ9J709vbKqL3NZpNZIZGN0mq1GI1GHn30UWBb8dtsNksVePHcFRkw8ZzY2tpCp9PJsd8sO10TTdwuaIqFNXHH4k4SYzl//rw0mkSz4E7IZrOMjY1hMBjYvXs3y8vLDAwMfGJhpampKdnc+fjjj3/hkalIJML58+fp6emhr6/vpjUDmmjidkSpVGJpaYn+/v4m//tNIJPJ8MYbb/A7v/M7N9Q+2NraYnp6mr1798qMCGw/98TzSjiP9ajValy8eBGDwcDIyMgXei2fF+6k91MTX100nYAm7ljcSQ9ZkS4WZQA3+l4+n5eRMYFPasTX39ZfRmr66sdIMx3exJ2ML/v+udNRLBZZWFhgaGjohgGLVCpFKBSiq6urgUpTzLeo+796zkVpp+jZuhNwJ72fmvjqolkO1EQTnxGC51zUi+8Es9ks+aVFPepO3zWbzVKn4LMYH1+24dI0lJq4m9Dcz58MolTq4+ZNlFBenV0RDbvXyyDeKYZ/E03caWg6AU3c8ahUKywurjAzM4PP58NsNqPVaunq6mr8XqVCLpdjdnYWo9FINptFq9VisViYmZlhz549OBwO1tfXCYfD9PX1sbq6ilqtlvXbCwsLWCwWBgcH5YsskUhw7Ngxvvvd7xIMBmU9utlsJp1O4/f7cblcKJVKUqkUkUiEQ4cOXSN+NTs7i8/nY3p6GpPJxP79+1EoFOTzec6dO4fD4cDr9UqKyatfuIIJ5eLFi5I5CLZT7aLm+FYjEAgQDodxuVwNegmfB0QD7tzcHB0dHbJXYvfu3RiNRklFqlAo8Hq9H3s8UW9dLBZ55513eO655z62zKlSqbCysr0Xh4eHaW1tvaY2/LNAcK+XSiX6+vpkk+6pU6fQ6XTXpSkUTFNXrlxhZGREZqOEENelS5fo7Oy85p65HsQ+DofD3HvvvZ/bOpbLZQqFgmwCvt5xBaOXz+eTOgSiz+F6EMJSoun44yBYweLxuKz7rlQqDRHsfD5PJBJhfX2dQ4cOfW5lcEIU8Pjx47S3t8v6/1qtxoEDB677OyGadbNGs2jyv3LlitQbcDgcWCyWa/ZtKBSSdfmiKdpsNpPL5YhGo3zjG99gbW0Nv9+PzWbDaDQyNjbG008/TS6XY2FhAdhmGdqpZOhGa1L/t0qlQiqVYmxsjIMHD0rhsGq1SjAYZH19XdI+w29EFm9GxKtWq7G0tERra+s1DdfXQyaTkVol99133039pokmbhc03esm7gooFAquXLlCOp0mGo0yMTFBPB5vSOsnEgnOnj0rm3+j0ShbW1tSGOvDDz+U5TiZTAalUkkikeDy5cv4/X7S6bSkZKxHuVwmHA5TrVbZ3NyUvOGVSoWFhQUUCgVzc3OSGjMYDDb8Pp/P4/f7ZbPdxsYGi4uLku4yHo8zNTUlG0BjsRiJRGJHPQGFQsH8/LxUu4Xtl/dO1Hy3ArlcTgqqfRGoVquMjo5KpqRCoUA8Hm/4+81UQMbjcSniJXQCbiTkJiDUYsfGxkilUl9IRDmdTrO2tsbU1JRkjJmYmMDv99/Q+FMoFMzOzl7D0KJQKFhcXJQG3s1AoVCQy+WYmpr61NdxveMCHzvXkUiEUChENpu96XUpFovMzs7e1PrXj0c09GcyGRYXF3f8+8TExOd6j4nI+OjoqKSDFVoUN8LS0lLDfr8ZpFIpxsfHZYZyfHycubm5hu9EIhHW1tbY3NyUrFkzMzPEYjGi0Sjj4+OsrKxIzZNisUipVGJtbY3z589TLBbJ5/NSxPCzQqFQMD09LedGQKlUMjs7SzKZBH5TZjQ3N3fT576Z/XT1WGKx2DV7o4km7gQ0MwFN3PFQKpT4fD4ikQh6vV4aJ0NDQ7KuXhjob7zxBv/qX/0rNBoNyWRSZgPa29t5+eWXGRgYwGw209HRgcvlwuFwMDo6yvLyMl1dXXi9Xnp6ehqMLaECDEi6QxGlXFlZ4Tvf+Q4nTpzA4/Hw5JNPXvOCTafTzM7O8tRTT6FSqbBYLAQCAcbGxmhvb5eqxYKmzmw2s7S0xJ49exoa6AR7jqAeFdSKyWSSQqEgGT6EQaRQKNBoNJI6UESFVSqVjDqq1WqSySR6vV5es2DcqVarkjVGsKEIFpb6aGQ6ncZkMkkDXMx9/bmUSuU1mQphfAmmIcHHXSqV0Ov1kilFnEetVuP1etnc3ESn00nV0nqjV0QDhZiQYHXR6XQN519eXiadTuN0Omlvb5dZJNGvodVqyeVyDXMorrmlpYVYLCZVZkUkMpfLUalU0Ov1kprSaDSi0+koFAqSalWn00nWEmFYiqikoJAMBAJcuHCBhx9+mEgkwtbWFh6PB6vVSiaTkbSWYn/k83k0Go2kdC0Wi3IPaLVaMpnMNboI6XRaZrvq9QAEc5HBYGBjY4NSqSSFxQB5jYKFSnwm9kU9a5RCocBkMsm9KT5TKpWUSiWp8Coi7OI75XJZ7mNBAylE8pRKJZVKpeE4SqWSfD7PBx98QG9vr9QpENSf9foR4j6qH4vg0z916hS9vb0ym6DT6XA4HCwvL5PJZBo0IPL5vKQVFZSV4tjiekulktQfqVar6PV6+XvBuGW327HZbKTTablvYFugT7CIib3y4YcfcuDAASwWCyqVSgYtVCqVXHODwSAzY2Je62l03377bTweD/fcc4/cCzMzM4RCIWw2G319fdRqNT766CO5l7PZLB999BH/3X/335FKpSTbktPp5K233qK7u1sqYdffZ8JhEUxt4hki5kHQxYp7tFqtSkrfaDRKPp+X81ytVvF4PJLSVKBUKnH06FG++93vyvsim802MG6Je1SwXok5KRQKmM1muc9KpZKkztVqteTzeckG9UmdryaauB3QdAKauGuQSCQYHR2VgkS9vb3Ab6KAmUxGCoYpFAoOHjwoS2hSqRR/8Ad/wIkTJ3C73Q0p9//5f/6feeGFF5iYmGgQ2boagrJQGDharZZnn32WYrGISqW6bqlApVKRBpdCoaC3t5d4PM7ExARPP/10QzRZ0Az+6Ec/YmBg4BoWDYGNjQ0++ugjgsEgf/RHf8SxY8ckt3oul2NmZgaDwUB3dzd9fX10dnZSq9U4c+YMDoeDSCQiObJ/9rOfcejQIVwuF9VqVfLm53I5Ojs7OX36NIuLi3zjG99gfHyc/v5+bDabZEH65S9/yfe//31JryqUkU+fPo3T6SQUCmE2m/na177WcA35fJ7NzU3Onj3LxsYG/8P/8D/w3nvvMTc3x2OPPcalS5f4R//oH12Ttg+Hw/y3//bf+PrXv86hQ4caeMVfffVVdDod3/3ud/njP/5j/t7f+3vMzc2xb98+KdQF22xOlUqFgYEBWVZw4cIFlpaWGBoaYvfu3Rw9elRqGvh8PlmWUA9hXEQiEY4dO8bW1hZf+9rXMBgM/Pmf/zlPPfUU9913HxcvXpSR1IMHD5LNZnE4HMTjcRQKBY8//rg8pqAdFaUz6XRaGsqpVIrTp0/T1dXF6uqqLBv78MMP6e7uJh6PUywWWVpaYnx8HIPBwJ49exooTwWE2J4QOhN0sX6/n76+Pilytby8zK9+9SuGhobQaDQEAgEee+wx/uRP/oRvfOMbkha1p6cHm83G6uoq6XRaGl1PP/00brcbhUJBKpViYWGBI0eO8Nu//dv85V/+JT09PezatYtarSaNzvHxcVwuFy0tLfLaQqGQVH9OJBKoVCrMZjOrq6tYrVY6Ozs5f/48Tz75JFqtlkQiQSgUIhgM0tbWhs/nIxwOYzabOXToEAB+v58jR45ICt1Lly7x7W9/W9Kmivt3YWGB06dPS+pTm83GmTNn2NjY4Ac/+AGBQID5+Xn0ej0PPfQQDocDhULB6uoqo6Oj8n762te+Jsv4BK5cuUIqlaK9vZ2HH36YX/7yl9RqNR544AGKxSKRSITW1laCwSCnT59GoVBInYi33npLagZMT08zNjbGE088cc1zpVKpMD8/z/nz5+X+FlkthUIh99TQ0JDsV/rBD35AqVQinU7z+OOP81d/9Vc8/PDDkiZTaI8kEgkuXbqE3W6XjobAT37yExSKbfHBy5cv8+ijjzI1NcVDDz2Ez+eTZWrLy8scOnRIPuM7OjpIJpMEAgG2trYIhULE43H+7t/9uw3Hr1QqhMNhLly4wO7du8lkMgQCAd5++22effZZqduRzWYJhUI8//zz/Nmf/Rl/9+/+XWZnZzlz5gy/93u/x6VLl/j+97/PTqu5xwABAABJREFU0tISKysr8jl86tQp3G43m5ubO2ogNNHE7Y5mOVATdw0cDgcPPPAAbW1tsvTmyJEj/PjHP+bChQsUi8WGVG8ikSAej8uX1t69e3G5XGxubjI+Pi6/ZzQaeeKJJ2hra+Mv/uIvPtGYVCoV77//Po8++miDIVePUql0jbqwUAQ9fvw43d3dkgMefhOdvBE6OjrkOeuNCJPJxNGjR+nt7aWvr499+/ZJ3u1qtcpbb70llTE9Hg/Dw8M88sgjZLNZBgcHGRkZkRzk58+fx+Fw0NHRQXd3N/feey/lcpnh4WEpUtXT04PVauXgwYMsLi6yuroKbL+c33zzTbLZLHq9fse6eXGdKpWKxcVFKSglxi0Eta5GS0sL3/ve99i/f3/DvMG2ToDL5UKtVtPe3i6NvavLCvr7+xkaGmowWu69915UKhVra2tMTk6yvr6Ox+OhXC7vaETDtsDV0tKSzJr4/X7i8TharZaOjg6eeeYZvF4vmUyGdDqN2Wxm3759vPvuu7IWfafa5M7OTr7+9a/z4osvyiwEbEcvz5w5w9DQEJOTk1y+fJn19XVUKhUPPvggRqNR9ixEIhE8Ho/kZr8aly5dwuFw8NBDD3HgwAFOnTrFrl27mJubw+/3S7YWQWHb0tIidRj6+vpobW3lnnvuwefzodPpGBkZYXZ2Fq/XS29vL52dndjtdjY2NuQ62mw2qQUgjiE0F8bHx3nzzTe555572Lt3r9Qy6O7uplqtyj6BBx54gG9+85vSsF5bWyORSNDa2kpXVxc+n4+zZ88yPz8vM0ZOp5PXX3+dmZmZBq73rq4utFotdrudXbt2SR2C+vtPpVLR3d3NgQMHSCQSbG1tNezbXC5HJpNhfX1dOgoCWq1W8tGfP39+R0Py3nvv5fHHH2fPnj3AdiCgVquxurpKNBolkUjw0ksvycDH4OAgZrNZrr3L5cJoNGKz2RgYGJDKyPVQqVQMDw9z4MAB8vk86+vrrK6u8ud//ue8/fbbmM1mlEplw3NqY2NDRtztdjt//Md/zP/3//1/8h6H7cDIH/7hH3L69GkmJyelGrqA2+1maGiIkZERisUiDz30kHRuo9EoFy9eZHh4mEuXLjE+Ps7m5iZ6vZ4HH3wQvV7PiRMnWFpakvohuVyu4ZkgFKm7u7tpa2uju7ub3t5ePB4Pjz32mLy/g8EgS0tLUmPGZrPR0tJCb28ve/fuJRAIMDExwfz8PKlUCrvdLlWih4aG6Ovru25Apokmbmc0MwFN3PHYbgzeVrsUKflKpcKVK1e455572LdvH8b/n73/jpLrPO888U/lXNUVujpU50Z3A90IBEAAJMAog0EkRUqWtJZ3KNny7Fg7Y83Y451z7N2zO971zOzsrMbH8m/Gs5Y9Wlkr2tJQlESCCSJBEokAGqlzrM6xcnXlXPX7A76vOgEEgyRCvJ9zeEhW3/De97733ud53+d5vkYjsViMhx9+mHPnztHU1EQkEkGn01FVVcW7775LU1MTn/rUp7hy5QrBYJByuczly5fR6XTU1taya9cuVldXbxrnLSWFBoNBstks7e3t/N3f/R3BYJD5+XkOHjzInj17tt1XMir8fj8DAwPAjY9/b28vbW1t+P1+QqGQEBJraWkBbsQAKxQKWlpaxKqGNIvf3t5OZ2cnhUKB8fFx5ubm0Ov1dHV1iY/peg0CpVIpBNOk1ZKZmRmRZzE8PEwul2NpaYmjR48SDAYZHx9nfn6eQCDA6uoqgUAAv9/P6uoqTqeTSqWC3+9ncnKS6upq8vk8q6urFItF9u/fDyAM9dnZWXK5HB0dHahUKkKhEDMzMyI04tq1a0xNTVGpVETuxfLyMo2NjSKMYG5uTuQbGAyGLSFGUp6I3+/H7/fj8/lYWVnBZDIRCASEQJLH42F6eprFxUWKxSKrq6vinDU1Neh0OiFGp9PpRNhMqVRidnaWYDDI5OQk4+PjTE9Pc/jwYRF+IbXR5/Ph8/moq6sTiZblcplIJMK+fftEiMp6XQkp1C2bzdLT08PCwgKPPPIIsViM1dVVmpub8Xg8jI2N4XK5aGpqQq/XMzExwdjYGAsLCzzwwAMYjUZCoRBGo5FSqYTf7yccDpPJZIRD1tDQIPIPpFWfiYkJqqqqUCqVog+lsbOyskI2m2VxcVHMzkrXGAgERF9L91uKGy+Xy3R3d4vwFem+SMcIBALk83mWlpY4dOgQMzMzTE1NCScxGo2KUBDpGZTCVQ4dOkSxWMTn8wkjz+v10tHRwdramgj58nq93HPPPVuMcOkaJIGocrnM/Pw8O3bsQKfTidWqUCiEz+djfn5ehIupVCp0Oh3Xrl0jlUqh1+u5++67icViwrELhUKMjIxw7NgxcS6bzYbBYCCdThMIBPB6vezevRur1Uo0GmVxcZHa2lqGh4fRaDTU1NTw2GOPEY1GhTKuwWCgqamJK1euiPuZSCQIBAJCdVi6B4lEAr/fz/z8PA0NDYyMjBCLxfB4PHzuc59Dp9Oxb98+RkdHGRkZwWg0Eo/HMRgMhMNhotEo2WyWRx99lIcffhi9Xk8kEiESidDb28uePXv40pe+xOTk5JZcoEgkQrFYxGazibGyvLxMc3MzJpOJ2tpaxsbGqKuro6mpiVQqxcLCAqOjoywsLPD000+LcDaXyyXeQ1JOkPSuNpvNLC8vUy6XiUaj4v1+7do1amtr0ev1hMNh+vr6WFpaIhAIiDEr5Wh99rOfJR6PC3FFi8WCz+djbm6O2dlZVldXhWK5XF1K5k5BdgJk7niUCiV2u52nn36ahoYGisUiKpUKo9GI3W4X8btqtZrDhw+LGGGHwyFmoQ8cOCAUO3fv3s3a2powih0OB2azmdbWVh5++OGbiuEolUo6OztpaGgQaqK7du2is7MTrVZLbW3ttvvpdDrcbjfhcBidTkdnZycajYa6ujqh/nn8+HFqa2spFousrKzQ0dEhKhut/+CoVCoeeOABEZag1+vR6XTs3r1bGCfV1dUiblyKp4YbM++HDh0SBq503L1799LW1kZVVZUIEaqvr+fxxx+nsbERi8VCJpPB5XLx6KOP0tjYiMlkEoaOXq/HarWyb98+CoWCCDOQ+n591Y71RpjZbKaxsZHa2lqqqqpwu904HA4UCgVOp5OnnnqKqqoqYYCrVCpcLhe//uu/Tn19/QbjXOLAgQOUy2Xsdjuf/vSnqaqq4oEHHsDhcGxYjZCqB5XLZWw2G0888QR2u537778fi8Ui1ITdbjdarVYYtkqlEqfTydNPP017e7swcDwej2i/0WhEpVLhcDgwmUxEo1ExxiTjTlIpValUGxwZlUpFW1ubUGB94IEHsNlsfOpTn8JqteJyuThy5AhVVVUcPHiQ2tpaMY5tNhuPPvoozc3NImREcno+9alP0djYuKG/7rnnHqxWK0ajEaPRyD333ENVVZWoyFKpVHj00UdRKBTce++9GI1G8vk8LpcLo9HIE088IaoVNTQ0UF9fz/333y/CXUqlEqVSCaPRuCGvw+128/jjj2MymfjUpz5FdXU1Op0OpVIpFI/37t2LQqHA4XBQW1srwq6knBmAu+66C4/Hw3333SdWKh544AGqq6uFSm42mxVled1uN9lsdsPqkcFg4N5778XlcmG1Wjl27JgIkZLuh81m4zOf+Qw1NTUcOXIEpVJJdXU1NTU12Gw24ZxUKhVReUca7263m0OHDlFfXy9WhSQHXK/X87nPfU6obOv1esxmM4cOHRJ9qlQqqaqqora2lng8Lu63xWLB6XRy9OhR6urqUCgU7N27d4sQl1J5I5/qySefFGFMe/fuFaGN0r2yWCwUCgUikQgqlQqr1SoqCJnNZpFXcfDgQfFsl8tlManQ1taGTqfbYhxLisbS82w2m8VYdDgcHDp0CJvNxuHDh4XisHTNjz/+OLt370ahUIj3pF6vF+/K9dx3333Y7XZRovT48eMolUq6u7ux2Wyi0pHT6eTxxx+nrq4Oo9GI0+nEYrHw9NNPi9+y2axYhTpw4IA4b01NjVzKVOaOQxYLk7ljuZUYi1Riz2w2b/jwSIl0yWRSSMt/WKLRKGfPnuUzn/nMLev7S8ljg4ODPPzwwxtCOObn54Xk/c2cjEqlQiwWY2hoSBjr72fGSQr5eK8P1a10DKR2SCX34Oal/QqFAqFQiOeff56vfe1r27ZXOle5XCabzRKNRqmvr9+QhLz+XLc630fNe/WXNJbWJ7XejFtdx/LyMsFgEIPBQFVVFadPn+bzn//8hhWa98N27ZLOvz5B93bav74PbrW99Dcp+fvnGRohGdSASHrdrr3ws5KZ0nhefw1Su9dXJLpVqN2Hvd+S87t5/9t9nm73uNI9UKlU76vNEtlsFrgRqrS5L6SkWoPBcNulVj8MtzOWpfu6PrF8O272PEvJ97fbR+uTsaX9txv3sliYzJ2AvBIg8yuJVGVnM5LRsF6N98NSLpc3VAa5GZJa5ubEP4vFws6dOxkZGbll+UKpWk9tbe37dgDg9o3J99pOWlV5L3K5HOl0mv3792+rArr+XNJHtKGh4QOd6+fB7fTDre735m1vdh1SPfx4PM7a2hqPPfbYbdU0fz/tks6/vg230/71fXCr7aW/3W5/fBhudY7N92xzn2++hs2raLfiw97vm93P9zPGb+e4t3vPbsat9ETUarUIJfpF8H7G8ntxs+f5/fbP5jb9osa9jMzPA3klQOaO5eMy07L5EbrVDPrNtlv/t9vZ/06IOb3dflm/7Z1wXT8PtnsNf1L7QkbmV4GPy/dJRuZWyAFsMp8IpOSuD4JUB31iYoKXX355y9+lUIP1ITQ+n48TJ07w6quvcu3aNaanp0W5x+1CbaRk1b/9279lamqKeDyO1+vl+9///oYkN2m/fD6/xXCsVCoiIdXv91MoFPD7/QwPDxOJRMjn88TjcSYmJvD5fBsqwsTjcV577TVWVlY2VEe5GZVKhZMnTzI9PU0ymRShPy+88ALpdPqm/XIzbrVNqVTixIkTnD17lldeeYWf/OQnnDt3junpaf6//+//21CN5P1QqVT4zne+I5JbNyNV/cnn8wwMDPDGG2+8L0Gtm7GysrKt6NT76a/11zA8PEwymbzlNWymUCgQi8WYmZm5LfEsqTTs3//93xMOh2+rbdu15bnnniMYDN60mtJHhRSy8YMf/IDZ2dkPfTwpofSNN95gZGRkSzWp9RSLRfx+P3/3d38nQk2k5+7kyZNUKhVGR0eJxWKUSiWRJzMzMyNKuH7USIntS0tLfPvb36ZcLvPCCy+IKmhSf33/+9//wM/T7RAOh+nt7WVoaOiW4mq3qri1nkKhIEI/vV4vb7/99i3vzYchl8tx4cIFTp8+veH3dDrN0NAQJ0+e/LmcV0bm54nsBMh8IjAajduGB92KcrnM7Owsi4uL4mNzM4Nxu30lcSCPx0Nvby/Xr1+/6fZSoibcqFE/MTGB3W7H6XRuif8tlUqcP39+249duVxmcHCQ+fl5kskkV65coa6ujuvXr7O8vEwqlWJxcZGFhYUNTkClUhGCSLermCnVCJd0EHQ6HcvLyx+5OrFCocBiseBwOMhkMqTTaVpbW4nH40QikdtyWm5GNBrd1tiQ+kg6/uDgIJ2dnduW63y/GI3GjzSkwm63b6tBIV3Ddka7UqlEp9NtqDx0K6QQjGAw+IH7W1I33lyq9+eFQnFDyfWjMKrX1tZYXl5Gq9VSV1d3y/AdKexkvTK4JBC2uLgI3LhncMM4HxoaAhCld38eoSUGgwGDwSCqKVUqFaGOLqFQKMRkwc8LlUqFWq1mdXX1pmMgl8sxMzOzRVRxO6RqPhqNBpvNxvT09M/NwVSr1aRSqS2iYFqtllwu93NTQZeR+Xki5wTI3PEUS0UmJ2eoqqoiGo0KpUrpY+dyuQiFQiJR+Pr163R0dAjjVarQkk6ncbvdG8oBjo6OYjQa0ev1FAoFwuEw4XCYeDyO1WpFoVCQy+XIZrO0tLRsSE6TFC/X1taIx+Oiuo7P5xOlGdcrUDY0NOB2u5mdnRUl/iRRIZ/PJ9QzNRoNV65cYdeuXbhcrg0GoF6vF8qe2WwWr9fLE088wezsrBBXyuVyW2rsry+3qNPphBKvpNgqCUPBDSNHqtJRKBRYXl4mGo1SXV0trjWVSqHRaLBarfj9fpHDEI1GSaVS1NfXE41GaW1tJZlMiqospVIJl8u1Ja65paVlQ9WWuro6crkcpVJJlE0sFos0NzeztLS0QV1Z6p/r16+Lqh6ZTEbUlwdESUO4URt+cnKSSqVCTU0NtbW1zM7O8pnPfIZ4PE48HketVpPJZIRQl6Qm6vP5aGxsJBAICEOvVCrR3Nws2h4KhYjH40K4LZvNioo6lUqFQqHAtWvXaGpqIpfLkcvlcDqdZLNZHA4HqVSKVCpFpVKhqamJxcVF9Ho9Pp+PcDhMS0sLa2trTE9Po1AoqK2txW63s7q6KmKpJcXc5eVlYrGYSCg1GAzU1NTg9/sxGAzCOSyXy2g0GtbW1jY4eZISt6SgLDkXMzMz1NXVifhyyXldW1sTar/S75lMhnA4TDabpaqqSihdAwwODmI0GjEYDGQyGZqamhgZGcHj8VAsFolGo3g8HiYnJ4XgmJQ4W11dTS6XI5VKEQwGRZnT5eVlMZakkqR1dXVibEiKw1If5HI5UQ5VqVSKZxJuVLPy+XyUSiWamppECclYLEYsFqNSqbC8vAzcyAmKxWIUi0WWlpaoqqoiEAgwMzNDd3e3WCGRkrCl8WE0GvH5fBQKBRwOh1CYlp4plUol8oy8Xq9QH47H43R1dYmSxTqdboMDtt4IX7/CmEwmCQQC5HI5GhoaNvSXWq0W4zqRSLC0tEShUKCqqkq8ExwOB8VikUwmI8aa0WgklUoRiURIJpOi3yXhwHK5LCr6rK2tMTU1RbFYpKWlRTwrqVQKg8GAw+EQKxeDg4O0t7djt9uFBsbS0pJoo6TCnEgkcLvdQnU4n89z7do12tvbSSQSlMtlcQ06nQ6tViv6qra2VjiAkuJ2sVhkeXkZhUJBVVWV0DaQkbnTkJ0AmTueUqnEuXPn6OzsZHh4mOrqavbt28f169fJ5/Pcf//9DA4Oijrw//W//lf+x//xf8Tv96PVamlpaWFgYIDV1VUefvhhWltbhRPg9XqpqamhoaGBTCZDNBpleXmZgYEBsV08HicUCglDb321kVgsxtWrV6mpqaG5uZlUKsW7777Ljh07yOVywmhWKBT8+q//Oh6Ph2QyuUHVN5vNMjg4SCKRwGKxUFNTw8zMDKFQCKvVKoxchUKBzWYTs5TFYlEYtolEgmKxiFarFQ7IdkQiEeLx+AZFU8mQzmQy6PV6bDabcLDS6bSo3f/QQw+RTCYJhUIEAgFMJhO7du2ir6+P+vp6MpmMuA9PPPEEvb29fPnLX8br9RIMBqmtrSWTyeBwOLY4Aa2trRtm2lQqFe3t7cANbYWVlRVisRjV1dVcunQJtVpNW1ubUKmtVCo8//zzPPDAA1gsFlFrXWJ+fp7+/n6KxSKf+9znmJmZESq8JpNJOH7T09NoNBosFguzs7P4fD6qqqpoamoiFotx6tQpfuM3foM33niDQ4cOiTGw3gkYHBxkdnYWm83G7Ows0WhUlNiUjOLvfOc7fPGLXxR18o8ePcrs7CxHjhxhYWGB+fl5crkcX/rSlzh58iQWi4WxsTGuX7/Ob/7mb3Lt2jXhqErG5JUrV8S9tNvtQsjObrejVCrJ5/OijOa7775LW1sbxWJRjMeGhoZtnYDR0VHRp3q9nvr6ep577jkef/xxLBaLqOZjMpnw+/1b9o/FYly7dg2fz0dPT88GJ+Cll16ipaVFOGK/8Ru/wQsvvMCTTz5JOp2mv7+fp59+mueee457770XhUJBOp3GaDRy9913k81micfjzMzMsLy8jNvt5uLFi6IC1erqKmfOnOGpp57CZDIJxz6fz3PlyhU6OztZWloiHo+Tz+c3VKKpVCqEw2HOnTtHNpvl6aefZnx8XDghsViMQqFAX18fWq1WhJblcjneeOMN9u3bJ3QVksmkUMKVtBMaGhqYnJyks7OTt99+m0QiwcGDB8WkhVSGWBIWBOjt7UWpVJJKpZiamuJrX/saQ0NDpFIpoT9wKwqFAvF4nEwmg9/vx+VyceHCBVGO1GQyCQM7HA7z5ptvkkql6OnpIRAIoNfr6enpEY6X0WgUqyfhcFhMxhgMBvr6+qitrSWXy1EsFsXzGIlERE3/eDzOwMAALS0tTE9P43K5sNlswlFbXFxEo9HQ2tqKw+HA7/czOjqKw+EQFccaGhqYm5vj2LFjwglIJpN8+9vf5nd+53eEQNxdd93F/Pw8VVVVeDweMWHhdDrp7e2loaGBUCiEUqkkkUhw8eJFdDodPT09G1ZUZGTuJORwIJk7HqVCKcSznE6nmJmJRqN4vV5RN9tqtWK1WvF4POzatYtCoSDEc9LpNFarlbq6OhE2JKmhdnR0YDabRW33PXv24PP5OH/+vFAdraqq2rK8rVQqaWho4KGHHiIej7O0tEQikeDs2bNoNBqxjCzNBkpIda5ffPFFcrkcIyMjLC0tifrjUv18qX76etbPsEozXsCWcn7rt1uP2+1m9+7dhEIh+vr6xCrI2NgYFy5cIBqNcvDgQX7t134NpVLJO++8Q6lU4vDhw2I2rqWlhXA4zMDAAOPj45TLZSE2tLq6isfjYe/evWLWdHx8nLGxMaFjsLldUgnE7dpdLBZpb2+ntraWcDjM8PAwfr8fm82GRqMhl8uJVY7q6mpaWlrweDxotVrGxsaEsJw0YymppTY0NNDR0SFUluvq6qiurmZmZoZ0Oo3T6eTq1at4PB4hytba2orb7ebgwYNotVra2tqw2+1EIpEN12Cz2aipqcFisXDlyhUh7gY/C32qr69n586d1NbWYrPZ2Ldvn+hLychbXFzEZDJhsViwWCy4XC4aGxvZuXMny8vLeDweduzYQW1tLeVyWdxLKVSstraWQqFAQ0MDLS0tuFwuVCoVwWBQxD1rtVoikQhTU1Ps378ft9uNWq3ekMhts9nI5XKsrKyQTqdpamrC6XTS0dFBNBrl+vXrjI2NsX//ftrb27eELqlUKmGQS30lYbfb6ejooKmpSYhcVVVVCWPQZDLR3NyM2+2ms7NTaADU1NSwtLREqVSiuroat9uNQqFgeHiYM2fOkMlkhBpzXV0dx48fF5oicKNM5tWrV2ltbWV+fp5IJEJ9fT2tra0bSlVK9fxzuRzLy8sMDw+TzWbZvXs3LpeLyclJCoUCTU1NdHV1odVqhbPR2NgoHByDwYDH4xEhQ/Pz87S1tXH58mWqq6uFNkdjYyMzMzMoFAp6e3uZn5/fEOYoaWdIxuri4iKPPfYY3d3dWK3WLe+o9eNy/TtA0o+Q+iubzQoBNImGhgbq6urEs6LRaKivrycWi4kVDK1Wy+DgIG+88QYKhYJ9+/axa9cuKpUKZ86cIRKJiJUCiebmZpqbm6murkapVHLmzBk8Hg+lUolQKEQkEkGhUAjV7dbWVqGP0NDQQFdXF5lMhoGBAS5cuADcUFler+0gPWM9PT04nU5cLhe7du1ibGyMs2fPCm2McDiM3+/n2rVrtLa2itXekZERAoEA1dXVVCoV8Z7drj9lZD7OyE6AzB2PQqmgrq6O5eVloYw6OztLPp/nwIEDpNNpMXsaCARYXFxkbm5OJNAqlUqWlpaw2WzCKASEONHU1BQTExPMzc2JfcfHx+nu7hYfvaqqqg1GdjKZZHJyksnJSTFD5fV6iUaj3H333cLorFQqGAwG9uzZw/DwMO+88w7BYJA9e/bw7LPPsrS0xJ49e4QgjclkEsbL5OTkhvjUSqXC4OAgMzMz+P1+8vk8zc3NQuXWZDKxtrbGyMgIY2Nj5HK5DR8sKRzo+vXr2O122tvbuXz5Mmq1msnJSdxuN3q9nuvXr+P1ellcXGTv3r0sLy/z93//96ysrKDRaPB6vZjNZnp6eujo6MDn83H58mV27NiBw+FgYWGBubk5vF6vUMyV9BHMZjMXL17cEncrJcBOTEywtLREKBSiUqmwsrLC/Py8mOmtra0VImgGg2GDwVksFllYWGBmZoZEIkFPTw+Li4uMjY3h9XoJhULo9XrefvttampqiMVijI6OMj09LRK7a2pqhDLx7t27WVpaYm5uTsyeSv8/Pz/P3NwcMzMzzMzMEI/HRTsikQijo6O8++67QqhMMj4rlYoIs5COMT8/z/T0NF6vl6tXrxKLxVCr1WSzWd58802mp6dZXV1ldXWVxcVFZmdnGR8fx+VyEYvFmJycZGVlRRhE6695dXWVpaUllpeXxTklZV6dTifCg+rr67l27Rrj4+MivETq03feeQeDwUChUGBqaorz58+zsrLC4uIiU1NTGI1GWltbuXbtGmNjY0KFGm7MPEtjTHoOJcVsQKjwzs7OMjU1hd/vR6/Xs7CwwPDwMOPj48zOzorzSdeyuLiI1+vFZDIRDAZZWFggk8mwd+9eDh06JFZIpHPOz89vWKHQarW0t7czMDBAdXW1CDWZnp4Wz0wymcTv97O8vIzJZOL8+fNipr2vr4+JiQmqq6vJZDJMTU3R39/P1NQUa2trzM7Okk6nKZVKJJNJoU69urqKVqvFarXS39/Pnj17CIVCQh17YWEBr9fL/Pw8R44cobm5ecMKmc1mI5PJ4HQ6+R/+h/+By5cvU6lUCIVCom/m5ubEc7O0tLQh2d1msxEIBFhYWCCbzYr+kt4/6431lZUV0a7FxUUxhqanpxkYGGBoaAilUsno6Ch79uwhnU5z9epVrl+/ztzcHPfccw8mkwm1Wr3BkdHpdFQqFZGHcfjwYYaGhkgmk0IETaK2tpZgMEhvby+Li4tiHEihcIcOHSKXy20QFSyVSmJSZv2zOj09LZzdlZUVVldXMRgM1NbWsnPnTrxeryiyIAnrSWKLkUiEhYUFURRBRuZOQS4RKnPHIpVgu3qgwi51RsxAqdVqjEajkHA3Go0kEgkKhQLV1dXMz8/j8XiIRCL4fD6i0SgtLS3k83lSqRQej4fGxkYRmiHFpBaLRWKxGB6Ph8XFRRG7XiwWNyRZKhQKMpkMoVAIlUpFTU0N8/PzKBQ3FE6z2SxGo1FsVygUhOpsLBbD4XCIVYJUKoXL5SIcDqNUKtHr9SJB02QyYTKZNsyer1+Gt1qtYqZNipGX4vIrlYqYPVMoFCIpWPpvadl8bW0Nm81GOBzGYDCI82s0GmKxGFqtlnQ6Tblcxu12i3yEYrEo7oNkXCsUClKpFIVCAbfbzeLiIg0NDeTzeUqlkkiezOfzmEwmYcBLrygpzlqpVFJTU4NWq2V6ehq73S7CVqRcA2kWUmorwH/4D/+BT33qU7S1tVEoFKipqWF6elrEMEuznYVCAbvdLqoyabVa/H6/COeS9CCKxSKFQgGNRiNUU30+Hx6Ph+XlZZxOp0iebmpqErX/g8EgyWRShOYUCgVhlEqx8zMzM9TU1JDJZMjlcrhcLhYXF4UBVCgUyOVy4t7U1NSQzWZJpVLU1NSwsLBAXV2dqDxjNBoJBALYbDbi8biYkQ6FQphMJpHfAQjlX0nJV4p31mg0LC0t0dLSIlSPpbwCi8UiHB2j0ShyRJLJpEgal3JbampqMJvNIuQuGo2KCi+SASw9S3Nzc2IWNxKJ0NTURCgUQqfTkU6nSSaTNDc3s7KyQlVVlcizkXIepBUQqc+qq6sJBoMiAVfK82loaNigvSHNOkt5KlJIk0KhoLq6Wjwn6XRa5NFI55XyZ/x+P11dXaIqmBSe19nZKd4fUoKu3W4nlUqJfACFQiHGhhT+Uy6XMZvN4rmTEn2llU4JKbfAbrcTCARoaGgQoUmSk9nQ0IDP58NsNotVM7iRqKzX68U4dLlcIsxHrVZvULDOZrOEw2HRrkQiIcawdC6z2UwoFKKmpoZSqSSedUmhV3L+pHeF9LxHIhFyuRxWq5VcLifyqyT1cYlIJCLeNTqdjpWVFZE/IykXS+2WFLilPJeZmRk8Ho/I3bDZbCwvL4sVMckpdDqdBINBNBoN0WgUuKHtEQ6HxTVIq8mNjY3inSqXCJW5E5CdAJk7ls0v2fUzeesVQm9VcjEcDrO8vCwSLgFcLteG2aZbKejebn17KRlS+mivV7iUjvNepSGlpebN27yXroAUy3+7YmGbXwnrFValv9/qWJv7a327b9XW9zru+2F9G6Tr+f73v8++fftoa2vbEhsthUlsFzK1uU0fRVvXhzW9n5Kg69t6O+fffF23o6y6ft/1fSgZ1dspxZZKpVuWN5X2l/pt8/h4v6q2UltgqyDYra7jVr9t1+bbGbebn4/17ZP6Srr2zf13s7F0q3NvDonbbt/NvN/x9UH662Zt3PxMSf9IBvl2x908xm91/ls9D7dzD7fjZn0g/S61/VbHlp0AmTsBOTFY5leG7UrrvdeLX4pjX15eRqVS4fF4tihm3srYut0Py3upfN7Ocd7vh0za9v2Wtdx8ju0UO2/F5v66nXa/32t7L7YzjHp6ejCbzduWENzuHt+sPR9FW2/XEN+O9+N8bHcvPsi+kuFzs/KVH0Zt91Z/u1XbPowC9u3se7vjdru2b+4r6XzbPUvbneNW536vsfNhx+YH7a/t2vBe77mbtXXz+W51/vd6P39Uz9jmMfdRv7NkZH4ZyE6AzCcapVKJwWBgx44dv+ym/NzZXBL0k4L0sd63b98vuykyMjIyMjIfG2QnQEbmE0IymaRYLIrYfhkZGRkZGZlPLnJ1IJlPPNlslosXL37kSrfrkSoW/aIpl8tMTU2Rz+eZnp7m8uXLjI+P/8LbISMjIyMjI/PxQl4JkLnjKZVLeL0zorKLxWLB4XCIChNSnfRMJkMmk8FsNmM2m0Xlk0zmZ5WFJHVPk8mEXq/H6XSK0JlsNsva2hrZbJb6+noKhQKZTEbMrq+uropqIlL5OKl6STQaxWw2k06nGR4eprm5mXw+j81mQ6vVEgwGhciRy+XCYDBQLBaFQrFarRbVLSTlU6kaUD6fR6lUYjabmZ6eFm1XKpXEYjEhhlQulykWi6ysrGA2m2ltbSWRSAghMans3ScpVEhGRkZGRuaTiuwEyNzxVMplwuGwKA+aTqeFCmU8HhfiSlJJxYmJCfbt2ydKa0rlAMvlMiMjI9hsNjweDzMzM9x///3AjfKCkUiE2dlZIS+/uLiIQqFAp9MJ1U+FQiFKftrtdpaWlqirqxN17yX1X5fLxezsLK2trVitViYmJshkMnR1dW0Q9CmVSly9epX29nYUCoUo3ajRaEgkEhiNRgqFArFYjM7OTq5cucL+/fuJx+OirvbCwgL5fB6NRiMcg5mZGSFmFI/HsVgseDye952gKSMjIyMjI3NnIocDydz5KBQYDAYWFxcpFouEQiEGBgZEKT6v10tvby8TExPU1NRw9uzZDUq6KpWKubk59Ho9U1NToo7/+fPnxSmy2SwrKyuMjo7icrnI5XL09fWJmvznzp2jUqkQDocJBoOEQiFCoRCTk5Ok02nC4bDQKlhZWcFgMAgF3UQiwejoKIFAAKfTKVSAJY2Bq1evotFoCIVCjIyMoFarGRoa4tSpU2QyGZRKJZOTk0IszGw2E4/HGRkZobm5GbvdLkR5pCTZQCCAz+fj2rVrwgGRyhjKVYNlZGRkZGR+9ZGdAJk7n38Qf5GMVynEB24Y+alUimQySS6XA27Uzd9ca1tCMpilmt7SNqVSSdT4drvdqFQqsdpQLpfJZrMoFAqcTqdQq3W5XKjV6g1tk45XXV0tQm+k0nO7du3CYrFsmI2XxIkkMTK73Y5araZQKJBOp0W5y0qlQjabxeVyCXGwSqUiDP/V1VWSySR6vV60q1AocPToUZqbm5mbmyMQCAgxLBkZGRkZGZlfbeRwIJk7nnK5wvLCAu3t7aTTadxuNwcPHmRsbAyAo0ePsn//fkKhEIODg3zhC18Q1XEkpdj6+nqCwSAOh0OomDY2NpLNZtHpdNhsNtra2lAqlUxNTVFfX8+DDz5IPB5nZWWFz33ucwQCAaFSqVKpyGazuN1uwuGwiP2PxWK0tLQwMzODw+Egk8kwMzNDLBajv7+fxcVFjh07RkNDg4jfb2lpIZfLoVQqsVqtZLNZDAYDv/mbv0kikSAcDtPT04PBYKChoUGoi9bW1gKwa9curFarCEmS8gey2SyxWAyj0ciBAweoq6tjaGiIXbt2bRHTkpGRkZGRkfnVQlYMlrljkRQZr+wv05QLodPpKBaL6HQ69Ho9yWQSALPZTLlcFpL1Wq0WvV4vlDyleH+73U48Hkej0QgpeLfbLZRMC4UC2WwWpVKJXq+nUChQKBTEjLu00iCpSqrVarLZLCaTiXQ6LaTtpRj8ZDJJuVxmbW2NsbExnE4nhUKBvXv34na7KZfL5HI5YrEYBoOBcrks2l8oFDCbzRQKBZGIrNfrCQaDQhCrWCzicDiEoV8oFMTKgXScYrGIQqFAo9FgMplIJBKYTCY5N0BGRkbmQyArBsvcCchOgMwdy6/CSzafz5NMJolEIphMJnK5HNXV1ZhMpl9202RkZGRkPiC/Ct8nmV995HAgGZlfIlqtFofDgcPh+GU3RUZGRkZGRuYThOwEyNzxjKV/2S2QkZGRkZH5GfJ3SeZOQHYCZO5YXBowKuHZsV92S2RkZGRkZDZiVN74TsnIfFyRcwJk7mgWshAq/LJbISMjIyMjsxGXBpr0v+xWyMjcHNkJkJGRkZGRkZGRkfmEIYuFycjIyMjIyMjIyHzCkJ0AGRkZGRkZGRkZmU8YshMgIyMjIyMjIyMj8wlDdgJkZGRkZGRkZGRkPmHIToCMjIyMjIyMjIzMJwzZCZCRkZGRkZGRkZH5hCE7ATIyMjIyMjIyMjKfMGQnQEZGRkZGRkZGRuYThuwEyMjIyMjIyMjIyHzCkJ0AGRkZGRkZGRkZmU8YshMgIyMjIyMjIyMj8wlDdgJkZGRkZGRkZGRkPmHIToCMjIyMjIyMjIzMJwzZCZCRkZGRkZGRkZH5hCE7ATIyMjIyMjIyMjKfMGQnQEZGRkZGRkZGRuYThuwEyMjIyMjIyMjIyHzCkJ0AGRkZGRkZGRkZmU8YshMgIyMjIyMjIyMj8wlDdgJkZGRkZGRkZGRkPmHIToCMjIyMjIyMjIzMJwz1L7sBMjIflIUshAq/7FbIyMjIyMjcHJcGmvS/7FbIyGxFdgJk7kgWsrDrMqTLv+yWyMjIyMjI3ByjEsYOy46AzMcP2QmQuSMJFW44AN/tLLFDW0Cr0aJQKFAoFD/X81YqFfHftzpXuVymXC5RKpdF297reO91zI+qbb/sY34UVCoVypUy+XwejUaDWrXxVVYql6hUKigUClRK1ZZ9K5UKuXwOjUaDSqn6WF3bZra7B6VyiVKxhFarve1jVCoVSqUSKpUKpfL9R4JKfV4oFFCrVKjVmi3bSOO+UgGFAlQq9Uc6FovFIgqlgkr5xvVUqKBSqSiVSmjUmpu+A0rlEuVSGZVK9Qt5T3wUSPcsX8ijVqlQKj/Yffso2wM/G4PFUlH8vwLFhuepVC5RKVfQaDTb7vtBzl2ulG8cp1JBoVSiVCgJBoPo9XrMZvOWvlk/XgHRlnKpTLFYRKNRo1KpKVfKlEtlSuUSGo1GjO+Pqr/H0vDs2I1vluwEyHzckJ0AmTua0sww3/7O/4//7X/732hsbESlUr33Th+CcrlCMpnEYrFwq+9ZIBCit7eX06dP86d/+qeYTKZttysWS5RKJRQKBRqN5pbHfC8qFUgkEhiNRtTqj+bRlq73xkf242M4FYslpqam+KM/+iP++I//mMP33rvh71euXCeVTGK327nrrrs2/C2fL7C4uMj//r//73z961+nq6cHs9n8C2z9+6NcrpDP59HpdGJ8DAwM8+abb/Kv/tW/uq1jlEpl/H4/r7/+Oo8++iiNjY3vux2VCvT3D/Jf/+qveOSRR/jCF76wZZu5uQUuXbrE2toaDQ0NHD16FIfD8b7PtR3ZbI7/9pP/Rm1tLcvLy/h8PorFIseOHePcuXP87u/+LnV1dds+Q+PjXi5fvszx48epra39WI3lm1EuVwgEAvzP//P/zGc+8xkefPBBnE7nL609hUKRSqUiHM8LFy6Ty+VwOBxYrVb+9b/+1/ze7/0e3bt3c+XaFbxeL7/7u78LQC6XR6VSfeD3UiaTZX5+Hp/PRzabpa2tjR07dvBW7wAGq5Wm1lbcbveGfVKpNHNzc3zrW98C4Hd+53fQarVcv36d5557jt/+7d/mM5/5DNPT01y8eJGRkRF+93d/l7/68z/n6aef5u6778bj8XyIHpOR+fgjJwbL3NFodVo0Gg0NDQ0/91myaDTK1atXefHFF8Xs0s1QKpWYTCba2tpu6Zj09vby4osvsry8/KHaJs2SfuMb32BhYeFDHUuiXC6TTCb5t//235JKpT6SY35UqFQq2tvbcbvd6HS6LX+vra2lsbGR6urqLX/TaDQ4HA72799PqVTashrzcSMUCvHKK69s+K26uppDhw7d9jEUCgVWq5Xu7u4P5fD09PTgdDrFrOpmgsEg4+PjPPvsszz88MPYbLYPfK7NFAoFzpw5w8GDB2lvb6euro6WlhaOHj3K/ffff8vrstvt7Ny5E6vVekesAsCNe1ZdXU1HRwdms5ly+Zcb+zg6Osr58+fF/9fX19PY2EhNTQ12u33D89TY2MjevXvFtm+++eaHei+dOHGChYUFXC4X1dXVfO1rX6NYLHLfffeRSqU4d+7cln0MBgNNTU089thjpFIpjEYjHR0d7N69G51OR21trXiPPPLII3zxi1+kq6uL/fv3o9frKZVKH7i9MjJ3CvJKgMydTeVGOIC0zO/z+cjlcmi1WqqqqtDr9ayurqJSqTCZTJhMJmKxGFarFaVSSTweF0vKdXV1wA2jK5VKiZWFZDJJNpvF6/Vy7tw58UGWwk3Wk8lkCIVCzM7O4vV62bt3LyqVimw2SyQSIR6P4/F4MJvNLCws0NfXx8rKCl1dXcANw3t5eZlCoYDFYsHhcKBUKjecRwrrmJ6eFtdULpe5fPkywWCQeDxOIBAgl8thNBpZW1sTqwM3wjXK1NbWblg1KJdvLJvPzc2JfovFYvT19RGJREgkEhQKBQqFApVKhZqaGhKJBCaTiWw2SzKZJJ+/MdtXKBRwuVyo1Wri8TjhcJjGxkb0ej2FQoFEIkEkEqGhoQGDwbCt8xYKhVhbWyOXy2GxWFhbW8NkMqHT6SgWi6RSKTo6OlAqlaTTaRYXF0kmkzQ2NmIymQgGg1QqN8IRKpUKsVgMn8+HTqejqqoKpVKJVqsln88zMzODxWLBarXicrm2tKVUKuHz+QiFQjQ2NmK1Wslms4yMjODxeMhkMjgcDmw2G5VKhfHxcQCampqwWCxbri8WixGLxcjlcthsNlwuFysrK8TjcQB0Oh2ZTIa2tjYKhQJjY2OcOHGC1tZWmpubUSgURKNR0uk0lUqFvr4+rFarCItRKBR4PB7m5+fF9ZrNZpaXl8nn81QqFaLRKMFgkGKxiFKpxGg0irG2urpKOp2msbERs9mMSqUil8sxOzuL0Wi8EZKzjSHt9/uZnZ1lYWGBhYUFurq6WF1dJZVKodFoqKurQ6/X09/fj9FoRKfTUSqVaGxs/IdVMIUY35VKhdHRUSqVCnV1deh0OqanpwkGg4yNjbG4uEgoFEKpVDIyMkI8Hiefz4txHAwGSafTOBwOjEYjqVSKtbU18vk8JpOJaDTK2toa2WyWqqoqbDYbIyMjOBwOdDod8Xgcu91OTU0NSqWSRCJBNBolm83icDjI5/MkEgkAHA4HKpWKlZUVampqsNlsG8K0UqkU8XicdDqNSqWiubmZUCjEysoKGo0Gl8vF6uoqra2tmEwm8b5YXV2lWCze1BgNBoOsra1RLBZxuVyoVCp8Ph92ux2TyUQ6nSYYDOJwODCZTEQiEcLhMG1tbYTDYZqamojFYqytraFSqcQ7MJVKEYvFSKVSuFwunE4nExMTnDt3Dr/fj8PhYPfu3fj9fnQ6nXiGpWteW1sjFouRzWYpl8sMDAxw6tQp0f8OhwOfz4fZbMblcpFKpYhGo8LA325s7dq1C5PJhF6vx+fzYTKZUCgU6PV6isUiiURCvPel/ZVKJQaDgf379/ONb3yDTCaDSqXCaDTicrm4du0a+/fvJ5lMUi6X6e7uRq1Wo9VqKZVK+P1+MpkMVquV2tpaAFZWVohEIqjVarq6usR91Ol04rra2towGo0/91VpGZmPAnklQOaOJvcPHxWA6elpfD4fKysrTE9PMzU1RSQSEUb57Ows+Xyeixcvks/nmZ2dZWZmhmQyycLCAsFgkJWVFebn55mfnycYDBIMBpmeniYej5NMJllcXBTG53oqlRshG0NDQ8IQHx0dZceOHZTLZSYmJoSh+tOf/lTMPudyOWHwA/T394sPy9WrV4WhsZ5yuczY2BiFQoHV1VVWV1cpFAqMj4/T0dEhjJjp6WlOnTpFqVRiZmaG+fl5ZmZmuH79OnBjFSIajYoZ/6tXr1IulxkfHycYDJJKpZiZmWHXrl3C8PR6vQwODgJw4cIFkskka2treL1e8f9TU1OsrKywtLTE1NQUADMzM2SzWYLBIDMzM5RKN8J5braiUqlUmJ2d5eLFi5TLZfr7+1ldXSWZTBKLxcRxK5UKkUiEtbU1EokEly5dolKpkM1mCQQCwqC9ePEihcKNMKCFhQWKxRvxzFLfzc/PMzAwsKUdhUKBtbU10dbBwUFmZ2cpFAosLS1x8eJFlpeXWVtbY3V1lf7+fjKZjBhfq6urG44XDAZZXFzE7/dTLpcZHh4mEomQy+WYn5/n9OnTlEolEokE/f39LC0tUSgU8Pl8G4yjWCyG1+sVx7xy5YoYy319fUxPT1MsFpmammJ0dBS4MbM8Pj5OMpkkEokwOzuLQqHg6tWrYhxJBrxCoWBgYIC1tTUCgQADAwMUCgWKxSKZTEb033oUCoVYkQLEtRWLRZLJJJcvXxbG1dDQkHhWksnkhtWYdDrNtWvXSKfT5PN5lpaWRJuk86jV6hvx5//g/E9PT5NIJIjFYiwvLzM5OYlSqWRoaIhoNEomk8Hn8xGNRkmlUoyMjIixMTAwQKlUYnx8nOHhYZaWlsjn85w9e5ZSqUQ0GmV+fp65uTkA+vr6yGazjI+P09/fT6FQIJvNMjExQTKZ3NIv4+PjBAIBEokEg4ODRCIRSqUSw8PD9Pf3EwwGKRQKXL58mWQyKd45oVAIhUIhHPCbPSO9vb3i3kxNTeH3+/H5fAwMDKBUKhkcHGRtbQ2/3y/G7+zsLIuLi+I5r1QqzM3NiXfF4uIi2WyWM2fOCKcvkUgQDofFfchkMqyurhIKhba0KxgMMjs7K+5XIBAgnU6jUCgoFov09/ezvLxMLpcjEAgwMTFxyxW51tZW7HY7a2trzM/Pc/z4cZHbIa1KhcPhLfupVCrcbjdqtZpwOCyeu0OHDtHb20sulxMTGHa7XewXDodJJBIkk0nOnz9PpVJhZGSElZUVstksmUyGoaEhisUig4ODDA4OEgqFKBQK9Pb2kk6nb3otMjIfJ2QnQOaOJplI0tHRAcCpU6cIhUIkEgkmJycZGBhgZWWFZDLJzMwMo6OjxONxXn75ZeLxOBcvXmR4eBiLxcLKygrj4+N4vV7m5+dZWVlheXmZ4eFhRkZGqFQqWK1W1Go1v/Zrv7Zh5lIiEAhw5swZ8vk8FouFubk5amtrCYfDXLp0iUAggM1m46//+q8plUpUV1dTV1dHQ0MDLS0t5HI5Tpw4IWYZ33zzTdbW1rZ8HEulEm+++ab4sIVCIQwGA4lEgscff5yamhqKxSKLi4s8//zz1NfXs7KywurqKrOzs1y4cAGAn/zkJ/h8PjKZDIuLi5w8eZLW1lZmZ2eJx+Oo1WpyuRxPPfUUFouFZDKJ1+ult7eXcrnMCy+8QCQSIZVKMTU1xcmTJ9HpdIRCIWEgjY+P4/F48Hq9ZDIZ4YRYLBbGx8dv6gRUVVURDoe5evUqNpuNmZkZYTwpFAoxu1wul4nFYqhUKqqqqvjhD39IqVTCYDCIdvh8Pl5++WUaGhpIp9P4fD6xorGwsEBtba24d5vJ5/OEw2FmZ2dpaGjgrbfe4sqVKygUCrRaLW+//Tb5fJ5CoYDX6+WHP/whTqeT2tpahoeHxaqAxNDQEJOTk+RyOZqbm+nr62NychKDwUAsFuPUqVPU19dTXV3Nyy+/zNTUFDU1NbhcLvbs2YPD4aCqqopsNkt/fz8AJpOJ3t5eVldXsVgs9PX1MTAwQENDAzMzM1y6dAmVSkVDQwMXLlwgEomQTqdJJBJ4PB76+vrIZDJMT09z7do1wuEw7e3tnD59mtXVVcbGxnjllVdEeFUulyOXy23pK5fLRV1dHVVVVXR2dvKjH/2IXC5HQ0MDJpOJH//4xySTSTQaDZOTk4yMjKBWq7eEmkUiEZ577jkxEz83N8fY2BjNzc1YLBZ6enro6OigqamJxsZG9uzZw+TkJPF4nIWFBQYHB5mfn2fHjh2MjY2RTCYpFovCqV9aWuLChQusra1hs9m4cuUKlUqFUCjExMQE4XAYj8fDj3/8Y3FfR0ZGCAQCtLW10d/fj8lkYmVlhbGxMeH8xGIxlErlllCpgYEB4vE4SqWSgYEBpqensVqt4roymQzt7e386Ec/IhKJMDY2xrvvvotKpaKtrY1kMrltf9vtdiKRCP39/SiVStRqtVhlk+Lc29vb6evrEwbtwsICU1NTwsGX8irMZjOBQEBMWIRCISwWC9///vdF+zweD06nk56eHjGjvry8vCXMx2q1EolEGB0dRaFQsGfPHmw2G62trezYsQOz2YzP5xPPYTKZJBwObzDCN2OxWCiXyywsLDAxMcHDDz+MUqmkUqmIFYLtwo0UCgVKpZK9e/eyuLjI6OgouVyOJ598kvHxcVKplHBa10/s+Hw+lEolNpuNl156iUqlwk9+8hOWlpaorq7GZrNx8uRJLBYL09PTTExMiFyFH/7wh6ytrd30WmRkPk7IToDMHU0kEuHAgQPkcjlOnz6N1WrF4XCQSqU4dOiQWHq32Ww0NDQwMTHBnj17mJmZIRQKodFocLvdVCoVvF4vLS0tqNVqfD4fnZ2d9Pb2smvXLpxOJ5V/CD3aLnylVCrx93//93R3d1NXV4fRaKS1tRWAH/7whyK2V6vV0traikKhYGZmBp1OR2trK+Vymb6+PlQqFWazGYPBIEIHNocCSeEc/8f/8X+QyWTo6emhWCwyMzNDW1ub+CjW1dVx/PhxjEYjTz/9NIcOHaKhoYHq6mqKxSJqtRqlUsn4+DinT5/m/vvvR6vV8lu/9Vvs379fOAednZ2o1Wqqq6vxeDy4XK5/qK5xwxFqbGxk9+7d6PV6mpqa+I3f+A3Gx8e5dOkSdXV1nD17lkcffRS73c7S0hJvvvkm3/zmN/n1X/91TCbTtjOAGo2GtrY29uzZw/DwMB0dHQwPDzM0NIRSqeRzn/scAMVikR07dtDR0YHBYBAfX4vFgk6nIxqNcuHCBTo7O9FoNDz22GM8+uijGAwGFAoFe/fuFbHk28VcG41GmpqaaGtrEyskuVwOtVqNw+GgqamJgwcPsnPnTgDOnz8vZvuLxeKWkIDXX3+dRCJBe3s7KpWKnp4e3njjDaLRKE6nk7q6OkwmE+3t7cIZLZfLYvZbMmp0Op1ot9SO6upqDAYDNpuNpqYmtFot5XJZOE4GgwGdTodSqaS9vZ2DBw9y6tQp3G43PT09LC8v09vbi1arZWBgAL1eTzKZJBAIsLa2ht1ux2q1YrPZts3DkMLWpDa+8847aDQa4TybTCauXLmCwWCgvr6erq4u7r77bhobGzc8U8lkkrNnzxIIBFhaWiKbzaLRaMTxpfA/pVKJUqkUz4w06z0wMCDyJf7ZP/tndHV1odVqsVgsVCoV3n77bXK5HOFwmPn5eerq6vD7/VitVlpbW0V+kTQezpw5QyQSEaF9/9P/9D/hdru555576O7u5tSpU8zMzPAbv/EbNDY2bglreuaZZzAYDIyOjqJWq5mZmREz2DU1NezduxebzUY8HqdYLDI2NkZ/fz/79+9HqVSK98l2z8jevXu55557OHXqFCMjIzz++OMUi0VGR0fRaDT09/fjdrtJp9MiTK+lpYXPfvazHDhwgMuXL/Mnf/In/Mf/+B85cOAAarWao0ePUldXx7Vr11AoFMTjcSqVyob+hxvG/nbVqZRKJXq9HqPRKLaXxoSUK/WVr3yFc+fOMT8/T319PQ8++OCWSkLrqVQqOJ1OHnnkEZ555hm+/OUvk8/nRTusVqsIp9uMQqHgkUceYWxsjNHRUUqlEi6Xi7a2NiYnJ8Ukwnp27NhBfX09CoVCjIPLly8zMTEhVpt1Op1YkaqtrWXPnj1YrVZisZicTyBzxyA7ATJ3ND6/D7VazdLSkoipjUajzM7OolarMZvNjI+Po9Vqqaur4+rVqxw7doylpSXq6upob28nm81y+vRpjh49KpLFyuUyWq0Wr9dLpVJhaWmJeDxOZ2cn09PTWz5U5XKZkZEROjo6RPx/T08Pc3NzjIyMiLjmmZkZ9u3bx/z8vDC4WltbmZ6eZmRkRHxIpJyDubm5DefKZDLMz8/zta99jT/4gz8gFouJkJn1seJzc3PMzc1x9OhRMWs9NzdHOBzm8OHDDAwM0N3dLWbxA4EAd999NwqFglwuR7FYFOeNRCJkMhlGRkbIZrPs27ePwcFB9uzZw9raGjMzM8Tj8Q2JgFqtlubmZo4fP85jjz2GSqViaGiII0eO8I1vfIOGhgauX79ONpu96b3t7OzkwIEDfP/736e5uZm1tTURA63X64WxpdFoRNWRzYa8RqOhqqqKRCIhrkeafZTaKc3kbmd8LCws8OMf/5jx8XGOHDlCVVWVCNlQKBQbYv61Wi3V1dXcfffdHDp0iM997nNbknfNZrMI96lUKsTjcaxW65bZ40qlIlZJJOMfboSWbDfLKIXGSNyoJHTz6yqXy4RCIX784x/z9a9/nZWVFVKpFHV1dXR0dHDo0CH+yT/5J+zatYtKpfKBZzalc0vXbLPZhBOj129fL1GlUuF0OkU/Pvnkkzz88MO3dT6j0YjRaBT3N5lMilUfCZfLhdvtprOzk4ceeojf+q3fwu12i9n0zWNJyreQViykGPLdu3fT0NDAqVOnRKnazauDlUqFf/2v/zUzMzMcOXKEhoYGALECp1Kpfla6ct3YLZfL5HK5m94/CSnR9fXXXyeVSqHX67Hb7WKV8dChQ/zWb/2WSAhXKpWYzWYUCgXBYJDf+q3f4rnnnuM3f/M3+cY3vsHw8DDf//73GR8f59ixY1itVkKhEOl0WjiTxWKRkZGR9yyOsJ71qyVerxe32y3CJ5PJJO3t7aK/tuP3fu/3eOONN4jFYmi1WrHSKa2aJhIJrFbrTc//4IMPMjMzI1YL1Go1Tz/9NH/zN3/D2toaLS0tG7Zf/zxJ96Wqqko4rvfeey/PPvuscIbX38ePe6EBGZn1yInBMnc0ChTMzs7y4IMPUlVVxdTUlEgOHh8fp6WlherqamHEXr16lX/yT/4JJpOJoaEhYcDu27ePpqamDYluo6OjIs62trZWVL5YWVmhpaVlw+ylUqnknnvuYXV1FZ/Px/LyMqVSiVwux913300ikSAQCDA7O0sqlRKGtpQ0aLFY2Lt3L9PT01y9elXEgC8sLNDU1CTOk8/nWVlZwWq1srS0RENDA42NjZTLZWw2G9evX+fIkSNkMhmi0Sg7duy40U8KBSaTCa1WSzAYJBAIEA6HSafTwvGZmJjAYDBQLpf/odSiAqPRyOXLl3nwwQex2+3k83kCgQDBYFCElSSTSaLR6IZSnM3NzSQSCUZHR8lkMlRXV7OwsIDVahVJcx0dHbzwwgtYrVY6Ojro7u7ecG/NZjNOp5NkMkl3dzder1fMiJbLZVZXV0V8eaVSwe/3s7q6yuLiIn19fQwNDaHT6XjiiSe4cOECIyMjIplQpVIxOjpKKpWiqqqKpaUlkRewd+9eYcyVyze0CLLZLMPDw5TLZdLpNOPj40xMTDAxMcHy8jI6nY7m5ma+8IUvcOLECTo7O6lUKiIpU+KZZ57B6/WKmPeZmRmeeuop6uvrmZiYIBAI4PV6RcjDgQMHMBqNtLS0cO7cOSwWC5FIRIRhDA0Ncf36dcbHxzEYDBiNRiYmJjCZTBgMBhYXF4lGowwNDQEwPz/P8vIyMzMznD9/nnvuuYcLFy6wsLBAa2srWq2Ws2fPAjeqYXV0dNDe3s6BAwfo7e0VCbpOp1OsPEksLi4yMTEhHN+vfvWrzM3NkUgkKBaL1NbWsmvXLl544QUmJibweDwEg8EtFZycTidf+cpXePXVV2lra0OtVlMsFonFYiwtLbG4uMjg4CBTU1PodDr279/PwsIC169fp62tjaqqKs6fP4/dbicUCtHS0kIgEBCzwM888wwnTpxgfn4erVZLJpNhx44deL1eEQKXy+VYWVmhv7+fw4cPMzMzw8WLF9Hr9QSDQe6++24MBgMWi4WGhgaRQLzZCSiXb2gTSDkj6XRaJBCvrq6SSCREeNnKygqLi4vs2rULi8XCyZMn6e7uZm5uThQ22NxX0kSH2+3G6XSiUqno6uqiVCpx+vRpEQJZW1uL3+8XKwTt7e1MT09TLpex2+3YbDbuvfdesQIi9bXRaOTKlStiEiOXy3HlyhXa29t56623GB4epqmpSfSvFFq0vLzM3Nwcw8PD9PT0YDQamZ+fx+Vy4fF4UCgUHD9+nHQ6TS6XEzH24+PjfPazn6WqqmrDdd51111oNBoWFhbw+Xx0d3dTW1uLRqMRMf3rx+Jm9Ho9LS0t7Nixg4aGBlQqFQ899BCXLl3CYDCI0ELp2fb5fFQqFcxmsxgHTz31FPl8nnfeeQePx0OxWBThhalUiitXrgCI+yiVTpWR+TgjOwEydzT7D+ynqdqAXq/nvvvuw2QyidjkpqYmCoUCra2tIlnWZrNhNBqpq6sjn8+TyWTQ6/XU1NRgNBpFqITRaMRms/GZz3xGGBbFYhGn04nL5doSEqRUKrn//vvRaDSYTCZqamrEEvaxY8dQqVRkMhlsNptYlj948CBqtRqLxSKqgkizSdXV1bS0tIgPpoROpxPhCu3t7SJGXKlU8thjj+HxeDAajaJCxfowgtraWlF5prq6mubmZhobG9HpdHg8HkqlkpjZMhgMuN1ujh8/Tn19PVqtloaGBiwWC5lMBrfbTXNzs6iO43a7qa+vF+favXu3KMtnNBqxWCwiBEatVnPkyBFsNhttbW1iWX8zUgjS008/jc1m49ChQyiVShwOh3BQvvSlL7Fz504cDgd6vZ6vfOUrmM1m2tvbRUhQTU0Nn/rUp0Q/6fV6tFotjzzyCBaLBZfLxaFDh2hsbNxifFRVVbFv3z5Raeb48eMYDAYcDocoQShVh3E4HBw9epRwOIzRaBRjYT3t7e3odDpRWenIkSO0tLQIx0in04nx2draSm1tLWq1mkcffRSHw4HD4UCr1dLV1cXnP/95qqqq2LlzJzabTeQSSHkhVVVVPPDAA6ICTqVS4Utf+hItLS1kMhnuvfdeOjs7USgUmM1mampq0Gq1GAw3nicpvKi5uVlUENLpdDz11FMizn89RqOR3bt3i8pcDz74IMlkUoTuPPzww5jNZrq7u3G73TcNKzKbzdx3332EQiHMZrMIOTEYDDz77LOi3KeU8Gkymfjc5z4nDLz1z4rb7cZkMtHY2MjDDz+M0+nE7XZz8OBBlEqlePYMBgP333+/KMvpcrn47d/+bWFcSxVl9Hq9qBQj5Qnt3LmT+vr6bcMElUolTzzxBFVVVTidTg4cOEBLSwsNDQ08/vjjqNVqnE4nCoWCZ599VlRkqq+vZ21tDYPBwPHjx7Hb7Vvq4MMN595ut/PEE0/Q2NiIWq0WIYbZbBaDwYBWq8VqtdLV1SWeKZVKRUtLC4VCAb1ej81m48iRI1itVvG+cjqdPPnkk1gsFoxGo8hJkYzbzs5OrFarCBN75JFHsNvtOBwODhw4QG1trSgR++ijj2KxWLDb7VgsFkqlEnV1dSiVSnEfpRCd7crPHjt2TFQGq6qq4tlnnxXvaylMc/Ozu76PpJAgKZ5foVBQX1/PU089JSZ0KpUKarWahx9+GK1WS319PXq9ni9/+cs4HA4OHz5MIpGgXC6LqmoGg4FHH30UjUYjNBy+8pWvUF9ff9MyujIyHycUFXntSuYO5HoCDl6Dy/tLHDCzIYZ3vTqllCxYqVRIp9N4vV6+8pWviFhPabl9vYiN9JuUMCYZMVJpzlu93KUymdKyuWTAFAoFERdbKBREGIp0Dun8hUIBlUolzrVdzG2lUtlQDk9aai8UCiIkQbq2zbGupVJJtCuXy4llb6m0orS/dIz1sf/S/lIfSG2Q2rT5XMVikXw+v8ERKRQKlEolEQqSyWQIh8MolcoNTsTmeyFd44dRe81kMhtCh24XqW8354Ns145KpbKhL29WJrBUKpHNZkXcdCqV4s033+TVV1/lz/7sz4RTsD6+PJ/PbyiB+PNCelaktgHimqSZcslhfS9tDmkMVSqVbQ3+W7VB2veDiExJ13CzErSwdSy+F9LKnsFgIBAIAIiZ4Hs3idVtdy4pxPB2xvH66y+XyyL3Ybt+kLbdrpRwJpMR+S+bkd4R0r/Xvzukf6QSu7d6J9wuUrlTqYSr3++nra0Nu91+WwZzLpcjlUqRz+eFI5ZMJhkYGCCZTPLYY4+95/6bE7ez2eyGELD3QuoXKSTxdpC+VdcOwgHLbe0iI/MLQ14JkLmjUSlVSHbWZoNLimVeXFwkEolQVVXF5z//efH3mxkH0gdvswEuGfG3Yv0+6/97/YdnvTG0+eOzfrubGZBSSMvm39af72btlJIqgQ3HkOK017O+9vd77b8d231cNRrNhmtcWlrCbDa/5yye9N8fBoPB8IH2224s3Grb9X10M6TwDom5uTkRKub3+2lvb99wvQqF4n0Z0R8GKXRsPevHx3ZJqjdjuzF0u224nX681f43U+mW2DwW3wupIg7A1atXyWQyVFVViQIA73Wu9W17L97P9a9P1t38+63ulfSO2LyvlMC7XXs/6P2EG++DTCbD3NwcP/3pT7nnnnvQ6XS3fQ90Ot2WZ8Dr9VJVVSUqxL3X/pu5XUNeQuqbj0qRXUbml428EiBzR3I7syvS0N4s6vXznkmVuX3Wv34+yfdlu9fwJ7k/Pu6sT9j9MKtTnzS2eyd/mL5bWVnBZDJ9rJWg5ZUAmY8zsjsr8yvL5o/Cx/Uj8UlGvic3kPvhzkKeVPhgrA/rk/7/wyBVdZLvgYzMB0N2AmR+5ZE/EDIyMh818nvlg/FR9pscliMj8+GQnyAZGZk7nnw+TzQaZXh4mIceeugXPjtYKBRIJBJEo1FR83w7pFrrSqWSUqnE7OwsbrdbVBu507lZQvqHYXl5mXw+T0tLywe+p9FoVJRybW9v3zZnJpFIEIvFKBaLGAwGIVLmdDpFPLlUijaRSIicgnK5TDQapa2tTeR0rK2t0dTUJBKqnU4nVVVVP/d7nM/nmZubI5fLbVvtSroGScm6pqYGh8Pxoc4Xj8dJJBK3lRuxvg3rk5kLhQKhUIjZ2Vnuuuuu95V38mFZXFykXC6LUszLy8uoVCqROF5VVUVVVdV7jr1sNovX6xXlgn9ROTwyMh+GO/+rIyMj84knk8ng9Xr59//+33P06NH3nfD3UZx/cXGRgYGBWzoByWRSlOEsFoucP3+e++67j/r6+l8JJ6BQKJBOp7Hb7R/ZMQcHB4nFYrS0tGzJ77ldlpaWOHnyJEajkd/93d/d4ARIBunk5CRLS0vAjRK9wWCQSqXC4cOHRdiJVCc/HA5TVVWF2Wwml8tx9uxZvva1r+Hz+XjzzTe5du0av/M7vyOM2507d9LT07Ntmc+Pkmw2yzvvvEMgEOCZZ57Z1gkol8u88847pFIpHn744Q/lBEiJvpOTk+/LCQCIxWJYLBZRaWxiYoK//uu/5v/+v//vX6gTcP36dYrFonACzp8/j8vlIpPJkE6n6enpuWnhgvUkEglef/11UbpYdgJk7gRkxWCZOxopQW/9P+/394/DP7d7be91jF/m+X+Rx938j81mo6Wlhbq6uts+z+ZtPkw7Ja0JSfDsZtu99dZbTE1NUancmC3v7u7G6XSKUozv975+mDb/PO7L/Pw8J0+e/EjvbVtbG7t27Xpf7dy8bX19PceOHSORSGw7JqPRKH/xF3+B0Wjk6aef5ujRozz99NOcP3+eS5cusbS0RDqd5sqVK/zoRz/iscce47Of/SzHjx/n6NGjDA4Oks/n2b9/P62trZTLZT772c/yxS9+kdbWVk6fPs3f/u3ffuj79V6/S3ockkbKdvsolUoeffRR4MZM/u30363GfV1dHTt37rxl+zZfM8CJEycIBAJUKhVMJhPHjh3b9jq3O+776cf36reOjg66urrEsc6ePYvH4+Ho0aMcPHhwg0Dbrc5jNps5fvw4qVRqi3K5jMzHlTt/6knmE82VK1fQug0UCgWSySQ9PT04nU6KxSI+n4/p6WnsdjsejweXy0WpVOL69evADfEsaal/dXWVmZkZqqqqqK+vx2g0MjMzQzabpVAosGPHDrRaLQsLC+RyOQqFAj09Peh0OtbW1lhZWaFYLLJnzx6SySSLi4ssLy9z5MgR/H4/arWadDpNJpMRgl5TU1PY7Xbq6+u3nWlKp9OcPn2a2tpampqaWFxcJBgM0tPTQ319PX19fZRKJSGY1NnZKdQqlUol1dXVNDU18eqrr4rQBIPBQF1dHYuLi+I6amtrt53Fi8ViTE5OAtDa2iqEzoLBIEtLS9TX1+PxeEilUiwuLjI1NcX999/P2NgYdXV11NTUCLGgzdfl9XpZW1ujra0Ns9lMKBRidHSUAwcOsLi4iM1mE6I+Xq+XnTt3Ul1dzejoKD6fj+rqalHju6OjY9v+C4fDBINBEokETqeThoYGxsfHCYVCGAwG7r33Xq5evUq5XKahoQGPx7Nh/2g0it/vJxgM4nK5aG9vZ2hoiHg8jtVqZe/evZw/fx6r1YpKpSKXy5FOp6lUbqhKB4NBkskkarWaPXv28K1vfQuv14vP56NYLNLe3s7MzAxut5t4PI7P5yMQCHD48GFGRkZobW0VYlflcpnBwUFyuZwovarT6TYYx3CjFrpUEtdut1NbW0uhUGBiYoJyuUx1dTVarRabzbZlBjiVSol763A46Orqor+/n0QiIcbSqVOn6O7upr6+nnK5zNjYGGq1WqgwX7x4kf/23/4bdrud7u5uampqRIhMPB7H5XKJsezz+SgUCtTX17O4uMjevXspl8ssLy+TSCS47777CAQCLC8vAzdCqSTFY6mspFar5cCBA6TTaYaGhsjn8zidTnp6egBYXV0lEAgQj8eJxWLbvUIoFAp897vfpbOzc8tM/ac//Wl+/OMfk0qluPfee/nzP/9z/vE//sdYLD8r82I0GvnDP/xD7Hb7tmFQ+Xyecrm87QpGIpFgeXmZoaEh7r//fubm5oSwWDKZZHp6miNHjggxwUKhwNDQELlcTgjVGY1GKpUKIyMjQul4vQOQyWQYGxsjmUxis9nYt2/fhjYkk0lmZ2fF+0AS35MolUpcu3aNRCKB3W5n3759XLt2DUDoRkjORLFYZH5+nlAohEql4uDBg8DGPIBiscj09DR/+7d/SyqV4siRIzQ2NopzLi8vs7KygkqlYs+ePWg0GjKZDOPj4yQSCaxWK/v3799wDdlslqWlJa5evcpnPvMZfD4fPp+PUqnEAw88wMmTJ6murkaj0ZDP58nlchw7dkyou+t0OvL5PIODgywsLHDu3DkhZtbc3CzGxdTUFMvLy6jVag4dOoRWqyUUChEKhQiHw6RSqW3HmIzMxxV5JUDmjiYUDvG9731PGHgTExMsLCwwPz/P888/z+7duxkbG2NqaorZ2VlefPFFcrkcHo+HwcFBzp8/z+LiIs8//zzd3d1MTEwwPDzM/Pw8g4ODdHZ2EolEiEajrK6uMj4+TldXF36/n1wux+joKKdPn6axsZGBgQH6+vrIZrNkMhl++tOf4vf7mZycRKvV4vP5OHnyJAaDAZ1Oh9frJZFI3HTpW9IDOH36tBDKWVhYwOv1cvnyZYrFInV1dZjNZmZmZgiHw7zwwgvYbDby+TxXrlwhHo+jUqk4ceIEXq+XZDKJ1+vl+vXrtLS0kM1micfjW87d19fHmTNnKBaLNDc38+qrr7KyssL09DTvvPMO3d3dfOc732FhYQGtVkupVOKNN95gamqKHTt2cOnSJU6dOrXluEtLS1y7do2ZmRn27t3LyZMnWVxcFIbByZMn2bFjBxcuXOCNN95gdXWVXbt28a1vfYtIJIJKpcLv93PixAl27txJOBzm7bffpq+vb8N5JiYmGBgYwOfz0d7eztWrVxkfHyedThMIBLhy5YrYbjuNhEgkwtmzZxkbG6O9vZ0zZ84Qj8cxmUzMzc1x8uRJCoUC165dw2Kx4PF4yOfzvPbaawCcOnUKvV6Py+Uim82Sz+fZuXMnjY2N7Nixg7a2NtRqNT6fj/n5edRqNWtra7z11ltMT0/T3d3Nq6++ytWrVwmHw7z66quk02ni8Th+v59UKrUl5Mbv9zMwMMDw8DBdXV1MTk4yODhIJBLB4XDwF3/xFxQKBZaXlwkGgxv2lRzOs2fP0tHRwaVLl4QgViAQ4NKlS+j1epaXl5menmZwcJCJiQk0Gg1dXV0sLS2h1WqpqamhurqaAwcOUF1dzdzcHP39/SwvL9PR0cG1a9cYGRlBpVKxtrbGd77zHRQKBRqNhh/84Af09vZiMpkYGRlhamoKg8HA/Pw8AwMDIhSntbUVhULB3NwcQ0NDlEol/uIv/gKr1UpVVRXBYJCLFy/i9Xp566230Gg0uFyum64CVCoVJicnhUG93mCtq6sjEAgQDAZFzHdra+uG2vYajYZDhw5ht9tRq9VUKhWy2SwjIyO8/vrrzM/Pc/jwYb7whS9sObf0LvjpT3+K1+sV76Vvf/vbIjfhjTfeYHFxUby/JOfv7Nmz9Pb2srq6ymuvvUYkEqG5uVmMX+na/vIv/xK4EeIUjUa5ePGimAnP5XL4/X5GRkbo6uoiGAySyWQ2tFESL5T6W/pvafUrlUrxxhtvAHDmzBmi0SgqlYp4PM73vve9LdesUqnweDzY7XZ27drFjh07hKL1ysqKEPUKh8O8/vrrVCoV/p//5/+hVCrhdrtZW1vjwoULG2bbNRoNVquV119/nVQqhdPpJB6P88orr4h+lt6BJpOJwcFBpqamMJlMTE9PMzw8jFKppKOjA6vVyq5du2hpaaFcLtPb20ulUuH5559nYWGBuro66urq+N73vsf4+Djnz58nEAjQ0tJCLBbbdqVCRubjiuwEyNzRaDQaEokEVVVVlMtlIpEIc3NzjI+P4/f7SafT5HI54vE4MzMzvPPOOzQ0NOBwOGhoaECtVjM2NobP5yOVSglj2+/3MzQ0xBtvvEGxWEStVgt1yp/+9KeiNrgkdBUIBEgmk8zNzZHNZlEoFEQiEWw2G62trTgcDqqqqrBYLGIWvLGxkerq6pvGgiuVSqxWK+FwmHK5LJR90+k0Wq2WCxcucPbsWWZnZ9HpdAwPD7O6ukoikRCOSCQSwWw2k06nMZlM1NTUYDKZGB4e5tSpU6ytrW07ezk+Ps7o6Kj4WLe0tGA0GtHr9VitViKRCIuLi4TDYUqlEiqVilgshtVqxel0Eg6HWV1d3XLc+fl5rl27JmLHw+Gw6C+pfKDNZiMcDpNMJoVh5/V6yefz6HQ6oXZss9loaGhgeHiYkZGRDee5evUqfr8fs9mM1WrFYrFw+fJl4IZAkJQMqNVqcTqdWxyxyclJ5ufnCYfDZDIZcrmcEJzzeDzodDpOnjzJnj17qK6uxmazoVarCYfDwI1ViHPnznH9+nVxv+x2O2azGZvNhsViEcJDmUxG3INEIoHNZsPpdLK8vEwoFCKbzbK4uCgMz2w2S7lc3rLKMj8/T19f34ZzzM3NMTU1hdVqxefzYbVaqa2t3XZfaWbe4XDQ0dGBwWDAbDYDN1ZF1Go1CoVCnD+RSPD2229z/vx5tFotZrMZo9GIwWDA6XSi1+vp7+9nZWVlQ5uuXr1KIpEQ/eVwOLBarYRCIVKpFGazmXK5jM/nE7PfqVQKpVKJ2+1Gr9czPT1NKpWira2NcDjMwMAAa2trFItFstksCwsLnD9/XhiHVqv1lmJx0nk2h3Hk8/kNIoFqtVrMsktIQm7rnQeVSoXFYsHtduPz+ahUKjidzm3Pq9VqiUajWCwWHA4HyWSSlZUVkZA6NzdHPB5ndXWV8+fPixW2QqHA6uoqAwMDnDp1ivr6emw2G0ajEa1WS7lcJhwOMzg4SDgcplgsCidQQqlUkk6nGRwc5Kc//akIF1p/bQqFAo/HQ7FYZGVlRbyLXC4XDocDhUIhxr3T6aRQKJDP50kmk/T19W0xiiUhN71ej91ux2q1CgEyhUIhnnnJOZOuIRQKUSgUxDWsP65KpcJgMBCLxSiVSsKZk9pltVqFc2MymcRKsVqtJp/Pk06nxbk1Gg1VVVXY7XZ0Op1wqN59910WFhaE2vfq6ioXLlwgk8lgtVqx2WyYTCa5apTMHYXsBMjc0ZhMJhFTLSXp+f1+FhcXMRgMRKNRamtrMZlMRCIRxsbGaG5uRq/Xs2fPHurr61lYWMBgMLC2tkZNTQ1Wq5VCoUCxWOTdd99lbW1NLOdns1neffddkskkpVIJs9mM3W4nGAyK80lLwlqtlrq6Ovbv34/dbqe1tZX9+/fz7rvv4vP52Lt3Lw0NDcL43fyxVCqVG8IO1Go1Wq0WhUKBy+ViaWmJvr4+pqamKJfLTE1NodPpSCaTIlY3k8mIPqqrq6OhoYHa2loqlQqXLl3C7/eLpfz1rKys4PP5aGxsRKvVct9992Gz2dDr9VRXV+P3+8W5MpmMMISamprEykCxWNxyv/x+P3Nzc5jNZqLRKB6PR3w4zWYzdXV1YubRYrFQW1uLSqWiWCxSqVTQaDRYLBZcLhcKhYK2tjb8fr9I6JQYHx8nk8ngdDpRKpV4PB5GR0fRarUiLGxlZUWEiW12Aubn58lms8CNcIn29nby+byYJWxra+PkyZMcPnwYm80mlE8lh85ut4tVpWg0SrFYFJVQJGOsUqmI80oqpEajkcbGRtRqNcViUYw7jUYj1FrNZjMWi2WLUSuFtEl5ETU1NYTDYebm5jAYDNhsNux2Ozt27KC2tnbDvktLSxSLRWEE3X///VgsFsxm84Yka8nYlQxNr9fLxYsXN1yfZDSn02nGxsZIJBLifnk8HiYmJlhbW9vQJovFIpxMnU6HyWQikUhQqVTQarVotVpUKhV33XUXc3NzLC8vYzQa6enpYW1tjXQ6TSKRQKFQYLFYUKvVXL9+nbq6OkwmE1qt9paq1G1tbcIJ2dwvLpcLl8uFXq+no6ODxcXFDY5AuVwmFAqJ8S7dr6amJg4ePEg2m2VlZUWsrKxHqVQKR6CxsRGDwSDCq1wuF2azmVQqRaFQYG1tjcnJSdGXJpOJdDrN+Pg4AwMDtLS0oNFoMJlMwpFa3zflchmLxbJh1UtyRPP5PO+++y7xeJxSqbTlfSBVGspmsyI8TnKetVqtcFCtVuuGOPlAILDl/SKNkfVVsqSJALPZjMPhEE51LBbbcg1Wq3XLyp2kmmwwGMR/q9Vq4dBI70Dp+k0mk1gBlcbX+rYplUo0Gs2G88zPzwsnQ1pNHhoawmAw4HA4UKlUH2lCvIzMLwI5J0Dmjkdagi+Xy5RKJXQ6nQjD2LVrF7t37yaXy1EulzGbzWQyGfR6Pel0GgCXy0U6nWbXrl3s2bOHcDjM2toaX//617FYLPzxH/8xZrOZQ4cO8S/+xb/AbDbzz//5P2f37t1MTExw4cIF/u2//bciFyAWi5FKpTZ8hOBGaEEul+O//Jf/wsGDB8UHv1QqUS6XN4QYwM9mGAERYpBKpSgWi6yurvKnf/qnxONxent7eeGFF/j0pz9NIpFgx44deDweSqUSqVQKr9crYrZzuRyZTEZc25//+Z+j0WjYu3fvhhUJyRjLZrPo9XoSiQTxeJwrV64wMDDAn/zJn3DixAkx45dKpahUKsKAL5fL4p/1fWAymXC73dTW1tLd3U1bWxtKpZKFhYUN+1cqFfExl+7rekNCKkW5traGRqNBr9eL/SRjB27EuZdKJYLBoKhEUldXx549e3juueduWsXD4XAQi8XEtlKuh2Scq9VqPB4Ply5d4r777sNkMm0wfnp6enjyySeZmJjg4sWLDA0NifOEQiGWl5dxuVwb+ml9ec31vxkMBrq6ulhdXcXhcLBz505cLpfoIwmDwSCMG2kWWDIWpeOs79v1SIqrmUxGzIYnk0kAsUohzf5brVbi8Ti1tbX85V/+JQsLC3zzm98UORySYTc5OSmeAek+BAIBzGazWM2R7re0mqRUKsU9lBy/zcmXf/VXf8UXv/hFGhoaRHiO0Wikvb2d1tZWSqUSkUiE/v5+sZKjUqnEc7a5D9RqNU899RT/5t/8G4LBoCjjWi6XuXz5MnfddRe7d+/G4XDw+c9/nkuXLnHo0CFhcObzecbGxnjwwQdF26VrklYvQqGQyPNYv/K2/tqkvtg87qWxLzmBhUJBhFOVSiUxky7dm/XPS1VVFUajkdbWVvbs2UO5XCaZTIrKR1JpT+m99od/+Id0dHQIZ3w9ra2tRKNRXnrpJR577DHUavWW8fuf/tN/4plnnqGzs1PkKvj9furr67e835RKpXCgpNK6m9/l0sqg0WikpaVFXIO0MrT5fSm9B4rFosjRWf8ekiZcNo8vaZv1f1//TErtaGpqoqurC6VSSWtrq1hBlvKObjbGZGQ+rshOgMwdTV9fH8l/iPm/cuUKKpWK++67j3vuuYe//uu/5tKlS2SzWTweDy0tLfyrf/Wv+Mu//Evuu+8+isUiTqeTBx98kL/4i7/g0qVL5HI5NBoNyWSSixcv8oUvfIHjx4/jdrsZGhriypUrfPazn+Wpp57C7XaLMJXx8XGi0SjT09PADeNzcnKSl156iSeffFIYgGazmXvuuUfMHE1NTXH16lWuX7/ON77xjQ3XplaraWxsJJVKMTY2xuLiImNjY4yPj9Pd3c34+DgtLS3U1NTwuc99jl/7tV/j//w//08GBgaYmpoS8dpvvfUWo6OjVFdXYzKZiMViPP/883z+85/n4MGDNDY2bvngP/HEE4yOjvKtb32LBx54gFgshsPhoFgskkqlGBwcRKvVcuXKFWE4zs3NcerUKVwuF+Pj4+h0OiYnJ0XlEICjR4/idrs5ceIE5XKZYDBIe3s7Pp+P3t5epqamaG5uZnZ2lkAgIEIOpqamGB4epra2lkQiwejoKOPj47z22mscP36cxsZGZmdnmZub46233uLXf/3XGR0dFas2Fy9e5Ktf/Sp1dXWo1Wo0Gg1/8id/Qn19vZgFXM+nPvUpfvKTnzA/P8+FCxdIJpN0d3fz1ltvsbq6SnV1Nf/0n/5TPvWpT/EHf/AHtLe34/V6mZqaYmpqiu985zs89NBDVFVV0d3dze7duwF44YUXyOfzuFwuTCYTvb29zM3NodPpmJ2dZWpqilOnTlFdXY3X68Vms9HR0UGhUOD5559Hr9fT0NDA4cOHeeyxxzYYGffccw9ut5uTJ0+iVqvp7e3l4MGDeDweLl68yPT0NFevXuXAgQNbZsUPHz5MIBDA6/Vy/vx5MpkMPT09uFwuLBaLMKrn5+eZmpqipqaG2tpa+vr62LNnD48//jgNDQ1Eo1F27NjBiy++SEtLC//oH/0jRkdHxTEvXbrEf//f//dks1kuXbrEzMwMw8PDXLhwgf7+fsrlMna7nUuXLmG1WnG73UxPT7O8vMw777zDyMgITqeTUCjE1NQUPp+PP/3TP+X48eP09fUxOzsrwr/++T//5/y//+//K1ZMrly5wpUrVwiFQiJJFG4Yj11dXTz77LPMz8/z4osvsn//fnp7e7FarTz22GOifOTnP/95/H4/P/7xj+np6cHhcIjjqVQqrly5Ql9fH0tLS/zwhz/ki1/8IgcPHuT06dOcPn0am83Ggw8+KO6bFKY4Pz/P22+/TXV1NcPDwyLv4vLly4yMjHDXXXfR3d3N17/+db73ve/R1dUlylceOnSIjo4OfvCDH3Dw4EGGhoaYnJwkFApx5MgRfu3Xfg2v10swGBQhK+fOnaO/vx+tVks6naa/v5/Pf/7z4j5up6MgJRT/5//8n/ln/+yfAeD1eunv7xfjHhBhmH6/H6PRyOLiIm63e4sTcODAAYaGhgiFQuKez8zMMDo6SiaTob+/n+npaUqlEg899BCzs7NEo1ERViY5rhIqlYr777+f/v5+KpUK165dIxgM0t/fz4ULFxgYGBB6HL29vaJgxMzMDPF4nHPnzqFWq5mamsLr9TI3N8eVK1eYnp4mEonwT//pP2VmZobnn3+erq4ustksX/3qV3n11Ve5fv068XicCxcucPHiRR5//PH3DEGTkfk4oKjIWSwydyDXE3DwGpxqj9KtzuJ0OllbWwNuzIjq9XpRDUSKI1cqlcKIlZZ7tVotarWaaDQKIMIOyuWyWKKWRIHWL1trtVqMRiOZTIZUKoVOp0OlUgmBIbgxkyrVEi8WiygUCtLpNGfOnOH48ePodDqKxSKRSITZ2VnuueeeDR816dEMBAIiFjmfzwOIWG1pOV+lUmE0GolEIlQqFRE6pNVqicfj5PN5TCaTOGcqlRLXptPpttTVLxQK5HI5kaQn9ZO0kiAdR+pfgLW1NVEhJRaLoVAosNvtG4xsSTxJCt3QarXiWFISs9VqZW1tTYSdqFQq4RD4/X5GR0cZHBzk937v9ygWiyIUp1QqEQ6HxTmlKiDSjNz6WdJ0Os3Vq1d55JFHts2JqFQqJJNJcrmcWJHR6XSk02mxEmAymVhaWsJut4uqI4lEgpqaGiKRiAjxkXQBAFE1Ra/Xo9frCYfD4t5JFa5sNhsqlYpIJIJerycajfLCCy/w5S9/GZVKhdfrJRwOi5KEm/s2mUyKa5ZWm/L5POFwmOrqajFWN5NMJsX4lq5XGtOSOJZU/lB6pqQxKIWwSKtP0qqbSqUin8+TzWZFmywWC5VKhXQ6TTKZxO12k8lkyGazoq/i8ThKpVKEwxSLRSwWC/l8XtxzaTZXSgKVZt4lJ08KJ5HuZ6FQIB6P09raKvIb1pNKpUR8eCqVEuJe0gqSdBwp90DqZ4fDsWHlLJFIkMlkcDgcYuXR7/eTzWZFaJF07lKpRD6fJxgMimdHCv9xOBxks1nS6bQIY5HeAdJqjfSuk55LadWlUCig0+mE0yy9f6R3WSaTEc+x9FxLz6PBYNhisEvjS8qNqa+vF6sgqVSKVCqF2+0W/a3RaMT7rqqqCp1Ot0WbQQqzlN7D0qSAtMolVR2qrq4WK0nrr0EKjVx/zHg8TqFQQKPRkE6nicViNDY2ijFoMBjEqokUbrk+VAoQ7xBAVIerrq4WqwtSO/R6vXgmpP4tFousra3R0NCAXq9HqVSKb9W1g3DAgozMxwrZCZC5I7mdF6u0LKxSqTYkngLCYJA+TJu3lZA+KOuRfpO2k/ZdH06z2cAYHR0VhlSpVOLgwYMolUphmPj9fnbt2rVlv/XtXc/6sBspfEBC+iBtp5q7/nEvFApbQpY2byuFNUhG0/r2rD/n+132loyy9f14O1y+fJlLly6xuLjI//K//C8iBOVmx5AMRekeXrhwgVgshsfjoba2FrfbfcvzS06DdG9vp61SH0n3Yf24WJ/7cbN+38zS0pII91Kr1UxOTpLL5Whtbd1S7lE6xwfpW9j+etePA+l40viSxuD652Z9eI/02/r78PMKkZCekfWJvMCGWP1SqXTLNlQqFWEwSmU5t9tWmhAol8vCUb0VkvMiOSgftA/Wjy0pfGr97+vfE+vfCzfrm83vg/dq2/owl5ttt/79s74t27FeQfu9uNk1bHd+aWyuf3d9FONuffjQ+udaCgOSQuHW96PsBMh8nJHDgWR+ZZFmjTb/BmypyLPdtsC2oSKbf7vZvusplUrC6K6trd1gMEmVRG52Ddu1V/rbdh/DWynPrv8Qbndtm7e92cf8w6rbSrOO7xepmo+UKLu+TdshrWLAz4zjQqGAUqmkpqbmPc+33lG8XaT2bDcmPogxYjKZ2L17t4hhNpvNOJ1OGhsbb3r+D9K3sP31bjcO1v9tu+03j4/19+Hnxc0M8fVteS9jff0qyHudy2Qy3Xbb1ieffhhuNrbe67m82XW/n/eBtP17jd/38254r/vxQbZ9P/f7/XKzZ0GlUolzfdTnlJH5eSKvBMjckdyJsyvSoyYni/3yuNPvgbTyc6e2X0bmk8ad+K2S+eQgrwTI/MrwcTfwPq7t+iRxp9+D7WbjN5dflJGRkZGRuR1knQCZXxm2q28tI/OrjBTDvl6fQkZGRkZG5naQVwJk7njK5TJ+v58f/vCHPPnkk7S3twMIxck333wTtVpNXV0dDoeDYDBIU1MTO3bsIJfL0d/fz5tvvsnx48c5dOgQVVVVv9C4zuXlZc6cOcOXvvSlDaEeiUSCV199FY1Gw8MPP4zD4bjlcSqVCj/60Y8A2LVrFz09PRv+nkqlWF5eZnp6mk9/+tPvq41Skh38TGX0b/7mbzh8+DCdnZ1UV1e/r+NtJhwOMzU1JRw5n89Hc3Mzd911l4jxLZfLDA8PCyE4vV4vKh01NDTQ2trKxYsXRdlKo9GIRqPB6XTS2dn5c50lDwQCjI+P09fXx+///u/fdLuZmRn6+vool8t88Ytf/MDn8/l8TE9Pc/ToUTQaDf39/TidTnp6eraNyZbqwwOiYtDHYdWgXC6TyWREMqdULUrmo6FSqfD973+fBx54AI/HI4oYSImrS0tLjI6OMjw8zL/8l//yFz4m1tfkf6+8qu144403CIVCWK1W9u/fL6oW3c551ydCr62tsbCwQC6XY+fOnbz88svo9Xr27dtHc3Mzzz33HM8884xQMi4Wiz/3HBcZmV8E8kqAzB1PqVQS9eF9Pt+GChkGg4HZ2Vnxu9Vqxel08vLLL+P1ekVlk1OnTgml0V/0h1AqvbcdSqWSqakpoV77XqhUKpaWlgiFQjc9l1Rm9P0QjUbx+/2iBKBSqSQajQoxpg/D/Pw84+PjhMNhUf87l8uxuLiI1+sV27377rvMzs6iVCpFrfD5+XmCwSDZbFaIUfl8PnQ6nRC1+vGPf/yh2nc7lMtl4vE4CwsLt9wum80SCoUIBoMf+FzpdFo4t1KSosViIR6Pb+gviVKpRCKR4MUXX+TkyZOsrKxsULz9RVEul5mdnd1w7nw+z6lTpzhx4gSnTp3itdde4+TJk0J8TubDIwklwo3xNzIyIv4mlR1d/9svkkQiQSAQuOn76mZIJWald+PmUsTvRblcZmRkRLwLpUkOyRlNJpNCNBIQpYbhhrbD+Pj4+2qvjMzHFXklQOaOp1wus7y8TCAQIBwOi7raCoWCpqYmjEYjTqeTtrY2UVLxj/7oj+jo6GDHjh10dHQQCoXYv38/RqNxy/GlmuXrnQOprrtUs9tgMFAoFDYoVkql8gwGA7lcTpQqlGawpQ+OJAomHV/6W6lUYufOnYyPjwsVymKxKGq5G41GobpZLBbJ5/N0dnaytLQkzrUZg8FAbW2tUAtdr9JaKpUwm81bam+XSiUh4FNTU4PJZEKv19Pa2opSqRRaCUqlEr1eL+qHFwoFKpWKqEW+nXOVy+Xo6+tjdXWVvXv3smfPHuCGceD1erl27Ro7d+4kGo3y2muvsXv3bu6//34h3tTX14fL5cJut4vQmI6ODvbs2YPJZCIcDvPaa6/xx3/8xxvOK5X6S6VSor59qVRCq9Vu+O/19eHz+bwofSkZHJIDl8vl0Gq11NfXCwNF0pyQ6odL6tA2m23DrGcmk9mg7XArKpUK0WiUyclJent7xe87d+7k2rVrXL9+nV27dm3ZJ5FIcOLECVwuFy0tLVRXV6PVasWMaCaTEVWFJM0IqQ6+VHM/nU4LXQm4UVJSqr2u0WjEuK1UKhgMBpLJpNhXasPp06d57LHHRB/kcjnOnDnD8vIyra2toi+amprYtWuXqMEuaStIehlSXXup5G65XBZ12YvFonBMpT6V2iBdq3QshUJBLpejUCiIZ1oq/7h5RWL9mFmvnQE/KwGqUqlE2V1JRE9qo1RbXnoXSHXmpXZJCsrrNU2k9kjP0PqckEwmIyY8VCqVGGMKhUKUetVqtTQ2NmI0Gsnn8/j9fk6dOkVraysmkwmn00l9fb24hnw+L3Q3tisvLE0iFAoF8a7YbjupChfcmDBYr+sgVUnTaDRMT08TDocxGAzYbDahwrwZqS+l/lWpVKyurhKJRDh48CAHDhzYIMwlvZuLxSJWq1WsNkl9GwwGOXPmDDU1NULozWg0YjQa0ev1eDwe0uk0hUKBYrFIc3MzWq2WbDbLwsICp0+fpqWlBaPRKLQDpGNIY3j9+0NG5uOK7ATI3NFIH2alUsmRI0dYXl7G6/Vy4MCBbbeVjOn18vTvxYULF4SglrT9oUOHCAQCQm3y7rvvZnl5me7ubvL5PKFQCL/fj1arZc+ePUxPTxMIBIAbypvBYJDl5WWsViuVSoVAICBmmqLRKMFgkEgkQj6fF7/ncjnC4TCjo6PodDoOHTokBKwCgQCrq6viA70doVCIpaUl0uk0cGNm3Wq1iuuKxWI8/PDDGxweSdTnu9/9Lm63m56eHlQqlTA08/k8i4uLRCIRDAYD+/bto1wus7S0RCAQoFAo0NLSgsfj2fbjvri4SH9/PzqdjmPHjonfdTodqVSKaDRKuVzmRz/6ESqVitbWVuEAAHR3d1NfX4/D4SAajXLlyhW+8pWvoNfrmZ2dZWlpicOHD287FlKpFL29vezcuZNEIiFEfpLJJKFQiB07dlBbWyu2X1paIhqN4nA48Hg8aLVakskkExMTYkbywIEDlEol+vr6aG1txeVyCaOjrq6O4eFhdDodnZ2dwsGanJykWCzicrloamq65UpUqVQiGo2SyWRwOp3id0lIy+fzbUmQV6vV2O12HnroITo6Omhvb9/g7Pp8PgYGBlCpVDQ0NIh7fP36dfL5vFAHvnjxIo2NjXR1dVEul1ldXWV0dJSenh6am5sJBAJiVebIkSP09vbi8XhwOp0Ui0V6e3v51re+hUqlor29nfr6eurq6njkkUdYWFjgySefFE7ha6+9RldXF319fUIYraenh5qaGsLhMJOTk6LcrtQfd911F1qtlkAgIFRjq6ur6ezsxG63UygUWFhYYHBwUIwblUrF9PQ0CwsLHDp0iNXVVdLpNG63mx07dmwZM9lslsuXL2M0GmlqaqK6uhqFQsHs7Cxra2uYzWaqq6sxm80MDw8TDodpamoS4lQ9PT1iZXLPnj243W5KpRIrKyvMzMxgs9loaGjAarXi8/mE+m57ezu1tbUbHBPpnVIul6mpqWFpaUmo/aZSKeLxuFDjlkTMzp49yyuvvMLOnTs5dOiQCDEslUosLy8zNTXFzp07qamp2eIESStKc3Nz+P1+jh49KrQU1iONjaWlJeEEdnd3k0wm8fv9BAIBHA4HdXV1vPjii6ytrbFr1y6MRiN33XXXlj4vl8uMj4+TzWaxWCzU1tbicDi4fPkyS0tLuFwulpaW6OjoEPtJ6u3Ly8s888wzjI+Ps7q6Kpyfv/u7v2NsbIzm5maOHDkCwOzs7IZnCm44Ez6fD5/PR7FYZG5ujnfeeYfXXnuN9vZ2Dh8+zPT0NNFoFJPJxH333cfg4CDFYpHW1lY8Hs9Nn2UZmY8DcjiQzB1NKp3C6/Wye/duvvCFLzA9Pc3169e3bLe0tERvby9vvPEGf/M3f8Pv//7v31acPdwwsN555x0uX77Mvn37iEQifPOb3ySXy7G6usrLL7/M4uIiQ0NDBAIBTpw4wTvvvMOhQ4cwGo381V/9Ffl8nvn5eb773e9is9mEcS3NXp04cYJSqcT4+DivvPIKc3Nz7Nu3j2g0KhydV155he985zscPXoUhULBT3/6Uy5evMi5c+d47bXXuPfee4U66HbU1tZSKBR47rnnAHA4HHz/+9/n0qVLVFdXMzg4yOXLlzeE9ygUChwOB3v37uXuu+/mwIED7Ny5U/y9v79fKLv+p//0nygUCpw5c4ZLly6Ry+XYtWsXf/Znf3ZTx+TFF1/EZrOJD7HEwsIC+XyepqYmSqUSzz33HI8//ji7d+/esN3Bgwepq6tDp9ORyWS4fv06uVyO733ve5w7d476+nr+w3/4D1vOm8lkeOuttxgYGOCll14imUxiNpv5+te/jkajYWZmBq/XKwyoV199lf7+furq6pidneVb3/oWiUSCP/mTP8Hj8bCyssL4+Dh79+7ljTfeIBAIcO3aNfr7+xkbG+M//+f/TKlUYmRkBK1WS2dnJ5lMhv/1f/1fUavVhMNhlpaWRNz+zejt7aWqqmrDPZAolUrkcrn3lSBcLpd59dVXyWazTE1N8dJLL/G3f/u3VCoVVlZWePvtt+nr6yMajfKtb32LXC5HPB7ne9/7Hv/u3/071tbW+KM/+iMuXrxIJBKhr6+Pb37zm8CN/IcXX3yR/v5+MTMt/btYLG5wwCXV3GvXrnHhwgW6urpIJBKcP3+e1dVVRkZG+PrXvy5mxufn5/mbv/kbvvzlL/P2229z5coVkskkL7/8Mv/lv/wXkskk6XSa/+v/+r8YHh4mGAxy6tQp/viP/5hisch//I//kZdfflmoSv/gBz/g2Wef5Sc/+Qler5erV69u6auFhQX+8A//kN27d2M2mxkcHOS1117j/PnznD9/nn379rG6usqFCxcYHR2lq6uLP/3TP8Xv92MymVhcXOQP/uAPaGpqYmFhgcuXLzM4OIjX6+Wb3/wmx44dY2RkhIGBAcbHx/nhD3/I4cOHhfrt5rC7mpoapqenee2112hubuY73/mOWG0oFApEo1EaGhp45ZVXWF1dpaGhgaNHj+JwODh+/Dhut1uoBy8sLFAsFnE4HJw6dYozZ85suf7R0VHOnz+PQqGgrq6Ob37zmwwPD2/Z7urVq8zNzWG329m/fz+jo6OsrKzw0ksv0dvby8GDBzl58iTpdJq2tjYOHjzIwYMH2bt375ZjZTIZ/uzP/oxKpUJPTw+xWIxvf/vbRKNRDh06RGtrK11dXbS1tW3Yz+FwEIvFeO2118jlcnR1dfH6669z/fp17HY7DzzwADt27OD++++ntrZW5KK89NJLG95VGo0Gt9vNj3/8Y9bW1ujq6uLuu++murqaRx55BJfLhdlsZnl5mXPnzgEwNDSEXq/fsDIhI/NxRXYCZO5oUskUg4ODTE9PE4lEmJycZHZ2dosh5HK56O7u5tixY/x3/91/x2OPPUZNTc1txf9brVbq6uqorq7GYDBw3333cfLkSaLRKGq1GqPRSEdHB8888wyDg4Ok02mqq6tRq9W0t7dz7tw5crkcHo8Hj8fDzMwMKysr3HvvvbS3t6PVaoXw0IkTJzCZTLS3t6PRaGhoaEChULC6usry8jIrKytMTk4CN8KUzp07x/T0NHfffTcKhYL6+vqbJlZqNBr0er0IObHb7dTV1YkPmZQ0vdmJkOLO14c6SOzYsQO32y3CLlKpFK+//jqhUIh0Oo3X68XhcGwIXVjP9PQ0ZrN5i/DVlStXSKVSYkXH7/fjdDq3CDQtLi6SyWTI5XIkk0kcDgd33XUXx44dQ6FQMDU1tW2St06n48iRI8zNzXHo0CEaGxvJ5/O0tbXR2NgoQqqMRiOpVIrvfve7HDt2jOrqasLhMFevXuWll17iwIEDmEwmrFYrDocDm83G/v37GRgYwOFwoFarmZqa4sCBA0IhWqFQUCgUmJqaErPCer0ep9O5bTga/CzkzW63YzKZti0VajabqaqqIh6Pb3uM7VAoFBw9epSFhQXm5+dZWFjgwoULAHz6058WgmoGg4Hm5ma6u7sZHh5Gr9fzxBNP8JnPfIbf//3f59y5cxQKBerr68U17N27F71ej0qloqamhgcffBC32819993H3XffveGenz17lh/84Af4/X4eeughHnroIcxmM62trQSDQeGIjI+P43A46O7uFv989atf5ctf/jJOpxOPx0N1dTVXrlzB6/Xy27/923R0dDAzM8Prr7+O0+nE6/WSSqVYWlpiYWGBrq4uWltbeeCBB/j0pz/N008/vSVxPpPJEAqF8Pl82O12Ojo6uO+++6ipqeGVV15h3759aDQaOjo6yGazvPHGGxiNRqqqqvB4PNTV1WG329Hr9ULsLZPJMD4+zqVLl9DpdIyMjKDT6SiVSkQiEcrlMl/96lcZHh4WjvZ67HY7DocDnU4nQlYGBgbwer0YDAYeeeQR1Gq1mK2XQg8lMTcplEetVlNVVUVzczNut5tUKiVyf9bT3t7O7t27CYVCJJNJZmdnt3Vam5ub8Xq9/Pt//+/5d//u39Hd3c21a9cIBoMin8XtdouVwu3eKxL5fJ5XXnkFj8eDyWTCZrNht9t56623xIrldgJ3KpUKnU4n3hd6vV6MRemaJYEvKQxOmpzZ/Hyo1WrMZrN4B0p9KYX67NixA6fTKd6dHo+HlpYWrFbrNk+cjMzHCzkcSOaOR6PR0NnZCUBPTw8ajYaxsTHuvvtusY1arcZgMNxUmfdWSHG6UpysFB8tycRrtVrMZjMqlUrE7UuznBqNhlgsRrlcpqWlhb179/LOO+/Q1NSE2WwWMfTSRyybzYrZzvVKxNLHR6/XU1dXJ+L3Y7GYiEmVznczx2b9R1PqE71ej06nEx/i9eFH8LOQEmnfZDKJz+cTxqHRaESr1Yr2SvH0FouFmpoa3G63MEa2Q9pXmn2rVCqMjIygVqtpaGgQhqJU6Udqe6lUYn5+XlQTikajLC8vs3PnTkwmEwqFQsT0btcfKpVKOCc2m410Ok0wGKSnpwetVkssFiOVSpHNZsnn8ygUCqxWK36/n0KhgNVqZXR0lC9+8Ytks1nhyK2treF0OkV4VCaTYXZ2lvvuu4+lpaUN4V+hUIjOzk6am5sxGAxi5vBmgmDpdJpIJEI6nWZ6eppgMMjw8DC7du1CpVKJOOjbiUOOx+Osra1RKBR4/fXX6ezsZO/evSwuLnLq1CkAbDYbNTU1rK2tMTAwwF133SUMfCnG3Wq1inEjPSeS0yU9A9I4tlgsaDQazGazSNSXQrva2to4cuQIra2tVFdXYzKZ6O/vJ5FIsHPnTpqbm+nt7SWdTovnwO12Uy6Xcblc4rrK5TJ2u53u7m4UCgVXr16lo6NDPKs7d+6ku7tbOAtSDLhOp2PXrl14PB7sdvuW/pLuRzab3RC3r1QqNyT1SzHz+Xxe5MhIMfaSoywZk9KqiFKpxGq14na7heGYyWTEDPfKygqLi4uYzeYN4SVqtRqPx8Py8jKnTp3i4Ycfpr+/n1KpRG1tLTabTYz19WNJuhafzyeMW51OJ3IcpGd4M/9/9v47yI7rPNCHn5tznpwjZgAMciSYRUm0RVOWk9b2UsHyrtcq767D1pbokso/l+WwLntt2ZYtryVaEpUpRpEEM0gQYRAn5zx37sSbc773+wNfH98ZzCCQkESI/VSxJNzpPn3O6dPd7/ueN0hKa21tLZWVlcI9KB6Pr1PO0+k027Ztw2azUSgUOHnyJC6XC4PBgMPhoKamBrPZLK4pxRBJ7kylSLEkkpKQz+eFr780ltL/LR2jFHcg/TubzYp1Kx0fCARQq9UinmMrSuew9PzFxUVcLhdVVVVUVVVx4sQJKisrMRqN77qquozMTwJ5J0DmtiSXv/IRWFpeIpVK0dLSQnNzM+3t7WQyGbq7uwkGg4RCIeLxOKFQiGAwuC7LAyCEP8kvN5VKbZqVJJVKEYvFCIfDTE9Pi1SMiUSCeDwusr3U1tai1+uFP7vb7aalpQWTyUR1dTXbtm3j8uXLWK1WlEolmUyGRCJBIpHA7/fT0tJCNpvF6/USDodFhgqlUonD4RACj9FopKamhra2Nux2O0tLS0SjUQKBAMFgkFgsdlUWIMlPOBaLEY/HhUUvHo+LcwOBgFBCSrHb7SQSCVZXV1ldXSWXy4n5lQSBeDzO2toa27Ztw2g0ks/nMRqN1NXVbamcdHZ2ks/nWV5eJh6Ps7KywujoKO3t7XR1dWG1WlEoFOzbt4+lpSWWl5cJhUJ4vV7W1tZEQLbb7WZkZITq6moAEeyZSqVYXV296p5KypoU1Orz+VhbW6Orq0ukLIzFYkSjUbHDEolEmJqaQqvVCsu+0WhkYWFBBKr6fD40Go0QyoPBIMvLyxQKBXw+nwg+jUQi6HQ6KisrhQJZKBSIRqOcP39+01gVaRcnEAiIoMjp6WlxrBR0uXG3RBJMl5aWmJ2dZXh4mIsXL9Ld3c3c3ByDg4Mi45LJZBICWT6fp6mpiVwux9mzZ8WYq6qqUCqVuN1uenp6GBgYoLGxEYvFIqyvg4ODjI2Nsbi4SCgUEoHHJpOJyclJ+vr6mJmZEb7oer2e3bt3s3fvXiEI+v1+VlZWUCqVlJWVYbFYhPLjdrvx+Xyk02kROA+IZ0YSMsfGxgiFQjgcDjo6OoRCYrPZcDqd6PV6FhcXWV1dJRKJiOQCG5Es6pWVlSwvL+P3+wkGgygUCtrb21laWiIYDLK0tIRSqaS5uZlQKCR88aXnUgqiDwaDBAIBlEolNTU1QkGQLN0mk4lCocB9992H0WgklUptmoVLsjp3d3dz8OBBseMmCb/SuyUUCpFIJITV2+fzEQqFCIVCRCIRUqkUkUgEn89HJBIRCnAps7OzDA0NifWtVquJRqNX7Tx5vV4sFguHDx9m9+7deDweoZRIgeUul0uMVVKKl5eXrxqfSqVi586drKysiHei5Cbo8/kIh8PEYrFN50av1+NwOPD7/aytrRGJRIhEIiQSCUwmE7FYjOXlZXG+z+cjGo2STCbFOgoEAsTjcaGAp1IpocRJcyhZ/zs6Ojh9+jSVlZVyQLDMbYOsBMjclmQzVyzHZ8+eZW5uDkDkv/b7/Zw/f56pqSlmZmYIhUIsLS0xNzd31QfL7/czNDSE2Wymu7ubUCi0qQAmWZrn5+d5++23+cxnPoPBYBAf88uXL1MsFtm3bx+1tbWk02nGx8d56623eOSRR4Tlv7y8nEwmQ0dHB3q9nlgsJqy7o6OjPPjgg+h0OhYWFpifn2dycpLFxUURYNvU1MSlS5eYmJjA5/Oxe/dudu7cKVwbJicnWVhYwOv1XrVV7/V6hd+5FNS5urqK3+9neXmZ+fl55ubmxC5HKdu3byccDrO4uEgmkyGVSrG4uMjMzMy66w0PD/ORj3wEuOJDPD09zdDQkNhC38gv/MIvoNfrmZ6eZnl5mQsXLhCLxXjggQc4cOAAcEUQ+MxnPsP58+e5cOEC09PTjI+Po9frqaqqIhaLMTExIQQUQLjo5HK5TWNE8vk8Xq+X9vZ29Hq9UGR27txJLpejvLycfD5PKpXCZrPR2trK3Nwcc3NzVFZW8tGPfpRjx47h8XgYGhoiHA6jUCiIRqMANDc3Ew6HCQQCFItF3G63sExKQlpnZyfhcBi3283g4CAzMzOsra3xt3/7t1e5ZCmVSurr6zl8+DANDQ1YLBax46FQKERwvE6nw2g0rlO4JIttX18fJ06c4Lvf/S7f+c53ePXVV4nH4xw5coRz587x7W9/m5dffplCocDp06fJZrPs2rULs9lMX18fe/fuRaFQsHPnTlwuF9PT0/zLv/wLb731Fvfddx91dXW4XC6am5t57LHHeOuttxgeHmZubg6/349CoaC1tZXnnnuOoaEhoaidP3+evr4+sWMGiOvEYjHeeustXnzxRWZnZ3n11VcZGBjg5MmTnD59msuXL/Pkk0+K8wKBAJcuXeJf/uVfeOqpp6ipqcFqtdLS0sKHP/xh+vv7eeqpp3jmmWeYnp4mnU7T3d3NyMgIr776KidOnNg0/aNarRZ+4BcuXBAKjtVq5Rd/8RfFu2Zqagqn08kDDzzA1NQUiURCJCuYnp4mEomwsrLC7Ows8/PzKBQKduzYIQLEh4eHWVlZIRAI8PbbbwvLe2mQeik1NTV0dnaSTqcpKyujpqaGqqoq7Ha7SJkr7Uatrq6i0WioqqpiZGQErVZLJBLB4/EQj8dxu90MDw8LgXmjS5CUzcjv9zM4OIjD4SCXy131nllbWxOxDYVCgQ996EMcO3aMsrIywuEwY2NjDA4OkslkaGpqQqvVMj09fdUuJFxxQ/vsZz9LX18fQ0NDoibA0aNHGRsbE4HGmyluZWVlIrtaf38/6XSaUCiEz+ejurqaUCjE6uoqhUKBVCrF2NgYgUAAn88nFObp6WlWV1dFzEwwGESv11NeXi6+G2q1mpqaGvbs2cPa2hpVVVWyEiBz26AoysmYZW5DLkeKHOxRcGl/kf0WhCB0I2yW0u5afx8ZGaG7uxuj0cgv/uIvCheezdqV2pIESIPBcFW2Hck14Vp9llJ+arVaksmk8AOX0u8B69JJSmkpdTod6XRapDjcmO7zRtkq7Z+0zX4j5HI50um0EFY3Q7LIRyIRsROy0X1BOi6VSuH3+ykWiyLb0GZzKP0WDodJpVJYrdZNUw+W3ovSLFNwxRdZckGQ2pPcfkqVGSk1qOSWVPrxl1KkSu1rNBqy2aywJEpzlM1m17nRbDb/G/u9cbxSUPTi4iIf//jHr3vORiS3lI1uI5KQ3N3dzaOPPrpuvqX5k/q92Rrf2E/pb9K92+r+lfZZyuh1LXcN6RzpWGlMpTtQ0u+S68e15vha61XaYdvoxx6LxUTq0XeClK621J0qHo+vS9u7Wb+ktSulBr3e3EpjuJbrYOnxpdeRBGaj0SiuufE46R5IAeClAbJS8Hrp81iakvda4yt1xbpeX0v7IqWElVzJdDqdSK0sPZ/SM3o9StdSOp1Gp9OJ1MHJZJLx8XGOHj26bl30ROHAZbh8APbfvDeqjMyPFdlpTea2ZL1/5vrf3mlbW9Hd3U1/fz8NDQ0kEgnxUdtKEYAr1uuNbhkSpR+Ira6tVquFMLExH3fpR7D0fMkCLJ23mZ/sO6U0PuFG25HGcD1hS0phabPZthT0pKwnkrtP6XxsdR+sVqtwJ9oK6V6UCk7wH3Nceq6UP79UEJCCsDfO+UaFQKJ0DqVUtVvdr63Y7LiLFy9iNpu3rAR9vbY3CvIAf/Znf0YoFKKtrY2PfvSjm873ZufB+nnd2I+Nf9uqb9LvW7W11Tkbzyv9mzTnN9reZmz1/JXuzNwsxWLxqveFFAx8I21uNVdbnbfZ+r4e0r2T4kK2uobU39Lg2dL3Ymnwu0KhWBege62xXeu9e60+S9fbaIzYbH3cDNKz/93vfpd4PM7evXs5fPjwu3rPysj8pJGVABmZ6/DAAw+IdJ9SEbLrcb0P2s2cv9X/33j8j/vjc7Pt38xYS4XDax13LWvwRm6kvRv927UUvptt+2aOuR7SToqUPWUrxfOd9OXBBx8kkUiIAmM3cs61fr/Rv7+b42/1tW/m/Outt3fS7o9jHb1bY8C7OeZmn6ObOeZ6593K92PpLst9991HPp/HbrfLbkAytx2yEiAjcx02E4BkZN4rKBQKkfP93QiiG9m5c6dwqdkqdamMzPsVSamQvg/yDoDM7YisBMjIyMjcpkjuVO8k9e312JiXXuZnEykb1lauXTLXRp4vmdsZWQmQua25Eqx2ZVv2en6wN9uuRKmf91bBcLeS0sw87+ZaG8cg9f96QZbvlM3m7Fa0t1mQ6Tu5xrUC/94LH/LNxnu9fl0vqP29hLT2JDa6sEl/27hWb8RVbLNrwc3N5a2gdAw3cuyNPo830+6NXFNCobiSoz8YDOJwOLYsNLjZs/NeWGtbPdPvhb7JyNwOyClCZW5rPIse/u///b988YtfZGRkhEQicUvalbI/lDI0NMTf//3f35L2r8Xzzz/PX//1X/OlL32JmZmZm8rqU8rGMYyPj/PNb36T3//9379VXV1HPp/nzJkzV9UneDftTU1N8dnPfpaBgQHS6TTLy8tMT08TjUZvel6kzCRS/4rFIufOndu06ulPg0QiQX9/P7/8y7+8ad7zrZAyUUlZo96r5HI5/v7v/56/+Iu/4LXXXmN1dXXd37PZrEiNWiwWeeutt/iDP/gD3njjjZu+VqFQYGpqio9//OO89dZb7/gZullKx3A9FhcX+cY3vsFv//ZvX/dYKYvUu2V1dZU//dM/5fvf/z7//u//zuDgIBqNBpPJxL/9279tue4ymYwoMHcza/MngZTDX0q1LCc8lJG5ceSdAJnbmlAwSDwe57d/+7cpKyvbMn3czRIMBjlz5gwPP/yw+M3hcNDV1XVL2t8Kn8+H1+ultraWD37wg7hcrnds1QqFQpw6dYqPfvSjwBXf1dXVVc6dO3cruyxQKpU0NTXdsl0GqSBRPp+nsbFRCCt6vf6aaUe34vjx4zgcDhobG6mvr0ehUNDY2Lil9fMnjV6vx+VyYTKZbmoOn3vuOaqrq2lubhbZk95rZLNZ1tbW8Hq9PPLII9TV1V0VxHzhwgVsNhu7du1CoVBw6NAhfvSjH21at+N6SHUVXC4XGo3mJyYYSlma9uzZc91jKyoqqKqquqFg7r6+PgAOHTr0rvqXzWZZXV2lvr6eQ4cOUV9fL+pLNDQ0MD4+Tmtrq6hcXHr9l156iaWlJX7t136ND37wg++qH+8EqXZBJpOhtbUVgGg0ypNPPsnZs2epqakhnU6jUqn49V//dbq6um5pjIyMzM8ishIgc1uz4PEQDAaBKxUtDQYDFosFrVbLzMwMDQ0NFItFgsEguVyO6upqVlZWqKiowGw2i+JNPp+PZDIp0mzOzMxw/Phx2traqKioQKVSEY/H1wkk4XCYeDxOLpfDaDTicrlE1WGlUonJZBK57zUaDYlEgnA4LPJn19bWXiWATkxMsLS0RHl5OQrFleqeUrEwqQCWRqNhZGQEp9NJoVBAq9Vit9vXteXz+RgaGuL111+nra2NxsZGDAYDer2eQqGA3+8XRXOkGgSZTIb5+XnUarWo6LmRXC5HKpXC5/PR0NBAMBhEq9WiVqsJhUIi1Z9U/dbv94vqrLFYjFQqhUKhwOVykUgk0Ov1Imd3KpViaWlJVIeV0otK6ROlqsSlefbn5uYoKytDrVaTzWYxm82Ew2HC4bCYL7Vajcfj4fTp0+zevZvy8nKy2SwLCwuUl5eLttLpNF6vF6VSSUVFBWq1mlgshs/no6qqCq/XK/zvt/KXz+fzwsJtsVhEWlGfz4deryebzYoc7ZWVlcAVq7fX6xWVZCsqKrbM9uT3+0kmk6K67OrqKqdOneLOO+8UCkCxWGRxcXFdFeBcLicKnUWjUbE+NRoNHo8Hh8MhquxKLiMej0cEBRuNRjEf4XAYnU63bnwb18jy8jK5XA6Hw4HRaCSZTDI6OkogEKBQKKDRaEQmlWKxyOTkJKdOnaKsrAyj0Uh9fT1msxmlUkk8HheVXZubm1GpVOTzeUKhEIFAAI1GQ1NT01WZYKTiVpIgmM/nRaXfyspKUb3Z4/FQLBZpbW0VFWhVKhV1dXUsLS2RzWYxGAxYrVZ0Oh2jo6OYzWZsNhu5XI6lpSXq6+vJZDKcPn0as9mM0WikvLwcm822qcuT2+1GoVCQSCTW1RUIBoNEIhGKxSJVVVXodDqmp6c5e/YsxWIRm80mFO1gMCgqWjc0NNxQhjCdTkd7ezutra0io5QUV9LV1cXp06dxOBxXKQHV1dWiHkZjY+O6v0nVzv1+P9XV1TgcDvG+XFxcxGazodfrxbhcLhcWi4VgMCiqaJeXl6PVanG73aLgXS6Xw+fz0dTURCKRYGRkhLm5OVKpFJlMhqqqKlFfw2AwsG3bNmw2GydOnGB5eVkoWDMzM6hUKurr68WzIFVib2hoIBKJkMlkMJvNOJ1Osd5yuRx6vR6LxSKMMVKV9HQ6TWtrKwqFgsXFRVEdXafTCSOOVCNGRua9jKwEyNzWJOIJstksqVQKt9tNPp+nrq6OyspK+vr6hCA0Pj6O3+/njjvuIBwOs7q6yvbt27HZbKKKpdPpZGlpCZPJRCgUYnR0lFAohM1mQ61WEwwGmZubo1gsikqb2WwWtVrN6uoqarWaSCTC2NgYuVyOXbt2sbCwgFKpFBUq3W43TqcTj8dDeXn5VUpAOBwmmUySyWSIx+PMz88TDAZRqVRC6GlqamJ6eprZ2VmsVqsQgkvbSqfT+Hw+JiYmCIVC1NbWigI+iUSCUCiEx+Mhk8lQXV2N0WgU/ZYquRaLRex2+/r5TiRYWlpidHSUmpoapqamhLAdCARIpVI4nU5RLVcSoq1WK36/n6WlJQCOHDnC4OAgXV1dQkCQ5nZ2dpZ9+/ZhtVpJp9MiM43X62V5eRm9Xk9FRQXBYJDp6WnC4TAWi0WMf2pqCoVCwfLyMmazme3btxOPx1lYWBA7OWtra8zOzqLX68X1fT4f8XicfD4PXLHMh0Ih5ubm8Hq9GAwGAoEANTU1tLW1XbUWJeVoaWlJKHBlZWXYbDYWFhYIBALU1tYSjUZRqVQ4nU7UajWzs7PEYjGCwSArKytXCbSAuHdzc3Pk83nMZjOZTIZYLMb8/Dx33303Wq2WdDrN4uIikUiEQqFAOp3GYrGIefX5fEJpgyuCcaFQYG5ujra2NqE0T09PE4/HiUajWCwWIdRMTU2hVqtRqVQkEomrBMJYLMba2hrhcFgIqhUVFeh0OkKhkHhWN7rMRCIRZmdnSaVSRKNRoWynUilxb7xeLwqFgqamJubm5giFQsLFy2g04nQ6t0zRKBVzmpqaQqVS4ff7qa2txWw2Mz8/z+rqKnV1daysrODz+bBYLELRUCqVhEIh/H4/ra2tzM/PUywW6ejooFgsMjAwIJSqubk5LBYLkUhkUyW6UCgwOTkpCvslEglSqZRw3XO73cLdZnV1lcOHDxONRnG73RQKBSKRiKh2HQqFxL9zuZywjl8LjUZDXV0djY2N+Hw+AJxOp9jF+/d//3f2799/1XkNDQ3U1dURj8fZtm3bur8Fg0EGBwdJJpN4PB727t2L3W4nFApx8eJFUe14ZGSEXC7HwYMHKRQK9PT0EI1GReXvrq4uFhYWiEajNDc3o1AouHTpEhaLhUwmw/T0NMPDwyQSCcrLyzEajVRXV1NWVkZLSwsHDhygvr6eU6dOiecpkUgwODiIwWAgEonQ2NiI1WpldXWVy5cvs7KyQj6fR6FQ4HQ6cTqd9PX1EQwGxbvd6XRy5513iqrz0rwlk0m2bdvG0tISi4uL5HI5ampqCAaDmEymq97JMjLvRWQ1Vea2RhL4W1tbsdvtjI2NMTs7i1qtxufzMT09jclkYnl5mXPnzrG0tMTevXv53ve+x/T0NIFAgL6+Ps6fP09nZyeDg4P4/X7q6uqoqKjg0KFD4kOTTCY5d+4c+Xye3t5ehoaGKBaLVFdXMzw8TH9/P+Xl5QwMDPD666+j0Wiw2WwcP36c+fl5PB4PU1NT1NfX4/P5NvUdbm9vp66ujtraWux2O9/61rfQ6/Vs27aN1dVVXn31VWHlfv755/F4PMKyVUp1dTVdXV1YLBYOHTokFJlUKrXOUn3u3Dn6+/tZXV3lH//xH+ns7ESj0TA1NcXIyMhV/QsEAvT393Py5EkxH93d3UxNTZFIJDh+/DipVIpLly4xNjZGWVkZly5dIp1Os7KywoULF3j77bfJ5XJ87WtfEx/q0dFRnnnmGXbv3s0//dM/MT09jd/vZ21tjebmZmFx7e7u5uLFi+RyOQYGBvD7/bz55pv09PSQTCYZGxvj9OnT2O12Ll++zHe/+12USiWtra2UlZWxbds2TCYTAwMD+Hw+RkZGiMVi9PX18frrr2MymUilUpw7d46+vj4WFhbwer187Wtfo6amhv7+fsbGxq6al2KxyOrqKq+99hqxWAyv18tbb71FX18fyWSStbU1/uEf/oFYLMbq6ipjY2PEYjEKhQLf/va3CYfDpNNphoeHOXDgwKYWxGQyyYULF4hGo6RSKaampsS4duzYQVVVFWtra3zve9/DZDKRyWQYGRnh3Llz4v5873vfI5fLkUwmefvtt/nWt75FV1cX3/3udzl//jy5XI5EIsHXvvY1HA4HIyMjnDlzhomJCcbGxnjttddwOBzE4/FN52FmZoZnnnkGk8lEV1cX3d3dXLp0iVwux/bt2ykvL6e5ufkqS/O+ffuoqKigoaFBKIYKhQKv1yus5VqtlqeffppkMsmzzz5Lf38/ra2t5HI5zp49Szwe3/I9kUqlWF5epr+/nx07dvDUU0/R3d2NRqNBr9dz9uxZUqkUa2trYnfr8ccfR6PR0NbWRiAQ4KWXXhIK5+XLl/F6vcAV5XRqaorq6mrxLtqzZw/l5eVXrZFkMsk//dM/YbfbaWhowGAwiGfX6/WKZ06r1fJ3f/d3AOzevZuamhpqamrYu3cver2e8+fPEwqF0Ol0JJNJvvGNb1zX5Umq+CvN5w9/+EMuXrxIIpEQuwHhcPimYw9WV1c5f/48er2exx9/nEuXLgmFemBgQFjv+/v76e3tJZvN0tPTw3e+8x2WlpY4f/48//7v/040GiWXy/Hcc88xPj5OMBjk3LlzjI+Pr6uELFX4LUVS2CYnJ5mbm0On06FWq4WCFwwG+frXv86ZM2eAK8rYW2+9xf/5P/+H7u5uVldXmZmZAeCf//mfWVhYYG1tjZ6eHk6dOkWxWOT555/nxRdfpL+/H7/fz5e+9CWSySQKhYLu7m7+/M//nBdeeAG/3y8MIjIy73VkJUDmtkapVIqPg8vlEjEBarWasrIy8f/1ej3l5eXs3bsXjUZDOp0mn88zMzPDK6+8wj333INSqeR3fud3uP/++8XHRnJJUSqVYmsY4Nvf/jZWq1VYE48cOcK3vvUtstksTqeT6upqmpqaqKioYG1tTbjLvPjii3zyk58U1vuNqFQqMaZEIsEzzzxDc3MzOp1O+Iu/8cYblJWV0djYyM6dO9mzZw/t7e3r2pH6LH3cJXQ6HeXl5bS0tFBVVSUsyTMzM6ytrTE4OEgmkyGVSm0aMFtTU8P+/fvx+/0YDAa6uro4fPgwDQ0NTE1NcezYMXQ6Hel0mpMnT/L//X//Hw888AAqlYra2lpqamqEK00qlUKr1XLhwgVGR0e58847UavVVFVVYTabWV1dZXJykjvvvBOFQkFtbS0VFRUYjUY0Gg333XcfHR0d3HfffRw9ehSdTsff/M3f8J/+039CqVTicrnYtm0bhUKBiYkJmpubsdlsVFZWsn37dk6ePMnevXvxer3Mzs6SSCRoaWkBYGxsTFiXw+Ewn/jEJ7BarcRisU2Dz4vFIm63mxdeeIH7779fWI1bW1vR6XTU1tZy11130dLSIoRNo9HI0NAQiUQCq9WKVqsllUpx6NChTZWAfD7Ps88+y9NPP83y8jLHjh1jYmKC9vZ24Xo2Pj6O1+ultbUVjUbD4uIiwWCQ1tZWPB4Pv/RLv0R7e7two7j33nvRaDTCdSWVSjE8PEw6ncblcpHJZDCZTNTW1vI3f/M3dHR00N/fj9Fo5M4777yqj/Pz87zxxhu0t7ejUCior68nGAxy/vx5sR43q9Ra+rfSeAiHwyEs106nk+XlZaampoRVdmJiAqVSSTAYFDs4m2EymWhsbKSrq4uLFy/i9XrJZDJCSV5eXiadTlNWVkZraysVFRU8/fTTwo3O6XRis9l47bXXxLOrUCjQ6XQ4nU6ALccgkc1m8fv9zM/PY7fbMZvNYidPoVBQV1fH9u3bSaVSDAwMCKVms3Z/4Rd+Qey0BINBJiYmthy7RKFQwGKx8OlPf5qGhgZqamqYnZ1dFyMkuX3dDDU1NRw+fJgXX3yRTCbDpUuX8Hg8tLW18Ud/9EeMjo6ysrLCzp07uf/++7Hb7Tz++OM8+uijfOYzn+FjH/sYe/bs4e233+bw4cMYDAZ0Oh0VFRVs27aNYrFIbW0t+/bt48CBA+zevZuPfOQjNDQ0iJ0fj8fDv/7rv/LEE0/wB3/wB9x55500NDTQ2tpKMpnk4sWLXLp0ieXlZYxGI11dXXR0dPCRj3yEX/3VX+U3fuM3+OVf/mUAOjs7GRsbw+1209DQwCOPPIJCoeBHP/oR8/Pz5HI5xsfHGRgYIJvNcujQIaHg/uVf/iW/9Vu/RVdX11WKrozMexFZCZD5mUGr1a7z/w2Hw+v+rlQqhZIgWc20Wi0Wi4VoNApcyYKRTqfXWenHxsZE3IGE1WollUqJrCxra2tYrVbxoS51SygUCgSDQXbs2MGf/dmf8bd/+7d85zvfYXV19ZqCC1wRkKRj4vE4kUhEKCKST/dmvsAbU4tK7lClcyDNg06nw263YzAY2LdvH0eOHOEDH/gABw8evKo/0vxIgbWSz3g2m6W7u5vGxkY8Hg9dXV185jOf4VOf+pSwxo+NjaFSqdixYweLi4s0NDSwsrLC+Pg4sViMrq4uZmZmqK2tJRKJMD4+ztTUFBaLBY1Gw1tvvYXFYmHPnj0sLS0xNDSEQqGgsrISg8GAz+cjk8ngdDoZHBxEpVLR3NyM2+2mu7ub3bt3C79wlUpFNpslEAgIt6DOzk7y+TwnTpzgwIEDNDY2kkgkmJiYYO/evYyOjoprLS4urpuXSCRCNpulubkZgJ6eHpRKpVgnly5d4siRI+h0OhH/MD8/z8jICLt27cJutwsr/MrKylVW3Xw+z8DAAP/v//0/tm/fjtvtxufzce7cOQ4ePEg8Hhc7W/v37xfWSavVyv79+9FqtfT29rJjxw4sFotwWzpw4ICIq5DiBhYWFkQbkrIsrZkPfOADPPDAA7S0tGwqLEprUVqzUizOxuDXzdar9F8qlWJwcJBisYhGo1knUBcKBex2OyaTiZqaGg4ePMgdd9zBRz7ykWsKXW63m5deeonp6WmOHDmC3W4nHo/j9/tRq9V85CMf4ZlnnhHuS3DlfSGNQ4rnkZQ1qf/ZbJZIJHLVONLptNgplJCevWAwuC7VsBSD8cILLzA4OIjVamXXrl0olUqWl5fXWcGz2SwDAwN88YtfJJFIsG3bNtrb2ykUCsKPXcr7v5GpqSlefPFFEWScTCbJ5/Pr5jeVSl33nSTxgx/8gN7eXi5fvszLL7/Mn/zJn/B7v/d7VFZWUiwWhStNOBzmxIkT2O129u7di1KpxOFwsLS0RDqdJhKJ4PV6r4qfyGQyBAIB8W8p3khyjXvqqacIhUIA1NfX8z//5//kj//4jzl48CA2m42+vj6+9rWvcezYMf7iL/6CO++8E6fTue4aXV1d65IvFAoFTCYT/+2//Tf+y3/5L1RXV/O3f/u3FAoFHA4Hhw8f5ld+5Vf4rd/6Lf7kT/5EVJAvKyujo6NjXa0FOU2pzO2AHBMgc1szMzNDwO1maWkJh8NBoVBgdXWV6elplpeXCQQCNDc3s7y8zMLCAv39/bhcLvHv3bt3c88993Dx4kURJFZRUYHJZKKlpYXu7m60Wi2hUIjV1VVWVlYYGhri4YcfxuPxMDo6SkVFBWNjY/ziL/4iPp+PhYUF4eM8ODiIx+PB4/EIn/6DBw/S1dWF2Wy+6kMxPDzM1NQU6XSarq4uPvnJT3L69Gmqq6vx+XyYTCb27NnDiRMnmJ6eZseOHdTV1V3luw9XPppGo5GBgQGMRiM+n4+ZmRlWVlaYn59ncHBwnV/83r176e/vx2azodFoNg1+1Wq1mM1m1Go1AwMDOBwO7Ha7CNCUYiMkYReuuHqoVCqsVivJZJJgMEg4HKZYLBIIBCgrKyOfz+N2u5mfn0ehUBCNRoVP7tzcHNu3bxcBm4lEgng8zsjICMFgEIVCQUdHB83NzezatYuxsTFGR0eFgqLRaEQwYSwWE8JreXm5cP2SlIPBwUFsNhvbt2/H6XQKX2yDwcDKygoqlQqVSnVV+lhp10ASPuLxOEtLS8KCPT09zUMPPSSELo1Gg9/vp62tjfHxcUZHR1laWkKn0zEzM0N9ff269iU//crKSsrLy8U9k8YVjUYxm800NjbS09NDX18fOp2O5uZmGhoaKBQKFItFDAYDKpVKuOUsLi4yOztLJpMRQmFbWxuXLl3i1VdfJZ1OY7PZ0Ol0dHV1ifmQ7mddXd26fra2tvLQQw9x4sQJ6uvricfj1NfX09DQQF9fH263m8XFRZHhqRSDwUA4HGZqagq9Xs/4+DjLy8vCjW5kZET4Xre2tlIsFunv7xfB3w6HQ7RVKBRYW1tjbW2NsbExksmkEOTn5+dRqVREIhHm5+fZt28f999/P9/4xjfYvXs3DoeDTCbDpz71Kbq7u6murmZtbQ2DwcCBAwewWCykUik8Hg+xWIzFxUV8Ph8f+MAHqKmpIZ/P09fXd1V8glKpxGw2c//99zM+Po7dbmdubo6lpSV6e3uFkr+ysiJiDEZHR3E6nej1eoLBoNihisVihEIh4a4mrc9AIMDi4iImk4m777573fWdTicNDQ2srq6KHaIdO3bQ2dkplBUp8cBGent7GRgYYHh4mK985SsAnD9/nqqqKgwGg9i19Hg8LC0todVqaWxsFDuHFy5cAK4UoMvn83zsYx/j+eef5+zZs6TTabG+tFqtcHe6ePGiiBs4cOAAVVVVjI+Pc+nSJRKJBNXV1cTjcWZnZ+nt7cXpdArlFcBms1FdXc2bb77J+Pg4Ho8HlUqFVqvF6XRy4cIFAoEAKysr7N27lx07dpDP53nzzTeFwpdKpaitrUWhUPBLv/RLTExM8OSTT4qYhzvvvJMTJ07w6quvMjY2xle/+lU+/vGPY7FYfiy1WGRkbjWyEiBzW1NZVUnz/9+H2mg00tnZSS6XQ6PRsGPHDpHhYdu2bSL7ieQGUV1djcvloqysjNXVVWF51Gg0WCwW4SLkcDhE8NqxY8fQaDTs3btXBEiq1Wrq6urYu3cvgUCAHTt2iFR1drudI0eOUFVVJSykarWae+65B4vFcpVrhN1uZ+fOnZSVlWE2m3nwwQeFD39VVRXV1dVUV1dTUVHBrl27cLlcW2agsFqtwrXJbreTTqepqqrivvvuQ6VSYbPZ2LNnDw0NDTidTu655x5hbSvN3lKKWq0WFj1JmJQ+7HfccQd2u13MS6FQwGg00trailKpFNmQotEo+XyePXv2UFZWhsvlIpfLCZeuXbt2UVFRgcViwWq14nA4UCgUdHZ2ikxIRqNRZG3KZrNCCL/vvvtQKpXCUl1eXo7VamX79u3Y7XYsFovIAHX06FEcDgeVlZUolUoMBgNqtVr4p0uuU4cPH0apVFJWViayT21UkLRaLVVVVcKf/+jRoyKYVq/Xs2PHDsrKykin08In3uFw4HK5RDYpKVuL3W7f1FJeV1eHWq2mra0Nk8mE0Whk+/btOBwOLBYLNpuNYrEogll37NhBY2MjFouFRCLBXXfdJazY1dXV7NmzR1hrdTqdeB5MJpMI9pTmx2g0cs899wBXhFmNRrPpTkBNTQ333nsvXq+XYrFIe3s79fX1VFZW4nK5OHLkCAaDYVMr6b59+ygUCqJPgUCAY8eO0djYiFarxeVycezYMbEblEgkhKuMTqe7qk2lUimyJkk7XQ6HA6VSyZEjRzAajRgMBgqFgojDkQpmKZXKdc9eRUUFDoeD6upqisUie/bsweVyodPp2LFjB9lsFpVKxe7du4WiKbn5lPZHr9fz4IMPipiH2tpajhw5glKppLm5GYfDgc1mQ6lU8sADDwhL886dO0WCAKfTydGjR6mqqhJZye6//34RzKzVajd9dm02Gw0NDeRyOWKxGJ2dnXR2dlJRUUGxWBTxN5ulLFWr1XR2dmI2m0VGqB07dlBeXo5Go+Guu+5CqVRSV1eHy+WipqZG3Jv6+npmZ2eFq5FSqWTv3r0MDg5SKBQoLy+npqZGxFAcPnyYcDgsXOOk+ZBcunbs2IFerxeudo2NjSSTSVwu17o+l5eXc+DAAbE+jh49KjI86XQ6Dh48iNVqFZnIpOds3759OJ1OjEYjlZWVIkj56NGjqFQqFhYW1mVq0+l0tLa2CmVN3gGQuZ1QFOXKGjK3IT1ROHAZLh+A/Zb/+L1YLIrCOpIgKn3Ur0WxWBQpKyULTrFYJJPJrNv+30gmkxEpQq+FtKVfKBRIJpM3nOdechVIp9Oo1eots59c63wpJeWNzEEmkxEuTVsdL23HSwKblOJTUr6kKqSA+LtELpcTgkoqlRL3RspwotVqRX+l+ZIqqpZWWIUrOx25XG5dX0vHK7lFSK4s0hxKbWWzWXEdKWhSGlOpq4Zk+YYr7h8b4yxK56VQKAhrf2m1W6lyrUKhIJfLCYUTrqwh6fjS/m5GIpFYl91n4/2V5qf0XpT2TeoDXFmT2WwWrVYrnpdcLkckEsFqtfL444/T2NhIR0cHjY2NFItF4vG42E241joqFovi/t6MRVRyZ7mReh/SmimN3bkW0j0vvX9SFi2DwcDy8jI1NTXCx7/02ZMsyKVtZTIZ8vm8mHdJAMzn8+tcqDYjnU6vW/dSIKvkhqhQKNatIald6Vi44rojGSFKj7sW0vtndXWVmpoa0VY2m+Xs2bOYzWba2to23Vm83tzmcrl1aX2z2Sw+n4+enh4KhQJ79+6loaFh3XlSZp6N7xppF3Gzd9Bma/la/ZL+u5njS/u1Wd+k98SNsNW3SkbmvYCsBMjclsgvVhmZW8/IyAhf//rX+c3f/E16enp44IEHaGpq+ml368dCsVhkZmaGL3/5y3zoQx/ivvvuu64y/7OIlLXomWee4Vd+5Vc2rf3wTtocHx/nC1/4AgaDgb/8y7+kpqbmfekiI3+rZN7LyEqAzG2J/GKVkbn1SDs6kvVzM0vozwqS1VeKPbkRS/HPIqlUimAwiNVqFa5y7xZpJ2h+fp6Kigrh0vN+nF/5WyXzXkaOCZCRkZGRAf7D31/iZ1lok8Ymue38LI/1WkjxFjebGvRaSH74TU1NwlXt/Tq/MjLvZWQlQEZGRkZG8H4S1t5PY92KjWmDb2W7t8K1SEZG5sfHz+Y+r8z7hmg0ui6X9DulWCyyuLiI2+2+qr7AzSLVKJicnCQUCl2Vs7tYLDI3N0c6nd6yymculyMcDtPf3y8CSSUKhQIejwe3233NKqk/TqTgvFvpTVgoFAiHw/j9/puuWioV4BodHb1qvkvna7NCX7cCn88nMkzdLG63m1gsJtxT3sm8ZrNZgsEga2tr1z12qzzyPy6kMUlIz6xUm+MnxWbrq3S+8/k8S0tLzM/Pr8v9fy2kCtxra2ssLy/f0iqxG9eCVF/C4/H82O+fdC23283U1BTJZPJdP+vSXE1OTt6iXl4fKWC5NKHAtY7NZrOMjIwQDoevWS/hZtqVkXkvIysBMrc1ExMTXLp06Za8iJ999lm+/e1v09/f/67akT4k//iP/0hvb+9VH5NCocA3v/lNfD7flv2Ox+MMDQ3xR3/0RyQSiXXH5XI5nnrqKR5//HGmp6ffVV/fDfF4/JYKI7lcjuHhYc6fP3/TipjX6+XkyZN88YtfvGq+s9msmK+5ublb1t9Suru7ef3112+40FIp3//+95mdnRUC3ztR7GKxGH19fZw4ceK6x0q1BX5SSBWoJSYnJ7l8+fINVbm91f0YHh7m3LlzQunK5/Mkk0ngSvGs559/nm9961sMDQ3dUJurq6scP36ct99+m5deegmv13tL+xyPx8Wzn8lkWFlZ4amnnlpXzPDHQSaTYWlpie9973v867/+KysrK+/6WV9ZWeGNN97g7/7u725RL69PoVDY1BCz1bHhcJg//dM/ZWBg4JoKXbFYJBgM/kSVaRmZHweyEiBzW1NdXU1LS8staeuhhx4ShaXeDTqdjtraWg4ePLiptV+hUHD33XdjtVq3dEewWq20trZeVTQKrqTd/OhHP0o2m71pi/mtolgs8uSTT96SXRgJlUpFfX09ra2tGAyGmzq3rq6Oo0ePbjof0nxlMpkf23y1t7fT1dX1jrKf3HHHHaJWQTQa5YknnrhpZcJoNNLU1MT27duve+zJkydF1difBMPDw7z++uvi39IzW1VV9RPrA1xZB/X19bS1taHX6wkEAoyPj9PT0wNcqcC9Y8cO2trarioGtxVer5fu7m5+5Vd+hU984hPU1tbesv5ms1l+8IMfiN0rjUaDw+Hg4MGDP/YsO1IBs7a2Nv78z/+cpqamdx0gbjQaKS8vv6VzdD0CgQBf+MIXiEQi1xXYlUolLpcLvV6Pw+G4ZqaoWCzGF77wBfx+/ztS/GVk3ivIMQEytzVLy0vU2q58EMfHx4WVUyrotZFisUgkEmFxcZFEIoHD4aC1tRVY7x+cSCSEy04qlaK1tVUUexoaGiKfz9Pe3o7NZrsqoK60nUwmI6qHVlRUUFFRISoPp9NpTCaT2CZ3u92UlZURjUZF0SCASCTC+Pg4BoNBFF2SrpHP51leXhZW1WPHjjE/P08oFEKn07Fr166r5iCXy+F2uwkEAqLIFMCFCxdEdd/5+Xmy2Sz79+/HZDLR19cn8vVLucm/+c1vigJJ1dXVlJeXi3b1ej0ulwuXy8XS0hKXLl1i7969orptfX29SNFYXV1NZWUlKpWKsbExUenT7XYzOzuLwWCgWCxSVlYmCoQtLS2xuLgoioCV+jRPT08Ti8WorKykqqpKFEArHX8sFmNgYAC1Ws2uXbuwWK6dtqNYLNLb20sikcDpdFJWVkYikcDtdlNRUcHCwgIajUbUCJifn2d1dRWTyUR9fb2Y41IKhQLLy8usrKxQX1/P4uIiFy5c4IknnqC2tpY9e/aIQl+zs7NoNBpsNhuVlZVXFSvzeDwsLy+LfPInTpygoqICtVotLPFHjx5lZmaGZ599FqvVSjabpbGxkfr6eqanp0WRMakonUKhYH5+nkAgQDabxWQykU6n8fv9mM1mrFYr+XyehoYGTCYTKysreL1e0uk0hw4dQqFQ8Nxzz9HT00Mmk8HhcHDXXXcxPT2NQqGgqqpKWOMHBgbIZrOUl5dTX1+PSqXixIkTlJWVodFoREXjO+6446pnTKqm7PV60ev1qNVqsQYbGxtZWVkBwOFwMDExgd1uJxgMcvr0abq7u0VBtR07doj7kkgkuHTpkijOtln17MXFRSYmJlheXuatt96iqamJ6elpXC4X7e3tzM3NMT8/z913383y8jKrq6s4nU4UCgWBQIDOzk7KysrEmrx48aIoOqfT6ejp6eGJJ57A5XKxd+9e9Ho9y8vLoto2INyQstmsKPo3MTGB3+8XRfb8fj9dXV04HA7S6TQzMzOk02nS6TSNjY1UV1evG5fkctTT04PFYmFxcVFULF9ZWUGhULB79260Wi19fX1Eo1FR8K++vl5UcN7I9PQ0fr+fw4cPi+xBk5OTKBQKKioqKC8vR6FQMDg4iN1up7y8HJ1Oh9/vx+VyUSwW8Xq9LC8vY7fbRepat9tNNBqlubkZo9FIIBDAbDYTDAY5d+4c09PTzMzMsH379i0F+0AgwNzcHDqdTvRfoVCIDEeZTIaamhosFguRSIQLFy6Idg0GAwaDgUgkwtjYGPX19VRUVFyzvoyMzHsFeSdA5rYmmUxy4cIFkskkg4ODolqm9OHfSDab5YUXXsBoNIqXdm9v71XH+P1+BgYGqK+vx+fzCUHsySefpLKykvr6ek6ePCkK4WxGLpdjZGSEqqoqBgYG6OvrI5PJYDabhctLKBRiamqKU6dO0djYyOuvv04ymRRCY7FYZGJiApfLxezsLC+99NK6a0hZN1KpFG+99Zbwaw4Gg5t+gOLxOFNTU7z99ttUV1czMjLC5OQkhUKBhYUFpqen0Wg0LC4uMjg4SCAQYGBggGQyidPpRKlUsri4SHl5OXq9nqamJmpra4UA39vbS0VFBbFYjLGxMcbGxrBarZw6dYrh4WGKxSJqtZqvfe1rrK2t4XK56O/v59SpUygUCgwGAxcuXCAQCBAMBvF6vdTV1fH8888TDAaJRqMsLCzQ399PW1sb3/jGN4SLTz6fF8JfZWUlQ0NDPP/88+ssddJ8PvnkkzQ2NqJSqejt7b0hNyGn08nbb7/N8PCwUEzcbjcmk4mlpSVGR0fJZDIEAgF6enrE79/73vc2bU+hUGC1Wunp6WFtbU1URFUoFLS1tWG1WpmZmaGvr4+6ujqqqqqEwLMRu93O6uoq586dA67sRj3zzDN4PB4hzA8MDGC32zGZTJSVldHS0oLdbmdwcJDR0VGRDvT48eMAnDlzhtnZWSKRCPF4nOHhYex2OxqNhoGBAU6cOEGxWMTj8XDp0iWWl5dFUaZvfvOb5PN5qqqqqKioENcD0Ov1zM3NMT4+TiKR4Otf/zp2u53a2loWFxd5/vnnKRaLaLVannvuOebn54ViNTAwsKnl1el08vrrrzM3N4darcbj8TA3N4dGo2FpaUkoZHq9nnPnzpHNZrFarZSXl4tqwZJ1PRwOMz09TX19Pa+++iqLi4ubuk/ZbDbKysowmUy0t7fjcDgYGRlhbGyMfD6P0+nkRz/6EeFwGLVazdraGt///vex2+1ivXg8HiKRCI899pioTO52uxkfH6e1tRWFQkFzczNOpxOLxYLJZOKVV14hl8tx9uxZRkdHRcXy48ePs7y8LN4BTz75pLjWyMgIbrebYDBIf38/dXV1BAIBYrHYVeNSq9VYrVaqqqqE0eH48ePMzs4KZf/xxx8nFouJtfXCCy9QLBZZWlrachdlYWGBUCgkqro/8cQTFItFFhYWePLJJwmFQvT39+P1epmenhYxVT/84Q9JJpOcOHGCwcFBjEYjAwMDLC4uMjw8jNvtZmVlhf7+fuHSJSnldrud5uZmampqtiy0eOHCBS5evIhKpeLy5cu0t7eLZ7enp4fFxUWSySQvvPACU1NTqNVqbDYbzc3N1NbWolarGR4e5pVXXqGuro6vf/3ruN3uG95NkpH5aSIrATK3NQoUeDweAMbGxhgcHGRxcfG6W7/JZJJ4PM7y8jKjo6NX/T2RSDA8PCwEYMnqe/HiRWHRn52dZWpq6ppBhPl8HpfLRTAYZHV1lVQqhclkYnV1lXQ6TSKRwOfzsbS0RGVlJZOTk+IjI8aoUOByuQiFQoyNja0fv0KB0WgUFkCpWrJerxeVT0uRBNR0Ok1ZWRl2ux2j0SiqKweDQWF5DYVCpFIp0um0EBS9Xq+wSJtMJqqqqnC5XGQyGc6dO0cul8PpdGI2m/H7/Zw/fx6z2cza2hqZTAaTyYRWq+X8+fMYjUaqqqpYWlpifHwcpVKJzWbD4/GI6s1ms1nMm8FgEJWAM5kMCoWC7u5u/H6/sIzm83msVitlZWX4fD4GBwfx+/3r7vvMzAznz58X1YPdbve6Y7bC5XKJoNZ4PE48Hqe6uhq73U4qlSIQCIhKo+l0mkKhIHZBtgr2NZlMeL1ekskker2eqqoq9Ho9tbW1GI1G0um0cM1YWFjYMm+/1WolnU6zuLiIQqHAbrezsLBALpcTFvzp6WnMZjNmsxmXy0VVVRUmk4mzZ8+yurpKLpcjk8ng8XhIpVJMTU0JQa9YLApLts1mIx6P4/P5cDqd6HQ6USVaWn8nT56kUCjgcrnEOpMszpI1dXl5mUAgwKlTp7Db7VRUVIhYmEAggN1uZ3FxUexCZDIZpqenN1UCrFar2GVKJBIUCgURZ6HRaDAYDBiNRmw2GwsLCxSLRaxWKy6Xi/Lyclwu17qq0wBlZWVCcN5MCTCZTNhsNgwGAzU1NZjNZiKRCKFQCLiimM3OzpLJZDAYDCiVSubm5nA4HBSLRVZWVlhZWSEUCvHmm29SXl5OeXk5JpMJg8FAdXW1WBNWqxWDwYDZbGZmZoZCocDZs2eZn58XO25er5fx8XHhgihdS1qHfr+fVCol3mtbxfSo1WoMBgMOh0NUDu7r6yMQCFBRUYHL5RKKq1RlenFxEZfLdc3q7OFwmFQqhcvlYmJigoWFBYxGI8lkkvHxcVFNW9rtiMfjeDweVldXmZ6eZnZ2lkQigdVqZWVlhbm5ORKJhHi3ZrNZPB6P2GWVqpPv2rVryxSokiHI4/Fgs9nEjoHZbGZ2dpZLly6J9b66ukoikSCfz5PJZES7a2trzM7OEggEqKyspL+/n1QqJe8CyNwWyEqAzG2NTn9FANFqtYTDYV5++WUuXLgg3CJKBS/JneXQoUMsLy+LLXHJeiYhuY/4fD4ef/xxEokE0WgUn89HNBpFr9cLq1I4HN5y10GlUtHW1oZarRap8hKJBEqlEqPRiFKpFH0ym81ks1khpEnHKxQK2tvbxTb2Zh9tq9VKc3MzxWJRuGrU1tZSU1Nz1bF+v5/Lly+zfft2lEol9913H/v27RPWP/iPlIHSB72uro5z587x7LPPMjQ0hM1mQ6FQoFAoUCqVFAoFfD4fZ86cobW1FbVaTU1NjRDSVSoVJpOJuro64Q5RLBZpbW3FbreTy+VIJpMoFArMZrNou7q6mrq6Ol544QXuu+8+IbRKVsrZ2VlSqRTZbJZ8Po9SqcRisWCxWITCkMlkhNAn3S+/308oFGJ1dRWFQiEKRUmZPjYT1hUKBRaLhc7OTrRaLWNjY6yurnLfffdhNpvR6XRCGNbpdNTV1REOh/F6vVvGbkjzJylh0rile5DL5XA4HGg0Gh577DFeeuklobRtRKPRiF0waU1UVlYKZc1isRAMBsV1pf/S6TRnzpxBoVAIxaahoYFYLCYEaK1Wi0qlEkKoxWLB6XRSVVVFfX097e3ttLa2otPphHLt9XrJ5XJijNLaLRQKmEwmNBoN6XQan89HKBRCq9Wi1WpRKpWk02k8Hg8Wi0UUmiodw2YxNmq1mjvuuAOVSsXMzAwOh4OZmRl8Ph8NDQ20tLSg0WiwWCxijqW+KRSKdffHYrHQ3NyMUqkUCtRmVt3SeVQqlUJ4ltaB9AwpFArhZ15ZWYnBYMBms5FOpwmHw0QiEXw+HxaLhcrKSnbt2sXevXvFvKlUKvEuk+ZJcpsJBoNUVlaiUCior69nZGREuBOWXktyk1SpVPj9fr71rW+J4PvN3imlY/P5fASDQfL5PDqdDrVaLRSLYrEoriWthc3ieSSBXMrA8/rrr9PZ2YnFYkGj0WA0GjGbzXR0dDA3N4dWq8VutzM2Nsbu3bs5e/YsBoOBuro6tFotyWSS1dVV6urqSKfTrK2t0d7eTl9fH62trVgsFvx+PzMzM+zfv3/LBAwej4dQKIRKpcJms+Hz+Whvb0en0zE7O8vIyAh79+5lZWWF1tZWHA4HoVCIiYkJ9u/fj0KhoKenB7/fz7Zt24RRxmg0brnzICPzXkJWAmRuewqFAmtra/z3//7f+eu//mv27dvHK6+8smmGmUQiwR/90R/R1tbGjh07KC8vJ5vNsry8vC47i8lk4tFHH+VLX/oSFy9eZG5uTvglS4JiOBwml8td5S8sfXAkQaD0940WYZPJhMvlwmg0cvbsWf7gD/6AHTt2rBNGpY9+aWpH6W/ScQaDgY997GN85zvfIZ1Ob+rDDFeERavVSjQaFf7Yks+41NdisSiEOclN6F//9V/54he/SEVFBd/85jcBhJCysrKC2+3GarUSDodFlo1UKoXFYhF9lSzvpfNSmhazFJVKJVylgsEgP//zP8/MzAxvvPEGb775JrOzsxw7dgyLxUIoFFp3r0vnTq1WC2tmsVgUSoTVamXfvn3s37+fhx56SATUls7rZnz4wx9Gp9Nx/Phx4fpSSjqd5oUXXmBoaIiGhgba2tpQKpUsLy9f1da1FA6Aqakp/H4/e/bs4Yc//CEf+MAHeOqppzbNqrOxnWKxKIo0Sf+W5rjUhWxoaIiysjJqa2vp7Ozk3nvv5ROf+ARGo5GOjg6KxaIQ0j/5yU8KlxmtVoterxfX/dKXvoTH46GlpYWuri7y+TwrKytCEchms6ysrODz+URmG0loljLgFItFEokEkUhEKKSlYwDE87PZvN19992k02nOnz+PTqfDZDJx6dIljEYjdXV1V82TJOQWCgUGBweFtb+0YNq1FMONz6A056VBu5FIRAi/CoVinWAoGQD0ej3ZbFa0Ie0Qlq6FhYUFFhYW1l1fo9EI63mxWGRtbQ2j0SiUqY3XisfjqFQqPve5z/GlL32JkZERhoaGrspGtXGsZrNZBNVL68jr9WI0GlGr1eI+Xitd5sLCgtjZm5mZYXh4mD179oh3kF6vZ35+HrPZLNyn8vk8vb293HHHHSwsLFBdXU19fb1wAT18+DDl5eVkMhkSiQR2u52zZ88KN7+FhQUmJyfZt28fCwsLmyZ8mJqawul00tLSQj6fZ3V1lXg8TiAQQK1WU11dTaFQ4MyZMyJWQ3Ll2r9/P0tLS4yNjVEsFuns7MTn82G321lbW3vXqaZlZH4SyIHBMrc1vb29+MbGmJmZ4ZVXXuGOO+7AZDJx77334nA4rjpeEtxmZmZIJpPCX9jn83H58mUGBgbI5XIolUouXbrEr/3ar3Hs2DH27dsHXFEiXnrpJbRaLfX19XR2dl5lcZdcOLq7uzEajbS1tTExMSEE7aNHjzI7O8vZs2c5duwY0WiU48ePU15ezsmTJ/m5n/s5mpqaWFxcZHp6mtdee42WlhbGx8eZnJzk3LlzDA0NMTw8zO7du2lpacHhcPDwww/ze7/3e3zsYx8TAYcbaW1t5ZFHHuErX/kKLpeLSCRCVVUVzc3N7N27l2effRaLxcLc3Bxzc3O88MILmM1mxsfHaWlpoaamhp//+Z9HoVBw55130t3dTWVlJbW1tfze7/0eP/jBD9BqtUxOTqLVavnd3/1dZmdnmZmZ4dSpUwSDQQKBALOzs5w/f55kMsnIyAhKpZKRkRHOnTvHyMgIMzMzTExM8MYbb/Bf/+t/5Tvf+Y5wEcrn8wSDQS5fvozdbmdiYoKKigrq6+txOBz09vaSSqXI5/Ps2bOH+vp6Hn/8cUZGRjh48CBVVVUcOXKEZ555htraWrRaLWVlZSwtLfG5z32ON954Y0uXhsrKSoxGI4VCga6uLuCKNXF2dpaFhQXOnj1LoVAgEokwOjqK3+9Hr9dz8uRJHnnkkXUCYqFQYH5+npmZGS5cuCB2OMrLyzl16hRVVVVMTk4yPz+Pz+fDZrNxzz33XBXICVdc4YaGhpiammJ4eJju7m6GhoZoaWkhGo1y+vRp4vE4Dz/8MJ2dnYTDYV555RVqamr4wz/8Q5588kkikQh1dXVEo1EeeOABNBoNZ8+exePxYDabOXv2LL/7u7/LuXPnuHDhAlqtlunpaVpbW1EqlQQCAYaHh4nH41RUVDAzM8OuXbsoFouMj48zMDDAhz/8YZ588kkuX75MRUUFBoOBX/3VX+XkyZNotVoRwNzQ0MA3vvENhoaGqKurI5PJcOrUKeLxOA899BDl5eVXWVrNZjNGoxGHw8G+ffswGAxcvHhRCLnJZJLXXnuN0dFRlpeXcTgcVFdX88Ybb3DvvfcSjUYZGxujr68Pp9NJa2srExMTWCwW9Hr9Vc+U2+2mv7+fiYkJ3nrrLe666y66urrw+XycOnUKpVJJOBzm8uXLqNVqRkdHmZiYYGpqijNnzoiA6/b2dv7zf/7PPPPMM9TV1aHT6cRuREVFBRcuXBC+5+Pj40xPTzMyMsInPvEJvF4vP/zhD2lubsbn8/E7v/M7TExMcPr0acbHx5mamuL06dOEQiF27NhBoVDgxIkT/Nqv/RqHDh2is7PzKoNBOp3G7XZz9uxZtFothw4d4oEHHgDglVdeEdnN2tvbefvttzl9+jRra2tMTU2JOIaNZLNZVCoV6XSaaDTKz/3czzE1NYXX62VlZQW1Wo3b7aalpYXGxkaCwSCLi4sipuqhhx4iEAgIN7Pf+I3foLq6GpVKRXl5OYFAgL6+PlZXV+nr66OsrExk+Dlz5gzNzc2b9mvfvn309vYyPT0tXJr6+/v54Ac/SG1tLR6Ph7feegu/309/fz8ulwuHw4HZbObMmTM0NTVx8OBBkskkfX19LC8viyD52traTb9BMjLvJRRFudKFzG1ITxQOXIYXapZpzgWpqakhGAyi0+lE9hqXy7XuHMnqND4+jsvlEh+lVCpFVVUV0WiUcDiM0WjEYDAQjUYxmUwAwjIZDofXZeaRsqSUUigUiMVirK6uimwrUp5tq9WKxWJhamqKiooKxsfHWV1dpbm5GbvdTiKR4PLly5SXl3PvvfcyOzsr/MQDgQDJZJLa2lrhC1tRUbEus83zzz/PPffcQ0VFxabzJvnTLy0tCTcUKbtFOp1mdXUVo9G4zpIv7URIVlmlUondbhe7J3q9XmRlWVtbE1lytFotVquVYrHI5OQkTqcTk8lELpdjYWGB1tZWYVWU3H8kn/vq6mqSySTB4JV7m8lkKBQKwm0nnU5jtVqFkG21WkXAaUVFhXAR0mq1OBwOVldXheuERqMRgqHkQqPT6QiHw5w5c4Zf/MVfXOeasxGfz0c4HKa+vl64tUhxC2VlZeTzeRKJBEajkWw2SzKZFPETG7PapFIpZmZmsNlsIsvR/Pw8VqsVk8lELBYjmUxiNBqF5V2y9pYi+ejH43EaGxtF0LnL5UKj0Qh3jqamJsLhsIipsFgs6HQ61tbWxD1Wq9U4HA6+/OUvs3PnTmpqakTBtUAgwN69e4ULleS3Pj8/j1KpFC5kPp9PZDEKhUKEQiGR8cXr9RIOh9FqtVRWVhIKhcS8FAoF1Go1ZWVlrKysEAwGRdyBFHPR2Nh41Q6BxNra2rpnRJoDad2tra0RDAapr69HrVaTTCbx+/2Ul5djNpvx+XzEYjGRzWt2dhaz2YzD4bjqOU+lUsIfvbGxEZvNRiQSIZVKUSgU0Gq1jIyMCBe5VCpFPB6nqalJxGBYLBYcDoe4P9J6lHZapqensVgs4llNp9PMzc3R3t5OsVgkk8mQyWRQKpWkUilqamrEuJPJJI2NjeJa0nstFAqJ95rU9sZ3hOQ2p1AoqKurEzsakitfoVAQ907aEa2rq8NgMGz63Eh9yufzWCwW8vm82FlIp9MikDqZTApXspWVFQYGBnj00UfFcyC5/UnpUhUKBcFgkHg8jk6nw+v1YjabxXPo9/sxGo1inW+2cxcOh4WSEggEcDqdoi+RSAStVksgEMBoNIrMbFIgf+kuST6fp1AoEI1GRSC3Xq8X36rLB2D/tZOQycj8xJGVAJnbktIX6z7zfyzhbDZ71bb7Zkj+sdJHYaNwJpFOp4Vfr/Q3aXu/9Px3yrlz53C73Wzfvh2n00kwGKSnp4fKykoefPDB655fLBZFJp/Gxkb0ej01NTUipuBa50mpVDe6jJS6LJUGokpCQGmAnbRrUjoP6XRauP78OCh1qyq9hiSgSH/fKohWakOKA5FclKLRqPD1ldrb6tzNXIE29k9qQ+rXtRSLzfomjU36tzSeWxFwKN3njfdScmkB+Id/+AcOHDhAfX09uVyO0dFR8vk89957r3CxKkVy81GpVOvGW+ous1n/S++nQqF4V+um1BVPGue15r10rm9VIKckDEpCu+QidK32S+dg47rd7BkrPU/ys79eSsqN7zXJbehGKXVHfCfzVfq8la7p0rVx+fJlIXSn02mcTqdINyudv9kaKhQK4j5Kz36pseZa/S2d99LnDv7jvkhxGVu1K82NFCgtpRgFZCVA5j2N7A4kc9tT+nLfaCHdimsdV9reRmF6oxD8bqmqqiKfz4sdhlgsRmNjI5WVlTfcRiQSYXJyErPZzNGjR2+of1IA68bfpDoAm7GZwLDZtTa2e6u5lqBYGqh5vTY2q+8g/XYtAed6wvxm/bsZgWlj325kPDfLZkLlxvlob28XllZJUOrq6tqykNvGPpf+/5udr3fKxuu8k3Xwbil9hm606N215uBa/ZPm9kaeuWu9126EaynVN8JGhX3juAqFglBEpRoqBw4c2PT8a/Xteut6s3O3Orb02dv4t9J/l15fDgiWuZ2QdwJkbkt+1qwrkjXsRq3FG8+FmxM0ZWRulOvtfMjI3Equt3tzu/Gz9q2S+dlCfqvLyLxH+Fn56Mn87CGvTZmfFPJak5H5ySG7A8nIvAd4Nx8++aMp8+NEXl8yP0nk9SYj85NDVgJkZG4QqRrq9fx8paA3qbgOwOLiosg48l5Ayhv+8ssv43A4OHr0qMgY8uO41vLyMm+99RYtLS0cPXr0qmOkjEpPP/00R44cobGxcdOiWJlMhmKx+I7iDtbW1kRO8+vdw9nZWVwu11UZYd4pUl0JKTWk0+nk6NGjJBIJXn/9dYxGI+3t7Wzfvp1IJMKLL75IZ2cnra2tNxUfcrsjVZK977771gVher1eent7SSaT/NzP/dxN3/9cLkcoFOKFF15g//79tLW1bbq+4D+CTK/n2y0VrJqdneW+++7jzTffFBl5pPSx12JxcZGxsTGWlpb4xCc+cc1jl5eXGR8fZ25ujk9/+tPXbftmkZ6/S5cu0dXVdUPvKSmjjpSZ6OLFi7S1teFyuW44Nutmke7j+fPnCYVCPPjggzidzp+Kq5qU9ay3t5fa2lruuuuun3gfZGTeLbI7kIzMDeL3++nt7b2h4xYWFlhbWxO/pdPpTavG/jQpFov09fUxMTGxZZGfW0UqlaK3txe3273lMaW54DerYppMJnG73czNzb3jPmysIr0VyWRSZLu5VRSLRXw+H729vVy+fFlkFOnv76e3t1dUNi4UCrjdbhKJxKbz8LNMNBrdtAJ3NpvF7/dz4cKFd3xfMpkM4+PjzM/Pb1oBWCIWi11znUoUCgUSiQSrq6vAlfTBw8PDN3SudL7H4+Hs2bM3dOzS0hJnzpy5obbfCblcTqS6vRbFYpFYLIbP5xPH5vN51tbWSKVSP9Z3iXRvZmdnSSaTP/XnI5/P09fXx+Tk5E+1HzIy7xR5J0DmtuaK1b0g0rJJKec2pn1TKpUiu4RUxVQ6v1gsrrNcSVZ8KYOFlIJvdHSUH/7whxw+fFi0JR0rZQTJ5XIMDQ2xsLBAfX099fX1ZLNZHA6HyCYh7RRIqexutF+bkcvl1qXDlCqIAmLs0jhK285msyK/v5TvupTSVKFKpVLMrzRm+I+KpaVjkiyoG69lNBopKysTuw3S7/Af2VSk+WtsbFxnqZfaXlxc5MyZMygUCtrb29flLYf/yLAiZRgpnZNCoYDBYMBisaDRaEQqWWmsSqVS3OtcLkdFRQVGo1GMSa1Wi/tTes8AkXNf+ttmVkmFQoHD4eCOO+7A7XYTi8VwuVyUlZXR0NBAKBQCrmST0ev13HPPPRw4cACLxUIulxNjLZ3b0rnJZrOiX9K9Kk1fKM2J9Izk8/l1KT1L0ypK97005WRpNdvNsrxI7ZX+W6PRrFtH0t+k/PDS/SpNF2m322lpaVmXlrZQKGA2m9m3bx/nzp0T97t0DNK8bOZKIj0jer2e7du3i7mQ3hPSWtBqtaKGxblz50QhOWmNla5vaa6tVitNTU0AHDhwgIWFBVF5WErDW7rGS9d+VVUVlZWV10w1K63H8vJyqqurr0odWloFunTtS+dL7w9pzqV1XlodWRqfRqOhqalJ1FSQUpNKbUlrJ5fLMTExQSAQoLOzE61Wi0qloq6uDovFsu4dLK0JaS1IcyjNtdRvqQ/SvdjsOSsWi6yurjI+Pk55eTkPP/wwer1e3ENg3XillJ1S3zdbH1J/Suem9PfSNqV3a2ma1M7OTlELRZozac3Ibk0ytwOyEiBzW5PJZlhaWmNiYoJdu3Zht9vJZDL4fD6CwSDV1dXMzMxQXl5OXV0dWq2WiYkJ8fGIx+NkMhkOHTok2lxbW2N5eRmFQsHevXuJxWL09vbS3d1NLBZjaWlJVDGVLP51dXXU1dUxOjrKm2++idfrpby8nGKxyNTUFGq1GqfTKT7Q0nlVVVWi8uX4+DgGg2HTfm32QSkWi8zOzhKJRLDZbKI408jICDqdDrvdzuLiIkqlku3bt4tiU9lslsuXL4s0gZu5xkQiEfx+P9FolLKyMiYnJ2lra0OhULCyskKxWFyXvi+VSrG0tMTKygq7d+/GaDRSLBaJRqMMDg4yOztLbW0t9fX1QkAYGhoSBazKysooFouiyNbGdIBut5sf/vCHRCIROjo6hEXQYDCQSqXI5XLo9Xq2bdvG5OQkqVQKp9NJWVkZRqORpaUlAoEAjY2NJJNJlpeX0ev15HI5/H4/NTU1NDQ0UCgUxH3Q6XREIhGmp6fp7OwUOxCVlZXU1NSIezk8PIxCocBms4miU1uxbds21Go1S0tLhEIhHA4HNTU1nD17Fo1Gw8MPP0wmk0Gv16NUKolGo6yuruJ2u3E6nXR1dV2lCHg8Hnp7e6moqKCuro6JiQna29tFldlwOMz09DSpVIrm5mYcDgcrKyvCellbW8va2pqYK6m41B133CEEIKmA1KuvvkpbW5sQvJxOJ52dnSwsLDA+Po5Op6OzsxOPx8P+/ftZXl7G7/eTSqWw2Wx0dHQwODhIOBzGbDbT2NhINBplbm6OsrIygsEgsVhMKNY+n4+VlRWi0agQyqS1v7y8zMTEBPl8nqNHj266bqQ6Gn6/n0gkQjweF/dHuvcDAwOo1WruuOMOJicnefXVV3n99deprKzkjjvuEEXAFhcXWV5eZt++faIAncfjEYXnNl63WCzS3d1NNpulqamJuro69Ho9yWSS3t5ezGYzXq9303UirS2pEq10X0r/Pjs7i8/no1AoUFdXR0NDA1NTU8TjcbHTcezYMfL5PENDQ0SjUWw2G9u2bRNVtaWiVrlcjng8TjAYJJvN4na7GRoaorKyUihbTU1NVFVVsbq6yt/8zd+wfft2kskknZ2dOBwOZmZmqKiowGw2i52b+fl51Go1e/fuJRqNiurhDzzwAAMDA1RXV1NdXY3VaiUej9PX14dGo8FkMuFyuaitrRVjTiaTeDweenp6sFqteDweamtrWVlZYWlpCYVCwcGDB9HpdPT09BCJREThwObmZmw2m3DxkubX6/XidrtJJpO4XC527txJPp9ndnZWzPeRI0eEgWBhYUEUgWxoaBBuU7FYjOnpaWZnZzl27Bgmk+nHVidFRuZWIrsDydzWDA8P8/TTT3P06FE++9nP0tPTw9raGqdOneKrX/0qY2NjmEwmJicneeONN0ilUszNzfGFL3yBgYEBotEoY2NjjI+PUywWeeKJJ7hw4QJqtRqNRsPXv/514MpHo66ujkceeYTa2lqy2Sxf+9rXGBoawm6387nPfY61tTW2bdsmBMq7776b0dFRUqkUL774ImfOnCEWi/Haa69x/vx5Wlpa6O/v5/HHHyeZTDI/P8/nP/95hoaGiEQi6/q1Gf/4j//IwsICiUSCl19+mVdffZWenh78fj/Hjx/nK1/5Co2NjXz7298mGo0CMD4+zj/8wz9QVVXF6dOnqa6uprm5+aq23W43J06c4Otf/zqzs7PU1NTwzW9+k+effx6r1cpzzz1HLBYTSs6JEyfo7e3l0KFDfPnLX6avr4+LFy/yT//0Txw4cIAXX3yRuro6Ghsb8Xg8/NVf/RUmk4lQKMTy8jILCwt4PJ51VuBSJGHx6NGjoqLv/Pw8jz76KEtLS8RiMU6cOMFzzz3HzMwMyWSSV199lccff5xUKsXQ0BCPP/44ExMThEIh+vv7+cM//EPy+Tzz8/NirsfHx8lms3z729/mtddeY3p6muXlZf7wD/+Q6upqTp06RU9PD3DFWvgXf/EXKJVK5ubmeOWVV3jrrbeuu2a3b99Oc3MzL7/8MsFgkB07duByuYjH40xNTdHT08Pu3btJp9O88sorvPzyyxw7doyzZ88yMTFBLBZb115NTQ2XLl3izTffZHFxkaNHj/KFL3wBn8/HiRMnOH78OHq9nqNHj/L4448zODhIKBQiGAxy7tw5ampqeOKJJ5iZmcFoNOLz+a6q/KpUKrFarczNzXHq1Clx3RdffJHjx4/jdDoZGBjgxIkTzMzMMDw8zLlz5zh58iSZTIbm5maGhoZ47bXXqKio4PTp0+I8nU6H2+3GbrcTDAaFb72085bJZGhrayMSiYj+/OAHP+DkyZPU1NRw+PBh/uZv/madkCzx9NNP09vbi0qlYufOncLlqlgs8uKLL/LYY49x5MgRbDYbzz33HFqtln379lFZWckDDzyAw+EgFArR19fH0NAQx44d47Of/Syrq6tUVVWRy+X4zne+c9V1vV4vf/mXf4nD4WD//v0MDw/zne98B7/fz+c+9zm2bdtGXV0dSqWScDh81fmFQoFgMMjnPvc5mpubaWhoQK1WEwqFKBaLnDx5kvPnz6NSqaiuruaf//mfha+8VqulpqaGxcVFAB599FESiQSNjY0UCgWeeOIJtm/fzle/+lXOnz9PPB5ndHSUjo4Ovv/97zM/P49OpyOfz/MP//APQqmXnqeysjL27dvH/v372bdvH83NzWg0GpaXlxkZGWFtbY3XX3+dZ599liNHjlBRUcG//du/4Xa7xbuwp6eHI0eO8PTTT/PSSy/h8/n42te+xr59+9i1a5d4T5diMBiorq6mq6uL7du309TUxD//8z8zNjbGnj172L59O3/8x39MKBTCaDQyPT3Nv/3bv4nKy6VuTsVikbW1Nb7yla+Qz+eprKyku7ubmZkZnn/+eVZWVrBarSgUCj7/+c9TLBb5wQ9+IIqZtbW18U//9E+kUim8Xq+oclxXV8ff/d3fbancyci815CVAJnbmvHxce6++26y2SwVFRXodDrKysro6OggEomwc+dOQqEQyWRSWFclq31tbS0qlQqPx4PFYmFpaYnp6WmKxSK1tbUUi0WGh4fJ5XIsLS2RSCTYvXs3SqWS119/HYPBQFVVldj+tdvthEIh9Ho9FRUV6PV6ysrKWFlZweVyUV5eTigU4rvf/S533nknNptNBBaW9qumpgalUsni4iIWi2XT6pjz8/Osrq6i0+lEhc0dO3ZQW1tLOp2mrKyMAwcOYDQaWVtbE1bPhYUFAoEAVVVVeL1eGhsbqa+vv2peJYE9kUjQ1dWF3++nqqqKlpYWDAYDS0tLYtw9PT1cvHiRu+66C41Gw9jYGCdPnmRubo7m5mb0er3YCcnn88zNzTEyMkIoFEKlUmGz2cjlcoyPj3Pw4MFNLWhKpZJsNotOp8NsNgv3g7q6OsrKytixYwcHDx7kySef5MCBA2SzWUwmE3V1dSgUCurq6kS70u/SXHu9XhKJBFarFYfDgcfjoaGhgYaGBkwmE6lUinvuuUdYhGOxGJlMBrfbzcrKCg6Hg2w2Sy6XY9u2bddds9u2baOhoYETJ04wPT1NQ0MDhw8fxmw2093dTSqVQq/XMzAwgMfjIZlMMjMzg9VqxefzkUwm17WnVqvFuq+vr0ej0RCLxUS8wejoKE1NTahUKurr6xkfHycej9PR0cHExARKpRKtVks4HBYKQEdHx1X3QalUYjQaqaysFHO1b98+nnrqKeHaYTKZaGlp4UMf+hDHjx/HZDJRXl6OxWKhs7OTp59+Wtw7s9nM9PQ0CwsLPPDAA1RWVqLRaNBqtRQKBX70ox9RU1NDeXm5uK6EJJRLO0JbudS88MIL6PV6Wlpa0Gq1VFVVoVAoWFtbw+Px4PF4cLvdZLNZotGocItRqVSiUrjVaqW2tpaysjKGh4cJBAJks1kx75sRi8V44403SCaTLC4uEovFiEaj9PT04HQ60ev12Gw2rFbrpi5/0rEulwuDwYDVal137Msvv0w0GiUSibC0tITdbiebzTIxMcE3v/lNnnrqKaFku91uNBoNVVVVtLW18cEPfhCr1YperxfuV3feeec6xU+r1WK32ykrK0Or1bJt2zYikQg9PT3CvUf6TwoOtlgswkd+bW0Nm82GWq2murqa3t5evF4vGo0Go9FIS0sLer2edDotqrI3NTXx6KOP8thjj4miiaVI7mNqtRq1Ws3q6irLy8viWdfpdKRSKWZnZwFwOBw4nU6am5vp7Oxct+NZKBQ4c+YM6XSa1dVVfD4fJpOJlZUV8Q4KhUJ4vV7m5uYoFou88cYb5PN5WltbsVgsfOpTn0Kn06HT6XC5XNTX1+NyuVhaWnrPxX/JyGyFrATI3NZEwhGam5uZnZ0V7irSR8FisWC325mbmyOXy1FWVkYmkyEYDNLe3k55eTmFQoFAIEChUGBxcRGdTofNZkOhUDA3N0dFRQUqlUoIflarlWg0Sn9/P2VlZbhcLnK5HCaTiUQiwczMjFACIpEIVquVkZERLBYLDodDbLlXVVURiUTI5XIYDAaUSiXBYJBt27ZRXl5OPp8X/dq4E1AoFJidncVms2GxWCgWiwSDQUwmE3a7nbW1NQwGA52dncTjcUwmE7FYjMXFRcLhMOXl5ej1eoLBICqValMhRKvVrpvDqakpKisrhTsPXHEZSqVSxGIx0uk0FRUVQjHxeDyEw2Ha29tJpVKYzWZyuRzBYJBIJEJlZSXl5eU0NDRgs9mIx+NMTk4KhWTjmMPhsMjmkk6nxZglVwSpr/F4nLKyMhYXF1GpVNTU1JDJZFhcXKStrU24+CSTSbq6ujAajcJNRKlUYjabGRgYoLa2VrhCLC8vc/jwYZLJpPBt9vl8LC4uUl5eLlySstmscBO6VnBkTU0NVVVVTE1NCaF79+7dmM1mzp8/L/yJ0+k0CoUCs9mM2Wxm9+7dV2VekXyn1Wo1RqNRKI2S60w0GiUWiwkBSKlUCvcVp9OJVqtleHiY/fv3AzA5OYlGo8Fqta4TrCXhUBLiJD9wg8GA3+8XPtU6nQ6n00lNTQ2BQGBdPIpGo8Hn86FUKtmxYweVlZXCEl1dXY1erxe+81IQteQXrlKp1lW5TSaTKBQKXC4XFouFQ4cObZrdyuv1imxSCoVCCLqSS5ok5FdXV7Nt2zbsdrsYq6QsuN1ufD4f+Xxe+LzHYrF1Pu0bKRQKRKNRXC4XNpuNtrY22tvbRdB7qSC9mQKTz+eFW9Rmx0YiEYxGIzabjYqKCu644w7S6TSdnZ1inc/MzJBKpcTa1uv1mM1mysrKUKlUmEwmsWak95zkny+9F4xGIwqFAqPRSDabFbsWUixBOBwWOzSSm5rkyiitY4PBQCAQIJVKiXYdDgdKpVK839RqNS6Xi87OTnQ6HV6vl+Xl5S2fIWmOE4kEuVxOKCKJRIJMJoNSqRTKk9lsFgqJhOR6aDAYMJvNVFZWsnPnTmw2G6Ojo2SzWaF4JZNJotEofr8fAKPRiFqtpqGhAaVSiUajwWAwYDKZ0Gq14v0kI3M7ICsBMrc1UhBif38/lZWVZLNZvF4vkUiEpqYmFAoFCwsLpNNp4as6PDxMR0cHVquVXC5HKpUiHA6TTCYpKytDp9Ph9/uZmppa5xedzWaFJTgej2Oz2YSwYjabWV5eZnZ2Fo1Gg81mw+v1otPpmJ6eFoGHxWKR6upqkskkU1NTmEwmOjo6ALbs12ZEIhGqq6uBKwKypFxoNBrhs19ZWSncFoLBIMFgELgihIZCIRKJhBj3RqLRKOl0moaGBgCmpqZwOByUlZWRTCaxWCysrKyQSCSE8hGLxRgZGWHnzp1CeHA6nXg8HsxmM8FgkHA4jEajobW1laqqKlwuF2q1mlgsxurqqghS3fgR9Xq92Gw2MpkMfr9fxBRs374dq9UqAkirq6uJRqNMT08Tj8cxGAxkMhl6enpobW1Fp9OxurrK/Pw8e/bsEfc1FouRSCTQaDRMTEyINKJSrENrayter1cIgV6vl2QySV1dHbFYjHA4TD6fR6/XMzU1RSaT2TJziWRhlXyti8Uira2tWK1WpqenhRJaXl6O0+kU/tGtra3U1tZeFTQtWVNTqRSJRIJEIkE6nRa7GzabDZ/PRyKRIBAIYLPZsNvtwuJ/7tw5jh07hlqtZmpqCovl2mVNU6kUyWSSSCTC8vIy7e3tFAoF0Q9pPTU1NZFMJgmFQuLYlpYW1Go1HR0dVFZWcvHiRbFDl8vlxDhisRgNDQ2Ew2HC4TCJRIJoNCrGVlVVRVVVFQaDgfLycvbt27dpys+6ujrhspFMJonH40QiEXQ6HQ6HQ6SBlXaT7Ha7EOxjsRgrKyuMjo4yPj5OIBCgpqYGg8HA2toagUCARCJBKpUilUoRiURE/5RKpRDGnU4n7e3t7Nixg7KyMvH+iEajxONxIaiXrnmNRrPuWOl/pWNbWlowmUyYTCZqamqEC83OnTt58MEH2bVrl9hhlATZcDhMLBYjFAqJnSLpfkkpg6WxSIHE0r/X1tZQqVRUVFQIZTkej7O8vIzX6xVKSzQaxW63o9frSSQSxGIx/H4/drsdjUYj1kg8Hhdzl0wmxfP3qU99ioMHDxKPx5menl53LwuFAplMRsyHVqvFYDCQz+cJh8NiJ8dqtZLNZkkkEuTz+U0zFimVSmprazGZTFitVqqqqmhubqa6upqXX36ZWCyGxWIRz+La2ppQ8L1eL/F4HL/fTywWI5vNin5FIhExxtIYFhmZ9yqyEiBzW1NZWUlPTw8jIyPiYxQIBHC73Rw9elRYhMLhMCsrKxiNRiYmJujo6MBkMqFWq7HZbCwtLbFv3z7h3z0xMYHRaOTuu+9Gp9NhsVhIpVJ0d3fjcrm4++67SSQS9PX10dfXh8ViEVvT0gdBEuDtdjt+v19Yqdvb2xkZGeHy5cu0trby8MMPUygUmJiYoLOzU1iapH5t9gHbu3cvAAMDA0xNTWG1WhkbG1tnZVQoFPh8PiorK0mlUlRVVQnf+hMnTmC1WllZWdnUl3pxcZFgMCgCkxOJBGazGY1GQyQSoaqqikAgIPyPnU4nQ0NDXLx4kV//9V/nox/9qAhSPXnyJEajkVAohMlkoqmpibW1K8Hcp06dYmlpSQQyj42NXZVhR8qyIrk3rKysoFAoGB8fZ8eOHdhsNiEM1tXVcfnyZXw+Hx6Ph8XFRUwmk3Cd0Gq1ZLNZlpaW2Lt3L9lsFpvNJqz7UhYfyf1LsjDq9XrhMiC5gEjnv/LKK6ytrWG1WonFYvzv//2/WVxcvKZLgNPp5AMf+IBwSXM6nVRXV1NbW0tXVxcKhYL9+/dTU1NDMBikt7eXixcvEolErhIulpaWWF5eZmxsjAsXLjA+Po7X62VkZITDhw9z5MgRjh8/ztDQEOFwmP379wvl6aGHHiIWiwmFVqFQsGPHjms+c9LzMTY2Rl9fH7/3e79HKBQS9/Ttt98G4NOf/jSxWIyhoSEGBwe5dOkSn/3sZ7HZbDgcDjHvHR0dQrFaXl7G4/HQ19fHb/7mbxIMBpmcnGR0dJTe3l4mJydZXl7mwQcfpL6+nh/96EcinmOz1Ja/+7u/SzKZpLu7m+npacbHxzl37hzZbJaOjg7a2to4ceIEQ0NDwvVK2g2UFBQp604oFGJsbIzKykrGxsbo7+8X/ZmZmeHChQtMTk6KINX/8T/+B8888wy9vb2MjY0RiUQ4ePAgDoeDqakpent7GRkZwePxMDw8vO45t1qtHDp0CKfTyfT0NL29vQwPD7O4uMjIyAiPPPIIXq+XS5cuMTAwwLlz50ilUhw/fpyenh6USiV33XUXFRUVfPSjH8XtdnP69GlGR0dxu9309fWxsLDAxMQE09PTIqvZ0tIS8/Pzwsd9fn6e2dlZXnnlFWpqavjN3/xNVCoVu3fvZmhoiMXFRSH8Dg8P09fXx7Zt22htbSWTydDf388LL7zAxz/+cWpqalhaWsLj8dDd3S1qJMzNzdHb28sbb7zBxYsXRSKDjeswnU6zsrLCwMAAPT09FItF7r77bhQKBWfOnKG3t5ejR4+KuKP+/n5mZmZwu92bvkPvvfdelEols7Oz9PT00NfXJ3b7QqGQWOMVFRUsLCzwyU9+kmw2y0svvcTY2BiDg4MMDQ3hdruZn59neHiY7u5u1tbWWFpaEnFYMjLvZRRFed9K5jakJwoHLsP5vTl26bJiG7Y0pZ+0TS+lnZO2urPZrMgSIaVXlNwFpDR2km+w5BogWcak3yTBVBJY0+m0sNBuTFeXTqdFykZAWNgklwqJjf3aKt2c9MhK1wfEsZJFVeqXZCkuHZ+UQjKTyYh+bXRJkOagdM5KU/mVtikdL2W1kX6TUubpdDohXEmuHrlcjkwmI1yhStOmlqamLB1vKpUS/sDS+EvT95WmfJR2FKT7ILUtzXehUBDtSJZbae6le1Par9JrlqYTBXj22WdFlqODBw+KdJtSvzYjl8uRTCZFphqFQkEmkxE7VqVjl6yZRqPxqnalPkhjldaKlHKzdF6kXZvN7rVKpRLKhXSfN1IoFPh//+//UV1dTUdHB42Njeh0OtHexj5I/ZOsotLukHSM9KxtdNOQlJHStVYoFESsg2SdlfqeSqUwmUybpmWUxi6tT6mfUiahjeklS9uV3gvSOdL8SPe+NH2mtFZK+y6dJ61baa1Krig6nU6sA6vVetW8S+0lEgkRJyHtQErPUSaTIZ/Pi3ePNF/FYlE8W9IzLxkISjM+bZwz6bdgMMjY2Bg/+tGP+PznPy/aKl07G5/H0nSlgNjNlM6V7mfpHJWuGWnOS99Jm82HtOZLn0/pfSW9kzYeJ12jtK2N8yW9u6QdEpVKhUajEc9H6ZrNZDJiPZeOW7pu6TWlb9XlA7D/2ptsMjI/ceQUoTK3NSqlCp1OKay1pS/6Uj/mUqR/S4pB6ce39ENX2lbpOdL/lgYFSr7GpR9Z6VjpuNL2pL6WCkvX6lcppcF7Yh5KjpU+yqXXl64lBYGW/r4ZG+fgWm1K1984ptJc9aXzI83nxtzdpcLgZuMtvWZpDvTSMUjj2ziu0jzt0nGb3R9JGNg49o1zvry8zGOPPcYv//IvEw6H2b17Nzt27BD37npIPtml1ymdk9KxKxQKIeRuHG/p/JeycS6l620mWEnnSv+72ZrI5/Mik9by8jJOp5O2trZ1191s3KXPyUblQ6FQbDrerc5XKK6kYS1tR61Wb6kASOdIz3TpnJQ+Dzqd7irhvVQIlf7banxb9V0SBjeufYVCIQRIyUd+q9oSpccC6+ICNvZdOkdav6XHaTSaTce4Eem3lZUVzp8/j8fjIRqNrhPkJTZ7B5RSem9Kx7PZ9aS4gNL32GZrYavfStfuVmth43nS/5auL6mt0m9J6buvdC1J87uxboaMzO2ErATI3NZceTH/hwC/1THXOv9Gjr2WMH6t/7/Vv2/kmOtxrWtuda0bOed6/bnWx3ir3za77o32RWKzQNXN+nizH+KbvXcAFouFe++9l7KyMo4cOUJlZeWm9Raudc0bmcNr/X4z14KthfQbbUOv1/NLv/RLaLVaGhoabjgP+jt5Lrc6/52M4Vrr4kYFzncy/9e67vV2ijY7Fq4e/428S7Y67lpUVlZyzz33sHPnThEkvvH8re7rO7nmO312b/Y6m7HZOK63ZmVhX+ZnBVkJkJGRkblJLBYLd999N8VikYqKip95oUDaabvvvvt+2l2R+QlQVlZGWVnZT7sbMjIyP2ZkJUBGRkbmHfBuLZAyMjIyMjI/TWQlQEbmPUZprL4sZMrIyMjIyMj8OJBThMrIvAeRMmXIyMjIyMjIyPw4kHcCZGTeY/h8PlFjoK2t7afcGxkZGRkZGZmfRWQlQOa2Jp1Js7wcAMBms4mUeVIFT7VajcPhIJfLEY1GCYVC1NXVEQgERPGrTCZDJBKhpqaGQqFAMBgkkUhgs9lIJpMYjUbMZrPI1S1V8lUqlZhMJvR6vah4W1VVJfKi22w2UcXU6/WKvNrl5eXE43FRaVin0xGNRnE6nSiVSvr6+lhbW8PpdGKz2SgrK5PdgmRkZGRkZGRuKbISIHNbE/AHKPpmMRgMRKNRqqqqyGQyrKyskMlkRGEqhULB0tISly9f5sEHH2R5eRm1Wo3BYECtVjM/Py9yqc/OzuJ2u2lpaRGFYOrq6nC5XADMzs6SyWQoFArYbDasVivxeJwTJ05wzz33kMlkSKVSWCwWurq6WFtbY2FhQRQIkgpXnT17lrq6OmpqavB6vfj9furq6ujv72dlZYWdO3fi9/txuVyyEiAjIyMjIyNzS5FjAmRua86dP0ehUKCzs5Mf/ehHTExMcOnSJV588UX27duHSqXihRdeEKXjX3nlFSYmJti5cyfPP/883/3udykWi1itVp544gkSiQSJRILJyUmGhoY4fPgwr7/+Om+//TYTExMsLS3x2GOPsX37dqxWK0NDQ7z66qtUVFTw0ksvMTw8jMPhQKFQ8OUvf5lischXvvIVIpEIzc3NOJ1Ovva1r1FRUcH58+e5ePEisViMnTt38td//deoVCqamprYuXMnu3fvZtu2bbICICMjIyMjI3PLkZUAmduaqckpjh07hl6v5w/+4A/w+/3Mz89TX18PwO7du3nzzTcZGxtDp9NhsVg4ePAgJpMJjUaD0+mkpaWFiooKVlZWyGazGI1GKisr2bZtGwAPPPAAs7OzfOc73+HEiRO0traiUChoa2sjEAjw0ksvodFoMJlM7Nq1i+rqahQKBalUCoA33niD6elpPB4P8/PzGI1GNBoNBoOB5uZmOjo6UKvV4nipKuVmBXpkZGRkZGRkZG4FsjuQzG2NSq0im82i1WpJJpNoNBoUCgXxeBy4kmVHpVKtqwAplbtXq9Wo1WqR7z2fz4v0nKU54IPBIEqlEqvVisFgwOv1irbhP8rKA2i1WlHVU3IlMplMtLS00NXVRT6fp7m5WfRHrVaLuATpeOna2WyWiYkJ2tvbKRaLcl56GRkZGRkZmVuGrATI3NY01Ddw6tQpOjo6CIfDVFdXE4/HmZ6eZn5+HrfbzaFDh6ipqcHn8+H3+xkfH8dms7G6uorRaMTj8TA2Nsba2hrBYJBUKkUqlcLtdtPU1MT09DT19fXU19djsViYnJzE7XYTCATQ6XTceeed+Hw+AoEA09PT5HI5PB4PPp+PpaUlPvShDxGNRpmamsLhcJBOp8XxbrebyclJFAqFON5isZBIJJiYmKC1tZVischzzz1HXV0de/bsQafT/bSnXUZGRkZGRuY2R1YCZG5rOjo7CHrGiMVi5HI56urqAEgkEkSjUcLhMHfffTd2u52VlRW2bdtGIpFAo9FQU1ODTqcjlUqRz+dpampCrVZTKBQoFAokk0ni8Tgmk4kdO3awbds2CoUCzc3NJBIJwuEw9fX1VFRUkMvl6OzsJJ/PiwDgbdu2kUql+PCHP8zS0hKhUEhkGMpkMjQ3NwuBX6PRsHPnTvL5PLW1tSiVSlZWVjCZTCgUClZWVjCbzWK3QEZGRkZGRkbm3aAolpYnlZG5TeiJwoHLcGl/kb2mK2k7jUajcJcpFAokEgnx24260RSLRc6ePcvg4CDbt2/nwIEDGI3Gde5ExWKReDyOXq9HpVLdUNuFQoFcLkc+n8dgMFz3+Hw+Ty6Xk63+MjIyMrcx0rfq8gHYb/lp90ZGZj1yYLDMbY9SqVynAMAVv3rJin4zRKNR3G43fX19nD179qp2S9uWfP9vBIVCgUajQa/X39DxSqUSrVZ7U32XkZGRkZGRkblRZHcgmduaK1b+zX9/J5jNZj72sY/x0EMPXdPKf7Pt/7iPl5GRkZGRkZG5GWQlQOa2ZjRxq1tUAgZQGKAAxG51+zIyMjIy7xdu/TdKRubWISsBMrclZRowKuGR0Z92T2RkZGRkZLbGqLzyzZKRea8hBwbL3La4U+DL/rR7ISMjIyMjszVlGmi4sXAwGZmfKLISICMjIyMjIyMjI/M+Q84OJCMjIyMjIyMjI/M+Q1YCZGRkZGRkZGRkZN5nyEqAjIyMjIyMjIyMzPsMWQmQkZGRkZGRkZGReZ8hKwEyMjIyMjIyMjIy7zNkJUBGRkZGRkZGRkbmfYasBMjIyMjIyMjIyMi8z5CVABkZGRkZGRkZGZn3GbISICMjIyMjIyMjI/M+Q1YCZGRkZGRkZGRkZN5nyEqAjIyMjIyMjIyMzPsMWQmQkZGRkZGRkZGReZ8hKwEyMjIyMjIyMjIy7zNkJUBGRkZGRkZGRkbmfYasBMjIyMjIyMjIyMi8z5CVABkZGRkZGRkZGZn3GbISICMjIyMjIyMjI/M+Q/3T7oCMzM2SDWbJx3I/7W7IyPxUUJnVaByan3Y3ZGRkZGRuc2QlQOa2IhvMMv9/pilmij/trsjI/FRQaBU0PtoqKwIyMjIyMu8KWQmQua3Ix3IUM0UqH6khbcyw6PEwNjZGTU0Ng4ODdHZ20traSlVV1brz0uk0sVgMn8/HSy+/zAMf+ABNzc1YzOZ33JexsTFOnz5Nb28vDoeDBx98kIMHD2IwGN7tMN8VFy5exGG3097evunfc7kc09PTPP3008y752ltaeXgwYPkcjkCgQDxeJyOjg62dXRQXlZ2zWv5fD5CoRBKpZKWlpZ33OdgMMjs3BzNTU3Y7XYUCgXj4+P09PQQi8X47d/+bZTKW+O9mM/nicViXLp0iSeeeAK73c6HPvQh7r3vPjTqK6/ERCLBG2+8QXd3NysrK3zmM5/h6NGjqNU3/so8/tJxLl+6TLFY5E/+5E+2PG52bo5/f+wxdHo9v/arv0pHR8eWx2bWMqx+e4l8LCcrATIyMjIy7wpZCZC5LdFWaHGHFzgzcZZTZ07xve99jy/+65/TvDTALxh/gaZDzeuOD69GmFud5+LQRf7qq39Fw/4G6h0N6KveucC+t34f/UsDTL01TXtFOx/4Tw+gUqnE34vFIsVikVQqRaFQQKlUolar0Wg0635TqVRoNBoSiQRKpRKtVkuxWCSbzVIoFFAoFOh0OpRKJfl8nlQqhVKpRK/Xk81myWazKBQKjEYjkUiEp04+xY4dO2g50opWq0WtVqNQKNb1fXfTHp45/SzusQV21nfx85/8CMVikWAwyO/+7u/S6+njw6oP82v7fg1AXKdYLK679uDQEB6PB5vNRtOhZqEAZTIZcrkrLlsajQaNRoNCoSCXy5HNZsnn8ygUCvR6PblcjjnPPE+//TS/Ufsb2Mrs6PQ6TGkzjpgTQ8qIvt6AQqEgm82Sy+UoFouoVCp0Oh2FQkH8rtVqKRQKFAoF1Go1arV6U+XBUDByf8sHePLkUzx/8gVMTWYO/vwhoTxOD8+wkl9lLj6PO+jmg7/xIYB11wLWzW+xeGV3Srq3VV3VKNxKJicm0NdfmZd0Ok0+n1/X/+3120n+IEUoHSZrz6Gr05NKpcT6keZbRkZGRkbmViIrATK3LeXl5ezZswe9Xk+xWCQej+NyuSjbxHpdWVlJZWUlXV1d/NVf/dVVQvGPA0mofvXVV4lEIlitVlpaWjh06BBvvPEGXq8Xm81GS0sL27dv54c//Ipm7wMAAQAASURBVCFWq5WjR4+Sz+cZHBxkbW0Ng8HA/fffj8PhYHl5mWeffRan08kv/dIvcfnyZUZHR1Gr1XzqU5/i//7f/8srr7zC3NwcRqORo0eP0tbWdkP9VSgUOJ1OHn74Yb73ve/x1FNP8au/+qvAlV2PiYkJIpEINpuNj3zkIwwODvLP//zPJJNJOjo6KBaLfPzjHyeTyXDu3Dnm5uYA2L17N7t370apVLKwsMDw8DBzc3NYLBYeeughJiYmePrpp/nud7+LXq/H7/dz8OBBwuEwS0tL4n5ms1l6e3uZnJykUChQV1fHXXfdRSgUYmhoiImJCQ4dOkQ4HGZtbY22tjY6Ozsxb7Hbo1AoaGlpIR6P4/f7eemll/j0pz8NQH9/PxaLhZaWFtxut7if4XCY0dFRxsfHUSgUHD58mNbWK8oWQDKZ5OWXXyYcDhOPx/H5fOJcgAsXLrC4uEgul6O8vJwPf/jD4m+lvPnmm8TjcZLJJA6Hgw9/+MPiGjIyMjIyMrcCOTuQzG1LeXk5+/fv59577+Xzn/88NpuNBx54gL179/60uwZcsfo+88wzXLp0iUOHDpFIJPj85z/PyZMnufPOO/nhD3/I22+/TTQaJZ/PMzw8zJ49ezh58iRf/epXuXTpEr/xG79BKpXiC1/4As8//zxKpZJsNstjjz1GLBbDZrPh8Xj48pe/jEql4r777hPK0Uc/+lEaGxtvut9Op5NCoYDf78fr9XLixAl+//d/H7PZzF133UU+n+d//a//RUdHB7W1tXR0dHD33Xfz8z//8wB85jOf4dSpU7S0tHD//ffz6KOPMjExwfe+9z3+5V/+hdOnT/PII4/wxBNPcObMGaqrq9m7dy8KhYKHH36Yo0ePYrPZUCgUBINBvvWtb1EoFPj93/99XnnlFRoaGviFX/gFvv3tb/Mv//IvhMNhkskkb775Jn//939Pe3s7KysrPPfcczz11FPXHe/HP/5xlEolzz77LKlUirW1NRwOxzrre7FYJBAI8NnPfpaXX36Zn/u5n+Phhx/m05/+NK+99hper5eenh4++9nPMjU1xa/8yq/gcrlIp9PAlR2Ev/qrv+KJJ57A4XBw4MABTp8+zfe//31SqZS4TjKZ5OTJk5w8eZIDBw7Q2dlJoVAgk8nc9H2UkZGRkZG5FrISIHPbIrnTVFZW8pnPfIby8nKefvppXnnllZ9qv2ZmZhgcHCSZTPKBD3yA9vZ2JicnmZqaIpfLMTMzg8lk4oMf/CCxWIzXX3+dcDhMVVUVLpeL3t5eZmZmaGxsRKvV0tHRwdDQEOPj46TTaSwWC5lMhmKxiNFoRK/XCyHRaDSiVqvR6XSYzWY0mpv3G5cEV71ej0aj4eWXXxZxBJOTkwSDQTwej3CF0Wq1GAwGjEYjKysrXLp0iaWlJTweD/39/TidTubm5njttdfw+Xy0tLRgsVj4i7/4C44dO0Z1dTU6nQ6FQoHZbMZgMKBUKtHpdJhMJjKZDGtra1y8eJFCoUB9fT16vZ62tjZeffVVfD4fWq0Wo9GIy+XC5XJhsVgIh8N4PJ7rjnfHjh20traSy+V47bXXOHv2LDt37qSiomLdcRcvXsTr9aLVanG5XJhMJsrLyzl79ixTU1O43W5Onz4tdqdcLhc2mw24okS88MILhMNh5ubmGBsbQ6VSMT09TT6fF9fQaDQ0NjZy5swZfv/3f5+vfvWrLCwsvKP7KCMjIyMjcy1kdyCZ25aBgQGmp6cxGAw89NBD2Gw2BgYGaGhoIJvN4vV6SSQS1NfXo9PpfmL9Gh8fJxgMUlVVxZkzZ4Ar1nWXy4XRaCQej6NSqbj33nuZmZnhwoULtLe3c/jwYYxGI6lUinQ6Ldw/dDod8XicdDqNUqlcJxBK/u8SKpUKhUKBUqkknU4zNzfH9u3bb6jfkg+6pKQ0NjaiVqtJJBIYDAYcDge1tbVYrVbi8bjwt1cqlaRSKaanpzGbzcTjcYxGI+Xl5TidTj72sY/hcDhIp9MiJkKpVLJnzx4SiQQqlQqlUin6PTExQWNjo4ihkPoWi8UoFApi/DqdTuyiSPNiMpnQarVoNBpyudw6K/tWWCwWOjo6mJqa4oUXXuCOO+7AbrdftWaSyaRQkLRaLZlMRsyPFCcQjUaxWCwijqP0XiUSCSwWC06nk4aGBiwWC4FAYF0ciYSkIEYiERYXF3G73VsGesvIyMjIyLwT5J0AmduW8fFxXnnlFY4fP47f7xfCoCQADw4Ocvr0aWKxGLlcjlgsxtramvDtDoVCJBKJd3z9UChENBolk8mQSCRYWVlhenqaixcvMjo6ikKh4Ac/+AErKyuUl5dTV1eHyWQiFAqRy+Xo6uqipqaGYDDI22+/zcGDB9FoNNTV1eF0OvH5fHi9XhYXF6mqqqKiogKDwYDJZBLxBj6fj0gkQi6XIxQKodfr/3/svXeUXud13vv7em8z33zTO2YwAAYdBECQFEWxqJByiSJblu0o9rIjx06cxImdOLmRl5N7o0Q3ciRFlmTxSpRIkaJJgkWESJAg0Yg6gwGmYXqvX++93j+Q83oaCjshnWctLAAz57znrefs8uy90Wq1pFIpFhcXGR4eXtfvYrFINBolHo+TzWaJxWIsLy+ztLTE1NQU09PTNDU1cdddd6FWq+no6MBkMmG326msrKSlpYUHHngApVKJxWKhVCqxvLxMb28vRqORlpYW7HY7ZrOZ2tpaDh48SENDA5s3b8ZoNOL1evF6vSwvLxMMBoXCY7FY8Pl89PX1EYvFyGQyxGIxcrkcKpWKhoYGCoUCCwsL+P1+QqEQmzZtQqfTkclkSKfT4k88HhdCeyqVWsW7l4Ku3W63ELSbm5vZuXMnXV1dOJ1OcrmcaCOfz+P1eqmqqsJut5PNZllcXMTr9ZLP56mvr6esrAy73U5TUxNut5tQKCTiAjKZDIlEgu3bt2OxWLDZbNTV1bF161Z27dpFNpslm82STqcJBoN4PB4+85nP8IUvfIGOjg7i8ThLS0vveJ/KkCFDhgwZG0H2BMi4bdHZ2Ukul2NycpKjR49y9epVHn74YR566CFSqRQXLlxgdHSUe++9F4CJiQlOnTqFRqPh0qVLqNVq7rjjDnbu3PmOnn/27FmuXLlCKBRCoVDw+OOP09fXx/j4OHv27EGn09HS0sLi4iIXL14kk8ngcDjo6uoiFApRXl4uUnPq9Xr0ej0KhYJ//I//MadOneKtt95Cr9fT3d3Nb/7mb3Lo0CFsNhvbtm1DpVJx4sQJcrkcS0tLpFIp3nrrLe655x5qa2uZm5vjxIkTbNu2bV2/c7kcFy5cYGRkhGAwSH9/P0888QTpdJqJiQmampr49Kc/zb59+1CpVHzpS19iYGCAs2fPMjo6isFgwGw2s3XrVvbs2cO5c+fo7+9Hq9Vit9v5y7/8S06ePMmzzz4r+Pn/7J/9M377t3+bI0eOcOHCBYxGI6lUioceegir1UplZSUHDhzgpZdeYufOnZRKJZaWlujr6yMajRIMBvmjP/oj+vv7OXz4MM3NzUxMTPBv/+2/xW6309vby8LCAqFQiNnZWYaHh5mbm6NUKjE7O7sq7WY+n8fn8/Hkk08yODjI5cuXOXToEIcOHeLIkSPcd999TE9P09fXx/T0NNlslueee44//MM/5OGHH2Z2dpYf/OAH2O12HA6HiL0oLy/n3/ybf8ORI0fIZrMMDg4yMTFBNBrl6tWr/If/8B/4zne+w4kTJxgbGyObzXLnnXfi9XoJhUKEQiEuXrxIR0cH586dY9euXeTzeRoaGti6des7OyQyZMiQIUPGdaAobZSaQoaMjyjS8ynm/2aG+j9rQlenFxSWWCyG2WwWtBJgVYpFCdLPpGsUCsU7zhQktSUdoZVpIqV2S6WS8FBIzykWixw7dozNmzczPDxMNBrloYceoqysTNwj/cnlciK95sp+FotFkWazWCySz+cxGAzifokiJFFNVt4r9XEljWjlnG00J9I4ADGWlc+SUl4qlUrR95WpOle2L/VdGtfKMRWLRUFpWtlHqd2VY1+Z/nPlOqzsg9TPjca/9hqp7Y3aXDneleOTxry2bSkNqDQmKXXqynncaJzSMxQKBel0WqSPla7LLKTF/pfSjsqQIUOGDBnvBLInQMZti5WCmcViWSVoS7/f6J73+vlv5xqpv/39/QwODlJRUUFbWxt2u33dPaVSSfDS1z5nrfC5UlBcOQ83moONuOhvZxxrf772ZwqFYpWgu/J3GyknEpXren1c2f5G7W40xuuN5XrXbPS8tfdKgv5GY7he2zear5VtrVRQJc/QB5HOVoYMGTJk/PJBVgJk3PZYKVR+FLFWiFMqlTzwwAMUi0URKLpR/29Fwbjete+H4Hi9Nt/vn7/T694v3Mrzb0UJudnvPuxxypAhQ4aMX2zISoAMGR8wFAoFe/fu/bC7IUOGDBkyZMj4JYasBMi4LZH1ysWTZPzyQd73MmTIkCHjvYKsBMi4raAyq1FoFXh+IqdMlPHLCYVWgcosv7plyJAhQ8a7g5wdSMZth1woRyGe/7C7IUPGhwKVWY3GIVcQliFDhgwZ7w6yEiBDhgwZMmTIkCFDxi8Z5IrBMmTIkCFDhgwZMmT8kkFWAmTIkCFDhgwZMmTI+CWDrATIkCFDhgwZMmTIkPFLBlkJkCFDhgwZMmTIkCHjlwxynjkZtzXm0uDPfdi9kCFDhgwZMjaGUwMN+g+7FzJkrIesBMi4bTGXhi1dkCx+2D2RIUOGDBkyNoZRCcP7ZUVAxkcPshIg47bFdChGsmjhr7WT7HOZcJaXo1KpUSgUt9xGsVikWCxQKoFKpUKhULyt+98vFItFiqUipeK1DL4fpb691ygUC8RiMfx+P+Xl5disNpTK95+pWCqVKJaKKBXKD3ReU6kU0WiUcDhMe3v7umeXSiXS6TTz8/NYbVYqKipQKVUbtnWrY8gX8iwtLqFUKSkvL8egN7ynY3onyBfypJIpZmamad+8GY1a84Gs+3uBYrF40/NYKpXweD2YTCYMej1qtVzbYS3y+RzxRIJsJovL5XpfnvFBnfNcLofX66VQKFBVVYVWqwVgOAm/M3zNYy0rATI+apCVABm3LdxuN2Dhle9+nZZPHuLQI49gMVlQqTYWmDZCKpUhHA6TSqWoqqpCr9ejVH6wgnaxWCSfz6PRaMRHKpPJEYvFCIfD6HQ6DAYDBoMBnU6HWv2LdWzT6RyXBgY5++yzPPLII+z8+MfRaD4IJQCi0Tgmo+kDndNpv5uZi+d49dVX+cITT7BWLimVYNq/zA+/8z+4++67+cRv/RZ6/fWUgFsbQzye5vjLT6HRaNjxuc/RVNH0Ho7onSEeTzPumeAnf/UXPP7441TYKlCrbw8lIBZLoNVq0el0172mWCzxkxdfp3bnThobG7Fb7B9cB28ThMMJ+qf68Swu8qnf+q335Rkf1DkPBKL0HH8Jr9fLH/3RH1FVXvW+PUuGjPcKt8cbV4aMDbCpdRMAwVCQz33uc9hstrelAABcvXqVr371q/zu7/4uly9fJpFIvB9dvSECgQCnTp1a9bO5uTmeeuopPvvZz/L1r3+dL37xi3zta19jYGDgA+/f+w2dTkddXR179+4lk8l8oM9+4YUXCAQCH+gzm5qa2LZt23Wt3gqFgubmZhoaGrBYLBSLN+a7vfjii/h8vhteo9PpePjhh0mlUuTzH41q22azmaamJhoaGoBrFtvbBUePHmVqauqG1ygUCjo7O4VxQcZ6GI1GGhoa2LJly/v6nA/inFutVh5++GEikQiFQuF9fZYMGe8VfrFMijJ+qbDWtZtIJLh8+TIKhYLa2lq8Xi86nY7NmzdjNBo3bKOpqYl/9I/+EXq9nj179oiPdaFQIJlMcvr0adRqNVu2bKG6uhqAkZERPB4PnZ2dJJNJFhYWUKlUHDp0iEKhwNjYGH6/n7KyMrZt20Y4HGZiYgKLxUJdXR2Tk5MolUo2bdrE0tISp06d4rnnnqNUKqHT6di2bRuNjY186lOf4vTp03zlK18hnU7z8ssv8+KLL7Jjxw6Gh4eZnp6mqqqK+vp6KisryWaznD17lrKyMiwWC6VSicXFRQ4ePIhWq2V6epqFhQWi0SgOh4MDBw6gVqvJZDIEg0GuXLlCc3MzLS0tZLNZ3G43c3NzbNu2Db/fTzqdxul00tTUdNO1KRQKhMNhFhYW8Pv93H333Wi12g3d8Rv9LBAI4Pf7icViWK1W2traGBgYIBqNYjAYaGhoIB6PMz8/T2trKzqdjlAoRDgcxmaz0dDQQCqVYmFhgYmJCR5++GEmJydZWlrC4XDQ3NzME088weXLl9Hr9Rw4cIDm5uZ1/UgkEiwtLXH58mU+/vGPMz8/j06nw+l0UiwWGR0dZevWrTgcDnQ6HblcjqGhIdLpNJWVlZSXl4u1SKfTDA0NoVarWVxcXPWc4eFh/H7/NUv9jh0YDDem65RKJSKRCI8//jhXrlxBo9Fw4MABWlpayOVyjI+P4/P5aG1tpaamZtW9mUyGyclJFhcXcTgcdHZ2cuXKFeLxOFarlfb2dgwGA5cvX6ZUKqFSqTAYDHR0dFy3P7Ozs7jdbnQ6HY2NjTgcjhv2fWpqimAwSCaTWSX8p9NpQqEQc3NzqFQqtm3bhsFgoFgskslk6O7uxmAw0NTURC6XY2FhgVAoxIMPPsilS5dIp9OUl5fT3t7Om2++SVVVFSqVimw2S7FYZPfu3QwODpLNZqmtraW2tpZisYjH42FqagqdTofL5cLlcnHy5Emqq6tRKpWkUikUCgV79uzh1KlTPPvss0xNTRGPx+no6MBisawaY7FYJJ1OMzU1hdFoJJO55nEcHx/n4x//OCMjI7hcLsxmM5lMhqmpKXbt2oXVakWpVBKPx5mdncXr9XLgwAGMRiNKpZJ8Ps/i4iIzMzPY7XZyuRwKhYLdu3czNDREJBLB4XDgcrlwOp03nP/l5WUqKiqorq4W/b+VNS+VShQKBSYnJ/H7/dhsNjo6OlCpVLzxxhviLOTzeaLRKPfcc891qVPz8/MsLy9fo+wUixw7doyKigo0Gg3ZbJZUKsVdd91FNBqlt7eXUqmEy+UiFApRXl5OU1MTfr+fhYUF4vE4999/P2fPnqVUKlFVVYXT6bylcw7X3ller5f5+XlMJhMulwur1cry8jIXL17k0KFDhEIh0uk0dXV14lwFg0F8Ph+hUOgXkq4p4xcbsidAxi8MdDod4XCY/v5+zp8/T3NzMz/72c9wu93kchunEFKpVOj1ejQaDWq1WlhnpQ/4wsICgUCAl19+maNHj1Iqlchms7z00jW379zcHBcvXmRhYYFSqcSPfvQjTp06xcjICMeOHePo0aOkUikuXLhAV1cXXq+XVCrF448/TigUIpfLkUqliMfjpFIp0uk0hUIBpVIphGaFQsHo6CiRSASz2UyhUODYsWMUCgXOnDnDK6+8wvz8PKVSiVQqxfe//32+/e1vc/ToURYWFvD5fLz11lucP3+eyclJEokE3/rWt0gmkySTSc6cOcOjjz5KPB7n+eefZ2BggGAwSCwWY2BggP/4H/8jZ8+eZWBggMXFxZtapgFGR0cZGRkhl8vhdDp57LHH/g9969bw1ltvsbCwgMVi4YUXXsDr9eJwOBgYGOD06dOYTCYymQyLi4tMTU1x9epVxsfHaWlpYWpqit7eXqLRKLlcjtOnTwsFpre3l56eHrRaLW1tbTidTtra2qioqNiwH1qtFr1ez/HjxxkZGcHpdDI7O8sTTzyB3++noaGBl156iZGREZaWlvj5z39OsVikpaWFvr4+urq6CIVCYl1MJtM1jr9KRTweB+C5557D4/HgdDopKyvjySefvCVLolarpb29XYzB5XIRi8U4f/48qVQKu91OV1cXr7/++qr7VipHDoeDJ598knQ6TXV1NaVSiaeffprLly+TyWRwuVxoNBrm5uY27EOxWMTv99Pd3Y1eryccDvPoo4/esN9PP/00CwsLVFRUUFlZyfLyMsVikVQqxZUrVzh+/DibNm3CYrHwyiuvMDo6yszMDI899hg1NTUYjUYGBgZYWFhAp9Px4osvUigUsFqtTE9Pc+HCBRQKBUajkaeeegq/3w9cU96ffvppqqqqGBgYYHBwEL/fj9/v5+mnn6ampoZIJMLIyAherxej0ciPf/xjEokE+Xye6elp+vr62LJlCyaTibq6Opqbmze08isUCjQaDT6fj9nZWXK5HNlslpMnTzI6OkpTUxOnTp3iyJEjRKNR6uvrefzxx8X1/f39ZDIZnE4nTz/9NOPj4ySTSWZmZnjttddobGykq6uL+fl5LBYLV65cYWhoiPr6eiYnJzl37tyGnpV8Po/P5+PixYtUV1fT29vL888/T6FQuOU1LxQKnD17lkgkgtFoZHl5maeeegq4Ztn/+c9/zvDwMAaDgbm5Oa5cuUI2m92wrfLycvF+ku5//vnnmZ2dRaPRMDs7y+XLl9FoNPj9foaGhhgdHaW9vZ3z589z4cIFEokEhUKBI0eOAGC32xkYGKCvr++WzzlcOxeHDx+moaGB7u5uurq6hBHi5MmTDA4OotfrKRQKPP7445RKJebm5njrrbdwu93U19cTi8VuK4+WDBmyEiDjFwZS8Kz0wS0rK8PtdhOJRK77EboeFAoFarWaWCzGwsICFy9epK+vD6VSidPpJB6Pk81micViRKNRYZkeHh5GqVTS3NxMZWUlJ06cQKVSkU6nhVBaUVHB+Pg4mUwGu91OZWWloEbU1dUJK3ChUMDv93P+/HmmpqZwuVzs27cPALVajcfjYWJigqtXrzI6OopKpaKhoYHJyUmCwSA1NTU0NTWh0+nIZDK43W5mZ2fx+XyYTCYUCgULCwsMDg4KgWhubo7+/n7C4TAmkwm9Xi+slvX19ZSXl9/S/Gm1WpRKJel0GoCLFy8SjUZvef51Op2wds/NzbG8vIzZbEapVIpYiXg8Tl1dHbOzs8zMzKDVaoUXpKenh+XlZZRKJcFgUAiJsViMUCiEWq3G5XJhsVhwOp2YTKYN+6FWq9Hr9QSDQVQqFQ6Hg3g8zvj4ODabjaqqKkZGRvD5fHg8Ho4fP05FRQVlZWUUCgWWlpa4evWqUChNJhMOhwOj0SiEhTfeeAOPxwNANptlenr6poKEtD8rKiowm804nU4xPwaDgWQySalUYnJyktHRUXFfLBajt7eXYDBIU1MTNpuNo0ePkkgkKJVKJJNJZmdnKZVK9PT0cOnSJZaWlkSQ40b9kCh4+Xwet9tNX18fxWJx3RgkJbW7u5tkMonT6cRmswnr6fz8PDMzM4TDYcrKynA6nXR1dTE1NYXb7aa7u5vKykoqKiqw2+3YbDZMJhPz8/PANeEvnU7j8XhQKBQ4HA68Xi9KpRKj0Ugul2N+fh6bzUYqlSIYDOJ2uxkdHWV6eppsNks2myUajRIIBLDb7bjdbjQaDQaDgWw2y+zsLC6XC71ej8PhoKysDI1mfcDvynmR5lalUhEOh9FoNDidThYXF3G73eIdcOXKFRKJhDBIpFIpAHp6evD5fORyOSKRCB6Ph/LycjweD6lUCo1Gw5kzZ4jH4+KaYDAozt71+pXL5ZienmZ0dJRSqXTLaw5gMBjIZDIUCgV8Ph+XL18WaxAKhchms5jNZkqlEjMzM9c1wpjNZvL5vNj/drsdn89HsVgUBo+ZmRmUSiWlUklQ2crLyzGZTHR3d+P1etFoNMK7VlZWJtbwVs+5NDcGg4FEIsHy8jKLi4uEQiGMRiPBYBCFQiH26/DwMACXLl0ScVsOhwODwSB7A2TcVpCVABm/MJBe4k6nU7jxpY/V9T5CayFZJBOJBGq1Go1GQzqdxu/3C+GxoaGBbdu2kcvlSCQSmM1mDh48SCQSoVgssmnTJh544AEeeugh+vr6MBgMghai0Wior68XH4qqqipaW1txOBzs2LFDCO3XshYVCQQC9PT0oFKp2LNnD3fffTfFYpHa2loCgQBKpZJCocDExAQajYbt27cLisev/dqvcdddd1FRUYHL5RKCTCKR4MEHH6RUKjE9PY3f70er1ZLJZKiqqmJ5eZlsNktFRQWbNm2iubmZT3ziEzzwwAN0dHSgUCiE0HA9OBwOrFYr2WyWTCZDIBAQXo6bIZfL0dDQgMFgwO12YzQa8fl8KJVKWlpaqKqqor+/n0gkwv79+/F4PPj9fuGeb2lpYXh4mKWlJTQajaCCaTQaNBqNEIKUymvZQorFIoVCYcO+SUKTxF2WFDSNRkNTUxNms5lUKkU2myUUCtHb20ttbS1KpZKysjIymQx9fX2Mjo5it9vRarUYDAbMZrMQskZGRohGo2QyGeLxODU1NbcsSKhUKpRKpQguV6lUVFVVrRJoI5GIEJ6i0SiXLl0ikUiwa9cu9Ho9g4ODpNNpkskk2WyWmpoaqqqqGBwc5MSJE4yOjt6QnqRSqaisrCSVShEIBIQSvhGSySRerxeFQoHZbEaj0eBwOFAoFExPTws6l0KhoLy8nOnpaZaXl0U2JbPZjMvlYufOnbS1taHT6cQ86vV6EfipUCiwWCxCSTIajVitVmw2G2q1WgiDPp9PWK39fj8GgwGbzUYmk1l1v6QQRyIR4Z2TzsFGwrYEk8mEUqlEqVSK5zY2NqJWqymVSpjNZhoaGjCbzcTjcQqFAhaLhbKyMrGGwWCQZDJJoVAQ8yb1z263UywW6enpwWKxEAwGsVgsuFwuksnkhn1Sq9VUVVURCASEYSKXy93ymiuVSmpqaigUCuJ9EgwGyefzQiG12WwYjUYsFgvhcPi63kPpHSslRZDm3Gq1YjQaMZvNhMNhsb4OhwOn0yniLUZHR/F4PKv2gcFgWBUbdivnXFJat23bxuLiIqVSiVwuRzAYpFgsYjQaqaurw2q1Aog2urq6MBqNuFwuVCrVdSlYMmR8VCHHBMi4bXFNCFWIf0t/JCuphI2skivbkH4vKQD9/f10dXUxMTHBb/7mb7Jnzx6+973vkcvlRGrARx55hJMnT+J2u6msrASuWbVCoRCJRIJMJkMsFhP0IunvfD5PLBYjk8mI5yoUCiHInT9/nrq6OioqKkQswl/8xV8IalA2m2V5eZknnniCb3zjG8TjcUZHRwWlolQq0dTUJPokjXtxcZGdO3fymc98Bo1Gw1e/+lUaGxtRqVRUV1ej1Wr5jd/4DXK5HIFAgNraWtG3HTt2CEucJJxKlCXYmNP/0ksvEYvF+OQnP0lLSwtwjecfj8ex2Wzr1mDln4WFBZ5//nna29v52Mc+xvDwMKVSCb/fz9atW1GpVDzzzDN8/vOfF0JRKpUSrnifz4der/8/mZ6u0aqktlcKRtKYgsEgOp0OvV5PWVnZdfumVqvFWmk0GvFzad6VSiU6nY5sNotGoyESiZDL5bDZbFitVrxeL7lcbtV9cM362dLSwrZt21AoFGzevFn07WYegZVjkJSmH/3oR/zBH/wBmzZt4uzZs3i9XrxeL6VSibq6OjZt2kQ6nebw4cN86UtfwuFw0NbWxqZNmygWi2zfvp3JyUm++c1vEo1GOX78OE899RQHDhxY9/x8Ps/Ro0cJBAI88MADtLe3c/bsWZaXl2lsbFy3NwwGA/F4fNX+l/6WvFPSOkqWX41GIzjm0nykUikh3EleI6ndlfMrUfyk+ySrvfR7pVJJRUUFwWCQbdu2YbPZyGazxONxIpGIEE7Xrpk0rmg0ytzcHDt37ly3b9buHwnSu0mtVqNSqda1ferUKfr7+/n1X/912tvbUavVIoOZZEzo7u7mV3/1V3G5XPh8PioqKqipqWHbtm3s3r37usJuLBbjtddeIxAI8Bu/8Rv09fUxMTHB8vIyfr//ltY8k8mIZArt7e3EYjHhBZLmfO24Vr6bbzZPK9ds5f1rr/d6vdfSrxoM4kxKayKds7Vn5HrnPJFIMDExwaOPPsq3vvUtFhYWyGQyZLNZPB7PqvO/cq2sVivxeJxoNEpNTc26d5nsFZDxUYesBMi4bTE+Pg60E4vGePbZZ7n//vvp7+9ncnKSqqoq6urqGB0d5eTJkxgMhg2DFcfGxnjssceEy10SOqqqqnjggQd49NFHMZlMzM7OCuvSX/zFX9De3s6jjz6Kw+Hg4x//OHBNmLv//vt57bXX+P73v49areav/uqvMBgM7N27l5MnT/KVr3wFo9HI5OQkb775JgqFgoqKCj72sY/xB3/wBxSLRf7kT/6EUqnEkSNHuHz5MqOjo7S1tWEwGNBoNFRWVuJwOPja174mPkCS8PjSSy9x5swZuru7mZ+f54/+6I8oKytjbGyMnp4eEokEFRUVeL1empubKS8vR6VScfjwYf7dv/t35HI5vvjFLwrqw5NPPonP58Pv9/P7v//7bNmyhWAwyN/93d9RU1PDI488sqH1S6FQkEqlmJqaYmpqirKyMjweD4FAYJ0SIHH7z507h9lspra2llwuh8fjYXx8nFKpxOnTp6mtraWqqoqysjK0Wi179uxBrVbzuc99jitXrnDu3DmUSiXHjx/nN3/zN9m0aROZTIYDBw5w5swZtFotMzMzGI1Gent72bJli+B5m0wmqqrWp/RLJBJMT08zNTXFsWPHaG1tZXh4mLGxMS5cuEA8Hhe/v+eee/jzP/9zfvzjH9PZ2cnc3ByNjY089NBDqFQqzp49K/jtvb29jI+P093dzZ/92Z8xOTnJ4cOH2bRpk6CXTU9Pk0wmqaioEHtsJdRqNc3NzavGYLfbBc1LCgJXqVSMjIwwMDDA1atXufPOOxkcHOS5556jUCjwV3/1V5w8eZLx8XFcLhfRaJSpqSmGh4fZtGkTtbW1fOYzn7nuOSwUrtV5GBkZEdb6kydP8ju/8zvrMiAZDAa+8IUvkMlkxP6fnZ3lyJEjfOYzn0GtVtPd3c358+eZmJjgn/yTf8LOnTtRKpX86q/+Kk8//TRNTU3C+yAFCV+9elVQ2ZLJJKOjo5w+fZqhoSHGxsYwGAy89dZbJJNJ7rrrLhEcvG/fPn7jN36Dnp4eLl68iE6nE/P4xhtvMDw8zPj4OPF4nLNnz5LL5fj1X/917HY78/Pz2O32DfPbF4tFYrEYFy5cwGAwCCVxfHyc1157jdbWVsbGxjAajZw7d04EuY+PjxMMBsX5m52dFdZwv9+Pw+HglVdeweVycfz4cQ4cOMDBgwf50z/9Ux599FFyuZzwJuzdu3ddv6Sg3kgkwsDAAKlUimKxyKlTp8jlcre85kqlkqWlJYLBINPT01itVsbGxpiYmKCvrw+9Xo/FYuH06dMkEgnuv/9+DAbDOorRyMgI/f39jI+Pc/XqVc6dO8fg4CB1dXVkMhlOnz5NMpnk4YcfJpfL4fP5CIfD2O12jh49yhe+8AU6OjoIBALU19czMDDA+Pg4AwMDVFVVsbi4uO6MbHTOpXnJ5/MMDg6SSCRwu934/X4OHjzI5OQkJ06cYPPmzUxOTjI1NcWFCxf4vd/7PY4cOUJfXx+ZTIbe3l6uXLki5kTyHMiQ8VGFoiRHsci4TXHWl+Luqwb+3j7B/fUOLBYLoVCITCYjaAYLCwuYzWbhXl6LRCKB3+8nlUqt+lhLrnuJcpPL5VAqlas+Iv/jf/wPGhoa+PVf/3URHCgF1GYyGUHNMBqNIiYgFouh0WhIJBKCq6pUKolEIkSjUWGZVCqVRKNR/H4/LS0t6HS6Vdax+fl5YY2SvBNOp5NIJEI8HketVmM2m0UQqsQflqyDSqWS+vp61Go18Xhc8HglGotarRYUl3w+j8lkulZkymAQwYVS5iCz2bxuXiX6z0pOvcThXptbvVgskkwmCQaD4vkSBUDKuJPP57FYLIK20dXVxWc/+1lBh5IoXJJHxWq1ClpVLBYjm82i0+lwu90oFApqamowmUzMzc0J2sJGfN5CoUA6nWZxcZHy8nJ0Oh2xWIxEIkFVVZXILGOz2QSHOZ1OC6FCoqHAtboWarUatVotioF1dHSI2IlisYhKpUKr1aLValleXkaj0WC1Wtdln4F/sGZLYzCbzajVasGR1uv1IjbAYrGQSqUEFz+VShEOhwWPWeKfq1Qq0T/p/0qlEpVKtaFAUyqVROCzNN/pdFrQ8jayhIZCIUFtgWuZhaqqqigvLyeXyxGPx4XCvZLOFY1GKRQKaLVa1Gq1iDvx+Xzi3xIdqbm5WSjIZWVlwsNQLBZxuVwEAgFKpRJGoxGHw4Hb7V419yqVSsT7SJmg4vE4pVKJmpoaEWug1+tF/Y6N1mZxcRGlUinOiM/nE/tIoriVlZVRLBZZWlqiurqafD4vuP5SsLUUgNvT08PevXux2Wyk02kGBwcJBoN86Utfwu/3i/2l0+kwGo3r5l/K2JNMJkXWonw+j16vF5bzm625NC6NRoNWqxX9LSsrI51OE4/HMZlMGI1GQQWqrKxEo1lfDE7KBpVMJqmpqSEej4tgXK1WKyiW1dXVvPbaa/h8PmpqarjjjjtIp9PY7Xb0ej35fJ5AICD2gRTLUV9fL4Kcb3bOM5kMXq8Xi8UiPCmSp1HKKqbX6wW9sba2Fp1OJ1KCqlQqCoUCi4uLtLa2YjJdq0twOQZ7e6BnL+xZf4xlyPhQISsBMm5bvN8v15WuZ4kDnMlkuHLlCsvLy4IGsNZKK923ketbUjI2etbK59wKJErOrVy/1u2+tp7C23l+Pp8nGAySSCSoqam5bsEkiYO7kpp1q2NbSQOQ+nrixAlMJhM2m41isciWLVtWtVcsFsnlcutSkUq0EpVKJbjxkmt/5dy8F9VqpbZyudyqbFMSJGVS+vfKvkpxIBsFmt7seWupD/l8/m3Nu6S0AGK+pTVYGUx6PUj3rt0/13vuSoqH1NeV3G3JI7eyjbV7YuXPpfkuFAqUSqV1994KpLW51TO1dr7eS2x0dqampjh//jxbt26lvLycWCzGxMQEyWSSL37xi8C1wHKVSnXDPq2lNa09K7e65rlcbtU6vJ/Ul1QqxU9/+lOWl5dXpXVe2/dcLodGoxExYCvP0s3O+cr9+HbHVSgUhBIv9UGaW1kJkPFRhkwHkiHjOtjoI1AsFvF6vYKiU1tbe937Nvr5O/nd9fB2hI+bfdDezvNLpZLIbHSjPkgC1TvBRkKIRJOwWq2iZsPa522kkEjpGoENM568l8KL1Nb1MqusFErWju9mwtuNnrdW8H47ioR0z9pqqlL8w63g7fZ7Zbtr75XiODbq40bPUSgU4vp3o8i93Tl7P4R/CRudHZvNRltbG+l0WsQdSQH/Em6U0UfCjQT8t7Pmb3e+3g0kilMikUCn0103I5M0/ndyzqXfv5NxrTy7N6oiLUPGRw2yJ0DGbYsPw8JSKl2rEzA/Py9ylsv44HA9L4sMGb8seCdeQxkfHmRPgIyPMmRPgAwZbxNarZbW1tYPuxsyZMj4JYQs+MuQIeO9gqwEyJDxNiB/gD9cyPMvQ4Z8DmTIkPHeQFYCZMh4DyEFF76ffOG1SCaTLCws8NRTT/Fv/+2/BRCVV++5554N71kZLPtOeNSlUokzZ86gUFyr0GyxWEQ14/cKUrDdB8k9LpWuVbV97rnnqKmpob29nYaGhnfcXjabxe1289JLL/Hggw/S3Nz8oXOGl5eXcbvdeL1eAoEAX/jCF951ULQUJCplPfrpT3/Kn//5n4sc7u+m3Q/qPEljeC8CxG8FK4PU3yk+qDPS3d2NXq+npqbmlquGv1skEglmZmZ4/fXXqaurw+VyoVarRUD9wYMHUSqVeL1efD4f2WyWXbt2kU6n6e/vJ5VKYbfbuXjxInV1dcRiMbZu3cqOHTvel/6uDEyWlTQZtwvkisEyZLwHKJVKRKNRPB7PdSt1vl9QKBTk83kuXbpEJpMRKTNjsdgN75Myi7wTlEolzp07J9KAvh9CWigUYnZ29j1v92ZQKBQsLy+zuLhIKBR6123l83mmp6fxer1C8PswMTo6yuzs7KosOu8UK/d9KpUSSuGlS5duuUr3jdr1er0f2Hmanp4mEol8IM8CWFpawuPxvKs2gsEgc3Nz71GPro94PL4qxfAHAakw1+XLl/F4PBQKBVGkb2JigqGhIVKplEhRKu2TmZkZFhYWiMVi5HI5Ll68KBSl91OZzGQyoq6JDBm3C2RPgIzbHplshlSqKNIjSpkapOqhUqYIqcy90WgUOfFXVrfMZrOiiqiUIi6ZTIqKpFLWFSmFoVQdU61Wk8/nRbGkTZs2iQwWpVJJ5FxXq9XiZ5lMRgT2SbnZ10KyLEnpEq9npTQYDFRWVgoLnVKpxOFwrKpqm81mRXpSSVA7fvw4DzzwAE1NTRvm8Jb6kM/nRc5sqQ/pdJre3l4eeeQRNm3atK7/+Xxe/DEYDMJ6t/J3Ul52hUJBoVAQQqNaraZYLDIxMcHo6KioaCylgJT+SLUTpHsLhQIGg4FMJiPWRdoT0tpulB9cr9eLQkEKhQK9Xi9iPqSUkxutuVTfYO3+WPkMjUaDzWajpaWFbDYrlKaVFU6ldZbmWMq9vnLOpXWQ8qBLY5b6u7LY0cqqxhulSr1y5Qo2m43PfOYzlJWVrdqj0n25XI5sNivWp1gsbpgLP5fLiX3f0dFBdXW12ItSzQDpPEp7JJvNirFJc7nRnhsZGSESiYg6Gdc7e2vXAf4hO0wmk1nVrnSP1AcpE1E+n+fkyZPs27cPvV4vzupG56FYLJLNZsXaSNdJ7xtpXEqlkmQyKd4l0r3Seejp6UGn04mzKlm5pfSd0pxJypV0Plfuc6n4XFVVlaiQvXbNperM0ntNUv5W7jlpXla+K6T7pVoGJpNpVT0Babwr1zaZTIr5kM6btG9Wjg2uZdG5kcXcaDTS2NiI0Wikvr6ezs5OXC4XkUiExcVFnn/+ef7wD/8QnU4n0gYXi0W6u7vRaDSi8noymWTnzp04nU6x1tL6SZWoJeVGmgNpX0lVqqX1lOZGo9GIsybtS7/fz7Fjx2hoaMBgMKxKMypDxkcVshIg47bFtY+RgsmJSbJpHxaLhXw+T0VFBRUVFXR3d5PP59mxYwelUomlpSWGhob45Cc/yeDgIE6nk6qqKlHxVhI6LBYLTqcTvV7P66+/zt69e0kkEhiNRtra2ohGo8zNzRGPx6mpqaG+vh6/3883v/lN2traSCQSFAoFNm3aRCqV4uLFi5RKJerr62ltbSWRSNDX1ycKkpWVlVFXV7dubLlcjunpaWZnZ2lvb6eiogKTyXTTeVlYWMDr9QqrVyKRYGhoSAi8BoOBmZkZnn/+eYrFInfffTebNm1aV5BKEixnZmYIBAIYDAZcLhd2u52rV6/i8/no6urCYDDQ0tKy6l6fz8fMzAzLy8vcc889zM7OsnnzZkqlEm63m7m5OcrKyti6dSs6nY5wOCysaI2NjSQSCU6dOsWJEydwOp10dHRQX19PKBQSlUq3b9+O0+nE7/czMTGB2+3mYx/7GH19fdTX11NdXY3VaqVQKIgqoJKgJH3APR4Pd999N4FAgOnpaQwGA3ffffe6eYhEIqvWvKGhgXA4zGuvvcaePXtEsay1tQtWIhqNMjo6KirSNjQ0CE+BVClWq9WyY8cOZmZm8Hg8mM1m7HY7hUKB2dlZtmzZgtVqJRQKMT4+jlqt5u677yaXy7G4uIjb7Uar1eJwOGhqalqXKnF5eZnZ2VlRSGnfvn0UCgWmp6fJ5XI4HA7a2tqYnZ3l8uXLdHZ2YjAYiMfj62gUUlXn//W//hdbtmwhm82Kom7SeEdGRtDpdFRXV4u0rhMTE4RCIdRqNTU1NWLvS/NWKBQIBAJ885vfZNOmTaLIV2trK9FolNnZWVFsr7m5mWg0ytGjR9mxYwf5fB6lUsm2bdvI5/P09vaKNZSKVjU3NzM4OEg4HMZkMrF161YWFhZ45plncLvdxONxGhsbaWxsXLcPAMLhMMPDw6hUKlwuFy0tLZRKJYaHh0kmk1gsFlH8TNq/Op2ObDZLPB7nvvvuY2Zmhp///OfANcFz06ZNNDU1MT09TSAQAKC2tpaGhgbOnj2LXq/HZDJRKpXw+Xx84hOfoLe3l1dffZXR0VHKyso4dOgQFotlnbW7t7eXRCKBxWKhvLycfD5PW1sbk5OTBINBVCqVeI/lcjnGx8eJRqOiaJzD4WBqakoUN7RYLORyOfr7+0mn05SXl9PS0kIul+PVV1+lo6MDgFgshl6vZ+/evZRKJWZmZkRBM6VSya5du94RFcpqtfKP//E/ZuvWrfzqr/4qGo2GxcVF7HY7sViMwcFBTCYTiUSCiYkJ/H4/ly5dYt++fdjtdhKJBAMDA2g0Gg4ePMj8/DzLy8sUCgWamprIZrPU19cTi8WER6GpqQmHw8HVq1eJRqO0tbWxvLyMVqtl8+bNhMNhTp8+zeHDh2lubuaOO+4QReFkyPgoQ6YDybhtMTg4ACAq7V66dAm9Xs/09DR/93d/R0VFBQcPHuSpp55ieHgYgJdffll8EF5//XWee+45UqkUb7zxBt3d3bS1tbG0tMThw4cxm81MTExw9OhRRkZGCAaDLC0t8a1vfYv6+nrC4TDnz5/n1KlTlJeXs2fPHvbu3cuePXuEcPInf/InbNu2jdraWmZmZnjsscf4u7/7O3bv3s2OHTvIZDJMTU2tG1symWR6epqjR49yzz338K1vfUsIDTdDY2MjCwsLvPjii+Tzeb773e9SX1/Pzp07sdlsjI+Pc//99+Nyudi/fz/bt2/fsOpvOBzm3LlzHD9+nO3btxOLxbh48SLd3d3s3LmTsrIy7rzzznXCEoDT6SQWi/Hiiy8yPT3N4OAgCwsLvP7667z88svcc889nD17lrGxMX72s5/x85//nEwmw969e/n+978vhL62tjbhrQiFQnR3dzM7O8uuXbv4gz/4A2KxGE6nk1AoxCuvvMKVK1e45557+OEPf8ipU6dYXl7mqaeeEoLVxMQEPp+PTZs20dHRwQ9/+EM8Hg8OhwOlUskTTzyxbizxeHzdmp88eRKr1crk5CSvvfYaQ0NDBINBotHohmtSKpWYm5ujtbWVZDLJ6dOnOXbsGKVSia985StEo1F2795NTU0N//7f/3uqq6sZGhri/Pnz9PT0MDw8TKlUwm6389Of/pSf//zn3HHHHVitVp5++mm+973vMT8/z969e9myZQt9fX2rrOASamtrqaurY8uWLezatYt8Ps9//+//XcQ/BAIB/tf/+l80NDRw5MgRrly5wtjYGOPj4+va0mg0OJ1O9u7dy969e9m9e/eqvXDp0iVaW1uZmJjgO9/5DsVikTfffJOLFy9SVlaGRqPh0UcfXdeuSqUS52nfvn3s2bOHlpYWUqkU3/zmN6mpqRF78c033xTrcOzYMQYGBgiFQng8Hv7Nv/k31NTUMDc3x8TEBHa7nbKyMr761a8Sj8fZvHkzNpuN//f//X9pa2ujoaGBAwcOcPDgwXVKOVyzbAeDQf7iL/6ChoYGCoUCAwMD9PX18Y1vfINcLsfWrVuJRqM88cQTLC8vU1FRwfe+9z2Gh4ex2WxMTU3xxhtvUFdXR3NzM9u3b+fee++lsbGRkydPcvHiRfR6PU6nk7/927+lVCrhdDo5cuQIr7zyCtXV1czOznLixAlaWlrYtm0b9fX13H///dhstg29eVu3buW5557j1VdfJZPJ0NvbK9bBYrFgNpv53ve+B8B//s//mVgsRqlU4sKFC9hsNmpra4lGo0xNTTE9PU06nebP/uzPqK6uZu/evYRCIf77f//vGI1G3G43L7zwAl6vF6fTyaOPPkokEuHMmTO43W7Ky8vZunUrV69eXeUVeLuQKpF7vV6KxSKZTIaXX35Z1FLYtm0b+/fv595776WmpoZDhw5RVVXFG2+8wf/3//1/HDx4EKvVygsvvEAmkyEUCvG1r30NpVLJ4OAgp06d4syZM8zNzXHo0CG+9a1viarkvb29PPvssxw4cICf/OQnjIyMUFFRwaFDhygvL+eBBx6gqqrqlmo2yJDxYUP2BMi4bZHLXeNXG41GNKok2WwWg8GA3+/n7Nmz3HPPPUxPTwv3rUajwWw2097ejl6vF5SHZDLJz372M/bt28fc3BzJZBKz2SzK11dWVrJjxw4aGhpQq9V8/vOfZ2hoiHg8TjAYJJPJCGrRSrrB3Nwcy8vLTE1NCbd+oVCgvb2df/Wv/hWbN29mz549bN26dd3Y9Ho9lZWVdHR0MDAwgM/nI51OC7f+jaDVagVtRKlUsmXLFr761a9SVlbGtm3buOOOOwRVRKIZbWS9drvd/PznP+ezn/0sGo2G1tZWlpaWOHr0KHfddZcY80b9kegUWq2WxsZGmpqauHLlCnNzc2SzWUZHR7Hb7QQCAc6cOYNer+dXfuVX0Gg0/P7v/z4VFRVcvXpVUIYAYd32er309/cTjUYFpUOn02G1Wmlra0Or1QqrdKFQENZZyequUCiw2+2inwqFAoPBIDxJa2EwGK675tL+6OzsFNSFjaBQKGhoaECv19PQ0IDX6+Xw4cNs2bJF8MINBgOJRIJ8Ps/c3Byf/vSnuXDhAkNDQ9xxxx0cOHBAeEKy2Syzs7Pkcjni8Tj19fX09PRw+PBhtm3bxoMPPrihFVKii0hBvF1dXVRUVKDVarHb7SgUCi5evCj2hcvlYteuXdflUksUE4nOsnIvbN26FavVKoS0QqHAz372M3bs2IHX6yWdTmO32wmFQuLZK+dr5XmS1vjzn/88o6OjRCIRwuEwiUQCpVKJzWbD6XSyZcsWQeVKpVKC2iNRVywWC8ePH6e9vR2LxUI4HEan0wma2/VoQHBNGezq6qK6uhq9Xs+OHTvI5XJkMhleeuklvvjFL2KxWHA4HDgcDt544w0OHjyIy+XC4XBgtVqx2WxivaW502q1lEoljhw5Qnt7u1Amy8vLCYfDWK1W4QWU2vf5fIKmsvKMbHSOTSaT8Dg2NTVRXl7Of/tv/41t27YRCAQoFos4HA5CoZCgL0n0QKlIl9VqJZPJkE6nWVhYwOPxoNPpBO0lnU4zPj4ulIry8nK0Wi0Gg4FIJEJ9fT3PP/884+PjNDc3c++9976rQoKAONfSfKys4Cyt48r3nM/nY3FxkYWFBeH5isfjqFQqzGYzFouF6upq7rvvPn70ox+RyWTYvHkzIyMjOJ1OMTfSWmg0GgwGA+l0WlAQJTqfXMNBxu0CWQmQcdvCYDRAArK5LPlSnt27d1NeXi5oLFVVVSiVSvbt20ddXR2JRAK1Wo3NZhPcWOlPKpWivLwch8OByWQSnFGNRoPFYsFut2M2m0kkEpw7d479+/eTyWSIRCIkEgmi0ah48UciEcGlLZVKOBwOzGYzRqMRh8MBwF133SVc+1NTU9TU1KwaWyQSYWZmhng8zqZNm9BqtWQyGeLxOFar9YbzIgn/0kfW4XCwf/9+stksmUyG4eFhmpqaRH8TiQTJZBKXy7WqnXw+TzweFx83SYiOx+Pimut97FbGO9jtdiGkqFQqrFYrZWVl7NmzR3ClM5mMEKAloXRl28vLy4TDYTwej6B1KJVKotEoZrNZcLutVqvgsEvxIE6nU3DxW1tbRZYRKVhQun6joEepb9dbc0mxtNvtN10Xg8EgOPw6nU7MYyKRoFgsij0Zj8cpFouUl5dTWVnJ9PS0oLElEgngmqInxYBIsRRarZaysjIUCgUDAwMilmLlmqz8W9r3Es1FomYEg0HBQTebzZSVlW1I25DakfZZKBRa9Ty73S7uk9YjmUwKi7xOp1sn/K/tp3SeDAYDRqORc+fOcccdd1BRUUEsFiMajQrqysp1SKfTbNmyhaWlJSGUulwuESvkcDioqKjAbDZz5513ivEqFArS6TSRSISqqqp1e0F6LygUCiwWC8ViEY/HI8YunflCoUA6nUaj0WA0GtFqtUI4lbxFUjuFQgG3200ymcRqtVJeXo7FYhGcebVajcFgEAK3RqMRFKmVc7e8vCz29sq5VKlUGI1GMYdarZZUKoXNZqOsrAyj0YjJZEKhUNDW1iZ4/U1NTVRXVwtFLJfLifdlPB4Xc1YoFAQFUq1Wo9PpRN9VKpWIBdiyZYvYs11dXezevVsol29HYM7lciwsLNDa2orNZkOn060b89o/K5+hVqtFP4rFImVlZfj9fkwmk+i79G4oLy+nrKyMj3/845jNZlQqFTqdTnhOVSqVyNC08lk+nw+j0bihh1WGjI8SZDqQjNsWZtO1F+zS0hKLi4u4XC4RaNfa2kqpVMJms7Fp0yYhGKRSKaLRKLFYjGQySSKRIJPJ0NHRQalUwmQyCc63UqkkFouRSCREIGEqleKll17Cbrdjs9mEhT8UCmG1WonH47jdbiKRCFarlaqqKgwGA2azmerqaurq6ohEIvzar/0au3btIpfLMT8/v25soVCIkZERlpaWKCsrw2KxkEgkNswmIvUrnU4TCoWEkCplzAgGg9x///3ceeedWK1WQe3QarUkk0kCgQDBYHBduyaTiebmZjweD9FolOXlZYrFIo2NjcRiMVKpFJFIRASVroRkNZQEKkAEjEof0draWsHRdjgcgnPv9/vJ5XLC0uj1ellaWmJkZISpqSni8Tjl5eUYjUYWFxeJRCJirNFoVGQykazqTqeTmZkZFhcX0ev12O12QUWQFL5wOEwgECCZTBKPx4lGo2IeE4nEujVPJpP4fD6xPyRL9/WgVCrJ5XKkUinC4TD5fJ7NmzdjNpux2Wyk02lhAZasu+Pj46hUKhobG5mbm2NoaEgolWVlZej1euH9yOfzNDQ08JnPfIa2tjZGRkbIZrOr+iAFAEtnQIpvSKfTxGIx/H4/qVSK6upqsZ+kdb4eFAoFVqtV7A/JY5VOp8U5k/ZiIpGgo6MDlUqFXq8XfPqNAkSldqXz5PP5hMXdYrFgs9nQaDSkUim8Xu+qdZDiApqamhgcHCQWiwkhHKCjo0MoYi6XS3DYpXeE2+3e8JxpNBqqq6vJZrNif0j7v729Ha/XK85fKpUSMSySpTiZTBKJRIhGo+TzeYxGIwqFAq/Xy/LyMu3t7cKLV1FRQWtrKzqdjmg0SjKZJJ1Or2pDUkiUSiWhUGjD7FNSliUpKD0Wi6FQKOjo6ECj0aDT6VY9q7GxUVjLpTkrFArE43ExVmnPRqNRgsEgqVRKGEtisRjxeJxkMrnq/bO4uEhzczMPPPAAe/bsYXh4WMQbLS0tbZhJKp/Pi3WNRCIEg0G8Xi8LCwsMDQ3x0EMPUVZWRiaTIRwOi2fGYjExR6lUilQqhd/vF4qz9A6yWq20trai0WjEu0Iy4DQ0NOB0OoXXsK2tTQRjr9zT0nlOJBLCCxCJRPD5fB94ljgZMt4JZE+AjNsely9fxp/2MzU1xWc/+1k2b96MRqPhZz/7GYcOHRJuY7fbLYLEmpub8Xq9aDQaPB4Pv/u7v8v3v/999Hq9sA63tbUJobOurg6n00mpVMJoNLK0tCQ++PF4nHg8TmdnJ2+++SbpdJqKigqcTif33Xcf3d3duFwuTCYT8XicM2fOiODQ9vb2DSkkklCUyWQYGxsTXojJyUna2tpWXZtKpXC73QSDQXp6eqitrWV+fh6fz8f09DRnzpxBqVTicrmora0VFv/KykoWFhaEMLQWtbW1fP7zn+enP/0pFRUVjI6OYrPZ+LVf+zVGR0fx+/1cvXqV8vLydXEBwWAQj8dDIBDgxIkTfO5zn2PHjh2Ew2F6e3sZGBgQgXj33Xcfs7OzHDlyhI997GMEAgGMRiPV1dWCK93S0iKsjqFQiOnpaWpqahgeHkan0+H1evF4PFy6dIlNmzYRCASYm5tjbm6OQqHA6dOnMRqNjIyMsGfPHu6//36MRiNNTU0EAgH8/mv7x+12MzExwdjYmMjG09LSsm7No9EobrebqakpotEoVVVVVFVVbWj5UyqVguqzsLDAzMwMyWSSf/pP/yl2u53777+faDRKV1cXxWKR/fv3k0gk+OEPf8jBgwe58847CYVC/M3f/A3/8l/+S9rb2wmFQpw9e1ZY+3t6erBYLIKCc9ddd6HX69f1RaoN4PF4qKur49Of/jTd3d1MTU0Joeb3fu/3WFhYIBqNcuXKFcrLy69bA0KlUrF9+3Zee+01WltbMZlMQmDr6emhubmZpaUlfD4fExMT/O7v/i5PPvkkcM3jk06nue+++zbc/9u3b+fNN9+kurp61dlbXl4mHo8TDoeJxWJiHcLhME6nk9raWnGuJdqH0+nE7XbzK7/yK3z5y19mcHCQYDAolKCamhp27twp9nR9ff26PplMJnbv3s2rr77K2NiYsM47nU7+9b/+15w/f56GhgaCwSBqtZoHHniAJ598koWFBZaXlzEYDAwNDZFMJonFYuIdJN3327/92xw+fJhcLieUjAceeICBgQGmp6dxuVzMz89z9epVIXxKlJv+/n5qa2s3pNgMDQ2xtLQkMm7t2rWL3/md3+GnP/0phUKBYDAoApZ9Ph+Tk5PE43Fxrj7zmc+IoF6AT3ziE3z6059meHgYrVZLPB5nz549OBwOJicnUSgUmEwmMeeXL19GrVYzOztLeXk5DQ0NfPrTn0aj0fD4449TWVnJb/zGb1BWVraq3/F4nPHxcZaWlrh69SpwLaOQdP7+xb/4FxgMBrq7u7l69Soej4fFxUWmp6dXZbUKhUKcOXOGRx55hI6ODgqFAmfOnKG2tlZ4WCcnJ/H5fAwODnLgwAEeeughLl68yOXLlzGZTHg8Hvbs2YPH4xHvwb179+LxeBgaGqKqqorm5mYqKyvp6+ujurr6A61vIkPGO4WiJCe1lXGb4usvn+DfWe7j4q48d9hUXLlyhYGBAerr67nvvvsE/eDtFCxKJpOo1eqbBnWtzDQjUX8AwQ1dyaGW3OgS51jiSEvXrU3rBwi3u5SibuUHZe1YbnaEpZSGKzn8Eg1n5c836oOEeDwu+NUb4Ub3roVElZAsoSv7mUwmBTVhZd8lgVZyvQMiNd+N1nZiYoInnniCr3zlKyiVSqamphgZGcHr9fJ7v/d7wD+sueT52YiiAtdf8xvNw9q5kKgW0npK67AyTeGtZBRZmb5Qoi9IqVNXpt281XWR5uB6hY6uR9dYmS7y7dSLkLxHKxWVtaktr9fuzdZBKtD27LPP8uUvfxmj0cjVq1d56623OHToEDt27BBpcqV0m9I6SBbp682D1K+16yj9Lp1Oi/iFW4GU1nXl9ZJX6XrxJWtRLBaF5wze3lmU0odKAv/hw4f55Cc/SWtrK8FgkB//+Md8/OMfp6OjY11/JJrPynS3N+rjylS7BoNh3TVvp9/vBtI6S3TBG1GRJC/r26H1pNNp4d1SKBRcjsHeHujZC3ssN79fhowPErInQMZtC6vlGgd7eGgItf5aXvHGxkaRrlKhUAhB81Y5p5JAcKPrJYvkWu4ysOGHeO0HUqlUotfr13FVV0L62a1Yk27WV+l5a6+X3Nc36wMgBPNbnccbXSdxlFf2Q+rn2ues7LvEMV7JI5YEwOs9T6/XU11dzaVLl9BqtczPz6NQKNi/f7+4R1pzYJUCsFYovd6av5252Gh/rQyCvdncSZBiIFb+f60w9naE+ZVz8Hb42Tfa9zeClG/+etffqN2brYNarcZut6NUKunv70en0+F2uwXPXdozUkDuyrZWKmc36tf15ks617c6D9J+Xnn9yroTt4KVSsfbWfO1z7Lb7ahUKiYnJwmHw0KhaWxs3JCydbO9traP8A9Bu7cytrezD98uNoqV2QgqlUqkZb6V/pRKpVXvKxkyPuqQPQEyblu8MRvkwekyXm8KsNNYIBaLiTzWG1maZPzyIZlMsri4KAKGU6mUCE6+WSCvjNsTkmdlYmJCpH6VYlSamppuWQj9ZYJkpZ+cnBTBw4VCgXA4LHjz8py9M8ieABkfZchKgIzbFtLL9dKeErvNpbdlgZPxy4e1GTxk/HJA+sTJ637rkOfsvYOsBMj4KEOmA8m47XGNFiJ/rGTcGO80L7mM2xuyIPv2Ic+ZDBm/HJCVABm3Pa4F0f7D/9/PD9hKx9k7fc7NnG8SR37lM96L596sL+/HvN1orO/kee+2v2vvf6/G/361+15ho3X4KPTrvcDasd1sXDdaq1u5/5306b1q993i/Rzrez2+96OvN3vW+/2+lSHjowbZNCbjtseTTz7Jf/2v/5XJyckNc9a/18hkMu+6jWAwyF/+5V/y+OOPMz8/Tzqd5r/8l/8iikEVCoVVed4DgQAnT57kyJEj7/rZKzEwMMB3v/td/uqv/uo9bXclpPlKJpMcPnyYr3zlK/T29r6j7B9DQ0P8+Mc/5i//8i/f0f0jIyOcPn2aixcvivvz+bzIOPROMT4+zk9+8hP+9b/+15RKJS5cuMCpU6eYmJh4V+2+VyiVSgQCAf75P//nvPLKK3i93g+7S+8pJicn+YM/+AOee+65G1630Zrn83kee+wxJiYm3rPc7sVikUgkwh//8R9z9OhR3G73e9Luu4Xf7+cb3/gGf/u3f7thbZB3AimD13sNv9/PkSNH+OM//uNVBQrfD6wdQ29vL9/5znf4f/6f/+d9fa4MGR82ZCVAxm0L6YOdTqf57d/+bWpqam6a2vPdIp1O88Ybb6wryvN2YbVaqa2txWg0ks/nUalUdHZ2igwxS0tLnDt3TlxvMBiorKykurr6XT13LVpaWnC5XO+b8pRKpTh+/DiFQgG9Xk9lZSU1NTXvWJFqamqiubmZUCj0ju63Wq24XC5RMXRmZobJycl3LRDV1dVRX18vCms5nU5cLhcWy0eDBKxQKLDZbNTV1aFWq29Y2Ox2RG1tLRaL5bopbFdi7ZorlUqam5uxWq23dP+tQKlUYjQaaW1tBfjIzLfRaGTfvn2Ew+H3rE/Ly8ur3lXvFWw2Gzt37iQcDr9v6UIleDwe3nrrLfH/TZs2iToWMmT8IkOmA8m4bREIBgAjsVgMo9HI/Py8KO0OUFZWhkajwe/3i3zjNpsNpVLJ9PT0qoq/ZrMZnU5HMBgU1STXFlvKZDIsLS3x6quvisIwpVKJVColqg2r1WqRPlAqalNTU4NOpxNVYwOBgKhqqlKpRHEgqd/Ly8v09vZy+fJl6urqaGxsFFU/VwopHo+HXC6HVqvFYrGgVCqZnJwUhZWy2SwGg4Hy8nIUCgXxeJxYLEYmkxFFpsxms0jXuBbpdFpU77VYLKLmgt1uJxAIkMlkqKqqQqfTkc/nicfjhEIhTCYTVquVSCTCwMAAPT09tLW1UV9fLwosZTIZ5ubmMBgMYq6lwj6pVAq9Xo/JZMJgMIix+P1+MX5JgJGqqUrVU2tra28Y/CtVszWZTCSTSY4dO4bNZqO1tRWVSrWuYJFUFMxut5PNZnE4HGg0GrLZrCg2V1VVhdFoxGQyiXmMx+Oir1Je8oWFBTQaDXa7Hb1eTyKRIB6Pk8vlqKiowGg0rotbWFnV2mQyYbPZCIfDxONxisUiFouFcDgsKlNvFPeQTqdFlWIpL3qpVBKVYIPBIEajEavVisFgoFAoMD8/T6lUoqKigmKxKIRGvV5PNpvFarWKs7QWUkE3qRaE0WgU1X1DoZA4h2q1WsxvQ0MDkUhEVJ4tlUp4vV50Oh02mw0An8+HzWbDYrGI9jUaDZWVlaICsEqlEvtWygbk9XrFmpvN5lVrLqWllXLewzXPgFSMS6PRrKpKm8/nRYVkh8Mhsk5JlbELhYIoBKhWq8Xv156vTCbD8vIycE3YjUQi4j5pfwUCAdLpNOXl5aKqrd/vp7a2lnw+j9frxWaz4XA48Hq9FItFDAYDGo1GVB6WqmBL+0OlUlFeXi5qTKzFxMSEuE6qP9DQ0CDGKL1DzGYzDoeDiYkJBgcHmZubo7m5WZwrKRVoMplEr9ej1+tJpVIolUocDofYIyqVSrx7PR7PujGsrO7tdrtJp9PCmLCwsCDeoVIlcAlSFXCpIFw0GqWiogJAnDuLxYLVaiWZTDI6OsqxY8dobGwUhR31er3oZzAYpLa2VqRUzWazLC0todFoqKioIJfLEQqF1n0HbrVehAwZHxZkJUDGbQuJOpPNZohGo4yOjqLRaDAYDFgsFrRaLel0WgjdCoUCv99PQ0MDV65cobKyErvdTqFQYGpqisbGRgKBAIVCAZvNRkdHx6rnSS/6y5cvs7S0hNFopFAo4Ha7mZmZYe/evQBCCJ+eniafzxOLxWhpaUGtVhMMBnG73Wi1WmKxGOXl5UIYm5qaEmn5ZmZmGBoawu12U1tbSyKREB/6YrGI2+3G5/OJjDdarZba2lp6enpoamrCaDSSy+WIx+Pcf//9ooCS3+8XQt1Kz8NGkO7p7+/nwIED4qPtdDrJ5/OMj4+j1+ux2Wwkk0nGx8dRKBQsLi7S2tpKIBCgr69P9LWqqgr4ByHRbDYTCoXYsmULLpeLWCzG7OwsarWafD6Pw+GgsrISrVbLxMQEmUwGvV5PLBYTAsz09DRwzeOQy+WorKy8YW2FaDSKz+cjkUjgdDrp7u5my5YtlJWVkUgkNlQChoaGMBqNomCQNH+JREIUaVopgMA1updUyMtutzMxMUEsFiOfz1NdXY3JZGJpaQmtViv2g1QAa+X+9nq9hMNhVCoVHo+H1tZWQqEQs7OzLC8vs3//fqanpykUClRVVa1LexqNRgkGg/j9fnQ6HfF4XBQVi8fjjIyMoFAoyGazNDU14XA48Pl8QsCSKBKBQIDR0VH27dsnFIeKigrq6urWnZFYLMbY2Bgmkwm3243L5cJut4u1koRsg8FAPB7nxIkTfPKTnyQajYoiWVVVVVy5coWKigphTR8cHKSzs5NAICDWW6lUkkqlaG5uXtUHj8dDf38/NTU1LC0t4fV6MZvNdHZ2rlrziooKdDodS0tL1NXVCSVoYWFB9DWbzYo2x8bGOHToEPPz86ICt9VqZWpqSsyTpCjeKE1xPp9nbGyMVCpFfX09xWKRsbExDhw4gFarJRgMMj09jU6nE0peKBSit7dXCMgXL16kpaWFXbt24fF4GB4eZvv27eh0OjQaDUajUVSIls7GRlWkV2Jqaop8Po/FYsFsNjM/P4/T6UStVuN2u/F4PCgUChYWFti9ezdTU1MMDw8Ti8Xw+Xzk83n6+/ux2Ww4nU6mpqaEB1PaUx0dHWJ+C4UCZrMZo9EoxtDZ2Yler8dsNgsFUKp2LCk0Op2OhYUFTCaTKD628gzm83mWl5fp7+9n9+7d+Hw+UXVdomZNT0+zb98+kskkS0tL4l1lNpsxGAzk83mSySTBYFC82yorKykUCszOzhKPx8V3pVAosLi4yOTkpKiu7XK5ZCVAxkceMh1Ixm2LCuc1y06Fy0VbWxsmk4lTp07R3d0tLImPPfaYsAjqdDoee+wxIURfvHiR5eVl6uvrefTRRxkdHaWhoYHp6WmeeeaZdc8zmUw0NjZSXV3NgQMHaGxspK6uDq1Wy7e//W00Gg2Li4ssLCwwMzPD8PAwu3bt4utf/zoTExOMj49z9OhREokEnZ2dxONxEokEWq0Wm83G66+/TiaTYfPmzWzevBmn08mdd96JwWCgrq6OxcVFTp06RS6X4wc/+AEKhYLW1lay2Sw/+clPKJVKLC8vc+bMGeLxOA6Hgx/84AeUSiV8Ph+jo6MEg0Gampr467/+65u6uo1GIzU1NXz7298mn8+jVqvp6+vjhz/8IfX19Vy+fJnx8XEWFxcZHh7m+eefZ+/evVy8eFF4ZXbt2kVjYyO7d+8WQnQikeDq1avs2rWL559/npGREYLBIN3d3QwNDdHR0cHMzAyXLl1ifHyccDjMt7/9bVwul7DmSXSs48ePC2ttOp2+Kc3IYDAQDoe5dOkSdrudtrY2Ojs76ejooLa2dt31KpWKQqHAT37yE6G8HDt2jGeeeYadO3eSTCa5cuUKHo9n1X1ms5mhoSHGx8fxeDz8z//5P9m+fTtwzdp65swZTp48SXt7O/l8nnQ6vY5idvXqVXp7e/H5fHR0dHDmzBkGBgbQ6/VEIhEef/xxtFotGo2Gc+fOMTw8vK7/PT09nD59mmw2S2dnp/CKJZNJJicn+fu//3t2795NX18fExMTjIyM8IMf/ICqqira29vp7u5mZGQEu93Od77zHSorK6mvr6erq4vHHntMVLaWEAwG6enp4dy5c2zZsoWenh6uXLnC5OQkzzzzDNu3b0elUnHx4kUuX76M1Wrl2LFjTE1NUVdXx/LyMk8//TQ2m43BwUGWlpZEjv+5uTnKysr4u7/7O3K5HB0dHVgsFr7+9a+vmjvpvDz33HNC2QiFQnR1da1b8/r6erRaLUtLS8zNzeHxeBgcHOTIkSPs2LGDUqnE8ePHmZ+fR6fT8b3vfU9UFB8YGODixYuk02meffZZqqurWVpaoqenh6GhoRvuQ6PRSCQS4erVq3R3d7Nr1y4ee+wxvF4vMzMzXLhwgbm5Ofbs2cPLL7/M4uKiEDSnp6dxOp1cvnyZkZERNBoNDQ0NfPOb3ySRSBAKhbh69Spnz54VtKRjx45x8eLFG/YJrtHl3nzzTfr6+qioqKC7u5upqSmWl5c5e/YsXV1ddHZ28uabbxIOh2loaKCzs5OWlhb27NlDfX09b775JpOTk5jNZoaHhwmHw1gsFiKRCIuLi4RCIZ588kna29sxGAwMDQ1x6tQpmpqa+N//+38Ti8UIh8NCWC+VSsTjcSYmJgiHw1itVrq6ukQhM+m9txIGg4FcLsfY2BhdXV243W4ymYyY746ODr7zne/g8Xiw2+00NDRQV1fHnXfeKQwJsVgMj8cjCvOdOHGCqakpRkdH+e53v8vu3btFm5FIBKPRyLe+9S3UajVLS0tEIpGbzrcMGR82ZCVAxm0LyWqqVChRKBSUl5dTV1fHli1b2Lt3L5s2beLnP/85FotFUDCcTidvvPEGRqORTZs2CUtmJpPhjjvuoLy8XFB8rvdMqcKrQqFAp9MJi3VzczP3338/u3btorW1ldbWVrq6ugSNYGRkhOPHj/Oxj30MhUJBTU2NoAtoNBrxb6kSrlQhF65V9jQYDGi1WvL5PD/72c+oqKjAYrFgNBqx2Wy88cYbWK1W2tvbqaysFG0Ui0Vqampob2/HbDbT09Ozypp+PUiu+urqahoaGqiursbpdGKz2TAajVRWVhKJROjp6eHSpUvo9Xq6u7upqKggmUwKz4HkspdgNpvZs2eP6F+pVGJqaornn3+eO+64A5VKRXt7O5FIhKeeeoo33niDzZs3YzAYcDqdVFZWCoqAWq3mr//6r/mbv/kbQVO4ESQLJ/xDxWGpfxtRiHQ6HS6Xi8bGRu644w6sViupVIqlpSX6+/vRaDSiuupKOBwOtFot4XCYqakpfD4ffX19QuCPxWKk02k+9alPMTU1hUqlWmc1fPnllwkEAnR0dKBUKtm7d68QCO12u1iXyspKotEosVhsXf8vXLjA1atXufPOOwEEJWt6epqzZ89iNBqFQpTP5xkeHubNN9/E7/czMTFBLpcT+6u2tha73U5tba2wlofD4VXPm5qa4pVXXuHee+9FpVLxh3/4h9TV1XHp0iVaWlpQKBR0dnYyNjbG6dOnhcV8z549OJ1O4JpXR6PR8OUvf5ne3l5GR0fFNV6vl1AohEKhEDSj8fFx/H6/UASkfStV75UKCF5vzRUKBWVlZSiVSnp7exkbG6OxsRGAXbt2ce7cOQYGBrBarVRXV9PY2EhlZSXZbFZQqf7kT/6Erq4uQQGcmZm54T6EawJ3fX097e3tq85qb28vJ06cwGAw0N3djcFgQK1Wo9FocDgcwLVqvdIYVSoVNpuNyspKmpqauPPOO3nkkUf41Kc+xdLSEolEgpmZmXWK6kYoLy+nsbGRqqoqTCYTlZWVeDweTp48yfz8PLlcjt7eXurr6/F4PILiI/3RarXcc889WCwWpqamaG5u5tSpU8LC397ezokTJwQVq729nXA4zCuvvCLidRobGzl48CD79u0TFMH/9J/+E+3t7Xz2s5+ltraWzs5O/vIv/5I//dM/ZXR0lM2bN68bi16vp6KigubmZj7/+c/jcrnYvXs3Bw8e5MSJE2i1Wnw+H+l0WuyDle8BySMlUYQCgQAzMzPMzs7i9Xrp7e1FoVAQi8XIZrPY7XaqqqpoamriE5/4xCrvlAwZH1XIdCAZv1CQeJgrBbqVGUEkLqjETV5Jh5HuW2vdlCC1Kf09MzMjeNgrS8v39/czMTFBoVDg4YcfRqvVEgqFhOAtWSevlwJv7d/Dw8M0NTWt+tnKceVyOZLJJBaLhUAggEajQa1Wi3EUi0VOnz6N3+/H6XSyd+9elEolXq/3hoHU0odx5XyqVKpV95RKJQwGA2VlZahUKnbu3MnWrVvJ5/NCIIJr2XMaGxtX0Zek+0ulEmq1WlhHV8ZZWCwWTCYTPp9PxAGsnLe9e/fyiU98gtnZWYaGhujt7WXnzp3r5vR6kIQviTfe0tKy4TxYLJZVAqXD4WDnzp2USiWi0ajg5q+FxGk3Go3s3LlT0FdCoRBLS0v81m/9Fs888wxXr15FqVTS0NAg7jWZTBSLRUF7i8fjQvBduw7FYvG6Sl2xWBRcaukavV5PWVkZhUKBHTt20NnZST6fp7u7G4fDwY4dO1AoFDQ3Nws+/8p9mc1mBT1rJSTh9B+oelmh5ErB3BKNZyVtS6vVolQqV509iVY3OjqKw+Fg+/btxGIxEomEoGEUi0XRD8koIPVTmp9UKrVKqV+75vX19eJ3UqyGpFBJcTiS0r927xeLRWKxGP/pP/0n/vN//s9otVoWFhYEle56ayL1ceU8SGM3GAxUVFTQ1NRER0cHDQ0NWCwW3G73qjlLJpOrPF8mk0mc2dHRUV588UV+7dd+DYfDwVtvvUUikSAQCGzYn7VruPK9WCqVsFqt5HI5rFYru3fvprOzk1wuh9vtFrFOo6OjtLS0cOjQId566y3Onj3LXXfdRSwWIxAI0NzcjMPhwGg0sri4KGJlpLVSKBSYTCaxPtL8OBwOvvSlL9HT00MwGOT+++/H6/Xyox/9iEAgQFdXFy+99BJ//Md/vOH8SvPidrs5e/YsXq+X3/qt3+K1114jlUoRj8fJZDKr3rcNDQ2oVKpV810qlUTsieTlLBaLxONxdDqdiOuQCxLKuJ0gKwEyblv4fD7AgcfjFnzSqakp1Go1oVAIm83Gr//6rzMzMyOsr3q9ntbWVs6fP08wGBSZUgKBAENDQ9hsNhYWFvB6vSwtLVFdXb3qha5SqWhqahJWYK1Wy/LyMj6fj+npaRoaGkin0yKQV4od8Hq92O127rnnHs6dO0d7e7twjUuKhN/vZ3x8nC1btqBWq1GpVAwODmIymVheXmZ+fh6Px0MoFOJzn/scV69exe/34/P5MBgMtLS0cPr0aaLRKEajEYPBgN/vZ2hoiGAwSCQSQaFQ4PF4sFgsTE9Pk8lkRLtrx5tIJJicnBRzsbi4yMTEBB6PB4/Hw/T0NMlkku3bt9Pa2spbb73FwsKCCGY0m82UlZWxuLjI8vIy5eXl+P1+JicnSaVSbNu2jUAgwPT0NDt27OC+++7j6tWrOBwOJicnsVgsdHZ2Ul1dzYULF1haWiIYDDI2Nobb7cbtdtPV1cWePXvQ6XRUVFRQVlbG8PAwY2NjbN68ma1bt67aM/Pz84yNjbG0tCS45AsLCyQSiQ0td5FIhOHhYebm5vD7/dhsNurr6wkEAoyMjGA2m4WQPDs7K+ZxaGiImZkZdDodFouFrVu3Mjo6itlsFgGbly5dEt4Vp9MpFEkJd999t6BaqdVqJiYmuOuuu1CpVMIaubi4yNDQEHNzc1RWVpJIJFa1s2/fPmZnZ7lw4QKbNm1icXERg8FAZ2cnW7ZsYXZ2lsXFRbLZrLD2f+pTn+L8+fM0NTWJQFgp5eXc3JwQdvbv379OiaytreXQoUPCWhyLxdBoNGzevJnjx48zNTXF7OwsDQ0NWK1WfD4ffr+f4eFhysrKmJ+fF/utpqaG3bt3i8BMo9EosmgFg0H6+voIhULcfffdxONxYamdmZkRGaDm5+dZXl5mZmaGhYUFIpHIqjVvbGwklUqJuIodO3ZgNpu5fPkyU1NTTE1NsWfPHqqrq5menhZzPjIyIpILRCIRfD6f8AhJXh5pb6dSKaqqqqirqxNnS/Imzc3NkclkRAzN+Pg4TqeTXbt2MTAwgMPhIBQKiX1UU1PDxMSECHZdXFykv78frVaL3+9ndnYWs9ksvBTRaFQEn0uJDVbOheSxkjAyMiK8GG63m+npaYrFInfffTdwLW3nwsICqVSK2tpaEf+wuLiI2+2mtbUVl8slgpvb29vZvHmziEMpLy9nx44dTE5OMjMzI4K/7733XsbGxsQYrFYrKpWK8fFxgsEgdrsdj8eD2+0ml8sJvr7VaqWqqmpdpqNMJiPm32QysW3bNjKZjFBIgsEger2esbExKioqMJvNIg6lVCqxsLAg3ovSGZufnxfxS21tbQwPD4vzH4/HmZ2dxefzifgyOR5Axu0AWQmQcdtCopjU/Z/AOpPJRF1dHeXl5cLi/OlPf1rwoHU6Hdu3bxc0CkBYVvfv30+pVCKfz1NTU4NSqdwwhZ5Op+Ouu+4in89jt9tRKpXo9Xr27t0rri8rKxPpIrPZLAcPHsTlcuFyuWhvb2d5eZlsNktdXZ2wNikUCu644w5hDa2srGTXrl1kMhnq6uoIhULU1NSg0WhQKpU8/PDD+Hw+kTWms7OTmpoaGhoa0Ol06PV6DAYDd9xxB4VCgerqavHBUigU3HPPPcIbUVFRwdatW9eNV7Ji7t+/X7j6pcwZxWKRxsZGzGYzNTU1QuDKZDLC0ms0GnG5XDQ3N4v0jZKgabPZKBQK7Ny5k/LychwOB42NjZw7d45MJoPFYqGiooJt27aJdVMoFORyOcxmM9u3b6dQKIgxOBwObDYbFRUVhMNh/H7/KguvBI1Gg9PpFFbxLVu2MDY2htls3pBKJPVZ8hBotVqam5splUqk02l0Op3IjmS1WoV1UK/XCwqV3W7nrrvuIpvNks1m0Wg0ggaTzWbZsmUL9fX169KJbt++Hb1eL9a5oqKCnTt3kkqlhCdCyqbS3NwsLOcr0dnZSXl5OcFgkGw2S3NzMzabjfLycpFuNZPJCMt6ZWUlH//4x8VaSvQIyUotCZNtbW3Y7fZVNC+4RieRAlUzmQzFYlFQuKR6GPl8ns7OTuGJuOOOO1AoFOTzeSorK+ns7BR0rz179rCwsCAUZYPBwN13341WqyWTyaDVannooYdQq9V0dnbicrlE/MrBgweF9Vaix5VKJTo6OhgfH1+15g0NDZSVlVFbW4tSqRQCfT6fZ//+/ej1ejwej6Co6PV66urqRFrRQ4cOoVAocDgcZLNZ4XmRrPhrBcJSqYTT6SSXy2Gz2SgWi9xxxx0YDAZqa2uprq6mp6eHdDot1tRisdDc3EwwGCSXy7Flyxbsdju5XA61Ws2+ffvQaDSUSiXsdrsIEs7n83R0dGC32wWtsL29XVy7ElKfpflqamoS7zOJBinNi1qtRq/XC4qU2WwWno2GhgYRrC6tr8FgwGQy0dLSQnt7uxDmm5qaKC8vJ51Os2/fPrRardhv0ntRiuWIRCLCIyGdpdbW1nXJACQvYlNTE2azWXhYGhoa0Ov15PN5du3aJQLyTSYT+/btI51O43K5KBQKVFZWsm3bNvGeaW1txel0UlVVxf79+0mn0yImR3q3SPtDhozbBYrS+52AV4aM9wmXY7C3B3r2wp4bpGOXUt1JAsG7hZQiThLIr/fMlWlAV1aklO6XFJW11I61z5Fc5Rs9Q6Jb3IrVSUoLKD1T+vd75boulUoijag0L1IqypVxDjdrI5FIoNfr12UuSiaT4oMrWQElYVxSxiThYWpqSigFN0M2m0WpVL6tHPHS3EupEG9lXJlMRuwHpVJJsVgkmUwKCsT1IMURSFSDtwuJtpLNZimVSqIPkhC40ZpJ/ZX25dzcHP/qX/0rnnjiCZFCcq0CsPaZiURCXLv2Z7eyFyRIQtXKOVo5lhtlg0okEmKckgIp3X+jNZfWxmg03tIZkShsUipgqW/vBtJ8rUwdKxkqVr5f1tJ31vZpJfXw3fapUCiI1K/SnEgZy1ae8ZVC/EqsrMibTCZFWte3s69X0hwlZeRWz650n5TVa+U7UNrza+mk12tHUpKl83w93Op3SoaMDwOyJ0DGLzyUSuV76pq9FaFbspyvvGflv29FGbnZcyTB91ax9kP5XvNWJU7v2p+9HeFaoVBcN7jXaDSKf0upA6UA0ZWIxWJCKLkVvJMCc2937jdac5VKdUvFxNRq9U0Dnm/2bJVKtWHKyuutmWS5BVhcXOTSpUuCbtPe3n7TOdtoHW+0tjfCRgLWra7ZyrGtPEs3u1+pVL6tvq7dh+/F2breHEpKz83eQSv79F6ddZVKtW6/SEHBa599o2dutO9uFSuTJ7zd4m7SWZAU03fyXn6718qQ8VGGrATIkCHjFwpWqxWz2SwH571HqK6u5ld/9Vf51Kc+tWFBMxkyZMiQcXtCVgJkyJDxC4OVWYxkvDeQvFrvxGMiQ4YMGTI+upBNOjJkyJAhQ4YMGTJk/JJB9gTIuO1xLXDwmj4bDodFwJZUfOgXGel0mng8TjKZpL6+Hp/PJzIl3Qrf/IOExNO/FZpOsVgU6Q1tNtu7ovdIwYDLy8sYDAaRPvWdQgpMfCe0GCmd69ogXylf+dq89e+mX6FQCI1Gg06nQ61WUywWCQQCogCY3W7/QClTK4NF381z384+eieQArELhYIo4Pd+QgraDgQCFAoFjEYjZrN5XeDqRpDSkUrvupv1tVgskkqlSKfTZLPZVcXz3m/kcjlRDbipqemG43q7Z0yqF7GwsEBjY6PIgiZDhowbQ/YEyLjtkclmRPaLEydO8OMf/5gXXnjhQ+7VB4Pp6WkOHz7M//1//98APPPMM/zwhz/k0qVLH3LP/gHSBz2bzYqqrjdDOp3m1KlTfOMb36Crq+um1Y1vhkQiwd/8zd/w0ksvMTU19a7ayufzq4o0vR0888wz9Pb2rksjODU1xTPPPMNXv/rVd9wvKX2nhDfffJPe3l4CgYAoavbUU0/xrW99ixMnTmyYAvf9hlQE7t1AEtDfL4TDYXp7ezl79uwt79d3g3w+z/z8PN/+9rf5b//tv/HCCy8wNzcH3Hy+Ll++zOHDh285LWU6nWZwcJAjR47w/e9/n/7+/vdkDLeCYDDIa6+9xp//+Z9ftyK7BCmd7q0inU4zMTHBl7/8ZTwez4eyt2XIuB0hKwEybnucOH5C/Hv//v20t7eLSrW/6Ojo6KCjo0NYvR555BF0Oh3pdPpD7tlqTE1NceXKFRYXF2/peqn42c6dO9+xwL0SFouF/fv3Y7PZRJXSd4qhoSFee+21d3Tvvn37aGhoWGfh3Lp1K21tbe/Kejk0NMTrr78u/r9582aRpz6bzXLixAkaGxv50z/9U37lV37lA4+byOfzPP3008Tj8XfVzvPPP8/S0tJ71Kv1MBqNNDQ00Nra+oEEQUu57rds2UJlZSUtLS20tbWRy+X46U9/SjKZvO69DQ0NogL4rSAUCvHTn/6Uhx9+mH//7/89Bw4ceK+GcVO4XC5aW1upqam5qSLY09PD6dOnb7lt6X2xsiCbDBkybg6ZDiTjtkShUOBKbz+wm/7+fs7UWDh48KBwMWezWUZHR/H5fOzatUtU0QwEAiwtLWG1Wqmurhbl3i9cuMDOnTsJhUIUi0WsVqsoECUhmUzidrvp7+/nrrvuYnFxEZ1OR3l5OYVCgcnJSTZv3ozNZkOtVpPL5Ziensbv99PR0UFZWRnJZJKuri6qqqpEm3q9nq1bt7K0tER/fz/bt2/HYDCwtLSE2+3m/vvvB65V6/R6vUSjUQ4cOCDya69Ncye1u7CwwOzsLCaTiS1btjA3N0c4HKasrIzW1tZ18xmNRkVVW+lD3d/fT1lZGZs2beLq1aui8BhcEzqlwk7FYpGmpiZ8Ph/Ly8vo9XrKysooLy8nEonwt3/7t6uKkrW0tOD1epmdnUWr1VJRUUFtbS2lUonJyUmSyaQoLrURstksJ0+epL6+nkKhgMlkwmAwMDQ0JAphzc/PEwgEaG5uFsWOJOTzeQKBAFNTU5jNZqqrq7FarWKOpSJtTqdzVSrG/v5+jh49ysjICA6Hg927d2M2mwmHwwSDQeLxOFarlcbGxlVCdqlUwu12i2rNxWIRpVJJOp1meHgYg8FAIBBYNcbBwUHi8ThGo5FNmzYRDAbp7++npaVFFK+qr6/H5XLx6quv0tPTQyqVwul0smfPHhYXF0U+dLhmNbZardhsNpaXlwUtaMeOHVy5cgWlUonT6aSurm5VPzKZDJFIhMnJSWw2G83NzRgMBhKJBNPT02SzWWpra7Hb7aKis1SfIRqNUl1djcPhoLu7m8OHD1NWVsauXbuoqqpCrVYzOTlJJBKhoqJCKGk9PT3s3LkTv9+PQqHAbrdTU1PD+fPneeGFF0in09x55500NTWtSjUZCoVYWlpifn6e/fv343a7qa2tBa6lOo1Go9TX11NRUYFKpSIWizE5OYleryeVSmGxWMjn83i9XkGnKxQKeDwelpeXgWsF2PL5PKOjo6LqsFT5VipOlUqlGB4eRqPRoFKpqKqqory8fMO9LO3LlX9Ho1ExXy6Xix07dlBZWbmKxub3+3G73UQiEQqFAplMhsnJSQqFAjqdDqvVumot4/E4CwsLTE1N0dPTw65du7DZbESjUaampigWi2zbto1isSgq5nZ2drK4uEhTU5Oo2N3a2orH48FkMuF0Okmn07jdbiorK6mrq+PKlSvkcjnKysqoq6vj5MmTtLW1iffGynPodrtFMbxNmzZhs9mYn5/n2LFjLCwsoNfraW5upqamhuXlZQKBgCjoKL1DFxcX8fl8N7X+JxIJQqEQoVBIFAtTKBSEw2FCoZCgkm7btk1Up16JxcVFvF6vKKJmtVoZGhoiGo1iMBgwm80sLS2xd+/eVXU3ZMj4KEPepTJuS6zMY24wGqivrxcv3Wg0yuLiIiaTidnZWcbGxggEAvj9fo4fP05NTQ0nTpxgYmJCCJkzMzOcPHkStVrN0tISZ8+eJZPJrLJYqdVqVCoVx48fZ2JiQrT/wgsviNL2J06cYHp6mkgkQl9fH/F4HJ1Ox9mzZ7ly5Qpwjb/693//92SzWSGEjI+PYzKZOHv2LEtLS6Kg08svv0yhUGB0dJS5uTkymQxqtZpnn332hhZCiQM+MjLC/Pw8uVyOxcVF8WFdiXw+j8fj4dlnn6W6upqFhQXm5uYIhULkcjneeustisUikUiE2dlZZmZmMJvNnDx5kpmZGebm5lhaWiKfz3P06FFsNhtDQ0NcvHiRWCwmqhc7nU5cLhcWi4VQKMSRI0ew2WyEw2HGxsZwu92cP3+epaUlzGYzarWacDh83THm83l+/vOfs7i4SCwWw+fzUSqVOHPmDKlUikQiwcLCAmNjY6vuy+VyeL1ejhw5QnV1NfPz80xPTzM3N8f58+epqqqiUCgQj8fX0Rak/isUClGdeW5ujuHhYTweD+Xl5YyNjTE8PLzO4m0ymRgaGmJxcZFsNks8Hufpp5/GarViNBpFIaZSqcSRI0eIxWKiINqrr76KyWTi/Pnz9Pf3E4vFsFgsPP3004K7brPZsNls1NXVodFoCAaDQnDT6XSUlZXhdDqpqKgQSvLCwgKlUonx8XEikci6DEDZbJbh4WFee+01ampqGB8fZ2lpid7eXrq7uykWi1RXV3P69GkmJydFbMPTTz+NXq/H6/UyMTHB8vIydXV1ZLNZUUVZEpRHRkaoqqqir6+PsbExisUi09PTnDx5EqPRyPT0NBcvXiSXywmlz+l04nQ61xUKk7xgJ0+exO12Mzk5ycjICMPDw8zOzlJXV8frr79OKBRicHCQU6dOYbVauXTpkqi8K1Ws7e7uplAocOLECcbHxykvL6e8vJxnnnmGZDJJKBRiaGhI7Jk333yTpaUlvF4vk5OT5HI5XC4XHo+HSCRy3X28EXQ63ar5kgwLK2EwGPD7/Vy9elWM2Wg04nQ6USqVzM7Orrpeo9FgNpsxmUzU1tZiNBrp6+vj/PnzlJeXU1lZyUsvvYTH4yEejzM6OkpPTw9er5d0Ok0gEGBkZIQzZ85QVVXFW2+9RVdXF6FQCIvFwrPPPivoU7Ozs/T19aFUKnG73YyOjq46y6VSiXA4zNDQEJFIBLVazQ9/+ENKpRJWq1VUPa+vr8dqtTI+Ps7w8DCJRAKTycSrr75KsVjk2LFjQpG32+0iJmojXLx4kcXFRaF4XrlyhUwmw9jYGDMzM1RUVJDJZIjFYqtoYKVSiVAoRH9/P/l8nkQiwU9+8hPgWr2SM2fOcPHiRVFA8rXXXvul8UTLuP0hKwEybksolUqsFitwjeqxUgnI5XJks1nsdjvpdJrZ2VnC4TD5fJ5IJIJSqWR4eJi5uTni8ThqtZpsNsvi4iIWi4VUKsXU1NQ6IVutVqPX65mdnRXBeKFQiO7ubnQ6HbW1tVy+fJmlpSUKhYIIwNNqtfT29jIyMoJKpcJqtdLf3y8CNiORCDMzM1gsFiHQajQajEYjw8PDoipuOp0WFTJff/31G1J+pPuNRiPj4+Nks1kKhQJKpVIU2pIQj8eZmZmhr6+P6upqEYQrFfQZHx8X1yaTSQKBAFarlampKdLpNBqNRlTrlT708/PzjI+PEwwG0ev1QgFwuVwYjUampqbo6+tDrVaTTqfx+/0sLCzw6quvotFocDqdmM3m637QFQoFVqtVCPhGoxG1Wo3VamViYoJ8Po9CoSCTyeDxeFbdG4vFmJiYoK+vD4PBQDwex+fzsbS0xPj4uLBMb8QHd7lclJeXYzabaWhoQKvV0tfXx/z8vPh9Pp/n/PnzBIPBVfeaTCa8Xi+RSIRUKsXCwgJXrlyhvLycsrIydDqdqOr88ssvCwUqn8/T39+PxWJhaWlJCOvl5eVCQZPmVrK+qlQq8vk80WiURCKBTqfD6XRSXl6Oy+XC4XCgUqkYHx8XlVf1ev26YPJAIMDExATj4+PU1dVhMBgoFotcvXqVrq4uHA4HVVVVzM/PMzExIRSOvr4+7HY7xWIRr9eLz+ejvr5eCLeS8nfx4kWCwaDwfHm93lVBnna7nWg0yszMDJlMhoaGBvR6PVVVVVRUVKxTWvR6PQqFgunpaUqlEkajkcnJSQYHB4lGoxiNRsbGxoTyffXqVSoqKpifn0epVIqAeoPBwMTEBLFYjK6uLpaXl6mqqsLlcnHq1CmCwSDpdJpYLIbH46G6uprx8XH8fj/xeFwIzEtLS+uMCbcCaZ50Oh319fXYbLZ1Co/BYCCTyeB2u8nn8ywsLDA5OcnS0hKxWGxdm1qtVgQC19bWolAoGBkZYWhoiKqqKqqrq7lw4QLLy8uk02kSiQRerxebzYZWq6VYLBKPx1leXqa6uloodwAOh4Pz58+LpASSAi4pLj6fb51CXSgUSCQSwovx+uuvCy+s1WqlrKyMhoYGrFYr3d3dzM3NiUrPIyMjxONxzpw5g8/nw+Vy4XQ6RSXpjZBMJkmlUmSzWUKhEL29vWSzWTweDxMTE0xPT5NIJDasdFwoFMSchsNhTpy4RkF1Op3Mzc3hdrsxm82UlZVx/vz5GxpoZMj4KEFWAmTctpBe1ErFtW0svfwtFouwdDkcDpE9x2azceeddzIwMIBGoxGZKuBagSmJ5qDT6dBoNOssuVKFSrPZTEtLi8jwotVq2bRpk3hWJpPBarWyZcsWYZH2+/3COmSz2aipqcFisQirVygUEtU4JY+DTqcTVA6p/WQySTwex+PxkMvlbihcOBwOHnroIS5dukQwGKSmpobNmzevywbi9XqZmpqipqYGlUrFXXfdxfbt26msrFylMBgMBiFkqVQqtFottbW17Nu3j71796JQKLj33nuZnp4mlUoJAVDK8rHSU9PT04PBYFglfHk8Hl599VW2bt2KxWIRdIPrrb3dbqeyspKGhgY2bdpEa2vrqv7qdLoNswD5/X4GBwcxGAzMzMxgMplQqVQkk0m0Wi1f+9rXBPVp7f3SOKSKpfl8njNnzpDJZMT8bd68mZMnT+L3+1f1V6VSYTQa0Wg0RKNRBgYGqKqqQqPRYLFYsFgsaDQaYYWWKEbhcJjy8nKxP2pra6mqqkKhUAilQeqPdCZKpRImk2mVkLyy362trezbt49Lly4Rj8fp6Oigvr5+3XinpqYIBoNUVlaiVCp58MEHaW1txev1MjIyIugmkiIwOzuLw+GgpqYGk8mEzWYTQcnS81UqlaBHnT9/HrPZLLxLJpOJbDYraEfSGVCr1SQSiVVjANYpatIZ1ev1NDU1cd999wlvhFarZWpqitraWgqFAvl8HpVKJfafVFlcWgvpbAQCAbLZLHq9HrVaTSaTEYq+0+mksbFRtJHNZtHpdJjNZg4fPswPfvAD8TspQP5WFIKV66lUKimVSuvoLlL9Bol60tHRwY9+9CN+9KMfMTg4SFNT07o2V1bbDQQC+Hw+QUnUaDRCKI7H44KCdfDgQeEBk6h2SqUSjUZDZWUlFRUVKBQK0T+z2bzK22ixWDasKGw2mwVNT1LyVmZ+WnvGEomEUOrr6+txu90sLi5SLBaFkiR5QVZCmvO9e/disViYn59HpVIxPz8v1mt6epr//b//N9PT05jN5nVUILPZTFNTE6lUivn5edFXab84nU5qamqw2+2CbiRDxu0AOSZAxm0LhfKawFMsXeOwGo1GstksKpVqldWsVCoRDAbxeDy8+OKLfOtb32JwcBCtVksymRTCmlarXfUBuVHGDa1WKwQaSXCT7imVSgwPD/P444/z+7//+2zatEnQO3w+n1AcVgps0rM0Go3oQ6FQIBKJUCqV+O53v0tVVRX33HMPTqdT8JRvlAZUqVRisViw2+0cO3aMe++9l7a2tnXX6fV6TCbTKhe25HlYKURKljTpA69UKoXwkEqlxIf0a1/7GuFwGJ/PRy6Xw+12X1svhUJY5SsqKohEIuzcuRO73U4ul2N+fh69Xk8kEhHC6I0EplKphMViQa1WC0FYp9OJeZWsmWsFW8kzEY/H2bNnj/BGhEIhHA4H/+Jf/Asee+wx+vv7yeVy7N27d92zFQqFiJnQarXk83ni8bgQeKV+re2vBEmZXF5eFntmZQpNh8PBli1bBEd7ZR/UarUQRqV9I+0ZyaMlWeyvFyQpKR5Wq5Xnn3+ez372s5SVla27zmw2o9FoCIVC4meJRIJ8Pi8ENLVaTTweR6PRYDAYxP7eaOxSf+bn51leXsblctHU1MSePXvYs2cP+Xx+1Xnc6IxIP/P7/fh8PrZt27bqOZLwaDQaUSgU2Gw2FAoFLS0t7Nixg507d4oMTzqdjjNnznDXXXexY8cOdDodiURi1fiz2ewqa74Up5FOp4UgvvL50WgUnU7Hiy++yOLiIl//+tfJ5XI8/PDDG1qZN8La+ZKyBTU3N6+7RoJWq+WHP/whc3Nz9Pb28thjj/F//V//13WfYTQaKZVKqzIQJRIJtFoter0epVIpvILS79eOV9qLUlxQqVQScRBSH8Ph8IZn4ciRI4RCIbZt28aePXvQarUsLy9TU1OzSgHo7+8XNLfNmzfT2NjIgQMHRArhlf2/0fvif/7P/8mOHTv41Kc+JehhXq+XyspK/sk/+Se4XC5+8IMfcOLECe6++25hgCgWi7z00kuEw2HuvvtuOjs7OXr0KEtLS9TU1Ig5kHCrmZpkyPgoQFYCZNy2sNlssHDtA9nf388DDzzApUuXuHjxouDlnjt3TtBm7HY72WyWwcFBCoUCw8PDZDIZtmzZQnd3N2azGZfLJWgCp06d4nd/93fF8yTazMzMDMePH6elpYXh4WEmJia4dOkS4XCY6elpZmZmhFAmBdjl83kKhQIjIyNMTU0xNjbGxMQEMzMzXLlyBbVazWc/+1n279+P3+/n1KlThEIhQUdIpVLEYjHGx8cFhWFhYYFUKsXAwAATExMMDg5y6dIl+vv7RaBpWVkZv/d7v8epU6dIpVIbZoSRAie7uro4e/YspVIJh8OBy+WisrKSdDrN1atXGRsbY2xsDJVKRXNzMzMzMxw9epQHHnhAcLWlgMloNIrP56O7u5u2tjb27dvHhQsXsNls7NixgwcffJDe3l56enrQ6XSCy/xf/st/4ejRo3R2djI1NcWlS5cwGo184hOfWCXgZ7NZ3nzzTa5cucLWrVux2+04nU6qq6vJZDKC7z40NEQymeS+++6jp6eHQqHA3r17ufvuuxkcHOTChQtivPF4nB//+McoFArhYWhoaFg3X5I1/6233qK6uprf//3fp6enh66uLpLJJKdOneKf//N/viqwvFQqiXgKjUZDVVUVd999N+fOnWNwcBC4lhFlfHycvr4+/sN/+A9cunSJubk5KisrSSQSNDQ0MDMzw8WLFykWi2g0Gubm5rh8+TKtra0oFArGxsYYHBzk0KFD9Pf3k0gkiMfj1NXVceHCBXQ6HVVVVRgMBsrKyvjSl74kaBgbBTJu27ZNBJSePXtWBIZLCuVPf/pTtm7dit/v58EHH0Sn0/Hmm28yNjbG5OQk3d3dLCwsUFtby5133onL5eLSpUvU19ezc+dOOjo6OHz4MIAIDtZqteI81tXVMTk5ydjYGFVVVXzxi1/E6XQyNjaGQqEQAcgSAoEAk5OTTE5O8vzzz/OZz3yGhx9+mP7+fo4dO0ahUGB5eZmDBw+SSqUYHx8X3PmJiQnuuusu8vk8J06cYGxsjFKpxD333EMul+P1119HqVTysY99jOrqaoaGhrh06RJlZWW0tbUxMTHBuXPnhJdmcHCQzs5OPvGJT9DW1sbAwADf+MY3+NrXvkZZWdkq+uLs7Kyg4kg0mLq6OlwuF93d3dTV1VFZWblqrG63m5mZGcbGxjh9+jSnT58Wgf8NDQ3rro9Go8zOzjIxMcELL7zAI488wv79+5mcnOT1119HpVKxb98+6uvrWVhYoKuri6WlJTo6OoS1/OLFi9hsNjo6OpiYmBBUSrvdLmJqdu/ejdFoJBwOMzAwwNTUFF6vF71eTy6XY2JigjfffJNcLkc8Hmd2dpZIJILL5eKtt97is5/9LK2treRyOV5++WXq6ur48pe/zMmTJzl9+jQdHR34fD4efPBB/tE/+keUSiWOHz8u4nOOHTvGgw8+uKrehqQQB4NBJicnWV5eFoHGFy5cIJvNct9999Hc3MzOnTvXeUtLpZJ4/2YyGex2O2+99RYtLS2Mj4+TSCS4fPkyk5OTzMzMMDs7i91ux2q1rjtTMmR8lKAovdukzTJkfEjojhTYf0XFk+YR7q22UFVVhd/vF+77TZs2MTs7S7FYxG63o9FoBH9XCv4yGo1YrVZmZ2dFFo9IJEI4HKaiomJVyjnJ2js0NER9fT0mkwm/3084HBYp/WZmZgTv3e/3i6I/gUAArVaL1WolmUzi9XppbW0lmUyKOIX29nZhPVcqlUJR2b17N+FwGJVKJSgJksVMo9EQiUTweDxs2bKFSCQigpSl7BkTExMkEgmamprWCQYS0um0oGRotVoRmKdSqRgaGsLpdBKLxQRntrW1laGhIaqrq3E6nRiNRhKJBFNTU1RWVgrrqVKppL6+nlQqhcfjQavV4nA4sFgsTE5OYjAY0Gq1wvqYyWQIhULo9XoSiQThcBilUsnOnTtX0V0KhQIzMzNEIhGRmUayUA4ODuJwOARnO5fLsWPHDqampiiVStjtdsrLy0XmJGm8hUKB2dlZXC6XoHAYDIZ1XGyv14vf78dut2Oz2VCpVIRCIVKpFDqdjlQqJQTtlRbRVCrF6OgoRqMRl8uF1WplcnJSBEFLmZX27t1LqVQiHo8Lq7pKpRLZj6QAYKVSKTI0mc1msfcl3r+UKcZiseByuRgfH0epVFJTUyO8ZrOzs8RiMXbu3InRaNxwb4RCIXw+H0ajUVCsJB53KpUS1DmJMiTNz5YtW0RQqV6vp6GhQWRVks4FXPMKSJQRidoyPT2NSqWipqYGv99PIpEQmYuGhoZEQS1pjSRkMhmCwSDT09M0NjZSVVUlCs8Fg0Fh2Var1fT19TE7O8sdd9xBsVikq6tL0KKKxSJ+v5/t27cTiUTI5XKr3gOVlZXi7Gs0Gurq6hgZGRH0PsnibzQaKRaLmM1m8vk8k5OTbNu2bZWXo1gskkwmmZ6eJpPJUFZWhsvlwmAwcPXqVTFf0vyvPLPLy8uEQiExTzabTZxbYJV3J5fLEY1GGRsbE5QySUmU6DdSVp9UKoXb7Ra0Kmldg8EgarWa+vp6kUnMarWi0WgYGhpiy5YtIktUMBjE4XDg9XpJJpNUV1ejVCpZXl6mvr6eUqlEMplEo9Gg0Wjwer2UlZVRXV1NJBIhFouJGCYpyLxQKAhKosvlwuv1ksvlUKlUqFQqkT2r6v9n77/D7LzrO2/8dXqbU2bO9N5HZaSRNOqyjG0M2IZ1gOwDCcsGdgMJPAmEJ9cmG/Jcz2Z3A1mSpaQBhpDgJTamBPcm2bKkUddoJI2m9z5nyum9n98f+n2/OdOkke2ABed9Xb5sn7nv7/2t9/0p78/nU1oqs0YJEUfEZInsXE6nk8rKStxuN4lEQp5lq9WKTqeTSlomk8HhcEgPkAgUttlsksqm0+koLy8nFAoxMzNDc3OznJerAWjvgq522PPOqt+YQw45JSCHuxfi5dq5O83uvMwKIXE9iK2eSCRWCHb/VnmlRYGsbPf5Zp4l8tgrlUp5v1AKMpnMCvrLRu0Jesv4+DharVamtMsWIjbqr6i2mU0DEAF54v9X0z3E/aL/arVa3p/N3xYUKgFB3xJrJygxYqwCm60Amt0HuDnf6XR6hdC10Xizf1tNDVvvOYIKk62YJBKJNdmXbgeR8SmTyciUntltiv5vZuzZlVY3mi8RUyKUsoaGBiwWyy3rBqTTaRKJhOxH9t4QtJrNniNBJcoWssQ6bDat4np76XbIZDKyr4FAgM7OTubm5njwwQcBeP7559m2bRvbtm1bE4uSTqcl5z17zTd6jpgbsUfeSrpIIeTebj+KcyOoNHdSbXezY9ssRH+EQSOdTstYp2yIc54d+yDePaJf2X0SHtXs91j2u0K82zcafzKZlF60bGqW8GLe6uzeqq+3Qk4JyOGdjBwdKIe7HjfTad7+OvGy3oxA9XZAcNTvFNkKSraVM5t3ersPTywWY2lpiZ6eHvbs2YPZbL5tX9brr3jOZsax3vxm93M1L3j1teL67MDPO8WdrPFG492MEK9QKNZ4CIQ18k6R3YfVc7TenN2qT5sR4EQNhomJCVpbW6VX4VYQQbOrnwfcsdKzekxv5pzcybxkP0f01WAwyCDOhYUFGWguPDSrcSdCdfY6vB3vmtX77FbPfDPn5k7GtlmI/txuXVefl+z9u16/VvPvV7dxu32x0Tt0vXbvpK855HC3IucJyOGuRc7CcmtkH+3cByuHbKwOPP1VxerP36/6fOTw9iP3ncrhnYxcitAccsghhxxyyCGHHHL4FUOODpRDDr+kyFk1c9gIub1xE7l5uPsQDoe5ceMG8XicPXv2rMnkcyuMj4/LQPTdu3fn1j+HX3nklIAcfukwOTnJ0NAQBQUFtLe3r+CViqwrfX19NDY2bliMaj2IXNib4SN7vV5GR0eZm5vj4Ycf3pAbnB3se6fIzp0uCjC99tpr7N27d92c778IhMNhTp48SWFhoSwCBjfncmxsjBs3brBr1y4aGhp+wT29CZEK8OWXX2br1q00NjbKLCO3wp2s41tZ8/X6u7CwwPLyMn6/H61Wy/79+1f8XewTlUqF0+mko6OD0tJSjhw58paffzu8mQDeNwtRoVev13P48OE1f08kEkxMTHD16lUefPDB2579TCbD6dOnUalUVFVVUVhYSE9PD1u3biUajdLd3U0mk+Ghhx7adB9FcHJXVxcOhwOj0UhVVZXMHNTW1iardm8Gb8deikQizM3NcebMGaqrq2VhM7iZItZsNm8oLM/NzcmCYzabjVQqxdzcHBUVFZSVldHX18fY2Bgf/OAHsdlsBINBJiYmGBgY4OjRozKjmNvt5t3vfjfFxcUsLy8zMDBAKBSipaWF+vr6Fc8XNUV2794tswotLi4SCASw2Ww0NTXJ2iU+n49QKCQzv1mtVlmBevfu3W96zjaax4GBAWZmZrjvvvvWVGbPIYd3InJ0oBx+6eD1ehkcHKSnp2cN51dkIpmenl5RFGgzCIfDzM/Pb+raRCLB8vIyr732msxUs1FfsyvL3gkCgQB+v59IJCJ/GxkZeUeVrE8kEgwPD9PT07NmvoPBIKdOnWJ2dvYX1Lv1kUwmOXfunKx8vBl4PB5cLtemrn0ra74ebty4IXOeZxf1gpuCiSiqBDcDxs+fP09fX9/b9vxbYWlpaUURun9LBAIBent76erqWvfv6XSaYDDI8ePH18zTRpiamqK7u5u5uTlisZisbBuLxbh27RqdnZ133M90Os3MzAwdHR1cuXIFv9+P3+9nZmaG2dlZAoHAptoRCuvS0tId9yEbqVQKv9/Piy++yMjICMvLyywuLsq6BxsVv/J6vfT399Pf34/b7SYQCBAIBHjjjTfo7++XaYdPnjxJX18fXq+XRCKB1+ulu7tbVj8fHR3l9OnT8lmxWIypqakN32Ui5WtdXR3hcJiFhQWpCHd0dEiF2Ov1sri4SCgUYnJyEq/Xi9l8M5W0qBT/diKVSuHxeDhx4sSaavM55PBORU4JyOGuRzKVJJFIyIqVpaWl7Ny5k3A4TDKZlGnh4F8zkdTX15OXlyetpIlEgmQyuaLypEgbl0qlpIXr5MmTxONx+azVEPfZbDb27dtHIBBYkb4vkUiQSCRk+rz+/n46OzvlbyL1ZHZ/RB/F7yJtpCjetbi4KH8TOePXG8N67Yh/r6cspVIp4vH4iuvEuMU4RNvi9+y2M5kMOp2OgwcPEovF5FqkUimUSiW7d++WqTGzUwqKtRR9FfOd3QfRp+x0jNkQ14hnrp5/8d/Z6yiusVgsVFVVyRzvq+cle7+IvSEKtWW3mT3X2ePb7Jqv99zsORS/HT9+nIqKCh566CGZ7lLMwfz8PAMDA0xOTpJOp6moqKCoqEjm+s/ub/bYbje32edqdf/FGiUSCS5evMjQ0NC67d1qL2av20Z7efV6tLW1YbfbCYfDa/ZTKpVCq9Wya9cueW/2HhH9W419+/ah0+lk6tb6+npMJhNVVVWyHkj2+LP37er9BcjaAbt27cJkMmG32zl8+DBHjhzhU5/6FFqtVlZkzp6z9fZvLBZjeHiYy5cv33Ivrbc22X3Ky8ujqakJtVrNjh07uPfee7nnnnsoLi7mz//8z0kmk2vmBeDq1atcuXKFVCrFBz7wAQ4cOMDhw4fx+/0EAgEKCgpoa2tj+/btPPfccwwODmKz2Thw4ABHjhyRlaIPHTpERUUFjz32GKFQiIqKCvn7jh07bknZ6enpwe12U1VVxbvf/W6OHTvGtWvXGB0dZWZmBr/fT2trKx6Ph7m5OXw+34ZtrZ4/sc+E4UjsSfFP9n0ibemhQ4cIBoMy5WoOObzTkaMD5XDXY2BggGjCQ2tr6wq6SSQSobu7G61WS3l5OcXFxVJgc7vdlJeXk0wm8fl8XL16FbPZLNuIRCJMTEzg8/koKysjkUhw9uxZnnzySex2O7t376awsHBNCrxQKMTU1BTBYHDN3+bm5hgZGUGhUHD06FEuXLjACy+8gNPpRKPR8MADD6BWq+nv72d5eRmDwcCBAwdQKpV4PB7m5+fx+XwUFhZit9t57LHHKCkpoa2tjVgshtFoxOFwsGXLFuBfC4B5PB5Z/TcejzM0NEQkEqGsrIylpSWKi4tpaWlZQdkIh8PMzs5y7do1du3ahcPhoLi4WBbBEtZWs9mM2WzGYrGQn5/P1atXiUaj1NTUUFxcLD/g0WiUwcFBlpaWsFgsNDY2rlnHWCzGuXPnAGRxsNnZWQYGBjhy5AhjY2OUlZVhs9lwuVxMTU1x3333rZuG0O/3s7S0hM/nQ61Ws2vXLmZmZhgaGpJ1E4aGhmhvbyc/Px+1Wk0oFGJ4eJh4PE44HF7XAprJZGQVaLVaLRWul156ifn5eVQqFbt27aK4uJi5uTnm5+eJRqPs27cPg8FwR2u++rlLS0uyqF1RUREVFRXMzMwwPDzMuXPnUCgUNDU1yXX0er288MILDAwM0N7ejkajkXsjEonIe/fs2YPNZkOlUuF2u+nu7gbg8OHD66b/XFpawuFwEI1GqayspLKykq6uLllfQeyHnp4enn76aaqrq0kkEhw8eHAFbcXj8azYi06nk5KSEioqKujv7yeVSskiZqFQiOnpabxeLyUlJZSVlUklLRgM0t3dTWFh4Rqvg6gGW1paypYtW1YIlD6fj+XlZZxOJ8FgkKNHj65IyZsNUWhrcnKS2traFfOSTCa5evUqPp+PXbt2kU6nVxRhE/trI8RiMa5fv86+ffuor68nFArR29vL0tISR44cwWAwyJS/09PTsgDfK6+8wsjICGq1msLCQo4cOUI4HGZ0dBSXy4XVamXPnj10dnaSTCbR6XRybcrLyzfsD/xrzYtbpQ597LHHuP/++1fQzwA+9rGPyUrOarWaT3ziE/zxH/8x169fp7CwkOrq6hXzYbfbaWtrQ6FQ8Nhjj/Gf//N//v+nfb49hUyj0eB2u3G5XNTU1LBt2zbGx8fR6XTMzMxw/vx5tm3bJulKeXl5t1QE4vE4w8PDuFwuysvLaWpqIp1O88orr1BZWSmvUSqVHDhwALh5lubn51lcXMRut6+rTOaQwzsVOU9ADnctLndeBsBeYGf//v38zd/8DQMDA9KSMz4+TmtrK263m3PnznH27FlUKhVbtmzh+eefZ2pqis7OTv72b/+Ww4cP43Q66e7u5vLly1y8eJFz587R3t7O888/TyAQoL6+npqaGu6//35KSkpW8PxFrMG3vvUt3G43DQ0NRKNR+fennnqKixcvUl9fT3NzM9/97nepr6+nqamJyspKjh49ikaj4a//+q/l/YWFhXz729/G7Xbz/e9/n9nZWcrLyzl27BharZaWlhZ2795NW1sbjY2NlJaW8uKLL+JyuZienubChQv09/fT3t7OmTNn6OzsJBQKUVpayv/4H/8DQHoUTp06tWJuDQYD6XSavr4+rl+/Tnt7O2fPnuXpp59mYWGBpqYmvvSlL7G8vIzL5eL8+fN8+9vfxm63097ezunTp3n66aclFWpiYoLKykp0Oh29vb08//zzKz6WAwMD/P3f/z21tbVs2bKFEydO0NPTg1ar5ZlnnmF0dJT6+npeffVVvvnNb2I0GvH7/bzxxhssLy+v2Rv/8i//wuLiImazmePHj9Pb20thYSE3btzg5MmTLCwssGvXLr72ta9JZefFF18kFouxe/dulpaW1nXpX7t2jZmZGex2Ozt37mRgYIDS0lJqampoaWnh6NGjFBYWyjaj0ShFRUX80R/9EalUin379t12zR977LEVlsREIsHCwgLf/e53aWhoQKfT0d/fz7Fjx6isrMRuv7n/BRdawGq1UldXR1tbG+3t7TQ1NcnCTU6nE4fDwY4dO/irv/orlpeXOX78OM8++yx1dXVs2bKFJ554gomJiRV7PJPJ8Pzzz+P3+zGZTHz5y18mkUjQ0NDAsWPHeO655wAYGhrinnvuoaKigpaWFvbu3btGEDabzZSUlPA//sf/QKFQkEwmOXXqFI8//jgtLS0888wzzMzM0Nvby8WLFxkZGWHv3r289tprXLt2jfn5eaanp/lf/+t/sWfPHtRqtbTQxmIxvvSlL5Gfn09zczM+n48nn3xyxfMHBgbo6upi165dkqqyEfVF9H18fJypqakVFL94PE5HRwd2u53+/n4uX76My+Xi8OHDfPvb396Q+uXz+ejp6eGZZ57hH//xH6VXaWpqipmZGVpbW/kv/+W/4PV6OXPmDH19fezevZvKykpmZmZobGykra2NrVu3yirTX/3qV3G5XNTW1jI3N0dnZyd1dXX87Gc/4/XXXyedTjM0NLShoDoyMkJHRwcvv/wyAwMDPPHEExvGM42Pj2MwGCguLl7x+8GDB2lqalrx25/8yZ8wOzvLk08+STweX9NWUVERn/nMZzh+/DgDAwO3FNSz0d7ezrvf/W727t1LIpHg6tWrHD16lP3797Nt2zb0ej0PPvggDocDvV5/y5oWkUiEZ599FrhZo+DGjRvy/81mM9///vdZWFhAq9Vy/PhxHA4HgUCAJ554ghs3btDa2rrinZ9DDncDckpADnctpqemAcgvyEen05HJZJiammJhYQG1Wk1paSlarZbGxkYWFxellVlYb51OJ3Nzc8zNzTE7O4tKpcLn83Hjxg1u3LhBY2MjWq2Whx56iPr6ejQaDWq1GoPBsMZKlU6nuXLlChqNBpPJRF5enrSGAfT29tLf34/P58PlckmrqUajQaPRSAvkxYsXmZmZwefz4fF4iMfjXL16FZVKRV5eHqWlpTz00EMYjUa0Wi06nQ6dTodGo1lR5XZ0dJTOzk5qa2vRarUUFxczNTVFf38/eXl5aDQaCgsLyc/PJ5VKrRFUFAqFHGtxcTF6vZ7KykoSiQSXL1/GZrOhVqspKiqisbERm83GmTNnpKdAoVDg8XgYGRkBoLi4GIPBIIPzXnzxxRWCyPLyMufPnycQCOByuSQXX6PRkEqlpIAsKokWFBRgsVhYWlpa98O7b98+tFotk5OTJJNJaUHNZDKYTCbq6+vJz89ncXGRRCLB6OgoN27coLm5Ga1WS35+/roehsLCQiYmJvje977HE088QV1dHUajccU6qlQq7Ha7FI5mZ2dxOBxkMhn0ev1t1zwWi3Hy5EleeuklTp06xeXLl7l06RJWqxWdTkdFRQWpVIrXXntNVmHV6XS43W4uX77Miy++yKuvvko0GkWtVst9IhSEVCqF1Wqlvr4em82Gw+EgmUwyOjrK9evX8fv9uFwuotEo169f59ixY7zyyit0dXWRyWTYsWMHarWa8fFxgsEgwWBQFqMzmUxUVlbS2tqKyWRCpVKh1WrR6/VripkJT4rYizabDYPBgFKpxGAwoNFoCAQCdHV10dvbS01NDRqNhtLSUgYHBzlz5gwDAwPk5+ej1+ux2+0yiDuZTHL69GlcLhdutxu/378mNieZTDI+Ps5f/dVfkUgkbllsTQQ3CxoV3FSKpqeneeaZZ9i2bRu1tbX09/czNDQkvQHZVKvVEEHBe/bsYdeuXSiVSux2OyUlJRgMBmZmZnA4HHK9pqen+cpXvkJHRweVlZWyArhWq0Wr1TIzMyPfZW63G6VSidPplGtjNpupqqpi+/btG45TeExKSkoIBAK43W4ymQxDQ0OcOnWKl156iddff51MJoPNZiOZTK7h7Uej0TVzXVNTw86dO9FoNFKwzoZSqSQ/P5/f+q3f4sUXX5RB17eD2FuBQICzZ8/yH/7Df6CmpoZYLIZCoWD37t184Qtf4Nq1a1y7do2FhYVbttXe3o7X6yUSibC8vMz09DQKhQKr1YrFYiEvL0/uTbfbTVdXF6lUCrPZjNFoXOH9zCGHuwE5JSCHuxbCUqvX3RQwMpkMkUiEaDSKUqmUwn5+fj6JRAKXyyWFW5VKJbm7cPMDUF1dLSlDPp9PZneoq6uTVUSFoODxeNZwZd1ut6zaKQTo7L6Kj0VeXh5btmyRglH2/V6vVwpHVquVLVu24PP5UKlUss3m5uYVJevj8Ther1dWsVUoFFKYFkKRwWAgHA7j9/ulomIwGKRlLBaLrRiLGIcQHhQKBQaDgUwmg8fjQaPRSCpQQUEBJpOJxcVFjEajXItEIiGDgfPy8lCr1ZhMJkwmEw6HY8XzEokEgUBAzk9tbS0lJSWyH0VFRej1einw6HQ69Ho90Wh0hfVWCFwLCwuEQiHZ/0AgQCQSIZ1OYzAYsNvtaDQaGW8glDOx5gaDYV0Kh1qtJj8/n5KSEhKJBNPT03IfiLV0uVw4HA5CoRBKpRKtVksymSQUCpFOpze15sKblUgkiEajuN1uKcTr9Xo5xuz1yo6hEBxxsUcymQwul0vOz+o5yD47Yg2am5sxGAyyPUGdE1Zzocz4fD7JdRd0k5KSEpRKpXx+MpmUAqWAOCd5eXkYjUZpqdXr9XLeEomEnCOj0SjXRgTEirMh5kWsWSaTwev1YjKZpMdhdQYqq9VKaWkpRqOR5eVlqXRvhNVVooVioFKpWFxcxGAwEAwGSSQS2Gw2GYOwEcVIo9Fgs9mora3lyJEjUmj3+XxyjcQZMplMFBUVYTabJdVNZF5KJpN4PB655mq1GqvVSk1NDXa7XSpn2WuzkaBqNpspLi6mqKgIjUZDd3f3itgJsRcAdu7cSTQaXSNYO53ONbQsvV7Prl27qKqq4uLFi/j9/jWxEiqVigceeIBoNMrU1NSmkzD4fD5pxLjvvvukFzgUCrFnzx4eeeQRduzYIYOHN4IwFoh5UKlUBAIB+R6xWCxyj2m1WqLRKB6PR8Y4KZVKuUdzyOFuQS4mIIe7FkbjzY9rMBQkrFaRSCQwmUwYjUZisZgM6AoGg5hMJkpKSlbdb5RW3+LiYpRKJbFYTFpjXS4XsVgMv99PXl4eSqUSjUZDKBRidnaWuro6KRQoFArsdjuDg4OEQiEikQihUIhYLEY8HqewsFD+Iz4o2QJzIBBgcXGRsrIyiouLKS4uRqVSUVBQwNDQEDMzM0QiESnIikC0VCqF2+0mFothMplIJBLEYjEMBgP5+fksLy9TU1ODz+fDYDBgsViIRqNSSBdtRqNR+THLFhAymQzRaJRYLCYzahQXFxOJRFAqlTJgTqPRUFBQgM/nQ6vVEo/HUalUWK1WQqGQXAsRrF1VVUU0GiUejxOPx9Hr9VRVVVFQUIBer5eeBmGlzg4OTqfTxONxOc8iQFV4QdLpNM8++yyHDx/m8OHDzMzMEI1GZSpDjUYjlR4h1AhBye12Y7FYiMVihMPhNcqRx+OhqamJgwcPsrCwwD/90z9x+PBhNBoNSqWSQCAg4xgCgQDNzc2UlZWhVCqloHi7Nbfb7cRiMVKplEx1GAwGGRwclFbWVColY1USiQThcJiysjJJNRIKnFarlcLM9PS03CPxeFw+Q6yB1WqloqICu92OXq/HYrHIwHAhlC4tLdHR0cHBgwepr6/HYDCwuLhIXl4eqVQKtVpNLBaTXhSlUkkikZCCWn5+vpxLEdwq1jMSiazoUywWkwJwJpPB6XRSXV2Nz+eTCqjJZKK/v1+ul9hTqVSK6upq6ZEpKioiFout2HNGo5HW1lYaGhr4xje+wdLSkvS2CGS3GY/HiUajsp/JZJLCwkIOHTrE//f//X8cOXIEs9mMWq3GbDZTUVFBXl4eJpNJnimhhIVCoRVrsGvXLuCmx3B+fp78/Hza29tlWtd0Ok1zczP33XcfZ8+epbu7W8bVBINBpqamqK6uxmazUVhYSHl5OQqFQvZVBFBnr032Ooh9FQqF5HvUbrfT2dnJhz/8YUpKSrBarSSTSalovec972F0dJSJiQmamprQ6/UkEgmcTqf0evn9ftRqNQUFBbS0tODz+Th9+rS8JhQKyUDiZDJJRUUF+/fvl8G9t0M0GmV4eJjZ2VnKyspIp9NMT08zPDyM1Wplx44dWCwWfvM3f5OOjo5bZvuKRCI89dRT/M7v/I58P4vxZCeZEPsgFAqRn5/P5OQkwWBQ/haLxeQZ/Xmkxs0hh7eCnBKQw12Lffv3gwtOnzqNosJCUVERLS0t5OXlSave2NgYly9fpqysjAcffFBaRwEsFgtWq5WWlhZOnTqF1WrFbrezZcsWioqK+MlPfkJBQQHLy8u0trZK69qJEyeoqalZISwrFAruvfdeuru7WVhYIJPJMD4+LrNUvPe972V+fp5nn32Wbdu2kU6n2bFjB3q9nlgsxoULFzh48CCf/vSnmZyc5NixY9TU1JDJZDh8+DA3btxgamoKpVJJJBLh0KFDtLa20tfXx9LSEq2trUxPTzMzM0NPTw+7du3ioYce4vjx42i1WkZGRmRGjuvXrzM7O8vY2BjXrl1jYGAAjUaD3+/HZrOtmONkMkl3dzd6vZ7JyUnKysq47777uHTpEtPT0wwMDGCz2aiqquKzn/0szz77LNXV1QDU19fT0tLCtWvXZG7v3t5eXC4Xv//7v8/169eZmJhgcnKS/fv385u/+Zv8+Mc/ltQIvV4vg1DPnz+PVqtleHiYSCTC6OgoFy5cwOFwcPDgQSorK6VXQ1B+/H6/TAU7Pj5OSUkJ8/PzknqkVCqZm5tjamqK7du3U1xczPPPP8/evXsZHx+XgmJVVZWcj4mJCVwuFzabjYaGBt7znvdgMpkoKysjFArJXOsiy8j8/DwejwebzcbIyAhlZWWbWvO9e/dKpUZkvOrq6qKvr4/Z2VnUajW//du/zfT0NLOzs5w5cwadTkdra+uK9RNC8/nz5zl06JCkmASDQc6fPw/A/Pw8U1NT7Nq1i7KyMn7605/KANfm5mYpuAtBXKPR4HK5JKXp/PnzkvplMBgYHh5mx44dAJhMJhYWFujr66OtrW1F3zwez4q92NXVxcDAACqViomJCUZGRjCbzRw6dAidTse5c+dQq9WMjIzwgQ98QAqVly9fZmBgAIfDIVNPOp1OPve5z3HixAkpHIs1mZqaYmJigsXFRcbHx/nABz5Aa2srdXV1a/LzX758mZ6eHun56u3tJZlMYrFYmJycxOl0Mj09TW1tLV/5ylf48Ic/TCqV4o033pACpFASBUKhEGfPnmVkZIRQKMSVK1e499575RyLVJNdXV1SyJyampIB7na7naqqKkpLS1laWmJsbIympib27NnDnj178Hg8nD17lry8PBmgPjo6SiwWY3R0lO3bt68Yo0itOj8/z9mzZykuLqawsJDGxkZ+8pOf0NXVRWtrK0VFRSviAx5++GFeeOEFxsfHeeGFFzhw4ACTk5OSPjg3N8ezzz5LXl4en/70pykqKqK1tZU//uM/ljFIFy5c4MKFC/j9flpaWqisrOSjH/0oZrN5U3EBvb29PPHEE5w+fZq8vDySySR/8id/QktLC16vl+eee4577rmH06dPs3//fmpra2/J29dqtXg8Hpl2NB6Ps7i4yMWLFxkcHKS6uhqr1Up/fz8qlYrPfe5zzMzM4PV66enpYXp6mpGREaanpyksLMzVCsjhHQ9FJhfKnsNdiiu+NPuuKbmwI852bQy9Xo9KpZLUCGH5EtZQYY02GAz84R/+IR/72Mdob2+XFknB+Rfc8WQySSQSwWg0ylSWwkopKAvZFj5A/j2TyUjeaDaXXbjVBfdZUDjS6TR6vV5eI1L5Cctxdrvi2ZlMRlqqhXUvkUigUqmkAJlKpQiFQnIMoh+JRAKtVrsiXaCw8IkxjY2N8cwzz3DvvffS3NwsXeHZVCoxX7Ay5aNarZbW8ex5E7QmcU92f7PT8+l0Orlm2dZH0V+1Wr2iUFI27QWQ7cDND7uwUgs+t7DQibZXr4/oq4i5EMhOAynazl7HVCol11E8XzxLZDzZ7Jqv3ltiPwoaznpzuDqbS/aaCPqZoJGIa9ebg0QiIffoaiu2GKfYM5lMBpVKRSqVkrSO7L6Ja8U8Zrcn+qfRaFbsRZVKtaKf4gys3svZ86LX64lEIpJDL/Z/MpmU9CLRJ7VavSIdqohfWN0/sSZibrOLn4n9J9ZU/Ld4biQSkR7E9d4T2fOVfZ+YX7Hnxf4S92S/e4R1WqVSyfiZbFpQ9ntr9doIZK+D2KMKhUIqMYIClz3nAqK/kUgEh8MhvaPZ517sk9XPE/MmzlL2NdnnfDU8Hg9PP/00n/zkJ+W+EOMT7Yh3QSwWY2ZmhoqKCvl9WFxc5NVXX+UTn/jEGq+n8KTqdDp5HsTeFPtAPFNQS7PT24rYnPz8fEnNvBqA9i7oaoc95jXDySGHXyhynoAc7lqIj5lGo8FoVK342GYLReL3xcVFOjo6sFgs7Ny5k8LCQvk38eGDf+X9azQa2Y74Lfva1Z4AYIWAq1AoKCwsXCEEZgvH2R/lbOFHXJc9xux2s9vPpl0Aa1z9CoUCs9m8Zm6y+7QeIpEITqeTsbExjEYj27Ztkx/G1W1kr4dWq5V9zZ7P7JR/2c/M7m8mk5HB0tnzm/2c7P9er+/iHrF24jfx36v7nP3/4jqNRrNuICv8q6Ai1it7T4h1zN532X3KfuZm1ny9Ma3ei6vncDUEhS17/6zO9rLeHKxew+yxivZWj2096oO4NtsDt/pZG+3F1f1cby8DMtZkvT223rxmnxm1Wo1Op1vTpnjeaiE0u0/Z/V3vLGS/O7LbFH1eT8DN3hur51bMY/a+Wt3O6vfPemdoNVavg4BGo1mR6nO9OILsvSvoZ9n7c6MzKn5f77m36282xDnL9rQICINJdXW1fHdtFAsh+pX9zl+vv+v1L9twJIK7czSgHO4W5JSAHO56ZAt5t/rdYDDIFIuCLyyuW+/jsF67t/uQwErhYKMP/a3a3OgZ631Qb5XHW7T1Zj5IKpWK8vJy3v/+91NQUCA/7rd7lrh3PWymr9n/fqu43fPezPNvdc3qdbvV8ze75qvxZtZys22La2/3nDtp781cf6t2bnfON/r7Ru1tdM9bxZs9d+LejfbXZn67031/q36sJ1yvd53InPTzgEqlkvS61TUbVvdLoVCs6Nfy8jJzc3MUFBRseM+bWbfbvfNzyOGditxuzeFXBhaLhd27d8v/f7uEzV9GaLVaqqqqVvDhc8ghhxx+0dBoNDLZwZ1W5o1EIsTjcWpra/9tOpdDDncZckpADr9S+FUX/AUFRfCi78RKK3ixgicLufnMIYccfr4wGAzs3bv3Td1bXV0tExfkkEMOuToBOeTwK4V0Oo3X6+U73/kO4+Pjd1Th0u12c/78eX70ox+tKRCUQw455JBDDjncXch5AnK4azExOQHU8eUvf4mv/PZHqa+vl3xOv9/PsWPHuHTpEh/84AfZunWrjAG4bbsTE3R1dXH58mX+8i//ckNrdzQapbe3l7Nnz3L16lU+8pGPyLz15eXl3HvvveveK6zxx44dw+v1otPpsFqtxGIxenp6eN/73odSqeTcuXOcP3+eb3zjG7Kya3d3N6dOneIjH/kIarWaM2fO4PV62blzJ7/2a79GKBTixRdfZGFhgeLiYh599NEVecpFRpTi4mLKy8vR6/X4fD7m5+cZHx/n4YcfRqlU4vP5cDgcDA0NMTc3x4c+9CHy8/MpLy8nEAgQDAbvysI4CwsLnDp1itOnT/Ptb3/7ltd2dXXJNI5lZWU8/fTTtLe3U1BQQDwex+fz8fDDD/O1r32NRx99lPe+970ruMFer5ehoSHm5+f50Ic+9Jb6HY/H+eu//mt+53d+B6vVumZfhcNhTp48ybVr13jooYdob2+X1zidTq5du8Zzzz3HX/7lX8oCcj9PLCws8LOf/QytVstHP/pRnE6nLBh35MiRDe8TWZpUqpt1QK5evUokEqG1tZXCwsKfV/fvCD6fj76+Pv7mb/6GH/zgBzI7VTqdXhPs/GaQyWS4ceMG09PTOBwO9Ho9v/VbvyX/fvr0aQYGBjAajSt+B1haWuIHP/gBf/AHf7BhsO/AwACXLl1icnKS//7f//tb7u+vClwuF0899RQ6nY4Pf/jDm/7e5JDDLxI5T0AOdy0K7TeFAJ1Oz0svvSTTZYrUcBMTE6TTaex2+x0JPoWFhZSVld2yuiTcDAArKiqivLychYUFWltbaW9vB6C7u5uTJ0+ue18mk+Gll15ifn6ekpISdu/ezZYtW9i6dStdXV34fD4KCgqoqakhPz+ff/7nf2Z5eZn8/Hzq6upoamqitraWqqoq6uvrSaVSHDt2jPn5ebRaLfX19Wzfvl0GQa9+tkhlqFarCQaDuFwuZmZmOHnypFRQhoaGGB0dZceOHdTU1PC9732PyclJKZDdrZmFLRYLJpNpTbXn9SAqv95zzz20trYyMjJCYWEhbW1t7NixA6PRKAXR7PSWAhqNBovFsmEQ4p1AoVBQWVm5YdChVqvFYrFgsVhklWaBvLw8ampqWF5e/oWtm16vp7GxkcXFRZLJJHq9HqvVets86l1dXbJyrMgOZLVaNxWw+ouCwWDAZrPJFKJwM91ub2/v2/aMN954g/z8fA4dOsSBAwdW/K20tBS73c7S0tKa+zQaDRUVFbcMHi4rK8NsNsvigDlsDjqdjubmZlnNOYcc7gbkPAE53LUwm28mXS6vKOfyqRf5xCc+gcFgIBqNysq1BoMBq9WKXq8nmUwSCoUIBoPY7fYVecO9Xq9McanX67Hb7TLobGlpSeZ0zy6mpVarsVqtFBUVkclkqKqqQqVS0dXVxeLi4rqKh8id/dOf/pSHH36Yuro6amtr5e8lJSUYjUby8vKoqqpi7969vPbaa+zfv5/W1lZKSkqoqamRtQcqKipwOByEQiFeffVVPv7xj1NWVobNZkOv129KWBIWwenpaSm0LCws4HQ6efjhh0mn03zta1/j6NGj1NTUbNiOUDD8fj/RaFRWYwaYmZmRFZKVSiV5eXmo1WqcTifJZFJ6Q7Izc4hKpktLSzJVYSAQAJBz7vV6ZT5xnU6H0WiUheJ0Oh0Gg0EqQi6XC7gpTG6UUSQboiJtS0sLmUyGSCSC3W6npqaGRCIhqwsLj0ggECAajWKxWDAYDLJSq6h4Gw6HZR57sXeyU9NGIhH8fj+pVIqCggISiYSs5KzT6WR6TIBYLEYwGCQej2OxWNDr9eTl5UnhE27mzw8GgzLnv0A0Gl1RWbeoqGhFP9LptFwXsX8ymYzccwsLCzItYzqdxmKxSO9RPB5Ho9FI5UhU2A2FQnJMYm0zmQw6nU7uG4/HQzKZRKvVkpeXx9DQEJcvXyYcDmM0GrFarbKGhEjJmEgk8Hg8AOTn58tiei6Xi8LCQsLhMEqlEoPBsOY8ivz2TqeT4uJiwuEweXl56HQ6EokELpcLlUpFfn4+CoVCjkWsTzAYlDnlrVYrc3Nzcs+YzWY554FAgBs3buBwOGTlXa1WK6vziurOeXl5Kyzzwpgh9rxer8dkMhEKhejp6WHnzp2UlJSsKfCXn59Pfn4+IyMjeDweotEoBQUFsiK62WyWzxFjikajsoidzWbDbDaTTqcJBAL4/X75vlxPeRCVwEOhEIWFhTKVrXjfxmI3a7gYDAaZV395eRm1Wo3FYpHXxeNxKioqWFpakntDr9fjcDgoKioiHo+j1Wpl1etgMEg6nZZV4sU+Wl5elmdcp9PhdDrlO0NU1wbkfs6eb1GJPJVKyT2TSCSYm5sjPz9f1iTQaDTy3SbOUygUwm63yzoNOeRwNyCnBORw16O0tJQ+jwev14vJZCIQCOB0OqmpqZEfgHQ6TSgUYmJiAq/XSyAQoKKiApVKhdPpZGFhAZVKhV6vp6SkRLadyWTo6emRAvfqD66AKEwmig9ptVqppGRDfNhfeuklPve5z1FRUQH8a87vD33oQzIjj16v58CBA1y+fJmrV69iNBqprKxc8SFWKpW0tLSwbds2/uzP/oz3ve99pFKpdfOerwez2YxGo1lTnTM7/7gQeDZj3QoEAszOzuJ2u6XQlZ+fz/Xr1zGbzej1+hXjGBsbIx6PYzabqaiooLi4WLYlKqeeO3eOAwcOoNfr6evrI5lMcv/990saE9y0cObl5VFWVsbIyIgsqiSqq7rdbunJcLvdmxpLaWnphn/T6/U0NzfL/w+FQlJxstlsbNmyBZ/Px9LSkoy7mJ6elsKCXq9n69atKyhVgUCA0dFR5ufneeCBB/B4PCwtLUnhaHZ2VhYyc7lcTE9Pk0qlyM/PX5PtJJ1Os7S0hNPpJJFIoFAoZFGmpaUlvF4v0WiUQCDAgQMHpIIm5n1iYoLp6WnKy8vRarVyX5eXlzM4OCgLbAnPUyQSYXFxkVAoJJUvjUbDwsICPp+PSCQihVm4SZVaWFiQZ0RU3o3FYphMJioqKnj99dcZHByUZ9JsNuNwODAYDJSUlEhhf35+Xp4rs9mMx+PhwoUL7Ny5k3A4TDwel9XEs89EMplkeXmZs2fPcuDAAZaWlmhsbMRisbC0tMT09DQKhYLm5mYymQxut5toNIrH42HXrl1MT0+zuLiI2Wymvb2dS5cuUVNTs2YtPB4PPT09jIyMsGPHDhobG1GpVLhcLqLRKCqVCqPRSHNzs+yfKMo2MzOD3+8nk8lgsdysih4MBuV8lZeXr/ueSafThMNhHA4H09PT7Ny5E6PRiNvtZm5uTnqulpeXWVpaIhwOy+JdW7dulfMpKhI3NzdTVFS0RpFKpVL4/X5mZmbw+XyEQiGqqqrQaDQEAgHGx8elkl5VVYXJZMLpdDI+Po5Op6Oqqop4PM78/DzT09N85CMfkVXB8/Pzqamp4fTp0+zbt49gMCg9pA6HA7/fj8/no7y8nMrKSjQajeyvUqnEZrNhtVrp6+sjGAzyrne9i0AgwMzMDFqtdg2dLJVK4XA4CAQC+Hw+ioqKqKqqIpFIcPbsWbZu3YpCoZAe50OHDpFIJFhcXFx3j+eQw92AHB0oh7seGo2GRx55hDNnzkirfXbFTbgZIzA+Ps7ly5c5fPgwf/EXf0F3dzejo6O89NJLtLW10dTUJAUngVgsRldXF6lUakOOp/gQXr9+nX/6p3/C5/Pxrne9i//r//q/gH+1kAvL5dzcHHl5ebLyaTbuu+++FYKwUqnkz/7szzhz5gynTp3C7/eveb7VaqW1tZUHHniAf/zHf2Rubu4tW6IeeeQR/uN//I8kk0lOnDjBI488IhWWjZBMJnnllVeIRCJYrVZmZmb4zne+A4DJZOLZZ5+ls7OTVCrF5OQk//t//2/UajUtLS0kk0n+6Z/+aUV7otDU3Nwcg4ODmM1mpqam6OzsxO1284Mf/IDGxka2bNmCRqOht7eXU6dO0dvbS3NzM9PT07zwwgtEo1H+5//8n1itVhoaGsjLy5N89FvBbrdvuOZarZbKykoptM3NzeH3+9myZQt//ud/TiQSoaysDKfTyYsvvkg6nebpp5+mrKxMWiSDweCKNi0WC1arlcceewyj0UgkEsHn85FMJiktLeXFF18kFArR39/PhQsXmJyc5PDhw3z/+9+XypBAJBLh7//+73G73bS0tKDT6QgGg2QyGTo6OnA4HGzZskVae7NTLarVarZt28Zjjz2Gx+Ohrq6OvLw8Pv/5z0uvwpUrV3juuedQKpXMzMzw5S9/mXA4TENDA5FIhFdeeYW+vj5eeeUVvF4vTU1NKxRNo9FIIBDg1KlTAPz3//7fSSQSlJWVEYlEeP311zl48CBNTU3s2rVLCmA2m41Tp06xvLzMpUuX+O53v8uOHTvYuXMn//zP/8yVK1dQKBRMTU3x05/+lJaWFq5cucKJEyfWKH7CozA8PMzJkyeZnZ3F5/PR2dnJ17/+dQ4cOIBarebSpUs899xznD9/nra2NjKZDKFQSFrzX3vtNfR6PS6Xi+Hh4TV7q7KykurqahobGzl69CiVlZX87Gc/Q6lUsn37dsrLyxkaGlpxZoWC8vd///fU1dVRVlbG1NQUP/rRj6ioqKC0tJTdu3fT0NCwbn5+r9dLX18f1dXVjIyM0N3djcfjQaPR8NJLL5FMJpmenqajo4Oenh6ampr4P//n/1BVVYXZbCYYDOJwOKTX46WXXuLGjRvrPmd4eJgbN25w6NAh/vRP/5SJiQkWFha4fPkyJ06coL29nVdeeYWxsTF6enr43//7f7Nt2zb0ej2dnZ3Sa/rEE09I+ubw8DBXrlzBaDQyOjrK6dOnGR0dxePxsLi4yOOPP05DQwPT09NcvHiR7u5uotEoX/ziFyktLSU/P5+FhQXOnj2LXq/n5MmT+Hw+lpeXmZ2dlVb8bIRCIf7pn/6J6upq2f9r165hNBqZm5vjhRdekNW1H3/8cRKJBMPDwxw/fpyFhQWp+OeQw92EnBKQw10PreZmsOHLL7/MwMCA/HBlw2q1UlNTw5YtWzh//rzMMV1YWEhhYSHve9/7+OpXv0pRURHV1dUkk0mWlpb4whe+wL/7d/+OI0eObCgQqlQqrFYre/fu5dOf/jRer5dXX31VuoV//OMf853vfIf/83/+Dx0dHZSXl+P1eonFYtI6K7C0tCQtTQL5+fl85jOfwe/387d/+7fr9sFisfCFL3yBixcv0tXVxcLCwluY0ZuIxWLMz88zPDzM5z//+RWW7/WgVqt59NFHCQaD8mM9MTEB3HS9V1VVsWXLFtra2tiyZQuvvPIKDoeDyclJFhYW1g00VqvVci1VKhUmk4m8vDw0Gg179+7lN3/zN/niF7/I4OAgDQ0N/PCHP8RkMjE4OEgwGMRgMDAzM8PExAT5+fmYzWZpUX07UVNTQ0tLC2q1mng8DiDpSYKOZDQa+f3f/32+973v4Xa711gidTodJSUltLe3MzQ0hMvloqmpifvuu0/Sh5RKJefPn+fy5ctotVo6OzsldU08N5VK8dprr1FcXEx+fj4mk4mysjJJ7dHr9bz44ot86lOfYmpqisLCwjXKaF5eHuXl5RQWFmK328nPzycajTI+Po7BYKCiooLGxkZ27tyJTqeTAvD09DTpdBqPx8MPfvADqqqqZGxKNpUsLy9PUk6WlpZYWFhAp9NRW1vL/v37+fCHPywrsWb/Y7fbUSgUOBwOZmdnCQQCGAwGSQNcWFjA5XJRXFxMa2srOp1OCvurYyUASV2qq6vjAx/4ABaLBYfDwcLCAjdu3CCVSkkv2MzMDI8++ijj4+Pk5eVRWFiIxWKRbYmieqshvHLZFY3b2tr427/9W377t3+bH/3oRxw5cmSFh8/lcvHqq6/S2NiIRqOhrKyMdDrNiRMnVlTj3cjbZzabaWlpwWQyUVxcTDAYJBgMotVqZRyGoG4Jb6CIgdFoNOh0OgoLC2loaKCkpASv17tGaRVjrq+vp66ujgsXLhAMBkmlUvT09HDhwgWOHj0KwB/+4R/S1NTE4uIiy8vL2O12WltbeeSRR2hvb5c0LIVCQX5+vlRslEolhYWF1NbW8uCDD7J3717Kysr43d/9Xc6cOSO9QaOjoywtLeFwOLBarTQ3N3P06FE+9KEPcejQIZaWlohEIlgsFurr62lsbFwzlry8PD772c9y8eJF/H4/Xq+XyclJFIqbld+3bt0q6U56vZ5gMMiTTz5JYWEhLS0taLXaXP2BHO465OhAOdz1UCgUFBQUYDKZGBsbk27c0dFRec3o6CgjIyMEAgHe9773odfr8fv9RCIRqqqq+Ou//mvGxsa4ePEi0WgUk8mEzWbjYx/7GC+++CLvfe97aWtru2UfhFsfblrIpqamaGxsZPv27cRiMcmB1ev1vOc972FqaoqSkhLKy8tlO5OTkzQ0NKzg8isUCtrb25mdnWVubo4rV67w4IMPrumDwWDgC1/4Av/8z/9MNBp9Sx+kWCzG8vIyo6Oj/NZv/RZLS0u3jS+Ix+N885vf5OjRo1RUVOD3+0kkEjLAWgjEKpUKpVKJ0WiksbGRiooK6urq2Lp164r2hLCTLVjFYjEikQgKhQKTycRf/MVfSBrO66+/jsVioaKigubmZhoaGojH45JvLtpcjXQ6/Zar2mo0GjQaDfF4XFItsqsLKxQKdu7cyT333MPo6Chzc3N0d3evKV5nNpv50Ic+xAsvvMDOnTupra1FrVZLSg/cFOILCgqoqqqipaVFCurZXiK9Xi8pP6vHVl9fT2lpKalUikuXLnH16lUZ6Jw9R+I+QSXyer0YDAYZwyGEWqvVisFgoKqqiu3bt5NKpaiurmZycpJgMCipHetBVHQV66RUKkmlUsRiMSnker1eaS0WfROKldgLgPRoiOrWer1+xdhXe8fE70qlEpPJhEajwWg0YjKZMJlMbNmyhUwmI4Oq/X4/jz76KCdOnKCnp4fS0tIVZ0JQoTYap5jHkZERdDodv/M7v0MoFMLhcPCzn/2M3/7t35bKmFKpRK/XS8+muHe1gWAjiPgm8exMJiMNDmLcNpuN/Px83G43o6OjfP7zn5e0MJVKJWMAxLPX8y729vYyOTlJIpHg/vvvl9RCwd8XVDihtAByL6tUKmKxmIxHEf0Nh8MydkTcK6hnSqWS5eVlvva1r/EHf/AHaDQapqampGdNzI/YR/F4HKPRyD333MPFixelR2Z1bIOIZfrqV7/K5z73OXQ6HVNTU8TjcZxOp+yfUOLEnGi1WsLhcC5lcg53LXJKQA53LZady0ARQ0NDeNvq2bNnz4qX8vj4OIuLi5Lzury8TDgcJhgMotfrcTqdDA8P4/F4OHjwICUlJfJj4vP5CIfDlJeXMzk5yfnz5wHYtm2b/PAnEgnJQQ0EAkxOTlJVVUVRURGLi4v09vaiUqlW8P41Gg0qlYqPfexjLC8v09vbSyQSwWaz4fF4UKvVpNNpFhYW6O7uRqFQUF5eTl5eHrt27SKRSDA9PQ3cpKD09vaSyWQoKiqirKyMvXv3cubMGWk1vh0El3tkZASv18vY2Bi1tbVcu3aNy5cvMzs7y8zMDMFgkPe///23bDOdTjM5OUl7ezsej4dQKIRarWZhYYGxsTGZDcnv90tFyOFwyKDe9aDVaqmoqGB6epqZmRncbjcul4vBwUHGxsY4cuQIhYWFMgXjfffdx8zMDMXFxVK4yM/PZ+fOnUxPTxMKhVhaWsLj8TA4OEhdXR2vv/46lZWV6yp5ImjR4XAQiUQYHx+nrKyMsrIyrFYrHo8Hj8fD3Nwck5OTwM16CgsLC/j9fmmZdjqdDA0Ncc8998hA0/WCkzUaDS0tLTz++OMcPXoUs9ksg1+FYlldXY3JZJKccJGWVnCz4/E49957L9euXcPn8zEzM8Py8jJOp5PFxUXGxsYwmUxUVVVJAX69dRVnZnJykrm5ObZt24bVamV4eJiZmRlUKhU+nw+r1UpjY6PkR4uA9EOHDrG4uMjs7Kyk6MzOzuL3+/F4PExNTeF0OslkMmzduhWn0ykF5GQySUFBAX6/H4fDQXl5OSaTidHRURYXF6UXr7y8nOHhYeBm4KcIGJ+dnSUcDuN0OnG5XMTjcaamplYoI+Ksi6BPQVEpKSmhtraWubk5yYH3er04HA4OHz6M1WqVwftCgXE4HCwvL5NKpTCbzTJofXR0lMbGRmw2G06nk4GBAaLRKENDQ7S0tJCfny8DlLNhMpnYtm0bIyMjOBwOZmZmiEajHD58GK/Xi9vtZmRkBLvdvoamJ+IZXC4XbrebmZkZ0uk0ZrOZZDKJx+NhcnISu92Oz+djYGCA5eVl6urqqKmpIR6Ps7CwgMfjkWdXnJlQKLQiLsDv9+N0OqXHxGg04nA4KCgooLm5meHhYZqbm/F6vdjtdgoLC6mvr6e3txeLxUIqlcJisaBWq8nPz5f7ZW5uDqVSyeLiInNzc9KTazabicViMpYolUoRCoVkDEVrayvj4+P4/f4VxoYjR47wyiuv3JLil0gkGB0dJRaLkUqlZLCzoBAFAgHKy8sJhUI4nU5GR0fZu3cvTqeTmZkZ9Ho9U1NTzM3NyQxvb0dK2Bxy+LdEjg6Uw10L4d4PR24K9vfcc4/kyAqqjci/r1arsdvtWCwWPB4PW7dulS5dwRUtKCiQgk4sFqOiogKNRkNlZSWBQEAG1Amk02kikQiJRIL6+nrcbjfpdJrm5ma2bNmC2+3G6XTKNJH5+fkyA8hDDz1EXl6eFC5cLhfLy8uUlJRIRcbpdMrAzkwmQ0tLCw888AANDQ3AzXzkXq8Xn8+Hz+dDoVBgt9t58MEHaWtr21QGnGQySSAQkAF94oPucDgYGxvD6/Vy8eJFHA7Hba2QSqWS+vp6lEolfr8ftVpNc3Oz/KAKd380GkWtVvPBD35QBs+KwLrV0Ol0NDQ0SIHTaDSSn5+Py+WSAoher6e2tpa9e/fywAMPEA6H8Xg8uN1uQqEQZrOZhx9+mEAgIDMECUUtmUzS39+/hlOfvcbRaJTFxUUZu+D1emVfI5GIjOEQQlJ1dTWhUAifz4dKpaKwsJBQKITL5cLr9WKxWGhsbKSysnLFs4T3QAQ0VlRUYLVaZR8qKioIBAI0NTXR0tJCIBDA7XbLQGelUimzr9TV1cl5E88tKysjFArJuYnH4zQ3N1NdXb2ulycej8sg+3A4zEMPPYTZbCYej0vLaCQSwWg0cuDAARmYKbL8HDlyBJvNRjwelxmjjEajzNCSSqUkNeX+++8nnU6zuLiI1+slkUhQVFSEzWZDrVaTyWTQarUEg0GZfammpob29naWlpZYXFykra2Nuro6dDodGo1GZmQSmXpWx9MI67bBYJDnWJz3PXv24HA4ZDCwWD+fz0dzczM1NTUUFRVht9spLS3F4/FIT0UsFiMej1NeXo7L5SKVSlFTU0NdXR0LCwsyw49YN8Hvz1bEjEYjW7dulWvucDgwmUw88sgjhMNhSktLCQaD6waiindffn4+oVBIUqkSiQTJZJKKigo8Hg8ul0tm5QmFQoyOjjI8PMzi4iIqlYri4mKZHUhkNBKUMwGz2YzdbicvLw+Px0NraytKpZKysjLa2tqkAivmobKyknvuuYf5+XncbrfMtmQwGNi5cyc+n09mXNLpdIRCIYxGo0y6IDw9LS0thEIhmRDAbDZjNBp5z3veg8fjYXl5mUAgID1zW7dulVmEsilc2VCr1WzZskUGSefl5ZGXl7eiQrp4BxYVFeHz+Th06JDMCOTz+YhGo9Jblh1nk0MO71QoMrlcVjncpbgagPYu6GqHPWsTZKxBOp0mmUzKTDxi64tMGCIQ9a3QQgSExVmkDb1VwTGRjaK+vv4t01Juh3g8jsfj4cyZMzz66KN3bKmamJhgaGiIXbt2UVJSsm5fw+GwdJ0LisdGSKfTUrDYSGkRVj5h7Yd/zV4k6ATiHwEhIKymEgmaQCKRQK/Xv23rfTuIwHAxN+vNezweJxaLYTAY6OjooL29/ZZ59EXGq9WpJbMh0pRqtVp8Ph8WiwWFQiGtqBulsU2n03zyk5/kd3/3d9m3b98aWtZ6SCQSkrqSfW08HpfpRiORCHl5eevuCXG/SD8K/5pKVNBH1psDQR0RqSnfDoh0keJdoVAopMU+O8Vm9roKL55arV53rsS+E2lRxb7PzsS1HsReFjESbxf+4R/+gZaWFvbs2YNer2d5eZnHHnuMj3zkI2zfvn3T7Yi0mdnvVfEey2QyBINBTCaT7Pvquc3+XcTxCOFd7M/V+1sEZxsMhhW0LvhXQV14AgKBAEqlkvHxcex2+xrle3W74XAYvV4v09BuZs4TiYSkQEUiEUwmk9yvd/qdyiGHnydydKAcfmUg6DjZ/y/+vV6GjbcCo9G4KU6+sHi9U6ufvhlkz+XtBGyFQrEhFSgbGwlKGykO6wUZC8HsVvSjf0sIbvNGuH79OseOHePAgQMypePt2svLy7vlNdnCaHZ621uNP5lMcv78eebn55mYmKC+vp6ysrJbPgfYUJAV8RLAuuksb3X/7QSwzSgnbxar21Wr1ev2/3brKiDqAayOa7gd/q0qc7e0tOD3+zl//jxms5nl5WUOHDhwx+8i4WkQWH3m19ujG62ZuHYz75CN5jy7bafTyZ//+Z/zwAMPcPTo0dsW7lMoFCvme7MGguz30632eA45vNOQUwJy+JXBz8Pie6fP+nn2CW5axzQaDU6nE4fDQWlp6aaFEcERzq4BsB7uZEybufbNzNF69/y85/pOny3S1GZntHmrbb6ZMavVavbv388TTzwhazu8lWe9lbOwGSXy3wL/Fuc3+9q3+4y8Gezfv39FsLDw4typgnyr/t3Jmr5dc5LtpSkoKOC//bf/hsFg2BQ98k778VbuySGHdwJySkAOOfwKQWRCue+++ygoKLglDWE1DAYD9fX1FBcXb/qDmsPmodPpVlgxf1GChfCMvd3esRzeWRBnOJsR/MskzIqMRCIQ+JdpbDnk8HYhpwTkkMOvEISlb8uWLXd8r16vX1NROYe3FzlBJYefN36Z99wv89hyyOHtQE4JyOFXFslkkmg0SiwW2zBt3JuByM4hgvmEpe0X8UESQXgiYDGVSsmMLiKfurhOZL4RGVk22983Mz4RUOn3+2UA7+3qEAiIYNDsPN2ZTEbSaAREnvBQKERBQcG/edD1W4EYUzKZ3BS//G5D9v7Kz89HpVKtCLSFN3c+ROapTCazIhgzGyKHe3YQ6a36+Wb7EgwG5TnLjoN4uyACtkOhkAyafTOB7WIt/H6/9Pj8vM7Fncyv2B+ZTGbDYPI7bXOz94dCIVQq1YoYjhxy+GVELkVoDr+ycDgc/PCHP+Qzn/nM29rulStXOHbsGNPT0zLz0OrKwD8vpNNprly5whtvvMHIyAgXLlzgj//4j7l69eqKFHbxeJyRkRF+4zd+g5GREZLJ5KafkUwm16QO3Ay8Xi9/9md/xo9+9CPGx8fv6L7Lly/z+uuv4/F4+M53vsM3v/lNrl69uuI6j8fD66+/zn/6T/+JQCCwbrGjdwoCgQBXrlzhxz/+8S+6K/8miEajDA4O8pGPfITJyUlSqRSDg4N861vfekupFL1eL9/73vf4xje+wdLS0rrXPPfcc7z00ku3fU4mkyGRSKwoVLUZCIX2+9//Pt/61rd49tlnGRsbu6M2NoNEIoHD4eCb3/wm/+2//TfGxsbe9HtlYmKCz33uczz33HObLkD2duBOCp5NT0/zD//wD3z9619fN32wwJt9/wist+ZPPfUUJ0+ezKX5zOGXHjklIIdfWVRUVFBfX/+2egFEu01NTTITxbPPPovD4Xhbn7FZKBQKqqqqaGhooKysjMrKSnbt2iVTRwpotVoaGxtlStM7EZhv3LjBqVOn7rhvNpuNXbt2yYJJm4XBYKC6upqGhgasVis7duygpqZmjXBRUFBAXV0dVVVVvzAlbLMQFXdbW1t/0V35N4Fer1+zv4qKijh48OC61vvNwmw28+ijj+L3+zcU2LZu3cqWLVtu+5yZmRl6enruSCEFZEXq2dlZ3ve+9/Hrv/7rNDU13VEbm8Hi4iJXrlyhsbGR//k//+e6lW83i4aGBmpqajCZTD9X5XhmZobnn39+U9eWlpby0EMP4fV6b9nH7u5uTp8+/ab7dPnyZS5cuLDit7a2NllnI4ccfpmRowPlcNdidm4WqGR6ehqL7mZho9raWtLpNEtLS6RSKbZt24ZSqSQUCuH1evF4POTl5VFZWSlzVIt80JOTk5KuUFRUhFKppLe3F7VaTXV1NVarlXA4zMTEBGq1GpPJRH5+/opc7vF4HLfbjd/vx2az4fV6+dnPfkYikWD37t2UlJRQVFS0Yhwej4e+vj7sdrvMhV9QUEBlZaWkAExMTBAOhzEYDNTW1qJWq2URKGElq6+vl+OMRqOy8NHk5CRGo5HCwkKUSiUKhYJAIMDw8DAGg4H8/Hzy8/PlXAj3dygUYn5+nkAgQGlpKQUFBWsCgnt7ezlx4gTz8/PYbDa2b9+O0WiURcxEzuyqqqo1aQRF7vdYLMbS0hJqtRq9Xk9VVZWswhsKhWhvb2dqaorFxUXq6upkZU5BmxH5wOFfXfujo6MkEgnm5uY2dOeLXOOiGJZQhDa6NhgMMjs7K6ucVldXA8i10Wq1FBYWYrPZ6OzsxGQyodVqSafT+P1+2tvbZe50v9/P+Pi4LHQmqvlGo1EymQzLy8t4PB5isRharZbq6moMBgP9/f1Eo1EsFgtVVVW3DdBOpVL4fD7m5ubQarXEYjHMZrOsZjo4OEgqlaKxsZF0Oi2rn+7du5fx8XFsNpssspfJZOju7iaVSlFcXIzVasXr9TI8PExbWxuhUAitVktJSQlut5vFxUUMBgN2ux2bzbYilaQo9Obz+UilUiwtLcmCUqL+w549e0gkEszOzuJ2u9HpdLS2tqJQKFYUyksmkxsqecvLy7jdboxGI9FolImJCYLBIEVFRUSjUZLJJA0NDSQSCZ566imUSiV1dXWo1WoaGhpwuVwsLCyQyWSwWq1UVlZy9uxZiouLUSqVaLVazGYznZ2dLC0tMTs7S1lZGXa7nfn5eRYWFqipqcFqtaLT6Uin07KirCh8Z7PZiMVi9PX1yQrhpaWlK8YRi8VYXFykp6dHni+DwSALHSaTScrKyrDZbLLIX0FBgSxGlpeXJ5MAiHOXTY9LpVLMz8+ztLREaWmpTCfb398P3FSkRAHDZDLJjh07WFxcxO/3S7pOeXk5Q0ND+Hw+ysrKKCgooL+/Xxb36u7u5vLly0xNTVFbW8uePXvWTUwgitkFg0FJB8pez5mZGVllWtQ8GR0dxWq1UlVVRUlJiSzu5vF4MJvNNDQ0oFQqWV5eZnl5GUAWXHvjjTcIBAIYDAYqKytRqVS43W40Go2sWzE/Py+pi6L44/DwsKQaCupSS0vLprNp5ZDDOwE5T0AOdy2E9fjChQuoVCqmpqbo7OxkamqKdDrNxYsXpZAxPj5Of38/er2eU6dO4XK51riABwcHcTqdxONxfD4fr776KiaTiVgsxuTkJNeuXeP69esYjUb0ej1LS0u43e4VbSgUCoLBoKxiqtfrCYVC6HQ68vLy1uUJJ5NJPB4Px48flwLQ6OiotE699tprsoBNOBzmxIkTZDIZrl27RjAYRKVS4ff78fv9dHZ2ynnx+/0EAgHS6TRDQ0Oyr5lMBpfLhdFoxOFwMDw8zPT09Io+uVwuxsfHGR8fx2KxcPHiRVwu1xqLnLAkCsFUpVLhcDgYGRlhaWkJnU7H5OQk4+PjG7r0xcdeq9UyNDTEyMgI8Xic+fl5Ojs7icfj6HQ6zp07x9TUFHDThd/b27vG+pvJZDhx4gSBQEAWj/J4PBvuoYsXLxKJRPD7/YyNjTE0NLRmjCKu4vjx40QiEcLhMJOTkywtLXHp0iXcbjdqtZpIJMLly5fleM6fP09/fz+pVIqJiQnGx8eJx+MMDAzQ2dmJWq0mHo/T19dHJBLB6/XS3d0NQGdnJ+l0WioQHo+Hjo4OOS6fz8fFixc3HJdAX18fN27cQKFQ0N3dLfnks7Ozcm6NRiNdXV04HA58Ph9nzpxhamoKg8FAd3c3PT09hMNhOjo6ZDXXmZkZ2e7JkyeZn59nenqapaUlotEoZ86cwWAwcOPGDQYHB2V1bwGVSkUwGKS/v59kMsng4KAU5h0Ohxz/6dOncTgcaDQaAoEAN27cYGFhgd7eXubn59Hr9WsqAWdDo9EwMzPD9PS0rDb7wgsvMDc3RzQaxev1cv78eamMCuVenNuOjg4SiQTBYJCRkRHcbjeBQICOjg7GxsZkRWURY2M0GlEoFLhcLnp6ejCbzZw8eZKRkRFisRhzc3N0dXWh0+kYHx+Xbbz88svo9XoSiQQzMzOMjo6uGIcooKbT6WS6y8HBQbmnjEYj58+fx+l0EggEmJyc5I033iASibC0tHRLukwymcTn89HT04PBYODKlStcv36dTCZDIBDg/PnzBINB3G43s7OzhMNhZmdnGRgYkIXgxP7WaDRcuXKF0dFRSa86ffo00WhUZutRKpWyaN3qc7a8vMy1a9fw+XxoNJoVa9vb28vQ0JCsMNzR0SGfH4/HsVgs6HQ6wuEw3d3djI+Po9Pp6O/vx+1209PTw+joKIFAAL1ez9mzZ2Ufk8mkvF+j0TAxMcHc3ByRSISZmRkGBgZQq9X4/X4mJyeZmppCp9Px8ssvMzU1JYs+njlz5h1NO8whh9XIKQE53LUQVtBr169RVFREIBDg2rVrzM/PY7VaGRgYkFay5eVlHA4HeXl5nD9/XgoBcNMKtri4yMzMDDqdTlbP/NnPfibTYU5OTnLlyhX6+/tlIGI4HF5DQdFoNPKj6nQ6KS4uJj8/n9raWqqqqtatAKtWqzEYDFy4cIGioiIKCgqYmZnhueeeIxKJ8PTTT0tvhEaj4ZVXXiEUCkmBKBKJEI/HSSQSXL9+HZfLJQOeE4kENptNCjBw82MbiUQoKysjkUgwNDTElStXVvRJKD2Li4uUlpZy9epVlpeX1wjdNTU1lJSUUFBQQFNTE3q9nu7ubsbGxkgkEpSVlREKhTh37tyGwloikUCtVlNaWorb7ebs2bMkEgnC4TDj4+Mkk0mKi4vp6+tjcXFRCmo3btxYQSMSH/Sf/exnKJVKadEMBoMb7qGRkRFZtXhubo7Ozs411whL9RtvvIFer8dqtUqh/ZlnniGdTlNSUoJOp+P69etMTk5iNpvp6+tjZmYGq9VKIBCgv7+fUChEV1cXFy9epKKigvz8fBwOBzqdjmg0Snd3t1Tw3G430WiUeDxOJBLhxz/+Mel0mvz8fKlk3A7Xrl3jxo0bFBUVMTo6ilqtJi8vj6mpKV577TUMBgPFxcV0dXXhcrkApMJYW1tLf38/PT09BAIBfvKTn0hvhxDErVYrN27cwOfzySrEYk+JMzgwMCDbFjAYDCSTSUZGRkgkEjidThmQvrCwQCAQIBqN8tJLL7GwsEBBQQFKpZJLly7R09PD4OAgkUiEioqKW1K9zGYzS0tLzM3NAVBWVkZHRwehUEiexddffx2j0Uh5eTlVVVVUVlZSXFzMzMwMZ86ckd6L2dlZFhYWMJvNXL16FY/Hg1arJR6PS2u/sLoHAgFmZ2cpLi7m9ddfZ3BwEL/fL4XT8vJyotEoTqcTp9PJj3/8Y+x2u1TMBwYGVoxDo9FgNpspKyujtLQUu93O+fPnGRkZwWazUVVVxfXr1+V5CYfDdHZ2YjabicVit+S2i2DjmZkZ7HY7ly5d4sqVK6jVagoKCrh+/TqhUIhwOCwDuTs7O5mdncVkMmG1WvF4PJw9e5aioiJGRkaYnZ1Fo9FQWFjI5cuXicfjlJSUUFNTQ1FREU1NTWuoTJlMRgr6SqWS4uLiFQJ1R0cHN27cwGQyUVRUxOnTp9FoNNjtdkpKSiQFU9CmpqenKSgoYHZ2lvn5ed544w1GR0cxmUyUl5czPj6O1WqloKCAsrIyeb/VamVubo7FxUV8Ph+dnZ3Mz89TXFyMVquV74ny8nLOnj2Lz+fDbDaj0+k4fvz4O556mEMO2cgpATnctRBKQElxCSaTCbvdTmFhobToFBQU4Ha7SSQSbN++nR07dtDZ2YnBYMDhcMisIcFgkB/96EdYLBa2bduG0Whkbm4Op9PJ2NgY0WiURCJBXl4eZWVl/P7v/z7f/e535cdkNQwGw4py98L9LmhHq6FWq8nPz6empgatVkt9fT0ajYZz584xMzMjLc16vR6NRkMmk5FUnh/+8If83d/9HZOTk5SUlGC1Wvm7v/s7Hn/8cRwOByUlJZKKIaBSqairq0OlUrFlyxbi8Tivvfbaij719vbS1dWFXq+nr6+PkpIS0un0Gmt+NoVIcL1feeUVlEolVVVV6HQ62tvbef7559cIggKFhYUUFRWh0Wg4cOAAL774Ii6XC71eL+dRp9NhNBpl5pX1lKl0Oo3X62V6epq8vDzMZrMUcldDrMOHP/xhScWJx+OMjY3JQE+BeDzOhQsXKC8vx2g00tzczHvf+16qq6t5+eWXsdvtWK1W8vLyqK6u5vjx43JvFBUVSfqN0+nE7XazvLxMIBDAbrdTU1PDBz7wAWpqatDr9TK7kcVi4etf/zpPPvkkCwsL2O12Tp06hdfrZX5+Hrfbjdlsln3dyPooftdqteh0OjKZDAaDQXoxIpEIY2NjUvnVarXYbDa2bt0qqUzpdJpwOMypU6cIhUJMTU0RiUQkxUSr1VJTU8O73vUu9uzZg9Fo5EMf+hBdXV3E43HC4TCLi4sr+iioNKJC7H333Yder+fatWt0dXXxe7/3e8zOzkr6x/z8vLT4vvDCC1itVurq6iTlbSOoVCppORf1D2w2G9XV1ZSVlWE0GnE6nSus1EqlklgsRkdHh/QkBINBLBYLy8vL5OfnU1ZWRm1tLS0tLZJyKM66wWCgtLSUrVu30t3djdfrJZFIsLCwwGuvvca+ffvQaDS8//3v58CBA/JdMzo6SigU2jA4ObuPcNMDury8TFVVFQqFgi1btnD58mU8Hg+FhYWUl5fT2NjIjh07blnFVqPRUFxczLZt2+jv75feULVazY4dOwiHw4RCIfR6PZWVldTV1fGzn/2M2tpabDYbhYWFNDQ08C//8i9oNBr0er2soGuz2aTFP3t+V9P34Kay/fTTT1NXV0dpaSkGg2HF+7Wnp4f+/n4CgQBjY2NYLBaZHSn7/SM8wKFQiPHxcYqLi1leXuaNN94gGAyybds2dDodn//857FarfJ+8X5WKpXSs+P1enn++edpbW1Fp9NRU1OD0WjkxRdfRK/XY7PZqKyspKKigry8PEk1EmPLeQVyeKcjFxOQw12PbIpNdvl2QHJwOzo68Pv9fPazn6W3t1e67H0+H3a7nU996lN85jOfob6+nvr6emw2GyaTiX379qFQKGhtbcXlcrG8vMypU6e4cOECb7zxBk6nk4cffviW/RMfweXlZZxOJ9u2bbvl9cKqr1KpsFqthEIhacmLx+MsLy9jtVrZs2cPH/zgB3E6nZw8eZJXXnmF3bt38xu/8RsMDg5y/fp1jh07xs6dO2/5PGHdzoawOtbV1bF3717Jz94oUE5UHL1+/ToGg0Fa8lOpFAsLC1it1k0VJstkMuTn56PRaGR1Y4FAIHBLWoMQwNxu9xoPwXpIp9P8/u//Pl/84heprKxkcHAQh8PB3NwcZWVlsr9KpZKCggKCwaBsN5VK4ff70Wq1Mo4jFotJi7agb6zeiyIdY3b/BB85exz79+/n4x//ODdu3KCvr4/XXnuNgoICduzYQXl5ueQg3w67du1ienqaS5cucc8997B7926pUJaWlrJ79240Gg1btmxBp9MxNDQEIIuWCSVApVJht9vZtWsXRqORHTt2rLAui3SVgjbz7W9/m7/9279laWlJzs38/Py6a6FQKLDb7Xz5y1/GZrPxmc98hr6+PikINjQ0yOq227Zt41vf+haBQACfz0d5efkdC1qr0z5mV82Fm5z0UChEcXExPp+PHTt2UF1dTTKZJBAIMD8/j8lk2jAF6NjYGFeuXMHn8/GpT32KH//4x4RCIXw+HzabTWaqEnxzvV6PwWBg79696HQ6IpHIprLSaDQaFAqFvHZhYUHGoQBSwbodFhcXuXz5Mi6Xi09+8pOcOnWKeDzO4uIiZWVl/Pt//+957bXXaGhoYNeuXSgUCvLz8wkEAlJZcblcUuAXZ1ekhM1OwSn6Oz8/L5UEofgqFApsNhsul4tQKCSVXAGz2UxRUZGMJWhpacFsNksBPpVK0d3djcVioaioiNraWg4fPixjcIqKiiTtS9DILBaLVEoSiQQ9PT3s2rVLPlO8g30+H+l0WioX4n25urJ3dn//9b9z8QE5vHORUwJyuGsxMzMD2Jidm2VycpLOzk5p+VepVPT396PT6XjXu94lKTojIyMoFAquXbsmgw4F9eXgwYP84z/+I/v27aOtrY2jR4/y6quvUlJSIi2C4j6DwcCuXbtkcKiAoLB0dXVRXFzMe97zHtrb2xkaGsLj8WxYaCudTjM+Ps7o6CjT09Mkk0k+//nPY7fbefjhhxkbG2NpaYlgMMi+ffuorq7m8ccfp62tjZKSEmpra9m+fTvf/OY3ec973oNOp6O+vp7GxkbOnDnD0NAQra2t0prudrsZHR3l+vXr6PV6PvrRjzI9Pc309DQXLlygpaWFkpISTp48iU6nk8rL6qBmAKPRCNzksVutVj7xiU9w7do1rl69SiAQ4MKFC/zO7/wOZWVla+7VarVEIhEWFhZQq9WcPn2aT3/601RXV5NOp6mvr+fy5cuyD6Ojo1y8eJGxsTFGR0eZmZmht7eXmZkZqqqqOHjwIB/96EcZHR2VXgFBffl3/+7frRC2haVOBP0tLi7KQNLsddJqtRw6dIgzZ87IuBG1Wo3dbudP/uRPuHLlCrOzs0SjUcLhML/5m7/J8ePH6evrI5VKMTIywqVLlwgGgxw9epQdO3ZgNBp54YUXqKqqksLCwMAAk5OTDA8P86Mf/YiHH34YlUpFfX09DQ0N/Jf/8l94/fXXqaurw2q1kkwm2bt3L5///Of50Ic+RFtb25pMVz6fj+HhYRwOBwqFgrm5Oe655x727t2LWq3miSeeYN++fdLSPT09zcTEBB0dHdTW1jI5OYnb7WZhYYE//MM/5Cc/+Qnbt2+XVlej0cj8/DzHjh3jvvvuw2w2r6AERSIRyVNXKBTMzMxw/vx5tm/fLp914cIFZmdnCYVCWCwW+vr6OHnyJF/72te45557CAQCnDx5koKCAlQqFR/96Efp6OiQQavd3d309fUxPT2N1WpdYfWem5tjenqaWCzGxYsXyc/PZ3JykoGBAZaWlujt7ZXXNDc309vby8LCAjt37uSBBx6gt7eXvr4+GZdQXFzMmTNn6O3tpaKiQiYM6OjoYGRkhJGREex2O4lEAp/PR29vLwaDQQrUH/3oR3nyyScpKioiEolIS/K73/1uTpw4QXFxsYwfyh5HLBbD4XBw5coVtFot+/fv5zd+4zdwu9288MILVFdX43K5+PjHP87o6CiXLl1ienqa8fFxampqVijvmUyGmZkZZmZmMBgMpNNpWTdABCeHQiGuXbtGeXk573nPe/jqV78K3Mx8plQq+exnP8sbb7whldzx8XE+//nPo9FoKCkpIZlMMjAwwOjoKKOjo0xMTFBXV4fBYGB8fJyenh7uvffeFYqUSqXiE5/4BC+99JKkcvb09NDb28vs7CyPPPIICwsL/PSnP2Xnzp34fD7a2tqorq7G7/fz6quvUlRUxD333MNLL70kaTupVIqqqio+/vGPMzc3x7/8y7+wa9cunE4nBw8epL6+nunpaV577TUKCwvl3AQCASorK/nUpz7F8ePH0ev1Mk7gk5/8JNevX2diYoLBwUGZAnd2dpbp6Wk5lyqViub3/8a67/wccngnQJHJ+atyuEtxbGKZh6aK+Lv4eT6+fxtDQ0PEYjEKCgqw2+309PRgt9uprKzE6XQSDAapqKjA6XQSi8UoLCwkFAoxOzvLzp07CYVCTE9PU1JSQllZGU6nc4VrOBQKSY680WgklUpJTqxAIpFgbGyM5eVlDAYD7e3tDAwMSBqG1WpdI6gFAgGGhob47ne/y3/9r/9VWtcEx3h4eFjSiQR/fevWrZw7d04KPcJa3dnZKS2owtI2PT3N7OysTKm5vLyMSqUiLy8Pj8eD0WjEbreTTqfp6OigoaGB4uJi0um0nI90Ok1RUZEMfMzGxMSEzCpitVrRaDTMz88Ti8UwmUx4vV7q6+ultTgbo6OjpFIpWTBseXmZuro6yat2Op2yEFhnZyeVlZWUlJQQDAaZmZnhwIED8oOdl5fHjh07GBsbQ6VSodVqCQaD9Pb2sm3bNlpaWqTQIRSAEydOSBpWOBxmeXmZ7du3y4JWAplMhq6uLsxms6TNGI1GwuEwPp8PtVotudU7d+5kZGREZkyqqKhgdHSUZDLJzp07iUaj+Hw+4KZ1U8yJw+FgdnaWQ4cO0d3dTUVFhQxUtFqtBINBlpeXMRqN6HQ61Go1JSUlvPzyy5LPXlhYuGJfnTlzhsXFRRoaGmSA+N69eyktLZUB4qKQml6vJxAI0Nvby5YtW7BarfT29qLRaGhqaiKTybC0tCS9OsJT09HRwZYtWyT9y+v10tvbS3Nzs8wQpVarKS4uprOzk+bmZux2O36/n6GhIbZv347f7yccDsug3Onpae6//34mJyeJx+OSZqLT6TCZTDL432w24/P56Ovr48iRI5K3nT0HPT09JJNJampq0Ol0nD17ll27dqHT6XC73UxPT3PvvfcSj8dxOBykUilKS0tlLIzgewv60vj4uKThVFZWotPpGB4eZmpqiubmZgwGA4FAgEAgQHl5OZOTkzKWoqioiO7ubklzMZlMmM1mJiYmUCqVGAwGtFqtfFcIiLim0dFRlEolbW1thMNhgsEg8XhcxjFt374dp9OJw+EgFAqxZ88eae3O3suBQIDLly9jsVhkVjKR1UfMQWFhoTRyPPfcczQ0NLBnzx4ZUzQyMiINANFolJqaGsxmMwMDAygUCvLy8ohEIly8eJF3v/vdFBQU4PF4GBoaorq6mtra2hXZyERNleHhYbnWXq+XgYEBHnzwQdnvcDgsvQ5FRUW4XC5cLhcqlYqCggIKCwtlIgJBGbLZbESjUTweD5FIhIKCAtLpNOXl5TIgXtAy9Xo9169fR6vVUlVVRX5+PoODgxQUFBCJRFCpVJSWlhKNRjl37hzbtm0jLy8Pr9fL2NgY73rXu6RXUKFQEK3aRnsXdLXDno1ZWTnk8AtBTgnI4a7F1QCbfrkK93symUSr1ZLJZG5bQVZU1gRkSj0RfCrSi242FZxoZz1KjMvlorOzkxdffJEvfvGLkh+f3XYymZQWYyHIiiqzgOR7i0w2q6k0640tFotJ1/2trotGo7dNeyfmNrvfyWRSek1uB2E9Xp3yUoxRo9EQjUbluG6XH13Md3a/NqquGovFUCqVsrrzrfZF9rXZwksikZDKymaQTqcljWN1v261juJZgNzHwsq/2nosgjWj0SgPPPAAmUyGp556ij179tDc3CwVhmg0uobWsB7E/hP92ojelX2d2A+Ca/1mIOhWsHKuksmkXFuxR+/kTK6H9c7pemt+O2QyGVKpFJlMZkVb4v5IJLKCLpZ9vVKp3HR+evFeE4rAW6maK54v3nWRSETGA4VCIanEZEMkRli977MreodCIQwGw4o4AEEx26i/4n61Wk00Gl1R1Vi8u7LHu9H7J5lMrqAbiWcnEokVtDBxHm/1zly9ZpvFnXyncsjh540cHSiHXwmIwDHxcd3Mx1LwW1f/tllBLxu3+nCEw2FGRkaIRCJEIhHS6fSa/q13v1KpXNEXIbzeLne8uHaz121GiBeBnqv7vNkPZvbarG5XjFFYHTeD7Oeu7tdqrJ7DzV6bfc/tnrEa2cGR67W30fqs96zZ2Vm2bNmyJvgzLy+PvLw8QqGQtCDr9XqKi4tXpGjczPqKZ8P6c3C7696KYL7R3sjeXyKA/K1ivf36Zs67QqG45d5fPee3u/5WzxHBz28Fq58v6mI888wzHD16lEOHDq0bjL/R3GS/N1fHJggO/62Qff/qtV3vnbTZ98/q70D2/bfr01ud4xxyeCci5wnI4a5FzsKSQw6bQ/ZrPlfIKIfNILdn3h7kvlM5vJORSxGaQw455JBDDjnkkEMOv2LIKQE55JBDDr/kEBSj21l0o9EoMzMzvPjii7La9GYxPz9PV1cXZ8+efavdzeEdgM3umez4lhxyyOHuQi4mIIe7FslUElATjUVJGTVvOSjw7YL4KIogQxF8+07o262QyWRwu91cvHiRpqYmmpubN31vMBhkenqasrIyDAYDg4ODxGIxKisrKS8vJ5VKvaPnIJVKEQwGGR8fZ3JykpaWFtRqNYlEglQqRUNDw7qZkbIhcuq/GW7323H/RojFYni9XjweD9FolNra2jUZYwSi0ajM4a5UKgmFQsRiMWKxGOFwWBaZW1hYkNlP0uk0dXV1Mte6qM77TsDg4CAWiwWr1bqCW760tMTU1BSxWIx77rnnF9jD9ZFKpYhEIgwPD9Pa2nrLmJNwOMzExATl5eVYLJZNBxVvhLGxMdxuN1qtlra2tlteG41GmZ2dZWJigve85z3y91gshtvtZmRkhHg8TmVlJQqFQga1b9++HZ/Px/j4OD6fD41GQ3NzM0VFReuesWQyKXn7kUiE/v5+WTfiTuJB0um0DH7OIYccckpADncxAv4AcDPvd6u2nLy8vJ+7kJlIJGRWCiHkig/g7Oys/Cjn5eVhsVg2XcDnFwWv18uTTz7Jhz/84TtSAkKhEDdu3ECv16NSqWTNhsOHD1NeXo7T6aSgoOCOA2h/Xkin0/j9fq5du8ZTTz3FZz/7WRlUKwThtra2NVmbshGPx/H5fBvWgrgdotEooVBo3VoMbxYi9ePw8DB+v5+pqSkSiQQNDQ0UFBSsuT4ej+N2u2ltbUWv1zM0NEQgEECpVDIyMoLJZKKoqIiJiQmuXbuGVqtFr9dTVFSE3W7H5/MxNjb2tvX/raK/v5+qqio0Gs0KYdHlctHR0YHT6XxHKgHpdJpgMMjly5dpamq6rRJw48YNDAYDeXl5b4sS0N/fj1qtvq0S4PV6uXz5MsePH+f++++X78B4PC4rJIuCihqNBrfbjdfrpbS0lHA4zKVLl2SqUbvdvuHed7lcWK1W9Ho90WiUrq4umaZ1s0pAIpEgGo2SyWSwWCx3PC855PDLiBwdKIe7Ft3d3QD83d/+HUNDQytc0iIVnLD8ZP+T/dt616z+bb2/i/9eXFykv78ft9u94rcXXniBT33qU/zgBz/gj/7oj/i7v/s7Ll269KafK/6WfY0Y50Z9FL+tvmcjKBQKWSNAr9ffUbsGg4Hm5mby8/PJy8ujqamJ6upq4vE4mUyGl19+GafTuWE/RPsiTeFGz8r+Z/X9t5rT1X9bDVHk6P7778fv93Pw4EHe+9738v73v59Dhw7x//6//y8ul+uW/Zufn+f48eNr1udW+zD7/snJSU6cOLHhmG+3V9a7PhwOMzs7y9DQEI888ghWq5VnnnmGkydP3vZ8pdNpXnnlFfr6+qirq2NkZIR/+Zd/we12E4lE8Hq9xGIxDhw4QGFh4R0reJsZ4+324O3OaENDg6zrkf23LVu2yMJXd7KHNhrHZs7ZeuPa6LwrlUry8vKkF2Cj9c1kMuj1enn2RC2R9eZuM/swk8nQ1tZGQ0MDwWDwtms4PT1Nf38/4+PjeL1e+bvZbKaqqoqtW7disVg4cuQIDz/8MFu3bmVkZISf/OQnlJSUUF9fT0VFBUVFRWzdunXdVLmpVIpjx46xsLBAJpPBZDLx4IMPygret3onZo9rfn6ewcFBRkZGbvseWm8t1/t99Xrc6h2TQw7vROQ8ATnctdi2bRvMwO7du2lvb1/xAQmFQly8eBG/38+uXbsoLS1FqVSysLBAX18f27Ztk8VjhCBjMBhkpUq9Xs/evXsBOHPmDCUlJdhsNllQ7N5772VycpI33niDq1evsm3bNhoaGjhw4AAVFRXs2rWLXbt28aUvfYlMJsOf/umf0tfXx9GjR1lcXOTSpUvY7Xaam5spKysjHA7T0dFBRUUFeXl5sgjVvn370Gq19PT04HA4iMfjFBQUcOTIEeBm7urZ2VmGh4epr6+npaVFVsr1er00NzezvLxMJBKhvr5+01Zqn8/H6OgoTqeT+vp6ioqKGB0dZX5+nkwmw3333ceJEyfQaDRUV1ej0WgYGxujsLBwRarKRCLBwMAA3/3ud4lGo7S3t1NVVSWLJQkIYbWzs5MPfvCDsnBWKpXi/vvv54UXXqC4uBilUimpRQcOHJBrvry8LCvD1tfXU1hYyMjICHNzc9K66HQ6aW1tvSNLvUajoaioiPvvv58f/vCHfOQjH8Fms7G0tMTExAR2u52WlhbOnDnDmTNnmJ+fp7i4mPvvvx+tVsvc3JwUOvbv34/JZCIajbK8vMz4+Dg2m42tW7fyyiuvcPHiRbxeLwUFBbz73e+mo6MDhUKBzWYjlUrJImrj4+OyavHu3bvRarVcvHiRRCIh0zguLS1x+PBh0uk00WgUt9sNQGtrK6dOncLhcNx27Eqlko997GOoVCppmT569ChGo5HS0lL2799PS0vLmsJqm4WIISgrKyOZTJJKpaioqKCqqgqfz8drr71GW1ubrGexZcsWMpmbRdvi8TjFxcWUl5czOzvL3NwcJSUlFBQUkEwmGR0dpaqqipGREerr6zEajRgMBiKRCF1dXeTn5+NyuVb0Z2BgAI/Hg1arpaysjIqKCvr6+ohGozIvfXt7+5pxZDIZ6WUJhUKUlJTQ0NCw5rpUKoXf7+fYsWPs3bsXv99PKpUiLy+PyspKrl27RmFhIWVlZWg0GoaGhvB6vaTTabq7u3G73bLQ4PLyMu3t7ZjNZvx+P6OjoxQWFkqvD8COHTvo6+ujpaUFpVKJ0+nE7/fT2toq99TCwgLz8/MEAgHe9a533fE6ptNpKioquOeee3j22Wf5xCc+cctc+6LuhbDI3w7BYJDHHnuMnp4eEokEhw8fXjG34+PjTE9Po9VqaW9vl2uxuLiI1+tFoVCwd+9e3G433/3ud4lEIjQ1NaFQKNi9e/e6z/R6vYyMjJBMJuX5BpiamsLhcKBUKmlqaiI/P5/r16/j9XoxmUxYLBampqY4fPgwJpMpRznK4a5AzhOQw10LIQCuDmCLx+M4nU7OnDmDUqnkb/7mb3jjjTdIJpPEYjGefPJJWX21r6+PCxcukE6nefLJJ3nxxRe5evUqnZ2dfPnLXyadTjMwMMDZs2e5ceMGPp+Pv/7rvyYej0vef/Y/wlooCtPEYjGuXbuG3+9HoVAQCoU4efIkSqWSa9eu8cILL3Dy5EkymZtFoP74j/+Yr3/96xw7dozZ2VkWFhZ4/vnnOXv2LIuLi8zPz/OXf/mXUqB4/PHH+cEPfoDH4+Hxxx+np6eHYDCI0+nk9OnT/O7v/i7nzp2ju7tbWuI3g3A4jEKhoKmpiW9961tMTk5is9nwer08//zzAJSXl3P69GlGR0fJZDIsLCwwNDQkYyHgZq7uuro6SktL2bNnD9u3b19R1VZAp9NhNps5duwYwWCQoqIiFhYWePnll1EoFJjNZp5++mk8Hg81NTUEg0G++tWvEg6Hee2117h06RJGo5G2tjaeeuopRkdHAXC73Xzzm9+koqKCxcVFrl27xsjIyB3tMZVKRVlZmawCfO7cOY4dO8a+ffvo6upicnKSoqIidu7cSU1NDQcPHkStVvPcc89x6dIliouL2bFjB4899hjT09O88sorvPzyy+zYsUNaUcvLy2ltbaWuro4DBw7IStXXr1/nueeeQ6PRMDExwTe+8Q2cTidbtmyhvLycr3zlK8RiMcxmM93d3fzkJz+hrKyM2dlZLl++TDAYZNeuXfyn//SfAOjo6GDHjh3s2rVrU+MvLCwkEolw6dIldDod7e3tGI1Gkskk8XicSCTCU089RU9PD36/f9PzCsi4g3/4h3+QMReXLl3iySefxGQyMTExwZkzZxgeHsbr9bK0tMSXvvQlysrK2L59Ow6Hg8cff5zS0lJ+8IMfyIrDqVSKwcFBSkpK8Hg8TExMMDc3x8LCAl/5ylfYunUrRUVFUrFJpVKcO3eO69evy0q0P/rRj2RV3YKCAkwmE0tLS+uOIxqN8vjjj1NcXEwgEODatWvrBkerVCp0Oh0LCws8++yzshDWT3/6U1nF+Nlnn+XixYsYDAYqKyv50Y9+RCgUwmQyMTMzwz/+4z9SUVHB/Pw8V65cYW5uDoVCwdLSEsPDw1gsFiYmJujo6GBsbIx9+/bxV3/1V3R2dqLVajGbzXzjG98gnU5z4cIFxsfHUavV2O12/uIv/oJQKLTp9Zubm8NkMrF7926OHDnCiy++uOLsw00lYW5ujs7OTk6ePMnAwABlZWV87GMf25TnSKfTsX//fqqrq2lra6O2tha4qXh1d3djNBpJJBKMjIxw6dIlAH7yk58QCoXQ6/WMjIxw7NgxTCYTjY2NbNu2je3bt0vBfnVfQ6EQX/va19Dr9ej1egYGBhgdHWVhYYELFy6g0+lIpVJ86UtfAqC2tpbjx4/zxhtvAFBaWsr3vve9NQpmDjm8U5FTAnL4pYP42JrNZgYHBxkeHmZiYkJaWbdu3YrH48HhcKDRaNi1axdarZazZ8/S2NjIPffcQ319PVNTU0SjUcmdTqVS2Gw2IpEImUyG4uJiKioqKC8vp7GxkdbWVsnJTaVSBAIBnn/+eW7cuMGBAwfYv38/Go2G8vJyaVXq6+ujr68PnU5Ha2sr8/Pz1NTUcPjwYdra2mRA49LSkgyi2717N0qlkr6+PsbHx5mfn2dxcRGfz8fly5dJp9OSox2Lxdi/fz/79++nuLh40zETJpOJ/Px8TCYTBoOBrq4uYrEYKpVKCgoFBQWEw2FZyVer1a6x8ImiV0IAMRqN61oKxf2iUqioBhqJRACwWq1yXQsKCqioqOD48ePEYjE6OzuZnJykrKxMWnz7+/vxer3k5eWRSqWwWCwYDAZ8Pt8K2sJmISqMjo+Py73kcrlQqVS4XC7S6TQmkwm9Xo/ZbEahUHD16lUGBgZIJBJ4vV78fj/Dw8M4nU6USiVWq5W2tjaKiorkOov74WaRJVGhtKysDK1Wy/j4OMlkEqvVisFgYGFhgdnZWbRarSzcZDab0ev1LC0tEY1GMRqN5OfnMzU1hVKppL29fdPxHmq1GpvNRlVVFRaLhcuXLxMKhSgtLaWlpQW73Y7NZuP06dOb8i5kQ6PRyLGaTCaqqqoIBoNcvHhRWow1Go08Yz6fj6GhIWl1TafTLC4u4vF42Lp1K9PT00xNTZFOp2lpacFkMkmhTQjJyWQSs9mM1WrFaDRKz9KJEyeIRCIEAgFpoY/H4wwODvLcc89x48aNDS3carWa1tZWHA6HVMDHx8fXvVbsYYPBgMlkQqlUEg6HZWE3t9tNMBhEpVJhMpkIBAKSAmMwGEin01gsFvR6PW63W8ZrCOu66KNKpcJut2M2m6WwXlJSgsFgkEp7RUUFOp2OUChEMBikt7f3jrL8jIyMsLi4SCQSIRqNSkpQtiIgzn9ZWRk1NTXs3LmTd7/73Zt6F4miYmI/5+XlrSigZ7FYsFgsmEwmSfcB2LJlC/F4XHpABwcHZUE1k8mEyWRat/BgIpGgt7dXVjmvrKxk69at8j2Yn59PLBZjdnaWyclJMpkMZrOZZDKJSqWS79yxsTHi8fim5zGHHH6RyNGBcvilQSqVwu12E4vFCIVCWCwWotGodH0HAgFKS0t54IEHmJqaYn5+nsrKSvbv349arWZycpKmpia2b9/O0NAQ4XCYZDJJcXExiUQCjUaDxWKR2Vvy8/MpKiqiqKiI8vJySktLicVikmecSqXwer1YLBb27t1LZWUlyWSSUCiETqejurqawcFBlpeX0Wq1NDQ0YLPZaGtr4+DBgyiVSikACJqDyWSirKyMQCDA/Pw86XRaCjUtLS2Ew2G0Wi12u53Kykrq6+tpb2+XfRJ81dt9gI1GI2azmXQ6TUlJCbOzs5KWIQQNtVot2xHVaNdDtqcmHo+TTCbXrSIqPtTZVT1F+3q9XgYGGgwGCgsLGR8fJ5VKMTc3R3l5uaTCWK1WFhYWpGCdn5+PVqvFaDQSCoWIRqN3tK+SySSzs7M0NTURDoflHMdiMRoaGtDpdCsqjsbjcRQKBYuLi1itVrRaLalUiqamJvx+v6TtqNVqtm/fTjKZlMJc9v1arVZm8bHb7YRCIcLhMJlMBo3mZjaseDyOx+MhPz9fZsHR6XQYjUa8Xq8MXA8Gg8zNzdHU1ERlZeWa6sLrwe/343a7MRh4jb20AAEAAElEQVQM1NXVUVRUxOuvv05tba0UsG02G6WlpZw6dYoDBw5gs9lWtCEUwvX2m1hvwWUvKCgglUoxOzsL3KzQWlBQQGVlJUVFRYyPjxMIBFZUgo3FYgQCAd797ndz8uRJ0uk0O3fuZMeOHVLgVqlUUlnV6/Wyuqz4WzqdZmxsjMbGRhQKBUajUQqSVqsVl8tFPB7HZDKRSCRW7HsxPpVKRSQSkfx9kYlJp9Ot8VgKRTW7LyIrTvb5zB6nUKJtNhtarRaTyYTL5ZLvG3H2RJXzvLy8FZl28vPzKSgowOfzEQ6HAaTCrVQqUalU+P1+aeDYDJxOJxaLBaPRKM/n2NgYeXl5K/aXyWSioqJiXQ/gZiCyvglPbiqVQqFQUFRUhMFgIB6Po9FopHFCpVKRSCRkvMTExIQcl8hmFQgE1pyBdDqNw+HAZDKhVqspKiqisLCQZDKJy+VCq9VK7246nZaeJ6PRiMViIT8/H4VCQTAY3LTHNYccftHIKQE53LUQFqdEIkEoFCISiXDhwgW8Xi9qtRqn08lnP/tZmRkkGo2iVCo5cOAAr776Kj6fj7KyMgoLC6X12e/34/F4CAQC0qUsPuwie4vH4yESiaDX61Gr1fIDND4+jt/vp6amhkzmZgaK//yf//OKjDKTk5N873vf4+tf/zpFRUU89dRTzM7OEolESKVSMpNJPB5Hq9WiUCiYnp5m3759FBcX43a7+eEPf8iOHTuw2WyUlJSQl5fH/fffTzKZxO/3YzQapTu6rq6OcDi8wuopLPrZAko2VCqVpCfBTWXGbrdLoUkItV6vdwUtSgicIpgv+//FPcvLy4RCIbZs2bLmuUJAEm1FIhFCoZBc51QqJfsfCASk10V8tIVw7nK5MJvNaDQakskkCoVC9ie7T6uDENPptAxkTiQSxGIxMpkMwWCQgYEBfuM3foPFxUUmJibIZDI0NjbS2Ngo98Ty8jLJZJLFxUVp0S8rK6O6uhqdTkdRURFjY2PSQinGJYQGoSQtLi5iMBiIxWJyPYSnQfQtHo8Tj8cJBoOYzWbZ/+yxirXx+/2MjY3h9Xo5ePAgMzMzpFIp6uvrb3m+JicnOX78ONXV1bz//e+nuLiY559/nrm5OQKBAJFIhF/7tV8jGAxiMBhWpDYVgmQwGEStVkvPznoQ6xoKhUin09JKK9JCCqXQaDRKC72gIkWjUaxWK1VVVTzxxBOk02nq6+vl/hJrrdfrMZlMuN1uuSdE+tdUKkVZWRkFBQVUVVVRWFhILBZjcXGRX//1X8dms9HR0cHVq1d54IEH1ig6gkLy2GOPYTab8fl8OBwOlpaWqKqqWjEnYv2EVT+VSslg0mx6odinon/iWnGGs/dyOp2W94hrhRAq7kmn0yvuSaVS/PSnP5X0M4vFQiaTYXl5GYPBsGJuslMvizEIhWfLli0yhuORRx7h1KlTVFRUYDAYZD/FuITCkX3exHjFWq2XRlitVkvFyuVySeVXCPRi7EKpeeyxx/j4xz9Oc3MzmUyG3t5enE6nbC8QCDA6OromJkAoopFIRBorROrgM2fO4Ha7OXToEHV1dWg0GhwOB9XV1fJ+QZHLXrP10vDmkMM7CTklIIe7Fj09PWAv4+zZM/zBYCexWAyTycSBAwfYtm0bzz77LF/84hdxOByk02kGBweprq6moKAAm82GxWKhuLgYuCmA/tf/+l/59re/jcPhoKSkhF//9V9Hr9fT1tZGR0cHzz//PBaLhdnZWb7zne/wH//jf6S+vh6fz8dXv/pVNBoNf/qnf4rT6eTKlSt0d3fzyiuv8PDDD0v+q8lk4siRI3zta18jEongdDoxGAz8wz/8Az09PXR2dhIMBhkdHeXf//t/j81mY2BggB/+8IfSAhiLxWhsbMRkMuFwODhz5gynTp0ikUjwe7/3ewwNDXHu3DmOHz+Oz+fD4/HwR3/0RzJY9umnn6a8vJyPfexjkkKSjcrKSlwuF5cuXcJgMDA9Pc3/8//8P1itVhlo29vby9DQEP39/eTn56NWq7l06RJms5l9+/YxODhIb28vZWVlvOtd7+LgwYN0dXVRXFxMTU3Nuuup1Wq555576OrqQqPR0NfXx9LSEhcuXKCgoICpqSmGh4dJpVJ0d3fzla98BZPJxG/91m8xOjrKT3/6U1paWnA6nTz66KNMT09z5swZRkZGGBsb4/z587jdbhKJBPv27VsTwDw3N8ezzz7L0tISr7/+OiaTSdJ4Pv/5z9PU1CS5xJcuXeLcuXOkUilqa2slZWBkZITr16/zvve9j09+8pMMDAzwxBNPsHfvXnw+H/v378fpdDIwMMCZM2fIZDJUVVVht9vRarXy/kceeYRjx45x8eJFNBoN4+PjNDU18f73vx+v18trr71GJpOR1LWXXnqJy5cvEw6HGR0d5dy5c4RCIQoLC+nu7uav/uqvpBKxbds2Hn300dsqAdXV1WzZskWmB33llVf49Kc/ze7du5mYmGB2dpbR0VFOnTrFf/gP/4HGxsYVlKBIJMJnPvMZDh06xP/9f//fG+Z/HxkZYWhoiN7eXoxGI7/3e7+H1+vl6tWrTE9PS29BWVkZH/7whzl//jxarZZgMMiBAwfkfhKB/EIADgaDXL16lUQiwaFDh3jve9/LpUuXuH79OrFYjOvXrzMyMkJfXx9f+MIX+P73v08wGKS4uBi/3091dTVPPvkk9913HzabjcOHD8uYgWwIYU8YARwOB4uLi7hcLpkfH/41Xevly5cxGAxYLBaZqODEiRMkEgmmp6cxGo1UVFQANwNfBwcHcTqddHV1MT4+ztjYGOfOncPv90sDgzh71dXVjI+PMzMzw4kTJ2hoaGBycpLr16/LegLz8/MMDw+TSCQkxSoWi1FcXMzU1BRut5u+vj4WFxdxOByyL2IMHo+Hr371q9KzWllZSTqdJhKJ8Mwzz1BSUsLevXuJRCKcP3+e8fFxbty4wZ49e1Z4AyYnJ7ly5Qr9/f3k5eXR09OzJlZFpVJRW1vL9PQ0PT09WCwWKioqeP311xkeHmZ0dJTp6Wm6uroA+LVf+zUAFhYW0Gg0kirpdDppbGykt7eXS5cucfDgwTV7UafTce+993Ly5El6e3uZm5tDo9FQVlYmPcmC6mO1Wuno6KC5uZnBwUH8fr9cn6mpKSYnJ8nPz1+jMOaQwzsNikwul1UOdykuuGIc7tHxRqOPdotCWncFjzocDkvXsXCvi4JPf/M3f0NbWxvbt2+nuLiYTCZDMplccY8IDoObgbKC55lKpaQ7X1gUQ6EQSqVS5qwWluy8vDxp0QfkxzIej0u6D9wUgIUlSa1Wo9PppKVeBC8Kvq5arZa882g0Kq1Wgl4hLGXCqi2oMEqlUtKRRkdHaWtrW7cwlQgKhpt0i+x5SyaTRKNRUqkUer2e5eVljEYjJpNJWueMRiOxWEz2yWg0Ssu38ECs91zhahfc5kgkQiQSoaCggImJCZ555hmOHDnC/v37gZuccuFhyLagajQaaYnMph9Fo1HS6bS0TK9ODym8DJFIBJPJJC2Ngn4jaFDCS5BMJjEajahUqhVzq9FoMBqNKyydyWQSg8GARqOR96fTaQwGg7w/Ho8TjUZRq9XScyWspOI6QYcQ/VKr1dJrICgQYr7F2sNNa7VY0+z9tRpLS0t0dXXR2tq6Qvjx+/3o9XrsdrscgwiuLywslDS5kZERrly5wsc+9jHgpqJutVqprq5eIzwLAfTHP/4xX/ziF+WaCBqMoEiJ/SL2e7aVVaxl9hjF+c9kMpIiIvaKoPjpdDqCwSDRaJSioiLJqRdeAkHxEs8THrDVcyYs4yIoOjudp/COrLaiB4NBSfdKp9PEYjH+f+z9d3hc53mgjd+nTZ/BDHoHSAIkwd6rCtVsWcU9tuMktuPEibPp9cu1+Ta72aw3G+eXON4kPydx4qq4yiVqlkRJFFXZxV7ROzDAzGB6OeX742AOARCNVAOlc18XL5JnTnnecmae532f4nA4rB1FWZatcSu6rRTnkqZpeL1ea3yLbc1kMtZ3VnGOFHfuEomENX80TSOdTlNSUmK1rShLJpOZNm+Lroiz7QSk0+lpbSwey+VyeDwe61jxGcVYoKk7AZqmTZNhZn8VzyvOleIYFMequOgztTDj1DgKSZKQZdk6D7DG2Ov1zlrzozhnit9VDocDSZIsV6RiX+i6bsWtZDIZa54Wi7z5fD4r8P1EArYeh+NbYcvCXng2Nm8p9k6AzU2L02H+IJeUlBCY5cu1uMVdNAIymQydnZ08+uijjI6OEggErJWaovJQUlIyqx/z1GCymT8cDofD+tEuflZUBGdSzPpS9H1fyDffMAzLf74o11TltWiMFHOLF5lZHKlIoVAgkUhQUVEx51Z1UW5d16+pdlxUOoqKUTH16syYgJltLyoXM+WfSlH5Kv44F/2MBUHg5MmTDA4OWkGbgUBgmlJbNC6mViYu/ogXma9Q21Qf7IWKDxUVkeKzitcrikIwGJzm0z2bXMU2FhWJqW13Op3WOLvd7mue7XK5puUpL14/1WAFrvF3niteYz6mKsNFJa6opBXjFaYamFPn8tRYkbnGOxaLcerUKcs9KhAITFPMijEeUym60RT7eOq9Z76fxaxSUykqjcW5UTQKp35WlBuwAsuL82m2PhIEgZKSkmtcZ2a+28VzZxaqmjrOM1eOiylBZzKzXVODlmcGMM8sCld8ns/ns/qyqMTOJvdsbZgtpqcY3DyVuTIAFd+PhYonTp0LU7/LPR7PrN+vxXOnjuPUeIniGM73HVQc8+J5RVmntmVqH81s42zvrY3NUsU2AmzescxUsosrh8XgwcrKyll/pOb6Ebze44uVa6FzF/P867lfcaV8oWvmUuCKP4pwrcKx0P0WI99UZavoD19TU8OOHTuor6+/ZrWweB0w6w7Dm8HUPpgpw2xjNvPc2fp2LuVxJm+mn3Fxl6m3t5fy8nLLYJk5zsV5NPX4xMSEldmmSDELz2xtcrlcNDQ0cMstt1i7AIuZx/MpcAsxddyKwedTmU3RX8ycmm0+3AzcLD7r1/MdB7OPIyy+vbNdf7P0lY3N9XDzfWvZ2NwgTqeThoYGHnzwQZqamq67wuk7gZkrxjcDoihy1113vd1ivCtwu93U1NRw7Ngxq1rtYpmYmCCXyxEKhaxjUwNjZ1JVVcW99977uuS1sbGxsblxbCPA5l2FJEmLzpFuY/Nuw+12s2LFilkr3i5EY2PjtGwpNjY2NjZLG3t/y8bGxsbGxsbGxuZdhr0TYPOuJ5VKsX//fivbQ2tr6w2thC4GXddJJpP8/d//PbfffjttbW1WmtI3k2I2DljYxzmZTPL0008zNDTEPffcQ2tr66xZNOBqLve5fHDnk2dqLQQwx+Gb3/wmn/3sZ+esYfBGYhgGkUiEo0eP0tDQwNq1a6+Rq7Ozk4MHD+JwOPi5n/u5N9SFTFVVXnvtNR5//HE++tGPsm7dukVfm8/nGR8f5+mnnyYcDvPxj398XtebG6G/v5/vfve7VFdX84lPfIJYLMbzzz/PXXfddU2w6ZvN8PDwtErCW7ZseUPem+HhYR555BGCwSD333//gkHhRb7zne+wYcMG1q5du+h5Wpxr3/ve9/jQhz6Ey+Wyso7ddtttVFVVzXuvYoaw4hx84oknCIfDtluVjY3NDWPvBNi868nlchw5coSGhgYaGhquyd7xRlPMgJJIJKyCUG82Y2NjDA4OWkXE5qMY7JnL5Ugmk3OeNzo6ahWOul50XefEiRPT2l/M+vFmK/9TmZoGcDa5nE4ngUCAnp6eRVdSXSyCIFBZWUl/f7+VynKxTExMcOXKFURRZMOGDQtmWbkRvF4vyWSSeDxupSOdarS9lRQzCTU3N9PQ0PCGZWCRZZlgMEh/f7+VZnIxFAsFXg9Op5PKykqrXkZjYyPV1dUAfOMb31jw+ZFIxKyNMklJSQmqqjI8PHxdctjY2NgUsXcCbG5aUukU4CWZShLTVEuJVBTFWvmOx+NWDmpJkkilUlb+dEEwawtEo1Ha29uprq6mtLTUyuWtaRqKouByuax8/IB1bTE3dzEntq7r+Hy+aTnyZypnxVR8dXV1ViXPYqXaTCZjpYlUVZVMJoOu6/j9fqsiJpjpAbPZLIVCwVoZVRSFRCJBoVCgpKTEqlNQlP/MmTNWTnSv1zur0ljMkV3M6x0MBq20nsW83FNzkx8/fhxBEGhubsbhcFjpG6fmTC8WqCrmZy9mZMnlcuzfv5/KykoqKyut3PNVVVVWFo5i1VtVVa125HI5K8e+y+WatRYDXK3HUFTmi/cvBkUXqyarqkogEMDtdpPNZunv7+fVV1+lrq6Oqqoq/H4/y5Yt4/Tp0ySTSatS6mzpCYtzoGgUFWsIFAoFYrEYJSUlVq7xYoampqYmywApVqQWBIFQKGTlK5+ZSlHTNMbHx7lw4QLl5eXs2rXLqg1QbG8gELB2nYpVeA3DYGJiwkpDmc1mMQzD2nUpjmuRUChEIBCw0paqqkpZWRmyLJNKpchmszgcDutd83q91v9zuRzpdBpFUaw8/7lczqqo6vF4cDgc12RcmW3M8/k8Y2NjdHd3U1dXRyAQmLbzVKzCW6xvUZyLYObZL6ZiLWY6Aqw6GoVCgYaGBjo7O63xK9aKEEXRSlE79Vm5XI6ysjKrunWx0rHT6SSfz1vpgWe2zev1smzZMlKpFCtWrKCiooJIJGJVHP7d3/1d6z1RFAW/328ZYLqu097ezuHDh2lqaiIYDFJfX8/w8DCjo6PT3v1iRq3id0AxxWtR9mQySSgUumZ8ivn2i2mBbWxs3vnYRoDNTctA/wCwkitXrqDIWQBWrFhhuSpEo1HOnDljVZ30+XxcvHiRRCJBY2MjsiyjqipDQ0NEo1FOnz7Ntm3bKBQKjI6OkslkLCWwv7+foaEhCoWCVfiou7vbyvtdLMqzdu1axsfHiUajOJ1OqzT9fKun2WyWgYEBRkdH8fv9NDU1kclkaG9vJxqNsmfPHiKRCOFw2Fr57e7uJplM4nK5KC0tpbS0lIsXLzI4OMitt95KNBrlypUrBINBVq5cyU9/+lN8Ph9r167F5/PR1tY2TYai0lCsiBkOhy2jxzAMBgcHGR0dtYySqqoqvvvd77J69Wqr+FJzczPRaJTz58+j6zpVVVW0tLQgCAJdXV2k02mcTqdlVD3yyCOsWLGCDRs2EAqFrH4o5mWPRqOMjIyQTqcJBAI0NTUxMjJCX18fiUSC1tZWuru7WbVqFVVVVdOyHum6Tm9vL729vQiCQFVVFQMDA5Y8/f39+P1+JEkiHA7j9XoZHR3lhz/8IZcvX2blypVs27bNUp5UVaW7u5tEIkFNTQ0tLS3XKEqqqpJIJLh48SKGYbBs2TJLkTtw4AA7duwgEokApoI9NUBd13VGRka4cOECuq7z3ve+l/b2dlKpFMFgkLVr11rnFgoFxsbGuHz5MslkkvHxcVRVtfpLEATr/DNnzpBKpWhra8MwDA4ePMi+ffuQJInu7m5SqRTNzc2IokhFRcWcFU5VVaW/v9961tDQED09PZSWlqIoCpFIhDVr1lBVVYWmafT19TE4OGhVvw2FQvT39xOJREgmk7S0tFBbWztNUS5Wo5055mNjY/T29jI+Ps6pU6fYu3evZawUi1eNjIzQ39+PIAiUlZWxYsUK8vk8HR0dZLNZPB4PlZWVVFVVoes6o6OjRCIRJiYmLKMVTJe0kZERent7kWWZHTt2XGOshMNhBgcHqaioIJFIcOnSJcLhMK2trYyOjhIMBq2K3nNRLGxXdNErKu7nz58nFosRDAbZvn07p0+fRpIkstksJ0+e5Pnnn2f16tXs3bvXWkBIp9N0dnYyMjLC7t27rWJi4XCY4eFhZFlm2bJlAAwODnLixAnuuusuuru78fl8VFdXU1lZSSqVIhKJUFlZuWi3KBsbm5sb2x3I5qbF4bzqG7tjxw7C4TA/+tGPOHjwIENDQ/zxH/8xO3bswOl0cv78ec6fP8+yZcv4sz/7M9LpNP39/aTTadasWUNpaSm33HIL3d3dvPLKK/T09LB582YOHDjAkSNHcLlcRKNR/vqv/xpJkjh//rxZDfLECb797W/T0tLCoUOHeOihh6xV5q985SvWSvp89PX18a1vfYs9e/bwla98hRMnTuBwOAgGg/zDP/yDVQUzHo8zNjbG4cOHOXToEGvWrGF0dJSXXnqJixcv0tbWxje+8Q2GhoasVflHHnmEUChEW1sbmzdvZsuWLaxateoaGaLRKN/+9rcZHR2lra0NRVEYGRlB13WGh4f56le/aq30HjhwAIB169axdetWNm3aZBkuf/AHf0BrayuhUIje3l6efvppjh07xuOPP05NTQ3hcJhnnnmG1tZW6urquO2221izZg01NTX4/X5+8pOfkMvlOHv2LK+++iodHR1s27aN559/niNHjiCKIplMxhoHn8/Hc889x6uvvjqtPcUV+JGREU6dOkVjYyMPPfQQw8PD6LrO4OAgZWVltLa2sn//fk6ePEkwGGTv3r20traye/duy+c8n89z+PBhGhsb6enp4bXXXqO9vf2aPjx//jx/9Vd/xaZNm9i4cSM/+MEP+NnPfoYsy3R3d/P973+fpqYmLl68yA9+8INp14qiaFU/fvLJJ9E0zTICZhbNcjqdVFVVsWbNGtavX099fT1f//rXOXnyJJs2bWLVqlX86Z/+KZlMhomJCdrb2+no6KC2tpbHH3+c/v5+SkpK8Hq9/Lf/9t8QBIH29nbGxsbmftccDlpaWvjmN7/J2NgYbrebsbEx/uZv/oaVK1dy7tw5Tp48yZUrV+jo6OAf//Ef2bVrF+fOnePUqVN0dnby8MMPs337dmsMZ7rCzTXmxTidiooKbr311mm1CXRdJxaL8T/+x/+gurqafD7PsWPH6O/v50tf+hKGYbBmzRrS6TRf+cpXmJiY4Ny5czz66KPE43FWr15NNBoFTIPiO9/5Dj/72c/Ytm0b+Xye/fv3W4ZbkZqaGg4cOEBHRwder5e6ujr+/M//nHw+j9frpaOjgx//+Mdz9qVhGLzyyivs37+fJ598kgsXLvD1r3/dKvzX1dXF4cOH0XWdM2fO4Pf72bJlC5s2baK8vJy77roLn8+HKIoMDAzQ3t5OU1MTx44d4/Tp0/T19XHy5Em+/vWvs3PnThRF4bHHHuP06dM4nU5+9KMfcfbsWdasWcNrr73GN7/5TXRd5/Llyzz33HOEw+E5ZbexsXlnYe8E2Ny0FFd+6+vqEUWRffv28Wd/9mf09/fjdDoZGxvj3Llz5HI5stmsVQipvLychoYGgsGgteJcrD761FNPUV5ezr59+xBFkc2bN/PII4/wgQ98gJKSEiorK2lqaqK2tpahoSGGhoYwDAOPx0NZWRk+nw+v14uqqjgcDtLp9IL+2jU1NXzwgx/kwIEDCIJALBYjnU5TWVnJunXr6OjoIJ1O09LSQiaT4Stf+Qqf+9zncDgcNDU1EQ6H+elPf8p//+//HZfLZbk/FZXHYtskSZqzIFMsFuMHP/gBP/nJT3C73YRCISorKykUCjz99NPWyrHD4aC0tJTBwUHrvqIoksvl6OzsZGxsjAsXLljuN8PDwzz77LPcf//9BAIBbrnlFnbu3DmtEmdxlVVRFCse45lnnsHtdnP33XcjCAKbN2/mscce45577iEQCFjjYBgGJ06cmLaaW2zzqlWryOVyPPfcc5abRiKRoKysjPr6ehoaGhBFEbfbbSmWxfbMrJK8atUqvF4vpaWl1orpVMbGxujv7ycWi+F2uy3XGzANrNLSUioqKiy3NFEUyWaz03YviuP99a9/HVVVqa+vp7y8nJqammvaVux7QRDo7e0lHA5TW1trFd0aHBxkaGhoWnXXYv/Ksmz9u6KiwkrtOZ+Pe3FOud1uy72kqqqK5uZma+5ns1kuXLjA2NgYHo+HU6dOWdWsiwbGxz72MW6//XZqamqucal65plncLlc14y5KIp4vd5Zq/amUikOHjzIsmXLcLlc7Nixw3JreeSRR/jMZz5jvZMlJSXs37+fY8eOccstt9DU1GTVDunv76e3t5ehoSEymQyXLl1CFEUmJiau8dWXJAm/32/Fkvh8PioqKmhoaCCVStHX1zevQaVpGlu3bqWqqspy9Sm6ZK1du5azZ89y6dIlDMOgpaWFZcuWTavKPHWcysrKWLZsGV6vl/LycqLRKENDQ8TjcStQfM2aNXzta18jFotZ527atAm/34+maeTzeSRJYuPGjaxZs8aqHGxjY/POxzYCbG5aBEwlragYFLNnFP3uZVmmqakJURRJpVKWguf1ei1f2Gn3m1T6NE2z/O9VVbXK1Rd9fWVZtv4U71NUypxO5zQFUtM06/rZSCQSRCIRXn75ZX7u536OUChkbfG7XC7uvfdenn76aVatWkVDQ4O1s5DP5y0FYmqJe0VREEURVVUtd55i2wRBsHZAZmaSKfp1F6vxTq1oWwyOra2tpba2llwuZynvRSNKVVXcbjeyLFsGViaToaKigosXL6LruhVcKoqi1b8A4+Pj6LpuyV6UteiiNHMciv7dRWV6ah9MpRiT4Ha7OX78OPfffz+RSIRcLjdN6Z1aqbfY5pGRESRJslyTisqvKIqWe9BUJEmyYiqK8udyOSuupGhsTDXCZu4SFZXLTZs28eSTT9Lc3Gz5eM9FcV4WY0SK989kMtf4wYPpelZskyRJeL1eay4vxNSqrUVltGh0FsdBkiRcLheBQGBa4Gs2m2XDhg1s27aNc+fO0dPTg8/no76+ftr9Zxvz2eSY2f7iNU6nE03TSCaTZLNZS+apyu7MexSPOZ1OHA6H5T5TrFTt9/uveXbxvlPfe1mWrXkw23ycSjH2Z2bcgMPhoL6+nnA4zJNPPklra6t13tT+7+3tJZvNWnETRTmK3zdF//+irKqqouu6dY9ivErx3GIsxWzVuG1sbN652O5ANjc98USciYkJzp8/T319PatXryYUCtHY2Eg6nUbXddxuNw6Hg5GRETKZDGNjY2SzWbLZLGNjY0xMTDAyMkJLSwsej4f+/n7C4TD9/f2sXr0aWZYZHx8nlUpZvvHhcJhwOEw8bj5/dHSU0dFRotEo8XiceDzOwMDANGWvmIIyHA4zNDTE+Pg4o6OjXLlyxQpojEQijI+PI8syGzdu5PLly7hcLrxer6UkFld/BwcHAVi/fj2A5YM+MjLC8PAwY2NjpFIpSktLyWQyDA4OzrpK6fF42LZtG5cvXyYcDhOJRBgdHWVwcJDW1lbLZxmwAmMrKyuJRCIMDQ2RSCQoKSmhsbHRCox2OBxUVFSwZcsW+vv7GR0dZXh42MpmUllZydDQECMjI5ZvdiKRYHh4mObmZgKBAP39/dYq+8qVK3G5XIyPj5NMJolGo1bGo0QiQSaTmdam4ir46tWr6erqYuvWrVbfVFRUYBgG4XCYWCxGPB4nm80SCASs+6bTaavPEokEExMTjI2NMTIywtjYmKVwAVZsRmVlJX19ffT29hIIBCgvLwdMP/KRkRFrbkSjUQYGBqznx2IxUqkULpeLvXv3cvz4cRwOx6y7SJqmWfNwYGAARVGoqKgATNey/v5+Ghsb8fv9hEIhXC4Xo6OjjIyMkEqlGB4etuZ3Op0mHA7PmpkmkUiQTCaJRCIMDg4SDoetcSr6mxfn/tjYGMPDw2iaRlNTE4AV1FzMpBONRq2YlKLCP5WVK1fOOuZut5vx8XHrHZ16ncPhoLm5GVVVGRsbY2hoiNHRUQqFAjt27LD6IxaLAbB8+XI2btxIMplkZGSESCTC8PCwZfQV4yLS6TRgZuCZaiAZhkE8HieZTFptHh0dJZVKWavwo6Oj1m7eVCMmk8nQ399PoVCw4jFmM3KamppYtmyZlUWoaCgUg+oHBwfJZDKMjo5O+/4pfqcUdwWKY3vp0iUaGxupqamxZC++d9FolImJCcbHxxkaGuLkyZPWDpaNjc07H9sIsLnpiU4qrOfOnWPnzp3cdtttVFRUsHv3bi5fvkxPTw9jY2NEo1H6+vqQZZnh4WEymYwVCChJEn19fezcudPKulFU0u644w5LEREEgYGBAQzDsBT+fD5PJBKxlKOxsTGSyaQVEDubEVBUaIrBssFgkKGhISsrTDwet5To4up6KBSirKyM+++/n5GREQYGBhgZGSEQCHD33XcD0NLSQiKRYGhoiFgsRiaTIZFIsGLFCkvpnS1OIRgM8rGPfYxTp07R19fHxMQEExMTDAwMsGXLFjwej5Whpa+vD0EQWLNmDbFYjImJCURRtHzqe3t76erqYnR0FIB7773XUlh7enoYGhqycr0Xg3yLmZwcDgf9/f1s2bKFZcuWTVNYb731VoLBIJFIBFmWrQDOYq71ouI2lVAoxC233IIsy1RXV1sGTHEnpBiIXDQIa2pqKBQKVsaXqcHKkUiEWCxGJBIhGo1OW+11u900Njaya9curly5wsWLF1m5ciWrV68GIB6PMzo6ytjYmJXpqaurywpmTSQSJBIJnE4nO3bssNzIZkuFqaoq2WyWWCzG4OAgsiyzdetWgsGg5ZN/zz33WG5PFRUV1tgFAgFGRkbo7OxkaGgIWZYZGBiYtjNTZGJiwtrd6OrqYmBgAEmSiMfjlvKrqqqloBcN17a2NhwOB319fXR2dhKNRkmn05w5c4bBwUHq6+tZtmyZZbgU2bt376xjHgqFiEQiluvT1H53Op2sWbOGsrIyq12Dg4MoisIv//Iv093dTXt7O8lkkqqqKjZu3Mj73vc+NE2zDNKiESoIAitXrqSmpoaLFy/S19dnZQmbSiwWs1yFii5ETqfTWjSIRCJomnZN6tx0Ok1XVxc1NTVcuXLF6t+pGIZBfX09K1euJJ1OU1ZWZu1UeL1eampqaG9vJxAIWAkIcrmcNQZjY2NUVFTQ2tqKx+Ohr6+PU6dOsWvXLtavX08ikcDhcNDZ2Ul/fz/ZbNYKSu/q6uLFF1+c15XJxsbmnYVgvNHJr21s3iKeaB/m/v5qfvf8t/jCpz+C2+2etmVe3BIv+nhfT9o7VVVJp9P4/f63pGiVYRhks1nLn1xVVTRNw+l08txzz7F9+/ZrAkSLSuPMAlbpdNpqczHLiiAIFAoFKz3qfHIUU3CC6WJUdDcopkSdWsirGAQ9dbU0m81arjNTj6fTactFpchs10+luOr9esZhqstD8etuphvG1HOLrktTXaKu51lFN6yiG9Bir9M0zer78+fPW6vmi6U4Z4BpKVN1Xbdca4qxEYt1AbpRisaDy+WaVoMhlUpZQa1zcaNjnk6nLRe9qW3P5XIIgjAt/gKwdqwURSGXy+H1ei2XmmL63bfKPaY4L4syJZNJent72b59+zUpSmcW2ZuLYn8X4ylsN5+3hxMJ2Hocjm+FLf6Fz7exeSuxYwJsblp6e3pBqqZvcjV4tlXTGw1yK/pnv1UU/c6L/z59+jT79+9nx44drF+/fta89HMpiFP7YWrhs8X6fc9UlorKw8zjwKwGxVx9Ptv4LFSBVxTFN2QcpvpyL8T1Kv4zudGqwkePHuXxxx9n79693H333detpM9l6Bb95l+PbDfCzDSTix3LGx3z2ebXbPO5iMPhsPpjatxE0cf/7eCf//mfrV2yHTt2zHrOYsdwalC4jY2NzWzYOwE2Ny0HhxLsu+TnP6v7ed+KqndUUFsymSQWi1mZTd5JbbO5FsMwSCQSRKNRAoGAlbnK5t1B8Wd4akant3IRwubNw94JsFnK2DsBNjctfp/5jZoI1XMm+zYL84bjwwh4GQHILG4F2+ZmRsDADyE/44IAybdbHpu3lkkXRl/N5P8ESMx3vs3NwoVrQ5VsbJYMthFgc9NSroBHhF+88HZL8mZhK/7vLuzxtrHnwDsRj2j+XtnYLDVsdyCbm5reLIxdm9jExsbGxsZmSVCuQOPsoSk2Nm8rthFgY2NjY2NjY2Nj8y7DrhNgY2NjY2NjY2Nj8y7DNgJsbGxsbGxsbGxs3mXYgcE2NyVmASjtmoqbNjY2NjY2by8CoigiCPY6q83SxjYCbJYciwn21XUdTSug6dpbI5SNjY2NzRtOuWzQ4HxnLeaIooQsO5Ak2wiwWdrYRoDNkqI3C21HIK0vdKYEXFsh1MbGxsbm5sEjGhxdG6HBseCX/k2DJCmIoswsBbxtbJYUthFgs6QYK5gGwENt0OaZ+zxVK1AoZNF1FUPVMXoTUOlBcEkI8s2z+pJOpRkYHOS1E6fwet3cffedOF12LrmljlpQicViPPfcQdxuFxs2rKepufHtFsvG5qbiUkbic90BxlXxHWUE2NjcLNhGgM2SpM0zf4l1VYV8XkfTJo0ApQDuAoLHQHgbtmAN3UB/cRih1IlQ70UIORd1XUERWCX6aczW8o1vPMTq9+6ixPP2vJaapvHv//5NPvzhD1BWVmpXKZ4HXdfJKk4qtizne9/7IaFaL5vW1L7dYtnY2NjY2Cwa2wiwWZJoukY2W8DpdM6rjBrxPEZ7HOPEGMLtNVDnxXALkCigHxg0dwUMwDCgzIWwswLGcuivjoBTMvNjGSBuKoMqN+gGRkcc2hOgG1DrQVgbQnBKGKMZjPNRjHgBwS1h5HSEZX6EFX6MoQzGs4MYIQdCow+htQRhfWhBRVqWZQKBAE1NjSQS8WmBzvl8no6OLjo7O9E0jebmZpYvX4bH42ZwcIhjx06wcmUrgiBw+fIVWlqWs3r1KgA6O7u4cqUDTdOoq6tlzZo28vk8fX19tLd38uCD97F//7PU1dVSW1uL2+3i4sVLPPvsAUpK/DQ0NFBVVcny5cvI5ws8++xzGAaIohnwVldXx5o1qxEEgXPnLtDR0YHT6SQUCrJp0yacTgcjIyOcP3+RRCKB2+0ml8uxYsVyVq1aiWEYHDhwEE3TSCZTlJWVsWvXdpxOJ5qmcfLkKcbGxgGB0tIQ27dvJZPJcOVKO0NDw4iiiK7rOJ1ONmxYR1lZ2dxzZLJPn3zyaTRNx+NxU1payqZNGwAYHh6hr6+f0dEwAMFgCVu3bsY1z46MIAi4XE6WLWsmn89TKBSsZ+XzBZ555lkEQUAQBCRJorbWHANRtA0rGxsbG5ulgW0E2CxJCoUC0XSUqqqq+RXpjIbRk0Q/Po64zI9Q5gK3hJEooP9nD0KjD4YzphHQFkTcVArxPPpPehDqPBBQQDXQVQPx3nqMiTzGuSjG0TFwSXBZQWryYSiiec/TEfTnhxB3VEBeB4eI0OiF8SxGdwLGFUir4JYQ1ocWbKcgCCiKgt/vQ5anv46qqtLf38+LL75MLBZjy5bNOJ0OWlpWEI1GeeKJJwEQRZHHH/8ZH/3oh1i1aiUTE3EuXLjIoUNHcLlcXLnSTkNDPZqmcflyO4888hgPPngfL730CmvWtKEoCjU11fT29jM0NMSFC5fI5fIIgsDy5ctQVZVnn30eAK/Xg9vtpr29g5UrW5Blme7uHl588WUkSUaWZVauXInDoTAxEef06TO88MJLbN++jXw+j9vtprW1BVVVeeSRx3C7PcRiMVaubGXLlk04nU7C4TAvvfQq/f0DKIqC1+th8+aN5HKmUXTkyFEikSgtLSvw+bwsW9Y8rxFQ5MiRYySTKWRZory8nA0b1iEIAj09vRw+fJSOjg5cLhcNDQ2sX79uQSNAEAQCAT+Kokybo8X+EkURj8eN2+3mypUOVq1qRRBke4fFxsbGxmZJYBsBNkuSTDpDR28HFRUViOLc7j1ClRvxfQ2m4p3TQNVNJUsWEWo8iL/Whv6vF0AQEOp9CPECtAQQQg7EfTUI28oxkiraHxxCvLsO42gYcjrCe+oQd1Wh/dbLGGNZBK+MuCKA8LHl6P9yAfFvdyHUuE0jQBRhcxni3bVQ7UFcE4LaeQIaFonT6WTr1i3Isszx468xNDTMoUNHWLVqJevXr2PdurVUVVWiaRrLly/nPe+5G4Djx0+QTme4++67uOWW3fzmb/4eY2NhmpubaWioJxDwIwgCe/fuJp1Ok83mCAQC3H//vTzxxJP88i9/irq6OkTRVHS9Xg9btmxCEARWrVpJTU01v//7f8InP/kJ/H4fW7dupqKijI6Obv7xH7/Cr//6Z/H7faxc2YrX6+Vf//Vr/N3ffZGqqkocDgdg7nKMj0e5886NBIMB6urqcLlMF6r9+59jYiJOS8tyQqEQP/7xT8lms5SUBNi7dzeapvLNbz7EP//zP2AYxrzzo4hhGHzsYx+ht7efQ4eO8Morh/iN3/gcbrebkZFRDMNgxQpzJ6WkpASn03FDYyYIAh6Pmy1bNiFJEqtXr6KsrJQ/+ZP/yi/+4ifw+XxIdrSgjY2Njc0S4OaJoLR5V+H1el//TQQQKl1Q6QavDIJhuvgUEQWQBPPv4vG8DgZXg4sFAQo6aJOfKyLCxjKEKrfpTjR1VVcyXY+MkQx0JWA8+7rEj0Si/MVffIGJiQn27NlJY2MD6XTG+vx977uHnp5ejhw5Rnl5qXU8ny+g6wayLE02QaRQ0NB1HUHAWonOZLJo2vRgvKK7SldXF+fPX5jxmWgp3JIkoWkaAwODPPbYz3jssSdZsWIZbW2r0XXTZx7A4VDYtGkDVVWVlmuXYRgIgsCnPvVJ1q9fy+DgMEeOHGNgYAAAVdUoFPJks1mcTgcPPHDftF2S8vJybrvtVgRBWJQBoOs6XV3dfOUrXyUej9Pa2sKKFcvJ500Xnrq6Wm65ZQ+3334b6XSan/70UdLp9CJGaH6K/WW6BMmoqp3O1sbGxsZm6WDvBNgsSSbiE2jxOLlcbpryORNjIIW+fwD9qT5wyRDJIeyoBKeI8do4+mO9GIfDoAig6uheBbHGXKXXH++Fp/oxBBB/qRVkAXFPFfrT/Wjf7UB4rBfqPAjVHnDL6Jdj6D/qxmiPo/3dacRPtCA0+0AWzJ2GHRVoX7uEkNYQ1ocQP7liwXYmEgmuXGnnscd+xvnzF/nSl/4ve/fuZu3aNnw+P+vXr+XYsROoqko4PIbf7+fixcusWtVKU1MTjz32JPF4nHvvvce65+7dO3nmmef43vd+yBNPPEVtbTXV1ZW43W5CoVJWrlzJF77w11y50o5hGLznPXexZs1qJEli377b+fa3v4Ou66xatZJ169Za93311cMcOHCQsjLTnz4Q8ON2u/B63YyPj/PEE08xMjLC97//Qz74wfej6xo//vF/cuVKB3/7t1/mk5/8OA0N9RiGwcREnC996R9Yv34d6XSa5uYmnE7T/eaBB+7la1/7Fl1d3QwNDZFKZfjoRz9ENBrj2WcPcPDgi4yMjPDNb1byiU98dF63HTCV8cpKc0fp2LETZDIZhoaG+eY3H+K//Jdf4+TJ01y6dJlcLofP56G0NLSgcVEoFBgdDfPQQ9/h6NFjRCIRurt72L17pxWX8fLLr/Lcc89P66/FGC02NjY2NjZvBbYRYLMk8Xl9NKxbh8PhmN+HOuBA2F6BVOsxV/TrvAgVLpAFpN9cAytLkPwOc8W/RIEpWXuELeUIjT7TCGgJmNcHHQg7K01DQRQQAgr4FQRRgHI34l21CKuCCLVuhDKneQ2Yuw61HsQHmxAKOpS5wLGw24fT6aSuro577rmLdevWUl1dRW1tDYFAAKfTxe2338batWPouk4ul8fpdFBZWQ6Yyq3P58XpdNLQUG/ds6QkwPbtWy3FNxAIEAiUTCrD5dx11z7GxyPs2rUDgIaGemvFevfunTRPprosLS2dJuvq1asIBktoaKgnFAoiyzKSJLFz5w4aGhqQJIndu3dQXl5GRUU5hmFw99130ta2mtraGkKhq8p1MFjC5z//OUKhIIIgEAyWEAyWWM+97773Eo8nEATQNB1FUfB4BLZs2Ux1dRW5XI6GhoZr4ijmwu1284lP/ByapqGqGvl8jrKyMkTRlHnVqlZUVcXhcOD3+3G7569BIYoiJSUB9u27nba2Nnw+LxUV5VRWVljntLWtIhQKUV9fRygURJLseAAbGxsbm6WDYExNR2Jj8zZzIgFbj8PxrQulCC2Qz6fRtPx13d8wDIgXUH/vVcQPNiHurYayazMQGYZhZhWa4j6z6PtzfdcsdL+i+0zxnuZK+gQXLlzi0qXLVFZWcN999y7q2vmOz9YGwzBQVY3/+3//CZ/Px6ZNG9ixY9us/aXrumVMLBZN0+Z06ynK+UaunhfdlGbes9jm+fplMRT76+///h8oKSlh8+aNbNu2xVb+bWxm4WRa5rYLIV5oi7LJo77d4rxhSJKCorhRlMWliraxebuw96Zt3l3oBsZACiNRwLgQw+iMz6qgCYKAIF6/Mvh6FMi57jdTsdZ1nb6+Ab773e8jiiKtrS2Lvna+43O1IZfL0dnZxZkz5+jrG5izvyRJuu62S5I0p5K/WJ//62Eu17Jim6/XiJmJYUztr7MMDAzaBoCNjY2NzZLE3gmwWVK82TsBNjY2NjZLA3snwMbm7cWOCbC5aREEEUGwN7NsbGxsbkYEBOvvd9J3+Ru9I2xj82ZhGwE2NzEGhqEvfJrNO5ZUKo3T6bTSodq8cdh9a/NmY0x6JBvvsO9y07/CdrKwWfrYRoDNTUvRk03XdSKRCH6/Wb313Z6GMZ1OEw6PEYtNEAj4aWxsuC5f93A4jMfjeWNqNbwOkskk0WiMVCo9WW33qvyaptHZ2cXw8Ahr1qymrKwMXTMoJAy0rEEhaeAMCThLp7c7HzfrQMgeAVFZmit1hmEQb9cAA1eZhLP06nzORnQkJ0hOAVE2A7ezozqZUR1BAmdIxFOzOKXdMAwMHRJdGpJLQHZP/vGY/XL8+AnKysqorq6irKx0gbtdRdVVRrKjlDvLSKlpnJIDrzz3XDIMg4yWoSfZR07P4pN9tAQWTq+7GAzDoCvZjWZoVLur8Cvz+BhOQTM0orkofiWAIsqI76BVapu3AgPb0drmZsA2AmxuenRdZ2RkFIfDMW+g6buF7u5euru7iUZjlJQEcDgUqqqqFp1Oc3h4hIqKirfdCEil0vT29nH+/AVWrmyZlh0pm83y0kuvAgbNzU2UlYFRgFS/Ri6ik+hSKd2g4AyJMEXXz0/oGDoIirgkjQBDN1BTBmPH88gegeAaphsBYxqOEhFBAlE25c+O68QuFtCyBu5qadFGAAboOYORl3O4yiXc1aYBIXvM69vbO+jt7WP16lWEQsFFV2bOaTmOjZ1ge/lWhjMjVLjK5zUCADJqlvZEBwPpQQKK/40zAjC4FL9CWjWLvy3WCNANnZHsKA7RiSxI0+aQjY2NzTuFd7e2ZLNkKaaHXChufbbUlMXrCoUCqqqiqiqFgoqqatZnqqpZn6mqOu15uq5P+0zTtGmfFQoqhUIBXdcXlA+w7le8rlBQ0bSFr70q67WymPnuzf9rmjZNnh//+D8ZHR1jx45tTEzE+drXvsXERHxRfa6qKqJoGlJT+6Qo+2x9VpRl6p+iLDPlL6bonKtdU68JBPyUlAR48cWXp/VVoVBgfDzCSy+9zEc/+iGrRoKWN4i3q8QuqAw8nSPROT3Q0NAMs6ibOD2Fq6EZ6KqBXrj6t6FflWXq58Xj1twrflb8o035bMo9p143b/9nDEaP5En16yg+AcUrXp0LmjGZsWq6/P5mmerbnAiiwOgr+WvuaehzyK9DPmkw+GyesaN54u0quchVl4zPfvbTxGIxzp49Rz6/uAB83dCJ5mP8R9f3OBk9xWuRkwymBxdse9BRwu6KnfgVP2ei565pg27oFHSVgl5AN/Tpc1MvoOoqqq6hG1fnl2aY/3dLLnJajvZEx6LaUHyeiIjIjO8U61kqBV1F0zWrbcXjxT9TZdQMbdpnmqFN+Wzuts18lo2Njc0bib0TYLMkSSaTjKRTVFZWzuvGMjAwyFNP7efAgRf41V/9DBs3biAYLGFgYJD/+l//HI/Hg6Zp6LrGqlWr+MM//F1EUeRv//bLhMNh8vk8wWAJ//2//xmiKJLL5Xj22QM899zzpNMZNE3jrrvuYM+eXTgcDo4ePc5PfvKfFAoFPvvZT7Nx4wZCoeCc8hmGwblzF3j44R/T3d1j5b3/wAce5M4791FSEpj32kQiyRe+8NeoqookSbS0rOCXf/lTfPObD3H48BHuv/9eVFXj0Ucf57d/+zfYsmUzv/iLn8Dj8RAKhQgEAvzVX/0NmrawAqHrOv/7f3+Rs2fP8/M//zEeeOB9iKLI4OAQ/+2//QW6ruN0OnG73VRXV/Enf/IHTExM8NRTz/DKK4dQFAVVVSkpCfDxj3+UNWvaCIfDfPGLXyKVStHU1Mgdd9zO7t07KRQK/OVf/h9SqST5fIGNG9fz2c9+GlEUCYfH+OpXv0Z//wAA4+ORaVvrY2NjvPLKq9x55z4URbGOi7KAu0rE0CDQIuMqm76C2/2TLKOv5nCUijQ+4KJsowOAju9mGD9dIDduutSoSYO1v+sluFohH9cZfjHP0HM5dBVWfsZN6UYFZ0jC0OD8P6ZI9qmoKQPJLVCyUqHt8x5SfRrt30kTv6KhBAQa7ndRd6dz3hXlVL/GyKt52h/KIDkEZK9grewbKnR8L8PwwRxVtzmo2uukZIX59S25we0WUfzX3jwX0QkfzdP1cBZDg2UfdVG5y4GrTEKQwBEQ8NRLuGsk3JUijsD0e7S0tBCJRDh69Di33rp3wTl0NnaOhzq/y9nYOb549u8IKH5copMtpZtRJGXWawRBQESkzFlKyFGCIk3/WYrkoxwfP8F/dH4PHZ1fXvEpNpduJOgIMpAe5P858WcElRIafI3cXXMH28q2UNAL/EfX9zg2foJILkKdp467avYtKD9AT6qX/YPPcXDkRX595WfZGNqAX/HTlezmL079L9ySB83Q0AyNjaEN/NbqzyMi8sWzf8d4PkJez1PpquC/rvsTREEkq2V5cuBpXhx9hYyWQdM13lN7N3srd6NjcGzsOI/0PUbBKPDrrb/KutAa3JKbocwIf3X2iyiCQkpNs61sM/9l9a8vqg02NjY2i8E2AmyWJBPxCXJujb6+PqqqqnC5XLOeV1VVyQMP3EehoJLNZlHVAgCKIlNdXc0nP/lxfvCDhxEEgfr6OiKRKOXlZbz//ffT09PD2bPnaW/v5Pjx19i6dTNnzpwjl8uzY8d2KisrOHjwRfbu3U1VVSWHDh3hP/7je3z0ox9mZGSYs2fP4XA42LNn17xt8ft9rF27hsrKSsAsRlVTU42izP/6JRJJfvjDH7Fv322sXr0Sh8OBLMsoisxHP/pBBgcHqaioQJJEVq9exbp1axFFkbq6WgCGhob41rf+gw984AF8Pt+CfS6KIr/xG5/jS1/6BxwOB5qmIcsy1dVVBAIB1q1bSyDgJxweY3x8HMOAkpIS9uzZhWEYfOc73+df//WfEEWRYLCE/v4BXnrpFWRZ5j3vuZuDB1+gu7uHLVs2oSgKH/vYR+jo6ODw4aP09Q1w+vRZNm3awEMPfYe1a9fwwAP3kc1m+D//52+ZagcWCiqpVJrm5qZpLiqSC8o2OgitNai+zYHsmZ6ho+49TiQ35GMG+cRVq8LbICHIkBnViZ1XWfk5N5lRHU+NjqtCpOoWB7JLIHwsT/hoAVERqNgpkovppAY0Vn3Wy+DzOdSEwYqPm5WGL38tjVIiUHO7AwOB7h9nqN3nZD7Xck+1RPUtTnJjOo6gSNVeB55q0zVHkKHxQRdgIHtFtPTiitINPZ8nerZA5U4HzjKRvp/l8DdPGkiA5BBY/3teREVAdJj/n0pJSYBkMkkymZz3OUUavY28v+EBOpPd1Lir2Vq2mc1lm5DF+ee61Y5Z2vPK6CF6U338wZrfpdQZ4m/O/h1lzjKCjiAhZ4hfW/krdCd7+Vn/UzR5GmgLrGKiMMGh8GH+YM3vci52nkg+uij5AWo9Ndxffy+aoZFS06iGuaOkiAo17ho+uezjPNT5XZySk1p3NdF8jDJnKR9sfD/dyW5ORc8wmBni+PhrbCvfwqnoGXQMdlfsoMxZxgsjL3FL1R7KnGUcGH6eH/b8mA81vp/hzAivRU7ilBy0laxmPDeOqmvsqNiOT/HS7G1adBtsbGxsFoNtBNgsSXw+H+nEEKWlpfP6IiuKQklJAL/fN+mCUlQoBBRFYfnyZZSWllIoFHA4HKiq+YP+0ksvU15eRm1tDblcnmjUVBIkSWRkZJTe3l6am5vYuXM7paWlKIpCJpMlHA7jdruorKxAVTW8Xs+CbfF43FRWVuBwOKxjJSUliOL8vtuapjE6GqatbTWVlRVIkmRV2A2FQni9XkZGRggGg6xbtwa32z15nc758xc4d+48zc1NrFu3Bqfz6rMNwyCfz+NwOKYpkYIgUFFRgdPpnKwWbB4z+7iEUChIKBTEMHTGxsYAkGUZr9dLZWUFzc1N1NRUW/fK5XLEYhMYho7L5aSxsdEKMNU0jWeffY7Vq1fR0NBAoVBgYmICgJGRUTZv3kRtbQ2xWOwaVxKXy+z/oaFhy70IQBAFZA/MtdzuCIgoARE1o2FM2RgRneAImrED6QEBd4XIRNQ8JzOqM/pqHkeJSNlmhXi7RiFpIIggKQLxdpWRQ3lEGUpWyzhLTTeqTFhH9ktILgHRIRBYJi/oVy4qAopfwFEi4giZf0tOwepPZ1BA8YkgmrEDiyE/oZOPG/iXmcHQ/mbJCvwVBAEEcFfOPQ/Hx8fJ5XI0NTUs6nnRfJTzsYsU9AI9yT5q3DXECwl0Q0cSbizLUKKQIKOmqXVXU+YsYzwfIafnyGpZhjPDnI6cYV1oHSWOAKIgktcLZLUcmqFT5a6kPz1IUk0t+nkO0UHQUYJf8ZnuOUymfERAER0s9y+n1BlCEEQUyYGqm98pL4y8SI27mjpPHQICsUIMAEmQGEwPMZwZptHXwM7y7YQcQRRRJq2mGcuN4ZbcVLoq0AwNt+wGAWRB5tbKvVS5K+hL9TMsjaDpGtIC3xs2NjY2i8WOCbBZUhQVvkK+QDKZXLAKbTqdobe3j4GBQfr6+hkeHiaRSKDrGrFYjFgsRiaTIZPJTmabMZX9M2fO0d8/QC6XQ1Fkurt7LMV4YiLGxYuXuXy5fdIIMbOw+Hxe6uvr6O3tIxabwOfzLip41uPxUFtbQ1NTE01NjTQ1NREKBZGk+X/MZVmirq52Mjj2IhcvXqKvr9/6vKqqku7uXgYHh1i9erV1/PTpMzz//AscP34Cn8/L8PCIZfwA5PN5Xn75VTKZ7DQffU3TuHjxEmNj4/T19dPd3UMymZzsvwzxeIJEIkk6nSEWmyCVSpLJZBkdDTMyMorb7aK7uwdd1xEEAY/HQ2VlBblcnuHhERwOBbfbhSAI6LrOa6+dYnQ0DJgxAL29faiqSm1tLePjES5dukx7ewfZbI7R0VGrDV6vh6amRjo7uyyXrcWQ6teu/unTyIyaftmFuEEhqaNlDbScQS6ik4voaHnzs9gllfSwhiBBIaGTi+moKQNRgWzYdLdRs2Y2Ir1gzl9fs4SeM8gM6+RjOu4qccHYUjWtkxnWSA1opHo1sqM6anpyfHSDRI9qftankRrQyY6Z8uciOhNXVFL9GtkxndiFAlre9Cl3VYg4gwKZYZ30sIarXER0LC7KNZ3OMDIyiqpq1u7SQmS1LNF8jApXOVk9i0NUUEQFY550iYZhkNWydCW66Uv1MZ4b53zsArFcDM3QKHWGcMtuzsbO8Vr0FFWuKtySC83QiOfjvBY5RaKQwCE6mCjEGcoMo4gKPsXLxYlL9KR6Gc6MMJIZtXzx5yOlpuhJ9jKQHjSV78wIyUISzdCI5WNE81EyWpaMmiFRSBCdVPZPR88wkBmioOcRBZHuZA8FvYBTdBDJR7gYv0R7vJMyZykC5neKXwlQ666hN9XHRGECv+LDI3vQDZ2MlkERFSbycfpS/YxkRubtRxsbG5vrxd4JsFmSdHZ24nHmSSQSeL3eab7fUxkfH+f551/g1KnTOBwOXC4XDocDj8fD0NAIhw8fpbu7F6fTQSDgp7u7l7a21bS2riAajdHfP0g8HkfTdD7ykQ+RTKaQZZny8jJKS0NcvnyFFSuWIcsyy5Y18/73P8AzzzyLw2H6xi+kgAqCgM/nY+XK1uvuA6/Xy333vZc///O/5NgxU6FvbV1BW5up8G/Zspnvfvf7GIZOS8ty67of/tCMPygtLeXEidd45ZVD/PEf/wEVFWb1ynQ6zZe+9A/88z+vpLKywtppUVWVhx/+KT09vaRSKVRV5b3vvRu3283g4CBer4dEIk4sNsHIyAhDQyMEgyWcPXuOl156hXB4jP37n+MXfuET+HymG9GePbt4+eVX6ezsIplM0dzcZBXSWb16FZ2d3cTjcdLpNIODQ3zwg+/ngQfex0MPfZcDBw4iyzKiKHDmzFn27NmDzyfj8/lYvnwZ4+MRhoaGcLmceDwL78iMvJIjfDRPNqzjDGp4qkVq7nCSGdHIjJqKfapfI35FJdmroaYUXOUiJa0ysQsqWs4gM6rjrtZJDWo4y0w/fGdIxFAhO26QHdNxV4ss+4iLrh9kiHeqKAERJSCYK8qAljPQ81dTCIqKgOQws/yMv1Zg/FQBySHgKpeQnAq+JjPOYehAjrHXChgq5MZ1HH6BqlscxNsLDL+SJ3JSJRvR6Xw4w5rf9OEoEajc6UCQoPfRLM64hOIX0POLUyQHBgZJpdLU1dVSW7s4I6DKVckd1bfRFlzFqcgZPr7sozR6F95FiOUn2D/0LIfDRxnNhvlBz494f/39rClpY1PpRlRD5Vud38UhKjxYfx/V7mpckotSZwi/7OPE+GvECwkuTVwm6Ajw/oYHqHZV83DPT4kX4uT1POFsGFVXcYiOeWUZzYQ5OPIip6JncIgOfIoXh6CAIDCUGebw2FF6kn34FC8BR4CeVC+rAytpDbQSzo6RUlMkCgkMw+CjTR8mqaZwiA7KneUEHUEuxa/Q4m+hxBFgZaCF++rv5bmhAzhEJz7Z3H3I63kG0oM82v8YTd5GALyyd0G3KhsbG5vrQTAWk97ExuYt4njcYNsJgWNbDLZMZvObbSdAVQvk82k0Lb+oDD1TMV1dDGsVfKq70Ze//I80Nzdz5537cDgUnnjiKQRBYOvWzTQ2NkzLDFOU682sDDnf86ZmT5paoXK2/pgp49TrZh57vcx2z2IGp6nnFHcfFlvDYOo5uq4Ti03wox/9hLvvvpNly5oXvH6ufpmr3dP6WYOp3iy5cZ2eR7MEVkiUb3WgZQ2iZwoMv1Rg8//rv3pPwywcNDUjUfdPM/Q/naMQN8+p2eeg/j1OfI3yNbIsND4LyT/1M10zEKXFVzL953/+KrfeupeWlhU4nc5FXTNTzsU+a9FtMHREQbxmrmuGNs3daDHjeiPyzIX1nTKZnWhqXYG/Ofcl1ofWckvlXiRB5MnB/QgI7CzfTq2n5uo7jjFZOffatomCOO2zdwon0zK3XQjxQluUTR514QtuEiRJQVHcKMri3xsbm7cD2wiwWVKcSMDW43B8K5YRMBtTjYAbZTZF+IUXXuLcufMMD48giiKJRJJPf/oXWLas2QquvREl5/Uym6zzHV9KzNdf88m/0GeGYZDL5XE4lAVdq14Ps8mvZg0SHSpXvpVGcgsYmoEzJFK+xUHNPuc1104rdDbHToAgvfnG5ExZ5iOTyaAoyoIueW8Vc7XhRufXm8FszzswfJDzsQuMZsMIiCQLCT7b+mmafE14zSCWJdWGtxLbCLCxeXux9xZt3rXM9qO6fv1aGhsbSKfTGIb5A9zU1GgF3c513ZvNXM+8GRSD+WR8PZ8JgoDbPXvWqDeS2eSQFPA1SbR+ygOTjj6SU5hW2GvOa52CFfD7VnEj82TqnF8K3Mg78Fa/H7M9b2NoPc3eJjJaBgPzO6XR24hLcs573WI+s7GxsXk92EaAzU1LMQvQG0koVEooVEqx7Lv9A2wzG4IkoPggtFaa9Pex54nN7JQ6yyh1lsFkWK9glx+eg3dSvwj2V4LNTYFtBNjcxLyZPrL2l7jNInmXTxRN095Ud6x3Drb6P5Nij7zT4h3Mprxz2mPzzsU2AmxuWgxDxzD0hU+c8/rrC/KdGYi70Pmvlzf6eVPbW+StaMdSYa5A6mm1BpZgf8w2T2f+fyF552r7Qs+b7/xicH0sNkEwGESS7IzTNteHMZml3MB4Xd/lS42p75uNzVLGNgJs3rUYhsGFC5c4dOgId921j8bGhnmVo/b2DvbvfxZN0/j5n/84wWAJsvzmvULxeJz/+I/voaoa999/L3V1dbhcNx5opus67e0dPPXUM+i6Tk1NNbfeupfq6qolpfS+WZw7d56TJ08jiiIbNqxl3bp1ADzyyGMMDAxRWhri3nvvIRgMvr2CziCbzdHfP8ChQ4f50Ifej2EYXLnSztmz5/mlX/rkou6Ry+V47LGfUVlZwfr16wiFgnOeq2kap06d4fDhI1RXV9PWtpq2tlXXnDc2Ns6LL75ER0cXn//8r+L3zxPJb2NjY2Oz5LCXbmzetQiCgMPhwOFwcP78BfQFqrBWVVWxe/dOxsbGGRkZJZ+/8cxEi8HtdnPnnfuIxWKMjoZJpxdf9XQ2RFGkUCgwPj7Oxo3rkWWZRx99gpdffnVR1z/66OM8++yBaSvnr5evfe2bnD177g2732zous7oaJhHH32CysoKQqEgP/vZfo4fP4GmabjdHqu+RDED1NtFLBbjy1/+J/L5q6lvHQ6F0tIgP/zhjzl58jQHDhzkxRdfYWhoeNH3lWWZNWvaeOGFlxgfH5/3XFEUWbasiX37bqenp3fW8clmcwwODnH48FE+9alfWFSdBhsbGxubpYW9E2CzJMnmsiQo4PP55lylDofHuHLlEhcuXLSUkNraWpqbG6mrq0VVVR577Gfk8zmCwSANDQ2sWWMW2nrttVMMDAzQ29vH8PAIbvd6wMxbf+nSZS5duoKqqlRWVrBz53ZcLhcej5va2hpkWUZVC4va7jUMg+HhEU6dOk0kErVcONavX0tLS8u82W1kWaa+vh5FUdA0DU0zlW9VVXn22eeJRCIoioyiOPD7fdx55755ZSkGUkuSRHV1FXV1tXz/+w9TUhKw2tLe3sn58xdIp1OUlZWxY8c2SkpKOHnyNC+++AqiKJDJZKioqGD79q2IosjY2Di9vX1cvnwFTdO4447bKS8vw+FwkM/nuXy5ncuXr5BKpVixYjlr17bh8/nYv/9ZDhw4SCQSYWxsnKamRpqbm0gmUxw7dpxoNGblX3e7Xdx6697JInDDHDp0mEKhYI2p3x8gEonw9NPP4PP5MAyd2tpampoaqaysQJKkyT5fQTKZpK+vn6GhYTZu3Ijb7cLn8+DxuK/Z2RkcHOK1106Rz+fRNI1bb91LZWUF6XSac+fOc+lSO7fdtpeOjk5SqTRbtmyitraGWGyCY8eOEw6Hcbs9bN68kaamRtrbOxkYGEAQBFauXMnPfvYUH/zgg5SUmPKfOHGK559/gfr6OiorK1i+fBm1tTW4XC5KSgJcunSZVCrNxMQETqdZ9ErTtMlibWEkSaa+vo7t27ciCALj4xF6eno4f/4iqqoSiUStysupVIoTJ04yPDwCwMaN62lpWYEgCPj9fhwOB7quk06nr5lLo6OjDA4OUlVVRWVlxbtiJ8nGxsbmnYZtBNgsSTKZDLFMEkVRcDgc0wpNTT2nu7uHp59+hrKycioqyhkbG0MUBaqqKi0FzuNxI0n9RKMxq7LuoUOHSaXSxONx4vG4dc/R0VFOnz7LsWMncLlcCAKsW7cGh8OBLMt4PJ7rKpwE5uru2bPn6OvrtzIOBYNBmpqa5jUCRFHE43HjdDqvKZTV1dXFiRMnqa+vw+PxoOs6mzZtJBQKzquQiaKAoih4PB7q6+sAgXQ6g6pqiKLA88+/QH9/P8lkkoqKckpLS9m6dTMTExNEIhF0XWdoaBhJulrYqqOjk0OHjjA8PEwqlaKmppoNG9ZTVlZKJpPhpZdeIZ/PMTERp6QkQKFQsIyj8fEIIyOjhMNhysvLAdPI6evr58yZc6RSKVavXoXP50VVVSYmJujq6ubkydMEAn76+gYoLy/D7faQSqV59dXDBINBgsES4vEEqqpSVVWJ2+1m9+5duN0uenpyOJ1mxWdBMFfanU4nDodyTd+lUmm6uroZHx+nv3+Ahob6SVk0xscjPPvsc6xb18a5cxeIRqOWkXnu3HkuXrzMxMQELpeTXC5LQ0M9yWSSM2fOkc/nqa+vZ//+Z7nzztvx+bzkcnmi0SiRSJShoSFEUaSmphpBEJBlmYaGegYGBvF43LhcTisYd3h4hHPnzhOJRHG5nPT09LJx43ocDgcdHR2cPn2W0dEwkiRZuziFQoFweIxnn30OTTOIxWK43S6qq6sIBAIoioKiKMjy7AG/4+PjRKNRWlpWLDD7bWxsbGyWKrYRYLMkyeVyxHNxZFmmtLR0VsW7qqqKlpYV1NTUUFFRzgc+8CAvvvgykUiEVCrNCy+8xMaN67nrrn3s3/8c7e0dxGIxAM6ePcenPvWLlJaGprnDHD16gp6eXsrLy9i8eSP/9m9fJ5VKUVJSMqshshj8fh+rV6+msrISMI2AmppqFOXGXj9Zlrnzzn309vbzvve9F5/Py/79z3Hy5Cluu+0WZHn+yrNT8Xg8KIpMoZBHURS+9a2H+Pznfw2n00EkEuHll19l69bN7Nt3G2fPniMQCPDzP/8xBEGw+uP48RMcPnyUz3zmlxgaGuL48deoqakmFAqSSCQ5cOAg3/zmVwHTsFEUU9n+zGd+ifPnL/DAA/dxyy170HUdQRAIhYLceeftxGITnDp1mt/6rc9jGAaiKHL06HF6e/vYuXM799//Pn7/9/+EkZFRamtrCAZL2LJlE4Igsm/fLRw/fpKzZ8+zd+/uSWPKQTQapb29g/PnL/DhD3/wmjE1DANVVa0CWdXVldx11z66u3vo6uqhvb2D8vIyVqxYzt1338nBgy8SCARobGygpqaKFSuWYxgGP/nJI3zgAw+yceM6IpEof/RHf8pHPvJhNm/eyMWLFxkYGKSmpor6+jp0XUfXderr67jjjtt59tkDfPazn0ZRHNOCbWVZRtd1qqurAYORkVEAXnrpFSoqKti37zbcbg9f/OLfEovFKCsr4/DhY0xMTPBHf/R79PX189Wvfh2ARCJJV1c3r712mt/+7d/g1VcPEYlE6e3tZ926NQvOwUJBRdd1gsGSxU1aGxsbG5slhx0TYLMkKQmUkEqlFqxW6nA4KCsrRRAEysvLLBeJYjVZ073DdIMxDMjnC+RyebxeL4oio+uG5WYDpmuFqqrk8zny+TwPPnj/vC5Ji8Hr9VJZWUFNTQ3V1dVUV1cTDJa87rSKkmSmMRVFEYdDuSZGQdM0stnsnNdrmkYsFiWXy1mFoQqFAplMGqfTQUNDPdu2bbHOL/ZBJpPhlVcOWYaGpunkcjmy2SylpSG2bdtCWVmZlT1G0zSgGJOgznAvMe85Ph7h2LET0+Rrampgx45t0wwOVVVRVQ1ZViZlElFVzXoGwIoVy3C7Pei6Ybm+AHR2dvGv//rvdHZ284d/+Hv4fN5Z+kTn4MGXLLeZU6fO8Fd/9Tf4/X5uuWUPLpfT6mdBEFixYgWPP/4kAOvXr7Puk8/nrbEx+1XFLCo2nWw2OyNbk3mNYRicOXOG/v6Baef/xm/8Gj//8x9j/fr11rFcLocoioiihCCYfZLPFywZRVGadGG7KoOu65N9qZJKpVizZg2trS2UloaukXE2qqurqKys5MyZNzeew8bGxsbmzcPeCbBZUpjuCiJDQ0Os9ftJJpNzZh3p6+vj2LETnDhxkoqKcp566mlefPFlNmxYx1133cGDD97Hn//5X/Dsswfw+bysXr2KmppqAMrKSvn+9x8mkUgSi8UQRZH3vvdu9u27lVwuy8GDL5FMvkw0GuOee+4E4MKFi/zgBz/i1VcP09PTy/btW9ixYztr1rTN2R5BECgpKWHTpg3TlD1JkhY0AqLRKP/yL//OCy+8zIULF1m7to1t27awZ89uAE6dOsvAwBChUBCn08WnPvUL1j07Ojo5efI0vb19/N7v/RaCIKBpGuHwGC+99DLhcJhcLsfOnTvYvt1UtCVJ4nd+5zc5cuQox4+/RlVVJbt27bTk2bRpIydPnuJ//+8v4vf72bNnF6IocsstexAEgUcffRyHw8ntt99KoVBAkiRKSkq4/fbb+JM/+TM0TWXHju3cccfteL2mAt7QUM+zzz7P4cNHrVX0sbFxHn74Jxw7doJ8voCiOPjMZ35xMqvPOlRV41vfeoinntpPSUmA2tpq3G433d29PPHEU9TUVLNp0wZOnTpDLpejo6MTp9PB5z//25SVlVJZWcnf/d0/sGHDOj72sQ/z4ouvcP78BQAOHnyJY8dO8MUvfgGv14Pf76O2toYnn9zP8PDwpGGVo7GxAY/HwwMP3Mcf/uH/Q319LcuXL7P66tOf/kUeffRxvvWt/yAYDPKpT33SGhufz08kEuOv//pvOXr0OA8//BM+8pEP0dKyHLfbw1133cFf/uVf4XK5uPvuO6moKKezs4tDh47wuc99lv7+AU6fPsOpU2cBuP/+9/HP//xVnnvuAF6vl4aGOmpqqpEkiW3btnDkyDF+7/f+GIdD4dSpM+zdu5vS0lLa2lazefNGnn/+RRKJJHfdtY+mpkYKBZUTJ07w3HPP8/LLh3C5nExMTPBLv/RJgkHT3ayurpZEIsnjjz/J8PCIFXdhY2NjY3PzIBh2MlubJcTxuMG2EwLPr0yw0aMhyzJut/saBUNVC4yPjzIyMsjw8AhOp5PS0hBjY2OUlJSwfPkydF3n1KkzGIaB0+kkFCqhoaEBgMuXr5BOZygUCmiahiDAli2bEUWR4eFhRkbCiKKAqmqsXbsGl8tJPB6nt9eMLfB43JSWhigrK6Wk5M1xicjl8rS3t1u+3oFAgFAoRHl5Ge3tHXz9699iy5bNrFixHIdDYe1a041DEAQSiQTRaIx0Os2qVSutANuxsTEuXryM1+tF0zSqq6soLQ3h9XotP/2RkRFUVcPlclJeXk5VVSWCIBCJRIlGo8TjCZxOB6tXr0IUReLxBOPjEcbGxhAEMx7D9NN3Uyio9Pf3MzY2DhiUlZVRXV1lBXJ3dnaRTqcRRYlAwE9dXS25XJ6enh6i0RiGYVgBskVDJhaboLOzE0EQJpXeejweD6lUijNnzuF0OgkGS5iYiGMYOitXtiJJEocOHZl0C3JNxmWU0NjYwOXLV4jHE4CBy+UiGo2xadMGfD4fyWSS/v4BCgUVVS2g6wZVVZXU1tYAkMlk+du//TJ33bWPW2/da/VzIpGkt7eXVCqFojiora2x+nF4eJixsXE0TWd8fJyammrq6+vx+32oqko4HGZ4eBRFkamqqiIUCpFKJTl16gzbtm3FMHTC4TFGR8Ns374VTdO4cqWdZNLcOfP5vLS2tiAIArFYjPHxCJFIBFmWiccTtLSsoLzc3Knp6uomk8miaRpVVZVUVlbgcDiIRKKMjIwQjUYRRYmyslKWLWu2XLkAy11rbGyc++57r7WbZGOzWE6mZW67EOKFtiibPOrCF9wkSJKCorhRlBtP6Wxj81ZgGwE2S4oTCdh6HI5u1tnsM/3AZ3PFUdUC+XwaTVs4TefMglsLHS9+Vszks9Qyn6iqypNP7ufAgYN88IMPsn37ttdVP2A23sg+W6gv57vnfPK9VeNTdGuaOhfT6Qzt7e0MDg6RSqXZtGkDK1Ysn/VamL0f55J/tmJui5VzrmfNda/X04+appFKpTl27Dh79ux+w+egzTsf2wiwsXl7sWMCbJYkoiguGA+wWOZScOZTfIp+6EvNAADTZery5XZisQmSyRS5XO4Nf8Yb2WcL9eWNKKBv5fgUXaWmPiubzXDmzDmee+551q9fS11d7ZzXztWPc8lfvOZG+uStnOeSZO7e3HnnPtsAsLGxsbkJsXcCbJYUxZ2A41thyzwFSK9nJ8DGxsbGZunxTt4JcDjcyLJtHNssbezAYJubFkEQEQR7M8vGxsbmZkSYzA4mILyjvsvNtiy9XWQbm5nYRoDNTYyBYegLn/YOQS8YGBpIrhk+3ypoBQPZbf/oTEXPGxj6tf1lY/N2ousGRgFEWUB4ByRUKhRU8vk8Xq/nuq81Jj2SjXfYd7npYGE7WdgsfWwjwOam5a32ZDMMAz0P8XYV2Sug+ERkr4DsFjB0g9hFlXxMx1Uu4q6ScJS8cStbmVGNVL+GoULFDod1XFcNEl0qkTMqyz5sZmdJdKlkx3W0rIEgg79ZxlUuIspzK8NaziDZp6HnDQLL5WsU5/DxPFrOwFUm4muUX5fBoWsGasogeqZAcI1CIWmQj+kYqkHZZsfCN1gEmZHJ/jKgYtvVe2oFg9yYTnpIw10l4qmREETbSLgeJq6o5KI66OAoEQi0ygjSwkHMhmYQPlZAL5jvrbNUpKRVRlTM6xJdKrmYjigLBNfICOL898xGdNIDGvmJq8qjq1LEVS4hiBA9a9ZKkFwCrgoRb715PD2okQ3ruCoklIBA7LyKIygQWH5VltnQVYNcVGfikvn+e+slXGXidc0fvWAwciiPu1LEWyeh+N6c1W9dM9AyBrELKu5qEXeFZL3ThmGQ6tdwV0lIjsXJbmgGmbBOPqYjewSUgIgjICCIAiMjw5w9e4GWluUsX77shosqvrMwsB2tbW4GbCPAxmaRGDoUkjrDL+fx1kl46yU8dSKyWwLDVNTjHRruShHD4A01AmIXVdKDGo7A9Htmx3Xi7RrRcwXLCMgMa8Qumoqaq1IkG9apuc2J4mdOhcXQDLJjOrFzBTzV0jVGQOyCaeAEWmQ8dRKva6tbBy1jMPR8DsEpoOcMMqM6amphI0AvGKgZg0LSwFs79zJq9EKBzJCOIzS9vzIjGokujfSQBoKMp+bGl2KLRmEuoqP4hTdNoVtqJHs1Ep0qesHA1yhhACUtMoIy/3WGDoMHcrirRERFQFchsGKysN+4zsQVleyYjuQWkDwQWD7/z5Oa1Il3qkTPqvgaJNSMgXdCwlBN42Tg2Rz+JglREchFRDDA1ySRTxgMv5inZJWMf4XM2Anz375GGXGeNmhZg4nLKskeDUEEQwNBBFfZ4uaQYRhoeYOh53LUv8+Jp/rN2wZQU+biQOxSAQQZR4l49Z02IDOim3Iv0ubWVUh0qEy0q7irJPzLJRSvaahlMlkGBwcZH4/Q2NgwLY2sjY3N0ubd8atlc9NRTF24lOLWDRXyMYPhF/JETuVJ9qkUEpPyiVC2yYG/WSY/YZDoulrBVsuZiquaMVCzBlp2ersMw8DQzc9nttcwDAzNYPhgDkGEqr3KtM8iJwtkRjVq77gagOYsFREUAcMQKNuo0PGdDOlhDb1grmaqGfOeWt5AyxnoqoHoFAiukhh6IU8uqqNmzM+K8jj8ArLH/KN4pqf/LCrmanb6Nbp29VjxuVreQJBADggkejSGD+QoxHUcgaurlEVlSc1OXp83rD7KxXQiZwp0/zRj9qM2S19qBsPP5xEdULXnan9peYORl/JEzxZwV4oI8sJtMPSrshf7RFcnP9ch1a/R80iG2EXVlFM3rHvO1gYwx0DLTt5v8m9dm3+uWzKmr84hdUr7DX3yeZNy6gXzuD45zmravGZqnxna1TZbMmoLv2+yB1PhF0CQBS7+a4pCauHrDB3GXytQukGh+nYHpetlJKc57oPP58mM6jiCIopf4Mo3M7CAd4jiF3BXiKSHNapvdxBokdBVg2xER/GLxM6rVOx04KmVSPZq9PynWT3b3ygzdqLAyMt54h0qhg6eamlB15xC0mD0cIHau51IHoGJS+YO3NSxKb5TatYck2lzU4NCwiB2SaVkpWItEhjG1Wumjp31vZCdMvcmx86ar5kp4zplfiV7NHofy+GpkRAdZmVxcwwMtLw5FuZq9dX5amhX52PxvsU2qFmDiSsao68UiJ4tkBnWKXrvtLa28P73P8DBgy+QSqUmCz7a2NjcDNg7ATZLEsMwmJiIv2mFuG4EUQFH0HQDcFdLuCtEFO9VhdhRIuAsFchFpivJZ/4+SaJDxdBA9gsoHpGt/9NvKaF6HlIDGif/V4JdXyrBUTJ9FW3iioroEHCWiShTdgIMFaLnVQQBqvZeXdKTPAIOv4BREAiuVgitU1AnXW5iFwtc+XaGdb/jY+TV3OTqu0LNPieKTyTVr3Hm75IYuoGvWWb1r3lxBiflVkVkj3DNJkDnDzP0PZHFUSISWCGz+nMeFL/A2LEC7d9J462TKN0g0/OfWSq2O2j+qBvZJeAqN1dlQUDxisgew+qPi19NETuvIogQaJVZ+9teMmGd3keyDB7IkRnRSXZqrPpVD75GyZRran85wVkmofiv9lfHd9L0PpqlkDZI9Sk0f9htuu0K0P2TDD2PZFFKREpWyKz6FQ+OEoHsmM7YiQI9P8miawaeGonaO51U7XWQHtI49cUkiU6VkZfzVO500PR+F556CT0Pl76WnnRJMQi0Kqz9bS+CBAPP5Bh8Lje5GiuSjeis+byH8m0Oa07MxFCh43sZeh/L4qkRkZwCasag7fNegqtkkv0aQ8/nGH4pDwbUvcdJ4/tcTLSrDL+QZ+TlPP5lppa76lc8+Jpl4u0qr/2vBK4KEXQo26JQuctBqG3+JX3JJaB4BURZwBkUyUUMFuXObZiK9PCLOQKtMoEVsrWKPvBklrb/4qV0vUKyV+PCV1LFoZkTURGQfSKyS0DLmWPjrhRxloloGTNGxlMt4WuSMAyDoefzZrpXt0H5FoXMiE7ktQLuKtE0bBZYEnNXiaz/XS/howVGX80TbJPx1IjoOeh9LEv7f6SpvdOJmjZI9mts/BM/3vqrN80Ma/Q/lWP5x13IU3ba8lGDC/+SIjOqkxnRaP6wi2UfMedmslfjzP8vSS5mUNIq0XC/i/KtCn1PZul7IodeMF30RAW2/s8ACDD8Yo6+J7IMv5gnM6Kx/ONua3wyozrn/ynJ+EmVXX8XwL/cdOUyNJi4rHLl22lyYzp6AZzlImt/04uvSULxmi5VnjoJd5WEq1yY1l9Op4OtW7fw6quH2b17J6FQaBETwsbG5u3GNgJsliSpdIpj545x++23oygL+Bm8VQjgDIps/FMfomwqIeLkGzTf9nfjfS56H8/irZeo2u2g60cZRg/lKdusoHjNH3BPrUjbb3mnKbMAGHDl22nq3+sy/aSnPKd/fw5XpYiv4dp6CslejcEDOWKXVGSPabg4y0W8dTIV2xXycZ3G+1x0/ThLIW4WizIEA8kl0PbrXhDM2IfO72Zo+43pAX8zn1V9iwNPjUiiS6P9oQzLPuZG8hgE18is/lUvfY9nkd0i9e9xEVgh4/CZriAAJa0SasqgkNSsldjeRzPkogYlbTKOEoH+p3KsSntwlYrUv9eJp05i7HiBtb/tRfHOCK7U4cq30tTf5yLUNt0tYdnPuclPGAgCLPs5F84yydoLrdztwFUpkuzSuPJQhuaPuJB9AoWkQapPw10tUrpBxlkq4l8mISrgrZVo+w0P/T/LUbnbQcVWBWkyVqL38Qy5cZ2SlTLOMpHex7Os+hUPihdqbnciSnD8v8fZ/P+GTP/qEnHelWhBhuYPuxg7lsfXLFG+VSG0RjHdw0ToejiDu0pk61/4kRwCgmzu2oTWKuTGdQafy7Hhj32c+VKSQsLAUA1cFSJVex2TRqST6PkCY8cKCxoBAPF2jbETBas90mIyIYpQtlmhcoeDyJkC6T4NxS3gbZTQtclAWRkQmNc3fypa1iB8PI+aMijfplC1x4GrXKIYlHnm75OoSR1vvcSyD7vMvhTM/sH04kMvLOpR5juCQT6ugwH5CYPcuEHJSmi4z4muGoy/VsC/TGLDx314aqYY7LpBZkxn9FCeXV8uQZzsr+yY6boniLD5v/rQCqD4zLbrBTj/lRStn/bgrhGJnSvQ/h9pyreWUHe3i/6ncpSuUajZ56D9oQz5mIGjBKp2OxEVAS0LG/7Eh7tcQpxcI3BViKz/fT9H/nRiUi5AMoPoO7+fYcXPu4mdV9FyBv5lMt4GydzxkaD2TifVt5iGqjnHpgytKFFZWUEymURVr+6C2tjYLG1sI8BmSWFuJYukU2ncsjytounbjSCYioMzeH2yyG4B0QGyR8BRIiA5BQqpKaungvmj6muc7pKga6avtJo0cFeK09wHMCB8OE/FLgfBtmtfY2epSNlGhYb3uZDcAo6giCiZP9ySSwDDdOXAYNoqriiCEjAVa9EpkItdu8Sr5QwmrqgElkuoaYPI2QKpXo1Aq4yrTDBdSnSzve5KkULKIHpBpWqngrehGIhrKmmlGxTGT5n++4FWsx2FpDEZPGr62ZeuV0A0FRHZI6D4BSQnSE5IDWq4K8wdCl292l+eKslyMSqieE2/aEECJSBaQZHZiEb0vEqiUyW4SsFVKmBogAaSU8BTYyr+Wg7inRqSS8TfLINkTPpam7LomkFuUMfbIFFIGGgFAwUB2StQtkGxVk5lt4CzVMRTJ+Otl0yXGGF+Q1IQBMvgCSyXCbUpptvX5DWFuIG70ryv5BBMRRUByWH2oatcNM+XTDkN3Vz5ll0C7ioRV5mZrLGQXpz7nbtKpGKHQnC1TPhQnkLCQHIacwaf6wWDXEQntEbGv1xGTRukB3UmLqt4GyUcQYFCSjcNFN0AfXFyiAoEmmVWfNKNu1LEVTXdkqq/21SIlYBgKrRT8FSJyD6B8RMF6u6Z3zne0A0KKYP4FZXQOgVXmUj4SJ6JywWq9jiQ3Fj9KzrM93xqXyR6NFIDGqG1yrSger0Aatp0kXMERdSsYcUlGMZkvEnA3AUUHcKkESsgu8EZEnGViTgCIoI4mT3MEJBc5pyTnOZOjei8OrdESUAJcFU2q5sFRAUGn8lRSBqUrJQJtsnT2iC7gTkSAqiqSldXN9u2bcHpfGOC+21sbN58bCPAZklhTP4qFdQCUj5POp3G5/Mhy0t7qhq6GQcwcUkl2auh+ASi5wuWgl6YMIi3qzgCAvmEjrvyarYeQwc1aRA+nKfuLheSuWCJnjUYP5E3V5NDIpJy9Yc72adhaOAqMxWBqWRHdfITZhaPsi3KtMwtklPAUSIycVklnzCzhCgBgUJSR3IJGAZEzphLo7moQWC5qTil+jSyYzpa2vR9HjuWx/1LHgzNDDKMd2g4S82Az/hl1XQfKJeQ3KYCk+rVUO524giYRoKaNsiMaogOAT0/qQhNNsPXKJPo0chHzUwxoozl0yy5TGUlHzNXVZWAiDNoXqhlDcZfM4M8HUHhmtXkictmcLVhmJljQmsUZJ+AoUN2VCPerppZlBSB+BUVxSegFwzycQMxa5CLmsHT/qZJw0gwV22LAaOGZrqEeRskfI0yyV7NzHbjvLrCDabrV7xTAwOi51RK1ynWyvC886tbIzuum24jYd1UNicNHV+jhJY1GHm5YBpKPpBXihQmdDKjGlrOHOtsWCfZpeEqM12Kkr0aiJAa0EkPmbEg+bgZ6DyXUZIN6xRSBs5S0dzZ+mGG6LkCZZuUeYNki3EviS6N7Phk+tZJpbJsk4Nkr0Z+wjQCgm3KgqHnhaRhBngDwdUyjuBVI6eQMo0OR0gksFxC9lw1oLNhs098jRLuSolkb3ZRGX7UlE74WIHKHZgxEJM7Frpm+uBHzxdwBEX0AoweLlC5U8ARLGY+0kj361TuMjV86310mQa6mjYIH8lTSBv4myXTTUeE4CqZ6DmVVL9GZljH3yxZ2X3UlE4+amZIyo6agdXlAQfZUY1Eh0ZmVGPstQKl6xUUn2lEq2mD2HkzADt6toAggrvaNMxFp0DskorkFPA1memIF0OhUCAejzM0NERDQz1Op10gy8bmZmFpa1Y271okUSKTyZBIJHC73UvfCDBg/GSB8VMquTFTARedecsIyI7r5C7rk+kMBUJrr2YiMVQz3WHXD7JU73VaWTzUjMHQwTwrP+udlmnI0GDsWJ7SDQruqmtTFKYHddIDuuXqIE3RyxS/gH+ZxNDBPHKHSmZEw1MvkovpeKpNX9+Rl/JoBQNvnUzrL5kZh5LdGukRczVz4rLIxJUCyz/uxhEULZ/kictm7ML4yQLeRslcvZShdK3MwGDONEYkAS1vUIjrFCZ0cmM6ikfAU3t15b5yt4OJKwWSfRrpYQ0tYypcCCB7zXgHPQ8D+3Ms+zm3ZTyoKYOhF/Ks/GXvNVmUAMLH8maAdA5GXi7gqZWQvRIOv4izTEJyqFfbcKpgrRwnulSyIzqOMhFXhThtLFzlZv/HzquoKYPau00LrnKXg3iHSqJbJT2kmUbOZBvi7Srjp/JoeYP+p7MElks4FBFDMNBVpqW8lJyCtXI8frJg7rycKSA5QXY7rXZW3+pk+MUc3T/J4CgxlXP/MoPMkEaqT0PLmrsx+QnDzPBSLeKplkj1aebqsySQHtEQBHNnRPbK5GK6FegsiAKKz9zRyozoZAY1XJUSsldE9opETqv4GmUUn5m5qXid5BQsw80ZFEl2a2RGzBX/wHKJsk3mS1D/Xicd388QPlrAVSbQ9EGX5apVSOloWax7yi4ByS2Qj5kGTT5uGkaKzzSsddUgP2EGcMfbC5M7RVfnQbJXIxfRKWmRcVeKpkuey9yNsQJwJ9OYipK58yTIZoacVJ/GYEon1a8RWqdQulHBUE3DeexogaYPuchHDfoez+JvlnAEZQzdID2okY/plG+dvkruCAoEVph+Sb2PZ9FyUHePE3+TjChD44MuLv1bGi1j4G2UqL3bVLAnLplGfGZUJ96hkk+YAfOhdQrxDpXo+QKFhJmJyFsjIrlkJBHycZ2B/VnUjM7IoQKiQ5jcoTTjKNyVIrLHNGRiF1RcFeKCqVqTyRQDA0M4HA5qa2vtnQAbm5sIwVhK6Vds3vWcSMDW43B8K2zxz32eqhbI59NoWv6tE+4GMAyDeIfG8MEc3gaJunuci3Ztyk/odHw/w6rPeqZty+sFg/b/yND4fieOEtPN53plKkZdziZL8SvhelywDH3SxWTKroOumQrh+Ik8WsZUjJ2li09IZmYmYdb2Tf3aKj4vF9XpfHiyv66zT4r3NDSuyXl/NVMQcypEc/XZfG2YiZrWSXRpnPrrpOWiVbVHofZOJ8HVi4uLWWhsF3UP3VwtP/E/E+Tj5v0cIYGVn/ZQvkWZZnSaGWyu9kv4aN4MLo2Y/VGxU6HmNgdlG68qhmrWMGNqZrgOFe+FPj0moOtHGQaezVGIm/esucNBw3tdeOvf+BSbgwdyjLycJ3bRDFrx1ous/pyXwArZklHPA5LpOreYHYRsRCN+RUVXoXrv7KvkC76TU4yxN4NCUufQ702w/YsBFI9A+EiB4ZdzrPpVr2nozjOXzp+/wMsvv8onP/lxPB7Pdc27k2mZ2y6EeKEtyiaP+kY0ZUkgSQqK4kZR7F0Rm6WNbQTYLCneiUbA6b9OEj5eoGKHwsrPeHBXLD6vuKGaQaEzldLicbh+ZW82BXq2z6/LCJjlnqOH87Q/lMYxGUwtu4XrUmLmk2O2583VX6+nDTOPLyTPNUbAdfRlURHUp0xpc/dk8crfQmO76HsYkwGzxdsJmEHw4tx9Iwimq5euXr3OlN3cAZp5zVx9NfMzXZ10TZl6z+vok+tB1yafNSVeR1SuPmsxc2EmxXSyBnMbg2/GO3k9qBmD8///pGn06abB6wgKrPt9rxlLNM9zdV1H0zRrt9Y2AmwjwObmYWn7WNjY3OQIgsCKX3DT9AEXil/EEVz8SrggCLMWYJrr+PXc9/V8vthrgm0y637Xh6CYwbDXW19soUDZ2Y69Gf2ymP54PddOO1fAigm5Ed4IJdGSYxH6y8znCZIwzf1sMdcsdFyUhbfsl0qUzOD/ubjhd0Oaf/q/Ge/k9SA5YcUnPJPBxZPHHMKidrBEUbSrBNvY3KTYRoDNTctSyBi0GHwN787XzBEQZ/XNt7GxWVoIooC37s2rYPzu4+b4bbKxeXdqJzbvIOwvW5s3Fk3TkBZazn4b0DQNUZzfP9vG5ublnTav32ntsXknYhsBNjcthmGg6xqaZuayuxGf1HcjxdoLRWVXEOb2+S36Iquq6a8riuJ1K8jF5+m6jiAIS1aR1XUdVVWJxxOEQkGrnVZg8GS9irdDdsMwSCaTKIqMw+Gwxs3G5p3DOyk80eCd1R6bdyr2Xr3NTU1vbx//8i//xj/9078wOhq2lFWbudF1nYGBQf7t375BV1e3ZUTNhmEYjI6G+bd/+wZf//q3OHz46A09c3BwiO9972EOHTqyZMeor6+fv/qrv+HEidfI569G5xqGQTQapbOzi0wm87bIZhgGw8PD/Pmf/yWHDx+Zd8xsbGxsbGwWg20E2NzUVFRUcMcd+4hEIoyMjJDL5d4WOTRN48knn+b48ROMjY2/LTIsFlEUqagop7e3l7GxcbLZ7JznCoJAKBTkPe+5i/HxCO3tHTf0zPLycsLhMENDwySTqQXPP3LkGC+++BKXL1++oefNxj/9079w4cLFyarU0+nt7ePixctUVJRzyy17ril4JIoSsiy/bavvgiCwbFkzDzzwPgYHhzh06MjbIoeNjY2NzTsH2x3IZkmSSCSIqiqBQGBe9xGXy0lNTRUOhwNN06a5r4yPR/jJT/4TWZZpamqkpWUFzc1NxOMJfvCDH9HaugK3283w8AiZTJqPfvTDCILAqVNnOHPmLJqmsXz5Mnbt2oEoSnR0dHD48FHuuusO2ts7yOXyLFvWRFNTI52d3Tz11H5KSkqoq6tlzZo29uzZtaDSePr0Wc6fv0A8HgdMl6Y77ridpqbGOTNuaJrGpUtXeOmllwEBRZFRFIWVK1vYunULAGfPnuPkydOoqsqKFcvZsWM7breL/v4BXn75FfL5AhcvXiaZTGEYBqqqEolEefzxn6FpGs3NTbS0tNDU1IAsy9TU1KAoynWtQBuGQSqV4rHHfkY+n+fUqdN4PB4MQ8cwDMbHx3nmmQMkk0lKS0tZs6aNVata6ejo5ODBFxkfj1BWFmLFihV88IMPIggCqVSK7u5eDh8+gq4bbNu2hZaW5fj9fjKZLBcuXOTcufMkk0nWrVvLunVr8ft9HDp0hBdeeIlEIsHq1auoqalm587tlqw9PX10dnaxZcsm3G63NW6JRIKenj4OHz5CWVkpt9yyB7fbzcTEBC+99ApDQyOIooiqqlRWVrB7904qKys4deo0V660MzERx+/3c/fdd1BaWoogCFy8eInLl9uZmJggn89TXV3F1q1bCAZLGB4e4dlnD2AYBuvWrWXFimVUVFQgCAIOh4N169bwox/9lFQqzS237Fn0WNjY2NjY2MzENgJsliSJRIK0YeD3z1MsAJAkCZfLhcPhYGYglq4bDA4OkcvlCYfHSKfTNDc3YRgGfX19uN0uFEWhp6eX0tIghgHDw8N0d3fT3z9AMFjCq68eYc2aNvx+PxMTCS5fvsK6dWtJp9NcunQFWZZpbGxE1zWy2RwOR5ZcLo+qLk5ZjkajdHV1MzY2BoCiKGzbtuWafOQzyeXynDhxEoDS0lLKy8tIpzNs2rSJcDhMV1fPtDasXr2SdDpFd3cPly+3U1dXR6FQwJisSpVOpzly5CiXL7cjyxITE3Hy+QLNzY0IgoDH40ZR5OtKBZhOZ+jr6+fChYs0NNRTKBQsI0LTdI4cOcbFi5dR1QLh8BipVIpVq1rRdZ18Pk82myWbzZHPFyx//O7uXl577STt7R04HA4KhQKlpSF8Ph+pVJKXXnoFt9tNOp0hn89PMwqz2Qy5XI5CIX+NMRONRohEIrS0rJh23DBA01RSqRTRaJQtWzYDkM/n6e3tp6+vj/HxKIGAH03T6O8foLKyglwuz8jIKL29fQiCSE1NNbfcsodCoUBXVw8XL16ipKSEV155lQceuM9yuzp27ARXrrTjcDjIZLI4HA4qKiosecrLy8nlcvPu3tjY2NjY2CwG2x3IZkmSSqfQdX1BZXguRFEkEPBx1113sG3bZqLRGMeOnUAQBILBEu655y7Ky8vQNI1AIMBHPvIhZFnizJlz5PMF9u7dw6/8yi/T0dFJNBoFDCory1m1aiWZTIadO3cgCAKZTBq320Vb22p2797JXXft4/3vv5+9e3fN6nYyk4qKctraVrFp00Y2bdrIhg3rKSkJLNi21tYV1NRUU11dxfr1a7nnnrvp7+/HMHTOnj1PNptlz55dfO5zn6Wzs5NIJMqVK+0MDAzS3NzEZz/7KZqbmyy3l4mJCX784/+krW0Ve/fuplAocOHCxUX3dzHwd+p4jY+Pc/78RWpra/j0p3+RtWvXEAiYRp2mqTz88E+ora1h587tVFVVcvz4awiCwMqVrWzfvpXbbruF9773Hj7ykQ9Y9zx58hSnT59h/fp13HrrXk6dOkM0GkPTNOLxBK++epjPfOYX+c3f/HVuvXUvwWAJsiyzb99ttLa2cO+97+EDH3g/27ZtmSa/PlmR1ePxTDseCPhZu3YN73//AyQSKSueweFw0NzcyPbt2/B6vWzZsolNm9bT3z8AQGNjI9u2bWXDhvX4/T4OHnwRwzDIZDKMj48jyzLvf/99KIrCe95zFzU11XR1dfPcc8+zbt1abrvtFrq7exgYGJghp44oSksye5GNjY2Nzc2FbQTYLEkC/gD5fJ5wODwtSHMmUzO3FLMxGIZBIpHgpz99lEOHjtDU1EhTUwMej9s6f/funYyPRzh79jzJZIpQKIQgCJOr48akkmVMHlMtJVEQBAzDIJvNTiq9V2WQJAnDMAiHw/T09BKJRBZsp9/vo6qqkurq6sk/VXg8ngWVPMMwCIVCuFwuXC4XpaUh67NCoYCuG9Y9BEFEVc2dCsMwLEVcVdUp/VdcLc+RyWRZvXoVu3btsDL7TFXuZzum67oVNFs8rmka+XzeMmo0TbP6rPj8XM58XllZGe95z13W/YouYNlslo6OTsbGxtA0bfKeBTKZLJlMhve+926qqiotGYor/KIoUiiY5xURBPPrLhwe5eTJU9P6s6KinIqKCi5evDStDTON0KnjLQgCZWWlVFaWTxoPgrWz8uUv/yMXLlykpqaaXbt2kEqlMSZ3tsbGxnnqqWf4m7/5ex588H6cTqdlRKlqYXIMMtxyy25aW1umPd+8j24bATY2NjY2rxvbHchmSRKNRcl7jWtWZmfS3t7Bt7/9HV599Qjt7R1s27aFnTu3s3r1KlavXsVLL73Cww//lKGhIWRZ5oknnuK++96LJEm43W4qKsqoq6uz7rdv32089tgTfP3r3+T73/8hDQ311NbW4PG4KS0N0dKynH//92/g9fq4cqWdXC7Hpk0baGioZ+/e3fzDP3yFeDzBpk0b+OxnP7VgO+vq6qipqbEUY0FgQZcbTdM4evQ4R48eQxRF0uk04XCYV189TCaT4dZb9/LUU/v5xje+zQ9+8DD19XXU1tbQ2rqCY8dO8PWvf4uXXz7EpUuXeeKJJzEMgx07tvH7v//bfPnL/0QwGMTn87JmTRu7d+9keHiEr3/9W7z00is4nU4GB4e499572Lhxg+U7f/bsOf7iL77Av//7v1BSEkAQBOrq6ti1awd/8Rdf4Nix1zh//gK9vX0oisLHP/5R/uiPfo+vfvUbXLp0Cb/fT2VlJffddy8A69at5dlnD/DII4/j9/v5whf+B6IocvfddxAI+PnpTx+joqIMv9/PunVrqK6uorQ0xL59t/Fbv/X7aJrG7bffyr59t+H1mnPojjtu45lnnmNiIk59fS07dlyNCdiwYT2KovCNbzzEmjVt1g5J0UXnySef4uzZ80iSyHvfew8NDfUcPnwUj8fDoUNHiESiVFZWMDER5wMfeJCNG9dz5coVzp49RzqdYXBwkDNnzrFixTLAQFEknE4n3d3dRKMxysrK2LBhPaIo8u///g0qKyvwer2Ul5ezevUqS85///dv0tBQx/r16xacWzY2NjY2NvMhGDfqb2Fj8yZwIgFbj8PB1Uk2ew0cDgeKolyjGKtqgXw+TTweY2hoiHg8gcvlJBDwEwiU4PN5SaXS9PcPIIrmCr+ZFaeC8vIyVFXl0UefIJfLsXPnNpYvXw6YCnY4PMb4+PikL7yH+vo6ZFlGVU3f8L6+fmRZJpPJEgwGqa6uwuVyksvl6enpRdNU/H4/tbU1b8qKbTFl5eDgMIIg4HI5cTqdjI6GWb9+LaIoMjY2PhlnIOD1eqirq0WSJOLxBAMDg8iyRCqVwu/3U1ZWRjBYQiaTobu7F0kSkWUZn8/cpcjn8wwMDDIxEUcUBfx+P+XlpgI+NYC2o6OTtWvXWFl0DMMgl8vR0dE52V8ZnE4noVCQqqoq0ukM/f396LpuxXY0NjYAps/9+HiE8fEIsizT2rrCWt2Px+OMjIwiSRIOh8PaPSkUCoyOholGYwgChEIhSkvN3RKASCRCLDaBqqrTnlUc90gkyrFjx/F6fezYsRWXy0UulycejzM+Pk4qlSYYLKG8vAyXy8XAwCCiKDIxEcfjceNwOFBVleXLlzE6GiaZTKKq5i5SPp9n2bJmTpx4jZGRUZxOJ2vWtDExMcGpU2e4887baWhoIJ1O0d8/gCRJKIpCWVkpwWAQTdO5cuUy589fYs2a1TQ1NeJ2u9/wuWVj81ZyMi1z24UQL7RF2eRZmqmDbwRJUlAUN4riXPhkG5u3EdsIsFlSFI2AY1sMNvvmLs5UNAI0bWFXoSJFxVTXdR599HFGRkZpbGxk375br1Goiu4uM58/1/GZz1wKhZzma0OR2eQsFvV6o9qw0POKcs409ObryzdjfIqGRyQSobW1ZTLY/MaZrR8PHTpCb28fhYJKTU31ZEByjLvvvoNly5rnbINZ22GATCZLdXUVgcD8cSM2NjcDthFgY/P2YrsD2SxJzMqyr08JnUuJ1XWdo0dP0NhYT2VlxawrqnMpkQspx0tB+S8yXxvm43oyAC1WjoU+v14534zxcTgc1NRUU1NTPa+8i2W2fly2bBnh8Bh9fVcm4xxUdu3aSTAYnCbjTDlFUaShoQEbGxsbG5s3CtsIsLmJuX6FWxAEFEXhC1/4H2+8ODY2C1BVVcGDD9435+6HjY3NOwGBJbQeZGMzJ7YRYLMkuZCe/3PDkNANN4buemsEsrF5M1g4i6yNzTuWTtXUlJ0OLy7XO8czWRBERNHO4GWz9LGNAJslRbkCHhF+8cJCZ4rYGW5tbGxsbm48okGVS0G2tREbm7ccOzDYZsnRm4WxwtsthY2NjY3Nm025Ao32hq6NzduCbQTY2NjY2NjY2NjYvMuw/SlsbGxsbGxsbGxs3mXYRoCNjY2NjY2NjY3Nuww7FMfmpsaOH7CxsbGxWerYsQ82SxHbCLC5aenNQtsRSNtpFm1sbGxsljAeES7ssA0Bm6WFbQTY3LSMFUwD4KE2aPPc+H0Mw6BQKKAbOrIsIwrikijiZBgGmqaiahoAsiQhSfKSqkr8VnLp0iVKy0opLyuf1gfdPd1k0mncHg/NTc1vn4A3SDgcZmBwAK/XS2tLqznuuoYkSmi6RnwizpUrV1i+YjmlpaVIN5B/3DAM8oU8XV1dpNNpKsorqK+vf9PnkqZrCAjX/T4ZhkE4HEbTNAIlAbwe7w3LkE6nGRoaYmRkhD179tzwfRbL2PgYw8PDOB1OVqxYMWvbZ475G0VPTw8ejwef34fbdW0ldFVTSSaTHDt6jJ27duL3+ad9bhgGuqHf0JgtBlVTyWQyDA4M0tLackNz+c0gGosyPDTE6tVtwBtf+f1C2kx7PVawjQCbpYVtBNjc9LR5YIt/4fPmolBQ6RntZWJigoaGBkpKSnA6nW+cgIvAMAySySRer9f68VVVjXB4jP7+ftxuNw6HA5fLRVlZGR6P511nDBx/7QVaN29mS3P5tGqcve0nGevpoby8nC3rmt82+W6UE1f6eOFnP6KxsZEtm1sxDBgdHScUCmEYBhd7+vjpT7/Nhp//eTbUbsPpvH7FSdN0+vuHee3IcyQSCZq2bGFLW/2bXtV0fDyGw+HA77++F1TXDY6c7ySbzbLM00K9/8aNgJF0gu6zr3L4qaf4rfe++UbAa+19nD90EEVR+OjGzyPNMlwzx/yNoq/jJKGaGlaUrKDMf60RkMtp9IbD/O9/+j98dOO/srxm+rhkszny+TyyLOPxvI6VlTnIZlVG41GunHyRDeubb2guvxmc7xviwpHn2LK9aAS8zQLZ2LxF2EaAzbueeDzOv/3bv/Hyyy/zO7/zO+zZs4e6ujrrc12/6m80VfEuZtctHjMMY97PZ54z9d/5fJ7nn3+eu+++G6fTiSAIZDIZnn32Wb74xS+yc+dOkskksizzq7/6q9x2220YhjHnMxYjV/EcQRCsYzPPnUvm2c6ZmW14rnbPvG6mrHNdu379eqqqqqadZxgG69evRxAERkdHpx1fqF9ma8NMWRc6Z76+nvrZ1GMzj2/ZsoUDBw5Yn2uaxs9+9jPe9773UVlZSUVFBRs2bCCfz6PrOrquzzoGM+WbKlc+n+eFF16gvr6e7du3U1lZOe36qXO8yHxjMvV5s/VVsZ0vv/wytbW1/x97/x0l6VneeeOfyjlXx+ocZ3ryaII0EoogEQRYZHhh14s3+Jzd5fx2zfo96+X17mt7jdfGBq8Br+1XCIGMpAWUkDTSSKORRhM0oXPOuau6q7or5/T7Y/a+qe6JkgVooL7n9JGm6qnnufNzhe91Xezfv/+K43Wte9XU1JDL5TCbzfJ+W++xde1eqR0VFRV4PB7sdvs1x+t68ym+v9o6Et95PB5uueUWzp49e9kzAJRK5aY5v1KbSp9xpf17tblpbm7G4XBgMBguey6ARqOhubmZyspK1Gr1pnEFmJmZIRaL4XK5aGlpuWycrrf3rzaG4t9qtRqbzcaOHTtQqVTX7evW9l9pzLeOrVjLN3KmiP86nU727t172TOvdaa/kzOmjDLeaygrAWX8xsNsNvP5z38ejUbDoUOHqK2t3fT9mTNnCAaD2Gw2urq6cLlcrKysMDU1hdFopKKiglAoxMrKCocOHcJutxONRhkfHyccDnPXXXeh0WhYWFhgfn6erq4uEokES0tLNDQ0YDKZOHv2LF//+tdJJBI4nU7q6+vp6Ojgt37rtzh69Chf/epXqaurY2BggG9961vceeedjI6OsrCwgFKppLW1lZaWFjKZDN3d3RQKBekxmJiY4ODBg1gsFkKhECMjI6ytreFyudi9ezdOp5NCoUAkEuHNN9+kvr5etsvv9zMwMMCuXbuIx+PE43EpxJQiEAhw5swZPB4PmUwGhUJBZWUlDQ0NzM3NyXuIl3R7ezuBQIC5uTmKxSIul4v6+nouXrxIPB6nvb0dtVpNMBjE5/PR2trK0tKSFOQKhQIrKyssLS2RSCSIRqOyLclkkr6+PjKZDG63mx07dhCLxRgZGSGfz2MymXC5XNTV1W3qQyaTYW1tjbm5OSorK6mpqcFqtW66JhgMsry8zPr6OlarlWg0SjqdpqWlBa1Wy+TkJA0NDdTU1DA2NkY0GsVms8nxmp+fx+v1olAo6OrqwmKxbBJW1tfX+f/+v/+P8fFxDAYDhw4dQqfTXaLzZDJcvHhRrrmGhobL1rKgtl24cIFisUhLSwtut5tgMMiFCxeorq6mqqoKvV6Pw+GQvztx4gRKpRKTyUQ2m0WtVrN//378fj/z8/Osr69z8OBBvF4vHR0dZLNZVldXWVpaorKyks7OTjQazaa2vPrqq/zv//2/aWhoIJlMsnfvXgYGBsjlcthsNkwmE1qtltraWsbHxwkEAlRXV9PR0QHA6OgoDocDjUZDIBCgr6+PgwcPsrCwgNFopLq6WirrKysrzM7OotVqqayspLGxEYCLFy+iUChYWFi44t7P5/NEIhGOHTvG/v37icViZLNZHA4HLpeLgYEB6urqqKqqwmq1UiwW6e3tJZVKUVVVRVVVFRaLhWKxyMrKCj6fj2g0SigUks9Ip9NMT0/j8/kwmUwcPnz4msLh4uIi8/PzpFIpamtrWV1dxW63YzAYSKVS+P1+7rnnHubm5ggEAsAl4d9mszE/P082m8VkMqHX6wmFQvT19WGz2Uin0+RyOW699VYAQqEQGxsbpFIpGhsb0Wg0fPOb36S6upqdO3eSyWTYtm0bQ0NDpFIpstksZrOZ3bt3b2rv0tISg4ODVFVV0d7ezltvvYXRaKStrQ232825c+dQq9VotVoUCgXZbJZQKESxWGR0dFT2obq6mpmZGQ4dOoTNZpOGkJ6eHkwmE7FYDLPZTF1dHZWVlXL+pqam5Dl433330dvbSyaTwWaz4Xa7WVpaIpPJsGPHDtRqNV6vlwsXLnDkyBFWVlawWq3E43F8Pp/sUzgcZm1tjfX1dXQ6Hfv27WNpaYmxsTHUajW33XYbg4ODrK2tcfDgQQwGA2tra6ytrZFIJNi3bx9WqxV1uQxyGe9x/OqJz2WU8SuGQnGJ/yqsXKVCWTQa5dy5c/j9fgYHB/nv//2/k8vlyOfzvPrqq/T09JBMJpmfn+f1118nHo9z9uxZnnzySV577TUWFxf5sz/7MyYnJ/H7/fT09PDaa6+Ry+V47LHH6O3tlYJbLpcjl8uRzWbJ/584ACE0p1IphoeH6evrk4LPq6++SiAQYGFhgb/7u79jYmKCfD5PLpfjhRde4Ktf/SqPPvooi4uL+Hw+zpw5w0svvURvby9arZZvfOMbTE1NkUqlmJiY4Pd///dJJBI888wznDhxQgoUExMTfOUrX+Hxxx/nwoULjI+Pk8/nN1noVCoVGo2GRx99lIaGBhQKBT09PTzzzDPU1NTw4osvMjk5ydzcHNPT06yvr/Pwww/j8XioqKhgZWWFZ555hvr6eh577DFCoRAajYZUKkUsFqOqqoq33nqLubk5otEoo6OjPP/883R0dKBUKkkmk8Al5eDrX/86DocDt9uN3+/n+PHjPP744zQ2NtLR0YFWq2V2dvaydeD3+3nyySfZt28fTz75JH19fSQSiU3XWCwW/H4/58+fJ5lMotVq6e7uJhAIkE6nmZqawu1281d/9VcA1NbWEg6Hee2111heXqa7uxuNRoNSqeSP//iPL1uHBoOBffv20dTUxN69e6mpqZH9unDhAq2trfT29nL8+HG5Rkrh9Xr5y7/8S7Zt28a2bds4f/48zz//PBaLhba2Ntrb2/F4PJfRcwwGA729vZw7d47t27fj8/l4/PHHicfjBINBjh07xsrKCmNjY3i9Xt58803OnDnD3r17OXHiBD6fj3Q6vemehw8fpqKigpaWFvbs2SMFw0ceeYShoSHi8TgjIyO8/PLLZDIZzGYzY2NjPPHEE3Ksz58/z9raGoVCgZmZGZ599lm2bdvG2bNnOXXqlFTcHn30UWpra4nH41y4cAGfz8ef/dmfYbPZaGpqwmg0srq6etl4qVQqDAYDCwsLHD16FIVCQaFQ4Ac/+AH9/f3s2rWLF198kZMnTxIIBHj00UfR6/Xs2LGD8fFxXnzxRcLhMBMTExw9ehSLxYLb7ZZKabFY5O///u9ZXl6mra2NZDLJiRMnLhurrWssn8/z4x//mPr6el588UX8fj9Go5F8Pk80GuXs2bMMDQ2h0WioqKjgkUceQavVSqXN6/USDof5i7/4C3bs2MHZs2eZnp6mvb1d0g2FEUOlUvGd73wHm81Ga2srO3bsYPv27TQ0NBCJRLh48SI1NTVotVopsJdCo9GgUCh4+eWX0Wg0BINB5ubmGBwc5K233kKj0dDZ2Uk6nSYSiVBRUcGTTz5JNpvF4/EwOzvLD3/4QxQKBRaLhaNHjzIxMcHk5CR/8zd/w7Zt23j99dfJ5/O43W4Mhp/TnFQqFUqlklAoJD0vS0tLACwvL/Pcc8/R0tLC8PAw58+fx+/3o1AomJyc5I033pDKYTgcls+IRCI899xzzM/P09nZiUql4h//8R/RaDRMT09z/vx5isUira2t/PSnP2V5eZnp6WnOnj3Lrl27yOfzJBIJcrncVee4jDLeKygrAWWUcQ1oNBop+I2NjTE1NcXi4iI2m42WlhZMJhM+nw+fzyet7cLqd9ddd3Ho0CGWl5elUGu324lEIjidTinwm0wmOjs7sVqtbN++na6uLqqrq2UbvF4vJ06cYGhoCIPBwG/91m8BlyxnwWCQyclJlpaW6Ovrk14BnU5HJBLhfe97HwcPHsTtdkvhYm5ujsnJSXbu3InNZpMKzvLyMl6vl2AwyMTEBNPT09jtdmpra0mn07S2tnLo0CH27NlzmSVTpVJhNptRKBSYTCbq6+vJ5/OcOHECvV4vrXjNzc3U1NTQ19dHoVDAYDBQUVFBNpvlzJkzuFwuNBoN0WiUYDBIoVBg165d6PV6qXwFAgFOnz5NVVUVZrMZm82GwWAgl8uxurrK+Pg4fr+fdPoSv3l1dRWTycSPfvQjXnrpJVZWViStqBR6vZ7W1lYWFhYIBAIEAoFNHgYAtVpNdXU1tbW1DA8Pk8vlWF9fJ5lMotPpcDgcxONxJiYmWF1dJZlMynaZTCasViuZTEZarrdCqVRisVjQ6/WYzWYZm6JQKOQcZjIZotEomUxm02+FNXN6ehqr1YrNZiMUCrG4uEg8HsdgMGA0GtHpdKi2ENVNJhM6nQ61Wo3VaqWzs5PXXnuNjY0NAFKplKQlCY+WsCQrlUp8Ph/d3d28/vrrnDp1ivn5ecxmM1qtFoPBgNlsRqlUYrfbSaVS6PV6amtraW9vp7m5mXg8LudqYmICAJvNRiKRkJ4JrVZ7KejVbCaZTBKNRolEIvT19REOh1lfXyeVSpFOp5mfn2dwcBCLxSK9DleL8xEKrMFgwGQyoVAoCAaDuN1ubDYbGxsbhEIhwuEwr7zyirT+i3Xa19fHa6+9ht1ux2q1YrFYpHdgbW2NyclJlpeXicViFItFvF7vFelXAkajEYvFQiKRQKlUolKpWFtbY3FxkUwmw65du3jzzTfZ2NggkUhIa34ul0OtVlMoFMhkMuRyOfx+PyaTiXg8TqFQ2OT9cblcuFwulEoly8vLqNVqOQYmk0nGIQ0PD/PUU08xOTl5xTHUaDSYzWbC4TBKpRKtVkuxWCSXy2EymXjmmWd49tlnCYVC0jsZiUQoFouYTCZUKhXZbJaKigocDgcrKyuEw2FSqZS01AslX6fTodf/PLJWeBzdbjfz8/MUi0V0Oh0ul4umpiZaWlqYn58nmUyysLBAMBhErVajVqvR6XRs27aNqqoq1Go1mUyGYrFIX18fkUhE7oWqqipOnDghDR/ZbFYqLPF4XJ7jy8vLPPLII6yvr6NWqy/bY2WU8V5E2VdVRhlbUCgUSKfTrK+vo1QqMRgMZLNZLBYLZrMZv99PQ0MDBw8eZH5+nunpafx+Px/72MewWq0Eg0Gy2Sy33norSqWSdDpNNpvFbrfjdrvxer3YbDa0Wq28v6DfNDc3o1QqJf0DIJvNEo1GqaqqorGxkYMHD0pLouDY5nI55ubmUCgUeDweqqurqamp4c4775RejlAohNVqxeVyYTAYaG9vR6FQSIFX9K+lpUU+32Kx4PF4aG5uZvfu3ezbt++KYyb64XA4UCqVuFwuVCoVMzMzqFQq1Go1TqeTpqYm1tfX6e3tlcHNJtOloM+5uTkMBgN79uzB7/eTSqWkBRtAq9WiUqmIxWJMT0+zc+dOlEolRqMRvV5PJBIhHo+TSqXIZDK4XC6cTif5fB6j0cjQ0BDJZBKVSiUt7AKZTIZsNovRaCQej6PT6chkMsRiMZxOp6S6iPGNRqP84z/+I21tbeh0OsLhMIlEgtbWVtLptFRANBoNTqeTbDZLPB5Hq9XK5+VyOSkQC5R6o0Q/RAxATU0NKpUKlUolvUalEOskGo1eynL1f9ZeNBollUptuvdWJU6n00lqkkqloq6uTmYSUqlU6HQ6Kisr8Xg8TE1NkU6n0ev1ZDIZOjs7KRQKUmnSarXYbLZN/SkUCsTjcaxWq1RQKisrcTgcDA8PS+Etn88TCoXk/cXvVSoVRqORqqoqKRjDJerX8vKyVAKdTid6vZ5kMimpHFqtViojWyHuL5RRcY1YIyqVinw+L88EoRgLYbdQKLCwsMDY2Bjbtm2T1C2z2QywaT0qFApcLhfJZPKadCCdTofdbsfj8TA+Pk5HRweRSISZmRmamppob29nbm4Oj8cjhc1t27aRz+c3KXhKpRKHw0EwGKSqqkpa84UCUllZKT1CYi2JsyKbzRKLxdBoNNJQIGhcW2NSNBrNpiBiYZ1XqVRSaV1aWkKlUslYBLGf1Go1er1eKmuhUIhkMkk2m8Vms+F0OgmFQlRWVmKz2dDr9ZfRzux2uxTk5+bmsFqtOBwOcrkcSqWSeDwu6UTRaBSr1YrRaMTlctHW1iaVHbE3hSdBnDd2u52pqSlyudym69Rq9ab1Y7FYpGIfi8Ww2WyXtbWMMt5rKHsCyviNR7FYlC/qRCJBOBxmbm6Oo0ePcvbsWbxeLwcPHuShhx5iz549JBIJCoUC27ZtQ6PRMDg4yMbGhnwRiYA7IRQJHr2wtGYyGeLxOKFQiFgsJgV6vV5PIpFgaGiI0dFRIpEI6XSa+vp6Pv3pT/PZz36WI0eOoFKpCIVCvPzyy/K7++67TwqyiURCcqaTyaQMvtvY2EClUvHggw/yiU98gpGRESYmJkgmk5IDf9ddd/HBD36Qu+++m87OTnK5Syn9GhsbUalUl1mftyKfz0uXei6Xw+FwkM/nN1Gs1Go1DoeDaDRKNpuVVkxhZfzQhz7E1NQUY2NjMnhQ3Fe82O12O2tra2SzWflXKBSkItPQ0EB7ezu7du3i4MGDqFQq/st/+S985CMfAeCNN97Y1O5YLMbExATPP/88e/fuxeVyUSgUiMVixGKxTdfabDYZF1IoFNi+fTsrKyuMjIzQ2dmJzWaT3OX29nZ27tzJoUOHOHXqlKRgNDU1SQu6UAhEHzUaDfl8Hq/Xy/r6uuRywyUFVYzD1rkQ1mzxXSaTIZ1OS+FQjNNWKpeAuHc2m2V9fR273S7Xspg7AKfTicPhwOl00t7ezp133klrayt79+7ltttu4+DBg9TV1aFUKqVCG4vFmJ2dJZvNSsEon88Tj8f5+7//eywWCw0NDdJDtra2RiaTkWMi+izaWSgUyOVyFItFKcw2Njayf/9+Dh06RF1dnRwD0WcxLqV9F3tj673FGInfiWeZTCbpnRDxICJ+QHiEhGU4l8vJ9VhdXU1bWxvbt2+XxoHSOd8Ku93Obbfdxo9+9CPuuOMOFAoFS0tLkspTU1OD2+3G4/Gwc+dOPvKRj0iFJZvNUiwW0ev1NDU10dPTw+7du9m9e7fsm3hmaf/y+bz0JGxsbDA9Pc3Gxgaf//zn+Xf/7t9hs9k4f/482ezm6oxbrf+xWIxEIkEikSAQCPDHf/zHfPGLX2R9fZ0zZ85s6rdoq0Kh2DRu+Xweq9XKrl27OHv2LNu3b6eurk4aDLbC4XBw4MABnnnmGelJGxoa4rHHHmPnzp1SoYtGo2xsbEiviRiD0vbY7Xay2axURoSXT6FQoNFo0Gg0cm8JD5bFYuHgwYP81//6X4nFYkxOTrK+vn7FtpZRxnsJZU9AGb/xiEajPPLII7z11lvMzs5Ky6zT6eQ//sf/yLFjxxgdHSWfz0s+eFtbG1VVVTJIszTzyIc//GFOnDjB5z73OfR6PR/96EdpaGigqqqKRCLB//yf/5PR0VH6+vqAS3zsj33sY3zkIx/hD//wD8lkMtx1111s27aNJ598kp6eHsbHx3G73bjdl3LkV1VV4XA4eO6558hms4TDYcLhMPv27eP06dOSS/2f/tN/4v/9f/9fKbQeO3aM6elpGhsbCQQCfOpTn2L//v00NjZy6tQpvva1r5HNZrnrrru45ZZbWFtb46//+q/x+/1MTEzw4IMP8tBDD11xHAuFAuPj44yPj8v4hP/wH/4DU1NTzM7Ocvz4cZRKJV1dXTzwwAP09PQwMDDA+vo6uVyOr371qygUClpbW4nFYtjtdrZvv5Syb25ujvn5efr6+nC73XzpS1/iH/7hH6ivr2dwcJDe3l6SySSf/vSnuffee+nr62N+fl4G5z399NPyns3NzZcF7AmhMp1OMzg4SLFYZHx8XNKrtsJsNnP48GHMZjMf+MAHeP755/F6vZJKcffdd8vYB7vdjslkkjEmk5OT5PN5LBYLFy5coLa2ltHRUex2OwsLC7S2tvKd73yHmpoabDabDAienZ2lrq6OmZkZgsEgZ8+e5cEHH5RtMhqNNDc388EPfpDjx49TKBSoqKhg27ZtFItFLl68iNVqlTEBW1NArq2tEQwGGRkZ4cUXX+T3fu/3sNvtDAwMMD4+zvPPP89v/dZvceTIEeLxOMPDw7z11lvE43F2795NVVWVtJICkjLh8/kYHBykoaGBs2fPMjExwcDAgNwTKpWKlZUVlpeXWVpaQqvVMj8/z8DAAIODg9TV1RGLxbhw4QKzs7M0NDQwMzMDQFNTEx/84Ae5cOECfX19ki7S0tLCF7/4RdnnwcFBpqenefXVV3nggQektVx4Hi5evMjMzIzktE9NTXHixAkaGxuZmpoCYNeuXXzta1/jiSeeoL29nbW1NSoqKvjQhz7E4cOH+Yd/+AesViupVIqLFy/S29vLl7/8ZZnZ69ixYzidTkkjEXM+NTVFZ2fnprlwOBzcfffdPPnkk7hcLtxuNzqdTsYD/dt/+2956qmn2NjYoLW1lWAwyJ133snAwID0PLa2tjI8PMzQ0BBKpZLdu3dz2223odVqWVxc5M0335S0tNnZWYaGhti9ezc9PT2srKzQ1dWFWq3mH//xH3n/+99PXV0djY2NMsBXwGQyUVVVxcbGBj09PUxNTV2qk6DT0dbWxsTEBDt27GD37t2k02m6u7uZnp6W+2BoaIjp6WmGhoY4d+4co6OjtLe3Y7FYmJ+fZ2JigkKhwIEDBzh8+DB79uy5bD9WVlby4IMP8ru/+7v89m//tlzb+Xye8fFx1tfXmZubk56Bnp4egsEgzc3NKBQK5ufnmZ2d5dSpU7z//e+XQe+nTp1icnKSP/zDP8Ttdkuv5CuvvIJGo2FtbY2xsTFGRkYYHh7mM5/5DG1tbezYsQO3233Fc7KMMt5LUBSvZBIqo4ybAD1RuKUbum/5p9UJEBZfwT0WEFSTeDwuLYPCEmexWFAqlZw5c4a+vj4+9KEPyReKsGilUinJe9fpdCiVShnYJ67TaDTodDp0Oh2pVErSNko/SyQSkoMsLKtwyXotLJgiZZ3RaNxkGRd83a30EmH1M5lM0vqXSCTIZDKoVCq0Wq0cC+H5ELzsUvqKQDQaZWxsjGeeeYZ/+2//LRaLRXKtFQoFkUgEvV4vXexwiSohxlz8CStxJBKRFBC49DIX9ARBo0omk9KiKazGlZWVUggSlAS1Wi0DfDUajaQrlLrqC4WCnDMRKC68FmLuSpHP56WFUKlUkkqlNtFAhEUYkP0SSoawkIv5V6vVJJNJSalSKpWEw2HZV5ElRaFQoNfr5bPEGtm6llOplFyvov9qtZp4PC7vIagMAmNjY5w9e5ZCocBnPvMZFAqFHGdh9RTrWIy3GHNB0RBUklKIvSP6Jqz/Wq1Wjp24RlBVCoWCjAHJZrOyHel0Wra/lCOu1WolN1usUeG1ymazqFQq0um0TH1ZWmNDeAJisZjssxhDg8GASqUiHo/LdSA44WJ9iX4Ui0W5HoUHIZFIUFNTI68X60lYzQXn32AwXKaUinaFw2FsNpucc71eL9em8KCJzzUaDYlEQmaZGh0dRa/Xs3fvXgqFAmfOnGF4eJivfvWrRCIR2T+xlkUcQ+laE3Mt9qkY7yu1NRqNSm+AoAwJepVYi2Lvx2IxmXlLeLpEZqpsNks6nWZxcZELFy7whS98gUKhwLPPPovRaOTuu++moqLisjYUCgVCoRAOh0NSmhKJhJxXsRbEehBB4YC0+BuNRrRarcyGVCgU5Fmo0WjIZrNyPAwGAz6fD4fDIeMaxBm8dT+8W++qMsp4t1H2BJTxGw+lUnlZKshSiNSAQgkoFossLS3xxhtvMDc3h8Vi2cQxF0LXVq63+K7Ua1AqNBkMBvkb8bnRaLzMYiu+Ey/trfe5WgCkXq+X9y8UCpteUiKwV7jmS++39aV/JcRiMfr7+1ldXSWdTuNyuTZZDJ1O52W/MZvNkt6z9ZmCq3y1cSv9falAJ4Sq0jFQKBRYrdZNXOatwqoQ6LRaLfl8flNQ35X42yKdpvh+6xwZDAYKhYIcT6VSKQXAK9239PNisYjdbt80F6UKy7V4xqL/gvddOsfXWuNjY2PMzMxgtVrJ5XJyrEVu9639E8Jg6VhdaZxMJtOmtggFsxRms/mKY771utI53ToG4h6l8yu43kKgFYppKcS1W8emNH6gdN0Vi0VJ1xLKnLiPyWSSSqm4p1KplMpv6XwqFAoZN3EliLEUzxbtKc0/bzQapdIklAihhIpMOjMzM3i9XqmcVFdXy/icq/VX3KuU8y/G9krBrqXrq5T6B8jzsnQfwNXnUvy/UMIKhYLk6BcKBelpu1IblEql7JdYP6LtKpVq09m61ZBR+r0YD51OR6FQ2LS+hUIgPvd4PJtob8K4cq2YjzLKeC+hrASUUcYNYKvgKF6UVVVVNDc3XzXo8Gr3utZz3m673sm1V3uZv9OXl06no66ujltvvVVWPb6Re10tj/aNtuNqv99quYcr9/lKz7yR3N5b23c1ReFGPrvavd/pXFxNWLsWKisr2blzJ2azeVMQ9PWecyNjdb0+3+h9rocr9bn0s3cjW8v11kjpM0r7fSPzfrVnXQulikgpDAYD9fX1pNNpqYA0NjZSX19/Q/fciuvNz7XG5Z2sY41Gg8vloqurSyqDnZ2dMvD7Wm3Y+tk7XVtXG9vSz0sVmFIlp4wybhaU6UBl3LT4VbtYl5aW0Ol0OJ3Ocjq4Msoo4z2HUiv8zWid3iqe3Ix9gF/9u6qMMq6GsiegjDLeIbZWnC2jjDLKeC/hZhX+BW7mtpdRxs2Asu+qjDLKKKOMMsooo4wyfsNQ9gSUcdOjUCgQDIb51re+xX333ceuXbs2VcYshSiCtTXN3T/1+SKLyXvVcvXYY4+xb98+duzY8a7eNxKJ8Oqrr7K4uMgnP/lJPB4Pjz76KLfffjvt7e0kEglef/11HA4HPp8Pv98vM9/863/9r2W2k3cLgv4gAje30rRSqRS9vb2cPHmSBx98kO3bt/9a83hF9hiNRiOzxog0q3v37v1VN+8yTExMMDMzw759+6isrLzufkqn08zNzfG3f/u3/N7v/d4Ncd7fTfj9fnp7e+nt7eUrX/nKFWODBObn5/nZz35GS0sL995771W57e8V3MhZKYLfRSayXxVSqRRer5ef/vSnALS0tMhCZQAPPPDAuxJ3Aj9PJ3wjCRPKKOO9jl/ft18ZvzEQKTXT6TTJZPKaBa3y+Tzd3d2XFbz5pyCRSNDb2/uu3e8XgSulIXw3IIIOU6mUTNtoNBql8J1Opzl79ixutxutVivTOO7evfsXlkXD5/Ph9XovK/IFyBSBhUKBSCRyxaJZv04QFa0FtqZ/fa/h7bZPpVJhs9lYWVl5V/f0jUJUGh4fH79i0a9SqNVqzGYzXq9XZkx6LyOVStHT03PNPRIKhVhZWWFtbe2X2LLLoVKpZIpRURW4vr6empoaQqEQJ0+eJBwO/5OfUywWCYVCDAwMvAutLqOMXz3em2+CMsp4G0gkE2T1OZxOp7R4FgoFMpmMzOUurFnhcJhjx47h8XhwuVzodDpUKhXJZJJUKiWzoygUCpmbHtiUn168TEQ6vtXVVV555RVpfVKr1eTzeVKpFIDM4b3VKi3y0osqsUajUeYPF6kzLRbLpvz9om3xeFymyBTWXpH/XOTY1+l00pLndrtlDYF4PE6hUNj0vUgBWSwWicfjmyzqok+lArvIrS7qIIgUnKlUioqKCgwGA5lMhmAwyPj4OEajUea1N5vNHDx4EI1GQyQSkTniDQaDzDWuVqulwK7VagmFQrKParWadDpNNBrFbrfL3PsiX/uFCxcwGAw0NTXJ+wpoNBqsViuVlZWbagyInPeijel0WtYWELUixDiIeg+ifoKo0SCqr9psNvm9VquVKWbFGhMFrcR6SKVSsmq0uLfNZpOVaUW6S41GI8dHZAC6WgVVuKSc9vf3E4/HqaiokOvFYrFgMpnI5XIEg0H0er2cb5EqMRqNyhz4IiWiqEsh8qCXrudcLkc0Gt20rkrrYxQKBamki1oT4jeifoDYi6UZikTOeJHmUew5YaVOJpMYDAZZX0F45bbWEbhW4L7Yc6IWgrDwbmxsbBobsR/h53Ui8vk8tbW1pNPpqwrL6XRari+PxyOVMnFGiXPCarVKDr+ovCvmXuSnh0tpQ9fX1zfVkQiHw1itVpn/XuzX0nUrzrRIJCKfJ8ZXzFs6ncZkMqFQKAgEAhw7dozm5masVutlylk2m2VychK/34/NZsNms8kaASLdrqgxodfr5RiJ/xcpW8WaF7UexPoqFAqytoVYl1dTDjUaDTabjYqKCsLhMPX19XR2dpJMJgkGgzz33HM0NTXJGgHiXBDrX9RMEMYMUb9la+re9fV1JiYm6Ovro7W1FZvNJmtYiFoOovbKe9UrXEYZpSgrAWXctMjlc4CahYUF9MSkUAaXhJLl5WW8Xi82m43a2lr0er10yXd1dbFr1y6qq6sxGAzMzc2xsrJCW1sblZWVUvCcnJxEoVBgt9txOBwYDAYGBgYoFots27YNuERheP7557nlllvYvn07JpOJRCLBysoKCoWC6upq+Rz4ecaLQCDA6uoqiUQCq9XKjh07iMViLCwsEIlE0Ol0bNu2jeXlZVn9VuT5HhgYYNeuXUQiEcLhMPl8nsbGRsxmM2+99RYmk4na2lr8fj/19fV4vV6qq6uJRqOMj48TCARobW3F7/fjdDppb29Hp9MRiUSYnZ0lk8mQy+XIZDLs3r1bFuAR7c9kMkxPT5PL5VhbWyOTyVAsFvH7/Xi9XhobG4lEIkxPTxMOh+np6WF+fp61tTVMJhM+nw+Px8PIyAipVAqn00ljYyMjIyPEYjHcbjdmsxmj0YjD4aC/v1+mObTb7fj9fs6ePctdd93F6uoqGo2G6upqNBoNTz75JLt27ZIu+6ampmuuI7/fj9/vJ5VK4XA46OjoYG1tjeHhYQC2b9/O1NQU7e3tVFVVodFoiMVizM7OEo/HNxU/W19f57bbbiObzdLf309NTQ2HDx+mUCgwNzfH6uoqlZWVeDwebDYbhUKBlZUV/H4/uVxOCmIHDhxgbm6OUCiEWq2mrq5OWpxFXniDwUBXV9dV++Xz+Thz5gxra2vU1NTQ1dXF6uoqfr9fFtg6c+YM1dXVstiRwWCgoaGB4eFhLBYLzc3NUhEdGxsjmUzi8XiorKzclFtfVGFNJpM0NDQQCoWoqKigvr4eg8Egiz95vV7sdjsNDQ0kEgkuXrxIQ0MDqVQKj8fD2toaXq+X+vp6zGYzfr+f9fV1kskker2ebdu2odFoSKfTrK6usrKyIpUIoWitr6+ztLSEQnGpsnZVVdVVlSWhvIm5qa2tpaamBq1Wy+nTp+V+y2QyqNVqDhw4gEKhIBQK4fV6SaVS0vBwpXsXCgV8Ph/BYJBQKLTJGp1KpVhbW5PnxM6dO6UhIBQKMTExgUqlor6+nmAwKNfoAw88wNmzZ3E4HNTW1qJSqTh16hSHDh3C7/ej0+mwWCzo9XomJibo6OigsrIStVpNOByWFbF37txJOBzG6/USjUZpbW1lfn6e7du3o9PpmJqa2nSuVVVVSSUMLtUGeeONN1hYWGDPnj04HA6i0SihUEiOo/DKNTQ0MD8/Ty6Xo62tjZWVFTo6OqioqJCF7MT6qq+vx+VykU6nmZyclIpoS0vLNWtdXAl6vZ67776br3zlK3z+858nkUiwsLCA2+2ms7OTkydP0tTURHNzM2azWa5Rs9lMbW0t1dXV8twrFApcuHCB06dPEwqFGBwc5LbbbiOXyxEIBFheXiafz9Pc3IzL5SorAmXcFCjTgcq4aSFcspl0hgMHDuD1eqX1NhgM8vDDD3Prrbfywx/+kNdffx2VSkV7ezsej4e7776bjo4O1Go1MzMznDp1isOHD/N3f/d3vPjii6yurvLYY49x8OBB2tvbicVivPLKK/zN3/wNjY2N7Nq1i5dffpnR0VFaW1upq6vjvvvuo7Gxkd7eXrq7uzlw4AAtLS3MzMxcRk0JhUL8zd/8DT6fj+rqal555RVCoRB/8id/QiKRkC/V//Jf/gu1tbU89dRTDA0N4XA4sFgsDAwMcO7cOQYHB8nn83R1dfHNb34TvV4vK22eOXOGhYUFKisrOX78OLOzs1itVmpra/na174mefMTExO89NJL5PN5/uAP/gCn08nCwgIXLlygra1tU4VVgHA4zPe+9z2CwSCdnZ3odDp8Ph9KpZKamhpefvlllpaWcLlc7N69G5fLxT333MPhw4fZsWMHbW1t1NfX8yd/8icYjUa2bdtGOp3m0Ucfpauriz/90z9lYWGBUCjE6dOn+frXv05DQwM7duxgcHCQY8eO4XK5+PGPf8zQ0BB1dXWsra3x3e9+F5fLxY4dOzhw4AB79uyhoaHhuuvo2WefJRAIYLfb+eM//mOSySTV1dUMDw/zyiuvsLi4yK233sr/+B//g7m5Ofr7+3nmmWfIZDIsLy+zurqKxWLBarUyMTHB+Pg41dXVnDt3TlLP5ufnOXXqFO3t7Zw9e5Zvf/vbFAoFxsbGePHFF2Vl2qNHj9LZ2clrr73G4OAgVqsVl8vFt771LV599VWUSiVtbW04nU7Gx8ev2a+mpiYaGxvp7Ozk7rvvprq6ms7OTk6fPs358+elJ+HrX/86ZrOZtbU1XnzxRV544QWOHDnCd77zHSYmJlhcXOS1115jamqK22+/neeee44LFy5sepbVamVtbY3BwUHGx8d53/vex9///d9z+vRpZmZmGBkZ4ZFHHuHOO+/kxIkTjI2NyYqs//N//k9Z0Xd1dZW5uTlmZmZYX1/nBz/4AZFIhNbWVjY2NnjsscdIp9M88sgjvP7663R0dNDc3IzX6yWbzcp1L/be3Nwc0Wj0qmMkYgpOnTrFzp07efnll/ne974ni3194xvfkF6vkydPyvt985vfJBAI0NHRIa3fV0J/fz8vvPAC2WyW1tZW1tfX5XePPfYYJ0+eZO/evWzbto3/9t/+G0tLS5w9e1Zy2zs7O/npT39KIpEgHo/zj//4j8ClImzd3d3Mz8/LPfyTn/yEjo4Ouru7eeSRR5ifn+fgwYP8xV/8BdPT07z11ls88sgjNDU1sWvXLn7605/i8/lIpVL86Z/+qfR0njp1isnJSdra2vB4PNx77700NzdfpkjZ7XZaWlrYs2cPBw4cYPv27bS1tfHiiy/S19eHWq1maWkJpVKJx+NhYGCAN954A7VazW233cZXv/pV+vr6mJyc5PXXX2d6epo77riDH//4xzz55JMMDQ1htVrZv38/U1NT0oPxdiHmcm1tjWQySTqd5ujRo1gsFmZnZ5mammJ+fp7Z2Vn+7u/+jkOHDtHf3093d7f0KMElL11rayu33HIL27Zt48iRI6jVap5++mmpTB88eFCeX9ejh5VRxnsBZSWgjJsWY2NjwCVLrUKhwOPxSGu71Wrlk5/8JKdOnSKZTJJMJolEItLdLtzQJpOJhoYG2traGBgYYH19nWw2i8lkorW1lU984hP83d/9HcViEbPZzJtvvonf72d2dlZWhxSFsYTlp66ujtXVVT73uc/x2GOPsX379k3VQYvFIidOnMDtduN0OmloaOBf/It/wcbGhrQUClrC6Ogo6XSaD37wg+h0Ovmy/NKXvsSbb77J6uoq8XickZERbDYbxWIRi8VCdXU1XV1dfPzjH5cUHEHhMJvNVFZWUl9fT1VVFQqFgo2NDQBJQ9JoNFesfAwQjUb5yU9+woEDBzCZTNjtdiorK4Gf856F2750bMSYC/rMiRMnWF5eZmlpifX1dXQ6naTq1NfXs3fvXrq6ujhx4gRra2vMz8+TSCTQ6XTSXb9nzx757GQyKQv2iL8bscTde++9GI1Gent7UalUBAIBWR20oqKCXbt2SUqQoF9lMhlJWxAWfIfDIQPS1Wo1JpNJtrW+vp729nZmZ2dZWlqS1IGtdLVCoYDdbufpp58mkUjIteZwOOjq6uJb3/oWf/AHf8Arr7zC7t27r9mv0rFQqVSSWiJoFSqVCpfLJekeFosFt9stq6AK6/bMzAzHjh3DYDDQ19cnqytvFXJMJhPV1dXS83L33XfT09PDc889x8WLF9HpdPT29uJwOMhkMsTjcdxuN42Njdxyyy10dHRQW1uLxWKhUCjw8ssvY7fbsVqt2O12Ojs7eeyxx1haWsLn85FOp3E4HJhMJpxOJ2q1Wnq7PvOZz/DYY4/R0dFx1SQBcIkuJOZmfHyclZUVSS8TYyOoLhaLhdXVVY4fP05FRQV2ux2TyUR9ff0VPQGFQoEf/ehH0kggCngBLCws4Pf7JQXJYrEwPj7OxsYG/f399Pb2csstt2C1Wvnt3/5t9uzZg9FolPQU0V/4eWGtbdu2odfrJYVv//79WCwWuW4XFhakZ2h2dhZAUvnEnquoqCCRSBCLxS47164EsbbE3nY6nbS0tKBSqfD5fOj1et73vvdJr57b7aapqQmdTkdzczPT09O8/PLLHD9+HL1eL5UH4Sn62te+xn/+z/+Z9vb2yyqG3whEu6PRqKQLCW+C8PBqtVp8Ph9vvvmm9PSKhAV+v3/TvUr3kvAAXrhwgaWlJWpra1EoFLhcLgYHB1leXn7b7S2jjF82ynSgMm5aFAuXXrxqtVrymQUPNhgM8uabb/LpT38ah8Mh+f2lnNK1tTXW1tYIBAJsbGxwxx13oNfrpdXN5XLxla98hdXVVRlgKV5eSqUSs9ksudviZbO0tEQmk2Hnzp20trbi8/k4d+4cR44coaqqSj5blLMX5ectFgt+v594PC4t9HBJsFWpVNxyyy2cOHGCnp4e7HY7O3fulIKnx+OhoqJCCqVCiBcvXvi5MC7+BP9avMjy+TwKhYL9+/dL6tG+ffvki3drPICIYyh9MQqUPmsrStsgqA41NTVUV1dTX1+PQqHAZDJJTrEQopuamlCr1ZKWJP5EjIDoQ+kzhGJTU1Nz1TXk9Xo5f/48NTU1tLS0YDKZiEQiOJ1OmfFEeEKEtddut1NdXU0gEMBsNtPc3Cz/XcohTqfTZLNZEokE3d3drK+vs3//fhwOBysrK4RCIex2OwaDgUAggM1m46Mf/aicP5fLRV1dHSaTCZfLRSQS4ctf/jKpVIpgMMjx48dpaWnZNLZbx1r8N5/Ps7CwQGNj46a5UalUkk+vVCo3KX0i84tCoUCv11NVVUVjYyN6vR6Xy7XpeeKe4h6i/0KZ0uv12Gw2GhsbJVUik8kQDocxm81otVqppIq1L7jWguoj1p2IUSgUClJZEb8RlKHGxka8Xi8XLlzg0KFD1NbWXnGMIpEIfX19rK+vc/jwYaxWK5lMhlAohFKplLEbYk2X7k1xv2tllyot1FV6raA0ZTIZ+blQYsXvSoVNscfE2KZSKbkexTWlHjsxr6LNYowMBoM8vwwGA1VVVczPz286D8TYlmJlZUUq/FvnXMQwzM7O0tTUxK233sr09DRnz56VnsLSPS/O63g8Lte6wWCgurqaxsZG7r//fhlf8+///b8nlUpx4sQJzGYzJpNp03xfD4IW2traKumcpVmMREyWiCmy2Ww0NDTIM0Ocn1v7XCgUmJ+fp66uTsZ7iLWYSqVu+voMZfzmoKwElHHTQhzU8wvztHhsBINBVlZWJK92fHxccqej0Sg+nw+73U5FRQVer5discja2pq0zIqAtkQiwdLSEisrK9x+++2oVCqCwSBms5ndu3fj9/tloKUIgBUUmnA4jM/nQ6PR0NXVRbFYJBgMbrKaKhQKmpqaGBsbIxQK4fP5pDW5qqqKeDzO4uIifr+fjo4OtFot1dXV6PV6qRSo1Wr27t2LUqkkEolIjnY2myUUCpHP5wkEAjJIMhKJsL6+js/nIxwOE4/H5bNXV1eJRqMyWG9kZASdTicza1RXV28ad71ez4EDB5icnKSyspKNjQ0CgQCLi4tUV1cTiUQIBAL4fD4CgYCMW1hdXcXn86HT6UilUhw6dIh4PC4D8SwWCz6fj3g8zsbGBvF4HKPRyIEDBwgEArjdbinYRCIRYrEYPp+PTCbD+vq65COLNgkBrFQJyOVyxONx/H4/ZrMZh8PBzMwMBoMBt9uNTqdjbm4Om81GLBaTqQdFvEQ4HKaiogKNRsPQ0BBGoxGXyyWDzF0uF2tra3JMNzY2WFhYkF6MXC6HSqUin8/j9XqpqqqSnHGhiGSzWW655RZyuZyMFzGbzUxNTdHS0oJCoWBubk5mZDl+/Djbt2+X7S+F2WwmmUyyuLhIMBjEaDQSDAaxWq2Ew2GWl5cJh8OEw2E2NjZYW1vDbrcTDoeJRqP4/X5cLhddXV0EAgHa2tqkh+NKQk46ncbv97OxsSFjQ4SnZn19XWaH0uv1pFIpqQyJINhYLCbnprW1lbW1NZmBZmlpidtuuw2LxSJjM5aXl1EqlYRCIdbW1igUCiQSCXbs2CH3nt/vJxa7FDO0b9++y9o7Pz9PMpmUbUulUiwtLcl0tuFwWN7H6/XS0dHB7OwskUhEGhJCoRCRSEQmARD7fN++fXLtGwwGVldX8Xq9aDQa3G63pMxks1k5tiKeZnh4GI/HQzQaxe12S4XU7/ezurrK2tqa9B6KMQuFQnIfeL1eVCoVkUiESCSC3W5n+/bt8vyy2Wxy74jzQMSnWCwWcrkcbrebxcVFYrHYFYOrxT5ZXl4mk8nQ2NhIR0cH8/PzTE1Nceedd8prhefL5/NJQb6yspLKykqpCLe1tckMSrlcjqamJnK5HMPDw1KRXVhY4NZbb93koRBB5oISury8jEajIZFIMDc3xwc/+EFpKDEajSSTSdbW1ggGgxSLRbRaLc3NzaysrMggdI1Gc5kXVHhoNzY2WF5epra2lvb2drRaLdPT05hMJpRKJVVVVTKIvIwy3ssoKwFl3LTY3rUdlmFyYpLtqksWmZWVFZxOJ1VVVTI3vXjZBQIBdDod+/btY25ujqqqKgwGg0wtt7CwgMvlku7h6elpPB6P5GW3trYSj8fp7u5mx44d0oJnNBrZs2cPY2Nj1NTUsLGxQSwWw2QyUVFRgcfjueyFsHPnTi5cuCADTHO5HLt37+bIkSPkcjnGx8fJZDJ89KMflVa6qqoq2tvbcTqdAHzgAx/g1KlTzM3NYTAYCIfDOJ1OksmkfCGKDD1KpZJgMMji4iLxeBydTkcgEGBlZYWNjQ2ZNSQQCBAMBslms6yurpLNZvnQhz4E/NyKarVa+dznPsfg4CAdHR1Eo1HZj7a2NlQqFRsbG8zPzxMOh1Gr1WxsbEilQASafu5zn2NmZoZkMonD4ZCZXYQVPxKJ4HA4+PSnP01vb69UiIQHwmAwsLCwQDQaJRwOo1QqWV9fl7EDKpVKWoAFcrkcyWSScDjMysoKe/bskcpTJBKhqqqKpaUlGhsbgUuZg2ZnZ6XHIRKJoNFoCIfDzMzMoNPpSCQSKJVK6urqaG1tlcGSwtq9uLiIyWQinU5LAdDlchEIBHA4HFKQXV9fl0L3gw8+yEsvvcT8/Dz5fJ5wOEwoFGJkZEQG5oo19cQTT/DFL35RZmAqRUNDA8VikcnJSWprayV3Xgh/y8vLUnEUSs7KyorMPrO+vk5TUxN33nknzz//PPX19ZIqItZhKURAvMfjIR6Pc8stt9DY2EggEGBwcJCFhQUSiQRNTU1yPGKxmFwniUSCcDhMIBDg4x//OOPj48RiMWZmZlhcXOSLX/wiNpuN3bt3EwqFmJ6eltQNn89HLBYjEolgtVpxu93U1tYSj8cZHR1leXn5MiVAxEWIs0Okt/X7/dKrJ8Y+Eong8/l46KGH6O3tJRaLyUBSoXA4HI5NSsCHPvQhXnjhBbxeLyaTCb/fTyAQQK1Ws2vXLsLhMJOTk6RSKT784Q/jdrvZv38/VqtVxl0I5dxisVBfXy/jZSKRCKFQiGAwKBXiQCBAPp8nk8kwMzMjM/rEYjEaGxsxmUz09PSwc+dOGbgs5nptbY3l5WWp/BaLRfbu3StjXK6kBNTX10ujSUVFBcViEafTicVikV4HAWH9n5+fp1gs0tLSQltbm5ynl19+mfr6eiKRCMFgkFQqRTgcpr29nVtvvRWn00lvby+vvPIK+/fv3+TVzeVyhEIheZaJc06M0Ze+9CWZ9UhkkVtcXJQZfzweD7t27eLcuXMsLi6SzWY37TEBu92O3W6XGb0UCgXvf//7WVxcZGhoiJqaGjweD21tbdekoZVRxnsFiuKve6LsMn5t0ROFW7rh/L48O7UZSQ8QXPZisUg6nd4kGAk3ssjqoVKpZLabUiqDoB+IlI6CLiFenOK+4sUoniXoIOJFLASUq7mGRXq+0jSWmczP+1JKLxH0jCulGk2n05syd7xdCKH/2Wef5bOf/SwOh4PR0VEef/xx/u//+//GbDZvcsGL8RFthZ/neH87bnAh+AOXCbBbn5VOp1Gr1TdUlKg0VeL1UCwWyWaz0iJYSuG4Ek6ePMnQ0BD/5t/8G5RKJceOHSOdTuPxeNi/f7+8l1BohCAm1pigeSSTSb71rW/xO7/zOzidThmk+uMf/5ivfe1rkjKSz+cxGAxy7Ym4DdFWYWE3mUxXtD7m83my2ew/uTiVCJAtrQNR+t3zzz/PxsYGO3fupLOzUwpdpdcI787bKdAmvHRij5Raf4X1Ph6Py1gHkXqztBCdsOR3dnZesV9b56b0OddqV7FYRKfTyRSdV9vr6XRatjWbzcoxEH0QtJhSOpBIuSvoWoBMmynSbF4pZudaKD2/bqRQX+m5drVrBXVHq9XKGJeFhQXW19c5cOCAvM93v/tdEokE//E//kcZC3GltMOC1lS63vV6/btGrxHniaBfCZqS2E+la+lKEHQpYQQqTRGcSqUuW/fw83dV9y2wv+wgKOM9hLInoIybHkqF8oovQsFlvhK2Cpxbqz+Wcs4ve97/4dNe655CEbkerlR18mpC7tUE0xt91rWgUqlwOp0Ui0UGBgZkDu26urqrurVFbME/BUJIvpHr3o6w83areZaO+fWEDUHPeeuttyQlZdu2bZKfL+61tQ1b/y2KpvX29mI2m8lkMkQiEd7//vdLgav0N0JY2SqAz8zM0NnZeVUlUPCd3w1c7RmRSISZmRlmZmaIx+Ps37//itddq67B1VDa9tK5KR2L0tSRpco8IOszXGte30n119J2XS9oVcS4bH3WleZTQHgZS6FQKOQcvNM9f7Xz62q43topNVZ885vfZPv27XR2dtLe3i6vmZubY2lpiWAwyPnz57n11luveK/S9bU1xuTdxNXOdrj+Gi0NCi7F9ep2lFHGexFlT0AZNy3K1pV3D8Lq5vf7pYUwn8+TTqcviwn4TUc8HpdZiuCSkGk0Gt92VeZCoSCzQQkvkyicZjabb8jyKaynv6iK0DeKXC4n89iLIM/3CvL5vPx7O8JvGW8PxWKRpaUlWbxta0G81dVV8vk8brf7bef7v9lRfleV8V5F2RNQRhllSOtWdXW1THdYzm5xZZhMJpmlBMBisbyjsVIqlZI3/E7HXKFQvCcCENVq9TWzMP0qcS1rexnvHhQKxaZ0qaVrWa/XyzibMsoo472DshJQRhm/JigWizJNpV6vv8yNL2IcRODk1Xi2ZeH/xvBujlN5zMv4dUF5LZdRxs2DcrGwMm56lAbR5XK5KxbueTefIwI/3+k9hDB+pUqjIhBOpBQVAaaZTEb2TfxdCa+88gqDg4MEAgFZ1Cqbzcq/paUljh49ytLS0lWrnG5tq/j/TCazKRD4VwUxB+l0WlJoxN+1sLU/omLte4URKeY+m83+QtfxbxKutVfE9+LsEPn0S78T++edVH8tFotyD/4qqseKviWTyfd09dqt+/lKENREkUSgjDLKeHdQVgLKuOkh8v3/y3/5L3n11VcJhUK/kOekUilmZ2d5+OGH3/HLqFAoEAwG+d3f/V2OHz++qSIlXCpg9sILL3Dq1Cn52fe//33++I//mKNHjxIMBkmn01e9fzabpbW1lUQiwTPPPMO3v/1tHn74YR5++GFeffVVUqkU9957L+Pj49cVDEQWkWKxSDQa5Vvf+hZ//dd/zejo6Dvq+7sFr9fLk08+yX/+z/+ZeDzO8PAwJ0+e5OLFi9f8ncjEBJcqiH7ve9+TKTLfC5ibm+MnP/kJDz/8MC+//LKMFyjjnaN0zq+EXC6H1+vln//zf86FCxeIRCKbvv/2t7/N3/7t38p0nW8HxWKRp556ij/6oz/atJ9/Wcjn80xMTPDZz36W3t7eX/rzbxTj4+P88Ic/5P/5f/6fq87V6dOn+aM/+iOeeOKJX3Lryijj1xtlJaCMmx4KhQK3201bWxt6vf4XZqkWFWt37NjxtlIclkKpVGK1WtmzZ49MZ1gKi8VCS0sLtbW15PN5WXjp85//PPfccw+ZTIajR49e9znJZJJYLIbD4cBoNLK0tEQ+n39bAadra2u8/PLLwKWsHe3t7dTW1pLL5d5R398tVFZWcs8998hCP263m7q6uqsGowpr8CuvvMLKygpwKYPPjh07sNls7xm++OrqKpOTk3zhC1/grrvuek9w/W9WXGnOrwS1Wo3T6ZR7eut+vOuuu2Q6zrcLhULBAw88ID1/v2yoVCpaWlpkcbv3KlpaWjh8+DDBYPCq1xw6dAir1fqe9miUUcbNiHJMQBk3PbxeLzZVQuZ3h0tWMFHxVKPR4HQ6UavVsrKlzWYjkUhgNBqprKyU9BiPx4PBYCCbzRIOh1lbW5PZLEQuffEimpiYIJ/Py2Jj+XyepqamTSkAi8UiGxsbRKNRUqkUKpWK1tZWdDqdtELGYjGsViuVlZWsrq4Sj8fRarWkUil6enrwer1EIhEGBweZnJxkenqa7du309raetWXe2VlJfv27cNsNhOLxVCr1TQ0NGC324nFYtccz0KhwODgIL29vczPz9PZ2UlbW5vMAx6LxRgdHcVut8uqp6IIECCvLc153tPTg9VqRaFQUCgU0Ol0NDQ0yOJJCoVCVkv2eDyy4i5AbW2tLLa1vr5OMpmU7RRFmkTBMUEPmpubo1AoYDabcTqdHD16lP7+fpnv3GQyEQqFyGQyGI1GUqkU0WiUYDCIXq+ntraWRCJBIBBgY2OD1tZWlpeXqaqqwmq1boq3mJ2dJZVKyVzvqVSKjo4OqVyk02mmp6cBaG5uJpvNsrGxwcbGBi0tLcTjcXK5HHNzcywsLLC8vExHR4esmlwsFrFYLLhcLvr7+zGZTGi1WvL5PHV1dQwPD2Oz2WRGJ4VCQW1tLYuLi+h0OqxWKzabTVYpjsfj2Gw2GQTe19cnA5TF2m5tbUWhULC+vk4sFiOfz2Oz2XA6nWQyGVlNVxSEKlUsC4WCLFZnNBqx2+2yAq1Y79XV1VitVhKJBMPDw7S2thKJRKSS7Ha75f0ymYysvNzS0kIgEJD3tVqtFItFZmdnyWaz2O12bDYbCoWCF198Uc65Wq2W6ysQCFAsFnE4HDgcDpkjXlS+jUajWCwW7Ha7zGWfSqVkpV6z2UxlZaVci06nc1N7RVVqr9eL1WqV1C5RGKympoZkMonb7ZZnx+LiInCpuFs2m5WF4xoaGtjY2MDtdmO32zedLYFAgHA4TCaTkdWCzWYzWq1WVptubW1FqVTKqtGJRAKPxyNTWfp8PjY2NlCpVHR0dDA3N0c6nUaj0aDT6QgGg3R1dW2qn5DP55mZmZH1DgRtqr29XRa3czgcuFwu2e/19XWUSiUWiwW32y0Vo9XVVUlZEgpYsVi8rF2lNVlyuRzBYJBwOEw6naayspKKiopNZ1g0GpVVxd1ut6zoLvapwWDAaDRis9nY2NiQVdY9Hs8mQ4mgdIl1W1VVJaskj4yM0NDQQCKRQKPRYLfbywXCyrjpUFYCyrhpsbGxATgJhUIUnRqi0agUxiORCP39/VRXVxMOh2UBmGQyybFjx3jggQcIhULkcjnW1tYwm8309vZiNBrRaDTE43EGBgaoqqri/Pnz7Ny5E4fDQTabZWRkhCNHjsjS8SqVis7OTvr7+7Hb7VLhEBgbG5MCTzKZlPnkA4EABoOBXC7HyMgIH/vYx2SavVQqhcfjkQWJBCVnfX39uhQHAIfDIat2DgwMsGPHDurq6jAYDNdVAoCrPiuRSOD3+7Hb7Zw5c4Z7772XZDKJ1+sll8uhUqmYmJigoaEBm80mf7e8vMz09DQVFRXyhVwoFFCr1YyOjpJOpzl48CArKysUi0X5X4PBQF9fH4cOHWJwcFC+wEstq6lUikAgIMf2/PnzUskSa2J1dZVkMinjMHK5HCsrKwSDQbRaLWtra6ytreF0OmWlZb1ej8/n48KFC5jNZpLJJKOjo3g8HlpbW+Xzs9ksg4ODZLNZ9u/fTygUoru7m87OTjKZDEtLS2SzWVQqFdPT0xiNRjY2Njh9+jQOh4OVlRXsdrss6lUoFFhbW2NlZUUWPFtaWmLPnj0sLy/LQk8ulwuHw8Hq6ioTExNUVFTgcDiYnZ2VRcYWFhYwmUwcOHCAmZkZ0um0FHpSqRSNjY34fD4mJiaora1Fr9ezuLgolaDZ2VmpTM3NzXHXXXcxODgoC1+JCtBOpxOVSkU+nycej3P+/HlqamqYmZmhtrYWpVLJysoK6XQav99PMpmkoqICo9FIf38/6XQam81GNBolk8nw/ve/f9N6FPtZXCcqfm/fvp2pqSny+TxqtZqFhQW0Wi1tbW2b5lwIqgMDA1RWVjI7O0tlZSUqlUrWnwiHw9hsNoLBIPPz8+zZs2dTDEk8Hqe/v5+mpiYcDgeLi4tEIpFNNQLEulpcXMThcBAOh+X+SaVSzM/Ps7CwgNvtRqPREAwG5fmTz+cZHR3FZDIRi8U4ceIEDz30EJlMRirdO3fulMJwPp9nenqalZUV7rrrLvr6+mhpacHlcpFMJllaWqK1tVUaIkwmE4lEAq/Xy5133sn4+DjxeJxCoYBKpWJkZASlUkl3dzcGg4Guri6WlpYwmUzU1dVtUnyz2SyvvfYaO3fuxGq1EggEiEajWK1WxsfHqaurw2QyUSgU6Ovro7KyknQ6TTgcJpFIUFNTQ29vr1RoS8+ksbExYrGYLIw4MjLCtm3b5PfpdJrh4WFqa2tZWVlBp9Phdrs3Ce5zc3NEo1GMRiNvvvkmH/7wh8lms4yNjREKhTh48CDhcJhYLMba2posttjb28uRI0fk+Z1Op1lYWCCdThMIBEgkEnLd9vT0kM1mpUFpbm6OW2655R1nCyujjF8FynSgMm5aTE5OAqBUKWlrayMSiZDNZuWBfPz4cdra2lAqlYyMjDA4OEhVVRVPPPGELLw1OTnJiy++SENDA+fPn8fr9coMOufOnaOlpYWf/exnTExMoNVqcTqdvPbaa+RyOQwGA/Pz85w5c4a6ujpptReWaoHz58+TyWRQq9UkEgkpFCwvL6PT6dBqtTz77LPAJav35OQkY2NjaDQa2traqKyspK6ujra2Ntrb2/F4PHR0dFwzL7xOp8NoNJLL5Th//jyNjY24XK4bGlelUkl1dTXt7e3U1dXR2dkpBY9oNMra2hqdnZ08/fTTbGxscPHiRY4fP05FRQW1tbW8/vrrl1Ew9Ho9fX19RKNRampqWFpa4tixYxiNRubn5xkcHCSRSLC2tsbp06eZmZlBo9Fgs9lkJdqXXnqJWCxGXV3dJsVEr9cTiUQYGxsjm83y8MMPSytfIpFgeXmZ7du3U1dXR2trKx6PB5VKJQX/1dVV+vv7GRoaor29nUwmw+uvv04kEiGdTnPu3DnW19dpbW3lzJkz9PX1bepbbW0t4+PjXLx4EY/Hg9vt5pFHHmF+fp6RkRF+9rOfUVFRQU1NDWfPnsXv91MsFjl9+jTJZBK/34/NZqOmpgaHw0FnZyfd3d3Mzc2h0+mw2Wx0d3czNTWFSqVieHiYoaEhVCoV0WgUk8nEmTNnWF5exmq10t3dTU9PD/X19UxPT3PmzBmy2Sz9/f3S0j8zM8PJkyeBS1Sv119/XXpBent7CQQC9Pf3MzIyQiqVorq6mvPnz5NKpXj66aelVyQYDDI6OiopYul0mqWlJZ5++mna2toIBAKsrq4SCoUYGBiQY9bf309fXx9arZbV1VV6enpwOBwEg0FeeeWVTeOr0WgoFot4vV4uXrxIa2srfX199PT0EA6Hefzxx7HZbLS1tbGwsMCrr75KJpPZNOfV1dUkk0lOnjyJ2+1mZmaGoaEhlpeX5XPi8ThOpxOlUsmpU6eYnp6W60zs06WlJWm9FtboUiUgFosxMDDAyZMn6ezs3BSYLCoSHzt2TCpLvb29PP/887S1tdHQ0MDLL7/M1NQUCoWCN998E5VKRVtbGxcuXOCll14ikUjIZzmdTlZXV7lw4QJ2u52pqSlJkVMoFESjUTQajWyrWq3GarXyxBNPUCgUeOaZZ5ifn6eyshKn08kLL7xARUUFFy9epK+vD71eTz6f5+zZs5uEdKVSSWNjIy+88AKrq6toNBo5DzU1NUxOTjI5OcnGxgYrKyu8+uqrVFVVYTKZWFpa4vjx4wSDQZ555hkpwJfu56eeeorFxUUqKytxOBy88MILZDIZ+X0ikeDs2bNYLBbS6TSZTOaygOKxsTF8Ph8Oh4Mf/vCHJJNJKisrWVhY4Pjx4+h0OgKBAG+99Zb06NbU1PD8889vCspPJBIMDAzIeRwcHKSnpwe9Xs/S0pJsZzqd5vjx40xPTxOLxYhGo8Tj8XdEIyujjF8mykpAGTctJiYmAOjs6JQUCL1ez/z8vBTgFQoFXV1drKyscOLECUwmE9XV1dTU1FBZWYnb7cbhcKDT6XA4HMTjcemq//jHP87JkydJp9Mkk0lZ6l5YxKxWK7W1tdTX12MwGHC5XEQikcv4v0qlkv/xP/4HjzzyCPl8XsYTbNu2jaqqKgD5EhRFdtRqtczdr1Qq5Z/4943w2PP5PMFgkKWlpavy+K+WPWXrswXcbjfbt2+XtB64JFCeP3+etbU1FhYW5O9KYbfbpSLicDi49957+dGPfkQqlUKr1eJwONi5cyef+tSnePHFF4lEIgSDQSYnJzGbzRw/flzOldFoxOPxyHubzWap8Ph8PsLhMDqdjs7OTu644w4OHTq0qS+iEqkQ3s6cOcP6+rq0WB84cICjR48yNzeHRqORlnSHw0EqlbpsfgU9pKqqCovFQnt7O8PDw2xsbEglcW1tTVI+tFqtpFt0dnbyW7/1W9TX10vFVKlU8sQTT+B2u6mursZkMtHe3s5Pf/pTtFotHo+Hzs5ODhw4QH19PS6Xi8bGRiorKzEYDNhsNhobG9FqtRQKBfL5PHq9no9+9KMEAgFisRiBQICFhQXgkjDZ2Ngo6SkOhwO/388zzzyD1WqltbUVp9PJ7//+7zM3N0cgEGBubo75+Xl0Oh3r6+tyLfh8Pi5evEhnZydKpZJPfvKT3HHHHdTW1vKhD32I5eVlaY32+XwolUpcLhfbtm2TMRBbvVyiqrTb7aarq0sqBcI6/+qrr1JbW4tWq5Wete7u7k37RqFQYLVa+Z3f+R3eeustkskk0Wh0k7La2NgovRrt7e08/fTTct8oFAoqKir4v/6v/4uXX34Zr9dLZ2cnhw8f3kTR6evrw+/309TUhFKppKGhQX6v0WjkXB08eBCr1UoqlSKZTKLT6bDb7UxPT+P1elEoFNhsNlpaWjCbzVJQLlWkhJFgx44dDA0N0dHRwcDAAIODg2g0Gh566CHgkneio6OD9vZ2DAaDTJxw/vx5KSwLg4TJZMLtdlNTU0NNTQ1utxu/378peF6hUGAymaisrKSmpobq6mpJuRH0s2KxyMLCAq+88grNzc1oNBqamppQq9U8/vjjHD9+nKamJkwmk1SABa7Urq3rAeBLX/oS09PTm2igArfddps07CiVSsLhMHq9HqfTSU1NDa2trdx111289tpr+Hw+kskkIyMjl8Xh2O12PvzhD7OyskIikcDn8+H1euX50dLSIj0lHR0dPPXUUzz55JM88sgjPPXUU+/pgOwyyoAyHaiMXwNcStmpkcKsVqvFaDRK7m8ikZA8cCFQiJeG4AMLiFz7w8PDPPXUU/zlX/6lzKoTCoUkdUBApVJt4uVfKeXkHXfcwSc/+UlGR0e5ePEizc3NFItFNBqNFOZvJJhZCImCs79t27ZNbd+KaDTKmTNnMJlMbzuQWQhOuVyOwcFBurq65OfimaWKS21tLQcOHEChUNDe3o7ZbL7qvbPZLIFAAIfDIe9Xqhy53W4aGxvZsWMHLpeLvXv3cvHiRebm5jZZQq/UZrPZTCqVkm0TsSFivhcWFjAYDJsqlorfiBgEYV0vHdvSPl8vdadIP6pUKjEajVRXV3PgwAEAOjo6MBgMTE5OYjAYrqrMWa1W4vE4qVQKtVpNLBbDbrejVCrR6/WXrcPStSTaq1AoNlHJ/uAP/oDf/u3flspuIBDA6/XK60t/XywWsdvt5HI5OZ7xeFzSzFpaWrj11lspFotEIhE5PkIIFAoGXPIOTE1N8fDDD/Mv/sW/wGKxsLCwQCKRYHV19YrtvRLE3hXt25rOEy5RbjKZjIzhgZ/PuUql4nd/93f5/ve/Tz6fl5xyMQal91IoFLhcrk3CpVqtpqKignQ6TXd3N7fffjsNDQ2bfms0Gsnn8wQCgU3tKu2D4JyLNol1B5fWl4gtKUU4HCaVSl3GOd+2bRv5fJ4nnniCz3/+8/T19UmaY+kaudJZY7PZaG9v58CBAxSLRTo7O9Hr9Wg0mk1exqudTSK+RvTrSsK61WrF5/NtSsNqs9mwWq2MjY1JC3/pONlsNjo6OmS7tm3btqkvJpOJe++9l3/zb/4NjzzyCMPDw5hMJpqamoBLMTpPP/00TqeTD37wg7z00kusr6/LJAClVaOdTif19fVs376dmpoadu7cuWnfLy0t8Vd/9Vd8+ctfxmKxsLy8TDwex+fzbeprIpEgHA5TUVHBnXfeKeOeysH9ZbzXUVYCyrhpsXfvHsjAW+fewtVew/z8PN3d3Rw4cIADBw7wk5/8hLGxMSYnJ6murqazs5OhoSFWVlaYn59nenqakZERYrEYCwsLTE9PY7VapcCby+UkLUVwjZ1OJ4uLi3i9XoaGhhgaGiKVSrGwsMDk5KR0b1dWVsp2vvzyyxw8eBD4ubVxfHyccDiMWq0mlUqxsrJCf38/arWa2dlZXC4XCwsLnD9/nvHxcRYXF6mrq8NqtTI9Pc2OHTuuqzhkMhmWl5cxGo1XVQKOHj1KIpGgpaWF/fv3y88dDgcmk4mZmRm6urqIRqPMzc2xuLhILBajsrISr9fL8PAw9fX1GI1Gjh49Snt7O9lslvr6+suEgpWVFUwmE0ajkdOnT/Ov/tW/kmMfDAbp7u7mlltu4XOf+xzj4+P09PTQ3NxMOBzm0KFDjI2Nsba2xvDwMAsLC8zMzLCyssL09DQDAwPEYjFUKhVHjhxhYmKCYDCI0WiU1Up/9rOfYbVapfdldHQUpVLJXXfdxczMDPPz8wwPD9Pf389DDz1ERUUFExMTkoaiUqlYWFjAbDazuroq7wPIQNDx8XGmpqb4zGc+Q319PRUVFSSTSV544QU6OjqkcLawsMDCwgJnz57lwIEDkpc/NzfHyMgIn//855menqa/vx+z2czS0hIf+9jHOHnyJNPT0zQ2NhIIBHC5XPT09DA+Po7RaMRkMjExMYHZbMZkMrG4uEgoFGJsbIxcLkckEiESiUge9NraGv39/UxOTuLxeIjH44yPj2MymfjIRz7C8PAw3d3dMjj3wIEDdHV1kclkJHdcBB7DJQVu9+7dnD9/nqGhIbLZLE6nU+aCD4fD+P1+SVuZn59ndHSURCKBzWZjeXmZxcVF+vv72b17NwqFQvKxR0dHZeD4ysoK0WiUnTt38uUvf5njx49TWVlJMpnE4/Gwbds2IpGInPPa2loZMLy0tEQ8Hmd1dZVwOCwt5Ovr68zPzxONRvH5fDz44IOcOXOG0dFRjEYj8Xgcg8HABz7wARm/sXVfief29fUxMTHB8vIyExMTNDc3U1VVxcWLFxkfH8fn81FVVUVzczMdHR2cP3+eRCLBwYMH5fkjYhjy+by0+m+tuis8F9FolO3btzM6OropAN/r9bK6usrQ0JAMcPX5fCwtLfGRj3yEQqHA66+/jsfjIZvN4vP5mJ2dJRaLMT09zYULF5iYmGBjYwOn0ykV9pGREZaWlqSy193dzcTEBIuLi8zOzspYi/e973088sgj8h6xWIwvf/nLHDx4kJ6eHpaWlgiFQoyOjsr9/NGPfpR8Pr+pXaurq8zMzJBIJJiYmOD555/n05/+NFVVVdIbJiDifiKRCEtLSxiNRrq7u4lEIkxNTbGwsMDExATt7e188pOfZHJykgsXLrB9+3aCwSCHDx+WSpBQ6EvXbT6fZ319HbiU3lSj0UgP16c+9Slqa2uBn3tTyyjjvYyyElDGTYv6hgaYQrqh7733XiorK/F4PFRVVXHbbbfJTC9CUEkkEnzhC1/A6XSSz+clfcBoNHL//fdTVVVFbW0tarWaBx54AL1ez913341KpcJms2E2m/nsZz+L2Wymvr4etVotMwTdd999MjizFDt37sTlcmEwGPB4PDgcDu68805MJhO1tbUUCgU+/elPY7VaUalU3HXXXZhMJsxmM21tbajVaiorK7FardTX13PHHXdIXvu1oNfr2b59+xWrBwtUVlYSCoUuUyiMRiONjY3cfvvteDwetFotu3btoq6uDrvdjtFo5LOf/Sz19fXYbDYymQyhUEjGIlzJQyEs2Gazma6uLnbt2gXAkSNHiMfjkp6zfft26YkQlkmn08mtt94qBd3a2lo+9rGPYbFY5Fjkcjl0Oh3vf//70Wg0GAwGmQXEZDJx2223UV1djdPpxGAwcPfdd1NRUYHH45F0DJ1OR2NjI42NjTLd7EMPPSSt8GKNbB1PlUqFTqfDYDBQUVFBY2MjFRUVMvh5fX1d0i00Gg2NjY184hOfkBx0g8HAjh07pCVdtEmj0aDRaNi3bx9NTU34/X7JlRZjLLJNeTweKioquO+++2T2ndtvv51kMonL5eJDH/qQTKOq0WhkEGlbWxsGg4HW1lZpZa2pqaGzs1MKk3q9HrfbjVar5dChQzJwWsynsJhrtVqqq6vl+i4Wi5jNZiwWC/fffz8VFRXk83kOHz4MXIqnuPvuu7FarbhcLnbv3o3FYtnkqVEqlVRWVnLnnXditVqxWCzcc889aLVaqqqquPfeewmHw5hMJjo7O9FoNFgsFtRqtZxzQSP7zGc+I+lVIjDYbrdz6NAhqaDqdDr27NlDfX09bW1tmEwm6uvrZfYlse9LA98FBB1Mo9Gg1WqpqKjg/e9/P52dnZLyVlNTI7P4CKHebDaj0+m4/fbbqa6uxu/3y2w62WyWffv2YbVaZVYfAXE2fPjDH8Zms3Hw4EHUarX0YhgMBj71qU/R1taG3W5HrVbzuc99DqPRKINjBV3MbDZTKBS47777MJvN2Gw2duzYQVVVFQ6HQ86xsPA/9NBDtLe3Y7Va2b17t8w6dNtttwGXMh3V1NRw5MgRebZVV1dTW1uLy+XijjvuoKKiArVaTXNzMx/96EcxGAwcPHhQnkml7brnnnvkOb5nzx4MBgN79uyhoqLiMuv+4cOHpTfrgQcekBmnDhw4IOcUkFm8UqmUXOOl3h+bzcYDDzwg97Iw5ogz3mw2o9frqa+vx263U19fj0ajKQcGl3HTQFEsl6Us4yZFTxRu6Ybz+/Ls0mVllguRUUVQgfR6vRQqbxSCbpDJZKTAVywW3zatRtwnnU6jVCqvKoy/nfuJNJBb+1QsFvnBD37A/fffT01NjayyKShPpakO+/v7uf/++ykWi4RCIZLJpHSn38izrtQuYe3V6XSXteu1116TWYre9773bXppXw2icm7ptSIIUKPREIvFpAC6tW2ZTEa2uzSbCiA/3woxXuJ5N7peYrEYDz/8MKFQiN/7vd9Dr9dvSqlYOjalFIobgag2eyPjdT2ItIyiDTe6nq80D6KqtVqtvuLaKBaLkusuxl88X6yPd7KfrtYvMb5qtXoTlWXrnF+vDWJ9bd2n2WyWZDLJxsYGXq9XxjBcLThf0F8MBgPxeFwqBVdaU4VCgUwmI88tQcH7sz/7M/7hH/4BrVZ7GV1ra/8FhUn890bXbqFQkNmytu7bdxPJZFLOTekzRMpOpVJJIpGQ+7m0EviVzhOxvsReu1q/8vk8Wq32uuMiKjsbjcbLvtu6ZgqFArFYjL/6q7/iyJEj7Nq167q1GMS7qvsW2F9mCJXxHkLZE1DGTQ+VUoVef/mLQASwvROIF0YpF/WdvCDFfd4NIU7c71pZgeDnL0mVSrXppSY+F4I9XArkFMXW3smzSq8VCtiV0N/fL9NF3mixMWEFL0Wph6HUWrwVV/JEXM9zsnW8bhSCGpHL5VhdXd2UPhSuPzbXwrViPt4utq7DG13PV5qHrcL2lZ61dSzf6fOvh2uN79bPrteGq413NBplenqaN954g9tvv10G718NIh4EuGZ8jLi29JwJhUKsrKxIWtHhw4evuXZKhdu3O6ZCAL/Rff5OcbXzr7TfpftZKG1XEqxFf691tm/t1/XG5VrreeuayefzhEIhFhcX6e3tlZ6fMsq4GVH2BJRx06JsXdmMYrHIE088QUNDAy0tLZsybsAl69js7Cxvvvkmt99+Oy0tLZusoL8oK2BpEOc7FVbey9jav1+nvpVxCWJ+ReAu/GL3yy/rWWW8fZTWjoAb2/Pld1UZ71WUPQFllPFrhAcffBC1Wn1VC1p9fT0PPfQQBoPhbVOk3il+3QXjX/f+lcFl1KFf5HyXZi4r472HX0dDRhm/uSgrAWWU8WsChUJxzZR0IsXiu0kxKaOM3xSUhb4y4OcxKGUlrYxfB5SVgDJ+7ZDJZAiHw4yPj3PkyBGZ4k1UhbwWisUiq6urbGxsYLfbqampuSwoTbjp345QILLvvBuBkFdDqZv6V22dDofDbGxsEI1G2b179zu6h8jJL1628XichYUFCoUCO3bsuKF7/CrHJJPJyOJxdXV1b/v36XSacDhMLpeT61ZUES4UCiQSCdrb24F3R0DdSmuKx+PMzMxgNBppa2t72/cKh8PMzc3hcrnweDykUil8Pp/MrhOLxVhbW8Nms+Hz+SQnW6PRXBZX8W7gens3EonIYoGFQuFt9/nttqWUiRuLxRgcHJTZkd7uvd7JmSSem0wmr1gXoRRiLd7IGfp2n7+6ukosFmPPnj3XvPbdPEPf6bkQj8cJhUKEw2GZyrWMMm5mlCsGl/Frh2Qyyfj4OH/yJ39CLpcjGo0yNDR0Q9Ubi8UiAwMDPPXUU5w9e/ay70RxpLcDkaVoa6XZXwQymQypVGpThc9fBbxeLydOnOD73//+O75HJpMhHo/LfwcCAX7605/y+OOP3/A9RIanVCp13SJf7zZisRiTk5OcO3fuHf0+Go0yMjJCT08PcClDzSuvvEJ3dzcXL17kpZdeuqEiczeKfD4vxwoujfcPfvADXnjhhXd0v6WlJR5++GHefPNNcrkcGxsbnDhxgmQyST6fZ3FxkaNHjzI9Pc0Pf/hDnnvuOV544QVef/31d61PpRC546+Gqakpenp6OHXq1C+sDQLZbJZ0Oi0zL/l8Pv77f//vLC8vv+17iYJ47wQ+n4/R0VFZff1qiEajDA8Py7X4bmFtbY2XX36ZRx555JrX/SLOULHWRQapG4HX6+XMmTM8+eST71o7yijjV4myJ6CMmxaXhDpRZfTnn9tsNpqamqioqJBZJJqammT6v60oTeWoUChobW0lm80SDAa3POtSZchnn32WL3zhC9fMCCE4xAJnz57FarVy6NChy767Fq527dU+Hx0dpVgsUl1dTXV19WVejHf6vLeLbdu2yVSkN/ps8Xxx/eTkJNPT03z84x8HLuUdr6urk5WgbwSxWIypqSkUCgU7d+68zOp3pYquNzre1xtbo9GIx+OR2WHezriKyrKNjY2yYu/ExATJZJKWlhZZD6N0vG6kvddqg9frxe/3o9Fo2LlzJ42NjdTU1GCxWK75u6uNw44dO2RtAZGPf9euXWi1Wnw+H8vLyygUCg4dOsRzzz3HoUOH2LFjB06n8xeisMXjcZ5++mm+9KUvXZY1plgs8rOf/YwPfOAD3H///TKd6LuFrfM0NjZGPp/H5XLJegSVlZUytXHp76637oLBIC+++CL/7J/9s7fdZofDsSmz0tXWvliL6XT6mhWdr3aPq33f3NxMQ0MDS0tL1/wtwFtvvYXZbObw4cPXHJcbWfeFQoHh4WEUCgWNjY2b6iBcDcVikfX1dQYHBzlx4gT/7b/9t6vev7Q9ZZTxXkZZCSjjpsXU1BTQzsTEBOnMOkajkZaWlstSR87NzbG+vi7TvMXjcfr6+mTxmubmZorFIktLS/j9fvx+/2UWw2KxyOjoKM8++yyLi4s0NTWxb98+TCYT0WiUsbExFAoFu3fv3pROrlAo8N3vfpfZ2VkaGxtlIaJsNsv8/Lxs186dO4lEIpw8eZKWlhb0ej3JZJJdu3YRDAaZmJiQKfOCwSD33HMPKysreL1eCoUCLpcLm83GX//1X9PZ2cnu3bvp6uralPt/Y2OD9fV1gsEg8Xic973vfaRSKdbX19nY2ECpVLJnzx4SiQTDw8NEIhHa29uZn5+nrq4OvV5PKBRiY2ODXbt2USgUOHfuHGazGbvdTjAYpKmpiZqamk3p9sQLsq+vj0gkgsViYffu3SSTSSYmJshms5hMJqqrq6moqABgcXGR48eP8+abb2I0Gtm9e7dMY5pOp/F6vYyOjrJ7927sdjv5fJ5wOCwFy87OTorFIkNDQ/yv//W/uO2221AqlTQ3N8v1IWokrKyskMlkZBGpUCjEqVOnqK+vx2KxEI1G2bNnD0tLS6ysrKBWq6moqKChoUH2MZ1Os76+zsLCAkqlkvr6eoLBIOFwWAoJmUyG4eFhab2PRCJ0dHTQ3d1Nc3MzarWaUChEZWUlLS0tzM3NEQgE0Ov15PN5Tpw4wcLCAufOncPtdpPP59m+fbusDBwMBikUClRWVlJbWyurnEajUbRaLTt27JDVUs1mM9XV1czMzLBv3z6KxSJHjx6lv7+fvXv3olarJdUILuVz7+/vJ5lMsn37drLZLOvr68RiMW6//fbLcr/39vZitVpJJBLAz71zkUiEQqHA2NgYFy5cIBQKcezYMebn5xkYGJA1PWKxGHNzc1RWVlJTU0MqleLixYu0tbURjUZpbGzEbDYTj8cZHBzEYrHQ1dXFwsICXq+XqqoqkskkuVyO9vZ2UqkUp0+f5sc//jGVlZXceuutUgAuFAosLS0xOTmJ1Woll8ths9mYn59n//79spqxzWZjYWGBUCiE2+2moqJCniUNDQ0kk0ngUrEqi8XC6OgoHo+Huro6GYcjhPbvfve7eDwedu3aRTabpbm5GbiUHnRoaIhEIkFnZyc2m41kMsnU1BThcBir1bqJNrO+vs6FCxf43ve+R2VlJTt27JDC6urqKnv37iUUClFfX082m2VlZQWfz8ett96KwWBgdXVVVi+ORqO8/vrrNDU1ybUoqhqLtSiKKx47doz6+nry+Ty5XA61Ws2+ffsAWF5exu/3k0wmsdlsRKNR9u7duykdaLFY5MKFC+j1elZXV+Vn2WyWubk5NjY2MBqN7Ny5k2KxKM/QhoYGdDode/fuJRgMsrKyQjabxWKxSPrW2NiYtPBrNBp2797N0tISy8vLaLVaHA4HOp2Ov/zLv+TAgQPs3buXjo4OPB4P14NOp8PlclFbW8vg4CBdXV2S2ub3+wkEAsTjcQ4ePHjd1LBllPFeQJkOVMbNi/8jd5w9e5Zt27YxNTXF6dOnGR8f33RZZWUli4uLvPXWW6RSKf7mb/4Gj8dDsVhkYWGBkZERJicnefPNN2Vl0a3udYXiUpXMtrY2ampq6OjowGAw0Nvby/PPP09LSwu1tbX89Kc/ZWRkRP5OqVTS0tJCfX09jY2NNDU1USwWeeONN4jH4xSLRbxeL0ePHsVkMjE5OcnAwACjo6MsLy+TyWT43ve+h9VqZXV1lbfeeoumpiYCgQAvvvii5MyfPHkSnU5HbW0tra2t0hNSirGxMWZmZmhqaiIYDJLP5zl58iSzs7PYbDZOnTolreZCGDlz5gxdXV088cQT9PT0kMvlMJvN/PCHP0Sv17O4uMjo6CiBQIC2tjZ+8IMfMD09LYU/gUcffZRMJkNNTQ0qlYqf/OQnPPfcc1JgValUm6gQQsiqqKiQgr6wzsZiMZaWlmhtbeXxxx9nYWGBqakpXnvtNRobGzlz5gxjY2Mkk0nsdjsej4f29nbq6uouy1f+1FNPodVqCYfDnDt3jpmZGUwmE9PT0wwMDDA8PMzi4iJ+v5/nnnsOs9lMIpHgzJkzmzxLAwMDjIyM0NbWhsvlYmVlBZPJxMbGBm+88QaFQoH/9b/+FwaDAa/Xy8DAAB6PB6vVysLCAm+99Rarq6tUVlby/e9/n3w+T2VlJSsrK5w5cwalUklrayu1tbVSOBwbGyMcDjM6OsrFixdJJBJYLBaef/55isUiL730EuFwGJVKxenTp5mensZut9Pf38+FCxfY2NigubmZRx55hHQ6jdvtpqGhQQpEpdxrUZn2Jz/5CfF4nHg8jt/vv8wCOj4+zuOPP47H48HtdpNIJEgkErK67/PPP08ikaCyspKmpiY8Hg979uyRyrjD4WB1dZVnn32Wrq4uLly4wOzsLLlcjnQ6zY9//GMikQihUIizZ8/yk5/8hK6uLvx+PxMTEwSDQdbW1nj88cdpaGjg/PnzzMzMoNVq6erqQqPRsGvXLiwWy6ZMP263G7PZTEtLC9u2bcNms/H8888TCASYmZlheHiY/v5+JicnaW9vp7u7m6GhIYLBILlcju9973u43W4mJyd54403GB4eprOzk0cffZSNjY1N54jZbKampoaWlhZaWlqoqqoCkMqIyJH/6KOPUiwWeeSRR4hGo7hcLrxeL8PDw5LCYrFYqK6uxm63s2fPHtxuN06nk0QiwcsvvywNCIuLi0xPTzM3N0drayt//dd/TSAQQK1WE4/H6enpwWAwMD8/z1tvvcXa2hoVFRU88sgjci0uLS1x9uxZmWDgf//v/00kEiGbzXLmzBkCgQCzs7NybanVal5//XW55wUSiQR/+7d/i8vloqKiAqVSSTgcplgs8vrrr5NIJCgUCqysrHD06FG59hsaGjadoU899RRGo5H19XXOnz/P9PQ0sViMkZERDAYDJpOJ5eVlAoEAzzzzDHa7nUgkIpWP2tpa2traaGxsxOl0cj1MT0+j1+vZv38/hw8f5vjx45J2ubCwQE9PD+3t7QSDQbLZ7C+dflhGGe8EZSWgjJsWgo6TTqdxOBxUVFQwNDTE6OjopuusViuZTAafz4ff76e3t5dEIkEulyMWizE/P8/p06fR6XRYrVbMZvNlGXQUCgU6nU5a+ZxOJ8lkkvn5eWZnZ3E6nbjdbnp6elhaWtpUkMvhcMhy98IKbbVaSafTpFIpQqEQg4ODaDQaWSXTZDLh8XjI5/PMzc2h1+ultdntdjM8PMzS0hLRaJRUKiUD/CwWCw6HA5vNdlmxpnA4zMTEBG+88QbpdBpACkPCSzA/P0+hUJCVMYvFIk6nk6mpKelxsFgs9Pf3o1KppDCi1+txOBwUCgUGBgY2CT4Ax48fl5bqVCrF0tISmUyGN954g76+PjY2NjZZzsRL3GQyUVFRsalap0qlwmazUVlZyfj4ONFoFL1ej8ViYWNjg42NDZaWlojH4+j1eqxWK06nE7PZfFlBICEwra+v4/f7WVpa2jQPBoOBqqoqhoeHWVlZkYGj0Wh0k7col8uxsrLCq6++KoNp7XY7xWIRv98PXKJq6XQ6stks0Wh00xwJq6XRaGRycpJCoYDFYpEWd4VCgd1ux2Qy4XQ6MZlMpFIpMpkMZ8+eJZ1OY7FYJL1EXJ/P5+XcLiwsoNPpiEajZDKZTXsmn89jNBqx2WzY7XZZuVVApVLhcrmIRqPE43HS6TRqtXpTwHMqlWJlZYWRkRHcbjc2m01WiFWr1dhsNrxeL7lcTj7LbDZTUVEh/y2s3j6fT8aERCIRWck5FApRXV0NXIo5GBkZIZvNks/nWVtbI5fLSW+Z3W4nkUgQCoUk9Uaj0VBRUXFZ9V6DwYBOp8Nms+FyuTAYDPh8Pimwh8Nhent7MZlM2O12FAoFc3NzzM7OSmVPnDOxWIx8Po/D4WBqakruNQGtVrtpn4qiV2Lfu1wutFotw8PDBAIBBgYG8Pv95HI5ac0XAqZWq8VsNmMwGKisrMRgMMg15ff7sVqtkpIm1n46naavr09WwVWpVKyvr0sqkqiyazQamZqaolgsblqL4twIh8OyEnIkEmFjY0MGzRaLl6p6r6ys4HK5pBKQy+UIhUJ0d3djt9txOBzo9Xo5FzabjXQ6TTqdJhgMMjQ0tOkMFeeo2LvxeJyNjQ3W1tZYWlpCpVIxNjbG2bNnZduHhobwer1SIY3FYqRSKaxWq7xvqZfialhYWJB72W63c/r0aVn4MJFIMD8/z6uvvvoriT8qo4x3irISUMZNC436khLgcNgB6OjowOv1Mj8/v/m6/1PxtFAosL6+TiqVIhgMotPpMJvNpNNpzp8/T2NjI3q9XgokWyEsdAqFgnQ6LV946XRaCnA+n09SHgTEb0TgpUKhoKKigkwmI0vbr62tkc1mMRgMOJ1OWlpa2LlzJ/BzJUan01FRUYFer2dsbAytVksymaRYLNLY2Eg8Hpec93w+f5nwYTAYiEajnDhxgng8TiqVkgJRIBDAaDQSCARIpVJoNJpN2ZHy+TwVFRXU1NRgMBgIh8PAz4V/h8MhLXYTExOEQiH53GKxyNTUFLFYTPa5qqqKxsZGzp49y1tvvcXy8vImpUX0Q4y5eLEWCgX0ej3Nzc0YDAZJ+bBYLFRWVrK8vCzbJ4QxMf7i2aJNcCnOQGTwUalU+P3+TfPQ3NxMV1cX4+Pj6PV6YrEYWq0Wj8ezKWjZ5XJRLBZ55ZVXGBgYQKvVotPp0Gg0UviyWCzkcjl0Op0UflQqFSaTiaqqKslLFm0T61b8XlRBFZVQdTodcIlmJRQdu93O/fffD4DH4yGXyxEOh9HpdKytrcnxcDgc1NfXyzEU8TBirLYGYCqVSiwWC9u2bWN1dZVIJILNZqO5uVkKcKlUSipHJpNJCqQajQalUolWq0Wj0Vw2t+KZSqWSYDDI/Py8XIsejweDwUA2m8VsNlNZWSnnPpfLkUgkCAaDOJ1O1Go1Wq1WKogajQaz2Uw2myWVSm16ZiaTkVbc0jgRpVKJSqWStTaqqqrYvXs3SqWSyclJSRmpqKhgY2ODhYUFLBYLVVVVaLXaTUqn2DdbOf6l41woFOQ+LRQKeDwe2fZ4PM76+jrJZFJa3B0Ox2VnUuk9BWdfrVaj1+upqanhlltuwW63o9PppCKVTCbJZDKoVKpNArBYi0LREftFrEWVSiW9GZWVlZhMJvR6vTxbisWiXNdwyaNnMpmk10UYXjY2NjAYDPJPKAJut5t0Ok2hUCCXy8lzUfSxUCiQyWQAaGxsJBQKkU6nUSqVMlYolUrR19fH8PAwqVSKsbExDAYDkUgEg8FAbW2tPCuVSqVUrkTih60CvPhMGBjS6TRms1l6HoTSVCwWOXbsmDTMvJ2A4zLK+FWhrASUcdOjWPx50JZOp5OWNSE0Cou2sEaaTCa2b9/OwYMHufXWW9m7dy82mw2/3y8FRfEn7gM/VwJEkKYoHiRSCopDvzTQTvwbLnHyZ2dnKRQK/Pmf/zn5fJ7GxkY8Hg+FQgGfzyctwkJYMhgMtLS0MDY2hsfj4aGHHgKQbv/W1laOHDnChz/8YZxOJyqVimKxSCAQuEwZampq4pOf/CR/9Ed/xMTEBJOTk3z729+mu7ubffv2UV1dTaFQkLxWYcEV/RQv8tIx3TrOgUAAm80mX4riz+l00t7ezo4dOzhw4AAf+chHsFgs/MVf/AWf+MQnyOVyvPzyy5fNrRCkxsfHpYBT2i7x3DNnzvC3f/u3HDp0SNKLBG1EzNnU1NQm630+n+cP//APMZvNbNu2DZfLRT6fZ3V1VfKchQDrdrtxuVy0t7dz55138oEPfGCTQKbT6Thy5Ajf/va3aWlp4dixY6yurm4SKu644w7Gx8ex2WwcOXJEeoVEekdBdxKCoxhj8Ve6Lks/czgcMtOJELLy+Tzf+MY38Pv97Ny5k6qqKgqFAqurq6TTaRQKheTDi+cJwTSXyzE+Pi6FZPEchULBQw89xPnz55mampJKSOkYwKVMMqVtvVK7S9tf+v96vR63243b7WbHjh08+OCDkr4DSDqX2WzGZrPhcDjYuXMnt912G4cOHaK6ulrudXHffD4v2y/W08LCgvRWXWmMi8Wi9D4BUtANhUIUCgXi8ThqtRqTyUShUJCKmlifYh+W9q8UYi8Fg0FmZmbkNULIFu0QXhkRg3Trrbdy8ODBy3LUizU+MzMj13ypt+P8+fOcPXuWQCDAvn37UCgUcp9v3ctiLZaOxZXWovDyiO/y+TxutxuDwUAwGCSZTPIv/+W/lPcVZ6FOpyMSich5EffLZrP8+Z//OXBJwK+trZX7UfRDnKH5fJ6vfe1rOJ1OOjs7cTqd5HI5RkZG+J3f+R3+4A/+gK6uLp577jm5dzs7O7nrrru47777pNIo6JgrKysAUsEoHQ+4lM3Jbreze/du7rvvPu6//37a29sZHR0lHA5TVVXF/fffz7e+9S1mZ2eZmpraZAgpo4z3KsqBwWXc9JiemWZsbIxnn32We++9l/r6emZmZpienubkyZMYjUYGBwelVel973sfp0+fxmKxYLFYsNvtfOUrX+H73/8+RqOR5eVluru7CYfDfOITn8BoNMpCXPX19Tz66KN0dHTQ0tLC7t27yefzvPLKK0SjUT72sY+xa9euTVSD1tZWXnvtNVZXV6UlUVAWEomEpMaMj4/T39/P6uoq2WxWZlbp7++XQmlDQwOf+MQn+PjHP843v/lNBgcH8fl85HI5jhw5woEDBxgcHJSZWEpx8uRJFhcXuffee9m7dy+tra24XC6ZQScejzM9PU1tbS0TExOMjY2xtLRERUUFs7OzXLx4kXg8jtfrZWlpibm5OdLptLSOxWIxpqen+f3f/31Jn5icnGRycpLf+73fo6+vj7m5OWpra8lmszz77LMEAgHJsfDzkQAAkLhJREFUxd4aSFdRUUFVVRVHjx6loaGBxcVF5ufnWVhY4Pjx46jVamZmZpiampLei5GREUnx0ul0dHZ2smfPHl566SVuvfVW6uvr5f0F5WZxcVEKRT6fj5aWFgYHB1lcXCSdTvOhD32Ij3/843z961+nr6+PyclJVCoVhw4dkvfq6elhdnaWgwcPUlFRQWNjIz6fj/7+fqampiR1RIxZVVUV99xzD3v37qWvrw+tVksoFJJBmKdOncJgMDAwMCD53MePH2dubo6Kigqy2SwDAwNUVFTwr//1v+anP/0poVCI7du3EwwGef/734/JZCIQCDA3N0c4HGZ2dhaXy8X8/DyJRILjx4+jUCiYn59namoKm82G0+nklVde4fbbb2d+fp7p6WnUajXnz5/n8OHDbNu2jWQyicPhYNu2bZvmS6/Xs23bNu677z6OHz+OXq+XgdBNTU1ks1kmJyeZnZ1ldnaW/v5+YrEY73vf+ySF75577uHWW2/le9/7HufOnSMSidDa2komk+G1115jamqKD3zgAzQ2NtLZ2UkwGOTo0aNYrVZcLheTk5N0d3czNTXF5OQk/f39LC8vo1KpOHDgABaLhVdffZV9+/ZtChAXbXrjjTdkoPrExATHjh3jrrvu4vDhw1RUVPDKK69QKBQYGhritttuw2638+KLLzI0NMTExASDg4MyILxYLDIzM8PFixdlvI7A/v37GRwcxOv1sn37dqanp1lcXOT06dNyby0sLBCJRLjlllvwer28+uqrkj5ltVrlGWM0Gtm+fTsvvPACdXV1rK2tMTExwejoKEePHuUDH/iAtKwHg0FOnTqF3W5ndnaWsbExZmdnWVhYYGVlRcYGhMNhGhoa5FrU6/UMDAzg9XqZmZnh+PHj9Pf309bWRqFQoKenh0wmw+/8zu9w+vRpVlZWcDgcnDhxgq985SuYTCapvFdUVPCZz3yGs2fPotfr6enpYWRkhPPnz6NWqwkGg8RiMRYXF8lms3i9Xpqbm3njjTfI5XJ4PB5aWlqwWCzMzc2Ry+Xw+/2y5sQLL7zALbfcgs1m41Of+hQPPPAAf/qnf0pvby86nQ6tVsu+ffs4dOgQZ8+epampiZ07dxIIBPhn/+yf8dhjj2G326WSHAqF+NM//VNJF62rq5Mewe9+97v883/+z4lGo/T29vKpT32K3bt309HRgd1uf6evtDLK+KVBUSyT18q4SfGzsWU+5vPw/xv5If/1Cx8lk8lI+oFwJYvAs2g0Si6Xw+12S+uXsPQKa28wGJTuYZFrv7m5eZPrXuT0FrED2WxWegLES85gMGyKKcjn86yvr1MsFiXPXRRHEtYokUkjHA6jVqul4nHq1CnUajXNzc1oNBqWlpY4fvw4X/va1+Q9VSqV5PAKvrpGo5GuegFhnRM8XrPZzPr6OoVCQbY3nU5jtVpJpVKS5mS1WvF6vVitVslpDwaD1NbW8qMf/Qi9Xk9HRwfNzc1kMhlcLheFQoFYLEYsFqO6uloGdpa2V/RVq9WiVqsvoyYkEgnpkRAc9XA4TDabxWazoVAo8Pv9MhYhkUhgMBgkXUvwvAUP2W63o9frN6VhXF5elrxokZ3EZrMRDAZRqVQYDAb57EAgACDbLJ4l2pVKpSRNR9wvkUgQjUZRKpU8//zz3HvvvVitVubn5zl27JhUmBQKBXq9Ho1GIwOERZYcoRAKSojZbKZYLBKNRjGZTJjNZmlZFWvabDbj8/kktUXMrcViIRQKoVarpdK1trZGZWUlKpWKdDpNIpGQQtDGxoZUgEW/X3vtNTweD52dnZelQUyn0zLgXavVSnqWKES1urpKdXW1pOgUCgWcTidra2vSi6fRaDZZs3U6HcViUfbf7Xaj0WjIZDIyiFRUwhb7MZPJUFFRwfr6OiqVCqPRiMFgkM8xm81y34t59/l8kg6oVCrx+Xy43W65F0UsB1xSHMxms5yjZDKJ2+0mGo2Sz+fR6XQYjUbJiRfnUunajsViKBSXUhirVCpWVlaw2+1oNBqy2SyhUIja2lpJeRPZwURfxdiLaxUKBUajEZVKRTKZJBQK4XK5ZBYlQVER1B2TyST7ns1mqaysJBAIXHUtlp6hpTFIgBSKn3rqKfbu3UtVVZXcn+fOneOLX/yipFgWCgXC4bA8gyORCLFYTArXpediKpXC4XCg0WjY2NigUChgNpvl2IpsUqIf4gwUlDmxzq+0dwXNSsy5SE7g8XikR0Z4OMS4iPgB8X4R3pp8Pk88HpdzI+ZUzFFPFG7phu5bYP/bqwVXRhm/UJSVgDJuWjx6dpDfTu/iy+e+w1/97hc3Zfy4HnK53CYubennAoJWsDUvdyk9qPRFUcr13YqtMQKlbSh9fulvk8kkvb29BAIBWltbUavVrK6u0tfXx7//9/9eUjeATQGvpW0phXC7Cw5r6fVCOL9SO64EIeB+5zvfQaFQsGfPHu65557LxutKzy99lhBurjZuYmxLX6jXapPwmJT243r3uN48XOnarXSMUirJ1hz0+XyeUCjE448/zh133IHZbJZZf7761a/eUN9uBIJeUSpsvt25vdpYRaNRjh8/Tnt7u7TmXi2jiriHUKgFz/7t9LF0Lm+kvWL93MgaeafVdcXvs9mspOv9U1BKH7yRa7fS8ra263r7ROy9reP0bqw90YbHHnuM5uZmXC4XcEnJDoVCfPCDH9zk6Sudt9J9I+hapfMj/nujZyj8fGxLz4Ir7d2rnZXvpO9izV5pbZSVgDLeqyjTgcq4aaH+P4e5sGK+nZfZ1iwx1/tc4EqChvAAXAtXeslc7zcajYbGxkaZyUh4EkQ+7qvd42pChXgBbv3+RoSQK0EE+Ipg12sVTyt9filu5DfXG6fSa690v+vd40bvf61rrza2cGnuRbElQHopdu/e/a4pAHB5LIr47O3gamMlPA+JREJSMW7kHluzbL2ddlxvbVyrvde6/p2ud/H7d9qnrXg77bjete/0DHq3sX37dorFokyAIPL0XynbWmnAeymu1o+3c4Ze6fO3c1a+XYj3wru1Nsoo45eFsiegjJsWv0nWldLAxjJuXpR6kW42bM1yU0YZV4OwjP8yFI+bAb9J76oybi6Ud2gZZdwEKCsAvz64WedxKz2jjDKuhvJ5VUYZNwfKSkAZZdwEKL9Qfz1ws8/jzd7+Mn55KK+VMsp476OsBJRx06NQKBAMBvnGN75Bd3c3sVjsV92kG4KodHqjyOfzMnf7uwURKFwaEP1eRiKRoLe3l2984xsEAoFNwYKpVIre3l6+9a1vsba29gtviwgyzeVym9rx647SdZvP5+nv7+e73/0u4+PjN3yPwcFBzp07RzAYfEdt8Hq9vPjii3z3u9+VhZzeeOMNmXM/k8nwzDPPMDAwwNNPP80Pf/hDfvKTn/CDH/zgF7LWxTOvtw7y+TxTU1P8+Z//+WWVzd9NiArpL7744rt6Zqyvr3Ps2DHW19fluXG18YzH4wwMDDAwMHBZ4cKtyOVyBAIBjh49KjMw/TJRWoTsnUKsgTLDuoybCWUloIxfC6hUKubn5wkGg//kw/wXDcGXnZubkwWLbgR+v5+FhYV3tS3hcJhAIHDTFLZRKC5Vs/3/s/feUXId55320zlO93TPTE9OmAEGOWeCFINgkgqUZUm21kFe20dayzY/fzpe7drrz7aslRVory3JlmyJsimSkiiRFDMJkghEzsBgAibn1D093dM5p+8PbJV6BgMQpECJMO9zDg8x3bfvrVtVt269Vb/3fUdHR4nH41fp1I1GI5cuXSIej/9CyuPz+WSW5fcKY2Nj+P1++bfRaKS7u/stTehTqZQMGft20Gq1BINBaXiIcJIi+6vP52NoaAi1Ws3MzAwzMzOo1eolM4HfLAYHB990AUKlUmEwGOjp6ZFZt98JhIEqskHfLHK53ILnbnp6WibaWqoM6XT6hifG70R5b5RwOMzw8PDPdY5UKkVfX59iBCjcUijRgRRuedKZNFqzlsrKSnQ63YJwbSLlvE6nk7Gnc7mcjF4h4tNHo1F5jFjpNJlM8gVWnC3XbDaTTCYpFAoyz0BxvG0RElGtVhOLxTCZTAvC0+l0Oubm5jh79iwrVqygpKRkQXz84rIDMuZ8X18f09PTuFyuBWUT51Wr1SSTyQWx4ROJhIxZLVb9M5mMvO/h4WEikYjMTCrOYTAY0Gq18j4tFovMh6DVamV2V7iy6ijC+hmNRpn9szh3QnGoR9EG4v50Oh0ajUbG2l5cX8U5DOBKcqTKysqrdlEMBgMrVqxYkO1TlCWbzWI2mxfUrchemkwm5bVEPHgRk138LfI4pFIpGVZQq9Vy6dIlzGYzTU1N8j6EQVAcq1wgYrWLyaDoayISjrgnUY/iekajUZZLrDaLOk2lUjI3QbEjpujn+XwejUZDJpORsfTF/YmY9uI6Ija/OL44BK1WqyWdTnPq1Cmam5uxWCyyzkX/ymQyMiOx2WwmlUrJ64uMwvl8XsZb1+v1MtuxyAcg7ndxGE/RrolEAqvVSmlpqTynWq3G5XJhtVpJJBKMjIyQTCZlTgGLxcLq1atZtmyZzClR3DcjkYjMci3qRlxLjB9qtZp4PL5gjBHPcywW48iRI9x5550sW7ZsQbbh4j6fSqWoqKjAZDLJyDRisixCfBbndRDXEGFN9Xq9/Fy0uaj3TCaD0WiU/Vin08kEZSIngVarXZANW/STxc/itcKQ6nQ6XC4XBoOBeDzOpUuXUKvVOJ1Omald3LdGo5H5GBb3p0KhIPNsCDQaDTU1NXLcEeUU44hOp5P3KsZdkUdEPBdiDBKhgfP5vHy+RZtks1kSiQRms1mOM5OTkxw/fpy6ujqZS6R4p6M4V4SI1CbeFeJZ9Xq9HDp0iMbGRjmWKpIohXc7ihGgcMtyZTKkZnR0FHUuJCesgEzmMj4+jtFopLa2loqKCuBKcqSRkRE5mSwtLeXQoUPU1dVRW1vL+Pg4Pp+Pbdu2MTIyQiwWw+FwoFKpiEQi7N69m97eXlKpFNXV1TQ2NlIoFJiammJqagqz2SyT9Lz++uvs2LFDJpupqKigrq6Ohx9+mJmZGaLRKEajcUF233w+z9zcHKOjo2i1Wplt8+jRo3R0dOB0Otm0aZPMPqvX67Hb7dhsNi5evEh5eblM1nP69Gne//7343Q6iUajeL1ePB4PZWVlVFRU8NxzzxGJRNi4cSN6vR6j0ciFCxdYu3YtVVVVXL58mUQiwfve9z7a29uJx+O4XC5isRgbNmwgl8sxMTGB1+vFarWydetWotEoExMThEIhdDod9fX1VFVVyRdiNptlfn6eyclJ8vk8zc3N2O12gsEg+/fvZ8eOHczNzaHRaKioqKCpqYlCocDw8DCxWIzp6ekbknRks1kikYhsz9tuu41UKoXH42Fqagqn08nKlSvp6OhAp9NRUVGBVqtlYmICk8lEQ0MDer2eyclJzpw5w2/91m8xODiIz+dDp9PR0tLCd7/7XbZt20Y8HieXy+Fyubh48SI6nQ6j0YjL5aK6ulqWqa+vD7/fL7O8TkxM4PP5aGhoQK1WyxX2zZs3E41G6enpwefzsWHDBqamprDb7czPzy+YMPX29rJy5UoqKiowGo3yGQgEAoyPjxOLxWTysObmZsbHx2X261AoxOrVqxkaGiIQCGAwGFi2bBllZWV4PB7cbjdqtZqqqipqa2sZGRnhxRdfpKWlhUKhQFtbGy6XS/Zbj8dDT08PGo2GO++8k97eXpLJJE6nk7a2NuDK5HZubk4m2IrFYpw/f541a9aQy+VkmUSs+cVt2tHRgV6vx+v1ynsdGRkhEAhQWlpKNpvl9OnTzM7OcuLECQYGBsjn8/T09OByuQgGg8zMzKDX63G5XNTV1fHaa6/R0tJCLpfDYrHIDMcXLlxAr9dTX1+PzWbj6NGjNDY2kk6nyWQylJaW0trayrFjx3jppZekob1y5coFIU6FZLGvrw+73b5gMpxOpxkZGSEYDOJ0OmVyrp6eHiKRCDU1NYRCIaxWK8uXL+fy5cuk02nWrl0rE/uNjo4yOTnJ5s2bcTgcxGIxRkZGZCKu8+fPo9PpqK2tZXp6mqqqKmkQ+Xw+xsfHUalUNDQ0yH60mEwmQzgcZmpqipaWFjo7O3nttddQq9WYzWbuuOOOqwze4eFhamtrZd/w+Xxycr19+/YFBs/IyIhMIjY4OIjH46GyslIaPQ0NDSQSCWZmZqiqqqKlpYXTp0+jUl1JJiiSRa5duxa9Xk8ulyMSidDd3Y1KpWLt2rXodDo8Hg9nz55lz549uN1udDod7e3tPPXUUzQ0NLBx40aZ+G1qaorZ2Vl27dqF1WplamqK6elp0uk0tbW1TExMsH79emKxGCdOnOCll15i2bJl7NmzB7vdftNCkCoovFMociCFW5aOzg4AspkM27ZtY3p6mng8TiKRYHh4mG9/+9ts3bqVTCbDyZMnef3115mdneWLX/wiq1evZmxsjHPnzpFMJrHZbOzbt49MJkMoFOLy5ctMT0+zZs0avv71r9Pd3Y1Go2F2dpY///M/Z9myZZw9e5YzZ84wNzfH5OQk//Zv/8aKFSuYnp7m2LFjqFQqBgYGePbZZykvL8fv9/Od73wHrVbLbbfdxpo1a9i0aROrVq1aeF8dHQwODuJ0OtmyZQu9vb1UVFTQ3NxMW1sb99xzDy6Xi7a2Nl599VWeeuopAHp6erBarZw5c4axsTE0Gg2dnZ2Mj48zPz/PT3/6Uw4dOsTGjRt54YUXUKlUtLa2smXLFrZt20ZbWxt1dXXs37+f/v5+Gdv+X//1X2Wm4b6+Ph5//HGy2Sxut5uvfvWrjIyMsHLlSqanpzl9+jSPPvooarWa9evX43K5GBoaWrBF7na7+bd/+zfWrVvHyZMnOXnypMzcOzg4yLPPPktlZSUej4eHH36YfD7P9773PdxuNzU1NdJQezM6Ozs5evSozK766KOPMjc3Rzwe5+zZs/h8PvR6PV1dXUxPT+P1enn44YfZsWMHsViMw4cP097ejt1u54knniCTydDY2Mj09DTPPfccZWVlrF+/nu3bt8tY6EePHsVqtbJp0yYCgQBut3tBmerq6ujq6uKll17CbDYzNzeHSqXilVde4dKlSzQ0NPDSSy9x6dIlNBoNwWCQCxcucOzYMYaGhqiurub48eMcOnRIZpe9fPmyXBkWZDIZvv71rxOJRDCZTDz22GNs27aN5uZmjh8/zrFjx5iZmaG9vZ1XXnmF7u5uysvLsVqtfOtb3wLgsccew2Kx4Pf7eeihh8hkMixfvpyGhgY2b97Mrl27pGENP8tTkEqlOHjwILlcjr6+PkKh0IIJvdFoxO/3MzIywvT0NPX19Tz33HNcvHgRjUaD0+nki1/84lX6+lgsxuc//3lqampobm5Gr9czNzcHIJ+Frq4ubDYbW7dupbW1lbvvvpt169axatUqOVl7+OGHqa2tJRwO89prr5FKpTAajTz22GNcvnyZWCzGwMAAn/vc59i8ebO8j8uXL2M2m/m7v/s7nE4nU1NTHD16lPn5efbu3Ut5eTnbtm1j1apVV8Wkf/HFF3niiSdYtWoVDQ0N+P1+kskkbrdbGvdbt27lzJkzHD9+nEAgwLJly/jLv/xLuZtz9uxZ/s//+T+sXbuW5557jqGhIaanpxkYGODs2bPs3LmTr33taxw/fpySkhJqa2v53ve+Jye+4lnbtWsXX/7yl/F6vZw8eZLTp0+zbds2GhsbGR8fv6akSeyADA0NMTo6yu7du2lubqalpYXbb7/9qntWq9WYTCY57vb19eHz+VizZg2jo6ML2tdoNNLa2sojjzxCMBjEZDIxMzPDN77xDdauXcuBAwd4/vnn8fl8NDY28r//9/+Wu1gXLlzgxIkTbN26lfPnz/P0008zMTHBuXPn+MY3vsHWrVtZtWoVjzzyCCdOnEClUnHp0iWOHj1Kf38/FouFlpYWmpub2bt3L9XV1fj9frq6uhgeHmbLli08+OCDeDweampqiMVifPnLX8ZsNpNOpzl27BiBQIDbbruN0tJS3v/+91NaWqqER1W4JVB6qcIty9DQEACtrctRq9VUVlZiMBiYnJzk3Llz1NfXo9FoWLFiBW63m+eff54zZ85I6cZdd93FnXfeidlsxuFwSGmN0WiUW9sWiwWHw4HL5cLlcuF0OrHZbBgMBiwWC/l8nqmpKQ4fPoxer2d4eJhsNovJZMLv9+NwOFi2bBlWq1VKhgApx1kqwVNNTQ1ut5svf/nLPPTQQ6xcuRKr1Sq36YVMxWaz4XA4qKioYNmyZezcuZOysjJ5Pq1Wi81mA+D8+fNks1lcLhcWi4Xf+73fw+FwyK16UR6dTofJZJJyAZvNJlfwrVYrFRUV1NfXs2nTJtLpNMFgkImJCaamptDr9fj9fhobG/nhD3/IF77wBY4ePcrq1asXvBDLy8v5+Mc/zpkzZ8hms/j9frnyX1paSktLi6wv4XT78ssvU1dXJ6VQlZWVb9o/VqxYwbp16/B4PKRSKUZHR4nFYixbtoy7776bgwcPMj8/z5YtW9BoNPT29lJXV4darZar42fOnEGv10s5gMVikXIDISESdWez2aiuruYrX/kKX/3qVykUClKOISgtLaWyspKSkhK8Xi/ZbJYNGzbw4Q9/mKamJi5duoRWq2V8fJx0Oo3RaMTpdFJfX8+HPvQhbDYbO3bsoKGhgWPHjjExMcHHPvaxq+ojm83KsqlUKvL5PA6HA71ej1arxeFwsGbNGu6//35eeukluTo/NTUldxP27t1LKBRiZGSEbDZLOByWfXCxxEtQUVHBunXrGBkZIZ/PU19fT0NDA6WlpfIYlUqFyWSSq82i/pYtW0ZTUxMmk+kqXxlRPo/Hg81mk/+JLLQmk0k+F0L2Ip4V8YxlMhneeOMNtFotY2NjxONxrFYrXq8Xh8NBVVWVnKTH43H8fj8DAwNSPhaNRnE6ndTV1WG1WqXUJRAIyLoQ91JcL4FAAK/XK2V3JSUl2Gw2tFotIyMjHDx4kDVr1qDRaGhoaMDr9XL69GksFgtOp5PKykrKy8txOBxYrVYMBgMlJSXEYjF0Oh11dXXU19fT39+Pz+cjnU6j0Wgwm82yXFarlerqahoaGmRdFAoFXC4X8/PzfPazn+WFF16gqanpmongRH8vKSmRchhRt8V1L9BqtdjtdimhnJqa4plnnuHLX/4yNTU1C8YEsZsgDAmz2Ux5eTm1tbWYTCbMZjMul4vS0lJUKpX0+7JarVRWVlJZWYler+euu+7i9ddf5+LFi7jdbqLRKAaDAbvdzsjIiPRfsNvt1NbWsnfvXhobG68aW8U453A46O/vJxgMks/n0ev1lJSUUFZWRlVVFWVlZcRiMWKxmKzrpepCQeHdiiIHUrhlSSauaK91Ou3//f8V3a7QQgt9tUajkTpQoceGKxOyXC5HIpFYsP1dHC1HaExFRlwh8xC6f0BOVO12u5TZ5PN5qau3Wq3y5SZWxMULMBwO4/f7KS8vX3D9+vp6PvCBD1AoFDh79ixVVVUAUuvqdruprKyUEzZRRlE2cS1hdORyOWnkCINJbLOr1WoymQxut5vq6mqpCRc6ZrFip9FoMBqNcvIlXtolJSXU1NRIaUckEmH79u2EQiEKhQJdXV3ccccd8pzBYJCDBw9y7733UlZWJrXWkUhkyfoS0V9End9oNtnh4WHGxsaoqqrC4XDIiZyQ0vh8PgYHB2lsbCSVSuH1ehfcq6g7tVq9QM+ez+dlXYr/QqEQ8XgctVrNr/7qr1IoFBgfH8dkMsm2gysTo+XLl5PL5Th58iROpxOz2cyJEydIp9O0tLRQVlZGKpUiEomQyWQwGAzS4FOpVKxcuZJEIsGZM2e4++67cblccrdDoNPpqKysJBKJoNPpuOeee2Sdij5ssVgwmUxkMhkpQ9FoNJhMJnw+H11dXaxdu5aysjJ0Oh2hUEg61oqJ2Pz8/IL70+l02O12GhoaOHHiBBUVFZSXly+5SiyeH1GHFotFGluL5V7i3kKhkDRCxMSt2J+juA6WmoTlcjn5nNbX15NOp+VzWlJSgtVqlfWi0WiktC6ZTMoVeWGQi0mf6CfierFYjEQiIXdJVCoViUSCeDy+IEtusT69OAdDNpuVE3mTyYRer5djj9C1C18Aj8dDLBYjFAqxYsUK6Yck+qIYC8SzK6SFYhyyWCwsW7ZM+vz09fVJX42l6vBaGZez2Sxzc3NUVVXJaxYfm0gkWL58uRyvTp06xa5du2R9iHFJXE/4P4j+IMpf/ByK+xLjlfg7mUxKWVYikZD1kEwmF/jDlJSU4HA45DnFtYVsyev1kkqlaGpqIp/PEw6HpWRQGJ3Cr0a8V0Td+nw+TCaTNFIVFN6tKDsBCrcsDocDAK93jmg0SiwWY35+HpVKRVVVFdFolFAoxPT0NGazmba2Nqqrq4nH44RCIfx+P6FQiGw2i8ViIZ1OEw6HCYVCBINB5ubmCAaDpFIp4vE44XCY+fl5ufITjUYJBoMkEgkaGxvly6GsrIzy8nL0ej2hUIhQKEQ0GiUejxOLxQgGg1gsFpLJJHNzc/h8vgX3NT8/LzW2GzduZGJiQjpOCqfiubk55ufnSSQScsIIV1bG8vm8nBiEw2G8Xi8VFRXodDpZZhHRxmw2A1ciD7ndbgqFgjSO5ubmmJ2dJZFIEIvFCAQChEIhEomElFBVVFRIx2axmhqLxVi9ejU7duzA4XAwNTUlX9qFQoFAIMCBAwdwOp1YrVYymQzBYJD5+XlZ96I9RRu2trYyPz+Pz+cjGo0SjUaZm5tbICnI5XIEg0HZPr29vXR2dmIwGOSLPhwOk0wm5a6G0P9XV1dLHXAoFGJqaorS0lLq6+tRq9WUl5czPz/P7OwsgUBAtmVpaSmhUIjZ2Vncbjfz8/PceeedbN68Wa4mL6apqYmamhrOnj2L0+lEpVJx8eJFhoaGpFEQiUSYn58nGAwSDocJh8PS+KiqqsJut0vfhMUr8sJIErti09PT1NTUyDInk0lZryqVSu7UCClOQ0MD8/PztLe3y0mzTqdjcnKSXC6H2Wwmk8nIfhgKhWSdCyflnTt3cvr0afR6vdyNEmSzWeLxOMFgUD4/yWSSSCRCIBCQn8ViMdm+YqVY+I6IviL6s2j3eDxONBqV34t7Fs+heE5Ff62srMRsNuP3+2XdwM92bMTKb3l5OXa7Hb/fTzwel0ZrKBSSuxbCwTgQCBCLxeT9ipV7sVMmvg+Hw+j1eikxE+cSvkpi7BFjRjAYlPcj7nFiYoKBgQF8Ph8WiwW9Xk8kEsHr9cp2iUajclwTnxXXv9lsZu/evVRVVeHxeIhGo3g8Hrq6uha0mwijGQ6HCQQC0mk5k8ng9/uvkhEJ3x/Rl+12O+vWrWPr1q3SH6j4WNFeiURCjgPCeBJ1HQ6HF5RfOFuLMWFkZITly5dTVVUlxyWfz8fs7CxOp5OSkhLp2yDGfuHwLOR5c3NzDA4OMjY2RjgcxmKxoNPp8Pl8+P1+IpGIbBfxDhE+QVqtFp/PRzgcvunhnBUU3gmUnQCFW5aNmzaCB9rb22lI1ePz+ejp6aGiooItW7ZIbb2Qebz//e+nsrKS119/ncHBQSmREC+NVCrF2NiYnOhdvHhRTjq8Xi8mk4menh4ZcnB2dpZsNktFRQUf/vCHOXXqlAwzJyQrk5OTZLNZKisrZSjO3t5eVq1aRSgUwmAwkEgkFtzX3NwcMzMzTExMsHz5cm6//XZsNhsul4vZ2VkuXrxIfX09AwMDuN1u6cy6evVqXC4XhUIBj8cjV9gvXrzIH/3RH+H1epmampIOh9u3b2fZsmUMDAzQ19fHli1bAFizZg3pdJqLFy/KVc2ZmRkGBgakk6Xf76e2tpb169eTTqdpb2/HarXicrm4cOECoVCI6upqqqqqaG5uXrD1r9FoKCsrY3Jykkwmw/z8PLlcjqqqKllfQpcbDAYZGBjg05/+NENDQ0SjUSmvuHDhAuvWrZO7Aul0moGBAYLBIB6PR0bDCYfDRCIRuUoonJv37t2Lx+OhUCjQ1NSEWq2mt7eXwcFBOjo6WL16NStWrECv17Nlyxa6urqkA3gkEsHtdrNu3To6Ojqora3FarUyPT3N7OwsK1euZN26ddJptpjy8nLKy8sJhUKsXbtWhq5Mp9PMzMzIa7S0tEinTZPJxLZt2+RKsM1mo7m5merq6qtWa8UO0PT0tHQiFtF4DAYD8/PzpFIpenp62L17N7/1W7/FCy+8QCaTobq6mmg0Sm1tLSUlJfj9flKpFCaTicuXL7N7925aW1tJJpP09/dTWVlJf3//AgOpoqKC97///Zw8eVI6mxcjpD3Cb6W5uZl4PC6fydnZWWKxGG63W2r/hbTkvvvuY2BgAJPJxMTEBH6/X4YJ9fv9+P1+2ccnJyeZmZnB6/Xi8/koLy/nE5/4BGfPnmV0dFQ6B69du5bLly8zPj6Ox+OhqakJl8vF1q1b6ezslPKdXC7H5cuX8Xq9zMzM4Ha7GR8fx2KxcOedd1JWVsbExISUtAlMJhPr1q3DbDbT0dEhfSLGxsbYvXs3999/P/v27cPhcDAzM8Pq1atZs2YNvb29RKNRZmZmGBsbY3BwUNbL7Owsg4ODuFwudDqdbE/hKDw2NkYulyMcDjMxMcHk5CTz8/Nks1nq6+uJxWIMDg5Kg7ZQKFBeXi6d4Y8ePcq+ffv4/ve/L+9DTJ4nJiYwGo3cfvvtUtbW29vL5s2bF/TFeDwux8v5+XlZps2bN/Mrv/IrC3bzUqkUAwMDhEIhucAxODjI7OysHG+z2Sx6vR6n00kkEmFgYED6zYRCIcbHxzl79iyf+MQnWLZsGW63G6/Xy6VLl4hGo+zYsYOmpibC4TAzMzNcunSJtWvXSrlQU1MT586do6GhYUGkr76+Plwul/TfGR8flw7Svb29jI+PU1ZWRjqdpqysjEuXLrFx40a5wKKg8G5GVVCC2ircolwIF9h6UcWZjVnW6n8WCrE4LGM0Gl0Qjk8Qj8fl5EIgQjIWSz2WipJxPZY677UQcqXFW+xCciL+K3b4FCHyij8TiK1oMQkUkgpxHyqVSq6cFb+gxHa2kJQUJz4yGAwEg0FsNttVdSiOzWazchVMSH6EZrdYplIsQxB1ZTKZFpzveojEXEKipNVqF4RiXGooK75f8b0IEXn58mXWrl2L2WxeYKREo9GrPoMrMg8RqjOdTlNSUiJlMUIbLWQI+XxeytOWui8RvrD4GkJ7bjKZrvpOkEql0Ol0eL1ehoaG2LNnz1V1l81mefbZZ6mrq6O1tZXS0lLm5ub4u7/7Ox566KEFbV/cJiKcp2gT0Y+KwzOKMgkJnJCNFLdRKpUikUhII3axJOKtvnIWt28ymZShLjOZDGaz+S1HYUkkEgvCZF4LEXL3WmEzi8tYXF+Ld2dEe6fTaRna0mg0Sv04QCQSeVv3Iq67lH/RjfxWyCeLpYRi101EdBLHLoV4LhdLiIqPL47alk6nrwon+nanIV1dXVy+fBmAj3zkIwvGE3Fe0V+W8mFZTDKZlGO+GBeFf8mNItq4WJ52MQJbLsCFLbB5aZcLBYVfCspOgMIti4xHrb6inRWTd/GdiG9f/JlAxKgufgmJaBbF51n8uzdDTLBu5DfXemELo6D4+2Kt7GIN6+LfAlJHvPg+hM64+HNxreJ6Kp7cCWe8pa4pJjzFRo9KpVpgpCxVl0vFCX+zOhM6YfH7pcqyGHG/4vvZ2Vn6+/vp6+tj3bp1mEymBRP1a/WZQqGwQJ9cbHwU11WxDvvN7qlYOw0sqMfF3wkOHTpEOp2Wjo1LnV+tVrNmzRq6u7uJxWLYbDZisRhbt25dciIk/l6qXy2+N/F9sZZbUCgU6Ozs5JVXXmH79u3cfvvtVxkJb1Yn10P8rtihuLgd3sp5i/vEtRC+Nouvf73yCaNiqToW/kWANCDFd4VCAavV+rYdSn+eel7szCz8HBYn3LvW+cRzeSPP41LytbdS1sW0t7fT3d0tV+IXjynADS80FLf3UmPwjZ7jWv4UCgrvRhQjQOGW58qLc+kX7/VeXIuPXerfb6csP++x1zvHjZz/epOiperkesbEjVzz7dTX25nsvJ02Wnwdu93OypUrqa6ulpGUFp/3Rurt533Bv1mdX4sNGzbIFXixmrrUeRoaGmT0GpFwqaWl5bo7VG9lYnat7xobG3nggQeoqKhAr9e/I2ESb0Y7vJXn6Gad93rlfruT/ze75o3+dvE5ihOx3Yzr38xnpxjhNyWciN9O2a517M1ufwWFdyOKEaCgoPCeQYSmdLlct+QLu7a2VkonrmdEihCWb3bszUSlUuFwOGQUI4VbF6PR+JalkL8Mmpubf9lFUFC4pVGMAAUFhfcUt/oE9WbsNr1T3Op1+5+dYu290lYKCgqKEaBwy3PlxXZzX2jiZVnsJPxWf/tOv2SFE7C41uLrLb6HNyvTYue8t3PPb+e3S53r7dT7zeSttP/Nbu+3M1F7q2VYyhHz563zn6fcN6ssP09b/CJ3Td6sHDf6zL6d82az2RvKs/HLZHFb/DKMl3dLf1BQeCdR8gQo3PKkM+m3HV3iWoRCIQ4cOMB/+2//bclY79dDRC15p/H5fPzDP/wDDz30ELOzs1d9n8/nmZ+f59Of/jSHDx++ofsQkUaKY3jfCOl0msnJSb73ve9d5VD4VhDJxf7H//gfPP7442/7PD8vhUKBJ598kr//+7/n1Vdfve6xxYnpbhYiStWN8uijj/LGG2/c8PGxWIyBgQH+4z/+g0KhwPe//32+9a1vvem9Xg8Raeat9n3R50QOiUOHDvGrv/qrb6tOf55nT0TE+mVz/Phxvv71r/PII4/c1PPmcjmGhob4rd/6rZveX282i9vxBz/4AR0dHYTD4V9YGUTUJAWF/8woRoDCLYuYJF04f+Gmn9tqtbJhwwYSicRbNjB6enpob2+/6WVaTGlpKdXV1TgcjqsyrMIV52eLxcKKFSsAbmiCMzAwwMjIyFt+2Wo0GkpKSmhtbX3LYQoX09raSklJyTviVHqjqFQqli1bRmNj44LET0tx/PhxJicnb+r19+/fTygUuuHjW1tbqa6uvuHj9Xr9gnj2GzZsoLS09E3v9Xq43W6GhobeUl1ks1nZ5xKJBDabTeZceDsrsAMDA5w7d+4t/w7gyJEjTE9Pv63f3kzq6+tpa2u76RPeubk5uru7mZqawuv1LjlmvBsoFAr09vYuGEObm5spKyu7YWflm8HIyAinT5/+hV1PQeGXgSIHUrglyefzjE9MAE0MDAwwtqKahoYG4Eq87WAwiEqlor6+foGsIJ/Py0yj6XRaJrgSK9k6nY7S0lLsdjs2m22BLCQajeL1eoErUVA0Go3MZplOp7HZbKTTac6dO8f8/DwOh4Pq6mo5oclms8RiMcbGxmhoaJAZQ0VYu9nZWWpra2VM/3Q6jcfjAaCqqkqGQ8zn83g8HrnqqtVq5Va/yAqqVqspKSmRDqIiDGEsFsPn88mwfg6HA71eL7MM79u3j9raWlasWCFX4rxeL7W1tWSzWQwGA2azmUAgQCAQoKamBpPJRCaTIRAIoNFoZNKrfD6P0+kkEAhgs9koLS1Fp9ORTqfxer0kk0lcLpeMjZ7NZpmamsJoNMqQrYsRyb4ikQh6vZ7KykqZ7VWEWQwGg9TV1cl6FORyOZkxNZfL0djYCFwd5lJkLBYx4kWm3kQiQTgcljHRKyoqmJub49ChQ/j9flQqFeXl5VgsFplZVGSQ1mq1pFIpfD6f/L1on/HxcXK5HCUlJTgcDvx+P6+++iolJSWsWLGC0tJSGfmkUCjg8/mIx+NoNBoZClas7CYSCcbGxqRhKMIeWq1WZmZmsNvt2O12mZVVGGwlJSUyF4C412AwSD6fl31IJGmrrKyUz5TT6QSu5Hw4f/48s7Oz1NfXy4zMIjtxMpmU7SXqO5vNEgwGefnll2VCuerqahk/X2TFtVqt2Gw2GXpR1JfNZqOsrEz2E7/fz4ULF5icnKSiooLq6mosFovMIhyPx2X2X5EETdyvwWDg4MGDRKNRCoUCZWVlC/IbiKy7uVyOQqFAdXU12WxWZqp1OBwyFOv8/DzxeJza2lpZXyI3RTwep7m5mUAggN/vl8ZzOBymrq5Ojgci8zdc2aEQGb6NRiPV1dWyH6fTabRaLfX19W86ZorMzKtXr+bSpUsy2VcxhUKBubk5EomE7F8VFRVEIhEikQiZTEb2h+HhYUpLS9FqtcTjcex2O1qtlvn5eUwmE6Wlpej1enK5nKwTg8FAZWUl6XSawcFBKioqKBQKpFIprFYrTqeTs2fP0tnZiUajkQkHU6mUzE0hxqq5uTnMZjM2m21BZCBRN6lUSr4DRkdHAWRGbo/HIxMJmkwm+QzlcjkaGhqYmpri/PnzDA8PU1VVJY1l0d6ZTIampiby+Txut1tmdK+srGRiYkJmt75WBC8FhXcLihGgcMvi9XpB3SQnvmJALk4Hn8lkqK+vlytI+XyewcFBTCYTPp8Pp9OJ3W6nt7eXTCZDKpWSk7/icIoinXwwGJSx4G02G4FAgLm5OaxWK263G6fTycTEBG63m0AgQFlZmdT3CkPi/PnzpNNp1Go1iUQCtVotswHH43GampooFArMzMxIaU4qlaKiogKLxcLc3Bwejwej0Ug0GpVGQDqdpre3F41GQy6Xw2AwsHbtWnkPIvuvx+ORExaj0Yher5e/7+joQK/XU1NTQywWI5vNcuTIEfbu3Us0GpVG08jICNlslkgkQl1dHVarlWg0yujoKKtXr5bZfRsaGlCpVIyMjLB161YMBgN+v5/R0VHMZjORSERmKZ2ZmSESiWC1WkkkEletVGYyGVmvYlINV176ExMTzM3NsW3bNoaHh9FoNFRWVi54CXu9XtlXRLKompoaOSnN5XJEo1GGh4flBCGRSMgoKcPDw6jVaiKRCNlsFpPJRCwWo7+/H6fTSVtbm0yqNjY2JidowWCQtrY2xsfH5WRGo9GQSCTwer3Mzc3JvhGPx8nlcvT09ODxeKipqVkwGQ0EAszOzsoJYTwep66ujsnJSbRaLVVVVQwNDQFQV1dHJBJBpVJRV1dHMBhkfHycDRs2SINxbGyM2267bUE953I5BgcH0el0+Hw+mU01Fotx9OhRdu/eLZ8BYQRks1mZhddmsxGPx8lkMoyPj5NMJlGr1WSzWVQqlTSKxMT40qVL2O12ObkSz6nX65XPl9PppLm5mbGxMWmIi0lwbW0tcMVAnJqaYmBgAL/fT1lZGTqdjomJCcLhMBqNhqmpKbZt28bExIRM6BYIBGhoaKCvr4/a2lqWL1+OzWZbUB8+n4+ZmRlKS0uZnZ2lrKxMtp1o7927d5NMJhkdHWVkZIQ77rhDjhsiUpOon0QiwaVLl9BoNKxZs4ZQKMT8/DyrVq26audxcHBQ1qdKpcJisTA0NIRerycSici2hmvr18Xk2WQyceedd3L8+HE2b958lREQCARktm2RzbykpITh4WEpjZmammLDhg10dHTgcrkoLS2lUCgwOjpKQ0MD8/PzAITDYVpaWvB4PASDQYLBoGz30tJS2tvbqa+vx2azkc1mGRoa4s4772RwcJDJyUlsNhuhUAiXy4XH46G0tJSSkhL5fOh0OtxuN/X19dTW1kqDdmRkBLVaLRcMamtrGRsbIxwOs3LlSqqqqujp6aG+vp6pqSmy2SwWiwWn08nY2BgVFRWEQiGmpqYYGhpifn6eZcuW4ff7CYVCMgO5TqfD5XLh8/mYnJykUChw991309nZyfLlyzGZTIoRoPCuR5EDKdySqNVqqiqrAKiprWHdunWoVCpefPFFOjs7WblyJQ0NDXzrW9/C6/UuyFh54MABKisrUavVcmX8n/7pn1i5ciWZTIaxsTGGh4cXXO/gwYMcPXqU2tpampubefbZZzlx4gQXL15kfHyclStXsm/fPux2OzU1NTQ3N7NlyxacTqd8MYtkUJOTkxw5coS6ujqGh4d59tlnZXbOn/zkJ4yOjtLV1cWPf/xjVq1aRXNzM8899xznzp1jbm6O5557jnQ6TWtrKwDBYJBcLsfMzAzPP/88DoeDRCLBqVOnFmjLxX3pdDqam5uZmpoikUjI+rTb7bS2trJmzRpaW1tpaGjA6XTyyiuv4Pf7mZ6eZnJykqmpKS5fvszKlSt58sknOX36NEajkZqaGl544QXgysS8p6eHixcvsnHjRh5//HFmZ2cZHx/n9OnTuN1uNmzYwKuvvsrQ0BADAwN8//vfp7m5merqalKp1FW+BYFAgFOnTtHV1cXKlSuJRCK89tprqNVqPB4PTz75JCaTiWw2y9mzZxkfH1/w+1OnTuH3+2W7P/XUUwu00bFYjO7ubk6cOEFTUxMGg2GBPObFF1+Uq55nzpxhcHCQhoYGqqqqWLVqFWvXrsVms+F2u7l8+TJOp5OpqSn+4z/+g3w+z8svv4zNZqOmpgaDwcD4+Djf+ta3KCkpoaGhgVAoxGuvvUZjYyOVlZVs3LiRlpaWBRO1zs5OAoEAJSUl1NTUMDY2htPppKuri5GREZkc7dFHH5UT1mPHjnHhwgU2bdrEj370I6amprDb7VitVl566aWrZGLpdJpnnnmGyspKxsfHOX/+PBMTE1RVVfHaa68xMzODx+PB7XbL35SUlFBXV0dbWxtr1qyhoaEBv9/P/v378fl8NDU1yVV/0a46nQ6Hw8Hy5ctZu3YtLS0tckKZy+WYmJigvr6enp4e9u3bRyKR4Fvf+hZ2u11ONvft2yfLUF1dTU1NDU1NTWzbtg2n08nc3ByHDx9mdHSUpqYmXn/9dXw+H729vaRSKTmZb2xspKqqitWrV7N69WpKS0vleROJBFNTU4yPj9PQ0IDH4yGbzdLZ2Ul/fz9NTU388z//M5FIBLvdTiAQ4NixY8zMzNDW1sbDDz/M+fPn0el0hMNhjh07hsPhoLu7m66uLgwGA2vWrOGhhx5idHRUGr/Cife73/0usViMqqoqvF4vnZ2dHDx4UE4yo9Hom0r9UqkUuVyO0tJS9uzZw5EjR+SuRzGXLl0iHA5jt9uprKxkdHQUt9vNa6+9RiQSoaysjEOHDqFWq5mZmeH8+fN4vV4aGhr4zne+w9TUlFwNf/HFF8nn8xw9epR0Oo1KpWJqaoqXX34Zk8nE9PQ0Z8+eJRKJUF5eziOPPIJKpWLlypWsWLGC1tZWVq9ejcFgwOPxMDMzg9frZWJigu9///usXbuWoaEhJiYmFmj3jx07BiANS5XqShK33t5epqenSSQSDA4OUl5ejs1m4/Tp01y4cIGqqiqOHTuGx+OhpaWFZcuWUVFRwbZt29BqtZw7dw6Px4NarSaVSvHkk0+Sy+VkPztw4ADxeJzh4WFsNttVmbIVFN6NKDsBCrcsKvWVybVadWVVcnBwEJ/Ph9VqlZKC9vZ2gsEg1dXVC7Kx/u7v/i67d+9my5YtZDIZ5ufn6ejokM5gwWBwwbW6u7txu91s2rSJQqGATqfj4MGDrFy5knvuuQetVstf//VfS5mEWq1eUhuv1WopLy+npaVFTlhNJhNbt25Fo9Hg8/kYGRkhlUqRSCTQ6/Xo9Xr50nI4HDz//PP88R//MYDUySaTSQ4ePIjBYGBwcJBMJoPT6WRmZkZeu66ujp6eHv73//7frF69mv/n//l/sNvtP6vP/1tuUXa1Wo1Op0On07FixQp27NiBSqUikUgwPz9PV1cXc3NzclfDbDZLCY7NZqO+vp6mpibUarWcpHR1dXHo0CHuv/9+Lly4gE6nkzIJsTMDLJDACA4dOkQsFqOpqQmdTsfOnTv5P//n/7B8+XKcTic1NTXU1dUxMzPDpUuXrtK3f/CDH6S7u5vZ2Vmi0SgDAwMLJk9er5cf/ehHfPazn8VoNFJeXk4oFJKGwqc//Wl6e3sZGxujUCgwPDzMxo0bUalUsr7gin55dnYWj8fD6OionIisX7+ez33uczidTu666y7e//7386d/+qfce++9RCIRAoGATLC1+JyCVatW8fWvf52uri7Wrl3LH/7hH6LX67FarRgMBtm/hF+FkOWIHRmxQ6bVajGbzUtqrI1GI3/8x3/M+fPn5XMwOTnJ6tWr0ev1tLS00NraetWq8+K+88orr2A2m6W0ZvPmzXzhC1/g3nvvlSvtxc+KuG9hBOzatQuj0ShlN+l0mv3793P//fcTDocJBoMLMuWKc4m6Azhw4IDcORKrv/F4nIsXL/Lss89SU1PDb/7mb163zsXu209/+lOee+45HnzwQXQ6HTt27GBmZoZjx46hVqsJhUKUlJSg1+ux2Wxs375dyudKS0uprKxkZmaG/v5+1Go1VquVkpISufNXW1vLwMCAlPbk83n6+vrw+/0MDg7K53Fubg6AP//zP6ehoYFf+ZVfeVP/mc7OTqanp0mn08zPzxMMBpmamsLlci3Y9VizZg1f+cpXGBkZYf369fzBH/wB+/btI51Oy+ADNTU1UlrmcDjkLkQymWTr1q1YLBbOnj0r5U6/9mu/xpkzZ6S8a3h4WO4ICdlW8Rgh+pH4T6VSYbfb0el0TE5O4vF4WLVqFWq1mt/5nd9Zsh9+9atfxWazcf/996PRaLjjjjt4+eWX8fv9mM1m1q1bR1VVFeFwmMbGRqxWK2azmYqKCvx+Py6X66q+9Cu/8iv09/fLxZOBgQFyuRz19fXcfffdWCwW/uZv/oZvfvOb103Kp6DwbkLpqQq3LD+TcWTp6emRmvxkMikn47lcDq1WK1+SWq2WPXv28MlPfpIDBw4wMjJCY2MjFouFDRs2oNPppFa4GIvFQm1trZz0NTY28tRTT0m/ALiykiwmruLa/f39tLW1odVqF7ysDAaDfMlptVr5osnn8wsmPsW+DOKFJORBxRM4tVpNWVkZAKtXr8blcpHNZheskIXDYdra2vjRj37E9PQ0jz32GL/7u79LW1ubvI548Xk8HuLxOE6nE5PJJMs/OjrKxYsXCYfD/MZv/AbPPPMM4XBY6oCLEX4H8LPwhGazGZfLxbJly1ixYgWNjY3odDrOnj0r/TgEi1cphS5drGDGYjEsFots3+Kwh0utjP793/89GzZsoKWlhWQyyRtvvMHs7CxVVVXo9Xo0Gg0WiwWv10tLS8uCEKz5fJ7Pf/7z/NEf/RHr1q2jp6eHQqEgfTPgii/K2NgYQ0NDBINB7rzzTvx+P/39/Xg8Hux2O9/4xjeYnJxkfHyc5557jtLSUtatW0dZWRnJZJJkMrmgb8/NzRGLxWRSJJ/Px2c+8xkKhQKTk5P8y7/8C1/60peuutfFfUO0g6iXa8lGCoUCkUiEBx98kH/4h38ArhhHmUxGStBEX1icBVb8l06n6enpwWKxSC270HGXlJRcFfpS/H98fJyKigp5Tr1eL40C4SNSWlrK+vXrKS0tXVBfi88nJtDCB6CxsZEdO3awefNmPB4Pf/AHf4BKpcLtdvMf//Ef0sCFK8/J7OysdKgPBoNs2rRJPicPPfQQer2ezs5OcrkcH/3oR3n++ecJBAI4nU4pexJtoNPpFiwILO6b4h7n5uZkMjsxhjmdTiwWCy0tLWzfvl1K1qqqqvjYxz5Gd3c3PT098nkS48Ti9s1mszQ1NdHW1ialO52dnTgcDjZs2CCPm5ub43Of+xzZbJbx8XG+/e1vyzGvtbWVDRs2sGPHDilpE7ubKpVqwThWKBTI5/NkMhn+5m/+hgceeEAajgMDA3g8HmmMajQaebzoryqVikgkwsDAgGwH0a+tVqt04FapVHK8FmPv9u3b2bt3LxMTE5w7d07uLGzcuFGu2O/Zs0eeU9xDcfsUh6jN5/MMDAzwzDPP0NbWxqpVq8jn87z++uvSj0s8Y1arle7ublauXHnVeKig8G5EMQIUblnEdqvb48Hnq6K+vp7ly5cDV7a1k8kke/fuxW63L3BGPH78OPfffz92ux2Xy0VLSwurV6+mv78fi8WCwWBAo9EwPT2N2+1mZmaGNWvWSDlKQ0MD6XSabdu2MTU1xaVLl7DZbPh8Pjmhi8VidHR0LHi5ZDIZwuEww8PD5PN5qqurmZ2dZXp6WvokzM3NkUwmpQ67s7OTRCLB+vXraW1tpbKyko9+9KMcPXqUZcuWMTU1hc/no7q6mp07d/Lkk08yPT1NNBoFoLy8nJGREQDp8Cy2wVtbWxestosX/cjICBUVFdTU1JBMJvF4PHR0dLB+/XoymYzUro+OjqJWq4lGo4yMjGAwGHC73UxOTjIyMsLMzAzpdJqGhga8Xi9DQ0Nye/3ixYuYzWZCoRA1NTXU1NSwfv16Ojs70ev1TExMoFarGR8flw68GzZskKuJAwMD9Pb28uEPfxi4MoGcnZ1lamqKrq4uhoeHaWxsJJFIyJdxJBKRvxcr/D6fj/LycvR6PU6nk3vvvVdqw0dGRujr6yOfz0t98fz8PHq9XvpWbN26lerqagKBAENDQwu0/dPT01KLPjo6yqVLl9i2bRsajYaKigocDgcf//jH6ejooLa2VjqIi5X7kZERXC7XAjnQ2NgYBoMBu90uHYf9fj+zs7OYTCb6+/u5fPmy9EuZnJxkdHRU7mzMzs5Kf4ypqSk8Hg9er5e+vj4GBwexWCxEIhHi8Th+v186CIvVUY/HQ3d3N2azmaqqqgXPY3V1NYlEgu7ublpbW9m2bRv79+/H4/HQ29vL0NAQn/zkJxfcj1arZfny5XR3d9PQ0IBGoyEUCuHz+eju7kar1TIxMSGd/T/+8Y/T3t4uHejVajWVlZXyfA6HA4/Hw6VLl9BqtWzevJnjx4/j8/kYGxuTDtX9/f2UlZVhNptZvXo1cCUbs8/nY3h4eEG23FgsxujoKD6fj7Vr17J69Wq5I5ZIJKSD6uXLl9Hr9fh8PmZnZ+nq6kKj0eDxeKQUrru7m/HxcWKxmHSm7+vrI5vNUltbS2NjI/F4nN7eXiYmJuQunNi5MhgMmEwmTp48ye7du6WjsJAXjY+Ps3btWpqamoArk/Fjx45x4sQJVqxYwerVq9HpdOj1ek6cOIHJZMLpdMrdh5GRESwWiwyMsGLFCnbu3Mlrr70m+04ymaSuro6xsTFmZ2el4ef1euUux+joKH6/H6/XSzgclpIln89HOp1mamqK4eFhQqGQnDx7vV56e3ux2+2kUilmZ2dpbm6moaGBsbExYrEYa9asoa2tjfb2dgYGBkin0zgcDrkAAnD27FlWr16NVqulurqasrIyVCoV27Zt4+TJk9J3C6C/v5/h4WHKy8uZmZlhdHRUGo1arZZcLkdHRweVlZXSwVwEDsjlcng8HgYGBggEAmSzWe6//36+/e1v81/+y39h/fr1lJeXv+l7TEHhl4liBCjcsphNVyawDQ0NUj6yceNG+cIpFAr8yq/8ygIjoDiiSXNzMzabjaqqKukcWSgU0Gg0cvVuz549GI1G6bwnIoSIl7PRaGRyclIm4FGpVCxfvlw6Ajocjqt2ANra2nA6nWi1Wqn5Fsfs3LmTmpoaGbVHRCPZuXMn9fX1OBwO7rnnHhl9RzjWWa1WGhoaWLFihYz2o9Vq0ev1tLW1UVZWhsVikZMbi8XC1q1bF2ifVSoVa9askVE/RLn27NkjV2VtNhvNzc3EYjFUKhVbt27F4XDICdmePXswGAzU1NRgNBrly3nPnj3Y7XZqa2upqqri0qVLZLNZWcaamhpuv/122W6rV69esCoMV2QIK1asYG5ujlwuh9FoZOPGjeRyOWpqati6dauM0LNixQr58hds3ryZqqoqGS1p+/btWK1WuUtksVjYtGkT4XCYQqGAzWajrq6OXC6HSqXizjvvlBGOmpubmZ+fx2w2S9mHVqulpKSE5uZmotEoJpOJuro6KZUS/iEiqo1Wq6WxsRGPxyNXQUUfuu2226SsrXjSXFpaSi6XQ6PR4HA42LFjBxqNhnXr1uF0OuXnGzZskO0gPgO47bbb5L8tFot08hWyFIvFgl6vlxK3yspKtFotyWRSHn+t8J11dXUyepHD4aCxsZGVK1dKqYfoc8UrpFqtlrVr1zIwMIDD4cBkMpHL5bj99tvlSuzy5ctJp9Po9Xr27t2L2+1eUF/FNDc3S0d5EZ2rtbVVRoSCK/4L4j4dDod89rdv345er0er1S6QyYmIPUJieMcdd1BRUUFbW5t07N+5cycOhwODwUB9fT1btmyRdbRlyxbq6uowGAxUVVXJ3RSBkD/t2bOH2tpa5ubmcLlcAJhMJrZv3y53AEV5nE6nNICqq6ux2+1yQr4UFRUV8lkXdRoMBhdMnuGKESVW6IWkqbGxkeXLl2MwGOSzoNPpaG1tlb5EJpOJ973vfXInoLGxkZKSEjQaDTt27JB9s7q6ms2bN2M2m1mxYgVms1nK1m6//XbUajUOh4OmpiYZYQeuhMC1WCxUVlZSX1/PunXrZH0sDuIgnlGbzYbNZsNut5PP56mqqpIRmMQujc1mo6WlRcqN1q5dS0VFBTqdjvr6ejZv3izPuXnzZkpLS7FYLKjVarZv3y4DLFgsFmw2Gxs3buTAgQOKHEjhlkFVuNlZlhQUfkFcjMCWC3BmY5YtJT/TA2ez2QXb1YslJoVCQYarE5MIEaZOo9EsqQsWx4iwnMXhJ3O5HIlEAovFsuAzEVLz7ZLP50mn01fdR/FWe7FMSEg+RDSWYr20OJ/4rYgetNSkQWj8r/UiE5GEimVW8NYzDAv5lDiHaAOdTrfgHhb7VmSzWVKp1ALp1Y0iIgqJiEhLSSfgSshLUa5iqYEol06nW/B7EdVGfJ7JZBZomovvT7SnOL/oKyqVakGbLdUOIspLcWjLdwrhk6JWq68ZsnUxS/X7dDotfV/g6vYS/Umn072layyuL4F4NoThCkhpnMlkkhIv8fwUGyXF7Vh8PvF/YQwJmUg+n5f3+1ayHGcyGf7+7/8eq9XKpz/9aYCrQtoWk06n5QKFkM+IKGY3sw8U9y/gqv4o5IpvlUQiIRdWbqQvicWPYj+PYsQYbjQarxofhFyyWJI1Ozsrf6NSXckBciOI9hXGuWiHNxs/FiPeVRe2wOaSNz1cQeEXhmIEKNyyKAOrgoLCrcjg4CDf/OY30Wg0/Jf/8l/YsWPHL7tI/ykRix7/63/9LzZu3MjWrVulZPQXifKuUni3ohgBCrcsysCqoKBwKyJ2+RY71CrcXMT05s12ed9plHeVwrsVRbimoKCgoKDwC0StVr8tWY3CW0NEXhKyoLciHVRQeC+gGAEKCgoKCgoK/ylRJv4KCtdGyRiscMuSTF2JER6Lx97kyJuLcPwcHx/H4/FIZ8IFZfu/oTUnJiaWzDtwI2QyGSYnJ9/0tyJMoXBaE06joqzpdJq5uTmZHXgx+XyeRCLB0NCQjKwUCARkUqKlKBQKTE1NLchD8PNQHCccrsTDd7vd+P3+m3L+t0s2myUcDtPf378gu3AxqVSKqakpJicnb8o1RZv5/f6rEp4JhJPq0NAQkUhkybIV94M3I5PJEAwGCQQCb6mc2WxWOti+W5SlxY7zmUxGOpn+Z8Pr9RIKhX7u84hkiSMjI9fs49ei2Ek9m80yPDxMIBC47rgggjMUByoQmXZvJPvxm513ampKJgS83rE3u8++E+dUUHinUYwAhVsW76wXuOJk94seeAOBAN/+9rf56U9/yvz8/ILvCoUCMzMzPPXUU3znO9/B6/WSzWbf8jXC4TD//u///qYv5qmpKfbt24fP55MRaIoNE5/Px+uvv87Y2NiSv89ms4yNjfGlL32J3t5eUqkUp0+f5rXXXrvmNQuFAo888gg+n+8t39dSiAhLggMHDvDEE09w4MCBm3L+t0skEqG9vZ3//t//+4LEVMV4PB7+/d//ne9+97s37bp+v5+DBw/S39+/5PfZbBaPx8MXv/hFLl++LBPWwc8mQ8lk8ob7XTAY5Ny5c5w+ffqGy5jNZgkGg3i9XpkQ7BeNiNhVnNhNPAOzs7P4fD7C4TCJROJtPYPvZl566SXOnz//c58nEAhw9OhRvva1r13T6FwKYayKxYdoNMpXvvIVmZfheojM7MJYGx0dXTD+vF0KhQL/8R//wbPPPktPT891j43H4zfdCCh+DhUUbgUUI0DhlsVmv5LuvjhZ0C8CkdBp+fLlVFRUXDVJD4fDcmX+C1/4AnV1dVfFM78RTCYTd95555s6sjkcDtauXSvzIbzxxht0dXXJ7+12O2vWrLkqJrhAp9NRUVHB1q1byWazFAoFWltbWbdu3TWvqVKpuOOOO2TCtp+XyclJXnzxRfn3jh07WLZs2S/9pVpaWsratWux2WzXlBU0NDRQX1+/IOfCz4vdbmflypXX7Ns6nY6ysjK2bdt2zZXuV199ldHR0Ru6ntVqpbm5+YZDJwJMTEzw1a9+lV//9V/n+PHjBIPBG/7tzSKZTHL+/Hl8Pt+CzM1nzpzh7rvv5qtf/Sqf/exnefDBB3n00Ud/4eV7J9m0aZPMJP3zUFFRwT333CMzcb8Vzpw5w7lz51CpVNjtdrZu3YrRaLzuwkUmk6Gzs5O+vj7i8Th6vR6Xy8WWLVvk+PN2Efk8HA7HdXcjstksTz311Fsyet6MUCjE008//UsxhhUU3i6KT4DCLUtgPgCUkkxcWaHt7++X0hu9Xi8zgQJMT0/LDLa7d+/mjTfeoLS0VGaUHBoakrKGqqoqnE4nXq+XiYkJXC4XVVVVlJSUkMlkGBgYIJPJEAqFlpwEDw4OcvbsWSYnJxkeHmb58uWMj48TDAbRaDS0tLRgsVg4ceIEBoMBq9VKKpVi1apVMrZ5LBbD7XbL+Nb9/f2EQiFUKhUOh4OZmRm2bt2KRqMhGAwyPT1NfX0958+f56WXXqKmpoZ8Ps+GDRsYGhoiEAhQUVFBOp0mHA4zMzODSqWiqalJJqMSTnRerxe32y1XWScnJ3G73TKOu1qtltlns9mszKycyWRwuVy43W5pIInY2p2dnRgMBrnK19bWJpOR9fX1ceTIEY4cOYLL5WLXrl1yIhCPx+nq6iKVSrFmzRpMJhOJRAKv18vU1BSVlZXU1NTIOP6FQoHJyUkGBgaoqKjAZrPhdrtZt24d8/PzeL1emWlXxPcfHBwkHo9TUlJCW1ubPM/o6CjhcPgquZfX62VmZoZ4PM6qVauw2WxL9s9sNovb7WZ8fBytVovFYiEcDlNdXY3RaJQZgaurq2VGVJvNxqpVq2SblZSUyLjnnZ2dWCwWotEoZrNZ1m8ymaS7u5uSkhKcTifl5eU8/PDDjIyMkEgkUKlUNDc3y36bz+epqKigrq5OlnViYgKfz4fFYiGdTnPkyBFqa2tlXgy9Xs/atWsX3F95eTkPPPCA7GfFRlChUOD06dNEIhEqKytlP5udnWV4eFgmrxMG89atWzGbzfj9fiYnJ4nH4+zevRtAytQaGxtJJpNMTU2xYsUKAHp6enjiiSfYuHGjzBheU1PDunXraGlp4cEHH8RqtXLs2DFeeeUVfu/3fk9mSIYrCwirVq0CrmQZT6VS2Gw2XC4X3d3drFmzBrvdTjQaZWZmhvHxcZxOJ8uWLcNut6PX60mlUpw5cwaDwcDKlSspKSkhHA5z6dIlqqursVgsUma1cuVKGXO+mEKhQEdHB9FolIaGBqxWK+fOnaOpqYlly5bh9XoJBALkcjlyuZzM3qzRaIjFYvT395NMJikvLyccDmM0Glm1ahVqtZpMJsPQ0BCpVAq1Wk0oFGLDhg1YrVY0Gs2CsgwPD8uEXQ0NDfK7gYEBIpEIRqORxsZGTCYTjz76qMwCbrPZWL9+PXAln8D4+Dher5eysjIaGxvledLpNDMzM3zrW99i69atpNNpaciIvtzR0SET6gkj+Ny5c2SzWdmXFkdTSiaTeL1e5ubm8Pv90gDIZrN4vV4mJydxuVyUl5ej1WoZHh7mBz/4AXa7nbVr11JVVYXZbGZ8fJzp6WmZ0FGtVsv6FYkmnU4nZrNZ7sK0tbURi8U4c+YMzz33HLW1tWzbtg2bzfZLiUSkoPBWUHqowq3L/313DQ0PkUgk6O/vl8mlPB7PgkPNZjOpVEpKXNLpNENDQ4yMjBAOh+np6aGyspJAIMDs7CwTExMcOHCApqYmzp8/L42I48ePy4mNSCO/GJvNJjN0VlRU8PrrrxMIBCgtLcVkMvHkk0+STqdJpVJ0dXVx6tQp4vE4gUBgQSZUtVrNyZMnyefz2O12+vr6ePXVV4Erq07t7e0Eg0FSqRTT09N4vV4aGxvR6/UyO69Go6G8vJxz584xMzPD7Owshw8fprKykgsXLjA4OHiVDtxsNjM9PU1PTw+5XI6Ojg5cLhfxeJzR0VFGR0exWq2cPn2aaDSKxWIhkUjwox/9CJVKRTQapa+vj5GREaLRKD/84Q8pKyujq6sLt9uN3W5fkACroqICl8slk/iISVIgEGBmZgaHw8HJkyfxeDwEAgFGR0c5cuQITU1NnD59mtnZ2QUrjyUlJZw/f57Ozk7C4TB2u51//ud/JplMEo1GmZiYoKenh0KhwJNPPgmAy+UilUrx9NNPA/DCCy/g9XplJupgMEihUGBoaIi+vj78fj/19fW89NJL19Qeq9Vqkskkbreb/v5+LBYLp06dYnJykkwmw9jYGEajkaeeeopEIoHJZMLtdjM0NITT6eTSpUuMjY3h9Xp58sknqaqq4syZM0SjUZmNFa5MkktKSpiZmeHgwYOo1WoqKipwOp1UVVVRWlpKJBKhp6eHiooKwuHwVav2paWlTE5O0tHRAVzRej///PNEIhFisRjnzp0jEAgsWKXVaDSUlJTIbLqiPMLH5Ny5c8zPz3PmzBl++tOfSgnIwYMHpYE1Pj7OyZMnyWQynD9/nkOHDnH27FlGR0d59NFHZR/o6Oigvb2ddDrNU089xfT0NNlslng8TjAYJBQKEYlEFiSJ0ul0WCwWUqnUgu8uXLjA/Pw84+PjnD59msOHD0spx+HDh3n00Uf5yU9+gt/vZ2hoCLfbzYULFzhw4ADpdJqXX36Z/v5+IpEIY2NjfP/732dycpK+vj6OHTtGX18fuVyOcDjMP/zDP/D0009z8eJFpqenr+tz4XQ6OX36NIODg1Inf/HiRUKhEOPj48zPz1NWVsbU1BRms5ne3l4mJibQarWUlpby2GOPEYlESCaTzMzMcOnSJQCeeuopUqkUwWCQixcv4nA4lkyiODc3JzP4TkxM8OKLL1IoFHj55ZeJx+M4nU4KhQLPPPMMuVyOsrIynE4nFRUVVFVVyXOJ/q3VannmmWcW3KNGo8FkMmG1WqmtraWiogKLxSLLMDAwgNPpZHBwkOPHj8v21ul0OBwOfD4fx48fX3DO+fl5BgcHaW9vp66ujkgkIg33eDzO/v37qa2t5Y033uDSpUuo1WqZsb2xsZHy8nLgiqzv8uXLVFZWcujQIc6fP08kEuHIkSPU1NTI7MDd3d289NJL0uju7OxkZmaGuro68vk8zc3N1038pqDwbkIxAhRuWfS6K9ksvV4vhUKB3t5e+vv75d/FWCwW9Ho9g4ODwBWpTSgUYn5+nlQqRXd3t1wR9vl8DA4OMjQ0hMFgkKtwo6OjHDt2DLvdjsvlQqPRLLn1W1JSQnl5OSUlJTgcDg4cOEAymZQvvI6ODjweD1qtlnA4jN/vx+FwLHhpaLVa9Ho9k5OTFAoFHA4HkUiEiYkJSkpK0Ol00ikUrjgHRyIRamtrsVqtOBwOKisrUavVlJWVMTk5SSgUkvHJM5kMMzMzTExMXOXTYDabiUajUterUqmw2Wx4vV6CwSClpaVYLBbpGGyxWNBqtfT09GCz2dDr9czMzDAzMyP9C8rLy5mbmyOZTOJwOBZkInU4HLhcLoxGI/X19XIymc1myeVyOJ1OZmdn8fv9TExMMDAwwPDwMEajEY/HQzAYXKDXLykpwePxEIlEMJvNlJeXc/jwYXQ6HXq9nkgkwvDwMOFwmFOnTqHT6XC5XAC8/vrrxGIxTp48SSKRkKucQk/e2dnJ4OAgqVQKvV5/XQ2zWq3GbDZjNpsZGhpCr9czPj4uJ4Ii4+ipU6cIhUKo1Wri8TiTk5M4nU7cbjfz8/OEw2HOnTtHZWWl7A92u11KzDKZDA6HQxpfarWa6upquStQWlpKJpORfTwWi131fJSWlhKNRpmenkalUmG1WhkbG5Nx1WdnZ5mfn79hqYbQiPt8Pjo7Ozl58iSBQACz2UwmkyEajcqdGbPZjFar5eLFi4yPj1NaWkp5eTlHjx4lHA6Ty+WIxWJy8ism4AaDAbvdLp83sVsnVl+z2Szd3d10dnaSSqXYtGkTcGUBIBQK4Xa76e3t5ciRIwCyn4lV78rKSnQ6nfS/EMbf/Py8fI7GxsZ45ZVXmJubw+PxcObMGQYHB9Hr9VRWVnLgwAG5y1RaWnrdiWF5eTkzMzP4/X4ZQlQYO1NTU/T29jI6Oko+n8diseDz+QiFQlIa1tXVhU6nw2QyEY/HGRgYAODs2bOoVCpyuRxut5uysrIF2ZRFe2UyGex2O+Xl5QQCAY4cOUIul5MLDy6XC51OR2dnJ16vl/LycsrLyykrK6OiokKeS2SHNhqNtLe3L+gzarUak8kkV/mdTudVGZvLy8ulAZZKpaQxotPpCIfDDA8PL6i3yclJenp6SKfTsozFWbpFluDLly8zPj5OLpejtLQUq9VKTU0NpaWl6HQ6crkc8XgcnU5HR0cHIyMjZDIZ3G43PT09zM7Okk6n8Xq9vP7663I8mZqaIhqNUl1djcFgoL6+/prZ2BUU3m0oRoDCLYuYSKpUKoxGI263mxdeeIGzZ89eFYNbr9djNBrlxElMXEUCmampKb7//e9LecLg4CAmk4nx8XGqqqpQqVSMj49z8eJFVq5ciVqtli+SxRSnulepVHJFTmy/G41GBgcH0el0lJeX09DQwKpVq6isrJQTYLVajVarxWw2y5VNsUUuJnaRSIR0Oi2lJuJ3xdfPZrMYDAb0er1cAdu4cSN9fX3odDoCgQChUGjBSrparcZgMGAwGNBqtezevZvZ2VmGhobQ6XTcdtttcoKrVqvlimtZWRllZWWUlpaSTqeJxWKoVCr0ej2FQkFOiPV6/YKVyOK6UqvVUhdst9upqalBr9djs9mIx+MMDQ0xOjqKwWBgbGxMSlaEU7FIvqTVaqV0QBiAdrud0tJSNBoNfr8ft9sty2gymVCpVAwPD0tJgZgMWywWrFYrKpWKzs5Opqen0Wg0TExMUFFRcd1ET1VVVVLeEwqFMBgMpNNpstksDQ0NcqV9dnaWWCyGxWIhmUzKlWwxCTcYDOTzeaxWK2azGZ1OJ3dTWlpaFsihiutU/K3VapmamuKxxx5jbm7uKh8V0UdEu9jtdqqrq+VKv9lsftNINGIiKdqirq4On8/H/Pw8yWSS8fFxysvL2bt3LyaTibGxMUKhEB//+MexWq0MDQ1ht9v55Cc/yd69e0mlUiQSCcrKyqitrUWlUlFZWSl3kux2O8uWLaO+vp5Vq1axceNGKisrZb9KpVIcPHiQ3t5e6urq+IM/+AMAmpqaiEQiRKNREokEnZ2dwBWpTlVVFa2trXzsYx/jtttuY8uWLdKg1+v1jI6OsmHDBpqamigUCszOzkopnFqtlpN4m83Gli1b0Gq1fOQjH+GjH/0ou3btkpPlxcaUSqWSz4YYk8TYYjQaCYVCnD17lieffBKTySRX1MWOodFolM+fw+FAp9PJ9hITUp1Oh9Vqlc918SRVjA0mkwm73S6jn2WzWS5cuIBer5fGml6vp7+/n3w+L89RPH7U1dXJ1fXFiyTFz7larZbRhcR3y5cvx2AwSEfvXC4nd/TEOLV4zB0aGmJgYEDKP8vLy+XzotVq2bp1K4ODg3LxQxgFKpVKLuSo1Wq5uOPxeAiHw6RSKXQ6HY2NjfzLv/wLBw8eJB6Po9Fo6O7uJhaLEQgEZN0Uj71iAUNB4d2O4hOgcMtTyF95GX/+859Hp9Nx5MgRfvKTn3DbbbctOE6tVkvDQWwZi6gmf/u3f4vBYOCrX/0qZrOZtrY2TCYTmzdvZvPmzVJzKqKuGI3GBRFJrirTos/F37lcjkgkQklJiUxiIybJi1fmiv9dKBTQaDQLZDTXc0ATK2Cjo6NSy10oFGhvb+ef//mfefzxx/H7/eRyuQWr/otRqVSUlpby+c9/nt/8zd+kqamJy5cvS/2vOG9x3RaX2Wg0cs8993DixAk2b95MfX39NTX0KpWKfD5Pf3+/vN/iyapYARW+DaJthO59cd2J+kqn0wtW5sT3JSUlMrxmcdhCYWClUin5ufiNWHlevnw5zc3NtLW1SQNMnLu4LBqNRhpwly5d4r777mNycpLDhw9z1113YTabsVgsrFixgm3btpHP54lGowu0xKWlpdx+++0cPnyYe+65h6amJqxWq5QhCQOvOMyq+P3MzIxcMRd9/Otf/zr5fJ6VK1deVWfFf4vzFtf/Yop/JyR2Z8+exWQy4fF4+P3f/33Gxsbo7OyUx9522238+Mc/5ty5c5SUlFBfXy/PlU6nSSaTaDQavF4vWq32qjqdn5+XEWmE0ZfP55mZmSEajaLRaGhtbcVqtfL5z38ep9Mpf5/P5/nrv/5r/sf/+B9s3LiRyclJvvCFL8iy6fV6ysvLaWlpkZ+Jnbpf/dVfZffu3TzzzDM8++yz7NixQ66c/87v/A5wZVXa4XDIsq1fvx6LxbLAIBPfLb4vQBp+Qk4EV6J7ffCDH+TDH/4w4XCYP//zP+eOO+64qg2KV/eL+8L73vc+Jicnsdvt3H///TidzqvacXGbCsNejDfiGtlslmg0is1mI5PJoFKpCAaDCybhxfcgyrD4XkW/Ghsbw+VyybFD3IN45oQPlPA5EdGIihFGjQhpLMoaiUTo6uriu9/9Lv/6r//KiRMnyGazBAKBBePK9PQ0o6OjTExMEI/H+f3f/31eeOEFotGo9KV69tlnOXDgAIODgwwODlJeXs6mTZtQqVRyUWhubk6OYePj4zgcjgU7JAoK70YUI0DhlmV8YhyoYHBokJmZNl577TW2bt1KWVkZe/fuvep48YI/d+4cly9fprOzk+rqakpLSzl69CgPPPAAu3fvlk6MP/zhDzl79izBYJAVK1awceNG/vAP/5AnnniCTZs20dfXJ1e6P/GJT8jr9PX1cfz4ccbGxhgbG+PP/uzPmJqa4sUXX8RoNNLQ0MCmTZt49NFHuXz5MmVlZWzdupWamhr5ooxEIoyOjjIyMsLZs2fR6XR0d3czOjpKb28vhw4dYnBwkObmZtRqtdSvbt68GbPZzMzMDO3t7axatYqzZ8/S399PW1sbFRUVGI1Gent7iUajTE5OypCi58+fJxgMYjKZGBkZYWJighMnTnDmzBmqqqrwer2MjY0xPT2NzWZjZGSECxcu4PV6GRgYYGRkhP7+fo4cOcLQ0BBtbW2sW7eOsbExRkdHKRQKrF69mh07drB58+YFbaPT6dDpdOzfv5/Nmzdz+PBhzp07RzKZZHBwkM7OTtLpNPfeey+1tbU8++yznD17lkAgwJo1a6QDYaFQYGxsjImJCS5duoTdbpeOioODg3R3d9Pb24tareZjH/sYd999N4ODg4yMjBCPx/nMZz6D3W7nQx/6EPF4nKNHjxKNRhkYGODs2bPcf//9DA0N8corr7B79258Ph+NjY2MjIzgdrs5ffo0u3btWnBvNpuNj370o4yOjvL+979f+mY0NTUBsHPnTiYmJqR/RVlZGf39/fT39+NwOKirq2NkZISRkRHUajXbtm1jw4YN2Gw2Lly4wOzsLAaDgZGREQYHBzlz5gzLly/nueeeA64YO/F4nBdeeIEPf/jDbNu2bYFTMEBXVxfd3d2EQiFGRkZkhKk1a9YQi8W4ePEimUyGjRs3ygmc2+3mkUce4dSpU3ICJCJn/f7v/z779u3joYceIhKJEAwGOXv2LP/4j/+Iw+GgpKSEyspKKcMC+O3f/m3279/Pr//6r2M0GvnYxz4m++vc3Bzf//736erqYnBwkKeffppsNsvOnTu59957+cpXvoJareYDH/gAO3bs4MyZM3R1dfHaa69x1113UV1dDVwxNG+//Xaef/55fvzjH8udvyeeeILJyUkOHTpELBbD5/Px8Y9/nM2bNxMIBDhw4ADHjh1jzZo1zM7O8nu/93s0NzeTTCb50Ic+xJ/8yZ/gcDhobm5m+/btAHzjG9+go6ODv/3bv+XjH/84d9xxBzqdjq997Wts2LCBnTt3ynIJysvLCQaDXLhwgZ6eHk6dOsX69esZHR1Fo9GwceNGPvaxjzE9PS3lKg0NDWQyGfn8ud1uuXoeDAYZHx9nbGyMRCJBaWkpe/fuZc+ePVcZICaTib6+PqLRKJlMhk984hNoNBr+8i//ks7OTsbHxykUCnL8CoVCnDt3jlAoRE1NDeFwmPb2dnktsdtz4sQJtm7dKmU/er2ebdu2cfjwYVatWoXZbCaXy8m+bLVaGRkZYXp6mq6uLv7n//yfPPfcc3JcNhqNC5zUb7vtNioqKjh8+DAVFRWcO3eOqakpmpqa2L59Ozqdjq6uLgqFAtPT07S3t/PAAw+wbt06Tpw4IXd6hQO+8MOKxWJcuHCBS5cuEYvFMJlMrFq1ira2Nvbs2cMjjzzCunXrUKvVuFwu1Go1FouFgwcPsn79ehlwQUHh3YyqoGS2ULhFOTwd5q5BG085Rnh/oxO/34/RaJRykMUhMePxODMzM1JyEQwGMRgMuFwugsGgHLQtFgsajQa3243ZbJZb8yJShHghCP200+lcMKkKBAIEAgGSySRNTU0kk0m5qgzIF7dYudTr9VJPKl7MYsVtaGiIlpYWVCoVPp9PnlMk/xIRYoRTX319PZOTk+RyOalDFjsCFRUV6HQ65ubmqKiokDshRqNRrtwKva64VnV1tdyGt1gsZLNZUqkU1dXVUmZhMBhk3a5atQqfz0cikZCRR/bt28fdd98tdbmBQID/+l//6wLtrohYZLfbKSsrIxAIEA6Hyefz1NbWMjY2JvX9Go2G2dlZ2TZCqiFWwxOJBMPDw1gsFkpLS8nn84yMjNDW1kY0GpUSoObmZmZnZ2UZhDygoqKC2dlZ8vk8Go2GQqEgdz8sFgvxeJxYLCb7mvBNSKVSUmNcTC6XIxQKEYvFqKysxOfzkUqlZFQUt9stryVka5lMRjp9JpNJTp06xd13300+n+f06dNYLBbuv/9+pqamMBgMOJ1OQqEQ4XCYhoYGLBYLIyMjGI1GrFarXCkVfVw4gAoikQgej0fKlPx+P+FwmMrKSnK5HH6/H6vVuiBiTDweZ2JignA4LFe7hVFcW1vL8PDwggRKGo2GFStWoNPpeOmll5idnWXnzp1yQheNRvH7/VKK5XK5pO+NcI41GAwEAgGpQxf9e3h4WBogdrudRCJBX18fy5Ytw+l0YjAYgJ9Fj4rH43IHKJ1OU11dTSKRIBgMksvlsNvtVFZWYrPZiEQieL1e5ufn5TNaW1srIzf5/X7m5uZQq9VYrVbsdjtGo5GJiQkCgQA2m43Kykrp9zM2Nsb8/DwtLS1XrcoLnw+NRiN3H1taWmTUMyFzLCkpYWxsDIPBQFlZGYVCgcHBQVpbW0mn00SjUdLpNKWlpbzwwgusW7cOp9MpDZrPf/7zGAyGBf4T/f39sr3FboD4TbHPTTabpb6+nmw2y8zMjPRJsdlsDA0NodVqsdlsaDQaxsbGaGlpkX/Dld2YUCiEz+fDbrdjsVgoFApMTExgMBik/5B4nkTfEAsFIqJacXni8bjso/Pz8yQSCTlezM7OUl5eTiQSkbLEyspK+XwJyWUikSCZTGKz2eRugdFoJBwOyzFGyKjE+CwkpsIReHR0FLvdjtPpXLCTdjECWy7AhS2wWbENFN5FKEaAwi2LGFjPby6wyVqQIR+F/nUpxEtfq9VKzaYY2NPptNTYFh+7eJtdaFWFJlZoeK9HcWbNt5Mz4K1SPPFajNBuF5fjnXBiS6VSeDweXnjhBR544AEZmWV2dpY/+IM/WDJCSS6Xuyps4VIs1TZvF+H0K9pyqc+LJUVi1VCEzryR6xfLG8TfxVIbcS2hlRbE43HGx8c5fPgwH/7wh8nn8xw6dAiTycTHPvaxBfKwxSylx17cx99pcrmc1EkXCgV8Ph8dHR1cvnxZSmwWy8OK62px/3grn1+PxbKpN6P4uV+q34pzCl349a7r9/tJJBKUl5dLX45istmsNAqL+1g+n5c+Pjd6j4FAgKeffppt27ZRUVGBz+fj2Wef5S//8i+X7LvZbHaBbr/4XEuNX8V97K30qULhSoZh4fNyI/ci+tK1+rwYE0RfE8cuNa4UL7aIZ04ct7gNRVlFuxfLlcTnxe+MpcYwxQhQeLeiyIEUbnmuvLCuDLjFuvRrHSteoosnyItfrsXHFn+2+AV5Iyye3L3TXO9aYrX2nUasCJaXl8sIRBaLRYYBXapc15vULj72RidDN1LON/u8OIIJ/Mx5+kZZPEFdPPm6VhmEU7TTeWWnK5/PU15eLsM8Xo+l+sDNqrMbpfgZKxQKhEIhTp48iUp1JRzsUv4h15rMv9XPr8dbfRav99yLa7/ZQgD8rA6KdfCLKW7X4nPeyGLD4nJZrVbKyspIJBL4/X6SySSrV69eMlfB4msXc63x6+2OaddbqHkr1198zqX69/XG6+L7vdb4s9R4WbzrtfjzGx3DFBTeDSg7AQq3LMrqyq1B8RDzTuw4vBf4z1SHg4ODOJ1OHA6HkkzpF4ToP7d637lVUd5VCu9WFJNVQUFBQeEXRmtr6y+7CAoKCgoKKEaAgoLCO4yy+vjz85+pDv8z3cutglLnCgoKS6HsxSoovAvIZDIcPHiQl19+Gbfb/Qu77tTUFAcPHuTJJ59c8vt8Ps/s7Czf/va36evrkw6s73ZEBJ/iqCY3g2AwSG9vL+fPn1/weT6fZ3p6mhdffPGGziOcChOJxA1n4VW4Pn19ffT09DA9Pf2OnL+4za6Xo0M4jYtkZNc79p0gl8uRTqevmclacL08JwoKCu8NFCNAQeFdgIiccvbsWelE+4sgm80yNDTEyZMnr3vMkSNH8Hg87/osmGKiJpJWXbx4kXA4fNMmO4ODg/T391+VXC0YDDI8PMzly5evKk86nWZqakqGXoQribVmZ2fZv3//m07W8vm8DGn7Tk4o4/E44XBYJuJ6txAMBpmbm7umASoms2fPnmV4eJhMJrPg+2QySSgU+rmfq2w2y9zcHAcOHCAej1/zuHQ6jd/vp6urizfeeEMmdftFEQqFGBwcvOYzXSgUCIfDMkt1MXNzczfNcE6n0zLB4n9GCoUCMzMzxGKxX7ihp6Bws1CMAIVblmzuyqQgm82QyWRkLO3i7K+ZTIZ0Oi0nYGJClc1myWSu/E6E5Eun0/Lf8LNQmos/XwoRGk6cU1wvl8vJ62Wz2QVlAWTYv3w+z86dO+W1lkLcj8hyLI7N5XLkcrkF97+4/MXXFPWTTqepra2lqqpqgYOm+I0It1pbWyujmVzrhS7Klkql5H1mMpkFbVFc5+Izkais+DfiXKIeZXsXHXM9YySZTHL69Gkee+wxHnvsMcbGxhaUUfx+qfoSRsRSGXRzuRxHjhzB6/XS1ta24Lve3l4GBwdl9lu4siKbSCRwu90cOXJETq5F1uju7m7+4i/+gkgkIo9PpVIkk8mr+qvb7aarq4tYLCbrqLh/iTYuRrRHKpVakGVV9NNUKiWvk81mmZycpLe3l7m5OdLp9IK6WYy4tjhHcR8T/4lri/oUfU48C6I9i59ZkYei2BAZHh6mvb0dr9e7IN/GUm0ej8epra2V54vH40xPTzMwMMDAwIDsa8XPfvGzIcokrl/8nMZiMXp7e/lf/+t/LchOm81mF7RZLBZjdHSU119/nb/6q7/C4/Fcs68uVZ/imShux+JnY6lxrrjfeDweDhw4wEMPPSTvdXEdj46O0tHRseA+0uk0J0+eZHZ29qoyLH6+i9ugeFwSY1k2m8Xv93P8+HF5LhHmU5Rf9Jvi8Vf0I3HPYswt/v7NdiOLn3PRnsX9UjwzxfVYXJbifxf/bqnrnzlzhpGREQKBwFWZjBUUbgUUnwCFW5bRkVFgOUPDw+i1VxLrbNy4kYqKCvL5POFwmNHRUeLxOI2NjVRXVxMOh3n11VfZunUrkUiETCZDSUkJ9fX1XLx4kfLycqqrqykrKyOfz3P58mWCwSBlZWVUVVVRXl5+TX2tx+NhamoKnU5HeXk5tbW1jI+Pc+rUKTZt2gSA1+ulubmZhoYGCoWCTETk8XjQ6XTXNTRE9s/Lly9z7733cvnyZVwuF3a7nVQqxcDAAFu3bsVut6PVaonH4/T29pJMJmloaKC8vFyGuozH41y4cAG73S4nAnBlMtDe3k44HMZut7N69eolY5kvJhqN0tPTQzAYlMnMRIZNs9lMOBxmenqaSCSCwWBg48aNxGIxDh48SHV1NSUlJQQCAaxWK42NjQwNDVEoFKisrJR1NTg4yPz8PBqNhtraWurq6q5qCxEW8TOf+QzLli1jcHBQTo6DwSADAwNotVrq6uro6upi27ZtlJSUXJU0acWKFVeF/5udncXv91NdXS0TfQnOnTvH3Nwcf/VXfyXrcWpqin379nHo0CHuvPNOGZd9dnaW2dlZTCYTra2tMpa52+2mu7ubaDTKbbfdRnl5ObFYjKGhIfbv38/g4CD33XcfK1eupLa2FrvdLrMUOxwOWltbaWxslHHMOzo6mJ2dJZfLUV5eLjMZz83NMT4+zvz8PJs2baKyspLBwUFeeeUVhoeHWblyJcuWLWPPnj1YrdYlw1LG43FmZ2cZHBxk1apVjIyM0NLSQmVlJVqtlkQiwYEDB1CpVLS2ttLa2opGo+Ho0aO4XC7MZjPJZBK/38+WLVuwWCzk83nGx8cZGhrCaDRy++23o1KpMJvNnD59mn/6p3/iT/7kT3j/+98v20bc6759+1i9ejUtLS0yRGM2m+WRRx7h/PnztLS08MlPfpKOjg6sVquU6eh0OpmVuVAoMD4+zszMDNlsljvuuGNBfgO3243JZKKlpQWdTkehcCUx3fT0NJ2dnWzfvh2Xy4XT6WTXrl1s27aNzs5OGQrzzVbE3W43HR0d0vBev369zK2RTCZxOBxUV1dz4cIFNm/ejNPpRK1WEwwG5Y7X7t27aW1tJRQKcfbsWQYHBwkGg6xcuZLS0lJSqRSjo6NMTk7S3NyMw+EArhgaR48e5Zvf/CYf+MAHWL16NaWlpezatUsaU/39/czNzdHY2MjKlSvlPc3PzzM4OMjExARbtmyhrKyMmZkZjh8/zg9+8AN0Oh3V1dU0NjaSTqfp6elh/fr1JBIJZmZmqKiooKqqigsXLlAoFFi1ahVut5tEIkFbWxtOp5NoNMqlS5dkMruWlpZr1qN4zguFAi6Xi9HRUXbt2oXJZJK7OWfOnEGn03H77bdTUlLC3NwcPT09VFVVYTKZmJmZweFw0NTUhMlkkkn60uk0lZWVMsFdaWkp//RP/4TD4eAjH/kIt99+u+yXCgq3AooRoHDLYjabIQyPP/Y4P/rb/05HRwfJZFK+OB5++GE++9nPcuTIEaampqirq2PLli243W6eeOIJPvKRj5BIJHj00UfZtWsX9913H1/+8pfZtGkTd999N+fPn2d8fJxf+7VfY9++fVy6dInf/u3fXrIs2WyWb3/72/zJn/wJb7zxBnNzc3ziE5+gtraW/fv3k0gk2LlzJ/X19fz1X/81//7v/874+DgXL14kl8vxkY98hGPHjl13omCz2VCr1bz88stUVFSwY8cOHnnkEQKBAL/6q7/Khg0b+MpXvsJnP/tZAoEA3d3dbNmyhQ0bNvCv//qvrF27lnXr1pHL5fjyl7/M3/zN38iEZ+FwmFwux0MPPcQdd9zBqlWrmJub4xvf+AZ/8Rd/cUNt0djYyOc//3m+9rWvUVZWxtjYGMePH+dP//RP+e53vysThnV3dzM5OckHP/hBfD4fly9fpqWlhbvvvpsvfelL7Nmzhz179nDu3DmeffZZvvSlL3HkyBEmJyfZtGkThUKB733ve3zhC19YkIDrzcjn8xw5coSOjg7MZjN79uzh4Ycf5q/+6q9YuXIluVyO0dFRPve5z/H4449TVVW14PcPP/ww27ZtY+PGjQs+P3bsGEajkQ0bNmAwGCgUCvzbv/0bPT09rFy5kq997WtUV1fLtuvo6CAWi1FdXc3hw4dJp9Myy/GpU6fYvHkzf/zHf8yXvvQlXC6XTNQkVljFinMymWTfvn2Ul5fT3t5OR0cHra2tfPCDH+Spp55ienoal8slfTpefvll2tvb+elPf4rBYKChoYEf/OAHPPzwwzL5nVihLc6mOzY2Rnt7uzRQ7XY7TU1NRCIRvv/975NMJvnABz7AmTNnWLZsGQ888IBsY6vVyrPPPotGo+Fzn/sczzzzDHq9nuHhYQwGA7fffjsXL17kj/7oj/jnf/5ngsEgdXV1JJNJ+vr6+PVf/3WWL19OQ0MDH/jAB3j44Yd54YUX+MxnPsOGDRukAfX444/zV3/1V6xatYpkMsnIyAj/3//3/3HffffxP//n/6ShoYFMJsOZM2d44oknsFqtOBwOzGYzarWahx56iMcff5zJyUn5rD3zzDM89NBDHDt2jPb2dvx+Py0tLRw5coR4PM7Y2BinT59m//79fPCDH+Qv//IvefDBB9m0adOSseLFbsKLL74o69JoNOJyubjjjjt47bXXKCkpwe/309HRwaVLl/jUpz5FLpfj6aefZmxsjObmZm6//Xba29vZtm0bJ06c4MCBA2zfvp1kMkl7ezvr168nnU4zMzPD9773PcxmM2NjY2zcuJHm5mZyuRxzc3OcOnWK++67T05cxYp8LpeTOzWFQoFgMMgXv/hF7HY71dXVvPrqq/zu7/4ua9as4dVXX6Wvrw+9Xk9bWxsvvvgiH/rQh+Q5FvfZ+fl5zp49y9TUFLt37+YHP/gB69ev57d+67dIpVJ85StfoaGhgQ0bNtDc3EwikWDz5s386Z/+qXz2Dx48yCc+8QlWrFjBG2+8QSAQkOOA0+lk/fr1HDlyhAsXLqDX67nvvvv4yle+wmc+8xnUajV9fX1MT0/jcDj467/+az75yU+i1+t5+umnMRgMnD59mrvuuguXy0VFRQW//uu/zh/90R+xdu1aNBoNPT09tLe386lPfYo9e/awfv16zp07x8svv8yPfvQj/vEf/xGj0aiEv1W4JVCMAIVbFqPRCIDVasVqtWKz2YhGo4TDYRoaGrj33nvp7e2VKeUBufJrs9mw2WwkEgnUajXV1dXo9XoprQgEArz22musW7eOiYkJmblTrJAvRq1Wc8899zAxMYHP55OrXFVVVej1eqqrq3G5XFJ3XSgUOHLkCGq1mlWrVqHT6a6S5SxGo9Gg0+kwGAw0NTVhNptJpVJotVpaWlowGo14PB7S6TSDg4OcO3eOj3/842i1WqqqqpiamiIYDGK1WiktLZUp70tKSuQuxMGDB1m7di1WqxWfz3fDE2yNRoPFYkGn01FTU4PVamViYkI6Oe/du1dquxOJBF6vV67aiwRYer2efD5PVVUVFouFXC5HPB4nn8+zb98+li9fzvz8PLlcDovFQigUwmaz3XAZRdKt1atXs379ejZt2sTQ0BCTk5NylbWuro4vfvGLlJaWyt/l83kikQijo6Pcd999VFdXLzjv/v37Wb16NTt37pQr01qtlkgkQjQaRa1Wy7564sQJWlpa2LVrF2q1mscffxyNRoNer6e0tBSHw8G5c+eYnZ1lbGxMrlKvXr2adDotV5uNRiOFQoF169Zx9OhRvF6vvN6HPvQhamtruXTpEvPz85SUlPDAAw+gVqvZt28foVBItk80GqW7u5umpiaam5spFAqsX79e9gGRIdZkMkkD1Ww2yx0Cl8vFxo0bueOOO3jqqaeYm5tDo9FQV1fH8ePH8Xg8DAwMYLFYUKlUlJeXs2PHDqxWKzqdjnvuuYcf/OAHuN1uBgYGiMVicsX2/PnzfPCDH8ThcJDP59Fqtfh8PrRarczSmkgk6OrqoqWlhfLycgwGA6lUCo1GI30BVCoVRqMRlUpFZWUlu3fvJhKJsGzZMpxOJ6dPnwbg7Nmz7Nmzhy1btpBIJDh9+jSRSITTp09TWlrKpz71KUwmE21tbej1ejo6Ojh//jw6nY7R0VEikQhDQ0Ny92oxImmV2WyWRoDBYJB9Y926dZw5c4aZmRlCoRDj4+N86lOfYvXq1TgcDjKZDPfffz+bNm1Co9EQCASIRCLU1NRw1113kc/nZXK5kZERSkpK+J3f+R08Hg/j4+N4vV5WrFhBQ0MD2WyW4eFhKW3RarVs2bKFiooK1q1bx5YtW6Qhc/r0aebn58lkMqjVarlr0NrayvDwMLlcjgceeICSkhLa2tqorKyUkrfXXnuNnTt3YjKZMJlMJBIJmpubCYfDVFZWYrVa0Wq1mEwmNmzYgEql4n3vex9btmyhqqqKfD7PiRMniEajcrc0Go1y7Ngx2traMBqNmM1maQSYTCbsdjtOp5NVq1axevVqbrvtNl5//XWSyaTczY3FYkxPT3Px4kX27t1LU1MTNTU17Nq1C4/Hw1133UU0GmVsbAy3283ly5epqKiQu5q9vb186lOfQqfTodfryWQyBINB9Hr9DWU8V1B4t6AYAQq3LBrtFZmC2WJGq9ViMBikxEdMhFesWIHD4WB+fp5IJEIsFkOv12M2m9Hr9ajVanQ6HaWlpVelgw8GgzidTkwmEytXrpSrjovJZrOEw2H5ki0pKSGbzRKLxYjFYjJzrtlslpNaAL/fT2lpqZSJmEym6748xCRCr9fjdDrly0av12O32+XKbT6fJxqNEgwGpZRHSDTE6l4+n5fn0ul00vgIhULSSFKpVFetel+vbBqNBpPJhNVqlfcinF6Hhoaora2lpKSEcDjMzMwM0WgUjUZDSUmJnCRqNBopZxLlFCuIVquVkpISDAYD27dvf8vOeHq9HpPJRGlpqZQTGQwGqbdWq9VYLBZWr169QAqUTqc5c+YMzc3NuFwuKakqFApMTk4Si8VwOp0Ldg6ElCORSHD8+HFmZmbYsWMHfr+fDRs2sHz5cpLJpGxDr9fL/Pw8JpOJNWvWMDIyInXUIuur1WqloqKCSCRCJBLBbrfT3d1NfX09TU1NdHV1EQqFgCuGS2trq+zjqVQKr9eLz+ejrKyMmpoabDabzLAqjGi73S4NRK/XS2lpKU6nk7a2Ntn3TSaTzGBstVpZt24d9fX1aDQaqefv6OjA5XJRW1srDXMh7WlpaWFychK1Wk19ff0CPxCbzSavlU6n0ev10iDq6+tj1apV1NfX43K5UKlUxGIxDh06xO23347dbketVqPVanE6nXz0ox8lk8lIqVZLSwsWi4Wmpiamp6epqanB5XLJSE8+nw+bzcayZcvkBLtQKOD3+3G5XKxYsUIaeCqVimg0Si6XY9myZTQ1NZHNZhcYj0s9I2LFXPRdrVaLxWIB4PLlyzgcDioqKpibm+Po0aMAOBwOSkpK0Gg0bNmyhcrKSgDpxK1SqaipqZHZiMVzZLFYWLt2LWq1mpGREdnfSkpKKC8vXyDzUqvVVFRUyLY1mUxyUhuJRLBYLNTU1NDS0kJ9fT25XA6VSkUoFEKr1dLU1LQgi65Op6OsrAyj0UhlZSXDw8PSSLPb7YTDYTlGCANPXFc8HxaLhWQySSQSwWazUV9fj9PplH4hGo2GpqYmksmkNALMZrM0OKqqqli9ejU1NTXSj8rj8TAxMUFtbS3Nzc2cP39e1pfoey6Xi4aGBqampqT/UDqdprGxkbKyMoLBoHR4Hhoaore3F4/Hw7p166irq5PGk5KgTeFWQDECFG5ZMukrjmtikBaT7mQyyfz8PD/60Y/47ne/Sy6XY2JigkQiwdzcHLFYTE5YhENdIpGQzmIibGNzczN6vZ6Kigr54l2sE4crRoDX62X//v3s2LEDl8tFLBYjEonIaBuLrxGPx3G5XKTTaXw+H8lkUoYUFM5niyUFwslNlFFM6oXMQDgIplIpLBbLgolaIBDAaDTKF300GpUGSTwel+dsbm7GZrPhcDgoKyuTZRT1m0ql5MplMcIJVjjdFZ83mUzyk5/8hD/7sz+jqqpKTl7m5uaIRqMLnEhFOUQ9ibpatmwZZrMZu91OZWUlNTU1GAyGq16wwnDw+/34fD4CgQBer5e5uTnKysqAK5OnoaEhysvLpXEhVhOFpGLHjh1y9Tsej/Pqq6/ya7/2a/IccGWiferUKZYtWyZ3kuDKS3/Hjh2sWLGCU6dOcfjwYaampti6dStlZWUkEglGRkbIZrPMz8/j8/nw+XyMjo4Si8X4wAc+QF9fH/F4nGg0KssXjUaZmppienoas9lMW1sb+/bt4y/+4i8oLy8nFArR1dVFIBBgYmKCpqYmKioqmJmZ4cCBA+zYsYPGxkYMBgO1tbVyEix0/CaTCZ1Oh8fjIZlMSsO0rKxswX2Lvjg1NSX7bDAYJBaLodPp8Pl8HD58mNtuu41Vq1YRDAbp7u7G4/Es6ONwRb8djUYxm83Sv6W5uRm1Wi2NyYGBAc6dO0d/fz9/+Id/SFtbG1qtlkwmw/z8POfPn+czn/kMVqsVAJ1Oh8vl4jOf+QyvvfYaR48elXr+SCQi5VeJRELWcTKZxOl0EgwGGRoakjuE4vkXK+cajUb2LavVSkNDg/THEMaleL78fj+JRAKPxyPbUBiZi8nn81Jms3z5ciYnJzl8+DCBQIBMJiOfVbE7ZjKZsNlsaLVa6SskjH+n00k8HieXyxEOh5mfn5ftI+7b4/EQiUTw+/3Mz8/jdDqBK7tloVCIvr4+ZmZm2L17N9XV1VRUVFBbW0tra6tcSNDpdHJhY3h4GKPRyOTkJGvXrpULC3q9npmZGU6fPs22bdsoLy/HaDQSDodxu934fD4cDgdzc3PSUVeMY2K3p7a2loqKChoaGqipqZE+PmIHdDGpVEq+C+LxOIFAgEQiQTQaxe1209nZyebNm9mwYQMvvvgiyWQSn88n+0EmkyESiRAOh0mlUlitVmpqamhsbJTjoYiqdPnyZU6dOkVDQwP333+/LE8ikZDHlJeXX1VGBYV3C4oRoHDLMjk1CVTgcV/Z7m5vbycYDEqdrU6nY3x8nNnZWXw+H6lUipmZGbq6ujAajZSXl+Pz+RgZGeHkyZNoNBo8Hg+Dg4OsWbOGT33qU/zbv/2bXC12OBzSwXcxYmVvdHSUcDhMJBLh0qVLlJeX43a7pfZfhIbs7Oxk7969nDlzhoGBAcrKyrhw4QJ9fX1MTEywbNmyqyZewrl2enqaEydOsGzZMiYmJshms1y6dIloNMrc3BwTExOsXLmSiooKnn/+edatW4ff75fb7IlEgiNHjsi4/z09PYyPj9Pb28v/+//+v1KzW1lZSSKRoL6+npmZGdrb2ykrK2Pz5s1X3X80GqWrq4uZmRn6+vpIJpN0dnYyOzvL5OQkGo1GhiQUq95imz2dThOPx7FYLIyPj3P69Gk5yZyenqa9vZ3f//3f54c//CGpVIqamhqi0Sh79+5dsi3i8Tjf+c53OHv2LKFQiPb2djZt2sSDDz4IwMDAAK+99ho//elPaWhoYPny5fJeR0ZG+PznP8/zzz+PyWSS2/x9fX1s2rRJrtqKiCJPPPEEX/rSl5bMgutwOPjABz7AHXfcwblz58jlcnzyk5/kmWee4cc//jE6nQ6dTsfTTz/NPffcg91u5+DBgwwPDzMxMUF3dzfZbJYPf/jDtLW18eUvf5mxsTF27NjBrl27MBgM7Nq1i0cffZREIiGdpl966SVGRkb46U9/itVqlcZSc3Mz//W//le++c1vcurUKTQaDdFolH/5l39BrVazYsUK5ufnefjhh9Hr9fzt3/6t3PVYjN/vp6+vj5MnT0rd9oULF7BYLHR1dXH33Xfz1FNPsW/fPml4/8u//Avnz5+ntLSUCxcuSMfcixcvotVqueeeezh69Chf+tKXcDgcrF+/nu3bt2OxWLjtttv47Gc/i1qtloaf1+tlcHCQlStXYrPZlnRgvvfee9m1axfz8/OMj49z8uRJZmZmpPFhtVq5ePEiQ0NDfOpTn+Lpp5/m0UcfxWaz8ZGPfASLxcKv/dqv8dJLL/Gnf/qnGAwGNBoNL7zwAvfddx82m43vfOc7HD9+nPn5eR588EEMBgMdHR38+Mc/ZnBwkG9+85ts3bqV7du3S/39UuzcuZP9+/fz7LPPEo1GCYVCvPjii4yPj3P8+HESiQSRSITf+I3fYNu2bbhcLpYvX87Q0BAPPvggOp2O3/zN38RoNHLx4kX6+vp45plnuHDhAgMDA6RSKZYtW8alS5c4ePAg/f39TExMMD8/z2c+8xkA7rjjDvbv38/c3BxVVVV8+MMfZs+ePVy4cIHjx4/zyiuvoFar+cM//EMA7r//fg4ePMif/MmfUF1dTVtbGw0NDXKXqaamhr/7u7/D5XKxbt067HY7y5cv5x//8R8ZHx+no6ODQCCARqMhFAoxNDTEN77xDe655x52797NypUrueOOOzh48CDPPvsssVgMu93Opz71qWvWo3gXjIyMMDExwcaNGxkcHOT06dO0tLTQ1NTET37yE1566SWmpqZ45ZVX0Gq10hn4woUL1NXVyUAAZrOZ3/iN3+Cxxx6TzsZr1qzh7rvvxuFw8Gd/9meUl5cvkHL29fVx5swZNBoNn/70p69ZVgWFXzaqwn/WIL4K/+k5H8qzrV3NmY1Zttk1UjoiZDNidbpYvqHRaOSEXUT+EL8RW9Pi3+LveDwut7jF58UUhxfMZDJyBUtcL5fLLZi85HI5KQMpDotoMBjkqui1VrnF5FNMeIrvpfjcAlF+k8m0QKsqPjcajaTTaZLJpJxICWlGoVCQWmqx/S/qdjFLlU18JupAaLV1Oh25XA6tVivLL85dXFfi9+JvsUJYKBQWSKeK66k4pOPitlWr1fzwhz8kHo/zvve9j8bGRrRa7YK2EO0oJB9er5fe3l4ymQx33nmn3J0Rq6yPPPIIv/u7v4vT6bzmtn9xOcRORfF9L+4bxdcvrm/hsKvRaBbUSTabXXAO8bn4jVi1Le4zwhFY3H9xfxFtID5f6r6K21uUU9RfcaSlxfUvZGjFUglRjuK6EQaCOFfxeQRdXV10dHRwzz33UFVVdd36Ly5z8SvvWtcXsp/iur+RNivuS8Xj0fWeHVE20ZbiONH3RbssvrYo+1JtViz5W/wcFdeDOE9x3xB+AqKfFfcL8TwX339xGUSbiess1WdFnYm+s/hcxXW1uI7F58V1sFRdirIW19PichXXyeL+UNxHNRqN/I0on0ajkWPlUuNQcXhdjUbDxQhsuQAXtsDmkiW7gILCLwXFCFC4ZXmzgbX4RSh4O/rMxZP4pSieaCx+qbwZxeUsLu/PqyUtnhAvLv/iiWnxhKP4tzczwkXxREbwVu9xsdHzVvB6vXznO99hdnaW2267jU9+8pNvWgYRAx6Qfgvws4lGMBiktLR0yWgw12LxkLuUEXOtci3WGS91/FJD+rUM1xv9/K1yvXu8Wb8TEjuhl79Z2uul6uDnabOf99o3+pt3ugzXK9u16uCtfv52yvVWuRl9862WQTECFN6tKHIghf+0FK9w/TzcyDmWWg26UYrLeTPKu7hMS52zeBVtqTK/E85sN8Og+HnOodVqpfNeZWXlDd2jVquVWvNiVCoVWq32bel9r3fdNyvT4u/fbttd65ib1e5v9zxv5XdGo3FJ/5Sfl7dapzfzWXm748fN5O30jbf6m1/mff4i+qaCwq2CYgQoKCi8JzCbzWzdulVKrxQUFBQUFN7LKEaAwi1Pb/yXXQKFWwMj2OvkX97IL7EoCgoK7xmUd5TCuxXFCFC4ZSnXgVkNv937yy6JgoKCgoLCtTGrr7yzFBTeTSiOwQq3NBNJ8GV+2aVQUFBQUFC4NuU6aLj5LiwKCj8XihGgoKCgoKCgoKCg8B7j5sX/U1BQUFBQUFBQUFC4JVCMAAUFBQUFBQUFBYX3GIoRoKCgoKCgoKCgoPAeQzECFBQUFBQUFBQUFN5jKEaAgoKCgoKCgoKCwnsMxQhQUFBQUFBQUFBQeI+hGAEKCgoKCgoKCgoK7zEUI0BBQUFBQUFBQUHhPYZiBCgoKCgoKCgoKCi8x1CMAAUFBQUFBQUFBYX3GIoRoKCgoKCgoKCgoPAeQzECFBQUFBQUFBQUFN5jKEaAgoKCgoKCgoKCwnsMxQhQUFBQUFBQUFBQeI+hGAEKCgoKCgoKCgoK7zEUI0BBQUFBQUFBQUHhPYZiBCgoKCgoKCgoKCi8x1CMAAUFBQUFBQUFBYX3GIoRoKCgoKCgoKCgoPAeQzECFBQUFBQUFBQUFN5jKEaAgoKCgoKCgoKCwnsMxQhQUFBQUFBQUFBQeI+hGAEKCgoKCgoKCgoK7zEUI0BBQUFBQUFBQUHhPYZiBCgoKCgoKCgoKCi8x1CMAAUFBQUFBYX/v/06EAAAAAAQ5G89yGURMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADAjAQAAMCMBAAAwIwEAADATRrQUAfNzasYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LayoutParser: A Unified Toolkit for DL-Based DIA\n", + "\n", + "5\n", + "\n", + "Table 1: Current layout detection models in the LayoutParser model zoo\n", + "\n", + "Dataset Base Model1 Large Model Notes PubLayNet [38] PRImA [3] Newspaper [17] TableBank [18] HJDataset [31] F / M M F F F / M M - - F - Layouts of modern scientific documents Layouts of scanned modern magazines and scientific reports Layouts of scanned US newspapers from the 20th century Table region on modern scientific and business document Layouts of history Japanese documents\n", + "\n", + "1 For each dataset, we train several models of different sizes for different needs (the trade-off between accuracy vs. computational cost). For “base model” and “large model”, we refer to using the ResNet 50 or ResNet 101 backbones [13], respectively. One can train models of different architectures, like Faster R-CNN [28] (F) and Mask R-CNN [12] (M). For example, an F in the Large Model column indicates it has a Faster R-CNN model trained using the ResNet 101 backbone. The platform is maintained and a number of additions will be made to the model zoo in coming months.\n", + "\n", + "layout data structures, which are optimized for efficiency and versatility. 3) When necessary, users can employ existing or customized OCR models via the unified API provided in the OCR module. 4) LayoutParser comes with a set of utility functions for the visualization and storage of the layout data. 5) LayoutParser is also highly customizable, via its integration with functions for layout data annotation and model training. We now provide detailed descriptions for each component.\n", + "\n", + "3.1 Layout Detection Models\n", + "\n", + "In LayoutParser, a layout model takes a document image as an input and generates a list of rectangular boxes for the target content regions. Different from traditional methods, it relies on deep convolutional neural networks rather than manually curated rules to identify content regions. It is formulated as an object detection problem and state-of-the-art models like Faster R-CNN [28] and Mask R-CNN [12] are used. This yields prediction results of high accuracy and makes it possible to build a concise, generalized interface for layout detection. LayoutParser, built upon Detectron2 [35], provides a minimal API that can perform layout detection with only four lines of code in Python:\n", + "\n", + "1 import layoutparser as lp 2 image = cv2 . imread ( \" image_file \" ) # load images 3 model = lp . De t e c tro n2 Lay outM odel ( \" lp :// PubLayNet / f as t er _ r c nn _ R _ 50 _ F P N_ 3 x / config \" ) 4 5 layout = model . detect ( image )\n", + "\n", + "LayoutParser provides a wealth of pre-trained model weights using various datasets covering different languages, time periods, and document types. Due to domain shift [7], the prediction performance can notably drop when models are ap- plied to target samples that are significantly different from the training dataset. As document structures and layouts vary greatly in different domains, it is important to select models trained on a dataset similar to the test samples. A semantic syntax is used for initializing the model weights in LayoutParser, using both the dataset name and model name lp:///.\n", + "\n" + ] + } + ], + "source": [ + "render_page(docs, 5)" + ] + }, + { + "cell_type": "markdown", + "id": "0267a271-e1bd-483c-96c3-36eb1387dd3f", + "metadata": {}, + "source": [ + "Note that although the table text is collapsed into a single string in the document's content, the metadata contains a representation of its rows and columns:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3f91df64-94db-4228-8a75-34bf83117e15", + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import HTML, display\n", + "\n", + "segments = [\n", + " doc.metadata\n", + " for doc in docs\n", + " if doc.metadata.get(\"page_number\") == 5 and doc.metadata.get(\"category\") == \"Table\"\n", + "]\n", + "\n", + "display(HTML(segments[0][\"text_as_html\"]))" + ] + }, + { + "cell_type": "markdown", + "id": "3ac2c37a-06a1-40d3-a192-9078eb83994b", + "metadata": {}, + "source": [ + "
able 1. LUllclll 1ayoul actCCLloll 1110AdCs 111 L1C LayoOulralsel 1110U4cl 200
Dataset| Base Model\\'|Notes
PubLayNet [38]F/MLayouts of modern scientific documents
PRImAMLayouts of scanned modern magazines and scientific reports
NewspaperFLayouts of scanned US newspapers from the 20th century
TableBank [18]FTable region on modern scientific and business document
HJDatasetF/MLayouts of history Japanese documents
" + ] + }, + { + "cell_type": "markdown", + "id": "c16d24f8-be5f-4616-9a79-9761788b30f8", + "metadata": {}, + "source": [ + "### Extracting text from specific sections\n", + "\n", + "Structures may have parent-child relationships -- for example, a paragraph might belong to a section with a title. If a section is of particular interest (e.g., for indexing) we can isolate the corresponding `Document` objects.\n", + "\n", + "Below, we extract all text associated with the document's \"Conclusion\" section:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "abb9f9e1-3a64-40bc-bea8-7ab74e3a4ca2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAPdCAYAAADS42RBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5ycV33o/8/0XrbP9qbVqvdiuRsMWGA6vAKBUBLIhcQJSX6kQC7kJrkh3EtCgkMJgXtNXMAyYIoN7pZlSZbV+/beZ2d2Z3Z6n98fus/Jrppl2bIk9vt+vfR6Satnn+fM0+Z8z/mec3TFYrGIEEIIIYQQYtHQX+0CCCGEEEIIId5YEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuMBAFCCCGEEEIsMhIECCGEEEIIschIECCEEEIIIcQiI0GAEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyBivdgGEEEIIIcTilc/nyWazV7sY1w2TyYTBYHjN+5EgQAghhBBCvOGKxSJTU1OEw+GrXZTrjtfrxefzodPpLnsfEgQIIYQQQog3nBYAVFZWYrfbX1OFdrEoFoskEgmmp6cBqK6uvux9SRAghBBCCCHeUPl8XgUAZWVlV7s41xWbzQbA9PQ0lZWVl50aJAODhRBCCCHEG0obA2C3269ySa5P2nl7LWMpJAgQQgghhBBXhaQAXZ7X47xJECCEEEIIIcQiI2MChBBCCCHENWEkBcE3cLbQchM0WN+4411LJAgQQgghhBBX3UgK2g9AqvDGHdOqh+4tlxYIvFIKzt/8zd/wP/7H/7iscgwNDdHc3MzRo0dZt27dZe3j1ZIgQAghhBBCXHXB7BsbAMCZ4wWzlxYETE5Oqr/v2LGDL3/5y3R3d6ufOZ3OK1HEK0bGBAghhBBCCPEKfD6f+uPxeNDpdAt+9vDDD7N8+XKsVivLli3j29/+tvrd3/3d32XNmjWk02kAMpkM69ev52Mf+xgAzc3NAKxfvx6dTsftt99+xT+PBAFCCCGEEEK8Bg899BBf/vKX+Yd/+Ac6Ozv5yle+wpe+9CX+8z//E4B7772XeDzOX/3VXwHw13/914TDYb75zW8CcODAAQCeffZZJicnefTRR694mSUdSAghhBBCiNfgb/7mb/jnf/5n3ve+9wFnWvY7Ojr47ne/y8c//nGcTicPPvggt912Gy6Xi3/9139l586duN1uACoqKgAoKyvD5/O9IWWWIEAIIYQQQojLFI/H6e/v5/d+7/f49Kc/rX6ey+XweDzq39u2bePzn/88f//3f89f/uVfcvPNN1+N4ioSBAghhBBCCHGZYrEYAN/73vfYunXrgv8zGAzq74VCgb1792IwGOjr63tDy3g+MiZACCGEEEKIy1RVVUVNTQ0DAwMsWbJkwR9twC/A1772Nbq6uti1axdPPvkk9913n/o/s9kMQD6ff8PKLT0BQgghhBBCvAZ/+7d/yx//8R/j8Xi46667SKfTHDp0iFAoxJ/92Z9x9OhRvvzlL/OTn/yEm266ia9//et87nOf47bbbqOlpYXKykpsNhtPPvkkdXV1WK3WBalEV4L0BAghhBBCCPEafOpTn+L73/8+9913H6tXr+a2227jBz/4Ac3NzaRSKT760Y/yiU98gne+850A/P7v/z533HEHv/M7v0M+n8doNHLvvffy3e9+l5qaGt797ndf8TLrisVi8YofRQghhBBCiP8nlUoxODhIc3MzVuuZlbqu9RWDryXnO3+vlqQDCSGEEEKIq67BeqZCHsy+cccsN11/AcDrRYIAIYQQQghxTWiwLt5K+RtNxgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuMrBMghBBCCCGuCdlQlnws94Ydz+A0YioxvW77+8QnPkE4HObnP//5Bbd54YUXuOOOOwiFQni93tft2K+WBAFCCCGEEOKqy4ayDH+ln2Ku+IYdU2fU0fjF1ksKBHQ63UX//2/+5m/4xje+QbH4X+W//fbbWbduHf/6r//6Wov6upMgQAghhBBCXHX5WO4NDQAAirki+VjukoKAyclJ9fcdO3bw5S9/me7ubvUzp9OJ0+m8IuW8EmRMgBBCCCGEEK/A5/OpPx6PB51Ot+BnTqeTT3ziE7znPe8BzqQG7dq1i2984xvodDp0Oh1DQ0Pn3feePXu45ZZbsNls1NfX88d//MfE4/Er+nkkCBBCCCGEEOJ19o1vfINt27bx6U9/msnJSSYnJ6mvrz9nu/7+fu666y7e//73c+LECXbs2MGePXu45557rmj5JB1ICCGEEEKI15nH48FsNmO32/H5fBfc7h//8R/5yEc+wp/8yZ8A0NbWxr333sttt93Gd77zHaxW6xUpnwQBQgghhBBCXCXHjx/nxIkTPPTQQ+pnxWKRQqHA4OAgy5cvvyLHlSBACCGEEEKIqyQWi/Hf/tt/44//+I/P+b+GhoYrdlwJAoQQQgghhLgCzGYz+Xz+otts2LCBjo4OlixZ8gaV6gwZGCyEEEIIIcQV0NTUxP79+xkaGiIYDFIoFM7Z5i//8i956aWXuOeeezh27Bi9vb384he/uOIDgyUIEEIIIYQQV53BaURnvPiCXK83nVGHwXnlEmM+//nPYzAYWLFiBRUVFYyMjJyzzZo1a9i1axc9PT3ccsstrF+/ni9/+cvU1NRcsXIB6IrzlzUTQgghhBDiCkulUgwODtLc3Lxg9ptsKEs+lnvDymFwGi9pobBrzYXO36shYwKEEEIIIcQ1wVRiui4r5dcjSQcSQgghhBBikZEgQAghhBBCiEVGggAhhBBCCCEWGQkChBBCCCHEVSHz01ye1+O8SRAghBBCCCHeUCbTmcG/iUTiKpfk+qSdN+08Xg6ZHUgIIYQQQryhDAYDXq+X6elpAOx2OzrdG7tGwPWoWCySSCSYnp7G6/ViMBgue1+yToAQQgghhHjDFYtFpqamCIfDV7so1x2v14vP53tNgZMEAUIIIYQQ4qrJ5/Nks9mrXYzrhslkek09ABoJAoQQQgghhFhkZGCwEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuMBAFCCCGEEEIsMhIECCGEEEIIschIECCEEEIIIcQiI0GAEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuMBAFCCCGEEEIsMhIECCGEEEIIschIECCEEEIIIcQiI0GAEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuMBAFCCCGEEEIsMhIECCGEEEIIschIECCEEEIIIcQiI0GAEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuMBAFCCCGEEEIsMhIECCGEEEIIschIECCEEEIIIcQiI0GAEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEImO82gUQ4jfVSAqC2atdimtLuQkarFe7FEIIIYSQIEBct16pkl0sFtXfdTqd+vsbUREdScHyA0USBd0rb7yI2PXQuUUCASGEEOJqkyBAXJfOVLIhUbjYVuevgL8RFdFgFhIFHd9rSlCXj6mARKfTYbaY8bg9CwKTsyUSCUKhEIFggPal7eTyOQBy2RxzkTkaGxov+vtXQ6FQIBQKkclk8Hq92Gy2Bf/fmYCPdp45NxIECCGEEFeXBAHiunSmkg3/0zZEbuAkxWKRt73tbVjMFgDyhTyRSIQf/ehHfPADH6SiogJ44yuiB358Pxafg7a2Nubm5jh9+jRTU1N85StfwWg8/+M3OjrK4OAg+dlZPvTWt/KjH/0Qj8dDa2sryWSS//utb/Hggw9ypWOAeDzO9PQ0TU1NlxRw5PNF+qaCfO973+NDH/oQGzZturIFFEIIIcRlk4HB4rq2oczGJrce50QPa215NrhggwtWmtLYx7rInHqZdn1c/Xy5/Y0tX3l5OTfeeCMNDQ3MzMzQ2dnJ+973PvT6Cz96Q0NDBAIBSkpKsFqtbN26lbKyMhwOBw6H46K/+3qZmZlhYGCAnp6eS/4dvV5PTU0NmUyGXC53BUsnhBBCiNdKegLEdc1ms6F3uRZUOrVUGrPZTCqVolC4aM7QFbVixQoaGxs5evQo4XCYhoYG1q5de9GWdavVSiQSob+/n3w+j8/no6amhrKyMqanp9Hr9QwPD5NMJnE6nbjdbsxmM52dnZSWlpJMJvF4PJjNZo4cOUJTUxMWi4VsNovNZqO2tnbB8YLBINPT0zgcDgKBAMuXL2d4eJhTp04Rj8eZmZmhtLRUBR/FYpFiscjx48cpKSkhl8thMBhobm7G5XK9IUGKEEIIIV4bCQLEb5R8Ps/c3ByBQIDW1tarnje/YsUKMpkEu3btolgsctddd10wDUjT0tJCT08Pu3btYmxsjE2bNnHHHXfgcrnw+/1kMhkGBgaYmJigtLSUmpoaPB4PTzzxBOvWrWN0dJT29nbKysr4z//8T975znfi8/mYnJzE4/EsCAJyuRx9fX0cOHCApUuXcujQIcrKyhgeHqanpweLxUIwGMTr9S6o3BcKBV566SVaW1sJBoMqCBBCCCHE9UGa7MRvlHg8TjKZxGg04nQ61c/nzxT0RioWi+zfv5+ZmRmqq6tZu3YtU1NTF/2d0tJSfuu3fouHHnqI97znPTz99NPs3LmTkZER8vk8yWSSLVu2sHLlSmZnZ9mzZw/PPfccuVwOr9eL3+9nbm4Or9fL0qVLqaioYMuWLcRiMbq6uhYcKxgM0tnZycmTJ/F4PFitVsbGxvB6vWzcuJH29nba29sxGAwLfs9gMHDbbbdRV1fH5OQkx48fVz0EQgghhLj2SRAgfqMEAgH8fj+Tk5M888wzTE9PMzAwQCgUuirlSaVS/K//9b+49dZbede73kUsFuPpp5++aIrSgQMHVKX8tttu49577yWVSjE1NYVer1djAwwGA8VikUKhgF6vZ/ny5WzevJm/+Iu/4O1vfzs6nQ6dTkdFRYXa9uxKeqFQwG6309jYyNatW/mTP/kTNm3aRGlpKTqdjnw+T09PD/l8Xv1OLpdjYGCA73znO1gsFiorK9Hr9czOzl6x8yiEEEKI15ekA4nrmt/vZ+roUXp6eujr66Ouro6qqiqi0Sh79uwhm82Sy+WuWgv1oz97FJ/PRyAQYNeuXYyPj7Nnzx4+/vGP88wzz+Dz+WhtbcVu/68Ry8FgkNnZWSKRCLW1tRw8eJBly5ZRXl7O6Ogok5OT9PT0cOrUKbq7u6msrGTTpk089thjnD59mng8TkVFhaqsnzx5kkKhwPDwMJlMhkAgoGZLKi8vp66uDr/fz6FDh8hkMrS2tuLxeHA4HBw5coTq6uoFqT6FQoFoNKp6DWZmZohGoxw7dozKykrGxsaYnp7m1KlTDA8Pc+utt/6/Xplra0pTIYQQYjGTIEBc17wlXhq2bKG5uZny8nIcDgcWiwWTycSqVav4zGc+w9KlSxdUst9Iy9qX0dBUTnV1NQaDgbKyMioqKtDr9dTX1+N2u88ZI9Da2orP58Nut5PJZGhqaqKxsRG73Y7JZOL3fu/38Hq9rFy5Ep/Ph8fjobGxkVtuuQWv14vL5cLtdgPwvve9j4aGBioqKrjzzjspFAoL5u83m820trZitVrxeM6sXeBwOFQqlU6no6mpaUE6kMFgwOfz8Y53vIP6+npsNhurVq2ioaEBh8PBhz/8Ydrb21UZTCbTlT7NQgghhHiVdEVJ4hXXoSNR2HgYDm88M/Xnlf69N6p8gJrpqFAo4Pf7KS0txWq1npOXf7ZisUg6ncZsNr/qGXoKhQLZbBaz2QycqfwXCgUKhQIGg+GcAdZaapGWinQpx3ujzr0QQgghXpn0BIjrWmfiym5/NczvGaivr7/k39PpdFitl7cCml6vx2KxnPOzC1XutfEGMh2oEEIIcX2SIEBcl8pNYNefWf331bLrz/z+G+F6CDreKHIuhBBCiGuHpAOJ69ZICoLZV/975SZouLwG80s2koLlByBx9dYpuybZ9dC55cqffyGEEEJcnAQBQlwhlxuk/CZ7IwIwIYQQQrwyCQKEEEIIIYRYZGRUnxBCCCGEEIuMBAFCCCGEEEIsMhIECCGEEEIIschIECCEEEIIIcQiI0GAEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuM8WoXQIjLkQ1lycdyV7sY4hUYnEZMJaarXQwhhBBCnEWCAHHdyYayDH+1n2KmeLWLIl6Bzqyj8a9aJRAQQgghrjESBIjrTj6Wo5gpUvXRGozlRlKpFJ2dnej1Z7LbvCUl+Hw+bFbr63K8IjA2Nsbw0BATExNUV1djsVoxGgwUCgWi0Sh9fX186lOfQqfTvS7HvJBEIkFffz+//OUveetb38rStja8Xu9r2mdfXx/Hjx8nkUjwkY98RJ3H1yozncH/4AT5WE6CACGEEOIaI0GAuG6ZKs0kHUlODZ9mT8ceKisrGR8fp7a2llurbmVp/dLX5ThTU1O82PEiL7/8MrFYjA9+8IP42qoJhUIMDw9z9NhRfvKTn/DZL/8BRuOVfaSy0RyZQIZ/eeBfqF5dTcOGBqz1tte0z6luPztPvUA4HOaTf/G7V/wzCCGEEOLqk297cd3K53IcOXKEL3/5y/zFX/wF27dv5x//8R85ePAgJpOJpUtfWxBQLJ5JN/rpT3/Kj370IxobG/nmN79JWVmZ2mZubo7y8nIeeeSRBb83/49er0en06HT6SgWixQKBYrFIgaDQW0DqBZ4bTtAbavtw+VysW7dOpxOp+p1OHuf88ug7Ven06ltisWiKo9Op2PDhg3U1NSQTCZVGS50/LM/w/xeg/n/vtI9IkIIIYR4bSQIENetzs5Onn7haQKBAO9617vQ6XT87u/+Lvl8/jWnyGhyuRz33nsvdXV13HbbbZSWli74f7fbzcqVK/ngBz+oKsCJRILx8XFOnTpFMplky5Yt1NbWYrfbiUajvPDCC8Tjcd7ylrcQiUQYGRkhHo/z5je/GYvFAkAmk2F2dpaDBw8SCoVob2+npaWFysrKc8o4Pj7O4cOHSSaTbN++nXw+z/DwMMPDw5jNZrZv3w7A8PAwAwMDTE1N0dDQQFlZGRUVFUxPT9Pb24vRaGT9+vXAmcp/IBDg2LFjTE1NsXz5ctrb2/F6vaRSKY4dO8bo6Cjr1q3DZDIxOzvLyMgIN9xwA5WVlSoYEUIIIcS1SaYIFdetYDDI+Pg4ZrOZH/7wh9x///3ce++9PP300+Ryr33moGKxSF9fH/F4nJKSEioqKs5p4dbpdFRXV/PFL34RnU5HX18f//zP/8x3v/tdli5dyk033cRXv/pVHnroIU6fPk0ul2NsbIzPf/7z7Nixg/HxcWKxGL/85S/5x3/8R2KxGFNTUzz00EN89rOfxWq1smbNGv77f//v/OAHPyASiZxTzmQySXd3N3/6p3/K5OQk+XyewcFBHn30Ub72ta9RLBbZs2cPL730EqlUirvuuotUKsXTTz/NzMwM4+PjPPHEE3zta1+jUCiQTCb593//d/7u7/4OnU7HXXfdxXPPPcc3vvENfv3rX6PT6dDr9Xzxi1/k+9//Pvv372d6epqJiQk+/vGPMzs7+5rPvRBCCCGuLOkJENetRCJBMBgkkUiwcuVKTCYTx48f5/Dhw1itVj7+8Y+/5mNo6TMGg+GCrdsmk4mKigoAfv3rX9PT00NDQwP19fWYzWYqKip4/vnn0el0fOhDH6KlpYXp6WmMRiMVFRU4HA5cLhcvvfQS2WyW/fv3c/DgQXK5HCtXrsRut7N9+3ZWrFiBxWIhm80uOL7T6aS2tpapqSlyuRxWqxWXy4XdbmdmZoZiscjU1BT79u0DIJ/Pq7SisrIyZmdncTqdBINBisUiBw4c4ODBgySTSVauXElZWRnLli3jgQceIJlMsmHDBpqampibmyOZTFJSUkJzczOJRIJDhw4RDocpKSl5zedeCCGEEFeO9ASI65aWm67T6Vi+fDkrV67E4/EwNjbG3r17X5djeDwerFYrmUyGZDJ53m1SqRS9vb0Ui0UOHTpELBajrKxM/W5TUxN9fX309vai1+vx+XwAlJaWUlZWRklJCV6vl/HxcfL5PN3d3YyPj1NRUUFNTQ1er5d3vetdbNiwQaULzWez2RakCZlMJlwuF263W/2svLwco9HI6OgozzzzDPv27UOn02EymXA4HAvSpzo6OpicnMRkMlFXV6fGV4TDYfr6+pidnaW8vFz9bllZGT6fj9LSUkKhEIlE4nXpiRFCCCHElSM9AeK65XQ6qaqqYnp6WlWOrVYr2WwWv9//mvevpfrU19cTiUQYHx8nm81iMv3XdJeFQoHZ2Vkef/xxPve5zxGNRikUCpjNZrWN3W4nm82SSqUWVI6dTidms1kNuM3n88CZ9J5cLofdblfbtrS0UCwW1TavpFAoLNh248aNpFIpXnrpJY4ePcrPf/5z/H6/Ckjmm/8ZtEHEdrsdg8FAJpNhbm5ObetwONRn1VKl8vn8md+7pJIKIYQQ4mqQngBx3Wpubmb16tVEIhE1m000GsVkMtHU1PSa9z8/912v1/P0009z8uTJBTP/RKNRlYYDsHr1akwmk0qtgTNrDPh8PpUe9Era2tooKSmhv79f7WN6epqRkRGmpqbO2V6v16vARCvX7OwsY2NjapsdO3bgcDj40z/9U372s5+xc+dOOjs7CYfD5+xv1apVWK1WgsGgmgVofHycQqGAz+d7zbMuCSGEEOLqk54Acd2qr69n+/btTE1N8Ud/9EcsX76c3t5eNmzYwCc/+cnX7Th33HEHFRUVvPDCC3zpS19i2bJlLF26lEwmQ7FYpLKyks985jPodDruuecefvjDH3Lq1Cm+8pWv4PF4OHr0KL/7u7/LjTfeSCgU4r777sNoNPLzn/+cbDaL0Whk7969RKNRfv3rX7Nt2zbcbjcPP/wwf/AHf8DWrVuJRCJs3LiR5uZmHn30UXK5HM899xzNzc1s27aNtrY23vKWt/DTn/4Ut9tNIBAgkUgwMjLCI488wuTkJL29vezcuZP6+nrm5ub46Ec/it1u5/jx47z00ktEo1GeffZZtm3bRiqVYs+ePfzpn/4pq1atYvfu3bz73e/m5ptvxmg08qMf/YhsNstLL71EY2Mj0WiUH/3oR5hMJnbs2MHHPvYxWt0tr9s1EEIIIcTrS1fUmhqFuE6kRpOMfn2I+j9rIl9aYHx8nEgkgtlsJpvN4vV6qa2txfo6rRgMEI/HmZ2dxe/3Y7PZVLqOyWTCYrFQVVWlUnomJyeZm5vDbDaj1+uJxWIqt79YLDIwMMDExAQ+n0/NODQ6Oko0GmXJkiWUlJSQTCaZnJykUCjgdrspFot4vV5sNhszMzP09vaqz+n1eikUCnR0dGCz2TAajWSzWSKRCLOzs6xevZp0Oq16K4xGIwaDAavVitPpJBKJMDk5STweZ/ny5ZSUlBAKhQiFQmSzWSwWC/F4nNLSUkpKSrBarfj9fnp7e3G5XPh8Pux2OxMTE0xOTlJfX09NTQ2msFFdp9e6oJkQQgghXl8SBIjrzvwgwFpvo1gskslkyOVyWCyWK7rirZZuE4/HsdlsGAyG8y6MpW1XKBQuuM2lHmv+Yl2vtL02UHr+gl5Go3HBwmK5XO6S0pLmbz9/H5fq7OskhBBCiGuHpAOJ655Op8NisZx35pwrcSxt5d5L2W7+irqXe6xXs/38aUzPN6WpTqe75ABA237+QGghhBBC/GaQIEBctzLTmatdBHERcn2EEEKIa5cEAeK6Y3Aa0Zl1+B+cuNpFEa9AZ9ZhcMprRgghhLjWyJgAcV3KhrLkY7Ig1bXO4DRiKpF0IiGEEOJaI0GAEEIIIYQQi4wsFiaEEEIIIcQiI0GAEEIIIYQQi4wEAUIIIYQQQiwyEgQIIYQQQgixyEgQIIQQQgghxCIjQYAQQgghhBCLjAQBQgghhBBCLDISBAghhBBCCLHISBAghBBCCCHEIiNBgBBCCCGEEIuMBAFCCCGEEEIsMhIECCGEEEIIschIECCEEEIIIcQiI0GAEEIIIYQQi4zxahdAiMs1koJg9mqXQgghhLh05SZosF7tUgghQYC4To2kYPkBSBSudkmEEEKIS2fXQ+cWCQTE1SdBgLguBbNnAoD7lmRptxUwGU3odDp0Ot3VLhqFQoFCsUA+nwfAaDSi1+mvibK9UTKZDLFYjFgsRkNDg/p5MpUkNBtiZGSErVu3LqpzAjA4NEgul8PpcFJdXf267jueiJOIJ0AH5WXll31ui8Ui+UIeg95wWfvIZDIMDg5iNBqprKxkdnaWSGSOpuZmnA6n2mcqnSIaiQJQVlaGTqejWCwCoNcvzFQtFotks1mGR4ZJJZM0Njbhdrsv6/MBRKNRpqamSKVTrF61+rL3cz75Qp5EPEFXdxdLWpfgcrswGq7MV20oHCIWi1FeXo7VYn3Nz1NXdxcmowmv10tZWdnrVMqFcvkck5OThMNhmpqacDld52xTLBaJRCKMjI5QUlJCdXU1Br3hipTn9XKpz01nAj7aeeY7TIIAcbVJECCua965SVzhCI2NjTidTt7oOmUulyOXy2EymdDrz1T0U6kM4XCYyclJHA4HJpMJh8OB0+nEbre/sQW8SsLhBP3BQUIDA2xY+V9BwHQyyuGB47xw33185s0Po9cvriCg88RLzMzMYG1sZMPSd7+u+x4NzzI0PoRer2dDU/llPwuFQpFgcJby8vLLuj6RSIoDLz2FTqdjzVvfysTJI3QeP84Nn/wkS31LVbmC6Rid410ArGvYRj6fJ5fLodPpznlOMpksgWiAI/ueYW5ujhs/8AHaai8/CBgIBDi2+9dMTk7y8W1fvez9nE8mk2d4eoqHfvQ91n/qU6wqX4XdfmW+ao8PjDDX38+Sm26i0mV9ze+/F/c8idlspnbdOjY03fj6FPIsqVSO6f7jnNi5kxt+//dpr24/Z5tiEbrGJ9j11E+xLl/O6qZ3Y7Ve20FALpcnFApRXn75z54QbzQJAsR17T//8z+JH9vN//yf/5P169djMpkAVIvileb3+/H7/dTX16uWs6mpKZ544gm+9a1vcffdd3P69GlWrVrFW97yFu64447X7djzW05fze9oruQ5slqt+Hw+DAbDguNUVFTQ2tqKw+F41eXQyn6+7c/X8vZ6fr7LOdfns3XrVg4fPkwymVywv9dj/y6Xi7q6uouepwuZ/zvpdJrHHnuMD3/4w9hstov+zvmOYbVaueOOO3jyySdxOBzU19czNzdHLpdbUC6bzUZdXZ3a1/DwMNFoFIfDQXt7+4JjBAIB9u7dy4oVK9i6dSsWi+U13TfNzc3U1tYSDofVz87e36u5JvPvP7PZTGlpKWvWrCGXy1EsFq/Ys3YmUNPjcp1pTb+c48wv+80330xnZyfpdPp1vz81ZrOZt73tbTz++OPqnphPO055eTnbtm1jcnJywc/PV/436n1/MZFIhMcee4yPfexjGAxnApbF1tMprj8SBIjr2h133MGcCzZt2rTghZtIJHj55ZeJRCKsW7eOqqoq9Ho9fr+f06dPs2LFClKpFKFQiFQqxdatW7HZbHR2dhIMBrFarWzatIlisciePXuoqqrC4/GQSCQYGRnhlltuYWhoiJ07d3L06FFWrFhBa2srmzdvpqamhnXr1rFu3Tr+/u//nkKhwJe+9CVOnz7NzTffjN/v58CBA5SVldHW1kZ1dTWJRILdu3dTU1ODy+UiHo8TiUTYtGkTZrOZkydPMjk5SSaTobS0lBtvPNNKl0wmGRsbo6+vj6amJtrb2wmHw4yOjhIOh1m6dCnT09OkUimam5upqqoCznyh/upXv6K0tBSj0Ugul8Nut7N27VqGh4cZGRkhn8+zdOlSQqEQy5Ytw+/3MzMzQzqdprKykpqaGg4fPkw8Hqe0tJTVq1fz8ssvY7fbVWWyUCio4508eZJMJsPMzMyCazgyMsLk5CTZbJYVK1bg9Xrp7OwkFoupXhStUgiQzWYJh8OMjIyg0+lYsmQJHo/nnHtD26/BYKC9vR2n08nU1BTBYFB9hvr6ejo7OwmFQuh0OsrKyhgfH+eGG25genqaYDCIwWBg/fr17N+/n0wmg8lkwmg0kkwmufnmm4lGo5w8eZJkMsmyZcsYHx9n48aNzM7O4vf7mZubo6qqira2NlW2SCTC0aNHSaVS6hrPzMwwODhINBpl9erVmM1ment7CQQCrFixgsHBQXw+HzU1NRgMBvx+P9PT08RiMTZu3Kh+3+fzMT09TXd3N2azmfLycioqKjhw4AAtLS0YDAbm5uaIRCL4fD6WLFmiyhUMBtmzZw8PP/wwHo+Hbdu24fP5yGaznDx5knQ6TVtbG16vF4vFQqFQoK+vj3A4jMfjoby8/IJpOsVikf7+fsbHx6mpqQGgv7+fmpoaZmdneeCBB4jH46xdu5ZisciyZcsASKfTTExMsHfvXlpaWmhsbKS8vHzBPbB161ZisRidnZ2Ew2FWrVrF2NgYGzZswGw2qzIUCgX279+P3W5nenp6QflOnz5NOBzGbrfT3NyM1+tldHSU8fFxldpUV1fHL3/5S2praykUChSLRZxOJ6tXXzylaHx8nPHxcVKpFKtWraKkpIR4PM7MzAzBYBC9Xs+6desYGxtjZGSEdDrNsmXLCIVC2Gw2hoaGMBgMNDc3093dzfr167HZbAQCASYmJqisrGRqaopTp05RX1+PzWZjcnKStWvX4vV60el0TE9PMzY2pnpbbDYbNTU156T9ZLNZJicnOXr0KGazmRUrVqDT6YhEIkxPTzM1NUVjYyM1NTXo9XoCgQD9/f0YjUacTidNTU3Mzc0xOjpKIpFg9erVeL1eMpkMgUCA0dFRKisr1bvhbJOTkwQCAWZmZgiFQurnuVyOqampBddcSxuLRCJ0dnYCsHTpUqamptR75uabb+axxx6jpqaGqqoqCoUCBw4cYOvWrYyMjOD1etU929XVxaZNm3C73RQKBUKhECdPnsTlcrFmzRqmpqaYmJggl8vh8/kYHR1lzZo1xGIx9u7dy44dO6ioqOCmm27C4/GoYECIa5VMESqua3qDXqXhaEFAJpNRlRmdTse3vvUtXnjhBXK5HKlUiocffphoNEogEKCjo4P9+/dTKBTYsWMHTzzxBEePHuXQoUP8r//1vygUCnR2dvLSSy9x6tQp5ubm+OY3v0kmk1HpC5lMRv0pFArodDr15ZTNZjl9+jSRSASAeDzOrl270Ol0HDt2jF//+tfs2rWLYrFIJpPhv//3/843vvENnn32WcbGxvD7/fzqV79i7969+P1+JiYm+Od//mfy+TzRaJQHH3yQhx56iNnZWR588EFOnz5NLBYjGAzy4osvcs8997Bv3z6OHz/OzMzMgi9eo9HI7t27GR8fp76+npMnT/Lkk09itVrp7+/nxRdfZGZmhs7OTg4dOqQqgbW1tTz11FOMjo6SSqUYGhri9OnTqkLocDiora0lHo/zxBNPAHDvvfdSKBSoq6vD7XYTDAYBOHDgAKdOnSKbzdLa2soPfvAD9uzZQzKZpKqqiurqanp6eha09I2Pj/Ozn/2MtrY2Xn75ZY4fP47f719wXzz++ON0dHRgtVqprKzk0Ucf5eWXX1aV9bq6Op588kmGhoYoKyujs7OTH//4x5jNZhKJBP/n//wfAoEA+Xye5557jnA4TGNjI48//jgnTpygpqYGp9PJV7/6VVKpFDMzM5w4cYLDhw8zPDyM3+/nmWeeYWxsjPr6en71q1+RSqUoFAqMj48zMTFBdXU1zz33HBMTExw9epTDhw8TCATYsGEDDz30ENFolGg0yunTp9m5cyfr1q1jx44d9PT0qErxypUriUajZDIZDAYD2WyWffv24fF4OH36NIODg8TjcfR6PV1dXaTTaXbu3MnExAR1dXULygXg8XjYuHEjNpuNjRs3Ul5eTnd3N48++iher5dVq1bxi1/8ggMHDjA7O8uhQ4fo7OyktbWVoaEh9u3bx/j4+Hmf1UKhwKlTp4jH4yq40+v17N27F5vNRn19Pe3t7axYsWLBOBKz2YzX66W5uZm2tjbKy8v59a9/zdGjR2lvb6e+vp5/+7d/Ix6Pq0rboUOHGB4eVi3xAHNzc3z961+npqaG6upqdDod4XCYfD7Piy++SG9vr6oQP/zww0xPT/OTn/wEr9dLMpnkxRdfVEHgk08+STqdprS0lOPHj/PEE0+QyWTO+7mPHDnCiRMnSCQSLF++nB/84Adqf52dnVRVVfHCCy/Q1dWFw+FgZGSE559/ntnZWTo7O/F4PHR1dbFnzx78fj/Lly/n+9//PsFgkHg8roLdyspKdu/erYLL2tpavvWtb5FOp3nxxRfVz8fGxohEIrjdbqzWc5PSp6enyefz1NXVMTQ0xDPPnEnBOn78OIcOHWLZsmV8/etfJxQK0d3dzeDgIC6Xi+XLl9Pf38/LL7/MsWPHiEQirF69mh/84AdMT0/z9NNPs2/fPpYvX04qlTrv/dHV1cWLL75IsVikpqaGUCikelJ+/vOfn3PNA4EAhw8f5plnnkGv11NfX89TTz1FJpMhGo3y+OOPn/me0Os5efKkek/09/fz9NNP09LSwuHDh/nZz37G9PQ0S5Ys4Qc/+AFjY2Ps27ePRx55hLVr1xIIBDh9+jQ6nY54PM53v/tdLBYL6XSaQ4cOMTc3x9q1a7Hb7WzZsgWXy3XOuBYhrkVyl4rfOHq9HpPJhM1mo7e3l46ODgYHB5mbm6OkpISmpiaVs6/X61mxYgUmk4ndu3dTX1/Ppk2bqK+vp7+/n1QqhcfjIZfLkc1mcbvdzM3NUSwWKS8vx+fz4fP5aG5uZtmyZapiUygUiMViPPnkk5w4cYKNGzeyYcMGjEYjFRUVjI2NMTExwalTpzh9+jRms5nly5czNDREVVUVGzZsYMWKFTidTsxmM36/n6GhIdW6r9fr6ezspLe3VwULMzMzHDp0iEKhQGlpqSrr2rVrWbdunRp8qXE4HBgMBkwmEyUlJTQ0NPDUU0+pwCadTlNeXk57ezt79+4llUpRUlKCw+HAYrGwf/9+SktLVcUWzqR4lJaW4vV6MRgMhEIhotEoHR0dGI1GvF4vTqcTo/FMJ6RWacxkMszNzTE7O4vNZuPgwYM8+eSTHDlyhIqKigXlttvtNDQ0MD4+TjQaZXJyckGLIcDLL79MOBxWLZ3t7e3s27ePRCJBSUkJTqcTq9XK/v37VSVR+3x2u525uTn0er0KCubm5vB6vSp9obS0FJ/PpwIW7b6zWq2sWLGCzs5OJiYmCIfDRKNRcrmcqnCazWacTidOp5NM5sz4kcOHD9PV1UU+n2dubk5VfgwGA0ajEYvFgtvtZmpqikQiQSaTYWJigh07dpBIJIAzlWWz2UwkEsFkMrF06VLi8Tj9/f3kcjmqq6sZGBhgenr6nHJpQYDJZMLj8ahrZTabmZiY4MCBA1RUVOB2u4lGo4yNjdHR0cGuXbsoKyvD5XJhs9kIh8McOXLknGcymUzS1dXF9PQ0DQ0NlJaWYrFY1Lk2Go3YbDZ1XuaPCdCeZ7vdjtPpJBqNMjIywtzcHB6Ph5KSEvbv3088Hj/nOmjpgdlsllAoREdHB16vF4/Hg81mw2AwkM/nef7550kkEupaBwIBjh07xszMDOFwmGQyqa6Vw+FAp9NhsVgoKyujqqqKJ554gmz2/PMVHzhwgJGREbLZrLrHC4UCPp8Ph8PB5OSk+kx6vV41VmjPntPpVL1qlZWVlJeXMzAwQCqVUhXNdDqNzWYjFothsVioqKjA4/HQ09NDPp8nGAwSi8Uwm83q+U6lUvT19bF3715efvllYrEYxWJRXQe3260Cfu3+93g8TE1NMTo6SiwWw2g0EggE+NWvfsVzzz1HSUkJJ06cYGBgQH3eUChEV1cXwWAQnU6H2+1WvRPzFYtFXnjhBcxmMx6PR90LOp2OmZkZhoaGzrnmc3NzdHV1cfr0aerq6igtLaWtrU2lImrpXk6nk1QqpYJlg8GA2WzG5XKpXrGqqioqKyvp7e1lfHyc4eFh+vv7iUajFItFgsEgxWIRs9lMLBajtLQUp9PJzMwMiUQCt9uN0WikpKQEo9EoqUDiuiBBgPiNkc/nmZ2dJRgMkkgk1BeN9iUaiUQoLS3lzjvvZHx8nLGxMWw2G9u2bcNkMtHf38/y5cvZtm0bS5YsIR6Pq25fu92OyWRSFSNAVQCqqqqor6+nvr5eDRQuFovkcjnGxsbQ6XTccsstrF+/XpUTwOfzkclk8Pv9WCwWli5ditvtZsOGDdxyyy2sXr2akpIS3G43brcbi8WiUg/i8Tijo6PkcjlsNht2u52WlhZCoRAmk4mKigoaGhpoaWnhhhtuYOvWrVRVVS34YrJarXi9XhwOB2azmcbGRk6fPk02m1WVrqqqKlavXk1vb6/KPTYYDJSVldHd3U1ZWRkej4dkMsnU1BQ1NTWqhVEbLJ1IJAiHwxgMBmw2GxaLRbVADgwMkMlkMJvNpNNpWltbKSkpIRaLMTQ0RH9/P/l8XlXUi8UiRqMRu92uUiWSySSRSGRBS6zWClxRUYHD4WDTpk309/cD4Ha71Wfo6elRqVAejwe3243D4VDnxGQyYbFYiMfjqvLucDiwWq2UlpYyPj5ONptVFYrKykpWrVrFxMQEcCYnOJfLsWzZMpVn7XK5VBqWw+EgkUgwPDzM7OwsDoeDWCxGc3MzFosFk8mEy+VS1047D2azGYfDwcmTJ5mbm1MVYIvFoo67YcMGCoUC/f39zM7OsmrVKtUSqtPpyOfztLe3L0jb0nqxtJ61VCqF3+9nZGQEj8eDTqfDYDCoFujOzk4qKyvVvaH1Bp0tl8sRCoUIBoOUl5djt9sxGo0LWqL1+jO9esViUX0ejVYeLS0lFoupAfk2m42JiQnS6bRKSamoqGDVqlWYTCZ1DRKJBKFQCKvVqv5oKU3d3d1YrVYKhQIGg4Ha2loGBwex2+1kMhmcTieNjY2qsl1aWorValW9XqdOnTpvfjvA4OAgiUQCi8VCMpmktbVVBSo6nU6NgwiFQqTTaZWqU1lZyerVq7FarRgMBpxOJ7W1tVitVtV7owWI2nXT7uuqqirMZrMKULV7Cc4E6h6Ph2KxyPT0NP39/QwNDannx+Vy4XQ6MZlMNDY20tHRQTgcVtdLC9q0Hh2dTsfk5KR6d2hjO2w2G/F4nJaWFvx+v3rO9Hr9eYMAradIayjQAlI404tzoWs+PT3N9PQ01dXVWK1W1q5dS2VlJWazWTU2mM1mdTy9Xo/dbsfn82E0GikWi1itVmpqanA4HCoVUwu2tV5Jm82G2WzGarXi8XhwuVw4HA6y2SyZTGbBc6MFjUJc62RMgLiuaZXuVCpFMplk7969hEIhDAYDMzMz3HPPPQtaXfV6PTfeeCN/+7d/SzgcprKykoqKCgqFAiaTiVgsRjQaJZFIEIvFVGVWm6IwmUwyOzurKgNaS20ymWRoaIhQKERjYyNwJrXis5/97IJWoaGhIb797W/zjW98g8rKSh566CHGxsZUelFTUxNWq1V92cGZ3PYbb7yRqqoqlTu9fPly3G43Pp8Pl8vFXXfdpSpaTqeT2dlZDAYDbW1tpNNpLBbLebunC4UChUKBbDZLIBCgoqJCVca0Qb06nY6SkhLS6bRqaYxGo6oiW1dXh9/v5/HHH+c973kPRqORfD6vgh2LxUIikSCbzZLL5dT/5fN5ysvLqaqqoq6ujrq6OhoaGhgYGOBTn/oU+Xyerq4uHnnkEbZt2wacCQK6u7u59957eeCBB1QvQjweZ3Z2Fp/PB6Baa1OpFCaTiWg0isfjUVOX2mw2otEoJSUl6rxoPTi5XE79rFA4M9Wr1spbLBbVz7T7Sau4AgsCxEwmQ01NDatXr2bVqlUkk0nVaq8dS0sp83g82O12qqurWbp0qUo30o6n0+kWbO92u7nhhhv45Cc/yVe/+lWGhoYoLy9fcN69Xi8mk4mZmRk6Ojq4++676e3tpVAonFOus3OXdTqdaj0Ph8OYTCbViqr1jnk8HrxeL6FQSFWyC4WC6jHRylIoFHA4HGzevJn77ruPwcFBdZ607bRej2KxSCKRoK+vj7Vr155zzvP5PA6Hg0KhQDqdVs+/0Whc8JzNnyBAC1y0Xh3td+aXr6qqSvXoOZ1O2tra2LdvH4VCgebmZmpqasjn8yrY1Z6bVCrF7OysCoS0Y84vs1Ypr6uro7Gxkbq6OiwWCz/+8Y9xOBx8/OMfZ2JigkKhQDAYJJlMqsrp/GdUuy7zyz//npi/HbDg8zU0NDA1NcXU1BQul4uNGzeqnk1tnIjW6q59Bu2+Ly8vJxgM0tvbSygU4p577sHlchEKnZmedMmSJbzpTW9iZGSE73znOxSLRaqqqqitrVUDsE+ePEkgECASiajyamXTrpH2ngmHwyro1j7rha651lhhtVpJJpMqYNeCDbPZTD6fV40E2jkqFArqGdTOq9Zwk8/nsdvtuFwuSkpKWLp0qUoDMpvNjIyMYDAY1Lti/j2sPTdjY2OUlpZSXl7+Ct9gQlxdEgSI69oTTzzBzL5nGBkZIZPJYLfb2bp1KytWrOAXv/gFf/7nf87k5CTFYpGOjg7VZawNBqusrATOfAl84Qtf4Dvf+Q6Tk5NUVVXxgQ98AKvVyrp169i9eze/+MUvcLvdjI2N8e///u989KMfpbW1lbm5Of73//7fmM1mvvCFLxAMBjl48KDK+d++fbuq9DgcDm6++Wb+6Z/+iWQySSAQwGaz8d3vfpcTJ05w4MABotEoPT09fOADH8Dr9dLR0cEPf/hD1fqbSqVoa2tj3bp1+P1+du/ezc6dO8lms/zhH/4hXV1dvPTSS6obf2Zmhj//8z8/7xfS8PAwmUwGq9XK008/zRe/+EUSiQS9vb309/fz3HPP8da3vpU//MM/5Pnnn2fPnj3U19fT1dXFn/7pn+JyuVT+6/e//30++9nPAtDb28uxY8cYGBhgdnaW97znPQwPDzMzM8Po6Cg9PT0cOHCA3/md32Hfvn0888wzrFu3jpmZGZVqUl1dTVlZGW9/+9sXVE4MBgNWq5XOzk6VRpHL5WhtbVWf6zOf+QwdHR089NBDrFmzhkwmw6c//Wleeukldu/eTXNzM11dXXzuc59jeHiYU6dO0dfXR2dnJ88//zx9fX0qb/zkyZM4nU6WL1/O7Ows/f397N+/n87OTv76r/8as9lMf38/J06cIB6P09rayl133cWDDz5IT0+Par2+4447OHjwIAcPHsRut9Pb28vx48cpFArceeedJBIJHn/8cW6//XaCwSCrV69mYGCAAwcOMDY2hs/nY2hoiKNHjzI8PMzRo0f5yEc+wooVK2hra2NkZITdu3fT1dVFLBbD6XSyadMmHA6HGgS7fft27r//fnp6egBUuea3yup0OlwuFy+++CLr1q3jLW95C83Nzfzwhz+kpaUFh8PBsmXLWL9+Pe3t7TzyyCNkMhk6OjooKSnhrrvu4kc/+hHHjh1TPTBaitC73vUu/vZv/5b3vve9LF26lAMHDnD8+HGi0ShLlixRue+bN29W5Umn00xNTanzsGzZMjZt2kQ0GuXpp58mHo/z6U9/GovFwuDgIAcOHCAej7NkyRI1u5HJZKKqqor3v//97NmzB5vNxrFjx+ju7ub48eN8/vOfZ8eOHQQCAcrLy8lkMrzrXe/iK1/5CsePH6e3txeDwaDK1dfXR2lpqXrWv/zlL6tjZbNZlZoXCoV4//vfT29vL08++SSbN29mZmaGW2+9VVVce3t7VdqW2Wymp6eHwcFBnn32Wd72trcxMjLCyMgI0WiU559/HoPBwPDwsBrIfPToUcLhMBUVFYyOjnL48GEMBoOaxKCvr49UKkV3dzcHDx7EarXS09PDBz/4wfOuVaE1CBw7doyXXnqJv/qrv0Kv19Pf3086nebUqVM4nU727duH3W7HZrNx6tQp2tvb2b59O83NzfT09PDrX/+aG2+8kWAwyC233MLMzAx+v5+jR48yMjLCqVOn1MDwsrIyDAYD99xzDzt27FA9JS+//DITExPcfffdbN68mUgksuCaV1ZW8ta3vpW6ujr+4z/+g5tuukkNqrbb7bjdbg4cOEBHRwdHjhxRQcGhQ4eYmprC6/UyMDBANBpVqX0jIyMqPSiZTPLUU0/hdrupqKggmUxy9OhR+vv76e7u5oUXXlA9jFrg/uyzz7JhwwacTuer+zIT4irQFa+FubWEeJWORGHjYXhuSZgVxhRms1m1xMzPjdZaUQGVWqHX6/nGN77BmjVrWLlyJVVVVWpgrtblrHUZazPdxGIx0uk0cOZLUstb1ul0ZDIZIpEIBoNBzTKhtZp7vV7V7Q9nWufi8TjpdFq1RGn5xdlsVqU0aCk+2uBFraUPUHmnOp2ORCJBKpUil8staM3Tcn4LhQIWi0Wl8WiKxSKHDh3i8OHDNDQ0cPPNN1MsFlUudjweV62uWs9EOp0mm82qlAmXy6Va0LLZLJFI5P/NkX2mNSyVSqk8+1QqRT6fR6/Xk8/nCQQC1NbWqjSgbDaruuW1v89PcdDOoXadotGoav3VWgWtVqvq/tcGamut4lpKhXasfD6P0WjE5XKpVmythT2ZTKo0K0ClcjidTr70pS/R3NzMb/3Wb5HP5zGZTCrtQkuj0nohtHQC7fpq6SDaz+x2u8rft1qtakalfD6PzWbDZDKRTqdJp9MYDAaVAmW1WtHr9aRSKXQ6nUpryefz6l7Q7o9sNqs+rzaNZDweJ5vNLijX/IH1hUKBcDisngGt9Vnbj1ZB0ypUWi+PXq9X+9M+u8PhUDnoWnqGlipiNBrVdSopKVHl154vLYVDu+bxeFzd45lMRt2LOp1OXQct73v+dZj/ubTrrPUOabNEmUwmdd3nfw7tHaL1JJhMJg4ePMj+/fvZvHkzK1euVOk7Wk+E1qIciUTUs6ydA+0et1gsxGIxstksRqMRg8FAJpNR7wGt9dtqtapJAOY/n3Nzcyr9KpPJqOOEw2EsFot6H87NzVFaWsrDDz+M2+1Wz/kTTzyhBmJrMzWd77nRrjWgro3W06f1fGifWa/XL3gmtTQzLQVQuzbau3hiYoKqqio1NknrPUkkEqqXQHsn1tTUqHt5/jXXUri0lBz4r9Qn7V2rvUtisRgOhwO73a7uJe3v2rnVFilzu93q+cnlcuraa+dImxFNu2fMZrPqIdX2e6FxAdp31+GNsOHcddKEeENJT4C4rnk9XnwXeJGWlZUt6GpOpVIMDw/zxBNPEAgEcLvdlJSUACyoEGlxsfYC1waznf1zjZZfPP//tBzxs2mVZ62y/kqDx4rFIl6vV/0dFq6mqn2paV/CGq3ifzFdXV2Mjo7i9XrR6/ULWq60Y2q0L3ct/UD7QtQ+szYVpcZkMqmgC84MzNMqFloFWPuS1Lr6tYq5ViHWPu/84EW7TloF9Oz/02hf2lrFwmA4s4rn+T6DFjTO/935tPOrDW4sKysjHo+rActay/nZHA4HNptN5W5rP5u/RsLZvTMWi0UFNVp552+v9VxplRbtnGnbamMCzj4P88+P0+lUKRFauebT6/WUlpaqit78fc8/l3DmvnC73WSzWQwGg7oHL3bvzR8HMP/vWmqd1tujmf9sarSK5fznWxv/cyF6vR6Hw6E+l/b72jlwuVzqHtWOr00KoKUU5XI5Tp8+zdjYGCtXrjzn+mjlNZlMC6be1HLJ518vbRpK7Zxq+zn7naAF/Rc6h/NVVFQs+LcWyGrPWCAQQK/Xk0wmKS0tPWdRNu1ZON/9oV2bs98188fraPeLNpZm/ufV0na0z9vY2LigoqydY+06aNdW2167B8++5vMbCrR3grYvk8m0oIFk/rbzP/P5zhmgPsP8fH9tbBCw4D0IUFJSolKNZGCwuB5IECB+Y12okh2NRmlvb6eiouKcLwDt9y60v1fz81dbrlfa98WOfzlfOOXl5bS1tal55y+FlgN/sXJeyPxjnH3ez97vK+1Pq5i+0jZaJeFix7pUOp2OdevWqfN1Kft4tcfSKlCXst35PtuFtr2ccp1dEb/Y8S6lzJfi1Zyry72G2n1zvt8/33Mw/z7T6XQqENNSWC7V+c755d6Lr1Zra+uCMSwtLS1UV1efE8BcrFwXes9c6Fl9pc97vnevZv55nf/3C52r+UHp2T/X7s3Xer9c6vayNoC4nkg6kLguXW6Xaj6fVwtrzZ8xQgghftNpLfmX23AgXjtJBxLXEukJEIuKtnqsEEIsNlL5F0LMJ+sECCGEEEIIschIT4C4rnV2dZItRNiyZctvVAtXLBZjYGCA733ve3zlK19RKxFfqiNHjjA0NMS73/3uyxqktm/fPvr6+tQsM3v37mXNmjV4PB41X3ZNTQ27du1i8+bN3Hrrra/2I76ikZERBgYG1Ewup06dwmazUV9fz8qVK2lpaVkw65K2Gi/A1NQUTz/9NOFwmM985jNqUaPX6rnnnmNqaoqSkhLe/va3v+L23d3dHD58mFwux0c+8hEMBgNHjhyhs7MTnU7H5s2baW5uxmg0ks1mmZ6e5v777+dNb3oTK1euVCsPb9++nSNHjrBz507e/va3qzn0r4be3l7C4TBWq5XVq1dftXJcjDaj0OWk/I2Pj3Pq1ClWrFhBbW3tq84lP/tevJCBgQGOHDnC8PAwf/Znf8aPf/xjUqkU69atY82aNa/qmK9GsVgkmUzy0EMPUVpayqpVq97Q3tFMJsORI0d45pln+O3f/u0FU/teTZlMhtOnT/Poo4/yiU984oLl0tYHeKXrK8T1QHoCxHXtN7V7W5uNR1sV+NUO3dEGcV7uudEWx9Lm6t+/fz+5XI7q6moqKysJh8N4vV7GxsaYnZ29rGO8ktHRUY4dO0ZZWRkWiwW/34/JZKK6uvqcWWCCwSDd3d3q31arlXg8zvT09IIFlF4rh8NBMplkdHT0krbXZufp6+ujWCySSqUYGxvD7/dTX1+/YIEmbdBkJpNhZmZGrUCr/bysrIyBgQHm5uZet89zOebPlHKtyufzHD9+XN3Hr8arGXR9PoFAYMG9eCHaarMDAwPAmZWsx8fHr9jzNJ/BYFCLaL3R95N2L/f09JyzMvTVpK1k3NfXpxb1O5v2ThkfH3+DSyfElSE9AeK6ZrFYcJvcam5zbT75+dMAJpPJBdPWAWrOam0ebG0GiHw+r+aS1+Yx1yqc2jzVRqNRzZ9+tvnzl2tzd2vzfGvTy2lzqmsrDmurz6bTaTV1ptVqpaysDK/Xq1ZR1aae06bC01YC1ul0at0BQJWvsrJSlTEWiy0YEHihWUE0paWlWCwWNmzYQDweV4vnrFu3Tq2q3NzcrMqizQuvrcOgrVWQTCYpFos4nc4FU0vON3+dAG2O71QqxejoKP39/VRWVpJIJDCZTDQ0NLBixYoF5U+n0/T393P06FHq6uqw2Wxq+ldtNdtUKqVWf9ZW+5w/97rRaDyn0qfNEa6t0eBwOGhsbGRiYoKRkZFzPvP8VaXnX8OWlhYOHDgAnKkg+v1+CoUCa9euVWstAGqayMbGRnVPOBwOKioqMBgMLFmyBL1eTzqdJh6PqzLpdDr1WbRpHC0WCwaDQc2fXigU1BoWZ2+rza+v3bN2u13N1W6328+Z+UebFtNmsy24N7V9nj3tJKDmctfOjcViUcfX1lhwOBzqZ/PLrbXmp1Ip4ExlWVs59uxpQbW1Fqampti9eze1tbVqFjBtDnptn9q9cHY5tWlPLRYLmUyGRCKhypxMJtUaCdo9kk6n1Swy2WyWnp4etTChtj6Htk7A/M9ZVVW1YIrY5cuXc+LECRX8vZL5a0AYDAZsNpt65gB1HbXyauuSJJNJtUpyJpO54PG09Q4SicSCdRLmXzObzabO7dzcnLpW+Xx+wbWZ/9wbjUaWLFkC/Nd6Klp5tffT/PU8tPLP34d2nePxuFp3IZVKkU6n1ZoTZz+72joh2nov2pSh2v2WTqepqqq64Hsql8sxMjLC2NgYhUKBiooK9R7S3t/afq/1IFkIjQQB4rrmn/JT79GTSCR4/vnnaWpqUkvHm81mWlpa6OnpQa/XU1FRQWNjI8VikdHRUfx+PxaLhfr6eqqqqoAzi/BorXEOh4NAIMCWLVtU62wgEMDlcrF27drzLgYTCAQIBAKk02m1ymwymeTgwYPodDpqa2uZnZ1Fp9Oxdu1a9UU9MjLCxMQES5cupbKycsFc1QD9/f3MzMxgMplYvnw5c3NzDA0NqVSSsbExNYd2aWkpfr9fLTKm0+no6upS82WbTCbWrVt30fPq8/kuWDmwWCysXLlSfYFGIhGGhoYYHx9n48aNeL1etSBYT08PhUKBdevW4fF4zpluL5vNMj4+TjAYpFgsUlNTQ01NjfqynZ6e5uWXX2Z6ehq/38/o6CgTExO0tbWpfUxPT3Pw4EF+9atf0dLSQnt7O7W1tcCZL+7Z2Vn6+vqoqamhtrZWLRB05MgRCoUC7e3tlJWVnXPOQ6EQwWCQSCRCMplk7dq1av7yVCrFwMAAY2NjbNu2DafTSSqVYnJykuHhYdxuN21tbefcHx0dHQwODpLNZunv77/odQiFQvj9frXAlVZBnpmZoa+vj2QyyYoVK3C5XBw9epRsNovH40Gn09HU1ITdbmd6epqpqSkSiQQ33HADNpuNEydOkEwm1VoQ9fX1dHd3k0gkKCsrY926dZw+fZpUKsXKlSvPWctgbGyMTCZDRUUF+Xye7u5u8vk8yWSS8vJyVqxYsWB7LTVnYmKCoaEhnE4nzc3NahG5vr4+pqenWblyJRUVFRSLRcbGxggGgySTSaqrqzEajfT19ZHL5Xjzm9+sVp82mUxs2bJlwbEmJyfZsWMHJ06coLW1lW3btqnVXru7u1Vlr7y8XC0KpcnlcszNzakVmmOxGEeOHKGsrIzGxkb6+/upr6+nqamJXC5HMBhkZGQEk8mE2+0mEAiwa9cujhw5QmNjo7o3ZmZmmJycJBQK0d7ejs/ne81TSWrvo3g8jsPhYOXKlQQCAU6dOqWCzM7OTurr61VwnEgk6O/vJ5VKEQqFLpjSogUAWg+b3W6nvr6eiooKMpkMvb29BAIB2traqK6uJp/Ps3fvXioqKtT7V6/Xs2XLlgt+zmKxyPT0tArKly5dqtYImJqaYmpqSi0U1tzcfE7Ppt/v5+DBgyxZsoSGhgaGhobo6uriPe95D9FolJmZGebm5lSKlc1mY2xsTPXirVu3DrfbTSqVIhAIMDo6qu7p8/W8RqNRdu7cycmTJ1m6dCnl5eWsXbuWXC6H3+9nbGyMYrHImjVrVPqmBALiWifpQOK6lkqlePzxx3E4HPj9fh577DEGBgbUMvJPPvkkbW1tnD59mvvuu49iscjExATPPvss5eXlzM7O8oUvfAE40wvwb//2b/T29lJVVcW///u/s2HDBtLpNL/4xS/Yv38/mzZtYs+ePaoSdrb7779fBSD/8R//wdjYGFarlbm5Ofbt28dTTz3Fpk2b+P73v8/w8DDT09N0d3eza9cu3vSmN/GFL3yBI0eOnLPfxsZGTp8+zSOPPEJJSQmZTIaxsTGOHj1Kb28vVquVjRs30tPTg81mY3JykhdeeIFEIsFzzz1HKpWiubmZysrKS0pVKCsrU4HR2YxGI42NjcCZ3HutAl9VVcX//t//m2g0yk9/+lOeeOIJampquOGGG/inf/qn86bQ/OAHP6Crq4vKykqWLVvGt771LYaHh2loaKC1tZXa2lruvPNObrnlFpqammhvbz8nV7e2tpaWlhaWLFnCnXfeqaZ/hTNB3fHjx7n11lv5p3/6J06ePMnx48f51re+RWVlJTfccAM/+clP2L179zll27NnD6dOnWL9+vWYTCaCwSDZbJaJiQm6u7upqalheHiYF198kc7OTg4dOsT3vvc93vSmN3H48GFOnz5NMBhcsM/Vq1ezdOlSmpqaXjHvu7y8nLGxMV588UXVyjg1NYVer6e+vp6amho++9nPqpVQjxw5wgMPPIDFYqG3t5cnnniCvr4+1SPx+c9/nkQigdPp5OTJk9x3331YrVYGBwcxmUx0dHSwd+9eCoUCHR0dC3rI5ispKWFgYICdO3cSCoV44YUXWLZsGYVCgZmZmXO2j8fjnDp1im984xvcfvvtnD59mpMnT3LkyBGefPJJMpkMzc3NPPDAAzz++OPMzMzw4IMPsmnTJlwul1p52mg08tOf/pRsNsvY2BgzMzPnpIXpdDrKysq47bbbaGlp4bbbbqOiokI9/0ajka1bt/LUU0/x/PPPn3N9tJVmtXEBVVVVHDp0iOeff56xsTFuvPFG/vqv/1pV9vft28emTZtYvXo1XV1dtLS0sHr1ampqarjzzjvxeDzMzMxw6NAhBgYG2LhxI5/61KdelxScn/zkJ4yOjlJZWcm3v/1tRkdHKS8vp7e3l6eeeoquri5uv/12/uEf/oHe3l46Ojp49NFHGR8fZ/PmzczNzRGNRs+772w2y9DQEH/1V3/F1q1bmZiY4NSpUxw+fJjHH3+cdDpNY2Mjv/jFL3j44YcxGAxUVlby93//92pF7O7ubnbu3HnB8k9OTmKxWGhubsbhcPBHf/RHZDIZ9u3bx969e5mdnWX9+vX8y7/8y3nTc6qrq9mzZw8dHR0YDAbq6+v57ne/SyKRYOfOnXR1dbFu3Tr17H73u9/l0KFD1NfXs379ev7hH/6ByclJHnroIZ544gk2b96M1+tVjSdn83q9tLW1sXHjRjZu3Mi6deswGAz8x3/8By+++CJr165l/fr1fPGLX5R0IXHdkJ4AcV2z2+2EOfPlX1JSgtPpVC2HVquVtrY2tUql1kXt8/lYvXq1yt3Vuse1dBttISitO/vJJ58kGAzidrvp7OykoqKCqakpqqurz0l9eNe73kU4HKazsxOTycTg4CDV1dW4XC7q6urUAkNut5t4PE51dTWNjY1EIhFefvllIpGISieaz+l0smTJElKpFCdPniQSifCOd7yDfD7PSy+9xHe+8x1aWlp4//vfj8vlwmq1Yrfb0ev1rFixgr/7u79Dp9OxcuVKbr/99lc8r1oL1vlaxOa3bjkcDtVSNzs7y9TUFPl8nmPHjjE3N8eaNWuIxWLY7fbztgg++eSTfPSjH6W2tpZsNsuqVat45plneMc73qHyso1Go+qi11oh9+7dC5xJoVi+fPmClW3nc7vd6staO69jY2O88MILvOlNb6K7uxudTsfk5CRPP/00Y2NjALzvfe/DbDarHoabbrpJfZaSkhKamppwuVyUl5cTDoc5cuQIkUgEg8HAsWPH8Hq9xGKxcyp7Wn7/peSca6lf8+8xj8dDaWkpHo9HpYF0dHRgsVioqqpCp9PR3t5OoVBgxYoVDAwMMDMzQz6fZ3R0lEKhgMvlorKyknQ6rbYFOHnyJFNTU2SzWaqrq1mxYsV5U3u0VBktfe3EiRP8yZ/8CZs2bWLr1q3nbD8wMMChQ4ewWCwcO3ZM9ZqUlpZy6623cuzYMTKZDOPj41RWVqoVXT/ykY+wdetW7rjjDlpaWqioqCAUCpFMJvF4PFRVVam0kvn3prZgk/Ys63Q6hoeHee655/j0pz+tFsuamJhg7969vOc971nw+2azWaVOaalPlZWVLFmyRN1HxWKRhoYGdu/eze/8zu+wceNG3v/+96vnW7tv4UxA3dbWxsTEBAcPHlSpVq91iZ63vOUtzM7OcuzYMSwWC0NDQ1RUVGC32/H5fLS3ty+47zs7O9m1axf/9m//hk6no6am5oK9fRMTExw7dkz1NN55553qvm1tbeXIkSOqF09LvSwrK6O+vp6SkhKV9jQ9PX3B8nu9XkpKSnC73YTDYfR6PadOneKXv/wl5eXlOBwOOjo6qK2tZW5uTq0UrjGZTDidTpXqpD0rOp0Om83GSy+9xC9/+Utuuukm1q5dy5EjR2hqaqKlpYXZ2VmcTicHDx4kl8vh8/mwWCyUl5er9+b5aM+vdo218T3ayu2FQgGdTsfAwAB2u/2cXjQhrjUSBIjrmk7/XxVSLc9ey5PXlqrXXujFYpF8Ps+RI0eYnJxUqTc6nY7Z2VlKSkqor68nl8sRDod5xzveoXLU7XY7paWlNDY2qi5jbXyBtu9AIMD+/ftpbW2loaGB/v5+stksoVBIzRZis9lUBVCrmM3OzjI7O8uNN96outLPHjCn1+tpb28nm83y7LPPsmHDBpxOJ7Ozs9TV1fHJT36SXC7H888/T3V1tTpGsVgkGo3ygQ98gHQ6TTgcZufOnaxZs+Z1WTTIZDItyK/WBjFrAVRDQwN6vZ63vOUtKv1kvnQ6rYIvLdf47ABofvkMBgMul4vm5mbgTAVLm/lHu84jIyP4fD61vZa3q1W6tPEhDQ0NGAwGbrnlFrWtlv+uDUC+4YYbKBQKDA0N0dHRQWlpKSaTCZvNpip6WpqVxWLB4/FQW1uL1+tVFYJQKLTgs2if51LO+9nBwvzK7fzARzu+w+FQFaUnnngCu91OdXU1JpOJTCZDOBymUCicsy1AS0sLmUyGnTt3UlNTg9VqPW/gplWEcrkcyWSSd77znRiNRvr7++nu7mbZsmULgge9Xq8q1nV1dZSWlpLP5wkGgzzzzDMsWbKE2tpajEYj8XicdDrNsmXLWLFiBSMjI4yMjOBwOKitrWXLli28+OKLVFVVUVlZecF0Fu3czM3NUSgUiMVipNNp9Xnmj0M53zk/e5Va7dkF1P1psVhob2+npqaGaDTKSy+9xJ133rng2o6MjDAzM4Pf71fBh9FoJBwOq0DjQuaX7ex8+GAwyOHDh9U7yev1kslkmJubI5PJYDKZzrnvtbExWvm1NJzz0e5TLUjQBjFPTEywe/duli5dSk1NDRaLhUQiwdzcnBqXoO1Xp9NddGC2wWBQf+bfy3q9HpfLhc/no7GxkXe84x3njMHS/q69d7R/p1IplVZ44403ks/nGRkZoaOjQ6XANTQ0oNPpeOtb30okElE9Tdp1v9BzqZ0TbczD8PAwRqORdDqtxpcVi0UV+EsqkLgeSDqQuK6FQiEikQjxeJyZmRmCwSChUIhoNEokEmF6eppwOKz+7ff7GRwcVC3W2sC2gYEB9SU0OTlJd3c3VquVcDhMXV0dHo9HfUHY7Xb1b42WG9/R0aHSMywWC9PT00QiEWZnZ5mZmWF2dnZBWbRKzvT0tKqYafnDsViMWCymWme1nHZt6k6DwaBmkVm+fDmrVq0iEokQjUaJxWLq84+OjtLY2MjKlSvx+XyEw2EAlWt/oS9qLT96ZGSEdDpNMBgkGAyqL9qZmRl1nJmZGaampojFYsTjcRobG1ULnjYI8nwVtlWrVlEoFFQwFAqFVGVUu27hcJipqSnC4bBKtdJ6ALQWPJvNhsvlYnh4mEAgoM7B3Nwc09PT6p4IhUJYrVZWrVpFKBTCYDBQXl5OdXU19fX1ar/aQEO73c769evV2I1AIMDs7KwaHD09PU0wGMRut6sBvHCmh8rtPjNg3e/3q3EFfr+fmZkZIpEIkUhkQUWvUCio8zw9Pa3SNebm5ggEAsCZSk8ymSQQCDAzM0NpaSnl5eVEo9EF5SoWi5w4cUL9njYAeHp6msnJyXO2BVT61aFDh/D5fBdsDQ0Gg8zMzBAOh5mZmcHtdrN27VocDgeZTOacinVJSQl1dXUYDAaKxaK6VqlUimPHjqnyaRWq6elpotEomzdvpqSkhEKhQCqVwmQyqZ4D4IKVaC3wi0ajTExMkEgkKC0tZdmyZWpsTSgUwuFwUF9fv+B3tUHu2jXQnsFQKKTuo1gspu73QqHApk2baG5uJhwOk8lkVFCmjcvRxrdordlOp5ORkRGmpqbUfRkOh9WYgfn31oEDB8hkMud8xkgkQnd3t0qJstlsTE9PEwgEmJubO+e+11q+tTFSc3Nz6jPNzs6e0zOh9ahms1kCgYDal9/v5/Dhw+p+1YLgqampBe+sUCik7tELBVtms5lYLEYgECAcDqt7efXq1bhcLpLJJCaTiZKSEqxW63nvR62lXRv7Eo/H1XeA0+lUYwESiQTt7e2UlJQQjUYxmUz4fD7q6uqwWq0kEgkVrEUiEUKh0HlTkLSeB+3zahMwGAwGJiYmmJqawul0qjILca2TngBxXfNP+Ukmk8zMzDA9PU0+n6ekpASbzaYGHbpcLhKJhBrMabFY0Ov1BINBMpkMPp+PgYEBVq5cyczMDOPj4xgMBtUqddNNNzExMcH09DR9fX0UCgWamprO+WLTWrDi8Thzc3PY7XZGRkbYsGEDoVCIyclJcrkcgUCAVCrF8PDwgtbMkZERamtriUajjI2N4Xa71cBLn89HSUkJXq9XpQYZjUY1KHdqaoply5Zxxx13oNfricfjJBIJ+vr6CAQChEIh1Qqrzen/wAMP8JGPfETlzZ5Nm2Xl+PHjOBwOJiYmGBwcpLm5GYvFwvDwsOpdGB4eZnh4GIDZ2Vm2bdvGxMQE+/btY/369USjUcrKys75YvzQhz7E8PAwx44do6KiAp1Ox4033sjIyIi6PpOTk/T29hKJRAiHw6RSKerq6hbsp6qqira2NjUgc25ujkQiQSwWo7u7W800Mz09zZo1a7j77rvZvXs3mzdvVvurrq5esM+BgQGmp6dxu91qPMKRI0fUQNtAIMDY2BjJZJKNGzdSWlrKwMCAukd8Ph8zMzMMDQ2RTCYJh8NqnzqdDr/fj8vlUsfTBtf6/X4V/MViMTWYs6mpidraWpLJJIODg0SjUdasWUNNTQ1Hjx5lcnKSQqFAIBDA6XTidrvV4Mt0Ok1zc7Ma+D4xMaEq3E6nk2KxqNLSXnjhBWpray/Ykjk6Osr09DSZTIZgMMhLL72kzlFpaek5M0/V1NRQLBY5fvy4miq1oqICvV6P2+0mGo3S3d2Ny+VS41kOHjxIW1sblZWV+Hw+ampqMBgMbNmyhUceeUTN/nQ+FouFyspKNVC7oaGBtWvXYrPZOHDgAO3t7aTTaVpbW89ZbyGbzRKNRtW51wb5B4NBNVYIzqwloFU6LRYLXq9X5ZS7XC7Kysro7e1VPSpagDMxMUFzczPj4+MYjUaCwSDpdJqxsTF1j8diMYLBIKOjo+zYsYO2trYFvY5w5l2jBV1aIDA6OkpDQwPpdJq5uTk1CLpYLOL3+1m2bBnbt2/n6NGjWK1W9V6w2WznzHtfVlbGsmXL2L17N319fej1ejweD4VCAa/XSzQaJRqNqs8WCAQYHh4mmUyqYH5iYkLd0+ebRKGuro65uTn6+/uJRCKsWbOG6upqtm/fro7rcrkIBoPceuut5w0CVqxYQTwep7e3l3w+j8PhYHh4mBMnTqh0oaamJpYuXUppaSlDQ0McPHiQFStWEIvF2LRpE6OjowQCAYaGhkgkEmSzWRWgnZ0OV11dzezsLCdOnFBpnlu2bCEUCnH69GmMRiObN2+mvr7+FWdgE+JaoCu+1sREIa6CI1HYeBgOb4QNrlfe/mxa65SWWlEoFPj1r3+Nw+GgtbWV+vp6YrEYf/zHf8zXvvY1Kioq1LSF2hfD+SpJ2kwocKal61JSbrTFZwA1BR+w4EsvlUphMBiIRqMcPXqUN73pTeh0OjU1o3ZcLd1ofnm0P9lsFp1Od06F4kopFotqSkJtKssLbZfL5dSMSperUCiQyWRUOtgrlU2b3lJLYTjf/rRrPr+y/kplSCQSC6Y7fL1pi1EVCoVXbG3UKoHazFFnl0m717TtIpEI/f39bNu27ZLOoSYWi6kpWC+2fTweV6lU2v2bTCax2+0L0rUKhYKa9Uab2lKbBvfIkSNqRqeLHUtL/9PSTbSfxePxC45ReTW0cUa5XO6ctJSz70XtmsF/PeMXuz+0Z+f06dMsW7bsvL1o2jOtpXddyrtGOwfatMnFYlGNwbjQ9to0nNrnm//caC53TQXtvGj36Hxa+tLF3h2ACvC1RQW1a6tNyzr/2dXuibP3O//dHg6H1dS45/tc+XyebDa74Jxp94H2OS5W3tf63SXE60l6AsSidPYAUm0A7eHDh0kkEmp6unXr1qkvYG0Br1cy/wv7UvO+51eezvc7999//4I0mPnbatufPcXl2du8UZX/+bQWy1dyqef2Yl7tZ3yl9RK0QaKvZmXQS1mD4bXScvIvxaXei9/85jfVIOpNmza96jJdavB29rnR0uvOLp/Wq6bp6uriwQcf5NZbb+XWW2+94L1+9r7PvqfOXlfgtdD2f7779ux78exr9krvBS0I0gKHC3ml98aFyn2+Ad8Xcr77+dX8/sVc7F7W0rpe6XPNPwcej0f9/ULP7vxxQpr51/F8Y5fOLvP5emZkBWFxPZKeAHFder1bU7S53yORiKr8FYtFYrGYmm3oahobG1MVTK2VSgaeiddKe/0PDQ2pRbK0XPtr5f7SWqMnJiYoLS2lpKTkN34Odq3FWutFu9yWdnHtkZ4AcS2RngAhQE0rp62Cqv3sQnnHb7S6uroF5RLi9aDdS01NTQv+fS3Rgl9tgbhrsYyvN62X4VLT0IQQ4nJIECDEWa7VSsa1Wi5x/bvW761rvXxCCHE9kiBAXNdy+Rz5vO6SB/nNHyirDTgsFApq0Nv8RbK0/zvfzBaAGpSrba/N6f5qKyzzy6Ad9+y5yrWfa+W+UoNO59POkzbw8VquiF2JXhItH/tyr6m2OJ12HbVBqlfqPM6/H+Hyyn0tmz/QF16/az1/Hv35i7ld665Uz+D8+34+bVDwK70Xr5azB4Nr5Z3/zny1+4NLP7/X8rkR4kIk0VBc1+6//34eeuihS159M5/P8+KLL/L8888zNDTEc889x//3//1/HDhwYMHCOaFQiMcee4x77rmHmZmZ8+5r586dPP744/z617/m3nvv5YEHHiASibzqz9Df389Xv/pVisUiO3fu5G//9m958MEHF2yTSCTYsWMHX/rSlzh06NCrPsbliMViHDx4kLvvvlutLXCtyufz551P/bX4+c9/zo9//ONX/XvFYpHBwUH+5E/+hG9/+9vkcjnGx8f53ve+d8F76fVw8uRJ7r//fh544AF+/vOfE4vFrtixroZEIsHf/M3fnLOQ3uthZmaGz33uc+zYsYPx8fHXff9XQjabveCKv6/Fs88+y9NPP83k5CTwXzNHwZn34tNPP82nPvWpBYvgXQtyuRwvvPACf/AHf8DBgwfx+/3qXX+hRdEu5tW+U6LRKL/61a/4oz/6o+vmHhJCggBxXWtpbnlVlQKdTkdtbS319fWUlpZSXV2t5g2fz+PxcMsttyxYTOlsR44cIZlMsnXrVtauXUskEnnF2TzOx+PxsHHjRnQ6HTfccAMul+uc8thsNhoaGtRCWm8EbbpUt9t9zbdqDQ4O8vzzz7+u+2xpaVF56K+GTqejvr6eqqoqNajT7XazYsWKK7qA0NjYGGNjY7znPe/hzW9+8+s2g8u1wmg0snXr1otOQ3q5vF4vbW1tOJ3OK1KxvhL27NlDV1fX677furo6Ghoa1PoRjz/+uGoE8Hg8bN68WU2HeS3R7g9tOli73U5tbS11dXWX9f7q7e1l165dl7y9w+HgtttuIxaLXdb3gBBXg6QDieuayWQilUoxMjKCTqejoqICOLNg1djYGJs2bVIrWVosFurr6wkGg2qaQJPJhNVqVV9omUyGUCikVqY9eyVNONPSOzIywsTEBHCmAqot1ARnWqS0FYFNJhPNzc34/X6i0SgGg4G6ujrGx8fJ5/PY7XaSyaRatdfhcGAwGIjH42ohqubmZgwGg5ryTitPOBwmFApRKBRwOp1qIaOzy6qtClpWVobX60Wv16tVgF0uF7lcjlwuR1NTk0q1CAaDRCIRstnsRVNYtJVvs9ksbreb0tJSdDodyWSSSCTC3NwcTqcTn8+nVhkOhULqWoyPj6t59aurqzl9+jRerxev18vc3BzhcJj6+npCoRD19fXkcjm1UJHH46GsrIxwOMzx48fZvXs3dXV11NbW4na7yWQyaoExt9tNVVXVOSlWx48fx+VyqdQBk8lEfX094XCYRCKB0Wgkn88zNDRELpfDYrGo1K2GhgaVljU7O8vc3BzZbBafz4fT6VRzx+dyOaanp9X9MT4+ztzcHC6XS81/ry08lM/n1WqvDocDr9eL1Wplbm6OSCRCOp3G5/Ph8XgWpGv4/X7Gx8eZnJzE7/fT1tbG7OysWvXU4XBQWlrKyZMncblc6ppqi9Vp1zcejzM5OUk2m8Vut5PJZHA6nVRUVJBOp+no6KCurk59lpqaGvL5PKOjo+RyOVwuF5WVlapsExMTarXfsrIytRiYdm7LyspwOp1MTEyoOe9NJhO1tbUMDg6qAbJaOpr2nGjPU7FYxOPxEAwGaWxsVOszZLNZxsbGMBqNpFIpLBaLOtZ82oJp2roh8+f51xYLMxqNeDwevF6vSvkYHh5Wz11ZWRmjo6MkEgkaGxtJpVJMTU3h8XioqKigt7dXzeoVi8Vwu93YbDZmZmbQ6/ULyqUtuGW1WqmpqWFsbGzB2iTJZJLW1laCwSAvvPCCWom7qqoKj8fDyMiISocxm80LFsCLxWJqFW63200sFlNrBFgsFgKBAD6fj0gkohY3i0ajPP7443g8HrXirlYWbVEwi8VywRnUisUiU1NT6jO5XC4cDsc559bpdDI7O8vQ0BDNzc0kk0kKhQLl5eVqheyamhpsNhvxeJy+vj7q6upIJBJYLBbcbjcej0dNKarN9jYzM6MGV+fzebXStdlsVs+v9p5KJBI0NTVhsVgYGhri5ZdfVgu+LV26FJPJpFaB1uv1tLS0YDAYyGaz6vl0OByX1esgxNUiQYC4rmmVpmw2y8zMjKpQxmIxdu7cyfr160mlUvT09FAsFqmrqyMajRIKhdSS85pcLkdPTw/ZbBaLxbKgG/xsmUxGLUaTSqUWtNwPDw+rL7hYLIbdbicSiTA4OKgq46dPn6asrIzKykqi0Sh9fX3q97V9JZNJotEox48fZ9myZer/tS+406dPYzKZKBQKjI+PU1JSsiB3X5tisK+vD5PJxOzsLF6vl6VLl5JIJNi1axcbNmzAZDKp1JHW1lZ6e3tJJBJqzEQymbzgeejr61O5793d3bz5zW8GUKuA2mw2RkdH8Xq9akVOLW9XO25nZycOh4PKykrGx8cZHR1l7dq1TE1N0dXVRS6XY3Z2lsrKSqampggGg9jtdrq6unjTm95ENpslFAoxMjJCMpkkn8+TTqfVSqBOp5ORkRHcbjd2u31B5Xl0dJRUKkVFRYUKPHK5HHa7nYmJCbWwUyKRYPfu3axfvx673U4qlSIYDLJx40aCwSBjY2Nqcavjx49zww03LDhP2WyW7u5uVq9ezdzcHL29vWQyGVavXk1XV5fKWc5msxw7dozS0lImJyfVKs/d3d2UlZUxNjaG3W7H6XQu+BzZbFb90So/IyMjKjfZ7/djMBgYGRkhm83icDgoLy/HZrMtWHRLe5727NnDHXfcQTabZXZ2Fr/fT0tLC0ePHiWZTKLX67FarVRWVqrVWeFMyk4oFGLZsmUMDg6qiq7JZFIVucHBQbUQk9/vZ/369fT39+P1ekmn06RSKYxGI9PT03g8HnU87Txs376ddDpNf38/Y2Nj3HbbbSog11YW7unpwW63MzQ0hM1mo7KycsEc8nAmiA4EAoTDYVwuF7FYTAUiiUSCkydP4vV6yWazagVun8/H0aNH1bnSfieRSLB3714V2I2MjFAsFrn99tvp6enBZDJRVVWF1Wqlq6uLtrY20uk0iUSCyclJtm7dSldXlwpstNWu4UyL/7Jly/B4PIRCITUnvTZtcCqVIpfL4ff7CQQCKqhLJpMLgoBCocDs7Cx79uzhbW97G93d3VgsFioqKigvL+fUqVOUlpYyOzurZkYzGo0MDg4SiUTUolwGg4FYLKaCUu1caDNMaXK5HOFwmK6uLsrLy/H7/TgcDlpaWs45t9oCX7t27VIBTCwWo7e3l5aWFhUklpeXUywWOXLkiGrEmJ6exmAwsGzZMjW9rfZMzM3NMTs7y7Jly+jp6SEejy94/3g8HiYmJgiFQhgMBvbv389NN92kVsPWGmKKxSJ9fX2qwcNoNKrrODAwQCKRwGq1qjEB11oviRAXIulA4rqWyWSYmZmhtbWVXC7Hnj171Jfb7t27yefz1NTUMDExwf79+9ViQceOHWN2dnbBviKRCI8//jgTExM0NzdjNBovmBrQ2tpKWVkZjY2NrFu3jqVLlwJnvvh27tzJ7t27WbJkCel0mqNHj2KxWIjH4+zdu5dAIEBfXx8ej4fKykry+Tz79u1bUI5cLkdlZSUNDQ38+7//O5OTkwsGIU9NTfHkk0+qVWMPHTp0zniEXC5HMBhUrbeHDh3isccew2Aw0NTUxI9//GMCgQBWq5VMJsPTTz9NPp/nkUceYWxsjLq6Onw+H+Fw+IKtWwcPHiQej2M0GvnRj35EPB4nHA6zc+dOOjs7aW5uprOzk3A4zCOPPEJvby91dXUAnDhxgoqKCgYHBzl69Cg6nQ63282hQ4fIZDKk02mGhoY4efKkCvS6urro6+ujtraW+++/n9nZWUpKSqiurqa6upoNGzZQXl5OOBzmwIEDHD9+nCVLlrBv3z5mZmZUS7LGbrezf/9+wuEwtbW1TE9P8+ijj2I2mxkeHqarqwuDwUBzczOPPPII2WyWmpoaisUi//Iv/0Iul+Pw4cN0dHSQSqVoaGjgpz/96YKg0GQyUVdXx9NPP000GsVqtRKNRvn5z39OfX09/f39DAwMMDY2xtDQEI899hhLly6lr6+P/v5+JiYm2Lt3L5WVlSrwPDvdoKamBp/PR3l5OcuXL+fQoUP09fXhcDhwuVycOnVKBY0HDhygo6MDnU53zlgPu92Oz+fjgQcewO12U1NTw9DQEPfdd58K6Do6OhgZGSEWixGPx/ne975HZWUlra2tzM3NsWPHDgqFAo8++qgKPB0OBzt37mTPnj0MDAyoFLPHH39cVbiNRiMGg4HJyUlOnTpFJpOhvLycbDZLNBrF6XSye/dustksVVVVBAIBHn/8cSwWC1arlZdffpnBwUHGx8d54IEHWLJkCYcPH1YtymenYnV1dan9tbe3E4/HSafTpNNpxsbGeOyxx2htbcXlctHX18fOnTvJZrN8+9vfxu124/V6iUajdHd309TUxM6dOwkEAlgsFvR6Pfv378disRAKhejo6GB4eJjW1lYeeeQR+vv7qaioIBaL8ZOf/IRisch9991HJpOhtrYWo9HIY489RlNTE7/85S8ZHR1VPZZPP/00VVVV6pyvXLkSr9fLqVOniMfjuFwurFYrU1NTCz6vw+HAbDbzy1/+krKyMvx+v+qVsdlsTExM4HQ6SSaTTE1NMTMzQ11dHeXl5axatYrm5mbcbjeFQoGpqSm1IFowGOTFF188590Qj8c5fvw4x48fp76+Hr/fz5EjRxgfH+exxx6jpaUFt9tNf38/e/bsoaysjD179jAyMoLH4yGbzfLNb34Tg8GAzWbj+PHjqkFjbGyMnp4e6uvrmZmZ4YUXXqCzs3PB8U0mE0ajkf3795PNZvnJT35Cf3//gveP3+9nYGCAaDSKz+fjX//1X8lkMixZsoSmpibKyspYv349ZrOZn/zkJ4yMjODz+aiqquKnP/0pwWCQp556iv7+flpbW1XPoRDXC+kJENc1q9VKc3MzAFu2bOHhhx8mGAyyfPly1Spks9mw2+2qhay0tPScmS+KxSIvvPCC6sK32+3U19efNw1GSwHRZgMyGAwqzWRkZITJyUlmZmbo7OzEaDSq1rnt27fT1NTE5z73Ob7//e9TWVmJyWTCbDYvmA/c4/Go7m2tVXF6elpVLHO5HE899RQ6nY6xsTFcLhcVFRWMjY1RUlKiyqKl3Cxfvpzu7m5GR0dxOp1q3nWfz0ddXR01NTVEo1H8fj/BYJCJiQnWrl1LaWkp0WiUioqK8y5WVCwWedvb3sbk5CTHjh3DaDQyNTVFR0cHer2e6upqPB4Pf/AHf0AgECAUCpHP56mursbn86n9aKu/6vV6ysvL1Tm3Wq2Ul5fT1NTErbfeik6nY8uWLUxMTLBnzx4sFgvT09N4vV51LYxGI8VikX379jExMYHFYuHEiROqEuLxeBas9llSUkJTUxOlpaWUlpZyxx13cOedd/LhD38Ym81GNptFr9fjdDqprq6mtLSUyspKZmZmGB0dZWZmhscff5z6+nq8Xi8nT56ktLSUfD6vAie9Xo/NZsNqtaoWdJ/PR0tLC3a7XaU8dHR0MD4+jt1u5+jRozgcDorFIoFAgFwux/vf/37e97730dbWdt4VS+fPGPXggw9yzz33qPO5YsUK7r//fn77t3+bmpoalixZwvr168+5ptrc9LW1tSotS6t0aQFXXV0dq1evpqKigv7+fubm5jCZTCoVYnx8nNnZWX7xi19w55130tLSAsAf/uEf8olPfIK3v/3tTExMEIlEKCkpwWazcejQIZ577jk2bNjAnXfeSV1dHb/9279Nc3Mz73jHO7jlllswmUwqeLBarSr4q6+vJ5lMcvDgwQUtsgaDQQUWRqPxnCDg1KlTHDp0iE9+8pPodDrq6upUalJ/fz8tLS0q7WPfvn08++yz3HbbbQQCAWw2G/X19Sr415437fpqq87qdDq8Xi8ul4umpiZ0Oh2ZTIb169dTWVlJR0eH6nHUei6NRiPhcBir1YrD4aCqqko9p9pq5vPfP9o9v3r1au655x4Atm7dygc+8IEFn9dgMFBWVsZdd93F0aNH1fULhUK4XC4+/OEPq14mrfFDO47BYFDvAC3tsqGhgXQ6rXogzjYzM8PPfvYzPv7xj2O1Wnn3u9/NwMAAzz33nDq3zc3N7N+/n507d/Jbv/Vb2O12Vq1aRXV1NVNTUzgcDhobG8lms5w8eVKlVGpjOCwWC0uXLmVubo4f//jHbN26VR3fbDar3p9gMEggEKC1tfWc908+n2dqaopjx46pnpj5z9P8d4r2XstkMthsNnbv3o3ValW9PPX19bKwm7iuSBAgfmMUi0WcTqfKC9aWcc/n86RSKVKp1EV/3+Px0NfX95pmVfF4PLhcLoxGI5s2bQJQOelaWsP27dv58Y9/zEc+8hE1huFiLBaLqhDCf1WWs9ksy5cvp62tTaX+zP8Cmp2dZefOncRiMd75zndy9OhRAoEAfr9f5RLP375QKGCz2YjFYgtass/XtV0sFhkaGmLHjh1s2LCBLVu2cOLECSKRCCaTiUwmQzKZBM5UGrSZNub3rEQiEZxOJ0ajUX3RRiKRBcczGAwqcBkfH+eZZ54hm83ywQ9+kOeee454PE40GlXlLRaLnDx5UqU5eDwetmzZwsaNG0kmkxcdLJvL5VSF6JW+yPP5vMoBLisro66ujvb2durr61mxYgU2m+2igxG1lI7551Mrc6FQYMOGDWzatIlMJsPc3Bw2m43f//3f5//+3//LyZMn0el0tLa2XnD/Xq+XWCymBpEHg0FVgdYCkkuVyWRUqpNOp1MBtXZt5l8zbRyGtvDe/PSIaDRKeXk5jY2NLF++HKfTqXLDv/CFL2A2m9m9ezcPPfQQH/vYx/jFL36B3+/n2Wef5ac//Skf+9jHFpTLYDAsGCSsTQdZVlbGbbfdxs6dO7njjjtYsmTJeRf903LHk8nkgkUCtaBcS+nJZrPk83n0er1KBZs/rWgymcTlcqnnKZPJnPMOObusWjrU/CmBS0pKWLlyJcuWLSOfz6sgTdtWowWX88dx9Pb2ks/n+fa3v000GuXEiRN861vf4mtf+9qCcng8Ht75znfy9a9/nbe97W3odDpCoRAzMzOsXr36go0egOo1qKmpOefePV9PodFoVL0lxWJRpRPZ7XbGx8fVuT27t1UbS3P2M3KhNButR+piCzs6HA419kkTiUTYu3cv4XCYmpoatmzZgsFgYGpqSg0m1ul0FAoFTp06hdVqZcmSJWzYsAGApUuXcvr0aUZHRy9rVjghrgUSBIjrWpGiyv8+efIk69ato6WlBYvFwurVqzl8+DB6vZ7BwUGCwSB9fX0cPnyY/v5+Jicn0el0dHZ2EolE+NCHPkRfXx/hcJjOzk5mZ2cZHR1ldHQUh8OBw+E4c8xiUaVEaHnHR44coaenh+3bt9PY2Mj09DSHDx/G5XJhsVjo7++nt7eXQCDAe9/7Xv7yL/8Sr9fLqlWr8Pv9TE1NceLECVasWIHZbCaZTNLV1UUoFOKWW27B6XQyODioyvr+97+fhx9+mJGREXK5HPl8XrW4agqFAqlUikgkQl9fH+l0mkKhQHd3NzMzM4yPjzM8PEw8HufEiRMqp37Lli0AHD16lGw2y/j4OCdOnGDt2rUL8qpzuRzxeJzp6WmsVismk4nDhw/z5je/mUAgwOzsLKdOnSKdTlNbW8u6devQ6/Xs27cPj8ej0mzcbjepVIquri56e3vp7u5maGiI2dlZurq60Ol0LF++XAUW0WiUsbExrFYrJ06coKqqirKyMnw+H3v37sVms7F27VqOHDnC1NSUygU++/xoJicnVav3wYMH+W//7b+RTCbx+/3EYjE6OjpYvnw5c3NzDA8Pk81mGR0d5b3vfS9Wq5W7776bvr4+jhw5olKwGhoa8Pv9JJNJjh49islkYmJigvHxcbLZLCdOnGB4eJjx8XF6enqwWq2sWrWKNWvW8NOf/lSNGSgtLSWRSPDMM8+owc21tbWUlpYu+AwjIyMMDAwwPDxMd3c3v/Vbv0V/f7+qUI2MjPD+97+f48eP09XVhdFoZGZmZsF4APVMFYuEQiEGBgZU4PbWt76VbDZLX1+fGhDr9XopKyvjhhtuUPuMx+PccsstWK1WPvaxj9Hd3U00GqWyspJ4PM6HPvQhurq6VGU9FotRUlLCCy+8wJo1aygrK2PJkiX09fUxNzdHRUUFjY2N5PN5Nej55MmTKmCfmJhgcHBQPdMNDQ1UVFQQCAQ4ceIEZrOZQCDAypUrz7n+GzZswGw28/zzz7NixQoGBwcJh8OsXbuWjRs30tfXR09PD1NTU9hsNt73vvdht9u59dZb6ezsJBgMYrPZVNBQUVGB3+9XYz66u7tV2oo2dshut+P3+zl27BiVlZX09fWp5/DDH/4wvb29qkKrjTsZHx9nZGQEm82m7pvZ2VlqampIpVIcP34cs9lMb28vMzMzlJSUUFpaypo1a865tkajEZ/PRzQapbGxEZvNxsjICPF4XI0vGBkZYWxsjGw2y+bNm2lvb6erq4uKigrMZjOdnZ1MTEyosU+nT59e0FOkBQ2lpaXcfffd7Nq1i9LSUrUOw5YtW9ixYwe9vb1MTU1hsVi4++67mZiYwO/3c/z4cUKhEL29vUxMTKj3a29vLwaDQVW4e3p68Hq99Pf3k8lkeMc73kFXV5d6ZxsMBo4fP87Q0BD5fJ5169YBLHj/aGMv/H4/ZrMZt9tNb28vpaWlKgA5fPgwFRUVvPe971Upp7W1tSSTSVatWsXQ0BDRaJSuri7m5uYYGRlhdHSU0tLSBWMUhLgWSRAgrms11TW49RtUt/uSJUuorKzEYrFw8803YzKZMJlMrF27lng8jtVqpa6ujptuuknNWLNx40bcbjfl5eWqO95kMuFyudi+fft5W4ZtNhu33HKLmgZSm0rT6/WyYsUKqqur1awbDoeDdDpNVVUVbrebxsZGbr31Vnw+Hw6Hg5qaGrZv3656MDZu3Eg2m8VsNmOz2bj99tspLS2lvr6edDqNx+PB5/OpSrnWAjm/1UwrY3t7uxr4uGHDBlKplErBeMc73kFtbS02m00FTlarlZtuukm1TFssFt7+9rfjdrvPOQcej4cbbrgBr9eLx+NR57u6uprVq1ersQIGgwGHw8ENN9xAKpVSsxzZbDb0ej3Lly/H5/NhMplobGzkxhtvpLy8HKfTSTabpaKiAoPBgNvtVvu1Wq3ccsstqgKmzeSkDQKtrKxk6dKluN1ujEYjDodDpWucTcsd1tKnli1bhs1mU70HWrqS1pqrpfNs374do9HIsmXL0Ov1arYVLeVo27ZtmEwm7HY7JpOJd77znZSVlZHJZFi6dKlKtVm3bh1Go5Hm5mbq6upU5VRLYTEajSxZsgSj0cjq1aupra09Z5Ybs9nMypUr1QwpDQ0NAGoAcXt7O8uXLycSiaipE883m4tG+6wGg4G2tjZWrlyJ2WxW19vr9apt3vzmN6vpJBsbG9WsKbfccovKZTebzZhMJioqKshkMrjdbiwWi7quWiqO1+tVMxFpz+DSpUtVStU73/lOPB6PurdNJhMWi4Xa2lq2bdumKsbZbJaVK1eq2bFsNhs1NTULekCampqw2+0Eg0EMBgPr16/HYrFQV1dHXV0dmzdvVhVD7Z4ym83ceeed6n6xWq1qn7feeqtKnVuyZAmZTAaLxcKqVavUfexwOHjXu95FaWkpdrudtrY29azdeuutqqza+dLpdLztbW9TwXJTUxO33347FouFzZs3q0HeJSUlpNNpDAYDLpeL0tLS8/YyaulKd955J7W1tZSUlFBWVqZSCPV6PW1tbZSVlVFRUYFOp+NNb3oTDocDj8ejZjN773vfqxoEli9fTl1d3Tn3k81mY/ny5fj9fiwWC2azWU0AsHnzZpXeVVFRQVlZGWazmXe+853qndrQ0MDb3/52LBYLNTU1bN68WQ38hjPpggaDgdraWiorK2lrayMQCHDXXXfR0NCAx+OhubkZvV6PxWJh69ataqYo7f2zZMkS1XvpdrvV8U0mkxpnZrVaKS0tZdu2bQSDQTWDlTa71dq1a8nlchiNRpxOJ29729sWpGUKcS3TFWUYu7gOHYnCxsNweCOsdxbVy/3sVX+1SqfWpa+laVwsVUPrtrZYLCrl49Wu9JrP51XL1+WsHqmtOAtc9Pe1NJizc8Q12oq/81cz1nJeLyaXy1EoFNDr9Wp6v/l5wWfvv1AoqOlLtfOby+XIZrOqkqT9TJvCcP451Qa8WiwWdbwLTTmonVuLxbLgeIVCQQVP82dISqfT503PKRaL7N69m/3797NmzRpuueUWVeGfv602W8wnPvEJ/vzP/5w1a9aoSsDZ52z+dI6XS0tR0SrJWrqFls70anKOtXzzS03/0Xoyfu/3fo//+I//oLy8XAVyF6OlHWn3u6ZQKKj7Y34ZtHLNv4bpdFrNJKR9Zu1euVjAMl8sFmNgYIC9e/fysY99TA1QNhqN3H333efMEKSlEGnPkZb/Pn9WKO06zL8ntM87fzwQoFIODQYDqVRKpbJdKu18aefmlWjndv4501Jzzm4UOPszz39Pap/9QmXNZDLnXNtXI5FIqAYZ7ZgXOrcXUygUCAQCfO9732Pjxo1s3LhRzYp2Kc73/tHOt7Za9NnvlPkrps9//8y/n7W0JqvVqgLtC7235393bXCd899CvKGkJ0Bc97Q854v9/NW0ysz/8jy70nCpzq4cvFraF9IreaWKgk6nO+cL8lK+cOd/2c8ftPxK+5+/by3X/+z9nq8iMf/nZ7dyn328+dvOP57W4jefwWC4aKX88OHD9PX1UVNTc8EKfDab5dChQ4TDYTVzVGVl5UU/w2uh5d3P/7eWf/9qXUpFcr5IJPL/s/ff0XHf550v/preCwYzGPRKAOxFFKlKypJsy71sNjfOJrZvrjdxNk52bxLfm9xk1z53z65z73Fy7MhO3O04tiXLstULRYoSm1hAFBIdgzoABjOD6b3P/P7g/X4MgCBFqlnMb97n6EgafMvn+6lPeT/Pw9DQELFYjOXlZWGxfz1cS+DczEO1sV1rA8HX/vZGhE6tViu8EsPDw0Igttvtm85jSdi71v4hUQA34lrfu/Yb3khRs2v117Wwtn+kPns9bBT2b2Q/uJk2bYaN6+p6fXs9SHVc5ubmqFQq7Nu376b6+Vp70sa2Sdg4Hhv3HwlrFZw3emZUUcVvAlVPQBW3JKrWlCreLCTL6cZsIJtdJ1kAJevhzXp2bhXc6t8qHWdrg2fXWnZvpW+p4mpI4yvVJpHW7a2E6tlVxbsJVU9AFVVU8f+XkCzsN3LdjVpZb3Xc6t8qCYRr23+rfksVV0Ma37fC41ZFFVVUlYAqqqiiiir+jeFWsw5XUUUVVfwmUDWRVPFvChuD494qvB3PvBFIubQ9Hg/j4+OMj48TiUQEZeNm2HylUkmk7YzFYv9mStvf7Jhns1mRknXjPeVyGZfLdVVl4bVIp9OsrKwwMjJy3T4slUr4/X7Gx8ffsv52u90sLCwQDAbf9LM2wxuZV9dDLBYjFAoRi8Vuuh1r6VpwJajT5XJds4r3O4nV1VVmZ2dZWlp6W56fz+fx+XyicrIEaT8YGRnB7/e/bu2T3yQKhYJI1bq27sjGa1ZWVhgfHyeVSr3uvCuXyySTSS5fvkw0GqVUKhEIBFheXn47PuGmIH3LxMTEu3pcqqhiLapKQBX/piAVpVp7cL4VuJFiY28XkskkJ0+e5Pvf/z7f+c53cLlcwBVh9HrC6kYUCgXGx8f553/+Z2ZmZv7NlLe/2TGPRCJcvHiRf/iHf7iq/4rFIj//+c9JpVLXvD8YDHL27Fm+/vWvX1fxyOVy9PX18YMf/IDZ2dm3RLB+6aWXePrppxkcHHzTz9oIKdPT9b79ZjE3N8fo6Chzc3M3fW+hUCCXy4l5msvlePTRR68pUL6TuHTpEr/85S956aWX3pbnJ5NJ+vv7+cY3vrGu8JiUOeqb3/wmFy5cIBQKvS3vfyuQyWQYHh7mH/7hH4hGo9e85vTp03z/+9+/IUG+WCyysrLC17/+dVwuF7lcjkuXLvHqq6++xa2/eaTTac6dO8f3vve9d/W4VFHFWlSVgCr+TWFhYYHx8XHm5+ff0uf29/dz4cKFt/SZNwKp/sEdd9xBS0sLer2egwcPIpPJeOGFF1hcXLzhZ2k0GhoaGti9e/dNKQ/vdtzsmNfX13Pw4MFNlSCFQsHhw4evmxGnpaWF22677XWVKJ1OR2trK9u3b3/L+vu+++7DZrO9bQqpz+fj+eeff8ueV19fT2trK/X19Td1X6VSYXR0VBTMgysZWA4fPvyGsu681XjggQeoq6t7U9XFrwebzcaDDz5IMplcp2jK5XJR80On072rFXmz2cy999573TaaTCba29vZsmXLDXl4VCoVdrud/fv3i9SenZ2d7Nq1661s+huC2WzmIx/5iPBQVFHFrYBqTEAVtzSWlpYopXykUim2b9/O448/TjgcZteuXcjlchwOBxcvXqS2tha73S6qpA4ODnLgwAFRzbdQKHDPPfegUCjweDysrKwgl8vp6elhaGiIZ555RuT9v/vuu3n11Vex2WzY7XbkcjkDAwMcOnSIRCKBx+MBoLOzk2g0Sk9PD4uLiwSDQSqVCt3d3dTU1DA7O0sqlRLP3bt376Zc5o2/lUolXn31VZ544gn8fj/33Xcf27dvXyccZTIZYrGYqIq8bdu2qwTbcrnMxMQEyWRSFNTq7u5mcXFR0Fdqa2tpampa14ZcLicq2pbLZfR6PcVikZmZGT75yU8yNDREOp3GbrfT2trK8ePHRaEzhUKB1Wqls7OTubk5XC4XdXV1Ir/27t27MRgMyGQyIpEIfr+fRCKB0+mkoaGByclJAoEAjY2NJBIJGhoaeOyxx4hGo2LMu7u7mZubI5VKiSwia/t2bX70+fl5QqEQDQ0NNDQ04Pf78Xq94hBPJpOikqnNZiOTyYj0oNL9Xq+X9vZ2mpqa1gWhbjaWPp8Pn89HLpfD4XDQ2trKhQsXKBaLNDY20tzczKVLl9Dr9TQ3NxMMBlldXcVoNIqKp9dCKpUiFAqxtLSEw+HA4XDgcrnIZDL09vaSSqUYGxvjzjvvpKamhlgsxuzsLHK5HKfTyfDwMJcuXSIcDtPe3s7tt9+OSqUiEAiwuLhIPp9n+/btyOVyUZ22t7cXt9tNU1MTWq2WRCJBIBBg9+7dmEwm3G43pVIJu92OWq3m8uXLogicxWKht7eXSqXC7OwskUgEp9NJa2sr4XCYf/zHf2TPnj3s2bOHtrY25HI5Pp9PCMXRaBSfzyfmR319PX6/n5WVFQqFAk6nk5WVFXp7e6mrq7sqQDgUCuH1egkGgxw8eBCtVovb7cbv91Mqlairq2N5eZndu3dTU1NDpVIRFaRra2tJJBKbjkOhUCAajTI2NobRaGT79u243W58Ph9Op5NMJkOxWKS7u1tU0vX7/SwsLFBfX4/D4VhXaXZmZobFxUXMZjNdXV1XvS+Xy+Hz+XC73dTV1dHQ0ABcqSJdKBQol8t0d3dflbpycnKSaDSKWq2mo6MDq9WKz+fD6/WiUChwOp04nU4qlQpjY2Nks1lRLC8ej5PJZGhvb0ej0RAMBgmHw2IPvdb8jEQiBAIBZDIZu3btEtdK9Smk6ry1tbUYjUZKpZKomGy1WnE6neue7/f78Xg8FItFisUily5dIpPJYLVaKZVKpNNp7rjjDuRyOfF4HI/HQyQSwWq14vV6ueeee9alh61UKszNzeHz+aitraW9vR2VSsWxY8dEvxYKBeRyObfddhtwxQPg9/sJBAJinlRRxa2CqiegilsaS0tLtLa2EgqF0Gg01NbW0tzcTGdnp6jIu7CwwMjIiChvb7VaOXnyJD6fD71ej8Fg4Mknn6RUKnHixAnGx8dRKBTYbDaOHDlCS0sLNpuNmpoaent7RfGi0dFRPB4PlUqF8fFxfD4fRqORmZkZzp07RzgcxuVy0d/fj8vlEkL1r371KxKJBFNTU5TLZaxWq1AcbgRyuZwdO3aI6sctLS1XHbxTU1OcPXuWxsZGzp49i8vlIh6Pr7vm8uXLpFIprFYrdrudmZkZhoeHmZqaQqFQoNFoOH36NCsrK0IolgSc0dFR2traiEajokjWsWPHAKirq2NkZISBgQHgirLxwgsvYDAYKJfLDA8P89prr2G32zlx4gQLCwvodDpqa2v5+7//e5LJJDMzM4yNjeHz+ejo6ODkyZPMz8+TSCRYWVnhueeeI5vNksvlRMVZaczT6TQul4tSqXTNvpWEC5lMRjabZWZmhvHxcUwmEydPniSbzRIMBpmYmGBoaIi6ujrOnDmDTCbDZDKJOA2ZTEYmk2FycpLx8fFrjlmlUiEUCvHyyy+TTCbR6/W8+uqropjZ1NQU8/PzFItF5ubm0Ol0PPXUUywuLlJfX4/P52NycvKaHoVMJsPAwACvvvoqXV1dvPbaa2QyGQKBAPPz80KoOXr0qPitr6+Pzs5OampqxPppaWmhvr6erq4uFAoFZ86cYXh4WAigP/3pT4lEIkQiEcbHxzl37hy9vb088cQTDAwMkMvlMJlM/OxnPxNVVP1+P4ODg7hcLmpqatDr9UxMTHDp0iWKxSKnTp0SQpzL5eK1117DaDRSV1dHR0cHLS0t1NXVodfrOXHiBIVCgfn5ecbGxkTdhlOnTjE3N4dcLiebzfIv//IvKJVK0uk0o6OjTE9Pr+uvUCjE7OwsHo+H5uZmvvnNb5JIJLBarYTDYX72s5+J+y9dusTMzAwej4ef/exndHZ2rivmt3Gch4eHefrpp+np6SEQCDA9PU00GsXv9/OLX/yCpqYmLl68yPz8PMlkkmQyyXPPPUdXVxdHjhxhYGBAWLn9fr+oAOzz+Xj00UevGveFhQVeeOEFtm7dysWLF5mensbr9TI9PU1HRwder3ed56hcLnPx4kVmZ2fR6XSoVCqefvppAI4ePYpSqSQcDvPYY49RLBYZGhoil8tRW1uLxWJhfn4eu93OCy+8gM/no1Ao4PV6XzcmZ3BwkJGREex2O6+99hozMzNkMhngihIQCoXo6Ojg7NmzXL58Ga/Xi8/n4+mnn6atrU2s0bVrwGQy4fF4uHz5MnK5nMbGRh599FHcbjflcplIJMKZM2fI5/M899xzeDwejEYjzz77LG1tbeuyDJVKJRGHYTabmZ+f57HHHgOueAifeeYZVldXqVQqvPbaa4RCIdLpNEePHsXlctHS0iK+p4oqbhVUlYAqbmksLi5y/vx5crkcKpUKk8lETU0NNpsNk8mEWq0WQqpCoaCxsRGDwUAoFCKbzaLVajGZTCwsLFAul7lw4QJ+v5+6ujpx6NXV1WE0GjEajTgcDmQyGUajkVgsRjqdRqFQkMvlSKfT6HQ6kskk0WgUo9GI0+nk3Llz+P1+isUiuVwOt9uNTCZjZmZGCEc3U1hMJpNRX1+PRqOhpqYGq9V6lZVTKl4Tj8cJBAIsLS1dRV0ol8uMj48zMDDA3NwcGo2GU6dOUSgUMJlMGAwG0um0EEqkd+fzeUZHR+nr61tX2TYQCABQW1sr3isVBYrFYhgMBmw2G6VSiePHj2M0GkWAq81mw2q1MjU1hcfj4eLFiywuLqLT6aipqRHvjMViyGQywuEw9fX1mEwmLBbLujGXy+XMzs4yNDQkFJqNkIJOzWYzWq2WWCzGysoKWq2WQCBAuVwmlUoRDoeJx+NYLBaWl5fRaDQYDIar7g+FQszNzeF2uxkeHmZ0dHSdpbhSqTA5OcnCwgLxeFwoU5I3Q/J6rK3kOj4+zsrKiqiEvLy8fE2agcfjYWlpiXg8jt1up76+XhSuyufzpNNpTCYTgUCAXC4ngjZPnz7N4uIiSqWSmpoaamtrMZvN2O12ZDIZQ0NDzM3NYbfbqa2tZW5ujpWVFRKJhJjPdrtd8LNramqwWCwMDg6KCt1SgSeVSkV9fT0TExNUKhUcDgdyuRytVksmkxHC5OTkJBqNBovFIuaF0WhEo9GIsRkdHWV+fh6dTofNZiOfzzM+Pk4ikUClUrG0tITFYkGr1bK6uorf71/XX9J6kfq2r6+PXC6H0WhELpfj8XjE/V6vl5mZGRYWFvD7/djtdoxG46ZpKhOJBHNzcyJoXLLyFwoFsUZsNhuJRIJIJEIqlUImk6FWq4UyurKysi6+xWw2U1tbSyqV4vTp0+uE7WAwiMvlYmlpiXK5TDweJx6P4/f7GRkZoa+vb92ckubiqVOniEQiIgZkeXmZSqUiqqv7/X6mpqbIZDJCcR8cHGRxcRG9Xo/dbicWi5FMJslms5TL5as8hhuhVqtRKBRib1hcXBRCszQPampqhJJ3+fJlJicnWVpaolgskkgkiEaj62JWtFotuVxO7As2m00YZqRqzTMzMxQKBRYXF8WePzc3R319/VV7g1KppFQqUS6XWVlZYWxsTCj+Es9fq9USjUYJh8PMzc2xvLxMoVDAZrMJL2YVVdwqqCoBVdzSSCQSPPPMM+uCZKUDXjpI9Xo9NpuNtrY2Dhw4gEqlQqfToVQqUSgUaLVacY/L5SKbzdLU1ITJZOKBBx5Ar9evKzYkWTulA0ShUKDT6UTeeZVKhdFopKWlhTvvvFNk+CgWi8RiMRobG1GpVCSTSQYHBzl//rx4v5QV5XpYWyRHKnO/NliyUqlgt9tpbGwUgnQ4HCaZTK4TIuvr65mdneXEiRNcuHABs9nMuXPnsFgsQriV6FRr+1ahUBCJRHj22WeJx+PimyW3ukajQalUijYaDAacTidqtRqn00ldXZ34Zungr6mpQaPRYDKZWFpaYmBggHA4TENDAzKZjMbGRqampojFYlitVurr69myZQt1dXVoNJp1Y65Wq0Xfnjt3btNDWaIlSUJrpVIhlUqJ+SAVmZLGtlgsYjabhWIp3W+z2TCbzSJLyczMDBcuXGBgYOAqz4skUGQyGTKZDG1tbSQSCbq7u1EqlULAaWxspFgskslkiEajJJNJrFbrukw5G+F2u0mn09TW1qJQKPjABz6AxWJBr9evm5tqtRq5XI7ZbMZgMPD4448zMDCAUqlctw6ktTM/P08wGMRqtSKTydBoNHi9XkG5aG5uRiaTUSwWcTgcNDU1odfrRSCoTqdDrVaj1Wrp6OigUqlw7tw5GhsbueOOO4ArMRYS9z2TyRAMBgVFTi6XUyqVKBaL69bZxMSEoIUBNDY24nK5CAaD6PV6MafMZjOFQoF0Or2uv6Q1KilwkhIiVZhee382m2V5eZnFxUVhBKipqVlXHVhCNBoV4xgIBES/qdVqLBYLTqdTvFtql0wmo6enh+XlZYrFIoVCQQi6kiJiMpmoVCp4PJ51a1jy6uj1erxeLw0NDeh0OtLpNKurqzz99NOCErd2f+jv7xdek0wmg9PppFAo0NXVRSaTIRKJIJPJBNVqYmKCV199laGhISwWCyaTiS1btggKmtFopLu7+5o1GSqVCo2NjdTU1ODxeNDpdAQCATKZDKVSCZVKhdPpRCaT0dzcTCwWY2hoiMnJSQwGg6DamM3mdUqAVNFXrVYjk8nQarViXVutVvR6vaA26vV65HI55XJZKHIb6XtqtZqamhpSqRSxWIxsNkuxWBQGHZPJJAwB8XicyclJFAoFJpMJpVKJ3W7f9PurqOLdimpMQBW3NN77vvfyns/+O/7u7/4Ol8tFOp0W1qHJyUl2795NpVJBpVKh0WiEVUw6NKSDWLJ0S79LQkcymcRsNotDNJ/P43K5hMAkWfvi8biw0CmVSiFswRUrd1NTEz09PTgcDnbs2EEkEuGzn/0sKpWKqakpvv/97/P+979fvBd+Xe0U1isH0r+lv0ejUVZXV9m2bZv4+7Fjxzh79ixf/epX8Xq9yOVyYrGYaGOlUmF1dZU///M/p1QqMTExwfe//31MJhOpVEpY9yS6kPT9kuXu//q//i+0Wi1f+cpX0Ol0bN26VfRvJpMhn89fJRBIgnYymaSmpmbd71JqymAwiMViwWKxCCGkXC6TSCQwGAyiX/V6vbh3rXI2OTlJXV0dn/70p1EqlczMzPCd73yHhx56aN37ABFDsTbF6No+lrxKq6urjI+P80d/9EfCCyCTya6632AwsH37dtra2lAoFNTU1BAIBMT31dbWIpPJ6OrqYs+ePYJjLpfL6e3tZXZ2liNHjvD+979fCBZSEHKlUiEej7OysrKujdK4SEqpND6VSoV0Oi3mvnSPZMFXq9Vs376dT37ykzz77LOcOnWK+vp61Gq1mA87d+5cZzGHKzESOp1OjLNkDVcoFELpW5vaU/pHoVBgNBr5+7//ex588EFaWlqIxWL4/X7+/u//nj/+4z/GZrMJj4jf7xfv9vl8ZDIZ7Ha7eJ5er6dUKhGPx6lUKiQSCfR6PRqNZtOxke6T+uvMmTN4PB5sNhsPPfQQMpmMQCAg5t3G+1UqFWq1et14XmscJM/U7t27kclkJJNJQqGQ8FKsfW4sFsPn8/GDH/yAb33rW5w4cYJisUg0Gl0X41OpVFAqlcIDIb1fp9Nht9vRaDQifmJ1dZVUKsXf/M3foNFo+PM//3M6OjpwOBzieXa7nebmZnp7e7FYLOzdu5f5+Xl+/OMf87nPfY6tW7cyMzNDMBgklUrxpS99SWT7+dGPfsTXv/51Pvaxj/HSSy8xNzfHoUOH2Ii1/VQul/n5z39OMpnkf//f/3f8fr/w6Ekes7XX6/V6VCqViGPYuXOn8CpJXp3NxkFa12uNKuVyGa1WK5TuQCDAn/7pn141dplMhmeeeYZUKsVHPvIRlpeXmZ6exufzif7f+Fyj0cjCwoL4ho17SNUrUMW7HVUloIpbGi8fe5nGu3ayd+9euru7USgUTE5OcvLkSW6//XbC4TDj4+OUy2XS6TQNDQ1otVoOHDjA8vIyoVCIYDCIx+NhamqKT3/607jdbv71X/+VPXv2kMvl2L9/v6AVnDlzhv3796PX6wX3PJvN4vV6ee6550TQ5PLyMsePH+fBBx/kP//n/8yxY8d4+eWX6enpIRqN0tTUxJEjR2hra6OxsZGPf/zjAPzBH/wB//E//kfuvvtu1Go1cMW6ePLkSfr7+8nn85w7d4677roLo9HIxMQEer2e3t5e0SeS4CeXy5mYmCCVSuF2u0Vg8MWLFwkGg9jtdqampnA6ndTW1vKxj32MrVu3cvToUVKpFBqNhoWFBf7Tf/pPwsqfy+VYXFzk+eef55Of/CSHDh0SgsTtt9/OSy+9RKFQYGJigpqaGpEacmJigomJCaLRKF6vl7/9278Vytb09DQajYZ0Os2ePXvYuXOnCJA9ceKECMb8zGc+w8jICCdPniQajfL+97+fpqYment7GRsbE2OuUqlELEdTU5PoWwmBQIC+vj7m5uaYnJzk7NmzTE1NodFo6OzsZHZ2lr6+Pnbt2kUoFOKJJ57Abrdz7tw5/pf/5X9Bo9HQ39/P3NwcExMTnDx5kpmZGZqbm/nABz4gLJqZTIalpSUuXLggFK7vfe97jI2NicDKQ4cOIZPJOHToEOVymZMnT/K//q//KwC333472WyWo0ePCo786dOnGRkZob29nWg0KpSp/fv3E4/HuXjxImfPniUWi3HbbbfR1tZGoVDg3LlzlEolIpEI/f39jIyM4PV6OXTokBAI7XY7Ho+HkZERuru7KZfL/O7v/i5ut5vHHnuMlpYWGhsb6ezs5MKFC1y4cIHl5WXq6uqYn59ncHCQYrHI6uoqy8vLLCws0N/fz+XLl8nn8zidTsbGxti/fz/PPPMMZrOZ3/7t30apVIog3aWlJXK5HH6/nwMHDtDf309TUxMdHR3E43Hm5ubo6+vjwQcfZGlpiRMnTpDJZBgfH+c//If/QKVS4cyZM8zOzjI5OcmJEyeYmZlhx44dgtYFV4Q1iYd+7tw5ampqBHd/ZGRE3P/KK68wOzvL3XffzY4dOxgbG+Py5cuCsqZQKFhcXKStrQ0Aq9VKb28v0WiUI0eOCCqPy+VicHCQmZkZpqenBed9z549tLa2olKpGB4eplKpsLS0xODgIB/5yEfQ6/VMTk6SzWaJx+P87u/+LslkkqGhIZaWlnjggQe46667+NGPfsT58+eJxWIYjUai0SiXL1/mIx/5CB/96EdxOp1i/isUCr74xS/yzDPPrAuyb25uRqVS4Xa7yeVyyGQyXnnlFfR6PfPz8zQ2NmK1WvngBz8IwJYtW3jppZdQq9Xs3r37qr1Z8sZNT08zNTUlaGhTU1Ok02nm5uZobGwU3kWJljY8PMztt9/ObbfdRqFQ4Ktf/SoXL14UdDOtVkt/fz+RSASNRiMSDJw7dw5AvC8Wi3Hu3Dnm5ubEObC0tCQU0s997nMi8Hft3pnP57l8+TI+nw+VSsXo6Cgul4tLly7hdDrX0d3+5E/+BL/fTzAYpL+/n8XFRcbGxpidnRXGjCqqeDdDVqmGsldxC2IwAfsH4LkmLwcsVwJ1LRYLuVyOVCpFLpfDarWi1WqFJUdy80sWKCnLg0wmY35+nu3btwOIw0ryHuj1esLhMNlsFp1Oh8ViQS6X4/f7KZfLwsquVqupq6sjGo1SKBQEv7pQKBCLxUSgpEqlQqlUEo/HkclkKJVK0f75+XkcDgcGg0F4GkqlkuCPl8tlnE4nBoMBj8cj6AtGo1F4ECTvQCwWw2QyUS6XyeVygtYUi8UEhUaiiUgWXSnzx1qPgcTdljwn2WxWPEN6v9QHxWJR8KiVSiV1dXWCSvCJT3xCuMvNZjMajYYvfOELfPjDH+aee+4hn89TKpVwOp0is0cmk0Eul1MsFqmtrSWTyQhaU0NDAyqVikwms27MZTLZpn0rWeUkuoXX66WtrY1kMimEHqvVyvLyMvX19fT19ZFIJNi6dStGo5FAIMDU1BStra3s2LEDv99Pe3s78XicXC6HWq3GbreLvpQ42tLccDqdBINByuWymAcmkwmZTCa8HfF4nNbWVuBKPYNCoSA8VxqNhkQiIeIwamtrxbska7iU6UmtVotAbKnP9Ho9CwsLOJ1OlEolhUJBUHWkOZDP5wX1wmKxiOBriQ4mBbJLHh2VSoXNZmNxcRGLxSKoU6urq7S1tYkxLJfLWCwWAoEAtbW1ZLNZ5HI5NpsNr9eLRqNBpVKRz+cFv1qylGu1WkEDWlxcpLGxEbVaLWId1s4PybsSDAZpa2sjFouRy+VE4Lm0RmKxGJlMRljTI5EIFosFpVJJNpslGo0Kb0Uul8NgMGAwGIhEIsIbtbq6CkBHR8e6zFtSf5fLZTQaDRqNRsQM5XI5GhoahIAp0aWCwSBms1l4ciRai9Sv0hhL3oDl5WWUSqWgpwSDQREHpFAoxPqR1rnJZFrnhZBiUqRnSvcGAoF1sSRrPTzSHJFoYWq1mnPnziGXy7njjjs2zWKWTqdZXl6mqamJVCpFoVBAr9dTqVTIZrNYrVZBZ5T4+FJMknSd1FeSN0baeyWKVTweJ5vNCk+Hx+OhtrYWlUolvJrT09NiL7PZbKTTaX75y1/yX/7Lf8FqtYr2RqNRMpkMOp2OQqEg2iKNn9lsFnRInU5HXV2dWKdS38zOztLd3S0oQtc6uwb2w22mGz/zqqji7UBVCajiloS0kfbtK7FHVxJWc/h1dd/NNuC1kChAcrlccMnXpo8slUpiY5eeK1EbpGukLCHSNWuv3wgp4GxjRgrJcv9GIPGDNwt+ldq29n1rv0/6t/TP2uuk7CQb27V2u5AOvrUuckl5koTGXC7HU089xcjICJ/5zGfo7u4WtKFAIMBf/MVf8NBDD/He974Xu91+1fukwM21Y7MZpDFf2w9vtm9PnjxJOBwWB/rCwgKhUEjQed4orte3lUplHY1K+gZJEHs9eoFk4VapVOvGWlLqJLqZ9A5JMZWevZZesfG3jc99qyA9W6FQXJXGdW1swLW+90bmx7XuXUsnk3C950hzXBJYpXHceM/Gb3q9Z8Kvx2JjO6Q1LsUAXa9dG+fUxn1tIzbORWnf2/iutX1VLpc5evQo7e3tKBQKzGaziM14PbzeniR9w8b25vP5dXvNzaBSqXD+/Hmi0Sh2ux273U4ymeTFF1/k85///DprvfT90npbi+uN4dq9XTIIXGvcq0pAFe8mVOlAVdzSUMgVqNXrBeDrCQ1rsfYg2hjkt9mBu/H/JevYjWb22eza11NUbuSZ18L1+mGjsLUR12rX2uvXKl7S36TfpH/n83lkMhm1tbXrrpcsgZ2dncJSupmwLpfLr1u4a+11G7/1zfZtU1MTarVaBG+WSiW6urpuWOC5Fq7XtxvH42ayRsGvAyU3PndtEPtabHbtZsLP2rF9q7GWg78RrzeGNzo/rnXvzWJtP1zv/ut902bXAte8/kbmwLXG5/X6ZmP/St6z67WhVCrh9/uxWq10dHRgs9let30SXm9PutYce7Nzr7W1VXiZJI/Ebbfdtun8fyP7xtq9fbOA8SqqeLei6gmo4pZE1ZpSxTuFtUGl1UC/Kqq4grUeo1sFm3nb3mlUz64q3k2opgitoooqqngd3EqCThVVVHFtVNdyFVX8GlU6UBVVVFHFdVAVGqqo4mrciuviVmxzFVW8nagqAVXc0rgSGFi6bkDutTAyMkKhUKC9vf26vNZ4PI7L5UKpVLJ379432eLrI5VKMTw8zNLSEnK5nN/6rd8CrhxeoVCI6elpzp8/T2dnJw6HQ2Q4qqmpYfv27WSzWYaGhpieniadTnPw4EH27dv3jlBZpDoAP//5z9m6dSu9vb3rcpNLCIfDnDlzBoAHH3wQg8HwtrbrzSAWi+HxeCgUCuzcufOmOfpvBJVKhaeeegqNRsPWrVvp7Ox829/5VkAKtN+MUy0Vyrt48SKHDx8WdR7eDSgWizz11FMYjUZ27dpFU1PTptdtDOB9q9bT9QJibwR+v58nn3ySXbt24fP5SKVS6HQ66uvrmZmZ4aGHHsLlchGPx7FarRw+fPim3yFlyllbM+HdIFBLmYWkRARSRrd3Q9uqqOJWQJUOVMUtjUw2I3LR3yxSqRSpVGpdBc7NUCqVxLVvN9xuNx6Ph0QisWnQXiqVor+/n3A4LILY4vE4IyMjLC4uikNxenqagYGBd0Ro3dhGt9uN1+sVBXQ2QqrZMDIyIirTvltRKpVECtJ3MnwqkUgwOztLMBh8x975ZuHz+UQhp42Qsq5EIpHXXW/vNKS0oi6Xi1gsds3rpPYHAoG39BsKhQIzMzNvaH5J8zMYDKJQKPD7/UxNTbG4uChShQYCAVFobmZm5g210ev1cvbsWY4ePYrb7X5Dz3izyOVyxONxIpGI+C2fzzM6OspLL73Ea6+9xsmTJzl58iSrq6vv6HqtoopbFVVPQBW3JK5s8DK8Xi+ugTO0tLSg0+nI5XIi8KtSqaBWq9el8gREisqamhqRy7tQKIjUbmurhEq5saX871Le9bX52eHXGSFKpRLFYlHUDygWiyLH+cb0nPl8XlwnvffSpUsoFAr27NnDrl271lm0pMrDWq2Wrq4u9u7di1arZXx8nBdffJHjx4/z6U9/mu7ubi5fvkwgEHhdz4WUmx+uZLgoFouif6S0d1KhMOk3yeomfbOUNrBQKKBQKMRYSGkFpXvkcjlKpRKDwcDevXsZGRkRKS2ldIuVSgWtVrupJU/qL0n5USgUIk/82lSWG++XfpfGTaFQiNoJBoNBWDg39oFcLkelUmE2m0VgsJT6cW36Rym/fqlUQqFQoFKpSKfToh6EXC6/qg+ul9K1WCyyc+dOzp8/L1I4SsodIOal1B7pd6noUrlcJpvNotfrRf9K+fClugtrq1FrNBry+bxIfytlqZG+U3q2UqkknU6LuSqtM5VKRTwe59KlS6hUKmprazfNtqVSqWhraxNpFKX+kr5drVavS7krWZtLpZL4R6r7IM25crks8tmXSqV1efKl+bi2guxm/V0oFNi1axenT58W83Btv0kZZFKpFGNjY5RKJfR6vajxII3Z2jz60rhI6176fW27lEolxWIRv9/PiRMnaGlpEbUdbmQ9ACI96uHDh7njjjsIBoMkk0kcDgd33nkn3d3dzM3N0dHRQblcxuPxkMvlxL4nl8vX9cO1+svj8fD000+zsLDAF77wBbq7u8XfpHulStRrv3VtrYG1KVWldbb2nTLZlarfUgYhyUOi1Wopl8sEg0FWV1fJZrPs3r0btVpNJpPh9OnTvPrqq/T09IiaLP/xP/7HdXUfgHVV3guFAqVSCY1GI8ZZGhNpb1i7pqRvkr5z7bhIZ460JguFwro6LFVU8W5GVQmo4pZEuVIGFBx58QjK+WHa2to4fPgwAwMDZDIZ7HY72WyWbdu2USqVCIVCojjOgQMHyOVy+Hw+SqUSJpOJ1dVV+vr62L9/P5lMhkQiwZYtW6ivr2dhYUEUUMrlchw7dozW1laR5lKlUnHgwAHgCnVoYWGBeDyO2WxmeXmZ973vfVel6isUCoyOjpJKpbBYLGzbto1cLsfo6Kg4hBsbG28oHWVnZycPPfQQv/u7v8vv/M7v3FQ/zszMEAgEqFQqNDY2Mjc3xx133EEymRTUgvvuuw+4IhT6fD4WFhYAOHjwoBAYU6kUc3Nzou8kxaJUKgkLpNVqpampCbPZvK4NKysrBINB8vk8uVyOe+65Z50XRBJWXS4XiUQCrVZLa2srNpuNEydOiKJwxWKRRCLBe97znqsO4GQyycsvv0xHRwe1tbXCo/Jbv/VbzMzMCM9KfX09s7Oz3HXXXZjNZmGRl4qcVSoVPB4PS0tL2Gw29Ho9zc3NTE5O4vP5cDgc9PT0cOTIEbZs2UJraytGoxGfz8f09DQ2m42WlhZqa2uvUlTS6TSrq6usrKyQSqWEAC4JlP39/VQqFbZs2UJdXR0KhYJKpcLly5cpl8vYbDasVivxeJyzZ8/ysY99jEgkwvLyMul0moceeohXX30Vm82GRqOhVCqRzWY5cOCAEG5ra2sF/cjv97O0tCR+b2ho4MUXX2Tnzp0i1aI0d//1X/+VqakpUeju3nvvXTfG2WyW2dlZotEo5XKZiYkJgsEgDodDeIZ6e3vJZDJ4PB70ej179uyhUqkQj8dZXV0lEAjgdDrp6OhAoVCQy+UIhUKMj4/jdDrx+Xx0dnbS1NTE6uoqMzMzOBwO2tvbMZvNV/V3PB4nEAiIeS4pgvl8nmg0yvLyMrlcjh07dqBSqZiZmeGf/umfRFXq3t5eDAYDfr+fxcVFnE4nzc3Nopq4pBSp1WqampowmUz4/X7RrtbWVubm5nj22WdZWFigq6uLO++8k3Q6jdfrFYX57rjjjuumndTr9ezcufOq3+VyOXa7nXQ6LQThbDbLxMQEoVCIgwcPYjQaRYVmqV0dHR1CwZFw1113MT09jdls5gMf+MC698RiMWZmZpibm2Pnzp10dnaiVCoJBoMMDQ3R1NSE1WrF4/FQLpfp6uqioaGB5eVlZmZmqKmpoaenB6PRyODgICaTidraWvL5PFNTU9xzzz1EIhFOnjzJ2NgY6XSaUCjErl27aGhooKenB5lMxoc+9CG6u7v5H//jf4h9qra2lpMnT6JWqzlw4IB47uzsLEtLSxw8eJCVlRXS6TR1dXV0dnYSCoUYHh4ml8thsVhwOp1s2bJl3dpPJpMcPnwYhULBpUuXyOVy1NbWYjQacblc7N+/XyghVVTxbkaVDlTFLQm57MrU3bFzB729vRw+fFhU4BwfH+dHP/oRCoWCpaUlfvzjH+PxeKipqaGvr49XXnkFmUxGNBplfn4et9tNc3MzTz31FH19feh0OqxWK1/+8peBK0L2pUuXeOWVVwT//u/+7u+EpXRgYIBLly5RKBT4h3/4ByKRCHq9nh/84AccPHjwqlzU5XKZv/7rv8ZisbBv3z7K5TL/43/8D4xGI729vezcuZOenh7q6+tvqC80Gg1ms5m5uTlhpb9RtLW1MTs7yze/+U3kcjkWi4X//t//O0NDQ+j1ekZGRrh48SLFYpF/+Zd/4dSpU+zbt49du3bx5S9/GY/Hw+DgIM899xyRSIQDBw6wurpKKpUik8kwOzvLww8/zF133cXY2BhDQ0NEo1Hx/kQiwdjYGH6/n507d7K0tCSEMQmlUomvfe1rZDIZenp6UKvVfPOb3yQej2OxWHj88cc5e/YsTqeTwcFBhoaGROVVCUajkaWlJaampohGo5hMJp588kkSiQRtbW0MDw/zve99T4zvz3/+c6ampkSl3meeeUaM79GjR2loaMDhcPCf/tN/wufzodPpiMfjHDlyBL1ej8/nY2JigunpaaampvjmN7/JoUOHGBwcZHh4+CrayeLiIqdOneL48ePceeedRKNRoQTMzc3xpS99iX379rF3716OHTvGL37xC5LJJP/0T/9EMpmko6OD5eVlnn76aZxOJ7/85S+JRCI4nU4KhQI//vGPAbBarTz66KNcuHABu93OhQsX+O53v0tTUxMTExP86le/Ip/P4/f7+fa3v41er0er1fLKK6+QyWRYWFjg6aefJpVKYTab+cd//EcADhw4wK5du9i9ezd33HHHVfNMp9PR0dHB97//feLxOAaDAbfbzT/+4z/S3d3N0NAQjzzyCG63m7q6Oh5++GFhjT116hTnzp1j586d/M//+T/x+Xxks1lee+01vvvd73L48GG++c1vUldXh8lkYmRkhO9///vcf//9nD59mqmpqauoabOzs7zyyiv09fVx8ODBdTQll8vFT37yE7Zt28bly5c5efIkKysr1NfXs3v3bg4cOMDu3bux2WzMz8/z05/+lHvuuYeHH36Yy5cvMzU1xfnz59Fqtezfv5+VlRUWFha4fPkyP/jBD7j//vs5deoUMzMzmEwm7rrrLrq7uzl06BAymYypqSkWFhbYu3evUMKuBY1Gg8VioaamZtO/y2Qy4ZlbWVlhYmKC9vZ2hoaGGBoaYnZ2lqGhIdGukydP4nK5SCaT13znRszPz/P888+LffHEiRP4/X6i0ShHjx5lenqabDbLiRMnOHr0KNlslvPnz/PlL3+ZsbExnnnmGf7bf/tvJJNJMpkM3/nOd+jv78fr9fLcc88xNDQkPG2Sd1Lytkool8skk0kmJiYYHBwUHrjR0VGWl5eJRCL8P//P/8MLL7wAXKEWPfbYY3zmM5/hqaeeEvRJgL/8y79kbm6OlZUVjh8/zmOPPUalUuEnP/kJP/7xjzl16hSBQIAvfvGLgk767LPP8ulPf5qHH36Y+fl5lpeXb6oPq6jiN4WqmlrFLQnJSqVQKJD9f2Xv4YqwJ1l6t23bhkwm48Mf/jDRaBSXy0WlUmF2dpY777wTnU6HVqsVLmqVSkVHRwf19fV4PB6xiet0OlQqlaheWlNTQ319PWazGbVajU6nY3V1la1btwKsc2fX1NSsowIVCgU8Hg+rq6soFAr0ej1yuVxYOiX389rqqa8HyR1vMpmuGQNQKpWEJ0SyakvfZjQasVgsNDU1CTe3TqfDZDIJ6+Xy8jI+n4+GhgZB9QkEAgQCAfr6+pifn+dDH/oQcrkcp9OJTqfD7/fj9XpRKpVMTU2hUqkol8uEQiFhIdPr9Xi9Xvr7+3nttde45557rvrucrnMkSNH+PCHP4zFYiEej1NbW8uZM2doamqirq4Om82G0WjEarWyurpKT0/PVfNlbf+oVCoRnCr1geSpqFQqBINBQX0xm82USiVisRhut5tt27bR3NxMpVJBr9cjk8kwGAwYDAaKxSIymQyz2YxCoWB5eZlEIoFCoWBychKtVkuhUCAcDmO1WkX7Lly4QCQSYdeuXSgUChoaGlhdXSUWi1EoFAgGg4KWlU6nyeVyLC0t8eyzz/Lbv/3b2Gw29u/fz44dO1Cr1YKqIP231N81NTU4nU5htbRYLGg0GjQajbgmHo9z8uRJQR9Rq9WYTCZ8Pp+YE2vndTabFTQd6Z+NkMvl6HQ6QaswGAzY7Xbq6uowGAxYLBYqlQoGg0EIcBKlaseOHfh8PgYHB5HJZKyurgqqkzSWxWIRo9HIysoKIyMjyGQyJiYmMJlMpFIpYrHYOg/UyZMnkcvl7Nq1C6VSSUNDAz6fD4CWlhbe9773MTAwQLlcZmVlBafTSWtrq6CuSOvT6XRy33330dfXJ2IG7HY7BoOBr3/962zfvl1YshcXFwHWtUuiU0nP1Wg0hEIhjh07xsWLFzl06NDrFiV7PUheMYvFIihHVquVaDRKKBQiGAyK/jKbzaK/TKYbS2LvcDjYtm0bp0+fJp1OMzw8jN1uZ+vWrfz+7/8+L7/8Mg0NDXR0dAga1be//W0++9nP0tXVxezsLKOjo/T397Nz506eeeYZVCqV8JqVSiWcTifbtm2jUqmQSCREcLk013w+H7/4xS9wOBz8h//wH9i3bx82mw2ZTMb58+dZXl5maGiIbdu2odVq2bJlCy0tLXR0dPDAAw/Q29sr+rmpqYnZ2Vn0ej11dXUcPHgQmUzGsWPHUKvVNDc3Mz8/LxJL7Nixg4GBAQwGA1/4whcwGAyYTKY3XMSuiireSVSVgCpuaUj822AwiNlsFsKG2WwWWWfGxsYwGo3YbDbC4TDBYJB4PE65XBaHuVQh2GQyCQ6/ZIGThPq1lT2NRiMqlUpwWqWy9k6nk3Q6jU6nE96JtZB4vpKCIXG44/H4VcV3blQJiMfjLC4ucvfdd1/T/bw2a8haSEKIpBBJ9AWJty7xtyWeucTxld5bLBZJpVIkk0lBWVCr1YJrLAlnFouFXbt2ifgHyWORzWbp6OgQHO+hoSEOHz58VfaVcDgslCOJly9x/CVrtSRISbEDa+cIXLGarlWupDZIbZL6QGrf2vgDCel0mlKphFarJZ/Pi3mxMWOKZLGEK0qMpGTs3bsXhUJx1TikUimy2azoW4lTLH2rJDBKQncmkxGUFkm4NhgMYu5KGVLWxjEAm/aXpIhKbS8Wi+TzeSGc19XVUVdXJ5Rho9Eo4mikuBfpXblcjnA4jMlkWpftRqpaLAlaCoUCjUaDwWAQ8QbK/0+Zl9ailFFoeXmZWCxGR0cHRqNRKEFarZaamhrm5ua4//77qampEevIZDJhtVpFVdiNAlkqlRLzQepvuLI+Q6EQly9fZv/+/dTW1hIOh0ViAOk7A4EAOp2OYDDI4uIiBw8exGQyUSwWSSaTyOVyHnjgAZRKpcgstrZd+/fvR61WUywWicfjAIRCIdRqNfX19ULwvHTpEnfeeee68XyjUKvVGI1GseYlTv5m7boRAXZoaAiHw4Hf78fj8XDgwAGsViulUknE23R3d/OLX/yCsbEx2tvb6ezsRKVSkUgkBO3H7/dTqVTI5/NiD5fmgLRfSoqoyWSiVCphsVgYHR0VsQl6vZ6Wlhba29vp6enBbrfj9/sZGhqira2NnTt3Mj8/L/Y1aa10d3fT2tpKXV2deJfFYqGjowODwUAul2NsbIx9+/aRzWZpbW1l9+7dyGQyMpkMGo0Gk8mEw+GgqalJ7GXVWIAqbhVU6UBV3NJQKBQkk0mWl5fFAZxMJgWftlKpcPLkSfx+Pw6HA6PRSCaTETEC8XicWCxGNpsll8uRTCZJJBLCNZ1KpUgkEqTTaTKZDOl0mmg0Si6XI5vNkkqlxDPkcrmwRnq9Xjo6Oq7KKCRdYzQaSSaThMNh0uk0er0ejUZDKpUiGo2u44RLkNonXRMOh/H7/SwsLLC4uMgnPvEJZDIZsViMRCJBNpslGAzi8/k4e/YsPp/vKqui9F35fF48N5fLkcvlSKfT4tu0Wq1QqsLhsKA86fV6nE4nNptNcM+l51QqFZqamoQ1vbGxkfr6evR6PZFIRHB7bTYbBw4c4NChQ8zNzYnAOwkymYyOjg5isRihUIhEIkEmk6GhoUGMzcb2bnwGgMViEUJXPB4nlUoRDoeJxWLr+iASiQihXBrvdDqNQqHAarUil8sJhUIkk0nS6bQIalWr1eTzeRKJBNFolGg0ikKhoL6+XggxjY2NOJ1OjEbjurY5nU7BL5cssfF4nFKphE6nE30WDocBhEW1p6cHj8dDNBolFosJmpHNZhPzKxqNinUhfYv0bfF4XMz1tfO5tbVVjLndbhexHNJzpHmTyWSIRCIixiASieD1ejeldEnjlslkiMfjJBIJ8vk82WxWrDmpbdlslkgkQigUYmJigvn5eerr6zEYDITDYTKZjFAKL168SFdXl/AkOJ1O0d/Nzc3C27AWjY2NqFQqQV2T+jubzeJ2uzl+/DhOpxOz2SzmjESBikQiwpvndrsZGBigoaFBrGmv10s8HufDH/4wd999t4g9WjsPpHaZzWY0Gg3pdJrl5WUCgQAmk4n9+/fzwAMPMD8/T6FQIBAIsLKycs3sRZVKRXyDNEZrs+hI/ZvL5UTcTjQaRafTUVdXJ9ao1K6NKVwjkQjRaJRIJML09DTT09McPXqUpaUl/H4/k5OTbNmyhY6ODvL5vNhTpT1C8oK1tLSgVCrp7u5mamqKiYkJ3G43qVSK+vp64QkNhULMz8/j8XhYWVkR60AulxMOh3G5XIyNjYn9sFwus3XrVh544AFBf5LiRTQajVAMMpkMi4uLBAIBQqEQpVJJ7BnSPI1EIkLxLRQKDA4OUqlU6O7uFnOivr6ePXv2oFAoxHir1WpByaxmJqriVkHVE1DFLQ2jwcj4/yd079ixg/n5ecbHx0Xgb0tLC1qtlmQyycrKCslkEr/fTzgcZnFxEZ/PRyKRoKenh2g0yujoqOBEh8Nh5ubmyGazLC8vI5fLxaHv8XjweDyEw2GmpqYwm81kMhmWl5eFe12iiuzbt09Yk5VKJbW1tTz44IO43W4RfPje974XpVLJ/Py8sDRv3boVi8UivjUQCDAzM4PX6xXBaJlMhmQyiUaj4bOf/SyZTIZLly6JgN/XXnuNYDDIz372M/63/+1/47bbblvXf263m4WFBYLBILOzswwMDLC8vLyOxqNWq/n4xz/O/v37iUQigvrw3ve+l4aGBiwWC42NjZw4cYKDBw+Kfr377rt58MEHOX/+POPj4+Tzeerq6tBoNAwNDYk+XFpaAq7wyt///veLw16CQqHgP//n/8zExAR+v59yuYxer+fuu+/mhz/8IQsLC6jVapaWlnC5XBiNRt7znvdQU1Ozjh7V29vLmTNnmJiYIBwOUyqV6Ovro7W1VQgGs7OzDA4OimBlvV7PpUuXWFlZIZ/P8573vIdkMsn58+ex2+34fD6KxSJmsxmz2Uw6nWZiYoLV1VXS6TQ1NTXs2rWLgYEBxsbGyOVyNDQ00NzcvG4cDh06xKVLl+jv76ejo4Px8XEmJydpamqiu7tbUE7K5bIIGHc6nfzZn/0ZR44cYe/eveh0OtRqtVCqXC4XCwsLTE1Nkc1mmZ6eZnBwELfbjcFgEP2l1+vZvn27oH2Nj4/z8Y9/nIsXL7KwsCAUutbWVmZnZ/H7/cIbIAV/3nvvvSJQNxAIXBWoKvVLMBgUa2R8fByv18vy8jIul0t4MJqamggGgwwODrJjxw5hdV1YWECv1zM6OkprayvJZJKZmRkxbx966CF27tzJjh07GB0dFUGk7e3tV8XXvO997+Ps2bPMzs5SX1/P+Pg4U1NT7N27Vyh0brebZDIpvIwymYydO3dy4sQJbr/99nWC8szMDBqNhoWFBaE8BYNBdu3axZ133klnZyflcnlduzo6OgQ9SzIcSLQxv9/P4cOHed/73ofRaOTll1/G6/Wya9cu7rnnnqv2wXK5zNjYmBCqk8kkg4ODPPjgg6J9U1NTJJNJPB4PLpcLrVbLhz/8YRwOBxMTE4yOjop2OZ3Odc+/ePEiIyMjjI6O8rWvfQ24Egtw8OBBkTntu9/9LuFwWAjEHR0dbN26lXvuuYdf/epXgmpYKpX4vd/7Pf7Lf/kvPP/88xiNRnp6ekQmM7PZzPnz50kkEiwsLOD3+/ngBz9Ic3Mz4+PjDAwMMD09zcc+9jHS6TQLCwsMDAyIPUGCFMPx3HPPceLECRYXF4UC1NzczMWLF1lcXMTtdnPvvfdy7733Ui6XeeWVV5ibm8NisWA0Gtm/fz8ymYzf//3f54knnuAHP/gBtbW1FAoF7rvvPp544gmOHz+Ox+Ph4Ycf5m//9m+pra2tBgVXcUtAVqmqrFXcghhMwP4BuLivzF7DlVSU19t0JYqIlG5uM56tlAbyWv9/PZRKJZ577jlqa2vp7u7GbrcTCoX4r//1v/K1r31tneV3bYrQtWkWN8PG9txMu9Zet/a/N3vmjUJKhwhcRRmQKEPSu5RK5br0ihIFZeM9MpmMYrFILpcT/bRZG6V0kMB1s6WsxcbnrA0ulFL53WyRprUpK3/v936Pb3zjG6LAlJTpRqItXa8PrvWN6XQajUYjUtZK90uBshtTjEopDSU6jQSJLiWlRzUajTddNyKbza5L17kRa+eVlLJzI4Vq7fe90bkrxb1I8SgXLlwgkUjgdDrZs2cPmUyGr371q9x55528//3vF4XrJKoTbN7fUoYktVpNLpcT80FKBazX60VbpPuz2ey6glTSvNfpdOvWkzRfpdSU0ns3tktqh7QXSFTETCazKS//WuOwGTamJb5ef99If11rT5EoZ9K4r+2b1157DZ/Px/79+4XHZu13A+toelKKVuk5G79X+vvaubxxjNa2WUpVvDFj2LXmorQ/SJSkjWeFlFJ17VrbSOXc+N9rIZ1dA/vhthsLu6iiircNVVW1ilsaEtd47f9vBim3ObDpIXcj/389yOVytm7dyuXLl8nlclitVjKZDHv37t206JfUppt5183GCtzIgXSz3FWJgrHxfumQXct1X8tJl7wiG98pjYWUU3+z9ki/yeVyEcj9Rji30lxZywO/2T6FX9cScLvdhEIhLl68KGg/crl8HfXkRvpg4zcaDAYhSK+9f63StbHfpUDgtc9dm19+Iz//RvF6fbRxLK8VxPpm5i78WvGRBLOWlhbm5uaYnJwUSlBLSwt1dXXiXqkfN3ue9P9ScP7G/pbL5eL3tc+QrNlr/1+a9xv7X6K2bPx9Y7ukHPMbv3czhfhG++tm/75Zuza7/3p7iiQUS980NzfHV7/6VQC++MUvCu/X2vs2U4il/r9euzfed625KY3PZm2+ljJ1rT1OwsYYseu1s4oq3u2oKgFV3NK4csDe6HVv30Ytk8loamoSlkTJmlhfX39DVv5bBa+nTFzrML4RJeRGBZk3029vxcEtk10JBK6vr+dv/uZv6O3tXZeH/mb74FrX3YwSt9nfryX83Ayul5nmWm15q7HxG2UyGXa7XWRqMZlMlMtlkSVKuubN9vfrKT2bte1Grr9RY8M7uT+82f1xs3stFgsPPvigyKa2MVXyte673u+v97c3c+2NXn8r7ttVVHEtVJWAKqp4CyCTyUT2is1cw1X824JCoaCmpuaqwklVvDPQ6XQiqHUzKkgVv1nIZFfS5B4+fBiLxXJNOlkVVVTxm0VVCaiiircY1cOuiireGfz/o/C/MXPWuxVqtfqqAOMqqqji3YWqElBFFe8gNgboSbxV6b/fjvdc77mbXfd6QYZvBzZ7542+743kNriRZ7+dHp3N5sFb8aw329Y3myfinRJKX2++vJn59GZwvbF4K/pWekaxWLypgoLXa8fNPuP1vuPt7ue3Yu3cyB73Vq7RKqp4t6KqBFRRxTuIUqlEMBjkySef5Ld/+7ex2+3rMtW8VQdNf38/Z8+eRSaT8ad/+qfX5XZLmW6kwNNEIsG5c+cYGhoik8nwpS996aa44W8E0WiUqakppqenWVhY4Pd+7/fo7Oy8oXtjsRjj4+MsLCzwqU99im9961vk83kOHTpEY2Mjr7zyCnfffTetra0i68hm/OSNkIqJ3ci1N4tIJEJ/fz8/+clP+MY3vrGuevDNoFKp8Mgjj7B9+3ba2toEJ/6NolwuE4vF+MUvfsHp06e55557aGxsJJvNEgqF+J3f+R2sVis+n4+BgQGee+45tm7dyv33309XV9e6lLZvJ7xeL0eOHOH8+fN84xvf2HSMEokEX/nKV9i1axcHDhy4qor024HR0VFOnz7N0tISf/d3f7fub1Kq4R/96Edks1l27dpFTU2NqEfy6U9/GrVazfLyMv39/Tz//PN0d3fzyU9+kubmZvR6PaVSiZWVFb7yla/w53/+5/T29r6hdgYCAV566SV2797Nnj17burecrnM/Pw8X/rSl/jc5z7HwYMHCQaDvPDCC/zRH/3RNWOg3iqs3UP//b//9zgcjpt+RrFY5Gc/+xl33HGH6NtCobAu69hrr73G+Pg4n/vc5972/a+KKn5TqM7sKqp4ByGTyTAYDHR2dgrBJRgMcvz48bf0PU1NTWzbto1QKHTd66TaA3Nzc+I3KV/4rl27+P3f//135ABcWVnh5MmT3HXXXXzqU5+6Kq/79aDRaHA4HLS2tiKTybjjjjsoFApkMhl0Oh2tra2YTCZksisVWEdHR2/ouSMjI1y+fPmNftJ1YTKZ2L59O+l0+k1biFtbW7HZbDdU5fX1IGUnuuOOO0gkEnR0dHDPPfdw3333cd999/GVr3wFt9tNTU0NTU1NlEolOjo6aGtru6og19uJ2tpa7Hb7VWk510Kv19PV1YVGoxGpZd9udHR04HA4yGazV/1NrVZTV1dHS0sLer1e5NC/9957aW9v52tf+xper1fM5VKpxJYtW0RtDbiimI6NjTE0NEQoFBKK6s1Cr9fT1tb2hpQ2uVxOY2MjZrNZZG0ymUx0dXW9I9ZyaY52dna+4Tkvl8tpb2/HYrGgUqnwer2cOHFi3TV2u52urq6qAlDFv2lUPQFV3NLI5XN4PEHgSjYKyZKTyWRExVaHw0GxWBQVZ9vb2wkGgxiNRtRqNcVikXA4LKrbRiIRYrGYKAaUz+epqalBLpcTjUaRyWTU19ezsrJCsVhEr9djtVqZmZnB4XCg1+vJ5XL4/X5R1VahUGA0GtHpdEQiEWEtm5+fZ3h4mKGhIbZt24bdbieRSFAsFtFqtdTV1YkCRGazeZ2gFY1GhZBfU1NDLBbD4XCICrNShVy4kmNeqoIL0NDQQDab5cKFCwSDQWw2G1arFZvNhsvlIpVK0draKjwVUtVTg8Egqua6XC4hXMtkMrRaLR6Ph/r6elGXQaPRYDQa8fl8olLyxhz/6XQan8+Hy+Uik8nQ2dmJTCYT1W3L5TJNTU3IZDKRvz0QCKBSqXA4HCSTSbLZrEjFarfbkcmu1B4oFAqigmc4HObcuXPIZDLxrRaLRRRckyyBNptNFEVLp9PU1tauu1aqxqzT6XA4HKRSKVG1uFKpiIxQa+lV+Xye1dVVZLIrOfd1Op2w/ktVXqVCX0qlklwuJyrqqlQq6urqAJidnUWtVqNSqahUKhiNRtHXUvXT5eVlGhsbSSaTyGRXitbV1NSIqrKJREJkOMpkMrS1ta3LcqNUKnE4HFQqFUwmEw6Hg3K5jMlkIhaLMTU1hV6vx2AwIJfLMZlMGAyG69bpkArpSXnvi8UiGo0Gq9WK3+9HLpdTW1uLRqMRFXqlegkmk0mkhoUrCqNMJhN9IyEUCpHJZERQqtFoFIJqpVKhUCiIqtnSetxYuVmqYCxV7G5qahJVaiORiFh/2WwWm82G2WwWz/b7/Wg0GiqVyqaKiUKhQKvVYjKZUKvVWCwWHA6HmJ/f/va3ee9730tNTY3oW7PZvK62RLlcJh6P43A48Hq9BAIBGhsbr3qXVGfA7XbjcDjI5/Mi7anFYiEajYp+kAopGo1GkVPfaDRSU1MjnicVy1Or1WKPkeof5PN5USAMYGlpSax9qUZFS0uLyJiWz+dZWVlBoVDgdDpRqVRks1nC4bBIdysVo9sMUlVfaY0FAgESiYTYrzOZDA6HA5lMRjgcplAo4HQ6yefzZDIZyuUyVqtVrJtEIsHU1BRHjx6lq6sLu90uvkuhUFAul/H7/eRyOfHN6XSa5uZmMbeSySSxWAylUkk+nxdz661QzKuo4u1EVQmo4pZGIBCgEl7EaDQSCoVoaWkRh70kGBUKBZRKJX6/n7Nnz/KRj3yE1dVVVlZW0Gq16PV6cci1t7cTCoWYnp6mUqnQ0dEhBFuDwUAsFsPr9fLggw+ytLRENBrFbDazb98+BgcH6e7upqWlhVQqRX9/P729vSgUCiKRCPX19XR2dhKPx1lcXGT37t0sLy8zNjaG1+vF7/djMBiYm5sjkUhgt9txOBxcunSJ9vZ21Gr1OiUglUoxNDREuVxmz549RCIRgsEgW7ZsuUoIkSoTZzIZ4vG4yOc/NjZGJBKht7dXfEskEiGdTmOz2UilUoRCIeLxuBAik8kkLS0tTE1NoVQqMRgMQkHp6+ujp6cHrVZLoVAgl8vR3t7O6uoqy8vLtLS00NbWtq5t+XyeVCpFLBYjGAzS2tpKOBwmk8mQz+dF5V6LxUI4HGZ1dZV4PC4KcqXTaQKBALFYbN1zJYVBqhytUChwuVyUy2UOHDiARqPBbDazuLhIOp2mVCqRTqe56667SCQSTE9PE4/Hueuuu9BoNOh0OtxuN4lEgnK5TLFYxGKx4Ha7hcKRTqexWCzrah4UCgWWl5eJxWIix7jJZMJut5PL5YhEImQyGeRyuch3v7CwIKg5gBAaZ2ZmKBaL6HQ6zGazEAYlBbhYLHLx4kW2bduGQqEgHo9jMpnYt28fhUKB2dlZCoUC+XxeVKaWPCjXgyRAdnV1MTU1RV1d3U1Z/qWKxcVikdbWVjF+zc3NRKNRPB4P+/fvx2KxkEwmcbvdKJVKSqUSdrsdu92ORqMR1YZVKhXxeFwU3IvH48zPz1MoFFAoFPj9fvbt27dujkUiERYXF0Vl58bGxquUgGAwSDQapVgs4vP50Ol0WCwWIpGIqEnQ2dnJ4uIiHR0dKJVKlEols7OzpNNp9Ho9qVRK0M5uBCqViubmZlKpFF6vl5aWlk2vKxaL5PN5dDodd911FwsLCzQ0NGyqBEhF586fP8/WrVtRq9WUy2WUSiVdXV1CWbTZbKjVaiYmJkSa41wuh16vFxW+V1ZW8Hg8QknOZrN0dHSIdxUKBaLRKG63m0qlwvLyMqFQCLVaTWNjI7OzsxgMBkF9WlpaIh6PCwOFSqUimUySTCZFnIOUbnkzSIrQ4uIie/bsIRgMMjc3J/brhYUFtm7dKubL1NQUH/nIR0gkEvh8PgqFAjt27MDn89HQ0CD2/0uXLuH1etFqtSiVSoLBoDB+BINBhoeHaWlpwWq1Eg6HKZfLtLe34/f7iUQipFIp4vE4Wq2WhoYGVCpVVQmo4l2Pqp+rilsaFy9epFwus3XrVp599llcLhcDAwO88MIL7NmzB6vVyjPPPMPc3Bzlcpnjx48zPT3Njh07OHbsGI8//jjZbJb29nZ+9KMf4ff70el0JJNJvv/979PS0sLy8jIvvvgily5doqWlhSeffJJQKIROp8Pn89HX14darSYWizE5OUkikRCH4bPPPktPTw/9/f2cP3+eSqVCe3s7Tz/9NIlEgtbWVnbv3k1raysHDx4UlYbn5+fxer3AFXqOTqe7Suiqq6tjamqK/v5+yuUyt99+Ow8//DAjIyMkk8l1177wwgtEo1F0Oh0ul4tXXnkFvV5PZ2cn27ZtY/v27fT29qLX62lvb2fLli20t7djNpv56le/SlNTE9u3b2d1dZUf/vCHlMtl9Ho9zz//POPj4wCEw2H8fj8vvfQSSqWSYrHIL37xCwYHB9m7d6/gcG+ExWLB6XTS0NDAbbfdhtls5vTp08zPz2Oz2ZienubVV18lmUxy5MgRnnvuObq6ujAYDJw6dQqFQkEsFuPYsWPrnitZpgOBALOzs0Jg2rJlCwcOHKCxsRGZTMbx48cJhUKYTCZ++tOfCutqU1MTXV1dHDx4kIaGBoLBIM8++ywrKyu0tbXR19fHysoKL7/8MplMhqamJiqVihh/CbFYjCeeeIKuri46OjrI5/N4vV4qlQp+v598Po/JZMLr9fLEE09QqVT41a9+hVqtplQqMTY2xsmTJ4ErqTHPnj3LmTNnhKASDAaFciKXy/F6vTz77LO0tLSIvkulUrjdbo4ePYrJZCIej3P8+HF6enpuisJRV1eH1+slEols+ve11V43joXBYOBb3/oWBoOBVCrF+fPneeqpp9i+fTtHjhxhYWGBhYUF+vv7GR4eZteuXXg8HgYHB5mcnCSdTvP3f//3WK1WOjs70ev1rK6uUqlUOHPmDKOjo+j1ekwmE48++ui69wcCAS5fvoxMJqO7u1tY9jeir6+P4eFh6uvrmZ2d5cSJE0SjUSH8fve736W5uRm/38/o6ChTU1MEg0G+/vWv09XVJSzQqVTqhvtUgsPhEALlZkgmk3g8Hjo7O3nve9+Ly+XC5XJt6nVQKpVotVrcbjf9/f04nU5KpRIvv/wy586do729nVOnTjEzMyMUmZ/+9Kd0dHSg0+m4fPkyjzzyCJVKhX/+538mn8/T0dGBRqPhxz/+8bp3GY1GamtrefLJJykWi5hMJkZHR3nuuedoamrC7XYzNDREIBBgfHycb33rW+zduxetVkt/fz/PPPMMZ86coaenh7a2Nnw+31UK/VqoVCqxh0p7WjQa5Yc//CGtra2srKwwMjJCMBjEbDbzr//6r+h0OhQKhYi/MBqNBINB5ufnUavVtLS00NTUxN13301TUxN1dXWiEGCpVKKrq4vHH3+c0dFRNBoNBoOBH//4x+RyOR5//HEGBwex2+2cOnWKmpoaLBZLVQGo4pZAVQmo4pbG9PQ0d999NyqVir/+678WFqmmpiYAOjs76evrw+12C6rHvn37BCXFarWya9cunE6nEMj0er2w2ksWW6fTSU1NDSqVitraWkENkARzmUxGbW2tsGRpNBrq6urYs2cParVaVB9NpVJotVp0Op2wCm/8533vex9tbW28+uqrFAoF3vOe99DY2HjVoaJUKkWu9O7ubhQKBXfeeSeXL18WgrmE3//930epVDI+Pk6lUhFWTZns11V011JC5HI52WyWhYUFVldX0Wg0whWeTCaZmpqitraW5uZment72bt3L/v27cNut7Nz505sNpuoxrpr1y5h1b2WhVSiFEn8249//OO0trYyMDCAXC5ncnISr9eLz+cjlUrhcDjYvn07n/rUp+js7BT0hI1QqVSC1iBV+ZRoEBI+9rGPYTKZ6O/vR6vVMj8/T6lUWnetTCbjpZdeIplMEgwGcblc1NfXs7S0hFKp5Nvf/jZf/OIXmZ+fp6GhYR2PWKfTsW/fPj7ykY/w5S9/mUgkws6dO5HJZNhsNrZs2UJTUxNKpZJAIIBMJuOP//iPWV5eZnFxkWw2i8vlAq5w4ZuamtiyZQt79uzhtttuw263C1qMSqXCbrezZ88ekUtfqVQSj8fJZrOCjiVlmrnZQOJIJILNZhO0no2IxWLMzs5e9btSqaSuro6uri5BxXI6nTgcDpRKJTU1NcJyffToUfbv349MJuP2229nYWGB5557Tlh87XY7BoNB0GkqlQqPPvqooOAtLCxQX19PNBoVArL0vr/+67/mT/7kT1CpVDQ0NFzVzgcffJB9+/Zx7tw5QXlLpVLodDrq6+vp6urCaDQKis3U1BSnT59my5YtaDQaamtrqampeUMCYCQSoaam5pp9GwwG6evrY2ZmBq/Xy9TUFAsLC9cUmKVaFr29vRgMBrZs2cLevXv50Y9+JPYkpVIp5syWLVtQq9Xs2bMHpVLJiy++SKVS4YUXXhBzcWlp6SpjhEKhEHNNoto1NzeLWJy6ujrC4bBQ8lZWVhgeHqZQKJBKpUR/PfTQQ3z1q1+lvb19U++GBJlMJiiPcrkco9FIQ0MDnZ2dYmzS6TTZbJb6+npuu+02XC4Xs7OztLa28tBDDyGXy7HZbOuq/0p7obTudTodRqNRUOocDgdtbW20t7djs9nwer2Uy2XK5bLwlGm1WkGbfDsSClRRxVuNKh2oilsaKqWKfD6PRqMhnU6LjTeRSIhr8vm8cD1LnGyJ+7yWx7xWQJXL5eJZ17pWCooDBCVhrSC69l0SNks7J5fLKZfLgjOt0+mEIPD888/z4IMPYjAYbqjSaDAYpKGhYV07KpUKX/3qV7nnnnvYs2cPLpeLYDDI6uoqhUIBmUxGNptlfHyc7du3i/skDrNk2Zaui8ViGAwGCoUCer1efKPUHrVaLYRgSSGS2vF6qRsl4fR73/seDoeD+++/n/HxcYLBIOl0mkwmI9oMV6yjmwn/14J04BcKBRHT8Mtf/pKtW7dy++2343K5KJVKhMNhcrkcCoWCYrHI1NSUEF7b2to4cOAA+/btI5PJoFAoOHToEIlEgr6+Ps6cOSMUU+mdBoOBn/3sZ7hcLtxuN9FolA984APrMkJJVvRyucx//a//lT/8wz8UnpCZmRlBTdBqtesE+c2wWXEmu90uKEUNDQ18/vOfv6k0rJVKhYsXL/L5z3+e7u5uVldXr7ouFApx+fJluru7X7dda9eY9A6JQiHRz8LhMJVKRQhVkUhEzMW1315bW0tjYyM9PT3U1tZy2223rXu2FF/wk5/8hFAoxNNPP00ul+PDH/7wuvf/4he/IJVK8e///b9ndHSUcDgsuOob13OlUhHCot/vF0q19LcbRalUEhSkrq4u6urq1u1fEqQYmPvvvx+AhYUFcrkc586d44Mf/OC6a9cq9NJ/S1TAa2Wikq7L5XKUSiUxf81mMz09PWzdupVCobBuj7gWFArFuniNcrks9jWj0SgyEnV1dREOh0mn0zzyyCOMjIzw4osvcujQIfbt27dpIbjN5qw0NhKk+Wo0Gvnd3/1dnnzySXbt2kVLS8s175f2rImJCVpbW6+6RqVSrTMeSOfF3r17icfjTE5Ocu+999LT01MtjlbFLYOqElDFLY32jnZeeeUVduzYQSQSobGxkXQ6zdTUFHNzc6ysrHDXXXfR1NREIBBgdXWVsbExnE4nPp8PrVbL3NwcoVCIYDAogsympqbw+Xz4/X5mZmaIxWJUKhWcTicej4eJiQnBFU+lUiwuLuL3+8lms7S2tmI0GpmdnSUcDrN3714R/DgxMUFTUxN+v1/wfyVa0cLCAvv27UOpVNLU1MRtt93G4uKi8BpcC/F4nKmpKXQ6HZlMht7eXjQajbCeR6NRVldXCYfDJBIJwfOPRqOCguByudi6dSvZbFZQSwqFAm1tbezfv5/p6Wm0Wq14fm1tLefOncPtdtPY2Ch42tI3NzQ0iG8cGxsTwXXLy8ssLy/T3Nws2p9IJAgGg3i9Xvr6+rjnnnuIRCLI5XJisRiZTIZQKEQ6naalpYVYLMbFixepqamhVCqhUChYWlpa977FxUVaW1sxGAzMzMwQiUREytB4PM7Q0JAQQiORCKFQiLq6OlQqFePj47S1tVFfX088HmdwcBC5XM6ePXsIBAJEo1GWl5cpFovY7XYuX74svEYGg0EEJktIp9P09/djNpvRaDQi+Hd+fp5AIMDS0hLpdJrZ2VkCgQCBQEDQQrRaLclkklAoJOhmc3Nz1NfXs7q6islkYm5uTgQaKxQK5ubmiEQibNu2Db/fj8fjweVycdtttzE2Nsb8/LzIQGM2m7FYLKK9Epf84sWLhEIhpqam0Gq15HI5QqEQ999/P93d3RQKBebn5/F4PExOTop4GUnB2YhMJsP4+LhYUwsLC0xPTwsBemVlBZfLRUNDA3fccQeTk5M0NjYyOjpKY2OjWFP33HMPLpcLq9WKx+PB7/czPDzMhz70IbxeLwsLCxQKBZLJJFu2bGFhYUFYpyWPntlspqGh4arMOFLMSzQaJRaLkU6nxTrJZDLr9oTZ2VkikQjNzc3s2LGD1157jcXFReRyOfPz8/h8PhYXF9cJnVJ8y8TEBH6/n/HxcVKpFKlUCp/Px2c+8xmam5uJx+MsLCzg9/sZGxujs7OT5eVlZmdnSaVSGAwGoRhNT08TDAbp6ekRAfUbsbi4SH19PaFQCL/fz0c/+lHcbrfwrEn8dq/XK34rl8t85CMfQSaT8Vu/9VssLS2JgOtUKiXm6czMDBaLhWw2K9bf3Nwcc3NzJJNJfD4f09PTIpairq6O3t5exsfHRf8vLy/j8Xi44447MBgMQgk6f/48breb3/md31n3Pfl8Hrfbjd/vx+fzsbq6isvlWjc2yWRSZI7asmULHo+H++67D6vVKoKVpb1KWrstLS309fWJQPBAIIDP52NychKTySTm6dzcHDMzM6yurgrjxNLSEhMTE8JjunPnThGoXEUV72ZUlYAqbmls7e0lv+ISWW+cTqfIHJLNZslmsxw6dAir1UooFGLPnj0iqHPLli2oVCqKxSKlUonbbrtNbNxms5mtW7eKwEQpA5BcLmfbtm3CHd3U1CQCFJubm4nFYmg0GjQaDU1NTeh0OhFAJrmNpXdJwaYSzUCtVgsLksViobe3l+npaWGFvBakOgMymYxt27bR3d1NOp3G4/HQ29tLuVxm3759OBwOkS2pu7tb8P9VKhWrq6uYzWbgCu9bEiqNRiMPPvgg5XKZbDaLw+HAbreLTEetra1YLBZhFWtubhYUFKvVytatW0V8wLZt22hoaBBeGQmVSgWz2czOnTvFc3bs2CH6ora2li1btmCxWNi5c6fIziNlhymXy9TW1rJ9+3ZKpRJKpZLOzk5B32psbBTZVrZt20YwGCSfz9PQ0IBOp2Pbtm3YbDZUKpWwdmq1WrZv304oFBLXtrW10dXVRaVSIZvNUqlUBPcarqQq7enpERllJEhUgVwuh8lkwmKxCO/PwYMHxbV2u52tW7dSqVS48847hZfF6XSSzWbRaDTo9XoaGxtF1qZKpUJDQ4OghqlUKpqamsQ8ljJeyWQykdpTr9ejUCgIh8NcunSJw4cPX2XBlsvlHDx4ELPZTC6XE2vpwQcfFEKaTqdj9+7dQhlLp9MolcpNaTaSR0gKWDabzdTX16PRaCiXy3R3d2O1WkW6076+PpGBqbW1lc7OTrRaLR/4wAdEhhmbzSbG6+DBg5w5cwb4tSVboVBQX19PqVTCaDSKMVAqlezZs0dQBteiu7tb0IjWzjtpjkp7Qm1tLVqtlsbGRpqbm9mzZ4+Y12vbtRFS9igp41EulxNZpd7//veLIGStVitimqT5Jq0FCW1tbcTjcZEB61ooFoviuxsbG7n77rsJhUJs375dZH6CKx6JXC5HoVCgtbWV5uZmZDIZDz30EG63m2w2KzxQ5XKZHTt2YLFYRF/v379frIn6+nqKxaIwnMCVPdVqtXLnnXeSyWSER0utVqPRaMjlctTU1FBbW4tMJhNC/mZ9uHYPLZVKWK1WsdfZ7XaxziTFZceOHYKeJM3xxsZG9Ho9Go0Gi8XCwYMHyWQyNDY2in2yp6dHnBe7du0S606j0bB3716RGalSqWC1WimXy4yMjIg1WaUEVfFuh6zyZpNUV1HFbwCDCdg/AP23VdhnvGLZkXj38OvMMBKP/e1yzUoUDilFpeRGv5mCOdIzpKWYSqWIRqMkEgnq6upEsOFGFItFvv71r1MsFvmzP/szwZW91rdKwoaUuk9ysxeLRcrl8nUPLCkLi1wuf9uLAUkoFAoiVera9kqHcqVSeUNu91KpJFJUAiLFo/S8te/aeC2wLrOOdH8ul6NcLq9L5yhBoiZIfahSqa6bTlOCRDWS0oFupEXcDJLJJN/4xjf4zGc+Q01NjbDkP/roo3zlK1+5qs2/aUhpFyWFZS2knP/SPJBSpspkMjEOUvartc+T/kmlUoIPvxnWZuG50X6XslRJQmkulxN88t8ELUTqv29/+9v09vayb9++dfUG1iIajTIyMsJzzz3HX/zFX4h4nrWKrLRGpDn+ZtuWz+cFzVJaZ5IiI1Hk4vE4Ho+Hbdu2vak+lPbX1zsHpHV8o0UbK5UKgUCA48eP43A4OHz4MMVikYcffpgHHniA7u7udWlWJUhn18B+uG3z8I8qqnjHUPUEVHFL4wqXU3ZVsJrEw34n3q9QKN7Uu6RnAMzNzXHy5ElKpRK7d+8W+eE3g9vtxufzEY/HOXfuHO9973uv+561AsDaQ+5GBNLfhEVrrTK1tr0bueQ3CykQWsJGPvHad228Fq7uC0n5uhYkQfBmhae1z3yzgqRk/R4cHBTW20QiwT333POu5C7LZLJrBsheb+yvFZC7VhiXPF7Xwtr4nxvtG5ns13uQUqn8jWeGKRQKhMNhxsfHCYfD9Pb2XlN5D4fDIhtXPB4XBbTWYuMaeTNYGyckYWPMVTabJZPJUCqV3pL33YiS+0bWqMViQa1W4/f76evrA67Mz4aGhqvSz1ZRxbsRVU9AFbck/q1aU9ZaxDYejJtdK1n3JWtoFVVsBsmSuxnWFjar4t8G1nooJaH7WpbwUqkkvFtS/NFvej6s9dy827xUa7HWiyh5Tkql0lXJEtbi3+rZVcWtiaonoIoq3kVY64Z/vYNYSsFZRRWvh7WWXMnu85sW9Kp4+3AzHkopxee7Cb8pGtXNQlpXa22pawsFVlHFux1VJaCKKt5lqB4gVbydqM6vKqp4a1FdU1XcqqgqAVXc8qhUKhSLRVZWVkT2k0qlQjAYpL6+/h3doAOBAHq9/h2JR7gWpKq1UpGjtSkg3y2QXP1rg30LhQKJREIU8flNtcnr9YpCQe/W7B5ShhS/3y+q5N5IbIcEiXaWTCapra0lGAxSqVTW1aiQkEqlSKfT2O12kskk8Xgco9GIwWAgk8kArKtj8U7NNWndr66uvqE+eCvbkc1m8fl8OJ3Oq7xz0WhUZIqR9qn29nbgSrB+Pp8XAaRSrYGb7cNKpYLP5xNWaSm42Ww2k8lkMBgMlMtlUftCysBzo5ASF0i0l3eLpX5jUgUp3/+7oW1VVHEroFoxuIpbHpVKhVAoxN/+7d/y2muvkUgkiEQifOc733lLAstuBo8++uhV1XrfaVQqFS5cuMC3v/1tjh8//htty/WQyWTE4Z3L5fB4PPzqV7+6brrDtxu5XI6vfe1rPP/886ysrPzG2nEjiMVifO1rX+PIkSNEIpGbujeTybCwsMCTTz5JuVzm0Ucf5ZFHHuH8+fNXXTs+Ps6jjz4KwMDAAP/wD//A6dOnSSQS9Pf309/fTz6fF/+8kwgGg3zta1/j6NGjmxbYeidQKpWYnZ3lL/7iLxgbG7vq7y+//DKXLl0S9Tg+//nPE4/HicfjDA8Pc+TIESFg53K5q1Lo3giKxSLf/va3eeqpp/jVr37Fd77zHb785S/zyiuv8J3vfIfTp09z/PhxfvzjH/P4449fs3L3tZDL5YhGo6Kw128CUh+tbbuU7SkYDBIKhUgmkyKLUTXcsYoqXh9VT0AVtzxkMhlOp5Nt27ah1+spl8sYDAbuu+++d9yifPDgweuWvH8nIJPJ6OrqIp/PEw6Hf6NtuRZKpRKPP/44/+7f/TvMZjMqlYra2lr27t37Gw0EVKlUPPTQQ/h8vjckjL2T0Ov1vP/978fr9d60sqvRaHA4HOzZsweZTMbhw4dxuX5db2MtGhsbOXjwIACHDx/m5ZdfFqkiJYu2UqnkzJkzyOVyDh8+/Ka/7UZhMpl4//vfz8rKyk0Ltm8VFAoFO3bswOFwbBqc39vbi9lsxuFwUFNTg9PpFJWGpWKBEl555RVaWlrYvXv3TbVBJpOxY8cOHnroIRKJBKdPn2Z6eppPfOITfOADH+DSpUsUCgXq6+t57bXXbvobz58/z89//nPcbjd/9Ed/xCc/+cmbfsabRSwWIxQKkcvlRNXiWCzG97//fY4dO0Z7ezupVAq5XM4XvvAFDh48WPUIVFHF66CqBFRxSyOVTjGx5KZQKIhMOalUikgkQiAQEPm7fT4fkUgEhUJBU1MTNpuNxcVFotEoarWatrY2UZGzubkZk8lEf38/bW1tdHR0iEqxUk79HTt2MD8/TyqVQqVSodPp0Gq1rK6uYrfbgSuCrtvtFmn3ampqUCqVXLhwgebmZvL5PMViEaPRSHd397rvkjJ7LC4uEg6H2bVrF0ajkWg0ytDQEM3NzcJqaLVa6ejoEFSWcDjM6uoqyWTyqv6KRCLMzs5SKpVE8SSHw0FTUxOJRIKzZ8+yY8cOCoUCcrmcjo4OQqEQKysrKJVKamtrqa2tFZV5t27dSiaToVAo0NnZKa7dsmULdrudSqVCOBzG4/GgVqupq6sT1ZQfeeQRUQBMq9USDAZJJpNUKhUGBwcpFouiWFWxWGT79u3odDoxnqurq1itVlFkqLW1VXxnoVBgeXmZQCCAwWAQQsPi4iKRSEQoShKNJR6PEw6HRWVeSaAsFoskk0nGxsYwGAxs2bJFpP4rl8u43W7cbjd1dXWicmpnZyc+nw+fz4dcLqempgaTycTZs2fp6OgQc8jpdFJfX8/w8DDFYhGVSoXBYMBoNFJXV8fs7CyJRELMT6mt4XBYVDmWChWtrq6yuLhIJpPh0KFDDA0NUSgU6OjowOl0UigUGB0dRSaT0djYSKFQwO/3izki1YsIh8OMjo6iUqno6uoiHo+LqrIbKSBS1dX6+nrm5+d56aWXBN2kp6cHj8dDJpPB4XBgs9kIBAKEw2H27dsnUjGWy2WRD75SqWC323E4HKRSKU6fPs22bdvIZDLk83lqa2tFBd5QKEQ4HCYcDhOLxa6a54VCgVdeeYX29nby+TxGo5GmpiaUSiX9/f2Uy2WampqwWq3MzMyQTCY5cOAA09PTxGIxGhsb6ejoYHp6el1diJ6eHlE51mg0YrfbsdlsgtomVVnO5/N0dXUhk8nwer1inSoUCtGHXq8Xv99PqVSiVCrxwx/+kNnZWbZu3Uq5XMZoNOL3+2lubkatVpNKpQiHw2zbtk3UIJAgl8vFOkomk+uoWVqtlpaWFpLJpKgOPD4+TrFYpKmpibq6OlExeHl5WSgs0j4GV4wbU1NTGI3Gq1IRx2IxFhcXWVpaoqenh+bmZhQKBZFIhMnJSerq6jCZTKyurlIul2lpacHhcLCysoLb7cZisdDe3o5Op2N4eBiDwYDVaiWfz4sq6vF4nPPnzzM1NUUmkxGVq202G11dXeRyOR588EFaWlr4zne+g9/vx+12Y7Va6e/vR6VSsWvXLvHcpaUlfD4fu3fvxu/3k8lkqK2tpbm5mUgkIsbQZDJht9vFvFtZWcHr9ZJOpzlw4ICoAl8oFLBarej1ehYWFti+fTsmk+ldndmoiiqgSgeq4haHy+UilUpRV1dHOBwWVWQlSkylUmFgYIBoNIrdbkej0eDxeDhx4gTLy8sii8apU6cwmUz09fWJMvfJZJKhoSHi8ThLS0sEg0FqampEifhEIiH4//Pz8+j1ekZGRoRwNTU1xezsLHa7nbm5OcbHx0W12ieffFLweIeHh4nFYuvc14FAQAiH6XSaixcv4na7Bf/4V7/6FSqVisXFRZELfGlpiYGBAVGMajN6hFSd82c/+xkajQa1Wo3L5eKll15CrVYzNjbG2NgYMzMzeL1eIpEIx44dE4fn3Nwco6Oj6PV6Tpw4wezsrOirH/7wh0JInZ6eZn5+nmAwyLFjx7Db7aTTaaanp5mamsJqtQLQ0NBATU2NqOh68uRJUcF5cnKSkydPYrVaOX/+PKurq/j9fubm5rh8+TImk4mLFy+KSqZrceTIERYXF9Hr9YRCIVwuFy+//DKBQEC864knniCXy+Hz+ZiYmGB2dpa6ujqi0aigE7jdbp577jkaGxsJBAIsLCwQCoWAX+eyP3v2LC6XS7QtGo3y6quvIpPJSKfTDA4OCmHB5XJRLpcpl8u88MILrK6uYjQaOXv2LOfOnSOXy7G4uMhLL71EMpkU1WqfeeYZisUiHo+H0dFRVlZWsNvtRCIRKpUKWq2W5eVlLly4AFzJX37q1CmWlpZYXV3l5MmTZLNZjEYjExMTeDwe5HI5p0+fFvMuHo+TTCax2WwsLS0xNDREJpMhEolw6dKlTdefVCFVr9cLJUaqWGwwGDh37pxYTx6PR1RalpDL5Th69Chms5nZ2VnGxsZYXV1FqVQyMzMjxjefz/P8888DsLy8zPDwsFiPUoXfjUin0xw/fpyFhQUSiQRer5enn34atVqNyWTC4/EwNDSE0WjkhRdeEMqG3+9ndHSUTCbD5OQkarWacrksBPbjx4+Lfjx16pTwGEnVfzUaDQqFgp///OdCQfP5fESj0XXtMxqNxONx+vr6RJVws9lMbW2tqNr99NNPi2rgsViM+fn5TeNUZDIZzc3NV8VESBz52tpazGazWMMWi4WRkRExXwOBgFin8/PzuFyudZ4wg8GAXq9Hq9ViNpvXKSBSjvxischTTz3FxMQEsViMeDzOhQsXWFxcJJ1OMzQ0RH9/P5lMhrm5OX75y18yPT3N+fPnxVqMxWIcPXqUmZkZgsEg586dY2FhgWw2KxR1SfHL5/PI5XI0Go1QnhUKBT6fT8S8LC4u4na78fv9PPvsswwPD4v96tVXX+W73/0u58+fx+12Mz09DVyhdC4sLLC8vMzg4CCvvfYalUqFc+fOcfLkSS5fvozP5+Oxxx4jk8mQSqU4d+4c//zP/8yRI0dYWFggGAxu6lWroop3G6pKQBW3NKZdLsxmM/X19ZRKJcrlsigytbCwIARtt9vN0tKSsBoeP36cRCJBbW0tNpuNbDaLw+FgaWmJQCCAXC5Hq9WytLREPp9neXkZl8vFysoKhUJBHMhut1tY10wmEysrKyQSCUKhEH19fRQKBerq6gQHe25uTggQer2efD4vhO21KBQKpFIpUQF1eHiY5eVlkc5vbGwMi8VCOp3G6/WyurpKf38/0WgUq9V6zUJLGo0Gq9XK0NAQVquVuro6fD4fr776KiqVing8LoSVSqXC7OwsMzMz2O12zGYzfr+fc+fOCaEtn89jsViQy+W88sormEwm5HI5Ho8Hl8vF3NycEK5NJhOLi4sMDg5is9kwmUy0tLSI/zabzUxMTIiKr4lEArfbjcPhwOPxEAwGCQaD+Hw+vF4vNpuN2dlZVCqVKAAlKUlnz54lHA7jdDoxGo3kcjmOHTtGIpHA4XBgtVq5ePEifr+f4eFh5ufnBV1CQjabZWFhgTNnzohneL3edcKcxWIR3h6VSoVCoWB2dlZYWqVYh0KhQDweJ5VKYTQaMRqNLCwsMDo6Sk1NDcvLy8K6LJfLefHFFymXy6LKa39/P4FAgEuXLuHxeJDJZNTV1QlhTArSlf5WX1/P3Nwc4XAYn8/HK6+8gs1mw+FwUKlUUCqV6PV6JicnhQBdLpdRKBTY7XZUKhUnT54kkUiI+b8R0lx0u90YjUYsFouw1uv1eurq6lhdXRWKbzqdxuFwrKPolctloQBL1lufz4dKpSKdThMIBFCr1SgUCgYGBgC4dOkSXq8XhUJxzWragLDKVioV9Ho9qVSKZ555BqVSiU6nIxgM4na7qa2tZWxsjHw+L4J3PR4P5XKZiYkJ5ufniUQilEolKpUK0WgUhULB/Pw8o6Oj5HI54Nf54a1WKwaDgfPnzxOJREilUiSTyau49GazmWKxyOzsLHK5nKamJux2O3V1dTidTiwWC+FwmGg0Kjxk1wpWl8lkmM3ma1qe9Xo9Go2GcrlMKpXCbrcTDAaFYj0zM8PY2BgajYZwOIzf779h7n8+nycajRKNRjl//jyjo6OEQiGUSqUwVKRSKeLxOOl0GrlczoULFwiHw5hMJjKZDOPj43i9XkwmkzCWSEHfq6urqNVqLBYLFosFk8kklCRp7NPpNC6Xi+HhYUwmEw6HQ3g6Y7EYPp+Po0ePMjExIVKnrqysCEXXaDQKBWpwcHDdfiMFv7/yyiv09/ezvLzM6uoqzz77rNj/VldXefXVV8nn81it1t9IYoMqqngjqM7UKm5prKx46enpQSaT4XA4RMl3ScgBaG1tZXBwkH/6p3/i7NmztLS0MDg4iFqtprm5GYfDwcc//nFxwMrlchQKhRCktVot4XCYM2fO8C//8i+YzWba2tp47bXX+MlPfsLRo0dpbW0VQpFSqWR1dZVTp07R09ODQqGgvr6ebDbLwMAAFouFpqYmYb3SaDRXURrsdjtbt24lFApRKpXw+XzEYjHkcjlWq5Xm5maRwUapVOL3+3nppZfYvn27EDJra2uv6i+lUinoJnq9HqfTSaVSYW5ujlKphNlsxul0snfvXtra2hgcHKSxsRG5XE5zczOFQoEzZ86gUChQKpV0dHTQ0NCAwWBAo9FQU1NDTU0N+Xye+fl5Ll++TGNjIzKZjLa2NmKxGBcuXBAZPBQKhaBSaLVaIeAYDAYcDgf19fVCAEilUmQyGVGdVSaToVKphIVSQjgcFl4Qu93Ovn372LlzJ8PDw+Ib5XI5er2eqakpTpw4QSqVoru7WwjQCoVCCEPxeBy3241er6dQKIjgV+n9KpUKh8PBjh07uPPOO7lw4QIqlYrV1VVyuZzwLhiNRhobGzEajZjNZrZt28bJkydRqVRCIWttbWXfvn309/ejVqsxGAwoFAq0Wi0TExO8/PLLqFQqMd8kfrlCoUCj0Qh+uXSfRFEZHBykp6cHs9nM4cOH2bt3LxqNZh2H3WKx4HA4UCqV7N27l9OnTxMMBlGr1ZvmkVcoFIIaJVGF5HI5crlc9HNbWxsKhYLV1VUMBgM7duwQ1WIrlQoajYYHHngAl8tFPp8nm82yurpKpVIR90vZrSSK1quvvrqO3uN0Oq9SBCTLen19PT09PWzZsgWz2czg4KCwKJdKJUwmE3q9XhR30ul0QrjU6XQsLCzwyCOPMDAwIPaTu+++m+XlZeExkihVcrkcm82G1WpFrVZjNBqZmppCoVBsGisgeeWkv0l9J0Gr1fKJT3yCy5cvMzk5iV6v533ve99Vz7kZqNVq2tvb0Wg0mM1mSqUSy8vLDA0NodfrxTw3GAxXeS42IpvNUigUsFgsdHR0CBrZ9PQ0gUCApqYmPvWpT7GwsIDP56Ojo4MDBw5gNBo5duwYn/rUp/jgBz/IPffcQ2dnJyMjI2zdulUUPqypqaG5uVnQxLq7u+np6aGrq4s77rgDi8UilJ5QKMTLL79MX18fn/rUp9i9ezc2m42amhoqlQrLy8tCKdZqtXR0dNDS0sK9997L/fffz4MPPsihQ4cAaGtrIxAIEI/Hqa+vF1W1z507RzgcRqlUEggEhMdh69atdHR0UFtbyx/+4R/ywQ9+kM7Ozt9ohrgqqrhRVGMCqrilUSqXhAv+WtkgTCYTX/jCF5DJZJw+fZpHHnlEBFJKgkUymRQBqkqlklKpRDweB65kIPnwhz/MRz/6URKJBH/1V3/FF7/4Rf77f//v5PN5RkdHefjhh/nGN74h3qlSqQSHX4pLqFQqQrGQhA74dZq7tejr6+OZZ57hD/7gDzCbzfT19RGPxwUVRRKk1sJsNhMIBOjs7BSZNF4PUjrBUqkkhBGJ2iFZHn0+n0gvKP0mQa1Wo1Qqkcvl6yyUkrVZp9Ph9/upVCrrBHj4dSpJj8dDqVQSFCEJG4UnydsiKT2jo6P86Z/+6br2wBWaRaFQoFgsIpPJRMrUtX0icdElD0ShUCAcDtPW1iauMRqNWK1WrFYr+/fvB66ky9xIudBqtaLqrlwux263I5fL2bFjB62trZTL5auoWfl8nmAwSG1trfA6bRxTqR2lUknMT7PZTDqdJh6Pi5gL6TrJ8gpXLKNS7IFEmSiVSigUCjKZzA1ZKq1WKyqV6oZpDZIikM/nmZiYYNeuXTz00EOcPXuW55577iouOVyJUfn85z/PY489RrlcJhAICO8YILwra9eIyWQimUySSCQwm83XnecGg0GMlySkSzEJO3fuFJQXaT2m02nS6bRIv/rf/tt/Q6VS8dJLL/HTn/4Uo9HIN77xDf7n//yfLC4usri4SCgUwmKxXPXuSqVCTU3NDfPCpTGRaGVbtmzhAx/4AH/yJ3/C3r17aW9vF+vyjQa8ri0aJ7VRpVKJObtv3z50Ot06ZfdaePTRR9mxYwcrKyu8+OKL/OM//iPDw8MMDg6K59psNmKxGMePH+ejH/0o+/bto1gsYrPZ8Hg81NfXE4/HWV1dpaenZ928zOfzYr+T+kdSBovFIo8//jgf+tCHgCuGng996EMitkomk3H27FmeeOIJfuu3fouDBw/yV3/1V1cZRnbt2rXut1KphMFg4LOf/Sw6nY5Lly7x//6//y/f+973sNls3HnnnTzwwAPodDoOHTokqFGS0aaanrSKWw1VJaCKWxr7b9vPL3/5S/bs2YPL5UKpVJJOp7FYLMzPz9PX18fZs2dpaGigo6NDWFu3bt2Kx+PhiSeeEJl0Dhw4gN1uJxaLMTg4yPj4OOfPn2f37t0sLi4ik8nYu3cvn/jEJ5iYmGBpaYm6ujrMZjMPPfQQi4uLzM/PMzIywn333cfnPvc5jh49SqlUYmxsjPr6enbt2sULL7zA+Pg409PTjI+PMzY2RqFQYO/eveK7pMMkEAgwNzdHIpEgHo8zNzfH8PCw4O2PjY2xvLxMJpPhT/7kT3j88cfR6/X4/X76+/uJRCJ88pOfRK/XiwO2XC7j8/kYGxsT1Is/+IM/IBKJMDw8TD6fR6FQsGvXLj7wgQ/w8MMPc/nyZdxuNwqFgj/8wz9kfn6e5eVlzp07J6xsi4uLTE9Pc/r0aZaWlujt7eX+++/nJz/5CUNDQ7hcLmpra/mDP/gDZDIZO3fu5Ny5c9TX16PVapmZmWF2dha32y2EiWw2y8zMDCMjIxSLRR544AGKxSLPPPMMdrudvr4+Pvaxj9Hd3S2EaKPRyOHDh8nlcrz00ktCkP+zP/szwuEwzz77LEajkZaWFvbu3UtraysDAwMMDAyg0Wi4ePEiXq+XpqYmmpub2blzJ8eOHcNkMgmLvVarpVwuC7rU+fPnRXajj370o3z9619nZGSExcVFAPbt2wdcSbeZz+cFTe0v//IvGR4eZnx8HIvFwsTEBFu3buWv/uqvxNgCoq1Op5MzZ86Ivrl48SIej4d9+/aJuX3s2DEKhQILCwvMz89zxx138PnPf57vfOc7HDx4UMQ7eL1e0d+S0hSJRBgbG+P06dP88R//MVarlZGREWZmZrhw4QIymYzJyUlsNhtOp5Pz58+LmJaGhgaCwSAnT54UtKq2tjYRpLx2fsOvUz6aTCamp6dFAPny8jJNTU0MDQ2xsrIilKCFhQXOnTvHpz/9aU6fPs3Q0BDRaFT0wV133SUU+WKxyKuvvsrs7CxtbW3YbDYsFgt/+Zd/yWOPPcaWLVvQ6XQYDAbhzRobG8Pj8TA+Po7H42H//v0cP36cO++8k/r6et7znvcIyo/L5SKZTJJMJjl79iy9vb20tLSwsLBALpcjk8nQ3NxMa2srv/rVr4THoFQqMT8/z9mzZ7HZbAwPDzM3N4fb7aazs5MjR46QSqVEhjGFQkFnZyft7e3U1tYSj8f55je/yeHDh9mzZ4+gwUmYmZlhcHBQ8NyPHDnCvffei06nY2lpiTNnzjA+Ps7MzAyjo6NoNBpuv/123ve+9/H1r3+dgYEBCoUCdrudnp4e8dzjx49z8uRJRkZGhOdjamqK/+P/+D+ora2lXC7zpS99SQR/JxIJYb1/6KGHeOaZZ0QyglKpxJ/+6Z/yN3/zN/z4xz8WWabuuusu4dl7/vnnSafTTE1NMTU1xd69e+no6MDlcnH06FGGhoZ473vfSyKRYGRkhJMnT5LL5fg//8//Uwjhzc3N7N+/nx/84Af88pe/FPFa0vx64YUXuHz5MgcOHODee+/lrrvuolQq8cgjj3Dx4kUsFgtarZY77rgDmUzGn/3Zn/H888/zf//f/7egkG7bto0nn3ySo0eP4na7+eIXv8hf/dVfYbPZfiM1K6qo4mYhq1ST6VZxC2IwAfsH4Gh7iG4SGAwGpqamRGCdRJ/Ytm2b4KfqdDphuZYECymoUnI/SxxiiZPs8/no6ekhm82K1KPlcpl8Pi+saiqVSvxtfHwcm82G3W5HoVDg9XrR6/WCd2qxWFhZWSESidDR0UEsFiORSGAymejo6BAHWDgcxuv1Cpd3KBQSBZri8TiRSISuri7BWTWZTDQ2NrK4uIjBYBCBdNlslttvv31dVpJwOMynP/1pvvWtbwlLuVarxWKxiCw4DodDBKXOzs4K67oUVCmTybh8+TKtra1otVrS6TTLy8vs3r0bn89HNpsV3N2lpSWMRiP5fF4Uo9LpdMzOzgrKi0qlIpfLMTU1xZ49e4jH4yJLT3t7O9PT0xgMBhYXF4Wb3mQyEYvF8Pv9tLa2ijSWgIjdkKzsWq2WXC4nxlEul4tMPpLwm0wmMRqNrK6ukkqlaG9vx2AwEA6HXjJcLwABAABJREFUhTVdepZUlCmVSgkBXuJxwxVhTKJ6qFQqLBYLX/va1+jt7WXLli1YLBYSiQQ9PT1Eo1GWlpZQqVS0tLRgMpkIhUKCiwyITD+SByGfz6PVagkEAqRSKbZu3QogvFcajYbx8XGam5tFdiCJkiR5brLZLHNzc+zdu5disUgikaBYLGIwGEQRMaVSSTAYxO/3s2XLFgDm5uYE7SsSiRCNRtm+fTuRSIRMJiOoJlqtFqVSKeJZPvzhDwOs84Dl83lGRkZoamqiWCyKwOG6ujoWFhYExUzKtNXb24vBYCAQCAiBPBgMkkql2LFjh4ipkHL3p9NpEXwuZaxJJBIiKF4KKp2cnBSBs5Jw39vbKwLJFQqFSOs5Pz+Pw+Egm82Sy+WEEOtyuYSnSspW1tLSwszMjFB2LBYLw8PDbNmyBZVKRTQaJRQKsWPHDlQqFbOzsyiVShEno1KpeO655+jp6aG9vR25XC6SDVgslqtoRslkklgsRjgcJh6P09XVJfaiWCzG6uoq8Xic3t5e3G43MpmMmpoa6urqmJmZERltJKqh5MVYXV3F4/GQSCTEHE+n02zZsgWFQsHi4qLw1kiWfqfTicFg4PTp04yNjXHfffexc+dOMe5SkK5KpcJkMgkr/uTkpMgIJs2nPXv2CBrO4uIiCoWCxsZGzGaz4O/X1tYKSh8ggtql+JFMJiP2L4nqJcVISbFhlUqFkydPijNBOhek7EorKyvEYjGxhiRjUiAQIJvNYrPZ6O3tRaVSXdPbJp1dA/vhts1Dt6qo4h1DVQmo4paEtJH231Zhr6EsgvYkXu1aF7xUXbVSqQhhWBJ+y+WyECYkSPQYpVIpggXlcrk44CQBcCMVYzNIBYAkWsPNQDos17btRlzNaznr5XJ5HfVIyszxxS9+kW9/+9s4nU7xfddDLpcTB98bqWYq9cHG+4vF4lVc6Ovh9OnT+Hw+9u7di8lkwu12s7i4SEtLC3feeee6a/9/7L13lF3Xedj7u733O71XDAYgeiPYiyjKlEJJlG11KctynOUXR85b8UtxnuMSJy+xHNuJrJiSSVoSLYoWSYEEBRKFaIMywBRgZjC9z516Z+b2Xt8fyNm6MxgUUrIEhOe3FheBi1P22fs7+3zf3l+RAsWl60v9If23PsBSqlosjbVarRauKOl0WiiCd/r8UlYXpVJJPB7nT/7kT9i6dSt79uyhoaFhQz/x9e2R3NbWH5vNZkXfSYqU9GfJWEskEqjVaiGbkuuXNI43u6eUrvSDuDVIbVar1Vy8eFGkmVQqlcKIWI/Uv2q1+n1VHb5ZH9wK6Z3NZrM3zBPJZFKcL80JCoVCyIRarb7hfKVSKeYd6fqSfN1ufDdC2qWJx+NMT0+LQN26ujqKiore9/XeL9J7/kHmKuldk+bWQCDAhQsXmJmZYcuWLWzevPmGZ5BcvNaP281+l+5VWG38du0qrCZ8p8dL52z0vkvP+kHTf8pGgMzdhLxfJXNPIwWX3mpClgKF7/TcQsWpMCCy8Ng7VZCkgNcPgkKh2ND3/3ZslD1EIh6Ps7S0hMvlIhqNrlFgbsUHaYfErfrg/W6Zl5SUiEBpKW96TU0NlZWVNxy70djeyuCQVvs3av+t+vRmSEpgNpslkUigVCoJBoOk0+k7UhBv1dabyXzhM6wP5r2T51gf2/F+KVSMr169Sn19PQ0NDbcsoPdB+/d27/3N7iUZZuspHPvC8VlvhK8/v3AuuJP56FZI100mk0xMTKDRaKivr//Ac8j75YO+59JzF+Lz+fjJT36C0Wjkk5/8JE6n84bzbvUu3upe72f+fT/G7J0cv9Gzysjcq8g7ATL3JPJqyoeb97MaKPPLo3AVVub9Ufhpvhf7L5FIMD8/LzKRyWkzryN/u2TuJuSdABkZmXuSe1ExkpH5sKDT6airq/tlN0NGRuYWyEaAjIzMPYdsANwbyOP0wbnX++5eb7+MzIcBeX9O5p5GCoT8ZXi1DQ4OMjw8fEO137uZaDTKxMQE/f39a2olSPnSJaSgyzslEAhw9uxZjh07dsu88u/3uoBIp/nd736X3t7e93XunZJMJllcXOTcuXM/d1mSAl+lAOnOzk7eeecdJicnP9C90uk0Y2Nj/PjHP2ZkZIRcLkd7ezvDw8MiW9HLL78sMgXdy/j9fo4fP87bb78tMgfdDCmg/07JZDLMz8/z2muvMTQ0RDqd/nk0+aasn6vi8bhIY/zLJp1Oc/r0aU6cOIHX6/2F3jsWizE2Nsa3v/1tYrHYDTVTAEZHRzl8+PAd95WUftnn8/1Mberu7v5A58vI3CvIRoDMPU0ylWR+fv6Xcu/FxUW8Xu+aVI53O1IBHqkAmJRKtLBicTweF6lL75RkMsnMzAxnz54lmUxueIx0rw+inCaTSY4dO8b4+Pj7PvdOkIrD/byvn06niUQiQhnJ5XJMT09z9epVPB7PB7qmVFSrs7OTqakpcrkcU1NTLC0tkc1mCQaDHD58mGg0+vN8lF8K6XSanp4e2tvbb1u8amlpSeSwvxPy+TyhUIjOzk4mJib+0Y0AyUdeIpPJ4PP5mJqa+ke9752Qy+XweDxcuHDhAyvOH5RsNsvKygpHjhy5qaEn1WPo6+u7o2tKFX1jsdgHalMmkxHpSGVk/k9GdgeSuSe5/qFQsOxdZuTySb74xS+KFIOFqRULs89I6fek7B6F6fyk2gGFKe6kNHDrg0+lj1RpaSlqtRqz2SzSBkrcLINEYYpBqR1SW6TzC7OPSOkJC1GpVOLY9VU0pZoF0r8BolKslG2oqKhI5PpfWFjA6/WSz+ex2WwolUo8Hg8rKyvo9XqR97wwzWphtiWpT81mM/v376ejo+OGj7j0zFI+baVSya5du0T/SNeQnk3qg8K+rKmpwe12o9frN0z5Ko2jNOaFv0kZkBQKxZp+K0wfqlarsdlsIld5JpNZE3hcKAvSM61fsVyfzSefzxMMBvF4PPh8Ph5++GH0ej1VVVUkk0lSqdSa9hTKQWG62/VuFTqdjuLiYjZt2kQqlSKXy9HQ0IDD4cBisbBr1y6y2azYdbmVPK1PnSrJrZQas/DeUv79wvZKbS1M7yk9e+FzFPb9evldn8a1sFKylG9euqYkL1LfS8+Wy+Voa2ujsbGR7du3r+nPwmMl+ZLeP5vNxpYtW0Q17I0onCcK+6ewHYXPWFjRV+qbfD6P1+vl+PHjfPWrXxUyV1j1ufBc6fqF754k21LqWynVq9S+9YHyhalKC6+9vgKzNCYPPfQQw8PDpNNpcQ/p+MK5af28Vjhehe9k4TwnHbf+/Fwuh8FgoKSkhOLi4puOwc6dO3nnnXeEXEvPX3jfwnStxcXFZDIZLBaLeA8KU+VK4yX1c2GKU+naJSUlGAyGG8amcFzXy8j668vB0DJ3O7IRIHNPksvnABVvvfUWueFOysrKePzxx9FqtczPzzMyMkI2m+XAgQMYjUYikQjLy8ssLS3hcDhoamrC5/MxMTHB7Owsjz76KL29vdTU1GAwGIhEIkxPT7Nnzx5RsKuQRCLB7OwsOp0Oi8WC2Wymv7+fZDJJMpnEbrdz33333dBuaaW2p6cHi8VCTU0NxcXFZLNZenp6iMfjlJaWUlRUhEql4uTJk1RWVqJQKEThnPvuu4+rV6+STqdpamrCaDTi8Xi4fPkyH/3oR5mYmMBgMIjrDgwMsG3bNlFxdHBwEJfLxerqKt/73vdYWVmhubkZlUpFbW0tf/M3f4NCoWDTpk3A9Q9wIpGgv79fFJyScvKvrKywuLhIKBS6pauGz+fjxRdfFEWYVCqVUFbHx8fxer2oVCp2795923SR4XCYiYkJvF4vu3btwmAwsLi4KIqPPfzww8LAmZ+fF4W/LBYLPT09pFIpKioqWF1dxe12U19fTyAQYHp6WuyI9PX14ff70Wq1uN1uJiYmOHjwIGazGYVCQSgU4tq1a+j1ehKJBFarleLiYsrKykQ7Q6EQp0+f5ic/+QmbNm3CbDYLmcjlcsTjcS5fvoxaraapqQmHw0EqlWJgYAC/309FRQWlpaWiONPNmJubY35+fo2SDjA1NcX8/Dx6vZ5Nmzah1Wp59913KSoqQqfToVKpRHEyaQz0er0w0I4ePYrD4cBgMKBQKCgvL6enp4d8Pk9jYyNut5vh4WFisRgHDhy4IY3llStXWFlZoa6ujtLSUtrb29Hr9bS0tDAyMkI4HKa6uprV1VVcLhd1dXWYzWbRP5cuXRIFogpZWlpifn6eXC6Hw+GgoaGBkZERXnnlFVpaWgiHw9TV1VFTU8PS0hLT09OkUilcLhdbtmwRfeP3+/H7/USjUXHfm8nb3NwcS0tL2O12tm/fDoDH4xG7L1I18s7OTmKxGA6HA7heZOv+++8nFovR3t7OCy+8QGlpKZs2bSKRSIiUsVJ/BQIB7HY7er2e+fl5Dh48iM/nY3BwEIPBwO7duxkZGWFiYoJHHnmEoqIikskkHo+H5eVlrFYrFRUV5PN5hoaGWFlZ4emnn6anp4dgMIjdbmf37t3Mzs6ytLREPB7HZDLR0NAgnjcYDDI0NMTCwgJms5l9+/bR2dlJLpejuLj4hnoP+XyeRCLByMgIi4uL7N69G6fTSTAY5Pz581RUVIh3xmazif6D6xW0I5EIfr//jlzjAoEAg4ODrK6usm/fPpLJpHD72bJlC7Ozs2zdupXZ2Vmy2SwGg4HV1VXOnz/PgQMHxC5nTU0NVVVVAKyurorFkJKSEhYXF7FYLKJuRD6fp6uri2AwKAroSeNqMpnIZrPMz88zMzODTqcjHo9TVFREaWmpkAMZmbsV2UyVuSdRKq6LbuuWVhoaGnj44YfRaDT86Ec/oq2tjbKyMvbs2cNf/MVf4PV6uXjxImfOnGHr1q08//zzjI+PC2X/3Xff5erVq+zfv5+XXnqJ119/nUQiwaZNm/iTP/mTNa4yEnq9nkAgwNTUFGNjYwSDQc6dO0dtbS0qlYqVlZUbzkmlUkxOTvIf/+N/ZO/evczPzzMwMMCFCxd44YUXhGLc1dXF0aNH8fv9uN1u/st/+S9id+Py5cv89V//Na2trZw6dYre3l4SiQQ2m42f/OQndHd3U19fz+joKH/2Z3+G1+tl27Zt/O3f/i3d3d2iQu+bb76JyWRi06ZN7Nixgx07drBt2zacTietra3iN0lp+sM//EPS6TTNzc3kcjleeeUV+vv7OXToEOFwmKamplu6DzkcDlpaWsR1t27dCsCf/dmfsbCwwH333UdtbS3/7//7/xKLxW6pEPj9fjo6OkS117/7u7/j/Pnz7Ny5E5PJxKuvvsrx48dpb29neXmZnTt38q1vfQuFQoHP56Ovr48rV65w4MAB3nvvPY4ePUogEECr1fLyyy8D0NDQQFtbG4cOHSKfz1NdXc3/+l//i9nZWc6cOcMLL7zApk2bOHv2LEqlErvdfoMiaTabqa6uZvv27aJ/JUU5EAjQ1dXFzp07ee211xgcHGRiYoKzZ89y9epVDhw4wNGjR+ns7LytclRSUkJXVxcDAwPC51xS4BoaGgiFQvzBH/wB2WwWq9XKm2++yblz54DrlY1/8pOf4PP5sNvthMNh/vRP/xQAq9XKkSNHOH36NEqlkunpaYxGI21tbYyNjRGPxxkdHRVVetfT1NTEyZMnuXLlClqtlvLycv7+7/8euK5o9vf309nZyf3338/p06c5evQow8PDLCws8Ed/9EdUVFSwefNm8vk8S0tL4rp/93d/h06nIxKJ8IMf/ID5+Xnq6+upqqpix44d7N+/n/LycpaXl/n2t78tqr5evnyZiYkJXn31VQYHB0WV7rm5uQ37NZ/PE4lE+M53vkN/fz9NTU309fUxPDzM3/3d3wljuqWlhe985zvMzMyg1+sZGBjghRdeoLq6mtnZWS5cuEA8Hqeuro7q6moee+wx6urqaGhoIBAI8MYbbwDQ3NzMP/zDP9DW1oZKpaKkpIS//Mu/xGAwMDw8TGdnJ9lslsbGRv7+7/+excVF5ubmuHjxIhcuXBDKfXt7O5OTk5SXl/Piiy+SSqWEcvuTn/xEvL8VFRWUlZWRy+Xw+XxCziQF+Nq1ayJupb+/X1SRXs/s7CzvvfceqVSK2tpavv/97/Pee++JStn/6T/9J4xGI6lUisHBQS5cuADAf/pP/4lwOExjYyNVVVVMT0/fUs59Ph/JZJLi4mK2bt3K//P//D/4fD7C4TDXrl3j2LFj4hi/38/MzAxTU1OUlZVx9OhRLl26JCoESzI+MzPD8ePHGRoaorm5meeff57m5mZaWlpYWFjg8OHDYkHku9/9Lp2dnWg0GpxOJ3/xF39BPB7npZde4sKFC5SWlnL27FnMZrMwnmVk7nZkI0DmnkTaltVpdWg0GjHhXr16lYGBAeLxOPPz82Ibt66ujrq6OgYGBshkMiwsLJBKpdBoNOh0OqqqqjAYDITDYfR6PTU1NdjtdmZnZ28IZJW2kfV6PWq1mlwuh06nY3BwkL/5m79haGhow+I+Xq+X4eFhLBYLer2e3bt3s3nzZrLZLCdOnKC2tha9Xo/D4SAWi9HV1YXD4cBkMmE2m7FYLBiNRlQqFQaDQaw6RaNRUZG4oqICi8VCOp0mmUxSX1+Py+XC6/USiUTQaDRYLBZRvEqr1aLT6dDpdKJycOFvarWa+fl5pqammJ2dxe/3k06n8fl8vPvuu9jtdpEH/FYVTddfV6PRsLi4KPrXbDaj1+sJh8NMTU3dNM6ir6+Prq4urFYrra2t+Hw+PB4PHo8Hr9dLNpvF7/dz9uxZpqenSafTeDwejEYj8XgcpVKJxWLB5XKh0+nYvn07nZ2djI+Po9PpxFgbjUY0Gg1Go5Hy8nJcLhdzc3MkEgni8TiRSESsAkrjv/6jr1QqhXzp9fo1lZsNBgNVVVXodDoUCgWxWIzR0VHOnj2LSqViZmZGuJfczrdfGnvJBUOhUGAymbBarVitVjQaDaFQiLGxMSwWCyaTCZfLRU1NDQ0NDezYsYNsNks4HGZ5eZnJyUkAbDYbJpMJh8NBbW0tDQ0NbN68mXg8TjgcJp/PY7fbaWho2LDoW6GbnFqtxuFwiHHVarVYLBbcbjdarZZt27bR29tLd3c3Pp+PkZER3G43JpNJtFli//79YnVe2pGTCvxJfQ3Q3t5OLBbD6/USDAbRarUsLCzw1ltv4XK5KC8vx2g0iqrGG3H16lUymQxGoxGXy8WDDz5IWVkZ586dIxKJUFpail6vp6SkhPb2dtLpNFardc076/P5SCQSaDQa1Go1RqMRtVqNXq9Ho9EImTOZTKhUKmw2G+Xl5TgcDmZmZoTrkGRoGY1G4XoyOjpKR0cHNTU1aLVaGhoamJqaoru7G5PJJNzaLBYLGo1GBO0rFAqef/553n33XXw+H06nU8imtEO0Y8cOLl26RDqdpqamhoqKig13TJxOp9iBCYVCTE9P4/P5xJgX9gVc38kJh8OMjIyg1Wqx2WwYjcbb7nhJ7ok2mw2LxUIkEmFmZoZYLIbZbMbpdLJnzx7sdrvoY6nCu1qtprS0FKfTiUqlEskcEomEcP/R6XRit8RsNq9xg5L+7nA4KCsrw2azMTMzQy6XIxwOk06nMRgM4nsjzR8yMnc7shEgc08jfbhisRjxeJxAICA+xHq9nu3bt4uJWvoQWywWYrEYsViMTCaDTqfD5XIJP06j0Yjdbker1d4yI4mkfOXzeTKZDA0NDRiNRgKBAEtLSzcEyCaTSSKRiFD8KioqcLlc5HI55ufnhZ++RqMRirZOp8NqtQol3WAwYDKZRGXYbDYr/Ly1Wi0ul0som9KKlU6nE/7n6yvCFvrFrq6uAj/1b5bakE6nyWQyqFQqzGYzxcXF1NbWMj8/j1qtRqvVolKpMBqNNx2jwkqrmUyG1dVVUqkUkUhEfIQll6d4PL5hhhClUolKpSKdTrO0tCT8fSV3Cr1ej9vtpq6ujkgkIpQfnU7H/v37RSVXg8EglBmHwyFcQgorvUpKmtFoFEabpDBYrVZcLhdLS0uUl5cLZXW9IizJpvR/n88nlArJzUgaJykw2e/343Q6UavVbN26VazU3grpGoWr8ZLBJckoXA/4lpRvq9WK3W7H4XDg8XiE4iKtsMdiMfGu2O12bDYbLpcLl8tFZWUl0WiUmZkZ3G43drv9hp0AKW5Eko2N/k2v168Zh2AwSDAYFMHrer0elUolniWfzxMOh0Xwr16vF7t50u6RQqEQ8hUIBITx5XQ6aW5uxmg0MjMzI94lpVK5xsBYTzAYXGPMSYb60tISmUxGGH46nY6VlRXy+bwwXKRzpHev8D3w+XzinZIMOLVaLd5vs9ksjHy4PtdISqU050j9sbq6KvpRcn30+/2o1Wo0Gs0NcijNPRaLhVQqhc/nW7MTII1HbW0tfr+f0dFRKioqKCkp2VCxjUajLCwsoNVqsVqtpFIpotEoyWQSvV6P1WpFq9WKRYZ4PE42m8Xn84lq0dJ7eSskRV1yZVMqlWKONRgMOBwOysvLxZhLc4r0fkjGASDeKa1WK34LBALCrU2tVot7FMrr+rHJ5/MUFxej1WoJBoOUl5fjdDqF7MrI3O3IRoDMPY30IVhcXBTb1WVlZTgcDioqKnjggQdIpVJ0d3dz7do1mpqasNvtJJNJfD6f8MlNpVJCyctkMsTjcWKxGKlUak0AJ/w0CCyZTIqV+GAwyOOPP84XvvAFzGYzExMTN6TKlIwLSdGVzpV8bf1+v/BZzefzuFwuodxIK/uJRIJMJiP+Lhk/6XRaPEcymRTpEqV7pFKpNedIzyQZDMFgUGz963Q6crmc2FKXFEbJz7Wmpoa9e/dSUVFBOBwmGAyK6yaTSdLp9IaKq6TIBYNBpqamMJlMaLVa0uk00WhUPIcUjFzY36lUinw+T21tLeXl5QwMDDA6OipcDlwuFyUlJVRUVLBnzx4aGhpwu91YrVaqqqo4ePAgFotFrO5Jgbnz8/O4XC5MJpNoe2E/Z7NZEomE6LN0Oi1Wkbu6uigpKRG7ChshKcKxWIzJyUkSiQTpdFr8XxozSUGvrKzEYDBQXl7O7t27qa2tvSFG4mYyKsWjwHVFUbqupKw6HA4h45JM5XI5fvSjH5HJZHC73cLdY2lpScimlNpSYu/evcTjcbq6um65ii6NuaT4Sa4aUjCz9A6lUikWFhaw2+1iZ0CpVAqZkMYjHA7j9Xo5duwYarWaqqoqzGYzsViMQCAgguJ9Ph+zs7OUlZVhNptxu93U1tbS2tpKdXU1ZWVlhEIhAoGAuLaUmnK9wS8F7ha+s4VuMaFQSDybdGwymRR9Jp2TSqVQKBRit9Hj8Yj3RpI5STnOZDI3yJxk0Envs2T4GAwGnE4nq6urJBIJlpaWxKKGtKCRSqVEti/pem63my996Uts376daDTKyMjImvtJu0kVFRVcuHBBGIwbMTU1xU9+8hPMZjNlZWXodDqi0SgrKyuiXyWZj8fjJBIJofhLzym9D9KiwEZIQbtSn0rxWEqlco1M5XI5Ifvr50bpPZH+XTLWpN2np59+GoVCIY4pHJvC965wTq2pqUGlUjE4OLhmt0FG5l5ADgyWuacxGo1MTU1x7do1nnrqKT772c8yNDTEj370I/bu3UswGKS4uFjsBoyMjKBUKrly5QoA8/PzTE5OcvbsWRobG5mZmcFsNtPZ2UkgEMDr9TI5OSlWRCWi0SjDw8PMzMxQUVFBZWUl3//+9/nEJz5BRUUFJpPphu3tsrIyFAoFbW1tIt+1lP3kX/7Lf8nrr79Oa2src3NzlJeXc/DgQX70ox8xPj7O1NQUi4uLdHR0kM1mmZycZHh4mMXFRbLZLJs2bcLj8dDW1kZDQwPj4+NMT09z5coV4ToxMzOD3W6nq6uL8fFxVlZWqK6upre3l46ODg4ePAhAS0sL7e3tzMzMsG/fPhwOB4899hgej4dwOCx2G7785S/zyiuvMDg4SCgU4urVq/T39zM7O4vRaLxhhbWpqYmOjg66uro4cOAALpeLj3zkI0SjUU6fPg3A/fffT21t7RqlOp/PMzU1hcfjYXBwEK1Wy/bt2/n617/On//5n7N161YikQjHjx8XSsgnP/lJ2tvbaWtrI5vNsri4yJNPPolSqSQQCBAMBikrK+Ps2bP8k3/yTzCbzfT29jIzM8Po6Khwz8nlcvT19TE+Ps7s7CwejwetVsvExATj4+MiPecjjzxCU1PTDZl8ioqKqK6u5r333uPxxx8nGo0Kdw2r1cq2bduYnJxEq9Vy8OBBPvWpT/G9730Pk8mE3++nrq5OZCySkIze7u5uzGYzLS0teDweotEoDQ0NHDhwAKfTyejoKDMzM/h8Pu677z5qamo4fPgwfX195PN5tm3bRmVlpYhhkVJYOhwOJicn6evro6+vj3g8zuzsLLW1tQAcOHCA6elpJiYm1gSUbkRpaSmZTIbBwUHGxsaELEciEYLBIH6/n8rKSs6ePcvTTz/Nli1byOfzfPazn+XMmTMiKHt6eprTp0+zf/9+kc5SrVaTSCS4fPkyO3fuZNu2bfj9fi5evEhVVRWPP/443d3dopaHUqmkvr6e3/u936Ovr0/syklpJx999FHhbgfXV8z3799PX18fi4uLXLp0iXw+T01NDf/sn/0zPB4P77zzDuXl5fj9fv7pP/2ntLW10d3dzerqqqgBEI1GqayspKGhge3bt3P48GHq6uqYmJhgaGiI6elpRkdHiUQiTE5O4nA4uHr1KuPj4ywsLODxeCgvLycQCHD58mU0Gg3hcJj+/n7279/Pxz72MQ4fPozD4eDixYts2bKF++67D5VKRU1NDePj4ywuLjIwMMD4+DgTExO88sorwlWmsbGRmpoajh49yujoKHNzc9TW1mK1Wvn85z/P66+/LrJjbYQk81IgvlKpJJ1OMzw8zMTEBJOTk0xNTQl5ktzufu3Xfo3FxUUuXrxIMBhkdnaWEydO8Nxzz62ZayUsFgvxeJyenh7C4TBbt26lpKSEkZERuru7WVpaYs+ePajVasbGxhgYGKCkpITm5mY8Hg+XLl0iEomwurrK3NwcV65cobW1VbhUORwOzp07x9e+9jXC4fCasZHcFEdGRrDb7YyNjTE/P4/H42Fubk7EskjxOM888wwOh0MumCZz16PI/zKqLMnI/Ix0h2F3F1zemeU+3fVVSmmlWQqiTSaTmEwm4Vst/afVatd81KQUmtLHqzDVYzqdFq4WhenhYG0aSSkzi+RytJEbhHSutJokbRkXpiSVVoSle0ptllIFFqbBlHyJpfamUqkb0mNKK+qS60Hhv0lb+5K7j16vF9kwpJU1aes9k8mseV5pByGbzYpj1Wo1oVAIh8NxQ8pIQKzQZbNZca/CcQFEv61PNymtXK9PpanRaMSfpWtIBoR0TiqVEi5U7777LktLS1RXV7Nnz541YyCt9Ekr71L/SnEfkstOT08P8/PzfPaznyWXy/GDH/yAkpISWltbqauru2G8pR0Zo9Eonrkw/WLhc0l9Kq3yFro0FF5zfRrcwlSgkhxLsg0If/RMJrNhKlBJdqSdEmlVvTCto0KhIJFIoFAomJ6eJhqNsmvXrlu9pmQyGSEfer2elZUVnE4nZ8+exePxUFVVxb59+8Q4FKa1lVakk8mkyPSi0+mEvEq+8pIsS+Mn7WZJrkHSKry0wyBdX5Jp6X2wWq0bpmRd/wyS/EnvciqVEmO10bgAov+k90Wv14u/S+2Xrlco45I8Sn+WdgV8Pp9wS5FkKhqNCiNGek5prpHckpLJJA6HQ6xwS246kvwXzjXxeFzE00jG9UZIK/3JZBKj0ShcnyS3pY3mL8kFTuqfXC5HNBrFZDKJPl6PFPRe2C8qlWpN+tbCtKE3e8ek8zUaDX/zN38jEiBIyR7++3//7/zGb/wG9fX1tx0bv9/PqVOnKCoq4pFHHiGTyfDtb3+bPXv20NzcTHFx8Q3PIX27unbDLsstXx8ZmX905J0AmXsapUIplH/4qT+7SqUSwXSSEiV9iAo/8oUfDuCGD91Girx0vqREF95b+tjfLD+0dD9JKZV+k3JLS79L95ACHjdivZtIYTDy+nYX/n39vxUaHVJ7pD6VfpMUxMJnlX4vzM99q61wKY7hTq67vs+kNhVS2C+SQlh4vPS79GxSIOH4+DjRaJQHHnhgjc904TWkfll/fYvFgsFgEKkJFQoFqVQKu92+YeYUSRYlY3S9vMGNMqdQKETGnY1WEqVrFvbzelmQFEfpXoX9vR7Jf1q6tmR4FF5fUuC+9a1vsXnzZpqamkQK2VuxXj7cbrfYWRgYGCAcDvPQQw+tGQdgjSIrvWfSeyXJq/Rb4b0kWSo8t3Blv9AvXoo3KHz/Nurv9c8g9aeUE7/wHrcbl0KDaqN5Yv27s17GpX4qjGGS/pNcY9b3iTSnSIHu0nsoXavwmdRqNSsrKwwPDzM6OkpzczP19fW3DHKVxkTqp/W1Pm42f61/9yXD7War55IyLv35Zn240T1vNnfU1dURDocZGBjAbDYTCARobW0VAfWFbDSn2mw2tFotgUCAgYEBABEnIAVCy8jczchGgMw9zfUPwY3FpWDtpL0+OO7n3QaJO/EFXa9gFV7jl+FLutGH905/g7WK+80++B/kuu+Hm12jsK81Gg07d+6kpqYGm81227ZuhEajEbUkJKV/7969lJWV3TYw+v08y89DDt7Pfe+kqJFCoeC+++6jrKwMl8t10+e91bWlYNVt27ZRUlKC1WrdcBxu1fb3+2+3MizvlJtdA97fO/uzyHrhuRsFod9swWKjAnxw83ZL2Y6USiUVFRVCOb9d2z6IzH6Qd6Pw/z8rW7ZsIZVKCUPGaDRSXFyM1Wq9o/N1Oh1bt24lk8kI98+DBw9SUlJy23onMjJ3A7I7kMw9ibylKvPLpnDq/DD4/v68nle6zoehz+5VPmxjJLkZ/SwVfu/0/ZC/XTJ3E/JOgMw9zfXJ+6eTruQ3Cjduxd8N3K2K48+7XZKvNdyd47Aeya8Yfuq/fTsKj5FiEiRfY2BNvEihj3ahz/jNVmmlNknyvFHdiZ8nhffaaOVXko90Oi1SzUrPJLkdSecUZhOSXEQKlat4PC7c3H4WpeuDIMWJSK48H2Q36JeB5FufyWTWyA2slZ1UKrUmteUH5U7OldojxVvcqt1SbNWd9Heh/BTW1vjH5OexGykjcy9yb8yAMjI3IZfPkUymheJy+PBhxsbGcDqdfO1rX/tlN+8GpKDbmwXZ/bL4ebfr2LFjXLt2DZ1Ox9e//vWfyzX/MZmdnWVycpJoNMrHPvax931+f38/J06c4OjRo3z5y18WfsIOh4PNmzfT2tpKJBLhrbfe4uLFi6TTaZ599lmeeOKJmypQU1NTvPLKK8zPz/PXf/3XP+sj3pLZ2Vm+//3vEwgE+IM/+APMZvMapSifzxONRnn55Zc5ffo0LS0tbNu2TaT3/NSnPkVZWRmpVIqxsTFeeeUVAoEAzz77LLt27aK8vFxc67/+1//K5s2b2b9//w2B1L8I/tf/+l8kEgkeeOABHnzwwV/4/T8IiUSC9vZ23njjDZ599lkeffRRYYwV+q5/85vf5IEHHmDPnj3/6K6FHR0d/PjHP6asrIzf/d3f3fCYXC5HW1sb3/ve9/jiF7/IE088cdvrzs7O8t3vfpdIJMJ/+A//4QZZvFu5W+d2GZlbIdcJkLmnWV1Z5ciRI+Lve/bsobGxkXA4/Ets1c0JhUIcOnTotgWgftEEg0EOHTp008Jo75edO3eyefNmQqHQz+V6/9hYLBYqKytFGsz3S0tLC5s3byYcDvOxj32MX/mVX+HXf/3XMZlM/PCHP6Svrw+j0cj9998vUqw+9thjt9wlqa6upqqq6raVVH8elJeXU1VVJYrXrUehuJ43/umnn0alUlFdXc3HPvYxPvGJT/Brv/Zr/H//3//HhQsX0Gg0Iq2pw+Fg06ZNIkOKlFFleXmZ8+fPc+nSpX/059qIp556CrVafUMxv7sZnU5HRUUF27dvF+1ua2sTwagSu3btoqys7Beyw7Jz507cbvct76VUKrn//vvf105WeXk51dXVN5XFu5W7dW6XkbkV8k6AzD3J9YlWSXt7O4m+yzQ0NLBlyxaR9SKZTOLxePD7/TQ2NmIwGMhkMgSDQRYWFkTl242qhabTaYLBIKOjozQ2NhIIBESGF6niqNPpFNV40+k0q6urhEIhUbxHqjDr8XhENcxUKsXExATvvPMOjY2NNDQ0YDabb8hCkUgk8Hq9LC4uUldXh8/no6qqCq1WSyQSEddsamoSBYR8Ph+RSERUs1WpVEQiEaanp1Gr1TQ0NIi87KlUiuLiYhYXF6msrESpVDI6OsqhQ4dobGwUxdY2CvyUtuoXFxcJBAKiSrKULcXv97O6uiqKIGUyGQKBALOzs2g0GtxuN3q9nomJCaxWKyaTiWg0SiaTwWg0UlpaSjKZZHR0FLVajd1uJxgMotFoRB8kEgl8Ph/hcBiLxYLT6USj0YiCXCqVivr6etRqNZFIhKWlJTF+0tisJxwOs7y8jMFgIJFI0N/fj8PhEIWP1Go1dXV1N1V4pFSLhZV3AWpra5mdneWHP/whf/zHfyxSrioUijuqkCqlnVxZWWF1dZWioiIhM+l0moWFBQKBAHV1dZjNZrLZrBhnqbCZ3W5HpVIxMjJCNpuloqICq9UqMrOMjY2hUqmIRqO3zGoFiDar1WqMRiP5fB6tVktpaSljY2PYbDaam5tFRqZCF5B8Ps/g4CBPP/0077zzDgMDA+RyuTtWWKVCXDMzMwDiXY/FYoRCIVpaWggEAqyurqLVamlubkahUIhCgkqlEpfLhcFgQKFQEAgExO7Pli1b1jzneqQqvIFAgJqaGkwmk6g94vV6RTVtaU5Yz+zsLD6fD6vVikKhIBqNUlFRAcDy8jK5XI7GxkYxRlarlaKiIq5cuUJlZaV4pyUZm5+f58SJE5SWlqJSqSguLhYF1qTCeoXPItWWWF5eprq6Gr/fL6qR5/N5lpaWcDqdFBUVoVKpRAG2SCSCyWSiqKhIpFZOJpNMTk6K6sCFKXmXlpbw+/2YTCZRhE9Kh3q7sc3n8+K9Xy+LXq+XSCSCQnG9AFpJSQlw3SXJ6/WK56mqqmJubo5wOIzVaqWsrIyhoSG0Wi1lZWX4fD4CgQCVlZXiHJvNRiaTYWVlBYfDIfoyGAyKImxFRUUYjUbm5uaIx+OUlpbi9/vRaDSUlZURjUbp6em57dwuI3O3Ie8EyNzThMNhUVVXQlKK0+k0Y2NjzM7OEggEWF5epqurC4CxsTG8Xi/xeHzD68ZiMQYGBrhy5QrJZJLx8XF6enqYnZ0F4Ny5cwQCAaLRKAsLC4yOjgKIAjJTU1MMDg4KX/GlpSXRprm5uduuFq2urtLX18fQ0JAoBDUxMUFvby+ZTAafz8fExIS439DQEABXr14lFAoxMzNDT08P2WwWn8/H5OQkgUCAubk5Tpw4QTAYJBQKMTQ0xNzcnGjX7XYCwuEwMzMzrK6uEolE6O3tZWFhgXQ6jc/no6+vj3Q6TSwWIxaLifP6+/sZHx8nEAiQSCQYHh4mkUjQ19cnFNyuri4xltPT0/T19TE8PEwul+PixYuEQiFCoRBzc3NiBbSvr49gMMj8/Dzd3d1ks1n8fj9TU1MMDQ0xOTkp8p/Pzs4SjUY3fC7JQBwfHxfKSG9vL1NTUySTSS5cuCCqht4pCoWCoqIiqqqqaGtr+8C7LJIhBdfHd35+ntXVVaanp8U4XLt2jdnZWWKxGL29vQBC4VlcXKSvr49AIEAmk2F0dBSPx0M8Hqezs5NoNCpqXNzsfbjVM2q1Wmpra1laWmJiYuKmx+bzeWZnZ9m1axcOh4NgMMjKysr76gdJvnK5HMFgUMjuqVOnCIfDJJNJ5ufnxS7D2NgYMzMzQu66u7tFNexIJEIkEmF0dJT5+fk1VcELSSQSLCwsMDk5STab5dSpU8RiMebn55menhbyJfXpRkhF4s6cOUM6nWZiYoJr164xMzMjxkEyNMbGxoTcj42NMTY2dsPOZj6fZ3l5WVQXl/6bmJjA5/Nt+Cyrq6v09/fT09NDLpejt7eXgYEBvF4vmUyG06dPk06nhdE+NTUFwMzMDHNzc8K47OjoEMaAVJ08l8sRi8UYHh4Wxrg0194JsViMzs5OYrGYqKshvW9er5exsTGi0aiYf6S5SirwJ1VaHx0dJZlM0tvby+DgIPl8nlAoxIULF4Sh39/fT29vL/l8nqtXrzI0NMTKygrJZJIzZ86QzWZZWVlhenoaj8dDLpejo6ODeDzOwsIC165d49q1a+TzeS5fvszy8rKIe7iTuV1G5m5CNgJk7kmkVaLqmmrKyspEhUy4rqguLi7idrvx+/309/eLD+uxY8dobm5mZmaG6elp/H7/DdeWAhb9fj/nzp2jrKyM2dlZzp8/z9TUFJs3b+aNN94Qq/VXrlxhYmKCxsZGoZC1tbVx8eJFzGYzNpuNcDiMVqtl06ZNWCwWtm3bht1u33ClSKfTkcvlWFhYoKenh0wmQzQa5dy5cxw/fpza2loMBgPt7e10dnbS09PDyMgIzc3NXLt2jUAgQEdHB0eOHKGurg6DwcDly5dJJBKkUimOHDmCQqGgpKSEjo4OxsfHKSsrw+12s23bNsrKym66Su33+xkZGSGVSuF2uzly5Ai9vb3EYjH6+/tpb2+nqqoKo9EoggYtFgvLy8t4PB4CgQDpdJqVlRVcLhfd3d1ix+C9995jcXERrVZLPB5nbGyMwcFBGhoaOHnyJMvLy0xPTwvlpbm5mYGBAVZWVujp6eHQoUPU1dVhNBrp7u7m9OnTXLt2TVRvlqriboS0O9DR0YFerycSidDf38/8/Dzl5eW89957BIPBmyqKN0On02EwGEQ10ZshGU6SoZNIJIQyIRVZa25u5uzZs/T09DA+Ps7w8DDJZBKXy8Xx48fp6uoiHA5z7tw5zGYzgNhV+dGPfoTFYqG2tpbu7m56e3tZWVnhu9/9LsXFxVRXV6NSqT6w+5bVahVK7EZIdQYCgQA6nY6ysjK0Wq0wWO6EdDrNmTNn0Gg0WCwWYQhUVFRw8uRJsTOkUFyvyg1w5MgRZmdnMZvNlJSUcOHCBfFupVIpzGYzq6urXLlyhVQqteF9o9Eoc3NzzM/PU1tby9/8zd+I92BwcFDI1/Ly8k1djIxGI7FYjMOHD1NSUoLf76etrY3x8XFcLheXL19maWkJg8HA8vIyAwMDaDQaUqkU4+PjN4xLWVkZRUVF1NXV0draSnFxMU6nk8HBQZaWlkgkEoTDYUKhENFoVBTVWlpa4sKFCzQ0NHDlyhU6Ojrw+XzU1tbyyiuvkEgkGB8fp7e3l/n5eZqamlhZWaGjo4PR0VHGx8d5/fXX2bRpE3a7XRRllMZicHAQp9PJxMQEr7/+ujBObkUul2N5eZnvfve7lJSUUF1djVKpJBQKkclk6OrqYmRkBJvNhtlsFnNxJpPh9ddfF1XbLRYLV69epaioSFQMVqlUlJaW0tbWRjweJ5PJsLCwQHt7O42NjVy6dInOzk7C4TAVFRW88sorpNNpBgYGxDtSW1vLsWPHhNEzOztLZ2cnzc3NnDt3jtnZWSwWyx3N7TIydxuyESBzT6NUKG/IPmK326mvr8dsNlNUVEQoFOLq1atcvXoVrVbLlStXsNlsYst7PQqFQriutLa2otfr0Wq1uFwu6uvrUSgUoppqf38/Z86cYefOnSgUCnbu3MnU1BRXrlyhrq6OX/u1X+Mb3/gGBoOBuro64QoiGSwbfSAVCgV6vR63201NTQ0f+chHUCgUrKysiBL1qVSKeDzOhQsXmJiYYPfu3QD863/9r9FqtczPzzM/P8/Q0BCpVIpEIoFSqcRiseB2u2lsbKSkpIRoNCq22QsLGd2MqqoqHnjgAbHCLG29Ly0t8cYbb/DII4+g1Wpxu9243W6RHefzn/88U1NTjI6OCmPI5XLx3HPPkclkxJb91NSUqN5aXV1NfX29KMoTiUS4ePEi/f397Nu3D4Df/d3fxWazMTc3x8LCAkNDQySTSbFln0ql+PznP89f/dVf0dLSsmFBL7ju5iIV91EoFDgcDurq6qisrEStVmOz2QgGg6LC6Z0itaWsrOym/ZrP55mcnOTEiRO8+OKLvPjii1y6dEnsWhgMBurr64Hrec0nJydZWFjg4YcfJhgMsrS0xNzcHKFQCJVKhV6v57Of/axQhDOZDCdPniQajYoVZoCVlRWmpqYoKSlBr9djt9txOp3v6/kkQqEQJpMJu92+4b9LFWGHh4c5efIkyWSSVCrFu+++u2Yl+1YKo1qtZs+ePfzzf/7P+cM//EOGhobYuXPnGpcTk8m0Jsf7W2+9hclkorm5GafTyb/7d/8OjUZDdfX1xQPJfc7r9d7UwHM6nTQ0NFBRUcGlS5fEanVVVRWBQIAvfvGL/NVf/RVbt2696fObTCZhbJnNZtxuN0VFRdhsNvGur6ysYDKZ1hjgUlGw9UhzXuHcp1QqhQvK3Nwcr776Ki+++CKHDh0Srm4lJSVs3rwZtVotjLHKykoxRgCnT59mcnKSrVu3AnDgwAHOnj3L4cOHGR4epra2FrVajcvlwmq1isq9ZWVlbN++nampKSYnJ0Wl59uRSCTEyntxcTF6vR6Hw4HT6SSRSPD3f//3wugoKyujrq6Ol19+Ga/Xy8LCArlcjtLSUhobG/nc5z6H0+nEYDAIlzSXyyXmN8nlsKWlRbwrlZWV4v3MZrPk83lOnz7N8PAwAL29vVRWVhKLxVCr1ZSVlbFp0yaUSiVWq1W843cyt8vI3G3IMQEy9zQKpUKs7KlUKpEirzDgMpfLiY9rPp9n79697N69m3g8flt/5EL/XqmgjHRNuL6CbDQahTEhuTdYrVaKi4s5deoUnZ2dnD9/nuXlZe677z6hDA4PD+N0OjcsLS/dT1rRtVqtWCwWXC4Xe/fuBaC5uZkjR46wuroqFMZsNotGo0Gv1+N0OsWxmzZtwmAwCENIolDxkvpiaGgIl8u1Ybva29s5fvw4zz33HE1NTbz66qsEAgECgQAWi4WFhQW2b99+g0LncDiwWCyMjY3hcDi4//77mZyc5Dvf+Q6/8iu/wr59+/D5fOTzeRYWFkgmkzeMYz6fx2AwiJV66XnVajV6vR6bzbbmeZeWlshkMvzar/0anZ2dfP/73+fTn/409913362GXCAVtpKQDL/3w9TUFNeuXeM3f/M3bypr8/PzLC4uYrfbefrppwFuGruQz+cxm82MjY3R1dXFr/7qr9Lc3MyhQ4cIBoPE43EeeOABfuu3fosf/ehH9PT0sLS0RFFRETt27ECtVotKvx6PR/S5dO0PqricO3eOp5566qbZdsLhMJ2dnfyrf/WvRHzOu+++yze+8Q2RPvJ2uekl16NDhw6J1ervf//7/M7v/A46nQ6lUkk8HheyAWA2m0VaULVaTTgcJp/P35Cu8lYuHG1tbUxPT2MwGHjmmWf4y7/8S7xeL3q9nkceeYQvfOELdHV18eKLL/L5z3/+ppWUC+cPYMM2FFYfBggEAjdtm6TYxmIxxsbG2LZtm/g3t9vNo48+SiaTEQaez+dDoVhbebtQxqX7mM1motGo2H1YWloS75darWZhYUGcL8lMLBbj6NGjLC8v8/GPfxyPx4PX62V+fp6qqqqb9m1hP/h8vhuuq1QqsdvthEIh0uk06XQav9+P3W7HbDavSbkL141RqdqvFE8TCARuSIF8uz6QVvIbGxvZunUrO3bsEN+Z9eNYOC/c6dwuI3O3IBsBMvc0er2e/pkZBgcH2b9/v9jGnZubw+PxcOXKFUKhEAcPHqSsrIzJyUl6e3vJ5XJitWk9qVRK+LebTCY2bdrE9PQ08/PzFBcXk8/nWVxc5Nq1azQ3N/P4449z9epV3G43HR0dNDQ0kMvlOH36NEqlEqPRyKZNm6ioqEClUmG327ly5Qomk2nDNH6FvqeBQIDt27djMploaWkhl8tx9uxZiouLxc7D9PQ0nZ2dlJWV4fV6aWpqoqWlhXQ6vebYfD7P8PAwHo+HkZERpqammJiYEAHH27dv57333sNqteJwODbs71wuJwKXpZXnRCJBPp/nk5/8JMeOHaOxsZGFhQV6e3sZHR1laWmJ4uJiHn74Yfr7+/F4PDzxxBNkMhni8TiLi4tkMhkymQzd3d1UVlYyPj7O0tISXq+X2tpapqen6erqoqWlhZKSEjo7O6msrGR5eVlko/H7/Zw5c0YE9vX19eHz+Ugmk1itVrZt23bT55qdnaW7u5upqSnm5+fp7+8XK3w6nY6pqSk6OjpuWil3bGyMnp4eVlZWOHXqFFqtVrhjlJWV8ZGPfIREIsGlS5cYGhoiFotx5swZQqEQhw8f5vHHH2fPnj0iWFQKCrZarcJ4czgczM3NsWvXLhKJBCdOnGB5eZlwOIxCoSCVSjE4OEhbW5sImC4pKaGxsZHS0lJ+/OMfs23bNhKJBC6Xi6KiIj7xiU/Q3t6O3W5namqKqakpLly4IIyR9eN+8uRJ5ubmGBwc5PTp0yQSCRYXF3niiSfYvXu3CJzv6elhbm6OkZERIpEIMzMzvPbaa5SXlwu3uXA4TCqV4qWXXuKTn/ykiE8oLy/f0JhIpVK89957YqdOWs2H6xllFhcXxW7Q5OQkHo+Hr3zlK3i9Xo4fP059fT0+n4/Z2VnGxsZwuVzCJS0SiRAMBtHr9Te4cWQyGRHjMjo6isPhYGBggGg0ilarZdeuXVitVnbs2HHTTE7S7qDkZ3716lURI2SxWBgdHcVisVBTU4NOpyMcDovYjcXFRWpqatBoNPT29mK1Wnn00UdpbGwUqUMtFgvz8/NibMrLy2lubhaKdDabZX5+XsxpO3bsYHp6mng8jl6vp6qqiqWlJa5evcquXbuEK6LZbObChQs88cQT1NfXk0gkGBoaYnBwkEQiwejoKHq9Xvjih0IhJicnicViqFQq4WozPT3NxMQEra2tYswkpMDmj3/841y8eFHIosfjobu7m6985St0dHSI5AozMzP8xm/8BkajkYcffphMJsOZM2dwu91ks1k2b96M0+kUrnATExNMTk4yOjqK3+8Xfbh9+3amp6dRqVRoNBpcLpfog4MHDzI9Pc3ly5fRaDSsrq7S3NzM7Owsvb29OBwO7rvvPqanp7l69Sp2u53S0tLbzu0yMncbshEgc09TVlbGk08+SWlpKTqdjvLycvbt20c0GsVoNLJv3z5SqZRIWXjw4EGMRqPI5rFRJg+lUonD4eChhx5Co9Fgs9nYt28foVCIqqoqTCYTX/jCF2hqaqKyslK4vOh0OuFmI209WywWTCYTbrcbs9mMVqvl2WefFYr2RgqlSqWiqqqKRx99VJyj0Whobm7GarWKzCw6nQ6TySSOkdxwzGYzTU1NWCwWcayUVWTz5s189rOfxWw2U15eztNPP01xcTEul4snn3wSrVaL0+ncMGsSXE9b+dhjj1FSUoJGo+GjH/0oTqeT8vJybDabyAxSWlrKzp07KS8vFzUcNm3ahNFoFKv8TqeTj3zkI5SWlmI0Gjl48CCJRAKHw8HOnTvFqp7JZOLZZ5+lrq5O5JWXstK43W4sFgv19fXodDrUajUmkwmtVkt9fT1FRUXiGk6n86buGg6Hg61bt+JwODAYDOzfv590Ok1RURFOp5NPfepTNDc33zRWwmw2s2PHDn7rt36LsrIyVCoVFouFsrIyLBYLRUVFpFIpampqeOaZZ8hkMrjdbkwmE/v37xepNNdff9OmTcJlRaPRsGvXLpqamoTbgjQOTz75JBaLBZvNxp49ezAYDLS2tmKz2dBoNJSWljI3N4fBYMBgMGA2mzEajXz0ox8VcrRnzx7q6+tF5pVCJDeHuro6Pve5z1FZWSmeSVIiS0tLRUanhx9+mGg0SmVlJRaLhYqKCh555BFsNhtKpRK9Xs/WrVv5jd/4Derr69Hr9SLjys12AtRqNTt37sRmswn3Gmk1/Omnn8blcpHP59m6davYNdq3b59YuTYYDBQXF6PVannqqaeorq7G7XZz4MAB0uk0JpNpw90aKRtQNpvFYrHwmc98hrKyMrGTWChfha5IhbhcLrZv305xcTFGo1HsREq+/E8//TSlpaVYrVZaWlqwWq3o9Xr27t2Lz+ejvLwcjUbDQw89hFarRa1Ws3fvXmKxmNj10+v1fPzjH6e0tPSGnaR0Ok1VVRUPPvggGo0Go9HIk08+idFopLy8HKfTyVe+8hVKSkrEfCBlOmppaaGhoQGXy0U8HufRRx9Fr9ej0+l47LHHxJhv2bKF0tJSioqK2L59u3CzsVqtPPfcc7S0tGy4uyWt9hfK4t69e2lsbKSiooKmpiaSySQOh4NcLofZbGbTpk2o1WoOHjxILBZDo9EIxVupVLJz504SiQQGg4Hq6mo++clPUllZKeZHnU6H0Wjk6aefxmazUV5ejsVi4atf/SpFRUViXpF2QdxuNwaDgU2bNmE2m9Hr9RgMBj7+8Y9TUlKC2+3GarXedm6XkbnbUORlxzWZexCp9Hrnrjw7zdeDDu+k0ms+nxerXz/PKpHSlrjBYBDpMqV0mlKFT+leUlEZyWf1/SBlIpFcGgqrtMbjcYxG45r7ZDKZG4691TPcSbukzCB6vV6kIiy8tlQRVnLDkD6GUiwF/NT1SDoGEC4hdzIuUn/f7HmlCrZSdiaVSnXHlYDvRgrlVuq7jcah8FhJFqXf4Lr/teTDLf0uxTlks1nhklJYAfgXRTKZxO/3E4/HNywiJrmIpNNplEqlUPgkJLlTKBTE43HhSgeInabbpWW9GdJ7BwjZLvz95y1fUsCtWq0WLn4bVdstfL9/3mw0p8BaWUwmk6LKtLTjIO0+SPPgnc6zt5PFRCJxgytP4bHr57lMJkM6nRbugwaD4X2PkTQOUlrZO3mG282h0rerazfsstxxU2Rk/lGQjQCZexJ5IpWR+T+L2dlZsdr+QQOUZWTuduRvl8zdhOwOJCMjIyPzS0eKh5CRkZGR+cUgGwEyMjIyMr907lVXLRkZGZl7FblOgIzMXUQqlRI1DTaqYXA3k8vl8Pl8nD17lrm5uVvm1M/n86ysrLzv4lsydydSFiYZGRkZmXsHeSdARobrSunS0hKLi4sUFRVt6JqQTqcJhUL09fXxwAMPiCqZyWTytrmw75RUKsXCwgJqtZrq6mri8TiJREIE4pnNZtRqNRMTE8BPV0+lNHu3CmBLpVKk02mSySSxWAyXyyWCRDOZDIFAQKRflAqk3QwpQNPn85HJZERWoVwuh8fjEdlFbhbMGAwGCQQC2Gy2/+NS6eXzeWZmZkTWmFv14z8GuVyOqakpkdHkToNG0+k00WgUn89HXV3dhoHcNyMSiRCJRDCbzXfszy8Fz/8ixj8Wi7G6usrCwgK7d+8W6UnVavU9HX+wvLzMysoKOp2Ouro6ZmdnReG7jTKf/aKRAmVnZ2eJxWKYzeYNg74/yHXT6TRDQ0MiU5RU7E9GRubOkXcCZGT+N8PDw3zve9/j8uXLG/57MplkcnKSP/7jPyYej4sKqB0dHT+3NkiZKJxOJ2azmZmZGWZmZrh69SoDAwMip/6RI0c4evQox44d49ixY5w4ceKGojjr8fl8zMzMiJz3k5OTJBIJ0uk0wWCQgYEBJicnmZiYIBgM3rats7Oz9Pf3c+XKFQYGBlhdXRW515VK5YY7AVJWn6GhoQ9UfOte4cKFC0xNTYkibr9IcrkcbW1toujanZJIJJiZmRGVhgGi0SjxePyOzh8ZGWF0dPSOxzSdThMOh++4fT8LwWCQ7u5uvvnNb5LJZJj537VFJicnfyH3/8didHSUt99+m2PHjpHP5+no6GBsbOwX1q+3Q9rxO3nyJG+++eZN59YPQiwW49VXX+XkyZNrCpjJyMjcObIRIHNPI6UNvNV/Nzuu8HeAhx9+GKPRKFxU1h9vMpmoq6sTxW6MRiNVVVU0NTXd8t63a+fNCAQC/I//8T8oKSmhqKiItrY2nn/+efL5PJFIBJPJhMViIZFIMDk5idvtvqVf9Xvvvcd7770n8oL/8R//MSMjI4yPj/Pee+8Rj8fZtm0bJ06cYGho6JZ9nsvl+Bf/4l9QXFzMI488gsVi4Rvf+MYdjVk4HOby5cs0NTWJ+gXv57+N2vOzXONO5OX93AegpaWF0tJSUaX6g8jGB30+pVLJli1bcLvd76t/dTodJSUlbNmyRdz30qVLXL169bbnVlVVEY1GWVxcvK3hIZ0zNzfHO++883Mb71vdq7S0lAMHDpBKpQAoLi6murqa0tLSDyQ/H/S/n5fsSn+ur69n7969okpyU1MTFRUVmEymD9Su9/v77Z5DKppYUVHBl7/8ZT7zmc/8TH0gHQ9gs9lobW3F5XLdsODwixzTm8mejMy9gOwOJHNP09HRgbbYQCaTIZlMUl9fL7afzWYzra2tKBQKVldXRXVVt9tNdXU1arWaTCZDOBymv7+fsrIyEomEuHYul+P8+fPkcjlRBKyQmZkZvF4vSqWSXC7Hu+++S1lZGUqlknQ6TSaT4f777weuu0vMz8+ztLSEy+XC4/Fw//3337S4EFwvXf/1r38dl8vF6OgoTqeT0tJSNBoNX/nKV3C5XMzMzBAKhTCbzbd1+3jyySfJZDJYrVZCoRBbt27FarXS2dnJ22+/zX//7/8dj8fDb/3Wb90yn3o+nyeRSDA7OwuAxWIhl8vd0Srf4uIi09PTVFdXi99isRh+vx+v10smk2HXrl2kUinGxsbweDxs3boVj8eD1WqlsrLyBveNpaUlJicn8fl8fPSjH6Wnpwe/309DQwNms5lLly5RXl5OKpVCqVRSVFS0xiVhcHCQSCQiil7Z7Xamp6dFTIbD4aC6ulpUljWZTBgMBrxeLw899BATExP4fD5MJhNbt24lkUgwNTWFVqslk8kQCoUYGBjgoYceYnx8HLvdTnl5uahe3N/fTywWE65YANu2bRMGnSSf8Xgch8NBPB7HZrPR1NRENBrl5MmTtLa2AtddvhoaGhgfH8fhcIgaAj6fj+npaXQ6nahoLVXOvf/++1ldXSWVSpFIJIhGo+RyOb797W8zNDREeXk5SqWS+vp6BgYGMJlMVFZWotVq6e3tpaKigvr6eurr65mfn+fChQs8/vjjN5WBXC7H8ePHuXjxIqurq5SXl/PAAw8AsLCwgMfjQalUsnv37pu6k83OzuL1esnlcuzfv/+mxm8sFmNiYoJUKiVcm+B6Bd90Oo3D4UClUjEwMIDVaqWmpoZ0Os3IyAhlZWVUVFSICs92u52tW7dy+fJlkcpUKlClUqlYXFwkHo9TUlJCfX09KpWK8+fPk81mqampobKy8oZ3NJVKEQwGmZubI51O09raikajYXFxke7ubvbt20cmk2F0dFQUsVOpVCwsLLC4uEg4HMbv94t3cnp6WhQ+02q1zM/PMzk5idVqpaysDIPBQFtbG9XV1WQyGRKJBGazmfvuuw9AyEk6ncblctHY2AggKq9brVa2bNmCVqu9oc8zmQxdXV3kcjkqKiooKysjEonQ2dlJSUkJZrMZk8mEy+Vac97s7Kxwb9y/fz/Ly8uMj4+L6r+Dg4O0tLTgdrvR6XQkk0nGxsbEvLHRvCf1xejoKLt27SKTydDX10d1dbV4Vzo6OlCr1cKVsaSkhIGBAYLBIFVVVVitVqLRKB0dHRw4cIDFxUUqKysxGo1MT0+TTCZJp9O0tLTctBK5jMzdjrwTIHNPs7K6wssvv0xFRQX9/f0cP36c2dlZnE4nL7/8MplMhuHhYXp6elhcXKS+vp7Lly8L95W+vj7+4R/+gc2bN6NSqYTyvri4yHe/+10cDgd1dXX09fVx7ty5NfcuKipiaWmJM2fOANcrkr722mvCp7+vr4+xsTGSySSHDx9maGiIkpISXn31VRoaGjasnlmIWq2mqqqK6elpLl26hNPp5Mknn0ShUFBUVIROp8Pn85FIJKipqbltUR6n04nBYGB0dJRz587x7LPP4na7CQaDzM/Ps7q6SiQS4dixY4yNjd30OgqFAq1WKwpXZbNZwuEw09PTtw309Xq9eDweysvLxW8dHR1cvXqVkpISent76erqEnELIyMjnDhxgpaWFt555x0GBwdvWHmzWq2srq7S1tZGNpulqqqKU6dOMTQ0hFKpRKFQ8A//8A+Ul5eTzWbp6enhyJEj5PN5fvzjHzM/Py+qLh86dIje3l56e3vR6XTodDo6OzuFMvzuu+/S3t4urvtnf/ZnKBQKAoEAg4ODjI+Po9VqWVpaYmZmhng8jkaj4ejRo4yNjVFVVcXw8DCHDx8mlUrx1ltv4ff7CYVCLC8vs7S0dMOOjk6no7S0lOeffx6tViuq//7P//k/MZlMTExM0NnZKWQafmpsLS8vi/u1tLSgUCg4d+4co6OjqNVq3n33XRYWFoQbTzab5ciRIyiVShobG6murqa2tlZULh4YGBD+3dFolL6+PuH+5Xa7USqVDA4O3lIGlEolZWVl1NfXU1FRwZYtW1AqlRw6dIj+/n4aGhqorKzkr//6r/H5fDecf/78eZaXl1GpVKRSKV566aU1Cj78tKDVd7/7XZLJJOXl5aLgVD6fR6/XMz8/z7Vr1zCZTFy5coW5uTlhBE1NTWG1WvnWt74lqlv7fD4uXbpEVVUVP/zhD7l27RrRaJShoSHeeecdampq0Gg0xONxFhYWePHFF7HZbNTW1ordtvVMTExw7Ngxqqqq6O/vp7u7m5WVFfL5PFNTU0xMTGCxWBgeHubq1avE43HGx8c5fvw4VqsVi8VCJBIR7+TKygoej4fZ2Vnm5+d59dVXaWpqYnJykoGBAWKxGFqtlr/9279Fo9EQCoXo7+9nYmKCSCTC3/3d34kiXVevXmV1dZUXX3yRVCpFZWUlKpWKf/iHf7jhOUKhEN/85jepqqqirq6OkZERXn/9dYxGI9XV1WIHdb3f/pEjR+jt7aW4uJja2lp+8IMfoFQqmZycpK2tTSwCfO9732NqaoqpqSlOnTqFz+ejqamJcDgsdkEK0Wq1JJNJpqenmZiYwG6309XVxcjICH6/n66uLpRKJXV1dcTjcQYGBoQr1ebNm2lvb6e/vx+lUsno6Cjt7e3MzMywsrLC7OwsAwMDNDU14fV65YB4mXsa2QiQuadRq9UEg0HsdjuZTEasYhoMBubm5kgmk3R2drK0tITJZMJms6HT6bh06RJ9fX1iJd3hcGC320UAZCAQ4L333iOfvx6Atrq6eoNCYjKZyOVyrK6uolAosFqthMNhlEolRqNRBPlKRoVU4XZmZobi4uLbVmVVKpXo9XqMRiMVFRVEIhGGh4fFB9/j8Yj73UklVI1GI4IGa2tr6evrIxQKiaq6VqsVt9tNW1sbk5OTN93mVigUqFQqnn76aQKBAFNTU/j9/g1XB9cTjUbFboyE1WrFYDCwsrJCJBJhfHycZDIpAkZzuRwOhwOv10swGLzB0NDpdOTzeUKhEPl8HrvdTiAQIBqNolKpMJlMxGIxrFYrpaWlRKNRTp06RT6f59ixY2i1WoqLi3G73ZSXl3P69GkxnpLScvbsWSwWC6FQiFQqhd1ux2w2MzExgU6nE8rf0tKSMBASiYRQqPx+P2azGZfLRSgUYmZmRgTwStVVU6mUWO1fP252u52VlRXMZjNFRUVkMhl6enqIx+NCebfZbFRUVIiqqPF4nJmZGSYnJ4lEIthsNoqLi+np6WFsbAyNRsPy8jIWi4WqqipKSkrEb3B9J8pisWC1WrHb7eh0Ourr6/F4PCwtLaFSqXC73VgsFpRKJTabDa1WKwyRm6FQKDCZTKIPnU4nwWCQ4eFhfD4fDocDh8NBd3e32KEoxG63k81mRX91dHTcYATkcjnGxsZYXl5Go9HgcDiwWCxCpk0mkwhQ1+v11NfXMz4+js/nEzKTTqfFrpJ0v/n5eZxOJ6urq+TzeVwuF0VFRaysrHDs2DGmp6fFjsqJEyfIZrOk02n8fv+G/WIwGHA4HEL2p6amCAQCQvYjkQg6nY5UKkUsFiMej3P+/Hm0Wi1Wq1W8O4CQu1QqxfLyMoODg2J3IpFIEIlECIfDWK1W/H4/RqMRtVpNLBZjfn6e0dFRVldXhdEp7ZaeOHGCYDAo5tf1/vfJZJLl5WV6enqw2Ww4nU4CgQADAwOicrPFYsFoNN6wat/Z2cnw8PCa/lWr1aIPrVYrLpeLsbExIpEIMzMztLe3U15ejt1uR6/Xo1arSSQSjI+P09nZSWdnJ8FgEJVKRS6XIxqNYjAYRP9JfXX69GkuXLhAOBwmFArR3t4u7uvz+YRxkcvlyGQyVFZWYrfbicVi9Pb28t57790gdzIy9xqyESBzT2M2m3G73Wg0GkwmE1arFaPRiFKpFB+Ta9euEYvFxAqrtGsgbf3a7XZUKhUOh0N8pOLxOGNjY+Tz1wNZN6piqlar0Wg04hypLWazWSjvkmIqtUlalZT+fjPy+TzJZJLh4WFKS0t58MEH8Xq9/PjHPxZ+qL29vcTjcUwmkzjnVj67CwsL+Hw+qqurefLJJ/nud7/L7OwsGo0Gi8VCeXk5FRUVDA8Ps7i4KM7bCIVCwXPPPUcqlcLr9ZJOp6moqLhtFplsNiuMNOn6TqcTk8nEysoKJpOJ5eVlYrEYSqVSuDFIhof0QS5EpVKJnQm4rjRLirCk0BUXF6NSqSgvL0etVnPt2jUAent7sdlsIqD5gQceoKurC7vdjtFoFEHaXV1dqFQqzGazUFLNZjMGgwGdTicUKikg02g0rmmDVquluroavV6/5hmktqrVavR6vXAxKTSmJGNQapPFYkGtVhMKhYhEIhiNRpxOJ3V1dWzatAmNRiPka3FxkaWlJeF2VlpaisfjYX5+Xty3rKyMHTt2UF5evkaeJaUyl8uRTqcBOHjwIMvLy2LXZ+fOncL402q1aDQaMpnMbf2lFQqFkJVUKoXf7ycYDJJOp9FqtWi1WrFDIt1bwm63AwgFzOv13uDuk81mGRsbw2KxoNfr0ev12Gw20a+FWZPUajWPPPIIMzMzeDweFAoFjY2NYjcqFAqRy+XEbpFOp8NqteJwOKioqGDz5s04HA7OnTsnDK54PC52V+LxOEaj8QY3mHz+epxRUVERi4uLGAwGAoGAmDOk91qpVKLRaMR81tXVRU1NDQaDAb1ev8al0GAwoFariUQiTE5OYjAY8Pv9uN1ubDYbqVRKGJIGg0Eo5oFAgPHxcaxWKzqdjrKyMvbs2YPBYGBsbIxEIkEqlSKfz4uYKIlUKiXarVar0el0wvCRdimkfl+/SDA3N8fKygq5XI5YLEZ5ebmQI4vFInYf0uk0uVwOr9fL6OgoDQ0NwPW4AL1eTyKRwOPx0NfXR29vL8FgUHwT4KdzhEqlQqPR4HQ6GRkZ4eLFi6ysrBAOhxkaGsJisYj+koxxaV7fsmULZWVlwuA/ffo0kUhEJDiQYwNk7kXkmACZex61Wi2C0FQqFUqlUkzK0gp3Pp8XE3YoFMJisWCz2VAqlYTDYTGRS/9XqVS4XC6hVDU0NAi/28Lj1gfBSYpfLpcjl8uRzWbRarVUVVURCASYnp7mN3/zN2+rLOfzeebn5/na177G8ePHKS4uJhqNMj4+Lo65dOkSW7ZswWw2i98ymYxQsArvkclkeOmllwiHw/zpn/4plZWVDAwMEI1GhTIjrbBLfSg9g3St9R9wvV7PgQMHxBg0NTXddqwkF5vV1VWRhvXNN98kHA7z27/926RSKUZGRsRKXD6fF+Mr9fFGq2/SR15aeY3H46TTafFhlsYrEomQTqdFn1mtVtLpNKlUCoVCQSQSweFwEIlERHxINBrFbrcLuVAoFKItGo1mTbukPlwvT4XPUdivra2trKysCBmRgszhRoWpUKallWEpAFSr1a7pJ+k+0gqo5DeeTCaFop/P54WxLD1T4X+S/IRCITwej/CTNhgMYjfriSeeEO2LRCIkk0mMRuMtZRF+amCk02kmJiYwm81iHKSdqVQqJVZ6C/nrv/5rHnvsMbZt20YsFiOfz+P1eqmoqBDpWKWdHMm9T+rzwr4pVNwcDgdqtZqhoSHsdjv79u0jGAxiNBqpr69ny5YtYlVZcieSjFK1Ws327dv50pe+xKFDh8TOmNPpZNOmTej1ehobGzeU266uLl577TX+8i//kmQyycTEBOFwmGAwKHa4crkc8XhcKOE2m41EIiGeSzKsC59Nr9fjdruJRCJs3rwZvV5PKpUiHA6zuLgo+rSwX6R4E+m9kdz8HA4HDQ0NtLS0kMvlROC4hFqtxmAwEI/HxdhJbTMYDDf0faFcWywWKioqaGlpEWmRC3dsVCrVmvGSDNxUKoVGoxHXNhgM1NfXi1TNRUVFLCwsoNVqxTHRaJRkMilW+p9//nnm5uZ44403GBwcpLi4mNLSUlpbW2lubgYQOz5S6uVwOIzL5eLrX/86FouFf/Wv/hWbN2/G7XaL93Cjd1dG5m5FNgJk7mmuXLlCZHCQ0dFROjo6UCqVRCIR6urqmJiY4MSJE3z6059mcHCQ8+fPE41GOX/+PF/96lcpKytjcHCQEydOCNcDyUd48+bN/N7v/R7f+c532LVrl1iNk3x1T506hdvtpre3l9HRUUZHRzl+/Dh9fX1UVFTg9/u5dOkSNpuNhx9+mLGxMQYHB1EqlWi1Wr785S+zefPmm7rxKJVK7HY7zz33HDMzM3R3d2Oz2fjsZz8rjvF4PELJkPhv/+2/iVW8bdu2id/VajV79+5lZWWFoaEh2tra+Gf/7J9RV1dHJpMhm83y1ltvYTQa+fjHP8727duZmJjgBz/4AS0tLTz77LNr7pPP53nppZf4zGc+w9LSEisrK/z7f//vbzte5eXlImhv27ZtQhmORqOMjIywurrKxMQE1dXVeL1eOjo6RCD35OSkUG4OHjx4w3U3bdrE0aNHUavVzM7OMj4+zujoKNlsloGBAQYHBxkcHCSbzfJv/+2/RaFQ8Id/+IdcvnyZyclJqquricVi/N7v/R6vvfaaMAxGR0f5v//v/5uenh6Gh4fJ5/N0d3fT1dXF4OAgY2Nj9Pb2cu3aNZxOJ/v376ezsxO9Xk80GqWsrIzp6WlhzPX397O4uMjAwAAAb731FtlsFpfLRWtrK1/+8pc3NACWl5fp6+sjmUzi8/n4whe+QC6X4+rVq3g8HnK5HE6nk3Q6zeXLl3G73Xzyk5+ktraWt956i8uXL9PT08NHP/pRSkpKGBsbY2JigjfffJOnnnoKv99Pd3c3Y2NjjI2NUVNTw/Hjx5mbm6O0tFSsvn784x9ncHAQv9+/po3Ly8vk83m2b98OwH/9r/+ViooK9u7dy9atW9ccW1JSwtTUFIODgzQ3N/PUU0/x+OOPEw6HOXr0KOl0ml/91V9do9hLqFQqEc/j8/mw2Wx4PB6KiorEsWq1mscee4wrV64wPj4u3NZGRkYYGBhgYGCA7u5uVCoVwWAQm83Gc889R29vL16vF41Gg9vt5oknnmBoaIjFxUVsNhtms5nV1VWGhoaoqKigtraWsrIyvv3tb/PVr34Vq9Uq/NtdLhcvvfQS27ZtEyvbhf0gGQW5XI6hoSFWVlaYmprCZDJRXl7Otm3bOHToECqVCo/HQzQa5fLly/zO7/wO3/nOd1AoFASDQREPMj09TWdnJ9lslt27d/PMM8/wjW98g0uXLpHNZikqKsJsNnPixAkGBgYYGRmhv79f+OT//u//PhcvXmRwcFC4tW3atInf//3fp729nfHxccrKyshms8L4B0RA/bPPPsvp06eFcfyRj3wEpVLJ5cuXsdlsGI1G4QIm8aUvfYnR0VFefvlltm3bRjwep6ioiMnJSSYnJ8U7Mz4+zsDAAFu3buVzn/scL730Evfffz99fX3CuPna1762Rk7cbjdNTU288847IpD/2rVrqFQqEokEQ0NDbNmyhR07drB3716Ki4t5+eWXyWazhEIhioqKUCqVdHZ24vP5qKysBK4nErhw4QKf+tSn+NjHPkZ5eTnvvPMOR44c4b/9t/92y2QPMjJ3G4q8vIclcw/SHYbdXXCi3k+L6rqrj5TNRafTodVqWV5eFhlSkskkyWRSrERZrVaxvS5tWet0OpFVyOVyia18KWuLtHrm9XpxOp2oVCpisRjJZBK32y1yqpvNZlQqFeFwGJVKxbVr10in08LnPJFI8Pzzz/Mv/+W/XBMgCwjlxmKxsGPHDlGMLBqNCjcEm80GwNDQEC6XC7vdLgwUqSCS0+m8oeCZ1L5kMkkkEsHpdIprRSIR/H6/6Buz2YxSqcTv9+PxeNi+ffsaf15p9TUajYptd8lN5ejRoyIbyvpAwHQ6zezsLEeOHOG3f/u3gevxF8lkUmzXS0WFpOwlKpUKm80mVsxNJpNYbZaQXDdSqRQGg4H5+XksFgtarZbJyUkOHz7MP//n/1ys4Or1enQ6nSjEJq3yazQatFqt2B0ChFuSVBxNaoMUROpyuYR8SW5lUpyITqdDrVazsrIiVpvD4TDZbBaj0cg3v/lNfv3Xf124Q01OTqJSqfjYxz62pohWPB7nc5/7HH/5l3+JzWYT7TWbzXi9XlQqlXBfkmRUpVIJf/1QKCRW5aVdg2w2y/LysnDHymazxGIxgsEgZWVlqFQqfD4fuVwOo9GI2WwWWZsUCgUOh2ONa8ipU6dIpVLs3r0bl8t1S1mUVrcDgYCI1YlGo2IVWno+i8VyQzExKWZBrVYLo196z6UdB+mzJu2ASCvK09PTNDU1CdlSKBQisFmSBUnepDiTTCYjFgE0Gg3ZbJbV1VXRJ2q1msXFRSE7UoyIFLMgzR/SvxW+Q9FolFAoJOQykUig0+lEalm/349erycYDJLL5bDb7VitVgKBgNitk+aH2tpaUStEKizo8/mEq5ZWqxX9FYvFcDqda+TW7XaLlW8pa44Uj5BMJsVOp06nQ6/XrzFUpV0D6Z1RKBSo1WqMRqOQRSmrVuGukHT/dDqNQqEQ/SC5gUlzitfrFXEp2WxWzAvSnG80GikuLl4jJ9lslmQyKeI+VldXxbsrtV3apVKr1SK+rLC/4HrGJCkuR9pNi8fjQiZMJhPxeJxIJEJxcfGGu6aFSN+urt2wS65vJvNLRt4JkLmncTgcVFiu+26uT+FZU1Mj/ixN/plMBo1GIyZpSRnMZDKo1Wrq6+tRKpVC8TAYrqcflVxk1l+3UBldX6HTbDaLQFUpMDgWi5FIJO6oUq6kUMbjcaxWq1AkJGpra4VPuUQmkxH+6usxmUzioy75l0v9IH1gC+MXEokE2WyWkpKSDd2XiouLiUQiol23c3GC64qblOpTqs7scDiEW4P073DjlvpGVZwlJMNv/TguLy8zNDQkKhtbLJY14y/5VUvuBpKh53Q6hd++9JtarV7TBskXX/pzIetlUfJNLjw2kUgIf2ZpNySZTFJbW7vm2WOxGOPj40QiEYLBIG63e01MyXof7Y1+c7vdpNNpYchJ1y9sl+RSJfncS+dJriHSzoyUSrPQxz0UCglXDen8W8miFDxfuBNmNpvXFJC7mTIlBUZLRs1G8iL9uXAcJUNJGn/JAJaQZKHwGjabTbh4FcYxFI53Pp+nvLycdDotDBPpfgaDgWw2u6FLlEKhEGkzJbktfJZ8Pi8UW6kPpbnJ7XaL51IoFGSzWTQazQ2KsHSc5MamUChwOp03ldvC60rnSO4+69+RQiTDqdAIuJV8SkjvrSRjkmtaUVHRmuMK51xpjspms2viJjZqkxSzI/Wh1AeSy2ihu6P0/OvHsXChRnJJktzXJFmyWCxyxWKZexLZCJD50CCtgq6nMD/7Rv9+u/z7t6OyslKkkZMCGHfv3n3DBxiuf7ikVUpJSdzoOGDDFKOZTEYEJm+EtOK1HqVSuUYhhJ8WBXM4HDcoY9LfCz98UsyEFDex0YdZoVBgNBppaWkR/rXS/e/EiLgVG42jpPjV19eLANaNnmUjg2yjfvp5olKpuO+++8jn86RSKdRqtahhUNjGfD5PJpMRefMLFaw7RVrdfL9I/SUFM8fjcUpLS0UeeglpR8RkMonYBEkWb+byttFY3OlzvZ+xKTx2vaG+UZvWcztjXTpnff9Kv9+urYVyu/536d63k8+btfFm174VG7X3Zu/I+z3mZue9H5m+035d36b1bdvonrd7Twrl44O8TzIydxuyO5DMPcm9uKW6PuByIxKJBGfPngVgx44dN6zs3c3kcjkWFxc5ffo0u3fvpq6u7qYfSqlYlZRt48NOoevR3Urhp2K9sjw/P4/NZrvBkJSRkVnLvfjtkvk/F9kIkLknkSdSGRkZGZl7DfnbJXM3cfcuO8nIyMjIyMjIyMjI/KMgGwEyMjIyMjIyMjIyHzJkI0BGRkZGRkZGRkbmQ4acHUjmnmYw9stugYyMjIyMzJ0hf7Nk7iZkI0DmnsStAaMSvjj4y26JjIyMjIzMnWNUXv+Gycj8spGzA8ncs8wkYCX9y26FjIyMjIzMnePWQPXGpVxkZH6hyEaAjIyMjIyMjIyMzIcMOTBYRkZGRkZGRkZG5kOGbATIyMjIyMjIyMjIfMiQjQAZGRkZGRkZGRmZDxmyESAjIyMjIyMjIyPzIUM2AmRkZGRkZGRkZGQ+ZMhGgIyMjIyMjIyMjMyHDNkIkJGRkZGRkZGRkfmQIRsBMjIyMjIyMjIyMh8yZCNARkZGRkZGRkZG5kOGbATIyMjIyMjIyMjIfMiQjQAZGRkZGRkZGRmZDxmyESAjIyMjIyMjIyPzIUM2AmRkZGRkZGRkZGQ+ZMhGgIyMjIyMjIyMjMyHDNkIkJGRkZGRkZGRkfmQIRsBMjIyMjIyMjIyMh8yZCNARkZGRkZGRkZG5kOG+pfdABmZD8JMAlbSv+xWyMjIyMjI3BluDVTrf9mtkJH5KbIRIHPPMZOAzZchlvtlt0RGRkZGRubOMCphcJ9sCMjcPchGgMw9x0r6ugHw8mbYbPzp7++99x4zMzM0NDTw0EMPoVAobnmd+fl5zp0/x8mTJ/n0pz/N448/jlr1i3slFpcWefvw24yMjLBv3z6ee+6527YZIJ1Oc/jtw/zgBz/ga7/xNR5//HG0Wu0voMUfjHw+j9frxWAwoNfr33dbc7kc7e3tvPHGG9Q31HNg/wGaNzXz5ptv0tHRwVMfeYqdO3diMpk4fvw4o6OjPPfcc1RWVWLQG27ZLrjen0qlAhQKwqEw/+N//g8ee+wxWltbcbvcP9Oz913r41L7JQxGA5/97GdRKVW3bE8+nyeVTqHT6kgkEpw5c4bR0VEeePABdu7YeUfyIfPzJx6Ps7i4yMX2i3z21z+LUnl3eNIuryzjmfEwPTONx+PhS1/6Eg674wNfL5lKolarUSlVxBNx+nr7eOPHb/B//V//F1WVVbc8N5/PEwgEuHDhApWVlWzfvv0Dt+NuJ5/Pk0wl0Wl1d/xODsbgi4PXv1+yESBztyAbATL3LJuNsMvy07///vPfYGhoiF/91V/lvo8cuK2yuaOpFN2Mg6lMgLLwArvMoP4FvhE5UzHhcguqiTjO1Sl2WeBOvif5vJotn36K7/2H36U4+DQ7TDn0d/FHJZ+HP/zzb/Hkk0/SuHkzbsv7U6zzeQU7ntjHtR9/j1Z9hgeKDbSUmNjzpU+x48//iG3/5HE+Uusin89TfvA+8vdvpbq6Er1ef8v+zOdhcnISr9dLSVkZ1dXVpI0mploqKcmF2KJJUmG5+fl3QlVjKXXpZk6fPs0uM6hubgMQCoVZWFxgaWmJ/Q88gNKiR1fnpiqxTGly9Y7lQ+bnT1qvJqi0UNJazW6r4q4Zh2MXr7B65Qq/80//KWazGb1ez89in/zwhz/m4MGDVFdXkzfr2ffwTs699D/Yqk3RcJt3IZ+HhEaPo7kMp9NG7c/47tzNxOMJfvj6D/nc5z6H/m6efGVkboNsBMjc82QyGYaHh9m9ezfj4+OMjIxw6dIlHnroIXFMLpdjdXWVK1euEIlEcLvdtLa2olAoUCgU11dgUynOnTtHLBbDbrdTU1NDW1sbW7ZsIZfLEYlESCaT7N27F7PZTDabZXp6mvHxcTKZDCUlJWzZsgWPx8PMzAzxeJzq6mrm5+dJpVKUlZVRVVXFxMQEXq+XRx99VNxfIp1O09fXx+LiIgqFgsbGRhoaGlAqlSwuLuLxePB6vdjtdlKplDgvlUpx7do1FhcXMRqNpNPXAybq6upoaGjg6tWrrKyskMvlcDgc7N27l8HBQcbGxnA4HKJdiUSCAwcO4PP5WFhYIJ1Oc+DAAQwGA9lsltnZWYaGhkilUmzatImamhpmZ2cZHx8nHo9z8OBB+vr6sFgslJeX43K5aGtr4/XXXyeZTLK8vExraytNTU20t7eTSCRIpVK43W527NiBRqO5YXwVCgVqtZr777+fhYUFent7aWpqYnp6ms2bN7O0tMT09DQVFRUsLy+zc+f1FfOpqSmWl5fRarVs3759TT9ns1lCoRAvvPACTqeTlpYW8vk8FRUVqFQqMpkMMzMz+P1+dDodTU1NAHi9XlZWVkin09TW1mK1WlleXmZqaopcLkdTUxNjY2NUVlbidrtRKBSoVCry+TyJRIKxsTEUCgVOp5PKykrRnmg0Snd3N8eOHaO8vByn0ynGXaFQkEwmuXbtGiqVioqKCmw2G9lsFp/Px/T0NEajkeLiYtzuGw2sWCyG1+tlaWmJxsZGrFYryWSSpaUlRkZGOHDgANPT05hMJlwuF06nE4CxsTHi8ThGoxGXy4XNZmNwcJBoNIrZbEar1bKyssJ9993HysoKgUAAhUKB3W7HZrMxPDyMzWYjHA4Tj8epr69neXkZg8GAw+Egm82ysLCA2+2moqICpVJJOBxmdXWVcDgsZCgej7OwsMDc3BwPP/ww09PTeL1eXC4XDQ0NrKyssLKyQiqVoqioiKKiojWK2crKCgsLC/h8PrZv387i4uJ1JTefx+fzsbi4iM1mo7q6mtnZWVZWVtBqtezYsYPR0VHi8ThKpZJcLkcsFhPXlWQhmUxSVlaGRqNhYWGBTCaDRqMhnU6TTCZpbm7G5/MRDAax2+1UVFTQ399PLpejqKiI0tJS8U4VFRWhUqlQqVRYrVbGxsZQq9UYjUZsNhsul0vcf3V1FY/Hw/j4OP39/ezevVu8oz6fD5VKxaZNm0gmkwwMDKDRaCgqKsLn87F161YhW9K809nZyeHDh0kmk+zfv5/q6mp0Op24VzKZJJvN0tjYiF6vJ5VKMT09TTAYxGAwsGXLFvF3i8VCMBjkypUrVFRUkMlkhFwYjQXbt0AymSQYDDIzM4PFYqG2thadTkckEmF2dpZkMkl5eTk2m42VlRWmp6dFP0SjUUpLSzGbzXg8HjKZDJs3byYcDjM/P4/X62XXrl2MjY1RWlqKTqcTuzotLS2YzWaUSiU+n4/JyUmy2Sytra3EYjHm5+cJhULcd999jI6OUlZWhsPhwOfzceLECS5fvkx9fb3Y8fB6vaTTaRKJBJs3b77hOWVk7kbujj1NGZmfgUwmw6VLl3j88cfZtm0bkUiEtra2NcdcvXqVI0eOMDMzQ1lZGT/60Y8YGxsjm82KY2ZmZhgaGiIUCmGxWFCpVFy6dImjR4+ytLRELBbj2rVrnDlzhkwmw7Fjxzh//jyxWIySkhLOnDnDhQsXCAaDrK6u8qMf/YhoNEoqleL8+fP09/ejUCiE4iC5oxTy6quv0tfXRy6Xw2Qy8frrr7OyskJPTw+nTp2iu7ub0tLSNefHYjEmJiZ48803KSoqore3l76+Pvx+P/F4nFOnTnH+/HmSySQqlYqenh56e3vRarVcuHCBY8eOMTw8jMPh4NixY7z99tvMz8+TTCbp7Oykvb2dVCrFyZMnOXXqFKFQiLKyMg4dOsT09LT4qL7yyitMTU1htVo5c+YMx44dI5PJ4HK5WFhYwGAw4HQ6UavVTExM0N3djdVqJZ1O4/f7heFyM3bu3Ek8HmdgYIBcLoff7+fgwYN4vV4mJibI5XIkEgl0Oh1nzpzB4/FgMBiIxWJcuXJljdGkUCjQaDRks1mMRiNWq3XNR1tSKMLhMOfOnSORSBAKhRgeHiYQCJDNZnnttdfI5/NotVrGx8fp6OhgdnYWp9MpZKaQaDTK8PAwPp8P9botJ5VKJRQyq9WK1WpF9b+3DRKJBNPT01itVi5evIjH4yEWi7G6usqJEyewWq3Mzs4KBawQaWwGBwdxOp28+eabLC4uolKpSKVSnD17lqmpKQwGA6Ojo7S3t5NOpzl//jyhUAiDwUAgEODy5cuEw2EMBgOnTp2ir6+PRCJBNpvl1KlTKBQKrl27Rk9PD9lsFoVCQW9vL+l0mnA4zNDQEO3t7dhsNjo6Orhy5QrLy8vo9Xreeust0uk0S0tLjI2NMT09jc1mY2pqirGxMSKRCKFQiAsXLpBMJtHr9Vy5coWBgQFisRjt7e1YrVZSqRShUIhoNLqmDzQaDSsrK5w7dw6v18v4+Dh+v5+hoSGuXr2K3W6nv7+f5eVlQqEQs7OzdHV1AdddBiORCAqFgmw2S3t7O/l8npmZGUZGRlheXsZoNHLy5EnguuFUKCNtbW3E43FWVlaYm5sjm81y6NAhYexKY2MwGHjjjTdYWlpiZWWF4eFhLl++jMViwWQy4fP5WF5eXvNcWq0WnU6HTqfDbrej0Wg4ffo0i4uLmM1mNBoNR44cIZfLMTs7S39/P/39/SwtLRGPx9fMP0qlEpfLRSwWw2AwiPkPIBgMEg6HSaVS+P1+zp49C8DRo0fx+XxotVrC4TBXrlzBYDAwMDCAx+MRCydHjhzB7/fj9/sJBAJrniGVSjE8PMz58+ex2WyMj4+zuLjItWvXhIzZ7XYuXbrE7OwssVgMn8/HoUOHUKvVzM/P09XVRV9fHzqdjosXL7K6ugpcN/7Onz8v5Ons2bN0dnYSDofRarW88847Yj6R5lyr1crZs2eJRCLMz89z8eJFZmZmcDgcnD59munpaZRKJTqdDpVKhcPhIJ/Ps7i4yMTEBFarFY/Hc9u5TEbmbkE2AmTuaXK5HPF4nI6ODiorK2lpaSGbzXLx4kWi0Sj5fJ5MJsOFCxd4++23UavV7N69G5/PRywWI5/Pk8vlWF5e5vTp06TTacrKyqitrcVsNrOwsEB3dzfZbBaz2czS0hLHjx8nFovxxhtv0N3dTVFREdu2bWN8fJx33nmHaDSKwWCgt7eX1dVVlEolo6OjTE1NkUqlCIfD1NTUoNVqheInrRS/+OKLjI6OYjQaxYfH4/Hw3nvvcfbsWRYWFti2bRs2m02cG41GGR8f59SpU2zZsoX5+XmWlpbQ6/UYDAZeffVVenp6UKlUmM1mpqenaW9vp6ioiKmpKfr6+lheXqa5uZm+vj7OnDkjdkM8Hg9nzpwhEolw+PBhTp48iVKppLq6mra2NsbHx8VYnDhxglgsRnNzMz09PZw8eZJkMklrayu5XI7a2lqamppwuVwsLi7S2dlJMBgkGo3eoJRsRGNjIwqFgoWFBcLhMMlkkgcffJCVlRVGR0dJpVLo9XoSiQTHjx9nbm4Ou92OSqWis7NzzYdZoVBgNBqpqKigsrKSioqKNavofr8fk8kklNlIJEIikWB5eZlMJkMul+ONN94gl8thsVgIBAJMT08TjUapr6/n1KlTQmmTZHRkZIREIoHJZMJms615Np1Oh8PhEO0pLy8XiqJkJFVWVjI4OMj8/LxYuTx//jxOp5NQKMT8/DwrKytrrptOpwmFQiwvL+N2uzl8+DBLS0vodDq0Wi2jo6MEAgHKy8uZm5ujs7OTVCrFj3/8Y9RqNaWlpQD09/czOTlJSUkJ165dY2FhQcjoiRMnMBgMhEIhFhYWCIVCwiCzWCxotVqCwSAjIyPiGcbGxkgmkxQXFwtjcWhoiOHhYSKRCJWVlcII9fv95PN5xsbGSKfTuN1uZmZmmJmZIZlM0tPTg9/vJxaLkUql1hj2AGazWSibiUSCfD7P0tISfX19DA0N4Xa7WVi47oalVCrJZDIMDAwAEIlEMBqNYnehu7ubfD7PlStXGBkZIRaLYbVa6ezsFDs2Pp+P1dVVdDodPT09pNNpMpkMqVQKpVLJa6+9hslkwmg04vf7GRwcpLy8nLNnz5JMJlEoFIRCIQYHB/H7/SSTSRKJBMlk8obnstlsOJ1OampqxDsYDAaFPL/77rvE43Gi0ShLS0vCGM9mszcYAQ0NDZjNZiorKykrKxO7AJFIBLhunObzeU6dOkU8Huftt98mEAhgs9nI5/N0dXXhcrmYmJhgfn4elUqF0Wjk0qVLaDQaFAoFmUxmzTP4/X6hhNfW1ordlq6uLjo7O7FarVRXVzM8PMzo6CiRSAS1Ws25c+dwOp0kk0lGRkYYGxujqKiI4eFhlpaWUKvVZDIZxsfHCQaD1NbWcvnyZYaGhtBqtZSVlfGTn/yEWCzG5cuX6ejowGAw4Ha7uXjxIplMhlgsxuTkJKFQiLq6Otrb2/F4PJjNZurq6nA6ndTX16PX6/F6vQwNDREOh4lGo+RyctYKmXsD2QiQuadJp9Osrq4yMzPDyZMnyWQypNNpBgYGGBoaIp/PE4vFGBkZYWZmRricvPzyyzz22GOo1Wri8Tjvvfcef/7nf859990n3H3UajUmk4ny8nKKi4txOBwYjUampqZYXFxkYGCAZDJJbW0tCoWCzZs3c/HiRRYXF6mrq+PRRx/lxz/+sdgBiEQiXL16lampKfbu3YvJZBLPIa0mXbt2jeXlZTweD729vdTV1eHxeDh58iTRaJTm5mbhEiKtJmezWZLJpFBglEolZrOZkpISKioqOHbsGKlUivHxcUZHRzGZTMzPz4uVRLfbLbbgbTYbVVVVFBUViVXIqakpFhYWGB4eZnp6Gr/fz/nz56mpqcHn85FKpTAYDKTTafbv3y9WsePxOF6vF53uevCcVqtFrVZjMBiora2lq6uL3/qt3+Lv//7vmZ2dvW2wpdFopKysDKPRSF9fH2q1mp07dxIMBhkcHGR2dpaKigrm5uZYXl5mbm6OhYUFstnsDcqH5IalUCjWuEVINDc343A40Gq1GI1G4crR0NBAPp9neHhYuEcolUoMBgNFRUU0NTWhVCrXKFmZTIa5uTleeOEFDh48yM6dOzEYDLdsT6GCZjKZ2Lx5sxjXdDrN9PQ0nZ2dGAwGRkZG/rcvuPKGlVaTySSM2qtXrxKLxUin0+TzeTQaDRaLhU2bNmEwGIRBnE6neeedd6ioqBAGS3FxMSdPnkSr1WKz2SgtLaWyshK73c7KygpKpZKHH36Y2tpaTp48yeLiIp/4xCcoKSkRSnRjYyMqlQqtVktJSQklJSXAdSMpn89z4cIF4bKkUCjYuXMn586dY2pqCp1Oh9lsBq6vgBsMBjQaDUqlEovFwr/5N/+GCxcukE6nsdvta/pApVKh0WgwGo3U1dXxzDPPMDMzI2RjZGSEkpISgsEgJSUllJeXC6PCaDRSW1tLaWkper1euBmdOXMGr9dLJpNhYmKC6upqotEo+/bto6ioSKw4w3V3F7vdTnFxMaFQiNXVVSYnJwmHw2SzWXK5HEajEafTSXFxMTt27OCRRx6hsbGRf/2v/zV/+7d/SzqdpqpqbWBuocwoFArm5uZYXV0ll8uJ/gGYmJhAoVBQXFxMfX09Dz30EDabTaz0S9eSdqOk/0uKrMVioaqqirKyMgwGg5ifJHckr9dLNpslnU6j0+nQ6/Wo1WrUajVOp5OysjLq6urYvHkz1dXVa55haGiIQCBAWVkZarWaZ555hpaWFjweD4ODg9TV1aFQKGhoaGB8fJypqSlcLheVlZWYTCYcDodwVdNqtTidToLBIJlMRhjWmzZtQq1Wk8vlcLvdNDU1YbVa8fv95HI5hoeHuXbtmthRtVgs4jmcTiebNm1CpVKJsZLeUWnekFyMurq6+I//8T9iMBiEi6mMzN2OHBMgc08zNzfHu+++y3/5L/+FkpISsUr9rW99ixdeeIG/+qu/wmAwYDKZhO8nID7Q0srspz/9aTo7O3n++efxer386q/+qrhHoauGhPShyGQywv0gEolgt9sxGAzU1NTw3HPP8bGPfYzf+Z3f4ZlnnmFycpKXXnqJX/mVX7nhORQKBS6XC71eT3NzM4888gjV1dV85jOfYXV1lSNHjpDP5zfcZrZarbS2tvLUU09x6NAhHnzwQZqbm2loaCCZTFJRUUFtbS0PPfQQ27ZtI5vN4vF4ROC0SqVa456iVqtvUMglA8jhcHDgwAG2bt3Kxz/+ceHGMz4+Lnz3N0K63sDAAIFAgIaGBo4cOUIkEuG1115jdHSUtrY2nnrqqVuO944dO1hZWeEv/uIv+N73voder+e+++5jYGCAw4cP8+///b9ndXVVKHx79+4ln8+zefPmGxTvwnYtLCyQSqWor68HrruQSEqSpBwfPnxY+FPv3buXH/zgB8zNzQnlTKlUij4tXAnUarU0Njayd+9e3n77bQ4ePMi+fftuaIukXAD09PSwefNm8bu0Kiu1R6fTUVxcTDgcZvfu3Wi1WhKJxA3GzpUrVxgcHCSbzfKVr3yFb37zm8I/vfDaktIitVur1ZLJZMjn88TjcXw+n1CuC/tGelapjxcWFnj99ddpbW3l8ccfF8etfwaNRiNkRbqn2Wwmn88TDoeFUWw0GtHpdGv6FhC7RwaDgfvvv5/f/u3f5tVXX6W/v59UKsWDDz644VhLhoTD4cDtdqPX69m3bx/79u0jFAqh1+uprKzkoYce4m//9m954IEHNoxTcblcVFRU0NzcTHNzM/v27SOVSqHT6ejr62NmZoZQKMQnPvEJjh49SmtrKy0tLaTTaQwGAzt37sThcJBKpUgkEuL5pf5SKpXY7XZOnjzJ5cuXuXTpEgsLC3z+85+/oS0SFouFeDwuZCCXy+H1erFYLGg0GvL5/G391KV5bmVlhaWlJTZv3oxWq71hPnA6nRgMBpqbm9m7dy+5XI6tW7du+P5Lfvc3a7NarRbzMSCMIyk2R61Ws7y8LBYQCmUWrs9XhWMkZdmSnkeSu43kFq4bylVVVezcuRO1Wk1zczMmk4m+vr41crd+5wSuu3OlUilqamr4z//5P2M0Gvn6179OY2Mjzc3NctCwzF2PbATI3LP09/cze+otzp49S319PU1NTXi9XvL5PGazmSNHjrBt2zY+85nP8Oyzz2Kz2XjxxRdZWFhgZWWF1tZWZmZmhHvMb//2b/Mv/sW/4Nvf/jYzMzN85CMfYWxsjIWFBXbs2IFOp6Orq4u5uTkWFxf56le/ysTEBC+99BKtra309vbym7/5m+zZsweTySSUgyeffJJNmzZx9OhRrl27xjPPPCMCfScmJhgaGhIr6n/0R3/EwMAAL774Io2NjXi9Xj7/+c/zta99jdOnT9PR0YHVamVlZYV4PE5nZyfV1dW43W5eeOEFiouLMRqN1NfX88ADD/CFL3yBP/3TP+Xll1/m8OHDdHV1kc1m2bZtG0tLSywvL5NMJjl9+jQWi4W5uTny+Tw1NTU4HA76+voIBoN4vV6+9KUv0d/fz3e+8x3279/PwsICzzzzDF6vV/hQHzt2TGyPh0Ih2tra2Lx5M0888QSXL1+murqaoqIiBgYGuHLlCtu3byefz1NdXc2WLVtuO+YtLS0Eg0GGh4exWCwoFAqxcyN91B0OBw8++CDxeJwTJ07gdrtRq9UbKiPbt2/n8uXL2O12tmzZQjgcpqurC71ej8lkIhKJMDIywtmzZzEYDEQiETweD6FQCJfLxYULF9izZw/T09NMT09z5swZ6urqmJmZEQHeAwMDjI2N8cUvfpEXXniB6elpQqEQTz755Jq2uFwu6urqOH36NA888ACRSISpqSk6OzuxWCy0trYyNjZGPp/nwQcf5IEHHqCnp0e4olitVkpKSrBYfpqWJZfLkUqlCAaD9PT0YLfbGRsbw2QyoVKpmJyc5PTp09TW1jI2Nsb8/Dyjo6P8wR/8ASdOnKCyspLV1VWy2SzPPvssfX19jI2N4Xa7uXLlChMTE8zOzjIzM4Ner6e0tJSDBw+iVqtRKBQinqGjowOLxcKWLVsYHx8nnU6Ty+UoLS1lbm6OS5cu8eijj4pjVSoVZ86c4TOf+QybNm0ikUiwfft2Ll26hE6nY3Z2llQqRVtbG2+++abwzy4qKqK2tnZNv0qB4xMTE7z11ls888wz7N27l1gsxuDgIJcuXSKbzVJZWUlRUREVFRU8/PDD/Jt/82/46le/islkYmlpid7eXiYnJxkZGeEzn/kMXV1dnD17llgsxvLyMg899BBKpZKKigr27NmDWq3mySef5M/+7M9oaGigpKSEVCrFU089RVtbG0VFRRiNRhQKBfF4nMnJSbq7uzEajaRSKd5++20ymYwwdB2Otak/vV4vMzMzDA4O8u677/LpT3+aj3zkI8RiMU6ePEkul+PAgQO4XC6mp6dFcHRTU9Mad8JCnE4nExMTQuG+cuUKk5OTDAwMMDs7S29vL7Ozs4TDYR566CEWFhY4deoUDocDtVrN1NSUcGe8du0aFy9eZGBggPHxcdRqNVardc39tmzZgt/v5/Lly7S3t5PL5SguLuaJJ55gcXGR1157jZaWFpaXl/noRz8KwLlz5xgbG2NiYoLOzk7m5uYoLS2ltraW/v5+lEolKpWK6elpxsbGOHXqFPX19UxOTmIymbh8+TLBYJDFxUXGx8d5+P9n782j6zzrA//P3fd7dbXvuyxb3uU1TuIlcSALoTAECBCYQml7ujFDhzll6Jz+pu10KHOYlpQptJNSShoCCQRSsseJ7diJY1uSN8nad+lKd9G9uvu+/P5w3wfJlrcsJMbP5xwf29L7Pvv7vt/v83yX3bvxeDw8/vjjdHZ2EgqFKCsrY2pqiuHhYQ4fPkxzczOTk5P09/fT3NxMVVUV4+Pj9Pb2UlNTw+zsLBMTE+zfv5/du3dTVVX1vg7bLJEoqAryzEpyg3EqAlt64EBTgJLAhUghHR0dIpKI8kKORCJ0dHTQ0tJCMpnE4/EwNzdHVVUVmUyG4uJiIpEIExMTOBwONm7cyNGjR8nn81RXV1NXV0dXVxdarZbm5mbUajXj4+PE43FuueUW4vE4wWCQeDyOzWbD5/OxevVqnE4nBoNBCCkbNmwQzpszMzPs2rULnU5HIpEQSobRaGTHjh34fD7cbrdQZFKpFO3t7WQyGVwuF8FgkLKyMhHNo7GxEY1GQ39/PydPnmT79u0iMk4ikeBTn/oULS0t9Pf3iyNulUpFWVkZ+Xyevr4+stkslZWV1NfXc+zYMUwmk4gMMjQ0JMx8FHvnYDAo7HGbmprEmI+OjrJr1y40Go2IdtLU1MTq1as5duyY2IlVdiN9Ph92u51kMonJZKKpqemqO2fZbBafz8fAwAD79u0TjtaBQIBsNktHRweAsBfXarUYjUbhPLlUCVCiw8zMzGA0GikpKcFms3H69Gk0Gg1VVVVks1kmJiaorq5Gr9cTi8VEroPZ2VkRjWZqaopIJEJdXR02m43jx4/T1taGwWAgGAwSCoXYsmULx48fx2QyUVdXd4l5RzKZZHFxkampKerq6nA6nXi9XtxuN1qtlra2Ns6ePYvVaqWyspKSkhL6+/txOp3odDqMRiNms3nZiYcyNslkkvLyciYmJrDZbDidTjQaDWfOnGHVqlXCVyQej7NmzRoKhQKhUAi9Xk8mkyGTydDe3k4gEODcuXOUlpZSWVlJJBJhZGRE7Gy73W56e3vZunUr5eXl5PN5XC4Xc3Nz6HQ62traOHfunDB/UWzGOzs7RSShxcVF7HY7wWCQmpoarFYr2WwWj8dDLpfDYDAwMDCA0Wikvr6emZkZ6uvrUalUWCwWLBbLsnUUj8eF43RLS4sw35ufn8fv92O324VplMlkQq1Wk0gkOHbsmDAZVCIs9fX1ceutt2IwGESwAMUmvqqqCo1Gw+LiIgsLC9hsNsrKyjh9+jSVlZXU1dWRy+UYGxsTzqWKiZzyPK9Zs4bKykpyuRyDg4NUVFQIUy1lDS/t19TUFB6Ph5qaGlpaWpieniafz4t1nkwmaWhoYGRkRPgvtLS0LPNHWopih2+32zGZTKRSKU6cOMGGDRvQarUEg0Hm5ubYuXOn2HDRarXCQTmXy3H+/HmcTieVlZX4fD58Ph9r166lqKhoRcHY4/GICE16vR6LxUI2myWRSAhH5UAgQENDA/l8nrm5OdxuN1u3bmV6elpcU19fLxTdyspKotEoU1NTNDc3Y7PZOHfunIjOlE6nOXPmDNu3bxemi9FoFLvdLsz75ufncbvdIgpYT0+PiPCm1+uFH5rNZiMWiwnlQTl9XXrytfS71bNleWhrieS9RCoBkhuOt/MyLRQK4qj5nUq89G6UqZhYLD2+VupSPvIXklypGRsb4+WXXyYSibBv3z5yuRwnTpxgYmKCT33qU+zatUvY+K5U5vXyVvur2NMuJZ1OX0hOdB1tWmp/rJixKPa6S4UM5WeA2JleCWUcr6UNS239ldCfF4d5fTsoJl+KI+W1XJ9KpYR9/Er35PN5MQ4X24Ffrex0Oi38Oa7ExMSEMB1SbOPfKvl8XkQBWtpGpT06nU5EelLGKZVKCbOh661LMeOBX46JYlJytblV1uJSpUO5V2mLsu6XlqOYWl1u3SllZLNZNBrNZef2cm1S5nslU6aroZgTXc60b6W6rmQKeC2sNA/KGKy0Ft5pRKK+f2/DtTwbS9/FSnuv1FapBEjej0hzIMlNxdv9WP2qyrycMKM47gFCMCspKWHdunUcPHiQ2dlZ8vk8Go2GlpYWYVd+pTKvl7fa35Xqv3i37FpQ4qhfrT0XX3c5rkdQuri8d1owuRaB++Lrr3Z6ojgxvpW2XOv8DA0NkUgksNvtIlLNW0XZib1Sey7u80rXX2tdK43ftSp2K62xi+9daeyv9vwoZbwVk5JrXfeX43qe7bdbl8JK86CMwVud2+tBqetabfiXOvEv/dmvoq0SyTuJPAmQ3HDIHRWJ5P3HUmdMiUSyHPndkrwfkSFCJRKJRCKRSCSSmwypBEgkEonkbfNO+kZIbi4Uvx5pmCCR/GqRPgGSmxav18vMzAyBQIC77rrrvW7OFcnlcssSScViMUZHR6mrq6OkpORX0oauri4SiQROp5NgMEgsFqOqqopEIgFcyOg7Ojoq/r00Ay9ciFlfVFQkorP8qsjn87jdbmKxGJWVlctCaF4NRSi5kiP0/Py8iHCkZNi9EVEy7V6rjXcoFOL8+fNotVo2bdq0zH5dSdI3OTkpIrK8FyjJ81ayy4/FYszNzdHT08MnP/nJt7QmM5kMoVCIvr4+kskkW7ZsoaysjGQyyejoKDMzM6xfvx6LxSKiFJWUlJBKpchms1gsFqxWK319feTzeZE0Kx6P4/F42L17N2az+ZKoVgBjY2NEo1GRmTebzeJ2u2ltbX3HxvtagwBkMhkRkUuJKpTL5aioqKCkpIRQKMTExAQLCwuoVCrWr19PWVmZ6FcoFOLo0aPceuutlyQyW4qSiXp6elpEjyopKcFsNpPP55menha+I8rYZrNZEVJZCRXsdDrJZrMEAgHx/rJYLJSWlhIOh5mYmCCbzWIymdBoNLS3t6NSqRgeHhaRnzKZDOvWrUOn05FMJolGoyQSCVQqFRUVFTJEqOSGQCoBkpuWUCjEuXPnOH369PteCfD7/RiNRux2u4jC0t/fj9Vq/ZUoAblcjnPnzhGJRGhubmZgYIDp6Wn27t1LIpEQSZB6e3sJBALY7fZLlIDz589TX19PQ0PDr1QJKBQKeL1efD4fNpvtupQAJRuzkvV1pXZ7vV6RUfhGVgIikQjZbPaSebsc0WiUs2fPEo1GRVKppSQSCYaHh6mvr3/PlACfz4fD4VgxSVYqlWJiYoIf/vCHfOITn3hLazKbzRIKhXjzzTeZmZkRoTULhQLT09McOXKEyspKFhcXcbvdzM/P09zcTCQSwev1irwGhw4dIh6Ps3v3bmw2G4FAgPPnz9PR0UFtbe0lSoyStyCZTOJwOCgqKiKVSvHiiy/y4Q9/+B0db4/HQ1lZ2WWF2kwmQyAQoKurC6fTidPpJBqNEg6HmZubY8+ePcTjcfr6+ujt7UWlUoncJvDLUL1PPvkk5eXlbNiw4bIOttFoFLfbzezsLC6Xi9nZWdatW0djYyOhUIipqSksFgvJZJLS0lJaWlpEXpdsNisSwu3ZsweXy4XX6yWdThOPx0mn0yLvyYkTJ8hkMlRUVIiswwB9fX2cP3+ehoYG9Ho9a9asIZ/PEwwG8fl8ZDIZIpEIRqORoqKitxSdSSL5VSLNgSQ3LEvDtClHyUv/r4RGXBoyb+k1SszwlY6gl1538R8lvJ9StrKDCqx4/eXKubiMK9V59OhRhoeHRV1ms1kk/VHae3HZK42F8ruV2nolYrEY69ev5wMf+AD79u2jubkZnU7Hjh07eOCBB9i/fz9+v5+9e/eSzWZFMqilbWlvb6empmZZdtrL1X9x25W/lbKUMVupvxf3U8mLUFdXh9lsvqQM5bqV7o9Go4yMjIh8CiutldLSUmpqaigtLV1WxtJ1t1Lflq7bi/t48ZxdaRyuNI4rrYmVxi6bzdLX18fJkyfFGru4XRe33+FwiKRmK/VTSVpXVlZ2SVuvNjYr9Xel8bv4Obr4/wcOHMDlcl1SBlxIjFVfXy+ScK00TpcrX8FkMlFbWyuSCR4/fpze3l6sVit33303t99+Oy0tLQwNDXHu3Dnuv/9+br31Vm6//XacTidGo1Fk9HY4HGzbto0777yT+++/ny984QvMzc0te78odT/22GO43W7a2tq477772LVrF3v37iUQCBCNRq/6jCx931xpzPP5PM899xyBQGDFMYQLuSi6uro4efIke/fuZfv27ezbt4/29na+853v4PP5KC8vp6GhQSRkW7VqldjtV3IChEIhXnrpJaLR6CV1KIyOjnLkyBF27NjBJz/5SR577DEOHDjA5OQkzz//PMXFxWzcuJHBwUFOnDhBMBjkZz/7GeFwmNWrV9PX18e3v/1tMpkMP/vZz1hYWKChoYFoNMqf//mfk8vlWFhYIJPJoNVqKS4u5tZbbxX1K/kEVCoVd9xxh8gXMTs7SyKRYNOmTYRCIcbGxkR2eonk/Yw8CZDcsOQLeYLBMJOTk3g8Hvbs2YPRaGRqaorBwUGqqqrI5/OEw2GamppE6MJ4PM7Zs2dFJtDLkcvlOH78uEhLbzQa0Wg0dHV18cADDzA1NYXb7UalUrFnzx4ABgcHCYfDIrlPPp9n06ZNTE5OioRWRqORfD5PR0cHc3NzTE9Po1ar2blzJ3q9nqGhIRYXF9Fqtej1evR6PT/60Y9oamoiEonQ2NhIIBAgEAhQXV0NIJJa+f1+HA4HFRUVGAwGzp8/TzAYpK6ujsXFRfR6PevXr8dgMNDf3y928Q0GA1u2bLnieLe2too+LcVkMlFeXr5MsJuZmSGVSpHJZNi1axezs7MiYZQytidOnECj0aDT6SgpKVmW6VURvqenp1m1apXYNa2urqZQKNDf308mk6G6uhqNRoPD4cButzM1NYXf7xe78k6nk1wux6lTp3A4HJSWlpLL5QiHw3R3d2Mymdi4cSN2u51EIsHU1BSBQIDy8nKsVivnzp3jscceE2PW0dFxyUnC6OgoarVaJBfr7+8nlUqRTqepqqqipaVl2fWhUEgkUUokEmzdupWBgQGi0SilpaW0tbXx/PPPs3r1asxms8iQvGPHDqanp6mpqaGyshKNRsNLL71EbW0tmUyGQqGAzWZjw4YNoq7p6Wk8Hg+FQoHW1laKi4t58803yWQylJSUkEwmaW1t5ac//Snnz5/HaDRiMpnECc/AwAChUAi73c7WrVuBCycfXq+XYDBIKpW67HoZGhrC7/djNptZXFzk2LFj1NbWks/nicViFBUVsX79+mX3pFIpPB4Pb775Jhs2bMDv92OxWCgvL6e2thYAt9uNy+UCLihgDQ0NjI+PMzAwQFVVFeXl5fh8PjweDz/60Y/w+Xzs2bOH1atXY7VaL2lnoVAQ67O8vBybzUYqlaK/vx+Hw0F7ezt+v5/p6WkqKiqWhd1VUKlU/Nmf/Rlf+9rXCAaDNDY2UlFRIcJt2mw2IpEI3/3ud/nDP/xDrFYrt95664pmSjMzM0QiEZG07WLTmFwux9/+7d/ygx/8YNlcq1QqPv3pT9PS0kIgEGBgYGDZM1JUVITNZmNycpLJyUnWr19PSUkJiUSCwcFBQqEQDQ0NeL1eHA4Hzc3NTE1N8U//9E8AbN68mbq6uktOu86fP8+//uu/8gd/8AfLwova7XZ27NjBI488wpe+9KXLrpOZmRk8Hg9//dd/zWc+8xk+85nPUFZWtuK1Sr4Tr9dLU1OTMK06e/YsP//5z3nooYdE8rJgMMjExAQPPfSQCC3rcDhEIsTPfvazIs+E0WikpaVFjPUHP/hB9Hq9eO8rdHR0UF5eTktLizgZVN4vvb29tLS0EI1GWbdu3XWdOEok7xXyJEBywzIxMUFPTw8A5eXl/MM//ANjY2MYDAYymQx/8zd/Q21tLbOzs/T29jI8PMzi4iJ/9Vd/JT7SKpWKeDx+SdnhcJhjx46h0+no6OgglUqxuLiIzWbjueeeE/bwc3NzPPfcc+RyOZ544gnm5+eJxWIEAgEmJyepra3l6aefZnx8nGg0SigUYnR0lOrqan784x8zNDREXV0dra2t/P3f/z2HDh0iGAxSXl5Oc3Mzw8PDNDQ0UF1dzdq1a9m6dSvV1dW0tLTw7LPPMjk5id/vFztx69atw+Vy0dXVxfj4OA0NDfzN3/wNi4uLWCwWAoEATzzxBNFolJ6eHkpKSrDb7Xi93iuOtcViweFwXDF+u2KCoBz5azQazp8/z9mzZykpKaG7u5uhoSGCwSDHjh1Dq9WyZs0a0uk0c3Nzy8o0m81COOnq6mLbtm0cPXqUgwcP4nK5qKqq4utf/zqpVAqXy0Vvby9dXV10dXWxYcMGJicn6erqYmhoCLVaTUNDAy+99BKzs7OcOnWK73znO2zbtg2VSsXx48d5/fXX6e7u5uDBg2zevJkXXngBt9tNVVUVa9euZePGjXR0dKxoVmKz2RgbG6O7u5tgMMjJkydpb28nnU4TDAYvuf7s2bOcPXuW9evXk8/niUajGAwGFhYWeO211zAajfh8PoaGhoSQ/fTTTxOPx9m4cSMHDx7kscceIxwOY7FYePTRR0UW4LGxMR555BEKhQI//vGPGR0dpaysjNbWVv7xH/8Rr9crMkw/+eSTqNVq5ufnWbNmDR0dHbS3t7Nt2zYAvvGNb5DNZmloaCAWi/Hiiy8yMDDAiy++SCwWo7m5mVAodNk109TUxJEjRzh37hxarRaz2cw3v/lNrFYrkUhEmFYsRcmgOzIywokTJ2hra2N+fp7nn3+enp4eCoUCTzzxBCaTiVAoxL/+678SDAaprq7m9ddf59SpU8zMzDA2NsZtt91GSUkJ69evv+zcKQmiYrEYHR0dHD9+nGeeeYZMJsPZs2eZnZ0lk8ng8XgYGRm5ormX2WzmoYcewmq18vDDDy/bNVd2x8fHx9mzZw+/+7u/S19f3zIBf2JiggMHDvBv//ZvHD16FJVKRU1NzbJrcrkcs7OzmEwmzGazMNFRnLJ37txJdXU1VquViooKvv71r5PJZEQW9ampKd588022b9/Od7/7XY4ePYrFYqG6uppvfvObxONxrFYrs7OzPPPMMzQ3N1NVVcW2bdtYu3btiqaH4XCY6elpqqqqhEmVkuOgoqKC4eFhMpnMZcctm82Sz+dpaGiguLiYmZkZFhcXV7x2zZo1fPKTn6Surg6/308+n6eiooKqqioCgYBQQoxGozAzKi4uJhaL8dhjj2EymfjiF78IXDgJSiaTPPvss0xNTfGVr3wFuPA8u91ufD4fMzMzfOMb3xBzGYvFiMVipNNpvv71r7OwsEBVVZUwF/roRz/K3NzcJVmrJZL3K1IJkNywOIuclJeXE4lESKfTDA4OEolEMBgM2Gw21Go1VqsVk8lEPB5nenqa/v5+NBoNFouFoqIirFbrirbAOp0Oh8PBT3/6U5544gmCwSAlJSXo9XpxlG40GlGr1aRSKQqFAj6fD41Gg1arFQ5sRUVFBAIBCoWC2AWPx+MUFRXR3d3NxMQE8XicxcVFYrEYTqeTnp4ennzySV5++WWqqqowGo3o9XpMJhMWiwW9Xo/VahXOhXNzc7z++utUV1cL51RFMbBaraTTaYqLiykpKUGlUjEzM4Ner2dwcJCf/vSn9PT0XPWDpSQFulzSKbVaLT7ARUVFwg5bq9XidrvR6XTCvECr1VJUVMRTTz3Fk08+yeLiojDJuLg8g8FAUVERJpOJhoYGIfDb7XbRr9bWVtLpNMePHxdjUFVVxfz8PF1dXahUKkpLS4nFYuLDPjY2xsLCAoVCgcXFRXp7e+nt7aW2thaTycRtt91GTU0NOp0Ok8mEyWQS830xVqtVCJNqtZq+vj7+5V/+BZ/Pt6IddTabZWxsjP/3//4fPp8Po9GIw+FAp9MRj8dFsqylmVszmQxVVVXYbDasViuxWIy+vj7sdjsGg0H02el08uKLL1IoFDh69CjRaJTy8nLR/jNnzpDL5TCbzRiNRhoaGoSztHKNyWTC7XYzNjbG/Pw80WiUbDaLx+Ph1VdfxWQyUVxcjMViuWTeLh4XxTRMmXO1Wo3FYsFkMpHL5S5RPhXlUa/XizWknHocOnQIuCAIxmIx5ufnCYfDeL1eDAaDyPZaX1/P5s2bsVqtQvkwmUxXTJhWUVEhBLdoNMro6Ci33HILZ8+eZXFxUSRBW+kkYWnbOzo6aGlpIZVK8dprrwnhUTHf+8xnPsOXvvQlamtrGRwcZGBgQNzvdDppa2ujpaWF8vJyVCrVJZmjVSoVNpuNRCIh3kO5XI5oNEp3dzc/+tGPePPNN8WGRTqdpqSkhNbWVurr67Hb7RQXF4sTyEgkIt6H6XSa0tJSSkpKyOVyzM3NYTAY0Ol0Ys5WSiSm1WoxGo3EYrFlik8ulyMWi132HQsXTn4CgQBTU1PiJOfs2bPMzc0JB+BXXnmFV155hYmJCXK5HHa7HbVazcGDB7n77rvZunUrOp1umTnc0n8rJ4W33HILiUSCV155hWQyiVqtxm63s3nzZoqKinjmmWeEL0FTUxN1dXWYTCb6+/txu92kUikaGxvZsGEDTqeTfD5Pd3c3s7Oz4oT14x//OP39/fT29rKwsHDZtSKRvF+QSoDkhiWdTotoDFarlXA4TCwWI5/PYzabKSoqQq/Xi12hpQKDkqFS+ffFqNVqsdPm9/vx+XwiEociMCtCsfLhU45/FUGnpqZmmUKiHDvX1tZiNBrx+/2k02lhZrRq1SqsVqs4yfB4PPj9ftEm5Sg8FAoJZUOtVhONRpmensbpdAohIZlM4nK50Ol0mM1m7HY7VqsVjUYjxqi0tJRkMonP52NhYWGZnfDbobi4GJPJhMFgwGAwEIvFhECjjJnJZEKn04mxjUQiy8pQhEFlHgHKyspIJBJ4PB70ej12ux2bzUZNTQ1arRaXyyWEUrvdLqK/qFQqzGYzKpWKdDpNMpkUPgslJSWUlpaSTqdZWFgQZggbN26kpKSEQqEgojKFw2EhmC/FYDCg0WjEuJWXlxMKhfB4PIRCoWU23co6sdlsLC4usrCwIASxpQqDEo1FGQedTkdxcbEQagGxlh0Oh4h6YrVamZiYoFAoMDMzIyLQKGPgdrspFApYrVaKi4spKyujpKRECJuKqU44HCadTpPL5TAYDJSWllJaWsr4+LjYhdZoNJc1eVCyOCtrVMmm6nQ6xTOp0WguOYVTxtpoNOJ0OoUAZzAYmJycFGtJiZZlMBgIh8NkMhnRnsrKStra2kS9yryvdGqhzJlSl8ViQaPRsLi4yKZNm3C73UxPT6PT6Vi1ahV6vf6KDsROp5PVq1ezatUqXnzxRbFBoKyDvXv38rnPfY69e/fi9/uZmJgQ9yqRs9avX8/q1atXLF+tVmOz2SgvLyccDovnJp/Pk0qleO655xgZGRHmiMpzX1tbi9lsJhKJiI2MXC5HOp0mk8kIQd9ut4v1snRu1Gq1iICzUp9bWloYHx9f9u5IpVJMT0/T0dFxWadiv99PNpsV0Xp27dpFf38/8/Pz5HI5EokECwsLIrpPLpcjk8mItb19+3aqq6uFcpBOp4ELzsrK+uju7iaTybB+/XpyuRxdXV14PB4R7ay1tRWn08kbb7yB1+tlenoavV4vfDYCgQChUEjUqSjiJpNJmJ5mMhm2bNnCJz/5Serr6xkfH8fn8112nUgk7xekEiC5Yent7eW1114TdsEajYZQKEQwGBQfAWUnUvkYK5E30um0sFlX/iz9gKXTafx+P1/72td48MEHCQQCdHd3o1KpsFgsosx4PE48HieXy9HS0kIwGCQYDGK1Wuns7AQumEUkk0kCgQAajYbt27eL3enq6mpqa2tpbW1l//79LC4uct999/EHf/AH3H777fziF78gl8uJnXQl1F4mkyGXy5HNZoVN/eLiIul0WjikOZ1OMpkMarWabDZLOp0WfxYWFrj//vv57d/+bRoaGujq6iKdThOJREgmk5cIrgqK4JBOp0WZSx1mFfOVfD5PJpMR45zNZsUHPB6Pi7H91Kc+RTAYpLu7e8X6CoUCmUxGhPnT6XQUFRUJwUUR5s1mM06nk0AgQCaTwe/3o1arL9mpNpvNOBwOnE4nDQ0NtLa2smXLFlavXo3D4RBrJxaLkUwmxQlOKpVibGxMhBNciiJIJRIJYrEYDzzwAL/3e78nbPkvVhyKi4vZuXMnX/7yl4nFYgwPD5NMJsUJkhJ2MpFILBtbZdwjkQi5XE6YZmSzWbLZrDBVKC0tRaVSYbfbgQsnT8qO61InWI1GI8pXdnhjsRgul0tEoqqqqqKpqYn29nZ27NghFBxF8FZ8H1Zy3lXWhvJHEdCUdaDceznFU5n3UChEMpmkrKwMt9vN888/j9FopLGxUQi2ir/Nxe1Q1n4wGGR2dvaSOhQlS2lLLpdDr9dTWloqTgsHBgaIRCLCp2gpSqCAeDwuhNTVq1dzxx13cOrUKeE0PTo6yunTp8V7qLOzU0SxUcZD+VNdXU1HR8cldSnt1el03HvvvXi9XiYnJ8lkMpjNZjo7O4UPRkVFhXhGlHFxuVycPHmSmZkZVq1ahcViIRqN4vf7l70vlXWmPFt6vZ50Oo3X673EbA+gtraW3bt3c+rUKeLxONlsVphPTk5O8oEPfEBsbCz9k06nGRgYwGAwcO+997Jjxw4efPBBpqammJ6eFqY+O3bsYMeOHVRXV6PVavH5fLz66qvcfvvt5PN54ci7evVq8fwnk0mhIH/3u99lcnKSRCIhfKwmJyf57ne/y9DQEOFwWCiAMzMzPP3008JsUfku6PV6ent7OXnyJMPDw2LOTSYTk5OTxONxWltbKSkp4Q//8A/FsySRvN+RjsGSGxfVBaFzamqK0dFRjEajMO0YGhpieHiY8fFxTp06hd/vFx/no0eP0t/fTzabpauri9HRUfr7+1m/fr3Y5VOch4eGhli3bp1wHtXr9ezatYuenh5UKhX9/f34fD5Onz6NSqXiwIEDwtynra2N3/md30GlUnHs2DHm5uaw2Wz09PTwB3/wB3zhC19geHiYp556io6ODmGGcP78eSoqKqiuruYjH/kIGo2GtWvXEg6HhdlPT08PIyMjjI6Osm/fPj7zmc/w5JNPYjKZOHXqFPX19axfv56enh4mJiaEs+qZM2cYGxtjaGiIV199ldtuuw2n08mePXvQ6/V885vfpKOjgy1btixz1FXwer2cOnWKY8eOMTIywuHDh9mzZw+tra1ks1kOHTrEwMAAGzZswGg0cuLECQwGA2vXrhUCi81mY35+nsHBQdatW8eGDRsua2YRj8c5c+YM5eXlnDx5kq1bt7Jq1SpOnDjB+Pg4PT09bNu2jY0bN+JwOHj66aexWCwcP36c1atXC2dWBavVSnV1NR6Ph+eff16YgbS3t1NRUcHjjz9OWVkZLpeLjRs3UlZWRnt7O6+++ip79uxZUTk6ceIEPT09mEwmRkdHef7553nggQfYsGGDOA1aysmTJ+nr6+O+++6jra2NdevWUVJSgtfrJRKJcO7cOaampgiHwxQVFVFfX08ul+ONN97AaDQSDAapra1lz549DAwMMDo6yvDwMH19fbhcLv7H//gfqFQqvvSlLzE5OckzzzxDRUUF6XSa/fv388wzz3D8+HGy2SxTU1M0NzdTW1srIlDV19dz9913s2fPHqanp0X4U6vVym/91m/xox/9iN7eXnw+HydPnuTUqVPMz88LUyKF06dPMzQ0hMlk4vz585w4cUI8k2fPnmVgYICSkhLuueeeS8Yon89z5swZbDYbfX19pNNpfvu3f5tIJEImkxE76Ol0miNHjmCxWJiamkKr1VJWViYc9RU/CeUE7mJMJhONjY0cOXIEu93O3NwcTqeTvXv3AvDggw/S3d1NLBZb8cQwHo8zOjrK448/TigU4gMf+AA1NTXU19fzjW98g5GREeBCLonTp0+TTqfZuHEjBw4coLGxkdraWsbHxzlx4gThcJiuri40Gg319fUrPg8KX/va1/j+97/Pq6++yvT0NKtXr6a/v59169ZRVVWF3+8Xz0h3d7fw81AUolOnTqHX6/F6vXR1dWE2m5mcnOT8+fP4fD5h5jI3N8fWrVvp6emhsrJyxXY1NTVRXFzMP/7jP/Lss8+yadMmZmdnGRkZ4VOf+hRr1qxhamqKc+fOLXtvhkIhfvjDH9LY2IjdbqetrY3p6Wni8TiHDx/GbDZz3333Lcsr0tXVxU9+8hNeffVV/vmf/5lIJMLv//7v87GPfUyYb37wgx9Eo9FQUlJCW1sb+/fvJ5VKcf78eQKBgFAsFIVGyedQUlLC9u3bhbmdEuShs7OTpqYmnE4ng4ODRKNRYSr3R3/0RwSDQYaHh/nZz37Grl27eP3119mxY8eKSqNE8n5DVZAp+iQ3GKcisKUHjm/IsFZ/ISmNkqBGOa5XdsnNZrPYqVRMLpRdP2WHKxKJUF5evsz+VtnxVmxLdTodWq0WjUYjTEqUJDGpVAq73c43vvENPv/5z1NWVsbi4iL9/f0sLCwwMjLCRz7yEVpaWkgmk5w5cwav18sHP/hBrFarOJpX7MAV23lARKhQdlUBITApO1vKLq7SLuUejUZDPp8nHo+L0JjKuCgmAYoZhXJPMpkU9v8rJexRdj6X7hIqJh+A2PVXjv+VHUZl3BUzkaWhC5WxvdjeuLu7m+7ubtra2tiyZQs6nU70SzEVUMxSFFOWpWOgtCGVSpFMJvnbv/1bIZwru5GKqY1i1qXsgir2z8ruaCwWw2KxLOurgtJnQPRNWV9L50chmUyKXWelTKUeJcmS8sdsNjMxMcFf/uVf8q//+q9iDJW1ev78ef7t3/6NT3ziE+I0TFmnShnKTrxihqPssC/1a1Halc1mhY330lOepeOk/Dyfz6NSqYhEIpSVlYl+wC+TTCnrSdmRVvJJKCdDiukPIO71er386Ec/oqOjgw0bNogx0uv1FAoFkskk+XxeJAHL5/MYDAZh562sE7ggpCt+KHq9/pK5U/JAKGt/6f2pVIrh4WFsNhvFxcUiHO9SlvZTuU9ZS8oa12q1IgqXXq9ndnYWm80m/DmUNaTsOK+0xi6uU7knlUqRSCQIBoPU19eLMpRTnqXPiHKqlk6nhQ29chKiVquXvSeU+TWZTOJZUcbwcu8F5b26sLCAyWQSfi5KXcq6g1867ip+NMrc5HI54RejvJOWml8tPX1UxsJgMIj3WSgUIhQK4XQ6sVqt4t2ZTqeF/43iY6T8fHFxkUKhQElJCRaLhVwux+LiojA1LS0tFe1NJpOEw2HC4TBVVVVYLJZla2B+fp7Kykox5kvnUflu9WyBThk4SPI+QZ4ESG5YLtixaoWAr3z4L7bZvTiijclkEsqCwWAQDqxLUYQTxVRBsVWGX0YwUe5XrikpKcHtdhOPxwmHwwQCAVavXs3i4iKLi4tMTU2RTqfxeDwi/OPS+5c61yo/Uz64ioOe0jbgEntso9EohGRlDBSb6qUs1fsVIUSp53JJepaOy1IB+2IudjBeet3SvinmTRePrUI8Hsfr9TI6Okomk+G2225bZo99sQ298rOLx2BmZoZnnnmGxsZGdu7cSUVFhfg4XxxZZWm5S8dQp9MJZ8SV7MEV34el46oINSsJc4rQoqxbpUxFEVLs3eFC5BW3200oFOLMmTMiVKniC3Lq1ClcLpcwPTAYDMvKU56LpWvpcvOnzJ3Sj6VrDn657pQQt8rcKVlVL3ZgVfwUFBTlQvn3SihC2djYGPl8ng0bNlySMVfJDrt03oAVT5OUa5e2fymK34nye5VKRTKZZGZmhmPHjtHY2Eh1dTUWi2XF9q7Uz6U/V1CcywFqamrEGlPadLnxuFydwLKAATabDaPRuGxMVprni9f90jKXvicu9k9R/n+lwABKe5Tn7+LndSXl4eJkWlqtVpixrcRKmwVL+1BUVCR8uZTrlH9XVVWJ50F5dyvhn5WNCmXelHCqynVK+UajEa1Wi81mW7Zu1Go1Go1G+Htd7l0hkbzfkEqA5IZG2clS/n2tLP0grfRhWxrq7kp1KuTzebZv3y6cLJWPXmNjI9lsVuz6GQwGWltbaWxsFB+dy9VxMVfaHVTuuRZhYmnZK32Y322uNLYKygd1+/btwvH1Wsteeq0SurSsrIzy8nLhZHylcb+4rpXm+3J1K1ypvUrdF8/nUuFdQafTUVVVxYc//GFsNtuyXWKtVktTU5Nw3F26E39xXdfCSvNyJaHvate8FRRfhl27donoQCv16XrW7bW2TylTcVyvqKigsrJSnES8HZa24XIKxVst90pK+cVcz3q4uJ5rKXupUvWrZqkz+krtWmmD40rKyUrZfi833kod7+TcSiS/CqQ5kOSG4/1+rLp0Z/9afi55d1n6ipO7c5JrQa4ZyTvN+/27Jbk5kScBEsk7zJV2maVA8atHjrnkepFrRiKR3AzILUmJRCKRSCQSieQmQ54ESG5afD4fx44d44033uDP/uzPRJKcizlw4ACpVEo4I95///1vuc50Oo3L5eJ//a//xVe+8hWampqYn5/nhRde4Itf/OIlDpZvB5/PxzPPPEMul2Pr1q00NTUJm/h3k3Q6LWxts9ksMzMzfP3rX+c//+f/THt7+3X7IRQKBebm5nj++efxer2Ulpayd+9ejEYjP/vZz0SM7ltuueWqoRXfLVKpFAMDAzz77LPs3buXHTt2LLMpViKLvPrqq5w+fZpMJsPu3bvJZDIsLCywefNmGhsbr5iRFpaP7fVSKBR49tlnAUTc9jNnzvDlL3/5stmQ33zzTTKZDC0tLdTU1Fx3nW+VQqHA9PQ0L730kpjzffv2sWrVqss+H4ODgwQCAcxmM5s2bQKWj1csFuOll15i8+bNVFdXXxKWVEGJqrTU7ru7u5uRkRE+/vGPv6PP6FuhUCgwOzvLP//zP9Pe3s6HP/zhS+zwQ6EQg4ODPPXUU9TX17Nnzx4RBvS5555jzZo13HXXXVRWVl41W/i72Ycf/OAHNDU18dGPfvSKvgTPP/88iUQCo9EosqB3d3fz+c9/nsrKyivWo0TqutycJZNJent7eemll7jzzjvZtm3bdfuArLRmJJIbAXkSILlpUaICRaPRFTPBKiixrdva2mhpaXlbdWo0Gux2u4h3riRqcjgc76ivgBJlZXx8nA0bNlBRUXFZoeed5vTp0yJhmRJ1REku9VZdkGw2GxqNRoRaLCkpweFwiNCEarV6xRCOvyo0Gg0Gg0Hkqlipn1qtlurqauLxOAsLCzQ1NdHS0kJbWxsnTpzgyJEjItna5Thz5syyLNLXSj6fJxwOMzAwgMPhoLm5mcrKShE+9HIYDAaR3flXjcPhuGTOryR8K5FyDAYD+Xwen8/HxMSEiJykUqlE5JgrlRMIBDh9+vSynxkMBqxW6/vGn0fJjquES70Yg8FAcXEx8/PzIgKa0+nEbrczMzMjnK7frsPz20Hpg5JkbSXS6TQHDx7E5XJRXl5OW1sb9fX1NDQ0cPTo0RUzGCskk0k8Ho/IoH05tFqtCNoQDAbf0jvK7XbT29t73fdJJO818iRAcsNyIe51VmRELSkpQa1Wk0gkiEajQuhVMmoujQ4RCoVEqMrLRXQoFAqEw2HGxsZYs2YN5eXlaLVaZmdnqaysJJlMkkwmAUSyJyVEoxIDv7i4WJSnZBgGRMjJTCYj7geEsKyEsovH4zidTvGxzmQyRKNRER996QdsKZFIhLm5Ofx+Py0tLSJmuJK1VRHs4vE46XRahHrU6/UEAoFlEVgymQxOp1MIY5cTuAuFAtFolMOHD4s+mEwmIXwUCgUikQiFQgGTySRCGkajUZLJpFAYVgo3abfbRexvi8VCaWkpgFAEHA4HDoeDQqFAPB4XuQKMRiMajYZgMCjyGij5E5Ssy8oJkBKn3+FwiFj+SjhAlUqF1+sVoT+VcIE6nY5YLCbi6ZeVla0o0Cix/evr60UyIkWhjMViHDlyBL/fT1tbG62trSK3gXKfyWQSY7tz5060Wq0Yw4uvvdyOajqdZnR0lNtvv53q6mpKSkpYs2aNmGclznsmkxFrSonNr9VqKRQKy9awoiD4fL4rrntlPjQaDTabDbVaLfJrKPkxTCbTJXNeVFREcXExPp8Pq9VKcXExi4uLZLNZIejncjmxZuCCImAwGEgkEpw8eVLkqVB+bzabRUhIZb6VPAEWi4V0Os3ExASHDh0SJzPKuCrZlpVs0kvj5ofDYbGOlsbit9vtKyoc+XxejEE+n8fpdKJSqYQCuTT3R3FxsVA+8vk8oVAItVotFJqVhFaj0UhZWRlqtZry8nIcDgfFxcWEw2HgQphSq9WKRqMRWbwvfodGIhFMJpPIw6DE1VepVJSUlBCJRJbllVCEeWWOU6kUwWCQoqIiUqnUMgVtaR8utzmhnJ498cQT7Nu3j9bWVqqqqkRcfiV07NIM1NlsFqfTST6fx+1209fXRyaToaysDIfDIeZdyYlRVFQknvGKigqR40PJ9KzT6bDZbCwsLIhQo0q+hXw+j9VqZWFhgd7eXqampqivrxcZuyWSGwGpBEhuWDKZDIvJILOzs/h8PrZs2YLD4cDj8TAwMIDdbsdut+PxeGhoaKCpqUns/I+MjAjB7nK7UPl8nsnJSQKBAGNjY1RWVlJUVMTRo0d58MEHcbvdTExMkE6nufvuu+nq6sJms4mEM5FIhNtvvx29Xi92pebn59HpdGJXPBaL4fP5cLvd5HI5JiYmmJ+fFyEKp6en2bhxIyUlJWSzWQKBAFNTU8CFI2in00lZWRkVFRXL2u71ehkaGiIUCjE5Ocnc3BwWiwWLxYJer6e2thar1crMzAyRSER82Ovr6+nt7RXCsdFoFGPr8/nEDv/27dsviYWdz+eZm5vj5ZdfFoJXXV2dMCOJRCKivuLiYlavXk0ikWBqagqfz4dWq2XVqlVX/Igqgp+izORyOSEEKUnWJicn8fv92O12KioqKCsrY2hoiIWFBWpra7FYLKRSKaLRKF6vlw0bNqDT6QgGg7hcLjZv3ozH42FxcRGz2cyqVauw2WycOHECu90uhNaqqipsNhvT09MkEgn8fj+xWOy6TyQsFgurVq1ieHiYgwcP0traisvlYnFxkXw+j91up6Wlhbm5OQ4cOCCEE2VsXS4XwWBQCGCrVq26ZG5UKhVWq5WJiQnOnDmD2WymurqaW265ZdnO+cLCAqlUCrPZTFNTE16vl3w+T1FREQ6Hg9nZWTweDwDFxcU0NzfT1dWF3W7HYrEIgfLWW29Fr9cTjUZxuVx4vV6MRiOrVq3CZDIxNzeHz+cjl8tRXFy8YpsvJpfLMTY2xuzsrEiMFYlE6OjooKysjPn5eZLJJE6nE71ez49//GPWrFkjYrsru+DV1dXY7XZisRher5dQKIROp6Ojo4PFxUXOnz/Piy++yObNm2lra0On0+H1ellYWCCbzTI3N8fY2BjFxcVUVFRgNpvp6upizZo1YuNAEaA3bdq0YujWZDIpxkDJIuxwOOjv7yeZTGKxWDCbzbhcLm699VasViv5fJ5IJMLg4CBGo5FYLLbiKcBK46YI8IrwqpDJZAgGf/kO7ezspKioSAjQShK48vJyAoEAbrebfD7P3XffzejoqEiiV15ezsLCAsFgkLVr12IymfB6vRw7dozt27fj8/lobGyktLSUeDwu+qAI2yuhvB8ff/xxvvrVrwrFXwmv+5u/+ZuUlJQQi8VYXFwkEAgQDAbZunUr+Xye/v5+fv7zn7N69Wrq6upYs2YN+XyeQCAgcrd0dnZeYoIXDocZHR0lnU5TWlrKunXr6OrqorKyUihFsViMWCzG2rVref311zl9+jTRaJS2tjb27t0rlQDJDcP742xTInkLjI2Ncvz4cXK5HC0tLfyv//W/GBwcxGw2k8vl+Iu/+AtqamrE8f6ZM2dIJBJ87Wtfw2az0d7ejsPhYGZmZsXy1Wo169evp7S0lI0bNwol45lnnhEZI10uF08//TQqlYry8nK++93vMj4+js1mY3x8nEOHDpHJZPiXf/kXDh8+TFNTE2vXrhWJw+x2O7lcjhdffJFkMklraysvv/yysN2ur6/n7/7u75ifn+fFF1/k0UcfZdWqVRw6dEjsTq5kR15dXc3GjRupqqpi06ZNlJWVcejQIZ555hm0Wi2jo6P8wz/8Ay6Xi+rqampqanjkkUdwuVzY7XYOHz7MU089RU1NDWNjYzz88MOk02lSqRQvvPACLpdrxfFSjuu3b9/O9u3bl9mRDw4OotFocDqd/MVf/AWFQoHvfOc7jI2N0djYSFtbG9/4xjeuaBLj9/vp6+vj5Zdf5uWXX+b8+fPCJCCbzeJyuThw4ACrVq2iq6uLhx9+GI1Gw7p16/jWt77FwMAAoVCIsbExWlpaePjhh4lGo9hsNvL5PBMTE7zyyiuEw2FKSkrweDx8/etfBy6cOjz11FMcO3aMQqHA8PAwjz/+OCMjI5SWllJbW8vc3Ny1L+AlFBcXUygUGBkZoVAo8I//+I+UlZXhcrl48skncbvdtLa2UldXx7Zt25aN7SOPPEJRUZHItLtSG5STiz/90z/l4MGD/If/8B+48847efXVV1Gr1QwODvLqq69y/vx51q1bx6OPPioysE5OTjI4OIjH4+Fb3/oWtbW1FAoFuru7mZqaory8nG9961t4PB5MJpNY97lcjr/7u7+ju7ub1tZWbDYbTzzxBAcOHOD48eNEIhHWrl3L//2//1ecqF0JrVbL6tWr+bu/+zvxnBuNRv72b/9WKMTj4+OcPHmSkpISNm/eTGdnJ5s2baKxsRGtVovb7aa/v1+cFBw4cIBNmzbx3e9+l5GREWw2G83NzTQ1NXHnnXeKZGEej4cjR46QTqdpaGjgySefFNcbjUbOnj1LOp3mqaeeYmRkhI6ODo4dO8b4+LhQWJfy8ssvMzMzg9lsxmKx8LWvfU2cuB0/fpwf/ehH1NbWMj09zdGjR/F4PJw5c4b/83/+Dw0NDaxdu5ZQKMTi4uJVx+3s2bMcPnyYl19+mSNHjuDz+cTv+vr6ePPNN8U79K//+q/p7+8XPiPf/OY3xbhFo1HC4TAvvfQSarWa+fl5CoUCU1NT/OhHP6K1tZWpqSkOHDjAxMQEWq2WkZERnnvuOebm5giFQpw8eZL//b//t+hDJBIRGwsXk0gkxOaF3W6/JHHdfffdh8Ph4NixY7z88ss0NjYyMTHBs88+SygUor6+XqyBjRs3YjabOXnyJC+88AJNTU1MTEzw/PPPMz09vaze4uJipqenGRgYYHZ2lnw+z8mTJ7HZbPT29nLmzBk2bdokNg5Wr15NZ2cn7e3t7NmzRyoAkhsKqQRIblhaWlrZtGkTi4uLuN1uZmZmhPNYRUUFTU1N2Gw2SktLyeVyeDwe/H4/4+PjIkW8cgx8OZYmdlJMdJQjfr1ev8zMqLS0lIaGBnH0XFxcjNvtxu/3Mz09TTKZpLy8HJ1OR3V19bJMlUr2X7PZTFFREdXV1bS0tFBWVobX6xU7eIopjU6nI5fLCXvfldqt7Kyq1WqcTifV1dU0NTXR0dHBtm3b+MUvfoHBYBDOgevWreMXv/iFSNRVU1ODzWYTibYsFgtWqxWHw4HX613RDEEZr6XZUBU6Ojqora1dZgZ16NAhRkdH8Xq9Qqi60ke0pKSEtWvXctddd3HXXXfR0dEhlCDF5r6zs5Ph4WEmJyeFuYViQqQoRffccw8lJSVs2bJFnBylUik++9nPcv/995PJZPD5fLhcLiFUl5SUUFNTQ3NzM2vXrmXTpk384Ac/YO3atdTW1mI2m9+yY7Jit15eXo5KpeJzn/sck5OTzM7OAjA5OblsPpeO7Wc/+1lmZ2eZnp5GpVIxMTFxSfmKKc/27dt55JFHeO211/jbv/1bnnjiCebn5/nFL35BJpNh3bp1mM1m/uzP/gybzSZOthSnWqPRyNDQENFoFLPZzPz8PKWlpWKXt6ioSOwkLywsMD8/TzabpaKigra2Nj772c9y+PBh5ubmSCQSnD9/nrq6OoLBoFgTV8JisVBSUkJjYyMNDQ3Y7XbcbjeFQkGc0sDy5/bi50BZX52dndx6660cPnwYs9nMzMwMsVhMXK+YpSnZcJV1ptfrefDBB0mn0xw6dIiFhQU+8pGP0NXVJXalh4eHKS8vx+Vyrdivu+66S5iZzM/PMzMzQ6FQoKioiJqaGmpra7HZbJSXl+P3+8VpocvlorKyEr1eT3l5+RWz6yps2LCBvXv3ctddd3H77bdTVlYmfrd27Vo6OztXfIeWl5dTX18vhNwdO3bQ1taG2+0mnU5jNptpbm5m//79PPDAA7zxxhtCKVhYWECn04m1sX//fmpqaohEIsKcUq/XU1ZWdtk+KG0IhUIkk8llJ7aFQgGPx0Mmk+GWW25h9+7dHD9+HJVKxejoqDjdVN7byvOybds27rjjDt58801xbSgUWlavWq3mnnvuobi4mDfffJNCocBtt91GVVUVRUVF9Pb28ulPf5q+vj4qKyuFWdLlMoRLJO9npDmQ5Ialr6+PcdegOO4tFAqEQiHi8TgajUbYnKvVapGoS6vVit2zpcLBSlwu+6pi/wwXjtOVXUy1Wi1S0SsfhGw2K+zGE4mEsOW/uM6l/1eyVSofL8Vxs66ujmQyKXZrW1tbL2tzfHH7FUFGaZ9iOqNcp5gaKG1XlAzlI7rUFl6lUl3W7n3p38ouX0NDA3DBhlyn0y2rW6/XU1FRQXNzM4VC4arOimq1WvhBAMtMLRKJBD09PczMzLBz507KysqYmJjA7/dTVlYmbKiVHcVCocCHPvQhzp49i91up6OjA51Ox/e+9z3Wr19PTU0N4XCYdDqN3+8XfhOKeYkSESSdTovxeKsZmMfGxsjn89x+++0iWtQ999xDQ0MDmUyGTCaD3++nUCgIPwqv14vZbOaFF17grrvuorGxkUQiQTabxe/343Q6RXtyuRyzs7Nks1nq6uqoqqoin8+zZcsWsaOrXAcXfEbS6bSoT8mi63A4qK+vp7i4mHQ6LdamwWAQQrOyPvR6Pdlsllwuh0ajEfNuMBhwOp3U1tYKG2qLxXJNGbGVNaPVakV9SpuX3r9UCfZ4PGJtKdf4/X5GRkaYn5/nAx/4AMePH19myqPUNTExQWVl5SU5Pjo7OxkdHWV8fJyamho2bNjA4OAgdrudyspK2tvbxdytFDHmJz/5CdXV1dTX1y+b31wuh06nE87Lis278t4IhULLMqRfy66z4rug+HgsHaeuri6mpqZYvXq1MLEKhULEYjGRAVer1YpnpqSkhM7OTp5//nnKy8sxGo2Mjo7y8ssv88lPfhKtVovX6yUajQq7f6vVKt6ZSvlLszNfrg/KvXfeeSf9/f2YTKZlviYTExNYrVbefPNNJiYm+OAHP4hWq2V6eppQKLTs3TA+Pk5tbS1dXV0MDAxw7733Cv+ucDh8ydpTTElTqRRHjhxh3bp1GI1Gqqqq2LdvH3fddRfnzp3jzJkzwm8kl8sRCARQq9XC50smh5S835GrU3LDsuBfYGpqSjjLGgwGQqEQLpeL2dlZQqEQoVCI+fl55ufnWVxcRKPRsGrVKubn54XjrBJF52Lb1Hw+j8fjIRgMih19rVZLXV0dHo+HmZkZfD4f4XCYubk5pqamWFxcJBQK4ff7cblcYpeytrYWo9HI1NSUsEOenp7G4/EQDoeFPbrb7WZxcZFgMIjX62V6eppwOCx2q7LZLF1dXXi9Xrxe72XNKEKhELOzswQCAQKBADMzM3i9XoLBoCjrlltuIRwOMz4+LtrU0dFBIBAQ/19cXBQ23UpZXq9X7FyuRGVlpeifUt/SefD7/YTDYdxuN52dnej1enw+n3C0u1goUIQzj8eD1+vF7/cL+2OPx4PH42FhYUGMuc/nWyZ8jY6OMj8/TyQSwefzEQwGRdnr1q3D7/eTSCSEY/H58+dJJpPCEVqn0zE/P8/09DR+v59gMEgkEkGtVnPbbbcxOzvLzMwMfr8fj8cjTL2Wjo/iTKj4PwSDQcbHxxkaGqKnpweNRkNzczNtbW1Eo1GGh4eFwyrA3NwcyWSSiooKwuEwU1NTBINB4d+STCbFtS6Xi2QyeUn90WiUnp4exsbG8Hq9xONxsduv+EVMT0/j9XqZnJwUfg5zc3MsLi4Ku/1UKiUcbpU1raz7hYUF5ubmcLvdwAXFVaVSMTY2hsfjwefzsXHjRkwmk3DyVZTMpfNeKBTEc6fMubIbHg6H8fv9zM/PCyEuHA4Lf4VQKEQqlaKyslI858FgkGQyyfz8vPChmJubY2ZmRijIyr3KDvbIyAiBQECs30AgIMzgSktLhQKeSCQwm820tbVhsViE4+nFisdShoaGRJuUnXflnaK0Y+k7IZlMYrfbqaurY2JiYtl7aSXTvGQyKZ732dlZgsEggUBAvG+mpqbErvzU1BTZbHbFd2gwGCQYDAplz+FwsGPHDo4ePYrT6cRoNBIIBOjv7xeCfTKZZHFxUTybc3NzxONx1Go1xcXF1NfXiz4o1yknXktRlO4HH3yQiYkJhoeHcblcBAIBpqenxcaOy+VibGxMKBSJRIJQKCQcrpX3bDqdZn5+npGREdHWRCIhxkVZT8qaVE5OBwcHKSkpQaPRiFOJpqYmcTKkzLHf72dmZgaVSoXP56Ovr4/+/v5LX5ASyfsIqQRIblislgumKYpzaVNTExqNBr/fj9frFTabys6WErHj/vvvx+Px4HK5iMVi6HS6FcPIKUfOBoOBSCSC3+9Hp9OxdetWIaCn02lsNpswG1GpVCIqRjgcFsLAjh07qKurY3JyEo/Hg9lsZm5uDo/HQzKZxGg0ig++smOmCAUWi4VoNIrf7xd9Gxsb48SJE8zNza1ocxyJRMSRvCKcKkKtogQ8+OCDZLNZxsbGWFhYwGw2s337dhGtBxDjp0QLicfjZLNZFhYWLqsEbN68WThCKx9Ok8kkTB/C4TA2mw232829996LXq9naGhImGutVG44HCYWi5HL5cROtyJEZbMXIkRFIhGsVismk4lAIIDFYqGiokIISkajkXA4LE6CFGfo4uJiqqqqxI5vVVUV2WwWr9dLOp2mqamJaDQqBIlkMkk4HEaj0fCZz3xGCGuLi4skEgl8Pp+IFrSUTCbDzMyM2CUfGxtjaGiI7u5u2tra2LlzJ8XFxeh0OioqKoSvg8ViIRgMotfr6ezsJJ1O4/F4xI54eXm5cBK1Wq3i2qUoJ1gzMzNMT08zMzOD2+1Gq9XS3NzM3r17KS0tFcL1xMSEiJ4TjUZJp9Ns2LABu93OwsKCUCoVR1kllGcoFBLrHmDnzp04nU6x6x4Oh9m9ezc2m00ohVNTUyuaj4VCIaLRqJhzr9eL2+3GZDIRi8WYn5/H6/VitVoJhUJijcOFSEdr1qwhGAwKhSydThOPx8X6t9vtwiSntLRUOKlWVFSwfv16BgcH0Wq1JBIJEYlLMQ1TqVS0tLSwbt06YYK0du1aKioqxDzPzs4uc1xfSkVFBWq1mmAwyMLCAu3t7cRiMdxut+iD8uwppjA1NTXs27eP8fFx5ufnUavVxOPxFX1AUqmUeKYVpVVxnrXZbHg8HmKxGGaz+ZJ3qHJaurCwINqhnLbY7XY2b95MNBqlqqoKs9mM2WymsrJyWeQmuCBgK+1IJBKoVCrq6uq48847L+nDSooMXDhheuCBB8jlckxNTYn35/T0NJWVlWi1WoqKinA6nUJZUSJN2Ww24dyu4HA4KCkpEdcajUby+TyJRIJYLCZ+ns/nqaurY/PmzeTzeXHqpCjIgUCA5uZmWltbhaO5SqUiEAhgtVrx+/309vZy/vz5FfslkbxfUBXeauBuieQ94lQEtvRAzxbYYMqSTqcxmUzCdOFajsiXRpdRPlyKjf7VKBQKJBIJ9Hq9OMo3m81XTSKkmI8AIoSlYvZzNRYWFujq6iIYDPLggw+Sz+f53ve+J6JeNDY2XrWMy/VFMeu4XKjUt4ISSvBa4ssXCgWy2Qvz+HbboJRVKBSEYHm1dZHL5S4xC4vH4+h0OmE6daUj/aVjqChwZrP5LTsIKq/kVCqFRqMRbVD6oKzdpeEhlVwJirnVxf1VTiKU8I+KmVNDQ8Oya5VQsiudyCwdm5V27y+H8owpbV5qSpdKpa6aIO3toJyQrPSMKaEmV3p/KD4US03/Lkbx0bm4bGUtLPVPuFzbFJ+ga313KfOobDYoc/528jgoyp7ZbL6mdihmXUtNefL5PPF4HIvFctUyLu6DMgZX60MikSAYDBKPx2lsbFxWv3L6cnH9+XyedDq9bB5zuRyJRGLFti59ngKBAOFwGLvdTlVVlShPGS/Fj2vpmCjK4kp9X/rd6rRd8muJ5D1B+gRIbmiUWPTXK3ApH5y3+vFUPvCK78G1sNRx7HrrVUIwulwujh07hlqtJp1OU1FRcUXH5mtBr9e/45kur7d/Wq32HUtcdHE5V1sbKwn4S3NKXMvaejfGcGn89KVtWGlsL3ftUpT7rFbrZQVvjUZzRQUAlo/NtaBWq1ccm3dyzi/H1RLkKe8PuHTcrnbv5QTdaxXKr2XOVkIp+50aO41Gc91K68XPjEqlEgr8tZTzVvpgNBovmx1Y8V+4uH7lBOzitl+prUqEMIPBwPr162lvb19W3uXmVzoGS25EpBIguaG5+IX/Vu57O3X+Ku6DCx/Nzs5OOjo6hNLR2tqKxWJ5W5mA306b3qly38k2vJWyVrrnvWr/tZT3Vtb8O3nd9fb3WhzX3y2uVMdb/d3Vrnmn5+Tt3nM9Zb7Vfv8qnpe3Ml9vpa01NTV89KMfRaVSXaIcvZdrWSJ5N5BKgERyA6BSqcQOrnJkrWQolUgkEsnbRzk5WJqYTCL5dUYqARLJDYb8MEkkEsm7h3zHSm4WpBIguWHJ5rKkUhecbRVnLMX58eJ42AqKU5riNLrUMRjevZe/4oSoxPxWHMkUm9h0Oo1er7+qc/FbqVdBcXhUHOOuZvt9LeRyOTKZjEhidr0ojtXwS/vgpU6976aNrRJicGk4T8UJV8kpcaU45u81ylwqDolKMrsbGWUeljqcKs70N3rfJBKJ5P2GVAIkNywD/f28ceJVxsbGuO222zAYDDzzzDOsWrWKL37xi+JIdymZTIbHH3+cbdu2UV9fz8jICIcOHeKP//iP39W2ZrNZenp6ePPNN2lqaiKTyTA5Ocm2bdswGo1873vf4wtf+AJbtmx5xx1MU6mUiMoSjUbp7+/nK1/5Cs8999w1ZRy9EpOTkzzxxBN4vV6+9a1vXff9hw8f5qmnniKZTHLvvfeiUqmYn59n+/bttLa2rjiH7yQzMzM88cQTuFwurFYrW7duJR6Pk0wmuf3222lra3tX6387pNNpEfd/ZmaG7du3s3///ve6WW8LRVFWlHK/3093dze5XI4PfehD73HrJBKJ5NcLqQRIblgSiSTV1dV89rOfxWKx8G//9m+UlZVRV1e3LLPkUtRqNR0dHZSVlaHX6ykvL2fr1q3velu7urrw+Xxs2rSJnTt3AvDoo4+KiBebNm0ilUq94/Xmcjl+/vOfc99994kIQy0tLSJO+duloaGBurq6FXMVXAu33347Bw4cQK1Wc//99wMXQid+5zvf4fz58/zGb/zGu6oI1NTUsGrVKrRaLQ6Hg7vvvptCocCJEyd45ZVX6O3t5WMf+9i7Vv/bIR6P8+STT/Inf/InGI3Ga45S9X5meHiYqakp7rnnHuBCJKOmpiYRYlQikUgk7xxSCZDcsFRVVdFSYcbpdBKNRnnhhRfYv38/O3fuFCY3/f395HI5ysvLKS4uJpVK4fV6KSsro1AosLi4SCwWE2X6fD4WFxfJ5/PU19djMpmYmJggHo+j1WqxWq34fD46OjqEeUI8Hmd6ehqj0Ug8HsfhcFBUVLQsjrRer8ftdnP+/Hk2btyI0+lkx44dlJeXk8vl0Ol0ZDIZhoaGsFgsIqlNoVBgcnKSeDyO1WqlqKgIjUbDmTNnaG5uJpFIkM1msVqt1NTULBufdDrN7OwsP//5zyktLaWtrY3i4mI0Gg0ajYZoNMrc3BxarZbS0lJsNhu5XE5kFdXr9TQ1NaFSqThz5gxmsxm9Xi/iZHd0dKDVaoUJUz6fZ3Jykmg0SnV1NTqdjkAgQDabJZfLUV9fj9lsXtZGo9EoYvQrsdoNBgNtbW3Mz89z6NAhHnjgAcLhMD6fj0KhgM1mo7y8HK/Xy+joKO3t7Wi1WpEAafPmzSKDp5LASInFXlFRIcJjqlQqtFqtiCO/NFzkunXrOHr0KF6vl7vvvhuz2czExASZTAaLxYLdbieXyzEzM4PZbCabzQqzptbWVkZHR7Hb7aTTaSKRCMXFxeRyOZH1t7S0lHw+LxK5mUwmLBYLWq0Wl8uFxWKhurqaYDDI4uIiRUVFVFdXCzMZJRnbxMQEo6OjrFmzhlwux8LCgkgSV19fTzwex+fzEQgEWLVqFcFgkPLy8kvmYW5ujkQiIUxvamtrOXfuHJWVlVgsFpLJJOPj4+zatQutVks0GhVZgh0OB9FolJqaGvR6PYFAAL/fj8PhIB6PU1JSgt1uZ25ujlgsRmVlJXa7nVQqJRKNKXPQ3d3NyZMnqaiooL6+XmTrXRoBy+12E4vFUKvVWK1WSktL6e7uxul0olaryWazZLNZ1qxZIxI8RaNRkQRKyXwskUgkNzvyTSi5YSkpKaGuro5sNsuRI0fQ6/WsWrWK+vp6EokEPT09IuPo7OwsIyMjFAoF/H6/EHqCwSAjIyPk83lisRgTExMiScyhQ4eAC3bKZ86coaurS2TuHRgYIB6PMzs7y5kzZ8jlcpw+fVpkKM3n88vaWlFRIbLkPvHEE/zbv/0ber1exKvO5/Mia2Z/fz/Dw8NkMhlmZ2cZHx8XmVn7+/vJ5/OcP3+ec+fOEQqF8Pl8HD9+XNiyL0WlUuF2u1dM4DM/P086ncblctHT0wPA+Pi4yMY7NzfH2bNnAQgEAnR3dzMwMEAymaSvrw+/379shzaXy9Hf34/f7ycej+P3+xkfH0etVjM1NXVNJx2KQlBfX082m+XcuXMkk0m6urpEtt75+XkGBwcBOHr0KD6fj3w+TzQa5eDBg+TzeSYmJpiensbr9TI3Nyfqv9bciEuVxPn5ec6dO0c4HKZQKOB2u+nt7SWVStHd3c38/Dx+v5+ZmRnOnj2LSqViaGiIcDgs1sjBgwfJ5XKMjo4yPT3N4uIikUiEkydPUigUmJ6eZmpqimg0Sl9fn8hG7Xa7GR0dvWQ9KWOl+MMoCkl/fz8ajYZgMMjg4CCBQICFhQVef/11MR9KRlpAJMUaHx8nGAySSqWYnp4GYGhoiKmpKUKhEPF4nMOHD5NOpwmHw0xOTjI2NkYmk+HkyZPE43Gi0Sgul4uBgQHy+Tzd3d2EQiEWFxeZnp5mYmICjUbD2bNnGRoaYn5+nlAohEajYXp6mmQyKdaN4ouhVquZm5tjcnKSfD7P/Pw8Y2NjIjvx6OgoPp8Pv9/PsWPHxBj29/cTCARIJpPMzs6KZ2BycvKa14BEIpH8uiOVAMkNi9lsxmq1EgwG+eEPf8iHPvQhsXPt8/l47LHHsNlsVFZWMjs7S3d3NwaDgUwmw9TUFHAhC2Vvby/5fJ5wOMzU1BT5fB6VSsX3v/994MKJw8DAgLjfarVy6NAhAoEAfX19vPrqq9TX19PT04PZbMZut18Su7+mpob169dTW1vLo48+yj/8wz/Q29tLOBwGLigBU1NTNDQ0MDAwwNmzZ4nH47zxxhu4XC5KS0vx+Xx0d3eLHfazZ8+i1+vJ5/O88sorlwiKOp2OyspKnE4na9asoa6ublmSKK/XS3l5OYuLi7z44osUCgUGBweJxWLodDqCwSA///nPAbDZbJw+fZrx8XGKi4uZmppiYmJCCPbZbJZAIMDY2BhWqxWdToff72dwcBCz2UwoFLoukw6LxUI+n8ftdjM/P88rr7xCSUkJpaWl+P1+nn/+eYqLizl79iyBQACz2YzNZhNKQFdXF5OTk2QyGRKJBG63m+Li4uvKqaCcUszOzvLkk09iMBhoaGggFArx+uuvk0qlhNKYzWaF8KnX6/H5fOj1eoqKisjn8zz33HNUVlbi8/mYnJxkamqK6elpDhw4QGVlJQsLC8zOzpLJZPD7/eLf4XCYUChESUnJsrYZDAaKi4ux2+10dHSQz+cZGBjg3LlztLS0YDQaOXDgAAsLC2QyGaEQB4NBcWKhkEqlGBgYIBwOo1arCYVCmEwmgsEg8/PzJBIJjEYjPT094iRtcHCQ6elpamtrOXToEGVlZSSTSUZGRhgYGKCpqYnXX38do9FIJBKhp6cHt9tNU1MTx48fp6enh+npaaLRKFarlUAggM1mo6ysjPLyctatW0dxcTFVVVXMzc3R29tLJpOhq6uLqakpnE4ner2ekZERzp49i9Vq5fXXX8fn82GxWJicnBQneOPj48zPz6PX6wkGg1IJkEgkkn9HKgGSGxZlV//YsWOkUin27t1LSUkJfr+f3t5eIahPTU0Rj8cxGo2o1WpKS0tF5BlFqFepVFRVVdHW1kY6naa/v59EIiGi3jidTiorK6mrq6OkpASfz7csqozRaBQOvXq9/hL77FQqxapVq/iv//W/8sYbb/Dnf/7nvPjii3R3dwMXMl5u2rQJvV4vouQEAgGefvppjEYjY2NjRCIRbDYb2WwWp9NJW1sbDocDjUaDVqu9ZKdd2UlVqVQrRh1av349TqdTtE+lUvGBD3yAbDZLOBxmcXGRiYkJAJxOJ7W1tZSXl2OxWMQYZLNZCoUCs7OzfO9736Ojo4P169dTWVlJIpHgyJEj/P7v/z42mw2dTnfNAlgsFkOj0WAwGHj11Vepq6sTSo1er+fZZ59Fp9NhtVpF5lmTySQE91QqhVarxWKxoNPpSKVS2O32a3a6LhQKYv5tNhvPPfccdXV1GI1GrFYrRqOR119/nU984hMMDAwwMzNDMpkkGAySy+VYv369MLEqKyujoaEBs9lMcXEx2WyWsbExjh49itlspr+/H7VajU6nI5FI8OlPf5rXXnsNr9dLQ0MD27ZtWzFpkfJHrVbT1dWF1+ulsrISlUpFR0cHhw8fZnp6Gp1Oh8FgoL29nY9+9KOXZF212WwMDw/zf//v/+X//b//J3wwioqKRJQtvV6P3W5HpVKRTqdFhlatVks6nRa/A8ScpNNprFYrk5OTHD16FJPJxNmzZzGZTNTX17O4uMj//J//k//+3/87TU1N2Gw28VxqNBrggrJjMpnQ6/WkUil+/OMf09bWht1up7S0lKqqKp544gmKioqor6+ntLQUq9WK0+nE4/FgNpuZmZnhxz/+Mf/f//f/UVpaKqJkSWVAIpHc7EifAMkNi2Iu8vDDD/PP//zPWK1Wpqam8Pl8xONxnE4nmzdvxmg0sm7duhVNKhQKhQI/+9nPCIfDbNiwgc7OTp566inm5uaorKwUoSMVlLJaWlpIpVIcPnyY++67j9WrV68YKvPkyZOYzWY2btyITqdj27Zt/PSnPxV+BSqVSkTwUdqjUqkoLy+noaGBjo4Otm/fTjabFdcsDYOqhBxdCeV6l8tFNpvF4XAsu18RiHK5HP/tv/03Pvaxj4nMxC+++CIul0uEM1UUFGUMlHCejY2N/NZv/RZf+tKXxBg0NzfzjW98A6PRyFe+8hXq6+uXCYtX4uTJk+j1eh544AG8Xi8jIyMickw+nxc7+kv7oOzGFwoFVq9ezeLiIn6/H4vFwqc+9anrirqk7BzX1tZSU1MjbM3hgsKUSCQoKiqio6OD7373uxiNRhobG1mzZg3/9E//xMc//nEcDofYXV96AlEoFNDpdJSVlZFIJOjs7MRsNpNOp4XgrNfreeONN9i1axdr1qy5anuVEx7lZCmTySwLOavVai97CuLxePiDP/gDtFotIyMj/OAHP+DWW29Fp9OJ9ZXL5QiFQhQKBUpKSiguLhZmUn/913+Nw+GgUChQWlrKwsICJ06c4H/8j/9BUVERIyMjVFZW0tjYyMaNG1m3bh2zs7NUV1fzzDPP4HK5+Na3vsUf/dEfLRujvr4+Vq1aJX6mUqkoKioiHA6TyWRIp9MkEgkcDgcqlUr4FSwtw+v18h/+w3/gYx/7GJFIhL/4i7/glltuERsCEolEcjMjlQDJDUvf+T5m33iDoqIi+vv76e7u5rXXXqO6upo77riD3/md3xEhQxWnz6amJnF/IBDA5XIxMzPDqVOnyGQyRKNRZmZm0Ol02Gw2ent78Xq9jI+Pk8/nGRwc5PTp00xMTAg746mpKTweD1qtVkQAqq6uXtbWaDQqzBI6OjqYnZ2lsbERp9OJz+ejt7cXj8dDY2MjLpeLXC5He3s7//E//keOHj0qhHC1Wk1DQwN9fX243W7MZjMej4eZmRmOHz/O3r17lwnqarWadevW0dPTQ2lpKXa7nUgkwtzcHCdOnKCyspKRkRFmZmYYHR0ll8sJW/+ZmRlMJpOwwR8cHCSdTjM5OUlvby+zs7NUVFQI05bJyUnWrFnDt771LbZv347BYMDlcrF3715uvfVWnE7nJQrA8ePHGR8fJx6P88orr1AoFPD5fDidTlpbW1m7di3xeJyBgQGGh4eJx+MEAgF+93d/F4CNGzficrmIxWL4fD5CoZBo5/DwMGNjY5jNZqanp/mN3/iNZTvqin3/2bNnGRsbo6ioiMOHDxMKhXC73WzZsoVVq1Zhs9n4T//pP3Hw4EGqq6txu93YbDZ27dqFWq2mvb2dyspKamtraWxs5Pvf/z4GgwGNRoPb7aarq4vx8XGmpqY4f/488Xic1tZW9u/fT19fH/39/ahUKmw2G9XV1ajVau677z7ht7KSsBqPx5mbm2Nubo5XXnmFjRs3kkqlGB4epre3l8HBQT72sY9RXV0t/A0OHTrE7bfffkm8/VAoxOHDh6mrqxP90mg0rF69mtOnTwvn3ng8ztGjR9myZQuzs7McOXKE0tJSzp07x8c+9jEsFgvBYJDDhw9TXl5Ob28vd999N+3t7RiNRo4ePYrRaCQQCOD1eslkMkxPT1NXV8dtt92G0+mktLSUiooKDh06hNPpZHh4mJGREcLhMH6/n89//vN0dXWh1WrFGHz2s5+lq6uL4eFhKisrUavVYn1WVlYyODiIVqulra2N3bt3o9PpePjhh8UcXOwkLZFIJDcLUgmQ3LCUlpRSv2sX69ato6mpSZhvlJSU0NTURE1NDW63G7vdLkwiFKddvV6PyWRi7dq1aDQaysvLsVqtRCIRLBYLGo2GT37ykzQ0NGCxWPjgBz8IQHFxMatXrxY22fPz8xiNRnbv3k0+n2dmZoaysjKKioqWCRfNzc2Ulpai0+nI5/NYLBZuueUWKisrKRQKfOADH8BsvhDpaP/+/SI6UUVFBbFYjOLiYhHJxmQy8cEPfhCj0SjMkx588EFqa2svEbLVajX33HOPiGhjsVjI5XJ84QtfoLGxEavVyo4dO6itraWoqIgPfehDVFVVCfOP4uJiYWJSVFREcXExpaWl3HXXXRiNRioqKrjllluEIHz33XfjcrloaGhAr9fjdDqxWq3s3r2boqKiS9pXXl7OAw88QCaTEYqT3W7HarVSXl6OzWbDbDazb98+SktLSafTVFRUUFJSgkql4tZbbxXOsQ6Hg8997nM4nU4GBgYoLi6mrq5OOMr29/fT1tZGUVGRqN9kMnHLLbewevVqjEYjVVVVIjJTY2Mj5eXlqNVq9u7dK3wPjEYjra2topzdu3djMpkoKSlBp9Nx1113YTAYUKlUFBcX09nZKSLi3HrrraTTacrLy6moqGDfvn04nU40Gs2y6EsVFRXY7XbKy8tXPDlRIjr9x//4H2lqaqKsrAyNRkNRUREWi0WsN5PJhMlk4qGHHhIKxsU4nU7Wrl2LzWbDarVSVlYGXAj/qpz2mEwmPv3pT1NXV8fw8DBms5k77rgDu91ONpvlxIkTGAwGstksd955J0VFRWSzWc6fP09zczNr1qwRirjSt2w2K+Ztx44dOBwOmpub0el0WCwWEUFp3759wuSopKSEXC6Hw+Egm81SWlpKa2srmUwGh8NBQ0MDRUVF7N+/X6xP5aSruLhYKMnr16+nrKxsmcIskUgkNxuqgjSMlNxgnIrAlh7o2QKdtstftzQjrEajEWEOz549S319PevWrbskBr1i467YJq8UVUchGAxy5swZZmdnuf/++8nn8zz66KOsX7+eLVu2CLMbuGCeoZShRD9xOp3XLIQkk8m3lRFWGYOl5hKXI5VKiWuv1P8robxWFNv6i23a3wqJREKYJC0tS8lRoNFoSCQSmEwm/umf/omWlha2bt1KPp/nyJEjaLVaOjs7Lzmludb+LF1LS+dBcSRXbM3z+fx1ZRpOJBLCXyKZTOJ2uwkGg9TX11NUVHRdzsy5XI5UKiVM0q7WBqVfiq1/oVBY5s+imF8p5lY6nY4nn3ySiooK1q5dK06innvuOXK5HM3NzezYsQObzYbH4+HgwYOsWbOG3bt3i7Wg+G0sLVdRmpTxVOq6XPuTySQqleqqY6PMjRLCVe76S94rrvW7JZH8KpHbIJJfWxTBzGg0ks1mmZ2d5Yc//CHl5eXce++9wil2KRcL5VcSoiwWCxaLhWw2S39/P3AhYlFJScmyKDzAMqGxoqLiuvvydhNBXY89/FLB6q0K7sp9KpVKhEF9u6zkawHL+6aMu+KYrJja+P1+9uzZs+wU4HpYupYuZunuuuKEfT0o/QqHw4yPj/PSSy+xa9cuzGbzdSkAgDhRuFaWKngr1bVUcVTGubm5mXA4TH9/PzabDa/Xy4YNG8jn8+Tzefr7+ykqKsLr9dLS0kJtba2oa2nblHIvfuYUR+Qrca3PgzI3Op3uLSvQEolE8uuKPAmQ3HC8lR2VpTvTF0dZeassfXSUf79TZUveHhc7cV8sqL8fWWmNvh/beqWxvdzP34/9kEh+lciTAMn7EXkSILlhGYhfz9Wqfxde3knh6pcOpsq/37myJW+PpXNzQRh9/8/Lu7FG3w2uPLY31phLJL8aru97JZH8apBKgOSGo1QHZjU8NHC9d75bAokUdN6/3GhzcyO193JtvZH6IJH86jCrL3y/JJL3C9IcSHJDMp2EhczVr5NIJBKJ5P1AqQ7q3557l0TyjiKVAIlEIpFIJBKJ5CZDpkyUSCQSiUQikUhuMqQSIJFIJBKJRCKR3GRIJUAikUgkEolEIrnJkEqARCKRSCQSiURykyGVAIlEIpFIJBKJ5CZDKgESiUQikUgkEslNhlQCJBKJRCKRSCSSmwypBEgkEolEIpFIJDcZUgmQSCQSiUQikUhuMqQSIJFIJBKJRCKR3GRIJUAikUgkEolEIrnJkEqARCKRSCQSiURykyGVAIlEIpFIJBKJ5CZDKgESiUQikUgkEslNhlQCJBKJRCKRSCSSmwypBEgkEolEIpFIJDcZUgmQSCQSiUQikUhuMqQSIJFIJBKJRCKR3GRIJUAikUgkEolEIrnJkEqARCKRSCQSiURykyGVAIlEIpFIJBKJ5CZD+143QCJ5K2QWM+Si2fe6GTcsGqsWnVP3XjdDIpFIJBLJe4RUAiQ3HJnFDFN/PUYhXXivm3LDotKraPhqi1QEJBKJRCK5SZFKgOSGIxfNUkgXMN1vJaKLkkmnf/lLlQqT0YjVZqOoqOjCj66z/HQ6TSgcZnpqitraWkpLS9FoNO9Y+99r0t40nsfmyEWzUgmQSCQSieQmRSoBkhuWtCXN4NwgR44coauriz/+4z/GYDAQ8UZwu92MjIzwxS9+kdWrV2Myma6pzIGBAY4ePcrk5CSbNm3im3/1f/iHf/gHysvLUamuV52QSCQSiUQieX8iHYMlNywmsxmj0YjH4+HYsWOUlJRQXV1NdXU1NpuN7u5ufvjDH+L3+ykUrs10qLe3l/PnzxMKhairq6O4uBi1Wj4mEolEIpFIfr2QJwGSGxZnURGN2kZKSkpQqVR0dHRQVlYGQENDA48//jj/8i//wkMPPUR1dTUqlYpCoUAulyMej1MoFNBqtRiNRtRqNel0mnPnzhGNRlm9ejVtbW18+ctfxm63k0wmyWQy5PN5zGYzOp2OXC5HJpMhk8mg1WrR6XSk02n0ej06ne6SunQ6HQaDAbVaTSKRIJvNotPp0Gq15HI5UqkUJpMJrVYrFI9CoUAqlSKVSgGg1WoxmUyoVCpUKhWpVIp0Ok0ul0Ov14vf5fN5stksiUQClUqFWq3GYDCg00nzH4lEIpFIJFIJkPyaUCgUKBQK5PN5APL5PGq1Go1GI04BlN97vV5OnjxJMpmkqqqKDRs2UFRUxPj4ONPT03g8HnQ6HV1dXdx9993E43EGBgaYnp4mlUqxZcsWmpubCYVCjI+P43K5KCsro6GhgdHRUZqbm6mtrRV1nThxglQqRW1tLWvXrsXhcHDu3DlmZ2epq6ujsrKSSCRCf38/W7dupbKyErPZLJSI/v5+RkdHyefzVFRUsH37dsxmM7lcjvHxcSYmJvD7/TQ3N7Nt2zZ0Oh2pVAq3283JkycxGAyYTCbWrl1LbW3tezlNEolEIpFI3idIOwfJrw2vvvoqv/jFL3jkkUf49re/TTab5cknn6StrQ2VSkU4HObo0aPceeedlJeXs2HDBs6fP8+nP/1pQqEQdrsdi8WCVqtFr9dTWVlJKBTiIx/5CM888wzl5eVs2rSJ3/u93+PIkSPEYjGGh4f5wQ9+wJ/92Z/xxhtv8Ed/9Ef80z/9EydPnuTw4cPceeed1NbWsmHDBk6cOMEXvvAFQqEQWq2Wv/iLv+Av//Ivefrpp5mfn8fv9/PQQw/x5ptvAuD3+/nqV7/KN7/5TRobG0kmkzz66KP8+Z//OQB//Md/zHe+8x0WFhbYvXs3P/nJT3j44YdxuVw888wzPPzww9xzzz184AMf4Ic//CFnz559L6dHIpFIJBLJ+wh5EiD5taGtrQ2DwcDi4iIul4vFxUXq6urQ6/WoVCpmZ2f53ve+R0tLC01NTTidTiYmJrBYLLzwwgt85CMfoaioiHA4TEVFBS0tLTzxxBPMzMzQ1NTE5s2bSaVS3H777fz0pz/lj/7oj6isrKSiooKpqSn2799PaWkptbW1+Hw+fvCDH4i6rFYr9fX1GAwGXnzxRe6//36sVisGg4GysjK2bduGXq9ncnISj8eD1+tlZGSERx99lIcffpimpibKyspoa2tDp9PR29vLiy++yEMPPcT27dspKyvjQx/6EP/1v/5X9u7di9vt5vDhw/zVX/0V27dv5zOf+Qxr1659r6dIIpFIJBLJ+wSpBEh+LVCpVJSVlWG320mn0/h8Pg4ePEh/fz+lpaXo9Xri8Tijo6MUFRUxPDyM3W4nk8nQ2dlJSUkJer0ejUYj7PsNBgPj4+Ok02m8Xi/Dw8Ok02lqa2txOp1YrVb0ej1GoxGLxUJRURFbt25Fr9fjdrsZGxvD4XAwNDSE2WxGpVKxefNmSktLMZvNwr7fZrNhtVoxm82k02lSqRTRaBSfz8fCwgINDQ2YzWasVitOp5N8Pk9XVxeLi4ssLi4yOztLNBoll8uxa9cuHA4HGzZsYP/+/czMzDAzM4Pdbkej0VxwdL7uoKkSiUQikUh+3ZBKgOTXBrPZjNPppK2tjUAggN/vp6enh61bt2IymYQjbjweJxwOUygUsNlsbN++nYqKiktCgKpUKvR6Pblcjmg0yuLiImq1mubmZgqFAlarFQC1Wo3FYgHA4XAACGUiHo8TCoXIZDI4nU62bt1KeXm5qENRNpT64Jf+DSqVCq1WSz6fp1AoCKfhYDCIVqtFo9EQj8fF/w0GA3fccQcOhwO1Ws2uXbsYGhpiaGiI48ePs27dOtauXYuTond7KiQSiUQikbzPkUqA5IYlm82KyDiAiOCj0+mw2WwYDAYGBweJRCJoNBqy2Szbtm2ju7ubTZs2UVpaSiqVYnFxkYWFBTKZDLlcjlwuRzabJZfLsW3bNh577DFqa2vp7OzEaDSSzWY5fvy4uCaXy5HP50mlUiLSkCLw9/T00NnZicPhIJlMEgwG8fv9pNNp4fibzWbF/YVCgUwmg8lkorGxkbKyMoaGhmhqakKr1RIOh+nv72fNmjWUlpZSUlJCU1MTa9eupVAocOjQIXK5HGNjY8zOzvLlL38ZlUrFn/7pn6LVallYWMD570nUJBKJRCKR3LxIJUByw9LX18cL3S9y7tw59Ho9f//3f8+HPvQh1qxZQ319PQ899BCvvPIKv/jFL3A4HDgcDv7kT/6Er3zlK3z961+nvr4etVpNLpfjd3/3d+nu7mZwcJDZ2VmSySQvv/wyH/7wh5mZmaGnp4czZ87Q3t6Ox+Phox/9KB6Ph7Nnz3L69Gn8fj+PPfYYn/jEJygqKqK9vZ2vfOUr/Mmf/Al/+Zd/SUNDA/l8Ho1Gwxe+8AWeeOIJAoEAyWSS119/nZaWFh599FFyuRwHDx6ksrKSu+66i+9973t84xvfYHR0VJg7tbW1UVVVxcMPP8wvfvEL/v7v/561a9eSyWSor68nl8sxOjrKz3/+czKZDGVlZajValavXs2qVasoePPv9dRJJBKJRCJ5j1EVrjWLkkTyPiE5k2Dmbyap/FItqjIV6XSaTCaD2WzGYDCg1WopFArChEej0WA2m7FYLOj1eiKRiAgbqlKpxO+z2SzxeJxcLodGo8FoNGIwGERMf+XEQcktoMTpT6VSIn+AchKghCONRqOiLiVkqclkIpVKEYvFhMmRyWQiHo+TTCaFn4HBYCCdThOLxUS9yh+dTkcmkyGZTIp26fV61Go1er2eZDJJMplEq9UKMyOj0XghfOhskpm/maTujxsx1l1bJmWJRCKRSCS/XsiTAMkNi06rxWi9vBCrhPxUhHqt9sJydzgcwu4eEIm59Ho9er3+knLMZjPwyzwDGo1G/E6r1Qp/gKUoyoXdbhf3Lq3LZDJhMi1vu91uF9crGAwGDAaDyH+wNHux0t6V2mU2m0WuAaU9F/s8SCQSiUQiuXmRSoDk1xbFsVYR/i/+3fUKxYpgf733LP37rbJU+L+Wdr1T9UokEolEIvn1RCoBkhuWtDf9XjfhhkSOm0QikUgkEqkESG44NFYtKr0Kz2Nz73VTblhUehUaq3z8JRKJRCK5WZGOwZIbksxihlw0+14344ZFY9Wic+re62ZIJBKJRCJ5j5BKgEQikUgkEolEcpNxeW9DiUQikUgkEolE8muJVAIkEolEIpFIJJKbDKkESCQSiUQikUgkNxlSCZBIJBKJRCKRSG4ypBIgkUgkEolEIpHcZEglQCKRSCQSiUQiucmQSoBEIpFIJBKJRHKTIZUAiUQikUgkEonkJkMqARKJRCKRSCQSyU2GVAIkEolEIpFIJJKbDKkESCQSiUQikUgkNxlSCZBIJBKJRCKRSG4ypBIgkUgkEolEIpHcZEglQCKRSCQSiUQiucnQvtcNkEjeDaaTsJB5r1shkUgkEskvKdVBvfG9boVEcgGpBEh+7ZhOwpqTBeJ51XvdFIlEIpFIBGY1DGyXioDk/YFUAiS/dixkIJ5X8Yeh43ygvY4iZxHhcJj5+Xk8Hg93f/BuCoUCIyMjRKNRHEUOWltar1ru6Ngob7zxBrt376a+vh6NWkMimWDONccrr7zCb//2b6NWX5+F3fT0NDMzM6TSKfbt3UfPqR7q6+opLilGq1n58czn8wQWA7x2+DUcDgdNTU20tLSI37/88svE4jFqqmvYtGkTOp0OleraFaJsNsOBV14hEAjw8Qc+ft33v5Pk83lS6RQ/+9nP2LZ1G1XVVdistqvel81mOHjoEB63h09+8pPXPwa5LBPjE0xMTOAP+Lnt1ttIJBJMT09TUVFO26pVGA1X/4rn8jkC/gAvv/wye/fupby8HJ1Od83teCsUCgVi8RivHX6NfCFPSUkJNdU1JJNJPB4P69ato7i4+KrlZHNZRkZGmJycJBKJcMvOW0gkEkxOTlJXV0tzSwsGveEdaW8un+Po0aOoVWqaW5qpq6277nJmXbOcPHGCxcUgd9xxBwBer5d8IU95WfmyZ+RqJFNJThw/gd1hp7S0FLVKzcLCAidOnuBzn/scL734EtU11bQ0t1zTWF4v8XicqalJ+s6fZ/369Wg0GmamZxgeHuY3P/+bGPSGa1rPhUKBBf8CI8Mj6PQ6qqqq0Gl1TE1NEYlEaGhswG6z45pzsWnjJlQqFaFQCLVGfU3P2bWSSqcYGBggHA5TXV2Nw+4gEAgwNDREbW0tnZ2d11xWMpVkfGycBf8CDfUN6PV6gqEgY6NjtLe309TUiFb77jxj4XCYiYkJzp07x2c/+9nrvn8gDg8NXPhGSSVA8n5AKgGSX1tK4z7ubdtGNpvFnUyTCUzTc/AlOh+4G5VKTXm5Cb8mDoUIm6/yvUun0yRiHnIDXUQsBTa2fxq9XkNKr2bAFeHHb77M5i9/EY3m+tpoUsdIhWaZmZmh8/59BHMh2g1pKq2gvczTWSioWMypOeUeITwahewinZtaKBQKhMNh0uePU0inqbSp6LRtQqeD65Hh5+cXUI+eIT03R8kd22ltbb3s/YVCAeBdUxIKBRXJJDw11ENlew0dWidltqsLJ263H83YWVITExTv30FbW9t1jUEup0JTCOOdG2JmcJCt9+5mMZ9m8Ozr5OrraWwspbq0+hrKAVcowYtD3dTfso5VpmJMpndbCYC4RsUbE+coFApU6laxZXUtC+kYh3/xQ/bV/j7rah1orrJYczkV+VwIz8wAvulptn7wVgK5FOd6DkNyLU31xVSWVL4j7c3loNc7TqFQoL7Gzmbb9SsBZZYCr58/gXtsjM0f3kcikaBUl2RhYYFqK3Tark0JiMVizCzMEDn1Grd84AOsqbaTy+Xo84Z4uesQnb//OQ5N9VFsSNPWXE6D7Z1XAgKZJOGFSRpSfjZbCkxNjTExcAb97CybLQWMxqs/08qz+aNnD2BNp2lpaWF9pRWdTsfR0QD94/1UlxpoKDFgyofptEE0GmEiMIXZbKa16p1TArq7e1GP9lFhMLBzXSPV1U76o/OMjJ2hyJCm03ZtSkAmk8Ed9PHGkedYs2YNOyst6HQ6JuIe5mYHKK+0sNFcj+Ht66YrEkFFJuHl8IlX6Pz961cCJJL3G1IJkPzaYzAYaGhoIBgMEgwG31IZ4XAYvV7P+vXreeWVV/j4xy/skBsMBux2OxaLhVQqhVqtplAooFar0el0xONxtFot2WwWjUaD0Xhh+ycWi6HVajGbzRQVFTEzM0OhUKCzsxOD4cq7fCqViuLiYnbs2MGLL77IzMwM6XQanU7HzMwMDocDo9FIRUUFer3+uvs6Pj5OZWUlRqOR119/ndbWX56SZDIZUqkUWq2WdDqNWq1GrVajUqku7OjmchiNRtRqNel0mng8jtlsJpPJYDAYSKfTZLNZLBYLkUgEq9Uq7isUCmg0GgqFAvl8Ho1Gg06nQ6fTUVFRgfZyWtFl+lBWVoZWq+X111+nra3tusZAo9FQWlpKVVUVLpeL0tJSMa7RaBS/309VVRWRSASdTkc+n0etVmM0GkkmkyQSCbRaLTqdDq1WS2VlJel0mlQqdcm1Sn/VajV6vR61Ws3i4iJ6vV70OZPJoNfryWazaLVa8WclVCoVFouFsrIyAMrLy6mpqaG8vJxTp06xsLBALpe7qhKg0WgoLy+noqKCYDAoxsBgMBCNRvH5fDgcDuLxOHq9Xpy25PN50Sfl1CObzZJKpXA6ncRiMVQqFVqtFo1GQyKRQK/XY7fbyWazFAoFstksyWQSrVZLPp9HpVJhNBqv+FzU1dVRVlaG1+ulsrKSqakpdu3axdjY2FX7uhSv18uxY8dQq9Vs3rwZw79LlO3t7ezatQu9Xk9ZWRk6nY5UKkUymSSTyWC1WslkMuRyOTEGer2edDpNLpcT74RUKoXNZrviqaFarcZms/GpT30KnU7HwYMHSSaTfPrTn8ZkMl1zX7LZLN///vf50z/9U7Zv347BYKBQKLBv3z5CoRAWi4WSkhKsVisAY2NjDA4OUllZSX19vTgZMJlMYuz1ev2yuVGr1Vd9Z/3kJz+hvb2dzZs3U19fD8CGDRsYGRmhvLz8mvsTjUaZmJjgjTfe4D//5/8s1ldTUxN79uwhk8mQTqfJ5/MAYj0aDAYikQgqlQqdTkc2m0Wn04nnVFmLS9eu8v5R1qhyr8ViEe9V5XleWtfSsZJI3u9IJUAiuQZmZmZQq9V85CMf4ZFHHiEWi2E0GsWHIxKJ8Oabb5JOp0kmk5SXl7N582a+//3v09HRwcDAAE1NTezfvx+NRsO//Mu/0NbWRjgcxuPxUCgUSCQSfPWrX2X//v3ccsst1NbWXrFNKpWK5uZmtFotp0+fZvv27UIgeyvCv7JzmE6n2bhxIx6Ph0ceeYTf/M3fFL8bGBjg2LFjtLW1cfToUTo6OrBYLOTzeZLJJC6XizvuuIPy8nK6u7t5/PHH+fjHP05/fz+33XYbp06dYmhoiN/5nd/hm9/8Jr/3e79HLBbD4/GQTCapq6sjkUjg9Xqpqalh48aN1NTUvKU+rF+/Hr/fz3e+8x0+//nPUygUrvvjnEqlcLvdnD59mlOnTmEwGNi0aRNr164lk8nw7W9/m82bN+Pz+bDb7dx7770cOnSIH//4x6xevZrVq1fjdDopFAp0dXXh8/kIBAJYLBbuu+8+Dh06RCKRYGFhgdLSUjZv3kxxcTFf+tKX2L59Ow0NDeTzec6dO8fOnTsZHR2lvb2dNWvWXHV9KOMQi8VYWFhgcHCQffv2UVNTc13rI5lMMj8/z6lTp+jp6cFut7Np0yaqqqp46aWX+PGPf8yuXbtYvXo1JpOJUChEKBRicXGRTZs2kc/nGR0d5fDhw/zjP/4jjz/+OAaDgZaWFhobG3nqqafYunUrfX19OJ1OWlpamJub48UXX6SpqYlAIIDVauWee+4BrnzqlM1m8Xq9HDx4kJ/85Cd861vfor29/Zr7CuB2u3nzzTd54IEHlikPpaWlfOELXxD1T05OCvOQgYEBfvd3f5e+vj5mZ2eJRCJEIhFuu+02jhw5gtvtxm63s2PHDg4cOMBXv/pVrFbrZftSVFTEbbfdBsArr7winodbbrnlmk/fcrkck5OT5PN5jEajUGZUKhUGg4H777+f6elpnn76aY4cOcK3v/1tnn76aUKhEG1tbdjtdkwmE//tv/03fuM3fgODwYDBYGDLli289NJLtLa24na7qaysZN++fVdszxtvvMHatWtpampa9vN77733ukwo5+bm6Ovro6OjY1l9drudrVu3kkwmOXPmDIFAgHw+j16vJxqNsnfvXv7qr/4Ku93OqlWrmJycZNOmTfzsZz+jrq6Ojo4O6uvrCQQC4v1TW1sr3j/PPfccRqMRk8nE9PQ0qVSKQqFAd3c3gUAAAK1WSzwe5yMf+YjYGJFI3u/IEKESyTXgcrno7u7mzTffpKmpiZdeeomFhQXxe4PBwO23387+/fuZmZnhpZdeIpvNcuedd1JbW/vvNr5TnD17lgMHDhCJRFi/fj07duz4d3MbFWazmTVr1mCz2cSH/mrceuutVFdX89Of/pRgMEhRUdF17ZhfjNfrZXx8nMHBQYaHh3G73czOzpLP5wkGg7hcLvx+P7fffjtzc3N0dnayc+dO1q1bx/r163E4HBw+fJhQKERVVRWrV6+murqaL3/5y9x66600NzdTWVlJWVkZVVVV+P1+NBoNGzdu5KGHHqKjo4ONGzdSWVnJ3Nwcr7/++tvuw/z8vOjD9WIwGKiqqmLr1q18/vOfR6fTMTAwQG9vL1qtlg996EPU1dUxMTHB2bNn0ev13HHHHaRSKe644w7uv/9+1qxZA0BtbS07d+4kl8sxMDCARqMR/a2qqmJhYYEjR45gt9vZsGEDlZWVrFmzhoaGBt544w327dvHunXr8Pv9jI2NXVP7lTlbWFigs7OTP//zP7/uUxGTyUR1dTXbtm3jt37rtygUCvT39zM3N8fu3buJRCI88MAD3HHHHUSjUR555BGamppYt24dPT09ZLNZdu7cSTabRaVS0drayp49e7BarXzve9+js7OTrVu3sm7dOsrLy/F4PPzN3/wNt912G7feeivFxcW4XC6OHj161bYqp0b79u1j+/btQgiMxWLX3F+1Wo1GoyGdTl/xOXQ6nbS3t7N161aOHz9ONpvlySef5MSJE7S0tNDR0cGzzz5LW1sbtbW1FBUV0dnZyezsLPF4/JrWYygU4jvf+Q5r167lE5/4BJlMRmwaXA1l5zqTyVz2+qamJtrb28lkMmi1Wnbt2sWmTZtYt24dGzdupLW1lVwux44dO3jggQdYs2YN3/72t9m9eze33nordrudyclJjh07dsW2KCd8uVzuqu2+EkvnZqX+Anz729/GYrFwzz33sGHDBn76059SKBRobm6mubmZjRs38l/+y3/hzjvvJJfLsXPnTj760Y+yefNm8TxWVFTgcrl47bXX8Pv9PP7442zYsIG9e/fS0dEhlMNvfetblJWVcffdd7N69Wp++tOfEg6H39K7RiJ5L5BKgERyFS44Qtaxe/dudu7cye/93u9x+PBh/H4/8MuPj3J8nM/nSafThMNhvve976FWqykpKRFH0oFAAIPBII6al+42Xo/ZAiBMkSKRCH19fVRVVYkdv+ulUCgwODjInj17uOOOO9i9ezcf+tCHeOmll0in0yIfEmUAAQAASURBVFgsFhwOB3q9nsHBQT72sY9RVlbG0NCQ+Fg2NDSQzWaJRqMkk0l0Oh1OpxOj0YhWq6W1tZW2tjaeffZZdu/ezfnz5/F4PMKM6plnnmF+fh6n04ndbieZTBIOh6+rH0NDQ9x+++3ceeed3H777fzGb/wGL730Eslk8rrHRKVSCcHDaDQKE6Djx48zNzfHU089hdlsxuFwUCgUiEQiaDQa7HY7RqNRzLFiwqWYY2SzWTKZDM888wwulwuHw0FRURGJRIJwOIxarcbhcAjTA5vNJsrK5XJks9lrar/NZqOqqoqGhgbMZrM4vbpelo5BdXU1CwsLnD17Fq1WK0yEtFqtMGlau3YtmzZt4v7772fDhg04nU5uueUWXnrpJWHao5ygmc1mNBqN2D3N5XKEQiE0Go0oU1lT19pWk8nERz7yEYxGI1NTU8zMzFxzXysqKti5cyenT59eJrQmEgn6+vrE/5XnQaPRkMlciEesUqkoLS1l3bp1bN68mQceeECY29jt9mXC8NUE+XQ6zd/93d9xxx13sH79egqFAmNjY/h8vmtSAtRqNZWVlVitVhKJBPF4HEDUPzY2RjAYXLYTr5jFxONx8Vza7XbxvoILioliQqNSqchms1dVsnbt2kU2m2VycnLZzycmJnC73Vfti0JFRQXt7e2Mj48vG8NkMsn09LQ4hVJM0dRqNYlEgkwmIzZalq5Xu92O2WwWypLy/ikuLsZmsxGPx/H7/cJUUVmPyjtfEfiVupLJ5FWVR4nk/YRUAiS/9uRyOXw+H9PT04TDYaanp69JiCoUCgQCAV577TWxy15aWkp9fT1DQ0MMDAzg9XpRq9WYzWZcLheTk5NYLBbq6upQqVRMTEwQi8UoFAqEQiHm5+epr68nlUrh8/lwuVzMzMzgdruJRqMsLCzg9XpZXFwkFArxwgsvXLJ7ls/n8Xg89Pf3Mz8/j8FgYNWqVXi9XrLZLMFgkPn5edxuN4lEgjNnzhAMBi84SLvdHDx48JIPVTqdZnp6mhMnTqDX6ykpKaGiooLa2lpeeeUVpqenyeVy5HI5PB4PJ0+eJBaLEY/Hcbvdwi8hlUqxuLiI1+vF6/WysLCAy+USdVVXV1NfX8+5c+fYuHEj6f+fvf8Oj+u6zv3xzxRMH8wMBh1EJQASrCApUiQliqqUZMmyZLlEctzkxPUm14nvNzeJU5xc5zqJ7bg9crtWZFtWsZotyeqFYu8gWNB7G2AwvfeZ3x/67R0ABEiApIqdeZ9Hj6TBzDm7nrPW2u96VzIpcyMymQx9fX3E43ESiQShUEiOh9vtxuFwSJWn119//Zz5SqVSjI6OcvjwYQoKCmQfqqurZR/C4TBOp5PTp99KmnU6nZw6dYqJiYlZ1xK0kvHxcTweD0NDQ5w9e5bJyUkKCgooLS3F5/PhdDoJhUJkMhlisRh9fX1MTEwQjUYJBAKEQiFisRgulwuXy4Xb7cbr9eL3+/F4PPT19RGLxUgkEjLXwOl0yu8L+lAsFsPn8zE5Ocnk5CR+v59wOMyLL75ILBabFXkUCeJutxuPx0MkEpHOpjDaJiYmOHv2LNlslra2NkZGRs4xssV6EScJYgympqbQ6XTYbDYcDgfRaBS/308ymZQGsBhrkStgNpu58sor2bNnDzabDaPRiM1mY/Xq1QwPDzM9PS3vFQwG2bx5MwMDA4yPjxMIBNBoNFRXV+N0Ojlx4sS8uT1jY2O4XC78fj9DQ0PEYjFOnDjBmTNncDgchMNhjh07RiaTwePxyD08F3a7nQ0bNqBUKqWTKtqXTqdJJpN4PB45Px6Ph0AggNfrpaGhQZ5chMNhjEaj/J6gSAWDQfn34eFh9uzZc04b4vE4Q0NDHDp0iJKSEgKBAEeOHJFO1PT0NMPDw3ItvfLKK+fsaUH7ue2223C5XHL9er1eent70Wq1xONxpqenCYVCRKNRbDab3NNOp1OuM/F8slgsbNq0if7+fsbHxwkGg+h0OqqqqpiamuL48eOEQqFz+nPzzTej0+no6emRzsfg4CCpVAqVSkU4HObQoUPSQT5z5gzHjx8/5zomk4m6ujrWrVvHkSNHmJyclHPjdrvR6/Vs2LCBWCwmTzLr6upQKpUEAgGmpqaYnp4ml8sxPj5OOBwmEAgQDodJp9Oznj/hcBi/308ikaCmpga3283IyAjj4+Ny3FtbWwmFQvT19TE9PU1dXR06nY6DBw/S39+/aGc9jzzeLeSdgDz+4JHNZuWDvqys7C3ZwEUc1+ZyOcLhsHxZCKhUKsrLy2WisU6no6WlRRpw1dXVtLa2otfraWxsJJvNYjKZ0Gg0ZLNZ1qxZg9VqJRKJEAgESCQSFBQUEI/HZYQ0lUoRiUTYv3//vG0V9w4EAlgsFq6++moMBoOMvovoZCqVko6IMH6OHDkiI5cC6XRaGirxeJxMJoNWq6WkpIRkMonP58Pn8xGJREin09IYHxwcJJlMYrfbJY1J5AjAW1QSn88njROr1cqyZcswm83U1NRQX1/PsmXLsNlsKJVKSkpKZMS0oKAAvV5PPB5Hr9eTSCRIJpO4XC5pMMzXh2AwSDweJ51OyyRO0Yd4PI7P52NoaEiOY1dXF06nc9a1MpkM0WiUTCaD2WxmamqKkZER4vE4tbW1bN68GZVKRWNjI8lkEqvVit1ul4a33W6XeRIiWVCcami1WiwWC7FYbFZ/1Wr1rP6mUilpnJSVlREKhWYlY8diMQ4cOCCTi2ciFovJpORcLkcikZi1H7xeL6OjowD09/czNjZ2jhOQyWSkA2symeQYJP//SjNr1qzB5/NRVlYmx7uqqoodO3YwMjIi50KcIq1Zs4ZEIkFlZSUmk4mysjKuueYagsGgXCOZTAaNRsMtt9yC3+/H7XajVCqpqKhgxYoV+P1+zpw5M+/pkDACS0pKpBPc29sro7WJRIK+vj55YjM8PExfX9851zGbzTQ3N7N69WpGR0dxOp243W5CoRAlJSWk02l0Ot1bUqyRCJFIhPLycmKxGBs2bKC6upqxsTH5G5FUKhJMS0tLCYVCxONxHA7HvMZuKpXC7XZjt9uxWCwy92BkZASr1UogEGB6eppwOEw4HObgwYMLRqA/8pGPoFQqGR8fZ3p6Gq/XK7n8IgJeWlpKPB6noqICo9E4K8JfUlJCNBolFotRVFTETTfdhNfrxe12U1BQQFVVFcuXL8fn83H69Ol5TwUEbTEWizExMSEdaHEClkgk6OnpkWugv7+fjo6Oc66j0WgoLy/njjvuoK+vTxr/gUAAhUKBxWLh1ltvRafTSYfy6quvRqfTSRGCUCgkAzw2mw2FQiFFHeY+f4xGI3q9niuvvFKejsRiMaxWK+FwmFtvvRWVSiUd/6uuugqz2czp06cZGxvLOwF5vOehyOXPrfL4A0NbCDadgK9NPsdXP3yrjIDORC6XY3R0FI/Hg0KhYMOGDZd0z1wuJ6NYMyk+wgATx8XwX/SheDyOQqGQL9yZqhLidx0dHTIqeTkQCARwOBw0NDSg0WiWlLy2b98+gsEgVVVVrF27FpfLxcMPP8zGjRvZuXMnyWRyFhVpoWuLsRKKQmIMxN8WGi/x90AgwMjICOvWrbuk5Dvx6Ovp6cFisVBRUbHk38+c8/nauxgIx22pv08mk/T09NDY2IhWq72oNSIS0icmJigqKsJuty/5GvNdM5vNSgUW0a6Z8z53TgVVS9CvROLyTJUlMV+nT5+mrq4Oi8VySW2cnJwkFAotmDgs5nZqagqNRoPNZltUQnU2myWbzUqH5nz7wO12y9oNF4toNMrQ0BDLly8/r0pPNBqVp1YVFRULfk/kblyINjbX0czlcpw6dYqmpiapNjTftaPRKC6Xi9ra2gWfzeJkcaYy2dzvwFuJwmq1GpPJhNFolH8X4y8UmhYL8fyZOW/i34lEQtK54vG47KOY75n36uvrw2w2Y7fbZ9UFEe+mE5tg4+VTYM0jj4tGXh0ojz9YiCPfysrKeV8EXq8Xn8932Yr9iES8uZ8txNGf+flCxawut8KEyFe4GPWg1atXMzQ0xMDAAKFQCJ/Px9VXX01dXZ3spzDsL4S5L9iZny8mp+FyjYvT6cRsNs8yIJaC+eZ8qbiUHI65BsvFXKO3t5empqYlSU9eCDMN+ZlYaI0L6dy5mPm5oG/Z7faLWr8zIXje59v7QsZ0MSpMc383N9fnQt+/FIgTpwutI71ev6g5Xmy7Z86NoFwK6dTzXdtsNmNeRK2PxaCycv5aHWLulorzPX9mrrmZTo44mZsJkbh8KSINeeTxTiB/EpDHHxxEtOU3JaPUp300NTVhMBhmfSebzdLV1UUmk6G6uhqbzfYutXZ+iMiaiK5fLqM3k8mQSqUWNLoW81vB452ppf1OvexmRpkv1nieeS0RLRSJr79PEE7ApayPuY7Ee1nWcG49iUs5HZuZVPpuGWqiP4J6d7EQjv3lfE4sFTPnRiQMX8q1RL2IS3X23i2IU4O5ayt/EpDHew15NzWPP1iUlJRQpTQsGJEUUaSFjq7fTQiD7GKM9fNhKRHKhX57udu0FCw1ynqha/0+R+oux/p4O9bY24XLOV/vBYdP9OdS+yQKz72buJxzczlO195tXGqAIo883in8/r4B88jjAtDr9RSb5z/+VigUS4r+i6h8NBpFoVBQWFhIJpOZ9+WXyWTkd41GI0qlUkrLLQYiOjhTFUhwqy9XbsDFQrRLROmWGvETkfyZOt9ifN5pw2zmqYLgqs+VALzQ70XRIAFRPfXdgojIplKpWfKk4m+5XE4mhc8XqVwMRJXcbDYraVRCGjeVSpFOp9+TjvXFIpFIyMqwJpNJSkJe7NoPBoNSrlKcqF2K0Ttz3PV6PUqlUq7rWCxGYWHhOTkY0WhUnqaIZ9v5ipddLGaeaMJ/5Xwstr8zk9rFbxUKhZT8FAGBd/K5KKpZ/yGt8Tz++yLvBOSRxwUgXqZ+vx+Xy0VBQQF1dXVEIhH0ev2sBEWhKCQkBKurq0mn05SUlCyac51KpaRiijAqTSaTpN2IqN9SXtjCUIBLi1IJdZ1MJkNNTc2Sfy+S6qampkgkEhiNRnQ6naxyrNPp3tFqm4lEAr/fTywWQ6lUUlZWtiRuvMgr0Wq1shaC0PRfiuMnkM1micViGAyGixoDwQ+fnJzEbDZjsVhm9UfI0BYUFFBUVLQkJ0AYj0LeNJ1Os2zZMkKhELW1tSSTSdxutyxM9l6EcJLmS0hd6Lsejwev10s6naa6uppEIkFpaemSxk44ZuFwmNHRUdRqNeXl5ajVapLJJOXl5Rfdp0wmI2WBV65cKaU/xVysW7funP6OjY2h0+kwGo2kUikmJia44oorLroN54OQ2xUJ/zabbdFJ3dlsFo/Hg9/vp7CwUD4HnU4nmUyG4uJiqbz2TkCM9djY2CWLSeSRx3sBeYnQPPI4D3K5HENDQzzyyCO8/PLLUuf+0Ucf5cEHHzxH3i+RSPDaa6+xd+9eWlpamJ6e5pvf/Cb9/f2Lvmcmk6G9vZ0f/OAHsgLl4cOHefjhh3n88ccvSnYuEAiwZ8+eeTXJl4L+/n4ee+wxfvGLXyyq4NFcCHWfN954g7/9279lfHycgYEBXnrpJX74wx8yOTn5jhbaSafTdHZ28tOf/pRvfetbSxrbXC6Hx+Ph85//PM888wxer5eenh5+9KMfcfDgQQKBwJL74vf7+cEPfnBJ0oLJZJInn3ySv/u7v+PIkSMyGgvw8MMP82//9m+8+OKL58jEng/iGt///vfZt28fWq2WhoYGent7+eQnPymN5GPHjvHtb3/7otv+dkKMwcDAwKILx3V3d7N7926CwSCVlZW88MIL/OY3v5lXC/9893W5XOzbt4/vfe97lJeXU1NTw+HDh3nwwQd58sknL6o/AkIC+R/+4R+kc9bd3c2Pf/xjurq6zpnnbDbLwYMHefbZZ+np6eHs2bP8n//zfy6pDRdq34EDB/jWt77Fz372syUV7RMKSnfffTdvvPGGrJfx61//mn/+539mbGzskqsQLwXj4+M8//zzfP3rX88XBMvjDwJ5JyCPPBaAeMj/4z/+I0VFRXz4wx+mtLQUs9nMRz/6UWpqas451hYFdIQKxpo1a7j++uspLi5e9H0NBgOlpaXU19dTW1tLU1MTN954Izt27ECv1/OTn/xkyX2xWCxcd911XHfddUv+7UwYjUaMRiMvvfTSRRmqSqUSs9lMS0sLpaWlLF++nM2bN3P77bdz++2381d/9VfEYrFLauNSYDabaWpqor6+nuLi4iWpligUClpaWiguLqa6uppVq1axfft2vvSlL/Hzn/+cjo6OWfr8i4HVauV//s//edH8alHhdd26dZhMJlkMCd6SdNRqtZSVlVFeXk5hYeGirxuJRHj22WdJJBJs27aNxsZGCgsL2bBhAzfccANarRaz2UxxcfFlkRl9uxCPx3nyySdxu92L+v7Ro0cxGo3Y7Xbsdjsf+MAH5t33F8LTTz/NCy+8wJ//+Z/Lsb/hhhukhv2lQBRSE1QgUdytqamJD33oQ+dcX6FQyBMDg8FAcXHxkp5PS4VWq6WpqYm6ujoqKiooKSlZ9G9VKhWrV6+mqKiI6upqOXbNzc3U1NRgt9vf0XwIUZFYpVK94w5IHnm8HcjTgfLIYwHM1BIXxWYEh9ZkMnHVVVedozpUXl4uK5P29fWxYcMG1q9fj9VqXfR9BfdV/CO425WVlTgcDn7961/zpS99iVdeeQWTyUQ6ncbj8XDbbbfR3t7O8ePHWblyJWvWrGHv3r2yOFNnZycajYZdu3axZ88empqamJiYoLS0lNWrV1+wXZOTk2QyGVatWkVNTQ1dXV2sXLlySfQZkfAs6AmCH6xSqbBYLLKw2cjICD6fj1gsRiwWY/Xq1bJ6ZywWIxKJsHHjRiwWC8899xyRSISGhgbsdjvDw8Ps3LnzgmMu6BGCU7xUGpLIIRD9EIa7Wq3GarUyMTGB1WpFr9dz6tQpSktLyWazWK1WQqEQb7zxBl/4wheYmpqiv78fs9lMVVUVDz74IF//+tfZvXs3DocDnU7HqlWrOHnyJHffffd5ucgzx3fHjh34/X7a2trYsWMHg4OD1NTU4HK5ZJsXi2g0yt69e7niiiswm80yf0On0/GRj3xE0pdE4aWjR48SCoUwm81UV1ej1Wo5cOAAZWVlDA0N0dLSQjKZZPfu3bS2tlJcXMzQ0BBarZaioiKcTietra1UVlbS3d2N0+mkuLiYzs5Obr/9dg4dOoTX66WwsBCr1Up7ezt33HEH/f39uFwudu7cyZEjR6ipqWFiYgKbzca6des4deoUp06d4uTJk6jV6gvWhtiwYQM///nPeeWVV1i1ahVr167lyiuvXJLh6XK5JIVOFKdSKBTo9Xqampqw2+3kcjnefPNNTCaTPGErLi6msbGRAwcOyByEZDJJaWkpjY2NnDlzhkgkgkajQalUkkqlyOVyskiaKFzX3t5OYWEhkUiEVCrFjTfeeE5NCvFvr9dLd3c3qVQKs9nM5OQkV155JU899RSlpaVUVFTQ09NDRUUFTU1NtLe3YzQauf766+d1XOfbY0tZd2KPpVIp+vv7ZT+GhobkGh4fH8fhcEg6WmtrK1arle7ubvbu3SuL161fv56Ojg4GBga44YYbZDHAlpaWRdUIEXkI5eXlbN26lVdffZWPfexj74kk8zzyuFjkTwLyyOM8SCQSMgFYJPEFg0EGBgZktd+ZEXGj0cjatWvZuHEjBQUFDAwM0NHRsST6wELQ6/VotVpcLhfw1gsyk8ngdrvp6OjA5XJhNBoZHBzE4XCQTqcJh8OYTCYMBgMOh4PBwUGi0Sh79uyhq6tLVjNdDCYmJpicnESpVLJs2TIOHz58TpXZi4UwosV4Hzp0iNOnTxONRolEIrS3txOLxSRn3uFwcObMGVn91ul0EgqF0Ov1HD58eN6qpe8kRPXm3t5eabCGw2HOnj2Lx+Mhk8kwNjZGIBDA5/Oh0Whk0mlHR4dM7JyenmZiYgKtVktbW5scg8Vg7dq1RCIR+vv7yWazci1czCmDWGczHYB4PM7Y2BiRSITp6WmZLCySkgF6e3sZHh5mcnKSffv2EQqFmJycxOFw4HA4mJycxOv1otPpOHXqFCMjI2g0GkKhEH19fSSTSVl7IhqNcvr0aZxOJ7lcDr/fLw3WkydPysrJmUxGOmfJZJKhoSH6+/vx+XwYjUZZ8Xcx0fz6+nrWr19PVVUV4XCY48ePMz09vaQIcDKZlAa6aFcwGGR0dJTJyUlJcTly5AiZTAaTyUQ8Hufll18mHA5z4sQJgsEgJpMJlUrFCy+8QCQS4fjx44yNjWE0GmcFI9RqNVqtVlYo3r9/PxMTE3g8HiYmJhgfH1+wrQcPHsTj8UjHfGBggPHxcXw+Hy6Xi6mpKQKBAB0dHYTDYSkR/Hbn8AgFJHESObd+hCgONjU1RUdHB8FgkFgsxvj4OJFIhKKiIvR6PW63m+HhYUwmE4WFhezdu5eRkZFFnWqOj4/j9/tlJfU33nhjSZS6PPJ4LyLvBOSRx3mg0+mksZ3JZKQTICLuo6Ojs14g8XicrVu38qlPfYq77roLm83GCy+8gNPpvOS2CIfDarWSy+VkFFSn0xGNRhkfH6e5uZni4mKZgLts2TLWrl1LY2OjNICSyaRMJNRqtYsqlJXL5fB6vbjdblKpFM3NzRw4cIBgMHhZuLEzK6yqVCpOnDjB5OQktbW1NDY2Mjk5iUKhwGq1UlJSgslk4syZMygUCkpKSigrK8Nut7N8+XKGh4dnqQ8t1J9EIkEqlVq0Ub0YiLEQBdmmpqY4evQoVVVVVFRUkMlkMBgM1NTUsHr1akZHR8lkMrS2trJx40ZsNpuM9FdXV8vEx5qaGnw+n1SpWQyqqqpQKpV4PB48Hs8lJYSrVCqKiooIBoPSAE4kEoyOjvLiiy/icDikEwDQ2NjI8uXLmZ6eZnR0lOnpaQYGBrDb7VRXV8sTtaqqKqxWK42Njfj9frLZLI2NjZSVlTE8PEwqlUKv12O1WrFYLDKpvKmpicrKSrxerzzxSSQSVFVVsX79eiwWC1arVSqAiWTm5uZmLBYLNTU1WK3WCxrzCoWCe++9l0996lNs3ryZUCjEnj17iEajix47YZDPVKIKh8P09vZy/Phx2tvbcblc9PT0UFJSIukvL7zwAl6vl76+PgwGAy0tLdTX1/Pss89KQzyRSMjPRYS9qKiIqqoqiouLUSqVDAwMyFOP4uJipqenF9yzr7/+OiqVisbGRqqrq0kmk4yPj9PS0oLJZCIUClFTU4PT6SSVSrF27VqZePx2oqCggJqaGlpaWmhubmbZsmWzThmMRiOlpaVYrVZ6e3uJRCKYzWbZ55tuuon6+npsNht2u52WlhY2bNjAqVOnmJiYWJQxPzg4SCQSkQ5Ed3c34XD4kvJ38sjj3UbeCcgjjwWgVCqprKykqKiIRCJBIBCQUXClUonL5SIajaLVauURfm9vr0w8XLVqFZ/+9KcxGo0yminKy4uI5XwGnfj7zH+y2SzDw8OMj4/zvve9j1wux89+9jMGBgawWCwUFxcTDoeJx+Ns2rSJTCbDvn37pEEpXvrC0P7nf/5nGhoa2LNnD8eOHZtVoGemgSD+Px6PY7PZaGlp4brrruMzn/kMfX19+Hw+GeUUYzCzCNJcY2OhvkWjUdxuNzU1NTLaV1VVJU9V7rvvPg4ePMixY8eIxWJSdcnv98tCSRaLRV5PjLNwLuYilUoxNDTE9PQ0sVhMFqCa2f658zRfX8T8zZzbTCbDyMgIVVVVVFdXo9PpWLNmDWvXruVP//RP2bhxI+Xl5dx222089thjkmMsIvTiPrlcDr1eP4u7L9q1UL9mjmk2m6WpqQmTycRvfvMb6uvrZ1V0nttX8Zv51qTRaOS2227j5MmThEIhstkshYWFtLa28uijj7Js2TIsFovUeBeOpRg7oYazdu1a7rrrLq699lrq6+sBpKFeWFg4a6+k02kymQyvv/46zz33HAaDgYqKCmKxmOS/u1wuHA4Hq1ev5ujRo0QiEerq6ojH43znO9+RCjJGo5FIJCJzNIT6VjgclmM5n2H82muv4ff7qaio4LrrruOv//qv6e7uJplMzrvO5rtGSUkJpaWlaLVa3G43uVyOiooK9Ho90WiUqakp6RTNvJZwUmeuLSGvm0wmJcVm5jNl5jXEf5eWlrJixQp27tzJnXfeSWtr64J7MZlMzlr7CoWCeDzO5s2bSafTnDx5Ep1Oh9frZWRkBJ1OJ+lM53t+zNe+uWN3vj0287fArM/a29t56aWXmJqaor6+XjpZkUgEhUJxjhLRzPsL52VmkGe+NogxWbFiBddffz3XXXcd69ev5+zZs1IAYG6f5rtWHnm815DPCcgjjwvgG9/4Bq+++iqPPPIIW7ZsobS0FK/Xi9lsxmg04na7ee6557j99ttJJpO0tbWRTCZZu3YtiUSClStXUlhYSEdHBx0dHVx//fUYDAa+9a1vcdVVV3HjjTfOup+I/p04cYKysjIKCwulRKnZbOaee+4hnU6jVCpl0qfH4+HVV1+ltbWVHTt28MQTT3D06FE+/vGPA3DmzBl6e3sJBoOcPHmS/fv3c/vtt7Nq1SqqqqqYmJjgG9/4Bt/4xjdm6YWLF+o3v/lNSkpK2LJli5Tts9vtPPLII3i9Xurq6jh48CC33XYbRUVFPPjggwDce++9s6gKguLyxhtvMDg4yJtvvonRaJSnDPfffz96vZ477rgDh8PBk08+KTnlTqdTRoMdDgf9/f309/fT1dVFPB6X0bzh4WEGBweJxWJMT0/T09PD5z//+VmUhXQ6zeDgIMFgEIfDQUlJCbfeeivwVgLto48+yrZt2ygoKGDPnj2sWbOGK664YhaVJpvN8tprrzE6OsqJEycwGo0kEgn6+/v53//7f9Pc3Ew6naa0tJSHH36Y6667jkgkwvLly6mpqaG8vJxoNEpDQ4NM4h0dHWVsbIyuri5OnDhBT08POp2OdevWMTY2xrFjx7jiiisYGxvjhRde4Bvf+MastZNKpXA4HDzxxBPE43HWrl2LTqfjxRdfRKPRcOjQIc6ePYtarWZiYgKLxcLPf/5z7rnnHrq7uxkeHmblypVs2rRp1ngZDAauv/56RkdHefXVV2UkfmxsjJUrV1JQUIDb7WZ0dJSRkRHa2tro7++nu7uboqIiSkpKWL58Oa+//jpKpRKbzcbo6Chnz56V8rCDg4MAdHV1cfToURwOBzfeeKOU15yamiIcDrN7925KS0upqalhx44dRKNRPvKRj/DAAw9QU1ODTqeTjtX09LSUdBRymQqFglOnTmEwGKiurqatrY0DBw7w6U9/+pxk6YmJCV555RWWLVsm82ruuusuTCYTr7zyCuFwmA984AOcOXOGQ4cOcdttt1FXV3fOM+TDH/4wnZ2d/PCHP+TWW2+lrKwMl8tFNpulvLyc5cuXs2HDBnp7e+no6CAajfK///f/Zvny5axfvx6Xy8VLL72Ez+fjb//2b6murmbTpk1ks1n27dtHLBajr6+PwcFBXC4Xp0+fxuv1cvfdd9PU1ERvby+Tk5PodDpqa2s5evQo3d3dUs52eHiY9vZ2vvjFL9Le3s7rr79OWVkZwWCQW2+9Fb1ej8lkori4mJUrV3LTTTcRi8WkU+X1evm7v/s7/uVf/gWLxTLrZCAUCsl1V1ZWRmdnJ4lEArfbzaZNmxgdHeXUqVO0tLSwZcuWc9bzG2+8gcfj4cyZM5SVlVFQUMDhw4cZHBxkZGSEqakpQqEQKpWK/v5+BgYGKCsrIxKJ0NnZyeuvv86nPvUplEolyWQSl8vFwYMH8fl87Ny5k5UrVzI5ObngPs9kMvzqV7/i1KlT3HnnndTW1pLL5bBYLPz0pz/lU5/6FA0NDYTDYXw+HzfeeCNPPvkkOp2OpqYmWlpazlkPeeTxXoEil3dV8/gDw+UuzS70vWOxmIwIiUinXq+XHGaz2Uw0GiWVSpFMJmWE2Wq1yuJiQhtfqVRy5MgRKisrqa2tnXW/dDpNJBKRLzbBFRf65oWFhTIBUHB3RcRQUAACgQDRaFRWRRZ6+JlMRibXCR17nU5HNpulra2NzZs3o9VqJbVARLXcbjdqtRq9Xo9eryeTyTAxMYFGo5GGRDQalZzxrq4ucrkcjY2Ns2goudxbxar8fj/RaBSbzYZSqZRRX6vVKrnMItoqaiXMjZhHIhGsViuRSIRcLodWq0Wv1+NwOKSOeyAQYGBggG3bts0yarPZLJFIBK/XC7xl5JpMJnQ6HbncWzKmer1e0qA8Hg+rV6+eZdwIB2l6elqeXgia0Uzt8mQyOYs/rdVq0Wg0ZLNZxsfHKS0tRaPRyN9OTU1RUVFBPB4nkUjIaObk5OQsbvPAwAA7duyYtXbE+LpcLsxmszylCofDFBcXy2RrccKgVCrx+/1YLBYikQh+v59IJEJLS8s5PG/Bwxd1M8RpQDgclussHA7j9/spKyuT/TYYDBgMBkKhkEz0LCgoIJ1Oy6R7g8Eguehms1nSLOx2u4zg6/V6WZxNRHfj8ThKpRKDwYDX65XzmM1mcTgcMtFW5PXY7XampqbQaDQYjUapqX/ixAm2bNlyDtdcfDcejxONRtHpdHIOIpGIHIN4PM7JkydZuXIlRUVF5zxDxN4PBoNyr4q6EkqlEovFgtfrnZWoK05UBE1K/E20PRgMymCAWq1mYGCA5cuXk81mZW5NSUmJDBSIJHzxvEokEjKh2+v1Ul5ejlKplM850e7i4mKZx5BIJLBarZL6ZTAY5PgcOXKEK664Qp7SzHx+iFocImleRNd1Op2sPeL3+1mzZs05hc3C4TBTU1MUFRXJkyKfz0cymaS4uFgWc9NqtSgUCiKRCEajUZ4wGgwGmZD96KOPcvLkSf7+7/9eUgbFejnfPvf7/cTjcQoLCzEYDGSzWVwuF8lkEpvNJovliQJ6brcbv9+PWq2WJ15w+d9NeeRxqcg7AXn8weHtetCm0+lZlUPnS4YTxoYo2gTIF5eA2HJdXV3Y7XbKysouuk3iZT1TcWMm5WM+Q04glUpJIyQWi9HT08OaNWsWVUjpQhgeHgbe4rVfLF94JgVAKPeII/a5/Z0P8XicUChEMBikoaFh3rFIJBJSgWm+dkYiEdxuN0ajkaKioouuTCroEiIxVHx2oT4sdC2v14vD4WDt2rUX1Z754PV6iUQiGAwGioqKFmyTWNuZTAa9Xr/o9SIMPzGXSy12J2hFc19Zc8dz7onPTNUn8W9BeRIJ09PT09TX189KFhYGrEgwTiQSsrDdXIcyFArhcrmoqKg4b45NLpeTRrZer5+32jhwjlLVQp/P3A9iP883tgv9fiHMHO+ZbYf5xzuRSNDZ2cnq1auXnCgsZDfFHruYZ49YWzP38Nzr+P1+nn32Wbq7u/nSl74knR7hOFyOfS7gcDhkVeiZdKS8E5DHew15OlAeeSwSarX6gsoq4iWkVCovWFbeZDJdUrLmzPvNxUIv0pmfz6yyqVQqMRqNl8UBAGRU7lISBuczZpbychanCIJzPt/1LyT1KJyQizVOZt5rrhrNpVxPRMwvJwRHeqHxEhCR96VCnAJcDGZKSy5mbQssdD9xLcEDn8/wm7l+dTrdedeKOMW6kOKQMAwXwkL7ZaHPZ7b5fFVzl7oP55PynDu+M/9fPO9mOrmLhcg9uNC6Ox8Ws7bS6TTl5eXytGymQ3S59rmAUHm63Hs0jzwuN/InAXn8wSEfbckjjzzyyOO9hvy7KY/3GvLqQHnkkUceeeSRRx555PHfDHk6UB55LIBcLieLVWWzWQoKCi4LhedyIZVKMTY2JotkNTU1SW7tYgohwVuJnKL+gJATXCpfez643W7Jobbb7Qt+LxgMEo/HKSgoOIcOIJKrI5EIJSUlS6IaJBIJotGoLDZVWFgoKUpLheCGezwecrkcGo1GFm5LJBKEQqFZxYwWA5EoKorIGQyGRRewOh9Esu3U1BTLly8/L0XknYBIqBX5MTqd7hz1mMVAaOyL5FmtVivHKxgMkkwmKSwslHUm3klks1kCgYBMNBW1N5YylyJXIBKJyGJnZrMZjUaD2+0mm83KsbsQQqGQrA68bNkyxsbG0Gq1mEymRa/PC7U1EAgQj8exWCznVAyPRqMycdxmsy2KYphKpfD5fPL6ZrP5oihnS+lDMplkbGwMm82GxWK5aKpaHnn8PiN/EpBHHudBMpnkySef5Omnn+bkyZNLqhQaj8d54oknpIze5UI2m2VkZIQnnngCp9OJ1WpFq9Xy7LPP8sorr+D3+xd9rVgsxu7du/nOd77DwMDAZdO1Hhsb4/jx4xw8ePC830skEuzevZtf/epXvPHGG/LzXC7H4cOH+cEPfsCJEyeWXNArnU4zMTHB7t27uf/++0mn05w5c4bu7m6mp6eX3J9sNsvAwADf/OY3+e1vfyvlSGOxGI8//jhtbW1LqlIskpLb29u5//776enpueSiZZlMhunpaZ5++mn6+vqkks5SEAgEOHnyJAMDA5elCFImk+H06dM8+eSTvPHGGzgcDg4cOMCbb75JZ2fnkq6VTCY5dOgQ999/P729vbIi9ssvv8yRI0dk/YL5MDw8zAsvvHDJ/ZkPIljwjW98g927d+N0Oi9qLtPpNM8//zxPPfUUhw8fltd46qmnOHTo0KILDiaTSXp6enjkkUeAt+SBDxw4wMDAwJLbNB9yubfqhjz88MM89dRTnDp1Sn6ey+X45S9/yWOPPUZnZ+eixyGTyeB0Ovnyl79MT0/PZX9mLnTP3/72t5w9e/ZdrzCeRx7vFvJOQB55nAcFBQVMT0/j9XqJx+NLijKKCPRSlV/mFtyZ+/d0Os1zzz0nk16LioooLCxEp9MxNTW1pBeoVqvF7/fT29t72aPG0WiUycnJC95foVDgdDo5fPiw/DwQCDAxMcH4+LhUeFkKxKlBJBKhv78ftVotpTkvJlIsZDqj0ShjY2MMDg6Sy+VwOp2YzWYZtV3K9UTksb+/n2g0esmKJJFIhOnpadxuN2VlZRcV2VSpVDLCfjkSJIXcq8vlIhwOYzQaUavVnDp1imPHji3pWgqFQhZ5EwWzPB4ParWaoqIiNBrNgmMoTvHeDigUCvR6PWfPniUWi1FQUHBRc6lWq3G73bjdbqLRKAqFguHhYcxmMzabbdGRcY1GQyqVkkZ/LpfD4/EQDAaX3Kb5IBLqs9ksnZ2d9PT0yL+JWhEej0cm5i8GQpjg6NGjUsr07YZarcblchEKhS6LwzuzsFkeefy+IH/+lUceC0ChUGAymbDb7Wi1Wqk1PTY2htVqnSWx6fP5KCsrkzUCxIty5cqVqFQqAoGA1HwX1UuFRr6gvYjqn2q1Go1GMy/tKJfLEYlEeOSRR3jkkUdYtmwZarWabDbL1Vdfjc/nW9ILtLCwEIvFgsViobq6mlQqRTqdlgagkDIMh8MoFAopp6nVapmamsJkMkmJQrPZjN/vR6vVSs1+QXc53/1XrlyJ2+2mvb2daDSKXq9nenqaTCZDdXU1lZWVS1Yd0Wq12O12ysvLpV5+aWmprCeQyWTw+Xzo9XqSySQ6ne4cWoOAMNhXrVrFLbfcQm9vLwcPHqSxsZHx8XFuvvlmbDbbkpwAlUqFwWCgqqoKq9UqDTxBPRMyr8IYDwQCmEwmfD6fpC4Ig1Pol/t8PiYnJ2UlX0HzEtKqGo1GrjWhFx8IBCgrK8Pv98uaE6WlpVI5JRgMSnqK0ET3+/3y7+FweJbU4lwICktJSQlFRUWUl5dTUFAgC18tFkqlEo1GQ2VlJTabDbVajcfjYXJyki1btlBdXS2lKqPRqFSAEVK+JpOJ5cuXy/0zU25Wp9MRDocpKCiQe1rULRBVpPV6/TlSvzPbZrPZMJvNVFRUUFxcvGQjVqgGFRUVyVoHbrebzs5Obr75ZjnnyWSS6elpSbGLRqOyIJ2gpYm6GsLZLSsrw+v1ytMnl8tFcXGxHAtRy2RqagqLxUI6nUaj0SzoNCkUCqxWK5s2beKll17C4XAQj8fRarWMj4/L+RYUvsVAo9GwbNkyWRV67r3FmhPSpVarVfZJqJr5fD5ZN0Q8L7LZLGazmampKSnvCm+dulitVklBFDUgEokENptNykEnk0nZB1E9OZPJyOebqN8i/lGpVNLRvRxOdB55vN3IOwF55LFIpFIpRkdH+Yu/+Avuu+8+RkdHqaysxGw284Mf/IAf/OAHjIyM0Nvbi1arZePGjfzlX/4lTz/9NC+88AIdHR2o1WpuuOEGXnvtNb7whS9gNBoZGhriwIEDFBYWkkqlKC8vp7GxkcbGxnPakEgkGB8flxx0oZsuopG33367LHh1MVJ9fX19jI+Py4JhPp+PTZs28cILL8iqoTabjXXr1vHnf/7n3HHHHaTTaXQ6HXfffTePPPIIq1atwuFw4PF4FjSsZ0LIAzY3N3Py5EmuvPJKWVDpcvJ0H330UXK5HKtXr2bt2rX85Cc/YevWrfT397Nu3Tq2bdt2wWvcdttt+Hw+nn/+edauXSulOi/HKcr09DRdXV1EIhF0Oh3RaJTGxkbUajW/+tWvuOWWW/jpT3/KvffeS0VFBYcOHaK2tpa2tjb+6I/+CI/HQ0dHB2NjY4yPj9PW1ibXSDgcpr6+nuHhYY4ePUp1dTXNzc08+OCD3H///fzsZz+jtraW4uJiTp06RWFhIffeey8vvvgifr+fiooK+vr6+OxnP8tDDz2ExWJBo9Hw7LPP8tOf/nTBuhkCyWSSyclJOjs7OX78OKtWrWLFihUXPVbHjh2Thu7MgmmDg4P09/eTTCYZGRnh5ptvxmAwcPDgQV566SV++ctfsn//fnkClslk2LRpE7/73e+oqamRxdt27tzJf/zHf2CxWEgmk1x55ZXccMMNS5rni60Dkc1mGR4e5tVXX+XDH/4wZrMZtVotKW5f+cpX+Nu//VsA9u3bh8Ph4Bvf+AYvv/wyRqMRjUbDyMiIpKwJJJNJ+vr6+NrXvsbf/d3fkU6nefnll4nH4/zpn/4pX/rSl/jkJz8p80lEBe2FoFAoqKurQ6PRcPbsWTZt2kQikViw5sZSMXP8nnjiCWngRyIRPvGJT/CTn/yEZDLJTTfdRFFREffffz+f/exnefXVV6moqEClUhGNRvngBz/IX/3VX3HFFVdQV1dHQUEB4+PjfO5znwNgYGBAGv9nz57lc5/7HC6XizNnzjA4OChlRTUaDSdOnMDn87Fu3To2bdpEKBQiFArhdDrx+/3U1NRw5ZVXUlZW9q7n4+SRx2KQpwPlkcciodFoKC4upqWlhcrKSj75yU/ywQ9+kNWrV7NhwwYikQgqlYpdu3Zxzz33UFNTIxNt16xZQ3NzMxaLRRqe8Xic3t5eOjs7qampYd26dYTDYRoaGli+fPm8bRB68yIJEd5K7u3q6uLxxx/nt7/9LVNTU0vKXZiJYDDICy+8wJEjR0in0+zYsQO73c7OnTtZs2YNXq+XZ599FpvNxsqVK1m2bBnve9/72LVrF6+99hqhUIhNmzaxefNm6urqFn3f2tpabrvtNn7xi1/gcDgwGo2Xnb6xZcsWGek0mUy8//3vp6ysjOPHjy+aL61UKrn22mu58847+da3vsX27dsX5egsBqdOneJXv/oVt99+OzfddBP79+/n2LFjFBYW8sd//MccOnSI2267jdLSUvr7+zlw4AA2mw2r1Up/fz/pdJr169fT3NyMRqPhyJEjmEwmdu3axTXXXMPf//3fc+ONN8qk5pqaGlkJ+uqrr2bbtm1s2rSJLVu2kEwmefXVVwmFQjQ3N3PLLbfw0Y9+lGw2yx133IHVasXj8XDPPfdgNpsvaOQWFBRQUlJCVVUV09PTqNXqi9aFHxkZYfny5RgMBvbv309PT480GMvLy1m7di1r1qzBaDSyZ88eMpkMVVVVMnre29vLa6+9xtTUFMXFxYTDYV599VW0Wq2shtvd3c3OnTsxGAx86lOf4uabb74oiorH41nyXpycnCQWi/G5z32Ov/u7v5P7WYzZ+vXrAVixYgXLli2TdJ+HH36YdevWcf3117Nq1apzaCni+bV+/Xqy2SyrVq2ivLxcnpqtXLmSyspK7r33Xm6++eZFtXXnzp1UVlbyxBNP4HK5KCkpuWxUHlHVu6uri9dff514PI7VakWtVnP69Gk+97nPkU6nCQaDlJaW8r73vY9Tp04RiUTQ6/Wk02mGh4fRarWsWbOG6upq1qxZw/Lly2flKjU2NrJt2zY2bNjA+Pg4R44c4cc//jEnT56kpqaGsrIyDh48yPr167Hb7ZSWlvLpT3+a9evX8/TTT1NcXMzq1auxWq3U19dTVVX1jtCZ8sjjciDvBOSRxxIhItciEmm327nrrrt46qmn8Pl8qFQqWVVUGEdKpRK9Xo/VapVUj2w2KysGB4NBXC4Xu3btoqqqakGjSqPRUF5ejtFoJBgMkkgkMBgMlJeXk0gkcLvd5HK5i47EFRUV8dnPfpa1a9cyNjbGSy+9xNGjR9m/fz8Gg4GysjKSySSBQAB4i84zk8qi0+kkJWEp0U+hIhSNRunq6sJgMGC1Wpfc/lwux8jICNPT05JaM/M4X6FQEI1GGRgY4NFHH5V0oVQqdUHqkriG0WikrKwMk8m05H7CW5V5x8bG8Hg8syraJpNJwuEwKpUKpVI5i5Y1PT2N3+9n/fr1KBQKQqEQJSUlrFu3jo9+9KNs3rx5lrKToDLMrLYciURQKpUsW7YMv99PW1sbn/70p3n22WclLUZQvgCp6KNUKlGr1RQXF6PX6wkEAng8HpRKJRs3bmRkZOSChq5Q9LHb7fKkSCSULhUVFRWUlZVx7bXX8sEPfpB//dd/JR6Pk8vlOH36NK+++iput5u6ujpZETgWi8mxvPrqq/nABz4gOehjY2MUFRWxatUqbr31Vm655Raamppm7fOlzrMwYNvb24nFYkvqX2lpKStWrKC6upp7772XRx55hK6uLjm3M0/HstmsnGux7xZq69zfKxQK0um0PDFQKpVYrVa5hxcDi8WCwWAgEAjQ2dlJRUXFZVNP8/v9nDx5kmg0itVqpampSc55S0sLVqsVvV7P0NAQfX19rFmzhnQ6TXV1tZzLP/3TP5XUHIvFItWRZq5XseYF1VGMZ1FREWvXrqW1tZX/8T/+B0VFRTI4IRSPtmzZgt/vJxQKUVtbS0tLy2VRV8sjj3cKeScgjzwWQC6Xw+v14nQ6GR8fZ3x8HLfbjcvlYmBgQL7ctVot9fX1TExMSKNYSN55vV6mp6cZGxtjYmICl8uF2+0mEAgwNjYmE9La2to4c+YMIyMjUpZ0eHiY/fv3z3phiWqt99xzD+3t7XR0dOB0OqUsn8hRCIVCjI6O0tfXRy6X4+WXX5bR4plwuVy4XC68Xi/d3d0MDg4SDAYlP1mlUjExMUEymcTpdOLz+cjlcgwODuJyuRgeHsbv92MwGFi5ciWxWIzJyUmGh4cZGhpiYmKCRCLB4cOH6evrk86DgNPppKuri+7ubqLRKJs2bSIcDhMOhwkEAkxNTTE4OEgikZD/La755JNPEg6Hz1EgcTgc9Pf309XVJelMAOPj40xMTEiDOhAI4PP5yGazeL1ehoeHicViPPXUUwuqhYhcgtHRUUKhENPT03JMY7EYY2Nj9Pb2kslk2L9/P21tbefQMgKBAKOjo/T29tLR0cG6desoKiqioqKC9evXc+rUKXp6eqisrKSkpASPx8Pvfvc76uvrOX36NKFQCJvNRnFxMRMTE/h8PtLptLzu5OQkWq2WsrIyotEo3d3d9PT0cOONN1JQUMCaNWuwWq24XC62b99OW1sbNpuNwsJCYrEYIyMjTE5O0tjYSC6XY2Jigt7eXrq7u0kmk7z++uu4XC4MBgPHjh0jlUpx/Phxuru78Xg8s/oaDodxu90yyTuZTFJXV0coFKKzs5OhoSGy2Sx79+7F6/USCoUYHBzkwIEDsyLZ2WyWWCzGwMAAwWCQQCCAwWBg+fLluN1unnrqKcbGxpiamsLpdJJOp4lGo0xPTzM+Pi7paU6nUyonGQwG7HY7drudysrKWUm5QoHL4XAQCoVIpVKEw2EOHjzI6OjorDnNZDJyHoaHh+nq6uLYsWM88sgjMpG/v7+fs2fPkk6nOXDgAENDQ0Sj0VnPGr/fj9PpZHp6Wu6zK6+8kpMnT/Lmm29y9uxZAJYtW8b4+Dg9PT1SIjiRSNDQ0CD7NzQ0hNvtlmt1fHwcn8+HQqGgqqqKsbExuru7cTgceL1e+WwaHByUaz8UCvHUU09JB2vmXExMTNDe3s7Y2Bg6nY7Vq1fj8/mIRqN4PB5JSYvH4xw5cgSfz0c8HmdkZITnn3/+nH0Vi8Xo6uqSDvqpU6fYt28fzz//PFVVVVRVVcnE92AwKKs5t7a2Am+dDpWUlNDa2irb4PV6CYfDpFIppqencTgcOBwOnE4nXq8Xj8eDRqMhEokwOTmJw+FAo9FQV1fHVVddhc1mo7+/H6/XSzKZZHx8HJfLRSAQwOv1AmA0Gunt7eXUqVMMDw8zPj4OwGuvvUZ3d/dlSTjOI4+3E3knII88FoDQki4uLsZqtaLRaGSkSejqw1tJnoWFhTQ2NlJdXY3RaJQJbE1NTaRSKZmcaLVaSSaTNDc3S73tcDiMWq2moKCAkZERnE4nwWCQUCjE0NDQOcf6arWaO++8Uzoafr+faDRKWVkZDQ0N8ig8Go3K6PbAwABer/ccg1lofTc2NhKPx0mn08RiMfnZ8uXLsVqt1NXVySj4ihUrpAa5QqEgk8lgMBhobm6moqKCRCIhk+csFgvZbJbp6WlcLtc5xnUsFiOdTsskzWuuuYbi4mIA9Ho9ZWVlMiEwFosRDodlMqQwSueOj0qlIh6PE4/HMZlMkusv5klEL9esWUMymWT58uXY7XaSySTpdJqurq5zDPeZEDUjmpqaZhlImUyGaDRKMBgkl8tJo3TumIsoq9By37JlC3a7nZqaGq655ho5p+vXr6e+vl5G9jds2EA4HEan01FfX09LSwuBQIBgMChPFES03WQysX79ekwmE36/n1gsxu23305BQQHNzc2sXLmS8vJyampqKCoqoqSkBIPBICPFdrudpqYmKisrZQJxIBAgk8kQj8cpKSmhrq4Oj8eD0WjE4/FIpZWZSKfTaLVaiouLMRgMkppTUVGBTqcjEAiQy+WYnp6W4x8MBs9Z90IxS6VSSV63UqmkpKSEzZs343A4iMViWK1Wqqqq5BwXFxejVqsxmUzU1tbKugXZbJbKykrWrVtHTU0NGzZsIJFIEAgEpHGu0+mkulc2m5XGpMvlmuWYC4nQlpYWmWTs8XiYmJigvLwclUpFKBTC7/fP2gtzVbxSqRRFRUUUFRXJpFNBL0mlUgQCAVQqFatWrUKlUhGJRDAajdTW1qLRaNi2bZscP6VSSW1tLclkEpVKJcdDq9XKaHU4HMZqtVJRUUE8Hqe6uppMJiPXazKZlIbs3LkQARDR5m3btmGz2UilUhQXF2OxWOSzwePxkEwmyWQy+P1++vr65t1TgkoovieS0svLy1m3bh1qtVo+L0UbN2zYQH19PXq9Hr1ez5o1aygqKpL1MoRsbFlZGVqtlnQ6jUqlorm5mWQySUNDA1arVSYCNzU1UVtby7Zt26ipqSEcDhMKhWSQxWazUVpaKumYYk+oVCrS6TTt7e2k02kGBwdlfYc88ngvQ5HL61nl8QeGd6M0uzBSlnoU/NprrzE5Ocltt91GYWEhr732GgUFBVRXV1NTU0NPTw9r165d8Hg+EAhIqkNZWdmC9+nr65P88YWSbcWjQESvZlIHhDEh2nG+PsbjcZRKJblcTqoLRaNRXC4XJpNJGvmXgnQ6TU9PjyyINXd8/H4/CoVCFvaar68iSjtTySObzXLmzBlaWloumdYwMjKCWq2eV64zmUwSCoXQarUYDAbZfjFmmUzmglKTQu1lLvVs7n2EytDMa81crxdat+l0WiZ/LwQRfS0oKKC8vPy84yK+L1S0ZhbAEgb1wMAAa9euvShaRTabJZlMzpo/cR2xxkUC60zu9syk1vnum8lkiMViOBwOmRC7VIj+TU5OUlZWhtm89AeUUD5SqVSkUinphANSzSabzUoneGb/5/5erA+xR2Z+L5FI0N/fT1NT02WRjBWnHRMTE6xZs2bJvxfrZa7yjjC0Z65vocS22DnKZDKkUqlz1rgYR71ef07/c7kc//Iv/8Kdd95JU1MTbrebBx54gC9/+cs4nU4sFgtFRUWz9v678W7KI4/zIa8OlEcelwkX85JsbGxEp9Nx/Phx9Ho9Pp+PDRs2YLfb8fl8kue9EAoLCyksLLzgfUThqPPlCgiDcD4nYSmJbvMZz/39/TQ0NFyWiqXwXwWLFjLYFlNZVSRZz8Tl1PkWPO35xrygoICioqJ5f7cUdZULOSrnm7fFOqyLac/g4CAVFRWLTvYVkdu5iEQiMt/hYiHyD8R6nvs3IRM7FxcyGIVRfD6n/ELIZDL09vayatWqi1aPmblu5zo64ppKpfK8Ep/i9zON3vmM3Hg8ftkUus5X/2QxWGgtz7eGlzq24hRtvmvP5wAIbNy4UdKLUqkUTU1NGI1GqW72TlevziOPpSJ/EpDHHxx+n6It6XSaTCYjo7EiAiz0yYGLSj6di1QqtaBB+nZDRNyFwX45kuZENPNyFbUS1wTOOR24WIjE3v8OhoCILF/q/M50wi7Hur+cEJrwMxNrl4qZ6/Zir/FO4XLvMeEEiGfcHwLi8fissREnn4KeN3fv/z69m/L474H8SUAeebyLUKvVl1ULfyG8my/d+SLul+Oal1uHW7zML1db34l5fa/gco3ZpVZNfjshFGQuBW/Hun27cLnbKhzE9/IcLxULUeT+UJycPP7w8d/nLZVHHhcJwYkWlVwF1eB80TER9RLVWYVqz8y/CTqLWq2+qGixiLDD/C+dmW0QUCqVsj1LgeBZC375XJnCTCYjedgLUXTeLmSz2XOkDoWs41IgxnO+foi/iYi34OG/ExBysm63G4PBIJPIFzOHM/uk0WhmnXCI68bj8XPW6DsJsU4TicSsRMpLWUui336/H7VaLStCi+h2PB5Ho9HMa8SJJGCRIL/U+yeTSZmAbLfbpUztYve4qOosKjSL38+dm5kVoUVOwLsJ8UwTvP2561PMr9g/i0E2m5WqRqLir5C71Wg0s/KBcrkcoVAIjUYjT1PfDoh9IxK7xdz+dzjxy+MPD3knII88LoBEIoHP5yMcDgOwfPnyCxpgwtgQ1X0rKytn8eF9Pp9MHrPb7Rf1AvH7/aRSKanCMx/S6bSUZtTpdFIhRCjlLJZykcvlpHyiVqultrZW/i0Wi0nZPKHU8U47AUKuM5lMYrfbMZvNMnK72DwEYRCPjo5itVqx2WyzjKvx8XFSqRRWq/Wi5+xiIOQ/R0ZGZFK1qA1xIYhE1KmpKVQqFfX19bLdQoXF4XBQXV0t6x68G8hkMrPUhcxms0yYFmt2sWtKOKR+v5+pqSk0Gg0mkwmLxYLFYpFSo8XFxdTU1Jzze6Es093dzdatW5fkMAtFmlAoRCAQoKCggEAggM1mW1S+RDqdxufz4fF4SCQSpFIp1Go1hYWF5zgswWAQv99PLpejubl50W2cez+4fKdWPp8Pn8+HzWajrKxMrrVkMimlhhdbTTedThOJRBgfH5eJ7TabDYvFwvDwsLyHuJaotGy1WqUa1dsB4WAKaeXKykqsVmveCcjj9xJ/OOdyeeTxNiGTyXDq1Ckef/xxfvKTnyxa9i2RSLB7927+8i//ko6ODhnxzGaz/PrXv+b+++/n+PHjS9aSFtd59NFHOXjwIE6nc8HvpdNpXn/9dX74wx/S1tbG5OQk+/bt44c//KGUz1sMstksp0+f5oEHHuCf//mfZRtyuRynTp3iF7/4BT/84Q9nVTK+WCw1gTCXyzE6Osrzzz/Pt7/9bSYnJzlw4AC/+c1veP3115d0nXg8zmOPPca//du/cebMmVlt+Yd/+AeefPJJ+vv7L1vy8GIwPT3Nk08+SX19PQC/+c1veOaZZxb1WyG/+eKLL/KlL32JaDQq++T3+3nkkUf43ve+N6+U6TuJXC7HiRMneOyxx3jooYeIRCIcPnyYBx98kJMnT55XsnXudUKhEMePH+fxxx+nvr4ek8nEmTNn+PnPfy5lfx966KFZVWNnIpvN4vF4+MY3vnGOjOeF7v3000/z3HPPEQgEaG1t5dSpU3znO9/h0KFDi7qG0+mks7OTkZERmpqaeOCBB2hra8Pv95/z3VAoxN69e3n88ccX3ca58Hg8TE5OXvTv58Lr9fJXf/VX/OxnP5Na+vBWlebvfe97/PCHP1x08TSXy8Ubb7yBUqmkrKyMRx55hN/85jdEo1H27NnDm2++KQMz8JbTsH//ft58801cLtdl69N8SKfTTE5O8oUvfIETJ07k6wHk8XuLvBOQRx4XgNlspra2luXLl1NVVbWoKJY4vl61ahUbN25kamqKkZERaYRoNBqqqqooLS29KMWcdDrNzTffzLXXXktjY+OCbdBqtaxcuZKqqirq6urYuHEjt9xyC1u3buVnP/sZo6Oji7qfWq2mtraWtWvX0tDQwNGjR+VpByB12EVF5IuFcJKWArVaTUlJiayyun79enbt2sXk5CS/+c1vFn0dlUqFzWZj27ZtssZCKpUinU7T29tLXV0dLS0tVFRUvKNRv1AoRFtbG0VFRdTV1XHNNdewcePGRf1WRE9Xr17Npk2baG9vJxAISMqLVqulrq6OoqKid5WrXlBQQF1dHQ0NDVRVVbFixQpuvfVWrrrqKrq6unj22WcXdZ1cLkd/fz//8R//wec//3ksFgvV1dU0NTVhMpl45JFHLhgpFnUN7Hb7oteycAAikQjNzc1s2rSJgoICdu7cSWtr66JlcQ8fPozf76e6uhqDwcAnPvEJSktL56X7VVdXX7Lc7rFjx5bkKF8Iq1at4s4770ShUPDyyy/LzzOZDCaTifLycioqKhZ1LbfbzYEDB6irq8Nms3HzzTezdetWNBoNK1asOGdulEolK1eufNtzcQT9asOGDRQXF1NUVPSeoGPlkcfFIE8HyiOPC2BmQtti1U/Ed5RKJbfccgtHjx5FpVJRXl7OwMAA9fX1svKlz+fjzJkzqFQqRkZG2LRpE8XFxUxOTvLzn/+cu+++G5fLRWlpKXV1dRQWFvLkk09SXl5OT08PZWVlsiruQm0Q7Rd8+XXr1vH973+fa6+9VkaYFzMG9fX1lJeX87vf/Y6NGzcyNjaGUqmkqqqK/v5+AE6dOkUkEpE5FBqNhrKyMp544glsNhvNzc04nU42b95MZWUlJ0+eZGJiQkqkNjY2Sv5wKpVicnKS22+/HbPZPK/xLdqWzWYJBAIMDg4yOjpKcXExt9566wX7Nt94bd++HZ/Px9mzZ1mzZg2hUAiTySSVUgKBAAcOHKCsrAyXy0VVVRXLli1Do9Hw/PPP09jYiNPppLy8nKqqKh577DFKS0uJRCJs3LgRu93Ovn37qKurw+/3s2nTpgWNI8Fp/8xnPsPWrVvZuHEjDQ0NS+qTXq/n/e9/P6+88grl5eWk02mcTicNDQ243W4UCgUHDhygv7+fyspKVq5cyY9+9CPuvfdecrkce/fuxW63EwwG2bp1K52dnQwPD7N582ZpwA8NDeHz+dDpdFRXV6NUKnn22Wdpbm7miiuuoKenh2QyybXXXjvL8RVtFPM4M3l0xYoV7N27l8HBQT70oQ9dsL8+nw+Xy0VBQcEsuUyr1UplZSXPPPMMH/7wh+X3A4EA7e3tqFQqRkdHWbdunRzbVCrFkSNHCAaD2O12li9ffl4D9sCBA2zcuJHKykq5TlUqFTfffPOCcp1zsWrVKp555hkeffRRNmzYwNVXX82aNWvIZrOcPHmSjo4OVq5cid/vp7W1lUgkwujoKMeOHePkyZN86EMf4tSpU4yOjlJZWcmKFSu4//77+fSnP41Wq5VSrh0dHaxYsYIzZ84wMTHB6tWrWb9+PSdOnCAej8tKu9dccw2PPvqoLPpnt9t5//vfP2/bxdyJtd/f3y+rcQs601LUo6xWK01NTXzyk59k+/bttLa2SvqWQqGgt7eXiooKGVTZuXOnXDeimGBbWxs1NTX4fD6ampo4deoUAwMDXH/99YyOjtLa2kppaSmBQICOjg4aGhoYHBxky5YtCzpYQmZ2JpXyvazylEce50P+JCCPPN5m1NbWEovF8Hq9JBIJIpHIrAJRSqUSnU5HQUEBU1NTDA0N4fV6UalUdHV1yeREl8tFT08P7e3tTExMkM1mGR0dXXQ0X0ChUGA2mwkGg4umWQgUFhZSXl6Ow+EgkUjMqq4q8PrrrxOJRCgrK8NoNPLiiy+i0+kYGxsjHA5jMplIp9P09/fjdrsZHx/H7/djs9no7OzEarViNBrRarXkcjnGx8cZGBi4INVIyHEWFBTgcDjQarXzcr4Xg02bNhEIBGTF1JnKMPF4HKfTSXt7O3a7HZvNRn9/P7t376ajo4NgMIjFYpH5GL29vcBbVIlly5YRjUbp6OjA4XCQTCY5e/YsgUBgwbbY7XZuu+02Vq9eTSQS4dSpU3R1dS2pPyIfwOl0Eg6HicfjJBKJWca4qHrqcrkwGo2yCi/8V4JmU1MTRUVFkm9fUVEhedk6nQ61Wk0oFOLQoUOYTCZZQTkajRKPx1m2bNmSIrVGo5F0Oj2L9nE+iHwAcZo000hTqVTnjPPMved0OhkaGsLpdMqEepvNhlKpxOPxMDY2dt57h0IhlErlOScqdrt90ad9VVVVbNmyhe3bt6PT6XjzzTeZnp7m5MmT9PX1yROKwsJCVCqVlBe22WyMjo7i9/tl4SsxjxMTE8Tjcaampjh69Chnz55Fr9djNptlwnRxcTFKpZJXXnlFrstwOEx3dzfwVv6ByWSiurr6gn3Q6/XYbDb0ej1DQ0O4XC4sFst5i83NB3Eqt23bNlQqFW1tbXR0dMi5zeVyWCwWvF6vDEAIDA0N0dXVxeTkJIlEgtOnT8sgwcTEBFarlUwmw/DwMD6fD4fDwb59++jv78dsNufVffL4b4O8E5BHHgtAJFWKkvcXywM3GAwUFhaSTCYZHx+fV1kml8thtVrR6XR4PB5CoZCMfNfW1lJaWko6nWZ4eJiOjg70ej2lpaUUFhYumcaRzWbx+/3Y7fYl/1atVssky6GhIan2MRPHjh2joKCA5uZmKioqOHjwoGynzWajurqaoqIiJiYmiEQi0pEQ1Kjq6mqp/GGxWNBqtQwPDxOPx89LFRJJpILaIlRgLgYNDQ3SiHe73bNoTvF4HI/Hw8TEBDU1NTQ2NjI1NcWBAwfo7OzEYDBQXV2NxWIhGAwyNDRETU0NJpOJLVu2oFarGRkZQa/XS0fpfPQik8nEpk2b+NjHPsbKlSsZGRmhs7NzSf1RKBQYjUasVitutxufz3eOoVNUVERpaSnZbJaioiJ0Oh1KpRKz2UxVVRVGo5GdO3dSXV2N0WjEbDazevVqVq5cSS6XQ6fTYbfbsVqtnDlzBrvdTktLC3q9HrfbjdFoZN26dUuqxBwMBtFoNFit1kV9X5wAzN2ziUSCQCBASUnJOdVzs9ms3Hs+n4/p6WlpSNfV1VFeXk42m70gz7ykpIRUKiXXs0AkEll0rkw2m2Xz5s184hOfYOvWrXi9XgYGBjh27BhOp5M1a9ZQV1dHY2Mjer0elUqF0WiktraWXC5HJBLBYrFQUlJCLpeT8yhOypLJJD6fD5VKJR2KkpIS6urqSCaTnDhxAoVCQW1tLdXV1YRCIbmWV6xYQWtr66L6UVlZSU1NDcePHycYDGIwGJZsWGs0GiorK/nsZz/LFVdcgdPpZHBwUDqmguqlVCpn5R8AjI6OMjk5idFopKysDIPBgNVqxWAwoNfrqa2tpbi4WCajiyrdHo9HrvuF5ieZTJ4zx3nk8fuKvBOQRx4LIJfLMTg4KFVxstksGo1GFrzJZDJks1mpKjMziXRm4al0Os2mTZskT7a8vFz+NpfLMTU1xTPPPEMgEKC0tBSlUkk0GiUajWIwGGThMFFYTK1WU11dTXNzM3fddRc33HCDTGqdrw2irZlMhnQ6TSwW4/Dhw1x77bUUFxdLg0f8VhhQc8dC/F6r1bJr1y6eeOIJyY+d2R/xvZmF0ESVViHpJ6g+whGZmpqivb2dj370oxQUFLBv3z6OHz9OIpGgvLxcnqAI6cSZDpkw5DKZjFQDWrt2LcFgkGPHjsk2iAjxTEnRudcR46xQKKS847Fjx6irqwNmy5EKw2rmOhD3mtlv8XehviPGrKamhpUrV3LfffdRX19PJpORlZ1ntsvv97N3715KS0u55ZZbWLNmDRaLZdY6nCkFOncNiL+l02luuOEGTp8+TU9PD3a7fda8ieJGoh+xWEzOIbyVGyPGWqPRoNfr5b1PnjzJ8ePHcbvdLFu2TCoPbdu2DYA9e/ZIhzORSMwy0GcmzIv2iDFub2+nqKiIjRs3yjmc2ae5xrXFYpF7KBgMyrXodrsZGRnh+uuvl3QOYdj/9re/lQ6CWq0mGo3K0zq1Wj1rTYt9Nl9l6euuu45gMMjY2JiUFE6n0wwMDODxeKQBKfZkKpU6Z5+1tbUxOjpKYWEhmzdv5gtf+AI+n49IJDJrLYlqy0L5SLRnpkzu3HlcsWIFH/zgB1m9ejVPPPEEgUBAOkTJZJKxsTEMBgO1tbW0trayY8cOrrnmGnK5nDTiZ8obz12nM9dZfX09K1eu5PXXX5drau4eSaVS8v/FWMy8nsgJMBqNbN++nV27dlFfX4/H4yGTyVBYWCgLLIpxEf8W67W2tpaWlhY++9nPUlpaKql1ok1iDS1fvpwvfvGL2Gw2nnvuOaanp+ddX4lEArfbTV9fn5TWVSqVcj2JZ4rIJXo3k+3zyGMxyOcE5JHHAshmswwMDDAwMEB3dzdms5nbbrsNgKNHj5LNZlm2bBm5XI5/+7d/4/vf/76kOoij5+eff56enh5uueUWotEoBw8exGKxcPDgQTo7OykrK5MGpjBWRkdHcbvdLF++nOHhYXp6emhra2NsbIzS0lI+/vGP893vflcaccXFxVRXV/PXf/3XfO9735MGgpDOfPPNN+nr68NsNuNyuQiHw4yPj/P5z38eo9HImTNn6Orq4vbbbyebzXL//fezfft2du7cKcciHo9z9OhRpqamaG5u5s477+Tll1/GYDAwMjLCkSNHGB8fZ2JignvuuYdQKMQLL7xALpfjM5/5DA6HQ0a/Ozo6OHbsGC6Xi9tuu42pqSnOnj2Ly+Wit7eXL37xi7M07Kenp+nv72f9+vW89NJLRKNR/sf/+B/AWxHuRCIh29Db28vExISM3nZ2dnLgwAG2bNnCAw88wI033ojVapUKLH/8x38s50yc1DzxxBMy+bC0tJTe3l6mpqbo6urC5/Nx7bXX0tTURF1dHYcOHaKnp4empiZuueUWzGYzP/nJTzhx4gSdnZ1UV1ezevVqfvrTn5LL5diwYQOrV6/GYDDw1FNPUVZWJvndvb29vPTSS3z961+fFa32eDw899xz8oSjoKCA4uJiEokEx48fR6lUsnr1avbv3097ezt/8zd/I3+fSqWkclJ3dzcf+9jH6OrqIpfLoVKp5OnF6OgoFRUVWK1WDh06xP79+xkcHKS7u5vCwkKOHTsGwA033IDf72dwcJC+vj7Onj3LunXrSCQS6HQ6otEoJ0+elGts9erVMjIv8lb+6Z/+SSb9inZGo1Ha2tqk0sqrr75KKBTC4XBw9dVX09raSjwe5+c//zkf/vCH0Wg0HDlyhBMnTvDXf/3XcqwUCgUrVqzga1/7Gt/5zne4++678Xq9jI2NUVhYyJ133snIyAgDAwNotVp5wjBz701OTpJKpRgZGaGnp4eTJ08yPDxMUVERiUSCP//zP+drX/varPwAhULBjTfeSCwWY3x8nBdeeIF169bR19cnE1tHRkZ47rnn+LM/+zOOHz8ueftXXXWVvM7ExITMaamqquLll1/mQx/6ENu3b6enp4eHHnqIa6+9Vjq8XV1djI2N0d/fT29vLydPnqS1tVXOmZjHnp4ezp49S2dnJ3fffTfXXHMNRqORwsJCxsbGeOWVV9i8eTMf/ehHGR8fx+v1SqqbUDATRjXAn//5n/Ov//qvFBUVzXpmPvfccxw7dowrrriClStXyqT0EydOSGpRV1cX1dXVPPXUU+zatUsGALZv305LS4u8ltfrZf/+/eh0OioqKpiYmKCqqoqSkhKefvppHA4Hq1atYnBwkOHhYbq7u+WJyYc//GGy2Sx79uzBZrPh8/mora1lZGSEoaEh+V23241Wq8XhcMjntKhu/vLLL9Pd3c1XvvKVWc/B4eFh3nzzTWpra7nrrruoqqoimUzidDp56aWX+MxnPsNjjz1GUVERq1evls/3PPJ4L0KReye17vLI4x3A5SrNLnjBPp8PeIv3brFYUKlUMiKpVquJxWKcPn2abdu2ycQ3YcQGg0HUarUsJZ9IJDCbzVJ5Rhzpx2IxSQlJp9Oy2E4gEMBut8vCQOL4XyQVq9VqNBqNjFgLXXPRhlwuJ7n/Wq1WRjbFS12hUJBKpWRbANrb2ykvL6eysnLWWITDYVm4yGAw4PP5MJvNsl/pdBqr1XoOFUMUBxK66VqtVkZTDx06JBOHy8vLGRoawuFwsG7dOux2uzyWT6VSmM1mRkZGSCaTtLS0zBrrRCIhI542mw2FQoHX6yUUCmEwGCgrKyMcDsuj/kgkQnd3N5s2bZLjLsYlEAhIio6I7un1evx+PyqVSnLIRXRWJD+Lgk6hUGjW5wUFBZLTbjKZJPc+EonI72i1WlwuF+Pj42zcuHFWAqWIPioUCmKxGIWFhZjNZrRarZSw1Gg00nhbt27drLER9AW1Wo3RaCQcDqNSqdBqtZKqIjjm6XRaftftdmOz2SgoKJARZpEgGolESKVSFBYWUlBQIE9oBPc+FouRzWax2WwMDg7idDrZsWMHCoWCEydOsGzZMsrKymat05m0GYPBICO74gRJfMdgMKBQKJicnMTpdJ6jlCQivNFoVCYqC3qZyWSSpxRiLc7ce8K41mg0+P1+ioqKSCaTMi/EZDJx6NAhNmzYINsxE4I+mEqlCAQClJeXy7oc2WyWaDSK2WwmmUwyNDSEVqudlZgvnjWCmiLqiIh9KopxiboJ8XicdDpNYWEhgUAAvV5PQUEB2WyWWCyGWq3G5XLJuhaJRELmzej1ehKJhPzMaDTKfTxz34q1q9Pp0Ol0ZDIZDh06xObNm2fVbxDPy0QiIZ81kUgEq9UqT/LgrQi9OHHR6XTE43H8fj+JRIKGhoZZtDu/349Go8Htdst1r9PpCIfDpNNpjEbjrDGIxWJkMhmMRqNsz8z9KdapqBeRyWQkPTOZTMo9rNVqmZycxOPxzKJAidO6QCAgn3fiGS5OXUwmE263m0gkQkFBAVVVVfL3l+vdlEcelwv5k4A88lgAgrahUqlkYqgwFmbymsULdO5vheSkgDiKBs4p7qXVaslms7O4qDMrgc7l7ttstlkJq8lk8pxiT8IQvBCfWhhIwnGZj78rkolnQkQBhUExs58zj8FFm2aqbYhxqK2txePxEAwGUalU+Hw+qqurKSkpwWQySZrKzN/NVWkScqxzEw+LiookbQaQ7RdJseXl5bOMOIVCIaPsMyGuO/fzwsJCMpmMXBPiWhaLRRqTou1zC0UJ50D8Xjh08xVa02g0lJeXS4qBVquV8zOzz4KiM7dPWq121notLCyU/z13HQrnQFBORNtmXlOpVJ7zO4PBINsi8g9OnDjB5OQkWq2W5cuXy7HQ6/WzkoPF9eeur7mY+Z1sNktBQcG80ozCiBeGn6iGLOZJrVbPmsuF9p5Y0zPHLpvNnjeHQ4yDcF6EoyAUj8TYC2dg7poV4yqMU/H8EetDXFt8NvP3JSUl8r9FjsbceTQajTKPRzxfRCVl8f9z9+7ctatQKOYtLCd+P3NOxHNrvv0pFJNEEKK0tHTW37VarcxtEHtDBDhmrr+5e2DuNWaO18y/i/8WzwfRd0HvmW99iSCARqORe1HsDbVaLddnLBZDp9PN2mt55PFeRN4JyCOPC+BCiYwqlUomjl6sVJxwGpaCmYaUkEG8lDYIXIySx1wstvJsdXW1jBwLh6Wurg69Xj/vNQwGw7yJ1fNBpVItOKbCQbuUsRKG2WI/v9D3ROXnuW0Sa+NC60MYfZfaJzj/2C2EmfOVy+WkY2kymbDb7fJvItn7UtepOJk7HxYjzbnUvScUgxZqv3D+LpQIazKZznm2zFQMm+/3S1lbcO48zpRfnfnZXCfvQte2Wq2LrjZ+IQinba4TOHNeLtaYXsx4zezDzFPBhZ6BYn7Pd12VSoVer8/XD8jjPY88HSiPPzjkj1zzyCOPPPJ4ryH/bsrjvYb8SUAeeVwAC/nJ75UCMefz4y+mjW9Hf2de890at7n9Wkw7FhsjmU/ydSn3uVQspp2LbcflutbFjPdicDnW+0Jtu5h5e7v6Od/1L/baS4n1XegeF7snLgZv99gu9f7nw3vlfZBHHktB3gnII48LIBaLMTw8TDqdltVAF6tb/k4gk8kQj8dlISTBzV2owu6FEIvFGBsbIxaLsWzZMlQq1bw0lcUil8sxNDSEyWTCbDbPyh94J+FyuSRdpqCg4Bxlk4UgknjnQnCyRRVhgVwuh9vtJh6PYzQaF32fS4EoACaSOkVVYFH5dSla+7lcTiY3z0VBQYGUWLzQNZLJJA6HA71ej91uv2wFmEThMpEUDUip2cWu0UgkIpNglUolxcXFKBQKQqGQrC0xl6O+EETS/NTUFJWVlYuuDrxYhEIhmch8vorFF0IkEpFJvqKCr3h2RKNR9Ho9JpNpUU6A1+slnU7L9SD49G63W8r0Xg4qTC6Xw+PxEI1GKSkpeVfoNblcjunpaQBZXE2j0RCPx2UdC71ef8kUyjzyeDeQrxOQRx4LQKjO/Pa3vyUajWK1WhkaGuKBBx4gmUwSDAbx+/3nLRyTy+V48skncTgcb2s7A4EAv/jFL3jjjTeYmpqir6+PF198kQcffHDR0SzR3+eff15KBI6MjPDAAw/IAj3zQaiwhMPhBe918OBBDh48eMGqq28nvF4v3//+9/nZz342r1E/HzweD0eOHOGll15iYGCAf/7nf+YnP/kJHR0dHD16lN/+9rfzVrMNhUL89re/Zf/+/Ze7G/MiHo/z4osv8u///u8MDQ0Bbxl9r776Ks8++6xUnbkQhKLVD37wA7q6uvjlL3/Jj3/8Y1588UW6urp44IEHcLvdi77W7373Ow4ePEgoFLrovs133e7ubp555hl++ctfEolE6Orq4qGHHuLEiRPnaO/Ph0Qiwauvvsr3vvc9jh8/Lj/v6upi7969nDp16hwd/PMhmUzy4x//mOHh4Yvt1oJIpVK8+OKLvPTSSxd9jVwuh8vl4s033+Rv/uZvpM5/KpViYGBAjuNi+iuc3L/8y7/kzTffnFVV+tFHH6Wrq+uyzbdwsP7zP/+TkZGRy3LNpSKbzXLq1Cm+/vWvc+DAgVn1In75y1/S19e36GJweeTxXkPeCcgjjwUgolATExPAWwmBMyPiAwMDjI6OntdAhreqZ76dUSKRpBYKhaRsnpAVfOWVV+YtbLQQRH+FvONikmcnJyfp7e09r2EtoqwXGqu3E1arFZfLhdvtXnS0VlSAra2tlVWOQ6EQxcXFlJWVSYNgLgoLC/F4PHg8nsvdjXmh1+uJRCJMTU1hNpuJx+OMj49TWFjI8uXLL6i8IyCkNcvKyrDb7USjUUKhkKwwK9RZFgMhERmNRuUJxeWAUOmKx+P4fD65Tnt7e+nt7V2Uk6LT6aTCTW9vr/w8nU6j0WiWFHEXSkJOp3PW6cTlgk6nkwGHi4VQ9CksLKSnp0euW1EvwmKxzCt5utC1rFYr6XQar9crTyDFc8hisVy20z6FQkFhYSHj4+Pv2rNDoVBQVVXF6OgoXq9XqidlMhksFgsmk+mynXLlkcc7jTwdKI88zgNhBDkcDoqKijAYDGzcuJFsNsvp06fRarXSoBCa/ELVQtByiouLpd52IBAgm81itVoJh8OYTCYMBgPJZFLq6Au1jmw2i9/vx2g0YjQaJfVkLoQShd1ux2g0otfr5dH+UiNysViMUCjE5OQk5eXl6HQ62d/h4WEp2+d2u2U/ROEoo9GI1WqVFUDhLcMglUpRUlKC1+slkUjg9XoJh8OUl5cTCASkJF8qlaKsrIypqSmpKqPT6XA4HJSVlUljVKlUkk6nKSoqYnh4GLPZLK9xPgpHeXm5NHbmyh4uBI1GQ0lJCRs2bADeUrYpKSmRkpexWAy/3y9pJULqsLi4GK1WK7XtHQ4H5eXlUgpVyHx6PB5KS0uJRqNSylAYZU6nU1YvBqioqFhQ/UlQrYQSj4jGrl27lsrKyiXx2xUKBTfffDNVVVWUlpai0+lYtmwZjY2NTE1NMTU1JeUuhVFUVlYmKTYKxVtVXG02m5TBTCaTTE5OAm85SIKKIxRWdDodLpdLUklEEbz52i2UnYqKigiFQthsNqlxHwgECIVClJWVnbefoqp0IpHgjTfekDQxsX9aWlpwOp0YDIZZVJlkMsno6Og5EqNij8bjcTkmWq0Wk8kkjXcxLkLGdXp6moKCAkpLS+V+Ki4ulvQcnU5HLBajtLRU6t6n02nGxsawWCyyKrCop1BYWIhWq51X3UehUFBSUkJLSwvl5eW43W4sFguJRAK9Xs/VV18tK/BeCEqlkvLycnbu3EkqlWJiYoL6+nri8TirV6+msrKSXC6H0+mU0qxms1k6g2q1mnA4THFxMVNTU9JxyGQyTE1NUVNTI2uPCMdC0M8SiYSs3p5KpeRzNxqNEg6Hqa+vl+MqnilGo5FoNEpRURHZbJZwOIzP56O8vHzWM3g+ipt4lq9Zs0ZWwg4EAhgMBsLhMNu3b6e6uvpdozjmkcelIu8E5JHHAlAoFNTX1zM8PMyJEyeoqKhg27ZtfPSjHyUUCnHy5ElZWEYUHdq/fz8ajQaj0Yharaa1tZX/7//7//jqV78KwEsvvUQkEuGOO+7gwIEDXHXVVbS2tjI4OMgbb7xBZWXlrEjnc889x1VXXcWGDRtYvnz5BXnK4+PjdHV14Xa7cTgcfOlLX1oSl7+uro7x8XEOHTpEaWkp27Zt42Mf+xjT09N85zvfoaamhj/5kz/hqaeeIhQK8f73v19W37RarbIQ2uTkpCza43a70el05HI5HA4HY2NjHDt2jP/5P/8nL774ojT6pqam+NznPsdDDz1EPB5n+/btNDc38+///u987nOfY9++fTLK6PV6+fCHP8w//uM/cvXVV2M0Gkkmk/zJn/zJJc35XNjt9lnyljOhUCjYvHkz/+///T+sVqusPPrFL35Rficej9PX18e//uu/8md/9mfs2bMHo9FIfX09FRUVPP7449x3332cPXsWv98vnZRbb72Vp556CpfLJR2///W//tc5OuhzkU6nmZqa4v/+3//L17/+9QUN6YWg1WrPGwWvrKzkH//xH7n55pu57rrr+O1vf0soFOJLX/oSx44dY3x8HJ1Oh9fr5a677pJF4wQVRalUcvXVVzM4OIjP58Nut5PL5WhpaeFnP/sZRqORzZs3Ew6Hueeee87b9mw2K2l54+PjmEwm6urqqK6uXlRfa2pq8Hq9fOc735FFuITRGYvFeOKJJ1izZg1nzpxh5cqVbNu2jYmJCf7iL/6CT33qUygUbxU6q6mpYevWrWQyGbq6upiamiIWi1FTU8NVV13F3r17Zf5IMBikrq6OwsJC7r//fiorK/nc5z4n99O9995LX18fZ86cYcWKFfT09HDfffcB/8XF/+Y3v8muXbuk0xmLxQgEAlx77bU0NjaeV9K4sLCQ973vfTz//PN86lOfwul0EolEuPLKKxc1ZjPxvve9jwcffJB4PM6WLVvo7e2lsbGReDxOe3s7/f39MnBy/fXXc/r0aZxOJ8XFxZw4cYKPf/zj/OQnP8Fms3HjjTcSjUb59re/zX/8x3/gcrmkg19QUCDpSw6Hg1OnThGPx3G73WzevJlkMklnZyf79+/ngQce4PHHH6e0tJRsNsvU1BQbN26kra2NP/qjPyKRSHDgwAGefvppvvKVr3Dw4EG2bdvGunXrLihDev311+NwODh69Ci33XYbZ86c4eabb77gnswjj/cy8nSgPPI4D5RKJT//+c/54Q9/yAc/+EEmJib46le/itlsprm5mU2bNrFlyxYqKir45je/iVarlRUiT5w4QU1NDcXFxbJy5BVXXIFarebKK69kenoan8/H0NAQP/jBD6ipqaGyspLh4WGi0ShXXnklkUiE++67j61bt84qBrQQli9fzhVXXMFdd93Fddddx8MPP0wwGJxVAOhC/f3Rj37ET37yE+69916mp6f56le/SnFxMZWVlZjNZgwGAzt27CCRSGC1Wqmvr6e1tZWrrrqKmpoaotEo+/btY/fu3fh8Pq655hpUKhVTU1N0dnYSjUb5l3/5FxKJBPv27cPn80nt+NOnT3PfffdRUFCA1+vFarXygQ98gFOnTsnqoQD9/f0YjUaam5upqanhuuuu4zOf+czFT/RFQqFQcP3117N69Wri8Ti7d++e9XeDwUBtbS0333wzHo+H5uZmNBoN09PTGI1GvvzlL1NdXc0VV1zBli1bsFqtPPTQQ6TTaTZs2EBDQwNNTU38zd/8zaKMjUQiwcTEBPfddx8//vGPOXLkyGXtb0NDA+Xl5fLUZ/v27ZKWc/LkSSKRCHfffTcf/OAHJX1oaGiIM2fOUF9fz5/92Z/x61//GofDQXV1NTabjQMHDlBfX49Go6G2tpY77riDe++994LOSyKRwOPxMDo6SkVFBV/96leXbJQVFRVx44038uyzz7J3714sFgsrVqxAq9Wya9cuqqqq8Pv9DA4OMj09TX19PSqVitbWVjZv3ozNZuPQoUPAW8nZzc3NbN26lbq6Ovbt28fExAQHDx5Eo9Fw4403csMNN/AP//APs/aTXq9nx44dJJNJ9u/fj8PhoK6ujptvvpmPfOQjMhm2p6eHp556ii9/+cu8//3v56WXXuLUqVPU19ezYsUKXnjhhQvmulitVu6++26eeuop/H7/ktRv5qKuro6CggL8fj8TExOMjY1RUVFBSUkJq1at4uqrr6a6upqHHnqIUChET08Pb775JsePH2fHjh1YrVZWrFghTxw3bdokaYMHDhygs7OTm266iWuvvVae9LW1tfHLX/6S2tpaVq1axbFjx9BoNGzduhV4az+uWbOGnTt3csstt7Br1y7sdjuvvfYafr+furo61q1bRygUYtu2bZSUlODxeBaVs3Xrrbfi9/s5cODAJY1bHnm8l5B3AvLIYwEIys/k5CQ2m42dO3fy8Y9/XCaBCWpGMplkaGiIdDrNypUraW1t5aabbuILX/jCrOuJwjWCry+4+uKF0traSmtrKx//+MfZtWuXpD3MrZC7GAiKUiKRoKura1GJa7lcjtOnTzMxMUFhYSFXX301n/70pyXPWRTJEUlxM/sl+jM4OIjFYuHee+/ltttuY3p6mt/97ncyVyGRSDA+Po7D4SCbzVJUVERzczPXXnstH/vYx1i1ahU2mw2dTsfo6Cjt7e20traSzWaprq5m9erV3HzzzXzlK1+Rx/cmkwmj0fiuSPRNTEzw2GOPMT09TXl5OVqtdhZvWLRv165dvPrqq5K6MDExgcfjoaysjBMnTrBnzx6cTieNjY1kMhn8fj+ZTAaDwUBhYeGi14DRaGTDhg3s3LkTq9VKd3c3J0+evCx9FfcXVLdsNivXRiqVklQilUqF3W6XpwA2mw2DwcBrr71GKpUik8mwbNkyWltb2bp1K1/5ylfQ6XTSIBb3uVBftVotxcXFtLS0UFRUJPMVFrsOBEXmAx/4AI8//jher1e2PxgM8q1vfYuCggJKSkrQaDSEQiFSqZRUwxHF0ES+g6gQLFSK0uk08XhcjoOASKCfu5+EotLMir7iWZFOpzGbzdTV1fHkk09KZZ6qqio2btzI9u3b+fjHP37BaLagW7W0tPDss8/i9/tpaGhY1HjNN35bt26lqKiIp556SlZNP336NHv37qWzs5OWlhay2SyBQIDt27dzzz330NLSwv/7f/+PWCw2awxE/xOJhMxVmK+QmdlsZsOGDWzdupWPfvSjrFmzBrvdzlVXXcVTTz0l5+ro0aM8/fTT1NbWYjAYiEQixONxqQw287m1mCCJXq+nurqadDrNI488Qmtr60Wpr+WRx3sJeScgjzzOg0gkwpEjR+ju7sbhcOD1eqmvr5e82HQ6TU9PD+FwmPe9732Mjo4yMDDA9PQ0fr8fr9eLx+PB6XQyOjrK4OAgk5OT8hRgYmKCVCrFDTfcQFtbGxMTE3i9XqamphgaGsLn8+FyuUilUvh8Prq6unjzzTdnGRXJZBKv18vQ0BADAwN0dnZy5MgRTp48ic1mo7q6mlwuR0dHB6dPn5Y86P7+/nOUjaLRKMePH6ezs5OJiQncbjcNDQ3SsFMoFPT29tLX18fIyAihUAiz2YzZbKajo4NAIEB/f7808quqqjCZTAwNDeFyuSgtLaWsrIwf/ehHpNNpysrKiEajDA8PSwqRUqmktbWVwsJCBgcHsdlsbNmyhXg8ztTUFA6HQ1IupqenGRgYYGpqimw2Szwe5+GHH8br9Z4zlx0dHUxPT+NyuRgcHCSRSLB7924CgQA+n4/u7m527959TpRPcIs7Ozvxer2SchUMBgkEAjIvQOR7dHZ2ysixz+cjFotht9tJJBKUlZVRW1tLSUkJsVgMlUrF9PQ0iUSCYDDI8PAwarWa8fFxBgcHGRoaYnJykmg0Si6X46mnnqK3t/ecRFun04nL5cLj8dDf34/BYGDz5s309vbyxBNP0NnZSS6X49VXX8XlchEIBOjp6ZF8+PkwODjIxMQE4+PjcoxzuRwlJSUkEolZ60AY1ABtbW10dHTgdDpxOp2SE19SUsIvfvEL1qxZQyqVktSZQCDA9PQ0Ho+HyclJxsfHyeVyDA8Ps3fv3nMUpZLJJGNjY4yMjODz+fD7/dJJSqfTOJ1O9uzZQy6XY2xsjMOHD9PZ2TlvH7VaLTU1NSQSCex2u+R2i/0WCARIpVI4nU46Oztxu914vV4mJiYYHh5mZGSEqakpuW8nJycZGRlhaGiIqakpjEYjlZWVxGIxzp49S3t7O3fccQc6nU4aomIcxYmGVqtlfHyczs5O2tvbmZycxOv1kslkMJvNDA0N8eqrr9LQ0IDJZKKjowOHw0E8HieZTHLgwAHefPPNefsrAhE33XQTk5OTxOPxWVWXx8bG6OnpYXJykkAgwEMPPUQsFltwjaxevZri4mJJX1IqlXi9Xpkf0t/fj1qtZmpqijNnzjAwMIDBYJBSy2VlZSgUCvr6+jh9+jR+v59YLEZRUREWi4Xe3l46OjqYmprC7XZTVFREa2sr7e3tTExMEA6HSafT2Gw2tm7dyp49e6ioqECpVBIOh4nFYjidThQKBUNDQ/T09DA6OkowGGR6eprx8XH57PH7/fzyl79cMGCiVCpZtWoVy5cvp6enh5KSEpl/EQwGGRwcpKuri1wux3PPPceZM2cua0J8Hnm8HcjnBOSRxwIQKhhut5tEIkEoFCKZTLJ582ZUKhVNTU1MT0+Ty+Uwm83s2LGD06dPy8TYXC5HNptlw4YNkttqt9tl5GnNmjWUlpZSWFjItm3bOHHiBMlkUnKNNRoNGzZskFEyYeQ6nc5Z7RRRRZEzoFQqSSaTaDQatm/fTkVFBel0mlQqJU8fotEofr9/Vo6BQqHAYrHg8XhIJpOz+ltQUMDKlSuJxWIyKtnQ0IBGo5GJgLFYDJPJJJMTzWYzlZWVMhpaWFhITU0Ner1e0nnWr18v+fxqtVoacy0tLajVakkBampqYmhoCK1WK6PJACtWrMBqtcqIXC6XY2JiYt4XeSqVYvXq1ej1ehmdFZFX0X6hBz4f0uk0ra2tFBUVyd8bDAbWrVsn8wauuOIKlEolmUyGpqYmSktL5Vxu2rRJ0sPKyspk5LS0tFTmFIjoqkajkcpMVqtVOibT09PSIZiJTCZDVVUVra2t0jBZt24dQ0ND0pCFtyg0or+JRIKpqakF+5vJZKiurpYGmTAE169fLxMvhfqQyWSipaUFn89HPB6XvPS6ujppCJtMJvr6+ti6das0akXUN5vN0tTUJBNExf3dbvc5Sb65XA69Xs+yZcvkfpoJkSsgruHz+Rakb4ik1e3bt8u2wlvOgZiH2tpagsEgRqMRpVLJ5s2b0Wg0pNNp7Ha7PL3ZuHEjhYWFso7IihUrsFgstLa2UlBQINt0yy23oNFoWLlyJZFIZNZ+qq+vx2KxoFarZd2HXC5HQ0ODTHxftWoVqVSKjRs3yr0u9k8ul8Pn85335E+ssVAoRFFR0Sz6VCaTIZ1Oy2Rj4ZgvhNLSUhobGxkYGJCJ60VFRahUKtRqNdlslq1bt2I0GmVCvN1u5+qrr6agoIC6ujqZAJ3JZNi0aROFhYU0NzcTDodJJBJkMhnWrl2L2WymrKwMrVZLIpEgmUzKfa/X61m+fLlMZo9Go1RWVsr9feWVV8pTEoPBwBVXXCGDFCKHK51O43A4zkv1aWhoIJVKoVKpZim+ifES8+VyueZdm3nk8V6DIpcnt+XxB4bLVZpdGIkajUZGqAQ9QCCTyZDNZmep9iSTSXK53HkT9BZCLBZDo9HMe8yczWYJhUIMDw+zbt26i6a/CIUMp9NJZWWlNHxEfwsKCgiFQkQiEdRqNSUlJfJe6XRaUhHi8bgsHJXNZuXngDSSReTxfBAO03xFt4SDI3C+sRWPsra2NlpaWpZUWEiMyeDgIOvXr1/S2M6kE8yct/n6MvOzmf8tjPSZYzVfGzo7OyktLcVms10SFSGbzRKNRunr66O1tXXJa0k4lCqVSirMCOcnlUrJ+TnfdTOZDMlkcl5lFeEYiIjrYvJhFrrHyMgIKpWK2traeb8jnGLRh5mfi/0g+nGxe06MlzC4L7SfxNjodLoLJkeLf8TeGxkZIZ1O09jYeN42xWIx1Gr1gvKW8Xicnp4eWlpaztmbM5FOp0kmk7P2m3Ak5l5brI+Zcy6eoUqlkmg0isFgkMpHQrI1Eomg1Wrl/hBGtwgcwOw9JgIp4nsz2zFfP8Rp3+nTp9mwYcN599Z8/Z2Lnp4eLBaLzIsRuFzvpjzyuFzInwTkkccCUCgU0pgRWuRzISQdZ+JS1CLOJzUXDocJh8OLrmS6EDKZDH19faxdu/acl6Por8VimUUTEFCr1fKlJpwHeOuofGa/L2T4z8RCRsh8/O4Lja2QelwqwuHwoqQl54PgNZ8PF+KqL1ZnXDgLl8pFjkQiBIPBi+ovzG7vzLmebz8sBCFtuxCmpqakWtLFYnp6WnL1F4KQBp3v84tx5OfDQvO70H660NgIzF17whldzB5YzPXFCcP5rjezDzM/W+x3Z66ZmfUsZn4+t67HfOts7h4T+R2LXY+LfXbM14e5mM+pzyOP9yLyJwF5/MHhDzXaMjOJeKmJwnOvIzTpxbX+ECDGRvRtKf26XGP7diOTyUgpy0vBe72/l6t9M+kYlzpmvw8Q4yYSay/1Whezl34fcSnPjvmw0D79Q3035fH7i7ybmkcevye4XMbaYig6v48QY3MxfXsvGsLz4XKpkbzX+3u52vffwfCfics5r3+oz4n5cCnPjvmQVw3K4/cF/z12eB55XAREsqjgq87kzwpVnYKCgnkpKufjO18uiATI+RL3FmrXXAgurEgkFLxbwcdNpVLyWpfTaMzlcrJC8kyu71IRDAaJRqOo1WrMZvOS6BuC8y0UPFQqFRqNZtbcqlQqmUSrVqvRaDRLMiwTiQTxeBy1Wo3BYLgsYyjmTMhzwn/N22LbJrjoImKp1WrlfM+kwYh8DZHU+XZCyENms9l5qWhvBzKZjCwUptPpzskJiMfjZLNZ1Gr1ovo/dz/pdDoymYzMkVEqleh0OnldsebON2+BQEB+72KphmJuM5mMzDsQa1FE/GOx2JLW0UzVILE3ANk3pVK5pOef2GfieTYz+VbcazHjNbPPYj0JzKQHiWrTeYM9j//OyDsBeeSxAHK5nCwUVFZWRllZGQUFBWSzWQYGBjCbzVK5JRwOS8k/Iffo8/lobm5+29qXzWalZGEqlZJVMgOBAHa7ncrKykUZnZFIhKmpKTwej1TrSafT+P1+JicnqampkYbsYp2LCyGXyzEyMiIr1C7V6MtmszidTqLRKNFoFJVKRTQaxWQySVWdxSAajTI0NERBQQHFxcWUlJQwPj5OKBSiqqoKm81GOp2mv7+fioqKc9RULoRQKMTU1BQqlYqVK1cuqY8LIZvNEolEpERieXk5BoNBJkWKKsHnG4N0Oo3P52NwcJCqqirKy8vx+/24XC4SiQSrV68GkHKddrt9wWRskdAqNNeFY7FUWoWoIREMBi+qgu3FIJ1O4/F4GBsbY82aNbLStzDmT506hd1up6SkZNFOgJjzUCjE2rVrSaVSTE5OEolEKC8vp6qqSsqPGo1GSktL8fv9Ui5zLkZGRtBoNLIdF9tPr9eL1+tFp9PNShqOx+NMT08zPT1NU1MTJpNpUUZ2IBBgYmICpVJJZWWlVMIaGRmR9SGWGgSJRCJSEtZms8lk7vHxcekcLnYM/H4/Y2NjmEwmNBoNXq8XjUYj80za2trYsWPH2xqoySOP9zr+e52V5pHHEuHz+fjyl7/Myy+/LKtxZrNZHnnkEc6ePcv09DRjY2M899xzklc6Pj7OoUOHeOGFF8653kzO7qUik8lw9uxZHnvsMb773e9KnfJf/epX7Nu3b1Ea1ULObs+ePXz5y1+Wko3pdJrBwUEefPBBwuEwJ06c4OzZs+fIk14sstksJ06c4PXXX2diYmJJv83lckQiEX72s5/hdDpZtmwZarWaQ4cO8eKLL55TnOl8iMfjfPvb3+ahhx5ieHiYdDrNnj17+Pd//3dOnjxJOp0mEAjw85//HKfTKRP+FguPx8OJEyd48cUXL5tcoJizvXv38u1vf1tqlD/33HP86le/WlRhODG/f/EXf8HZs2eJx+P09/fzm9/8hm9+85tS7vC1115j9+7dUut/bjsymQwDAwNyrcXjcVmHYKlIp9McPnyYX/7yl0v+7UK40F4TMqSf+9znOH78OMFgUH7ucDj4/Oc/z7Fjx4jFYou+n8Ph4KWXXuIf//EfSSaTxONxfv3rX/Pv//7vDA0NAW/p8b/++uscP35c6vEvtF+PHDnC/v376enpWWLv/wvZbJb+/n6eeOIJ/u///b9yjwhJ3V/84hf89Kc/lYXMFgO/388Pf/hDvvvd7zIwMCD7//TTT/Paa69d1LMiHo/zn//5n/znf/4n+/fvl2383e9+x969exkZGVn0Pjp9+jTf+973GBwcJBwO8+STT/LYY49x+PBhotEo3/rWty5qnS6Ey/lszyOPdwr5k4A88lgACoWCVatW8cEPfhCNRsP4+Djl5eWo1WquueYaNm/eTHFxMfCWfrSI4hkMBlpbW7n99tvnva44Kr9UaDQa6uvrmZ6eJpvNsm7dOgKBAF/84hfJ5XJ4PB7Ky8sv2MempiYUCgWPPfaYlOBUKBRUVVVxzz33UF1dzbJlyy4rHUjUAjh79uySf+twONizZw8mk4nW1lb0ej1WqxWdTsdXvvIVrrzySqqrqxcVuS0vL+eOO+7A5XIxNTVFQUEB69at44knniCTyWAymSgoKOC2225j1apVS6Yt2Ww2Ghoa8Hg8S+7nQhCF21paWujo6KCpqQmdTsfExATt7e2cOHGC7du3n/caRqOR5uZm7r33XsbGxmSdgcrKSt544w2pVLNt2zY0Gs28VWWj0SgDAwMcO3aM+vp6CgoKGBsb4+DBg+zYsWNJJzIAVquVkpKSy0oFutBe0+v1rFmzhs9+9rO8+OKLmM1mtmzZIp2AiooKWlpaLriPBJRKJatXr0atVvPwww/LtdnQ0IDL5ZJRbpVKxV133SVPWL7yla8sOFaNjY24XK6ld35OP2tqamhpaWFiYoLp6WlKS0slrcxisVBQUIDNZlv0Gl+xYgVf+cpX2LNnDw8++CDbtm1jZGSE973vfZSUlFBZWbnkdlZWVvK1r32N73//+xw8eJDbb78dnU7HihUr2LBhw6LnAaC2tpY777yTm266ic7OTpxOJ9dccw133XUXqVSKkpKSy04FulzP9jzyeKeQdwLyyGMBiJfy+9//fp555hkOHz5Ma2srQ0NDNDQ0YDQacTqdnD17lr179/K1r32N3/3udzJC+tprr/HHf/zHdHZ24vf78Xg8hEIhysvLWb9+PUeOHEGv16NSqRgZGeETn/gEx48fR6lUEovFCIfDbNq0ifLy8nkNBPFZKpXC7XZz4sQJTp48yc0330x5efmiXkbiGlarlTvuuIPnnnuOD3/4w7jdbkKhEOvWrQPg0UcfRaFQ0NDQQHl5Od/97nfZsWMHpaWlBINBstksDQ0N/Md//Af/63/9LzKZDGNjYzidTnbt2sXu3bsxmUwYjUaKi4tZu3atvLeIsPv9fqxWK1NTU2zatEk6WHPh8Xg4dOgQ73//+2fJF2q1Wurr6zly5AhFRUUXdALE77Zu3cpzzz3H0aNHef/73080GqWhoYFQKERvb68sejY9PU1bWxvxeByz2YzJZOKqq67iwQcflJQklUrFJz/5SZ599llKS0uJxWKMjo7Kez7//PPyvycnJ/nEJz7BI488gsfjobS0lIaGBtra2vjCF76woDE2U7M+lUoRDoeZmpoiHA5TUlJCS0vLoubdbDaza9cu/v7v/573ve99pFIp1Go1y5cv5/Tp05SUlGAwGDAajfh8Ph5//HFaW1sZGRlh5cqVmM1mnnnmGcLhMJ2dnVRUVNDX18fu3bsxGAySwnL27Fm6u7upra1lbGyMLVu28Morr+Dz+di5cycej4eqqipaWlpIJpO43W6OHDkiC0g1NzdjMBg4c+YMkUgEv9/PihUr8Pl8nDlzBpPJRCwW40Mf+hAejweHw0FhYSHHjh2jrq6OLVu2UFFRseA4KJVK6urqaG9vJxgMSh65oDMtJdlWfM9kMrF27Vra29uprq5m+fLl+Hw+XnvtNe655x5Jr0un0/T29vK9732PH/3oR7JKdDAYpKSkBL1eLwsIejwe9u7dy969e7nvvvtob2+XGvgjIyN86lOfWjB3Z+Y+v/POO3nmmWf4yEc+QiQSIRAIUFdXR1dX16zvLqavy5cvx+Vy0d3dzfPPP08ul2Pz5s2o1Wr279/Pf/7nf/LAAw/wu9/9DpfLRXV1Nbt27Trv2FksFq6//npOnDjBd7/7XbZu3crmzZuxWq1Lciqrq6spLS0lk8nwjW98g7vuuosrr7xSPhczmQyHDx+W1DXh8D388MOywCLAjh07+Kd/+ieuuOIKKioqJE30gx/8IKdOnZr32V5cXLxo2d888ng3kXdZ88jjAqirq0OpVOLxePB4PExMTFBWVoZGo8FkMmGxWBgbG8Pj8XDs2DFcLhcKhYJwOMzQ0BBvvvmm1CIXyXcmk0lWC04kEvT19eF0OhkYGKCtrY3BwcFFJ9aJl1hBQQGRSERq9i8lam0ymbj22mvZvXs34XBYJsyK+1utVuLxuCyYBsgKpoFAgP7+fmw2G0qlklAoRCgUwmg0snbtWrRaLaWlpRiNRkZGRjh69Oise0ejUYaHh9m3b58c2/MZ8JlMhmg0Oq+To1AoiMViSzqSLy0tRaPREAgEJD1g8+bN+P1+2tracDqdVFVVodPpsNvtWCwW4vE4r7/+uqyam81m0Wq1rF+/nq6uLhwOB0ajkfLycmw2mzyZOX78OOPj46TTabk+zGazpGFZLBY6OjoWRWkSxePEehOnT6Iy6oWg0WioqqoiGAzi9/tJJBIUFRWxadMm9u3bx8jICAaDAZvNRkFBAVVVVahUKk6ePMn4+DharZby8nKKioooKSmhsLBQ5mRUVFRQWFhIb28vvb29eDweMpkM3d3dqNVqwuEw0WhUFj47c+YMwWAQhUIh21VXV8f+/fsZHBxkYmKC5557joKCAvR6PQMDA0xNTWE0GgkGg2zZsoXCwkJGRkbo7e2lvLycgYEBqqurz9GYX2gsVq1aRSAQ4OzZs0xNTVFTU3NRUV2x16+66ioOHjxIf38/drudpqYmPB4PwWBQnrZpNBr0ej1+v59cLsfrr7+O3+9n9erVslqz2FPj4+MMDw9zzTXXyHyF4eFhMpkMkUiE4eHhC9LV9Ho9GzZsoL29XVb/zmQyF530rdVqaWpqYufOnTz88MNUV1fLdaDT6fB6vQDY7XYSiQQ+n++C11SpVLS0tNDY2Eh3dzcqlYrCwsIln8KJoouvvPIKpaWl0nENhUIyl0UUokulUrS1tXH8+HEcDgeJRAK3283w8PCsBGpRnbytrQ2AvXv3zvtsz58G5PH7gvxKzSOPC8BsNlNeXo5KpaKjo0MmoKrVakwmkywPHwwGcblcFBQUUF1dTWNjI8lkEp/Ph0qlwmw2Y7fbqampwWg0kkgkUKlUGAwGUqkULpdLRh9TqRTRaHRe5Z+5EM5CSUkJDQ0Ns8rZLxZarZYVK1bg9XoZHBwkkUhgNBplFFQ4PUJFpbi4mKKiIiorK8lms/j9foqLi9myZQtjY2P4/X5sNhtr1qwhHA5TUFBAeXk5qVSKoaGhWbz1mU6M1+u9oPGr0+koKytjampqFj84k8nIiPpSDAa9Xi8Tftva2igqKuKKK64gGAzS0dFBKBTCarUSjUZRKBTYbDYsFgvd3d0kEglpyJaXl9Pa2ipzC4qKiigrK6OoqAh4K0nY7XajVquprq6mqamJZDJJeXk5FosFq9WK3W6XBuFiIJJwzWYzK1asYNOmTRcs7iSgVCqlo9LT00MoFKK6uprW1lYOHz6My+VCo9HIarYiQdjr9RIIBFCr1VRVVWG329Hr9ej1esxmM8XFxVRWVqJUKhkfHycQCGA2m6moqKCqqgqLxYJOp8NsNrNs2TLKy8ul4SXW17Jly6irq2NwcJDp6Wl8Ph8dHR3U1NTQ3NyMyWTCZDJRUVGBwWBgy5YtmM1mqTCk1+ux2+0sX758UU4A/Jfj197ejs/no7S09KIpcAaDgc2bN3P8+HEmJyfR6XRUVVVhtVo5fvw4RqNRqv2YzWb0ej0KhYKzZ8+SyWRYtWoVdXV1lJWVoVKpSCaTeL1enE4nmzZtIpfLSQO7qqqK5uZm6UieD2IfZjIZRkdHSSQSl1SMDd5yotevX8+pU6eoqalBp9Oh0+koLCyU1xaJ1Yvl85eUlEi6kgguXExVa5fLxWuvvcbOnTuprKyUCfXw1t6pqKigsrISjUbD6OgofX19aDQauYaFGIR43pWVlWE0GpmamgL+S7lp5rPd9P9j773D6zjvO9/P6b0DB733RrCBTRQpihJVqBrJJW6xHcV2vNHmxvF11pv1dXLvk5XtrDf3el3XdmyvZK1c1KguikUsYAVJgOi9t4N6ej/3D3reHIAAi0TJlHK+z8OHwGDmnbfNzK9/jcZUxaEUPjBIKQEppHANWLt2LU6nk9dffx2TySQ+SFICpSSs22w2cnNzqaurY/fu3ZSUlLBhwwZmZmaYmZkhLS2NvLw8EokEL730Et3d3cLaOj8/T2lpKTt27CAzM5OLFy8yOjpKJBIhEAhcZuWTEnjj8TgqlYr09HTuvPNOwWwcj8dFaT2p3OlqCY5yuRyNRsOaNWtEImhubq74e3KJQakCjFSRJrnU5H333UdjYyMTExPI5XKi0aiwsOl0OsxmM5FIhPn5eSKRCNFoFKVSSWVlJR//+MeJRCI0NjYyPz9PKBQSydjJSEtLY9u2bUIhk0oyer1epqamWLdunQijkAQjv99POBxeVQgpKioiNzeXX//615SXl1NXV0cwGGRiYkKsdXNzM01NTbjdblEJReqnVCIxHo+L9ZDmJhKJiLWT9kdtbS133HEHJSUlJBIJNBoNarVazG8oFBLx2sFg8LJ1l/adXq8XFmOtVksikSAej+P3+8U6hcPhVdddJpOxa9cu9u/fz8zMDFVVVVRWVtLZ2Sn2tOSp2bdvHzabTSiwbrcbpVJJJBJhdHRUeKGUSiWhUIjh4WFisRgWi4WcnBzKysr4sz/7M0wmkzhPuj4SiSxhbJXGLllzlUolNpuNwsJCysvL2bVrF9XV1Uv2YSKREEpXe3s7O3bsEOsghU0tT9yUyuyGQiHq6+vxer309/eLv8XjcbFPlz9PkmdsJWg0GmpqaoRCLZPJsNvtbNq0iV/84hfk5ORgMpnEGknrKVUfk/atWq0mGo0K44Db7aa7u5toNCrmtbq6mjvvvJPS0lJisRihUOiyJGOp5G8wGCQajbJ582ZOnDjB3NwcaWlpYoxSP6RnSnpvrFaKGBBruVz4lTwdkUgEn88n+iV58qQ1XwmxWAy5XI7ZbBYKkrRuUnUs6fkKhUJLyuVKmJ+fp729ne7ubnbt2oVGo6Gvr4/W1lZR9jV5f0jvoszMTAoLC9m5cyf33XcfcrmcWCwmQjel8rrxeJy1a9de9m4HxHhTScIp3OxI5QSkkMI1YM2aNUxMTPDss8/yxBNPiI/d1NQUFy9eZHx8HL1eT2FhIVNTUxw+fFi4tcPhMGfOnMHtdpOWlkY0GuXWW28FwOv1injSt956i2g0Sn19PVarlY0bN2Kz2WhtbeXChQvU1dXR0NAg+hQIBOjo6OD8+fOMj49z4cIF1q9fL/o2MzPDSy+9xAMPPIBOp+P3v/89wWCQL33pSyuOUS6X8+lPf5qf/OQnhEIhrFar+NuFCxfo7u4mkUiQm5tLZ2cnDoeDWCxGf38/IyMjjI6OUlhYiEwmIy8vj7y8POLxONPT09hsNpqbmxkaGiIWi9HV1cX58+dFGNTAwAAOh4O6ujrm5+dRKpW89dZbXLhwgb//+79f0s/09HR2795Nf38/r732mvBgdHZ28vjjj5OTk0MoFOLkyZPMz8+zd+9efvGLX1BfX091dbWwzCejoqKCUChEc3OzqOdfXFyM1WoV8eTT09NotVqmp6cZHR1FrVbT3d1NU1MTMzMzFBcXs3HjRvbu3ct/+2//je7ubkKhEOfPn6ezs5O//Mu/pKioiNnZ2SX7Q5oHn8+H0WhkfHycs2fPYjabGRkZIR6P8+ijj4q+hsNhxsbGaGxsZHh4mL6+PsrKytDr9UJA+sUvfsFnPvMZ3G43XV1dDA8P89hjj6245nv37qW5uRmlUolWqyUajdLQ0EBBQQE6nY5gMIjP58NkMtHd3U0wGGRoaIisrCxKSkp44YUXhEXVbrdTXFzMwYMHWbt2Ldu3b6epqYnm5masVitTU1NUVVWJUqAtLS20trbS29vLzMyMUEZPnz6Nx+Nh+/btVFZWYrPZ+MhHPsLvfvc7CgoK0Ov1DA0Nce7cObxeL/fddx9Wq1XkcbS0tKBWqzGbzZSVldHa2srLL7/MN77xjSWesvn5eQ4fPsxrr70mEoDtdjsOh4Pm5mamp6c5deoUZrMZu93Ovn37uP/++9Hr9Tz33HN4vV6+/OUvXzavkndLmkeDwYDJZOLuu+/m+PHjaDQaFAqFCPMZHh6mu7ub+++/n9HRUZ588kmqq6tRq9U0NTUxPz9PQUEBdXV1PPbYY/z85z8nOzsbr9crwg1ramrYv38/DoeDiooKysrKRH/m5uZoamrixIkTyGQyHnnkEX72s58RCARYWFjg1KlTDAwMMDY2RiwWY3FxkUQiwbZt2/jVr35FRUUFFRUVKyb7Tk9PizDIEydOsHXrViwWCzqdjrKyMk6ePCneU7m5uUxNTfH888+zbt06ampqVkwEn56epq+vj+HhYQ4dOkRubi5GoxGZTMbc3Bw/+9nP+OpXv0pPTw/t7e3I5XIefvjhJW2cOXOG733ve9xzzz0cOHCArq4uXC4Xdruduro6RkZGaG1txefz0dbWxtTUFH/1V3/Fj370oyXlTdetW0dXVxd6vZ5wOMzk5CQjIyMMDg4SCoUue7ffcccdfPe732Xjxo3s3r37PefXSCGFdwNZIqWqpvAhw3tBzS5ZxBYXF0WFCqkueiQSEcmiUiy9TCZDpVKhVCr5r//1v3LvvfdSUlLC3Nwcv/71r/mP//E/LknwXG7pkuL6JbKqrq4ubDbbko+wRHYlWdR0Ot2SUBDJyimF8fT39xONRqmoqFh1jLFYjPn5eZEQKiGZrEepVBIIBIQlNxwOC0uhw+Fg//79VFdXC56CYDAoSMckK6pETiV5EKT7S8m1CoVCcBdIycnL+xoMBgmHwywsLKBSqUSFEylnQSK6kuL9p6amRKz6Su1JbUlhIFLsthTjK1nn5XI5crmcSCSCTqcT95EEWCkvQRqrZEF2Op1L9odkiZQIkqS59fl8QhGZmJjA7/cv4RiQ1klae4PBICzFkqU7FAqh0WiEt2J0dJS1a9euOG4ptESn02EwGIjH48zOzmK1WkXNfMniqlAohJVWqVQKQVav1y+xqkpEeZLlVPLCSMKvZCXVaDTEYjEikYjwZEQiEXGdFCYmzbeUK5HsaUkkEuj1elwuF01NTXi9Xu69915CoRA///nP2bt3LxkZGUxMTFBRUYFKpVryjEj91ev1oj2pfa/XK7w0MplsyfM0MDBAJBK54vPkcrnEvpTJZCJkLS0tTTzb0WhUKIDJngG5XI5KpVqyv6T9YTQaxfMj9VelUuH1epmbm0OpVC7x5EnjjEQiIl9ISk6W9rb0DpH6DpdIwBYXF5mZmcFqta6YrC+1LfVLajPZK6FQKAgEAsjlciwWi+BSyMvLW/KeWd5mMBhErVaL50p65waDQXQ6HbFYjLGxMYLB4GXrIHnAJHIxaa4kD4XX6xVeJGnODQYDwWBwyfxLcy7td8lTYzQaeeKJJy57t//1X/81Q0ND2O32y0IT34tvUwopvBukPAEppHANkGKVl1ffkAQ/ydqj1WqFi1s6r6SkBL/fz/DwMH6/n8zMTLRarRA0ks8FRFiEXC4XQlxyfG1yn5LvvRwSO6nUZrLws9oYlUqlID1LxvIEZZPp375gKpWKaDRKZ2cng4ODFBQUYLFYRHKcVqsVH/HkeyUnGCf/LwmzEjvoan3V6XQirlpSmpLvIV0bi8VwuVxkZGSsmmgtCQYOh0Mck2LJk8chtSntB2n8yyFZ5SVI+RUr7Y/lfZI8MG63Wyg3y/sqKWArjUOaG7gUliApZ6uNW8pzSFZKpYRU6e+SkCkJUcmwWCxLKugkr4U0r5ICKLWZ3HeVSrXEOi/NZ3Ib0u+A6IO0/yVI5H3BYFDkZRQUFAgLsiREJ2P587s8ljvZGwYseZ6uJe/EbrcvIU1TKBSkpaWJPSXNbfJ9kkOWkp+T5X2SmL2l8wChzC1XdJePE1jyPlltLIlEgpmZGex2+4rC+mptS2PV6XRi3aW5SyQSTE9Pk5WVdcV312rvNrlcLvru8/kE6/hyXI1hefnaStDr9cI4Ia1T8vsOEArrSu92SdFVKBSpBOEUbnqklIAUUrhGSBbgazlPQiKRoL6+XnwU1Go169atExb7lYTy5YKIUqnEbDa/o4RfCTKZTFgar4Z3ktSmVCqFsOp0Opf09WolFpOFz2RI1vCr9fVqFZQk4ftqCXvLhdOV1vp6PurJ567289Wu1+v1110VZXkbWq32qsmfy2O5l8/Tamu00rGV1nulNlfDave6Uh8AkVCs1+uFkFZXVycSS6X/bwSu5Xlavp+kY1ebh6s9L8lYPh6tVovBYHhX74rlkNp8J0zhyeOV/pfi629EFR2FQiFYnm8krnWvrvZul8KJUkpACjc7UuFAKXzokHK5ppBCCimkcLMh9W1K4WZDyhOQQgqr4Fr142ux2l1LW++0HOH14Hp0/hvdn9Xu/X6M+91ied/f7z6vNHfvRR/+2ON8v/Hvbbz/nvB+rW3yfVL7J4UPGlJKQAopXAELCwuipr0UUiKVt9Tr9SIu/WpILkW4HFIM9fK4+fcC4XAYt9t9Wbk/hUKBxWJhfn6eYDCIzWa7ZtKpa0U8HhckUVKohM1m+8DU1Pb5fExNTWE0GsnIyHjf7x+NRhkcHMRqtWKxWN5ReMbVEAgEmJqaEszOH3ahJhQKMT4+jslkEvH7KXw4IBHp6fV6UczhvYDELZCbm3vDw5JSSOG9RmrHppDCKpDqy//0pz9FJpOxfv16du/ezVtvvYXH42HHjh3k5+dfU1tS0qzX66WoqIj/5//5f/jUpz5FWloafr+fhYUFPvWpT73HI/q3sqLf/OY3eeKJJ9DpdExNTTE9PU1+fj7Z2dk89dRT3Hbbbdx222039N7xeJyhoSFOnDjBhQsX+NrXvobFYvnACF7hcJgnn3xScBq834jFYvz+97+nvr6edevWidKlAG1tbaKsa3Fx8Tu+x+LiIqdOnSIYDPKxj33smhir3wmOHj1KOBxm9+7d70n71wqPx8OpU6eIRqM8/PDDVyUWk/ZwTk7Oe6KEfZjhcrkEy/h7jUgkwuTkJN3d3dx1110MDAzgcrlwu91EIhFMJhPbt2/nwoUL+Hw+AoEAwWCQW265BZvNRmdnJ6dOnWJ2dpa//uu/FoRtP/3pTzl58iTFxcVs3ryZO++8k+zsbIaGhjh27NgNf2emkMJ7jVTWSgoprAKZTIbZbGbz5s14vV7a2tpYWFggGo1SV1eHw+G4ZstPKBTCbDaLWuSTk5NYrVby8vLIzs5+32pJa7VaHA4HIyMjpKWlYbPZBHttMBjEbrczPz+P3++/4feWKn6o1WrBwnsjEuekUpzvNXQ6nRAW/hiQ9ppEVpQMh8OB0+lcseb69UBisL4e1uJ3gpycHAoKCq75fKlizo1eaymxdHFx8ZqS5uPxOG+//faqJGHvFu/XXn6/MTMzI3gI3g/09fXhcrnIzs5GqVTS2NiIQqEgJycHpVLJM888QyKR4OjRowSDQXJzc7HZbLz66qtEIhHBAj8+Pi68prFYjOzsbNavX8+2bdsoLi4WbO3RaJTJyUkCgcCHcv1S+PAi5QlIIYVVIJPJMJlM7Nq1i6GhIYaHhzl16hR5eXls3LhxRQVgampKVNNI/rvFYsHpdJKbmyuYXrOysigsLBQCxcDAAEajkXA4jEajwWAw0NPTg8PhQKvVEolEkMlkOJ1OJicnhVAqhdVIYQ3BYBCtVotOpxP1uC0Wi6j973Q6RVlGj8eD0WiksLBQcBFIJQmDwSBzc3NoNBpRX1yqzz8/P09eXh4TExNYLBYMBgNTU1Okp6cLpmCVSrWktJ4kcNntdkwm05IyolKt7qGhIaxWK36/H4PBgNlsZm5ujsnJScxms6hSIoVXSeOXSq7Ozs5iMpkIBAJYLJbLhOK5uTnBDOp2u8nPz2diYkLUWg8Gg+Tn5zM+Pi5q5EvHpCo7EguqpBBGo1FRYz/Zcu7xeJidncXr9ZKdnc3c3BwGgwGVSkUsFiMQCFBQUEA4HBYhZlJN/PT0dDwej2BW1Wq1oiKNxLis0+nw+XyCgVqqtx8Oh+no6MBms4kqMeFwmJycHMbGxkRJ11gsRk5OjijbCZfKc0qM03DJeivV7fd6vRQUFODxeETNfklgAoTAZLfbCYVC6PV6sU9NJhNer5esrCwhzMMlhWZ4eJhIJILVahWMtXl5eUQiEWZmZkRJUKmOfXI5U4nYSuqjxGVhNBrp7OwUTMoSY25OTs6S/aBUKnE4HLS3tzM/P8/CwgJqtRqn00kwGMTlcolSpVKJ0SNHjrBp0yZR4cvn8wmWXaniTSAQwOVyCYZlqf9SzXyJSTkej7O4uIharWZ+fl489wqFgoWFBVHlSKfT4ff7mZqaIjc3l3A4jEqlEudOTU2h0+nwer1i3aW9I91Pq9WiUCjo6+sTpH4ul4t4PE5RURETExOYzWb8fj8ajWYJqZ7f7ycYDIrSqMFgELlcztzcHFqtluzsbCYnJ0VIo+TdC4VCWCwWOjo66O/vx2KxUFpaitFoFHtR4jlxOp3iHSStmc/nw2KxCLI6qWLY9PS04BswmUyXhS729PSQSCTYsWOHeJc5nU7S0tJYWFjg9OnThEIh2tvbWbNmDaWlpRgMBn7yk5/wJ3/yJzidTqxW6xL+FoDi4mKys7MpKysTpU+TS89OTExQVFR02XchhRRuVqSUgBRSuAq0Wi179uzhlVde4Xvf+x4vvPDCqiEskpJQUlKy5MNUUlKyavsGg4GCggJ+8pOfUFdXx8TEBDk5OVRWVvLtb3+bO+64g/z8fFwul2D7fP311ykuLmZ4eBi73c7mzZt54YUX2LBhA8PDw2RmZpKfn09PTw+/+tWvuPXWW6moqKC4uBiTySTiy8+cOUNpaSn333//EjIpqZb3wYMHKSoqYmFhQRBJTU5OcujQIR5//HF++ctfsmXLFqqrq3n++efZu3cvarUan8+HzWajurr6qvMrWXn9fj+///3v2bhxI11dXVRWVrJx40bOnTvHL3/5S7Zv305FRQUWiwWv14vH46G3t5f09HRycnIwGAwcOHCAtWvX0t/fz6ZNm9i4caP4iCsUCi5cuMDc3Bx2u52WlhYee+wx3njjDeRyOXa7nbGxMb70pS9x6NAhzGYzoVCI4eFhvvSlLy0ps+n1ekVIy+LiIvn5+ZSVlVFaWirOGRoaYv/+/bS0tPD5z3+eAwcOUFFRQVpaGoFAgM7OTv7P//P/ZG5ujsbGRhYWFrBYLCQSCR5++GE6OjoYHBwkEAiQlZWFUqkkEokwNjZGOBxmamqKlpYWHn/8cY4ePcrk5CSZmZns3r2bb3/722zfvp3CwkKi0ShjY2N84Qtf4KWXXhIKRiAQ4NOf/vSqITDxeJzGxkbm5uawWq20trbyV3/1V8Ij5vV6mZmZYdeuXahUKp588kn8fj+7d+/G5XJRUFDA008/TXFxMevWraOlpYWPfexjADz55JPI5XK+8pWv8Lvf/Q6Xy8WOHTtwu93Mz8/zH/7Df2Bubo6DBw8Si8VQKpWEQiEqKytpaGgQymMgEOD06dOCuM3n86HVaqmvr+db3/oWu3btIj8/n0AgwOzs7IqsyVKIT0dHB319fdjtdh555BEGBgY4ePCgIPZSKpUUFRXR3t5Oc3OzUA4uXLgglMKysjK0Wi2jo6M8//zz7Nmzh8rKSkEIFovF0Ov1TE9Ps23bNgKBAGfOnCE/P58333yTsrIyCgsLkcvlnDt3TvS9pKSEgYEBnn32Wb7whS8wOzuLwWCgvLwck8nE888/L5iRt2/fTnZ2Nh0dHcLgMD8/T05ODmazmW9961v87d/+LUqlkldeeYVgMMhXv/pV8f4YGRkhJyeH7du3izkaGxtjeHgYn89Heno64+PjGAwG3nrrLbKysvjMZz7DSy+9RH5+vlCoZTIZMzMzbNmyhWPHjjE3N0dubi7Dw8NUVlayb98+nE6nUHbvv/9+vvOd73DLLbeQn59PMBikpaWFnTt30tnZSVVVFSUlJWg0Gl588UUaGhro6emhrq6O+vr6JWs6Pj6ORqPBarWSSCT4yEc+Ijw+breb7OxsZmdnBYmdUqlEo9HQ09OzqkdIJpPh9XqZmpoiEokwPT3N3r170Wg02Gw2srKyOHfunFCwUkjhg4BUOFAKKVwjnE4ntbW1/PznPxfJwsuxd+9e6uvrLyOXuRKmpqbYt28fPp8Ps9nM/Pw8s7Oz6HQ61qxZQ3p6Ohs3bgSgvb2daDTKsWPHePvtt7FYLOh0Ot58800MBgObNm1i/fr1jI2N8dprr7Fjxw48Hg8PPfQQu3fvFlYqhUJBenq6qGe9HIuLi/T09HDq1Cl27NjBAw88wNtvv017ezu33347CwsLVFZWEgwGCQaDOBwOdu7cSUNDA/X19WzdunUJy+2V4PF48Hg86HQ6we568eJFenp6MJlM7Ny5E6/XywMPPMAdd9yBRqNh37597NixA4fDQWZmJpFIhJaWFvx+P1arlampKYaGhujt7eXs2bOcPXsWn89He3s7R48epbm5ma1bt3LgwAEikQjV1dXcfffdPPzwwwDccsstVFZWotPpmJiYoKOjY4lwMDk5yXe/+13y8/Oprq5mZGSE06dPLxlXTU2N8PzccsstFBUV4fF4yMjIID8/n/b2duASadGGDRvYtGkTNpuNZ555hlgsxv/6X/+LSCTCZz7zGW6//Xbq6+tRqVTY7XYqKytZu3YtJ0+eJBaLUVNTQ05ODrFYDLPZTH19PZmZmdTW1pKRkcGZM2cYHh7mrbfeIhQKYbfbUavVnD59etXwhbGxMRobG+nr68Nms2G32zlz5gwZGRnU1tZSUVGBXq/ntddeIysrSyRg3nPPPXzmM59h586dghxr3bp1pKWl0draKtbMbDaj0WjYsWMHKpWKyspKbDYbk5OT+P1+Dh06hF6vp7y8nNzcXLxeL1u3bl3iYZuZmeGf//mfueuuu9i9ezcLCwscPXoUhUJBfX09TqeT+vp6rFYr58+fX3GcMplMPDsqlQqXyyXaTU9PJzs7G7fbTU9PDzU1NeTl5bFjxw5KSkoYHR3lhz/8IQUFBdTU1AgFaePGjfh8Pj796U+zdetWWltbOXjwIHv37mXXrl28+eab9Pb20t3dzalTp9i+fTtzc3Ns27aNqakpnn/+efLy8sjMzOTChQvIZDIyMzPR6/U0NDSwefNment7uXDhAl1dXbz11ltYrVbsdjvj4+O8/PLL/OxnP+O+++7j9ttvp62tjZaWFnQ6HfX19cTjccrLy8nMzEShUODz+Xjttdc4deoUBQUFlz27Pp+Pc+fO8eabbzI6OsrOnTu58847RXiNSqWiuLiYe+65B7/fz6lTpzh9+rTwfm7dupV169aJfSPtxXA4jM1mQ6PR0NnZSV1dndhfmZmZnD59mttuu42amhomJiYYGBhgfn6e1157jdOnT1NbW7tiWFkyp4sU1qlQKGhqaqKjo4Pvfe97S8jrpPOuVJxBq9WyZcsWHnjgAdasWcNvfvMboRDo9XpMJhPj4+OpcKAUPlBIeQJSSOEqWFhYYGFhgdLSUjZu3Mjjjz/Orl27KC8vv4xFM/nDc70oLy9n/fr1rF+/HplMJsKE0tLSRGhKIpFArVbzH//jf8Tn83H48GEWFhYoKSkRwpFMJiMSiRAIBJDJZDgcjiWspVI/nU4nDz300IphTdFoVFjJJIRCIcLhMFqtlpqaGp566inuvfde0Y/y8vJ3NPb29nYWFxfJzc3lhz/8If/3//1/Y7PZRKiERqNZMoa0tDS2bNlCU1MT6enp1NbWMjs7y/j4OBUVFWzYsIHa2loWFxeZnp5mZGQEgIqKCu655x42b97MzMwMP/nJT0Qin8TM6nA4iEQifO973+P222/HZrORmZkpqhpJ8yGXyzEYDKxfvx65XH6ZJVJqU6fTibAKiZlXslhLbZ08eZLe3l7y8vKoqqoSLNFS+IVUSUkKNTGbzcLLdKU4dikUJjmW3ul0UlNTQ2VlJbFYTDCjroR4PI7VaiUrK4utW7fS0NBALBbj6aefFt6rkpISpqenmZ+fR6VSCW+J1KbVahXPiBQSsxLS0tKWMD4nEgmqq6vp7OxkenqazMxMPvrRjy5pW+qj9JxI7UshUXApV0Kj0Sxh4V1pnZxO5xLvnjQ3a9euJScnh/Xr14s8DOn+LpcLl8uF2Wxmw4YNANTV1aFQKJidnRXM2zKZTFQGk66VwoccDgeVlZWcPXtWhKHIZDL0ej0bNmwgKyuLsrIyjEYjp0+fRqPRYDabRQ6D5CXJyspiw4YNrF27llgsxtGjR3n11VeXhE2Fw2ERHiQhGo0SCoVQqVT8f//f/0dvby+HDh1idHSURx99VJxns9n4kz/5E9xuN+fOneN3v/sdn/70p2loaKC3t5fnnnuOqqoqZDIZmzZtora2FpfLxf79+0lLSyMajQpL+uDgIHK5XAj75eXlon/nz5/HbreLqmsOh0MI6lL4md1u5//9f/9furq6eP7557ntttvYtWvXkjVdPk6ZTMahQ4cwmUw8+OCDBAIB4XGRno9YLCbi/FfC66+/jtlspqCgAJPJhFarxe12k5aWRigUwufzrcqqnEIKNytSSkAKKayCeDxOe3s7L7zwArW1taxduxabzcbGjRv50Y9+xKOPPkpdXR1KpZLTp09zzz33cOLECZxOJzk5OZextMbjcfx+P52dnbjdbi5evChc1ps3b2bfvn0MDAwQjUYxGAxoNBqGhobo6enBbDYzPj7O1NQUY2NjvPnmm2zatAm73U5GRgbr16/nzTffpKenh46ODsxmM8XFxXR2djI7Oyti6sPhsLCYNzc3s2bNGuEJSCQS9PX1MTU1RTgcxmQykZeXR1tbGzMzM1RWVlJQUIBer+eOO+7gjTfeYNu2bTQ3NzM2Nsa9994LXAqDSc41kBAOhxkbG6O9vZ3JyUkuXLiAy+WiqakJtVqN1WolHo8zMTEh3O0XLlzAarWKMUhxulKCpk6nQyaTkZOTQ319Pfv372dgYACPx0NaWhpFRUWinKfBYODw4cO43W7y8vLIyclh8+bNwiorl8sJBoOsW7cOv9/P4uIiKpVKWEFzcnKYnp7GYDBQUVHB3XffzYkTJ0hPT0etVmM0GpeEgI2OjjIyMsLs7CwTExP09fWJWGtpfENDQ0xOThKLxYS1WalUMjQ0xNatW0kkEuzfv1/EgQ8ODgpFLD09nenpadF2X1+fiN0fGhrCbrej1+sZGxtjZmaGWCxGXl4e09PTwKX4//T09CVeK5/PR3d3N4ODgxiNRrKzs0kkEnR0dAhr9MzMjFjPhYUFxsfH6e7uZnR0FL1ez8DAAEVFRfT29jI9PY3L5WJsbIy+vj5mZ2eprq7G5XLh8/kYGhqis7OTkZERJiYmmJqaElVdbDYbFy5cABDhG3fdddcS663ZbOb+++/n9OnTgl25rKwMhULB0NAQTqcTg8Egnp2JiQkyMjKWhBMl3396ehq32834+DiPPvooTU1NIsRIoVBQUlJCZmYm3d3dpKWl4XA4uO2222hsbMTpdKJUKonH40vWXfLIaLVaGhsb0ev1VFRUkJmZSTAYZGZmhkOHDgkvT25uLgqFgsbGRuFRsFqtQuno7++nv7+f0dFR7HY7FouF3Nxc2tvbkclkWK1W0tLSuP3222lsbESn0+F0OiksLMRut1NYWEhvby/RaJSBgQEmJiZob2+nr6+PsrIynE7nZTH2vb29hEIh1Go1WVlZeDwe5HI5VVVVLCws8Pbbb/PQQw8hl8tpaWkhkUiI/SO9ywYHB3G5XEL4z8/PZ2pqSoTj6PV6hoeHhaI8OTnJzMyM2F9jY2Mi56SlpYWKigoyMjJWFLwlJUJSop9//nkOHz4sFFutVsvXv/51qqurSSQSdHZ2MjExwb333otSqWR4eJjh4WEmJiZoampi7dq1whs1NTUlci8yMjLQaDRMTU3hdrtFKNBvf/tbSkpKqKurS1WRSuGmRkoJSCGFK0D6MGdkZIiEtTvuuINjx45hMBiE21lK3FSr1SJhcCVILucHHniAjIwM1Go1er2eoqIiKisrxbXS8Q0bNpCdnY1Wq6WiogKr1YpCocDpdGKz2VizZo0Qtqurq5HL5TgcDux2O5mZmczNzbFr1y6MRqOwSprNZhEjq1Qql1i+lEol27Zto7y8nJycHLZu3Sqq+qxfvx6n04lGoxHu+aysLLxeL0ajUSSUSuEBK3kYzGYzpaWlaLVa1Go1Wq2WgoICdDodDoeDHTt2oNVqReK10WhEo9Gwa9cuTCYTMpmMUCjE3NwcxcXFaLVakXxaUVFBRUXFkvmz2WwicRUuWTSlxM8dO3ZQWFhIVVUVcrkchUIhhL1bb72VwsJC9Ho9a9asIR6Po9VqheJls9nYtWsXgUBAxItLCdUSFAqFCL9SKpVUVVWhVCqx2+0kEgl2796NUqkkPz+fSCSCRqNBoVBwxx13YDab2bJlC4uLi0SjUbEGa9aswWw2i4TTu+66C7VaTVpaGmVlZSiVShQKBRs2bCAnJwej0UhWVha7du0Sla6k0AiVSnVZn7VarRBCLRYLdXV1+P1+FAoFcrkclUpFXV0dJpMJp9OJXq9n/fr12Gw21q1bh0qlEhZYpVLJ5s2bycvLw2g0Ul1dLda9traWYDCIWq0mJycHmUyGxWKhsLBQJEL39/eTnZ2NTqcTce39/f0UFxeLexgMBvbs2SMSgsvKypY8O7m5uej1ehHCk6xAAKK+u+S1qampwe/3C4tvc3Oz2MtS0ra0Fw0GA0ajEYvFIhJlVSoViURC7A8pNl4KdUokEsjlcrZv347dbmdkZASVSkV+fj5yuZzOzk6Ki4tZs2YNvb29oo9KpZKcnBx27tyJUqnEarWydu1aiouLcTqdbN26FYVCIfZidnY2u3btEvOydu1aMjMzMZlM4tnVaDRUVVWRm5uLwWDAZrPhdDrRarVYrdYl+0Iao1T0IBqNEo/HMZvNZGVlkZGRITxeUhy+1WrFaDTicDiQyWSUlpbi8XjE3l2+F6V3jLRvpfwWhUJBXl4eZrOZtLS0JX1dv3492dnZl71n8vLyCIfDTE9Pk5GRgU6no6ysbElCtVwuZ8uWLWg0GpE7UVpaKuaxtLQUlUq1xNAwNzdHIBAgGo2yY8cOLBYLSqUSv9+P2+2mpqZGeGKj0WgqNCiFmx6yRGqXpvAhwweZmj0YDC4RpFaCFNoQCARQq9VCkJMq2ajV6htWez+RSBAOh4WykByuIVVtkX5/t+U+pTZjsdiS8KXlClVnZyfPPfccjz/+OHK5nN///vfo9Xp2796NzWYjGAyi0WhW7I9UoSUSiSyxIEoVSpJLtUYiEYAlykxyX5LDCCTB4Z1Cqvy0PIQhHo+Lf5JA+W4hjUsS7K8GqWKPdH+ZTCaEwGQl4kYmQ0ajUf7lX/6F+++/n8zMTNxuN83NzQDs2bNnyTrdyHVYCaFQSAj4EiKRiFAck++/XKlORvJ5KpWK+fl52tvb6enp4eMf/zihUIif/vSn1NfXs2fPHvE8r7aXl7e9/DldrV+JREIolpFIRIQYyuVyURlouQKfvA+l52RsbExUIZqZmWH9+vXiXKn6lPQuk8J5gCXrEw6Hxb6/lr0oiSvS+09S2pdjbGyMyclJgsEgW7duFft2JczPzwvv63Lv7XIEg0FRKUlSPkKhEC0tLXR3d/PJT34SQOQzORyOJfvmg/xtSuHDiZQnIIUUbiJIJR2vBOmDttwNLlkzbyQkz8VqfUj+/UbcSyrFeCVYrVZqa2tFoqfRaCQvL0+UjrzSHEjszMtd9Mst4qsdW97fGyV0rnav5ATHG4WrjWs5Vhrje82MKpfL2bFjB6OjoyI8LBgMcscdd1zW/xu5Dithpf2/XPm5lvsvP89isYhKO2fPnhUJ3pL36Hqe55We09X6JeW/AJf9bbWY9pX24cmTJ1Gr1RQVFS3JiZGeseVYaX6uN1Qm2TBwpfj7nJwcIpEI7e3totzwakguiXs1aLXay97RfX19ADQ0NIhjknJzvc9aCim830h5AlL40CFlbflwI7nOvARJgUiV5vtwQPIKLf88vZvE+5sNq43xWhThmwGSZf9mffYkL0goFBJcDe8FfD6fCNeT1k3KRVh+z9S3KYWbDSlPQAoppPCBwvKwmRQ+fLgZhcobjQ/6GG/2Z1AKi3qvFSrJW5N8nw+CEpdCCpBSAlJI4QOLUCgkEkFhaUy9FK+cwgcDUpz+jQwfcLlcaDQadDrdBz4sIRqNioTMZKbpZIRCIVEuNDmxVQolCofDS5LErwTpOZqensZut1+xfvwHGZFIBL/fj8fjwWAwrDq3H1S8HwaDD9N8pfDvD6ndm0IKqyCRSDA3N4fL5SIYDP6xuyOQSCRwu90MDg7i8XiW/G10dBSXy4Xf7/8j9e6PA7/fL8pRSnX2x8fHmZiYwOfz3dRVOmKxGIODg4yNjd2Q9qQSlZOTk7hcLubn54Vw/EHD5OQkHo+HcDjM3Nwczc3Nol7/cgSDQfr7++ns7FxyPBKJMD4+LsqNXgui0Sh9fX2MjIzg8XhWveeNgFQ6+P3eowsLC0xMTDA+Ps7s7CwXLlx4T8eZQgop3HxIKQEppLAKYrEY586d49ChQ0xMTFz2d4l8Z/nHO5ms6L3qV3NzMy+99JIgwpL68Nvf/pZz584xOzv7nt1fup9EZvXHRiwWY3h4mAMHDnD06FHi8TgXLlzglVde4ZVXXmFgYOCP3cUrwuv18uyzz/Lmm2/ekPZisRjPPPMMXq9X1NwfHBy8IW2/3zh06BC9vb2Ew2Hm5+f5+c9/vqpCHovFOH78OPv27bvseHt7O7/+9a+v+b4+n4+f/exnLCwssLi4+J4pUYlEglAoxODg4PuuBJw/f56jR4/S29uLw+HgX//1X/+oyuJqORIppJDCe4eUEpBCCqtAoVDQ0NDAwYMHGRoauuzv//N//k9ee+21yz5azz33HL/85S/fs35FIhF++MMfcv/991NWViaOB4NBTp48SWFhIQUFBe/Z/eHSB/s//+f/zOjo6Ht6n2tBa2sr586dY3p6mry8PGQyGRs2bGDdunUYDAYaGxv/2F28In7zm99QVFTEli1bbkh7iUSC7u5uiouLaWhowGg08tJLL92Qtt9vfPzjH2ft2rVYLJYrsrkCghPCaDQuOS7Vqpfq2F8L4vE48/Pz7Nixg5KSkiWEajcSc3NzXLx4kfPnz7/vCnVTUxNpaWncdtttN00Y0M1gVEghhX9PSOUEpJDCFWAymZienubpp5/m8OHDmM1m/uZv/obf//73vP7666jVai5cuEBxcTGf+MQn+MlPfsIbb7yBz+djcnKS2267DY/Hw6FDhwTzp9fr5Zvf/CbxeJz9+/dz9uxZFAoF8/Pz/Pf//t+xWCyMjY1x8eJFhoaG+PM//3NRktHv99Pf34/D4cDhcIiygD6fj+eee44HHniA9PR0jh8/zsGDB5HJZHz+85/nn//5n8nOzkalUtHW1sZf/uVf0t3dzdmzZ3E4HBQUFHDo0CH+6Z/+iV/+8pdEIhFqa2t56KGHLpuT2dlZfvjDH3LgwAFCoRCbNm1i3bp1VFdX09jYyL59+/B6vdTW1nLPPffQ0dHBs88+S0ZGhiCj+tznPsepU6d47bXXcLvd6HQ6ioqK+MIXvsDx48d58803mZqaIjs7my9+8YsMDw/zm9/8RhB6hUIhNm7ciNVq5ZVXXmFoaAiz2UxmZibr168X5GVms3lJyFRbWxunTp3i5MmTKJVKvv71r/Paa68xMTGB0+nknnvu4Rvf+AYf//jH2bBhA5mZmZeNf3h4mLNnz/L666+jUCj4q7/6K2QyGa2trezfv5/8/HwWFxepqKhg3bp1pKen89Of/hSfz0csFqOyspKGhgY2btxINBrl5MmTfPazn6WysnLVfRiNRjl06JBgjjaZTNTV1XHs2DEyMjKYm5vDZrORnZ2NTCZjbGyMU6dOodfr6erq4ty5czQ2NmK1Wvnd735Heno6dXV1/O///b/5m7/5G86ePYtarRZMsVJI0caNG3E4HIyPj/PjH/+YRx55hGg0SmZmJhqNhvPnz5Oeno5Wq6Wurk7Ml1TB6fnnnwfAbrczPj7Onj17+P73v09paSm1tbUYDAaefPJJNm7ciFarxe12E4/HBSHXd77zHerr67nllluWlGZ866238Hq9WCwW2tra+OIXv4hSqSQUCjE5OcmJEydwu92o1WpB4CT16/Dhw4LcSaVSsXnzZkEYBpfCZNrb2xkdHaWtrY2zZ8/i9XrRaDSEQiH++q//moMHD4qymR6Ph5qaGqanp9m/fz9Wq5W6ujrOnDlDQ0MDarWamZkZ9Ho9d911lxhDLBajt7eXl156SbAyl5aW0tHRQVdXF+np6bS2tvLRj36Uffv2MTk5yfr16zGbzbhcLm677TZmZmbo7e0lNzeXs2fP8sgjj9DW1iaenZ6eHh588EFeeuklpqam0Gq1BAIBPvvZzzI6OkosFiMSiaBUKoUxo7GxkcXFRfR6PTMzM9TV1dHf3093dzfRaJSdO3fy4x//mG984xscOXKESCTC7t27yc/PF+Nqbm6mu7ubwsJCurq6uOeeezh+/Dg9PT0YDAa8Xi+PP/44TU1NBAIBwTRcXl7Ozp073zOlK4UUUliKP77qn0IKNymkyhKSQFxdXc3s7Cw+n48NGzZQXFzM+vXruffee9myZQsymYzbbruNuro6qqurue+++ygrK6Ouro5IJEJaWhp79+5l/fr1vPrqq4yMjDA7O0s4HKawsJD169cLYd9kMlFcXExdXd2ShMTZ2Vlef/117r//flH2TgrNOXr0KNu2bcNisQj2VYnqXqPRUFpaSkVFhWBgLSgoIDs7m4KCAsHiu7CwQFpaGoWFhSsyccKlWuL33nsv2dnZ3HnnnWzdupXc3FzC4TA///nPycvLo6ioiGAwyJkzZ6irq2NwcJB169aRm5vL3NwcXq+X/v5+IpEIWVlZlJeXC+/FSy+9RH19PQ8//DDl5eW88MILFBQUkJeXRyKRwGAw8Mgjj7Bu3Tqqqqqoq6ujoaGBW2+9lc2bNwvhbKXa5qdOnWJhYYFPfOIT7Nq1i5dffhmNRkNBQQFpaWl4vV70ej3FxcVCIF6Orq4umpub+dSnPsXtt9/OsWPHcLvdFBQUkJmZyczMDPfffz/bt29Ho9HQ29uL0+lky5YtmM1mcnJyKCwsJBqNcvToUaqqqgR79GqIx+P09/dz6tQpPB4PKpWKhYUFzp49S0FBAdXV1UIItdlsmEwmioqKKC0tFWyrJSUlZGVliXnR6XT4/X58Ph9Go1HsA6fTSXp6OqFQiN7eXmZmZrBYLExNTVFdXc3atWuZnp7myJEj6PV69Ho9ra2tzM/PL+mzXC4nLy8Pp9NJIBCgsbERo9FIeXk5iUQCl8uFTCZj27Zt5ObmCrbahYUFwdSr1+uXEE1JyMzMJDMzE5lMRldXFzMzM0SjUVE/vri4mJqaGl599dUl3qpEIsGzzz4rWK7j8ThNTU1L2tbr9WRlZWE2m8nOziY7O1sQSe3Zs4fFxUVaWloAKC8vp7CwkKeeeoqcnBzcbjeRSIScnBxisRg+n4+cnBx8Pp9gAE6eH4mZOCsri6ysLHw+H52dnbS3t6NQKAgEAkxPTxOLxdBqteh0OsrLyzl79ixut5vx8XHOnDlDc3MzeXl5tLa2Cgbt/Px89Ho9R44cEc+tVqvlrrvuwmg0YrVayc7OpqSkhNLSUuCSAtTR0cH8/DxlZWVUV1fzzDPP4HA4UKvVzM/PY7fbGR4eRiaTkZWVRUFBwRIvS2trK8PDw6hUKgoLCzEYDJw4cQK/34/FYkEmk3H33XejVqtpa2tjfn4ep9PJ8PAwtbW118SVkkIKKdwYpJSAFFK4CiQ6+aKiIsFUWVhYSEZGhhA2pBCEqqoqCgoKyM3Npb6+HplMRm5uLhqNhvT0dNavX09lZSUdHR14PB7S0tKoqKggPz8fuVwuYmL1ej05OTmUlZUJQTYUCjE7O0tfXx8bNmwQQqPX6xUf3ZycHHGvwsJCfD4fBw8eRKVSkZubS25uLkajkZ6eHsbHx0lPT6ekpITs7Gz0ej1vvvkmCwsLOJ1O8vLyxBxIDLFwiTBn7dq1OBwO6urqyMrKAi4JqufOnRP3ttlshMNh8vLy0Gg0VFZWkpWVRTweF7HHFRUVlJSUYLfbRR5Fd3c3RUVFbNq0iby8PNra2khLSyMrK0sILQ0NDRQXF5OTk0NBQQHFxcWUlpZSWFh4xSouY2NjxONxtm3bxpo1a2hvb8fpdGKz2ZiamuLtt9/GZrORkZGBXq8XFu1oNCospbOzs8zMzLB9+3bq6+sZGhoiHA7jdDpFHzdt2kRFRQVGo5GFhQXm5uZIJBKUlZVRWlpKWloakUiEt99+m40bN5KWlnbFPSiTybBYLOj1ekKhEHNzc8zMzDA1NUV6ejq5ubkEAgG6u7sxGAzodDrS09PJzMzE4XCg1+sxGo2YTCYKCwvRaDTMzs5SVVVFX18fGo0Gp9OJ0WgUVYWsVisejwev1ysI1nJzcyksLCQQCDAxMSFCz7Kzsy8jtvL5fHg8HpRKJQaDgenpaWQyGevXryeRSDAyMkIoFKKhoYHFxUXg3wTV8fFxotEoJpMJtVp9Wcjd3NwcwWAQo9FINBplbm5OKAEajYaMjAxyc3Pp6+tjcXFxyfU9PT1YrVZKS0spLi6+jCVWrVZjs9nQ6XRYrVbS09Ox2WzY7Xbq6urw+XxMT0+jVCrJzs4mIyODpqYm7HY7Wq0WvV4vvHRqtZr09HTi8bgYY/KaGgwGMjIysFqtgrHX4/EIRWLNmjXodDohtNtsNrKyspiamiIcDmMwGIQA7nK5GBgYwO/3o9frSU9Px2Qy0dvbi0qlwm63Y7PZRJvStRkZGUKh8nq9QqHKzMwkLy+PCxcuYLFYxH0kBWF8fByz2UxeXt6SEKzx8XEWFxfFHjSZTCLnwW63Y7FYqK+vR6lUEolEBPtybm4u+fn5H/hKVimk8EFCSglIIYVVkEgk8Pl8mM1m5HI5oVCIUCjEwsICiUQCnU5HLBYTlUckQUOhUBCPx3G5XLS0tAgBMhAIMDc3h8/nQ6fTIZfLyc/Pp7y8nGg0yrFjxwgGg0IRiEajS6p1zM3NMT09jdVqxeFwoFAoSCQSTE5OcvbsWXbt2oVSqVwiMB48eJBf/epXIiRGLpcTj8fZt28fzzzzDABpaWlCAPlf/+t/cfToUYLBIGlpaaIfo6OjS5IGJTZMt9vNwMAA/f39wCUPxuLiIpFIBKvVSlFREX6/H6vVSjweJxwOEwwGWVxcxGKxUF5ejlarZWxsTFRv0el0eDwe4XXR6XSEQiERTpWRkSFCCAKBAD6fD6/Xi9frJRAIiHVzu9243W58Ph8LCwvE43HUajXxeJyZmRkhqOTk5DA3N8frr7/O008/LcYHl5Qfr9crqg7BpTKeCoUCl8vF4uKiEFKDwSChUIjS0lJCoRCJRAKtVotcLufAgQPs379fWLxjsRhut5u2tjbWrFkjBKxYLMbMzAzxeHyJ4CqXyykvL2fbtm2Ew2H6+vpYWFhApVIRDAZFdRmNRiP2jdQHyZI+Pj5OOBwW3qWmpibuuOMOTp06RTQaRalUMjMzw4EDB1hYWBBMqh6PB7fbjVarJRwOE4/H0Wq1WK1WISjefffdl3mOpqamOH78OOPj41itVlQqFTMzM5SVlREOhxkYGGB+fp60tDQOHjworMsWi4VgMMjCwgLBYFAk2kuJ+JFIhKNHj9Lc3IxWq8ViseByuQRLKyDmRKfTIZPJiEaj4lqHw0FmZiYFBQXU1NSwdevWJf2WCKaWz6NSqRTrolQqicViBAIBAoEAer2ecDiMWq1GpVKJ+0nrId07WZmU1lUKYxodHSUajWI0GsnIyCAvL49du3aRm5uLSqUikUigVqvFPESjUXJzc9m2bRulpaUcPHiQcDgsntlQKEQkEkGlUhGLxYjH46hUKkGiFY1GCYfD4r0mjTd5Dn0+H1qtFoVCQVpaGnq9npMnT/Lwww9z8uRJAoEAFouFeDyOx+MhFouhUCjEnIdCIcLhsJi7WCwm+pBIJMjIyCAYDDIwMCDC41KJwSmk8P4hlROQQgqrIBaL8eqrr9Lc3ExaWhparZYTJ05gtVr52te+RkNDAydOnOBb3/oWTqeTPXv2AJCenk5XVxf/9E//xNq1a4nH43i9Xs6fP097ezvz8/N873vf4+LFi7z11lv09fWRn58vBAi5XM7g4CDHjx+no6ODf/zHf0SlUnH27FkuXrzI5z73uSX9HBkZ4fjx4/zsZz8T4URSbfj29na+8IUvMDk5STwex2g0UlRURCgU4sKFC6SlpZGRkcH8/Dw+n48//dM/5bXXXsPv9wvhYXJykscff5y/+7u/Y/v27eK+xcXF/Ou//isZGRmsX7+e+vp6/vZv/5YXX3yRaDRKYWEhGzZs4NVXX6W1tZUDBw4wMjJCa2srcrmcubk5xsfH0ev1pKWlUVRUBMDDDz/Mb37zG8bHx8nIyOBv//ZvaWpq4vXXX8fr9VJSUoLH4+Gee+7h4MGD7Nu3j9HRUZxOJ2q1mjvuuIM33niDxsZGurq68Pl8zM/P89WvfpVt27Zx9OhRHn/8ccLhMN/61rcoLi7m0KFDLC4u8sgjjzA6OioEkYmJCY4ePUprayvf/OY30Wq1VFZWMjk5yX/4D/+BYDDIf/pP/wmdTsexY8d46aWXMJvNRKNRbrvtNiFs6fV6zGaziPWWBNk9e/YIQRVgZmaGb3zjG3z3u99dwnIajUb57W9/y6233kpOTg5Wq5XCwkI6Ozs5f/48Y2NjmM1mHn30UcbGxhgaGqK5uZnNmzejUqkIBAK0tLRQUFAgwrMuXLhAfX09P/3pTyksLMRut4tQLZlMxvT0ND09PczOzuJ2uxkeHqalpYX6+nq2bdtGWloazz33HLfccgvBYJCqqiqcTqfYH16vV8T5DwwMEIvFOHv2LHv27BGeL2l8Ur6Ez+djdHSUnp4eNm3aRH9/P6FQCJlMhtFoZHx8XHgJQqEQ09PThEIhjhw5QllZmQgfOnfuHPPz89x3332YTCba2toYHBykq6uLj3zkI3R2djI2NibyRqqrq0W/FxYWuHjxopjH1tZWRkZGSEtLY+fOnRQUFFBeXs7CwgJHjhxhamqKr3zlK3R3dzM8PEwikaC/v5+uri60Wi1arZbBwUEmJycZGxsTsfOAyGN58803ycnJYevWrRQUFOD1ejl+/DjhcJiysjKGh4eZmJhAr9eLkqcTExM0NzfT0tLCww8/zK233srevXs5ceIEfX19qNVqWlpa+NznPsfLL79MX18fdrtd7MuRkRHi8TgajQaNRsPY2BharZaCggLC4TCNjY0MDg7yV3/1V2RkZAhr/+HDh/nCF77As88+S0NDA06nE4/Hw9NPP80jjzzCtm3bOHXqFG1tbZw/f56LFy/y8Y9/nFOnTnHhwgXUajV33303RqORxcVFOjs7aWtrQ6/Xk52dTWFh4RVD41JIIYUbB1kipXan8CHDjaJmlwiDwuHwEuuWUqlcYlGTKOLVarU4JxaLkUgkUCgUKJVKnnjiCdLT0/nUpz4FgEajEdcnnyuREiW3LbV74sQJxsbG+JM/+RPBNrq4uMjQ0BADAwM88MADwL9ZsSVLpWT9ViqVyOVycc9oNCqsfJIlW3LRSwqJ5JUIhUKo1eolxGSRSESMXaFQoFAoRLuSBVpSSiRroBReI91TsghK50oWVqn0qkKhEP2QjklEaEqlUlgvk9uQ+iHNHyDakUJ7YrGYCB2RyWSEw2Gi0ahQfDQajfCaLF8HqQ3JaioJLNJxqR9yuZy3336bI0eO8MUvfhGTycSRI0fw+XwiJOqRRx5Br9eLkK9gMEhraytr1qxBpVItSWgNBoOij9LfJGuupDxKgnUoFBLHEomEsJJLieRS/7VaLcFgELVaLcYbiUSExVaaV7lcTjgcFvMijVd6PqR9lNzf5WFUgFgf6bhCoRBtSyR3Uj8ki3oy66u0N5c/N8CSZ1Lqn7QOUl8kr420pnK5XMxlct+lPSg9O9I+l0JVkvddMmGfFNqiUCiW/Jy8h5LzVKR5CgQCYg6lvkqehOT5kuZHWvPk/Zx8veQp0Gg04plaPgZpTyTPrfRektqUvF7SPpL+ptFoCAaDqFQq8VxL70bp3ZM8hpX6MD4+ztGjR8nKymLTpk34/X5+8IMf8Jd/+Zekp6e/o3f2zY4b9W1KIYUbhZQnIIUUVkGyYCoh2UIlfRylcyUkCwUAx44do7W1lZycHAYHB6mqqgL+LRQgWUiS2lkpqbWmpmZJjgBciqEuKSlZUt1Eglwux2AwXDYmaVySQChdJ8V0J8fkSucvj/eWhF+p71Ib0nytdHwlrDT25PlLHtNKzJ/L1+dqx1dbMynmffn4V1oHSXCUzpPakRSNZGRmZpKbm8uTTz6JSqXC5XKxbt061q1bJ0K2lq/baiynWq1WCK7SNZIQJv2+fC0BEZaU3H7y/Eh/k+4rCXzJ/UpW6JbPpfT/8vOT5zq5b/Bv+0E6Jgmfy8+T9ujy6yQlcnk/lzNoS/t3+dpI18PljK/L52eltZCEY+n85D2QfI+Vfl5+L7lcLvZB8rwlK4HLLePS+iYSCaEMSGsgrYmkbK80Rlh9bqXrk+dW6lvy3ly+p5LnV1oHSRFNVjakfttsNiwWC36/n87OTiKRCDU1NZf1K4UUUnjvkFICUkjhXWC1JNRkq2J6ejp79+7FbDavWHHmSomsyVjpWklYWS7sX0vf3kkf3s093ovr3wluxPiv9fzMzEwaGhoYGRlBJpNRUlJCcXGxqDizHEqlkszMzBWFarhcmEwWQK+nr1e65lraTD53NQH3SvdZ6fj11qlfrZ/LFaLrufZ6cKPq6q/Ul2vt35X2xZXW5Z30Kfl+19rGlfqg1WopLy8nEokIBdfhcKSqA6WQwvuIVDhQCh86pFyuKdxsSLZav5cKTgoppHDzIvVtSuFmQ8oTkMKHDhOXKk3yykycVk8chVwBywWvRIJY/FLssFwmR3YtVj1JkEs+N4nmXiaTLQ1PeL+EvT/cX9w7+b7Ldfxr6VNSe/92mezdjyd5rq7Hiro87ONG9uNaxrV8fq+1D5fZV/5wr+Tj17ke16VA3Ij9d71rdqW5epfzeF1rdg1trjiu5D5eabwr9enSD9fdjxvSzjXcZ8X3w3VcL7DCu/S61nS198tq7b9b3Oj3x7vAQODq56SQwvuJlCcghQ8VhoNQeRoCKfb5FFJIIYUUbkI0roOtlj92L1JIIeUJSOFDhpnIJQXgiRw/wy3nWL9hPYl4gpmZGRYWF5Ahw+1xs3HjRhbmF/D6vKiUKvL/wFZ7JXR0tHPwwEE++alPYjFbkMnleDwexsZGOX/+PA8/9DAvvPgClRWVVFVXodFcf2zrjMuFyWRCo9USCgXp7eklLS0Nu8OOSrVy2bxQKIhr2sXLr7xMw8aGSyRVJhOxWBS328OPfvRDHnzwQQryCzCaru6DDgQCnD9/nvGxMbJzssnPy2dyahK5XEF6evoSErHrgc/r5ULzBaanpnn4T/7kmq+Lx2O8tf8tHA7HJWbfd1k5xON2Mzo2SntbOw8++CDKVciJ3H8gmbJYLESiEX7zzG/YvGULubk56HT6Fa9Zch+Ph5aWZlpb29i2dSu1tbXI5HJaL15kcmqS4qJiiouLr2qZDAYCjIyO8vSvf81f/MVfYDKbGOgf4OSpk2xq2ETdmjrGx8cFEdqmhk10dXWRkZHBtOsSQVdVZdU7soDOzLjo7x9gcnJSVJ+6EhJ/qHRztqmJjvZ2HnjwQUEmF4tFaTzeyPj4OGvq11BcVIzmGuK/vR4P3d3dHDx4kEceeYT8/DwUyndHKOX3+Th/4TwzrhkefOghcTwQ8NPb03uJEfrTn171+kAgwLmmJiYmJnD+oab/+NgYdoed9PR00tKubY8GAwHGx8f53//7f/PIo4+Qn5ePVqdFLlcQi0Xp7OjE7rBjtdouS85PRjweo6O9A5vd9geis6X7c2JinMGBQbxeL3f+oZSxdNzr8QpStNX2yNTUJI3HG5mbn+cjjz56KT9JJmN2dob2tnba2tv46Ec+is1mu6rHSNoj+17ah8N+ibPBaDLhcrmIx2KsqV+DXn95vsw7RiLB/rf2Y7Vayc/LR63R0NLczM6dO993r8BAAL4xCJoUQ1MKNwlSSkAKH0psNcTI8vbxqbytnDp1ilAohNluxmQy8Y//+G3u2vwdQqYQi/FLJFrrMq6sBMzOzpIWGsHr6SWz9SAPPPAAKpWcoEVFTyDKdMfbfPrLj9I/3cotZRZ22MtIItG8Zvz6rTfZtm0bRRlFRCIKJmUWTCYtRqOcVQrsEI0qmVGrkOk8zB75HXdWfZHiDBOBQISu6SF+37yfT/zFg5TlqbmWwhuRiBJb0wQdC13UF2jZXlLNqEbLc889R2ZBAZ/c+NnrHxgQsqqwnB2jdbyVT2ZcuxIQi0GCKQxBL+v0dooz3p0S4DXI6fNH+EXPMf7U+QArlSQPh8Oc6m4hkUhwa/mtxGJy2qcvskdeQo3NieUarHhBi4ozEwkOy6Zx9BzjT2+vQaGA00MBpgJBNpeauILcJRCJKJlUaNnfsp971I+S7zRxYXyR+ZEmyjPlfPz2GrpmF/FlyLBY7JRnyRlPWLBYNLitFmQyGdkZ70zeces0HBmYpnHgJJ/MuAYlICHD50uQqV1EOX2RhsUqavPU2O12gsEI/tl2HNMj7NUU0JCjXHVPJyNkVXNkYI7z517jsa9+GqdTwbVGk0klKZeHUYVCSkynR+ma7OKTGQ+J4+GwksbBOTwDJ/lkxupKQDiswHx6nO6Fbtbka9haUkXTgpfOC2epqKzk7pq7r6l/kYiS/lCUl07t48//9lNkZSlRq+XIZBCPyxmLWTAadRgMihX36b+NU8ZY1ILRqMdgUF527hQKjvdP0jPewycz/k0JmFfrCAZlGAxaTKbV94hbp8dx3sOF7lYy2+w89NBDyGTQ511EM9fBYucRPl/wGfR62TVEA8kIh5UMTrdSai6lzmansNDEnD3Cvn37WJerosRaIsjq3i0SCUgwjTboplZzieF4KO6k6h0+E+8G5zyXlIAUUrhZkFICUvh3AavVSnZ2Njqdjq6uLsECeq1YWFhArVazefNmjh07xr333otKpUKr1WL6g3VdoVCg1+sJBAJMTU0JBtv8/Hzm5+cJBoOidn9BQQEDAwOijF8sFiMnJ4fTp0+TkZGBzWZDo9HgdrsFO/FqZTaVSiVms5nKykr27duHx+MRddd9Ph9Go1G0dy1QqVTodDoMBgN6vV4Qj0k16YPBIMPDw1itVrxeLxaLBbVazeDgIHCJLE1ia3U6nczPz+P3+9FoNITDlxI24vE4ExMTxONxgsEgGo0Gu93OwMAAADabTdRnz8vLw2KxkEgkmJ+fp7+/n0AgQE5ODrOzs8ClcocGgwGDwcCZM2fIzMxcUgI1OzubsbExZDKZqAEvYXh4WKyfx+OhoqKCiYkJ2trakMvl1NTUYLfbMRqNuN1uxsfHBQNzTk7OqnH6Wq2WkpIS3G43r7zyiqj1bzab0Wg0S4i1rrYe6enpVFdX43K5yMjIwG63U1hYSFdXlyitmZGRQXZ2Nl6vl97eXjZv3gyA2+0mFothsVhoa2vD4XCg11+yFMdiMUwmEwsLC9jtdhQKBaOjo9jtdrxeL+np6ahUKrxeL1NTU7hcLoqKilYsbSrNtVKpxGq1snHjRkZGRrDZbJhMJubn57HZbIKpebX9vBwajQa9Xo9Wq8XhcOD3++nt7UUul5OWlobX6xVkVnNzcywuLgoWXpPJtKTGvbTOdrsdrVYrytzOzs4SCARQqVSEQqGr9kmtVqPT6dDr9Uu4CK43ulalUqHX61Gr1aSnpwsuCrgUMy+tncRcPTExQVVVFZ2dnRQXFxONRvF4PDgcDnGuUqkkEAgwNjYm1tFsNosKPF6vl7a2NkpKSvD7/QQCAbEPVoPZbKasrIzp6Wmampp46KGHCAaDyOVyNBoNWq32smpXwWCQ8fFx8vLyLitjq1arMRgMGI1GLBYLaWlpf/Bg6Ojs7BRMyxIrtkS6FgwG8Xg84h0VjUaZm5sjHA4L5u+8vDx0Oh0+nw+Xy4XFYhHcEeFwGK/Xy/z8PPF4nJ6eHuLxOBaLBbvdzsWLFyksLBTkdSqVCqPRiN1uZ2RkBJPJhNlsXlL1KJFIMDc3x8zMDGazWbybUqVOU/ggIKUEpPChx/r168UHaG5uTggUkkB6NSQSCRYXF9FoNGzYsIEf/vCHhEKhJcRJyZiamqKnpwetVktXVxef/vSnaWlpweVyATA+Ps6DDz7IK6+8QjgcFgLVnXfeSV9fH93d3WRnZ+NwOHjllVfIz8/nzjvvvOJHRarTnZWVxdzcHHNzc0J4f6eQlIiFhQV6e3upra0lNzcXl8vFG2+8wcaNG+nu7qasrAyLxcKLL75IJBLh9ttvp6+vj/T0dO644w6ampoIBoOkp6fjcrkIBoPE43EOHz6MVqtldnYWi8XCmjVrBNvwpk2b8Pl8eDwe/uzP/gy4RNDU19eH3+9ncXGRO++8kzNnzhCPxzGbzWRnZ1NdXc33v/997rzzTpxOJ4lEQpByHTt2TAjgCwsLYpznz58X5FQtLS383d/9HT09PfT19aFUKhkeHsZutwOXFAafz4darcbr9fKxj33sism6GRkZlJaWcvHiRQKBAIuLi8jlcqxW63WthUKhYOfOnVy4cAGz2Yzdbqeqqor/8T/+hyCGkjA5OckTTzzBv/7rv3LhwgW6u7vJzc1l3bp1fO9732Pnzp3k5+cTj8eZmpqisrKSvr4+amtr0Wg0vPrqq2zZsoWBgQF27NghlNre3l7efPNNPve5z5Gbm3tFIV4mk7Fz506eeuopTCYTRUVFjI6Okp+fz+jo6HWNfTlmZ2d5+umnUavV7Nixg/7+frZu3UpJSQnt7e10dHTgdDrp6+sTJFQSwZVMJsPr9V4KBfkDYrEYTU1NhEIhrFYrk5OT+P3+a+pLOBxmZmaGwcFBmpubaWhoWMI+/E4gKRKRSIRXX31VsOgODg7y2muv8Xd/93d8//vf57HHHsPv9zMwMMDmzZs5fPgwWVlZrF+/nnA4zP79+9m8ebOYH4n0b3BwkGeeeYZPfepTDA8PMzo6Sm5uLjk5OVfsl8PhIC0tjba2NoLBIHNzc6jV6lWVB4/Hw+nTp3E6nUuI5FaDTCajtLSU48ePI5fLxZ6zWq2YTCasVisLCwuMjo6KYzKZjNOnT7OwsMBDDz1EU1MTu3fvFkr/6dOnWbt2LSMjIxQVFREIBOjo6ODHP/4xDQ0NHDx4EK/XS3l5OVu2bOHXv/41H/vYxxgeHhYEbtnZ2ezYsYMLFy5QXFyMTqe7TAkYHBzk1KlTlJeX093dzUc/+tGUEpDCBwKpyLQUPvSQLH7T09O8+OKLfPvb3yYtLe2a63wnEglGR0dpbm7mwoULRKNRYY1eCYWFhWzevJl169Zx6NAhpqameP755zl//jzZ2dnk5+dz/PhxiouLKSgooLKykv/j//g/qKmpIT8/n4aGBqqqqjCZTDQ0NAhm1KtBJpPxyCOP0NrayqFDh5ienqasrOy65ioZoVCIyclJXC4Xd9xxBx/5yEdIS0vj0KFDOBwONm3aRGZmJv39/Vy8eJGNGzei0WhYt24dfr+fsbExFhcX+fa3v82ePXvYtm0bhYWF6PV6otEoP/7xj9FoNCLH4Ny5c2zevBmdTkdVVRV6vZ7+/n7Rn6GhIcbGxkhLS+Pxxx8nLy+PLVu2UFpaytzcHIcOHcJoNFJWVkZWVhZr1qyhoKCAw4cPMzMzw4EDB7DZbNxyyy2sWbNGtLtu3Tqqq6uFEuB2u9mwYQMVFRWUlZWxdu1acW5WVhbr1q2jqqqKQ4cOXXVdFAoFJpOJDRs2cPLkSS5evIhKpaLgGnJQlrdz1113cerUKU6ePEkgEGDz5s0YjUbGx8eJRqPCKltYWIjNZkOhUFBcXExZWRmJRILS0lISiQSbN29m79691NfXc+zYMRobGykvL2dhYYGLFy+Sl5fHrbfeyj333IPT6UQmk6HX64UgOTs7e01CssPhEIqk3++//upGqyA/Px+tVovT6WTjxo0UFxfT0tJCf38/ExMTqFQq7rjjDoaGhqivr+fs2bN0dXWxZ88edu/eza9+9SumpqZEe5FIhG9/+9ts2rSJHTt2UF5ejvEaY/kkj05WVhZjY2NoNJorWtSvBRLDs8fjoaGhAblcTlZWFsXFxTidTgoLC4UQmpuby5YtW1i/fj0NDQ0olUpaWlro6OggPz9frGNaWhrhcJixsTGeffZZvvWtb7F+/Xpqa2spLS1d4hm7EiwWCxs2bODEiRMMDw+j1WpXVWjT0tL4yEc+gsFguOZ3rUQqdvjwYd58800KCwspLCzk9OnT/OIXv+Ds2bMUFhaSl5cn3qGlpaXk5+dzyy23cOutt/LUU0/x7LPPcvHiRTQaDQ0NDdTU1KDX67FYLOTk5GC321GpVHzsYx/DZrMxMzODXq/n0Ucfpaamhk2bNlFdXY1SqWTfvn3E43H27t1LdXX1ZTwGMpmMwsJCduzYQVpaGm+++SYej+e6vUIppPDHQEoJSOHfBQYGBhgZGeGWW24hNzeXYDC4xHp6JbS0tFBTU8Of/umfcs899/DVr36VV155henp6ateK5PJiEQiqNVq8vLy2Lp1Kw888AAPPfQQFosFg8GwhARMEpLcbjdDQ0PXPc6qqiqmp6cZGxsjGAxeMZnwatDpdBQVFVFdXS2sqNFolEAgIPopl8uJRqOEQiERniGFX0j/pDCM5dDr9dTX13PHHXfw4IMPcvfdl+KoHQ6HCNNIvtbhcDA7O0tXVxcul4sDBw5w6NAhDAYDGRkZhMNh5ufngUvhRMkhL+FwWLCXJiMWi/Gv//qvnD17FofDgcPhYHp6WnzAPR6PCFGCS0KQJCCuNq7lsNlsfPKTn+Tpp58W/bteyGQyHA4HMpmMhYUF3G43ZrOZBx98kH/+539GpVKRmZkpzpWExEgksiS8xWazCe+Q0+nkq1/9Klu3buXZZ5/lzJkzQpmQxqpWq9FqtSI+WyaTXVfYy65du/B6vbzwwgtXtTRfD/R6PQaDQYTPxGIxERLkcrk4cuQIf/M3f4PRaCQUCi2ZA8kTlYx3EsoDl/a/TqcjMzOT4uJienp66OnpeVdjm5iYoKOjg5mZmSXHc3Jy2LRpE//yL//Cn/3Zn9HR0UFra+tl3r5oNLpkHa1WqzhHUhTPnTu3qhHjSnA6nTzwwAM888wzBIPBq55/PYRq8XicQ4cOsWXLFgoLCzGbzTQ0NLBx40a+8pWvUFRURHp6Og0NDWzatImvfe1rZGRkiOtlMpkIOfT7/cTj8au+/2w2G3K5nJGREU6dOkVDQwPHjh3j0KFDeDweEXIlPbcrKbGTk5McPnyYffv2UVZWJsI4ryWsLIUU/thIhQOl8KFHR0cHL7/8MufPn8dqtRIKhfj2t799VUbNeDzO2NgYL774Ips2bWLDhg2YzWasVisHDx6ktraWQCDA8PAwU1NTLC4uYjQaWVxcpLOzE5VKRXV1NU6nk1tuuQW/309jYyNWqxWz2Ux3dzfz8/P4fD42bNgg4uL7+vpEzGt7ezsul4udO3dy8eJFRkdHqa6uJj8/f4nC0NPTw/79+6msrKS0tBStVks0GmVwcJDZ2VnOnz8v4p2bmpp48MEH6ejoYGpqiszMTKqqqsS45+bmGBsbE+Ewt9xyCzqdDplMRm5uLps3b+att96ivb2dwcFBcnNzsdvtnDx5krGxMUZGRhgfH0ehULCwsMDDDz/M6dOnMZvNdHV1MTQ0xMTEBPfeey9tbW1MTk5iNBqRyWR0dHQwPj4urP7Sz+3t7SQSCfLy8ojH4/y3//bfKC0tRaPRMDExwdjYmBDYh4eH6erqIhwOMz09zczMDCqVisLCQhYWFmhpaWFgYID+/n7xcQ8EAszPzxONRjl9+jT3338/8Xic+fl5RkZGyMjIYHR0lO7ubuLxOD6fj+npaRYXFzlx4gTp6ekUFBQsEUokaDQaysvLmZiYIC8vT4QWJRIJ/H4/R48epb6+nkAgQGtrK2vWrCE/P3+JACUlt27atAmLxYJSqUSj0bBz506OHz+OWq0Wgp60TgMDAwwODtLT00M0GmXr1q2Mj4/T399PZmYm8Xic559/njvvvJOysjLKysrQarUcOnSI8+fP4/P50Ov1DAwM4HK5GB0dZXh4mO7ubkx/qOZy8OBB/uIv/kLsxVgshsfj4fjx48zMzLBmzRrm5+cZGBjAaDTS3NxMX18fVVVVOBwOFhYWLlUvqqri2Wefxel0smPHjiVjn5qaYnBwkLm5ORobGykpKWFycpJwOMzAwADt7e1MT0+ze/duEboWCoWYmZkRQuPi4iLHjx8H4J577iEejzM+Pi726sMPP0x7ezvj4+N0dHQwODjI8PAwbreb6elpcnJyqKioEH2anZ1lbGyM3t5e1Go1mzZtoqKigubmZs6dO4dWqyU/P59Dhw6xY8cOBgYGmJqaoqqqiry8PDFfCwsL9PX1MTs7y8mTJ5HL5TQ1NeH1evniF7/IoUOHmJmZobq6mvLyctauXcvrr7/Ol770Jc6cOYPNZqOwsJBEIkFHRwcul4utW7ei1Wo5duyYWEe5XM7o6CgKhYJdu3bx3e9+l8cff3zJfAH84Ac/YM+ePZSWli4ReJuamrhw4QLxeJzy8nK0Wi2FhYW4XC6hlPf19ZGRkUFTUxMZGRk4nU4aGxu5/fbb0Wq1Yk1jsRgzMzP09fURjUaJx+NMT08zPz9PcXExtbW1OJ1OhoeH2b9/P2vWrCEWi7F161YWFhY4ePAg1dXVQvFzu91iXx49epS9e/eSm5vL1NQUzc3N9Pb20tbWRjQaRaVSYTabGRsbY2xsjMzMTGpra1EqlYyMjKBWq/H7/SiVStxut8hnmpyc5MyZM5SUlFBQULAk1EdSKGOxmMgxGBoaIj09nezs7Ct+Y1JI4Y+NlBKQwoceBoOByspKkQsQDAbRarVXDWmQyWRotVrWrFlDTk4OWq0WpVJJUVERDzzwAPn5+RiNRnJycv5QLUjFpk2bRJKqTCbj9ttvx2AwsG7dOtxut+iPXq+npqYGv9+P3W4XH8jbbrtNJMuZTCZqampEcq+U6LjcwiQlYm7atAm9Xs+GDRtQKpUiLOETn/gEOTk5wmoqCaqS1XS5BVRSXqxWKw6HY4myZDQaKSwsZN26dSJsJysrC5PJhNfrpaCgALPZzLZt20Ts++233w5c8iysWbOGrKws9Ho9u3btIhaLodVq0ev1qFQqamtrKSgowOl0UlNTg8lkQq/Xs27dOuRyOenp6UQiEfR6PWVlZahUKhGCkZOTg8PhYM+ePRQVFWG1WjEYDNx///0YjUZuvfVWTCYTSqWS/Px87rrrLnQ6HbfeeisGgwGTycRdd91FRkYGWq2W+vp68vPzycjIQKFQsHv3bhFKEIlEePDBB1GpVCL0ZrWQCrlcjslk4oEHHhBJtRIUiktlVzUajUhQvJIF8ZZbbkGpVOJ0OlEqleTk5LBnzx4cDofYQ3K5nD179mC320kkEhiNRmKxGDqdjgcffJD8/HzhaamuriY9PZ3NmzeLfeF2u9Hr9Wg0GjQajVgHrVbLnXfeSUlJCWazmUgksmJohEajoa6uTsSQSwK/TqejsrISm80mQnqkuG7pWVOvUAJHrVZTVlbGJz/5SRwOB1qtlp07d6LT6bBYLNTV1eH1epmcnESn07Fx40ZycnIIBoP09PRQWFgowkzgknciPT2d2tpa0tPTMRqN7N69m0QigUajobS0lLvvvlsk0s7MzKz4jNTW1uJwOEhPT0ehUAjBVKvVirhxaZ2kpPXla6tSqcjIyOBzn/vcpRKdQHl5OdFoFIvFQnV1NX6/n7S0NLRaLTk5Odx5553YbDY2bdqEw+EQnqmqqioKCgooLS1FrVYLJU6j0aBQKIRyWVZWxi233ILD4RDPl5Q4azAYVjSOWCwWSkpKUCgUGAwG9uzZQ3p6Oh6Ph+rqatRqNXq9XiRdG41GVCrVivkAUmLw7t27RVKwyWQS3tK0tDTMZjMWi4Xx8XG0Wi0KhUIkP8/NzYljCoUCpVIpEocrKiqora0V709p/9TX14viCwaDgQceeACtVotMJqO4uBiDwYDb7UYmk4n5VygURKNR9uzZg9VqJRgMrhjaZDQaqaioEPd88MEHKSgoeFde2BRSeL+QIgtL4UMFiZb9cLmHwf3PiQSt5S/uRCLBwMAAs7OzKJVK1q1bd0P7EY/HiUajS4QaqdoNcMVEOemDvPxj7PP58Hq9RKNRsrOz31V8dSKRIBKJMDY2JsIZrvd6qarP1Vz+iUSCWCwmwoni8bgQHqWxJoewXA/C4fBllUeuBElQl8vlBINBkZQdi8WIx+OXJbtKIU1X6tvc3ByhUAiVSkVaWtqK51zLfAUCAVHZabWqQ5FIRAi0UtjVaqFO4XBYsFhLAu7yPgGX9UtKIJVCwFYbj9frZXBw8BL/wQ2I9e/t7UWn073jvS3laGRmZpKTk0NXVxdTU1OsX7+erKysqz570WhU7IVoNIpOpyMSiTA6OipCzq6GxcVF4JLCm/zse71efD7fu352pbVMZie/0hpdbR2Xo7W1ldzcXCwWyw1Z03cDaazhcFiMYfkxl8vFa6+9xszMDF/60pcuq1olzYFCoRCV2FZKaJfalZ6BSCQinjEJV5oPKZws+V2x0vnS96lpA6x/d6kjKaRwQ5DyBKTwoYVMJmNyclJYwZdjcXERj8cjwjNuJORy+WX3XP5RWQ2rCZyLi4v4fL53leybDJfLJSyU1wuZTHbNli6pbCRcPrZrLRO5GlZa1yshOX46edySVXE5rkUQmpqa+gNB1MoKgNTO1ebL5/OJ0I/VsDz+W7K8r4SrzY00tuX9kqzyV4Kk0F5PzPe14p0Kn7W1tfT29orwmqmpKTZu3Cg8bVfra/IelTwlLpcLo9F4zc+IZRUCicXFRQKBAKWlpdc3qGVIFvqvpdrO1dZxOa6mWLyfSPYQrXZscPASAZparSYUCi3xsknnX8scLB/z9VZVey+egxRSeD+Q8gSk8KGCZGk5VR8hxz8tSiAu/zjE43FRY72goOCaq4H8MSE9qjfqA5386N8MH/0PKm7Uutzo9X0v8V7snXc7/uWfsuRqRDeizXfreXu3bbwf+KD0U4JkfYfLBfmbESlPQAo3G1KegBQ+lFAolGRkZIhKM8shxYLC9Vt9/li40R+4m/2D+UHBjZrHD9J6vBd9fbdtLr/+RvTx39vaflD6KeGDIPinkMLNjJQSkMKHElIIymrhJlcKo5AgxXG73W6RQHc9iMfjzM7OCsZTqS+JRIKZmRnBOno9IS2RSAS3241cLsdisdz0bmgpH0Bi7pSSFG8UYrEYCwsLIvn23YYXLUcoFMLr9Yok55td4EgkEkSjUVwuFw6HY8VcgeXnj4+PYzabr4vF948Jac1lMhkmk+kdK/GRSIRgMIjf7xd8CFL7oVCIhYUFMjMzb/pn7GaD1+sVuT5yuVxU/vqwQSph/F6+f1JI4b1G6u2WQgpXQDAY5OTJk0vIhSSMjY0xMzMjPnjLEYvF6O3tpb+/f0klokQiQX9/P319fUuYa6+GQCCAy+VicHCQwcHBa+Y5uBrC4TA+n0/8PjIywvz8/Krjul5IjKyTk5PXVFv8aohGo3i9XtF2V1cXPT094tiNglQGVJrva+UF+GNCSpo8efKkKHm6GkKhEL29vczMzDA1NbVkD9zMiMfj9PT00NvbKypuXSukZ8/v9xMOh3G5XKJ0qIRYLIbb7ebtt9++Yc/AjUQikaC3t/eaWY3fCZa/E64HbreblpYWjh079o6fSalk78TEBMPDw0xOThIKhfD7/UxPTzM5OcnAwAA+n0/wgExNTXHy5EnBBC+9J+bm5nC5XExNTa3YH7/fz/j4OO3t7czPz4vwokAgwMzMDGNjYwwODop7LX//dHZ20tvb+4F5flJIIRkpJSCFFK6AeDzOb3/7W3p7ey/72/nz5+nu7r5M0JLiVKPRKG1tbZw8efIyYb+jo4MTJ04wNjZ2zX2Zmpqio6ODvr4+enp6rpnl80qIxWLMz88zPj4ujp06dYrBwcEbJgAlEgleffVVent737Wgnkgk8Pl8DAwMiHk+deoUp0+fZm5u7ob0V8Lo6OiS+f4gKAFwSfh59tlnmZiYEALRSlhcXOT5558HLo1VqmxzsyORSNDU1MSZM2euibBvOd5++21mZ2eJRqNMTEzw1FNPXda+x+PhZz/72RXn74+JAwcOvGPiuashFouxuLjI6OjoO7o+EAjw2muv8f3vf/8dK/3T09N0dHTQ0tLCiRMnOHLkiEj2Pn36NG1tbbz99tsMDQ3h9/vx+/20trbyT//0T3g8HuCSR2J4eJi+vj46Ozs5f/48ExMTl91rbm6OpqYmnnnmGbq7uwVD+/T0NM3NzTQ1NXHkyBFmZmYIBoN4PB6Gh4cBlrx/Zmdn39FYU0jhj4mU7yqFFFaBxNKalpaGRqO5LPFw79694ufkv0k/y+VyKioq6OzsvOycsrIyOjo6Lju+Uh+kcwYHB+nr62P37t0in+Hd5vVLH0mfzycqlzzyyCMrjutqkEr4LYdGo7mMYOedtA+XQjiGhoZ4+eWXqa2tRaPRkJWVJdp5N/OxvLRgV1cXCwsL3HrrrRQWFr7r9t8LLJ9zmUyGXq8nLy9PhMmslNwqhbp1dXXxla98RYRoXev4Vlvr9wMqlYqsrCwhoK/Wj9X6+NnPflb8nJaWhtVqXdKOWq3GbreTlpZ2xXEmz+WNwPXM6Re+8IVrvvf1rtXIyAj9/f0sLCxQXl6+apuroaSkhPz8fEZGRigqKlqSvLtav5a3d/78eWZnZ/nEJz6BTCYT3A7hcJi3336b73znO0xMTPDkk0+yadMmdu3axebNm5co6iMjIxw7doyHHnqIjIwMfvOb3zAzM3NZdbXc3Fy8Xi/9/f2CRTkYDNLc3MzFixf5+te/Tk9PDzabjZmZGYaHhxkbG6Oqqkq8f1baCx/GEKgUPnxIKQEppHAVxGIxWltbRYnOwsJCamtr+f73v4/dbmf37t2YTCZeeeUVwayr0+lwOp0AdHV1YbVaOXHiBB6Ph89//vOibZ/Px8mTJ3nmmWe47777qKmp4eWXX8ZoNHL//fcLwptAIMDExARtbW1oNBq8Xi/f+ta3eOyxxygoKODAgQMEAgE+85nP8IMf/ACZTEZNTQ02m42+vj4effRROjo6GBgYQK1WMzc3xz333MMbb7zBwMAAFouF4uJiiouLeeKJJ6iurmbz5s0oFAqOHDlCYWEhU1NT5ObmUlFRwc9//nN8Ph/btm1jZmYGgI9+9KMcOHCAaDTKzMwMNpuNDRs2XJE189ixY7z55pvEYjHuuOMOOjo62LFjB7Ozs5w7d47Z2Vn+/u//nl/+8pcUFBQgl8vp7e3lzJkzHDlyhK1btwIwOTnJ8ePHGRoaYmBggAcffBC32y0shRqNhnA4THZ2Nl1dXbz++ut86lOfYmJigpycHEpLS8nNzRX98vv9jI2NMTAwgFKpRC6X8w//8A/cdtttKBQKwuEwu3fv5rXXXhPkSFI7P/zhD/H5fKxfv55AIMDo6Ch1dXWChKu6uhqlUsmbb75Jfn4+Fy9e5M4778Tr9XLgwAGys7MFu/K6devIysrimWee4VOf+hStra1CaPV4PDz66KM88cQTqFQqEokEDoeDj3/842Ichw8fZmhoCL1ez5/92Z8Bl4QTr9fLyMgIQ0NDvP3222zcuJGLFy8yPDxMfn4+3d3d3HfffbzxxhuMjIyg0WgIBoP8zd/8jSBZknIPvvrVr/KRj3yE2dlZMjMz2bJlC08++STV1dWCkVomk/GDH/yAxx9/nMXFRUFal52dzde//nU++clPMjo6SkVFBdXV1ezbt4+amhoGBgaoqqqiuLiYQCDAyy+/TF1dHc3NzYJMq7e3l6985Sv8y7/8i2DHTiQSfOlLX+K5554TnB3xeJwdO3bwT//0T3zsYx8TTLQSm7DP5yMej5OVlUVeXp6Yw8nJScGOnZ6ejlwuF6R+cMlbODw8zMGDBzGbzWi1WjQaDdnZ2TzxxBN8+ctfFqzW5eXllJSU8M1vfpPbbruN/Px8/H4/KpWKvXv38vLLLxOJRFAqlQwODvLlL3+Z73//+6JuvUKh4IEHHuDv//7v+b/+r/8Lk8nE6dOneemll3jsscc4ffo0GRkZQjBtbW3lC1/4Au3t7UxMTODz+VhcXGTnzp2CjdhisbB27VqOHTvGl7/8ZY4cOUJbWxtGo5HS0lKUSiWTk5MolUoUCgVut5u77777moTcWCzG8ePHefrpp9m0aRPp6ekMDw/zp3/6p1itVvbt20daWhrbt29fcp1EJKhSqRgeHsbpdAoeDckDarVa6evro6ioaMV7Z2ZmUlhYyKOPPsp9993HrbfeSklJyVX7DJc4K0ZGRnC73Zw7d47W1lb27t1LU1MTp0+fRqVScfHiRVHOd2JigsbGRvH+eeihh96T0tMppHCjkQoHSiGFqyAYDJKenk5ZWRlOp5OmpiYUCgU2mw2dTsfi4iJnz57FZDIJgTeRSIgPjlqtprCwEI1Gw+Dg4JK2tVot2dnZrFu3juHhYXw+H3V1dZSWljI7O0tHRwf9/f0A2Gw2cnNzKSsro7CwUDAAm0wmioqKWFxcRKPR4HA4sFqtWK1WKisrOXPmDDMzM3R1dTE7O8uWLVvYtGkTNpuNoqIiSktLyc/PF9Z6u92OWq1meHiYZ599lsrKSqqqqohGoyI+vry8nFAoRF5eHrFYjJGREWQyGbm5ueTm5qLT6XC5XJw7d+6Kc1tWVobVasVsNlNbW8u2bdt48skn0ev1ZGRkEAwGkcvlZGZmUltby5o1aygtLcVut1NbWysS8TQaDRkZGdTU1HD27Fl8Ph9NTU2cPHmSDRs2sGbNGg4ePIjb7Uaj0RCJRMQ8DgwMXBYmIM1jbm4uJSUlpKenY7fbsVgsrFmzRih+1dXVZGRk0NPTw5kzZ1AqlZSXlxOJRMjOzkar1TI5OUleXh41NTV0dXXR1dXFwMAAp06dEiRdU1NTqFQqNmzYwMDAgGBjDYfDpKWlsWbNGp5//nmys7OpqqrCbrczPj5Oa2srRUVFaLVaKisrufPOO8WctLW14ff7KS4uZvfu3UuENp1Oh8PhwGKxUFtbS1tbG2NjYxiNRsrLy8nIyOCNN95AJpMJVl2JeE9qR6FQYDQasdlsWCwWtm3bRm5uLo2NjSwuLqJWqxkdHSUQCAhW5bq6OrZu3crAwACNjY3odDrsdjtms5mdO3disVg4d+4cMpmMiooKsrOz6e3t5bnnnuPFF18UjLh5eXlYLBaUSiWZmZmCACw9PZ3MzEzBAdLU1ITD4WDLli2sW7duiYVfIrBTqVRUVVWxbt06ent7aWxsXBIKt3//ftrb27FYLBiNRs6fP78kzCUYDPLUU0+h0Wgwm8243W56e3vJz8/n4x//OMePH8ftdrN+/XqhFCsUCgoLC1m/fj1lZWU8/fTTjIyMcObMGSYmJoRS19PTQ15eHiaTiby8PB588MElycppaWnk5uYyOTlJVVUVVqtVKAzFxcU0NzcTi8XYv38/Fy9exG6343Q6aWxsFOsqvZ86OztJJBLk5uYueSd4PB4aGxtpaWkhEAis6h1YCXK5nJqaGhYXFzGbzeTm5gqvZjweZ9OmTVRWVl52ndFoxGw2Ew6HeeWVV/jiF79IYWEh8Xh8yf67WtK7VqvlkUceYXR0lOPHj1/2/l0NXq+XUCiETqejqKgIv98v3mVlZWXk5+dTWFgo7q/Vape8f97LfI0UUriRSCkBKaRwDTCbzaSlpWE0GpmZmRFhF1JlH5lMJhhaMzMzKSgoEMRBJpMJm82GSqW6LHlMoVCQlpbG+vXr6erqwuVykZ2dTUZGBvPz84yMjDA5OUksFkOj0WA0GoXQrNVqUSgUqFQqjEajYLyVPqA2mw2bzcbs7CyBQAC3200kEiErK4vi4mLUajUWiwWr1YperycajaJQKDAYDKhUKjweD729vTgcDmw2GzKZDI/Hw+LiorB+S8yifr+feDxOf38/sVhMVMpwuVzCxb4SbDYber1eCKU5OTn09PSgUqnIy8vD6XRy8eJF0tPTBSGXzWZDq9Wi1WqJRCLiY+9wOHA4HMzNzRGNRkUCYUZGBunp6YyPjwtmX41GQ3p6OhaLBa/Xe9lHW6lUotVqMZlMWCwWdDodBoMBi8VCVlYWTqeTyclJ3G43WVlZ4n6hUEjMjdVqRaVSEYlEyMzMJC0tDbfbzeLiIn6/XyhRGzZswOl04nQ6KS4uFknoWq0Wj8eDx+Ohrq6Ovr4+jEYjdrsdnU5HMBjE5XJhs9kwmUxkZmaSn58vBJN4PM7c3ByBQEAwEEsClFKpRKfTCWXH5XIJj4nU3uDgoKiKZLFYKCsrW8K2KxHiSWPNzc3FaDSKSlB5eXnU19dTWFgo7pWWlkZWVhZ+vx+XyyX2q9VqJT8/H7VazdTUFEqlUvRjYWGB7u5u+vr6SEtLE8K4pATr9XrhnZAqccViMYLBIPPz8xgMBnJzc8nPzxfPSrLwKJfLhXDs9XqZnp5eEtYxNjZGLBajqKiIwsJCEQYiIRqN0tPTQ25uLoWFhZSWllJaWorJZGLdunWEQiECgQBqtRqn04nRaESj0WCxWMjIyMBmswnSq0AggMFgoKSkhA0bNoj1MJvNpKenU1JSgsFgWDJ2aZ9J+0KqOmaxWFhcXBTx7fF4nJKSEqqqqsjOziYtLQ2z2SyeY6/XSyKREO8raR7VajVFRUUYDAYWFhauK/ZdCqmU3l3Se0GK28/MzMThcFx2nUKhIBgM0t/fT2ZmplD8kytBRSIRLBbLqlXbpKTgPXv2cOutt+Lz+a65EIP0vEtzo1AoxD6w2WwYDIYluWDS+8dut4v3TwopfBCQUgJSSGEVSJVWpJjWSCSC3+8nEAgQiUQIhUIEg0FhPRseHmZkZASDwUBOTg6JRAK/349SqSQajRIOhwmHwyKRLRAIEI1G0ev1FBcXMz4+zvT0NFqtVgj1sVhMsLNGIhECgYBIrtVqtcRiMTweDwsLC0v6JVkyg8Eg4XBYhBhIgrw0Nslq7PF4GBsbIx6PLxmXZNn0+/3EYjHBrLt8XKFQCI/Hw9tvv43L5UKtVqPRaPD7/czPz4tSjCslM0ttBAIBoWBISkBZWRlvvfUWaWlpQgCVrLgTExMEAgGCwaCw6krjDYfDQtiXrMISM670gY7H4wQCAQKBAOFweEk8cTweF31KrkASj8dFPH1bWxtdXV2o1WrUajXhcJi5ubklcxOJRIjFYsjlcnEvSaFzOp04HA7q6+spKirC6XRisViIRqMsLi6SnZ2N1+ulr6+PwsJCrFYrfr8fn89HKBQCLnmZ/H6/2KNS9ZJQKITFYsHtdtPf38/o6CjRaFQIt9J4pP0oWfil330+nxB0JOVWSphMfj6kcprS3KlUKqFYOp1Otm3bRmlpKXK5nFgsht/vF14Co9G44vWSp0bqh0KhwGw2YzKZCAaD4p80n3BJaAuFQrjdbtxuN8FgkHg8jlarFVW+t0ArAAEAAElEQVRl4vE4wWBQCOWRSESUEvb5fHg8HiFAS3MTDAaFUGyxWMjMzGTXrl1LBE+5XE56erowFFRVVdHQ0EAgEGBhYYHCwkLC4TA9PT3Mzs6K0pJSkqnf7xd7XvJU5OTkiFCwcDgsnmdpPSKRiNif4XBYjFN6buFS9Sfpn9VqFQp0Tk4OmzdvRiaTCdbnUCgk1l56zrxer0gO3rp1K0VFRfh8Pjo6OoSCKe3DZPh8PoLBIJFIBJ/Ph8/nE54Nae59Ph+JRAK3271iVR23201PTw/Hjh2jvLyciYkJ4fWUQtOmp6fJy8vDbreLvRWJRPB4PGIvTE5OUlRUxEMPPYTT6VzRcyCVig0Gg/h8PiKRCA6Hg/T0dLRarfgGSEqvXC7H7/eLZyp5faT9lXwshRRuZqRyAlJIYRVINdSnp6dFLH1HRwcjIyO4XC5GRkZIJBJYrVZqamo4efIkY2NjjIyMUF9fz/bt27l48SK9vb2izN309DQtLS20trYyMDBAWVmZENC3b98uLJqSVVuCZDnt6elBr9ezYcMGSkpKmJubw+Px0NnZSU9PD1NTUwwPDxONRlGr1cJCHQwGycjIYHp6mgMHDqDRaFizZo2I0e3t7SUnJ4fCwkJGR0fxeDysWbOGT3ziExw+fBiv14vH4yEvL4/q6mp++ctfinFJFveLFy/i9XqRyWQsLi4yNjbG5OQkExMTDA4OYjKZcDqdS2Lv4VKVmsnJSdra2jh27Bif//znycvLE0Lis88+y9e+9jWRvCqNq7m5mZ07dzI9PS34GGQyGdPT00xMTIiwmYMHD2IwGLjlllswmUyMjo4yOTlJV1cXra2tDA4OkpeXJ6ywcCkHY2pqiu7ubjQaDYWFhYyNjXH+/HksFgsFBQUsLCxgt9tpbm4W1r/+/v4laz4xMcHU1BQtLS0sLi4yPj5OXV0ddrud3NxcTp8+TSwWo7CwkMzMTHQ6HTt27ABg+/bttLS0MDIygl6v54tf/CJHjhxhYWGBSCSCTqdj69atfOc732F2dhaLxUJFRQWhUIixsTHm5ubIyspibGyM7373u/zjP/6j8Nz4fD6xHy9cuEBDQwMnTpxgeHiYixcv0tzczMc+9jHefvttOjs70ev1eDwe4d0ChLIyNjbG6dOnsdvtIqTshz/8IRcvXsTtdlNYWCiqOrW0tDAzM0NWVhZpaWn4fD5GR0c5ffq08ISo1WqeeuopLl68SEtLC7W1tdx11114PB5efvllNBoNvb29QrFbu3Yt5eXlDAwM4Ha76ezspK+vD51OR0VFBUNDQ8zNzaHX6yksLGRwcBCHw0F2djZ6vR6Hw0FLSws+n0+E3khlU3t6erjjjjvo6+vjrbfeYv369fj9fjZt2iQUAZ1Oxxe/+EVee+01pqenMZvNRKNRtFot//zP/8x3vvMdDh48yIEDB/D7/fz5n/85gUBAeM3m5+d55JFHKCkpobi4GJ/Px6lTpwCoq6ujo6ODqakpUbrU4/EwPT0tKtR0d3czOzvL6Ogovb29Il9DJpPhcrkYGhpi69atLCws8NZbb5GdnY3BYKCtrY2+vj5sNhujo6PMz8/T1tYmksp7e3vJzc1lYGBAeCKqqqoIBAKEQiFefPFFtm/fflmi7YULF+jt7WV+fp7z58+jVCqZmppiYmJClHeNRCLcfvvtvPHGG2RkZHDbbbctaaOxsZHXX3+d5uZmkTfwla98hezsbCorK+nr66OpqYlNmzZRXFyMx+MRz9jx48fZunWr8Go2Nzdjt9vJyckReVrJcLlcomRzLBajurpaeGMnJiYYHR1lcHCQz372sxiNRrq6umhsbKSgoIC8vDzGx8eZn5+/7P2TkZGx5HlJIYWbEbLEzVbuIoUU3gVuJC17stVUskBLFleFQiGsl5OTkzz55JM89thjmM1mWltbGR8fx+l0smHDBmFFkq6VfgZE0mIgEKCpqWmJIrC8L5IFUSaTIZfLhXdAajMQCGA2my+ruCFZ8KWfI5GIiEWXjklJeJJ1ULpe+j0YDKJSqYQ3QbKILx+X1CcpmTb5uNResjUuFArx85//nGAwyF/+5V8KciuPx4NMJiMSiXDx4kV27NghrpMs0FKowvL+Spb3lc6V5iQej6NQKMScyuXyJeEy0vHl7Uo/S3MgeRwkrLTO0s/SfaV7SfMqrUVy35LvIe036W+SN0Waq+X9lNY0eQ6kvknnJe8n6d5SWdtwOIxOp1vS/+XXr/R8JK9r8tgUCgXd3d38wz/8A7/61a/E3EsW59WuDwQCaLXay+ZGsrJKVnxpD0geC2lfmc3mFedr+f0kD4fUL+l+0hxKcyN5T6Tk/+XzIPVBLpeLPbF8n0n3feyxx/j85z9PQ0MDiURCPHuSxzEejwur85XWV7pGuk/yudJ5SqVyiadIul/yp1+al+SxS+8EyRMp7WNp3RKJxIqMvdK5K+375P2d/B5cbqFPbkOC9AyEw2EmJydFyFJyZSvpXZc8fr/fTzQaxWg0inlOxkrv1uQ9ODExQXZ2tlh3aU9J75PV3j8rzc2N/D6lkMKNQMoTkEIKqyA5fnolSB8fk8nExo0b6ejoQKfTMT09jUajobi4+KrsuF6vl7GxMXp6eigqKroiw/FyQUkSWKSPsSSgL/+gJv8uk8mWfCSl35OPLe+zQqG4TPBZbVxyuXyJ0CbdY7UEvo6ODvx+P2q1Gp/PJ7wfkmU2PT2dDRs2XNae1OeV+pI8h5IgIs1Ncjz7lfom3WO1dqU2khNlpeuuhOWx6NK8StcmC07JfUue9+VjWGktrsZcutJ+kpJkJQXuauO50vORPDa3243L5UKn0zE4OEhhYaFYjytdr9frLxOkFArFknh86e/ScelcKVdn+V6XnpNkLJ+/lfqVfJ/lfUpeG6kPq+0zKYleo9EwOzvL/Pz8ErZimUyGWq0Wz/RK/Vupb6vtheWKX/L7Yvm+T25z+fOV3G5yX1fCSs/T8n2/vK1raUOCWq0mKytricImtbX8OskbILW50v1Wehak8/V6vcglST5veYJ8MlKswSl8kJDarSmk8C6h0+moqakhHA6LqkFqtRqz2XzVa6VkSblcjtPpXCK0XAuuRTBf7fzkY1fDlT7K7+bcjIwMdu3ahVKpFEIfQH5+PuFwGKPRKEoxXm+fk8+7njm9Vqw0l+/2+mtZm+uZ3xvRp3fbjhRO9YlPfAK73X5Ne/xK/Vht/KsJl1ebr+vZS9ej5K3Whtls5iMf+Qh5eXkYDIYV1/y92q/J/1/LuTcjJEXpWs+9lvfiatfKZLLL+E1u5rlJIYXrRSocKIUPFVLu1hRSSCGFFG5GpL5PKdxsSHkCUkhhFazEQvteWeluJiTHw69mRUuOo4XLXe3XO0dXauuDiNVYUuHDu4euhbX53XhmkuO2b+Y5TM4RAG76/r5XkKqbSTkJEpLnIjnfQHrXSKFLq+Fa/56cG5V8z+Rcluv1vKaQwocNKSUghRSuAJ/Ph9frFYl6RqMRrVb7x+7Wewq/3y9qgefn5696nsfjobu7G61WK2ruSzX7r/fDmlw3Pjs7+wP9YZaE1cXFRcLh8JK/yeVyjEbjqrXNP8iIx+P4/X6R1G0wGESiqzQPUsjbO21/eHhY1MZfHqZxs0AqvysxacvlclGP/98TvF4vLS0t1NfXCzZmlUqFyWQS79C5uTkmJyfx+XxUVFQQj8cxGo34/f4lhGxwaR61Wq1gPAdECKHECwGXuEcksi+4ZMjIyMhYonj4/X6GhoYoLy+/5tCiFFL4MCLFE5BCCldAKBTiBz/4AT/96U85duzYklryyZAIeRYWFi4T/G40ksvsAXR1dfHLX/7yhrUfDofZt28fv/rVr1b8u9fr5eWXX+a3v/2tqHXf0dHB17/+dQYHB6+7PvbQ0BBNTU2cPn2ao0ePfiiIdqLRKI2NjfzoRz/iO9/5DlNTUwwNDfHd736XY8eOXdGSeS3weDwMDAyI38+dO8fJkyfp7e19t10XOHbsGE1NTYyNjV3T+YlEgrGxMV544QW+9rWv4fF4CAaD7Nu3j3/4h3/g+PHj72rckUiEEydO8MILLzA5OXnd1wcCAQ4dOkRLSwt+vx+v14vL5cLtdpNIJFhYWODw4cMcO3bsHfcRLs2Dx+Phrbfe4r/8l/9Ce3s7Fy9e5MUXX+QHP/jBu177dwK3201TUxOvvvqqODY0NCTIswKBAP/jf/yPG8Z0293dzdmzZykpKSEcDvOjH/2I//k//6d4hyYSCX7wgx9w5MgRZDIZZWVldHZ28qUvfYnR0VGam5v5xS9+wTe/+U2mp6cZGhriJz/5CS+++CJut5vXXnuN//Sf/hODg4OEQiEuXrzIV77yFd5++22CwSAtLS089dRTfOc732F6epq3336bH//4x5w4cUIoE0NDQ8zOzq7IdZBCCv9ekFICUkjhCjCZTILR1GKxrGo1isfjHDt2jJmZmfdUCQgGgwwODtLe3i6UgKysLHbu3HnD7mEwGJaUEE2G3+9neHiY119/nZ07d+J0OrHb7eTn51NbW/uOCHIGBweZnJykpKSE7du3fyiqa6hUKtLT0wWLa0FBAVlZWezatYusrKwVCZKuFdFolNHRUY4fPy6OFRUVUVZWRmZm5o3oPgCVlZUUFRVht9uv6Xy5XI7BYCA9PR21Wi3YliVGX6miyzuFXC4nMzPzHRMxqdVqampqBDPx8PAw58+fF+R7er2e6upqKioqrrnN5DC25H5qNBoyMzPRarXk5ORQXl6OwWDgrbfeElbxG4nk8p8rQafTUVRUxLp160gkEgwNDdHZ2Sk8fmq1mrvvvvuGWMXj8Tjz8/O4XC7sdvtl71CA48ePCw6J/Px8TCYTJSUlFBQUoNPpsNvtpKeno9FoKCgoIDs7m1tuuYXy8nLC4TCZmZnCMysxSKtUKrKzs5ew90rcEDU1NbS0tNDR0UEwGEShUFBXV8fp06cZHx9/12NOIYUPKj74X9sUUniP8P+z99/hdV3XnTf+ub33goveAQIgCBIg2JsKJUqyZEm2JNc4thMn47z2+0smTjLvTN5MxplJnsx4nMx4Jomd2M74dVNkq3daJEVSbGADQRAA0fvFvSi393t/f3DOHoAEm4otyefzPHoe8eLec/bZe59z9tprre+SVCiMRiNGoxGdTkcikRCFYoxGo9Dp93q9HDt2DJPJhFqtFvr/k5OTGI1GsftUKBS4cOECDQ0NQms6lUoxPj5Oa2srs7OzlJaWYjabSSaTTE5OYjAY0Gq12O12UqkUXV1doiCZ3W4nGAwK6cV4PM7s7KyQQoxGo9TW1nLy5EkRRqHVagmHw6xZs4ZgMCgqF8diMWpqasS1Lte/lwiFQgwPD5NIJKiqqhKLhqKiIjZt2oTdbmdubk5Up5VkER0OB93d3RgMBjweD8lkErvdjt1uZ2ZmhunpacrLy3G73XR3d2M2m0Vcb1lZGYcOHaKuro5MJoNSqaSoqEgU0ZL6VqFQcObMGdauXSs06q1WKzabjYGBAdRqNZlMBpPJhNPpZGxsDIvFwtLSEm63m+Li4hWGz+LiItFolGw2i0qlIpfLYbFYmJ2dxe/3U19fTywWw2q1Cs1yad4oFAoROiaFH0xMTLBmzRoymQz9/f2Ew2E8Hg9er1dUtNVoNCQSCZxOJ2q1WhS6qq2tJRaLYbPZSCaT9Pf3c+7cOfbs2UNJSQnBYFBUt9XpdFy4cAG73S7mmMvl4siRIzQ1NRGNRlGpVGLhtLCwQGlpKSaTacWYz8zMoFQqsVgsaLVaurq6aG1tXdG3yw0EafFrNptFkTqtVisKyFksFhQKhaiyXCgUiEajtLa2itARjUZDUVGRmB8ul4tAIEAkEsFoNIpKs+l0mqGhISYnJ1mzZg3Dw8M4HA5RYG5mZoaGhgbOnj2Lx+MR92oymcRgMFBUVMTw8DDd3d2iGnEsFmN6ehq9Xo/NZqO7u5tMJoPP5yOTyZDNZmlqamJ2dpZUKiUqSZtMJoqLi1fI6KrVaqxWqwhVkSoUWywWof0/MjJCMpkU19Xc3Mz4+LjYRMhkMtTW1jI1NSUM40wmI/pleHiYfD6PWq1mYWFBVNWempoil8tRUVHB7OwsTU1NxONx5ubmiMfjeDweurq6mJqawmAwYLfbxbhUVFQQCoWEtr407z0eD5OTk8zNzeHz+UTxuJKSkmsKYkkVuvP5vAjZkp4pBoOBXC7H0aNHcblcFBUVYbFcyZB1Op3s2bNHhANJ4WRSQbmKigoRcmixWMjlcszPz6PVallcXCSfz2O1WoXSmDQe2WyWaDSKXq8XzwmFQkFxcTFPP/00lZWV130HSPUu3nzzTXGPSJ+1tLRw+vRpMpkMZrNZFJlrbW1dUZNERub9jGwEyMjcIvl8nqWlJf7X//pf7Nu3j7KyMubn54lGo9x7770MDAzQ2NiI2+0WC5Hz589TXFxMOp0WO1t///d/z5e//GXi8Thmsxm/38/Pf/5z/p//5//hjTfeYMeOHVRWVhKNRjlx4gR2u51CoUBzczMGg4Hu7m5yuRyBQIBCocD58+d59tlnueuuuxgaGmJ4eBidToder6evrw+Xy8XPfvYziouLWbNmDXa7Xbjqp6ammJubI5FIMDY2hlqtpra29rp9sLS0xPj4+DVx+yaTiebmZnK5HPv37xcLQoDx8XF27tzJT3/6U4qLi9m8eTOBQACPx0N7ezuRSIRAIMDk5CQ+n4/XXnuN6upqUqkU2WyWBx54gO9+97s89thjYrezsrKSc+fOUVxcTCaTwev1YjAY+Na3vsXXvvY1gsEgOp2O0tJSmpubef3116mqqhK1B2pqanjppZdobW2lr6+P1tbWFQt5gMHBQWZmZjCZTGi1WoaHh2lra+P48eMcP36cz3/+80xOTuJyuVi7du2qcf7ZbJZwOMzw8DBvvfUWv/mbv0koFOLixYu88cYb7N27l5aWFi5fvgxASUkJ8/PzGAwGKioqOHjwID09PXz6059mamoKl8uFUqlkbGyMiYkJJiYmKC4u5vz58wQCAYqKitDpdLz88susXbuW+fl5rFYrnZ2d/OM//iNf+MIXmJ+fR6FQCM/W9PQ0u3fvRqvVrjACjh8/Lvra4XDwrW99iz/6oz8SC6/S0tJVvQT5fJ5IJML4+DgajUbML4nu7m5MJhPJZJKhoSHq6+tZWlriqaeewmazsXPnTvx+P16vl7a2Ni5evMjs7CwNDQ1MTU2Rz+dJpVL09/dz4MABPv7xj/Paa69RUVEhFnRnzpzB7Xbz/e9/n+3bt1NZWUkkEmF2dhaTycSuXbuYmZlhcHCQxsZGysvLmZubY//+/VitVsrLyzl06BBzc3Ps2bOHxcVFFhcXaWxs5PTp06jVaiYnJ0kmk9TU1GC1WlfNhUkkEqL6cCAQYMeOHRgMBhYWFjh+/DjRaJTi4mIGBwepq6vjxIkTorBVJBLB6/Vy9OhRPB4PBoOBSCSCXq9n586dnDx5UozjiRMnuPvuu1GpVLz44oskk0keffRR3njjDdxuN5FIhJMnTzI2Nsa6devo7u4mnU6LZ5gUnrN9+3b6+/uZn5/HaDSi0WgYGRnhjjvu4OTJk3R1dbF9+3YqKiro6upi79691xgB09PTwiBdjWw2S3d3N5/+9KcxGAzic6VSyZ49e8RnuVyOaDTKyMgIJ06c4KGHHsLj8YiQpUgkwuTkJOl0munp6Wu8a9LGht/vp6enh/r6eurq6kQ+gkajIRKJCI/qauTzeWKxGN/73vfYu3cvZWVlJBIJRkZGqK2t5cCBA4RCISorK6murubkyZN4PB6Ki4vlXAOZDwRyOJCMzC2iVqux2Ww0NTXhdrtpa2tDpVJx6dIl3G439fX1dHR0UF9fTygU4gc/+AFlZWUUFxczPj5OKBSitLSUdDrNHXfcwcMPP8zdd99NfX09iUSC9vZ2nE4nwWCQpaUlvF4vW7dupaqqiqNHjzIwMIDdbmfTpk00NjbS1NREVVUVPp8Pu90OwLe//W2cTidbtmyhvr6eubk5+vv7KS8vp7S0lMrKStatW8fx48fJZrOUlpbS2NhIdXU1Op2ON99884ahKlI1VClu/+rwg0KhwA9+8AP0ej133nknLS0t/PSnP8XlcqHT6SgpKWHDhg00NTVx/PhxFAoFPp+PhoYGGhsbOXToEPF4HKPRSDKZZGpqCrPZTF1dHUVFRdx99900Nzfzz//8z5SVleHz+cRueUlJCSqVig0bNtDW1kY8Hqe7u5v5+XmOHz/Ozp07uf/++2lqaiIYDHL48GGxg7e4uMjw8PCKazlw4AAXLlzgrrvuYseOHTz33HNks1mR5Nne3s66deu4dOnSdWPU1Wo1JpNJGCkKhYKqqioaGxvJZDJ86lOfwuv1MjIyQiwWY9u2bdx777389//+3ykUCtjtdqxWqzhXT08PDoeDdevWUVJSwpYtW1AqlTQ0NFBUVEQgEOCVV14hlUphNptZWloiEAhgsVior6/H6/XyyCOP0NLSQl9fHwcPHqS4uBin03lNou26deswmUwYDAZKSkpQq9WsX7+edevWkUgk6O3tXfWaVSoVxcXFbN++nZ07d9Lc3LzCWOjo6KCurg6NRsPExARjY2OUlpZiNBrx+Xxs2LCBlpYWTpw4waFDhxgdHcVoNNLe3s7atWtRq9VYLBYaGhro6Ohgfn6e5uZmQqEQ0WiU8vJyvvCFL1BbW0sul6O5uZn77ruPBx98kA0bNpDNZrFYLJSXl9Pc3MzGjRspKSlh/fr1WK1W4T3ZtGkTWq2WhoYGDAYD4+Pj5PN5nn32Werq6igvL8fhcFBZWYnH41k1fM5sNuPz+VZU9AbYv38/k5OToqja4OAggUCAs2fPYjKZuO+++9i7dy/xeJwzZ85gs9nYtWsX7e3tfOMb32BiYoKZmRmsVisNDQ3MzMywbds2tm7ditVqRafT0dbWhs1mY2RkRDyHMpkMGo2GTZs20dzczJo1a6ivr6ekpASn04lSqeSVV15heHiYu+66i+3bt/Ozn/2MSCSCz+ejtrYWj8fDli1b6OnpEeFEy1lYWEChUODxeFadH3Al/EiqjLycq6sYG41Gce9cHUpWXFzMpk2b2LlzJx0dHXi93hV/12g0WK1WSkpKWFpaQq/XXzPHs9nsDUOz1Go1drud6upq1q9fz9atW6murmZkZITu7m7WrVvHmjVrWLt2LRs3bqSyspKf/vSnItdCRub9juwJkJF5G7jdbjQazTVSdACzs7NMTEygUCjYtGkTHo9HGAxzc3O4XK4VO4ZarRa32y2Okc/nmZyc5NKlS4yMjPDlL38ZnU5HLBYjHA6L3w4ODlJdXb2iXfF4XMRLS9UtpRhki8UiFiHSi+/FF18km83S2NhIXV0d/f39hEKha5Q5JMrKyti4cSPPPPPMipdnJBKhv7+fxsbGFW2QYpWz2awIrVrupl+O9N3Gxkba29txuVzkcjmxuLLb7SKkannfbtiwAaVSydzcHAaDAZPJhEqlEiFZmUxG9JnVahVx3KWlpXR2drJt2zYRvrScVCq1YpdQOpa0cJMKPd0oFlsKC6mrq6O4uBij0SjCfqSFcTKZXLEYUSgUJBIJ8b3rnSuXyzE1NSVCIyTy+TxNTU1s3LiRHTt2UCgUxHg6nU60Wi3V1dU8/PDD5PN5/u7v/g6TyURLS4uYh1ejUCjQ6/WYzWYWFhaE/OPtks/n+Zu/+Rvuuusu3G43Xq9XJNNrNBoReifND8kgXW1XtaamBoVCwV/91V/xxBNPcPbsWfR6PZWVlSKu3+FwXFdFSAoLyefz9PX1reoBk/IbpPtcqVSyb98+zp07h06nY82aNTQ1NV33eiWDxev1kkgk+Id/+AeeeOIJcrmcyBXo6Ohg+/btQvEGrixg3W43/f3918yvRCJBcXExJpOJqakprFYrv//7vy/muMViWfF9KRH36msH8Pv9mM1mHA6H+FsqlVqR1yTNe0khTZoj15PB1Wq15HK5624mGAwGHnvsMY4ePbpizhUKBY4fP86WLVuA/1Ptt7a2Fp/Pt8JrcCsolUq0Wi02m419+/bxF3/xF6hUKtra2sR3bnTv3ui4Op2OVCp1jfTpap/LyLyfkY0AGZnrkM/nmZ2dZWhoCKVSKTwBQ0NDXLhwAbiisDEzM4Pf76e5uZmenh6KiorweDw89thjvPDCC3R2dpLL5dDr9YRCISYnJ+np6aGxsZHFxUX6+/vx+/1MTEwwMDCAzWYTsftWq5Xjx4+TSqWIRCIsLS1RUVHBkSNH8Hg86PV6pqenmZqaYmRkhM9+9rPMzs5y4sQJsXvW2trKL37xC7GgLioqYnZ2lunpaRHakc1mxbUODAwwMjJCOBxmaGhILLbgygu8qqqKz372s/zwhz9k8+bNaLVaYrEY2WwWk8nEo48+SiQS4eDBg+Tzefbu3UskEsHv9zM6OkpfXx8XL15kbGyMubk5JiYmGB0dRa/Xc8899/CjH/2IS5cuibyA2tpaxsbG6OrqwmQyUVFRweOPP76ibw0GA9FolJmZGQYGBrh8+TIDAwNotVpMJhONjY0cO3YMo9GIzWbDZrNRXl7OmTNnUCgUOJ1OioqKVsi/bt26lenpad544w30er0ImQkGg0xNTdHf3093dzfDw8MiD0EyUpLJJH19ffT29hIOh+nr66OxsRGlUikMPGncfD4fNTU1JJNJTp48yczMDF/4whdQKpXMzMwwOTlJf38/58+fZ3h4mM7OTnGO7u5u7rzzTpEsrtFoeOKJJ/j//r//T+zUS4mSo6OjnDx5ErPZzOTkJKdOnaKlpYX169eLULXlXLp0icHBQTKZDHq9ntnZWfr7+xkcHGRgYACNRkM8HhdGXTqdZmZmhnPnzjE5OcnExARqtVqMb1dXFzU1NeRyOcLhMCqVimg0KsJdZmZmhGft4sWLjI6Oct999zE8PMz09DSXLl3izJkz9PT0sGXLFsrKyjCZTMITIknMSgbd1NSU6LvS0lIsFgsXLlxgcHCQeDyO2+3G6XRy7Ngxampq6OvrY3R0VIxxd3c3AwMDjI6OirHq6ekhk8nQ3d0t8lXy+TydnZ2i37LZLEtLS3R1dTE+Ps7ExAQNDQ0ixGdgYIDa2lrOnTsn8iOWlpbYvHkztbW1LC0tceDAAbRarQgzmZ+f5+jRowSDQX73d38XnU6H3+9nbm4Ov9+Py+XC5/MxPT3N6Ogo6XSa8fFxBgYGhDE5NDSE3+9naWmJ6upqzp8/TzabXeF1Gx0dZePGjaTTad544w10Oh133nknVquVixcvMjAwIDwN09PTzMzMsLi4uMKIqKysJBQKEQgEVjxDAWE4bd++nfHxcc6cOcPCwgI+n4+5uTncbjfZbJbh4WEuXLjA+Pg4fX191NXVoVKpRN+ePn1ahMNJ0rHSnC4pKaG/v5+enh7m5uZEGF02m2VmZobLly+j0+koLy/HYDCgVqvFnHz11Vf52Mc+tmo+VG9vr5CMtlgsrF+/npMnTzIxMSE2By5evMhjjz3G/Pw809PTGI3G20o0l5H5ZSMbATIy10HSOr/vvvsAhBLOI488QmlpqQjXqampwWw2s3XrVmKxGBaLBYvFInaybDab2JWyWCx88YtfxO12i1CR5uZmPv/5z2M2m7n77rtFPL9GoxG62R/5yEdwOp1CFePOO++kuroau91OS0sLn/zkJ7HZbLS2tuLxeFAoFGg0Gu644w7cbjf79u1Dp9PhdrsxmUz8zu/8Dg6Hgx07dqBUKnG73SJJtbq6WiQsXx3vK+ncb9u2jampKVQqFSqVCrvdLkIiduzYIXbflUolLpcLu93Oxz72Mex2O16vF6VSKRIcOzs7qa+vp6ioiKKiInbs2IHL5UKr1Ypd98cee4zy8nLsdjsWi4XW1tYVfSslqn7pS18SnhaHwyFCAvbt2ycSrM1mMwaDgb1792K321GpVCKhdjktLS2UlZVRKBRQq9XcfffdFBUVsXnzZsrKynA4HLS0tGC328UiRUKtVrNmzRosFgvpdFqEWkgJsmvXrhU763q9no6ODhKJhPCU2O120c/19fU4nU5xrpqaGgAeeeQRKisr0Wg0rFmzBpfLhUajwefzsWvXLjEPpGTdJ554gpqaGkwmEz6fj7a2NjHmUi7BctatW0dFRQUOhwOPx8OXvvQl3G43SqUSh8OBWq1eoeSkVCrxer1s376d2tpakXC6efNmSktLhSrPww8/jNfrFe2SQi4++tGPil1zKda9pqYGm81GNBrFZrPR3t4uwsCkeffxj39cjEuhUBDeLrPZzGc+8xnq6+sxm83odDo2btxIbW0tDodDjHkymRQhO3v37kWtVmM2m9m4cSM1NTWUl5ej1+spKyvD6XQyNTVFZ2enSOg9c+YMra2t6HS6FUnhnZ2dFBcXU1paKtR5fvM3fxOlUimS6guFAjabTShybdu2jXQ6jU6nQ6fT4XA4uOOOO9DpdKhUKhwOB1arld7eXqqrq2loaMDtdpNOpzlw4ADr1q3jnnvuIZ/P43Q6uf/++7Hb7WJ8q6urhVLT9u3bMZvNYix+67d+C4/HI+YsXNmN37t3Ly6Xi7a2NtxuN0VFRdjtdj772c/S3Nx8zbyRPHa5XE48Q/ft20ehUBCGtl6vZ/v27eRyOREa5Ha7xf1QXV2NSqWivb1dzLXlfSvdg2VlZZjNZmpra/mN3/gNIWxQV1eH0WgkkUhgMpnQ6/U88sgjGI1GMb6BQECIMEj3SX19/aphXXDFiybdC9L8kdpjs9nweDzs3r2bqqoqotGo8G7JyLyfURRkv5XMh4hfdVn2bDaLUqkULxJJyUStVt+2PKJUaGn5i0SqhnmzapdSeMmtJKflcjmhMrL8PDdrG0AwGESlUgkZSAmpEijwtiQ/0+m0MGRuRCqVuuW+TafTqFQqsRhfPjbXq1K8vKKptBB5r8jlcuRyOXHNtzIGN5oHN+obKZRDWnD+spVMpFCw5W27URvy+TyZTEbsBms0GlQqlbiOt1utenlV21v5XTab5T//5//MY489hsPhYHh4mP379/PVr35VhDHd7BrC4bBI8JZC5ZYvpKV7d/k8kMLSpHtp//79aDQaiouLcTgc+P1+Dhw4wGc/+9kVu/I3u5blz6qr2/pO5n13dzfj4+Ns375dGIPXa0M0GiWZTAp1o/dqLkrqULlcDrPZTFdXl/A0Xp1PICF53P78z/+c++67j8bGRmFsFwoFXnzxRWZnZ6mrq2Pr1q03LWD3q34/ychcjewJkJF5F7l6wSvtML0dJInS1T6/2cL6dhbe0m7+7bYNuG7y3/UWF7fKrSpr3E7fXn3MWxmbd3odt8PtjsPN5sGNrk3aVf1VVb++XcNwudrU1cbqO1k03u74KhQK2tramJ6exu/3k0qlaGlpwWQy3dK5dDrdintmtTFfrW+WG8OFQoG2tjYuXLjA2NgYfr+fSCTCvffee0vtuNF5lrf1ncz7qqoqTCYTPT097Nix44ZtkEQN3ms0Go1YvEvKVB/96EdvWMlZym3QarXMzs4Kz5tEMBgkEokIOVUZmQ8asidA5kOFvNMiIyPzXnG91+Uv25Nyo9f2+0GfXkq+l8Jx3g9tksjlcqTTaRFueKO2rdbPy79/vYTr6yG/n2Teb8ieABkZGRkZmVvg/bKYfb+043pI+UCr1c74VSMVF7wVbtbP7/dxkJG5GbIRICNzi1wtBfpuH/fdPHYymRQFmlQqlVAAulqWU6VSifjq1ST9FAoFVquVaDS6qiSklGi3WuhAKBRifn5eJLK+F0iKMHq9/rYlBGVkZN473mmo1nvF+7FNMjK/KmQjQEbmFgiFQoTDYdLpNDU1NczNzZHNZkkmk+TzeaHb7ff7yefzpNNpIpEIra2tNzxuNptlcXFRSPOlUikWFxdJpVLAlcV8fX29qGyZzWZJJBJ4PB6MRuN143alqpZnz55l3759mEwmBgcHCQaDWK1WfD4f6XSaubk5PB4PJSUlXLx4kUAgQENDAzqdTsh63nHHHczPzwtt9MbGRgqFAn6/X2i9Xx3XG41GWVhYYHFxUXw3l8uRSCQoFAqiv8bGxkQsrdS3sViMQCBAKpUSiiZwpVqxZMgkEgmRzDczMyOKP8nIyMjIyMjcGrIRICNzEyQd6suXLxOPx6mpqeHcuXOo1WoWFhaIxWJ0dHTQ0tLCpUuXUCqVLC4ucuHCBZqamm6oeBGLxejv7+eZZ55h48aNBAIBhoaGxK58b28vX/nKVxgaGhK7+DMzMzQ1NVFdXX1dIyCTyTAyMsJf//VfC4nBrq4uent7aWxs5I477mBxcZGjR4/S0NCA3W7n7NmzHDlyhN/93d/FbrczNjbG8ePH6ezsJBwO85Of/ASXy0V5eTnpdJq+vj4cDoeQ+1zO9PQ0S0tLIlHx3LlzQn9dqo7c2NjI8ePHhczn3NwcJSUlhMNhuru78fv92Gw2YQQMDg4KRZy5uTmampqoqanh4sWLhMNhIXUoIyMjIyMjc3N+ObIXMjIfYJLJJJcvX+by5ctkMhkKhQJvvPEGFRUVdHR0YDAY+N73vkc2myUYDArd9d7eXoLB4HWT+AqFAjMzM/T39zM3NwfAwYMHAWhra6O1tZWf/exnLCwscOjQIcLhMOvWraOzs5MzZ86sqOp5NV6vl4aGBmw2G5WVlbjdbkpKSqiqqqKmpoampiZqa2u56667aGtrw2Kx0NzcjM/no6Ghgerqajo7O/nKV74iCqEVFRVRXFxMY2MjPp+Pz3/+85SXl68q43nx4kVmZ2dpbm6mUCjwi1/8gqqqKtrb29HpdHzve99jYGAAv99PSUkJ9fX1ZDIZTpw4gdfrpb6+HrvdTjweF8c8ePAgqVSKtrY22tvbOX36tNAXT6fT9PT0vINRlpGRkZGR+fVCNgJkZG7CmTNnsFqtNDQ0AFdiSv/wD/+QyspKlpaWCAQCVFVVoVareeCBB4hEIgwNDbFnzx6Kioqu6wXo7e1Fq9WK4wI89NBDdHZ24vV6yeVyxONxjEYjlZWVPPfcc/zmb/4mTz/9NB/5yEfeVgx8OBzm7NmzfO9732P//v2UlJSImH2pyurLL7/MD3/4Q9588018Ph+NjY2oVCqSySSDg4M8++yz/Mf/+B/JZrNs2LBh1TCcxcVFFhcXRX/90R/9EeXl5SwuLhIIBCgvL+fChQsYDAZ0Op0opHbu3LlVcw/gSiXSH/7wh/z2b/82L7zwAh/5yEfQ6XQ0NDSgVCo5cuTIbfeHjIyMjIzMrytyOJCMzHXI5/MMDw/j8/lYWFggGo2KvzkcDmKxGHNzc+RyOR577DGhu15dXc3S0hKvv/66CIu52htgtVpJp9M4HI4VChqSnN7IyAinT5/mj//4jzEajZhMJtrb25menuaNN96gvb1d7KrfDiaTicrKStra2uju7kapVJLJZIjH4ygUCjweDx0dHfj9fhF+FA6HsVqtaLVa3G43HR0djI2NoVAoiMfjaDSaFWobsVgMjUYjilAVCgUcDgfRaFR4PD72sY9x8OBBkTwoqYlInpbVMBqNbNq0iYmJCd544w3Wr19PR0eH0P6WEqFlZGRkZGRkbo5sBMjIXIdCoUAgEECv1zM3N8fMzAyxWIxYLIZarWZ0dBS9Xs/GjRtRqVTMzs4SDoex2+04nU4UCgX9/f3U1tZeU0hmaWmJRCLB3NwcU1NTRKNRgsEgLpeLQCBAKBTCbrdTVlZGMpkkFotRWlpKS0sLXq+Xc+fOsXbt2ts2AlQqFWazmbKyMvL5PKlUivn5ebH7rtVqcblcOJ1O0uk0mUyG0dFRWlpahLSez+dj9+7dKJVKJicncTgc+Hy+FeeRqhAv//fo6Cgmk0ks3J1OJ5OTk+K72Wx21eqiUuXkWCxGVVUVTU1NlJSUcPbsWdra2lCr1UKXXEZGRkZGRubWkMOBZGRugFarFSo6k5OTBAIBYrEYFy5c4NSpU8zPz2MymRgeHmZ+fp7+/n6WlpZQq9VoNBoikQjFxcWUlZWJ/0pLS9Fqtej1ehYWFhgbGyMajTI/P8/i4iJnzpzh0qVLZDIZpqenSaVShMNhdDoda9as4SMf+QiLi4vk83nm5+eZn5+/pt3xeJxQKEQ2myUSiZBIJIjH40SjUSKRCKlUCpfLxeDgIKOjo2SzWWGYRKNRTCYTer2evr4+gsEgCwsLJBIJ8V91dTUTExMMDw+LsB8JaWd+eViP1F+Li4sYjUZGR0eprKwUCkvScWtqasjlcqKdsViMeDxOPp8nEolgMBhoaWnhvvvuE8pD6XSaQqHwK6t+KyMjIyMj80FE9gTIyFwHlUpFR0cHsViMsbExcrmcCF355je/KRanNpuN3bt3c++995LNZllYWCAcDhOJRNi0aRNq9crbTKFQiDyACxcukMvlRHJtT08PP//5zxkeHsZoNBKLxXjppZdQqVQsLi4yMjJCLBZjy5Yt6HQ6jh49CsD999+/4hxTU1NcuHCBfD7PpUuX8Pl8TE9PizAep9NJKBTi1VdfZcOGDZSUlHDhwgUCgQDd3d1YLBYmJyc5c+YMX/7ylzl79qzwGHR1dZHL5Thz5gw2m42SkpIV55YMHJVKJUJ7vvGNb5BIJMjn89jtdvbs2cPnPvc5jh49SjgcFobAtm3bCIfDDA4OMjg4SD6fZ2xsjKamJhQKBQsLCwwPD4s+kBSaFAqFLBEqIyMjIyNzGygKN6o/LiPzAeO9KMt+u7dIMBgknU7jdrvRarXA9QvU3M6xo9EoqVQKm822qmHxTtr8Trn6/G+88QaFQoGtW7diNBqv255cLkcwGCSfz+P1eq8Jm7qacDhMNpvFarWKPnjjjTdQqVS0tbXhcDjenQuSkZGReZd5L95PMjLvBNkTICNzE263wqTT6aRQKNywPsDbObbJZFpRIOxGv/1VV8XcvHkzk5OTHD16lL179163PSqVCo/Hc8v9ZbFYKBQKKJVKFAoFgUAAnU6HzWbDZrO9F5ciIyMjIyPzoUQ2AmRk3mVutpv9drleYbD3I0ajEZ/Pt2oNgeUoFIrb6q+r+0Cj0VBXV4der/9A9Y+MjIyMjMyvGtkIkPlQcil+8+/IvJcoyGEmZzOwFHnvzpLKGVAbLKiUKngPzyMjIyPzTpHfSzLvN2QjQOZDhVsDRiV85tKvuiUyoPrf/72X3J5EqoyMjMyvEqPyyntKRub9gOw/l/lQUaGHS5vghbUF9Eo5511GRkZG5v2BXgn72668p2Rk3g/IngCZDx0VehgPJUjmjfz/Yl08vKERi2WlFEM2l+X4seOk02kaGxspLS296XFj8RhLi0u39N0PG4tLi6RTafR6/buegBuLx8hkMqjVaswm823/PhwOk0qnKOSvGH16vR6jyYhadXuPt0wmc+VYqRTeIu9t//5WyefzpNIpIuH/E7+k1+vR6/VCTepWKRQKLC4uksvlriRMq5QYDAaMBuN7lhwuVX02GA1YzO+txEkikSAUDgHgK/Ld5Nu3RzQWZXFxkYX5BWpqayjkC7c8Brl8jlg0RjKZFJ9ZbVa0Gi1KpZJsLks4dGUuud3um+bG3CrZXJbZ2VlMJhMWsxm1+vaOm8vnSCQSBINBSopLbnu+3QpTU1PEE3HUajVerxedVotKpb7t+RiPx5lfmKestOxdn8tX6phkmZmZxWwxv62+vF0uxa94qHXy1qvM+wjZCJD5UJLLXylUdX9LNR1WBXNzwwQCAXK5HHNzc9x7772YK50sLS1hTs+zznLzhf2pvl4O/fSnfOlLX1q1CvA1bcjlmJycpKys7D1LFv5lMRJc4tX9r+Lz+bjj4Yff1WO/efY0Y0ND2O12dj3yyG3/fmIpxBtvvsGpU6f46le/SjwQp+vlLmpqali3bh1ut3vF9wOBAGNjY9hsNmpra0VCcTKZYywQ5Hvf+x5/9Ed/hNPufFeu72pyuQKzswsc6TrCuXPn+MQnPkF2Kcvc3BzRaJR7770Xi8VySwufQgEGZgJ85zvfoaqqirvvvpvkUpLjx4+zb98+fD7fu15E7RcnLzA/P4/O46H9jjve1WNfzVIuxTNHXiEWi3H/7/3eu3bcF198kWw2S2lpKdvXVDE1NcyTTz7JQw89RPvmzTf9fTZb4NzlAQbPnWNqaopPfvKTRMcnuXTpEuXl5XR2djKRCvK//tf/4vd+7/codhZfc4xIJCJqhJhMpltqdyyWYuT8UXJaLW07d+J2uG/+o6vaPZ+M8dS3/yt/8id/Qomr5OY/ukUKhQKvvfYaHpsNt9tNMhnjuX/6W77whS/gdruvkTW+Gd0jgzz13e/y5S9/mZqamtv+/Y3bCul0njdf+iltbW1UtbVh1pl55pln+PjHP76qcbS0tIRCoUCr1aLT6QiHw5w4cYINGzbg9XrftbbJyPwykW1SmQ8n/zsSyO6wk0qlCIVCpFIpTCYTL7/8MqlUCrPZjMFgWFHZ9nrE43Hi8TipVIpjx47d9Df5fJ5EIsHJkyfJZrPvxhX9SrFarSwsLKxanfidUCgUyGazTE9Pi8Jnt4vZbCadTjM5OYndbsfpdBKJRBgdHWV8fPya7+t0Oux2+zULL5VKhdlsFoXh3iskRSSlUonf78diseByuXA6nSiVSl5++eXbOr/dbmdmZoZoNIrD4cBms+H3++nu7iYYDL7r7Ver1SQSCZaWlt71Y1+NTqcjFotdU5X67VIoFLh06RKjo6OiNoXdbsfhcJBOp2+53xUKBWq1mmw2y/z8PA6HA4fDwfDwMJcuXWJxcRGr1crY2BjpdHrVY4yOjjIyMkI8fuvZotJ55+fnyWQyt/w7CaVSiV6vZ3Z29j15Lp0+fRq4MietVisWi4V8Pn/bx4nH48RiMbLZLMeOHXtP2qpSqUQl9Uwmg0qloqys7LoqY/39/UxPT5NMJlEoFGg0miueDp2clyTzwUX2BMh86Mlms6jVakwmE2azmbm5udt+MS0uLqJWq9mwYQNvvvkmjz32GBqNhlwuRywWY3Z2lqKiIjKZjHD9z8/Pc/ToUXbu3InL5aJQKIiquQqFgkKhgEajIZPJEAgEKCoqIp1Oo9Fo0Ov1qNVqgsEgRqOReDyO0WjEbDaTyWQIBoOYTCaxk2g0GsV3U6kUOp0OjUZDMBikUChgsVjIZDIolUocDgdKpZK5uTl0Oh35fF5U8p2dnRXHy2av7E43NjbicrnQ6XQoFAqy2SxLS0toNBrRt9I1p1Ip1Gr1Le9wxuNx7HY7BoOBrq4u4vE4BoPhttz/0gJMp9OJOgrS4iMcDhOLxZiamsLpvLKzn8vlMJlMqNVXQhRCoZAYE41Gg1KpFL/NZrNotVri8Tgul4tQKEShUECtVpNMJnG5XASDQRHOZDKZiEQiFBcXX3cxIS3EvF4vFosFt9uN1WrF4/Gg1+v5+te/zsMPP3zLdSaKioowm81YLBacTqe4Nr/fTygUwm63E41GxTjp9Xqi0ShLS0tYrVY0Go0wirVaLdFolEKhQDqdxmw2C0+CNL80Go0Y73w+z8LCgrgXlEolGo2GdDpNIBAQfZ7P57FYLOj1ehYXF0Xl7Vwuh8FgIJPJEAqFMBqNmEwmZmZm8Hg8mEwmTCaTuG+i0aio3C3Vi7BYLMzPz6PX68Vi8UZF444ePUoul6OkpISKigoAKioq2LRpEx6P55bmnEqlwmq14na7MZvNOBwOTCaTuI5kMkllZaUYv0gkQjKZRK1Wi7nU29tLKpXCYDBgtVrJ5XJiYS/1jWRwKZVKcV95vV5mZmaIRCKo1WoKhQIej4elpSVhVKtUKiwWCxqNhvn5eRQKhZjjZrMZk8lELBYTRr1Op8NsNhMIBFCpVORyOXK5HC6Xi5GREdGfCoXiGs/aciKRCHNzc5hMJvR6PZ2dndfcz7lcjoWFBex2uzCGryYUuhICtnHjRt58800eeeQR8fxZTjKZZHFxkWQyic1mE312JdznSoic1WpFoVAQiUTI5/OoVCo0Gg0WiwW73S6egdlsFq/XK54J0vyKx+M4nU66urooKysTz5l8Po/D4UCj0QijRalUkslksNvtaLVaWbZY5n2PbATIfOgpKirCaDQyOjrKK6+8wu/8zu9gNBqJRqO3fIy5uTm0Wi333HMP/+2//TdSqRR6vZ5IJMLZs2f5z//5P/P7v//7zMzM4HK5MBqN+P1+enp6OHv2LJs2bSIajdLX1ycW6fF4HJ/PRzAY5Dvf+Q5f/epXmZiYwOfzUV9fj9vt5qmnnmLt2rWcPXuW9vZ2Nm7ciN/v5yc/+QmdnZ2EQiFcLhetra389Kc/ZcOGDYyMjFBVVYXH4+GHP/wh6XSaPXv2MDU1hclk4sEHH0Sr1fL0009TUVFBOp0mHo9zzz338N3vfhe3201rayuLi4v83d/9HS+99JJ4+RYKBaLRKC+88AKVlZXMz89j+9/uf4VCwcjICC6Xi3g8jtfrpb29/Yb9OjAwgM1mo6WlhQsXLnD58mXWrl172+FT2WyWcDjMxYsXGR6+Evq1adMmWlpaGBgY4M/+7M/41Kc+JV7wkUgEp9PJZz7zGU6cOEE8HsdkMonFQyaT4cKFCywsLFBeXk5PTw+f+MQn+MUvfkE+n8fpdDI8PMzHP/5xnnrqKTHu7e3tHDhwgD/+4z/GaDTe1jWYTCbsdjsXL168bSM1n8+TTCZZWlpicXGRUCjEAw88gNls5uLFi5w6dQqXy4XNZqOpqYkTJ07w8ssvc/fdd+P1ehkYGGDr1q2Ul5dz6tQpstksIyMjbN68mfr6ehQKBU8++STt7e309vaSTCYpLy8nk8nw/PPPU15eTiQSQavV4vV6CQQCfPvb3+axxx5DpVIRj8fZtGkTzc3NvPHGG+h0OtRqNdFolNraWhYXF3nttddobW2ls7OTv/qrv+K3f/u3Wb9+/YoxPn78+DWG5q5du3j66adZs2YNS0tLqNVq7r///lX7qVAocOTIEe65555rFvwPPPDAbcfu5/N5UqkU4XCYyclJjEYjlZWVlJeXrzjn2bNnGRgYoKioiLNnz/LJT36Sc+fOEQ6HMRqNGI1GQqEQk5OTqFQqtFot4XAYs9nM0NAQZrMZu90ucpuGh4e5cOGCqCL+xS9+kbfeeotsNiu8Szt27KCsrIwXX3wRrVYrdrvvueceMpkM58+fF8ZUdXU1nZ2dPPPMMzgcDmKxGEtLSzz++OP8yZ/8CQ8//LAw2D7xiU9ctz/uuOMO/uZv/gaVSsXmzZu55557sNlsKxbvqVSKF198kfvuu094v64mGAyiUCi4//77+eY3v0kymcRsNl9jBMzOzvKzn/2MwcFB9u3bRyQSwWQykc1micWu5Brt3LkTo9HIm2++SSqVwmq1YrPZ2Lt3rzhOMpnk8uXL/PEf/zE///nPOX78Sr6Y0Wjk4sWLPP7445w6dUpskiiVSqampvjhD3/I7/7u76JQKDh58qTwwt13332UlJS866F4MjLvNrKZKvNrgdlsprq6mq1bt/Lkk0+SSCRu6/eTk5N0dXVx/PhxiouLOXz4MIuLi9jtdsrLy9Hr9WzZsoWOjg6WlpaYm5tj9+7dlJSUsGPHDpxOJ2fOnOFnP/sZDz74IPfccw+vvfYak5OTFBUVYTAYxO9nZma4fPkyRqORvXv3UlxcTCAQYHR0lNOnT/N3f/d3PPzww+zevZu77roLu93Oa6+9hs1mY8uWLbS0tDA2Nsb+/fvZvn07zc3N7Nixg9bWVhKJBN/73vf4+c9/jl6vp62tjQ0bNmA2m/mnf/ondu/ejVarxWq1UlZWdk2sazweZ3R0lMOHD7N9+3YefPBBxsbG+Pa3v83CwgJPPfUUo6OjVFZW0tDQcNN+7e3t5cyZM/j9fjweDz/+8Y+vGz5xIzQaDU6nk02bNvGJT3yCqqoqRkZGOH/+PPX19aRSKe6++24ef/xxHnroIdavX08qlWJxcZFXXnmFZDLJ3Xffzc6dO8lkMqTTac6cOcP+/fvp7+/nnnvu4eWXXyYej1NbW8umTZuorq7mO9/5Dg0NDVRUVFBUVMT69evp7e19R+FEbyf2WUr29Pv96PV6/uqv/oq2tjZ8Ph81NTXs2bOH2tpafvaznxGJRCgpKaG5uZmdO3eyd+9e5ubmuHDhAnNzc7S2ttLa2orFYqGnp4fXX3+dQ4cOkUql2Lx5M+3t7Xi9XlKpFBMTE7z55pu0t7fzwAMPoFKp+B//43+wZ88ePB4PnZ2d7Nu3j9raWv79v//3TE1NcezYMbEI2759O3/6p3/K5s2bMZuvJIU7HA7a2tqu6cN4PM5/+S//hZ07d7Jv3z7y+TxPPvkk0WiUl156iWPHjmG1Wuno6LhhX2m1WuH9eqek02mCwSDj4+MUFxfz+7//+zz++OMrxnBmZoauri66u7ux2+0YjUbm5ubweDy0t7ezefNmYUS99tprnDx5kkwmQ0dHB3/913/NQw89xMc+9jF27txJfX09cCU8r729HbPZzMjICAqFgrVr19La2orP5yMUCnHo0CEWFhY4fPgwzc3NPProo9x7773YbDYikQhtbW10dnbidDo5evQo4+PjvPHGG8RiMeEhmpiYEMIJ9913H0888cQN+2Pv3r38+Mc/5s///M9xOBz8m3/zb5ibm1sxlgaDgc985jN4vd7rzvWpqSm6uro4evQoxcXFHD16dNXQtsrKSqxWK1arlYceeohPf/rTfP/732dhYYHa2lpKSkp4+eWXxbOxvb0djUbDT3/60xXHMRqNlJeXi82Mc+fOcfDgQfr7+9mxYwdFRUWsWbOGzs5OOjo6qKysZNu2beRyOUKhEAMDAwwMDPDoo4/ysY99jNLSUjlMSOYDgewJkPnQc+DAAUwmE+Xl5VRVVTE+Ps7U1NQt7/r19/dTX1/Phg0bMJlM2Gw2nn32WREmo1T+b0UWoxGVSkWhUKBQKIiQByn8KB6Pk0gkxG5WNpsV4QvS76VQFMll/o1vfIN/9+/+HR6PB6VSSSgUIpFIiFAWo9EovArSZ1LIjnQu6XxqtRqlUkkymSQej4vddmk3MBaLrdiBl3aXl5PNZkmlUmIBJbm/8/k8JSUl/Omf/iknT57k5MmTLCwssH379lX7tFAokMlkKCsro7y8HJfLxcaNG/mt3/otMpkMer3+bSmCSL9paGjg1VdfZXp6mq1bt4oQKKk/pO+lUimUSqUIvZE+z2QyPProowQCASYnJ/nud79LaWkpGo1mxTFisRj5fB6z2YzVahX99nYIhULMzMzQ3t5+254QKT65vr5+xXUODQ3R19fH4uIiTzzxBIVCQYSmSNcqhUHl83nGxsbo7e1l+/btlJWViWRlKRxt+ZhIu+DS9UohLMvnOCBCPlKpFMlkUiwIpe/EYjHxbylsJZVKUShcK/G7/Lv5fJ50Ok0qleLrX/86k5OTXLx4kbGxMT73uc+t2k8KhYL77ruPgYEBJicnqaurE3+7cOEClZWV+Hy3rkIkGZ9NTU3i/rp63krzo6Kigo0bN7J27VqUSiWXLl0S9+rw8DBOp5Pf+Z3fYWxsjPHxcSYnJ0V4kLT7LPWdy+VCo9FQKBTE8+KHP/whmzZtwmQy4fF4CIVCBAIB8SwyGo3o9XrS6fSK5xUgwn88Hg9NTU00NzeTyWTEmFit1lsK09u/fz/t7e20tLTg8XhwuVwMDg5is9lWLPiXP3uu5vLly1RVVdHc3IzNZsNsNvP8889TW1t7zaaEQqHAYDCsSKTX6XTU1tayceNGcrkcHR0dnDp1itHRUZqamqiqqiKTybC4uHjde/WjH/0o8/Pz+P1+vve979Ha2ir6Ih6PMzY2RmVlJXDlmbh8TrvdbmFkftAFIWQ+/MhGgMyHHqVSSSwWY25uDoPBcEVez2K5peTeQCDAK6+8QnNzM62trZhMJtxuN+fOnaO7uxutVsv8/Dzz8/NMTU0xPDzMxMSEkNHM5XIMDQ1hsVioqqqira2N06dPo9Vqqaurw263EwqFVvx+cnISjUYjEiJDoRDZ7BVpwFwux+7duzly5AjpdFosvNatW8fhw4cZHh5meHgYq9UqQn2kRcXY2Bj5fJ5du3ZhMpk4cOAA4+PjpFIplpaW2LNnD0VFRZw6dUokNC4tLXH58mURY+5wODAYDJSUlDA4OMji4iI2m40NGzYwMDCAw+GgqKiIVCpFNptlcHCQiYkJdu3aJV6IkkH0zDPPYDQaqaqqwmAwiPyIAwcOsGXLFhKJBIFAgObmZtRqNa+++iqNjY00NjauGCcpwTIYDHLhwgWSySSnTp3CZDKJhezCwgJjY2PodDoikYjoZ7PZTGVlJYVCgf7+fiKRCIFAgPHxcZEoWlRUxPT0NBs3buTcuXNMT0+jUqkYGxtjz549zM7OMj4+jsvlIhAIsLi4KLwh4+PjjI6O8pGPfES0V8qp6OvrY3Z2lt7eXnQ6HQsLC/j9fn7jN34DlUrF7Ows0WgUrVZLSUkJP/nJT3jooYewWCwihEJKdF1YWGBhYYFAIEBZWZk4VygUYmlpiXw+z+XLlwFYWFggmUySSqXo7+8XYSLFxcXYbDZmZ2dF/P3s7Kzoo+7ubiYmJhgaGmJwcFDEwpeWlor5kkqlRJjF/Pw8k5OTLCwsMDU1xUMPPYTH46GkpIRIJEJPTw9zc3N89KMfRaPRYDAYiMfjDA8PMzU1xcDAAOXl5cLDEQwGueuuu7h06RJGo5FcLkdLSwuRSISLFy9SUlIijOVoNMozzzzDo48+ek1Y1qZNm1hcXGR2dpazZ8+Kc6hUKtRqNXNzcwwNDbFu3TrUajWHDh3C4/GwYcMGcYx0Os309DQjIyMsLCwQCoXELrL097GxMRYWFlAoFNjtdjKZDCMjI+TzeYqLi/F4PCwuLnLp0iV8Ph+Tk5NYrVbUajXFxcUkEgnuvvtuurq6KCkpwWKxkE6nGRoaYmpqirm5Oebn5wkGg4yMjDA9PU06nRZ5Gn6/H4DS0lImJiZEvLz0zJqeniaXyzE6Oorf78dqtQovwtjYmFj8+/1+BgcHRThZOp3mJz/5CR/96EdXzEWAc+fOodVqKS0tJZlMEg6HqaqqolAo0NPTQ6FQoKGhgePHj7N+/XrMZrN4LhQKBebm5njttdeoqalh/fr1wqDp7u6mu7sbt9tNScn/UTSSxArm5uYYGxujoqKC7du3E4/H6evrw2KxoFarxbNzYWFB5KSMjY0xNTWFXq8XggLBYFDMC7Vajc1mw+fzoVQqKS0tJRKJMDg4iMfjIZ/PMz8/Ty6Xw2q1YrfbOXPmzIp7STYCZN7vyEaAzIee4uJisfMZj8fZs2cPTqfzlhRH8vk8Op1OJOpKibXr168XykIGg0HsOhmNRkpLS7HZbOh0OjZu3Iher0ej0VBdXY1CoRC7nJs2baKoqIhoNMqGDRvE78vLy4XqxNatW9FoNNTU1IhE1ObmZg4dOkQ6nRYJgOXl5YyOjpLJZDCbzXi9XoqKijh//ryIcTebzdhsNlpbW9FoNAwNDYmFj8/no729HYVCQWVlJSaTCY1GQ3t7u9iNrK2txel04nK52Lx5M5lMhkwmQ11dHRqNRujHV1ZWiiTEdDqN3+9fsasr7V6mUilKS0tF3Kxer+fuu+8Wu2hSu6XfXr3Alcjlcvh8Pjo6OkSb9Ho99fX11NbWolAo6OjoEF4WrVaL0+kkn89jMplYv369aGsul2PDhg3o9XpxnJKSEpRKpYg5l3ahpRwAKYbearWKWGjpO7FYjEAgcE2bVSoVdrud1tZWANHHDoeDbdu2iV3fbDaLUqmkUCgwMzOzoj8kMpkMGzZsoKKi4hrD1mazUV5eLo7X0dGB0+lkdnZWJJGmUinWrFlDTU0NRqOR5uZmnE4nuVyOVCqFy+WipqaGSCRCNpvFZDLh9Xqx2WzY7XY2b94sEol9Pp+4pnw+TyaTIZfL4XA42LRpEzabjfb2dgwGg5i/9957L2q1mqamJuDKbmpNTY3Y3S0vLxeLxX379q04l5RMDVd2x61WqxjnmZmZa3Z6FQoFpaWltLS0EA6HicfjhMNh0uk0Ho8Hg8FAJBIRi+lCoSCSjq9Gr9eLBeLV/S7N8fb2dtxuN1qtFpvNRiqVWnGNwWCQbDYrErAVCgVOpxOj0Ug6naayspK5uTmRQKxUKrHb7VRVVaHVaikuLqalpYVCocDatWvxer1ijkjn3LRpkxAMKBQK4rmk0+nIZrO4XC7q6uowm81s2LBBnFvyjjU1NWE2m1cYnpK60NVz0e12C69iJpPB6XRSXFwsvJ5Sn6bTaeExXY70vJVyRiQDqq2tTQghXP390tLSK7UZ/rdXdefOncRiMdLptBBq8Pl8FAoFMe86OztRqVRUV1eLOg5qtZqOjg4UCoXw7hYVFYn7sbm5WSTBS8IJ69evF+ObzWZJJpPvSe0FGZn3CkVhNZ+rjMwHnEPTEfYMWDi+LsMmh1rsPi8uLoqkvbGxMebn51EqlSt2+d4tpFtLUk2RFnO5XI58Pi9CS252DEkxaHn4BlxJZtNoNCt20hKJBDqdDpVKxeLiIkeOHGFubo4HH3wQp9N5TQxuMplEqVSueHFJbZRe2lqt9hqlmkKhQCqVEmEKy38HiO+nUikGBgZoaWl527tiUj/29fXhdrtvWcHldpBCmrRaLZFIZEVoVjabXbEIlBa2N0v6KxQKBINB5ufnWbNmzTtqXy6Xo7e3l7q6OnQ63W2pjkihHlL4m5Qce+zYMR599FGheLJ8HKXkdQkpZEwKn5LGRPqOpHwjhcNFIhG+9rWv8ZWvfIXGxsZr5rq0UL368+UhcsvVmpYjLT4lqVUJaeEqqdv09PTQ0tJy3bC/XC5HPB4nGAxSVlYmFp0S0jUODQ1hNBpX7EC/HSSjVuozyYuXz+fFfSkp2khSoFdf783yRaSkaanPlnsmpN/f7Jkj5eRc7/l0vbm4fHEfDodJJpMUFxff0jnfbaR+la4DEOFNy+fM9dolhSvm8/kV97k0N1cbByk8TavVrggtlDgTgY7TcLoD2t/bGnsyMreM7AmQ+VATCATImK/s1FgsFqGuUSgUWFhYYGlpScgYvtssj8Vf/tntJH4qFIrrJphdvQiV4n4lUqkUw8PDxGIxIXd3s2Msb+ON2qlQKFY9//JzxONxlpaWhOzeO+G93qtYvlCUYvsBIc149XdvJZ9ktZ3Od4K0yL1d2UFpYSwhxfjH43F6enpWFEyD1cf2Rp/DynmUTCY5ffo0er2eRCJBKpW6Znf0ev13s3knfWc1pPvkVvtd8qJdXU18Oe/mGF49Dqt9ttq13c7z4nrPitvZnb6V7642F5c/q37Vqjir9fXtKD8pFIpV++FGYyFJ/8rIfJCQPQEyH0pOLmbYfF7DD819PNxccU1ccD6fp6+vj3w+T0VFxYqF34cFaWcKuO7u1HvJ8gXUOzm3dAwpxOiDor0tXX+hUHjHscGSl+VWagfcyrGkHXdJM/3dnBfS8TOZzKpepPea5R64d3LuD+q8e695N+firxOyJ0Dm/YjsCZD5UKJUXll0SaEOVyPFvhcKhQ/t7s2vemfq3TI6pGN80JLs3k2j63Y9SDc71q16M96Px7+V88Pbk1pd7TgftHn3XvNuzkUZGZlfLfKdLPOhRNq1M5vMrPYOVygUN61mezWZTEZIcV4tl/irRlJzgSua17/Kl3QqlSKRSIhwi183pNyMbDYrVG8+KEi7vPPz87hcruvu9iaTSRES8n67F26HXC5HMpkkm81eo3TzQUXyAMbjcaGO816PjxRDL3kepbCuD7OxICV/R6NRkUj8Yb5emQ8n8oyVkblF4vE4k5OTAKxZs+a6O4TL1TneKcuTbaXk4qvJZrPE43HGx8dRKBRUVVX9Sl5GUujL5OQk4XAYq9W6apXPXwfC4TDT09PY7XZqampu67dXj7mkJR8KhXA4HO/pznQymWR2dpZAICC05FebS6FQiGAwKFST3s9ISbGreSay2ayQdJWUvN5Lliddv1f3RT6fZ2lpiaGhIZqamrDb7bd8rmg0Kvrqdp5fhUKBZDLJ8PCwUDjyeDxv6zkkGWZSIm8qlRLa+1KtCSmMTa/XC4UryRCRZFbT6TTRaBSdTkcymcRut69qECWTSZEns7zScyKRIJFICOUfSf1LEk3QarVCYlWtVlNRUfFruekh88Hmg7/tISPzSyIUCnHu3DmefvppoRKxGoFAgNnZ2XftvMFgkKWlJSEvuFq7enp6OHPmDGfPnhUegV8FyWSSH//4xxw7dgy/3/+uVGX9IBKLxfiXf/kXDhw48LZ+v3zMs9ksCwsLPPPMM7dd6fp2GR0d5dvf/jaJRILZ2dnrzjm/38+pU6d4/vnn39P2vFMKhQJ+v39VmVb4Pwvmb37zm4TD4fe8LblcjuHh4XdUUfpWzjM2NsaTTz7J+Pj4bd2DZ86c4cKFC7f9/JKUgb7zne/wox/9iJ6enrd970ciES5cuMCBAwc4dOgQP/jBD0RF7LNnz/Liiy9y6NAhzpw5QyKRYHR0lLfeeosjR47wzDPPMD09TTKZZHBwkCeffJJTp07xox/96BqpYomRkRF+9rOf8ed//udCqjeTydDT08Ozzz7L6dOneemll4hGo0L+dGxsDLgyf37xi19w4MCBd/WZLyPzy0I2AmRkbhGr1Up9ff1Nv3fs2DH279//rp33hRdeYGxs7LoLQL/fz+nTp+ns7OQTn/jENVU1f1nkcjkuXLiAz+dj7969bN269UMRXnG7SBrw0s7h22H5mKvVarxeL1/4whduO4TtdslkMkQiEXbu3El9ff01CfUSXq9XVEx9PzM4OMiZM2cYGhpa9e96vZ7a2tpfiucsFotx6dIljh8/LsJm3gvUajV2u/1tjc+OHTvYvHnzih3xW0GpVOJyuaiurqa+vp7i4uK3HQb3xhtvEA6HaW1tZefOnbz++usMDAzw7W9/m4GBAT7xiU/wwAMP8J3vfIdAIMCpU6c4deoU+/bt4+GHH+bb3/42zz77LOfOnWNhYYE9e/ZgNps5derUqvNgzZo1NDc3C0lggFdffZXR0VHWrl3Ltm3bOH36NFNTU4yMjHDhwgW6urqEGlJpaSlut/ttXauMzK8aORxIRuY6SLtGzzzzDFarFYVCwfj4uPj7/v37SafTGI1G+vv7+dznPsfU1BTnzp1jbm6O5uZmWlpa6O7uJpFIEI1GyeVybNy4EZ/Px4EDBzAajeh0OiYnJ3nwwQf56U9/itPpFHHle/bs4Y033hDxtnV1dSt08lOpFMFgkMuXL2O1WvF4PFy8eFEUuorFYpSUlGA0Gnn99deZn59n69atBINBHn74YeHyT6fTjI+P8/Wvf52PfexjKwoG3XPPPZw4cYJQKCTkRltbW5mdneXQoUNYLBbq6uooKyujp6eHvr4+KioqiMViTE5O4nK5CIVCeDwezGYzwWCQn/zkJzz66KMsLCxgt9sJBoOcOnWKxx9/nFOnTlFRUYHD4SCXy3H58mW+8IUvcObMGUKhEPF4nGg0yrZt23A4HPzoRz8iEonQ1NSEx+Ph8uXL3H///aL67MTEBKWlpajVajweD6FQiIGBAYqKishms2zZsgWHw7Fi7J999lm0Wi2ZTIaFhQU+/vGP8+Mf/1gUEysrK+Of/umfeOKJJzhx4gRutxudTsfc3Byf/OQnRchBJpNhaGiIb33rW3zxi19EqVRy+PBhUqkU/+pf/SuOHTtGKpVicXERh8NBY2MjBoNhxZgXFRURCAR4+umn+ZM/+RMWFhaYmZkhkUhgMBiIxWKsXbuWs2fPcvLkSTZs2EBJSQnDw8N0dHRcY7jm83kuXbrExYsXqampYWhoiG3btomqwhMTE/T09IhKzdK9UCgU+MlPfkJFRQXhcJipqSlxzNdeew2tVotSqSSVSuHz+Whububw4cOEQiGUSiWJRII77riDl156iXw+T3l5OZWVlXz961/nm9/8JkeOHGFsbAyNRsPGjRs5cuQIa9euRa1Wi9CQu+++m+PHjxMOh4nFYgCsXbuWxcVFnnvuOerq6qiqqmJkZIR9+/bxwgsvEAwGqaysxOfzXdMXVydv9/f3i53kQCDA9u3bCQaDnDt3jsXFRb761a/yzDPP4HK5RKhbPB4X49DU1MSlS5c4duwYjz/+OIVCgR/96Efs2rWL6upqnn32WSKRCL29vTQ0NFyjSjY/P09vby+Tk5M4HA40Gg3r16/n+eefZ2ZmhpaWFnw+H5cvX+buu+8WMsCpVAq/309nZ+c1BfVGR0d58sknKSoq4q677mJhYYEjR47Q0NCA3W4nl8uxuLjI+vXrOXjwIAqFgrq6Ourr69m/fz8tLS0MDg5SX19Pc3Pzqs9KqY6E1J8KhYK5uTmefvppwuEw27dvZ3JyEovFwn333UcymeS5555j165dFBcXrzjWzp07UalUGAwGMQ4Wi4WFhQXMZjMajUZUc5+ammJxcVEU1bPb7fT391NcXCyMcCm8aXx8/JbmAFzxDuj1evHcN5vNDA4O4vf7mZqaolAocPHiRRobG1EoFPj9frq6uggGgwwNDfHAAw9c80yRkXk/8uu3TScjc4vk83l6enqYmppCp9Ph8/lwuVzi7w6HA5vNJlz8U1NTWCwWUZm3tLQUrVaL1WrFZrOhVqtZXFzk9OnTpNNpurq6OHPmDHNzc7hcLrq6uhgfHxf6+iMjI6hUKqxWK0VFRbjd7mt2ZqXETIfDQVFREalUip6eHkKhEBUVFVRUVPDkk0+iUCiIRCJEo1GqqqquKd4lVbBdWFjA4/FQU1ODSqXi5ZdfJp1O8+yzzzI7OyuUlk6cOEFJSQl+vx+tVktDQwNerxePx4Pdbkej0RAIBLhw4QJlZWXU1tZy9OhRBgcHxQu5srKSpqYmqqur0Wg0jI6OioJMgUCAXC6H2Wzm/PnzFAoFTCYTNpsNvV5PJBIRu3HSdSgUCkpKSjh9+jSxWIzu7m7OnDlDa2sr5eXluFwuzp8/z9mzZ8WC5dy5c2IxCYgKscePHxdVUaPRKCMjIzQ2NhIIBPD7/Wg0Grxer6iIajKZWFhY4Pjx4yvGR6lUCgnORCKBzWYThoVCoRBzI5/PMz09zcWLFzEYDCvG3OFw4PV6GR8fJ5vNcvLkSXp7e6mpqaG8vJzDhw+zsLCwQtKypKSES5curRoGc/nyZUZGRshkMmKxdOzYMebn53E4HKJS6nIvTjqdpqenh5mZGWw2Gz6fD7vdDsDS0hKnT5+mUChQUVGB2+3mySefJBwOc/78eWKxGLW1tVRWVqLX63E6naTTaWKxmKjQm8vlxII4HA5TVFTE4OAghUJBxJafPHkSuGKg+f1+dDodhUKBEydOUFxczPT0NNlsFofDQSqVYmJiAofDgdvtxu1231I9EGnhZ7FYSCQSnD17VuRFBINBMaZlZWUMDg5y7tw5qqurKS8v5+jRo+I7cCWHyO12s7S0RDweR6/Xiznj8XhWVS3TaDTYbDacTicqlYpf/OIX5PP5FfdqSUkJZ8+eJRKJrHi+JBIJLly4sKINAHa7XRi0oVBIVCiXjJtLly5RKBQwGo3YbDZRRTkcDvPmm2/S29uLyWTCbDbftP+Wo1arcTgc+P1+nE4noVCIyclJMpmMqBC92jGl52o8Huf8+fM8+OCDuFwuUYFaWrBLIUjLQ6ukmP2ioiJhXIyMjDA3N0c8Hr/lMKxkMrlCBlUyPKRq7C6XC4/HI+4RtVqNyWSipKSErq4u4vH4bfWVjMyvCtkIkJG5DoVCgaGhIVKpFDabjeLiYuH2lRLhJJWhfD6P3+8XL1Kn00lpaakIr5Be7kajkeHhYeLxOEajUahLSJV11Wo1LpeLkpISiouL0el0uFwufD4fFovlmh0rtVqNwWDA4XDg8/nIZDLMzMyIndbq6mqOHj0qVGosFgvV1dXXNQIMBgOlpaXU1NRgsVjo7e0llUpx/vx5tFotNTU1VFVVoVAoKC8vR6vVUlRUJIwAaZGj1WqJxWL4/X7Kysqoq6tjYGCAubk5rFYrGo1GGAE1NTW4XC6USiWlpaUikVEybqRFTTweR6FQYLFYsNlsDA0Nkc/nsVqtOJ1OnE4nJSUlzM7OkslkGB8fZ2JigtbWVqqqqigpKWFqagq/309FRQVlZWU4HI4VoSBStVNpkVlRUUFtbS3pdJoNGzagVqtZWFggkUiwYcMGoYxjMpnQaDTMzMyIqqlSv0qL6kKhgMPhEIacVFlXGr9cLsfExISYA9KYSwaotIC5fPkyMzMzwggYHBwUC2qXy4Xdbqe0tJSFhYUVBo7E5OQkwWAQg8FAcXExXq+Xvr4+YrEYDocDk8mE1+u9xggYGhoil8vhdrvx+Xw4HA7RX5OTk+j1erHjfuTIEaLRKDMzM6jVahoaGlizZg16vZ7S0tIV/SaFOEkLdZPJRHFxMbFYTFyLxWIRXrju7m50Oh01NTVUVlaiUChWGNxerxeDwcD8/Dw+nw+v1yuMx5shKQWZzWZcLhejo6MYjUbKysqw2+2Mj4/jdrupqqoiGAwyMTFBbW0t5eXlDA8PE4lEhKFTKBRwu90iGdVgMFBWVobL5cJoNK4aKiYtVM1mMyUlJfT19YlkV5fLhcPhoLS0FL/fTzqdJp1Ok0wmMZlMuFwupqamWFhYWJGzZLfbaW1txWKxMDo6SjabZdOmTdhsNpRKJZlMRngpfT6fSISV7q1IJEIqlbrtPAatVktpaakwfpRKpbg+tVrN2rVrVzUC1Gq1yAFYWFjg/vvvR6PRCLUh6d7S6/XXKPJIC3Wfz0d1dTXV1dVCrcxsNt9yiJJUdV2q4JzL5bBYLPh8PoqLi8V9LD2P9Xo9Ho+H0tJS8fyRkfkgIBsBMjI3oFAoCFURqQBSNpsll8vx8ssvc+7cOYxGI263m3A4TDKZFLvM0m7kyy+/TH9/P/l8HrfbTTqdZm5ujkceeYSdO3eSzWZ5+eWX0Wg0+Hw+qqqq2L59Ox//+MdRq9VoNBpyuRwLCwvMzc1d0758Pk82mxW7YkqlUihlSEoa+XxeKH7cKKl5udRfPp9Hr9dTKBSEZ6OmpobW1lYefvhh8vm8eAlLCwSpf6RFhLTIkAwmCaPRKH6Ty+WEy11S3tDr9eK6peMdOHCACxcukEwmKSoqIpPJsLi4SCqVEott6btSP0hhKNL163Q6HA4HVVVV1NbW8ulPf3pFeBVc8Si43W7Ky8tZt24dd955p9i1tNlsBAIBenp6qK+vZ3Z2lpdffplAIIDD4UCn0xEMBslkMuRyObGIkPo9nU6TSqWEysnzzz/P5OQkRqMRq9VKKpViaWlpxZj7/X7Rn1LhKkllJp1Oo1QqRT8BmEwm8W+pDVePsbSwkeY0IObR8navdi9IO7LLx1qKp5auT6VSUSgUxKItl8sJJRdp0ZbL5Uin0yQSCXE8SX5XOr/BYEClUom/5/P5FXNx3bp1Yi4ajUbRb7lcjlQqJe4FSa3paqRrlvr27NmzvPXWWywuLlJcXEw2myUSiVBUVERjYyPPP/88drtd7BBL45DJZEQfSDvH0nhLSjdS0bhMJsPk5OSqu8V9fX10dXUxPDwsvGJLS0skEgmUSiVGo3HFHB8YGODAgQMEAgGKi4spFApEo1HhXZHGdvPmzRgMBg4fPizGcc2aNezatYuGhgYuXLjA2NiYSETPZDIYjUZ+53d+h7KyMt566y0uX75MLpcjkUisOjeW36u5XE70raSYk8/nxbjAlVDG1ZKHpRC60dFRYaRGIhGhNpZOp8lms3g8HrxeLxaLBZVKJcZKUukpKytj79691NbWYrfbWbNmDUVFRdecb/m9IqkMlZSUYDabiUaj5PN5kskkxcXFwnBKp9OMjY2J30nPn+XH+nUVRZD5YCHnBMjIXAeVSsUDDzzA3/zN3zA4OMj09DRnz57l3LlzzM/Pk8/nicfjzM3NEQ6HOXDgAGvWrMHlchGNRnnzzTcpKytjcXFR7PhPTEwwPDzMpUuX6O/vp6GhgfLycvL5PI8++ij/9b/+V86dO8fIyAjZbJa77rqLtrY2Ll68iMfjobGxcUUbU6kUgUCAixcvolQq+d3f/V2am5vFonl2dpZ//a//NfF4nNHRUYLBIOfPn2fjxo2rXrPkgh8cHGRxcZEHHngAq9XKb/zGbzA5OcnCwgJFRUVotVoRJlNUVMTs7Cxut5tTp05x6dIl1qxZQ0lJCTU1NRw9epSJiQnuueceioqKGB0dZWRkhFOnTtHR0cHU1BQXL15kcnKSkZERzp8/LxZUXq+XiYkJent7mZubw2azkUqlmJqaYnh4mOHhYfr7+0kkEmLhPz4+zsjICGvXrsVut/Ptb3+bjo4O1Go1u3btYnp6mp///Ods27aNcDhMZ2enCG1RKpVUVlZSX1/P9PQ0Bw8eRKPRUF9fT0lJCfv27ePIkSP09PRw3333MTY2hsFgYGFhgcXFRTKZDAcPHqS6uprh4WHy+TzhcJi1a9dy5swZZmdnuXDhApFIhKGhIRYWFlAqlczNzTE8PMzs7Cx+v59169aJMS8uLmZiYoKpqSnm5ubYtWsXc3NzPP/881gsFrZv3y76qaenB6VSiclkYmxsjNHRUfx+v1hQwpWY6+PHj3Pq1Cm6uro4fPgwH/3oR1EqlZw+fZqJiQkGBgZoaGgQC3az2cz999/Pf/pP/4m+vj6Wlpbo7u5mYGAAt9tNS0sLfr+f119/naWlJb72ta9RUlJCc3MzoVCI559/HpPJRFNTEz6fj66uLgYGBtBoNMzOzvLWW28RDAYZHR0FrsSxT0xMiD4bHh5mZmaG2dlZPv3pTzM+Ps78/Dxer1eEuoyNjVFZWYndbufs2bNYrVY++9nPcunSJSYmJnC5XNfEg8diMc6dO8fk5CRTU1MEAgHhPZHm19TUlPD6PPnkk/zBH/wBKpWKPXv2MDw8LMZhy5YtVFdXo1AoCIfDIkZ8ZGSE0dFR1q1bR1VVFc8++ywlJSWUlJRckxMghXXl83nefPNNtFotPT09Ys7kcjl0Op2Y44uLi0QiEVQqFSMjIwwPD+NwONBqtSKMp7W1FZvNhsViQa/X09zcjEKh4MUXX8Rms+HxeFi7di1ut5uXXnqJgYEBKioqsNlsvP766zz88MM0NzfjcDgYHh7mtdde48tf/vKKdmezWSYnJ+nt7UWv14sQJOl5MDw8zPj4uAhB6uzs5Pvf/z4PPvggFRUVK451+vRpfvCDH3Dq1ClsNhsLCws8++yzPPTQQ/j9fl577TVKSkrYvn07drud+vp6NBoNFy9epKenhwcffJDS0lLOnTvH66+/zuOPP042m6WlpWXFfSAxNDRET08P4+PjvPbaa9x1113s2rWLCxcu0N3djcvlwmKxCG/GwsICBw4coKysjOLiYkZGRggGg8IYlsbG6XTKeQEy73sUhdU0s2RkPuC8GyXapVtD2kmWXs7xeByv10symRQ7f9KuoLQbLcWuShrVhUJB7ExnMhmhMZ3NZlEoFGi1WnQ63YrFrFR1VXL7q1QqtFrtNeErmUxmxW645LqXzqlWq0XCprS7fz3N9E9+8pP8p//0nygtLRWxyAaDQey+SX2i1WpFSJTkYZB23aWFikKhEDviKpUKlUoldmbj8Tgmkwm1Wi12kNPpNGazWaggSe2OxWJYLJYV/ahSqUin0+j1+hW7rBqNhkgkgslkQqFQiN1QqY8l40Jql16vF+dZjnQdgAhFWL7bncvlxI57IpEQXg7J46BWq0kmk6Jqs6R9rlarRUiEFLsuXau0myrtKEpjLo1VLBbDbDaL70k7q2q1eoWnQfIexWIxtFotWq12RejJcm9PLpdboQmfzWZJJpOYzeYVhcKkcY/H4ys8CclkEq/XuyJcRJpzGo1G7CxL3hApNGb555FIRISASbuner2eaDSKXq8Xng5pfkg7rZLHTeqfeDwu+l6qDbD8/ltt3kt9GI1GxbGle1I6TjqdFobGyZMnuffee1EqlSs8XsvHQerHVCqFRqNhcXERo9Eo5mQkEhFei6vnneRVkHbrU6mU8KAsn+PRaBSDwSDGUpqnkjdFuvekeWgymRgfH2dycpJdu3aJhGbJe6RWq9Hr9Su8idL1S5r4Unul+265Z096NsZiMXGvSfeodJ9J3kWdTodGoyGZTF4zNwHhOZTGoVAoYLVahVhCLBYjl8vhdDrR6XTkcjmRR2UymUSdgFQqRSQSIZlM4nK50Ov1q4ZgSXMrlUphMBjEHEmlUkSjUaLRqAgxk9qXSCREroj0HpDClaTnz9XPlXfjnSQj824jGwEyH0re7QeuZARICxVpgSQtWpa/EKUXl7RglX5/9feWf7785SSFxyx/gSw3Nm6nvdIxbva7TCaD3+/n3/7bf8u/+lf/ijVr1mC1Wle0Qbom4JrFy/WQFge32o6bcb3+vtH5pd9Jhbeubtf1fr/8XFcveJafd3m/XK9dy79zdR8u75/lv7vRmEvHk8b47fSrtJC/XlXg6yHNT6mNq90Ly4939ZhJ94f0t+XXcKvtuJ25uNrY3Oz7y8fk5MmTJJNJnE4nRUVFeDyea4yj1eaX9Ly4+n5erqKzGm9njl9vDhUKBbq6uoArce5Wq5WqqqoVv5O+v7xNy5cFb2eOvFdIoV6SMSG1SVrIazSaFfNRMvivNlpuBen36XQag8FwzdjervyxbATIvB+Rw4FkZG6B5Q/86/3/cq5+yV/ve6vtTK322e2+cG73+9Lu3T333COSZa8+xu0s0pb/5t2scPt2rguu7dNbadeNxvbqf9+sX270neu140bX+nbGYrVjvB19/OXtvZV7YbXPrzcut8rtXP87nbMWiwWtVovZbL5GD/5G80v629V9fLP2vJ05fqN+tFqtItl4uULSjX63vI2/iurj10PyKK72+dVJv5Ln9e22/3q/fzfuPRmZ9wvvn7tbRkbmV4ZUkOrTn/70r7opMjLvK66njf9BQKFQXJNHJCMjIyMhGwEyMtfhepFyvw67QMuv/VbCbVbjdvvp6mN9WPr512kevRtj+EGZBze6R36dxlxGRuaDi2wEyMjcgFgsRiwWEwmfZrP5lvTGP+hIMoPZbJby8vLrLl7i8ThTU1OEQiG8Xi9lZWWiMNJqycc3QpJynJqaorKy8raLE71fyWazzM/Pr0jCNBgM2Gy2X3HL3n0ikQjz8/Mi7vztICWYTk5OUltbu2pRrfcDCwsLxONxdDodXq93xd+uHnOz2SxqScjIyMi8X5CNABmZG5BOp/nnf/5n8vk8zc3N3HXXXat+r1AosLi4KLS8JZWQ94J8Ps/Y2Bjl5eWikunQ0BBms5k1a9a8KzH4qVSK3t5e9u/fz1/+5V9e8/dCocDBgweZnZ0VBcRCoRB/+Zd/yc6dO1m7du2K6so3I5fLEQqF+O53v0tlZaUoqHS78dHvR3K5HMFgkK997Wt87Wtfw+12s7i4yMTEBGvXrqWlpeV9vTiUqseWlZXd9Lu9vb089dRTfOITn2DDhg1vay5KKjB/9Vd/xV/+5V9SWlp6y789e/YswWCQnTt3rkgcfS+YmpoSRdY+//nPr/ibNOZ/8Ad/wNe+9jW8Xi/BYJCBgQE+8YlPCL35XyYzMzNMTExgNptpampienpa1L6QpGwPHz5MR0fHqlKa7xdyuRyxWIxTp06hVquFKtDu3bs5ePAgOp2OhYUFHA4H69atw263C4nhTCaD2Wymvr4et9u9qgdnbGyMaDTKwsICS0tL6PV69u7dS3d3N9FolEQiQTweZ8eOHZjNZt566y2SySR2u51QKMTevXs/FM8tmV8P5JkqI3MDJLlGYIVc49VIhYbm5+dJp9PvWXvy+TypVIqjR48KeUm9Xo/P58Plcr1rix7JkPH7/df8TSpi9frrr+N2uykrKxNVkr1er5AFvB0SiQQzMzNks1kaGxsxm80fmtAJtVqN2+0Wi66ioiLKy8upqanhueeeIxQK3XZ//TKZnp7m5MmTN/2eJDmpUqk4ePDg274mpVKJwWB4W/3i8XioqKh4V5PRr4ckObm4uHjN36Qxn52dFRrzBoOBqakpuru7b1iw7+0gKf3cKDzPZDKJ5wTAqVOnmJqaAhByqjU1NaKC8/uVZDLJuXPnUCqVwrg6ffo0U1NTopibx+MhHA5z5MgR0uk0hw4dwmg04vF4hOzs9ZCeQwaDgXw+z8GDB8nn87z11ltEo1FKS0txuVy89NJLHD9+nHA4LCpfnz9/nnA4/L6+n2VkliN7AmRkroNCocBgMGC321EqlUIyc3h4mGw2i91uF1rhbrebt956C5VKJUJhlEolk5OTmM1mofet0+kYGhqiuLiYRCKBTqcjn88TDAapqKggFApht9sxmUwUCgUmJyex2+1CK99gMDAzM8OxY8fYtm2b2CWV9MILhQJ+v1/ojCcSCbxeL/F4nEAgIKoWh8NhfD4fWq2WSCRCKBTCYrEQDocpKSnBaDRisVhWfVlmMhlGRkYYGRnhi1/8omiDRqNh27Ztom7B/Py8kBfMZrNYrVaWlpZYXFzEbrej1+uJxWI4HA5isRhjY2OoVCrKy8tFOJJUJ6CyspLJyUmxeFIqlZSVlTE9PY1OpxOLIK/XS19fHzabTcgCJpNJysrKCIfDxGIxoVkvLTaXlpZEdVsAr9e7wgDJ5XL4/X6hSa5UKoW+eX9/P8XFxaL+gVSReDnSglAqoiRVLfV6vXzzm99kZmZGnDsWi2E0GonFYng8HlQqFfF4nGAwiMPhEFr46XSaSCRCY2MjAwMD2Gw2UU12fHyc8vJyocsu1ZdYWFigqqoKlUpFOBwmFAphNBqJx+M4HA7m5+fFfEmn0+h0OtRqNSMjIxw/fpxdu3Zhs9mEDv3VLC0todVqaWtr4+mnnyaTyaDRaEQV29HRUaHXLmnoOxwOYRxFo1GMRiNOpxODwSA8QdFolMXFRZaWlmhubl7RX3DFUF9cXKSoqEgouiSTSQBRm0GSQ11eHVqqczE7O4vNZiMajeJ0OtFoNIRCIaampqioqBDhbdK1T05OYjKZyGQy1zU2lo+5Xq/HYDCIeSpVoZUqjEv1Qux2u6hzkUgkMJvNxONxnE6n0MbXaDTE43FKS0uJx+OianQqlUKr1WIymVhYWCCVSmG1WkW9BY/HI6QtM5kM0WhUGHYlJSWYTCZR1VuhUBCLxQiHw6I+wnJt/4mJCcrLy0UdAoPBcN3QvUKhQDab5fLly+h0OqGtH4lEqKysxO/3E4vFUCqVYifd5/Oh0+mu27f5fJ5IJEJdXR2VlZUcOnSI0dFRFhcX6erq4k//9E/xeDzMzc1x4sQJOjo66O7uZvv27aIOyY1COjUaDQaDQcwlqeZDb28vNTU11NXVMTc3x9///d/T1NTE2rVrxTMzEAjg9/tFpWsZmfc7shEgI3MbxONx/uVf/oVAIMDu3btZWlpifn6ej3/845w8eVIUsJEKWv3oRz9i3bp1YkFRXl7Of/gP/4HPfvazTExMUFRURDKZ5LnnnuNf/+t/zbFjx9iyZQtr1qwB4F/+5V/YtGkTPT09tLe3s2bNGs6fP09/fz/d3d0YjUYWFxd55ZVX0Ol0fOYzn+HQoUMoFAqcTidjY2Pcc889TExM8Pzzz5NMJnnooYc4duwYjz32GCUlJQwMDHDixAlaW1s5fvw4X/ziF1cslq4mmUxy9uxZKisrV8RrK5VKWlpaSCQSXLp0Cb/fTz6fx2g04vf72bp1K2+99RaHDx9m69atVFdXc/78eXbv3o3RaGRoaIiRkRFRmVkqyNXf38//9X/9XzzzzDMsLS0JOcDf+I3f4KmnnqK0tFQUufrYxz7GX//1X7Np0yZRvXVkZITf+73f4/z584yNjaFQKPB4PKjVaoqKijh16hQKhQKLxUI2m+Xxxx8X1yQVNnvllVeorq4mFouhVquF5+Pf/tt/y2/+5m+K4m8Oh+O6IWNXo1QqRf9ns1mxUK6pqaG7u5uHHnoInU7H8PAwBw4cYMeOHQwNDeF0OpmZmeHs2bP8zd/8Df/wD//Axo0bqa+vJxqN8o1vfIOvfvWrBINBUZiqtLSU/fv387WvfQ2dTkd3dzddXV2sWbOG3t5e7rrrLl599VVGR0d59NFHCQaD2Gw2vF4vg4OD9PT0cP78eTo6OrBYLKsucKamplAoFOzYsYO//du/JRKJCMNpeHiY//Jf/gt33303lZWVTExM4HA4uPPOO3nxxRdpamri/Pnz1NfXc8cdd6xY5E9MTHD48GEOHz7Md77zHV599VVRaTeVSlFVVUVXVxePPvooBw8epL+/nyeeeAK4Ug1Wyr1Ip9Ps27dvRZsDgQBPPfUUmzZt4vTp0+zdu1fMif/5P/8nf/iHf0hfXx+lpaV0dnZis9l45plnaGlpIRQKMTMzc8MxzmazzMzMkEwmGRsbQ61Ws3v3brRarahUnEqlCIfDbNy4EYfDIapnt7W1MTAwwObNmxkZGSGRSODxeOjt7eVzn/sc/f39BAIBQqEQ4+PjVFdXU1tby+uvv8709DQbN24UffPwww8zPz/P4cOH0el0bN++nUuXLqHX6yktLaW2tpb+/n6+973v8aUvfQmTyURXVxcVFRUsLi5itVpxuVzMzMzwP/7H/+CrX/0qCwsL6PV6qqurWbdu3XX7IB6P861vfYvi4mIaGxuxWCx0dXXx+7//+7z++uv09/ej0+nYvXs3R48e5ZFHHqGysvK6HgmTycQdd9yBRqMRntF8Po/VahX3oWRsDQ0N0dfXRyaTYXJyUoxJTU3Nqrv1CoWCjo4OpqenuXz5MhMTE3zqU59icXGRdDotNgv0ej2XL19GrVazdu1a4V0wmUxik+f9mssiI7McORxIRuY20Ol07Nq1C7VaTVNTE3a7nWAwiNVqpaWlhc2bN9Pc3Ewmk+H5558nFoths9kIBoMsLS1hNptpbm6mpKSE3/qt3+Lxxx+nqamJeDzO1q1bKS0tZW5uTuyOPvDAA3g8Hs6ePcvo6CgOh4M9e/ZQVFTEjh07RPGi9vZ20uk0zz//PNFolOrqatGW//7f/zt1dXVid3zTpk0UFRXR399PLBajpqaGO+64A4fDwS9+8Qui0egN+0Cq0ip5Hlb7+3PPPcf58+d54IEH2LNnD8899xzBYJCioiLWrFmD1+tlx44d9PX1EQgEsNvttLW10dDQgFarpauri/HxcZxOJw6Hg5MnT9Lc3ExFRQVNTU383u/9Hi+99JKI2c1ms0xOTqJWq2ltbaW4uJimpibKy8s5deoUAN/61reoqKjgU5/6FHv27KG1tZW//du/JZvNUlJSgkaj4cSJEyuuJZFIMD4+zoEDB9i8eTMPPPAAi4uL/OAHP6C6uhqNRsO6devYvHkzTqeTo0eP3tZ8knYbn3nmGc6fP8+uXbvYunUrqVSKEydO8KMf/Yhf/OIXfOQjH2Hbtm3ce++93HnnnTQ2NpLNZtFoNHR0dGA0GrFarZSWlqLVauns7GTHjh3EYjECgQCbNm1CoVAwMzPD/v37OX36NOl0GpvNxsjICBaLBYvFgsvlorOzky1btnDy5EmMRiMNDQ3U1tZy55133jCWfXJykq6uLk6cOEFVVRWvvPIKCwsLaLVaPB4Pra2tuN1uNm3aRDQaZWBgAJ1Ox1133UVJSQnxeJzR0VFGRkZWHHfNmjV0dHSIULzKykp2796N0+kUxsGWLVtwuVyUlZVRWVlJLpcjEonwwgsvcPbsWdRqNZs3b76mzS6Xi/vuuw+Xy8WxY8eYnp7G4/HQ2dlJKBSis7OTqqoqYfju37+faDTK+vXr6ezspLa29objq1arKS4uxu12r4hfVygUPP300xw5coSamhpaWlp46aWX+J//838SCoXYt28f27Zt47777uP73/8+uVyOnTt30t7eTjwe5+DBgzz11FMsLi6yceNGbDYbZWVlrFmzhtbWVhoaGvD5fGzfvp1z586xtLRESUkJra2tZDIZWlpaqKyspKOjQxgfW7ZsoVAoEAwGuXjxIt3d3ezatYuHHnqIf/mXf6G3t5eSkhL0ej2dnZ1s3rwZv99Pb2/vDfvAarVSW1vLhg0b2L59O9u2bWNhYYFDhw5RUlLChg0baG5uZufOnaxbt46nnnqK7u7u6x5P8tCq1WpefvllysrK+NKXvkRZWRlPPPEEp0+f5tSpU0xMTFAoFAiFQiiVShobGykuLmZ+fp6f/vSnnDp1iq6uLvHfmTNnGBoaIp/PU1JSQlNTEx6Ph5///Oei6riE5A2UDAnJgyJVyv6whDLKfPiRPQEyMm8Dj8cjHvZSdUrpwT83N8f8/DwKhYKGhgY2bNhAW1sbSqWSUCgEgNPpFJUtNRqNiNOVjhWJROjr6+Pb3/42f/EXf4HNZiObzRIOh8V5lpaWRLiMRCKREP8vtS0ej1MoFLBYLCuqp+ZyOebm5ujr66O3t5evfOUrWCwWIpGICKdYDaPRyJ49e/jZz34mji21e2hoCIPBQCQSWVFUJ5vNilyB5de7vPKrRD6fx+l0UldXx/bt29m8eTO5XI7u7m5MJpPYBc7lctTW1tLW1obX6xXhJwqFAofDIcJqpKqo2WxWjJNGo8FisZDP52lsbKSlpQWDwcDWrVtXtCWXy4mdRolMJiP6RyoiJSWC32ossBQm0dfXx1e+8hUuX768IpdECmNKJBIizh7AbreLcBxpMZ5MJkV4g1KpFJVh4/E4FovlmtCmXC6H3W7H6XTS2dlJU1OTyAHR6/VYLBaWlpbEjupyhoeHKS0tvSacor+/n6amJjZt2oTNZmPNmjX8h//wH9i0aZNQzpE8MCqVSoRvhUIh/uIv/oI/+7M/w+fzoVAoRPLl8r7w+XzceeedfP/73xeJ1OvWrcPhcBCNRvnHf/xH/viP/1hU51UoFLjdbv7dv/t39PT00N/fz8TExIo6GKFQiN7eXp588km+/vWvY7VaSaVSIjzF4/GIKsDSeMXj8RXVY2+GtGCtqqrC7/dz6dIlQqEQVqsVnU6Hy+Wio6ODQqFAc3Mzf//3f0+hUBDPBofDQSqVWpFDIN3TbW1tGAwGhoaGKC8vZ8OGDWIe6nQ6URhs+dy9um1wZafe7/dTXV0NXJnfyw18aS5ms1lRVNBqtRKJRERV3Rtd/2qfabVa0um08PhIYyaFH93oPpLG4/jx45SUlOB0OkWo4WOPPYbRaBShg0qlkurqapxOJ2q1Gq1Wi1qtJhAI0N7efk37lEolf//3f899991HWVkZS0tL/Nmf/Rl/9Ed/tKLCdyaToba2lqqqKhQKBalUSjyL6+rqZC+AzAcG2QiQkbkOhUKBQCDA2NiYqLhZV1dHX18fExMTzM7O4vf7mZmZ4fLly9TW1jI4OIjX6xULrBdeeIHR0VFSqZRYhEvJgV6vl1AoxOjoKAsLC8zOzjI0NIRCoSCbzVJaWko+nxeJajMzMwwODtLU1IRCoaCvr4+2tjYSiQQDAwOMjY3x+c9/nhMnTjAxMYFCoaC3t5cHH3yQQCDA9PQ0qVSKmZkZhoaGmJ+fx2q1kkgkSKfTzMzMoFAouHTpEplMhvHxcYLBIPPz8zidTvESVKlUFBUV8fDDD3PmzBlCoZDIcQgEAqxdu5bt27cTCoU4duwYer2etWvXYrPZmJmZER6NoqIi/H4/s7OzjI+P09/fz+joKBqNBp/PRy6X49KlS2IRODw8zOTkJMXFxaTTaXbu3Mnzzz/P+Pi4SMarra1lfHwcq9Uqkkvn5uaYmZlh7969zMzMcPDgQXw+HwAPP/wwU1NT5PN5fD4fyWRyRVVYg8FAcXExNTU1wnOi0+nYs2cPc3NzBINBkcswNDTE7OwskUhkRWJzIpGgp6eHpaUlenp6CIfDoq8++9nP4vV62bVrF5OTk5w+fZpkMkk0GmXHjh00NDQwMTEhkhPj8ThVVVUibrm/v5/h4WH0ej1Go1F4nUZGRhgfH2diYgK9Xs/s7CzT09P09/dTV1cnxmF4eJjFxUVKSkoIBoNiDkphWVL4ldVq5ezZs+j1+hWGQT6fZ3Z2lqeffpq2tjbWrVuHTqcTuS8nT55Ep9ORTqcZGxvj8uXLOBwOZmZmSCQSTE9PE4vFWFpaIpFICOPD4XAwNzfH6OgoFotF3E9//dd/zQMPPIDJZKKnp4e33npLqNkolUoWFhYYHR3F6XRSKBSw2+1otVq8Xu81IUzSgj+XyzEzM0OhUGB8fJzu7m5xrNnZWUZGRpifn6e4uJjdu3fzox/9SNwbly5dYmRk5BrjIJFI0NvbSyQSYWhoCLfbjdVqpby8nK6uLnw+Hw0NDeRyOU6cOCGMo+3btzM9Pc2RI0eIxWLE43H27t1LIpHg/PnzIr9nw4YNXL58maGhIQKBAEajEZfLRUNDA3Nzc8K743a7mZubY3Z2lkQiweXLlxkfHyeXywmVqsuXL6PVahkcHCQQCFAoFHC5XHi9Xi5evEggEGDLli2UlZURCAQIBoMMDw8zOjrK+Pg4Pp+PYDDImTNn6OzsxGKxrFqld3p6Gr1ej8vlIpfL0dbWxuzsLBMTEywuLjIyMsKFCxfYtm0b5eXlTE5OcvHiRe65554Vi/VkMkl/fz//8A//gNVqRaVSUVVVxSc/+Umee+459u3bx/DwMEqlkgceeICKigqR+zM7O0ssFmP79u1otdpV1YEkj430TGxra0On09Hc3IxCoaC/v5/p6Wnuv/9+SkpKmJqaYmxsDJ/Ph16vx+PxiOeATqejrq7unbyGZGTeU2QjQEbmBiiVSlpbW8nlcpSWlqLRaCgtLUWhUGC1WqmuriaXy2E0Gmlvb2dpaQmHw4HX68VqtQrJTo1Gg0ajQavVsnnzZlwuFyqVCpVKhdfr5c4770SlUtHY2EihUBBhPrt27UKr1bJlyxZMJhNGoxGNRiPCdySFkvLycrRaLdXV1cL9rdFoKCkpob29nWg0Kq5Dq9XS3NyMwWDA7Xaj0+nEbvbdd99NUVERer2eoqIi9uzZc034h1KpRK/Xs3v3bkZHR0WCpbR4kPpiYWFB7Gru3r0bj8cjFjY+nw+VSsXOnTspLy/HZDJRXl6ORqPBZrPR1tYmdsCl/istLcVgMIhdvaqqKhobGzGZTKhUKtRqNSqVig0bNlBcXIzFYkGr1XLXXXehUqnYtWsXwWAQtVot+qezs5P+/n4R03v1DrdarcbhcLBr1y4xfnV1dZjNZjQaDffccw9WqxWFQkFFRYUI71mOpLzyyCOP4Ha7RSyzxWJh8+bNGAwGGhsbsVqtQo2ptbVV5FzY7XbhbZESJqVQD4VCQVNTE0qlUuyI3n333ajVaux2Oy0tLeh0OvR6PVu2bBHKREajcUXb1Go1zc3N+Hw+kbArzVOFQsGWLVtQqVTYbLZrFtMqlYqSkhJcLpdYCFssFu6//36KiorEDmx7ezvFxcVotVoRlmIymdi7dy9ms5mGhgbC4TBGoxGDwcDevXuxWq0iGbu4uBifz4fT6USr1WIwGPB4PNjtdnbu3InNZqO8vFwkiGezWfR6/Yr5sRy9Xk9xcTE7duxArVazc+dOioqKRPLqvffei1arpaqqCpfLhcfjoby8XBg6FotFxK5fvZiU+vXhhx/G5XIJz8K9994rFpptbW0iMVgKL2lubsZkMglPok6no729nenpaTKZDFqtlnXr1lFeXs758+fRaDTU1NSg0+k4d+4cPp+PsrIytFotRUVFqFQq7rzzTqGKU1FRIdq7adMmYbDZbDZSqRR79uyhsrJSPGckz9LWrVux2WyEQiHuuusuMb9aW1txOBzi3pE8J6shjYH0DCwtLRWyytKcqqqqErKe4XB41QReyZNXV1eHwWAgm82KZHKLxUIikRCKTPX19eh0OjZu3Chi9uvq6m5YRbm1tRWz2Uwmk8FisfCxj30MlUrFpk2b0Gg0QjlICrFcfs93dnZiNBqJRCJoNJpVjSEZmfcTisKNNMVkZD6gnIlAx2k43QHtll/eeTOZzIqXWqFQEEoot6sWIYXKSAo70st1eYjNaotOqR25XO6WCptJoRlSqI7ErYQ8SDG3kprJ8h3wq497u3GyUviOFP5yvd+n02mxMLgZUvhCPp9fUcshk8mQz+ev68YvFAqk02lhlLxXMb9SoqOkbLT8/MlkUiSdS5+lUinxvdUWum/nXKshqcq8F/HOUt8uP/bycywsLIiQp/7+fjZu3ChUh3K5HMlk8pqF+PJ7J5/PC6NvtXNLoT63M/eX93sul8NgMNzSteZyOaampigtLUWlUq2Yj8uvP5fLkU6nV4yNpEQm3dP/+I//KLwTuVyOb3zjG3z2s5+lrKzsttqzXBlrOVLYy/Kwx9tFegZ885vfFKF7paWl4j47ceIEw8PDAHz0ox+9rVCr1c5VKBSYmZnBbrdjNBpF6BDA7OwsGo1GJBDfiEQiQSKREGpqEpKHQJIEBYTaUiqVEh7G1fhVvZNkZG6EbKbKyLyLXL3QUCgUb7vCsPTivV4i5o0WfJLn4VbPIy1u304b7XY7drv9XT0u3Pj6lnM7hdmuZzTdrK+kXdn3Gkm2dLXzX/35O5lbNzrXakjx2u8FN+vby5cvMzo6SlFRETt37hTjJyViriZPebN75+rv3e61vd25oFKpqKioEP++3nyUFLCWo1arV9wTa9asIRaLcebMGQqFAg0NDXi93tuaEze6NyUvwDtFqjw+MzNDUVERNTU14m9SOKXZbH7HkprSWF5dXE4yKoqLi2/5WAaDYdV7Y7XnnOQ5k5H5ICJ7AmQ+lMi7LjIyHw6WF8FabgD8unN18qwUegfvn/6Rxk1KKr7a6FmefP5+a/u7jfxOknk/InsCZGRkZGTet9xsN//XlQ9CMSppQX89T9sH4RpkZD7MyEaAjMx1kGKVpSIxUsz1cilHCYVCgclkEnGkVzvYdDqdUP1ZLvcHiHjl1eKtpbjvaDSKXq+/bmXOd0o6nWZ2dpby8vIP7U6cjIyMjIyMzP9BNgJkZG5AKpWir68PAIfDgcfjYWxsjEgkgtfrRafTkUqlWFhYoKOjg6WlJcbHx8lkMiL2NxQKYbfb0ev1ovx8bW0tarWaXC4nEnyvJyU3OTkp4l1VKhXRaBSFQkE6ncZut4s2SKpABoNBxAVLVT2TySQWiwWdTkc8HicejwNXFFIMBgO5XA6/34/NZntX4nNlZGRkZGRk3t/IRoCMzA3IZrP8+Mc/Rq/X09HRwdatWzl48CDHjh3jU5/6FGVlZczMzPDCCy8Ije7vfve7hMNh/s2/+Tdks1lOnTqF0+mkrKyMVCrFH/7hH/LNb34Th8NBOBxmenqaQCDA//1//98rzi2pmxw6dIiPfOQjaLVaJiYmuHjxInq9ntHRUe644w6Ki4sZGxuju7sbnU5HSUkJlZWVaDQaXn75Zerq6hgaGqKzsxOv10t/fz/j4+MAQgO/qKgIi8VCT08P69evF8oXMjIyMjIyMh9OZCNARuYGOBwOKioqsFqtVFZW4nK5WLduHePj4zQ1NVFcXExxcTHt7e34/X6ampqoqKgQRbP8fj+//du/TU9PD0ajEZVKhcfjoa2tDa1Wi1KpJBwOC5m85WQyGS5fvozH40Gr1dLX18fQ0BDr1q2jqamJhx9+GI/Hw/j4OC+99BLf+MY3UCqV/MVf/AUul4u2tjYCgQCf+9znmJ6eZmhoiMOHD7N//37++Z//GaPRyNe//nXGxsb43Oc+R319Pc888wz19fWyESAjIyMjI/MhRzYCZGSuw41i42dnZzl48KBYyH/qU5/C7XaLnIHJyUleffVV9u/fz9e//nVR5XdiYoJCocCJEyfo7u5m3bp1bNy4kU2bNl1zjng8zsGDB7njjjvQ6/U0NTVRU1ODwWCgUCiQSCRQqVSi4qmUQBkIBETRMknSzmazMTU1xcjICOl0GrVaLaoRS3racMXzkUwmhT64jIyMjIyMzIcT2QiQkXkbWK1WampqyOVyouplPB4Xu/0Oh4OGhgbOnj0rEoKXq5zU1NQQDoexWCyiMNDVWuW5XI7p6WmKiorQaDSi8ms+n+f111/nox/9KI2NjYyPjwsJPul3UkKxVNhKyj+Qqp4eO3YMl8tFJBJZcU6TyUQkEsHpdMpGgIyMjIyMzIcYWXtNRuZtYDQaKS4upr6+nrq6OrFgz2azqFQqTCYTZWVlbNmyBY1GQzAYZGlpCbjiYZBCgqTk4enp6WvOsbzasKSvnc/nmZubIxqNsmXLFrxe7zXFjjQajSh2k81mRW6BRqOhvLycHTt2oFarKRQKmM3mFUVxFAqFqLIqIyMjIyMj8+FF9gTIyFwHafEsyYSm0+kV4TK5XA6v14vT6WR2dpaxsTFcLheZTIZsNks+n2fLli3EYjGGh4exWq0YjUay2SyJRIKKigoUCgVzc3P09PTQ0NCw4vyS7Gg0GhUKPoFAgBMnTuD1eoEreQNarZaioiLi8ThKpVKEAXm9Xqanp8nlckSjUaxWK8XFxZSWlmKz2QiHwzQ0NKwodR+NRtHpdLIXQEZGRkZG5kOObATIyFyHQqHA5OQkQ0NDokaA0+nk6NGjDA8Pc+LECUZHR5mbm+PAgQP8wR/8AadOneLy5ctEIhEOHTpELpfjzJkzmEwmKisrUavV+P1+Dh06hMPhIBQKMTk5yczMDI8++uiK8+t0Otra2picnMRqtTI7O8sbb7zBP/zDP+B2uwmHw/y//+//y/r168lmsxw4cACbzUZ7ezvV1dXYbDaOHTvG7Owss7OzdHZ2YrFYePrpp9m1axeHDx9m+/bt1NbWiroGiUQCq9UqJEZlZGRkZGRkPpwoCldXNZKR+RDwbpRoLxQKomCYVPJepVKRyWTI5/Oo1WoUCsWKcJtCoSBCcKTddCm0RsoJSKfTojCYdI5CoYBOp1tx/nw+TyQS4dlnn+W+/z97/x1kx3ke+MK/k3NOE8/kDAwyQGQmgBEiZWUqURIl667tq/XeW5+r9vNK9n66W6tb9mp3tbLXtiwrkpIsmjJJiTmBAIg8yIPJeeZMODnn7w+oX88AM8CABCWK6l8Vi4Uz3f2Gfrv7eZ73Cffdh8vlolgsks/nxblSYHKhUCAcDlMul7HZbOJamUxGxBUYDAaUSiW5XI6ZmRk8Hg96vV7UBMhms/zDP/wDn/jEJ3C5XHLRMBkZGZlbxK34JsnI3GrknQAZmRWQCnRdbRW/WlgHlrjPqNXXf6xu9PfF7ZvNZqqrq4nH4xgMBsxm87KuOhqNBqfTSblcRq1Wo1QqKZfLGAwGqqurRcVihUKBTqejsrISrVYrfovH4xw9epQHHngAq9UqKwAyMjIyMjLvc2QlQOZ9TW/qt92Dd4KCcllJxt/JoFLDTEqFYcV9OwXwa+Ugu/g3AAMUrj5WD/l/+yWdUTNnr8FqryWcUaPIIiMjIyNzi/jd/hbJvF+RlQCZ9x3jGZjJgV4Bn+r9bffmnaIAKn8D7RiADjj3G2hKRkZG5vcQvQLccs4FmfcQshIg875iPAMdxyElZ7iUkZGRkXkPIXtZyrzXkJUAmfcVC/krCsB3GjKkek+RTqfZunUrVqsVQGTBKZaKHDl8hEw2Q0dHB7U1tddcq1wuk8lmSMQT/xbcq1LidDpRKpQ35TdfKOSJRmMkk0mqqipRqdQ3PL9QLBCNRCmVS2g1WvQGPVqNlmKxQDgSQa1SYzQZ0WmvjVG4mng8Ti6Xo1QuoVQosdmsq+rDaiiVSmRzWWLRmPjNYDCg1+uvKYB2w+tksyRTScqlK4HSGq2GdCpNsVREpVRhNBnR69555qJyuUyxVCQUDIk1oVQpMRlNGAyGm5qXYqlIKpkik82IOA6dVkcunyObyZLP59Eb9BgNxlsWaxGPxwkEApRKJSoqKjAYDCIW5EYkU0ly2RyF4hUfMbvNLoLc3ymlUolCoUA0GgUF6PX6K7UnCkVy+RyUweGw39TaK5fLJFNJZmZmyKTTNLe0XAm+L5UplUuEQ2Hq6upWNXaZ9y+lUolYPEYkEsHtdmM2mX/bXVpCb+rKzvRCHvxy8jWZ9wiyEiDzvqRZk2diYYTPfuADmEwmVCqIRqP09vYyMjLCQw89hLOtilAohC4XYp1lOSUAoqUs337i7zGZTDQ1NdHQ0MClE68RDod58MEHqa6uXlV/stkSrx49zolDh/jKV76Cx+65oVUomy3SNz7Fv//3/54/+ZM/Yfv27XgdXpLJDH/+37/Oxz72Mdo7OnBYbqwEzCQSfOeH32F2dpZPfOITrKvcjFZ7ayxTxWKZQCDEK0de4fTp03zmM58hO59leGSEmZkZ/s//8/9clZBZKkGsnOUb3/xrHA4H27ZtY+2GDUzOB/jiF7/If/kv/4XOdeuwW26FEgD5fIl//uVLXLhwga6uLtatW8fs0CynL13iwx/+MB6PZ1X1EgqFMpcnxnj11Vd57rnneOKJJ7CatQSDMd469RYXLlzgs5/9LFUW4y2Z7+PHj5MJh+mqrqaqqor/8l/+f3zyk5+kra0No9F4w/PnMymefulpXn31Vb70pS+xbts2tFoVSuU771yxWCYaTfCvbzzLsWPH+OIXv0htbS1DE0P87Te/yWc/+1k69+7FZFKvai6SySSvvPIKs7Oz7Nq1i+qmet566yAXL17E7/fT1tbGP37jv/K9730PjebdVQKkTFsNDQ2/lcD52dlZ+vr68Pl8tLS0yErPIorFIvF4nH944h+oqamhYdcuai03rwSUy2XGxsZENrWbIZvNMjk5SWNjo5xYQeZ3BvktIvO+pVgs/loBUIkUmufPnxepNLVaLRqN5rrVcQ0GAxqNBr1ej81mo6qqijVr1vDyyy8TDAZX3Re1Wi0stautxqtWq6murmbfvn2cP3+egYEBcrkc8/PzbN++nbq6ulUJfQA2m01YvCsrK1edoWg1SBmHHA4HxWIRt9tNQ0MDer2ey5cvEw6HV30dKY2p0WgUuwkej4d4PI7dbr/pD/P1UKlUOBwOFAoFRqORqqoqUQH6hRdeYGRkZFXXUSqVVFZWisJrR48epVAoMDc3h81m44477sBut9+yfo+OjjIzM4Pb7cZisdDR0YHJZFq14GE2m1GpVORyOaqrq2/ZLgBcmQuNRoPdbqdcLqPX67FYLBgMBrLZLD6f76bW3q9+9SsikQgNDQ1UVlZiMplob2/HYrGIyti5XO6W9P1GxONxXn31VX4bWbVLpZIwREhVwmX+jUwmw8TEBDqdju7ubhwOx01fo1AoMDExQX9/P6nUzUfxJpNJXn31VbnauszvFPJOgMzvBfF4nFAoJCr5ruZDLgm3ksBRKpXI5XJkMhmsVitqtZp4PE4sFqNcLpNIJKiqqsJgMJBKpZiZmcFqtZJOp6moqECn02E0GimXy1y+fBmVSoXH41nxg6VSqXA6nXzgAx/gn/7pnxgeHqaqqor5+Xl27dp1UwKVJFSbTCZcLpeoDQBXqgRHo1GKxSKZTAav10uhUCCbzYoKyZWVlRiNxmXbkwQ/m812xfXj19cpl8tYLKtPiK1QKNBqtZhMJpRKJalUimAwKKoiWywWtFot8XicqakpHA4H8XicyspKMpkMMzMzlMtlKioqCIfDuFwuXC7Xim0plUrsdjsmkwmz2YzL5cLhcKBSqfiLv/gL6uvrr6nivBxKpRKXy8WaNWuYm5vj1Vdfpauri3g8jtvtxu/3MzIygslkwuFwMD09TS6Xo7u7m/n5eYaHh6moqEClUpHJZGhoaLiuYK5UKgmFQhw9epS6ujra29ux2+2rXgsGgwGj0YjRaMTtdqNSqURbmUxGPCeZTAan04lKpSKVSon76vF4MJlMy7p6KRQK1Go1drsdhUJBIpEgEomQSCRQKpXielJ7Ul2NiYkJKioqrlFqX3/9dTZv3kxHR4dQpOrq6ujs7MRkMgmXs0AgQKFQQKfTYTabMRqN9Pf343A4yGazGAwGXC4XgUCAmZkZTCYTdrsdnU5HKBTCZrMRCoXw+XzY7Xby+TwDAwM4nU5SqZQ47q233uK+++7D7XaTSqVIpVJirqqqqkilUkQiEeLxOFarlYqKCmGIKJVKZDIZTp48SWNjo+iX0+lkeHgYu91OJpPB4XCg0+mYmppCr9eTTCaF8ptOp8nn89hsNmZnZykWiyiVSrLZLE6nk0wmQyAQoFwuU1lZydzcHC0tLWg0GrFzIL37hoeHhXFC6v+5c+dEBfFoNIrL5UKr1RIKhYQyt7CwIBQwk8lENBplfHychoYGIpEIHo+HXC5HMplEp9OhVqsxmUxMTEyQzWaprKwklUpht9sxm83EYjFx/XQ6TVVVFfF4nEwmg9lsJhwOo9fr0Wg0omp7VVWVqLUCkEqlGB4eFlXc4/E4kUhEjE1S9mdnZ4lGo1RUVFAsFoUSLNWDOX36NFNTU/j9fozGK+57ExMTmM1motGouM7U1JSo21IoFNDr9cRiMY4cOSLWh1TDRUbmvYysBMi875GsspFIhNbWVnp7bz5lUCwWY3p6GqVSyZtvvsnDDz+M1+tlbm6O/v5+isUily9fZt++ffh8Pqanp3nppZfo7u5meHiYBx54ALhi0Uun0/zyl7/EarWyY8eO61qtFAoFXV1dVFVVMTMzw9GjR/F6vVRXV98yH+6JiQnOnj2LSqUiEAiwfft2IpEICwsLKJVKZmdn2bt3Lw0NDTcU6mOxGOPj48zNzbGwsMD69evfllVuYWGB4eFhISRKBdjK5TKzs7O8+OKLdHd3c+bMGQ4cOEA4HOb5558nk8nw4IMPcuTIEbZt28bOnTtvql2lUklNTQ1DQ0Or3sGQqKqq4t577+X73/8+p0+fpqKiApvNRjqd5he/+AWVlZVs376dp59+mmAwSFdXF/39/Xz729/mgQcewGQyMT4+zqOPPorNZluxnba2NkZHR/nmN7/Jtm3buOeee9BoNO94d6dUKhEMBjl48CAajYbZ2VnWrl2LUqlkcnISlUrF7OwsW7dupampaUUFSyISiTA0NEQqlWJiYoJ4PH7NMZLwdezYMW6//fZrlIC+vj42bdqEz+db8vumTZtQKBTMzc2Rz+fp7e0VOy8NDQ00Njby/PPPs3btWsbHx6mqqmLv3r2cO3eOn//856xZs4Z169bhcDg4ffo0bW1tHDp0iH379rFmzRoikQhPPfUU27dvZ2pqCqfTiUKhYGBggMuXL7N+/Xr6+/sZGxtb8oyEQiHOnDlDX18fmzdvZu/evdTW1qJSqSgWi4RCIf7qr/6Kxx57jEgkgs/no62tjaeeeor169czNTXFunXrqKys5Fe/+hVNTU1cuHCBpqYmNBoNo6OjOJ1OPvrRj3LixAkKhQJ2u52FhQX8fj/5fJ7nn3+eXC7HBz7wAV5++WW+/OUv43K5lgikpVKJQ4cOYTAY0Ol0jI2N8fGPf5x//Md/5Pbbbwegt7eXDRs24PV6OXfuHM3Nzfh8Po4ePYrFYsFisdDe3k5fXx8/+clPePTRRxkYGKCzs5NoNEogEBDtdnZ28uSTTxIKhThw4ABjY2O0tLTQ0NDAwMAAZ86coa2tjaGhIT70oQ9x8eJFpqenaWlpYWBgQCh2yWSSXC7H/fffv+QZyWazTExMMDU1xfz8PENDQ8KgMTc3R21tLTabjVdeeYXz58/z0EMPkcvl8Hg8QgnIZDIcPXoUhULB9PQ0drudYrHIM888Q2dnJ+fPn2fjxo3odDpefPFFmpqagCs7ztJ1Fq8Pm80mKwEy73nkFSrzvkeyePn9foC3tZ3v8/no7Oxk586dfP7zn+fJJ59kcnISh8NBZ2cnbW1taDQaTp48yXPPPcfRo0cplUo4HA76+/uFAJRMJnnttddoa2vj4x//OF1dXatq/7HHHqNUKvHss8+yZ8+em+7/cpTLZWG9evLJJ6mpqaG5uZmenh4ef/xxXn75ZfHbkSNHWFhYuO71FAoFPp+PdevW8cEPfpA1a9Zw9uxZRkZGbnrOGxoa2Lp1K3fccQd79+5dUtjM5/Nx55134nK5OHjwIPPz81RWVrJhwwZ0Oh2bN29mfn6eUCj0tuakXC6jUqlu+gOuVCqx2Wz8X//X/8WTTz6JVqulpqYGo9HIjh07yOfzeL1eqqqqsNvtaDQadu/eTT6fp66ujqamJtRq9Q3na82aNfzJn/wJTzzxBNu2bePrX/86Fy5cIJPJ3PR4F487lUpx/vx5/umf/omamhqampoYGhri5z//OT/96U/Fb+fOnWN0dPSG16yqquK2227jjjvuYNu2bbjd7mXnzGg08tGPflRYoBezuCr39fp92223sW7dOtLpNJcvX0an07F//34qKiq4fPkyly5dQq/Xs2vXLtLpNA888AB33nknHR0d7NmzB5/Px8TEBOPj41y6dIk33ngDt9vN7t27eeCBB9izZw/t7e34/X5uv/12nE4nhw8f5rXXXhPPyOHDh6moqMDv96PX6/nCF75Ac3OzKC4oFfRraWmhoqKChx56iPr6el566SUhzI+PjzM0NMTU1BQLCws88MADhEIhampq2LFjB+vWrSOXyxEIBOjp6aFcLrNnzx727dvHN77xDRobG7Hb7ej1etavXy8Uy3Q6fc2879y5k46ODrLZLAcPHsTj8bB79270ej16vZ6GhgampqbQarV85CMfYceOHdTU1LBz5078fj/PPfccwWCQiooKmpqaqKio4A//8A958803uXTpErW1tfh8Pg4fPozL5cJiseByudiyZQtr1qyhp6eH5557jnPnzolK55cuXSIej3Px4kXeeOMN+vr6uOOOO5iamuLw4cNMT0/j9/sxm5f6+5vNZtauXUt7eztarVa8c3fv3s19993HN7/5TZRKJVarFZPJxP3338/DDz8slE6lUonBYGDnzp10dXXR2dmJXq9naGiIQ4cOYbVa0el0pFIpKisr+Xf/7t/xyiuvYLFYePDBBzlw4ABdXV1ifbhcrlvqcikj824hr1KZ9z2SO0IsFqOvr4+pqSnm5uYoFos3fS2lUonP52NhYYGxsTEGBwcZHh5m165dNDY2srCwQDqdRqlU0t7eLlwZDAYDR48eRafT0drayve//33Wrl2L2WxelUXfYrHgdDqx2+03lXFnJcrlMjMzM0xNTREKhXA6nWzZskVYxJLJJHNzc2zdupVyuUw6nb4pf3yVSoXFYsFms/H666/T0NBwS6xikqX1hRde4C//8i8xmUykUimSySRqtRqPx4NCoVi1y9fVlEolzpw5w+bNm5cVSm+EUqmkoqJCuFHAFeVosftVLpcjm/23amxOp1MIipI71fWQhL8NGzZw4MABMd6FhQVqa68NcF8Nc3NzBAIBpqensVgsbN68WVjpJVcIaX1ks9lVBUzfDCutjTvvvBO4YpXu7u4Wv/f19aHX64Url16vF1WyU6kUAwMD/M3f/A1f+9rXcDqdlEol4R7idDqFgDY2NsY3vvEN/ut//a/4fD6KxSKRSIRsNivu2eIK2tL/x8bGSKVS+Hy+Jc+IQqFgeHj4ujs5AA6HA61WKxRO6V3R3d2NSqVienqaUqnEM888w6c+9Snq6uqWrJlMJiN2x+DXGZSSSUql0jW7dcVi8ZpnYWxsjB/+8Ifs3LmT2tpadDod4XCY++67jx/96Edks1laWlro6emho6MDnU7HxMQEFy5cYH5+nkceeURUGpdcjZxOJ3DlGaqsrGTLli3Y7XbWrFmDxWJBr9eLOBFpzRaLRRwOB16vl23bttHV1UUul+PDH/4wd911F/39/XzrW9/iE5/4BHq9nnPnzvHCCy8IxWM5JDfGxWNOJpMUi0UMBoPIFLcc0v2dnJzEZrOhUqmorq5m8+bNbNq0iVKpJJ7RXbt2cfToUTo6OvB6vUuuMz4+jtVqfVu7oDIyv0lkJUDmfU9bWxuZTIbR0VFOnDhBOp1eVfBWuVxmYWGBwcFBDAYD+XyeVCrF+Pg4dXV11NfXMz4+TiwWo1QqEQqFGB4epq2tDYvFwvDwMP39/YTDYerr6wkGg8zMzJBOp6mtreVnP/sZu3fvxul08tJLL/HlL395ib/0Yvr6+hgbG2Nubo7Lly/T3t4OwNTUFOFwGKVSSUdHB08//TT19fXU1NQscdcYGRlhamqKQCAglJFnnnmGu+++mzVr1mC324U10GAw0NTUhM1m48033xS/Sb7LFy9e5DOf+Yy4dqFQIBQKcfr0acbHxzl9+jSlUonBwUGSySR79+4ll8tx5MgRvF4vdXV1jIyMMDw8zJ133onJZAKuCCvBYJDx8XGSySQej4fKykqGh4dFZqfa2loymYwQtorFIuPj40SjUcbGxpicnGRycpLZ2VnGx8fp6+sjn88zPDzM/v370ev14t5mMhl6enoYHh7GbDZjtVrJZDL09vby4Q9/mKamJqamprh48SI7duxAqVTyy1/+kqqqqmXdjCRXr56eHqamppiamqK6uloEHb/66qtcunRJBPb29vZSKpWYn59nZmYGlUrF0NAQNpuN9vZ2nnnmGZqamti6deuSdkZGRlhYWKBcLuN2u5mamqKzsxOAixcvUiwWWbt2Ld/97nfZuHGjECwlJicnGR8fZ2pqimPHjqHT6Xj55Zfp6uqiqamJu+66i4MHD+J2uzEYDLjdbm677bYl68NmsxGLxXjxxRf58pe/LNZssVgkkUhw7tw5JicnmZ6eRqPRMDExwfz8PCdOnMDtdnPhwgWy2Sxr1qxBpVLx6quvsnXrVjwez5KxfuhDH+LMmTP09PSQz+epqqpibGwMl8uFyWQSa3p0dJTe3l76+/tRKpXCD15aS+VymQsXLoj4gdnZWdxuN4VCQQTb5/N5BgcH0Wg0bN68mccff5yenh4RQK3RaHC73Rw7dgyXy8W6desIh8NLnpFYLMbw8DCzs7MEAgF8Pp+Ym0KhQCwWY3JykjNnzmA2m6murmbLli388pe/pL+//9cphKvI5/NMTEyg0WiYnp4WSktvby/j4+N86EMfoq6ujnw+L/zYP/vZzzI3N8fExAS5XI7JyUmGh4dxu93U1dUtUUzi8TgKhYJwOCwE5AsXLrBlyxaR5ra1tZXh4WHxTkomk8RiMXQ6HWfPnqVQKDAzM0OhUBDP/b333sv+/fuZmpri4MGDYqfB7XYTCARIJBLiHTI8PMyBAwfIZDKMjIzQ399PKBTCarUyOjpKKpWirq6OxsZGDh06RFNTEwaDgZaWlmvcxpLJJL29vQwNDXHHHXdQXV1NoVCgp6eHyclJobTMzMwwOTlJf38/LS0tS961arWauro6Tp8+LQwYVVVVVFRUcOHCBQqFAiaTiVAoxIkTJ9i9ezcTExM899xzBAIBamtr8Xg8HDt2DLfbfUNFUEbmvYCsBMi877HZbJhMJkqlEjt37iSZTGK324nFYjc8V6vVsmPHDtRqNS6XC7vdTi6X44EHHqCmpga9Xo9KpaKiokJs9/v9fhE0J2XN0ev1NDY2cueddwp3gXA4LNxCpIDhlTCZTNx22220trYKoRkQgZCSJVWyehYKhSXnGwwGdu/eTTwex+v1olKpWLNmjdhalz6aUsBoZ2enEA6koGKNRoNGoxFWawmFQoHJZKKzsxO73Y7H4yGfz9Pa2kpNTQ1+vx+lUonD4RBBksuNVwoMvv322zEYDNTU1IhMM5/73Oeorq4WAbBKpRKTycSDDz5IfX29CByW5n7fvn1UV1djMplWzB4jWWDtdjs+nw+bzYbRaKStrY22tjZMJhPFYlEEUiuVShHouBIajYbm5maUSqUQHFUqFV6vl61bt+J0Otm4cSOJRELMwYEDB6ivr0ehULBz506qqqpQqVQrtiUJdHq9nlQqJSyRUvCppOBK9+xqJFcRo9Eozuvo6KCxsZGamhqcTif5fF7c94aGBtxu95LftFotarVaKFWL0el0dHV1YbVa8fl86PV6qqqq+NCHPoTf70etVmO1WsnlcmJe3W73sn2VLOALCwtotVrS6TRWq1XstGSzWT784Q9jMplEtixpt+7uu+/GbrezY8cOyuUyHo8HpVLJAw88gNfrRa1W43a7OXDgABaLhZ07d6JQKKiqqqK2tpZt27ZhMpnEMyGtK8nCu3btWhKJhHhGpEDSrq4uvF7vss+JXq/nvvvuE+8Ak8mE3+9nw4YNotaDlMRg/fr1tPy6JkIgEECn09HR0UFVVRVms5nNmzdTKBQwGAxUVlaKnatt27aJHYHbb79dKKKLcblc7Nq1C7vdjlKp5MCBA+IebNq0CY1GQ3V1NTt37sTr9aLVavF6vXR1dYlnb9++fdTW1orA2MrKShQKhTCCSAqDTqdDr9ezbds2stksZrOZ5uZmTCYTra2tZLNZLBYLOp0Op9OJ2WymsrKSfD5PdXU1er2e2dlZPB4POp0OhUJxjTXfaDTS3t6O1+vF6XSybt06MpkMJpMJn88ngs67u7vxeDzLZlVTKpVUVVWxYcMGamtrRYD27t27xbMq/b+hoYGGhgb27NlDLpfD6XRis9m45557sNlswiVLRua9jqL828h3JiPzLnE6DptOweutcUZf+hc++tGPotPprnE3KJfLjIyMEAwGUavVbNiw4W23WSqVRAYbCcmPOZPJiO3vlYjH44yNjdHR0YFSeXNFyBZTLpeJRCKkUimR/eRmzpXcUCTLn/RbuVwWwmgwGGR+fp6Ojo631Uf4t/kaHBykpaXlpt2bJL/9YrF4w/SWUkanwcFBEbfxdpBek0NDQ8Ky/3bOLxQKYp4lN4qr+y8dOzAwIDLMLEa6RqFQYH5+fsU0n5cvX8btdl8pbncTrliL14JSqRRuNovXB1zJKjUyMsLatWvf9ZSVhUKBVCpFPB4XmZRuNIZyuUypVBJjuN6xuVxu2edXcn2S2pPmYaVn5J08u9lsFq1WS19fnwgA7uzsZGpqisHBQWw2G7t3775mXkqlkljXN9P+Ype5xfMpubxI/ZJicaS/FQqFJc/RSm0ufi/euEbIled0seIktSW5TeXzeZGJbDVIz8hit7wbId3PxWtm8b1ZPBfXO3+5HV3p23RqE2xcfdI0GZl3FXknQOZ9i0KhIBAIUF1dvaygGY1Gicfjwpf17SJZiJdrfzV+9IuFlXcqTI2Pj9PU1HRN4NyNkFI7Xu83Sdh5p779hUKBhYUF3G7327qW9CFezbn5fJ5QKCSswO8ESTh6O/dIOkfaTVltW8v1WUrrqNPpluwKLXcNWNnf/np9vdFakATI31T2E2n34Hr+3Iu5mTUipQJe7verrblXz8Nyc/V2WNxWTU0NSqWS8+fPk8/nCQaD1NTULBvv8U7aXmluFv9+9VpXKpWrVtpXei+udOzVc61SqYRystI9uh6Lz18tK6391Vr1b9V6kJH5TSHvBMi8r5CsLcfW5alOzTE7O0t7e/s127+lUom+vj5KpRJ1dXU3LTTfSqRH8J0qAIsf5XfDMnurrr+cG9C7xa1q63e5z+/2Wni32vh9ZXGwr7TbcHVgsszvHvJOgMx7EVlllXlfolKp8fl8S7K0LEahUNDY2AhwyzOd3Cy36sP+bgsIvyv9fDfakvv8m7v27ztXC/zyXMvIyLxbyEqAzPsSaVt2pa3Zt7O9nMlkiMfjS4IAf5fIZrPk83nh1mO1Wm/anSOfz4vrAMIt5VakLX07xGIxisWiqMb82yCZTJLJZFCpVCvGYUjxIVJA8PXceK5G8pfOZrOUy2Xhm3x1wLO05g0GA4lEYtkMWGazmXw+vyQ2QUKj0YiAXwkpM43X6xUW6vn5eTKZDFqtFo/HQyaTEe5BCoVCBI8Xi0WRn15yy5DWzeI+G43GFbNipdNpUcFYqub8dp49aQ7n5uaEu837AamK8+zsLCaTSSQGAG76/fbbpFgskkqlRHyDVG1X+l1aUzfr3vObRMqMJQVly25BMr8LyKtURmaVxGIx+vv78Xq9NDU1LftBSiaT4iN2M5TLZRKJBCaTCaVSSSwWIxKJUFNT87b90K8mm82K9HhdXV03rP67HIVCgWAwyPHjx1m/fj1arVYE0jmdTiwWy29UOQqHw8zMzOB0Oqmvr2dycpK6urpbEl9xI6QgQKk6qd1uv0YJyOVyIoNLNpvl1KlTNDY20trauup2pNSjJ0+exGq1UlNTA1xJ9RmPx8WOViQSoVgssmnTJubn57l48SIVFRW43W6KxSLz8/M0NjaiUCiYnJxkZmaGtrY21Go1qVSKcrksMixJTE9Po9PpRMan/v5+4IoPt3TewsICXq+XwcFBtFota9euRafTUSgURD5/r9dLsVjk8OHDom5GoVAgnU5js9nw+/1L7le5XGZqaop4PE6hUECtVlMqlRgYGGDPnj0iS8xqiUQijI2NkU6nRbab33VFIJFIEAwGiUajwm1ofn5eZNS6usryu0mpVBIJCd7OcydVUz569Cjbt2/H6/Wi0WjIZDKiorNKpRIZqa5WorPZLJFIRCjYv417WywWWVhYYHx8nC1btvxWXUxlZFbL7/ZbUEbmN0g4HObUqVOcO3duxToDY2Njq0o9uphyuUyhUGBoaEhYZ6empjhy5MjbKmi2EoVCgbNnz/KNb3yDUCj0totpBQIBvv71rxONRolEIpw6dYoXXniBvr6+W9bX1RKNRnn99dfp6ekhmUzy6quvXmNtvhFSJpm3Qzwe58033+TcuXMEg8ElfysUCkQiEaanp4ErQsLTTz/NpUuXbrp/mUyGH/7whxw8eJDZ2VlmZ2d54403+N73vkckEiEYDHLs2DGee+45IfD/1V/9FYcOHSIWizE/P8+bb77J5cuXCYVCvP766/z3//7fmZ+fJxqNMjw8zPHjxzlz5oxoV6rbEI1GRU74n/zkJ6KGg8Fg4MiRIzz99NPMz8/z4x//mJ/85CekUingylp54403OHfuHKlUikgkwle/+lUGBweF8nbu3DmOHz++JKWtlAnmxRdf5OTJkyIF78LCAv/jf/wPUZfjZhgaGuIXv/gFyWRSWJx/V5HWq1TN9sSJE9TW1mI2m/nlL3/JkSNHxJr7TVAqlUQdlrf7HBWLRcLhMF/96lcZHR0ln8+LAmxPPfUU0WiUoaEhBgcHl61cnkgkuHDhAoFA4Ld2b6Ux/Mu//AuRSOS30gcZmZtF3gmQkbkOiz9qZrOZxsZGUblzuQ/eM888w+7du5cU6roRpVKJWCzGU089RVNTE2q1mvb2dlEQbKW2luN6Vjin00llZaUodKRSqZa9rmRVXO6aJpOJyspKkb5QykV/7NgxHn/8cVFpdjX9vBXHNTY2Cqug3W7nC1/4gvjbaudscUrExe0uZrlrlctlzp07h9frZcOGDUsqmEopaMfGxsjn8zQ1NeFyuXA6naJy6vVY3L5Uf6K2tpaWlhYqKipQKBR0dHQQDAbp6uoikUjgcrlE4baNGzfidrtpaGigtbWVWCzGbbfdxuHDh/F6vaII0vr160mlUrS1tTE6OrqkKu3MzAxmsxmHw0EwGOQ//+f/zJe//GW6urpEvvQ/+IM/4G//9m9pb29nz549BINBJicnqaqqQqPRsHPnTtxuN/X19WQyGZxOJ2vWrMHr9aJUKrntttt46623llhuc7kcIyMjvPDCC/zVX/2VyIqzZs0a9u/fL2J4bkbglNzg7r777uve07fDzazlxdxs+1fvlPzd3/0da9as4bHHHhM7jx/4wAeYm5t7W9eX2rjZ88LhMAMDA4yOjtLW1rbqnYDFxxkMBrq6urj33nuJxWLEYjFMJhMmk4kHHniApqamJbFbV/fR6XSK6tJvZwxXz+3NnCcdr9VqrylAJiPzXkdWAmRkVkCyuP30pz/F4XCQyWS4dOmSKHDz1FNPkc1mcTqdhMNhuru7OX78OOVyGYPBQHNzM4cOHRIVSWtqaujs7GR0dJTBwUEhUOv1ekZHR+np6eHYsWN0dXVx4cIFnn/+ef70T/+UcrnM6dOnUalUGAwGwuEw+/fv58///M9pamqioaEBtVotipitJtC5XC4zOjrKd77zHQwGA5s3b2ZycpJdu3bR0NDA2bNnCYfD7Ny5c8Ut/lgsJix0qVSKhx9+mP7+fv7H//gfdHZ2UldXh1qtxmg0kslkgCsxBE6nk7Vr1/LjH/8Yq9VKLBbD4/Fw22238eSTT1JXV8fo6Cjt7e10dnbyi1/8grq6Ovr7+9m5cyc+n4+jR49it9vJZrOEQiGcTicjIyN8/etf56tf/SrT09O8+eabRCIRDhw4wOuvv86Xv/xl7HY7AwMDvPnmmzidTgKBAM3NzRSLRVGc6OTJkzzyyCPCXUraqfnRj35EbW0t6XSaYrHIPffcw7lz5wgEAlitVpxOJ06nU7gJHTx4kIGBAVwuFw0NDbS1tZHP5+nt7SWfzzM/P8+uXbuorq7m5ZdfJhwO4/V6CYVCfPzjH7+hT3GxWGRiYoJf/OIXhEIh1q5dy/bt21EoFJRKJZLJJGfOnBFVbL/2ta+xbds24caWTCZ54403+OUvf8kf//Ef4/f7l7ixHTlyhE2bNuH3+5mYmODgwYN885vfXJIuUa/X8+ijj2I0Gtm9ezdHjx7lqaeeYuvWrRw/fpzGxsZrUvAODAzw0ksvYTab+fjHP87OnTuXuNZJuytdXV1L2tLpdHz605/GZrNx6NAhotEoZrOZ2dlZtm3bxvT0NIcOHbrmnkvVpkdGRrh06ZKoqBuJRNBoNOzatYu///u/x+fzkc1maWhoYO/evfzwhz+kra1NrE+1Ws3f/M3f8MUvfpGJiQnq6+tpaWnB6XTy05/+FLvdTigUorGxkba2Np599lnq6+sZGBhg27ZtbNq0ack8HD58mHA4jNlsJhAIcNtttzEzM8ORI0eYn5/noYce4vXXX+dLX/qSiIeQGBoaolQqodfrlzzvra2t+P1+gsEgBw8eJJ1OiyJ8UkXsb33rW3zhC19gdHQUvV6Pw+HAbDZz5swZvvSlL/Gv//qv9Pf3Y7FY2LRpEydPnuTjH/84vb29nDt3Dr/fz8aNG/n617/Oo48+isFg4KmnnkKj0dDV1YXf7+f8+fNcvHiRuro65ufnueOOO/j5z3/O7Ows+/bto7e3l8cee2xJ3IJKpeKTn/wk//zP/4zRaESv19PX18f27dtRq9Vix8nn81FfX8/s7KyozRCPxxkaGqK6upoHHniA06dPEwwGsVgsS+b2rbfeYnZ2lg9+8IO8/vrrPPbYYzidziV1ICYnJzl+/DiJREK4x7W2tvKf//N/prKykubmZjQaDblcjvvvv58TJ04QiUTQ6/Vks9nf6V0mmd8/ZHcgGZkVKJVKvPXWW4TDYVwuF01NTaJI1BtvvMHMzIyo0Nrb24vf78ftdtPU1ERjYyOFQoHHH38cnU6HzWYjHo9z+PBhnnjiCW6//Xa2bNkiqrR2dHRgt9tpbm4WlXVtNhv5fJ4f//jH2Gw2urq6cLvdnD9/nmg0itVqxW63U1lZSWNjI4cOHbop9yGv1yuqBDc3N+Nyuejt7SWTydDc3My6detWzI+92Ge7o6ODBx98kO7ubqqrq0kkEvj9frZs2UJDQwNPPPEEXV1dbNiwgWAwyHPPPUcwGOT06dO0t7ezbds26urqCAQCHDt2DJVKRTqdZnx8nDNnznDixAm0Wi2pVIqJiQnOnj3LkSNHWLNmDS0tLaIKsV6vx+l0UiwWaWhoQK/Xk8/naWxsJJlMEgwGmZ2dZWZmhlgsxpYtWxgfH6eiooJMJsPx48c5e/Ysra2tSwTwbDbL66+/jlKpxO/3i+PfeOMN/H4/tbW1eDyeJT7ASqWSmpoampub8fv9VFdXA5BKpXA6neI+X7x4kddff52JiQmKxSIKhYILFy6syhopVdpdt27dkixYiUSCcrmMXq+nvr6e9vZ2PB4PgAjihSsCfFdXF62trWi1WvL5/JJg42w2K3z/ARH7sThrjZRDXaFQUF1djc1mY3JykmQySSKRQKvVXqOUmkwm9Hq9sP5rNJprlMzFhawkpLYWFhbo7e0lmUzS2dlJV1cXjz/+uKjSevU9t9lsVFVV4XA4qKmp4Z//+Z9FLALAmTNnaGhoQKPRsGXLFurr63nzzTdJJpPodDrGxsZIJBLY7XYSiQRtbW1UVFQQDocZGhpiYWGB06dP093dzbZt2/D5fExPT3PixAk0Go2Im1jsLjY/P09vby+xWIzOzk7Wrl3L448/jsViEfEjTU1NJJNJQqHQkh0aaS6kd8/iuZP85qenp3nmmWfYsGEDGzZs4NSpU/T392O324nH47S3t+P3+8lmsyQSCZqamujr66NQKOD1eqmpqaGyspLOzk4UCgVnz54lnU7j8/lIpVL4fD5x/+12u1A+ampqOH/+PH19fWSzWXQ6HRcvXkStVmOxWLDZbHi9Xu6///5l8/G3t7cTDAYJBoPCdUsyQni9XiwWC4lEgkgkwssvv8zMzAwmk4n6+npqa2tJJpPMz89z+fJlotEoXV1drF27lieeeAKz2YzRaBRzm0gklp1bs9lMQ0MD1dXVFItFXnnlFfR6vYj5qayspKWlhTfffJNgMMjJkycJBoOsWbOGpqYmeSdA5ncKeSdARmYFJEFXoVBgNpvFf+VymenpabRaLRUVFVRXV5NKpbBarRiNRux2OwaDgampKSYmJkRwbzqdZmJiguHhYWpra4XFWBL+DAaDqFSp1WqFy8Xly5e5/fbbcbvdws88lUqJttxuNwaDgdnZ2ZtyG5KsbRaLBbfbjclkYnJykmKxiMPhuGExKOlcq9W6JFBPEsalSrf9/f24XC4MBgOZTEYEaIbDYZxOp9gNkCy0UgXcQqFAMpkkl8tRW1srAmynp6cJhUKi2JgkRKrVaiGI22w2zGYzBoMBm80m/OqlfmYyGdLpNO3t7VRUVJBOp5mdnUWj0TAyMsLmzZvFeIrFIuPj40KZKxaLlEolJiYmaG5uFhmjFlcmVSgUQknT6/XC512hUGCxWHC5XBiNRjHfKpUKr9dLQ0MDkUhkVYKEtGaqq6spFAqYzWZSqRRzc3PU1dWhUqmw2Ww0NDSIcyYmJoR7jUqlwu12s2PHDux2u8i05Pf7mZubE65LUsafpqYmAoEAtbW16HQ6UeRuenqahoYGDAYDLpcLl8vFsWPHRKahq9eQzWajo6NjxQq7Wq2W+vp6zp07tyRWoFQqiecxHA6LeSyVSly+fBmdTrfsPddqtZjNZrFeJycncblc1NTUkEqlxM5OKpUSytrc3BwOhwO/3086naa6uhqj0SiCpC0WC9FolFgsJtayx+NBpVIRjUZZWFgQ67ZYLF5TrC6ZTBKJRNDpdLhcLsrlMn19fWi1WqEI2O12MYarlXu73Y5araZYLC6pdhyPx8lms8zPzzMyMiKCg+fn5zGZTEvGYLfbCQQCqNVqoRyUy2VhgJDup06nY35+Hrvdjs1mIxgMLsnopNPpcDqdZLNZCoUCc3Nz5PN53G43fr+fdevWYTKZMBgMWK1WXC4XlZWVy65nq9VKdXU1CwsLDA4Oinei9A42GAwkk0n0ej3Nzc1kMhmxEyitYUlJkNaiVBPmgx/8IBaLBb1eLxTA5eZ2dnaWaDQq3mMHDx4kn89jNBqx2Wy4XC7sdjuzs7OkUilCoZAYlzQOGZnfFWQlQEbmOuj1elQqlchkIgUVWiwWSqWSyEoj+WlL28SRSIRIJEJFRQUOh0N8dEwmk3AbkFJaSsK2JFBJaRyz2SyZTAabzSbSS2azWdRqNeVymVwuJwSxdDotPsLRaFSkirza11o6JhaLiT7BFZ/pxeNLpVIUi0VhZZcoFApks1mKxSJms3mJBVrqkyTA53I58fGOx+Mi2E8SIBZ/0OGKUOrxeHC73VRXVxOPxxkZGRG/ud1ukskkyWQSs9lMOp0mkUiQTqfJ5XJiztLptEhNKblJ5XI5kskkNTU16PV6otEox44dY/369cItq1gsUigU+PGPf8wHPvAB4Q4kKUzStSXBwWg0irby+byo+iwhKSfxeJypqSmMRqP4++L5loQHp9NJTU0Nbrd7yZwvThGaSqXIZrMoFAqSySTZbJZsNkttbS2xWIyRkRHhe5/P58lkMuh0OlpbWwkEAgwPD2OxWMhms+RyORKJBK2treRyOcbHxykUClRXV3P58mXq6+uFUmUymbj77rvp7e0Vaxiu7GzMz8/j9/tRq9VUVlayfv16nn76aR577DGxCyCtUSk9bUdHh3i2rsZgMLB27Vp+9rOfEQqFRLpFSYGsq6tDo9FQLpdJJpPEYjGsVuuStLWL77kk6Es7HVL9kOrqahQKBfl8nueee060r1KpsFqtlEolPB4PTqdTWNdVKpVIy5lOp4WSI6VllZ5pjUYj1q0U/3B1pWFpbpLJpNjZKxQKlMtl1Gq1uEfJZHKJMgSI/iuVSgKBgNjpWRwPYDQaRZICjUYjnksp9WYmkxFpXaX1Je0USeldpX/r9XqMRiPFYpFsNiuew3Q6TalUQqvViiB4tVqNzWbDbrdTUVHBvn370Ol05PN58Q64Hrfddhtnz57lzJkzHDhwQPwuPX/ZbBaNRsPdd9/NkSNHmJ2dFVnZFj/3UsY1aX1Icyu9o6VxXJ1I4OLFiywsLFBXV4fD4RBxNul0WriISu8cyTAhZcpKJBJkMhkKhcI17wMZmfcishIgI7MCKpWK/fv387//9/9mdHSUUqnE+fPnyeVyfPWrX+Wpp57i0qVL5HI54vE499xzD16vl6mpKSwWC/X19Xz4wx/myJEjOJ1OHA4HarWaT3ziEzz55JMiWFQScHO5HGNjY3i9XsLhMGNjY/T19fGFL3yBM2fOCAtcbW0tVVVVzM7Oiow8Go1GbKOfOnUKn8/Hhg0blljop6enGRkZIRKJ8MYbb7BhwwYCgQBwxcf44sWLBAIBUqkUly9fJhwOc/vtt2M2m4V1KxKJMDQ0RDwe58iRI9xzzz3C57tcLjMxMcH09DSDg4PU19fj8Xj45Cc/ydGjR4UV/IEHHqCiooLm5mZOnTol8tA3NjZSWVnJmTNnyOfzVFVVUV1djc/n49SpU6TTaZqamqiurqa5uZmzZ88yNTVFX18fxWKRqakpxsfH6evrIxgMMjo6SjAYZHx8nImJCZEyM5FIMDo6SqFQYGpqCpvNxunTp+np6eHAgQPs3LnzGr/3Bx98kL/927+lt7eXaDRKOp3mIx/5CN/5zncIBAI0NDQsCVIGqKqqYmJigoGBASoqKjAajQQCASYmJnA6nWK+/+zP/ozXXnuN3t5eFAoF0WiU/fv3CwE5l8sxNTXF6OgoarWaqqoqEScyPj7O0aNHKRaL9PT0EA6H+bM/+zMOHjwo3GbsdjvpdJqjR4+yYcMGRkdHGRsbIxAIcPDgQUwmE2NjY8zNzVFdXc22bdu4fPkyW7duFUKt3W7nj//4j/nmN78pdgtUKhVjY2Pcc889QhGsrq5m165dfP/736e5uRmDwQAg1lQikeCtt95Cr9cv2aFYjEajoaKigkceeYTXX3+dtrY2qqqqxM5RfX09DQ0NJJNJTpw4wcDAAF/84heJRCLL3vNEIsHAwACzs7NMT0/z8MMPMzg4yOzsrPCHv3jxIqVSifr6erq7u7njjjv49re/LXYCrFYryWRSKFKXLl1iamqKhoYGPB4Pzc3NHDlyRLiBVVRUUFFRwalTp8hkMjQ0NFBfXy/GWFdXR0NDA9FolJMnT4rnPBaLMTo6ytzcHBMTE0vWrcPhAP7N0vy5z32OY8eO8eSTT4qg2GAwSGtrKxs3biSTyfD666+jUChYt24dXq+X6elpZmdnxRjGxsZwOp00NjYyMzPD0NAQyWSScDjM/Pw8DQ0NTE9P88ADD4h4mkOHDnHq1ClmZ2cZHR2lsrKSyspK3njjDWpqati2bRvnzp3jwoULOBwOQqEQGzZsYH5+nvHxcU6fPi3cKpdjz549XLx4kbm5OVpaWsTvY2Nj9Pb2CuXZ5/NRU1ODRqMhEolw9uxZZmdneeSRR2hoaCAcDou5/fznP08ymWRkZITZ2VnGx8eZnJwUc7s4biUcDmMwGIjH4wQCAQqFAsPDw0xMTACIOKeFhQVUKhX19fWUy2XOnDnD1NQUIyMjBINBfD6fWP8yMu9VFOVblSJBRuY9wK0szS49GqVSSVh6pX+bTCZKpZIouiS5TUhWNMk9RUp3CFeUCikjTy6XQ6lUolKphLVosRVQakfaCpfakqxukjVvcQ2BYrEo2gSW/E0aj+RHLG3lL76GZOVanDVouWtIbkzSNaS/S+dI15TGtXgOpDFLY5J2NiTXEOk3aYzSb5JFWxKMJYukTqcjnU4La+xi69vi8Uh9Onz4MPF4XGTN6e3tpa+vj6amJjo7O8nn80tcEK5eB5KfvEajEbs30k7OcnMluXtJuwIrzfdya2mleZV+l9bjcuOV2l48jqvnRloHi9uQ3E9++tOf8sgjjwghZvEcxONxEXDq9XqXxAhI100kElit1iVjWNwnqR8ruU5Ix5dKJYLBILlcDpfLJeZGCtYuFApLcv4vd8+XW9vSsyZZ6KW5vHp+pXUnXV96xhYHf0rrQLJQL17fV6/bxeOV7vlqxrBc3QvpOMn9R3JXWfz+kHYQFr9nlhuDtDZVKhXHjx9ncnISrVbL3XffjVarXbJOpPdQJpMRgcnSboJUyE6617lcDoPBIOZDmvPrWcilNSi9ZxfP1+J0vtKuhvTfcvf4ZudWWnP5fF68q6TnRIq/WO59Kz27Go2GeDyOxWK5pgDerfw2ycjcKmQlQOZ9xbv1or0648PVwsXij9piAXrxv6Xflgt4XO63xSwW0n7XtpivN7arP6zSfN7Mb9L1VzMv09PTTE5OMj8/T0VFBZOTkyK4V/LNvlqYX8zVgvdqx74aP+Hl1tJvmmAwyIULF/D5fDQ3Ny+boUiKiQCWzUS13P16u0jCpCS4Xf2cSe3AzfliX/1MrnTMzYxjNWv5em3c7BgWtysJxIsFzxu9U1bil7/8JUNDQ1gsFj796U8ve83rrdWbGf/1xgTLP2eL+3C9ebtV60Pieucvbmux8WYxshIg815EdgeSkVkFKwlmy33gbvbfK/223N9/F4POrtfnq+d1pfm83m83MyeSf7fT6cRgMIigaMnl6UbXulkB/Wb6diuE5neKTqcTbhYrjVXa0VqJWzkOaUftVrezmvNu9vqrWcvvtI2V2l2uQvnbvW5HRweVlZVLdgCuvua7MX+Lud5ztto+vNvrY6W2rvdsyMi815CVABkZmd8b9Ho9er0er9f72+7KexKDwYDf7xcuHDK/fzQ2Nv62uyAjI/MbQlYCZGRW4Oqtb3j7Fuh3E6l/V/fxvdI/mVvPatyMbnSM5Mu8OFWnSqUSwcC3gkKhsKJPu4yMjIzMbxdZCZCRuQ7pdJpIJCJ8VNVqtci9/V5BSvUopceTiuIs5yIg8/5gcYDj2yWVSnH27Fluu+22d01AlyrPSuk4ZWRkZGTeO8hKgIzMdcjlcvzt3/4tJpOJ1tZWmpubOXbsGNFolH379i1b9Aau5P6em5sTaRDD4bDIt70448WtoFgsMjExwVe+8hW+9rWvYTQamZqaIhqNcscdd1BfX/8bF8Cef/55VCoV+/bto1wuMzIyQmVlpShq9uyzz/LJT34SnU73nhUOX3/9dQKBAF6vl9HRUT71qU+JQkKRSITh4WFaWlpYv369yLMvpUV0u93U1tby0ksv8b3vfY+Ojg7uuece9uzZg9VqXba93t5ejh07RkNDA8PDwzz44IMoFArm5uZIJpNcunSJxsZG2tvb6e/v59vf/rbIYuLxeHjggQe47777KBaLHD9+nLGxMTZt2rQkzaLE0NAQw8PDrFu3DoVCweuvv04ulyOdTjM9Pc1jjz1GqVTi4MGDxGIxXC4XqVSKe+65h5GREY4ePUooFGL//v20tbWhUCh45ZVXWFhYwO12MzY2xqc//Wnq6+sZHBxkZGSEPXv2vNu3TEZGRkbmJpCVABmZ62AymTCbzVitVtxuN3V1dTidTv7wD/+QtWvXLqsELCwsMD09LfLHA1y4cAGlUklbW9stVwK0Wi0Oh4NSqYTf78dms1EoFJifn+fVV1/l85///C1tT0qjdz0XD0m4zOfzTE5OcvnyZVFJ2WazcccddyybWea9wsDAAMPDw2g0GhobGzl9+jSDg4OEw2F0Oh0OhwOfz8crr7xCS0sLp0+fZm5ujh07diypDtza2sqnP/1p1qxZI5Sg5ZiYmGBwcJBgMMj999/P6dOnGRkZQalUks1m8Xg8VFVV8dZbb4kiTPfeey/Nzc3MzMygVqupr68XqRvPnj0rioxdTalUIhqNMj8/j81mY2Jigvn5eerq6rDb7Zw5c4YTJ04QiUSAKzntrVYr3//+99m7dy9erxeHw0E4HCaVSgFXLP4jIyMYjUYaGxvp6elhcHAQv99PJpNhbm6OXC4n0knKyMjIyPz2kZUAGZkVUCiuVPU0Go3o9Xq0Wi1qtZp8Pi+EmZmZGebn53E6nUQiEZqamhgdHeXSpUukUikWFhYwGAxcvHgRuOKqo9frKRaLzMzMAP9WzdNqtXLy5Em8Xi8mk4lCoUA8HqdYLFJRUSEqBLe1tS3pp1qtFv2TcvLncjlR2RhgamqKbDYrqnb6/X5RTROuBMwaDAaMRiOzs7MiHWM2m6WlpUUIxNlsVlQbdrvdnD17FrPZjNPpJJPJiFzuExMTaLVaTCYTJ06cYGZmhoaGBrRaLdlsluHhYVwuF0qlknA4TC6XQ6/Xixz+586do1Qq4Xa70Wq1pFIpGhoa0Ol0y96rbDbLwsICJ0+eFJZ5pVKJ0WjEYrFw8OBB6uvrMRgMIqd3e3v7ivd+YWGBRCKB2+3G5XJRKpUYHR3F4/FgNpspFotEo1HcbjdKpZLh4WFmZmbYu3cv4XCYiooKVCoVNpuN+vp6vF6vyHO+HNLugjTmcrnM5OQkFRUV2O12VCoVkUgEu92OTqfD6/WyZ88e/H4/x44dw+fziYJzU1NTaDQaMpnMim0lEgkAkQGmqqqKyspKotEooVBIuApJRaa0Wi2hUIhgMEhFRQUmkwmNRkOxWFwyXxaLBafTSalUYmRkhIqKCpFnf2pqaknBLBkZGRmZ3y6yEiAjswqy2SzxeJxQKMTIyAgPPPAAbrebyclJzpw5Q0tLC8ePH+fRRx9lcnKS/v5+9Ho9CwsLuFwuxsfHKRQK1NXV4fF4mJiY4NKlS6L6JMD69ev57ne/y549e6ivryeZTDI4OEg0GuXOO+9kdnaWbDZ7jRKwmGAwSDgcZmJigmw2y969ewE4fvw42WyWUqlEMpmkVCoxNDREOp1Gp9Nhs9lwOp0oFAqGh4exWCwoFArGx8fx+/28+eabVFdXEw6H6e/vZ8uWLajVah5//HEaGhrYsGEDs7Oz1NfXU1dXx3PPPYfZbKampoZz584BMD8/j91uJxQK8fjjj4sxTk1NUSgUcDqdnDt3Drvdzi9/+UtKpRIbNmzA7XZz7tw5HnnkkRWVgEwmw8jICP/zf/5P/tN/+k/E43FRsGrjxo384z/+Iw8//DA+n49oNMrCwoJQSpazTGs0GrFTkclkKBaLTE9Ps2HDBgwGA4ODgwwNDXH//fej0WgIh8PMzMwwMzPD4OAgRqMRnU5HsVgkkUgwOTnJ5OQkd955J2az+Zq6E4vz4Evtzc/P09jYSGNjI+Pj4/T393P33Xfj8XiwWCyYTCYikYiorGo0GolEIkxPT9PU1ER/f/+ycxUIBEgmk0JBrKysxOFwUC6XCQQCZDIZqqqqmJmZobu7W7hsabVaAoEALpdr2fmSCictnq9cLofNZsNms3H58mVZCZCRkZF5D/G7VXVIRua3RDQaZXZ2lng8zq5du3jssceorq6mrq6O2267DbvdzsGDB8lmszQ2NrJp0yba29tpa2vD7XbT0NDA2rVr2bBhA16vl7/7u79Do9FQU1ODWq3m7NmzNDY2Ui6XWbt2Lffddx/3338/27ZtQ6vV0tHRgUajYXJy8rr9rKiowO12UygUCIVCQmD76U9/yuzsLH6/n+rqat544w3+7u/+jpaWFh566CF27NhBfX09//t//2/8fj+33XYbfr+fsbExLl26xKFDh3A4HHi9XjKZDPfccw/19fVotVqqq6vZsGEDLS0tnDp1CqfTKQRVo9HItm3baG9vp729nYqKCmw2Gy0tLZTLZX70ox+Rz+fZvn073d3djI+PMz4+jsfjwe/3U1NTw/bt23nrrbeE68ly2Gw24aq1c+dODhw4IGIP7HY79fX1bNiwgZ07d+Lz+bh06RKDg4MrWuY3btyIz+cjHo9z4cIFJiYmRDCuzWYTwvlLL71EMBgkkUig1WrFPPzwhz9kbm6O1tZW9u/fz5YtW/jhD3/I6OgoIyMjnD17dsl/FouFqqoqisUi586dY3x8XLjy6HQ6GhsbaWlp4a233hI7SOl0mmeffZbm5maMRiPBYFAoBIszRl09xnA4TLlcFtV+pWrL0q7Wzp076ejoEMdLSpJUpXo5Nm3ahM/nIxaLifmSMBqNYodJRkZGRua9g7wTICOzClwuF01NTbS3twuhKBAI8NprrzE8PMxXvvIVDAYD0WiUbDYLXEmP2N/fT3Nzs0jZmcvl6O/vp1gs0tXVRWtrK1qtlrvuugu4Uszqamu3x+MRVtYbFfg2Go04nU6cTieXLl3iwoULrFu3DoPBQHNzMzt27KBcLpNOp3nuueeEBVqv1wNXMsYsrrIp/dbd3c3Y2Bgul4s/+IM/EH+TAp31ej0KhWJZIVG61vj4+DVFgNLptPChl45NpVIUi0WMRiMOhwO4tmLzalipcqpKpRKuTSvNp0Kh4L777qNUKpHNZnnllVfYvHkzv/zlL2lqamL37t3cf//9bN26lQ9+8IPU1NRgMplQKBSYTCYWFhZ47rnnmJycpL29naqqKjKZDAqFgrq6OlpbW69pr6qqik2bNqHX63nhhRfo7u5mcHCQ8+fP84lPfIKHH36Yffv20dDQQGdnJ6lUip///Oc8+OCD6HQ65ubmmJmZYWpqip6eHmZmZqirq6O2thabzSba0mq1YkdIYmxsjIWFBSoqKrj77rvp6+vD7/eLnQmtVksymcTv969YmOrBBx+kXC6TSqV47bXX2Lx5M2azmWAwSCqVwmw23/Q9lJGRkZF595CVABmZFSiVSszPzzM8PIxCocBoNLJ27VohzKRSKSGcSlbl3t5e6uvrMRqNnDlzhoqKChobG6mtrSUQCHDixAn8fj+f+9znuHDhAgsLC3i9XvL5PD6fT7gSVVdXYzQaOX/+PIODg4yNjTE1NcXk5CR9fX20trYKITcWizE4OEgoFOLIkSPs2bOHyspKqqureeuttygUCtx+++2k02kOHjyI3W7HaDTy4Q9/mL6+PkKhED6fD51Ox6OPPsrAwACxWEzEFKxbt46DBw9y5swZ1Go1brcbj8eDUqlkZmaGsbEx+vr6RF9HRkYYHx9HrVYzOztLQ0MDP/nJTzCbzdhsNnK5HENDQ/T29vLQQw8RiUQ4cuQIFRUVGAwGmpqaePPNNwmFQhiNRjKZDIFAgNnZWTKZjBBeu7u7lygrpVKJRCLBuXPniEaj2O127rzzTnHMhQsXhPuMz+ejra2Np59+ms2bN+P1epcoX4VCQWTGaW9vx+1209jYyNjYGIVCgeHhYYaHh7n33nsxm800NzcTCAS4dOkSPT09PPDAAyIuYHp6mkQiwdq1a/F4PMJHfjGFQoHe3l5OnDjB3r17cTgc1NfXo9FomJiYYGJigv7+fnbs2EF1dTVwJStUIBBAq9WiVCqprKzEbreTSCR44403SKfTyypltbW1xONxZmdnKZfLBINB/tt/+2/Mz8+j1WqxWCx89rOf5e6772ZoaIjLly9TU1NDfX09LpeL2dlZ8Xu5XKaurg6bzcZrr71GOp2mpaUFt9tNU1MTBoOBWCxGPB6nqanpVj2aMjIyMjK3AFkJkJFZAUnwv/fee4ErvtOLM9o4nU7Wr19PQ0MDLpeLT33qUzQ3N+NyuXC73SJji1KppKOjg8rKSsrlshAE7Xa7CJ5VKpWYzWY+9alPiQxCOp2OrVu30traSlVVFTt27KCtrU1YxyUkl5w/+ZM/obm5Gb1eL9oNhUJ4PB527Ngh0klKAcB79uwhHo+j0WiwWq0i4NTj8YjAZ7vdTqFQwGAw0NraKv595MgR9u3bx0c+8hF8Ph8VFRVs2LCBqqoqPB4P+/fvR6FQYLPZsNvt7N27l+rqapxOJ8VikYcffpimpiacTqcIDDaZTOzbtw+3282dd95JPp8XmWi+8IUviPmXMuxc7csvBXI7HA6MRiNer3eJ9dnlcuF0OrHb7dTW1opMNmaz+Zp8+0qlkurqaqxWK3q9nj179mA2m1m7di2lUgmNRoPT6eQjH/kIVquVjo4OIfS3tLSI60uxJOVymYcffhiHw3GNAiC153Q6aW5uRqlUsmvXLtxut8hEpNFosNvtHDhwgLq6OuBK5qpHH31UxDXodDo0Gg06nY79+/eTSqVoaWkRuzwSNpsNo9EodmD0ej133HEH6XRaxCVUV1eL4N9CoYBWq2Xfvn1otVrMZjMbNmyguroah8OBwWBApVJRU1NDKpXCYDCwZ88ejEaj2EnI5XL4/f6bev5kZGRkZN5dFOUb+RfIyPwOcToOm07BqU2w0fLutye56JRKJVQqlRBMS6USpVIJtfrf9OzlfisUCpTL5XclXWYulyMcDuPxeFAoFKKfi9srFovCJWZxv/L5POVyGbVazdzcHM899xxbt27F5/MRDAZ59tln+cpXvrLknJUol8sUi8Ul83M1xWKRQqGwYuDvjSgUCoyOjvLnf/7nfPvb38ZisYi+JZNJ/uIv/oKPfvSjNDU1YbPZVjXfuVxO/Od0Opf8nslkyOfzIpgargQQx2IxTCYTRqNRuH+l02mR5vN66TELhQK5XI5UKoXL5RLHFotFUqkU2WwWh8MhFBbJpcdsNt902s3Lly8zODjIrl27sNlsK56fz+eX9P9G85XNZikUCkJRTSQSXLx4UaQ+lZH5feU3/W2SkVkN8k6AjMw7QPL1v9q6q1QqV/XbaoTot4tWq11S3Xi5fq5UcVYSksvlMm63G6fTSSAQIBwOUywW2bRp06oFT4VCccNxqlSqd1T9NplMEg6HcbvdBAIBsbuSz+dJJpPo9Xqmpqbw+/2rVri0Wu2y/u8r/a7X66+xuq907HKo1eol2aIkVCoVFotFZPORUCqV1/y2Wqqrq9FqtVy6dOm6FYMXZ0m6EcuNdXR0FJ1Ox5o1a95WP2VkZGRk3j3knQCZ9xWSteVHHdBhvPHxMtfnRq+H90rhp+X6Ke1+LPf77zvlcplSuUQumxNB3e8G6UwalVIlFwmT+b2nNwWf6pV3AmTeW8g7ATLvK9waMCqvvGxlbgW/K4LbSv38Xen/bxoFoAKWr2B863i3ry8j87uDUXnlGyUj815BrhMg877Cr4ferfAvbVl03HxaSRkZGRkZmVuNXgkvr7vyjZKRea8g7wTIvO/w62FUkSeLjr/UDnF7o4/pqWkCgQAWq4UK35WCWhcuXiCdSlNZVUlDfcM11ymXy6TSKc6ePYtGo8FisWA2mykWrqRd9Pq8GPTvrqWzXC4zOzfLxQsXcbqcNDQ0YLfZr3tOOpNmcnKS2cAsNpsVh9NJqXglINhoNN4wwPOdMhOYYaB/AK1WS1dXFwDHjh3DV+GjqrIKk9lEIBBgYWGBzo5O9Hr9shlzJEqlEiMjI5Qpo1FryBfyhMNhNm/avCoXEyl16NFjR1m7Zi2VlZXveIzlcpl8Pk9vby/RWBS3yy0CbLO5LH6/H5Xy+jEO5XKZZCrJubPn0Gg1uN1uKnwVIvtRNpclEU9QLBbxer3LjiuVTtHT04PBYMDn9eH2uFdck+Vymbm5OXp7ezGZTTQ3NV+Taepq0pk0gUCAiYkJbFYbTc1X0n6qlCqKpSK5bI6FhQUqqypRq679nKTTv16Ls7MiixLA4OAAqVSa2traZce2mEKxQCwaY3RslEQ8IaoOJxIJcvkc69etX3J8NpclHA5jMppEbIg0X8lUkp6eHswmMxarBb1OTyabIZPJ0NbaJmIaJDeykZERKioqronTACiWikQjUcbGx4hFY3R2dmK321cdQ1Eo5AmFwkxOTRKPxdmwYQNGk3HZebxVFEtXgsx7e3spl8r46/x4PB6SiSSXei/R0NCAw+FAp702QD+by1IsFJedi+WQCsdVVVdRXVW9ZF6uJAsoMDI6SigYQqFQ0NLSgt1u/424jZVKpSuVs1NJNBoN6XSaSCTC9tu2r/r8RCLB0aNHWb9+/Q3XsOQKpJPNrjLvMWQlQOZ9Sbl05SN+X1c9neoMPYee4+WXXqKrq4uaO+9knX8vlXUugsEgFCJsWMZHs1yGOEWefukpnE4nlV1dNDU10dffx/z8POv376fGXvOOMvtIwsZKH75yGUaDaf7+e9/itttu4/7mz1JpsV/3mkllicDwOYYOHmT9+vW07djBwMgAwWAQncdDZ9Wd1wSwvp0+r9Tv3skITz75PSwWCx9e9/9FpVLxze//L+6++24qb7+dWkctmblhJi9coGNtAw6LnuvoABQKJQ6++q88/PDD6PUaensHOfXii3zp9s2sRl4olSBcyPPdX/yIXd4vsbH1nSsBpVKZbLbIhcsn6Dt1Cs+uXVS2tTE3N8fAuXPc/+vicTe6Rrxc5J+ffQKv10vDtm2sa/AgZTUNhZIMzQ+TyWTY2LScEgCxcoEfPfVDGhoaaN+5k/V1Tkym5dsrl2EslOZHP/kH6uvrebD131Ftub4SkFSWeH38Er1PP826devoXlOHxQwqFeRyRYKpCHN9J1nbcC8Gw7Wfk4SiyOTAafoOHmTdunWs39xGMpnk0sVjpONxmqrvo8VyfQEqny8zMrfAuZOvc/78eXb90R8BcHngMvNTU2zctX7J8aFQkrMTvdT4/dR561CrryyuYrFMOJ/l+z//Hu3t7VSvvaIQzs7Ncu7cOR7u9GOzSErAlXV+vucgjfv3U2W5VvAtFMqMzAW5ePogPadO8dBf/AXVJiurTXCVz0PvRIBLJ1/n3LlzfHJrB06zkVuRK2Cl90qxCNFiniPHXmFgYIDqhx+m3Xc7SVWKl19/ljtrPkWdwcrVcn6pVGI6Ok8qlaLVt7TQ3UrtjwVDPPfqv6Jrbubuj30Mq2WxEgCFAsyMX2LqxAkKhQIfXPOneC2s6pm+3piXG/fV5PNFLp94lbVr1+Jz+7h0aZi3/vVf+KN9q1UCrrxTvvPUD9hX71r2+ZSR+V1AVgJk3veUSiXuv/9+9u/fT2tr63WtzotRKBRYrVaqqqquCGkNDXR1ddHZ2ck3vvENzp07ByAsk1dzdeXdlfoGK2fpUSgUNDQ04Ha7qaysXJUV22Qy4Xa7qampEdVp29raeOaZZxgdHeXMmTNs27bthtdZ3IfFH9jFKVGXG2NHRwetra0izajT6aStrY14PE4sFkOpVGIymfjSl76ETqe74RyVy2XOnDnDRz7yESoqKlAqleRyOfG31fTf5XLhcDjQarWrOufqcV3dR6VSiVarpbm5mdnZWZqbm9m0aRMLCwt85Stf4Q//8A9vqAQolUpsNhtVVVXU19dTU1OzpK6Bw+Fg8+bNNzy/urqalpYWqqqqMK2kAfx6DPX19Xi9Xnw+nyg6dj2ktVRbW0traysWi0WsVY1GQ0VFBQ899NCK99BsNuPxePD7/TQ3N1Mulzl69Ch79uyhvr5+VRmhpNoP7e3tLCws0N7eDlyZn0gkcs39dDgc3H777ddcR6VS4XK58Pv9NDU10draSl1dHXV1dRiNxmvWhkKh4DOf+cyKY1Or1djtdlpaWpibm6OiomLFFLfLCagajQaXy0VzczOhUEikf70VuToWP6OLUSqV2O12tm7dSqlUYnR0lFOnTrFz507uuOMOmpqa0Gg01/Qhm81y4cIF5ubmaGlpueadcPUclUoldDodLS0tPP300zz44INYLBZxnFTTo6amRlSUXpzJ7HpzsNJ79er30tVcXVjw0KFD7N69G6fTSWtrKwcOHLhh24uvJVVmv947RQ6Gl3mvIysBMr8XBINB4ZZQKpXYuXPnO7rehg0bOHXqFEqlEpVKxc9//nPa29sJhULU19cTDAb52c9+xuc//3mGhoZYu3YtTU1NqFQqfvrTn+J2uwkGg/h8PlpbW38jKRTr6+sJhUK8+OKLbNq0ie9///vU1NSQzWbJ5XIcOHCAv/7rv6ZcLtPS0oLFYmFiYoIvfelLHD16lGg0ytTUFFNTU3R1dXHfffetmFlm06ZNDA0N8fLLL/MHf/AH3H777Tz++ONUVlayZs0acrncqmsCKBQKKioq+PznP09zczN79uzhnnvuAeDnP/85FouFQqFANptly5YtVFVV8YMf/ACdTofNZmN+fp5HH32UXC7H6dOnGR8fJ5FIsGPHDmpra3nyyScplUrYbDZisRhbtmzhv/23/0ZrayuNjY1YLBb27du3Yv/C4TBDQ0PkcjlGRkb46le/umqXievR09PDiV9bSf/o19bv9xLRaJRTp07x3HPP8ed//ufY7fYVjy2VSkSjUf6P/+P/4E/+5E/wer2rVsYXX2Nubo7Dhw8TCoXw+/2sWbOGX/3qV+RyOaanp4VLzssvv0xjYyP333//ssrY9PQ08XicM2fO4PP52LhxIz/84Q+xWCzo9XoymQzbt2/nP/2n/8Sf/dmfvePnc3x8nJmZGTQaDRs3blxROPzud7/L9PQ0drudtWvXcujQIdatW3fFvclkYv369dTV1fG//tf/or6+nnK5jFar5d577+Xw4cMkEgkGBwfJZrO0tbWxd+9efvCDHwjlWaPR8OCDDwLwxS9+kccff5xnnnlmSTXnmZkZ+vr6GBgYwGq14vP5iMfjHD9+nGg0SmtrK9u2baOnp4d8Pi+qQy9mamqKhYUFHnroIX76058SDodxOByr3oEMhUIMDQ1x5swZdDodra2t1NbW8tZbb/GrX/2Kz3zmM5w7d479+/cTCAQYGBggm82KSuDSv61WK729vfzpn/7pkh1blUrF3Xffzac+9Snq6urYtWsXd955J+VymcOHDzM2NkaxWMRut9PY2MjIyAgqleqKS+mv3wc2m01cb3R0lIsXL5LL5RgbG+O+++6jtrb2ukq5jMx7AdlDTeZ9j9FopKOjgz179tDe3s6Pf/xjYrGYsMK/HaS890NDQxw+fJhsNovZbGZ4eJhSqYTdbiefz9Pd3U1NTQ2BQIDBwUFmZmZYWFhg165dorBUQ8O18QjvBlKdgkwmw4svvohWq6WpqQm/30+hUOCVV16ho6MDnU5HZWUlbrebvr4+AJ5//nksFgv19fUYDAa6u7uva8Xv6urC4XDwxhtv0Nvby6ZNm3C5XGQyGYLBoLBQrsZSplKp+KM/+iP+43/8j2zfvp2JiQm+/e1vEwgEOHv2LC6Xi40bN1JdXc13vvMdXnvtNZRKJU1NTWzZsoXt269s8ScSCWpra2lvb8fhcHDx4kVeeOEF5ufnhUB6+fJl/H4/+Xye5uZm9u7dy5YtW67bP6PRiNPpRK/Xs7CwgM/ne0cWwHK5TCQSEYXNksnkTZ8v1XN4t0in0wCsWbOGaDR6Q+tpJpNhfHycj33sY/zsZz/jwoULN92mQqHAYDAIv3uFQkE8HucHP/gBNpsNj8dDMBhkYmKC1tZWMpkM09PT9PX1cfnyZSYmJsS1jEYjVqsVo9FIPp/npZdeIhqNotFoyGazDA0NiViAm61fIRWNW4zP56Ozs5PW1uu70jQ2NuLxeDCbzXR0dHDmzBlaWlpoampCqVTS19eHSqVi69atVFdXMzs7y8mTJykWizz99NM0NTXh9Xqx2+00NzfzyiuvkEwm0el0JBIJhoaGRFsGg4G77rqLtWvX8q1vfUvcw5deeomenh58Ph8+n48TJ05QU1NDY2Mj1dXVIs6npaWFjo4OqqqqrhlHKBSiv7+fS5cuUVVVxfHjx5mZmVnV/Em7hZLBwOVy8frrr5NIJHA6nfh8PrxeLx/+8IcZHx8nHo9TVVUlKlKr1WoGBwcZGxtDp9ORTCa5fPkyFy9e5MKFCwwPD6NSqbjzzjv5xje+wUMPPUQkEuHb3/42+XyeJ554goaGBu666y42btxIZWWleE9Kz/j58+eX9Lm3t5dnn30Wl8uF1+ult7eXQCCwqvHKyPw2kXcCZN739Pf3o9VqcblcqNVqJiYmSKVS70gJGBkZEdvX8Xgcj8dDQ0MDmUwGv9/P7Owser0eh8OB0WgkFotRKBTQaDTkcjnm5+dpa2ujvr5+RWtRPp9nenqa2tpaUZn4nTA/f8Wnt6WlhZmZGfR6PWazWVQRDgQC+P1+LBYLVqsVhUJBKpUCrrhYSMJoTU0NlZWVKJXKFYVdl8uFyWRiYWGBQCDAmjVraGtrIxaLcfLkyeu6uVxNuVwmlUqxZs0aqqurOX/+PIcOHSKRSBCPx9HpdNjtdubn5xkZGaGtrQ2lUonZbMblcglLsFqtxmq1YrPZ0Ol0zM7Oks1mMZlMVFdXU1lZiVqtxmAwCGHT5XLdsH8ajQaTySQEgEuXLrF79+5Vj+/qsZZKJfr7++ns7Fy1+9Li84vFIn19faxbt06MvVgsMjk5SU1NzTteR5JFPplM0tDQINbP9VCr1bhcLjZs2MCRI0cYGRnB7XbT0tKy6nYVCgV6vZ7KykpMJpPYAQoGgzQ0NFBdXU02myWTyYi1EQ6HSSQSlEolXC4XNTU1wBUloKqqCo/HQ6FQYGBgAJvNRk1NDSaTCafTiU6nQ61W37RCFwqFmJubY/369eI3nU63qp0vaVw6nQ6r1Uo+n8dut5PLXQnAjkajhEIhBgYG2Lx5M1qtllgsRiaTwel0Xon7+fW5Xq+XQ4cO4XQ6qa2tpaamZolyIrmHxWIxTp8+zdmzZ9mxYwfz8/OUy2Wam5tFH3w+HyaTCZVKJQwei13XFpPP51GpVFitViorKzlw4ADHjh2jra1tVQaPoaEhCoUChUKBSCSC3+/njTfeEO8fo9GIw+GgsrKS4eFhUqkU+XwenU5He3u7MNCYzWZaWlrQaDQUi0Xm5ubI5XI4HA7q6+vFe6mmpgadTifWy9TUFCaTCZ/PJyqZX7hwgaamJoxGI5lMhkgkQjabFX1Op9Mkk0mhhGUymRXnR0bmvYSsBMi875menhZbwRaL5Ya+2hLlcplcLkcymSQej4sPcC6XY3Z2lp07d6JSqYQwabVaWb9+PTqdjsnJSXG+JJCUy2VMJhOJRIKTJ0/S0dEhdgxSqRSZTAa32y18WrPZLD09PVeydeh0QiAsFAosLCzg9XqFcmE2m8W4crmc+CjFYjHC4TD5fJ7Z2VmUSiWbNm2iv7+fWCxGIpEgmUyKre9E4ko2mlwuR6lUIp1Ok06nqaurY3JyEgCn0ymEvomJCUwmEw6HY4mwpNPpsFgswpKtVCrp7u7m4MGDnDt3jg984APi2HA4TKlUwuFwkEgkSKfTwn9fug+HDx/mnnvuoaKiglQqxcDAABqNBp1OJz7KiUQCn8+H3W5ndnaWRCJBLBYjn8+Lucvn82QyGeLxOPF4nIqKCiHUVFRU4HA4yGQyAEKg1Gq11/RLEtYlAaxUKmG1WmlsbOS5557jIx/5CC6Xi1wuRy6Xw+VyMTMzI+6T5HedzWZJpVJifc3PzxMMBhkdHRVjzWaz5PN55ubmsNls6PV61Gq1OF9an5FIhLm5OYLBIGNjY7S3t5PNZimXyxgMBk6fPo3NZkOj0YgxFItFFhYWcLlcJJNJcrkcZrNZuDPl83mxluLxOKFQiGg0ysTEBIVCAbfbTTabFcJ4qVS6Zi1mMhny+bxQyrq7uxkYGCCTyYhYjZmZGZxOJwqFgnQ6TS6Xw+PxoFAoKJVK5HI5sdb1ej0ejwe1Ws3c3Bw1NTVC4VYoFITDYWZmZkgkEiiVStRqNaVSCaVSKeY7k8lgMpmoqamhWCzidrtJpVJYLBaqqqrw+XxkMleyBknjz+fz1/Qrm80SjUZJpVKEw2EikQiDg4MEAgHWrVvH9PQ0Ho9HjEGhUAjhsFgsirUo9SmRSJDL5VCr1WK3JZfLiTWSTCYJBoOcOXOGtWvXotFoKJVKBINBmpqauHjxIhqNhtraWgDcbjfJZBKLxYLT6RRtzs/PE4vFcLvd1NfXC+WsWCzicrkolUpotVrsdjsbN24Uz2I6nWZqagqXy0UikaBcLqPRaDAYDGI9jY+PCx//lpYWnE4nP/nJTxgbG6Orqwur1SqeH+ndmMlkCIVCJJNJLl68KHz70+k0LS0tFAoFotEo0WiUTCYjYoK8Xi/T09NMTk6KHcFCoYDdbhfvJavVSjQaFe9gtVpNsVjk2LFj2Gw2HA4HTU1N4t3u8XiEQqDVaikUChw/fhyn04lKpUKpVBIKhYhEIqRSKVKplNg9ld570jMnI/NeR1YCZN73dHR0MDc3RyAQIBQKsXnzZpxOJ+Fw+LrnSSkVJycniUQiwJWt6rm5Odra2ujs7MThcDA+Ps7jjz/O5cuXicVieDwe5ubmCIfDjI2NMTAwwPz8PE6nk+rqauEbPD8/LwTngYEBhoaG+OhHPyo+Hul0miNHjuD3+/H7/Xi9XorFIvF4nF/96ld87GMf48SJE0QiEdavXy9cDSKRCDMzM4yNjaHX68UWtlqtZs2aNaxZs4bGxkb+4R/+gcHBQZLJJNlsloceeoi///u/Z3Z2VvgQh0Ih4UMvWd0cDgcej4ft27fzox/9iA0bNrB///5rLKaVlZXs2rVLCJTr169nenqa/v7+JVbREydOkMvl2L9/PxcuXGBoaIi77rpLuBmUSqUrKUZ9PpxOJ5lMhsbGRurq6mhsbGR+fp5AIEAkEuFzn/ucGNvly5fF2Do7O4VwKFl+w+Ewn/jEJ3jyyScZGBggn8+TTCZpbGwkGAwyPj5OIBCgsrJS9Ovuu++msrJSKEi9vb1MT08zNzdHa2srVVVVLCwscO7cOdrb28X6+eAHP8hTTz3F5s2baW5uFoKW9PdsNkupVGJ8fJxXXnmFAwcOMD4+zuTkpBDwn3zySXbu3ElTUxN2u51iscjs7CxTU1NCsOnt7eXw4cMcOHCAbDYrBKqtW7dy5MgRsYtTVVUlhLBf/epXPPzww5w/f57JyUk2bdpEW1sbCoWCSCRCIBBgfHwcq9WKWq3m4MGDwi2kt7eXaDRKIpHgwoULZLNZ1q1bt2QtSn00Go3cddddbNq0iZdffpmjR49SWVnJvffeyy9+8QsefPBBVCoV/f39TE5O8slPfhKFQkE+nycUCnH58mVmZmYYHR2lvb0dg8GAxWLhwIEDHD58GLfbLXasBgauZMN65JFHsFqtABQKBaanp5mdnUWlUuHxeKisrMTlcnHPPffw93//9/T19REOh8lmszQ1NREMBgkEAqhUKoLBIFNTUzzyyCOiXwsLC1y4cIFAIMCpU6eYnJwkGAxit9splUr8/Oc/55FHHiGZTIrnftOmTcAVJXN2dpbLly8zOztLIBBgeHiYsbExrFYr09PTRCIRJiYmGBsbExZySWGfmZkRCvTQ0BDJZFK470UiEcxmM/fccw/f+ta36Ovrw2KxUCqV8Pv9vP7667jdbrq7u6mqquKjH/0oo6OjKJVK7r77bnp7e3n11VfZuHEjpVKJrq4uoZjMzMzQ3d1Nf3+/EJqbm5sBSKVS/OIXv0Cj0bB58+YraXCTSZLJJBcuXKCurk6452UyGYaGhhgaGqJUKnH8+HHOnj0rFAin04nFYqG3t1cYMYLBILOzs5w5c4ba2lq0Wq1wC6yurkar1fLQQw9RVVVFOBymp6eHdDrN7t27qaurE65d2WyW3t5eXC4XlZWVwrJfU1PDH/zBHwhFrqqqCqvVKt5XmUyGhYUFwuEwa9asYX5+nqmpKSoqKti2bRsHDx4UfZeUAhmZ9zKK8q1IRSAj8x7jjek4t/dbOL6hyGarUljzMpmMcAmYmJi4kiKUK4G+V3OzbhjpdBqDwSCE4auzWFy+fJnz58/T2dlJZ2cng4ODDA8Po1aruf322zl//jxr1qxZkp2jWCwSCATweDzCGrcYyZIoWetvtt+ZTEZkullpXAqFgv/n//l/eOihh+jo6GBhYYH/+T//J3/5l3/JyMgINpsNr9e7TDrCIvl8HrVaLT6+khCzOEDw6v6eP3+ehoYGLBaL+Ltk8U6n06jVauF3L+22AMJPXCKfz4ssJYvHshxXH7sci/u10hyXy2Xi8Tj5fB6r1bokGFGypNvtdux2+0275cTjcYLBIG63+7p9WAkpN7oUv3A12WxWWGbr6+uvyQCzEtK8vt21eHU76XSagYEBuru7r9uHxX/L5/MAwlJ79XGr7Yu0lpZ7HlKpFIODgzfs1424mf6stGaLxaL4m1KppFAo8LWvfY2vfOUruN1uLl26xDPPPMN//I//Ebhyb6XA4NUi7XQstmiXSiVKpZJwuVntmBaPY7XjL5VKFAoFsWu13Dx85zvfobm5ma1bt6JSqfjud7/LXXfdJVx88vn8krW+uO1sNkuxWCQUCqFUKvH5fGKHrVAoiOMXKw7Su2y5/iw+T3Ijk445HYdNp+DUJti4TDpqGZnfFvJOgMz7mvn5efKGK0KPTqdb8uGRtu9Xympys77AkgJw9cdOQrK+DgwMkEqlmJubu1IgqqKCubk54WcvnVsul1GpVFRUVKBSqZbtz8LCAqVSaUm6x5vpt/SBXOkc6fc1a9awsLDAqVOnyOVyrFu3DqVSeV1/cKVSuUSoVigUqNXqFQUIybLt9XqvEcJ0Oh0ajUYU5Fo8x4uPXTwOSeBZ6X4s5upjF7O4X9J4rnctSUBfHDNRLpcZGxujoaFB7IzczH0qFouMjo7S3Nx8w3u2HFJ/fD7fimspFAqRyWSora1d1ZxJSMdIvuRvZy1Kx0kuXBUVFau6hvScLBZub7SWr4e0lq4+VlKOVtuv1XAzc7sY6b2wGKVSyfr16xkcHGR0dJRUKkVXV5c4fzXr9uo2lErlkrUm/bb4HbXaMd3MsYvHpNVqr5uqt7u7m3Q6TU9PDyqVCrPZjNfrFQUIV1rrgPgeSGmXFycrWPyOunoOpd+Wu+5q1qGMzHsJWQmQeV+i0V55GScTSYpF2zVCpeRzarFYlnzY3y4rfRQWYzQaRdo4g8Egso8YjUbxYV9sxZSud7XQvBip4uv1jrlRv1fDli1bhABQKpWoq6sTGTyu/lBf79o3EuhsNhsqlWrZj+n1ainczO83e+zift1onq+3Dqqrq29YHXkllEol1dXV6HS6t3X+ataSzWbDbDa/7eJ3kk/+212LgAjyvpkx3kph63oC42IB+LfJcn1UKpVs375dPIvSTsH1zllNG9cTwN9tVtN2S0sLuVxOWOalAObrJS1YfD1pJ+V6bd+oD6v9u4zMexFZCZB5XyIJMtcTuhwOB+VyWQjSv4k+aTQa4aN8K/hNZaBYqbDU4lzZ7xSpiNh7jVvRL4XiSnGhd3L+ajIVvRPe6Rgl9613gvSMvNd4r/ZLQqlUihSZv0+8k2dKRkZGVgJk3qeolFesxlesp9f+XbKsXg8pLedii5pkCZdYyZL0biD1pVgsCmvrO7U+SRbDq62cV49dsnD/pq1dUh+kOZf6cCvnXPLj/U1Zeq92obqR1fJ6SPMjjWGx+8PVbSw+Hq7M5eK1LPVjsXvW4mOv5wbydpFiOlbaTboV5PN54dstW2tlZGRk/g1ZCZCRuQ7pdJp4PC5S5pnNZqLRKMViEZVKhclkWmJBfTeFDCmby9TUFI2NjUt8VK/2y19tP2ZnZykWi5jN5iU7IlL2m2g0ikKhwGg0YjKZfuPW0GKxSCwWEznClUolBoNhSV9XGutq3SFmZmZQKBRYrdZbukuzEolEgkQiAVyxMLtcrre1bqTxxeNxBgcH0Wg0eL1ezGYzhUJBpC7V6XTCVScajZLNZkWaUCnrFVyx5JtMJqFgBoNBESgr5fmXAidvlpV823O5HCdPnmTbtm03XZRrtUhZbxoaGmQlQEZGRmYRshIgI3Md8vk83/zmN9FqtWzevJm77rqLcDjMxz72Mb761a+yd+9ekskkP/3pT/njP/7jd10JkKrl/t//9/+N3+8XQnkikeCHP/whn/nMZzAajavux7lz55iensblcvHQQw8taSsQCPDcc89x5MgRvv71r/9W8l6XSiUikQif/vSn+f/8f/4/1NTUEI/HGRoawufzsW/fvhUz+kj5xw0GA2azecU5OXToEKlUisbGRu644453czgARKNRXnnlFb797W/zxBNP4HA43tYORDqd5rnnniMcDnP33Xej1+vp7e3lBz/4Af/hP/wHnn32WUKhEB0dHXz2s59FoVAwMDDAsWPHqKurY/369Tz//PMcO3aMz33uc+h0OiYmJujr6+PP/uzPWFhY4P/9f/9fHA4Hjz76KIODg7z88st85jOfwe/3iyJT5XKZqakptmzZQlNTE7lcjh//+Me0trYyPT1NR0fHssXhpqen6enpYdu2bSiVSi5cuMDCwgKJRIKJiQkeeOAB3G43p0+fZmJigsrKSuLxOPfccw/RaJShoSGGh4fR6XR0dHTQ2NhIT08PAwMD1NTUMDQ0xCc/+Ulqa2sZGxvjxRdf5N57770Vt1BGRkbmfcFvP8pJRuY9jNlsxm634/P5RPVZKT+1x+PBarXicDj44Ac/+K5bGVUqFQaDAafTeU21Y4PBwAc+8AH0ev1N9cPtdmO1WikWi9e0ZbFYqKmpwWq1Yrfbb9kugOTesxqLslqtFulRq6uraWxsZN26dezdu5fXXnuNyclJUdzraoaGhjh16pTYRVgJj8eDyWS6Zg7eLTweDzU1NahUKqqqqt6WBTydTjM+Ps4LL7zAXXfdRUVFBU6nk8bGRrZs2YLBYOC+++7DYDAwPT0tlIx0Os3evXvZtm0bVqtVBKpXVVXR1taG2+3m4sWLjI2NLbn3TU1NdHZ2Mjc3R19fnyhq9sorr7Bx40a6u7vp7e3l+eef5+LFi0xPT7NmzRqhIIyNjS3pf6lUIplMEggEsNvtKBQKzpw5QyKRoLu7G5/Px89+9jOeeeYZYrEYTU1NtLa28uabb5JMJnn++ecZHx/njjvuYNeuXTzxxBMcO3aMoaEhstksXV1dRKNRBgYGRDEzqWKsnBVbRkZG5gryToCMzApImU70ej25XI6FhQVGR0fF3/R6vSj4dPz4caqrqxkfHxcVT/P5PI2NjZw7d04Iejqdjo0bN3LmzBlRIVelUtHW1iYK51gsFjweD06nk3Q6zfz8PAaDAaPRSDgcRqfTMTY2JvJom0wmnE4nJ06cYPfu3VitVgKBADMzM7jdboLBIGvWrGF6eppYLIbD4SAUCrFu3Tr0er2oirkYqdKq0WgUx/T29oqiY7W1tYyMjOD1egFExdyamhrOnTuHwWCgWCySTCbZuHGjEFqlfOVSoKxUTTaXy1EoFGhoaMBmswmhVUozqtFohEuSVqtFq9WiaTAr/wAAklRJREFU0Wi4fPmycF9ZWFhAp9MJ16bBwUH6+vpwOBziXKlSrdVqJRwOs379evR6PZlMRlQenZ6epqurS1RULhaLRCIROjo6MBgMLCwsEAqFcLlcBAIBqqurCYfDJJNJDAYDarWaxsbGFYV7vV6P0WgUlVaj0Sg9PT0i61I8Hsfn8+F2u5mdnSUWi9HV1bXkGrFYjMHBQRQKBZWVlSKVo9vtZseOHTgcDioqKrDb7YTDYYLBIC6Xi3w+j8/nw+PxkE6nMZlMIitVsVikUCigVqsxGAzCNUi6j/F4HK1Wi9VqFa5Fc3NzOJ1Ocrmc2FGR1pPdbkelUhEKhZiamhK1A+DKbkgkEhHrDMDv9+NwOLBYLGSzWeLxOJcuXWLdunVCWY3H48zPz3P58mX8fr8o3Hbx4kXWrl1LMplErVaLOgxjY2P4fD70ej0Gg0GkWZXdgmRkZGRkJUBGZlWkUilRrRIQVuNCocDU1BRPPPEEH/zgBzl27BjFYhGFQkEikUChUHD48GEhzFZUVLB+/Xp6e3uprq5meHgYhUKB3+9namqKf/mXf6Grq4vu7m7K5bLIf22z2bBaraRSKUqlEtPT02g0GsbHx3E6nWzYsIF//dd/pb29nUKhQF9fH319fWzcuJHBwUFaW1uZmJhgamqKyspKjh49Smdn503NwcDAABcvXkSpVLJ//36eeeYZ9uzZIyqJGo1GampqGBgYwGKxEIvFGBsbo6uri5mZGS5evEgmk0GtVpPP59mwYQM9PT1CCEylUsCV3N83co+RArtHRkaoqKggn8/T398v0q1u2bKFhYUFpqamWFhYIJVKCSEwHA7jdrs5ceIE3d3dwBULeTabZWFhgePHj2Oz2YjFYkQiEXK5HJcvX8ZkMlFdXc3Q0BBnz56lu7tbVG2dn58nlUpht9tJp9P4/f5VW/hTqRQvvvgiAPfccw8TExOEw2E2b97MwsICc3Nz1ygB8XicyclJKisrlwi0BoOBjo4OVCqVqDGRyWTo7e1ly5Ytok7D4vnNZDLEYjGxptevX4/b7RZB8Ol0moWFBSYnJzGbzfj9fvR6PclkUuxIGY1GEbthMBhQqVSkUilyuRyxWEwU5ZMIBoNEo1FR9wGupKEFRJXi9vZ2jh49Sj6fR6fTiZoQkhLm8XjEuZFIBLVajVarFUpLPp9nbm6OTCaDyWTC7XbT19dHY2PjeyLVp4yMjMxvG/lNKCOzCiorK+nu7mbHjh1s375dCCVms5mKigoRqPqLX/yC2dlZamtrqamp4a233qKrqwuPx8PmzZv5+Mc/jlqtZtOmTVRVVZHJZJicnCQYDLJlyxZKpRLbt2/nrrvuwmq18t3vfpeHH36YO+64g+7ublFQrKamhm3bthGLxRgZGcFkMtHc3AxAT08PMzMzVFVVsX37dvbt2yf+3t3djclk4vDhw9dY/29EU1MTdXV1GAwG1q9fz/DwMNXV1XR3d+P1eunp6QGuCPH19fUolUrGx8cJBAIcP34crVZLbW0tlZWVFAoFurq6ePbZZ1lYWMDv91NVVcVbb711U245arUak8mE3+9n3bp11NTU8Ktf/QqAmpoa2tra2LBhA16vF5VKRXt7O11dXeh0Og4fPizacjqdtLa2smbNGrxeL6+99hqZTIbGxkbq6+vR6XScPHmSYDDI+Pg4J06coL+/ny1btvDss88SCASoqanB5XJx9uzZm5rbqqoqjEYjLpeLdevW0dbWxvnz50mlUqxbt4677777mnNUKhVarZZsNnvN3xZnU9q4cSO1tbU8/fTTjI+Pi1oFi4+NRCLMzc2h0WjYunUr//7f/3tR8VSlUmG1WvH5fGi1WhEoLLWxeMemXC6LMWi1Wi5fvszY2BjxePwaoTsej5PL5fD5fOI3afdofn6eSCTChz70Icxm85LqrJJispw7WVdXFzU1NeRyOXp7e5mamhLn6nQ6LBYLc3NzsjuQjIyMzK+RlQAZmVuIwWCgubmZHTt2sH//fhFwabVaRaXYfD7PX/7lX5JKpfB4PJjNZkKhEKVSCYfDIQqblctl8vk8cKWSqVT1WKFQ4PF4lghEi8nlchSLRSF4uVwupqen+dd//VcOHjxIQ0MDBoOBUCgkrn8z43O73aJPNptNCJWFQoFSqcRf//VfMzw8jMvlEu5ILS0thMNhsYPx4Q9/WFyvpaWFHTt2cM899/C5z33umsJuy5HP5zl06BB79uxhZmaGl19+mdOnT7N27VoRTJxOp0UazP7+fkZGRnjyySc5ceKEqNwbCoWuEdg1Gg25XI6XX36ZZ599lnA4THNzM6VSiWAwyI4dO/jqV7+Kx+Ph29/+NsFgkLq6OrZs2cKuXbv42te+Ju71atHpdKKI3OJiTyulQ62oqGDbtm2cP39+idKUSCQ4fvy4EHRbW1upqqri+PHjnD9/nrq6uiV9k+oPdHR0iPiAxUhVW10uF7t37+bFF18kEolgsVhwOBxi7SUSCRwOBx6PB7vdzn/4D/+BrVu3UlVVRXNzMx0dHdfMMVxRBiRSqRQDAwNMTk7y1a9+lZGREeHqlE6nKZfLJJNJampqqKioWFIjw+l0otFo2Lt3L5///OfZsGEDTqeTjRs34nA4hHvR9QLEZWRkZH7fkN2BZGRWoFQqMTs7y9DQkPDfbmpqor+/n3A4zIULFzCbzcI6PDIywr59+0in07z88ss4nU5MJhNnz54lFosJS7RkYV1YWCAWizE3N8fBgweJxWKMj48zOTlJfX09VquVz33uc/zkJz8RgvvU1BSDg4OcOXOGQqHA2NgYSqWS4eFh4a6zYcMGent7uXDhAh6Ph2g0is/nQ6lUks1mGRwcpFwuc+bMGYLBoBDMc7kcGo0GhUJBNpslEAhw8uRJRkdHGR0d5eLFi/T19ZHP5xkbG2NmZobe3l6MRiN9fX2Mjo6KlJPRaJR0Ok0sFuONN97g/vvv5+LFi8RiMWprawkEAnzwgx/kwQcfJB6P88orr+BwODCZTLS0tAhXmnQ6TX9/PzMzM7z11ltMTk5SKBQIBoN8/OMfp66ujvHxcXK5nLDuKxQKpqenMRqN2O12Dh48SGtrKxqNBpVKRSaTYWhoiFKpxOnTp1EoFOTzeYLBIJcuXaK/v5+HHnqIV199VbjJBAIBent70el09Pf3k8lk2Lx5M2vXrqW+vp75+XleeOEF2trayGQybNq0iZdeegmbzcbOnTuXrKv+/n5OnjxJJBKhp6cHl8vF1NSUyO5z5swZ+vv7iUajjIyMsLCwwAc+8IEl19DpdPj9fj73uc/x4x//WAQDJxIJES8BiCqqe/bsEVZ8hUJBoVAgHA5z7NgxxsbGmJiYwGq1Lin49dZbbzE2NkY6naavr4+WlhZaWloYHBwUQvW6desYGhqip6eHjo4O6urqCIVCfO973+P+++9Hr9dTW1tLbW3tkv5XVVWRTCa5ePGi+O1v/uZvOHPmDPl8np///Ofs2rWLHTt2MD09zfnz5wFobGzE7Xazf/9+IpEIBw8exGg0cuDAAcxmM4cPH2Z8fJwtW7bg8XhoamoSz2gwGKStrU12BZKRkZH5NYqyvDcq8z7kdBw2nYJTm2Dj2yxkKlkee3p6UCgUeL1eamtrCYfDvPnmm6xduxafz0c2m+X06dPs3LlTuDlIgcMGg4GRkRHy+Twej4fa2lqUSqWwyKdSKRFw6fF46O3tpaWlhcrKSlQqFVNTU8RiMaxWK1qtlnQ6zejoKFVVVTidToaGhlAoFDQ1NXH+/HnhVhMKhZidnRUVNc1mM/Pz8xQKBZxOJ5cvX6axsZFMJkMqlUKlUrFu3ToRtFsoFIQQOj8/z5YtWwiFQkQiEcrlMm1tbbzxxht0d3ejUqmIRqMsLCxw2223cfLkSTwej1B0tFotAwMDaLVaLBaLGNfevXspFosihkKaL7vdLgS1QqFAKBTijTfeoLOzU2TxyWQyOBwOfD4f09PTxONxFAqF8PuX3JEymQy5XA6v14tSqWRmZgYAq9VKf38/TU1NqFQqsXsiBVVLMRTpdBq32y1iQlwuF6VSiXw+T0VFBYlEArvdLvLvWywWlEolFRUVjI6OotPprilKFwqFGB8fZ2BggN27d2MwGDh//jwqlYrGxkaReae7u5tUKkUqlaKlpeWa9SllvJmfnxfB22q1Gp1Ot8RfPhQKMTQ0hM1mE+OVsvMMDAwwOzvL+vXrcTqdS9KtTk1NcfHiRQwGA52dnTidTl577TVsNhtOp1PUGdDpdKTTaVwul/DxP336NJWVleRyOVwulwggl8jlcgwMDPDWW2/x2GOPAXD8+HGCwaDYxairq6OqqkoEXZtMJhKJBJ2dnUSjUTHnarUalUpFZWUlMzMz4j6l02mh/PX29nL8+HE+8IEPiGxEMjK/KW7F90hG5t1AVgJk3pf8Nl+6i110pKDX5cjn89dUqb1aOFmcTvNmK9pKwqpUjXXxta7Xr1vB4gq25XKZf/qnf2Ljxo34fD5SqRTHjh1j69at1NfXC6EUrj9f10Nyn1kcjCu5ApVKJVEtdrG//NWBu1K2JWk3RPptcYVmCalK79XHFgqFVbkz3Sqk13coFEKpVGI0Gq+pmyD1S8oC9E6qE0tt6fV6TCYTpVKJhYUFLBYLWq1W3O9sNksqlcJisayYWnZycpLTp0+zY8cOnE7nimu7UCiQzWaFoiH1P5fLkclkKJfLImORlGkql8sJYT8ejzMyMsLIyMiSWhgyMv9/9v47Sq7zPOzHP9N725nZ2d6xABaLxaLsohEECHZKpFgi0hQlWbYK3RInVpycHKdYLrEUxbEV+2v/pCiRKFmmKNKkWMEGgiBA9LYF23udrdN7+/0B39ezi10UEpQo8H7OwQEwc+fet917n+d5n/KLQlYCZD6uyO5AMjI3mGsV1q8l777kOvRB25EvEH6Yc10vy4XmzZs3Ew6HRUYZo9FIaWmpEEw/rIvGav1aScm60rHLBfjV2iZlqrna7z9qJIHY6XSuesyNatdK11IqlZdZ+aVdnfwA5JVwOp00NzfT19dHa2vrqmtAymi0PF5BShWbj0ajQaPRLDnW6/WSzWbZtGnT1TspIyMj8wlCVgJkbmq6o7/sFsiAAtZsIV+EMwM9GeDKdbxkbmoMZG1l5PRu2qIqPioPnbijHEWBgqxWx2Lo6sfLyNxo5PeQzMcVWQmQuSlxacCohM93/7JbIiMjszpKwPARX+PKOxIyMr8IjMpL7yUZmY8TshIgc1NSoYe3N8FQ/JfdEhkZGRmZTzp2WdqS+RgiBwbL3JQMhJI0nVMTy8npAGVkZGRkfvkYldDdeslIJSPzcUDWTWVuSqajKWI5Lf8x3cF9jdWo1WpSyRQK5aUMIhazmTNnzhKPx6murqaysvKyc+RyOWKxGOPj46LqqFanRa/To1AqMJtMqNUf3f5uJpshGAwyPTWNwWDAUeDAbrOTyWbo7+/HYr5UsOlaClPFYjHm5+eJRCPo9XrK/jlt5cQ/V1W12+047I6PrC/5SBl3otEoZosZlfLyQN1U6tJcqVUf7hGVSqUujaF3mrX1a68pGDufWCx2Kd3q7MyltKyOgiXF3C4VzjKjUqlvWNpJad0tLCwQi8XQaDWUl5Vd0zWSyaSo/VBYWIjZbEapVIrUsHB5BqrVkCr3mkwmSkpKrrsP/oCf+bl5bDbbZcHDUltDoRBTU5OUV1SI+0nKvNTT20OBo+C61vjC4gLhcBidTkdZaZmofPyLJJ1Jk81kf+FB4hI+v49gIEgymVwxteyvKunMpYxjSoXynwvqpYnF42i1WnRa3VV+/cHJ5XKEI2E0Go1YT5l0Rszv+Pg4qVQKs9m84jqX6I5eck+dT8lKgMzHB1kJkLkpyWYupYF8pKWBrRYF7e3tDA8PYzQaGRsb43Of+xxFa0tYWFiA1CKbLSspARDIJvmnn/z/cDqdNDQ0UFJdzcWTF4nFYtx3332UlJR8KCFD2ohb6RypVJbpQIjv/uUfs3HjRu6++242l7aQSKT40VP/H/feey9rtm7FY7m6gBTIJvnJuy/T3d1NU1MTn/riF0mn0xx8+WmMRiMb772X+vJfjBKQTF7Kb3/48GEeeOCBJQWqJEZHp9Dr9Xg8ng91rbk5P4fPHObIG2/wwLe/jc1su675WkzFODN2kW//63/N008/zdpiCybTpZd/Op3h75/6Bx577DFcNhdK5dXPe6X5/pdjLs3XgbajtLe3Y7FY+PTXv45Wy1WDZyORFBf94/zh73yJv/7rv8ZosTA2Nsbg4CD/4T/8h39OlXptfe+emOfMgeepqKjg01/4wrX9KK8Pr773PueOHGHXrl1sfuCBy/ocjaYZ9nr533/xRzz66KPceeedFDmKSKXSzMzM8JWvfY5vfetbrGttxXWNa/yfjr3JmTNnLq3xL30JnU59QwKOr2XeJBYXg/j8Pmpraz/8hT8AQ3M+znafpaOtjcf+7M8+sutcz5jcCGZnF0U6WL1ez8zMAqdOn6Kuro6GhoaP7LqZTJbXj7xHRUUF5eXlqJQqphemqa+vB2Bi4DyLXi+64mK21N7/kbVDRuajQPaVkLnp6e7uFkW19u/fz7Zt267ZSmez2SgvL6eqqoq6ujqam5v53Oc+x8LCAufOnWN0dPRDtS0/b/1y1Go15eXl/NVf/RV9fX10dHQQi8Xw+Xw8+uij3HbbbVe0POVjtVopLi6mpqZGvLwOHjzIF77wBX7nd37nF2ox1Gg0lJaW8vjjj2M2m1c85q233uLs2bMf+lpSStD29nZisRjX6/1ot9tpbGzE5XJRX1+/xCKtUqn43d/93SWFua6GVKfhathsNmpqaqipqcHj8VzzejUajTQ1NVFQUMC6devYsWMHpaWlXLhwgaGhoVXX2krU1dWtqKBdK1qtlqGhIaanp8lkMpd9bzAYqKmp4Td+4zd46623mJubAy7tEIyPj1NZWcmGDRuumP40H2mNV1dXs3bt2svqJXwYrnSfLqe7u5uXX375hl37evF4PJcVqPsouNa1fKN4//33OXPmDPH4pUAvj8fDpz/9adavX/+RXlepVHLvvffS2NiIzWZjfHycn/3sZ+L7srKyD22skJH5ZSHvBMjc9Jw5cwa/34/T6eT8+fPMz89f04tDEuwUCsWSPwAbNmygt7dX5Cp/7bXXqK2tJRAIUFpait/v59VXX+XRRx9ldHSUtWvXUllZiUql4pVXXsHhcIg2SULLStfP5XJ4PB7279+Pz+fjpz/9KWVlZdxyyy3odLprFj7zC1rNz8/zR3/0R3zxi1/EbreLnP6pVIqnnnqK6urqSy5TFgtbtmzh+9//PgqFgrVr117aGg+Heeihhzh8+DDJZFJUjW1paeHHP/4xbrebRCKB2+2mqqqK73//+/zX//pf6e3tJRgMotFosNvtvPvuu/z2b/82o6OjLCwsUFBQwMWLF2lubub8+fOMjY1RVFREQ0MDFy5cEIWhpKJY27Ztu2L/pWrBDoeD3bt3c+HCBbZu3XrNitPVxjEcDvPHf/zHfPWrXyWTydDV1cW5c+d47LHHOHHiBHfffTcej4fZ2VlOnz5NNBrF4XBQXFxMaWnpqoLaldbdtbYvHo8zMjLC7OwsU1NTbNq0icrKSmKxGN///vex2+3s2bOHyclJDh8+zG/8xm8wMzPD3NwcpaWlDAwMcNddd7G4uMjc3ByHDx+mo6ODr371q6L43Gpks1lCoRBWq5Xm5mYA2tra2Lp162VtlWoKOBwOgsEggUBArMfV+t7R0UEmk8HlclFWVrbquAH84Ac/IBKJUFhYSElJCW1tbWzcuBGv14vH42HNmjU4nU5+9KMfUV9fTzQaxeVyiTUoVVXW6XTU1tayceNGnnvuOSoqKkilUjgcDnbt2iXaMD4+TkdHB6dOneLo0aNs27aNnp4egsGgqIyt0+nYunWrUOxSqRQTExP8r//1v7jjjjvEPeZ2u3E4HHR3d7N7927MZjMXL15EpVIxODjI3r17MZlMDA0N8cwzz3DPPfeg1WqFa2M2m2Vqaorvfe973HnnnSQSCXp6eigvL6exsZHvf//77N+/n+rqap5//nnUajVbt25lbGyM0tJS9uzZs6Smxvj4OOPj40QiEdra2qivr6exsZFIJMLZs2epqqpicXGRtWvXcuHCBXp6erj77rsZHR1ly5YtFBUVMTc3x/vvv091dTWLi4ts3ryZ9vZ2Tpw4wf33309vby87d+7E6/UyMzODXq+nuroaj8fDuXPnSKfT6PV6Nm7cyMjICCdPnqSlpYWamhqOHz9OUVERXq+XmpoatFotIyMjHDhwgCeeeIKLFy+ybt06WlpalvTr/PnztLe3MzU1xb333stPf/pTPve5zzE/P09vby8PPvggL730EiUlJXg8HkZGRjh9+jRHjhxh69at5HI5FhcX8Xq9uN1uenp6eOCBB4T7nYzMxxl5J0DmpmdxcZF0Oo3dbsftdnPkyBH8fv+K1slrxWg0kkgkGBkZ4cKFC8zPz5PL5ejt7SUWi6FQKJiamqKoqAidTsf09DRjY2PMzs4yNjZGdXU1U1NTZDKZK1o6FQoFarWaW265BYVCQVtbG263G4PB8IEKbEmxAY2NjUusr3DJ4lVcXIxOp2NwcJCOjg6USiVWq5VAIIDZbL7kq93TQy6X46WXXiIYDKJUKolEInR3d2OxWIjH41RVVdHQ0IDNZiOVSpFIJMhmszidTurq6iguLmZsbIxUKsXQ0BBnzpyht7cXt9uNy+XCbDbjdDopKipCoVDw4osvYrVaqaqqAuCNN964al+9Xi9DQ0OkUimKi4s5ceIEs7Oz1z1my0kmk8RiMdRqNel0WihMOp2O0dFRioqKmJ+fZ3FxkfHxcfr7+1Gr1ej1euLxOBqN5kNZ2K8FlUqF0WgklUoJf2VJYc3lcqRSKQBKSkoYHx8nGo3S19fHiRMnGB4epqSkBKVSSSaTQa/X43Q6mZmZuab7JplMcvHiRaLRKAUFBczPz19xV0ehULBr1y4hQAcCAYqKilY9vrCwEI/Hg9Vqveo4WCwWksmkiHs5ffo0Ho8Hk8mE3+9nfHwclUpFSUkJGo2Gvr4+urq6iMfjvPPOOxQXF5NMJlEqlej1es6ePcvc3BzpdJqJiQn6+/uZnZ1leHiY6elpdDodNpsNi8VCRUUFarWad999F5/PR1VVFUVFRbz00ktMTU0xPj7O2NgYCwsL2Gw2xsbGsFguxflks1lGRkYoKSmhr68Pn8+HRqPBZrNhNptZWFhgcHBQxD+Mj49TV1dHdXU1VquVTOZSPNF7773Hjh07KCsrw2azYTAYxPVCoRDxeFwUYtNoNBQXF5PNZpmYmKC3t3fJWA4MDNDV1UVpaSk+n4+CggKmpqbo7u5mYWGBXC5HZ2cnCoWCeDzOwsICRUVFaDQa8Zzs7OwUx168eJFEIiEqPev1epqbm7FardhsNqxWK6lUivfee0/cMy6Xi+LiYkwmE6WlpczPz+P1epmamqKjo0Mo152dnfT29lJQUMDAwACFhYWEQiEWFi7FjOTj8Xgwm81MTExgsVgYHh4mnU6LWBaTyYTVaiUUCgkDhslkoqKiQlQMl5TZkpISsWMrI/OrgKwEyNz0qNVqjEYjDoeDwsJCent7CQQCpNPpD3xO6UWaSqUYHx/HZDJRXFxMYWEhBQUFmM1mNBoN5eXlFBQUEA6HCQQCQoA0m83iheZyua56vdraWrRaLX6/n/Ly8g/c7lwuh1qt5rbbbqO/v5/BwUF8Ph+5XI5o9FJFG6fTSTwex+v1kk6nKS0txWQy4Xa70el04viOjg4sFgs1NTWUl5eTzWYpKSnBYrGwbt06Ghoa8Hg8bNq0ibGxMRQKBcXFxdTX11NSUiLGX6PRoFKpiEajxONxnE4nNpsNt9uNx+MhGo1y5swZCgoKqK6uRqfT0dbWdtW+SpZlu93O+vXrhTD1YZQ/gEAggNfrRaPRUFBQgFKpxOFw4HK5UCqVQnGJx+MEg0GCwSBqtRqr1YrH48Htdq8qwEpWdElpgg/mc61Wq7HZbLhcLrRaLbOzs6LKsSTEqNVqiouLhSIjVduVrNaAEHo8Hg/ZbJZIJHLV8ctkMkxPT2OxWKitrSWbzdLf3086nV7RfUShULBt2zampqbo6ekhEAjgdrtXPX9hYSFFRUXXpEh5PB5sNht2ux2Xy8Xi4iKlpaW43W7S6UuxKZLA5nK5CIfDzMzMkEgkWFxcRKPR4HA4KCkpwel0Mjg4iNFoxOPx4PF40Ol0zMzMMDw8zNTUFDqdDofDgd1up7y8nHg8TkdHB8lkkurqakpLSzl79ixer5exsTGhBNjtdlQqFUVFRRQXF2OxWEgkEpSWlhIIBIjH46TTafHsMBqNLCwsEI/HMZlMaLVa6urqqK2txWKxkM1micVi9Pb20tjYKJ4z0jza7XZ0Op2oKl5UVITT6aSsrAyLxUIkErnM1TEWiwmlQ9rBDIfDLCwsYLFYxPNPCuQ2GAyUlZXhcDhYXFxkaGiImZkZzGazONZkMmEymcT909zcLNyMLBYLbrdbKCNWq1UogLlcTiiqkUhE7FiVlpZSUVHBxMQE09PTFBcXi3Wg0WhIJBLCnUiiqKhInCuRSOByuQiFQhiNRtavXy+e7UqlEpPJJJ5PFRUVJJNJstmsmPfS0lIWFhY+9DNGRuYXhawEyNz0SC99rVZLJnMpq0MikbjqgzqXy5HJZISQJFm04/E4nZ2d1NXVUVdXh8FgoKSkhNraWj772c9SV1cnLEMKhYJ0Ok0ymRQCRSKREK4CNTU1ZLNZksmkcHdZiWw2Kyx2+X7pUiYV6bexWIxUKnWZ/3ImkxFW3aqqKsrLy9myZQttbW2cO3eOSCTC1NQUr732GjqdTggSfr+fVCqF0WgUfUmn02QyGREv0djYSGtrK62trcKip1KpyOVyGAwG7r33Xt566y2CwSAqlYpsNivOkc1maW5uZv/+/VRUVPDiiy+SSqVQKpVCMZmenhbWQmnepF2QcDi8onCZSCSE9Xfbtm3cd999JJNJFhcXCYfDZDIZYrGYEDgSiQTRaJRcLrfkXNlsVoxnKpUiHo8zOjpKe3v7ZetDoVBgNpvFWKdSKUwmEx6Ph7GxMRYXF6mrq6OwsFBcf3nbU6kUIyMjLCwsEIlEhPuIZL3Pb0s4HF61vXBJEaitrcXhcHDs2DFSqRTpdFpkOEkmk2L8EokEO3bs4MEHH8RkMnHgwAEikciljFj/fN9kMhkh9CQSiRWtndK51Go1mzdv5s4776SiogK/38/i4qXATkmglcYuHo9TWlpKJBLB5/ORTCbFOkmlUuLa0vWkNbjaGpfmQ7o38ndA9Hq92OFIpVJEIhEmJiZ49dVXMZlMmM1mIUC3trZy4sQJdDqdEFi1Wq2IO7jrrru49dZbiUajBAIBsa4UCoUQKKenp0VfE4mE2FWIxWKEQiFCoRDRaFTcm0qlUvTLZDKJ/qTTacbGxnjzzTcJBoO4XC7hkhaLxTAajWItSeMAlwTn9vZ2fD4fcGmHSJrHWCxGMpkUx0rrQ2r/cuWzrKyM4uJijh8/TlVVFVarVTwrpOffE088gdPpRKlUCrcx6fkn3R+lpaXU1tZeSs5QVCTuQYPhUtG4rq4uLly4gNfrpbi4WOxqSOs8Go2KjDzS+EjPBOkeyXfbk55l+WsjH0m4l+6TvXv30tvby/T0tHDZy19z0vgkk0mmp6eJRCIolUoMBoM4bqX1KSPzcUSOCZC56bnjjjt47733uHDhAkajkdLSUiorKwkEAlfcts3lckxOTtLV1YXFYiEUCjE5OcnMzAwNDQ1s3rwZh8PB2NgYTz31FMXFxQSDQQoLCxkdHWV0dJTe3l7OnTvH7Owser2e4uJi+vv7SSQSDA0Ncfvtt1NXV0dXVxdDQ0M89thjK6ZDHBoaEuc8dOgQ9913H3DJ97u/v5/29naeeOIJvv/979Pc3Ex9ff2SYDXJWnnx4kWy2Sytra3s37+ff/tv/y2nT58mFouJQNDe3l5mZmYIBoO0tbVx/vx5pqenKS8vZ3R0lOHhYQYGBnjsscfo6OhgZGSEgoICTCYTZ8+eJZfLUVFRISyldXV1jIyM8PDDD1NcXCx8iCcmJvD7/Rw+fJiFhQX27dvHrbfeilqtpqCggLm5OY4fP87GjRv58pe/zMWLF+nu7iaTyfD4448D8J//83/mS1/6Ek1NTUuElhdffJG+vj7cbje7du0iEolgtVp56623iEaj7Nmzh5dffpnHH38ci8XC66+/TldXF//xP/7HJeeZnp7m4MGDzM/Pc+jQIcLhsNju37t3L/39/XR0dDA/P8/Q0BATExMMDg4yMDCA3W6nqakJtVrNW2+9RVVVFfF4nFtuuQW9Xs9LL73E/v37Wbv2X1KXSu5RQ0NDnDt3jvXr17N7924ymQwnT55EoVBQX1/P4OAgzz//PN/85jeXtDcYDHLo0CEWFxeFe5bkotLe3o5Go8Hj8eD3+zlx4gRarVa4eZw5c4ZcLseOHTvIZDJcvHiRoaEhwuGw6NP58+cxmUycOnWK6elpfu/3fm/JOh0cHOT1119nYmKCe+65Rwi9kUiEv/3bv+UP/uAPePnll9m4cSMej4e+vj6ee+451qxZw4YNG9BoNGQyGbq7u5mZmeHo0aOX0vumUhw4cIDf+73f4+zZs2QyGRHoLuH1ehkcHKSzs5NMJkNrayvt7e2MjY0RDAbRarWMjY3R19dHW1sbIyMjmM1mGhoasFqtdHd3Mz8/TzKZpKuri3A4zOnTp9FoNPh8PrZv385DDz3Et7/9bQoKClAoFNhsNlpbW0UbFAqFUBZef/11tm/fzr/6V/+KZDLJG2+8QS6X4zd+4zfYsWMHev2lPJGSgD82NsbAwADxeJz29nYCgQBDQ0Miu5N0P6fTaebn5xkdHSUSieBwOBgeHqa9vZ3Gxkbx3EmlUjzyyCM89thj/NZv/Rbbt2/H4/Fw6NAhjh07xsDAAFVVVXg8HtLpNG1tbdTU1DA0NERpaSn79+9fMrepVAqv10tXVxdGoxG73c7atWsxGAy8/fbbOJ1OfD4flZWVjI2NMTIyQm9vL2fPnmVhYYEHHngAk8nE66+/jsvlwu/3s27dOmZmZujr6+O9997joYceIpFIoNVqSaVSwkAxOTlJcXExgUCA9957j/r6es6cOcPw8DC1tbWUlJRQVlbGiRMn6OrqYsuWLdhsNi5cuMDU1JRYv7Ozs2LHI5/y8nLuuece3nnnHR555BG++93vsri4KFyrpD7U1NRgs9mw2Wy89tprtLS0MDIyQk9PD2q1mqamJkZGRhgYGMBms11zULuMzC8LuViYzE3J4akQ+/osnNqcYatFIbayw+EwHo8Ho9HIxMTEpRShwObNmy87h5QRJBqNiiwzkqVOcq1QKBRks1ni8bjYZZCsmNLWvWQ9HR4epr+/n7KyMtavX8/o6CiTk5PodDq2b9/OxYsX2bRp04q57CULazqdxmAwCF/UfGu0Tqdjfn6ecDiM1Wpd8gKSLJGZTAaVSoXBYBCWRMnaLLnkqNVqYR3U6XTCqiVZhJPJ5BIrJVyyMKrVamGB1+l0wuKcy+UIBoMYjUbUarWw0EajUcxms7DewaWMMjqdToyn5K4gWf3gXzL+6HQ6zpw5Q01NDQ6HY4kwLI2V5Mudy+WEZV2tVqPRaEgmkyK4emJigkAgQENDw5LAUsliHI1GMZlMou1wKS4kHA6j1WqFdVkam2g0ikajob29nba2Nj796U9jtVp55ZVXKC4upq6uDrVaTSgUoqqqSgTD5nI5ketfcmOT4j/yx3pxcZGxsTGam5uXtFeynkciEcxms4hbCAaDhMNhke9fsp6q1Wrm5+eFUCutbWnuEomEsOrGYjG0Wi0ajYaJiQkikchlqRklS2smk8FkMom5kKz7BoOBZDL5L/nWMxni8ThGo1HMr2SFDoVCYq3DpVgDg8Eg1opSqVwS4CmNfyqVWhKDkc1mxfoMh8NYLBbRRmnt5697yZXrr/7qr/j93/99dDodp06dYnBwkK997WvEYjExdpILVT7SjpW0GyiNtfSqVavVS4KrpeeM1F9pHKWdi0gkItZYft+lfkk7C5KLl7RmpZ2oYDCIwWAQ9148HkepVIrPI5EIp06dIhwOc++996LX69FoNJcFgL/xxhuMjIzw2GOPoVAo+N73vsfdd9/N+vXrhfua9BxJJpOk02mMRqN4/knnyz9WUvCke1Gr1Yo5lMZKmnfJmi/9FhBrUjounU6jUqnE8zH/ORyPx1EoFKJv+UjnTiQSGI1GsR6kZ4e0ayg9LySXImk95j8vw+GweNblx22dC8HWs3B2K2z5aEOCZGSuGXknQOamxufzkTFeCojTarXCnxYuWU1DodCqvsWSsHk132MpCDObzS7ZRpdeVJKAV1RURDKZZHZ2ltHRUaanp0VsgKScrBbsq1arxXmWt1H6LpfL4fP5RGDtSm1c/pnNZhP/l/xwc7nckkwry1+YkqAiCUESSqVyxTYCwgdeElglFw2pHZLLiyTUGQwG4eoiCXv52+vSOElK13J0Ot2SFJEKheKyeZT6IfVlpaw3KpUKlUolrLar9Wv5OaXPpQw2U1NTLC4uinbodDrhn57ffmlsnE6nEPCkvi4f65XaKylN+X2XYhek4E9JEJLmuaioaIkSIo358rmXri8JwCul4Fxpner1+iXjl/9vlUolrrH8dw7H0roV0tiuVvBNUjLy53X5mpfOmX+t1dZ9XV0dU1NTwrVN8huXFGDJLWQ5UlEp6XzS2s7Pq58/b9Jzxm63i8/yxzb/HtVqteI5k//7/OOlOZDGIX8cc7kcZrNZKOqSMjAzM0MqlUKn02E0Glfsl9PpJBQKMT4+Ti6Xo7i4WMQ+qdXqJc+//PFdPq/Lj11+f+l0OjHH+X2TDArS+pTGWkJ6RkjfLX8Or5aOGLis3ZICK51n+TqSDAKSopdP/jzKyHzckZUAmZsS6WEeCoXIZC69qJRKpXhpZLNZstmsCHz8sEgvsythtVqpqKgQ1mkpBaDNZiOXy11mzf4gGI1GjEbjB6pWmi8AXSvXkqHoaudbLQXm8s9XE0yulrLyWpAEnw97nuW4XC6xe6BSqairq6OoqAiDwSDmavk1lwt1K6HT6YT1/mpI45gvHOePbb4gda3nM5lMNzQP/y+Tlda9RqNhy5YtQvgrKytbIsxe7V5fSdC/EWvrWp4zV/u99Ld0P5lMJurr65dY61eitLRUKHS5XI6mpiahYFxPu67l2NWeK1caxxs1Ntd67I1+VsjI/DKQ3YFkbkpO+dNsv6DmWccQn6ovXiIAAcI9R7LwreSHLyMjIyMjcyOQ3YFkPo7IOwEyNyVq1aWlXVNTwzL5H7hkaaqtrf0Ft+qXx3JdX7ZiXc5q9pAPMlY38ly/KqyW/vNaj73S8ddz3ZthjK9lLPOPudY+/yLG6pO49mVkflWRlQAZmU8I09PTBINBdDod1dXVv+zmfOyQgsCl1Jsmk0nEklwPuVxOpFaVArFdLtdNLwRlMhkCgQALCwuUlZVdtvuWj1SdOBaL0dTUJII3V/P3vxrd3d24XC6sVuuq8Ru/aqTTaZFXX4rnyEfKR6/X65fEDVyJZDLJ5OSkKEq2WgzPhyEejxOLxURQudFoxGQy3fTrX0bmVxG5ToCMzK8I0WiUxcXFJTmzr5W//uu/pru7m3g8ztGjRz/QOa6H2dlZUY04l8sxMjJyWZGea0X6fTKZBC4Fe588eZKLFy9+qIJvy5GUgL/7u7/j6aefZnBw8AMX/YlEIvzv//2/+e53v8vg4OAVx3psbIxIJPJBm33N5HI5RkdHRVrcxcVFfvCDH9ywfOa5XI7BwUGeffZZRkdHL+uzlKHpu9/9LufOnUOv11NdXc2pU6f41re+xfDw8HVfMxAI8I//+I/E43GRVvRmQUpN+Yd/+IccP35crMVcLkdXVxd/+qd/ynPPPXdd1Wmj0SinTp3ijTfeWFI5N5VKcfz4cTo7OwkGgx+63SdPnuR73/sezzzzzBXrn9woAoEAJ06c4OLFi5fVAZCRkVkdWQmQkfkVQaqoGgqFrvk3UvrB2dlZkdFj48aNHyhw+FqZm5tjaGiI6elp8dnRo0cJBAIf6HzZbJbDhw+Lisb5FU6vJTD5WpGylEjFhlZK/3itWK1WIpEIqVQKq9V6RSvo8ePHmZ+f/6DNviYymQyzs7P09fUJhUOv17Nhw4Ybdg0pk5GUanG54JfJZHj55ZdRq9W43W7cbjc2m42ysjJRMOp6kXLqFxUVUVFRsWol5l9FlEql2NmYmppifHxcfBeJRJidnSWVSl0x681yVCoVJpMJv9+/RMFVKpUUFxeLQPsPg5TOVAqGXyn4/UYjFXG73mfCB113MjI3C7I7kIzMKkgvh/HxcZFaMZ1OU1payszMjEgDKKXb0+l0ou6AWq1GpVLhdDpFADJcyjpSXFwstvkl63ZBQQHj4+OYTCaRFzs/z38qlWJ4eJienh5Rol6v17O4uEgymUSv1xONRnG73SITkoTf7xcVXlOpFFqtVuThn5iYQKlUYrfbRXVVm80mKplqNBpCoRDl5eViDKSxSSQSogqslBPb6XTS09PDwMAAbrebqqoqAI4cOcK6detEIaVUKsX8/LzIuy2lGx0YGBBCoSSIKxQK3nvvPbZt24ZGoxEvbqkq7OLiosgNn0qlRE70ubk5otEohYWFJJNJtFqtSM+5ElLVT7vdTkFBAUajkXg8zuzsLOl0GpfLRSgUwmw2U1BQQCaTYWpqiuLi4ssy7FitVoxGIzabjYKCAmKxGH19fRQVFYlqyFLO/WPHjlFYWIjD4RB5x+fn55dkalEoFHi9Xux2O0ajkVwuRygUuqxdUkXq2dlZIYzp9Xp0Oh0dHR309PRQVlYmlB0pm0oikSAcDot87ZFIhJKSEubm5kQtiYKCgiVpTWOxGD6fT6SalATW1VxTMpkMzz//PE8++STV1dUiK1d1dTVbtmzBYrEQCAQIhUKYTCYikQhOp1PUOVhYWKC8vJxAIIDD4RA52cfGxlAqlZSWlhIKhRgbG8NgMBCNRikoKGBmZoZsNovdbieZTFJQUIDf7xfrFsBisTA4OIjVasVgMIiaHw6HQ9xjUl0Dt9vNwsKCmMdEIkF5efmS7FJSFfD5+XkxpyqVioKCAkZHR0mn0yIrWCKRoLKycslYSZlu3G43LS0t+Hw++vr6qKysJB6Po9VqMRgMooJ4LBa7bM7zxzM/l77T6aSrqwufz0csFkOpVC4pRJZOp5mbm2N2dlY8Z6LRKBaLBaPRSCAQENWFpevnu2BptVpRgVe6j6RxkSpELywsiCxD0jNhcnISu91OJBLBZrOh1+vx+XzMzMxgt9sxmUyk02kikQjpdBq3200gEBDHSs+EdDrN+Pg4iURCVDWWUjBLVcil2h86ne6Kbn/SObu7u8Wak+aspKSE3t5e8XupKF5VVZXs+iTzK4OsBMjIXIFEIsGLL76Iy+VCq9Xi9/v50pe+xFtvvYXb7QYuCeh2u53q6mrefvttIUzqdDruv/9+nnnmGVKpFEqlEpfLxaOPPspLL73Ehg0b8Pl8qFQqdu7cyT/+4z+yceNGpqenqays5M477xTKQzAYZGBggLNnz+J0OnE6nbhcLk6dOsXi4iLl5eX09fVx1113UVhYKIRSyUXD6/XS19fH3NwcZ8+e5YknnqCwsJC///u/x2Qyccstt+D3+7Hb7ezatYsLFy4wMDBAUVER58+f58knn8TpdC7xIV5cXOSdd94hnU5jNptRqVTcf//9HD16lMXFRaqqqhgaGkKlUtHV1UVbWxtGoxG328309DTvvPMOpaWlZLNZbDYbhYWF/Kf/9J/41//6X4uCRlLRs4sXL9LW1oZWqyWRSPDWW2+h0+n49V//dc6cOUMoFMLhcBAIBCgoKMDj8fDKK6/Q19fHv/pX/4r5+XlsNhtbtmyhuLj4mud/fHycF154gYWFBR566CFOnTpFQ0MDd955J7FYjNdff51HH330imlm0+k0U1NT/NEf/RGf//znMRqNYoegtLSUixcvUlNTQ0FBAWVlZXi9Xg4ePEhhYeGSNI4/+tGP2LdvH/X19cTjcdra2kS7Tp48ycaNG9m7dy9zc3O8/PLLuFwuVCoVxcXFbNiwgYMHD5JMJhkeHkahUDA/P8+f/Mmf8NprrzEzM0NXVxd+v5+SkhI6Ozt54oknOHr0KJ2dneRyOe655x5effVVfuu3fguLxcLw8DDvv/++EK62b99+xbHMZDKcOHGCb3zjG5eN16c//WmUSiXt7e10dHTQ0NBAd3c3e/bsIR6Pc/bsWV577TX+4A/+gGPHjrF7925KS0uFsNrW1kZzczPnzp2jv7+fmpoauru7ufvuu3nmmWdIJpPs27eP+fl5tmzZwpkzZ0TNhmQyyfbt2/mLv/gLWltbqaurIxwOY7PZuP322zl27Bh+vx+9Xk8oFOLee+/lwIEDQhmbmpriySefXGKRT6VSjI+Pc+TIEaqqqlhYWECr1XLbbbfx7LPPMj8/z44dO0in00xMTPAHf/AHwMrBszt27OC5556ju7ubvXv34vV68Xg8QmiVhPb8OS8tLWXr1q2iqq7b7RZxBVqtltHRUbq7u5mamkKn0/HYY4/x/PPPo9PpuO222xgaGuLnP/85e/bsoaamhosXL7Jlyxaqq6s5cuQIyWQSv99PTU0N9fX1Qtm/EpI72ODgIO+99x7l5eUkk0nq6+spKSnhueeeo7W1lQsXLrBnzx4qKio4efIkP/nJT0Rl7UAgQGdnJz6fj4cffpgjR46wc+dOKisreeGFF9DpdDzyyCM899xzeL1etmzZQnl5OWfOnOGxxx4jkUgwODhIKBSiv7+fiooK1qxZQ0VFhXieL1+zwWCQP//zP2fv3r2UlZWRTCYZHR3lS1/6Et/+9rdpbGykpqYGrVZLe3s7X//614VxQ0bm447sDiQjswqZTIbXX38dlUpFc3Mz9913H/feey9TU1McPnyYiooK7r77burr6/nv//2/Y7fb2b17N5s2bSKTyfDCCy8AsHPnTjweDzt37uSrX/0qCoWC119/nePHj2O1WikpKeGll14iEolgtVrx+XyMjIwwPDzMmTNnOHPmDEqlksrKSjZt2sT27duprKzk4MGDzMzMUFpayo4dO2hubuZ73/sehw8f5vz581y4cIGJiQmam5uFULB37142btxINpulsrISi8VCSUkJra2ttLS0cPjwYQYGBjh9+jTt7e3Cmnf+/Hl8Pt+S8XE4HOzYsYMtW7agUql47rnnUKlUoi0bNmxg06ZNNDY2Ul5ezq5du1i/fj2BQIDvfOc7lJWVUVxczNTUFJOTk1RWVor87Nu3b0ehUNDZ2Sl+v2fPHurq6igtLWXbtm0kk0m8Xi+nT58mHA5z2223cf/99/PNb35TWF0dDgctLS3s2LGD06dPiziFa8XtdrNjxw4UCgXbtm0jkUiwsLAg3DB+8zd/86pBmRqNhurqarRaLY2NjbS2tuLxeDh27BgbNmygsrKS7du309TURDqd5tvf/jZFRUWUlJSwuLjI5OQke/bsIRQK8cgjj7B//362b9++pF2SdTWbzeJ0OoXQ1NPTw/vvv4/RaOTWW2+loaGBpqYm1q5dS3l5OS6XC4D/9//+H36/n1tvvZWWlhai0ShHjhzB4/GwZs0ajEYjra2tTE9PEw6H0Wg0VFRUsG/fPmpqanjllVcYGxu76nhKhaKWxyEoFAref/99+vr6cLlc7Ny5k+bmZp577jkikQhr164lFouxc+dOSkpK8Hq9hEIhysrKKCwsZP/+/Zw6dYrOzk7S6TRWq5Xh4WGhvBcVFXHffffxhS98gb/5m78hnU5TUlKCRqPh9OnTVFdXo9frqa2tpbW1lQ0bNnDo0CHm5+c5deoUKpWKhx56iPvvv59oNMp7773HwsICBQUFmM1mTp48ucQXfX5+nr/8y79k9+7d7N69G5fLxfT0NMePH+fWW29Fq9VSX19PYWEhU1NTV4yX0ev1onjc8PAws7OzYsdPGtPlc37kyBEikQjf/OY3efzxx3nggQfYtWsX9fX1os7Dtm3bMJlMzMzMkE6n2blzp9jVLCkpoaGhAZfLxa5duxgeHmZycpKxsTG+853vUFlZyYYNGxgYGODcuXNXnXe4VLPl9OnTfPe736W8vJzi4mIGBwcZGxvDbrdz33334XK5OH36NOPj4zidTnbv3k0oFOLXfu3X2Lt3L9u3b6elpQWlUklrayvhcBifz4fBYKClpUVU7K6traWuro7i4mJ2797NmTNnCIfDtLe3c/LkSW655RZsNhslJSVUVFSI+2A5UkHF+vp6tm3bxq233sq6deuYm5vj3LlzVFVVsWXLFm655Ra2bdvGwsIC77777pJ4CxmZjzPyToCMzBVIJpNim19ywxkdHV0ixGSzWSKRCEeOHGFwcJCdO3dSXl5OJpMR7jIWi0VUmcxkMvzlX/4lw8PDtLe34/P5qKyspL6+ns2bN7NlyxZCoRALCwvCD7iyslJUqMxmswwMDPxzIbR/8etVKBREo1FmZ2eJxWKi4mxZWdmq/dNoNMKtQPITzmazWCwWqqqqaG1tZfPmzWQymcuyvRw9epT+/n6am5uprKwkm82K/sKll/7o6CiVlZXCKubz+UTF0S1btlBUVERjY6NwtZBcdqQMPdI4S7+fn59fIsgnEgnS6fQSv95oNEo2mxU+/haLBb/f/4H9fyW3jHzLntSu6ylOtNwdSZo76bzBYJCRkRGy2SzNzc2UlJTQ3NxMOp1GoVAIf2fpeKVSKXYLpGqqfr+fCxcu0N3dzRNPPIHdbsfv9+Pz+cTvJOtvPvF4/LIg62g0Klwd8guTZbNZhoaG6O3tZWpqiq997Wuo1WrC4fAVs82o1WoefPBBenp6RCyAxNmzZ5mbmxPucdK4SC5sRqNRuMflV47NJ5vN4nK5KC4uZvv27TQ2NmIymYQbi0Qmk2Ht2rVs2LABg8HAzp07xfxI7i3ScZLLmeSyJrlEuVwu1q5dy549e8hkMqKKcn5bpBgWqc2ZTIZoNIrVasXlcglrsfTdldi9eze9vb0888wzPPDAA0u+CwaDHD9+fMU5l9ovuQhJiorb7b6svStVy5bWfX6lXrPZzNatWwHYuHHjNd8D0m6gSqUSO3Lr1q0jHo/T2dnJj3/8Y/7sz/4Mq9VKMpkkHA6jVCrF2pPaJ7VLIv85kY9erxfFzKT2V1dXk0wmaWtro7S0lE2bNmE2m69YgGw5UtHJ5YqbVGE7kUjcsGB7GZmPGlkJkJFZBaVSSUtLC88++yx9fX2Ew2HS6TTr1q2juroar9dLOBxmbm6Ohx56iJmZGZRKJTMzMwSDQZRKJaOjo/T19TE7O4vRaCQcDrOwsMDx48eprKzE7XZjt9tpaWnh5ZdfZmRkRPjalpeXi5eY3W7H7XYL14fKykq2bt3KuXPnmJqaoq+vj/b2du65555/ro1gECXte3t7mZmZYXZ2VlgTJev0/Pw8KpWKoaEhRkZGmJ6eRqPRUFhYKFxEFAoFHo9nieCYy+VEJpb5+XmRCnN0dBS3201/fz8+nw+Px0NlZSUej4eRkRFSqRQ2m40HHniA48ePs2nTJnK5nLBqzs/PMzIygs/nY3h4mLm5OSKRCEVFRfT39+N2uwmFQvT19TE6OorD4RBVmNvb24V7TC6XY35+npmZGYaGhhgaGmJqagq/309vby/Dw8Pcc889S+Y7mUwyOzvL6OgooVCINWvWEIvF6O3tZWJiAq/XKxSQ4eFhampqOHjwIPv27VviCpLL5UTbA4EAHR0drF+/nvn5eUZHR9Hr9QwMDDAzM0M4HBbuUQaDAb1ezyOPPMLp06fZsGEDarWadDpNJpNhYWGBmZkZTCYTwWCQvr4+0S5pbqXzarVaBgYGCAaDJBIJpqamKCsr48SJE0viHebm5hgfH2ffvn0Eg0HOnz9PRUUF0WiUpqYmBgYGGBwcJBKJ4PV6mZ+fZ2BgAJVKhd/vR61WC3chr9fLwsICo6Oj9Pb20tjYuGR81Wo1X/ziFzl58iQXLlwQrlvT09O4XC4KCwsZGBhgYmJCrOedO3diMpnEmvB6vcLFTKvVUlpayuzsLF1dXaxbt47Ozk4mJycZHh7G5/NRUlLC7OwsarWa4eFhqqureeihh5icnCSbzVJUVCSy18zPzzMxMUFBQQFDQ0N4vV6hRMfjcU6cOIFOp8Nms1FaWko4HKa3t1f41OevAavVykMPPcS5c+eIxWLMzMyg0+nYuHEjR48eZXx8nOnpaWZmZvB6vfT29rJ58+YlilY8Huf48eOYTCaam5spKCggGo1SVVVFZ2cns7OzeL1ehoeHV5zzubk5HnzwQd555x3Ky8tF7ED+ep6dnRUJB3p7exkdHcXn8+Hz+RgdHcXlcuHxePB6vczMzFBTU8Mdd9wh4ljUajVWqxWL5V+qX/n9fiYnJ8W6OXv2LIODg8zNzWE0Grnrrrs4duwYW7duJZlMksvlCIfDZDIZpqenyWazTE5OCve/xcVFvF4vWq1WxEZMTEyINLPSc2BwcFDcu1J7pVSo0lhJ8QEdHR0YDAasVisNDQ2k02l6e3tpbm5eNZBfyvIlPdu3bNnChQsXGB8fR61Wo9PphAIv7eBptVrq6uqu/+UjI/MLQlYCZGRWQaFQUF5eTkNDA1arFZVKJV56u3fvFn7NTqeTO++8U7hjSNbEW2+9FaPRSHl5OXa7HY/HI+IFbDabyI6iVqupqqqivr5eWOekYyQlABD+8+FwGIfDIQQRyWJWXFzM5s2bcTgcQqjOZrPC/7i0tBSr1UpjYyNut1tY5CwWiwiC3Llzp/ArlizPUr/zX4wKhYLKykqxQyD5XEsW29raWuLxuBijW2+9VQS+mkwmioqKuHDhgrBiazQa1Go1d911FzqdDovFQm1tLcXFxahUKvbt2ycsupLwJ23Vb9q0ScQQ6HQ67rjjDrGFL42v5BYkuVWsFBwsWXs3b96M0WjEbrdjMBgoKysTgcvSd9LvV/P9VavVtLa2Cr9zlUol2qVWqykrK6OlpQWFQsGuXbsoKCgQuxYej4fz58+LcZcCUG+77Tah3OW3S61Ws2XLFsxmM1arlerqarLZLEajkYaGBrLZLGazGafTydq1a/F4PCIY8/bbb0etVrNp0yamp6eJRCKoVCqampqEMpBMJkVg66233orL5UKtVmMymYBLu0l79uwRwa2pVIrCwsLLxkWhUNDY2CiCntPptAg+93g8IoBUWrtFRUVs3LgRgFgsxr59+1CpVMKlxe12Y7FYuP3228WaiMfjeL1eMTcajYampiYRaAvQ0tIiAuwl661SqWTPnj0iaNrtdrNz507MZjObN28mHo+jUqnQaDTYbDa2bt0qAqKlOcjHaDSyfft2Ll68iFqtpqSkRCgUUkyKw+EQ8UAr1TaQdnqkYH2dTkdrayt2u53p6Wl2794tqp2vNOd2u5077rhDKDMqlQqDwUBJSQm5XA6j0Uh9fb1QCktKSlAoFGKNNjU1UVRUJNooxa3s3buXWCwm7pflfVcqlZSUlLBp0yZsNpvYbSwrK8PlclFZWUl7e7tYO9K9dcstt6BWq8X9IN3r+/btQ6/XCzemiooK9Ho9KpWKlpYWCgsLsVgslJaWCit9TU0NDodD7HjcfvvtOBwO5ufnicViwv2rr6+PgoIC7Ha7WAerId2LDoeDrVu3ijmV/kguSZJiKiUrkJH5OKPIyfmxZG5CbnSJdslNIT+DhJQxRHK7kT7L//+VqnzGYrHL0lDG43E0Gs2qW+zZbFa4HuRn3JCy4txIstksqVRKZOhZSdiV0mnmtzffvSH/c8mtJf+zeDy+oiCxElJw9Upjk8lkSKfTV2zrxxnJFSd/HKRiS9ebplTKaJK/RiSXjkwmI4SWlZBcYK4lsDGbzYoxl7jWcU8kEkQiEaLRKKWlpUt+K1nBJYXneslkMiJj1pV+n0qlyGazq2aLyiedTpPNZkVfFQqFcLWRhMPVuJ41/kG50pxLzwxJYbkR15LOqVKprsslLv8cUpYjlUol3HU+6Hq6Vg4ePEh/fz9PPPEEKpWKv/u7v6O1tVXsAKzUzmQyyZ/+6Z9y9913s2bNGgoKCkSWsr/4i79g27ZtNDQ0XLZbupwb/U6SkbkRyGqqjMw1sFL6uGv9LJ/8l1q+n7LE1aqdriTAfVQChmRZvxKrCagrCQYrtfF6qrteSRj+oMLIx4WVxuZahNOVkKzbK31+tXVyPeOoVCo/cE55KaVuQUHBiudd6d64ViSL99W4HuVqpXG71t//IioYX2nOb/S9cSPOKe1m5f9/tT7cSEpKSojFYpw/fx64tLtaWlq6xJ0pn0wmI1LxDg0NUVxcTFFREdlsVnw+Pj6Ox+OhoqLiI227jMxHgbwTIHNTIltdZGRkZGTyWZ4cQAp2Xm33UDpW2sWUjDCrfX4l5HeSzMcReSdARkZGRkZG5qbneiuMS4rB8l2f1T6XkflVQ1YCZGRuQiTf7kQiASAyBeUXEZPyvUvBeRKSv246nRbZaSQ0Go2ozilV35T8/6X0gdfiS55IJAgGg5cVIPsgSFa55deVUiQWFhZ+qPPLyMjIyMjcjMhKgIzMVfB6vahUKhQKBel0Go/HI/LTS3n1pawawWBQfJZOp0WmnZUE42g0SjweF7m7paxCsVhM5L6Px+MUFhaKrECxWAytVks2m6WgoGBVv1yp0mVfXx8mkwm73Y5OpxNBeC6Xi4mJCZGiMr/UvZTLP5VKUVNTQygUore3l9LSUoqLi4WPczabZWpqShQRKyoqIpVKEY1GcTgcInvMchKJBBMTE6hUKqxWK5FIRIxBMpmkqKiIdDpNLBYjFouhVCpFvvp4PE4gECAYDLJ27VrgUj2CxcVFFhcX0Wg05HI5iouLCQQCJBIJDAbDNSknMjIyMjIynyRkJUBGZhWkbCqvvvoqdrsdlUqFz+fji1/8IpOTkwSDQSHIA+zfv5/z588Tj8dJJBL4/X4+/elP43A4VhRABwYGGB8fJxAIoFKpqKysZMuWLQwNDeH3+wHo7+/n8ccfJxqNcuHCBYaGhigrKyMQCHD//feLtIrLyWazeL1ennrqKZqamti1axeBQIDp6Wmi0Si/8Ru/QVtbGy+//DI7duzgt3/7t8Uuwfnz5zlw4AAKhYKvf/3r+P1+/v2///f8m3/zb7jvvvuWjE9HRwcnT54E4HOf+xx9fX2cO3eOT33qU2zYsOGytmWzWfx+P0eOHOFLX/oSCwsL9PX1MT8/j1KpZGRkhK9+9avMzc0xODjI5OQkOp2O6upqGhoamJyc5OjRo7z77rv88Ic/RKFQMDg4yGuvvcZbb72F3W4nkUjw5JNPUl1djVKppKuri9bW1huyJmRkZGRkZG4Wrs9BTkbmE0Q2m+X48eOMjY2Jir5+v59z587x0ksvoVQqaWpqorGxkZ6eHrLZLK+++qrIS71582b+9m//9rLKkhJ/8zd/QyAQ4OGHH+a+++7j29/+Nj6fj7a2NhYWFti8eTM2m42FhQWeffZZRkdH2bhxI/v27eOFF14gGAyuWgFXp9PhdDqpqqqiqqqKtWvXctttt+FwOPj7v/97VCoV69atY+fOnWi1Wk6fPr3k91K+eo/HQ1NTk8j9L+U4h0sZU2pqaqipqaGqqopNmzZxxx138OqrrzIwMCCs+/ksLCwwNTUl8sgfPHiQeDzO5s2b2bFjBz/5yU+YnZ3lhz/8IVNTUzz++ON85jOf4Tvf+Q4LCwvU1dXR2Ni4pCKnVqvlscce49ChQzz//PM8+eST7Nu3j6amJsxmM0ePHv0g0y8jIyMjI3NTI+8EyMisQi6XI5FIiLz/UlaInp4etm3bxt/+7d+iUqnYvn07t912G3NzcyQSCXK5HFqtFovFQnt7u/CZX46UZ1ypVJLJZBgcHESpVBIIBDh69CjHjx9nw4YNuN1ustks2WwWtVotfPGlipj5lUol8i3w0WgUv9/PwMAAgUCAz372s+K7W265hfb2dt5++2127txJT08PpaWlOJ1OEonEigWflv8dj8fx+Xx0dXUxPDzMgw8+SH19/YpBcyMjI/T09LB9+3YA7rzzTtRqNXq9Hr/fTzQaxWAwsLi4iNvtFrnOJyYmRCaO5axZswaFQkE0GuXMmTNs3bpV7JBI+dNjsdgHzjsvIyMjIyNzMyIrATIyq6BUKmloaODcuXPMzs6iUCiYn58XVXCbm5sZGxvj4sWLomqqhJRLOxaLMTQ0tCTvuUKhwGq1snfvXjQaDWfOnBG++tlslsLCQlGN9/XXX+fee+9l69atjI+PMzQ0hF6vJxwOCyXiSuRyORYWFlhYWMBqtdLa2sqWLVvE91JVXMnXXooRUKvVIqh4OVJgr6SQSHnZzWYzk5OTuN3uVd2UQqEQgUAAj8cDgM1mQ6FQMDs7y7lz5/jN3/xNTCaTKEaUXxBttb5qtVpyuRzBYJC2tjZaWlpEsLFKpcJoNLK4uCiqD8vIyMjIyMjISoCMzKooFAqKiopoaGjA4XCwuLhINpvF5XLh9XrZvHkzlZWVDAwM0NfXxx133CGEVimewGQyrZqDevv27YRCIZG72uFwMDc3h8PhYOPGjWg0GrxeL8PDw5SXl6PRaFhYWBBVSk0m0zVl1pGK8LhcLkwmk1A44JJLj8vlwu12c/78eaxW65KKxyuRSqUYGRmhurpatMVgMGC32ykoKGBsbIxYLLbib9PpNOl0WhQFUqvVBAIBFhYWSKVS3HbbbaKyaX7frlbBNh6PMz8/z8zMDFqt9rL2X0mJkJGRkZGR+SQiKwEyMldAoVDQ0tKCwWBgcHAQh8PBunXreOGFF2hubmbr1q00Njbyve99D7vdLjLnxGIxQqEQtbW11NbWrpgpR61WU15ejkqlYmFhQQS+6nQ6amtrqaiowOl0MjAwQFlZGWvWrKG2tpZMJkNZWRlut1tcS6fTLRF8pexEqVQKi8VCSUkJFotFuMjkcjlisRiRSITi4mIymQwHDhzgq1/9KqlUimQySTqdFn9nMhkSiQSRSIRAIMB7771HZWUlyWSSVColKoBu27ZNjE1tbe1llUW1Wi1arZZwOIxerycej9PT08Pc3Jxwe0omkxQUFIhMSZlMhqKiItRq9ZK2xWIx9Ho9CoWCQCDA6OjoZWOcyWSIRqNCGZORkZGRkZG5hKwEyMhcgVQqxVNPPcW6deswm80UFRWxZs0a3G43IyMjwpK/ceNGtFotmzZtQqFQ0NHRweDgIF/+8peFYrCcN954g4KCAsxmM11dXXz961/HaDRy+PBh5ubmyOVy9Pf3s2vXLmZnZ2lvbycYDGKz2XjkkUcwm80cO3aMZDLJrl27sNls4tzhcJjJyUl6e3sJh8Ps3LkTvV6PTqcDLqXpPHjwIAaDge3bt7Nu3Tqef/55qqqqeOWVV7h48SIqlYr+/n4GBwdZWFjgwoULRCIRxsfHee6553jsscfo7Ozk4sWLmEwmJicnKSoqIhwOMzAwgMfjwel0Lgkm9ng8hMNhxsbGcLlcnD17lh/96Ee0t7djsVgIBoO8+eab3HPPPczPz3P48GHMZjMPPvggVquVsbExOjs7mZiY4M0332T//v2YTCaCwSBerxeHwyGuJblXJRIJnE6nrATIyMjIyMjkocjJe+QyNyE3okS7dGsEg0FisRhqtRqbzSYKaEkFtZRKJUajUXwuFamSgnZXcwdKpVL4/X6SySQOh0MoC5lMhkgkQjQaxe12C/cdqU6ATqfDYrGgUqlE0PHyWgSSAJxMJlEqlWg0GtEOqV/JZFLELigUCpLJJDqdjkwmIwqESXn3E4kEGo0GpVIpdhkMBoPYJVAoFOIafr+fRCKBVqvFbrcv2aFIJBJMT09z5MgRPv/5z5PNZkmlUqLWQi6Xw2AwkM1miUajRKNRcrmcKComuVmlUim0Wq3YZZB2LVKplIgzyGQyjI2N8cYbb/Dkk08ClxcUk5GRkflFcCPeSTIyNxp5J0BGZhUkgdFsNovAXinjjSQQ5/vWS587HA4RMHsl33qNRoPdbhd+9ZKQrlQqsVgsGI3GJRl2pHbkC+6rxQRIxxgMhlX7Je0KSEhKyHJ//Pz+SUg+/VLF4XxsNptQDJb3X6PRYLVaKS4uZmZmBpfLteJOiRTQK1UnXj4+y6+pVqtRqVRLzjU4OMjs7Cz33HPPkn7LyMjIyMjIyEqAjMxVWe7Xnv/5SqyUGnM1Vjt2pWuu1o6PG1I61dW+M5lMrFmzBqVSeUXB/Hr6u9Jui9FoxOVyUVpaeu2Nl5GRkZGR+YQgKwEyNzXd0V92C2QuR0fOUUEimWAsrOAKmyUfipTRQ85QSEf82pUyGRkZmY8C+V0k83FEVgJkbkqc6hx6BXy+W3YB+XiiAFYOmL5xyMK/jIzMxwe9AhLZqx8nI/OL4iOywcnI/HKJRqNks/LTVkZGRkbm40E8B3e0wVj8l90SGZlLyDsBMjcls4ksSYWK/1MVRT8zwrFjx+jp7cFkNJHJZnj4oYfR6XTkyKHVaKmvr1/1XBOTE3R2dKJUKtm8eTMqlYrD7x1GrVazZs0a1q1dd11ty2az/PzFn7N//37sNvt1/zaVTnH+3Hl+/OMf8/DDD7Nr1y60Oi2Li4v840/+kb379lJbU4vFcvUUFJOTk7z77rt0dHTwta99jerq6o80gLa3t5eZmRm279iOVqPFO+O9lEXJZL7s2FgsxsjoCE8//TT/7b/9N1TKDxYPkclmGB0Z5X/+z//JZz7zGVq3t2K32UmlUvzghz9g69at1FTXUFBQcNVzRaNRzp07x4ULF/AUefj0pz8NOTh58iSLvkWampqoq637QO38qMnlcoRCIXp6erDZbKxdu/a6fp/NZnnrrbdIppKsW7uONWvWrHhcOp1iamqanz7zUx5//HHKy8pvRPOXMDA4QDwex2a1UV5+Y86fSqV46+23RErdD9Luufk51Go1DrvjisdNTU1ht9sxGo3EE3G6LnZhs9koLStFr/vgO2T+gJ/XD7xOJpPhiSeeuO7fDwwOcPLkSYo8Rdx+++0fqA3vHHqHaCRKUXER27Zu+0Dn+GWQzqSZnp6mtKQUpVJJ/0A/U5NT7Ni5A61Ge0Oei91R+Hw3zKeg4qPeCJWRuQZkJUDmpmaTQwdzEZzrSrm3zoNSqeTChQvcXuEgnU4TDoeBFJtXkJelzD8H/ukpqquraW5uprr4UspP85piBgcHqcsGrzvdWy6nQLd5DXVOHSsk77nqbzMZFaVrS+gwZTFMdGOacrJ+/XrOzwzyROt6NlS7cTm1LEv+syJ1JRYmckEGJrq5vcKB3QIfZRKdsgoH4QINFTYV2WyKoQtHWbNpE/VFlythKb2aggV4eaqPLWb4oDHR2ayC2nI7r6iieIKTVMTnqSuzk8ko6bSpuLXESplbzz8ngLoiKb2GuCbOQnyOOrWNVvulR2jOoSag1LGj3IHzY5r+L5eDhFZLzZoi9Ho9hR9g3S5YYGzMS12uZNV1n82qCCqs/Hysi3XKKGs/gvGoKLOTTqfR6/XYb9D5MxklY4oIC8lF1ioirLuO8+ZyOVKpFIf6zmG229lSvv2Kx3eefJsNe/ZQ7akmbVBTUVt4qS92NddQBHxV4ho9XYl5otHoB0pDWVpsYTQ4RZEx+4HTWC4as8yEAjjj6o9VKkwpDfFKwnw2myUYDHPxxNvc+8QTaLVaysvsBK1KKm0qVKqP9rkoI/PLQlYCZG56XC4XNTU1mM1m5ufnsVqtlJSUMDMz889KwOqEw2FOnz5NY2Mja9asEXnzN2zYQC6Xw263E4/HGR8fx2az4fP5cLvdWCwWwuEwHR0d1NbWkk6nRdpLrVaL3+8nk8ng9XpZWFggm81SXFzM/Pw8JSUlWK3WFdsjpQWtqKjg3nvvpbOzk/Pnz+PxeAiFQuzatQuj0XjF1KT5WK1WLBYLBoNhSaEtgEgkgtfrxWg04vf7KS0tJZ2+ZC2TqvguLi6i1WrR6/WkUin0ej02m43h4WHi8TgFBQVotVpCoRAlJSXE43FCoRDRaJSFhQXOnTuHxWLB4/GIgmNms5lgMIjZbMZgMIhUphcvXkSr1WK1WlGr1Vy8eJHm5mZSqRSRSIRMJkN1dfVlfVQqlRQUFLB3717C4TCjo6PU1NQQDAZpaGigqKhIpICVGB8fF3Ue8tOjajQaDAYDFosFm80m0sA6HA6MRiMOh4OZmRmGhoYoLi5GqVSSTCapqKggFosRi8WEIJJMJvH7/WLsA4EAXq+XHTt2MDMzw/j4OGazGZvNRjgcpqioCLPZzNzcHLFYDI1GQyAQoLq6mr6+PlHHIhwOY7FYmJqaory8HIPBwPT0NA6HA6VSSTAYBC7ttEifBwIB0Z+pqSlsNhvRaBSPx0M6nWZxcRGLxUImk2G10jILCwvE4/HLalZEIhHC4bCoqZHL5dDr9aLwXE1NDZFIRKR+VSqV+Hw+GhoaiMfj+Hw+0V+dTofb7SYejxOLxUilUqhUKi5cuEBFRYU4v9lsxuFwLGlHKpViZGQEm81GIBDAbrdTUFBAKpViYmICm81GIpEQx2ezWfr6+rBYLGSzWXK5HGVlZVy8eJFsNivGKxqNUltby/T0NO3t7RQWFlJXV0dBQQGDg4OYzWZisRhKpZLy8nKCwSAnT56kuLgYh8MhKminUinMZjN+v59QKITZbCYQCFBWVkY8Hmd+fp6FhQVqa2uZm5ujpKQEs9m8JIOWXq9Ho9GQSqWYnZ0V1bwBAoEAiUSCjRs3MjAwINZwfjVzKb1vIBBgdnaWcDiMy+XCaDSysLBAMBjEarUSDAaprq4mGo0SCoVE9W6dToder8dgMJBKpfB6vXi9XioqKpiZmSEWi+F0OsUzobS0lGg0itfrFe2ura0V5zQajQSDQcrLywmHw8zNzREMBqmsrMTv9+NyudDpdCSTSRYWFtDpdKI+CVyq8ZJKpQiFQuh0OqxWKyqViunpaZxOJ6FQCLfbjVKpZGxsjFOnTnH77beLNSa1Q6VSMTc3J1IVJ5NJKisr6evrI5lMYjQaMZlMLC4usn79ejkdscyvDLISIHPTU11dTS6XY35+ngsXLrBz585rSuOZy+Xwer3kcjmRDz+XywmBfu3ateh0OoLBIIcOHWL9+vUcO3aMW2+9lYaGBsbHx/mzP/sz/t2/+3cEg0E0Gg1FRUWUlJTwzW9+k7/5m79heHiYY8eOEY/HefDBB3n99dd5+OGH2bBhw1Xbl68ElJeXY7fbMRgM16wArIYk8ExPT/PKK6+wbt06zp8/z6c//WlisRhvv/02gUCABx54gCNHjog0nKFQCKPRSEtLCy+++CKzs7Ps2LEDl8vFmTNn+MxnPiNcaX7zN3+TwcFBBgcHKS0tpaqqivLyct566y3WrFnD8PAwa9asEek9w+EwL730Em63m3Xr1mE0Gvkf/+N/8K1vfYtgMMjExASpVGpFJUDitttu4//+3/9LJpNh165d9Pf3U1tbu2IthfPnz1NTU0N1dfWqtRhWIp1O09/fz1/91V/xyCOPoNFomJmZ4dFHH8Xr9TI0NCQEpXA4THt7O06nk5aWFi5evMhrr73Gjh076Orq4h//8R9Zu3YtTU1NDA0NsWXLFjZu3MiZM2eYnp6msLCQtrY2fv3Xf51/+Id/wGq10tTUxPj4OHV1dTzzzDP82q/9GuXl5Rw4cIDt27ej0Wh47bXXqK+vZ9++fbz66qu0tLQwPDxMfX09arWaAwcOsGnTJvr7+7njjjuIxWKcOXOG5uZmhoeHV4y1yWazdHR0MDc3JwrcpdNpcrkcExMT9PX1odFo0Gq1zM3NUVVVxfj4OE8//TS/+7u/y8jICOl0WgicR48e5Y//+I8JBAK0tbUxOTmJ1WpFq9Vy7733cubMGSYnJ3G5XGzbto2/+Iu/4Itf/CI6nY5EIkFZWRm7d+9e0sZYLMY777zDunXrOHv2LJs2baK1tZWZmRkOHjzIpk2bGB8fF0pOLpfjzTffpLq6Wgjpjz/+OM8//zzxeJzGxkbMZjMDAwN84QtfoLe3l/7+foLBIGNjYzgcDg4dOkRVVRVjY2Oo1WoeffRRJicnGRgYoLe3l+LiYgoKCjhw4ABWq5Xbb7+dkZERhoeHWbduHe3t7dx5551CcXj33Xf5d//u3/H222/zqU99itraWszmpa50qVQKn8/HwMAAoVAIn8+H2Wymu7ubyclJvvnNb/L666+zdu1aGhsblygBAKFQiFAoxMDAAIODg9TX17N+/Xp6enro6elhzZo1nDlzht/+7d9mcHCQoaEhwuEwbrcbu91OLBb7Z8t6kLNnz3L69GkeeughDhw4wPT0NLt37xbVwh966CEmJyd55513MJlM5HI5PvvZz9Lf38/MzAy1tbV0dnZyzz334PV6OXr0KB0dHXzlK1+hvb2d9evXU1RURDwe5+TJkzgcDnQ6HS0tLQB0dHQA0N7eTllZmXhmv/nmm2zZsoW2tjZuv/12CgoK6OnpYWhoiP7+fvR6PadOneL48eN87WtfI51O09HRIYwz09PTPPHEE7z++uvMzs5SWVlJbW0thw8f5r/+1/96Xc8MGZlfJnJgsMwnhkAgwLlz54RF9FrQaDSk02khGKfTaQYHB/n5z3/Oq6++Sk9PDyaTib179+LxeJidnWVsbIxoNEpFRQVarZbNmzfT3NyMQqHg4sWLlJeX43Q6UalUVFdXs3HjRoxGI9u2bWNsbOyquxP5bbv//vupr6/n6aefpqWl5YbUEZAsxJ2dnbz//vvY7XZMJhMTExNks1m2bt2KVqultbWVhYUF9Ho9W7ZsYcuWLRw5cgSdTkdFRQUbNmxg165d3HbbbQwPD9Pf349CoaCyshKAPXv2UF5eTlNTE2vXriWZTPL+++9z9OhRSktLxXGZTIb/83/+D/fddx+PPvoot9xyixCOY7EY6XSaxsZGHnvssSv2q6qqCpVKhc/nY2ZmhtnZWZxO54oK4ac+9SkaGhouE5Bg5ZoEElqtlt27d5NOp6mtraWurg61Ws3AwADBYJCDBw9y4cIFstksO3bs4NZbbwXAbrdTXFyM0+kEYNeuXZSWlrJ27Vr27t3LHXfcwZ/92Z/R09PDmTNnGBgYwGazYTQamZycpLCwkIqKCtavX8/v/d7vcc8994i22+12Nm/ezC233ML27dsxGAwkEgl8Ph9vvPEG586do6mpCb/fz7Fjx0ilUjgcDoaGhjhy5AgdHR0olUpaW1vZuHHjikpTIBDg6NGjTExMsG/fPm655RZxz5w6dYq33nqLe+65h/3793PgwAHm5+eFwN/a2sr27dtZWFhAoVCwfv16ZmdnSSQSWK1WGhsbaW1tpaioiJ/97GckEgnWrFlDWVmZmFetVktjYyObN2/G6XRy6tSpJe2Tdh/27dtHcXExCwsLjI2NceHCBb773e/S3NzM5s2bWbduHYWFhcClHaQ777yT6upq5ubmOHPmDEqlku3bt9PQ0MDWrVvZsmULLpeLH//4x2zZsoXa2lrWrl0r7ve9e/dSUVFBIpFgdHSU6elpGhoaKCsrY9u2bWzYsAGHw8G2bdtIp9McOXKEsbExioqKaGlpoba2lhdeeAG1Wk1tbS3ZbJaWlhasViter5fFxcXL5kKj0VBcXMyuXbu46667+NGPfoTL5aK+vl6s3YaGBnbv3i3GMB+n08maNWvYvn079957L9/61reYmZlh3bp17N69G6vVyqFDh4jH4xw4cIDBwUG++MUvsn//ftavX4/BYCAQCDAyMkJ/fz//7b/9N5qamqitraWhoYGdO3dy2223MTIyQmfnv8RaGQwG/vAP/5Curi5mZmYoKSkRY/Czn/0Mi8VCQ0MDxcXF7N69m/vvv5+f/exntLW1UVFRwZ49e6ipqeG1115jYmKC4eFh3nnnHfbu3YvJZKKyspLy8nKqq6u56667cLlcnDx5kunpadxuNzt37qSoqIidO3fidrspKiqiqqqKZDLJX//1X1NbW8vu3buprKxkfHycs2fPsnXrVgoLCyktLWXNmjX09fWt+FyQkfm4IisBMp8Ipqam6O/vJ51OX/NvFAoFFRUVWK1WEokE4XBYBAOHw2HC4TDJZJLp6Wn+/M//HLPZTFFREQqFglAoRCaTwWg0YjQahWVoJSuqVqvF7XaL71dzt1gJm81GYWHhZa48H4YTJ04wMjKCRqMRwsqTTz7J3r17KS4uRqVSUVhYKKoSm0wmbDYbCoVi1fHVarWk02kymYz4TBKkfT4fc3NzKJVKvv71r7N//34OHTrEkSNHSKfTpNNptm7dyttvv01vby9wye3hy1/+Mv/0T//EyMgIuVzumhS7W2+9FYfDwU9+8hOsVuuqwvyVCplZLBacTifz8/Pis0wms6TvksuDRDabpbCwkP/wH/4D27ZtY3BwkFdeeWVJm9PpNPH45WlDlEolarWaZDJJJpPBbrcLgeT3fu/3aGpqwmg0YjAYsNlsS/o6NTXFiRMnLlsfmUyGwsJC/uZv/oaKigqeffZZzp8/j16vZ/369Wzbto0/+ZM/oa6ujlwud5m71HKSyaRo53JSqdSSfklzqlAohBuFQqHA4XAssWqn02lOnjzJW2+9RX9/Pw0NDWQyGXw+H6lUask1pPtMUujy15nE4uIif/Inf4Jer8fj8aBWq/H7/UQiEdGG/PEZHR3l7//+78lmsxQVFaFWq/H5fJfNjUajWeJGJLnRBQIB/vRP/5RIJILb7cZqtQo3QIlgMMjIyIj4v+TilH/+aDRKOp1Gp9OJ4HWFQkE2m72mDGi5XI5cLkdtbS2bNm3iBz/4AU6n85qs1ZI729TUFAcOHOD111+nurpauOnEYjHRH51OJ3YiJbek4eFhJiYmVpwPrVYr7huVSiX6Fo/Hl9xLCoWCaDR62Tk0Gg2ZTIa+vj4OHjzIoUOH2Lhxo3j+2mw2WlpaeP/996mtrWX9+vVoNBrOnz/P9773PWpqarBYLCQSCSKRiJh/ae6SyaS4VjQaFc9lSZGSPrPZbGLdXu/zW0bml428ZyXzicDn8wm/5mtFetj/1m/9FmNjY7zxxhs0NTVhMplIJpMYDAbUajXpdFr4pCYSCQYHB1Eqlaxfvx6v1ytehP39/fj9fkZHR/F6vUxMTBAOh+nu7mZubo6pqSnm5uYYHh6mrKwMjUbDT3/6U373d393xRd2Op1meHiYnp4evF4v4+PjlJb+c2aL/n6mpqbYsmULZrOZH/7whzQ3N7Nx48Yl5+rq6qKvr4+ZmRlOnjyJ3+/n+eef595776W2tla4nGQyGYqLi5mdnaWrq4vh4WEmJyeZnZ1lZGSErq4uJiYmmJycJBAICJeEtrY2fD4fRqOR8vJyent7GR4eZmBggNraWnK5HJOTk0xNTVFZWcnzzz/P/v37qa6uxmKxMDMzg8/nw+l0MjU1xeHDh0kmk8JSHo1GKSoqwuPxsLi4yI9//GOefPJJ9Hr9ikJ8U1MT09PTnDx5kt/5nd8RQng6nWZubo7Tp09z//33884771BRUUFZWdlllu/KykpSqRQvvvgiPT09ZLNZ4vE4ZrOZdDpNb28vs7OzTE9Pk0qlGBwcRKVSCb9zrVZLTU0NqVSK0tJSDh06JMZlbm6Ozs5OamtrmZ+fZ3R0lI6ODjo7O/nN3/xNampqGB0dxe/3i3nxeDxMTU2xuLiIx+PB4/EAsHv3bp5//nl8Ph933nknuVyO/v5+JicnSSQS9PT00N3dzZYtW6iurqayshKtVsuxY8fo6+vD5/NRVlZGLpejs7OTgYEBOjo6GBwcpKSkhFQqJYRuh8NBbW0tkUiE9vZ2otGoWB/SeL333nvodDq2bNmCzWZjYWGB6elphoaG6OrqYmhoCK1Wi9lsxuv1cvHiRRF/kkgkaGtrQ61WMzU1xfj4OCMjI2QyGaanp5mZmWFkZASFQkFvby/j4+PEYjEMBoMQmJffp2NjYyQSCR544AFOnTqFQqFgcHCQmZkZLBYL69evR61WMzs7y+LiItFoVLiXjIyMYLfbMZvNjI2Ncf/99wulcn5+nqGhIZqamsR9EIlEWFxc5MyZM2zcuBGPx8P4+Dg6nQ6lUkl3dzeDg4M8+OCDzM3NMTExQXd3N11dXezfvx+lUsnQ0BBzc3NMTk4yNDREKpXC5XJRVVW1ZH0aDAb8fj+dnZ1EIhFuv/12PB4PbrebRCLBd7/7XX7t135tiZK6/LkXDAbp7u6mr6+PL3zhCxgMBtLpNKlUirGxMXK5HF1dXWIH76WXXqK6uhqtVktPTw/T09Oo1WruuOMOvvGNb/D7v//7RKNR4d4VCAQwGo3C/7+rq4toNEo4HKa1tZVTp04tGYO77rqLoqIi+vr6mJycpL+/nxMnTnDbbbeRTqcJhULo9XrOnj1LLpdjYWEBjUZDNBrl/PnzGAwGNBoNTqdT+PhLLmjj4+NMTEzg8XjIZDJ0d3fT3NxMIBBgeHiYiooKHn/8cfr7+4lEIiSTSfR6Pc3Nzbz88svi/tbpdMzNzdHb24tGoxHviLq6j2e2MBkZkJUAmU8IkvW0pKTkun/b3NyMyWQStQfS6TTNzc3o9XqKiorQarU88MADWCwWtm/fTiaToaCgAJvNxmc/+1lsNhu5XA61Wk0ikcBgMPDQQw9RWFiI1WpFqVQSiUTQ6XQ88MAD1NTUoNdfyh+3kuuFhEKhwOPxCCFO+g0gglQl9yBJYVmO2WympaUFj8eDzWZDrVazfft2qqurKS0tZffu3RiNRhQKBQaDAZfLxYYNGygtLcVgMHDHHXeI38KlOAXJqqpWqzGbzcINo7y8HJVKhcFgoKysDJVKxW233YbVasVut6PT6Vi/fj1utxuTyYTJZEKpVPLwww9TVFTEnj17RGBwPB5Hr9eLObVYLEQiEWGxzuVyKyoBDoeDxsZGIpGICB6UxlKn0wlXEKfTuWqAtdlspqqqipaWFtLptNjJMZv/OXOU2cxnPvMZysvLyWQyZDIZXC6X8Ik3m83odDqy2Swul4uWlhbcbjdarVYEjysUCrRaLTqdDrPZLHyObTYbGzZsIBgMiuOMRiM7duxAqVSKHSUAj8dDc3MzyWQSi8UiLPp79+7FaDQKAbKo6FK2ILfbTS6XIxwOo9PpcDgceDwe9Ho9KpUKrfZSKt2CggJKS0uXjK9Wq6WpqYlwOCwErvvvvx+Px4PBYBDn1mg07NmzR/iPP/DAAxgMBiorK1GpVEJYfeCBB4SrViaTQa1Wo9Vquf/++3G73SIIGi7tCj3yyCMUFRUJK2xRUdES1zhpXh588EFsNhtbt24lmUxitVqpqanBYDBgMBjYsGEDFRUVwmXv9ttvp7i4GJ1Oh8vlwuVyMTk5icFgQK/X43K5hBuQRqOhtbWVRCKB0+kU93NxcTEmk4nCwkJhKd+/fz82mw2bzYZer2ft2rW43W5qa2txOp0UFBSg1+tpaGhg3bp1JJNJ1qxZw6c+9Sn0ej27du3CZrPhcrkuW58bN26kvLxc3If79+/HYrGg0WjweDzCAr6S66BarWbbtm1ks1kMBgPFxcWUlZWJ+yAcDmO1WnnwwQcpKyujpqaGZDJJNBrFaDSi1+upr6+nuLgYg8FAbW0tY2Nj4nr5z4S9e/dSVlZGOBxm06ZNpNNp1Go1RUVFNDQ04PP5MBgMYgwkhUmn0wmXw7KyMhKJBKFQCIVCgcVi4a677qKmpoZwOEwwGBTP6snJSVQqFWVlZdx+++0YjUbuvvtu8fwymUx86lOfoqSkBKPRSE1NDdlslvLyckpKShgZGRHP4x07dlBQUEB9fT1Op5PCwkLcbjef/exnsVgsKJVKtFrtqoqWjMzHBUVO3ruSuQk5PBViX5+F9xvj7CjQksvlhEAmCcvDw8MsLCygVqvZvHnzVc+ZSCREZhWn07lEQMzlciSTySUP/Q+TISKXywlrbVNT04cO9u3t7cXpdC5RDK6nHVqt9oq+8PlkMhmefvppIpEIt912GxUVFeh0uhV/m8vlhEuD1Md4PC4E4pWIxWIiy1NHRwfr16/H6XQSj8fp7+9n3bp1IovHSkgWzSspWNdCLpdjampKZFe6UrC59JiVsusolUrRPynWRHLvkLL+fOc732HTpk3cd999Ys1KfZLcKKT1tlpfJVeQ5esn/7Evza90TC6XE0qWdN5sNksymUSlUgmhfCWlMr9dkUhEKBD5fb/S3KyE5BqyXKj/IEj3qUajEeeQ/k4mk2JcJNcmaX0qFAqUSiWZTIZXX32VhYUFtm7dyvr165fc89J453I50V5p3PLnQHKdk1zqlpPJZITF+YP0VWp3NptFrVaLHRWlUsn09DRbtmy54jNFelZKa1qhUIhz5vct/1pXmttMJsM//dM/MT8/z+23305lZeWqz4TVxiAYDPLuu+9y/Phx/uiP/kgowfk7Pfn3YFtbG4cPH+ZLX/oSCoWCZ555hrq6Om655ZYl63il6y7PcCWRSqXI5XIfWLg/F4KtZ+HsVj5W6VNlPrnIOwEyNzUL8wukre7LhMpcLkcgECAUCl1TkShApCdcCcmSfCNZzZr9QVhJkLoWFArFkh2GayEcDpPJZAiHw4yMjFyxENtKQtDVhHPJhUqhULBhwwbhj5ufuelK47aaAHu9KBQKkb3oWo6Vrr3Sd/nCi+RqIcUlSG4t+ahUqmuay9UUt/zPls+vtOuTj+TnDVxR2clv1/KsNR90zG9kppUr3acrCXaS8J/P5OQkkUiEVCp12XcrjfdqAuOV+iXtmH1QpPtKmovu7m6CwSDFxcVs337lGgbS9Zevr9UUlpXGaDlSithIJMLw8PA1FapbPgajo6PMz89jNBovi+OQLO/5FBQUUFdXR1tbm9glKywsFOt3tTZfaV6uJaucjMyvEvJOgMxNySlfiu1tGv7B1M1DGyovC2zMZrP09vaSzWaprKy8TGD5ZbP8tvywykB+UNtHjWQJla53o6+50iNLslTm//9XlfwUlfDRjKHMB2P52s7/++OM1O78tv4i230jngnXO/bL+yz9+5c5X/JOgMzHDXknQOamRKW6tLQv+ddfbr1RKBTU1NQAH0/rzo1+Uf0iX3wf9Yt2tXP/Kghj18KvknD5SeOXLUR+UH7Z7b4R17/ecyw//ldx3mRkPmpkJUDmpkR64Ou0Olba9b0W9x3JHz6ZTArfWr1ef13uCZIPspTeUalUiiDdm/mlFIvFSCQS5HK5G5q+dDmLi4vCZenD+vjfbGQyGYLBoKhue6MLGEnuV3NzcyKI98PGrsh8fJFiaaR0r1JQumREyeVyBINBERCbv96y2axIJyrFWkguilIlaMnVSHIdkmJZzGbzFVP2SmQyGUZGRqisrPzIinUtLCyQTqdFlWEZmV91ZCVARuYKJBIJ2tvbUSgUIpvK9b5gEokEvb29RKNRbDabCFxdiXg8LoJGb0Thr5WQAj/VajUqlUqkuFxcXKS8vPyGKCfRaFSkrdy7d+8NaPVSstksfr9fVHh1u93X7J//SSGTyTA0NEQsFmPjxo1Lagj4/X5CoRAlJSXXJGCtRC6XI5VKcfr0aXbs2IHD4fhIsqHMzc2RTqfxeDwfW8FLSks5PT2N1WqlsrKSXC5HLBZjcXFRBKIXFRUBCOUslUqJ4mxarRav1wv8Sw58qe7ISvj9fubm5kgmk6LCeCwWIxAIiDSYFRUVwL8I1plMhlgsRkFBgaiTEI1G0ev1ZLNZPB7Pqs+dTCbD4uIi3d3dWK1WXC4XoVBIuNkUFxczMjKCz+ejvLyc2tpa0fa5uTkGBwdRKBSsXbuWdDrN8ePHKSsro7S0VBRPlMamr6+PeDzOunXrSCQSLCwsiCxgK62BeDzO/Pw84XCYXC7H4uKiqN0QCoVESt5wOCzGxmKxYDabicfj+P1+/H4/paWlWK1Wstkso6OjjI2NYbVaKSoqorCwkFQqJWrAfJBMczIyHzc+nk9UGZmPCZlMhhdeeIEDBw7Q3d39gQrBZDIZ3nnnHV588UWRx3o1ZmZm8Pv9S4oP3Wik3OpSAG8qlWJubo7jx4/fsEI3qVSKvr4+fv7zn9+Q8y0nnU7T2dkpag7Mzs5+JNf5VSaXy3H+/HmOHDlyWWXZsbExTpw4cV3F81YilUrx8ssvi9oDHwW9vb2cP39eWIevRn6Gnl8k/f39/OAHP+Dtt98Wny0uLvL+++/zxhtvLKli3Nvby+DgIN3d3Zw9e5bp6WmCwSDHjx/n1KlTtLe3c/To0Sv2Y3R0lBdffJGnnnpKfOb3+7lw4QJvvfUWBw8eFJ+PjY3R19fHwMAAJ0+eZGpqitnZWc6ePcuhQ4doa2vj0KFDSzIkLSeXy+H1enn22Wc5deoUoVCI/v5+3nvvPV5//XVyuRzd3d1897vfFeeSaG9v55lnnuG1114T9Rq++c1vcvr0aQKBwJJrRqNRnn/+eZ566ikikQiDg4P8wz/8A/39/SuusVwuh9/v5/jx41RUVIh2nD59mgsXLvCzn/2MUCjExMQE7e3tHD9+nNOnT9Pd3U0qlWJhYYHTp0/zk5/8hJGREbLZLIlEgoMHD/KNb3yDH/7wh5w/f554PC6UlRMnTvxS1piMzI1G3gmQkVkFhUJBQUEB5eXlWK1WysrK0Ov11xWYqlBcqoRaUlKCyWSiqqoKg8Gw6gvkzTffpKmpifr6+g/t3rK8TRKJRIKXX36Z+++/X+Q7r6qqoqqqatXfXO81pKJVq1luP+zLM51Oc+TIER555BEqKirEmP6iWS3t6Qf5/bX8brXxXulzrVYr6h4sP//GjRvZuHHjdbc5v71SxqD83bEP04fV2L1795L/X6sicLWg0evlSudTKBTs3LmTN998U6S8VSgUlJWVsX79etrb24nFYuL4119/nQcffJCGhgZmZ2c5duwYPp+PNWvWsH79eiKRCM8//7yoC7DStTdt2kRvb6/YPQAoLi4WVYfzKxG///77eDwe7r33Xqqqqnj33XcZGRnB4/HQ2NjIunXr+MpXvsLdd9+9aupOvV6P0+mksrKSyspK6uvr0ev1PPfcc/zt3/4tX/nKV1i7di07duwA4Pz58+zYsUOMtVTdvLCwULgJrl+/noqKiiU7SHV1dZSXl6NWq2loaADgJz/5CV1dXVgslssyC+VyObHzaLfbxZi4XC4aGxs5fPgwBw8e5MiRI+zdu5fPfvazJJNJvvzlL/PXf/3XlJeXEwqFxK6ZlPL09ttvZ+fOnTQ0NCyJL8hms8zMzIg0ujIyv8rISoCMzDUiVZf8L//lv3DvvfficDhEjvW77rqL8+fPk0qlRAGm1chkMvyv//W/iMfj1NfXY7PZGBgY4NFHH+XQoUP4fD5isRh1dXUkk0kOHjyI3W7HaDRiNpspKCjgv//3/86DDz6IRqPB7/czMzNDKpVi//799PT0sG7dOlpbW5menuaNN97AZrPhcDgoLCzEZDLx5ptv4nA42LJli6ie+c477/DNb36TtrY2FhcXRbrNbDZLTU0N//AP/yCEHa/Xy8aNG1m3bh2dnZ309/dTXl7OmTNn+PKXv4zVal21/8FgkLa2Nnp6enC5XKKwUiKRIBwOo9FoyOVy2O12ksmkEDBmZmbweDxUVFRgsVjo7+/n2LFjYvu/ra2Nuro6JiYmuO222zh48CAXL17k7rvvpqenh7vuuou+vj6CwaAo0qTT6US107Vr19LR0SEqDr/xxhtMT09TUVHB0NAQn//853nttddIJBI4HA7m5+f54he/uETRicfjvPjiixQVFeHz+bBarXg8HmZnZ/nBD37AY489ht/vR6FQ8JnPfEbkOodLbgu9vb38z//5P/nyl7/M9PQ0AFarFafTyfvvv8/v/M7vkMlk6O/vp6OjA5vNhsfjYdOmTYyOjtLe3o7JZGJubo5Pf/rTwtJ55MgRBgcHmZubY+fOnXR2dvL+++/zta99jbGxMZ577jk2btxIWVkZfX19fOUrX0Gj0fDaa68RCAQoLCxkZmaGL3zhC6u6ss3OztLe3k53dzculwuDwUB1dTWTk5MMDw+Lsdi2bRtvvPEGnZ2dmM1mwuEwDz/8MD/+8Y8xm81s3bqVmZkZmpqaqK6u5uc//zler5fPfvazTExM8OMf/5g77rgDrVbL/Pw8n/vc54jFYhw5coRoNCpSwFZXV7Nx48YVXZQmJiZ44YUX6Ozs5LHHHmNubg6bzUZdXR2jo6M8/fTT3HXXXTgcDqanp5cItzeCyspKvvOd76BWq9m5cyef+cxn+C//5b/Q0NCAXq8XAmZfXx8NDQ0f2s2qpKSEw4cP8/TTT7Nnzx4+97nP8YMf/EDk9s/lckQiEaanpzEajZdlU1tONBrF5/OJHaDHHntMfLd//35OnTrFwYMHaW1tpauri8rKSlFt+VpIp9P4fD66urqYmZnB6XSyefNmamtrLzt2enqaiYkJEXtUW1tLcXExSqWSaDTK8PAwn/nMZ4QLnKSETkxMXHEnzO/3MzQ0xOLiIrlcjpaWFoxGoygwd+zYMW699daPZWIJGZlrRXYHkpG5RqRqrk6nE5PJxJo1a8hmsyJmoKamhvr6+iWVaFdCoVBQV1cndhocDgf9/f3YbDZKSkpYs2YNVVVVqFQqfvKTn2A2m7HZbMzPzzM8PExRURF+v5/GxkZ27NjB1q1bqaqqIplMUldXx+zsLHNzcyiVSiwWC+vWrcPtdgvB0W63U1payrp160RF0PLycnw+H7lcjldeeYVIJMLmzZupr6/nn/7pnzCbzWSzWXQ6HXV1dZSWltLR0UE0GsXj8VBXV4fRaKS/v19YyVZjbm6On/70p9xxxx2i2nEwGOTll19m69atbNq0ifPnzzM4OIjNZiMcDrNmzRoqKirw+/2Mjo5iNBopLi5mzZo1TExM0N/fTzQaRafT0dvbC4DFYsFut+Nyubj//vt57bXXmJ+fx2azodVqOXv2LOvWrSMajaLVaikvLyebzTI5OcnJkyfx+Xy4XC6amppobW3l2LFjTE1NkclklqSYlSydiUSCmZkZzpw5Q21tLVu2bCEUCvHaa6/R0NCA1+ulpKQEu91OPB4XQr6EwWCgoKCAYDBIXV2dqMY6OzvLmjVrGBoaIp1Oo9Pp8Hg8onrvW2+9xdjYGENDQ4yOjrJ9+3ZaW1uxWq2i0q+kKJw7d45IJCLGJpPJLKlAXFpaSiaTYXJykiNHjiwRlLq7u0XBr5U4evQop0+fxm63Y7PZOH/+vPCdlqodHzhwgGg0itvtFpWKP/vZz1JeXk46ncZoNFJXV0dJSQltbW1kMhlsNhsWy6V8ihs2bBCByG63m1QqxeTkJGfOnEGpVOJyubBarYTDYWpra1dVWFwuFxaLBZPJRFNTE7fccgsvvfQS4+PjmM1m7HY7a9asYdOmTczNzdHf33/ZfH0YzGYz27Ztw263895779Hf378k4Fb6Mzc3R19fHz09PUv+XMltZyUMBgP19fU0NjZy6NAh+vr62LFjB2azmb6+Pvr6+oSv+9XOm81mmZubY25ujsLCQm699VYefvhh8b2kYKdSKRFzoNPprhpLJbn1SAkU9Ho9BQUFS4qerRSvEA6HiUQieDweAFGVOJFIMDIywqZNm6ivr0ej0YjCb3DJGLMaer2e6upqduzYwdq1a3n22WdZXFwkk8mg1Wqx2+1MT0+LXR8ZmV9V5J0AGZlrRCrqJAlQTqcThUKB3+8HuKrwn09BQQEWiwWbzYZOpyMcDqPVaoUAotfrCQaD9Pf3c8cdd+ByuTCZTKRSKcxmMzqdTpSqV6lUeL1eTCYTDoeDZDJJIpEglUrh9XoJh8NUV1fT1tbG3NwcuVwOi8UiXrAqlUoEwwGMjIywYcMGPB4PwWCQ4eFhNBqNaJ/b7WZhYYGOjg6RHWZ6elps3QcCAfFCXol4PM7g4CCVlZWiwmw2m2V4eFj8bmFhAbvdjk6nQ6PR4Ha7CQaDTExMEA6HUavVor8DAwMkEgmcTicVFRVs3rwZq9WKwWAQ/ayurmZsbIySkhJqamrQarVEo1FcLhc6nQ6TyYTFYkGlUhEOh/F6vSSTScxmM4WFheh0Ojo7O9FoNHg8HsrLy5e4dwCiQJrUdo1GI9wynE4narUam82G3+8Xltd8NBqNqDzsdruJxWJotVoSiQR2u51oNEomkxEBofF4nJqaGqamppifn2dxcZF4PE5xcTEWi0Vkv9LpdDidTlwul9jhkfoMiJ2Y5WMwNTWFSqWisLBQKGpXCsz1er2k02mqq6spKCjA5/MRjUZFZqyysjImJiZEJWFpp0dy79DpdJjNZlwul1hfcEmANRgMKBQKnE4nWq0Wi8UiqlhLwaCpVAqdTofFYhH31mouPNI5jUajKAAotc3hcGAymSgoKMDtdpPJZAiFQoTD4VX7fq1IWXHi8TgNDQ1UVVXR3d1NW1sbFotlSfXdTCaD3W7HYDCsWLjreq6XSCQoLi5mw4YN6PV62tvbufPOOzEYDITDYbErZrFYriqsS89Bs9mM0+kU7ZOUB5VKRVFREYFAgFOnTlFYWHjVAn6ZTEa49EgBxVqtFpvNRkVFBePj45fdL/m/lZQEqX2xWEwoIPv27RNVfvP7dqVqzBMTEwBiB3ZwcJBIJCKekdL8yDEBMr/qyEqAjMwqSIJFPB5Ho9EIX9tEIoFSqSSZTBKPx0kmk6RSKRG4qNVql2wRSylCY7GYSJMXjUZRKpVks1nxveQCkEqlWFxcJBAI4HK5sNlsuN1uPB6PSDmq0WiIx+Ok02khVEhCp6QE+P1+Ojs7mZqaYt26dWg0GkKhEIFAAKPRSDgcJpFIYLPZRN8ymQxGo5FsNkswGBRW41QqJV6AUoYR6TddXV10dXWxadMmLBYL8/PzFBYWCgEwlUotSYmqVqux2+0sLCwIX36VSoXJZCIQCIjqn2q1mlQqJbbv4/G4ELylPkciEXQ6nbA+ejwe7rzzTsxms0hpKCHtukh/3G43iURCtE0aN+mcCoVCXCOTyQgB2el0UlVVJVwO8pGEl2g0KtptNptFBhZJIJPOm48UpK1QKETGJmlspHGMRCJMTU0xODhIIpFg8+bN5HI5EeStVqsJBoMoFAoSiQSJRIJ0Oo1SqRRrVeqnNJ7RaFSs1/y2mc1mVCqViIuRhLn8+yOTyRCPx4lGo0KBsdvteDwe9u3bx9mzZxkfH0er1bJu3TqR1SkUCpFMJlEqlWQymSUC1fL1Jd0bUlt1Op24b6S2lpaW8v777+P3+6mqqlqSLUcSEJenBJYEZKn6r6SQS99FIhEikYjYTYFLgb42m23FjErSeo/FYoTDYYxGo7jXY7GYmPtcLofP52PTpk1s3bqV9evX89RTT1FbW0symSQcDotqxNIOykoW8Hg8TjweJ5FIEAwGxW6dNE7Sd1LqTqfTSXNzM2vXruXv/u7vyOVyVFZWirGsqqrC5XKJvkspQPPXp7R2DAaDcC2U1rl0HZ1OR3FxMdlsloMHD/Lkk08Si8WIx+OoVCri8TjZbFaMfTAYBC4ZH2KxGG63W6RlVigU1NfXMzo6ysLCApFIRKRqltDr9Wi1WkKhkHg2DA4OMj4+TjKZpLm5Ga/XS0FBAQaDgVAoRCqVoqysDJVKJZ7p0rylUimGhoaAS25bSqVS7CJIGZ3C4bBYBzIyv8rISoCMzCrkcjmmpqYYHR1FpVIJ6+Xo6CidnZ1kMhlGR0eZnZ1lZmaGqakpkskktbW1In2clFFjdHSU6elpFAoFO3bs4OLFi4yOjgrf6ZmZGbq7u4V7SygUorKykieffJLXXnuNjRs3YjAYhIvP9PQ0PT09GI1GAoGAON/o6CgzMzMYDAYGBgbw+/0UFBTQ0dHBwsICcCkDUWNjI6dPn6a6ulr4As/NzREIBPjUpz5FLBbj3XffRaVS8eCDDxIKhZidnSUSidDb20tnZydDQ0P4fD6hHMzOzpLJZDh9+jSJREJkIJmfn8fj8Qihye128/jjj/PTn/6U9evXCwH+gQce4NChQ2i1WhobGyksLGR2dpbZ2Vn6+vro7Oykr68Pp9PJwsICIyMjnDp1irvvvlsEVxYVFTE3N0dzczNzc3MMDQ2Jfn7hC1/g5MmTHDp0iDVr1pBIJNBoNHi9XjFHkgvSo48+yptvvklvby86nY5AIMBdd93Fs88+S3d3N8lkEr/fz3333Sf6ZTQaqaqqYu3atVy8eBGv14vBYOChhx6ivb2dxcVFJiYmGBkZob+/H4PBwM6dO8V6kyyhs7Oz9Pf309XVRW9vL2q1momJCebn5+nq6hKCisFg4MSJE0KQkZS5gwcPolarWbt2LZOTk4yOjor0oDMzM4yPj4tAyJ6eHkKhEDMzM6K9Q0ND2Gw2HnvsMV599VV6enpQKBQsLi5y3333CcEnm80SiUQYGRmhs7OTlpYWotEoBw4coKWlhXg8LoJWlUolp06dQqPRMD09zcjICKOjo2i1WiKRCIuLi8zMzKBSqcT6Gh4eZn5+Xig90s6U9Fk6nWZgYACj0cidd97JxYsXicfjjI+PMzMzw+c+9zm6u7uF+9HygNJkMsn8/DwXLlxgcnKSe++9l7q6OgKBAKlUinPnzrG4uIhGo6GyshK73c7zzz/PI488Ilyt8p8VHR0dTExM4Pf7OXnyJLt27RKKeFdXF2azmaGhIdavXy8ydCWTSSKRCLt27WLt2rUcPnxYJBOoqanB4XCsaq3u7+9naGiI8fFx3nvvPW6//XaRXrOjo0O4MTU0NIi4mf7+fkKhEDt27BDPHEnR/8xnPoNer2d0dJT5+Xk0Gg0tLS3ieuFwmOnpaQYHB4nFYuzbtw+dTicUpEQiwXvvvYfFYmHXrl3U1dXx6quvUllZyc9//nMGBgawWq0MDw8TjUbF2IfDYXw+Hy+//DLf+ta3aG9vZ2RkhHA4TE9PD83NzdTX1zM9Pc358+ex2+1LgtoLCwuJRCL09/cDl3YRn3rqKc6ePYvRaCSZTPKNb3yDO+64g0QiwbFjxzCZTDzwwAMYjUbxnBgcHESpVLJmzRpqa2vx+/1MTU3h8/nYsmULbrcbnU5HLBZjdnaWzZs3f2RpnGVkflEocvJ+lsxNyI0oz55vmYRLVl7Jcin57EoWsPzt8OWVKvO3+KVzSP+XBKpMJiNeKJI1WLJQS5Y6lUolPpOCdvMzVkjtWN6+ZDKJVqsV7ZOumUwmUavVS9ogBQlKW+y5XE4UgZLGQalULum3ZCFLp9PCoiy1Szpm+WfSLgtcch+Qzpm/tb98bPIfVfnzkP/bZDIpXEfyxzi/zVK+dMnqK1kcpd/kn1PaTcg/p/R7yZ1gpbmWdhjy5yi/H9JaWC5ISv1Yqb/SnEvnktx6JB9qhUIhxkBqW/61pO/z25Av0K80Blfqb/79sTx7itSG/DnVarWr9m35eZavr9XuFem7v/zLv+Thhx+mrKwMn8/Hu+++y4YNG2hoaBD3zHJh+qc//SltbW184xvfEAGySqWSCxcu8MILL/ClL31JuIJJ85jNZkU7lp9Pug+kPi2/N6UxleYhEAgAl+IDpDbG43Hhm19YWHjFGg75z5X846Sxy7/3JOt+LBbDZrOJ+zQUCpFIJIQr0PK5zbd0S+eU+ph/X0vH52dGWr7e8n8nrQup3cufo/njqFQqRRpjjUaDy+W67J4bHx/ntdde48knnxRrJH+NSW2NRqNEo1GAJeeRrinNEVzaaZHqCpSUlIg1MDAwwNtvvy2udT01Nm7Ee0lG5kYi7wTIyKxCvvtKPqv5zK72Mlgu7AGX/T//ZStZ1qTzqVQq4Z4ifbY8I0X++fLbl8vlLkv5J710JSFY+i5fuFl+/JX6LQnxy/1+rzQe+f3Mb5MkfOe3YbUt9/z2SMdLbVhpzKXPNRrNEiUj//z5/17p2HyFZaV2SdfN9ze+Wj+Wt2+14/LnPL+v+b7Q+Z+vdM3Vzr3aGFypv6utC4VCIfovCXES0rErteNK6+tKbc1ms2zbtg2v14vP5yORSKBSqUTl2JWu5fV6icViKJVKJiYmRHpcye0onU7T19dHWVnZEle2K1l+l/d1tfZLn0m7M/kCvBQDky/Ar8ZKa1z6fKXPTCbTkvgChUKB2WwWLj3L1/5K51htfa42Pvlrc/n5V1uLK32nVqtxu90rKnMKxaUEC7fccgvnzp1bNSMUXNqtk1yJ8s+10jWluZDcsRQKBePj4wSDQbZv335dwr+MzMcVWQmQkfmYsdLL5YP6nq700lztGtfz/bVe53rOv1xovl6utQ3X09bVhI6r/f6j9hW+0rzeaOHkg8zttSiDNwqFQsGGDRuWxFN4PB7MZvOq1zaZTLS0tLB27Vrsdrtos1qtprKykk996lN4PJ4lCsCNZiUBfjVF4kaw0rl/VdxZJIV8NfR6PeXl5SwsLFxx/K5nfFc6Nj8WQkbmZkBWAmRuarqjv+wWyMjIfLQowFx82acdq2epBSxQ2YgeGAFGROIfDVhLMTSVEgQurJyQRuZjh5qcwkrSpscXVfFR6Z0ppQ2MNjRqDcOh6/+9/D6S+bghKwEyNyUuDRiV8PnuX3ZLZGRkZGQ+ehSA7qpHfTg+fGEwo/LS+0lG5uOAHBgsc9MyFof51NWPk5GRkZGR+UXg0kCF/urHycj8IpCVABkZGRkZGRkZGZlPGHKlCxkZGRkZGRkZGZlPGLISICMjIyMjIyMjI/MJQ1YCZGRkZGRkZGRkZD5hyEqAjIyMjIyMjIyMzCcMWQmQkZGRkZGRkZGR+YQhKwEyMjIyMjIyMjIynzBkJUBGRkZGRkZGRkbmE4asBMjIyMjIyMjIyMh8wpCVABkZGRkZGRkZGZlPGLISICMjIyMjIyMjI/MJQ1YCZGRkZGRkZGRkZD5hyEqAjIyMjIyMjIyMzCcMWQmQkZGRkZGRkZGR+YQhKwEyMjIyMjIyMjIynzD+/+3XgQAAAACAIH/rQS6LJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmJAAAAGYkAAAAZiQAAABmAnAxolDemLTLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "render_page(docs, 14, print_text=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "a9155a30-ad45-4eec-b707-8142a9c27e0e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LayoutParser provides a comprehensive toolkit for deep learning-based document image analysis. The off-the-shelf library is easy to install, and can be used to build flexible and accurate pipelines for processing documents with complicated structures. It also supports high-level customization and enables easy labeling and training of DL models on unique document image datasets. The LayoutParser community platform facilitates sharing DL models and DIA pipelines, inviting discussion and promoting code reproducibility and reusability. The LayoutParser team is committed to keeping the library updated continuously and bringing the most recent advances in DL-based DIA, such as multi-modal document modeling [37, 36, 9] (an upcoming priority), to a diverse audience of end-users.\n", + "Acknowledgements We thank the anonymous reviewers for their comments and suggestions. This project is supported in part by NSF Grant OIA-2033558 and funding from the Harvard Data Science Initiative and Harvard Catalyst. Zejiang Shen thanks Doug Downey for suggestions.\n" + ] + } + ], + "source": [ + "conclusion_docs = []\n", + "parent_id = -1\n", + "for doc in docs:\n", + " if doc.metadata[\"category\"] == \"Title\" and \"Conclusion\" in doc.page_content:\n", + " parent_id = doc.metadata[\"element_id\"]\n", + " if doc.metadata.get(\"parent_id\") == parent_id:\n", + " conclusion_docs.append(doc)\n", + "\n", + "for doc in conclusion_docs:\n", + " print(doc.page_content)" + ] + }, + { + "cell_type": "markdown", + "id": "23d3be20-7adc-4a96-a97e-4777eb79b0cc", + "metadata": {}, + "source": [ + "### Extracting text from images\n", + "\n", + "OCR is run on images, enabling the extraction of text therein:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "3a17993b-13d0-42f4-a3ec-4e4a600cc65c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAPdCAYAAADS42RBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d3hc13no+3+nd8wMBoNeCYAAQRJsItWr5XZi2YntxCWu14l9juPkOr7yYyf3RrHjJD45/sVxi2NFPrItW5Z0JCuSVSlSJCX2JooE0XsvA2Awg+n19wezVwASpCiq0nw/z8PnkQYze6+995o96137XWvp8vl8HiGEEEIIIcQVQ/9WF0AIIYQQQgjx5pIgQAghhBBCiCuMBAFCCCGEEEJcYSQIEEIIIYQQ4gojQYAQQgghhBBXGAkChBBCCCGEuMJIECCEEEIIIcQVRoIAIYQQQgghrjASBAghhBBCCHGFkSBACCGEEEKIK4wEAUIIIYQQQlxhJAgQQgghhBDiCiNBgBBCCCGEEFcYCQKEEEIIIYS4whjf6gIIIYQQQojLXzabJZ1Ov9XF+J1nMpkwGAyveTsSBAghhBBCiEuWz+eZmppiYWHhrS7KFcPj8VBaWopOp7vkbUgQIIQQQgghLpkWABQXF2O3219Tw1RcWD6fJxaLMTMzA0BZWdklb0uCACGEEEIIcUmy2awKAHw+31tdnCuCzWYDYGZmhuLi4ktODZKBwUIIIYQQ4pJoYwDsdvtbXJIri3a+X8sYDAkChBBCCCHEayIpQG+u1+N8SxAghBBCCCHEFUbGBAghhBBCiNfdSAJm36QZQ4tMUG19c/b1u0KCACGEEEII8boaSUDTEUjk3pz9WfXQve3iA4FXSqf527/9W77xjW9cUlmGhoaoq6vjxIkTbNy48ZK28WaQIEAIIYQQQryuZtNvXgAAZ/Y1m774IGByclL990MPPcRdd91Fd3e3es3pdL7eRXzbkTEBQgghhBDiilJaWqr+ud1udDrdstcefPBB1qxZg9Vqpbm5mR//+Mfqs//X//V/0draSjKZBCCVSrFp0yY+9alPAVBXVwfApk2b0Ol03HLLLW/68V0MCQKEEEIIIYT4T/fffz933XUX//AP/0BnZyf/+I//yN/8zd/wi1/8AoAf/OAHRKNRvv71rwPw//6//y8LCwv86Ec/AuDIkSMA7Ny5k8nJSR599NG35kBegaQDCSGEEEII8Z/+9m//ln/+53/mgx/8IHCmZ7+jo4O7776bT3/60zidTn71q19x880343K5+N73vsfu3bspKCgAwO/3A+Dz+SgtLX3LjuOVSBAghBBCCCEEEI1G6e/v53Of+xx/+qd/ql7PZDK43W71/9deey133nkn3/rWt/ja177GDTfc8FYU9zWRIEAIIYQQQgggEokAcM8993D11Vcv+5vBYFD/ncvl2L9/PwaDgb6+vje1jK8XGRMghBBCCCEEUFJSQnl5OQMDAzQ0NCz7pw34BfjOd75DV1cXL7zwAs8++yw/+9nP1N/MZjMA2Wz2TS//qyFPAoQQQgghhPhP3/zmN/mLv/gL3G4373nPe0gmkxw7doxgMMhXvvIVTpw4wV133cUjjzzC9ddfz3e/+13+7//7/+bmm29m1apVFBcXY7PZePbZZ6msrMRqtS5LJXq7kCcBQgghhBBC/Kc/+ZM/4ac//Sk/+9nPWL9+PTfffDM///nPqaurI5FI8IlPfILPfOYz3HHHHQB8/vOf59Zbb+WTn/wk2WwWo9HID37wA+6++27Ky8v5wAc+8BYf0cp0+Xw+/1YXQgghhBBCXH4SiQSDg4PU1dVhtf7XSl1v9xWDL3fnO++vhqQDCSGEEEKI11W19UyjfDb95uyvyHTlBACvFwkChBBCCCHE667aKg3ztzMZEyCEEEIIIcQVRoIAIYQQQgghrjASBAghhBBCCHGFkSBACCGEEEKIK4wEAUIIIYQQQlxhJAgQQgghhBDiCiNBgBBCCCGEEFcYWSdACCGEEEK87tLBNNlI5k3Zl8FpxOQ1va7b/MxnPsPCwgKPPfbYed+zZ88ebr31VoLBIB6P53Xd/xtNggAhhBBCCPG6SgfTDP9jP/lM/k3Zn86oo+av6y86ENDpdBf8+9/+7d/y/e9/n3z+v8p/yy23sHHjRr73ve+9lqK+bUgQIIQQQgghXlfZSOZNCwAA8pk82UjmooOAyclJ9d8PPfQQd911F93d3eo1p9OJ0+l83cv5diJjAoQQQgghxBWltLRU/XO73eh0umWvOZ1OPvOZz/D7v//7wJnUoBdeeIHvf//76HQ6dDodQ0NDK25737593HjjjdhsNqqqqviLv/gLotHom3dwF0mCACGEEEIIIS7g+9//Ptdeey1/+qd/yuTkJJOTk1RVVZ3zvv7+ft7znvfwoQ99iFOnTvHQQw+xb98+vvSlL70Fpb4wSQcSQgghhBDiAtxuN2azGbvdTmlp6Xnf9+1vf5s//uM/5stf/jIAjY2N/OAHP+Dmm2/m3/7t37BarW9SiV+ZBAFCCCGEEEK8Dk6ePMmpU6e4//771Wv5fJ5cLsfg4CBr1qx5C0u3nAQBQgghhBBCvA4ikQhf+MIX+Iu/+Itz/lZdXf0WlOj8JAgQQgghhBDiFZjNZrLZ7AXfs3nzZjo6OmhoaHiTSnXpZGCwEEIIIYQQr6C2tpbDhw8zNDTE7OwsuVzunPd87Wtf48CBA3zpS1/i5Zdfpre3l8cff/xtOTBYggAhhBBCCPG6MjiN6IwXXpDr9aQz6jA439gElzvvvBODwUBLSwt+v5+RkZFz3tPa2soLL7xAT08PN954I5s2beKuu+6ivLz8DS3bpdDlly6FJoQQQgghxEVKJBIMDg5SV1d3zsw36WCabCTzppTD4DRe9EJhvwsudN4vlowJEEIIIYQQrzuT13RFNcwvN5IOJIQQQgghxBVGggAhhBBCCCGuMBIECCGEEEIIcYWRIEAIIYQQQogrjAQBQgghhBBCXGEkCBBCCCGEEOIKI0GAEEIIIYQQVxgJAoQQQgghhLjCyGJhQgghhBDidTcRnmA+Pv+m7KvQVkh5Qfmbsq/fFRIECCGEEEKI19VEeILb//ftJLPJN2V/FoOFnZ/b+aoCgc985jMsLCzw2GOPvXEFexuTdCAhhBBCCPG6mo/Pv2kBAEAym3zTnjr8rpAgQAghhBBCXNFuueUW/vzP/5wvf/nLeL1eSkpKuOeee4hGo3z2s5/F5XLR0NDAM888oz6TzWb53Oc+R11dHTabjaamJr7//e8v224mk+Ev/uIv8Hg8+Hw+vva1r/HpT3+a3//931fvyeVyfPvb31bb2bBhA4888sgbfswSBAghhBBCiCveL37xC4qKijhy5Ah//ud/zv/4H/+DP/zDP+S6667jpZde4l3vehef/OQnicViwJnGe2VlJQ8//DAdHR3cdddd/PVf/zX/5//8H7XNf/qnf+L+++/nZz/7Gfv37yccDp+TfvTtb3+b++67j5/85Ce0t7fzl3/5l3ziE5/ghRdeeEOPV5fP5/Nv6B6EEEIIIcTvpEQiweDgIHV1dVitVvX66enTfOCXH3hTy/L4Jx9nXcm6i37/0jEBt9xyC9lslr179wJnevndbjcf/OAHue+++wCYmpqirKyMgwcPcs0116y4zS996UtMTU2pnvzS0lLuvPNO7rzzTrXdVatWsWnTJh577DGSySSFhYXs3LmTa6+9Vm3nT/7kT4jFYvz6179ecT/nO++vhgwMFkIIIYQQV7zW1lb13waDAZ/Px/r169VrJSUlAMzMzKjX/vVf/5V7772XkZER4vE4qVSKjRs3AhAKhZienmbbtm3LtrtlyxZyuRwAfX19xGIx3vnOdy4rSyqVYtOmTa/7MS4lQYAQQgghhLjimUymZf+v0+mWvabT6QBUA/7BBx/kzjvv5J//+Z+59tprcblcfOc73+Hw4cMXvc9IJALAU089RUVFxbK/WSyWSzqOiyVBgBBCCCGEEK/S/v37ue666/jiF7+oXuvv71f/7Xa7KSkp4ejRo9x0003AmXSgl156ST0taGlpwWKxMDIyws033/ymll+CACGEEEIIIV6lxsZG7rvvPrZv305dXR2//OUvOXr0KHV1deo9f/7nf863v/1tGhoaaG5u5oc//CHBYFA9VXC5XNx555385V/+JblcjhtuuIFQKMT+/fspKCjg05/+9BtWfgkChBBCCCHE66rQVojFYHlTFwsrtBW+KfvSfOELX+DEiRN85CMfQafT8bGPfYwvfvGLy6YR/drXvsbU1BSf+tSnMBgMfP7zn+fd7343BoNBvedb3/oWfr+fb3/72wwMDODxeNi8eTN//dd//YaWX2YHEkIIIYQQl+RCs9RMhCfetAW8Cm2Fr2q14LdKLpdjzZo1/NEf/RHf+ta3Lnk7MjuQEEIIIYR4WyovKL8sGuZvpOHhYZ577jluvvlmkskkP/rRjxgcHOTjH//4W100WSxMCCGEEEKIN4Jer+fnP/85W7du5frrr6etrY2dO3eyZs2at7po8iRACCGEEEKIN0JVVRX79+9/q4uxInkSIIQQQgghxBVGggAhhBBCCPGayDwzb67X43xLECCEEEIIIS6JtqJuLBZ7i0tyZdHO99mrHL8aMiZACCGEEEJcEoPBgMfjYWZmBgC73a4WwhKvv3w+TywWY2ZmBo/Hs2y9gVdL1gkQQgghhBCXLJ/PMzU1xcLCwltdlCuGx+OhtLT0NQVcEgQIIYQQQojXLJvNkk6n3+pi/M4zmUyv6QmARoIAIYQQQgghrjAyMFgIIYQQQogrjAQBQgghhBBCXGEkCBBCCCGEEOIKI0GAEEIIIYQQVxgJAoQQQgghhLjCSBAghBBCCCHEFUaCACGEEEIIIa4wEgQIIYQQQghxhZEgQAghhBBCiCuMBAFCCCGEEEJcYSQIEEIIIYQQ4gojQYAQQgghhBBXGAkChBBCCCGEuMJIECCEEEIIIcQVRoIAIYQQQgghrjASBAghhBBCCHGFkSBACCGEEEKIK4wEAUIIIYQQQlxhJAgQQgghhBDiCiNBgBBCCCGEEFcYCQKEEEIIIYS4wkgQIIQQQgghxBVGggAhhBBCCCGuMBIECCGEEEIIcYWRIEAIIYQQQogrjAQBQgghhBBCXGEkCBBCCCGEEOIKI0GAEEIIIYQQVxgJAoQQQgghhLjCSBAghBBCCCHEFUaCACGEEEIIIa4wEgQIIYQQQghxhZEgQAghhBBCiCuMBAFCCCGEEEJcYSQIEEIIIYQQ4gpjfKsLIIQQF2MkAbPpt7oUQoi3myITVFvf6lIIcfmRIEAI8bY3koA1RyCWe6tLIoR4u7HroXPbGx8IXEpHhAQo4u1MggAhxNvebPpMAPCrNbDG/laX5vKUz+cZGx+jyFeEzWZb8T3ZXJZkIkksHiOfz+OwOzCZTGSyGaLRKAa9AZfLidFouqh9ptNpZudmiUQilBSX4HK50Ol0531/LpcjkUgwNTVFZWUlJpNJvT+fz5PP51XZzmYxWzAYDRj0hlcsVyabYWFhgUQiQbG/mGQqyUJwAY/Xg8vpuqhjO5/gQpCFhQVKikuw2WwXPN6zJVNJ4vE4qWRKvebxeDAajej1evL5PNlcloWFBQAMegMmswmnw3nOtvL5PIlkgshiRJ0vo9GIx+NBp9O9qnJdSC6XI5VOMTE+QUVlBSajCb1er8qQTCVZXFwknztTBr1Bj8fjwaA3oNPpSKfT6rgBnE4nZrMZg96grvnU1BRer3fFetsZg090nrlHvJGN7UvtiHizAhQhLoUEAUKIy4YvMkOoo53Ozk5WrVrFbbfdhtlsftPLkU6nCQQC/Md//Ae5XA6Xy8WqVau49tprMZkuroH8Zsvn4Tvf/Cp//Md/zDXXXIPf7z/nPel0jtlYiL//zt+zatUqfu/3fo+amhoCgQD3/O97+PCHP8xq/2pstpWPsauri8OHD/OpT32KQCDAAw88QGNjI1ubm3nk/p/w1a9+lQu1PTOZHMOzkzz00+/x5S9/maqqKnV9U6k0+/btY3h4mOrqao4dO8bu3bv5//6//49AIEA8Hmfjxo20tLS84rlIp/M8/cJ+2tvb+fjHP47dbueuH/wDH/3oR9l8yy3/eb7yzM/Pc+zYMUpLS2lpaWF+fh673Y7D4VAN3aWeeuop0uk0tVVVRLtH2XTDDej1F9/YjkTSbN/zPEePHqWxsZHrr7+e/kNHmZ2dpbKykttuu410OscDjz/F0aNH2bx5M7/3e79HievcICCXy7OYT/E/7/kuJSUlNDc34y8ro+PAdmZnZ/n4xz+Oz+e76LKdTzabZ2YmyK/u/v/x5S9/merqaqzWMy3efB7C4STf/fmPsNvtNDY2snr1avpP7md6epr/9t/+G0VFRfRPDvPjH/+YhoYGPvKRj1DsLcZohHQ6w9GjR3n6V7/i85//PBs3bnzN5b1UWkfEV1MnWTx9hHe84x1U11STzWaZmZ6ht6+XtrY2/uzP/gyj4UzT6s0KUIS4VDIwWAhx2XA4zzS+Tp8+zerVqzEYXrnX9/WQz+f5+c9/zsTEBAAGgwGn08nx48dpbGzE5/MxPDzMf/zHf7wp5Xm1stks09PTrF69mp6eHnp6elZ8n8FgwG63Y7fb8fl82O12zGYzTqeTpqYmqqurLxh0lZeXc/PNNwPQ39+Pz+ejuLiYkpIS3v/+979iOQ0GAxaLBbfbTS53bpdrLpfjxhtvZN26dfh8PgwGA83NzWzbto2SkhIsFstFnY+lx5nL5XC73Sv2jDudTjZs2EBNTQ2RSIT9+/cTjUZXLBvA2NgYiUSC+vp61qxZ86p7261WKw6HA5fLhdfrpaKigs2bN1NYWMjU1BSHDx/GaDRSXFyM0+nE5XLhdrtX3JZOp8Nut+NyufB4PPj9fmpqarjqqqt45plnCIfDr6ps56PX6zGbzXg8HnK53DlPabQyFBQUUFRURFVVFVdddRU6nY5Tp04xOjqKw+HA4XBQVFSE1Wpd9iQhGo0yMjLCwsICqVRqpSK8qTZ4zVQnZ6lNz7PZCds8Rt5R7eUdVV5Spw+x2QmbXWf+yVNL8XYnTwKEEJcNq9VK1mIhGo1SVlamGguhUIiJiQnGxsbI5/O0trbicrkIBoOcOnWK1tZWpqenSSQSFBUVUVtbS0dHB3NzcxiNRurq6vB6vXR2duJyuXA4HExPT2Oz2Vi9ejXHjx/n6aefxmQysX79ekpKSvB4PITDYWpqasjn87S3t3Py5Ene8573cOjQIQAKCwupqKigpKSEo0ePsri4iF6vR6/Xk8vluOWWW+ju7iYYDBKLxQBYvXo1lZWV9Pf3Mzs7SywWw2g0cuONNzIwMMDY2BjpdBqXy8Xi4iIbN24kFAqpRtRKTyJyuRwTExPcfPPNbN++naGhIa6//vpz3qfX6zGZTNjtdpxOJyaTSTXM/X4/BQUFxONx+vv7CQaDrFq1ikgkQmFhIVarldnZWUZGRqipqWFgYIB4PM7CwgIjIyMMDQ3R1NTE4uIigUCARCKBxWLBaDTi9/uZnJxEp9MRiURIJBIrlq2qqora2lqMRiMulwubzUZRUREAqVSKWCxGV1cXBQUFzM/PU19fTz6fZ3FxkYWFBVwul7pmZrNZpZeYzWbMZjN6vZ7p6Wl6enqoqanBaDQyPj6O2+1Gr9dz8OBBKioqMJvNuFwuda61xurMzAzpdJp4PI7L5aK7uxuHw0E6ncZoNFJeXs6RI0fO1ONsFp/PR11dnQoWjEajCgS0a+ByuSgvL2d+fp4jR45w9dVX43K5sNvt2Gw21et+Np1Oh9FoxOFwkM/nicfjhEIhpqen1fHPz88TDofJ5/OEw2Hq6urIZrMkEgnS6TQmk4lUKqXqWiQSwWq1YjQaKSoqIhAIkMlkVBrXSmUwmUzYbDbV0He73RQUFFBRUUFPTw9ms5m1a9eqYMFkMqnvRyaTQa/XU1ZWxtzcHDMzM1RWVl74JvEGc9gdWCwWstks+Xweo9GI0+mksLCQZDK5YqqaEG9XEgQIIS4bBr0BvcmEyWTCarWqxlMwGOTkyZPs2bOHcDjMZz7zGVavXs3Y2Bi//vWvMZlMHDlyhGQyyYYNGygsLOSpp55ifn6eXC7HrbfeSnNzM7t378blcrFmzRr27t2L1+ultraWffv20dfXx8GDB8lms2zcuBGv14vJZFINcq03ORQK8eijj5JKpaiqqmLr1q28973v5cCBAxw+fBi3201hYSH5fJ6bbrqJPXv2MDg4SDAYxGg08uEPfxi/38+ePXvo7e09k0+dz7N582Z6enp46qmnCIVCrF69mmAwSEVFBUNDQ5SUlOB2u1cMArLZLCMjI9x444088sgjTExMkEgkztuAvJBIJMLu3bvp7Ozk4x//OENDQ1RXV1NRUUFbWxtPP/00t956K4FAgHA4jNFoZHp6mt/85je8+93vpr+/n56eHqLRKB6Ph3Q6zbp16+js7MRqtWI2mwkEAuc0poxGI01NTectl8/nY3BwkImJCVavXs3Jkyex2+0kk0mmp6eZnZ2lurqaEydO8N73vpdsNnvONqLRKL29vezYsYN3vvOdWK1WnnzySVavXk1TUxO9vb2MjY1RXFyM1Wpddq4XFxcJh8PqXJvNZrq7u6msrGRmZgaj0UhBQQHPPvssTqcTg8FAa2srtbW1r/jEoKSkhO7ubtrb21f8ez6fJ5vNksvl1FMKnU6nntpEIhECgQDZbJajR4/y7ne/G6fTyeTkJCMjI6TTabq7u3n3u99NNptldnaW2dlZSkpKyGQy2Gw2pqamCAaDFBYWkk6naWlpYWBggFwuh8/nY2Zm5lU1gOvq6ti9ezeFhYWsXbv2nL+n02lCoRBGo5HNmzczOjqK1+t9y4MAIX6XSBAghLhsaY2OsrIybr31VgoLC9m9ezd79uzBZrPR3NzMRz7yEfL5PBaLhXe9611UVlYyNjbGxMQE//Iv/8IzzzzD4uIiAwMDvO997+Phhx/m4x//OJ2dnaqB/9WvfpWOjg7+x//4HyrnPJ0+M03Iv/3bvxGJRKiuruZTn/oUFRUVfPrTn2ZoaIgTJ07wH//xH7zvfe/jL//yL3n3u9/Ntm3b+OxnP6uChsHBQbxeL2vXrqWsrIzVq1czMjLCwYMHqa2tZcuWLRw8eJDjx49z22230d/fz+joKFdffTXvete7AGhubgZYMU89n8+TyWTo6urCbDaTy+UIh8O0tbWxdevWFc/rhdKsSktLKSgowOVysXnzZhwOB0eOHKG8vFw9IdHKtLi4SHNzMzabjT179gBw//33U11dTXNzM2azmSeeeIL9+/dz++2309raisFgoLq6+lWn0hw4cIDZ2VmKi4vZtGkTwWCQp59+msHBQerq6vjgBz9IaWkpTzzxBD09PczNzZ2zjRdeeIENGzbwJ3/yJ1RXVwOwc+dOTCYTJSUlrF69mm3btlFaWorR+F8/nzqdjrKyMkpLSykpKaGyspK/+7u/4+tf/zoVFRU899xz9PX1UVlZydVXX83o6CjvfOc7qa+vv6hj0+l06PX6C16X+fl5IpEI4XCYTCajUrjgzDVbs2YN9fX1NDY28pWvfEWlVFmtVpLJJIODgxw5coSysjKGh4d5+eWXeec738lNN93E9773PTweD62trdjtdh5//HH279/PjTfeyJYtW/B4PNTU1Lyqa6Yd0/k+Mz8/z6FDh7BYLBQUFLB9+3Z0Oh233nrr6zaoWYgrnQQBQojLVi6X49ixYxw9epTh4WGuv/567rjjDp577jlSqRQ+n4+bb76Zb33rW+TzeZUCkkqlMBjOzE5iMBjIZrOkUqlljYtUKqUa+oD62+joKLOzs6xbtw6Av/qrv6KsrAydTkcqleLXv/41Y2NjXH311TQ1NdHW1qa2oTXEtIay1qjx+XyEw2G6u7uZmppi48aNZDIZEokEJpOJa6+9lvLyctUILC8v59Zbbz2nbCsJhUIMDw/z2c9+Fp/PR21tLfv37+fpp59eMQjQ6/VUV1cvy8HO5/PLzoXZbFbpKDqdbsVc8PPJZrPU1taybds2nE4nW7Zs4etf/zomkwmz2bxiD/3FiMfjpNNpdS70ej2xWIxoNKqOQ5sVR0t3WSqVStHS0oLRaOSRRx7hK1/5yjn70LY9NDSE3+9X1/FsuVyOaDS67HPZbFalfHm93lc1oP3UqVOEQiHuuOOOFf+ezWbZvn27GruQTCbx+XznPDnRUq9mZ2cZGBhgfHycYDDINddcQ0NDA5OTkxiNRm666SZuv/12duzYwRNPPMHc3Bxr165l69atFBQUsGnTJu666y4MBsMlD8zftWsXra2ttLa2rvh3g8FAQUEBt/znQO3e3l5SqRTT09OUlpZe0j6FEMtJECCEuGxMT08z3dbGqVOn+Kd/+icymTNTV9psNsrLyzl48CD5fJ7e3l5KSkpobGzE7/djt9spLCxUgy6rqqowGo1885vfJBgMcuONN3L99dej1+vp7e3lRz/6EUePHsXj8XDo0CGuvvpqqqqq+M1vfkNhYSHV1dUUFRXR1dXFgQMHuPHGG6moqCCfz1NfX8/BgwcJhUIEAgGCwSDbt2+np6eHl19+mVAoRCKR4A/+4A8wmUw8+uijWCwWNR3mrbfeyqpVq2htbWVsbIzdu3eTTqfZvHkzO3fu5OjRoywsLKDT6bjjjjuora1l7969FBQU0NTUhN3+X6MR5+fnOXHiBDt37uSzn/0sRUVFWCwWAoEABw4c4NixY2zevHnZEwSz2cx73vMe7rnnHrq6ugiFQqTTaXw+HzqdjkAgoMZf9PaemRGlp6eHhoYGgsEgo6OjjIyMcOrUKaLRKCaTCY/Hw+joKAMDA3zoQx9iYmKC3bt3U19fTzKZ5KMf/SjDw8OcOHECm81Gb28vx48fp7i4+JxGZiqVoq+vj+7ubqanp9m7dy+tra1cc801HDt2jJGREU6fPk17ezvvfve7iUajzM3N8eKLL7JmzRqsViu1tbWcPHmSnp4eSkpKMJlMzM7OYjab0el0tLe38/DDD9PU1MTo6Cgej4dsNktTUxP79u2jtrZ2WQCQz+eZmZlhbGyMxcVFWlpa+OxnP8vevXtpamoiFArh9/tpbm7m3//934nH4zQ2NlJcXLxsMPP8/DxDQ0N0dHSQSCTUGIZAIEB1dTXXXXcdiUSCo0eP0tfXh8ViwW63Mzo6yrFjx7jpppvUAF29Xk8gEKCzs5PZ2VmSySRTU1MMDQ2xevVqGhoamJ2dVQOdZ2Zm6O7uZmJigvLycioqKmhubiaVSvFHf/RHBINBdu7cyZo1a1T9HRsb4/jx45SWlqpr5vP51FiLfD5PIBBQuf+JRIJYLKbSxLZs2UJRURFDQ0P09/cDsGHDBjo7O2lvb2dycpLbbruNTCaDw+FgaGiIBx98kE9+8pMUFha+JU8ExsbP1Huz2UxlZSVer5e5uTmOHDnC1NQUL730EuvXr1/2PRTi7UqCACHEZcNut9Pa2soXvvAFqqqqVP6z0+nE4XAwMzNDNpvlqquuoq6uDqfTSS6Xw2g0smHDBrxeLwaDAa/Xyx133EE0GiWfz9PY2IjX6yWbzfKHf/iHOBwO6uvrsdvtqtfxve99rwo4ioqKcLlcfPGLX6S5uRmHwwGc6b2sr6/njjvuWNbjrE2bWFBQgNPppK6uTjW83/ve96oBlGazmYaGBux2O+94xzuYm5sjkUiQy+UoKioinU7z+7//+yQSCcrLyykoKECn01FeXq4GbC5lsViorq7mpptuUo0mn8/HTTfdRHV1NcXFxec0pHQ6HX6/n1tuuQWHw6FmB7Lb7eh0Omw2GzfccAMtLS0UFhbS2tpKaWkp9fX1arCvy+XiuuuuI51OU1JyZr78T3/602o8hJZXrs1s43Q6z8wdbzBgMBj4gz/4A1avXr3ibD8Gg4HCwkJuvvlm6urqKC8vV08m1q5dS3l5OR6Ph6uvvpq6ujpyuRwLCwsEg0Hcbje33XYbFRUV6PV6/H4/lZWVOJ1OPvaxj9HY2KgGCVdWVuLz+bjjjjsoLi7G6/Vy7bXXEovFKC4uPqeRZ7fbee9734vZbKa0tJSqqio8Hg8ejwebzYbJZMLtdnPDDTeQyWQoLS09J73HarWyceNGfD4fHo+HsrIyNUuQNqA2k8mwbds26urq8Pl8lJSU4HQ68fv9FBUVqbqoBQJ33HEHNpsNr9eL0+nEZrOpa79p0yaqq6uprKxUg3UNBoMKll0uF7lcDpvNxvz8PLFYjIKCAgoKCnA4HBQWFpLL5XA4HHzoQx+isbHxnLn8bTYb733ve9Hr9Xi9XgoLC1VuvzbIuqysjA996EO43W41CBtg1apVKm3olltuYXZ2FofDcUljWV4vlRWV1L3vfRQWFuJ0OtXA4KamJr7whS9QUlJyzvdQiLcrXV6Gsgsh3uZeWoQtx+H4ljNT761EW1hIS/nI5/OEQiHa29vZt28fn/rUp5bNnrP01vdG9Chq27+YbWvBzNk5/a9mG2+EYDBIPp/HZrOdd4GxS6XN/rK0pz+bzap0IC0H/tUeey6XI51Oq159TT6fJ5VKnfP6q6ENwH015dJSz96s6WxfrVwuRzabxWg0qu9NPp8nl8udk7evXbOli7hpr8GlX7PX4mLuDW/Vft6ssglxqSRcFUL8Tjh7FdRcLkd/fz//63/9L97//vdTUFCwbDaXN7qh8mq2v9KA3le7jTeC1+t9w7atzS+/1OvRWNbr9Ss+QdDpdBe9jsD5aNNuvhpvxWJ2r4Y2Za1G+x6tVCdXumYrvfa7rDP2xrxXiLeCBAFCiMvGq/lRzef10LiZu375GABdWdAtvjHlEkK8Nd6shnaRCez6MysAvxp2/ZnPCvF2JOlAQoi3vZEErDkCsZUXahVCXMHseujcBtVv8FCBkQTMpl/5fUsVmd74cglxqSQIEEJcFi7lB1gI8btPGtpCXBoJAoQQQgghhLjCrDwaTQghhBBCCPE7S4IAIYQQQgghrjASBAghhBBCCHGFkSBACCGEEEKIK4wEAUIIIYQQQlxhJAgQQgghhBDiCiNBgBBCCCGEEFcYCQKEEEIIIYS4wkgQIIQQQgghxBVGggAhhBBCCCGuMBIECCGEEEIIcYWRIEAIIYQQQogrjAQBQgghhBBCXGGMb3UBhLgUIwmYTb/VpRBCCCFeWZEJqq1vdSmEWE6CAHHZGUnAmiMQy73VJRFCCCFemV0PndskEBBvLxIEiMvObPpMAPCrNbDG/laXRgghhDi/zhh8ovPMb5cEAeLtRIIAcdlaY4e15iQLCwukUin8fj9msxm9Xoa6XKxAIIDJZMLj8Zzzt0wmQywWI5/P43K53pTzms/nyWazhEIhAAwGA8FgEKfTicFgAMBkMuFyuVb8bDqdZmFhAa/Xi8lkesPL+0bI5/OMj49jNptxOp3Y7ZcW6WYyGebm5kin0/h8Pmw222sqUz6fR6fTodPpLnk7r0UulyMYDJJOpzEajSSTSeLxOF6vl2w2Sz6fx2g0ks/nWVxcpLa29pLKqh3rm1XfL3ZfqVSKxcVFwuEwNTU1l8V97u1Qb1aSz+dJJBKMjY3h9/tXvP8JcSWQIEBctvL5PJOTkzz99NNMTU3xmc98hvLycqxW6Wq5WE8//TTFxcW8973vPedv4XCYtrY2stksN9xwA2az+U0pUygUYseOHej1elwuF4899hg33ngjTqeTfD5PcXEx119//Tmfy2QyzM7O8uSTT/LBD36QoqKiN6W8r7d8Ps8999xDWVkZ1113Ha2trZe0nVgsxiOPPEIgEOAjH/kIa9aseU1lisfjlxyQvB5SqRTPPfcc8/PzeL1e+vr6aGtr48Mf/jCLi4uqIyCZTPLCCy/w7//+75e0n2w2SyqVelOONZPJkMlkLipACwQCHDhwgOeff57vfe97l819Lh6PY7PZ3nZBwOjoKH/1V3/Fn/7pn/Ke97znrS6SEG+Jt39XghDnEY/HCQQCLC4uctddd1FXV4fFYnmri3VZ2bhxI42NjSv+zWazUVtbS21treqFfzM88cQTuN1utmzZQmNjI9PT03z0ox/ltttuY+PGjVRUVKz4OYPBgMfjYePGja+p1/utptPp+L3f+z0sFgupVOqSt+NyuWhsbKSuru41bQdgcXGRRx55hGw2+5q281rodDrMZjOf+9zn+NjHPkZVVRWBQIA/+qM/4nOf+xyNjY20trbS2tpKJpO55P2Mjo7y5JNPvo4lP7+BgQGefvrpi3pveXk5t9xyC4uLi+Tz+Te4ZK+PbDbLI488QiQSeauLsoxOp6OxsZHS0tLLJpgS4o0gTwLEZWtkdISFo0cZHR2lr6+PhoYGxsbGWFhYQK/XU1dXh9PpRKfTMTs7y9zcHPF4nOLiYrLZLAMDA7hcLtauXUtHRweRSIQNGzYAEAwGmZ+fJxaLsXnzZqxWK3Nzc/T19ZHL5diyZQu5XI5AIEAgEECv11NWVkZRURFG4399rfL5PAsLC0xNTZFKpXA6naxatYqxsTG6u7spKSmhoKCA8fFxmpub8Xg8yx7z5/N5Xn75ZRKJBBaLBaPRSDweZ+vWrUSjUTo6Oshms9TW1jI1NcWGDRvIZDJMTEwwOTmJ3W5nw4YN6HQ6RkZGmJubw2g0UltbSyQSYXJykuLiYnK5HLFYjO7ubnQ6HW63m3w+z/DwMH6/n1zuzCjsQCDA2NgYOp2ODRs2kEql6OvrY35+noaGBsbHx/F6vZSVla2YsnO23t5eQqEQVquV8vJyjEYjp06doqqqimg0SiaTIZVK8cILL5DNZjGZTJSUlKjPt7W1kclkcLvduN1uxsfHCYfDqrEaCoXo7Owkl8uxadMmIpEI4+PjBAIBNm7cSE9PD7W1tRQWFmKz2chms5w6dQpA7WdycpJ4PM66desIhUIEg0HgTAC1Ei0dZWZmhng8jtlsZvXq1cRiMY4cOYLH48HtdjM7O0thYSG1tbUYjUZisRhzc3MEAgHm5ubO2+Bua2tjcXERv99PNBqlsbERk8nEzMwMU1NT6PV6NmzYoOpRKpVidnaWkydP4vP5KCoqIhwOMzo6SjQa5YYbbuDw4cMYjUZKSkqoqKigt7eXdDpNNpvFaDQSCoW47777KC8vZ/Xq1ZhMJhYWFhgaGmLbtm309fVRWlqK3+/H4XCQz+c5evQomUyGiooKysvLSSaTdHV1odfr1TkwGo309vai1+spKirC6/Wet94YDAbWr1+P0Whc1qus/XdjYyMul4uJiQlyuRxjY2OMjIzQ0NBAUVEROp2OZDLJiRMnMJvNVFRUUFZWtmwf09PTHDp0iIceegi/309zczM+n49YLMbU1BSzs7Ns2rQJm83G2NgYMzMz6HQ6PB4PVqsVn89HNBplYmKCTCaD0WhU51Wv19PV1aXqYjAY5MCBAzz11FP4fD61r7PT2GKxGKOjoysGcjMzM0xOTpLJZGhsbMTpdKLX69V3OxKJ4Pf7cTqdTE1NMTExwbp160gkEnR0dNDY2Ijf76e/v594PE5paSnz8/O43W6qqqro7+8nFovR0tKCw+EgGo0yNDREOBxm1apV2Gw2ZmZmGBgYYN26dYyNjVFQUIDf7yeVSvHoo4/S0dFBRUUFra2tWK1WxsfHVd1qaGg453ofPHgQs9mMw+EgnU6TyWRYvXq1Ogder5eqqioAxsbGCAQCqlGfSCTo7e3FYrHg8/nwer2cPHlS1UGtk0irMzqdjlgsxtDQENPT0zQ2NuL1eonFYszPz7OwsACgji0QCABQXFyMxWKhr6+PqqoqrFYr0WiU8fFxiouLqaqqkg4pcVmQJwHisuVwOPD7/bjdbvx+P7t27WJ2dpaCggLsdjuPPfYYiUSCkZERTp8+zdDQEH6/n+eeew6j0cjp06dpa2tDp9Ph8/l45plnCAaDjIyM0NnZSWlpqRpvcPToUV566SWcTid+v58dO3awc+dOpqenKS0tpaCggLGxMdLp/5q3NJfLEY1Gee6558jlcjidTubn59m3bx9Op5MjR45w8uRJwuEwRUVFPPjggyQSiXOO0+fzsWPHDnp7e3G5XJjNZn7605+STqeZnp6mvb2dtrY2xsbGyGQybN++nf7+foqKipifn6ezs5Ndu3YxODgIgN1uZ+fOnZjNZrq6uhgcHGRxcZE9e/ZQWlqqfgRnZ2fJ5/McO3aMTCbDiy++SHt7OyUlJRQWFvLoo48SiUQIBoO0t7dz+PBhqqqqePbZZxkdHb3gtcvlcrS1tdHf3696vHfs2IHFYsHj8VBSUkJVVRVVVVU4nU7q6uqorq5mYmKCl19+mVQqxfbt2wmFQjgcDoLBIEePHqWwsJBdu3axuLhIW1sbBw4cUPVk9+7dLCwsEAwG2bNnD6Ojo5SXl/PCCy9w+vRpgsEgzz//PLFYDI/HQ19fH93d3RiNRh577DH0er0KAuLx+AWP7/nnnyeVShGPx9VxmkwmRkdHOXHiBP39/RQXF/PII4+QSCQIBAJ0dnZy6tQpysvLCYfD5+3NzmQyDA0NsX37dhKJBHNzczz77LMMDAxQUlKCx+NZ1vuaTqdZXFykrKyMgwcP0tPTo+rZk08+qfK2BwcHaW9vJxKJ0N7eTmFhIZFIhHg8jsfjwWg0UldXh8fjwel0kkwm2bVrFyMjI/j9fk6cOMGhQ4eIRqM8+uijqiE2MTHBM888wwsvvEB5eTler5dIJEJHRwcHDx6kvLwcj8ezrNG1EoPBQHl5+XmfSvn9flwuF6lUipmZGRVAdnR00Nvby+LiIr/85S8pKysjmUwyOjrK0NDQsm04nU4KCgowm83U1dXhcrmIRqMMDw8zMjJCWVkZ9957r6p3CwsLPPjgg+RyOUZGRjhy5AidnZ0sLi4yPT3NzMwMJpOJzs5ODh48uKwuRqNRXC4XFotF7evsDoBEIsETTzzB4uIiHo9HNYoBDh06RG9vLzabjbKyMh577DGCwSBTU1N0dXXR1tam6ncoFCIcDtPX18fY2Bgul4uDBw8yPDyMyWTC4XDw85//nFgsRjqdpqOjgyeeeAKv18uxY8cYHR2lv7+fjo4ORkZGqKmpYdeuXUxPTxOPx+nq6mLfvn2UlZVx4MABOjo6MJlMKt++oqICs9nM7OwsfX19lJWVMTk5ueL9LpfLcezYMQ4dOoTL5eL48eMcOHAAg8HA7Owszz77LPl8nrm5Obq6ukin06TTaX75y19is9no6upieHiYxcVFMpkML7/8Mna7fcUxFPl8nkAgQCQSwe128+CDD5JOpzl8+DBjY2NYLBZOnjxJX18fFouF9vZ2Dh06hNlsxmKx0N/fz/z8PL29vRw+fJjq6mr279/P/Pz8a3oaJcSbRYIAcdly2B0UFRXhcrkoLCzk+eefJx6Pq9e6uroYHx/nxIkTqlHq9/sxGAw4nU6CwSCzs7Po9Xr8fj89PT3E43GCwSD9/f10d3ergbEvv/wyJ06cwGQyYbFY6OzsZGRkhMHBQXp6epibm0Ov1y/roczlcgwMDDAwMIDZbMbn8wGwc+dOHA4Hk5OThMNhrFYrfr+fAwcOrNjb5/f7GR0dJRKJUFRUhM/n46mnniKRSJBMJllcXFSNhGg0ypEjRxgZGcFsNpNKpRgcHGTHjh3Mzc3h8/nw+XzkcjkcDgdzc3MEg0EymQyTk5N0dnYyPT1NMpnEZDJhs9kYHh4mHA5z8uRJxsfHKSkpwe/388ILLxAOh0mn00SjUYLBIGVlZXR0dKje8vPJZrPs27ePubk51djp7e1Vg5SLioooKyujrKwMq9VKVVUV1dXVRCIR1SP49NNP43CcqQMOhwO9Xo/P56O3t5dkMklHRweHDx9WP9jd3d2kUinS6TRjY2Pq6U13dzdjY2MEg0G2b99OYWEhRUVFWCwWzGYzHo+H4eFhNRDVZDJRWFh4weNLJpOq8T0xMUF/fz9Go5FUKkUoFCKRSODz+Th+/DjpdJq+vj56e3tJpVKUlJSc09u9lBY0DQ8PU1hYSDwe58SJEwQCAUpKSvD5fOzatYtwOEwul0On06kGWTgcprOzk/n5eex2O11dXeTzeex2O5FIRDWeT58+TW9vL+FwWF0Tl8tFZWUlBQUF6gnb0NAQOp2O0tJSRkdH6e3tJR6P8+STT6LX67FYLKqxNjk5SUdHB9PT06RSKVKpFBMTE3R0dBAIBMhmsxfMG9fpdGq/K3E4HJjNZnK5HKlUCofDgd1uZ3x8nMHBQWZnZ9m1a5d6z+zsLBMTE8u2YbfbKSgoUD3hDodDPUFIJpMYjcZlDXiA06dPU1BQgMViYWRkhOnpafR6PYlEgkgkgsPhoL+/nyNHjqi62NXVRTabVfuqrKzEbrcvC3C0vPWuri7VUaE9rYIzPeYjIyP4fD78fj/d3d2Mjo7S3t6uGsfFxcUYjUZMJhP5fJ5YLMbCwgIul4upqSnC4bCq4ydPnsRisWC32wkGg3R0dFBYWMjs7CwzMzN0dHTw8ssvE4lEVC94NBpV252dnaWkpITBwUEmJiawWCwq6CspKcFmsxEKhWhvb1dPmlZKa3I4HMzPzzM9PY3H42F2dpbJyUlsNhuJRILTp08DZ+6v8XhcPXl78cUXsdlsOJ1OZmdnmZ6eJpfLqbFFKwWP2v5tNhter5cDBw6QyWRIp9Mkk0kSiQRTU1MqCMjn84RCIebm5kgkErhcLhYWFhgcHGRwcBCr1crU1BQLCwskk8nz1mUh3i4kCBCXLZ1Ot6zhffz4ceBMLrTRaKSwsJD29nb27t1LKpWitrYWk8nEH//xH+N0OrFarZjNZnQ6HRaLBZPJhE6nw2g0Mjc3x7/+678SDAZVL19/fz/RaFQ9baipqWFwcJCf/OQn7NmzR6WzaNLptOqdtlgsuN1uCgsLefHFF1XDrKSkhOrqakwmE4lE4pwfRZ1Oh81mo7CwELfbjcvlUr2rkUgEk8mE1+ulsrKSG2+8kfn5eUKhkEpTstlsJJNJjh49CkBVVRVut5s/+IM/wGKxqHOg9UZ+//vf56mnnmJxcZHS0lLV0JmdnVVPRcxmMzabjcnJSRYXFzEajfh8PqqrqwEuKl85l8uxd+9edDodoVBIpbdojVa9Xq/+af9vt9tVqkQ6nebFF1+kpqYGr9dLU1MTt99+O2azWV3TiYkJenp61DVzOp0qpcpms7F69WosFovqXQ2Hwxw6dIimpiacTifbtm3juuuuw+Px0NzczNDQEMlkktLSUpqami54fNdccw2RSEQFmRMTE2SzWZxOJ6WlpZSUlKDT6dS5OnnyJNPT02q7xcXF553dSGuwlJWV0djYiNlsJh6Pk06nMZvNqiGi9YRqPcUAq1evpq+vj6GhIaxWq9qHw+HAZDKh1+vVE4uf//znTExMqDqtXYelM/FYrVaamppU4zSdTpNKpVRjcX5+nlwuh9/vp7q6mu9973s888wzJBIJqqur8fv9/Mu//IsaCK6loWn/LoXRaMTr9ape6GQyydzcHDMzMywuLqoAUK/XL3typx2j9k+v15PJZFSaT0FBAcPDwyQSCZUm5XQ6KSwspKSkhM2bN1NQUKCCH7PZjMFgwOFwMDMzQ29vr6qL2hO9s/e19Jiz2SwnTpzA6/Vit9ux2+0UFRWp92jBthaQ+nw++vv7VXCg1aU//MM/pKysDIvFgtPpBECv12O1WjEajRgMBqxWK16vV6Vkud1unE4nZrNZPRns7Ozk9OnTqmNAu69p57uurg69Xr/sGLTvby6Xw2AwqIBXG7S9Uu+80+mkuLgYv9+PxWLB5XKp/wZUaqL2XdKCyWQySS6X4/bbbycSidDZ2UkqleKGG27AarWuuK9cLkdpaSmVlZVqximA9evXq+ttNpvV93fDhg3U19ezf/9+hoaGuPnmmwmHwyoNb3h4mOrqauLx+IpPOYR4u5ExAeKytvQHZ2mjKpPJMD09zaZNm/B6veh0OpXCEYvF1A+gNqVgJpMhHo+Ty+Worq7mQx/6EF/5ylf4x3/8R9ra2kgkElRWVrJp0yYAGhoaGBkZYcOGDXzhC1/gxRdf5P777+ezn/2s+lHWcusHBwdVQzOZTC7rkdLKsLRXTJtS73zHq/V8aT/ARqNRzWTi9XpxOBxUVVVx1VVXAWcGdT7wwAPAmYaFXq8nHA5TUFCgtqvlaT/++OPs3buXvr4+RkdH2bhxI/l8XuXnLg1UwuGwakTo9Xo1e1Aul1uxEXd2HndRURHV1dW0tLRQUFBAMpm8YE/w2dfabrerBqnW+Fw6o4vW+N24caPKGbZarYyMjKhBpkvPqdYw0hrTWn1xOBx86lOf4u677+baa6+lqqrqvMemvf43f/M3fPGLX2Tjxo2cPn2aUCjE1NQU6XR6WeNbe7/dblepPWcf60r1wWQyqQad0+lUT4W0Y1lYWMBkMp3T+5nP53G73aqHWzsHkUhEPYWKRqN84xvfwG6388Mf/pB9+/bx/ve/X5VhYGAAt9uttqk1ZpeeR6/Xy4YNG7DZbKxdu5aFhQXGxsZ44okn2L17N11dXfT397NhwwaefPJJtm/fzqFDhwiHw9x0002v+B240P9rgYwml8thNBrxeDxqjIzFYiGZTL7iQGctXS4cDuN2u3n3u9+t0lJ8Ph8GgwG73a7KUF9fr9KACgoKuPbaa1UAu1Jd7O/vV8fZ2dlJQ0ODqsM6nY6CggJOnz6teryXWnp+8vk8U1NTNDU14fF4SKVSRKNRAPX0aun1XnrNte1q13Glc6g9LSopKaGuro6Wlhaam5sxGo309/erz2vv1a6f1vAeGBjA7/dTWVnJN7/5TWw2G1/60peora1dcRYv7Z6ibU+b+nlpgPjEE08Qj8fZsmWLmkVscnKSsrIy1XA/fvw473vf+87Z/tJzufR3QAswfvzjH7Nq1Sp+7/d+j2w2q8bq1NXVEY1G+eEPf0hNTQ12u109OTQYDGzevJnNmzcTjUYv2ymKxZVFggBx2RoaHmJy3z66uroYGBjgzjvvZGJigieffBK73Y7H4+G6666jpaWFF154gd27d6s52G+//XbWrFnD9PQ0zz33HPl8nunpaXp6eggEAgwPD3PHHXewbt06mpubVa/Qfffdx4YNG0gmk+zduxe3282aNWvw+/34/f5ls9JYLBbe97738S//8i90d3fT3d1NIBDgG9/4BqOjoyo/3OVyodPpGBwcpLu7m7Vr154zWC4YDDIwMMCRI0cYGhrizjvvxGQy0d/fT09PD6FQiPr6erxeL1dffTWxWIydO3eqAbNf+tKXGBkZ4aGHHqKlpYVIJEJFRQUjIyNqTMLevXuJxWKYzWZaWloIh8Ps3r2b9vZ2DAYD27ZtIxKJsHPnTpLJJH/8x39MQUEBp06d4vDhw4yMjFBVVcXY2BjHjh3D5XLhcDj47//9v/PEE08sOzdGo5GvfOUrPPbYY8zPz1NcXKwGYZ86dYrZ2VmVSqHl26ZSKdra2lTP7t/93d/x0EMPsWbNGpULrp2TgYEBNm/eTHl5Ob/4xS/YtGkTyWRSXcfBwUF27dqF2+2mp6cHl8tFU1MTX//61/nJT37C1VdfDYDH46GpqYlVq1YRDoepr6+nsrKSyclJ7r33XtavX89tt9227HppDaDx8XGi0Shzc3P09PTQ2trKqVOnSKfTzM7OYjAYGBsb48UXX2Tr1q1MTExw9OhRfD4fhw4doqurC5vNRnNzs2rww5ke4P3796uGdXl5OTfddBOpVEpdm09/+tMUFRUxOjpKLpdjdHQUs9nMkSNHeMc73kFjYyPhcJjy8nKOHz9OV1cXJ06cQKfTsWrVKp5//nk+8IEPsGnTJkpKSrBYLGzcuJHt27dTWlpKLpdjaGiIkZERdu3aRUFBAV1dXVitVmZnZ/n617/OAw88QFNTE1arlZmZGfbt20csFlOBwcTEBP/xH/+h8rE3btxINpvl6aefpr29nTvvvHPFQEBLLzp58iSBQIBHH32Uq666irKyMqampjhx4gSDg4N0dXWxd+9eTpw4QUNDA1dffTW33HILzz//vBrXoAXNS3m9XhoaGnj66acpLy9X6WrxeJxjx46pOhMOh+np6aG/v58TJ07Q2tpKPp+nt7eXo0ePYrVa6ejo4EMf+hDveMc76O7uXlYXGxsbKSoqora2lqeffvqcWa8MBgPveMc71HifdDrNyMgIvb299Pb28rGPfYz5+XkeeeQRKioqcLvdbN26lWuuuYbTp0+zY8cOnE4n4+PjbN26lbKyMkKhEAcOHMBsNhMMBjl16pRKlRkaGqKrq4uhoSFOnjxJMBikr6+Pl156iYmJCa699lr8fj+//e1vSafTBAIBGhoaVL0dGxujsrKSkZERcrkcdXV11NbWcs8996g1G+bm5jh+/Dh33HEHd9xxB8XFxedc38OHD3Ps2DEKCgro6+vj+PHjTE9PqzIODAzw4osvks1mWVxcpLe3Vz1lO3nyJEVFRdx444309vaed4yJNumBdq/S6/UqdbKjo0OlhQ4MDBAKhejo6GDdunWUlJTgdrupr6/H7Xaj1+vZunUruVyOAwcOcOTIEcLhMOvXr3/FlEEh3g50+ctlrjEh/tNLi7DlOOxuDFOVCBCLxaivr1c5nFqVTiaT1NbWqkWTYrGY6gH1+XwsLCyo3l6z2Ux7ezvNzc1kMhmi0ShutxudTkdhYaEa5JlIJFRP7vz8PHq9HpvNpnqqli5qpZVjaGhoWW+plq7U29uLw+HA6/UC0NPTw5o1a3A6ncvSigC+8pWv0Nrayvve9z4SiQQGg4HCwkKmpqaIRqM4HA4qKyvR6/XMzs6SSqVUWoLFYlHHlM1msVqtKgVgaGhI9ZIGg0GV26ylfWgDf5ubm9Vc7FqPnE6nw+v1EgwGCQaDmM1mlWNfWFhIYWEh+Xye7du388EPfvCcWZNSqRSTk5MYjUaVOlFQUEBPT49KAzAYDAwMDNDY2KhmY8rn89TU1JBKpVhYWFCpXAaDAZ1OR3d3Nw0NDZhMJlKplGp4arnRWq98TU0NRqORoaEhNaNJJpNhYWEBu92u3q9d7wcffJBbbrmF0tJSNbA0GAyyfv16FeBo17y9vR23243ZbCadThOJRFQjVetV9Xg8dHZ2Ultbi8vlIpFIEAqFcDqdLCwsEAqFKCkpoaysbNm5CwQCahxHXV2daniffW38fj+Li4vEYjGMRqOaNaaoqAi73U4mk2F4eBiXy0U6nWZ+fh44kzI2NzenevttNpuaDUebtcVkMqlZVbTZjSYmJjAYDFRUVJDJZIhEIpjNZoxGI7lcTs06o11r7XiX1jmtXkQiEerq6lYMArS/z8zMMD8/z6pVq3C73ap3f35+nrGxMdauXUswGGRxcVH1Ys/NzS1L/9NS25bS0ri0RekSiQSJRIJcLofL5WJyclKlwsRiMTWrjMvl4vHHHyebzdLU1IRer6etrY2ysjI1lkK7fxiNRhwOhwpotX05HI5znt4MDQ2psqbTaU6fPs0111xDLpcjmUySyWTUGITKykp0Oh2Li4sqbVGbvQjOPOUJBAJ4PB71REd7otHd3U1LSwvxeFylkmkpj1pakMViIRAIqFmIHA4H8Xicqakp9f0fHBzEYrFQXFysxp1oHSTpdFpd81wup7a51MTEBKFQCKPRSGlpKcPDw1gsFgoLC1U6VU1NDel0mng8jsViQafTMT8/ryaKGB4eJhqNUlBQQH19/Tl1SFv3oqurC6/Xq8rT39/PmjVrmJqawmg04nK5VKpgaWmpumbarGpaB04oFFLjbLT7mJZet/Q36/gW2PzKk6YJ8aaRIEBcdi50Q9Ue6Waz2XMWt8rlcirVQ2tcZLNZNfWkNhhWr9eTy+XIZDLL3qs9htbygbVtavmuF1oVM51Oq/EGr4b25OIf/uEf2LJlCx/60IdU3vGFUme0cmnv0wIQ7fWzH1UvTaO60LFonz97PMb5JJNJ2tvb2bBhw3lnddHysi/l8bmWynW+c7v0uC402Hal92sBVU9PD1VVVSwuLqppZzOZDKFQiGg0SllZ2Ypl12YHWXrcF7P/VCqF0WhUqVsXW2cudG207S6tz2fvT0vj0o5Fe31pUJvNZlX9eKXjANRgX60xtLR+aV6pzr2etGN4pfp79rFq5+bsMp79+YcffhiTycRVV12FTqdjz5491NTU0NDQoKacPbsuXsx51eqS1tjXFt/S7kmZTEal/Cw9hrOvuXYP0Pap1+uXpd5c7DlcqS6d771aXVj63ov9/CvR0rm07SwsLNDb20sul1PjlC51HYBsNqtSyTRnp70tpf1mnH0dQIIA8fYl6UDid4pOp8NgMKzY4NR6xpda+t6lPxYrbWPpIL4LvW8lryU/VMsvNplMxONx9eTgQrSBj0td6NxoP1qvVM6Vtnsh2j4v5LWcG22A9YX+/mr2cfb7tVQAo9FIc3OzqiPZbJZwOKxmm1rJqw34tP1rdfTVLtB2oWuzdLsXu7+z3/9qgljtPJ79/pWuw5uZO32xx3D2+y62zpeXl6tFDA0GA2azWQ3GP19dvJgyLf370nEv2j1ppdW8V7rmS7+Pl1I/z7fdC713pYb+6zWH/tI6m8vlWFxcpKenh8rKSqxW62taCOxC98qVjmnpuCghLhfyJEBcdqRXRQjxdnb2IHZxZZPfLPF2JVOECiGEEEIIcYWRdCAhhBDidSS9/0KIy4E8CRDiIqTTaXp6enjwwQfVtIsHDx6ks7PzVW9LG8j3ajLxurq6eP7553nhhRcu6v3aILXX09JB15ejU6dO8eyzz3Ls2LG3uiivu1OnTtHT00MkErnkbWiD5C/Fzp07GR8ff8Xt79u3j0AgsOLK2G+mYDDI888/z8MPP6xey2Qyap547fve09NDLBY773YikQinT5/mvvvue8UVYrVxJL/4xS/o7++/4HZfL9q9RjuuC5VtdHSUe++9l8HBwfO+T7uvXGoW8dn3pdOnT9PV1fWa6u0boaenh127drFr164V/57JZOju7ubXv/71K9Z7Id7OJAgQ4iLk83nm5uY4ceIEMzMz5PN5JiYm1LSKr9bo6Oiraghp09mdOHHiot4fCoWYnp6+pLKdTywWIxQKve1+sC9WLBbj5Zdfpqur660uyusuEAgwPz//mgK/hYUFAoHAJX12eHj4FetFPp9nbGxMLcr3VspkMvT09HD48GH12sTEhFpgK5/Pq6lvL3ROtbnqd+zYcVHf53Q6zbFjx5icnHzFoOH1MjY2dlGr16ZSKXbv3n3BOpBMJhkbG7vkssTjcSYmJtT/a/X27JWb32rxeJze3t7zdhhoa0fs2bOH2dnZN7l0Qrx+JAgQlzVt2s90Oq2mvtN6m9LptFpRNpvNqlVlM5kMqVRKTamofV7rNUulUuo1bUVNs9lMUVER9fX1ZDIZstksdXV1lJaWAv/V46atDLx0Gr6zX0un02zfvl012pa+nkqlVJm1Y0mn06xdu5aioqJzeg+XvkfbTyaToa+vjwMHDqjj1P6uvSebzZJMJtU5ymazai70pT3+2vnK5XIMDw/T1dXFyMjIsm1of196vpaea+3cnn1+l7529jW80PXWtrHS55de26XnMJVKsXnzZux2u1obQrO0bmjHrB3/2fvSXtf2dfYxLS3f0oZuPp9X52rpZ7XpFrXrcHZd0qYpXHp+teulbS+fz1NaWkpxcbFaE0JbDVf7t1L90valzZne3t7OiRMnVINMqx9anTr7u6W9ls1maW5uxuPxLCundh60/el0OrUmgl6vJ51Oq3KuVK6ldVbbn+Z811y7Nlr9WlqWpdegqKgIv9+Py+VS1+CFF15gZGRETedbVFREcXGxWtFb++zSsrrdblpaWpZda+14ltYbODPbjMPhoLm5edm5P/v4l9bHlc73Sve7lb6HWr3ftWsXU1NTK/bgL502uKam5px1TrTj0N4TCARUwKOV9+x9nn1cS8/96Ogoe/fuVdenpKSEkpISrFbrOfeys+vt0mu+9Lwu/R1Y+r6VztfZ98ylT0mWvr5mzRpKS0tVUAgs277RaKS1tXXZ1MtnXzchLgcyJkBc1kKhEF1dXeh0OpqamnC5XCwuLjI5OUkoFKKsrIzy8nImJycZGxsjlUpRVlbGxMQELS0tahXKbDbL1q1baW9vZ2FhQS0Ctri4yDXXXHPOgkITExNMTk4uW9q+t7eXcDiM2+2mqKgIr9fLxMQEg4ODFBcXU1JSgs1mo7e3l5/97GdqPvHq6mpcLhenTp0iFApRW1ur3huJRDh58iQ+n49wOLziOZidnaW3txeTyaRWlt25cyeHDh3C4XCwefNmhoeHSafTalEit9vNiRMn8Pl8qqFz4MABbr/9drxeL/F4nJmZGcbGxiguLqaoqIiHH36YQCDApk2bMBgMWCwWTp48SWNjI1VVVbS1tZFKpbj++ut5+eWXWVxcpKysjMXFRTZs2EA+n2d0dJSJiQlcLhdXXXUV0WiUkZER5ufnMZlM1NTUUFxcfN6c6kAgoJ7AXHvttdhsNvr6+tQiYsXFxQwPD3P11VfjdrtVT21bWxslJSVq4bClpqamGBgYIBKJ0NraSkdHBxs3biSRSDA7O0soFOLmm28G/mshKW2huE2bNtHW1sbCwgIul4uGhgZGR0cJBAK0trZSVFSk6seTTz7JqlWrVFDZ0NBANpvl6NGjGI1GysvLWbVqFXAmvSeXy+HxePB6vRiNRjo7OwmHw6xbt45MJsOJEyeor6+nrq5OnVObzaamNdVW4LVYLJSVlXHy5EnC4TCrVq1SCzlpZfvFL35Bd3c3BQUFeDwerrnmGp577jkVWORyOVpaWojFYup75HK5aGxsZHx8nMnJSSorK5mbm6O3t5dEIkFZWRnT09NUVFRQV1dHPB5naGiIsrIyIpEI09PTjI6OcvXVV9Pe3k5jY6MqVz6f59SpU6rhry2u1dTUhE6nO+eaj42NsW3bNkKhEJOTk+h0Oq666ipOnTrFwsICxcXF1NXVsX37dhobG2loaFDXP5vNsnPnTn7zm98wOTlJIpGgqamJrq4uNdXk+Pg4Y2NjNDc3MzExQXV1NSUlJees7K3dG3p7e9HpdNx4440XnOo1Go0yMzPDyMiI6lSYmppiZGSEVCrF1q1bGR8fVwutNTY2cvLkSZLJJA0NDRQWFhKLxdi7dy9VVVVUVFTQ1dVFKpVi7dq1vPTSSzz88MPE43Fuvvlmmpubz5kaNBgM0tnZidvtXhZoxeNxDh06BMCWLVuIx+McOXKEn//855SVlbFhwwb8fj/RaJT+/n4WFxdpbW3F4/GQSqUIBAIMDQ1RUlJCXV0dzz33HAcPHiQajVJdXc3GjRuZmJjAbrdTWFiI1WolEAgwMjKiFnSsrKzk+PHjxGIxCgsLVTB23XXXLbtHLC4uqpV+S0tLCQaDeDwe6uvraWtrI5vNqpXY0+k0c3NzDA4OYrfbqa6uVgsbRiIRTp06hdfrPWe1Ya0cPp+P9evXL9u/tnhdIBAgEolwzTXXrFg3hHi7kScB4rJ1/PhxnnrqKUwmE/X19TzyyCNs376dI0eOMDIywubNm/ntb3/L6dOnVQ/pt7/9bex2O8lkkvvvv5/du3dTVlbGI488QiAQoKqqitOnT3P//fdTX19PcXEx3/72tzl69OiyfZeWlnLo0CFOnz5NNBrl6NGj7N69m1WrVtHT08POnTuJx+P89Kc/ZcOGDfz2t7/lt7/9LQaDgcbGRiorK7n++utpaWkhk8mwc+dO+vr6uOqqqzh48CDPPvssY2Nj/P3f/z2bN2/GZDKtmJbQ0dFBd3c3Ho+HTZs2qdV66+rqaGho4NZbb6W4uJjVq1ezZ88eHnroIfR6PV1dXdjtdl566SUGBgYwmUycOnWKkZERgsEgTz75JM899xybNm3iqaeeAmDVqlVs2rSJLVu20NjYSEVFBXv27KGrqwuHw0FdXR333HMP0WgUk8nEwMAAv/rVr8hkMkxPT/O9732Pzs5O1qxZw+TkJEePHuXXv/416XSa1tZWSkpK6O/vP28v2vj4OKdOnWJ6epqmpia+/OUvE4lEqKqqYmRkhH/913/FbrertIb29nY6Ozv57ne/y9VXX33e8QzFxcWMjIzwzDPPMDg4yMaNG/mrv/orjh07htFoZHZ2lmeffZZMJsNjjz1GX18ffr+fZ555hra2Nvx+PydOnOC5555TqzCvtACT1Wrl4Ycf5sSJE8TjcYaHh/nqV7/KmjVrMBgM9Pf3s2/fPn72s5+puc5ffvllfvzjHxMOh2lqauKRRx6hr69PLWi3e/dujEYjU1NTDA4OMj8/T3l5Ob/+9a8ZGRmhv7+fI0eOsHPnTvr7+7n66qvZs2fPsrElOp2OjRs3smHDBtauXcvmzZuBM3O5b9++nT179pBMJpmamuInP/kJbreb+fl5du3aRVdXF6WlpWzfvp3R0VEVAP/t3/6tWvCsvb2dffv2YbFYGBgYYHh4GKPRSCwW47HHHqO/v5/W1lZ++9vfsnPnTmZnZ/n5z39OLpdjYmKCQCBANpuluLhYlfnsa55IJPjRj35Eb28vNpuNxx57TK0mfPToUV588UU1n/6LL75IKBRS2zIYDNx22234/X42bNjA+vXrVdCxZ88eteJzW1sbp06d4vrrr+eBBx5g586dTE5OLrvG999/PwcOHGDVqlWsXr2au+++m7m5uRXrM0B3dzdPPPEE1157LX/3d3/H0NCQWt33f//v/43T6WR8fJxEIkFvby/33nsvfr+frVu38pvf/IYdO3aQy+Ww2+0888wz6PV6AoEAXV1dzM7O8o53vAOfz8dVV13F6tWrzwlInnzySR555BFWr16tgrhEIsGxY8e4++67qaurY82aNTzxxBOMjIzQ0NBAVVUVt912G+Xl5XR1dXHgwAGmp6e54YYb+MlPfkJvby87d+7k0UcfZdu2bTz99NMEg0Fqa2vZsmULzc3NbNu2DYfDwczMDIODg4yOjjIzM8Pdd99NZWUlTqeT7u5unn76adasWcM///M/Mzw8jMFgYG5ujt/+9rfL7hMOh4Oamhruuusu9ZTy0KFD/PCHP6SlpYXHHnuMwcFB5ubm6O7u5t577+Wqq64iFouxb98+9u3bx9TUFN/61rdobW3FarWqJ2KZTIa/+7u/w2q10tjYSCaT4d577112Hvv6+ti/fz9btmwhFAqppxVCvN1JECAuW0NDQ/T09NDQ0IDb7eb2229ncHCQ4eFhqqurMZlMVFRUcPz4cdXjZLPZ8Pv9eDwerFYrJpMJq9WK2WwmFAphsVhwOp04HA5cLhfV1dV0dnYyMzOzrAFpNBoxGo3o9XpCoRDPPfccTU1N2O12tm3bxg033IDZbOaGG26gr6+P2dlZotEosVhMrcJqsVgwGo3Mzc2xY8cOTCYTo6OjarGh06dPU1RUpFKRHA7HOeegsLCQ+fl5fvKTn3DPPfdQXV2N0+lU5bNareh0OpxOJ3a7HafTSWVlJa2trar3S1ut1OFwkMvlaGtrIxqN4vF4cDgcfOADH6CgoACz2YzZbFblNpvNauVTg8GAy+VSKRB2ux2Px4PP56OlpYVkMkkgEGBsbIzp6WnVuC4qKuLZZ5/l+9//PocPH2bVqlXnXZipsLCQkpISLBYLw8PDTE9Pk8vlsFqt2O127HY7RUVFeDwegsEgXV1d9Pf34/P5MJvNFBcXr7h4kHYMZrOZxsZGPB4P6XQaq9WqzsHk5CT5fJ6tW7fi8Xjo7e0ln88zMjKCw+GgsLAQs9nM3NwcZrOZ5uZm9VRG43a7cbvdVFdXU1lZSTQaZXJykpGREZV6Mzo6ymOPPcbmzZtVHdVSJbTUlVwuh9lsVudbW7zJaDSqpwyZTIaysjI2bdpEYWEhu3btwmQyMTw8TCKRUL2YSxebWvoPUE8FKioqaG5uxu/38853vpPp6WkCgQCJRILR0VFV17RFrxwOBxaLRT0Ny2QyzM3NodPpVC+/thCTTqejsbERr9dLOBwmEomQzWZZWFjA4XBgMBjU987lcqlyn33N3W63KrvVasVoNLKwsKBW1tVWz3a73Ss20CwWCwaDAZPJpFYNX/pe7SlbaWkpZrOZ+vp6pqamOHny5LLttLW10dnZycLCArOzs6/YGCwpKWH9+vWcPn2aSCRCNBrFYDBQWFiIx+NRi45VVVVhMpk4dOiQ+g7odDrVc+52u0kmk6oumM1mcrkcFotFLWJ19kq24XCYqakpFhYW8Hg86h5hMBiYmJjg8OHDhEIhZmdn1ZgCg8Gg7it6vZ6TJ0/S1tYGoAYUd3Z2EgwGVe/++9//frxeryqXyWRSqwVr9TYcDnPgwAH1vrKyMoxGI88884yqT16vF5/Ph81mY2pqatl51O5fVqsVn8+H1+vF4XAsu79Ho1G6u7vp6OjA5/OpzqO+vj62b9/OqVOnKCoqwmKx4PP5VE9+Lpdj7969zMzMEAwGCYVC53TI5HI5xsbG+OY3v6mugxCXAwkCxGUrGosSjUZVA7WiooJ4PE4sFlONPavVSigUIpFIYDabsdvtWK1WLBYLNptN/UiaTKZlP6JWqxWDwYDT6SQUCqnG1lJab28mk2F2dlblOhcVFeHz+QgGgwQCAdUwyeVyRCIRcrmcanzFYjFmZ2dZWFjA5/Op3qbS0lIWFxeXNXpWWllVa6ysWrUKg8HA4OCg+sHWPjs3N6fSm5xOJ06nk6KiIvWDDyzLsY1Go6qhqT25WNpozOVyqlGnBQLa37RtGI1GFQhoDWStkVhQUEBtbS1+v5/i4mJKS0tVGtfExMR5nwRMT0+zsLCggoxMJkM0GlUNX4fDoa5pOp1mcXGRSCSy7ByebwVQraHk8/lUgGOxWLBYLJhMJhKJBPl8nvHxcdW4dLvdRKNRkskkNTU1+P1+XnrpJaxWqzrmpfswm8243W4KCwtxu93qemqNnsrKSgoKCpiYmFCNFKPRqN6nNcBWCpK0wHLpvlwuF8XFxbhcrmX1q6mpiaqqqnPOgU6nI51Oq8HuWuqY1+vF4/Fgs9no7+8nn8+rcx2JRIjFYmq1Yr1erwIB7Xum5ZZr21y6T6PRSFFRESaTSY3BMBqNKs3EarWqVLqln9VW4116zW02m2rAa99nrWG/tJ6vdP2X/kulUiwsLCxrNGtBuxbYaU+cFhcXl20rHo+Tz+fxeDwUFBTQ0tJy3lVro9Eo8/PzBINBdQyxWIx0Oq2e7GnpOG63G4PBwOzsLHa7XX3XUqkUyWRyWYrb2fny2nElEollKS7ZbJZYLEYsFlONc+38pdNpYrEYHo9HpX35/f5l5ykYDKpAp7CwEIvFwqZNm9Dr9WSzWbWtxsZGVWf1er2aZCGfz6t6m8lkCAaD6l6i3Zenp6dVA187R9rK6Wcf49J6t/Sf9t3WnuhEIhG1H4fDoVKywuGwut7afrTzGQ6HcTgcFBQUUFxcTFNT07Jr6XK5qKqqoqioiEAgoJ6oCPF2J0GAuGy5XC5cLhdzc3PE43FCoZDqPdV6r5Y2frSBr6lUSjXetIFvyWRS9UJqg8MSiQTBYJCCggIsFgvZbJZ4PE4kElGDObVtVlZWMjs7SywWIxwOMzc3x8TEBDt37qSsrEz1iM7OzpLNZrFararHPxaLUVNTg8Viobi4mHXr1tHS0oLb7VYBjNbY0sqs/QCGQiH8fj+f/vSnufnmmzl27BihUEg1IMPhMOPj4ywuLqpj036ctIZDMplUM/8sLi7i8XhUukYsFmNxcZFEIqEaRaFQiNHRUdUYhDM5ucFgUJUvHo+rc5PJZHC73aonr7i4mJqaGurr69HpdNx888184AMfoKioiJdffplwOEwgEDingdXW1kZvby/RaJSysjKV+rC4uKgGKiaTSfXERQv6wuGwOofxeFxdO83SQeCJRIJYLKYG+S0999lslmeffZb+/n6qqqrweDyq3tXW1lJWVsbevXtxu93nBIz5fJ5oNKoG2ep0OpXvr+U+19XVsWrVqmV1STuPGqvVSjabJRKJsLCwoBqNWrm144MzsyFlMhmVKqE1qFtbW6murl5WPq2xrl3bpZ/XGue5XI5f/epXmM1mSktLsdvtxGIxZmZmSCaTqgxawJRKpVQdSiQSpNNpFaRrTz6Wll2rO3q9nurqavr7+0kkErjdbnw+37Lyau9des2166pdx8XFRRUg6vV6YrEYCwsLRKNR4vE4yWRSfTafz6PX60kmk6oXX3vf0gGw2vWYn5/HZrNRWFiotpVKpfD7/ZSWluLxeCgtLWXTpk3qe7Z0G5FIhLm5Obq6ujhy5Ai1tbU4nU6CwSCLi4sUFBRwww038Pzzz6vGuRZcaseQTqdVYGmz2chkMmrb2lMVONPwjsfjarajpXXJZDKpXHjtGsTjcSwWC9XV1bjdbkpKSli3bh0lJSXo9XosFosad+VyuSgtLcVms1FaWsrWrVuprq7GbDafc//QgsRoNMrw8LC6dvF4nEwmQ3FxsfqOaveSyspKdQ20uqJdl6WTCGgBjXZ/174L2iB57XMmk4mCggIWFxfV/dfpdFJRUYHX6yUUChGPx9U9RBtwXVtbS2FhIT6fj5qaGtavX7/sumtPhz7zmc+o4EiCAHE5kIHB4rK1detWjD4LDz74INdeey2pVIqbb76Z0dFRNfVff38/n/jEJ9Qj3fHxcQYGBjhy5Ah9fX1EIhFKS0vp6+vj6NGj1NXVEY1GmZiYUFNyfuxjH6OhoYHJyUna2tqIRCJUVlYyNjZGNpultbWVT3ziE3zve99Tgy0BFTz09fWRy+UIh8OcOnWKtWvX0tLSwunTpykvL6e6uprGxkbuv/9+NdNHcXExW7du5eDBg3R3dzM9Pc2pU6cIBoNMTk6qRtz4+DjDw8O4XC6am5u57bbb8Hq9FBUVUVRUxN69e6mpqVHzyKdSKXp6eli/fj1lZWWkUimVoz0/P8/u3bv50pe+xMLCAn19fbz00kuEw2G2bdvGqlWr6O7u5siRI2zbtg2AdevWkUwm2bdvH7FYTA0G7O3tpaOjg0QiwdTUFBUVFWzYsIFYLMb+/ftxOp2UlJSwZ88eamtr1UDL2tpajh8/zpEjR2htbeWOO+5Yds2z2Szz8/OcOnWKwsJChoaGCIVCdHd3MzY2xsDAAIcOHVIN9YaGBjo6OtSsRh0dHWrwpdYbPjMzw8TEBCMjIxw6dAij0cjY2JhqDB85coSpqSkWFxdV8DYyMkI8Hqevr4/W1lbKysqYn59Xg4tXCgIOHTrEwMAARUVFanDu1VdfzUsvvYTL5aKgoACHw8FXv/pVnnnmGbZu3Upvb++yKRmLi4tVA7W3t5cTJ04wOTlJT08P0WiURCKB1WplZGSEgwcPYjabqaur42Mf+xgPPPAA+XyeWCxGeXm5mqUGoLKyksOHDzM4OKgGzR47doze3l6SyaQa5FxQUMDk5KRK2dHO4/j4OJ2dnVgsFubn5xkfH2dwcJDjx4/T3d2NzWZjenqa9vZ2kskkFouFqakpJiYmOHTokBqgb7FYmJycVDNoaYPFt2zZwrvf/W51XgcGBs655n19fXi9XhYXF+nt7eXIkSOsXbsWj8dDOBymra2N/v5+Xn75ZTZs2MDg4KAq44033ojL5WJwcJDCwkIqKyvZsWMHXV1dBINBFcCcOnUKh8PByMgIt9xyC83NzbS1tTE6OsrQ0BC33347U1NT/Pa3v1WzBjkcDjU+QltXIBqNcsMNN6DX69HpdGpcTUdHB8XFxVRVVVFbW0swGKSpqQmv18uaNWv4xCc+weOPP05dXR02m42Ghgaam5uJx+PMz8/T3t6uypLP57nuuusoKCigq6sLm81GfX29uuY2m41Nmzap86eNZ+ns7GT9+vV84AMf4OGHH2bTpk2qjjgcDhobG3nhhReoqqriXe96FyMjI+zevVv18G/dupWFhQWOHz/OiRMnCIVCbNmyBb/fz/j4OH19faxbt04NKJ6bmyOXy/HRj35U1ZdAIEAmk+Hzn/88L7/8MmNjYwwNDTE/P8+RI0cYGhoiHA6rDovFxUVOnTql6l1PTw/t7e1q7E1/fz82m43bb7+dq666is7OTk6fPs1LL73EunXraG5upqCggH379tHb20sgEODkyZOMjIwwPT3NF7/4RQ4dOkRpaSl+v1+NLxoZGWF4eJi+vj5efvllTCYTLS0trFq1SgYGi8uCLi+jV8Rl5qVF2HIcjm3Os9GRU70/2qNfLc89Ho8vS3nRbtxa7rQ2baFOpyObzaqeqoceeoiTJ0/yjW98Q+W7a9vVUlWW5iprP+TaNJtazx2gelGXDhTVPqu9ruVGa2XW8mSXbtNisaheKbfbDaD+rk3fp+UuLz0HmUwGi8Wijl8r79nv0abT0/K2ATUd4tL0A61nWMtJ1p6aaOlD2qwc2va149X2r/Uoa3nkWg8foFKG4Ex+sc1mo7y8XF33sz+v9d5q5dByzbXj1K6t9vTDarUSjUbR6XTL8su186B9XrtuZ29bK69WBm3WHK1Ozc/P09HRoWYSWhoIaPvQXtfqghb0afXAYDCo92azWZ577jl6enr4oz/6I6qqqtS0i1pZtZSNs4/57DqnHVM8HldpUUv/pl3bXC6nyqEd99LyatMvLi2rVp+186W9b+n3TKsH2lOQpd+npedcp9MxPT3N3XffzV//9V9jMBg4fvw4o6OjlJeXq1lhltb5pWVd+l3U6vnSaSctFgvRaBSn06nq9NLvn1YGk8mk9mEwGDh8+DAnTpxg27ZtNDc3qzEES78XWorJ0u+VNiZnaarc2edA2692z1j6Pd21axc33nijSinSypRKpdTTvqXnfOn0lHq9HofDob6zWqrW0nq5dGpLs9lMOBzGZrOpVDbt3Gmpgdp10s6ldlzafcput6vjOvv+sfQ7rNWfs78T2na0NDjtc+f7Pmqf1erZxdQ77VprM4Vp11Hbj3a/1Z4SezyeZddJu1ctLZd2/pPJJA6HQ72mbVf7zTq+BTZLbCDeRuRJgLhsaTd1vV6vbuRL/2k346V5veebrk+7aXd0dKiBvFNTU6rHXdvm0obT2VPtaXnwS3/0tZzXpT+8Wv6qVjbtb9rnzy6ztk2t0bV0W9rxA8uCGu3f0vNydi659nctv3rp61pDaGkO+kqvLT02nU5HYWHhOT+AmqXB1NLjO/v9WkP97Gul5XovLefZ1+/s/9beZ7PZ0Ov1qvG30vU4e18r/bd2PZc2jh966CFcLhc1NTW0tLSsOChwpX1ox681FJcek9FoVNORDg4OcvToUaqqqla8Hitte+n1XLqvs+vX+cq30vkHVH792Z8/e7zKSvtf6X1L96Edl9lspqSkhPb2dkwmE1NTUxgMhmW92Evr/dLPrvT/Wh3TAuSCgoIVz8HZ4yq070Y0GmVqaoru7m4MBgMbN248p94vPV4tGNEa3Gdf26Xn4Oz3Ahw9epSuri7WrFnD+vXrlwXHK93vtO0sLf+Fjuvs87T0PqGlsi3d39n70s7n2feapXVr6b3i7O0tPVevdA9d6XquNCZGe/+rqXdn/z5ory+93y4N4pZ+J5aOcQBU2tnS+7oQlwMJAsRl7ewf2KWvX2h+7vPx+XzccsstRCIRCgoKVtz2hSz9gTpf2VZ6r+bsMq/UiDj77yv999mfPZ9X2vbFbPPsBtcr7W+lbWq0pxmFhYUrDoS+lB/XpXXhUurESttbWo41a9aoGUW06R1fjZWCFjiTs71lyxYqKiqorKxc8f2v5nhe6Ttxsef2fLM3vV6cTic33nijCii1QaIej+eSG1cXWwdW2r7RaKSlpUXNArVSELTSNi6mrCu9t7y8HKPRSHFx8bKg+kLbfqV9vlJ5lzbwX+mz5/sOX+jedTHl0LzR9Usrx/mO9ULn+JXO7+txfxHizSTpQOKyI49WhbgyaD9P0rMqLmfymyXeruRJgBBCiLclafwLIcQbR6YIFUIIIYQQ4gojQYC4rGkzZbyRWW3RaJT77ruP7373uxw/fvycv09OTvKd73znDV8qXpuZRZvX+xvf+AYPPvggvb29b9g+V5LP50kmk+pYx8bGOHjwoJom8LVue2hoiK997Wvce++9JJPJ16PIl4WxsTEefvhhPvzhD/PQQw/R399PNBoFUNMv/vKXv7zg9V5cXOSFF17g85//PNPT08v+ps3df77F2F6rxx9/nCeeeGLZytpLZbNZ9u/fz//z//w/7Nu377zv0dY5eLWeffZZ9u/ff85qshfr17/+NT/60Y945plniMViPPDAA/T19RGPxy9pe2+Fw4cP853vfIe77777VX0uHo/zP//n/2RxcZGpqSnuv/9+/uzP/kwtyqWtyXA+2hTId999N9/85jfZsWPHBd//Wmn3wP/1v/4X9957r1q1+ELS6bRa6TedTvPggw/S1dV1znokr2RoaIif/OQnfP/737+s6oYQK5EgQFzW5ubmOHDgwBu6D4vFouZIj8ViK/69trb2DR3QNjc3x/DwMCMjI2qf2oJZb/aiNLFYjBdffFE1Jq1Wq1r46vVQVFS0bErEK0VhYSF1dXV0dnbS2tqK3+9X07vCmWuuLcx0PlarlYaGBkKh0Irnbv/+/WpF4Neb3+/H7/ef93ug1+tZvXr1sgXNlpqfn2d4eJjh4eFL2r/P58Pr9Z53hd5X0tTUhE6nY2FhAb1eT0lJCQ6H47Ia7FlfX68WCXw19Ho9tbW1GI1G3G63mkFJq0MvvfSSuvesJJVKcfLkSex2O+94xztYu3btGz7AV/s+mM3mCzbG8/k809PT9PX1MTc3B5w53uLiYpxO54qzdl1IQUEBTU1NTE5OXlH3J/G7ScYEiMvW9PQ0gf6Xefnll6mvr6e8vByDwaBWzcxmsxQUFKj1A86mrVaZTCYxm81q9pFMJkMikSAcDmM2m/F6vRQUFBAOh0kmk0xPT6PX69V8/clkctkiYdqql5lMBpfLhcFgIBwOq/n1CwsLmZiYwGKxqGnq5ubmyOfzFBUVqakM4b963Y8dO8bCwgJer1etoOrz+dQKnFqZtNe0xY0WFxexWCx4vd4VGzPa6r7xeBy9Xo/f7ycajbKwsEA2m1WLL2krMcfjcQYGBti5cyf19fWUlJSo9Qu06fnGxsbU9IBaL2JpaSmhUIh0Oo3RaKSwsBBArSCrnRu3243T6cRut684OxD819OfSCRCJpNRZdPmBtemlHQ4HGpqUG3VYJPJpGabmZiYoLi4GL1ez+LiIul0mpKSErXwktvtxmQykUql1MqwWs+81WpViwGlUin1ea0eTU1NkcvlcDqdaiXYTCajru9K7HY7RUVFajEvp9O5rB5EIhFsNptqtGSzWbWQlfaawWCgqKgInU6nVvPVpn6MRqM899xzGI1GVq9ejdPpVCs+A8vqjNlsVvOiW61WHA4Hs7Oz2Gw23G43sVhMrUjr9/tJpVIYDAa1Aq32PVg63WsymVQz3ySTSebn54nH4xQXF5PNZjlx4gSzs7O4XC48Ho86Do22OJPD4VDXWjtebZ0HnU6nFjKbmZlR9VObHlYLEJauXKx9J0tKSjCbzWrdC202mGw2qxZoKywsJBqNotfrcblc2Gw2crmcWuHWbreruedDoZA6hy6XC6fTueL3LxqNEo1G8fl8ah2DSCRCPp/H6XSSz+ex2Wzk83m1OrbL5Vq2BopGC6Dn5+cJBoMkEgn8fj8Gg4HFxUVCoZA63snJSUwmkzoGh8OBTqdT9yXtOzU+Ps6+ffuor69XqyQvncM/l8sRi8Voa2vDbDarFdJTqRTBYJB8Po/P50On0xGJRAgGg2p1YK/Xu2wKVIDZ2VlVn7SyFRQUEIlE1CrkWt31er3qNW0hvEgkgtFoxGq1YrPZSCaTvPjii+Tzeerq6jCbzepYdTqd+l5rc/zbbDYWFhaWTRG6sLCA2WzG5XJhtVopLS1VT2UDgQDJZBKj0UhJSQmzs7Pq3r/SNRfi7USCAHHZGh0bZfrIEbVCZmlpKbFYjPn5edWoXlhYoKqqSjUGl5qZmSEYDKpFYbZs2YLRaCQYDDIzM0M4HEan07F27Vq1aE4oFGJiYoK5uTk2bdqkFsjSVg9OJpNMTk4yNzenflDLy8vp6ekhFotRVFSE1+vl5MmTlJWV4fP5yOfzjIyMoNPpSKVSlJSULAsqEokEBw4cIJVK0dTUREVFBT6fT/1tfn4eo9HIwsICN910kwoqpqamVCNs/fr1yxoN2kJNMzMzhEIh9TRBr9erH/RIJMKWLVuYmZlhbm6OqqoqotEofX19HDp0iNtvvx2Hw6FWjjWbzaxZs4aenh7S6TROpxOXy8Xk5CR6vZ5gMMj8/Dx6vZ6rrroKo9HI6OgosVhMLRi2cePGV+yZ01Yh1lYobmhoUA2dmZkZhoaG1DSjhYWFWCwW+vv7VeNU6+k8ePAgV111FS6XS/US3nrrrYRCIfbu3UtzczNer5eFhQUKCwsZHh4mkUioxv7atWsxGAyMj4+rRqDJZGLt2rX09PQQCoWoqamhsbGRnp4ecrkcLpfrvEHAheTzeWZnZ5mYmKCiokIFHkNDQ8RiMbW4ksvloq6ujkwmo74HuVyO8vJyUqkUBw4coLa2FqfTSVlZ2bIgIJVKMT09TWdnJyUlJeRyOebm5iguLqa+vp4TJ06watUq0um02ra2EJPRaGR6ehqbzaYa5ENDQypQgzODfMvLy8lkMoTDYSYmJpidnSWbzeJ0Ojl8+DALCwusXr2a6elpioqKlp2DTCbDqVOnsFgs50wX6nK5mJmZIZFIYDabyeVyPPfcc9x2220kEgnVEK+vr0en0zE+Ps7CwoJqbGqr4mrnOplMMj4+Tnl5ORaLhZGREQYGBmhsbCSdThMOh2loaKCsrIxYLKZStMxmM8XFxXg8Hnp7e7HZbMzPz7Nq1apzGoRasDI2NkYsFmNhYYFVq1YRCoUYHBxkamqKq666img0it/vJ5PJqFWstSc+KzUyc7kc8XicQCCg6mVJSQlzc3N0dXVhNpu5/vrrOXXqFDabjbKyMmw2G6Ojo6RSqXPm2h8cHOTYsWPEYjGqqqpwOp3L6rC2GN/Y2BgFBQUq0MhkMgQCAXU+nU4ngUCAl156iU2bNjE7O0tLSwuFhYXLruXU1BSjo6PodDpWr15NJBKhtraWsbExdU+2Wq2sX7/+nOMeHBxU9/PCwkJqa2uJx+Ps2LGDmpoarFarCjzGx8cpLi4mHo+re/i6devw+/309PSoaxmJRFTKUE1NzbKVgPP5PKOjo0xOTqr39/b2ks1mqaurkyBAvO1JOpC4bFVWVrJ582bq6uq4/vrrMRqNPPfccxw8eBCHw8HGjRv51a9+RW9vr+rBXWrXrl20t7dTXV3Nz372M8bGxgiFQuzYsYPf/OY3bN68mc7OTvr6+giHw8zNzXH69GlaW1t5+OGHGRwcVCvf7tixg0QiwbFjxzh69CihUIg1a9Zwzz33YLPZGBsbo6enh+npafL5PAMDAzgcDo4cOcJvf/tb/H4/W7Zs4ec//zl9fX2qjDqdDo/HQ1NTE62traxfv56Wlhb1d63xWlNTw3333cfCwgLz8/O8+OKLPPvss2zbto1jx47R39+vem414XCYRx55hO7ubtavX09hYSE//OEPMRqNDA4OsnfvXmKxGNdeey0/+MEPOHjwIFarla1bt+L1ernhhhtUgyedTrN9+3bgTFrG9u3b2b17N36/n6GhIX784x9jNptZWFhgz549Km/74YcfVgHIr3/9ayYnJ19xXMHo6CgPPvggdXV1TE5OsnfvXtrb25mZmeFv/uZvWLVqFUVFRfT19bF9+3ZOnjzJk08+yerVq+ns7OT48eMYjUampqbo7OzEYrEQCAQ4duwYwWCQiooKdu/ezcmTJxkaGmJgYACAX/7ylzidTmZnZ/nNb37D1NQUkUiEH/3oR8zPz1NWVkZnZyeDg4NYrVaOHz9OR0cHqVSKvr6+S04t0RaUamho4IknnmBwcJDR0VGefPJJgsEger1e1fGysjLy+TwTExNqrYtQKMQvfvELVq1aRUVFBVu2bGHDhg2UlJSoYDCXy2Gz2Uin0xw4cIDFxUW8Xi8nTpzg9OnT6HQ6+vr6KC4u5qGHHuL06dNUVFTQ0tLC97//faxWK93d3bz88svEYjGGhob4zW9+Q1FRETMzMzz//POq3k5PT6ueVrfbzY9+9CNsNhurV6+mtbWV1tZW1q5de8550L4L9913H3q9nsrKSmZnZ/mnf/onFQQPDw8zMzOD3+/n8ccfJxAIUFdXx+LiIt/73veYmJggEAjw0EMPMT09TU1NDUePHmV4eFgFK9riXTMzM3R3d6sVcvv6+njkkUfYuHEjzz77LG1tbYyPj7N//35OnTrFhg0bOHjwIC+88AKzs7McOnSIlpYWFhcXz/nuASwsLNDd3c3Jkye55ppr+Ou//mtGRkbw+/3odDq++93vqmt75MgRDh8+zMDAANu2beO+++4773clFAoRjUYpKipi/fr1/P3f/z1dXV1qleOnnnoKk8lEIpFgYGCA4eFhvF4v27dvJxKJLEtx0el0XHfddZSVldHc3MymTZvUgnsao9FIQUEBa9asYfXq1VRXV3PixAnuv/9+Wlpa2LhxIz/96U/p6uoim83S19fHjh07mJubU0/ollq1ahVHjx7lN7/5Dfl8no6ODvbv38/x48fJZDJUV1fz05/+9JwxB6lUinvvvZdVq1Zx4sQJtm/fzuzsLF6vl/Xr19Pa2sq6deuor6/HZDIxMzNDb2+vSp966KGHcDgcOJ1ORkZGmJqaYnp6mn//93/n6quvpq+vj66uLgKBgNqnXq/HZrMxMTHBiy++CJy5J5+9AKMQb1cSBIjLlg7dstUrAXbv3k1/fz+NjY3odDo2btzI/v376enpOefz73znO1m9ejX79+/HbrczMDDA3r17CYfDVFdXYzab+eQnP8mGDRtUCs7GjRtVKlAsFiMej2MymVRq0OOPP87IyAjJZJK2tjZqamoIhULcfvvtlJaWqsGza9asobS0lP7+fvbt20coFKKtre28aTBLVwpdqr6+noaGBgwGAx6Ph2AwyIsvvsjAwAC5XI6XXnqJkpISAoHAOYHQM888g9FoVCkqFRUV7Nq1i3g8js1mw+/3s3r1agBuuOEGurq6eOmll5atMgpn0li0hdXgTG57dXU15eXlFBQUUFJSQmlpKXa7HZfLpXptAT72sY+RzWbV6rD9/f2vOKCwtraWz3zmM7z44otkMhnVSxsIBBgbG8Pn81FbW8s73/lONmzYwMMPP8wtt9yC2Wzmox/9KB/+8IcxmUwq3USv1y87BqPRiMViobKykuuvv54Pf/jDAHz2s59lYmKCoaEhdDodvb297Nixg5KSErxeL9XV1XzsYx+jubmZbdu2qTSwXC5HZWUlra2tl5SvHo/H6e3txWKxqFSTTCZDMpnE4/FgNpvJZDKYTCYKCgpU+k9DQwNVVVVYrVaVFrR0ddhIJMLOnTv5t3/7N3784x9z8uRJKioq+MhHPsLTTz9NIBAgkUionn6t13b//v20t7cTCATo6OjA7XarlV7tdrvq+XW73WpMQz6fV2NGtNWVV61aRWFhoUqdOl8d12jpbvX19TidTsrLy2lsbOTJJ59clvqnrVbrcrlobGykoKCA8vJy1q9fz//5P/+HJ598kng8zszMDAMDAxQXFzM6OqqCAG1fS3uo7XY7ZWVltLa2qu9/JpOho6ODhx9+GJfLxcmTJ7FarbjdbsLhMEeOHOEjH/kIoVBoxXEchYWFNDQ00NDQwIsvvqhSGLXr6Pf7qaqq4v3vfz8jIyMcOnQIk8nEsWPHqKysJJlMrjhGyel0qvERNpsNk8nEwMAA8/Pzy8btaH/XvgPaasErnXftPRfK89feMzk5yfj4OOFwWN3P9Ho9Y2NjTE5OUlxcTF1dHe9973upra0959zYbDa8Xi8lJSXU1dXxh3/4hzz++OMqaOju7qampob5+fll18xsNvOFL3xBpU6mUik1vkSrV0tX29YWYjMYDDQ3N/ORj3yERx55hP7+fq6++mpcLhfHjh3DZrNx7NgxnE4nyWSS2dnZZeVtamqipKREPXWpqKhQTxSEeLuTdCBx2dIaNblcjtnZWQwGA9lsFp1Op/KDg8EgJpPpnIb15OQk27dvx2azcd1119He3k4+nyebzZJIJNTnjUYj0WiUTCajVi/V9q3lJS/ldDopLi5WjZza2lpcLhcWiwWXy0UymeT5559n48aN2O12rFYrRUVFNDc3YzAYVG7y+Y5VSz1obGwEWHZs2rlwOp1qDMDatWtpbGwkmUwua6jDmYbN5OQkiURiWX7s0gWatEZBMBhUebZLaT2oZ69crJVLe13L+9X+P5vNMj4+ziOPPMJ1113HunXrmJ6eVtfyQjPE9Pb28stf/pIvf/nL6kmIllutfU6v15NMJslmszgcDnVcer1epW0t7albqUFlNpuX5UU/8MAD/MEf/AFNTU0kk0lyuRzZbFalM2kNjFgshsPh4KqrrmJ8fJzt27ezbt26Zfn9r2b++8XFRU6cOKECW/ivhnQwGMRisXDzzTdTXFy87HwvDY613t2l11NLpdLGZ2jjEKqqqhgZGSEcDtPS0kIqlWLHjh20trai0+mw2+1UVFSwZs0adDodRUVFqjGp5ekXFhbidrvp6+ujpqZGfVYr29IGmRb0afUjkUjQ09OjAtCltPdoufpLZ+RaaYVXbR/JZJJwOIzX68Xj8ahAf+PGjbS0tJBMJlVK2tLPL7X0+69dRy34rqiooLm5mbq6OlKpFMlkkj/7sz/Dbrfz6KOP4vP5VCCsaWtrY3BwkHQ6ze23347NZiMYDBKNRtWYFu0YHA4HPp+PqqoqWlpaqKysxG63XzB1TrsecKZhbbfblzWal35fLrQa7tK/x2IxxsfHl9XFs8+X9p3R7itw5qmH9jdtfMbSOnD2diwWy7KxXAUFBZSWllJXV0dFRQWNjY3Y7Xa1/WQyyfDwML/85S/57//9vxMIBAiHw2QyGRUAw5nxBlpa2tKVgf1+Pxs3buSBBx5gzZo16kmZ9kStpaWF1atXk0qlSKfTy2YU0gZVr1u3jgceeIDNmzcvu/cJ8XYmQYC4bNlsNvL/mcoxODhIU1MT11xzDZlMhhMnTuD3+5mfn+eaa645p2GdTCaZmZnBbrerAaODg4OsXr2acDhMMBhkYGCAfD6P0WhUPcCLi4vMzc2pXkSPx0Mmk2Fubo6BgQG2bt1KKBRidHSUwsJCwuGwGkinNZza29u55ZZbMBgMtLS0YDQaaWtro66u7rzTjJaWljI6OsrAwAA6nY6amhqVw6s9idAeb9fU1BCPx1Xqgzbo7+wf3LVr1zI1NUUoFGJgYIC5uTluv/12lccai8UYHBzE6XSysLDAVVddpWZBcjqdDA4Oqrzm/v5+9bShr6+P8fFxUqmUOk+hUIhAIMD09DSjo6P4fD41ODEYDFJUVIRer6e/v19dN6PRyNDQEGvWrFFl1gb/DQ8Pk0wmSSaTaiAlwKZNm2hra1MN23w+z7XXXkt3dzf19fXkcjnVW1tVVUVXVxejo6MEAgHm5ubo6OjA5XKxsLDA4OAg9fX1VFZWkkgkGB8fV7PuZLNZBgcHaW1tpaenh9nZWZU2pDW41q9fz+LiIr29vbzrXe9Cp9PxxBNPUFVVRXNz8zk9oMFgUI0dOX36NA6Hg0AgoMY/aOUMBAJUVFRgMpk4ePAgdrtdzQZjMpkYHx9nfn6eyclJFhYWGBoaUgNFa2pqmJqaIp/PYzKZqKysxOPxqHJrgzFramrQ6XQ0NzczODhIV9f/n733DpP0LM98f5Vz6pxzT+rJUTOSkEACTDDJ7HKAXXu9Xq+x1xvOrsGbd9lzYS8YmwMsINAaOEggCRCKaJRnRpNnOofpWN3VVV2hq7pyzueP2e91x5lRAg2u+7p0Saqu+r73e9P3PM97P889xXvf+15kMhl33323oP80NjZSKBQEDS2bzeJ0OmlubhZzQnKKa2tricVirKyssLy8LCoBhcNhwuEwNpsNj8eD3W6/oQElrT+ZTMb8/Dy//du/LZzKWCyGUqkUfPHFxUXS6TTLy8vkcjmOHj2KwWDA7/eTSCQEZ91kMjEzM8PS0hIWi4VAIIDD4SASibB7925RuchkMhEMBsXfe3p6uPvuu7Hb7bS2tooSrNlsFpfLxdGjR6mpqdm0Co20l0g5EiaTCZfLJdoXCoVwOBy0traye/dudDodCwsLtLS0EIvFtqSXSTkRLpeLbDZLQ0ODyD8qFosUCgW8Xi8+nw+Px0M2m6W7u5tgMMjCwgKlUolQKEQgEGB6eloELOLxOB6PZ8NJXbFYJJ1O43A40Gg09PT0iEIAU1NTInl7ff7ToUOHhDOwGm63m+XlZVZWVnA6nbS2tnLvvfcSDAZxu90YDAZBdfN6vcTjcbLZLDabDbfbLfKgpH1CWsPLy8sib6e6ulrMvd7eXpqbm7FardTW1pLNZlEoFDQ2Noq8G2meSMURZmdnWV5eJhqNolaraW5upq+vj8cff5wPfehDbyjvp4IKfh2oOAEV3LbQ6bQY/k9Zwlwuh06n413vehdut5uVlRXUajW1tbXs3LlzQ5KhRPeQIo9tbW0kk0laWlpEwmo4HEYmk2E2m0UVDan6UGNjo/itUqmkvb2dRCLB4cOHmZiYIBwOE41GiUajgn7R0tIiOPpKpRKZTMbu3bsxmUy43W6qq6tFpYv1aG9vJ5lMEgqF0Gq1FItFEX2F60mTUsJoU1OTSA4Mh8MAayKQEnp6enA4HBQKBcLhMCsrK3z84x8XJwaFQkFUOJE4wc3NzUSjUfbv3080GqW2tlZExaSKGel0WiTf5nI5lEolBoNBUFYsFgulUgmNRkNXV5c4JWhubhYvcCk5erNcDpPJxM6dO0mlUmKMq6qqsFqtvO997xMJq2q1GqPRyB133MHCwoKo4GOxWKivr6erqwun00kqlUKv19PQ0EAymRTzARDPptFoxOmLVJowl8vR3d3N/Py8SChfXdGkqalJOG/S/JPyBaRrrUYmkyGdTnPo0CGi0SjpdBqXy0UoFKKnp4dEIkFraytqtVpUWZGMOqfTiUajQSaTkUwm6e7uplAoEI/HkcvltLW1kclkOHr0qKDrWK1WDAbDmuRguO5I3H333dTW1tLR0UGhUMDn84l5ce+99wruvdFoJJPJkMlkRAUlyRCXItHRaBSHw7HG+dJoNKKKVldXF7lcTsxfr9d7wzKoUmUfaW5+6lOfEgaaZMBJiMfjgiIknUgoFAqmp6dRKBREIhGxxrPZrKCrSZV+pApXUqUYpVIpKu5I1ax6e3t5+umnRfUw6RRGcor27dtHe3v7Bo64RPnJZDIkEgkOHDiASqUimUxSLBbp6OgQdLKdO3eiUqkYHh4W+4pUDW092tra0Gq1xONxkskk+/fvp6mpCYvFQi6Xo6uri3g8jk6nEwUTstmsSKJNp9NotVoaGxuJxWKUy2W2b9+OXq8nnU6LogQSpBNRqX9UKhXd3d3o9XqCwSBKpZL9+/fT1tZGKpUSFY8KhcKmAQ/JwF+9/k6cOMHZs2dJp9NEo1Hi8bh4Tsmw12q1bNu2jUwmI55VOr3Zvn07/f39Yl8olUpifKVTDo1Gw7ve9S6qq6sFnay7u1vs59KpjFSdTEpyLxaLWK1WOjs7hYPxesuOVlDBrwuy8tupblRBBW8DBuNwaAAGDsEBY1kkN0rGNvxd2TrpSH0rFAoFCoXCmmN+iWqQzWbXGNqvBxJne72BJb0w1x+/SxHu1Ufcm12zVCrdcsKZRG260TXh70R0JKpPuVzm+9//PktLS3z+858H2HANqfTn6nKmbxQSJWF19Oxmfb66v1b/ZrVxoVAo1hhJiUQCjUYj7iPNG6lfAVHmcqv7S+UmV7/kZTKZEE+TqBCxWAyFQkEwGCQcDrN///7X1yk3wdDQEM8//zz/7t/9O+RyOTMzM0xPT5PP5/mH//Af3vC3+XxeUN02w+pXwmra2/px3mqNRCIRvv3tb/MHf/AHIml8dnaWH//4x3zlK1+54Xy50RwvFApMTEwIQbVdu3ZtOlZSOdXf+73f4xvf+AY2m03keayGFLV/o7oC6++ZSqXQaDSiX6V2bFbKU4KUlC2dOErYav7d6r4mURuLxeKGEpxSW5VKpSiFeit9IK2rW41ySydm0ni+FfSYfD5PPp/fNKghQTrZXc3/B4RTcKN5f6O9ebMKc4Ao55rL5ZiZmeHYsWMbvrf6nXXQtOESFVTwa0PFXa3gtsfqJNXVn603wDeDZCiu5s/C31V9eKMvLoVCseWLaqtr3ujFtrqttwop4fVmzyBVOJLgdDrxeDwsLCxw5swZPvCBD2z6u7eq+sUbPTrfqr+2esmvnw9SZG/9c9yov7Z65vWf/8Vf/AU7duzgyJEj7Nu3b8vrvVEYjUbq6+u5dOkSarUah8OBzWbblEe/Hm8kSrlVwuhma0StVnPgwAGuXLmCzWajWCySSCS4++67bzoXbzTHc7kcr7zyCnNzc6ysrAhjbz1SqRR2u51gMMjp06d597vfTVNT04bvvZWUDSlXYj1uViJys73rZt+/lX0NbtyXN9trtrre68GNHM03ivV71WZY7+xJuJXxfiN7849+9COSySRHjx69pTleQQXvJFROAiq47VCJqry9KBQKIhlaEj+q4PUhEomgUqlQq9WCcvBWIp/PC4EiuB6Vl8vlQqTt1wmJEw9/Z1RJrxmJmvNGryslsxoMBkG72ex7Up6CwWBYE52voIK3GlJZVbVavaZwxGpU3lkVvFNR2RkrqKCCNVAqlaLkaQVvDFKy7dsFqfrSeurOOwHSCQH8nfH/VrRNUum9le9Jwk0VVPB2oyIIVsHtjIoTUEEFFVRwm+KdYvhvhXd6+yqooIIK/j6jIhZWwW8Ucrkc6XR6gwrlG0G5XCafz+P3+0mlUjdVst3s98VikZWVFUGvuV2wmQbCW319qVqPlBi5+n5S2cT1wjy3G6TyibeihHwjrO+vXzWkxEefz7ehnv4bRT6fF5Vu3mmsVGk+vtPa9auAlHwcDAZFwvtbff1IJCLq+G8GqfSvVG0qHo+/of2zWCwSDoeFbkE0GhWaBauRz+dJJBIUCgXy+TwrKyvE43FRaCAWi4nSqH9f50UFv5moOAEV/EZhdnaWS5cuMTg4+KavVS6XcTgcfO5zn+P06dNvyAmIxWL8h//wH3j++efx+Xxvuk2/CkjOy9vptBQKBR577DHsdjupVEqU3ZPg9Xr5wQ9+wBe+8IW3rQ2/CsRiMS5evMinP/3pN9Wf+Xyexx57jPn5edLp9FvYwluDVPnkH/2jfyT0EN4s5ufnefDBB3nwwQdFDsE7Ce/ENv0qkEqlePnll/mv//W/cu3atbfc4E0mk3zjG9/goYce2nJPHBsb4/nnn+e1117jhz/8IT/+8Y9xu92v+17RaJS/+Zu/IZ/PMzQ0xPe+9z2+9a1vbfie0+nkiSeeEHow//E//kd+/OMfC62Thx9+WGhxrN+rKqjgdkbFCajgNwpSbfOWlpY3fS2ZTCaEZt5INQ2ZTIbVauXAgQOiTv7tgPn5eaFm+nZBLpezd+9eUW/d5XLx1FNPib83NzfT0dGxQd/hdoPVaqW7u5uGhoY3RY1RKBSiv96qqkyvB2q1mh07dlBfX/+WJdk2NTVx3333iUjtOwmpVIpHH330LTv1uJ1gMBhob29n9+7db4uxq9Fo+NCHPkQmk9lyTxwfH8dut3Pvvfdy1113kU6n39BYaLVa7rnnHhQKBUePHqWtrW1T585qtdLX14fNZqOrq4vW1lbMZjNyuRyLxcKBAwdEGVWPx7Nmr6qggtsZlZyACm5bJFNJXJEQkUiETCbDnj17hLqqxWIhmUxy6dIluru7RTUVi8WCxWLBbrcL1VqFQsGVK1eor68XLyWj0UhHR8eGmtH5fJ6FhQUSiQT19fXYbLZNHYRkMonX6xWqthKFo1gsEovFcLvdKJVK6urqqKqqEtH3iYkJ5HI51dXV2Gw27HY78XhcqJb6fD4huDQwMEBdXR0ajYZYLIbNZsNisbC0tIRGo6G2tlYk+E5MTJDJZDCbzbS1tbGyssLU1JRQ0Y3FYrS1taFQKPjZz36GTCajt7cXpVJJZ2cnk5OTopa5TqcTYlqbIRKJ4PV6yeVyaDQaUqkU+Xye7u5uIXhmsVjweDw0NDSQTqcZHBzk5z//OS0tLXR1dVFVVYVMJhPUgdnZWVpbW7FarZvWNI/H4wQCAVZWVti1axd6vR6/34/f7yefz1NXV4fP56Ojo0OM+Xqk02mcTieJRIKWlhbK5TLhcJjl5WX27dvH/Py8UOpNJBIsLy+zf/9+VCoVs7OzhEIhbDabqNrT1taG0WgUcygajeJ2uzEajdTW1mI0GikWi7hcLqLRKBaLhY6ODgACgQChUIh0Oi2E7TweD42NjULlWqLmFAoFurq6Nk1QlBSZy+Uyra2tKBQKrl27hlKppLa2lkAggNlsFiJkmyEYDOLxeDaUWJRUjCURM6VSKcbBaDTS3d3N7OwsgJibExMTqFQq2traUKvVa8ZBos75fD5kMhm7du0im81it9tJJBI0NTURCoWo/T8CgclkUije1tXVEQwGqa+vF3MrFouxZ88e1Go1xWKRZDLJ9PQ0arWanp4eca/q6moKhQLpdJq2tjbK5TJDQ0M8++yzdHR0sHv3bqxW6wbnJxaLEQqFxLhLa0JSx47FYhw8eBC5XE4ikSASiYi9avfu3cjlctG3arVafHYj5HI5pqamhCiXpNVQKBQwmUxi7koK3OVymdHRUfL5PLW1tTQ3N6NQKAgEAni9XtRqNTabjYaGBuC6mJ2kjr2VgS5R05aXl8nn85jNZpqamkin01y+fJmOjg5BKTKZTGIfjcViQllaEiHbDHa7HZfLhd/v58qVKywsLIi2FAoFEokEs7OzqNVqtm3bRiQSYXl5mWKxyI4dO3A6nWQyGbRaLXq9nlAoJPYuSeBxYWGBaDTKjh07UCgUxONxfD4fLS0tQoNBJpORy+VYXFwUAm4XL17k6tWrLC0t0d3dLVTh1Wo1VqsVjUaD3W6nra0Ni8XylmhQVFDB24nKSUAFty08Hg/z8/MYjUZCoRCZTEYYErOzs8jlcmZnZxkYGCASiZDNZnn55ZdZXFzEYDAwNjbG6OioMIJfffVVCoUCuVyO+fl5rl69uuZFFY/HsdvtzM/PYzabRbRqPZxOJ5OTk8LYDYfDwlgLBoOcOXMGk8lEPp9nfn6eqakp8vk8zzzzjHjx+Hw+obL60ksvEY1GKRQKrKysCMXhhYUFhoeHWVpaQq1W8+KLL7KwsIBSqWRpaYnz589TLBZ55ZVXhLpuPB7n0qVLaDQazp07x8zMDJlMhnK5zHPPPYdCoRACQyaTCa1WK4wwjUZDPp9naWnphuOiUqnEc8ViMZLJJENDQ6TTaVZWVnA4HKhUKpaXl/H5fBSLRRQKhVCd1Wq1whjK5/O4XC4sFgtnz57F4XBsuJ9kDDocDsxmM0888YQo0RmJRHjyySfJZrOkUimmp6c3PeEIBoPMzc2xuLiIzWbj8uXLrKysEAqFOHv2LEtLS5hMJs6cOUN/fz+pVIp0Os3Vq1dJp9Nks1mcTidnz57FYrHg8/kYGRlZ016XyyWMhMuXLwunLxaLCQfk8uXLAPT3969xgvL5vOgvKVfCbrdjNptxu92bRjcHBgbweDxCDfWVV14hk8mwtLTE+Pg4k5OTWCwWXnjhBaHMutk1JicnhSKrpNIr3V/qr4sXLxIMBonH44yPj+PxeMQzB4NBIpEIzz33HBaLhUQigdPpxOv1rrnXlStXsNvtGI1GtFotL774IplMhuXlZa5du4bdbhdjMzs7K8qF/vznPyeTyZBKpRgeHubixYsolUomJyfxer2ib0+dOoXFYiEajbKwsIDP58Pj8XDy5Em0Wi2zs7MsLi6STqcxm83EYjGsVuumQlfJZJJr164xMzODwWBgcHCQRCLB/Pw8LpdLzI/XXnuNZDKJ0+nEbrdjMpnEXnX58mUmJyfR6/WEw2FmZ2dvmMsUj8dxOByk02lMJhOBQIB4PE4qleKJJ54QjsHQ0BAXL14km82KPU2r1QqjOh6Pc+bMGZRKJYFAgJmZGRKJBIODgywvLwtjeTPuPFw3xM+ePYtCocDn8zEzM4Pb7UahUDA3N8fg4CDBYJBisciLL74IXHdqJycncTqdmEymG+aBGAwGoWZcVVWF2WwW/b+wsMBrr72GxWIhEokwPz9PPB4nFovx0ksvkc1mmZycFKrVpVKJwcFBisWiyAtIJpMolUq0Wi2vvPIKbrebXC4n1tdmejGXLl0inU4L7QXJ6NfpdAwNDXHt2jXguoM0MTFBPp9/0yKKFVTwq0BlllZw2yLgDzA7O0s8HiedTlMqldDpdKRSKebn59FoNCQSCWGISYZvJBKhtbWV2dlZxsbGhKjW6OgoRqMRq9UqjJbVWFlZEcZhdXW1MBrWJ2pOTEwwNDSERqOhubmZbDYrIpEOh4P+/n6am5uxWCwihyGVSvH4449TVVWFzWYTxl9jYyP9/f0kk0k0Gg0ymYxr166hVqtJpVIsLS0Rj8epra3lzJkzhEIh6urqCIVCXLx4kWKxyM9//nOKxSIWi4VsNsvVq1exWq1MT0+zsrKCTqfDYrEIY6i+vp6Wlhaam5upqanB6/WytLQkjNWbcdL1ej3ZbJZgMEgoFEKhUDAzM0MulxNOls1mI5VKsbKyglKpFKcyvb29WCyWNfXvE4kEnZ2dXLx4kcXFxQ33y+VyRKNRwuEwVVVV/OIXvyAcDovj/LNnz6LX6zEajczNzYno9Gq4XC6GhoZEpHlkZIREIkE+n2dqaopkMkl7ezuXL19mYmICrVaLwWDg/PnzpNNp1Go1mUyGa9eu0dbWhlKp5PLly4yPj4t7xONxGhsb8Xg8XLlyhXK5LE6LFAoFHo9H5J6MjY0RCASEoSuTyUgmk6ysrJBKpQiFQkxOTpJIJEROxXq89NJLLC8vU1NTQ319vZi7sVgMn8+H1+ultbWVs2fPiiTI1cjn81y8eJGZmRkaGxupq6sT91pcXGRoaIhwOExtbS3Dw8PE43EUCgWpVAqHwyGMrlKpRDwe55lnnqGmpgaZTIbb7cblcol7ZbNZzp07h9PppKWlhcbGRp599lmRHCopL3d0dOB0OhkdHSUUCqHX6zl16hQajQaDwcDs7Cz9/f3YbDYCgQAul0ucJL388svU1tZSKpVYWFggHo+L6G59fT2hUEg4VF1dXWi1Wrq7uzGZTBtOjrxeL6Ojo0KkzW63Ew6H8fv9hMNhCoUCarWakydPEovF8Hg8zMzMiDWUTCY5f/48k5OTVFVVUSwWmZycvOHaSqfTeDweXC6XcHq0Wi0ajYazZ89SXV1NY2MjExMTvPbaa8TjcX72s5+hVCqxWq2Ew2GuXLnC4uIily9fRqvVkkqlcDqdBAIBnn/+eUqlkjil2qotUv8pFArC4TDz8/PMzc2J/XZxcZFisYher+fcuXMUi0WmpqaYm5sjlUrR1NR0w+R26YS1qqqKnp4e2trakMvlZLNZpqenOXXqlBhHu91OLpfDZDKxvLwsHACTySSohpOTk+IkQdqDbDYbTU1NvPDCCywsLIjE4EAgsGYdqFQqampqGBgYIJvNUlNTQ1tbG7W1tXR2dlJbWytOaKXTAsnpeivF6Cqo4O1CxQmo4LaFUqlkbm6O//yf/zOBQACNRoPZbF4jbiVRLGw2G3Cdp9/X14dGoxEbtsT7bG9vR6vV0tbWRktLCydPnlzzQvB6vZw+fRqDwcDMzAwqlQqdTrfh2HxsbIy5uTn27t0LXOc+a7ValpaWGBkZoaWlBZlMRmtrq4jOhcNhYdR0dXVx6NAh7rjjDnQ6nTD+dTrdGsqHROOor68Hrr+cd+zYgdFoFFUtSqUSFy5cYGVlheXlZSKRCEajEYVCgVarpbOzk8bGRmQy2RqBJ7lcLv7p7e3l4Ycf5v/9f/9frl69KigrW0Emkwn+7ZUrV8QRvvQS7e3tFWMll8vF0bt039XVN7RaLX19fSiVSvL5vKjQsRoSHaG2tpaJiQnxMlYqlRgMBmEcVVdXi2oj6zEzM8OVK1fQarVMTU1hNptFv5tMJnbt2iWEv6xWK01NTdhsNlZWVigWi2i1WmpqamhtbQXg2LFjzM7OMjExIe7R19eHwWCgWCySz+dRKpXcfffdJJNJUqkUkUiEpaUlyuUyWq2Wb3zjGzz11FPE43H0ej0WiwW5XI5GoyGTydDf389/+S//BZ1Oh1Kp3GDEX7hwgXQ6TU1NDQqFgra2Nq5evUo+n6exsZG2tjZkMhkqlWrTvpWoPZlMBovFgkajoaqqCqVSyfT0NP39/Wg0GtFfSqWS1tZW7r//fs6cOUMikaCjowOz2Szm99zcHKVSSdDzJHg8HoLBoKCQabVaQqEQgUAAYE3fHj9+nLm5ORFFr6mpEeNrNpsxGAzo9XqqqqoENc3n87GyssLc3BxyuZxMJoNCoaCmpoaWlha0Wi02m41cLkc8HhfzUaFQUC6XNxitAwMDonqO3W6nqamJYDBIb28vzc3N4uTR4XCQzWZRqVQ4HA7+03/6TwQCAeHU+Hw+FhcXUSqVpFKpTee3BMmwfeCBB/jqV78KXDeYjUYjdXV1mEwmampqKJVKwiE5f/484XAYr9dLKpUS80Kj0eBwOCgWi5hMJjweD88++yw7duzAYrFgNBoFRWg9VCoVn/jEJ5idnSUWi4nTpXK5LPbRqqoq5HI5SqWSbDbLiy++iFKppLe3F4VCQVNT05Y5Mqv3g9WqxxJ9SxpH6fRQLpfT19fHv/7X/5q/+Iu/4PDhw+zYsQOr1YpCocBkMol76fV6bDYbRqMRs9lMJBIR47iZBoV0iiaJ3K3eG+H6ScG9994rgjBLS0t88pOfFO+bd1quSwUVrEclJ6CC2xatra3c+0/+CfX19fzN3/wNly9fFgbxaqhUqjWRPIn7vFWpNynKZjAY1nyu0Wior6+nvb2dvXv3sm/fPoANx75yuVxwYvV6vbiHFK2U6DSFQkEovUrRcwmSkSQpnkpc1mQyueZeEgVgdRslQ7pUKonk5D179tDa2kqhUFhDOVitMCsZOpJhHovFBF3q0UcfFVSmBx54gL/6q7/adEwkNDc3MzMzw8zMDHfeeScHDhzg9OnT7N+/n4MHD97wt2NjY3R2doq2SCqcW43X+fPncTqd6PV6PvKRj/DVr36VlZUVGhsbhXCUhK2uIRk9HR0d7Nu3T/Czr1y5AvzdnFmvyLtVRDMajaJQKETbATGO0tikUim+8IUv8Id/+Ie0tLSQSCQYHh7G6/Vy4sQJfvd3f5crV64wMTGxRrwtGo3S2dnJV77yFXQ6HX/8x39MS0sLFotljWEljSNcP1Hxer20tLRQKBRQKBRr5s1m/SJFiiXjUfre6v7q7Oxk7969or+USqU4yXrhhRe477770Ov1QuX38OHDyGQy0uk0iURCVIeR6HFSImq5XCYYDKLRaDZEVP1+v1hLMplsDV1n/XoolUoYDAaRC3T48GHgOp0nGo1it9vXjNHqfpCuabfbMRgMNDU1ie9VV1eLE7g77riDO+64g3g8zg9+8AP0ej33338/VVVVwHUqTF1dHf/4H/9jmpqa+OpXv0pNTQ35fJ6Ojg6OHj0KXM8xWL/nrIbkJLz44os4HA6+//3vEw6HxT4kQTo9MZlMWK1W9u/fj8ViYe/evaysrHDlyhVSqRT79u0T+RDLy8vI5XJSqRRms/mGZTAzmQx//Md/zLe//W0sFgvz8/OkUik8Hg/lclmsEen3pVIJk8kkHN3m5uY3ZBybTCbMZjNWq3XNOKpUKpHT8bGPfYxnnnmGj33sY+zcufOm15RynG6Vuy85AoVCgampKTo7O9m3bx8ul4uTJ0/S3d29hr5UQQXvdFScgApuW4xPjDMxO8S73/1utm3bxvbt2xkeHqa/v18k3A0PD4tNWS6Xs7i4yNmzZ6mvr2d2dha9Xi94/bOzs8zNzZFOp1laWuILX/gCS0tLgipy/PhxPvWpT/HCCy8A1yOlTU1N9PT0rGnX+9//fubm5nj66ac5cOAA165dw+fzceedd3L8+HF+/OMfMzIywsLCAu3t7Zw4cQKz2cxv//Zvc+7cOWpqakQ0s7u7m6amJkEbGR8fF5V7hoeHRTtyuRwul4tz587R2NjI1NQU8/Pz2O12/t2/+3e89tprtLS0YLPZKBQK1NbWsrS0RH9/P5lMhlAohMvlYnp6mq6uLux2O36/nx07duBwOHA6nTQ3N9PU1ITRaKRUKvG5z32Of/pP/ym7du3CbDav6QOZTEZNTQ379u3DaDTygQ98gMcee4xIJCISSAcHB1laWqKhoQGbzUZvby/PP/88dXV1+P1+XC4XdrtdUB0WFhaw2+0sLS2tqf4k0U4kI9pqtTI3N0ehUMDpdOJ0OkXkenx8nI6ODoLBINXV1eIaR48exWKx8NJLLyGXy1lZWaG2tha32y3mTHV1NXa7HYVCIcZhbm4On8+HWq0mkUgwMzOD3W7n5Zdf5t3vfjctLS04nU6WlpbENWZmZvD5fMzNzQHXT5gCgQCLi4uo1WrcbjePPPIIH/zgBymXy/T09NDY2Mhjjz3G0tKSMDDGxsZ4//vfz/ve9z5qa2s3GB5/8id/QjQa5bnnnqOqqgqVSsX+/ft57LHH8Hg8+Hw+6uvrcblcXL58GY1GQ3t7u/i9Vqvl7rvvJhqNcvbsWQwGg/juzp07qaqq4qWXXkImk4mE7Pr6egwGA5/61KeYnp4ml8uJaPuJEyd4+eWXRTJ9NBplZGSE6elpisUihw8fplwuc/r0aQqFAh/96EdpaGgQeRCjo6NYrVaGhoa49957qa+vZ2RkRIzvxMQEw8PDyOVy5ufn6e/vF6dlHR0d7N27l5deeomqqioMBgNOp5Ph4WFmZ2dxOBwMDw9TLBYpFosiCf3ChQu0t7dvMM5PnDghEvylHJFdu3YBkEgkWFhYYHp6Gr1eL/J4YrEY9913H9u2bePw4cOUSiUSiQSvvvoqVqtVRPSfeOIJZmdn+cu//Ms194xGowwPD2O32+np6eHo0aN0dHRQKBQIBAJcu3YNj8dDS0sLBw4coKamhs9//vM8/fTTdHd3o9frkcvlvOc97+FrX/saY2NjIsrd2trKf/gP/4HTp0/T09PD/Pw8o6OjxONxDh06JAIdq4MLUnLt8vIygUCA5eVlhoeHRcK72WzG6XRy/vx5PvKRjzA4OMjIyAgKhYL+/n76+/u58847qa+vX3N6OzY2Jqhuc3NznDlzhrGxMQ4fPkxLSwu7du3ipZdeorq6WiT+zszMMDIywv/4H/+DP/7jPyafz3Po0CFsNhsul4srV65w6NAh1Go1pVKJ8fFx/H4/J06coKWlhVAoxMDAAEtLS3R0dLC0tEQqlaK5uRmtVsvCwgIOh4Ouri5xErxr1y56enqQy+XU19ezZ88esQ+Ojo4K2ubv/M7vbP4Cq6CCdwBk5cp5VQW3GQbjcGgAnqxz0Zxapq6ujmKxSGNjo3gh5XI59u7dy/DwMCqVivr6esGn37lzJ3q9npmZGZRKJV1dXTidTn72s5/x6U9/GrPZTDabFZzSy5cvU1dXR0NDA1qtlrm5OWprawFEtG014vE40WiURCKBzWZjfHxcVHipr69nenpaUFO0Wi1msxmTyYTdbkcmkwmer1qtxmKxMDg4uOaY3+Vyce+99zI5OQlcr7xis9m4evWqeDav10soFOLAgQPk83nC4bB44UtUoAsXLtDa2ipoECMjI9x1110Ui0WCwaCoKBKNRpHL5WuqZjQ0NPDss8/S29tLU1PTBicAEDSEuro6jEYj09PT2Gw2WlpayOfzXL16Fa1WS0dHByqVCqfTKWgZKpUKt9uNx+Nh27ZtaLVahoaGROnQ1bQon89HJBKhUCiIXI2GhgYMBoOoCHPnnXcSCAQIBAKYTCa2b9++JvqXz+eJxWI4nU5qa2spl8vodDqi0Shzc3Ps3LkTrVbL+Pi4qM4kOU4HDx4kEokwPj7OwMAAf/qnf8ry8rIwdrPZLAMDA+zZswetViuST/v6+sRcUiqVJBIJ4vE4nZ2dzMzM0NDQIKKqFouFkZERkbNRLpdZWVmhvr6ebDZLY2PjGkMKrkegE4kEpVIJpVJJOBxm+/btzM7OkkgkMBqNtLW1ceHCBbq7u2lsbNwwjh6Ph1QqhUqlQqPRcObMGfbs2SPa4HK5RH9JxnWxWCQQCOD3++nu7sZgMIjkXCnyqlaryefzBINBfD4fd9xxh5hzUhS5UCjQ3t7O2bNnmZmZoa2tjUOHDrG0tER7ezsajYZQKMTw8DB333034XCYQCCAXC5n27ZtXLt2DZVKRXd3NwqFAr/fj0KhQK/XC/66RMs5dOgQ09PTlEol4bRIuTtVVVWizRKkZ4/FYoLWVlNTw/z8PIVCQQQenE4n7e3tIhegvr5e7FUrKysi2VSKRkuJpsvLy3zsYx9bMxaxWAyv14tMJsNisZDP5zEajfh8Pv7sz/6Mv/3bvxVUOIPBQH19vUhu1+v1qNVqUQ1oZGREVDySqHlStSODwUA8Hsfj8WA0Gjl69OgaJ6BQKPDaa6/R09NDuVwWdLaOjg6xp0qlbEdHR+nr66Ompobl5WVRoS0QCOB2uzlw4ICY/xKkpPNCocDOnTtZWloSc1fKQ1g9jplMRtB67rrrLk6fPo3RaKSmpgadTsfAwAD79u2jrq4Oj8dDIBCgvb1dnKxUV1eTyWSw2+3odDq6u7uFg9TU1CTye6RAQTQaZXZ2lra2NrFGZ2dnmZ2d5cSJE4ImGAqFBJ1SemcNHIKDG1lHFVTwa0PFCajgtoO0ofYfLLNPf53XL1Et3ghSqRSnTp3i3Llz/O7v/i5dXV1rKALrUS6XBc93s1KT0nekF6YEid8q/V6tVm+gEuXz+Q28U7ieOCl9lsvlBEf1VrG6LbeSsCZV05CeTyphKpPJhJHmcrlEnsJ6A1T6DfwdrUKKIG7VbqmNUnWS14NSqUSpVFpDgVl971uFNDavdz6Nj48zODjIwsIC//bf/ltRGvRWkMvlUCgUG+ZCLpdDLpdvGC+pX6W23mguSJFbaY28EZRKJUFbWz1vJdrZZv0lzf/V4y2NrzRGm1VPKRaLYp4oFAoKhQInT55kZmaGHTt2cP/997/htb76/uvnyVbfl557q0ovUl7R6r6VThPWj5skMrV6vFb3rdQmj8dDIpFg27ZtG9qz+jdKpZJ0Os3Y2Bhf+tKX+OEPf4jJZEKpVK4x2uE69VBauxKkhPTVn0l9tHrtbrUe18/bWxkTqb+kHJ8b7aFb4fWO42a/l1TKFQrFG/q91D+Li4soFAoSiQSZTGZLqmPFCajgnYoKHaiC2xbSC+rNihfl83kcDgeJRIJcLnfDyhXSfW/GIZWMn81qr9/o91sZ6KuNjM0M7ptBSgC9Vax/MW9mtPn9fnbu3Llle9a/XG9WMu/1tnH9td+Kkny3MrabQaKfSZoIkgF8K9iqPv9WRrt0XSlZ/EZYn1z5RrC6b9drYmzVX5s5e7cyvuvbms1mRcTe7Xa/KWf/9c6v9UbzrbR3q8+kz9eP12bzVnJoN2vP+uuHw2HcbjcqlYqVlRVMJtOa60m/2ey5N5tfr6eP3oho3eq2v9E5+Wb2Cen3b2Y9SHO7XC6L0qBVVVU0Nja+4WtWUMGvC5WTgApuO1SiKhVUUEEFFdwuqLyzKninolIitIIKKqigggoqqKCCCv6eoeIEVFBBBRVUUEEFFVRQwd8zVJyACm5bBINBrl69ys9+9jPGxsaEOilcT0ALhUI89thjBAKBm/L81yMej3P16lUuXrxIPB5naGiI8+fPixr/tyOSySSTk5M88cQTgrf+60K5XCYcDvPUU08xOzt7Q5Gk1ZCSIm9XZDIZ5ufnmZmZ2fI765Mzs9ksS0tL2O128vn8r6qpf69RLpfJ5XK89NJLXLt2jXA4/LbfLxKJcPLkScbGxjYIEML1PS0Wi/Hcc88xPz+/Ru9jNd7MGvF6vTgcDiHSdiNcvnwZv9//tu0j6XQau93Ok08+uUZD5Y0in88zOTnJ6dOncTqda9qdSqXEvdavMakS1xNPPHHDdVtBBbcjKk5ABbct4onrhvoDDzwg5ONXV9CIx+M89NBD+P3+1/1STKVSjI6O8uKLL5JIJBgZGeHs2bPMz8+/HY/yK0E2m2V6eppHHnnk125MSqUFf/7znzM1NbWp0bMZpPKrtyuy2SyLi4tCI2ArBAIBMUa5XE4YZ7ezA3Q7QXLEXn75ZUZHR1lZWXnb75lIJHj66acZGhradD2Uy2Xi8TjPP/8809PTpNPpTa8Ti8Xe8BpZXl5mcXGRYDB40+8ODAywsrLytjkB2WwWt9vNQw899JY4AYVCgZmZGU6fPr1h/WUyGVwuFw8//PCmTkAsFuOxxx4TZZkrqOA3BZXqQBXctuho78CyfTvBYJDf+q3fWqPIqlAoaG5uprm5WZTl3EwNVMLqz6U63Pfccw/f+c530Gg09PT0oNFoyOfza04VVpc/XF21Zf211993sxfn6t9v9psbXXf136USi+uvXVVVJbQKVov+rL7nVveTyoOuv+b6tm71+Wb3aWpqorm5GZ1Ot2F8Vl9HQqlUEgJG73//+9dUQbnR7zZ7BplMtqFk6WZ9eSvX3azd60tkSvfSaDS0traucVjX/7ZQKPDcc8/xoQ99iLq6OtRqNQ0NDVgsFhQKhShvuL4U6uq+XT+/NuvLrebsZqVcb6VvVveFVD50sz5Yf79bWZNbfXYrZT5vtvak9krfkf6u1Wo5ePAgGo1mU+frRhV81u8nN5rb0t+ampqEGN9m60GhUGCxWDh06BCFQmHN/VcHP0ZGRshms9x///3I5fINa/dGc7uurg6TySTaIJXd3WysJcVhaWy3mpM36qv1bVl9H4vFwv79+8Xn0jW2uu5m+9/qeafVamlraxNV4Fb3vdVqZffu3ZtWDZLL5XR1dQndmNXtkP59K/t1BRW8E1FxAir4jYPP52NhYQGVSrXm5Z1IJLDb7YTDYTo6Oqivr0epVBKLxXC5XCSTSfbu3bup8JWEfD7PzMwMHo+H2tpabDYbMpmMqakpent7aWxsXFO+rlwu43A4hHCMzWajvb2dgYEBYrEYNpsNtVrN8vIyx48fFyUEvV4vMzMzlEoljh07hk6n2/BSKZVKzM3NEQgEUKvV7N+/n1wux4ULF9DpdDQ0NOD3+9FqtfT19a0p5Vgul+nv7yeZTFJdXU1DQ4NQOt2/fz8Wi2XNc7zyyiuYTCZ0Oh3FYpFwOMy73/1uFAoF8Xic5eVlXC4X1dXV7Ny5UzzT1NQUpVKJo0ePotPpRE3tsbEx1Gq1oDQUi0Wi0aj43GKxUFtbu0bV1+Fw8Mwzz4ja3Nu2baOtrY1kMonf78fv96NSqTh06NCmL+BXX30VrVZLY2MjVVVVvPzyy+zdu5f29nYhXiSVnN21axepVIrl5WW8Xi9VVVVbGgmBQACXy0UqlaKqqort27dz9uxZCoUCbW1tNDc3c/HiRUwmEyqVing8Lhwft9uNz+cjk8lgs9mwWq385Cc/EcJgx48fx2q1MjExQXV1NYlEgvHxcbLZLF1dXXg8HnQ6Hdu2bcNkMlEsFoUac3V1NbFYDJ1Ox+7du9eUp5yfn2d6epr29nbS6TRtbW0YDAZisZgQ2Tp+/DilUkmMrUqlorq6mtbWVhKJBH6/n2g0is1mo6uri0gkwsLCAh6Phw9+8INMTU3hcrno7OykoaFBCExlMhkxtmq1muHhYUqlEo2NjVRXV6PRaPD7/UxNTWGz2UTb/H6/UM7u6emhpqbmptoHDodD9FFXV5cQ34tGo1gsFnQ6HR6PhxMnTog1JonGJZNJotHomjm4GhMTEywvL1NTUwNcV/Tt6+ujUCjgcrkoFoscPXoUmUxGMBjE7/eLNd/d3S3Kj2YyGQYHB9FoNCSTyTXre3x8nEgkQm1tLfX19TfVL/n+97/P6OgoBoMBtVrNPffcw8mTJ4UzKZfLaW1tFeKEgUAArVbLgQMHkMvlTE5OotVqqauro1y+rt587NgxAoEA5XIZm81GT08Pbrcbt9tNY2MjgUCA+fl5YrEYXV1duN1u6urq6OzsFHvO1NQUsVgMuO5cZbNZDh06JPqgVCqRSqUYGRlBqVRiMpmE+BzA0tISkUgEk8lEb2+vmMvT09PEYjHUajXNzc3U1tbecJ2vRzabxW63k0gkbsloj0aj2O12QqEQnZ2d1NTUIJNdV8yWxOO6urpoaGh4QyVUK6jgV40KHaiC3yg8+uijnDt3jra2NrZt24bL5SKXy+FwOLh06RKTk5McPXqUxx9/nIWFBWZmZnjiiSfo6OjA5XLx2muv3ZCqoVQqaWtr45FHHmFlZQWtVkuhUODq1avU1NSsMRLz+TyDg4NcuHABm82GTqdjfHycc+fO0d3dzSOPPMLly5dRKBTYbDa+9a1vkUwmeeaZZzh37hx1dXXs27eP7373uywvL29oy9e+9jUCgQC7du2iqamJL33pS8jlckKhEJcuXeL8+fP09fXx8MMP4/P5Nhxzd3R08NJLL3H16lWMRiOZTAaPx4NcLt9QH91isfDMM89w4cIFampqcDqdXLhwgaWlJU6dOsXp06c5ePAgV65cwel08vOf/5zTp09TV1fH/v37efDBB/F6vbz22mv8+Mc/pqWlhe3btwtVW4fDwZNPPsnevXvZvn07Kysr+P3+NW1obm6mqamJzs5Ojh8/TnNzM4lEgieeeIKJiQl2796NzWbjO9/5zqacZkl1d3R0VDgj0vi4XC4MBgM7d+4UjtXJkycZGBhg9+7dXLlyBZfLtYaHLXGFH3roIdLpNHV1dQwMDOD1eqmvr+fUqVOcP3+eWCzG5cuXaWlpoaurC7vdzquvvkoul+Oxxx6jq6sLm81GoVAgl8tx5MgR2tvbOXz4MM3NzcIo+uUvfwlcp0QNDw9z8uRJ9u/fz2OPPcbi4iKZTIalpSW+/OUvc/ToUZ555hni8TgdHR0bDBKVSkU6neZb3/oWCoUCj8fDI488wpNPPsn+/fsxGAy88MILPPLII8zOzrJnzx62bdvG7OwsQ0NDXL58mcXFRfr6+piamuLChQvkcjni8Tgvv/wymUyG9vZ2Tp06xfDwMHK5HK1Wyze/+U1SqRThcJiBgQF+/vOfE4/H2blzJ2fPnuXMmTPMzs7yve99j6NHjzI3N8f09DRjY2M8++yz7Nu3TxjLqVRqy3UqOS9nz57FZrMRDof5n//zfwLQ3d3NL37xC86dO4dcLqe2tpZvf/vbxONx+vv7OXPmDOFwmH379uHz+bakouh0OrxeL9/+9rdpbW3F5XLx6KOPMjY2RnV1NU899RTLy8uMjo5y+fJlXC4Xu3btYmpqivPnz7OyssLg4CDf+973xHqIRCJEo1FisRgXLlxgZGSEvr4+xsfHOX369JbPC9cjz9L62b59O4cPHwbAaDTy7LPPcuHCBUqlEg6HgxdffJFwOIzZbCYej/M3f/M3wHX18dHRUaampoRq909/+lNqa2txu92cPHmSVCpFXV0dZ8+eFYKBNpuNr371q6RSKWpqapienubxxx+nUCjw+OOP43a7yeVyRCIRpqamaGtrW3OSFwqF+MlPfkJfXx87duwQeTDFYhG3200qlcJqteJyuXjkkUcolUr84Ac/IBwO09LSgsFg4Cc/+Ql+vx+j0bjpOl/tYMF15+vrX/86kUiE3t5e9Ho9kUjkhvSmZDKJQqGgu7ubr3/967hcLoaGhrh69SpOp5NDhw7xwx/+kFAodMOxqqCCdwoqTkAFvzGQkrtCoRDV1dXo9XqMRiMKhYLZ2VkGBwcpl8siRyCbzWIymdi+fTsOh4N8Po/T6bzhBi4dK+/fvx+v18vc3ByFQoFDhw5tEDLK5XI8//zz2Gw2zGYz1dXVmEwmTp48iV6vF+qhdXV1WK1W7HY7xWKRkZERxsfHyeVyhEIhksnkmhONUqlEIBDAbrdTKBQwm81otVoRzS6Xy+LZdTodmUxmzRG49BwWi4WqqipKpRIej4dYLMaRI0fQ6/UbomJmsxmVSoVKpRInAh6Ph9HRURYXF4lEIgQCASFadPXqVUZHR8nlcgSDQZLJJMlkkqWlJZxOJzU1Nej1egwGAyqVCrVajUql4lvf+hYvvfQSKpUKq9W6pg1qtRq1Wo1Wq8VoNKJWqwU9SK1WYzAYqKmp4ezZs8Tj8Q1jZzabKRQKpNNpFAoFer2edDqN0WjE4XDwi1/8gieeeIK6ujomJydxu91EIhGCwSAqlQq/37/GkSqVSgwNDREKhQgGg8RiMeRyOX6/n/r6eg4dOkQ6neaFF17gPe95D9XV1YJmkclkKJfL5PN5fvjDH9Lf308qlcJsNotn0+v1qNVqlEqlMNbgugGv0+kwmUxiHkmKpVJ/GwwGEokESqUSo9G4QZBKo9FgMpkol8u0tLSI+bOwsEAoFBJzTKVSMT8/z4MPPsirr75Kc3MzAwMDBAIBscY6Ojo4ffo0gUBAqPyWy2UMBgOFQoF8Po9SqcRisVAul2loaKC5uZlMJsPp06fZtm0bRqORgwcPYjQamZiYIB6PCycwmUwSCoWIxWJ8+9vfZmFhQTgVN1qn0nxIJBK4XC6R1G8ymcjn86jVaurq6rDZbCLpemhoiJmZGbq7u9Fqtdhsti0Fw3Q6HQaDAZlMJtaERC3SarWUSiXC4TCvvfYawWBQzPmOjg5OnTqFw+HA5/MxNze3YT2Ew2FeffVVAFZWVshkMmLubvW8MpkMvV6PVqtFq9WKKLpEIzMYDLS0tNDU1ERPTw/FYpFUKkUwGBQJr2azmXw+LxTKNRoNRqNR7AnpdJpEIoFarRbqzkqlEr1eTyqVora2lpqaGuGQSvutQqFApVJRLpdJpVLiBFWCNMcfeOABTp48STKZpLa2VgiDSdctFAoiqffkyZNotVqqqqrEc1+6dAmdTrfpOl+9hxaLRcbGxsjn82i1Wkwmk+inG8FkMomAjsFgoL+/n1dffVXkNUmJ0ul0+teed1VBBbeCihNQwW8M8vk8kUiETCaDTqdDLpcLAygUCrGysoLZbCaXy7Fr1y6MRiOFQoFCoUA2m8VoNJJIJIjH42sM5vWQyWTcc889eL1epqamyGazHDx4cIOEfaFQYHZ2VhjQOp0OnU7HzMyMeDmZzWZhxCcSCcrlMsFgkEQiIQyJbdu2bVAaTaVS4vtKpRKZTEY2myUWiwnusPSi1Wg05HK5DbxmjUbD7t270Wq1jI6Oks1m2b59+6bGlU6nW2Og6nQ6QcPJ5XKCN93T04NarSYcDhOPx8Uz9Pb2olarSSQSxGIx9Hq9MEyUSiU6nY66ujrC4TAul4twOLxhDCRDR+rjSCSC2+2mVCqhUqlQKBQYjUacTuem46fX69cYdNILX6vVotFoKBQKeL1eVlZW8Hq9FItF1Go15XKZnp6eTVVKvV4vKpVKOIednZ2i//v6+tBoNExPT9PW1oZWqxXtVCgUyOVyGhoaCIfDBAIBQqEQqVRKPGMulyObzVIqldaMieSISVQEtVpNPp+nUCigVCqpqqoiEAjQ3t5OTU0NarV6g1MnGW5Wq5Xq6mrMZrO4Z7lcxmKxUF9fT2NjIzqdjmAwiMvlIh6P43A4yGQy4jfV1dVCcVupVArKikKhEPeVy+XiflVVVdTW1qJQKFhcXKSxsRG5XM62bduw2WyEQiEMBgP5fJ62tjZhdNXW1ooTomg0Ktq6njsP109potGoGL98Pk+xWCSTyQjlXrPZLChByWSScrmMx+MhGAxSV1cHXDegt3ICJMfTarWK9W00GtFqteIeqVQKh8NBLpcTar7V1dUsLCwQjUZJJpOEw2EMBoPYEySanNPpxGKxUCwWaWlpobW19aYJ9DLZdWXvUqlEJpMRRq7k8NfU1FBbWyueV5q78XicTCYjKEPSmEnrUnJGFQqFOA2TviuXy1GpVKIvDAaDMIQlx0TKK9DpdMLpXD0nVSoVTU1NhMNhlpaWCAaD4j46nQ6r1YrRaBSOSLlcZm5uTjg80l7idDrRaDSbrvP188Pr9Yq1KI2f1B9bQQquyOVy6urqcLvdOBwOkskkJpOJQqHA3r17UalUr7siXQUV/DpQyQmo4LZFoZAXhkA2m13zws9ms6LCRzabxWAwUF9fL/jLra2tAJw+fZqf//znfO1rXwNgYWGBeDxOOBwmm81SKBQoFovk83nxD0BfXx+PPPIIyWSSXbt2sWvXrg3tk14UsVhMlC+NRqPU19eLl3mpVCKfv/4c0r0ko6e5uRmtVktNTQ0Wi0VcV4pyAuJZs9ksyWRSRJqLxaL4t9QHkiEk/b9Op+PYsWO88sorXLhwgU984hNb9vVqg0uireRyORoaGigWi2g0Grq6uujq6iKdTtPS0oJSqRTPICXVyWSyNZHG1dcyGAx86Utfor+/n4sXL1IulzfweJVKJXK5XJz6WCwWvF4v6XRaXGe1IbMaGo1GGEj5fJ5oNEo+n8fv93Pw4EHe+9734vf7+e///b/z8Y9/HJvNRk1NDd3d3XR3d5NOpzc4Y3V1dQSDQRobG9m+fbswfrLZLKlUCpPJRGNjI6dPn+bjH/+4yFORxqe9vZ3f+Z3f4dVXX8Xv9zM5OSn6dGVlReRRrJ4fkuMqlYKUxrNUKmEwGOjo6ODy5cscP36clpaWTekNpVKJQqEg2mM0GoWD3N7ejkKhoL6+nvn5eZqamvjIRz7CyMgIJ0+eFIZfLBYjl8vh8/moqqoS1DidTifGIplMihOKXC4njKNSqYRGo6G6uppIJILZbCaVSgl6TjQapaOjA7lcLk435HI5n/3sZ/nhD3+I3W5HpVKxbds2stnshjyeQqHAuXPnRO6KNB99Ph9NTU1r1t7qtaHX6ykWiwSDQaqrq0W7pdON9U5+oVBAJpOJPUJ6NmlcpFwPydBe3V9Go5FIJCLGT1oP+XwemUxGU1MTVquV9vZ2urq6BG8+l8uJEr/r26RUKkW0fXl5GbPZTDabFY6lNO++//3v88lPfpKmpiYxdySHXppn0jOt3kek/lr9d+k3UlK7tE9Kc7Szs5NQKIRSqaShoYEdO3Zsmaz9//w//w9jY2MMDAwQiUT48Ic/LJKby+WyuFepVMJms5HL5chkMmQyGcLhMLW1tWi12k3X+eo2FwoFqqqqiMViok+lfpXGcf0eIiXl53I5Mc6SQ1VVVUV1dTVdXV20tLQgl8tveqpQQQXvBFScgApuW9jt80xfvkwkEuHxxx/nE5/4BO9973sJhUK88sorVFVVsbi4yKuvvsqdd95JW1sbzzzzDGq1Gp/Px/79+1EqlSJiv7S0hMfjwWw243Q6GRkZYWZmBrvdzsjICNPT0zQ0NHDfffehVCo5dOgQuVxuy81er9fzb//tv+Whhx4SESyfz8ef/dmfMTIywvz8PC0tLTQ0NDA3N4fL5cLpdPLhD38Yp9PJww8/zNGjR4lGoxw+fFgYOjKZjJqaGj70oQ8RjUZ5+eWXKZfL3HXXXdTV1WG323E6nbS2ttLY2Mjs7Cznzp0jl8uxvLwsOOkf+chHsNlsmEwmNBoNe/fu3TIKdu7cOUZHR0mlUszMzHDu3DnS6TT/9//9f2O325mZmeHSpUvk83l6enr4yEc+wuLiIg899BDHjh0jGo1y8OBBjhw5glar5cUXX6S+vp6FhQUuXLjA/Pw8Ho+HTCaD1WrlyJEjwlhbje7ubnK5HL/85S/p6urivvvuIxKJsLKywsWLF5mfn+fP//zPaWho2PDb+vp6FAoFgUCAiYkJ7Ha7KIdot9upqalh27Zt/M7v/A7ve9/7eP7551laWhLPtW3bNrRarYgyyuVy3v/+9zM5OcnMzAypVIpSqURbWxtPPfUU0WiUQ4cOcd999/EP/sE/IJ/P09XVxeTkJMvLy0xMTPD973+fcrmMRqNh+/btdHV1YTAYWFhYYGJiApvNhtFo5NSpU2KOjo+PMzk5Kdo7OzsrEo/r6+sZHx9ndHQUmUzG8ePHOXbsGNu2bVvTF06nkzNnzoh+6Orq4uDBg0xPT/Pcc8/R1NSEVqvl1KlTyOVyDhw4gMVi4T3veQ9dXV2MjY1x9epVisUip06d4g/+4A9ob29neXmZPXv2cPHiRdRqNV6vl/n5eS5cuMDY2Bjj4+PMzc2h0Wjo6+vjT/7kT/jud7/L/fffTzKZpLm5mWPHjjE4OMjly5cpFArU19fj8/l49NFHUSqVgs4ik8l44YUXePLJJ/ne97634aRGKu04OztLKBRCr9dz9uxZenp6sNvtmEwmBgYGmJ+fF2vv/e9/P263m6eeeooTJ04wODhIsVhEqVSyffv2NfeYnp7m4sWLzM7OimdcfYI1MTGBVqvlE5/4BDMzM1y5coVcLsfp06f55//8n9PW1obVaiWRSIj1MD8/TyqVwmKx8Ed/9Ed8+9vfRiaTiZOXpqYmrly5gslkoq+vD5vNtmb/aW1tJZPJsLCwQFtbG+973/v48Y9/zODgIPl8nt27dwsjdXl5mWQyidfrFXREu93O6OgomUwGh8PB1atXMRgMNDc3Mzc3x/j4ODU1NSiVShwOB4ODg8IwXlxcZGxsDL/fL2hyS0tLqNVqXnjhBdLptEgs/sM//MM1fRmNRkWNfpvNxu7duwU9S7puLBZjYGAAp9PJ0tIS//2//3dGRkZwuVwioftzn/ucOG1bv87379/P/Pw8ly5dwmaz8cUvfpGrV6/i8/no7+/H4/EwNzfH8PAwBw4c2OBYtra2EggEuHLlChqNBpfLxec//3mKxSJXrlwR+7DH4+Gee+65IV2tggreKZCVb5QFU0EF70AMxuHQAFzeX2C3Oiei2mq1WkSxJG6uRC2Qjoyl6L5kzEkUAUCUAJWOvYvFIrlcTnBMpVJ7SqUStVrN1atXRbWKzSgDUqROijRK/FYpGppOp1EqlSIaK51YwN9Fale3dX1kSorISfeR2iWdOsjlctRqNalUCpVKhVKppFQqkc1m0Wg0gg6wuLiIy+XiXe96F7B5aTuJWqBQKFCr1eKkRaL7SHQjKXItlfRb/wzSZ8ViEYVCQSQSEVx/qc8k+op0VL8aUqRu9b2kCN5qWtBm/bX6OaT2ZbNZQU2S+l3KUVh9XYletpryJW2dEl9bol5J0WtpTORyuaB3Se2Vrik5DlJOhNSOZDIpxk+at/l8Hr1eL55f4mwnk0mUSiVOpxOHw4FGo+HIkSMiKTOfz/O5z31uTT9IJzCr+3H1CYM0V1eXxFWpVKIPVp+OSeMnRUrz+byg5IXDYUEVkU7ppPsBayKzUh9IDrM0b6TrZjIZEa2Xfp9Op7l27RpHjhzZUDJWiu6uHltpba9ee9K1V689KfItjaNOp9uQK7N6Lur1epHnsf4earVarJFCoYBGoxFjLfWXtB6i0aigx2k0GjHu0r4hl8sFzUaKeK8voSrNR6VSiVarFf0mrV3pJE06CZLL5YI2JD23RJHJZDKCcibND6ktyWRyzZxNpVJrxlnqiy996Uv8s3/2z0TkfW5ujsnJSX7/939fUMeKxaKg+Uhtkkpvrr6utHfo9fo14ySNrXRSJ/Xb6nUu5RhJe7E0ZoVCQUTul5eXqa+v3/Q0Uep3uH4yKvWvtJ6keSzR/lZTF6V31sAhOGjasC1VUMGvDRUnoILbDjfbUFdzhCVjeHW9bumFuNqYkz6TsFVEPJPJcP78ecGXbWlpoaWl5aZtlvj4r+eIeLO23uhZNzN6b3Tthx9+mLa2NmpqajCZTLS1td3y7ze73uq+vtEzrB+f1Vz/1cfwN3vm1c8r1Sm/2W9Xf1e6nzQmq6+7uuZ4uVy+6bjd6vfWPwcgDHqp7eu35FutN+73+1lYWBBlXvP5vCg1+slPfvKW27QZVWOzvt1qfq6eC5LjvH5erL/n+rmz/tqr+0r6rFAokEwmcTgc7NmzZ9P5v76mu4Rb0RdYX4P+9ayvzSBRSDbrr/V18lffTzJSb/X+q691o99IY7OZhsBbhXw+z7e+9S1OnDiB0WgkHo+ztLREXV0dx48fF8GTrfaDW8FWa2+zdb7ZNVfvHZLzBDfef1bvG6s/32q/rjgBFbxTUaEDVfAbh9UvkPUvQSmSf7PPtoJcLhf8/JqamhtqCqzGG+GH3kq7Xs/Lcj1qa2sxm81YrdYNlXheL6TI/Wafb9bfW43PrfTTZs/8egy01d9d/d+b9eOtXveNGIjS/TbrnzcCk8lES0uLSCRWqVTs3LlzQx7Dzdp0qwbzVvNz9Vy4lXW12dxZf+3N+ko6rZASpDfDGzXct5rPbwZbGfI3W8O3ujetvt7qf2+FXwVnXS6Xc/ToUZE8LfXB+hKhUlvfSJu2GuOt1vmNvrdZ8v96vJ69roIK3umonARUcNuhElWpoIKtsXpLf6sjuxVU8Eax/oTp7xMq76wK3qmouK0VVFBBBb9B+PtoZFXwzkdlXlZQwTsPFZ2ACiqooIIKKqigggoq+HuGyklABX/vkc1mmZycJBaLsX//fsHzL5VKuN1uvv71r/OhD32I48eP37Tsm6QQ63a7OXr0KEeOHLnh94PBoCjx2NfXx9DQEGq1WiTrDg0N8ad/+qf87Gc/w2q1cvDgQXbs2PGWPfvNUCgUGBwc5KmnnuLTn/40u3fvvuXfwevnM99OKJVKDA4O8swzz/C+972PO++889fdpDU4ffo0JpOJpqYmGhsbX/fvpQoobzYh9u3C1NQUly5dolwu87u/+7tvK8ddql0vk8n4x//4H79j++RWIFXvkSrYxGIx7HY7sViM48ePr1EDljjyp06dwmAw0N7eTn19/a/5Ca6vvWeeeYbt27fT1NR0y7lZALFYjOHhYZ599ln+/b//91RVVd3yb1fva+VymaGhIV599VV6enr42Mc+9nofo4IKfu24fXeyCip4iyCVdlyvYimTyTCZTCQSCVF282aQFFNlMhmRSOSm35cEl/bu3UtnZyeRSIRsNovJZKKzs5PW1lay2azQM0gkEm/mUV83ZDIZjY2NQpDrVmG325mfn38bW/brh0wmo6GhAb/f/ysfl1uBpIR8K8mOq1EqlVhZWcHhcJBKpd6m1r15GAwGoQXydqe2mUwmrFYri4uLb+t9fhUol8tcvXpVjK1Ualba/2KxGF6vl6WlJfEbSZn39c6ltxOSuvLrdcjUajUNDQ0sLCzcVIF5PRwOB7Ozs+L/6+vricVihMPh13WdCip4p+A3N0xXwW88rke0CkKhtaqqStSEzmQyKJVKLBYL0WhUCDLpdDpisZhQLF39UjMYDCKaWCgUiMfjyOVyjEbjmlJ2kjqvQqEQL8dyuUwikRA1rK1W6y29YMrlMmazmW3btona4EajkcbGRnbs2CHaU1tbKzQNwuEwcrkck8lEPp8nnU6TyWSoqqoinU5jMBiEMq9U29pkMola3Ol0mrq6OpLJJOl0Gq1Wi9lsFjXG0+m0KNdYKBRoaWkR9e1jsRiFQgGz2bxpqUO4LkQ1MDCARqMRSrKZTEbUS5fqkOv1elFrXKPRoFAoiMVilMtljEajiFRu1mfFYpFIJCKeTVJTLZVKWCwWUWdeoVBgNpuFWvPqeRCPx0V9dKlMoMlkEv1pMBiEdkQwGMRkMgk9ALVajV6vF0q0q9uWSqVIp9PCSJEMq2KxKAwtae6shjSvJAVmqW1SdR+/3y/+W6FQoNFoUCqVRCKRNc8lKcOurt9/o3kbjUYBhJZEoVDg6tWrosa+VF8+FouJSjaSg3GjeZ1KpYQSrqSdIJfL0ev1a3QmgA3tWg9Js0NyxvV6PSaTidbWVi5cuCDWnlTPX5qL0WhU6DBI81Cai5KCrDQXE4kEarUajUYjdCsk2Gw2mpubuXLlColEQmg26HQ6EVlPJpPAdYNZ6i9pHCQ9D2lOS/oUkq6EBMnRl/4uKWCv3mOk55eup1AoxLqV1o005qv3MWnuuVwuLly4QG1trVBOl8lkGI1GCoUCMzMz+Hw+1Gq1UDbWaDRijUrPm0qlxLyT+jYcDmO1WoX+gU6nE/eV9mlJI0Oau9JczuVyWK1WsQakoIvNZtswt6RrSHtKLBYjkUhQU1NDPB7fchyl8WlraxN7htQGg8EgxkLSE5GE4gwGA+FwmOHhYZLJJLW1tVgsFpqamtDpdBSLRZLJJKlUSgi4VXIgKrgdUHECKrhtUSgUiEQiLC0tEQgEOHToEAA+n4+lpSVMJhN33HEHExMTyOVy6urqqK+vx263k8/nsVgsVFdXo9PpWFxcxGAw0NraSi6XIxKJYLfb0Wq1wmCRXn6SsrBaraapqYmmpiby+TwLCwvk83n8fr8QILsZrFYrBoMBvV6/4W8qlYru7m6SyaQw6qPRKLOzs2SzWY4cOUIsFmN+fh6Hw8F73vMeHA4H27dvRyaTsbKyQiAQQCaT0dvbSz6fx+l0MjMzwyc/+UmcTiezs7O0tLRw6NAhisUiTqcTv9+PQqEQIkJ33XUXpVKJSCTCwsICkUiEXbt2UVNTs6HN5XKZF198kdHRUaqqqqipqaGxsZGZmRmam5vJZrNEo1G0Wi19fX2Mjo5SV1dHXV0dCoWC2dlZobpbVVUljNrVyOfzhEIhJicnkclk7Nixg0KhgMPhIBwOc+LECRYXF4nFYphMJvbt20ckEmFqaopCoUBdXR0tLS3Y7XZcLhfd3d1CXKinp4dQKITT6aSnp4e6ujri8TivvvoqfX19wqg1m810dXWtcSKl+eFwOAgEAtTX11NfX49Wq2V6eppAIEBPT48wetrb29c8lzS2fr+f7u5uYrEYVVVVNDU1YTAYuHjxInV1dajVaoxGI7W1tahUKmZnZykUClRXV9PY2IjJZCKbzeJ2u7FarWi1WoxG45p529jYSHNzM7lcjunpaeFUSg7VT37yE3bt2iWMNZvNxrVr14TB09zcvKmi82p4vV4WFhbQ6/UYjUa8Xi9arZZt27bhdrvJ5/O0tbWRyWTWrKfm5uYN1J5MJoPb7SYWi5FMJuns7BSGcaFQYGlpieXlZdrb2+no6BAO5dzcHLlcDovFQn19PaFQSMzFTCZDLBZDp9Oxa9cuRkZGqK+vp7m5eVPjURpfl8uF1+ulu7ublpYWZDIZfr8fr9dLuVymuroam83G7OwsPp+Pjo4O4vE42WyWhoYGIdC3Y8cOIUy1+jmnp6fxeDx0dXWRSCSEHkmpVMJutxMMBtm1axeFQkEoSi8sLBAIBIQCudFopFgssry8zOLiIkqlkoaGBtRqNU899RQjIyN0dXUJI93pdGIwGIjH47zyyit4vV62bdtGXV0d27dvx+fzYTabMZvNGI1G/H4/Pp+PUqmE1WqlsbFRKLUfP36cYrFINBqlurqa7du3k8/n8Xq9BAIBisUi1dXV1NXV0d/fL8Y9GAxy7NgxHA6HEHXM5XLcddddG4IN0j4sBVvC4TAjIyP81m/9FnNzcxgMBurr6284R0ulEsvLywSDQdRqNa2trVgsFgqFAj6fj2g0KsS/ent7mZqa4vz588RiMdra2jh8+DBGo5FSqUQymcTtdrO4uMi+ffuoqqr6jaZCVvCbgwodqILbFnNzs1y6dIlisUh3dzdf+tKXcLvdJJNJhoeHcblclMtlFhcXyeVyJBIJHnzwQRQKBQcPHmRgYIDnnnuOUChETU0NzzzzDKFQiJdeeokf/OAHtLe3s3v3bnw+n4jOORwO/vqv/5ojR47gdrsZHR1lbGyMRx99FJfLxfbt21EqlQQCgVt6BpvNRl1d3aZ/k6J31dXVwnCYn5+nr6+PBx98ULyYk8kkTz31FAsLC1y7dg2/38+rr77KL37xC44cOUJ9fT1/+7d/i8PhIJPJ8Pzzz5NOp+nq6uLMmTNcunSJXC7H3NwcDz/8MO3t7czNzXHmzBmRA+DxeIS6r06n46//+q83nHRIUeI77riDvr4+9uzZw1133UV7ezvf+MY3hFKny+ViYWEBq9XK5OQk2WyWhYUF/vIv/5I9e/Zw6NAhfvrTn3Ly5MlN+2V8fJz/9t/+G3fccQdVVVWcO3eOubk5bDYbDzzwAJFIhKGhIRGxy2az/Ot//a+F0ebxeDh58iTbt2/nK1/5Cg6HA6PRSDQa5XOf+xzV1dXkcjkuXbrE0NAQer2ehYUFTp06RXNzM4VCgeeee44XX3xxDQ0lk8ngcrl48cUXOXr0KD/+8Y957LHH0Gg07Nixgy9+8YvCWFxYWNh0LlRXV/PFL36R6upqdu3axdmzZ/mLv/gLYWx997vfZWZmhmw2y/DwMJ///Ofp7u7m4MGDzMzM8O1vfxu4TpUoFArMzs4yNjbG4uIif/3Xf82hQ4fwer2MjIwwOjrK3/7t3xKNRtm+fTuTk5OcPHmSmpoaDh48yMGDB9m/fz8ymYzLly+jUCjYv3+/MJxuhvb2dn7xi18wNjaG1WplaWmJubk5dDodPp+P+fl54vE4f/3Xf83hw4fxeDyMjIzgdrs3XGtpaYnHH3+cQ4cOodVqicfjJBIJ0uk0V65cEUbk4OAgQ0NDpNNpPv/5z9PU1MTBgwcJBoN87Wtfo62tja9//etCvG/9XMzn85hMm9dwTCaT9Pf309zcjN/vp7+/n8HBQbxeL1/+8pfZtWsX7e3tTE9P86Mf/YiWlhYeeOABtFotDoeDc+fOodVqsVqtLCwskM1mN9BrDAYDqVSKa9eucfbsWU6cOMGFCxd4/vnnWVxcpL6+nv/6X/8rhUKB+fl55ubmsNvtnDp1ine961385V/+JefOnROG7L//9/+ePXv2EA6HmZiYIBgMcs8999DV1cWJEydoaWlBrVZjMpl44okn0Ol07Nixg4MHD3LgwAH27duHVqslHA6L+/n9fr785S/T3d1NZ2cnTqeT733vezQ3N3Py5EkuXrwoThG++MUvUi6XuXTpEpcuXSIWi7Fr1y6+8Y1voNFo8Pv9XLlyhdOnTxMKhfB4PFy6dAmFQkFTU9Omc0GiLy0vLzM9PU2hUKBcLvPss88yODjIwYMHefnll3n88ce3nJulUgmv1ysU34PBIP/pP/0nisUi/f39nD17lnQ6TWdnJxMTE7z88svs3r2bnp4eOjs7ede73oXRaFwTbJFOTb/2ta/h9/tvuj4qqOCdgIoTUMFti+7uHvbv3084HMbn8+FyuchkMuzatYv3ve99PPfccxQKBTo6OmhtbSWdTvPkk0+ya9culEol7e3tlMtlXnnlFaqqqpDJZMTjcTwej4jkShE0vV6P1+vlzJkz6PV6RkZGRHLY5OQkDz/8MO9+97vR6/XU1NTccvLczYSCVv+9ublZUISsVivxeJxCoYBKpcJgMLB9+3Y+9alPYbfbWV5epqmpCZlMRktLCwMDA/h8PjQajTByNBqNoKxI0TWLxSL+XyaTYbFYBOWmvb2d9vZ2LBYLy8vLm/KwJaXT1f+oVCo+/vGP43a7CYVC6PV6hoaGiMVi3HHHHeh0OrxeL+FwWLRHoVCwsrLC3NzcmusHAgEWFxfx+Xxcu3ZNUG8Aenp6+OY3v8l//s//mY6ODo4cOUJVVRXz8/MsLy8zNTVFKBQik8mQzWbR6XRUV1eL+SFRl2w2G7W1teJESC6XY7Va6e3tRa/X09PTw65du/jhD3+4pg+0Wi3Nzc3CwfT5fORyOWQyGQaDgZqaGpqamjh+/DgnTpzY0HdKpVIk8lZVVWG1WjGbzRSLRcbGxqipqaGlpYWenh46OjqwWCysrKwIGplSqSSdTjM+Pg4gTlKWl5c5ffo0er2e0dFREWWfnp7m0Ucf5c4778RoNPKBD3yAz372s2IcpdOg6upq4Zz8q3/1r9BqtVs6ruuf57777sNkMnHt2jUaGhoYHBwkGAzS09NDfX09586d29CuzQwoKar6sY99jCtXrohxkhwso9FITU0NxWIRj8fD4uIiKysrgsYi0Zymp6f52Mc+hsvlIhKJoNPpGBwcFEmxEvVtM2i1WrZv3y5OYfL5PNPT05w6dYrOzk7kcjm1tbUkEgkGBwepra2lrq6OXC4naDWnTp1ibm6OT3ziE7S1tW0qzCb1b29vLwD33Xcfc3NznDt3DpPJRE1NDc3Nzdx3330cOXKEtrY29u7dy4ULF4hEIuI08tKlS/T29qJSqXj3u9/NfffdR0dHx5q1CddPHFdTbqS/re4Hk8mEVqslGAzy0ksv0dnZiVKpXOMwS0KK27dvp6GhQZxeAjzzzDO43W4ymQzXrl2jra1N9H9jYyPbt2/n/e9/Py0tLczOzvLVr36Vb37zmzdM2rVarYJ2o1arsdls7Nu3D41Gs4ZOtBlkMhlVVVXiJEU6VRoZGeGhhx7CYrHQ0tKC0Wjk2LFj/H//3/8naFXrFbD1ej2NjY10d3dTW1vL8vLy6841qKCCXxcq51UV3LYYnxhnwT3N9u3baW1tFfzmUqkkXh7nz5+no6OD2tpa/H4/xWJRbN6ZTIZcLodOpxMvRKVSKU4NpJeg9DeJO2yxWOjo6KC9vZ1CocDc3ByFQkFwuFe/YN9K4SaJOy9dS+IZS200Go0oFApUKhWlUolMJiOMuVQqJTjyq+kHEg1GeoGbzWbm5+fZtm0bBw8eFM+hVqtRKpXipXujl5z0gsxmsyJ/4d577+XZZ5/FbDZTXV2NTCZjeHiYvr4+ZDIZs7OzpFIp0UeJREI4EKsh8aPVajVdXV2CfiHxeRUKBfv27WN8fBybzUZfXx96vR6lUklbWxs2m42mpiZBsZLyQiTu+2pV01KpJAyJ1UZRoVDYNIobCoWYmJhgaWmJd7/73VitVnK5HOFwGIvFgsFgQKlUbko1kcZ0vROVzWZJp9MiF0DKU5B42BIPXSaTkclkSCaTYo5I4yBx7aV529nZKehrMplszRySciOkcff5fCJX4D/+x/9IOp2mv78flUp1Q0dXGsfDhw9z4cIFBgYGOHbsGAqFgsnJSXbt2kVbWxt+v3/DetqMRmEymdi/fz8nTpxgbGxMUHpkMpmgjMnlckHbU6lUa/oml8sRj8fRarW8+93v5tlnn8VqtWKz2ZDL5QwPD7N7927h9G41r6W9YvW9lEql4MfL5XIKhet5SkqlknvuuYcLFy7Q0NBAZ2cnFy9epLOzE4PBsGWSrfQs0nyTqIVSpSZpHmk0Glwul6CQvec970Gv15NKpUgmk6jVakFllHJMpLUO1+lnUr7C+oIIkgE/Pz8vHBzp8/XPK3HrpXZLCcQSdx8QJwPNzc20tbVRU1MjcrA0Gg0GgwG1Wk0kEuEDH/iAyMM5f/48J06cEHlO68djtTqyND7SnL5ZIYfVa026nlarRaFQUCgUhCORTCY3qBsXi0UWFxfp6OhApVKJNSKXy9fsyxVU8E5H5SSggtsWUgWTQqEgjB+JM2w0Gtm7dy/j4+NotVr0ej02m41jx44xOTmJz+cTXFDpSDsUCpHP56murqa2thaHw4Hf7ycajeLxeEin03R3dwsDVyqhV1tby/HjxwUVJxAIiOoapVKJl19+GbfbTS6X2/JZisUiDoeDYDCI3+/H4/GIaHs+nxfXlNoTDodFLkQsFiMWi7GwsEC5XBZR7Uwmg8/nY2pqih07dlBbW4tOp6OhoQGPxyOioeFwmFAohMFgwOPxMDg4iMfjEYbT8vIysViMUCgk8i2ke0q0itWQEpZXVlbweDzI5XLa29tFUmNzczO9vb3Mz8+j0+kwm80iuulwOHC5XGg0Gqqrq7FYLGuurdVqqa2tpaOjg1AoRC6XEwmUk5OTvPbaa7zrXe/C5/MxNDTE3NwcWq2Wnp4eQR+RkgCl5woGg3i9XjweD4lEQuSZ+Hw+wuEw2WxWzLdQKMTS0hLBYJA777yTQCBAJBIhFArh9/txu92C9ywlS87PzwtK2c0qCUnJ2YFAAJfLRbFYpK6ujurqapxOJ+FwmEgkIpIoOzs7WVpawul0irm7PnpqNBrFvM1kMhSLRVQqFTU1Ndx9992Mjo7i9Xrxer2srKwgl8upr68Xn3m9XpaXl6mtrRV5EOVymWAwyAsvvEAoFNrS4GpsbESpVBKLxaivr2fHjh34fD4KhQL19fVr2iWtp80SgzOZDH6/n97eXsxmM3K5nFgshtvtJhqNEo1GRVuj0Sg6nY6Ojg68Xi9Op5NUKiX6pqOjg0QiQblcprm5mZ6eHjEXt3LQVt8rEomIe2WzWVpbWykUCvj9fux2OzKZjN27dyOTyTh27JioXiTlD0gO542CAtKaD4fDzM7O0tjYSFtbGz6fj2QyKe69+uSyXC6LBNZoNCra5fP5cLvdrKyskM1mMZvNRKNR3G63oDm6XC5CoRDpdBqTySRoe36/X7TF4/GQSqXo6emhUCgQCASYn58nn8+zZ88eYrGYGAdpf43FYiwvLwtaUSQSEcm2gDjF9fv9ZLNZYrEY+Xxe7AerDf3VaySfz695Lune0p4o7Wtb0TKlExeJgpRKpaitraW2tpajR4+STqfxeDx4vV7m5uY4fvy4OKWUqESpVAq/308kEiESieD3+3E6ncRiMZEDUkEF73RUnIAKblsYDUbMZjOpVIrFxUURsZIqu7z3ve8ln8+Ll25jYyOf+tSnuHbtGktLSxSLRRobG9m9ezdutxuFQkGxWKS3t5fDhw+zsLAgIqGSwblr1y6MRiNutxuXyyWqYXz6059mbm5OGJbxeJyVlRWKxSInT57E5XKJo/HNUCqVBE88k8kQDAbx+XwAohKHVIouGo2iUqlYXl5mZWWFXC6HRqNhenqaUqlEb28v3d3dGAwG3G43k5OTfOADH6CnpwebzcaePXtEEptkcHm9XpLJpHA2JicnGR4eZn5+XiR0JhIJYRAajcYtnYCamhr0er1IZDaZTML5aGtrY9u2bdx5550iWqbVamlvb+fEiRMsLCzgcDjo6Ohgx44dGyqDaDQampqaOHbsGDMzMyJXYXl5mcnJSS5dusSRI0ewWq14PB6mpqbQaDTcc889Yswko8Hn86HX64WTt7KyIv4/EAiQSqXI5/NkMhnK5TKBQIBAIIDf76dUKvGxj32M5eVlVCoVmUyGVCqF0WhEp9MRCASora3FYDAIB0Ov17OysiIi1FvNg3Q6jd/vx+FwYLVaOXLkCNXV1Xi9XuHw5nI5qquruf/++1laWsLhcKDX6zlw4ADV1dUiSi2TybBarfT19WE0GoXzFwqFsFgsfPrTn2ZsbEwk1kqVUnbt2kUoFCKbzZLL5UQidqFQ4MiRI3R0dBAIBHjmmWfw+XybzgNpvKqqqmhtbaWzs5O7775bnFRYLJYN7QqHw5s6FIlEQiTatra20t3djU6nw+/3o1QqhXEej8eFY/je976X5eVlHA4HcrmcQ4cOUVtbi16vXzMXT5w4cdPIbTweJxAIiHuFw2FRTWjnzp2CBjIzM4PVauXDH/4wADt37sRsNotKMrt27cJms930VDCfz7O8vEwgEGB5eZk9e/awZ88e/H4/BoNBUM3UajUGgwGtVovP5xMUo0KhwLZt26ivrxd9GwwGKZfL1NXVieeQ5ojP50OpVJLJZGhqahJUM6kt0v5TLpfZt2+fOFmdnZ1Fo9Hw0Y9+VCT8Sw5DLBYTCeHvete7MJlMwrCWgje5XI5oNEowGBTJwLOzs7jdbjQaDceOHUOv12+aGJxMJoUBnk6n0Wg0OJ1OlpeXxUnNjZyAnp4e4fAXCgX27t1LbW0tH/zgB9FoNGsCLx//+McxGo3U1dVhs9nweDyYTCb8fr84GVheXsblconTmBsFfSqo4J0CWblyblXBbYbBOBwagIFDsE9fFPxuCdILY7UhtP6lK50cbFXBoVQqiWNyqdyo9I9U/lA6Ol6N9bX0V7frVw2ppKh0RL66XzKZDBqNRpQQjUQi/PCHP+Rzn/scZrOZbDbL2NgYv/jFL/jyl7/8uqlM0nG8RJeQPgPEcf36sZEqvUgR4RvV/5a+K13/VmqF5/N5QWG41cod5XKZZDLJD3/4Q7q6uoQBtFXEWCpfWi6X10R7b6X/yuUyHo+HP/qjP+JnP/uZ4OTfqK2r+0xyduG60XzlyhWi0SgNDQ3C0L3RvFUqlWsoKpI+xWrqi+RwSrQHyWFpa2vbsp2rxx2ur631475Vu1ZfQxqL1aUcb4Z8Pk+pVNpALbvZXHy9kJ5BKqO5Welc6b9vdJ9yuczly5eZmJigra1NRKBvthakObd6DKRnW9+3UnuKxeIaOsxqSOVTt5rnAKlUStBgbrXfJCqdwWC44fdWl4J9OyE9p0wm20DPkpyS9W0tFosUCoUblshdj9XvrIOb551XUMGvBZWcgApua6znga7HVi+nm71cJO4rsOkLa6vf30xR+FcJqSb7ZpDaKf29UCiwf/9+Lly4IJL9EokEd91115u6/42w2di8nrJ6r7cE3xsp2Sdxk4eHh3G73fT29t5UmfaNKtcuLy9z9epV/H4/165dY+fOnbfkRG6mU/Bf/st/oba2lvvuu4+9e/cC1/v79czb1Qbgan0ACfF4nMnJSY4dO/a6jOfNvnsrxp5Uy/714FbH/M3m69yob9d/70b3SiQSLCws0N/fz9LSEvfee+8ttW2rOXejdt1onm7lHKzGGwlwSHlVN8PrMbDfDG70nJLOxma/uZFzVEEFtxMqJwEV3HaoRFXeehSLRcGTlgSBpK1hPS//7xMk0SOJLlFdXS0Uod9q5PN5EokEy8vLtLa2rklYv1VIJzButxuVSoXZbH5D17kVFAoFQb2rCCO9NZDq6ycSCZRKJY2NjcCbd1Iq+PWi8s6q4J2KyklABRVUgEKhEMb+evrG32dINcnXC3u9HZBKNa7Pg3g9kBJP29ra3sKWbQ6lUvm6I/MV3BgKhYKqqqoblsasoIIKKnirUHECKqiggjWoGP8VVFBBBRVU8JuPihNQQQWrINWHLpfLb5rfL1WxkBI8f1XGdS6XEwmw65PdpNr3UhLhrbZJKnenUCheN7f+rdRKeCdDolDl83nUarVI2JXEjG71GpLGw40SZTeDNHel2u9S9Zj1idnZbFbkvLzR/IUbtV9KSH8zNKE3s3akcchkMkIDQkqg/lVxzW8GSWdDOrl5s1hN33szCc5vNaQ2SQnR8Ju7B5RKJSEOeLPCBhVU8E5BZZZWUMEq9Pf38/Wvf52/+qu/etPXymQy/OhHP2JhYUEI/vwq8JOf/IRvfvObPP300xv+FgqFuHDhAqdPn35dqpb/63/9L77zne9w4cKFN9QmyTH5TYZUb/1//+//TTab5emnn+ab3/wmP/nJT275Gvl8nsnJST7xiU8wMzPzuu5/7tw5fvCDH1AqlTh79iz/5t/8G86cObPmO9FolL/6q7/iW9/6FrOzs6/r+reCWCzG5cuX+eAHP/im5nypVOKhhx5ienr6hroKm6FYLBIIBPiTP/kTTp06RSgUYmRkhP/1v/7XG27PW43+/n7OnDnD9PT0W3ZNqVzmO60+fTweF/oWqVTq192ctw0rKyt85Stf4W//9m8JhUK/7uZUUMEtoXISUEEFq3Dw4EEWFhaYnJx809eS6q1XVVVtqQ76duDo0aOMj49v+sLV6XS0trauUQ69Fdx7770MDw+/YcPuySef5D3veQ+1tbVv6Pe3A1QqFVarlb1796JQKDh06BAymQy32/26rtHb20t1dfXrPnFpbW0V5TtPnDjBE088seE7ZrOZ7du3C4Xrtxomk4nOzk7q6+vfVMRXJpOxa9cuamtrX3f0XspvOXr0qDhZqaur4/Dhw2+4PW81mpqahHDXm0WxWCQSifCnf/qnGI1GPvnJT3LnnXf+yvM1yuUyr732Gvv27cNqtQLXndovfvGLLC8vi5yjTCbDX/7lX1JTU/MbFS03Go28973v5dy5czdVK66ggncKKk5ABbctrku6pwkEAkSjUXbt2iUoLtlslsXFRQAh2iSTyYhGo/j9fpGAqdVqKZfLZLNZFhYWMJlMGwzdmZkZcrkcJpOJ+vp6nE4n2WwWi8VCPp+nWCzS3d3N0tISyWSShoYGrFarEFmS1IUzmYxQqJWS/zZzDjKZDPF4nFgsRqlUoru7m3w+z9LSklACDQQCGAwGampqMBgMFItFwuEwwWCQaDQqauhvdm2fz4fRaCSdTjM/P49SqaSqqopQKITRaKShoQG1Wr1GyCeVSgmaVCaTYXx8HJvNRm1trVAtbmtro6qqivn5eVG3XtIgeOGFFzAYDOzbtw+LxYLH46FUKmE2m1GpVBQKBSH01NnZSSqVIh6PUyqV6Onp2VBXPp/PMzMzg0ajoaGhQfSBJOjV1taGyWQilUoxOztLTU2NoMiYTCaam5u3nFOTk5OUSiUaGxuFsJOkCGo0GrFarej1ejHH5HK5qF0fi8WESJCkQ1EoFIhEIrhcLrRarTB+nE4n1dXV1NfXC0qIRCVQKBTEYjGcTqdQDdbr9YyNjQlnw2AwMDY2Rm9vL3K5XIgmyWSyDRWMisUiS0tL5HI50un0lk6pVPc/n89TKBSora0llUrh8/no7u6mUCjgcDhoaGigpaUFQKgh6/V6zGaz0BZIJBJCkK66unqDURqPx3G73eTzeQwGA5lMBqvVSn19Pfl8XijYlkolobbc1dVFIBCgrq4Oi8WCRqOhXC4TCoWEmJfFYsFsNgvnIRaLCTG3crmM3W4X+hkqlYpIJMKuXbvEfI1Go7hcLsrlMtu2bQMQCrQKhQKr1YrNZhNOWqlUIhAIMDc3x44dO5DL5fj9flKpFPv27RPq2tIa2r59O8vLyyiVStRqNZFIhImJCXp7e4lEIsjlcrHXAEIBt1QqodPpSCaTbNu2bc2c0el0dHV10dzcTHNzs3h2aa3Y7XaSySR6vV781uv1EolEUKlUtLS0YLfbAcTayWQyTE1NYTabxVhHo1F8Ph99fX243W7RJoPBwMzMDD/5yU9IJBJ0dXVhtVqpqakRgml79uxBr9czMzPDqVOn+PjHP87S0pJ45q6uLkwmE/F4HL/fT6FQoK6uTqyppqYmIcQlnZKZzWZqa2uxWCyUSiWCwSBOp1OobKvVarxeL8FgkI6ODrGvWCyWDY5qqVQilUoRCAQoFArYbDaqqqpIp9MMDw/T2dlJNpsV81XaQ6TxlU5hftNPPCv4zcJvjhtewd87SIaV9IIeHR0lFosRCoWYmZlhZWWFUqnE9PQ0fr+fWCzG8PAwCoWCy5cv4/P5RFnGixcvAtcpHdlsVojIDAwMEI1GhUE/Pj5OqVTi+eefF0a52+3m3LlzFItF5ubmWFpaEgasz+cjEAiQy+VYXl5mYmICmUzG2bNniUajmyqtzs/P43Q6yeVyTE5O4vV6yefz+P1+xsfHGR8fRy6Xc/nyZZaXl8lmswQCAcbHx4HrQmhbReyLxSLJZJLZ2VlKpRKLi4uMj48zOzuLTCbjtddeI5VKkUwmhXKwQqEgHo+LyHGxWGRlZYWhoSFhNM7MzOB2u3G73YRCIaEyurS0hFwuF30tRf7y+TzPPfccwWAQv99PIBAgmUzy8ssvC6PZ5/Ph9/s3PEMoFOLSpUsUCgXC4TButxu/308kEhHGwdWrV1lcXBT9/sorr5DJZHA6nczPzxOJRDZcN5FIMDg4SDKZpFgssri4iMPhIJfL0d/fT7lcZmxsjLm5OeLxOOPj40ItNBQKEQqFKBaLjI6Obkq1mpiYYHFxkUQiQTweZ2xsbEulXalkay6XIx6Pc+nSJWEYT09P43A4BHVIMu5XVlaEA7baEInH48zOzrK8vIxMJiOZTG4QtQNEv8/OziKXy3G5XKTTaUKhEFNTU3g8HsrlMv39/YLi5vf7mZiYEIrXkuo1IOat0+lkeHh4w/0kTYNf/vKXZDIZcrmcqJEPCMXcdDrNysoKZ86cIRaLATA6OsrU1BS5XI5UKkV/f79wcO12+wa1Vum5pJOB8+fPMzExIZS9r127Rj6fZ2FhgdnZWeF8jI6OMjo6KtS7C4UCHo9nzfhKfPyzZ88SCAQolUrE43FeeeUVyuUyMzMzBINBcrmcUPrNZDIsLS3h9/vJ5XJMTEwwNjZGJpNhcXGRkZERyuUykUiEa9euCSdneHh4wwmOVLe+ubmZzs5ObDbbGidPmhdzc3PMzs5y9uxZyuUysViMsbExhoaGyOVyXLlyhbm5OVKpFB6Ph/PnzzM3N0d/fz/Xrl0T6/TcuXNEo1FCoRCDg4NMTEyQzWZxu91ijvv9fuLxOHK5nNbWVpqamuju7qatrU04Xrlcjunpaaanp5mfn+ell14S+SRLS0tcuXKFp59+momJCSYnJ4Vi+dWrV3G5XDidTl577TWxRn0+H6dOncLhcHD16lWuXbsm5vSFCxd48cUXxdydn5/fMB/z+TxDQ0Ni7S8sLAiV5WvXrjE6OirW+cWLFymXy4TDYaFkDQhV5QoquF1QcQIquG2xsrLC4uKiUJZ8+umn8Xg82O12Xn75ZVQqFW1tbWKTjkajDAwM0NraygsvvIDdbicWi+H1enn88cfp7OzEZLpexFmKhP7oRz9CLpfT0NBAJpPh9OnTtLW18cwzzxCJRNDpdCQSCX70ox9RV1dHIBDA4XAQCARQKBREIhG8Xq8wUCYnJ2lubuapp54SRtJ6TE9P43a7MRgMzM3NCWMxl8vh8XgYGRlh27ZtnDp1SjhBExMTjI6O0tnZKaLPm0GlUqHVahkYGECpVJJMJoWB0NPTwy9/+UsR7RsfH2dycpKenh6R5ArXjQ6j0cjAwAD5fF4IarlcLmZmZgiHwyJKmkgk2L17N0ajkd7eXhobGzEYDDQ2NvLTn/6UfD5POp2mUChQVVXFK6+8AlxXI83lciLBbrXa7OLiIo8++iidnZ3odDq8Xi8ul4tQKMT8/LwYn5GREZRKJVqtlqeffhqr1Uo8HmdhYYGlpaUNfeP3+3nkkUewWq00NTUxOzvL4OAguVyOS5cu0dDQwJUrVxgaGsLv93PhwgU0Go04FcjlclRXV3Pq1Kk14ypFdoPBIG63m3g8TjabxefzbUmJkJRuq6ur0Wq1PPHEE4RCIfR6PS6XC4fDgUqlIhwOs7S0JP772rVrG4wQn88nnKuOjg6h9LsehUKBUCjExMQEer2eeDwunJyVlRXcbjc2m43p6WkRwZWM8ZaWFrEeJSwvL9PU1ITP5+OFF17YcD+9Xk9NTQ2/+MUvsFqtNDc3s7CwwE9/+lNx+uLz+ZDJZBQKBS5duoRMJqO3t5f+/n5ee+010a6XXnoJs9lMOp1menpaOAtwnaaRSqUYHR2lVCrR0tLC+fPnmZmZQavVotVqeemll0in05w/f55Lly5RVVVFc3MzL774IqdPn2ZpaQmdTodOpyMYDK5x3uRyOdXV1QwNDREKhTAYDBiNRl555RVKpRLDw8MEAgHUarVQoTUajSwuLrK0tIRSqSQYDDIwMEBNTQ1+v18EFdxuN0NDQ0K1+cqVK7S1tb0uGo1kvAeDQex2Ow888AClUgmlUsn8/DxjY2PkcjkGBgZIJpPk83nGx8d57LHHyOfzzM7O8vLLL4v98tKlSwQCAeRyOVevXuXq1atCSE6hUKDRaNYkpMN1R9Tr9WK325mfn6e3t5dCoYDT6cTr9eL1evnud79LMpkUjurIyAjf+c53cLvdBINBstksdrudF154gXA4TDwe5+LFiywuLhKLxbh69So//elPhQN26tQpUqkUSqWSwcFBfvzjH3P16lXS6bQw2lcjl8tx8eJFLBYLfr+fyclJ7HY7Wq1W5JVI4mLPP/885XKZqakpRkdHSSaTtLa2/kpzvyqo4K1AhQ5UwW2Lru4uWhqNjI2NodVqxZH3wsICFy5c4N/8m38DwD/6R/8IuG5YfuQjH+Hs2bPA9aPt6elpnE6nUIKtq6vDbDYjl8spFoucOnWK973vfRQKBVZWVjAYDOh0OmpqamhubqahoYFwOIzJZEKn01FVVUWhUCAajdLc3CzoJADbtm1Dr9dz7tw5VCoVwWCQpqamDdSN++67j6WlJQYHB1Eqldjtdg4cOIBOp6O+vl4cY6tUKorFIrOzs7zwwgt85jOfEc/g9/s3fSGpVKo14l8mk4mWlhZaWlrENaXIt8Ph4Ld/+7cBaG5uFlF5hUJBdXW1aLNOp8NoNCKXy+nr6+OP/uiP0Gq13HHHHXz0ox8VRrz0b0n5tba2lqamJpqamoDrUbTdu3fjcDhIJpO0tbXR09Ozpv3JZJKVlRXC4bCgGEhGbyqVore3l+HhYYLBIPl8HpVKRU1NDR0dHRgMBqxWK9lslpWVlQ19E4lEOHPmDP/gH/wDwuEwuVwOq9WKTqfjU5/6FP39/eKUJZVKsWPHDj7zmc9w4sQJPvKRj3Do0CEKhYJQsJYgPftnPvMZvvzlL2Oz2Th27Bj33nsvWq12S+68NH8SiQRtbW2cPn2avr4+QfWQy+VifsnlcrRa7abq1m63m+eff55/8S/+BQB1dXWbOokajYZcLseFCxc4deoUf/iHf4harUaj0QjuukKhwGQyodFoCAQCPPPMM/ze7/0earWaj33sY8B1+grAvn37MJvNomrKeiiVSuEQWiwWDAYDSqWSUChEMBjEarUKo0utVmMymeju7kYmk9HR0YHf7+fUqVPE43HUajVzc3Nks1mMRiNer3dN/2s0GoxGo6DOVFVV0djYSFNTkxCDKxaL4uTtyJEjrKysoNPp6O7u5sqVK3z961/nrrvu4l/+y3+5pnKYVGnJaDSiVCpRKpXCYYDryrOPPvoomUyGD3zgA5hMJmw2m6gYJWkDNDQ0oNPpREWkTCZDNptFr9ej1WrJ5XKUSiXBt78RVjuC3d3dTExM4Ha7cTqdjI6OUi6X6enpoa+vD6/XK67927/922SzWRKJBNXV1Xz6058G4F/9q39FW1sbhw8fpq2tjXK5zM6dO6mqqhJ0wvvvv5///b//N8ePH2fnzp0AInBw7tw5xsbG2L59O+9973t5z3veQ7lcprOzk4GBAYaHh4UC9b59+9ixYwfBYJBgMMgf/uEfijWSyWTo6uri0qVL1NbW8n/9X/8XfX19+Hw+Hn/8cRoaGoSzsrKywuTkJCdOnKC3t5fdu3dz4sQJjh49ummf6fV6fv/3f184Q1Ki/+HDh7HZbNTU1GCz2QgGgyiVSjKZDI8//jj33HMPPT09qFQqWltbcTgcNx2fCip4p6DiBFRw2+L0qdOoHGN8+MMfFrzqUChEMplEq9VSKBREtDsejzM9Pc2zzz7L//yf/1Mc50rGiUR1WA2ZTCYSPSVjQYqgqtVqEY1bz8FeT8eA69HYqakppqam+MIXvsCrr75KPp8nHo8LA0XCd7/7XWF4KhQKXC4XgUCARCKxodxkuVxGpVKh1+vx+Xzs3r17TbnAW4FCoVhDHyiXy4LPvry8TF9f34Yyn6uTNTOZDMlkkpqaGpaWlnjooYeIRCJcuXKFb3/723zlK18Rv1teXiYej9PW1iYcBwl6vZ4/+IM/4MEHH+To0aPCOVgNtVotIqoSUqkUCwsLTExMkE6n+cxnPsNPf/pTEokEwWBQ/G41NusfpVKJzWbj4MGDIqk7mUxy7do1vve97/HlL3+ZmZkZVCoV6XQatVrNK6+8wqVLl5ienmZlZYX77rtvy362Wq1otVqmpqawWCzcddddt5Q8K7W1qqoKrVYr+qxUKhGNRgV3fCtITkIymRROwmbPH4/Hqa+v58tf/jI6nY4///M/p7q6GrPZvKb/EokE2WxW9JdEfZNOLyQHQ1ojr2c+SvkwN0tqlSLDNTU16HQ60uk0e/fuFbkfsViMkZGRLX+vVqvXlOaUjFW9Xk9LS4tI6u7t7cXtdrN3717+xb/4F1y+fJkHH3yQP/iDP6C6unrDNaXnlXJc4HqxgXvvvZd4PM6TTz7JxYsXqamp2bRN6+eDlF/k9Xppbm7mz//8z2/cgf8H0WiUhYUFCoUCjz32GMePH+ef/tN/SrFY5Atf+IK4z6FDh5iamuLhhx+mqqoKuVyOTqejWCwKpz8ej69xGqX5l0qlSKfTwtmBvytPOjY2htvt5n3vex8Av/Vbv8Xx48dFzkS5XOaZZ57B6XRy9OhRPvvZz/LQQw+tmSs2m41Dhw6teS4pn+XLX/4y8Xicv/iLvyASibBnzx4aGho4cOAAx44dI51OUy6X1zhMu3bt2jIXCK4HAf74j/+YBx54QJzU5HI54VCuL/tZLpcxm80if8tms1WoQBXcdqg4ARXctpASuTweD263G7VaTTQapb29nQ9/+MM8+uijHD58mGQyiVqtFjz1+fl5FAoFdrsdtVrN/v37GRsbY2Zmhkwmw7Vr11hcXMTtdvO5z32Oixcv0traislkIpfLoVQqWVpaYmFhQeQiLCws4HK5GB8fFxG85uZmRkdHCQQC6HQ6we+en59HrVYzNjaG2WxeY8RJRlQ0GmVpaYlEIoHD4WDbtm04HA6uXbuGz+dj27ZteDwexsfHOXLkCB/84Ac5ffo0nZ2djI+PC05xLBbDZDKJl34oFOLKlSvY7XaWl5eZmZnB5/MRCoVoamrC4/EwNDREZ2cnVquV0dFROjo6GB0dZWRkhHw+z/Hjx2loaCCdTrOwsIDD4cBut+N2u9m+fTs+n4+6ujpqa2tF1M1isTA9PU1vby9arZbh4WGWlpaYnJxEo9Fgs9mE0m08HqelpWVT41alUtHU1MSJEyd49dVXqampEVSYXC5HJBJhcnJSfDY8PIzf7xfjMz09zeLiIsFgkLvvvlskgwI0Njby+7//+zz55JPs2LFD1DYvFApkMhlhVEUiEeLxOPF4HLPZjFarpaurC6VSycTEBE6nU1B2RkZGRHlEq9XKvffey+LiItFo9Ib14VtaWpifnyedThONRpHJZBw9ehSNRoNCoWBlZYXZ2Vk8Hg8rKyvU1dWxtLTE4uIig4OD6HQ6HA4HCwsLHDhwgM9+9rM899xz7Nu3j5mZGSKRCPl8nj179oh7ZjIZ5ufnGRoa4v777+eOO+6gtrYWo9FIe3s7Y2Nj1NXVCR50Y2MjH//4x/nlL38pTlikpGCv18uVK1eora3FbrfjcrmYn5+ns7NzjaErJfXOzs6SSCRQKBS8973vpVQqMT4+js/nE/NA4mwrlUpyuRytra0cO3aMfD7PxMQEMzMzgl5jNpsZGxvD6/ViNBpxu924XC4GBwfRaDQsLi5SXV0t6ByLi4usrKxw55134vV6eeaZZ9i5cyepVIorV65gsVjo7e2lqqqKvXv3blqxaN++faysrHD16lXcbjfRaJSZmRmee+45urq6aGpqorOzk87OTs6dO8fk5CSZTAaPx8PY2Bh+v5+GhgbcbjcLCwsMDAywf/9+Ll++TLlcprq6mubmZj7+8Y9jNptFPxaLReLxOC+++CIWi4XTp0+jUCgIh8N88IMf5NChQ0xMTDA8PEypVCIUCvGd73yHz3zmM9TW1oqcjX/2z/6ZcI46Oztpb2/nz/7sz0gkEhw/fpwDBw5gsVg4ePAgDzzwABaLhStXo5+jKQABAABJREFUrtDc3Ex/fz+HDh2iqamJn/70p2g0GpqbmykWizz33HN4vV46OztFAna5XGbHjh0MDg5y8uRJzp49K05hkskkExMTIh9LoVDw+7//++h0OnH6Mz4+LqibRqORpqYm/uE//Ic8+OCDTExMkEwm2blzJ7/1W7/FCy+8wOnTp5menmbv3r0cO3aM48ePrxk7KVdEymEJh8PiNHV5eZnx8XE8Ho9IzJZyFj760Y8yMDDA5OQkuVyOkZERRkZGWFlZEYnrFVTwTkbFCajgtkV3dzd1NRphJHzkIx+hs7MTi8VCZ2cnHo9HHKVrNBoMBgMf+tCH0Ol03HPPPZRKJerr62lubub+++/HYDCg1+u544472LZtG2azmbvuuktUhZFoHjKZjN/7vd+jq6tLnABUV1djMBg4fvw4+XxeVHO57777MBgMtLS0iGoZBoOB+++/X+QarI7Cy2Qy7r77bvL5PFarlb6+PqxWK+3t7cJh0Ov1GAwGfud3foeWlhbhoCSTSUFf0Ov1ABuqwJhMJnbt2oXBYMBkMnHo0CFRLcNkMvHZz36W3t5e8QJXKpVoNBp27tyJyWSisbFRROPf//73U1tbi1qtFhSjpqYmYYQpFApRVeSjH/2ooLdI/fh7v/d7NDc3o1arhYiZRqOhr69PUCPWQy6XU19fz3ve8x5xH7VaLSrTxONxrFYrH/zgBzEajaJ6iMFgoKqqiv3799Pe3o7FYtnAqzabzdx5552iepJE7ZDabzKZOHr0qDiFyGQywgmQDLJsNss/+Sf/REQFJXqVJOBVU1ODUqkUBsxmkMlkfPjDH+b/Z++9w+yqzkP99/R+zpxzpveuOuqooEK1IbjXJHbqTe5NfOOb3Hud3CT+OYlJHNeEuJcEG8cGg8FgQCCahLqQNIPKdE3v7Zwzp/f2+0PeKzOjkZAAG2St93l4gDN7r73q3t+31lfKy8uFzfrOnTtFH2/cuJFoNIrD4eDWW28ll8tRVFTE5s2bKSkpEYrRRz7yEZqbm6moqBC25mazmZtuuol4PH6JkmUymSgrKyOVSmE2m9m1axdFRUXodDoaGhpQq9U4HA7uueceETGmrKyMrVu3YrPZsFqt6HQ6tFqtGFtlTTQ1NV12d1+v12OxWDAYDNhsNvR6PUajkdtuuw2TyURxcTHT09Oo1WpcLhe5XI5t27bhcrlwOBzk83l2794t6qqUd/vtt4s2KScgbrcbnU7HBz7wAcrKynC73axcuVJEXLLb7ZSVlREOhzGZTJjNZtasWYNer8fpdIpoRMsJdzt37kSj0Qi7+N/93d/F4XCwceNGCgoKcLlcuN1uXC4XjY2NGI1GXC4XTqeTd7zjHcLM8KabbqKqqori4mJaW1vZtGmTiGSUy+V4+eWXefe73y3WtnI6+L73vQ+dTifWTSqVEmYqhYWFRKNR8vk89fX1VFdXC9t95f24Zs0aUf+amhruvPNORkZGyGQybNu2Tazt9evXk0wmMRgMVFdXU1BQIE5F3vWud4lTsqKiItRqNbfccguRSISamppFCmBZWRl79uwRSm5TUxNarZby8nIx1ul0murqaqEw19bWcvfddwuzLr1eT3NzMyaTiebmZu688040Gg2ZTIaKigocDgfl5eV8+MMfxmg0UlpauuwpDFw8BfrYxz4mTuxcLhepVIqSkhLuuOMOjEYjVVVVZDIZfvM3f5OysjIqKyvFKZLdbmft2rWYzWaxqSGRvN1R5eX5leQ640wYNr8Kr26G9eYs6XR60UdZpVItyo660HRHMQFaaN6gXJ9IJDAYDCLs50IhVHH0vNrMr5dD2W1a+vylLMz+eqXrFqK0QavVCpOkNyPrsZJ5NZPJCPtsBUUgVvpQEeiz2azwMVjYpstlSFVCQDqdTvr6+lixYsUVbZ+V0IdqtVrs5ivZahXzF4VrzTYLiBMfpa7KvNHpdIvKU667UlbbXC5HMplkdnYWv9+Py+WiqKhIKGpXQnHIXjrvFEdxZVf1tTKULmyXwtKM0gs/BYqZx8KwrEqIWGUeLOwfxUzjWnIbpNNpJicn+cQnPsEDDzwgwm4unR+pVIpTp07xzW9+k+9+97sYjcZLzHng4lx8PRmtl6KYpKRSKfFeyWazwpn2Shl5lYyxGo2GWCyG2WxGpVIJU6lrWY+pVIrvfOc73HPPPbjdbhGZ6JlnnuGv/uqvrmmXeaGZjTJPvF6vCAxw6NAhPvvZz15ySqOchl3N7wpKluyrXXfKu+pqhOaFczSbzS46yVv4+9J3wNWihIteaJp1Ne3IZDLC/DSVSi0y24PF36xNl9f/JZJfOfIkQHJdo+xcLUV5cS/96C61Z1/4uyL0L/f3Nyr8K6jV6qv6eC/chb5aFrbhzWJhmcvVZ7m2XG5MrtSeiYkJ9u3bx4YNG2hpaVnWwXVpvZaOieKg+UZQ5s3Sdl1u3lzNWGYyGSYnJ3nuuedYvXq1OM25Gi7XHo1Gc01jfbl2LXcNcEn9FvbtcjkGXs+8CwaDdHd3C5MYxeF4KYFAAI/HQywW48yZM8KMaylvlumFIsAufHdc7bxaOCcXnny8nveHWq1m1apVDA0NMTc3J3xAdu3adc27zMsJ5UePHqWjo4NMJsP69euv6p4r/b6w3tfCtVy/8LlXWhuvl6XjfrUsfF+/0XeQRPKrRJ4ESK475K7Krx/LvYbeSMbZtxO/zm17Iyj9ouwqw/L9crXX/brxWp/mN9oHSm6JbDYrooNJfjnIb5bk7YpUWSUSyVvOr7MA8uvctjfC1Qr0N5Lgv5ClJjhLf3uj6HQ6iouL3/RyJRLJ9YNUAiQ3FIpt83K2pL+MMvP5PC+++CK5XI7a2loRP1vh/PnzhEIhdu/efdmye3t7aWtrY/Xq1ZeEzPtloUTJOHLkCDt37qS+vp7Tp09jNBrZtGmTsA1XbKTfKIpj8Jt9lK74J7xZ9VxIPp9namqKJ598kh07drBp06YrXjs9Pc1TTz3Fpk2b2LZt25tal18WV/LjWMrY2JjITPyxj33sitcqybZej+nGiRMnxHqzWCzLmrJcDYqPgzLn+vr66OjowGazidCWV0LJlj06OsqePXuu+fmnTp3C6/XidDq5+eabr3jtmzl3F67dt4PpyutZ+8p62rt3L+vXr2f79u1vqA6Dg4McPXqUlStXMjU1RSwWw+l0YrPZGB8f5+677+bcuXMkk0lKS0uvuNYlkusJmTFYcsOQTqcJBoN4vV4R0eGNkkgkCAQCIh79coRCIfr6+piamlr2b/Pz81d8Ri6X4+zZs4yNjb3h+l4L0WiUgYEBZmZmRGjBYDAo/j40NLQoXv8bQQmF+majhDH9ZdLa2rrs2C4ln8/z6quvMjk5+Uutz5vJzMyMSP71WuTzeWZnZzl9+vRrXuvxeJidnX1ddTp9+jTz8/PL5uO4Fvx+/6KxyOfzXLhwgZ6enqu6P5fLEY/Hl008dzVEIhEmJibo7+9/Xfe/EYaHh5dN4ParJhKJ4Pf7F71XrpZ8Ps+ZM2eWzf59LWQyGSKRCDMzM+TzeUZGRmhvb2diYkLke/B4PPj9foaGhmQyMMmvFW/9NoBE8gbIZrOLIvcou0rKzpKyS69WqwmHw/T29pLNZrFarRgMBnGtEsJR2Y1SdpAVJ1cl+owS3UeJSuPxeBgdHQUuJoNaLuHPhg0b8Pl8xONxkZlTebYSvlJBiQoE/xVxZ/Xq1RiNRtHWbDYrnCCX2yFMp9NCOFrYB7lcTkSESSQS4r+V5yyMRKMkgmpsbCSVSpHNZqmoqMBoNIrIPC+++CLve9/7KC0tRaVSiXobDAZR1nIOvEofKvVXqVRMTk5y9OhRKioqRCjEhdFMVCqVGKsrtUGJzqJkU56enubAgQNUVVWJyE/5fF5Et1EiHynlZzIZDAbDopMd5XflHrVaLdpQVFQkxv1yXO7ahX2uZMZVov0sTLqlzEGlvUr0p4VRphbOyUwmg06nWxQtSXHmXfpMpR8XRkFSxjCRSNDW1iYyLStze7lIMel0mrKyMsrKyshkMqIc5VnK+oSLyuX58+fJ5XK43W7xezabFXNI+W3ps9LpNN3d3SJuvUajEZF3lPYvXAPKGC49zchkMvT29jI+Pk5xcTE6nY7m5mYcDgepVIp0Ok0mk1nkJKr0udKfSvbk6upq4KLCuTBK1HKRhJQxyWaz1NTUEI1GmZ6eFv2l1Ft5hvI+WJggTmmL0ldK3ynze+E7S3nWwr6IRCK8/PLLvO9976OoqAiVSiWiXC2MgKT0t1IXZd5ns1kymYyIuqbMVeUZC9+bC98pSxNt5XI5RkZGCAQCmEwmbDbbonmr9MnCOa60Hy6GI1bmpVIH5VnKu2JhGZc7TUmn0zgcDm655Ra2b9/O+Pi4yNK9a9cuVqxYweTkJKtXryYej1/yHlfeEUpfKxGqpImV5HpAKgGS65Z8Pi+SdeXzebZt24bP52Nubo5YLEZNTQ3JZJLp6WkcDgder5fvf//7bN26FaPRiN1uJxgMMjc3x9atW5menqapqUlky5yenqa8vJzq6mq0Wi3JZJL5+XkuXLiA2+2msLCQI0eO8NJLL7FhwwasVisrV668bHSJ+fl5Ojo6CIfD7NmzB4/Hw/T09KIP3sTEhBAKrFYrgUCAnTt3AojkQ1NTU9xyyy3LRmnJ5/MMDw8TCoXQ6/XU1taSSCQYHx/H7/fjdDpZs2YN+/fvp7i4mJUrV2Kz2YjFYiKB2Pbt2y+JYz8zM8P09LSInT0wMMCPf/xjDAYDmzZtwmKxMD4+DsCePXsYGxvD5/NhNBrZuHHjovpFIhE6OjrQ6XQiM3FraysPPvggFRUVrF27Fq/XSywWQ6PRiLj3Pp+PYDCI3W5n3bp17N+/n6KiIlauXClyBLz66qtYLBZWrVrF5OQkhw4d4oknnqC6upqdO3fS29tLJBKhqKiI+vp6nnvuOdasWYPZbCYYDDI4OChyQ1RUVGAwGJidnWV4eJji4mLq6uqwWCxCkDWbzVc8Dcnn88Tjcc6ePYvZbCaRSIjfc7mcSDhntVopKiqiqKgIuLhLPTAwgEqloqioiKqqKl566SVKSkqorKwkEonQ1dXFli1byGQydHV14Xa7KS8vZ3BwkPXr1xONRpmamkKv19PS0iIE/q6uLiKRCA6Hgw0bNvDSSy9RVlYmwhumUil27drF8ePH2bt3LxaLBa1Wy/bt2xfNbWXOxmIx2tvbsdlsi3bFM5kMIyMjeDweNBoNN910EwA/+tGP6O3tpaCgAJvNxs6dO8lkMoyNjYkstdu2bbtEiMpkMiKB2NmzZykoKKC2tlYkf3M6nZSUlKBSqejs7CSbzVJcXCzyWCyMDz8xMcHBgwdpa2ujoKCAtWvXUlZWJtozPDzM0NAQe/bsEQr4/Pw87e3tGI1GNm/ejNfrZXJyUmSnPXDggMibAdDU1LRIwVfGXEluGIvFiEQii9qnjI3dbmfVqlUMDg4yPT0t1mMwGMRms1FaWsr4+LgIhTk6Osptt91Gb28vRUVFlJeXY7PZmJqaYnp6mlgsRmlpKVarlR/96Ef09fWJZH46nY6TJ0/S2NhINBqlqqoKu91OIpHg7NmzGI1G8X5LJBKMjo4yNjbG5s2bcTgcBAIB+vv7iUajVFdXMzMzQ3l5OaWlpQwNDeH1etmxY8eikLNKW376058SCoVYu3YtOp2OlpYWwuEwc3NzBAIBVCqVMIHs7+8nGAyi1WoxGo2sWbNGlBWJROjv72d+fp7t27fj9Xrx+/2k02mR4PBKpmdOp3PZkMR6vV5ki1dOTsLhMF1dXfj9fnbv3i2y0s/OzjI6OkpJSQmNjY2LsshLJG9XpDmQ5Lrl2PFj/PznP6empoZNmzbxve99j0gkQjwe59ChQyLrZD6fp6ioiIaGBjZs2MCWLVtYu3Yt9fX1BAIBnnjiCZG1U8kQeuDAATZt2sQ//dM/MTk5STgcprW1la9//evs2rWLY8eO4fV6KSwsZOPGjWzZsoU1a9ZcNkxhb28vfr+fwsJCTp8+TUdHB1arVdiiptNp+vr6eOqpp8Qu7NNPP82qVatQq9VMTU3h9/tFiNH7779/kQABF4WMhx56iFdeeQW1Wo3NZuPee+9leHiY6upq2tvbeeGFF0QinmeeeYbZ2Vn6+/s5cOAAcPFj+MADD9Da2rqo7JKSEs6cOcOZM2fQarUiodiuXbtYv349paWlaLVann/+eSEozM3N4XK5FpWjZEI1mUxs2rSJ8fFxDAYD9fX11NbWcuedd1JVVUVzczMXLlzgG9/4Blqtls7OTioqKujq6uK5554TbVCykR49epT77ruPlpYWVCoVx44dQ61Wc9NNN+Fyubjjjjuw2+3Y7XY8Hg/79+/HYrEwOTlJb28vyWQStVrNI488wuTkJJ2dnQwPD9PW1sZPfvITbrnlFl566SVGRkbYt28f3/ve92hqaqK5uRmv13vJWIg5euwY3/jGN8S1fr+fcDhMIBDg+PHjnDx5kjVr1jA9Pc2JEyfo6OggFApx7733UlhYSDqd5uTJk/h8PgoKCnjxxReZm5sjk8kwOjpKV1cXZWVlvPLKKxw8eJC5uTm2bNnCH/zBHzA5OYnJZMLj8fDQQw+Rz+f59Kc/jVarpaamBr/fL7LM/vu//ztDQ0NYrVZaW1vp7Oxkx44d1NTU0NTUxM6dOy9RbhUTsb/927+lqamJ4uJiofQAPP3000IRDIVCfOUrXwHgpptuYt26dbS0tAjfiL179zI3N4fBYCAWi/HlL3/5EpM9rVbLunXrxJqzWCycOHGCU6dOsXnzZnp6ejh58iRTU1PU1tbyN3/zN8TjcSYmJoSCqlBVVUVtbS1NTU3cfvvtVFRUiEzMiiJis9n48Y9/zNTUFPv37+ff//3fufnmm8lkMhw9epRkMkk6nebHP/4xcDEc8VNPPcWhQ4fIZrOXmO9FIhHOnz/Po48+KhKQRaNRsXY//elPYzab2bBhA2q1mnvvvZfa2lruv/9+vF4ver2erq4ufD4fbreb4eFhkskkdrudn/3sZ3R2drJu3TpeeeUVHnzwQeLxOD/5yU9EAqtkMolOpxO72zt27KC8vFycENx3330kEgk8Hg979+7lq1/9Kjt37iSbzXLixAnOnj1LX18fJ0+eZPfu3fz93/89ra2tFBQUUFRUxN/93d+Ry+Uwm8289NJLfP3rX6eqqopz587R3t6O3+9f1B9Op5MVK1awceNGNm/ezOrVqwF46KGHmJubw2azcfLkSY4dO8aBAwcIBoOUlZXR2NhId3f3IlOwQCDAiRMnKCgoIJVKCSF95cqVjI+PX9FsTNkQUpLxLYeyETQ8PMzExAQVFRW0trbS3t7O+Pg4R48e5amnnmL37t0899xzTExMvGmmkhLJLxN5EiC5bhkbGyN+/iybN28mFosBFyNerFu3DpPJxE9/+lNuvfVWVqxYgdvtZnp6Gq1WK8xdlCN9jUZDbW0tZWVlOBwOsYtz7tw5crkcPp+PmZkZJicnKSkpQavV8r73vQ+Hw0EoFFpU1uUoLi4WWYRtNhsej4f6+np0Op04AlcSLimKRCqVErtTFouFwsJCSktLSafTTE1NMTo6isfjwefzYTAY2L59O0888QT/83/+T+rq6ojH4xQWFpLP5zGbzcLUSRGglSN8xQRndHQUrVbL0NAQq1atEjujcNEkRek35f81Go1IEKVkIv7e975HOp0WmVCXZqV1Op2Mj4/zjW98g9WrV3PzzTdTUFDA7OzsokRkZrMZq9UqshQrAvzCLKkul4tsNitsdhVBeeXKlSLrbV9f36LcDErmZ8Xh1Wazid1URRiqra2lvLycvr4+Lly4QDabpa+vD4fDwdzcHMPDw3g8HpEVtKCgYFnlLxqN4vF4RBI0jUaDw+HAYDAwNzfHc889x/vf/370ej3V1dWcO3eOvXv3snXrVkpKSjCZTLS0tNDU1ITD4cDpdAoTB71ej9VqFeYbyolJbW2tMMdSyvB6vUxNTYlTppGRESorK8lms/j9fsrLyyksLMThcGCxWLBarczNzdHc3LxonJfuaoZCIV599VXKysowGAwYjUYKCgrEdTt27GBsbIxwOEwoFBK278p6WeiYuvDacDhMX1/fsutIo9EIk6iRkRGOHDnC3XffjVarpbGxkba2Nqanp/nQhz6ExWKhpKSE+vr6S9amMt7KvFbmlNFoxOl0UlZWRjabZWZmhomJCSYnJ5mcnBT+JcFgUGQOVsxcHA4HbrebyspKVqxYcUn8+7m5OV544QW2bduGwWDA6XSKE8rJyUmxBsxmMxqNhunpaUKhEBs3biSZTIrTjldffZXGxkahEEWjUWHOZLFYSKVS4n0I8JnPfIbGxkZuuukmzGazeFcppm1arVZk/W1ubiaRSJBIJBa1NxQKUVpaSklJCeXl5fT09ODxeETCOiWLeWlpKX6/H7PZTDgcxmKxiNMC5RRM6WtlLig5KJQxuv322wmFQgwNDZHL5RgcHGT79u08/vjj+Hw+Ghsb2bFjhzBZamtrIxwOU19fL05ix8fH6e7u5sSJE2zduvWKO/LLRWFa+nflH2VTQ8lQ7vP5mJiYYGJignQ6TX9/PwUFBeLU9Y0ma5RIftnIkwDJdUsmfdEGtLCwkIKCAjZu3CgiOlRUVGC32+nv77/kQw8XHROV3V+9Xo/dbqekpIRkMsnMzIwQKC0WC7FYjFAoRDweF4JiRUXFJWXOzs4ustNdiNlsxmQyibokk0lhQ6uUaTKZhKmJzWZjx44dQvjS6/UYjUaMRuMie3i9Xo/JZBIZKr1eLwaDQRy9K8KpYv+90OZcwePx0N/fj9lspri4mHQ6LU5UFBQ75IXClPJhjEQihEIhCgoKqKmpEeZZRUVFl3wE8/k8FouF7du343a76evrE47RSj8qO90Gg0EI7YWFhUIJUeqw0OY3k8mInU5FYVhqw644hC80o1poiqX0kTIXFBtpm82GzWZj06ZNInNrJBIRWWuvlK03kUgsulapfzqdJhAIiDqq1WrxmzLP4KJgWVRURD6fvySDrzKGytgoCqZiw200GoWQqsw3RSEsLi6mtraWuro69Ho9FosFg8Eg6rhwF1OxLVccJxf2XSwWW2THv1BZUBJRFRQUYLfbiUajhMNhcX8qlRIOvh0dHcI22+FwiGsXrqel9vXJZJJwOCzmuOI3EYlE0Gq1Yu4oZkcLWRh2VHFozmaz6HQ6TCYTJpNJrDNlnqnVahwOBzU1NdTV1eFwOIQvB1zcgLBarTgcDmw2GxaLZVF9l4650l/KWMZiMfFOyOVyhEIhVCoV27ZtIxAIMDo6Kk6yZmZmKC4uxu12C4WmoKBAzNlcLodGo6Guro5Vq1aRTqeZnZ3F6/UKv4VAICCUBb1eL8bJarWKOW2326murqauro5cLieEXWVzIh6Pk0wm0Wq14j1kMBjQ6/WL1ofiy7QUZUyz2axwFO/t7SUajS6aC5FIhMbGRlatWoXRaOT8+fOirxwOB0ajkcHBQYxGI6lUirq6OlpaWiguLqa9vV1seLzRtEhGo1EoaXq9nlQqRSKRQKVSiU2LzZs3i+zXEsnbHakESK5bnE4nlZWV6PV6XC6XOGKfnp5mcnKSrVu30tPTw9DQEPPz80IADQaDTExMEAwGhQ10KBQCLu7w9fb20tPTQ0VFhbDLVz5y8XiccDhMMBgkGo0KQTsQCIgP5FLC4TCJRIJkMimEFEWpSCaTxONxotEoBQUFJJNJBgcHicfj4uMdiUSETWo0GhX3ms1mGhoaWL9+PWvWrMFqtVJfX080GmV+fl4oLwqKEB2LxfD5fESjUZLJJP39/Rw7dgyLxYLNZkOr1RKJRISZSygUEvWPxWKi3RaLhUgkwtzcHF6vF41Gw65duzh58iTJZHJZG9twOEw+n+dDH/oQe/bsYWhoCJ/PJ/rX7/czPT1NIBAgmUySzWaJRCKLHPx0Ot2iNuTzeYxGIyaTifn5eVFnxUlYo9EQCoVElBu9Xk8mkyEajRIMBgkGg0QiEWHeEQqFyOVyuFwuiouLxQ53fX095eXlOJ1OdDodgUCASCQixlQx7VBQBMrlrs3n89TU1ODxeERfK2FkS0tLxZwIhUKLxjufz4syAoGAUBoWzqNoNEomkxFzVRk/k8mE2+3G4XBQUFBAaWkpDQ0Noq+UMiKRCMFgUAiS2WyWQCCA1+tdJETp9XqKiooIh8Oirspcj8fjPPfcc8TjcaxWKxaLRSipiuN3MBhkamqKXC7HCy+8QCQSueTahYKj4k+SSCSIRqMYDAbKysrweDzCJttgMFBUVCT6WOmL5VDmkt/vZ2pqilAoRDKZFDvpwWCQeDyOVqsVu/yK70Z9fT1Go5FYLCbWhtKPC+3HF2IymaisrGRqakoItuFwmHg8jtFoxGKxEI/HhXCuKCMtLS2EQiGmp6cpLCzEbDbj8/nEek4mkySTSVGm4ryaTCaxWCx88IMfxO12EwqFhBNuPB5nenqacDgs3n+KIq2cUrhcLtHeuro6EokEvb29eDwesS6UaGsL51woFCIWiwkBWZlPqVTqEiFcyTSt7Kjn83leeuklvF4vJSUl2Gw24vE4AwMDbNiwgXvuuYc1a9Zw7tw54aBbXl5OeXk5nZ2d9Pb2Mjs7S0VFBXv27GHPnj309PSQy+XweDyirsuRy+XEmCj+GguVVmWslHYpa8vhcOByuTCZTDidThoaGpbdAJFI3o5IVVVy3bJp8yZ0Lh179+5l8+bNIspJa2sr58+f51//9V9pa2vjkUceYffu3WzYsIFVq1Zx6NAhdu7cydzcnHDSO3r0KPfcc4/4SCUSCQYHBzGbzXR2dvLOd74Tu93O4OAg58+fJx6P09DQgNvtpqKigtOnT3PLLbcsu9N05swZBgcH0el0jI2N0dPTw8zMDPX19cLMqKOjg/Xr14vwig6Hg7KyMn7nd36H0dFRYc5x4cIFzp49K2JZKyYfcFFI+uQnP8m5c+dIJBKYzWYuXLjAXXfdBYDL5RJKxsDAgHAEVnayZmZmGB4eFo5uw8PDdHd3Mzs7y4oVK/B4PMzPz9PT08NNN93Ehg0b6OnpoaysjMrKSrRaLe94xzs4dOiQEJyWMj8/T2dnJwMDA7S0tLBr1y4qKyuJxWI0Nzdz6NAhamtrGRoaYmBgQNjsK86BTqeTcDjMwMCAaMP8/DxlZWVs3ryZQ4cOUV5ejtFoFGZOBQUFnD59mpUrV1JYWMjMzAyxWIy+vj7m5uaYmJhAp9PhcDiYnZ3l6NGjvOMd72DFihXCV6Ojo4NoNMqKFStYtWoVWq2WU6dO4XQ6mZ2dpbe3l6amJjZs2CDaqtfrWbFiBdFodNG1Fy5coL6+nt/+7d/mpz/9KVarld7eXpxOJ+9+97txOBw8//zz9Pf3Mzk5icFgoLGxkdLSUuFYqlKphLK7fv165ubmyGazwjFaMVuKx+PCmTabzXLzzTczMTFBOBwW5j9tbW0MDw9TX19PPp+np6eH6elpfuM3fgObzUY0GqWrq4sVK1Ys2tm22+1s3ryZ/fv3MzQ0RDabpbu7m6mpKUZGRoTy09/fz9zcHHa7nbm5OZqamkilUkxMTNDY2MjatWvR6/UEAgEGBgbwer3C9Kq8vFycuGUyGVG33t5eduzYwbve9S727t1LQUEB3d3drFq1ioaGBtrb25mbm6O3txeLxXKJbwpAWVkZMzMzHD16lNraWvr6+oTvQH9/P62trUxOTpJIJKioqCCRSHDs2DEKCwux2WzC/GN2dpaJiQnOnj1Lb28vKpUKj8dDRUXFJc/70Ic+xH/8x3/Q0NBAb28vnZ2dwtn19ttvZ3x8nKmpKZLJJPfccw9Wq1VsNGi1WlpaWggGg+KUJBwOMz09jdfrpbW1Fbfbzfj4OIlEggsXLvDkk09it9uFaV5jYyPZbJbx8XGmp6epqakhl8tx5swZEXSgvr6ehoYGvF4vR48epaioCJvNRiKRIJ/PC8dYu92O1+ulq6uLbDaLx+NheHiYCxcu0NvbSyqVEmY5FouFpqYmampqFu2QNzQ0cP78ec6fP8+2bduEqVsgEGBqakqEUVWU06qqKoqLi3nnO9/J1NSUcMZV/Av+6Z/+iT/8wz+kr68Pk8nExo0bueuuu9DpdDz77LOo1WrWrl27bL6VdDpNe3s7nZ2dTE1NYTKZqKioEDkcOjo6hFng+Pg4vb29zMzM8Hu/93vY7Xbh0xOJRK7oHyaRvJ1Q5d/o+ZhE8itGScHetinPRmte7I4q5hILs2suzbSZz+fFbpfyd+WoX0E5nk+lUiIk5sIQfcqurFLmwmsXPkthoenN5eqXTCb5t3/7N/7wD/8Qt9tNOp1mdHSUBx54gH/+538WH87l2rSwbcq/M5kMU1NTPProo+zZs4f169djNBrFbp/JZBI2u1qtlmw2K35XQhQu5HJ9qYQkVMIM5nI5uru7qaurWxSNZWFfLAy1utCmWgnxqXw8l2un0jalrpFIRPg7KGUuNLFSnqmENFxYD8XsRjERUnaol5r2XG7M0+m0UJh0Ot0in4mlc0m5NhaLCb8UxTRL2dVeaKakzGnFfn7h70rIViU8o3JCsLCvFrZj6XxbGM5RqcPlxlmp/0IzquVChMbjcRFmNx6PCwUwmUwKE6Ol62hhGNtcLifM8xQTGeXapfNbCRO58HdlHiw0V1vYB8vZhC+dh8v11dI+XTq/Fr4/lvbj0mcuXJ/K3FPCYVosFrGeAGGrr5S10PRLKWNh+Zcbb8XMyGg0LpqbygmLYhq0tK2Xa6+ylhTfjIXtVepwpfm09BnKfFRCeyq/KaFS9Xr9on5TzPeuNF4KSmQgJULTwmsvNx8W/nvptVd6jyt9qmy+LG2r8s16dTNsWmyZJpG8pciTAMl1y8UXNMKefqED18JrlqIoAJf7GCi/G43GRdcottvKS175Xa1WX1YBUP6+tPyl/63RaFi1ahXd3d3Y7XYymYwIQbfcB/dy/aGQzWYJBoP09/ej0+lYsWIFJpNJ2KSrVCrsdrtoh0ajWdSHyz1nuf9XPtxjY2M89thjbNq0ic2bN2O1Wi9bR6UfF8ZwV1joZ3G5sVnYBsUGXilzYTzwheOz1H9DGcel9VrOuftyY648S7E3v1x9F16r9MvC+afYji+dF0vn39I+X1rHhSz13Vj43wuViuX6een1Sr9caa0oc0dRWpRrF4ZJXLqOltb/ctcurddyY6TsmC+8/rWyESv1WJhz40rvjuXm12u9a5Y+T/n3chsWS8d2ubKVe5b2z3LjrSgnS+eXogAuvP5y762l7V24lpa2TSnztd4bS/+2UNlR/q0I/8uN6XLtX9puuNRH5VrGZzmu9B5X6rb0PSGRvN2RSoDkuuZqX/ALr7+aa19LQViuDm8ErVbLli1byOfzYke6rKzsik6nl0MR9CoqKvjYxz5GQUGBMBm6nJD/ej9cyj1Op5M9e/ZQWlqKxWK5rAB2JaHp9YzN1bThasfxap73WnW4lvoqXG58r/X3q+Vax/lqrl9Yp8spIK9V5utt1xsRuq7lvjdTuLvcCcXV9Ne1zNtrecZy9/8y3nXLPedqnn21dXg9ffVmIIV/yfWIVAIkkrcBarWaqqoq4FIzmNeDVqulsLCQ22677U2p32tht9vZunXrr+RZEolEIpFI3jhSCZBI3mbI3SSJRCKRSCS/bKQSIJG8zVjqmPZ67309979WeW9m2b9qXm+/vpHxuNbyr8TSZ7/ZY30tXC6p0uX+tvSa1yrvrZhbb2a9r9Q/11KP19MPyznwv5HylpbxRsr5ZfBG+loiudGReQIkkrcZFy5c4Pvf/z5/+Zd/eU335fN5Ojs7efLJJ/nmN7/J/fff/6bUR4l5Pjs7y49//GP+9E//VETvuJ545plnOH36NDMzM9d873Jx398snnjiCRGm89SpU7zvfe8jFAoxMTHBN77xDf76r/9aJPtaSDKZ5OWXX+YTn/jEZTPs/rJIJBKcOXOGT37yk7S1tS3Kj5HJZBgcHOTDH/4w586dExmA/+M//mPZOZPP5xkZGeEv//Ivuf/++3+pfX0l/H4/zz33HC+99BKpVIrjx4/zx3/8x/T09Fz2nsHBQf71X/+V7373u4sSrCnJvv73//7f7N27l8nJyauux8TEBCdOnODAgQOva41ls1mRGyGfz3Py5Ek+85nP8Mgjj1xzWQpKvpJgMLjsXHwricfj+P1+/H7/ogSHEonktZEnARLJ24zKykoKCwtf1wftxRdfZNu2bSKz5hshkUjg9Xrxer2sWbOGgoICXC6XCJt6vVFaWorT6RRO0ldLIpHg4MGDvOMd71gUWefNoqysDJfLhdPpFJFjlGRlTqcTj8ezKDyhgk6nY926dTzwwAOXzVT9y0LJMFtVVUU8Hl80HzQaDaWlpSJSikajwW63U1NTc9nylMRQSrjQtwKj0UhpaalwrF+9erXIGHw5HA4HLS0tnD59etF1arUak8lEQ0MD2Wx22SSCl8NsNlNYWEgikXhd7ejp6SGVSolY+CtXruSFF154Q8pVV1cXBw4cYGZmhve+973s3r37dZf1elGSd6VSKTGXIpEIe/fupbW1ldLSUlKpFBqNhve///2sXLlSnghIJK+BVAIk1y3JVBK/P0Y8HiebzVJUVIRerxfZHDOZjIiM4/f7CYfDImvqyMgIFotFZCedmJigrKxMxIO32WzkcjkmJyfRarXY7XYhPM7Pz5NIJLBYLJjN5mWFbSWm9dTUlEhEpQjPSkZKvV6P1WoVv2cyGebm5i4JZwks2uWy2WwiJKJCLpcTSXxWrlxJbW0tRUVFZLNZZmZmyOfzog6pVIqxsTHKyspIJBIYjUYcDsei8tLpNNPT0xw9ehSdTofb7aaoqAiz2Sz6eHZ2FpvNhtlsxmAwkMvl8Pl8Ila2cu38/LzYnbTZbCIE6tTUFGq1GpfLJWJ5L0TZeVRifScSCex2O2azWeRRKCsrE3kfHA4H+XyemZkZcrkcNptNhBDNZDKkUikRI1+Jnz4/P49er8dms2GxWMjlcszNzZHP5zGZTGg0GrxeL/v27aO+vp7CwkKsVitqtRqPx7MoVOnCkKOAyKSbTqcxm81EIhERRlCtVhMKhbDb7eJURavVYjabxTxTsiAvjJW+EI1GQ2FhIfl8nlAoxOzsLACFhYUi/ruSQVmtVlNSUoJWq100zvl8nmAwyNzcHFarFYPBQCwWw+VyYTabRabjfD5PVVUVY2NjqNVqCgoKRJ/H43Hm5uYwmUwYjUaR9ddkMqFWq0kkEiJWvUIwGCQWi6FSqcTaUkLYZjIZfD4fkUgEi8WC0WgUIW+dTqdYswvbkEqliEQipFIpdDodLpdL1N1oNGI0GsVYOp1OcrmcEPCdTidGo1Fks9br9ajVaqGUKc9Ip9MiU3hZWRl6vR6DwUBhYSHJZFJkQzabzTgcDrRaLU6nU8TOVzLqzs/PiyzUyyWUUjLSarVa0uk0Y2NjWK1WdDqdSIhYXFy8bDSliYkJTp8+TTwep7CwkNLSUgoKCtDpdKTTafx+P8FgkPLychE+Mx6Pi4zVpaWly0Yks9lsIjv40kzgiUSCQCBAMBiksLAQu90uxn3hvFLmUUFBAWazmXA4jN/vx2g0iizcMzMzItN2NpvF7/dTXl5OIpFgYGCAsbEx8b5X5rmS3dfhcGA2mzl9+jSTk5MikeLExIRQTBfOpXA4TFlZmcjIbjabsdvtJBIJPB4P2WwWg8EgxlOlUoms2Ol0msrKSlQqlUjUp2QH9/v9lJSUiHkkkbydkUqA5Lol4A8wGplGpVKJjwlcFL4CgQBqtZr5+Xlqa2tFZkmdTseePXvo6OjA5XJRUVGBxWLhlVdeYePGjUQiEcrLy9FoNMzOzoqPUjwex263o9Fo6O/vF8KUki13KfF4nOnpaWZnZ8XHW4nLPzY2hkp1MbmO2+3G7Xaj1+sZGRkhGAwKgVFJjBOJRBgdHRXJlDQaDRs3blz0PCXpVDAYxOPxEAqFsFgsBINB5ufnhZJgt9vR6XSivbFYjKKiIqxW66JkQplMhtnZWY4dO8batWtFFle4aG6gnBBMTk5SXV1NSUkJkUhkUd+4XC7Kysro6+vDbrfj8/morKxEr9czNjaGz+cjm82SSqUoLi4W8fYVotEoIyMj9Pf3c9NNNxEOh/H5fBQUFIgx27BhgxB4DAYDs7Ozor2hUAin00lpaalQsDKZDAaDAb1eT19fn0i8VV5eTklJCeFwmOHhYaEAaLVaIpEIp06d4r3vfa9IepXL5RgdHcVutxMOh6mrq7tECYhGowwODjIzM8O6devo6+tDp9NRVVWFXq+np6eHdevWMTMzg8FguKT9V0s6nSYUCuHxeITZRn19PXNzc0xPTxOJRNBqtSSTSWpray8J3xoKhTh27BjV1dVUVFQQCoWYm5tj1apV+P1+hoeHCQQCVFVViTm6YsUKkeAqEAjg8/nI5/NYLBbKysoW5YlIJBL4fD6RjXd+fp7p6Wmi0ShGoxGPx8Pq1avF9dlslkAgwOnTp1m7di1FRUVEo1G6u7vZsmXLsgrj+Pi4ENKVePaBQIC2tjZqa2uF0Hvu3DnWrVtHKBQSGXDn5uZYv349oVCI6enpZcdBEXRnZ2fx+/2k02lKS0uBi2tPUShzuRxGo5FkMrkoWZ6y/oaHh4Uy2tjYiNvtvuR0KRqNMjs7i0ajoa6ujrNnz+JyuSgoKCCfz+PxeLj99tsXxfBXmJ2dpbu7m2g0yubNm8W7JZPJCCF+cnKSTCZDVVWVOO2bnp5Go9GQSqUoLy+/pI8bGxupr68nnU6zbt26RX8LBAJ0dXXh9/txuVysXbsWq9WK3+/n9OnT1NXVUVxcTF9fH9lslvXr1wMXTxd8Ph9ms5nKykrq6+tF/1RVVZHP5zl37hy33nor8Xicrq4uurq6iMViWK1W1q1bR2lpKaWlpaxevZpbb72Vmpoaenp6CIVCeL1ezGYzZ86cwWg0EolEqKysxGAwMDU1RUdHBytXriQWi4l38Zo1a7hw4QJTU1MiiZzb7WbLli34fD7GxsaYnZ0lk8mQyWSoqKhgdHRUbAgUFxczOzsrFJvlcipIJG8npJoquW650HeB9vZ2mpqa0Gg0BAIB9u3bx6lTp7BarbS0tPDTn/6UgYEB4KJg+9JLLwmhvr+/n6mpKQwGAyMjIxw+fJjp6WnC4TC9vb188YtfpLGxEZfLRU9PDy+++CInTpygs7OTdevWceLECV599dVLdmnz+Ty9vb3827/9G01NTbhcLs6ePcvBgwdpa2ujtbVVCNZnzpzh3Llz+P1+vvSlL1FXVyeUkHA4DMArr7zCuXPnxInCQw89JDKVKmg0GsrKyigpKWHt2rXU1tbi9/v58pe/TFNTkzBZePrppzEYDIyOjnL48GEmJibEycRCTCaTKGvt2rWsXr1aCEfJZJLOzk42bdrE448/zqlTpwgGgxw/fpzOzk5WrVpFR0cHBw8exO/3c+rUKRoaGojFYoTDYcbHx/nCF77A+vXrcTqddHR00Nraesn4KrvR3/zmNyksLKS5uZlDhw7xwAMPoNfrGR0d5ciRI6INo6OjfOELX6ChoYGWlhY6Ozt55JFHhGCWzWYZHBykr6+P0dFR7r//fjZs2MDExAQ9PT10dHTw05/+lGg0SlNTE93d3Zw9e5ba2lrKysrYsWMHDQ0NRCIROjo6AFixYgWzs7MEg8FL6l9YWMjk5CRPP/20EA5GR0dJpVLk83n6+vooKyvD7/czMjIidvKvFY/Hg8FgEMrFP/7jP5JOp/nRj37E8PAwFRUV1NXV8e1vf3uR3bpCeXk5r7zyCr29vej1elatWsWXvvQlBgcHKSgoIBAI8OyzzwJQUVHBkSNHuHDhAnBRuJ2ZmaGhoUGM9SuvvLKofKfTicFg4Gc/+xn5fJ6nnnqK7u5ujEYj1dXVPPjgg4tMVfR6PeXl5WIs9Ho9sViMjo4OioqKlnWQ/slPfoJeryeXy9Hb28vBgwepqqriqaeeYnp6WmSV7u3tJZ1Oc+7cOXK5HBaLhc9+9rPk83mqq6vp7u7mxIkTl/TR6Ogop0+fJp1OU11dzQMPPMCZM2eAi0rL6OgotbW1FBYW0t3dzX/+538uuj8SidDV1cVDDz3E1q1b6enpob+/n/n5+UuepeyCHzhwQJxiHj16lIGBAWpqanj44YcJBoPLmoBt3LiR2tpaqqur2bp1qzgxnJ+fF0pKWVkZ999/P36/nyNHjrBv3z4KCwtZv349P/7xjxkeHl52nl2OyclJDh06hM1m47vf/S4nT57E6/USDoc5ceIEw8PDJBIJTp06xfHjx0kmk5w5c4ZvfetbDA0NcfDgQb72ta8RjUZJJpM88sgjdHZ24vV6OXjwIF1dXeIEb+k/CtlslnA4TH9/P729vWi1WtRqNQMDA0xPTxMIBPjOd77DwYMHgYuK8759+/jrv/5rDhw4wPj4ON3d3QB88YtfFML+K6+8wvPPP08+n+fJJ5/kiSeeoLW1FZ/Pxz//8z8Ti8XI5/McPHiQv/qrv+Khhx5iamqK2dlZ6Z8guS6QSoDkusVoMNLZ2ckHP/hB2tvbKSsr49SpUwwNDdHU1IRKpWLjxo0cP36cyclJsZMNFwVM5Sheo9FQVFREXV0dt99+Ow0NDcTjcaampigsLKS+vp577rmH2tpannjiCWw2G2fPnhVmMIFAYFG9IpEIs7OzTE9Pi/vf//73Y7Va2bdvH1u3bkWlUrF582bGx8f58Y9/zOHDh2lqahImFooZUz6f56GHHiIej+PxeBgZGaGqqkoc3y+HWq0mGAwyOjqK1+vFYrGg1+vRarVCwVHae+utt7Jp06Zldz+VHVXFtET0u9HI9u3b0Wq1ZLNZIQj+9Kc/xWaz0dHRIcx8wuEwra2t/PZv/zbT09MkEgmGhoaYnp6mo6ODSCRCPB5fVjjVarXYbDYqKipwu904nU7sdjupVEoIhLW1tdxyyy00NjYyPz+Px+MRZkharZZoNEpnZycAbrcbo9HI+Pg4hw4dEruEiilTZ2cnDz/8MLfeeitms5mPfOQj/NZv/ZZIAqTsoBcXF2OxWPj0pz/Nn/zJn+ByuSgqKrqk/koW6D179nDkyBEqKiro6+tjZGQEk8nEHXfcIUxG3siOocvlwuVyYbfbhdnLmTNnePbZZ+nr62N2dpYLFy5cYvK1sJ4Wi4XKykqhSNx+++0899xzYqdWWStFRUWLdq7VajUrVqxAp9Oxdu1adDodDz300CXjqJg2wUVHaI1Gw9q1a3E4HHz+859fZCqkUqkwGAz8+Z//Oa2trbS1tWE2m/nd3/3dZZPQqVQq/uzP/ozx8XEmJiaIxWL09PSg1Wr5wz/8QzweDwcPHiQQCPDhD3+YxsZGNm7cSDqd5syZM2InWK/XYzKZljXRaWpqYteuXczPzzM1NcXY2BiRSET0X0NDgzjlicfjHDt2bJGQ2t3dTVtbG3q9ntbWVpxOJ5FIBL/ff8mzFPMTBafTSXNzM9XV1Wg0GpxOJ36/Xzj/Lu0LZb0uNEWxWCxUVFTQ1NREcXExMzMzpNNpOjo6OHbsGMFgkI6ODsxm8zX7vVRUVLB9+3b27t1LKpWitbWV8fFxGhoa+H//7//R1dXF9PQ0LS0t3HnnnRQUFPCDH/yAz3zmM/zxH/8xH/zgB9m0aROHDx9m27ZtYgyKi4tZtWqVeMamTZvYsmULGzdu5F3vehfV1dWiruPj43zrW9/i4Ycf5lOf+hS7d++murqaxsZG4vE4p06dorW1lampKcxmM2vXrmXVqlW8+93v5qMf/Sgf+9jH+PCHPwxc9KHo7u5mdHSUmpoa/uAP/gCVSsXPf/5zhoeHyWQy9PT0cO7cOdLpNDfddBOrVq2iuLiYL3/5y/zRH/0RLS0t2O32a+pHieStQJoDSa5bSkpKWP+BD/AHf/AHvPDCCxw7doxAIEBlZSW5XA6VSoXX68VgMAjzDgXFDlRBpVJhsVjQarXo9Xr0er0QTFUqlYiI4XK5qKyspKWlhebmZtRq9SVCg5KuPp1OC6FLMT1QbI/h4jF6LpfDarViNpuFLftSQc3pdFJWVkZTUxNFRUVs2LBBOF1eDsVeORqNijZEIhFisRgWi0W0V7ELvhyKINHX1yec8RQhDS7uBCtZjpW+WbNmDStXriSRSJBIJPi///f/YrFYeOyxx9BqtZSXl2MymWhpaUGlUlFXV7es7ezSTLsqlYpoNEo8HhcC7cIxU9qbz+fFtdFoVJimKGUZDAYsFoswXVCpVEKxMJvNpFIp4TuhCHJK/UZHRwmHw1itVn7wgx/g9/t57LHHANizZ88l9a+trSWVSnH//ffz4Q9/GKPRyMTEBMXFxcKk6406Lyp9s7CvHA4HDoeDmpoa1qxZA1wUpJYqG8tlXM7lcng8HgoLC9HpdGg0GiFshUKhRTvQS+9X/CsuV09ACPyZTAatVivMO5Zeu23bNp588kng4lpfvXr1sn2Vy+X4u7/7O/7kT/6EwsJC+vv7mZubY25ujq1bt9La2srIyAjl5eVs3ryZAwcOMDs7S3NzM2vWrEGv1zMzMyPMe5bj5MmTvPrqq9xyyy3U19ej0+kIBoPiBGhh3+v1+kvWp9lsxuVykc1maWlpYdWqVSSTyatS/lQqFVqtdpFwrqy7y/WxSqUim83S19fHihUr0Gq1i/xBlA0E5cRv9erVwm5+oRnTlXjyySdpbGxkcnKSl19+mb/8y7+kq6uLoaEhcrkcOp0Op9NJMBjkyJEj7Nmzh5aWFtRqNXa7ndnZWcrKyohGo3i9Xurr6xe9BxQfBqWdGo1G+Ffk83meffZZ4aBcUVHBb/7mb1JfX4/NZsNgMNDe3s7zzz/P1q1b+b3f+z0+97nPCT8P5Z81a9bgdrsXlWu1Wnnve9+L2WxmaGiIb37zm3zhC1/A4XCwefNm9uzZg16vZ/369cI/qLCwkMbGRmFSKR2SJdcLUgmQXLdMT08Tnu5n27Ztwrb+tttuQ6vVcvr0aUpKSvD7/ezevZu6ujphMz05ObnIXr+yslIcgTc0NGA0GnG5XGzZsoW2tjbcbrdwFL3lllvo6ekRzmoOh+MSAUar1VJcXMy6detobW3F7XaLaC/bt2+nr6+PyspKOjo6KCkpYeXKlTQ0NHD48GEmJyeZm5tjdHSUmZkZxsbGuOuuu4QpiWJ/vGLFikUfGsWJzuv10tXVhcVioaioiPXr19PV1SXs2ysrKzGZTAwPD5PP56mpqcFqtS4rjJjNZioqKuju7mb16tVYLBa8Xi8zMzN0d3dTWVmJx+NhcnKSVatWceedd9LT00NJSQnZbFacEnR3d3PzzTcL+92KigpaWloW7U4vZ+ettCsSiQiHQK1WS21tLRaLheHhYXK5HNXV1ZjNZoqKiti4cSM9PT1CYKqpqblkl15RVvr6+oRzstFopKioiPe+9728/PLLrFq1ilQqhclkoqCggKamJs6fP49WqyUUCglfCpfLRVVV1WUFX7PZjNPpJBqNUlVVxaZNm/D5fEI5TaVSYu4pArfH46G7u5va2lq8Xi9TU1P09PSIaC/LPcPj8Qj/g5qaGkpLS7nnnnsA6OzsFMLWlaI6eTweBgYGhNPy3XffLaJB2e12JicnGRoaYnJyUphAaTQaIpEIMzMzjIyMkM1mufPOO4XPSF9fH2q1mpmZGeGj8M53vlOYh1RXVwvnT6/XSzqdZnBwkLVr12KxWMT8VPpnKYrgpph8GI1GotEooVBI2KiXlpbi9XqF03AwGMTv9wsHXZvNRldXl/DjURz6k8mksKFXfC4UszPFRMnn8wEIh/JwOIxarWbPnj3i1MtsNtPS0oLT6WRycpKpqSmy2SwWi2XZUwePx0NfXx8zMzP4fD6Gh4dJp9Oo1WpsNhszMzP09PRQXFy8bKQro9FIIBBgcHCQfD7P6Ogos7Ozwu9oampKjE9zczNms5m2tjYaGxsJh8M4nc5Lyuzu7qa3t5fu7m5x0nPs2DHcbjdarZZgMMixY8cYGxsTjswNDQ0UFRWxZs0azp8/L5TTTCbD3XffzYEDB2hvbycSiZDL5cSJksFg4Pz583R3d9Pe3k46nWbz5s0UFxdz4cIFOjo6ePDBB7FYLMRiMSYmJujt7aWyspLt27eL96LJZMJut9PW1iZ8hbq6uti3bx8Oh4Pz58+TSCSIRCKsXbuWxsZGstksp06dIp/PY7PZhB8VwN1338309DQvv/wyDocDn89HMpkUZk6jo6M88sgjvPvd78ZsNi97aiWRvN2QSoDkukXZvUmlUqxYsYKamhqcTider1eYmVRVVdHc3Izb7SabzQpHMLfbTSaTEc6cZWVlYvdOpVJRWFjI7bffTiQSEUfkhYWFlJeX8+KLLxKPx0kkEthstkte9sqO2q233ko4HBb2yOXl5ZSXl3PixAlisRhqtZqmpibq6+sxm82sW7eOdDpNJpPBarXS1NREMplk+/btHDlyhFwuJ5670IlXQWmfsrtfVFTErbfeSjQaXSQ822w2ysrKRJSVywmGFouFpqYmvF6vsC12OBw0NTWRTqdJpVI0NzdTWFiI2Wxm+/btPPvssyJ6h1arxWAwiDatXbuW8vJynE4nu3fvJhKJiB38K5HL5Ugmk0SjUerr68XHfWEbNBoNLpeL22+/nXg8LqJ3mEwmbDabUEjUajUOh4O6ujrq6uqIx+Oo1WoRAenuu+/m3LlzwkTEYDBgMBjYtWsX8XicoqIicrkc6XSaaDRKUVERW7dupby8fNm6K+ExN23aJJxTR0dHxY6n4pCoRCJRq9WsXbuWTCZDOp0WJk9XCjF50003YTQaicfjaDQabrrpJgoKCrjjjjsYGxsTpyevFXoznU6L6DONjY2sXLkSi8VCSUkJ69atE31VW1srIs7U1taKU69sNktJSQkrVqwgk8mwatUq9Hq9EL5bWlpIp9PcdtttjIyMEIv9V2SvTCZDTU3NorLUajWNjY3YbLZF5jGX6wODwSDGsb6+XjjOrl69mkAggMvlAi6GitVoNCLy0rZt28RpUEVFhXinpFIp1qxZg9FoRKvV0tTUJPyJ1q9fLyIEWSwWVq1aRSaTEZGDVq9eTT6fF6cppaWluFwuJiYmxOnc0ihHCzGZTNTX15PNZnG5XEIhBWhubl52/Sso75NEIkFhYSGRSIS6ujoKCwuFU3JLSws6nU6YsczMzIg5v9z7QHG+r66uxuv1AlBQUCB23VtaWkQwhuLiYhHBS61W09DQwPDwsOhHtVrNjh07OHPmDMFgEJPJRGVlpVhDa9asIRAIiPe38j5zOByUlZXhdrvx+XysWLECjUZDQUHBsqc4yqnpK6+8wvz8PA0NDTgcDoLBoPA70Wq1JBKJRae+iiM6XFSwN2zYgEql4pZbbuHo0aMMDw8Tj8cxGAwiYpDJZKKxsVEEO5BIrhdU+esx4LfkhuZMGDa/Cm2b8qwzXQz9uPT4XRGYl/6u7KTrdDohaFxOCFXC+uXzeTQajRD2lTIU++vLsfB+5eOn/B6NRi8xUQJE6FBF8FVMdxQhRQlFd7Uodcjlcmi12mvenVIEouUikVwOpQ2KoLJcey/XtwvJZrP09/fzV3/1Vzz66KOo1erXbMPS9ipKjsfj4cyZMySTSaqrq9m0aRP5fF58zJeWGY/H0el0i9qgCLMqlUrsQKdSKSG8X6lOCoq5DXDFe64VRclRQlwuRAmPujR6kVK3bDbLpz71Kfbs2cM73/lOISBfbj1Fo1GxY6uwdMyvhsvVK5vNCofgs2fPUlVVtWwErqUoJ0UL63C5/lb6a6Gvh3L95VDW5FL/Bfiv+aHMuStlGI7FYq9pzvdGUU7irtbX5I3WS5lHSshc5f/D4TBtbW1Eo1E2bNhAbW3tJfVc6r8AXHGNKGtvoQncleql/Ptarl9Yr6X35HI58X65WpRv1qubYdPrCwImkfxSkCcBkuuapbauCmq1etkPmkqlEkLHaznAKba4yn8vLeO1PihXul8R7peyUPhS6rfw/6/Vae9ydbiW+69FAQAuESCXa+/V1Gt6epqzZ8/i8Xjo7e1l1apVr6nELC1XCRX6j//4j5SXl/Oud72LlStXir8vrauC0Whc1t596W9Lr7tcnRQh5ErtfSMoDtzL8VqK09DQEHNzc8K5fseOHVdcT8vN3cv145W4XL2CwSDPP/88cNEh92qV3oVj8Vr9vbC/lo7P5VDMxpa7Xpkfr8XVvjveKIr9/NXyRuulKFML7x8YGOD/+//+P4xGI1/60pcoKyu75L7L1fFK9biWdbRwrK7l+iutlyspeRLJ9YY8CZBcd8hdlRsDJdNqPB4XZlfX+vFVdg2j0SgajQa9Xv+6yvl1RdmxjcVion9+GVmRr4VcLidChiqnRDLp0vWFcrIwNDREUVERhYWFN/S6k98sydsVeRIgkUjeligC4HIZma8WZQfw9Sbi+nVHOTl5O4UzVHbcJdcvyilZQ0ODVLwlkrcxUgmQSCQSiUTypqLRaJb1Q5FIJG8f5BmrRPIrRAnlqcSgX5r58mpQTDhmZmYIBAKLsq1eiXQ6TTAYZHx8/PVUXSKRSCQSya8RUgmQSH6FBINBfv7znzM1NSVCZ16tEL+QaDTKF7/4RZ5++mlGR0ev6h6v18uzzz7LX/zFX1zz8yQSiUQikfx6IZUAieRXiNFoZN26dbhcLjQaDWfPnuXw4cPXXI7NZmPz5s0UFBSQyWSu6p7S0lIaGhquOiOoRCKRSCSSX1+kT4DkuiYUCjEyMgJAVVUVVquVbDZLKBRiamoKg8FAXV0dyWSS6elpxsbG2LJlC0NDQ5SUlGA2m4lEIkxMTLB582ZyuRwjIyN4vV4aGxuZmprC6XRit9tJJBLMzs5SW1uL0Wiko6MDo9FIeXk56XSa8+fPs3v3bpFdNJ1OU1JSwtTUFE1NTdjtdmKxGOPj41RWVjI/P8+hQ4cYGhrCYrHQ2NjI3Nwc8Xgch8MhMh7Pzs6yevVqkaJecbBTq9VkMhk8Hg/JZBKr1Up9fb3IsulyuSgpKeH48eOsXLlSZM7N5XLMzMwwMzNDWVkZDodDOmJKJBKJRHKDIU8CJNct4+PjnDt3jkgkQkFBAa+88grT09MMDg5y8uRJioqKSCQSvPrqq8zOzhKLxTh06BBjY2M4nU5OnDjBwYMHSSQSZDIZkck3EAjQ29vL6dOnKS4u5siRI5w9e5ZQKITFYuHxxx8HLsaxHxkZYW5uDoPBwMsvvyyyUc7Pz/PEE08Ic5/Ozk5GRkbI5XLMzs4KBUWj0aDVakXGYovFwtmzZ+no6ECtVuPz+UQWyuWia8zOzhIIBDCZTDz99NNkMhkymQxjY2N0dnai0WgYGhpidHSUSCQCIEJCFhYW0trayrlz50TGTIlEIpFIJDcGUgmQXLcMDA5w9uxZ7HY7paWlRCIRpqamGBgYYHh4mPLycux2O8ePH2dychKVSsXAwACpVIry8nJ6enro7OzEZDJht9s5ffo0iUSCXC5HMBhkcnKSyspK2tvbmZycRKvV4na7efnll1Gr1aRSKYLBIOFwGKvVyuDgIIlEAqvVSj6f58yZM5jNZmw2GwMDA4yNjaFWq4nH4/h8PqxWKwUFBbhcLmpqarBarRQXF+P1eoXPQCwWw+l0LpsQDS5mSVWpVLhcLk6dOkU6ncZkMhGJRBgfH0er1ZJIJPD5fCQSCeGIrNfrKS8vZ2xsjO7ubmZnZ9+CEZRIJBKJRPJWIZUAyXXLyPAIg4ODrFmzBr1ez0c+8hFCoRCzs7MUFxcDUF9fz5kzZxgbG0Or1WI2m1m5ciUGgwGdTofNZqOsrAyn04nP5yOTyWAwGHC73dTW1oqss6WlpVRUVAjhH8BisYgMohqNBqvVikqlQqfTYbFYcLlclJaW4nQ6icViRKNR1Go1drv9kmyjarWabDaLxWKhvr4ei8XC8PAwuVyObdu2XTbOfUVFBeXl5SLeezKZxGKxiCyrSoz8hcmWNBoNlZWVqNVqcVrS0dHxuqMVSSQSiUQiuf6QSoDkukWv12MwGEgmk+TzecLhMAaDAbVaTSgUAiCTyaDT6UQaeJVKhV6vF0KzVvtfbjG5XE4IwGq1GoPBIP628NpcLgewqFy4GPlH+ZtarUav14u/XU64VpJZZbNZurq6yGQy3H777bjdbh599NErpq9X6rUww2s+n19Ur3w+TygUEvVaSi6Xw2AwUFBQcMXnSCQSiUQi+fVCOgZLrltu3nkz6hIzP/zhD7n55psJhUI0NTWhVqs5efIkZ86cobOzk49+9KOUl5czOjrKyMgIBw8epLCwkL6+PsxmMx0dHbS3tzMwMMDAwACTk5OcPn2akZERamtrGRsbo62tTTjljoyM0NXVRVlZGZFIhNOnT5PJZIhGoxw5coTJyUkGBgYYGRmhp6eH06dP09HRQSaToby8nLa2NiYmJmhpaaGyspJQKMSLL75IWVkZAIWFhdhsNjKZDBs3bly0iw8XBftIJML58+fJZrMEg0HWrl3L2NgYhw8fZteuXej1emZmZjh37hxjY2OMjY1RVFSE1WqlrKyMo0ePYrFY8Pv91NTUsHr1ao4fP87x48f5b//tvwknYolEIpFIJL+eqPLy7F9ynXEmDJtfhWOr49RnA4RCIRwOB2q1GofDQSQSwePxYLPZSCQS2Gw2DAYD0WiUvr4+mpqaMBgMDA8Po9VqqampIRAIMD09TUNDA/F4nPn5eQwGAzU1NbS3t+N0OnG5XKhUKtrb29m0aRNarZZQKEQkEsHhcNDR0UFtba2IAjQ2NsamTZuEc6/dbqewsJDh4WGMRiONjY2EQiHhTOxwODCZTOh0Ovr6+jh//jwf+chHxGmBQj6fJ5PJ0N3dTT6fx26343A4aG9vp7GxkeLiYubn5/F4PLjdbqampsjlctTW1mIwGJiamqKwsJBsNkskEsFut+N2u8U9DQ0NMlqQRCKRvEko36xXN8Om5S07JZK3BKkESK47Fr5QN1ovmtmk02lh5gMXzVxSqRQGg2FZh9o3C8WESBHMtVotarX6kt371yojl8uh0Whoa2ujoKAAlUpFMplkzZo1b6hu6XQatVpNPp9Ho9EsMhNKp9OivhKJRCL55SCVAMnbFWkOJLmuUXbJF9rvw0Wb/F/FbvZCAXqhf8G1lqGU09bWRkVFBY2NjVRVVb3hui3tFwXFN0IikUgkEsmNiVQCJJK3EZ/4xCfe6ipIJBKJRCK5AZB2ABKJRCKRSCQSyQ2GVAIkEolEIpFIJJIbDGkOJLlu6Ym91TWQSCQSieTKyG+V5O2KVAIk1x2FOjCr4Xd63uqaSCQSiUTy2pjVF79dEsnbCRkiVHJdMpYAb/qtroVEIpFIJK9NoQ6qZfoVydsMqQRIJBKJRCKRSCQ3GNIxWCKRSCQSiUQiucGQSoBEIpFIJBKJRHKDIZUAiUQikUgkEonkBkMqARKJRCKRSCQSyQ2GVAIkEolEIpFIJJIbDKkESCQSiUQikUgkNxhSCZBIJBKJRCKRSG4wpBIgkUgkEolEIpHcYEglQCKRSCQSiUQiucGQSoBEIpFIJBKJRHKDIZUAiUQikUgkEonkBkMqARKJRCKRSCQSyQ2GVAIkEolEIpFIJJIbDKkESCQSiUQikUgkNxhSCZBIJBKJRCKRSG4wpBIgkUgkEolEIpHcYEglQCKRSCQSiUQiucGQSoBEIpFIJBKJRHKDIZUAiUQikUgkEonkBkMqARKJRCKRSCQSyQ2GVAIkEolEIpFIJJIbDKkESCQSiUQikUgkNxjat7oCEskbIe1Pk41k3upqSCQSieTXAI1Vi86pe6urIZH8SpBKgOS6Je1PM/rFQfKp/FtdFYlEIpH8GqDSq6j5mwapCEhuCKQSILluSYdS5FN5dL9hwFRuJplMYjAYMBqNGAyGS67PA/lcDt/8PFaLBb1ej0ajeVPqkge8Hg+xWAyXy4XNZruq++LxOKFQiPn5ecxmM2qNBrVKRTqdJpfLUV9f/6bU780mDyQSCUaGh9HpdDidTtxu9y/1maFQiLm5OVQqFfUNDajepHJ9Ph+BQIBoLIZWq6WoqAir1UooGCQQCBCLxXAUFFBaUkI6ncbv95NIJFixciXAZeuRTCZRqVTo9frXXbfZ2Vn8fj9ut5vCoqJrbnMsFsM3P49nbo6mpiasVisq1X+VkgcCfj8er5dEIoFGrcZut5PJZkmnUthsNmw2G1ar9XW34e2Csv5TqRR6vR61+lJr2FwuRzQWw+v14vV4cDgcYvyy2SwqlYqqqiq0Oh0qLs7J8fFxioqKKCwsXLZMhXAkwtjo6KJrM5kM6UwGk9F48ZpwGI/XSyaToampCbj8/LoS2WyWVCqFyWQSv3m9XjweD263m6Li4jdt/WQyGeLxODMzMwSDQQoKCtDpdOTyeVLJ5KJ3w7zfz+TEBM3NzZjM5tdVh3w+TyKRoK+vj4KCAlxuNypgZGSE4uLi1xyHK5GaSzH74BTZSEYqAZIbAqkESK5bkqkUAEc7j1GQdOLz+WhqaqLeXY+jrGDRtdlslkwmQyQSY//L+9m2bRvV5dUYraZlSr52MpkM+/cfoK+vj/e85z3sWLVjkbC1bP2TSUZ7xmg920pbWxvNzc2YzWY0Gg1TU1MEAgG++tWvvin1e7PJ5/PMjs7ytZ98HYfDwZ133sl7Nrznl/rM86fa+dm+n6HRaPj85z+PSqV6zT6+Gjq7u9i/fz+dnZ04nU4+/vGPs2bNGk4NnuLll1/m3Llz3HXXXXz84x9nPjzP/kP7GR8f57vf/e5l65DL5RgfnMBoMFJVVfW663bsyHEOHz7MXXfdxQc3fvCa2zveP8Gzp57loYce4lvf+habmjeh1f7Xaz+Xy9E7cIGfPf4zBgcHsVqt7Nmzh3g8ztzcHA0NDWzcuJGNdRsx/kJQvV7J5XJEo1E8M14qiysxmi5d+8lkkukL0+w9spcf/ehHvOMd76C6upp8Pk80GiWVSvHf/tt/o6aiBr1ez0hrB/f98D4+8IEP8P61719280Gh52wvX37gK3zwgx/kvavfi8FoJOz1Mjs7y9qmtQB0tnXx5ItPEgwG+drXvva657jf72d0dIwNzRvEb2fOnuXnP/8599xzDx/a+KHXLSgvJRgMMjYwzsP7Hmbfvn28613voqysjEQiwcTEBOvWreMjH/kIWq2WtrNtfOc73+Eb3/gGjeWNr2sTJpVK4Z8I8Jmv/R27du3i3e9+N1qtli8/8BU+9KEP8d7V7112bCUSyaVIJUBy3RKNRAD44he/yFh8nA984AO0tLRQWFh4ybVzc3P09vZy4sQJvvSlL/G9730Pl8v1pu1wZrNZvvOd7zA2NkZ9fT033XQTOt2Vd5IOHDjAD37wA1KpFPfffz9FRUWoVCouXLjAY489xtmzZ4GLAvdSVCrVsr9fjte6/kp/v9zfamtrqa+vJx6PE4/Hr7o+r/UsWL7NpaWlbN68GQC1Wk0+n1903cJyl3vG5YSpu+66i9HRUVpbW6mqquKee+5BpVKh0+kYHx/n5z//OXfddRcNDQ1YrVbWr19PWVnZsnVQiEaj/OxnP6OiooLf/d3ffc12X466ujpSqRQNDQ2X7ZfLlatSqWhqamL16tUApNPpS65Tq9XcdtttnD17lvHxcYqLi/nzP/9zAObn5/nbv/1bjhw5wvvf/35+67d+64p1uNzf3kzeyHMSiQRHjx5lYmKC973vfRiNxkvmhMFgYM2aNVgsFj7zmc/w2c9+ljvvvJOioiI8Hg+PPvoov/Ebv8HTTz9Nc3MzbrebPXv20NTUhEajuWK9XC4Xe/bsobGxEa1WSyKRoK2tjf379/Mv//IvAJSUlLBx40YikcgV59dr0dPTw3e+8x1+9KMfid8qKyvZuXMnjY2NV5wzr/W8pX3mcDhYvXo1d955J9/61re48847ueWWW0in05w5c4bbbruNgoICdu3aRXV1Nbt37xbvutd6J8GlY63T6aipqaG5uZncL052ioqKRN++1jj8quaqRHI9IJUAyXXP3//DP7DjPTtwOp2YTKZld5dKSkooLCxk9erVYoftzSIajdLd3c173vMevvnNb9La2srq1avZuXPnFe/7zne+A8Ddd9+9SHFpbGwUu2n5fJ5MJsPRo0fx+XxotVpKS0vZvn07MzMztLW1kUwmaWxsJBAIMDY2xo4dO1Cr1UxPTzM9Pc3NN99MSUkJw8PDXLhwgcnJSVpaWhgYGKCgoIDm5mbq6uoYGxtj//79bN68mVAoRC6Xo6WlhdLSUi5cuMDAwADhcBi73c473vEOoeTk83n8fj9HjhxhdnaWW2+9FafTiVqtJhwOs3//fuLxOM3NzdTW1qLT6Thy5Ajz8/PccsstTE5OEolEqKysZN26dQC8+uqrzM7OkkwmSSaTfPCDH2RwcJBIJILL5SKVSnHw4EG8Xi9FRUU0NDRQWFjI888/j81mY+fOnczNzdHf308wGBTC2hvdzR4dHWV+fh6DwUA+n2d6epqzZ8+STCYxmUy43W6qqqr47Gc/y4ULF6ivr8dsNnPPPfdgMploa2tjenqaRCKB1WrlrrvuIpFIcPjwYSKRCGVlZYRCIUpKSiguLiYSiQhBBy7uZr/66qsMDw+TTCYpKSnhjjvuYHp6mpGREcbHx4nH49xyyy1UV1e/IVOkgoIC3vnOd/LUU0/xve99TygBIyMjDA0NMTc3h06n484778Rut4vxHh0d5fTp0+j1em666SbUajWTk5NcuHCBe+65h1QqRVdXF8lkktWrV7Nq1Sp+/OMf43A4KCoqQqfT0dfXx5YtWzAajYyMjBCNRqmvr2fVqlWoVCrGxsYYGRlhcnISrVbLe9/7XgKBAO3t7fh8PlavXi3Mx1paWjCbzXR3d3PvvfcKhWrXrl1CQboa3G43H//4x7n33nt55plnuO2229BoNORyOZLJpDgtGBwcpKenh3w+T2lpKZOTkzQ0NGAymcRYzs7O8tBDD3Hs2DFisRg/+MEP+OhHP8rQ0BChUAiTyUQ2m6Wvr4+2trZFJwLr1q1j5cqVnDx5kpmZGdLpNBaLhXvuuQe1Ws2+fft47LHHOHr0KN///vfZvXs3VquVcDi8qK7BYJDu7m7GxsbQarVs2LCBuro68Z7wer3ccccddHR0kM/nWbFihei7q0Gj0WCxWICLpwUjIyNEIhGcTifxeBy/309bWxsATqcTr9eLWq3m9ttvx+VyodVqyWQy9Pb20tXVRT6fp6GhgQ0bNiw6xYhEIvj9fvL5PKlUimw2y+HDh5mbm6O4uJjy8nK6urpYvXo1lZWVFBQUkMvl6O7upre3l3Q6TVVVFdu2bbvqtkkkvy7IEKGS6xbNL8waZqanGRoa4l/+5V/Yv38/U1NTl1yrVqvR6XTL7v69UcLhMMeOHeOjH/0o27dvZ2JigldeeeWy1+fzeWKxGFNTU2g0GoqLi1Gr1aJeGo2GxsZG7r77bvL5PJ/97GcZHR2lqqqKiooKnn32WZ588kl0Oh2Tk5McPHiQp59+msrKSqampvj2t7/N4cOHMRgMpFIpvvrVrwq78mg0yn/+538yMjLC1q1b6erq4ic/+QlPPfUULpeLo0eP8vTTT9PV1cX4+Dgvv/wyZ8+e5b777kOj0dDc3Ew8Hueb3/wm2WwWgOnpaSYmJigtLaW/v58nnniCsbExzp49y5e+9CVSqRS7du1i//79vPzyy8Ju+Nvf/jbnzp3D6XQSiUS49957icVidHR00NbWRiaTYc2aNSSTSVKpFG63m/Pnz/PSSy+h0WhYtWoVjz76KN3d3cJUo6+vj4aGBl566SWefvppRkdH2bZtG2fOnOHQoUPMzs5edlwSiQSDg4M89thjPPbYY+zdu5dz584tusbpdDI8PMzTTz9NJpPhvvvuw+VysW7dOkpKShgbG6OgoICSkhKKiopoampi8+bN6HQ6fvrTn3LgwAH0ej0rV65kbm6Of/zHfySdThMOhzl16hQPP/wwOp2Ohx9+mEQiQSgUoru7m46ODgC+/vWvc/ToUXQ6HatWreJLX/oSkUiE5557jrNnz2I2m2lubuaTn/wko6OjpNPp1z2v1Wo1TqcTrVbL7OwsoVCI9vZ2vvvd7zIzM8PWrVspLy/nE5/4BFNTU4yNjbFv3z6+/vWvs2PHDrxeL4cOHWJmZga1Ws0jjzzCxMQEdrudkZERjh8/Tk9PDyqVikQiwTPPPMPJkydR/8Iv4W/+5m84f/48DoeDWCzGP/zDP5DJZGhvb+f73/8+7e3tbN68GYPBwLe+9S0SiQRer5cjR47w2GOPUVFRwejoKC+++CLd3d1UVFSg1+tpbGxkw4YNlJWVXVN/qFQqjEYjNpuN0dFRkskk2WyW3t5ezp07Rzab5dFHH+XIkSM4nU5KS0v593//d3Q6HUVFReTzeXGt2WymqKiI4uJiKioq2LVrF0ajkcLCQnp7e9m3bx+5XI6TJ09iMBhwOBxMTEzw4IMPotVqmZyc5OmnnxYmkEeOHOHBBx8UimRlZSV6vZ7du3dTWlpKQUEBsViM7u5uzp8/TzAY5N5776W3t5cNGzawZs0a7r33Xtrb2zEajfh8Ph599FFefvll1qxZw+HDh9m/fz8DAwOv2U+tra3s27ePJ598kieeeIIPfvCD7Ny5k6amJpLJJM8//zyzs7M4nU56eno4cOAA7e3t7Nixg4mJCb7whS9w/PhxAoEAp06d4gtf+AJr166ltLSUnp4eHnzwwUXPUxTynp4eMQ7pdJrOzk4efvhhMpkMFouFhx56iOPHjxOJRGhtbeWLX/wijY2NVFZWMjo6yg9+8INrmg8Sya8DUgmQXLdof7HjX11dTUFBAaOjoxw8eFAITL8KMpkMwWCQzs5O4vE4ZWVleL1eOjs7mZ+fv+x9r2WPqygs4XCYp556CrVaTXl5OYWFhSQSCZ599lny+TzZbJZQKEQwGKSkpAS1Ws3w8DDhcBi3243RaOTIkSPE43FsNhsajYbR0VGsVivV1dVCIDt8+DAWi4VgMEg4HMblctHU1ITb7ebYsWN0d3fj9/tJp9PEYjFOnTpFLpcT9dXr9RQWFpLJZDh//jyTk5P09fXxwgsviN38ubk5JiYmmJ+fx+l00tnZicFgoKSkBIAzZ86IPrtw4QKHDx/m4MGDzM7OolKpKCgoIBgMMjk5iVqtpqSkBLvdztDQEIODgySTSdRqNWVlZZw4cYJz584xPz9PIpEgEonQ09NDKBS64pgYDAacTidOpxOHw4HZbF50jcPhIJFIMDo6Clx0DN2/fz/79++np6cHnU6HwWCgoKAAm81GUVERFRUVqFQqnnnmGYLBIA6Hg7KyMqxWK48//jiRSASVSkU8Hsfr9VJXV8eqVatwOBzk83kikQg+n49kMsmzzz6L3++nrKyM+vp6tm/fjlarpbCwELPZTCqVIplMcuzYMWZmZkgmk1eewK/BQtMJtVrNiRMnGBoaQq1WU1lZSUVFBYcOHaK/v5/z589z/vx5pqenqaurY926ddTU1FBcXIzRaGRiYoJoNIrJZCKVSjE/P08wGBTC9ezsLPF4nMLCQgoKCjhx4gQGg4GysjI0Gg2vvPIKkUiEkydP0t7eztTUlBDET58+TTabJZ/PEw6H8fv9QvDu7+9ncnISh8OB0WjE7XZTXl6O3W5/XX2h/LdOp0OtVhONRpmfnyeXy9HX18fk5CRGoxGr1crAwAClpaUUFRWh0WguOmr7fOh0Oux2Ow6HA7vdTm1tLVqtFofDQTQaZWxsDACbzUZVVRWjo6OMjIxQWVlJYWGhaIdGo8Hn8zE7O8upU6dIJBI4HA5cLhc6nY7a2lqsVqtwEI5Go/h8Pvr7+zl9+jSJRILq6mpKS0sZHh7m9OnTwmxsenqaTCZDaWkpgUCA4eFhxsfHX7OfdDodVquVwsJCVqxYwe/+7u9SW1uL2+1GpVIxNTVFPB7HYrEQj8eJRqNiPtXW1or3zfj4OCdOnODChQvEYjEymQzT09O0t7cvep5Wq0Wr1Yq+zefz6HQ6kskkU1NTFBYW4nA4OHfuHMPDw4RCIY4fP05vby+RSIRMJoPH4xHmlxLJjYQ0B5Jct8TjcQDWrFlD0/pmysvLefXVVyksLOSd73wniURC7AK9WVGAlhIOh5mbmyObzXLhwgVKS0vJ5/MMDw/T29vLzTfffMk9itBTXl5OLpfD6/VeYsseCAQYHR2lrKyMwcFBEaUlFotRVlbG/v37yWQy6PV6bDYbbrcbq9WK1WrFYrGIiBxms5nZ2Vmy2Sw6nQ69Xo9erxemIo2NjZw9e5a+vj60Wi0Gg4HS0lLWrVvH+vXriUQiPPbYYxgMBvx+P4FAAJ1Oh8ViEUKR3W6npKREPN/r9TI/P8/c3JwQGsbGxsRRfDwep6SkRNi6u91utFotuVwOn89HcXExuVyOc+fOce7cORobG0kkEhiNRmGCpFKpMBgMvOc97+Gxxx7jlVdeoaKigoaGBiwWC/39/eTz+YsOuuPjVFVVCdOay6HX66msrOTOO+9EpVIxOTnJ5OTkomuMRqMwsVGpVGzYsIFHH30UgBUrVnDXXXehUqnQarVoNBoxnrFYjLa2NtasWYPNZsNoNFJaWipOMXQ6nYgo1dTUJCLDKEoFXHRa7evr45ZbbqGkpASXy8U//dM/kc/nqa+vR6vVEvxFRKNsNkswGHxDSoBiMpLJZCgqKsJkMnHu3DmMRiMWi0UoTIpSNDMzw9zcHIWFhZhMJu644w4ymQwqlYrz58+LsdNoNOIfBbPZLHa8S0pK8Hq9JJNJamtrKSkpQafTEY/HCQaDdHR0kEqlSKfTzMzMoNVqsVqtaLVaIYAqEZ4sFguRSIRwOIxGo0GtVqPVakkmk6TT6UUncK9FLpcT/i+KEpFKpRaZmOl0OhGEIJlM0tDQQE1NDQ6HA41GI65VqVSiD5Q6xONxDAbDon7atGkTPp+PtrY2UqkUf/zHf0w2m0WtVtPS0kIwGGR0dBS9Xs/MzAzZbFYIxWq1Gr1eTygUwmw2i/Wdz+fp6+sjmUyKscxmsxQVFdHV1cXOnTvFJkRVVRVarRaTyUQymcTv979mPzU0NLB161YKCgou+Zter1/UPr1ej8vlorS0FK1Wy6ZNmwgEAszOzjI5OUlXVxdWq5WpqSlRp6WKudKXC8fBaDRiMpkwm82Ul5czNzdHIBAgEokQjUbp6OjAarUyPT0t5vLSciWSGwGpBEiuW86cOcMaVvLCCy/QuKNJhGTUaDQkEgna29uZm5vjlltuwW63C6EQEP+dz+dft3mQsvN34cIF/vIv/5KysjLuuOMOIpEIR44c4fHHH2fbtm2XFTQ+8IEP8Oyzz3L69Gl+//d/Xwh7mUyGsbExWltb+fjHP47RaCQejwulJhaLUVRUJBwHAeEMl8/nFwmfSnuVti6su2IfrOziK/crAoOy+1teXo7X62Xjxo1s27aNTCbDjh07xDMVe+WFToxmsxm73Y7dbmfNmjVs3LiRW2+9lVgsRiwWI/ILp+6lTnq5XI65uTn+4i/+glwux8jICN/+9rc5ceIEa9euXTR2arWa97znPTzxxBO8+OKLpFIpPve5z6FWqykuLkan09Hc3Mydd94JwNTUFC6Xa9lxVOq+sOyFfbb0GuX3uro6Hn74YUZHRzl8+DDf//73+cAHPiBOesLhMCMjI8IcSzkVSafTRKNRLBbLxdCwvzBXs1gs5HK5Rf2ycFxsNhuJRIJwOEw2myUcDpNKpfh//+//0dzczJ/92Z9RXV0t6r+0DUtZ2ibldAkuOrufO3eOTCYjnKXdbjd+v1/YXmezWZLJpLCznpiYYGpqSpTh8/mECZ4yX3K5HLFYjGg0umg9KgKxUg8lipHSDuW60tJSfD4f9fX13HHHHcBFO/nS0lLRLqX/l46XMq9Pnz7N2rVrWbly5SIH/oVzYOGzs9kskUiEc+fOkU6n2bNnD9XV1QwMDCy6fvPmzXg8HqHE/Nu//Rtut1s8f2FdlPdCOp1mbGwMv99PcXHxovGprKzkU5/6FBaLhTvuuIMVK1bw9a9/HavVSnd3N+985zt517vehc/n4+TJk2I9Ku3P5XK89NJLYjNCeb7b7SadTotxVMbE7Xaj1+sX1XFhnRf+99I5unCMlH8WhaNdssYW/q70c+wXYXptNhuFhYWUlZXh8XjYs2cPdrudnTt3Eg6HLzt3F9ZzYf0XrgOdTicUg127dlFcXEwsFiMQCFyyPiSSX3ekEiC5blm3bh3Z7hT5fJ4HH3yQ9vZ2fuu3fovbbrtN2En39vbS0tJCJpNhcHCQgwcPks1meeGFF4hEImzdupX169e/ruc/99xzPPfcc0xMTFBeXs7q1asZGBgQTn2PP/441dXV/I//8T8WxetW+P3f/30aGho4cOAAH//4x9m1axeAcKL92Mc+hsPh4Otf/zqnT5+mv78fs9lMT08P//Iv/0IkEqG/v5+uri7m5+cZGBjg6NGjjIyMUF9fz9mzZ3n22WdJJBKcPn1a1CEej/Pggw+yYsUKjh8/Tn19PX/4h39IT08PY2NjHDlyhJKSErHb/KlPfYr/83/+D88884wox2KxsH37dmFqkcvl2LZtG0ePHmVycpLx8XFWrlzJZz7zGe677z5uu+02vF4v69evp7Gxkeeffx6tVsvBgwcZGBigvb2dVCrFM888Q11dHV1dXdjtdoqLiyktLWXLli0cPnyYsbExEokEx44dY/fu3RiNRj7wgQ/Q29uL0+kUjoh//dd/zZNPPskLL7zA/Pw84XCYbdu2YTabxTUK+/bt4+TJk3g8HlQqFXv37mXdunUcOXKEEydOkMlkePzxx3G73XR1dXHhwgXi8TgHDhzgvvvu493vfjdWqxWbzca73vUuALZv386pU6c4ceIERqORj370o3z1q1/lBz/4AT//+c9xOBz09/dz//33YzKZ6OzspLW1Fb1ez6lTp9i6dStzc3MMDAzQ0dHB1NQUqVSKL33pS7z44ot85zvfYePGjXg8Hv7kT/6EmpoawuEwzz//PEVFRezcuZPnn3+eYDCIx+Nhfn6ep59+WvgnKOTzefbv38/JkycZHBzE5/Pxr//6r8TjcYaGhiguLuY3f/M3ufvuu1GpVPyf//N/+NznPsfp06cZGxtjbm6OT37yk9xyyy0YjUbKysr4/ve/z7333kt5eTnFxcWsXbsWp9PJO97xDp599llGR0fp6+tjYmKCl156iQ9/+MPs37+foaEhKisrOXXqFEeOHCGXy3HixAkGBgZoa2sjl8uxd+9e/uiP/oh///d/p6uri69+9auYzWasVisbNmygv7+f7u5uZmZm6Ovr48SJE+IkbWpqirvuuov9+/ezfv16YYKzkGQySXd3tzjdeeaZZ+jr60OtVjM/P8/ExAR79+5l/fr1xGIxhoaGhOlKOBxmfHycl156ib6+PkwmE4888gh/+qd/SmNjI0NDQ8LXJhQK0dzczMDAACdPnuTRRx/lv//3/87hw4eFA/z+/ftpb2+ntbVVRLD69Kc/zZo1aygpKaG9vZ2Ojg6hPA0NDdHR0cHatWupq6vDbDbz9a9/nfXr1xMKhRgYGKCzs5Px8XH+1//6X8IR+fOf/zxWqxWHw8Ef/dEf4fP5hGPw008/TWFhIWNjYwSDQSwWC3fdddeiqGqhUIje3l6efvpp1Go1zz33HEajkZ07dy5SugcGBujq6sLv9/PSSy+xZcsWAKEk5/N5nnjiCf7kT/6Ed77znTQ1NVFSUsL//t//m+9+97vCrMnpdLJx40Z6enowGo3Ct6K7u1uYG7a1tdHW1kYkEuHMmTM888wz4h05NTXFn//5n/Nnf/ZnfP/738dut2MymXC5XLxr6z2v61sgkVyvqPIyTpbkOiU8HGbm6xOYf99G1pUjnU7jdDqxWq2o1WqxG6eEc0ylUkQiETweD3a7HbPZjNlsXlZAvxpCoRDhcJh0Oi0ShKVSKfx+P+FwmEwmQ2FhIW63e1kfAMVMJBKJEIvF0Gg04hhfcUBUq9UEg0FisRiA2DksLi5GpVIxPz8vds9KS0tFtBCbzSZs/IPBIOXl5VgsFp577jn+1//6X/zwhz9kxYoVpNNpjEajsI+emJhAp9NRUFCA1WoV0U8UJ2bFzEWtVgtTI6UMl8sl/t/tdgvHZCXaSS6Xw2w2o9frCYfDzMzMUF5ejk6nIxaLMT8/L3YiE4mE2EnM5XIUFxcL2+t8Pi/MjwACgQDJZBKNRiOiLCWTSUKhkDCxUKlUmM1mjEbjJYKf4lOh9KNicx2NRgmFQkSjUZxOJy6Xi0QiIcxslF3KhaZRGo0Gt9st7PtzuZwwz1Ls4OHiDmU2mxXj5PP5iEajqFQqiouLMZvNZDIZAoEAoVAIrVZLVVWVqFMulxOmHW63m5mZGfGbXq8nEAig1+tFOT6fT5jaLJyLis+B4juh0WjEqVkymRSnE4qpUjabZW5uTuzUKzu6ynxUxkgxPVvojK/0h+LrkkgkMBgMVFdXMzMzI+zE7XY70WgUr9dLWVnZInvvkpISCgoK8Pl8pNNpdDqdMKtRylVMf8rKypidnSWVSmE2m4VzrGIeo/T9QpTTsUAggMfjoaCgAL1ej0qlupjY6xdrz2g0irwDSlSbgoIC/umf/gmNRsNdd92FRqNhYmKCffv28cEPfpC77roLj8cj7N+Vk5xQKITVasXtdhOJRAgEAqTTaUpLS4Wzs81mQ6vVigRgWq1WtNNoNJLNZgkEApSWlmIymUSeB6WNWq2WaDRKIBBAo9FQVVWFz+cTCdAU5+zy8nLh5xQMBrFarWJdZ7NZLBaLOIVU5rxyGjQ/P08gEMDhcAh/moVrTVmTPp+PgoICiouL+Yd/+Afm5ubYsGEDH/7wh4lGo8Ks0GAwkMlkmJqaQq/Xi3ejVqsVPiZqtVr0jc/nQ61WU1FRIXybcrkc5eXlhMNhAoGAWIsGg4HJyclLyjWE9IzfN0LV/63FWCVzDUh+/ZFKgOS6JTEeZ/y+ESr/by3qYrX4WF+PKKFA1Wr1Zc2HFIHr9Sb5mZ6eZu/evXz5y1/mH//xH/nABz5wTdGSlpoBXC0LTQOu5V7F0XOp0P6rePa1sNC0YenYLNdnb3QclXIVc60r/fbL4kpz4XJ9vtQcTbn/9db39bR3YR3ezPmQz1/MYvsv//IvwlxOr9fT29vL0NAQ99xzD7fffvubXqcr9cHVlvurWCPLPXNubo7Pf/7zzM7OsmnTJj75yU9iMpku++77ZdRvabnKN0UqAZIbBWkOJLnuUcEVM3VeDyjRRq7EGxXukskkdrudW2+9VQhf1/JRfb0f4Nf78X4znLl/FYLNlcZluWe/GUL6cu36VQpxV3rO5eqx8Le3amx/mf1jMBjYsGEDgUBACOBWq5XbbruN+vr6X0qdrtQHV1vur3LeLERx/FZOG67EL0ux/VUozBLJ2xl5EiC5bpG7NhKJRCJ5s5DfFMmNhjwJkFz3pOZSb3UVJBKJRHKdI78lkhsNqQRIrls0Vi0qvYrZBy/NECyRSCQSybWi0qvQWKVoJLkxkOZAkuuatD9NNpJ5q6shkUgkkl8DNFYtOueV/bMkkl8XpBIgkUgkEolEIpHcYEjXeIlEIpFIJBKJ5AZDKgESiUQikUgkEskNhlQCJBKJRCKRSCSSGwypBEgkEolEIpFIJDcYUgmQSCQSiUQikUhuMKQSIJFIJBKJRCKR3GBIJUAikUgkEolEIrnBkEqARCKRSCQSiURygyGVAIlEIpFIJBKJ5AZDKgESiUQikUgkEskNhlQCJBKJRCKRSCSSGwypBEgkEolEIpFIJDcYUgmQSCQSiUQikUhuMLRvdQUkktfLWAK86be6FhKJRCKRLE+hDqqNb3UtJJLlkUqA5LpkLAHNr2RIquQUlkgkEsnbE7MaerZKRUDy9kRKUJLrkulYmqRKx5/6jrG7ppC21jb8fj+bt2xGp9Ph9/tpamri+eeeZ/2G9TQ1NlFUVPS6n5dOp+nt7eHw4SPcdfdd1NfX88qJV3A6naxZs2bZe3K5HOFwmPaOdlavWo3b7SaRTDA8PMyK5hWo1WoGBwcJBoPUN9TjsDtQqVRXXSd/wE8mnUGn11HgKCCfz3P8+HFq62pxu9yYTKbX3d7XIpfL8R/3/webNm2iwFGAxWKhvLwcgGAwyGOPPYbRaOR3fud3Ft3n8/nwer0ANDc3X9LefD5PIBAgnU5jMpmw2WxXXadsLkskHOHcuXNs2rTpmu6NJ+L09/Xzox/9iK985StXHIdgMEj/QD/PPvssn/nMZ9CoNVf9nLeKTCZNf38/Tc3NaDXX32vf6/PSfr6dkdERfvu3fxuT8erntsfr4dy5c7Sfb+dTn/rUm1Ynf8BPZ2cnhw8d5jOf+cw13x+OhDl18hQnT5685H5/wM/Zs2cZGRnhIx/5CDbr1c9lgGgsytjYGD/5yU/427/5W8xm8xXrMT01TVNT0zW9fwAmJidQq9SUlZWRSqf44Q9/yJrVa2hsaqS0pPSqyvD6vISCIerr66/p2W822VyWUCjEF7/wRf74j/+Ypqama7o/lUoxOTnJD3/4Q/70E39KWWkZPTH4nZ6LJ9ZSCZC8Hbn+vgYSCReFctBxZ3MF72oqI911ipG5ed5R46a8vByv10ssFsNXoKFOFaUuF6QEI1qtFqPRiEqlIpFIkE6nyefzmEwmtFrtsh/BWCxGTpVDZ8zgM6RYqY7RpEuSdWpxuXQ02y4Kr8lkkmQyiVqtRqVSkSVLxpTB7NLT7FCjJcz43DiB0wdpaCzFarbisEEYNfV2NWZzlkgkglr9X646Vqt1UV1VKhVWq5VMJsOxgXNoslkKi4tpdOkxGAwkHWpq7WpcdhV6fY5MJkMikUCtVmMwGFCr1aRSKSKRCHa7nVQqJf6m1V76Osjn8yQSCTKZDBqNBp1Oh0ajIRKJEDlzhO13bmfFiir0ej2i2jYHndo46lyStYYUsVgMs9mMVqtlPpnHm8ij0+mot0E8HiOXy5HP5wEwmowcOtWGTq2mpKKCGmcNRqORTCZDMpkEQKvVYjAYSCQSxGIxTCYTarX6YluNaYxuPS12FVYrZDIZ4vH4xbKNRjQaDfl8nnQ6TTKZxGAwXKy7zYTbp+fl+BybbLB0GuTzeXK53MWyCjSUllg4Mt3PJitoNJBMJkmlUgCYTCY0Gg0qlYpMJkMqlSKbzaLX60V/AjgcDiKRCJlMBovFIspXrsvn86K/4/G4mLuirYkE2WxWtD+RSJBKpbBYLCQSCdFPqVSKqdkp5k8doLa2EKfTCVwUWpS+t1gsaDSXKjPxeJxMJoNKpRL9l0wmf7H+wGw2o1ariUajZLNZ1Gq1uMbhuKjULl1TgUAAtVqNTqdDq9USDAax2Wzk83lSqRSZTAar1SrGVqfTEVMZKal188SZw2ww5zCbL16rzAlF4VP6fNGY17gxjOqY8I2w0ZonGAyKOW8wGBa9U5LJJNlsFq1Wi9lsJhgMijFQ+kyv1/9izjixzxjpnB9lkw38fj8ajeYXa0FNKBTCZrOh0+nI5XKk02nS6TR6/cW1qrLZyNhVTMTnWKO/+O4wGi++oxIaAyX1xTz26mHWm7LYLTlSqRSJRAKNRiPeC0vJZrMX22DO0VTl5OmpPjZYclgsF+e80r8OhwO4qNAOTg0SevVVGhtLsFltYn1kMhny+fwlz1LW6szMDKM9rWj0eprLbVhdVroLtFSqo9TlQpTmzeh0OvG+TaVSYi1YrVbUajWRSITwaBfBgQHqqp3Y7Xbx/lyIMjbKmjAYDKKt+XwetVqNyWQil8sRCATEuy6TyaDVajGZTMv2VyQSIZ/Po1Kp0Og1GCsLeDjlY5U2TqMmRiaTWfRtiMfjpFIpVCqVmHPKvE3lU7Q0FPP4TD9r9Slqrk1vk0jeEqQSILmuWW63yWq1YjAYmJmZEQL0+Pg4Ho8Hq9XK2rVryWQyTExM4PV6yWaz1NbWUlZWdsnHLpPJMDw8TDweZ2JiQghwXq+XmZkZtFot+XyebDbL6Ogoc3NzQmhIJpOYzWZ8Ph/JZJKBgQGee+45xsfHWb16NevWrcPn8zE/P09xcTGpVIr29nYhBOZyObZv304+n2dsbAyv14tOp2P9+vVEIhF++tOfUlRUREtLC3q9npqaGiYmJigoKBAfbo/Hw8TEBHq9noqKCkwmE9PT05w6dYpbb72Vqakp9Ho9lZWVFBcXL+pHRRgYHR0lFAphsVgoLCzEZrMxMDCAz+eju7sbp9NJdXX1JeOQSqWYm5vjwoULNDc3U1xcjN/vZ3x8HLfbTT6fZ3h4mGQySSaTIZvN0tzczEMPPURDQwPr1q1Dq9VSX1+Px+NhenqafD5PQUEBlZWVTE1NcebMGVatWoXJZCIUCpHP5/H5fGSzWbLZLMFgkL6+PtRqNdXV1bhcLlKpFLOzs8zMzOB2u6mpqbniqYki9ASDQUZGRoSAp5BOp5mamsLj8ZDP56mtraWwsBCVSoXf72d6epp4PI7b7RanP7lcjjvuuIOenh7m5ubYvHkzqVSKzs5OSktLxbwtKSnBarUyODiI2Wxm9erVaDQa/H4/IyMjxGIx6uvrsdlsDA4OMjExwdq1a5mamsJisVBdXY3X6+Xxxx9naGiIlStXsnnzZtLpNJOTk+TzeWKxGJs2bcJisSxqdzqdZmRkhGAwiMFgoLKyEpfLxdTUFHNzcwA0NTXhcrno7+9nfn4eg8GAy+VibGyMXbt2YTabLxG+2tra0Gq1lJSUUFhYyEsvvcTOnTvJ5/OMj4/j8/m46aab6O3tpa6u7pJ5CZBIJJibm2NychKA9evXCyFwuTFfyOnTpzGbzdTW1lJZWSl+D4VCDA0NEQ6HcbvdrFmzhtbWVkpLS7FYLGQyGTweD263m7q6OvR6/aI5cvLkSaxWK2VlZZjNZg4fPsyuXbsoLS0lHA4zNzfH/Pw8LpeLhoYG8e7IZDLMzMwwNTUl+nhpn8Xj8YtC9+goRqORLVu2oNPpxHXKHA2Hw+I9pdPpxO/pdBqv18v09DR+v5/du3ej1WppbW3l6NGjeL1eVqxYwY4dO4jFYszPz+P3+0mlUmzZsuWSDZJ8Ps8TTzxBf38/xcXFFBYWsnXrVuCiQjw5OYnP58NisdDS0kIul8Pj8TAzM0M4HGbt2rW4XC4uXLjAkSNH6Orqoqqqit27d19UkJa0y+v1Mjk5SSaTwel00tTUxPz8PHNzc8RiMSwWCytWrCAej3Po0CGqq6sxmUwEAgFsNhstLS2X1D+bzdLb20sulxMK9qpVq0Q/Dg8PEwgEqKuru3jSkUoxMjLC7OwsWq2WTZs2YTQaiUQizM7O4vP5xHtNIrlekNGBJNclitBmNC5/xqrT6cQH/ty5c+h0OsxmM1/5ylcAOHz4MG1tbWSzWVasWMF9991HJpNZVEYmk+GBBx5gcnKSiooKSktLmZiYAKC0tJQTJ07Q3t5OIpGgt7eXp556ivLycvr6+mhtbWX16tWsXLmShx56SJSxY8cOVqxYwc6dO3G5XELw6Ovr49VXX6WkpISKigpmZmZ4/PHH0ev1PPnkkwSDQYxGIz6fj6997Wu4XC7Wrl3Lli1b2LRpE83NzRiNRsbGxhgYGGBiYoK+vj6+/e1vs3XrVtRqNUeOHOHEiRO4XC5+9rOf0dnZSU1NDZOTk3zta1+7pA/9fj/Hjx+ntbWVlpYWBgcHOXz4MCMjI6xbt46SkhJuuummRYKUQj6fZ35+nqGhIXbs2MG9997L6Oio2Jnet28foVCIV199FZPJRElJCVNTU7hcLtatW8eWLVvYsGEDNTU1eDwevva1r1FZWYnb7WZwcJBHHnmEqqoqnnjiCTo7OxkeHmZ0dJTm5mYeeOABvF4vx44d4+c//zkAq1ev5tFHH2VoaIje3l5+9rOfcfPNN/P5z3+e/v5+sbO9HPl8nkgkwmc/+1lMJhPV1dVi9w/ggQceoL+/n6qqKlatWsW9994rFKQjR47w6quvsmXLFr7//e+j1WoZGBjg8OHDol4PPvggg4OD6PV6stksn/vc56ivr6erq4snn3ySV155hQ0bNvC5z32OYDBIR0cHx44dY2xsjD179vDtb38bn89HPB6ns7OTn//859x888384Ac/4OzZsxQVFbFz505WrFjBzTffjF6vZ3h4mP7+fjZs2MDY2Niy7b///vsZGBigoKCAwsJC7r//fkZHRzl16pTY8f6Lv/gL4KJp1/PPP88TTzyBXq9Hp9Px8MMPC2VhIQ6Hg+7ubs6dO4fBYODChQv09vZisViYnZ1l79699PX1sWPHDr73ve/xyiuvXFLGD3/4Q44fP87GjRtZvXo1n/70p5mcnLzsmCvjGI/HOX78OBaLhYKCgkVlulwuRkdHOX/+PB6PB41GQ09PDzqdjr6+Pp5//nluuukm7r33XsbGxi55XxQUFNDW1kZvby8ajUa0K5FIcPz4cY4dO8a6dev4+7//e+bm5oSimkgkSCaTbN26lR/84Ac8//zzYrNBqfePf/xjXnjhBbZs2UIoFOLIkSMEAoFFz49Go3zlK1/B5/OxYsX/z96fR9d1nffd+OfO8whczCMBEATnWbKsWVY81nHt107yJq6X28Rpmq6m7VpN69RN86Zj3sSrtR05cv3asePE8iDZkiyKEkVR4jwCIAEQIOb5XtyLO8/z/f3B3965AEGKlCWLdM5nLS2bF2fYZw/nPM/e3/08vdKJBzh16hQjIyNyhePLX/4yoVCIrq4uDh48SF9fHw8++CA6nY5Dhw4xNDRES0sLJ0+e5MyZMySTyTX3UqlU3HfffezcuVOOV8HQ0BDlchmXy8X//J//k0qlgs/nY3BwkNXVVXp7e/nd3/1dMpkMe/fuZfv27TQ1NfH444/LVYPqZ4/H4/z3//7fZZ87ceIE4XCYp556CrvdTiKR4OTJk1y8eBGr1crS0hJHjx5lfn6erq4u/st/+S839O9SqcTRo0cB6OrqoqamhomJCXnP6elp1Go1NTU1fOlLX6JcLvO1r32N6elpurq62LRpE//rf/0vQqEQ3/rWt+jv72f37t0AcnVZQeFeQHECFO5JxIdioyXe9RKE3t5e6urq1swuHTp0iGAwSCqVYnx8HIfDsUaWAtedgB/96Ef09vbi8Xgwm81S967RaDCbzRgMBikFslqt0ilRqVQ4HA6MRqNcmhZSCfG/cN2ZsVqtaDQatm/fTmdnJy+99BLLy8v8q3/1rwD40Ic+RKlUIhqNEo1GmZycBFhzPfFsDocDrVbLzMwMg4ODdHR0ALBlyxamp6c5ffq0lIns3LlTzlwJ+UQ1Xq+X559/nt27d6PT6ejs7CSTyfDyyy/LOt5o6V7UscvlYufOnRiNRtLptJSu2O124LqEY2hoiL/4i7/gb/7mb6ivr1/zXBqNhkQiwdGjR2lvb0en09Hc3IzBYOCnP/2plJO0tLRw//338+STT66p75GREYaGhtizZw8Wi4XPf/7zdHV10dnZyRNPPMHJkyflrPp6I6eaXC7HG2+8QUdHBxaLBYfDQX19PeVyGYATJ06QTCbxeDyo1WoaGho4d+4czz//PD6fj127dqFWq/nDP/xDmpqaMJlMUp5gNpvR6/VoNBqMRiMej0euTNjtdjweDx6PZ00dX7x4kYGBAbRaLZcvX5bSCoPBQF1dHb29vTe0i+h/arUas9lMJBLh8OHD/P7v/z719fUbSsFefvllLBYLXV1dNDY28nu/93u0trbS3d0tHV9RbyaTCbfbTUNDA01NTdTW1uL3+6WjVI3T6ZTjRBhaoi/pdDqcTie7d+/GaDRKOVI1YlUvn89jMBiwWCzMzMwQDAbp7+/fsM3z+Tzz8/P8p//0n/j85z/Pli1bNtTJP/TQQ2zevJk33niDbDbL7t27qaurY9euXbzvfe/j1KlT12Vt4TDpdHrNuW63W64OaDQa+VwAu3fvZufOnZw5cwa9Xk8wGJSGvhhbarWauro6wuEwQ0NDa553ZWWFpaUlJicn0el0hMPhNfVSLpd54403qK+vx+VyYbFYaG5ulu+0gwcPSoc6k8kwPj4upYviHSJkiB/4wAfo7Oykv78frVbL9PS0lF0Ba8b++nPh+upQ9apqpVKhvr6eTZs2YTKZGBoaIpFISBlO9bXE9QWFQoFjx47R2tqKzWZj27Zt/Pqv/zoul4vPf/7zLCws4PV6yefz0tlzOp1rVnZVKpWU1wnUajXbtm3jqaee4ktf+hKvvPKK3NslViTb29vRarWkUikAzp8/z+TkJH6/n4WFBQwGA6dOncJoNFJXV4fBYKC1tfWGeyko3M0ociCFX3qEoZXNZuULWq1W43K5aGpqoqamRhpi1VQqFfkBEB+T6mOqf7Pb7ZjNZvx+vzQwhP68+qMm/v/S0hINDdelTMJgq6mp4ciRIxiNRpqbm3E4HAQCAV555RW6urqkA5LP54lEIvKaqVRKrjQILboov/h4q1QqSqWSnBFTq9VYLJY1cqb1iN+FNrhcLsv/qrmZE6DVarFYLPLe1XUmZviefPJJ8vk84XCYEydO8MADD8hjYrEYsVgMQGp/xbnCuBT6YKFNL5VKsjzlcplSqSRlE3q9nmQyydTUFKOjo3zwgx/EZrORy+VIp9MbGqzVCN27RqNZYzRns1nK5bLsG9UGUzVCGlN9vpitLZfLqFQqqV8WhpXQnwvEcWazmcbGRlpaWvjQhz6E2+0mHA6j0+nkKlm1MSL6mNfrxW6309LSwj/+x/8YtVrN66+/zrZt22RbCcQeFPFcer2egYEB/H4/TU1NNDY2UqlUiEQiOJ1O6ZRptVo0Gs1NZ0SFk1Zdf9UGoUajkWXZqL9ptdo1+2+EEyv6xvo2F/XtdDp54IEHeP311/nYxz4mnU6BSqXC5bquSw+Hw1y+fJnNmzdTKBSYmJhgYWGBRx55BJvNRiaTIZ1Or5lhrn4usfdDrIhdu3aNaDTK/v37sVqtpFIpMpmMrGOdTgcgnd/q94zBYJD9vK2tjaamJqLR6IZOjCiTWq1e00dPnz5NoVCgtbUVs9lMoVAgFouh1+tlPYt30qlTp6hUKmzdupVwOEwqlSIWi2GxWNbI5kSfSqfT+Hw+WZ8mk0muaom6GB4eZmVlBbPZLKWDQrtf3ecWFhZobGxc0+c1Gg3FYpFyuSzrIpPJ8Oyzz/L444/T0tJCuVwml8vJ96LRaJTXEO+u9SSTSX7zN3+TTCZDLBbj2LFjdHd3y/PFfhFxrnBY29vbKZfL6HQ6fD6fXMkR41dB4V5CWQlQuKcRuvNAIEAkEiEQCBCLxaRxFQqF5N+SySSpVAqfz8e2bdvQ6/Wk02l0Oh21tbVrDBO4/vHZu3cvXq+XlZUVotEokUiEpaUlEokEqVSKaDQqNzaurKwwNDQkNxNms1lCoRCJRELOfAmdqtfrJZPJkEwmWV1dZXV1lWQyyalTp6Thd+3aNTKZDAMDA2QyGfkxU6lUBINBHA4HmUwGn8/H6uoqxWJRPq9Op6OxsZFUKkUoFGJmZgaXy0VnZ+f1Tb3JJIFAgNXVVVk3ot4Edrudbdu2sbCwQCgUklrY7u5uQqEQsViMUCh0w4xoKpWShoO4h7h+MBgkEAgQjUYJhUKYTCY2bdpEc3OzdLhqamqIx+OsrKyQTCblCkQ4HGZxcZF0Os3u3btJJBKk02lWV1eJx+Py+UV919XV0dLSwtjYmOwbkUiElZUVpqamMJlMmM1mVldXCQQCxONxkskkPp9vzSyrRqOhra2NfD4vn8nv9xOPx4nH41J6IeqpUqnQ3NzM1q1bsdlsLC4uEolEWF5eplAoYLfbsVgsLC8vs7y8vKZuhGY6kUgQDocJBoMEg0HZ3/x+v5SMxeNxNBoNbrdbbrIUfUkcL861WCxEIhG8Xi/hcJhSqURNTQ07d+68vvF9AyNp9+7dJJNJ5ubmpP56bm6OQCBALpdDq9Wi1+tZWlqSbZBMJolGo3K8pNPpG2byhYGfTCYJBoNyPIh+KPTzouyiLlZWVohEImi1WtxuNxqNBq/Xy/LyMu3t7VitVtrb229oc9HfNBoNO3bs4PTp0wwODuL3+29wUvR6PU6nk4aGBiYmJnC73RQKBZaWlpibm5N9ZmVlBZ/PJ8so9syIiGChUIhoNMry8jLRaJSFhQWWlpbk+V6vl2QyKbXofr+fYDBIuVzG6XTicDhkHWq1WjweD06nk3w+L59fOA5w3YFpa2ujVLoe4Ub0pXg8TiKRYGxsjKWlJekoq9VqotEolUoFvV4v+2epVGJ8fJzFxUW50hmPx4nFYjc4yVarlXw+L+8l3rfV7xQxnubn5+V4Fs/s9XrJ5XJy4kLsnaluE41GQ3t7O4VCgUgkgt/vJxAIkM1mOX/+POVyWUqIYrEY4XBYliEcDst3/srKypryl8tlFhcXaWtrY8uWLXg8HqLRqDxevEfF+yQWi7F161bpwIk2aWtrk4ESQqEQPp9P1vnNJgMUFO4mFLdV4Z4mm81KwySVSjE/P09DQwNWq1Ua4YVCYc3S8NTUFB/84Ac5ffo0U1NTaLVaotEobW1ta2altFotn//855mamqJYLMoP/sTEBFu2bJEbT5eWlqirq2N6eppQKCQ/eOLjKj7MKpWK2tpa+aEpFArSENLpdMzPzxOLxdBoNAQCARYWFvjt3/7tNZtZxSbiZDLJ5s2bGR8fx+/3U1tbSy6XIxwOUy6X6e7uprOzk6tXr7KwsMD4+Di9vb00NjbK6CzT09O43W6i0SilUgm/3y+lOnB938NHP/pRXnjhBRobG/H5fNTW1nLgwAGpiV5eXqalpWXNrGQkEqFQKJDJZJicnJQbToVhIAz5RCJBf38/vb291NTU8PDDD6NSqdi6dStXrlyhWCxSV1fHli1bOHfunDSKCoUCv/EbvyGNpoWFBTo7O+no6GBhYUFuDt2+fTsej4czZ85w3333kc1msdvtGAwGTCYTy8vL1NbWyg++MEYmJydxu91yVk+v17Nr1y6OHz9ONBoll8sxNzdHqVQiGAzy8Y9/nNXVVa5cuUJNTQ0NDQ1s3bqVnp4eLl26xNDQEB0dHQQCASn3KZVKjI6OShlEPB5naWmJhYUFMpkMwWBQzsIajUY6OjrQaDTMzc3R19dHOBzm4sWLeDweuSFXOAGVSkWGYRVGdkNDg+x3uVyOpaUlZmdncTqdPP7449hsthtWdH7jN35Davc3bdpENpuV0i5hQLa0tMjZUOFMrKysyM30YoWleobU7XZjNpvlM5dKJWZmZuTGznw+z8TEBHa7nWKxSCKRwOv1yo3QGo2GnTt3kkqluHbtGvl8no985CPU1tZy//3343a717S5qAchN6pUKpw/fx6bzXaD1Er0+0ceeYTx8XHg+gywmFn2+Xx4PB78fr90rMTYEXKXVCqF1+ulWCwyMzPD9u3b5e9+v5+6ujq8Xi87duygpqaGtrY2pqenMRgMGI1G2traqKur4/z586TTaVQqFT09PWs24judzjVjVa1Ws2vXLi5evEgmk2Fubg6fzyf7qNFolKGTxYbzfD6P2WzG6XSSTCalM+9wOOR5wlkTq1Xr60mlUpFKpWQ7h8NhstksHo9HytSmpqbkaoxYNRDSpFwuh81mw+FwMDExwbZt29asgmi1Wnbt2sWxY8fkRIdaraa7uxuPxyNXCsvl8hoDPh6PY7fbZaSu6elpampq5Ox+pVKRjmtLSwsej4f77ruPUCiESqViaWkJo9Eo+43f7+cjH/kIy8vLXL58mc7OTorFIrt27WJiYoJSqcTCwoKUaYXD4esSS40BBYW7GVVFEa8p3IMMJGBfP/Tvg70/Ryg2ETZvfWSUasSqQqlUolKpyA1qwnjw+Xx897vf5fd///exWCzE43GGh4c5fvzG+OHVS9M309NvhAgNWG1MqVQqKUeonhVcf79UKiXlMm+XZDIpl+LfCapfO2LGrHqTtwhdWv286XRazj7fyX2ENEOE14TrRoPQlAtupy0ymYzUQScSCZxOp5ShiHCg6/tSqVQik8mskduI8IYmk4lEIiGNtDuJ014ul2VklLc6r7rfCWdYhCS91fniuUSoREDO7Astt+BOY8yL+hKSno0kebdCSNVEP6mWwW3U5neCuEb1/qLb7TMiFKh4LiETEnK8jc4XkiaDwXDTOhDPK+RCN6tvIZ3T6/XEYjEcDgdqtVqG/aweZ6LvihVG8d/Njl2P2HOwvi9shJAVrt9DIPpisVi85RjIZrOoVKo19SdC565/L74V4v0j7iukY7dznmjHammUaPPqiERarfYd+04pKLxbKE6Awj3JO/VyFd3/Vh+Omw0RcU40GuXkyZNSShCPx2Wc9IceeuiW17pdw2mjMogP+K2uU33enRppG13n57nGRterZn1UkNv57U7vsz704M3uf7vXE+fdqp43+ttb9anb4U7a9q1e83fSf96Jst/sOu9G276dPnu7z32z/TAbHXer82+nLW/3ue70/htd9+0869vtg281ftafv9E74a3KeTtludPzbqccihOgcLejyIEU/kFzOy/+tzrGarXywAMPANc1rGJD3EabxN6uEX2z897qeu+U0f5OXed2r7fR399OGd5uvb2T13unnuXnucY7+bx3S596p9v2ra5xu9d9p/rIL+r+78az3umxb/f53+lx/HbPe6ffjwoKvygUJ0BB4edEq9VSU1MDvPMz5goKCgoKCgoK7waKE6Cg8A6iGP8KCgoKCgoK9wKKE6BwT1MsFSkWr8/Gi02C1Zv5qhGz9IVC4YYkW+uP+YdgzL9Vff0ieCfq+91us9vZzC02koqNm3ey6ftu5b3sH6JNxabN9ZtJq/NWiL+t12gXi0UpybvV++Dt7hkQfeJONjPfDf1kva797QYr+HnuL+oAkPUg/ib63fo2v1n5b+c+72Rd/0P6Rij88qPkCVC4p3nm+8/wV3/1V1QqFX74wx9y6dIlQqHQhseWSiVWV1f53d/9XY4cOSLDKFaTz+c3TJz1y0alUuGZZ55hYGCAcDj8npVjo9CDb+ca62PRv5Pk83nOnj3LkSNHblpXuVyOc+fO8W/+zb/h1KlT72p5flG81Xh6t0kmk/zxH/8x3/rWtxgdHV3zt0wmwyuvvMIf/uEfcvr06Rs2ZmazWf7kT/5EhpDcCBGd6O0QDod55ZVXePnll+/ovHK5zPT0NJ/5zGc4ceLEe/auERGE4HpggzNnzvDqq6++7fq4EwqFAgMDA/zrf/2v+Tf/5t/w05/+VCZWm5iY4A/+4A94+umnGRsb2/D86mSBt6JYLDI/P88//+f/nDfffJNEIvGOlF8kJlNQ+GVAcQIU7mm6urvkh76np4eGhoYNM2nC9Rknm83Gvn37bpol9/jx41y7du1dLfPdwubNm6mvr18T6u4XRblcZmZmhqGhoZ/byDx79ixXrlx5h0p2IxqNhubmZtrb29eETKxGr9fT0NDArl271hhY9zJiPL0X/QOuJxXbvn07LpfrBqPPaDTS0tJCX1/fhgaZVqvlfe9735pwkusZGxvjxIkTb7tsHR0ddHR03NF5arWa9vZ2GhsbMRgM70k/qVQqPP/888TjceB6RmLRv+9kVePtotPp2L59O//kn/wTwuEw8/Pzcsa/VCrxG7/xG3z0ox+V2XuricViTE9Pc+XKlbesO5Eleu/eve/IZIPA5/PdsfOnoHC3osiBFO5pDHqDjJ8dj8dxOp2USiUZA31hYQGLxUIul0OtVtPY2IjJZKJYLMoMlQaDgYaGBo4ePcrZs2fp6urCYrHQ2dl5w/1KpRKhUIhkMonRaMRms6HX6/F6vaTTadxut0xo1NzcfENc/Xw+z/LyMul0GpfLRTabRa1W09zczOrqKrFYjObmZux2O6VSiUQiQTAYxGQy4XA4MJvNZLNZRkZGaGtrI5fLyXjejY2NjI+PUy6X8Xg8OBwOmbSovb1dxsEWS+TxeBy3200qlSISibC4uMi2bdtYWVnBYrFgsVgoFAqsrKzQ2dmJWq2WibUaGxuJx+NYrVYcDgdWq1XKCkQiMavVisfjIZ/Pc/XqVZqamuS9nU4nzz33HE6nk0KhgEp1PZFaJpMhFAqRz+dxOBy43W5yuRwjIyO0tLTIeNwGg4GmpibeeOMNzp8/T11dHU6n8wbDQczaLS0todFoMJlMWK1WzGbzmna02+3yGdLpNF6vF61WK3/3+/2YzWaZMyKTycikaG1tbej1erRaLSaT6bYMOxFzfmZmBq1WS1NTE1arVSalSyaTWCwW7HY7ZrOZYrHI3NwcAB6PB4vFQjabZWxsjI6ODlKpFJVKBbPZTENDA3A9r4JIDqXX62lpaSEcDrO0tITZbKampga/309zczOlUkkmAGtqapIJzJxOp4wFXy6XZXI9l8uFw+F4S6MxHA4Ti8UolUo0NTVhMplYWlqSY8RqtRIMBunu7kav16NWq8nn8zKRlIgdvx6R+MtgMJDP55menkav1+NyuTCZTEQiEemMiYRj4XAYtVqN1WolEolw9uxZ5ufnaWxspKurC6PRKDMU53I5LBYLHo8Hn89HKpVCpVLhcDhkTP9UKrUm+dTCwgKlUgmTySTbLRaLEYlE5LO63W70ev0t4+EXi0WZ2byuro5yuYzNZiOdTrO0tITNZqOxsZGZmRk0Go3MJhyNRgkGg7LfulwuYrEY0WiUfD4v31UXLlzg4sWL0onSaDSsrq5KZ08k2xMrpR0dHZTLZXw+H4lEgoaGBqLRKHq9ntraWoxGI9lsFq/Xi0ajwWw2Y7PZbpp7RcT637JlC729vcTjcU6dOsWjjz6Kz+ejr6+Pmpoa+S5Jp9N4PB70ej2jo6OcOXMGt9uNx+Ohubl5w/j+IltwPB6X+RpEtu98Ps+WLVtkNueWlhZqamooFApMT0/LjN8Wi2VN/y6Xy4yOjjIwMCCTL/b29srsy2Iyo7Oz85Z5HBQU7iYUJ0DhlwKRAVJ8gFQqFf39/TidTpmNs7GxUR4fDAZxu91kMhnC4TAf/OAH8Xq9RKNR0um0TMJVTS6XIxKJMDs7i8vlIhwOSyM4nU7z6quv8vjjj8sEZMlkku3bt99Qzkwmw6uvvsojjzwCXJc9eL1eGhoamJ2dlR8hvV7PlStX8Hg8TE9P09rayqZNmyiVSgwPDxOLxaSRHAwG+dCHPkQgEGB5eZne3l4MBgNTU1PYbDZaWlpuKEcgEMBqtaLRaMhms7zxxhu43W75QRcGYSwW4+rVq7S1tcnMuIlEArfbzeTkJLW1tdJxGRwcxGAwoFKpSKfTBAIBurq65DlarRadTofJZGJ6epqtW7fKRGyFQoGrV69K50VkY7VarQwPDxOJRHC73dKB+9jHPobP5yMSiUiHZT2pVIrZ2dk1Cb4SiQQ2m425uTnZjolEQhrXFy9exOl0kkqliMfjtLa2ymdpamoikUjg8/mwWq1MT0+jVqupr6+/o/4ai8UYGxvDaDSSyWSoVCoyA+y1a9eor69neXmZ1tZWPB4PExMT0uCcnZ2VBuXw8DDJZFJmfi4UCng8HpmRWNS3yKbqcDi4fPkyFouFnTt3ksvlOHXqFO3t7eTzeTKZDNFolO3bt0vD0GazodPpGB4eloZNNpslm83S1NS04fOJZF3z8/Pk83lUKhVzc3M88cQT5PN5Ll++TLlcZu/evQSDQQqFAt3d3ZTLZVZXV2XCpUQiccskVMVikUAgQGdnJ2NjY3R3d7Np0yYKhQKTk5M88cQTBAIBEomENMxisZjMqry8vEw+n6dSqRCJRGT2Y7PZTCAQoFKpkEwmmZycJBgM8tBDDxEOh7HZbPh8PrRaLdu2bWNubo7V1VWsVivxeJyVlRV27drF0NAQLpdLOgL79u275epEqVRibm4Or9eLzWYjFosxPj7O9u3bUavVLC8vk8lkqKurY25ubk0Cs8HBQVwul3TqdTodV69epba2lnA4TKFQwGq1sry8LHOZiNnxZDLJysoKvb29zM3NkUgkZHblK1eu0NXVhc/nY3Z2lnA4TG1tLcPDw+zduxebzcby8rIcY/F4nEqlcssEjCqVCqfTyQMPPMD58+d57bXXaG1tlblW8vm8fJe53W6Ghobo7u4mFouxsLCAzWaTycfWs7S0RDgclqu9or1LpRLT09MEAgF6enrI5/OcOnWKRx55BK1Wy8LCgkyKODU1RX19Pc3NzWuuHY1G8fv9xONxuTo1PT1NMpmU9XX58mW2bt160xVpBYW7CUUOpHDPo1Kp0Ol0xGIxvF4v4XCYcDjMd7/7Xfr6+jh79izRaJS2tjY5szM7O4vdbiefz/Paa6+Rz+fZvn07ra2tdHd3b7gUHQ6HGRwcZGJigk2bNpFIJBgdHWViYoLm5ma+//3vSwMzmUzy0ksv3XANnU5Ha2srP/jBD4jH41gsFiKRCF//+tepqakhmUwyNjbG3Nwc6XSaY8eO0dbWxtmzZxkYGCCRSGAwGAiHw5w5cwaNRkO5XObIkSMUCgVsNhtjY2MsLCyQy+VYXl7G6XSumdES9RWPx/F6vXKm+OzZsywuLtLR0cHIyAg/+clPyOfztLW18fzzz7O6ukqxWGRpaYmxsTH6+vqYnp7m3LlzXL16lUwmw//5P/+H2tpauru7icfj/PCHP8RgMOD1ehkeHmZxcZFCoYBer6erq4uenh66u7upr68nl8tx9OhRaTRdvXqV4eFh+bznzp2jVCqh0+k4fPgw+Xyevr4+2tvb2bRpE729vRu22fHjx6mtraWmpoZUKsXU1JRsx+7ubqLRqLxXMBjke9/7Hk1NTZTLZTlb6HQ6OX/+PLFYjLm5OQYHB6mtrWVhYYELFy6wsrJy2/1VGHrf/va32bx5MwaDgbGxMc6dO8fQ0BADAwP09PQwMTHBwsICS0tLfOc736Grq4vu7m76+/s5fvw4KpWKUCjEyZMncTgcRCIR3nzzTTKZDMFgkFdeeYVsNktHRwc6nY7vf//7WK1WJicnpRPZ19fH1772NWl0FotFnnvuOdk/fD4f4XCYUCjEU089RVtbGy6Xi0AgwPj4+C2fMxaLMTk5SblcRq/X87WvfU06uCMjI5w6dQqtVkttbS0vvvgigUCAmZkZjh8/Tjqdpqenh0wmc0v9dT6fZ2pqiu7ubs6ePcu1a9ekQ3Xu3DkymQxXrlxhenqampoa3G43KysrtLe309bWRm1tLbt27cJkMjEyMsLVq1dJJpO0t7czPz/PxYsXMZvNLC8v8/LLL6PT6VhZWcHj8bCwsMDg4CC5XI4f//jH5HI5GhoayGQyXLhwgUqlwrFjx3A4HCwsLPDGG2+85f6bVCrFm2++ycsvv8zmzZspFAo899xzzMzMoNfr0ev1nDp1CrVaTTabZWVlhenpabxeL88//zz19fWkUikmJiZYXl7mzTffxG63o9VqZRbjHTt20NjYyNatW6mtrUWr1WKxWDhz5ozcazE0NCT723e+8x25orSwsMCZM2fYsmULx44dY25ujoWFBc6ePSvHWCwWu239/aOPPkpTUxMXLlzg5ZdfZu/evZhMJmZmZujv72dpaYne3l6OHDlCNBrF4/HQ3d1NT08PmzZt2nAV4OjRo8zNzWEwGGhvb5cz9A6Hg2AwyNDQEMVikdbWVk6cOMHS0hIzMzP86Ec/wuVysWnTJs6fP8/w8PCa66rValpaWujt7aW5uZldu3YBcOjQIUZHR+nu7qarq4u//uu/ZnV19R2THykovJsoToDCLw1Op1POxlQqFfR6vYwsYjQa18zM7Nq1Sy7Nm0wmYrHYmogUG2XNnJub44UXXmDv3r1oNBq2b99OPB7n0KFDmM1m6urq6OjooKmpCYPBQCAQuKGMarUak8lEXV0d7e3tNDc343a7pfTD4/GQyWSIx+PYbDY++9nPcurUKXK5HKlUCr/fD4Db7Wbbtm243W50Oh1ms5l4PM7u3bsplUpyGbytrY3e3t4NP5aivoS0wul0snPnTllPFouFbdu2UVdXRygUIpfLYTAYqK2tpaenB5VKxcMPP0w8HueFF15gfn6e1dVVdDodRqMRjUZDOp1mYmICt9tNa2srBw8e5OGHH8Zqtd4Q1cVisfC7v/u79Pf3E4/HiUajzM/Po1KpcLvd9PX1UVtbi06nw2Kx3Fab2e12enp6+NVf/VX+3//3/5WzyocOHWLv3r2o1Wp27txJKBTimWee4eTJk9Iwf+ihh/jwhz9MW1sbbrdblnP37t38yq/8CmfOnEGtVjM/P7/hBlTRD9cTCoWYn5/H7/czMjJCPp8nnU5z9epVjh49yoMPPohGo+G3f/u32bFjB4uLiwSDQYxGI0ajkXK5TCQSYX5+npqaGrZv347NZsNgMGAwGIhGoxw+fBin04nVasVisVBXV8crr7xCpVLBarXS2trK5s2bUavVlMtluru76ejowGQyyX4r+kc2myUYDOL3+3E6nXR1dfHoo4/y6KOPymfcKOtsfX09fX19FAoFrly5QiqVAq5r0F0uF01NTXR0dFBbW0swGJSysTfffJOHHnpIyuRstpunWjUajezfvx+NRoPFYqFcLkupkcPhQK1Ws2nTJqanp/n1X/91vvrVr7Jv3z4cDod8NwgH+bnnnqNYLNLZ2Yler+eBBx7ghz/8IbFYDIfDgcfjoa2tjX/0j/4RNTU1mEwmDAYD2WyWH/3oR+zevZva2lruv/9+vvCFL6BWq/nsZz/L5OQkPp+PcrnM4uLiTZ8F4NKlS9IJsVgsbN68GbguRTEYDLjdbnmskAfGYjFee+01jEYjo6OjFAoFjEYjPp8Pk8nEP/kn/4RDhw6RTqepqamRM/ZiLAgZFVyfRV9ZWSGTycjny+fzzM3Nkc1maWxsZNu2bajVarn6Jt59v/qrv8qXv/xlOdZv1v+r0ev17Nq1i49+9KPk83lMJhNqtZqBgQHOnDkjVzhqa2ultG+jaFDV/PjHP8ZisdDb24tWq6WzsxOVSiXlgGKFwmAwYDab0Wq1+Hw+jh07JldexPdjPdWRqlQqFYuLi/j9fjKZDEajUdbX7OwskUjkls+uoHA3oMiBFH7pUKvV2Gw29uzZw4kTJ/j0pz9Nc3Pzmmy+Qn8Mfx/uT3xUxIqC1WrFbrfL34XxGYlEqFQqa5bYxTXFsdVh9zai+liVSrXmg1OpVIjH41y9epVvfetb/Nmf/Rlzc3NSeyu0usKAX3+/hx9+mLm5OX72s5/JTMa3i6gXISMRCF34ekKhEJVKBZfLJR0RcVw2myUSiUgjzmw2r3lO8SFdWloil8tht9v5vd/7Pb7yla+wuLjI+Pi4lN6I561e0ahUKrIOE4kEy8vL2Gy2NW2mVqupqanhyJEjDAwMcOnSJamJr27HYrGIw+HA5XIxNDQk61Los6t59dVXOXPmDF/84he5fPkyAwMDRKPR295UaTabcTgcWCwW9u/fD8DWrVsZGBjg9OnTJBKJG/pP9cxqIpEgnU5LY2Z9v6tUKjgcDvx+/5pZ9OoNyxqNRurShXxLnL++34q9DuuvVSqVbip5qFQq/OxnPyMUCrFt2zb27NnDD37wA3w+H/X19Wi12jUZtUX/EgaWWFF7KyNyo7Gz/hydTsdHP/pRPvvZzzI4OMj/+T//h8997nPy76VSiZGREQwGA4VCgVQqRblcxu/3Y7Va0Wq16PX6mz6rSqXCarWSz+cpl8uyz0SjUb7yla/wb//tvyWbzTI5OUmxWLzlLLHFYqFSqazpc6VSSdZN9bMmk0lprNfX1xOPx9m1axcOh4NisSilLZ/73Od49dVXmZyclKuFcH2DqzBqq++fz+fJZrOyPoPBIHq9Xo636jKI92ZbWxtHjhzhwoULHD16lFAoJOWO1eN0I8RziXCwgNz30NHRwe7du9m6dSsajYarV6/K8g4NDdHb23vDxnXhuFY/g0D0e0EikZArk7W1tezevRuNRkNPT88tnYBSqcTi4qJs6+p7ra6uYjAYNjxfQeFuQ3ECFO5pJicnCc3P4/P5GB0dlbPiNTU1zM7O4vV6MZvN7Nixg23btmG32xkdHcXhcFBTU8Py8jILCwsMDAxw4MABotEoc3NztLS0sHPnzjX3am9v5x/9o3/E0NAQtbW1DA0N4XA42Lp1K9euXZOaWbVazcjICD6fD7/fj8fjkR+ubDbL1NQUXq+X2dlZfD4fIyMjeL1evF4vV65ckXIFsRlwcXGRcrnMysoKGo0Gt9stn8HlchEMBllYWKC/v5+PfOQj7N27l0gkwvT09A17AeDv9dpjY2PSEKyrq8Pn83Hx4kWamppYWFjA5/Nx7do1VldX8Xq9rKysyEgtExMTdHZ2cvny5TXSgkceeYTR0VFMJpNcmTCZTExOThKPxzGZTHg8HgwGA319fVy7dk1uwrNaraTT6TUSlEgkgt/vZ3R0FJvNhtVqpVAoyOfdt28fyWSSRCJBZ2cne/fuXfOskUiE48ePy+dsa2ujs7MTk8nE0NAQHo+HwcFBPB4P+/fvp7W1VUaIMplMcqXo0qVLzM3Nyc3EwjmJRqMEAgH8fj/pdJqRkRGcTifvf//7OX78OPF4nObmZu6//35ZJpPJRHNzM/v27ePs2bO4XC60Wi319fU8/vjjnDhxgpaWFil/aG9v54EHHuDChQtyc6rYMzI6OorX66WpqYnl5WXm5ua4cuUK73//+5n//4+L/v5+fD4fX/jCF4hGo/h8PmKxGAMDA9TU1ODz+ZiamiIYDDI8PIzf72dubo6rV6/Kzbf79u3j8ccf59SpU1JCYjQacblcfPGLX+R//I//IWeTBfl8XtaT2Nh++fJlWltbmZ+fJ5fLMTU1xeTkJMvLy/j9frq6uviVX/kVjh49yp49e5iamiKbzVIqldi1a5d0HHO5HH6/n6tXr+J0OtmxYwfLy8tUKhU8Hg+tra14vV6GhoZYWFhAr9ezdetW9Ho9W7ZswWw2y1nnoaEhLBYLn/zkJ5mZmeHq1asUCgUuXrzIZz7zGdLpNFNTUywuLjI6OkpfXx+zs7PMzs6STCaJRCL87u/+Lq+99prci5PL5bDZbKRSKRk0IJ1OMzg4iMPhkONerKoJtmzZwuLiItPT04yOjpLNZkkkEpRKJVnfuVyOmZkZFhYWWFxcxO128+lPf5rh4WGmp6fljLTRaOTQoUNYLBa5mbutrQ2j0cjy8rLc26TRaGT/BtixYwfFYpHz58+jUqnYu3cvHo9HyqV8Ph/bt29neXmZq1ev4vf7CYfDaDQaOfPucrmYmprir//6r/mv//W/3tQJCIVCzM3NMTo6SrlcZmlpicbGRvbv34/VauXChQvY7XZCoRCbN2/G4/HQ1NTExYsXOXDgwIYR3n7rt36LZDLJ+fPncTqdTExMEAwG2bp1K/X19UQiEa5cuYJWqyUajbKwsMDWrVv55Cc/yaFDh9i2bRuZTIba2lo5wSNwOp2YzWbZRnv37uXAgQOUy2XOnz8PwL59+2hubr7unGQ2fGwFhbsGxQlQuKdpa29ju+ER9Ho9e/bsQaVSYTab8fl8NDU1yc3AwsB59NFHOXDgAEajkZqaGvR6PU888QQNDQ04nU4OHDggl8fXRyVxOp1s376dfD6PTqejubkZl8tFY2MjsViMT33qU3LZure3F7PZfMM1xDL6pz71Kerq6lCr1fT09KDRaKSB0tzcLD92Tz75JAaDgR07dsjZX5vNxsGDB6U0x2Kx8OSTT9LQ0ECpVMLpdNLS0kI+n7/p5jy1Ws2ePXtQq9U0NTXhcDikzMFsNnPgwAHi8Thmsxmn08lHP/pRWltbyWQyUtKk0Wjo6uqioaGBTZs2YTAY+JVf+RXMZrOUIgkD/33vex9msxmPxyM3aPb19VGpVKitrcXlcmE0GvnEJz6BxWKhqakJrVZLJpPB7XbLdqmrqwPggx/8oGyzPXv2UCgUpDSqGrPZTE9PDwaDgfr6ehobGzGbzRgMBplMqqWlhdraWmkgPfjgg1itVvR6PUajURrtjz/+OLW1tXI21Gg0yhCRIhLUvn37MBqNMjxhqVS6wVDRaDTU1dXx8MMPy+sYDAY5oxsKhdBqtVitVqxWK0ajkccffxyz2YxKpWLnzp3Y7XYcDofsy06nU8q+GhoaqK+v58CBA1gsFoxGIx6Ph82bN2M2m3n/+9+PRqORBs2nP/1p6urqMBgMbNq0iY9+9KMYjUY5npqbm7FarTz55JNoNBqMRqMst7jORpt3e3p6qKmpwW63o9Pp+PjHP059fT1Wq5X7779fRtKpr6/nQx/6EA0NDbhcLumYaLVaOd7Wb9BUq9U0NDTI5xfyLavVKvvwxz/+cTwej5y9NZvNWCwWWlpaMJvNbN68WTp5NTU1NDQ0YDAYZMSw7u5udu3aRSqVYseOHbjdbrkaIGRI+Xweq9XKww8/zPT0tJTQiAhBTz75JE6nE71eLyMLORwOPvjBD9LV1XXD6oLD4WDbtm1SilWd5EpInB599FEMBgO9vb3SUG1sbOTgwYNYrVYpxzObzWzdulU+i91up66uDo1Gw8MPP0xLS4uMgNPW1saTTz6Jw+Fg3759pNNpuUL0+OOP4/F46OzslKs/BoOBJ554gsbGRoxGI263W0ZZa25uxuFwkMvlaG9vv+UqgFarpbW1Va5Yins2NjbKVSER2lmn0+F2u9myZYs8ZqPIUe973/tYWVmRbS7eHWazWYb5FStRIhRpS0sLjY2NeL1eWe8bhQM2m820tbXx4IMPynfv/v37SafTckXuiSeeoKamZs1Kl4LC3Yqq8ssQ0FrhHxwDCdjXD/37YO86yfDCwgLXrl1Dq9Vy8OBBisUihw8fJhAI8Ad/8Ae3vK6QJaxfJq9GhJEURtC7SaVSIZfL3SAfutmx8/PzGI1GUqkUxWJxw82yb5dSqcTly5c5fvw4XV1dPPHEE9Lgr6ZQKEj5wlt9CMVmRVGPYpWiWq71VqH2hLSiUqnc0B5CHiIiB2m12jX3ulk7ZrPZGyQr6++Zy+XWGArry5nP54lGo6RSqQ3Dzd4qa6owRKvLKqKhaDSa2+53IvJNdf95u4gIK6JthbxuZGSEvr6+DeUP4vnWj6e3yvQKrJEfrZfC3Gm5hUwH1sqnxO/VITtFErG3E90ll8vdIJnJ5XI3tNlbtUWpVJLyrS984Qv81m/9Fk888YSU5WSzWTQajawrEXGout+KvwkDVavVyn0z4r+bveeqnddbhTOFG8dYtUzx50WMBZPJtEayVigUblku0Verk/aJd0p1RKV0Oo1Op0Or1cpQorlc7gbp4UbPK8aBSqW6aX3d6juloHA3oLiqCr90OJ1OmpubOX/+vNy8ptPp2LRp01ueezsfL5VKdcvwd+8kKpXqpgmqNuLpp59mx44d7N+//x11AOC6gREIBJiYmCAWi/HhD394w4/wRrNzN2P9sSqV6o6TU92qzVQqldS9b/S3m7XjW9W5WA25FYFAgHK5fINMpvr+G9WVWM26nWPfindSl6xSqW5wikQIzZvNJb2d2VDRp+6k37/V9W7mOG3kXNzK+XsrNupntwoJejM0Gg0Gg4Fz587J3A5+v5/W1tZbjpGNnNL1fVyMibe6/+06mrcaYz8vNxsLb9WvRV/dqB1FoAjYuG7eqt9tVH93Ul8KCncTykqAwj3JrWZYRJfeqGu/UzNUdyPVG5xv50P/dq5fvfHydmfq/6FS3f9+Weuoekb5l/UZ3ytE3ZbLZTnjrNTxvYWyEqBwt6OsBCj80rHRh/IfwsdTzHi+m9f/h1CP7xT/EOpK6RPvHqJuf5knLhQUFN5bFCdA4ZcWxThRUFBQUFBQUNgYZYpBQeFdIJlMMj09/V4X454hkUjcdfVVKBTw+/1cuXKFbDZ7g7yseqMsXM/2Oj09zfz8/IahC+8mCoUCoVCICxcu3DWZTf1+P9PT08zMzMgNzb9oRJbtgYEBuUlUhIK9U4SU53aeQ0h/ROhRkeVWkEgkWFhYYHR09I7L8XaoliLdbjvc6fG3e83qMXY3IBLSDQwMEI/H12w+VlC411CcAAWFd4Hl5WWef/7597oY9wyLi4u8+OKL73Ux1pDJZOjv7+crX/kKwWBwQ0NEJJaC68mXnn/+eV566SUZKeVuJZVKMTIywh//8R+/506AMB7PnTvHT3/6Uw4fPkwymXxPyhKLxTh16hR//ud/DkA0GuXcuXNMTk6+reslk8k7qt9Dhw7xs5/9jKGhoTW/e71eXn/9db75zW++rXLcKSICT3WEptshmUy+ow6wSJx2NzkBIuHbn//5nzMzM3PHdaSgcDehOAEKCu8CNTU1vO9973uvi3HP4PF41iTUuhuw2Wy0tLTQ3d29oWFTKpX4yU9+IrP51tXV8dhjj90yWs7dgtPppKOjQ+ZdeK8JBoOEQiF27drF7/3e7+Fyud4TOZ/H46GtrY3a2loA7HY7vb29NDQ03PG1KpUKL7zwArFY7C2PFc9633330dLScoNhuXnzZjZv3vwLW2EKhUJcvXqViYmJO+rLIkv0O0U+n+e5554jn8+/Y9f8eanOLvxWmeEVFO52lD0BCvc0i4uLlFIrpFIpHnjgAdRqNT6fj4WFBSwWCzt37kStVhMMBllZWSEUCnHw4EGMRiOXL18mmUxSU1NDNpulWCzS19eHzbY2jMObb76JxWLBZDKRz+cpFovs3bsXrVZLOp0mHA7j8/kwm810d3eTTqdlBlQxkzU/P08ymcRgMNDU1CQz1aZSKZxOJ1u3biWTyTA+Pk6pVMJms1FXV0dNTc0Nz1wul5mdnWV8fJyGhgb0ej2JRIKdO3diNpsplUqEQiFWVlaIx+M8+OCDqFQqisUi4XCYmZkZrFYrq6urdHd343Q6yeVyXL16FavVytatW2UIwnK5TDAYZHJyErPZLENCajQa+vr6mJqawmq1ykzC8/PzNDQ00NTUhE6nIx6Ps7y8jEqloru7G41Gg9/vZ2BggPvvvx+/34/FYiGVShEIBKhUKly+fJl0Oo3JZMJoNBIIBHjooYdQq9Wk02lWV1dZWFjA4/GwsrLCjh07pNG2nkKhQDweZ3FxEZVKRXt7OxaLhUgkwqlTpzhw4AArKyvywy6SUo2Pj5PJZJidnd1wuT8ej3PmzBl+/OMfYzKZuP/++3E4HMB14+/q1asAMuNvpVJheXmZpaUlmTW5qalJXm9iYkIaT2azmUQiwa5du9Bqtfj9fi5fvsx9993HysqKTGoWCARYXFyksbGRpqYmAoEA8/Pz6HQ6HnjgAa5cuUK5XMZisWA2m1lYWKCtrQ2Px7NhGMTp6Wm8Xi9arZb77ruP5eVlpqamMBqNNDc3Mz09za5du7Db7Wi1WuLxOOPj46hUKrq6urBarSQSCebn50kkEmzbtg2Hw3FDmMb5+XlisRgqlYqamhoaGxt58803GRsbo1Ao0N3dvSavgujPExMTWCwWduzYgVarZXV1lcXFRfL5PFu3bkWtVjMxMUEkEmHz5s3Mz8/T3NyM0WgkHo8TDAbZuXMnVquV06dPU6lUsNlsZLNZLBaLTLZWzeTkJJFIRMbnz+fzXLx4EZPJRHt7O7W1tRSLRebm5lhaWqK3t5eamhqi0Sh/8zd/w8zMDDU1NezZs4e6ujpSqRQDAwNYrVa6urpwuVwUCgVWVlZYWVnB5/ORzWY3DIspEDkjFhcXCYfDqNVqdu/ezfT0NH6/H5fLhdPppFKpMDU1xa5duyiXy0QiEaLRKGazmb6+PkZHR4lEIthsNvr6+jhy5AgdHR3U1NRw8eJFfvazn7F//370ej2dnZ2yz4h3mnhXWSwWDAYDL7zwAjMzM9hsNrZu3YpOp1szzmtra8nlcoyNjXHw4EEpAWxsbGTHjh2Uy2UGBgYAqK+vx2QyMTc3x7e//W3cbjfbtm2T7/JUKsUjjzzCqVOnZBIxlUrFxMQEu3btIp/PYzKZZCb0ubk5amtrqa+vx2AwMDs7S6FQoFwuy3a8GeVymaGhIXK5HI2NjXg8Hvm3cDjM2NgYdrsdt9t91zjVCgq3i7ISoHBPs7i0SFtbG+FwmHK5zEsvvcTg4CANDQ1Eo1FGRkZYWlpiamqKlZUVmpub+epXvyoN2dnZWV544QWam5s5deoUS0tLZDJrc71rtVrOnDnDxYsXcblcHD9+nGAwSDQaZWhoiDNnzrBp0ybC4TBnz54lGo2SzWY5ffo0AEePHpWZaU0mEwsLC3z3u9+lXC5TX19PqVTipz/9KYcOHaKxsZH6+noqlQo+n2/DZ1apVNTW1vL6668zPz+P2WzG7Xbz53/+56TTaS5fvszc3JzUNL/00kskk0lOnDjByZMnqaur45VXXqGmpgaLxcLIyAjPP/88mzdvlnkAwuGwvJfdbufMmTOsrKyQzWaJx+OMjIxgNBqZn5/H7/fj8/k4fPgwfX19nDlzhqWlJWZnZzl69Citra2cO3eOa9euyVny0dFRrly5wuzsLOVymVQqJeursbGR1157jQsXLqBWq0kmk5w6dYpEIsGZM2c4d+4cHR0dPPvss9JYuBmBQIBDhw7R1tZGf38/o6Oj0nCanp7m+PHjuFwuFhcXOXz4sEwsFwqFcDqd2O12AoHADdc1mUxs27YNrVbL5s2bZSbhYrHIyMgItbW1TExMMDIyQigUIhgM8sILL1BTU8Pq6iqXLl2SSdXg+srRysoKP/rRj6irq8NqtfKTn/yEoaEhSqUSV69e5cqVK8zNzeH3+7l27RrHjh2jr6+PN998k1AoRKFQIBKJcPHiRSqVCgsLC+TzeSKRCK+//jq9vb38zd/8DfPz8zfMXj7//PPSsXK73fz0pz/FZDIxMjLChQsXCAaDtLe387d/+7eEQiFGRkY4efIklUqF+vp6Tpw4walTpxgeHiYQCNDX18dPf/pTgsGgvIcwpq5duyYTN508eRKv10tra6vMdFxtZAEcP36cY8eO0dLSQjQa5erVq7z88ssMDw/jcDjo6urib/7mb4hGo4TDYa5evcqZM2fo7e3l2Wefpb+/n3w+j81m42//9m+lU3ft2jUuXbrEpk2bGB0d5dSpU6ysrKy5d0NDA4ODg4yPjxMIBPjGN75Ba2sr2WxWOuI+n4+hoSHa2tp47bXXOHHihMy+3NjYyKZNm3A4HCwsLPCd73yHLVu2EIlEmJmZYXx8nImJCU6fPk1HRwe5XO6G989GnD59mng8TqlUIhgMcvjwYTweD6+88gqLi4sYDAZKpRITExNks1lOnjzJ4uIiTU1NhEIh3nzzTcxmM9PT05w5cwa47mwNDg6SzWZxuVw0NTXR3d19Q2beYrHIyy+/LNtLpVIRCoXo7OyksbGRzs5O+Q6rHuf5fJ5cLsf09DQLCwu4XC76+/sZGxsjGo3ywgsvUCwWcbvdzM7OMjIyQkNDAxaLhb6+Purr66mpqcFoNPL8889TKpUol8ssLCwwMzOD3W7n0KFD+P1+5ufnmZ+fZ3l5mRdeeIGenh6GhoYYHR0lEAgwNjZGR0cHq6urpNPpm9ZzOBzmueeew2Qy0dHRwdWrV3nttddkHwqFQrjdbmKxGEePHsXr9d71q4AKCtUoToDCPc3iwiJnz54ll8uRSqUYGxsjEAhQV1dHfX29TBEvsjrm83kuXLhAoVDAZDJRqVQIh8O4XC7i8TiRSOSGj7DFYiGdTpPJZLDb7USjUSKRiPyYpVIpXC4XNTU1nD17VhoSYmY3lUoxODjI4OAgfr8fk8nEkSNHpO45nU7L65w+fZqxsTHi8fgtjVsxk69SqXC73djtdsbHx+Wsu8i0WSgUGBgYIJfLsbS0xMrKCg6Hg+XlZWw2G4VCgfn5eUZGRiiXy5RKJQKBwBpNtsFgwOFwEIlEiEQilEol5ufnqVQqWCwWkskkc3NzLC8vUyqViMfjcsOcyWSSs7BLS0skEgnUajW5XI5CoUB9fT1Op3NNfblcLsLhMOl0GpvNhl6vZ3p6mmw2i9/vJxgM4nQ6mZ6epqam5pZJirRaLWazmVgsRjAYZHl5mUgkIrPd5nI5bDabXK0plUocOXIEk8lETU0NVqt1wxCNWq2Wuro6dDodtbW1mM3mNRmdHQ6HzBi8urrK2NgYi4uL5HI50uk0sVhMyogAufoUCARwuVw0NDQwMDDA3NwcKpWKfD4v6ysSiTA5OYnP56NUKhGLxYjH4xiNRhwOh9Svi2RodrsdvV5POp1mbGyMcDh8w56FU6dOMT8/L8fJ7OwsBoOBeDxOOp3GbrdTV1fH0NAQ6XSaiYkJrly5Qn19PW63G5fLxdTUFFevXiWXy1EqlVhcXCSbzcp7lEoljh8/TqVSwW63YzabSaVS9Pf3Y7PZsFqtWK3WNQmc0um03Gzt8XhoaGjAZDJx+fJlZmdnqampwe12MzMzg9frJZlMUiwWKRQK0hHL5/O4XC7sdjsDAwOUy2WMRqNsf7fbjdvt5tSpU3i93jX14nQ6iUQirK6uEgwGuXTpEh6Ph/r6elmvGo1Gjp3x8XEWFhbQarXU1tbKGWKxEiTuL4z38fFxBgcH5Wy22Wy+rURlYlUyl8uRSCS4fPkyVqsVk8lEIpFgZWWFTCZDe3u7dBzL5TJutxun08lrr72GRqMhk8lIJ9disRAOhymVSpjNZpxOJ263G5vNtmYMiNVA8a6KxWJYrdY1zyvGTfU4F9cpFoukUiksFgvxeJxEIkE8Hue1116jrq6O2tpaWU6bzYbZbJaOcfWqlqgHUQdms5mlpSWMRqOc2b927RqLi4sUi0WSySTxeJxQKMTw8DDnzp2jWCzeUnYWj8c5evQobrebmpoa4vE4s7Oz8h1vNBplP4hGowwODjI2NsbQ0NCa1T0FhbsVxQlQuKdJJBK89NJLUpaTSCSknGbLli10dXVhsViwWq0YDAZCoRDZbJZCoYBer8flckljzmazkcvlbtDjWiwWamtrcblc6HQ67HY7iURCZs4V+uWOjg6Gh4fx+/1otVq5fN7W1sbAwACvvfYaExMT2O12JiYmSCaTZDIZyuUytbW1dHR0cPjwYU6ePMnKysoNsiSByAdgMpnk0r9er8dms7G4uIjNZsNoNJJOp6U8KpfLodPp0Ol0crbNaDSSSqWkoSeMa+FEiHupVCoeeughYrGYlNUIo3rTpk2oVCopc/H7/bS0tKDRaNDr9bS3tzM/P4/RaFxj+Aq50969e6mvr5f1JTKP2u12nE6nNARisRilUgmDwYBeryebzVJbW4vFYrmp0VSpVKREa35+Hr1eTzKZJBqNUi6XpeZfOBFC33vhwgXq6+uxWq3o9XrppKxvg+o47sLwVKvVtLS0oNfrsVgsqNVqQqEQo6OjmM1mIpGIlClUO1p6vR6r1YrT6cRgMFBfX08gECASiaBSqWR97du3j2w2y8rKCgaDAb/fT0dHh5S2tLW1SWe2trYWp9NJTU0N7e3tsu0ymcwa4xxgbm6O1dVVstmsrFutVotGo8HpdNLe3o7JZCKdTlMul/F6vSwuXl+FM5vNPPjggySTyTX9oLGxcY2DVi6XOXPmDC6XC6vVitFolNKTSqWyYUKsdDpNMpkkn8/LGeGurq41ziBcd1SFlMblcklZV7FYpK6ujqamJkwmk4zyYzKZpPGvVqvZvn27XMWobmO9Xo9Op6NUKpFMJkmn0xgMBrq7u+np6aGpqUm+RyKRCMlkUjpB4nkKhQKxWEw6tqurq9hsNrRaLT6fj+HhYXp6eqTzeDsZs5uammSfK5VKrKysUC6XeeSRR8jlcly+fJlYLMZjjz3GxMQEarUai8WCXq+nra1NGsB6vV5OklQ7suL51Wr1DZGa1Go1nZ2dvPrqq5w4cQKv14vNZkOj0cjnLZVKaDSaNePc4/Gg1Wrle02j0aDT6aQzcuXKFdra2qScaOfOnWvGmFg5MxgMcmXCaDSi0+nkO1Gn09HQ0MCOHTukY2qxWOTEkM1mk9+Kl1566S1XXdLpNMPDw7jdbrRaLTqdTk6cwHW5n5gkqa2tpb+/nytXrtDf38/IyAirwdW3bEsFhfcSZU+Awj3NB578AI9+7pP89//+3+np6ZEzgULuIGQwq6ureDweHn30UQBWV1flx0Or1cqP3Ebh6CqVypq08MJYFLPgiUSCSqVCIpGQH9rqzLo2m40/+qM/IhgMMjAwwPPPP4/D4aC3t5euri5KpRJbt25lZmaGp59+moGBAaampjhy5Ai/+Zu/uSZj6HrEfYRu2ul08nd/93e0tLTw0EMPSSMsGAzS1tZGKBTi8uXL/Oqv/iq1tbUkk0kcDgcul4sdO3agUqlIJpM3aKOFvCOTydDW1kZTUxNvvPEGH/vYx6Tu3mw2s2PHDnbs2EE2m+Xo0aP84Ac/4Nvf/jYrKytyBlG0jTA6qutK/K8wQKtDFep0OhobG8lmswwNDfFv/+2/las54r/1WYwnJib40z/9U370ox8RCoXI5/NkMhkZ7Uf0gXK5LMMbCsNH9IVbbf4T5/r9fiKRCIA0UKozONfU1FCpVOjr68PtdlMqlW4wxKsRs8WA7Heivmw2G7W1tZTLZXbu3MmOHTvIZDJotVpyuRz79+/nBz/4AU8++SSFQoHLly/z+uuv87/+1//iBz/4Ael0mkQiIVcDxMx8Z2cnO3bsAKCrqwuDwSCzAVfPdot6Ew6lVqslmUxiNptpaGigvb2dnp4eOjs7b9C2OxwOUqkUuVyOYrFIOp3G5XKt6cvinnDdWBeGpahLEZFJ1L3oVyaTiVKpJOtC1J0wJKvbeP0YWl1dxW63y2eu7pOiPxoMBnK5nPxbLpdjYWGBCxcukEql+NznPofD4SCdThMKhVCr1TLsZ1NTEw6HA7vdLsdZOp1Go9Hg8/kIBAKybOvvXz1GxH9/9md/xsc//nE2bdqE1Wrl+PHj+P1+Dhw4wNDQELOzs3R0dMhJi+XlZTKZDKVSiVQqhd1uR61Wo9Vq0Wq1lMtlKS8S91Sr1ZTLZcbHx9m8ebNsS9EHv/71r3PlyhUmJyd59dVX2b59O5VKhfn5+TXOX/U4F5MD4jnS6TTZbBaVSoXJZKJYLMoVBDHmxLlLS0vo9XrpnIl2z+Vy8l1hNBrlO0CsCAgnb/fu3UQiEWKxGF/84hcxGo188YtfpLa2lpaWlhsmPtbXg1qtlnvHqidoqt89NTU13H///VQqFfR6PVMqO7y9wFIKCr8QFCdA4Z7mtSOv0fTADvbs2cOuXbukVOfll1+WM31CShEMBjl//jwul0tuIJyammJ1dZWpqSkGBwelMVu9afP06dNcvHiRhoYGNm3axODgIJVKhV/7tV/DZrMxMDDAxYsXuXDhAp///Odxu90MDw8zNTXFuXPnePnll9m9ezd1dXUy2kxfXx+nT59mcnKSuro6crkcL774ItFoFKPRSHd3t9zA+mu/9mt89atfpa+vb82zF4tFJiYm0Gg0pNNpdu/ezbZt2zh+/DjZbJbl5WVisRiFQoFAICCfU+w1+MQnPsG+ffvo7e0lkUjw6quvYrfbqampoaGh4QaZTXt7O8VikY6ODjo7O/nhD39ILpdj69atGI1G/u7v/o4LFy4QjUbp7e3FYDBgMBgYHR0lmUxKjXpNTY2URdTV1UlDaXJyknPnzgHXl/GFvv71119nfHycj3zkI0xPT3P27FnUajWHDx/m85//PJ2dnRw7dowXXniBP/mTP5GzwOLDbDabGR0dJR6Ps7CwQCwWQ6vVcvHiRXw+HwaDgZmZGSYmJujv7+e//Jf/wvHjx2ltbWV5eZmrV69y6NAhfud3fmdNnQhj6MyZM+zatYtKpcIbb7zByMgIk5OTDA8PE41GyeVy/OZv/ib/7b/9NwYGBqREaffu3WvqN51Os7S0xNDQEJcvX+aTn/wkPT09+Hw++vv7KZVKNDQ0sHv3brRaLS+//DLnz58nEomwe/duamtrqamp4TOf+Qx/+Id/yCc/+ck1179y5Qomk4nh4WG5EjI1NcXJkyf5zd/8TYLBID/+8Y/p7u6mXC7jcrlYWFhgeXmZN954A7Vazfz8PDMzMxw4cICWlhaefvppHnjgAfL5PI888ggrKyv87Gc/47HHHiMYDHLgwAFp5Ot0Ov79v//3HDp0SK6CLC4u8s//+T/nmWee4eLFi+RyOfr6+mQbms1m9u7dy+TkJC+99JJckfu//q//i3A4zI9+9COam5tpaWlh06ZNcs/I4uIidXV1zM7OMjAwIHM+LC8vMz8/Ty6Xw+/34/f7GRsb47nnnuMLX/gCLpeLixcvMjExwfHjxzEajYyNjaFSqdi1axcf/vCHeemll6ipqcFut8uVvHw+z7lz5ygUCmQyGRYWFti6dSvf/va3aWxspKWlhc7OTvbv38+rr76KzWbD5XLR0dHBr//6r/Pss89SV1fHhQsXmJmZob6+nkceeUSuCkxPT3P58mUmJyeZnJxEo9EQi8WYnp7G5/NRKBTw+Xx4PB4aGxvRarWyDj/2sY/xt3/7t8zPz6NWqxkaGuI//+f/LCVNgUCAS5cuMTo6yrlz59i1axetra10d3fzyiuv8OCDD65xgguFAj/+8Y/lqlZXVxdms5nm5ma+853vUFNTI4MtVI9z0XZ9fX0cO3aMSqUiNfSbN2/mS1/6Ek8//TT79u1Dr9djt9tpa2tj165dvPHGG7IetVotjY2NcrZ9eHhYrgBMTk7y2muv8fDDD8tVqq9+9atcvHiRVCqF0Wgkl8tx6tQpPvnJT/LBD35QruA+//zz7Nmzhw996EPSkW9qauI//sf/yDPPPENrayv5fJ7u7m527txJf3+/lF+urKwQCAT43Oc+t2ZFxf/3ij8FhbsSVUXZxaJwDzKQgH39cKhlhQOO67P0DodDSgeANdIRIfExGo1EIhGcTifFYlHOSNbX18soMXa7HavVKu8VDAZJp9NyVi0QCEgpTj6fJ5lMytUEi8Uil7eDwSCNjY3S6BTSArVaLfXIgJyNi0ajssxarRa1Wo1Op+Po0aPcf//9N8hSvvCFL/CpT32K+++/X85c19XVEQwGKZVK6HQ6tFotsViMSqXC0NAQhUKBAwcOUKlU+M53vsNnPvMZWlpa5Ky0Xq+X/4kZaEE4HJbPCNc1/B6PB51ORz6fJxQKybILrW44HMZut0tDyWAwoNVqCYfDUncP12Vd4XBYhmJcXV2Vy+zxeJxcLic3FwoZTzab5Sc/+Qmf/OQncTgc+Hw+GhsbqaurW7Mvwu/343A4ZBl0Oh0mk4lgMCjbW0g9RHSPTCaDRqMhm80SiUSkTn+9NnpxcRGTyYTFYkGlUhGPx0mlUnJjutBXu91uVlZWZFvrdDppLAiD4dVXX+XZZ5/ly1/+MtlsFp1OJ2emRZ+rqalBq9WSyWSIxWJyRr5aSy4ix7S2tgLX96QkEgm590GtVmMymdBoNHi9XhobG9fIOERf1Wg0BAIBKVNRqVTyeK1WS6FQkOUU7V4oFEilUvIZq+VaIva86I/i01NbW0skEiGVSmEymaS8TSBkc2KmV8hzCoWC1HSXSiWcTifJZJJUKoVOp5MbvoXEplAosLq6Snt7u3TSMpkMn/rUp0in0zidTjQaDalUinA4LDe9BoNBqf0WqxDVkhQhobJarTLggIgmtri4KN8nQkYnxpkYnyJyj8FgkDPjWq2WtrY22T/Ehvx4PE5LSwvBYFC2vZgRdzgc2Gw2+Vx79+6V9RgOh+Usu5COiT0fYuVERA9ramrCbDaTzWaJxWK43W7ZXwApBxPvKrFKqtPpWFpawmq1ylUDsQdK9NtyuSzHlMVike9c8ffqviPeQ4FAAI1Gg9FoxGAwoFKpCAQC6PV6KdOC6xGFlpeXpZRPq9XKPU6irsSKgYjUJiYJRBS0QCDA7t275bOKlRPxTSmXy/KdEQqF5HtfrKDU1NSsGdPiO9W/D/ZurO5UUHhPUZwAhXsS8XK9sKfELlNpjdEglv2rNcbVUg9YG3Lv56VcLlMsFqW0pJpqmZFYWhbHVMtMRLmKxeIaCUOlUmFwcJDe3l5pfIsP1h/8wR/w8Y9/nMcee0xquAVCtiE+ZiKyTjKZZP/+/ZTLZZ555hk+/elP093dLQ2pjXTZ65+les+A+Lf4e6FQWFMPIpxhddnebt0PDg4SDAYxGAy0t7eTTqc5cuQIH/vYx+RmYqH93iik4p2UQbRNdfvcTJJV3bZvhdg3sN7BWllZ4dVXX+Xo0aP8xV/8hZQx3KqcG9W3+L36Oav7YPV9N+qr4rlFH7wV4rqibm/VD9YjoqvcziZY2HhMV0vhqu9/O7zyyiuMjIyg0+n4p//0n0oj/a0Q91tfDiFPqh4766VN4tiNxpnoo9VleKu6EccLucrAwIA0jO12O93d3WuOF9F0qiP9wN+/v4QjICYgRFnX94Xqdl//rtpIUrNRHYpxJf63+h6ifqrHU3WdiWsUCoU1ksH1z1V9v+qyCqr7qHCqi8UiTU1NNzj71c+7fpyLdlg/pkFxAhTufhQ5kMI9jUatQa9f+/Jd/wERv71bqNXqGzT0AvHR2eiDvtGHY6MPmdgwW00ul5O67Xw+f8P1119XxKYXM53lclnGcRd181ZGx/pNgxv9fX09qFSqm36c7xSxGTKdTsvZuZ07d8r4/MANGvS3WwbRNht92NdzO8cIblaOTCaD0Wikq6tLOgpvZZRuVN/i943+fTvte7vOTPV11z/TzcpVze0a/4KNxvSdlnf99SwWi1zBuV3EHqL1v23UBzYyhDc6X/x+p310/XXi8TharRaPx7PhZvab9efq91d1u92qrLBxu99OXVbX10bl2eie64+7nT5WfexGdbt+4iifz8tQv+vPh5uP3TvtywoKdxPKSoDCPYkyw/IPl41WIRQUFBTuNpTvlMLdjhIiVEFB4Z5EcQAUFBQUFBTePso6loKCwj2FYvwrKCgoKCj8/CgrAQr3NOVyWSaRuRUTExOcO3eOaDR6y2MvXLjA1atX12Rz/UUjNs6JiBPvFKVSSW7IfKeJxWKcPHmS7373u6RSqXflHr8IxCbD6lwTtzq2uu/l83kCgQCvvfaajCbyblAqlVhYWODFF1/ku9/9roz3HwgEOH36NE8//fQNZc/lcrz22musrq7ekC24+rpvt3+cOHGC6enpO2p7kdviq1/9KhMTEzdN3JTJZBgaGuIrX/kKoVDoLdvlbmB937gbEGGDjx49+nPVYbFY5OzZsxw9epRz584xOzt70z71i+DdfK9tRDweZ2BggL/8y7+8Za4PBYV7AcUJULinyWQzzM7OvuVx2WxWboi9Fclkkmw2+54aGolEglAoJLObvlP4/X6ZI+CdRszOnz9//l01gH8RhEIhIpHIWz5HpVJhcnJyzXGlUkmGwHy3WF1dZWlpiVgsdkPegkwmw8WLFzcsq8i6fLOyra6u4vV631aZEomETKR1J5RKJebm5giFQrc0JJPJJOPj46TT6bvKsL4ZuVyOqamp97oYaxDObTwe/7muUyqVZJZnkShubm7unSnk2yAYDLK8vPwLu5+INnf+/Pn31PlRUHgnUORACvck1w0BFSu+FaYvn6G1tRWj0SjD2omwjSKzpN1uB67nDhD5AUR4uFKpJDNR1tbWYrVaZex7EdtezMqLWNNwfea32lkQcf2rw9iJeOYiMsf6KBeirCIEol6vZ25ujmg0is1mk5kpq68hwg7mcjkZ6zqfz1OpVGRyoWKxKEPXGQwGstksw8PD5HI5ampqMJlMMmOpKFM2m5Uxs4vFosx6KeqnWCxKI1Kv18swgiI86vbt20mlUmuMNDEjms/nZR0DMhyhiF0uouFkMhlZ3yKUpojXL+pYRIQR8fKFMSJipov8C+Lc6gyk1RmC8/k8RqNRRuMRccWHhoYwmUx0dHTIiErr2xGux99//fXXcTqdeDwe2d9aWlrW1E11O1QqFdlvRMZdjUYjwzKu7+MbnT8xMcHKygrt7e3cf//9MjqJx+Ohs7NTlrU6V4RKpZLx30VOAHFdrVZLPp/n6tWrxGIxamtrZT8SmXoB2X6ZTEa2gQjNWF9fj8PhkG0gyiDqVYSxFEaTGEcWi4Wurq4NM/mKMaZSqbBarTQ0NMhxWD1uRL2LdhUzwyJ2vWh7Uc/pdHrNu0L0FVFfon7E+0K8I8R1RTZrUTfr2zGfz+Pz+Th58iRtbW2YTCbZtmKlSYzX6voR1xP9XuQTqe53arVavr/Eu028N8Q1qkOTVjuJarUao9FIS0uLfEeIOgRkm1f3P/HMop+I9h8aGuLTn/40drudyclJTp48KfuXuHahUEClUmE0GuW/RdsXCgX57lov7xN9XoQ4Fs9VHWK5UCig1+tJpVKMjY0Ri8Woq6tDr9eTyWRkO4p3VfU4qu4H1TksRBQhkYG4+n2bzWbltaxWKz09PbLexKSRWq2W79q/j6ykmFgKdzdKD1W4JxFOwOHDh7F4x+nq6uL+++8nk8kQCoUIhUKoVCr27NlDPp9ndXVVJgBKpVIMDg7S3d2NVqtldXWVHTt2YDKZ8Pl8OJ1OTCYTyWSS/v5+Dh48SDAYRKVS0d3djcvlklluY7GY/ABYLBa6u7vlh1ck1Zmfn8fj8VBXV4fL5Vrz0YvFYrJsiUSCnTt38sILL+D3+9mzZ49MrjU1NUVtbS0NDQ0yq/GFCxc4cOAANpuN8fFxcrkcjz76KJVKhYWFBZaWlrBYLOzdu5cLFy5w+PBhMpkMZrOZRx55hOPHj+N0Oqmvr0er1XLmzBk+8IEPEI/HWVxcpFQqsWXLFsLhMFu2bGF+fp5AIEC5XKavrw+32y2z3MZiMZnHoJpiscjc3BxXr15l69at8qPb2dnJ8vIyCwsLWK1W3G43BoOBY8eOsXv3bqLRKCaTiYaGBhoaGhgYGKBUKmGxWLBardjtdurr67l06RKFQoGmpia6urpIp9OMjIwA1xP3eDweHA4HIyMjJBIJmUU0Go1y5coVHnzwQWZnZ3E6nTQ1NZHL5Xjqqad43/veRzqdpre3l4aGBrxeL3Nzc9TX11NXV4darebEiRM8//zzOJ1OHnzwQex2O9PT0yQSCen8rKyssLCwgFqt5r777pPOWCQSYcuWLczNzdHQ0EBLS4t0+ASFQoHFxUV8Ph9arZaDBw+SyWSYmJhgamqKrq4uenp6ZFIrMS4qlQrz8/MsLS3R3d1NY2Mj6XSa+fl5Ojo6KJVKhMNhfD4fGo2G9vZ2xsfHOXz4MJFIBKvVyuOPPy4zBIdCIdRqNb29vdjtds6ePYtOp8PpdJLJZNi8eTOLi4sYDAZsNhsajYZgMMjExAQOh4OmpiacTifRaJT5+Xngevbp2tratxjfSInR0tLSGslHPB4nEAgQiUQwm81s27YNtVpNKpWSKyUej4fu7m6Gh4eJxWLU19fT3NzMkSNHZK6M1dVVstkszc3N+Hw+Nm/ejMFgYHZ2lmKxyIEDB9BoNCQSCZlxuKmpifr6ekZHR0kkEvT29q5px9HRUQ4dOoTf76e3t5d9+/atST6YTCYZHR2V8fwbGhqora2VfcdiseDxeKitrcXn8zE/P4/L5ZKO1uLiIpcuXWLHjh3kcjmSySRbt27F5XIxPT1NOp2W8f337dsn7xuNRpmbm5NSR7/fTygUIh6PUygUePTRR4G1+QxWV1eZm5vDaDTKHByjo6MsLCzQ39+PXq/nypUrnD59moaGBh5//HH0ej2Li4vMzc2hVqt58MEH8fl8TExMALB582bGxsbYs2cPLpdLht4UbS5WLHO5nBy/V69exWaz4XA40Gq1zMzMsGXLFl588UWmp6dlnYlsxCKLcSqVYvfu3Xi9XpaWltDr9dTX19PU1MTRo0dpbW1dk2uit7eX/v5+mTXd7XZTKpU4d+4clUqFnp6eNdnkS6USExMThMNhbDYbBw8e5NKlS5hMJtra2sBUd9M+rqBwN6DIgRTuSYTRs237Nvr6+uSM6Isvvsjw8DBNTU289NJLXLlyhXK5TCwWY3p6mqWlJVpaWnjppZe4cOECpVKJlpYW/vN//s8yg+rMzIzMXvvDH/6Qq1evUlNTQzqd5stf/jKVSoVvf/vbLC8vE4vFWFpaIpFI0NDQsCZmdCaT4emnn2b37t385Cc/4fnnn79B53/58mWuXLnCnj17iEQi2Gw2enp62Lt3LwcOHKC3t5f29naOHj3K+fPnWV5eZmRkhObmZl566SXm5uZwOBw0NjbyV3/1VxQKBf73//7fXLp0ie7ubiKRCKdOnWLv3r10d3fT0dHBww8/jFarxWazcenSJaamptDpdFy+fFk6LNeuXePw4cMEAgEuX77Mq6++yuDgIFqtlp6eHv7iL/6CWCzGU089xcLCAn19fRvqY0Xm02eeeYbJyUlmZma4evUqi4uLfP3rX5eG8JkzZ9BqtQwNDTEwMEBnZyerq6v81V/9FdPT0/T19fHUU09x4cIFcrkcg4ODfOlLX8Lj8bBlyxZWV1f52te+xre//W327dtHd3c3+XyeoaEhXnnlFSYnJzlw4ABnz57lxIkT2Gw2fvjDH3Lt2jU6OzsZHx/nu9/9LjU1NezcuZODBw+yc+dOmpqaSKVSfOMb32D//v384Ac/4NChQ5jNZp544gmcTicPPfQQbW1tOBwOWlpa+OY3v0kul+Pb3/42586dY+/evfT09PAf/+N/JBaLEY1G6e/v5+WXX+ahhx7ia1/7GteuXbuh7r72ta8xPj7Onj17aG9v5z/8h/9APp+nvb2d7du3s337dhoaGtY4ldlslsnJSQwGA4VCgYsXL3Lx4kW0Wi3T09PMzs7y05/+lPn5efbt20drayszMzPs3buXzZs309bWxqOPPopGo+Ev//IvCQQCdHV10drayn/6T/9Jzp6eP3+e5557TmYAnp2dZXZ2Fq/Xy+LiIn/6p3/K/v37GR4eZnh4mNnZWZ5++ml27tzJqVOnOHv2LAsLCzcd3+VymW9961v4fD6amppobm6WDkQoFOK5555jfHycbdu2sbq6yo9+9CMWFxd56aWXePHFF9m/fz8vvvgikUgEvV5PMBjkjTfewOl0Mjw8zMzMjJw9/5M/+RPMZjO5XI7vf//7vPzyy7S1tfGDH/wAv9/PysoKx48f55VXXuH9738/zzzzDOl0mmAwyKVLl3jllVd46KGH+N//+38zPT1Nc3Mz73vf+9iyZQv333//Guc4l8vxzW9+k76+Pnp7e9FqtYyPj3Pu3Dlef/11WltbWV5e5oUXXqBQKPD000+zdetWjh07xt/93d8B0NLSwk9+8hOZHMxut/Onf/qnxGIxBgcHpfO8vn5dLhd2u51vf/vblMtlXn31VXK5HJ2dnTfslcpms8zMzPDUU0+xd+9eCoUC586d4+LFi+zcuZOamhoOHjzIY489xt69e6mrq+MDH/gABoOBb37zm3KSpaenh69+9auYTCauXr3Kq6++yuLiIvv37+fP/uzPmJ6eXlNGn8/H9773PbLZLG63m+eeew673U48Huf48eOcOHGCxcVFYrEYHo+HAwcOsGfPHrZv387BgwdxOp2Mjo5y5swZLl26xMzMDF6vl2984xs0NTURi8V45ZVXyOfz2O12/vIv/1I6uS+88AIvvPACBw4c4IUXXuDo0aN4vV7+9E//lI6ODrZu3crly5d56aWXZHnFSsXS0pJ0FPr7+zGbzRvmLFFQuNtQnACFexJh+IglW2F8P/jggzQ3NzMyMoJGo2F+fl4uPZtMJilfUKvVtLW10dnZidlsJhwOA9eTTYkkMmL5u7e3l6amJjQaDZFIBLguBTEYDDKRl/ioVEs69Ho9H/nIR7h69SqRSIRsNitT3AsqlQqjo6P84R/+oZTGiOcR5RT/63a72bZtG08++SQ6nQ6j0SglD1arlUqlQjAYJBQKUSwW8Xg8HDx4kN27d2M2m2VdiZk3p9Mpl7s1Gg0Oh0NKazQaDWazmZ6eHj784Q9z7NgxwuEwyWSSmZkZjEYjZ86cwWq14nA4MJlMNDY2bthWYmm+qamJAwcOsHXrVk6ePIlOp2NmZoZyuYzBYCAcDmO322ltbcVsNtPY2EhrayuvvPKKvE99fT3d3d1s376dEydOEAgE8Pv9Uh/f2dnJv/yX/5Lvf//7JJNJTCYThw8fxmg0MjU1RTabxWAwyOyh27Ztw+PxSC2/WMYXdSDkDB/+8IcZGhoiGo2SyWSkMVwt59BoNJhMJjQaDYuLiwSDQSk5stvtDA0NkUgkMBgMeDweOjo61shKqvvE/Pw84XCYYrGIyWTCarVy5coV0um07Juif67PMltTU0N9fT1ut5t8Pk80GkWtVsuVhsbGRi5fvsy/+3f/jldeeYXNmzdjsVjW9A+VSsXJkycpFou4XC40Gg0Gg4GhoSGZkKqtrY1du3bR2NiI3W5Ho9Hg9/u5cuUK7e3taLVaPvShD7Fv3z6ampr4xCc+wcWLF+VKRCAQuOn4LpfLHDp0iKamJilPqqu7Pqt66tQp2X9NJhPbt2/npz/9KW+++SbpdJqGhgaMRiOf/exnpeFrMpmkdEiMUzFuxCy72+3G4XBgNpsxGAxYrVZisRiXLl1ifn6eYrHI+Pg4Ho9H9pW6uro17Vgt8dlI/qdWq+nu7uaLX/wi/9//9/+xuLhIfX09L774Ijt27MBqtXLffffxq7/6q2g0Gj784Q8zMTFBIBCQs/6iv23atIm2tjY5diwWC8PDw3zjG9/g2Wefpb6+/oZxaDQa10iTnn32Wb7+9a9L+aRgeXmZS5cu0dzcjEajoaenB7/fz/Hjx6V8T7ynhCEs3iuXL19mbGyMYDDIysqKHFMajQan08nWrVtxOBxEIpE1mvpyuczx48flym0gEMDtdrO6usqDDz6I2+0mkUgQj8d57LHHpNRtfV3b7Xbq6urYtm0bBw4c4M0335Tfgkwmg8ViIRgM4nK5aGxsxOFwYDQapeRMSEGLxSKJRIKTJ08SCoXw+Xyk0+kb5EubN2/G4XCwtLQkV4vr6+tvkFcpKNyNKHIghXsateq6LnllZYW6ujpGRkYolUq0trbidrvJZrMkEgmp2RWoVCqZMTSdTsuPUXVaeGFg2Ww2KfERxzU1NUmdqtvtprW1VRplcH3GLxgMMjo6yiOPPILVaqVcLpNIJLBardLArK2tpa+vj3Q6jdfrxe/3Sx10qVRiZWWFhoYG9Ho9RqMRm80m7yFmMgGpqRYOidDxC41r9YdLyCCqzxfyFfHcWq0Wo9Eo6yifz2O1WqmtrcVms/Hggw+SSCTW6Jir9cfV9SwykppMJhwOB/l8nkKhgNPpxOVyyYy/4qMuDBVR/9lsFq1Wi9lsxmQyYTabsdls5PN5PB4Pdrsdo9GIw+FApVLx0EMPUSgUWF1dJZPJkMvlqKurw+12s3PnTqxWqyyXw+GQ2mohNxH3jcVicj/D6Ogojz76KBaLRbZjdcbReDwu60Fo5bPZLPl8XhpMyWRSOlxCOiPqfr0evlKpkMlkpK5erVZLGcetQqQK3bder0ev18v9HfD3mU0dDgebN2/G5XJRKpW4du0a+/btk9cV/UM4xuI8oevW6/Vyb4F4hvW6f9GvamtrKRaLeL1eTp06xWOPPYbb7UatVpNOp28ahUs4tNXOjqjvTCazpq10Oh3xeFzuBRFtK+RdwqEWCGNd6MNNJpMcKwaDQe4v0Gq1sv21Wi0WiwW328373/9+7Ha7PF5Ifar3NYi69Pv91NXVyfur1Wpqa2t53/veRy6XIxaLMTU1RSqVkve1WCzodDqCwSBjY2O8//3vl/WcSCTkO8BqtWI2m6VmPpPJsG/fPtLptFwte+CBB+Rzi3oRbSP2K6RSKbxeL4FAgNraWjQaDcViUerg4e91/OujP4nnFP8bCATIZDKYTCbq6+upVCrs379fTpaIlQuxt2F9vxfvGafTSWtrqxyfbrebhoYGwuEwc3NzPPnkk2v2CIjIXHV1dbKtxPulUChgt9txuVw0NTWRz+fR6XTodDpZ18L5Fas2YkyK92J9fb2su/WZg4UUyWazcebMGTo7O6VTraBwt6OsBCjc02i0GuLxOEtLS5RKJc6fP8/09LTc4JtMJolEIsRiMeLxOLFYjGw2Sy6XI5VKEYvFiMViZDIZkskkiUSCWCxGIpGQBmT1b9lslkwmQ2Njo9QI53K5NZpfuG5o+P1+zp07h9PplEar3+9f8+HTarU0NTXxwQ9+kFQqRTKZlMZ5MBiUs0/5fJ5UKrXGaHK5XBSLRYLBIMFgUIZYFA6H0PsKjbrY/BgOh+W+gkqlQjqdlnUTDAZJJpPkcjmy2SzRaBSVSkVPTw8WiwWtVovb7aa3t5fGxkYKhQLJZJJ4PE44HCaVSpHNZqXsqVwuk06nZVQSsfG3ra1NfnSF7l98gJPJJMlkklgsRjqdZtOmTdIgF/Wv0Wjo6+uTzkF9fT2tra2kUik+/vGP093dLduut7eXUqmE1Wqlvb0dj8dDNpslm80Sj8eJRqMyKlQ2m8XhcBCPx6UURLSjmFXOZrMEAgG5aiIkPqKu0+k0Op1OrjyFw2GCwSCNjY3SKYvH47I+MpmMPE9gs9mwWCwUi0XC4TDhcFiuRmUyGXnPakNKzBQXCgXS6TTRaJRYLEYqlZL3FOOgtbWVX/mVX6G+vp65uTnprJTLZdk/WltbyefzBINBEomEdFrT6bTsI7lcjlKpJNsLoK6uTvYpsddlZWWFw4cPU1dXh81mo1gsEovFiEQisg2qZ4VVKhWdnZ1EIhHZr1KpFKFQSK44JRIJotEoy8vL9Pb20traisFgkOM6FAqRzWalwVdd7+FwmEgkckN9JZNJ0uk0mUyGVCpFJBKhpqaGmpoaacC2tbVhtVopFAokEgn5rhDtWCwWMRgMJJNJlpaW1jxXpVIhkUjwoQ99SO5j8Pv99PT0sLKyIutkdXWV1dVVzp49K1fBSqUSXq9XGvmizkU/WllZYdOmTTzwwAN0dXVJ+ZRAjIdMJiMd6507d7Jv3z75bhF9yWq1UldXJ9+JXq8Xo9FIc3Oz7KtiEkAY4uJ909zcjMfjQavVYrfb5SbabDYr+4VYUROOrmjz9vZ2TCYTJpNpzeTK1NQUJpMJm81GOBzmypUr0nEql8uyHxSLRfn+yGQycsXXYDBIY725uRmLxUIkEpFlEM8vni2dTpNKpSiVSvT29kqnSzybOC6TyVAqlWhoaKC7u5vjx4/T1NR0g6OgoHC3oqwEKNzTWMwWxpeWiMfjcqOd2JArNqX29vaysrIi9aednZ3E43EmJyfR6/XyQyp0zSIyjcPhIJlMMjIygtvtZnp6mmg0itfrJZfLMTQ0RCgUwm634/V6+exnPytnLcVMo9VqlRvkEokEExMTazbrjY2Nce3aNfR6Pdu2baO1tRWAa9euMTw8zIEDB1heXmZ1dZXJyUmuXbvGwYMHAdi5cyexWIz+/n5p0IRCIXbu3EmhUODChQu4XC45226xWPD7/QwNDbF//34ZCWhlZUXOCF64cIHa2loCgQCLi4sMDg7y2GOP8eu//uscPXqUwcFBaTA99thjctPl+Pg4CwsL+Hw+VlZW5P1KpRLLy8sEg0GGh4dxu910d3fz4IMPcvr0aSYnJ6lUKjgcDjo6OoDrOR0MBgPLy8uUy2U+/OEP09/fTyAQYGlpCa/XS1tbG7/927/N6dOnaW9vl7rhU6dOYTKZMBgMcnOg2WzmmWeekbOZYsY1mUxy5coVjEYji4uLRCIR/H4/O3fuZGBggI6ODlpaWta0o1arJZFIMDk5yfbt26mpqWFsbIydO3disVi4du0a4XCYfD7P1q1bKRQKXLp0iXQ6za/92q9hMpnw+/1MTk6SSqXYvHkz0WiUmZkZOjs76e7uRqVSUVNTw/79+ykWi1y8eJF0Os3//X//32i1Wnw+H9euXSOdTnP//fdLBzQYDDI1NUUkEmFxcZGRkRGmpqZobm5mdXWV2dlZ9Ho9yWSS5uZm+vr68Hg80vAS/eHKlSscOHCAf/bP/hl+v58zZ85gsVhoa2tj8+bNXLx4kbGxMRwOB8FgEIfDITcQu1wuDh48yOuvv861a9fIZrNy47nL5WJ+fp5cLkcgECCfz1NfXy9D/G7btk1uFtZoNPze7/0eExMTxONxIpEIPp+PCxcu8NnPflZuah0dHWV4eJjf+Z3foaurixMnTnDt2jWuXr1KPB5n//79uFwuLBYL0WiUsbExkskkw8PDUgITDodlfYmNtcvLy3i9XkZGRvjEJz6BRqOhv7+f0dFRotEo27ZtIxAIMDExQSqVoru7W+47qqurw+PxsLi4KN9LgmKxyKlTp6ST2N7ejtlspra2lqeeegq73S4jctXU1GCz2VhcXJTRrEZGRqQReu3aNXK5HF6vV+7LGBwcpK+vj7q6OrnRVxAOh5mamiIUCuH3+3njjTfo6uqis7OTrVu30traKmevm5qa0Ov1XL58mYmJCcbGxmhqauLgwYOMj48TDAaZnJyUq6Qmk4lLly5x33338alPfYqFhQXeeOMNNm/eTLlcxul0EolECIVCcm9RNBqVUr7a2lpUKhUPP/wwo6OjLC4uUiwWSafTdHR08Jd/+Zc89NBD9Pb2YrFY+Iu/+Av++I//mIaGBiqVCj6fTzrhS0tLpFIpLBYLnZ2dPPLII5w7d07uCdPr9ezYsYMrV67I94lOp2Nubk5OKIRCIYxGI8lkks997nO8+uqr9PX1YTAYKJfLxONxQqEQy8vLWCwW2tvbgeshksXmeAWFewFV5V4IuqygsI6BBOzrh4t7yuy2lOXSMPx9iDkRBvDdyDD7//w//w+/9Vu/xaZNmwiHwxw+fJjm5mbuu+8+LBaLnFET4QCFrr+6PMJZEEvv1asJIiRhteREUB0JRkgghCRCSGJE+D+hlxWIEIrVETmqw/mJsILVdSbKCddXOAqFwppNbyLkpcFgIBaLyTJUn3czRDg/EW/861//Oo888ghdXV0y5OStqJafiPCUQve/PuRmOp1Gr9ev2bx9M4QEpFoudbN2FCEc198P/j6RUfW+lVtRXe+ibUSkl1udfzt1vdF117f1zfpHqVTCaDTe1vUFIhRndR0KqchGz1v9b/Es1SE/RThOMSY26otwvc5zudwNv4vZaNE3hdTodhHn3+6GT+FkVIfBFBITsUKx/v6ZTGaNfEn0OzGOb/U+qw4dXKlUpASn+u/rjxfHrm+T6mNTqdSaMKc3u7dwsMW/xdi8nX6z/p4ihOpGEsON7i32e9yqjNlsds2eqDtBOGHVIaIFQjImZFW7du2S5RDfqf59sNe20ZUVFN5blJUAhXsaoeut/nf1x329ZvWdoFKp0NLSIuP5i+XkrVu3yo9W9WrA+oRO68siNKzV5RQb3W5V7vXXFsa3uGa1gSF+r47JL6g2Rm5WX+Lf1XHnBdWOSrUDsNF11iMMlUKhQDgcZnx8HJ1OR2Njo5wdvBXr9yKIjbwb3d9kMm1Y/xshnul22lEYFRtdd/3m0DvphxsZqm/VH24XIZFZf+7N+kd1/ovbQRiW6+tb/PZWZV5fno3650Z9EZA6/+rjxYbd9b/fyTNtdP7NEPK7mz3bzfqo+P1O3h/ifuL36nfQ+vuu52YTJdX1JvZ/vNUzV48ZuHF/1Vux0TvldtvndsaYcHjv9Fsg+o5wZtaf/+Mf/5h0Os2OHTvYu3fvuzLppKDwbqE4AQr3NNdf6jf+9m7z2GOPYTKZ0Ol0lEol6uvrZRSVOynHWxndt3v+nd7vre5/q/NvVdY7rXthJGg0Gmpqavjt3/5t7HY7NTU1b+t5blWGW80S3uoab1WOd8owfzfOv9Nrvt1+uNF1NrrWnV7vVv3zZte7VR/9eerzTsr/Vs7N7fTRO3UY75TbqZPbfeZ3ur7fjWe/k/F/J9c/ePAgpVIJt9u94cqtgsLdjOIEKCjcISqViq6uLuDvl9gbGhreyyLd82g0GqxW65poJgoKCgp3Oz09Pe91ERQU3jaKE6Cg8HOgLP0qKCgoKCgo3IsoToCCwm1yOxsv347e9E7OW18GxQlRUFBQUFBQeDsoeQIUFG6TYrHI8vIy/+Jf/AuOHj1KNBrl9OnTfPOb31yT8fVOEJFPbpd4PM6bb77Jb/zGbxAKhd7WPRUUFBQUFBQUFCdAQeE20Wg02Gw2+vr6yOVylMtlPB4P3d3db3vT2fj4OP39/bd9vMViYevWrTKEnoKCgoKCgoLC20GRAync0+TyOZaXgzLhlAjhl8lkiEajqNVqPB4PpVJJZsTdtGkTq6urWCwWDAaDzMra1NSEwWCQ2UQtFgvlcplyuYzb7cZqtaLVanE4HFQqFVKplMy0KsLsiZChIkSi0+mkUqnIzK3lclkmoLpy5Qr9/f3kcjnq6+vp6OhApVIRCARIp9Oo1WoaGxvRarWy/OJ3RQakoKCgoKCg8POgOAEK9zSrq6sQWcRqtRIMBmlvb6dQKODz+YDrcpt8Po9erycQCHD69GlsNhurq6ssLy9jNBqx2Wz4/X4SiQQ9PT0Eg0EmJiYA6OjokJko6+rq1iQKyuVyBINBfD6fTFA0MzMjHYJisciBAwcIh8MEg0FisZhMzNXR0cHk5CRTU1NotVqCwSAdHR0sLy/j9/tlMqFMJkNXV5fMPlqpVNDpdHckIVJQUFBQUFBQWI8iB1K4p7l48SKFQoFt27bx0ksvMTExQX9/P4cOHWLnzp3U1tby/PPPMzU1BcDx48cZGxtj27ZtHDt2jGeffZZUKsWWLVv4q7/6K3w+H0ajkVQqxQ9+8AO2bduGwWDgyJEjvPzyy2vu7XQ6CYVCXLx4kWw2y8jICMePHweuJ+F57bXXqFQqnDlzBr/fj8lkQqPR8OUvf5lKpcL27dvZsmULXV1d7Nu3D4C//uu/xu/309LSQkNDA9/85jeJx+N873vfY2Fhgd7eXmw2G/F4/G3vQ1BQUFBQUFBQUJwAhXuaiYkJHnzwQVQqFX/0R39ELBZjfn6e1tZWAFpbWxkcHGRxcRG9Xo/b7WbPnj3o9XrK5TIul4tdu3bhdrsJhUIUi0XMZjP19fVs2rQJtVrN/v378Xq99Pf3r9Hhi8yfVquVUqnE9773PXp7e2lqaqKvr48vfvGLqFQqPvzhD2OxWFhdXcXr9bKwsCCzUFZnaFWpVBw5coTZ2Vl8Ph9TU1M4HA6OHTuGw+GgtrYWo9FIbW2tzOKpoKCgoKCgoPB2UORACvc0Op2OXC6H0WgknU6j1+tRqVQkEglpJOfz+TXyGXGMVqtFo9GgUqmoVCqUy+U1ITurzy+Xy7fMnqlSqXA6neRyOQqFAgDlcpl8Ps9XvvIV9u7dy5YtW0in05RKJfx+P6VSCZVKRS6XIxAIoNVqsVqtbNq0iR07dlCpVNi0aROTk5OMjIyQTCbl/audkTsNM6qgoKCgoKCgoDgBCvc0mzo38frrr7Njxw65uTeTyXDt2jWmpqbw+/3cd999NDc3s7q6it/vZ2RkhObmZlZWVjAYDExOTpLNZgmHw/j9fgwGA/l8Hp/Ph8/nY3R0lM7OTjweD6lUisnJSex2O62trfj9frxeLxMTE3zwgx9kaGgIh8NBNpslk8nQ29tLJBIhGo2ysrJCPB7HZrPh9XppbGyUYUfn5ubYsWMHn/jEJ0gkEgwNDVFfX088Hqevr4+hoSHi8TjT09PE43H8fj9zc3PE43FCoRB+v5+Pf/zj73VzKCgoKCgoKNwjKE6Awj3Nlr4tlJbHyeVyqFQq6uvrUavVFAoFOSv/0EMP4XK5iEQi7N69G5VKRalUYvPmzTLyTqlU4v7778dqtVKpVOTKQKFQoFQqsWfPHhobG9FoNLS0tGA0GtFoNNTX19PX14darWbv3r2srq6i1WrJ5/OUSiW0Wi07d+7E4/Gg1WoxmUw89NBDGI1GHA4HbW1twPUVDZPJxOOPP87i4iKFQoF8Po9Go6GxsZEdO3ag1+tlaNADBw6g0WgolUryWAUFBQUFBQWF20VVUYKNK9yDDCRgXz/074M91gqZTAaTySQlMeVymWw2i9FovKWMZyO8Xi9DQ0McP36cL33pS/K6t3sNkUNAhCsVv6lUKnQ6nfxNyJCEwyGkSYCMIlR9DSFLMhgMxONxLBbLmnMUFBQUFO4eqr9Te23vdWkUFG5EWQlQuOdRqVRrQncCqNXqG367Xebm5jh37hzz8/PE43EMBgNa7e0PFYPBcFu/wd/vPVifbEyr1d5wT71eL/+/w+G47fIoKCgoKCgoKKxHcQIUFNZx8OBB9u7dS6lUWrO6oKCgoKCgoKDwy4LiBCgorGOjWXgFBQUFBQUFhV8mlDwBCgoKCgoKCgoKCv/AUKY7Fe5pQqEQU/4ILpcLh8PxtjbKis25Qp+fTCZJpVKoVCo8Hs+a65VKJaLRKBaLBb1ef4OW/16gXC6TSqUIBoPU19e/7b0T4lqi/qqTnt0NlMtlmVX5biubgoKCgoLCe829Z8EoKFRx+PBhfv/3f5+XXnqJZDIpjb47oVKpkM1m5b+Hhob427/9W773ve/dcGw2m+XFF19kfn6eXC73c5X9vaJYLDIwMMAf/dEfMTEx8XNdK5/PE4vFCIfDZDKZd6iEd0Z1hKXq31KpFKFQiFAoRCKRoFAorEkIp6CgoKCg8A8ZZSVA4Z6mp6eHY34/n/nMZzAajW/rGslkkueee47PfvazaLVa+vr6UKlUvPzyyzccq9PpZNz/6nCf9xI6nY6HHnqIb33rWz/3tc6dO8czzzzDwsICv/M7v8M//sf/+B0o4Z0hnJBsNsvWrVvlb9/85jd57bXX6OjoIJVKoVar+Zf/8l9y8ODBX3gZFRQUFBQU7jYUJ0DhnkbIO1QqFZlMhqGhIVQqFQ0NDQSDQQwGA11dXWvi7QvK5TKTk5McPXqUwcFBOjs72bt3r5SNlMtlpqamCIVCbNq0iZqaGjKZDPPz83g8HiwWC8FgEJ/Ph1arRa1W093dfdNwoOFwGJ/PRzKZpLW1FZ1ORzAYlFmEm5ubGR8fx2q14vF4cDqdLC8v4/V66ejowO12UywWmZ6eJpFI0NzcTCwWw2Aw0N7ezsrKCl6vl+3bt2M0GgmFQly5coXe3l6i0ShGo5GamhoaGhpuKFs2m2Vubo5YLEZDQwO1tbVYLJa3rP8DBw5w7do1rFYrH/jAB9b8LRaLsbi4yOLiIps3b6a5uRmNRkM0GmVsbIz6+npsNhuBQIByuUxrayu1tbV4vV4WFhZwOBx0dHRgNBoZGhrCarXidDrJ5/PMzc2xZ88eYrEY58+f59q1a2QyGR577DE2b96My+Wiq6uLXC7HBz7wAVpbW3n66adZWVlhfn4ep9PJxYsXpVPncDjI5/MsLi6ysrLCzp07CQQCZDIZampqaG5uZmFhgfn5eSqVCi6Xi46ODmw2G5VKhZmZGQKBACaTid27d1MsFhkbGyOfz+NyuTCbzczOzrJt2zasVisajWZNXSUSCVZXVwkEAlitVnK5HLlcjsbGRqxWK5OTk9TW1tLe3k4oFGJ1dZVcLse+fftQq9WEw2EikeecbWUAAQAASURBVAiJRIJisUhfXx9ms/melKspKCgoKPxiUL4QCr80aLVagsEgw8PD9Pf3U19fz5EjR1hdXaVYLN5wvEqlkoax2WympaVFGvDCKDabzXi9XiYmJvB6vQAEAgEWFxcZHx/H5/NRLpfxeDzMzs5SKBQ2LNvCwgLXrl1jaWmJpqYmXnnlFfL5PIVCgcXFRY4fP04qlWJ6eppSqYRKpWJ1dZWBgQF5/OXLl9HpdFitVr7//e8TDodRqVTMz8/zzDPPoNfriUajDA8Ps7KyIp2YwcFBnE4nq6urXLp0idHR0TVlC4VCXLt2jfHxcZqbmzl79iyzs7O3VecWiwWz2YzRaMRut6/R3Pv9fs6fP0+xWOQnP/kJY2NjxONx4vE458+fZ35+nnQ6zeDgIBcvXiSTyTAzM8Ozzz7L5OQkZ8+e5bnnniOfzxOPx3n11VeZmpoiGAxy5swZ5ubmyGazxONxIpEI4XCYeDxOPp9HrVZjMBiwWCxYrVbUarWsk0KhwMLCAgsLCwQCAV588UWGhobkXoljx47xjW98g7NnzzI3N8f4+DjBYJAXXngBn8/HxMQEb7zxBgsLCwA899xznDlzhtnZWUZHR3nzzTfJ5/OkUinOnj3LU089xeHDh5mfnycYDG4oIxNtNzg4SCQSQaPR0N/fz8LCAvl8nunpaYxGI1evXsXn81EqlahUKvzwhz+kWCwyODhIIBDA5XKRy+WIxWJvSxqnoKCgoPAPB8UJUPilQafTUS6XicVihEIhGhoaGB8fJxKJkM/nbzhepVJhtVppaWnB6XTS2toqE3KVSiXS6TROp5NSqYTX68Xv96PRaCgUCoTDYWKxGMvLy9JBEIbZRoyOjjI2NkYikcBsNjM+Pk6hUMBms2EwGFhcXGR2dhaLxYLD4cBkMlEsFonH4xiNRi5cuMD09DRarRa3283ly5fRaDQ4nU6SySSnTp3Cbrej0WiYnZ0lGAyi0WjIZDJEIhFqa2vR6XR4vV5Onz69pmxer5dLly4RDocxmUwsLCwQDAZv6tDcLvl8nmg0SjQa5fz584yMjBAKhdBqtej1ehYWFkilUsRiMTKZDGq1mgsXLhCJRLDZbGSzWUZHR/H5fNhsNkZHR6VDJ2bNDQYDDocDh8OB3W6nrq5uTW6HdDrN+Pg4Q0ND2O12PB4PZrNZGso+n48jR44wNjaGRqPBYrHg8/m4cuUK2WwWm82GRqMhm81y5coVvF4vq6urBIPB/x977x1d13Xd+X9e7xUPeOgdIAiQBDslqhfLlh3LVlyisaNMxonXSibJJPnZseP1S7ISTxL/JnYyiScucWxLcZvIkotkU5WkCkmxgwUgiQ481Nfwem/39wd1jwESbOqU7mctLBIP955z7rn3vXf2Pnt/N5VKhUwmwzPPPMPp06cJBALMzMzw3HPPUSqVhOH1/PPPUywWcblcqNXqVZ8RvV6PTqejXC4zOzuLVqvF5/MJQ69UKokFfjabpVwuU6lUeOaZZyiVSszNzTE+Ps7MzAypVEpJgFZQUFBQuCKKEaDwjsJisVBbW0tTUxMqlQqLxUIul1vVCABEtV6VSiUSTCVJwmg00tzcjNlsxuFwUCwWxeLKbrcDUFtbSygU4rHHHuPhhx/G6/Vesr7AqVOnmJqaQqvVMjU1RUtLC6VSidraWjZs2IDX62XPnj3cdtttNDU1YTQacTgctLe3MzY2RiKRoFgsIkmSWPjW19dTXV0tDAmbzYbT6SSTyZDNZtFoNNhsNpqamtBqtbS3t+NwONi7d++Ksc3OznLs2DGsVitTU1NUV1ej1+vJZDKvKok2m81SLBZxOp20t7czODiIXq9nfHycYDBIfX09DzzwANPT0/j9ftrb29m2bRsWi4Vnn32WBx54gPe9733cdNNN4vyenh6xUHY6nTQ2NiJJElVVVXR2dtLd3U1HRwfbt28XxhCcD8Has2cPR48e5YEHHmD9+vW4XC5cLheSJDE3N8fk5CTRaBSj0UhrayvNzc3cfPPN3H777dx5553ceuutWK1WHA4H8/PzaDQaNm7cSEtLC6FQiPn5eSKRCPl8nlKpxNmzZ1GpVKxdu5bW1lY8Hg+f/vSnee9730tbW9uqYVYqlYqWlhZ27tzJwYMHSSQSAGIHq62tDavVSm9vL2azmVQqRSKRIBgMUi6XsVqtnDhxgm9961tMTU3hcDiUUCAFBQUFhcui5AQovONQq9UrknavFBYhe00DgQBGo5FSqYRKpRK7AsBF6jNwPizo7rvv5hOf+ATz8/N8/vOf55//+Z9paGi4qA+Hw4HVaqW9vZ3169ezadMmCoUCWq0Wo9FIfX09Z8+eZXp6mo6ODoLBIEeOHCEWi/G7v/u7PProo2QyGcLhMA6HA71eL8atVqsvGutqi/dEIkE2m8Xlcq143WQy4fV6aWlpYfPmzWzatIlSqSTakOVTV2N5P/L/H3nkEfr6+pifn+fJJ5/kq1/9KqdPn2ZgYABJktBqtbhcLuLxOLt37+aDH/wgmzZtolgs4na7mZ+fx+v1Eo/HCQaDrFmzZsWCtlAoEA6Hxe+yLGylUqFcLvPYY49x7733AtDU1MQHPvABOjs7xTW8/PLL/PSnP+WjH/0o27Zt4/Of/zxut3vFtaxfv56qqiokSaJcLjM/P88dd9zB9u3bCYVCHD9+nIcffpgHH3wQm83Gbbfdxnvf+17K5TK33HILJpMJSZLweDysWbPmqjzzdrud2tpafD4f8Xicm266iaWlJfbs2cOdd94JwJe//GU2b97Mtm3bxM6B3++no6ODbdu2odFoePTRR3n22Wd5z3veg9VqvWK/CgoKCgrvThQjQOG65vTp08RiMX76059yxx13MDg4yOTkJF6vl+bmZsbGxti3bx9msxmn03nR+TabjdraWiYmJjh16hQ33XQTs7Oz7Nu3j9HRUSYnJzl48CChUIienh4aGxs5dOgQdrudxsZGxsfHcTgcdHR08NGPfhSbzbbqOO+//36OHz/Oc889R7lcJhAI0NbWxuHDh0WS66c+9Sn+/M//nF//9V+ntbWVYrFILBbj5MmTGAwGQqEQBw4cwOv1Mjk5yeDgIKVSiSNHjuDz+ZicnOSFF15gYmICs9lMXV0dlUqFU6dO4fF4GBwcJJfL8d//+39nYGCA8fFxzp49y5YtW/jQhz7EE088gVarJRKJ0NHRQaVS4YknnqC2tpb7779/VfWlvXv38uKLLzI4OEgqlQJgZGSEz33uc3g8HiqVCn/xF39BKBQiGo2SSCTweDx0dXXxvve9j8cff5xyuYzJZEKv1/NHf/RHfOELX0Cj0WA0Gmlra+PGG29Eq9ViNpv55S9/STabZWRkhOHhYfr7+2lra2N0dJRnnnmGgYEB3vOe95BKpRgcHOSFF14gn8/zuc99Toy5sbGRrVu38u1vf5tHH31UhPLMzc3R0NDAL3/5S06cOMH27du5+eab2bx5M8FgkH/8x3+kra0NjUaDyWTiN3/zN3E6nXz0ox/l0KFDPPfcczidTtasWUNfXx+PPvoozzzzDD6fj89+9rP8+Z//OS6X67LVqM1mM3feeSc6nY5NmzaxZ88eJicnRTK3Wq0mGo1y7tw5MpmMyEV5/vnnaWxspL+/n/b2djZu3HjJBHUFBQUFBQUAlaSIZitchwwkYctx+KnHhyM4QVdXF9XV1SwsLJBOpzEYDMK77na7qa6uxuFwXNROpVIhl8sxPDyM1+ulurqaTCZDKBQiFouxdu1a5ufnKRQKQrVncnJSePA1Go1YsJZKJTwez6qLPHlBH4vFsNlsqFQqzGYz0WiUTCaDy+XCZDJx5swZ6urqsFgs5PN5MpkMbrebYDCIVqvFYrFgNBoZGhqit7cXSZKIxWLE43F6e3tZWFgQ56hUKh5//HE8Hg833ngj5XIZtVpNdXU1+Xyes2fP0tLSgsvlolKpMD8/j9PpFLkSAPPz8wSDQbZv375it0FGDodJJpNifjOZDJ2dnWg0GpE8Wy6XKZVKuN1uUaBs//79nD17lltvvZW+vj4kSaJQKDA4OCh2DGw2G52dncB540IOuclmsxgMBvr7+9FqtSJZW6PRUF9fj81mY2FhgXA4LEKGZG98LpcjGo3i9/vRaDRkMhn0ej02mw2j0YjP58NgMOB0OnG73TidTqLRKCMjI+h0OjQaDQaDgaamJux2O8FgkHA4TDabRavVilCt+fl5QqEQuVwOt9tNd3c3Op3usmE6xWKR+fl5rFYrdrudUChEKpVizZo1AIyOjopnT6VS4ff7aWxsJBQKiflSq9Vit0gJCVJQeOuQv6eOb4HNq/uHFBTeUhQjQOG65PX8cJXfApVKReQHXMt5csiIVqu94rmyOs3ycJ7Ltb+84q3M1YyvVCoxOzvLf/zHf9DU1MQHP/hB3G73Zb3Q8iJcXqgWi0WSySTRaJSWlpbLnnula1iedxGLxThw4ACzs7OsW7eOnp4eqqurV5xXqVRWrfArz/lqc3Bh5ecrjUv+91oqCZfLZYCLJD6X9/9aFt7LP47l+ZL/LyPnCVw4BjlZeDVjTUFB4c1HMQIU3u4o4UAK73rkBdZqC7urOU9OLr4aZOnKq23/WsckUy6XKRQKVCoVEokEarX6imNUqVQrxiYbAbKqzathtWuIRqM8+eSTWCwW7r//fqqqqi4671L9XW6xfi2L+eX37lq43P24lv6vNK5L/Q5c0hh7NUaagoKCgsK7F2UnQOG6RPGwXL/kcjkWFxeFnKcSsqKgoPBORPmeUni7o7iOFBQU3lQMBgOtra1v9TAUFBQUFBTe1ShGgIKCwpuKUshKQUFBQUHhrUfZh1dQWMbJkyfZu3cvR44cuabzJElaoa3/eiFJEpOTkzz66KOcPHnydWmzVCoxPj7O97//febn51+XNt9tyNWCH3nkEYaGhojH429IPyMjIxw8eJBKpfK6P1sKCgoKCu9uFCNAQWEZoVCIoaEhTp06ddXnyAvCpaUloR7zepLJZHjxxRcZGxt7XdqTJIl0Os1TTz1FKBR6Xdp8N1IqlTh27BhTU1OiRsLrTSgUwufzKQaAgoKCgsLrjhIOpHBdUyoVKZXOK9AUi0WhgqNSqcSCXJIkUVX2/Dm/klhUq9VC2rFSqbB+/XqWlpbw+/1X1b8kSeRyOSYnJwkGg2zbtg2r1SrkHcvlslAPupYEWHlM5XKZtWvXYrFYxPjl12U5Svl1uS+NRkOlUhEymxqNRlyzXE15w4YNK9Rk5DblY5aPH34lV7l8fq/lOmSp02tVPFo+D8vn8cKxyXMrPwPL0Wg0F11bpVKhVCqh1WrFPC1/bi6UDlWr1SteV6vVWCwW1q9fj0qlolgsijmW51W+B/I5y+/D8nspS8vKx8uoVCq8Xi9Go3FF/8vvT6VSQavViv8v70sJu1JQUFBQuByKEaBwXXPk6FE0VQb6+vp46qmnaGxspLm5GYfDIYpLZbNZ2traaGhoIJvNcvDgQbRaLX19fdTU1IgKvtPT02g0GpLJ5FX3n8vlGBkZ4ctf/jLr169Hq9Wydu1anE4nsViMsbExNBoNPT09q1YsvhTlcplkMsmpU6eora0ll8uJv1UqFc6cOUMsFsPj8YgiXefOncNqtdLX10c4HMbn8+HxeOjs7OTYsWMUi0VqampYt27dRf1ls1nOnTtHLpejqakJj8cjCoqlUilqampIJpOi6NXVatFLkkQikWB6epp0Ok1jYyMtLS3XNA/xeJxTp07hcDhobm6murqaUqnE4OAg2WyWuro6PB4PKpWKF154gcbGRlQqFdlsFqPRSF9fH6dOnaJYLIqxz8zMMDAwwM0338zi4iJ2u52GhgYcDgeHDx8mn8/j8XiE8dXW1sa5c+eIxWJYrVbq6upEbYNSqcTk5CR+vx+j0cjGjRuB81KocsEyl8vFhg0bePnll1Gr1dhsNiRJIhQKcdttt2EwGAgGg0xMTIgiXy6Xi4WFBbLZLMVikWPHjpHJZGhubsZms5FIJJiZmeGGG24gk8ng9/uJRqOiLwUFBQUFhcuhhAMpXNfk83l27dqFwWAgk8lw5swZxsbGCIVCHDhwgA0bNpBMJkkmk4yNjfGXf/mX7NixA7fbzeHDh3nmmWc4deoUP/rRj9i0aRMqlYp8Pn/V/RuNRrxeL5s2bWLTpk309/djNps5deoU3/rWt9i2bRu1tbU88cQT7N69+6qv6cCBA/zrv/4r27dvx+l0kslkyOVyxGIxXnzxRQYGBtiwYQMnT57kxRdfxGKxcPz4cWZmZsjn80QiERYXF3G5XHzmM5+hoaGB5uZmlpaW+NnPfraiv5MnT/LjH/8YnU7H1q1b2bVrFy+//DLFYpHm5ma++MUvYrFY6OnpYWxsjC984QvCK30lEokE3/jGN2hqaiIajXLo0CH27dt3VfNQKBSYmJjgr//6r9mxYwezs7OcO3eOAwcO8NBDD6HRaNi8eTOHDh3iueeeE0bR3/3d3wnv/KFDh/ja175GX18fu3fvZmhoiGKxiN1u57HHHmNpaYm+vj5GRkb46le/it/vp7e3l6997WucPn2aRCIh5vj48eO0tLSwtLTEI488IsZ5/PhxdDodWq2WH/zgBySTSUKhEI888ghjY2OsXbuWQ4cOMTU1hcViYd++fTz22GM0NDQwMzPDvn37eP755xkdHcVsNtPf38/Y2BgWi4X5+XkOHDhAsViko6OD73znO/h8Pux2O2q1Gp/PRzKZ5D//8z+ZnZ2ls7NT9FUsFq9qnhUUFBQU3p0oRoDCdY3RaBRecqvVuuJvQ0NDfPnLXyaZTJLL5Zibm8Pn8zE/P0+hUCCVSjEyMsL+/fvp6elBr9dTVVWFxWK56v7l0Au9Xo/BYECn0zE9Pc34+Dg2mw2dTkdNTQ1jY2NMTk5eVZuTk5MsLi5is9kwGo24XC6MRiMajYZIJMJzzz2HVqtlbm5uRUjL3XffzdGjR4W3uqqqinQ6jc/nY25uTszDhUmsk5OTHDx4kJaWFvR6PTU1NSwuLnLu3DksFgsGgwGHw4HT6cRgMJBKpRgfH78qI8BkMnHXXXcxPj5OOp0WOxRXQyAQYHR0FLvdjtFoZPv27axdu5Ziscju3btpbW3FYDBQVVVFKpViYGAAl8uF1WrFarVis9mwWCzo9XqMRiNGo5FMJkMmk0Gn06FSqaivr8disVBdXS0W6FarFY1Gg91up62tjd7eXp588klUKhXBYJBUKoXBYCCRSADQ2NiI2+1Gp9MBEI/HOXr0KEtLS8RiMfx+P2azmUAggNlsxm63rxhjKBTCYrEQCoV46KGH+OY3v0l9fT0mk0mErAG4XC4aGhrIZDLMzMwQj8e58847OXHiBNFolGg0SjAYFH3JoUcKCgoKCgqroRgBCtc1et3FYSmVSgW1Wk13dzcWiwW/308oFCKbzVIul8XCsbm5GYvFQjAYFHH8RqPxqkNdliPHacdiMZaWlkilUiIu22w2E4/HxaLxSqRSKTKZjGjXYDCIuPFisSjCSwwGA93d3XR0dKDRaFi7di2RSITp6WkkSaK5uVnEoev1ehwOB3V1dReF46RSKcLhMDbb+Wo2Op2ObDZLIpFAq9ViMpkwGAzo9XpUKhWFQoFsNntV11IqlZidnUWr1WK321GpVCQSCdLp9BWNiHw+TzqdFlWM6+vrcblclMtl/H4/NpsNlUqFVqulWCwSi8UwGAzY7Xb0er1Y/JvNZlENuVwuUywWUalU6HQ6bDYbGo1GePKXlpbQarVYLBbMZjNOp5OamhpCoRAOhwOj0UhTUxPr1q0TeQYul0sUPdNqtRQKBeLxuJg7i8VCb28vVqsVo9GIxWLBYrGg1WqFEStJEk6nk+bmZtRqNZOTk+TzeTQajcgx0Ol07Nixg0QiwdmzZ8nlcrS1tZFIJNDpdBiNRmw2m8ghUYqwKSgoKChcDiUnQOG6Rk6KzOfzxGIxUqkUiUSCYrHIHXfcQUNDA//yL/9CLBajuroal8uFx+NBp9PhcrlQq9UkEgn8fj+5XI5MJkM2myWfz1MsFsXi+3Ko1WpMJhPpdJrZ2VkAbDYbkUiEbDZLoVDAYDBgMpmu6prkRWwikSCbzYrk43w+j1qtpqWlRYQh1dfXI0kSOp0Og8GA1+tleHgYu93O+vXrSaVS4pq9Xi/V1dU0NDSQy+UoFArk83mMRiNVVVVEo1HMZjPRaBS9Xo/L5QLOx+XncjnS6bTYdXG5XFecF0mSSKVSPPzww3zrW99CpVKxuLhILBYjEolgNpsve768CM9ms2SzWdRqNcViEUmS8Hq9RKNRTCYT8XgcSZJwu92k02mx0M/lcuRyOYrFIsViURgV+Xxe9J3NZtFqtWKXpKWlhWw2KwyufD6PVqultbUVk8lEdXU1VqtVGADyuAqFgvhJpVJifE6nk4aGBurr6ykUCoRCIQqFAuVymUKhIJ63YDBIW1sbn/rUp4jH43zpS19i586dYgyZTAaz2cwtt9zCj3/8Y2ZmZmhsbASgrq5OGIbL+1qe+K2goKCgoHAhyreEwnWN2WKmUCgwPDyMz+djZmaGTCaDyWTi6aef5oEHHmDjxo2sXbsWh8PBrbfeyjPPPENDQwNGoxGPx8OHP/xhvvvd79LT08Pw8DAnT54kl8vh9/vFQuuyYzCbWb9+PT//+c/ZuXMnmzZtwuv14vP5OHnyJBMTE9xyyy10dXVd1TWtWbOGVCrFwsICQ0NDpFIpJiYmcLvdbNq0id/+7d/mG9/4Bnq9nkKhgMvlYtOmTQB8/OMfZ8+ePcRiMcxmM3q9nnvuuYfjx4/j8Xiw2+3CWz0zM8PY2Bjd3d18/OMf56c//Snr168nGAyyc+dOduzYQTqdJhqNcu7cOcrlMul0mptvvvmqk3tlZabp6WmWlpZEOE00Gr3i3NbX1wOwf/9+jh49CoDb7aahoYE/+IM/4Cc/+Ql9fX0sLCzQ3NzMjh07+MlPfsLU1JR4Fo4dO4YkSfh8PoaHh0XozbZt25AkiWPHjuF2u5mbm8NkMvH+97+fY8eO4fP5OHPmDG1tbXR1dfF7v/d7fOMb36BSqWAymZAkiQ0bNnDixAkMBgMWiwVJkpiYmGD//v38t//235idnWV2dpajR49SqVTo6uri2LFjnD59WoSNHT58mEwmQyQSYX5+HqfTybp16/i1X/s1CoUCc3NzTE5OcvToUe69915qa2vRaDQYDAY6OzsBuO222xgfH2dmZgadTockSXR2doqdHQUFBQUFhdVQSYoAtcJ1yEASthyHo5sqbDCVhJe8VCoJr3ilUhEKMbJHv1wur5BylEMmyuUy+XwenU4nPLWy6s7VeLwlSSKbzWIwGNBoNELCMpfLCYnH5VKWV0KWsJS91rFYDL1ej9lsFteZy+XQ6/Uivl0eS6lUEqEp8jiWy0vKHuLlOx3yNWQymRXzlUwmeeCBB/je974nQqaWh6hcaV7kfuTdEBk5VOpq5la+Vjnk5sI51+v14l6Wy2UqlYqQIZUlNy+UCQ2FQvzhH/4h3/72t9FqtSIkSL538hwul0MtlUoUCgXUarVQ8FkuvQrnnyO1Wi1kWovFIuVyWTwDy2VAl49p+fUWi0WMRuMK2VA5N0DeoQBW3AN596NSqYi+QKnOrKDwViJ/Tx3fApsVm1zhbYiyE6BwXSPr3l+oiy4v4OTYaPlvyxMtly9Cl2vQy97Uq11AyceZTCbRpvwjL9qXH3et16VWq3E6nSva1el0q2r2y39b/ru8yL1Q+375ohzOL0CXz1cikeD06dMiz2DNmjXCELiWeVl+HRf+7Wra0Gq1Yh4vPO/C1y80TpbXJJD7T6VSzM3NEY1GOXz4MNu3b7/oPq2WFyJfx/K2ls/1hf0tr0MhH6/RaFYd03JfjGyAXcpolK9x+VwsN2iVXAAFBQUFhatBMQIUrnsuVYBqtdcv5X1efuyr8Z6u1u61Fsa63JhWa+dSbV/q+q50XReOV6fTUV9fz+/93u/h9XpFYvC18nrOw4W8mnZ1Oh21tbV86lOfEvkVV7twvtYF9tXMu3zcav+/0rGvZWwKCgoKCu9uFCNAQUFhVUwmE+3t7bS3t7/VQ3ldMRgMNDY28slPfvKtHoqCgoKCgsJbhuI6UlBQUFBQUFBQUHiXoRgBCgoKCgoKCgoKCu8ylHAghXck4XCYhx56iD/5kz+5Kq3/5RQKBcbHx3nooYf49V//dTZt2sSePXsolUrcd999b7jiSiAQYO/evRw4cICvfvWrVx1X/noiV1auVCrcdNNNV9W/rC70+OOPc+rUKSwWC9u3b6dcLjM4OEhPTw+dnZ3o9XoOHTrEgw8++KZf1759+5ibm0OlUlEqlbj99tupqam5bIE4SZIoFAqvOidCQUFBQUHh7YiyE6DwjkSn09HU1PSqkiU1Gg1ms5nq6mpSqRSSJFFVVYXH43kDRnoxdrtdFKR6qxR8jUYjDodDyKReLXq9no6ODrLZLMVikXXr1rFhwwbuvfdedDodxWIRi8VCTU3NGzTyyxONRvH7/SQSCZqbm3E6nVdMLs7n8+zbt+8iOU8FBQUFBYXrGWUnQOG6JhgMEs6rhfa6w+FArVaTz+dFsaRMJkMikaBUKuF0OkkmkzidTqHpXy6Xicfj5PN5rFYrRqNRFBIrl8tkMhm0Wi06nY5KpUIkEqFYLGIymYQGv8fjEVKV8XicTCaDSqWiurp6VWnL5eTzeeLxuJD8tFqtWCwWjEYjuVyORCKBxWLBZDIJ+dJIJEK5XBavyddgMBgolUpCW97pdBIOhzGZTOTzeaEjL3u33W73RVKhgNDb1+v1lEolFhYWsFqtojquXHF5NXlSr9eLVqtFr9dTV1dHJBJhw4YNlEolUajMYrGI81KpFLlcjkqlglarpVKpiLoPRqMRq9UqCmkZDAYKhQLRaJTq6mrS6bS457lcjlQqhdFoxGazrVrLQK/X43A48Hq9tLa2rpAGXQ25yu/TTz9NW1sbVVVVYs4LhQKJRAKVSoXVal21IrSs+x+NRtFqtRSLRQwGAwaDAZ1ORygUEhKwAMlkkmKxiNVqJZ1OYzabsVqtwlAJBoOUy2UMBgNWq5VYLLaiNoBGo1kxtwoKCgoKCpdCMQIUrmuGR4bRGYo4nU6y2SzNzc2YTCai0Shzc3OUy2VisRiDg4MkEgk2b96M3+/H5XLR0NCA2Wwmk8kwNjZGuVzGarVSV1e3oo9kMkkgEBCe7Lm5OcbGxujs7BQFwQBqamqIx+PMzs6KRZ8kSXi93ksaAYVCgVgsxsTEBBaLhUKhICrBlstllpaWmJ2dxWw209DQgNvtJpFI4PP5RPVai8WCRqPhxIkT1NbWUiwWSaVS6HQ6tm3bxsDAAG1tbUSjUVKpFCaTCZfLxcLCAhs2bKC6uvoivft4PI7f78dsNtPY2Mjhw4epr6/HYrGQz+fJ5/PcfPPNlzRwZCMjFotx/Phx7r77bpqbm4nH4wSDQfx+P3DeAFhcXCQSiYiQG71ez9LSEpVKBafTSV9fHwcPHqSnp4fa2loSiQTHjh1j69atBAIBenp6UKlULC4ukkwm0Wq1rF27Vhgty3G73VgsFtra2oRBIxf+Wo18Ps/CwgIvvPACd955J11dXVRXV1Mul5mfnycejwNQXV1NVVUVVqt1xflyNeDFxUXy+bzYVbLb7ZTLZWZnZ5Ekifb2dtRqtagQvHnzZhYXF3G5XDQ2NuJyuYhGo0xMTFAqlbDZbHg8HhYWFpibm6Ojo0MYJ21tbatei4KCgoKCwnKUcCCF65poJMoPf/hDNm3aRC6X42c/+xlHjhxBr9eza9cuCoUCNTU1TE1N8fzzz5PP57nhhhv4x3/8Rw4ePMjExAT79u1jaGiIbdu28eyzz3L06NEVfXg8HkZGRjh+/DgA3d3dfPWrX2VmZgaz2UypVOKhhx5CkiS+853vMDk5SUtLC+3t7fzLv/wL2Wz2kuOfnJzkzJkzGI1G1q9fz8zMDMlkEji/AB0cHGTr1q3853/+J/v27WNhYYHvfve7GAwG+vv7GRgY4NlnnyWfz7Nnzx4SiQQGg4G5uTkOHz6M0Wjk7Nmz2O12sWj8+te/Tnt7OxMTE5w4cYK5ubmLxmU2m8lms+zevRuz2UwgEGD37t3MzMzQ2NjIN7/5TTKZzCXDldLpNBMTE+zatYuvfe1rFItFqquraW1txWg08qMf/QhJknjyySc5e/Ys6XSabDbLuXPnqK+vp7q6moWFBfbv34/BYCAYDHLmzBkRnjU8PMyePXvw+/3Mzc3x0ksv8cQTT3DDDTewf/9+fD4f6XT6onHJVX8jkQg/+tGPGBgYWPU4GavVSnt7O/X19dxyyy10dnZiMBiYmJjgm9/8Jps3b8blcnHgwAGefPLJi84/dOgQ//7v/86aNWvYvXs3er0et9vNwsICf//3f8+2bdswGo0MDAzg8/lwOp38wz/8A8ViEYfDwdmzZ/nlL39JoVDgK1/5CgaDgZ6eHnK5HN/73vfo6enhK1/5CnNzcywtLTE1NSWqKcs/CgoKCgoKq6EYAQrXNVVVVbS3t6NSqbjttts4d+4cJ06cQKfTYbfbgfMx/kajkaqqKrq7u9FoNGzbto2pqSkee+wxnnjiCex2OydOnMBkMmEwGFYs3NVqNWazWVQElvMFWlpaaGpqwmq1srCwgCRJvPDCCwwPD+P3+xkbG8Nms102FKihoYFyucznP/95/uAP/oCWlhYRGmI0Gtm+fbsIySmVSoTDYR5//HF6enrQarXU1tZSLpd5+eWX+dSnPsWLL77I4uIi6XRahCT19/fjdrtxu93U1dXR1taGxWIROQ+JROKicZnNZhFOBeByuVizZg1NTU1otVosFgupVOqScfJWq5U1a9bw4Q9/mN/+7d8WOw3yvTAajQBks1n0er0I38nn8zgcDjwej/Cqq1QqPB6PCO/R6/XU1NTQ2trKr/3arxEMBpmamkKlUnH8+HG8Xi9LS0vCmFrOli1buPnmm+nq6uLWW2/lG9/4BouLi5e8P3L/y6v3jo2NceTIEbFj09bWxuTkJC+//PJF51YqFSRJwmw2i2tOJBL4/X4CgQCnT5+mUCiQTqdX5Eu0t7dTV1cn7nmpVGLXrl0EAgGmpqYIBoPYbDasVisej4fGxka2b99OX18f3/ve9/j617/OY489hs/nu+y1KSgoKCi8e1HCgRSua5Yr5+TzefHa8n+XIy/kYrEYLpcLm82G0+mkvr6eNWvWUF9ff5ERsFp7er0ejUYjXpNzEuTwmTVr1gDndxFWi7mXSSaTeL1evvKVr5BMJnniiSf4+Mc/LvqTF45y+xd6ePP5POVyGZvNRmdnJ1NTU6xZs4aamho0Gg0/+9nPhCGRTqfRaDRCCUelUlGpVETbF87rhb/rdLoVcfarnXfhXFssFu64446LqjHL/7a1tZHP50kmkxgMBj74wQ+i1+vR6XQrEnbT6fSKUBs5Dl+r1WK1WnE6nZTLZdauXUtbW5sI7VrO4uIip0+fxmazsXnzZorF4hWTfZePV6VSMTc3RywWQ6fTEY1GV52r5TQ0NNDb28vRo0fZtm0bnZ2dIuzHZDKxdu1aJEmipaVF5HMYDAYRZiVJkphni8VCZ2cnXq+XlpYW+vr6hFGq1WrRaDTYbDY2btwo8i5kg1JBQUFBQeFCFCNA4bqmWCwSDocJh8OcPXuWrq4umpqaiEajRKNRpqenhcc2l8sxPT0tFvnr168XuQFTU1M0NzeTyWREkuns7Cy5XI7e3l4RTz89PY3ZbCYajRIKhdBoNExPT7O0tEQikWDnzp1otVqmpqaorq4WC8S9e/ei0+lYt24dLpdLjD8SieD3+6mpqaGmpgan00k+nycajbK0tMTExAQej4elpSWCwSAdHR3ceeednDhxQuQgWCwWent7MZvNeL1eDAYDdXV1OJ1O9u3bx/vf/340Gg2hUAifz8fS0hKRSISZmRlKpRIej0ck7cqEQiGmp6cJhULE43Hm5ubEgluj0RCJRJiYmMDhcAgvv5wEOz4+TigUolgsMj09vaLicCKRYGFhgaWlJcLhMEajkcnJScLhsFi0ezweLBYLer2eTCbD4uIioVCIYDBIS0sLJpOJ+fl5rFYr/f39NDU1EYvFmJqaEgnTy5NpZUwmE6VSiUQiQSgUYmRkhJtuugm73c6pU6eYnZ3lxhtvxO12r1jYa7VaWlpaGB4eRqVS4XA46OjoYHZ2lrm5OSKRCDU1NTQ1NV30fKpUKvL5PIcPH8ZsNuNwOGhqaqK6uprOzk5mZ2fFdedyOYLBINFolEAgwOLiIgsLCyQSCTKZDO9973uZnZ0FEAaDz+cjHo+zsLBAQ0MDVquVlpYWkWQtG5EKCgoKCgoXohgBCtc1lUqFVCpFMpnE7/ezfft2ampqyGazNDY2EovFhLdXVmkxGAzC89/c3EwwGOTJJ58kGo2STqfRarWo1Wr0ej2VSoVMJoPdbkelUhGLxSgWizQ2NlKpVEgmkxQKBWpra8nlctx9993Mzc2xuLiIXq8XyaCjo6NCtnS5EQDnF39+v5+Ojg5uuOEG7Ha7CHmJRqPo9Xq8Xi9GoxGz2cyHP/xhZmdn0Wg0mEwm6urq6OrqAuCGG26goaGBpqYmisUiAwMDmEwmoZgkSRJut5tMJoNGo0GSJLEjsJxCoUClUsHlcpHL5cTuQbFYpFQqUVdXRzKZvMiTXiqVSCaTVFdXY7VaiUQitLW1iUV1LpcT85fJZIjFYqRSKTKZjKgn0NTUhNfrpbq6murqauLxOFarlVQqJdR1TCYThUKBUqlEQ0MDyWSSSCRCJBKhVCphNpsv8tA7nU7RbyQSIZfL8Z73vAen08nAwICoZeB2u1ecp9frueGGGwiHw3i9Xurq6lCpVIyMjBCNRllYWKCnp4eGhoaL5iKTyRCPx8WzNzg4iMFgwO12s2PHDgKBgFCakiRJJLen02mSySR6vV7sctx///2Mj49jNBqx2+0Ui0UymQwNDQ0Ui0VyuRxOp1Px/isoKCgoXBUqSckcU7gOGUjCluPwvzMvkTz+Ip/5zGcwGo2rFtaqVCo8/PDDTExM8Fd/9VdCWnP5cZIkkU6nMZlMV9SNvxKSJFEul8XiDs6Hs6RSKbFoXX6sHPJRLBbFNVypffhVPL3swZfbkufgwt/fjnzlK1/hlltuYcuWLRSLRQ4ePMjMzAz33HMP9fX1Qn1Jq9VSLpfR6XQXKRnJVCoVstnsqgbA8mMSiQRLS0s0NDRgMBhQqVTkcjlxj5qbmy86X1Y70ul0IqRMLo4my3NeeI686Pf5fHziE58QieMNDQ1s3ryZuro6isUiKpUKjUZzVTUt5HEAlw0zU1BQeOuRv6eOb4HNtisfr6DwZqPsBChc1wyeHkSamiKZTF4y9GF2dpaFhQWmp6d54YUXuOeee1Y97vXUV9doNCuMiampKUwm04rQGBl5EXitxseFuvSrLXzfrot/mcbGRoLBIIcPH0aSJCYmJrj11luFN1tOyr4a5Pj4Kx2zWhG0QCBALBZjw4YNlzxvtarCl+vParViNpvJ5XIcPnxYvF5TU0N1dTXAJQ2ay3G56sYKCgoKCgpXi7IToHBdIntY9nbGWWc4X/TqUpr1coiKXITpwl2AN4NCoSCSaxV+RSqVEkXS5JwCeTfm1VR7frWUSiVRhOv1Qvba5/N5sXAvFAoYDAb0ev3bzkBbSCwQyUZWvCZJkC9LZIsVihXlq+KNRKNSYdGr0atBrX6Vz0YqBdksFIrnb57C649KBWoV2B1gNp3/fRXcJjd+Vb2yE6DwtkbZCVC4rnE4HFRf4cNVq9VeFIf/ZqN4b1dHToqVfRGrVd19M9BqtatWGH4tqFQqUR1Y5u2aqLuQWOCe795DtnTpmhYKCgpXj0lr4h8//ixQ/1YPRUHhkihGgIKCwlvO280r/m4jko2QLWX5p/f/Ex1VHeL1ckUiV5JIFyuUFMfyG4oKsOs1GLSgvdadANnrH42d3wkolV7v4SksRwXY7ed3A1a5VxNLE/w/T/4/JHMRFCNA4e2MYgQovCNZHuV2NQtMSZJE2JDBYLgoP6BYLAoFndVCRuQk3EQigU6nE1r3bwZyUnE8Hsfj8YjxlstlEbMuz8frsdi+1rl9q9uVkYuH6fX6K4b9yMfqdLoreu9fzdzKyeCyKpLZbH5b7BZ1VHWwzrtO/F6qSGSKFRJ5xQh4o1EBLqMGk06F7tUaAeoQpNNQLL7u41NYhkoFLhe43fAmhi0qKLzeKE+vwjsSSZJE8bCrZWpqij/90z/lxz/+8UV/m5yc5ODBgysSPC8klUrxd3/3d/zf//t/mZycvOYxv1pSqRQnTpzgIx/5CLlcjlgsxsGDB9m1a5c4Rpb8fD14NXN7NW0CQvnmjeCb3/wm3/nOdzh48OAVj/33f/93vv3tb7N///5LHiMbfssNxKulWCwSDAb5t3/7N/7mb/6Gc+fOXdP5CgoKCgoKrxXFCFB4R5JIJHjssceuaXHW0dEhCi5dSFVVFS0tLasWhJKx2Wxs2rSJqqoqim+iJ85ms9He3i706y0WCy0tLaJqMcBTTz31uhkmyWTymuf2ato8e/Ysp0+fvmIV31fLXXfdJeoeXIk77rgDj8dz2WMlSWJ4eJjBwUGWlpauaSyRSIR9+/bR19fHX/3VX9HX13dN5ysoKCgoKLxWlHAgheuadCbNeGCRaDTKxo0b0Wg0jI6Osn//foaGhujp6aG3txedTkc8HhcVg3t6elaE6yzXai8UCgQCAebn52ltbcXhcBAOh4lGo7hcLlEHwOfzkc/nUavVpNNp2tragPPhOZFIhMHBQaxWK83NzavKf0qSxPz8PLFYDJvNhtFoxOPxMDY2RjqdxuVyUVtby5EjR2hvb8fj8aDT6YhGoywuLlJVVYXb7cZsNq9QRvL7/YRCIeC8x/nHP/4xp06dIpfLkc/nsVqtLC0t4fV6MZlMJBIJUqkUTU1NOBwO0Y5cuVgurNXc3EwoFOLAgQMMDQ2xZs0a2traCAaDJBIJ2tvbCQaDNDc3MzU1RaVSobGxkVKpxJkzZ9i8eTMul4tCoYDf7yeVSuFyuTAajYyOjvL444/T2dmJzWYThcbS6TTbt29nbGyMZDJJU1MTOp2O4eFh6uvryeVyeL1ebDYb5XKZc+fOIUkSXV1dWCwWSqUSkUiEUCgkCr1dikKhICpBLz+2UqmQTqfx+/2USiWqqqqoqqoiFovx0EMP0draSjqdplwu4/V6WVpawu/3Y7PZcLlcF8mRFotFlpaWGBwcpK6ujra2NoaHhzEajdTV1REOh+nt7UWSJAKBAEtLS6hUKnp7e8nn84yNjVEsFqmrqyMUCuF2u7FYLMTjcVKpFI2NjTidTiXPQkFBQUHhsig7AQrXNQvzC6RSKbLZLAcPHiQSOS9xKEkSGo0Gm82GWq1meHiY48ePY7FYWFpaYnJyklQqtWqb8XiccDiMwWDg6aefJpvNUqlUiEajjI2NAbB7926SySShUIihoaEV5y8tLRGJRNDpdDz11FOXXHi++OKLjI+PU6lUKJVK/OQnPyGXy5HL5Zibm+P06dOo1WrGxsaYmZkhmUwSj8c5dOgQNpuNffv2MTs7e1H7BoOBUCjE2bNnV8yFyWTCarUiSRLPPPMMhUIBSZJYWlpifHz8InWcRCLB6dOnsVqtRKNREb8OiLnV6XQEg0HOnDnD8PAws7OzlMtlFhcXmZiYwO/3o9PpePHFF4lGoyQSCWZmZhgaGsJqtTIwMEA4HAbOGx0Wi0XEx8/NzXHkyBEh3XngwAFmZmYolUqEQiH27NlDNBolFosxNjbGkSNHqFQqGAwGTp06xfDwMDMzMwwODmKz2UTF4dVIpVLMzc1x6tQprFYr6XRaHFsoFDhw4ABarZbZ2VnGxsbw+/1otVpyuRxGoxGLxYLBYKBYLHLgwAGMRiOnTp3izJkzF4U4yQannHtiNpuZn5/nzJkzjIyMMDc3R7lc5tChQ8zOzmI0GtFqtTz77LPCgBoaGhJz+PzzzzM6Oko2m6VYLPLss8+ueo0KCgoKCgrLUXYCFK5rotEoJYcag8HAL37xCzweDy6Xi7a2NiKRCO3t7ZTLZQYGBpienmbr1q3Mz88zMjKC1WpdNfQnl8tRKpVob2/nb//2b7n77rsxGo0UCgUmJiYA+OUvf8mnP/1p8vk8U1NTbN26VdQfSCaTOJ1Oamtr2bNnD7/5m79JPp8Xi26dTofVauUXv/gFmzZtYs2aNahUKn72s5/xwAMPYDKZyGQyzM7Oct9995FIJAgGg9TV1aHX6xkfH+e2227jwIEDOJ1O6utXqk+43W4SiQRnzpxBrVbT0dFBOBymubmZpqYmYrEYIyMjokJysVikVCpdVPgqkUgwODhIS0sL2WyWcrmMzWajra2NcDhMe3s7Op1O7JzIOxk6nY5cLkckEiESidDT08OZM2dIJpMUCgXOnTtHJBLh/e9/P3v37qWtrQ2n00lDQwPNzc0irCmdTjM2NkalUqGuro6hoSHa29tpa2tDp9Px8ssvs3HjRiqVCufOnePEiRM8+OCDOBwOnn/+eaxWK263m3A4zN13383p06e5VFmUQCDA2bNnCQQCvOc972FoaEiEOxWLRUZHR9mwYQOhUIjFxUVUKhXbt28XY25oaMDlcpHJZBgZGeHGG29kaGgIj8fD2rVrVyT9arVarFYrdXV11NfX4/V6xeJeo9FQVVVFNptl7969bNiwgf7+fjKZDP/wD//Apk2byOVyBAIBcrkcd999N3//93+PyWRi69ataDQadu3axcc+9rE3dCdAkiQq5TL5fJ5yWVGiuRY0Gi3GVz4r3uzdGjmPJZfPUyqXL/l+eDeiUqnQarUYX6nhoeykKbwbUIwAheualpYWIpOnMBqNTE9Pk8lkLioc5vf7CQaDBINBJiYm0Ov1hEIhSpeQ0fN6vXR2dqLRaERMuMlkumiRrNVqReEntVqN0WhEpVJRX19Pa2ur+FIplUocO3aM6elpsaC98cYbhTe5rq6OVColQnGsVqtQJ5Ir3MpeerfbzXvf+16OHDmCJEmkUini8fgKtRtZ/Uan06FSqUQxLvn/VquVT37yk+zfv5/u7m5aW1tZv379RcW55NCoP/zDP+RDH/oQfX19GAwG0Z6MvPhvbm7m5ptvFtcg77TIi145VOvkyZN8+MMfBuC3f/u3ARgZGUGtVouwKdlTbjabRbVeg8GARqNBp9PhcrlobGxk7dq1WCwWjh49yrFjx7jvvvuIx+PodDpGR0exWCzcd999ANTW1l4ydl82IuRxLT/WbDbzsY99jNOnT5PNZsnlcszPzyNJkvDqw/kFll6v54Mf/CBDQ0Ok02nsdjtLS0uiAvLyhcXyZ9RisVBdXU17ezvbt29ncnKSWCxGuVzGaDRSqVRYWFhgaWkJjUaD1+ulvr4elUpFqVSira2Nuro6ZmZmXvek7dWoVCokkwkmx8eIRyMoy6WrRKXCZnewdt0GYQi8WQhFqlyO0elpIvE4RUVKFDivzKTVaql2u+lqacH4yme6YggovNNRjACF65pnnn2GP7xnJ7W1tWi1WpaWlrDb7WKROjIygt1ux2w24/F42LZtG3Dey32pwlTyQrNcLlOpVFb1lt177734fD5sNhvve9/7ViQMX1h4qlKpsH79ejo7O5EkCZPJhMVioVAorDBE5P/rdDpxviRJxONx3G43kUiE2dlZfv7zn/NP//RPHDp06JXFWPKyse7yXCwuLuJyuairq+Puu+/moYcewmQy0dzcfJEkKoDL5eKee+7hT//0T/nnf/5nTpw4QV1dnajuOzo6SnNzM5VKBY1Gs2JXRavVipwL+RpKpZK4dlmCU86pqFQqYpyDg4PCCJPbKJfLItwFzi+m7Xa7+JI2Go3U1NSwZcsW1Go1PT097NmzR4TurFv3K9nL1TAajej1evx+P+vXr19xz6PRKL//+7/Pd77zHaxWK9PT0xQKBRYXF8WY5+bmRB7G1772Nb785S8zMTFBpVIhlUqRTCax2S5f1U6n04n7YLPZxO6RTDabFaFBGo1mxe7C8mfm9UzYvhSlYhH//Cx7fvkzNm9cj1FvuGTlVIXzSJUK+UKep59/jrqGBjy62jdVFjaZTjMxO8tP9+7F7vXira1FZzIpBhwIla+jJ04g7dvH+2+5hc7mZmwXOH4UFN5pKEaAwnVNIV9gdnaW6elpkfwrSRLV1dWMjo6yfv16brjhBvr6+tDpdOzduxeXy4XZbKahoUF8CUuSxNzcHHNzc6hUKurq6jAajSIGPBqNcvr0aWZnZ0mlUiwsLODz+cjlcjidTm6++Wa2bNnC2bNnyWazJBIJtFotc3NzHDx4kO3bt9PU1IQkScKTfu+996JSqXjppZcwGAzMz89TLpdFomcsFuPs2bPMz8/j9/spFotC3WZ4eBiVSiXCk1paWpifn+fAgQO4XC6Gh4fx+XzMzMzQ1tbGo48+ik6no66ujubmZgD6+/upra0VOxgXsrCwwCOPPMInPvEJWlpa6O7uxuv1Eg6HRXiM2+1mbm6OEydOkMlk6O7uxmQyiRCic+fOYbFYyGQyHDlyhP7+fm699VaeffZZqqqqCIVCdHd343a76erq4oUXXmD79u2Uy2Xq6+vp6OjgyJEjFItFFhcX8fl8nDp1imPHjjE4OMjs7CzNzc309/dTqVT40Y9+xMaNG8nn83R2dlJTU8PLL79MS0sLx48fZ3BwkJ6eHnbu3IndbhfXumnTJiwWC/v27aO1tZWBgQGGhoZoaWlh7dq1wHkJ2XA4jN/vJ5/Ps2XLFvr7+zl9+jT19fW0tLSI8KixsTEKhQKRSISTJ0+uUGoqFAqEw2EGBgbw+Xy0tLQwOjrK4uIimUyGtrY23G43O3fuRKVS8eKLL1IoFPjIRz6CyWTC5/Nx9uxZFhYWaG5uZn5+nqNHj5JKpQgEAszOzjI6Okp7e/sbtsiUkEClwmw287577sFqsShe0ytw3mBPcfqMLAf75oXipDMZTo6McGJ8nNs+8AH6N25Ep9ejVqmuzniTJCqvGMYX7hi+nsjhSm96OM4r11fI5zl88CCHz50jnkxyY38/hrdB/Q4FhTcKxQhQuK7ZuXMnLdVGNBoNv/mbv0lDQ4MomPVf/st/ob29HbPZzNq1a/F6veh0OsxmM0aj8aKCUQ6HgwcffBCLxUJ9fT1arZYvfOELItSitraWVCpFLpejWCyyc+dOLBYL6XSa06dP09fXx/ve9z4qlQpOpxOv18tnP/tZ1q5di91uv6h42O23306xWESv1yNJktjB0Gg0dHd3YzAYcDqd3HfffUiSRG1tLVarlU984hO4XC7uvfdeJEnCZrNht9v5zGc+Q2dnJwaDgXvuuYdt27bhcrkwmUx86EMfwmazUVNTQ7lcRqPR0NnZKRacq+H1evnABz6A2+1m+/bteDweTCYTer2eT3ziE7S1tWG329m2bZtQFtK/Ek9bXV0tQp2qqqr4vd/7PSFjKocpOZ1OrFYrdrsdrVbLhg0bcLlcNDU1YTabaWlpwWw2C8/37/7u79La2kpNTQ1Wq5UNGzZQXV2NTqfD6/WyY8cOotGoCAczmUyUSiWMRiM2m40bbriBjo4O3G73qve+u7sbnU6HzWZjx44dtLe3Y7fb8Xg8/P7v/z5erxeXy0VLSwulUgmv14vD4cDlcmGz2XA6nWg0Gn7rt36Lmpoabr31VvL5PGazecW912g0NDQ08NGPfhSDwYDH4+Guu+4SilB6vR6NRsONN95IqVRCo9EgSRLNzc04HA527txJT08PZrMZl8vF//gf/4O2tjZcLhder5c/+7M/o7q6elVFqtcTFaBWq7C9klvzRi4O3wlUKhUk3thF9KXwh8NEMxksHg9969dT5fGIRbZctO7AgQNs27YNm82GSqWiXC6j1WqZmZnBZrORTqeF4pf8bMlCAfLnVj6fZ2RkRLyP4fxun1arFTt+xWIRg8Egdlrh/M6evOvq9/tFvpZKpcJgMFAqlSiXy6jVarRaLSqViqmpKeB8iKTD4aBcLlMqldDpdBft3haLRfG5IxsZlUoFv98vEvRtZjOSJNG/aRPhQIBoJoM/HKalXqn4q/DORTECFK5r1vSsocFYQq/XCw+3/EF/xx13CM+71+ulurpafJFcGO8ph5fcddddK9r/2Mc+Jv7f0dFBuVwmFosBiAVpIBDg2LFjaDQaduzYsWLxdf/9919y7HLScrFYFGpCkUgEi8VCXV2dSBitqalBkiSxGG5sbKRQKFBbW7ti/Mv7qqurW9HXjTfeCEA6nWZ2dlbsCtTU1KwaCgTnv1xvueUW8vn8it0CnU63Ym7XrFmzwtMNYLVaMZvN1NfXU6lUeP/73y/Gr1arcbvd5HI5kWMA0NDQgNfrFV/yshEkG0ry37Ra7UX1GrRardjdKRQK6HQ60W5VVRX5fF7cfznH4MLzZcnV1Y695557RLvyPMj/ejwecV0At912G8ViUcTsLz8WzhsB1dXV3HbbbeI1l8t10fy3tbWJhZKce6BSqS4KbZJzHmQ6OztXvZ8K7z7kxXAoGqUI1DY2UlNTs8LTns/nmZ+fZ2BggPb2dvL5PMVikWw2i81m4/jx43R1dZHJZMjn8yL0TKPRkEqlRJhfY2MjyWSS6elpsZOXyWSYm5vDbDZjMBgoFAokEgnq6uqIRCLis1o2ANxuN4uLi6JSt1qtprGxkXA4TCaTwWw2U11djdVqxefzYTKZMJlMGAwGAoEAyWSSmpoaAGE4wPnwT9k5IOfuZDIZTp48SW1t7YqQyIbGRjy1teRCIYJLS4oRoPCORjECFK5rNGoNBsPFHs/VtpMvTGh9NajVamw2G2azmUAgQCqVIpPJUF9fvyIX4arH/0rycTAYRKPRMDk5icvlEotjo9G46rVd6Mm+mnHD+S/DgYEBtFot3d3dlw0XkefwwtyJq92ql/tcHtu/vI3V2r3wOLVaLa71Ujkcy88HLpoblUol5vFCGdTV2ljt2MvN+WrX9nqF4Wg0mjfco6/wzieVyaDSaql6xWCVkfN1BgcHKRaLxGIxFhYWiEQiZDIZvF4v+/btw2QyiXooqVRK5NDMzc2RyWTweDw0NDSwtLQkHBaFQoHp6Wn2798v6mVks1lmZ2fZtm0bZ8+eFbU8MpkMarWa7du3E4/HCQaDxONxVCoVN910E2fOnCEcDlNfX8/mzZuxWCwEAgE6OzvRarVEo1FefvllFhYW2LZtm9jdyGQySJJEJBKhra1NfCa53W6CwSAHDhxg69atVFdXA7+S762qriaQSBB/JXdJQeGdimIEKChcA/ICT1a1kbn99ttfdZsWi4WNGzeya9eu1za4q6ChoYGPfOQjb3g/Cu9OZM/ztcZzLw/fWH7updq71PHXyoXtXxhGstpYrqXft4sEZ0WSUL0SSrMc2VM/MDCA0+nE7/eztLREdXU1mzZtIp/PizBKlUolZJKrq6vJ5/OvSMSWRWLt/Pw8drsdq9VKIpHg0KFDQkJYDjGSdwskScLpdIo6JoVCAZ/PRywWIxqNUqlUqK6u5sSJE7hcLqE6JucNhEIhtmzZgl6vJ5vNotPpCAQChMNhgsEgqVRK7Fps27aNkZERstmsUBxLp9PU1tbS3t6+YlcVfuXAKL8JSfYKCm8lShCngoKCgsLrQvmV2gHXgryoW23BfLlFtBxK91pZrgBWLBbJZDIizOVax7TacW8XQ2A1gsEgS0tL1NXVYTabKRaLFItF0uk0kUiEbDaL3W4nHA6j1+tpaGigXC5TVVWFyWTC6/XS29vL9u3bVwgzVCoV8vk8pVKJlpYW+vr6hLSunJdltVrR6XTo9XpMJpNQ0tLpdFRVVeFwOFZIJ+fzeaGuJkmSMBTk4o+BQACHw4HD4RAS0P39/eh0OpaWloRssrzzKudCabXaN1WlSUHh7YSyE6CgoKCg8JqRvcSDg4N84AMfEIs1+FUImZyTszwWXKPRMD09jcViwWq1YjKZRD7G1NQUdrsdp9MpvNhqtVpU1Q4EAtxwww1oNJoV0qhyf3IS6PK+5NcAkskkExMT9Pf3A3Dq1Cmmp6eB87kkN998swifKZVKxGIxstksDQ0Nwlssx5nLMrfL+8vlcvj9flwul6gVsRrnjaAKodASLqsJp932piQQyzUnmpubRU0Uq9VKPp8nFovR19dHQ0MDVquV2tpaYSh0dXURiUTw+XxUKhUhf1tdXc3CwgLFYhGPx0NfXx8zMzMimV6eG/l32StfKBRwu90idFCj0VAul0Wo0YkTJwiFQjidTsxms9glGBoaEjsVFosFt9uN3W4XogWdnZ2kUiny+TxdXV3E43FRlK+lpYVEIoHRaKRUKimGgMK7EsUIULiuOXfuLGp9gY0bN654PZfLMTExQX19PTabbdVYcHmh8Wq/bIeGhrBarTQ3N19TG5IkcfLkSYrFIk1NTRcl8cqUSiX8fj+Tk5NIkkRTUxONjY3X9ZdVuVwmlUrh8/nweDzMzs7S2tqK1+t93fsqlUokk0nm5uaoqqpiZmaGzs5OoR71ZrCwsEAgEKC/v/+SuRQLCwtMTExgt9vFYvRCJEkSqk5vVylOOZ58dnaWhYUFjEYjgUBAeG+1Wi2RSETU7ZAX1U6nk9OnT+PxeIRyUywWw+12c/DgQVpaWqirqyORSADQ29tLqVQSdTO2b99OpVJhenpaFKizWCzYbDYSiQQqlYpisShCW5LJJB6Ph0wmw8zMDKdOnaKpqQmXy0U4HCYajVJbW8vIyAi9vb0sLS2Jat+xWIxEIkG5XBYqYXa7XST3y9W7Y7EYhUIBjUbDuXPn6O3tXTUBX3jNc1n8czPEg/O0NTeib2+/Yv7KKo1BPg+FAhSLaNRqtFfIJ7Hb7RgMBux2u0gIdrlcZLNZoeAlV7x2uVwYjUZR1dput4vPIjlcp7W1FaPRiE6nw263U19fj8FgoK6uDrvdTl1dHZIk0djYKIwyWTXI4/EIlSHZqMvn81QqFUqlEk6nk6qqKsxmM2q1ms2bN1OpVHC73ULtzWg0Eo1GheiBx+NhzZo1wnCTi0lKkkRNTQ29vb243e637XtKQeGNRjECFK5rBgcHCSYWxCJLJp/Pc/r0aVHpd7Uv1GQyKSryvhpOnTq1Qnf/apGNgMXFRe64447LGgGBQICnn36aUqnEHXfcQW3tm1tg6PVGVicaGBigv7+fgwcPYjQa3xAjIJ1OMzMzw8mTJ+nv7+fll1/G4XC8qUbA/Pw8J0+eZMOGDZdcaASDQXbt2kVLS8tljYBwOPymSH++WgKBgCiYNj4+jtFo5OzZs5RKJSwWCyaTiVAohNVqFV7xSCSC2WxmcnKSxsZGlpaWKJfL+Hw+urq6OHXqFMVikUQiwZkzZ4TsrNFoFAo2kiSRz+cZGhoSlZzr6uqwWq3EYjERr14sFkVdhY0bNxIOhxkcHGRkZIR7771XyEw6HA7WrVt3/rMlGOT06dPEYjGxQI3H41gsFvx+P6lUSihJTU1NsWnTJkqlEhMTE+RyORoaGhgcHKSqqoqurq6L5kySJErFIiH/IqeOvEzYv0Ap14/9lVCZa0KSIBaDbBZNpYJRr8d5CeUvmeW7E3LivZwkKyPXyZCRK6cbjcaL5IWbmpouUu6qfw3qOuVymcXFRdxuN9XV1TQ3NwvRhB07dqw4tqWlBYAXXniB2tpa6urqMJlMdHd3rzhu+ef1lQr4KSi801GMAIXrmo6OThZfGgEQUooAer2e7u5uXC4XWq32ophjlUrF0aNH0el03HrrrZdMPLwwYXB5iIGs/y+/Jh93ubbknzvvvJMf/ehHKyrCXojRaGTTpk0cPHhwRRzupfpaLfb4UmORdy5Wqy67PJRitbm42tdW63tycpKzZ8/S1tbGhg0byOfzQgL1Sm2udr2X62t0dJSJiQnRVyaToaqqSrQph29ceH/k8y+XNHrheOTfLzzH6/Wyfv16Md8XHqNSqdi4cSPPPvvsRfdh+bUUi0V+8Ytf8Bu/8RsXLVwuNw9vFuVyWRS1K5VKjIyM0NHRQVtbG9FolEgkQqFQ4O6772bXrl0Eg0E6Ozu58847efTRR2ltbaW1tVVot5dKJXK5HN3d3Xg8HlKpFJOTkzQ1NREMBoXRKM+n/N4vFovivj799NP09/eTz+fxeDy0tbUxMDBAMBgUcr9yYbuWlhZhXKlUKlHxWta4z+VyFAoFUWDPYDCI16empoTRkUqliEQizM3NrZDPlc8pLqsQfn78FXLZNCNDp5gYPkulUmZudhbDK7UirglJgkwGCgWMGg3VLhd2i+U1Jf69mmToS513qdyIS7UpSxA3NDQIQ+Jyx8os/zy/ms9EBYV3M4oRoHDdUyqVOHv2LH6/XxScSqVSjI+P4/F4sFgszM7OCv1pWXrzJz/5ifAQdnZ20tLSQiqVYnFxkaWlJfR6PVu2bGFmZobR0VF0Oh1r165ldnaWmpoa4XWUFyCTk5MsLS1hNpvxeDwi9MDn85FOp/F6vbS3t7/m6y0WiwwPDxMMBunp6aG+vp5iscjAwADJZBK32y3ibzdu3IheryeVShEMBolGo5TLZeFFO3r0qKh6DOe90jfeeKOICw6FQoyOjuJ2u2lvb0ej0RAKhQgEAuTzeXp6enC5XEJzu1wus3nz5lVDsNLpNBMTExw9elSod8TjcVwuF2q1mvHxcfL5PC0tLSKeOpVKkUql6OjoENWBnU4ni4uLzM7Octttt60q3ZlOpxkfH+fYsWM0NzeTTCaJxWJiMba4uMixY8e45557mJiYwGg0Ul9fLxaXPp9PPC8dHR04nU5OnDhBPB7HZrNhsViYm5tj586dIq45FosxNjYmCntVKhXm5+cJh8NiYSo/hwBdXV0ijOJyRKNR9u/fz/e+9z1sNhtbt26loaEBrVbL9PS08JpXV1cLL+2bTTqdJpFIYDAYaGpq4syZM6RSKWEkyz9y0Sg5rn9qagqj0YhWqxWhNqFQSBTQK5VKogBUfX09N998M62trUiSRKFQIBqNcu7cOdRqNXNzc2SzWaqqqsR7T65wLVf5lvuanZ0FfmUEJxIJsRMQiUQYHh4WO3FykSw5FCsWixGJRCgWiyJ23WazEY1GCYVCokZET08PdXV1BINBcrkcpQsMAAC1WoPN4eKW99xLQ3ML08NnWNfbw5bNm15dONDSEqTTqEol1CoVmtdhwSt/pun1+qseU6VSEcXGlj/fcmiP/P62XmHHo1gsMjExQblcxmw243Q6cTqdF71n5NChxcVFyuWyyF8oFAoUCgURjqYUtFNQWInyjlC4rkmlUpw5c4ba2loWFxcZGBjA5/OhUqkIBoOMjo5y+PBhFhYWsNlsdHd3Mzo6Sn19PfX19XR1dbFjxw4aGhpIpVI88sgjzM3N0dvbi81m42tf+xomk4mRkRFeeuklZmZmGBkZwe12c+rUKYaHh0kkEgwNDbFr1y6ampqENnYmk+G73/0uNTU1JJNJTpw4wf79+1/T9UajUfbu3UuhUKC+vp7du3fz85//HK1WS1dXF//6r/9KKpWipaUFtVrNZz/7WcrlMo899hjhcBiLxcLExARPP/00xWIRm83G2bNn+eEPf0h9fT3z8/McOXKEsbExzpw5w/e//3127NjB0NAQY2NjHD16lL1797J+/Xq0Wi3xeJzdu3fz+OOPU1VVxcaNG/nhD3/I2NjYRWM3m83U1tbS2dlJT08PN910EydOnMDn82EwGKipqeF//a//RaFQYGZmhnw+j8Fg4Ktf/Sq5XI6qqiqeeuopHn74Yex2O+l0mueee45gMHhRXyaTidraWjo6OkRfR44cYW5uDo1Gg8Vi4emnn+b06dO0trYyOTnJD37wAyqVCoFAgAMHDmCxWMhkMvzd3/0dcL64265du3jxxRdRqVR4vV7+7d/+jVgsxpEjR9izZw+5XI6+vj4eeeQRkskkkUiE/fv3k8/nCQaDHDp0SMRB//Vf//VV3XO73c6OHTtWVGeWJIn5+XlefPFFNm/ezA9/+EOeeeaZ1/RsvRZ0Oh19fX3ceuut3Hbbbdxxxx309vbS1dXF+vXr2b59O9u2bcPj8XDTTTdx55130tPTQ6lU4pZbbqG/v5/6+npaW1vp6+ujubmZ3t5eNmzYQHt7O+3t7WzevFl4h41GI42NjaxZs4ZwOCyMNblPeQemo6ODjRs30tHRgdFoZPv27dx88804HA7q6urYunUrN910E+l0GkmS6OzspL29nUqlwnve8x7WrVtHS0sL3d3dbNq0ia6uLpqamujp6aG5uZm2tja2b99OXV0d9fX1bN26lRtvvJHe3l7gvB59Z2cnLpfrkl5plUqFwWiia+067rn3/fStWycqc1/zj053/kervWI+wJWQF+o/+tGPOHfuHPF4nHw+TyqVEovrTCZDNpulVCpRKBRIJpOiPsDx48eJRCLkcjkymYxwiBw8eJBUKkUsFiOdTq9oI5vNkslkKBaLwtAbGhpi9+7dTE5OEo/HRdEyuRaAfI7f7+fgwYM8++yzzM/Pk8vlSCaT4n3n9/uvWblKQeGdjrIToHBdo9VqcTgc2Gw2TCYTsViMeDyO2+1Gr9eLUIDBwUF8Ph/t7e0iplhOJJPL0x86dIhUKoVWq8VqtVIsFnnppZf42Mc+JuQCq6ursVgsGI1G4dVKJBK8+OKLeL1erFYra9euFdVlN2zYwOLiIqlUilAoRCaT4aabbnrV12s0GmlpaSEQCADnPdayJ91ut1MoFDCbzbhcLiKRCMFgEJ/PR0dHB4DwSp47d47bb78dq9UqimPZbDaMRqMYZzweJx6PEw6HUavVxONx4an99re/jdfrpbGxkZmZGc6cOcOGDRuEN3c16Ua1Wi0qgZrNZux2O+VyWXgMrVYr6XQap9MpKoHKRYtqamoolUrk83mSyaTQIp+amiKbzV7Ul0ajEdKDcl+yd1IeR6lUEgmO8q6HSqUSKiNyYaOZmRkkSRLPhE6no6amRuw2FAoFBgcHWVhY4IYbbsBisXDDDTdQU1PD5OSk8HxaLBZcLheFQkHcl6uRj9RoNGJnxWazodfrKZVKWK1W3G43gUAAn88nvN9DQ0Pk83ksFgutra0XxXi/Eej1ehobG1Gr1ZjNZnp6elaovMhJ+BaLhe7ubvF6TU0NDocDjUYjNOflxafL5aJYLIpwPo/HI4rMqdVqamtrMRqNSJKEzWbDZrMJuc98Pk99fb2o5pzP5ykUCrhcLqqqqkin0+j1egwGA+VyeUV1WqfTSalUEkmz8rOi0+nELpAsNVmpVDCZTKhUKjwej9hRq6uro1Qq4Xa7WbNmjchLyq8S/rfcELBZDZj1mosqml8RSQKVauUPr16eVF6ADw8Pk8vlxA5iPp8nHA6L51/W3fd6vcTjcaLRKA0NDfh8Pvx+v9iFTKfTmM1mEokE4+PjIvlX3v3TarW0tLQwNjaGRqOhu7ub5uZmUQnc6XSK3Z6RkRHxvM3OzlIul9Hr9eh0OorFIktLSwwODhKJRMQO07Fjx3A4HNjt9lULMCoovFtRjACF6xqdTofH4xHa0+FwmHw+v6Lyq9lsRqfTiUWd2WwWcdTyF208Hmd2dlYsELVaLRaLhampKaHKInuy5Xbl43K5HJOTk6xbtw6tVktHR4dYiMhhD3J4g+wZuxyyBvbS0hIdHR0iZEGlUoltb7m67nLPnF6vx2q1YjabhUJHpVIhGo2KuPJKpYLZbGZiYkIU2LHZbDgcDvR6PWazmWg0Kqptms1m8vk8ra2taLVayuUyTqeTiYkJVCoVqVSKcDhMOBwWUnsdHR3Y7fZVr215aIhceE0Os9Dr9djtdmw2m0iWTiaTWCwWnE4n2WwWo9FIPp/HZDIJT325XL7kXF7Y13JZRzkhWb438gIymUxiMBioVCoUCgUqlYpY7MgGhcPhQJIkESoSCASIRCKi6NCWLVvQaDQrNMiTyaQIfZAXvHK7l2P5c6pSqchms2SzWbGwkkNNCoWCCPvKZDI4nc5LJp2/3mg0mhUJ9pczPOTwLUmSqKqqWjXv5kIkSVqRhKpSqbDb7SueM5fLBZyf20AgQFtbmzCalp9ns9lEcviFseqyzvxy5IRZ+Vir1bri7/Lrl2pTvr9XsyDXanVoNFdXkfuNpFKpkE6nOX36NGq1mlQqRSKRIB6Pk0wmWVpaIhKJiArqsoNA9uL7/X7x2rlz54hEIjQ0NIjPjKmpKUwmE5lMhlgsRrFYpFQqMT09LYyn+vp6If0phyHFYjHhpJDDCdPpNCqVCpfLhU6nI5FIsLi4iCRJWCwWstkswWBQhOQpKCj8CuUdoXBdU66UxeJYju8vlUqikFCxWCQQCLBz504+//nPc//99/PYY4+Ry+VEvKocq+50OikUCiIJMJ/Pi4W0XBVT/oKXPZZy7H11dTXxeFxsk8ves3/8x3+kubmZlpYW4akPh8MUCgUxzguTcyVJ4ty5c/znf/4nkiSRzWZFPO7i4iIPP/wwLpeL9vZ2bDYbuVyOcDgM/CrmVpZEzGQyuFwuHn74YcLhsAiVkIvsyItoWcO9WCyK3QS5YE97ezvbtm2jt7eX9vZ2Nm7cyN/8zd+gVqsZHh4mk8lQV1dHY2MjHR0dvOc971l18SnPmzw+2UO8/L7JXu5KpbLCcy8fJ9+Dcrks5lq+N8uRz5f7ktuSY8zlvpePSd5p2L9/P6Ojo9jtdlpaWtBqtSwsLIgkbjlWffk9lI0vWT4ykUiIscnHHjhwgJGREYxGI21tbej1ehYWFoRBIB97KTQajZCNPXPmDAcPHmRycpI1a9bgcrlE2MXmzZu54YYb6O/vv0i95e3EhZKpl5JQXf63qzlG3i3bvn07BoNh1fMuNKyupt3VxnGpNi513FvFtfYuS54ODw+TTqdJJpOk02khViAbxw0NDeKzz2AwiF0eh8NBa2ur2N3LZrNotVq8Xi9r1qwhHo8TDAZpbm6mtbUVvV7P0tISa9euxe12C2NZkiQymYyQjdVoNHR1daFSqZienqa1tVXsusjJ2HIOg7zT6PF4aG9vx+v1CoPujZo3BYXrDWUnQOG65uSJkyyNjTExMcGBAweIxWKUSiVsNhuHDx/GZrPR0tLC6OgoLpeLzs5OPvaxj2E0Gunp6WF2dpannnqK1tZW3vve9+L3+1lYWGDfvn3Mzc3xl3/5l8TjcWZmZggEAjz55JN8+MMfZmZmhunpaSKRCE1NTXz605/mS1/6kvjisVgsdHZ2olarmZycJJFIsLCwQDAYJBQKcfToUYaGhmhsbCQSiayQrZS9/DqdjnA4zNmzZ/njP/5jenp6mJ+fB2Bubo65uTkymQxqtZrp6Wnq6+tFoqTsMbv77rtpaWlBr9cTDAaZnJxkfn6eQCBAOBxmcnKSY8eOEY1GmZiYYP/+/aRSKe677z4aGxsZHh7m5ZdfplwuU19fz5kzZ3j++ef55Cc/SXNzM2vXrqWnp4eZmRm++93vcvPNN5NIJOjt7b1I9lP2AB45coTZ2VmampqYmpoSBYg0Gg2Tk5McPnyY7du3k81mOXnyJJOTk5w+fVpouqvVasbGxti7dy8TExPs2LGD+vr6FR5a2bA7fPgwc3NzNDY2MjU1xcGDB0Vxo8nJSfbs2UNHRwcjIyOMj48zMDBAuVwmmUwyPj5OKpXCZrOxb98+1qxZw+joKJVKhYGBASYmJpiZmcHn83HHHXcwOzvLd77zHe666y5CoRD19fVMT08zNjbGvn37KJVKQuVG9ly+9NJLrFmzhnPnzuFwOBgdHRXx5MuRDc1jx47R1NQkjKV4PM6pU6fQ6XREIhHOnDnDBz/4wRXnKShotVqkV2Lur4ZoNMrc3Bxr1qzB7XaTSCTETlalUhE7iMlkUij4DA8PC0eDVqsVbeRyuRVhYVqtlkQiIT7PkskkkiSJHUH5GDkMK5FI4PV6xa7j/Pw8FouFSqXC6Ogo8KsdMjmXo1QqsbCwgFarFYXQLmdgX4gc6qW/VplWBYXrDJX0dq5prqBwCQaSsOU47O/Nss5QwGKxkMvlkCRJfIHIC+TlkpeSJIlS9YVCQXiXZdUQ+ctCPk7WBpe/FAwGA3q9XmyXq9Vq4aXPZDIidlgOc5GLFel0OhFyIofNyCE8su71corFotgql6tkyuE42WxWxDHLX2yyZOFHPvIR/uIv/oKenh4RxmQymUilUmI7XA4jMpvNwvsshwnJiwQ5dCafz1MqlTCZTMITLc+z2WwWMobLvfpyKNKF1ySH18hFlAwGA+l0Gq1WK7b70+k0VqtVxIHL8yDHe8veeJPJJO6J3N+FKiRy8aML+5KPTaVS4rpkb7w8J/IY5Wtb/kzJ7cn3Qs4pWb6jIBdVkndW5Nj1YrEonke5Xfm5k+PdV1NgkSRJFMKS7428yyE/F7L6zquJeR4KDPGh73+Ixx98nHXedeL1UkUiU6yQyFcoLfumyOWy+CbG2Pvk4/y/n/ssVqtVCbW4ApVKhXgiwRf//v/jY//103hqvOj1v1K2UgEuowaTToVOfY3Gm/w1HgpBOg2v5OTIX+/nJiY4Nz9PUq3mgU9+UuyQXIpsNisW+PJzXygURF6HXJ9BkiTxGTY/P49araa6ulokDZvNZhYWFkTxNq1WK95rLpdL5DbJIZsGg0GEslmtVsrlMsFgEJvNRj6fJ5FIkE6nhdMkHA6L/KFcLic+C+SdRpXqfMEzWVlMLjR26Wk8v/Pw6P/9v5iKRbZ0dtL5Sv2BFahU4HKB2w2rtCe/n/7Xrz/Ox2bWcXwLbFZKEii8DVF2AhSua0wmEw7b+S3eC2N15Xjh5Xr3srqISqUSC3r5Nbk9OTZcfk2lUl3UtkajuSju3Wq1UiqVhAQiIGQHl2t+y0bB5bamZU+bfJz8hS0n0MptyvHVpVKJM2fOEIvFCAQCtLa2imQ6OJ/0K8fOq9Vqcd6F8nwXatDLC0zZS7d8Aby8eq28aF8e438hchz+8kXqhfHXF8p9ajSaFccv//uF9+TCvuTFwaX6kmPIYeU8yEYcXOxJX96GnOQsI8f/L58brVa7YgwGg2HV2PcrFYCTY9llOVq5bXk+3kqPv8TK+gcKqyNJ0q8W628S8nNRX1NDOB7H7/Px7DPPcPsdd6ww4i9Er9cLKU45xGp5jZHl1Y9VqvNV11tbW8W5lUpFCBbIRr38npDDH5fny8ihmXLbsiGsVqupqqoSnzuykS6fZ7VaV1QYlttY/jzKScey4XOp57RSqZBMJnn22WcpxOO01ddT+yYk1SsovJUoRoDCO57lcbqr/e3C11+LR/NCL668WHs1yEorF3KpNg0GA+9///vxer2ramK/mkqzF/a1fNF/teO6Hnm1z8CV5uC1xocvH9dbGWuu4rwCTalc4ejRYxhNRiX06ApIFYlMNkupXH5FvefNmy+bxUKj10syk8E/M8Ohffswv7KAVu7aeUO2XC6TSiSILyzQ4vHQXFuL5RpzCBQUrjfeGd/YCgrvcnQ6HV1dXXz2s599q4ei8C5ArVajNxgx2+zsO3gYtUYJBboaKhUJq92JTqdHfa0hP68BjUZDU20tVrOZgbNnOf7SS2j0elTXKkX6DkUO1awUi+zo62NdVxeuVwrdKSi8k1GMAAUFBQWFa0Kr09HY3MpHPvFfKRYv1r5XuDQ6nR6b3Y5a/dqKeV1zv1otNW43773pJu7Yvp1kOn1+V0IJ40LFKyGeNhu6C6ocKyi8k1GMAAUFBQWFa0ar1eJwuq58oMLbDr1OR9Urhc0UFBTevShGgMJ1zeOPP86kschHPvIR4b0pFossLi7y0EMPcc8997Bhw4YViWxvJHv27MHlctHU1ITH4xEVZlUqFclkkpGREf793/+df/7nf8ZofPvGUc/MzHDy5EmOHj3KF7/4Rc6ePUsikcDj8dDV1XVNbcmqOKvlKVyKXC7H4cOHGRgYYOfOnWzfvv2Sc/X888/j8/mwWq189KMfvaaxvVrkGgQXqhK9GmZmZnj55ZfJ5XJ4PB5Onz6N0+mkqamJQCCAJEl86EMf4utf/zp33303a9eupaqq6nW6klfH2/G5rVQq+BfmCfoXKb6iIqXVaWlsbsXprrooCf7dytvx3ikoKLw1KIGcCtc1Wq2Wubm5Fa+p1WqhRhGLxS5bUfb1Rq/XC4WcUqnE8ePHhYynLIEXDoeFAtHbFZvNhsFgYGZmBviVYs6rTfw9ceKEkLi8GuRquyqVikgkctm5cr7i0ZRrKLwZZDIZBgYGXpe2gsGgMK5qamrw+/0Ui0VqampoaGjA6XSK4nZyETKFi5EkiaVwiPHREYbPDjF8doixkXPEY1Eqb+JngIKCgsL1grIToHBdU1VVRXzqtNDBl/WmzWYzTU1NoiqsrMufy+VEKXpZZ12uFWCz2S4pb5nJZMjn80IGs1AorPBsFwoFbDYbJpNJePij0ShPP/00TU1NOJ1ODAYDLpcLu90uCj3JMo9XkoiU9fllj7qsTZ/NZsWi0Gg0otfricfjol4CnN8ZcTgcQqNflpvM5XKkUikhw5nL5bBYLOh0OlwuF9XL5PFkyc3lUoGxWEzIB+r1ejEeWa9b1rPPZDLs3r0bs9lMc3Oz+FsqlVpRV0GWa5WrGBsMBjwezxWL/DQ0NDA7O0swGBQVgHO5nJDqtFgs4v7JRdjkOgGyTKL8HKjVaiHFmUwmxTMlX6/D4aBSqTA7O8vevXtpb2/H4XCIYkjZbFZIwBoMhqtSZCoWi6xduxaPx0MikUCn0+F2u+no6KC1tVUYQU1NTaI+RTweF2OVnz+5psPy5+PdRjqVIhT0k04mATCZzWQz2YuqcisoKCgoKEaAwnVORaqQzWaZnJwkl8vR2tqK2+1ecYwkScTjcQKBAMFgEKvVyrp164hGo0SjUZLJJNlslv7+flHQ5kIWFxeZm5sjnU7T3t7O1NQU1dXVwphYXFxk27ZtzM/Pi1oB4XCYxx9/nI0bN9Ld3U1dXZ1oLxaLsbCwgMFgoLq6mqamplWvT15wR6NR/H4/8Xgci8XChg0bRFXMaDSKJEl4vV7q6+s5e/asKGJlMpkIBoNs2rSJWCxGOBymXC5zww03EAgEGBgYwGq10trayuLiIs3NzdTV1V2k1z8zMyO0uuXCVYODg+j1erxeLzU1NRgMBqanpwkGg9TU1OD1erHb7czNzfGLX/wCj8dDoVCgrq6OqqoqRkdHyWaz2Gw2ampqqK2tpVAoMDU1RT6fZ3FxkWw2e5G+/5WIRCKEw2ESiYSoDD0/P8/k5CQ1NTV4PB70ej0nTpygt7dXeNgTiQQajYa+vj4qlQqDg4NkMhm6u7sxGAzs3buXG2+8kWKxyNGjR3n22WfZtGkTmzdvxmAwEI/HmZ+fR6fTYbVaaWpqumwtA5nGxkZhJF6I2+3GYrGQfGVRm8/nmZubIxwOo9Fo2Lp1K5IkEQ6HCQQCJJNJLBYLGzduFPUw3lVI0nm9R/GrxIoXFBQUFBQESjiQwnVNLptjZmaGvr4+XC4XjzzyCL/85S9XHBONRnnyySd57rnnuPHGGzlw4ADj4+Ps2rWL4eFh+vv70el0LC0tXdLrXFVVRTQa5fvf/z7t7e38/Oc/Jx6PY7Va0el0jI2N4XA4iEQiTExMsLS0RFdXF01NTdx+++309vaK4lSSJHHs2DF6eno4efIkDz300GWvMZVK8S//8i9MTEzQ3t7OqVOnGB4e5lvf+hZjY2PU1NTQ2dnJ17/+debm5rBYLBw/fpyHH36YpqYmJiYm+Nd//VfC4TBarZYnnniC+fl56uvrOXz4MIcOHaJcLrNz506+8IUvcOrUqYtCd6qqqjh+/DgnTpwgGAzyJ3/yJ3R2dlJTU8PIyAhPP/00c3NzPPPMM2zevJmf//znfPe730Wr1Yp5uOmmm9i0aRNms5nnn3+e48ePs379egYHB9m1axfZbJYf/ehHTE9P09LSgt1ux+/3X9PzIEkSX/va1zAajVQqFU6dOsVTTz1FW1sbP/zhD5mZmRHFu1566SV0Oh0/+MEPmJ6epr+/H6fTyZe+9CUKhQKpVIqpqSlGR0fxer289NJLTE1N4fF4uOGGG6iqquKuu+6ipqaGgwcPcujQIbZs2cK6desYHh4WC/cr0djYuGo9CDgf7maxWESF1MOHD2OxWCiXy/zgBz8gkUgQCoX43ve+x8zMDN3d3bz88stMTk5SfKVqrIKCgoKCwmooRoDCdY3BYKC5uRmNRkN7eztjY2MMDw+viCF/+eWXmZ+fp1AoMDg4SE1NDcFgEJVKxaFDh/id3/kdzpw5Q11d3SXDcux2O9XV1bjdblKpFGvWrGF4eJhjx46RzWb5xCc+gUqlwuFwiMqU8o8cErK8aNmWLVuwWCwiwfRyvPTSSzgcDtxuN16vl49//ON0d3fzzDPPUCwWqa+vR6/Xs2HDBp566ilKpRJ1dXU0NjZitVqpqamhpqYGi8WC2WzG5XIRDAZFMbLa2lpaWlpQq9XccsstHDp0iImJiRVjcDqd6PV6crkcoVCIhYUF3G43zc3N3H777bz//e+nrq6OTZs2cfr0aRYWFigUCkiSJOZB9kyHw2Eee+wxrFaruFc2m435+XkefvhhbrjhBtxuN06nk/r6+mt6HlQqFZ/+9KeZn58XOwkjIyNotVoefPBBlpaW2L9/P5lMht/6rd/ixRdfxGw2C098bW0tL774IrlcDqvVKsJt1Go1DodjRWXT5fe2tbWVaDTKb/zGb/BP//RP9Pf3r6hIfKUxX8pjf+Hf1q9fT1VVFXq9HovFQjQaZffu3WQyGSKRCJOTk1RXV4sdKQUFBQUFhUuhhAMpXNeo1L+q0ConA18YBqHX67FarZjNZtra2vB6vZTLZXQ6nVhkjoyMcPr0adatWycWfstRq9XU1tbS39/PT37yE7Zs2cL+/fuRJImGhgbsdvv58Vyi+nAgEFihTmKxWC4qb38pdDodpVJJxLibTKYVuQByO+l0GrVajVqtFnH28u9ysrK8gJUXiPLv8hym02lMJhNqtXpFHLV8HXLCbi6XE9VxK5UKsViMsbExFhYWuPnmm3G5XJRKJaLRKG63W9yTWCyG3+8XYUTNzc14vV7gvBe/UChQKpWoVCorFtlXiyRJ/Md//Afve9/7aGlpoVwuEwwGiUQibNy4kcHBQQKBAE1NTaxdu5ahoSHRpzwXyWRS5FQsDw3LZlfGlsv3em5ujlwuR19fHx0dHUSjUZ5//nnuueceGhsbVxz7WjGbzcIQUalUIndCDqmSd13k5/vdgCRJSK8Y0+fvz8r3U6VcXvH+UVBQUFA4j7IToHB9IyEWoRMTEzQ2NtLc3EwulyMQCLCwsEBtba3wyhaLRZEsmk6n0Wg0dHd3Y7VaKZVKl12QV1VVsX79eo4dO0ZHRwdmsxm1Wi0Mj1KpRDgcxu/3E4lEUKvV1NfXMzMzQyAQIBaLidjzhYUFwuEwsViMWCxGKBS6ZN/Nzc0ibn1xcZHFxUVSqRSbN2+mWCwyNTVFKBQiGo3S3d1NOp0mFAqRTCaJx+MsLi6u6CscDjM/Py8WtOl0Gr/fL45pa2tDr9eztLREPB4nEokwPz/P0tISmUwGnU5HR0cH09PT4rxAILAiOddoNFIoFPD5fADU1taKHYRKpcLWrVtZWloSic5GoxGr1crOnTuZmJggEAiwtLREIBBgbm5OJHivhtx/LBYjlUpx7Ngx0a6caCwbIzabDZVKRT6fx2w209nZKeZ2YWGBqakpNm/ejF6vx263YzKZiEajBINBUqkU8/PzRKNR1Go1RqORxcVFkskkgUCATCZDT0+PeP6KxSKTk5O89NJLV/UoL2/f7/fj9/tFwnuhUCAQCBAIBIhGo8TjcaLRKHNzc7S3t2M2m0UCvEajwWq1XrUc6zuBWCzK1PgYoWCAUvFXOyDlUonFhXlmpycJh4JXZXQrKCgovFt493xLKLwjMRqN2O12QqEQZ86cYePGjWzatIl8Pi8W162trdTV1SFJEtPT0/h8PrFAHRsbIxKJ0NbWRmdnp4gXXw2Hw8GaNWvQarVUVVXR1dVFc3PzCoWWRCIhFs86nY4dO3YwPj5ONpulWCySSqXQarVMT0+zsLAglIkWFxdX7VOlUtHT00NdXR35fJ7p6WlmZmbI5/N8/OMfR6/XMzw8jN/vF/1lMhlisRilUolIJEIoFCIejwsjJJvNsri4KIyAZDLJzMwMCwsLmEwmNm/eLEJNtFotgUCAmZkZMpkMlUoFo9HIvffey7lz5/D5fASDQbLZLGazGYPBQDAYxOFwYLfbxXVt27aNUChEOBymurqaD3zgA8zMzDA/Py+Sie12O//1v/5XpqammJ+fJxKJEI/HWVhYuGxoi+zplxV96urqSKfTJJNJ4RGXlZ06Ojro7u4WdSM2btxIfX29MKZGRkZ48MEHsVqt1NbWUl1dTTKZZHZ2FovFIvoyGAy0tbXh8/nQ6/XEYjEmJyeZm5vD4XCwdetWbDYbZ8+evShH5VIkEgl8Ph+SJBGLxZibmxNKT4VCQTzPS0tLpNNpyuUys7OzrFu3jqqqKjKZDD6fj5mZmSsatO80IkthTg8cY25mmnwhL14vFotMjI1wdug0gcUFlCRhBQUFhV+hkt5N3xQK7xgGkrDlOBzfApusEvl8XshUXir0QpaONJvNqFQqUcSqUChclYoLsGJhJf//ch5XeQGn0+les2e2UChQLpcvMlTka7jWgmiSJPE//+f/pL6+nk9+8pNCDvNqQldkr7MkSWg0GjQajZDnlF9bngMhj3956BGc34XQ6/UXha7kcjkREiRJEiaT6ZpCarLZrAjnke+BXq9naGhIKAAtR55bo9G4YsyVSkXkbVQqFXGty9uVJUfLr4SdyPf6zVbmudTzcTUMBYb40Pc/xOMPPs467zrxeqkikSlWSOQrlN6m3xSSJFHI5zl68AATo8PC4w/n72NVVTWdPWvp37IVm/3alKbeTFSAy6jBpFOhU1/jsyN/LoVCkE6DkhT+xqJSgcsFbjes8rkuv5/+168/zsdm1nF8C2y+OMpUQeEtR8kJUHhHsJq84oXIibDLkXXjXw1Xs8hTqVRXrAFwtVxqrBfGrl8NkiQxOTmJ3+8nFotx+PBhbrvttmtqY7U+LxdzvdrYL6WKczX383LIi3k4X2Ph8ccfB87XFGhpaVl1bKuNT85LuNR1Lb+3lzvuzeC1PMvXO3qDgY1btp3PURk6zVI4BJzPvVm3cRPt3Wuw2uxv8SgVFBQU3l4oRoDCdc/VelwvPO7VeGrfrHOupZ1X235DQwN/9md/hlqtxul0XlM7qx17pfOv5ZzXOmfLz9dqtdx1113A+UX7agbGqxnH202D/+02njcL+bpNFgutHZ1UKmVODRyjWCjQu2EjTa1t2O2Od+38KCgoKFwKxQhQUHgXIlf6bWtre6uH8oajVquFzr7COxeNRoPT5aKxuZVEIk46laK1oxOH04nmGnfKFBQUFN4NKJ+MCgoKCgrvCAxGE54aL91r+0glk9R469C/UrdDQUFBQWElihGg8I6kUqlQLBZFzPa1LAIkSRLny7UHZHUaWaP97YKcjFsqlVaMVY5lfy1jXZ5c+XqyvECanFT7ZvBGXc+l+pIr9l4qV2D5MVqt9qoTx9/M67jeUKlUmMxmWto6LkpQV1BQUFBYiSIRqvCOJBwO87d/+7evqmpqoVBgaGiIP/qjP2L//v3k83kef/xxfvKTn7wBI31t5HI59u3bx2c/+1kOHDhAuVzm4YcfZu/eva+5bVn95vUWEPP7/Xz1q1/lf//v/00sFntd274chUJhRbGvNwpJkkilUvzTP/0TX/3qVxkaGlr1uHw+L+ZhfHz8qtsvlUpKNeArINfvUFBQUFC4NMpOgMI7EpPJxI033viqZDn1ej3V1dVs3rxZ6Mt3dXW9KQvIa8VgMFBfX8/69evJ58/ro69btw632/2a2/b7/Rw6dIj777//Nbe1HKfTyV133cWPf/zjN3VOn3rqKTZv3kxzc/Mb2o9KpcJisdDT00MmkxHe/gvRarW8973v5ac//amo/nw1HDt2DIAbb7zxdRnvq6VcKpHNZsjlcm/pOK43tBoNVpv9/C7FW1DQTTbuU9ks5XL5Te//7YpGrcZmtaJ7m+32Kii8kShGgMJ1zejoKE6XVoTA1NfXo9FoiEajZLNZJEkiEong9/spFArU19cTDodpaGjAYrGg0+koFossLCyQTqepqqrCbrejVqsxGAxIkkQ0GiWZTKLVnu9HLpzldDopFouUSiXa2trE3/1+P4lEAoPBQGdn50VjlotBRSIRtFotNpsNp9NJMBjE5/NRU1ODRqMhm81SX1+P1WpldnaWVCp1PtzBZCKVStHZ2YnBYECj0YixRiIR0uk0NptNVEednZ0lk8lgt9txOByYTCbm5+cpFouUy2WcTic1NTVifJVKhTNnzjAwMMDIyAhdXV00NjYSiUSEDn6hUKBYLNLc3EwqlSKZTOJ0OqmurmZ6eppSqYTNZsPr9V7kkVWr1ZhMJmEA5PN50uk08XicUqlEe3s7sViMeDxOoVDA5XJhNptZWFjAYrGI4myBQACtVkttbS0qlYpIJML09DQ7duwgEAiIgm3t7e0MDQ3x7LPPCi39+vr6FSpBkUiEpaUl8vk8Ho+HpaUlamtrMRgMomhZb28vGo2GSqVCLpdjdnYWOF/R2WAwoFarKZfLLCwskM/nyWaz4n7L9zwYDKLRaHA4HLjdblHpF85XDF5aWhKe/ubmZqH5L7exd+9eBgYGsFgsuN1u1qxZA8Di4qKogO3xeLBarW/4QiYWjXBo/4sUcxnF636VSJJELl/glrveS5WnGv1rlMK9FkrlMsl0muGpKcZmZpDU6vN698qC93ydBUlCLUn0tbfT1tiIzWJBqzzXCu9wFCNA4bpmbn4OaTTA5s2b8fv9YjFaLpcZHh7mAx/4AJVKhbGxMYLBILfffjuVSoVDhw7R29uL0+kkGo0yMTFBTU0Nw8PDNDU1rdCvlySJhYUFNBoNGzdupFQq8eyzz3LjjTdiNBpJp9PkcjnWr1/PwMCAiMePx+Po9XoaGhpWLJIkSeLkyZNUV1eztLSESqVi27ZtSJLEvn372LJlC3V1dWSzWfbt28ftt99OsVhkeHiYaDTKLbfcQi6X49ChQ/T09KyYD0mS8Pl8qFQqOjo6iEQiTExMUFVVxfT0NGazme7ubkZGRmhpacHv91OpVFYYAXC+iNdyQ0qSJMbHx8nlctTW1lIulzl37hxVVVUEAgECgQC9vb0cOXIEm82GSqUiGAwSCATYtGnT5e/hK5VxzWYz4+PjYkEtV7+9/fbbRWXkhoYGcrkc8/Pz1NbWkkwmyWQymM1misUiL7zwAps2baJUKjEyMkKhUKC9vV3cw0wms2p4U6VSIRQKcfDgQe677z5RadlisWC32xkfH8ftduPxeAiHw8zPz2O1WpEkicHBQVpaWrBarSwsLBCNRnE6naRSKdRqNZIkkc1mOXbsGB6Ph0wmQyQSWfGMlUollpaWmJqaorGxkenpabxe70WFvyKRCMlkEp1OJ+7L8PAwhUJBPGNzc3Ns375dFM97o0in04ydO8u6NR0Yr7GY27sSSaJQLDIxMkwykcDhdL1pRkClUmEpFmNyYYHRxUVKJhMmi+X8M3PhfZPfH9d6P5e/r17Ns3C1/b7a8V2hzXK5TCaV4uzsLKVKhda6OqrdbuW5VnhHoxgBCtc1mXSGl156iQceeAC/38+LL75IR0cHGzZs4MiRI5RKJZxOJ4FAgMHBQe688056e3v52te+Rrlcpq6ujvHxcdLpNDt27OC5554jm83S398v+nA4HMzNzZHP5/nABz5AU1MTjz/+ON3d3XR1dZFMJnnqqadYs2YNjzzyCHfeeSebNm1icnKSQ4cO8aEPfegiI+DAgQM8+OCDDAwM4PP56O7uprq6miNHjtDc3MzatWux2Wz8wz/8Az09PVRXVzM3N8fJkyf5yEc+gtvt5nOf+xyf/OQnaWpqEm07nU5GR0dRq9X09fVx8OBBEokEGzZs4LnnniOZTFJXV8epU6dYu3YtuVyOTCazYk7VajV1dXV0dXVRKpVYt26dWNTH43GsVitOp5OjR49y1113kc1mSSQSGI1Gvvvd7/LFL34Rl8vF0aNHefrpp1m3bt1lE6pHR0dJp9Ps3LmT6elpCoUCO3fuJB6PMzAwwK233opGoyEYDGKxWEilUuzdu5e/+Zu/wefzsXv3burq6oQRUigUqKmpwe/3MzU1xcc//nE2bNiA0+mko6OD1tbWi8LEHA4HGo2Gn/70p9x///04HA6eeOIJTCYTDz74IOFwmMHBQbZs2cKJEycYGBjgc5/7HABf+tKXuOOOO2hoaOC5555j3bp1tLW18cILL5DJZCiVSiwsLLBr1y7++I//WOxY1NXVif6LxSKBQICRkRF6e3uJx+MrQjXkStjd3d0kEgncbjfd3d0A/OQnP+H222+np6eHbDbLI488QmtrK7W1tW9o8bBKuUQ+n+PD930Ql8v1mitiv9OpVCqk02nm5uaRKuXXPdfmcuQKBSbn5jg2MoKjqYlfv+8+rFbrRYnTpVJJhEBqtVoMV6msJBukxWIRjUaDWq2+pudBFjgALpvMLVfwLpfLr8rIledcrv69/PVKpUIsFuOxRx/lxPj4+V1Sux39u7QAn8K7A+VTW+G6xu1209raCsDNN9/M8PAwJ0+eRKvVYrefrxCq0WjQ6/W4XC46OzvRaDRs2LABn8/HL37xC55++mlsNhuDg4MYDAb0er2Ir5fPN5vNmM1mEY7j8Xhobm4WYUWLi4tMTk4SDAaZmppiZmaGcrlMIpFY8WUvSRJqtZoHHniAiYkJ4Ymfn59Ho9FgMploamqitrYWs9nM5s2b2bNnD7lcDrfbjdfrxel04vF4KJVKBAIBQqHQirFarVaMRiORSISf/vSn2Gw24S12Op1UKhWOHz/OH/zBHzA7Oys82suREyvVarX4or399tupr69n//79ZLNZ0uk05XIZr9dLY2MjoVCIaDSKXq/HaDSiUqlIJBLMzMxcdsFzyy230N/fz/Hjx9FqtWLHYePGjdx111388pe/ZHp6mg9+8IOoVCpGR0fFPW9paWF4eJjh4WF0Op245/IY5EWMfB3yvxeOR6fTYbVaqa6upq2tjZqaGpxOJ1arFZvNRnV1NaFQiJmZGfx+P6lUCqPRiNFoJJfLEQgEGBgY4IknnuCWW25Bq9VSU1OD2+0mlUqxe/dujEYjY2Nj5HI5zGYzi4uLYhwmk4lkMsnevXv59Kc/jc1mQ6vVrnpf5B/5vuzatQuTyURVVRVGo5H29naeffbZi4y7NwrZQFF+rvyD/O+biCRJzCwssBCNYq6p4eO/8Rs4nU50Op14juSfWCzG7t27+cUvfsHAwMBVJ6CrVCoRRhgOh68pxwUQn2XBYPCyeQr5fJ5gMMjZs2evqf0L2wgEAivGrlar0Wq1VFVV8eBv/RY6pxNfKMSc3/+q+1FQuB5QdgIU3jGkUimx4L8SgUCAhoYGPB4PuVyOlpYWNm7cyIYNG4DzYReXQ6/Xr/B0SZIkYrzb29vZvn07lUqF9evXrxhPsVhkdnaW//N//g+f+cxnSKfTjI6OksvlWFpaWpEoK3uQ5XyDC4lEIsJAWQ2dTkdNTQ0tLS309fWxZcsWstksqVSKL37xi1itVr75zW9y4MABWlpaVsTIy4uCcrnM5OQkHo8Hr9eLwWBgYmKCm2++mdtvv53nnnuO9evXs2bNGpEbIF9DLpcjFothtVovO5ff//73SSaT/M7v/A4DAwOcOnWKpaUl2tvbWbt2LQ899BB9fX20t7fjcrnQ6/VEo9EV8yTnhCyf63w+v+pCOBqN4vf76e3tXfH6hedrtdoV816pVER4zvJ2I5EIlUpFeFYTiYTIW4DzhllNTQ2pVIoNGzYIAy6TyYjriMVidHd38/d///eYzWb+7M/+jJaWFiwWy4oxyIu2VCqFz+fD7XaLPAXZExsMBmlvb1c88wrCiPSHw6DX09nWtmrFbJnJyUkhjzw5OYnFYmFiYkI4HiRJYmRkhC1btnDu3DnS6TT19fVs3boVSZI4ceIEFosFs9lMNBrl4MGDeL1ePB4PPp8PSZLo7OzkxIkTWK1WUqkUer0ep9OJw+GgUqnw0ksvYTKZqKmpoaqqisOHD1NbW8vGjRupVCr4fD4ikQj9/f2MjIwwMzNDsVikra0NnU5HJBJBkiTS6TTpdJpt27axuLiIzWYjFAoxMjLCyMgIf/mXfykcO8sxm820dXYSmZlh1u+nfdlOq4LCOw3FCFC4rsnlc/h8Pnw+Hy+//DLbt2+nqamJxcVFFhcXOXHiBJs3bwYgmUxy4sQJ9Ho95XKZtWvX0tjYyNzc3P/P3p9HyXFe9/3wp3rf9+7pme7ZFwwG+0aAJECCi2RRshZKsaU4kU+SN7JjR8dxbJ3YsfPmnPwSxfZx5GMnv3iXLVuyJL+iSFMUSUkkCGIjAQKDbQaz7/tM90zve3f1+8egHs0Ag40LCJD1OQcHMz3VVU89Vd11733u/V5OnjyJxWIhlUrh8/mETOj8/DyNjY3Mzc2RSCS4cOECdrudmZkZxsbGSKVSXLlyhenpaYrFIrt27SKTyfDWW2/hcDjEA05BMdRyuRzT09NkMhmy2Sznz59n8+bNSJLE+Pg4FouFbDaLRqPh4Ycfxm63k8vliEQiDAwMsLS0xIMPPkhDQwOZTIaenh5mZ2dpb29nbm6OarVKU1MTX/jCFzh16tQ6Q9FoNHLkyBGefPJJ2tvbqa+vvy5txOVyYbVamZiYYHx8nLq6OvR6PX6/n66uLoxGI4899hjf/va3SafTOJ1OTCYThw8f5sqVKxiNRlKpFPv378ftdq970KbTac6ePcvExARLS0uk02mSySSzs7PE43Hm5uZYXl4mFAphs9nYsWMHJpMJjUZDe3s7lUqFV199lb6+PiYnJ9m7dy+tra2YzWZ27txJT08PWq2W8fFxotEog4ODdHR04HQ6mZqawm6343Q6153v0tISg4ODzM7OMjIyIgwFl8vF5OQkFy5cIJvNsmvXLtra2sjn87z55psAbNmyhba2Nvx+P//yX/5LfvzjH7Nz506GhoaIRCI0Nzfzuc99jp6eHoaHh5mbm8NgMAgDZ2xsTBg2c3NzPProo+zfvx+Xy3VdwW1tba1wHpqamgiHw/y7f/fvmJ6eFio9xWKRRx555Lp6ApUPL6VKBUmjESt0N2Jubg6v14vT6WR2dpZTp04hSRJjY2Po9XohQPDyyy+Ln202G7FYDKvVSjabxWAwsLS0xNDQEAsLC0xNTbFp0yYSiQSZTIaFhQUSiQR1dXUAJBIJotEobrebQqFApVJhdnaWqakpvF4vPp+PxcVF8vk8pVKJWCxGIBAQqwfz8/MUCgXK5TLz8/NUKhXsdjtmsxmDwcDly5eJRCJYLBbRT2Xbtm0bpjopvxtNJjRa7R2vaKio3G+oToDKfY1WoxVf9o2NjXg8HpxOJ8VikZ//+Z/H7/cLQ0qv1wvj75FHHqGtrQ2fz4fdbiefz2MymdDpdCJyfejQIUwmEw6Hg4ceeohcLofX68VoNPILv/ALNDU1YTab6ezsxGAwYLfbeeihh5BlGaPRiMViwXxNwaRWq8Xr9fLUU0/h8/kwm834/X6hmAOrkSi73Y7RaOTJJ58U56CsclitVlwuF08++SSNjY3kcjkOHjyI2WzGarXy5JNPYrVaCQaDeL1eUqmUUItRlIQ6OzuxWq3s2rULl8t1XdTYZDLR0NDAY489JhwASZKor68XaUE1NTUcOHBAOBEajYaPfOQj4pytVistLS3XrcwYjUZaW1v5xCc+gcvlYv/+/WSzWWw2Gx0dHRiNRsLhMCaTCVmW6ejoEMcwm800NTVx4MABTCYTgUCA1tZWfD4fFouFgwcPotfr0Wq1HDhwgHQ6jdVqBeBnfuZn8Pl8OJ1O3G73dWNqbm7mF37hF7DZbITDYR555BEsFgsOh4N9+/ZRLpfx+/14PB4cDgcmkwlYTUNraGgQ139ubg6TycT27duFU+nz+Xj44YfxeDwYDAaMRqOYn4997GO0t7ej0+nEPfPII4/gdDqvM1Lsdju7du0ilUoJ5aVDhw4Ri8VEw7GHH34Yv99/Txc0rk1zerfGqeSlKyl372Tfyn5EGs99TrVahatpLzcjGo1SW1uLVqsVzmYwGESj0ZBIJMjlcoRCIZaWlnA4HOTzecrlMrIsC+UtJQ1waWkJo9GIyWRicXGRQqEgjHW3200mk8Hn84m0SUmSyGazNDU1kUwmSSQS6HQ6ampqRE1RLpcTq2aJREIotwFUKhUuX77Mli1bqFQq4j5QgiKKwpvD4SAcDt9U0UqZJ/ku1m2oqLwfqE6Ayn1NsVTEbrcLQ33tA/uXfumXgNW0kFKphCRJwohvbm4W2/p8Pp588klyuZyQ3ATW6eOHQqF1x/3VX/1V8XNHRweHDh0CEMpEsiwjSdJ1aTw6nQ6/38/TTz9NsVgUuffValVEwaxWK36/H4PBINR/lPx7s9mM2+0mGAyuK7Ztbm4Wx/jc5z637pgf+chHyOVywjhWzufa8712nPX19YTD4XVGVTAYpKamRvz++OOPizFotVr27t0rdPFv1LBJMZYfeughYDW6XalUKJVKGI1Gtm/fzsrKCsVikWKxSH19PaFQSBzT7/dz+PBh8vm8uI7KGHbu3EmhUBDSoJVKRRjrTz311LrOz2txOp3s3LmTnTt3ijEpPwMiaqkQCoU27CLd0NBAQ0ODKE5WxqbVannyySfJ5/Pr0owOHDjAgQMHhFGsKAk1NjZuaHwaDAYOHDggtpUkicbGRhoaGoQxdm2a072Icq8rxadvB6VIVJZl9Ho95XKZdDotrr9S7K3UgCircIpDu9H8KnOoGJxKQOBuOQKyXKEqa6lKd7cjtHL/KSk0Ck6nE4vFgtfrFSt1TqeTfD6P0WikWCyKa5jP55FlmWQySSaToVqtYrVaqa2tpaenR3zfGY1GGhoamJycxGazodPphGpXtVrF7/eTTqfJ5/NC7tlmswlp4mQySblcJhKJkEqlKJfLmM1m7HY78XhcfDaV/QFCctlisWAymXC5XB8YB09F5Z2gOgEq9zVjo2NoFheFTORGX+qLi4usrKwQjUbp7u7mscce23AZ+Ea59XeKErW/FWsj5LIsMzMzQzabZXBwkFAotM6YGx4eZnp6mng8zszMDJs2bbqjB9hGqSG3Ot+NHpLXvrZRZPHtKNJcO2c9PT0sLS1hNptpa2vbcBwbnZMkScLov5Fz824gSdKG5ynSCW5g2Cpju9H7lBWUm7HRnN9oPPcqi4uLpNNp3G43tbW16ww2xWhX5uRGqwbFYpFMJkM6naa+vp54PE5vby/T09PY7fZ1qylKnvvc3Bz19fXrFGiUv0uSJJxPo9HI5OQk27dvX1c8C4ht3+lqg8JPz69KJpNDazagM298n9xiRz/9/21EsJU0muHhYfx+v5DaHRoawmKxEA6HsVqtJJNJUVukBGAsFgvxeJxqtUp/fz8ej4dwOMzc3Bw2m018VpXVu6amJkqlEna7XfRryeVy5HI5oeJls9lYXl6mu7ubw4cPo9Pp0Gq1VCoVLly4QCgUQpZlLBYLTqcTl8vFli1b6OrqYnR0lGg0iiRJ7Nq1i2PHjmGxWPD7/bjd7nuy8aOKyvuB6gSo3Nd86UtfYrf95g/i+vp6Ied4r0Z/NBoNbW1tfP/73weuP58dO3aIouV7cfzvNo8++uj7PQSV9xBF1UqWZWpra5menqa3t1d061bSqKrVqnAY7HY7LS0tZLNZCoUCkUiEyclJIpEIX/7yl1lZWSGZTCLLMlarlVdffZWWlhbm5+eBVaf3ueee40tf+pJQobHb7TQ2NnLixAm8Xi9jY2MUCgUaGxsxGAwsLi7S19dHtVoV6kuKAbp58+Z1Mq9vl2q1SiGfZ3ygj/GhXrZu7mTP7l23JXBwzY6gVIJyGcrl1ZW4OygOV1TLFHlQg8FAtVpl69atopagUqmQzWZ57bXXxPk7HA50Oh3Nzc186UtfEgX2Go1GRN83b9687jh6vZ76+nrhSCkSnbDqqOdyOex2O4lEArfbTWtrK1arlc2bN9Pc3Ey1WsVkMrF79+7VHgjLy1y4cIEnn3yS5uZmGhsbqVQqIoWytbVVBBoUJ1NFRUV1AlTuc1blEm++zb1q+K9lbVTyRn+/18/h3eTDdK4qiOZsmUyG0dFRCoWCaGJnMplEJ+50Ok2lUiGTyaDRaHA6nes0441GI16vl9bWVp555hkGBgYwGAxC4jccDrOwsEB/f79Qpunr6yMYDFIqlUTNjdvtpru7m3Q6jc1mI5lMMjY2JlSf+vr6cLlcIr3w7VKplMmkklw4/QY93WcoFfNUSwVy2cydr1pVq5DJQKGAUavF63TSEQ6juc3P0trVtbXfR0rzP0A4B4899hgWiwWDwSBW3JTu52v3p6TKXbsqt9Fra7FarTQ2Nor0Sr/fL/alzIuy+qU4LQcOHMDj8YgVsbUrS3c7rUtF5X5BdQJUVFRUVO46sixTKBTI5XIsLCyIYs5KpSK6R3s8HmH0ybJMPp+nWCySSqWwWq0iV3xtqk6pVCKVSgkpWY/Hg9/vx2g0ks1mKZVKyLKMw+HAbrdTKBSEk6Dkw+v1eiExqxTOF4tFSqUSHo9HNHN7p2klkqRBpzcSqA3h8flJrERxuVyiGP+OqFYhkYB8Hl21iu0GXZyV2gjFqFaab11bK6FE5wuFglDnUubYYDAIlbVSqUS1WhVR97XvlySJcrksIvBKFF5R6blZ0MNgMAjZUGVsisKZ8j6NRiOKkZUVBuX9a/etGv8qKhujOgEq9zWxWIzFbJGamhrxWqlUIpFI0N/fz/79+9cZCbeL8gBU8oEVwyKRSIgiXEXxAlbzaZuamu74OIoyxsTEBHV1dfh8PtEvwG63C9nSRCIhHnizs7PU1dWJCNna6Nu7ybVzsBFTU1PkcjnMZjMNDQ3vyjHHxsaEsRUIBN7xPmVZZnp6WsyfUnh9o+NnMhl6e3tpaGgQCjz3A4pBej/0B1AiuNFolNnZWXK5HNVqVTR5U2R4lT4ISp6+w+FgZmZGGJFWq5Xl5WURDZZlmVQqxeLiokgbsdvtuFwuHA6HUKyxWq0i4l8sFsU9bLVahZGqvE9pXqVIy7rdbuFkvFMkScJgNBJqbCKfTROdn6apuZmGhoa3txJgsUA2i1Quo9NqN1wFkGWZoaEh6uvrRVHuysoKra2t6+6dSqVCOp0mGo0SCoUwGo2i+HplZYW6ujqWl5eJx+OUSiVqamrWiQas7cK7tkhblmWi0agonFfm4dqaEKUJX6FQoKmpCaPRKGoRlF4EALlcjlgsJmRGr+3fsrbG5Nr6krXHXLu9isqHBdUJULmvGZ8Yh1Js3QMll8sxPDzMV7/6Vb797W+LB9CdoDwAFUnRfD7PxMQEly9fFk7AuXPniMfjmM3mmyq63Ixyucz4+Dh/93d/x8c//nEOHz5MX18fxWKRzs5OLBYLg4ODTExMCIfgH//xH/kX/+JfkM/neeihh94TJ0CJqJZKpZsWqp45c4bJyUkCgQC/+Iu/+K4c++jRo0SjUfbu3cuTTz75jvdXKpX4yU9+sq4x3M2cgGg0yp/8yZ/wz//5PxeSp/cDSqT6vXIK300UidW5uTkqlQoul4tsNotOpxMyqu3t7bS3t7OwsEAqlcLtdtPc3Mzs7CwWi0VE+JeWloRCjGKoplIpDh06hN1uZ2VlBY1Gg9vtxufz4fV6RbM3m82Gz+fjrbfeQpZlsfKQyWRobW2lqamJoaEhtFotDQ0NeDweTCYT1Wr1bX2vXIuS3mJ3utjxwIMUE+14HFbsdvud7VsxbnO5n9YGsL6oWvm9WCzy4osv8rM/+7MYjUZmZ2fp7++npqZGROBXd5VjamqKyclJzGazkASdn59nZmYGp9PJ6Ogog4ODJBIJHnroISwWi+h0rTilU1NThMNhDAaDiP6Pjo4KIQclV18JqCjGfTQa5Y033hCrMV6vl+XlZUZGRmhsbMTr9WIwGJifnxc9Qerr69elKClBjHK5LFYuKpWKUClSFIg0Go1YIbFYLGrNgMqHBtUJULmvqQ3W0qT9aeMnJfLX2NhIfX39OunFOyEajfLjH/+YX/zFXxRFaLW1teLBVq1W6e7upq2tjaeffloohtzoODdaljcYDASDQR544AERDa2vr0eWZdxuN9Vqla9//ev8+3//7+no6GB4eJjvf//7fO5zn7vlMd8JKysroqnPQw89dMMI2cGDBymVSsTj8XXn9U746Ec/yrPPPivm41pu5Gjd6LjlcpkjR47wp3/6pxtq7699vyK5WV9fL4yBm43hTs71dq/VjfZ9q/cPDAwwOTnJpz71qev2da/RfDXarXR6VlRfYLWZ3IkTJ9i2bRuNjY20traKe10pKFXSP5QGcnq9HpPJhNfrFYafXq/n8OHDQh5Yp9OJaPfWrVsB1r2u9FlYuwKm0WhobW0FWKcopKhzvVurLpIkodHqqKsLYdZLaDXvzXUrl8tEo1GGhoaYnJwkFouJjrunTp1idnaWTZs2iRU5pTvw8ePHxTi1Wi3hcBi73U5dXR2lUonl5WUqlQovvPCCWF3QaDTs2rWLRCLBxYsXyefzeL1eOjo6WFlZ4YUXXiCXyxEMBvH5fFy4cAFZlnnqqadEytXMzAxms1l870ajUS5fvkwsFhMNBRcXF1leXsbtdnPkyBGhMCRJkqj7iEQidHV1EYvFmJubEz1Suru7cTqdOBwOKpUK09PTHD58WDgkKiofdFQnQOW+ZmZ2hpD7p7mzQ0NDJJNJksnkOoMplUoRiUSYmZnB7XazefNment7RYQRVh8wu3fvplQqcfbsWf7yL/+Smpoa2traKBaLollOtVoVUoSFQoHXX39ddPhVHqDxeJxYLMbu3btvGEkeHx8nmUyyvLxMJpPBarVSKBSYm5tDlmVMJhORSITx8XHOnTvH3Nwc09PTJJNJXn31VQ4ePEihUGBxcZHFxUXcbjddXV2cPn0aWZZFKkNjYyMOh4OxsTHm5+fRarXs2rWL5eVlent7cblcNDQ0MDw8LDrv/uAHP+DChQu0trZisVjYunXrbeconz17VjRWa2xsZH5+nrm5OSHPV61WGR4epq2tDa1Wy8LCArlcDrfbLfoiKOTzeVEoqvQFuFazX6FUKjEzM8Py8jI2m42amhr0ej1XrlxhcXGRY8eO8dBDD90wxSidTotux4VCYZ0DmUgkGB4eRpIkamtrRf8EWZY5f/48lUoFj8dDKBRiYGBA3Ev5fJ7h4WFMJhMHDhzgjTfeQKPRYLfbxX737dvH7OwssVgMvV7Pjh07AFheXmZ+fl4opHR1dXHs2DHMZjMWi0WoojzyyCNcvHiRF198kcHBQSwWC/v37xcN4u5FFON7bcqL8rNGo+GBBx7A5/NtmHJzbSHu2m2uvUeViO/a3+F6+dhrpVvX/v3dSPu5V1AKrDs6OhgZGSEWiyHLMqFQiN7eXg4ePMhbb71FuVwW6YmZTIbJyUkAEeU/dOgQer2eWCxGuVwmFArR19fHnj17mJqaYnx8XNy3uVyOaDSKyWQikUhw/vx5oQBkNpuZmZlhfHyczs5OTp06hcFgoFgssri4yPj4OF1dXaLXi1IPsrCwQCgUErKkPp8Pm83G8ePH8Xq95PN58d194sQJcQ8ofVGWlpZ4+eWXeeKJJyiXy4yOjnLx4kWCwSAjIyPv5yVSUbmr3PvJoyoqNyGfz3PixAkA/vqv/5qVlRVqa2sJBAKiU2QymeSNN97gzTffpLOzkwsXLjA9PQ2sGuLf+c53CAQCzM7OcunSJdLpNMFgEI/Hw65du6itraWuro5cLsePfvQjANGdOBwOs2XLFgKBAN/4xjdEZDOVSjE3N7ehcogsy/zkJz9hbGxMaFcvLi4Cq0ZMKpVidnaW2dlZampqsNlsbN68mZ07d7Jp0yYcDgc7duwgl8vx2muv0dvbS2trK+fPn2d2dpZqtcqVK1f44Q9/iEajYXp6mu9+97tMTk7i9/sJhUL87d/+LVarlStXrnD69Gnm5+fZvHkzf/ZnfyYeoM3NzbS1tdHS0nJbqQnFYpG/+Zu/AVabZmUyGZ599lkCgQDf+973SCQSogtwf38/5XKZ5557jnw+j8Ph4NKlS+KawapRv7Kywvnz52ltbSUej69rZLSW5eVlenp6xOrM0tISPT09TE5O0tjYiM1mY+vWrSJCeC1nzpzh+eefFxrmy8vLooh0aWmJb3zjGzQ1NeH3+xkeHuaFF16gUqnwR3/0RxgMBtxuN4lEguPHjxMOh3nhhRdYWFjAbDaj0+n4wQ9+IKQrz549y49//GO8Xi8TExN85zvfIZfLkc/nOX78OEtLSyJSurS0RE1NDRcvXhSdiI8dO8aJEydwuVxMT0/T3d1NTU0N4XAYt9vNjh07btgz415BKdzc6J/SUE8xvm+27b3w735AGWexWBT5/GNjY8Bq4ztFDjSZTAppTb1eL1ZEFMUl5btAKZaOx+MUCgU8Hg+pVGpd91+73S5y+H0+37qUH6X+QhmTkq6jrOAkk0ny+TwdHR1cvnxZBFUKhYLoSG40GjEajcKxU75LOzs7qaurw+l0YrVacTqdbNu2DYfDgdvtJhAIUCgURNGyssJkNpvp6OgQXcurcNvKSioq9yvqSoDKfY1Wo2VxaYl8Ps+5c+fYvHkzHo9HKFIAjI2NMTo6Sj6fFxGlSCSC2WxGq9WuK1xbXFzE5/NhtVoxm834fD40Go1IR4hEIsBqkaDRaMRmswmZwHK5TCwWEw8zRZv6WqrVKi+//DKf+9zn8Pl8wjgGRApCuVwWkTK9Xo/b7cbv9xOJRDAYDPh8Prq7uxkfHxcrCKVSicXFRQwGA7Isk81mxQPv1KlT7Nu3j9raWvL5PLOzsyInVimU9Hg8DA4OiuJZpQGPw+G4rWtRLpd5+eWXaWtro1KpiAJNJe96YWEBl8uFxWIhGAwyMTHB9PQ0LS0tIvqurGjAquFSLBa5cuWKSM25kdE1OzvLuXPnqKurEw/7y5cvMzs7y6c+9Sn0er3INb+WQqHA+Pg4Q0NDfOpTnxLNizQajZCGjMViOBwOzGYzb731FpcvX+aRRx7hrbfe4jOf+Qw+n09oqbvdbiKRCPl8HpPJhNVqZXZ2Vtw35XKZTCaDw+FAkiSi0SharRadTidWhlZWVpicnMRut1NTUyPmxmazia7DSt64Moc2mw2TyYTP57uvDNRr0Wg0H6jo+72A2WgkmcuRSqXweDzU19cTjUbx+XwEg0HxWSsWizQ3NwsVHq/XK7p1u91u8TlUro/VasVgMGC32wkGg+J70e12C3Ufg8GAx+MhHo9TLBbXNQ/LZrOYzWYKhQIzMzOipsBgMGCz2XC73dTU1IjvNIvFQkNDg/g8WywW4QjU1dUxMTGB2+3GaDRit9sJBALU1tbidDopl8u4XC7hZCgrEy6XC4/HQ11dHWazefV7cGAA+Rb1UCoqHwRUJ0DlvsZg/GkR2+LiIlqtVjxIXC4XAJOTk6TTaYxGI/F4nIaGBqEt7nQ6hRGvFBEWCgWMRqPI+c3n8+j1evR6/XWydkqOrNVqZf/+/cIor6mpEc29rqVarXLmzBl++Zd/WRREer1e8Xej0bjOCFqb/7xWTWNsbIx8Pi+6eCo51haLBZfLRblcJhgMijno6OgQMosNDQ1otVqMRiMej0cYAopM49p8Z8UZuRWyLDMwMIAsy+RyOSRJIhQKodVq+djHPsaZM2eoVCps376dPXv28Oqrr6LT6cjn81QqFerq6tbl4q51iF5//XW2b99OqVQSkcq1LC4u0t/fzwMPPCBSdo4fP87i4iKf/vSnbxq5LRQKxONxEomEcHgcDgcGg4FkMsno6KhYQbDb7WSzWcbGxoSqimL0uFwuwuGwMGI1Gg06nW7dapDFYsHtdqPX68U9l8lkRFTTbDaTSqUYHh4GVldDCoUC9fX1FAoFYbBYLBZMJhM2m41YLCZkEpV/uVxunazje82NaidUruEuT5Fyv7sdDpYyGVYiEZqbmnBede6VHgpKN15JkgiHw8IoDwaDNDY2otFoMJlMOBwOfD6f2H8oFBJN17Zt20YgECAcDuPz+TCbzeJ7SFkpKBaLIpJvMBjIZDIUCgVisRhnz56lrq4OnU6H2+2mrq6OdDpNOBzG6/Wi0+kIBAKYzWaRUlcqlcjlcmi1Wvx+PzMzM7hcLoLBIE6nE7vdLoIxymfPaDSi1+sxGAzMzs6KgIeSnlYsFllZWsJULuO7+gxRUfmgojoBKvc1SsTKZDKRyWQoFoviNVmWRW681+vFarWydetWtm7dSjqdFsvWa9Us1hrBSrHiyMgItbW1wtBZWxysHEOr1fLzP//zfO1rX6O1tVUY3zfCYrGQTqfJ5/NCG10Z99rjrP352t89Ho+IYCkOhxJ9Vwx8xTBzuVw0NjayadMmtFotLS0tIgVAMfivPX9luby/v5/t27dvWBOwdkwAXq+XtrY2gsEgHR0d5PN5AA4cOMAzzzwjnLDW1lb8fj/xeJzm5ma2bduGLMuk02ni8bhYydDpdHz5y1/G7Xbz//w//w+BQID6+nrR/EdBMYgTiQSyLLOysiKKxNfeDxutJhiNRtEJVTGmlfnW6XTYbDYmJyfF/CjXX8nLV15TVm8U40qSJPL5PKlUat1102g0aLVa8bviWCrblMtlvF4viUSChoYGdu3aRbVaXScVq7xfuXfWXrNKpcLAwABdXV3X5bq/u6zOo6K4ojoBN2fttbrbNNTWMheJMDQ+TmbzZjo3b6Y+HIY1n4Vra202bdokfg6FQuv+pnwG6uvrxWtbtmwB4MEHH7yjsS0sLJBMJvH7/ezZs0f0IGhtbRVF2QrKKuGNeOqpp6577eGHH77uNaUuaO05tre3i4BDdHaWrnCYxmvOW0Xlg4bqBKjc11y4cIHY0BCZTIYvfvGLRCIRXn/9dTKZDBMTE7zwwgt86lOfIp/PMzAwwMmTJymXy7S2tnLx4kVOnz7N5OQkIyMjHD9+nFQqhd1uZ8eOHRw4cIDvfe97NDQ0kM1muXTpEiMjI/T395PNZhkYGCCdTrN582b27t0rlq0bGxtpaWm54Zi1Wi3/83/+Ty5dukQ0GqVarXL27FkkSWL37t309PQwNDRETU0NoVCIqakpTpw4wcLCAtPT0wwNDXHs2DEefvhhoe5x8uRJKpUKbW1tnD59mu7ubmRZZmRkhLa2Nv7jf/yPDAwM8I//+I90dXUJA3NsbIzJyUncbjfhcJiJiQm6u7upr6/H4/Fw5MgRDh8+fEPD5fTp05w5cwatVkssFuN//I//wfPPP09bW5to9KMYBXv27BGNmrRaLR//+Mf54z/+Y/r6+ojH40iSRGtrK0eOHOHixYskk0ksFgunTp3iC1/4AgcOHKCzs3PDJfrdu3fj9Xp57rnnsFgsnD17VuQwnz9/nuHhYU6cOMHDDz98XWGwwWDgwQcfxG6386Mf/YhAIMDY2BjHjx/HbDbz0Y9+lIGBAc6dO8fCwgJ2u51f/dVfxWq18sUvfpFTp04xMjKC0+lEr9ezc+dOGhsbWVpaIpVK0dPTQ39/PyMjI3R3d/PWW2+h1+sZHh7m2LFjZDIZgsEg8Xic7u5uCoUCv/mbv8nXv/51hoeHKZfLVKtV2tvbef311zl//jw1NTUMDg7y+uuvk81m2bNnj4hknjhxQqRwvJdIkkQVeP4HL4jorsqNUeQ55+bnqVbX2d/vOTaLhf3btuFzufin73+fk8eOUVNXt6651/tFpVJZvcfLZS6eP8/lixfv+piq1SqlYpHZ6Wmq6TQfP3iQtoYGDHfasE1F5T5DqqrhG5X7kPMp2NMNr7bE2KRZNaIymYyItMqyzNzcHIFAALfbTT6fJ5fLiWVtg8EgXiuVSvh8PhGBtlqtmEwm0um06F6q0WjIXc2pDQaDQplFr9eL3GyDwcBPfvITYXzeyAhTGuEoCjRKT4JqtUooFCKdTlMsFtFqtTgcDubn50VubblcZmVlRSyLp9NpCoXCuvPKZDIiAu/xeET300KhICLdBoMBvV7P8vIykiRhsVjQ6/XMz8/j8/nQ6/WiQZqSx7/RgzmZTJLNZpEkCY/HQ6lUEsdWigsV3W9FRtRgMIj0IiVir6xc6PV6MpkM2WxWyD4qKwJarVZowV/L2k6xCiaTCb1eT7lcFrUeSurDteTzebEqo9frhRa9cu6K1rwShdfpdJjNZtE5VtE6V8YcjUbFalK5XGZubo5NmzaJew5WV2cUdRObzSZWQoxGI16vl3g8LmpblBQxZW50Oh0Oh0O83+12UyqVyGazIsXjTgy83sVePv3NT/P8F59na81W8XpZrpItySQLMuVrnhTJRILBvl4yqYRaQHmbXG1Nxbbde7E7nOtW1yTAbdJi1kvo71QiVHmMRyKQyYg+AWupyDLFYpFoPM7UwgLpXI7K1dWx95trm3bdbSRJQiNJOG02GoNB3A4HxqspfTd4A7jd4PHABtson6c/+Ozz/NzUVrr3wO57v32HyocQ1QlQuS9RnIBrv1zXpuooxpmSS6+kbtysXf1abqdjLqx2LT569ChdXV3IsiyUhW6HtekBStfTO30QKud1OxKed7Lt7Z7/Riia72tz92/0oFfm4EYdUpUmPrfT+VnZVtF8vxOU81VSatbWYihpOkre9NpxrE0zWntMRXlEklY7Tr+dqOut5uZG53Cn1+ztOAHlUolUKkkum+WuJ7vft6ymH7o8HnQ6/br75b12AlY3W/1ejKdS5AsFZPXxL9BIEmaTCZfdfuvPj+oEqHxAUNOBVD5QrH2oXls8qhh0t4sSyb0VSiQ/n88TCoXuSFHinXYchTs7rzvZ9nbPfyM2et+NHqq3OoaycnE73Mm2G71XGcu1c6TICG7EjeZzreG+0erF7XCn8/9OrtmdotPrcXu8uD3eW298l6hWlRqV1d8lQLp6fd7vtJd7AaUGyneL3HoVFZUPB6oToKLyDvH5fPziL/7i+z0MFZUPNUrOfalYRK6urghKaDCaTG9rhU1FRUXlg47qBKioqKio3PdUq1XGR4YZHRq8mqIERpOJbTt3Uxuuf9urMSoqKiofVFQnQEVFRUXlvqdarZKIx5mdmiSdXi0QN1ssNLe2IV+tUVFRUVFR+SmqE6DygUPRbb+d4tc74U6Kau81hoaGOHPmDCaTiZ/7uZ/bcBul+PVeTp2400LZ22FiYoJ4PI7BYKCrq+tt7aNYLDI2NsZrr73GgQMH2L59+4ZjLBQK9Pf3s7S0JFSm5ubm2LFjB8FgUOj/F4tFTp48SbFYxG63Y7FYxDG6urqoVqucO3eOdDrNrl27KBaL6PV6fD4f27Zte6dTct9SlWUqV3s8AGr/AhUVFZWbcHfaSaqo3EVisRhjY2Pv+n6TyaTo5Hq/YTQamZ2dveW89Pf3C4nPexGlV8K7SaVSoVQqUS6X3/Y+FAWglZUVFhYWhBF6LSdOnGBiYkJIjJrNZorFIhcvXmRwcFBs95Of/IRoNCqalZnNZtFpOhqNUi6XiUajDA8PYzabsdvtzM3NcfLkSWZmZlTDV0VFRUXllqgrASr3NcVikWx2tZmS0Wgkk8kwODjIyMiIUOrJZDLr5BsNBgO5XE4oZeh0OtLptNCVh1XDsFgsotFoxH5HR0e5cOECDQ0NWK1Wcrmc6PhqMBhIpVIYjUa0Wi2yLJPP5zGbzZTLZQwGg+hAnM/nkSRJaOUrx1KUXfR6/XWKM0qUvlwuU6lUhAJRPp8XUqhKh1+z2byuo2wul6OmpgabzUb2aq70tfuuVCqsrKxw7NgxXC4XPp9PSGXqdDohd6no4RcKBXGu5XKZUqmEJEmYTKbrJDQVlKZAa7XvlWuz0XVQjHNlX5Ik0dPTQyKRwOfzib4CygqNYsQrc670YTCbzeTzeZETrnS4NZlM4voqfRiU+VrbWVjZRjlPQIwfVqP7sixjNptpamoS21w7x/l8nueee479+/dz6NAhvF6v+Nt3v/tdZmZmaGtro1Qq8bd/+7f88i//Mjt37sTv9yPLMtFolHw+j8FgIBAIEA6Hicfj7Ny5E6PRyPj4OG+++SabNm26rsOrioqKiorKtahOgMp9zdz8HKQXyOfzbN26lSNHjtDd3U0qlaKuro4nnniCt956C41Gg8PhAKCpqYmzZ89iMpmora3F5/PxyiuvsG3bNpqbm4XBNTY2hsvlorOzk+PHj3Pq1CmWlpZoaGjg8ccf5+LFi+RyOfx+P21tbfzoRz+is7MTv99PKpXi0qVLPPDAA8zOztLZ2YndbieRSHDp0iV0Oh27d+9Gr9eLlQu9Xo/L5SIUCmGz2dadZ6VSYWlpibm5ORKJBI888gh6vZ6BgQGWl5dxu93odDoWFxfZs2cPHo8HWZbJZDJcuHABn89HOp2+oZzl8vIyf/d3f8fFixcJBAK0tLSg0+mIRqOEQiHm5ubQarX4fD5cLhf9/f10dXXh8XhYWFhgfn4eWO3cazKZ1hnRSlQ6lUoxNzdHNBrF6XSybds20W04GAwSDAb50Y9+xLZt22hsbCQejzM1NSWcIpPJxGuvvcbk5CQul4uOjg4aGhpIp9MsLS0RiUTEvEYiEfr7+8nlcuzbt4/e3l5aW1vR6XTE43Gi0Sjbtm3D4/EwPT1NoVAgEAggyzI9PT0UCgXh8JhMJnbs2MHS0hKTk5NUq1W8Xi+bNm2iWq0yOTlJKpUiGo2SyWSw2zcWBO/p6SEajYpmYAqdnZ0sLCwQi8WYn59nfn6e2dlZQqEQfr8fWHVEAoEATz/9NE1NTesi/YoTp6TB3S2J0HuF21n1UBxihXs13U1FRUXlbqKmA6nc1/T19bF79250Oh2xWIzOzk727t1LZ2cnjz32GJIkYbfbOXXqFN/97ncxGAwMDQ3hdrvp7u6mu7sbnU5HKpXi9OnTLC4u8sILL/D3f//3PPjgg1y8eJGBgQFCoRAPPPAAHR0dPP7442i1WmFAvvLKKxgMBtLpNN3d3SQSCarVKv39/fzgBz9gaWmJeDzOSy+9xB/90R/x4IMP4nQ6eemll/jrv/5rjh07xt69e9m2bRuDg4Ois+5ajh07Rl9fHzqdjlAoxG/8xm8Qi8VwOByMj4/zR3/0RzQ1NTEzM8OpU6cYGBhgaGiI//yf/zMHDhygpqbmuo66a7Hb7Rw+fJjW1lYOHTrEzp07yWaz/J//839oaGhgYWGBsbExEokERqOR7u5uPB4Pf/zHf0xvby87d+5ky5YtfOUrXyEWi123/3Q6zZ/8yZ/Q399Pe3u7mFen00lPTw+nT59Gr9eTTqc5c+YMR48eZWRkBJvNxq5du+jr66O2tpbm5ma6urp4/PHHaWpqIpVK8a1vfYuLFy+yZ88e/H4/v/d7v4csy0xOTvLyyy/T09PDo48+yn/9r/+VV199Fa1WS21tLb/zO79DsVjE5XIxMTHB0aNHqVQqnDp1iu3bt7OyssLZs2eZmppiaWmJr33ta3i9XgwGA2fOnGF4eJhvfetbDA4O4vP5CIfDzMzMbDi/yv3gdDqvc/AA4RT09fXR19dHS0sLJpPpuu0++tGPUl9fD6w6hvPz85w5c4b/9b/+F5lMhl//9V/n0KFDN/y8fFCJrawwPztDIhEXjepgtY4ntrzM4vwcK9HI+zhCFRUVlXsP1QlQua+ZnJjky1/+sjDELBaL6BarRESdTid+v59QKERrayvbtm3D7/eLVBKNRoPb7aZarXL58mWSySTBYBCDwcCnP/1pOjs7cTqd1+3XbreLXG1JknC73SLCqNfr8Xg8hEIhDh06hMFgIBqNMjs7y8jIyNU0piw+n49sNssv/dIv8Rd/8Rd0dHTg3qCRz549ewgGg8TjcZaWlpienqZSqWCz2QgEAgSDQWw2Gx6Ph1QqRX9/P/39/YTDYbHCYLPZNmykpaTv6HQ6Ef3W6XQEg0EeffRR3nrrLdxuN/Pz80xMTFCtVnnooYeIRCIsLS2JFCSDwYAsy4yMjJBMJtcd4/Tp01gsFpFq9MlPfpKWlhZ8Pp9Iw1GuA0A4HGZqaoo//MM/5L//9//Opk2bMJvNotmZUrx8/PhxqtUqbrcbg8FAMBjk1KlT5HI5TCYTXq+Xjo4OkcIUCoVobm7GZrMRiUSoVqs4HA6MRqNI7frEJz7B2NgYExMTWCwWHnjgAY4ePYpWq2VycpJkMonFYmF2dpbvfOc7tLW1UVtbi8ViuWkaTk1NDalUilwud93fEokE5XKZYDBIbW0tS0tLG6YVxWIxCoUCsLo6oBQCf/KTn6RarfLCCy+8rQ7P9zvZTJqL595ianyM4tX5ASiVSgwN9NF/5TIry8vv4whVVFRU7j3UdCCV+5r29nZCIQfRaJTR0VEMBgOSJCHLMslkUqS/KAakkodvMpnWpU0Ui0VgNXKoOAYajQaPxyNy+CVJolqtiv0qxvLafSgpB0qHWYfDIdKQlLz3QCAgfs/n8+RyOT72sY9RKpW4dOkSNpvtuq7D3d3dVCoV/H4/NpuNfD5PMpkUxrfFYkGj0azLpQeEwakY+DczDpW5SqfTmM1mrFYrBw4c4JVXXuHAgQNIksTy8jIzMzNs3ryZYrFIPp+nXC6ve+9G6RlKqgqsOkhut1vk6SvXQVHFUf5vbm7mE5/4BNVqlRMnTtDa2iqugyzLzM/PUygUKJfLyLIs5jweX40GazQaDAaDSM9R8viVWgBljtZ2UVacuR/+8IcEg0FaWlqIx+PIsozNZsPr9eLz+cR5JxIJMSbleBshSRKbNm0SKVq5XE7ci5FIRBy3vr4el8tFuVwmlUqJ2guFubk56urq1t1jVquVxsZG8vk8PT09Qinow+QI2OwOrDYbOr2eKmtSpWQZjVaD2WzB6XK9fwNUUVFRuQdRVwJU7mscTgePPfYYBoOBWCwmDLJUKsX8/DzlcplYLEYymSSfz5PNZkWxqEajoVgskkwmWVlZYXl5GbvdjslkIp/Pi9eUXHqtVks6nWZubo5SqYTBYBBFs8o+VlZWSKfTZLNZEokEiUSCUqkkotKBQEAUBYfDYeFIfOQjH6G9vZ25ubkNi3fPnz/P9PQ0Op1OFMRGo1EikQjxeJxcLkc2m2VlZYVYLIZGo8HpdApnYWVlhWQySTqdvi5KD6uGsMViIZvNsri4SCqVwmw209bWxtDQEDabjdraWjQaDVNTU/j9fux2O263m0qlQiQSIRaLrSuyXUtdXR0ajYZ0Oi3mKZPJCCegWCySSqXEnM/OzmK1Wnn44YfZu3cvU1NTFItFLBYLBoOBhYUFFhYWqK2tRafTkclkWFlZYX5+XuTMZ7NZcTzFoFZ+j8Vi5HI58b54PE42myWfz9PX1yfqDqxWK/39/TQ1NWE0GjEajdjtdnw+Hz6fjy1bthCJRIhGo6RSKeLxOJFIhHK5fJ0zFA6H6ejoEFKfmUyGZDJJX18fdXV1bNmyBa/XSzgcZvv27czPzzM5OUk8Hhd1D4VCYd15pFKpdQXp6XSahYUFVlZW1qXFfNCxOxzUNzbhD9RgMpnF6wajkUBNLbXhelwe7w2L1lVUVFQ+jKgrASr3NZcvXWaXtUpTU5NI25mbm2N5eZmJiQna29sZHx9nYmICk8nEwsICzc3NuFwuzGYz2WyWyclJlpeXmZqa4qmnnhIR3itXrlCtVgmFQrjdbmw2GysrK0xMTNDW1ibkG5X8c8V4bW1txeFwMDk5ST6f5+GHH8bn89HW1kYymeT06dOEQiEMBgODg4NEIhG0Wi0ul4t9+/bh8XiuO0+z2UylUhESmeFwWDgcIyMjQppyaGiIdDpNfX09bW1tXLp0idHRUXK5HPPz8+TzeSYmJti+ffu6/ev1empra0kkEkxNTVFbW4vD4UCr1eJ0OmltbcXv9zM8PMzy8jKSJOF0Ojl06BD5fJ4LFy6g0WjYv38/4XBYRLlhNWK9fft2US9x5coVABoaGqirq8NisZBKpcQcKhKg8Xgct9tNR0cHH/3oR7HZbDQ1NVEsFjlz5gyNjY3s37+fxcVFstksfX19TE1N8W//7b9Fo9EQi8VYWlri8uXLtLS0kE6nmZmZYWBggPn5eYrFIvPz8wwMDIg0p5WVFf7yL/+Sxx9/nFKpxIULF5ifn+fTn/40J0+eFD0F9Ho99fX1/Mqv/Ao9PT2USiUKhQKTk5PAqmKQopSkzIFer+eXfumXOHnyJMeOHRMrQcePH+fxxx9n69atIi3rt37rt3jmmWdYWVlh8+bNuFwuRkdH2bdvH9Vqlbm5OUZHR4lEIkxNTWE2m6mvr6e9vZ3z58/j9XrZu3fvuuvwQUVRrWpsbqVQKJDP5ZiaGEOWq3h9fto6N9PQ1HLDVRoVFRWVDytSVRWUVrkPOZ+CPd1wZkeJLn3huvSZarV6Q6WUtao15XKZYrEoIvpKqogi8WmxWK7bryKbqaBsq+xDWSG4EaVSiWq1KlI2ZFmmVCqJlJ21Y1x73FKphCzLGI3Gdeo7tyKbzQqZTFmWRerQtftfO29r88qvPZaSv792e6Upk2JobTQ25RwUec61VCoVCoWCmEOj0Siug7KSoiDLsphnBUW+c63h/V6Qz+eFjOtalD4DyvVU7puNrqOyn0gkgsFgwO/3r0tHWrudslpQKpVoaGi4rfFNT0/T3t6+4fFvRO9iL5/+5qd5/ovPs7Vmq3i9LFfJlmSSBZnyPf6kqFar5LJZZiYnOH3qOLlslsMf+RnCDU1YrNZ7fgVAAtwmLWa9hF5zh2NVHuORCGQysEE9icq7iCSB2w0eD2yguKZ8nv7gs8/zc1Nb6d4DuzcWDVNReV9RVwJU7mu0Wh0Wi/Y6I1WJDsKNDaG1+vSAMMqV/O5rDTllv8r2a3XkzWYzkiTd1AhW9nGtAano0K8d10ZjXfu+tRHmm6GkPikpSDdyHpR6h2vnbe321/6uvLY2p/5mY1LOYaN8da1WK+Z77d+VQuW1+1Vy79fuY+11vJ15ebsozsi1+1fOay03mmdlP0oR8UaFvMrvFovlulWVW42vpaXltrb9oCFJEiazmVBDAw9rHyOdStLQ1IzRZP7QzYWKiorK7aA6ASr3NatG6MYG1O2+/1Y/32q/d5Jn/E6Mkbfz3mvHdrN93M4538m83O4xrn39Vvt7p2N4J9zO+G93P7ej53+jvg432+/NVqE+6Kw6AhZqw/WUSyWMxvd2ZUhFRUXlfubD+7RQUVFRUflAoThX5jVpfKoToKKiorIxqhOgoqKionLHlMtlctks5XIJ1cy+AyTNqpypVot0hys97wSla3KpXCZfLIo6HpVVJElCp9ViMhpXr42qJKXyIUB1AlQ+9CgPx9vNs3+7x1j7/91+wKw97tqx3Mk41hoMb3fsd3rsa7d/J8e+U9bOmcr1xJajHHv1x8zPTCJJH74GZXfO6v2k1Rv52ad/Dn9NEOMGXaHfkyNf/Y7L5fOMz85ypreXpZUVSuXyXTn+/YBep6PO7+fB7dsJBQKY32ORARWVewHVCVD50JNKpfje977HE088QW1t7boi3XeLdDrN5cuXeeONN4hGo3z1q1+9q7nbpVJJFNnKsszS0hIvvfQSH/3oR6mvr7+tfcTjcQYGBpicnOQLX/jC2xpHJBLh3Llz/NVf/RXf//73b/mQlWWZRCLBb/3Wb/H5z3+e7du3i2Zr7zXlqwbStQW/Kqtk0mlGBvv5//zLf47dYUejGkw3pVqtksvl+O73vk86lcLt9fHuf9PcmKm5Oc719/PWyAiPPvEEDzQ0YDQa79jQVUIB7+bVXrse8X7cRfLVBoUjw8P85QsvcGjbNnZ2dNB4tTGfisoHFdUJUPnQo9fraWtrE7r47wX9/f0sLy+zbds2Nm/e/J4d50YcO3aMtrY2mpubkSQJm81GW1vbdRKoN8NkMolmZ28Xt9t9XR+Bm6HRaLDZbGzevBngrjbAunz5MpVKhQceeOCuHfP+oooEhMMhXC6XGjW9BdVqlUwmc1Wt6+4eO7K8zOD0NIvZLF/81/+aUDhMoVDAYDCg1WrJZbNYbbZV1a2b7CedyTAxMcGWLVvWbVepVFiKRMhkMrhcLmw2G6Y1wRSlI7tGq0V3zXdfsVQinU6zuLiI2+3Gbrej1+tXgxa3SJcqVyrIlQpIEoa34axXZJnl5WVyuRx2u51HHn2UhoYGzh4/jn5sDIfVitvpvOP9qqjcL6hOgMp9TS6XY3Rpjmq1SkNDA/l8nlgsRiaTob6+noWFBfx+v+g0q0TBi8WiUF4pFArk83kqlQrJZJJEIkGhUKCuro7FxUUCgQAWiwW9Xk+5XGZycpJqtUptbS1ms5lSqcTCwgIajQa9Xo/D4RDGtaKNPzY2RiQSIRwO43Q6kWWZhYUFoW0fCAQoFAqMjo7i9XrR6XQUi0UhI7kWWZaZm5ujUqngcDgwmUyUy2VGR0epra0ln8+j1+ux2WzYbDZGRkY4evQoyWQSnU5HIBAQDb8kSWJ5eZloNIrD4RCa/w6HA51ORzQaxWw24/f7SaVSZLNZNBoN1WqV2dlZSqWSKMY0GAwEAgGWlpbI5XLo9XrRdRcQHZzT6fQNnSAlWrqyskK1WsVisQijQpZlIpEIpVIJs9mMz+dDkiQSiQSpVIpSqURdXR0Gg4GxsTG0Wi1Go5FKpUIgEECr1YquyZVKhcbGRgCxj0QigSRJ+Hw+5ubmePPNNymXy3g8HhobG9HpdCwvL4uOzh6Ph0KhwNLSEk6nE4vFQqFQoKamRpyPcr6Tk5M0NTWRSqVwOBzYbDaKxSLT09Po9Xpxj5VKJebn54FVh0npW6F0g1bm1GKxiP4Ui4uLGI1GYWg1NTW9C5+s2+SqLK7S10HlxsiyTKlcvqsBACWlbXFlhUyphDsYpLWtDa1Wy+DgID6fD4PBwMjICLt27aJUKgkDHFb7VNjtdnEPKg0JOzo60Ov1VKtVtFot1UqF8+fP43A4WFpaoqGhgVAoRDKZxOFwMDU9jVarxWaz4XQ6KRQKeDweJEkiEo0yNjZGLpdjZmYGr9eL2+0W36OyLF8nzat0G49Go+K7JhgMYjQaKZfLomO3JEmUy2XRab1QKFAqlYSjEYvFmJycFN9/Bw8epL2jg6H+fjK5HIvRqOoEqHygUZ0AlfuahYUFpPTi6oOoWsVoNDIxMcHw8DCPP/44sViM5eVlGhoa8Hq9RKNRotEoiURC6M3DqoEaj8cxmUwMDw+zsLDAww8/zMrKCsvLy7S2tmI2m5mfnxcdfsvlMna7HUmSmJ+fx+l0kkqlaGxsXBdhr1QqpNNpkskk2WyWYrHI0NCQaP6l0WhIp9PU1NRw4cIFGhoaRIfguqvL0crDTzH6YrEYGo2GeDyO1WrFarVy9uxZtmzZgslkEs3H2tvbicViDA8PEwwGSafTeL1ecrkcExMTtLaudlkdHh6mUqnQ3t7O3NwcHo8Hh8NBKpWir6+PJ554gkKhwPLyMsvLy+zbt4+hoSEcDgfpdJpCoUAgEECn0zE+Po5Go0Gr1YrVj7GxMVKpFFqtlnQ6LQzWtSiN2Pr6+tY9vLds2QIgrk8ulyOVSvHEE0+Qz+eZm5sjkUgAsLy8zO7du5mamiKTyWAymdYZ6IqTl8/ngdWuxZFIhEgkQjqdxmw2k0gkyGazTExMUCqViMfj1NfXE4vFmJqaolgsotfrWVpaoqamhtOnT9Pa2kowGCQej69zAmRZJp1O89ZbbyFJErFYjKamJqrVKmNjY6LTMKz2BMhms8zPz2O1Wkkmk/h8PkwmE2NjY+j1eiqVCvl8XjhXfX19aLVa4TR5vd676wSo3BesJBJUtVqCoRAmk4lMJiO6i5vNZi5fvkxzczPLy8vCYFYCBD6fTzjQ09PTTE1NMT09jdFoxGg0YrVakWWZvr4+9u3bx8TEBLIso9PpmJqaIhQK0dfXh8Viwev1kkgkWFlZYdeuXZjNZlZWVhgdHV13/9fU1ODxeDAYDBgMBlwuF7IsA6vfE9FoFKvVyvT0tAgK5PN5vF4v+XyeZDIpngepVErsI5VKkc/naWxsJBAIkEwmGR4eZn5+noaGBmRZxmazEaitJT49TTQWe5+vnIrKe4saulG5rzlz5gzBYJD29nb+6Z/+iWw2SyKR4MSJE8zMzLBt2zZeeOEFLly4QCQS4aWXXqJYLJJKpYhGo1QqFWpqalhYWGB6ehqbzcbi4iKnTp1ifn6enTt38o//+I8MDAwwPDzMt771LQKBAG1tbZw6dYqXX36Z/v5+JEmiqamJSCRCKpUS41OadIVCIVpbW2lubsbtdvN//+//xWaz0dHRQaVS4etf/zpWq5WpqSkuX77M0NAQsVjsuvSXxcVFvv3tb+NwOOjq6qK3t5cTJ05QLpeZmJigr6+Puro6kskkL730EgMDA+zduxePx0N7ezubNm3CbDbT1NTEyy+/zNLSkogi/93f/R319fWMjY1x4sQJhoaGaG1t5Rvf+Ab5fJ6amhqSySSvvvoq1WqV0dFRQqEQ6XSaCxcukEwmOXHiBCMjI/h8PsrlMs899xyyLPOnf/qnyLIsnLGVlZXrrmW1WiWRSPCNb3wDs9mMVqvlypUrJJNJAIaGhjCZTGi1Wr7zne8Aq0b/wMAA+Xwej8fD7/3e71GpVDAajfT29vL6668LY+bNN98kEomIrsR///d/T7lc5pVXXqG3txeTyUR9fT0vvvgi7e3thEIhQqEQu3btwmAw8OabbzIwMIBer8fr9fLd736XQCDAm2++yeDgIEtLS0xPT687J6V79NjYGOfOnWN+fp5MJsPo6Ch//ud/zvbt26lUKvT39/PKK6/wwgsvANDc3MzZs2e5fPkyo6OjPPfcc2zduhWj0cjZs2d56623SCQS/MVf/AWbN2/mzJkzLCws0NLSQrFYpFgsCidTRaVQKiFdjcRLkkQulyMWizE+Ps7IyAgrKytEo1HOnj3LkSNHeOWVVzhx4gTnz5/nJz/5CT/+8Y958803mZycBOD06dMcO3aM0dFR4vE4hUIBs9nMAw88gEajYXp6mgsXLnDy5ElOnz7N2NgYsViMhYUF3njjDV5++WXm5uYoFotiFVGr1XLw4EHhCAwNDfHKK69w5coV+vr66O7u5syZM5w5c4ZLly5x+vRprly5wvLyMvF4nOPHj3Pp0iUuXrzI66+/zrFjxzh//jxHjhzhyJEjnDhxgpMnT3LmzBlGRkZW56VQIBqNks1mReduSZKw2mxodDqyV4MFKiofVFQnQOW+pre3l0gkwvDwMDqdDr1ej8FgwOPxsGfPHkwmE8VikXK5TKVSIZfLYbPZRFRVo9Hgdrtxu92i+63RaMTn87F7924MBgOFQoFKpcLi4iKvv/46y8vLjIyMUKlUCIVCmM1mvvKVr/Brv/ZrBAKBDQtXla665XKZsbEx4vH4qp751W6+09PTrKysiJz5ffv28dRTT12XOrC8vMzLL79Mc3MzWq0Wv99PpVLhjTfewOPx0NHRgdlsprW1lY6ODv7hH/5hXRfktR1rzWaz6HYcDAZFjYDL5SIYDOL3+8X7lE7HJpNJRAmffvpphoaGmJmZIRAIsG/fPr7zne8gSRJTU1PMzc3hcDhYXFxkenoas9ksUmF8Pt91c1QoFDhy5AgtLS1YrVb27NnDF7/4RbxeLwDbtm0jEAiIuaxWq9TV1bFp0yY0Gg2XLl0ilUpRrVZxuVzU1dXR1tbGnj17aGtr45Of/CQWi4VoNEoymaS/v59qtcqRI0dIJpNs374dl8vFf/pP/0nkuCvnD/C9732PZDLJysoKQ0NDeDweYLVbcV1dHQcOHOCzn/3sdeel0+nw+Xw0NTXxsz/7s/h8Pqanp1laWuLSpUsiV7ynp4ejR49y4MABbDYb/+pf/Ss8Hg/nz5+ntbUVgM7OToaHhzl9+jSyLIuVLCXqWSwW+eY3v8mf/dmf8dxzzwmjTUUF1q8owqqTarVasdlsYjVJ+Z4sl8scPHiQ8tUUpmAwyObNm9m0aZNIZXM6nbjdbhKJBB6Ph0gkIlLwYrGYOJ7P56Ourg673U4ymaRcLmMwGCiVStTU1LBz504hnuBwOKipqSEUCtHZ2SnqkHK5HMvLy6TTaT7ykY/w8Y9/HI/Hg9frpa6uDovFQiQSASAUClFXV4dGo6FYLOLz+QgGg+K7PxQKUalUGB4eRqvVotPp6OvrIxaLrVNBUwVUVT7oqOlAKvc1fr+fHTt2IEkSDQ0NuN1uhoeHkSRJqPwoX+p2u50tW7YwPT2NwWBg//79+P1+kY6xlrWpQrIsCyPY5/OJ4zU3N4v6ge9973vMz8/zzDPP8LGPfYxDhw5tOF6l0DWVSiHLMpIkUSqVSCaTolh2raG9EYrMp5LLns1mqa2tXbdNNpsllUrhdrvFeyRJIpVKMTc3x6ZNm67b51pVJOXBqMzfRhHlcrnMyy+/zO7duzl48CCXLl3C6/XS0NBAZ2cnJpOJbDaL0WgUD/5bdSx2uVwMDAyIbSuVilhZUXKVFbnDarXKT37yE+LxOI2NjezcuROtVsvi4iLlclnMoXLMr33ta+zatYuOjg7y+TzVapXFxUVh6FcqFbRaLalUSkRMlbSkwcFBXC4X9fX1dHZ24vV62b59u4hiKmO72TWz2WzC6XI6ndjtdnbu3CmcgHw+z8TEhEiDymazqx1wTSaWl5eBVZUnxXm1Wq1s3bqVN998k0984hPU1dVhs9k4ePAgpVIJi8WyobN1L1CtVkmlUszMzDA3N0c4HCYcDmO1Wjecw0qlItKwbjbP7wa5XI5kMonRaMTpdN7lgucqVN/74xWLRcLhMIFAALPZTKFQIBKJUK1WRf2NRqMhk8nQ1tbG3NwcMzMzOBwOOjo6GB4eZteuXQQCAaHgtbS0xIkTJwiHwyQSCebm5jAYDDidznW1OOl0Gp1Oh9frFamRfX19IqVwZWWFcrks7nGdTsfAwACyLGM2m7FarZw8eZL6+nqKV/sdZDIZ8b5NmzZhsVjQarVUKhW8Xi8dHR3Mzs6K1CDl81+pVDCbzSLF0KTKgqp8yFCdAJX7muaWZk6ePElLS4uIXi0tLTE/P8+lS5ew2WzMzc0xOztLNBpFkiSOHTuG2WxmYWGBzZs34/f7RU58MBhkaWmJ2dlZLl++jM1mY35+ntnZWdra2vjoRz/K8ePHaWlpoVQqsbS0RCwWIx6P4/F4aGtrE4Y3rBo7StRsdnaWTCbDpk2b2L17N9PT08RiMaLRKA899BCVSoXJyUmy2SwWi2VDudJAIMDnPvc5jh07RjAYJJvN4vV66ezsZGBggLGxMVwuF5OTk6TTaT7+8Y+vLm9brSLlyWq1MjIywvz8vChOvnLlCtPT08zPzzM6OiqK66xWK5FIhN7eXvx+P5OTkywsLLCwsMDXv/517HY7sKp+NDY2xmc/+1lGRkbQ6XS4XC4KhQJdXV089NBDRCIR+vr6mJycZH5+nitXrtDR0SHOUa/Xs337dt58802mpqbEg9putzM8PEwikRAO1OLiIpcuXSKZTJJMJllaWqJcLmOz2RgdHWVubo6RkREsFgvLy8t4PB5SqRTxeJyFhQUSiQR6vZ5IJMLjjz8OwNGjR2ltbSWVSrF582ZMJhOpVIr+/n4cDgef/vSnmZ2dZWBggMbGRhKJhFghGhgYoKWlhba2tnXXq1QqkUgkGBsbw26309DQIFZaOjs76enpwXZVlaWxsZEnn3ySl156ia1bt4pVq87OTo4cOcLo6Kio46irq6NSqTA9Pc3y8jJOp5PNmzezZcsWwuEwsiwLB+VepFqtinxsnU7H5cuXkWVZrMiZTCYsFouo3Umn04yPj9PU1ER9fT2VSoVsNiuK4I1GI9lsFp1Oh0ajEWoviiGrpOUp77Pb7cKxqFarOJ1OcSyl7kIpUlccN4PBQDwep1qt4vP50Ol074rBqDi02VSS+ZE5agNewnW172kBsdvtZseOHVgsFnQ6HTabTQQjlCJvjUaDx+Ohvr6euro6crkcOp1OOLBrFdVCoRB79+7FZrNRW1tLNpslFAohyzKhUEhE4UulEjabDa1Wi8lkElF5ZZW0vr5eFPgqK5WKM240GoVAg1LnZbfbsVqtQgQAEO9X9mm1WgmHwzgcDsLhMFqtVggFdHV1UVNTI4qL3wt5aBWVexnVCVC5r9nUsQlNchZZltHr9Wg0GvFAUiKGe/fupaGhgWKxyMLCAuFwGIPBQDabZWZmBkmS2LRpk1DKUAo3lQfQgQMHqK2tJRgM4nA4mJ2dFYVvNptNROUtFgt79uwhGAxeN85QKCRWEsxmM4cPHxaqOV6vl8OHD6PVauns7MRsNotI9LV4PB6efPJJIpEIlUqFhoYGHA4Hfr8fWI04y7KM0+mkvb2drVu3ArB//35cLpdQl1EcD4/Hg8lkwu/3s2vXLjQaDc3NzZRKJbxeL3q9nkceeUSo1NTV1bFv3z4R2e7q6sLhcFAulwkGg+zdu5dCoSBWEfR6PXq9nieeeAKTySSM+gcffPC6c9NqtdTU1LB9+3asVqtQHjEajXR0dGCz2bBarRgMBh566CG0Wq1Y/bFYLJjNZp544glsNhsej4empqZ1BdpK5NJsNlOtVjl06BA2m40DBw4QuSpvWKlUhOHc2dkpUqI8Hg8ul0usCK293/bt20coFLqhQWgymejq6sLv94sVlkAgwEMPPSRWqXQ6HY2Njfh8PsbGxqhUKuh0OjweDx6Ph66uLvHa9u3bsdvtLCws4Ha7hUrS0tISGo1GODX3Ovl8nuXlZbxeL7Ozs9hsNlGno9frqa2tZWpqShR99vX1iVS/ZDLJ4uIi0WgUk8kknEOlBiOXy2G1WtFoNBQKBWHI5/N5MpkMgUCATCZDKpXCYrEQCoUYHR0Vxr5yH0xOTorPrcPhYGZmhkQiweHDh3E6ne/YUK/KMuVymdhylOmxYSKzU6RbmtBppDvvI1KtwsoK5HJoKhWMej22G0gA2+12LBaL+I5TnKJcLify8xXVL61Wi9vtplQqUSqVyGazwlhXIuc+n08Y0VarlXK5jN/vF4W2Pp8PjUaDLMti27WfBZvNRqVSweVy4XK5hLCAkopnMpnEipskSbjdbjweD263W2yjpPAp9UTKd6HFYsFms+FyuSiVSgA4HA4kSSIcDuPxeEQdkdoTROXDhlRV+4ar3IecT8Gebji3u8ou22q0/VaNb0ZHR/nOd77Db/7mbyJJEufPnxfyjo899thtHVf5uCga20pqTrVapVwuC8PwdhDa2RrNHT3wlTEoUVCtVksikeDP/uzP2LNnD9u3bxcG/FqU5ld3o0mZkmK1NrKmPICVv6+N9F1LPp9fl5J1M5TzWpu/r/x+Lcqcr50b5RrKskyxWFyXEqBIpq7dvlQqUS6Xb7vXwY1QVokUY0epc4DV818ru1mtVslms2LO1q5U7dmzh3K5zNGjRxkeHuYrX/nKHY+ld7GXT3/z0zz/xefZWrNVvF6Wq2RLMsmCTPmaJ8XE6DD/+Pd/w//4//7ndcbY7SDLMqOjo7z22mu4XC4WFhaEQ53L5SgUCrS3t9Pf34/H40Gv1zMzM8Pu3bvp6OhgYWGB8fFxpqen0el02O32dUWmRqNRRO3dbjdms5lyuczCwgKyLNPY2ChUoZS6kjNnzuByuUQKkNFo5PXXXxeF/V6vl4WFBXp7e/nt3/5tGhoa7milRZZl0pkM//v//VP2PfoRwo3NmMxmsuk0/ZfP0/3GcbLpJF2bN9PV1fX2HIxUCgoFjBoNbrud5tpaJODV06dJazTUb97Mvn377ny/V1HUyZQAxNrvkmtNifs5reb06dPMDw9jKZX4mYMHr99AksDtBo8HNrjvlc/TH3z2eX5uaivde2C3/S4MXEXlDlFXAlTua1YNP0noSN8Mk8lEXV0d3d3dQr5OqRO4k+Mp+7r2tTt9aL/dVA3leIoRWiwWicViDA4OUiwW2bRp04YRrbvZoXijZfW1Y7pVxO12rqfCnZzXjeZciXpea9grxvlalNWNd8q1dRjKa8B141BSuhScTieNjY2cPn1aqB0B19V63MsoOdmFQoHHHntMRN2VlC4lqqw4gw0NDQQCAcbGxigWiyJqrBSLdnZ2iv4XDz/8MM888wxLS0scPHiQUCjE0NAQZ86cwePxYDQaCQaDQrLW7/fjvKoHvzagoEgDF4tFEokEDzzwAMlk8l2LGEuShE6vw2qzYzJbKBVWVzAUx+cOJxR0Osjn0VWrWN9mfvvN4oJGo5GGhoZ12ypONPzU0Vcc22uPv5GjoLx2o21vtY8bsXbfG/1NRUVFdQJUPkTU1tbyxS9+UURc9+zZI4y/+xm9Xk9jYyN//ud/fserCir3J1arlc7OTtrb2+9bg0av1+PxeNi9ezfNzc3o9Xp6enq4cOECRqNR5P7HYjGKxSIej4doNMrhw4fp7+/n4sWLDA8P43Q6qa+vx2Aw4Ha7iUajPPvss9jtdpxOJ2+99RYmkwmHw0FzczMmk0nsS2kSNz8/Tz6fJ5/PUygUhIOgpBfZ7XZkWebIkSOiiPXdQJIkTGYLndt3URuuZ3FihMZwLW0tzW8vHSgSgUwGSiWQpJt2/70Ri4uLpNNp9Ho99fX1/OAHPyCZTNLU1CRqA+rr60XNhUKxWOSll14iFAoJHf5rUQqDx8fH2bZt222do+JorP29UChQKBSw2+3k83lmZmbo7u7G4/Hw0EMPiToBWF2Bicfj2O32d62OQ0Xlg4JqLah8aFgb1b1RlOl+RCmcu5Poucr9jXLN196/99O9LEkSNTU1PProozidTnQ6nSj0VPohuFwuUWuxNh9c+dnv92O329mxYwc2mw2j0Ygsy+RyOdLptGjkt7a4t1AoCIeiWCyyefNmIQhQX19PtVrFYDCIfhTbt28X3xmK/KzSufndmG9lHxqNBpfbQ8C5A4fFeOf7r1ZXU1Q0mp/+4/aj5gqlUone3l7m5+dxu93U1NQwPj7O3r17SaVSou+Gx+NhfHwcu92Ox+PBbrczPz9Pb2+vEFeYm5sTaWKpVAq/349Op2N+fp6ZmRm2bt1KKpUiEomQSCTw+/2USiWxClMoFIjFYmJlRJIk8vk88Xhc9Bg4ePCgEAYwGo1CjlhRBqpWq5jNZl555RUOHjyIVqsll8uJGq/76TOjovJeoDoBKh9K1C9/lQ8C9+t9rDita+t4lKJcr9crClIVydC1zrvS2wNWjefGxsZ1sqGyLFMqlUTq19pamGq1SqlUQq/Xiw7LsLoqoaRbKUWpyvEAUThaV1fH/v37r4uCvxvzodHpsZuMmHUb18ncDRKJBMvLy0SjURFBTyQSott5NpulUCgIydBAICDStpTC+sXFRbLZLKVSiYmJCfR6PU6nE5fLRblcFl2JAVHgvbi4yMLCAplMRjiFSqFypVIRRcBK1+J0Oi1WGnK5nFCDSqVSJJNJ0RAym80SDodFl/VyuczKygqJRGJDAQcVlQ8bqhOg8oGkVCoJJaC1xbvKg7tUKpFKpdBqtSIXWEVF5e5xrRGtGPtrc+FvlKrn8XiEwsu1dRVarXbdPq5NOblRrv3N0gIVp6Wuro6mpqZ33QkQx0HibeXwvEMUZ2d6eppMJiNqIBTFqUQigdlsFsXRsViM5eVlTCYThUJBFHT7fD4WFhaA1bqe/v5+TCYTDz74IHq9nnw+TyKREAb88vIyS0tLQuJ3aWmJmpoaUdxttVqFdHF7ezvpdFoUg2/fvh2dTieaQSrqQMpqweLiIslkEpfLJZqUZTIZotHouq7uKiofZtSOwSofSGKxGF//+tepVCrAqtGvKMMAxONxTp48SXd39/s1RBUVlbeJxWLB4XCIPhXvNVqtFpvNRnt7O42NjbdUIrvXkADWNNnbKE2oXC7z1ltvkUwmKRQKzM/PMz09TUtLC5s3b2bbtm1s2rQJt9tNXV2d6CWiNFNMpVJ0dXVRLBaxWCw0NzeLhoiNjY243W5kWSaZTGKxWJBlmbGxMUZGRkgkErjd7nW1FhaLhZaWFjQaDUtLS2K/Ho8Hg8FAKBRCq9WKFC+lP0Qmk2F+fp75+XkR6FEUpSYmJkgmkze8b66dH819dI1VVN4O6kqAygcSq9XK4cOHRbTu0qVLLC8v87GPfQxY1cnu6OhQdaFVVFQ+sCiroFazmWQmw8rVztPXIssyCwsLBINBurq6SCaTXLx4kUQiwcGDB6mtrSUWi5FIJAiHw4yOjpJOp5EkSaRWpdNptm/fTqFQYHx8nMHBQXbt2kUulxM9QpQV2Oeee46DBw+yuLhIPp/HZDLR3NzM7Ows27dvR5IkFhYW+PGPf8y2bduw2+1cunQJh8NBY2Mji4uLZDIZXC4X6XSa0dFRent72blzp2hqCKs9WOx2O4lEglwuR7FYxGw2r1M42oiV5WXKxSJ2h+NdvyYqKvcSqhOgcl9z/sJ5zP5VDXClG6/BYBDdcKvVKufOnePFF19kcXERi8XCAw88wPj4OJFIBI/HA6xGgK5cuUKhUMDtduP3+zGbzRw9epTa2lokSaJYLCLLMnv27LluHEoH1Pn5eaFa0dLSImQQBwcHyWQyOBwO2tvb0Wg0ovGQkpvscDg4deoUDQ0NOJ1OstksPT09fOITn2BkZIRMJiM68SpNdqLRKJFIhEKhwAMPPAAgHqDz8/NIkkRTUxPxeJyVlRUAcW5DQ0OEQiF8Pt86+UkVFZUPDpIkUV9by+LAAP09Pezdt0/UQihoNBpqa2t58sknMRgMyLJMR0eHSLfS6XT4fD7cbjeVSgVZljl48CBGoxGj0YhWq+WJJ57AYDDg8/kolUrIsiyMf6XZYFNTE7/wC79ApVLBZDKJHhfFYpH5+XksFgutra04nU7K5TKPPPIIFotFdHdWUr1KpZLodvzAAw+wc+dOZFkWvTU6OjpEQ0eTyURnZ6fo+aHRaNY1EbyW2dlZxgcHCVostITD7/XlUVF5X1GdAJX7mmgkyrMnzvKv//W/5vz58+j1elEHcOrUKT772c8SDodxOp0kEgmam5tFJ9YTJ07gdDppbm7m6NGjNDQ0EAwGGRsbo7e3l8cffxxJknj++ed56KGHsNvt9Pf34/f7CYfD63KCZVnmpZdeYv/+/SwsLDA1NUWpVKKjo4N/+Id/YNOmTaKr6fnz5/F4PFy+fJlwOIzFYuG1117j85//PNPT08iyTEtLC3q9niNHjvDEE0/gcrk4d+4cU1NTfOELX2BqaoqpqSmhCFQsFnnmmWf4zGc+w4ULF0in09hsNmpra3nllVd48MEH6evrI51O85nPfAadTkd/fz+BQEBdDVF5W1RZLZidmpoiHo+/JznyHySUhm/pdPqOVXveKV6nk6ZgkHQ+z4vPP8+2XbtwOBzvSB5ZSfXZKC3q2hqsG7G2v0AulyMUChGLxcjlcmIfSv7+WkU3RaXpRilZ16q/XTvf8Xj8uu1lWSYWi3H5/Hl8ZjNtoRDOu5RupqLyfqE6ASr3NdVqlfHxcbxeL5lMhsXFRdxuNzqdjrm5OWRZJhAI4HQ6sVqtQnLQ7XazsrJCPp8nm83y0ksv8Vu/9Vv4/X76+voYGRmhra0Nh8PB5OQkBw4cwGQykUgkmJubo66u7roHnBLRUlYElFzY48eP09HRQSAQIB6PE4vFOHfuHNlslvb2djweDyaTSRS5pVIpSqUSVquV2dlZKpUKLpeLVCrF5OQkNpsNi8UitLK1Wi3lcpljx47xyU9+ktOnT+NwODh06BA+nw+NRoPdbker1Yo5qqmpweVyYbVaVSdA5W2h1xtwe7wMjY5jNpvvqxz594PVdJgikk6P3mC4q06T2WSivqaGcrnM+eFhxvv6MFutaLTa96MO+TrkapXi1XqAiaGhu56LXwXkSoVMKkUlHqd90yYaamsxvs2Gjioq9wuqE6ByX+NwOggGgxgMBpxOJ4VCgVwuh9PpFEu+azXVJUkSEoHKMnehUODNN98UUXFlmbmnp4cdO3ZQU1OD3W7HYrFgtVpZWVnZsPPlgQMHmJubE1J5s7OzwujXarUEAgH8fj/lcplvfetbPPXUU3g8HoLBIJ/73OeA1VoFRSNcp9OJzrFGo1FocgeDQYLBIMvLy0xMTJBOpymXy8zMzFAul7l06RK7d++mpaUFgKeffhpJkti9ezdms5kTJ07w0EMP8cQTT2Cz2YDrG/KoqNwKm93Olu07mFlcRNKo987tUtvQjN3puqtN/SRJwutyYbda8TqdXBocJLq4iCzLd20M9zpaScJhs/HUgQP4PR7VAVD5UKA6ASr3NRKSiGQrS7obLbUrDkClUqG/v5+urq5122k0GqEkpHQOVRQkDFejdsr2a/9XlqbL5TJf+cpX+NrXvobb7WZoaIhIJEI6naZQKIhxybJMKpUSShhK7mypVBL5rmv1zpPJpDie0sRIOe7XvvY1HnjgAfbu3SvGs7i4iFarRaPRUCwWMRgMpFIpbDYbHR0dLC8v853vfIctW7as66qpOgEqd4rT5ebhxz7yfg/jvkSjufu9ACRJwmgw0BwO0xwOqw7ABiirM+p3ocqHBdUJULmvuXTpEsmBAUZHRzl79ixarZZ0Ok1TUxMTExOcPHmS/fv3Y7FYKJfLnDx5kra2Ni5fvkx/fz8Oh4N0Os1Xv/pVnn32WRoaGkSny8cee4y/+Zu/obe3l7a2Nmw2G2fOnMHpdPLII4+IRkaAKEIbHx8XPQqmpqYoFos8/fTTQprO5XJhNpv5lV/5Fb75zW+Sz+dpbm4mkUjw0Y9+lB07dnDy5Emi0SiBQIBMJsPLL79MXV0dly9fZnx8nAsXLrBr1y50Oh2xWIy+vj6SySROp5PZ2Vm++MUvMjc3xze/+U327NlDMplk3759mM1mPB4P+/btE5ravb299PT0kEql+OVf/uX3+Wqq3G+odQD3L+q1U1FRkap3u0JJReVd4HwK9nTD88EZWiurBb8zMzNIkoTNZsNkMjE+Pk5TUxMOh4OVlRWSySQOh0OkDc3NzaHVaqmrq6NYLJLL5dBoNJTLZTQaDcFgkLm5OeLxOD6fD51ORzQaRafT0dTUJLqUKgVsfX19otupsr+6ujoRzVci/UojnLm5OTQajVDX8Hg85HI5VlZWhFMxMTFBQ0MDZrOZeDxOPp+nvr4eu93OxMQEWq0Wg8GAJEksLy9TW1uLVqsVcnhKrYGS4rSwsMCFCxd49NFHsdlsZDIZUqkUlUqFsKqE8aGld7GXT3/z0zz/xefZWrNVvF6Wq2RLMsmCTPk+eFKUikXK5dJPV/kkCYPegFanu+ejuxLgNmkx6yX0d5pepZxvJAKZDJRK7/r4VNYgSeB2g8cDGzhTyufpDz77PD83tZXuPbBbrTFWuQdRVwJU7mvCoTBb7KvGa0dHx7q/ud1u8bOSjy/LsjC8HWs0oC0Wi2hrr9FoRJpMOBxeZxz7fL7rxqCkGm3dupVSqYRGo1m3rGy1WkWqEfy0M2ljYyPlcplqtSpSmiwWi0j5UaRDdTodGo3mOlm/5uZmyuWy2KfShVOSJOx2u0hT0uv1DA4OUi6XqVQq1NbWilQnm80m6gJUVO5nZFkmsrjA4sI8pauNAXV6HfWNzbg8XrUAXkVFReUaVCdA5b6mP3snW0vAjSTxlMjbOzUUbvT+Gx336kcwv/Y1zfq/F7kJN/oIS1f/GaAA5xez5At5LBYLNYE6zqdutk+VDxtjmdX/BzJQXHNvlGXIlyFTgso9vhJQqcDwfILR4WlyuRywWlC/zeyn1uDGaHyfB3gLJMBeBpMOdHeaqaNcm5wOCgYoq6k+7ymSBDktpFj/dX0V5fM0nr/+byoq9xKqE6ByX+LTg0UD/7L//R7J/cJuMABlYO7qPxWVqxgyEAb+RT8Up9b+RXGc376e/F1Fvxu6dq9/rQxMvB+DuZsoQQzP+zqKDxWRG/9J+Tz9l3Gw2FefVyoq9yKqE6By3/L/2wLx8vs9ChWV+wOXDmpvoHo4FoHf6od/2Awt/p++Xpar5MsymZJ8H6wEyPRdvshAXy/57OoSocFkZM8DB6hvbMZ4tbHevYoE2A1aTDoJ3dutCYjFIJeDsvrF+J4iSeCwg8O5YU3A2s/TA3XQcG/feiofYlQnQOW+YyoPm9+CrKpwp6Jy21g00P/AxgaJ4WpaXacVtq4pYCzLkC1BssA9XxhcqVTJySni6UUy6dWcJlPJTCtZ2kwyZsv7PMBbsFoYDGY96N9uOlC+DHIRNGph8HuKJIHZAnY2TAda+3lSHQCVexnVCVC574iWVh2Ab22Gze/Bg/12W96rfDgpFFf7O1jMFlEUvpZqtUoymcRisdwzxaj92dXUuWhJNUpUVFRUVFZRnQCV+5bNlvdGdm1iYpJYLMaOHTs2NPLeLrIsk81mGRoaor6+HrfbfVe7hm5EqVQikUiQzWZpaGh42/spFApEIhEmJiYIh8Po9XpkWaZYLFIoFOjs7GRychKr1Yrf778n5BoVY12SJIxGI8bbqBwtl8ssZ+Ok0ilaAi1I0mpQcP1+YSaRhEwSu92Oy+V6W+NTmjlJkkSxWOTKlSvU1dXhcrkw3eOpLXeTarVKIZ+nUFj9V13TBKtarZLL5Uinrq4MXO3AfS/cfyoqKirvN2qoU0VlDeVymVdeeYW/+Iu/IJ9/d6UdyuUy8/Pz/NVf/RU9PT3v+v7fDtlslsHBQU6dOvWO9pNOpzl37hy/+7u/y7Fjx7hw4QJnz57lyJEjfPe736VcLnP06FF6e3vviU6lio78lStXGB0dJR6P39b7UqkU8/PzLCws3LTrq0ajoa+vj9HR0Ts+X0XaNZfLUS6XkWWZdDrNX/7lX9Ld3U0ikbij/X0YiK0sMzE6wnIkImRzASrlCovz80xPThBdWuSneTMqKioqKupKgIrKGsbHx1laWiIWi3H8+HF+5md+Rvxto756N4soXru9Xq/H5/Nx4MABisWiSDtau59r36M0I3u73CriaTabqa+vx2q1bnj829kHgNfr5YknnuA//If/wOHDhwmHw2g0GjKZDP/0T/+EJEns2LEDt9st0qzu5LxuNA8bvX67Ud5iscj//t//m09+8pM4nc5bbl+tVvnxj39MMBjk0KFD4rWNxhQKhXjrrbeIRqNkMhnRl+F2jgEwNTXFwsICoVCIhoYGHA4HDz74IJIkUalUbuu++TBRpUpf72WW1vQIACiXS4wO9ZPP57A7nUiSGvdSUVFRUVCdABWVNczNzdHV1UUwGOTZZ59d5wSsrKwwMjKCXq9Hq9XS2tp600ZblUqFwcFBCoUChUKBmpoa0cCsWCzS09OD0WjE6XTS1tYGwPT0NLFYDACn00ljYyPd3d1kMhmsVisGg4FYLEYgEECn07GysgKA1Wqlt7eXxx9/nMnJSQwGA7W1taKB2I2Ynp5mYWEBWZaRZZlXXnkFv9+PXq+nVCqRyWQ4ePDgHRuV+XyedDpNIpFg//79LC4uig7NsiwjSRIzMzNMTU1hsVjQaDSkUikaGxs5e/YsBw4cQKfTifF9/OMf5/jx4xiNRmw2G9VqVRjHAwMDRKPRVU34bdswm823HG8+n+fNN99k165dwgG6GYrDFo/HcTgcaDQaqtUqsiwzNjZGJBLBYrGwbds20Qyus7OTqakpTp48yVNPPXVb8ybLMvF4nD/4gz8gHA6zdetWisUiTU1NwGr61sjICHNzc5jNZrZs2QKs3psLCwvEYjHcbjddXV0fKkcgUFPLrr0P0N9zmamJcUqlVUdAo9HQ2NJKx+YtNDY1v8+jVFFRUbm3UMMiKirX0NDQQEtLC729veTzearVKuPj44yOjqLRaGhpaWFiYkI0JNqIcrlMMpnk3LlzhMNhcrmcSOOoVqtcvnwZn8/H1NQUx48fJ5VK0dvbS3d3N2azGZPJxODgIOfOncPj8XD06FGmpqaQJIlXX30VrVaL2WxmZWWFZDKJw+HgyJEj9Pf3U1NTw/T0NM8888wtz9Xn8xGNRnn99deB1Q7CzzzzDOPj4xiNRqampuju7qZUun21kfPnz/PMM8/w6quvkslkCIfDeDwerly5wtjYGNlslpmZGV566SWCwSBDQ0NcvHiRhoYG3G43x48fZ3FxEaPRiF6v5/vf/77oqnz27Flee+01YDVa/u1vf5tIJCIcrG9+85u3TL/JZDJEIhGCwSAGg+G2C8Dn5uaQJAmDwSBWIE6ePEk8HsdisRCLxfjbv/1bsX1NTQ2VSoWBgYHbnjuNRoPNZqO+vp7m5maam5upra0Vf79y5Qp6vZ5ischLL71EJpMhFovx8ssvMzs7S21tLRcvXmRubm5dWswHHa1WS7ixiea2doKhkHjdXxOkrWMz4Yame6ZIW0VFReVeQXUCVFRYNczn5+dJp9NkMhkymdWWj8PDw5RKJTQaDcvLy5w6dYozZ87c0niUJAlZlunr6+P48eMiYq9gMBhwOp0Ui0UikQjxeJxjx45RrVax2Wy4XC70ej2vvfYaLpeLZDJJLpdDo9FQKBSYmpoimUzidrupq6vDZDIRj8cxGAy4XC6y2Szj4+O3PG+r1UqlUiESiSBJEi6Xi3g8TrVaxWq1Uq1WmZycpFKp3PZcWq1WnE4nFosFWZYxmUyYTCYymQzZbJZSqUQymSQajWK320kmk8Tjcfx+PxaLhUQiQbFYRK/XYzQamZ+fF/NSLBbJ5XL4/X4cDgevvfYakUiEarVKPp9nenr6pmlGSnF2PB4nGAzeUbQ8FothMpkwXy0uBbDb7RQKBcrlMisrK3R3d4u/2Ww2NBrNHeXwS5KEXq/H6XTidrtxuVzrVioMBgN2ux2NRsPi4iLpdJrBwUHGx8dZWVmhWCySz+dZXFz80DgBSvG+1WqjNhSmsakFl9uDxWKlubWdYF0dNrsdSVX7UlFRUVmH+q2oonIVpYgzk8mQTqfp7Ozk5MmT5PN5HA4HAJcvX+a1115Dq9Xe0gnQarUUi0Vee+01FhYWRJGnJEk0NzdjNBoxGAzodDqSySRnzpwhEAhgsViw2+14vV7efPNNrFYrdXV1VKtVUqkUbW1tdHd3Mzs7S319PZs2bUKr1WKxWKivr8dkMlGtVm/LcNfpdOj1eqFSZLPZ8Pl82O12zGYzVquVRCJxR/n7mzZt4vDhw+zZswer1YokSWg0GhHZV+ZHMeqtViter1ekBSn/azQaMT5YdS5cLhd+v5/a2lqampoYHh4mnU5TLBbJZrOEw+GbGvaVSoVcLkcymUSr1ZLL5chmsxQKhVvOV7FYFNdMOQefz0e1WqVUKpHL5YjFYpRKJarVKjqdDq1W+7ZqOpSi40qlQnFNjntDQwN2ux2dTiccq8HBQWRZplQqiTlQVrA+TEiShMfro7GlhcbmFoKhMG2bOnG63CJFS0VFRUXlp6g1ASofepTc7uXlZQ4ePIjH4yGdTlNXV8fv//7v8/TTT5PNZmlra+PP//zPWVhY4Hd/93epq6sTOf7XokSsf+3Xfg2Xy8Wf/umfcuHCBQKBALIsC6NbyTWvVqu4XC5SqRTFYpFyuUw8HsftdiNJEgcPHuTcuXOcPHmST37yk/z+7/8+mzZtQqPRCENTMTyVVQjl381kTtceX/mnODjK70oharVavel+lDQcWZax2Ww4nc51hbvKNlqtFq/Xi91u5/Lly+zdu1c4OcC6dJtyuUwqlRLvVeoxlLG43W5aWlrYvHkzkiTR2dl5U+esUCiQyWRYWVnh9ddf59KlSyQSCZxOJ8Fg8IbXE8DhcIiVIlhN+frDP/xDPv/5z9Pe3k6lUqFcLrO4uEhtbS2lUolKpYJOpxPzJ8uycHBuhmK0KhH95uZmcW2UuZFlmUqlgtfrJZFI0NDQwK5duwBIJpPCWfkwoTcY8AVq2L3/QXLZLL5AjeoAqKioqNwA1QlQ+dCTTqd59tlnefbZZ/H5fOzYsYNKpUIikeDNN9/ke9/7nkiNsVqtbNu2jc997nPU1NTccJ+lUomFhQW+/e1v83M/93N0dXURCAQoFou8+eabWCwWamtrGR4epqenB6fTyW//9m/zne98B1mWKZfLTE9P81/+y39Bp9Oxb98+RkdHGRwcpKmpic2bN+N2u9Hr9WQyGcbHxxkbG+MnP/kJra2tDAwMMDIywrlz59i3b98Nxzk4OMjly5cZGRmhr6+PU6dO0dPTQ11dHeVymWPHjpHNZvn4xz+OXq+/YV718vIyR44cIZPJ8MMf/pBDhw7R3NwsVHcmJycZHx8nnU4TCoXYvn07L774onAGurq6+MQnPkEwGOTgwYPMzMwQiURYWFggkUhw6tQp+vr66OnpweVyMTY2RktLC7/zO79Df38/CwsLtLS0kEqlePTRR2/orFitVjo7O2lpaWFsbIxCoUA6naZUKt3SWGxpaeHo0aPrpF0lSWJhYYFUKsXMzAxut5uhoSFqampYXFxEr9ezbds2qtUqb7zxBs899xwf/ehH1xWcX4skSezZs4fXXnsNr9fL9u3bSaVSvPHGG5jNZoxGI8lkkr6+Pl555RX+zb/5N/z93/89IyMjwgFsa2u7adH6BxmdTo/H6wPv+z0SFRUVlXsbqfphWzNWue85n4I93dC9591pFlapVEgmkySTSXw+n2jElMlkmJmZIRAIiMi4ktqipK3cqNmXksYRj8dF9NpoNKLVaolGoyL/PpPJkM/nsVqtOBwOoQwEqykhdrtdGN7xeJxCoUAgECAajWK1WjEajUiSRKFQYH5+Ho/Hg8FgIJ1Ok8vlCAQCN1XLKRQKollYMBgkm82STqex2WwYDAaSySSyLFNTUyNWGTaiXC6TTqeZn58XKU0Gg0FE7UulEktLS+h0OrLZLK+88goHDx7E4XBQLBYZGxvj8uXL/MZv/AbJZFLUYVQqFWZmZmhtbaVUKpHP59FqtbjdboxGo0jlUSLser1epCDdjGq1SrFYZGFhAb1ej81mw2q13tARUL4mv/3tb1NbW8vhw4eRJIn5+XmRslStVslmsyKP/+jRo0iSxKZNm6itrSWbzdLT00MoFKK+vv6mY8vn88RiMXE+BoOBxcVFkUYlyzKJRAKbzYbb7SYej1Mul8V9ZjQa112vW31mehd7+fQ3P83zX3yerTVbf3pd5SrZkkyyIFNe86SQKxUymTSz01Pksmngw6NE9M6QMJnNNLe1YzAY160ISYDbpMWsl9Br7nA+lcd4JAKZDGxQyF/lpzUxC9Eo8XR6ndzshxklfdPjcFDj82G++l19kzeA2w0eD2ywqnejz5OKyr2GuhKg8qFHMSqvTQVxOBx0dXUBbJjScjNDU1HvMZlMlEoldDqdeOCH1qiXWCyWde/z+/2ioPNaB2Nt51m/3w/8VA/eYrHQ2toq/n47spcARqNxnYyoyWTC4/GI3283mqzT6XC5XBt2x1UUdcLhMABLS0uYzWby+Txms5lCoUC1WhXpQ06nU+TnS5KEw+FAr9dvmNZksViwWCzCmLndDsxKl+DGxsbb3h5g+/bt5HI5RkdHaW9vFysmSg6/cg9lMhkkSRK1HWvn6FbdfiVJwmw2i7Soje4bWH8/eDyeO56Dd0K5UmElGuHcGycIBVflaq9rnayynqvpbZMzc/gDNbg8nttWpno3yOVyLCwv093XR1mvR280otmo5fWHECVdb3hxEfPwMDs7Owl6vZjVztwqH3BUJ0BF5TZQjMC1Rtntvu9Oc7NvZMR9UHTfLRYLXV1dlMtl8vk8pVIJl8u1zglbG4UzGo233Ofdyvtub29nenpaKCjB9derWq2SyWTw+Xw4nU6MRqMwMiwWy21LVd7pOd3N3HdZrpBJp5iZHGdHZytmk+kDc3++V1SrVbK5HCdOjJDP5+9q5+xSucziygr9ExPMplLUNDVhc7lAkqheDWpcex/L1SrFQkGssG10fcvlMlVAext1LtdSLBbR6nSrjgiImhr9VeW1d3o3VYGqLItampttV6lUKBQK5GIxpmZmME9NIQH1waBaU6LygUZ1AlRUVO4qNpuNvXv3Aj9dYblfDEiTyUQwGMTpdN60ULpUKtHW1ibkRCVJwmQy0dDQcDeH+56i1WpxOh08+sgjQg5V5cbIskwimeToiVNo7jTd5x2SSqcZmJigb2aGp55+mk2dnaL5XS6Xw2w24/V613XzLhaLzMzMYLPZ8Hq9GwYnYrEYlUoFq9W6TmXsVsiyzPz8PC6XC7PZLJrkpVIpfD4fZrP5hvtSBA9udSyltkpRILvRZ1VJkUqlUjidTnp7ezl99CjlUgmv04n9Q1pbo/LhQHUCVFRUVO4Am80m0qQ2MiwkSboudUdF5f1kbHqaTKVC65YtdG3ZgiRJTE1Ncf78ecbHxzGZTHz+858XzlyxWGRpaYkXXniBJ554AovFgtlsFk6ColDV3d1NMpmkqamJUqnE3r170Wq1VCoVUacDCJUyjUaDLMskk0l+8pOf8PDDD1NXV0cikeDFF19Er9cTDAbp6uoiHA6L9yvpgYoM78zMDPv27aNarYoarbX1DZIkiY7niURC7GvttkoKXzqdZnR0lCtXrvD000+zd+9eZqemyMZijE5Ps3Pz5vfhiqmo3B1UJ0BFReV9435ZAVjL7Yz5fjwvlQ8eilGcyGTQ6PUEa2vFvTk9PY3NZmPz5s0kEgl6e3uZnZ0VKwN6vZ7BwUEOHTrE888/f7Uh22rEf+vWrfT19YntFRWvHTt2kMlk6O3tpb+/f7WTczjM0NAQDocDt3u1Z8Ply5dFjU8ymWR6ehqXy8WhQ4eYnZ3lypUrXLx4Ebfbjclk4sqVKxiNq4XUuVyO+fl5lpaWWFpaIhgMYrPZGBwcJJFIYLFYMJlMeL1e6urqqFQqvPHGG8zMzBAKhaipqWFsbIyGhgaq1SoLCwvE43GsVqtwdALBIEvZLMvx+Pt49VRU3ntUJ0DlvkdRU/mHf/gHmpub6ejouKn6yr3E3SzmXIuiwX+rpmfFYpHjx4+zadMm/H7/LYta3wsqlQovvvgihUKBXbt20dbWdtfH8HYZHR3l8uXLyLLMrl27CIfDG9aIlMtloVDydnm/7iWVex9ZluFq8z3FCVhr+CpG9dDQkFADC4VCdHV1UalURLdvpXYgFAqRTCaFbLLdbicYDKLT6URaTywWE/K7ijqWohDW2dnJ0tISJpOJbDZLLBYjHA6LXhxKF/VkMklHRweJRIL6+nph4FssFqanp+nq6iKVSjE8PEyxWMTr9eJ0Okmn06TTaVZWVnC5XNjtdurr68nn8wwMDLCysiLSiurq6vD5fKRSKfFdqNPpkDQaKhuoLKmofJBQkzhVPhBIkkQ0GmVhYYFkMvl+D+e2WVpaYnp6+q4eU1mOX1hYoFAo3HL7TCbzvksJVqtVhoaGWF5eft/GcKcUi0Xm5uYYHBzEZrPdtCB4dnaWhYWFd3S85eVlJiYm3tE+7hZKh+VMJnPb95eizJXP58nlchSLxXeluFZxiJWO3kqDPKXz8wcB5SyUNJ5KpUI6nSaVSpFOp0XvC71eTyAQwOPxYDQaaWhoYG5uTqT2KE0MJyYmRPM+g8GAyWQSUsrKd7CSdpPJZLDZbJhMJtH8z2AwiM+ELMuiQeLo6CjxeJx8Pk82m2V5eVmoZRWLRSERXFNTQzqdRpIk8bri0Hg8HkwmE7Isi3OLxWJCurhcLhMIBAgEAmQyGUqlklg5EApkVx2lD8bVV1G5MWrISOW+RlGUqFarNDc3i3xU5eGdz+epVquiaE2JgimvKx13FePCYrGsMwpsNhuFQoFKpYIkSeh0OkqlEmazWRwbEBFyRRNfiexaLBby+bzIQdVoNJRKJfEwunLlCtFoFL/fj8FguKEKh7JvZZwajUb0CFDGqxxDr9eLsSkP6lKpJPoVlEol+vv7SSQSbNu2DZ1Oh06nQ5ZlSqWSeI8SUa6pqRGSo7lcjnK5LKQ9lX0qub6FQkHk/m6kOHLtuSjbr9XaVyRDNVcjlxqNhp07d9Lb2yvmVjEGjEbjumusjFEpNlReVwod155XNpsVPys5y0ohrzIG5T5SXr8RyrgAMSeJRIKlpSXy+TyHDh26Yb+GYrHI+fPnMRgMuFwu0ZRt7TVUrnculxPRfr1eTy6XE3M/ODjIxMQEwWBQpDXcq2lJuVyORCJBMplEr9cTCoUwKKowa8a89jNmNBopl8vCKDWbzTidTiwWy7r8c+WaKfMCCONu7e9rDfxsNit+VrYtl8vY7T9tqqDsT7k3b9aJ+46pVqlSpVSqYJB06PQ3lyB+pyjfkYlEAr1ej8lkwufzUSqVaGhoED047HY7PT09GAwG7HY7siyzuLjI1NQUTU1NmEwmMR/KClc0GqVQKOByuTAYDOJetNlslMtlYrEYsVgMp9OJXq/HaDRiNptZXl5mfHwcn88n1JOUfft8PhKJhNiv0iNlcXERWJVMttvtZLNZzGYzdrtdXON8Ps/s7Czt7e1CWrmmpobm5mYWFxdJJBKYTCaampres/lWUblXUZ0AlfuWarVKOp1mcnKSbDZLMpnE4XCIv5dKJS5evEi5XCYcDhMKhYRB2N/fL1QjvF4v+XyeN954g8cffxxZlpmammJ+fp6nn36awcFBlpeXMRgMBAIBJiYmePDBB4lGoywtLVEul9m/fz9arZZCocDIyIhY6n7wwQfp6+tjZWUFq9WKy+VicnKSBx98kEgkwmuvvcbQ0BAul4tNmzZRX19/U1WMWCxGT08PFouFzZs3Y7FYyGazzM/Ps7KygtPppLGxkXg8zuTkJMlkkvb2diYmJmhoaCAQCLCyssKf/MmfsHXrahObrq4uamtrSSaTTE1NkU6naWpqIhgMks/nGR8fx+/3k81mmZ2dZW5ujkcffZTLly8TCoWora3FarWSTqfp6elBr9cLffxgMLjhdYPVdISBgQER2WtqaqJarTI4OEg2m8XhcFBTU7OubwGsRrzPnTuH1+tl27ZtnD17lkqlQn19PXq9nhMnTvDwww+LKLOSGjY0NERDQwPBYBBJkjh69Ch1dXVotVoymQw6nY4HHngAWE3jyeVyYqXkoYceuuF9KMsyc3NzLC0tUalUaGxsJBAI0NfXR39/P4uLi/T19bF79+4NDbvJyUleeuklqtUqBoOBtrY2GhsbWVlZYXZ2lmQyicvloquri3PnzpHL5aitraW9vZ2TJ08K4+f1119ncHAQv9/Pgw8+iM1mu2flDZeXl7l8+TIXLlwgEAjw8Y9/HJPJhMlkwmAwUC6X0el0rKysMDU1hVarZdeuXcTjcV544QXK5TIej4empib27dsn7pe1UWW32y1WBZWItRKhVo6hOOvLy8vk83kWFhaQJIlwOEypVKKlpYVCoYBOp8NkMol7wuFwiGZ474S1jkipkGdqdoGAx0kw4L9ztSVlX9XqT3++ARqNhi1btpBKpTBUwPAEAAEAAElEQVSZTIRCITH3drsdi8UinH+Xy0UsFsPhcGA2m1lZWSGRSNDe3i4CKIpajyRJbNmyBY/HQzqdFjn9JpNJfD8qaUJtbW3Y7Xbsdjsmk4m+vj6amppobGxkbm6OaDSKzWYjFAqRyWTo7OwUfVW0Wi2PPvooxWIRp9Mp1LoKhQJWq5X6+nqKxaJo2qjX63G5XNTV1VFfX8/S0hJOp5OHH35Y3DuqE6DyYUR1AlTuW3qv9DI8eQWfz8fjjz/OK6+8IqLBCwsLfPWrX+W///f/jslk4sUXX+SHP/whX/rSl/ibv/kbmpub2bFjBzMzM7z44ov8+q//Oi+88AKdnZ1s2rQJvV7PX/3VX/GZz3yG9vZ2nnnmGRKJBL/6q79KfX09X/rSl/jyl78sclOfffZZ/tk/+2f8t//23/j/s/ffUZKc1303/qnOOU9Pznl2d3ZndwHsAlgABEkwiYIYRFGiKcqEKB8d2X5fvceyLOv4lWTL1s+2ZPFIMiWI5ksSIgmBIkWQBJEIIu1ic5gNs5NzT4fp6Zzz749BPZyZnU3IC9TnnAF2erqqnnqquuve+9z7vffddx8jIyMsLi7yyCOP8Iu/+It8/etfx2638y/+xb+gra2N//k//ye//du/TWdnJyqVive///3XzeX+0Y9+xOXLl3nooYdIJpP86Ec/EgZyLBbjV3/1V/nhD3/I/Pw8HR0d6HQ6/vRP/5S///u/p7m5mSNHjqDT6XjwwQfZv38/O3fuZO/evbjdblZXV3n44Yf53d/9XZ577jmWl5dpbW1l3759BAIBxsbG2L9/P/F4nCeeeAKr1cp9993H//v//r8cPHiQkZER/vmf/5nf/u3fplqtcu7cOTKZzLZOgCwH+O/+3b/jv/7X/yry5uPxOC+88AL33nsvO3bsYHR0lGeffZZf+ZVf2bS9Xq/HZrPx2GOPsXPnTgqFAj6fj0Qiwcc+9jF+/OMfo1KpOHjwIKVSid/93d/l937v9xgaGuKf/umfsFqtfPazn8Xr9fLHf/zH/NEf/REAExMTpNNpbrvtNo4dO8aBAwdwOp2cPXv2mtflkUcewev1Mjg4iNvt5r//9//OQw89RGdnJ5FIBJVKxcjIyFUju93d3XR0dGCxWLjvvvtEV+mvfe1rjIyMsGPHDn784x9jNpupr6/nkUcewWKx8KUvfYmXX36Z3/md38HlchEOh8lmszd0L73dtLW1iVSOrq4u5ufnWVpaQqPRYLPZSKVSotfC/Pw8ZrOZwcFBKpUKFouFlpYWisUi09PThMNhYrEYXV1dxONxVldXkSSJvXv3MjExQbFYxOPx0NjYyNGjR9HpdDQ1NRGLxYSzfscdd5BMJjlz5gzVanWTMxiLxURH6bm5OWq1GkNDQ+zYsYPGxsbXPRflUolwMMDpIy8S9C2yf99eDhy444b7SQhqNYhGIZtFVamg02qxXGUFS61WiyAA/LyQ/eDBg1e8trWJ4vqhapuclI1yuY2NjVd87jfe+7KxvfG1+vp60bRwY9M9+fft9rex7kve18ZxbHSwdryqiCQzMDCAJEmikd/W8SgovFd4Zz8pFBSuwfj4OOrZi/z+7/8+KpVKRLPS6bSQuJObM0mSRCqV4vLly3zve9/ja1/7mmjmJEeQTSaTSGMxGAwi3cZgMGCxWNBoNLS1tZHJZFCr1VitVux2O8FgkJmZGZaWlvD7/SwuLlJfX0+xWCSTyYjt6+rqaGtrI5VKEQqFRPrOxrSZqz2IkskkoVCIWCyG2+3G4XDgdrv5wQ9+QDKZ5N5770WSJEZGRvj6179OLpdjaGhIRLjy+TyFQkF0spWPKXc+djgcfOYzn2F0dJR8Pi8Mqf3792O32wFEBNVutwtHSY66WiwWOjs7+dKXvsTw8DAHDx6ks7Nz23NJpVKcOHGClpYW9Ho9e/bsETnKjz/+OJ///Ocxm824XC5cLhc//elPueeee8T2clRPTu2wWCwYjUbRFMhsNtPV1SVSCIrFIjt27ECn05HL5YB1I8jlctHQ0IDNZqNYLGI0GgmHw5hMJiYnJzl79izNzc2ip8HVeO6553jwwQdpamqiWq3S19fHSy+9xMjIiJjfa0V1t0ufevnll8lms6ytrbGysoLD4SAQCLB7925+8Rd/kdHRUf7qr/6K3/qt38Lj8YhrKadQXeteeicgp9JIkkSlUmFiYkJEpSuVCkajkdnZWQYGBqhUKiJlJZPJsLCwwPT0NPX19dTV1XHhwgWcTifT09OoVCpcLhc7d+5kdnYWt9tNKpUil8vh8/lwOp1otVqy2SwqlQqHw0Eul2N1dRWtVovH4xHXIhAIkE6n6e3tFY5mOp3mwIEDhEIhUqnU63YCqtUKuWyG+elxfItz5DJpVlZWuHTp0s07crUaZDJQKKBXqXDb7fQ0N4tmXBvnfuP/t/vb9V673nuutc3V/rbx9RvZ3/VeU1S8FBSuj+IEKNyy5PN5yGREio+cUwzr0eZMJiPy8IvFIrlcThSL6fV6kW8uR9NlCTo5l1QuDJTz7GE9939jbrlsfBWLRbGtxWKhvr5e1BFsLJ6Tc9iLxSLwc2OoVqsRCARouEqHSrnITj62PB650+VGIzOXy1EqlYQzIxtWcu2AvD9YT8uQ6wReeukl7rnnHorFItFolEwmQyqV2lRLIc/Fxpxb2fh2uVx88IMfpFqt4vP50Ol0Igd3I/I45Eid1WqlUqmQSqVIJBLiOm6szdg6FxtViiqVitARlx0ci8WCTqcT9QYmk0kYnPJ7tVqtkDyUc8pzuRzZbJbbb7+dfD5PJpPh8uXL3H333VfN6U+lUqKOQq4fKRQKV+SjX42tBnEwGKRcLmMymXA4HDQ3N+NwOETNgsvlwmq1UiwWharK1lx6v99PfX39O3pFYOt5WywWoeSSTCYpFAqo1epNn2sAu92OWq3GZrOJa+n1ejEYDGI7uRO1XOALiPu8UqmIz67RaBT1HHJNjnzvydvK9TbVVzvrOhwO/H6/OPbrmwMVOr2extZ2UokEawEfjU2NtLW1vTYnIJGAXA5NrYZJr7/CAXijkWuU5GCH2WymWCySzWapVqvY7Xay2awovpXTgsrlsqjdAcR3rfw5/fkprad8ViqVTd22i8Ui8Xgcl8t18ysmCgoKgnfuE0JB4Tq4XW5wu1lcXKSlpUXk+9bV1eFwOHA6nUQiEVEYazAYRJTQ7/cLJ6BYLNLQ0CBqA2KxGPF4nHQ6TTweR61Wi4LYZDJJJBIRToUkSUSjUVKpFEajEa/XKwxQjUZDd3c3mUyGXC5HLpcT22ezWXK5HDqdDp1ORzAYJBAI4PV6t3UC5Ai82WwmGAxiNBrJ5XJ4PB4AEZlcXFwUHW3T6TSFQkHI9SWTSZEzbbfbicViaDQadDodlUqFp556igcffJBkMokkSWQyGdbW1ojH4+J32UiWCwqz2ayYp2QyyS/8wi+I9J7V1dVtr5tOp6OxsZFisUgikRBGV7FYZGBgQBjBskpIV1eXmGO5YHCj+kcsFiMajVIoFEin02J8yWSSTCZDsVgkmUwKpRJYVzyS88Cz2SyZTIZYLEY2myUajdLS0oLb7WZ5eZnnnnvumgZfV1eXuAaSJBGLxejr66NcLpNIJERtwlYDZyNyk6ZgMEgwGBR5y/IqktlsplKpEAgECAQCaLVaBgYGeOaZZ8SKhrwSEI1GWVtbEysE71S0Wi02mw2TySRWUWQHp1Ao0Nrail6vF7n3ct55T0+PWAmKRqO0t7fjdrupq6sjGAwSi8WIRCK4XC7i8bjI57daraytrYmaCnnOdTqdGIccKNBqtbjdbnQ6HcViUdStmEwm4azo9frXPQcqlQq9wUhbVy86vZ7wkpueznZ6enpu7trJqS/h8PpqwKuOz5upbiR3HI5EIkSjUdRqNYODgwQCAeLxOLVajaamJuEw2Ww2PB4PbrebZDLJ9PQ0PT09lMtl1tbW0Ov1tLa2ivmXJIl8Po/P5xPf63LBfyaTEYEGg8GwqTBZie4rKNw479wnhILCddi3fx8Gr5FXXnmFgwcPsri4SC6Xw+FwsHPnTj70oQ9x7tw5kUqwZ88e2tra+Df/5t9w5MgRIpEIdrudSqVCY2Mj+/fvF/rUPp+PWq3G5cuX0el0In1nZmaGhYUFofxSqVS4fPmyKCg8cOAAhUKB06dP4/F40Ol0FAoFwuEwarWa6elpFhYWSKfTrK6u4vF4KBQKHDt27JqFaTqdjp07d6JSqTh8+DAdHR2oVCr27t1LKBTi5MmTeL1eRkdHuffeezGZTFy6dIlEIsHc3BxLS0usrKxgNBqJxWLs2rWLJ598UqRRydFzv99PNBoV0bdwOMzs7CwWi4W2tjbW1tYIh8OcPXuW7u5uYrEYfr+fsbExjh07htVqxeFwsGPHjm1ziQHMZjO7d+/mySefZGZmRuh+u1wu/q//6//i+PHj4lg6nY73ve99PProowSDQaE84nQ60Wg0LC0tEQwGWV5eRpIkFhcXSSQSjI2NCaM5kUgwOTlJJpNhdXUVp9PJ0tIS586dY21tjVAoRDgcZmpqinK5TCQS4bnnnmPXrl243W4OHDiwSSVmK7/+67/OwsICr7zyCo2NjeRyOe69916OHz/O9PS0kIHt7++/6j56e3vx+/2cOnWKtrY2Dhw4wMTEBKFQiLGxMWq1Gs3NzTz77LNEo1H6+vp4//vfzyc+8Qnq6+v56Ec/KpyFsbExmpqa3tHGkCRJ2Gw2BgcHRXH+9PQ0Op0Ot9uNXq9n//796PV6seojp53t3r0bq9UqnCyVSsXs7CwNDQ24XC6i0SjZbJZ9+/YxPj5OuVzGbrdjtVoJBAKEQiF27txJW1ubiFzLq3Rer1eoXnV3d1Or1VhcXMRut9PQ0EAikRBKXle7v1/LXGg0alrbOxnsases07yjnTeZarXK2NgYS0tLFItF5ubmsFqtnDhxQsiCyt8Ndrsdg8FAd3c3Bw8eZH5+nu985zt8/vOfJx6Pc/r0aeH4yJ9vnU5HIBDg9OnTNDU1USgUhBOQTCYJBALi/jAajTRuaISmoKBwY0i1d4sQssJ7hrMp2HcGTu+tsde6HpGSpRI3yicCQmJRrVZfEWGX5SnltBFZXUJOrchms5jN5ptWAJFTB4AbWqquVqsiHQGuHsmSU2/kVJqNTafkZfNrGatbKRaLYjVEJpvNisjazSLPn5xSca00GPlrJ5fLbZLtlJFlULdrrLURuYGRPDfXk/K8GWTtdIPBcE3jQj6XSqUi9MqvxvXkXzfeB4BIX7nRJm1yGtvWe0n+zJzZB3u3uUUuhS7x4D88yA8//0N21v+8YLRcrZEtVUkWqpQ3PCny+RyLs9M8/+QP+cN//+9EVP1GeasfO3K62enTpykUCuzfvx+32/26je2bMTqr1SqJZJL//N/+f/zyF76Ex1uPTvfz1QSJGk6DBqNWQqu6SWP2OisBPz12jLRKRevgILfddtvN7fsqxGIxXnnlFTQaDcPDw3zjG9+gq6uLuro62tvbcTqdLC4u8sILL4i6ivr6em677TZeeOEFfvCDH/DAAw+wurrK+Pg4H/jAB0Rxe2trKwaDQfQNGBwcJBQKkU6n0Wg0eL1ePB4PPp8PSZJobm7m4MGD2O32N8QROH78OIHpaUylEh+6++4r3yBJ4HSCywXb3PdX+zwpKLzTeOeHGxQUrsK6kbn+76352rJRv/Ehv/XhIC/nbyyU27jEL+e9b7fttdjocNzIdje6lC3/baNjsfH9Fovlho+50YnYqKax3TzeCLIqx0Zj9UbORTawt75X3s/1jv9ax3sj3OgY5L+r1eprpvxcbx/yfbBxe7n+42b2eSukRbzVY1Or1djtdu5+1aDbrifB2887aSzXJ5vNiponWL+mhUJB1CAlk0nK5TKhUAi/38+hQ4fo7OykVquxurqK2+3G5/OJXhH5fJ6+vj6Wl5fJZrNC2tlsNhMOh0kkEqLmJxQKMTw8TDweFwXe8vefgoLCjaM4AQq3PFeLON+o8Xa1116rgXCz293M+6+lrPF693Oz+7iRcV2Pq0WPb3R/r2XF4kZ5Ldfx9RiVr1WZ5fW8/73CRqdz62vvBTRqNbVXC9bfKHQ6nTDoJUmiqakJu91OPB4nGo0CYLPZGBgYoFAoiFXKWq1GJpOhpaUFWE8PNJvN2Gw2YrGYqN9SqVTE43FSqRT19fVi1dZqtRKJRMhkMmIFNBaLvSHnJK+cFF8t7NfdAmlZCgqvB+UOV1BQeM3IxdK5XE6o2cgdOuV0qvb2diGVqaDwdvFevv8sJhPReJzI2pqQJn6982EymYT6V6lUYnBwEL1ez9raGvl8Ho1GI+qzSqUSdrtdrMA0Nzdjs9kolUpCyay1tZXFxUW8Xq+QJZYVg7q7u1ldXRX7lCP/cvdgWT3rjaBcLhONRKiUStg39BFQUHg3ojgBCgoKr5lyuYzf7ycQCAhVpkQiwenTp1ldXaWtrY2WlpZ3bOdahddHrYboGKuUl12barVKtfLqPL1FUyUbxnVOJ/5YDP/SEtFIBLvD8bodAYPBQE9PjxA3kMUK5K6+cudhWeJXTh3SaDTs379/k2xvrVYT6Tw2mw2LxUK5XMZms2G326mrqxOSsHJXdKPRKEQf5CJtuRbrtSDX5UQiEUIrK7i1Whq2kThWUHg3oTgBCu8pthoqcu3Axt+3vu+dEkGUx7RVR1vmZse5dS42dtu80X3pdDrRZG1xcZHdu3eTSCTo6elh7969dHZ23hJKJ+8UbuR6yu95LdfrjaRWWy+4jcfjlEqlNzU1691AtVol9arq1lvtLrU0NBBPpwmOjfGdb32LD3zoQ6Iw+vXeOw6HA0A04pP7rgCiRwP8XDhAVvmRi/nlNLpsNiuar8m9R5qbm8W+3Vui8qVSSXQZlu/D14osuBAOh/nJj35Eg9FIb0cHDa9KMCsovFtRns4K7ykqlQqnT58mmUwyPDws2tEXi8Ur1HY2qqy8E5BVhzaO6fHHH6darfKJT3ziph7mtVqNr371qySTSXbu3ElXVxdf/vKX+dSnPsUdd9xxw0V2ckHrxmObTCby+byQ7hweHhb9DBSuz9Z7cSuFQoGTJ0/y+OOP8/GPf5xDhw695Y6WSlrvqluuVPnrv/071GrNLVbW+tZTY90RqNRArVEjSW+d06RRq9nZ3U2jx8Ox0VF+9O1vk69UqCqrN8B6SbYkSZg0GoY7OxkZHMTjdL5jAkAKCm8WihOg8J5CkiTR0MtoNJLJZAiHw0QiEfbs2YNarSaRSBCJREgkEuzZs+ftHrJgamqKSCTCoUOHxGttbW2bIsI3w4EDB/jZz34mmocNDQ1RKBRuKq1ju+PGYjFcLhcOhwOfz8dzzz3Hpz/9aaWz53VIp9Osra0RiUQYGRm56jWVOzH39vYKGdO3Go1WS3NbO5/6F79BtVIGSVKcgOtQe/U/kqTC6fK8pSly670INLgdDu7Zv5+RwUFK1eqrY1IcAenV+1ejVmM3m7GYTGiUOiaF9wCKE6BwyxJeCzO/lkar1VIulymXy9TV1YkmQmazWTQEk6XlzGYzsVgMrVZLoVBgcXGRY8eOYTabRU772NgYY2NjmM1mvF6vUKZIp9Oi6Vd7e/smhQqbzUYkEqG5uRmDwSAe8PKSdyAQIJvNotPpaGtrw+/3Uy6XcTgcGAwGotEouVxONMlJpVJEo1Gam5uJx+Po9XrOnj3LzMwM9fX11NXVIUkSxWIRrVYrDPd8Pk8kEqFarWIymXC73dRqNTFWnU5HQ0MDkiThdDpFbwWtVovVaqVarYqOydVqFYvFgslkIhAIYLVahfMkUyqViMVirKyskMlkyOfzYmk9m82ytra2SWr1alReVS6RU0u8Xu9VNf/lDsByQyKr1YpWq6VYLBIMBqnVatTX16PRaEin06ysrIiO0hqNBqPRKBrA2e127HY7mUyGRCJBsVgUnWZdLpe4Fslkkq6uLpHyUigUCIVC1Go10a03mUwSDAZpbm4W3autVqsoctxIoVAgFouJ+9Zut7O0tMSJEycwmUx4vV5qtRqVSgW1Wi26WScSCVwuFxqNBovFInKgM5kMqVSKXC6H0WgU9+ybhSRJGIwmmlralFqAm0QlSajehhoZSZLQqNW47HYcVquyCrANqldXNuGdkwaqoPBmojgBCrcsAX+AYnSRuro6arUaCwsLHDhwgGKxyOzsLN3d3czOzgpjzOl04nA4iMViFItFzGYzoVCI8+fPs2PHDlKpFEajkeXlZS5dusTAwADJZJK6ujpCoRBra2sUi0XRYTSZTDI/P080GuW2227D5/NRLBZpbm7e1E20VqsRCoVYXl4WKhjz8/NIkkSpVEKv17O0tITRaCQUColuuRcvXqRYLBKNRmloaGBxcZHx8XEikQgWiwW1Wk0wGESn01GpVJAkifHx8U1Np0wmE6lUitXVVVKpFCqVilwuR1dX11XnNZfLCa3unTt3otFouHjxIn19fVc0rZILQlUqFXq9nlKpJKQA5cZrg4OD180XT6fT+Hw+1Go1Pp+PSqVCfX39FY238vk80WiUhYUFrFYrPp+PwcFBJEkiFAqJyHgmk8HlcpHP5zl79izpdBqDwUA8HsdgMFBfX08sFmN+fp79+/eTz+fx+XyMjY3xvve9j0AgwNrammgWNzs7i9VqxeVyifmU5RYzmQwej4dkMsnZs2fFfbS6ukp9fT07duzYFPWtVqukUilmZmZwuVz4/X66u7sJBoOcP3+eoaEhobHu8/kol8vcc889RCIR5ubmGBgY2FQAWSqVmJ+fJ5vNUqvVxMqOXq9/0/L05Tzud1IdgHzupWKRWm19fiRp/b7UaDRI76Cxvl1s7GmhlOorKCgo34oKtyyRaISJiQnS6TR2u52XX36ZRCJBLpcjFArh9Xqx2Wz85Cc/YWJiQhjjTqeTo0ePkk6naWhooL+/n8HBQfr7+/F4PDQ3N9Pf38/Q0BD9/f1oNBqeeOIJXnrpJQYHBzEajTz33HPo9XoWFxf5/ve/LyLCTzzxBFNTU2KM8gqEXq8nFApx6tQpAAKBADqdDr/fz6lTp5idnWX37t088cQThMNhYdi98sorpFIprFYrdXV1tLW1cfvtt9PY2EhdXR3z8/OMjY1RKBRIJpP87d/+LWazGYPBwNzcHD6fjyNHjpBMJoW+9t///d9fc169Xi9zc3McP34crVaLTqdjcnJSrC5sRK/Xs3fvXj73uc/xL//lv8Rms9HV1UVzczM7d+7kF37hF+ju7r6usbiyssLTTz9Nc3MzPp+P48ePMzMzc8X7AoEAZ86c4cSJE+zcuZMXX3yRYDDIuXPn+M53vkNfXx9DQ0N873vfY3R0VKzCPPHEE3R0dDA+Ps7TTz/N1NQUe/bs4Wtf+xrBYBCXy4VKpeJrX/salUoFt9vNU089xeOPPy5WCg4fPkwsFuPkyZN873vfE8f6zne+w9jYGNVqlZWVFZ544gm6u7s5d+4cp06dukKbvVgsEg6HuXDhAp2dncTjcdRq9RX3YldXFwsLCzz//PNYLBaxelCtVjelVoXDYZ544gkCgQCtra2Mjo6ysrIiVFneS6ythpi8fIlL50e5dH6UibGLxKJRKpXK2z00BQUFhXccykqAwi3L8K5havoSP/vZz3jwwQfJ5/MiJai/vx+Hw0FdXR2tra309fWxa9cuqtUqy8vLm5Z8VSrVJh172XCXC17n5+fx+Xxks1kuX75MtVoV7ettNhter5fe3l6i0SjRaJRsNnvFWIeGhpiZmeHs2bOUSiUsFgv9/f08/vjjnD59mkOHDnH69Gk8Ho+QXPR6vbS1tfHAAw+gUqlEd92Nhbhms5lSqUQ+n+eFF16gs7MTs9nMwMAAu3fvBqCzs5Pjx48TiUQIBoP4fL5rzqtarea+++5jbGyMxx9/nAceeIBf/dVfxePx3HDk92bz/3t6evjc5z7H4cOHqdVqLC8vCw3yjZw4cYKZmRk++MEPAvAf/+N/JBgMcvr0aWKxmEghKhaLrKysYLVa8Xg8dHR0oNfr0Wq1eDweent7kSRJRNTl9Br5b4lEApvNhkqlwuVy4fV6GRsbY3FxEZ/PRyKR2HQseZXH6/XS2dmJVqvFbDYjSRLJZHKT8ySvmBw+fJinnnqK3/iN3xCdgjfeixaLhb6+PkqlEhcuXCAej/NLv/RLGAwG5ufngfXo9zPPPCNSr2ZmZvB6vfh8Ppqamt5Rhe1vNtVqleXFeUZPnSSdTgFgNJnQ6/VYbTY0Sk2KgoKCwiYUJ0DhlsXhdFCx2VhYWCCVSnHvvfdy/vx5Wlpa2LVrl3if2WwWRtbWrq4bUxouX75Md3e3eE+1WuXSpUt4PB7MZjMWi4WRkREAOjo6cLvdqNXqTQavXAOwFUmS6OjoYHh4mG9/+9sizcZsNlNfX097ezu7d++mr68PjUbDzMwMKpVKqPRsTL+oVquMj4/T19cn9q9SqXA4HKTTacrlstDfTiQS/K//9b/4yEc+Qm9vL9VqlVKpRCgUuqamdmdnJ9FolO9973vs2LGDgwcPotfrbzhPdrv3bSdxKjM6Osq3vvUt/viP/5ixsTESiYQolN2oLGQymTAYDGQyGQCRBiXXIMj7zuVySJKE0WhEkiT0er3Yh1qtFsaxnM4kz698n8C6Y7DR6alWq8IR23isbDaLWq0WTsHWedo6z5lMBqfTyR/8wR9gNpv58pe/TENDw6Zjy/finj170Gg0PProo3z4wx/etiux2+0mm83S2dnJ7bffTqVSEfUn7zm2SPAr9QoKCgoKV0dxAhRuWdQqNRa7XUR1Dxw4wE9+8hNMJhMul4tarcaFCxeYm5ujsbGRaDSK1Wrl/PnzLC8vE4vFaG5upqmpifPnz7N7927a29txu924XC4uXLggXuvv7xd5+g6Hg1qtRjabZXl5mVAoxMLCAgsLC/j9flZXV0kkElcUhLa2trJr1y6++c1v8gu/8AvodDqGh4fR6XRcvHgRj8dDLBajoaGBWCzG9PQ0xWKR3bt3iyLlQCDAiRMn0Ol0rK2tEQqFSKfTLCwssHPnTl566SUWFxfJ5/OoVCqMRiOJRIJEIsHi4iKhUAiTyYTP5yMYDDI/P49er8fv9zM5OYnD4eC2227DYrHgdDrp7u5en+tXV0ZeD4cPHyabzVJfXy+cKfi5fngkEiESiZBKpYjH49hsNlKp1CYnYOfOnUiSJFJpIpEITU1NdHV1EQ6HOXfuHCqViqamJlpaWpAkiampKWw2G8PDwwQCAVKpFJcuXaJarbK6usrMzAySJLGwsEA4HGZhYQGfz8fi4iJms5mVlRUuXrzI3Nwcd955Jy0tLcTjcXGstrY2mpqaqFarTE9PY7VaGRkZEUXKU1NTNDU1iXPI5/MEAgEuXbrEPffcQ1dXF06nE4PBsOle7OjowG6343a7SaVSdHd3o9FoKJVKRCIRJicnsdvt/NIv/RKrq6tEIhEWFhaoVCqKJKuCgoKCwnVRnACFWxq3282hQ4dobGykvb2d3t5e7HY7BoOBarWK3W6nr6/vimjy8PAwDodD/D2bzeJ0OtFoNNTV1dHd3U2pVMLlcmEwGBgaGmJtbW1d57tSQa/XU6lUaGtrEx0vdTodIyMjovfAVux2O93d3fT19YlVhNbWVtRqNaVSSeRwq9VqYYBvLDDu7OwUKxSysk9vb+8m1Z89e/ZgNBqFqoxer2f//v04nU60Wi1er5dDhw5hMpkwmUz09/fT3NyMTqejq6sLg8EgFIPMZjP9/f00Nja+YQWg+XyeVCp1xeter5c777xTXFO5PmNrIXJzc7NIx5IbERkMBrGCI+d+7927l7a2NtRqNd3d3ej1etRqNT09PaTTaZGec/fdd2Oz2cT1keVXtVotfX19ohGa1+tFo9HgcDiw2WyYTCZxrNtuu43Ozk7K5TJdXV1iJaC3t5dyuXyFypFWq8VoNIox3HHHHULNqLe3l2w2i8vlErKONpuNtrY2oUJULpexWCx0dnZiMBhoaWmhv78fQKwCabVaRd1EQUFBQeGaSDVlvVThFuNsCvadgTP7YMSyucOqnHpxM0arrCqyMR1DVtjZaEzJDoAsqflajKytXTI3vp7NZjEajdcc+3bj2oq8CrAxHSSfz6PRaIRKzbXGnkwmAUilUszOznLo0KE3xKAsl8usra2RyWTECsNGarWakLiUuVbX3EwmI/Lu5ddKpZK4Pm+mco18HWTn77XeC5lMRjga8mvyvRiNRlGr1RSLRSYmJq57HUqlEpVK5QrHCTZ/ZvZar9z2UugSD/7Dg/zw8z9kZ/1O8Xq5WiNbqpIsVCm/Q58U8iOsUqlw6tgrjJ4+SebVmgCD0cg99z9AT/8Axg11Ge9EB0kCnAY1Rq2EVnWT45Mf4+EwZDKwoVOvwpuAJIHTCS4XbPM9c7XPk4LCOw1lJUDhlmbrw/y1GH5bc8bl/WzNqVapVK/bsNwup1t+fasc5nZsN66tbGcEbvfa1Thy5AjxeByr1bqtsf5a8fv9wHqkfzskSbpCfehqyIWzW197q/Lgb+Q6XI+rnYN8Lz722GPodDp27NjBwMDAdfen1Wrfsw3ZyqUSpXKJSqW8uflVrUa5XKJUKKDRaNC+F+skFBQUFK6C4gQoKChs4oEHHti0WvFGRU1bWlqAd2YU9p3Ib/7mbwJsUq5S2J7FhTnGL14gGFghl8+J14vFIudOn8TvW6ajs4sde/a+jaNUUFBQeGehOAEKCgqb0GjenK+Fd1JjqVuB96S6z2ukzlvPvMGIhERtgxpTtVqlWiljMBioa2hE8aUUFBQUfo7iBCgoKCgo3NKYzBZa2tvJZNLk8znyufXVAK1Oh7ehkcaWVmwOJ+uZ9woKCgoKoDgBCrcwhWKBZLJArVa7Qo7zRqnValSrVZLJJJFIBKPRiN1uvyJX+1ZFPr9YLEYqlUKSJGw2myiitdlsQjnnzTh2rVa7JVcAAoGAUAF6u1NxisUiiUQCq9V6U70a3ivIakhtHZ3kslmy2QzBFR+1Wg2H00VHdw8trW03VRejoKCg8F5AcQIUblnWwmucC81QLBb5wAc+8JqNo1wux9GjR3nkkUcYHh7mgx/8ILfffvsbPNq3j0KhwDPPPMPLL7+MSqXiIx/5CKVSiUAgwMGDB+nu7sZut7+hxmWtVqNcLl9Vreadzne+8x3uu+8+RkZG3najOxqN8uyzz3LnnXfS3t7+ni3+vR5mi5WO7h5q1Egm4hTzeQZ27KStowu7w4mSC6SgoKCwGcUJULhlsdlsdBg7hF78a8VsNvPhD3+Yb37zmwwPD9PW1vYGjfCdgdFo5IEHHmBiYoJiscjHP/5xYF0K9E//9E9pa2vjoYceumFlnhthdXWV1dVVstksd9xxxxu237eKAwcO0NTU9LY7ALB+f+7atQuPx/OmrNi8m3A4XfT0DSBJEslEgqHhPZhM11fdUlBQUHgvojgBCrcskWgEKbqEzWYjm81y+PBh2tra0Gg0pFIp9Ho9Q0ND10xHkY28rf8vFotEo1FWVlawWq00NDRgNBqJx+McP36c/v5+0uk0Go0Gp9NJa2srACsrK6yurqJSqejo6MBmsxEIBJiYmMBqtdLa2srs7CwdHR14vV60Wi3xeJyJiQkqlQq7du3CbDYTjUZZXl4W2v6dnZ1Uq1XW1tbw+/04HA56e3uvGxXeel7yv2u1GlarlV27drG6usqPfvQj7rrrLs6dO8fdd98tutrG43Huv/9+JEnC5/MRiUQolUo0NTXR2Ni4rZGcSCR4/PHHWVhYoL29HZPJxNDQELlcjnA4TCwWQ6PRsGvXrmsa2cFgEL/fL+agu7ubWq1GJBLB5/Nhs9no6+tDpVIRi8UIBALEYjEOHDiARqMhEAgQCATI5/O0traytLRER0cHLpeLbDbL8ePH2b17N7FYjGq1itVqpbOzk1AoRCgUEp2bl5aWSKVStLW1EQwGcTqdtLX9PL1kZmaGVCpFrVbDaDRSKBTYuXPntgXWJ0+eFNKg8rnccccd6HQ6CoUCyWSSpaUl1Go1vb296PV6UqkUi4uL1NXVYbFYWFxcJB6Po1arUavVDAwMkEwmCYVColN1f3//O8KBeauRJAmL1crA0E5KxRImk3n98/8enAsFBQWF63HrJesqKLyKWq0mnU5z5swZdDodfr+f48eP4/P5MJlMPPnkk2SzWdFA7GaIxWI8++yzNDc389JLLzE5OUkul0OtVjM3N8e5c+cwmUxks1lOnjzJ+fPnicViXLhwgWq1Sjab5Zvf/CYAFouFy5cvc/r0aYLBIK2trTz66KPi/ceOHUOn09Hc3MwzzzwjzqFardLQ0MD8/DzRaJTR0VFOnz5NS0sLFy9eFAbua0GSJFQqFXV1dZTLZebn5zGbzbz44ovEYjH0ej3ZbJannnoKgMnJScbHx8lkMthsNp544gnRMXcrBoMBi8WCy+WisbGRhoYG8vk8L7zwAj6fT3TH/dGPfkQmk9l2HwsLC/j9fmq1GvX19czNzZFOpzl27BgnTpygoaGB6elp/H4/ly5dYm5ujkKhgNls5h//8R+JxWKYzWay2SyPPfYY+Xweo9HIuXPnOH/+PJIksbS0xPPPP49WqyUQCPDKK69QKBSwWCxcuHCBYDAoui5/61vfIplMotPpWFxc5KWXXqJarfLKK68QCARIp9NEo1GmpqaumVqlVqs5d+4cL730EmazmaWlJS5fvkw4HGZqaornn3+e5uZmDAYDR44cYWZmhmq1yurqKktLS4yPj7O2toZGo8HlcjE7O0sikeDFF1/E7/djt9u5ePEiq6urogP1e4n1+1qNwWjCYrWiUqnek86QgoKCwo2grAQo3LIY9AYqwOLiIhqNhkqlQjwep6WlBZvNxvT0NOl0GoPBcNPFqZVKhWw2S61WY2ZmBpfLRVNTE1arlVwuRzKZxGazUSqViMfjvPjii3zuc58jk8lQq9WIxWIcPnyYf/Nv/g0Wi4V4PC409xsbGzl+/Dif+tSnGBsbY2Jigk9/+tMYDAbGx8fRaDTo9XrC4bAo7F1ZWWFiYoJ4PM6hQ4eIx+OEQiGsVuvryrnXaDRUq1VKpRJms5mVlRVhMKtUKmZmZoD1CHaxWKSrqwtJkpidnaVQKGzbQE2v1+N0OimXy3i9XjweD+Pj40xPT7Nr1y68Xi8ATz75JAcPHty2SVoul2NlZYVEIkG1WqVWqxEMBpmenqZcLtPY2Mjs7KwYe6FQQK1WY7FYeP755zl06BAtLS2o1WouX76MyWRCr9dz7NgxkskkQ0NDlMtlgsEgVquVQqHA4uIimUwGl8tFKBQinU6j1WqxWq1cvHgRg8GATqdjZmaGhYUF3v/+9zM+Pk5bWxsmk4lSqUQ4HMbj8Vz1frNarcRiMdLpNA6Hg1KpxPz8PPl8nmAwyPLyMvX19ajVar773e9SqVTYvXs3pVKJaDQKrK82SZIk+i7Mz88zNjZGX18fbW1txONxgsEgDofjTZN7hVe7Jr/apVjhxpFUEjqd/g3twXGjyMX6pVfrdQDeoY2g31IkAElCrVKhe3V1VXEeFd4LKE6Awi2LTqdD2pDHbrVasVgsInfabDaTSqVwOp3bGkOVSmVT8Wrt1U6jtVoNi8XCgQMHhFEuR3otFgtWq5Xm5mb0ej1NTU20trby13/91/zmb/4mra2twoAtFouUy2U0Gg1GoxGbzUZrayuSJIko7dLSEhMTE5RKJfx+P06nk5aWFhYWFvjxj3/M6dOn+exnP8vMzAxra2uo1WqWl5dpbGwkm81SKpXEuF/LQyuZTKJWq3G73WLOVCoVarUanU4ntOpfeeUVhoaGKBaLhMNhOjs7SafT6HS6bQ3ejY3GSqUSp0+fRqvVYrFY0Gq1uFwuRkdHKRaL246rvr6eU6dO8eMf/5impiZ+5Vd+hdnZWUqlEh6PB71ez/vf/36q1Soulwu/38/Kygq1Wo1wOEyxWESlUmE0GnE4HDQ3N5NKpSgUCmQyGVQqFXa7XaR56XQ6tFot6XQat9uNyWRCo9GgUqnQ6/XY7XaamprEXCeTSWDdEDYYDGi1WjQaDTqdDqvVetX5tlgs1NXVYTQaMRqNOJ1OYrEYsViMYrGIx+NBkiTq6uqYn5+npaWFvXv3in02Nzfz4osvcunSJVpbW/nEJz7B+fPnKZVKZLNZ1tbWaGhoEM7Tm0mpWGRtdZV8PoukSG/eMJJKRUNTM7o3SZXratRqNSrVKplcjlgiQeHV7w7FCVh3AiSVCoNOh8tmw2gwoFZWkRTeAyhOgMItS43aFaaHbIzJXMsQWltbY3x8nLm5OX7jN36DQqGwXlCYTDI1NcVjjz3G//7f/5vJyUkMBoPIad9IJpMhmUzicDh44oknSCQS3HXXXezYsYNnnnmGlZUVUS+gVqtFDr8ckTOZTDQ2NjI8PIxaraanp4eVlRX279/Pgw8+SCAQ4D/8h//ABz7wATweD0ajkX379rFv3z5SqdR1VwFko/Vqr50/fx673c7HPvYxgE0SlOVymVQqBYDb7aa5uZm+vj46Ojq4/fbbhaG9HbIDUCwWuXjxIlarlUAgQC6XE8cvFArbjg/WC4vvu+8+fuVXfgW/38/v//7v85nPfIZarSZWaADS6TTf+MY30Gq1fOADH6Cjo4Narcba2hqNjY2oVKpNdRPyvMvodLpND/rt7hdJksT75O1l6dPBwUHS6TSFQoH6+nre9773XdcpU6vV4h6VV3pMJhOVSoVEIiG2LxaLP4/WvvpaIBDgt37rtzAajczOzvKf//N/5rOf/Sxut5uuri5RhC2nLr2ZhIIBvvsPX8eqV18xjwpXUqvVqFQq+EOr/MoXfovWjk5M26yCvVnHLpXLBNfW+PELLxBIpdCaTOvpUm/JCN7Z1Go1atUqhUyG7vp63n/gAE1eLxqlW7fCuxzFCVC4ZVlcWGTlyBEmJydZXl7m5MmTVKtVUqkUvb29TE5O8vzzz/PLv/zL6PX6K7aXU0QymQyzs7M4nU56enpwuVwikn/x4kXK5TJTU1MUi0XuuusuarWaMGyDwSCLi4v8h//wH7h48SKpVIqZmXXZUrvdzssvv8zBgweZm5tDpVLh8XhoaWlhcXGRc+fOsWfPHtrb2/na177GgQMHSCQS+P1+8vk8FouFgYEBPvnJT3Lo0CFGR0cZGxvj6NGjVCoV2tvbSSQSTE1NMTc3x7//9/9+23nK5XI89dRTXLhwAUmS+MlPfkI2m8Xn8zEyMsLQ0BBNTU0A3H333UxNTbG4uMjU1BTxeJxjx47xm7/5mzz//PO8+OKL7Ny5k7W1NT7wgQ9c1Qno6uoilUrx8ssvc+edd/LhD3+YaDRKIBDg8OHD+Hw+/uiP/gin07nt9nNzc6yurmK32+np6eHTn/40999/Py+99BILCwu88sorVKtVmpubqVQqFItF5ubmmJubw+12EwgEAJienmZ2dpYLFy4wNzfH2NgYdXV1XLp0iWPHjmEymairq2NmZoaLFy/i8Xh4//vfz/z8PKdPnwbWV4xmZ2c5f/480WiUM2fOEAgEWFxcRKvV8swzz5DNZnE4HHR1dfHFL37xqgXbx48f5/Tp02g0GmZmZjh8+DCZTIZf+7VfA9bTrk6dOsXs7Cyf/OQn6evrY3V1lePHj6+rYXV0MDU1hcfjobGxkc985jN85CMf4dvf/jazs7Oo1Wqq1SpdXV3bplm9kVQrFSrlEr/527+Jw+G4JftBvJVUazWymQz/5+vfBGpXdYDfDIrFIqOTk5yanMTd08PHDx3CZDajfpuLpmWn++1IjdrEq6skqVSK53/6U3566hS7OjvZt2MHGkWRS+FdjFR7K7+JFBTeAM6mYN8ZeKE3SWs+TDqdpq+vj8XFRWA9LchkMjE/P4/H46GhoWHbqKgc6Y5Go6LIuKurS6T/BAIB6uvryWQylMtlDAYDRqORRx99FI/Hw969ezEYDFQqFbxeL8lkkmw2K6Lz8Xgcm82G0+lkaWkJAJfLhcFg4PLly3R2dmIwGCiXy2QyGYxGI2q1mkKhQKVSQaVSif07nU6SySSJRAKj0Yher8doNFIul0mn0+RyObq6uq44RznSHAwGWV1dRZIkmpqaqFQqwtGwWCwYjUZqtRqhUIhKpYJarSabzbK4uMjw8DBms5m1tTWROqVSqXC73Vd9eGezWRKJBIlEAq/Xi8PhIBAIUK1WRR2CXDuwXUpEOBwWNQd6vZ5KpYLL5SIajZJOp8UcGAwGwuEw5XIZo9GIVqslGAzi9XrR6XTC2RkcHBQrOTqdjrq6OgKBACqVivr6ejG3LpcLl8slCnzlNJypqSmRDhWPxykUCnR0dPD3f//3HDx4EJvNRqFQIBxevx8//vGPb+t4BoNBYrGYyOmXC8BlpaVYLIbRaKRSqaDT6cR1WV5eRq1Wi1oNOV2rUqng8Xjw+/1UKhX0ej06nQ6TybQpVUv+zJzZB3u3yVa6FLrEg//wID/8/A/ZWb/z55+Rao1sqUqyUKW85UmxMDvNY4/8f/znP/x9xQm4AWq1Gul0mr/+yt9x+30P0NLeiXlDU0IJcBrUGLUSWtVNGsTyYzwchkwGtsgmz/t8XFxYIJjL8bFf+iWRMnmjhvfy8rJIk3S5XGI1bLvt5dfllTOZRCJBpVLBarWKAvvp6WlUKhVer5f6+noMBgOmV1corka1WiWdTgtFr+ulVN3oOcorNYFAgJ89+SRurZbb+vtpbmjYbqfgdILLBduM9WqfJwWFdxrKSoDCLYvNZqO72SZ+HxgY2PT3q0WZZTQaDQ6HA4vFQiaTob29XTwwXC6XKG51u93A+sMnGo0SCoXQarVotVoaGhpE1NdkMokiVrkAWGZwcHDTsQ8ePLjpd7fbTbFY3OSsyA8ljUaDJEm43W4xJq1WK8Z6rRx0SZJQq9U0NzfT3Nx8zfmQJImGhgZKpZJ4CDc1NYlUj5aWFiqVijBQr4XJZMJgMFBXVydSX+SovewIyMfcDo/Hs+0cyIXGG+egvb19037lbSVJwul0ivO22WzU19eLY2y8P7beK3v27Nl2PIAobC6XyxSLReHopVIpQqGQGOt2NDQ00LDBqNh6z9rtdkqlkrin5P0MDQ2J+YD1e7FarYr3yddm42tvFbJTojgB16ZaraJ6i9NL5PtlLRajWK1S96pa182qJi0tLWEymTCZTCJYkE6nMZvNwtnN5XJC0lYOmBSLRaxWK/F4nNnZWWD9Xna73UxMTJDP54WcbzAYFI6ATqdDr9eLfatUKuFEAPj9fgwGA/X19cJpqFQqRCIR7Ha7SKWT67ZudKVB/q50eb0UYzFWo9HtnQAFhXcJihOg8J5GkiS0Wi0Oh+Oqf5ORlWhUKhW5XE4Y2Bt5rYaQJElXRI5lGc+t+3+zc703nvPW85O16W+E7ZSDbnT7jf0NbmQObmZcbxSSJIl+EeVymXw+T7VaFfUdr3Wf17q+8rxsd75vxxwo3BokMxkkrRbvq8pTN4rsRKysrNDQ0IBGo6FcLjM3N4fP58Pr9WKxWMSqqtlsJpFIYDabsVqtJJNJurq6WFhY4Ny5cxgMBtGrY2VlhaamJgwGA8lkksnJSfr7+8nn89hsNux2u1gVkySJSCQinICZmRkaGhpIpVJiZaFYLDI+Pk5nZyeJREKkZMr9WG4UjUaDp76ecDZL7FUBAAWFdyuKE6CgcINotVqampr44z/+47d7KArvANRqNZ/85CcBrlsMrHBzbM1SVeb19VGpVpFeYwBBTh2U09Fkudq5uTlSqRSSJLG2tiYi8B0dHUSjUaanp4nH42g0GiKRCLC+GudyuYD1FYGLFy/icrloaWnB7/djMpmYm5ujWq2iVqvx+/0kk0lSqRQ9PT2YTCYSiQSlUgm32y2aCcpplYuLi5hMJoLBIMlkErvdzm233XbDToB8n8mrjK+3G72CwjsdZf1WQUFBQeEdR61Wo1wuv+lSpwrXJpFIiPScSqXC6uoqFy5cIJvN0tzcjMViYX5+nv7+fmA9tc7yaq1DtVplZmZGyCo3NjZiMBiIRqPodDr6+/vR6/XMzMyg0Wiw2+00NjZitVrRaDRotVoikQjpdBqv10tPTw/t7e2YzWa0Wi1Go1E0Z6xUKnR1dVEqlTAajXR0dDAyMoJpg4y0goLCZpSVAAUFBYXXiRKp/jly0eipU6dEEXo6naZUKiFJEgMDAyIifbXCUlhPQVlcXESSJDweD729vZvev3G1YH5+XjTyA2hra9tUuCq/V04tSyaTnD9/nqWlJXbs2CEaso2OjjI3N0epVGJgYIA9e/Zc0WPkWgWx+XyefD4vCravdo7bbEyNGplMDpVBh8aof8fcU9VqlUKhwLlz5/D7/UKG1+1243a7hcG9c+dOAoEA8/PztLa2snv3bg4fPkwoFGJkZET0RpFT3ubn54VwQE9Pj2hA2NnZiU6nIxaLMT8/T0NDA16vl+npaUKhEA0NDZjNZkwmE6lUilwuh9lspr6+XtT2XLp0iWq1itlsflMb5iko3Ooonw6F9yzJZJLx8XHGx8f57Gc/u0kj/42gVqtRKBT40Y9+RGdnJx0dHdTV1d3QtouLi8zMzPC+973vTZXPO378OBaLhaGhoevWM8j5uGq1mlqtxokTJ2hubhbNtd4I5ELg7eoJrkcmk+H48eNUq1XuuOMObDbb9Te6BnKe8vnz5/n1X//1TcXYbwXlclnMQTab5fHHH2dkZITW1tbXfW5vNpIkkUgkgPWC0Ww2i81mo1arsbCwQCqVQqVS0djYKIxDWa43Ho+LJmxra2tiDvR6PUtLS0LZJpfLkcvlaGxs5Mknn+T2229Hr9eLz104HKatrY10Ok06naZSqdDR0SHUoPx+P4uLi7hcLnbv3k2lUiEWi1GpVOjt7aWuro65uTlRlyIXngL09vYSj8dJJBIiTXBsbAxJksSxPvrRj95Q/r284hFYWiAe9NHd0Upfb8/NG6+12uafNwi5cWKxWMRgMOByufjIRz6CSqWiWCxSrVYZGRnB4XBwxx13iFx8ucC3XC7T1taGy+USBeRGo5Hdu3dTKBSEQpnH49mkauX1enE6nVitVlFroNVqRb2A0+nEbDYLkQCbzSaU2WR53Lq6uneMM6Wg8E5EcQIU3rNUKhWWl5d5+eWX+eQnP7mtpOPrpVqtcunSJWq1Gna7/YadgGQyyeLi4lWjjm8Ufr9f5Ohei2w2SzabRafTCWPO7/djt9ux2+1v6JiWl5eF6sfNUC6XCQaDzM/Ps2vXrtdtKFcqFVZWVnjxxRf5tV/7tbdcdScYDGI2m7HZbJTLZc6fP4/T6cTtdr+jnQBZGlKn07G2tkYymRQyt5FIhEQiQSwWEwZ7Op1GpVJhs9lIpVIEAgEh+5vL5YTqk81m49KlS/T29qJWq4nFYsTjcYrFIpcvXxY547lcjlKpJJq4xWIxstmsUG2qq6sjn8+TSqVIJpPk83kKhYJIKymVSsIwnZycJJVKiZ4iS0tLlEol1Gq1OA/4+efc6XSSyWQ2dfK+FrValVKxRDgYYOLiOYLLi1SLOSxm02u732IxyGZRVyrodTpsr7NXhCRJGI1GoU4l4/V6KRaLTExMoFaraWhoQK/X09vbu+l9G1W1ZJU1QKQCbd3nVuRGi8AmdTNZ5Wu7bbYeS0FB4eooToDCLcu6Bn7tCrnEarUqosny71uVU+QHfV1dHW63+5oPbHn/cpdYlUpFtVoVkVr5d41GI3T5ZeNdfoAaDAZKpZIoNJMNEvm91WpVqA3VajUcDgf9/f3iHCqVyqZOtdtJ/NVqtW27+Mq6/HIkX6PRiPlpb2/HarUiSRKVSkXIU248liRJLCwsEIlEcLvd9PX1oVKpaGtrw+l0otVqKZfLlMtlEfmTx6hSqcT5bWwMJF+vrekdpVKJ5557jg984AO0traKaybLX249dzmKLEcX77zzTi5dukSxWNw014CYm4365Ruvw8brplarcTqdNDQ0bLo/Nl4H+X0bt5fHKP9/6zWTlU6uttIhHyeXy3Hs2DHa29sZGRnBbDazc+dOce/KqTXyuW09/s1owL9Z1NfXc+HCBaLRKEajEbPZzNmzZ0XnbDnfe3V1FbVaTV1dnZBdXV1dxeVyUS6XiUQi1Go19u7dC4DRaCSbzYprvLa2htvtRq/XE41GWVlZQaVSMTw8zOXLl8lkMlitVpxOJ7Ozs+zbt49yuUyhUKBQKKBWq0kmkxiNRnK5HAsLC+RyOe677z6i0Sjj4+M0NjbS09ODTqcjnU5z7tw5EdmORqOicZzX6xVKUTeyklWtVslm0oxfOMvl82coFQrMmQxA7bUpPWWzUCxiUKvxOp3s6OhAdY374Frfe9e7fzQaDd3d3QAYDIbrFsdvd6xrHeNmWxi93fe7gsKtiOIEKNyy1Go1kskk8/PzhEIh7r33XgwGA0tLS0xMTAid/mg0SldXFx0dHWLb0dFRqtWqaOJ1LcLhMMFgkGKxiMPhoKenh8XFRS5fvozb7aa9vZ1AIMDevXtJpVIsLi6SSCRwOp3s2LEDWDdWZaULrVbL3r17kSSJVCpFOBxmdXUVh8NBX18f8Xgcv9/P6uqqMOpWVlaIRCJCFWO7xmAAzz77rDDMZYP1zjvvxOfzMT09jSRJ7Ny5k+XlZdEwq1qtks/nCQQCvPLKK9x9990kEgmy2SwtLS2YTCb+8i//Eo/Hw9DQEOVymd7eXubm5jCbzSLaevnyZR544AEuXbokOtrKETmfz8fS0pJQ8ohGo9x///2bxl4oFHjhhRd49NFHKRQK3H333SK6OzY2Rjwex+VyUV9fT11dHdVqlePHj6NSqa7Q319YWMDn86HT6di3bx+ZTIZnn32W9vZ2jEajiESPjIygVquJx+OEQiHi8TgOh4Pu7u5tlVSCwSCRSIR8Po/dbqevrw+AWCxGIBAgFApRX19PMBjE7XZTLpfJZrM0NjZSV1fH2NgYVquVxsbGq0YxK5UKf/d3f8fY2JiIlo6MjADrDsDMzAwrKyuYTCaGh4fFPb6yskIsFsPpdIrX305aWlp46aWXSKVSIq0D1qO74XCYaDQqHBq56V08HhfdnmWnFdadIp/Ph1qtZnBwkGeffZaVlRWR9qHX6zf1Z1CpVGIlSavVYjKZMJvNxONxAMbHx7Hb7ezcuZMf//jH9PX1iYLUHTt2cO+992K1Wrl48aJw2DQajdCuL5fLomGbHHyw2WxYrVaxqnAjqFRqLDY7IwfuQqVSsTQ7SV9fPwcO3PHaVgIiEchkUL3a8E+lUnEt03hr06+NwY4bacIlz0U+n0en0103hWnj8a5ntMupgVsDBrJUMyB6mCgoKLw2FHUghVuWmZkZjh8/LlQh/tt/+2+Mj48LxYg/+ZM/obm5mUgkwtmzZzl37hy5XI4/+IM/wGq1MjAwgN1uZ3l5+ZrHeeSRRygWi9RqNb7+9a/j9/tpamri+PHjHDlyhLm5OcbHx0mlUvz5n/854XCY5uZmLly4wNTUFJVKhbGxMdLpNI2NjXzta18TjW+OHDnCSy+9xI4dO/jbv/1bZmdnMRgMxONxfvazn5HP57lw4QJPPvkkmUwGl8vFd77zHfGw3ordbucHP/gBc3Nz9Pf3UywW+eM//mN0Oh0TExM899xzzM/PMzY2hsfj4dy5c5w/f55arUZjYyM/+clPOHnyJDabDZ1Ox5/92Z+JnOm9e/cyMjLC4OAger2eUCjE5OQkxWIRgCeeeIJz584xMjLC888/z/e+9z1KpRJzc3M8+uijeL1egsEgTz31FLt27bpi7Hq9nve9733U1dVx++23MzQ0RLVa5cUXX+TMmTMMDQ0xNTXFE088QSaT4f/+v/9vmpqaaGhoYGVlhaeeeoparcbp06eFdvnExASHDx/GZDIRDod5+umnmZiYoKOjg69+9avE43EuXLjAkSNHmJmZYc+ePYyPj/Piiy8KYxQQ+z18+DC5XI7Ozk7Gxsb42c9+xsTEBD/96U+5cOECQ0NDfOUrX6Gnp4fe3l78fj//9E//JJonjY6OCgfxaqjVau6++276+/sZGRnZ1Ljs1KlTmM1mKpUK3/72t4UT+a1vfYvl5WV6e3s5duwY8/Pzb7u8odlsZmhoiIMHD7Jv3z7MZrOIHJdKJcxmM319fVSrVUKhECaTCZfLJTTmGxoaaGtro6enB4/HI9KELl++jEajwWw2U61W8Xg8dHd3i67Sg4ODtLS0cPz4cQYGBhgcHKS1tZW6ujra2tqQJIldu3ZhsVhIJBL09PQA6/NusViIx+P86Ec/4tixYxgMBvbt20d9fT1LS0uMjo5SLBa56667xD2l1+vp6emhra2N+vp6IaN5o46AWq3G6a7jrvc/wC//6r/gtjsOCKfppn4sFqxmM1azGbPRiFGnu6YDAOvO8unTpxkfH+fMmTMcOXKEU6dOsbS0RKVSEepMsvEur+rJ6U7z8/OcPn2a48ePMzo6SqlUEoa7vPoo11osLCwwMTHBzMyM6PK9cWVt47HkLuc//OEP+epXv8rS0hKFQoF0Os34+DgPP/ww3/jGNxgfH2dycpKZmZlN45L3Ie+zXC5f8Zp8THm8CgrvRZSVAIVbloaGBhrMVQKBgHggZbNZmpqacDgc2Gw2LBYLNpuNWCxGOBymsbGRqakp7HY7ZrMZs9l83Zz2O++8k1KpxMrKCqVSSTTJgfWiua6uLlpbWzl79iw6nQ6z2UxDQwP33HMPdrtdFEDKTWvk9AOLxUJvby8Wi4WxsTGq1fVz8Xg8aDQakcbzzDPP0NbWRl1dHY2NjfzyL//yVVMN7HY7DodD5JIPDAzwn/7Tf+KLX/yiiNy1t7eLJj0ajUZE/GRJvubmZpxOJ9FolGQyKdQ85B857clsNouonlarFfs2mUwUCgXxgJc1xvV6vVAa2a45G6w7AnIzMK1WKwz3Xbt2sbKyQqFQQJIklpaWmJubw2aziWsodw5ubGzEbreLca2uriJJEhaLBZVKhdvtRqfTievwwgsvYLFY2Lt3L3q9nqGhIb75zW9ekXf/5JNPsmvXLurq6rBYLPT19fHwww/z2c9+llqthlarRafTkUwmsdlsGI1Guru7WVtb4/Dhw9xzzz3cdtttNDc3XzViKqcq6fV6sT853QrWVW8cDgfxeFwU346OjhKPx4nFYqKOIBgM0tjY+JbXMWw8D3nVCX4eqd+3bx/VapVcLifqAOrr6ymVSjgcDiqVCrt27UKSJBwOxxUyoUNDQ9jtdrq7u4VjbrfbRarOxvS5wcFBnE7npnu0qakJlUpFU1MTZrOZHTt2oFKpRKfa4eFhurq6qNVqojuuJEnEYjH8fj9Go5F9+/bh9XppaGgQ97bD4aBUKqHX63E4HLS0tNxkUzwwGIyYTTrMes1Nd/SlVlvfycYfrp9SI18Ludt1U1MT2WyWqakpJicnKRQKDAwMCOMZ1qPvly5dwuVyiSJoo9FIOp3m5MmT+Hw+PB4PHo+HpaUl8bkPh8Oiw3epVOL06dOoVCpcLhdGo5GxsTFcLhd33nmn2N/i4uKm65/JZIhEIpjNZrq6ukTwRavVEggE8Pv9DA8PEw6HRQdjeaWpo6NDXEeNRsOOHTuYmJjAbDbT2tpKT0+P0vVa4T2H4gQo3LLEYjFYC4oHby6XI5PJUC6XMRgM2Gw2sYRfrVaFksXa2hparVYY2lcrCJbTjeRceLPZjMViIZ1Ok81mqdVqGI1GoVZy8eJFUXtgMpkwGo0iSi4bq7IxUiwWSaVSxGIx0uk0TU1N2Gw2oaRSLpeFoRgOh+np6UGv12Mymejr69v0943odDqhsKHRaLBarYRCIZFWJKt7yOes0fzc4NjYPVlW2diYxy9JEvl8nlgshsPh2LREr1Kp0Gq1uFwukRMvG1AGgwGLxSK2GxkZ2TbVRjaA5WPlcjnC4TCRSASn04nRaKSnp0dE7zKZjEj10Ov1GI1GkVYlOyxqtZp8Pg+sp4XISiMbr8Pa2ho6nU6cs9FoZG1tjVwuh9FoFOMLhULs3r0brVYrahCCwSBqtRqz2UyxWCQSiXDo0CFMJhNqtZrm5maGhoZ47LHH6Ovro6OjQzgo10K+JqVSSWigA7hcLgwGg0hPKRQKJJNJdDodRqMRu93Ojh07xBjfbrYWndfV1YlILaxfc5vNdkVtyMaO0dux1bjduLIi30cej+eqaSfy53PrsWTZy60YjUaMRiPNzc10dnYKp3Kr9Kj8Xtn5v3HWx6DT6dFo3jw1sK3IgYZgMEgmkxG1QbFYjFgshsFgIBwOi/uwVqvhdDpZWVkRzrXZbBZpQZVKhXA4LJz+5eVlkcIo1+TIBno6nSaXyxGPxzEYDORyOWZmZti/fz9qtVqkh5lMJvF9In/e5RQt+buyWq2ysLCASqVibm6OSCSCRqMRDcXkAnBJkshkMqyurlKpVAgG158farVarFIpKLyXePufEgoKr5HJyUlOnDiBxWKhvr4ejUZDIpEgGo0Kw6lYLAplm0KhIKKrmUyGTCYjlEGSyeQVhkWtVmNtbY0XXniBUqlES0sLFouFTCbD2toa+XyeYrFIsVgUqiNyDri8/1QqRTab3fTeQqFAKpUiEokwOjrK5cuX6ezsFI5MNBolkUhQKBTIZrO0traSy+VIJpNks1mSyaSIgm5HqVQS5y2vfshFt/Lx5SLiYrFIPp8nk8ls+l3+KRQKwhgulUqEw2F8Pp+IIG49t43bya/b7XZqtRrj4+Po9Xr27t17TfUU2biV50HWDfd4PAwODoposMViIZVKkclkSKfTJJNJEZksFovCKZQNhVwuJ4pB5fGmUinq6urQarVEo1FyuRwrKys0NDSIYm45DaGlpUXcK+l0Gr/fv6k4Wi4ivf/++0WxsNPppLm5mWAwSDQaFQZMIpEQK1jbITdmisfjhMNhcR4bx5/P50mn0zQ0NGCz2XA4HDQ2NtLX10dLS8s7Vh99Y2G0/G/ZWN/6+7X2cbWfjce43j5u5FiwvuLX2toqehVsHOtWY19+/Z2EfHZb7zedTke1WmVlZQWr1SqCFrAeALBareI7Z21tjdXVVRKJhKirSaVS4nNeqVTQ6XTU19cLx06j0YhIfVNTEy6Xi1gsxsrKCvX19eh0OqLRKMFgkL6+PvG9IDsJlUqFXC5HPp+nWq2i0+lEI7LFxUWhTFRfX08ul6Onp0fUb8myo7IClewktLW1USqVmJycFCII8irH1eZNQeHdyjvzKaGgcAOoVCpK5TIrKyusrKxgt9uJx+NcunSJ2dlZFhcXWVpa2tTk5r777uNzn/uckFucmZlhaWmJ559/ns997nNXPLzlCFQgEBApLqdOncJutxMKhSgUCrS3t/OhD32IO+64g6NHj7K8vCweth6PhwsXLoh81Hw+z8LCAkePHuWuu+6iWq2SyWSYnp5GpVIxOjqKWq0mGAyytLTEyZMn+dznPsc3vvEN0XQpFovxwQ9+8KqGSzAYxGg0cvHiRU6ePMkf/uEfksvl8Pv9LC8v87Of/Yxf+qVfwu/34/f7iUQinDt3jo6ODlZWVjh58iTJZJKlpSUCgQDnz5+nv7+fY8eOiX1ns1nOnz8vCiUNBgM+n48jR47Q1dXF0tISKpWKiYkJ+vv7OXLkCCaTCYvFQnt7O5/+9KdpaWnZdvwej4e5uTlUKhWtra089NBDfOUrX0Gr1VKtVrFYLOzatYtPf/rTvPzyyyK1I5/PMzY2xsLCAktLSywtLXHmzBlgfTXl4sWLwnhWq9UsLCxw7NgxPvjBDzI/P8/o6CgajYbDhw/z2c9+FpPJxPHjx1leXubIkSN84Qtf4JlnnuH8+fOEQiHOnDnDv/7X/xqXy8Vzzz3HkSNHcDqdHD16lIceeojW1lYMBgNms5n77rtP9KHw+XycPHmSw4cP8zd/8zfbzkFLSwuxWIxyuYzX62VoaIjz589jMBhwOp0kk0nm5uY4evQoX/ziF5mbm2NpaUkYdb29vaIQV+H1c6sXn8pKVXJuPCCM9GKxyPz8PL/2a7/G4cOHcblcYnVzaWmJlpYWisUi6XSaTCZDLBbDarWKlD61Wi32e+zYMe666y7K5TKTk5NUq1XxPrk+oFKpiMh/Pp8nl8uJNEq32y0K9XO5HA0NDZw4cYJoNEpzczN+v5/R0VH27t3LM888I7aTFc7kz4BarRaR/mQyKQqd5XRCeYXS4/HQ1tYm0rfkuZGdEc1rUWhSULiFkGo3q8OloPA2czYF+87AyZEKw4Z1aUqj0bhJFhR+Lg26MaVlo7ynJElCKtBoNF7RLGyjLKQcKZLz4eWHzNZooByFrtVqV02pkccppy3I+5fTlrZKm8pRZTnaZjKZtk2XqNVqTExM8OSTT9Lf388HPvABke4j72+j8od8bPh5+oks77lxbBslNuU0Gvk8rnZe8jmnUin+9m//loceegi73S7Ubb71rW/xP//n/7zC6do4H3KKkTyv+XxeSEvKx5CNDzkNS3a25H/L11C+XlcbLyBUTuRo/Ubpz41SsPJ1MBqNqFQqHn74YdF1Vi7q/ou/+At+7dd+jR07dpDP5zl+/Dj33XefyBOXnaydO3deYWDKY5bPTTbWNl4r+Tw3jksuyjQajVfcH/Jn5sw+2LuNb3ApdIkH/+FBfvj5H7Kzfqd4vVytkS1VSRaqlLc8KRZmp3nskf+PP/1Pf4DT6XzHRb/faVSrVdKZDH/1N1/htns/SEt7J+ZXo9qwHnV2GtQYtRJa1U06HfJjPByGTAY2FIXXajVGJyaYXV2lYrHw6c98RtzfuVyOSCTCysoKe/fuZWxsTDiZCwsLOJ1OvF4vExMToiGXbGx3dnaKVBqVSkWhUGB8fByv1ytW/5aWlujo6BDpf7IUstPp5PTp07S0tIi/1dfXk81maWtro1gssrKyIjr/3n777aLJ28zMDIuLi4yMjJDJZDAYDEiShN/vp1gs0tfXt+kzdOHCBbE6IQeH6urq2Lt3L3Nzc7S0tNDe3i5WDarVKv/06KNI6TQ7W1vZsaX3wfrFksDpBJcLtrnvr/Z5UlB4p6GsBCjcsqhVanQ6lch/3mr4yAbXVuNEfmgBoiZgOwNG3s9GQ3qjwbZd0aWcC7vxuFv3vd3vsrzhxuNsLCzcbr/bceLECWZnZ3G73eRyORGF2y5FQTYuN7L1nDaOQT7+xnm52nnJ/9bpdAwMDAjjolwuE4vFhETqVuQxycfdeCzZ+dl4fWWDeOvr23Gt8crnLmQVN+zretehq6uLdDrNxYsXsVqtxONxdu7cydzcHCsrK2i1Wjwez6Y8/2sp92w3v9tdq63jkudCMcYVNiJJEu2NjawlElyam+PEiRPs3bsXnU6HXq+nvr4el8uFRqOhv78ftVqN1+ulra1N1E15vd5NsqEDAwObvjdlh7mzs1N8fmu1Gn19fVd8b8D6/Xr//fdvKuaW6xPk7dvb2/F6vUiShMlkQqPRCKWygYEBUSsgb9/a2io6TcvUajUaGhrQarVcunSJfD6P0+nkwIEDtLW10draKuqH5DSkY0ePEvX76amvp62p6S25RgoKbxeKE6BwS7M1D/hmtruZbW7GsLpZI+xGcpJvdL+7d++moaFBqP+8kWkMr2VfOp2OkZERqtWq6BB7rT4H1zrW1Ry1N+octzpeV2PrOIaGhkTRo06nE30AZHUktVqNy+XaVERtMpk29TW42nhudvxvbdqKRLVa4cgrR7FYzNdsSqXAq0pZBVbD4ZtuhPV6sZrNdDQ1kSsWmTh3jqDfj9VuR3ONpnIbi6Y3/nu736+G/L7t3n8j+7jae27mdfk1v99PMpFAAqanpgj4/ZvGV6lUSMRixIJBOurq6GpuxrTBoVBQeDeiOAEKCu8SJEkSTaXeKWi1Wjo7O4Gfp7nc6vnVW5FrG270/GT1KLmZ1a2K3qCnvqmZuSUfOp0WSSmjvA41yuUKBrMVg8H42joCv0a0Wi0tXi8atZpjFy6wMjWFwWxeH8O77PN4LYyvnuvq0hKrG//wqhOQz2RosNkY6uig4dW6CAWFdzOKE6CgoPCW8G4z/rfybj+/rbg8dXz4Fz9JOpl8u4dy6yBJ7NJqqW9s3lYm983EaDDQ0dREi9dLIpUimkxS2lAo/F5GkiS0Gg0epxOr2XzNFRIFhXcTihOgoKCgoHDT6HR6GptaQEmbvqXQaDS4nU7c1+haraCg8N5AqSBTeE8QiUR45pln+PznP08ul3tPRL+CwSB/+Zd/yd///d+TSCTesP1ms1mef/55fud3fofFxcU3bL/X4/z58/z5n/85X/7yl9/wfReLRcbGxvi93/s9jh49KhqM3Sp8+9vf5sUXXxQKQm8F19LqV35u7Oet5u0+31vpR0HhvYDiBCi8J7BYLELGUJbKfLdjNBoZHBxkdXX1qs1wXgs6nY7BwUGi0egbut/r0dbWJhq9vdGo1WpR0JvJZG65+6OhoUF0a1a4dXndpqdivCooKNwESjqQwi1NoVAgkUhQq9WwWq1CgaZYLIomMU6nE71ej9lsxmg0UqvVyGQyxONxtFotbrebRCJBKpWisbFRdGKV1XWKxSI2mw21Wi06C9fV1ZHP50Vn3/r6eiKRCFarFZPJhFqtplQqEY1GUavVaLVaDAYDRqPxinMoFovE4/FN5yA3FstkMuj1eqxW66ZmYS0tLUSjUQwGAyaTaZMsnoxWq6WxsZFCoUAsFhMdPWXZUFhfIcnn8+spAq826tkYBZMbDEWjUWA9lUCn0+H1eoWhLHfQlSSJhoYG4vE4hUIBtVqN0bheABmNRoXEpay97/V6WVtbE4WyRqORUChErVbD4XBgMBhQqVSUy2XC4TAGg+GK8W1E7gsQDodFUzGz2Sz0yuXmWbLc6MacbFn60+12UyqVWFtbE03QbDYbtVpNdCeWu5bqdDrhYJnNZnQ6HaVSiVQqhdfrFR2KN45l49ir1SrJZFJoncuSi9FoVOis5/N5arUadrsdvV5POp0mkUigUqlwOBxkMhmMRiM6nW5bydrXiySBWiWhU0tI1VvLMbrVUEkSatXrjMxptaDTKc7Am41KtT7XCgq3OIoToHDLksvnCCci+Hw+9Ho9RqORpqYmKpUKoVBIRHTL5TLOLfmvyWSSM2fOYLFYOHDgAKFQiBMnTvCxj32MRCLB7OysMKKDwSDNzc2YTCYikQirq6vce++9pNNpJiYm8Pv93HvvvSwuLqLT6ejo6MBisRAOhwmFQkJr2+PxXOEEyM165HMwGAy0tLRQKpVYWVmhWCxSKBQYGhqiVqvh8/k4fvw4H/vYx/D5fEiShNfrFQo825HP5wmHwySTSXQ6HZVKBZfLRTQaZXFxUTgaxWLxii6+1WqVUChEKBRCkiRhsMsSn7VaDb/fz+LiIhaLBZvNxtzcHKVSSTgBDQ0NnD17FqfTiUajoVAoEI1G+dCHPsTY2BhWq5W6ujpMJhOzs7PinOrq6jAajQSDQUKhEHa7nUwmIxqRbUV2Fvx+P9VqFZvNhtvtxm63c/78eaxWK2azGbvdTl1dHR6PZ9v9pFIp0SHabrezY8cOqtUqCwsLZDIZoVfe2dnJ8vIyi4uL9Pb20tDQQCKRYHp6mn379rG6ukomk0GS1ruT7tq16woHKxKJcP78eVpbW2lsbESr1XLu3Dl27dpFKpUim80KJ2BgYIBEIsG5c+dQqVQMDw+LZkyBQEA0FNvaT+D1oJIkdCqoaVWUFSfgTUUtSWjVrzEVRd7GYFj/91u4QveeRJLAaFScLYVbHmXtWOGWZWxsjGeffZZCocDu3bv5x3/8RyYmJjh+/Djf//732bt3L16vl+9+97ucOXNm07ZyF8zR0VEqlQqdnZ08+uijhMNhzGYz6XSaL3/5y7S2thIIBPjBD37A0aNHaWlp4YknnsDn8wlD//nnn2dsbIwDBw7wzW9+kzNnzrC8vMw///M/s3PnTvr7+4lEIgSDwSvO4dSpUzzzzDPk83mGh4f5p3/6JxYWFpicnOTHP/4xe/bs4R/+4R8YHx8XuarPPvssFy9eZNeuXRw7dozHH3/8qnNUq9WYn5+ntbWVhoYGlpeX+Zu/+RsAvvKVrxCNRuns7KSuro6//uu/vsLALhQKPPLII3R0dDA4OIhOp2NmZkb8vVwuMz8/z8zMDPX19Rw5coTR0VE8Hg/VapXHHnsMl8vF0aNHCQQConPvj3/8YwwGA0tLSwCEQiG++tWv4nK5GBkZ4bnnnuOFF15gcXGRP/uzP2PPnj3U1dVRqVS2TQeSVwD+5E/+hN7eXnbv3s2FCxf41re+BYDdbucb3/gGi4uLFAoFfD7ftvNVqVQ4fvw4XV1dXL58meeff55UKsXq6iovv/wyzc3NzM7O8uUvfxlJkujs7OS73/0us7OzWK1W1Go1Pp+PM2fOcO7cOSqVCi0tLXzta1+7Ig1NpVLR1tbGd7/7XYLBIOZXJRvHxsYoFoucOXOGWq2G0WjkP/7H/wisp/2Mj49z+PBhlpaWmJqawuPxcO7cOSYmJiiVSmKlZWPH5NeKBGjVEmadCrtBrfy8iT8WvQqtSuJmmwVvwmAAm229k63y8+b9OJ3KiovCuwLFCVC4Zbl44SKjo6PcddddSJLEH/7hHxKPx1laWqKtrQ1Y13A/d+7cFQWsarVapAfJkVqLxSIi3Y2NjXR2dmKxWPB6vTQ0NIi0ovr6esLhMOVyGZPJRH19PXv27BGpK9VqFafTSXd3Nw888AB/8id/gslkoqen54pzOHXqFGfOnOHuu+9GpVLxB3/wB+zYsYPBwUF+8Rd/kZ/+9KcYDAYCgQDxeBydTofL5WLPnj0YDAYqlco1i0ElSaKrqwu9Xk9jYyMajYbnn3+eWq3GU089xdLSEisrK8zNzWG326/YXqvVcvDgQT73uc/xu7/7u1y4cIHbb78dWI+Y/9mf/RmJRIJPf/rTNDY28sgjj6BSqVhaWmJ1dZWmpiYikQhf+MIXmJ+f5+LFi6RSKUqlEpVKhe7ubpqbm0kmkzz99NOk02nGxsao1WqEQiHOnj1LT0+PiL7LaTFbSSaTLCwssLa2JtJjNBoNmUyGsbEx6urqaGtro6+vj+HhYYaHh7edL7VazR133IHBYMBsNqPVakWa2L59+5ifn2d6elqk6chOS6lU4uLFi6ysrPAv/+W/5Ic//CGxWIxEIsHU1BRtbW1EIpErrpVGo+GLX/wioVCIl156Scxld3c3e/bsoVgscu7cOXK5HNVqdVPa0vDwMJ///OdFepJer2dtbY1HHnmEr3zlK/zjP/4j8/PzV703FBQUFBTe2yjpQAq3LBqNBkmjoVwuo1arKRaLIs9bzlGXJIlCobBtAatWq92kBJHJZKhUKkiShEqlQq/Xi79pNBqRcy1J0qaIufxe+HnDKLVajcfj4eGHH2ZhYYGzZ8+SyWR43/ved8UYNFvOIZ1Oc+HCBc6fP89DDz0k0j/S6bQ4L7le4UaivfI5SJIk8uElScJsNosIf6VSoa2tbdvCUr1ez5//+Z+zurqK3+/nhz/8IV/4whcwm8188pOfJBKJ8Pjjj/Prv/7r2O12Ghsb6e3txWKxkM/nMRgMdHR0EI/HqVarNDQ0cOjQIb773e8yPDyM1WpFo9GIlBe1Wk19fT2rq6ssLi4SDoc3ncfV7gW9Xi9WCSRJIpvNkslkMJvNlEolTCYTWq32usWz8nWX51dWQ/L7/dx11120tbWxtLREKBSioaGBj370o5w4cYJXXnmFvXv3otFosNlsNDQ00NnZSXNzM319fWLet16XO+64gzNnzuDz+WhsbGT37t289NJLBINBent7GRgYQKvVEgqFqK+vF+cr157I+5IkCZPJxN69eymVShiNRlwu1zXP9UZR4p23EEp0WkFB4QZRVgIUbll6envo7e3l6NGj+P1+5ufn8Xq9NDU1USgUWFxc5OzZs+zevRuv10s0GmVtbY2pqSnK5TINDQ2YTCbm5uaYnp4mnU6zsrLCzMwMs7OzrK2tsba2xsLCAouLi/j9ftbW1sR7QqEQ0WiUUCjE9PQ0fr+fSCRCIBBgdnaWiYkJ9Ho9dXV1OJ3ObYt3d+zYQX9/P6+88oo4h3g8TjweJxAIkM1m0Wq1+P1+VlZWxJimpqbw+XyEw2FWV1dZWVm56jzJueeTk5NkMhnuu+8+AD70oQ+RSqVYWFgglUpt6yhVKhUuXryIWq3G5XLhdrsxGAwsLi6STCaxWq0Ui0UmJiZ45plnuOeee0QOfzweJ5VKodfr0ev1NDU1YbfbMZvN3H777Zw5cwar1SpqOe677z7Onz9PLBYT+fjt7e2oVCqxWuH3+wmFQqysrGxyfnQ6HW63mx07djA9Pc3U1BS1Wo2WlhacTieTk5MEg0HC4TCpVOqK8yyXy6TTaRYXF5mfnyccDhMOh8W1jkQiRKNRUYSu0WiYmJgAoLOzUxQOy0b6fffdR7FYxO/3E4/HSSQS6HS6bR0Zm82Gx+PBZDJRKBTQ6/VEo1Gi0aiYC7PZzPj4OKFQiFgsht/vZ3JyklqtRiwWIxKJsLKyQjgcpr29na6uLlpaWm75rsQKCgoKCm8eykqAwi1LX28fNpuKubk5GhsbyWaz9Pb2iihwIpEQRbxut5tIJEJra6sw5Lq7u1lbWyOZTJLL5RgYGKBarZJOp6nVakIpSC5w1Wg0FItFPB6PUCCS04Fk5Zi2tjYRkc7n88RiMex2O4ODg9tGZXft2oXVamV2dpampiZyuRx6vR6Px0N7ezvpdJrW1tZNBaZtbW2kUimsVqvIvd8uT16tVmOxWOjq6qJcLpNKpTCZTDzwwAMAfOxjH2Nubk4o9BSLxSv2UavVKBQKxONxHA4H7e3tNDQ0kEwm6erqEoW/8Xgcn8/HJz7xCX72s5+RyWRE/r9cqDo8PEylUqG+vp62tjYcDgc2mw2dTkdTUxMPPPAAU1NTuFwuyuUydXV1uN1u+vv7SSaTlEolLBYLwBXnK6s83X///cTjcdRqtYjE2+12isUiLpcLSZIolUrbniew6TpbrVby+TzlchmPx0O5XBZF5v39/RQKBaHo1NTUhMFgoLGxEYC77rqLl19+mVwuJ5SnNBrNtk6AJEkMDg6SSCSw2WwAeDweMXcqlYqRkRHy+Tz5fB6Px4NWqxWKTfl8nvr6esxms3CeFBQUFBQUrodUu9UEsRXe85xNwb4zcGYf7LUiUjY2pltUq1VyuZzI+b9aKols2Ol0OiELKhterwc5TadYLKLRaK4pbSm/f7tzKBQKm1YQXmsTG1myc7txlEolyuXytvKl8tdDsVhEpVKhVqtvaG7kZlsbxy7va2Ma09ZrU6vVhCMkp7rIc2M0GikUClQqFTFPW89FVoOS8+ffKKWcWq1GpVKhVquhUqk2zcHG9LCtc1MqlUQq0rXYbvtKpUK1WhWqTBuPd7Ns/cxs5VLoEg/+w4P88PM/ZGf9zpvev4KCws9RPk8KtwrKSoDCu4KtRpacH309ZMMYEDrybxSSJG1bxHo1tjuH7VKIXgsbNfG3IkuYvtbtt+NGzvtqUfHtnBF5bm7EIXojJTI3HmujIb7d3682lhsZz3bbb3U2FBQUFBQU3kgUJ0DhludqxuRr3faN4Gb3+3rO4bXu//X+7WaPt11R7I1sezNjeLOu5/X2fbW/vZ778M08l9dDNBoV9SjlchmtVisKrr1eL729vdfdRzgcFj0XtvameCtYXFwkFAqRy+Xwer309fWhUqnesjkvlUrCyXurr3OtVmN1dZVEIoHL5UKj0bCyskJLSwtWq1WonMViMY4cOcL73vc+IX8L6ytUly9f5vz58+zdu5euri4MBgO1Wo3JyUni8TiNjY1C9cvn89Hb2yua4b2ecVerVbFCduLECZGe19DQQENDwzVXfRUUFK5EcQIUFBQUFG6YQqFAMBjk3LlzTE1Ncffdd4vC6vr6elQqFc3NzaRSKeLxOEajEafTidlsFvuQi+1lxaZIJILL5UKlUlEoFMhmsxgMBjweD+l0mlQqhSRJojN3Pp9Hr9djt9vRarX4fD7RrbtarRIOhzGZTHi9XmKxGNlsFo1GQ3NzM2q1mgsXLjA1NUUqlcJsNnPbbbexa9cu0um0qAfxeDwsLy+L9DOj0Ug+n8disZDNZkWql9wYr1wui87Qcr8Ii8WCyWQin8+TzWapVCrY7Xb++Z//mcHBQQYGBmhsbHxLDddarcb09DQTExPs2bMHk8nEs88+y0c/+lHS6TTZbBZJksjlcrz88svs2LFDdOHWaDSYzWa+//3vi2aKNpsNu91OPB5ndnaWYDCISqWirq6OpaUlfvrTn9LQ0IBWqyWXyxGNRsW9ks/n0Wq16PV6EokEBoOBSCSC2WzGZDKJIvxCoUA6nWZqaorZ2VkOHTrE97//fdrb2ymVStjtdlHrVK1Wcblc1Go14vE4Go0Go9FIIpHAaDRis9mQJAmfz4fD4UCr1VIqlchms9TV1Ym/Kyi8F1CcAAUFBQWFG0av14ueGktLS3i9XhYXF/H5fIRCIQBGRkaYnp4Wxc7t7e0MDw+LSG00GmV5eRmDwYBOp2NlZYW6ujpR1F8oFCiVSuzbt4+1tTX8fj+lUok9e/Zw/vx5qtUqVqsVp9OJ0WhkcnISk8mEx+NBrVazsLCA0+mkt7dXqDuZTCYOHjxIc3MzwWBQFFaXy2WOHj1KqVQinU6Tz+cxm80MDAxw6tQpJEnC6XRitVqJx+P09vaytLREIpEQReayUpbJZBL9RMbGxkThvOwQlctlOjo6eOGFFwBED5K32uiMRCKiUaLFYuHUqVPs2bOHSCQiHDCVSsXy8jI+nw+fz0epVMJsNlNXV8e5c+eEEle1WqWjo4MzZ86QzWYJh8Nks1nK5bLokyHLNK+trXH+/HkikQjd3d1Eo1FMJhN2u52VlRV0Oh2pVAqDwSD6fbhcLtbW1kin04yOjnL58mV6enqYmJjA6/USCoVYXl6mt7eXSCRCLpejp6eHYrHI9PQ0TU1NwLpstMPhwOVyUSwWmZmZwWazCVWuRCLBPffcg9VqVZwAhfcMihOg8K6jUCiQy+WEOs7GQttyuUwkEsHr9V4zx/tmqFarFItFarXapiXvWq1GqVQiHo+LJlcb6/DlaJtcdLtxrG818lJ7NBrFarWi1Wo3zU+1WhXSmvLD+b3IxuLm7f5WqVSIRqMiQv1uzOl3uVz09fWRSCQ4ffo0d911F5lMhunpaXw+H8lkkmKxyHPPPYfBYMBut9Pf38/Q0JCYt3K5TLFYJJ/P88orrxAKhdDpdOI+tFgsTE5OArC6usrMzAyJRIJyucxTTz2F1+sVKwt6vZ5gMEixWKS1tRWr1cr8/DxOp5NIJMKZM2dYXV2lrq4Oh8NBU1MTtVoNt9tNY2MjjY2NfPWrXxWN5uSo8+rqKsePHxeGoyzVq1arOXHiBCsrK0iShMfj4dSpU+zfv59MJoPRaMRqtTI1NUWlUqGrq4tMJkM8HkeSJNFETi5yfzuoVqssLy8L8QSfz8fKygrPPPMMarUah8MhIvHLy8u89NJLVCoVPB4PTqeTbDaLXq/n0qVLRCIRJEniiSee4LbbbhMF9PJxZOnhUqmE3+/n5ZdfFjK3fr9f9LOQ5Xvb29uFYpvb7aavr4+ZmRkhFZzL5YTz5XA4KBQKJJNJQqEQJ06cEPK+qVSK06dP88EPfpCFhQXRu8VkMrGyskI8HhfqXuVymVwux/79+193l20FhVuJd98TSuE9z+joKH/1V3/FP/7jP25q6pXP5xkfH+czn/kMsVjsDTteJpPhxIkTHD16lFwuJ16vVCpMTk7yr/7Vv+LChQvAzyU3ZY4ePcrDDz/Mo48++oaN57VQqVQIh8P823/7bzl16hTJZHLT3zOZDA8//DB/93d/J4yz9yJyp+Or/W1lZYV/+2//LaOjo9vKtr5bUalUtLW1MTQ0RFtbGxMTEyJKLCs9FYtFlpeXmZubEwZ9qVQSPSrkPg56vZ77778fu91OIBAgGo0Kyd9QKITJZGL37t00NTWxsrLCuXPnqFQq6HQ6rFYrVquVSqVCLpdjenqaYDAootiysy5TqVRIJpPodDqWlpbo6Ohg79691Go1XnnlFVpbW/n0pz/Nfffdh9PpJJPJUCwWyeVylMtl3G63iB6///3vx2AwMD8/z4ULFyiVSjgcDvL5PDabjb6+PgYHB0VaU2dnJ/X19W+b419fX8/w8DAjIyM4nU4CgQBLS0tUq1W0Wq0w3mW53p07d9LX18fa2hqdnZ0MDw8LWdpisUg2m930fbsR2UGWHaxisSgCDisrKzz//PN0dnYSiUT45Cc/SXt7O+FwmFAoJII6VquV+vp6mpqaaGtrI51OMzExQWNjIx/60IdobW0ln8+TyWSIRCIUCgWamprE/mSnM51Oc+7cOXFP1Go17HY7d911F0NDQ+9Kx11B4WooKwEK7zo6Ojo4dOgQo6Ojmx74RqORrq4uGhsb39Avep1OR3t7O5VKRXQVhnXloaGhIerq6sTriUSCn/zkJ/zqr/4qarWawcFBarUa58+ff8PG81qQo2R79uxBo9Fc8TC3WCwMDQ2RSqW21dl/r/Diiy/i8XjYu3fvFX+TexXIRuTVDKJ3AyqVCqPRiMfjEf+2Wq3odDo0Gg11dXUi/UWr1eLxeETE/tFHHyUcDtPU1MTtt9/OU089JfK2AdbW1vj6178ucr3lHHKj0YjJZMLtdotjtbe34/F4OHPmDI2NjSIfX6fTEY1Gue2220in04TDYWF8ywpUFy9eFJH+z3/+80xOTjI1NUUsFsNoNPLxj3+cxx57DL/fT29vLw6Hg7W1NX7wgx/g9XpxOp04HA6MRiN1dXWi9sFkMmGz2Th69Cg6nY7W1lbx+ZfH5vF4mJ+fp66ujrq6ujdsVfJGkb8L5Y7dExMTDA4OMj09TalUQqvV0tzcLHpujI2NUa1W6enpYf/+/YyPj2O322ltbWV2dpbvfve7ZDIZLBYLGo1GpBPpdDoWFxf5sz/7M7q7u8nlcgQCAaxWKxaLhd7eXiGl/PGPfxyfz8dXvvIV1Go1AwMDNDU18dxzz5HL5WhqasJmsxEMBjl//jw7duzgoYceoqenh1KpxIULFwiFQkKVTZ5zue8HIJov3nfffYyNjWG1WjGbzVgsljdcHU5B4VZAcQIUblnWU1QyBAIBEokEe/bsQavVIkmSKDCcnp5GrVaLrr1b1TgSiQSBQIBMJkNnZyc2m01IOsrRq7GxMUqlEjqdDr1eTzKZpL+/H5/PR6VSQaVSEQ6HcbvdwulIJBIsLi5iNBqFMRgIBDhz5gxPPPGEyJGWdecrlQozMzNkMhk6OjrEMvfk5CQajQa9Xo/b7cbhcFx1PuTOwKurq2i1WpxOJ263m0AgwPT0NI2NjRgMBsLhMN3d3dhsNlQqFbFYjHA4TLFYpFwub7scLs+p3Bn3/Pnz2O12Ghsb0ev1ZLNZlpeXSafTtLe3o9friUQiLC4u0t/fTzAYxGKx4PF4cDgcVKtVlpaWhOFgt9uxWq2iI7PVasXtdm/bYC2bzRIKhchkMuI9kiSJFI5qtUpXVxeFQoFQKITP52PPnj2io7Tb7UaSJE6fPk1TUxOVSoVisYhOp6Ovr09cP7kA1Wg00tHRwfLyMk899RQejweAtrY2sS95jmQp0WQyydzcHHa7XXQEhvVc7LW1NQqFAg6Hg9bW1m17Hcj3gt1ux+PxYDabiUQiYh5lA7RWq3H58mVg3Qkxm800Nzdf/8PzOpGdwi9+8YsYjUb27t1LLpfb1Nfg4MGDxONxLBYL9fX1qNVqdu7cyRe+8AVRfFtfX09vb69ovHbx4kUuX77MyMgIQ0NDNDU1ifQZjUaDy+Uil8vhcrmoVqvcfvvt2Gw28X+52drw8DB6vZ6Wlhb27NlDOp1Gq9UKFaBDhw4xODhIPp/HbrfT1tZGf38/q6urFAoFrFYrjY2NeL1earWaKGweHBxErVaLAmSDwYDb7eZLX/oSHR0dorhZr9ezf/9+rFarKDSVP1dqtZp9+/ahUqlwOp1v+UqAJEns2bOHjo4O3G43Go2Gz3/+8zQ0NIgGhUajEYfDwR133EEwGKSrq4vu7m4OHDhAa2srIyMj1NfX09XVRSKRECuHzc3NVCoVXC4XBoOB/v5+/vAP/1AUcUuSxP333y/m8Pz586KDeH19PV/60pdYXV0VjpRer2dgYEA0/6tWq6L+YmhoiK6uLpG2NDw8zP/z//w/aDQacaxKpYLb7eZTn/oUkUgEg8EgvveWlpZEmpdGo7lqR28FhXczihOgcMsSDofRZoLAumF4/PhxduzYAawv86+trWGxWAgEAsRiMZxO5yYDKRAIEAgEiMfjdHR08PLLL3Po0CHcbrd4jyRJhMNhIpGIiHw9++yz9PX1EQgEhINRLpcZGxujvb2dmZkZ1tbWqK+vx2AwiHQHg8GAxWIhlUoJaT5Jksjn8/h8PgwGAydPnkSj0ZDNZkmlUuTzeRobG/H5fCJX91ocPXqUrq4ufD4fY2NjfPSjH0Wn03HixAn6+vro7e1Fp9Px5JNP8qlPfYqlpSUR7ZO7Kl8rTzmZTCJJEm1tbTzzzDN84hOfQKVS4ff7CYVCdHd3c+zYMXbu3Ek6neby5cuk02kGBgY4efIkPT09DA8Pb4rmyfm6AwMDvPzyy+zevZvZ2VlSqRQWi2VT/UEsFmNlZYXFxUWGh4c5efIkt99+O4VCgdnZWXp7ezlx4oQo5kyn07z00kvU1dVhNpu5dOkSTqeT4eFhMpkMTz75JHfffTfxeJxkMonH48FgMHD8+HHRhTcajRKLxWhubqZcLqNWq0WNx9WIx+M0NTUJxZRdu3ZhNps5deoUdrsdg8HAmTNnqK+v32R8FItFFhcXmZ+fp6WlBb/fz/LyMgcPHuTw4cPs3LlTFJzeeeedrKyskM1mcbvdpNNpksnkW+IEaDQaYRjL987GBnCwvlog1+bIkWGbzSZWv2TDy2q1UiqVRBqK3W5n586ddHd3i+7Z5XJZSGrWarVNjeR0Oh02m01IldZqNVwuFzqdDoPBgMPhoFQqUavVRMfpxsZG0flbjhpbrVbhoMqv7dixg1qtJgxFuRuzvJIoSRIajQaTyYROp8NsNoumek6nc1OfiI31JA0NDVQqles2EXyzkAMK8vF7enrQ6XQifUl2ZOTPwz333ENbWxsDAwOYzWahquN0Oqmvr6dYLKJWq8X8yw0SHQ6HyLOXmzDKQRFJksR3tLxS1NnZidfrRavVis+FvLogR/blNCVA3FewXh8wMjJyRX8NecWovr5+k7HvcDg21XApDoDCexEl+U3hlkXO/SyXy2g0Gl544QVWV1eBn3cMbmhoQK/XMzExwcmTJzdtPzk5yaVLl4Txd+LECVKp1KaHtWzArK2tEQ6H0el0nDx5UhjvKpUKh8OB2WxmYmKCTCbD2bNnGR0dpbGxkbq6OvL5PJVKBYfDQUdHByaTiZ6eHkwmEyqVSuTH1tXVEQgE8Pv9BINBAoEAKysrQjLxRtJwZIM6EAhw/PhxcrkcDoeDmZkZgsEgGo2G+vp6nnrqKUqlEidPnmRychKj0Uhzc/M183oBkXPb1tbGyy+/TCqVYnFxkdHRUWKxmFAOkYvuotEos7OztLa2cvnyZebm5shkMpw7d45gMCgcKL/fz/z8PCdOnMDpdBIKhVhZWbkir355eZnLly+ztrZGS0uLiKqnUin8fj96vZ7FxUWmp6dFfcbY2Bi5XI6Wlhampqa4ePEiKpUKs9nMsWPH0Gq1VCoVfD4fgUAAn88nUsm8Xi8ATz/9NHa7HafTSVNTE52dnddUEZEjkJIkMTMzw8WLF1laWuLMmTOkUil0Oh0zMzOb7jd5fl955RXW1tbEysilS5eoVqvMzc1hMpmYnp7m/PnzpNNpcY/IqjbyakggEBB50W8GKpVKrDzIaR96vV6o/chpQbJijmy812o1TCYTFosFg8EgGuLJEfO+vj4OHTpEZ2cnRqMRtVotUo3MZrNICdLr9eJHkiRsNhtGo1EYj3a7XXQLl9WMNqZ7yAa7xWIRxqXcYFBONZIkSbxHNhbNZrMYh9FoxGAwiHnQarUYjUb0er1wGMxmsxinwWDAYDCIf5vNZjEHbyWSJKHVasXYZSdGNpBtNpuYF7PZTHt7O3feeScDAwOiX4As7Sqfs81mw2w2i/tAdtLUarWQEJXlUmUZVfl7cN++fezevVt0+JavpdzI0eFwiGug1+vFNZAdUHkFTnYy5ePIP/L9KSsBbXRQ5Oul1+vfs2IHCu9tFCdA4ZalpaVFyMKVSiWWlpbIZrMictfe3o4kSQwNDRGJRHjllVc2bX/u3DnGx8fRaDRMTEyIdKGt6TAHDx6kUqmwuLhIPp/HYDAQj8dxuVw0NjbidrtFhDCRSBAOh0mn0yJaLEfN5AfVxtQa2Sjq7OwUKT9yVM3pdPK///f/5i/+4i9EKsTVkPf1wQ9+kNXVVYLB9RWSSCQi8pBbW1vp6OhAq9WSz+cBOHHiBGtrawwMDCBJEo2NjZvqGrbicrlEMyh5niYnJzl9+rRwtmR1IY1Gg8fjoaenZ9O8xmIxnn76afbu3SuKQPft28epU6cwGAxMT08Lo0qWcZS5dOkSk5OT7N69G4AvfvGLtLe309XVxd13383Zs2fRarWEQiFSqZQwInfu3InZbBaqNHIqRltbmzAQTSYTa2trvPzyyyLKbbPZaG1t5emnnxYrJPI1rFarV1USaW1tFTnzTU1NPPHEExw+fFioU62urtLY2EgoFNq08pLNZnn66afR6/UsLS2JgkiAj3zkI0xNTRGPx6lUKqRSKXp6evg//+f/8Jd/+Zcix/nJJ5/k+9//Pi+99JK4D94q5Pkol8tC5lOep2KxuK2DKb9eq9Ww2Ww0NTWJe/Bq8yvf73LtxdaC32shv3/j+Mrl8lVT4bZum8/nRercu7nuA9YdBqvVKvLxr+WwVCoVseIip1LKv18Nr9dLfX29WKEBxL1yM9dUQUHhtaGkAyncsrz44oto5i/wiU98ArfbzaOPPioUJzZSq9VEtGojcv5/T0+PkDCUI4sbkaP9a2trjI2N8Xu/93s8+uij7N+/f1MDJFhfnpYVMDYefyPy/mdmZigUCiJSJVOtVkmn09hsNp599lnm5ub4xje+QSqV4hd+4Re2nYtyuczi4iIPP/wwv/M7vyMi9olEgkwmIxr9yKkJG5fkK5UK+XxeSDRe68ErOxQb92E2m2loaKCnp4ehoSGGhobQarXMzs6KSKw8D3JagJyqIz/wAZH2sXfvXg4ePEixWLxi9UNu2iSvEMiFfi+88AJPP/00/+N//A9KpRLRaFRIVQJizFvPT6fTbUodkJVClpaWhIRjPp8XkU352uVyOWZmZti1a9dV50pGbpxUV1dHrVZjYGCAPXv2iPqKjUWhcnpZV1cX/f39QnZyZmaGr3zlK/yX//JfWFlZIRKJEI1GyeVy/OAHPyAYDPL888/z+OOP89BDD1Eul0Wh6luN3GTq0qVLQlXG6/Vy+vRp9uzZQ0tLizDy8/k8Tz75JIODg0IaFODIkSN86lOf2vbzCOsywLFYjHg8jslk4tSpU7z//e+/ofNdXl7mueeeE9K9/f394nPb19dHfX39ttsVCgUWFhZ46qmnaG9vp6GhgebmZtrb21/HbL07KBaLjI6OMjMzw913341er8fv9zM6OspHPvIR6urqxHfPxm0ee+wxnE4n99xzj0h1jMViHD58mHw+zyc+8QklV19B4U1EcQIUbl2k9Qezz+djbm4OWM/Flgsmc7kcs7OzXLp0iaamJvbs2SOa3xw7dox9+/YRCoX46U9/SqlUIhwOs2/fviucBUmS2Lt3L2azmVQqxc6dO3n44Yf58Ic/LDqSHj58mImJCYrFInv27CEQCHD48GFMJhNzc3OcPXtW1AFYLBaOHDlCV1cXS0tLnDhxgqmpKRYWFkShnMfjwe12MzMzQ09PD3fccQddXV1MTEzwF3/xF/zRH/0RDQ0Nmx6scuRtYWGBWCxGoVDgyJEjWCwW/H6/2HepVBIpMw8++CDRaJQnn3ySgYEBpqam0Ol0QoVFJp1OMz09zfz8PKurq3i9Xvx+PydPnqS/vx+Xy8XTTz9NtVplbW2Nrq6u/z97bx4e2VXe+X9q31WbSlJp36Vudas3293tXrxjGxsMGAIJECaEDENIIPAwQ36ThIQhMyHDLBkyCYQhyWCCMWAH4512t9u9r1K3Wvu+S7WpSrXvVb8/eu5Baqk3Y4Mb7ud5+rEl3XvuuefcW/W+57zv+8Xj8dDd3c3i4iK1tbXMzc2hVCqpr6/nt3/7t3nyyScxGAxks1kMBgP79+/nG9/4BhcvXiSbzVJaWkptbe2qubjzzjuxWq0cPnxYlJCURKiy2awIsZmYmKBQKFAoFJibm+PYsWNYLBZGR0cxm80MDg5y8uRJhoaGmJiYYHp6mq6uLvx+P5/85Cf59re/zeTkJEtLS8zOzvL//X//HzqdjsbGRlKpFGfOnFk1PiufFYPBgNfrRa/Xi9Ccj33sY9hsNr7zne8wOjoqVjqlHQ0Jq9XKpz71KV566SXi8ThqtZpcLifi2kdHR0kkEoRCIU6cOIHJZMLv91NTU0NdXR2VlZUiJ0DacfpFk0wmOXLkCBqNhlAoxNLSEk6nU6gKnzx5klgsJsJvwuEwvb29HD16lKqqKiFadfHiRRYXF0VoVXNzMxcuXMBgMKBUKhkcHKS/v5/HHnuMpaUllpaWGB0dxev1YrVaaWhoYHR0VHwmtLa2UlVVxdzcHD09PWIR4P/+3//Lo48+KpxvqahAeXk5bW1t9Pf3E41GRbiMJEym0+lIpVL09/eTSCRobm7G4XCwtLTE3NwcpaWl7NixQ+wC/iqTyWTo7u7mX/7lX0RY0Pnz5zly5AidnZ1Cndlms9He3s7CwgLDw8OcOHFCqA673W4SiYTIJSoWi/j9frq6ujCZTLS0tJBMJsVn/b59+zAajb/wykoyMr9KyE6AzC1Lx8YOqht+VvXnt3/7t6msrMRsNpPL5UQMd2dnp0jKBfjjP/5jOjo6RFJbRUUFDocDm8121Rjd2tparFYryWQSnU7HRz/6UWpra4VRv3fvXlpaWigvL8disdDc3Czibj/72c/S3t4uwoI+/vGPU1VVhdPpRKVS4XA42LNnDw6Hgw9+8IMiD0Gr1YqYWofDgcViIZPJ8Oijj67po1Q94yMf+Qhut5v6+npaWlrQaDS4XC7+4A/+gNLSUrEa/Wd/9mdUV1dTXV1NMpkUFVF++7d/W8S9r0QK25GSdUtLS/niF79Ia2srTqdTKLhK4yitsH74wx8WJRQ//vGPYzKZhKDTu971LsrLy1EqlUJU6rHHHsPpdIr46yuTb+12Ox0dHUIttqSkBIvFQmdnp6iks3PnTtra2sR8V1ZWisTHj370o6jVaqqqqti/fz+tra20traKY0wmExaLhQcffFDEdkshX1JVmXQ6ve7OElzeWbj33ntFjLHdbhf14DUaDffddx9KpVLEKktx6xJqtZr6+nruv/9+bDabiF/W6/V87GMfo6qqCovFQiqVEsmSK0XxpFj9XyaSA15TUyNCrPr7+8V9DwwMiHh0KSTH7XaLJNFYLMbY2Bhbt25leHiYcDgskjolp7KjowOfz0cgECAajTI6Ogpc3p1aXl4mGo2ydetWurq60Ol0OBwOkTSdzWYJh8MiLCwajQpxqZVJ8seOHWP37t1C4Vav14uKQvPz80IMcGhoiMbGRsbGxrBYLMRiMTweD0qlksrKStxu9698vHmxWBThUSMjI6jVajweD8VikeHhYUZHR9FoNJSUlIjFhLKyMuLxuFigCIVC+Hw+VCqVCPE8cuQIZ86coVAosHnzZtLpNNPT07hcLjo6OlblH8jIyNw8shMgc8tSVVXFFpNblO+sqakBfhayUVFRIVaUV66Ivutd7xL/b7VaRXWLq4UeAMLYlNi7d6841mAw0NHRISoTWa1WCoWCqP7x6KOPCmNOqVRy5513ir+ZzWaqq6tFu7t37wZ+FkIktSNV1kilUmzbtk0kZEoolUqsViu7d+8mm82uqZBx//33r7qfldeUQmRyuRz33HPPmnPhcvnJK0NfHnnkkVU/O51O0un0qmTNlc7EXXfdtep4qaqPlBAIsG3bNjKZzFXVdjUaDWVlZbhcrlXXMhqNwsBzu93ieIVCQXt7u/h5ZahHaWmpmDNAlAcF2LRpk4hnXmnANTY2CkXUK8Mb4LIRL10vk8mIJEyJDRs2rNuuhGQob926dc3Y7Nmzh2w2S2Vl5arnVIq/lqrSvB2Q5sRsNhMMBoW+xMzMDNPT01RVVaHT6ZidnUWv1+N2u4VTI1WNUalUeL1e4PIul8fjwefzMTAwgNvtFiFuSqVSlPaUSnrOzMwIJdzq6mpisRjT09Oif1JpXqvVypYtW8hms4RCIaanpzGbzbhcLvr6+jCZTIyOjoocH0ltOBwOYzAYSCQSTE9Ps3HjRnp7e1GpVCKEDC4XL/h1iWtXKpVUVFQwPT2NTqcjn88Ldd75+XnKysrI5/MMDg4yNzfHY489JiqhSU7T/Pw8JSUlpFIpEokE/f39zMzMoFarxW6SlHO1vLwsEvdlZGTeGLITIHNLI5WyWw+FQnFDK3DSSvT1WGl4XW97f6UhLYkgrTx3PQNyvWtJFTIkstksS0tL69aXl7jZlWCpusbPu1opVXq5Ga6cu5U5BDd7rWs9C2+Eq43jjRraVxvPG52f9e5lvXN/WWE/10KtVhMMBgkGg+TzeSoqKvB6vSLu3+FwiMouarUam82G3W4XJWFVKtX/0wGJ0tbWJtRkJSdJ2iWSku+lxHOpMozH4xFKt/X19cLYhMvPicVioa6ujj179lBeXs6xY8eEoJhOp6OsrAyDwSD0I8rLy3G73auS3qUdGpfLxYYNG+jp6RGOn9VqpaKiAqPR+CsfCiShVCppbW1lZmYGu92Ow+EQgnFWqxWXywXA3NwcGo2GyspKLBaLKCMbDodJJpNYrVbh3OVyOYxGI9XV1TQ2NordhuHhYVKp1K+NgyUj81YhOwEyMrcQFouFbdu2/bK7ISNzVTQaDQ0NDVy4cAG73c6uXbtobGzk2LFjdHZ2cujQIYaGhkilUiLWu6amhsbGRgqFAn6/n/b2dvr6+lAqlXg8HpEwrVKpqKuro7q6mnw+LxRoN2/ezMaNGxkbG2NgYAC73c4999zD0NAQlZWVqFQqsTov1a7fsGEDt99+O/CzXUOPx8PCwgLHjx/n9ttv58EHH+TgwYP4/X6MRiMtLS2Ew2Eh2CaVJ7bb7WzYsIHKykqCwSBjY2OidPDbzUF7K1Cr1VRXV+NyuWhoaMDhcIidoHvuuYcDBw4wNTWF2+3mt37rt+jr6+PgwYPo9XpaW1txOBwcOXJE7ApZLBbUajUbN27kRz/6kQglkhy5xsZG7Hb722bnS0bmVkVRlF1pmVuM7ijs6IKuHbBdVnqXkbku13tn+rx9PPbdx/jJR3/CpvJNb/g6UmiZJHQn1ZFXq9WiotM//MM/MDExgdls5o477uChhx4SSbaS2FihUBAJutJugVarJR6Pi+RrQMT1w+Udt3Q6TSaTQa1Wi59XinWZTCZRHlSqaQ+Xk5lDoRA//vGPSafTvPvd76asrAyj0Ug8HhdiZUajkWQyKUKvpDA66fdarVaUR5Vq3l+pUv6rSKFQEAa6FGolaamYTCaSySTZbBa1Wo3JZCKdTotxlCp0xWIxsbsizb9OpyMcDgOXq5BJ+i+AcALejmP7Zr1PMjJvNfJOgMwtiz/gp2digUwmQ0dHB//4j/9IW1sbGzZsEPkBN0IkEuHpp5/mwx/+8KpydLlcjueee45EIsHu3btpamq66T5KRoKUDxCNRjlx4gSbNm2ivLycYrGI1+ulp6eH+vp6uru72b9/P/X19ddt2+v18sILL6DRaPjABz6wJuzoahQKBSKRCK+//jq7du2ioqLipu/rRojH40xPT/Ptb3+bL3/5yze0KlosFvnhD38oYvk7Ozvfkr5J13ruueeIxWJs2rRpTaWeN4N8Pi+UcAFRjSoajfKJT3xCqEbfDDMzM1y6dImhoSG+8IUvvOl9/nmQ7kUShJJCzaR688VikYcffphQKIRer6eurk4kNa8X6rSyfvzKsD0p/GdlYrWUFC05ElKbV46vJGQmHVMsFtHr9TidTu69914KhQKVlZVCjVbq98o2V96r9DepTUn74+0YpvVWIeWAXIkUqqVWq8U4ST9Ln1fSuEpzK42r9Hup7Ks0ltJx8i6AjMzPj+wEyNy6FBFlIFUqFYlEgmAwuKpG/42Sy+XWNcaMRiO9vb1s2LDhDXdzcHCQuro6rFarSOKU8Hq9TE1NkU6nMZvN163TvxKtVksgEEChUJDL5W6qT5I+wFu5ESg5PuPj49cVDVqJRqNhZmaG0tLSt6xvEgaDgYGBgbfMEVpaWiIQCLBx40bg8pwtLy+L+Pg3gl6vJ5VKMTw8/GZ2FYDxpfE3vc0rSVvSaA1aUIG/6CcQCLzl17wRioUiKePlkKGJyASK2NtvhVnm1uAX8R7JyLwZyE6AzC2LtLUs1aWuq6tDp9ORzWbJZDJC5Emv15PNZsV29MoyoJIhXFdXJ1aa8vm8UJZta2vjxIkTwsguFAqi4oe0kpXL5UgkEqKEqEqlEtVt/H4/x48fFyJbSqUSh8OBwWCgWCwyNTXF6Ogo1dXV2Gw26urqMBqNwhlIpVLk83k0Go0oB1ksFonH42i1WkpKStZVrpWcDUlBWSqbKiXWFYtFKioqxKqapKKayWTQ6/UiMW8l+XxehFsYjUZRUUlST5XGIx6PYzAY0Gq1OJ1OIQIEiLkpFArodLp1V2o3bNjA4uIiyWRS9F9aWZWqJWWzWfL5vFhFluZLUpCVSnDmcjmSySQKhULsRBQKBfE8tLa20t3dvUaUTJpX6X6lBEZpXqXxkuqUS31IJpMi7CSXyzE+Ps6lS5eoqqoSZVAdDgexWEy0L42D1G4qlRK7B1ICqvQ8JBIJEY8urYZns1kxr9KK6s2GoDgMDgxqA59/6fM3fI6MjMzVMagNOAxXV3mXkXk7IDsBMrcsoVCIon9mlZEJlwXEPB4Pg4ODlJSU0NnZydzcHIuLi7hcLrEqC5cVS71eLx6PR5RZjEajBAIBvF4varVarNxL8ahdXV3k83na2trQarV4vV66u7t5+OGHGRkZwWw2C72A7373u1y6dEkYyC6Xi+npadxuNwqFgpmZGfr7+4VRGAgEqKmpweFwkMvlGB4eJhKJUF5eTnl5OVarlUwmw6VLl9BqtSJJ8UqKxSKRSITz58+Ty+XYv38/fr8fj8dDNpvFYrEQDAbFCn0mk2Fqaoq5uTmam5txuVxr1JBTqRRjY2OMjY2xfft25ufnaWlpYXp6Gr/fT0dHBxqNhhMnTrB58+Y1IU1S0ufCwgKJRILq6mpqamrWDQORSgEODQ2RzWbZvn07arVaxG77fD6i0Sg7d+5Eq9USCoWYm5sTglS33XYbWq0Wv9/P8PAwKpWKO+64A71eTyKREP1Qq9XrOgBwWXhuYmKC8fFx7r//fvr7+3G73RiNRlKpFNPT02zZsgW73Y5CoWBpaYnBwUHy+Tzbtm0jHA5z+vRpXnnlFWpra2lvbxdCXrlcjmAwKBzAqqoqDAYDyWRSVD6R9Amk0rSxWIz+/n4MBgOBQEA4fouLiwSDQaGe3N7evkY1+3pUllRy4OMHCCaDN3WejIzM+jgMDipLKq9/oIzMLxHZCZC5ZTEYL9fpPnbsGDt27PjZ7w0GDAYDPT09uN1u2tramJ6eZmZmZk2MuVTB4tlnn+Vd73qXUCqNx+N85CMf4bXXXhNhG319fbzwwgs89thj1NfX83//7/+lrq6OlpYWfvKTn+Byudi7dy/f//73WV5e5vOf/zz33nsvyWSS3bt309raSjAYZHFxkb6+Pvbv309tbS3pdJqmpibuvPNOPvWpT1FTU0OhUGB0dJT5+Xn+zb/5N/zN3/wNnZ2dNDU18Q//8A/80R/9EU6nk5deeknUUl+JFKOsUql45pln2LFjB6FQiHA4TGVlJS0tLfzVX/0VVVVVGI1GpqenOXToEJ/61Kf4zGc+w0MPPcRjjz22ZqwymQz9/f3Mz89TW1tLbW0ty8vLTE1NAfDQQw9x4sQJdDodTqdz1Wp0V1cXs7OzaLVaHnroIb7whS/wpS99SZQOXMnc3JwQHJucnOTP/uzP+NznPse5c+dYWlriXe96Fz/5yU/wer3s2LEDv9/PyMgIH/7wh3nyySfp7OzkhRdeYGJigs9+9rOMjIzwr//6r9TW1gpF4U9/+tMcPnz4qqFUdrudZDLJ888/j81m49577+XP//zPKSkp4ZFHHmHTpk38yZ/8CV/+8pc5d+4cCwsL3H333dTV1fFXf/VX/OZv/iaNjY00NzfzwAMPrIphDofDXLp0iYceeoh/+2//Lb/3e7+H0Wjk+PHj7N27l507d/LNb36T6upqdu/ejVqt5otf/CJ/+Zd/iU6nY3x8nOXlZQC++93v8uEPf5jS0lIWFxcJBAI37QTAZUdANlpkZGRkfn349chakvmVRFIBXi/W3Gaz8Ru/8RscOXKEcDhMTU0Nmzdvxmq1rjlWEu0CePXVV4lEImzevBmlUklNTY2oLuLxeHj99ddJJBKMjIyIhEKpfN3GjRsxGAwiXEVqW9IMUCgUqFSqVX2QEuUkUSiTyYRKpWJycpIDBw5gMpmEaFE2m2VycpLp6WnKysqEIu2VOyFSuyaTiR07duDxeITCbGlpKa2treh0ujVCWx0dHZw/f55gMChCdq5sUzLua2pquOeee3C73dhsNmF0SomUUoLmSl5//XVGR0cpFAr09/dTWVnJ0NAQzz33HE888QQ/+MEPmJ+fp1AoUFZWJsKm6uvref3114nFYuzcuZMdO3bQ3d2NQqFgdHRUrP6//vrr/MEf/AEWiwWfzydEikZHR8lmsyQSCY4cOcLk5CS33XYbCoWC6urqq2oLSJVLJJVijUZDLpfD4XDQ1taG1WolEAiQz+cZGBjg3LlzRKNRhoeHV4VUrRTxkpwii8UinrFsNkuhUGBycpLDhw/T2tqKUqmksbGRYDDIK6+8wqlTp0S4m8ViwWq1ilAui8XCV7/6Vb75zW8yPz+/Ru1ZRkZGRkZmPeSdAJlbFqVCieIq1TfUajUVFRUolUp6e3tpbm6msbFxTUUJqQKF9PtsNiuSZmGtOJNkOCqVSnbv3o3T6aRYLApHQorTlgxgyfhPJBJEIhHi8fhV+7DyeKmShsvloqKigv3796PVapmenmZ5eVlUIpGcjPVQqVSYTCa2bNlCT08PNpuN8vJy9Hr9qmonfr+fiYkJgsEgra2tIvE0FotRUlKyesz/XwUWi8WC2WwW+Q8rhbHS6fSq5GcJKVa/rKyMyspKHnroIQwGAxqNBpPJJMpJRiKRVQrLWq1WOCS9vb0sLi6yY8cOcrkcU1NT+P1+rFYrDz30ECqVigsXLuB2u4WTJhnFarWa48ePixwG6XdXi51f+WxITqLUH71ev6od6VrSs3H33XfjdDpFO3B5d0NSLFar1cJxku5NyimQnjkpb0E6RiqxKQnISe02NTVRU1NDJBIhFAoxPDxMZ2eneAbfjiUUZWRkZGR++chOgMwtSzweJxUIEI1GSSaTBINBNBoNFRUVFItFtFotGzZsYHp6mqqqKhyOtUlauVyOeDxOPB4nEAhQXV1NOBzG4/EQiUTw+/0sLy8Tj8cxmUxs2rSJaDQqjHONRoPP5xPnKxQKotEo0WiUcDiMyWQikUjg9XqxWq3k83mWlpZE0m8sFmNpaQmr1Sr6sbS0RElJCW1tbSIB2Ol0otFoiEQilJWV4fF40Ol04t59Pt8agx0uG6379+/n9OnT7NixA5vNRqFQYHl5mVgsRjQaRalUMjExQSgUEmqskUgEr9e7qk0pAToUChEKhYTDtPIcqTpTIBAgEAhgNpuJx+N4vV7q6upEcvFKVVaHwyHyMcxmMz6fD7hcAz4UCrG8vMzmzZvR6/UMDw8zNzfH3XffjV6vF/kfZWVlVFdXU1dXJ8KRXC6XSCA2GAwiDMrj8bC4uEgkEiEQCBAKhURd+5UqxOl0mkQiIe5HoVCQTCbFnKVSKfF3t9uNSqUiHo9TWlpKdXW1CEuzWCzMzc3h8/kwmUzE43FxbYVCQTweZ3l5Gb1eT3NzM1NTU9jtdjEf1dXVmM1m0uk0y8vL5PN5QqEQsViM5eVlEokE27Ztw+v1Mj4+TjgcJhgM4vP5KC8vX/e5l5GRkZGRkcOBZG5ZloJLTE5OikTe+fl5Jicn8fv9YiX64YcfRqVSkc1m160rnUqlCAaDpFIpRkZGuOOOO6iurmZxcZHZ2VnGxsbw+XwsLS1RVlbG+973Pl577TUmJyeZmZkRSZnJZJL+/n4mJycJh8NEIhFmZ2dxu90kk0k8Hg/RaBSFQsHc3ByTk5Ni5VYKWfH7/SSTSaampjAYDDzwwAOizYGBAZaXl6mpqeHRRx/l0qVLTExMsLy8jM/no7+/f90xUiqV7Nu3j0AggFarpby8nHw+z+TkJKlUCr/fTywWQ6PRUCgUmJqaorS0lFQqxfz8/Kq2JCN0YWGBkZER4vG4CN2pqKjA7/czPn65NN7MzAyjo6MsLS2RTqcZGBhg9+7dlJeXMzg4yOTkJH19fWi1WlwuF263m/LyclHD3WAwiGTlc+fO8eEPf5iSkhKMRiNqtRqv10s0GhVO3NjYGCdPnmRpaYk9e/ZQV1dHZ2cnjY2NdHV1MTExQSAQYOvWraL60NzcHKOjo3i9XoLBIJFIZNX9RqNRQqEQ8Xicvr4+pqenhZM2NjbG4OAgxWIRv9/Ptm3b2LZtG0eOHBH5J8lkkoqKCpqamjh79iyAcDhCoRADAwPMzMwIR8blcvG+972PEydOMD4+Tjwep76+nr1797J582bKy8vF2M/OzhKLxZicnOTEiRMMDw9TKBRoaGigpaWFsbExnnvuOSYmJn7u90xGRkZG5lcTWTFY5pbjeuqnUjhOJpNhcnJSlFRcr4rO1cjn82JlOJFIoNPpRMiLVKpRr9dfV7BGer3y+fyqsKMbRSoHajAYxLmSABkgqvtotdp1q+xISOUjrxYasrJNKQcCbjyURCpJKpWqlASBVrYlkc/nSSaTQkzqauRyOfL5vBj3lSJu6XR6lTiRFMIlldCUji0UCuK+VpYjlSo96fV6EYJztdyAm0F6NqSSptK1stnsKiG667Vx5ZxLJBIJER6VTCZFSFEymUStVl/1HmSVbRkZGRmZK5HDgWR+5YhGoyKxdufOnVRVVa0pd3k9lEqlMDLXcx7WU8dcDym+/+dRt1yv75JxvZ6RfbV+XI8bbetqSLHq10OpVN7QfFytPZVKJYzslWsYUjjRSq6mRLtS4fRmn43rceWzoVAoVuVM3AhX65NUalZKJJfm9UafRxkZGRkZGQnZCZD5lUOqKPPe974Xu92+alX2RrnW8W9mW2/k3DfS3vXO+XmTR2/m/Bs99loJu9f7/5tp483kzZivG3325IRfGRkZGZmfB9kJkPmVQ6PRYLVa1y0HKiMjIyMjIyMjIycGy8jIyMjIyMjIyPzaIe8EyNyy5At5crmiENwqFourEmClmPGVNfFX1k6/MqYcflazXarXvxKpfaku/y8yHKNQKIi+/jz5BVcijc/KMfpVDTOR5g/Wn18ZGRkZGZlfJ2QnQOaW5cnvPcm3e47T3t7O7//+73PixAl+8IMfoNfreec738k73vEOTp48yTPPPMPmzZvZsWMH8XicUCjEfffdh16vp1AokM/n0Wg0xGIx/tf/+l/YbDb27t3L1q1bV12vr6+PV155hc9//vNXFeh6q7hw4QKHDh0imUzy53/+529au8lkktdee40jR47wzne+k7vuuutX1jiemZnhm9/8JlarlT/4gz+4qWpRMjIyMjIyv2rIToDMLUtdfR3x0IxQsb3jjjt46aWXUCqVQq1127ZtxONxqqurqa6uZmlpCYvFgkqlIhAICI2AzZs3YzQaaW9vJ5fLkclk1lzP4XCwZcuWX7gDALBhwwb6+/tFHf43C71eT1VVFa2traTT6Te17bcbbrebiooK1Gr1mh0gGRkZGRmZXzdkJ0DmlqW2tpawt5KTJ0+iUCjQ6/U4nU68Xi+jo6Ps2LGDUChEU1OTUE1dWlpCq9WSSCQ4efIk8/PzOBwObDYb1dXVGI1Godw7OTmJSqWisrKSdDpNLBYjn89TLBaZm5sjlUqh0+nQ6XSEQiEaGxuvWgs+EAgQi8UoFArY7XZsNhuZTIZoNEoikSCfz1NfXy/OjUajBINBisUiDocDk8mEVqsll8uxtLSEz+ejtrb2qloF8XhctG2xWHA4HCgUChKJBD6fj0KhQG1tLRqNBq1Wi8FgoFAokE6nmZiYwGQyYbVaKRQKTE5O0t7eTiwWIx6Pk8/ncTgcQmG5UCgQiUSIx+O0tLSQzWaZnZ0ln8/jdDoJh8NoNBrKy8uvWYu/UCgQj8fxeDyirKekFVBfX8/c3BwqlQqLxUJJSQmzs7MUCgXRbiKRYHx8nIaGBqLRqEgOLxQKTE9Po1aryWazog/FYpGpqSkRGqTX6ykrK1vVJ0k/wefzEYlEqKmpwWQykUwmGRsbw+l0UigUMJlMmEwmVCoVk5OTol9ms3lN6dVEIkE8HicWi5HL5aisrESv1xOLxcTc1NfXCxXqdDpNZWWlEKwzmUxoNBqhPh0KhXC5XJjN5psuRSojIyMj8+uL7ATI3LKUucrQulyMj48Lw6qhoYHl5WW6urr40Ic+xOLiIg0NDVgsFqLRKOFwmHg8TmVlJXNzc8zNzWEwGEilUqLdeDyOQqHA5XIxNDTEO97xDorFIsvLy0xNTZHL5UgkEpw7dw6Hw0FDQwN+v590Ok17ezt6vV60VSwWCQaDTE9PC8Go2dlZ9u3bx+TkJPl8nmw2i9/vF0bo0tISgUCASCSC1WplYGCATZs2kc1mSSQSQiU4lUpRX1+P3W5fNS6xWIyFhQX8fj82m42pqSl27txJMBgkFAqJ4wYGBmhsbFx1brFYZGRkhJKSEmHwHj9+nIqKCtLpNOPj48zOzrJ//378fj/BYFAIVs3NzWEymbDb7UxPTxMKhXC73VitVnp6etizZw+lpaXXzGnI5XJcvHiR0tJSjEYj6XSayclJamtrGRsbo6SkhFQqxdzcnHCYxsfHsVqtaLVauru7yeVyJJNJ6urqAJifnxfiYolEQhjQgUAAj8cj2lQqlWucgGQySSAQYGlpiVgsRjKZxO12YzAYmJqaYnR0lOrqahwOB5FIRChQS45mWVkZVVVVq9r0er34/X7MZjN+vx+LxYLP5yMajRKPx9FqtQwODmKz2RgZGWFxcZG7776beDzOxYsXaWxsxOVykc1mGR0dRa/X4/F4qK6upqmp6brvjYyMjIyMDMjVgWRuYYxGI3a7Ha1Wy/T0NKOjo+zevZvGxkb6+vrIZrPEYjF0Oh0ajQa1Wo3ZbObo0aNotVpqa2tpbW2ltbWVlpYWYVT6fD68Xi+NjY288MILBAIB9Ho96XSac+fOkc1mqa2t5ejRo3R1daFWqykrK+PJJ58kEoms6ee5c+fo6+sjl8vhcrn48Y9/TD6f5+jRo/j9foxGI3Nzcxw+fJhMJsPJkyc5e/YsAC0tLRw4cIDl5WWRz5DL5XC73Tz33HNMTEysud7k5CTnz59ndHSU1tZWjh49SiwW49ChQ7z++us0NzfT3t7OE088wdTUlEiWhcvhQZFIhLm5ORE61d3dzdLSEna7naWlJZ599lmKxSLl5eV897vf5cKFC2J1/PDhw8Bl43l0dJRTp06xYcMGXnnlFebn58lms1edT4VCgdVqZXBwEI/HI5KhDx8+jFarxefzUSwWCQQC/PM//zNNTU20t7dz7NgxTp06hVKpZH5+nrNnz7K8vEwikWB0dJR//Md/xO1209jYSC6XIxKJkMlk6OnpIZFI4HQ6KRaL+P3+NX0KBoNcvHiRTCZDeXk5L730EqdOnUKlUmEymXjqqafIZDIkEgl6enr43ve+h9VqpbW1lTNnznDu3Lk1bQ4NDdHX10dFRQVw2Wl7+eWXOXPmDA6Hg9bWVp566imKxSJer5euri7S6TRbtmzhmWee4ezZs3g8Hvx+P93d3bS1tfGTn/yEY8eOUSgUSKVSJJNJ0uk0+Xz+Wq+QjIyMjMyvMbITIHNLU1FRwf33389zzz1HIpHAZDJRWVlJeXk5586dWxX7rdFoRFgQXDY6V6rSSk5AVVUV7e3tqFQqrFarMBq1Wq1Y9TYYDNjtdqqrq8XKrNfrJZfLrenj008/zfLyMpFIhNHRUWpqalhaWuL9738/JSUl9Pf3UywWGRgYIJfLceTIEaanp9m5cycqlYo/+7M/o7q6Gr1eT2lpKa2trZSXl7O0tLRqB0PiwIEDhEIhtm3bhkaj4c///M9Jp9MsLi6SSCQwGAxoNBqUSiVTU1MsLCysOt9ms61SprXb7SiVSnQ6HRaLhbKyMlpaWigvL8doNGKxWHA6nTidTmG8WywWampqaG9vR6lUYrVaSSQSJJPJq86lVJnowx/+MPPz81y6dIloNEo2myWfz9PQ0IBerycUChEMBjEajWg0GlQqFcFgkPHxcVwuF/X19dxzzz3U19eTSCSYnp6moqICjUaD0+nEZrOh1WrZvHkzf/VXf8Uf/dEfceHCBZqbm9f0qbKyknvvvZfl5WU8Hg+zs7MsLy+jVqspLS0VjmRnZydms5kDBw4Qi8UYHBykWCyKcVyJwWBgeHiYD3zgA/T29lJeXs7AwABdXV0sLy/T39+PxWIRYVpOp1M4qbt27WJmZobe3l6qq6vZvn07Z8+exe/3k8lk8Pv9fO973+Nb3/oWP/rRj5iamrrqeMvIyMjI/HojOwEytzTl5eXcc889PP3008Blo7WxsZHOzk6++tWvsmHDhnUNMfhZmchMJkNvb69YEVepVCImHbhqEqlkgEqsXFFfidPppKqqira2Nvbs2cO//bf/FrPZzFe/+lUmJye57bbbaGxspFgs4vP5UCgUqNVqkagbjUbJ5/Nr+rWybOhKpMTnRCKxqqxpNpsllUoJZ8fv96PRaNaMj+QgSPe+vLy8amxWxp2vNwZSn5RK5apjpVKk16Ouro5wOIzH40GlUvHwww/zT//0T9hsNsrLy9FoNMTjceCy4xAOh0mn06Laj8lkEsniSqVShECtzNXI5XLMz8/z1FNP8Zd/+ZcUi0WefPLJNX3p7e3lv//3/47b7ea2227DbDYTjUYJBAIoFArMZrN4jiQno7Ozk23btvEbv/Eb7N69e02btbW1fPCDH+SJJ54gk8lw+PBhEokENTU1bNmyhe3bt/O7v/u7uFyuNef6/X5UKhXhcJiXXnqJgYEBdu7cSWlpKclkklQqxb59+3jggQe4884714Q3ycjIyMjISMg5ATK3NAaDgcrKSkwmE42NjWIn4LbbbuPw4cNYrVZhpEajUS5cuCBWc10uF5FIhJ6eHjo7O0kmk0xMTOD1ekUS6NzcHD09PSiVSrxeL/Pz8/T09OBwOJidncVgMDA6Osrs7Cxerxev14vNZsNoNIo+vve97xUhINlslkgkwpYtW0gkEgSDQQKBgFjdDoVC3HXXXUQiEV5++WU6OztZWlrCZDIxPT3N/Pw8Y2NjzMzMsLi4iNfrZXl5GZvNJq63f/9+Ll26RE9PD6WlpQQCAVpaWti0aRM+n49z586hVqtpbW2loqICr9fLwMAAVquV++67j9raWgYHB5mcnESn0xGLxTh//jzJZJLJyUnm5+eZmJhgenqaubk5PB4PU1NTXLhwgfHxcXw+HxMTE4yNjVFaWkpHRwdzc3P09vbicDhIJBI88cQTfOQjH8Htdq9ybCQHqLm5mUwmg8Vioa2tjf/23/4bDz74IE6nk5qaGm677TbOnz+PWq3GZrPhcrnQarUMDw+TSqVobGwU1YDuvvtuzp07h9VqZW5ujkwmw9mzZ4lEIgSDQRG3v3KXSCKXyxGLxQgGg/T39wOQzWaZnJxkYmJCjIfRaKS2tpbHH3+cV155hY6ODlKpFHa7nZKSklVtDg8PMzk5yf79+6moqKC2tpZHHnmERCLBa6+9RltbG+FwWOw6xeNx+vr6KCkpIRQKsWvXLkpLSxkZGSEcDjMzM4NWqyUSiTA1NcXtt99OsVgUjpCMjIyMjMx6yE6AzC2NFLLz2GOPiVVii8VCS0sLDz30EDqdTqwAazQaysrK2LdvH3q9nsrKSuCyI1FWVoZSqaSpqQmn04nD4UCn03HXXXdRWVmJ0WiksrKSu+66S1Tq2bNnjzA+rVYr73jHO7BYLGuqA3V0dIhYeKVSKSr67Nu3TyTAVldXs3v3bux2Oy6Xi1AoRCAQAC6vbOt0OjZu3EhpaSlarZaSkhLuuusuqqur1yTa1tfXk8lkmJ2dRaFQYDAYMBqNbN68WSStKpVK9u7dS2VlJWq1mo6ODvR6PQqFQlRDikaj6HQ67r77bioqKjAajTQ2NnLvvfei0WgoKSlhz549NDU1YTKZaGhowGw2YzAYqK2tRafTieo4e/fupa6uDqPRiEqloqSkROxUrMfWrVvJZDKUlpZSWVnJjh07sNls6PV63G43d911l7iPzs5OHA4Hdrudbdu2ieOUSiUul4sHHngArVaLWq1m8+bNZLNZSkpKRN+MRiPNzc3rln51uVzs2rULm82GWq1m9+7dlJSUYLPZqKysZPfu3ZjNZpFIvm/fPmZmZkS1ofWq9TgcDpLJJBqNho6ODqqrq3E6nSwtLREOh8WcS/2RdlQUCgVbt26lra0Ni8UiKk1pNBp27dolQrdWOqAyMjIyMjJXQ1GUC2bL3GJ0R2FHF3TtgO2Wy2EmyWQSg8EgDHApQXLl79Yjn8+Tz+d/IaUVs9ksuVxuVfhNJpOhWCyuuv7N3sPVyOfzpFIpjEbjqjalMqcajeaq7RYKBXFsoVBApVKhVqvfFI0EKTk3Ho/jdrvXlNCEn4Vgraf6LP09l8tRLBav2y/pWIVCIZwxKYypWCySzWbF/V3t/FQqtarq07XmQzpeq9WuWwmpWCySz+dFxaKVba2c81wux5NPPkl/fz9//Md/jF6vF87NynaKxSIqlUq0s17frnxn1mMmBYGr523LyMj8nJRqoFZ//eNkZH5RyDsBMrc8CoVizeqnUqm8oRXRlYnBbzUajWZNeMa1nI8bvYerIVWwubLNGzHkpeOuZhj/PCQSCYaGhti9e/dVjemVv19p/K/83Y2Guqw89sr7USgU19QukI65Wl7JGzleCnlab2xXzvni4iI+n4+FhQVOnTrFO9/5zjXj8mbNz0wKNpyFxPppLTIyMm8CRiUM3iE7AjJvH2QnQEZG5heKxWJh165dv+xuvO2pqanhc5/7nIjvfysJZC87AP+yATbI0UQyMm86gwn4yODld012AmTeLshOgIyMzC+U9Vb2ZdbyZq703yiTR17i9LGXee973wtcFjaDy6V4N23axPHjx7n77rvXCNRdD4/HwzPPPENjYyOFQoHOzk5qamrWPTafzxONRnnppZcYHBxk06ZNNDc3k0wmOXDgAF/84hc5deoUHo8Hl8vFgw8+eNP3mc1mUSqVN70LKIWPSaF06XSapaUlTp06xaOPPnrdXaWfB4/HI8rmlpeXs3nzZqxWK7FYjEuXLvHTn/6Uz3zmMzidzjf92plMhkwmQ6FQQKfTXVUZ/ZdBKpUSldS0Wq3IbZKRkbk+shMgIyMjIwOAWqXm4sWL/MEf/AEKhYKSkhKWlpaIRqOiPOzNGljFYpFEIsHY2BgWi4Xm5ubrhktJyfZzc3Ns2LCBsrIyotEoExMT5PN5zGYzxWIRj8fzhu5zZGQEm822Rs35Ru7lwoULdHZ2ilwdtVr9CzGKl5aWGBgY4O6778ZsNotQQo1Gg8vlYnJy8ppifD8PU1NTnD9/nmAwyJ49e9i6detbcp1rkUwmSSQS5HI5ysvLxe9OnDjBwMAAdrudQqGARqNh79691NTUyM6AjMx1kJ0AmV8b1kswvRaFQoHp6Wk0Gg12u31NfP3CwgLZbFZUF3qr+jw7OwtcFvG6stykpKJbXl5+0/d3q5LNZonH46IufllZ2Zq5eaNIK71LS0uUlJRctd10Os38/Dw6nY6ysjKRcyAlqY+OjlJfX09JSckbnotoNEoulxPVlH4ROJyXS7i2traSSCSor69nYWFBGN9Op1PsTuRyuVUVnqSSpCsTqAERzmQymYQTYLVagcvvWDKZXJUgLVXQqq+vR61WY7VaqampIRKJiGu53W6WlpZYWFggl8sJdWsp+TuVSuFyuURyfC6XE4J3i4uLdHV1UVdXh8ViQa/XEwwGsVqt5PN5lEqlSMxOpVIicV+j0RCLxXj11VdxOp1UVFSgUCgoFAqUlpaK/mcyGZLJJMViEbPZjEqlIh6PC8FBKeneZDKtm9cirbpLBQv0ej2pVAqv18vU1BR1dXWUlJSIEDGdTkddXZ0Yy3A4jFKpFLoZ2WyWdDotkugNBgORSERojygUCnK5HEajUaz2a7XaVflIiUSCCxcuMDk5yZYtW1b1N5vNkkwmSSaTmM1msRK/UrFd0j2RBPS0Wq1QttZoNBiNRpRKJZFIROihSM6j1Wolm82ysLDA4uIiyWSSbdu2YTabyWazDA8Pc+LECTZt2oRCoWB6epqqqiqcTidarZbl5WXh0Go0GjFO6XSakpISoawtjbXU70KhIBw8yeFLpVKkUiny+Tw2mw2FQkE0GhWFFiR9FovFglqt/pX+HJb51UB2AmR+bZAMghs1GHO5HE899RQWi4X777+f9vb2VX8/ePAgfr+fhoYG3ve+970VXaZYLPKv//qvFAoF9uzZw86dO1f9/fjx4xSLRR5//HHg8pe1Xq//hYeR/CKJRCL09vayuLjI9PQ0jz/+OC0tLW9K25I42quvvsrOnTtpa2tb97ilpSW+973v4XK5+NCHPiR0GvL5PIuLi/zJn/wJf/Inf8LOnTvfsCEwMTFBKBTCYrGwY8eON3pLN41UTWl0dJSKigpKSkpobGxkdnaWYDBIPp8XFZ4mJibIZrMiGbq0tHTd1XWz2cydd95Je3u7cBKk64yPj9PR0fGGEvQlQ/HQoUPs2LEDnU5HIBBgdHSUD33oQ0QiEebn54nFYqjVaioqKvjhD3/I3Nwc8Xgcq9VKdXW1mG9JUbu5uZlAIIDX6yWdTlNRUUFpaSkzMzM8//zz1NfXs337dkwmE36/n2AwSLFYFKrNknPS2NiIw+FgamqK+fl5EaoTj8fZsGEDLpdrjYhdMBjE7/eTSqWw2WzU1tbi8/mYmZlhfn6e/v5+du3atea5KhQK+Hw+FhcX0el0bNq0CY1Gg8/nIxAIkMvlMJvNNDQ0MDg4SCgUEurZPp+PTZs2sbi4SDabpby8fJWC9tatW7l06RJarZZ9+/atum44HBZaKS0tLTQ1NaHT6VhaWuL8+fPU1NTgcDiYmZkhn8/T1taGy+ViZmaGqakpbDYbTU1N2O12BgYGhGOdy+UYGBhg7969RCIRTp8+TV9fH4lEgkwmw+bNm6moqKC+vp5sNss73/lOmpqa+MpXvkIgEGB+fh6bzcaxY8fQarVs3bpVOIaSzsf27dvFWLtcLpqbm/F6vQwNDZFOp4VCent7uyi7vLCwQCKRYNeuXRiNRoaGhojH45SUlGC1WpmYmBAljX+VP4dlfjWQFYNlfm3w+Xw8++yzN3y8SqXine98J4VCYd1t9p07d9LQ0EAikXgTe7kahULBO9/5TtRqNalUas3f29vbVzknzzzzDH6//y3rz9uB+fl5fvKTn/Ce97yHf//v//0qY+XnRVox3LRp07riYRJWq5UHH3yQeDy+SilaUqyuqqr6uePDJQPH7Xb/XO3cDJJR/eKLL/LXf/3XDA4OCt2HlpYWnnjiCQKBAGfPnuWFF14gn88zNTXF8vIyZrN5lWidhLTSvLi4iFKp5K//+q85c+aMMJi/853vkMlk3lB/pRXvsbExRkdHgcvG8FNPPQXAU089JfQhysrKmJycZOfOnWzatImtW7fS2dmJxWKhp6eH48eP09vbi9frJRaL8bd/+7e0tLTQ19fHsWPHmJubo7W1lZqaGvbv3097eztVVVVUVVXxT//0T6TTaZ555hlOnTpFVVUVt99+O//pP/0n5ubm0Gg0eDwe/uZv/oaOjg4OHTrEwMCA0IWQuHjxImfPnsXr9dLZ2ckzzzzD4OAgNpuN5uZmKioq2L179xqHqVAoiPsvFotMT0/z4osvEggE+D//5/9gNBopKytjamqKp59+moqKCl544QXh5DzxxBOUl5cTDAaBa1ctu5KpqSlefPFF7HY7X/3qVzl69Cg+n4/l5WUOHDjA6OgoqVSKw4cP8+qrr5JKpThz5gx/8Rd/wcDAAM899xxf+tKXSCQSJBIJvvWtb9HV1cXi4iIvvPACFy9eFDsj0i5KLpdb9d4VCgXi8TjDw8NcuHABlUqFUqmkv7+fubk5lpeX+epXv8pLL70EXN7J+8EPfsDHPvYxnn32WcbGxujq6gLgC1/4AhMTEywuLnLo0CF++MMfUiwW+d73vsd3v/tdjh49it/v5wtf+AKxWIx8Ps/zzz/Pxz72Mf72b/9WOHyxWOxmHmUZmV8Kspsqc8syPj5ONDxHeXk58XiclpYW9Ho9kUiExcVFQqEQe/bsQaFQcOLECY4dO8b8/Dz19fXcfvvtKBQKscWu0+nYsWMHKpWKSCTC0tISfr9fbJtfjUKhQDQapa+vj2KxSGtrKx6PB4/HQz6fp6Ojg0AgQCAQwOFw0NTUJLbxQ6EQCwsLRCIRzGYz0WiUbDZLU1MT+Xyeubk5qqurRQiE3+/n0qVLJBIJdu7cKVb9pHCBkydP8vTTT1MsFtm9ezf19fVoNBoGBgaIRqOUlpZSVlYmQjEkYrGYuN9kMkljYyPz8/NEIhHq6urw+/1UVFQIwTBpRWxubo729nbsdrsIc5icnBRqt5KAVyqVoru7G7VaTXV1NW63m0QiweDgoBB7czgca4zuZDIpxkin09HS0kIymWR2dpbJyUlOnDjBHXfcgclkQqVSkcvlCIVCDA0NYTKZqKqqQq1WMzAwQGVlJQaDQQiwOZ1OKisrmZmZYWxsDKfTSVlZGcFgkEKhQDAYpLy8nEKhQCaTYWJigkAgwObNm1cZutlslpGREUwmEyUlJdTV1a0RQEulUoyOjhKJRKitrcXpdK4p/RoMBoVidCqV4o477mBqaop8Po/L5SKXy3Hs2DFMJhPFYlEYdWVlZQwODhKJRLBarVRUVNx00u5KpHK7Dz74IEajkbq6OvF7g8EgxPey2Sz5fF6EWGSzWXQ63bqx/pKo2Yc+9CF0Oh1Go5GJiQlsNhsbNmzgS1/60poQoptFClOSQn4kteX29nb+4R/+Qbwz73//++nv70epVIqwOYVCgdPppLa2lra2NsrKylCpVPze7/0eZ8+eJZFIkM1mmZ+fp6GhAYVCIc5XqVRiXAC6urqoqqoSMeslJSUMDAxQVlZGeXk5DQ0N6PV6nE6nEORb+Ty99NJL1NTUsHXrVlQqFZs2beLAgQM8/PDDoq/rVYpSKBSUlZXhdrvJZDIsLy8zMTHBSy+9RHV1NUajEZfLxfLyMl//+td5//vfL+ZSp9PhdDqFknhjYyMul+uGx97tdnPbbbfxyiuvkE6n6e7uprS0lC1btvCZz3yGp556ioqKCjZu3IjFYqGkpISvfe1rfOELX6C+vp7R0VEuXrzIiRMn2L17N88//zw6nQ6Xy0VrayvFYhG3282WLVvQaDREo1He8Y53iPAbuLww8O1vf5vy8nI+/elPs2XLFqxWKxqNhjNnznD+/Hm6u7vp6OjAYDCwYcMG2tra2LJlCw888MCqhZTW1laGh4cxm83U1NRw1113oVAoePHFFzGZTNTX1zMyMkJvby/ZbJZt27bR09NDd3c3f/EXfyESp39RpadlZH4e5J0AmVuWIkXm5+d57rnnyOVy+P1+Ll68yNjYmIh3feaZZ1heXsZut1NVVSW2fFUqFa+++ird3d3U1NSQSCTEuT09PQwODlJXV0c4HF614nQl0WiUYDCI2+0mEonw+uuvEwwGiUajPP/88xgMBkKhEOFwmHQ6vWoL32g0Mjc3R29vr4itvnDhAtFoVCRBSsbM9PQ0yWQStVpNX18f09PT6PV6JiYmGBoaQqVS0dbWhkqlora2lvLycjKZDBcvXmR8fJzKykrGx8c5ffr0mnuYmZnhwoUL1NXViX74fD6GhoYYHh6mubmZw4cPc/HiRWZmZvB4PPT09NDQ0MCzzz5LV1cXiUSC0dFRTp06RVlZGcPDw1y8eJFoNMr/+T//R1SCmZmZ4cyZM7z66qvU1tZSVlZGLBbD5/Ot6lMymaSvr4/jx4+LeOejR48SCASwWq1YLBZaW1tXVQKR4s57enqYnZ0lkUiQSqWYmJjAZDJx8OBBCoUCkUiEH//4xySTSaxWK+fOnePSpUt4PB4mJiYoKyvj+PHjzM/PEwgEOH/+PNlsFrVazZEjR+jt7b38/BWLzM3N4XA4UCqVTE5O8tprr626D8lxm5ycpKmpiWPHjokV25X09vYyNzdHZWUl8XicVCqFWq1mYWGBvr4+crkcs7OzlJeXMzg4yLlz58T8Sk6M3+9fc/03gqR2vH37dioqKkTS68pck9LSUlwuF4FAAJvNRmdnJ06nE6VSKXJTJGdoenqac+fO4ff7hbMmrewqlco3Jd9BMmilGP1kMglc3rF5z3vew6OPPopWqxXhc3A5jEWqfiQ9O5IaeDwe5x//8R+pra3F7XZjMBhIp9OEQiExRlLYzspxke5LMgBTqZTQ21Cr1cLZUalUYlX7SnK5HNlsdpXI3fV0M6QxkBwhafdFqVSSTqcpFAoUi0XxX8nBWFhYYGxsjHe9612cOHGCfD5/VQ2LK3n99dcZHx9nYmKCnp4ePvCBD/Ce97wHs9lMLpdDp9PhdrtZXl7m/Pnz2Gw2EfalVCrJZDIiRj8ej6NWq1cpvBcKBfF5pFKp0Ol04h61Wi2nTp0iHo8Dl1W43/GOd/Ce97yH7du3Y7fbmZqa4qc//SkbN27kIx/5CC0tLSL3QKPRoFar2bBhA+Xl5RiNRgwGA8ViEYvFwkMPPcSDDz5IWVkZL7zwgsinaGlpYd++fdx///385m/+JkajEZ1OR2lpKXV1dUKxW6PRvOVlfWVk3gzkp1TmlkWjvpxU5/F4KCsrE18QkuqqQqHg5MmTxONxLBYLLpcLq9VKWVkZiUSCvr4+xsbGUCqVFAoFpqam6O7uZnZ2FpVKhdPpXPWldDXUajV2ux2n08mJEycIBoPo9XoCgQCJRIJkMondbheJZBJarVbkJ8zOzqJQKJibmyOdTovkOLPZjEKhIJ/Pi5XWeDzOwsICWq2WWCwmEgHdbrdYQbNarcTjcU6cOCG+KJeWlsQOxUqi0SiTk5OcP3+eaDQqkvKkhDkpjnZoaIjJyUngZ0rHFy9eZG5ujkgkwrlz5ygWi9jtdhwOBxqNhkAgwIkTJ8S1lpeXmZ2dJRQKcebMGaampoQxsJK5uTkmJycJBoOUlpbicDg4c+YMHo8Ho9GI0WjE7Xav+rKVjFeXy8Xc3JxY9ddqtSKRUkoiHRkZIRwOYzabCQQCxGIxjEajuNbCwgKxWEwYXMlkEoVCQV9fH1NTU6KfUviQw+EgmUxy6NChVfcxPz/P+fPnicfjKBQKFhYWWF5eXmP8BQIB4TjF43FhlKZSKRHeVV5ejsfjIZFIiPs+duyYSEwMh8MsLCwIFeE3QnApSCqVYnp6WiR5Soa73+8nHA4TjUaFsXnp0iUx/9lslkQiwdzcHJcuXRL3KCkoz8/Ps7y8TDabxWq1YrPZiMfjHDx4kFwuJ/pQKBRIp9PMzs4SDocJBoN4vV5x/XA4jM/nw+PxEAqFyGQylJWVEYlE8Hq9Yj4XFxeZn5+ntLSUpqYmHA6HSDSNx+P4fD78fr8o8+nxeER4VzqdpqurSxifmUyGpaUl4vE4TqdTnBsKhUS/YrEYDQ0NWCwWxsfH8Xq9aLVasZPj9XoJh8Nip9Hj8bC8vLxq/Dds2IDBYGB2dpZAIIDP56O1tRWVSsXS0hLLy8v4fL5Vz082m8Xv94vPAmmHMBwOU19fTyKRYGlpidnZWfx+v8gn2LJlC9lsFp/PR2dnJzMzMyJH4Erm5uZYWFhgbm6O48ePc/z4cQ4ePIjX6yUejzM7Oys+L/x+v7i+Xq+noqJCFFgoKytDq9Vy22230dXVxZEjR+jv7yeVSlFTUyOUu6enp+nu7mZiYoL+/n5yuZx4h2dmZjh+/Lh4R6VdNL1ez+bNmyktLUWr1ZLJZAiFQiwtLYnPVK/Xy8WLF5mYmGB6elrsKkpVpqTdzFAoJOZWev927NghckBisZjYlevv72diYoJ4PM6pU6dIpVLXXDiSkXk7ITsBMrcsWp0Wm80mYqerq6upr6/HarWKlcDFxUVR4WPlCpnf72d5eVl8SUjhGRcvXiSZTFJfX49CocDlcl1zW9dsNovKIC0tLfT39xMKhSgrK6OlpYXBwUGRIFhdXb3qXIVCQVtbG83NzXR3d4sVwFgshl6vp6WlRRjH5eXl2O129Ho9FotFGA/S1rPUnhQukM/nCYVCnD17FpPJhM/nQ6vV4nQ61zgBWq2WdDrNd7/7Xfx+P4VCAb1eL8YWoKOjg/n5eaampjAajZSXl7OwsCCqnoRCIc6dO0dbWxsajYbdu3ezZcsW/H4/0WgUr9crVkR1Oh21tbV85zvf4eDBgyJBcyXj4+NiBwegurqawcFBsXJ7NRVhhULBAw88wPz8PNPT0wCiTx0dHcLgk4wquLwqa7fbaW5u5s4770Sr1YrtfLPZTG1t7SpHanl5mXw+j0KhoKKiArVaTXl5OXq9nnPnzq3qk8fjobe3F5PJxMLCAg6HA5PJtGYOJMPvmWeeIRAIiLAcaW5VKhXbtm3j8OHDOJ1OkSh8+vRp9Ho9oVCIYrEoEirfKKFQCLvdztDQEMlkUhgzuVyO+fl5VCoVsViMSCRCKBRiYmJCVGdZWFggGAwyOjrKiRMnxLlut5uWlhYSiQSLi4tYrVYaGxuprKwkHA7zgx/8YFXOjVRhaWpqSlSMmZ2dZXFxEZVKJULEAoGAqBDV2tpKMplkfn5eVAqamJhgdHSUyclJ4vE4brebjo4OEWKXTqdFJR8pzCwcDouV/Pr6epaWligWi+TzeeGcdXZ2CgNUynVQq9WEw2H2799PQ0MDfX19zMzM0NTURENDg0jazWQyBINBEomE+AxayT333IPb7WZ+fl68X7t370ar1Yo5np+fX+XkZTIZ5ufnRSUcj8eD3+8nl8uxefNmTCYTwWCQiYkJgsEgv/mbv4lSqaSjo4OqqioMBgNWqxWr1UpdXd26KuXj4+P4/X6WlpZ4/vnnef7555mYmADA5XLhdDp59dVXuXDhAgsLC8JJUiqVbN++XXz+ShV4Hn30Ufr6+njhhRdEzoP0nrrdbqanpzl16hRLS0v09PSIZGWLxYLH4+H555/H6XSKBHWv18vIyMiqPpeVldHZ2cmlS5d4+eWXyWQyzM3NcfToUfr6+vB4PHR3d3PhwgXxWVEsFpmYmODAgQMcOnSI6elp8a695z3vQaFQcOTIEY4fP87IyAjpdJozZ84wMDBALBbjxRdfXJMnJCPzdkbOCZC5pVGpVGI1vVgs8tRTT6FSqXjggQcoLS0FEOUepRX10dFRrFYrBoMBu90ual5Ho1E8Ho+o0AGI7XOp/WvtChSLRaxWK3q9nqqqKt75znfyd3/3d7zvfe+76nkulwu73c7Y2Bi5XI6Ojg56enpIpVLs3btXtCutvEo/r+yX9Du4bAgXi0UCgQCzs7O4XC6qq6vp6Ohgy5YtFAqFNdvUbrebRx55hM9+9rN89atfpaenh0AgsCqkIxAIoNVqCQQCHDhwgHQ6zUc/+lG+973vEY/HRWyzVFpP2ikwm80YDAY2b96MXq8nnU4TDoeFwXv06FGGhoYIhUKrKiyZTCaUSqUwvrPZ7Kov1qutdCsUChGeMzo6SmlpKXv27GFmZoZ/+Zd/4bd+67fYtGkTU1NTJBIJIpEICoVCxBevnGtple+HP/whn/jEJ3C73eJLXnIgVvZHrVavSYyVysfW1NSwZcsWNmzYsG5cd0tLC21tbZhMJv7+7/+erq4uysrKVpV87e3tJZ1O09LSQmlpKT09PWJ+N27cyPbt20VJ0ZXjczPViT74wQ/y15/44Jrf6/V6duzYwdNPPw3AK6+8QiKR4Gtf+xoKhYJ//dd/ZXx8nMbGRu69917uvfdeca7RaKS6uhqHw4HH4+Gzn/2scG6qqqr49re/vepaKpUKh8PBv/t3/45/9+/+3aq/Se9EZ2cnjz32mPi9VGEGLldoeuSRRzAYDNx5553CwVhZy/8P//APxdgolUr+9m//dtV1nE4nf//3f08ymWTr1q2rdpt+//d/n0wmg0qlEgsEKyvmSE5DJpMR1aGcTueqyl5//dd/ve74l5aWct9995HL5Ugmk2zfvl3E+zc1NfGxj31szTkmk4mdO3fywgsvrNvmpz/9aZLJpMiXkNDr9aveua985StXDTW66667uOuuu9ZtH2D79u2rSo5Kz59UenP//v2iapRSqaS0tJRvfvObwple+T58/vOfF+/6le/Jfffdx7333rvqvfj0pz/Npz/96TV9qqio4KGHHuKhhx5at3Ty+9///jXnqNVqXnnlFeGkS/cDl9/RP/qjPxJhXFLI1Cc+8Qk+8YlPXHVsZGTezshOgMwty/TUNPNHj+LxeJienhbiMLFYjLGxMfr6+jAajfj9flwuFzabjYGBATZs2MA999zDrl278Hg8vPzyyzgcDkpKSnjssce4cOEC58+fx2QycfLkSc6cOSNW9KTa2xLSStTg4CAnTpzgIx/5CBs3bhSGTzQaZdu2bWtWuldis9nYuXMnZrOZRx99lGeeeQav14tOp6NYLPLaa6/R09OD2WxGqVRy5swZkeMgrXKeO3eOXbt2YbfbuXTpEhs3bqSjo4PW1la+853vEI/HRSLn9u3bV13/0qVLHDx4kMcff5z29nY6Ojro6+tjcHCQ7u5uLBYLZ8+e5eGHH8ZoNNLX18fS0pJIJJTEpD7+8Y/zd3/3d+j1ehKJBA6Hg+bmZt7xjnfw6quvYrfbMZvNRCIRXn75ZRKJBDqdjs2bN69JCt69ezdwOdHy7Nmz9Pb28ru/+7tUVFQwNjbG+Pg4P/zhD3nf+963blLpu9/9bgYGBkRFmnw+TzabZXJyUoSMHTp0CI1Gw+TkJLlcTlRe6erqYmRkhPHxcSoqKigUCszMzDAyMiLUSaWdjXQ6zcTEBD6fj1gsxuc+9zmmpqaYmpri5MmT7Ny5k8cff5wf//jH5PN5gsEgzc3NNDQ0rOrvgQMHSCaT7N69mw0bNrBp0yYOHTrE2bNnUSqVTE9P86d/+qd87nOfY3BwkJ6eHux2O1/4whd44okniEQi6HQ6VCoVt912G7/xG7/BH//xH7NhwwaRV/JmYrfbCQQCnDp1Cq1Wy9LSErfddttVVYClKj5NTU1vWe10ySiTdpsk1gtvudF47auJmq1X338lUsLwG0XahXqzuJHE6593Xq7cMR0dHeUv/uIv0Gq1fPnLX163dOzV5uF6fbnZvt7s8dfa/ZUSwmVkfhVQFN9o8KiMzC+J7ijs6ILXW6PUZ4Nks1mqq6vR6XR4vV6y2awQ9wkGgzgcDoxGI9lsFo/HI2LWI5GIkJuXwmrUajXxeFzU24/H44RCISorK3E4HKs+/JPJJPF4nHQ6jdFoFP+Vks7y+TzPPPMMjz/++DVzC1KpFMFgkJKSEnQ6HX6/H7VaLVaCvV4v0WgUi8UiKtyo1WqcTieBQECIFVksFiYnJ0XMvPTFL8UmS8bRlcaFFP8qVdkpKSnh2LFjjI2N0dTUxLZt24jFYmKFXUpcLSkpIRQKidwFo9HIwsICRqNRxFJL/V0puFQoFAiFQiKpTlqJX2k0FYtFkSAtnWMwGNBoNCSTSZEHIiWjXkksFiORSKBQKCgtLSWVSuHxeIToj5SkbbfbRX6Fw+HAYrEQi8WYnZ0VYkNSbLNWqyUSiaDVaoUwlXQfhUJB5CSo1WomJiaw2+1YLBaUSiVLS0siZ2Xl3EgsLi6STqcxGAyoVCpsNhvLy8uizGBFRQUjIyNUVVWJlUhp3H0+n9jJ0Gq1mM1murq6RPKu2WwW70zXDti+jk9wvb9fSTQaJZVKCWN7pVCUbCDJFItFIpEI3d3dOJ1OWltbbyi/6leZm33HZGR+EchOgMwtx/U+TKV60isrXEhb1CvDZqRKIlKIzMrtYqkWtVqtFiEWVzNupCoekkKkFN7icrlIpVK0t7dfs9rGlaEbK/v4Rlhvi/3K8IUrry8p5UoJdS+++CJ9fX20t7fznve8B41GI/ojhSOtV7VkvWtJ4RFX9kka16uFIMDP5mHl9W+U9cZR2uZf2Y/rtbtyftc7R6rCcq3VZWl8V4Z1Xfn3QqEgwiduFkmwS9rlGBsbw+VyiWo3b7YTsLLfEr/OBp7MWnK5HNFoVCgj/7o/H7ITIPN2RA4HkvmV42rG7nrG5tWMNymJDa4vnCOtZEusrG3f3Nx83dCD9RJcfx7Wu/dr3YM0LtKqbi6XQ6vVYjQayefza77Ar7cdfuW1JOP0Sq4XUgGr5+FmWW8c38gq9ZXzeyU3Uk5RoVBcdw6u5Whejyv7J+1KvdGxu1F+3Q07masjVU2TkZF5+yI7ATIybzJSPPutislk4tFHH+XRRx/9ZXdF5g2gVCrZvHnzGzo3m82Szd6Ygybt0gC/kJVeaUdmZbIm/MwRkfojhZ6t/NvV2lt5TD6fFztFb8R5kpTFJadx5bWlRH4pgfxG+3SjXDk2N3q+tAMl7XRJO6LXOjabzYoStbeCE3iju1XScel0eo3ewvXGVXp2pPfmVhgXGRmQS4TKyMjIyPw/vve97/Gtb33rhnQG5ubm+PrXv87Xv/51kbvwVpJKpfjOd77D2NiYKF+6srTozMwM//W//le++MUv3lD/pWRxidOnT/OVr3yFv//7v7/pvkmlJT/3uc/xjW98Y831p6amOHbsGEeOHLlm33K53BsqL5nP53niiScYGhq6qblIp9OcP3+ez372s5w+fXrVeFxJKpWiq6uLT3/601y4cOGax77dkMTXrkWxWGR5eZk//MM/5IUXXhBlaL/73e8yPT19zdK7Z86c4Zvf/Oab3W0Zmbcc2QmQkZGRkQEul0EMh8M3dKzD4eDee++9rqr2m4VarWbjxo04nU40Gg3j4+McPHhQ/L26uprq6mpsNtsNOQGDg4McPXpU/Lxjxw6cTucbuheFQkFdXR1utxuz2bzm+larlZqaGmpra9c9X3Ii+vr6hBbGzV5/48aNQijrRtHpdJSXl7N161ZSqdQNHbt582bS6fQbFqT7RZLNZhkfH+fSpUskEolrHisJ/23ZsgWdTkc+n8dgMLBx40bsdvs1wzrdbrcoNS0jcyshhwPJ/NoSDofp7e2lt7eXf/Nv/g16vX7dbdyViZ+SIuZ3v/tdHn/8cerq6n6p1VBW1rMuFovEYjF6e3spLS2ltbX1htspFAokk0meeuopOjs7aWxsxOl0vlXdJp/Pc+LECRoaGigtLUWn061J5h4eHmZmZob77rvvpkIc3kz8fj8jIyOoVCpRM/56cc6S2NXBgwdRqVRs3rx5jfEniU8dPXqU+++//4ZKOK7kylrlbxYarYZcLsfs7CyxWIzq6mpKSkrI5/OEw2E8Hg8mkwm73S4qOknPzsLCArlcDrvdLnQjpOpN8Xgcr9eLSqXCYrFQUlIi7lmqgBUOh4VSdjQaRafTibak8raSQnAgEODixYscOXKEyspKYfyr1WpRmWZ+fh63243FYlljGI+NjXH8+HFmZmYoKyujra1NlFiVqk95vV7a29uFgnY8HmdmZgaNRkNDQ8OaNqWqYLlcjlAohNfrpbKykpKSEqLRKEtLS6IyVygUEhWWJJG3p59+GpvNRnt7O0qlkvLycgqFAtPT02SzWSwWC+Xl5aRSKfr6+kTJzXw+T3l5OaFQiHQ6LcJ74vE48/PzmM1mysrKUKlUJBIJQqEQ2WyW2tpacc9SOeKr4fV6SSQSeL3eVcULkskk0WiUcDiMWq2mrq4OpVJJsVgkkUgwPT2NTqejurpaiDPm83k2btxIb28ver0eq9WKRqNhZGSEpqYmlpeX0Wg0oorWzMwMFRUVlJSUoNVqyWazQkjN5XKhVCqFxsvGjRuZm5vDZrNhMpmIxWL88Ic/FGrqNTU1a7Q8ABKJBIFAQOibSOOaSqXEM1csFslkMkQiEQKBgBBhczqdhMNhUXFMRuZWQt4JkPm1pVgs4vP56OrquubW9vT0NNFodNV5p0+fFgqev0x8Pt+qlUNJKVgS2boZisUi4+PjwgB8KykWiywtLZFOp4VBPDU1teqYWCxGIBB4S/txPQKBAGfPnhUVjm50vovFIrOzs0xOTq4RFpP+nsvl8Hq9b2jlORaLCZXTN5NcNsfS0hK5XI7h4WEWFxcJh8OEw2G6urrI5/OMj4/j8XhEeV2J6elp+vr6mJycpFgscunSJaEyPTk5KQS0FhcX1zyf+Xyerq4uhoeHicfjDA4OMjMzQzqdZmFhgenpafL5PB6PRxhr0WiUxcXFNeOXyWTweDwUCgXOnTu37vgXCgXC4fCa8U+n00IRORAIMDQ0RCKRYH5+nkuXLok5m5ubu+o7Eo/H8fl85HI5Tp48uUpVW3rGh4aGCIfDwjlKpVLMzs6SSqVEf6T+JxIJoXLe09MDXNb2GB4eZmJigsXFRXK5nBgbSY24q6uLYrHI2NgYwWCQhYUFRkZGyOVyjIyMMD8/f93PCWmHYn5+XigkRyIRMc7j4+NMTU2Rz+dZXl5meHiYRCLB3Nwcvb29ovzxzMwM4XCYxcVFjh07BkAwGKSvr4+5uTmSySR9fX1cunSJVCrFxMQEFy9eFPN45swZ8bk2Pz/P+Pg4hUKB/v5+FhcXWVpa4siRI3g8HrLZLENDQ4yOjgqHVqoYtx4+n4+pqSl8Ph/FYpFwOCxCf6Sy0tI7ISlkZzIZTp48KcZEUmS+UsRRRubtjuwEyNyySIlqmUyGZDIpEu8ktc1MJkMmkyGVSq2J55RqsjscDux2+7of3FJZx9dff52pqSmxBV5RUYHL5UKlUpHNZkmn0yIhES7vHKy87pVtSwZlOp0mlUqJeNVUKkUmkxGlIlOplDAKcrkcqVSKZDIpjKlsNsvFixe5cOECqVSKfD6PWq2msrJSrFZL95BOp8lkMsKQlcZN6rtSqcRgMNDe3o5KpVr3C1M6J5FIkM1mRX+l3Qhp/KV2pfuS+iD9PpPJAJfVYktKSlAqlczNzXH48GGSySTZbFasKDc0NIjVNWlcpXuXfpdMJsVYrxxzKWZcGudrGfFSfPjKfudyOXw+H0NDQ2zdupV77rln3V2AldfJZDIoFApMJhO1tbU4nc5VfV6Z+KlWq2lqahI7SVfO+cqkTWmspV2GyclJjh07Jp77lf1fef7NIhmjFRUVLCwsMD4+zvT0NFNTU7zwwgs0NjYyMzPD1NSUMAbhsqhWNBplZmaG+fl5NmzYwPnz5zl//jynTp2ip6eHkpISSkpKCAaDa0JPysrK6OnpYWpqCr1ez+LiIh6PB7VaTSKRIBaLiZ0ASYuivLyciooKtmzZgtPpFLsiqVQKr9fLxo0befbZZ9d1lpqbm6mpqaG0tJTNmzcLNeFYLEY0GkWlUmG1Wnn11VfFQsGLL75IY2MjABcvXrxq2E4sFiMcDtPe3s6TTz5JKBRCr9eTy+Xo7u4GLucfJBIJtFotuVwOnU5HQ0ODEJIrKysjmUzyz//8zzidTpqamohGo/zgBz9Ap9Ph8XgYGhpifn5evE/S2Pj9foaGhnjxxRfZuHGjMJJHR0e5ePEipaWlTE1NceHCheuGHhWLRV566SV8Ph82m42ysjJCoRBw2Yg/ffo0ExMTNDY2otfr+fGPf4zP5+P8+fO8/PLL1NfXYzQaGR0dRaFQkM1mOXz4MHBZJHF4eJi5uTlUKhV+v5+TJ09SXl7O7Owsr7/+OouLi3R0dPCv//qvzM3N4fF4OHv2LDMzMzQ1NXHmzBkWFxfFwszCwgItLS1cuHCBc+fOYbVaaWxspLm5mfr6+nVFGy9evMj58+fJ5/M0NzcTDofJZrMiMTgYDDI/P086nebMmTN0d3dTV1fH888/L0LAIpEIly5dolAokEgkiEajQkNGRubtjBwOJHPLIm37T05O4vV6ueuuu9DpdMzOzjI0NERFRYUQampoaKC+vl6cK31gz87OXrP9sbExvv/977OwsEAkEqGurk6oosbjccbGxgiHw9TW1lJTU0OxWMTj8bC4uEgymaSuro7q6uo1IUNLS0sMDw9TLBZxuVw0Nzdz9OhRXC4XjY2NxONxhoeHyefz7Ny5k2AwyOTkJMlkkttuu42pqSmMRiMvvPCCENRqaWkhFAoRCAQwGAzCAJ+ammJpaQmj0YjL5aK8vJxIJML09DTxeJzy8nJh3FyLRCLBxMQEY2NjtLe34/f7sdlsVFVVidChfD5PT08PqVQKp9NJc3MzGo2GoaEhYcjqdDra29uZmJjAZrMRDoc5ffo03/nOd6isrKStrQ2tVsvi4iKhUEjoOCwsLBAMBsnlclitVpqbm1lYWODSpUtYLBaampoYHBykpaWFyspKsSIaCARIp9Ns3ryZkpKSNZVvpNU/r9fL8vIyNpuNpqYmFhYWGBsbY2FhgSNHjnDfffetmkfJyJZCT8LhMDqdbpUiczqdxu/3c+nSJUwmEw0NDeh0OmKxGENDQ/j9fjFPXq931ZxLAnSBQIDx8XFsNhsbNmzg4MGDnDhxgkAggNvt5r777mNpaYlAICAMmG3btmE2m286PEFv0NPS0oLBYKC0tJRkMsnAwACBQACj0UhPT48oHSs9ZxJmsxm32y3es/vvv59nnnmGiooKnE4nH/jAB7jnnnv4xCc+QWlpqThPqqZz5513Eo/HGR0dpa6ujkOHDtHW1kZzczMGgwGlUondbhehYZLuhBSrLc2HxWJhy5YtqFSqVU7qSiQD78rzjUajCGuRDNOpqSnm5+dZXFxkYGAAuGzoS8b3lZSVlbFx40Zx/WKxiMlkWqXcbDAY+J//839iMpl44IEHsNlsokSspEQ9PT1NMBhErVaj1+vJ5/P4fD7m5uZwOBxUV1fT0dFBc3MzuVxOtDE8PEwwGBQO9Ic//GGKxSLNzc20tbVx/PhxVCoVMzMzNDQ04HK5rvo8FItFfvCDH/Ctb32L6upqZmdnRWjb4cOHyeVyuFwuNBoNbW1tPP/88+zatQufz0c4HMbhcOBwONi4cSMAHo9HhFE5HA7x/2q1GofDQWlpqQjLLCkpYePGjSiVSpEwPTo6yquvvsqDDz5IT08PBoMBrVZLsVjEarWyefNm9Hr9qspV0hxf7V04deoUmUyGj370owDU1taKUDWVSiUcf0kbRfoMkIQVtVoter1e5IL86Ec/EuKOTU1N7Nu376rjKyPzy0beCZC5ZRkdHeXkyZPk83mampr4T//pPzE4OCiMlC996UtUVVWxtLREd3e3WDH/D//hP2CxWNiwYQM2m42ZmZl121coFLS0tFBbW8vtt9/Ozp07qa6uFn8fHBxEoVBQVlbGn/7pn4pt65MnTxIKhejs7ORv/uZv1k24czqdDA0NMTg4iM/nI5/PMzw8jMPh4LnnnuPgwYNUVlayc+dOvva1r4nY4JdffpmJiQn6+/upqamhoaGBjo4O7rrrLurq6mhvb+fQoUOcP3+eRCJBd3c3Tz/9NE1NTYyNjXHo0CFisRhf//rXqaqqIhwOc/bsWV577bXrjrfJZCKbzTI8PMxrr73Grl27uHjxIi+++CJnzpwhlUrx+c9/noqKCrZv304oFOK//Jf/QiQS4dixY7jdbkwmE36/X6xmDg4OotPpaGpqoqGhgfvvv5+Ghgaqqqrw+Xy89tprJJNJTp8+zeuvv45arcbtdnPp0iVeffVVSktLuXjxIgcPHmRqaop9+/bxpS99iYWFBc6dO8epU6fYvn07arWaYDC47spcX18fx44dY3R0lO3bt9Pf38/hw4dRqVQ0NzdTVlbGvffeu278fTgc5hvf+AahUIjNmzdjNBr5z//5P5NMJoHLyrrLy8ts2bKFM2fOcODAAaampjCbzTQ0NPDP//zPJBIJfvSjH62Z87GxMZ5//nmefPJJdu7cKUJAqqurueOOO2htbeWee+5BpVLx8ssv4/F46OjoQK1W4/f71zV+r4dSsVqXoVgsotfrcblclJWVsWPHDt773veyb9++Ve/Cevh8PgwGA1arle3bt/PKK6+wf/9+nn32WYaHh9ccv2/fPjQaDQcPHsRisZDP55mYmBDv2LW4dOmSGPOV2hI3shtSKBTo6ekRYm4r57lQKIgcBqfTye23386dd97Jo48+SkNDw7rtSXkN0vnr9eH222/na1/7Gr/7u7/LwsICx48fF8d5PB4mJycxm81EIpFVO4ypVErkFRgMBqHtsRKTyYROp1u1U5NIJHjxxRf5m7/5G/bv309zc7NQww4Gg9ccH7VaLXbo4GdjWlJSQjabFSFFkoq1pDy+0kmKxWJks1mhag2Xnecrd2hXqgqvnEdpZ1LaAWpoaGDHjh18/OMf5/bbbxeGuTQeK8ddcvLGxsbW3fmQ8qmkxOGrPTNarZaGhgZKSkq4cOECf/qnf4rJZFp1jEKhYP/+/bzjHe9g//79tLW1XXNsZWR+2cg7ATK3LJVVlbhLFMzNzZHP55meniaRSKDT6XA6nZSWlmI2m7FarQSDQfx+P263m7GxMZE4JiU5Xg1pZU6j0Yja39KXRF1dHRUVFati8F977TUMBgMGg4HJyUkcDgfRaBStVrtqBVqpVHLPPfdw6NAhLl26xK5du6irq8PhcDAwMEAul6Ojo4OpqSlhmKhUKvR6PfX19dTW1mI0GsUKl/RlqdfrRU3r5eVlXn75ZbZu3YrBYGDfvn2i4sV73vMeRkZGiEajBIPB61bOgJ+t2JaUlFBZWYlarWbr1q289tprHDhwAJfLxeLiIjqdTqzcJpNJ5ufn6e/vZ2Jigvr6ejo7OwHEyuhKoayVBqhGo0Gr1ZLP53n22We56667cDgcWK1WWlpa+N//+3+za9cudDodFouF2tpa1Go18XhchEZNTU3xx3/8x2zZsoX29vZ1E3Bff/11DAYDt99+OxqNhi1btvCtb30Li8Wyav6vpFAocPToUfR6PSaTCaPRiN1u5/jx43zmM58R91hRUSHG6nvf+x46nY76+nr0er14pnp6eshkMqvmfGBggHA4jNPpRK/X8453vAOz2YzP50Oj0awyNrVaLYcPH+bVV1+lo6NDrITfLCOjIwSnp5mfn6evr49isUhnZyednZ3CaZVWnaWY9YmJCZaWlshkMoTDYYaHh0V4z969ewmFQhw/fpxsNovVamXDhg3rvnMlJSUiUXXjxo14vV4R3iQl5vb19REIBGhqaqK0tJTq6moOHz5MSUkJPp+PxcVFpqamOH/+PGVlZczNzTE5OUlzczPl5eWrric9C93d3TgcDkZHR5mamhIrzr29vWK3rKKigmg0ysmTJ7Hb7Wi1WsrKylYlN0s7gKFQiK6uLux2O/Pz88KR6e3tZXJyklgsxssvv8yOHTswGo3U1tZSX19POp1mdHSU5eVl2traqK2tZf/+/QwODjIxMUE0GmX37t0olUpGRkbEzpPT6SSXy9Hf34/P5+Puu++mqamJkZER8VxJuzrxeJy5uTkRn+90OkkkEvT19eHz+di1a9cqjQOFQsEnP/lJxsbGSKfTpNNphoeHSafTfPCDHySRSLC0tCTu7eMf/zi1tbWk02kSiQSHDx8WoZNut1vsMEmx9cPDw2g0GiorK0X/6+vrRS7JuXPnqKmpEXkAHR0dPPDAA5w4cQKDwUA4HBZzLzn+LpeL6elpDAYDi4uLbNy4ka6uLtra2tYtdnDfffcxNTXFwYMH2bx5M6OjoywtLaHVaqmrq6Ovr4+lpSW2bduG3++nr6+PkZERoadSUlLC4uIiMzMzXLx4kY6ODjF2v8yiETIyN4LsBMjcsvi8PjL+aSwWC2VlZaTTaeLxONlsFq1Wi9lsFoalFLctJaRKRvWVhudKVq5IKRQKUqkU0WhUbJ+XlJRgNBpFyApcDhGyWq0i12D//v1rVpCldqurq0X40ujoKK2trRgMBjKZDGq1mtLSUhQKBXfccQcWi0UYo1JllpUVcwqFAn6/X1QBkURuwuGwcBZKS0spFArE43EuXLjAli1bcDgcLC8vE4vFbigZWOqD0WgELq+85XI5otGoaHtlJaV4PE48Hmfbtm0UCgVSqRSTk5NidX490Scp/lipVIov0WAwKOZLCuOQVjBVKhUGg4GSkhIUCoVYAXc4HDQ1NRGJRAiHw8zPz6PVaikpKVl1T5FIBLVaLQxqjUbD8vIy6XT6uuI/sVhMzL30LPn9fvE7tVotQmbsdjvxeJxUKiXuYWUc+5VznsvlyOfzaLValEolbrebdDotnkepGpRSqaSsrEysyobDYWZnZ2lqarpp0auWlhZs1svO5s6dOykWi9TV1VFVVcWdd96J0WhEoVCIUKOmpiYefvhhLBaLcBJNJhMajYYdO3bQ0dFBKBRicXERs9mM0WjE7Xav6wSo1WpaW1vR6XQ4HA5uu+02otGoCAHS6XTs3bsXs9lMSUmJcGylMDedTseOHTuorq4WCwDvf//7RZtX0t7eLp4bp9NJNBrlrrvuAi47b3V1dTzyyCMinM/hcKDT6TCZTOj1+jVjq9frueeee8S7ZjKZ+K3f+i0qKyvFynR5eTlqtZrNmzfjcrmEkyjNuzR+ZWVlGAwGHnjgAUwmEwqFAqPRSH19PQaDgf3792M0GqmoqBDvyN69ezEajdTU1KDRaNizZw8GgwGj0YjJZKKjowOz2YzBYBAhVuXl5eh0Ovbs2SNCoVaiUCjYs2cPXq8Xo9FIoVBg3759olJRZ2cniUQCg8GA2+2ms7MTu91Oc3OzaM9kMqHVatFqtVRUVHD//fej0Wioq6vjrrvuwu1243Q62b9/v9g5uv3222lqaqK8vByz2cwHPvABmpubqaiooLy8nEwmg16vR6lUivyb97///bhcLkpKSrj33nvRaDTC6SwWi9TU1Kx59wFaW1txOByEw2G0Wi179uxBp9NRUVGB1WoVz5yUoyIdXygUOH36NLt372bDhg2o1WpsNttVq8zJyLwdkZ0AmVuW8fFxGO3m4YcfxmazodFoCIfDLC0tEY1GRaJkNBoVcfMajQaz2SxKECYSCZLJJKFQSBgyV2I2m8lkMvj9fkKhECUlJaRSKWHgJhIJUqkUsViM2tpa8aVXWlqKxWIRq+JXotfrKS0tZXp6mu7ubn7jN34DlUpFVVWV2AovKSmhs7MTtVotVkVjsZgwogwGg4gbn5+fx2g0ikRZhUJBfX09fr9fxDBL294/+tGPuPvuuykUCszNzYmdklgshkKhEEnQ642HlPyWTCZZXFxEq9VSX1+PyWQSY6vRaEQfADo7O3G73Zw6dYqxsTFxH1LYgDQvUhWTlfcbjUZpbGwUoTX5fB6v1ytiodPpNCqVShjE0txIX/wbNmzghz/8IQsLC6LU4Eqqq6vJ5S5XxYnFYszOzgoHLRaLkUqliEQi6z4fbreb2dlZYXwvLy+LXBTJUM9msySTSZaWlqiurl7XAF5vzv1+P36/n3g8LkI7pIRFqdyjx+PB4XCgVqvZsmULFouFn/70pyJ2+2adgN27drPdclnx+krF6Pvvv59UKoVOpxPPc3l5OXv27BGKqVJsdmlpKQ899BAKhQK32017ezu5XG6N83olbW1ttLW1iVC8lYnUFouFxx9/fM34Swq2CoWCe++9d9XfP/nJT171Xjdu3Eh7e7vYNbLZbCLfBy4/Fzt37hQ/19fXk8vlxArvlQ6s3W7nve9976prSDtCgFghBnj3u98tSkpKDopk1K90fu+44w4RhiMlkwNrxgHgfe9736qfpfmSjNKysjK2bt1KOp1etSOnUCjYtGnTumOkUCioqakR74iUPCvtPnZ2dpLL5chms7S0tIjzKisrqaioIJ/Prxov6R6TyaTIaVAqleh0ulV5SSvnAeBTn/rUmntLJpPCEQBE3gGwqiSvVMxBUgG+EqfTicPhEEUN3vOe94g+q9VqMa7Hjx/HaDSybds2mpubyWQy/Lf/9t/YvXs3u3btYteuXeuOoYzM2xnZCZC5ZVGpVORWbMNLNcWHhoYYHx9nYWGBubk5+vr6WFxcFDWsP/ShD9HX14fdbmdqaorFxUWOHj3Kb/3Wb637JbFt2za8Xi+5XA63283CwgI+n4+enh7y+bwoZdnf38+jjz7KiRMnOHfuHHC5vvb9999/VaGZrVu3olQq6erqEvGwjzzyCMPDwzz//PPcfvvthMNhXC4XXq+X2dlZDh8+LL6YmpubhRppXV2dqBhSUlIituy/9rWv4Xa7yeVymM1mEYoiJbMGg0GWl5fxer0MDAyg1+upra2lqalp3TCYTCbD0NAQzc3NnD9/npaWFnbt2oXD4eCd73wnfX19woDevn07ZrOZf/mXf+Gee+7B4XCwfft2lEolAwMDGI1G2traRPLgq6++SkNDA0tLS3g8HlGa8Xd+53f48Y9/LM4ZHh7mU5/6lEjozefznD9/npqaGpF0PT8/TyAQENv6GzduXHcl8F3vehdnzpwR/T59+jQf+MAHRJLzwsICXV1d7Nu3b9VKqVKp5O6772Z4eFiErng8Hj772c+i1+tF7fVQKMTExASHDx/mkUceoaGhYU3c8Xpzvn37dpFUfOHCBYrFItXV1TgcDgwGAwsLCwwPD/Pggw9y6tQpzGYz27dvp76+nk2bNq27+v3zoFAoViUCryQej7OwsMDo6CiZTIb7779/1XnSLs6NXONaP693/M06OitZmRh8I31b7314IygUinVD09Zr/41ec735kqqAvZG2pEWUK7kyj2LltdYbW8kZAN5QX65s40aOvd4zIjmm19LraGhoEGGN2WyWbDZLe3v7up8pMjK3CoqiXNRW5hajOwo7uuD89iKdhsurUJJokfRhvnIFceUjLv0srehJq1gr47OvZGWliZUJf1eG46z8wpNWqFcmjq3XtlQZplAoiNUyqb+SCJMUgrHynlbeSz6fF2UGpTZXHiet/q/MS5BKTUqrusViUfz3ymuspK+vj5MnT1JXV8fu3bsxGo1rKuZIlTykcBepn8lkUggTXa2fmUxGlGtc7+/SDsXKLfcrj5OuLfUlnU6LZMr17unKxEsp/GLl/Ehzu/Jc6Typ38VicVVi48rzV86jdGwul+OTn/wkf/d3fydKF1455/Cz0qErnyXpmSkWi6jVahHuls/nVxlHUhvSO9O1A7b/rEiN4Hp/vx7SfV55XTksQuZXhZXvO/zs8/daO1sr+XnfMRmZtwJ5J0DmlkXaHl8ZJy79fr1Y85U/S8awZJRe60N8ZWKodNyVq5pX/ryyX9e7hyvPX5mLIBmDV/uiWbnKejXDS1o1u7INg8Gw6pzrfZklEgkWFhbo7e3F6/Wyf//+NaX3rlwtXdm+dL1rGYiSA7BeX1aGTqx0uK48buVYSiquV7veyt9L8cvX6+N69yat+q/37EmlJ6W/9fb2Mjo6itlsZv/+/eKepfu6cq5UKpUw7Fe2vfI+pZCKq4VwvdXcqCEkI3Orst7nkfzMy9zqyE6AzC3NjRps6513M+fc7If9zXxBXMs4vZE2buSYK7fl38gXmEajEcmU19o5uVq71wu7uJE+3Wjoxsp+3Mw8vNEv9Wude+XfqqurRd5Ie3v7qlCFqzk/6/3uateSkZF565DfMZlfJWQnQEZG5obQaDTU1tauSrqTuXkqKiqoqKj4ZXdjXS6HlxXEDo9UV12qxnOzSFWSlEolhUKBmZkZnE4nBoNh3TjyN4tCoUAwGKRQKFBSUnLNWO/1yGazTE5OApedtkwmQywWE/kYsiEoIyPzq4AsFiYjIyMjA0A+n1tVKra/v5/e3l6Wl5ffUHuJREKIRhUKBY4cOcLi4uK6om1vJoVCgZGREfr7+1eJZt0o6XSan/70pzz77LMEAgFmZ2c5e/bsdYW1ZGRkZG4lZCdARuYaSAmPb8f8+TfSt5XnXPnv5+nDL4qb6ffPe69v1vj+ovh55xFgaSnIiy++KH4nCVmVlJRcczyv9u/IkSMMDAyIXIVNmzZRWlqKVqu96baudr/r/VMqldTU1FBXV4fRaLxum1f+Xq/X8/DDD5NIJMjlcrhcLlpbW7HZbNe89tX+JiMjI/N2RA4HkpG5CpJy6Je//GV+53d+hwceeOCX3aVVPPvss1RWVtLQ0EBZWdkNnTM5OclPf/pTotEon/nMZ5iamsLn86FWq7nzzjtvug9S3fq3MrRjJZKS6Pj4OJOTk/z7f//vV1XNWYlUt16tVhOLxfirv/orNm/ezG233baqpvnVmJycZGFhgVwux913331D/SsWLyvbfuUrX2HHjh3s2LGD5ubmm7nFN0w+n6dQKLyhkpmXDVUFP3nuJyjHLlJdXc22bdtYWFhAobhcoz+bzdLd3Y3JZBLK0+3t7Wg0GsbHxwkEAthsNiHO9I1vfIPh4WEx1m1tbUxMTOBwONDr9RQKBUKhENPT0+h0OpqamigUCszPzzM4OMi+ffsYGxvD4XBQUVEhDHCJSCQi1Kh37NiBx+OhtLSUyspKdDodg4ODQuBrdnaWsbExWltbCQQCOJ1OysvLsdvtFAoFoTRsNBopKytbpS6cyWSIx+PMzs7idDoJBAL09fVRU1OD2Wxmfn6e9vZ2Ifi1sLDAxMQExWKRnTt3XjV3RkZGRuaXjbwTICNzFRQKBVVVVavEkd5OuN1uYVDdKHa7nc7OTnw+n4iXLi0txeFwvKE+nDt3junp6Td07huhv7+f0dFR7rjjDj70oQ9dtRa+3+9nYmJC9M1gMFBfX49GoxHhKdfDZDJRWlpKaWnpDfdPqoLU0NCAUqm84Wu9GUxNTQl9iptFMlKrq6qprKxk48aNGAwGobQ8OTnJ8PAwVqsVu93O+Pg4x48fR6FQcOTIEVGCdm5ujqeffhqlUklzczPV1dU0NDTQ2NiIWq3G4/EwMzNDIBBgZGSEF154gdbWVuCyGNP4+DhKpZIDBw4wPj5OTU0NfX19vPzyy2v6LOUVvPTSS6RSKRoaGujt7eX73/++KLN69uxZotEo6XSakZERent7aW1t5fz585w4cYKxsTH8fj8//OEPqa6uxufz0dvbuyokSq1Wk0qlWFxcFDkNJ0+epLu7m3g8Tm1tLd/4xjdIpVIcOHCAixcvUlpaSn19PU899dQbDqWSkZGReauRdwJkbmlSqRShUAhAqPNKtdaj0Sh6vR6r1UoulyMSiRAMBqmrqyMQCGAwGDCZTFdNeFQoFJjNZnQ6HdlsllAoRCqVwmq1iuTARCJBNBolk8lgtVoxmUxXFUWSasMvLy8Tj8dxu91otVqSySQejwez2YxCcVmt12Aw4HQ6r9qOpA0g1YtPJBLMzMxQUVFBKpWiWCyi1WpFG4lEQqgbGwwGoUKaTCbJZrOrQia8Xi+FQgG9Xo/NZkOpVBIOh4nH42g0GkpKStDpdExPT3P06FGam5vR6/W4XC40Gg3RaJRkMgmATqfDarUKJWej0YjFYiEej1NWVnbVFVJp9TWZTKJUKikvLycejzM9Pc3c3Bx33HEHjY2Na8a6WCySSqU4deoU0WgUp9NJSUkJLpcLm82GSqUiGo2ysLCASqUSfchkMiQSCSKRCHq9HqfTSTqdJp1Oo9VqSaVSTE9P43A4UCgUFAoFXC6XeE5WPjMqlQq73Y5arRbzk81mCYfDZLNZkagaiUSIxWKYzWb0er1IPrXZbKjVaiKRCPl8Hp1Oh8PhIJvNMjMzg8ViwWg0ks/nWVxcpKGhgWAwSHd3NxMTE1RWVlJZWbmq9Oj1kI6zlFgoms3iPhUKhVA8ttvtlJeXc/bsWVKpFNXV1ajVakpKSsQ8SaJ5H/jAB7Db7VgsFqxWq3gHpWdxZmZGKHvbbDaSySQvv/wyzc3NbNu2TTwrTqeT5eVlAoHAmj5rNBq0Wi2BQACr1YrD4aBQKLCwsMDY2BgWi4WlpSWy2ayYM6VSid1ux2g0Mjc3x/LyMtXV1czPz5NKpUilUuJdl5CSpKX3THKOisUiJSUllJSU0N/fTz6fp6urC61WS0NDA7lcjrm5OfGuycjIyLzdkJ0AmVuWRCKBJ+nD4/FgNBoJBALU1dWRTqeZn5+nWCwSiUTo7OwELoeSnD59mkceeQSPx0M+n8flct1QuIakChyPx/H5fLS1tZHL5fD5fHi9XrHKuWnTpqs6FalUinA4jMfjIRQKkc1mKS8vJ5PJMDw8TKFQoK6uDr/fj8ViQafTrRK5Wkk+n8fr9Yq68nq9nrNnz7JhwwZUKhXxeByVSsXOnTvJZDLMzMyQSqWEMyQRDocJBAJYLBaam5uZmZnB5/NRLBYxmUxks1kcDgdTU1OkUinhGG3cuJGFhQUuXbpEPp+nubkZq9UqriWF4qhUKpRKJZFIhLNnz1JWVkZDQwOLi4vrhjBJRvPCwgLRaFQ4OtI/yZHz+/1XrVKUTqc5f/48hUKBtrY2gsGgMNjj8TjBYBCNRoPP5+O+++5DqVSKecxms+RyOTo7O4WKslarpaqqirNnz9LY2IhGo0GpVOJwOG5IBTebzTI9PU0ul8Pv91NeXo7T6SQUCnH+/Hm2bt1KaWkpS0tLTE5O0tnZSSQSEeJfGo1GOA8XL17E7XbjdrtRKpW8/vrrOJ1OvF4vIyMjDAwMsHfvXuGQ3XRpWxTw/5wirVaLTqdDp9OJylCpVIru7m42bdrE/v37yWQylJaWMjs7i1arJZPJ4Pf7RZiYZDxLhrCkgbCwsEA4HBYiaW63m6mpKfR6Pbfddhs6nY66ujp0Ot0qsb5Vff1/Dpder6esrGyVgzo+Ps62bdvEDp5arcZsNlNeXo5CoaC2tpbZ2VlGRkbErkEoFMJiuazilEwmV4VVaTQaseOmUqnQarW4XC7Ky8tJp9NCAG5ubk6ES8ViMdxut3AGpT7LyMjIvF14+8U4yMjcIP0D/Rw6dIh0Os2mTZv48Y9/zPz8PCMjIxw4cIBNmzbx/e9/n5GRESHadOjQIQYGBti0aRPHjh1bN8xgPaRwh7q6Ov7hH/6BmZkZurq6OHfuHIuLi2zZsoUnnnhCrBCux9zcHKdPnyaTyVBTU8MTTzzB2bNn0Wg0mEwm/uf//J9iVXV4eJju7u5125HEqYLBINPT0/j9frRaLT6fj2effRabzUYwGOTll18mGo0yMjLCyy+/TKFQoKamhng8LtqyWCz4/X5OnDhBPp/nK1/5CgaDAbfbTTwe58CBA/j9fk6dOoXT6cTn8/E//sf/AGDXrl1UVFTQ2tpKZ2cner2erq4uzpw5g8lkwm63Mzw8zNGjRykrK6Orq4uuri5mZ2dF+cX1CIfD/PjHP2Z8fJyOjg7sdjt///d/j1qtpqKigrq6OrZs2SJ2Tq4cG5vNRmtrK5s2bWLTpk20tbWJv4+PjxMOh6mqquKpp54SOxTHjh3jtddeY9u2bXR3dzM1NQVcdv6OHj2KxWJhdnaW06dPMzg4SDQaJRqN3tCzs7y8zPe//32qqqpYWlri/Pnz9PX1UVZWxlNPPSXUnpeXl+nv70elUvHtb38bm81GY2MjiUSCb33rWxgMBoLBIBMTEwSDQUwmEydPniQQCNDW1kZLSwtut5vdu3djMpneUAibUqkkl8sJp0/KM1AoFFitVv7pn/6JzZs3s3HjRnK5HCMjI/zX//pfMRqNNDc3U1lZST6fx+fzieuHQiHm5+dX7VwZDAa0Wi3RaJRisSh2XDQajXD4pDyTQqEg/l0N6e/RaJR4PI7NZhPXWonUdigUolgsUlpaKnaJ2tvbufvuu9m7dy9ut1soMkv/pGusTD6WlKml35vNZqqqqmhvb2fTpk08/vjj2Gy2VTt3MjIyMm8X5J0AmVuW3t5eFKMX+Z3f+R0UCgV/8id/IkJXbDYbBw8eRK/Xs7CwgNvtRqfT4XQ62bp1q1hhzOfzN3StiooK3G432WyWO+64g5/85CeMjo5SUVHB1q1b6erqoq6ujlgsJsKFrqSxsZHS0lLOnj1LOp1mZmaGSCSCVqulrKyMpqYmrFYrTqeTaDSK3++/Zp+kUB24bLyVlpZSXV2N2WzGYDBgMBjw+/18+9vf5t3vfjfV1dUYjUbq6upEGyUlJSK0xO/3Mzs7i9lspqamhpqaGm6//XYUCgU7duwQCZtSuJEULiIZQ8lkkm9/+9t88pOfFLXgOzo6+OIXv8h9992HTqejoqKC2267jX379l31vl566SU0Gg1OpxONRkNVVRWvvfYaH//4x8X1rrcCLx2zUkUaoKWlRcSn22w2QqEQFy9eFEb/hQsXKC8vx+v1UlFRIVaGAUpLS7Hb7XR0dNDe3n7Dq7pOp5NPf/rTnDx58vLulcdDLpdj7969fPazn+W1115j+/btVFdX8+ijj/Lyyy+LVXCr1YpWq+X111/nz/7sz7Db7eJ+VCrVqrCdlfPxRjGZTFwYGKC9vZ2ysjKGhoZEiJFarebMmTM0NjZy6NAhUqkU73vf+1Cr1SwsLODz+ZiYmMBgMDAzM8OGDRt47rnnCIfDlJaWYrVaOXPmDKWlpbzvfe+jrq6O559/nnPnztHT08MjjzxCeXk5k5OTTE1N8eqrr1JWVsbAwAChUIihoSE2bNiwZtwLhQInTpxAr9eztLREVVUV+/bt45/+6Z/o7e1l165d2O120uk0586dw2KxcO7cOdra2rjnnnswGAz8l//yXzh//jwqlQqLxYLb7ebgwYP09vYyPj6O3+/n9OnTlJeXU1dXx/T0NGfPnhVq3RMTE/T39/PYY4/h8Xj47ne/y5YtW0gmk2zbto0nn3ySiYkJ/uN//I/rOq8yMjIyvwxkJ0DmlkWj1qD4f4meOp2OZDJJLBajq6uLgYEBPvnJT3Lx4kURBy7F+ep0OrEzcKMrc1eqtkoJkmVlZdTV1bFhwwaamprQ6/VXrZRz/vx5Tp06xT333ENjYyM6nY5IJMLy8jIKhULEpcKXZgAATA5JREFUcEvXudbKp9SnK3++Mom5UChgNpsJhUIi7OHKe5auaTQaRViDQqEgl8sRjUY5c+YMXq+X3bt309TURG9vLx6PB7fbLc5NJBKMjo5iNpuJx+PkcjnS6TTLy8tYLBbRV41Gg8FguKahajab8Xg8IvwILodSXW881hubeDzO8PCw2A1Qq9VoNJpV42OxWHA4HGi1Wjo7O9mwYQOpVIpMJoPH41nVpsFguOlEca/Xy1/+5V/ypS99iZmZGRKJBOl0mlAoxK5du3jyySexWCy4XC4qKipExZl8Pi/CaVKpFABarVaExkjhUStDTaTnemhoiKampqsmTl+N1rZWHvjyl7FYLJhMJj760Y+SyWTQaDQYjUb+7u/+TsT3SzHx//E//kcxrjt37iSdTmOz2dDpdPz+7/++eLYMBgNf/vKXUalUlJSUoFAo+L3f+z2USiUtLS1otVrUajX5fJ7vfe97OJ1O1Go1jY2NFAoFUX3nSpRKJTt27KBQKNDS0oJarUar1fKhD32Id7/73dhsNqamptBqtbS2tlJdXc3v/u7vipwghULBH/7hH6JUKkWegVqt5kMf+hDvete7sNvt5PN57r33XlQqFTabja9//evodDqMRiMAP/nJT3C73QDkcjkRDqXVajEYDLz//e8nk8mI42VkZGTeDshOgMwtS/uGdhTqJK+//jodHR0Eg0F0Op1YRV9eXkaj0TAzMyOSO30+HwMDA1RVVeH1ekX5wJqamqtex+l0Eg6HmZiYACAQCHDffffR1NREIBBgbGyM0tJSlpeXaWpquqqBmEwm8fv9RCIRpqamUKvVJJNJpqb+//buO8au884P/vfc3nuZO71zCod9hlUkRVKSTckSVbxysoaVFexdLxLAi10sAmNjxMDGAYJ17CRCNn7TNg4ke1d2ZEleWc0UKXZSYhmWGc4Mp7c7c++UO7f39w/ueTyVHFKUSPp+P4Bh8c495zznOeU+v6cOwO/3Y3JyEpOTk+jv70dPTw/0ej3i8Th0Ot2Cwk8+n0cqlcLAwIDoSlJSUoLe3l6YTCbU1tZiYmICIyMj6O7uxoEDB9Dd3Y3h4WFEo1H09PSIgZnDw8OipjOTyWDr1q3o6+tDMpmEVqsV4xhmZmYwNTUlAq5r167B6/XCaDRibm4Ow8PDUCqVePLJJzE2Nga73Q6FQoGBgQE8/fTTYvu+vj50dXWhsbFxxfxev349JiYmMDs7i+7ubgSDQTz11FPI5XIIBoMYGhpCe3s7du7cCWD5ftYlJSUYHBzEjRs3UFdXh2QyKfJL7t/t9/vR2dmJuro6MTh7dHQUuVwOVqtVDDD1+/0IBAIYGBhAOByG1WpFSUnJsrMyydemv78fCoVCDAKWxzjEYjFEIhFkMhmEQiG43W5UVlaKvvImkwmbNm1Cd3c3RkdHMT09jYmJCRw8eBDAzdVre3p6MDw8DEmSEIlEcOXKFbjdbmg0GigUCvT09Nx1txOdVocSV4kIBBcPTl9uHIbP50MmkxFjAOZfE4/Hs6DVqLi4eMG28qD7xeMXqqqqxH+vVHCOxWIIBoMIh8MYGhpCVVUVrFareP4cDgccDgeSySRCoRBGRkag1+uxc+fOJYGcx+NBOp1e0Hokby+Txy8AWPK+mD92R65cyGazUKlUkCRJtOAQET1IGATQQ6umugY2s4TBwUHEYjFks1loNBr4fD7U1dUhkUiIPtU6nQ4ajQaNjY3IZDJIpVKoqKiASqW67TSOGzduFN0JJElCUVERGhoakMlkcP36dXH8RCIhusYsx+l0or6+XgQk69atQ0lJiehSIE+VKM8MpNfrVyzM5XI5MWOMPFORXBAEbnYVks+vtbUVoVBIzPSiVqtRVVUlCit2ux1arRZKpRKPPfYYFAoFotGo6FoiD0JVKpVwOp3YuHGjSIc8EDqbzcLpdKK0tBQff/wxstksstksjEYjtm7dikwmg9raWphMJjFz0EoqKytRV1eHXC4nZjR6+umnodfr4fF4kEqlbjvjSkVFBeLxOObm5mAymZDP5+F0OkUQo1AoUF9fD6VSieLiYlGzHYvFRP4pFAqYTCZUVlYik8nA6/WKaSlv1z/d6XQin89Dq9VCp9OhtbUVmUxGjLfI5XKiS9OaNWvg8/lgMplEzXd9fT0kSUI0GoXBYMCTTz4J4Gbhc25uDslkEplMBs3NzeK4JSUlaGpqQjweh9vtXtWg5cVuFtbvfADrSq1fi1vQlvv73axrANzMZ5VKhQ0bNiCZTK747OXzeZHver1eDOxebH4L0WdxL7plERF9EaQ8RyrRQ+ZCGNh8Hji/Gdhkhii8ybWpwM0CQjKZXFBb+1n74crBw+KayWw2i0QiseD4K5G7dswfM/BF9Q9OJpPI5/NQq9WIxWIr9k3OZDJiOkW5cCcXkhcXtORuQ/J+ZXL3lTtZw2AxeaYeeR93mk/LpetWstmsmJ71Xl+TfD6/oFUnk8mIGWjk/umLZ0uSg8rFteTyWBZ50K5KpYJKpYJCoRAz8SyeHnTxM7OY/PdXG4FG9lghuuc6Y8DXO1d+BonuB7YE0ENP7nM8v9CjUChEgUvujvBZqVSqZWtXlUrlqgIAOV1yIfNepWu15te43mpwotwysfgz2eK0L5cnd9oXfTlqtVoEIXeTT3daE65UKj+XAAD43XgCOe+CwSCOHDkCAGhoaFg2v1bKQ0mSRMF//mcARD/0Oz0HlxowKG4WUojo82FQ3HzWiB4UDALo98JyhZ7F/ZM/r+Pc6TE+j3TdyXHv5nvLDUK+k+/frc+yn7vZ9vO8JvOvu8fjwXPPPQcAohZ/tWm5XRrv5hzKdUBnGxDkulZEnxuX+uazRvSgYBBARPQFW6615X4r17GAQkRUSDhyiYiIiIiowDAIoIfacquCEhEREdGtMQigh1oulxMLXBERERHR6jAIoIfa2NgY3nzzzfudDCIiIqKHCgcG00Orvb0dM+cOY2RkBNXV1XA6nZibm4NarYbdbodOp0NPTw9cLhdmZmYQi8VQWlqKmZkZuFwueDweGAwGsabA5cuXoVKpUFxcDJ/Pd79Pj4iIiOhzw5YAemhpNGoYjUYYjUZ4vV6YzWZcuHAB165dg0KhgCRJ6OjogEKhwOzsLLq6utDT0wOv14szZ86go6MDwWAQ0WgUv/jFL+BwOJBKpTAyMoL+/v77fXpEREREnxu2BNBDy2yxwFJcjEQigbKyMrFycCKRwNzcHGw2G1QqFSwWCwAgFAohHA6jtLQUwWAQiUQC6XQaRUVFePfdd3HgwAFMTU0hEAggFouhqqrqPp8hERER0eeDLQH00FJICiiVSrEKq0KhwCOPPAK3243jx49jbGwMzzzzjOga5HQ6UVZWBgDYvHkzhoaGcPbsWYyPj2N2dhaDg4PI5XLI5/NisLH8PyIiIqLfJ2wJoIeWJEmQJAnZbBY3btxAeXk5WlpaMDIygnfeeQc1NTUwm83LrqAaCASgVqvhcDhgt9uh1+uxceNGaLVaJJNJZLPZ+3BGRERERF8MBgH00LLZbMibzbh+/ToaGxtRWVkJhUIBr9eLDRs2wGazAYAIAsLhMC5evAibzYZPP/0Uu3fvxvr166FSqfDoo4/io48+gt1uh8lkgiRJmJ6exqlTp/Dtb39b7IuIiIjo9wGDAHpoabQaVDU04Jvf/CaKi4sB3Fw8zG63Y82aNaiqqlrQCqDX61FaWgqHw4GvfvWrKCoqEoX7p556CgqFAlqtFhqNBgqFAm63Gw6HAwaD4X6cHhEREdHnhkEAPbSUCiWcTiccDgcAoLe3F5IkIR6Pw+fziQJ+KpVCOBzG7OwsPB4PrFYr3G73ggChsrISmUxGzCqkUNwcLuP1er/w8yIiIiL6vDEIoIeaPC4AAPr6+pBKpeBwOFBaWiq+k0qlkEwmEY1GEQgEoNFolowTkCQJarX6C007ERER0f0i5Tn1CT1kLoSBzeeB85uBTeb7nRqiBx+fGSIiWoxThBIRERERFRgGAUREREREBYZjAuih1Rm73ykgejjwWSEiosUYBNBDx6UGDArg6533OyVEDw+D4uazQ0REBHBgMD2khhJAMH2/U0H08HCpgXLd/U4FERE9KBgEEBEREREVGA4MJiIiIiIqMAwCiIiIiIgKDIMAIiIiIqICwyCAiIiIiKjAcIpQeihxPPutSZJ0v5NAREREDzAGAfRQCgQCOHfuHHp6eu53Uh4o27dvR3NzM8xm8/1OChERET3AOEUoPZRSqRTC4TBiMS6FKpMkCRaLBQaDASoV43siIiJaGYMAIiIiIqICw+pCeiil02lcnZzDVEaCw+EAAExOTiKXz0Gn08FoMEKtVt/nVBIRUaHiKt30oGNLAD2ULowGsb3LhpSCcSwRET14DAqgs42BAD24WIKih1Le7ERKIeFPgsfxx088AgA4fPgw9AY9vB4vinxFMBqMt9xHIBCApJDgcrpWdcxUKoVIJIJYPIZiXzEUCs6wW2hisRjmwnNIp9MoKy27J/scHx+HSq2C0WCEwWC4J/u81/L5PLLZDIZHRuByuqDX66BS/a6lbWxsDBqtBga94TOfQyaTxmwohFQyBbfbfc9a9LK5LObm5pDL5hZ8fnMsjRlKpeqBmlUrn88jm8tibHQMZrMZJpPpoW/djMVimJ6Zhtlkhtls/lzeoTMzM0imktBqtbDb7Pd8/6vVGQO+3gkE0wwC6MHFIIAeSvKPdXE6hE3/NBGOtaUSNpsNPT096HjnY7z88ssrbn/9+nWc+Yd/gMfjweN/+qerOmY0mkb/+Bj+43/8j/jbv/1b6PX6z3wen5eZmRnEYjGUlJTc76R8rs6dOwe1Wg2v14vi4uIlf4/H45iYmEBFRcVnKuDl83mk02m8/tYbiEQiqK2txYY1JZAk6Zb77ejoQHd3N770pS9Bq9Uu+903PjyNqX/a56YdOxb8bXp6GolEYtlz+yLl80AymcUbr/1/OHjwIIqrq5FKpXDx4kU899xz6LrwMfL5/M1zaGu7w33nMTg4CK/XC71ej2Qyh/6JIF555RX8m3/zb+Bz+BZ8///8n/+DRx99FBUVFXd0nGQyg2u9/fizP/sz/Pmf/zmqqqoQDodx/fp11NTUYNu2bffkmU4mkwgEAjh16hSef/55KJXKu9pPPg+k0zm8/8ZPsX79ejRs3gyL2oLXXnsNL7/8MjQazZJt5ubmcOXKFeTzeezatUvkrcfjeSACzL6AH10njyBpsWDnM8+Ic4hEImhvb4fFYkFdXR10utWXmqemppBKpeDz3bxP+oOzePPXb8LpdGL/N77xuZwH0e8LVmXSQykcCQMApqanMDo6inw+D7/fj/HxcSQSCRiNt28FCAaDmJ6exszMzKqOqdFoYLFYMDc390CvU5DJZNDf348LFy58bsfI5/PI5XL3PR/KyspQUlICi8Wy5G/ZbBbBYBAnTpy4J8caGRlBOp2Gz+dDQ0PDqoIKr9eLtWvXLjtbk5yHNpsNuVwOyWRywd+DwSD6+/sxMDBwT9L/WalUKmg0GmSzWSgUCjgcDqxbtw4AYLFYlj2H1Tpy5AimpqbEcdxuN2ZnZ5HNZpd8t7W1FXb7ndfwqlQqlJaWYmZmBjabDR6PByUlJdi6dSsymcxdpXul41itVqxfv/4z13QrlUpotVrk83lkMhlotVrs2LFjxcBCp9OhsrISVVVVyGaz8Pv9uH79OqLR6GdKx70iv0MXz+qm0WhQVVUFn893xzOb9fT04Pz58+LfTqcTmUyGM8cRrQJbAujh9E9lzyJvEXK5m837Go0G+XwedrsdNptt+c3yeeTzeaRSv+tq0NPTg7Zb1F6Oj48jn89DoVAgmUyKwt/s7CwSiQSy2SyUSiUymQy8Xi+SySTC4TCi0SiMRiMkSUI4HEY2m4Ver4fb7ca5c+ewceNGSJKE6elpjI+Po7a2FoFAAAaDQdSEzczMYM2aNUgmk5idnUUsFoNOp0Mul4NGo8HExASAm4XNmZkZlJeXY3Z2FtevX0dvby+2bt0Kt9u9oMAq12pfvHgRVqsVRqMRCoUC4XAYa9aswfDwMBQKBSRJQiQSQV1dHSRJgt/vRyqVgkajwfT0NGw2G8xmMyKRCOLxuEjX4h/yfD6PZDKJsbExKBQK6HQ6xONxFBUVYXJyEmq1GpIkIZVKoby8HD09PSKQMxqNmJqaQlNTE4LBoCg4p1IpOJ1ORCIRSJKEdDqNdDot0hGPx5HNZtHf349PPvkEjz32GFwuF6anp5FOp6FWqzE9PY26uroFBbV8Po9EIiHSBdwchF5eXo6+vj5Eo1GUlpbC4XAsydNwOIzx8XFYLBZEIhEUFRUtuBcsFguGhoZE68Hc3JzIw3Q6jZmZGYyPj2NqagqNjY3o7u7GjRs3oFKp0NTUBKvVuuCYuVwO0WgUV65cQVFREVQqFfL5PAwGA1KpFJRKJXK5HBQKBdRqNTo6OtDc3IyxsTFotVq4XC6Ew2Gk02nodDqo1WpxrZxOJwwGgzieJElQKBSwWCxQKpVIJpPIZrMIhUIAAKvVimg0imQyCb/fj7GxMaxZswbT09PI5/PiXqqvrxf3lnwOc3NzOH36NGpra2E2m2E0GmGxWJBKpTA1NYV0Og2FQgGPx4NcLoeZmRkUFRUhHA5jdnYWRqMRwWAQ5eXlt6xBViqVcLlcUKlUUCqViEQiSCaTaGpqAgAMDw+LZyGZTMLn8+HGjRuQJAn5fB5arRZVVVUL0p9OpxGNRsVzmUgkxPdDoRDS6TQ6OzuhUqlgsVigVqsRDAbhcDiQTCahVqthtVqh1Wpx4cIFOBwOUWMfjUZRX18Pk8kkgq9oNCryNBQKIRwOI5lMwmAwQKFQQKFQYG5uDkqlEul0GpcuXUJ3dzdKS0sB3OyOMzo6ira2NoyNjSGfz8NkMsHpdC64l6empuD3+6HT6aDX6zE1NQWXywW9Xo+BgQHU19eL+wi4GXBXVVUtyG/5+qnVasRiMRiNRuRyOVit1pvdgqanMT09DaPRCJvNhnA4DJVKBYPBgIGBAYRCITidTuh0OszOzqKkpGTJ+idyS87Q0BBaW1vhcDhgNpvF/TY+Po5QKITy8nLx3gqFQjCZTAiHw6iqqlrQxSqfz2NychLj4+NQKBSwWq0wm83IZrNIp9ML7luTyYSOjg6UlZUhnU4jFAqhqqoKc3M3uwuGdW4AXK+FHmwMAuihJP8YPPHEEyj7p/dsa2srUqkUJEm6Zd/ZSCQChUKBtWvXYmJiAseOHVs2CJADhlOnTokaLLmwCQCdnZ2Ynp6GSqWCTqfD0NAQvvKVr2BkZAQ9PT0IhUIoLS2FSqVCV1cXotEoXC4XDhw4gB/84Af48Y9/DK1Wi7Nnz+LNN9/EX/zFX+Do0aMoLi4WhbqTJ0/iu9/9LkZGRnDt2jVMTEygqKgIc3NzKC8vxzvvvANJkvDkk0/i9OnTeOGFFzA2Noaenh709fWhp6cHbrd7yXklEgn8t//237Bu3TrU1NRArVbj0qVL+LM/+zOcPXtW1D5ev34d/+pf/StotVqcO3cOkUgEbrcbx44dw549e+BwODA0NIRAIACPx4NwOIznnntuSW3e6Ogojh49CpPJBK/Xi5GREWzZsgWXLl2C3W4XLTlf+9rX8P7772NsbAzV1dWoqqrC0aNH8f3vfx+XL19GKpVCLpdDJBLB9u3bcfjwYWSzWZSUlKCkpAS9vb2oqKjA9PS0OG5vby+6u7ths9lw+fJlTE9Pw+FwoKOjA9XV1UuCgMHBQVy6dAkOhwO5XA4TExN48cUXMTIygpGREVgsFoRCoQXdKxKJBPr6+vDBBx9g3bp16OjowMGDB3Hjxg189NFHePnll9HQ0ICPP/5YrONw8eJFPPLIIzAYDAgGgwiHwzCbzThy5Ai+973vob29HYODg3A6nRgdHYXVal2Qp7lcDpOTk/jhD3+IZ555BjabDfF4HCaTCUqlEnq9HjMzM1Cr1fB4PPgP/+E/4Pvf/z7efvttOBwO7NixAwMDA0gkEjCZTNDr9QvyVqfTrVjjPD09jaGhIfzmN7/Bf//v/12kZ3p6GhcuXMCJEyfwx3/8xzh27BgkSYLBYEBPTw++/e1vw2KxiMJUNpsV92tXVxdcLhfKy8uhVqsxMzOD/v5+zM3NQZIk7NmzBwqFAj/84Q/xr//1v4bFYsH58+dRVVWF9vZ2/MEf/MGqupFks1lMTExgcHAQc3NzaG5uRlVVFX7xi1/A4/FAo9FgcnISu3btwltvvYVsNguVSoXi4mKUlZUt6IYTi8XQ19eH7u5ulJWVYW5uDmq1GplMBj//+c/xn//zf8bPfvYzmEwmNDU1wel04je/+Q0OHDgAv98Pg8GAhoYGlJWV4ZVXXsG2bdtQWVmJfD6Pzs5OfOc73xHHSiaTGBoawr/7d/8Ob7/9Njo7OzE0NIRUKiXeF3q9HkeOHIFWq8XLL7+MkydPIplMYnR0FNFoFAMDA3j99dfxf//v/8WpU6egUChQU1OzJAjo7+/HBx98AKPRiJqaGhw/fhw7d+5EZWUlfvazn+Fb3/oW/vEf/xE+nw+SJCEUCuFb3/rWgu5xkUgE586dg9FoRCAQQE1NDUwmk2jVuHbtGi5evIjKykqsXbsWH3zwAdRqNZ566in89re/xbVr17B9+3aUlJTg9OnT+MpXvoL6+voF7/ZAIICBgQH09PSgu7sbGzZsgNFoRCQSQTgcRkdHB86fP48XXngBNpsNly5dQmdnJ+rq6nDt2jV861vfWhJcd3V14Y033oDRaMSmTZtQU1ODkZERKJVKaDQaEbBv3LgR/+k//Se8+OKLCIfDuHTpEv7Fv/gX6O7uRiKRgH7dTjAIoAcduwPR7xWNRnPLACCTyeDo0aMIhUJQKBQYGxvD+++/Lwr8i83NzeGtt96CXq/Hnj17sHHjRlHAff311zE6OoonnngC27dvx1tvvYWJiQn85je/wYULF/DSSy/h0Ucfxbp167B9+3ZUVlYil8vB6/WirKwMarUalZWVqK+vRzQaxbZt21D9T32t9Xo9mpqacPXqVeRyOfzsZz/D9evXUVJSAqfTibNnz6KlpQUmkwkGgwGbNm2C1+tFV1cX6uvr0dzcjPLycuz4pz7m889NoVDAbDajtrYWGzduxPbt27F+/XoEg0EcP34czc3NaGxshMFggN/vR2dnJ/x+P4aHh6FWq9HS0oKxsTHs2bMHv/71r9Hd3Y3i4mKRrlQqtSQff/KTn6CiogJ79+7Fjh07sHv3bvzoRz9CbW0ttm/fjqqqKoRCIRw9elR09/D5fKitrcXY2BiSySSGh4dx+vRpXL58GW63G16vF1u2bIHJZBJ9/9966y309/ejubkZu3fvRmtrK3w+H3bt2gWNRoOuri6cPHkSV65cwbZt26BQKBbkTTqdxo9+9CPU19eLAtns7Cw+/vhjNDQ0YM2aNaipqRH9j2Xt7e04efIk4vE47HY7hoeHEYvF4HA4UFNTg2w2i8nJSQwODsLhcKC6uhqBQAD79u2DVquFTqdDWVkZWlpaMDo6inQ6jfXr12PTpk1oampCU1PTku5HKpUK1dXVyOfz2LRpE5555hmsX78er7zyCp544gns3bsX4+PjaG9vR0lJCXw+H1wuFzweD5RKJWZnZ+HxePCHf/iHiEQiOHPmDC5fvgyXywWv13vLriylpaWor68XATFwMzDo7u5Gf38/fvCDH0ChUODcuXMYHR2FzWaD1WrFp59+ikQiIbZRq9VobGxEaWkp2tra0NDQIIIrOQ/q6+uhUqnQ09ODkpISuFwuaDQa+P1+nDp1CidPnsSWLVtgNBpX1T1NoVDAbrfD6XSKWt5//Md/RD6fR319PTZv3ozy8nL87d/+LTZv3gy3242dO3fipZdeWjKuI5vNYnp6Gm+++SZ6e3tRU1OD7du3o6mpCel0GiaTCWvWrEFFRQXKysqwadMmHDt2DJs2bcL69euhVCrR2dkpnsdNmzZhx44daG5uRiAQwLFjx0R+GQwG8fxLkoS///u/RyQSwR/+4R9i7969aGlpwZYtW2C325HL3ZwqedeuXWhsbERzczPa2tqwdetW0fJWUlKCtrY2bN68eUn+NDQ04ODBg+jv70dVVRXS6TTy+TzKy8vxxBNP4MyZM5idnYVGo0Eul8PQ0NCC6wrcDIx7e3vx7rvvQqfTwePxwGq1IpfLYWxsDGfOnMHzzz+P559/HmVlZaISx2AwoLi4GI2NjWhra8Pu3bsRiURw8eJF9Pb2LjhGdXU1qqurUVdXh127dsFkMkGSJGSzWTidTrS1tcHj8aCrqwvvvfcerly5gnQ6DYvFgv7+fkQikSVdznbu3AmtVova2lo8//zzaGpqwo9//GM0Nzdj//79cDgceP/990VljdvthtvthtVqhd/vh9PpxKFDh5a0jBA9iNgSQAVHkiTs378fOp0OVqsVMzMzOHfuHLZs2bKg5lOuMVepVMsWiBKJxIJCUDqdRiqVQjqdFj8sCoVCNOfL+8jn84jH4wu6Mblcv5uhSG6CBiC+k8vlUFxcjNbWVjidTqxduxYWiwUWi0UUfCRJEt+XfwhnZmbESsK3GqCoUCig0WiQSCTwX/7Lf8Gjjz6KmpoalJSUIBKJwGw2w+FwIBqNYnBwEN/5znegUqmQy+VQUlIi0tXS0rJs/3y5hUahUEClUsFutyMWiy1IO3CzC4TVaoXdbhc/6PK5PPLII9i2bRuGhoZw+PBh2Gw2kc96vR6NjY344Q9/iA8//BC/+c1v0NraKrrITE9PQ5IkfOlLX8KOHTswMTGBV155Bf/1v/5X0WVLvjaxWEzkoywSiSx7XrJcLgej0QiPx4PNmzeLcQDt7e3iO16vFx6PB5OTkzAajfjTeQPSbTabqCGXz1cWj8fR19eH6urqZcch2O12EZjmcrkFfaFzuZzoTvPiiy/i1Vdfxdq1azE1NYXjx4/j0UcfhSRJeOSRR9DW1obh4WF89NFHsNvtaGlpuaPZaHQ6HfL5PMbHx9HX1weFQgGn04n6+nrs2bMHu3btQiaTWba2fn4Xu3A4DJ/PB7fbLc5L7gY238aNG0Xr009+8hP81V/9Faqqqm7bp1ypVMLhcKChoQHZbFZc88UBRCQSQT6fh9VqXXFQrUajQWVlJX784x/j8OHDOHz4MNauXbtk0LLc5UWSJLjdbiiVStFtaLnxCJIkQaPRIJlMrhjYZLNZcZ8olcplZ9uR81XuumOz2fDss8/i7/7u79DU1LRiy4nJZILb7cb4+DgGBwdRVVWFyclJfPrpp9iwYQOGh4dFJUJpaSkOHTq05F6x2+04ePAggJsVJplMBmVlZZAkCSaTCYODgxgYGIDFYrltC47cHWr++3bxeeZyOfT19aGqqmrBPuXnKZfLiQB327Zt2LhxI9Rq9bLv9vnXfPE7QX6mUqkUnn32WVy4cAEmkwlbtmzBe++9J86Z6GHAIIAKRjAYxOnTp3HmzBns3r1bNJ8rFAr8/Oc/R1FREXw+n2julyQJdrsda9euRSQSwaVLlzA1NYXh4WGMjY1h165dkCQJx48fh1arRWtrK9xuN3bs2IG+vj68+eaboj+90WiESqXC2NgYrl69imAwiGvXronaskAggLGxMXR3d4vxB3JXlP7+fuzfvx+Tk5M4ceIEmpubEQ6HYTAYMDIyArVajdHRUVy/fh02mw3r1q2DUqlELBZDe3s7tm/fvuIg1v7+fgAQNXqbNm3Chx9+KPpbRyIRnD17FmvXroXf78fg4CAmJydhs9lQWlqKJ554AuPj4zh58iQaGxsRiUSwfv36JTOXvPDCC+js7EQkEkFFRQXi8Ti+/vWvi/7/ckC1Y8cOfPDBB+jt7YVOp4NOp4Pf78e1a9dw9epVuN1uaLVaVFZWwmKx4PTp07hx4wb0ej1SqRTsdjuKi4tFH/xUKoVsNotLly6hra0Nn3zyCSKRCKqrq1FTUwONRrMgb1QqFb7+9a+jq6sL8Xgc8XgcmUwGO3bswIcffoju7m4YjUbRdUfW0NCAfD6P06dPo7u7G9PT06ipqcH09DT6+vrg9XrR0tKC4eFh9PT0YGhoCE6nE6Wlpejs7MSNGzeQzWbh9XoxMTGBjo4O2Gw2DAwMYHh4GD6fD9XV1QvyVO7WMj4+jp6eHjidTjidTjz//PM4fvw4DAaDKMw5HA5s3rwZP/vZz0QAPD4+jqKiIkiShFOnTsFgMECv14u8XTz+IJFIYGBgAGazWfTlDwQCYgzK6OgoHA4HKisr8W//7b/FX/7lX4oxMu3t7aL2WavVLil4+Xw+DAwMIJfLQavV4vr16wgGgxgfH0d/fz+uX7+OQCCAdevWYWJiAiMjI+IZ2r59O6qrq2E0GtHd3Y2ZmRm0tLSIvuGyRCKB9vZ2hMNhXLlyBS6XS8yetW/fPrz99tvo6+vD+Pg4ent78bWvfQ3t7e0IBAIwGo2IxWJLgoFQKIQLFy7AbrfD4/HAZDIhk8ngxo0bom/5wMAA9Ho9NBoNUqkUAoEARkZG0N3dje7ubkiSJAIB+T6Qg5P169fj+PHjUCgU0Gq14v4YHBzEzp07kUgk8M4776CyshKSJEGpVGJkZASZTEY8aydOnIDVaoXT6UR5eTkeeeQRfO9738P+/ftXHGAtd+Hatm0bEokEtm7diuvXr6Ovrw979+7Fvn378MYbb+DGjRti7MPiFoXZ2Vn89re/xcaNG1FcXAyPxyPGSExOTuLJJ5/Eu+++i66uLuzcuRMdHR3o6+sTg8vl6yQXuOvr61FZWbkkrVarFWq1WhTGe3p6MDo6CrPZjJGREfFefOyxxzAyMoKBgQF0dXVhenoamzdvXhK8dHR0YGRkBCaTCYFAAHa7HS+++CK6urrg9/sxPT2NTZs2wWKxYMOGDTh+/Dj0ej3WrFmDo0ePoqio6GZrS/rBmW6WaCUMAqhgaDQaUVMrF1KLi4uxf/9+hEIh6PX6BYUGSZKg1Wqxa9cuMUBOoVDgueeeg8lkQmtrq/jBUqlU2L9/P6xWKxobG+FwOBAOh6HX66FWq2GxWFBbWysGvj399NMoKyuD2WxGZWUlnn32Weh0OmzevBm5XA5FRUVwOp34gz/4AzFwz+FwYG5uDlqtVvRP3bVrl6gF3Lp1K3Q6HUwmE+rq6gAALpdLNP8vR6/Xw2AwwGKxYM+ePfB6vXj88cfhcrlgs9mwbds20dzvcDhgMpng8/nEWImWlhZYrVaEw2HodDqoVMvPtb527VoAN7t/yIXNmpoa9PX1iW4cra2t8Hg8qKurg9VqFU3tzzzzDBwOB6qqqsTAUTl/amtrYbVaReuCfP65XA5utxupVApf/vKXRReSsrIyxONx+Hw+7Nu3b0l6lUolNm/ejN7eXphMJlgsFmi1Wng8HtTW1sJisaCsrGxJbbPVakV1dTVisdjN+cntdmi1WpSVlWHnzp0oKysT3bl0Oh2cTify+TyOHz+O0tJScY3tdjsOHTokCvRr1qyBw+GA1+td9vpptVocOnRI9FXXaDTYv38/8vm86LplMpmg1Wqh0Whw4MABlJeXI5m8OY96UVERAIiBk0ajEV6vF06nc0FBXS5g7t69G16vV3R/OHToEFQqFerr61FcXAyHwwGfz4fe3l44nU60trZCoVDAaDRCqVRCp9MtW/N64MABOJ1OWK1W6PV6JBIJvPDCC6KFTB4krtFo8Mwzz6CiokIM8He5XNi3bx8sFgsymQzy+fyyrV7yQM+XX34ZNTU14nnO5/MoKSnBhg0bRItZfX09mpqaRGG6vLx82X3q9XqUlZUtuO9UKhWSySSef/556PV6tLW1QaVSwev1wmKx4Gtf+xqsVisqKyvFQGT5HjQYDGJigN27d8Pj8WDnzp3iuthsNrzwwgswm83YsmULQqGQ6D4oP+dbt25FPp+HRqNBUVERWltbUVpaCoPBgGw2C5fLherqajgcDjGwdzkGgwF79+4V4yHUajWi0ShUKpXIL7vdDoPBIAZ/z6fT6VBbWwuHw4FNmzbB5XIhk8mIoH/dunWYmpoSrWD19fULauBVKpW4d3fu3ImqqiqYTKYl6VyzZg0sFgvMZjPsdjtSqRQeeeQR6HQ6WCwW8V6sqKgQg851Oh3sdvuy19RsNmPv3r1ifIhCocCBAweQy+WgVCphMBjE3zQaDbZt2waLxQKv14tHH330dxMjLN9oQfRA4YrB9FC6EAY2nwfOb4ZYJ+DzJNfUKRQKxONxMXOK3E1B/vGf363k5gJL2SWfp9Np8X15Ro/VkpuiF9dgL0c+vtz1YPHn//7f/3u0tbWhqakJRUVFC2rv5cKUXEv24YcfQqVSoaioCMXFxZiamsLrr7+Ol156CT6fb9XpymQyYmYjmdzEf7uuJ3LXifl5tzi/c7kcstnsgmb++fkgpyGdTt923vTVpmtxGuUC9uKa9Pfeew8GgwHl5eWw2WwIBAL45S9/ie985zvLFm7k7VYq1N4qDfPPeX4+LDY//1bK289K7oohB04r7Xd+15bVkK93IpFYMJPRZyGPZ1luDv6V0rDSfbdact7/9V//Nfbs2YOGhgZ4PJ5V3XcrvX8W/12hUCAUCiEUCsFisaC3txdNTU13tHbA4q57wK2fkfkzsckzMq3mGsljNIaGhrB3717U19ff9r0i58FqjnEn79DljgFgyexni0mS9IX/RhHdDbYEEK3C/Jf+/DUI5BrSxQUXuW/3cn10V1vAWI7cLWA1JElacX56ed7wsbEx+Hw+lJeXL/jO4u02bNiAq1evor+/H8FgEKFQCAcPHhQz1qw2XculZ7WF7FvN+jQ/vxcfY3E+qNXqVR3zblZnlSRpxT7vW7Zswfnz53Hjxg1oNBrEYjE8/fTTt8y3u5ln/lb33q22+bxWo13u+Vjpe3dCfvZutybInbjTZ/NW991qyVO9AjfXoiguLl71In8rvX8W/x24OdWxPKh+9+7dd5Xfi93qnpHz5k4W/gJuzriUTqcRi8UwMDCAtWvX3rawfieVKXfyDl3NMR6kVaaJ7hRbAuihxFqWuyc/8vNr9lbTqiD/v9wCMn8Oebq1xfm3+L+Zh4Xrbp7Huz3O4m47D+J9t3imts+64Nr9wt8oehiwJYCowNxNwXPxNg9i4eFBtly+MQ8J+OKeqc8ruLjXHpZ0Ev0+YBBARMjlckgmk2KVzs+ra8iDbH4eyNM43g15CthYLCYWmbsfIpEI0uk0VCrVkpVW77d4PI5UKoV8Pr/i6t6/z8LhMDKZjBiM/VnMv2/lFZEfNNlsFnNzc8jn87BYLCt2UwwGg9Dr9dBqtQveQfK9fC/yi4h+5+FsZyP6PZFMJhGPx2/7vVgsJgYt5nI59Pb2ikLUvSCviXDy5EnEYjFkMhnMzc1hZGTknh3jVhKJBCYnJ0VB4X6Q59g/ceLEkoWPVkseiHn9+nX09vaKlYvvh3A4jO7ubty4ceOe7nf+vbha2WxWzLsP3AwCRkZGcPHixXuatodFOBxGZ2cnBgYGPvO+crkc4vE4jh8/vqp3yRdFHrQtr2osT/U6fx2L+fL5PLq6ujA4OIhIJLLgb3Nzc+jo6MDg4OAXkXSigsEggOg2VlpN+LPKZDKYmprC5OTkbY89MjKCmZkZsd1HH32EaDR6T4OAdDqNn/70p5iZmUEymcT4+DjOnTt3T/Z/O6FQCB0dHRgdHV2yKNQXRZ7Z5+/+7u+WFELuZB/RaBTvv/8+Ojs7EQqF7nEqVy+ZTOLUqVM4duzYPdnfcvfiaiUSCfT19Yl/p1Ip9PT04Je//OU9SdvDJpFI4MiRIzhz5sw92V8ymcT//t//G3Nzc/dkf/eCXPt/6tQpJBIJXLx4EadOnVoxMM7lcvj0009x8eJFBIPBBX9LJpP46KOP8Mknn3wRSScqGA9euyHR52Q1BWZ50Ovi7Zb7fDXb3kpfXx/6+/uhVquXzM4zXzKZxOHDh9HU1CSmDvzmN7+5IH2rTcdyUwgCv1tFVe5OYDAYUF9fj/r6+mWPcSt3mg8A4PF44PF4lqRrNcda7G7TqlKpRB4sNxhxNfvNZDK4cuUKSktL8eijj6KkpGRV983dpn+5fcnbV1RUwGq1ioDmbvc7P33JZBK//e1vsXbtWng8nhWv9eIpaQOBAH7+85+L9SK8Xi98Pt+q07V4f/fLvbpW8poX8weJr3Ss2x1DqVSKdSXkdQ/m7+OLepYWU6lUcLvdePHFFyFJErxer+jis9L51tfXL3u/VlVVLVnZezXpJ6JbYxBABWNychLHjh1DbW0tLly4gF27diGZTOL48eOor6/HyMgInnzySQQCAfT29sJut+PkyZNi8arh4WGcO3cO3/jGN3DkyBE0NDTAbrcjk8lgZGQEL730Ek6fPo2ZmRlEIhHEYjHs378fb7zxBiKRCMrKylBRUYHLly/jT//0T/Huu+9ifHwcxcXFKC4uRn19Pf7n//yf8Pl8UCgUiMVieOGFF3D06FGcO3cO4XAYNpsNFRUV+Iu/+At85zvfgcPhwOTkJLq7u1FWVobBwUHs378fvb29+Pjjj5HNZnHgwAFcvHgRu3btQktLy4I86evrw9DQEObm5lBUVITx8XGk02kMDAzg0qVLOH/+PL73ve/hzTffRElJCdLpNEKhEJ566im88sorqKurQzweRz6fx9q1a/GXf/mX+OlPf4oLFy6gr68PNpsNzz77LH75y1+iuroakUgEwWBQLAzV3d2NlpYWSJKEEydOwO124+mnn8bhw4fFCsADAwP46le/itdeew2Tk5NwOp1oaWnBJ598gj/5kz9ZMNd5Pp/H2NgYTpw4gXQ6DavVCpfLhbVr1+Kv/uqvUFdXh6qqKmi1WgSDQXz1q19FX18fhoeHEYvF4HQ64ff7xZz18/f74Ycf4tixY1CpVFizZg02bdqEEydOoKSkBH6/H1arFY8//jguXbqEwcFBVFVVYXBwEL29vSguLkZ7ezsOHTqEjz76CNevX8fjjz+Ozs5OfOtb3xL9nOVuEz/4wQ/E4nP5fF6sWBsIBLB27VqUlJQglUrhyJEjsNlscDqdqKmpgcViwbFjx2A2m6FUKjE+Pg6TyYRkMomPP/4Y8XgcU1NTKC4uhtfrxa9+9Su4XC5EIhE0NTWhpKQEMzMzsFqtmJubw/r16xcEZ0eOHMG5c+cQjUZht9vR2NiIM2fOIBqNLpgS8pFHHhHbBAIBXLlyBadPn8aRI0ewceNGWCwWxONxDA0N4cSJEzh79iyeeuopOJ1OjI+P48yZM/B4PNDr9WhsbFwQJHd1dWFiYkIsiBUOh0X+AL+bFrO1tRXf/e538dhjj6GmpgZ+vx+/+MUv8Nd//df48Y9/DLvdjoaGBgwPD+Pb3/42/tf/+l9wOBzQaDQIhUJ48cUX8T/+x/9ASUmJmIf/6aefXnBfjIyM4OjRo7BYLAgEAti9e7do5XC5XBgfH0dDQwPKysqQTqdx5swZmEwmKJVKBINBmEwmhEIh/PKXv0RFRQW6u7uxceNGbNu2TRwjm83izTffxMDAgFiN9urVq3juuecwNDSEvr4+fOMb30A6ncbJkyfF+h51dXVoamrCq6++CrvdjnA4jEQigUOHDuHP//zPsXv3brFidDQaxXPPPbegIB2NRnHixAnkcjmMjo6irq4OxcXF6OjowJtvvom/+Zu/ETX7lZWVuHHjBhoaGtDZ2Ynm5masXbsWly9fxq9+9St897vfXfI8/eQnP0FlZaVYn+IrX/kKgJsr9soLFA4PD+Of/bN/tmDq1pmZGbzxxhuoqKhAV1cXWltb0draeqtXPxGtgN2BqGCEQiGcPXsW58+fR1lZGYaGhnDlyhXE43FotVp0dXWJuam7u7tRV1eHkZERNDc3Y/369XA6nQgEAlizZg00Gg1SqRSsViu8Xi8uXryIfD6Pt99+GyMjI3A4HLBarTh9+jTKy8uh1WphNptRVFSEzs5OSJKEqqoq1NTUoLy8HCUlJZAkCc3NzfB4PJiamhJN33ILQFlZGSorK6HRaOB2u8WKs1euXEFjYyMaGhpEoQAASktLkU6nUV9fj6GhoWW7cLz99tvo7+9HW1sbampqxAqmXq8XXq8Xs7OzSKVSOHnyJC5evIhkMomysjKcPn1aFDQ2btyIdevWiZphACgqKhKrJqdSKRw/fhzt7e2QJAklJSXo7e3F8ePHodPpxEqfpaWliEajOHnypBigXF1dDYvFgvfeew9OpxMmkwkajQaVlZXo6OhYUlgHAJPJhJqaGpSVlSGZTOLDDz+EXq+Hw+GA2WyG1+tFZWUlTp8+jVwuh//3//4fJiYmsGXLFlRXV4s8WKyxsRHZbBYejwfbt2+HJEk4ffq0SEM4HMbo6CiqqqpQWloKjUaD0dFRtLe3Q6vVIpvNIhgMIpfLwWazweVy4Stf+cqCOctVKhV8Ph9mZ2dRV1eHrVu3wuPx4B/+4R9gtVrhdrsxPDyMgYEBWK1WNDQ0wOVy4fz587hy5QpGR0dFTX1jY6MIIuLxOF599VXodDq4XC6Ew2Fcv34dtbW1AIAnnngC5eXlGB4expEjRxAIBMSKtvPJ96cc0KbTabz22muorq7Ghg0bkM/n8e677y7oQme1WlFSUgKXyyVWMJZrrBUKBZqamqBQKBAMBnH69Gm89957sNlssNls6OjoWNJdLhwOi24j0WgUtbW1+Pu//3t4PB5s2LABZrMZb7/9tliZWV5LoLy8HHNzczAYDLBarbDZbCgvL8cTTzwh7oXy8nJs2LABjY2NOHr0KEKhEJRKJWZnZ9Hf3y8WbwNujo0YGRnBlStX0NbWhra2Nuh0OgwPD6OnpwdNTU1obW3Fe++9h08//RRDQ0M4evQoWlpa0NjYKAKX0dFRnDp1CiqVCvl8HlNTUxgbGxPnq1Ao0NjYiNLSUoyOjsLr9SIUCkGhUKCyshLr1q2DTqdDLBZDVVUVqqqqoFKpcOXKFUxOTuLs2bOIRqNQKBRIJBLw+/3iWSovL4fVal22m41KpUJpaSlKSkqgUCgwPDyM8fFxrF+/XnRFdLvdqKmpQWNjI5qbm2G1WjE+Po6hoSEkEgnU1tZiZmZmSRc/SZLQ0tICl8uFyclJXLhwQfzN5/OJZ0ilUuGDDz4QY1DksSTy+0ceTDw+Pr4k/UR0e2wJoIKh1+tRVVUFvV6P4eFhSJKEbDYLh8OB8vJybNy4UTQ55/N5xGIx1NbWwufzwWq1wmKxQKPRwG63Q6PRiIK9UqkUBWy55q+2thaJRAITExOQJAmTk5OwWCwwGo0Ih8OQJEksca/X68VA3LGxMdTV1UGr1WJ2dhaJRAJOpxNGoxEajUbMqiF3JRgbG4MkSXC5XHA4HIjH45idnYXVaoXdbofJZILNZkM8Hhere84n11gXFRUhm82KVTQNBgOMRiOy2SzS6TSampqg1WoxNzeHRCKBZDIJjUYDh8MBk8mEbDYrFuGRJAl6vR46nQ4zMzNIp9NYu3at+LdGo4HX60UkEsHU1BRmZ2dFy0AwGMTIyAgkSYLRaITNZoPBYMDVq1exdu1aWK1WmEwmWCwWhMPhZbsF+P1+hEIhWK1WpFIpjIyMIJ1Oi/3JaQ4EAsjn8+jv74fX60VRURGSyeSKMyM5HA4RTPh8PlHQkbsyySvGWiwWmM1mKBQKUcsp1wQ7HA4YjUaYzWY4HA5UVlYuqH1VKBQwmUzQarVwuVzw+XyYnJwUwUUymRT32sTEBCKRCGpra3H48GH4/X5YLBZMTk7C5XIhn89Dq9UinU4jm81iaGgIpaWlUKvVCIfDmJ2dRTweRyaTQVVVFaLRKEKhEKqrqzE7O4upqSm4XK4FgYDT6YTBYIBWq4VSqUQ6ncb169dhs9ngdrshSRKGhobEKrUAoNVqYTKZYDAYRACi0+mgVCphMBjgcDigVquRTCYxMTEBv9+Pffv2weVyiRaH+TQajQgYZ2ZmEAwG0dXVBaPRCI/Hg5GREQwMDEChUMBsNkOlUkGtVkOn04lrZDAYYLFY4Ha74fV6ceHCBahUKthsNlHbfuXKFVgsFhQXF8PhcCwZJ5JOpxGNRkUrmtlsxuzsLEKhEMLhMBwOBwwGAwYHB+Hz+aBUKhEIBOByuZDL5aBWq8WiWIlEQlwbo9G4YPYchUKBsrIyMUZHPp9gMIiysjI0NjaK1YKdTidyuRyCwSCmp6cRi8UQj8fhcDjg8XhE3svvBYfDgVQqtaQPvnx+fX19qKyshM1mQzgcFq2RVVVV6O/vF12RDAYDuru7xSJkiUQCsVgMRUVFCwIn4GYrgPyua25uhkqlEu864OZijPL7VqvVYmBgQAQRmUxmQX4plUrxDiaiO8cggAqG2WzGhg0boFKp8Nprr6G+vh5utxtqtRoejwePPfYYLBYLrFYrdDodLl26hObmZkiSJApLWq0WqVQKyWRSBAtyoTidTsPlcsHpdMLlckGpVKK0tBRnz54VBT1523g8DpVKhVwuh7m5OYyOjkKn0+HUqVMoLi6GwWCAJEmi0JDP5xEOhxEMBmGz2ZBIJBCPx0UzeTgcRiwWg0KhgFKpRDabRSqVglqtRiqVQiqVQiKRQCqVWtC0brFYRKEQuNnnW953IpEQBZ29e/eKblJdXV3YsGEDgsGgmAZTXjVVr9cjHo9jbm5OpCkWi+HAgQOYmJhAd3c3QqEQ9uzZA5PJhNdffx1+vx9qtRrxeBzxeBwejwfxeFzkUzKZhNFoFLMhSZIk8jGRSMBoNIpCQD6fR0dHB8bHx9HS0gKj0YhcLoepqSnRbUmetSSVSiGdTosCuzxto7zfTCazoDAWj8ehUCggSRIymQzUajXcbjfcbjecTqcIKm/cuIF4PI5cLgeDwQCPxyPuC3n14uUCMjn986+bPC1iUVERbDYb1Go1iouLMTY2hkuXLsHv92Pjxo2iljcWi8FsNiMWiyGbzS6YitPn88Fut4spS0OhEE6ePLmg37jb7UZ5eTmOHz+Onp4elJSULCiEywX7ubk5BINBEfBEo1HR2mE0GpcdpyLfZ/J28hSZ8rWMRqNQKpVwuVywWq3weDyw2WxLVpxVKBTYvHkzJicn0dPTIwIA+b5LpVIwm82iG1Uul0MkEoEkSUgkEuJ5nd+KZDAYRKFZLozKz4bL5YLdbhctF/PPSaVSieBYvv7y57FYTHRV0mq1UKlUMJlMYkXcRCIBtVoNpVIJj8cDp9MJr9e77OrDFosFBoNBPE/FxcUYGBiAw+FAbW0tYrGYuI6pVEo8v0qlUtyjNTU1ooUmlUqJ9CaTSaRSKXG/y++qWCyGo0eP4tlnn4XBYEA0GkU0GkUsFsOOHTtw9uxZtLS0oKysDNFoFL/+9a+xZ88e8awGAgFYLBZxH8vPcyQSQTabxYkTJ1BbWwu9Xg9JkhAMBsXzKd8TmUwGZrNZPK9KpRIqlUrkl8fjEa1KMzMzsFgs4hklottjEEAFY2xsDK+++ir+6I/+CFu3bkVbWxtmZmbw0UcfoaSkBIFAADt27EA0GsXw8DD6+/tF9wkAuHHjBqampjA8PIy+vj6k02nxgz0xMYGxsTE8/vjjiEQiOHr0KNxuN8xmM65du4bBwUFIkgSNRoNAIICuri643W709PRgZGQETqdTdFcJBAIIBoNIp9Nob2/HwYMHAdys4e7v70dLSwv6+/vR1dWFLVu2IJFI4NixY2hpaYHBYEBDQwNGR0dx7do1+P1+DA8PY3JyEgMDA6JGWfblL38Zfr8fR44cgcvlwuDgIG7cuIFIJIKenh5MTk6ir68PJ06cQFtbG2pra+HxeLBv3z58//vfx4ULF6DRaGA2m9HW1oa6ujp0d3djaGgIXV1dmJ6exvDwMD788EPs3bsXdXV16O/vx1tvvYV9+/ahpaUF5eXlSKVSuHr1KoaHh/HP//k/xzvvvIO+vj7E43F0d3fjj/7oj/CrX/1K9LWuqalBIBAQYwqsVqs4p+npaZhMJkxMTGBubg4KhQLd3d0YHByEWq2GJEmiJWBychIHDx7E3NwcPv74Y1itVgwNDaGnpwcmkwkOh0Ps9+rVqxgaGhL9uEtLS1FZWYnOzk4xF39ZWRmuXr2Kvr4+bNmyBR6PB36/H5988gmSySQqKirg9/vR29uLTz/9FJWVlQvuUXl8yfj4OLq7u+F0OuF2u3Ho0CG8//778Pl8MJvNC2qbP/nkExF0qFQqrFu3Du3t7Zibm8P169eh0WgQj8fx4osv4sSJE3C5XLBYLEgkEqI73O7duzE4OIi+vj44nU40NzcjkUgsGG8ht/Dk83n4/X4MDQ1h27ZteOmll9De3i4Cly996UtLCrFarRY+n08U/MbGxtDT0yPuj97eXmSzWbS0tKClpQW//vWvsXPnTqRSKdTU1KC4uFjs65NPPhHPZWNjIxKJBL7xjW+IsR3ZbBZPPfUUlEolGhoa4Pf7ceHCBTEbV29vL4aHhzE7Owu3243i4mI8/vjj+Ju/+RtcvnxZjAk5ePAgfvSjH4kWIJVKtWCsg8ViEffARx99BJVKhcbGRpSUlGB2dhYXLlxAT08PnnrqKdTX1yOZTKKpqQmXLl3C3Nwcuru7UV5eDpPJhIqKCpHG4uJi0YVwPrfbjdbWVuTzeXz5y1/GkSNHMD09jXQ6jbGxMUxOTqK3t1dc90AgALfbjYqKCgwNDSEYDEKlUol/y33vA4GAeBaKiooWBNTxeBySJGFmZgaDg4PQaDTYsmULvvSlL+Ff/st/iY0bN8Lj8WBiYgJarRaTk5NIJBIIBoOi4iEQCGBiYgLDw8MYGRmBzWbDmjVrYLFY4Pf7EQwGkUgkxD2USCQwOjoKv98Pv9+Pb37zm+jp6cHw8DDKyspEN6bz588jk8mgtLQUCoUCZ8+exbPPPrtgwDUR3ZqUv59TLRDdpbtZkj2Xy4kacp1OJ2qQ5JonebDo5cuXEQqFcOjQISQSCfzkJz/Bvn37sH79euTzeVHTPn9ly2w2K/r05nI50XytVqtFc7j8/Ww2C6VSKWqU8/m8KDTNbzqXa9clSRL7lAc9Lj6+vGCQ3E1DrvFbnN7FtWTyfuVjRiIRMXBR3l7Op0wmI2o55TTNr52b/9n8bQwGg5iCVG6pmJ/ny6U3l8shk8kgm81Cq9VCoVDcMh/nzxoib6tQKBb0PZfzb6VrNj8P5C4G8/crf0/ORzn/UqkUVCqV+L68r8Xf0el0S/6+eOyBnIZMJrPk+NlsVhT05VpfuaVg/rnJU51qtVokEglRIy7vY/6x5+f5/GPMv86LC1TzvzN/O/naKJXKZc8rm82K7jjz83S5+1murdZoNEvuWbmLlXwecqFVTgNwsz+7fM0zmYx4niKRCKxW64L8mv8MyS00cuvW/PtZrVaveF7yvbzcO2Wl51RuuTMYDOJzjUYjzmdxvsvPqpwfchc8+XvyPbM4b+Xzkiss5rdYLH4W5h9XPrfFLQRyHiy+R+Xvzr/+85/T+e8T+XwWv+vk48rvRTnPFz97y+XX/C5oD0IQcDe/UURfNAYB9FC6mxesfKvPL0jK/5Y/S6fTuHLlCgYGBlBVVYV0Oo1AIIB169bdchrP5Y4D3P7HaP6P4O22XfzdxX9bfF6rNf+Yt/ohXe74iwvW8z+Tt5n/oz//e7dL7+JCw92c02rzYrV5sJzl8mDxvu/22iyXPjldK+13/ufydounjpT3catjLPedxd9dzX273P5X81yslGcrncdK+1/u2q50fDl4n3/P3c31vZtrs5rnYbnzvRf36EpWcx1ud863OhfZcvu+1bN/L56pzxuDAHoYsDsQFQz5x2Lxj8b8HxKVSoXy8nLRBzeXy8Hn88HpdN7xce7mu7fa9nZ/u9sfw/nb3WqA3XL7X+5HenG/6ZW+e7v03qtzutPv3+kgw9sFKfeioLLc9ivtd/7n8/++mvy+2/SsZts73f9K3/8sn9/u2t7ufl5p/7d6p6z0+eJrc6fX507y824C6dula7XnvJpt7+S4d3osIloZgwB6qHUuvwL9Z6AAdG6gyI3wvE+DOWDBB0RERCu4979NRPcegwB6KLnUgEEBfL3zfqeEiIhoKYPi5m8V0YOKYwLooTWUAILLz7RIRER0X7nUQLnu9t8jul8YBBARERERFZi7Gy1EREREREQPLQYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERUYBgFERERERAWGQQARERERUYFhEEBEREREVGAYBBARERERFRgGAUREREREBYZBABERERFRgWEQQERERERUYBgEEBEREREVGAYBREREREQFhkEAEREREVGBYRBARERERFRgGAQQERERERWY/x9i+iv/PHtlUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "LayoutParser: A Unified Toolkit for DL-Based DIA\n", + "\n", + "focuses on precision, efficiency, and robustness. The target documents may have complicated structures, and may require training multiple layout detection models to achieve the optimal accuracy. Light-weight pipelines are built for relatively simple documents, with an emphasis on development ease, speed and flexibility. Ideally one only needs to use existing resources, and model training should be avoided. Through two exemplar projects, we show how practitioners in both academia and industry can easily build such pipelines using LayoutParser and extract high-quality structured document data for their downstream tasks. The source code for these projects will be publicly available in the LayoutParser community hub.\n", + "\n", + "11\n", + "\n", + "5.1 A Comprehensive Historical Document Digitization Pipeline\n", + "\n", + "The digitization of historical documents can unlock valuable data that can shed light on many important social, economic, and historical questions. Yet due to scan noises, page wearing, and the prevalence of complicated layout structures, ob- taining a structured representation of historical document scans is often extremely complicated. In this example, LayoutParser was used to develop a comprehensive pipeline, shown in Figure 5, to gener- ate high-quality structured data from historical Japanese firm financial ta- bles with complicated layouts. The pipeline applies two layout models to identify different levels of document structures and two customized OCR engines for optimized character recog- nition accuracy.\n", + "\n", + "‘Active Learning Layout Annotate Layout Dataset | +—— Annotation Toolkit A4 Deep Learning Layout Layout Detection Model Training & Inference, A Post-processing — Handy Data Structures & \\ Lo orajport 7 ) Al Pls for Layout Data A4 Default and Customized Text Recognition 0CR Models ¥ Visualization & Export Layout Structure Visualization & Storage The Japanese Document Helpful LayoutParser Modules Digitization Pipeline\n", + "\n", + "As shown in Figure 4 (a), the document contains columns of text written vertically 15, a common style in Japanese. Due to scanning noise and archaic printing technology, the columns can be skewed or have vari- able widths, and hence cannot be eas- ily identified via rule-based methods. Within each column, words are sepa- rated by white spaces of variable size, and the vertical positions of objects can be an indicator of their layout type.\n", + "\n", + "Fig. 5: Illustration of how LayoutParser helps with the historical document digi- tization pipeline.\n", + "\n", + "15 A document page consists of eight rows like this. For simplicity we skip the row segmentation discussion and refer readers to the source code when available.\n", + "\n" + ] + } + ], + "source": [ + "render_page(docs, 11)" + ] + }, + { + "cell_type": "markdown", + "id": "8a1082e2-ba2f-407f-8334-7636a126286d", + "metadata": {}, + "source": [ + "Note that the text from the figure on the right is extracted and incorporated into the content of the `Document`." + ] + }, + { + "cell_type": "markdown", + "id": "e54be5d8-8492-4ea1-b67d-e6d2d6479313", + "metadata": {}, + "source": [ + "### Local parsing\n", + "\n", + "Parsing locally requires the installation of additional dependencies.\n", + "\n", + "**Poppler** (PDF analysis)\n", + "- Linux: `apt-get install poppler-utils`\n", + "- Mac: `brew install poppler`\n", + "- Windows: https://github.com/oschwartz10612/poppler-windows\n", + "\n", + "**Tesseract** (OCR)\n", + "- Linux: `apt-get install tesseract-ocr`\n", + "- Mac: `brew install tesseract`\n", + "- Windows: https://github.com/UB-Mannheim/tesseract/wiki#tesseract-installer-for-windows\n", + "\n", + "We will also need to install the `unstructured` PDF extras:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1b40d487-d29c-49be-9dea-4419d1c90067", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU \"unstructured[pdf]\"" + ] + }, + { + "cell_type": "markdown", + "id": "6c1ccfbe-eb94-4238-9e05-975383c9e426", + "metadata": {}, + "source": [ + "We can then use the [UnstructuredLoader](https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html) much the same way, forgoing the API key and `partition_via_api` setting:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "a25560bc-0034-49fe-91fc-4a402804fd84", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: This function will be deprecated in a future release and `unstructured` will simply use the DEFAULT_MODEL from `unstructured_inference.model.base` to set default model name\n", + "INFO: Reading PDF for file: /Users/chestercurme/repos/langchain/libs/community/tests/integration_tests/examples/layout-parser-paper.pdf ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Detecting page elements ...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: padding image by 20 for structure detection\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: padding image by 20 for structure detection\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n", + "INFO: Processing entire page OCR with tesseract...\n" + ] + } + ], + "source": [ + "loader_local = UnstructuredLoader(\n", + " file_path=file_path,\n", + " strategy=\"hi_res\",\n", + ")\n", + "docs_local = []\n", + "for doc in loader_local.lazy_load():\n", + " docs_local.append(doc)" + ] + }, + { + "cell_type": "markdown", + "id": "6a5a7a95-c7fb-40ef-b98b-bbef2d501900", + "metadata": {}, + "source": [ + "The list of documents can then be processed similarly to those obtained from the API.\n", + "\n", + "## Use of multimodal models\n", + "\n", + "Many modern LLMs support inference over multimodal inputs (e.g., images). In some applications-- such as question-answering over PDFs with complex layouts, diagrams, or scans-- it may be advantageous to skip the PDF parsing, instead casting a PDF page to an image and passing it to a model directly. This allows a model to reason over the two dimensional content on the page, instead of a \"one-dimensional\" string representation.\n", + "\n", + "In principle we can use any LangChain [chat model](/docs/concepts/#chat-models) that supports multimodal inputs. A list of these models is documented [here](/docs/integrations/chat/). Below we use OpenAI's `gpt-4o-mini`.\n", + "\n", + "First we define a short utility function to convert a PDF page to a base64-encoded image:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e9f9a7f9-bab4-4278-8d9f-dea0260a7c86", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU PyMuPDF pillow langchain-openai" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "ec2fbae5-f3dc-4b84-8b43-145d27c334fd", + "metadata": {}, + "outputs": [], + "source": [ + "import base64\n", + "import io\n", + "\n", + "import fitz\n", + "from PIL import Image\n", + "\n", + "\n", + "def pdf_page_to_base64(pdf_path: str, page_number: int):\n", + " pdf_document = fitz.open(pdf_path)\n", + " page = pdf_document.load_page(page_number - 1) # input is one-indexed\n", + " pix = page.get_pixmap()\n", + " img = Image.frombytes(\"RGB\", [pix.width, pix.height], pix.samples)\n", + "\n", + " buffer = io.BytesIO()\n", + " img.save(buffer, format=\"PNG\")\n", + "\n", + " return base64.b64encode(buffer.getvalue()).decode(\"utf-8\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "66f157bd-6752-45f6-9f7b-b0c650045b8a", "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAMYCAIAAADq5GzlAAEAAElEQVR4nOy9Z3wTR9f/PSqWi9xlW8a4Yhv3XrExbvQOIUAgIQkJCZ0QSighBRJC7xBScMDUBDDNuPfee5d7712yJVnS/8U89z57r2TJQBJ8Xfd8X/Axq9kzZ86c1dG235BEIhFAIBAIBAIxPuS37QACgUAgEJMdVCwRCAQCgZABKpYIBAKBQMgAFUsEAoFAIGSAiiUCgUAgEDJAxRKBQCAQCBmgYolAIBAIhAxQsUQgEAgEQgaoWCIQCAQCIQNULBEIBAKBkAEqlggEAoFAyAAVSwQCgUAgZICKJQKBQCAQMkDFEoFAIBAIGaBiiUAgEAiEDFCxRCAQCARCBqhYIhAIBAIhA1QsEQgEAoGQASqWCAQCgUDIABVLBAKBQCBkgIolAoFAIBAyQMUSgUAgEAgZoGKJQCAQCIQMULFEIBAIBEIGqFgiEAgEAiEDVCwRCAQCgZABKpYIBAKBQMgAFUsEAoFAIGSAiiUCgUAgEDJAxRKBQCAQCBmgYolAIBAIhAxQsUQgEAgEQgaoWCIQCAQCIQNULBEIBAKBkAEqlggEAoFAyAAVSwQCgUAgZICKJQKBQCAQMkDFEoFAIBAIGaBiiUAgEAiEDFCxRCAQCARCBqhYIhAIBAIhA1QsEQgEAoGQASqWCAQCgUDIABVLBAKBQCBkgIolAoFAIBAyQMUSgUAgEAgZoGKJQCAQCIQMULFEIBAIBEIGqFgiEAgEAiEDVCwRCAQCgZABKpYIBAKBQMgAFUsEAoFAIGSAiiUCgUAgEDJAxRKBQCAQCBmgYolAIBAIhAxQsUQgEAgEQgaoWCIQCAQCIQNULBEIBAKBkAEqlggEAoFAyAAVSwQCgUAgZICKJQKBQCAQMkDFEoFAIBAIGaBiiUAgEAiEDFCxRCAQCARCBqhYIhAIBAIhA1QsEQgEAoGQASqWCAQCgUDIABVLBAKBQCBkgIolAoFAIBAyQMUSgUAgEAgZoGKJQCAQCIQMULFEIBAIBEIGqFgiEAgEAiEDVCwRCAQCgZABKpYIBAKBQMgAFUsEAoFAIGSAiiUCgUAgEDJAxRKBQCAQCBmgYolAIBAIhAxQsUQgEAgEQgaoWCIQCAQCIQNULBEIBAKBkAEqlggEAoFAyAAVSwQCgUAgZICKJQKBQCAQMkDFEoFAIBAIGaBiiUAgEAiEDFCxRCAQCARCBqhYIhAIBAIhA1QsEQgEAoGQASqWCAQCgUDIABVLBAKBQCBkgIolAjEpYLFY4hs5HE57e3tbWxufz+dyue3t7d3d3VKMcLncnJycvr4+iZ+OjY2VlZXxeDxsi1AoHPjf8Pn88Yxjuw8MDFRWVk54ZKC4uHh4eFh6m5GRkZaWlpaWltbW1rGxMbhRIBC0tbV1dHSIjwjfXigUTtwZiHgoJDrAZrNh/LGWQqGwtrb2VbtD/BeAiiXiv4G8vLyTJ08+f/78b7TZ1tZ26tSpkydP3rp1S0oJ+bv49NNPy8vLCRv5fP5XX31169YtoVDI5/NPnTrV2toqvu+pU6egw19++aWjo+OZM2ckdiEQCE6dOtXU1IRtiYqKunPnTllZma2tbUFBQXh4+K1bt8bzUCgUnj59uqmpicvlfvHFF9j2rq6umzdvQgeGhoYIe507d04gEGRkZEgdPeDxeEeOHAkJCRkYGAgJCTl//jzs8cmTJ59//rl4reXxeN99992zZ8+GhoaCg4NPnjwp3T4B8VBIdIDL5e7fv//WrVsCgQA2S05OPnDgwCv1NREKCgp27dpVXFwMAGCz2S9fvty8efPf3gviTUDFEvHfgLW1dWpqqp+f35ub2rFjB/yDyWSmpKS8//77cnJy33333ZtblkJtbe3y5cuDg4MJ29XU1IyNja2srOTl5ZWVlefNm2dvby+++/79+wEA+fn5c+bMoVKpP/74o8Re5OXlzc3NCVu2bds2Y8YMHR0dX1/ftWvXmpqajuckjUYzMzMDAOjo6GhqamLbtbW1P/roIwDAw4cPBwcHCXuVlZU5OjrOnj17/NH/fyM1NTWdNm2alZXV6tWr6XT6vXv35OTkbGxsjIyMDAwMxNubmZmZmppaWFisX79eSo2XiHgoJDqgqalpYmJiZWWlqKgIm42OjjY3N4sP8w1xdHTU09PjcDgAADqdvmjRora2tr+3C8Qbgool4r8BBQUFRUVFVVVV+N+//vrrvffee/fddxsaGjo6OubMmRMTE/PNN99s3boVAHDq1Km1a9du2bJFKBQePHjw119/jYqKWrduHQBg3759ERER27Zti4mJIZPJioqKU6dOXbJkSVtbW21t7eLFi997773w8HAAwIEDB959992tW7e+++67Y2NjV65c2bRp0+LFi8PCwgAA586d++CDDz788EOhUPjHH38EBgYeOXJkzZo1paWlv//++8DAAMH/qqqqnTt3RkVFTWSwNTU18+fPj4qK+vXXX3NzcxsaGhYuXAgAyM3NzczMDA0NnTdvHmx26dKlhw8fvnz5sqen5+rVq1lZWYWFhXhT/v7+BOOzZs26fPlySkrKtWvXOBxOc3PzjRs3EhMTb9y4Ie7JJ598EhERkZyc/Pnnn3d2doaGhiYkJDQ3N2MNGhoaGhoa4uLiCHb27t176tSpQ4cOjXcF1cvL6/HjxzJDUVFRkZqa+u23316/fh0AEBoa+vz587Nnz7a1tRUWFoaGhqampoaGhk4kFBNxgMPh0On0NWvWPHr0SKZviP8yULFE/BeyaNGiTz75xMTE5LfffmMymfBkUUlJ6dixY3V1dXV1dQ8ePHBycnr69OlHH33U0tIyd+5ceJ3t9OnTzs7OV69exc6Etm3btmHDhj179kybNu3AgQOBgYHwIueJEycyMjK+/fbbP//8k0qlFhcXOzo6bt682cHBobKy8uXLlx999JGysnJSUtLHH3+spaXl7Oz84MEDGxubjRs3qqmpERzOz8+PiYlhMBiJiYmEjygUCmELPPmbOXOms7NzcnKykZGRtrY2AMDZ2dnR0XHx4sW6uroAgKNHj06bNs3Q0DAuLu7o0aMeHh7u7u6E0ylx/vrrLzU1tZkzZ5qamv7666/ff//9nDlzfH19WSxWQUEBvuWpU6eOHDkyf/58Hx+f0dFRHR0dOzs7Pz8/fX19rI2RkZGenl5AQADBjr+/P51OP378OJks+SuIQqGIf9TV1VVTU5OZmVlaWgq3WFpaent779q168qVK1wu18HBwc7OTl5ePioqanBw8P79+x0dHTNnznyNUEh0IDIycmBgQFNT8/bt29LDiPjvAxVLxH8VAoHg2bNnu3fvHh4eXrVqFbyFtmjRovDw8O7ubgaDweVyqVQqAIBKpY6MjJBIJLgjvAIGAIBbEhIS4H+vXr365MkTGxub4ODghIQEHx8fdXV1+JGbmxuTyYRfqYsWLZo9e3ZtbW10dDSfzx8bGxseHp41a9bUqVNh4yVLlkDL4l/BeXl5mzZtmjdv3vHjx8UvJxoZGXV1dcG/scdM6HS6kpISiUTC7qVJDIWnp6eHh8fx48eHh4fpdPpEAshmszE/2Ww29l8SicRms7FmXC7Xy8srKCgIvy9sKfHZH3E7WlpaUtwICwtbv349YePLly+7urrq6+sJN26ZTGZnZ2dVVdWlS5fa29unT58+NjamoKBw+fLlzs7Ox48fv0YoJDqgqKi4aNGiDz74gE6n4+93Iv4vQH3bDiAQfwOpqal5eXnbtm3j8/kkEsnLyysqKmp0dLS2tjY/P9/JyUlNTU1PTw8AYGlpSaPR1q9fPzY2dvv2bTKZXFRUtGPHjtLS0hcvXixZssTCwmLz5s3u7u6mpqZ5eXlPnjxZsWIFAMDBwSEqKurKlSutra1//vlnfn5+cXHxzp07T58+LS8vf+bMmWnTpgkEgvXr19va2s6cOfPZs2d9fX0uLi5//PFHXl7erl27tm3bZm1t/csvv6xduxY7uWSxWKdOnfrmm2+0tLTk5OSioqLi4uICAgKwob333ntfffVVdnb26OjolClTAAD19fUNDQ1FRUUZGRnFxcVVVVU1NTVVVVVpaWkjIyNubm7V1dWlpaXffPPNH3/84evrOzIycvDgwadPn/L5/KKiooSEBPyNSS6Xm5iY2NPTExoa6u3tvX79+jNnzmRmZmZnZ2/ZsqW9vf3Jkydubm4qKiqOjo5XrlxJS0sDAHR0dOjq6paUlFy7ds3V1bWxsbG3t9fNzS00NNTJyQkz3tjYWF1dnZ6e/vXXX2N2vL29Dx8+zOFwFi5cqKKiAlu2tLTk5uay2Wwymdzd3a2qqrp8+XIOhxMdHV1VVRUREVFaWlpSUvLRRx95enrC9jk5OfDBn6KiIhcXFzs7O3h9u6mpKS8vr6Ghwd7e3sXFZWRkxMfHR2YoJDrQ0NBQWlrK4XBmzZr18OHD4uLi+fPn83g8bW3tY8eOHTt2jMlk/i0JXF5eXlxcLBQKDQ0NGQxGdHR0U1NTQkLC33IbHvG3QBKJRG/bBwTi70coFGLncDwe7/Tp05s3b2YwGHCLSCTCzilfCSk7CgQC/CXT1+5CIvX19QwGAystE2d0dFRBQQH+zeVyRSIRlUqF59ZS4HA4SkpK2H9HRkawJ1ykw+fz5eTkxvt04nZeGy6XKy8vDwAQiURjY2MkEgkb7OuFAoGAoGKJ+C9nbGwsMDAQPtHztn1BIBD/qaBiiUAgEAiEDNADPggEAoFAyAAVSwQCgUAgZICKJQKBQCAQMkDFEoFAIBAIGaBiiUAgEAiEDFCxRCAQCARCBqhYIhAIBAIhA1QsEQgEAoGQASqWCAQCgUDIABVLBAKBQCBkgIolAoFAIBAyQMUSgUAgEAgZoGKJQCAQCIQMULFEIBAIBEIGqFgiEAgEAiEDVCwRCAQCgZABKpaTlF9++eXQoUOtra1v25HX5/Dhw4QtiYmJsbGxb265r6/v3LlzmZmZn3/+eXBw8NOnTx89ekRo09bW9vPPP795X6/BgQMHbt26NZGWfX19a9euLS4unqBlLpf7Bn5J4P79+xcuXHj06NG8efPu379//fr1q1evxsTEvP/++/+OP1IsPH/+fPPmzW9o/2/x5M2prKz09fX95+wj/gVQsZyMdHd3t7a2/vDDD3p6em/bl9dnzpw5hC0mJibTpk17c8t//fWXq6urh4dHc3Pzhg0b/P39LS0tCW3U1dVdXFzevK/XYMWKFcPDwxNpqaGh4ebmxuPxJmj53r17b+CXBOTl5b/44otVq1aVlJS89957mzdvZjKZs2fP5vP5/44/UiwsXbp0aGjoDe1PnPv37/9zxi0sLHR1df85+4h/AerbdgAhgbCwsPr6+pKSEnt7+5ycnNHRUTs7OzU1NQBAeXl5f3//1KlTx8bGUlNTP/jgg4yMjIGBgXnz5jU2Nra2tg4PDwcEBJDJ5Pj4eKFQ6OvrOzo6WlBQQKFQDA0Np06divXS1dXFYrGUlJQcHR1ra2szMzMDAgIKCwudnZ21tLSwZqmpqaOjo5qamr29vf7+/oODg2FhYX5+fvX19V5eXhwOJzU1VVlZecaMGQCA9PR0EolkZWU1MDDQ1NQEABgeHsZ6LykpgeWfz+dnZmYCALy8vNhsdmhoqLe3d21tLZPJtLKykhiT/Pz8vr4+Ozs7OTm5zMxMoVA4NDTE5/NfvnzJ5/M1NTVhM8yB6urqvr4+uBELRWNjo/gwsV1KS0vZbLa7u3tLS0tzc/PcuXMJPvT19dXW1goEAnd396GhIXG3m5qampqaent7CTuGhITAmNjb20P/4djJZDIAoLu7Oysri8lkGhkZZWRk9PX1LViw4NmzZ0ZGRo6OjkVFRVwud2xsTF1d/cqVKzo6Ok5OTqOjo+IDkTjjampqEmcf4urqOt6Wurq6ysrK2bNnU6lUwixDysvLMX/09PQqKyvr6+u9vb2VlZVTU1OFQqG2traSkpKhoWFubi6Px5OTk6PRaPb29pifLBYLbwGzPDw8nJuba2hoiG0Z7yjQ0NB4+fKlr6/vyMhISkrKhg0bMjIy2Gy2oaFhXV3d7NmzCwsLh4eHfXx88CmkoKCAnzsLC4sTJ05UV1cbGxv7+flhAccP9tmzZ6amplwul8fjOTk5ZWVl6ejowJ9o2MA5HE5hYaGmpqadnV1CQsK0adPMzMzwse3u7s7Pz3dyctLS0sLnUkVFRVNTk5mZmaKiYnFxsYuLC5vNrqqq0tPTG+9wQPz7oDPLyYinp6ehoaGdnd1PP/2koaExc+bMb775hsPhpKenh4aGzpgx48qVKwYGBrdu3RIIBHZ2dpcuXQIA3Llzx9PTk81m83i8gwcPmpiYODs7//TTT9euXZsxY8b06dPLy8uxLnp6ek6dOuXl5cXn83/77TdDQ8M7d+6UlpbOmjVr7969eGfs7e2/+uorU1NTU1PTDz74QF1dvaioKDIysq6ubmxsbMuWLf7+/v39/TExMWfPnhUKhba2tlevXp06derdu3cBAPje1dTUnjx5AgDYtWuXm5ubvb393r17VVRUKioq7t696+vr++2330oMSFhYWGlpaUBAwI8//qiurm5lZeXi4jJ//nwtLa358+f7+fldvXoVAIB3wNraGm7Eh0J8mPhdpk+ffvr0aTU1tebmZpFIJO7G2bNn4Xd9amqquNv5+fkPHjzw8vLq6uoi7KikpPTTTz8BAJqamvBjh5+2t7e7u7vfunWrsLDQxsbm4sWLAAAYq4GBgZSUFDc3t/r6ektLSyMjo/nz5+vp6YkPZLwZlzj7GPiCBDE2NgYAVFVVkUgkGo128+ZNkUiEn2WsJd6fhoaG+Ph4Pz+/jz76CABgZ2f3xRdf0Gi0oqKi69ev8/n89vb29vZ2fX19vJ94C5jZ4eHhvXv3+vj4iEQieM4t5ShQUVEpLy8vKyszNDSEl77t7Oy+/PJLGo1GpVI3b95saWn58uXL6upqfAoR5o5MJvv5+VlZWc2aNQsfcHxY1NTUDh06ZG1tHR0dHRwc7OPj8/XXXwMA8APX1tZOSUlpbW2l0WiJiYn6+vp4CyKRKD8/38fHB0s8LJemTZsGx6ihoVFQUMDhcM6fPx8YGHjv3r1/89waIR1ULCcjFAqFTCaTSKTHjx+bmpoCAExMTKKjo2/cuBEQEAAAOHXqlJycHPyVTafTFRQUAABycnJ+fn69vb0KCgphYWEdHR1VVVWKioqurq7e3t7Xrl3z9PTEunjy5Mn06dMBAG5ubrdv36ZSqQoKCp6engoKCmw2G++MioqKkZGRqqqqsbExi8Xq6+vT1tY2MTFZv359TU1NZ2dnbm6unJxcV1fXnTt34InFoUOHKBQKdA/fOzwBgud88vLyqqqqNTU1/f39Ojo6Dg4OJBJJYokCANy6dYtOp2dmZjIYDIFAQCaTKRQKhUIhkUgUCkVdXR02wzugqKioqKgIAMCHQnyY+F20tLTs7OxYLBaFQpk3b564G19++WVUVBSNRqusrAQAENy+fv063Ev8UrO2traxsbGnpyeFQiGMHQAAT1B8fHxu3LihoqIiLy8PdwEAqKmpJSYmrlixYurUqSQSCY4XACA+kPFmXOLsy4TJZBobGzOZzLa2tqqqKvwsY23w/hgZGdna2qanp8Prz6qqqkwmc9q0aYsXL+ZwOOrq6jQaDV6fwPuJt4Dx8uVLa2trMpk8bdo0oVAIAJByFMBZgAGBaUCn06dMmWJkZMRkMjU1NRUVFadMmdLW1kZIIcLcwSOOTCbjA06YwenTpysqKjIYDGNjYxKJJBAICAMnkUg7d+588uTJ4ODgypUr4VGJIRAIvL29sfnC5xKNRtuyZcvTp0+Li4s///zzly9fKioqZmZmGhsbNzQ0THzWEP8oqFhOarCDuaWlRV1dncFgwF+abDZbIBDAb1U+n8/hcAAAfn5+UVFRLBYrJydHU1PT3d3dw8Pjs88+U1FRycjIcHJy+uWXXzDL6urq8Gohh8PBvq2gQfgNJZHBwUE6nQ4AUFFRAQAwGAw6ne7h4TF79uxFixYpKSnBe10DAwPYLuK9q6qqYg36+vpgSZPetY6OjpmZmYeHx5dffkkikcZzT6ID+FCID5Owy5YtWy5fvkyj0STa37hxY2Bg4LRp00QiUUtLC8GUmppaW1sbAEBiyYc/HSSOHSISieD3PrQJ62h7e/u5c+eCgoLOnz8PAIBjLywsFB/IeDNOiP94P0cIQMsAgLGxMcIs45th/jx48KC6utrPz49CocDIwAwBALi7u9fV1ampqb3zzjvi00EYEQwUtIDvReZRgEUM7zz2h1AoFE8hfPTg9fCSkpK2tjZ8wCXGBL8jYeAMBgMAEB4eLvF+OX5HQi6tWLHi6dOnfX19qqqqOjo6urq6Hh4en3zyifipP+Jtge5ZTkYiIiLy8/NZLNapU6eCgoIsLS01NDR8fX2tra1PnDihqqra2Ni4fPlyf3//ly9fAgA6OzuLioquXLmydetWBwcHa2vro0ePwpMJLpf76NEjNputra2Nf8Rg5cqV3333XWZmZnZ29pkzZ2pqahobGyMjI9XV1WtqakpLS21sbLDG7e3tBQUFJSUlX3/9NYfDycnJ4XA4lpaWWlpac+fOff78uZaWlqam5pkzZ+Dlo6GhIUNDw/r6+sTExGfPnmG9R0ZGFhUVKSgoLF++PCIiYnR09PPPP+dyuZmZmU1NTYaGho2NjVFRUR4eHnPmzMnKysIcOHz48LVr13g8Xnt7u7e3d05ODp/Pp9PplZWVqampbDa7vr6+trYW74CCggKLxaqursaHgslkEoaJ38XPz8/MzKy3txferDp06JCLiwv8igcACIVCMplcVlY2MDBQXFzs6OhIcHvfvn1XrlyZOnVqSkpKQUHB+vXrsVPeqKiogoKChoYGIyMj/Njl5eXpdHpTU5OiomJqauquXbsAAIaGhhkZGQUFBRkZGbNnz37+/Pn777//3nvvAQDc3NyePn1qYmIiPl/jzfi9e/ewv2NiYpKTk7///nt8snV0dKSlpY2MjNy/f9/Ly8vIyCgtLQ3ajIqKKi4uFolE+FlWVVXF9sX8EYlEfX19aWlpGhoaubm5NTU11dXV2dnZbm5uIpHo3r17CgoKhYWF27Ztw/vp5eWFWcBszp8/PzU1NS8vr6Ojo6KiorKyUvpR4OHh8fTpUzk5uZGRkWfPnmlra2POFxUVVVVVZWVldXd341PIx8dHPOWuXLliY2NDJpP/+OMPLOAYMBQsFiszM7O1tVVXV7epqSkmJoYw8KlTp27cuBFf+yGE+SouLsbn0syZM6dOnQoHCABYvnz5kSNH0tLS+vv74d1WxKRAhJjcCIXC4eFh/JahoSHsb/hRf3+/UCgUCoWDg4P4HTkcDvaHQCAQN443JYWVK1fyeDw+ny/x09HR0bGxMaxTNptN8F9i76Ojozweb7weS0pKXs9bcQdEuFBI32VkZEQkEkVHR0txA7YUCoXjWRseHubxeNJdFR+7+BQLBIKBgQHYEd7a6OiolIGIz7iU2X8l8LNM2A7/gA/FiMSCc/jwYbjl8ePHz58/F4lNh8QRwYD09vZiQ5NyFPB4PC6XCx/4kj4KKfMyNjYmEAjEAy4T/MC5XG52dnZ/f/9EdiTkEmGOCONFvHXGvUuEQEASExMPHTr0+++//5sP5qWnp+OfRfx3OHz4sK+vr5ubG/yBX15ePnXqVPyJFOI1+O233ywtLWk0Wl5e3sqVK5lM5tv26J+CxWI9fPjQ19fX29v7bfuC+PtBxRKBQPzjiEQiKTebEYjJD3rAB4FA/OOgSon4TwcVSwQCgUAgZICK5X8nQ0ND77//fn5+PgDgyJEjMttLF8b8888/v/zyy9fbVyIikWiCgmp/I9JH8a/xyy+/wDdMZDKRwI43uRPvZeKwWKzAwED4N+ZbQkJCQkKCeOO4uLgPP/xQoh18cr4J48UnPz9/yZIlE28/XrN/IoYYErNRStAQbx1ULP87UVFRmTFjBhRAmT17tsz20kU+V61a1dPT83r7SqSgoKCsrOxV93pDpI/iX8PZ2Rl7pUQ6Dx48kNlmvMmdeC8Tx9zcHHv7CJt0ExMT/IsfGAEBAWNjYxLt4JPzTRgv8ZycnCQ+ljXBRMXC/k/EEENiNkoJGuKtg96znKRAwVIbGxsVFZXKysre3l49PT2oHcrhcKZOndrU1BQYGJibmzs2Nubp6ZmSkjI2NqaiojI4OOjv74/ZaWxsxF7xhoqaBgYG+vr6zc3N1dXVpqamBgYGZWVlV69e1dHRcXV1ZTKZubm5/f39Tk5OmpqaQ0ND+fn5BD13kUiUlpYmJyenoqIiEomwfVksFgAAqnZlZ2cbGRkZGRmFh4fPmzePwWB0dnaWlZXp6upqa2sfO3YsICBATk5OQUEBSnqmpKRwudzAwMBHjx7Z2Nj09/c7OzuPjY2lpaWpqqp6eHgMDQ0VFhZCYRdxTerKysq6ujpfX19FRUUsRPX19XPmzCGTyRJHUVtbm52dPWvWrJKSEk9Pz/b29tra2rlz55JIpN7e3traWhKJ5OLikpaWxmazPT09GxoaOjo6sFOr8fwEAOTm5opEImNjYwUFhZKSEqjc+/jxYwsLC1NT05qaGmNj46amppKSkhkzZvT09Nja2uJjDgAQCoU//vhjY2PjtGnTfHx88H2x2WzMN2xyCUPmcrmwl7a2NjjGoqIid3d3+JQvzBkSiUSn0+HbtOMlFSY7DJ23tbWFYw8LC7t9+7aOjs68efNKSkoMDQ37+vrgm/gtLS1mZmaEV+nj4uIAAH5+fvDdfzz4PBQPdXZ29ujoqKOjo4qKChTLxTIqMzMT84FKpWKZmZKSgq9wWNcVFRXjJTmWmdOnT8fC7urqCmOoqKjY0dFRU1OjrKxsb28vnl2wo/FiCADA7w4AEM9G8fg0NDS0tbUNDQ2Jr0aAeFugM8vJyOnTpykUioWFxS+//BIXF5eXlzdjxoz79+9XVVXZ2dnt2bOHTqdzOJzdu3fb29vfuXOnu7sbao3CxQ0wqRoAwNSpU+EP6rS0tMjISKioCQC4fPmyn5/frl27+Hy+lZWVoaHh/PnzmUzmixcvKisrAwMDjx8/Pjw8/NVXX/n4+IyMjODdi4iIUFFRcXd3LywsxO9ra2u7e/dueXn5kpISKG2qoaGRl5dXX1/f399/+PBhPz+/kJAQBQUFJycnLy8vKysrAwOD4OBgAICtrS1UuFVQUDh79uzY2FhrayuUJG1tbU1LS/v555+9vLyMjY2rqqoI4aqtrU1OTp45c+Ynn3wCAMBCxOVy//rrr/FGAeVVKysr3dzcli9fDrV1nj9/DgA4c+aMk5PT06dPCwoKzM3Nz549q6KiUlNTg1f2Gc/Pa9euVVZWOjs779ixo6enx8bG5vLlywAAeXn5yMhIRUVFFotVW1trYmJy48aNrq6uvLw8fMyhcTKZDN++hy8hYH21tbXhfcMmlzBkrBdsjB4eHgcOHAAAXLlyRSQS1dbWDgwMYN/X4yUVwXls7PPnz1dXV58/fz6VSlVRUQkLC4OiptnZ2QEBAd9//z1+jvbv329mZmZnZ3fmzBnxVMfnISHUP/zwg46OzsyZM/ft28fj8QgZhfcBs7Zz504bGxsjIyO4th2+6/GSHJ+ZIyMjWNixGHZ1dZ07dw5K/t65c4cQaqzr8WJI2F08GyXG5969e56enr29vVLktBD/MqhYTkb++usveB6wd+/e69evw9+nzs7OUN9y6tSp+vr6TCZTR0eHRqMxGIyuri5VVVUjIyNlZWUrK6uMjAzsjiCm0RoUFAQVNU+cOAEA2LhxY1RUFJlM7uvrw0t03rx5U1lZOTMzU11dPTQ01NbWlkQiEcROnZyctmzZsnXrVi8vL/y+6urqU6ZMMTMzmzt3LpQ2Bf+jcRoWFmZnZwcAOHToEJ1Oh+KuJBIJU7hVV1eH33ra2tpmZmY+Pj4cDqe3tzc3N1dJSamzs9PZ2dnb2/vmzZtubm6EcE2bNs3S0jI3NxcqyeFD1NbWNt4oqFQqjUbz8vJSV1dXVFRkMplMJhN+yX755ZewsFVVVWlra1tYWNTX1ysrK+PlVMbz8/r16ytXriSTyVCRnKD1CgCA545wCQ5bW9sNGzbgY47Zx9RK8X0ZGxvjfcMmlzBkrBf8GDF1Q6jUyuVy4YkmYXd8Uok7D4HCxXDSocAb/AO+ibtgwYLbt29jjcPDw9va2mprazG5ODz4PCSE+unTp0ZGRiQSSV1dPTk5mZBReB8g7e3tbW1tUGMIDh/f9XhJTshMfNihkcePH0PxXm9v7+vXr4uHWnoMCbuLZ6PE+JDJZHhJVvxcHPG2QDMxGVFQUIAyzYODg9jX3MDAADx6JUpfYvuKRCK4HBLBJoPBGBwcBAAMDQ1VVVWdOHFi7ty5ampqnZ2dPB4Pk+jU0dExNzf38PDYtWsXptJJeBm3tbU1NTX1iy+++OGHH8D/lvfEFEEx36DzWO9wUPArAO4CW3I4HOxuDTSipaWlrKzs4eExb968gIAATU3N9PR0KyurGzduEIZ29+7d0tJSuLguXrIVRma8UUDgySK+vUgkWrt27ezZs42MjEQiUUtLy+eff37p0iUlJSXCvhL9VFJSgicN2O8VvNYrHiUlJRgHfMyxT/EhwvoS9w1rLzEZ8GOE22fMmMFisZhM5uLFi/Ftxkuq8ZyHeq0Sl61ub2+HIrcQBoPh4eHh4eHx8ccfE1qK56HEUA8MDKirqxMyStwHOp3e3d0N/4ZzTehaYpJLyUwIdgAODQ3BnybjhVpiDAm7i2ejxPjMmTMHal6WlJSIRxjxVkDFcjJy8uTJCxcu5OTkFBcXHzlyJCoqKjs7u7i4ePPmzWlpadXV1eXl5VFRUTk5OVVVVUVFRbGxsQCA1tbWwsLCoKAgeAU1MzMzKiqqtra2uro6LS1t7969T58+zcvLS0pKEggENBotPz9fRUUlKipKTk7Oycnp+fPnZDL5yJEjDx8+zM3NTU1NXbBgAZlMzs/Pj4yMLC4urqurg+7l5OTcv3+fz+evXLkSAIDtGx8fz2KxcnNzAQDwhll6enp7e/uTJ0/mzZs3NDSUmpoKxWxnzJgRGhoKV6jw9fUNCwuLjo5uamqqqKiIiopKT09vampiMpl+fn4vX75MSUnp7Oy8f/9+UlISvC4XGRm5e/duLFxQZiwxMVFTU7OoqAgfotzc3BkzZkgcBZTrjI6Ojo+Ph2s3wjgPDg6qqqqWlJSw2ezs7Gwul2ttbd3R0QHvR2KM5+fZs2eDgoKKi4uLiopgy6lTp2ZkZJSUlCQlJTU1NWVmZiYmJlZWVlZWVsJo4GOO2be0tMzPz+/o6MD3JRQK8b5B8du0tDTCkJubm2Ev+DHW19ezWCyBQHDv3r1bt2799ttvWF9SkgrvfH5+fnV1dXx8PABAVVU1LCzM0NAwOjo6NzcXrqSRkZFRWFjIYrE+/fTT9PR0OMbvvvvu+vXrOTk5FRUVsDssOcXzEB/qEydO3Lx5Mzk52djY2MXFhZBReB+gWRUVlfXr10dHR6ekpFRUVKSnpxO6lpjkhMzEwg6dTExMfPfdd/v7+7Oysu7evXvy5ElCqLGfEePFkLC7+DGFdxIL2pUrVwoKClxcXMzNzd/kmwTxd/JvaushJg5BPxMv+joeUMFVooAnBiZ6KRQKoRQqJk2Jl+gUl5/t6+vD+8bn8/HtJcp7Qs1VDocDOxL9b7lL/C5YF+KaqyMjI5jwJpvNxhpAgW8MLpcrXf5UfBTSwXQ7oZ9QMlsKmJ8ikUggEIyOjn755Zf19fVwy9DQ0NjYmPRJFNcjhWqlUnyb0Ej+NwcOHIA7BgcHx8XFTWSX8Zzncrn4/544cSInJ0dcmFckEgkEgvG0efF5KB5qgUCANyieUQQfRCLRyMgIlNWFoSN0LT3JIRLD/kpqseIQdidko3h8CDrPiMkAOrOcpJBIJPz6TdjlzfGIj4/v6Oioq6sjrA5IQFlZGbMP19vDpFXwt0ywZgAAuCYX/nYaiUSiUqn49hJvR5FIJCUlJUVFRWxhP2hKfBesC3GdFwUFBTgiaA02GBgYIAyTRqNJv7sjPgrpwCuBJBLp2LFjkZGR4jdKx/MTAADvwNXW1kZHR8MtysrKFApF+iTiYw6B98+k+DaxofwvTExMUlJSMjMzBwYGHB0dJ7LLeM7jH3fq7e0tKSmJiYkRv1gNACCTyfhkxoPPQ/FQk8lkvEHxjBJfTE1BQYFMJquqqsLQEbqWnuQQiWEXn51XgrA7IRvF40MikWQe8oh/GaQNi0D8n0OElFoRiFcEnVkiEP/nQJUSgXhVULFEIBAIBEIGqFhOUl5DcBVjaGho48aNiYmJ+I2HDx+Gr6O8iT8SLb+hTQBAWlpaaGjoxHdksVh+fn4EkYHJwPPnz/39/e/cudPe3g63dHV1nT9/XrxlfHz8u+++i9/y2jMucWbF7U+wi6CgoOrqapnNzp079+OPP068/d9FZGTk2rVrpbeBAcEnicSBDw4Onjx5cseOHW+iMAePCPjksDhYvxOJEhZSxOQEFctJyp07d157XxUVFV9f39HRUfzGwMBA6c/+SKGmpiYjI2M8y68NNkYjI6Pp06dPfEdzc3MjI6NJKG6ydOnS2trad999FxPkwzTwCPj7+xOeInntGZc4s+L2sUmUjqOjI0GCQCLvvPMOfH1wgu3/LubNmydTgh8GBJ8kEmMbExNjbm5+4cIFvAbQqyLliMAHfCJRwkKKmJwgbdhJh1AoPHPmTH5+vr6+/rx58wAAeXl5IyMjZmZmhFXmW1tb6+rqNDU1oXJKX19ffn6+pqYmfMqRx+Olp6fLycm5uro2NTW1tLQIBAIKhVJYWNjb22tqaqqgoFBYWKiiouLp6RkdHc1kMu3t7RMSEsbGxry8vLCnEHt6er7++msHBwc6ne7q6kqwDN0oKyvT0tIiPF3Z29tbXl5OpVI9PDzg64C+vr7V1dW2trZMJjMiIiIoKEhXV9fHx6eoqEhLSwsA8OLFCwMDA6jO6uvrm5uby+fzvby8xAcrzsDAQG1t7fDwMNTZEQgEiYmJdDrd0dFRXl6exWJ1dnYymUxdXd3Q0FAvLy8KhZKQkLB06dKOjo7s7Oy5c+fW1dW5urqOF1U7Ozt4AjFnzhz4ZiGUQZBOaWlpX18f/Ds/Px++mT46OgoraGNjY1lZmY+PT2Nj46VLl3R1da2trTFd8s7OzqKiInV19dHRUQ6HM3PmzJSUlClTptjZ2WHT1NPTg80sfJNST0+vtbUVaopi9kdHRwmTCHny5Im+vv7Y2NjY2BhsBkWLurq6CPMlcaKx9hQK5cWLF15eXk1NTQoKCrALLNMMDQ2LiorgKPz8/PDxYbFYdXV1Li4uDAYjNTV1dHR02rRpfD5/+vTp+N0JUa2srOzo6PD09KTRaC9evGAymQ4ODk+fPnVyclJUVMQCAhvjMw0TWB8eHk5NTVVXV3d0dISSywKBwNPTk8PhhIWFzZw5s7Gx0dvbG7u5OxHf8JmDP2psbW1hlNra2pqamoyMjHR0dLKzsy0tLSkUCiGkAoHgNdIM8S+AziwnHWQyefbs2WZmZvD77vTp01Qq1dvb+/z581CMDeP06dPe3t5nz55tamoaGhrasWOHn59fXl4eXNAjLi7Ow8Pj0qVLg4ODU6dOffTo0ejoaFRUVGZmpr+//8mTJ7W1tTMyMurr6wEAZWVlU6ZMOXz4MHzrH7/wE4PBcHd3d3d3d3FxgVvwljs6Oo4dOzZ79uzExET8haa+vr5vv/3W29tbV1f3m2++MTY2vn37dm9vb0BAwPbt2xsbG+fOnctgMObPn6+qqqqjowOXetDV1d27d++0adOqqqq+/fZbR0fH+/fvNzU1EQYrMW6nT5+2sLCorq6Gip2ffvqpnZ2dpqbmrVu3oIqCt7f3L7/8oqSk1NzcnJ+fP2XKlIiIiM7OTmNj4zt37tTU1EAZgfGiWllZqaKi8uDBAxKJVFJSInFdC3Gsra2hGG9QUFB3dzeFQklNTYVvmjc0NAwPD5uYmBw9etTS0tLIyGj+/Pn4FTy0tbXDwsIGBgaYTGZwcLCSklJJScnUqVPx04TNLIvF+v333318fM6cOQNnCm9ffBIhmpqax48f9/DwEIlEe/bsUVBQaG1tLSoqEp8viRONtVdWVm5pabl+/bqXlxdMDHymDQ4OxsbGuru7NzQ04HtvaWkJDQ2dM2fO+vXrAQAODg579uyhUCh5eXn43QkhbW5u1tLScnV1/eijjwQCga6u7t27d+Xl5YeGhpKTk7GAYO3xmYZtVFZWdnR0tLW1nTZt2pYtWxwdHT09PXfu3KmmplZZWfnkyZOenh68btFEfMNnDj7gWJRMTU1Pnz6toqKiqqqak5MjFArFQwrf0nnVNEP8C6BiORnBC1TevHkTLlbg6upKWLNp+/bt4eHhdDqdxWJFRERYWVmRyeSNGzdaW1sDAKByjYaGRk9PD5lMhi91BQUFqaqqZmZmmpiYdHd3b9++PSQkRCgU2traamtrh4SEwMU9CO8jYlKu8L94y8+ePaPT6ZmZmVOmTGlsbMR2CQkJgSXByMgoMjKSSqWqqqpaW1uTSKQ5c+bcu3cPr+0JTysBADo6OmZmZioqKrq6ulOmTJGTk9PV1YX3//CDlRi0PXv2xMfHk8nkoqKirq6uxsZGbW1tc3Pzzz777MaNG3C1kNOnT5PJZExcFBNQVVBQsLa23rhxo/SowkVCRkdHDQwMnJycZM5jeXm5goICPEfncDgaGhpQlBX2q66ubm1traur29railcujYqKunjx4sWLFwUCwZYtW168eNHf38/n8wUCga2traamJn6asJmFWq9ycnI8Hk/cvvgkQrS0tKZPn04mk2fNmvX06VORSAS1XsXna7yJxrRhtbW1nZycsMTAZxqXy83Kylq8eDHhUuTUqVM9PDzi4+M5HI5QKFRWVtbR0TE0NFy7di1+966uLoLPDAZDSUlJTk4uJycHk9bDplU8ewkqsth2MplcU1PT2dlJp9Phq7r5+fk6OjqmpqbLli3DtHMBABPxjZCi+IDDKMnJye3evfvBgwd1dXVr166NjIyUGNJXTTPEvwMqlpMRWCZbW1s7Ozvl5eXhAwhtbW34o7e2tvb48eMLFizQ09ODAhPYD2GoJy5RwZLJZJqYmHh4eOzevZtOp2toaCgrKz948ABe6mQwGC4uLh4eHjt37hT3Jy8vD/4Xb5nJZGpra3t4eKxevRp/1gK/MeHfhDs6LS0t8HsNfo9gZgnG8b0QBovXRMX44IMP/Pz8LC0tRSLR4OAg9mzFwMAApv8JFWEwy9gFUvA/r43LjOr7779/7tw5uF6HzHeU8U9COTg4dHZ2stnsHTt2iA8Q4ILs6Oi4ePHixYsXU6lUc3Pzmpqa/v7+d99999KlS/BnkMRpYjKZmpqacXFxV69elW5foqsjIyOwqIh/BOdrvInGQ0gMLNOGh4dPnjx579694OBgfMwfPnxYWFgYEBCgqKgILxhgb+ITEnW8CDMYDImzSUBipkFUVVWHhobg3+3t7bDQShQEkO6beIpKDPj8+fMjIiJqampMTEykhBSfZohJAiqWkxFTU9OqqqqcnBxtbe2LFy/euHEjMzOzs7Pz/fffx9oIBIKxsbGCggISiRQXFzdr1iwqlZqQkBAXF9fU1JSSkhIXF8discrLyyMiImpra2tqamJjYw8fPvz06dOcnJyXL19CGZStW7cWFBRAAZFTp05dunQpLy8P6rtieHp6hoWF9fX1DQ8PEywvXbp0cHAwKSkpLi4Oar1CVqxYQaFQ0tPTb968iV2tSkhIyM7O7uvr27BhAwCAyWTGxcWpqKiEh4eXlZV1dXWFhYWVl5ezWKy4uLi0tDQWi5WXlxcdHU0YbHNzc01NTVhYGNadUCgkk8kVFRVNTU1wIcBPPvnk7t27mZmZlZWVe/bsgUqeL168oNFobm5uJSUlaWlpAwMDISEhVVVVjY2NcK0rKVGFD1+sXLmyqKgI3s5csmRJZ2cnPlBPnjzp7e19+PDh/fv3165dOzY2lpmZyWKxSktL5eTk7ty5c/fu3TNnzvB4vIyMDDi6sLCw+vr62tpaf3//e/fujY2NwTMbU1NTaHPBggUUCmXp0qWZmZn6+vqEacJmVllZ+dmzZ48ePTp+/Hhzc7O4fWwSCclWUVFRXl5+/fr1K1euYPMrPl+EiYZTVlVVBduLJwY+0zgczoULF2praxcvXoz/wScQCPr7+7Ozs3V1dWNjY5OTk1ksVnJyMgBAPFExGAxGdnZ2TEyMu7u7mZmZrq4uj8crKCioqqqKiYkpKiqCAYGRgUmCZRpmhM1mJycnQ2m9devWhYaGRkVFQb3+jIyM8PBwQqDG821sbCwlJSU2NnZ0dBSfORQKRfyoAQCQSKS5c+fCp5clhhT+EMSnGWKy8K8L7CEmBNRfxf47njQllJTEZELxEpdSIFgjKGFKNCJR/VX6LnA75tvKlStHR0cJLaWbJUAY7HhuYA14PB5eOxQvtjk2NjYyMsJms8XFRcU7wnweGRnhcrlJSUkT9xlj3759MM7Z2dnnz5+X2GY8iV34h/RpOnr06MDAgEgk6unp2bp16wTtl5SU7N+/f2RkRDyqEudrggmGgc80iWKnfD6fx+OJxpnW8dJ+bGyMMJbh4WEulyvFPemZxuPxXikVx/ONkDkSbco83N4kzRD/HOjMcpIC9Vex/44nTQnPCLGrZ1IuWOEhWCO8YyDRiET1V+m7wO3Qt6qqqu7ubnhHZ+JmCRAGO54bWAO4ZiT2Kf7EgkKhwLuJ4uKi4h1hPu/duzcqKmrmzJkT9xnDzMwMirIWFRXBh5zFGU9iF/4hfZrc3NwSExOzsrKysrLgDdqJ2I+MjISXeQlRHW++JphgGPhMk3htk0qlwuXkJE7reGlPoVAIY4E3HaW4Jz3T5OTkXikVx/ONkDkSbco83N4kzRD/HEgbFoH49xD9w6Ks/7R9BOL/LKhYIhAIBAIhA3QZFoFAIBAIGaBiOdlJTk7GlkWcCCwWy9fXV6YUXF9f37p16/Lz89/Mu1eAx+O99r6///47fBENeyGksrISKvX8+7xS15jnfwtlZWUEBRyZnDlz5syZM3+XA+K8iYjxP8qbZPjRo0d//vlnwsb79+/HxsZeunTpl19+kWnh66+/BgCEh4d//PHH+O0wH7CDtKOjA3vVZ9JGEgFBxXKyY2xsjL1FMBHMzc319fVlXl3X0NDw8PB4kwL2SpSUlLxJYXZ0dIQv2t++fRtusbCweFtvob1S15jnfwvW1tYEyUOZrFixQsoLiG8ONiOTjTfJ8GXLlsEXc/E8ffo0MDDQ19cXr+wzHvAZqwULFnA4HPx2mA/YQaqmpoapD969e/c1XEX8ayBt2MlIU1NTc3MzlIUsKSlhMplDQ0OhoaHe3t51dXW6urra2tp5eXm2tra6urohISHGxsYjIyNycnLu7u54O/n5+X19fVDGBb+9qKhoZGQEW7Wjq6uLxWIpKCg4OzsDAMbGxpKSkpSVlV1cXLKzs3t7excuXPjixQtdXV1LS8vx3AAAxMfHC4VCHx8f+J7f7NmzCwoKHBwcqFTq999/P2PGDAUFBQcHh9TUVDk5OUVFRTs7O8LAOzo6iouLGQzGwMAAl8udOXNmamqqgYFBdXX11KlTm5qarl69OmXKFAcHB/jGYU9PT15enr29PaGEVFVV1dXVeXl5qaioZGRkDA8PGxkZ1dTUBAYGwmcvxUPE4XCgz0VFRc7OzoODgxUVFQEBATQaTWKE8V2PjY2VlZW1t7fPmTOHRCJh0wdFcadOnaqsrAzFUXk8HuEpx5ycnNHRUWtrazk5OSy2DAbD1taWEJyUlBT8k5OY52QyubCwUENDw8nJKTY21sjIyMDAIDU1VVFREd/X2NhYRkaGSCTy8vIaGhoKCwtzcXFpa2szMDAwNTXFolRXVzd79uySkpLu7u6AgAAAAIfDwaw9e/bMxMSEz+cPDg76+/uHh4cHBwdPmTIFCgvgE7iqqkpXV9fGxma84Pj6+vL5fHE/8WCpMjg4ODo6qqmp2dvb6+fnB+V4sHyj0Wj4HsUzHKOvr6+2tpbP53t6euKPKSzgTU1NjY2NbDabsGNWVlZ3d/fLly/r6urgFnxYUlNTORyOp6dnSUkJh8OZPn16c3Mztm95eXlXV9fMmTN5PB6WD/CjsrKyvr4+oVB44sSJyspKY2NjPT295ubmadOmKSsrFxYW/ss69QgpoDPLycjNmzdnzJjB4/HYbLampubjx49VVFRqa2uDg4NnzZr1448/ZmVl+fn57d27FwCgrKx87tw5qGF98eJFzEh4eHhxcXFAQMBPP/2EN/777793d3d7eHjU1NQAAHp7e3/66ScvLy8qlQp3/+yzz5ycnEQi0bNnz2xtbeFGLS2tBw8eSHHj4MGDRkZGbm5uP/zwg6Gh4b1794qKivz9/Xfv3s1gMJydnT09Pe3t7SMiIhQUFNzd3YuLi8UHrqOj8/z589HRUQUFhaioKDqdnpOTY2xsDAXBLS0tDQwM5s+fDyslACA3N9fPz2/37t14Iw0NDbGxsf7+/h988AEAwM7Obu/evVC/7dq1a/iW+BBhPvv6+q5atYrP52tqasL2EiOM7/rPP/8EAGhqan777bf46RMIBNDzgYGBxMREcXHUEydOqKiozJw58+jRoyKRCIvt999/T4jMjh07LCwsLC0toZYv3nNtbe2kpKTm5mYKhQJ/Wm3evNnPz4/H4+EXPtuxY4erq6uzs/MXX3yhrq5eUlKSnJzs5+d39erVrKwsLErKysoffvihqalpTk5OQUGBSCTCW9PU1Dx48KCVlVV6enphYeG8efPU1dXnz5+Pr5RtbW1nz54NDAyEEg3jBWd4eFiinxj4VHFwcNi3b5+JiYmVldV7771HyDdCj4QMx3PmzBk7O7vU1NSEhAR8MsOAFxYW3r1719vbGxOfwnBzc4MCs1DrihAWGxubM2fOjIyMxMfHm5mZ6enpPXjwACoP1NfX6+np2dnZffrppwoKCjAfMLNWVlZXr14lk8lQfMrPz8/MzOzs2bNqampKSkrp6emYmiDirYOK5WREQUHBz8+vra1NXV0d003V0tKyt7cnkUgCgcDd3Z1KpcKbHAwGw8rKikQiLVmyJCgoCDNy8+ZNZWXlzMxMbW1t/O2QoKAgeMZgZmYGcCKu9vb2f/75Z2dnZ0dHB7yEtXLlSmVlZaifgilwjudGaGhoV1dXeXm5srIylUql0+nu7u5ycnLw1z2mk+ns7Lxr165NmzYRToIhJBLp888/Dw0N5fP5PT09QqHQ09NTUVERfmXgBVQhnp6eWBcYRkZG8AsRypjR6XRdXV2oLob/vU8IkUAgwHym0Wjm5uZMJhPKqUiMML7r1atXt7W1sdls+D2Inz7ouZqaWkpKyrJly6ZOnYp34MGDBxYWFgAAS0vLFy9eYLGl0Wj4QXV3d0OpW0VFRXgSj/ecx+Pt3LnzyZMnXC7X3d29o6Ojs7MzLy+PTCZjSz5VV1d3d3crKCjQ6fSOjo6WlhY4KADAihUrfv/9d3yU1NTU6HQ6k8lsa2urqqrCW9PR0TE3N1dSUmIyma2trRJlV58/f66kpJSZmWlgYNDQ0DBecDo7O8X9xINPFWVlZQMDA3V1dT09va6urvb2dny+EXokZDieL7/8Mjo6Wk5ODjpDCPgvv/yyYMECAMC0adPEMxOOFA6WEBZ1dfU7d+5s2LBh48aNRkZGFAoF06fV1dVVU1PT0NBoaWlpb28nFD9FRUUoHYzJQVOp1F27dv31119VVVW7du0ivJSJeIugmZiM+Pn5RUdH19fXp6Sk4LcTdFMJT/H09fXhX5TGFCzhagnYdgqFAnXp4H1NDQ0NqHrK5/OhmDUm5YrXmMXfp5HohoaGhpubm4eHx+bNm8U/xXQyGxsbU1JSDh48+N1330kcu42NTXFxMZ/Pd3d3v379+owZM/CfEkQ+JcbhwYMHVVVV/v7+VCoVVjuJMrkSQwRbjtceH2F817t27Zo2bZqrq6tIJGppaRGfvvb29nPnzt26dev8+fP4hZopFAqchZaWFqgDJ7FrJSUl7FwHtid4rq2tLRQKnz175uXlxWAwFBUVPTw8/Pz8li9fDvdSVVXFxAi7u7vxedLW1gZ/kElU5RW3RvAQzgj+hjQmeQrPUMcLTnV1tbifeMZLlZ6eHhUVFXy+EXokZDiejz/+ODAw0NTUVPQ/CsP44airq0PReZm3/MXD0t/fv2rVqhs3boy3i5ycnERZBgg8QMrKyng83rx58+BqM2pqahNxBvHvgIrlZOTKlSu5ubm2trbwumVJSUlTU1N6enpMTAxc/y8yMjIrK4vFYsFVpYqLi8vLy2/cuAEVOGGDw4cPh4SE5OTkxMTE4MWATp8+HRwcXFxcnJ+f/+TJkxUrVvB4vMzMzBs3bpw/f15JSem99957+PBheno6vOJnbGxcVFSUl5eXk5NTVVU1nhvHjx+/evVqbm4uFOesr6+PjIzMyMiora0tLi6eMWNGaGjo0NBQXl7e7du3ORzOmjVrAAALFiyora0lDN/Hx0dFRWXNmjXFxcWKiorDw8NpaWnx8fEAgBkzZjx69IhEIol3ge0uEol6enrS09O1tLQyMjLS0tJqamqKi4sjIiIqKirgGiYQfIgaGhowg9XV1UVFRREREeXl5W1tbYQIi3dNJpPr6+tjYmJUVFQaGhqw6Zs2bRr0vLe398KFC/X19WvWrMH/cDl37lxQUFB6ejqNRps5cyY+tvhHoJWUlD7++OPw8PDMzMzxJnfTpk01NTVkMllLS2vhwoVPnz5NS0trbm6OiIiAwVm5cmVERMSLFy82bNgAv4WzsrJKSkrS09P37t2Lj1JZWRmLxUpJSYmPj1dTUyNYKy0tZbFYaWlpcE1NBoMRGRmJvym+bNmynp6e1NTUiIgIgUAwXnB8fHzwloeGhghi4oRU6ejoyM/P/+uvv3bt2kWn0/H5RuiRkOGYQSggDFcYLS8vb2lpIQR8z549aWlp8AJ1cnIy/nw3KSmpurq6srIyIiIiNzeXTCbjnX/w4MHhw4c//fTTmJiYCxculJWV1dXVJSQkAABUVFTy8/NDQ0PXrFkjEolgPmAHaUZGRlVVFYvFsrCwKC4urquro9FoJBJp5syZ8MdTfHw8fr08xNvk39TWQ0wQoVAoUUhTIjk5OT/88AMUpRRHooKlUCjkcDgcDgfTriQ0Gx0dJSjTCoVCKD0q3W02mz3ep7AvoVA4NjaGedvX19fc3CxuB/5BUNHE25EOj8cbGxsTSRWSxRhPgBRDeoQhcOCwO/Hpg9slzqlQKJyg4CqU6h4YGMCmRorGL2EGsY1QiFUkEp05cyYlJWXiXYtbw5Cor4u3LCU4eMvFxcV4C4RUWbp0KSYkizXA5xu+R/EMl+iMRIaHh/l8vsysEMkKCwbB7fGAIv7Q4aioKJntEf8y6GnYyQiJRJJyxYZATExMaWkpm83GP2SBIVHBkkQiERoTmhE0LeGnMtehJZFI8AaMRKBNeOMH6720tNTb21vcDvxD4g2biWh4Yo+8TkT7bTwBUgzpEYbAgcPuxKcPbpc4pyQSaYKCq3DghBWM8Q3w4ZIYJWxjf39/UVERh8MRD76UrsdDor4uflBSgoO3DC/7Y+BTJTExsaOjo6qqCi5ShjXA5xu+R/EMl+iMRKAdmVkBJqxsjL+uIwU4fX/++aeSktL06dMnsgvi3wTJ3SEQCAQCIQN0zxKBQCAQCBmgYolAIBAIhAxQsZyMhISE+Pv7//HHH9jLdjU1NQEBAeKKJATOnTv3448/Dg0Nbdy4MTY29p/3lAiLxfLz85Pp56sic/hvRVezq6vrwoUL4tsxZ9LS0sLCwv5Vn/51hoeHP/nkkzdMNonzO14aT2SupUT+66+/lqmcPB7x8fGrVq2aeHvxISQlJb3zzjv4NmVlZRO8c4x4u6BiORlZuXJlbW3tunXrsIcUTE1NTUxMZB7k77zzTm9vr4qKiq+vL/a65L+Jubm5kZHRa38ZjYfM4b8VhVJVVVUPDw8pzhgZGUHBh/9ilJWVAwIC3jDZJM7veGk8kbmWEvnAwMDXftPf39//lR7yEB/CrFmzCM/7iKtRIiYn6GnY/wBSU1Pl5eWxo7SwsLC3t9fMzMzAwGBgYKC2tnZ4eFjiOhgVFRXNzc2GhoY6OjrZ2dlQLg77tLq6uqurS1NT08LCIisrq6+vz9zcvKqqatasWfCJwYSEBIFA4OXlhX+wUCAQpKeni0QiqFL94sULqAOnqKiIf08uLS2NzWY7OTkNDg7W1NR4e3tjDy6+ePECutHV1TVnzhwAQGtra1lZmba2toODg3i/+OGz2ey8vDwajaalpYXpy5eXl1+6dGnKlCnW1tYmJiY9PT0VFRXiSrkvXrxgMpkODg5Pnz51cnKaPn16amoqjUajUqlOTk4EHzCw7TY2NnFxcSQSac6cOVFRUaqqqjQaDb6K19TU1NLSMjo66uLicu3atYKCAgMDg3nz5hUVFWlpaQ0PD4tHaWBgIDs7m8lkNjU1+fv7YxEOCQmZPn36yMiImZmZoqJicnIyjUbz9fUlDBw/d1D9YM2aNaWlpdXV1atWrcIb0dDQyMrKEgqF06ZN09HRwQ8Tc9vNzU3iE7nwBURXV1dNTU2JGVJSUjI8PDw0NIQJ1hCmuK+vz9fXNzc3d2xsDOpL4D2Xmd4Ef4RC4enTp7Hw4oepqqpaWlra2to6Z84cCoUyXuShMq1AIMjNzRUfTn5+/vDwsKqq6ujoKPYzSDzlGhoaysvLsb1yc3NHR0fNzMyYTKZ4jmHOj4yMZGVljaeD39LSUl9fb25uDqWypAQB8bZAZ5aTnR07dkybNs3BwYHFYgEAoqKiMjMz/f39T58+DQA4ffq0hYVFdXX1o0ePxPc1MzM7f/48lNRKSEiYMmUK9lFKSkpMTMyMGTMKCwsjIiJsbW2/+uorHo9nYmJy9OhRAMDhw4d1dHS8vb0J+imbN292cnLy8PCA74Y3NjZev37dy8vr0qVL+IUarKysvv/+ey0trZGRkcbGRvwj/lpaWnv37jU1Na2trY2Kiuro6Dh27Njs2bMTExPr6uoI/RKGf/HiRQ8PDwcHh8LCQsygpaWlvr7+/PnzTUxMent7v/32W29vbyaTCcVI8f3evXtXXl5+aGgoOTk5MjKSQqG4ubmVlZURfMB2wW9vamoyNjY+efIkn8+Pj483Nze3tra+cuUKAODXX3+F6ne9vb3+/v5mZmbwR4COjs6DBw+UlZUJURIIBNu3bw8MDDx9+rS7uzsUFIRoaGh8++238vLyLBbrk08+8fHxUVVVDQ4Oxg+cMHf6+vr379/ncDiWlpaXLl0iGLl8+fLAwICbm9uZM2cIw8Tc7u7uFk+elpaW0NDQOXPmvP/++wAA8Qz5448/mpqaPD09xWUlsCmuqqr69ttvHR0dg4ODW1tbCZ7LTG8CZDIZH178MB89esTlcqdPn75z504pkZ86deqjR49GR0fFhxMUFNTd3U0mk9PT0/E6eYSUa2ho4HA42F6nTp2iUqne3t4XLlxobW0l5BhmhMPhbN++3dvbW11dXVx4FgDQ1dXl7e195MiRlpYW6UFAvC1QsZzU9PT0sFisKVOmyMnJGRoaAgCCgoJUVVUzMzMNDQ17e3v37NkTHx9PJpPx6swYVCp1z5499+/fr6+v37p1K/76z88//wwloQMCAq5cuaKkpKSlpWVpaamrqwtlwEJCQoaGhgoLC6HaC6Smpqarq4tOp0Odkfz8fC0tLScnJzKZTPgW0NDQ8PPzy8rK6ujo+OSTT/Be6ejomJmZqaiowL6ePXtGp9MzMzN1dXUbGxvx/YoP39vb28fH5+jRo76+vphBvGbskydP4M95IyMj+HWM7xf+AZdxcHZ23rdv38cff+zk5ETwAduFsH369OnHjx9fu3bt0aNHGQyGgoIC/BGgoaHh6+tbVFRkYGCAiXwCAPC6vvgoCQQCOTk56LOqqir+nT8dHR0jIyN7e3t1dfW2trbCwkIulzs0NIQfOGHuqFQqPLFTUFCArzBiRtzd3X///ffZs2dTKJRTp04RhoN3Wzx5pk6d6uHhER8fD5fgEM+Qq1evQiVV7BxR4hTD6dPR0eno6CB4LjO9xb3Chxc/zHfeeaevr6+lpQVO33iRh39IHM7w8LCGhgaNRuPxeHgFV0LKqaurW1lZYXvdunULXopwcXF58OABIccwwsPDLSwsqFSqrq6uxJN4qNPr7u5+//59mUFAvBVQsZzUKCkpYb/6Rf9bFPSLL75QVFT84IMP4HoFAoEAHr0EAgIC4uLiGhsbCRLeGhoacJnDtrY2iaqkDAbDxcXFw8Nj+/bt2F6qqqpQnRwA0N7eDr93xlNS3bJly88//yxdWEAoFGLCnqtXr3ZycsL3Kz58eXn5zMzM+fPnE5ZSwbRnNTQ0sJpNuN2FdQoHXl9fn5SUdPTo0SNHjhB8wHYR387n852cnAirZHh5ecXGxrLZ7BcvXkBPmpqaCCcQ+CHTaLQZM2ZERUV988034m/0w4KHqY96enp+8MEH+IFLmTtMwhd78V9VVRU+ODMwMEAYDt5tIKZB+ueffxYVFQUEBCgoKEiU2FVQUIBf5RJv40lUmiV4LjO9xc0SwosNc+fOnfr6+t7e3uIHwnj5Sdju6OjY2dnJ4XC2bdtGaIZPOcJe8vLyY2Nj2IgIOYahrq7e1NSEH+l4aGlpyQwC4q2A7llORkJCQths9t27d9etW7dt2za4lmRtbW1ISMjhw4cvXLhAoVBaWloWL15MJpMrKioaGxtbWlq6u7vT09MxYU9VVdW5c+fKycktWrSIsIgjAODIkSO//fYbnU6Pjo4+duwYlDnNy8urrKysr6+vq6s7derU5cuX4VK3cA0HAIC2tva6detCQ0Pl5OQCAgJ0dHTS0tKUlZWtra3Ly8ujoqLmzZtXU1MTHh6+atWqqVOnikQiguAnAABqrrJYrLi4OA6Hc+7cuaysrOTkZB6PZ2VlReiXMPycnBwOh6Opqblw4UK8zYCAgHv37pmbm69YsaKkpCQjI6O8vPzkyZP4Nvr6+qOjowUFBXC1y+Hh4dLSUldX1/Xr1y9duhTvA6aSg99uYmJy7dq14eHhI0eO2NvbDw0NwQvgZWVlV65c2b59u5mZmZubm6qqamVlZX5+/tKlSx8+fFheXt7Y2EiI0pYtWwoLC+GaFRs2bMA/JRQeHg49nD59+ooVKx49eqSvr6+oqAgvtMKB29jY4OcODj8xMVFeXn5wcDA5OTkzMxMzcv78+fPnzy9YsKCrq4swTLzbSUlJN27cuHXrFuaJSCTq6+vLzs7W1dWNjY2dPn06IUPOnz9/586dgICAjIwMKpU6Z84crPDjp3h4eNjX17ewsFBeXp6QdYqKilLSOyAgAJ/G0LK5uTkW3j/++AMbJoVCgeq+2traVVVVlZWVEiMP8zMuLk5bW5swHBqNdufOHXjmvXv3bqxHfOTFD5OLFy/euHEDFtrNmzfLycnhc2zhwoVwCCdOnEhMTMzOzobrpGZnZ7u5uWGhnj59ekJCgra2dn19/bfffrtw4UIsCEuXLp349wbin+VtaOwhXg0ejwfFKjGFSbxwJZTElKh1KVNnUqYCrUTtUB6PJ1OgdWRkRHrX0jvC/xc/fKFQODIyAnVfCeBdGh4eHk/8c3h4mMvlwgYCgQCv+DqeUKpMAVWC3qlQKJQuGfr06dPk5GSRSMTlcj/88EMpLXk8HlReFR84Ye7YbDbU75UYHPwQsL8JbsPVK/FgoqZSlFTZbPbIyIh04VwCBM+lp7c444VXpuirdPbt2wfFdbOyss6fP4/vbryUwyA4jOUYoRnc0tfXJ1H0mNB+IuK0iH8TJHf338y9e/cAAHZ2dnZ2dv9y1wcOHJgzZ46tre14j//9X6a+vj46Otre3p7H4xUVFRGu+70V2Gx2dXU14Ung/1P8+uuvVlZWNBqttLTUy8vL0tLybXuEmFygYolAvB1EItFEdN4R/yZoUhDjgYolAoFAIBAyQE/DIhAIBAIhA1Qs/+NJS0vDv8lQU1MTGBiIveBBYHh4+NNPP42KipL4aUVFxZ49ex49erRly5Zvvvnmr7/+2rhxY3d398aNGxMTE/8Wb+Pj4999910pDd6Kyut4JCQkrFy58p+zf/fu3dLSUpnN/oWYnD17lvDw8L9v4U3A6/FihwO2MSgoqLq6+p/odyKWIyMj165dK70N5qrMAwTxtkDF8j8eIyMjvKqWqampsbHxeDKqysrK/v7+4ymSwyfXV61apaSkZGFhsXr16k2bNo2MjPyNSrP+/v7SlTnv3Lnzt3T0t+Dn5/eP3sGys7PDyypJpKamJiMj45/zAbJq1ao3fP/9zS28CVjaYIcDPm6Ojo4ElYC/i4lYnjdvHp/Pl94G81/mAYJ4W6D3LCcjAoEAE7rs6ekpLCxUUVHx9PSMjo5mMpn29vZ5eXlQEpPJZEIZTLgjQWYTCoFqaWk5OjoCnJLneKvAT58+HXvFEOLo6AhPUnk8Xnp6upycnKura3V1dXZ29ty5c6FwaG9vb3l5OZVK9fDwENcpBQDU19ezWCw9PT04IgBAY2NjWVmZj48PXs1EKBSeOXMmPz9fX1/fyMioublZT0+vublZUVHR0tKyoKAASk5nZGQIBAJPT0/C6/yjo6PJyclycnJ+fn6pqakcDsfNzY3FYvX19QUGBvL5fOxTTOa0urra19e3rq6uvr5+7ty5g4OD4eHh8J05bW1ta2trvH0olOri4sJgMFJTU0dHR6dNm8bn8/G/VNLS0oaGhqZMmdLZ2enj4yMvLx8SEmJmZsbj8UxNTVVVVfHOs9ns8vJyBQUFTU1Nwkxhaq4UCuXrr792cHCg0+murq5QzJZCoTg7O4tPH5QCFg8aiUTCG8fAS9rCLaWlpS0tLXPnzoVJiHlbW1sr0TJB6YJgAZ8Y6enpQ0ND+vr6LS0tULKnsbFx5syZ2Ev3/f39hOATgoyPPwCgr68vPz9fU1PT3t4eSxtMj7enpweLm62tbVVVlba2tpqaGiFXk5KSFi1alJeXZ2FhASWEoCgrnKywsLCZM2c2NjZ6e3sXFxePjo5yOBw/Pz98ykHLfX194qYIVFZWdnR0YHlbU1PT2dmpoaFhaWkZERERFBSkq6sL1Q3HO0AQbxf0E2Yyggldbt++XVtbOyMjo76+HgBQVlY2ZcqU06dPQznK8+fPt7a2QhlMAMCOHTtMTEwcHR3hdSG8EGh1dfUff/zR2Njo6ekJTUlk2rRphC2KiopQwSsuLs7DwwMKbBobG9+5c6empqaoqKivrw9qserq6n7zzTf6+voPHz7E65SyWKzff//dx8fnzJkz8Eu5oaFheHgYU9fEIJPJs2fPhsqfpqamR48eNTIyamxsrKqqgkLeOjo6W7ZscXR09PT03LlzJ+HZNKikqqamFhQUZGtre+7cucHBwaSkJENDQwqFQvj00KFDPB7PyMjonXfe0dbWZrPZ9+/fV1dXr66ujoiI8PX1ffr06fPnzzHjmFDq+vXrAQAODg579uyhUCh5eXl4HxwcHPbv36+np+fi4rJy5UqBQKChofHdd98pKipWVlYSnKfT6VwuNzk5mTBTUM3V3d391KlTDAbD3d3d3d3dxcUFE7MtLi6WOH0SgyYSifDG8e0xbdjOzk4AQGpqqqGhYV1dXWRkJAAA7+20adMkTgfBAbwFQmKYmJicOXPG3Nz8zp07ioqKmpqa5eXleHka8eDjg0yI/9DQ0I4dO/z8/PLy8ioqKrC0Af+jCouPm4KCQmtrq3iuGhgYPHr0KCsrKzAw8IsvvgA4ZdqTJ0+qq6tXVlY+efKkp6enqakpNjbW3d29oaEBP17MsrgpAs3NzVpaWq6urh999JFAIEhJSYmOjp4xY0ZRUVF4ePjcuXMZDMb8+fNhpRzvAEG8XVCxnIzAlbbgQgQkEmn79u0hISFCodDW1lZbW/vmzZv29vYAAFdX1wcPHsDTSiizqaenR6VSodQnJgQ6ZcqUxsbGq1evQtWb11s0asaMGWQyGYrJUalUBQUFa2vrjRs3hoSEQINGRkaRkZHiOqVcLldDQ0NOTo7H42lqagIA1NXV4Tlia2sroRdM+VNOTu6DDz6IjY01NDTMyMgYGBhYuHBhY2NjZ2cnVKYlk8n5+fnYjlVVVZiSKpvNVlNTu3fv3meffbZ8+XJLS0vCp0pKStra2lAXVEFBgcFgYM5oamrCE8pVq1ZBkXQIJpTK4XCEQqGysrKOjo6hoSHhXhSdTtfX19fS0tLQ0FBRUcnOztbR0TE2NraxsdHW1hZ3Hr6ESpgpqOZKJpPPnDkDACCTyRQKhUQiQTHbjz76yNXVVeIcSQxaWFgY3ji+vYaGxqxZswoKCoyNjQEAtra2UM21tbUVnvdg3paUlIhbFpeFwlsgJIaurq6uru7g4KC9vX1YWFhFRcXnn39O2J0QfHyQCfGPiIiwsrIik8kbN260traWqMeLxQ0AAE9GCS5RKBQNDQ0XFxcymQwvk2KirCYmJl1dXTo6OqampsuWLTM0NMzKylq8eLH4FVdoWdwUAS0tLQaDoaSkJCcnl5OTg9fIvXr1KplMxsSNgdQDBPEWQcVyMrJr1y680KWGhoaysvKDBw/gAUaQo4S7SJTZxIRA4e9rgpLnK701JC6wCa/limuxEnRKmUympqZmXFzc1atXxzOFAb/vWltbOzs7V69eff/+fXl5eWVl5ZiYGCcnJ4nKtBC8kuqGDRsAAH19fe+9997PP/8s8VOJyqV4T9ra2vDfjA8fPiwsLAwICFBUVIQin5gq6Xi0t7fDL27YUorzhJnCq7kCnOwtvGx47NgxwmoqeMSDRjCOb+zl5RUXF8flcqE2LD4U4t6KWxbvnSADS0iMdevWHT9+fOXKlXBNK6yxOFjwsSAT4s9gMDAV3IGBAXzaYEawuGFbJOoGQzfg7GOirLt374bXP6ED7e3tJ0+evHfvXnBwMEH0VXz4MhdzZTAY4uq+sKhDb6UcIIi3CCqWkxEymdzY2BgREcFkMisrKwEAW7duLSgogJetoBxlZmZmZ2fn+++/Hx4eXlZWNjw8DGU2s7Oz6+rqQkJCli5dCq9DQn1OqORZWlqalZX18uVLLpe7ZMkS/JcLRmhoaGlpaVJSUkJCAgBgeHg4JSUlLi6OxWKVl5dHRERUVVU1NjZCeaAVK1ZQKJT09PSbN2/ChyGhTmlERATsXVlZ+dmzZ48ePTp+/Hhzc3NGRgaLxcrLywsLC6uvryes7gQXdcrJyYF3mGg0mrOz83vvvQeXzcKUaaOiogICAvAXjRkMxooVKx4+fJiZmVlXV/fnn3/u2rXrww8/rKurO3r0KIlEwn+K96Guro7FYkVEROTl5cFv0pycnNLS0hcvXvz444+ZmZlVVVUFBQUCgaC/vx8TSk1OTmaxWPg1mDC6u7tzcnJCQ0MXLVpkZmaGab1KcV58ps6fP5+Xl5eeng4A8PT0DAsL6+vry8vLu3Xr1sDAAFwza9GiReJLzYgHjWAc3/jKlSs5OTlmZmbu7u5hYWGYmmt6erq8vDzBW3HLBAgWAgMDCYkxd+7choYGExMTGxsbwq1xDHzw8UEmxD8gIIBKpSYkJMTFxcFbjFjawMOhq6sLixuWwIRcra2tra6uDgsLy8vLq6urS09PP3z48NOnT3Nycl6+fDk6OpqRkREeHt7X19fX13fhwoXa2trFixdjP0/xh4a4KcK4GAxGdnZ2TEyMu7u7mZnZkSNHkpKSYJ5AdV8mkxkXF6eioiL9AEG8Td6Oyh5CFuJClwQ9SYnSkVBmc3BwEJPZJAhOQiVPaPxvhKDFCq+V9ff3j42NHT16dGBgQCQS9fT0bN26VaYpvPInZhM/dinKtJiS6mt8Crly5UpERIREMdiJCKWKRKKFCxcKBAIpHmIfDQ8Ph4aG/vnnn9h/8S3x/4W7EMRsORxOTU2NeBcSgyZxRARtWOnejmdZOoTEgH+Pt7uU4IskxR/fUqJgrMRZkKIbDBlPlFWmkLJ0xsbGCP4QDMrUW0a8XdDTsJMUuFAi/r0FwgPlEp9ohbeR8FcICU/T4Rdh/hsh9ALPgOFCmG5ubomJiUwms7e3NzAwUKYpEomErbuJDR8/dvFbZRP5SOanAID+/v68vLzm5maJfop7JQ58WqekpATeVJbiA5fL3b9/v4GBAbYCGiGG+P/C63Jw2U7soZicnBwfHx/xLiQGTeJDlSQSSfrFZELEJFqWDqFfaEHi7tKDDyTFH28cnzYYEq/0yny+dLxnxWVeeJcOhULB7kpKNCjlujRiMoDk7hD/BiIkuYlAIP6TQfcsEf8GqFIiEIj/aFCxRCAQCARCBqhY/pcQEREBX4qYIL///jvhrbvX4+jRo/D1DIzk5OTo6OhX2kUik0oktqOjA776cubMGfj643iUlZUFBARIt/b1118DAOLj49esWYNt7OvrW7duHf7l0YlTWVkp8f6lRCYy9UNDQx999FFqairm7d+OzDwRp7e3959T1BscHOzp6YGv60wGJniYIP41ULH8L2H+/PmvVF0cHR2hRMAbsmzZssHBQfwWY2NjU1PTV9pFIrdv335T5/4+1NTUoBTAihUrpLxpBwCwtraWKRYKn2Hx9/fHb9TQ0PDw8ODxeK/hnoWFhZ6e3gQbT2TqVVRUfHx84MuIE3ks6zWQmScEBgcH165du3XrVuxdyTcnPDwc+3v37t3r1q07cOCAn59fe3v739XFazPBwwTxr4Gehp2MjI2NlZWVtbe3z5kzB97tg5LQFhYWGhoaLS0tNTU1+vr68F09Npudk5Ojr6+P7R4fHy8UCn18fPLy8oaHh42MjOrq6mbPnl1SUtLd3R0QEDA6OlpdXT116lRlZWWCNYy+vr7a2lo+n+/p6Tk0NBQaGurt7V1XV8dgMGxtbQEATU1NjY2NbDab4HxJSQmTyZzILs+fP586daqFhQVsaWBgkJqaKicnp6io2NzcHBwcPGXKlICAgLy8PIFAoKurS6PRWltb2Wy2m5tbe3t7Y2MjVLrBggZf63RxcaFQKFVVVXV1dV5eXioqKs+ePTMxMYEv1RBKFD5cNBoNH43h4eGCggIqlaqnp9fd3Y2vkZ2dnYWFhRoaGk5OTrGxsUZGRhYWFnibTU1NDQ0Ntra26urqhGECAJqbmwk+FBUVjYyMiAvcFxUVjY6O8ng8BweHly9f+vj4QJHbdevWUSiUysrKnp4ePT09KMHT09OTl5dnb28PhYEgUGFVU1Ozt7fXz8+Pz+fDqW9vb8/Ozvbw8KitrXVxcYGvDzY1NVVVVenq6trY2GADgd5mZGTAXILL2sAHZbHQ8Xg8LFaYMmptbW1qaur69etzcnK6uroWLVoErbHZbF9fXyl5UlNTU19fr6ur29PTM2vWLGhNVVV12bJllpaWUDQHADAyMhIREUGj0ebMmUOj0QoLC1taWgICAtLS0kgkkr+/v0AgiIqK0tHRcXFx6enpyc7Onj17dlFREYVCMTc3T0hIOHr0qFAo1NfXd3BwWL16dX19/eeffx4REXHr1q2vvvoqJiZmYGBg1qxZ2tra7e3tubm5zs7OHR0dHA7Hy8uLx+PFxMSIRCI9PT0o0dDQ0JCbm+vt7c1kMktLSxsbG319fTMzM/X19fGyWa99ZCHeLujMcjLy559/AgA0NTWhVsuFCxf4fL69vf358+fhf2fNmnX48OHBwUE2m717924fHx8qlcrhcAAABw8eNDIycnNz++GHH+zs7Pbu3UulUpWVlT/88ENTU9OcnJyCggIFBQWo1EywhvfhzJkzdnZ2qampCQkJKioqtbW1wcHBs2bN+v777wEAhYWFd+/e9fb2Fv+Zr6mp+fjx44nsoqGh8ddffykrKzc0NBQVFUVERCgoKLi7uxcXF8+bN09dXX3+/PmKiop2dnZffPEFjUYrKCiwtLQ8deqUurp6R0fH6Ogo/iWEzz77zMnJSSQSPXv2rKGhITY21t/f/4MPPoAuHTx40MrKKj09vbCwEO8tPlyEaFy5csXT09PKyqqkpMTKygpTIAIAaGtrZ2VlNTc3UyiUpKQkqC+IARW3vb29d+/ePTQ0RBimnp7egwcPBAIB1v7333/v7u728PCoqanB2xkYGEhMTISSpCoqKjU1NSUlJfr6+vfv3x8dHc3Kynr27JmXl9fly5dh+9zcXD8/v927d+ONODg47Nu3z8TExMrK6r333sOm3tjY+LfffuNyuX5+fh9//PHg4GBbW9vZs2cDAwOfPHmCXe3EvMVySVVV9dq1a4TQ4WOFdW1gYHD37l0+n29ra3vhwgUAwM2bN2fMmMHj8dhs9nh5Ul5e/uDBAzc3t19++QUWj/EoKChobGzs6+v7+OOPAQACgeDChQsikSgkJATKJrz//vuNjY23b9/+5ZdfhELhr7/+WltbOzY2dujQIaFQODY2Bv/F5oLL5ba2tv711182NjaDg4NhYWHy8vJr167l8/lCobC4uDggICA6OhrK3O/cuXNoaIjNZu/btw8AkJaW9sUXX5BIpE8//ZTH4wkEgtu3by9YsKClpYUgXvHaRxbi7YKK5WRk9erVbW1tbDYb1rM7d+74+PgoKSlBYeVNmzZFRkbKy8s3NzeHh4fb2NiQyWQjIyNYOUJDQ7u6usrLy5WVlel0uq6uromJCZPJVFNTo9PpTCazra0N/I+mJcEa3ocvv/wyOjpaTk4O+qClpWVvb08ikWg02sjIyC+//LJgwQIgSXsdE+eUuQumxA13cXZ23rVr16ZNm9zd3fFqmaqqqrq6usbGxsuXL9fU1HR2di4rKxMIBEuXLsU67ezs7OjogFcyV65caWRkBL+PoGabjo6Oubm5kpISk8kk6G3iw0WIhru7u7e397lz5+DiGPhXVEkk0tatW0NCQjgcztKlS8XfXrWwsCCRSJaWli9fviQMk0Kh4LXuAABBQUHwNqeZmRl+u5qaWkpKyrJly+DiHnB3KpUKzwKDgoLgBdKzZ8/C9lAVnXB6qqysbGBgoK6urqen19XV1d7eDqeeSqWqqKhYWVlRqVQXF5ewsLDnz58rKSllZmYaGBhgiuGYt/hcgqmCDx0+VljXcnJy8F1bJSUlGCIFBQU/P7+2tjZ1dfXx8mRkZASqBWFiwuNhZ2c3MjKSkpKSmZkJAHB2dnZycuJyuQKBYOPGjY2NjQoKCp9//vmFCxeePHmira1tbm4uEonc3d3hz8elS5dOmTJl2bJl2BIuT58+PXv27PLlyxcvXqyqquro6PjixYvBwcGCggI9PT0fHx8rK6t9+/Z98cUXZDLZx8cnLi6uuLj41KlTAICff/556tSpBQUFIpEoKSnJ3t7exsbm3Xffff/99zdu3Ih3+7WPLMTbBRXLyciuXbumTZvm6uoqEolaWlrodDpUZx4YGKipqTl79uy8efMYDAabzaZSqYQip6Gh4ebm5uHhsXnzZiBLBJVgDdPbBAB8/PHHgYGBpqam0AeCBXV1dVh1pL+nK30XgopsY2NjSkrKwYMHv/vuO/A/b5vAB17wr29v3rz5ypUrhDfQlZWVMbXPgYGBBw8eVFVV+fv7U6lUcefHCxchGgCAzMxMT09PvKI6fkcajfbs2TN3d/fxhi8SibS0tAjDFIdCoUAhOkIw29vbz507d+vWrfPnzwsEAoIdBoMBLwaMjIzA9JCpTdrT0yPxzfqWlhYtLS1MRRZehBBvRoghPnQqKioSY4W5BH+1+Pn5RUdHw3XcxrM8ZcoUNTW1vLw87EeAOHl5eZmZmXv37vXz87t+/bqVlRXc/uGHH167dg3+GlBVVYWHBhTKAf8jhjA8PIylCtzyxx9/wP+uWbPm7Nmz8EfYX3/91d7efv369ZUrV2IhheLMkI6OjosXL27fvv3QoUMikYjJZM6aNWvr1q0//fQTtmqbp6enuPN/y5GF+PdB9ywnI2Qyub6+vqysTEVFpaGh4dSpU+fPn589e3Z/f7++vj6fz4eXUiMjI7/88svc3Nzc3Nyenp7KysqysrLjx49fvXrVy8trZGSETCbX1NQUFxcnJSWVlZWxWKyUlBQ1NTUvL6+0tLS6uroNGzbgrWF3qoRCIZlMLi0t7evrKy8vd3NzS09Pr66unjZtWl1dXXR09J49ey5cuGBgYJCcnJycnLxp0ybsJCAiIqKkpKSpqUnmLkZGRkNDQ1BOs7q62sHBoby83MnJCT4jymAwIiMj7e3tk5KSWCxWZmamh4cHAMDExGRwcJDwNaSkpPTee+89fPhQX19fSUlJJBL19PSkp6draWllZGQ0NzeXlpayWKy0tDRNTc158+ZhtRYfLh0dHXw0Ojs7yWQyg8Hw9/fPyMioqqpisVhRUVHFxcWdnZ06OjqffvqpxGWZp0+fHhcXp6ysLBQKZ8+eLRKJ8MM0Nzevq6tLSEig0+mVlZWlpaWnT58ODg728fHJz8/v7++HwwQA9Pb2/vHHH+vXr1+zZg2FQnF3d3/58iWdTudwOM+ePfvyyy+PHz+upqbW2NhoZ2dXX18fGRmpo6NTW1tbXFxsZ2eH+dPR0ZGfn89isXbt2iUSieDUBwYGikSixMREeP4H/Txy5Ag8HbexsUlLS2OxWMbGxtBbRUVFLJcqKira29vxoQsJCWGz2TBW+FD4+/snJibyeLze3t68vLwrV65s2bLF1tbW3t7+9u3bEvNkzpw5jx8/ZjKZDAZjz5492CWQwcHBe/fuqaqq3rt3r76+ftu2bStWrLhy5crNmzc7Ozu/+uqrkydPWltbb9++/dy5cwAAdXX1FStWLFq0iM1mw7q7ePHigwcPqqqq1tbWhoaGLl682NTU9LPPPoP3+2/evNna2vrJJ5/A3PD29n706NHWrVvr6+uzs7O3bdt2/vz5zs7O7u7uEydOAABiY2Pj4+N1dHSmT59OIpEOHz68adOmsLCwnp6eoKCgu3fvhoSEZGVlrVy58sMPP8QC8iZHFuIt8y9K6yFeAYI2rFAoxAu6QoFQgkhmX18f3EJoLBOCtfF8EGd4eJjP54+npTnBXeAvfSgnOzY2hmmfikQicSnXkZERkUgUFRUl0fjo6CgmEMrj8cbGxqT7DxkvtkKhkMPhjCdkOjo6mpub29vbO55ZwhRgwxzPBw6Hw+FwxLVY8QqifD6fy+UODQ1h2r8TCf7SpUsxYVXCdol+yjSI9xBLkvFiBRv09/cLBAKZarQikeiHH36Ag2pra/vyyy9lOkDo9PPPP8f/l/CpuIfSdW7F9WbxXYsL0kppj+efOLIQ/zTozHKSQtCGJZFI+BtjUCCUIJKJ3QkjNJYJwdp4PogD+x1PS3OCu+C1OikUCn5BYLimPJ4zZ854eHgQlprCwKtrYrqmMsWDpMQW7wye6urqZ8+eeXh44NegIECYAumSpHjRV/xG8L8vQcOTHnxYZAY/MTGxo6OjqqoKLhWJUVVV1d3dHRUVNXfu3In7Ke4hliTjxQo2gDcvwQQUVp2dnZOSkrS0tFpaWuAKrNIdwOb3119/zc/Ph88bYxB0aMVlaaXr3IrrzeK7Fm8gpT2ef+LIQvzTIG1YBAIx6RC9upgwj8erq6sjvMODQPxdoGKJQCAQCIQM0NOw/5G8hs6L+C4nTpyAb79hSBQ2i42Nfe+99161O3EkKqi9qqbd62ngvbZyXllZmZ+f36t+9E8gZQhSlA4nMvCgoKDg4GD4au/E3ZCeFZg6oHT+RkW3f0gcUeaBNhF1QzwbN278888/jxw5sn379kePHu3YsaO5uVn8SERMQlCx/M+jpKTkVRVEJe4irtwmUdgsMDBQytsIE0eigtqratq9ngbeayvnWVtb49VwJvjRP4GUIUhROrx7965My3FxcRs2bHj33XdfyQ3pWYGpA0rnb1R0m8hIX5WJHGgTUTfEgIp9a9assbS0pNPpq1at2r9/f1NTk0wNRcRkAD3gM0nBhMRqamqam5unT58+Ojra2Nhobm7+/fffz5gxQ0FBgU6n5+fn+/r6tra2Ojo6EoTruru7i4uLtbW1p0yZgu3i4OBA6KiwsLC3t9ff3x8TNgOS9Mbq6uoqKysxnTOM/Px8Pp9vZWU1OjpaU1PT29u7cOHCFy9e6Orqurm5iev2AZyCWnl5+dWrV6dMmWJra1tZWUkikebMmZOenk4ikfBvhmAaeFQqFbZ3cHBoaGjANPDa29vF+8Wk76KiojDlvOjoaLzyHJfLxQeQIPaWkpIy3tMuhI9YLFZ3d7eOjg58PRGLvK2tLUHrjs/nZ2RkQNE1Z2fnwcHBioqKgIAAGo3G4XBSU1MVFRVnzpxJ0OcLDw/HhoB/joagdIiPtkgkOnHiRGVlpbGxcUBAgMSJAADk5eW1tbXFxsYGBgbiR5GamoqFF2rp4efLwcEBdorPCrz/ZWVl8Ns/JCTEwsJiaGjI1tYW/7gKQdFtbGwsIyNDJBJ5eXlVVVW1tLRMmTKltbVVVVVVT0+voqJCW1u7rKxs9uzZBQUFDg4OTCYTU87z8fE5e/YsNlJ8j2QyGXMJAIBXQMTU+whKkJiHPT09+KMGr1GHz0nsFZ38/Pzu7m5fX9+KigqoUIjXZ8Bwc3PD/9fAwEAgEMDfOtiRCCTpDiLeOujMcjKCFxIzNTWNjIwsKirKysqi0+nGxsbOzs6enp729vZGRkY3b95sbm6Gv3/xUm2Dg4P79u3z8/OLjIwcGxvDdiF0lJqaam5uDkXgMGEzcb2xmpoaoVCI6Zxh/Prrr4WFhe7u7vv376+trbW1tb148SIAQEtL68GDB0BMtw+CdWRpaWlgYDB//nwjIyNFRcUXL14AAPLy8jDJGwAAXgMPa6+vr4/XwBPvFy99h1fOIyjP4QNIEHvbsWOHhYWFpaVlfX09IWiEj5KSklJSUmbMmBEbG5uVlYWPPBQVwvdoaGh47969oqIiX1/fVatW8fl8TU3Na9euiUSizZs3+/n58Xi80NBQgj4ffgiYG+JKh/hok8lkPz8/S0tLeK1Y4kQAAJycnODLkYRR4MOLNcbHn5AVBP8xdUAlJaWffvqJQqHgwyiu6LZjxw5XV1dnZ+cvvvjC1NT02LFjZmZmsPzo6OhkZ2fb2NjAuPn7+0M9P0w5b2RkBD9SrMe6ujq8SwQFxPGUIDEnGQwG/qjBa9ThcxJrHxsbq6mpOTIygikUAjFUVVXFH5+Gv0XwR6JE3UHEWwcVy8kIXkiMRqOdPn364cOHenp6UECETCZTKBQSiSQnJycnJ2dnZwe1MfFSbREREba2tiQSac+ePUwmE9uF0JGtrS0mAocJm4nrjWlpaZmamkKds7KysosXL168eLGlpeXatWurV68GAEDJEmVlZQUFBYDTsSPo9kGwjuBz/1DTzsfHp7GxUSAQWFlZ4YW+8Bp4+PZ4DTxCvwTpO7xyHkF5Dh9AvNhbYWFhY2Ojtra2oqKirq4uPmLd3d2Ej65fvw7PNmbNmvXLL78QIk/okUql0ul0d3d3OTk5Go1mbm7OZDJbWlqqqqo6Ozvz8vLIZHJvby9Bnw8/BAxxpUNCtCkUCplMlvgRBgwpmUwmjAIfXkJjzA18VhD8x9QBtbW1p02b5ubmhld5JSi6VVdXd3d3wyslHR0dXV1d7777bkpKCtR2qK2t/fDDD+Xk5LC4QT0/vHIefqRYjzQaDe8SQQFRihIkBv6owWvU4XMSACASiY4ePers7Ozi4kJQKJw4+CNRou4g4q2DiuVkhCBZx2azlyxZcuvWLXiXCH4p5OXlAQDk5eXhdVGCVJu8vDwmrjYwMIDfBY9EEThxvTF8MwMDg8WLFy9evJjBYNDpdHglDXsOArbEuibo9omPFH4TQceWL19+5swZ/PoMYBwNPNge/8Yevl+C9B22V35+vrjyHBZAvNiblZUVdtJDeFxcSUmJ8JGGhgbspa2tTUNDg8Fg4CMvUesObsRHlcFgKCoqenh4+Pn5wfpEmBq8+B9EXV2doHRIiDac9LKyMh6PJ3MiCKMA47wQiY+/dP8xsDcs8Z7jFd1UVVWh2h8AoLu7W1lZec2aNbdv32YwGBwOp66uDis8eD0/vHIefqRYjwSXpCggjieFiD9q8Bp1OTk5+Jyk0Wj79u27du0ah8MhKBRO/F0DvA8ydQcRbwVULCcjUEgsNze3qKgoMzNz2bJlCxYsMDIy2rx5c1NT04wZM0JDQ4eGhqqqqqqrq588eQIAEAgEeKm2OXPmjI2NJScnR0ZGjo6OYrvge4mIiMBE4BISEuAdnYSEBFVV1cePH9+6devHH3/s6elJS0uDOmcREREVFRVsNtvU1NTU1FRBQeHs2bN//PFHaWlpdnY2tGlsbFxUVJSXl5eTk9PW1gZ1+2JiYlRUVMrLy9PS0qKjo2tqamBHAIAZM2Y8evQIfgWvXbu2rKyMsIJHXl7e7du3ORwO1MDD2mMaeOL9DgwMQOm79PR0ePUPKufp6uriBfZCQ0PLysqwAC5btqynpyc1NTUiIkJeXv7jjz8ODw/PzMysq6uLjIzE/FFSUiJ89PXXX8fFxeXk5KSmph44cCAwMBAfeUKPlZWVUJcuIyOjuroarrVSXl7O5/MXLlz49OnTtLQ0eGEAPzVjY2PYEDBPZs+eraCgkJubGxUVBZUO8dFuaGiwsLAoLi6uq6uj0WiEjzAjWVlZlZWVycnJhFEQwouBxZ+QFWNjY3j/8eqAMFB4I3v27ElLSyspKYGKblQqdeXKlRERES9evNiwYYOampq2tjaPx3N3d1+4cCG89wlvosO4QT2/K1eu5ObmQuU8/EixHrW0tPAuif63AiLef0wJMj4+HqrsYoOFRw1Boy47OxvLSTjMvLy8GTNmrF+/vqKi4sKFC/X19VCh8LvvvouJiSHEMCUlJSkpqaSkJCwsTOKRuGjRIiwV8avTIN4y/7ZkEGJiSJesw4ui4ZEogyd9F3FeVW9sZGTkxIkT8AENkUgEv1wGBgbgf2Uqe0HHRkZGhoeH09PTxe0TNPDGGwihX7z0neh/K+dJUZ4jRGxsbGxgYEBcw0z8I4KKG0E0TrrWHd6sFL00cfE/kZjSISHaAoEAav6JfyQRmVp0IqmJJN1/cc/xim7woRjsU7zQo8TdCcp5+JGO59LEFRDxu2N/YwEUz0mC2xMJo0xeSXcQ8S+ARAkQRMLDw0UiEdQbU1VVlfg+CZ6enp4vvvjCysrq0KFDr93p/v37fX19Fy1a9NoWEAgE4p8DFUuEZESvrjeGQCAQ/62ge5YIyaBKiUAgEBioWCIQCAQCIQNULBGSSUpKIrwDIE5eXl5QUNBXX301cbNQrITFYsG3xd/Ew1fl7t27paWl0tu8tsRoUFBQdXU1HNfIyAj2B75NZGTk2rVrX88+gb6+vvXr1+OXnsZ67OrqOn/+PKG9RH/eBKyXhISElStXijc4duwYXu90aGho48aNsbGxUmympaWFhobK7Bqbo/j4+Amq9I2Ojvb09PyNwyfQ29vb09MDpSEQ/62gYomQzKxZswhvwYsTFBS0fPny48ePT9BmTU0N/H43Nzc3MjL6l++X29nZTZkyRXqbO3fuvJ5xR0dHbW1tOC6hUIj9gW8zb948/JsJb4KGhoaXlxe+tGM9qqqqenh4ENpL9OdNwHrx8/OTeMV+5cqVeL1TFRUVX19f7P1XiRgZGUF1C+lgc+Tv7y99NUqM8PBwT0/P58+fT6TxRIByB/Dv7u7uhQsXHjhw4JNPPlm/fj16CuS/FaQNOxlpampqaWkZHR11cXFRUVHJy8sbGRkxMzNjMpkvXrxgMpkODg5Pnz51cnLS0dEJCwubOXNmY2Ojt7e3UChMTEyk0+mOjo7y8vJQbdLU1NTQ0BBvXyAQ4JvV1NR0dnZqaGhYWloCAEZGRjIzM/F1RaKdhoaGqqqqpKQkf39/ZWXljIwMgUDg6enJ4XDwLmHfpD09PV9//bWDgwOdTocq2319faWlpebm5tAsvpeioiL4roWfn9/o6GhycrKcnBxhlY+0tLShoaEpU6Z0dnb6+PiMjIwQQoG5RKPR2Gx2eXm5goKCpqZma2trWVmZlpaWo6MjACArK0soFE6bNq2np+fSpUu6urrW1tYmJiapqak0Go1CoTg7O2OdVlRUNDc36+npNTc3KyoqWlpaFhQUTJs2raqqSltbW/wFfHEqKys7OjqgVwAA+Bqll5cXfrHo6urqtLQ0X1/f6upqW1tbJpOZlZXV0dGxZMmSyMhIRUVFKNjb19eXk5OjrKwMJw4CXweEf2NDw4SEoP+GhoZQRg4q2GH7DgwM1NbWDg8P+/j4VFRUNDU1GRkZYS1HR0fr6upcXFwYDAa+FyypSktLW1tb58yZA39m8fn8/Px8LpeLV/oFABDij1FUVKSlpTU8PPzixQsvL6+mpiYFBQWCIHtERERQUJCurq6Pj4+qqioAoLGxsayszMfHB6r1SoznihUrbt68CV/VhRQWFlZUVDg6OlpYWHA4nISEBH19fU1NzcLCQkdHx6lTp9bV1RUWFgYEBKiqqqanp2toaOjr6yclJfn5+fX09Dx48KC8vPydd96BMrm+vr4bN260sLDYv39/VlaWvb19REQEjUabM2cOjUYrLS1tbGz09fXNzMzU19c3Nzfv6upKTk7W1NTU19c3MzMDAOTm5sLQkcnkmJgYQ0NDNTW1iooKX19f8SXQEW8FdGY5Gfn11189PT3l5OQ6OztPnz5NpVK9vb3Pnz/f2tqqq6t79+5deXn5oaGh5ORkdXX1ysrKJ0+e9PT09Pf3f/rpp3Z2dpqamrdu3YJvZ/v7+588eZJgH98sJSUlOjp6xowZRUVF4eHhHA5n+/btM2fO1NDQgFI149kxMjLS19efNWuWmprali1bHB0dPT09d+7cqaamhncJa89gMNzd3d3d3V1cXOCW9PR0f3//L774gtDL4OBgbGwsJrD5ySef+Pj4qKmpBQUF4R1wcHDYv3+/np6ei4vLypUrVVRU8P3iXRKJRHQ6ncvlJicnd3R0HDt2bPbs2YmJidXV1ZcvXx4YGHB3dz916pSlpaWRkdH8+fNNTEwiIyMpFIqbmxte/xMAYGpqevToUSMjo8bGxqqqKk1NzaysLENDw9bW1qKiIpkz29zcrKWl5erq+tFHHwkEgsOHD+vo6MycOfPIkSP4ZsbGxrdv3+7t7Q0ICNi+fXtjY6ONjc3ly5cBANOmTfvll19gs/r6eldX1+TkZCirC7G2tr5y5QoAAD807FMzM7Pz589DObq4uDjCqfbp06ctLCyqq6v/+usvU1PT06dPq6ioqKqq5uTkQIXVOXPmrF+/Ht8LxqNHj7hc7vTp07dv3w63VFZW2tvbq6mp7du3D2tGiD/ego6OzoMHD5SVlVtaWq5fv+7l5XXp0iXCsiRz585lMBjz58+HlbKhoWF4eNjExOTo0aMAgPHiKU5wcDCDwTh48GBRUZFIJIJ6EQKB4PLlywKBIC0tbc+ePVB2gM1mczic7777TigUPn78OCcnRygUCgQC+LYldrLO4XDKysqysrKMjY0LCgoaGxv7+vqgDqVAILh9+/aCBQtaWlqSk5MBABs3bqTRaPHx8bdu3QIAnDt37t69exwOZ9u2bSKRaGxsbMGCBadOnaqrqyOINCHeIqhYTkY0NDRmzZpVUFBgbGx88+ZNKOXs6ur64MED7BQBWxgILhOxbNmysbExKFtqbm7+2WefBQUFqaqqZmZmmpiYdHV1Yca7urrwzX7++WcoORsQEHD16tXw8HALCwsqlaqjowN/qo9nBwAAlULhiSmdTodKMfn5+ZhLBNlogkStt7c3mUyGVybxvXC53KysrMWLF2tra1dVVbW1tRUWFnK5XGyRCgidTtfX19fS0tLQ0FBRUcnOzsb67e3tJbgEAIAraj179oxOp8NT58bGxt9//3327NlkMvnMmTN47VNnZ+d9+/Z99NFHhDMbOTm5Dz74IDY21tDQMCMjY2BgYOHChXJycgwGYyIzq6WlxWAwlJSU5OTkcnJyQkJChoaGCgsLoVguBpVKVVVVtba2hiux3Lt3j06nQxV1vMq8lZUVAGDu3Ln4uqWgoABPqvBDw1veu3fv/fv3Gxsbt27dSqX+r2tLe/bsiY+PJ5PJRUVFcnJyu3fvfvDgQV1d3dq1a01NTT08POLj4zkcjlAoxHrBeOedd3p7e1taWjDNdDMzMwqFYmVlFRoail2cJMSfEBz4h7a2tpOTE5lMxn6xYRBkctXV1a2trXV1daF+3njxFGfp0qVPnjwRCASRkZF0Ov3o0aNFRUUdHR3r1q0zNDT89ddfL168uG7duhUrVkRFRc2cOVMkEqmqqtrb24tEIiMjIx8fHzs7u2XLlmHXWs6fP3/79u0LFy4wmUw7O7uRkZGUlBQogWRvb29jY/Puu+++//77GzduBADY2dmFhYWpqal9/vnncKaUlZXLysry8vKEQuHSpUsFAsHFixc/++wzvE4y4u2CiuVkxMvLKy4ujsvlvnjxQl5efmxsDPyPaCemIUm4IQQAUFZWxm5iDQwMMJlMExMTDw+P3bt349eTIjTT0NCApqB9dXX1pqYm+Cn8ghvPDoaqqiompNfe3g6/pyQqixIkavFSn/hehoeHT548ee/eveDgYAqFAhU+PT09x1viGPYLv2phvxJdgmDCm6tXr3ZxcVFVVYXPfUBlVMzD+vr6pKSkY8eOEZbpAACsXr36/v378vLyysrKMTExTk5O43klHQaDwWAwXFxcPDw8du7cOV6zlpYW+MMIhkt84UOoICG+I2FoGP7+/gkJCXV1dQRlQQDABx98AFfwEIlELS0t8+fPj4iIqKmpMTExefjwIbwsqaioiGUInl27dunr63t7ewsEAoL8rIaGBvYLiRD/8UY9nl4rGF+fFgAwkXhevXq1vb39woULZ8+ePXDgANxRS0urr6/v8ePH8KE2BoMBJfpqamo0NTUx5zs6OuAfVCoVSvkEBwfDLYcPH/7pp5/gheW9e/f6+fldv34d/pqBYNeisaVa5syZc/DgQRiTtWvXbt269dy5c1Cp2NXVdYK3YxH/Guie5WTkypUr27dvNzMzc3V1vXjx4o0bNxwdHTs7Ozdv3iwnJ8fj8QoKCqCU65w5czIyMpqamuzt7TU0ND755JO7d++amZmRSKTDhw+fP3+eQqG0trYuXrwYM66oqIhvduTIkV9//ZVOp0dHRx87dszY2DgxMTE7Oxtqz2ZlZY1np76+vrq6+s8///z000/XrVsXGhpKo9ECAgI0NTXxLuHH5enp+ejRo7lz59bW1lZXV4eFhVlYWNTV1aWnp+N7MTU1vXHjxoYNGxYvXmxqarpixYqHDx8aGhrKy8sT7nJ1d3fn5OS0t7cvWrQIan7CfrW1tfEu4X+eL126NCsrKykpaWxszMLC4vz58+fPn1+wYEFnZ+f8+fP9/f3v3bsH14cqLS11dXV9//33CbMDl2RxdnZWVFSMj48HAAwPD6ekpKiqqlpZWdXU1ISFhbm4uMA/CI9rMhiM7OxseHXUzMzs1KlTly5d8vPz6+/vxy+mCElISNDU1Ozr6/v6668BAKampkVFReXl5VBHVF5evqurq7S09MWLFz/++GNtbS3s0dDQkMVilZaW4oc2ffp0vD9LliwhrEsKAIAKqPBWZVtbW1dX19SpU+fOnQvlSQUCQX9/f3Z2tq6ubmxsrI2NDexleHi4qqqqoKCATCY3NjY2NDQwmczKykomkykUCsvKynJycr799lsYIhUVlZ9++gkff/xd3vDw8LKyMqiNrqSkZG1tXV5eHhERsW3bNryfTCYzLi7OwMAgIyMD6rJCxd3a2trx4nnv3r2CgoJPPvkEAFBVVbVt2zYNDY3du3d3d3f39vb6+vp6enouW7bs999/h1d3v/rqqw8++ODSpUtaWlq+vr4AAGVl5S1btuTk5JSWls6cOdPV1fXHH38sLi5evXp1V1dXREQEhULBnnRbsWLFlStXbt682dnZ+dVXX9nb24eEhGRlZa1cufLDDz8UCAQ///xzSUkJAADehj979uzu3bsNDAx4PJ6Li8uePXsKCws3bdp04sSJCV6xQPwLIAWfyYhIJBoeHsafnA0PD+PXzmWz2XJycnw+X/xUDyphYg8FEHYcr9nQ0BC+OzabTafT+/v7VVVV4S/c8ezgDQqFQuyX/nhwuVwpbfC94F0ieIuxaNGiFy9e8Pl8iTbxLrHZ7ISEBDabDdcUgwMkjBfvIVSD5HK5+CUkMTB5I1hgpA+ZAFQxxTtMcAbyzjvv3Lt3b2xsDP8RjE9/fz92rixxXzyEBnB0MTExs2fPltJe4gChsKqcnNx46k4cDkdJSQn/6ejoqLy8vHhjmW5LR3oWTdD42NgY/ip0cnJyS0sL/t0egUCAfyBcfK6lzD7MHymfwt7xkSH4g5hsoGKJ+E8lOTl59+7dQUFB4otaE+ByuV9++aWBgcH27dull/xJQlVV1aZNm3bv3i3zVddX5d69ewAAOzs7Ozu7v9fyfy4ikWjVqlWKiopBQUHo0VPEeKBiiUAg/q9TW1vLZDLf5GQX8V8PKpYIBAKBQMgAPXCFQCAQCIQMULFEgN9//x2+8SZTGXVwcHDDhg14SVICZWVlBJ0dBAKB+C8AFUsEcHJy0tTUBADcvXtXektVVVVvb28pNdXa2hq++49AIBD/TaAnlScp8OzNwsJCQ0Ojq6uLxWIpKCg4OzvX1tZmZGTMnj27qKjI2dl5cHCwoqIiICCAy+WGhoZ6e3vX1dXp6upqa2vn5eXZ2trS6fSXL1/6+Pjw+fzk5OR169ZlZ2cPDw8bGRnV1NQEBgYKBAIWi6Wnp9fU1HTlyhUoPNvY2Mhms93c3Nrb2xsbGwMDA/HP0EPdOA0NDVtb2+fPn0+dOtXCwgL2Dt9zb2pqamhosLW1lSmkgkAgEP8RoDPLyciFCxdGR0cdHR0vX77c29v7008/eXl5kUikixcvGhoa3rt3r6ioyNfXd9WqVXw+X1NT8/LlyyoqKrW1tcHBwbNmzfrxxx+zsrL8/Px2796toqJSU1NTUlKir69///790dFROzu7vXv3QkG1a9euKSgoQClqS0tLfX39+fPn6+vrW1panjx5Ul1dvaura2RkhLD8SEJCwsyZM7///nsAgIaGxl9//aWsrNzQ0ADFUfl8/sjIyMyZM/fs2UPQjkEgEIj/UFCxnIzcunXLz89PQUHhm2++CQkJMTc3BwA4OTn98ccfVCqVTqe7u7vLycnRaDRzc3MmkwnVlrW0tOzt7UkkkkAgcHd3p1KpcEUkqIVGpVKhng6dTtfV1TUxMcF2hCoheGVUTU1NFxeXsrIygUCwbNkygnuenp4kEolGo42MjGBSpZjiGolEggstWVpa4gW+EQgE4j8XVCwnIyoqKrDOQe3W3t5eAACfz1dQUIANoHyJuH4mtgUvu4ptxNYAGU94E+qJFBYWAgA2b9585coViUta4ncXN44hFAphBUWvJyEQiP90ULGcjJw5c+bChQu5ubm5ubkrVqzgcrmZmZm//fbbuXPnampq6uvrw8PDMzIyqqurCwsLIyMjKysrKyoq0tPTY2JiKisr6+rqwsPDs7Oza2pqCgoK3N3dU1NTk5KS2Gz206dP09LSampqioqKIiIiysvL4dKJUON0xowZjx49ghXUxMRkcHCQsIzw4OAgvpfIyEgjI6Oenp7MzMy6urrQ0FA+nz99+vTY2NisrCwejzd//vz4+HgobYpAIBD/uSBRgkmKSCQaGRnBVkGSKc0qHbjwHo/Hk5eXF1fQxgNVN0dHRxUUFKKjo+fMmTMR+2w2G67DgCmpQpnQ13YYgUAgJhWoWCIkcPDgwYCAABcXF/hKCQKBQPwfBxVLBAKBQCBkgO5ZIhAIBAIhA1QsEQgEAoGQASqWCAQCgUDIABVLBAKBQCBkgIolAoFAIBAyQMUSgUAgEAgZoGKJQCAQCIQMULFEIBAIBEIGqFgiEAgEAiEDVCwRCAQCgZABKpYIBAKBQMgAFUsEAoFAIGSAiiUCgUAgEDJAxRKBQCAQCBmgYolAIBAIhAxQsUQgEAgEQgaoWCIQCAQCIQNULBEIBAKBkAEqlggEAoFAyAAVSwQCgUAgZICKJQKBQCAQMkDFEoFAIBAIGaBiiUAgEAiEDFCxRCAQCARCBqhYIhAIBAIhA1QsJyP9/f3BwcEpKSl37twpLi4mfCoQCB4/flxfX/+qZh88ePD1119LaRAfH7927dpjx46dO3fu559/3rBhw6t28apUV1f7+Pj8+uuvb2IkJiZmxowZQqHwlfa6cePGvHnz3n333SdPnjQ3Nx85csTFxeXAgQPV1dVSDFZUVEzQ/qJFi+7duyezWWxs7PTp07Ozs/EbIyIi1qxZ4+Pjc/LkyW+++WbTpk0vXryYYL//BFwut6GhgbBxeHj4p59+srGx2bZt24kTJ/bu3fvll1/29vbCT6UMH/8RFs9XmkT8LEwwzgTKysp27txpY2Pzww8//PDDDx9++OH9+/cBAF1dXQ4ODhOc5dra2lmzZl26dOm13UD8JyFCTD5KSkoAAMrKyps2bRodHcV/VFhYeObMGRUVlYiIiFc16+LioqmpyeVyJX569+5dBoPR3t4O/5uWlmZkZPTqvr8yGzduPHPmzJtYYLFYR48efY0d3d3dN2zYAP+GMU9JSZFicHBwcP369RM0fuHChdzc3Im0nD59OuwXz/79++3t7eHf3d3dNjY2169fn2DXfzthYWESex8dHQUAPH36FP73+vXrJiYmbDZbJHX42Ef4eL7SJC5evFjc2qsSEREBAOjv7xeJRJmZmQCApKSk0dHR/fv39/T0TNDIZ5999sMPP7yJG4j/FKhvtVIjxuXOnTvLli1TVlYmbLe3t7e3tz916tSrGszKynr33XcPHjz48OHD9evXizfYt2/fxx9/zGQy4X9nzJixf/9+AACfz3/8+DGXyzUyMvLz82tsbHz8+LGfn193d3dtbe2qVatYLFZVVVVAQIC+vn5cXFxeXp67u3tZWZm+vv7ixYurqqpCQ0Nnz55dWFjo5+dnYGBQWFiYl5dHoVDWrl1Lo9EAACKRKC4urrW1dcmSJWpqajwe79GjRxwOx83NzcHB4eHDh11dXcuXL4+LizM3N/fw8AAAvHz5ks1mDw8Pv//++yUlJUpKSgCA0NDQ9vZ2U1NTf3//4OBgNTW1ZcuWhYeHt7e36+joLFq0aIKxwgw2NzcnJSVRqdQpU6aYmppu27atoaHh6tWrH3/8sZKSUnR0dGtrq5KS0sqVK0dGRm7cuOHo6Njb26unp2doaCgSibhcLgBAIBA8fPiwv78fBqSioiI7O7u/v3/evHnTp0+fiD8MBmPTpk1Hjhz5/PPPoXs5OTkkEmnp0qUaGhoAgIqKiri4OBqNtmjRovr6+rS0tFWrVo2MjISHh/v4+Dg5OV29etXY2NjAwCAnJ8fLy0tRUTE5Odne3t7JyQkAgJ+R9vZ2OL/9/f0tLS1Lliypqqrav3+/tbW1srKyxMzB+Oyzzw4ePBgcHLxs2TJs+H19fS9evBAKhVOnTq2url6+fDn8qLW1FR9PLOYlJSWJiYkqKiocDsfT09Pe3v7x48eDg4N0On3VqlVkMvnQoUNJSUlXr16dO3eusrIy1lFXV9fLly9h6lpYWKSnp6empq5evTo3N5dEIi1btoxEIo3nOTzQent7i4uLdXR0RkZGqqqqXr58aWNj09LSQiaTV69eraioSIgVzF4AQFtbG3RDIBDAUBsbGxcUFPj4+JiYmIy3F+I/jLdYqBHjUVtbu3nz5ocPHwYGBiYkJIg30NHRedUzyz179vB4vIULF86YMUP804GBAQDA5cuXxT/y8/N7+PChSCR6//33z507x+fz33nnnZUrV3Z2dh4+fNjDw6OysvLPP/+cN28etKOoqPjbb79xOJz58+fv3r2by+X6+/t/+umnP//8808//RQVFWVra8vj8SIiIj766CORSLRx48b58+d3dnYeOHDgwIEDIpFo5syZd+/eFQqFs2bNqq6uLigooNPpz549Y7PZSkpKg4ODsbGxX3zxhUgkunHjxuDgYElJCZlMFolEw8PDBgYGjx49EolE+/bt6+7uPnz48CeffCISifbv3x8cHEwYmru7u5OT04kTJ06cOLFr1y7wP2eWmMHZs2d3dHRwOJxffvlFIBAcPXp05cqVw8PDIpHo6NGjW7ZsEYlEQUFBixcvFgqFX3/9taura3x8/OLFi8fGxtasWQPPOZYsWXLmzBkul8tgMDgczurVqx8/flxdXa2srNzX1yeawJmlSCSCFwl7enri4uKcnZ3HxsZqa2v19fUHBgYyMjKMjY37+/t//PHHb775hs1mT5kyJSYmhsvlzpo168KFCyKR6OLFizY2NoWFhbGxsUwmMzIysqOjQ01NjcvlEmYEP79wRng8XmBg4MWLFzkcDsFJwpmlSCQyNzfftm0bfvjz5s2Lj4/Py8uzt7fPysrCPiLEE4v5yZMnX758GRcXp6amVlVVVVpaCuOwfv36Q4cOiUSi+Ph4bW3t4eHhsbExzFpXV9eUKVPa29u5XK6VlVVmZiaMw/Hjx0dHRz09PaOiogjOwzPL8+fPX7p0ac2aNfv27RMKhRwOx8DAICUlBebtBx98wOfzv//+e1dXV6FQKJ698MwSP96LFy9aW1sXFhZGRUV5enqKRCLxvRD/iaB7lpMRRUXFo0ePrlq1ytbWdt++fW9usLe3t7CwMDg4WEdHJz09Xfw+qKqqqrq6eldXF35jcXFxY2NjQkKCq6srAMDT0/PGjRtUKlVNTc3U1FRbW1tbW1tTU3P69OkMBqO8vBzakZOTc3NzU1RUXLNmzd27d2k0moqKiq2t7ebNmw8cOHD79m0NDY3nz593dXW1tLTAjuzt7bW1tbW0tMrKyurr61NSUvr7+0NCQkxNTUtLS7W0tNhs9rx58+CZR21traOj47Nnz/T09DIzMxUUFLS0tKAdOp2+d+/ec+fOdXV1mZiYMBiM4OBgOTm5x48fq6ioSLwRZWdn99VXX3311VebNm3CNmIGFyxYAM+nzczMyGQyjUajUql0Oh0AcOPGDXd3dwCAu7t7aGhoX1+flpaWnp6en5/fixcvKBSKmpoaAKC/v//FixcBAQE0Gq27u1tRUfHixYvt7e2pqal8Pr+xsXGCMzg0NKSkpKShoXHr1i0bGxsKhWJiYsLhcGJiYu7evWtra6umpnbo0KHvv/9eSUkJngPRaDTsygSDwVBSUrK3t2cwGENDQ3PnzmUwGAMDA21tbYQZgfNrZmaGzYicnByFQpGXl4dmZfppZGSEDR8AMDg4KBQKRSKRvLy8m5sb9hEhnljMly5d6ujouHbt2t9//93c3Nza2vqnn366du2aSCQqLS0FACgqKpJIJDqdTqFQMGthYWFUKpXJZNJoNCsrq+DgYBgHZ2dneXl5TU3NsrIyiQ6vWLFix44dDx48OHXqFIlEUlRUxKKnoqLi4uJCpVI3bNiQk5NTVVUlMXsBAPjxMhgMZWVle3t7rNPx9kL8Z4Euw05Gvv76ay0trRMnToyOjlIoFABAVlZWZ2fn4sWLX89gcHDw+fPnp0yZsnz58oSEhKtXr16/fp3QZt++fbdu3Tp8+DC8TMTj8Z4+fbpz5045ObnBwUEAwNDQkI6ODmwsJydH+AOPSCQCAIyMjOjp6cEt6urq8A8DA4Oenp533nkHAODj4wM3Uqn/fx5qaWnJy8t7eHi4uLgsW7asq6sLPvSBb9PS0pKcnDw4OHjgwIGIiAhYtCCbNm36/vvvt23bFhQUBLszMzOD3Yk/oiITGxubjo6O6OjoQ4cOZWRkkMlkAEBtbW13d7e2tjYWFkVFRViWsGFiKCsr0+n07u5uAMDg4ODIyIi1tXVsbKyTk9Nnn30GAyUToVAYEhKyadMmEomkra3NYrHgdjabraOjo6enhz0f1NzcrK+vD/0EAGCP2wDcTOEjCSYwIwAAaPDx48dLliyRchUxIyODw+GsXbsWv3HNmjXwim5YWBihPT6eRkZGcKO5ubmvr++aNWsWLVp06NAhFRWVjIyMp0+fDg4OpqenY3sBAO7du7du3Tr4NzYdAIChoSF4eVl8IK8KlslUKlVbW1tirMSZSIQR/3GgYjkZ+eyzz16+fHnz5s2SkpKLFy8CAEJDQ8vKyhYvXlxbW/vs2TOBQPDkyRMej7dkyRKZ1n799de7d++ampra2toWFxebmJg8evTIwsJi9+7d+GYHDx5UVVVdtmxZQEAAAGBwcHD37t1qampBQUHnzp3z8vLKzs6+fPlybW1teXl5U1NTVVVVfHx8Q0NDaWnpkydPRkdH4+Pj/f39AQA3b960trYOCQn57bffSktLGxoaIiIiAgMD9fX1Dxw48PHHH588eVJZWVlFRWXmzJnQWmVlZWJiYmNjY0NDw927d0+ePDl79uzGxsYvvvjizz//lJOTe/r0qaKiIplMfvbsmZmZWWJiYmBg4JQpUzw8PJ48eSInJxcTEzN79mzF/8feecc3caT/f9QlW5Yty7bk3iu2cQH3bjA1EEpIhQuEkIMjBUi5hCTkwoUEQodcQhIIhJ5QQ3EBjHvDvVfZuHdbVrfK/v6Yb/a3t7JlQwiY3L5f/kPenfLMM6MdzezMZ1isd999Vy6Xw97r+++///DDD1ks1sjISHR0NPpEBgAcPXp0cHCwoaHh8uXLM2fOPHHiBJ1OP3/+PJ/Pv3PnDkzwq6++WrlypUajWbFiBQAgOjr67NmzZ86c2bhx45EjR7744gsmk5mdnX3y5EmlUnn37t3u7u6cnJywsLCWlpaqqqq2trbR0dGTJ0/u3bu3ubm5u7v77bffdnd3T05OrqmpiY6OPnbs2PLlyyUSyeXLl8PDw1HbkpKS8vLyent7d+7cKZPJ6uvrQ0NDP/zwQ1hNa9euPXz4cGtr66ZNmyIiIgICAnJzcz/++GNra2tbW1sbG5tFixZdvXq1ra1NrVZfvXp15cqVN2/e7O3tLSwshD1WUlKSVCqFXp2wRqqqqhYuXHjt2rXY2FhsTymRSGDjvHDhQk1NzcDAQG1t7d27d21tbdHiQ+MPHTpkaGh4+vTpzz77TCAQoLew/oS1fPv27eLi4rKyshdeeOFvf/vbzJkzBQLByMjIhQsXqFRqY2NjSUmJh4eHQCDYs2fPzJkz0Yw2bdr0t7/97aOPPhIIBCYmJu+88056erpMJrt8+bKFhUVbW9vdu3fXrFljZGQEja+pqbl06RKdTv/hhx/efPNN9FV9ZmamRCJJSkqC1ZGUlGRmZnb+/Pkff/zR1NQU56uoqKiqqqr29vaSkhJoxsjICOpqODudlJSEi/UYFpkT/BmQJvnbluDxIxKJ0Lmdx4lUKqXT6bgho0qlGnMQqYuxsXFGRoaXl5ee8BqNBo6Y9aBWq/UPC2QyGZyYnZAJk9KDRqPRarXYsiAIgi4VmbxbsDZMpvgTWoVLAXdFq9WSSKTR0VEKhTKZsk9oklarRYd0k2d4eDghIeHs2bMUCqW6uvqDDz7QfQWA9efkzRvPnj/uWxT4w3HDhg24Kn64LB6hYQRPBOKd5dTlifSUAABDQ0PdDmCSXUJSUpKxsfH169f1h5/MU2PCR/wke8rJJKUHCoWCKwv2yT5Jt+Bs+OMPTd0UcFfIZDKJRGIwGJMs+4QmPURPCQAwMjIKDg6+fft2dnZ2bm7u5s2bdcNM2FOOad549jyqDqmqqqq/vz8nJwcuYvrjWRA95dMOMbIkICAgICCYAGJkSUBAQEBAMAFEZ0lAQEBAQDABRGdJQEBAQEAwAURnSUBAQEBAMAFEZ0lAQEBAQDABRGdJQEBAQEAwAURnSUBAQEBAMAFEZ0lAQEBAQDABRGdJQEBAQEAwAURnSUBAQEBAMAFEZ0lAQEBAQDABRGdJQEBAQEAwAURnSUBAQEBAMAFEZ0lAQEBAQDABRGdJQEBAQEAwAURnORVZs2bNL7/8snXr1nfeeefXX39dv359S0vLqlWrCgsLJ5nCwMDAihUrqqurAQBbt27VDdDV1fXtt9/Cz0qlEn74/vvv29vbJ0xcpVI9UHg9/PTTT8ePH7948SL8t66uLiYmBhsgPT39zp07emwYD2wBx6OhoSEyMnLMW9evX3/99df1R3+EoFXwONm1a9f+/fv1h0lMTFy9evWDpnz37t0XX3xxwmDV1dVxcXEPahLQWzuT8SQMMzIyMuF36s+oF91GPiaPuQUSTAjRWU45RkZGXnrppRUrVri5uRkbGz/33HPvvPOOWCwODw+f/FeXx+MFBgbCHmXWrFm6AUxMTAIDA+Hn8+fPww8BAQFcLld/ypWVleXl5ZMPr587d+68+uqrS5Ysgf+6u7tbW1tjAzg6Ojo5OemxYTywBRwPV1dXKyurMW8tXLhwZGREf/RHCFoFj5PFixcPDQ3pDzNv3jyZTPagKcfGxmq12gmDeXl5mZubP6hJQG/tTMaTMAyHw5nwO3X27NkJU3tQdBv5mDzmFkgwIdQnbQDBGMyYMQP7r5ubW1tbGwBAoVBkZGSYm5t7enoCAEpKSoaGhnx8fHBPnLKyMrlcDp9xra2t6OCvqamppaWFz+cPDg4aGhoODQ1ptdqvvvqqsbHR1tY2JCSksbHRxsZmdHQ0Pz+fy+VKJJKIiAgKhVJVVdXT05OQkDAwMPCvf/0rIiKCRqO5urrC8IaGhn19fQ0NDQYGBn5+fkKhMD8/Py4urqysLCAgwMzMDGtbQ0NDf3+/QCBwdHQsLi7u6upKTU3FDS/6+/tLSkr8/f3NzMwqKythf1ZeXq5UKkdHRz08PFAbfH19sVk3NjaWlJRERUX19PSoVCr0sZuXlwcA8PDwMDEx6ejoaGpqsrW1dXR0HNP5EomkqKjI1tYWvVJYWKhQKLy9vU1MTAAAtbW1Q0ND1tbWarU6Ozt75cqVeXl5Q0ND8+bNu3r1qrOzM7QzICCgoKDAzMwMV1lMJvP69esRERFNTU18Pt/d3R2tgtjYWLSY4eHhWKuwRairq2tpaQkPD2ez2Xl5eVKp1M7OrqmpadasWVTq//9GX7161dbW1tXV9caNG9HR0XK5fLx6UalU+fn5AICwsDAymYzLDoa5desWm80ODQ2F//b29paVlZmamk6fPj01NdXJyYnFYuk6FmeDpaWlrv9bW1tbW1t9fX05HA4aUSaTZWdnY3Mcs3bUajXaOLGNOTY2dmhoSCgUajSaoKAgNDouDND5TmF9m5iYeOLECXNz8/j4eCaTiW2fFRUVfD7fy8sLm4tYLMbWLEwQJTs7m06ns1gsb29v8N+NHABw9+5drVYbHR1NpVJ1WyDBVIAYWU45OBwO+oSCkEgkOzs7AEB6enpkZOTHH38MALh582ZFRUVcXNyXX36JDXzkyJHBwcGQkJDm5mYAgLW19enTpwEANTU1Fy5c8PPz++GHH7y9vb28vL755hsymRwTE+Pp6RkdHc1isYRCYV1dXUFBgaOjo5WV1ZEjRxgMxvnz5ykUCofD+fe//83j8QICAkJDQ318fNDwAwMDu3btCgsLUygU3333nZ2d3dmzZ6uqqqKiojZt2oS1LT09PS8vLzQ09OrVq/BJwefzcVNSCIKUlJRERkbCuMbGxpcvXxaJRFlZWTNnzmxubsbagMva3t7++PHjnZ2dpaWlsIAAgD179mg0Gm9v7//85z8AgAMHDkRFRX3wwQcSiUTX+RKJZPPmzXBudnR0FADw5ZdfcrnciIiIjz76SCqV5ubmXrt2LTQ09PDhw7a2tqdPn9ZoND4+PnDy0NTUdOvWrV5eXrdu3Tp27FhERIRuZRkZGQmFwtOnT0dHR3/88cfYKsAWE2sVtgj379+/e/duTEzMqlWrAAA+Pj7vvfcenU6n0+lHjx7FxjI1Nb148aKRkVFNTU11dbWeenn77bdnzpw5ffr0N998U9djAAC5XH737l1sL2hubp6ent7V1UWlUsvLy/l8/piOxdmg63+FQqFQKMLDw9988010CIsgyN///veYmBiRSHT79m09tYNtnFhPwlL4+vrevXs3MzMTTQEXBvz3dwrn2zlz5nC53Llz52J7SpFI9N5778XExNy4cWNwcBCbC65msR5OSkoyNDScOXMmnBHBNfJ//vOf9vb2gYGBO3fu1C0jwRSB6CyfJkJCQkgkEolEQhDkxIkTRkZG+fn5pqamGo0GDXPs2DH4kxk+2igUirGxMQBALpcbGxszmczR0VFTU1MWi8VisWAAMpkMxxM8Hg8AEBgY6OLi8tZbbx06dAgAsGLFio6ODplMVllZCQAgk8kUCoVEIqHhL1++7ObmBgAICgr64YcfqFQqi8UKCQlhMpm4DunIkSMhISEw5I8//gjLArNG0Wg04eHhaFz4u9vY2Dg9PX3JkiXwRwNqAy5rGo1Go9G8vb1XrVqFFvDUqVNwoPDRRx8BANauXZucnMxgMDo7O3U9fOPGDW9vbzKZ7OTkBCcSL1686OzsDACwsbFJSko6evQoHAfv2rWLRqNB3xoaGsLnqYWFhaurK4vF4vF49vb241WWmZmZr68vehetAlwxUbBFsLe39/Hxyc3NhXN0hoaGVlZW9vb2fD4f9/7YwsIC+2G8emlsbBwaGmIwGEZGRvCnD85jg4OD69ev/+ijjwQCARqLRCK99dZbly5dkslk4eHhRkZGYzoWZ8OY/ndzcyORSA4ODikpKfBKfX19X19fcXExnU7v6+vTUzu4xoltzJs3b05JSaHT6TU1NVi3YMOA//5O4XxLJpNJJBKFQtFtISQS6b333jM1NcXlgqtZNFZAQMDGjRvXrVsH2z+ukd+8ebOvr6+uro7FYumWkWCKQHSWTxMMBgMAgCCIVqu1sLBwcXEJDg7etGkT7LogZDIZ/kLHflcBAJaWlmw2u6ysbPfu3djr8KlRUVGB9rhmZmbbtm1bv349lUptamp6++23nZ2dAwMDEQTp6OiA4YuLi9EUTExMBgcHAQAKhcLAwABrKu7bjoYUiUS40bNuMbFxu7u79+7de+zYsd27d2u1WtQG3awZDAaNRsOmZmBgAN/djoyMNDU17d+/f86cOaampiKRSCwW47I2Njbu6OjAXkGfekNDQyYmJjweDz5JZTKZRqOBpqrVanRUBK+AiSoLexetgo6ODmwxxyzCuXPnGhoaYmJiKBQKNBXNEedt9Prw8LAe33I4HJFIBD9DN2KzAwCYmZl99NFH77//Ps5XFhYWo6OjN2/eDAkJGc+xOBv0+x/+9oIfDA0Ng4OD4+LiFixYoKd2xmycsDGvWbMmPj7eyckJ3kKj4Bo8tiJ0fQsrq6SkBGsk6s+RkRHdXLAJorFaW1uzsrLef//9zz77TLcieDxeUFBQcHDw2rVrdctIMEUgOsspSkZGRmZmZllZWVJSEgBgZGQkNzf31q1bDQ0Nra2tt27d2rp166+//lpUVJSeno4dnO3Zs+fnn38uLy+vrKy8evWqUChsaWlJT0/ncDgXL148ceLEjh07hoaG8vLyGhoaGhsb3d3dy8vL29ra5HJ5Xl5eenp6bm5uYWEhlUr98MMPORwOhUJpbW3NyMhgsVhtbW2hoaE3btyQSCQSiQSGX7p0qVQqzc/PP3bs2N69e+Gb0eTk5JycnObm5qqqKtS2jz/++M6dO/fu3cvLy9uyZUteXl5NTU1WVhYaQDducnJyeXl5a2vr/v37W1tbX3zxRTKZjNqAy7q+vr6xsfHq1asAALSAu3fv3rt3b1FRUWlpqUajUalUpaWlBgYGt27d6ujoaGlpQQc0AIC5c+fSaLTi4uKkpKS6urq6urpdu3YdO3YsOzvb2Ng4Pj7+3XffvXbtWnFx8e3btykUSmxs7PXr1+HIoLy8PCkpqaKioqGhIT8/f7zKkkgkuKpEq0AkEmGLiVqFLQKCIENDQzk5OWZmZoWFhTk5OQ0NDVVVVSkpKVVVVdhxmL29fV9fX15eXmtr62+//dbY2Dimb8lk8rPPPpuUlHTlypU33niDxWJhs8vIyGhubqZQKE1NTZ988gmuP16zZk1LSwuJRMI5tqSkpL6+vrq6GmeDWq3GBqPT6e7u7nfv3s3Pz2cymZGRkdAkAEBCQsLVq1dzcnK6urr01A6ucaKehCPC6upqkUhUVVWF7ZXRMHBSHVsRON8CALhcblJSEnY9zpw5c5RKZWZmZlJSklKpxObS1dWFSxCNVVxcfPLkSYVCsWLFCt1G/vnnn//nP/8pKiqqqqrSLeODPTgI/jRIuPEHwdOFRCJhs9m4iwiCKJVKrVZLoVDQn/ZffPHFO++8Y2ho2NnZefDgwa+++goNr9FodKdDschkMgMDAwRB4A9tpVKJJqvfkjERi8VGRkaTCYktEYlEwmaBtWHCrBEEkcvl6KhXoVAwmUy0OLpIpVK4AAqu9UUQRCaTGRoaogGwOULniEQiDoczXoIT2gmrADJenaJFUKlUcCJaTxFQZDIZmUxGEAROSo+HUqkkk8nooBznMT2gI2MwvmNxNugGgz7UNYlCoWCXLEFwtYNrnNjGjLuFoqfB6/p2dHSUTqePaQPWeP11AQeaKpUK+/oTF0ChUKB1hCsjwVSA6Cz/V7h58yYAgMfjtbe3m5ubR0VFPWmLCAgICJ4aiM7yf4vJjEUICAgICHAQ7yz/tyB6SgICAoKHgOgsCQgICAgIJoDoLKcie/bs2blzJwDgxx9/FAqFuLtisfjVV19NT0/HXlQoFI/PvkkwpuV/hMlL/f0RV2RlZcGXu1jEYvGaNWtwDn+cPFpn6rafMVvURx99pLvPbzK+7e3tnVDfFe7QeISb7lHDxqzBB6WwsHDNmjVvvvmmVCoFANTU1CxduhQrbgAZr02O6c8JmWpfYQIcRGc5FVm+fDncPoiqYWExMjKKjIzEfbVOnDjx+OybBGNa/tDU1dVBAbbJ8Edc4eDg4OrqirtoZGQUHR39BJ9lj9aZuu1nzBY1a9Ys3fWik/GtsbFxcHCw/jCurq729vaPcMEEatiYNfigzJgx47333rt9+zZci6vVardt24bT3NfTJsf054RMta8wAQ5CG3bqolAoGhoaBAIBh8MZHh4uLCwUCAT379+fPXs2AGB0dDQnJ4fFYk2fPn3Xrl1lZWWOjo4JCQnYFBobG/v6+ng8npubW0FBwdDQkIuLS0NDAxS3Q4OhtxobG+Pi4hoaGtrb22FSnZ2dQqHQ3Nzc3d1dIpFApbe2tjY2m+3r6wvPA0lISCgoKFAqlejTBLV8cHAwIyNj/vz5paWlvr6+SqWyqqoqIiJCrVYnJib6+fn19PRYWlq6u7sDANRqdV5eHoIgISEhUqn05s2bkZGRLS0tXl5en376qb+/P5vNDgwMHB4eFgqFcrk8PDwcZ9J4rpBKpSUlJTQazdzc3MnJCesWAMDg4GBpaSmPx5s+fXpFRQXUmsHmor+a5HJ5VlYWg8GAC4yh+oxAIHB2dsaWSKlUYk319/cHAAwMDNTW1tLp9JkzZ7a0tIzpKyqVijYDjUaTnp5uaGjo7++vu58BANDQ0NDc3Dxz5kwulztmjVdWVsI9srpx0Rbl7+/f1tbW0dGh1Wrlcjnquvr6+hMnTtjY2ERFRRkZGWHdmJ2drVQq7e3ttVqtWCxGVXmh5KyTk5O5uTm2LY3pSbjx0d3dXaPRODg4XLt2TSAQ+Pj4XL16dcaMGc7Ozh0dHbW1tebm5r6+vu3t7e3t7TKZLCgo6PDhw2ilozWo3/m4JqFrjKen5+LFi7dv3759+/aqqqoVK1YAAEpLSwcHB93d3ZlMJrZNYiNiPdzS0pKZmfnSSy+VlZXdv38fHhgAZWChgg+MotVqse0WazlOYYPgCUKMLKcuTCazs7OzsrJSo9G8/fbb8fHxX331VXBwMHxKpqenh4SE7Nq1S6lUxsXFubi44E4XycrKSktLCw0Nzc/PT01N9fb2/uCDD7RarZWVFXaTJQAAvWVpablixQorK6uurq4bN24AAPbu3RsREbFjx47u7m42m93a2vrjjz+Gh4fv2rVrdHTUyMgInq4FNbV1LbexsTl37lxJSUlsbOwrr7zS39/v6em5bds2ExOTmpqa27dvx8TEnDp1Cm7f3rhxY2Bg4MyZM9966y0TE5Oqqqrffvutp6eHTqfPmDEjKCgoICAAALBnzx4vL6+KioorV67gTBrPFYcPHw4JCfHx8SkrK8O5RSwWb9q0KSYmJicnp6mpycLC4pdffsHlor+aXn/99aioKAaDcebMmYKCggsXLoSHh//nP/9BEARbIpypcrl8cHBw+/bt4eHhXC53x44d4/kKdSYAYO3atdOnT2ez2WfOnNG1pKOjIykpadasWS+99BK2WtEa/+mnnzo7O0NCQlpaWnSjoy1KLpdbW1tfuHBBpVJhXZeQkGBiYjJ37lwjIyOcG319fTdv3kylUqEqLzwc7cCBAzKZLCAgAIpGYduSbu4ymez5558PCwuTSCRQLcjMzOzcuXNMJhPKGnR3d3/55Zfx8fEpKSltbW0//fRTSEgIhUIRiUTYSkdrUL/zseUar2Y/++yzX3/9dd++fVBFKCkpqaioKC4ubseOHTweD9smUXAehnWqUCi8vLzg1PRHH31kbW0dGhq6bds2NBaZTMYWAWu5vpZH8HghOsspDRQAg7JqcBs1FCMFvx8QAQedOLlLyLfffgtnw2JjY//zn/8YGBgIBAJXV1c+n4+TRcXeMjQ0NDExEQgEMMz69esTExMNDAzgOzMzM7OAgAA039DQ0J6entHRUUdHx2nTpulaTqVSuVxuYGAghULRarX+/v5oyjwez8vLCwDw3HPPffvtt01NTT09PSwWi8lkKpXK6upqCwsLZ2fn5cuXGxkZYQVpN2/efOfOHaicomvSmK4ICQmJiIj44osvYmJicG5JTEz08vIik8nr1693dnZGZztxuYxHXV1dd3c31AYSiUTHjh2Lj48HAOzZs0coFOJKhDP18uXLUHXWxcXlypUr+n0FAOjt7e3s7OTxeNOmTXv11Vd1jbG2tg4MDExLS4PDGt0a/+677+CA28XFRTc6tkWRyWSoR4h1HVYrFedGIyMjCwsLe3v75557jslkQoWB48ePx8bG0mg0+AIe15ZwwIowMDDw9PSEYnuonCw8VOfq1asGBgb5+fnW1tb37983NDSMjo6uqamxsrLCVjqsQd3mhHM+tlzjVS6Tyfz73/+uVCqh/sBPP/0EBX5tbW2hi9A2iYLzMJVKhW5kMplQaOLKlStDQ0MVFRXYI1YARrFW1/LxzCN4zBCd5VMAnU4PDg5OSUn5/PPP0WkZrCIofEy0tLRgVUBR3dSuri74jR1PRBToKJrCMEKhcMeOHfPmzbOwsFCr1T09PbqJPP/883v37sUJf4+Z+Hi5d3V1mZmZGRkZoQqlPT098FGCCv1gBWlXrlwZGxvr5uaGU+PU4womk5mXlzdr1qyvv/4a5xYzMzM0JGrAmLlAcK/ZzMzMWCxWcHBwWFjYSy+9ZGZmBvVUVSoVlUrVLRHWVBMTk/7+fvgvulREj6+MjIzQYDBlnDHnz58vLy+Pi4uj0+ljysbS6fQxI2KzxmWKdR34fesRVpUXbV26qkxGRkbwvZ1IJBqzLWExNjZGK0KtVmPtgZO6AoHA3Nw8ODj4xRdf9PHxCQ8Pv3PnjkgkSk5O1q30MZsTtoC4co339hQe5wI/w3PlgoODt2zZwmQydUWSx/QwTh3X1NR0xowZwcHBGzduxEZEi6DVanUtJ5gKEO8spyKJiYlVVVVNTU1ZWVmmpqZz5swpKioqLCykUCh/+9vfPD09c3JyjI2N3dzc6uvrU1JSnnvuubq6uoqKimeeeQZN5JNPPvnhhx8MDQ2Tk5M/++yzvLy8xsbG0tLSsrKypqam+/fv29vbw5DYW42NjQ0NDbdv3x4YGAgKCtJoNKWlpXQ6/datWw4ODrh8V69evXz58lWrVv3zn//E2i+RSKDlrq6uQqHw5s2bTk5OQqHw3r17bW1t9+/fh2OLe/fuCQSClJSUzz77zMLC4sUXX7xx4waZTF64cCGbzS4oKOjt7Z02bZqJiUloaOiVK1fmzJkDu8Oampqurq6Wlpa2trbJuOLMmTNSqZRMJs+ePdvT0xPrFhsbm9u3b6enp6tUKjc3N+j5/v5+XC5ZWVkmJibx8fGff/65q6vrypUrYco8Hu/ZZ5+9ePGilZWVgYHBli1b/v3vf5uamt6/f3/x4sXYEpmYmOBMffXVV8vKyvLy8iorK/fu3SsUCsf0VUVFBdoMVq1ade7cOXt7exqN5uHhER4ejp1FRBBkeHg4Pz9fIBCkpaU5OzvjahzqBsfGxhYWFtbW1sbHx8MFLBKJBGdbdHR0U1NTampqUlIS6joAAJ/Pv337trOzM651ZWRkNDY2Zmdnh4eH5+fn19fX19bW7tmzZ9++fXPmzOnv73d0dMS2JUNDw6ampsTExGeffRYaP2vWrKSkpNzcXIlEAlXpbWxsZDJZSUlJY2Njb2/vt99+e+/evaysLLlc7uPjc+jQoY0bN5qbmwcEBBgYGKCVfu7cuaqqKiqVqt/5paWlaLlkMtn8+fPT0tJwX8OmpqacnJzR0dH6+no3N7etW7ceOHCARCJ1dHQsXrwYbZPYKLoejouLS0tLI5FIYrE4Nzd3165dhw8fjoyMHB4exh7j6urqihYBa7mNjc1DPEAI/gwIBZ+ngKtXr5qZmYWHh4+Ojq5bt+748eO6YbRaLTzsCXf9IYRYccjlchaLNab0Dxw3FBYWRkREPGiyBw4c8Pb2DgkJwWqujo6OIgiiKzwL/lsMFipnjqdGpOsKKJYLAECXVODcgpX6xF3UzaWyshKe34s1m0QioYN+rLirnhKhuRgYGExeLEKlUiEIAoc7upaoVCoSiUSlUsdzDtQghZ/1q8Wi4XGuw1bEZFoX1rd62hI28IIFC+Arc3iFRqOp1Wo4tYumhiCIWCxms9lwTDZm+9fjfN1yTZLxBIqxKeM8LJPJWCzWyMgIfKEAxtHCxRZhwmZD8PghRpZPAXDdKZVKVSqV2GPfsYwng/4He0rw+xd+zKfb+++/n5CQsHDhwgdNc3h4uLS0tLe3Fx69iTLmCk8I9sEBH5fjPXB1XUEikXDPRJxbdHvK8XKpq6uztLTEhcSZjZVB11MiPVnrAbs8EjvVjLs7nnNIJNJk+khseJzrsBUxmdaFLaCetoQGzsrK6unpKS8v9/X1RaOjbkRTI5FI2CnKMdu/HufrlmuSYCt3zM5M18OwX0RXG6BXcGCLMGGzIXj8ECPLpwZC1pWAgIDgSUEs8HlqIHpKAgICgicF0VkSEBAQEBBMANFZ/i/yySefPGkTHpI/z/Kenp7Fixdjd4kAzI6OL7/8Em60/7NpaGiAOzUfOd99993777+Pblb546CmdnV1HTlyZMLwetR9EQTZvHnzhQsX0Cupqal/+9vf/qCFCILALZsPYdIjjDJJBgYGVqxYUV9f/yelT/AHITrL/0VwAjdPEX+e5Xw+39vbG+7wQ0GFchYtWgQ3UP7ZuLq6CgSCR55sT09Pf3//V1999Qg1ZlFTTUxMcEI2Y3Lu3LnxbpFIpAULFkDVckhcXByuLh6C0tJS/Zv69Zg0HmNqJz0SeDxeYGCg/t6d4AlCrIadity/f7+rq0ssFs+ePVulUmVmZhoZGc2cORMAUFdX19zcDKU+r1696uzsLJPJVCoVVsJU93pPT09TUxMUdG1tbYXjJ7FYXFZWRiaTnZycBAJBamoqACAmJkYqlWKvYw2rr68vLS0NCAhoaWkJCQlhs9kqlaqmpqa3txd2Y6Ojo3l5eRwOp7u7OzQ0lEql5uTkcDgcVFm7p6cHqnf29fWRyeTp06cXFRV5e3uPjo42Njba2tq6ubkNDg4KhUISiRQYGDg0NJSYmBgTE9Pa2mplZQUtz8vLk8lk1tbWLS0ts2fPJpPJAwMDxcXFlpaWbW1t8+bNw/kTm6BYLL5+/XpERERjY6ONjQ0U3S4tLVUqlbjn1M2bN0+ePGlhYQH30iEIUlxcjKrF3r9/HzUYhs/KylKr1UZGRiMjI7GxsVjLQ0JC0PDOzs5wbXNcXFxmZiabzTY3N29sbHR2dra1tcUagNZIS0vLvXv3oqKiysvLg4KCuFwuACA3N5dEIk2bNs3IyKioqGh4eNjf3x8rOlhXVzc4OGhlZWVvb3/z5k2hUFhdXY1uNcG1q3v37ikUCj8/PwAA6h9HR0cmk1lWVhYaGsrhcC5evOjk5AT3TkBtW0hVVRXcRz9eW2UwGF988UVra6uTk1NkZKRUKsW2ivv373d0dAwMDIz5XcA2sNra2ra2Njc3NxqNVlVVFRwcLJfL0Yadl5cnEonmzJlz8eJFd3d3S0vL7du3x8XF0Wg0qBWFbfMODg5Hjx6FJnl7e6M1NW3atOvXr8fGxo6MjBQVFb344otYV7e1tX3zzTcWFhYzZsxobm7GZken0ysrK0NDQwcGBry9vbHNo6ysbHR0VKPRhISE6BYQ9TxcWtzX1wdViogdllMNYmQ5FTlz5kxISMjg4KBWq123bt3MmTOHh4fT0tKEQmFmZmZERMRrr70GADA2Nv7kk098fX0vXryIVbDDXe/r69u7d29YWFhfX9+pU6esra3hr+Nvv/02LCzMwcGhvr7+/fffd3Fx8fHx2b17N/Y6zjAnJ6cjR44gCBIeHv7iiy+Ojo6ePXuWTqeTSKSDBw8CADZu3Dhz5syffvrJx8eHxWKtX78+Nja2s7MzJycHpmBhYfHrr79qNBqVSpWXl2diYlJcXKxUKg8cOBAfH3/8+HGlUrl7925/f/8rV66UlpZyudzi4uK7d+82NDSglvv4+GzZssXQ0FCpVP7yyy8qler999+fNWvWnj17xjzvApugkZFRbW3tuXPnYmJiPv74Y+gHqVQaHBzc1NSEjTV37lwohQp37mdkZHh5eUGXdnR0YA2G4X19fd999113d3eBQLBu3Tqs5djwarUaQZDk5GQAQHV1NZ/PP3ToUExMzNtvv43trbE1Ymdnd+rUqbq6uuDgYKj/8PXXX1MoFHd39yNHjly7dq2uri4+Pn7Hjh1o9NTU1OLi4tDQ0LNnz9bX1wcHB+MkCbHt6t///reFhUVERMR7773HYDBQ/3zwwQeNjY3+/v5w9pvFYn3zzTeRkZEFBQXYARYqBjteWyWTydHR0V5eXuHh4QiCYFtFcXHxpUuXwsLCdDV9INgG5uLismvXLlNTUxqNVlZWplQqsQ172rRphw4dAgAwGIzk5GQej+fv7x8WFubp6YmmhrbtxsZG1CRsTcHmUVdX5+joePToUZyrPT097ezs5s6dy+fzcdnB8H19fcXFxdjq7u3tzcnJmTlz5pgif1jPwwPLOjo6goODDx8+3NDQMKZDCJ4URGc5FYHCymq1uru7e2hoyMjIaPbs2TExMU5OTh4eHkVFRfCHPDzAgclk8vl87LMGd/3ixYseHh4AgPDw8O+++45CocAtXwEBAeHh4cePH585c2ZiYmJXV5dQKGQwGNjrOMOg1qWrqyuLxbK1tc3Ozn7hhRfu37+vUCjgfJdWq2WxWDQajcFgNDQ0DA4OFhUVGRgY9Pb2whRIJNLatWsTExOZTKZQKJRIJLNmzbpx4wabzc7Pz3dwcGhvb9+8eXNycjKLxYK9tbm5ubOz88qVK1HLDQ0N4U9vPp/f1dUFd6yTSCStVosdWqHgErSwsJg+fToMDwA4deoUHCw6ODjgagGVQgUA+Pr6oi6FGu6owTAAh8Oxt7dns9menp55eXkqlQq1HBd+zpw5NTU1AABHR0crK6s1a9akpKSQyWT0sA4AALZGqFQqnU4PCwtDReZ++eUXOMR89913jx8/DhOHsnOQ7777Do5jAgICTpw4AaVH0QXVnZ2d2HZ15coVe3t7EolkYmKSmZmJ+kehUISFhVlYWKAStbDjWbp06XfffYfmZWBgANXe9bRVVPu0uroa2yq+++47OHAf8+gPAAC2gVGp1A0bNly+fLm+vv6tt97CNWwjIyO48RFqycIaxMm3Yts2VlEWrSnwuyYtjUaDjQ3rahKJhDYJXHY0Go1Op3t7e69atQpb3WKxODU1ddmyZY6Ojrqlw3keAICW6OTJk8eOHTtw4MD169fH9AzBY4boLKcis2fPTkpKKikpaWtrk8vl8OLIyMjp06erqqqio6MBAGOKf6LgNEjhE1YsFmN3Rpuamubm5np6eh49epTH4wUHBwcHB69evRp7XY+R3d3dZmZm//jHP2xtbf38/KCG6jPPPJOUlPTqq6+amZmZmZmx2ezg4OA5c+Zglb1mzpyZn5+PIIi9vf2VK1cCAwMtLCwsLS2Dg4PXrVtnbm7+wgsvzJo1C553CIupu/kdW0AWi+Xr65uSkgIFu3EgCKKbIIwOnYaKuejuOSaRSAiCVFRU4HLEGozqfWNzHB0dhfoA0HLd8HFxcf/5z3+8vb3r6+u/+uqrhIQEY2Pj3t5e9DxkbI3AK3CjOrSZyWRqNBoAwMjIiIWFhaura3Bw8Ntvv43agFa6SCTS/QFhZGSEbVfodZFIhJURplKpqD4ONnpPTw/UdteTJq6twnTKyspwrcLY2Lirq2tM50NwDWzRokVXr15VKpV0Ol23YUOzUa0GNFM0NWzbxt1F2xhOzRXravD7Di4YC5edgYEBTBNb3QiCHDx48IcffoAitOOBeh6CIIi5uXl8fPzChQt1f7MSPBGIznIqcvjw4dLS0sDAQD8/vyVLlly+fDk7O7uzs1Or1SqVyvT0dFNT0/Ly8pSUlPLy8vr6+qKiotu3b6PRcdefe+654eHhgoKC06dP79y5UygUNjY25uTknD17NiMjA84CffbZZ9999x0UtMReHx4eDgsLw9qmUqmysrLu3r0bEBDg4+NDo9F6e3vv3bunVqvhgYVXrlw5fPhwamoqn8+PiYm5ceNGVlYWOrKETJ8+XSAQPP/883CuadmyZe3t7bm5udevX6dQKBwOp7KyUiqV3rt3r6enp6io6Nq1awqFArU8JyensbGxpqYmJSUFvq4rLCy8dOnSV1991djYCABISEhoa2uDeWm1WmyCAwMD+fn5KSkp8I1aRkbGrl27Tpw4UVZWVlNTc/XqVaydHA7n5s2bdnZ2OJdiDcZK6nR2dpaVlR07dmzHjh1w/AQt1w3/t7/9LTs728rKSqPR0On0kpISIyMjePhUY2Pj3bt3sTXS1NTU2tp669atu3fvtrS0NDQ07Ny5c//+/YWFhRUVFZ988smvv/5aVFSUnZ2NWvLJJ5+kpKTcu3evoqLi73//e3JyclFREToTaGRkhG1XX3311fHjxzMzM+HJyah/hEJhRkZGcnJyW1tbc3MzAKC8vLympub8+fNffvklrI67d+/m5ubW19f39/fraaseHh4lJSU9PT24VvHee+9lZ2dXVlZmZ2ffunULqsICAHJzc+vq6urq6nANjEKheHp6QlljXMMGAFhbW0Ot3YyMjKGhodDQ0OvXr2MP78S2bdQkbE0BAIKCgrKzszMyMkQi0e3bt7GuBgD4+/v/9ttvsFPEZldQUFBXVwdV+rDVLRaLDx482NbWBl9/fvjhh9g2hvV8YGAgm82+f/9+WVlZaWnp2rVr7e3tnZ2d+Xz+5B8dBH8iCMHUQ6vVjoyMoP/K5XL4ogtBEKVSqdFoHiJNsVism4tUKoWKlAiCaDQamUyme72iogIba+nSpQiCwJAQqVQKY7W3t3/zzTcwqfXr1ysUCpzx2KzRTNGLEolEN83JFA12FbCMGzZsQBCkt7e3t7cXG0Z/ghqNRi6XSyQSpVKJu6V7ZUyDIUuXLh0dHdUt75jh0bLDM5Z1zUNrZEy0Wi32rm79IgiCbUW6YKtGo9FAF+khLy9v9+7dekxC9LZVtVqN/otrFdDzuv6EoHUHW9Tt27exd3EFF4vFarUaLTiMgoJr21iTsIyOjo6Ojo6MjEAlXpyrsWnissMCiwPzwhqJ+0Lpen48PxA8WYjVsFMREomEnXjEilg+tGgkVtMSzQWrUUkmk1HpTux17DQdPL4xPT0dTq9BYGASiWRmZqZWq3NzczUajbu7O5ykGlOBE32NhNXDxIqIomlOpmh+fn6ZmZkqlUomk8G3jw0NDbgBsf4EyWTyeEqhehyOk3W9e/duT09Pc3Mzuj5Wf3i07KhOKc48tEbGBKdBqlu/YCLtVmyRyWTymIKlWO7cuVNXV6dUKvVYpaetYlXOcd7GCcDiQOvuwoULDAbDx8cHexdXcPiv7pwqBNe2dQ8egMDRP1ZoF1tkbJq47HQLBesUNbKqqgo97Qei6/kHlQsmeDwQ2rAEfxEQQjuXgIDgT4N4Z0nwF4HoKQkICP48iM6SgICAgIBgAojOcooyngTlkSNH4FL7SV5/aJCJdDXH5KGVM8+fP7958+aHi/sH0VNStDiTlD8dD6VSuX//frSAt2/fxgmfjll9k3HmhPUuFotfeeWVkpIS3PUxtXD/PP48SdUHqpoLFy4cOXIkMTHx0drzSFJ7JHK4BH8eRGc5RRlPtTIgIAC7H2vC6w/NhLqaY/LQypnLly8fT/Dsz0ZPSdHiTFL+dDyuXr0aEBCwe/du+O+sWbNwwqdjVt9knDlhvRsZGYWGhqLbN1HG1ML983gIFdZJ8kBVc+fOnTfeeGPOnDmPVuL1kZTukcjhEvx5EKthpxxarRYrpInVNYVKmA4ODl1dXVixUCaTOeZ1KCJaVFSkVqtJJJKhoSEqeNbe3q6rR4pq0gYEBKC6mlQqFRW9NDAwyMrKWrVqVVZWllKpjI+Px8qBYsVUb9y4YW9vb29vn5iYOGfOnIGBAaxyJlbLVCwWl5SUWFlZYZ1QX18/ptKmubl5YmJiYGBgR0eHi4uLnZ1dVlYWAIDL5XK5XCsrq/EUbtEch4eHsS7SarVYBVGsW7DFQeVPR0dHCwoKSCRSeHj4mDKzEGwwiUSSlpbm7u7u6upqaWmJhmlsbGxqapo9e7ZSqYTVp1arUZuLi4vR3KlUKlZB9MKFC9OmTRseHvb09IQRWSxWb29vdXW1QCDw8PDAtpkx2xhOCxcrHQwAwCZ19epVbD02NDRAVd62trb4+HjYtKBUEFpHlpaWWLc4Oztj2zPMEadLXFNTMzw8bGtra2Njg60CoVCIa8+6Oqto1WAVldGSYotWXFzc1NSUnp4ulUqxvtWvwYt+NWDpjI2Ny8vLBQIBj8errq729PQ8duyYrsYsVg3Yzc0NlWuGGrP5+fn29vZQtAjNHa6O1mg0OOlgrAwvwROEGFlOObBCmuC/dU1ZLFZDQ4NQKMSJhY53HQBw+PBhBEGEQqFIJMJ2SGPqkaKatFwuF9XVxIpe2tra/vzzzwAAb29vKAaLlQPFiqkaGxtfvnwZqm62tLRgE8FqmUokkg8++CAyMhIVf4GMp7RpYGBQWlp67969uLi4f/3rX/X19d7e3ps2bWIwGJWVleMp3GJzxLkIpyCKdQu2OKj86TvvvBMUFOTl5bVp0yZdmVkUbDA2m+3j4+Pv74/tKWtraxkMBtS2RasPazM2d5yCKJPJ3LNnj1qtHh4ehhGHh4e3bt0aExNz6dIlqVSKbTO6DQynhYuTDsYlhatHVJVXJpNt2rTJ19f31KlT/f392Dqi0+lYt+DaM2oDWtKcnJzk5OTQ0NDDhw/jqgBXWSKRSFdnFa0arKIyvIUrmr+/v5mZWWRkJNa3+jV4IdjSGRsbDw0NnT9/HrpdIBCMqTGLUw/GyjVfvHgxJiZm69at4L8VgGFeUIQPSgfn5+dj2wzBk4XoLKciWNVKnK4plC7TFQsd77pMJjMxMaHT6UqlEvtLeUw9UlSTFuYOdTWxopeoYKaJiQmVSsXJgWLFVFF9Tl3lTKyW6fXr1729vUkkEk4adDylzfb2dlShdN68eSdPnjQxMbG0tHRxcUlISBhP4Rabo66LsAqiWLdgiwPlT2tra8ViMZ1O53K5BQUFSqUSJzML0Q0Gs8AW0NLS0tbWFmrbotWHtRmbO05B1Nzc3MXFJTIy0sHBAUa8efMm3H340UcfGRoa4toMDpwWLk5hFZcUrh6xqrwWFhZ0Op3H4/X19eHqCOcWbHuGYEt67NgxqIb41Vdf4aoAV1nGxsa6OquwanCtF97CFQ0qu0JLUN/q1+CFYEvX0dGxYsUKEonU1NS0fPlyCoUypsYsziGoXDOXy3V2diaRSHDGFZs7mh08XwUA4O/v/2ec10bwcBCd5VQEVa1ExtI1RcGKhY53PTQ0tKGhgc/nL1y4EA0wnh4pqklbWVmJVc5ERS/B7zuyZTIZPI4KJzGKiqmiX370oYNVzkS1TI2NjWGhdPf7jqm0iRVi7e7uhv+iW8LHU7jVVU/Fuggtqa5bsNqwAABjY2NUCBTK1IH/lpnVEwzHmKK+OFVeXO4AoyCK2wXP4/FQ7QiRSKSnzQAdLVycwio2qZGREd16RK/oF8vFukW/Riuao1gsHrNlopXV3d2tR2cV23rhlfFUkbG+1a/BC9EtXUBAwN27d+H075gas+M5BOcZ3dwhc+bM2bNnDzwxjWCKQHSWUxFUtRKnazo4OJifn5+eno4TCy0tLR3zekNDg0ajOXPmzIkTJ3744Qc0fZweKapUgmrSurq6orqaUKITil4CAKKjo2/evHnr1q22traOjg6sHCjAiKnCF6i5ubnd3d2XL1/GJoLVMp03bx6ZTC4pKUlOTq6oqIACpAAAbHhdYdW8vLyysrKGhoa1a9fCWa+ioiIAwHgKt9gcdV2EllTXLWhxoPypQqGYP39+SkrKhQsXNm/eLBaLcTKz0HhLS0tsMKlUmpubm5iYKBaLYQCctm17ezusPqzNWGfiFERTUlJyc3Pb2tokEgmMOGfOHLFYnJ2dfePGjTHbTEpKClr7OC1cnMIqNikAAK4esZYXFhbW19eXl5ffuXMHW0dyuRznFrQ9ozZgS/ruu+9euXKluLg4IyMDVwWtra3YyiopKcHqrEJg1TQ3N2NbL7yFK1peXl5tbW1eXh7Wt/o1eGE62NJ1dnauXLmSz+cvWbLkxRdfrKqqGlNjFtdosdrCKSkp1dXVTU1Nubm52NxROVwAwMqVK+vr63XV6gmeIISCzxRFo9HAKSMAgEwmMzAweDiFmg8//HDHjh0kEunkyZM2NjaxsbHwOhxeMJlMbLIIgkgkEnTUolQqcWphEKlUamhoODw8bGxsDA9yotFo6DTj6Ogo/G2OIIhcLodzX7picvAMYVyCehZ2wjAAgJ07d86aNcvT03NMeTao381isWDuLBYLLR02RxxoSXXdghYHRaFQUKlUeMilHiYZDIuuzWjuUBlVvyId6iIwUZvRarVwmQyc7gY6zsEmpb8exzMAB7Y9j1lS1IAxWyYai0QijVePuNaLMl54rG/1a/g9aOkmEwVFN3elUimTyVpaWoilPVMKorP8i/P99997enrS6fR79+69/PLL2NeWTyODg4Nvv/22t7f3Bx988KRtISD4U9i0aVNCQsK8efOetCEE/wXRWf5PQOimEhAQEPwRiHeW/xMQPSUBAQHBH4HoLAkICAgICCaA6Cz/sojF4jVr1ty5cwcAsHXrVo1GM2EU/RKXGRkZzz777KMyj4CAgOApgugs/7IYGRlFR0crFAoAQHx8/Hjn3GI5deqUnrtRUVGTSYSAgIDgrwehDTtFKSgo0Gq1Tk5OFhYWg4ODNTU1VCo1ODi4paUlIyNjwYIFJSUl06ZN02q1lZWVwcHBJiYmly9ftrGxUavVarUaFeEEAMANkRqNhkKhNDQ09Pb28vl8FxcXjUZTVVXV2dk5e/ZsEom0e/fukpISGxubOXPmAADS0tLUanVYWJiBgQHcOUcobxEQEPzPQowspyKHDh0SiURBQUG7du0aGhratm1beHi4QCD49NNPbW1tL1y4UFBQEBcXt2bNmo6OjhkzZmzZsgUAYGpqumPHjuDgYARB4BWItbX1hQsXFApFYWHh2bNnw8PDjxw5otVqL1y4oFQq3dzcNm7cSCaTZ82a5eLiAkWot27dim7nl8lkGzdujIiI4HK5T+pgEAICAoInC9FZTkV+/PHHWbNmkcnk3bt3X7p0CSqS2NvbJycnUygULpcbGBhIJpNVKlVQUBCPx+vt7QUAmJmZubm5kcnkqKioK1euoJuCyGQy3Ox/9OjR+Ph4AMDXX39NJpOXLVs2ODjY0dHR0tIC/lvA89KlS/BcCBMTk8TERHd3dyqVamFhMeEOawICAoK/JMQ07FSEw+HI5XIDAwORSMTlcltbW+F1+AIS/C4vOaa+KABALpdDqWhcsqgIp0ajUSgU77///oYNGzw9PTUaTUdHB+wmOzs7qVQqj8cLDAykUqkeHh6FhYVtbW0wBbQDJjZuEhAQ/E9BdJZTkX379u3bt2/evHm9vb1LliyprKyEupE7d+4UCoWNjY03b950d3cXCoW5ublisbi9vR0eU1BbW1tTU5OUlHT48GGJRJKVlWVkZOTs7NzU1HTnzp0tW7Z8/vnnFhYWbW1tCxYsIJPJra2t9+/f5/P5dXV1ISEh9fX1hYWFzzzzzK5duw4ePBgTEzM8PBwfH5+enn7v3j2oc11QUDA6Onrp0qW9e/c+aT8REBAQPCYIBZ+pC1ZYUiqVGhgY6B/MVVVV/fzzz//6178YDIaekGKxGNXPxCmIIgii0WhQOVOcAVC+lcPh6GpgEhAQEPy1IZ56UxfsC0JDQ8MJpz2Tk5ObmpqGh4f1h8QqTUNhbjQ8iUTCCn/jDAAAmJiYED0lAQHB/yDEyJKAgICAgGACiFECAQEBAQHBBBCdJQEBAQEBwQQQneVU5OLFi7GxsT/99JNcLp8wMCroumfPnp07d2JvHTt2rLGx8U8xUS9paWlLly6dZGCFQjEwMDCZkj4cg4ODAwMDMpnsT0qfgIDgfwGis5yKLFu2TCgUvvTSSxOe3g4wgq7Lly8fHBzE3vLz8zM3N/9TTNRLTEzM5HdhJiYmhoSE/Pbbb48q997e3uLiYvi5v79//vz5//znP1977bWXX36ZeENPQEDwcBD7LKc0Eonk2rVrYWFhbW1tTCZzxowZ2LtarRYn6AoAqKqq6ujoSEhIUCgU9fX15ubmxsbG2dnZdDqdQqEEBATgsigrKxscHHR2dmYwGOXl5Vwu19nZubCw0NbW1sPDo6Ghobm5OTAwkMfjFRQUDA0Nubq6NjY2RkdHNzc3t7S0JCQkjIyMJCYm+vn59fb2mpube3l5jZm+nZ3dmGVcsmTJ8ePHn3/+eWyU2tpaPz8/d3d3mUyWlpZmY2NjampaVlbm5+dnbW3d3NxcVlYWFxfH4XByc3O5XK6NjU1GRkZMTMzAwMC5c+dqamqWLVs2ffp0Gxub6OjoNWvWuLu7v//++wUFBb6+vklJSXQ6ffbs2XQ6vaqqqrW1NTo6Oj8/38bGxtXVta6urry83MLCwtfXl8vlarXaW7duMZnM6Ojo0dHR27dv29nZGRsb19bWRkdH0+l01Oze3t7y8nITExOFQiGTySIiIrKysiwtLb28vFANXgqFAqV6FQpFYGAgdmUyAQHBVIYYWU5p2Gx2R0fHd999FxYWdvDgQai/g4ITdAUAZGdn29nZNTc3JycnM5nMzs7O8vJyKJI3c+bMiooKXPopKSn5+fmxsbE7d+60sLBQKpVHjx4dGRmpqKhwcHDo6Oi4fv367NmzX375ZQCAt7f3Rx99NDo6am9vv2zZMnNzc6lUevbsWRMTk8bGxqSkpOjo6CtXrmDHiNj0J1/qn3/+mcfjffjhh+Xl5QiCXL9+va6uTqPRHDp0SKPR5OTkbNmyRSaTPf/881KpVCaTffbZZ1qt9uLFi4WFhVqtVqPRaLVatVqNChvJZLLq6uqCggIHB4fS0tLW1tahoaHVq1cDADQazcmTJ+fNm9fR0ZGZmSkUCrdt28bhcA4ePFhaWgoAePHFF1taWgoLCw8ePIggiFqtnjdv3q5du5qbm9vb27Fmm5ub37x5UyQS8fn8n3/+2cDAoLKyEgrzohq8AIDvv/8+JCSERqNBkUICAoKnAqKznOqYm5v7+/uTyeQxdcyxgq4AAG9vbyMjI4FA0NnZCQDg8XgAgICAgPfee+/VV1/FDUwBAMeOHeNwOPn5+Y6Ojv39/QsXLnR3dz916tTmzZuZTKa1tXVwcPDdu3dlMplWqzUwMDA3N/fw8BAIBEwmk8fjoRmZmprCAeXy5csPHz48Zvp9fX2TLPKiRYsuX76s0WiSk5MNDQ0///zz8vLynp6el156yc7O7vvvvz9w4MBLL720ZMmSlJSUiIgIBEE4HI6vry+CIPb29pGRkT4+PosXL0bHsvv27Tt58uT+/fv5fL6Pj49cLs/KysrPzwcA+Pr6Tps27bnnnnvllVfWrFljZmZmZGR07dq1uXPnRkRENDc3w0HhyMjI9evXGQzGokWLNBrNgQMH1q1b5+TkhDWbRCKtX7/+2rVrw8PDKpVKo9F4e3ubmpriNHi5XG5UVFRpaamDg8MkHUJAQPDEITrLp4DxNGABAKigKxymjBkSnuq1ffv2bdu24aLz+XxHR8fg4OBNmzZB2QEHB4fW1tampiYAwK+//gpnO1ksFpSHRdMfz6Suri7sW1Jc+hO+Mvzmm2+6u7v379+/Z8+ef/7znzBxMzOzoaGhixcvwqOneTxec3MzAKCpqcnU1BR9OdrT0wM/UKlUrVar1Wp//vlneGXr1q1ffvmln58fAODdd9+NiYn57rvvPD090XxDQkLgh7a2toULFx44cIDNZh86dIjL5XI4nA0bNmzYsOGjjz6CYWbMmDGeMoOrqyvUhXjuuecOHjwIf0C8/fbbNjY24eHhUIM3LCwsNTVVqVReu3ZNvzcICAimDkRnORW5dOkSnOHs7+/PyspKTU1taGiAoq+4kM7OzlDQFc4B1tTUNDQ0pKam5ubmdnZ2wrjFxcUnTpwQiUSvvPIKLvrWrVuvXLlSWFh448aNnp6etWvXksnkf/zjH0uXLs3MzNRoNMPDw/fu3RMIBHfu3MnLy2toaCguLr5582Zzc3NDQ0NSUlJxcTEc7xYWFlZVVV27du2LL77Iz8+vr68vLS3Fps9kMr/44ovjx4/jbDhz5kxpaelrr7322muvnTt3TiAQcLncTZs27d27NyUlJS8vDwCwePHilpYWDocDAPjggw+++OKL5cuXi0Qi+NaQzWavX7/+1q1be/fu1Wg0M2bMyMzMfPXVV01NTfv6+pKSkk6cOIFmt2TJksOHD//973/v7e394IMPTp8+fenSpe3bt8Mw3d3dn3766RtvvHH+/Pno6GgTE5P169evXr36vffeKy0tHRkZef3118vKyl5//fXxTiubN28ehUJZtGgRfAkKAIAavElJSVCD9/Dhw4WFhS4uLkFBQX+gjRAQEDxWCAWfpx6coOuYARAEUSqV462tlUgkbDZ7zFtqtRpBEBqNpv+YkW+++cbFxSUiImLMM7yw6VdUVPj4+Ogrz+/5YkuUmZnZ0dHxwgsvoFfgWdbov1qtFjfa072CAh2iR7dPqVSiQ+cxs9MD6iisAVgNXgRBJBIJsbSHgODpglgN+9SDE3QdMwCJRNKzC2W8nhIAgKasp6ccHh4uLi5ub2+Hh2XqSb++vl4gEOgxVTdfBEGWL1/OYrGOHTuGDYDrunR7Pj19IXSIntxxPaVudnpAU8YagNXgJZFIRE9JQPDUQYwsCaY6QqGQz+cT504TEBA8QYjOkoCAgICAYAKIBT4EBAQEBAQTQHSWfxEOHDjw+eef6w+Dqsg+EBkZGXDPxuR5IG3YKYtYLF6zZk16evrDRd+6datGo3m0JhEQEDwpiM7yL8Ly5cvH28wAaWpqgtswHpSoqKjJL2+BPJA27JTFyMgoOjpaoVA8XPT4+PgH9RsBAcGUhVgNOxW5du0an8+fPn36lStX/P393dzcysvLoeJoTEyMQqHIzMyk0WgxMTEAgM7OTqFQiBUp1WVgYODjjz+ePn26oaHhjBkzBgcHa2pqqFRqcHCwnlhyuTw/P9/S0hK9ggq9MpnMsrIyIyOjkJCQW7du8fl8Nzc3rFUoxcXFcrncxcWFz+fn5OSIxWJLS8ve3t7IyEjdRacoIpFIKBRKJJLIyEg9Fg4NDZWUlJiamkLBAWxe165ds7W1JZFIg4OD0dHRRUVFKpUqLCyssbExJycnOjq6sbHR29ubz+dnZ2crFAonJyeVSuXm5oYTsx0dHc3NzaXRaFD/qLOzs7q62szMzM/PD82ip6cnISEBAIBq8Jqbm3d0dGg0mvz8fKlU6u/vPzIy0tTUFB4ePjw8jKagp2gEBARTCmJkORURCASnT59mMBhisTgzM3NkZOTOnTtBQUH3798HALz22muRkZHGxsbHjh2rrKz88ccfIyIihoeH9STI4/GCgoKCgoICAwOHhoa2bdsWHh4uEAg+/fTT8aLIZLKNGzdGRESgMntYoVdzc/O8vDyo31ZdXW1paYm1Ck3k66+/plKp4eHh+/bt6+zsnD59+vvvv29lZRUYGLh06VI9s5Rff/21u7t7Y2PjL7/8Ml4YsVj85ptvxsTEFBcXV1dX4/ISCATvvvuuk5NTfX39tm3b/Pz8zp4929bW5uDgcPLkycHBwbi4uI0bN7a2tk6fPn3Lli0UCqW4uFhXzDY1NTU4OBgK8/b09Gzfvn3WrFnp6emNjY1oFlCMF6vBCyVhFQqFu7v7Z599ZmZmxmAwhEKhWCzGpqCnyggICKYURGc5FbGwsIAfoHQch8MpKChYuHChubl5fX19V1dXWVmZUqmUSqXffvvt3LlzAQDOzs760ySTyRQKhUQiXbp0ydXVFQBgb2+fnJw8XvjExER3d3cqlWphYQG3beCEZDdu3Hjp0iWtVuvt7T00NIS1Ck3k+PHjvr6+AIAZM2acO3fO0NDQxsbGzMyMy+UaGRndu3dvvNy3bNly9+5dMplcXl4+XpikpCRPT08ymbxmzRovLy9cXhYWFi4uLlAp19LSkkajCQSC7u5uKpXK4XC8vLxIJNLs2bPPnDnDZrMtLCzs7OxeeOEFXTHb0NBQVJj36tWrhoaGcLTd2tqKzaKzsxOrwUsmk01MTAAAPB4vLCyspKSktrZ23bp1uBT0VxkBAcHUgZiGnYqg85NDQ0MAgO7u7p07d5qYmKxbt+6LL75gsVhw+tTT03PXrl0dHR0AgAm3AME98sXFxVwuF31M63khZ2JiAvVg0cRRodcZM2YolUoDAwM2m33u3LklS5bIZDKsVdiCQC2erq4uLpeLTb+7u9vMzGy83FeuXHn+/PnKysr6+vqOjg5ra2vdMDweDx1Pi0Qi3bwmVLLt6OiAc62oSgCujLi4fD5/aGgoODg4ODhYJBINDw9j70IN3vb29k2bNl24cAHN5R//+MeOHTuee+45EomES2G84hMQEEw1iJHlVEQgEIyOjpaWltbX19++fbutrW3//v1CoXDhwoXOzs5Lliz59ddf8/Pzm5ubt2zZUlhYWFFRkZqaWlRUpGewEhIScvPmzaGhoSVLllAolNzc3OPHj+s5OSs+Pp7L5d67dy81NbW+vr6goAAn9AoA2LBhQ2lpKYvF4vF4WKtQbdgDBw4cPXo0Pz+/t7cXKtP29/cXFhZev359wYIFLi4uY2YNheJqa2vb2tq6urrGO64kLi6OSqWmpaWlpqYODg7i8sIq5ebk5EBV21u3bsG4aWlp9+7dGxoaWrVqVWZmZkNDQ2ZmJvhvsVy1Wo0T5l20aNHIyEhGRkZqaqpEIsGJ8ebk5KAavEKhsKmp6c6dOwAABwcHkUgE31DiUphccyAgIHjyEKIEUxepVEqj0VQqFZwFFYvF6ABIpVIhCIIu6pFKpSwWSyKRQKnx8cBKnkqlUgMDgwnXrEqlUkNDw+HhYQ6HA8emOCFZrAIqzioUbJQFCxZcu3ZNpVLpWd2DzVq/Ji0abMy8xmPZsmVnzpxRq9XjqQLpTwSXI4oeDV6cUO14KRAQEExZiJHl1MXQ0JBOp6NPVaygKI1Gw/ZJhoaGZDJZf08J/lvy1NDQcDK7O2DuJiYm6LMe14tg+wCcVSholMzMzJ6ensrKygl7SjTrCY3E9ToT9pT19fX9/f2JiYl6uiv9iYwXkUQikcnkMTV4cUK1RE9JQPDUQYwsCQgICAgIJoAYWRIQEBAQEEwA0VkSEBAQEBBMANFZPh1s3bp1wglzsVj86quvQi3TyYTXT0NDQ3R0NG6vxR8hMzMzKSlJTwCJRHLgwIFnn332ypUrFy9e/OCDD27cuNHT03Po0KFHZcMPP/xw7NixI0eOtLe3jxng4eRzCQgI/vIQneXTQXx8/IRLXYyMjCIjI+HWycmE14+rq6uNjc0jfKXt4OAAxRDGg81mL1y4sK+v79lnn122bNnOnTslEomxsfHMmTMflQ09PT0ikSg6OtrGxmbMAKdOnXpUeREQEPyVIEQJpiKXL1+2tbUdHR0FAISFhbW1tXV0dGi1WqFQmJeXFxER0djY6OfnBzf1l5aWDg4Oenh4WFlZweho+MLCwuHhYScnp4aGhtjYWLg58u7du1qtNjw8HP6LA6qb0un06dOnAwAGBgbKy8u9vLxg4kVFRQqFws3NDUGQ8vJyU1NTiUSiUCjCwsJycnLs7OwaGhrs7Ow0Gs3g4OCsWbOwKVdWVlpYWEgkkmvXroWFhd2/f5/D4Yynj5qXlxcSEhIaGlpdXT04OAgvlpSUSKVSNputVqu7uroEAoG3t/dvv/0WFBTE5XJv3rwZFRXV0tISERHR0dFRW1trYWHh4+ODTdbHx2fGjBnGxsZjZlpTU3Po0CGYrL29fX9/f11dHZ1Ox/XWarU6Ly/PwMBAJBI5Ozubm5tnZWUxGIyoqKiCggI9Dof6tLa2tmASiksEBARTCmJkORUxNjbeuXNnSEjI8PDw9u3brayszp8/r1KpHBwcfvrpJ7FYHBsb+/rrr/f19SUlJRUVFcXFxe3YsQONjob39vb+4IMPEATh8/l79uwBAHz00UfW1tYhISGfffaZbr7JyckMBmPmzJmVlZXwSkFBQUxMzFtvvQUA2LlzJ4vFCg8P//e//00ika5duyYWizkczsWLF9lsdklJibW1tZmZ2fvvvw+V37Ozs7GJ83i8X375hc1mt7a2Qj3bL7/8Unfac3Bw8NKlS//+978BAHZ2dl5eXocPHwYAHD16dHh4GGo1ODk5mZmZnTt3jsVidXV1FRQUmJiYVFVV/fbbb93d3UKh8Msvv4yPj09MTITyRigKhUKhUHz33XcFBQW6xffw8LCzs5s7d669vf3g4OD27dvDw8PZbPYXX3yBDbZhwwY/P7/Lly9bW1tzudzXX389KiqKSqWeP39ev8N9fX03bdpEoVBKS0sn1Q4ICAimDERnORXh8Xhubm5kMnnu3LmnTp2iUChwMESlUtlstpeXF4VCiYyMvHjx4k8//WRsbJyfn29tbS0Wi2F0NLyBgQGfz3d1deXz+fAt3dWrV4eGhiorK8fclBkQELBp06bXXnsNnrABAAgLC6NSqbBLO3PmjJeXFwDA3d390qVLb7zxxo0bN2QymVgsRhAkICDAyMjIwsLC1dWVzWbz+fzOzk5coeAHMzMzf39/MpnMZrNHRkZwNpiami5duvT111+H/zKZTLhzUSqVcrlcGo2mVCpNTU1x8rkAAAsLCycnp+XLl9+6dYvNZkOfQOl5lCVLljg7O8fFxe3atUu3+CQSiUQiwXO1Ll265O7uDgDw9PQ8e/YsNpharTYwMGAymVqttrOzs7e3t7S0VKvVDg8P63e4kZGRubm5g4PDsmXLjh07duDAAawqHgEBwVSGmIad0ojF4jEnSwEAnZ2dISEhAoHA0dExMDDQ399/zPeLOFlUHo83Y8YMCoXi4eGhGxiqm7a2tn700UenT59Go8O4VCpVo9FQKBQ4/ejl5VVVVZWQkJCQkHDgwIFVq1aNmeOYTBhm8eLFuCsBAQFdXV0GBgZr167FpjA8PIxqzELdBoFAIJFIdPVXm5qaLl68+P7778tksvFOmoQveqGCbm1tLQAAQRAajYYNs2TJkuTk5Llz53p4eAwMDKCiuHDKV7/DUWWJ+Ph4tVo9poIBAQHBFIQYWU5Rampqampqvv/++0OHDgmFwubm5tTUVHgrLS0tPz9fq9UuW7Zs69atly5dKiwsTEpKUqlUOTk5t2/frq+vh+Hz8vIaGxvLysqSkpIaGxvb2tq+/PLLw4cPFxcXw5nAuXPn1tXVoZmWlJT8/PPPYrH4hRdegJkmJibeu3evubm5qKho3759x44dy8vLk8lky5cvBwDEx8czGIzly5cXFxebmpoCAJKSkqqrq6HUamZmplwuRxNPSkqqqqpqbW3NycmBgquNjY0pKSloAIlEcvny5d7e3t9++w3tRGERamtryWTyqVOnTp06tX//fo1GY2NjI5VKS0pKmpqakpKS4GRsYmKiSCRatGjR4OBgVlbW7du3sdO8zs7Otra2jY2NN27c+Pjjj3WLDwCIioo6f/48giBLly4dHR3Ny8v74Ycf9u7diw1z//79q1evHjly5OLFizwe75lnnrl06VJeXl5ra6t+h2dkZMDTNAEA9vb2zs7O6GtmAgKCqQ5CMPUoLS396KOPZDKZVqvF3Vq0aJFarZZKpdiLcCJ0kmi1WjT6yMiIUCjE3lKr1TKZTE9ciUSC/qvRaHAf/jz++c9/wlzu3r37ww8/wItweRHOG+gt3YsajaampkYul8N/ccWHKBQKbCK4Kujq6tq/fz+CIFqt9vPPP6+vr0cQRKlUjo6Ojmc51uEEBARPKcQ07FQkJSWloaFhZGQEN01XX18/MDCQmJi4cOFC7PUJBVGxkEgkAwMD+Lm0tDQyMhJ7i0Kh6JkbJJFIWF1TVPIUp336Z+Dk5ARX6jY0NMTHx8OLekRWx7xFJpOx88+44kNwCrq4u6ampiQSCY4O2Wy2vb09AGBMRVwUrMMJCAieUghtWIKnCWSiQ0j+qmgQ0C9Ty9V/zW8rjUwyN6DQKZOo2YEBMDgI/pJPLRIJ8PlgouMQCJ4UxDtLgqeJ/82eEgCgRRD1IxNTmnJoEEQzme4PQcDo6F+zpwS/l45gqkJ0lgQEBAQEBBNAdJZPB/o1S+vq6nDv3jIzM2/duoULNjIysmrVqry8vD9uT0NDA8yxp6fnm2++mYyRujycEOvow/76/vTTT7///vsHvTVhdoODg7t374a6DQQEBH9ViM7y6QDuehwPd3d33CYEBwcHXUE1DocTHh7+SLTCXV1dYY7GxsaogoF+I3V50PAAgMrKypKSkgeNBVm8eDGq2zDJW5PJLikpydfXd9++fQ9nFQEBwVMBsRp2KqJWq6urq7u7u2fPno0gyFdffVVXV+fg4BAXFyeTybKzsw0MDMLDw3GxBgYGiouLfX19+Xx+RUUF7MxUKlVeXh6bze7v7/f19QUAKBSKzMxMLpfr7e2NjY4gSFpamkAgMDQ0tLOz++2336ytrd3d3a9fvx4ZGWltbd3R0dHU1GRjY+Pk5ITGqqqqGh4e1mq1qJFWVlbt7e1OTk5sNrusrMzPzw8V2YGitVKpNCIiYs+ePTB8QEDAzZs3o6OjW1pafH19b9y4ERkZqVKpMjMzX375ZTKZXFtbOzQ0ZGVlxWaz//Wvf4WGhjKZTCMjo+zs7JdffrmwsLC/v3/+/PlQc0cikXh7exsaGkJF1qioKBqN1tbW1traqqsWBE3C3hoaGhIKhWq1Ojg4eGBgAM1u+vTpYxZfIpHk5uba2dlZW1uXlZXBUoSHh6tUqvz8fARBwsPDpVLp9evXw8PDm5ubraysTE1N0Wp6BG2FgIDgsUCMLKci58+fBwCYmppu27aNTCbHxMR4eHjExMQgCPL3v/89JiZGLpffuHEDF6uwsDAqKmrTpk0AABMTk8uXLwMANmzYEBAQcPr0aVdXVygfk56eHhER8emnn+Kir1y50tbW1srK6m9/+xsAgMvlQinXpqYmKBW7f//+qKiorVu3YnsdLy+vb775Bmuki4vLnj17jI2NDQwM8vLyUJU7AMDJkydDQkKUSqVCoUDDm5iYlJeXJyUltbW1MZlMmJ2Njc2pU6dgl3Pt2rXQ0NBDhw7xeLyAgICQkBBfX19bW9vTp09D/dv9+/cDAAwMDL788ksymdza2vrhhx/a29vPmDFj+/btZWVlZ86cCQ8P7+/vxxVZ99bu3bt9fHyysrLS0tKw2Y1XfDab7evr6+fnN23aNLQUKpXqzTffnDFjhr+//z/+8Q8jIyOhUHjixImoqKh//etfRUVFMTExsJoICAieFoiR5VRkxYoVqampTCazuroaAEChUMhkMplMrqur6+vrKy4uplKpOOVVAEBoaCiDwYCiOWgXBYVMGQwGutsvJCSERCLRaDSVSnXy5EmxWGxnZxcZGdnc3Ozi4gIAgOpxqPgqKib3+uuvQ6X19vZ2KBILAGCxWHBfJmokmUx+++23f/nll+Dg4Lfeegu7BZNGo8XExKxcudLY2BgNDwAwNzd3dnaOiYlBs6NSqSYmJgCAn376CerE7t69GwBAJpMpFAq0H9W/hQaYm5s7OTnBE0Ju3Ljx7LPP9vX1sdnsI0eOvPHGGwAAJyen3t5erMd0b23evPnWrVs0Gq26ujomJgbNbrziQ5NwpWhsbBweHoY6hc3NzT09PWZmZpaWliQSSaVShYSE0Gg0rLbRQ6BWq6orygf7+/5IIk8QE67ptOn+OB3Bh0ahVNY0NfUMDEz9jXBkMtnKwsLDyYlGJZ69TxlEhU1F3n777U2bNllZWSEI0tHRAZ/F1dXVJiYmqBIpVvUUgtVxRVmyZElSUtKKFSvg9nnw3+KlUKHUwMDAwMAAfXyrVCrw3+KrAICmpqY9e/YcOXIkJSVFLBbrTmmiRrq4uMyZM2fRokUeHh64w7BiYmLeeeedzz//HJ5phYYHGNFUXL48Hg/mJZfLaTQazKW4uDggIACG1Gg0UqkURkGzMzU1nTlzJpQg2LlzZ2dn5/Tp03WfpCYmJrhbq1ev/uWXXwAALS0tqOeLi4uNjY1xxR9TiR6WgsPhoP6Ry+VQ2QAt15jV9KDIZbKbF88FBfoxGWNLB09l1GrVjdQUB2cXE67pH0+ttbPz+0uXjAUCGzs70p8vjvEH0Wo0RUVFV9PSXl+2jI+ZdCGY+hCd5VSETCa3tLTU1tYaGRm1trZOmzbtwIED3t7eCxYsmDNnzpUrVywsLExMTNC+oampqaWlJTk52cLCQigUVlRUpKWllZeXi0Si5ubmmpoarVb7zDPPREdH5+bmNjY2Ojk5wfCLFi1CM33jjTeuXLliY2MDT+qwt7cXi8XFxcX3799va2vbsGGDSqUqLS1lMpm3bt3icDgtLS1JSUkmJiYNDQ0NDQ3u7u7QSDjqioiI4HK5uHIdPnx4w4YNPj4+cGIThreysiosLJTJZO7u7mw2Oygo6Pr164aGhnK5/MqVK5s3b96xY4exsXFbW9vixYtDQ0Nv3LgBFXxiY2PT09OVSmV/f39JSUlKSkppaWlzc7Ojo+P27dsPHz4cHh4ul8u3bNly4MABW1vbzMzMvLy81atXQxlbAADu1t/+9jcymVxVVTU0NFRTUxMXF4dmx2azscWHh30CAKRSaU5OTl1dnbOzM1oKCwsL+BtldHR0zZo1Wq0W6/bExESBQACrCXfc5uRBEITJZD63bBn6I+MpQqlUllRUPZJR4JBI9J9ff138yivBwcHw0JgxgyEIotVqx1PPn5A/GB2XlEajuX3r1re//PL+6tUG4xyTQDAFIRR8pigymczAwAAVrIEKpfDrqlQqKRQKdRLTON3d3b/88stbb72l1Wo//PDDzZs3619UolQqaTTakiVLrl69Cq9IpVIKhYIgCJzqlMvlLBZrPBkdaKRarWYwGLdu3Zo9ezYuAIIgEokEfb5jC4VFrVZrtdrR0VEGgwFn6iQSCSrpp1Qq0VEa9JJIJOJwODiTEASRy+WozpxUKmUwGAqFQlcaEHcL53lsdvqLr+tMMpn8qGYaVVqkV6pRaf/v2zoiGj52aM/2T7c+pZ3lPz/Ztmr9O1zT/xtakUnA3IDKok7kVQQB3d0As275Vk6OUC5fu24d2orEYvF//vOf1atX83g8qVTKZDKLiopsbW2rqqrgsaMkEkmhUMATzsVi8a+//rp69WoAgEQiYTKZFApFLBbD30ZqtZpCoUBF4rKyMh8fH3iuHJQCNjAwoFKpubm5JBIpJCREpVIpFAoWiwXnDEgkkkwmY7PZGo2GTCar1ery8nIbGxu47E6tVh/evz/Yzi4Ud/i5qSn4/a0HwVSDGFlOUeBTHn0oY9/8YcVL9WNqaoogSE5ODoIgAoEAXZU6HgwGo6ampre3Ny0tDb5BxImjwi5zvK4CGnnu3DkajYZbagshkUjYh/t4irLwdwBWcBXbw2GLD72Em+xF88IqssKCjCmii7uF8zw2O/3FxzH5aiJ4OBAE6R4YcPL1xf7eSk9PVygUvb295eXlQqHQwcHhypUrK1euHBoaSk9Pp9PpLBarrKyMw+G8+OKLnZ2dNBqNRCI1NDTcvn3bwsLC1NQULpQrKSnhcrmDg4MkEikyMlIkEp0+fVomk82dO7egoKCnp2fRokVeXl7379/39vbWarUXL17s6uoKDw+XyWRDQ0PwrNMZM2aIRCKBQNDd3X3jxo1XX30VdpZUKtXJza2jpeWJ+Y7gwSE6y78ydDr97bffhp91t5qMiaenZ25u7h/J9OWXX/4j0QkIJo9Wq8WO3QcGBrKysrhcbltbm1AoXLhwoVKptLS0BAAwmcySkhI+n69QKGQymVQqValUra2tNjY2cNOUUqlsa2szNDSUSqVNTU1kMlkgEGi1WoVC0dTU1N/fPzw8bGdnl5+fz+PxyGQyPImip6dn9uzZcrmcwWDAk8CrqqoYDAaVSg0NDS0oKKDT6TQaTSKRODg4YEX8qVSqTKN5Ai4jeFim+vtwAgKCCZlwbS2c8cb+i72LIMjkpSo0vz/i5XK5SCSCy8HQdPQsXNJ/95FQU1Nja2traGioUCjUanVfX59MJjMxMbl//76Hh4darTYzM2MymY6OjnFxcTQabXBwEK5MHh0ddXJy8vf3r6iooFKpBgYGRkZGZDLZyMhIq9WKxWIWi2VraysSieCbeKlUamhoiCDIwMAA3Arc0dHB5XJNTEyqq6vDwsLodHpvby+Xy1Wr1V1dXWZmZhqNhjjr+6mGGFkSEDzdSCSSXbt2bdmyhcPhwDdkJBIJvm8jk8kqlYpKpZaVlQkEAoFAoFKpSCRSQUGBn58f3FBEoVBEItGVK1defvllGo2mVqvB7/thtFotTIpGo2m1Wnjlzp07s2bNIpPJR44c0Wg0lpaWzz//PHyP297eLpFIpk2bNjo6SqfTtVqtRqOBceGi5dra2qCgIN0iqNXqxoZmLzfnP7iIxtDQ8JVXXpFIJDKZjMPh3L9/PyEhobOz08TExNHRceHChS4uLn19fXfu3IFLtBwdHQsLC9VqdUxMTF5enre39+DgoFQqnTZtmkajYTKZcOcxmUxmMBgMBmNwcNDc3PzGjRttbW1cLlej0djb21+8eDEsLMzExMTe3t7Y2Dg2NtbX11csFg8PD8fHx2dlZalUKi8vL5lMhi6NJngaITrLqciePXvUavUHH3yAXjl27FhUVBTcZYGCXXuih61bt37++ef6H0N79+6Vy+Vbt27FXc/MzLx8+TKCINu2bYMbHx8zYrH41KlT06dPv379+o4dO55ICjjG9GdaWtrBgwcvXbqECzzJOvojlJWVsViskpISMpl8+/ZtOzs7DodTW1vr7OxsZWVVUFDg5ORUXFzs6enJ5XJra2s9PDx++eWX9evXFxQUIAjy2muvaTSa/v5+BEHggpehoSEbGxs7O7vm5mY6nd7c3BwcHNza2hoeHn779u20tDRbW1tPT0+FQrF69eoffvihsbExOTnZwMBAoVAMDg4ODQ3l5eV5enrKZLLa2tpnn302Ly9PLBabm5tnZGR4enoyMUtAtVrtQG9PQcad9uaGt958cwJfIQgQiYBUSqdSDcdaR+rv7w9+f4ft6uoKL86fPx9718jICNVgCgoKQjvvadOmAQCw8kwQBwcH9LOTk1NzczOFQlm4cCGHwyGTya+99hq8BReB//LLL+Hh4UwmEz1ydenSpTgzCJ5SiM5yKrJ8+fL//Oc/2CtY0TiUU6dOod9VPcTHx0/4g33ZsmUHDx7UvR4ZGVlcXAwAeCI9JQDg0qVLnp6eYWFh2Om+x5wCjjH9GRMTc+jQId3Ak6yjh0aj0ZSWlgIAysrKXFxcQkNDGxsbFQrFsmXLzp0719XVtWrVquPHj0+bNs3Ly6u9vV2lUslksrCwMK1WW1FRYW9v397ejq6RhhskRkZGmEzm+fPnAwMDOzs758+fn52d3dvb6+/vT6FQ3Nzc3N3dYXgajUan0+GqY6FQGBERYWdnR6FQGAxGZWWltbU13Mna0NAAAHBxcQkKCjI0NNRg3tWpVaMl+VmVxQUkEik/P3+CNd4IAqRSoFBYmplNd3GhPInz2hwdHdetWzfeIq/nnnvuf/YUub88RGc5damqquro6EhISFAoFPX19ebm5sbGxtnZ2XQ6nUKhsFisgwcPCgQCLy8vR0fHwcHBmpoaKpUaHBzc2Nh47969hISE5uZmPp/f0dGh0WgoFEpDQ0Nvby+fz3dxcRGJREKhUCKR4I4r0YNGo6mqqurs7Jw9ezaFQsnJyRGLxZaWlr29vZGRkQwGA5fmtWvXbG1tSSRST09PQkICAKCzs7O6utrMzMzPzw/qxCoUisDAQCMjo7S0NLVaHRYWhl3CKhKJcnNzBwYGJBLJ0NCQSqUqKChQKBROTk4qlWp4eHhoaMjV1bWxsTE6Orq5ubmlpSUhIQG7yFY3hY6OjoyMjAULFhQXF7u7u9vZ2QEAGhoampubAwMDeTxeQUEBTLauri4qKgrOmxUUFGi1WicnJ6VSifUnGmtMjyUlJR07dkwgEERGRnI4nAnDPwRisVgkEk2fPr2oqEgikZiYmMDthlQqlUwmM5nMuro6FotFpVK7u7ubmpoYDAaCICqVSqvVCgSC6OhoOzs7pVIpFourqqrIZDIUHbSyshoZGbGxsRkeHm5ubmaxWBQKpa6uDr50hK/uVCpVeXk5fCenVCrhroyhoaH+/n7Y53E4nIGBgdbWVh6P5+fnZ2Vl1dTUpFKpsBVEZzCj5yy0sXesLS6YNWsWdgn0GCAI6OkBEgmZZ7wKjgAA+IZJREFURKKSyZPc9tbf329kZKRnzDo6OgrdBQCAztFoNAqFQnejsEajqa+vV6vVJiYm1tbW2IIoFIqOjg61Wu3m5qZQKJRKJdxbMt6Sb4KnDqIipyjZ2dlwHiw5OZnJZHZ2dpaXlycnJ1MolJkzZ1ZUVHh4eNjb28+dO9fR0XFoaGjbtm3h4eECgeDTTz91cHA4depUU1NTeXm5tbX1hQsXFApFYWHh2bNnw8PDjxw5otVqv/76a3d398bGRihYMxkuXLigVCrd3Nw2btwIAJg+ffr7779vZWUVGBi4dOlSjUaDS1MgELz77rtw5io5Obmnp2f79u2zZs1KT09vbGz8/vvvofBbb2/v1q1bLSwsIiIiPvnkE2yOxsbG06ZN8/Pzmzdv3tWrV2Uy2fTp07ds2UKhUIqLi729vT/66KPR0VF7e/tly5aZm5tLpdKzZ8/qT8HW1vbChQsFBQXx8fHvvPMOAKCjo+P69euzZ8+G63jRZJ2cnD7//HMAwKFDh0QiUVBQ0K5du1B/4mKNSUJCAo/Hmzt3LofDmUz4h4DBYCxcuHD+/PmLFy8OCAiYNm1abGxsbGysQCBYvHjxokWLxGLxvHnzQkJC+Hx+aGios7NzYGBgSEiIra1tXFwc7PXZbHZUVFR3dzeTyQwMDAwICLCysgoODvbw8IiLiyOTybGxsfPmzaNQKOHh4QsWLIAntMyePVsikSxfvjwwMNDBwSEqKsrHx8fZ2XnGjBlWVlazZs2ys7NzcHBYsGBBREQEgiDm5uZ+fn66a3wYTJa3/4yVr642NDSkTwiNRqdSqZN+tSmXy/fv3y8UClUq1cjIyOjoqFKpHBkZUavVo6OjIpFIrVYnJibCpUBSqXRgYODGjRsjIyMDAwNSqVQqlarVangLLlAqLCy8ePFib2+vWCxWKBRw+Y9Sqezs7Lx9+/avv/46Ojo6MjLS2dl569atoaGhR1jXBE8WYmQ5RfH29jYyMhIIBFADFo5FAgICli5d6uzs/N5778EBBJwPvHTpEnxDY29vn5yc/PnnnzOZTC8vL/g+Bs6gHj169JVXXgEAfP311wCALVu23L17l0wml5eXr1ixYjImLVu27M6dOwqFoqWlBQBgaGhoY2MDpVyNjIzu3buHS9PCwsLFxQUtxf379w0NDfPz8y0tLVtbW7lcblRU1PPPP//3v//90qVLixYtKisr053sheqsFAoFvohis9kWFhZ2dnZwRGhubu7h4SESiZhMJo/HEwgEOTk5+lOgUChcLjcwMBAufgEAWFtbBwcH3717VyaTabVaAwMDNFno/B9//LG0tJREIkF9WmgkLtaYAwi41gbWES788ePHxWIxn89/4YUXJuP88WCxWFAOCRUVsrGxgR8CAgIAAHBwDwCwt7fHzRDCt3HwIvqOzc3NjUQi1dTU2NjY8Pl8S0tLLy8vEolkY2Mzffp0GBgO6UJCQtCk5s+fD29ZW1uTSCQfHx/4L4wChRtJJBKfzyeRSGOuvGUbGT3yCUwEQe7cuWNhYdHd3V1aWlpVVeXs7NzX1ycSiSIiItrb27u6uoKDg2/cuMFise7fv9/b2+vh4XH37l2lUsnhcC5evCiVSmNiYjIyMphM5vr1642NjR0dHXk8HoIgP/zwA4PB8PX1zc/PZzAYbm5uhoaGLS0tx44dc3BwGBwcTE5O9vHxeYSzCARPFmJkOUXBKriiF1taWjIyMrZv375t2zbw+6b+4uJiLpc7MDAAwygUCvgBtwEfFVmF6xJXrlwJz/2A8rO6Bmi1WnigsUKhgLNqb7/9to2NTXh4uEajwUXp7u42MzPTTRNbCj6fb25uHhwcvGLFisDAwLCwsNTUVKVSee3aNR6PFxgYCIXXJ/QMVtYAJ7gKJq25ihVo/fXXX8vKyuLi4lgsVltbm25qHA4H7s3A6vHqxhoT2AEUFxfjwsfHxy9cuHDyc+APDdoD6XZFY+rDwSuenp4LFiyADUw3hfFioR/Gi/KY3+eJRKKMjIz+/v7BwUG5XD5//ny5XK5SqWJjY1tbW9lsdmRkpFgsDgoK4vP5IpFIIpFwudyYmJiBgYGmpqZ58+bBLZsRERGwgwQASCQSAwOD+vr62bNnk8nk0tLS+fPnQzUPOFPt4eExOjpqaWkZEBCA/nAh+AtAdJZTkZs3b9bU1DQ0NKSmpubm5nZ2dmZlZaWmphYXF584cUIkEsExYmxs7JkzZ9Rq9ZIlSygUSm5u7vHjx3fu3FlfX9/a2nrmzBkAgFAobGpqunPnzpYtW1JSUoqKiq5duwZfpdTW1ra1tXV1dfX19SUmJlZXV2O7QDKZbGBg0NfXV1ZW9uKLL8Irra2tSUlJfD6/rq4OANDf319YWHj9+vUFCxY4OTnh0sSVIiYmZmRkJCMjIzU1VSKRHD58uLCwEC762LVr18GDB4uLi4uKirB+GB4ezs/PT05ObmxsbGxsvHnzZmZmZkNDQ2ZmJgAgLy+voaGhuLj45s2bzc3NDQ0NSUlJxcXF6O+GMVMQCoXwQ3FxcXNzc25urkajGR4evnfvnkAguHPnDjbZlpYWoVC4b9++ffv2FRcX5+bmov7ExcrPz6+vr4drbbDw+fzU1FQjIyNceHt7e2dnZ2tr6z+pCf2PQKfRUBl9Xaqqqry8vGbOnCmRSEQiEVQwgNsuXV1de3p6KioqzM3NJRJJS0sLVOqHSnjDw8O2trbFxcVwxRPcP2NgYAArkcvlUiiU/Px8NpttZGSUn59Pp9OlUqlWq12+fPn9+/d7enpMTU3lcrmen25SqZRJaDw9VRDasE8TUDREqVSiu5uxOxOkUqmBgYH+H+9isRgdmaEbq/VEaWlpwS6dx+mmLliw4Nq1ayqVCmuD/jRhAKCjE4u99fhRq9UIgtBotMlY/kCxAKaOJhl+TAhtWADG0IYtKC+/W1f39pYtzLF2kgwODsLVcBKJRKVSQVlXAIBGozExMWlrayOTyZaWlj09PWw2u6uri8PhmJiYSKVSEolkbGzc3NxsZmZGpVLhil8+nw9VCNhstlwu7+jogNp1nZ2d1tbWMpmMTqfDM/IQBDE2Nu7s7HR0dBxzfl4ikezeseP5yEhPZ+f/ukFow05hiHeWTxNw3gyrA4Jd4zeZngb7bIXh9T+1sT0l+G/d1MzMzJ6ensrKSvjObJJpokbidGInaf+fBLpjYTKWP1AsgKmjSYafPPDH0yNJ6nHyCG2e7uGRV17+/ZEjK1etMjY2xjkWXc6KdqXYJofuWoaNHD23FZUahjsv0YjQbPgOksFgoO/XYS7ov2gWcMsmrrAIgvT39//w/feOJibujo4PW26CJwAxsiQgeArAjSylEvF3+7+mIhoK9RGcG/WY0Wq18lH1+i0fcjj/1y099MgSACCRyZKysrLLyphs9tTfp6HRaEbl8lkzZ8YGB7N0p2GJkeUUhugsCQieAnCdJYIgI6Lh0dHJCrpONWg0urGJCYn0f33bH+ksIcrR0WGxGPmTtWf/OGQy2YTDoY93cBvRWU5hiGlYAoKnDxKJZGyC3zL/vwyDTucTmzQI/kym+qzF/ybbt2/fv38/+q9YLF6zZs2dO3f+eMrHjh1rbGwEAKB73RoaGmJiYkZHR/944vpJS0uDOpk5OTnXr1+fMLz+czAkEsnatWtTUlJ0b+3du/eLL754aDsnaQCO2traLVu2XLhwYf369Z9++ukvv/yyZs2a/v7+NWvWpKen/3FjHhtarTYvM/1u8s27yTez7t5WTHSeCQHB/whEZzkVWbp0KVb7w8jIKDo6Gt1A+UdANWZPnToFr7i6utrb2z+G2fiYmBh0d7ybm9uE4VELx4TNZsfGxo55NNWyZcsGBwcf2s5JGoCjpaVl27Zty5cvNzAwcHd3X7Fixeuvvy6Xyx9VxT02EASpLC8tvpdffC+/orR49EF+MRAQ/IUhpmGnKCqVqqSkRKlUYnVSgF55VWyw3NxcsVhsY2PT0dFhaWlJo9FaW1tnzJgBNWY7OzuxurIAgKGhoaqqKldXV6iMg2NoaKikpMTU1NTPzw8AUFxcLJfLXVxc+Hw+KgA7ODgYHR1dVFSkUqnCwsIaGxtzcnKio6MbGxu9vb1RqW4AQHl5OVx5qNFo0tPTDQ0N4XFRWOnUmpoarIVlZWWDg4POzs7QvMrKSolEIhaLccILOLBatbW1te3t7XZ2dhYWFvfu3fPw8DA0NETVdCUSyfXr18PCwigUSlpa2qJFi7Kzs1FZV6iuR6fTeTwe7uAXFDc3Nw6Hg73i5+cHZeFGR0dzc3NpNNqMGTNwNajH+CfJ74tsiQUNBAQoxMhyilJXV+fr62tsbPzee++hF/XIq+KiOzo67t6929XV9dSpUywWy9TUtKamhsvlQo1ZrK4sDJ+bmxsbGwu1UnGIxeI333wzJiamuLi4urr666+/plKp4eHh+/bt6+zsRAVg6+vrt23b5ufnd/bs2ba2NgcHh5MnTw4ODsbFxW3cuLG1tRVN0MLC4ty5cwCAtWvX+vj4mJqanjhxAiedirUwJSUlPz8/NjZ2586dAICffvqptbU1JCQEqu7pAatV6+Lism/fPhaLZWBgkJqaymQysWq6bDa7vb29pKTE0tIyKSmpt7cXK+t64MCB4ODg6dOnwwNYxkT3aCcWi2VhYQEASE1NDQ4OPnjw4MjICK4G9dtPQEAwdSA6yymKi4sLhULx9PS8fv06+gP/6tWruvKqpaWluN2QAAB40u/IyIivr+/Nmzdra2vfeOMN8PsuMayuLCQ8PBzVSsWRlJTk6elJJpPXrFnj5eV1/PhxuLFyxowZ586dwwrAwiGsQCDo7u6mUqkcDgfKis6ePRvKCUHgsLKvr6+1tdXc3NzV1XXdunU46VSshceOHeNwOPn5+Y6Ojn19fd988w08GhA9sHA8sFq1VCr13XffPXv2bGtr64YNG3777Tesmi4AAM5Ok8lkU1NT8N+yruHh4ZGRkZ999llcXNwDVOHvhIaGkslkKEmIq8GHSI2AgOCJQHSWUx0ul4tutdYjr6ob8aWXXtqxY8fSpUuLiooUCgXuiCJUVxb+i9VKxcHj8YaHh+FnkUjEYDDUajUAoKurC27HnlCgtaOjQ/cwTlROBSarK7WKWsjn8x0dHYODgzdt2mRoaMhkMuEryQknCXFatbGxsWlpac3Nzba2trpquqjx6NtiVNaVwWDk5+cvWLAADm0fdHJSj0DuA6XzGNCo1aNKJVpABEFUo6OP6hxQAoKnGqKznKJotdrq6uqff/5527ZtEokkKyvrzp07c+fOHU9eVTeFhISE+/fvOzo6Tps2Db5Og+mkpqYCjK6srlYqLp24uDgqlZqWlpaamjo4OHjgwIGjR4/m5+f39va+8sorWAHYnJwcqKp669YtGDctLe3evXtDQ0OrVq1C1VOhDq1EInnttddOnz6dn59fV1eHk07FWrh169YrV64UFhbeuHGDyWTu27fv1KlTVVVVBQUFN27c0F2zCtOHYmZYrVoAwDPPPEOj0QAAODVdAMDMmTMrKytzcnJEItGlS5cARtb17NmzqampHA5n/vz5CoUiOjp6vFq7fv16VVVVRkZGWloa1uENDQ01NTVJSUmLFi3C1uBDNY0/kfra6lNHj4yM/J9evEIu/+X08Xu5WQgy1fcvEhD82RCiBFMXOBzUlUbTI6+KA2qQjneAFFZXdkJwyqgSiUT/4hoAwLJly2Bvp0fHTqVSIQgCj/zVlU7FWojLUSaTkclkeKLWhGYjCDI6OspgMG7fvj1r1izsXayarkajgaciQzlQ1ACox0uj0SiTPkZRPw+hgosTJfiTUCoUqcmJNZVlcG6ARCLZ2NrPXbzkz97T+cdFCf4iEKIEUxhiNezUZUxtaKBXXhUH7AbG0wCbfE8JdJRRJ+wp6+vr+/v7ExMTn332WT3BaBgpE13pVKyFuBz195EoqFbtxYsXAQA+Pj66d1HgsZfYK9AAEok0Xl08HE9QBVc/DCYzMjZ+eGigo60VAMDhcKJmJRDqBwQEgBhZEhA8FTyekSWk/X5L4m+XlQp5bMI8L1+/x3AIJTGy/D+IkeUUhhhZEhAQ/BfWtnbhMXHDQ4PuXt6P+bhmAoIpC9FZEhAQ/BckMtljmg98d/ukbSEgmCoQq2GfDrZu3TrhhLlYLH711VehEulkwj80D53RA6mtouzevRsuWP2DPFzuWEZGRlatWpWXl4e7PqGFfzzrxwyZTCZ6SgICLMT34ekgPj5+wgkxIyOjyMhIuGtwMuEfmofO6NSpU6+99tqDZrdkyZLvv//+QWPpcvLkybVr1/6RFDgcTnh4uG7PN6GFD1dw/YhHRHK57NGm+digUqjGJlzKo+uPlUrlkFg89VdgkEkkrrHxuEd0EUxhiM5yKnL58mU7OzuFQkEmk0NDQ6EGrFarFQqF+fn5YWFhQqHQz88PyvGUlpYODg56eHhYWVnB6Gj4wsLC4eFhJyenxsbG2NhYBoMhl8uzsrKYTGZkZCQ2x87OTqFQyOfzXV1dGxsbcblkZ2fLZDJzc/P+/v6YmBh0zIFmRCaTsWaUl5crFAqlUonmotVqd+3aVVlZaWdnN3369PLyclNTU4lEolAoIiIisrKy7O3tnZ2d8/LyEAQJDQ0dc1gzPDwsFAqVSmVoaCjUenVwcDAxMSkpKfHx8aFSqXV1dQwGY8aMGS0tLZmZmS+99FJpaWlHR8eiRYsSExOPHz9uaWkZHR2NLqwtKCiA/mlqaoqPj6+rq+vs7Jw9ezYAQK1W44ypqKiQSqVSqRTG7ejoqK2ttbCwwK6w1V9wmDLUiHB3dzf7Y0s5Thz5Rq2Q0J7Cxy6iRYbFktUb3rG2HUOI+EERy2Q3MzLyKitZbDbpqTj8WSabNXNmbFAQ65EusSb400EIph537tx5/vnntVrttWvXduzYoVar4XZ4lUoVHx9fWVmpVqufffZZuDfjxx9/RBDkzTffRBDkxx9/TEpKQsNLpVI/P7/6+vqioqKvvvoKQZCXX35ZoVBkZ2f/+uuv2BzfffddBEFeeeWV3t5e3VwkEom/v//g4GBPT8+zzz6rmxHWDJFIdPDgQQRBTp06hc0iPz//888/12g0Wq32rbfeysjIKCkpWbduHYIgu3btEovF69atk8lkMplsw4YN2IiNjY3vv/8+giAff/yxXC4/dOjQ9evXVSrVnDlzuru7ZTLZxx9/3Nvb+9ZbbyEIUltbu2vXLpVKNX/+fIlEIpPJ4uPjEQTRaDTPPPMM3MqJgvXPc889JxKJvvvuu9u3byMIgjPm6NGjycnJCIJs3LgxLS2tq6vrH//4B4IgO3fu7OrqghZOWHAEQb766quqqioEQbZs2TIwMDD5JjGq0baPqJqHR9G/1X/f2N/fr30KUSqVn3/xZWphFVqW+6JRmUo7sRe0WqSzE6mrQ/8UFRX7P/nk8KFDg4ODsGlBNL+jx4zJhEGDTf76hKn19PTs+Pe/j331laamBlsWpK4O6eubfJMgeMxM9R9i/5vweDx3d3cSiTRv3rwTJ05QKBQTExMAAJVKNTQ0nDZtGoVCCQsLu3z58k8//WRsbAy1RtFBDxrewMAADhb5fH57e3tdXV1vb29paalWq0UV7CBvvPFGUlISi8Vqbm7WzcXQ0BBKxFlYWCgUClQBHM0IawaFQsnJyVm0aBH2pBEYmEwmQ83VN95449q1azKZTCwWIwgSGBjY3d09MDDAYrFYLJZYLG5qatJ1y6ZNm1JTU6lUalVVFZVK3bx58/nz55uamt5+++2rV6+6u7sDANzd3S9fvkylUqFhLBYLbmrEar2iYP3D4XA4HI5AIOjs7GxsbMQZc+TIkYSEBAAAPHXk6tWrbDY7Pz/f2tr6/v37MDUOh6O/4ACAM2fOeHl5AQC8vb0vX778gO0CD+lp5g+WHVJWW6tgMF5bu5bL5cIqhvT39x85ciQ1NVWtVo9ngFarLSoqGhkZ0W9nV1dXd3e37vX+/v7S0tIJi4kgSGdnJ/ovmUy2sLB46513WkdGaoXCR+IEgscDMQ07pRkZGRlv931HRwd8yjs6OgYGBvr7+48ZDCtMyuPxWCxWcHAwAACKoUOEQuHXX3995MiRzMxMhUIBleGwuWAT7Ovrg/0QFqwZ3d3dO3fuNDY2Xr16dUREBLqdH/YWjY2NfD7fy8urqqpq7ty5CQkJhw4dWrVq1ejo6MjICAzZ29s7ptjCq6++ev78+ZycnMLCwvb29oSEhAMHDvj4+Hh7e3O53NraWgAAgiDwIGu04CLR/4m3kX7Xeg0ICND1D9ZRHA4HZwyNRhOJRMbGxgiCwPJKJJLg4ODg4OCRkRHosckUnEqlajQaCoXS1dU1mUM9CfSAIEhTW5uPv7+uZERtba2xsbFQKOTxeHV1dXw+387OLjs7OzQ0tKSkRCaTrVixAgBw7949R0dHuVx+9epVS0tLS0vL7Ozs2NjY3NxcDoczMDBgaWlpZmam1Wpv3LhhZ2fn4uKSnp5ubW09e/ZsoVDY29sbEBBw7969urq66dOn0+n03t5eMpnc0tISExPT0dHB4/Hu3buXmZm5a9curBKFoaHhND+/+pYWr3FOfCOYghCd5RSlpqampqbmt99+O3jwoFAobG5uTk1NnTdvHgAgLS2NyWRSKJTFixeHhobCqb/Ozs64uLicnBxTU1NHR0cYnsvlNjY2lpWVFRYW1tfXKxSKhQsXXrp0ydLS0sjIyNvbG+alVqtVKlVpaSmDwUhJSYH9KDYXAEBvb29xcXFLS8vq1auZTCYuo61bt6JmuLi4HD16dOXKlcuWLcM+xVxdXaurq2tqauDgLD4+nslkLl++/K233nrrrbcAACtWrLhx4waJRFq6dCk83AqSlJRUVVXV2dlJJpOrq6t7enqEQuHAwICNjc2sWbPgC8ilS5d+9tlneXl5FRUVe/bsAQDExsamp6cjCDI8PFxQUBAUFGRubn7r1i04AIXk5eWh/qmrq4MKtwqFYvny5Thj9uzZc/LkyZiYmKKiovv37+/Zs+eTTz7JysqSyWT+/v7Qwvr6+qtXr+ov+L59+44dO+bj4yOXy5csWfInNqD/DUbV6jF/TQqFwrCwsJKSkuvXr3M4nJKSEkNDQy6X+/PPP1taWgIAuru7TU1NZTIZh8O5du1ad3d3TU3NjBkzlErl5cuXVSqVo6OjoaFhRUUFn8+XyWRsNjsrK6uurs7Hx6exsRFBkNbWVg8PD6VS2dLS0tXVRaVSGxoayGSypaWlubl5dnZ2f38/bJxz5sxhsVg4Cw0MDUfa2x+DiwgeFYSCz1SkrKzs0qVL//znP3W/Y4sXL7569apMJsM+Iyaj1IoyOjpKIpF0F4bI5XIWi4UgCIlE0s1l8eLFFy9e1Gq1UDR1TKAZMAWxWKw7OtRqtQiCwLlQ7e+KtVqMdC0cFOrJ4oG0XmUyGYvFGhkZMTIyglk8kBwuzhgEQeACYNLv6nc4iddJFhxBEJlM9se1YT//5+bdX/wLHig2HtrfDzubfEYIgqjVajh1PJnwcKA8+fQBACqVaufuveEJzzi6/N+kxcMp+CAI8vNvv9nPnBkTE4MLuH379rVr1545c0apVLq6uhobG6empkZHR3d2dlpYWAiFQrgm4NSpU2+++eaPP/5oYWFhbm5eVFREpVJHR0enTZvW2toaFBRUUFBAJpNlMllcXNzFixcFAoGLi4tSqXzmmWe+/vrrV155RSqV3r59e2hoKCgo6ODBg6tXr5bL5XA4a2Zm1tzcbG1tHRgYiNNZBADcvHlzpK7uhQUL/usqoeAzhSHeWU5FUlJS6urqxDqyXvX19QMDA0lJSbhf05PvKQEAdDp9zCWUsGMmkUi6uWRkZHR3d9fV1enpxlAz4KN5zHlUMpmMPljRZzH2oUyn0/VngdV6PXfuHBwlYO9iOwbYcRobG6NZPJAcLs4YEokE32Kio0ZchzfJgpNIpMemDVteXt7R0TGZkGKxuL29HQDQ3d196tSpixcvom+11Wp1S0sLPJcNS2tr68jICHwF/sdNFT+6jR9qtZrD4Vy5ciU8PDwqKmp4eJjL5fr5+fX19YnFYjhDa2JiIpFIVCpVcnKyj48P/IkDq9vR0dHd3d3GxobFYrm7u1tZWVlZWZmamkZERJiYmNy9exc2MwqFcufOHbganMvlmpubz5gxIzAwUC6X9/b2RkREtLe3m5qaWltb67qO4GmEGFkSEDwFPNzI8vz5866urgEBAfDwNV9f38HBQXNzcwRBYJ/h6uoqlUoVCgXsVjdv3lxfX5+VleXm5jYwMODm5lZZWenm5nbixIkNGzY0NzczGAxvb++7d+/y+fysrCxfX18Gg+Hv75+ZmWlvb29kZFRYWOjo6BgZGalnOIsbWSrk8qbqiprSgjdeXzvBrxkEAT09QCwmk8lUCmW8kSUcu8MfNwiCSCQSAwMDrVarUCjgWwZ7e3t4LCs8u8bAwACGgXMJZDKZRqNpNBoymYwgCPwpQKPRhoaGbt261dra+uKLL9ra2kokEq1Wy2QylUolgiDJycl2dnbBwcEwTQaDIZFI4Ek1Wq1Wt1zEyPKpg3hnSUDwFwdBkN7e3u7u7r6+PqVSOTo6amdnx+FwampqhoeH4dJogUCgUqng0MrY2NjX1/f777+/d+8e3A7r5OTU2tqal5dHIpEqKio8PDzkcrmpqamtre3t27fhQpjMzEwTExMmk5mbmxsYGDjJ0bNSIU9PulaSn0UmkW7dujWBbBCCAKkUKJVWZmZ+Li6UcSaKsWN3EokED3MFANDp9AULFtDpdDjKp1Kp6C34AZu77twyj8dbsGABmUyGiaPTOXQ6XavVxsfHw7PQ0fkY/ScCETx1EJ0lAcFfGalUOjIy0tjYyGaz1Wo1n8/Pzc318vIyNDSER3XK5XL4cppKpcLhoEKhaGpqgt2kj4+PmZlZUVERgiBsNjsgIKCtrc3IyMjMzKy7u5tKpcItaGw2m0qlUqlUPp8/NDQ0+YlZGp0RGBal1ajbhPVhYWETjyz7+oBEQqfRcD2lXC5nMpkIgiiVSiaTiY5r1Wq1RCKB67dVKhV8aT0yMgLfvqMdG3wLTqfTUQ+MeSgbg8FQqVTws0qlQmfXNRoNnMh9GjUiCCYJ8c5yKpKTk3P9+nX0X6gvo/sKUxdUia2vr2/fvn3w88mTJ8+fP3/kyJEJo0skkrVr16akpAAAjh07BvdTVlVV/fDDD2lpac8888ypU6cmk86E5mHZu3fvF1988UDpPEQUPU6YvHsfFY9NKhaqKd25c8fMzEwul9vY2FhbW/v5+cE+z9DQ0Nvbe3BwkMFg2NjYQMOMjY1HRkbq6uqWLFkSGhra09PD4/HgOzmBQKBUKoODgysqKqqrq729vbu7uz09PQMDAysqKhwdHT09Pfl8vouLy+R1ZclkshlfMGfJihdX/s3c3Jw7IRwO18jIENMdAgDUavXhw4d7e3ubm5uPHj0K5TvgSqXm5ub09HS1Wq1Wq4VCYXZ2tlgsvnr16t69e4uLi0dHR+GJ33K5vLq6WqlUwtO/i4uL4XUEQVQqFdSyUKlUly9fPnPmzNDQEAAgMzOzo6MDhi8pKcnIyFAqlWq1WqvVqtVq9CBxbHSoSwCT/TOqm+BPhRhZTkXs7e2xWmjOzs4ODg6T+bWOapByOBy4nxIAcOPGjXPnzmk0mgmjs9ns2NhYuVwOAPDz8zM3NwcA7N27d9++fRwOZ/fu3a+88spk0hmTpqam9vb26Oho3PVly5YdPHjwgZJ6iCh6nDB59z4q/gyp2DEJCwubMWMGiUSiUqlRUVFUKvXatWuBgYH29vYvv/wyXBTt4OAAZdMdHBzodLqtre369evJZDKdTl+4cCEcqDk4OFAolOnTpwMA6HS6i4sLjUYjk8lqtRqOrmAHCTswKGfxQHZSqVQXF1cK5SGVCnp7e6urq5ubm7OyskZGRu7evdva2hoREVFWVlZeXj5z5sxffvkF6kLA+WdXV1cymazVas+ePctgMLq7u2NiYoaGho4fP65Wq6OiogYGBs6ePSuVSsPCwjIzMxEEef755+l0enNzM4vFgk2lqKhoeHi4v7/fyckpPz+fz+ffvHlTKpVaWVn19/czGIze3t7g4OCcnBxDQ8MZM2ZkZ2e7uLiQSKTm5mbsEm6CpwWis5yKlJeXo51ldnY2nC6D/3Z2dlZXV5uZmfn5+V27ds3W1pZEIvX09CQkJNTU1Bw8eFAgEHh5eQ0NDcHfv8XFxd3d3UlJSRwORyqV+vv7j4yMNDU1hYeH45bUVlZWSiQSsVjMZrMVCkV9fb25ufnAwEBTU1NmZiYAQCKRJCUlzZ07F2vDpUuXXFxcRkdHnZ2duVxuWlqaWq0OCwvr7e3NyMhYsGBBcXGxu7u7oaHhxx9/PH36dPjgGK/gaPTW1ta2tjZ7e3sLC4t79+55eHhQKBQ0U6yjFAqFTCbT3TzQ1NTU29vL5XI9PDxQJ8ydOxcXDOfewcHBmpoaKpUKf2poNJr09HRDQ0M/P7+ysrKenp5nnnkmOTmZxWJFRUWh/h8cHIyOji4qKlKpVGFhYfqrKSkp6dixYwKBIDIyEn1n9idBoVDQ3UdwtBceHm5mZkYikdAJT3S+EV5BN8bA6LCRwHeZaBeIpomuFh5z0vKx0dHR4eXllZ+f39nZ6e3tXVZWNnfu3B9++CEiIsLCwkIsFtfU1BgbG0ul0tjYWBKJ1N7e7u7uXlBQEBERUV5eXlFRYWdnJ5fL+/v7zc3Nc3Nz6XS6XC7ncDhXr14NDw9PTU1ls9ldXV11dXX+/v4KhUKtVkul0o6ODgcHh46ODrjzJCkpSSAQlJaWPvvss9evX2exWMXFxQYGBn19fb/99ttzzz3X2dl56dIlOzu7urq6J+gugoeDmIadilhYWJw7dw4A8Oabbzo6Ovr5+cEZ0Z6enu3bt8+aNSs9Pb2xsVEgELz77rtOTk7Nzc3JyckeHh729vZz5851dHT08vI6fPgwAMDf39/U1DQhIcHT0/Nf//qXmZmZUqlsbm7G9ZQ//fRTa2trSEhIS0sLAIDJZHZ2dpaXlzs5OZmams6dO3fu3LkwHZwNXC73s88+Y7FYdXV1W7dutbCwiIiI+OSTT2xtbS9cuFBQUBAfH//OO+/weLygoKCgoKDAwMDxSo2N7uzs/PXXXxsZGXE4nMLCQq1Wi80Uhh8ZGblz505QUBAqOIeSlZV169at0NDQ8vLyxMRE1Am4YDj3Dg0Nbdu2LTw8XCAQfPrppwCAtWvX+vj4mJqanjhxYtq0aYcOHQIAODk5welc1P/19fXbtm3z8/M7e/ZsW1ub/mpKSEjg8Xhz5879s3vKMeHz+Q867JvKwNFtT0+Po6NjdnZ2QEAAnU4nk8mdnZ3wpaxKpaJSqc7OzjExMUwmE549cP/+fWtr65GREaVS2dPTA3vKkZERFxeXkZERCoXC4XC4XC6cpKVSqTQajcFg1NXVQaWLwcHBrq4uDodDpVKZTKahoeHo6KihoaGTk1N4eLidnR2bzba0tIyLi2OxWF5eXgqFAi6OZTAYRkZGM2fODA4OhptZn7T/CB4AYmQ5FYHDyoGBgYaGBniWiK2tLQDg6tWrhoaGUIK1tbXV2dnZxcXFyMgIKprC7efwG8hkMmF3iCpScrnc2NjYgoICqVS6bt06XI7ffPNNYWEhAAAVt4OPFZgCTBOmg7OBz+c7ODhMmzYNALB69epFixaVlZWZmJhQKBQulxsYGEgmk+GaCDhfp2dHwaVLl9DoNBpt06ZN586dW7Ro0QsvvJCcnIwrOACAw+EUFBQsXLhww4YNuKS+/fbbDz74AAAQFxf36quvzps3DxqPDaPr3kuXLsHi29vbJycnv/nmm62trebm5ubm5vA6HFGh6kIWFhao/zUaDY1GEwgE3d3dUC9mvGoaU6WW4CEgkUiWZmZNDQ2h4eEMBsPU1NTc3JzNZpeVlWk0mg0bNmRmZk6bNs3T0zM3N5fBYMDj5BAECQ4ONjAwiIqKsre3t7S0NDAwsLa2VqlUlpaWfD7fxMQE7v0YHBycNm1acnIyj8cjkUje3t7whAP49YyIiIBfK4VCAadzOjs7qVRqZGSku7t7d3e3Uql0cnJydnaGYlV1dXUhISFBQUFQK6Opri7U3v5Ju5DgASA6y6mLgYFBf38//IxKkg4NDUFJUpFINDw8jFU0Bb9v8MfJn6Js2LDho48+Wrlype4tJpM5ODhoamo64dIDnA3t7e3oEnkejxcYGEilUj08POAVaN5kbNONPnfu3P3790+bNi0hIUG34OB3LVYTE5N169aFhobChfsQLpcLZ6G7urqw17HoupfL5ba2tsIrCoWCzWajK3GgMCwsDkwZW0Dw39KyE1bTmCq1DwFcifpHUngiPEKbA7y8bh8/7uPrO23aNFRr18HBAX544YUX4Af46wolPDwcABAaGgoAePHFF7G30LiQgoICS0vLiIgIBEGsra1XrVqF3hIIBDhjsN+shQsXop/hu384p+Lo6KjRaFJSUsRdXdN1XgoQTGWIznIqkpiYWF1dLZFI/vGPf1y7dk0gEDQ3N1+6dOnVV18tKCjIyMhQq9Xu7u43b96sqamBiqZSqfS5556LjY09c+aMi4tLfn5+Q0NDVVWVVCqtr6+/c+dOfHy8paUlmUwe85Xhvn37Tp06FR8fX1BQAACAZ0zCpRD3799PTEzk8Xj19fWpqamLFi3C2pCYmFhaWlpfX+/m5rZr166DBw/GxMQMDw87ODg0NjbevHnT3d0d7ogPCQm5cOGC7lwoLGxHRwc2elxcHIlESkhIgEtydDOtrq6ura397bffVq1atXDhQlyP+Mknn3z//feGhoa3bt3avn17QUEB6gQ0DIvF0nVvZWVlbm5uXV3dzp07WSzWa6+9dvr0abguIygoyNnZuby8vKampqqqqqGh4fbt26j/JRJJVFRUcXExgiBbt27VX018Pj81NRUOZx8aKo128dLl8XT2pzIajaajs3OScnr6MTU2/seKFT/88ktGaqqNvf0jSROLSqUCGk3RvXslRUWPJEGNRtPa3Awkkr+vWMF6ED0pgicOoeAz1VGpVCQSCW4jg7u4cJKkOMaTP4Vbx27dugWPIB4TKD6i1WonfATrsUHPrclIs2KjY2Vjx0t5TC3WCW+hjOlerMAsXOiPrmSB+rfDw8O6R6/oKYguD6RSC8ZS8KmvqerunJSU3RTEwJA9zdeP9XszezhtWBSFUlnX3NwzMDD1n2ZkEsnSwsLd0ZE25u4aQsFnCkN0lv8r/POf/5w9e7a3tzfutEWCpwLdzvKvxB/sLP86EJ3lFIboLAkIngIeZ2c5OqqEjwUSINF+F7X5UyE6y/+D6CynMMQ7SwICgv+PVqu9m5woEYsBAAwmM27OfIPHdUYKAcFUhugsCQgI/j8IgrTdbxkeGgQAGBgaqn+XQiUg+B+H6CyfAh50McgfifVHyMjI2Lt375UrVx6/JQ+RRU5OzuDgIHaJ/3hIJJJ33nlnxYoVuKW8Eonk6NGj06dP12g0NTU1b7zxBlwiJJfLDx8+bGtry+PxZDLZvXv31q1bd+jQof7+/nnz5g0PD1tYWDz77LMPZC0BAcGThVDweQo4derUY4v1R4iKihpzr/1jsOQhsrC3t0d35ukHK5mL5eWXX16yZElMTEx8fHxISMj69evR6/Hx8S+88MLs2bNnzpyZl5dnZ2c3Y8YMCwuLFStWrFu37ttvv719+/aDGkxAQPAEIUaWU5G2traOjg6FQuHv73/kyJGSkhIbG5s5c+ZghVizsrL4fP706dOvXLni7+/v5uY2NDRUUlJiamrq6+u7e/duNNa1a9ewIS0sLG7evBkREdHa2hoeHq5UKjMzM2k0WkxMjFQqLS4uptPpPB7PxcUFtUej0VRVVXV2ds6ePZtCoeDETgEAcrkcCtbgCqLValFL7O3t29vbrays2tvbWSyWh4dHaWmpl5eXQCDIy8vTaDQhISHoDg0IWiKosIorb3Z2NjybkMVioaK4jo6OWH3XlpYWKFFbUlIybdo0rVZbWVkZHBxsYmKCCvAWFBTI5XIGg0GhUGbOnImVdQX/LZmLta2goGBoaMjOzg7+O2PGjDt37nR2dnZ0dDQ3N6NqA1ZWVmgniqJUKh/5jkACAoI/FeIbOxX5/vvvQ0JCaDRaf3//rFmzXFxc4OZIrBCrQCA4ffo0g8EQi8WZmZlisfjNN9+MiYkpLi6ura3FxsKFNDExqauru3z58sDAwPDw8GuvvRYZGWlsbHzs2LEDBw4EBwdPnz69uLgYa8+FCxeUSqWbm9vGjRsBRhMVip3KZLKNGzdGRERwudyBgQFsRDKZjFri7Oz8+eef29vbt7a21tfXm5qaFhQUWFhYrF+/3s/PLyQk5K233sKuzcaWqLq6GleK5ORk2LfBs4hRUVycvisqURsXF7dmzZqOjo4ZM2Zs2bIFYAR4MzIyoqOjU1NTW1pacLKuOMlcLJWVlfBYKxRbW9uqqqqKigp3d3fs9WXLlsEPnZ2dOTk5mzdv/vzzz+Pi4v5IC/mTGBwYaG+9r1ar4b8ajaaro723u4tYM09AQHSWUxEulxsVFVVaWgqPRoKnCwEALCwsoBBrSEgIqlAKxbSSkpI8PT3JZPKaNWu8vLxwsbAh4RVnZ+fFixf39fV1dXWVlZUplUqpVBoeHh4ZGfnZZ5/hHuXLli0bHBzs6OiAfQZWE7WzszMxMdHd3Z1KpVpYWOhuw0ctodFoK1euvHPnjp2dXV5enkgkmj9/fmtra29vr6GhIdS/LikpQSPiSoQrRUBAwHvvvffqq6/CI6hQtVWcvitOojYoKIjH4/X29oLfBXgBAKtWrcrIyOjq6nruuedwyrfffPPN/PnzAUYyF8XOzq6zsxN7pb293c7OztHREdXMg3R1dcEPVlZWYWFhb7/99oMexvnYEI+Ibt+8JpVK4L+jSuXdW4lPr/QBAcEjhOgspyJhYWGpqalKpfLatWuww+vs7ISPeFSSBl3PAqVKeTweVEwFAIhEImwsXEgITIfH47FYrODg4JCQkFWrVjEYjPz8/AULFuzcuRNrz9tvv21jYxMeHq7RaDo6OsB/S6GamJi0tbXBf3WHIFhLVqxYAU8QZLPZt2/f9vf353A46KnL3d3dWFkcXIlwpYDzq9u3b9+2bRvACM9iR7cKhQLrK5xAKwqJRNq1a9eePXsyMzP5fL65uXlwcPCKFSsCAwOhZO6Y5YqKipJIJH19ffDf2tpae3t7d3f3yMhIWF40ZHl5OTaivb191v9j77zjm6r+/3+yR9u0aZruvXdLW9rSFrqgFNkg6kdxoTgRBNyIAxURkaWACwRkyhbogg5K994j6d47adLscX9/nO/n/q5JWwqCFD/3+fDhI705933e5yTkfc94v05OjlQqBdMPWzt7L19/7BSxrb2ju7fPP5BqiYMzzcHXLKcjP/zww7p161xdXUNCQkxMTHg8XklJyeLFi48fP44KsVpaWiqVSvhna2vrTz/9dOPGjaysLK1W6+Tk5OLigt5FIBCwJefNm1dQUNDZ2env78/hcJYvX37u3Dl7e3sajXb69GmpVMrhcOBwCoVIJHZ0dLS3t1tYWDQ2NjY2NuqInd66dau4uFgsFvN4vKKiotDQUPReHU+oVGpQUBCDwcjMzAQAcLncp59++tq1a1QqNS4uztnZGb0xLi4O2yInJydsK8bGxmpra0NCQlavXg0AQEVxly9fjtV3bWlpQSVqW1pa8vPzxWJxV1dXQ0NDVlZWXV3d4ODgSy+9tHLlyuTk5MzMzD179mBlXXUkcxMTE9GIS6VST506tWPHjldeeUUmkx0/fvzUqVMAADKZfPr06Z07dy5btsza2rquri42NrajoyMzM7O9vb2qqsrf3z8uLi45OdnU1DQ2NvbBf5vuAhKZHBIeMTw0yKuvRRDEwso6Km4unc542H7h4Dx8cAWf6QiCIGNjY+ggEkEQeK6efkmJREKhUFQqFZz/xOqR6tylUxILKn+KIIhCoaBQKPqbWqVSKZPJRBBkokEGrFooFLJYLJ3dK1hPUAtY3VeVSqXVasfN/dBRWEVbAZ1RKBToQcTY7BEdfde7RafSySVzOzo6aDSavohgf3+/TCbTOcUCpbGxUWdpc3L+SQWfkaGh65fPSyWSxMXLHJxd7nzD3wZX8Pk/cAWfaQweLHFwHgH+yWCJIEh3R7tYNOrp40f4R3bt4sHy/8CD5TQGn4bFwcH5CwQCwdbBcZJZBByc/0HwDT44ODjjgEdKHBws+MgSB+eR5OKZE11tLY+muAFCoTFW/udZM/P7cFqcRqPhtbXlVlb2DA5O/0UlIpFob2k5JyjIwdr60fzs/nfBg+Ujz88//5yYmIhKydwVIyMjR44c6erq2rt379/3BN1i09vbe/HixTfffHOikncsgFJTU/P2229PJA4nEonWrVu3fv36kJCQe3Yb8s9L6f5NqstL17/6krGx8cN25K5Rq9VHjv0uFon+frBEECQtN/dGZWXCwoUxrq6kScMPDKR3NV5GY+99GWUj/xXD2n327FNxcZEzZtwPqzj/EHiwfOSZMWOGqanpvd2bkpLi7++/adOm++LJ77///vLLLwMATExMJo9edyyA4uvry+FwJnqXxWJBxb67dVUf1PlHBQKB4ODgcM8f/UNEpVLpaAfeM/y2tpyGho8+/dTU1HRgYMDU1HRkZMTExIROp+sXzsvLmzVrFjq93N7eLhKJbGxs0D6UyWREIhH7zDQ6OtrU1GRubs7hcCgUChTK128O3J49uatqtZrP5zMYjCVLloSEhHy/c6eTtbU1fhL7owMeLKcpmZmZWq12zpw5nZ2dBQUF8fHxlZWVM2bMgPo11dXVYrGYRqOpVKq2tjY7O7uBgQH9YqgRCoWSm5tLoVCYTKavry+sYmxsLD8/397e3tvb28LCorCwEAAQEREhEomSkpKio6Pb29sjIiKwXpWUlMjlcmghKSkpKCior6/PwcHByckpOTn5+PHjVlZW8fHxdXV1UE/gypUrTk5OKpVKqVQGBQUVFhaamZl5e3ujBaAuK4VCMTIy8vPzKy8vFwgEvr6+UK8nJydn3F/VoaGh6upqc3NzHx8fAIBcLs/OzoaWAQA8Hq+lpSUqKsrQ0PDixYseHh5jY2N+fn5UKrWurq6vr2/evHnwF7OgoAAA4OnpmZ+fjzpPp9NRN0QiUXl5eXR0dG9vb0BAAKxdKBRi+0cqlebm5jKZzMjISKxNExOTwcFBHo9nYGAAZWYFAkFlZaWZmVlbW9tUTjvBmRwEQWqamgLDwjgcjkwmu3Tp0sqVK0+fPv3EE0/IZDIWi0WlUnt6eqytrclkMkwLdnFxYTKZarWazWYfPXrU09MzJydnzZo1zc3NNjY2N2/etLCwcHd3Hx0ddXV1JRAIf/zxB4vFSk9Pt7a29vDwsLS0hPdqtVpo3NjYuLa2ViqVBgcHs1gsuVwukUioVCpUGzY1NW1ubnZycmIymR0dHZcuXTI0NHzllVdsbGx8goKqeTw8WD5C4JPm05EPPvjAwcEhJCTk66+/tre3P3XqVF1dXXR0NBQ1/emnn+Ry+fDwcGdnp7u7e2tra2Njo34xrJGUlBQDA4PQ0FCsmoyhoaG/v39gYKCtre2GDRtmzpwZEBCwefNmKDKempra1taGyoQCAL7++ms2mx0VFfX5559TKJSampqcnJyYmJjdu3eXlZXNnz/fxMQkMTGRTqd7e3sfOHAAAGBqarplyxYvL6/MzMzffvsNaukBANAChYWF0dHRly5dGhoaSkpKqq6ujouLg2pw69ev9/DwcHd3h5pBKCKR6L333ouJiUlKShoaGgIA3Lp1C7Xc3t6ekZERGxv73HPPAQCYTCZUI+rs7Dx79iyRSGSxWND+3r171Wq1r6/v/v37sc5j3XBwcDh69GhPT09FRQXqALZ/VCrVa6+9BjXoU1JSsDaHh4d37twZGRmJIMiPP/6oVquh299++63OIwjOPSOWSs3MzAgEgkQi6enpyc/P7+3t7e3tTUpKOnbs2IULF1JTU3///fdjx47dvn2bSCQmJSVduHChs7NzbGzMwMBg8eLFw8PDubm5ly9fTkpKqq+vF4vFSUlJR48ebW9vBwBApf5Vq1Y1Nze3tLQcPnw4Nze3oKAgNTU1KSkpPT390qVLRUVFWq32/PnzOTk5WVlZR44cuXXr1pkzZ06ePHnp0qXLly8XFxcDAORyeWNjo7OzM4lEIhAIHC5X+C/Ogfk3ggfL6UhSUtLg4GBDQwODwSCTyQYGBmFhYTQaDZ4SJZFIjIyMyGSyQqEwNTWFk0j6xbBGgoKC1q1b98orr4SHh2MrgqqtTU1NAoGARqMZGRm1t7cPDw9zuVxnZ+enn34aq4Rw4cIFFxcXAICLi0tKSgqHw/Hy8gIALFmy5NdffyUSiahAK4PBgFoB5ubmHh4eTCaTw+HY29sTCAQikYggCFrgP//5T3JyMp1Oj42NPXbsmJGRERx99vb2dnR0cLlcJpOpk++fkpLi4+NDIBDeffddqO8aHh6OWnZwcPDz88vPzxeJRAAALpfr6OgYFhbm4eHxxBNPdHd3S6XSmpoaAMDJkyfh6POTTz7BOo91AwBAoVB8fHyef/55rA9o/7S0tAwODpaVlZHJ5KGhIazNS5cuwSPAZsyYcerUKY1GA89UQRDE1NQUytZfunTp/n5z/geBkwQymQyeP2NiYgIfoVQqlUAgiI2NhTobPj4+vr6+CoWitbXVy8trcHCQw+H09vay2ez+/n5oxNLS0s7OTigUqlQqOp0ulUpjY2PHxsbgsTnm5ua+vr6WlpYIgojF4s7OzgULFixdupRCoTg5ORkaGvb395NIJC8vLxKJpFAoLCwsbGxstFqtvb29RqOpqalxcHCoqKiAAooEAp7j/oiBT8NORzgcTmhoKIFA8PT0hFfgOgoUNQ0NDW1tbTU0NExMTNS5EVsMa4TP5+fk5DQ3N3/22WfHjx/XuYvFYo2OjsLXIyMjcPUF1Q9Cgf+8CQRCd3c3DJOQvr4+GFfgL055efkMzM4FdAUIvkAQRKvVogpBKpXq559/vnDhQl5eHtRn9/Pz8/X11Wq18DcF6Omycjic6upq+Bq6jbV87tw5uVz+wgsvfP3113BIim6B2bBhw6ZNm7hcLoIg3d3dTCZTpVJRKJTR0VFjY2PUeawbcAVr3JUqVFwXPqNAZ3755RfUJpvNbmpqAgDAJVUajRYUFJSWlvb1118DAOLj49Vq9R0Xuv4mCILU1dW1trY6OTlBVXrsu1KplEqljqsMNUVgN7LZ7L/tKQAI8ne20SgUCg8PDzc3N4FAAIOfqampQqEQiUQ+Pj48Hq+0tDQ2NrahoSEmJgZ+QH19fampqcHBwfn5+TQajc1mDw0NCYVCoVBIoVDMzc37+vquXbum0WgsLS17e3u1Wi2LxSKTyWVlZTQazdbW9saNG87OzkQiUSaTDQ0NqVSqgIAAIyMjEokEI2tlZSV8eEUQRK1Wczicjo4OVHMK59ECD5bTkW3bth08eDA8PFwul1taWra1tUEp0aamppqaGgRBTp48yWAwKisrX3jhhYKCgv7+fltbW51iWCO1tbUNDQ2BgYGrVq1Ca5FIJHl5eY2NjcHBwcuXL09NTZXL5S+99JJCoSgpKZFKpZ6enljVt127dv3222+enp6Ghobx8fEVFRVFRUUsFqukpOTzzz8HAHA4nOTk5ODg4IKCAj6f39TUlJKSUl1dzePx8vPzW1tboZOpqammpqawwIYNG/7zn/9cunSptrZ2y5YtBw8eVCqVvb29ixYtevHFF1NTU1ksFp/PT09Pj4+Ph27Ex8ffvHkzJydnbGzM3d1dxzKCIAKBICcnx8zMrKSkpK6urqKior293cHBgUQidXR01NTUMBiMzs7OnTt37tmzJz4+XiwWx8TEoM5j3XB3d29qarpy5crSpUvRfhAKhWj/mJmZJSQkXLlyhcvlstlsrM3ly5d/+eWXRUVFJSUl3333HQCguLi4pKTk2rVrr776KlxtfdBotdrCwkJLS8v09HQoZ2hkZMRmszs7O1ksVnJyclBQkL+/v1gs7u3tZTAYBgYGIyMjpqamg4OD5ubmRCKxr6/PwsJCpVKNjo5aWVmNjIzA4AHDJHwOGBoaIpFItra2HR0dCIK4uLjcVVKEVqsdHuwvqC5dtnihzoGmU8fW1tbCwoJGoyUmJqrVaqFQCB+A4K4cf39/hUIBD8aB68fu7u4GBgYGBgbm5uZ2dnYKhYLL5c6YMYPBYJibmzMYDCKRaGVltXTpUrlcbmNjExAQwGAwKBQKgiDW1tYmJiZMJrO7u9ve3t7Hx8fQ0JDL5ZJIJGNjY/hoZWNjY2ZmZmtrKxKJHBwcyGTyY489NjAwYGho+KCfkHAeEPhUwDQFQRC5XD7uQ+iHH364fft2AoFw5coVrVa7fPnyOxqBoy44uTRRYXgi8bijKKxBqVQKI+h3330XHh4eGBiIDahKpfKef+8gY2Nj6KYe+AMHlVp15Gp15FuxqFQqIpFIIpH0NWh0FG4RBJHJZOiPF9Z5rBt3RKFQkEgkVPwWaxO1c/nyZSsrq7CwMJlM9vbbb//0009TNP5/jdKTu9v2waZdX30++W5YjUbzyy+/cDgcPp9vY2MzPDysVCq9vLzKysoCAgJKS0vDwsKCg4Orq6vz8vLodDqbzR4dHYVnv8DvAzw9bWRkRKVSubq63r59293d3c3N7datWz4+PgiC0Gg0+Ig2a9as+vr6urq677//Xn9a4i9tUam+2bU7MmGxk6ubUqEoL8wtycmSjolWrlx552Hu6ChQKLjGxu52dkQC4fiffzrMnBkTEzOVPmxubtZoNHBu/KGTlJQkamx8auHCv1zF5e6mMfjIcppCIBAmmq5xdnaGW1t7enqWLVs2FSNwQU5fHh3LVLIMCQQCDFFCobCqqkoqlcItoCh/M1ICALAhCrrEYrH0i00UKQEAaLzX16CBMQy9TiAQsI/5WOfvKrcB23U6NlE7/v7+WVlZAAC5XK6zcvxA0Wg0Mpls6dKlVVVVMTEx1dXVdDrdyMhIpVK5uLhYW1tXV1crFIrw8PCBgQGxWDxr1qyysrL//Oc/J0+e7Ovr27ZtW11d3bFjxzgcDovF8vLyGhkZsbS0ZLPZUqkUjsB8fHxYLBaPx4uOjkaPRZsiJDLJiGVMZzKVcqmZmdkdvj8IAshkIJUa3ZNKPlxxx6JSqQDmC4ODMwl4sHz0WLt2LQAAQRC4VPZQMDExOXbs2MOq/VHE2dnZ2dkZDmqjo6P/sXqNjY1nzZrl4uIilUqvX7/OYDAcHBxUKlV3d7e1tfXg4OCCBQtu3ryZnJxsZmbm6OhIJpNtbW2PHz/OZrNNTU0PHjwIT3yj0+mmpqYVFRWDg4M9PT1KpbKnp8fFxYVEIsGFT3d399TUVLhMMHX3SCSyd2CwrYNjZ0OVl5fXHeLWX4XUJ6+oqalJq9W6ubmdO3dudHR07ty5o6Ojjo6O6Pq0Uqm8ePGit7e3n58fNvSOjY3BtQmAOSQHrRH7p0wmUygUMEcoKSnJzMxs7ty56L4BOKENTyafeofgTFvwYPmogv8LfBT5hz81Eon0xBNPwLnNoKAgFxcXGo1Go9H8/f3pdDqRSNRoNAAAKpU6e/bs+Ph4Go0GDyMTi8WGhoYEAgGmWGi1WqlUymKx4IljBgYGQUFBFAqFSqUSCAStVksgEOC0LdyVerd+mphyXOLiKZS7vnEiFArFn3/+aWBgYG9v39jY+Pzzz585cwZBkKeffrq0tNTR0dHZ2bmtra24uDg8PPzmzZu2trYkEmloaGjGjBktLS0tLS3BwcH9/f1VVVVOTk4KhcLAwIBAILS2thobG1tZWQEAent7+Xy+QqF49tln6+vr2Wx2b29vY2OjQqFQKpXGxsZnzpx5+eWX6+vrPTw8sAe14jyi4MESB+ffDDqxSSKR0AVOnZVOPz8/rVaLXWhEVZPQknA+H91aPO4OWFtb2xdeeOHednveX6HUzs5OtVotlUq7urrEYnF2dralpWVXV1dFRUVfX5+hoaGTk5NMJuNwOFlZWdbW1pcvX6bT6WFhYSQSqbOz09raGkEQmLJZX18PNzeRSCQ6nV5VVWVkZOTr65uWlgZvAQAIhUIulysWi8fGxvr6+uDAlEKhDA8Pd3V1dXR0vPrqq/exdTgPBTzP8tHg448/hi9Qabf+/n6Y14+D8zdhs9mTaApOESqVGhAQ4OHh8Q/rg+tPxmo0mqtXrxKJxJaWFh6P5+PjM3PmzKioKDMzMzgdrVariUSiQCAICwvr6uqKioqC55/7+/tTqdShoSFTU1MEQfLy8jo7O7lcrkQigQeYBwcHEwiEtrY2KpVqZWVFo9FcXV01Go1EIqHT6SKRaHR0tLGxEW4PDg4OLioq6urqGle/Fz8B7ZEDD5aPBnPnzoUvTp48CV8YGxv/ffVwHJxHFwKBYGJo2N/XpxMve3p67O3t165dGxAQIBQK4+LiPDw8pFKpk5MTn8+HQnQAALFYDCWivv/++5CQEAcHBwqFolarlUrluXPncnJyJBKJUql0cXExMzMLDQ11dXU9f/68m5ubk5PTuXPnbGxsGAzG2NiYVqsdGBj4888/7e3tuVzu2NgYl8tlsVgKhUImk6nVaicnJx3PEQTp6+kxNTH5x/oK5++DT8NOR1BJVZFIFBsb29nZ2dnZCQBITk4+duyYhYVFXFxcfX29QCCA5UtKShQKhZeXl6mpqc69WLMCgaClpUWlUsHdmGq1+tatW0ZGRsHBwSQSqaGhYWRkBOpKX79+ffbs2SqV6vbt208//XRBQYFGo7GysiKTyXZ2dnV1db29vQkJCViFVQ8Pj/7+/q6uLmdnZ0NDw8rKyoCAACjxioPzgPD38Dhw6VJsXBxW5snOzs7Ozg4AgFXG9/X19fX1RRDkscceg9uIFi9eDABYtWqVWq3GbiyCG+gAAFFRUQiC1NTUGBgY+Pv7AwAiIyNhqqVGoyGTyRqNBmo/bdiwAd6CIEhgYCC6SAx1PPQXcdva2hrKy5c899wD6BKcBwUeLKcjpqamH3744blz5/bu3Wtqaurr63vmzJmnn356/vz5hw4dSkxMhKpan376aWJi4o4dO5YvXx4SErJ+/fovv/xS515U/hsAsGvXrk8//fTAgQNjY2Nz5859+eWXd+/e3dLScuXKFVtb2/T09A8//PD999//5ptvmpub2Wx2fHz86dOnV6xY4e/vHxMTc/78+crKyvz8fB8fH3Nz8y1btmzfvn3v3r2BgYHh4eE7d+786KOPNm7ceOLECTqdDlXdH2If/uvRarUVFRXj5tVMc9Rq9fDw8H0x5WBtvTg8/Lvt22fHx1taWT2Iic2xsTEvL6/S0tL7Yk2r1XZ2duZlZDyTkMB9BE+M+V8GD5bTEXNzczc3NyiL2tPTExAQAPPEdfRXYT7fmTNnPvjgAwCAo6Pj1atXQ0JCdO5FzW7atOnGjRvw8A1/f//e3l4oLRsSEvLaa6+9+OKLAAAoOw7l68hkMtzHYWRkZGFh4eTkBMesGRkZBgYGdXV1AIBjx469/fbbAIBPPvkEALBhw4Y//vhj1qxZ69evx8+2faBExcTllVUTiI/guhcCLB1dTO5HqCASiXNCQmzMzQurqjowYvfTFgIApizW2088YWtp+bB9wbk78GA5TUHz3KHQKwp8doaTnPAKTAAgkUgCgcDDw2OSe1944YU//vgjOzu7oaFBLBaje4VGR0c5HA5UHpfL5SQSCbUAD9ICGKnY9evXv/32246OjlBh1cjISC6X0+l0qLA6f/78JUuWeHp6QlExfBfDgyMucdEjLb91Dxkm40IgEFwdHFzs7XW+7dMW+Mj7sL3AuWvwYDkdSUlJqa2t5fF4eXl5bDbb1dW1tbU1KysrPj6ew+GkpaX5+voWFBTweDw+n79nz57ffvvN29ubSCQuXLhw37592HsTEhLgeoxWqyWTyXV1dUNDQzweD+aH/fHHH7a2tgYGBps3b4ZTuJ2dncuWLQsNDT1z5gyDwZBIJJcvX7azs+Pz+YWFhWFhYWQyuaOjg8fjmZiYtLe379q1a+/evfPmzRsdHY2LiyMQCFFRUXA8mpmZefPmTXgeFs59Bx+4Y0FnXHBwHhC4Nuyjh77+KlaydXJ0xFGVSiUUm4bvYgVR1Wq1VqtVKpX6x25MpLCqUChoNNqNGzfmzZt3X1qKg6KvDfvgkIjFWkQLoHSfgeE/EJWJBMBlkhnkO423/qrg8y8E14adxuAjy0cPff1MVLL1juiIo+qYwgqiwh1942p1TqSweuHCBSKRCPcN4jyiaDSa65fPi0ZHAQAMJmPp4/8xfAT3EOHg3HfwYIlz33j66acftgs49wHR6KhQMAIAUCoNHpWFQBycBw2+7IGDg4ODg3MH8GCJg4ODg4NzB/Bg+e8BniCBc1/o7u7Wn4Fsb29/KM7g4OA8dPBg+e8hNjZWrVbf7V1isXjNmjW3bt267/4MDg7u2bNnioUvX74cFxd36tSpK1euHDhw4KOPPgIAbNmy5QE9AVRUVNTW1k70rlgsLiws1N8FiiDIuXPnpmIf5rA+uL59QPR2d9VWliv/m4CrVqkb6mrampsQBF+5xPlfBw+W/xIqKys1Gk1qaurd3mhkZHQPB9xPBRaLNfXjqZctW9bc3Lxy5cqlS5e++eab3t7eAID4+PgHkTynUqm2bdvW19c3UYEff/xx6dKl+tcdHR27urpGR0cnt9/c3Az1ch9c3z4gEIDk374llUrgn0qloiDnllQqJRDwHwqc/3Xw3bD/Epqamj755JOjR48uXLgQXsnNzaVSqSQSKSgoSL98VVWVXC6XSqUxMTEAAKVSmZ+fT6FQ4Ekmzc3NAwMDbDbb09MzPz9fLBbb2tp2d3dbWVlRKJSOjg47O7uioqKFCxeWlZV5eHjY29vrV1FbWwul3q9evWpnZ0cgEPr7+xMSEiZviEgk6u7ujoqK6uzs7O7uhuJEbW1tfD7f2tq6p6fHzc0tJyfnySefrK2tbWpqevzxxy9evOjq6goPiGCz2VlZWWq1OiIiAia06JOZmTlr1qyJHNBqtf39/TBIazSa2tranp6eefPmwStRUVF//vnns88+O9Htw8PDH3/8cUBAgIGBAexMnb7t6empq6szMzODIkfTCksrm8iYuKy0FLlcBgAgkUhBM8PcPb0etl84OA8f/IHxXwKJRJo3b15hYaFUKgUApKamkkikmTNnVldX6xcWiUTp6emhoaHoIlxGRkZYWNj+/ftFIlFOTs6NGzdmzZpVVVWVnJzs5OS0a9cuNze3EydOMBgMU1PT+vp6Nze38+fPFxUVxcfHQ21Yfby9vX/44QcAgKWl5TvvvOPs7Nza2jr52Pfq1asffvjhyMiIo6OjjY3N+fPn5XI5n8//9ddfZ8+evWvXruDgYFtb23PnzkmlUk9Pz/379wMA2Gz2Z599xmAwGhsbt2zZYm5uHhUVtXXr1nGraGxs9PT0nCTRnsfjoScenz9/XqFQuLu7r1u3Dl7x8PDIycmZpAkcDic0NDQ0NDQ4OFi/b/v7+7/44ou5c+feunWrqalpEjsPBSKR6O0X4DcjCCbROrq4hcyKIv9VkgIH538TPFj+G8jLyxsZGbl69aqHh8eVK1cAAEFBQe++++4LL7ww7pmXLBarqKho0aJFXC4XXpk1axaRSGSz2cPDw4cOHYqIiAAAxMXFHThwwNLS0tLSUiQS+fv7JyUlNTQ0vPrqqyQSic1mBwcHE4lElUo1rld0Oh2O7czNzV1dXY2MjCwtLXt6eiZpyOLFi7du3Qr1EIhEIpSPVygUbDabQqEolUpTU1MymQyv0+l0qFhrbm7u6Ojo4+MTHh5+8eJFsVhcWVlpMt5hgSqVqre3d9xxMIpAILCxsYGvV65cOTIy0t3d3dbWhnbdHZdRiUQiiURCRRuwfXvlyhUDA4PCwkIrK6uOjo7J7TwUiERiSHiEq7unhZX17Nh4Op3+sD3CwZkW4NOw/wYGBgbWrFkDALC0tNy2bdt//vOftra27Ozsrq6ujRs3nj9/Xqd8X1/fN998Y2Ji8sorr8AJSaz2OpvNhtOnvb29UOX16aef3r59+7p16z7//HNPT0+0MHwxlbz1ibTd9YGxGXvFwsLC1NQ0IyPjwIEDOtb0dd45HE5wcDCZTPb09NQ3LhaLR0dHr1y5UlBQIJVK/f390ccFFDab3dvbC19v2LDhjTfe8PLy0mg03d3dNjY2UqkUxvJJgMPWsrIyOAGObbuFhYVAIAgLCwsLC7vj2ufDwsDQaHb8PKlEwuHix5Hi4Pwf+Mjykefo0aM///wz3K4CJ1F///330tLSY8eOjY6Orl69Wv8WgUCwd+/elpaWRYsWUSiUnJycjIwMPp9fX1+fkpKydevW7OzskpKSa9euffHFFwCAhISE9vZ2JycnHx8feIBiS0tLU1NTUlJSWVlZa2trfn6+fi2FhYV8Pr+2tjYpKam+vp7P52dkZOTn58PjTXS4cuWKRCI5e/Ysuu+mpaWlubk5PT3d0NDwypUr58+f3759e1dXFwAgLi7u1q1bKSkpIpEoOzs7OTm5oqKCx+MBAHbu3Ll///6ysrJxDyA0NTVdunSpp6enTCYTiUTj7h5yd3dHYzCRSOzo6EhJSbGwsGhsbIRewceL7Ozs559/ftxPJDw8PCkpSSAQjI2N6fTtkiVLoM8ZGRljY2Pj3j4dMOWY2do74Idj4OCg4ELq/04QBEEQRKFQMBiMicqIxWJ0QHbHd6Fsular/ecPu/jiiy82bNjAYrFGRka2bt0Kx5cymYxOp4tEIkNDQ/2YJ5FIpiiWOy47d+585513YEt1VON/+eWXxx9/HA64q6ur/fz8xrUANeUnsn8P7ukIqatVqtqqijHxKACPZDxjGhj6Bs6gUP5PefjvCKkjAIjE4o6engGBYPr/mhGJREsOx97a2nDc3We4kPo0Bp+G/XdCIBAIBMIkkRJgpi6n8i4MFQ/lWKiZM2feunXLwsJiZGQkPj4eXoRNMzY2HveWvxMpAQCvvvrqn3/+uWzZMvBX1fjBwUEbGxsYKSUSySSLl5NEyr/vHgBAKpVcPH08KjT4UVxTVKvVKVdyHV1c2aacv2+N39b26+XLbFtbGxub6X9smVqjyS0uVgwNvbZqFX7+86MFHixxpjuJiYngnz1H2tjYOCQkRH8YLZFIHnvsMfjawMDg4eZ+sE1MnnrqqcmfeKYnCoWiqr7xvpgaHBn57erVp9eu9fXzAwD09/cbGBgYGxujh8d1dXXR6XSdlemhoSEjI6NJHmgQBBkYGOBwOGQyWSwWC4VCS0tLypR3BatUKqVSqf9IpNFoRkZGDAwMSkpKfr506b3nnjP8249NOP8Y0/1BDAcH8g+vn9na2uoPUxwdHf9JH3DuSFltrWtAgH9AAJlMbm1tPXv27G+//SYQCFQqlUqlEggE58+fHxgYUCqVGo1Go9EgCKLRaC5evFhbW1tQUABXK5RKpVqt1mg0aDGBQHD58mWJRCKVSk+dOnXz5k2YvKvVarVaLTTe29ubm5urVqsVCgW8qFAolEqlSqUSiUQ9PT0KhQK+hZodHh6+dOmSVquNiori2ttXNDQ87P7DuQvwkSUODs4jCYIgAwKB44wZ8LGGx+PNnDmzp6envLy8paVFKpU6OTnV1NTExMTADCgymRwcHFxSUiKRSHJzc4eGhmbOnCkQCE6fPk0kEh0dHSsqKmCOU1FREYPBoNFoNTU1JiYm8+bNa2xsPHXqlJWVFYPBKC0tNTU1VSqVHR0dXV1d7e3tUVFRBQUFAoHA0NDQwMAgICBAq9XevHmTz+cvXLiwtLTUxcVFq9U2NDSQyWQmk0kkEh1dXHpbWx92F+LcBfjIcvoyNjb28ssvp6Wl/WM1Kv4rCvrgTB05cuT+JuPv3r37q6++uo8G78iuXbt27NhRWVmpc33qvXcf+/l/HC2CoNu7+vv7rayshEJhT09PdXV1b28vhUKZO3cuHO21tbU1NTUNDg7KZDImk+nk5ATFFAUCgVKpbG1t5fF4MTExAoGgvb19/vz5VlZWVCq1ubnZw8PDwMDAzMwMQZCGhgYajSaTyVxcXOzs7GbPnt3a2vrUU09lZ2cTiURvb++goCASidTX10ehUBwdHWNjY/Pz84eHh5uamvh8/vLly83NzWFoJ5HJGvys0EcKPFhOXwwNDWNjY2Uy2T9W44kTJ+6LHVQcVZ/AwED91Ma/A9QNuI8GJ2dkZKStre29994LCAjQeWvqvXe/+vmOCIXC7u7u3t5epVI5bgGNRjM4ODg4OHhXgvUymQwK3iqVSqgY9dBRKpUCgaC0tFQikZiZmc2YMeM///kPmUy2sLDIzs5msViWlpYymSw7O9vQ0JDBYEilUhhlb926xWKxzMzMiESiVCpls9ljY2N8Pt/Q0JBIJDIYjKampt9++626ulosFg8MDKjVagcHh9zc3J6eHkNDQ7lcnp+fb2RkZG1tLZfLaTQajUYbHR0dGBjIzMx0cnIyNjaOi4tbvny5VCrNz893dXV92F2Fc4/g07DTlJqamrGxMbFYbGhoCADQaDQFBQUajSY8PJxKpQIAioqKtFqts7OzVCrV0UotKioSCARubm5NTU3R0dGtra1tbW0JCQlEIlEul9++fZtCocTExKDFGhsb58yZ09HRsX//fktLS29vbycnJx1/NBrNrVu34K4WGo2GFY/VsSOXy7HiqKOjoy0tLWNjY7Nnz5bL5Twej8vlCgSC7OxsrLSsRCIpKyujUqkcDkf/B0UgEJSXl5uamsI9NWVlZTKZzNXV1cLCAi1z9epVCwuLgICAy5cvz5gxg0qlwirKy8t9fHy0Wm1NTU1YWJiJiYm+Vq2OUq4O2OrS0tL6+vpKS0tnzpyJLVNfX4/tPVQA1tfXNyMjg0AgzJs3Ly0tzcjIaHR09MiRI5aWlrNnz4ZJqw8OPp//559/WllZLVu2jEKhsFgspVJJoVD6+/tramrmz58vEAiOHDlCoVA8PT1jYmIkEompqalUKlUqlWw2e3R0lEgkGhoawhc0Gg3GGDg+a2pq8vb2VqlUbm5uYrGYzWZLpVKFQmFiYjL1vTAQhVxW39YZ4ON5z7r5RCIxKipKoVBER0fT6fSKigoGg+Hm5sZisbhc7tDQkJOTk7e3t0Ag8PHxgSuIUFwiLi6upaUlLCyMTqczGAw4LhSLxe7u7gCAmJiY4uJiZ2dnNze3goKCkJAQ+F0NCwtDEIRMJi9cuFChUERGRgIA5HK5oaGhjY0NXMik0WhUKvWxxx5rb29ns9mLFi2Sy+X6z1g4jwp4sJyO/PbbbxYWFo899tjly5etrKwAAK+//vqePXsoFMr69esPHTr0ww8/eHp6xsfHv/feezt27Dh37tzixYs9PT3Xr1//+OOP+/r6zp49++TJkw4ODitXrjx27Fhtbe3p06efeeaZl1566fDhw/X19UeOHHnqqadgMWdn523btu3YscPBwSExMXHcH6yXX355586dQqHw2LFj3t7eNTU1r7322h9//NHa2hodHY21880334SGhgYEBEBx1G+//fajjz46e/Zsb2/vE0880dPTU1VVlZiYeP78eS6XO3/+fKiEvm/fvnfeeUer1f755586wVIsFr/11lvHjx8/evQolUq9fv36/PnzIyMjP/jgg/Xr16PFLC0tT5w4ERoaKhaLb9++/cILL6BVLFy48PPPPw8JCdm8efPhw4ehVu2lS5cKCgpSU1NnzZqVnp6+cePGY8eO6Tf822+/xVYXERGRl5enLyLo6emJ9h4UgD106NC+ffsMDQ0dHR3feOONmJiYzMzMd955h81mHzx4cKJ+vr8EBwe3tLS4u7vX19c3NDQ4OjoKBAKJRGJlZZWZmTlnzhy1Ws1iseBK3tWrV0dGRnx8fKqqqtRqdVhYWFVVlVarDQ8Pv3nzJpVKdXZ2Li8vp9FoUVFRQqEwOTmZwWAQCAQej9ff3+/u7l5bW4sgSFBQ0Jw5c6boIaLV9nZ1FmTd6GptMt+0cfKUG4AgYGQEjI3RqFSjv+Ypkslk7BE32IceVOl33P1Zzs7Ozs7O2CvW1tboaxaLhWYrzZs3T7+Ag4PDRM76+/vDFy4uLgCA+zuhgvPPgwfL6ciBAwdKSkoAAG5ubuC/Z4DAnehEIrG8vPzXX3+tqKggEAi7du0CAOhopTKZTC6X6+npOTo6SqfTORyOpaVlXl4ej8fr7e2trKxEEEQikWCL9fT0wNTMcX/BBwcHOzo6uFwul8t1c3N75pln3n//fQBAXFzcCy+8sGDBAqwd8Fdx1M2bN2dmZhKJxKqqqieeeILD4QAA9KVlIyMjZ8+eHRsb+8477+jUnpKS4uXlRSQSoaTfqlWr3n33XQBASEjImTNnVq5cCYuZm/+fNhscSehUERoaCgAYGBgAelq1qFLuG2+8od/2o0ePYqt78sknYUfpFMP2no4AbFxc3Pbt21etWnXu3Dk45Jqonx8QKpWqtLRUqVRSqVQzM7Pi4uLY2Ni+vj4DA4OxsbHa2tqKioqFCxdmZmba2NiUlpYyGIyVK1fm5OQ4OTn19fXV19fDxInh4WF7e/uhoaGenh4mk+nj48NkMpuamsRi8dy5c3NyckQi0YIFCyorK6ceLJVKRUN1WXszT6VUFBcX32FIiiBgbAwoFFZmZgEuLqRpn1WJ828CD5bTETqdPjIyYmpqChVJWCyW+L+qJX19fSYmJiwWC+5TGB0dNTY21tdK1ZFvBQBotVoOh8NgMOADuJeXF9CTbNURNUUxNDRE96SMjo7qi8dOYufZZ589e/ZsTU0Nj8fr7u7GmsVKy9JotMLCwtu3b3/zzTfffvstthiHw0HbNTo6SqPR1Go1mUxGa9dpKfQNe1FfmRZ7RUcpF2sTlhy3On3QVusLwCqVypkzZ165cuXxxx8H/02D0e/nBwF8cDEyMjIzM3N1da2qqiKRSGq1GuYzEAgEf39/Jyen3t5eMzMzPz8/FouVnZ1dUVEBABgYGBgbG7O2toan07DZbCqVSqPRCAQCmUyGSREUCoVAIHR2dlKpVAaDAceaU3ePRmfMmb/I1tGlvqzgscceu/PIEqPgc896PSqVqrm52cTEBCpd9PT0uLu7Dw4OSqVSW1tbJpMpl8tHRkbg+QEqlQo7KOzv71coFHAaXyKRtLe3w7NXcf714MFyOrJnz54TJ07Ex8cXFRUBABITE59++ulr165RqdS4uDhnZ+c9e/bs2bNnwYIFAwMDiYmJUCuVSqVC3VEqlcrn88vKyhobG1tbW/l8fkpKCpROXb58+blz5+zt7Wk0Gjz9ChZra2traWmJjY09deqU/pIhg8F46aWXTp486erqSiAQtm7d+vPPPxsYGNy4ceOLL74oKCjQsRMeHn7+/PmEhASY19/Q0NDZ2dnb29ve3p6Tk8Nisby8vKC0rIeHB5SWPXPmjFQq5XA4aNY/Slxc3I0bN7KysrRarZOT0759+w4fPhwYGDgwMPDaa68dPny4rq4OqpwrlUooEtva2jpz5ky0ipaWFngqZ1dXV0NDQ2ZmJqpVK5FI/P39T58+/dxzzy1atEg/HOpUd/To0bq6utraWh8fH52SaO8tWbKkqKgoOzsbbgY5dOjQ6Ojotm3bfH19JRLJ888/b2FhkZGRYWdndz+/NONBIBBCQ0NZLJa1tXVxcbGJiYm/v/+cOXPodPqMGTMUCoWxsXFsbKyFhUV3d3d4eHhjY6O7uzuVSh0eHl6wYEF5eTmRSPT09BQKhY2NjTNnzoTbWBgMBp1ONzMzo9Fo7u7uWq22trZ2yZIlg4ODVlZWUx9WQshkioePX2iAzx0i5X1Cq9XCk9eamprWrl174cIFAwOD1tZWmCViYGDw3HPP1dXV/fLLLzt27Ni3b5+Xl1dkZKRUKoVHf+fm5tra2mq1WgKBMDw83NnZaWhoqNVqHRxwKd1/Obg27PRFKpUSiUStVgsV11QqlVarxf6gYCVGJ9dKxaJSqRAEgbuE9JlE1FTnxsmlZbF2oJ+TS/BAJVsKhTKR8zp6qmNjY3Drk34xCoWiUqnuVlJu8uZMVJ0O+q2eSsmpoKMNKxoVHvn+uy8+2fIPKPjIZLLc3Fy5XB4fHz+5gOIUUSgUH2z99LnX30bl7u5NGxZBkON//ukwc+a427ImYmRk5MyZM88999z+/ftdXV2tra2DgoL4fP7Nmzd9fHyGhoaeeeaZlJSUs2fPvvLKKwcPHly1atXAwIBEIgkJCamsrBwZGfHz8+PxeAiCWFtbc7nc5uZmFos17pPWJCQlJYkaG5/671Ht/weuDTuNwUeW0xfmX7cw6C/nYH+LJ9dKndwOlkl+wXVunPxnGmsH+jn5czeBQJhc5lQn8EwUumCxiR4FJmHy5kwlUoLxWj2VktMcBoMBN7n8O0ZOYrEY/mMhEAhyudzIyGhoaEij0fT09LS0tGzcuJFAIPT29lpaWpaVlTGZTKlU6uPjw+fz29vbHRwcjIyMurq6JBIJh8Pp6ekJCQnp6ekxMzObyj89nEcaPFji4ODcgWkbJulUqvivh5DcEUNDQ6lUev36dU9PTyaT2djYODg46OnpGRsbK5fLYVqzWCz28fERiUTe3t6Wlpatra1yudze3r6trU0kEvn5+dFoNFdX1/b29v7+fgAAj8ebN2/e1GXcEQQRi0TM+zFMx/nHwIMlzkNGKpWmp6c7Ojr6+fn19fUdPHjQxsbm+eeffxTP08D5JyEQCK729teLixMSEqY+UudwOEuWLBkYGPDx8SESiTU1NREREcbGxmq1GvmvHtCKFSsMDQ0JBIJMJuNwODBl1tTU1NzcnMPhWFtbl5eX29jYeHt7M5lMQ0NDBweHOx4JjkUmk1UUF69JTLyXZuM8JPBgifOQodPpJiYmPB7Pz89veHj4scceCw4Ovtus9v9BoN43TLx5tIDC5ffFlJ+7e2l9/aEffkhcuJDL5U5xBGxgYODk5AS1h2DyJdqN6MEgUGOdRqONjY3Z29sDAORyORTrGBsbgzld8EaYpjlFGSm4+/ryhQszHB1dHvwOL5z7CB4sH0ny8vKEQiHcOIrdKnK320amDtbyxx9/vG3btsknnXbv3i2TydavX79hw4ZnnnkGzezWh0gkoqYMDQ3HxsZSU1NDQ0PRvMlHi3E/ArFYfMd+uCtIJBKRTPlu334S6dH7J6zVajUI4a6GYhNBpVCeX7IkNSfn3JEjUrUaTPvtigQCwZBKDfP0jAkNnf6nb+JgefT+peEAABwcHGDuV1NTU3d3d3R0tM7r+87vv//+8ssvw9fx8fF3/He+cuXK/fv3GxkZRUdHQx3RqdDb2xsUFFRXV/fHH3+sW7fub3n8MJjoI7jbfrgjTAPDN9/96K4EXacVJCKJcvebsMaFRqUujo1NjIpSPwq65AQASCQShUyetsvAOBOBB8tpx8DAQFVVlYmJiUwmk8lkUVFROTk51tbWPB7P3d0dipRWVVWZmZkNDw9//PHHgYGBcFoJfR0SEgI1YKlUanR0NFa7NTo6Gt1kq9Fo0tPTEQRJSEgoKSmRyWRz5sypqqoaHh6GAjdJSUlz5sxpbW01MzPbv3+/lZWVt7c3mUzu6urSaDTwxAZUslWj0dTW1vb09MybN08//aOhoaGrq8ve3p7L5ZaUlHh7e9vY2MC3pFJpUVHR0NBQXFwcg8GAuZgThXyoNCuRSKKionTe4vP5AwMDlpaWLi4uUEpXq9WGhYUplcqrV69GRER0dnYaGxs7OjoWFxc7Ojo6OzujPcPn82NjY5ubmzs6OhISEggEwkQWGAwGlPFDqa6uhp+Ur68v+hEolUqJRDJjxgyhUNja2or1FsrGcrncvyMTSiAQqNRHZj/tg4ZAIFDvYQM0Ds7dgM8DTDu4XG5SUpJIJDIzMzt16hSTyayurraxsWGz2Z9//jmNRuPz+ebm5mfOnOFwOMHBwaGhocHBwdjXAICXX355zpw5hoaGx48f9/X1ff/991Uqlb29PfY0KxKJRKPRLly4QCAQWlpajI2N09LSCgsLY2NjoaJNY2Pj5cuXh4aGrKysbG1tExMTnZycbGxszp8/L5fLoWQrVJrm8Xgw0dvFxQWr14ri6uq6Z88eQ0NDJpOZlZWFFUBnMpkbN2786quv2Gx2QECAra3tm2++6efnN27nfPvtt56envX19efPn8deLykpOX36dGRk5KFDhxAEefPNN2fMmBEWFvbmm28aGBh0dHT89NNPERER+/btS01NjY2Nfe+99wAAaM/Y2to+/vjjFhYWQqHw4sWLAICJLOzevVsikaD1ikSizMzM0NDQzs5O7Efg5eX15ZdfmpmZyeXyjo4OND2xv7//yy+/nDt3bmZmZuu0PM4QQZCq8tLi/Nzi/NyKkiIlfpoYDg4AAA+W0xACgfDaa69du3ZtdHRULpdrtVp/f382m21ubu7o6Ojv7x8aGmr238xlrAor+hpqwFZUVCiVSrFYzGQyzczMPDw8oBQqtq7o6Oiuri6VSmVkZBQQEHDkyBEWi1VYWGhvbz8yMmJubu7i4rJ8+XITExNUzpRIJEIpWlSyde3ate7u7itXrhQIBP39/ePGADKZvHnz5jNnzrS1tb3xxhuTrFdNrpcGlWZJJFJdXR32+uHDh+Fy4K5du1paWvr7+5lMJpVKlclk1dXVZmZmgYGB8NwMf39/OHAEAGB7hslkmpqawi5qbm6eyIKJiQl2KweLxSooKFi8eDH8RNCPgM1mz5kzp6ysrL+//6WXXkLL68jGTvgleHhotdqi3Nu3bqbeupmal50p/wdPiMPBmc7gwXI64u7uzuPxRCLRsmXL9u3b5+vrC6/DKIUF1SPFvuZwOEwmMywsbNasWatXrwbjiaOirFq16uDBg5aWlgAACwsLZ2fnsLCwTZs2wcEQeoYUtiKIjmTr+vXrbW1tZ82apdFodDRgIXFxcenp6R0dHegE7B3Rl5d69tlnY2JiPDw8dGrhcDgikQgAAHVc4WsAgFgshtniOmK5+iKx2C5isViTWMD2YV9f344dO06ePHnkyBGRSITtpddee+3gwYM6/ltYWJibm4eFhT355JPwuDEcHJxHAjxYTlMSEhLIZPKyZcuKi4vhKV3JycklJSV8Ph++rq+vHx4ejoiISEpKgtLh6GsOh7Ns2bILFy4UFBS0trYWFBS0tLSUlZWlpKS0tLTojPz+85//JCUlQUXvLVu2XLlypaSk5Nq1a3K5vKCg4Pr16zAixsXFnTp1SqPRtLS0NDc3Z2RkxMXFkUikrKys9PR0gUBAIpE6OjqSk5MtLCx4PF5ycnJdXR2fz8/JycnIyIBb8xMTE+9qaenLL7/87bff0D+h0mx9fX13d3d3d/fQ0BD61ubNm1NTU0tLS69evWpjY/Of//zn2rVrKSkpCQkJHA4nLy8vIyODz+c3NjYmJyfX1NS0trbeunUL2zPNzc08Hi81NbWkpIRMJk9iISUlBa1XIBDs3bu3paVlyZIlLBYL+3HAcw3haSdjY2OwHxYsWCASiW7fvp2eno6dzsXBwZnm4Nqw0xRUSRVGiElKTpQ6MrkGLBadKibSQR03KQKrgCqVSplM5rgasPDeGzduoIcCTpHKykqdjTCTKM1i9V2VSiXMk7ur6rBM3QK2XthSuVxOp9PT0tLg4dI6TC4bOy462rAPDo1G89uh74WCEQAA08Bg9ZpXWXrzGfede9OG/ReCa8NOY/DdsNMUNBLcMUkD+2uOfT31vH6dKibSQR03bGB/9OE+23FXHC9evIggyETbdiaCx+Ppz9lOojSL1Xf9+7sjp24BWy/spc8//zw+Pn6i/a53Gyn/MVRKpUqtQh+gEQRRKhRKhYJCpeKpDjj/4+AjSxycR4B/ZmTJa6gryc/t7+vVqNUAACKRaGZu4eXjOzMiCoAHGCzxkeX/gY8spzH4miUODs7/Ye/oZGBopP2v1oFWqyUA4Orp/UAjJQ7OIwEeLHFwcP4POp0xJ36euaUV/NOIxYqeN9+EbfpwvcLBmQ7gwXI6kpeXd+3atamU1Gq1V69effzxx/fv3/+gvZocqVR64MCBxMTEy5cv//HHH3v27BkYGLg3U4p/PBF+y5YtD0I67siRI01NTffd7AOFbcqJio03MDKiUCgzI6LsHZzw1UocHIAHy+mJg4ODu7v7VEoSicTFixerVKoHJAk7dZhM5uOPPy4QCJYtW/bEE0+sWbPmmWeeGRsbu1s7zc3NBQUFD8LDSYiPj9eX6Pv7BAYGQgnfRwsHJ5dZs6MDZ4b5BswAeKTEwQEA4LthpydQ+nVsbAyVJKXT6SEhIXe8saenp7W11dTU1MvLSygUJicnBwYGDgwMcLlcb29vAACfz29tbYXyeG1tbdnZ2QsXLiwrK/Pw8IDnEGVlZanV6oiICCaTmZubS6VSSSRSUFAQVDSFQjZTaYKxsfG8efN++umnlStX5uTkPPnkk7W1tU1NTY8//jgAoLKycmRkxMXFBVaKAtVuAwICoMLtyMhIfX09mUwOCwvTrwLr3iQqtVhp3Dlz5iAIotOrnZ2d3d3dGo2mtLQUWxLuWS0vL4e6BHK5XMeNq1ev2tnZEQiE/v5+mCKCdVgul/N4PC6Xa2xs/Hd68p+HSCT6BQapVWpcfhYHBwUfWU5HoPSroaFhd3f3jz/+GBERsX//flRTZhK+/fbbyMjI7777rrOz08TEpKmpKSUlJTo6+vLly3/++Wd3d/e1a9fmzZv3zDPPAADs7OzOnz9fVFQUHx//9ttvAwC2bNlibm4eFRW1devW1NRUEok0c+bM6urq/v7+L774Yu7cubdu3Zr6vKKdnV1FRYWtre25c+ekUqmnpyecK8Yq0OrcwuFwQkNDobyqQCD49NNPIyMjLS0tP/nkE52SWPdQldqysrK6ujqoUuvu7g7PLfH19f3oo4+USqWzs/O2bdv0exVVu9UpCQA4cuTI0NAQiUTKzc1FjzBEsbS0fOedd5ydnVtbW1NTU3UcptPpPT09VVVVf78n/3lIJDINP3wbBwcDPrKcjqDSr1wu197enkgkstns4eFhVHxuItatW5ecnGxgYMDn8+3s7ExNTV1dXQEAjz/++Lp169LS0sLCwjIzM6VSqVarJZFIbDY7ODiYSCRChZ2LFy8uWbKksrLSxMQkKChoxYoVLi4u7777ro6iKbR5R0ZGRmxtbclkMlTpo9PpMB/xyJEjy5YtKywsdHJyGhwc1JmoROVVL168COOTg4NDamoqjF4oWPdQldo1a9YAANzd3dPT0+VyeVtbGwCAyWRyuVxPT8/R0VEojavfq9BD/ZJSqZTNZiMIolAoTE1197mYm5vD41mgoqy+wxwOR8fVe+vJcRGOjEgkdz3LPU2gUCimZtz7cqQlAECt0QhGR2Vy+fRPgyMQCAYMBpvFwg+zfOTAg+V0ZxJZ15aWlitXrmzcuFEul5PJ5JaWlu3btx8+fLiqqgpBEKx0am9vL5fLPXfu3NDQ0Ouvv/7NN990dnY6ODiAv2qlwnMzyGSyp6cnj8fLzs7u6urauHHjs88+KxAIwsLCwsLCRkdHAUZgaBJSUlL27duHbQJUzrOwsHBycgoLCwsJCdHfy4PKq7LZbFRqXP8kSDiHDN174403sCq1H3300RtvvOHl5QX1Y21sbPT7cKJe1bkeEBAwMDDAZDLfeuutcduILT+Rw1hX9Xvynvn1wF4jGukBnfX9QNFqtV29fS++sdHO0envWxuTSo9fudIjEtEMDaf/+iqCIHKx2N3K6skFC+iP4Gf3vwweLKcjUFi1ra0tJyeHyWR6e3vX19enpKS8+eab2GJsNluhUMCFMR8fHz6fr1arKyoqCARCRkaGj48PAKCkpMTW1vbq1atfffVVQUGBUCgsLi62tLRMT0+PiYlpampKSkry8PBobW3Nz8/fuXPn/v37Y2JihEIhn8+vra0NCQlZvXr1kiVLioqKsrOz1Wq1h4dHdXX1xYsXd+/ejXVGKpWePn26v7//8uXLEomktbX1gw8+cHZ2BgDExcXdunWLSqWKRKLs7OwtW7bs2bOHRCL19PQsWrRIp+3h4eHnz59PSEhYvnx5TU1Nfn5+Y2Oj/oRtWVkZ6l5cXNyNGzeysrK0Wq2TkxORSOzo6Ghvb7ewsGhsbOzs7OTz+WVlZY2NjW1tbdXV1Tq9umDBgubm5vT0dHNzc2zJlpYWCoVy4sQJAwODgoKCTZs26Wj6JCUl1dfX8/n8jIwMiUTy3XffYR2GerAsFsvd3X2inoQS7feGVDL24cYP9Me70x+VSrVn/w9qtfrvm5LKZAfPnrXz81s1b56BgcH93bir0WiIROL9tYkgyOjo6J+XL/92+fLLK1dS7tPYGucfAFfwebRRq9W9vb12dnboFZlMxmAw4MjvwIEDrq6uUVFRqL6aWq1GEIRCoUwyNETFV+H0I3oW4z0ommK9otPpIpHI0NAQ7judSIEW/FWEViKRMJlMfVcnd28Sldq74r333tuxYweRSCwpKcnJyYEru5Oj7/B96Ul9BZ9tH2za9dXnj2iw/GbX7siExU6u/7cMfM8KPvnl5bdbWja9++7kM7pwosLJyQlBEFQJGX494HoE/BlEEKStrQ2e11ZdXZ2Zmenj4+Pu7m5gYAAn6tGPFd47NDSk0WjQw1nhRWjqjnrOO774YmV4uK/OpndcwWcagz/XPNqQyWRspAQAwF9kAoEgFArLysq6urrgQY9oefhikiiCiq8SCAT09x38PUVTaAc7kJooUoK/itBOVOnk7k2iUntXuLq65uTk0Gi02tra+fPnT+UWfYfvb0/ioCAI0tLT4xcYeMe1z9zc3JUrV6rV6uLi4u7ubg8PDxKJNDg4aGxs3NzcHBAQMDw87ODgUF9ff/Xq1ddee83V1TU5OXnevHmdnZ3Hjx/38vICAHA4HLiZgEKhVFdXs9nsmpoaMzMzV1dXExMTlUpVU1Pj4uLS29vLZDJjYmImSUaiUql+M2bw29t1gyXONAYPlv9aTExMDh8+/LC9eLR55ZVXAAAIgoybu4Lz0FGr1dinkHHRaDRjY2MmJiZqtXpoaKimpkatVre0tJiYmCiVSm9v75ycnL6+vqioqIGBAbhdCwAQHh6empq6aNGijo4OQ0PDoqKiWbNm1dfXj46OikSi4OBgsVisUCgsLS2rq6s5HI5Wq21sbITPVQCAkJCQSebYCQQCncEQKZX3tzdwHij4jiwcnDvwL5Ow0Wq1cPPz/whCoRBO/g8ODpaXl6tUKj8/v+rqak9PT61WC0MjAIDH45mbmzs6OhoaGg4PD9NotJkzZ1ZUVMDt3La2tiQSiUajDQ0NjY2Nubu7u7q6GhoaUigUJpM5NjamUqlcXFxkMpmpqemsWbPwyYN/H3iwxMH5N4AgyM2bN/v6+kpLS/Py8vLz8+H6HPjvoikAQKvVwmW5lJSUzMxM+CcEvq6rqxsYGCgvLwf/3Q+MGgEADA0NffXVV7m5uQAAhUJx5MiRXbt23bp1C1uLfo2jo6OdnZ2T743QarVCgeAB7Z/QaDQymeznn38eGRkBAFhZWXG5XHd395CQEAsLi9zc3ISEBCqV2t3dDfejAQDodHpdXV1NTU1wcLCRkZFUKg0MDDQzM6uurrazs4uNjT158qRcLjcyMjI0NBwYGBCJRObm5oGBgf7+/mKxmMVi3a+sGJzpA/6JPsI0Nze/8sorly9fxp6nOEXEYvGGDRuef/75SXTytmzZsm3btnvWgZvkdnQLz5EjR+bMmXO36YbjHkOtw3fffadWq99///0p2uTz+WvXrk1OTr7jtN5UgB5OpZPvFwQCQS6X19TUdHV1ubi4aLXa27dv19TUzJkzR6FQEAgEY2PjiooKpVLp7u4uEAhIJFJlZWV+fr67uzuZTK6vr585c+b333//xhtvAACys7N5PF54eDiPxxsaGpozZ46np2dPT8/AwACMfGq1WigUvvzyyzQa7datW0QikUKh1NfXEwiEhQsXpqenU6nUGTNmXL582dzcvLKy8uuvv57ogFWFXF5dUtBYWbpp4wb65EoICPJ//93NcN/c3Py9996DrwMCAuRy+ZUrV1asWMFisaA6BwBg06ZN8MWLL74IADAyMoIvAABwwRLi6+sLX0RFRUFrAIAZM2Zgq4O70HH+feDB8hHGxcXF0dFRP/9yKhgZGUVHR+vnL2L5m4qpE93e3Nzc1dUF48e9qaeeOHHipZdemrzM448/fvDgwanbdHNzc3BwuLfO1Ad6OJVOvo84ODiUlJQIBIKQkJBbt24RCAQDA4OBgYGenh4SiQSV+drb2+E+4fLy8qioqPz8fAaDMTY2ptVqOzo6bGxsqFRqXl6eVqudMWNGdna2VCr18vIqKyvz9PQEAPT39xsbGw8PDzMYjL6+vh9//HHx4sXd3d1lZWVLly6l0+kjIyNXrlyxsbHp7Oysrq5mMBju7u4qlWqi3aEKuSwr+WpVSb5Wo7l27dqdv28SCVAobLncIHd30j3l9VOp1MTExHt4vsT5HwcPltMRHXVTfQ1SAEBubi6NRht35gqrENvU1FRcXJyQkNDa2hoSEoLVUAUAKJXK/Px8CoUChWexN6KKqSQSic/nDwwMWFhY6AwBL126ZGtrq1ar1Wr17NmzsXVZWFjA2zs7O7EKtAYGBqj6q6+vL0wSFQgE+iq1bW1tfD7f2toa9gNaaUpKypEjRywtLWfPns1isbAysxqN5tatWwYGBqjsam1tbXd3d0JCwrhCu83NzQMDA2w2G0YCFJ3rWE/s7Oy6urrs7e3Nzc2Li4s9PT11diNrtdpdu3aVl5fb2trCDbT6nfyAtGEdHR3/+OMPS0tLuLXEzc2ttraWRCIplUoikTg6OtrY2KjVatHzVVpbW0kkUmBg4P79++HmZDqdDvMoiEQiTB+i0+nGxsYCgQAAkJeX99RTT509e9bZ2dnW1tbc3PzZZ581NjaurKyEukt0Op1Go6nVajqdTqVSCQQCm802MjKaZLBOpdFnzo4hU8hNtVUxMTF3mDBAEDAwAMbGyGQyiUQCel9+jUYDR5xwVnncsSyRSGQwGDKZjEql6heAM8kEAmHc6K5WqzUaDWwaTAciEAjwn+G/bGEbRx98zXI6oqNuqqNBCgB46623nJycAgMDx9UXxSrEOjo6njhxorm5uaqqSkdDFQCQkZERFhaGCs9ib0QVU0tKSk6fPh0ZGfnTTz/pDLxMTU23b98eFhaGIMjmzZuxdaG36yjQYtVfUfVUfZVaPp//66+/zp49e9euXcHBwdhKExISOBxOYmIii8XSkZl9+eWX/fz8TE1Njx07BgDIzc21t7eHnaYvCZuTk3Pjxo1Zs2ZVVVUlJyej9nWu63ji6uq6Z88eBoPBZDIzMjKsrKx0Op9IJM6dO9fV1RUN8NhOfqDasEZGRmFhYfPmzWMyme7u7kqlUqVSBQQEaLXa7u5uKysrAwMDFotlbW3t7Ozs4+PT2dk5NjZWXl5uY2OjUCjMzc09PDxEIlFgYKCrq+vt27fDwsI8PDy4XK6TkxMAIDo6uqWlBU5LkslkDodz5syZW7duGRkZJSQkdHd3FxUVKZXKxYsXt7S0kMlkDw8PR0dHc3NzhUIx0ZCdQCCYmpnHPbb05dfe4HA4rDtiaMgyMGDSaOOGptu3b9fW1hYWFmZkZBQXF2s0GphYjKJSqRAEKS4uvnXrVklJCQx+CIJoNBqNRgP3ytbX1w8MDKjVaugz+kKr1Z4/f/7777+HUohtbW179+49dOhQe3t7SUkJNA4AgHPUWq0Wqi7o28F5RMFHltORlStXYtVNdTRIh4eH4UAHAKAzrIHoKMTS6XRvb+/Q0NBz585hNVSLi4tnzZqFlUjVuREmYh8+fHj16tUAgG+//VanIjMzM3d3dyKROGfOnBdffHHXrl1oXQAAeLu+Ai2q/goAgOqp+mUUCgWbzaZQKEqlUifvHoqqwPk6rMxsfX19R0cHl8vlcrlubm7t7e2+vr5opwE9SdhDhw7BFc24uLgXXnhhwYIF0L7O9R07duh48s4775w+fXrFihVvvPHGuPs4SCQSkUhEhybYTr5x48b90oYdF1QRad68eQiCJCYmkkgkHx8fmOsZGBgIX+iUj4yMhKNJBLMcOHfuXHRS1MPDAwDg5eUFP25YAF3Vg1RWVnK53JiYGCKRCCfJ0R549tlnJ59fJZFIltbWROLfHZyRSKSOjo7Ozk5/f/+RkZFjx46JxeLIyEilUimTydhsdkZGhq2trUKhsLKykkgkf/75Z1FR0YoVKwoKCgwMDEgkUlNTU1RUlEKhuHDhAo1GCwoKun79urW19Zo1a1QqFZ/Pp1KpsF3t7e12dnYBAQEXL14cGxtrb2/n8Xjz588vKCgwNTWVyWQqlWrWrFnJyclEIjEmJiYrK8vNzW3JkiW4KuwjCv6xTUc2bNhga2sbGRkJ1U3BXzVImUzm0NAQ/FN/GhYqxC5YsMDa2hpViIWTbBwOB6uhqmN23BvhXXDcqdFoJBLJuA7LZDL0N3RctQGsAi2q/jpJGQsLC1NT04yMjAMHDuhbgxWVlZWhMrMbN26EI5iJWoetAvxXyhXOLvb29rLZbNS4znV9T2JjY7OyslpbW8d9UkEbCLfD6FRqYWHB5XLDwsKeeOIJnRHzfQd9pEA/monE29BZR2woHTe8oU85+vj7+8fGxkI72GeFiUw9CFgsFp/PJ5FIarWaSCSOjIw4OTmJRKKhoSE+ny8Wi01MTBobG4eHh+VyuVardXFxcXFxMTExYTAYnZ2dxsbGMTEx3d3dlZWVAQEBJBIpKysrNjYWfh+GhoZEIpFGo4Ffs8DAQIFAUF1dbWtrGxERMTAwkJiYWFhYSKVSg4KCiETiwMBAVlbWggULVCpVamqqkZFRc3Mzrpj26IIHy+kIVDdNSUmB6qZYDdL8/HyVSvXmm29evXq1uLi4tbX14sWL2Hvh1BOqENvW1tbR0XHq1CkAQFxcHJlMzsrKysjI6OzszMnJycjI4PP5UCJV58auri6omLp58+a0tLTS0tKrV6/qiKMCABoaGurr63/88ccffviBx+OhdbW0tMDbW1paoAJtWVkZVKANDw9PSkoSCARQPTUjI0O/jKGh4ZUrV86fP799+/auri6dSi0sLDIyMoyMjLZs2XL58uWSkpLr16+z2eyXXnrp5MmThYWF+p3W09Oj096tW7dmZ2eXlJRcu3btiy++gA4nJSXpXB/Xk8WLF8Plruzs7Oeff17HPRcXFx6PV1JSwmAwdCpdsmQJFMjNyMi4h5OxpzM6Y9Z/Brgii/5Jp9NLS0sTExNbWlqMjIzc3Nz4fP7w8PDo6ChURdZqtWZmZjQaTalUSqXS8+fPBwUF5ebmqtVqU1NTuPquVCopFIpEIpFIJFCU0dzcHADQ2dnp7OxcU1MzODiIIMj58+fnzJnT2tra09NjZGQER6UGBgYGBgbt7e0CgQA+McBAy2AwrK2tlyxZgj43KJVKXBj20QLXhp2m3FHdVKVSEQgEqLmqv08BqxCr89bkwqQT3SgWi/U3ENbW1h4/fvzzzz+n0Wh39UN5x9yPL774YsOGDSwWa2RkZOvWrfrjS6wFrMwsXJTSD+oTMW67sNd1PNm9ezeNRrt58+bcuXNhyerqaj8/P53b4TLYRMl2uDbs/dKGzSgoaBCJXn39dRiERCJRXV1dSEhIZWWlg4NDbm4ul8s1NzcvLS21s7Mjk8mtra0wVYZCocjl8traWnt7ezabXV9f7+zsTKPR4BImh8PJz8/39fWVSqU2NjYymczZ2Xl4ePjWrVsAgFmzZllZWZWVlTU0NISGhgqFQjMzs5aWFoVC4ePjo1AoKBRKUVGRlZUVm82Ge4NDQ0Pr6upCQ0Ph5jWNRrP7m29iPDxm6nxzcG3YaQweLHHund27d+fl5f3www+oDMr9IiUlRaVSWVhYjIyMSKXSFStW3F/79+wJzAPx8/ODAVIikfD5/Pu+r1UfPFgCME6wHBWL95w4ET5/fkxMjH6OJvrMp/9i3JLYd8ctqXNxkj/h66SkpIaGhieffNLGxgZ9VyKRXL92ra28fMPq1TSdpzo8WE5j8GCJM32ZPjvyH7on+sHyi48221twGYxJs/inJVqNtraR9/L6dx2cXeCVew6WAIDugYHfr10blMnMrazuLfPyn0StVg/09dkbG69etMgMs1L+f+DBchqDB0scnEcA/WDZ09Uh+nvHRz9EKFSqnb0j9b8T6X8nWAIAVGq1cHS0f2Rk+udmkEgkSzMzYyMj8ribnvBgOY3BgyUOziOAfrD8N/E3g+W/BzxYTmOm+6wFjg58Pj8mJkYmkz1sR/7CF198sXfv3ru9KzU19amnnvr7tWdnZy9btuwebhSLxWvWrIG7Nv4xtmzZgmro4ODgPCrgwfIR4/5KmN4vVqxYAbfI3xXz58+/L2dFzZkz594y+f5h7VbIPSvuTovF2wfGVFs3PdawHxT/7tY94uCJPtOUoqIirVbr7Oxsbm4+MjJSX19PJpOxRxC3tbXl5OQ8+eSTtbW1TU1Njz/+OCohOzIyEh0dXVpaqlKpIiIi2tradJRXJRJJWVkZlUrlcDg6IjLYerFSsfpGdBxWqVTl5eUKhSI8PBxeycrKUqvVERERTCYTLTZu1bdu3dJoNHFxcajQK51Or6qqMjExkcvlUqk0KioqJyfHysrKz88Pa1Ymk0E1HP0O1Gg0BQUFGo0mPDycSqVevHjR1dVVqVS6uLiw/7qxQke7lc/nt7a2BgcHczicvLw8iUQyY8YMkUjU3NwcGRnJ5/NRKVrUQkNDQ2dnp4ODAyoYK5fLUSPjSubebbwkEwksGlGp+XdOw5KIBAppCnGCQAAsFhhPFfbfAIEAxhP0wJkuIDjTj/3796elpWk0ms2bN4+MjKxbtw5BkLa2tq1btyII8txzz8HDZpcsWSIUCmUy2ezZsxEEgdqqIpHoxx9//Pjjj5VK5bp16zo6OtRq9eLFi5OSkjQazfLlyxEE+eqrrxQKhUwmO3v27ET1Igjy9ttvIwjy0ksvjWsES01NzYoVK9RqdV1d3TvvvIMgyEcffVRbWyuTyTZt2oQtqVP1ihUrVCrVRx991NzcnJqa+tNPPyEI8sYbb2i12o0bN968eZPH4z3zzDMIgnz33XfDw8NYsxKJBIqQ9ff3R0dH67i0du3asbExhULx6quvarXajIyM5cuX19TUwIMeUY4ePfr2229rNJpnn312dHS0q6tr9+7dWq12/vz5CIIMDQ1FREQgCNLV1fXjjz9iPcQaUSqV8+bN6+np0Wg027dvb2pqwhpRqVSPPfZYYWHh4cOHNRrNkiVLxsbG7vo7gSAIgmj/pf/dZS9o/7X/4Uxj8GnY6civv/46d+5cIpG4a9euixcvurm5AQAcHBygijoEHuAOAKDT6TB9Hisha2VlRaFQLC0t+/r69JVXIyMjZ8+e/dlnn8XFxU1UL/irxqy+ER1cXV1JJJKXl9e1a9cQBLl48aJYLK6srIROouhULRKJ1q5d++abbzo7Ox85coTFYkGh16Ghoddff/3q1atCoVClUmk0Gl9fX1NTU6zZ5ORkDw8PMplsbm6uk+MPjw0xMDCASp7l5eXm5uaOjo4+Pj7owBcFq91qY2MTFhaWmZkplUq1Wi2Hw4mIiCgvL29oaHjllVewHg4ODqIWKBTKxo0bz5w509ra+tRTT7m4uGCNkMlkKJm7Zs0aIpEIO+TIkSP79u07c+bMXX0xCP/S/+4OAuFf+x/ONAYPltMRFosFt/CMjo7CH3F4XWd1DZWwQRVf0SsTyaLCP2k0WmFh4cKFC+FhHePWO65ULNbIRLDZbAKBwOFwgoODw8LC1q9fr+MztmpjY+OvvvrqnXfeAQBghV4NDAzc3Nyam5uFQuGqVav279/v7e0NAMCaNTEx6ezshGaRv87LsVgs8X/3TPb19cH4NNERhti+OnfuXGVlZVxcHBQLBQC8+eabhw4dgsc26XiINZKYmJiSktLc3Ozk5KRvBOhJ5sbHxy9atGj27NmT9CQODs70AQ+W05E9e/bs2bOnrKwsPz9/+fLlJBIpPz//6NGj33zzDSphCgCIi4u7detWSkoKlBvFqqHm5eXx+fyysrIbN27oK6+ePn06IyODxWI99thjE9WrLxWrY0THZ61WW1dXd/z48U8//RQAsHPnzv3795eVlZWWlmKLYau+fft2W1ubUCgkk8lvvPHG+vXrUaFXqMayYMECEom0ZMmSwsJCW1tbHbPx8fFsNru4uDgjI4PH4xUVFaG1cLncp59++tq1a2lpaXFxcc7OzsnJyRUVFTweD+sMKk6LFciFIqKWlpbp6ekAAEdHx9HRUajRg5Wi1dGLIRAICQkJcJurjpFxJXMdHBxcXFxsbGz+1hcFBwfnnwLPs5y+YBVEJRIJk8nUF5GB2rAikcjQ0HDqe0YQBIEKluPegq13Eo1ZfeRyuY5IrL4I6uRVg78KvaL1arVa7CkWOj1jYGAgFApZLJbO4UcqlUqr1d7hPGE94AmIFAplotqxHmLBFtM3goOD80iDB0scHBwcHJw7gKeO4OA8YvT29paXlyuVSiqVSqVSSSRSbGzsuCXhzixnZ+f7Um9NTQ08xdPPz+/vH1EJT8K6X8Punp6eoaEhb2/vyspKeEQlAEAikVy6dGnx4sXGxsawWFlZWU5OzgsvvMBisQAAlZWVQ0ND8fHxw8PDbW1tgYGBU2wXgiBw3gImMrm5ubm5ueGnOv+7wYMlDs4jhkwmq6qqunDhwnPPPSeTyTo6Omg0mr+//9DQUFtbm6+vr9l/JdOuX7/OYDDmzZvX1tbm5eUlFApHRkYMDQ3d3Nxqa2s1Go27u3tbW5tIJHJzc2MymdXV1dbW1mZmZlVVVWw2283NraamRqvVBgYGUqnU8+fPt7e3E4nEOXPmLFq0qLq62srKysnJqbKyEubmjoyMmJmZjYyMyGSysbExCoWiVCqtra3hIVmmpqYcDqerq0sqlVpZWX3wwQfr16+Pjo6+L/GyuLj49u3bn3766Y8//vjaa68ZGhr29fXZ2tpevnw5ICAAplq5uLh88803np6eTU1NLi4unZ2dVVVVra2t8fHxjY2Nx44d27dvHwCAx+MNDg66ubkNDw/b2dl1dnbCc5vd3d01Gg2NRpNIJL29vTt27Ni8efPOnTvj4+N/+umnTz/9FEEQjUbj7e1dX19PpVKNjY3b29u9vLyoVGpVVZWdnR2FQunq6nJxcbGwsPj7Tcb5h8GDJQ7OI4azs/PKlSvz8/Ofe+65K1euFBQUHDp06LHHHktJSaHT6RYWFlu3boVHnKpUKoVCcfLkyd7eXhaLBQNYa2vrK6+8cvPmzY6OjsWLF587d87Z2ZnJZBoaGra1tcnl8tDQ0NraWg6HExgY+McffzAYjOeee27evHkajWbOnDmenp7ff/89j8dTKBTDw8Nz585NTk5ms9nOzs4dHR2JiYlwO5iNjU1ZWVlgYKBMJvPy8iouLlYqlf7+/g0NDSqVKjg4uL+/f2Rk5H6t6Wo0mpycnK+//rqsrIzP51+9epVOpzs6Omq12qqqqrNnz5qbm3t6eg4MDPj4+Ozdu/ett976/vvvQ0ND4TqURqOBh0iPjY0dO3ZsaGjI3d29pqYmIiKitrZWqVSamZmdO3fOwsLCw8OjoaGBTCb39/eLRCKYLgXPGy8uLu7v71+6dOnBgwcTEhJ6enoMDQ15PF53d3dfX59arba0tKypqdm2bRseLB9F8HmDR4BPPvnk559/Rv/k8/n3kHJw69YtuL0TUl1dPX/+fPhaoVDAF19//fX333//95zVZWho6IknnsBuQxWJRKtXry4pKbm/Fd1H0A5BEQgETz31VHV19UPxZxKIRGJQUJC/v39VVVVtbS2TyaRSqUqlsqWlhcfjqdVqlUolEonUajWfz5fJZEuWLDExMeHxeDKZTCgUdnd3GxsbJyQkdHd35+fna7VaBoPB5XI1Go1UKq2srBweHjYxMcF2iFAopNFo9fX1K1euhOdge3p6bt682dbWViwWK5VKmF26aNEiFou1fPnyoaGhW7duKZVKDocjFAo9PT2DgoIAALa2tr6+vvdx6tLBwWHu3LmWlpadnZ3Nzc1GRkYw/qlUKgcHh/j4+O7ubjc3t9DQULlcrlQqx8bG9JOgYHcpFIrBwUFbW9uff/7Zw8Ojv7//3Xff7e/v7+zshJJSVlZWdnZ2Li4uo6OjxcXFL774oqurq1QqFYvFvb29HA7nueeec3Jygk8Dubm5KpXKxMREKpUmJCQEBATcrybj/JPgwfIRYOnSpWLMSQtubm7W1tZ3a8TJyQm7duXn54dO1sGsBgDAkiVLRCLR33NWFzMzs+DgYKyOAYvFmjVrln5Amj6gHYLCZrNnzpwJf3ynAxQKxdzcnEgkGhgYmJiYGBsbe3h4hISEiEQiKysrBoPR29v72WefFRUVBQQE9Pf3a7VaFouFIMihQ4ckEom5ufnAwACDwTAwMOByuQYGBtbW1vPnz5fJZNAsnU4fHh4OCQkxNjbWarXwcG9DQ8PLly+fPn16zZo1cO5Ro9E89dRTVVVVX3/9NYVCGR4e/uOPP1gsFpfLZTAY5ubm8P8LFixQqVRUKtXV1RV6a2ZmxuVyb9++fb805ZlMppeXV2hoqIeHh6+vr5eXl0gkcnZ25nK5MPPqypUroaGhZmZmJiYmbm5uv/zyi0QiYbFYqLJHa2vrpk2bLl682NnZiSAIi8WKiIgAAKxYscLd3X3z5s1OTk7R0dEpKSk8Ho/D4dBotNLS0sDAwHfffRdqWvX19ZHJZNhkMpmsUCiIRGJ/f//8+fPlcrmJiYmdnZ2xsTG+O/oRBd8NOx1Rq9W1tbUDAwPz5s0DAJSWlqampiYmJhKJRJjw9+STT549exYAUF5eLhAI/Pz8uFwuem9mZiaJRDI1NR0cHAwNDS0pKeFwOD09PdbW1vD2nJwcIyOjnTt3njx5Mjk5eefOne+8887cuXObmprghgihUBgdHQ0AyM3NpVAoBgYGPj4++n52d3c3Nzfb29s7Ojq2tLQUFhZCfdegoCAYiSsrK+VyeWpq6sqVK7EWDhw44OnpSaVSzczMvLy8sA2h0+nXrl2LjIxsaWmxsLCA79bX1wuFQhsbG3t7+87OTh6PZ21tDd9CwZYRCAQtLS0ajSY0NFTfsStXrri4uCgUirGxMdjMwcFBPp/PZDIDAwPr6+tXr169bdu2GTNmYB9KvvvuO19fXzabbWFh4eDgAACYyBPsh4Ltojv25119QwQCAYfDkclkarWaQCAQiUQSidTX12dtbQ2zZXp7e0kkEpfLFQqFEokEQZDPP/982bJlERERxsbGfX19FAqFQqFotVqosmtsbNzT02NkZGRoaAhfQEEMmUxmY2NDIBCEQqFYLDY1NTUwMFCr1T09PWw229DQcGhoSKPRWFpa9vf3AwCoVKpGozEyMhKJRFAdgs1m9/b20ul0BoMBoyORSNRoNHK53Nzc/L4ED5lMJpfLjY2NBQIBHFMODQ1ZWVmJRKKysrIrV668++67cOxrYGCg1WoHBwdpNBqTydRqtcbGxgqFYmBgAEEQIyMjlUqFIAiJRPr111+VSuVHH32k0Wi6u7utra0pFEp3dzeNRmOxWLBLAQAcDodIJGq12t7eXjKZTKPRVCoV/GgGBwetrKxIJFJPT4+xsTEcRk8kjoEz3fmHZPVw7oYTJ05UV1fn5+d/9dVXCIKUlJQ8//zzCIIkJydDbdInnngCQZDr16///vvvCIJs2LABe/vZs2e/+eabkZGRxYsXIwjyww8/9PT05OTkfPLJJwiCrFu3bnBwUCKRREVFIQgCtV5hXmBNTU1CQoJUKt2yZQuPx0tOTi4vL0cQ5MyZM+P6+e6770JnJBIJVEBNT0+XyWTQ2x9//DErKwtBkGeffbampgZ74w8//LB161atVrtq1Sr9hnzyySfbt29H383Ly9u5cyesrqenZ+PGjQiCfPzxxyKRCDWILYMgyJYtW5RK5Y4dO3JycvQdy8zMXLx4MdrMoaEhqGdbVFT0888/a7VatEOw7Nq16+jRowiCfP755xUVFRN5otMWbBfdsT8fKBqNpr6+fnR09J+v+uEyMjLC5/O1d6m8qtVqy8rK+vv7H5BXOI8c+DTsdOSJJ57o7u6WSqV1dXXwChy7xMXF/fTTT2ixY8eOGRgYFBYWcjgc7HTWypUrCwsLpVIpmUwWCARubm5WVlZwqAfXXczMzJhMprm5OQCASCQSCAR0x7yfnx+DwbCysurr6wsKClq3bt0rr7wyc+bMcf18+eWXU1JSqFQqnICi0+nh4eF0Ol0ikQAAjhw5AsdtTk5O+veGh4cTCP83saHTEHNz84CAAPTdw4cPQyHZnTt3/vnnnwwGo7Cw0NHRsb29HbWGLQMA2LRpU1paGpVKbWxs1HeMy+W6u7ujzbx06ZK7uzsAYObMmb///juBQMB2CBZPT08AwOzZsw8fPjyRJzptwXYRtj+hNuyVK1cm/yZMHa1Wq9FokP9uV0EwM0bwTyKR6OnpqaMRgQVBkEkmReG7cJFPq9WOK3mIIIharUaLTRPYbLarq6v++BVBEOgnfIH8dY6NQCD4+vqiEzYIgtyX4+RwHl3wYDkd2bBhg4uLS3BwMPJfUVYIgiAcDgf9Eyqnh4WFbdq0CftbQCKRLC0tMzMzP/7444MHD2K33jGZTFRpFv11gPdWVVWBvwqldnR05OTkvPfee19++aW+k83NzXv37k1MTDQ1NYUTfeCv4rFEIlEqlQI94VYItqR+Q7DvcjgcuGQrkUjMzMwsLS3DwsJeeukl7CFZ2DIajQYuqjk7OyMTqNpim2liYjIyMgIAkEqlMEZCHyorK8f9dBAEMTc3Nzc3H9cTbFtaWlqwXdTY2Ij2J9SGxZ659ndAECQtLe277747e/asWCy+fPkyNn5fvnyZx+NVV1cLBIITJ07orxZLJJLa2trOzs4LFy5MVEVbW9uuXbv27duXnZ1dUlKSk5OjX6apqWn//v3Jycm1tbX3pV0PlKKiopMnT46NjbW0tBw+fBjOIaMoFIrt27fDLwYAYHBw8Ntvv53OC+04Dxo8dWQ6QiKROjo6YLZWV1cXmUyWSqX19fUZGRk7d+5saWlpa2tLS0vbsmXLwYMHlUplX1/fwoULsRbgdtOgoKAdO3Zs2bIFAJCamlpVVYUgyHPPPZeammpkZMTj8TIzM2NjY01MTFJSUkJCQn7//ffq6mo+n19YWNjb22tnZ1dfXz9jxozHH38cAJCQkPDLL7/A5ToAgEajUalUFRUVDAYjNTWVyWR2dHSkpqaamJg0NzfX1tZ+9913x48fj4iIqKmpodFo6CqdSCQqLCzs7Oy0t7fv6OjQacjs2bN13n3nnXd27NjBYrE6OjpWrFixdevWvLw8oVCI3RKMLbNkyRIikVhXVzc6OlpdXQ3tYB1LS0vDNvPzzz///PPPCwsLi4uL4XErM2fOvHz5ss6A2MDAoLOzk8Fg5ObmbtiwwcjIaFxPsG1xc3PDdpGJiUlbWxvsT7Qb7wsIgqSkpBgZGRUXFwsEAiKRKBKJrl27JhQKLSwsBAJBUVHRb7/99v777w8NDRUUFPD5fDKZHB8fn52dbWhoSCaT9+3b9+abbw4NDfX396empsK15IqKiuHh4ZiYGFdX15aWltzc3FWrVn333XerV6/WarXXrl0TCAT29vaBgYFpaWkUCsXU1LS6uhouap4/f35sbMzX19fKyiojI8PGxmb27NkwoWWaUFBQcPDgQX9//xs3bvz+++8BAQGlpaXDw8MLFy5sbW2trKzMzc0NCgpycnIaGxsTi8Xl5eUjIyNQ2TgqKio9PV2r1T722GPjah/i/PvAN/hMU6RSKZPJRDBZaFCmVb/kRFKl8F4dXVOIXC6nUqljY2MGBgZwLAXlYPQtaLValUoFRcMFAoFCoYAbI7Gm6HQ6MkG2HIIgCoVCq9WSSKQ7arRO1BD9d/UlZ/XL6HfgXdWuUCjGdVin6ql4gnYRAADbn/cRrVa7efPm8PBwCwuL48ePAwD8/Pyys7MDAwPb29uZTKaHh8e5c+c+/vjjw4cPv/XWWydOnJBKpc888wzUhV+7du2ZM2deeeWVpKQka2trBoNRWVkZHh5++/ZtLy8vQ0PDTz75JD09/bPPPpszZw6Px4uMjOzr66upqYmLi0tLS5s7d25GRsbY2NjixYtramrMzMxcXV3PnDkTHx/f1NRkYmLS09MjEAi+//57eHTMNOHgwYNnzpxZtGhRW1tbc3PzY489lpeX5+HhIZfLGxsb4+Lirl+/7uvr6+npCXUJiouLAwMDCwoKJBJJbGxsfn6+p6fna6+9Bufwcf714NOw0xQmkwn+Ox8IGTdSAr2zn1DgvePmsdHpdCKRyGKx0JU5/UgJLZBIJPSXvaGhQSdSQlM6fupYoNPpTCZzKmrmkz+hY9+daOENW0a/A++q9okc1ql6Kp6gXaTTn/edoaGhyspKGxsbEokkEok4HI6Pjw+RSEQQhMvlcjgcExMTrVZLpVJ7e3tXr17d3d1NJBKhHIGpqamJiYlKpRoZGZkxY4a5ufnIyIidnV1ISAi6VsdisWbPnv3NN9/ALBQAQGBgIJlM7u3tZTAY4eHhUEMO7oYwMzOLjIxUq9X9/f1GRkazZs2aZLn0oYAgyIwZM7KysjgcDoPBGBkZsba29vX17evrg/uoKRQKkUgUCARwAxcAYHBw0MDAICwszM/Pb9asWXw+f3R09GG3A+cfAg+WOFNl1qxZD9sFnPEhEAju7u5lZWWDg4Nr16719fWFs+sXLlzQaDReXl6Ojo5eXl4NDQ1wstHIyKigoIDBYJBIJDc3N1tbW1dX187OzpCQkNWrV6elpRkbGycmJnp7e1taWrq6ugIATE1NExIS5s6d6+zsbGNj4+TkpNVqL1y4EBkZ+cILL9jb25PJZC8vLz8/P09PTzg3a2pqGhgY+PzzzxsZGZmamk63lAl7e/vZs2cnJiYmJCQEBwcvWLCAQqFkZ2e/+uqriYmJf/zxh4+PT3R0dFNTExTzCwgIePrpp2HiJpfLlclk7u7upqamD7sdOP8Q+DQsDs6/AZlMplQqaTQanU6HyZdff/11Z2dnYmLiihUrKBSKQqGAG4wJBIJKpYKDfplMBiUI4Lvw4tjYGJlMplKpKpWKTCZrNBo6nQ7FgOD0hlKpHBkZ+eyzzz744ANLS0sol4ogCIPBUCqVcACtUqloNBp0SSKRkEikcc+Ye4igu3VIJJJCoYCdoFarYaqlXC6HawfQeQqFotFoGAzG2NgYAMDQ0BB9Ma0ahfMAeXBZKTj3TG5u7tWrV0Ui0Ysvvnjz5s3JC3/00UfYpMC9e/d+/vnnU6lFLpfDF4cPH+bz+QiCiESigwcP5ubmfvjhhxPd1dTUFBcXh80s1GdgYGD37t1T8WFceDxedHS0VCqdqMC2bdv27Nlzz/aRu+klfdB+g34qFIo73nLr1q2lS5feW3X3TG9vb1NTk37C6H1BrVZ3dHTA/H0cnP8F8GnY6YiDg4O7u7uRkVF0dLRcLp+8cHx8PDYp8PHHH0eTQybnxIkT8EVgYCDMJ7t48aKXl1dERAQqG6uPi4sL1KeexDKLxfo7SRFubm4ODg6TVLFixQqBQHDP9sHd9JI+aL9BP5EpzM3MmTPn759pdbdYWlq6uLg8oHpJJJKdnR2ZjG+nx/lfAf+uT0eqqqpQ4VYAwMDAQGVlJYxAN27csLCw8Pf3h291dnZ2d3drNBooqdXS0oLdqgMP24uIiBgYGMjOzl64cGFZWZmHh4etre2uXbvKy8ttbW2jo6N5PB4Mlvn5+cPDw2NjYwKBQKVSUSiUysrKkZERFxcXmEqYm5tLo9F0woNGo0lPT0cQJCEhobS0VCKRGBkZocGMz+e3trYGBwdjM0SFQmFSUlJUVFRHR0dAQMD169cjIiJIJFJWVtaSJUuwi1s6DqCoVKry8nKFQhEeHg4AGB0dbWlpGRsbg1kcVVVVUPA6JiZGLpffvn2bQqHExMQAAPR7CdLW1ga7qLy83MfHR6vV1tTUhIWFQe1QtCfb29v3799vaWnp7e0Nc0sEAkFtba2bmxv0sKysTCaTubq6wvRWmUxWWFhoZWWF/bzkcnlwcPB0W8PDwcGZBHxkOR0xNzc/c+YM+ieXy4UHDwEAcnJybG1t0bdsbGzOnz8vl8tramp+/fXXqKgooVAI39qyZYu5uXlUVNTWrVvt7OzOnz9fVFQUHx//9ttvE4nEuXPnurq6zps3j06n9/T0VFVVGRsb+/j4BAYGLliw4MqVK1KpNC0trbCwMDY29ptvvgEAvPXWW05OToGBgU1NTVhv4dLOhQsXCARCe3s7i8Xy9vb+4YcfAADd3d3Xrl2bN2/eM888g73FxMSksbHx0qVLw8PDarW6q6urvLzcysoqJSVlYGAALabjAJbGxkZ/f39jY+N3330XAPDtt996eHg0NTX98ccfIpEoPT09NDQUJua/9NJLs2fPNjY2PnLkiH4voaBdFBcXt2bNmu7u7pCQkM2bN+v0pKenp4ODQ2JiIpqFmZ+fHxsb+/bbb0M3yGRyZGTknj17enp6pFLpunXroqKioMgqAODnn38ODw+nUCjYZuLg4Ex/8GA5HcEOKwEABALhjTfeuHLlikajiY+Px27AIxKJcOhz6NChxMREAICLiwt86+LFi2KxuLKy0sTEhEQisdns4OBgIpEIMwFIJBKRSISJJeiYD4pxk0gkeLL8kSNHWCxWYWGhk5NTY2Mjn8+3trYmk8l2dnY6DkdHR3d1dSmVSiMjoxkzZsB0EQCAjY1NWFhYZmYmPLYJe4u5ubmLi8vSpUvZbDYc1xKJRJ29hVgHcnJy9u3bt2/fvra2NgCAq6srPErw2rVrCIJs3rw5MzOTSCRWVVWxWKyioqJFixZxuVwej9fb21tZWalQKCQSiX4voeh0UWhoKIfDgSEN25P6YniRkZForx49ehQO+kNCQs6cOZOcnOzh4UEmk83NzWHiBJvNnjNnTkVFBdRVx8HBeVTAg+WjgZGRkbm5+e+//z5R/oaJiQnUdUPnSDkcTnBwcFhY2Pr16+EVHS06AEBPT88kQxwLCwsnJ6ewsLCNGzeamZkNDQ3B6+Ou0j355JOHDh2CerMo586dq6ysjIuLYzAYnZ2d+o3COgYA0FmJxDrg5ua2aNGiRYsW6Rycy2azCQTCs88+GxMT4+npiSBIeXn5N998c+rUqePHj5NIJAaDERYWFh4e/txzz+n3kg7QE6wYnn5Pwq4rKyvT71UajaZWqwEAvb29bDbbxMQEbTWsMSIiIiMjQ6FQXL16dRI3cHBwpht4sJyOJCcn19XVtbW15eTkpKenw2MU161b19LSoiMY1tLS0tzcnJ6evnnz5pKSkurq6oyMjNLS0o6Ojp07d+7fv7+srKy0tLSlpaWpqSkpKamsrKy1tTU/P9/FxYXH45WUlDAYjJycnIyMDKFQWFhYmJqa2tTUBAtv2bIFKrxcv36dzWa/+eabV69eLS4ubm1tvXjxoo7PTz31VEpKCjwCrLCwkM/n19bWajQaoVBYXFxsaWmJPXpaKBQWFBQkJyfD6Dhz5syampq8vLzR0dGLFy/CRuk4wOVyXVxcXFxcYPaCVqutq6s7fvz4p59+ClWKGhoaOjs7e3t729ra9u7d29LSsmjRIhcXl+XLl587d66wsLC1tVW/l7A9iXZRS0tLfn5+WlpaV1dXQ0MDticBALGxsadOnVKr1fq9um/fvsOHDxcWFg4MDKxevTo+Pp7NZhcXF2dkZPB4vKKioh9++KGkpMTV1TU0NDQnJwdO8+Lg4Ex/8DzLRwOFQtHS0mJsbDz5sc8SiQSmgkEtFTCxHhv47zkSd9zQiFVug/l5MpmMTqfr63yOK60HUxcoFAoyqfIcVJrVarUww28iB7DI5XIajYbahC1FaxGLxejIFWY4oGb1e2kqYHtyIjG8cR2GNwqFQhaLRSAQxsbG8K09ODiPHHiwfARobm4+efJkTEzMnDlzHrYvODg4OP+L4MESBwcHBwfnDuBrljg4ODg4OHcAD5Y4ODg4ODh3AA+W046qqqonn3zyiy++UCgUKSkpMTExf/zxBwAgOzv7mWeegbtGr127BgtDMWixWLxmzZpbt25h7WzZskWj0dwXlzIzM1etWnW3d0GvsJtgHy7Nzc3x8fFisfhhO4KDg/PogQfLaYe/v39YWBiVSqXRaImJiQiCQBGAOXPmrFmzxtfXFyrHAgCam5sLCgoAAOOqyOpoxv4dYmNjxz0Xc3KmqG37jzEVVVscHBycccG1Yacjq1atWrp06fvvv69QKDw9Pc+ePTtr1qzy8vKQkBDwX+XY4eHhjz/+OCAgwMDAAF5XKpX5+fkUCiUkJATVjC0tLRUIBG5ubo2NjXPmzNFJI8Eqr+rIqwIAioqK4El+UGqgo6Ojrq5u9uzZOkb4fP7AwICFhYWrq6tGoykoKNBoNOHh4WiqxtjY2LVr17Dqr/X19dCrpqam6Ojo1tbWtra2hIQEqVR69erViIiIzs5OOp0O26XDwMBAVVWViYkJVH+NiorKycmxsrLy9vZGq5ZKpaj2bGRkJIFA0FG1zc3NpVKpJBIpKCgItazRaGpra3t6eubNm0cikS5evOjq6qpUKl1cXNhsNioPC8WJIDpar2iZnp6evLw8eBqir68vFFIYVyYXBwfnkQAfWU5H4HkOzc3NxcXF27dv//PPPwEAAoEAqtBB5VgOhxMaGhoaGhocHAzvysjICAsL279/v0gkQjVjfX19P/roI6VS6ezsvG3bNmwtOsqrWHlVAMD3338/OjoaGhq6c+dOAEB7e/vY2JiTk5OOkZKSktOnT0dGRv70009arfb1118PDAwMDw9fv349GpkMDQ111F9RrxwcHFauXMnlciUSyenTpw0NDbu7u3/88ceIiAjYEP3O4XK5SUlJo6OjFhYWx48fZzKZNTU1NjY22KqNjY1R7VmhUKijapuamkoikWbOnFldXY21fP78eYVC4e7uvm7dOgAAm83+7LPPGAxGY2MjVh4WewtW6xVbxtHR8ffffx8ZGYmLi1u3bl1HR8dEMrk4ODiPBHiwnKY8+eST586dU6vVHA7Hy8srLy8PfQtVjoVSrmhW/qxZs4hEItTsRjVjmUwml8v19PS0tLTs6enBVoFVXh0cHMTKqwIAfv3117lz5xKJxF27dgEATExMvL299Y0cPnw4Pj4eAPDtt9+2trYODAwYGBhQqVQikVheXo4W01F/xXpFp9M5HA5qmcvlzpgxA22Ifs8QCITXX3/96tWrQqFQpVJpNBpfX1+BQKBTNao9q9VqdVRtg4KC3n333RdeeEFn5Lpy5cqRkZHu7m4oP2tubu7o6Ojj4xMeHo6Vh8XegtV6xZYhk8lQUJ5AIMybN+/UqVM6MrlHjhzZt28fVi4fBwdnOoMHy2nKqlWrTpw4QafTAQBPPvnkhx9+iJ0whIwrUgr+q1OKMtF1rPKqgYEBVl61u7ubxWLJZDIAwOjo6CRGOBwOHP9BMSB0+0xfXx82ruirv6JX9C1PVBeKm5tbc3OzUChctWrV/v37vb29WSyWftVQKIfJZOqo2sLTuL744otPP/0Ua3bDhg22traRkZEajQZKyKJSO/pCuxCs1utEZbq7u7lcro5Mbnx8/KJFi9AZbxwcnGkOHiynKfb29ra2tnDos3TpUhMTEzT2QOXYwcHB8PDwpKQkgUAwNjYG9V35fH59fX1KSgqqGVtQUMDn88vKypKSktra2lpaWtAqsMqrcECGyqsODg7u2bNnz549ZWVl+fn5kxjZvHlzWlpaaWnp1atXra2tn3766WvXrqWlpcXFxZmbm6Patjrqr1iDra2tfD4/JSWlrKyso6NDpyEAgIULF9bV1en0z4IFC0gk0pIlSwoLC21tbblcLrZqU1NTVHuWwWDoqNqWlZUdO3ZsdHR09erVWJtEIrGjoyMlJcXCwqKxsTE5ObmiooLH4wEAdORhUbBar/plsrKyiouLBQLBc889pyOT6+Dg4OLiYmNjc5++Lzg4OA8WXMFn+oIVI51I4nVykdKpgBUy1ZFXnaReHXSEWLVarb5Xk6i/To5MJuvt7XV2dsZeRJ3ECtJOVDX4q6otmUxGEEShUEBNdixSqZTJZE4kY6vfGwiC6Gi9omVWrlwJ9dbRW6Yok4uDgzMNwUeW0xfs7/JEEetvRkoAAFbyG9aC/R2fSqQEmOlKAACFQhnXKxKJBM+5vKtICQAoKSnRiZRYJ7E5LRNVDd8ik8lGRkYUCoVAIBCJRP1ICQCAO10nimT6vUEgEHRU0WEZHo83NDSUnJyMvYVMJkP1eTxS4uA8cuAjSxwcHBwcnDuAjyxxcKYply5dio2NvXjx4qVLl7788stTp0719vb+9NNPd7zxo48+OnXq1O+//67/lkAg2LNnz+OPP3779u2MjIznn38eALBjx45Dhw7d0SyUi5pimSm6Ognnz5//6aefkpOT4Z83b96E3t4Dcrl8eHgYblh7EIyMjAwPD0ul0gdkH2c6gAdLHJxpyvLlyzs6OlasWLF8+fKPP/4YpgPpb4rWQaPRDA0NKZXKxYsX67/LZrMTEhJUKtXs2bPj4uLUajUAYPHixeOmtOowlUSXU6dOwRdTcXVy0tPTX3311fnz58M/586dC729B5KTk8PDw2G+8n1hYGAA3YU+NDT02GOPffDBBy+99NIzzzyDz9X9W8GD5aPH5A/427Zt0xklfPLJJz///PM9V7djx469e/dir3z88cdT8eQfpqCg4Pjx45988snd3tjf33/gwAH96zr9xufzo6Ojp6iWd/v27Rs3btytJxNRU1MjlUojIiJqa2thJg8AoLS0tLCwsKioqLa2Vqf8smXLoqOj0aOtGxoaplKLWCw+ffp0X18fj8c7ffo0vJKTk5OXl9fT0/PFF1/k5OTcvn1bIBCcOnWqp6cHSi2OjIyUlJTADcB1dXUHDhy4fv16f38/1tXi4uLbt2/D3J4rV67U1NQUFRXl5ubqONDY2Jifn9/e3g4AKCsra25uvnXrlo7OYlNTU2pqKvwU+vv78/LyYFpwXl5eWlpabW3tjRs3Ojo6ioqKcnJy0LuWL1/u7e395JNPolcqKyvPnj3b2NgIAIB6T1VVVV1dXdevX4dZQ62trZcvX4bPEPn5+Q0NDWNjY0lJSVKptLOz89ixYz/88MP169e7urrMzMyio6Pfeeed06dP29jYFBUVyWSyS5cuXb9+XalUAgBqa2uTk5OlUmlmZiafzwcADA4OXrx4MSsrC6pkwE/z6tWrcrlcqVQmJSXV1NR0dnbeuHEDWsCZDuDB8tHj5MmTk7y7dOlSnVHC0qVL/456+PLly9HkSAhUIQAAjDvR97A4cuTIE0888dlnn93tjcbGxuPq6un0m5ubm62t7RTHDY6Oji4uLnfriT4qlery5ctbt25VqVT29vbe3t7wSeiHH35AEKSlpWV0dNTa2hp7C5FI7O7uJhKJb731lkajEYvFv/zyy1TqMjIyamhoaGxsdHJyOnz4MADg0KFDERERjo6OUJXQ29s7MjKSzWaXlZWhv/u7du2aMWPG5cuXKyoqvLy87O3tExMTLSwsUFe//PJLKGz07rvvKpVKY2PjrVu3+vv7X7hwAStwkZGRUVZWNmvWrNOnT/N4vBkzZpiZmenkoTY0NNBoNIVC8ccffwwODu7evTsiImJwcPDEiRO2trY//fSTi4vLvn37rKys+vr6sKqE+hw/fpzD4Xz44YdVVVUIgly7dq2xsVGj0Xz//fcajSYvL2/z5s1SqfTJJ5+USCRSqfSzzz7TarUXLlwoKSnRarUajUar1arVavThSSqV1tXVFRUVOTo6VlRUdHR0CASCF198EQCg0Wh+//33BQsWdHd33759GwCwZs0aKpWamZl57NgxAMDu3btPnTollUrffPNNBEHUavWCBQt27tzZ2tra1dU1lc8O5x8AD5bTkYsXL9bW1hYUFIyNjanV6qqqqrS0NARBtFrt9u3bb926lZGRAQCQSqU3btxAn6A7Oztzc3P7+/v1DSqVyvLycjhxlJeXd+PGDaFQ2NDQkJaWhv5r7+/vv3nzZnl5eVZWVmpqqkQiSUtLQ1MqKysrMzMzYS3wH3BycvLx48evX78Ol4LKy8szMjL6+vqw9XZ2dubn59+8eXNwcPDUqVONjY1ZWVnNzc3wXR6Pl5qaigakxsbGvLw8qJ6DbRrMIi0oKOjo6MAaHxwczMvLg41qb2+HeaWobvvAwMCNGzdKSko0Gk1aWlpjY2N3d3d2djZsUVNT07lz5wYGBioqKurq6uDTALar9fsNy+SNValUNTU1QqEQAJCSkpKXl5ednQ07bdwbJ4FCoSxbtmzDhg1wAy2TyYQ6FVKp1MTEhEqlKhQKNpuNvUWlUq1du9bBwYFOp9+8edPIyOi7776bYnVQBJhCoUBhxaCgoMjIyKNHj86cOZNEIhGJRDjO43K5Li4uzz77LABg06ZNqampDAaDx+MRCAQCgQDl+1FXL1++7ODgQCAQTExMbt++zeVyPTw86HS6hYUF9rv6448/hoeHw0qPHTsGTekMK62srOzs7CwsLHp7ey9cuODp6QkAiIyM/PHHH+3t7UkkEoIgtra2OTk5BgYGk08CL1my5NKlSxqNJjU11cDAYNu2bVVVVf39/U8//bS9vf3PP/+8b9++p59+evny5WlpaVFRUQiCsFgsf39/BEEcHBxmz57t5+e3dOlSe3t7aHDPnj2///773r17LSws/Pz8ZDJZTk5OYWEhAMDf39/Hx2fVqlWrV69es2YNAMDPzy8pKcnY2PjVV18FAPz666+GhoZ1dXVlZWVarXbJkiUajWbfvn2vvPKK/j5wnIcFHiynI0wm8+uvvyaRSG1tbWfPngUAmJqafvrpp0QiEYrsxMTEIAjy2muvxcTEKJXKa9euVVZWnjx5MjIyclyJuLq6usDAQJFI9P3333t6eu7cudPExKS/v18ul6O/R+bm5n/++adcLqfT6WlpaQYGBiUlJVZWVgCA3NxcNze3/Pz8yspKa2vrM2fOaDSa+fPnm5iYJCYmMhiM5OTk6urquLi4r7/+Glvv0aNHZ82apVQqKRRKTU3N7du3Y2JiDhw4UFRU1N7enp6eHhsbC39zi4qKrly5EhER8f333+s07YcffggPD/fy8qqpqUEtj4yMfP311xEREWQyed++fQ4ODhYWFvPmzUPHE1wuF4YoEolUU1NjaWm5d+/eOXPmbNmyRSQSOTg4HD16FCrWenl5wWlYbFfr9xta9R0bK5FITE1NL1y4oFKpWltbw8LCdu/eTSaTJ7rxjsTExKBzqpBZs2bx+XwLC4tFixbBK2iAP3HiBIzuMpkMfrhTX0VDE29gpDc1Nc3Pz/fy8jp8+DA0VVlZCQvAhBkEQZ566qm5c+c6ODhA4ScY1NFiWEZHR6GwxrgKTSYmJiMjI7AY1EScxD2tVouWF4vFMLQvWbLks88++/zzz69cuTLJITkHDhzo6+vbu3fvd99998EHH0AfzMzMBALBhQsXli1bBgDgcDitra0AgObmZlNTUzTVB43uZDJZq9Vqtdrjx4/DK1u2bPn6668DAwMBAO+8805MTMyPP/7o5eWF1gsfBaDzLBbr4MGD8+bN+/DDDwEAFhYWTz311BtvvLF7926YXBQSEnIP5/zgPFDwz2M6wuVynZ2dZ86c6evr+8QTT/T29kokEqhigz7g83g8uMuASCSOjIz89NNPCxYsAACM+yjq6elJIBDmzJnz22+/mZqaBgUF1dXVaTSaJUuWoGUIBMKrr7567do1lUo1PDys1WrDw8NhMqKvry+TybSwsOjp6SGRSPAnj0gkosOIo0ePGhoaFhYWcrlc7EImnU6PiYnp7e01MTGBIrcAgOXLl//6668ODg5+fn65ublwZHnkyBE4u/vdd9/pNC00NDQyMnL37t1RUVGo5YsXL7q5uQEA/P39YZBDnUGbs379+kuXLikUitDQUGNj47Vr16amptJotK6uLgqFQqFQ/Pz8XnzxRQaDAUOsTlfr9BtqeSqNhfq9BALh6aef/vTTT9944w1LS8uJbpyIK1euCIVCKDkLr+Tn5/N4vNbWVo1Gc+rUqWPHjsEp1hs3bmzfvh2WWbhwYVdXV11dHYFAmDt3rkgkwu70EQgEf/75Z3t7++3bt/Pz8xsbGxsbG2/cuFFaWgq7Ojc3Nzs7e3R09ObNm6dPn87OzoaTqJ6enuXl5f39/SMjI+gCG/zdr6mpkUgkxcXFCoVixowZf/75J5FIRF3dsWPH0aNHb9++7ejoGBwcnJaWVlVVxePxSktLb968iTq2devWtLS04uLi6urq1157raCgoKGhAS6LQvLy8pqamurr66Fi1Lx584RCYVFR0cmTJ+FJAMuXL+/v77ewsJDJZDrDylOnTlVUVLz00ksvvfTSmTNnLC0t2Wz2xo0bd+/enZaWBmtZunRpW1sbfCh5//33v/rqq8cff3x0dDQ6OppKpRoaGr7++us3btzYvXu3RqMJCQm5ffv2Cy+8YGpqOjg4mJKSAidUIcuXL//hhx9ee+21gYGB999//+TJkxcvXvziiy9gGY1Gc+jQodWrV3/zzTfR0dHwO79x48aPP/746NGjUql07dq1lZWVa9euHffBF+ehgeBMP0pKSnbt2gVfv/766zweb2xsbMWKFV1dXUVFRTt27Kitre3u7l62bBksMzo6+uGHHyYlJSEIkp+fv2PHDh1rX375JYIgarV67ty5CIK0tLS8/vrrt27d0q968eLF6enpBw4cOHDggFQqRRCkoaHhvffeQxDk119/vXbtGoIgTz/9NBSjWbp0KYIgZWVlb731VllZGYIgUqlUpVKh1oqKipRK5ccff3z79u1du3bl5OQgCHL27NkPP/zw9OnThw8fRhAkISGhq6vro48+ysjIgBZ6enqwTSsqKkIQJCkp6auvvkItnz9//uuvv0YQRKlUhoWFYb3Csnr16rNnz2o0mqampldeeQVBkE2bNhUVFQkEgieeeAItBl/rdLV+v8EqptLYpqamjz76CEGQ9PT0Dz74AEGQ3NzciW68B+CQCEGQ48ePw37DIhaLeTzevVlWKpVKpVIkEkE5JIlEAitCEEStVms0Gv1bJBIJgiBoMblcrlNAo9HAMndEJBLdlbdisRj7J/RhXCf10fkIsrOzT58+jb2i83XSNztJRXBdc5J3lUol2mPj+oMz3cBHltMReHgWnAgiEoltbW1w8am9vd3Dw6O6urq1tdXa2vqxxx67fPlyXl5eV1fX5s2b8/Ly4FTn7du34QwVilwur6+v//nnn+H4w8nJSSQSofNCWGbPnm1kZPTkk09WV1fDYWVKSkptbS2fz8/Ly8vKyoLDhaysLAAAh8NJTU21tLTcsmXLxYsXS0pKbt68SSb//0NSf/jhh9LSUl9fX39/fwBAUVFRTU1Nfn7+O++8gyDI8PBwfn6+mZlZQUHBpk2brl27VlZWlpqaamVlhW3a6dOns7KyOBxObGwsann58uVKpbKwsPDw4cN79uxpa2trbW1F8xZQ1q5d29zcTCQSodheRUUFnU5PTU1tb29vamq6dOkSAKCgoIDH4/H5fJ2u1um3lpaW1tbW1NTUqTQ2JSWlpqamu7v73XffjY+PP3jwYEdHh86NCxYswKrs3hVOTk5wSWx0dBRO/WExNDSEw+57AI65jYyMyGQygUBgMpnoJCSc1dC/RUf2SF9EiUgkTr7dBkVHDumOYPWnUB+mOIGJfnYIgqxcufKnn35asWIFtoDO2en6ZiepSH/BVeddqCQ1rj840xNcwecRQEewFD6Qwn/JCoWCRCKh/8wkEgmNRpPL5To/IgAAmUwGgx9clbxx48a8efP060LG01ydBKVSiT3kWadeBCOd+t1334WHhwcGBqIKcCqVCp4yhlaKtYA2DUEQuVxOo9H0/dGvUR9sQ2AnIBNLs+prw6L9dseqET2d2HFBbxQKhRKJ5O9oqU/SEJy7oqWlxcLCYorijjj/m+DB8n+OL7/8MiwsLDg4eKJtFA8CoVC4YcMGV1dXncOT/5fJzc2NjIx82F7g4OBMCTxY4uDg4ODg3AF8zRIHZ5qyY8eOXbt2TfTurl27Jnl3ivz6668wsRXdndvY2Dh79uyJhIrQYunp6U888cQd7etbu337NjymVIepSNWg3k6EWCx+4YUX9LWBAABCoXD16tUlJSV3rOV+MVGLsJ5M1KItW7bgw5jpBh4scXCmKfraSVN/d4rMmDGDw+EAjBiTh4eHtbX1RL/UaLH4+HiNRnNH+/rWHB0d9TcfNTQ0FBcXT93biTAyMpo9ezYqTIHFxMRk1qxZ/5hA4yQtwnoyUYvi4+Px1ejpBh4sH2Gam5vj4+P1pezQXwQ+nw9T++9vvaj9wcHBPXv2TF5YLBavWbMmPT3979R45MgRqKKJ/bHbsmXLVH6vp87vv/9+9uzZSc7KEAgEzzzzDDb5DwAwOjoK8/wm555/pquqqtDe6+7uTk9Px4ozCIXC06dPNzQ0ZGVlQf05KHhUWFgIN/RCGhoabt68CaVT8/Pze3p6bty40d3dzefzx8bG6uvrodJpZ2cnLD88PHzz5s3e3l6sJ8nJyUePHr1+/Tp6vEZbW1tycjJsmkwmu3HjBpRz0wFrraamBmrGdnZ2FhQUZGRk9Pb2fvrpp3l5eRUVFQAAtVqdk5OTk5Oj0WiEQuGpU6e6urpyc3Plcjn0FhrMzMysrq6GPVBWVpafnz9JH1ZXVxcUFKBuDw0N5eXlQT1bAIBGo8nIyCgsLFSr1YWFhdevXwcAXLt2raioCOrltre3Z2dn19fXCwSCmzdvQvFYAEBFRQX0v6Wl5cSJE4ODg2lpab29vcPDw9gWTeQJtkVCoTArK6u6uvratWvt7e1oFTjTBzxYPsK4uLg4Ojrqz5idOHECvnBzc4PSKve3XtQ+i8UKCwubvLCRkVF0dPS4D/tTJzAwkMvlYqsGAMTHx+ts7v+bXL9+/cknn3z55ZcnKsBmsyMiInTCnoGBQURExB2NYz2fOrm5uS4uLqWlpSUlJX19fTt27IiPj7969SoqmGdiYlJXV5eZmRkTE/PLL7/k5ORAwSNvb2+oMA5xdnb+4osvXFxcqqure3p6zMzMoDxTR0dHXV2dp6cn1HS1s7OD5UtKSmJiYjZu3Ih1Zv78+aampomJiTAPpLW1VaVScTgcKG/0yiuvREdHIwhy4cIFnVZgrUFtIwDA0aNHw8PD1Wo1lUoNCQkJCwsLCAgAALz11lshISHBwcHr1q0zMTGpra2F4uYIgkBvxWLx5s2bY2JisrKyurq6vv32W19f35KSknFndwEAhw8f7uvrCw8Ph4k6IyMj27dvj4iIoFKpUAhw7dq1gYGBNBrt3LlzPj4+u3fvBgBYWFicPHnSyMiopaXl8OHDs2fP/vrrr/Pz82NjY2FDUlJSysrK4uLivvrqK3t7+5MnT1ZUVMTFxW3cuJHD4WBbNJEndDodtkitVm/atCkmJuabb76ZNWuWra0tFMm6hy8MzoMDz+yZjmg0mtra2p6ennnz5pFIpKtXr9rZ2REIhP7+/oSEBFgmNzeXRqPpB8L6+vr9+/dbWlp6e3s7OTkBAAQCQW1trZubG9SxrKysHBkZcXFxQWUtAQADAwOVlZVGRkbh4eE3btywsLDw9/fPyspSq9URERE9PT3FxcUJCQmtra0GBgaofYFAgM4E8vn8gYEBCwsLV1fX0dHRlpaWsbExHSFsFKFQmJycHBgYODAwwOVyvb29YasLCgo0Gk14eDiVSq2qqpLL5VKpNDw8nMfjcbncnp4etGoymdzd3a3RaEgkUnNz88DAAJvN9vT0bGtry87OXrhwYVlZmYeHh729fWdnZ3d3t1wuDw4O1snrwN5YVlbW19eXkpKSmJiILTMyMlJfX08mk9HHAoFAUPL/2rvvuCiuvX/gs0uRLl0pERRU4BFEkWJAKQLWa0n0mmi8kpjk2qK50cQYjHkSlcRCEguJLZZEbNdYQZoUld47SO8oCtJh2fb747yeeeY3u+xgribo83n/4Qt3Z875zpmB787szPdkZmppaZHapLm5uXQVNHrENDQ0nj59mpOTo6+v7+DgcODAgZycHHNz89mzZyuIR9akSZM0NTVJNdSsrCxNTc20tDRzc/Pa2lpSJIiiKENDQzKAS5Ys+fnnn9977z13d3c/P7+tW7fS7aiqqv7973+/f//++PHjo6Ojp06d+tZbb/H5fHINkFnTlXBzc1NWVmZ9LGDWbKIoSl9ff/z48eQ06MGDB48ePcrJySHjw9oKZmt02Jqamp6enitXrvT39ydPEPF4vIqKiidPnpCiss3NzbW1tcbGxlZWVr6+vhRFkWgjIiJsbW15PN5HH31EUdSWLVtiYmJUVFSKi4tZ+444fvw4qdFqbW1NMWo/2dvbr1q1atWqVY2Njfr6+vr6+uSJVdI7KZNLAjYyMiJDNG3aNCUlJaFQSFHU6dOnly1blpaWZmJiIhAIdHR0nJyc6M2kt0hBJPQWicViUuVOSUlJT0+PzMVGUdSpU6e6urrMzMyWLl06+DECfxKcWQ5HV65cEQgEEyZM2LhxI0VRo0eP3rp167hx48hD8RRFffTRR2PHjnV0dKSn+KHZ2NhYWFjMmTOHZEqKosjH4Y8//pj6n3IH3t7erCuHRkZGqamp5F6D4uJiExOTwMBAUufsyy+/tLS0PHfuXGVlZX5+PrN9Ozu7I0eOUBSVmZl54cIFd3f3Y8eOSSSS/fv3T5w4saKi4vLly3I3UFdXt6KiIjIy0tPT8/r162SiwXXr1jk6Orq5uW3atKmjoyM2NtbFxaW2tlZNTa2pqYnVtZmZ2ZUrV/r7+xMTE2NiYqZPn56fnx8REfHaa69duXIlPT191qxZZJOPHz/u5uamoqLS0tLCjIG14pQpU/T19enPIsTTp0+/+uord3f30aNH05N/1dTUkGpnt27doihq0qRJ5Motc8S6uro++ugjLy+v7Ozs0tJSX19fa2tr8mDrYPHIxayGOmrUqFGjRrm6uq5atYrkaZaHDx8aGhqShOrl5cWsZ0tR1FtvvXXu3LmRI0eKxeLi4mL68CDIn3W6ZDzpV/aiBXMxZmwGBgaampqurq4zZ85ctmyZ3K1gtTZjxgxSYT8hIYE8CJudna2jo0NP7NXT00M+TLA+UhgYGJDStRRFdXR0BAQE+Pj4jB8/XiqVyr16qaKiQr6qIJ8s9fT0SMkOsVisqqqqra1NfyYgXZNo6S6YW8rckFGjRllZWbm6um7dupWkOua79BYpiITZvrOzc3R09K5du5gPE8+aNWvBggVDuW4BfwIky+HozTffbGtra2xsJNnL2NjY2tpaW1t79OjRTU1Nra2t5eXlpqamysrK9HUzmuxZgru7O5/PJx+HT506paOjk5aWNnbs2MePHzPX2rhx49WrVyUSyaRJk4yMjEhJ0ry8PF1dXWVlZTU1NTs7u/fee4/ZvpqaGrki98svv5DKrvv37+fz+Vu2bImPj+fz+cwrgSz6+vrkfGjp0qVHjhwhJ3mampqqqqp8Pr+ysjI9PX3BggXk6qvsCRD96ZtMI0VRlI+PT0hICPls7uTkRG+ynp7ezJkzc3NzLS0tmQGwVpQ7zQV9FmJhYUE+plAURSrc+vv7kw8KampqpKAoc8QiIyNtbW35fP57771nZ2fHnLJjsHhkRUZGFhcXl5eXJyYmJiQkzJ07t7W1NTExMTo6emBgIDIysqCggJzUktJI9+7d2759+/nz5+Pj4/X09OiZ1AgDAwOxWOzi4rJ48WJyFbe7uzs5OZnMYDNjxoxLly5JJJLKysqampqoqKj09PTKykrWt26GhoZRUVFGRkbJyclVVVX5+fmRkZEPHjwQCATz58+/du1aSkoK/cUnRVGyrZGwnz59evjw4aysLBsbm8mTJ0+fPv327dsdHR3GxsZLly6NiIggl8T5fH56enp4eHhXVxcd7axZs6RS6b1796Kjozs7O5WUlIqLi1taWioqKpqamsikOszEfODAgV9//bWwsDA7O/vatWtLliwRCARpaWknT54MDg5WV1dftWrVpUuXUlJSyNVRKyur/Px8MklnSUlJSkpKXFxceXl5ZWVlREREVlZWZWVlVlYWXY8pKiqqvr6etZn0FjFHjxUJc/zJK/v27cvJySG1ouLi4iwsLKysrFhTsMFf5s+pqgfPZP369YWFhWKx2M/Pr6GhoaamZtOmTVKp9Pr16ydPnuzt7XVyciJLvv322+3t7azVSWHVrKwsqVT6j3/8gywwb948qVS6adOm1NRUqVQqEolky3W+++67oaGhpCSsu7s7KVZJVn/jjTfktk9eDwwMJJVpRSJRd3f3/Pnzu7u7U1NTv/jii4aGhjNnzpCiskxHjhyJjIyUSqUJCQkrVqxoaWnx8fEhby1ZsiQ1NbW2trajo2P58uVtbW10C6xN6+7u3rBhQ0JCglQqzc/Pf+edd2Q3OSUlRSgUBgcHX7t2jRmA7IrMbSR+//33nTt3kp/J9Ex02NXV1StWrCBvkRWZIxYbG0tK+pH/5ufn79y5s7Gx8dGjR4PFM0Td3d2sV3788ceEhAT6dYlE0tvbK7cwKV2MlFWVlJCt6SqXQCBQ8NbAwMBQGiExMCvBMnsXCAQKeiGY40B+lrtRdF+9vb29vb19fX3kFVZRWVbkXV1dEolE9jdLFqsdJrnjKRuJVColHzKkUmlfX9/777/P2Sn8JXBmORzx+fy6urrIyMhRo0Y9ePDg9u3bJSUl5eXlcXFx5E/thg0bbt26lZGRUV1dffXqVdbq3t7e58+fF4lEVVVVFRUVt2/fzs7Orq6uTklJCQwMvH79emZmZnh4OPluhmn9+vW5ubmkutu+ffsOHTqUnZ2dlZVVVlZWV1dHV16l209LSysvLy8qKtqyZQuZC+LWrVvKysp8Pr+0tLS+vp587ZSYmBgbGyt7U25mZmZRUdGtW7f27NljZGS0YsWKsLCw6OhoHx8fHR2dH3/8saqqasGCBSoqKomJieQDOHPTyASWX3755b179zIzM8PCwnbt2iW7yUeOHMnMzLS2tnZxcWH2zloxPT29rKyMddfukiVLlJSUUlJSzpw5Qy5cjxgx4vHjx0VFRRcvXtyzZw9zYeaI+fj4KCsrJyQkxMXFkW+Iy8rKMjMzjYyMBotniFgl2drb23Nzc2NjY+niqzweT11dXW6pQvorNLmPJcjWdJWLrm4o9y1yQXIoeDwe8/oqs3dVVVUFvRDMcSA/K3jWgoyJuro6fcyzShWyItfS0uLxeGTmL8UUVFuUO56ykVAUNXny5KKiorS0tIyMjD92VMCfABV8hinZIqUsQqGQx+P19fWpqanJ/oUSCAQK/vYpKKnKKgnb09Mjt2Cm3Pa7urroP39kRQXxh4SEWFtbe3h4MNsnM13QLTMbHHrXLFKFJVsVrEjr6elh1hOnGMNCfli5cmVoaCjrLdbPUqlULBaTUrdDKSEL/9co+GWB4QDJEv4C7e3tW7ZsMTY23rVr10s92UJISIiBgYFIJHrnnXf+6lgA4AVCsgQAAOCA7ywBhi/6qYaTJ0/W1dU99+UVuH//fkxMDOdidIna/7xHgOEMyRJg+KJvqiKPgT735RWwtLS0srLiXIwuUfuf9wgwnCFZvmqKi4tf6CyJdJnWwRw8ePCbb76hKCo5OTksLIyzwedS2zo7O/vUqVPbtm0brH1Sovbu3buDtcAZ7XMpcssMSTGJRPLtt9+S+2lJEdGurq729vbIyMi0tLTY2Ni+vj6RSJSfnx8VFSWVSuUuT1HU48ePk5OTydPxVVVV58+fb2lpiY6OpqsOERUVFaGhoVVVVXfu3CHJr7CwsL29ndSeLSkpSUhIoPd7fX19bGxsUVERvTrdo9wu4uPj5d4ODfASQbJ81djZ2Y0ePfrFtU+XaR3M0qVLW1tbKYqysLCYMGECZ4N/rGgqy6lTpxYvXhwUFMR6vbKyktQ95yxRyxntcylySwxlk/l8vqenp42NjZeXF11ENCMjY8yYMebm5iEhISNGjLh8+bJUKjU2Ng4MDJS7fFtb27fffvv666/zeLyDBw+OGTPm/Pnz+fn5dIFTmqWl5ZkzZwYGBry8vAICAjo6OkgRV1J7NjEx0cvL6+eff05NTW1ubj5w4MCsWbOuXbtGSuFQjDKnsl1s3759zJgxzs7Ou3fv/s+HDuCvgmQ5TKWnp6emppKKaE1NTUlJSSUlJRRF1dTU/Prrr62trTExMQq+ImpsbExKSqILquXl5cXHx8tdXiwWkzospHDzrVu3cnNz8/LyoqOjZRfu7+8vKyvr7Ozs7u4mszEkJibScwQ2NTUlJibSJcfy8/NJBRN6VgdyRlVeXh4dHU0SamRk5KlTp8LDwzs7OymKqqysTElJKS0tpSiqoqLiwoULra2tcucgbGtrS0pKIpU2a2try8rK7t27RyZwoLW2tu7YsSMlJYVuYWBggPnfpqamO3fukCI1JFoyzUVdXV1iYqKCe986OjpycnLIDBtkQo+ysrL29vaYmJj6+npmbN3d3RcvXqyrq2tsbAwNDe3q6mJtsgLMuj+khpGjo6ONjc2mTZtCQkL4fP6yZcsePnzY09NTXFwsd3m6AtGUKVNOnz6trKysqanp4uKioqLS19fH7EtZWVlHR8fGxkZZWXnatGm3bt2SrT27ePHi48eP37x5k1TUe+2115gTm5AeZbsICwt78uRJSUmJgkcSAYY/JMvh6PDhwx0dHS4uLvv27aMoav/+/e7u7sHBwfX19bK1T+V6/Pixu7v7V199VV9fP1g9WIKzDi0TXaZVS0ursbHx6NGjr7/++qFDhzo7OwsLC0+ePOnh4UEX1TQ2Nr548SJFUe+//769vb2+vv7Zs2cbGxvDwsL8/PxWrlxJUZS/v7+BgcGcOXN0dHRYxVqZBWlZYbBKtlpYWJibm8+cOZP1FLmBgYGLi4uLi4uTkxN5JS4uztXVlQT86NGjXbt2+fr63r17t6KigkSrq6v74MGDa9eutba2MquDsjCL31pbW//www/q6uoaGhpxcXFqamrM2LS0tBoaGnJyckxMTCIjI1taWpibPFj7BEl7Dx48oC9gGhkZ7d69+4MPPtDS0iouLt60aZOlpaWzs7NUKm1sbJRdnq6DKhQK6afgB6v7SmtsbKQzJVNzc7OhoeGoUaOMjIxcXV1Xr1492JeazC709PScnZ1dXV3Xrl1LyZRFBXhZIFkORydPnvT19eXz+eQ+w40bN0ZERGhqapaXl8vWPpWL1C91c3M7f/78YPVgCcV1aGVbpueqNTIymjJlCp/P19PTa21t/fnnn8mcD/QfUPIH9/Hjx3V1dUZGRuPHj//www/NzMxcXV3j4+N7e3tJAQS63CurWCuzIC0rBtmSraxyuDTW5A/Tp0+nA75x4wY5QyIzVdHpgUxzsWjRIj09vcGGl1n8VllZeevWrRcuXKirq1u/fv3NmzdZsZGr1nw+n9z/wpq7Q4GJEycWFBRUVFQMDAwkJyfHx8enp6cnJyerqqpu27ZNW1tbWVm5rq4uOjpaV1e3trZWdnm6DuqJEye+//57Uqk1IiIiNTVV9lOIVCq9e/ducnKylpbWnDlzIiMj6bkn09LSCgsLk5KSPvvss0WLFrW2tiYlJUVHR4vFYlLrtbq6mvQo20VQUFBISEhWVhbpbu7cuZyn1ADD0Ev8PPgrTEdHp6+vT0NDo6Ojo7W1NSgo6JdffsnPz5f+z7wKnCcHhFQqJacCY8eOdXV1nTZtmuytJZs3b16/fr2tra1YLGY2PpT2mUvq6uqS1VmnDlpaWsxZHaKjo588ebJu3bq9e/fW19dbWFjQE1no6emRW0uam5vpRCX32p2enh59SVnxl4j05A9Tp06lZCbxePr0qaurq6urK7kAS6/FWV6HlN4uLCwsKytrbGz09vbev3//lClT/Pz8ZGOjO6XnrqI3mUQ1GB0dnV9//VUqlSopKf3yyy/kRTJro4+PD0VRhw8fJpWeFixYQNqUXf6bb77p7u6m5xcjF4cpimLOIE1H5enp2dvbSz6ybNiwYcOGDeQtV1fXsWPHHjx4kPx39+7ddHEiejG6R9ku3N3dyfFMxw/w0sGZ5XD0ww8//PDDD2T+d7FYLBKJcnNzeTxeXFxcQ0MDq/ap7Orjx4+/e/dudnZ2VVXVP/7xD8X1YBXXoWWdBHR3d5MyrfQP5eXlJSUlkZGRW7ZsyczMLCgoiIuLy8rKqquri4iIKC4u7u7uXrNmTWhoaFpa2oMHD8RicXt7e0ZGxujRo8mdpaNGjYqLi9PW1mYVa2UVpGVilWytqampqKggk2awlnRzc7t9+/bTp09lA164cGFnZ+e9e/fI5pBoKyoqUlNTIyIiZCdlJC3Exsb29/czi9+Sk/W//e1vpOigbDlZZ2fnwsLC5OTkjo4OUsiX3mTOI4GcGStYgGQg+tRZ7vJD+bKwrKyM3MJK15glSO3ZuLg4VtVDuUUQB8Pj8VjNArx0UMFn+GJWFu3r61NXV3+m6pGssq4K6sFy1qF9ppjV1dW7u7tZX8iR6ThIdWyRSCSVSlVUVOgemeVeh1Ksle6LVbJVLsVlcgcrfjuU3knx24GBgREjRty5c4dMUCw3NrFYTMreKisrk0FQHBUADDdIlgD/EXLua29vb29v/1fHAgAvCpIlAAAAB3xnCQAAwAHJEgAAgAOS5TD1XCqmAgDAc4FkOUzJfWQCAAD+EihKMOxIJJK9e/eWlpZaWFiYmpo2NDSMGzdOS0srLy/P0tIyMzPT0dHx0aNH5ubm1tbWFEX19vYmJSWpq6t7eHj81bEDALyacGY57DCnj7C2tg4ODh45cqSmpmZqaqqVlRVrCgipVLp27VpPT8+BgYGhzIcFAAB/AM4shyN6+gg+n7958+bLly9Pnz5906ZNfD6fNQWEnp5eS0tLTk4On8+n50sCAIDnC8lyOKKnjxg7duzs2bMXLlxoY2Pj6OjIXIZMAWFgYKCurk4qf5LSdM+lEA8AADDhMuxwRE8foaqqyuPxPDw8mDNgMKeAMDQ0nDdv3vXr11NSUhobG+Pj43fs2PEXRg4A8EpCBZ9hSiKRSKVSkUg0YsSImJgYPz8/8vrBgwenTZvm6OjIrGgqEAiUlJSUlXGdAADghcCf12GKXIm9dOkSn893cHAgL5IpIDo7O93d3ZkLoyQ3AMALhTNLAAAADvjOEgAAgAOSJQAAAAckSwAAAA5IlgAAAByQLAEAADggWQIAAHBAsgQAAOCAZAkAAMAByRIAAIADyt0NO42NjaGhoX91FEPi6elJJjwBAHi1odwdAAAAB1yGBQAA4IBkOew0NjZu2bKF/Pzll1/u3LmzoaHhrw0JAOD/OCTLYcfMzExNTY38bGdn5+vrq62tLXfJsrIyBe08efKkqqrq+cf3f0BHR0dhYeEzrVJVVfXkyZMXFA9NJBKVlJT09fXRr1RUVLS1tQ29hUePHtXU1Dxrv0+ePHnEIBKJnrWFoZPdxj/Zsw4p0x8bXngpIFkOax4eHh4eHvv27ZN9Kysra926dQrW7enp2bx58wsL7X89ePDgT+hliO7cuZOVlcV68ZkiFAgEe/bsyc/Pl0gkchc4dOiQ7J/y+Pj4S5cu/eFOh0gikQQHB5eVlbW1tZ04cYKiqNu3b9+6dYtzRTqYjo6Obdu2Md/67rvvOFevrq52cnJqampqaGgIDQ2Njo5+prDpaIeC3ka5sTGbekEHHmtI5R5RLAqGF14ZSJbDTkNDQ3V1dX5+PkVRqampGRkZjo6Osos1NTWpqqrW1tYO1o6FhYWGhsaLi5MQCARnz579w6sPlpD+MF9fXycnJ+YrzxphXl6elZXVihUryPzbsjZt2qSurs58RSKRTJo0iflKaWlpUlLS0DsdIlVV1fHjx1MUpa+v/8EHH1AU9V//9V9DWfHYsWPkhwkTJigr/3/3wH/++eecqzs7O48cOXLKlClWVlaffPIJfeVjiOhoh4LeRrmx0U29oBGmZIZU9oiSpWB44ZWB/TrsmJubnz9/nvy8bNmy/v5+2cczBgYG1NTUVq9e/dtvv+3YsYP17pUrVzQ0NLS1tfv7+ymKunfvXmtrq5aWVmdn55tvvpmUlJSVlWVlZaWqqpqSkmJgYPDGG28sX748MjIyLS3thx9+2LJly507d1xcXHR0dJKSkr744ovq6urr169bWloKhUIjI6Pg4ODPP//8/v37AQEBGRkZqampd+7c8fX1pQPo6Oh49913FyxYYG5unpmZ+cUXXxw5csTBweHu3bvbtm1TVVU9fPjwpEmTEhISXF1dbW1t6cb//ve/0408evTo2LFj3t7eJSUlCxYsCAsLs7W1LSoqWrt2bVBQUGtr65tvvnn79u3du3eHh4fr6upWVlbOnDnzypUrWlpaHh4eVVVVpqamVVVVampqdIS//fabjY3N3bt3t27dSnfU1NTEbDwzMzM/P7+ystLKyoosIBQKDxw44OjoWFpaunbt2vfeey8wMHDSpEnMrTAwMCgoKEhISLhz587XX3/9yy+/CIXC7OzsqVOn0h2VlZV98skn69ata2pqmjhxIr1TbGxsPv3003379gUFBQUGBhYUFDx9+nTMmDH0RllaWrJ2cVJS0tGjR3/77Tfy3+Tk5HPnzu3YseP69etjx47NyMj47LPP6JSWn59/7969qKio6dOn6+joNDc3x8fHp6amBgQEDAwMBAQExMfHyx0Z1iGXm5sbGhq6f/9+Ly+vQ4cOTZ06taioaNmyZQcOHNDQ0BAIBIGBgXSnhYWF9C4wMzM7evToTz/9tGbNmgULFrz22mvx8fEeHh7FxcX+/v5mZmaso4W0UFtbS2JjHrEaGhpHjx49c+YMPcIPHz48duzY5cuXT5w48dprry1atIisLhaLAwMDzc3Nzc3No6Ki9u7du3Xr1sDAwPPnz5Nd+a9//YveOuYhxBrS8+fPa2lpvf3223KDVDy8hoaG9JHD7C4iIuLs2bM+Pj5Tp07t7e1VfCQovoAEfxqcWQ53cj/FR0ZG9vT0qKmpyT6R2d7efurUqXnz5s2YMYN8yP3qq6+WLFni5+cXGhra1dW1c+fOTZs2zZkzZ+rUqf7+/v39/SYmJmPHjpVKpd7e3m1tbZ6enlZWVs3NzZ6enjk5ORRFff311xYWFqampvfu3fP29m5vb/fw8DAxMcnLy5s9e7aJiQkzU1IUNXLkSFtbW3d3d39//8ePH8fExMyZM8fU1LS5ubmgoKC5ubmiosLb27u2tnbevHnMxpmNBAUFvfHGGzNmzFi4cOF///d/z5o1a8aMGT09PVFRUbNmzeLxeK+//npdXV1/f39ZWdnVq1dHjRplamo6Y8YMgUDQ2dl5/vz5yspKX19fZoTx8fF37tzx9PRkdsRq3MnJydbWls6UFEVduHChq6tLX1+/vLxcKpU6OjqKxWLWVlAUpaWl5eXlVVdXJxQKfX197e3tmZmSoqgJEyaIRKL58+d/8MEHzJ0yZswYMzMzY2NjU1PTxsbGUaNGrV27lrlRsgeAu7v7wMAA+bmuri4hIeGnn34SCoW3bt3S19c3NDRknnU5ODhYWFjMnj1bR0eHoqiBgQFvb2+y+ywsLIyNjQcbGSYlJaXRo0fr6+tTFHX58mVNTU0PD49p06bt3bt31qxZampqu3btYh6rzF1AotXW1nZycjI0NPT29o6Ojvbz85s0aVJKSors0UJaoGNjHrGkKSUlJXqE582bp6qqyuPxrK2t6UxJAl63bl1ZWZmNjU1bW5uOjs5bb7119+5delf29vbSC7NGmx5S+ogaLEjFw8s8cpjd+fv7d3Z2fvjhh9OmTeM8EgbbI/AnQ7J8KfF4vMWLFy9evHj69OnJycnMt/r7+1VVVZmv9PT0kB+EQqFAIBAKhRRFKSkp6ejoKCkpkbfo3+RRo0aR9skP5DKpWCx2c3NzdXUNDg5mLiMWi3k8HkVRra2tg90TMWLEiL6+vk8//VRLS8vS0rKrq0tXV9fY2DgxMZFcZGM1ThMIBCTZGxgY0JvA4/G6u7spijIxMaFjWLhw4caNGyMiIsi1axLh0aNHe3p6zp49y4wwMDDQz8/vwIEDAoFAdnzoxlnEYvGkSZNcXV2PHDlCj62JiQlzK1ghkU5lv1QzMDCQu1NWrVr1448/Ll269MaNGxKJhMfjyW7UYLS1tZubm8vLyyUSiZmZmaur6/r16z08PJjLMONh7j56Abkjw0SS5ccffyx3xIyMjFjLM3cB63XyL4/H4/F4rHuFRowYQS6HMDGPWLlbtGLFipCQEJLImSwsLJqamqqrq52dnc+dO+fs7Cx3V1IUxRptekjlDoVskIMN72DdMUeM80iQGwP8+ZAsXz6nTp0KDw+XSqVSqVRXV3f//v3Mu15Hjx7t6el579692NjYBw8eVFVVff7551euXImJiZk7d66hoeHnn3/+/fffJyUlZWdnjxs3rra29v79+01NTfHx8WlpafX19ZWVlRkZGcnJyZWVlbW1tQUFBTt37jx79mxGRsb9+/dZy5AP9QkJCSNHjmTFSRYWCoX+/v5KSkpNTU2dnZ0RERESiSQ7O/v333+/fPny48ePmY0zV9+2bdupU6cSExNjYmJ27tx58+bNtLS09vb2RYsWJSUl5efnV1VV1dbWJicnnzx5sqqqysnJydjYOCUlJT8/PzIyMioqasKECTY2NswIg4KCRCKRm5vbiBEj6I5YjScnJ+fm5j5+/JheYMWKFYWFhampqTdu3Ojr6ysoKCB3fDC3ghWSra1tVlYW6xvlqqqqysrK1NRUiqJYO2XmzJkFBQVubm4aGhpjx46lKIq5UXQLPT09BQUFycnJGRkZ9fX1LS0tycnJtbW1H3/88bJly3p7e+3s7GJiYu7cucO6Ndfa2joyMlIikbB2X11dXW1tbXFxMXNkTpw4wVo9MjKyvb09PDycfFm7cuXKurq6tLS0mJiYbdu2JScnp6ent7e3M1eJjo6mdwGJlnwTn5ycXFRUVFtbW1ZWlpKSkpOTQ06R6aPFy8uLbCMdG/OIpTecOcKLFi26e/eui4uL7C/LokWLuru7V61alZSUpK2tzdyVzO+kmaPNHNKioiJyRJEPFnSQ8+fPH8rwDtZdUlJSbW1tZWXlUI4EGC6k8Crq7++XSqWdnZ3kv2KxWCAQ0O+y/tvf39/T0yMSiRS32dvbO9hbQqGQ9coXX3xRWlra19fHCkkqlV64cCEtLU0qlba0tHzyySeKG2e+PtgyEomEFb9EIhEKhczeSYQSiYQeEwUdDWUBuVvBJDsmLKy9IJFI6H+l8jZqiPr7++lGmAYGBhSspWBkBtPT06O4QdYuUED2aGFhjRVBRvjJkycikSguLk5xF8wxkd3XQxltxUEqGF7OQ0vxkQDDBG7weTWRMyf6AU0+n8+8CsT6L/M0SwHWLaBMrDsAOzo6hEJhXl7exIkTZXvx9va+e/fuwMBAW1vb6tWrFTfOfH2wZXg8Huu+Xx6Pp6yszIyK/Mzj8QZ7aFXB1sldQO5WMHHeFcnaC+SCG33ZTXajhmiwvamioqJgLQUjMxjF4cnugsHIPVpYWGNFkMbDw8NNTExmzZqluBfm9UzZfc052pxBKhhezkNL8ZEAwwRqwwIAAHDAd5YAAAAckCzhxerq6iotLf2roxjUM4XX1tb2fLfl0aNHdXV1z7HBP7n9/8SzxvYnHEgikai4uJh+JodWUVHx9OlT+r8tLS3DdlThxUGyhP81WLFZ+hGIgwcPyv4pUUwgEJDHsR8/fnzmzJn/LEAqIiLiWau2KkaHx6mvr+/777/Pzs5+jr0/ffo0MDDwWdfiLPNGL9DW1rZ9+/Y/EtmL96zbLhAINm3a9IKCIQenRCLZv39/fX09691r164xK/z9sb0GLzsky1fQH6shl5+fn5GRIft6f38/Xfpg8+bNsvdZKGZoaEgefjAyMgoICPgDgTHNnTuXVVjuP0SHxyknJ2f8+PErVqx4jr3b2NgMVlRvMMzdMRi6eqqtre0fjOzFe9ZtNzQ0lH2a83khB6eqqqq1tbXsu3Z2dsz/Tpw48Vn3GrwCcDfsy+fXX3+1s7O7f//+hg0bgoODJ0+eXFtbu27dutDQ0Ndeey02NtbBwUFXV/fIkSOffPJJeHi4l5eXqqpqcXHxxo0bw8PDe3p6mpqaFi1adObMGYFA8Le//Y1UoTtz5oySkpK9vf2kSZP27t07ffr04uLi9evXkzJ4pKjb6tWr9+7dq6KiEhUVZW1tXVFRsWbNmq+++opuh1kGLDMz88GDB1ZWVk1NTRRF3b9//9y5c4cOHTp79qyLi0tGRsaaNWv27Nnj6upaUlIyf/78d9999/79+8HBwWpqau+//z69mImJiZ6eXm5u7sqVK48fP25qavr222//9NNPU6ZMyc/PDwgI2Lt3r9wA6uvrr1+/bmBgYGpq6uTktHr16mXLlhkYGDQ1NQUEBLDCo924cePKlSvOzs7+/v6xsbFWVlYZGRk7duzIzMysqqry9va+desWeXHDhg3vvPPORx99lJeXR5cmKC0t3bp165o1a3p7e3V1denRVlZWpoPx8vL697//raOjo6ysTO6wY+6XkJAQY2Pj9vb2ZcuWNTY26unpPX36dMGCBaR9end4eXklJCR0dnaqqKhIJBL6yb/8/Pz79+9HRUXNmDFDQ0Ojvr4+Pj4+ISHhs88+e/jwIbl3VENDg14+Ly+vvr6e9EKKrpEGZ86cuWrVqu+++661tTUkJCQkJGTlypVkYz/77DN6x61bt455ENLDeOLECV1d3YcPHwYEBNy4ccPMzKyhocHZ2dnGxoa17SEhIfQgk1tARSLR9u3bJ06cOGLEiOzs7G3btn399dd79+4VCoW3b99uaGhwcnJycnKiV9y8eXNAQABz59JhhIWFSSSS8vLyFStWpKWlhYaGXrx4cc+ePZ6engUFBQ4ODomJidu3b09MTDx37hxd4lUikTB/BSiKSktLs7S0TElJWbduHX2/sWzk8ArD56OXT2xsbFxcnLe394ULF4RCoYGBQV5enkQiCQsLmzlzZmNj45tvvjlr1qzHjx/PmDHD0NBwYGDAx8eH1D/79ttvLSws7OzswsLCfHx8VFRU3N3dCwoKlJSUZs2a5ejo6ODgwOfzFy1aZGRkFBYWRlGUn5+fubm5l5eXurr65MmTJRLJ119/7efn5+npWV5enpuby2yHGefHH3+8YsUKNzc3UlplxowZ/f39AoHgxo0b6enpc+fOvXbtmrGxsb+///Lly62trcl5g5eXF2ux0tLSGzduTJgwQUdHx93dXSAQXL58eeTIkR4eHlZWVsePHx8sAENDQ19fXysrq9OnT2tra9vb248ePdrf3z8qKko2PJqvr29vby+plh4dHa2np6emppaXl+fk5GRvby+VSukX6+rqbG1tx4wZw6z3bWNjIxQKlyxZsnLlSuZoM4N58uTJuXPnZs+e7eXlRZ52Zy7p7e2tqakZFBTU3d194cKFR48eMcvx0LuDoqigoKCFCxfOnTv38OHD9G3tDg4OlpaWs2fPJs9CSKVSb29vbW3t8vLyb775Zty4cWPGjImLi6Mb7OzspHthNqilpeXg4CAWi93d3cVisZ6eHr2xzB3HOghJmy0tLXFxccuWLVu+fHlnZ2d8fLy3t/fSpUu3b9/O2vba2lrmIJPVlZWV//nPf5aXl9vZ2fX29o4cOXL16tU6OjqdnZ1eXl5Tp069f/8+c8WqqirWzqVNnjzZ3t5+xIgR0dHRixcv5vF4fD7/9ddf9/T0nDNnjomJSWlpaV1dHTk46bVYvwKkHVdXVzMzs1OnTpFX5EYOrzAky5fPjh07PD09v/vuO5FIZGdn5+rqevjwYT6f7+rqGhMT8+GHH5LF5Bau09TUdHV19ff3J4uNHj2afosu2VVdXf39999PmDBBQ0OjtbWVvF5fX0//Nenp6aEfBSPFupjt0EQikezHbYFAcObMGTMzs+Dg4P7+flJvz9DQkKIo8jMpvMdcbPHixf/85z9///13UvGEGQCfz1cQQHR0dEREhKOjo0gkam1tpSiKXHEli8kNjyDxiMViUj3u008/pa9nyr5IFpZdnTXazGCam5tZV7NZ+4W0YGJicvjw4ZaWlt9//51ekrk76EppAwMDzNp1zOprZJPp6muksmBQUBC9MLMXVoPk2UGRSEQKztGBMXecWCxmHoRkMaFQSH42Njbu7OykD7Cenh5WOUa5g0xRlLW1dXl5eVtbm6GhYVhYGJlLQFNTU0NDg94W1orMnUs7dOjQw4cPSVXe1tbWBQsWnD592tjYWCqVbtu2TU9Pz9TU9MmTJ6y1WL8C9OsqKir0b8FgkcOrCsny5bNnzx4ejzd79uyVK1fm5uampaVFRERQFNXc3BwWFnb16tWqqqqUlJSmpqaKior8/PzU1NSioqLq6uqampq1a9devHgxKSmpvLw8NTU1JyenoqKirq4uJyfH1tY2PT29vr6+o6Nj5MiRubm5EokkMTGRTCiRkZEhFosLCwuzsrJ27Nhx7dq1lJQUbW1td3d3Vjt0nNu3b//3v/+dmppaUlKSl5eXnp5eV1dXVFR06NChsWPHurm5LVu2rLi4ODY29vr16xRF2dnZJSUlpaSkpKWlVVRU0IudOHGitrbWx8dHT08vNTU1Ozt75cqVNTU1aWlpGRkZ69atGyyAhw8fGhoaRkdHKykp5ebmlpSUkPpqdXV1jY2NrPDotZKTk6uqqmpqasaNG2dtbR0XFxcREdHd3U2mS9PX16dfbGxsLC8vZ03uWFlZWVlZmZmZSVEUc7SZwXR3d0+fPj0pKSkiIqKsrOzhw4fMJZOTk1NTU7u6uiIjI+Pi4pycnOgpqyiKoneHmprav/71r+vXr0dERAQEBDAf/7ewsAgPDyezytCHQVpa2s6dO0+fPp2enk5K7hHMXlgNTps2LTU1NTw8vLGxsbCwkN5Y5o5bsWIF8yAkzMzMJk+efPXq1Zs3bxoZGdnb25OL8Lt27TI3N2duu4aGBnOQmSPp7+8vFovfeeedgoICHo9XU1NTW1tLjueCggITExN6xUePHrF2Lt1IR0cHRVH19fXZ2dlPnz5dvnz5jRs3HBwchEKhiooK+cxx+/ZtcnDW19cXFhYmJyezfgV4PF5nZ2dubm5hYeH777+fnp5eU1PDivzYsWOkL3hVoSjBy0cqlfb19dEFR/r6+tTV1evr62/evLlhw4a+vr49e/bs3r17sNXFYrFEIpFbcEQkEpG/uVKpVCwWM//+isViuuo6s1/FoZLTnb6+Pk1NTeZpXH9/Pz1DBbMdctrR399Pto4sJpVK+/v7Zfvq7e3lrHEzMDCg4I6kwcJjYoaq+MXBuqBHmxUMaaSrq4uUzpHdL1KplJz+ytbBoXfHYHuTJIOhbBGrF1aDQqFQWVm5u7tbtr4Pc8fJPRiYHbE6ZW273PGUSqVkp9A/cG6LXAKBgFnViNka6y1W76xfgf/wSICXHZLlK0IsFl+6dGnMmDFCoVAikXBW/wIAgKFDsgQAAOCA7ywBAAA4IFkCAABwQLIEAADggGQJAADAAckSAACAA5IlAAAAByRLAAAADkiWAAAAHJAsAQAAOCBZAgAAcECyBAAA4IBkCQAAwAHJEgAAgAOSJQAAAAckSwAAAA5IlgAAAByQLAEAADggWQIAAHBAsgQAAOCAZAkAAMAByRIAAIADkiUAAAAHJEsAAAAOSJYAAAAckCwBAAA4IFkCAABwQLIEAADggGQJAADAAckSAACAA5IlAAAAByRLAAAADkiWAAAAHJAsAQAAOCBZAgAAcECyBAAA4IBkCQAAwAHJEgAAgAOSJQAAAAckSwAAAA5IlgAAAByQLAEAADggWQIAAHBAsgQAAOCAZAkAAMAByRIAAIADkiUAAAAHJEsAAAAOSJYAAAAckCwBAAA4IFkCAABwQLIEAADggGQJAADAAckSAACAA5IlAAAAByRLAAAADkiWAAAAHJAsAQAAOCBZAgAAcECyBAAA4IBkCQAAwAHJEgAAgAOSJQAAAAckSwAAAA5IlgAAAByQLAEAADggWQIAAHBAsgQAAOCAZAkAAMAByRIAAIADkiUAAAAHJEsAAAAOSJYAAAAckCwBAAA4IFkCAABwQLIEAADggGQJAADAAckSAACAA5IlAAAAByRLAAAADkiWAAAAHJAsAQAAOCBZAgAAcECyBAAA4IBkCQAAwAHJEgAAgAOSJQAAAAckSwAAAA5IlgAAAByQLAEAADggWQIAAHBAsgQAAOCAZAkAAMAByRIAAIADkiUAAAAHJEsAAAAOSJYAAAAckCwBAAA4IFkCAABwQLIEAADggGQJAADAAckSAACAA5IlAAAAByRLAAAADkiWAAAAHJAsAQAAOCBZAgAAcECyBAAA4IBkCQAAwAHJEgAAgAOSJQAAAAckSwAAAA5IlgAAAByQLAEAADggWQIAAHBAsgQAAOCAZAkAAMAByRIAAIADkiUAAAAHJEsAAAAOSJYAAAAckCwBAAA4IFkCAABwQLIEAADggGQJAADAAckSAACAA5IlAAAAh/8HrYpAMn8ebeMAAAAASUVORK5CYII=", "text/plain": [ - "'LayoutParser : A Unified Toolkit for DL-Based DIA 5\\nTable 1: Current layout detection models in the LayoutParser model zoo\\nDataset Base Model1Large Model Notes\\nPubLayNet [38] F / M M Layouts of modern scientific documents\\nPRImA [3] M - Layouts of scanned modern magazines and scientific reports\\nNewspaper [17] F - Layouts of scanned US newspapers from the 20th century\\nTableBank [18] F F Table region on modern scientific and business document\\nHJDataset [31] F / M - Layouts of history Japanese documents\\n1For each dataset, we train several models of different sizes for different needs (the trade-off between accuracy\\nvs. computational cost). For “base model” and “large model”, we refer to using the ResNet 50 or ResNet 101\\nbackbones [ 13], respectively. One can train models of different architectures, like Faster R-CNN [ 28] (F) and Mask\\nR-CNN [ 12] (M). For example, an F in the Large Model column indicates it has a Faster R-CNN model trained\\nusing the ResNet 101 backbone. The platform is maintained and a number of additions will be made to the model\\nzoo in coming months.\\nlayout data structures , which are optimized for efficiency and versatility. 3) When\\nnecessary, users can employ existing or customized OCR models via the unified\\nAPI provided in the OCR module . 4)LayoutParser comes with a set of utility\\nfunctions for the visualization and storage of the layout data. 5) LayoutParser\\nis also highly customizable, via its integration with functions for layout data\\nannotation and model training . We now provide detailed descriptions for each\\ncomponent.\\n3.1 Layout Detection Models\\nInLayoutParser , a layout model takes a document image as an input and\\ngenerates a list of rectangular boxes for the target content regions. Different\\nfrom traditional methods, it relies on deep convolutional neural networks rather\\nthan manually curated rules to identify content regions. It is formulated as an\\nobject detection problem and state-of-the-art models like Faster R-CNN [ 28] and\\nMask R-CNN [ 12] are used. This yields prediction results of high accuracy and\\nmakes it possible to build a concise, generalized interface for layout detection.\\nLayoutParser , built upon Detectron2 [ 35], provides a minimal API that can\\nperform layout detection with only four lines of code in Python:\\n1import layoutparser as lp\\n2image = cv2. imread (\" image_file \") # load images\\n3model = lp. Detectron2LayoutModel (\\n4 \"lp :// PubLayNet / faster_rcnn_R_50_FPN_3x / config \")\\n5layout = model . detect ( image )\\nLayoutParser provides a wealth of pre-trained model weights using various\\ndatasets covering different languages, time periods, and document types. Due to\\ndomain shift [ 7], the prediction performance can notably drop when models are ap-\\nplied to target samples that are significantly different from the training dataset. As\\ndocument structures and layouts vary greatly in different domains, it is important\\nto select models trained on a dataset similar to the test samples. A semantic syntax\\nis used for initializing the model weights in LayoutParser , using both the dataset\\nname and model name lp:/// .'" + "" ] }, - "execution_count": 8, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import Image as IPImage\n", + "from IPython.display import display\n", + "\n", + "base64_image = pdf_page_to_base64(file_path, 11)\n", + "display(IPImage(data=base64.b64decode(base64_image)))" + ] + }, + { + "cell_type": "markdown", + "id": "14e273e9-d35b-4701-a48e-b1d3cbe9892b", + "metadata": {}, + "source": [ + "We can then query the model in the [usual way](/docs/how_to/multimodal_inputs/). Below we ask it a question on related to the diagram on the page." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5bbad8ef-dd8b-4ab9-88c6-0a3872c658b5", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_openai import ChatOpenAI\n", + "\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c5a45247-3b80-448c-979e-642741347aba", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first step in the pipeline is \"Annotate Layout Dataset.\"\n" + ] } ], "source": [ - "loader = PyPDFLoader(\"https://arxiv.org/pdf/2103.15348.pdf\", extract_images=True)\n", - "pages = loader.load()\n", - "pages[4].page_content" + "from langchain_core.messages import HumanMessage\n", + "\n", + "query = \"What is the name of the first step in the pipeline?\"\n", + "\n", + "message = HumanMessage(\n", + " content=[\n", + " {\"type\": \"text\", \"text\": query},\n", + " {\n", + " \"type\": \"image_url\",\n", + " \"image_url\": {\"url\": f\"data:image/jpeg;base64,{base64_image}\"},\n", + " },\n", + " ],\n", + ")\n", + "response = llm.invoke([message])\n", + "print(response.content)" ] }, { "cell_type": "markdown", - "id": "f3f654d9", + "id": "2e1853d6-4609-4eb3-a4cd-74b8f2a4e32f", "metadata": {}, "source": [ - "## Using other PDF loaders\n", + "## Other PDF loaders\n", "\n", - "For a list of other PDF loaders to use, please see [this table](https://python.langchain.com/v0.2/docs/integrations/document_loaders/#pdfs)" + "For a list of available LangChain PDF loaders, please see [this table](/docs/integrations/document_loaders/#pdfs)." ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d23babb2-d538-437e-b26a-5e5e002c42a8", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -202,7 +964,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/docs/docs/how_to/document_loader_web.ipynb b/docs/docs/how_to/document_loader_web.ipynb new file mode 100644 index 0000000000000..9eaa321822e9e --- /dev/null +++ b/docs/docs/how_to/document_loader_web.ipynb @@ -0,0 +1,486 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7414502a-4532-4da3-aef0-71aac4d0d4dd", + "metadata": {}, + "source": [ + "# How to load web pages\n", + "\n", + "This guide covers how to load web pages into the LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) format that we use downstream. Web pages contain text, images, and other multimedia elements, and are typically represented with HTML. They may include links to other pages or resources.\n", + "\n", + "LangChain integrates with a host of parsers that are appropriate for web pages. The right parser will depend on your needs. Below we demonstrate two possibilities:\n", + "\n", + "- [Simple and fast](/docs/how_to/document_loader_web#simple-and-fast-text-extraction) parsing, in which we recover one `Document` per web page with its content represented as a \"flattened\" string;\n", + "- [Advanced](/docs/how_to/document_loader_web#advanced-parsing) parsing, in which we recover multiple `Document` objects per page, allowing one to identify and traverse sections, links, tables, and other structures.\n", + "\n", + "## Setup\n", + "\n", + "For the \"simple and fast\" parsing, we will need `langchain-community` and the `beautifulsoup4` library:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "89bc7be9-ab50-4c5a-860a-deee7b469f67", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU langchain-community beautifulsoup4" + ] + }, + { + "cell_type": "markdown", + "id": "a07f5ca3-e2b7-4d9c-b1f2-7547856cbdf7", + "metadata": {}, + "source": [ + "For advanced parsing, we will use `langchain-unstructured`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8a3ef1fc-dfde-4814-b7f6-b6c0c649f044", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU langchain-unstructured" + ] + }, + { + "cell_type": "markdown", + "id": "4ef11005-1bd0-43a3-8d52-ea823c830c34", + "metadata": {}, + "source": [ + "## Simple and fast text extraction\n", + "\n", + "If you are looking for a simple string representation of text that is embedded in a web page, the method below is appropriate. It will return a list of `Document` objects -- one per page -- containing a single string of the page's text. Under the hood it uses the `beautifulsoup4` Python library.\n", + "\n", + "LangChain document loaders implement `lazy_load` and its async variant, `alazy_load`, which return iterators of `Document objects`. We will use these below." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "7faeccbc-4e56-4b88-99db-2274ed0680c1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "USER_AGENT environment variable not set, consider setting it to identify your requests.\n" + ] + } + ], + "source": [ + "import bs4\n", + "from langchain_community.document_loaders import WebBaseLoader\n", + "\n", + "page_url = \"https://python.langchain.com/docs/how_to/chatbots_memory/\"\n", + "\n", + "loader = WebBaseLoader(web_paths=[page_url])\n", + "docs = []\n", + "async for doc in loader.alazy_load():\n", + " docs.append(doc)\n", + "\n", + "assert len(docs) == 1\n", + "doc = docs[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "21199a0d-3bd2-4410-a060-763649b14691", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'source': 'https://python.langchain.com/docs/how_to/chatbots_memory/', 'title': 'How to add memory to chatbots | \\uf8ffü¶úÔ∏è\\uf8ffüîó LangChain', 'description': 'A key feature of chatbots is their ability to use content of previous conversation turns as context. This state management can take several forms, including:', 'language': 'en'}\n", + "\n", + "How to add memory to chatbots | ü¶úÔ∏èüîó LangChain\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Skip to main contentShare your thoughts on AI agents. Take the 3-min survey.IntegrationsAPI ReferenceMoreContributingPeopleLangSmithLangGraphLangChain HubLangChain JS/TSv0.3v0.3v0.2v0.1üí¨SearchIntroductionTutorialsBuild a Question Answering application over a Graph DatabaseTutorialsBuild a Simple LLM Application with LCELBuild a Query Analysis SystemBuild a ChatbotConversational RAGBuild an Extraction ChainBuild an AgentTaggingd\n" + ] + } + ], + "source": [ + "print(f\"{doc.metadata}\\n\")\n", + "print(doc.page_content[:500].strip())" + ] + }, + { + "cell_type": "markdown", + "id": "23189e91-5237-4a9e-a4bb-cb79e130c364", + "metadata": {}, + "source": [ + "This is essentially a dump of the text from the page's HTML. It may contain extraneous information like headings and navigation bars. If you are familiar with the expected HTML, you can specify desired `
` classes and other parameters via BeautifulSoup. Below we parse only the body text of the article:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4211b1a6-e636-415b-a556-ae01969399a7", + "metadata": {}, + "outputs": [], + "source": [ + "loader = WebBaseLoader(\n", + " web_paths=[page_url],\n", + " bs_kwargs={\n", + " \"parse_only\": bs4.SoupStrainer(class_=\"theme-doc-markdown markdown\"),\n", + " },\n", + " bs_get_text_kwargs={\"separator\": \" | \", \"strip\": True},\n", + ")\n", + "\n", + "docs = []\n", + "async for doc in loader.alazy_load():\n", + " docs.append(doc)\n", + "\n", + "assert len(docs) == 1\n", + "doc = docs[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "7edf6ed0-e22f-4c64-b986-8ba019c14757", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'source': 'https://python.langchain.com/docs/how_to/chatbots_memory/'}\n", + "\n", + "How to add memory to chatbots | A key feature of chatbots is their ability to use content of previous conversation turns as context. This state management can take several forms, including: | Simply stuffing previous messages into a chat model prompt. | The above, but trimming old messages to reduce the amount of distracting information the model has to deal with. | More complex modifications like synthesizing summaries for long running conversations. | We'll go into more detail on a few techniq\n" + ] + } + ], + "source": [ + "print(f\"{doc.metadata}\\n\")\n", + "print(doc.page_content[:500])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6ab1ba2b-3b22-4c5d-8ad3-f6809d075d26", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a greeting. Nemo then asks the AI how it is doing, and the AI responds that it is fine.'), | HumanMessage(content='What did I say my name was?'), | AIMessage(content='You introduced yourself as Nemo. How can I assist you today, Nemo?')] | Note that invoking the chain again will generate another summary generated from the initial summary plus new messages and so on. You could also design a hybrid approach where a certain number of messages are retained in chat history while others are summarized.\n" + ] + } + ], + "source": [ + "print(doc.page_content[-500:])" + ] + }, + { + "cell_type": "markdown", + "id": "0a411144-a234-4505-956c-930d399ffefb", + "metadata": {}, + "source": [ + "Note that this required advance technical knowledge of how the body text is represented in the underlying HTML.\n", + "\n", + "We can parameterize `WebBaseLoader` with a variety of settings, allowing for specification of request headers, rate limits, and parsers and other kwargs for BeautifulSoup. See its [API reference](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) for detail." + ] + }, + { + "cell_type": "markdown", + "id": "cdfc8f68-2b08-4a6c-9705-c17e6deaf411", + "metadata": {}, + "source": [ + "## Advanced parsing\n", + "\n", + "This method is appropriate if we want more granular control or processing of the page content. Below, instead of generating one `Document` per page and controlling its content via BeautifulSoup, we generate multiple `Document` objects representing distinct structures on a page. These structures can include section titles and their corresponding body texts, lists or enumerations, tables, and more.\n", + "\n", + "Under the hood it uses the `langchain-unstructured` library. See the [integration docs](/docs/integrations/document_loaders/unstructured_file/) for more information about using [Unstructured](https://docs.unstructured.io/welcome) with LangChain." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "7a6bbfef-ebd5-4357-a7f5-9c989dda092d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: Note: NumExpr detected 12 cores but \"NUMEXPR_MAX_THREADS\" not set, so enforcing safe limit of 8.\n", + "INFO: NumExpr defaulting to 8 threads.\n" + ] + } + ], + "source": [ + "from langchain_unstructured import UnstructuredLoader\n", + "\n", + "page_url = \"https://python.langchain.com/docs/how_to/chatbots_memory/\"\n", + "loader = UnstructuredLoader(web_url=page_url)\n", + "\n", + "docs = []\n", + "async for doc in loader.alazy_load():\n", + " docs.append(doc)" + ] + }, + { + "cell_type": "markdown", + "id": "53a600b0-fcd2-4074-80b6-a1dd2c0d9235", + "metadata": {}, + "source": [ + "Note that with no advance knowledge of the page HTML structure, we recover a natural organization of the body text:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "198b7469-587f-4a80-a49f-440e6157b241", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "How to add memory to chatbots\n", + "A key feature of chatbots is their ability to use content of previous conversation turns as context. This state management can take several forms, including:\n", + "Simply stuffing previous messages into a chat model prompt.\n", + "The above, but trimming old messages to reduce the amount of distracting information the model has to deal with.\n", + "More complex modifications like synthesizing summaries for long running conversations.\n", + "ERROR! Session/line number was not unique in database. History logging moved to new session 2747\n" + ] + } + ], + "source": [ + "for doc in docs[:5]:\n", + " print(doc.page_content)" + ] + }, + { + "cell_type": "markdown", + "id": "3f4254b5-5e3b-45c4-9cd0-7ed753687783", + "metadata": {}, + "source": [ + "### Extracting content from specific sections" + ] + }, + { + "cell_type": "markdown", + "id": "627d9b7a-31fe-4923-bc9a-4b0caae1d760", + "metadata": {}, + "source": [ + "Each `Document` object represents an element of the page. Its metadata contains useful information, such as its category:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "2fa19a61-a53d-42e0-a01a-7ea99fc40810", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Title: How to add memory to chatbots\n", + "NarrativeText: A key feature of chatbots is their ability to use content of previous conversation turns as context. This state management can take several forms, including:\n", + "ListItem: Simply stuffing previous messages into a chat model prompt.\n", + "ListItem: The above, but trimming old messages to reduce the amount of distracting information the model has to deal with.\n", + "ListItem: More complex modifications like synthesizing summaries for long running conversations.\n" + ] + } + ], + "source": [ + "for doc in docs[:5]:\n", + " print(f'{doc.metadata[\"category\"]}: {doc.page_content}')" + ] + }, + { + "cell_type": "markdown", + "id": "ca0f8025-58b8-4d2a-95aa-124d7a8ee812", + "metadata": {}, + "source": [ + "Elements may also have parent-child relationships -- for example, a paragraph might belong to a section with a title. If a section is of particular interest (e.g., for indexing) we can isolate the corresponding `Document` objects.\n", + "\n", + "As an example, below we load the content of the \"Setup\" sections for two web pages:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "793018fd-1365-4a8a-8690-6d51dad2e1cf", + "metadata": {}, + "outputs": [], + "source": [ + "from typing import List\n", + "\n", + "from langchain_core.documents import Document\n", + "\n", + "\n", + "async def _get_setup_docs_from_url(url: str) -> List[Document]:\n", + " loader = UnstructuredLoader(web_url=url)\n", + "\n", + " setup_docs = []\n", + " parent_id = -1\n", + " async for doc in loader.alazy_load():\n", + " if doc.metadata[\"category\"] == \"Title\" and doc.page_content.startswith(\"Setup\"):\n", + " parent_id = doc.metadata[\"element_id\"]\n", + " if doc.metadata.get(\"parent_id\") == parent_id:\n", + " setup_docs.append(doc)\n", + "\n", + " return setup_docs\n", + "\n", + "\n", + "page_urls = [\n", + " \"https://python.langchain.com/docs/how_to/chatbots_memory/\",\n", + " \"https://python.langchain.com/docs/how_to/chatbots_tools/\",\n", + "]\n", + "setup_docs = []\n", + "for url in page_urls:\n", + " page_setup_docs = await _get_setup_docs_from_url(url)\n", + " setup_docs.extend(page_setup_docs)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a67e0745-abfc-4baa-94b3-2e8815bfa52a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'https://python.langchain.com/docs/how_to/chatbots_memory/': \"You'll need to install a few packages, and have your OpenAI API key set as an environment variable named OPENAI_API_KEY:\\n%pip install --upgrade --quiet langchain langchain-openai\\n\\n# Set env var OPENAI_API_KEY or load from a .env file:\\nimport dotenv\\n\\ndotenv.load_dotenv()\\n[33mWARNING: You are using pip version 22.0.4; however, version 23.3.2 is available.\\nYou should consider upgrading via the '/Users/jacoblee/.pyenv/versions/3.10.5/bin/python -m pip install --upgrade pip' command.[0m[33m\\n[0mNote: you may need to restart the kernel to use updated packages.\\n\",\n", + " 'https://python.langchain.com/docs/how_to/chatbots_tools/': \"For this guide, we'll be using a tool calling agent with a single tool for searching the web. The default will be powered by Tavily, but you can switch it out for any similar tool. The rest of this section will assume you're using Tavily.\\nYou'll need to sign up for an account on the Tavily website, and install the following packages:\\n%pip install --upgrade --quiet langchain-community langchain-openai tavily-python\\n\\n# Set env var OPENAI_API_KEY or load from a .env file:\\nimport dotenv\\n\\ndotenv.load_dotenv()\\nYou will also need your OpenAI key set as OPENAI_API_KEY and your Tavily API key set as TAVILY_API_KEY.\\n\"}" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from collections import defaultdict\n", + "\n", + "setup_text = defaultdict(str)\n", + "\n", + "for doc in setup_docs:\n", + " url = doc.metadata[\"url\"]\n", + " setup_text[url] += f\"{doc.page_content}\\n\"\n", + "\n", + "dict(setup_text)" + ] + }, + { + "cell_type": "markdown", + "id": "5cd42892-24a6-4969-92c8-c928680be9b5", + "metadata": {}, + "source": [ + "### Vector search over page content\n", + "\n", + "Once we have loaded the page contents into LangChain `Document` objects, we can index them (e.g., for a RAG application) in the usual way. Below we use OpenAI [embeddings](/docs/concepts/#embedding-models), although any LangChain embeddings model will suffice." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a6cbb01-6e0d-418f-9f76-2031622bebb0", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU langchain-openai" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "598e612c-180d-494d-8caa-761c89f84eae", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5eeaeb54-ea03-4634-8a79-b60c22ab2b66", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO: HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n", + "INFO: HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Page https://python.langchain.com/docs/how_to/chatbots_tools/: You'll need to sign up for an account on the Tavily website, and install the following packages:\n", + "\n", + "Page https://python.langchain.com/docs/how_to/chatbots_tools/: For this guide, we'll be using a tool calling agent with a single tool for searching the web. The default will be powered by Tavily, but you can switch it out for any similar tool. The rest of this section will assume you're using Tavily.\n", + "\n" + ] + } + ], + "source": [ + "from langchain_core.vectorstores import InMemoryVectorStore\n", + "from langchain_openai import OpenAIEmbeddings\n", + "\n", + "vector_store = InMemoryVectorStore.from_documents(setup_docs, OpenAIEmbeddings())\n", + "retrieved_docs = vector_store.similarity_search(\"Install Tavily\", k=2)\n", + "for doc in retrieved_docs:\n", + " print(f'Page {doc.metadata[\"url\"]}: {doc.page_content[:300]}\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "67be9c94-dbde-4fdd-87d0-e83ed6066d2b", + "metadata": {}, + "source": [ + "## Other web page loaders\n", + "\n", + "For a list of available LangChain web page loaders, please see [this table](/docs/integrations/document_loaders/#webpages)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/how_to/dynamic_chain.ipynb b/docs/docs/how_to/dynamic_chain.ipynb index 53790472a4a20..ce2b98ef2cd73 100644 --- a/docs/docs/how_to/dynamic_chain.ipynb +++ b/docs/docs/how_to/dynamic_chain.ipynb @@ -17,13 +17,11 @@ "\n", "Sometimes we want to construct parts of a chain at runtime, depending on the chain inputs ([routing](/docs/how_to/routing/) is the most common example of this). We can create dynamic chains like this using a very useful property of RunnableLambda's, which is that if a RunnableLambda returns a Runnable, that Runnable is itself invoked. Let's see an example.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { diff --git a/docs/docs/how_to/embed_text.mdx b/docs/docs/how_to/embed_text.mdx index 842259d280609..2450e99440c27 100644 --- a/docs/docs/how_to/embed_text.mdx +++ b/docs/docs/how_to/embed_text.mdx @@ -115,13 +115,10 @@ embeddings = embeddings_model.embed_documents( len(embeddings), len(embeddings[0]) ``` - - -``` +```output (5, 1536) ``` - ### `embed_query` #### Embed single query @@ -132,9 +129,7 @@ embedded_query = embeddings_model.embed_query("What was the name mentioned in th embedded_query[:5] ``` - - -``` +```output [0.0053587136790156364, -0.0004999046213924885, 0.038883671164512634, @@ -142,4 +137,3 @@ embedded_query[:5] -0.00900818221271038] ``` - diff --git a/docs/docs/how_to/ensemble_retriever.ipynb b/docs/docs/how_to/ensemble_retriever.ipynb index 695e9493930df..99098554f5ef2 100644 --- a/docs/docs/how_to/ensemble_retriever.ipynb +++ b/docs/docs/how_to/ensemble_retriever.ipynb @@ -6,7 +6,7 @@ "source": [ "# How to combine results from multiple retrievers\n", "\n", - "The [EnsembleRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://python.langchain.com/v0.2/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm.\n", + "The [EnsembleRetriever](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html) supports ensembling of results from multiple retrievers. It is initialized with a list of [BaseRetriever](https://python.langchain.com/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html) objects. EnsembleRetrievers rerank the results of the constituent retrievers based on the [Reciprocal Rank Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) algorithm.\n", "\n", "By leveraging the strengths of different algorithms, the `EnsembleRetriever` can achieve better performance than any single algorithm. \n", "\n", @@ -14,7 +14,7 @@ "\n", "## Basic usage\n", "\n", - "Below we demonstrate ensembling of a [BM25Retriever](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html) with a retriever derived from the [FAISS vector store](https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)." + "Below we demonstrate ensembling of a [BM25Retriever](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html) with a retriever derived from the [FAISS vector store](https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)." ] }, { diff --git a/docs/docs/how_to/extraction_examples.ipynb b/docs/docs/how_to/extraction_examples.ipynb index 6d119b8359065..764e801f39ca4 100644 --- a/docs/docs/how_to/extraction_examples.ipynb +++ b/docs/docs/how_to/extraction_examples.ipynb @@ -11,16 +11,16 @@ "\n", "Data extraction attempts to generate structured representations of information found in text and other unstructured or semi-structured formats. [Tool-calling](/docs/concepts#functiontool-calling) LLM features are often used in this context. This guide demonstrates how to build few-shot examples of tool calls to help steer the behavior of extraction and similar applications.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "While this guide focuses how to use examples with a tool calling model, this technique is generally applicable, and will work\n", "also with JSON more or prompt based techniques.\n", ":::\n", "\n", - "LangChain implements a [tool-call attribute](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.tool_calls) on messages from LLMs that include tool calls. See our [how-to guide on tool calling](/docs/how_to/tool_calling) for more detail. To build reference examples for data extraction, we build a chat history containing a sequence of: \n", + "LangChain implements a [tool-call attribute](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage.tool_calls) on messages from LLMs that include tool calls. See our [how-to guide on tool calling](/docs/how_to/tool_calling) for more detail. To build reference examples for data extraction, we build a chat history containing a sequence of: \n", "\n", - "- [HumanMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.human.HumanMessage.html) containing example inputs;\n", - "- [AIMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html) containing example tool calls;\n", - "- [ToolMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) containing example tool outputs.\n", + "- [HumanMessage](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.human.HumanMessage.html) containing example inputs;\n", + "- [AIMessage](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html) containing example tool calls;\n", + "- [ToolMessage](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) containing example tool outputs.\n", "\n", "LangChain adopts this convention for structuring tool calls into conversation across LLM model providers.\n", "\n", @@ -29,9 +29,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "89579144-bcb3-490a-8036-86a0a6bcd56b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:41.780410Z", + "iopub.status.busy": "2024-09-10T20:26:41.780102Z", + "iopub.status.idle": "2024-09-10T20:26:42.147112Z", + "shell.execute_reply": "2024-09-10T20:26:42.146838Z" + } + }, "outputs": [], "source": [ "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", @@ -67,17 +74,24 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "610c3025-ea63-4cd7-88bd-c8cbcb4d8a3f", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.148746Z", + "iopub.status.busy": "2024-09-10T20:26:42.148621Z", + "iopub.status.idle": "2024-09-10T20:26:42.162044Z", + "shell.execute_reply": "2024-09-10T20:26:42.161794Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "ChatPromptValue(messages=[SystemMessage(content=\"You are an expert extraction algorithm. Only extract relevant information from the text. If you do not know the value of an attribute asked to extract, return null for the attribute's value.\"), HumanMessage(content='testing 1 2 3'), HumanMessage(content='this is some text')])" + "ChatPromptValue(messages=[SystemMessage(content=\"You are an expert extraction algorithm. Only extract relevant information from the text. If you do not know the value of an attribute asked to extract, return null for the attribute's value.\", additional_kwargs={}, response_metadata={}), HumanMessage(content='testing 1 2 3', additional_kwargs={}, response_metadata={}), HumanMessage(content='this is some text', additional_kwargs={}, response_metadata={})])" ] }, - "execution_count": 3, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -104,15 +118,22 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "d875a49a-d2cb-4b9e-b5bf-41073bc3905c", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.163477Z", + "iopub.status.busy": "2024-09-10T20:26:42.163391Z", + "iopub.status.idle": "2024-09-10T20:26:42.324449Z", + "shell.execute_reply": "2024-09-10T20:26:42.324206Z" + } + }, "outputs": [], "source": [ "from typing import List, Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Person(BaseModel):\n", @@ -151,7 +172,7 @@ "\n", "Each example contains an example `input` text and an example `output` showing what should be extracted from the text.\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "This is a bit in the weeds, so feel free to skip.\n", "\n", "The format of the example needs to match the API used (e.g., tool calling or JSON mode etc.).\n", @@ -162,9 +183,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "08356810-77ce-4e68-99d9-faa0326f2cee", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.326100Z", + "iopub.status.busy": "2024-09-10T20:26:42.326016Z", + "iopub.status.idle": "2024-09-10T20:26:42.329260Z", + "shell.execute_reply": "2024-09-10T20:26:42.329014Z" + } + }, "outputs": [], "source": [ "import uuid\n", @@ -177,7 +205,7 @@ " SystemMessage,\n", " ToolMessage,\n", ")\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Example(TypedDict):\n", @@ -238,9 +266,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "7f59a745-5c81-4011-a4c5-a33ec1eca7ef", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.330580Z", + "iopub.status.busy": "2024-09-10T20:26:42.330488Z", + "iopub.status.idle": "2024-09-10T20:26:42.332813Z", + "shell.execute_reply": "2024-09-10T20:26:42.332598Z" + } + }, "outputs": [], "source": [ "examples = [\n", @@ -273,22 +308,29 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "976bb7b8-09c4-4a3e-80df-49a483705c08", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.333955Z", + "iopub.status.busy": "2024-09-10T20:26:42.333876Z", + "iopub.status.idle": "2024-09-10T20:26:42.336841Z", + "shell.execute_reply": "2024-09-10T20:26:42.336635Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "system: content=\"You are an expert extraction algorithm. Only extract relevant information from the text. If you do not know the value of an attribute asked to extract, return null for the attribute's value.\"\n", - "human: content=\"The ocean is vast and blue. It's more than 20,000 feet deep. There are many fish in it.\"\n", - "ai: content='' tool_calls=[{'name': 'Person', 'args': {'name': None, 'hair_color': None, 'height_in_meters': None}, 'id': 'b843ba77-4c9c-48ef-92a4-54e534f24521'}]\n", - "tool: content='You have correctly called this tool.' tool_call_id='b843ba77-4c9c-48ef-92a4-54e534f24521'\n", - "human: content='Fiona traveled far from France to Spain.'\n", - "ai: content='' tool_calls=[{'name': 'Person', 'args': {'name': 'Fiona', 'hair_color': None, 'height_in_meters': None}, 'id': '46f00d6b-50e5-4482-9406-b07bb10340f6'}]\n", - "tool: content='You have correctly called this tool.' tool_call_id='46f00d6b-50e5-4482-9406-b07bb10340f6'\n", - "human: content='this is some text'\n" + "system: content=\"You are an expert extraction algorithm. Only extract relevant information from the text. If you do not know the value of an attribute asked to extract, return null for the attribute's value.\" additional_kwargs={} response_metadata={}\n", + "human: content=\"The ocean is vast and blue. It's more than 20,000 feet deep. There are many fish in it.\" additional_kwargs={} response_metadata={}\n", + "ai: content='' additional_kwargs={} response_metadata={} tool_calls=[{'name': 'Data', 'args': {'people': []}, 'id': '240159b1-1405-4107-a07c-3c6b91b3d5b7', 'type': 'tool_call'}]\n", + "tool: content='You have correctly called this tool.' tool_call_id='240159b1-1405-4107-a07c-3c6b91b3d5b7'\n", + "human: content='Fiona traveled far from France to Spain.' additional_kwargs={} response_metadata={}\n", + "ai: content='' additional_kwargs={} response_metadata={} tool_calls=[{'name': 'Data', 'args': {'people': [{'name': 'Fiona', 'hair_color': None, 'height_in_meters': None}]}, 'id': '3fc521e4-d1d2-4c20-bf40-e3d72f1068da', 'type': 'tool_call'}]\n", + "tool: content='You have correctly called this tool.' tool_call_id='3fc521e4-d1d2-4c20-bf40-e3d72f1068da'\n", + "human: content='this is some text' additional_kwargs={} response_metadata={}\n" ] } ], @@ -308,21 +350,26 @@ "\n", "Let's select an LLM. Because we are using tool-calling, we will need a model that supports a tool-calling feature. See [this table](/docs/integrations/chat) for available LLMs.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "id": "df2e1ee1-69e8-4c4d-b349-95f2e320317b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.338001Z", + "iopub.status.busy": "2024-09-10T20:26:42.337915Z", + "iopub.status.idle": "2024-09-10T20:26:42.349121Z", + "shell.execute_reply": "2024-09-10T20:26:42.348908Z" + } + }, "outputs": [], "source": [ "# | output: false\n", @@ -343,9 +390,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "dbfea43d-769b-42e9-a76f-ce722f7d6f93", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.350335Z", + "iopub.status.busy": "2024-09-10T20:26:42.350264Z", + "iopub.status.idle": "2024-09-10T20:26:42.424894Z", + "shell.execute_reply": "2024-09-10T20:26:42.424623Z" + } + }, "outputs": [], "source": [ "runnable = prompt | llm.with_structured_output(\n", @@ -367,18 +421,49 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "id": "66545cab-af2a-40a4-9dc9-b4110458b7d3", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:42.426258Z", + "iopub.status.busy": "2024-09-10T20:26:42.426187Z", + "iopub.status.idle": "2024-09-10T20:26:46.151633Z", + "shell.execute_reply": "2024-09-10T20:26:46.150690Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "people=[Person(name='earth', hair_color='null', height_in_meters='null')]\n", - "people=[Person(name='earth', hair_color='null', height_in_meters='null')]\n", - "people=[]\n", - "people=[Person(name='earth', hair_color='null', height_in_meters='null')]\n", + "people=[Person(name='earth', hair_color='null', height_in_meters='null')]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "people=[Person(name='earth', hair_color='null', height_in_meters='null')]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "people=[]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "people=[Person(name='earth', hair_color='null', height_in_meters='null')]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "people=[]\n" ] } @@ -401,18 +486,49 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "id": "1c09d805-ec16-4123-aef9-6a5b59499b5c", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:46.155346Z", + "iopub.status.busy": "2024-09-10T20:26:46.155110Z", + "iopub.status.idle": "2024-09-10T20:26:51.810359Z", + "shell.execute_reply": "2024-09-10T20:26:51.809636Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "people=[]\n", - "people=[]\n", - "people=[]\n", - "people=[]\n", + "people=[]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "people=[]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "people=[]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "people=[]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "people=[]\n" ] } @@ -435,9 +551,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "id": "a9b7a762-1b75-4f9f-b9d9-6732dd05802c", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:26:51.813309Z", + "iopub.status.busy": "2024-09-10T20:26:51.813150Z", + "iopub.status.idle": "2024-09-10T20:26:53.474153Z", + "shell.execute_reply": "2024-09-10T20:26:53.473522Z" + } + }, "outputs": [ { "data": { @@ -445,7 +568,7 @@ "Data(people=[Person(name='Harrison', hair_color='black', height_in_meters=None)])" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -476,7 +599,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/extraction_long_text.ipynb b/docs/docs/how_to/extraction_long_text.ipynb index 97b86ffad8cbc..b4e8b3dbcbc48 100644 --- a/docs/docs/how_to/extraction_long_text.ipynb +++ b/docs/docs/how_to/extraction_long_text.ipynb @@ -23,16 +23,56 @@ "id": "57969139-ad0a-487e-97d8-cb30e2af9742", "metadata": {}, "source": [ - "## Set up\n", + "## Setup\n", "\n", - "We need some example data! Let's download an article about [cars from wikipedia](https://en.wikipedia.org/wiki/Car) and load it as a LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html)." + "First we'll install the dependencies needed for this guide:" ] }, { "cell_type": "code", "execution_count": 1, - "id": "84460db2-36e1-4037-bfa6-2a11883c2ba5", + "id": "a3b4d838-5be4-4207-8a4a-9ef5624c48f2", + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:19.850767Z", + "iopub.status.busy": "2024-09-10T20:35:19.850427Z", + "iopub.status.idle": "2024-09-10T20:35:21.432233Z", + "shell.execute_reply": "2024-09-10T20:35:21.431606Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -qU langchain-community lxml faiss-cpu langchain-openai" + ] + }, + { + "cell_type": "markdown", + "id": "ac000b03-33fc-414f-8f2c-3850df621a35", "metadata": {}, + "source": [ + "Now we need some example data! Let's download an article about [cars from wikipedia](https://en.wikipedia.org/wiki/Car) and load it as a LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "84460db2-36e1-4037-bfa6-2a11883c2ba5", + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:21.434882Z", + "iopub.status.busy": "2024-09-10T20:35:21.434571Z", + "iopub.status.idle": "2024-09-10T20:35:22.214545Z", + "shell.execute_reply": "2024-09-10T20:35:22.214253Z" + } + }, "outputs": [], "source": [ "import re\n", @@ -55,15 +95,22 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "fcb6917b-123d-4630-a0ce-ed8b293d482d", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:22.216143Z", + "iopub.status.busy": "2024-09-10T20:35:22.216039Z", + "iopub.status.idle": "2024-09-10T20:35:22.218117Z", + "shell.execute_reply": "2024-09-10T20:35:22.217854Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "79174\n" + "80427\n" ] } ], @@ -87,13 +134,20 @@ "cell_type": "code", "execution_count": 4, "id": "a3b288ed-87a6-4af0-aac8-20921dc370d4", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:22.219468Z", + "iopub.status.busy": "2024-09-10T20:35:22.219395Z", + "iopub.status.idle": "2024-09-10T20:35:22.340594Z", + "shell.execute_reply": "2024-09-10T20:35:22.340319Z" + } + }, "outputs": [], "source": [ "from typing import List, Optional\n", "\n", "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class KeyDevelopment(BaseModel):\n", @@ -142,21 +196,26 @@ "\n", "Let's select an LLM. Because we are using tool-calling, we will need a model that supports a tool-calling feature. See [this table](/docs/integrations/chat) for available LLMs.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "109f4f05-d0ff-431d-93d9-8f5aa34979a6", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:22.342277Z", + "iopub.status.busy": "2024-09-10T20:35:22.342171Z", + "iopub.status.idle": "2024-09-10T20:35:22.532302Z", + "shell.execute_reply": "2024-09-10T20:35:22.532034Z" + } + }, "outputs": [], "source": [ "# | output: false\n", @@ -171,7 +230,14 @@ "cell_type": "code", "execution_count": 6, "id": "aa4ae224-6d3d-4fe2-b210-7db19a9fe580", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:22.533795Z", + "iopub.status.busy": "2024-09-10T20:35:22.533708Z", + "iopub.status.idle": "2024-09-10T20:35:22.610573Z", + "shell.execute_reply": "2024-09-10T20:35:22.610307Z" + } + }, "outputs": [], "source": [ "extractor = prompt | llm.with_structured_output(\n", @@ -194,7 +260,14 @@ "cell_type": "code", "execution_count": 7, "id": "27b8a373-14b3-45ea-8bf5-9749122ad927", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:22.612123Z", + "iopub.status.busy": "2024-09-10T20:35:22.612052Z", + "iopub.status.idle": "2024-09-10T20:35:22.753493Z", + "shell.execute_reply": "2024-09-10T20:35:22.753179Z" + } + }, "outputs": [], "source": [ "from langchain_text_splitters import TokenTextSplitter\n", @@ -214,9 +287,9 @@ "id": "5b43d7e0-3c85-4d97-86c7-e8c984b60b0a", "metadata": {}, "source": [ - "Use [batch](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) functionality to run the extraction in **parallel** across each chunk! \n", + "Use [batch](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) functionality to run the extraction in **parallel** across each chunk! \n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "You can often use .batch() to parallelize the extractions! `.batch` uses a threadpool under the hood to help you parallelize workloads.\n", "\n", "If your model is exposed via an API, this will likely speed up your extraction flow!\n", @@ -227,7 +300,14 @@ "cell_type": "code", "execution_count": 8, "id": "6ba766b5-8d6c-48e6-8d69-f391a66b65d2", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:22.755067Z", + "iopub.status.busy": "2024-09-10T20:35:22.754987Z", + "iopub.status.idle": "2024-09-10T20:35:36.691130Z", + "shell.execute_reply": "2024-09-10T20:35:36.690500Z" + } + }, "outputs": [], "source": [ "# Limit just to the first 3 chunks\n", @@ -254,21 +334,27 @@ "cell_type": "code", "execution_count": 9, "id": "c3f77470-ce6c-477f-8957-650913218632", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:36.694799Z", + "iopub.status.busy": "2024-09-10T20:35:36.694458Z", + "iopub.status.idle": "2024-09-10T20:35:36.701416Z", + "shell.execute_reply": "2024-09-10T20:35:36.700993Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "[KeyDevelopment(year=1966, description='The Toyota Corolla began production, becoming the best-selling series of automobile in history.', evidence='The Toyota Corolla, which has been in production since 1966, is the best-selling series of automobile in history.'),\n", - " KeyDevelopment(year=1769, description='Nicolas-Joseph Cugnot built the first steam-powered road vehicle.', evidence='The French inventor Nicolas-Joseph Cugnot built the first steam-powered road vehicle in 1769.'),\n", - " KeyDevelopment(year=1808, description='François Isaac de Rivaz designed and constructed the first internal combustion-powered automobile.', evidence='the Swiss inventor François Isaac de Rivaz designed and constructed the first internal combustion-powered automobile in 1808.'),\n", - " KeyDevelopment(year=1886, description='Carl Benz patented his Benz Patent-Motorwagen, inventing the modern car.', evidence='The modern car—a practical, marketable automobile for everyday use—was invented in 1886, when the German inventor Carl Benz patented his Benz Patent-Motorwagen.'),\n", - " KeyDevelopment(year=1908, description='Ford Model T, one of the first cars affordable by the masses, began production.', evidence='One of the first cars affordable by the masses was the Ford Model T, begun in 1908, an American car manufactured by the Ford Motor Company.'),\n", - " KeyDevelopment(year=1888, description=\"Bertha Benz undertook the first road trip by car to prove the road-worthiness of her husband's invention.\", evidence=\"In August 1888, Bertha Benz, the wife of Carl Benz, undertook the first road trip by car, to prove the road-worthiness of her husband's invention.\"),\n", + "[KeyDevelopment(year=1769, description='Nicolas-Joseph Cugnot built the first full-scale, self-propelled mechanical vehicle, a steam-powered tricycle.', evidence='Nicolas-Joseph Cugnot is widely credited with building the first full-scale, self-propelled mechanical vehicle in about 1769; he created a steam-powered tricycle.'),\n", + " KeyDevelopment(year=1807, description=\"Nicéphore Niépce and his brother Claude created what was probably the world's first internal combustion engine.\", evidence=\"In 1807, Nicéphore Niépce and his brother Claude created what was probably the world's first internal combustion engine (which they called a Pyréolophore), but installed it in a boat on the river Saone in France.\"),\n", + " KeyDevelopment(year=1886, description='Carl Benz patented the Benz Patent-Motorwagen, marking the birth of the modern car.', evidence='In November 1881, French inventor Gustave Trouvé demonstrated a three-wheeled car powered by electricity at the International Exposition of Electricity. Although several other German engineers (including Gottlieb Daimler, Wilhelm Maybach, and Siegfried Marcus) were working on cars at about the same time, the year 1886 is regarded as the birth year of the modern car—a practical, marketable automobile for everyday use—when the German Carl Benz patented his Benz Patent-Motorwagen; he is generally acknowledged as the inventor of the car.'),\n", + " KeyDevelopment(year=1886, description='Carl Benz began promotion of his vehicle, marking the introduction of the first commercially available automobile.', evidence='Benz began promotion of the vehicle on 3 July 1886.'),\n", + " KeyDevelopment(year=1888, description=\"Bertha Benz undertook the first road trip by car to prove the road-worthiness of her husband's invention.\", evidence=\"In August 1888, Bertha Benz, the wife and business partner of Carl Benz, undertook the first road trip by car, to prove the road-worthiness of her husband's invention.\"),\n", " KeyDevelopment(year=1896, description='Benz designed and patented the first internal-combustion flat engine, called boxermotor.', evidence='In 1896, Benz designed and patented the first internal-combustion flat engine, called boxermotor.'),\n", - " KeyDevelopment(year=1897, description='Nesselsdorfer Wagenbau produced the Präsident automobil, one of the first factory-made cars in the world.', evidence='The first motor car in central Europe and one of the first factory-made cars in the world, was produced by Czech company Nesselsdorfer Wagenbau (later renamed to Tatra) in 1897, the Präsident automobil.'),\n", - " KeyDevelopment(year=1890, description='Daimler Motoren Gesellschaft (DMG) was founded by Daimler and Maybach in Cannstatt.', evidence='Daimler and Maybach founded Daimler Motoren Gesellschaft (DMG) in Cannstatt in 1890.'),\n", - " KeyDevelopment(year=1891, description='Auguste Doriot and Louis Rigoulot completed the longest trip by a petrol-driven vehicle with a Daimler powered Peugeot Type 3.', evidence='In 1891, Auguste Doriot and his Peugeot colleague Louis Rigoulot completed the longest trip by a petrol-driven vehicle when their self-designed and built Daimler powered Peugeot Type 3 completed 2,100 kilometres (1,300 mi) from Valentigney to Paris and Brest and back again.')]" + " KeyDevelopment(year=1897, description='The first motor car in central Europe and one of the first factory-made cars in the world, the Präsident automobil, was produced by Nesselsdorfer Wagenbau.', evidence='The first motor car in central Europe and one of the first factory-made cars in the world, was produced by Czech company Nesselsdorfer Wagenbau (later renamed to Tatra) in 1897, the Präsident automobil.'),\n", + " KeyDevelopment(year=1901, description='Ransom Olds started large-scale, production-line manufacturing of affordable cars at his Oldsmobile factory in Lansing, Michigan.', evidence='Large-scale, production-line manufacturing of affordable cars was started by Ransom Olds in 1901 at his Oldsmobile factory in Lansing, Michigan.'),\n", + " KeyDevelopment(year=1913, description=\"Henry Ford introduced the world's first moving assembly line for cars at the Highland Park Ford Plant.\", evidence=\"This concept was greatly expanded by Henry Ford, beginning in 1913 with the world's first moving assembly line for cars at the Highland Park Ford Plant.\")]" ] }, "execution_count": 9, @@ -294,7 +380,7 @@ "\n", "Another simple idea is to chunk up the text, but instead of extracting information from every chunk, just focus on the the most relevant chunks.\n", "\n", - ":::{.callout-caution}\n", + ":::caution\n", "It can be difficult to identify which chunks are relevant.\n", "\n", "For example, in the `car` article we're using here, most of the article contains key development information. So by using\n", @@ -315,7 +401,14 @@ "cell_type": "code", "execution_count": 10, "id": "aaf37c82-625b-4fa1-8e88-73303f08ac16", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:36.703897Z", + "iopub.status.busy": "2024-09-10T20:35:36.703718Z", + "iopub.status.idle": "2024-09-10T20:35:38.451523Z", + "shell.execute_reply": "2024-09-10T20:35:38.450925Z" + } + }, "outputs": [], "source": [ "from langchain_community.vectorstores import FAISS\n", @@ -344,7 +437,14 @@ "cell_type": "code", "execution_count": 11, "id": "47aad00b-7013-4f7f-a1b0-02ef269093bf", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:38.455094Z", + "iopub.status.busy": "2024-09-10T20:35:38.454851Z", + "iopub.status.idle": "2024-09-10T20:35:38.458315Z", + "shell.execute_reply": "2024-09-10T20:35:38.457940Z" + } + }, "outputs": [], "source": [ "rag_extractor = {\n", @@ -356,7 +456,14 @@ "cell_type": "code", "execution_count": 12, "id": "68f2de01-0cd8-456e-a959-db236189d41b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:38.460115Z", + "iopub.status.busy": "2024-09-10T20:35:38.459949Z", + "iopub.status.idle": "2024-09-10T20:35:43.195532Z", + "shell.execute_reply": "2024-09-10T20:35:43.194254Z" + } + }, "outputs": [], "source": [ "results = rag_extractor.invoke(\"Key developments associated with cars\")" @@ -366,15 +473,21 @@ "cell_type": "code", "execution_count": 13, "id": "1788e2d6-77bb-417f-827c-eb96c035164e", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:43.200497Z", + "iopub.status.busy": "2024-09-10T20:35:43.200037Z", + "iopub.status.idle": "2024-09-10T20:35:43.206773Z", + "shell.execute_reply": "2024-09-10T20:35:43.205426Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "year=1869 description='Mary Ward became one of the first documented car fatalities in Parsonstown, Ireland.' evidence='Mary Ward became one of the first documented car fatalities in 1869 in Parsonstown, Ireland,'\n", - "year=1899 description=\"Henry Bliss one of the US's first pedestrian car casualties in New York City.\" evidence=\"Henry Bliss one of the US's first pedestrian car casualties in 1899 in New York City.\"\n", - "year=2030 description='All fossil fuel vehicles will be banned in Amsterdam.' evidence='all fossil fuel vehicles will be banned in Amsterdam from 2030.'\n" + "year=2006 description='Car-sharing services in the US experienced double-digit growth in revenue and membership.' evidence='in the US, some car-sharing services have experienced double-digit growth in revenue and membership growth between 2006 and 2007.'\n", + "year=2020 description='56 million cars were manufactured worldwide, with China producing the most.' evidence='In 2020, there were 56 million cars manufactured worldwide, down from 67 million the previous year. The automotive industry in China produces by far the most (20 million in 2020).'\n" ] } ], @@ -416,7 +529,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/extraction_parse.ipynb b/docs/docs/how_to/extraction_parse.ipynb index 351cbf9c316c8..597c3ad1bd746 100644 --- a/docs/docs/how_to/extraction_parse.ipynb +++ b/docs/docs/how_to/extraction_parse.ipynb @@ -18,18 +18,23 @@ "\n", "First we select a LLM:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "25487939-8713-4ec7-b774-e4a761ac8298", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:44.442501Z", + "iopub.status.busy": "2024-09-10T20:35:44.442044Z", + "iopub.status.idle": "2024-09-10T20:35:44.872217Z", + "shell.execute_reply": "2024-09-10T20:35:44.871897Z" + } + }, "outputs": [], "source": [ "# | output: false\n", @@ -45,7 +50,7 @@ "id": "3e412374-3beb-4bbf-966b-400c1f66a258", "metadata": {}, "source": [ - ":::{.callout-tip}\n", + ":::tip\n", "This tutorial is meant to be simple, but generally should really include reference examples to squeeze out performance!\n", ":::" ] @@ -62,16 +67,23 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "497eb023-c043-443d-ac62-2d4ea85fe1b0", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:44.873979Z", + "iopub.status.busy": "2024-09-10T20:35:44.873840Z", + "iopub.status.idle": "2024-09-10T20:35:44.878966Z", + "shell.execute_reply": "2024-09-10T20:35:44.878718Z" + } + }, "outputs": [], "source": [ "from typing import List, Optional\n", "\n", "from langchain_core.output_parsers import PydanticOutputParser\n", "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field, validator\n", + "from pydantic import BaseModel, Field, validator\n", "\n", "\n", "class Person(BaseModel):\n", @@ -114,9 +126,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "20b99ffb-a114-49a9-a7be-154c525f8ada", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:44.880355Z", + "iopub.status.busy": "2024-09-10T20:35:44.880277Z", + "iopub.status.idle": "2024-09-10T20:35:44.881834Z", + "shell.execute_reply": "2024-09-10T20:35:44.881601Z" + } + }, "outputs": [], "source": [ "query = \"Anna is 23 years old and she is 6 feet tall\"" @@ -124,9 +143,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "4f3a66ce-de19-4571-9e54-67504ae3fba7", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:44.883138Z", + "iopub.status.busy": "2024-09-10T20:35:44.883049Z", + "iopub.status.idle": "2024-09-10T20:35:44.885139Z", + "shell.execute_reply": "2024-09-10T20:35:44.884801Z" + } + }, "outputs": [ { "name": "stdout", @@ -140,7 +166,7 @@ "\n", "Here is the output schema:\n", "```\n", - "{\"description\": \"Identifying information about all people in a text.\", \"properties\": {\"people\": {\"title\": \"People\", \"type\": \"array\", \"items\": {\"$ref\": \"#/definitions/Person\"}}}, \"required\": [\"people\"], \"definitions\": {\"Person\": {\"title\": \"Person\", \"description\": \"Information about a person.\", \"type\": \"object\", \"properties\": {\"name\": {\"title\": \"Name\", \"description\": \"The name of the person\", \"type\": \"string\"}, \"height_in_meters\": {\"title\": \"Height In Meters\", \"description\": \"The height of the person expressed in meters.\", \"type\": \"number\"}}, \"required\": [\"name\", \"height_in_meters\"]}}}\n", + "{\"$defs\": {\"Person\": {\"description\": \"Information about a person.\", \"properties\": {\"name\": {\"description\": \"The name of the person\", \"title\": \"Name\", \"type\": \"string\"}, \"height_in_meters\": {\"description\": \"The height of the person expressed in meters.\", \"title\": \"Height In Meters\", \"type\": \"number\"}}, \"required\": [\"name\", \"height_in_meters\"], \"title\": \"Person\", \"type\": \"object\"}}, \"description\": \"Identifying information about all people in a text.\", \"properties\": {\"people\": {\"items\": {\"$ref\": \"#/$defs/Person\"}, \"title\": \"People\", \"type\": \"array\"}}, \"required\": [\"people\"]}\n", "```\n", "Human: Anna is 23 years old and she is 6 feet tall\n" ] @@ -160,9 +186,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "7e0041eb-37dc-4384-9fe3-6dd8c356371e", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:44.886765Z", + "iopub.status.busy": "2024-09-10T20:35:44.886675Z", + "iopub.status.idle": "2024-09-10T20:35:46.835960Z", + "shell.execute_reply": "2024-09-10T20:35:46.835282Z" + } + }, "outputs": [ { "data": { @@ -170,7 +203,7 @@ "People(people=[Person(name='Anna', height_in_meters=1.83)])" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -202,16 +235,23 @@ "\n", "If desired, it's easy to create a custom prompt and parser with `LangChain` and `LCEL`.\n", "\n", - "To create a custom parser, define a function to parse the output from the model (typically an [AIMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html)) into an object of your choice.\n", + "To create a custom parser, define a function to parse the output from the model (typically an [AIMessage](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html)) into an object of your choice.\n", "\n", "See below for a simple implementation of a JSON parser." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "b1f11912-c1bb-4a2a-a482-79bf3996961f", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:46.839577Z", + "iopub.status.busy": "2024-09-10T20:35:46.839233Z", + "iopub.status.idle": "2024-09-10T20:35:46.849663Z", + "shell.execute_reply": "2024-09-10T20:35:46.849177Z" + } + }, "outputs": [], "source": [ "import json\n", @@ -221,7 +261,7 @@ "from langchain_anthropic.chat_models import ChatAnthropic\n", "from langchain_core.messages import AIMessage\n", "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field, validator\n", + "from pydantic import BaseModel, Field, validator\n", "\n", "\n", "class Person(BaseModel):\n", @@ -279,16 +319,23 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "id": "9260d5e8-3b6c-4639-9f3b-fb2f90239e4b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:46.851870Z", + "iopub.status.busy": "2024-09-10T20:35:46.851698Z", + "iopub.status.idle": "2024-09-10T20:35:46.854786Z", + "shell.execute_reply": "2024-09-10T20:35:46.854424Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "System: Answer the user query. Output your answer as JSON that matches the given schema: ```json\n", - "{'title': 'People', 'description': 'Identifying information about all people in a text.', 'type': 'object', 'properties': {'people': {'title': 'People', 'type': 'array', 'items': {'$ref': '#/definitions/Person'}}}, 'required': ['people'], 'definitions': {'Person': {'title': 'Person', 'description': 'Information about a person.', 'type': 'object', 'properties': {'name': {'title': 'Name', 'description': 'The name of the person', 'type': 'string'}, 'height_in_meters': {'title': 'Height In Meters', 'description': 'The height of the person expressed in meters.', 'type': 'number'}}, 'required': ['name', 'height_in_meters']}}}\n", + "{'$defs': {'Person': {'description': 'Information about a person.', 'properties': {'name': {'description': 'The name of the person', 'title': 'Name', 'type': 'string'}, 'height_in_meters': {'description': 'The height of the person expressed in meters.', 'title': 'Height In Meters', 'type': 'number'}}, 'required': ['name', 'height_in_meters'], 'title': 'Person', 'type': 'object'}}, 'description': 'Identifying information about all people in a text.', 'properties': {'people': {'items': {'$ref': '#/$defs/Person'}, 'title': 'People', 'type': 'array'}}, 'required': ['people'], 'title': 'People', 'type': 'object'}\n", "```. Make sure to wrap the answer in ```json and ``` tags\n", "Human: Anna is 23 years old and she is 6 feet tall\n" ] @@ -301,17 +348,32 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "c523301d-ae0e-45e3-b195-7fd28c67a5c4", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-10T20:35:46.856945Z", + "iopub.status.busy": "2024-09-10T20:35:46.856769Z", + "iopub.status.idle": "2024-09-10T20:35:48.373728Z", + "shell.execute_reply": "2024-09-10T20:35:48.373079Z" + } + }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/bagatur/langchain/.venv/lib/python3.11/site-packages/pydantic/_internal/_fields.py:201: UserWarning: Field name \"schema\" in \"PromptInput\" shadows an attribute in parent \"BaseModel\"\n", + " warnings.warn(\n" + ] + }, { "data": { "text/plain": [ "[{'people': [{'name': 'Anna', 'height_in_meters': 1.83}]}]" ] }, - "execution_count": 9, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -349,7 +411,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/fallbacks.ipynb b/docs/docs/how_to/fallbacks.ipynb index bdb234c83cc34..1ed7f6bd3157f 100644 --- a/docs/docs/how_to/fallbacks.ipynb +++ b/docs/docs/how_to/fallbacks.ipynb @@ -90,7 +90,7 @@ "outputs": [], "source": [ "# Note that we set max_retries = 0 to avoid retrying on RateLimits, etc\n", - "openai_llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", max_retries=0)\n", + "openai_llm = ChatOpenAI(model=\"gpt-4o-mini\", max_retries=0)\n", "anthropic_llm = ChatAnthropic(model=\"claude-3-haiku-20240307\")\n", "llm = openai_llm.with_fallbacks([anthropic_llm])" ] diff --git a/docs/docs/how_to/few_shot_examples.ipynb b/docs/docs/how_to/few_shot_examples.ipynb index 40fc6eea3f481..69ffd691bc024 100644 --- a/docs/docs/how_to/few_shot_examples.ipynb +++ b/docs/docs/how_to/few_shot_examples.ipynb @@ -29,7 +29,7 @@ "\n", "In this guide, we'll learn how to create a simple prompt template that provides the model with example inputs and outputs when generating. Providing the LLM with a few such examples is called few-shotting, and is a simple yet powerful way to guide generation and in some cases drastically improve model performance.\n", "\n", - "A few-shot prompt template can be constructed from either a set of examples, or from an [Example Selector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html) class responsible for choosing a subset of examples from the defined set.\n", + "A few-shot prompt template can be constructed from either a set of examples, or from an [Example Selector](https://python.langchain.com/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html) class responsible for choosing a subset of examples from the defined set.\n", "\n", "This guide will cover few-shotting with string prompt templates. For a guide on few-shotting with chat messages for chat models, see [here](/docs/how_to/few_shot_examples_chat/).\n", "\n", @@ -160,7 +160,7 @@ "source": [ "### Pass the examples and formatter to `FewShotPromptTemplate`\n", "\n", - "Finally, create a [`FewShotPromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotPromptTemplate.html) object. This object takes in the few-shot examples and the formatter for the few-shot examples. When this `FewShotPromptTemplate` is formatted, it formats the passed examples using the `example_prompt`, then and adds them to the final prompt before `suffix`:" + "Finally, create a [`FewShotPromptTemplate`](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotPromptTemplate.html) object. This object takes in the few-shot examples and the formatter for the few-shot examples. When this `FewShotPromptTemplate` is formatted, it formats the passed examples using the `example_prompt`, then and adds them to the final prompt before `suffix`:" ] }, { @@ -251,7 +251,7 @@ "source": [ "## Using an example selector\n", "\n", - "We will reuse the example set and the formatter from the previous section. However, instead of feeding the examples directly into the `FewShotPromptTemplate` object, we will feed them into an implementation of `ExampleSelector` called [`SemanticSimilarityExampleSelector`](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html) instance. This class selects few-shot examples from the initial set based on their similarity to the input. It uses an embedding model to compute the similarity between the input and the few-shot examples, as well as a vector store to perform the nearest neighbor search.\n", + "We will reuse the example set and the formatter from the previous section. However, instead of feeding the examples directly into the `FewShotPromptTemplate` object, we will feed them into an implementation of `ExampleSelector` called [`SemanticSimilarityExampleSelector`](https://python.langchain.com/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html) instance. This class selects few-shot examples from the initial set based on their similarity to the input. It uses an embedding model to compute the similarity between the input and the few-shot examples, as well as a vector store to perform the nearest neighbor search.\n", "\n", "To show what it looks like, let's initialize an instance and call it in isolation:" ] diff --git a/docs/docs/how_to/few_shot_examples_chat.ipynb b/docs/docs/how_to/few_shot_examples_chat.ipynb index 986befd69306e..5ccc06d9fcf2c 100644 --- a/docs/docs/how_to/few_shot_examples_chat.ipynb +++ b/docs/docs/how_to/few_shot_examples_chat.ipynb @@ -29,7 +29,7 @@ "\n", "This guide covers how to prompt a chat model with example inputs and outputs. Providing the model with a few such examples is called few-shotting, and is a simple yet powerful way to guide generation and in some cases drastically improve model performance.\n", "\n", - "There does not appear to be solid consensus on how best to do few-shot prompting, and the optimal prompt compilation will likely vary by model. Because of this, we provide few-shot prompt templates like the [FewShotChatMessagePromptTemplate](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html?highlight=fewshot#langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate) as a flexible starting point, and you can modify or replace them as you see fit.\n", + "There does not appear to be solid consensus on how best to do few-shot prompting, and the optimal prompt compilation will likely vary by model. Because of this, we provide few-shot prompt templates like the [FewShotChatMessagePromptTemplate](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate.html?highlight=fewshot#langchain_core.prompts.few_shot.FewShotChatMessagePromptTemplate) as a flexible starting point, and you can modify or replace them as you see fit.\n", "\n", "The goal of few-shot prompt templates are to dynamically select examples based on an input, and then format the examples in a final prompt to provide for the model.\n", "\n", @@ -49,7 +49,7 @@ "\n", "The basic components of the template are:\n", "- `examples`: A list of dictionary examples to include in the final prompt.\n", - "- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n", + "- `example_prompt`: converts each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=format_messages#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n", "\n", "Below is a simple demonstration. First, define the examples you'd like to include. Let's give the LLM an unfamiliar mathematical operator, denoted by the \"🦜\" emoji:" ] @@ -66,7 +66,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -86,7 +87,7 @@ { "data": { "text/plain": [ - "AIMessage(content='The expression \"2 🦜 9\" is not a standard mathematical operation or equation. It appears to be a combination of the number 2 and the parrot emoji 🦜 followed by the number 9. It does not have a specific mathematical meaning.', response_metadata={'token_usage': {'completion_tokens': 54, 'prompt_tokens': 17, 'total_tokens': 71}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-aad12dda-5c47-4a1e-9949-6fe94e03242a-0', usage_metadata={'input_tokens': 17, 'output_tokens': 54, 'total_tokens': 71})" + "AIMessage(content='The expression \"2 🦜 9\" is not a standard mathematical operation or equation. It appears to be a combination of the number 2 and the parrot emoji 🦜 followed by the number 9. It does not have a specific mathematical meaning.', response_metadata={'token_usage': {'completion_tokens': 54, 'prompt_tokens': 17, 'total_tokens': 71}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-aad12dda-5c47-4a1e-9949-6fe94e03242a-0', usage_metadata={'input_tokens': 17, 'output_tokens': 54, 'total_tokens': 71})" ] }, "execution_count": 4, @@ -97,7 +98,7 @@ "source": [ "from langchain_openai import ChatOpenAI\n", "\n", - "model = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n", + "model = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0.0)\n", "\n", "model.invoke(\"What is 2 🦜 9?\")" ] @@ -212,7 +213,7 @@ { "data": { "text/plain": [ - "AIMessage(content='11', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5ec4e051-262f-408e-ad00-3f2ebeb561c3-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})" + "AIMessage(content='11', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-5ec4e051-262f-408e-ad00-3f2ebeb561c3-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})" ] }, "execution_count": 8, @@ -239,8 +240,8 @@ "\n", "Sometimes you may want to select only a few examples from your overall set to show based on the input. For this, you can replace the `examples` passed into `FewShotChatMessagePromptTemplate` with an `example_selector`. The other components remain the same as above! Our dynamic few-shot prompt template would look like:\n", "\n", - "- `example_selector`: responsible for selecting few-shot examples (and the order in which they are returned) for a given input. These implement the [BaseExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html?highlight=baseexampleselector#langchain_core.example_selectors.base.BaseExampleSelector) interface. A common example is the vectorstore-backed [SemanticSimilarityExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html?highlight=semanticsimilarityexampleselector#langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector)\n", - "- `example_prompt`: convert each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=chatprompttemplate#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n", + "- `example_selector`: responsible for selecting few-shot examples (and the order in which they are returned) for a given input. These implement the [BaseExampleSelector](https://python.langchain.com/api_reference/core/example_selectors/langchain_core.example_selectors.base.BaseExampleSelector.html?highlight=baseexampleselector#langchain_core.example_selectors.base.BaseExampleSelector) interface. A common example is the vectorstore-backed [SemanticSimilarityExampleSelector](https://python.langchain.com/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html?highlight=semanticsimilarityexampleselector#langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector)\n", + "- `example_prompt`: convert each example into 1 or more messages through its [`format_messages`](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html?highlight=chatprompttemplate#langchain_core.prompts.chat.ChatPromptTemplate.format_messages) method. A common example would be to convert each example into one human message and one AI message response, or a human message followed by a function call message.\n", "\n", "These once again can be composed with other messages and chat templates to assemble your final prompt.\n", "\n", @@ -418,7 +419,7 @@ { "data": { "text/plain": [ - "AIMessage(content='6', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d1863e5e-17cd-4e9d-bf7a-b9f118747a65-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})" + "AIMessage(content='6', response_metadata={'token_usage': {'completion_tokens': 1, 'prompt_tokens': 60, 'total_tokens': 61}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d1863e5e-17cd-4e9d-bf7a-b9f118747a65-0', usage_metadata={'input_tokens': 60, 'output_tokens': 1, 'total_tokens': 61})" ] }, "execution_count": 13, @@ -427,7 +428,7 @@ } ], "source": [ - "chain = final_prompt | ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0.0)\n", + "chain = final_prompt | ChatOpenAI(model=\"gpt-4o-mini\", temperature=0.0)\n", "\n", "chain.invoke({\"input\": \"What's 3 🦜 3?\"})" ] diff --git a/docs/docs/how_to/filter_messages.ipynb b/docs/docs/how_to/filter_messages.ipynb index 2c6d3076bccc9..d5b94abad52c4 100644 --- a/docs/docs/how_to/filter_messages.ipynb +++ b/docs/docs/how_to/filter_messages.ipynb @@ -175,7 +175,7 @@ "source": [ "## API reference\n", "\n", - "For a complete description of all arguments head to the API reference: https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.utils.filter_messages.html" + "For a complete description of all arguments head to the API reference: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.filter_messages.html" ] } ], diff --git a/docs/docs/how_to/function_calling.ipynb b/docs/docs/how_to/function_calling.ipynb index b42c119cf14b0..042b40eae52c8 100644 --- a/docs/docs/how_to/function_calling.ipynb +++ b/docs/docs/how_to/function_calling.ipynb @@ -17,14 +17,12 @@ "source": [ "# How to do tool/function calling\n", "\n", - "```{=mdx}\n", ":::info\n", "We use the term tool calling interchangeably with function calling. Although\n", "function calling is sometimes meant to refer to invocations of a single function,\n", "we treat all models as though they can return multiple tool or function calls in \n", "each message.\n", ":::\n", - "```\n", "\n", "Tool calling allows a model to respond to a given prompt by generating output that \n", "matches a user-defined schema. While the name implies that the model is performing \n", @@ -88,7 +86,7 @@ "## Passing tools to LLMs\n", "\n", "Chat models supporting tool calling features implement a `.bind_tools` method, which \n", - "receives a list of LangChain [tool objects](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n", + "receives a list of LangChain [tool objects](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool) \n", "and binds them to the chat model in its expected format. Subsequent invocations of the \n", "chat model will include tool schemas in its calls to the LLM.\n", "\n", @@ -136,7 +134,7 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "# Note that the docstrings here are crucial, as they will be passed along\n", @@ -165,14 +163,12 @@ "source": [ "We can bind them to chat models as follows:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```\n", "\n", "We can use the `bind_tools()` method to handle converting\n", "`Multiply` to a \"tool\" and binding it to the model (i.e.,\n", @@ -191,7 +187,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -212,9 +208,9 @@ "## Tool calls\n", "\n", "If tool calls are included in a LLM response, they are attached to the corresponding \n", - "[message](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage) \n", - "or [message chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", - "as a list of [tool call](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolCall.html#langchain_core.messages.tool.ToolCall) \n", + "[message](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage) \n", + "or [message chunk](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", + "as a list of [tool call](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.ToolCall.html#langchain_core.messages.tool.ToolCall) \n", "objects in the `.tool_calls` attribute. A `ToolCall` is a typed dict that includes a \n", "tool name, dict of argument values, and (optionally) an identifier. Messages with no \n", "tool calls default to an empty list for this attribute.\n", @@ -258,7 +254,7 @@ "The `.tool_calls` attribute should contain valid tool calls. Note that on occasion, \n", "model providers may output malformed tool calls (e.g., arguments that are not \n", "valid JSON). When parsing fails in these cases, instances \n", - "of [InvalidToolCall](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.InvalidToolCall.html#langchain_core.messages.tool.InvalidToolCall) \n", + "of [InvalidToolCall](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.InvalidToolCall.html#langchain_core.messages.tool.InvalidToolCall) \n", "are populated in the `.invalid_tool_calls` attribute. An `InvalidToolCall` can have \n", "a name, string arguments, identifier, and error message.\n", "\n", @@ -298,8 +294,8 @@ "### Streaming\n", "\n", "When tools are called in a streaming context, \n", - "[message chunks](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", - "will be populated with [tool call chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n", + "[message chunks](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", + "will be populated with [tool call chunk](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n", "objects in a list via the `.tool_call_chunks` attribute. A `ToolCallChunk` includes \n", "optional string fields for the tool `name`, `args`, and `id`, and includes an optional \n", "integer field `index` that can be used to join chunks together. Fields are optional \n", @@ -307,7 +303,7 @@ "that includes a substring of the arguments may have null values for the tool name and id).\n", "\n", "Because message chunks inherit from their parent message class, an \n", - "[AIMessageChunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", + "[AIMessageChunk](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", "with tool call chunks will also include `.tool_calls` and `.invalid_tool_calls` fields. \n", "These fields are parsed best-effort from the message's tool call chunks.\n", "\n", @@ -696,7 +692,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/functions.ipynb b/docs/docs/how_to/functions.ipynb index b028c4c03305b..be228013a988a 100644 --- a/docs/docs/how_to/functions.ipynb +++ b/docs/docs/how_to/functions.ipynb @@ -26,7 +26,7 @@ "\n", ":::\n", "\n", - "You can use arbitrary functions as [Runnables](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable). This is useful for formatting or when you need functionality not provided by other LangChain components, and custom functions used as Runnables are called [`RunnableLambdas`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html).\n", + "You can use arbitrary functions as [Runnables](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable). This is useful for formatting or when you need functionality not provided by other LangChain components, and custom functions used as Runnables are called [`RunnableLambdas`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html).\n", "\n", "Note that all inputs to these functions need to be a SINGLE argument. If you have a function that accepts multiple arguments, you should write a wrapper that accepts a single dict input and unpacks it into multiple arguments.\n", "\n", @@ -54,7 +54,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -210,7 +211,7 @@ "\n", "## Passing run metadata\n", "\n", - "Runnable lambdas can optionally accept a [RunnableConfig](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html#langchain_core.runnables.config.RunnableConfig) parameter, which they can use to pass callbacks, tags, and other configuration information to nested runs." + "Runnable lambdas can optionally accept a [RunnableConfig](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html#langchain_core.runnables.config.RunnableConfig) parameter, which they can use to pass callbacks, tags, and other configuration information to nested runs." ] }, { @@ -302,8 +303,8 @@ "source": [ "## Streaming\n", "\n", - ":::{.callout-note}\n", - "[RunnableLambda](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html) is best suited for code that does not need to support streaming. If you need to support streaming (i.e., be able to operate on chunks of inputs and yield chunks of outputs), use [RunnableGenerator](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableGenerator.html) instead as in the example below.\n", + ":::note\n", + "[RunnableLambda](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html) is best suited for code that does not need to support streaming. If you need to support streaming (i.e., be able to operate on chunks of inputs and yield chunks of outputs), use [RunnableGenerator](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableGenerator.html) instead as in the example below.\n", ":::\n", "\n", "You can use generator functions (ie. functions that use the `yield` keyword, and behave like iterators) in a chain.\n", diff --git a/docs/docs/how_to/graph_mapping.ipynb b/docs/docs/how_to/graph_mapping.ipynb index 688621fa73ad7..cd98ca00b67a3 100644 --- a/docs/docs/how_to/graph_mapping.ipynb +++ b/docs/docs/how_to/graph_mapping.ipynb @@ -163,8 +163,8 @@ "from typing import List, Optional\n", "\n", "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel, Field\n", "\n", "llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n", "\n", diff --git a/docs/docs/how_to/graph_prompting.ipynb b/docs/docs/how_to/graph_prompting.ipynb index f5a3ecda33c83..0b83559e7e195 100644 --- a/docs/docs/how_to/graph_prompting.ipynb +++ b/docs/docs/how_to/graph_prompting.ipynb @@ -347,7 +347,7 @@ "\n", "If we have enough examples, we may want to only include the most relevant ones in the prompt, either because they don't fit in the model's context window or because the long tail of examples distracts the model. And specifically, given any input we want to include the examples most relevant to that input.\n", "\n", - "We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones: " + "We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://python.langchain.com/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones: " ] }, { diff --git a/docs/docs/how_to/graph_semantic.ipynb b/docs/docs/how_to/graph_semantic.ipynb index 42367e3d333f8..94578939d7b48 100644 --- a/docs/docs/how_to/graph_semantic.ipynb +++ b/docs/docs/how_to/graph_semantic.ipynb @@ -177,14 +177,15 @@ "source": [ "from typing import Optional, Type\n", "\n", - "# Import things that are needed generically\n", - "from langchain.pydantic_v1 import BaseModel, Field\n", "from langchain_core.callbacks import (\n", " AsyncCallbackManagerForToolRun,\n", " CallbackManagerForToolRun,\n", ")\n", "from langchain_core.tools import BaseTool\n", "\n", + "# Import things that are needed generically\n", + "from pydantic import BaseModel, Field\n", + "\n", "description_query = \"\"\"\n", "MATCH (m:Movie|Person)\n", "WHERE m.title CONTAINS $candidate OR m.name CONTAINS $candidate\n", @@ -226,14 +227,15 @@ "source": [ "from typing import Optional, Type\n", "\n", - "# Import things that are needed generically\n", - "from langchain.pydantic_v1 import BaseModel, Field\n", "from langchain_core.callbacks import (\n", " AsyncCallbackManagerForToolRun,\n", " CallbackManagerForToolRun,\n", ")\n", "from langchain_core.tools import BaseTool\n", "\n", + "# Import things that are needed generically\n", + "from pydantic import BaseModel, Field\n", + "\n", "\n", "class InformationInput(BaseModel):\n", " entity: str = Field(description=\"movie or a person mentioned in the question\")\n", diff --git a/docs/docs/how_to/index.mdx b/docs/docs/how_to/index.mdx index f5500f9093c45..f0be664384651 100644 --- a/docs/docs/how_to/index.mdx +++ b/docs/docs/how_to/index.mdx @@ -9,7 +9,7 @@ Here you’ll find answers to “How do I….?” types of questions. These guides are *goal-oriented* and *concrete*; they're meant to help you complete a specific task. For conceptual explanations see the [Conceptual guide](/docs/concepts/). For end-to-end walkthroughs see [Tutorials](/docs/tutorials). -For comprehensive descriptions of every class and function see the [API Reference](https://python.langchain.com/v0.2/api_reference/). +For comprehensive descriptions of every class and function see the [API Reference](https://python.langchain.com/api_reference/). ## Installation @@ -27,7 +27,7 @@ This highlights functionality that is core to using LangChain. ## LangChain Expression Language (LCEL) -[LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel) is a way to create arbitrary custom chains. It is built on the [Runnable](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) protocol. +[LangChain Expression Language](/docs/concepts/#langchain-expression-language-lcel) is a way to create arbitrary custom chains. It is built on the [Runnable](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html) protocol. [**LCEL cheatsheet**](/docs/how_to/lcel_cheatsheet/): For a quick overview of how to use the main LCEL primitives. @@ -126,13 +126,14 @@ What LangChain calls [LLMs](/docs/concepts/#llms) are older forms of language mo [Document Loaders](/docs/concepts/#document-loaders) are responsible for loading documents from a variety of sources. +- [How to: load PDF files](/docs/how_to/document_loader_pdf) +- [How to: load web pages](/docs/how_to/document_loader_web) - [How to: load CSV data](/docs/how_to/document_loader_csv) - [How to: load data from a directory](/docs/how_to/document_loader_directory) - [How to: load HTML data](/docs/how_to/document_loader_html) - [How to: load JSON data](/docs/how_to/document_loader_json) - [How to: load Markdown data](/docs/how_to/document_loader_markdown) - [How to: load Microsoft Office data](/docs/how_to/document_loader_office_file) -- [How to: load PDF files](/docs/how_to/document_loader_pdf) - [How to: write a custom document loader](/docs/how_to/document_loader_custom) ### Text splitters diff --git a/docs/docs/how_to/lcel_cheatsheet.ipynb b/docs/docs/how_to/lcel_cheatsheet.ipynb index ac3e8d38b8f57..fb67e0cd7cf9f 100644 --- a/docs/docs/how_to/lcel_cheatsheet.ipynb +++ b/docs/docs/how_to/lcel_cheatsheet.ipynb @@ -7,10 +7,10 @@ "source": [ "# LangChain Expression Language Cheatsheet\n", "\n", - "This is a quick reference for all the most important LCEL primitives. For more advanced usage see the [LCEL how-to guides](/docs/how_to/#langchain-expression-language-lcel) and the [full API reference](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html).\n", + "This is a quick reference for all the most important LCEL primitives. For more advanced usage see the [LCEL how-to guides](/docs/how_to/#langchain-expression-language-lcel) and the [full API reference](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html).\n", "\n", "### Invoke a runnable\n", - "#### [Runnable.invoke()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.invoke) / [Runnable.ainvoke()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.ainvoke)" + "#### [Runnable.invoke()](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.invoke) / [Runnable.ainvoke()](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.ainvoke)" ] }, { @@ -46,7 +46,7 @@ "metadata": {}, "source": [ "### Batch a runnable\n", - "#### [Runnable.batch()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch) / [Runnable.abatch()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch)" + "#### [Runnable.batch()](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch) / [Runnable.abatch()](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch)" ] }, { @@ -82,7 +82,7 @@ "metadata": {}, "source": [ "### Stream a runnable\n", - "#### [Runnable.stream()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) / [Runnable.astream()](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream)" + "#### [Runnable.stream()](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) / [Runnable.astream()](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream)" ] }, { @@ -165,7 +165,7 @@ "metadata": {}, "source": [ "### Invoke runnables in parallel\n", - "#### [RunnableParallel](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html)" + "#### [RunnableParallel](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html)" ] }, { @@ -202,7 +202,7 @@ "metadata": {}, "source": [ "### Turn any function into a runnable\n", - "#### [RunnableLambda](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html)" + "#### [RunnableLambda](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html)" ] }, { @@ -240,7 +240,7 @@ "metadata": {}, "source": [ "### Merge input and output dicts\n", - "#### [RunnablePassthrough.assign](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)" + "#### [RunnablePassthrough.assign](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)" ] }, { @@ -276,7 +276,7 @@ "metadata": {}, "source": [ "### Include input dict in output dict\n", - "#### [RunnablePassthrough](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)" + "#### [RunnablePassthrough](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html)" ] }, { @@ -316,7 +316,7 @@ "metadata": {}, "source": [ "### Add default invocation args\n", - "#### [Runnable.bind](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind)" + "#### [Runnable.bind](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.bind)" ] }, { @@ -360,7 +360,7 @@ "metadata": {}, "source": [ "### Add fallbacks\n", - "#### [Runnable.with_fallbacks](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_fallbacks)" + "#### [Runnable.with_fallbacks](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_fallbacks)" ] }, { @@ -397,7 +397,7 @@ "metadata": {}, "source": [ "### Add retries\n", - "#### [Runnable.with_retry](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_retry)" + "#### [Runnable.with_retry](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_retry)" ] }, { @@ -449,7 +449,7 @@ "metadata": {}, "source": [ "### Configure runnable execution\n", - "#### [RunnableConfig](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html)" + "#### [RunnableConfig](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html)" ] }, { @@ -487,7 +487,7 @@ "metadata": {}, "source": [ "### Add default config to runnable\n", - "#### [Runnable.with_config](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config)" + "#### [Runnable.with_config](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_config)" ] }, { @@ -526,7 +526,7 @@ "metadata": {}, "source": [ "### Make runnable attributes configurable\n", - "#### [Runnable.with_configurable_fields](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_fields)" + "#### [Runnable.with_configurable_fields](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_fields)" ] }, { @@ -605,7 +605,7 @@ "metadata": {}, "source": [ "### Make chain components configurable\n", - "#### [Runnable.with_configurable_alternatives](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_alternatives)" + "#### [Runnable.with_configurable_alternatives](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableSerializable.html#langchain_core.runnables.base.RunnableSerializable.configurable_alternatives)" ] }, { @@ -745,7 +745,7 @@ "metadata": {}, "source": [ "### Generate a stream of events\n", - "#### [Runnable.astream_events](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events)" + "#### [Runnable.astream_events](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events)" ] }, { @@ -817,7 +817,7 @@ "metadata": {}, "source": [ "### Yield batched outputs as they complete\n", - "#### [Runnable.batch_as_completed](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch_as_completed) / [Runnable.abatch_as_completed](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch_as_completed)" + "#### [Runnable.batch_as_completed](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.batch_as_completed) / [Runnable.abatch_as_completed](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.abatch_as_completed)" ] }, { @@ -858,7 +858,7 @@ "metadata": {}, "source": [ "### Return subset of output dict\n", - "#### [Runnable.pick](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick)" + "#### [Runnable.pick](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick)" ] }, { @@ -893,7 +893,7 @@ "metadata": {}, "source": [ "### Declaratively make a batched version of a runnable\n", - "#### [Runnable.map](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.map)" + "#### [Runnable.map](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.map)" ] }, { @@ -930,7 +930,7 @@ "metadata": {}, "source": [ "### Get a graph representation of a runnable\n", - "#### [Runnable.get_graph](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_graph)" + "#### [Runnable.get_graph](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_graph)" ] }, { @@ -991,7 +991,7 @@ "metadata": {}, "source": [ "### Get all prompts in a chain\n", - "#### [Runnable.get_prompts](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_prompts)" + "#### [Runnable.get_prompts](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.get_prompts)" ] }, { @@ -1071,7 +1071,7 @@ "metadata": {}, "source": [ "### Add lifecycle listeners\n", - "#### [Runnable.with_listeners](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_listeners)" + "#### [Runnable.with_listeners](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.with_listeners)" ] }, { diff --git a/docs/docs/how_to/llm_caching.ipynb b/docs/docs/how_to/llm_caching.ipynb index a05b9111568e0..1ed564b393e06 100644 --- a/docs/docs/how_to/llm_caching.ipynb +++ b/docs/docs/how_to/llm_caching.ipynb @@ -25,7 +25,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "# Please manually enter OpenAI Key" ] }, diff --git a/docs/docs/how_to/llm_token_usage_tracking.ipynb b/docs/docs/how_to/llm_token_usage_tracking.ipynb index 4d17c92d5c32c..e32c98a32ae79 100644 --- a/docs/docs/how_to/llm_token_usage_tracking.ipynb +++ b/docs/docs/how_to/llm_token_usage_tracking.ipynb @@ -24,13 +24,13 @@ "\n", "There are some API-specific callback context managers that allow you to track token usage across multiple calls. You'll need to check whether such an integration is available for your particular model.\n", "\n", - "If such an integration is not available for your model, you can create a custom callback manager by adapting the implementation of the [OpenAI callback manager](https://python.langchain.com/v0.2/api_reference/community/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html).\n", + "If such an integration is not available for your model, you can create a custom callback manager by adapting the implementation of the [OpenAI callback manager](https://python.langchain.com/api_reference/community/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html).\n", "\n", "### OpenAI\n", "\n", "Let's first look at an extremely simple example of tracking token usage for a single Chat model call.\n", "\n", - ":::{.callout-danger}\n", + ":::danger\n", "\n", "The callback handler does not currently support streaming token counts for legacy language models (e.g., `langchain_openai.OpenAI`). For support in a streaming context, refer to the corresponding guide for chat models [here](/docs/how_to/chat_token_usage_tracking).\n", "\n", @@ -162,7 +162,7 @@ "source": [ "## Streaming\n", "\n", - ":::{.callout-danger}\n", + ":::danger\n", "\n", "`get_openai_callback` does not currently support streaming token counts for legacy language models (e.g., `langchain_openai.OpenAI`). If you want to count tokens correctly in a streaming context, there are a number of options:\n", "\n", diff --git a/docs/docs/how_to/local_llms.ipynb b/docs/docs/how_to/local_llms.ipynb index 08433bff3494f..2f8359a99185b 100644 --- a/docs/docs/how_to/local_llms.ipynb +++ b/docs/docs/how_to/local_llms.ipynb @@ -208,7 +208,7 @@ "\n", "Metal is a graphics and compute API created by Apple providing near-direct access to the GPU. \n", "\n", - "See the [`llama.cpp`](docs/integrations/llms/llamacpp) setup [here](https://github.com/abetlen/llama-cpp-python/blob/main/docs/install/macos.md) to enable this.\n", + "See the [`llama.cpp`](/docs/integrations/llms/llamacpp) setup [here](https://github.com/abetlen/llama-cpp-python/blob/main/docs/install/macos.md) to enable this.\n", "\n", "In particular, ensure that conda is using the correct virtual environment that you created (`miniforge3`).\n", "\n", @@ -244,7 +244,7 @@ "\n", "* E.g., for Llama 2 7b: `ollama pull llama2` will download the most basic version of the model (e.g., smallest # parameters and 4 bit quantization)\n", "* We can also specify a particular version from the [model list](https://github.com/jmorganca/ollama?tab=readme-ov-file#model-library), e.g., `ollama pull llama2:13b`\n", - "* See the full set of parameters on the [API reference page](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.ollama.Ollama.html)" + "* See the full set of parameters on the [API reference page](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.ollama.Ollama.html)" ] }, { @@ -280,9 +280,9 @@ "\n", "For example, below we run inference on `llama2-13b` with 4 bit quantization downloaded from [HuggingFace](https://huggingface.co/TheBloke/Llama-2-13B-GGML/tree/main).\n", "\n", - "As noted above, see the [API reference](https://python.langchain.com/v0.2/api_reference/langchain/llms/langchain.llms.llamacpp.LlamaCpp.html?highlight=llamacpp#langchain.llms.llamacpp.LlamaCpp) for the full set of parameters. \n", + "As noted above, see the [API reference](https://python.langchain.com/api_reference/langchain/llms/langchain.llms.llamacpp.LlamaCpp.html?highlight=llamacpp#langchain.llms.llamacpp.LlamaCpp) for the full set of parameters. \n", "\n", - "From the [llama.cpp API reference docs](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.llamacpp.LlamaCpp.html), a few are worth commenting on:\n", + "From the [llama.cpp API reference docs](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.llamacpp.LlamaCpp.html), a few are worth commenting on:\n", "\n", "`n_gpu_layers`: number of layers to be loaded into GPU memory\n", "\n", @@ -416,7 +416,7 @@ "\n", "We can use model weights downloaded from [GPT4All](/docs/integrations/llms/gpt4all) model explorer.\n", "\n", - "Similar to what is shown above, we can run inference and use [the API reference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.gpt4all.GPT4All.html) to set parameters of interest." + "Similar to what is shown above, we can run inference and use [the API reference](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.gpt4all.GPT4All.html) to set parameters of interest." ] }, { diff --git a/docs/docs/how_to/logprobs.ipynb b/docs/docs/how_to/logprobs.ipynb index d77a6b64fe508..c15565e0b955f 100644 --- a/docs/docs/how_to/logprobs.ipynb +++ b/docs/docs/how_to/logprobs.ipynb @@ -55,7 +55,7 @@ "id": "f88ffa0d-f4a7-482c-88de-cbec501a79b1", "metadata": {}, "source": [ - "For the OpenAI API to return log probabilities we need to configure the `logprobs=True` param. Then, the logprobs are included on each output [`AIMessage`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html) as part of the `response_metadata`:" + "For the OpenAI API to return log probabilities we need to configure the `logprobs=True` param. Then, the logprobs are included on each output [`AIMessage`](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html) as part of the `response_metadata`:" ] }, { @@ -94,7 +94,7 @@ "source": [ "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\").bind(logprobs=True)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\").bind(logprobs=True)\n", "\n", "msg = llm.invoke((\"human\", \"how are you today\"))\n", "\n", diff --git a/docs/docs/how_to/long_context_reorder.ipynb b/docs/docs/how_to/long_context_reorder.ipynb index d1f805322f37e..29bed05bbe072 100644 --- a/docs/docs/how_to/long_context_reorder.ipynb +++ b/docs/docs/how_to/long_context_reorder.ipynb @@ -13,7 +13,7 @@ "\n", "To mitigate the [\"lost in the middle\"](https://arxiv.org/abs/2307.03172) effect, you can re-order documents after retrieval such that the most relevant documents are positioned at extrema (e.g., the first and last pieces of context), and the least relevant documents are positioned in the middle. In some cases this can help surface the most relevant information to LLMs.\n", "\n", - "The [LongContextReorder](https://python.langchain.com/v0.2/api_reference/community/document_transformers/langchain_community.document_transformers.long_context_reorder.LongContextReorder.html) document transformer implements this re-ordering procedure. Below we demonstrate an example." + "The [LongContextReorder](https://python.langchain.com/api_reference/community/document_transformers/langchain_community.document_transformers.long_context_reorder.LongContextReorder.html) document transformer implements this re-ordering procedure. Below we demonstrate an example." ] }, { diff --git a/docs/docs/how_to/markdown_header_metadata_splitter.ipynb b/docs/docs/how_to/markdown_header_metadata_splitter.ipynb index d480bd9c22427..ad33be83991cf 100644 --- a/docs/docs/how_to/markdown_header_metadata_splitter.ipynb +++ b/docs/docs/how_to/markdown_header_metadata_splitter.ipynb @@ -17,7 +17,7 @@ "When a full paragraph or document is embedded, the embedding process considers both the overall context and the relationships between the sentences and phrases within the text. This can result in a more comprehensive vector representation that captures the broader meaning and themes of the text.\n", "```\n", " \n", - "As mentioned, chunking often aims to keep text with common context together. With this in mind, we might want to specifically honor the structure of the document itself. For example, a markdown file is organized by headers. Creating chunks within specific header groups is an intuitive idea. To address this challenge, we can use [MarkdownHeaderTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/markdown/langchain_text_splitters.markdown.MarkdownHeaderTextSplitter.html). This will split a markdown file by a specified set of headers. \n", + "As mentioned, chunking often aims to keep text with common context together. With this in mind, we might want to specifically honor the structure of the document itself. For example, a markdown file is organized by headers. Creating chunks within specific header groups is an intuitive idea. To address this challenge, we can use [MarkdownHeaderTextSplitter](https://python.langchain.com/api_reference/text_splitters/markdown/langchain_text_splitters.markdown.MarkdownHeaderTextSplitter.html). This will split a markdown file by a specified set of headers. \n", "\n", "For example, if we want to split this markdown:\n", "```\n", diff --git a/docs/docs/how_to/merge_message_runs.ipynb b/docs/docs/how_to/merge_message_runs.ipynb index 2481390fb0e9c..350eed6577f94 100644 --- a/docs/docs/how_to/merge_message_runs.ipynb +++ b/docs/docs/how_to/merge_message_runs.ipynb @@ -11,12 +11,30 @@ "\n", "The `merge_message_runs` utility makes it easy to merge consecutive messages of the same type.\n", "\n", + "### Setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "198ce37f-4466-45a2-8878-d75cd01a5d23", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU langchain-core langchain-anthropic" + ] + }, + { + "cell_type": "markdown", + "id": "b5c3ca6e-e5b3-4151-8307-9101713a20ae", + "metadata": {}, + "source": [ "## Basic usage" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 8, "id": "1a215bbb-c05c-40b0-a6fd-d94884d517df", "metadata": {}, "outputs": [ @@ -24,11 +42,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "SystemMessage(content=\"you're a good assistant.\\nyou always respond with a joke.\")\n", + "SystemMessage(content=\"you're a good assistant.\\nyou always respond with a joke.\", additional_kwargs={}, response_metadata={})\n", "\n", - "HumanMessage(content=[{'type': 'text', 'text': \"i wonder why it's called langchain\"}, 'and who is harrison chasing anyways'])\n", + "HumanMessage(content=[{'type': 'text', 'text': \"i wonder why it's called langchain\"}, 'and who is harrison chasing anyways'], additional_kwargs={}, response_metadata={})\n", "\n", - "AIMessage(content='Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!\\nWhy, he\\'s probably chasing after the last cup of coffee in the office!')\n" + "AIMessage(content='Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!\\nWhy, he\\'s probably chasing after the last cup of coffee in the office!', additional_kwargs={}, response_metadata={})\n" ] } ], @@ -63,38 +81,6 @@ "Notice that if the contents of one of the messages to merge is a list of content blocks then the merged message will have a list of content blocks. And if both messages to merge have string contents then those are concatenated with a newline character." ] }, - { - "cell_type": "markdown", - "id": "11f7e8d3", - "metadata": {}, - "source": [ - "The `merge_message_runs` utility also works with messages composed together using the overloaded `+` operation:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b51855c5", - "metadata": {}, - "outputs": [], - "source": [ - "messages = (\n", - " SystemMessage(\"you're a good assistant.\")\n", - " + SystemMessage(\"you always respond with a joke.\")\n", - " + HumanMessage([{\"type\": \"text\", \"text\": \"i wonder why it's called langchain\"}])\n", - " + HumanMessage(\"and who is harrison chasing anyways\")\n", - " + AIMessage(\n", - " 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n", - " )\n", - " + AIMessage(\n", - " \"Why, he's probably chasing after the last cup of coffee in the office!\"\n", - " )\n", - ")\n", - "\n", - "merged = merge_message_runs(messages)\n", - "print(\"\\n\\n\".join([repr(x) for x in merged]))" - ] - }, { "cell_type": "markdown", "id": "1b2eee74-71c8-4168-b968-bca580c25d18", @@ -107,23 +93,30 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 9, "id": "6d5a0283-11f8-435b-b27b-7b18f7693592", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + }, { "data": { "text/plain": [ - "AIMessage(content=[], response_metadata={'id': 'msg_01D6R8Naum57q8qBau9vLBUX', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 84, 'output_tokens': 3}}, id='run-ac0c465b-b54f-4b8b-9295-e5951250d653-0', usage_metadata={'input_tokens': 84, 'output_tokens': 3, 'total_tokens': 87})" + "AIMessage(content=[], additional_kwargs={}, response_metadata={'id': 'msg_01KNGUMTuzBVfwNouLDpUMwf', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 84, 'output_tokens': 3}}, id='run-b908b198-9c24-450b-9749-9d4a8182937b-0', usage_metadata={'input_tokens': 84, 'output_tokens': 3, 'total_tokens': 87})" ] }, - "execution_count": 3, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# pip install -U langchain-anthropic\n", + "%pip install -qU langchain-anthropic\n", "from langchain_anthropic import ChatAnthropic\n", "\n", "llm = ChatAnthropic(model=\"claude-3-sonnet-20240229\", temperature=0)\n", @@ -146,19 +139,19 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "id": "460817a6-c327-429d-958e-181a8c46059c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[SystemMessage(content=\"you're a good assistant.\\nyou always respond with a joke.\"),\n", - " HumanMessage(content=[{'type': 'text', 'text': \"i wonder why it's called langchain\"}, 'and who is harrison chasing anyways']),\n", - " AIMessage(content='Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!\\nWhy, he\\'s probably chasing after the last cup of coffee in the office!')]" + "[SystemMessage(content=\"you're a good assistant.\\nyou always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content=[{'type': 'text', 'text': \"i wonder why it's called langchain\"}, 'and who is harrison chasing anyways'], additional_kwargs={}, response_metadata={}),\n", + " AIMessage(content='Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!\\nWhy, he\\'s probably chasing after the last cup of coffee in the office!', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 4, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -167,6 +160,53 @@ "merger.invoke(messages)" ] }, + { + "cell_type": "markdown", + "id": "4178837d-b155-492d-9404-d567accc1fa0", + "metadata": {}, + "source": [ + "`merge_message_runs` can also be placed after a prompt:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "620530ab-ed05-4899-b984-bfa4cd738465", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='A convergent series is an infinite series whose partial sums approach a finite value as more terms are added. In other words, the sequence of partial sums has a limit.\\n\\nMore formally, an infinite series Σ an (where an are the terms of the series) is said to be convergent if the sequence of partial sums:\\n\\nS1 = a1\\nS2 = a1 + a2 \\nS3 = a1 + a2 + a3\\n...\\nSn = a1 + a2 + a3 + ... + an\\n...\\n\\nconverges to some finite number S as n goes to infinity. We write:\\n\\nlim n→∞ Sn = S\\n\\nThe finite number S is called the sum of the convergent infinite series.\\n\\nIf the sequence of partial sums does not approach any finite limit, the infinite series is said to be divergent.\\n\\nSome key properties:\\n- A series converges if and only if the sequence of its partial sums is a Cauchy sequence.\\n- Absolute/conditional convergence criteria help determine if a given series converges.\\n- Convergent series have many important applications in mathematics, physics, engineering etc.', additional_kwargs={}, response_metadata={'id': 'msg_01MfV6y2hep7ZNvDz24A36U4', 'model': 'claude-3-sonnet-20240229', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 29, 'output_tokens': 267}}, id='run-9d925f58-021e-4bd0-94fc-f8f5e91010a4-0', usage_metadata={'input_tokens': 29, 'output_tokens': 267, 'total_tokens': 296})" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_core.prompts import ChatPromptTemplate\n", + "\n", + "prompt = ChatPromptTemplate(\n", + " [\n", + " (\"system\", \"You're great a {skill}\"),\n", + " (\"system\", \"You're also great at explaining things\"),\n", + " (\"human\", \"{query}\"),\n", + " ]\n", + ")\n", + "chain = prompt | merger | llm\n", + "chain.invoke({\"skill\": \"math\", \"query\": \"what's the definition of a convergent series\"})" + ] + }, + { + "cell_type": "markdown", + "id": "51ba533a-43c7-4e5f-bd91-a4ec23ceeb34", + "metadata": {}, + "source": [ + "LangSmith Trace: https://smith.langchain.com/public/432150b6-9909-40a7-8ae7-944b7e657438/r/f4ad5fb2-4d38-42a6-b780-25f62617d53f" + ] + }, { "cell_type": "markdown", "id": "4548d916-ce21-4dc6-8f19-eedb8003ace6", @@ -174,7 +214,7 @@ "source": [ "## API reference\n", "\n", - "For a complete description of all arguments head to the API reference: https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.utils.merge_message_runs.html" + "For a complete description of all arguments head to the API reference: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.merge_message_runs.html" ] } ], @@ -194,7 +234,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/message_history.ipynb b/docs/docs/how_to/message_history.ipynb index 08cc51cb5365c..9d0d8f44b60d7 100644 --- a/docs/docs/how_to/message_history.ipynb +++ b/docs/docs/how_to/message_history.ipynb @@ -24,150 +24,43 @@ ":::info Prerequisites\n", "\n", "This guide assumes familiarity with the following concepts:\n", - "- [LangChain Expression Language (LCEL)](/docs/concepts/#langchain-expression-language)\n", "- [Chaining runnables](/docs/how_to/sequence/)\n", - "- [Configuring chain parameters at runtime](/docs/how_to/configure)\n", "- [Prompt templates](/docs/concepts/#prompt-templates)\n", "- [Chat Messages](/docs/concepts/#message-types)\n", + "- [LangGraph persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/)\n", "\n", ":::\n", "\n", - "Passing conversation state into and out a chain is vital when building a chatbot. The [`RunnableWithMessageHistory`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#langchain_core.runnables.history.RunnableWithMessageHistory) class lets us add message history to certain types of chains. It wraps another Runnable and manages the chat message history for it. Specifically, it loads previous messages in the conversation BEFORE passing it to the Runnable, and it saves the generated response as a message AFTER calling the runnable. This class also enables multiple conversations by saving each conversation with a `session_id` - it then expects a `session_id` to be passed in the config when calling the runnable, and uses that to look up the relevant conversation history.\n", + ":::note\n", "\n", - "![index_diagram](../../static/img/message_history.png)\n", + "This guide previously covered the [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) abstraction. You can access this version of the guide in the [v0.2 docs](https://python.langchain.com/v0.2/docs/how_to/message_history/).\n", "\n", - "In practice this looks something like:\n", + "As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into new LangChain applications.\n", "\n", - "```python\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", + "If your code is already relying on `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do **not** need to make any changes. We do not plan on deprecating this functionality in the near future as it works for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected.\n", "\n", + "Please see [How to migrate to LangGraph Memory](/docs/versions/migrating_memory/) for more details.\n", + ":::\n", "\n", - "with_message_history = RunnableWithMessageHistory(\n", - " # The underlying runnable\n", - " runnable, \n", - " # A function that takes in a session id and returns a memory object\n", - " get_session_history, \n", - " # Other parameters that may be needed to align the inputs/outputs\n", - " # of the Runnable with the memory object\n", - " ... \n", - ")\n", - "\n", - "with_message_history.invoke(\n", - " # The same input as before\n", - " {\"ability\": \"math\", \"input\": \"What does cosine mean?\"},\n", - " # Configuration specifying the `session_id`,\n", - " # which controls which conversation to load\n", - " config={\"configurable\": {\"session_id\": \"abc123\"}},\n", - ")\n", - "```\n", - "\n", - "\n", - "In order to properly set this up there are two main things to consider:\n", - "\n", - "1. How to store and load messages? (this is `get_session_history` in the example above)\n", - "2. What is the underlying Runnable you are wrapping and what are its inputs/outputs? (this is `runnable` in the example above, as well any additional parameters you pass to `RunnableWithMessageHistory` to align the inputs/outputs)\n", - "\n", - "Let's walk through these pieces (and more) below." - ] - }, - { - "cell_type": "markdown", - "id": "734123cb", - "metadata": {}, - "source": [ - "## How to store and load messages\n", - "\n", - "A key part of this is storing and loading messages.\n", - "When constructing `RunnableWithMessageHistory` you need to pass in a `get_session_history` function.\n", - "This function should take in a `session_id` and return a `BaseChatMessageHistory` object.\n", - "\n", - "**What is `session_id`?** \n", - "\n", - "`session_id` is an identifier for the session (conversation) thread that these input messages correspond to. This allows you to maintain several conversations/threads with the same chain at the same time.\n", - "\n", - "**What is `BaseChatMessageHistory`?** \n", - "\n", - "`BaseChatMessageHistory` is a class that can load and save message objects. It will be called by `RunnableWithMessageHistory` to do exactly that. These classes are usually initialized with a session id.\n", - "\n", - "Let's create a `get_session_history` object to use for this example. To keep things simple, we will use a simple SQLiteMessage" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "e8210560", - "metadata": {}, - "outputs": [], - "source": [ - "! rm memory.db" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "27f36241", - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_community.chat_message_histories import SQLChatMessageHistory\n", - "\n", - "\n", - "def get_session_history(session_id):\n", - " return SQLChatMessageHistory(session_id, \"sqlite:///memory.db\")" - ] - }, - { - "cell_type": "markdown", - "id": "c200cb3a", - "metadata": {}, - "source": [ - "Check out the [memory integrations](https://integrations.langchain.com/memory) page for implementations of chat message histories using other providers (Redis, Postgres, etc)." - ] - }, - { - "cell_type": "markdown", - "id": "a531da5e", - "metadata": {}, - "source": [ - "## What is the runnable you are trying to wrap?\n", - "\n", - "`RunnableWithMessageHistory` can only wrap certain types of Runnables. Specifically, it can be used for any Runnable that takes as input one of:\n", + "Passing conversation state into and out a chain is vital when building a chatbot. LangGraph implements a built-in persistence layer, allowing chain states to be automatically persisted in memory, or external backends such as SQLite, Postgres or Redis. Details can be found in the LangGraph [persistence documentation](https://langchain-ai.github.io/langgraph/how-tos/persistence/).\n", "\n", - "* a sequence of [`BaseMessages`](/docs/concepts/#message-types)\n", - "* a dict with a key that takes a sequence of `BaseMessages`\n", - "* a dict with a key that takes the latest message(s) as a string or sequence of `BaseMessages`, and a separate key that takes historical messages\n", + "In this guide we demonstrate how to add persistence to arbitrary LangChain runnables by wrapping them in a minimal LangGraph application. This lets us persist the message history and other elements of the chain's state, simplifying the development of multi-turn applications. It also supports multiple threads, enabling a single application to interact separately with multiple users.\n", "\n", - "And returns as output one of\n", + "## Setup\n", "\n", - "* a string that can be treated as the contents of an `AIMessage`\n", - "* a sequence of `BaseMessage`\n", - "* a dict with a key that contains a sequence of `BaseMessage`\n", + "Let's initialize a chat model:\n", "\n", - "Let's take a look at some examples to see how it works. " - ] - }, - { - "cell_type": "markdown", - "id": "6a4becbd-238e-4c1d-a02d-08e61fbc3763", - "metadata": {}, - "source": [ - "### Setup\n", - "\n", - "First we construct a runnable (which here accepts a dict as input and returns a message as output):\n", - "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { "cell_type": "code", - "execution_count": 3, - "id": "6489f585", + "execution_count": 1, + "id": "ca50d084-ae4b-4aea-9eb7-2ebc699df9bc", "metadata": {}, "outputs": [], "source": [ @@ -182,704 +75,382 @@ "# os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n", "from langchain_anthropic import ChatAnthropic\n", "\n", - "model = ChatAnthropic(model=\"claude-3-haiku-20240307\", temperature=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "2ed413b4-33a1-48ee-89b0-2d4917ec101a", - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_core.messages import HumanMessage\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory" + "llm = ChatAnthropic(model=\"claude-3-haiku-20240307\", temperature=0)" ] }, { "cell_type": "markdown", - "id": "e8816b01", + "id": "1f6121bc-2080-4ccc-acf0-f77de4bc951d", "metadata": {}, "source": [ - "### Messages input, message(s) output\n", + "## Example: message inputs\n", + "\n", + "Adding memory to a [chat model](/docs/concepts/#chat-models) provides a simple example. Chat models accept a list of messages as input and output a message. LangGraph includes a built-in `MessagesState` that we can use for this purpose.\n", "\n", - "The simplest form is just adding memory to a ChatModel.\n", - "ChatModels accept a list of messages as input and output a message.\n", - "This makes it very easy to use `RunnableWithMessageHistory` - no additional configuration is needed!" + "Below, we:\n", + "1. Define the graph state to be a list of messages;\n", + "2. Add a single node to the graph that calls a chat model;\n", + "3. Compile the graph with an in-memory checkpointer to store messages between runs.\n", + "\n", + ":::info\n", + "\n", + "The output of a LangGraph application is its [state](https://langchain-ai.github.io/langgraph/concepts/low_level/). This can be any Python type, but in this context it will typically be a `TypedDict` that matches the schema of your runnable.\n", + "\n", + ":::" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "0521d551", + "execution_count": 2, + "id": "f691a73a-a866-4354-9fff-8315605e2b8f", "metadata": {}, "outputs": [], "source": [ - "runnable_with_history = RunnableWithMessageHistory(\n", - " model,\n", - " get_session_history,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "d5142e1a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content=\"It's nice to meet you, Bob! I'm Claude, an AI assistant created by Anthropic. How can I help you today?\", response_metadata={'id': 'msg_01UHCCMiZz9yNYjt41xUJrtk', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 12, 'output_tokens': 32}}, id='run-55f6a451-606b-4e04-9e39-e03b81035c1f-0', usage_metadata={'input_tokens': 12, 'output_tokens': 32, 'total_tokens': 44})" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "runnable_with_history.invoke(\n", - " [HumanMessage(content=\"hi - im bob!\")],\n", - " config={\"configurable\": {\"session_id\": \"1\"}},\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "768e0c12", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content='I\\'m afraid I don\\'t actually know your name - you introduced yourself as Bob, but I don\\'t have any other information about your identity. As an AI assistant, I don\\'t have a way to independently verify people\\'s names or identities. I\\'m happy to continue our conversation, but I\\'ll just refer to you as \"Bob\" since that\\'s the name you provided.', response_metadata={'id': 'msg_018L96tAxiexMKsHBQz22CcE', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 52, 'output_tokens': 80}}, id='run-7399ddb5-bb06-444b-bfb2-2f65674105dd-0', usage_metadata={'input_tokens': 52, 'output_tokens': 80, 'total_tokens': 132})" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "runnable_with_history.invoke(\n", - " [HumanMessage(content=\"whats my name?\")],\n", - " config={\"configurable\": {\"session_id\": \"1\"}},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "9d942227", - "metadata": {}, - "source": [ - ":::info\n", + "from langchain_core.messages import HumanMessage\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", "\n", - "Note that in this case the context is preserved via the chat history for the provided `session_id`, so the model knows the users name.\n", + "# Define a new graph\n", + "workflow = StateGraph(state_schema=MessagesState)\n", "\n", - ":::\n", "\n", - "We can now try this with a new session id and see that it does not remember." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "addddd03", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content=\"I'm afraid I don't actually know your name. As an AI assistant, I don't have personal information about you unless you provide it to me directly.\", response_metadata={'id': 'msg_01LhbWu7mSKTvKAx7iQpMPzd', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 12, 'output_tokens': 35}}, id='run-cf86cad2-21f2-4525-afc8-09bfd1e8af70-0', usage_metadata={'input_tokens': 12, 'output_tokens': 35, 'total_tokens': 47})" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "runnable_with_history.invoke(\n", - " [HumanMessage(content=\"whats my name?\")],\n", - " config={\"configurable\": {\"session_id\": \"1a\"}},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "8b26a0c0", - "metadata": {}, - "source": [ - ":::info \n", + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " response = llm.invoke(state[\"messages\"])\n", + " # Update message history with response:\n", + " return {\"messages\": response}\n", "\n", - "When we pass a different `session_id`, we start a new chat history, so the model does not know what the user's name is. \n", "\n", - ":::" + "# Define the (single) node in the graph\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "# Add memory\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { "cell_type": "markdown", - "id": "e5bb5c7c", + "id": "c0b396a8-f81e-4139-b4b2-75adf61d8179", "metadata": {}, "source": [ - "### Dictionary input, message(s) output\n", - "\n", - "Besides just wrapping a raw model, the next step up is wrapping a prompt + LLM. This now changes the input to be a **dictionary** (because the input to a prompt is a dictionary). This adds two bits of complication.\n", - "\n", - "First: a dictionary can have multiple keys, but we only want to save ONE as input. In order to do this, we now now need to specify a key to save as the input.\n", - "\n", - "Second: once we load the messages, we need to know how to save them to the dictionary. That equates to know which key in the dictionary to save them in. Therefore, we need to specify a key to save the loaded messages in.\n", - "\n", - "Putting it all together, that ends up looking something like:" + "When we run the application, we pass in a configuration `dict` that specifies a `thread_id`. This ID is used to distinguish conversational threads (e.g., between different users)." ] }, { "cell_type": "code", - "execution_count": 15, - "id": "34edd990", + "execution_count": 3, + "id": "e4309511-2140-4d91-8f5f-ea3661e6d179", "metadata": {}, "outputs": [], "source": [ - "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", - "\n", - "prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\n", - " \"system\",\n", - " \"You're an assistant who speaks in {language}. Respond in 20 words or fewer\",\n", - " ),\n", - " MessagesPlaceholder(variable_name=\"history\"),\n", - " (\"human\", \"{input}\"),\n", - " ]\n", - ")\n", - "\n", - "runnable = prompt | model\n", - "\n", - "runnable_with_history = RunnableWithMessageHistory(\n", - " runnable,\n", - " get_session_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"history\",\n", - ")" + "config = {\"configurable\": {\"thread_id\": \"abc123\"}}" ] }, { "cell_type": "markdown", - "id": "c0baa075", + "id": "108c45a2-4971-4120-ba64-9a4305a414bb", "metadata": {}, "source": [ - ":::info\n", - "\n", - "Note that we've specified `input_messages_key` (the key to be treated as the latest input message) and `history_messages_key` (the key to add historical messages to).\n", - "\n", - ":::" + "We can then invoke the application:" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "5877544f", + "execution_count": 4, + "id": "72a5ff6c-501f-4151-8dd9-f600f70554be", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "AIMessage(content='Ciao Bob! È un piacere conoscerti. Come stai oggi?', response_metadata={'id': 'msg_0121ADUEe4G1hMC6zbqFWofr', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 29, 'output_tokens': 23}}, id='run-246a70df-aad6-43d6-a7e8-166d96e0d67e-0', usage_metadata={'input_tokens': 29, 'output_tokens': 23, 'total_tokens': 52})" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "It's nice to meet you, Bob! I'm Claude, an AI assistant created by Anthropic. How can I help you today?\n" + ] } ], "source": [ - "runnable_with_history.invoke(\n", - " {\"language\": \"italian\", \"input\": \"hi im bob!\"},\n", - " config={\"configurable\": {\"session_id\": \"2\"}},\n", - ")" + "query = \"Hi! I'm Bob.\"\n", + "\n", + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print() # output contains all messages in state" ] }, { "cell_type": "code", - "execution_count": 17, - "id": "8605c2b1", + "execution_count": 5, + "id": "5931fb35-0fac-40e7-8ac6-b14cb4e926cd", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "AIMessage(content='Bob, il tuo nome è Bob.', response_metadata={'id': 'msg_01EDUZG6nRLGeti9KhFN5cek', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 60, 'output_tokens': 12}}, id='run-294b4a72-81bc-4c43-b199-3aafdff87cb3-0', usage_metadata={'input_tokens': 60, 'output_tokens': 12, 'total_tokens': 72})" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Your name is Bob, as you introduced yourself at the beginning of our conversation.\n" + ] } ], "source": [ - "runnable_with_history.invoke(\n", - " {\"language\": \"italian\", \"input\": \"whats my name?\"},\n", - " config={\"configurable\": {\"session_id\": \"2\"}},\n", - ")" + "query = \"What's my name?\"\n", + "\n", + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", - "id": "3ab7c09f", + "id": "91de6d12-881d-4d23-a421-f2e3bf829b79", "metadata": {}, "source": [ - ":::info\n", - "\n", - "Note that in this case the context is preserved via the chat history for the provided `session_id`, so the model knows the users name.\n", - "\n", - ":::\n", - "\n", - "We can now try this with a new session id and see that it does not remember." + "Note that states are separated for different threads. If we issue the same query to a thread with a new `thread_id`, the model indicates that it does not know the answer:" ] }, { "cell_type": "code", - "execution_count": 19, - "id": "c7ddad6b", + "execution_count": 6, + "id": "6f12c26f-8913-4484-b2c5-b49eda2e6d7d", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "AIMessage(content='Mi dispiace, non so il tuo nome. Come posso aiutarti?', response_metadata={'id': 'msg_01Lyd9FAGQJTxxAZoFi3sQpQ', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 30, 'output_tokens': 23}}, id='run-19a82197-3b1c-4b5f-a68d-f91f4a2ba523-0', usage_metadata={'input_tokens': 30, 'output_tokens': 23, 'total_tokens': 53})" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "I'm afraid I don't actually know your name. As an AI assistant, I don't have personal information about you unless you provide it to me directly.\n" + ] } ], "source": [ - "runnable_with_history.invoke(\n", - " {\"language\": \"italian\", \"input\": \"whats my name?\"},\n", - " config={\"configurable\": {\"session_id\": \"2a\"}},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "a05e6c12", - "metadata": {}, - "source": [ - ":::info \n", + "query = \"What's my name?\"\n", + "config = {\"configurable\": {\"thread_id\": \"abc234\"}}\n", "\n", - "When we pass a different `session_id`, we start a new chat history, so the model does not know what the user's name is. \n", - "\n", - ":::" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", - "id": "717440a9", + "id": "6749ea95-3382-4843-bb96-cfececb9e4e5", "metadata": {}, "source": [ - "### Messages input, dict output\n", + "## Example: dictionary inputs\n", + "\n", + "LangChain runnables often accept multiple inputs via separate keys in a single `dict` argument. A common example is a prompt template with multiple parameters.\n", "\n", - "This format is useful when you are using a model to generate one key in a dictionary." + "Whereas before our runnable was a chat model, here we chain together a prompt template and chat model." ] }, { "cell_type": "code", - "execution_count": 20, - "id": "80b8efb0", + "execution_count": 7, + "id": "6e7a402a-0994-4fc5-a607-fb990a248aa4", "metadata": {}, "outputs": [], "source": [ - "from langchain_core.messages import HumanMessage\n", - "from langchain_core.runnables import RunnableParallel\n", - "\n", - "chain = RunnableParallel({\"output_message\": model})\n", + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", "\n", + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\"system\", \"Answer in {language}.\"),\n", + " MessagesPlaceholder(variable_name=\"messages\"),\n", + " ]\n", + ")\n", "\n", - "runnable_with_history = RunnableWithMessageHistory(\n", - " chain,\n", - " get_session_history,\n", - " output_messages_key=\"output_message\",\n", - ")" + "runnable = prompt | llm" ] }, { "cell_type": "markdown", - "id": "9040c535", + "id": "f83107bd-ae61-45e1-a57e-94ab043aad4b", "metadata": {}, "source": [ - ":::info\n", + "For this scenario, we define the graph state to include these parameters (in addition to the message history). We then define a single-node graph in the same way as before.\n", "\n", - "Note that we've specified `output_messages_key` (the key to be treated as the output to save).\n", - "\n", - ":::" + "Note that in the below state:\n", + "- Updates to the `messages` list will append messages;\n", + "- Updates to the `language` string will overwrite the string." ] }, { "cell_type": "code", - "execution_count": 21, - "id": "8b26a209", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'output_message': AIMessage(content=\"It's nice to meet you, Bob! I'm Claude, an AI assistant created by Anthropic. How can I help you today?\", response_metadata={'id': 'msg_01WWJSyUyGGKuBqTs3h18ZMM', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 12, 'output_tokens': 32}}, id='run-0f50cb43-a734-447c-b535-07c615a0984c-0', usage_metadata={'input_tokens': 12, 'output_tokens': 32, 'total_tokens': 44})}" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "runnable_with_history.invoke(\n", - " [HumanMessage(content=\"hi - im bob!\")],\n", - " config={\"configurable\": {\"session_id\": \"3\"}},\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "743edcf8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'output_message': AIMessage(content='I\\'m afraid I don\\'t actually know your name - you introduced yourself as Bob, but I don\\'t have any other information about your identity. As an AI assistant, I don\\'t have a way to independently verify people\\'s names or identities. I\\'m happy to continue our conversation, but I\\'ll just refer to you as \"Bob\" since that\\'s the name you provided.', response_metadata={'id': 'msg_01TEGrhfLXTwo36rC7svdTy4', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 52, 'output_tokens': 80}}, id='run-178e8f3f-da21-430d-9edc-ef07797a5e2d-0', usage_metadata={'input_tokens': 52, 'output_tokens': 80, 'total_tokens': 132})}" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "runnable_with_history.invoke(\n", - " [HumanMessage(content=\"whats my name?\")],\n", - " config={\"configurable\": {\"session_id\": \"3\"}},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "81efb7f1", + "execution_count": 8, + "id": "267429ea-be0f-4f80-8daf-c63d881a1436", "metadata": {}, + "outputs": [], "source": [ - ":::info\n", + "from typing import Sequence\n", "\n", - "Note that in this case the context is preserved via the chat history for the provided `session_id`, so the model knows the users name.\n", + "from langchain_core.messages import BaseMessage\n", + "from langgraph.graph.message import add_messages\n", + "from typing_extensions import Annotated, TypedDict\n", "\n", - ":::\n", "\n", - "We can now try this with a new session id and see that it does not remember." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "b8b04907", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'output_message': AIMessage(content=\"I'm afraid I don't actually know your name. As an AI assistant, I don't have personal information about you unless you provide it to me directly.\", response_metadata={'id': 'msg_0118ZBudDXAC9P6smf91NhCX', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 12, 'output_tokens': 35}}, id='run-deb14a3a-0336-42b4-8ace-ad1e52ca5910-0', usage_metadata={'input_tokens': 12, 'output_tokens': 35, 'total_tokens': 47})}" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "runnable_with_history.invoke(\n", - " [HumanMessage(content=\"whats my name?\")],\n", - " config={\"configurable\": {\"session_id\": \"3a\"}},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "6716a068", - "metadata": {}, - "source": [ - ":::info \n", + "# highlight-next-line\n", + "class State(TypedDict):\n", + " # highlight-next-line\n", + " messages: Annotated[Sequence[BaseMessage], add_messages]\n", + " # highlight-next-line\n", + " language: str\n", "\n", - "When we pass a different `session_id`, we start a new chat history, so the model does not know what the user's name is. \n", "\n", - ":::" - ] - }, - { - "cell_type": "markdown", - "id": "ec4187d0", - "metadata": {}, - "source": [ - "### Dict with single key for all messages input, messages output\n", + "workflow = StateGraph(state_schema=State)\n", "\n", - "This is a specific case of \"Dictionary input, message(s) output\". In this situation, because there is only a single key we don't need to specify as much - we only need to specify the `input_messages_key`." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "7530c4ed", - "metadata": {}, - "outputs": [], - "source": [ - "from operator import itemgetter\n", "\n", - "runnable_with_history = RunnableWithMessageHistory(\n", - " itemgetter(\"input_messages\") | model,\n", - " get_session_history,\n", - " input_messages_key=\"input_messages\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "def75152", - "metadata": {}, - "source": [ - ":::info\n", + "def call_model(state: State):\n", + " response = runnable.invoke(state)\n", + " # Update message history with response:\n", + " return {\"messages\": [response]}\n", "\n", - "Note that we've specified `input_messages_key` (the key to be treated as the latest input message).\n", "\n", - ":::" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "659bc1bf", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content=\"It's nice to meet you, Bob! I'm Claude, an AI assistant created by Anthropic. How can I help you today?\", response_metadata={'id': 'msg_01UdD5wz1J5xwoz5D94onaQC', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 12, 'output_tokens': 32}}, id='run-91bee6eb-0814-4557-ad71-fef9b0270358-0', usage_metadata={'input_tokens': 12, 'output_tokens': 32, 'total_tokens': 44})" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "runnable_with_history.invoke(\n", - " {\"input_messages\": [HumanMessage(content=\"hi - im bob!\")]},\n", - " config={\"configurable\": {\"session_id\": \"4\"}},\n", - ")" + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { "cell_type": "code", - "execution_count": 26, - "id": "6da2835e", + "execution_count": 9, + "id": "f3844fb4-58d7-43c8-b427-6d9f64d7411b", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "AIMessage(content='I\\'m afraid I don\\'t actually know your name - you introduced yourself as Bob, but I don\\'t have any other information about your identity. As an AI assistant, I don\\'t have a way to independently verify people\\'s names or identities. I\\'m happy to continue our conversation, but I\\'ll just refer to you as \"Bob\" since that\\'s the name you provided.', response_metadata={'id': 'msg_012WUygxBKXcVJPeTW14LNrc', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 52, 'output_tokens': 80}}, id='run-fcbaaa1a-8c33-4eec-b0b0-5b800a47bddd-0', usage_metadata={'input_tokens': 52, 'output_tokens': 80, 'total_tokens': 132})" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "¡Hola, Bob! Es un placer conocerte.\n" + ] } ], "source": [ - "runnable_with_history.invoke(\n", - " {\"input_messages\": [HumanMessage(content=\"whats my name?\")]},\n", - " config={\"configurable\": {\"session_id\": \"4\"}},\n", - ")" + "config = {\"configurable\": {\"thread_id\": \"abc345\"}}\n", + "\n", + "input_dict = {\n", + " \"messages\": [HumanMessage(\"Hi, I'm Bob.\")],\n", + " \"language\": \"Spanish\",\n", + "}\n", + "output = app.invoke(input_dict, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", - "id": "d4c7a6f2", + "id": "7df47824-ef18-4a6e-a416-345ec9203f88", "metadata": {}, "source": [ - ":::info\n", - "\n", - "Note that in this case the context is preserved via the chat history for the provided `session_id`, so the model knows the users name.\n", + "## Managing message history\n", "\n", - ":::\n", - "\n", - "We can now try this with a new session id and see that it does not remember." + "The message history (and other elements of the application state) can be accessed via `.get_state`:" ] }, { "cell_type": "code", - "execution_count": 27, - "id": "6cf6abd6", + "execution_count": 10, + "id": "1cbd6d82-43c1-4d11-98af-5c3ad9cd9b3b", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "AIMessage(content=\"I'm afraid I don't actually know your name. As an AI assistant, I don't have personal information about you unless you provide it to me directly.\", response_metadata={'id': 'msg_017xW3Ki5y4UBYzCU9Mf1pgM', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 12, 'output_tokens': 35}}, id='run-d2f372f7-3679-4a5c-9331-a55b820ec03e-0', usage_metadata={'input_tokens': 12, 'output_tokens': 35, 'total_tokens': 47})" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Language: Spanish\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "Hi, I'm Bob.\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "¡Hola, Bob! Es un placer conocerte.\n" + ] } ], "source": [ - "runnable_with_history.invoke(\n", - " {\"input_messages\": [HumanMessage(content=\"whats my name?\")]},\n", - " config={\"configurable\": {\"session_id\": \"4a\"}},\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "9839a6d1", - "metadata": {}, - "source": [ - ":::info \n", - "\n", - "When we pass a different `session_id`, we start a new chat history, so the model does not know what the user's name is. \n", + "state = app.get_state(config).values\n", "\n", - ":::" + "print(f'Language: {state[\"language\"]}')\n", + "for message in state[\"messages\"]:\n", + " message.pretty_print()" ] }, { "cell_type": "markdown", - "id": "a6710e65", + "id": "acfbccda-0bd6-4c4d-ae6e-8118520314e1", "metadata": {}, "source": [ - "## Customization" - ] - }, - { - "cell_type": "markdown", - "id": "d29497be-3366-408d-bbb9-d4a8bf4ef37c", - "metadata": {}, - "source": [ - "The configuration parameters by which we track message histories can be customized by passing in a list of ``ConfigurableFieldSpec`` objects to the ``history_factory_config`` parameter. Below, we use two parameters: a `user_id` and `conversation_id`." + "We can also update the state via `.update_state`. For example, we can manually append a new message:" ] }, { "cell_type": "code", - "execution_count": 30, - "id": "1c89daee-deff-4fdf-86a3-178f7d8ef536", + "execution_count": 11, + "id": "e98310d7-8ab1-461d-94a7-dd419494ab8d", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content='Ciao Bob! È un piacere conoscerti. Come stai oggi?', response_metadata={'id': 'msg_016RJebCoiAgWaNcbv9wrMNW', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 29, 'output_tokens': 23}}, id='run-40425414-8f72-47d4-bf1d-a84175d8b3f8-0', usage_metadata={'input_tokens': 29, 'output_tokens': 23, 'total_tokens': 52})" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "from langchain_core.runnables import ConfigurableFieldSpec\n", - "\n", - "\n", - "def get_session_history(user_id: str, conversation_id: str):\n", - " return SQLChatMessageHistory(f\"{user_id}--{conversation_id}\", \"sqlite:///memory.db\")\n", - "\n", - "\n", - "with_message_history = RunnableWithMessageHistory(\n", - " runnable,\n", - " get_session_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"history\",\n", - " history_factory_config=[\n", - " ConfigurableFieldSpec(\n", - " id=\"user_id\",\n", - " annotation=str,\n", - " name=\"User ID\",\n", - " description=\"Unique identifier for the user.\",\n", - " default=\"\",\n", - " is_shared=True,\n", - " ),\n", - " ConfigurableFieldSpec(\n", - " id=\"conversation_id\",\n", - " annotation=str,\n", - " name=\"Conversation ID\",\n", - " description=\"Unique identifier for the conversation.\",\n", - " default=\"\",\n", - " is_shared=True,\n", - " ),\n", - " ],\n", - ")\n", + "from langchain_core.messages import HumanMessage\n", "\n", - "with_message_history.invoke(\n", - " {\"language\": \"italian\", \"input\": \"hi im bob!\"},\n", - " config={\"configurable\": {\"user_id\": \"123\", \"conversation_id\": \"1\"}},\n", - ")" + "_ = app.update_state(config, {\"messages\": [HumanMessage(\"Test\")]})" ] }, { "cell_type": "code", - "execution_count": 32, - "id": "4f282883", + "execution_count": 12, + "id": "74ab3691-6f3b-49c5-aad0-2a90fc2a1e6a", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "AIMessage(content='Bob, il tuo nome è Bob.', response_metadata={'id': 'msg_01Kktiy3auFDKESY54KtTWPX', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 60, 'output_tokens': 12}}, id='run-c7768420-3f30-43f5-8834-74b1979630dd-0', usage_metadata={'input_tokens': 60, 'output_tokens': 12, 'total_tokens': 72})" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Language: Spanish\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "Hi, I'm Bob.\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "¡Hola, Bob! Es un placer conocerte.\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "Test\n" + ] } ], "source": [ - "# remembers\n", - "with_message_history.invoke(\n", - " {\"language\": \"italian\", \"input\": \"whats my name?\"},\n", - " config={\"configurable\": {\"user_id\": \"123\", \"conversation_id\": \"1\"}},\n", - ")" + "state = app.get_state(config).values\n", + "\n", + "print(f'Language: {state[\"language\"]}')\n", + "for message in state[\"messages\"]:\n", + " message.pretty_print()" ] }, { - "cell_type": "code", - "execution_count": 33, - "id": "fc122c18", + "cell_type": "markdown", + "id": "e4a1ea00-d7ff-4f18-b9ec-9aec5909d027", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content='Mi dispiace, non so il tuo nome. Come posso aiutarti?', response_metadata={'id': 'msg_0178FpbpPNioB7kqvyHk7rjD', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 30, 'output_tokens': 23}}, id='run-df1f1768-aab6-4aec-8bba-e33fc9e90b8d-0', usage_metadata={'input_tokens': 30, 'output_tokens': 23, 'total_tokens': 53})" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "# New user_id --> does not remember\n", - "with_message_history.invoke(\n", - " {\"language\": \"italian\", \"input\": \"whats my name?\"},\n", - " config={\"configurable\": {\"user_id\": \"456\", \"conversation_id\": \"1\"}},\n", - ")" + "For details on managing state, including deleting messages, see the LangGraph documentation:\n", + "- [How to delete messages](https://langchain-ai.github.io/langgraph/how-tos/memory/delete-messages/)\n", + "- [How to view and update past graph state](https://langchain-ai.github.io/langgraph/how-tos/human_in_the_loop/time-travel/)" ] }, { - "cell_type": "markdown", - "id": "3ce37565", + "cell_type": "code", + "execution_count": null, + "id": "870c9c5b-c859-4c0e-9cbd-3555e6ed11e4", "metadata": {}, - "source": [ - "Note that in this case the context was preserved for the same `user_id`, but once we changed it, the new chat history was started, even though the `conversation_id` was the same." - ] + "outputs": [], + "source": [] } ], "metadata": { @@ -898,7 +469,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.1" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/how_to/migrate_agent.ipynb b/docs/docs/how_to/migrate_agent.ipynb index 3e315bba8407c..49d374266b8bf 100644 --- a/docs/docs/how_to/migrate_agent.ipynb +++ b/docs/docs/how_to/migrate_agent.ipynb @@ -31,9 +31,15 @@ ":::\n", "\n", "Here we focus on how to move from legacy LangChain agents to more flexible [LangGraph](https://langchain-ai.github.io/langgraph/) agents.\n", - "LangChain agents (the [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n", + "LangChain agents (the [AgentExecutor](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor) in particular) have multiple configuration parameters.\n", "In this notebook we will show how those parameters map to the LangGraph react agent executor using the [create_react_agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) prebuilt helper method.\n", "\n", + "\n", + ":::note\n", + "In LangGraph, the graph replaces LangChain's agent executor. It manages the agent's cycles and tracks the scratchpad as messages within its state. The LangChain \"agent\" corresponds to the state_modifier and LLM you've provided.\n", + ":::\n", + "\n", + "\n", "#### Prerequisites\n", "\n", "This how-to guide uses OpenAI as the LLM. Install the dependencies to run." @@ -65,9 +71,11 @@ "metadata": {}, "outputs": [], "source": [ + "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = \"sk-...\"" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API key:\\n\")" ] }, { @@ -110,7 +118,7 @@ "id": "af002033-fe51-4d14-b47c-3e9b483c8395", "metadata": {}, "source": [ - "For the LangChain [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), we define a prompt with a placeholder for the agent's scratchpad. The agent can be invoked as follows:" + "For the LangChain [AgentExecutor](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), we define a prompt with a placeholder for the agent's scratchpad. The agent can be invoked as follows:" ] }, { @@ -181,10 +189,10 @@ "source": [ "from langgraph.prebuilt import create_react_agent\n", "\n", - "app = create_react_agent(model, tools)\n", + "langgraph_agent_executor = create_react_agent(model, tools)\n", "\n", "\n", - "messages = app.invoke({\"messages\": [(\"human\", query)]})\n", + "messages = langgraph_agent_executor.invoke({\"messages\": [(\"human\", query)]})\n", "{\n", " \"input\": query,\n", " \"output\": messages[\"messages\"][-1].content,\n", @@ -214,7 +222,9 @@ "\n", "new_query = \"Pardon?\"\n", "\n", - "messages = app.invoke({\"messages\": message_history + [(\"human\", new_query)]})\n", + "messages = langgraph_agent_executor.invoke(\n", + " {\"messages\": message_history + [(\"human\", new_query)]}\n", + ")\n", "{\n", " \"input\": new_query,\n", " \"output\": messages[\"messages\"][-1].content,\n", @@ -307,10 +317,12 @@ "# This could also be a SystemMessage object\n", "# system_message = SystemMessage(content=\"You are a helpful assistant. Respond only in Spanish.\")\n", "\n", - "app = create_react_agent(model, tools, state_modifier=system_message)\n", + "langgraph_agent_executor = create_react_agent(\n", + " model, tools, state_modifier=system_message\n", + ")\n", "\n", "\n", - "messages = app.invoke({\"messages\": [(\"user\", query)]})" + "messages = langgraph_agent_executor.invoke({\"messages\": [(\"user\", query)]})" ] }, { @@ -354,10 +366,12 @@ " ]\n", "\n", "\n", - "app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n", + "langgraph_agent_executor = create_react_agent(\n", + " model, tools, state_modifier=_modify_state_messages\n", + ")\n", "\n", "\n", - "messages = app.invoke({\"messages\": [(\"human\", query)]})\n", + "messages = langgraph_agent_executor.invoke({\"messages\": [(\"human\", query)]})\n", "print(\n", " {\n", " \"input\": query,\n", @@ -381,7 +395,7 @@ "source": [ "### In LangChain\n", "\n", - "With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could add chat [Memory](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.memory) so it can engage in a multi-turn conversation." + "With LangChain's [AgentExecutor](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could add chat [Memory](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.memory) so it can engage in a multi-turn conversation." ] }, { @@ -501,13 +515,13 @@ "# system_message = SystemMessage(content=\"You are a helpful assistant. Respond only in Spanish.\")\n", "\n", "memory = MemorySaver()\n", - "app = create_react_agent(\n", + "langgraph_agent_executor = create_react_agent(\n", " model, tools, state_modifier=system_message, checkpointer=memory\n", ")\n", "\n", "config = {\"configurable\": {\"thread_id\": \"test-thread\"}}\n", "print(\n", - " app.invoke(\n", + " langgraph_agent_executor.invoke(\n", " {\n", " \"messages\": [\n", " (\"user\", \"Hi, I'm polly! What's the output of magic_function of 3?\")\n", @@ -518,15 +532,15 @@ ")\n", "print(\"---\")\n", "print(\n", - " app.invoke({\"messages\": [(\"user\", \"Remember my name?\")]}, config)[\"messages\"][\n", - " -1\n", - " ].content\n", + " langgraph_agent_executor.invoke(\n", + " {\"messages\": [(\"user\", \"Remember my name?\")]}, config\n", + " )[\"messages\"][-1].content\n", ")\n", "print(\"---\")\n", "print(\n", - " app.invoke({\"messages\": [(\"user\", \"what was that output again?\")]}, config)[\n", - " \"messages\"\n", - " ][-1].content\n", + " langgraph_agent_executor.invoke(\n", + " {\"messages\": [(\"user\", \"what was that output again?\")]}, config\n", + " )[\"messages\"][-1].content\n", ")" ] }, @@ -539,7 +553,7 @@ "\n", "### In LangChain\n", "\n", - "With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could iterate over the steps using the [stream](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) (or async `astream`) methods or the [iter](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter) method. LangGraph supports stepwise iteration using [stream](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) " + "With LangChain's [AgentExecutor](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could iterate over the steps using the [stream](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) (or async `astream`) methods or the [iter](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter) method. LangGraph supports stepwise iteration using [stream](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.stream) " ] }, { @@ -634,9 +648,13 @@ " return prompt.invoke({\"messages\": state[\"messages\"]}).to_messages()\n", "\n", "\n", - "app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n", + "langgraph_agent_executor = create_react_agent(\n", + " model, tools, state_modifier=_modify_state_messages\n", + ")\n", "\n", - "for step in app.stream({\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"):\n", + "for step in langgraph_agent_executor.stream(\n", + " {\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"\n", + "):\n", " print(step)" ] }, @@ -705,9 +723,9 @@ "source": [ "from langgraph.prebuilt import create_react_agent\n", "\n", - "app = create_react_agent(model, tools=tools)\n", + "langgraph_agent_executor = create_react_agent(model, tools=tools)\n", "\n", - "messages = app.invoke({\"messages\": [(\"human\", query)]})\n", + "messages = langgraph_agent_executor.invoke({\"messages\": [(\"human\", query)]})\n", "\n", "messages" ] @@ -837,10 +855,10 @@ "\n", "RECURSION_LIMIT = 2 * 3 + 1\n", "\n", - "app = create_react_agent(model, tools=tools)\n", + "langgraph_agent_executor = create_react_agent(model, tools=tools)\n", "\n", "try:\n", - " for chunk in app.stream(\n", + " for chunk in langgraph_agent_executor.stream(\n", " {\"messages\": [(\"human\", query)]},\n", " {\"recursion_limit\": RECURSION_LIMIT},\n", " stream_mode=\"values\",\n", @@ -951,12 +969,12 @@ "source": [ "from langgraph.prebuilt import create_react_agent\n", "\n", - "app = create_react_agent(model, tools=tools)\n", + "langgraph_agent_executor = create_react_agent(model, tools=tools)\n", "# Set the max timeout for each step here\n", - "app.step_timeout = 2\n", + "langgraph_agent_executor.step_timeout = 2\n", "\n", "try:\n", - " for chunk in app.stream({\"messages\": [(\"human\", query)]}):\n", + " for chunk in langgraph_agent_executor.stream({\"messages\": [(\"human\", query)]}):\n", " print(chunk)\n", " print(\"------\")\n", "except TimeoutError:\n", @@ -992,17 +1010,21 @@ "\n", "from langgraph.prebuilt import create_react_agent\n", "\n", - "app = create_react_agent(model, tools=tools)\n", + "langgraph_agent_executor = create_react_agent(model, tools=tools)\n", "\n", "\n", - "async def stream(app, inputs):\n", - " async for chunk in app.astream({\"messages\": [(\"human\", query)]}):\n", + "async def stream(langgraph_agent_executor, inputs):\n", + " async for chunk in langgraph_agent_executor.astream(\n", + " {\"messages\": [(\"human\", query)]}\n", + " ):\n", " print(chunk)\n", " print(\"------\")\n", "\n", "\n", "try:\n", - " task = asyncio.create_task(stream(app, {\"messages\": [(\"human\", query)]}))\n", + " task = asyncio.create_task(\n", + " stream(langgraph_agent_executor, {\"messages\": [(\"human\", query)]})\n", + " )\n", " await asyncio.wait_for(task, timeout=3)\n", "except TimeoutError:\n", " print(\"Task Cancelled.\")" @@ -1017,7 +1039,7 @@ "\n", "### In LangChain\n", "\n", - "With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could configure an [early_stopping_method](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.early_stopping_method) to either return a string saying \"Agent stopped due to iteration limit or time limit.\" (`\"force\"`) or prompt the LLM a final time to respond (`\"generate\"`)." + "With LangChain's [AgentExecutor](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.iter), you could configure an [early_stopping_method](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.early_stopping_method) to either return a string saying \"Agent stopped due to iteration limit or time limit.\" (`\"force\"`) or prompt the LLM a final time to respond (`\"generate\"`)." ] }, { @@ -1106,10 +1128,10 @@ "\n", "RECURSION_LIMIT = 2 * 1 + 1\n", "\n", - "app = create_react_agent(model, tools=tools)\n", + "langgraph_agent_executor = create_react_agent(model, tools=tools)\n", "\n", "try:\n", - " for chunk in app.stream(\n", + " for chunk in langgraph_agent_executor.stream(\n", " {\"messages\": [(\"human\", query)]},\n", " {\"recursion_limit\": RECURSION_LIMIT},\n", " stream_mode=\"values\",\n", @@ -1128,7 +1150,7 @@ "\n", "### In LangChain\n", "\n", - "With LangChain's [AgentExecutor](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), you could trim the intermediate steps of long-running agents using [trim_intermediate_steps](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.trim_intermediate_steps), which is either an integer (indicating the agent should keep the last N steps) or a custom function.\n", + "With LangChain's [AgentExecutor](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor), you could trim the intermediate steps of long-running agents using [trim_intermediate_steps](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.agent.AgentExecutor.html#langchain.agents.agent.AgentExecutor.trim_intermediate_steps), which is either an integer (indicating the agent should keep the last N steps) or a custom function.\n", "\n", "For instance, we could trim the value so the agent only sees the most recent intermediate step." ] @@ -1287,10 +1309,14 @@ " return [(\"system\", \"You are a helpful assistant\"), state[\"messages\"][0]]\n", "\n", "\n", - "app = create_react_agent(model, tools, state_modifier=_modify_state_messages)\n", + "langgraph_agent_executor = create_react_agent(\n", + " model, tools, state_modifier=_modify_state_messages\n", + ")\n", "\n", "try:\n", - " for step in app.stream({\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"):\n", + " for step in langgraph_agent_executor.stream(\n", + " {\"messages\": [(\"human\", query)]}, stream_mode=\"updates\"\n", + " ):\n", " pass\n", "except GraphRecursionError as e:\n", " print(\"Stopping agent prematurely due to triggering stop condition\")" @@ -1325,7 +1351,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.2" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/multi_vector.ipynb b/docs/docs/how_to/multi_vector.ipynb index 7e8a86744bf96..9c37cbd5aa0c9 100644 --- a/docs/docs/how_to/multi_vector.ipynb +++ b/docs/docs/how_to/multi_vector.ipynb @@ -9,17 +9,17 @@ "\n", "It can often be useful to store multiple vectors per document. There are multiple use cases where this is beneficial. For example, we can embed multiple chunks of a document and associate those embeddings with the parent document, allowing retriever hits on the chunks to return the larger document.\n", "\n", - "LangChain implements a base [MultiVectorRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.multi_vector.MultiVectorRetriever.html), which simplifies this process. Much of the complexity lies in how to create the multiple vectors per document. This notebook covers some of the common ways to create those vectors and use the `MultiVectorRetriever`.\n", + "LangChain implements a base [MultiVectorRetriever](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.multi_vector.MultiVectorRetriever.html), which simplifies this process. Much of the complexity lies in how to create the multiple vectors per document. This notebook covers some of the common ways to create those vectors and use the `MultiVectorRetriever`.\n", "\n", "The methods to create multiple vectors per document include:\n", "\n", - "- Smaller chunks: split a document into smaller chunks, and embed those (this is [ParentDocumentRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html)).\n", + "- Smaller chunks: split a document into smaller chunks, and embed those (this is [ParentDocumentRetriever](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html)).\n", "- Summary: create a summary for each document, embed that along with (or instead of) the document.\n", "- Hypothetical questions: create hypothetical questions that each document would be appropriate to answer, embed those along with (or instead of) the document.\n", "\n", "Note that this also enables another method of adding embeddings - manually. This is useful because you can explicitly add questions or queries that should lead to a document being recovered, giving you more control.\n", "\n", - "Below we walk through an example. First we instantiate some documents. We will index them in an (in-memory) [Chroma](/docs/integrations/providers/chroma/) vector store using [OpenAI](https://python.langchain.com/v0.2/docs/integrations/text_embedding/openai/) embeddings, but any LangChain vector store or embeddings model will suffice." + "Below we walk through an example. First we instantiate some documents. We will index them in an (in-memory) [Chroma](/docs/integrations/providers/chroma/) vector store using [OpenAI](https://python.langchain.com/docs/integrations/text_embedding/openai/) embeddings, but any LangChain vector store or embeddings model will suffice." ] }, { @@ -68,7 +68,7 @@ "source": [ "## Smaller chunks\n", "\n", - "Often times it can be useful to retrieve larger chunks of information, but embed smaller chunks. This allows for embeddings to capture the semantic meaning as closely as possible, but for as much context as possible to be passed downstream. Note that this is what the [ParentDocumentRetriever](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html) does. Here we show what is going on under the hood.\n", + "Often times it can be useful to retrieve larger chunks of information, but embed smaller chunks. This allows for embeddings to capture the semantic meaning as closely as possible, but for as much context as possible to be passed downstream. Note that this is what the [ParentDocumentRetriever](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.parent_document_retriever.ParentDocumentRetriever.html) does. Here we show what is going on under the hood.\n", "\n", "We will make a distinction between the vector store, which indexes embeddings of the (sub) documents, and the document store, which houses the \"parent\" documents and associates them with an identifier." ] @@ -103,7 +103,7 @@ "id": "d4feded4-856a-4282-91c3-53aabc62e6ff", "metadata": {}, "source": [ - "We next generate the \"sub\" documents by splitting the original documents. Note that we store the document identifier in the `metadata` of the corresponding [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) object." + "We next generate the \"sub\" documents by splitting the original documents. Note that we store the document identifier in the `metadata` of the corresponding [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) object." ] }, { @@ -207,7 +207,7 @@ "id": "cdef8339-f9fa-4b3b-955f-ad9dbdf2734f", "metadata": {}, "source": [ - "The default search type the retriever performs on the vector database is a similarity search. LangChain vector stores also support searching via [Max Marginal Relevance](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.max_marginal_relevance_search). This can be controlled via the `search_type` parameter of the retriever:" + "The default search type the retriever performs on the vector database is a similarity search. LangChain vector stores also support searching via [Max Marginal Relevance](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.max_marginal_relevance_search). This can be controlled via the `search_type` parameter of the retriever:" ] }, { @@ -244,13 +244,11 @@ "\n", "A summary may be able to distill more accurately what a chunk is about, leading to better retrieval. Here we show how to create summaries, and then embed those.\n", "\n", - "We construct a simple [chain](/docs/how_to/sequence) that will receive an input [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) object and generate a summary using a LLM.\n", + "We construct a simple [chain](/docs/how_to/sequence) that will receive an input [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) object and generate a summary using a LLM.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -294,7 +292,7 @@ "id": "3faa9fde-1b09-4849-a815-8b2e89c30a02", "metadata": {}, "source": [ - "Note that we can [batch](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) the chain accross documents:" + "Note that we can [batch](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable) the chain accross documents:" ] }, { @@ -440,7 +438,7 @@ "source": [ "from typing import List\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class HypotheticalQuestions(BaseModel):\n", diff --git a/docs/docs/how_to/output_parser_custom.ipynb b/docs/docs/how_to/output_parser_custom.ipynb index d5f6af6bb0d65..26180b3fb6d94 100644 --- a/docs/docs/how_to/output_parser_custom.ipynb +++ b/docs/docs/how_to/output_parser_custom.ipynb @@ -71,7 +71,7 @@ "id": "eed8baf2-f4c2-44c1-b47d-e9f560af6202", "metadata": {}, "source": [ - ":::{.callout-tip}\n", + ":::tip\n", "\n", "LCEL automatically upgrades the function `parse` to `RunnableLambda(parse)` when composed using a `|` syntax.\n", "\n", @@ -140,7 +140,7 @@ "id": "62192808-c7e1-4b3a-85f4-b7901de7c0b8", "metadata": {}, "source": [ - ":::{.callout-important}\n", + ":::important\n", "\n", "Please wrap the streaming parser in `RunnableGenerator` as we may stop automatically upgrading it with the `|` syntax.\n", ":::" @@ -219,7 +219,7 @@ "\n", "When the output from the chat model or LLM is malformed, the can throw an `OutputParserException` to indicate that parsing fails because of bad input. Using this exception allows code that utilizes the parser to handle the exceptions in a consistent manner.\n", "\n", - ":::{.callout-tip} Parsers are Runnables! 🏃\n", + ":::tip Parsers are Runnables! 🏃\n", "\n", "Because `BaseOutputParser` implements the `Runnable` interface, any custom parser you will create this way will become valid LangChain Runnables and will benefit from automatic async support, batch interface, logging support etc.\n", ":::\n" @@ -458,7 +458,7 @@ "id": "18f83192-37e8-43f5-ab29-9568b1279f1b", "metadata": {}, "source": [ - ":::{.callout-note}\n", + ":::note\n", "The parser will work with either the output from an LLM (a string) or the output from a chat model (an `AIMessage`)!\n", ":::" ] diff --git a/docs/docs/how_to/output_parser_fixing.ipynb b/docs/docs/how_to/output_parser_fixing.ipynb index c4875ee91da43..3ba61eaa4f6ab 100644 --- a/docs/docs/how_to/output_parser_fixing.ipynb +++ b/docs/docs/how_to/output_parser_fixing.ipynb @@ -24,8 +24,8 @@ "from typing import List\n", "\n", "from langchain_core.output_parsers import PydanticOutputParser\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", - "from langchain_openai import ChatOpenAI" + "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel, Field" ] }, { @@ -131,7 +131,7 @@ "id": "84498e02", "metadata": {}, "source": [ - "Find out api documentation for [OutputFixingParser](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser)." + "Find out api documentation for [OutputFixingParser](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.fix.OutputFixingParser.html#langchain.output_parsers.fix.OutputFixingParser)." ] }, { diff --git a/docs/docs/how_to/output_parser_json.ipynb b/docs/docs/how_to/output_parser_json.ipynb index cbad65c07b454..479a48d11f474 100644 --- a/docs/docs/how_to/output_parser_json.ipynb +++ b/docs/docs/how_to/output_parser_json.ipynb @@ -20,7 +20,7 @@ "\n", "While some model providers support [built-in ways to return structured output](/docs/how_to/structured_output), not all do. We can use an output parser to help users to specify an arbitrary JSON schema via the prompt, query a model for outputs that conform to that schema, and finally parse that schema as JSON.\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed JSON.\n", ":::" ] @@ -30,7 +30,7 @@ "id": "ae909b7a", "metadata": {}, "source": [ - "The [`JsonOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html) is one built-in option for prompting for and then parsing JSON output. While it is similar in functionality to the [`PydanticOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html), it also supports streaming back partial JSON objects.\n", + "The [`JsonOutputParser`](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.json.JsonOutputParser.html) is one built-in option for prompting for and then parsing JSON output. While it is similar in functionality to the [`PydanticOutputParser`](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html), it also supports streaming back partial JSON objects.\n", "\n", "Here's an example of how it can be used alongside [Pydantic](https://docs.pydantic.dev/) to conveniently declare the expected schema:" ] @@ -47,7 +47,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -71,8 +72,8 @@ "source": [ "from langchain_core.output_parsers import JsonOutputParser\n", "from langchain_core.prompts import PromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel, Field\n", "\n", "model = ChatOpenAI(temperature=0)\n", "\n", diff --git a/docs/docs/how_to/output_parser_retry.ipynb b/docs/docs/how_to/output_parser_retry.ipynb index 5e6b5e471f34c..9f772c7aa7dc5 100644 --- a/docs/docs/how_to/output_parser_retry.ipynb +++ b/docs/docs/how_to/output_parser_retry.ipynb @@ -20,8 +20,8 @@ "from langchain.output_parsers import OutputFixingParser\n", "from langchain_core.output_parsers import PydanticOutputParser\n", "from langchain_core.prompts import PromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", - "from langchain_openai import ChatOpenAI, OpenAI" + "from langchain_openai import ChatOpenAI, OpenAI\n", + "from pydantic import BaseModel, Field" ] }, { @@ -244,7 +244,7 @@ "id": "e3a2513a", "metadata": {}, "source": [ - "Find out api documentation for [RetryOutputParser](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryOutputParser.html#langchain.output_parsers.retry.RetryOutputParser)." + "Find out api documentation for [RetryOutputParser](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.retry.RetryOutputParser.html#langchain.output_parsers.retry.RetryOutputParser)." ] }, { diff --git a/docs/docs/how_to/output_parser_structured.ipynb b/docs/docs/how_to/output_parser_structured.ipynb index edbf8cf21c7d1..aaff800f9549c 100644 --- a/docs/docs/how_to/output_parser_structured.ipynb +++ b/docs/docs/how_to/output_parser_structured.ipynb @@ -35,17 +35,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "id": "1594b2bf-2a6f-47bb-9a81-38930f8e606b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Joke(setup='Why did the chicken cross the road?', punchline='To get to the other side!')" + "Joke(setup='Why did the tomato turn red?', punchline='Because it saw the salad dressing!')" ] }, - "execution_count": 6, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -53,8 +53,8 @@ "source": [ "from langchain_core.output_parsers import PydanticOutputParser\n", "from langchain_core.prompts import PromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field, validator\n", "from langchain_openai import OpenAI\n", + "from pydantic import BaseModel, Field, model_validator\n", "\n", "model = OpenAI(model_name=\"gpt-3.5-turbo-instruct\", temperature=0.0)\n", "\n", @@ -65,11 +65,13 @@ " punchline: str = Field(description=\"answer to resolve the joke\")\n", "\n", " # You can add custom validation logic easily with Pydantic.\n", - " @validator(\"setup\")\n", - " def question_ends_with_question_mark(cls, field):\n", - " if field[-1] != \"?\":\n", + " @model_validator(mode=\"before\")\n", + " @classmethod\n", + " def question_ends_with_question_mark(cls, values: dict) -> dict:\n", + " setup = values[\"setup\"]\n", + " if setup[-1] != \"?\":\n", " raise ValueError(\"Badly formed question!\")\n", - " return field\n", + " return values\n", "\n", "\n", "# Set up a parser + inject instructions into the prompt template.\n", @@ -239,9 +241,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "poetry-venv-311", "language": "python", - "name": "python3" + "name": "poetry-venv-311" }, "language_info": { "codemirror_mode": { @@ -253,7 +255,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/output_parser_xml.ipynb b/docs/docs/how_to/output_parser_xml.ipynb index fd23ef3adab02..4acfc968304df 100644 --- a/docs/docs/how_to/output_parser_xml.ipynb +++ b/docs/docs/how_to/output_parser_xml.ipynb @@ -20,9 +20,9 @@ "\n", "LLMs from different providers often have different strengths depending on the specific data they are trianed on. This also means that some may be \"better\" and more reliable at generating output in formats other than JSON.\n", "\n", - "This guide shows you how to use the [`XMLOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) to prompt models for XML output, then and parse that output into a usable format.\n", + "This guide shows you how to use the [`XMLOutputParser`](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) to prompt models for XML output, then and parse that output into a usable format.\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed XML.\n", ":::\n", "\n", @@ -41,7 +41,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"ANTHROPIC_API_KEY\"] = getpass()" + "if \"ANTHROPIC_API_KEY\" not in os.environ:\n", + " os.environ[\"ANTHROPIC_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/how_to/output_parser_yaml.ipynb b/docs/docs/how_to/output_parser_yaml.ipynb index 1f34a8840e3a8..36a3e095c0267 100644 --- a/docs/docs/how_to/output_parser_yaml.ipynb +++ b/docs/docs/how_to/output_parser_yaml.ipynb @@ -22,7 +22,7 @@ "\n", "This output parser allows users to specify an arbitrary schema and query LLMs for outputs that conform to that schema, using YAML to format their response.\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "Keep in mind that large language models are leaky abstractions! You'll have to use an LLM with sufficient capacity to generate well-formed YAML.\n", ":::\n" ] @@ -39,7 +39,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -47,7 +48,7 @@ "id": "cc479f3a", "metadata": {}, "source": [ - "We use [Pydantic](https://docs.pydantic.dev) with the [`YamlOutputParser`](https://python.langchain.com/v0.2/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) to declare our data model and give the model more context as to what type of YAML it should generate:" + "We use [Pydantic](https://docs.pydantic.dev) with the [`YamlOutputParser`](https://python.langchain.com/api_reference/langchain/output_parsers/langchain.output_parsers.yaml.YamlOutputParser.html#langchain.output_parsers.yaml.YamlOutputParser) to declare our data model and give the model more context as to what type of YAML it should generate:" ] }, { @@ -70,8 +71,8 @@ "source": [ "from langchain.output_parsers import YamlOutputParser\n", "from langchain_core.prompts import PromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "# Define your desired data structure.\n", diff --git a/docs/docs/how_to/parallel.ipynb b/docs/docs/how_to/parallel.ipynb index 3590c0a671c9d..8d58b3b1ceb82 100644 --- a/docs/docs/how_to/parallel.ipynb +++ b/docs/docs/how_to/parallel.ipynb @@ -26,7 +26,7 @@ "\n", ":::\n", "\n", - "The [`RunnableParallel`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html) primitive is essentially a dict whose values are runnables (or things that can be coerced to runnables, like functions). It runs all of its values in parallel, and each value is called with the overall input of the `RunnableParallel`. The final return value is a dict with the results of each value under its appropriate key.\n", + "The [`RunnableParallel`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html) primitive is essentially a dict whose values are runnables (or things that can be coerced to runnables, like functions). It runs all of its values in parallel, and each value is called with the overall input of the `RunnableParallel`. The final return value is a dict with the results of each value under its appropriate key.\n", "\n", "## Formatting with `RunnableParallels`\n", "\n", @@ -60,7 +60,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -117,7 +118,7 @@ "id": "392cd4c4-e7ed-4ab8-934d-f7a4eca55ee1", "metadata": {}, "source": [ - "::: {.callout-tip}\n", + ":::tip\n", "Note that when composing a RunnableParallel with another Runnable we don't even need to wrap our dictionary in the RunnableParallel class — the type conversion is handled for us. In the context of a chain, these are equivalent:\n", ":::\n", "\n", diff --git a/docs/docs/how_to/passthrough.ipynb b/docs/docs/how_to/passthrough.ipynb index 496cb6aae4d6f..efe185a779380 100644 --- a/docs/docs/how_to/passthrough.ipynb +++ b/docs/docs/how_to/passthrough.ipynb @@ -29,7 +29,7 @@ ":::\n", "\n", "\n", - "When composing chains with several steps, sometimes you will want to pass data from previous steps unchanged for use as input to a later step. The [`RunnablePassthrough`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html) class allows you to do just this, and is typically is used in conjuction with a [RunnableParallel](/docs/how_to/parallel/) to pass data through to a later step in your constructed chains.\n", + "When composing chains with several steps, sometimes you will want to pass data from previous steps unchanged for use as input to a later step. The [`RunnablePassthrough`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html) class allows you to do just this, and is typically is used in conjuction with a [RunnableParallel](/docs/how_to/parallel/) to pass data through to a later step in your constructed chains.\n", "\n", "See the example below:" ] @@ -46,7 +46,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/how_to/prompts_composition.ipynb b/docs/docs/how_to/prompts_composition.ipynb index ab64864204280..899ea104524a1 100644 --- a/docs/docs/how_to/prompts_composition.ipynb +++ b/docs/docs/how_to/prompts_composition.ipynb @@ -102,7 +102,7 @@ "source": [ "A chat prompt is made up a of a list of messages. Similarly to the above example, we can concatenate chat prompt templates. Each new element is a new message in the final prompt.\n", "\n", - "First, let's initialize the a [`ChatPromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html) with a [`SystemMessage`](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.system.SystemMessage.html)." + "First, let's initialize the a [`ChatPromptTemplate`](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html) with a [`SystemMessage`](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.system.SystemMessage.html)." ] }, { @@ -123,7 +123,7 @@ "metadata": {}, "source": [ "You can then easily create a pipeline combining it with other messages *or* message templates.\n", - "Use a `Message` when there is no variables to be formatted, use a `MessageTemplate` when there are variables to be formatted. You can also use just a string (note: this will automatically get inferred as a [`HumanMessagePromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html).)" + "Use a `Message` when there is no variables to be formatted, use a `MessageTemplate` when there are variables to be formatted. You can also use just a string (note: this will automatically get inferred as a [`HumanMessagePromptTemplate`](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.HumanMessagePromptTemplate.html).)" ] }, { @@ -183,7 +183,7 @@ "id": "0a5892f9-e4d8-4b7c-b6a5-4651539b9734", "metadata": {}, "source": [ - "LangChain includes a class called [`PipelinePromptTemplate`](https://python.langchain.com/v0.2/api_reference/core/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html), which can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts:\n", + "LangChain includes a class called [`PipelinePromptTemplate`](https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.pipeline.PipelinePromptTemplate.html), which can be useful when you want to reuse parts of prompts. A PipelinePrompt consists of two main parts:\n", "\n", "- Final prompt: The final prompt that is returned\n", "- Pipeline prompts: A list of tuples, consisting of a string name and a prompt template. Each prompt template will be formatted and then passed to future prompt templates as a variable with the same name." diff --git a/docs/docs/how_to/pydantic_compatibility.md b/docs/docs/how_to/pydantic_compatibility.md index 3e49395160237..5cc42baa2de16 100644 --- a/docs/docs/how_to/pydantic_compatibility.md +++ b/docs/docs/how_to/pydantic_compatibility.md @@ -1,178 +1,9 @@ # How to use LangChain with different Pydantic versions -- Pydantic v2 was released in June, 2023 (https://docs.pydantic.dev/2.0/blog/pydantic-v2-final/). -- v2 contains has a number of breaking changes (https://docs.pydantic.dev/2.0/migration/). -- Pydantic 1 End of Life was in June 2024. LangChain will be dropping support for Pydantic 1 in the near future, -and likely migrating internally to Pydantic 2. The timeline is tentatively September. This change will be accompanied by a minor version bump in the main langchain packages to version 0.3.x. +As of the `0.3` release, LangChain uses Pydantic 2 internally. -As of `langchain>=0.0.267`, LangChain allows users to install either Pydantic V1 or V2. +Users should install Pydantic 2 and are advised to **avoid** using the `pydantic.v1` namespace of Pydantic 2 with +LangChain APIs. -Internally, LangChain continues to use the [Pydantic V1](https://docs.pydantic.dev/latest/migration/#continue-using-pydantic-v1-features) via -the v1 namespace of Pydantic 2. - -Because Pydantic does not support mixing .v1 and .v2 objects, users should be aware of a number of issues -when using LangChain with Pydantic. - -:::caution -While LangChain supports Pydantic V2 objects in some APIs (listed below), it's suggested that users keep using Pydantic V1 objects until LangChain 0.3 is released. -::: - - -## 1. Passing Pydantic objects to LangChain APIs - -Most LangChain APIs for *tool usage* (see list below) have been updated to accept either Pydantic v1 or v2 objects. - -* Pydantic v1 objects correspond to subclasses of `pydantic.BaseModel` if `pydantic 1` is installed or subclasses of `pydantic.v1.BaseModel` if `pydantic 2` is installed. -* Pydantic v2 objects correspond to subclasses of `pydantic.BaseModel` if `pydantic 2` is installed. - - -| API | Pydantic 1 | Pydantic 2 | -|----------------------------------------|------------|----------------------------------------------------------------| -| `BaseChatModel.bind_tools` | Yes | langchain-core>=0.2.23, appropriate version of partner package | -| `BaseChatModel.with_structured_output` | Yes | langchain-core>=0.2.23, appropriate version of partner package | -| `Tool.from_function` | Yes | langchain-core>=0.2.23 | -| `StructuredTool.from_function` | Yes | langchain-core>=0.2.23 | - - -Partner packages that accept pydantic v2 objects via `bind_tools` or `with_structured_output` APIs: - -| Package Name | pydantic v1 | pydantic v2 | -|---------------------|-------------|-------------| -| langchain-mistralai | Yes | >=0.1.11 | -| langchain-anthropic | Yes | >=0.1.21 | -| langchain-robocorp | Yes | >=0.0.10 | -| langchain-openai | Yes | >=0.1.19 | -| langchain-fireworks | Yes | >=0.1.5 | -| langchain-aws | Yes | >=0.1.15 | - -Additional partner packages will be updated to accept Pydantic v2 objects in the future. - -If you are still seeing issues with these APIs or other APIs that accept Pydantic objects, please open an issue, and we'll -address it. - -Example: - -Prior to `langchain-core<0.2.23`, use Pydantic v1 objects when passing to LangChain APIs. - - -```python -from langchain_openai import ChatOpenAI -from pydantic.v1 import BaseModel # <-- Note v1 namespace - -class Person(BaseModel): - """Personal information""" - name: str - -model = ChatOpenAI() -model = model.with_structured_output(Person) - -model.invoke('Bob is a person.') -``` - -After `langchain-core>=0.2.23`, use either Pydantic v1 or v2 objects when passing to LangChain APIs. - -```python -from langchain_openai import ChatOpenAI -from pydantic import BaseModel - -class Person(BaseModel): - """Personal information""" - name: str - - -model = ChatOpenAI() -model = model.with_structured_output(Person) - -model.invoke('Bob is a person.') -``` - -## 2. Sub-classing LangChain models - -Because LangChain internally uses Pydantic v1, if you are sub-classing LangChain models, you should use Pydantic v1 -primitives. - - -**Example 1: Extending via inheritance** - -**YES** - -```python -from pydantic.v1 import validator -from langchain_core.tools import BaseTool - -class CustomTool(BaseTool): # BaseTool is v1 code - x: int = Field(default=1) - - def _run(*args, **kwargs): - return "hello" - - @validator('x') # v1 code - @classmethod - def validate_x(cls, x: int) -> int: - return 1 - - -CustomTool( - name='custom_tool', - description="hello", - x=1, -) -``` - -Mixing Pydantic v2 primitives with Pydantic v1 primitives can raise cryptic errors - -**NO** - -```python -from pydantic import Field, field_validator # pydantic v2 -from langchain_core.tools import BaseTool - -class CustomTool(BaseTool): # BaseTool is v1 code - x: int = Field(default=1) - - def _run(*args, **kwargs): - return "hello" - - @field_validator('x') # v2 code - @classmethod - def validate_x(cls, x: int) -> int: - return 1 - - -CustomTool( - name='custom_tool', - description="hello", - x=1, -) -``` - - -## 3. Disable run-time validation for LangChain objects used inside Pydantic v2 models - -e.g., - -```python -from typing import Annotated - -from langchain_openai import ChatOpenAI # <-- ChatOpenAI uses pydantic v1 -from pydantic import BaseModel, SkipValidation - - -class Foo(BaseModel): # <-- BaseModel is from Pydantic v2 - model: Annotated[ChatOpenAI, SkipValidation()] - -Foo(model=ChatOpenAI(api_key="hello")) -``` - -## 4: LangServe cannot generate OpenAPI docs if running Pydantic 2 - -If you are using Pydantic 2, you will not be able to generate OpenAPI docs using LangServe. - -If you need OpenAPI docs, your options are to either install Pydantic 1: - -`pip install pydantic==1.10.17` - -or else to use the `APIHandler` object in LangChain to manually create the -routes for your API. - -See: https://python.langchain.com/v0.2/docs/langserve/#pydantic +If you're working with prior versions of LangChain, please see the following guide +on [Pydantic compatibility](https://python.langchain.com/v0.2/docs/how_to/pydantic_compatibility). \ No newline at end of file diff --git a/docs/docs/how_to/qa_chat_history_how_to.ipynb b/docs/docs/how_to/qa_chat_history_how_to.ipynb index 3da169772d580..743f60c6349d6 100644 --- a/docs/docs/how_to/qa_chat_history_how_to.ipynb +++ b/docs/docs/how_to/qa_chat_history_how_to.ipynb @@ -7,6 +7,18 @@ "source": [ "# How to add chat history\n", "\n", + ":::note\n", + "\n", + "This guide previously used the [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) abstraction. You can access this version of the documentation in the [v0.2 docs](https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/).\n", + "\n", + "As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into new LangChain applications.\n", + "\n", + "If your code is already relying on `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do **not** need to make any changes. We do not plan on deprecating this functionality in the near future as it works for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected.\n", + "\n", + "Please see [How to migrate to LangGraph Memory](/docs/versions/migrating_memory/) for more details.\n", + ":::\n", + "\n", + "\n", "In many Q&A applications we want to allow the user to have a back-and-forth conversation, meaning the application needs some sort of \"memory\" of past questions and answers, and some logic for incorporating those into its current thinking.\n", "\n", "In this guide we focus on **adding logic for incorporating historical messages.**\n", @@ -29,7 +41,7 @@ "\n", "### Dependencies\n", "\n", - "We'll use OpenAI embeddings and a Chroma vector store in this walkthrough, but everything shown here works with any [Embeddings](/docs/concepts#embedding-models), and [VectorStore](/docs/concepts#vectorstores) or [Retriever](/docs/concepts#retrievers). \n", + "We'll use OpenAI embeddings and an InMemory vector store in this walkthrough, but everything shown here works with any [Embeddings](/docs/concepts#embedding-models), and [VectorStore](/docs/concepts#vectorstores) or [Retriever](/docs/concepts#retrievers). \n", "\n", "We'll use the following packages:" ] @@ -42,7 +54,7 @@ "outputs": [], "source": [ "%%capture --no-stderr\n", - "%pip install --upgrade --quiet langchain langchain-community langchain-chroma beautifulsoup4" + "%pip install --upgrade --quiet langchain langchain-community beautifulsoup4" ] }, { @@ -56,7 +68,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "143787ca-d8e6-4dc9-8281-4374f4d71720", + "id": "3b156b76-22a1-43af-a509-137acdccc5d0", "metadata": {}, "outputs": [], "source": [ @@ -64,11 +76,7 @@ "import os\n", "\n", "if not os.environ.get(\"OPENAI_API_KEY\"):\n", - " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", - "\n", - "# import dotenv\n", - "\n", - "# dotenv.load_dotenv()" + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()" ] }, { @@ -102,7 +110,7 @@ "source": [ "## Chains {#chains}\n", "\n", - "In a conversational RAG application, queries issued to the retriever should be informed by the context of the conversation. LangChain provides a [create_history_aware_retriever](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) constructor to simplify this. It constructs a chain that accepts keys `input` and `chat_history` as input, and has the same output schema as a retriever. `create_history_aware_retriever` requires as inputs: \n", + "In a conversational RAG application, queries issued to the retriever should be informed by the context of the conversation. LangChain provides a [create_history_aware_retriever](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) constructor to simplify this. It constructs a chain that accepts keys `input` and `chat_history` as input, and has the same output schema as a retriever. `create_history_aware_retriever` requires as inputs: \n", "\n", "1. LLM;\n", "2. Retriever;\n", @@ -120,11 +128,9 @@ "id": "646840fb-5212-48ea-8bc7-ec7be5ec727e", "metadata": {}, "source": [ - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -155,7 +161,7 @@ "id": "15f8ad59-19de-42e3-85a8-3ba95ee0bd43", "metadata": {}, "source": [ - "For the retriever, we will use [WebBaseLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load the content of a web page. Here we instantiate a `Chroma` vectorstore and then use its [.as_retriever](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method to build a retriever that can be incorporated into [LCEL](/docs/concepts/#langchain-expression-language) chains." + "For the retriever, we will use [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load the content of a web page. Here we instantiate a `InMemoryVectorStore` vectorstore and then use its [.as_retriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method to build a retriever that can be incorporated into [LCEL](/docs/concepts/#langchain-expression-language) chains." ] }, { @@ -163,16 +169,24 @@ "execution_count": 5, "id": "820244ae-74b4-4593-b392-822979dd91b8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "USER_AGENT environment variable not set, consider setting it to identify your requests.\n" + ] + } + ], "source": [ "import bs4\n", "from langchain.chains import create_retrieval_chain\n", "from langchain.chains.combine_documents import create_stuff_documents_chain\n", - "from langchain_chroma import Chroma\n", "from langchain_community.document_loaders import WebBaseLoader\n", "from langchain_core.output_parsers import StrOutputParser\n", "from langchain_core.prompts import ChatPromptTemplate\n", "from langchain_core.runnables import RunnablePassthrough\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import OpenAIEmbeddings\n", "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", "\n", @@ -188,7 +202,8 @@ "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "splits = text_splitter.split_documents(docs)\n", - "vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n", + "vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())\n", + "vectorstore.add_documents(splits)\n", "retriever = vectorstore.as_retriever()" ] }, @@ -260,9 +275,9 @@ "\n", "Now we can build our full QA chain.\n", "\n", - "As in the [RAG tutorial](/docs/tutorials/rag), we will use [create_stuff_documents_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) to generate a `question_answer_chain`, with input keys `context`, `chat_history`, and `input`-- it accepts the retrieved context alongside the conversation history and query to generate an answer.\n", + "As in the [RAG tutorial](/docs/tutorials/rag), we will use [create_stuff_documents_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) to generate a `question_answer_chain`, with input keys `context`, `chat_history`, and `input`-- it accepts the retrieved context alongside the conversation history and query to generate an answer.\n", "\n", - "We build our final `rag_chain` with [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html). This chain applies the `history_aware_retriever` and `question_answer_chain` in sequence, retaining intermediate outputs such as the retrieved context for convenience. It has input keys `input` and `chat_history`, and includes `input`, `chat_history`, `context`, and `answer` in its output." + "We build our final `rag_chain` with [create_retrieval_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html). This chain applies the `history_aware_retriever` and `question_answer_chain` in sequence, retaining intermediate outputs such as the retrieved context for convenience. It has input keys `input` and `chat_history`, and includes `input`, `chat_history`, `context`, and `answer` in its output." ] }, { @@ -288,8 +303,8 @@ " (\"human\", \"{input}\"),\n", " ]\n", ")\n", - "question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)\n", "\n", + "question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)\n", "rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)" ] }, @@ -298,20 +313,17 @@ "id": "53a662c2-f38b-45f9-95c4-66de15637614", "metadata": {}, "source": [ - "### Adding chat history\n", + "### Stateful Management of chat history\n", "\n", - "To manage the chat history, we will need:\n", + "We have added application logic for incorporating chat history, but we are still manually plumbing it through our application. In production, the Q&A application we usually persist the chat history into a database, and be able to read and update it appropriately.\n", "\n", - "1. An object for storing the chat history;\n", - "2. An object that wraps our chain and manages updates to the chat history.\n", + "[LangGraph](https://langchain-ai.github.io/langgraph/) implements a built-in [persistence layer](https://langchain-ai.github.io/langgraph/concepts/persistence/), making it ideal for chat applications that support multiple conversational turns.\n", "\n", - "For these we will use [BaseChatMessageHistory](https://python.langchain.com/v0.2/api_reference/core/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html) and [RunnableWithMessageHistory](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html). The latter is a wrapper for an LCEL chain and a `BaseChatMessageHistory` that handles injecting chat history into inputs and updating it after each invocation.\n", + "Wrapping our chat model in a minimal LangGraph application allows us to automatically persist the message history, simplifying the development of multi-turn applications.\n", "\n", - "For a detailed walkthrough of how to use these classes together to create a stateful conversational chain, head to the [How to add message history (memory)](/docs/how_to/message_history/) LCEL how-to guide.\n", + "LangGraph comes with a simple [in-memory checkpointer](https://langchain-ai.github.io/langgraph/reference/checkpoints/#memorysaver), which we use below. See its documentation for more detail, including how to use different persistence backends (e.g., SQLite or Postgres).\n", "\n", - "Below, we implement a simple example of the second option, in which chat histories are stored in a simple dict. LangChain manages memory integrations with [Redis](/docs/integrations/memory/redis_chat_message_history/) and other technologies to provide for more robust persistence.\n", - "\n", - "Instances of `RunnableWithMessageHistory` manage the chat history for you. They accept a config with a key (`\"session_id\"` by default) that specifies what conversation history to fetch and prepend to the input, and append the output to the same conversation history. Below is an example:" + "For a detailed walkthrough of how to manage message history, head to the How to add message history (memory) guide." ] }, { @@ -321,26 +333,48 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_community.chat_message_histories import ChatMessageHistory\n", - "from langchain_core.chat_history import BaseChatMessageHistory\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", - "\n", - "store = {}\n", - "\n", - "\n", - "def get_session_history(session_id: str) -> BaseChatMessageHistory:\n", - " if session_id not in store:\n", - " store[session_id] = ChatMessageHistory()\n", - " return store[session_id]\n", - "\n", + "from typing import Sequence\n", "\n", - "conversational_rag_chain = RunnableWithMessageHistory(\n", - " rag_chain,\n", - " get_session_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - " output_messages_key=\"answer\",\n", - ")" + "from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, StateGraph\n", + "from langgraph.graph.message import add_messages\n", + "from typing_extensions import Annotated, TypedDict\n", + "\n", + "\n", + "# We define a dict representing the state of the application.\n", + "# This state has the same input and output keys as `rag_chain`.\n", + "class State(TypedDict):\n", + " input: str\n", + " chat_history: Annotated[Sequence[BaseMessage], add_messages]\n", + " context: str\n", + " answer: str\n", + "\n", + "\n", + "# We then define a simple node that runs the `rag_chain`.\n", + "# The `return` values of the node update the graph state, so here we just\n", + "# update the chat history with the input message and response.\n", + "def call_model(state: State):\n", + " response = rag_chain.invoke(state)\n", + " return {\n", + " \"chat_history\": [\n", + " HumanMessage(state[\"input\"]),\n", + " AIMessage(response[\"answer\"]),\n", + " ],\n", + " \"context\": response[\"context\"],\n", + " \"answer\": response[\"answer\"],\n", + " }\n", + "\n", + "\n", + "# Our graph consists only of one node:\n", + "workflow = StateGraph(state_schema=State)\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "# Finally, we compile the graph with a checkpointer object.\n", + "# This persists the state, in this case in memory.\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { @@ -350,23 +384,21 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition involves breaking down a complex task into smaller and simpler steps to make it more manageable and easier to accomplish. This process can be done using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Task decomposition can be facilitated by providing simple prompts to a language model, task-specific instructions, or human inputs.'" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This process helps agents or models tackle difficult tasks by dividing them into more manageable subtasks. Task decomposition can be achieved through methods like Chain of Thought (CoT) or Tree of Thoughts, which guide the agent in thinking step by step or exploring multiple reasoning possibilities at each step.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", + "config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n", + "\n", + "result = app.invoke(\n", " {\"input\": \"What is Task Decomposition?\"},\n", - " config={\n", - " \"configurable\": {\"session_id\": \"abc123\"}\n", - " }, # constructs a key \"abc123\" in `store`.\n", - ")[\"answer\"]" + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { @@ -376,21 +408,19 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition can be achieved through various methods, including using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Common ways of task decomposition include providing simple prompts to a language model, task-specific instructions, or human inputs to break down complex tasks into smaller and more manageable steps. Additionally, task decomposition can involve utilizing resources like internet access for information gathering, long-term memory management, and GPT-3.5 powered agents for delegation of simple tasks.'" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "One way of task decomposition is by using Large Language Models (LLMs) with simple prompting, such as providing instructions like \"Steps for XYZ\" or asking about subgoals for achieving a specific task. This method leverages the power of LLMs to break down tasks into smaller components for easier handling. Additionally, task decomposition can also be done using task-specific instructions tailored to the nature of the task, like requesting a story outline for writing a novel.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", - " {\"input\": \"What are common ways of doing it?\"},\n", - " config={\"configurable\": {\"session_id\": \"abc123\"}},\n", - ")[\"answer\"]" + "result = app.invoke(\n", + " {\"input\": \"What is one way of doing it?\"},\n", + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { @@ -398,7 +428,7 @@ "id": "3ab59258-84bc-4904-880e-2ebfebbca563", "metadata": {}, "source": [ - "The conversation history can be inspected in the `store` dict:" + "The conversation history can be inspected via the state of the application:" ] }, { @@ -411,27 +441,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "User: What is Task Decomposition?\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", "\n", - "AI: Task decomposition involves breaking down a complex task into smaller and simpler steps to make it more manageable and easier to accomplish. This process can be done using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Task decomposition can be facilitated by providing simple prompts to a language model, task-specific instructions, or human inputs.\n", + "What is Task Decomposition?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", "\n", - "User: What are common ways of doing it?\n", + "Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This process helps agents or models tackle difficult tasks by dividing them into more manageable subtasks. Task decomposition can be achieved through methods like Chain of Thought (CoT) or Tree of Thoughts, which guide the agent in thinking step by step or exploring multiple reasoning possibilities at each step.\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", "\n", - "AI: Task decomposition can be achieved through various methods, including using techniques like Chain of Thought (CoT) or Tree of Thoughts to guide the model in breaking down tasks effectively. Common ways of task decomposition include providing simple prompts to a language model, task-specific instructions, or human inputs to break down complex tasks into smaller and more manageable steps. Additionally, task decomposition can involve utilizing resources like internet access for information gathering, long-term memory management, and GPT-3.5 powered agents for delegation of simple tasks.\n", - "\n" + "What is one way of doing it?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "One way of task decomposition is by using Large Language Models (LLMs) with simple prompting, such as providing instructions like \"Steps for XYZ\" or asking about subgoals for achieving a specific task. This method leverages the power of LLMs to break down tasks into smaller components for easier handling. Additionally, task decomposition can also be done using task-specific instructions tailored to the nature of the task, like requesting a story outline for writing a novel.\n" ] } ], "source": [ - "from langchain_core.messages import AIMessage\n", - "\n", - "for message in store[\"abc123\"].messages:\n", - " if isinstance(message, AIMessage):\n", - " prefix = \"AI\"\n", - " else:\n", - " prefix = \"User\"\n", - "\n", - " print(f\"{prefix}: {message.content}\\n\")" + "chat_history = app.get_state(config).values[\"chat_history\"]\n", + "for message in chat_history:\n", + " message.pretty_print()" ] }, { @@ -459,17 +487,22 @@ "metadata": {}, "outputs": [], "source": [ + "from typing import Sequence\n", + "\n", "import bs4\n", "from langchain.chains import create_history_aware_retriever, create_retrieval_chain\n", "from langchain.chains.combine_documents import create_stuff_documents_chain\n", - "from langchain_chroma import Chroma\n", - "from langchain_community.chat_message_histories import ChatMessageHistory\n", "from langchain_community.document_loaders import WebBaseLoader\n", - "from langchain_core.chat_history import BaseChatMessageHistory\n", + "from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n", "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", "from langchain_core.runnables.history import RunnableWithMessageHistory\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n", "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, StateGraph\n", + "from langgraph.graph.message import add_messages\n", + "from typing_extensions import Annotated, TypedDict\n", "\n", "llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n", "\n", @@ -487,7 +520,9 @@ "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "splits = text_splitter.split_documents(docs)\n", - "vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n", + "\n", + "vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())\n", + "vectorstore.add_documents(documents=splits)\n", "retriever = vectorstore.as_retriever()\n", "\n", "\n", @@ -534,22 +569,41 @@ "\n", "\n", "### Statefully manage chat history ###\n", - "store = {}\n", "\n", "\n", - "def get_session_history(session_id: str) -> BaseChatMessageHistory:\n", - " if session_id not in store:\n", - " store[session_id] = ChatMessageHistory()\n", - " return store[session_id]\n", - "\n", - "\n", - "conversational_rag_chain = RunnableWithMessageHistory(\n", - " rag_chain,\n", - " get_session_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - " output_messages_key=\"answer\",\n", - ")" + "# We define a dict representing the state of the application.\n", + "# This state has the same input and output keys as `rag_chain`.\n", + "class State(TypedDict):\n", + " input: str\n", + " chat_history: Annotated[Sequence[BaseMessage], add_messages]\n", + " context: str\n", + " answer: str\n", + "\n", + "\n", + "# We then define a simple node that runs the `rag_chain`.\n", + "# The `return` values of the node update the graph state, so here we just\n", + "# update the chat history with the input message and response.\n", + "def call_model(state: State):\n", + " response = rag_chain.invoke(state)\n", + " return {\n", + " \"chat_history\": [\n", + " HumanMessage(state[\"input\"]),\n", + " AIMessage(response[\"answer\"]),\n", + " ],\n", + " \"context\": response[\"context\"],\n", + " \"answer\": response[\"answer\"],\n", + " }\n", + "\n", + "\n", + "# Our graph consists only of one node:\n", + "workflow = StateGraph(state_schema=State)\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "# Finally, we compile the graph with a checkpointer object.\n", + "# This persists the state, in this case in memory.\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { @@ -559,23 +613,21 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition involves breaking down a complex task into smaller and simpler steps to make it more manageable. Techniques like Chain of Thought (CoT) and Tree of Thoughts help in decomposing hard tasks into multiple manageable tasks by instructing models to think step by step and explore multiple reasoning possibilities at each step. Task decomposition can be achieved through various methods such as using prompting techniques, task-specific instructions, or human inputs.'" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This process helps agents or models handle difficult tasks by dividing them into more manageable subtasks. Different methods like Chain of Thought and Tree of Thoughts are used to decompose tasks into multiple steps, enhancing performance and aiding in the interpretation of the thinking process.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", + "config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n", + "\n", + "result = app.invoke(\n", " {\"input\": \"What is Task Decomposition?\"},\n", - " config={\n", - " \"configurable\": {\"session_id\": \"abc123\"}\n", - " }, # constructs a key \"abc123\" in `store`.\n", - ")[\"answer\"]" + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { @@ -585,21 +637,19 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition can be done in common ways such as using prompting techniques like Chain of Thought (CoT) or Tree of Thoughts, which instruct models to think step by step and explore multiple reasoning possibilities at each step. Another way is to provide task-specific instructions, such as asking to \"Write a story outline\" for writing a novel, to guide the decomposition process. Additionally, task decomposition can also involve human inputs to break down complex tasks into smaller and simpler steps.'" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "One way of task decomposition is by using Large Language Models (LLMs) with simple prompting, such as providing instructions like \"Steps for XYZ\" or asking about subgoals for achieving a specific task. This method leverages the power of LLMs to break down tasks into smaller components for easier handling and processing.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", - " {\"input\": \"What are common ways of doing it?\"},\n", - " config={\"configurable\": {\"session_id\": \"abc123\"}},\n", - ")[\"answer\"]" + "result = app.invoke(\n", + " {\"input\": \"What is one way of doing it?\"},\n", + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { @@ -672,22 +722,11 @@ "id": "52ae46d9-43f7-481b-96d5-df750be3ad65", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID 5cd28d13-88dd-4eac-a465-3770ac27eff6, but expected {'tool'} run.\")\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_TbhPPPN05GKi36HLeaN4QM90', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 68, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-2e60d910-879a-4a2a-b1e9-6a6c5c7d7ebc-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_TbhPPPN05GKi36HLeaN4QM90'}])]}}\n", - "----\n", - "{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_TbhPPPN05GKi36HLeaN4QM90')]}}\n", - "----\n", - "{'agent': {'messages': [AIMessage(content='Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This approach helps in transforming big tasks into multiple manageable tasks, making it easier for autonomous agents to handle and interpret the thinking process. One common method for task decomposition is the Chain of Thought (CoT) technique, where models are instructed to \"think step by step\" to decompose hard tasks. Another extension of CoT is the Tree of Thoughts, which explores multiple reasoning possibilities at each step by creating a tree structure of multiple thoughts per step. Task decomposition can be facilitated through various methods such as using simple prompts, task-specific instructions, or human inputs.', response_metadata={'token_usage': {'completion_tokens': 130, 'prompt_tokens': 636, 'total_tokens': 766}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-3ef17638-65df-4030-a7fe-795e6da91c69-0')]}}\n", + "{'agent': {'messages': [AIMessage(content='Task decomposition is a problem-solving strategy that involves breaking down a complex task or problem into smaller, more manageable subtasks. By decomposing a task into smaller components, it becomes easier to understand, analyze, and solve the overall problem. This approach allows individuals to focus on one specific aspect of the task at a time, leading to a more systematic and organized problem-solving process. Task decomposition is commonly used in various fields such as project management, software development, and engineering to simplify complex tasks and improve efficiency.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 102, 'prompt_tokens': 68, 'total_tokens': 170, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-a0925ffd-f500-4677-a108-c7015987e9ae-0', usage_metadata={'input_tokens': 68, 'output_tokens': 102, 'total_tokens': 170})]}}\n", "----\n" ] } @@ -748,7 +787,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 67, 'total_tokens': 78}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-1cd17562-18aa-4839-b41b-403b17a0fc20-0')]}}\n", + "{'agent': {'messages': [AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 67, 'total_tokens': 78, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d9011a17-9dbb-4348-9a58-ff89419a4bca-0', usage_metadata={'input_tokens': 67, 'output_tokens': 11, 'total_tokens': 78})]}}\n", "----\n" ] } @@ -777,22 +816,15 @@ "id": "e2c570ae-dd91-402c-8693-ae746de63b16", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID c54381c0-c5d9-495a-91a0-aca4ae755663, but expected {'tool'} run.\")\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_rg7zKTE5e0ICxVSslJ1u9LMg', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 91, 'total_tokens': 110}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-122bf097-7ff1-49aa-b430-e362b51354ad-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_rg7zKTE5e0ICxVSslJ1u9LMg'}])]}}\n", + "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_qVHvDTfYmWqcbgVhTwsH03aJ', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 91, 'total_tokens': 110, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-bf9df2a6-ad56-43af-8d57-16f850accfd1-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_qVHvDTfYmWqcbgVhTwsH03aJ', 'type': 'tool_call'}], usage_metadata={'input_tokens': 91, 'output_tokens': 19, 'total_tokens': 110})]}}\n", "----\n", - "{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_rg7zKTE5e0ICxVSslJ1u9LMg')]}}\n", + "{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\n(3) Task execution: Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user\\'s request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.\\n\\nFig. 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and parses the user requests into multiple tasks. There are four attributes associated with each task: task type, ID, dependencies, and arguments. They use few-shot examples to guide LLM to do task parsing and planning.\\nInstruction:', name='blog_post_retriever', id='742ab53d-6f34-4607-bde7-13f2d75e0055', tool_call_id='call_qVHvDTfYmWqcbgVhTwsH03aJ')]}}\n", "----\n", - "{'agent': {'messages': [AIMessage(content='Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This approach helps in managing and solving intricate problems by dividing them into more manageable components. By decomposing tasks, agents or models can better understand the steps involved and plan their actions accordingly. Techniques like Chain of Thought (CoT) and Tree of Thoughts are examples of methods that enhance model performance on complex tasks by breaking them down into smaller steps.', response_metadata={'token_usage': {'completion_tokens': 87, 'prompt_tokens': 659, 'total_tokens': 746}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-b9166386-83e5-4b82-9a4b-590e5fa76671-0')]}}\n", + "{'agent': {'messages': [AIMessage(content='Task decomposition is a technique used in autonomous agent systems to break down complex tasks into smaller and simpler steps. This approach helps the agent to manage and execute tasks more effectively by dividing them into manageable subtasks. One common method for task decomposition is the Chain of Thought (CoT) technique, which prompts the model to think step by step and decompose hard tasks into smaller steps. Another extension of CoT is the Tree of Thoughts, which explores multiple reasoning possibilities at each step by creating a tree structure of thought steps.\\n\\nTask decomposition can be achieved through various methods, such as using language models with simple prompting, task-specific instructions, or human inputs. By breaking down tasks into smaller components, autonomous agents can plan and execute tasks more efficiently.\\n\\nIf you would like more detailed information or examples related to task decomposition, feel free to ask!', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 168, 'prompt_tokens': 611, 'total_tokens': 779, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-0f51a1cf-ff0a-474a-93f5-acf54e0d8cd6-0', usage_metadata={'input_tokens': 611, 'output_tokens': 168, 'total_tokens': 779})]}}\n", "----\n" ] } @@ -827,24 +859,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_6kbxTU5CDWLmF9mrvR7bWSkI', 'function': {'arguments': '{\"query\":\"Common ways of task decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 21, 'prompt_tokens': 769, 'total_tokens': 790}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-2d2c8327-35cd-484a-b8fd-52436657c2d8-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Common ways of task decomposition'}, 'id': 'call_6kbxTU5CDWLmF9mrvR7bWSkI'}])]}}\n", - "----\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID 29553415-e0f4-41a9-8921-ba489e377f68, but expected {'tool'} run.\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_6kbxTU5CDWLmF9mrvR7bWSkI')]}}\n", + "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_n7vUrFacrvl5wUGmz5EGpmCS', 'function': {'arguments': '{\"query\":\"Common ways of task decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 21, 'prompt_tokens': 802, 'total_tokens': 823, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-4d949be3-00e5-49e5-af26-6a217efc8858-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Common ways of task decomposition'}, 'id': 'call_n7vUrFacrvl5wUGmz5EGpmCS', 'type': 'tool_call'}], usage_metadata={'input_tokens': 802, 'output_tokens': 21, 'total_tokens': 823})]}}\n", "----\n", - "{'agent': {'messages': [AIMessage(content='Common ways of task decomposition include:\\n1. Using LLM with simple prompting like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\"\\n2. Using task-specific instructions, for example, \"Write a story outline\" for writing a novel.\\n3. Involving human inputs in the task decomposition process.', response_metadata={'token_usage': {'completion_tokens': 67, 'prompt_tokens': 1339, 'total_tokens': 1406}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9ad14cde-ca75-4238-a868-f865e0fc50dd-0')]}}\n", + "{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nResources:\\n1. Internet access for searches and information gathering.\\n2. Long Term memory management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\\n2. Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect on past decisions and strategies to refine your approach.\\n4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.\\n\\n(3) Task execution: Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user\\'s request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.', name='blog_post_retriever', id='90fcbc1e-0736-47bc-9a96-347ad837e0e3', tool_call_id='call_n7vUrFacrvl5wUGmz5EGpmCS')]}}\n", + "----\n", + "{'agent': {'messages': [AIMessage(content='According to the blog post, common ways of task decomposition include:\\n\\n1. Using Language Models (LLM) with Simple Prompting: Language models can be utilized with simple prompts like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\" to break down tasks into smaller steps.\\n\\n2. Task-Specific Instructions: Providing task-specific instructions to guide the decomposition process. For example, using instructions like \"Write a story outline\" for writing a novel can help in breaking down the task effectively.\\n\\n3. Human Inputs: Involving human inputs in the task decomposition process. Human insights and expertise can contribute to breaking down complex tasks into manageable subtasks.\\n\\nThese methods of task decomposition help autonomous agents in planning and executing tasks more efficiently by breaking them down into smaller and simpler components.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 160, 'prompt_tokens': 1347, 'total_tokens': 1507, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-087ce1b5-f897-40d0-8ef4-eb1c6852a835-0', usage_metadata={'input_tokens': 1347, 'output_tokens': 160, 'total_tokens': 1507})]}}\n", "----\n" ] } @@ -879,18 +898,27 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 1, "id": "b1d2b4d4-e604-497d-873d-d345b808578e", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "USER_AGENT environment variable not set, consider setting it to identify your requests.\n" + ] + } + ], "source": [ "import bs4\n", "from langchain.tools.retriever import create_retriever_tool\n", - "from langchain_chroma import Chroma\n", "from langchain_community.document_loaders import WebBaseLoader\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n", "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.prebuilt import create_react_agent\n", "\n", "memory = MemorySaver()\n", "llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n", @@ -909,7 +937,8 @@ "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "splits = text_splitter.split_documents(docs)\n", - "vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n", + "vectorstore = InMemoryVectorStore(embedding=OpenAIEmbeddings())\n", + "vectorstore.add_documents(documents=splits)\n", "retriever = vectorstore.as_retriever()\n", "\n", "\n", @@ -961,7 +990,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.2" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/how_to/qa_citations.ipynb b/docs/docs/how_to/qa_citations.ipynb index f026910d8d052..2347b1bdb75f5 100644 --- a/docs/docs/how_to/qa_citations.ipynb +++ b/docs/docs/how_to/qa_citations.ipynb @@ -19,7 +19,7 @@ "\n", "We generally suggest using the first item of the list that works for your use-case. That is, if your model supports tool-calling, try methods 1 or 2; otherwise, or if those fail, advance down the list.\n", "\n", - "Let's first create a simple RAG chain. To start we'll just retrieve from Wikipedia using the [WikipediaRetriever](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html)." + "Let's first create a simple RAG chain. To start we'll just retrieve from Wikipedia using the [WikipediaRetriever](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html)." ] }, { @@ -67,11 +67,9 @@ "source": [ "Let's first select a LLM:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -253,7 +251,7 @@ "source": [ "## Function-calling\n", "\n", - "If your LLM of choice implements a [tool-calling](/docs/concepts#functiontool-calling) feature, you can use it to make the model specify which of the provided documents it's referencing when generating its answer. LangChain tool-calling models implement a `.with_structured_output` method which will force generation adhering to a desired schema (see for example [here](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI.with_structured_output)).\n", + "If your LLM of choice implements a [tool-calling](/docs/concepts#functiontool-calling) feature, you can use it to make the model specify which of the provided documents it's referencing when generating its answer. LangChain tool-calling models implement a `.with_structured_output` method which will force generation adhering to a desired schema (see for example [here](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI.with_structured_output)).\n", "\n", "### Cite documents\n", "\n", @@ -269,7 +267,7 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class CitedAnswer(BaseModel):\n", @@ -616,7 +614,7 @@ "\n", "1. We update the formatting function to wrap the retrieved context in XML tags;\n", "2. We do not use `.with_structured_output` (e.g., because it does not exist for a model);\n", - "3. We use [XMLOutputParser](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) in place of `StrOutputParser` to parse the answer into a dict." + "3. We use [XMLOutputParser](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.xml.XMLOutputParser.html) in place of `StrOutputParser` to parse the answer into a dict." ] }, { @@ -711,7 +709,7 @@ "source": [ "## Retrieval post-processing\n", "\n", - "Another approach is to post-process our retrieved documents to compress the content, so that the source content is already minimal enough that we don't need the model to cite specific sources or spans. For example, we could break up each document into a sentence or two, embed those and keep only the most relevant ones. LangChain has some built-in components for this. Here we'll use a [RecursiveCharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/text_splitter/langchain_text_splitters.RecursiveCharacterTextSplitter.html#langchain_text_splitters.RecursiveCharacterTextSplitter), which creates chunks of a sepacified size by splitting on separator substrings, and an [EmbeddingsFilter](https://python.langchain.com/v0.2/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter.html#langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter), which keeps only the texts with the most relevant embeddings.\n", + "Another approach is to post-process our retrieved documents to compress the content, so that the source content is already minimal enough that we don't need the model to cite specific sources or spans. For example, we could break up each document into a sentence or two, embed those and keep only the most relevant ones. LangChain has some built-in components for this. Here we'll use a [RecursiveCharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/text_splitter/langchain_text_splitters.RecursiveCharacterTextSplitter.html#langchain_text_splitters.RecursiveCharacterTextSplitter), which creates chunks of a sepacified size by splitting on separator substrings, and an [EmbeddingsFilter](https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter.html#langchain.retrievers.document_compressors.embeddings_filter.EmbeddingsFilter), which keeps only the texts with the most relevant embeddings.\n", "\n", "This approach effectively swaps our original retriever with an updated one that compresses the documents. To start, we build the retriever:" ] diff --git a/docs/docs/how_to/qa_per_user.ipynb b/docs/docs/how_to/qa_per_user.ipynb index bf949670701e5..65d4371b912be 100644 --- a/docs/docs/how_to/qa_per_user.ipynb +++ b/docs/docs/how_to/qa_per_user.ipynb @@ -124,11 +124,10 @@ "We can now create the chain that we will use to do question-answering over.\n", "\n", "Let's first select a LLM.\n", - "```{=mdx}\n", + "\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { diff --git a/docs/docs/how_to/qa_sources.ipynb b/docs/docs/how_to/qa_sources.ipynb index 1ec1c854692c1..756a428def02b 100644 --- a/docs/docs/how_to/qa_sources.ipynb +++ b/docs/docs/how_to/qa_sources.ipynb @@ -13,7 +13,7 @@ "\n", "We will cover two approaches:\n", "\n", - "1. Using the built-in [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html), which returns sources by default;\n", + "1. Using the built-in [create_retrieval_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html), which returns sources by default;\n", "2. Using a simple [LCEL](/docs/concepts#langchain-expression-language-lcel) implementation, to show the operating principle.\n", "\n", "We will also show how to structure sources into the model response, such that a model can report what specific sources it used in generating its answer." @@ -100,11 +100,9 @@ "\n", "Let's first select a LLM:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -312,7 +310,7 @@ "id": "b437da5d-ca09-4d15-9be2-c35e5a1ace77", "metadata": {}, "source": [ - ":::{.callout-tip}\n", + ":::tip\n", "\n", "Check out the [LangSmith trace](https://smith.langchain.com/public/1c055a3b-0236-4670-a3fb-023d418ba796/r)\n", "\n", @@ -410,7 +408,7 @@ "id": "7440f785-29c5-4c6b-9656-0d9d5efbac05", "metadata": {}, "source": [ - ":::{.callout-tip}\n", + ":::tip\n", "\n", "View [LangSmith trace](https://smith.langchain.com/public/0eeddf06-3a7b-4f27-974c-310ca8160f60/r)\n", "\n", diff --git a/docs/docs/how_to/qa_streaming.ipynb b/docs/docs/how_to/qa_streaming.ipynb index fecf20ca9ac87..ed023809e3e13 100644 --- a/docs/docs/how_to/qa_streaming.ipynb +++ b/docs/docs/how_to/qa_streaming.ipynb @@ -93,11 +93,9 @@ "\n", "Let's first select a LLM:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -328,7 +326,7 @@ "id": "8b2d224d-2a82-418b-b562-01ea210b86ef", "metadata": {}, "source": [ - "More simply, we can use the [.pick](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick) method to select only the desired key:" + "More simply, we can use the [.pick](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.pick) method to select only the desired key:" ] }, { @@ -432,7 +430,7 @@ "\n", "To stream intermediate output, we recommend use of the async `.astream_events` method. This method will stream output from all \"events\" in the chain, and can be quite verbose. We can filter using tags, event types, and other criteria, as we do here.\n", "\n", - "Below we show a typical `.astream_events` loop, where we pass in the chain input and emit desired results. See the [API reference](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) and [streaming guide](/docs/how_to/streaming) for more detail." + "Below we show a typical `.astream_events` loop, where we pass in the chain input and emit desired results. See the [API reference](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) and [streaming guide](/docs/how_to/streaming) for more detail." ] }, { diff --git a/docs/docs/how_to/query_constructing_filters.ipynb b/docs/docs/how_to/query_constructing_filters.ipynb index 118f7a0c8a390..c445e9831990c 100644 --- a/docs/docs/how_to/query_constructing_filters.ipynb +++ b/docs/docs/how_to/query_constructing_filters.ipynb @@ -24,9 +24,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 1, "id": "8ca446a0", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:35.834087Z", + "iopub.status.busy": "2024-09-11T02:32:35.833763Z", + "iopub.status.idle": "2024-09-11T02:32:36.588973Z", + "shell.execute_reply": "2024-09-11T02:32:36.588677Z" + } + }, "outputs": [], "source": [ "from typing import Optional\n", @@ -40,7 +47,7 @@ ")\n", "from langchain_community.query_constructors.chroma import ChromaTranslator\n", "from langchain_community.query_constructors.elasticsearch import ElasticsearchTranslator\n", - "from langchain_core.pydantic_v1 import BaseModel" + "from pydantic import BaseModel" ] }, { @@ -53,9 +60,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 2, "id": "64055006", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:36.590665Z", + "iopub.status.busy": "2024-09-11T02:32:36.590527Z", + "iopub.status.idle": "2024-09-11T02:32:36.592985Z", + "shell.execute_reply": "2024-09-11T02:32:36.592763Z" + } + }, "outputs": [], "source": [ "class Search(BaseModel):\n", @@ -66,9 +80,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 3, "id": "44eb6d98", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:36.594147Z", + "iopub.status.busy": "2024-09-11T02:32:36.594072Z", + "iopub.status.idle": "2024-09-11T02:32:36.595777Z", + "shell.execute_reply": "2024-09-11T02:32:36.595563Z" + } + }, "outputs": [], "source": [ "search_query = Search(query=\"RAG\", start_year=2022, author=\"LangChain\")" @@ -76,9 +97,16 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "id": "e8ba6705", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:36.596902Z", + "iopub.status.busy": "2024-09-11T02:32:36.596824Z", + "iopub.status.idle": "2024-09-11T02:32:36.598805Z", + "shell.execute_reply": "2024-09-11T02:32:36.598629Z" + } + }, "outputs": [], "source": [ "def construct_comparisons(query: Search):\n", @@ -104,9 +132,16 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 5, "id": "6a79c9da", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:36.599989Z", + "iopub.status.busy": "2024-09-11T02:32:36.599909Z", + "iopub.status.idle": "2024-09-11T02:32:36.601521Z", + "shell.execute_reply": "2024-09-11T02:32:36.601306Z" + } + }, "outputs": [], "source": [ "comparisons = construct_comparisons(search_query)" @@ -114,9 +149,16 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 6, "id": "2d0e9689", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:36.602688Z", + "iopub.status.busy": "2024-09-11T02:32:36.602603Z", + "iopub.status.idle": "2024-09-11T02:32:36.604171Z", + "shell.execute_reply": "2024-09-11T02:32:36.603981Z" + } + }, "outputs": [], "source": [ "_filter = Operation(operator=Operator.AND, arguments=comparisons)" @@ -124,9 +166,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 7, "id": "e4c0b2ce", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:36.605267Z", + "iopub.status.busy": "2024-09-11T02:32:36.605190Z", + "iopub.status.idle": "2024-09-11T02:32:36.607993Z", + "shell.execute_reply": "2024-09-11T02:32:36.607796Z" + } + }, "outputs": [ { "data": { @@ -135,7 +184,7 @@ " {'term': {'metadata.author.keyword': 'LangChain'}}]}}" ] }, - "execution_count": 18, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -146,9 +195,16 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 8, "id": "d75455ae", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:32:36.609091Z", + "iopub.status.busy": "2024-09-11T02:32:36.609012Z", + "iopub.status.idle": "2024-09-11T02:32:36.611075Z", + "shell.execute_reply": "2024-09-11T02:32:36.610869Z" + } + }, "outputs": [ { "data": { @@ -156,7 +212,7 @@ "{'$and': [{'start_year': {'$gt': 2022}}, {'author': {'$eq': 'LangChain'}}]}" ] }, - "execution_count": 19, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -182,7 +238,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/query_few_shot.ipynb b/docs/docs/how_to/query_few_shot.ipynb index 70dc9a01634c4..2b087ae214c31 100644 --- a/docs/docs/how_to/query_few_shot.ipynb +++ b/docs/docs/how_to/query_few_shot.ipynb @@ -35,7 +35,14 @@ "cell_type": "code", "execution_count": 1, "id": "e168ef5c-e54e-49a6-8552-5502854a6f01", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:48.329739Z", + "iopub.status.busy": "2024-09-11T02:33:48.329033Z", + "iopub.status.idle": "2024-09-11T02:33:48.334555Z", + "shell.execute_reply": "2024-09-11T02:33:48.334086Z" + } + }, "outputs": [], "source": [ "# %pip install -qU langchain-core langchain-openai" @@ -53,15 +60,23 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "40e2979e-a818-4b96-ac25-039336f94319", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:48.337140Z", + "iopub.status.busy": "2024-09-11T02:33:48.336958Z", + "iopub.status.idle": "2024-09-11T02:33:48.342671Z", + "shell.execute_reply": "2024-09-11T02:33:48.342281Z" + } + }, "outputs": [], "source": [ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", "\n", "# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.\n", "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", @@ -80,14 +95,21 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 3, "id": "0b51dd76-820d-41a4-98c8-893f6fe0d1ea", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:48.345004Z", + "iopub.status.busy": "2024-09-11T02:33:48.344838Z", + "iopub.status.idle": "2024-09-11T02:33:48.413166Z", + "shell.execute_reply": "2024-09-11T02:33:48.412908Z" + } + }, "outputs": [], "source": [ "from typing import List, Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "sub_queries_description = \"\"\"\\\n", "If the original question contains multiple distinct sub-questions, \\\n", @@ -121,9 +143,16 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 4, "id": "783c03c3-8c72-4f88-9cf4-5829ce6745d6", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:48.414805Z", + "iopub.status.busy": "2024-09-11T02:33:48.414700Z", + "iopub.status.idle": "2024-09-11T02:33:49.023858Z", + "shell.execute_reply": "2024-09-11T02:33:49.023547Z" + } + }, "outputs": [], "source": [ "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", @@ -143,7 +172,7 @@ " (\"human\", \"{question}\"),\n", " ]\n", ")\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "structured_llm = llm.with_structured_output(Search)\n", "query_analyzer = {\"question\": RunnablePassthrough()} | prompt | structured_llm" ] @@ -158,17 +187,24 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 5, "id": "0bcfce06-6f0c-4f9d-a1fc-dc29342d2aae", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:49.025536Z", + "iopub.status.busy": "2024-09-11T02:33:49.025437Z", + "iopub.status.idle": "2024-09-11T02:33:50.170550Z", + "shell.execute_reply": "2024-09-11T02:33:50.169835Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='web voyager vs reflection agents', sub_queries=['difference between web voyager and reflection agents', 'do web voyager and reflection agents use langgraph'], publish_year=None)" + "Search(query='difference between web voyager and reflection agents', sub_queries=['what is web voyager', 'what are reflection agents', 'do both web voyager and reflection agents use langgraph?'], publish_year=None)" ] }, - "execution_count": 65, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -193,9 +229,16 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 6, "id": "15b4923d-a08e-452d-8889-9a09a57d1095", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:50.180367Z", + "iopub.status.busy": "2024-09-11T02:33:50.173961Z", + "iopub.status.idle": "2024-09-11T02:33:50.186703Z", + "shell.execute_reply": "2024-09-11T02:33:50.186090Z" + } + }, "outputs": [], "source": [ "examples = []" @@ -203,9 +246,16 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 7, "id": "da5330e6-827a-40e5-982b-b23b6286b758", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:50.189822Z", + "iopub.status.busy": "2024-09-11T02:33:50.189617Z", + "iopub.status.idle": "2024-09-11T02:33:50.195116Z", + "shell.execute_reply": "2024-09-11T02:33:50.194617Z" + } + }, "outputs": [], "source": [ "question = \"What's chat langchain, is it a langchain template?\"\n", @@ -218,9 +268,16 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 8, "id": "580e857a-27df-4ecf-a19c-458dc9244ec8", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:50.198178Z", + "iopub.status.busy": "2024-09-11T02:33:50.198002Z", + "iopub.status.idle": "2024-09-11T02:33:50.204115Z", + "shell.execute_reply": "2024-09-11T02:33:50.202534Z" + } + }, "outputs": [], "source": [ "question = \"How to build multi-agent system and stream intermediate steps from it\"\n", @@ -238,9 +295,16 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 9, "id": "fa63310d-69e3-4701-825c-fbb01f8a5a16", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:50.207416Z", + "iopub.status.busy": "2024-09-11T02:33:50.207196Z", + "iopub.status.idle": "2024-09-11T02:33:50.212484Z", + "shell.execute_reply": "2024-09-11T02:33:50.211974Z" + } + }, "outputs": [], "source": [ "question = \"LangChain agents vs LangGraph?\"\n", @@ -266,9 +330,16 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 10, "id": "68b03709-9a60-4acf-b96c-cafe1056c6f3", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:50.215540Z", + "iopub.status.busy": "2024-09-11T02:33:50.215250Z", + "iopub.status.idle": "2024-09-11T02:33:50.224108Z", + "shell.execute_reply": "2024-09-11T02:33:50.223490Z" + } + }, "outputs": [], "source": [ "import uuid\n", @@ -313,9 +384,16 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 11, "id": "d9bf9f87-3e6b-4fc2-957b-949b077fab54", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:50.227215Z", + "iopub.status.busy": "2024-09-11T02:33:50.226993Z", + "iopub.status.idle": "2024-09-11T02:33:50.231333Z", + "shell.execute_reply": "2024-09-11T02:33:50.230742Z" + } + }, "outputs": [], "source": [ "from langchain_core.prompts import MessagesPlaceholder\n", @@ -329,17 +407,24 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 12, "id": "e565ccb0-3530-4782-b56b-d1f6d0a8e559", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:33:50.233833Z", + "iopub.status.busy": "2024-09-11T02:33:50.233646Z", + "iopub.status.idle": "2024-09-11T02:33:51.318133Z", + "shell.execute_reply": "2024-09-11T02:33:51.317640Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='Difference between web voyager and reflection agents, do they both use LangGraph?', sub_queries=['What is Web Voyager', 'What are Reflection agents', 'Do Web Voyager and Reflection agents use LangGraph'], publish_year=None)" + "Search(query=\"What's the difference between web voyager and reflection agents? Do both use langgraph?\", sub_queries=['What is web voyager', 'What are reflection agents', 'Do web voyager and reflection agents use langgraph?'], publish_year=None)" ] }, - "execution_count": 62, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -377,7 +462,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/query_high_cardinality.ipynb b/docs/docs/how_to/query_high_cardinality.ipynb index 75c00dbc4ce15..63c6677659b11 100644 --- a/docs/docs/how_to/query_high_cardinality.ipynb +++ b/docs/docs/how_to/query_high_cardinality.ipynb @@ -33,12 +33,20 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "e168ef5c-e54e-49a6-8552-5502854a6f01", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "# %pip install -qU langchain langchain-community langchain-openai faker langchain-chroma" + "%pip install -qU langchain langchain-community langchain-openai faker langchain-chroma" ] }, { @@ -53,15 +61,23 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "40e2979e-a818-4b96-ac25-039336f94319", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:54.036110Z", + "iopub.status.busy": "2024-09-11T02:34:54.035829Z", + "iopub.status.idle": "2024-09-11T02:34:54.038746Z", + "shell.execute_reply": "2024-09-11T02:34:54.038430Z" + } + }, "outputs": [], "source": [ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", "\n", "# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.\n", "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", @@ -80,9 +96,16 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "e5ba65c2", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:54.040738Z", + "iopub.status.busy": "2024-09-11T02:34:54.040515Z", + "iopub.status.idle": "2024-09-11T02:34:54.622643Z", + "shell.execute_reply": "2024-09-11T02:34:54.622382Z" + } + }, "outputs": [], "source": [ "from faker import Faker\n", @@ -102,17 +125,24 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "c901ea97", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:54.624195Z", + "iopub.status.busy": "2024-09-11T02:34:54.624106Z", + "iopub.status.idle": "2024-09-11T02:34:54.627231Z", + "shell.execute_reply": "2024-09-11T02:34:54.626971Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "'Hayley Gonzalez'" + "'Jacob Adams'" ] }, - "execution_count": 2, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -123,17 +153,24 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "b0d42ae2", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:54.628545Z", + "iopub.status.busy": "2024-09-11T02:34:54.628460Z", + "iopub.status.idle": "2024-09-11T02:34:54.630474Z", + "shell.execute_reply": "2024-09-11T02:34:54.630282Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "'Jesse Knight'" + "'Eric Acevedo'" ] }, - "execution_count": 3, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -154,19 +191,33 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "0ae69afc", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:54.631758Z", + "iopub.status.busy": "2024-09-11T02:34:54.631678Z", + "iopub.status.idle": "2024-09-11T02:34:54.666448Z", + "shell.execute_reply": "2024-09-11T02:34:54.666216Z" + } + }, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field" + "from pydantic import BaseModel, Field, model_validator" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "6c9485ce", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:54.667852Z", + "iopub.status.busy": "2024-09-11T02:34:54.667733Z", + "iopub.status.idle": "2024-09-11T02:34:54.700224Z", + "shell.execute_reply": "2024-09-11T02:34:54.700004Z" + } + }, "outputs": [], "source": [ "class Search(BaseModel):\n", @@ -176,19 +227,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "id": "aebd704a", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/harrisonchase/workplace/langchain/libs/core/langchain_core/_api/beta_decorator.py:86: LangChainBetaWarning: The function `with_structured_output` is in beta. It is actively being worked on, so the API may change.\n", - " warn_beta(\n" - ] + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:54.701556Z", + "iopub.status.busy": "2024-09-11T02:34:54.701465Z", + "iopub.status.idle": "2024-09-11T02:34:55.179986Z", + "shell.execute_reply": "2024-09-11T02:34:55.179640Z" } - ], + }, + "outputs": [], "source": [ "from langchain_core.prompts import ChatPromptTemplate\n", "from langchain_core.runnables import RunnablePassthrough\n", @@ -201,7 +250,7 @@ " (\"human\", \"{question}\"),\n", " ]\n", ")\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "structured_llm = llm.with_structured_output(Search)\n", "query_analyzer = {\"question\": RunnablePassthrough()} | prompt | structured_llm" ] @@ -216,17 +265,24 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 9, "id": "cc0d344b", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:55.181603Z", + "iopub.status.busy": "2024-09-11T02:34:55.181500Z", + "iopub.status.idle": "2024-09-11T02:34:55.778884Z", + "shell.execute_reply": "2024-09-11T02:34:55.778324Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='books about aliens', author='Jesse Knight')" + "Search(query='aliens', author='Jesse Knight')" ] }, - "execution_count": 33, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -245,17 +301,24 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 10, "id": "82b6b2ad", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:55.784266Z", + "iopub.status.busy": "2024-09-11T02:34:55.782603Z", + "iopub.status.idle": "2024-09-11T02:34:56.206779Z", + "shell.execute_reply": "2024-09-11T02:34:56.206068Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='books about aliens', author='Jess Knight')" + "Search(query='aliens', author='Jess Knight')" ] }, - "execution_count": 34, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -276,9 +339,16 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 11, "id": "98788a94", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:56.210043Z", + "iopub.status.busy": "2024-09-11T02:34:56.209657Z", + "iopub.status.idle": "2024-09-11T02:34:56.213962Z", + "shell.execute_reply": "2024-09-11T02:34:56.213413Z" + } + }, "outputs": [], "source": [ "system = \"\"\"Generate a relevant search query for a library system.\n", @@ -299,9 +369,16 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 12, "id": "e65412f5", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:56.216144Z", + "iopub.status.busy": "2024-09-11T02:34:56.216005Z", + "iopub.status.idle": "2024-09-11T02:34:56.218754Z", + "shell.execute_reply": "2024-09-11T02:34:56.218416Z" + } + }, "outputs": [], "source": [ "query_analyzer_all = {\"question\": RunnablePassthrough()} | prompt | structured_llm" @@ -317,18 +394,17 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 13, "id": "696b000f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Error code: 400 - {'error': {'message': \"This model's maximum context length is 16385 tokens. However, your messages resulted in 33885 tokens (33855 in the messages, 30 in the functions). Please reduce the length of the messages or functions.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}\n" - ] + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:56.220827Z", + "iopub.status.busy": "2024-09-11T02:34:56.220680Z", + "iopub.status.idle": "2024-09-11T02:34:58.846872Z", + "shell.execute_reply": "2024-09-11T02:34:58.846273Z" } - ], + }, + "outputs": [], "source": [ "try:\n", " res = query_analyzer_all.invoke(\"what are books about aliens by jess knight\")\n", @@ -346,9 +422,16 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 14, "id": "0f0d0757", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:58.850318Z", + "iopub.status.busy": "2024-09-11T02:34:58.850100Z", + "iopub.status.idle": "2024-09-11T02:34:58.873883Z", + "shell.execute_reply": "2024-09-11T02:34:58.873525Z" + } + }, "outputs": [], "source": [ "llm_long = ChatOpenAI(model=\"gpt-4-turbo-preview\", temperature=0)\n", @@ -358,17 +441,24 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 15, "id": "03e5b7b2", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:34:58.875940Z", + "iopub.status.busy": "2024-09-11T02:34:58.875811Z", + "iopub.status.idle": "2024-09-11T02:35:02.947273Z", + "shell.execute_reply": "2024-09-11T02:35:02.946220Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='aliens', author='Kevin Knight')" + "Search(query='aliens', author='jess knight')" ] }, - "execution_count": 39, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -389,9 +479,16 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 16, "id": "32b19e07", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:02.951939Z", + "iopub.status.busy": "2024-09-11T02:35:02.951583Z", + "iopub.status.idle": "2024-09-11T02:35:41.777839Z", + "shell.execute_reply": "2024-09-11T02:35:41.777392Z" + } + }, "outputs": [], "source": [ "from langchain_chroma import Chroma\n", @@ -403,9 +500,16 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 17, "id": "774cb7b0", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:41.780883Z", + "iopub.status.busy": "2024-09-11T02:35:41.780774Z", + "iopub.status.idle": "2024-09-11T02:35:41.782739Z", + "shell.execute_reply": "2024-09-11T02:35:41.782498Z" + } + }, "outputs": [], "source": [ "def select_names(question):\n", @@ -416,9 +520,16 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 18, "id": "1173159c", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:41.783992Z", + "iopub.status.busy": "2024-09-11T02:35:41.783913Z", + "iopub.status.idle": "2024-09-11T02:35:41.785911Z", + "shell.execute_reply": "2024-09-11T02:35:41.785632Z" + } + }, "outputs": [], "source": [ "create_prompt = {\n", @@ -429,9 +540,16 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 19, "id": "0a892607", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:41.787082Z", + "iopub.status.busy": "2024-09-11T02:35:41.787008Z", + "iopub.status.idle": "2024-09-11T02:35:41.788543Z", + "shell.execute_reply": "2024-09-11T02:35:41.788362Z" + } + }, "outputs": [], "source": [ "query_analyzer_select = create_prompt | structured_llm" @@ -439,17 +557,24 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 20, "id": "8195d7cd", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:41.789624Z", + "iopub.status.busy": "2024-09-11T02:35:41.789551Z", + "iopub.status.idle": "2024-09-11T02:35:42.099839Z", + "shell.execute_reply": "2024-09-11T02:35:42.099042Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "ChatPromptValue(messages=[SystemMessage(content='Generate a relevant search query for a library system.\\n\\n`author` attribute MUST be one of:\\n\\nJesse Knight, Kelly Knight, Scott Knight, Richard Knight, Andrew Knight, Katherine Knight, Erica Knight, Ashley Knight, Becky Knight, Kevin Knight\\n\\nDo NOT hallucinate author name!'), HumanMessage(content='what are books by jess knight')])" + "ChatPromptValue(messages=[SystemMessage(content='Generate a relevant search query for a library system.\\n\\n`author` attribute MUST be one of:\\n\\nJennifer Knight, Jill Knight, John Knight, Dr. Jeffrey Knight, Christopher Knight, Andrea Knight, Brandy Knight, Jennifer Keller, Becky Chambers, Sarah Knapp\\n\\nDo NOT hallucinate author name!'), HumanMessage(content='what are books by jess knight')])" ] }, - "execution_count": 54, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -460,17 +585,24 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 21, "id": "d3228b4e", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:42.106571Z", + "iopub.status.busy": "2024-09-11T02:35:42.105861Z", + "iopub.status.idle": "2024-09-11T02:35:42.909738Z", + "shell.execute_reply": "2024-09-11T02:35:42.908875Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='books about aliens', author='Jesse Knight')" + "Search(query='books about aliens', author='Jennifer Knight')" ] }, - "execution_count": 55, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -492,28 +624,45 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 22, "id": "a2e8b434", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:42.915376Z", + "iopub.status.busy": "2024-09-11T02:35:42.914923Z", + "iopub.status.idle": "2024-09-11T02:35:42.923958Z", + "shell.execute_reply": "2024-09-11T02:35:42.922391Z" + } + }, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import validator\n", - "\n", - "\n", "class Search(BaseModel):\n", " query: str\n", " author: str\n", "\n", - " @validator(\"author\")\n", - " def double(cls, v: str) -> str:\n", - " return vectorstore.similarity_search(v, k=1)[0].page_content" + " @model_validator(mode=\"before\")\n", + " @classmethod\n", + " def double(cls, values: dict) -> dict:\n", + " author = values[\"author\"]\n", + " closest_valid_author = vectorstore.similarity_search(author, k=1)[\n", + " 0\n", + " ].page_content\n", + " values[\"author\"] = closest_valid_author\n", + " return values" ] }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 23, "id": "919c0601", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:42.927718Z", + "iopub.status.busy": "2024-09-11T02:35:42.927428Z", + "iopub.status.idle": "2024-09-11T02:35:42.933784Z", + "shell.execute_reply": "2024-09-11T02:35:42.933344Z" + } + }, "outputs": [], "source": [ "system = \"\"\"Generate a relevant search query for a library system\"\"\"\n", @@ -531,17 +680,24 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 24, "id": "6c4f3e9a", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:42.936506Z", + "iopub.status.busy": "2024-09-11T02:35:42.936186Z", + "iopub.status.idle": "2024-09-11T02:35:43.711754Z", + "shell.execute_reply": "2024-09-11T02:35:43.710695Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='books about aliens', author='Jesse Knight')" + "Search(query='aliens', author='John Knight')" ] }, - "execution_count": 50, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -552,9 +708,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "id": "a309cb11", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:35:43.717567Z", + "iopub.status.busy": "2024-09-11T02:35:43.717189Z", + "iopub.status.idle": "2024-09-11T02:35:43.722339Z", + "shell.execute_reply": "2024-09-11T02:35:43.720537Z" + } + }, "outputs": [], "source": [ "# TODO: show trigram similarity" @@ -563,9 +726,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "poetry-venv-311", "language": "python", - "name": "python3" + "name": "poetry-venv-311" }, "language_info": { "codemirror_mode": { @@ -577,7 +740,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/query_multiple_queries.ipynb b/docs/docs/how_to/query_multiple_queries.ipynb index 242d28a4d311a..79bf9be63a2b4 100644 --- a/docs/docs/how_to/query_multiple_queries.ipynb +++ b/docs/docs/how_to/query_multiple_queries.ipynb @@ -33,10 +33,25 @@ "cell_type": "code", "execution_count": 1, "id": "e168ef5c-e54e-49a6-8552-5502854a6f01", - "metadata": {}, - "outputs": [], + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:41:53.160868Z", + "iopub.status.busy": "2024-09-11T02:41:53.160512Z", + "iopub.status.idle": "2024-09-11T02:41:57.605370Z", + "shell.execute_reply": "2024-09-11T02:41:57.604888Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "# %pip install -qU langchain langchain-community langchain-openai langchain-chroma" + "%pip install -qU langchain langchain-community langchain-openai langchain-chroma" ] }, { @@ -51,15 +66,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "40e2979e-a818-4b96-ac25-039336f94319", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:41:57.607874Z", + "iopub.status.busy": "2024-09-11T02:41:57.607697Z", + "iopub.status.idle": "2024-09-11T02:41:57.610422Z", + "shell.execute_reply": "2024-09-11T02:41:57.610012Z" + } + }, "outputs": [], "source": [ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", "\n", "# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.\n", "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", @@ -78,9 +101,16 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "1f621694", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:41:57.612276Z", + "iopub.status.busy": "2024-09-11T02:41:57.612146Z", + "iopub.status.idle": "2024-09-11T02:41:59.074590Z", + "shell.execute_reply": "2024-09-11T02:41:59.074052Z" + } + }, "outputs": [], "source": [ "from langchain_chroma import Chroma\n", @@ -108,14 +138,21 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "0b51dd76-820d-41a4-98c8-893f6fe0d1ea", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:41:59.077712Z", + "iopub.status.busy": "2024-09-11T02:41:59.077514Z", + "iopub.status.idle": "2024-09-11T02:41:59.081509Z", + "shell.execute_reply": "2024-09-11T02:41:59.081112Z" + } + }, "outputs": [], "source": [ "from typing import List, Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Search(BaseModel):\n", @@ -129,19 +166,17 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "783c03c3-8c72-4f88-9cf4-5829ce6745d6", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/harrisonchase/workplace/langchain/libs/core/langchain_core/_api/beta_decorator.py:86: LangChainBetaWarning: The function `with_structured_output` is in beta. It is actively being worked on, so the API may change.\n", - " warn_beta(\n" - ] + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:41:59.083613Z", + "iopub.status.busy": "2024-09-11T02:41:59.083492Z", + "iopub.status.idle": "2024-09-11T02:41:59.204636Z", + "shell.execute_reply": "2024-09-11T02:41:59.204377Z" } - ], + }, + "outputs": [], "source": [ "from langchain_core.output_parsers.openai_tools import PydanticToolsParser\n", "from langchain_core.prompts import ChatPromptTemplate\n", @@ -159,7 +194,7 @@ " (\"human\", \"{question}\"),\n", " ]\n", ")\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "structured_llm = llm.with_structured_output(Search)\n", "query_analyzer = {\"question\": RunnablePassthrough()} | prompt | structured_llm" ] @@ -174,17 +209,24 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "bc1d3863", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:41:59.206178Z", + "iopub.status.busy": "2024-09-11T02:41:59.206101Z", + "iopub.status.idle": "2024-09-11T02:41:59.817758Z", + "shell.execute_reply": "2024-09-11T02:41:59.817310Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(queries=['Harrison work location'])" + "Search(queries=['Harrison Work', 'Harrison employment history'])" ] }, - "execution_count": 4, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -195,17 +237,24 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "af62af17-4f90-4dbd-a8b4-dfff51f1db95", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:41:59.820168Z", + "iopub.status.busy": "2024-09-11T02:41:59.819990Z", + "iopub.status.idle": "2024-09-11T02:42:00.309034Z", + "shell.execute_reply": "2024-09-11T02:42:00.308578Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(queries=['Harrison work place', 'Ankush work place'])" + "Search(queries=['Harrison work history', 'Ankush work history'])" ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -226,9 +275,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "id": "1e047d87", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:00.311131Z", + "iopub.status.busy": "2024-09-11T02:42:00.310972Z", + "iopub.status.idle": "2024-09-11T02:42:00.313365Z", + "shell.execute_reply": "2024-09-11T02:42:00.313025Z" + } + }, "outputs": [], "source": [ "from langchain_core.runnables import chain" @@ -236,9 +292,16 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 9, "id": "8dac7866", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:00.315138Z", + "iopub.status.busy": "2024-09-11T02:42:00.315016Z", + "iopub.status.idle": "2024-09-11T02:42:00.317427Z", + "shell.execute_reply": "2024-09-11T02:42:00.317088Z" + } + }, "outputs": [], "source": [ "@chain\n", @@ -255,17 +318,25 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 10, "id": "232ad8a7-7990-4066-9228-d35a555f7293", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:00.318951Z", + "iopub.status.busy": "2024-09-11T02:42:00.318829Z", + "iopub.status.idle": "2024-09-11T02:42:01.512855Z", + "shell.execute_reply": "2024-09-11T02:42:01.512321Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "[Document(page_content='Harrison worked at Kensho')]" + "[Document(page_content='Harrison worked at Kensho'),\n", + " Document(page_content='Harrison worked at Kensho')]" ] }, - "execution_count": 33, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -276,9 +347,16 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 11, "id": "28e14ba5", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:01.515743Z", + "iopub.status.busy": "2024-09-11T02:42:01.515400Z", + "iopub.status.idle": "2024-09-11T02:42:02.349930Z", + "shell.execute_reply": "2024-09-11T02:42:02.349382Z" + } + }, "outputs": [ { "data": { @@ -287,7 +365,7 @@ " Document(page_content='Ankush worked at Facebook')]" ] }, - "execution_count": 34, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -321,7 +399,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/query_multiple_retrievers.ipynb b/docs/docs/how_to/query_multiple_retrievers.ipynb index c5ed5d80eb84e..9e6d7861dca10 100644 --- a/docs/docs/how_to/query_multiple_retrievers.ipynb +++ b/docs/docs/how_to/query_multiple_retrievers.ipynb @@ -33,10 +33,25 @@ "cell_type": "code", "execution_count": 1, "id": "e168ef5c-e54e-49a6-8552-5502854a6f01", - "metadata": {}, - "outputs": [], + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:13.105266Z", + "iopub.status.busy": "2024-09-11T02:42:13.104556Z", + "iopub.status.idle": "2024-09-11T02:42:17.936922Z", + "shell.execute_reply": "2024-09-11T02:42:17.936478Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "# %pip install -qU langchain langchain-community langchain-openai langchain-chroma" + "%pip install -qU langchain langchain-community langchain-openai langchain-chroma" ] }, { @@ -51,15 +66,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "40e2979e-a818-4b96-ac25-039336f94319", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:17.939072Z", + "iopub.status.busy": "2024-09-11T02:42:17.938929Z", + "iopub.status.idle": "2024-09-11T02:42:17.941266Z", + "shell.execute_reply": "2024-09-11T02:42:17.940968Z" + } + }, "outputs": [], "source": [ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", "\n", "# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.\n", "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", @@ -78,9 +101,16 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "id": "1f621694", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:17.942794Z", + "iopub.status.busy": "2024-09-11T02:42:17.942674Z", + "iopub.status.idle": "2024-09-11T02:42:19.939459Z", + "shell.execute_reply": "2024-09-11T02:42:19.938842Z" + } + }, "outputs": [], "source": [ "from langchain_chroma import Chroma\n", @@ -110,14 +140,21 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 4, "id": "0b51dd76-820d-41a4-98c8-893f6fe0d1ea", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:19.942780Z", + "iopub.status.busy": "2024-09-11T02:42:19.942567Z", + "iopub.status.idle": "2024-09-11T02:42:19.947709Z", + "shell.execute_reply": "2024-09-11T02:42:19.947252Z" + } + }, "outputs": [], "source": [ "from typing import List, Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Search(BaseModel):\n", @@ -135,9 +172,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 5, "id": "783c03c3-8c72-4f88-9cf4-5829ce6745d6", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:19.949936Z", + "iopub.status.busy": "2024-09-11T02:42:19.949778Z", + "iopub.status.idle": "2024-09-11T02:42:20.073883Z", + "shell.execute_reply": "2024-09-11T02:42:20.073556Z" + } + }, "outputs": [], "source": [ "from langchain_core.output_parsers.openai_tools import PydanticToolsParser\n", @@ -154,7 +198,7 @@ " (\"human\", \"{question}\"),\n", " ]\n", ")\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "structured_llm = llm.with_structured_output(Search)\n", "query_analyzer = {\"question\": RunnablePassthrough()} | prompt | structured_llm" ] @@ -169,17 +213,24 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 6, "id": "bc1d3863", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:20.075511Z", + "iopub.status.busy": "2024-09-11T02:42:20.075428Z", + "iopub.status.idle": "2024-09-11T02:42:20.902011Z", + "shell.execute_reply": "2024-09-11T02:42:20.901558Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='workplace', person='HARRISON')" + "Search(query='work history', person='HARRISON')" ] }, - "execution_count": 19, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -190,17 +241,24 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 7, "id": "af62af17-4f90-4dbd-a8b4-dfff51f1db95", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:20.904384Z", + "iopub.status.busy": "2024-09-11T02:42:20.904195Z", + "iopub.status.idle": "2024-09-11T02:42:21.468172Z", + "shell.execute_reply": "2024-09-11T02:42:21.467639Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "Search(query='workplace', person='ANKUSH')" + "Search(query='work history', person='ANKUSH')" ] }, - "execution_count": 20, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -221,9 +279,16 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 8, "id": "1e047d87", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:21.470953Z", + "iopub.status.busy": "2024-09-11T02:42:21.470736Z", + "iopub.status.idle": "2024-09-11T02:42:21.473544Z", + "shell.execute_reply": "2024-09-11T02:42:21.473064Z" + } + }, "outputs": [], "source": [ "from langchain_core.runnables import chain" @@ -231,9 +296,16 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 9, "id": "4ec0c7fe", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:21.476024Z", + "iopub.status.busy": "2024-09-11T02:42:21.475835Z", + "iopub.status.idle": "2024-09-11T02:42:21.478359Z", + "shell.execute_reply": "2024-09-11T02:42:21.477932Z" + } + }, "outputs": [], "source": [ "retrievers = {\n", @@ -244,9 +316,16 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 10, "id": "8dac7866", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:21.480247Z", + "iopub.status.busy": "2024-09-11T02:42:21.480084Z", + "iopub.status.idle": "2024-09-11T02:42:21.482732Z", + "shell.execute_reply": "2024-09-11T02:42:21.482382Z" + } + }, "outputs": [], "source": [ "@chain\n", @@ -258,9 +337,16 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 11, "id": "232ad8a7-7990-4066-9228-d35a555f7293", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:21.484480Z", + "iopub.status.busy": "2024-09-11T02:42:21.484361Z", + "iopub.status.idle": "2024-09-11T02:42:22.136704Z", + "shell.execute_reply": "2024-09-11T02:42:22.136244Z" + } + }, "outputs": [ { "data": { @@ -268,7 +354,7 @@ "[Document(page_content='Harrison worked at Kensho')]" ] }, - "execution_count": 24, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -279,9 +365,16 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 12, "id": "28e14ba5", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:22.139305Z", + "iopub.status.busy": "2024-09-11T02:42:22.139106Z", + "iopub.status.idle": "2024-09-11T02:42:23.479739Z", + "shell.execute_reply": "2024-09-11T02:42:23.479170Z" + } + }, "outputs": [ { "data": { @@ -289,7 +382,7 @@ "[Document(page_content='Ankush worked at Facebook')]" ] }, - "execution_count": 25, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -323,7 +416,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/query_no_queries.ipynb b/docs/docs/how_to/query_no_queries.ipynb index 5d3b93ccff575..0024e5e608f2a 100644 --- a/docs/docs/how_to/query_no_queries.ipynb +++ b/docs/docs/how_to/query_no_queries.ipynb @@ -35,10 +35,25 @@ "cell_type": "code", "execution_count": 1, "id": "e168ef5c-e54e-49a6-8552-5502854a6f01", - "metadata": {}, - "outputs": [], + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:33.121714Z", + "iopub.status.busy": "2024-09-11T02:42:33.121392Z", + "iopub.status.idle": "2024-09-11T02:42:36.998607Z", + "shell.execute_reply": "2024-09-11T02:42:36.998126Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "# %pip install -qU langchain langchain-community langchain-openai langchain-chroma" + "%pip install -qU langchain langchain-community langchain-openai langchain-chroma" ] }, { @@ -53,15 +68,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "40e2979e-a818-4b96-ac25-039336f94319", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:37.001017Z", + "iopub.status.busy": "2024-09-11T02:42:37.000859Z", + "iopub.status.idle": "2024-09-11T02:42:37.003704Z", + "shell.execute_reply": "2024-09-11T02:42:37.003335Z" + } + }, "outputs": [], "source": [ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", "\n", "# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.\n", "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", @@ -80,9 +103,16 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "1f621694", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:37.005644Z", + "iopub.status.busy": "2024-09-11T02:42:37.005493Z", + "iopub.status.idle": "2024-09-11T02:42:38.288481Z", + "shell.execute_reply": "2024-09-11T02:42:38.287904Z" + } + }, "outputs": [], "source": [ "from langchain_chroma import Chroma\n", @@ -110,14 +140,21 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "0b51dd76-820d-41a4-98c8-893f6fe0d1ea", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:38.291700Z", + "iopub.status.busy": "2024-09-11T02:42:38.291468Z", + "iopub.status.idle": "2024-09-11T02:42:38.295796Z", + "shell.execute_reply": "2024-09-11T02:42:38.295205Z" + } + }, "outputs": [], "source": [ "from typing import Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Search(BaseModel):\n", @@ -131,9 +168,16 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "783c03c3-8c72-4f88-9cf4-5829ce6745d6", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:38.297840Z", + "iopub.status.busy": "2024-09-11T02:42:38.297712Z", + "iopub.status.idle": "2024-09-11T02:42:38.420456Z", + "shell.execute_reply": "2024-09-11T02:42:38.420140Z" + } + }, "outputs": [], "source": [ "from langchain_core.prompts import ChatPromptTemplate\n", @@ -149,7 +193,7 @@ " (\"human\", \"{question}\"),\n", " ]\n", ")\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "structured_llm = llm.bind_tools([Search])\n", "query_analyzer = {\"question\": RunnablePassthrough()} | prompt | structured_llm" ] @@ -164,17 +208,24 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "bc1d3863", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:38.421934Z", + "iopub.status.busy": "2024-09-11T02:42:38.421831Z", + "iopub.status.idle": "2024-09-11T02:42:39.048915Z", + "shell.execute_reply": "2024-09-11T02:42:39.048519Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_ZnoVX4j9Mn8wgChaORyd1cvq', 'function': {'arguments': '{\"query\":\"Harrison\"}', 'name': 'Search'}, 'type': 'function'}]})" + "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_korLZrh08PTRL94f4L7rFqdj', 'function': {'arguments': '{\"query\":\"Harrison\"}', 'name': 'Search'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 95, 'total_tokens': 109}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_483d39d857', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-ea94d376-37bf-4f80-abe6-e3b42b767ea0-0', tool_calls=[{'name': 'Search', 'args': {'query': 'Harrison'}, 'id': 'call_korLZrh08PTRL94f4L7rFqdj', 'type': 'tool_call'}], usage_metadata={'input_tokens': 95, 'output_tokens': 14, 'total_tokens': 109})" ] }, - "execution_count": 4, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -185,17 +236,24 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "af62af17-4f90-4dbd-a8b4-dfff51f1db95", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:39.050923Z", + "iopub.status.busy": "2024-09-11T02:42:39.050785Z", + "iopub.status.idle": "2024-09-11T02:42:40.090421Z", + "shell.execute_reply": "2024-09-11T02:42:40.089454Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='Hello! How can I assist you today?')" + "AIMessage(content='Hello! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 93, 'total_tokens': 103}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_483d39d857', 'finish_reason': 'stop', 'logprobs': None}, id='run-ebdfc44a-455a-4ca6-be85-84559886b1e1-0', usage_metadata={'input_tokens': 93, 'output_tokens': 10, 'total_tokens': 103})" ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -216,9 +274,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "id": "1e047d87", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:40.093716Z", + "iopub.status.busy": "2024-09-11T02:42:40.093472Z", + "iopub.status.idle": "2024-09-11T02:42:40.097732Z", + "shell.execute_reply": "2024-09-11T02:42:40.097274Z" + } + }, "outputs": [], "source": [ "from langchain_core.output_parsers.openai_tools import PydanticToolsParser\n", @@ -229,9 +294,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "id": "8dac7866", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:40.100028Z", + "iopub.status.busy": "2024-09-11T02:42:40.099882Z", + "iopub.status.idle": "2024-09-11T02:42:40.103105Z", + "shell.execute_reply": "2024-09-11T02:42:40.102734Z" + } + }, "outputs": [], "source": [ "@chain\n", @@ -248,9 +320,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "id": "232ad8a7-7990-4066-9228-d35a555f7293", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:40.105092Z", + "iopub.status.busy": "2024-09-11T02:42:40.104917Z", + "iopub.status.idle": "2024-09-11T02:42:41.341967Z", + "shell.execute_reply": "2024-09-11T02:42:41.341455Z" + } + }, "outputs": [ { "name": "stderr", @@ -265,7 +344,7 @@ "[Document(page_content='Harrison worked at Kensho')]" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -276,17 +355,24 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "id": "28e14ba5", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:42:41.344639Z", + "iopub.status.busy": "2024-09-11T02:42:41.344411Z", + "iopub.status.idle": "2024-09-11T02:42:41.798332Z", + "shell.execute_reply": "2024-09-11T02:42:41.798054Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='Hello! How can I assist you today?')" + "AIMessage(content='Hello! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 93, 'total_tokens': 103}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_483d39d857', 'finish_reason': 'stop', 'logprobs': None}, id='run-e87f058d-30c0-4075-8a89-a01b982d557e-0', usage_metadata={'input_tokens': 93, 'output_tokens': 10, 'total_tokens': 103})" ] }, - "execution_count": 9, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -320,7 +406,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/recursive_json_splitter.ipynb b/docs/docs/how_to/recursive_json_splitter.ipynb index 71d095a05feec..9936ed9ebcb7f 100644 --- a/docs/docs/how_to/recursive_json_splitter.ipynb +++ b/docs/docs/how_to/recursive_json_splitter.ipynb @@ -107,7 +107,7 @@ "id": "3f05bc21-227e-4d2c-af51-16d69ad3cd7b", "metadata": {}, "source": [ - "To obtain LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, use the `.create_documents` method:" + "To obtain LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, use the `.create_documents` method:" ] }, { diff --git a/docs/docs/how_to/recursive_text_splitter.ipynb b/docs/docs/how_to/recursive_text_splitter.ipynb index 623438f52ce4d..ce77b89f9d1a5 100644 --- a/docs/docs/how_to/recursive_text_splitter.ipynb +++ b/docs/docs/how_to/recursive_text_splitter.ipynb @@ -30,7 +30,7 @@ "\n", "To obtain the string content directly, use `.split_text`.\n", "\n", - "To create LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`." + "To create LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects (e.g., for use in downstream tasks), use `.create_documents`." ] }, { diff --git a/docs/docs/how_to/semantic-chunker.ipynb b/docs/docs/how_to/semantic-chunker.ipynb index b59375c022f5b..35889ec53afd0 100644 --- a/docs/docs/how_to/semantic-chunker.ipynb +++ b/docs/docs/how_to/semantic-chunker.ipynb @@ -69,7 +69,7 @@ "id": "774a5199-c2ff-43bc-bf07-87573e0b8db4", "metadata": {}, "source": [ - "To instantiate a [SemanticChunker](https://python.langchain.com/v0.2/api_reference/experimental/text_splitter/langchain_experimental.text_splitter.SemanticChunker.html), we must specify an embedding model. Below we will use [OpenAIEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html). " + "To instantiate a [SemanticChunker](https://python.langchain.com/api_reference/experimental/text_splitter/langchain_experimental.text_splitter.SemanticChunker.html), we must specify an embedding model. Below we will use [OpenAIEmbeddings](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.openai.OpenAIEmbeddings.html). " ] }, { @@ -92,7 +92,7 @@ "source": [ "## Split Text\n", "\n", - "We split text in the usual way, e.g., by invoking `.create_documents` to create LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects:" + "We split text in the usual way, e.g., by invoking `.create_documents` to create LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects:" ] }, { diff --git a/docs/docs/how_to/sequence.ipynb b/docs/docs/how_to/sequence.ipynb index b4da854eb1356..8fc7be8d8f66d 100644 --- a/docs/docs/how_to/sequence.ipynb +++ b/docs/docs/how_to/sequence.ipynb @@ -31,19 +31,17 @@ "\n", "One point about [LangChain Expression Language](/docs/concepts/#langchain-expression-language) is that any two runnables can be \"chained\" together into sequences. The output of the previous runnable's `.invoke()` call is passed as input to the next runnable. This can be done using the pipe operator (`|`), or the more explicit `.pipe()` method, which does the same thing.\n", "\n", - "The resulting [`RunnableSequence`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html) is itself a runnable, which means it can be invoked, streamed, or further chained just like any other runnable. Advantages of chaining runnables in this way are efficient streaming (the sequence will stream output as soon as it is available), and debugging and tracing with tools like [LangSmith](/docs/how_to/debugging).\n", + "The resulting [`RunnableSequence`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html) is itself a runnable, which means it can be invoked, streamed, or further chained just like any other runnable. Advantages of chaining runnables in this way are efficient streaming (the sequence will stream output as soon as it is available), and debugging and tracing with tools like [LangSmith](/docs/how_to/debugging).\n", "\n", "## The pipe operator: `|`\n", "\n", "To show off how this works, let's go through an example. We'll walk through a common pattern in LangChain: using a [prompt template](/docs/how_to#prompt-templates) to format input into a [chat model](/docs/how_to#chat-models), and finally converting the chat message output into a string with an [output parser](/docs/how_to#output-parsers).\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { @@ -62,7 +60,8 @@ "\n", "from langchain_anthropic import ChatAnthropic\n", "\n", - "os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n", + "if \"ANTHROPIC_API_KEY\" not in os.environ:\n", + " os.environ[\"ANTHROPIC_API_KEY\"] = getpass()\n", "\n", "model = ChatAnthropic(model=\"claude-3-sonnet-20240229\", temperature=0)" ] diff --git a/docs/docs/how_to/serialization.ipynb b/docs/docs/how_to/serialization.ipynb index 8638c8b8955d4..e0355baf93d07 100644 --- a/docs/docs/how_to/serialization.ipynb +++ b/docs/docs/how_to/serialization.ipynb @@ -12,13 +12,13 @@ "- Secrets, such as API keys, are separated from other parameters and can be loaded back to the object on de-serialization;\n", "- De-serialization is kept compatible across package versions, so objects that were serialized with one version of LangChain can be properly de-serialized with another.\n", "\n", - "To save and load LangChain objects using this system, use the `dumpd`, `dumps`, `load`, and `loads` functions in the [load module](https://python.langchain.com/v0.2/api_reference/core/load.html) of `langchain-core`. These functions support JSON and JSON-serializable objects.\n", + "To save and load LangChain objects using this system, use the `dumpd`, `dumps`, `load`, and `loads` functions in the [load module](https://python.langchain.com/api_reference/core/load.html) of `langchain-core`. These functions support JSON and JSON-serializable objects.\n", "\n", - "All LangChain objects that inherit from [Serializable](https://python.langchain.com/v0.2/api_reference/core/load/langchain_core.load.serializable.Serializable.html) are JSON-serializable. Examples include [messages](https://python.langchain.com/v0.2/api_reference//python/core_api_reference.html#module-langchain_core.messages), [document objects](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) (e.g., as returned from [retrievers](/docs/concepts/#retrievers)), and most [Runnables](/docs/concepts/#langchain-expression-language-lcel), such as chat models, retrievers, and [chains](/docs/how_to/sequence) implemented with the LangChain Expression Language.\n", + "All LangChain objects that inherit from [Serializable](https://python.langchain.com/api_reference/core/load/langchain_core.load.serializable.Serializable.html) are JSON-serializable. Examples include [messages](https://python.langchain.com/api_reference//python/core_api_reference.html#module-langchain_core.messages), [document objects](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) (e.g., as returned from [retrievers](/docs/concepts/#retrievers)), and most [Runnables](/docs/concepts/#langchain-expression-language-lcel), such as chat models, retrievers, and [chains](/docs/how_to/sequence) implemented with the LangChain Expression Language.\n", "\n", "Below we walk through an example with a simple [LLM chain](/docs/tutorials/llm_chain).\n", "\n", - ":::{.callout-caution}\n", + ":::caution\n", "\n", "De-serialization using `load` and `loads` can instantiate any serializable LangChain object. Only use this feature with trusted inputs!\n", "\n", @@ -44,7 +44,7 @@ " ],\n", ")\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", api_key=\"llm-api-key\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", api_key=\"llm-api-key\")\n", "\n", "chain = prompt | llm" ] diff --git a/docs/docs/how_to/split_by_token.ipynb b/docs/docs/how_to/split_by_token.ipynb index cf6c8814b4be4..0d359b50ec2fe 100644 --- a/docs/docs/how_to/split_by_token.ipynb +++ b/docs/docs/how_to/split_by_token.ipynb @@ -17,7 +17,7 @@ "source": [ "## tiktoken\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "[tiktoken](https://github.com/openai/tiktoken) is a fast `BPE` tokenizer created by `OpenAI`.\n", ":::\n", "\n", @@ -27,7 +27,7 @@ "1. How the text is split: by character passed in.\n", "2. How the chunk size is measured: by `tiktoken` tokenizer.\n", "\n", - "[CharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html), [RecursiveCharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html), and [TokenTextSplitter](https://python.langchain.com/v0.2/api_reference/langchain_text_splitters/base/langchain_text_splitters.base.TokenTextSplitter.html) can be used with `tiktoken` directly." + "[CharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html), [RecursiveCharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html), and [TokenTextSplitter](https://python.langchain.com/api_reference/langchain_text_splitters/base/langchain_text_splitters.base.TokenTextSplitter.html) can be used with `tiktoken` directly." ] }, { @@ -59,7 +59,7 @@ "id": "a3ba1d8a", "metadata": {}, "source": [ - "To split with a [CharacterTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html) and then merge chunks with `tiktoken`, use its `.from_tiktoken_encoder()` method. Note that splits from this method can be larger than the chunk size measured by the `tiktoken` tokenizer.\n", + "To split with a [CharacterTextSplitter](https://python.langchain.com/api_reference/text_splitters/character/langchain_text_splitters.character.CharacterTextSplitter.html) and then merge chunks with `tiktoken`, use its `.from_tiktoken_encoder()` method. Note that splits from this method can be larger than the chunk size measured by the `tiktoken` tokenizer.\n", "\n", "The `.from_tiktoken_encoder()` method takes either `encoding_name` as an argument (e.g. `cl100k_base`), or the `model_name` (e.g. `gpt-4`). All additional arguments like `chunk_size`, `chunk_overlap`, and `separators` are used to instantiate `CharacterTextSplitter`:" ] @@ -171,7 +171,7 @@ "source": [ "## spaCy\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "[spaCy](https://spacy.io/) is an open-source software library for advanced natural language processing, written in the programming languages Python and Cython.\n", ":::\n", "\n", @@ -279,7 +279,7 @@ "source": [ "## SentenceTransformers\n", "\n", - "The [SentenceTransformersTokenTextSplitter](https://python.langchain.com/v0.2/api_reference/text_splitters/sentence_transformers/langchain_text_splitters.sentence_transformers.SentenceTransformersTokenTextSplitter.html) is a specialized text splitter for use with the sentence-transformer models. The default behaviour is to split the text into chunks that fit the token window of the sentence transformer model that you would like to use.\n", + "The [SentenceTransformersTokenTextSplitter](https://python.langchain.com/api_reference/text_splitters/sentence_transformers/langchain_text_splitters.sentence_transformers.SentenceTransformersTokenTextSplitter.html) is a specialized text splitter for use with the sentence-transformer models. The default behaviour is to split the text into chunks that fit the token window of the sentence transformer model that you would like to use.\n", "\n", "To split text and constrain token counts according to the sentence-transformers tokenizer, instantiate a `SentenceTransformersTokenTextSplitter`. You can optionally specify:\n", "\n", @@ -363,7 +363,7 @@ "source": [ "## NLTK\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "[The Natural Language Toolkit](https://en.wikipedia.org/wiki/Natural_Language_Toolkit), or more commonly [NLTK](https://www.nltk.org/), is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language.\n", ":::\n", "\n", @@ -466,7 +466,7 @@ "source": [ "## KoNLPY\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "[KoNLPy: Korean NLP in Python](https://konlpy.org/en/latest/) is is a Python package for natural language processing (NLP) of the Korean language.\n", ":::\n", "\n", diff --git a/docs/docs/how_to/sql_csv.ipynb b/docs/docs/how_to/sql_csv.ipynb index 88f39d6643de0..887856daa2dda 100644 --- a/docs/docs/how_to/sql_csv.ipynb +++ b/docs/docs/how_to/sql_csv.ipynb @@ -167,11 +167,9 @@ "source": [ "And create a [SQL agent](/docs/tutorials/sql_qa) to interact with it:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -609,7 +607,7 @@ "source": [ "### Agent\n", "\n", - "For complex questions it can be helpful for an LLM to be able to iteratively execute code while maintaining the inputs and outputs of its previous executions. This is where Agents come into play. They allow an LLM to decide how many times a tool needs to be invoked and keep track of the executions it's made so far. The [create_pandas_dataframe_agent](https://python.langchain.com/v0.2/api_reference/experimental/agents/langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent.html) is a built-in agent that makes it easy to work with dataframes:" + "For complex questions it can be helpful for an LLM to be able to iteratively execute code while maintaining the inputs and outputs of its previous executions. This is where Agents come into play. They allow an LLM to decide how many times a tool needs to be invoked and keep track of the executions it's made so far. The [create_pandas_dataframe_agent](https://python.langchain.com/api_reference/experimental/agents/langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent.html) is a built-in agent that makes it easy to work with dataframes:" ] }, { @@ -761,7 +759,7 @@ "* [SQL tutorial](/docs/tutorials/sql_qa): Many of the challenges of working with SQL db's and CSV's are generic to any structured data type, so it's useful to read the SQL techniques even if you're using Pandas for CSV data analysis.\n", "* [Tool use](/docs/how_to/tool_calling): Guides on general best practices when working with chains and agents that invoke tools\n", "* [Agents](/docs/tutorials/agents): Understand the fundamentals of building LLM agents.\n", - "* Integrations: Sandboxed envs like [E2B](/docs/integrations/tools/e2b_data_analysis) and [Bearly](/docs/integrations/tools/bearly), utilities like [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), related agents like [Spark DataFrame agent](/docs/integrations/tools/spark_sql)." + "* Integrations: Sandboxed envs like [E2B](/docs/integrations/tools/e2b_data_analysis) and [Bearly](/docs/integrations/tools/bearly), utilities like [SQLDatabase](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html#langchain_community.utilities.sql_database.SQLDatabase), related agents like [Spark DataFrame agent](/docs/integrations/tools/spark_sql)." ] } ], diff --git a/docs/docs/how_to/sql_large_db.ipynb b/docs/docs/how_to/sql_large_db.ipynb index 33d919b52ec34..53f4bf6224d8f 100644 --- a/docs/docs/how_to/sql_large_db.ipynb +++ b/docs/docs/how_to/sql_large_db.ipynb @@ -55,7 +55,7 @@ "* Run `.read Chinook_Sqlite.sql`\n", "* Test `SELECT * FROM Artist LIMIT 10;`\n", "\n", - "Now, `Chinhook.db` is in our directory and we can interface with it using the SQLAlchemy-driven [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) class:" + "Now, `Chinhook.db` is in our directory and we can interface with it using the SQLAlchemy-driven [SQLDatabase](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) class:" ] }, { @@ -94,11 +94,9 @@ "\n", "One easy and reliable way to do this is using [tool-calling](/docs/how_to/tool_calling). Below, we show how we can use this feature to obtain output conforming to a desired format (in this case, a list of table names). We use the chat model's `.bind_tools` method to bind a tool in Pydantic format, and feed this into an output parser to reconstruct the object from the model's response.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -136,7 +134,7 @@ "source": [ "from langchain_core.output_parsers.openai_tools import PydanticToolsParser\n", "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Table(BaseModel):\n", @@ -271,7 +269,7 @@ "id": "04d52d01-1ccf-4753-b34a-0dcbc4921f78", "metadata": {}, "source": [ - "Now that we've got a chain that can output the relevant tables for any query we can combine this with our [create_sql_query_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html), which can accept a list of `table_names_to_use` to determine which table schemas are included in the prompt:" + "Now that we've got a chain that can output the relevant tables for any query we can combine this with our [create_sql_query_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html), which can accept a list of `table_names_to_use` to determine which table schemas are included in the prompt:" ] }, { diff --git a/docs/docs/how_to/sql_prompting.ipynb b/docs/docs/how_to/sql_prompting.ipynb index 6dd22b081d3e1..0cd1a1c2626d4 100644 --- a/docs/docs/how_to/sql_prompting.ipynb +++ b/docs/docs/how_to/sql_prompting.ipynb @@ -6,11 +6,11 @@ "source": [ "# How to better prompt when doing SQL question-answering\n", "\n", - "In this guide we'll go over prompting strategies to improve SQL query generation using [create_sql_query_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html). We'll largely focus on methods for getting relevant database-specific information in your prompt.\n", + "In this guide we'll go over prompting strategies to improve SQL query generation using [create_sql_query_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html). We'll largely focus on methods for getting relevant database-specific information in your prompt.\n", "\n", "We will cover: \n", "\n", - "- How the dialect of the LangChain [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) impacts the prompt of the chain;\n", + "- How the dialect of the LangChain [SQLDatabase](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) impacts the prompt of the chain;\n", "- How to format schema information into the prompt using `SQLDatabase.get_context`;\n", "- How to build and select few-shot examples to assist the model.\n", "\n", @@ -84,7 +84,7 @@ "source": [ "## Dialect-specific prompting\n", "\n", - "One of the simplest things we can do is make our prompt specific to the SQL dialect we're using. When using the built-in [create_sql_query_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html) and [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html), this is handled for you for any of the following dialects:" + "One of the simplest things we can do is make our prompt specific to the SQL dialect we're using. When using the built-in [create_sql_query_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html) and [SQLDatabase](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html), this is handled for you for any of the following dialects:" ] }, { @@ -125,11 +125,9 @@ "source": [ "For example, using our current DB we can see that we'll get a SQLite-specific prompt.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -629,7 +627,7 @@ "\n", "If we have enough examples, we may want to only include the most relevant ones in the prompt, either because they don't fit in the model's context window or because the long tail of examples distracts the model. And specifically, given any input we want to include the examples most relevant to that input.\n", "\n", - "We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://python.langchain.com/v0.2/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones.\n", + "We can do just this using an ExampleSelector. In this case we'll use a [SemanticSimilarityExampleSelector](https://python.langchain.com/api_reference/core/example_selectors/langchain_core.example_selectors.semantic_similarity.SemanticSimilarityExampleSelector.html), which will store the examples in the vector database of our choosing. At runtime it will perform a similarity search between the input and our examples, and return the most semantically similar ones.\n", "\n", "We default to OpenAI embeddings here, but you can swap them out for the model provider of your choice." ] diff --git a/docs/docs/how_to/sql_query_checking.ipynb b/docs/docs/how_to/sql_query_checking.ipynb index f4205c3f141ff..e15609d7ba4df 100644 --- a/docs/docs/how_to/sql_query_checking.ipynb +++ b/docs/docs/how_to/sql_query_checking.ipynb @@ -91,11 +91,9 @@ "\n", "Perhaps the simplest strategy is to ask the model itself to check the original query for common mistakes. Suppose we have the following SQL query chain:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { diff --git a/docs/docs/how_to/streaming.ipynb b/docs/docs/how_to/streaming.ipynb index 3615c790e498f..02b6e63466fc3 100644 --- a/docs/docs/how_to/streaming.ipynb +++ b/docs/docs/how_to/streaming.ipynb @@ -67,13 +67,11 @@ "\n", "We will show examples of streaming using a chat model. Choose one from the options below:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { @@ -246,9 +244,9 @@ "\n", "Let's build a simple chain using `LangChain Expression Language` (`LCEL`) that combines a prompt, model and a parser and verify that streaming works.\n", "\n", - "We will use [`StrOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.string.StrOutputParser.html) to parse the output from the model. This is a simple parser that extracts the `content` field from an `AIMessageChunk`, giving us the `token` returned by the model.\n", + "We will use [`StrOutputParser`](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.string.StrOutputParser.html) to parse the output from the model. This is a simple parser that extracts the `content` field from an `AIMessageChunk`, giving us the `token` returned by the model.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "LCEL is a *declarative* way to specify a \"program\" by chainining together different LangChain primitives. Chains created using LCEL benefit from an automatic implementation of `stream` and `astream` allowing streaming of the final output. In fact, chains created with LCEL implement the entire standard Runnable interface.\n", ":::" ] @@ -306,7 +304,7 @@ "id": "1b399fb4-5e3c-4581-9570-6df9b42b623d", "metadata": {}, "source": [ - ":::{.callout-note}\n", + ":::note\n", "The LangChain Expression language allows you to separate the construction of a chain from the mode in which it is used (e.g., sync/async, batch/streaming etc.). If this is not relevant to what you're building, you can also rely on a standard **imperative** programming approach by\n", "caling `invoke`, `batch` or `stream` on each component individually, assigning the results to variables and then using them downstream as you see fit.\n", "\n", @@ -385,11 +383,11 @@ "source": [ "Now, let's **break** streaming. We'll use the previous example and append an extraction function at the end that extracts the country names from the finalized JSON.\n", "\n", - ":::{.callout-warning}\n", + ":::warning\n", "Any steps in the chain that operate on **finalized inputs** rather than on **input streams** can break streaming functionality via `stream` or `astream`.\n", ":::\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "Later, we will discuss the `astream_events` API which streams results from intermediate steps. This API will stream results from intermediate steps even if the chain contains steps that only operate on **finalized inputs**.\n", ":::" ] @@ -454,7 +452,7 @@ "\n", "Let's fix the streaming using a generator function that can operate on the **input stream**.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "A generator function (a function that uses `yield`) allows writing code that operates on **input streams**\n", ":::" ] @@ -517,7 +515,7 @@ "id": "d59823f5-9b9a-43c5-a213-34644e2f1d3d", "metadata": {}, "source": [ - ":::{.callout-note}\n", + ":::note\n", "Because the code above is relying on JSON auto-completion, you may see partial names of countries (e.g., `Sp` and `Spain`), which is not what one would want for an extraction result!\n", "\n", "We're focusing on streaming concepts, not necessarily the results of the chains.\n", @@ -585,7 +583,7 @@ "\n", "This is OK 🥹! Not all components have to implement streaming -- in some cases streaming is either unnecessary, difficult or just doesn't make sense.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "An LCEL chain constructed using non-streaming components, will still be able to stream in a lot of cases, with streaming of partial output starting after the last non-streaming step in the chain.\n", ":::" ] @@ -654,7 +652,7 @@ "\n", "Event Streaming is a **beta** API. This API may change a bit based on feedback.\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "\n", "This guide demonstrates the `V2` API and requires langchain-core >= 0.2. For the `V1` API compatible with older versions of LangChain, see [here](https://python.langchain.com/v0.1/docs/expression_language/streaming/#using-stream-events).\n", ":::" @@ -689,27 +687,27 @@ "Below is a reference table that shows some events that might be emitted by the various Runnable objects.\n", "\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "When streaming is implemented properly, the inputs to a runnable will not be known until after the input stream has been entirely consumed. This means that `inputs` will often be included only for `end` events and rather than for `start` events.\n", ":::\n", "\n", "| event | name | chunk | input | output |\n", "|----------------------|------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------|\n", - "| on_chat_model_start | [model name] | | {\"messages\": [[SystemMessage, HumanMessage]]} | |\n", + "| on_chat_model_start | [model name] | | \\{\"messages\": [[SystemMessage, HumanMessage]]\\} | |\n", "| on_chat_model_stream | [model name] | AIMessageChunk(content=\"hello\") | | |\n", - "| on_chat_model_end | [model name] | | {\"messages\": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content=\"hello world\") |\n", - "| on_llm_start | [model name] | | {'input': 'hello'} | |\n", + "| on_chat_model_end | [model name] | | \\{\"messages\": [[SystemMessage, HumanMessage]]\\} | AIMessageChunk(content=\"hello world\") |\n", + "| on_llm_start | [model name] | | \\{'input': 'hello'\\} | |\n", "| on_llm_stream | [model name] | 'Hello' | | |\n", "| on_llm_end | [model name] | | 'Hello human!' | |\n", "| on_chain_start | format_docs | | | |\n", "| on_chain_stream | format_docs | \"hello world!, goodbye world!\" | | |\n", "| on_chain_end | format_docs | | [Document(...)] | \"hello world!, goodbye world!\" |\n", - "| on_tool_start | some_tool | | {\"x\": 1, \"y\": \"2\"} | |\n", - "| on_tool_end | some_tool | | | {\"x\": 1, \"y\": \"2\"} |\n", - "| on_retriever_start | [retriever name] | | {\"query\": \"hello\"} | |\n", - "| on_retriever_end | [retriever name] | | {\"query\": \"hello\"} | [Document(...), ..] |\n", - "| on_prompt_start | [template_name] | | {\"question\": \"hello\"} | |\n", - "| on_prompt_end | [template_name] | | {\"question\": \"hello\"} | ChatPromptValue(messages: [SystemMessage, ...]) |" + "| on_tool_start | some_tool | | \\{\"x\": 1, \"y\": \"2\"\\} | |\n", + "| on_tool_end | some_tool | | | \\{\"x\": 1, \"y\": \"2\"\\} |\n", + "| on_retriever_start | [retriever name] | | \\{\"query\": \"hello\"\\} | |\n", + "| on_retriever_end | [retriever name] | | \\{\"query\": \"hello\"\\} | [Document(...), ..] |\n", + "| on_prompt_start | [template_name] | | \\{\"question\": \"hello\"\\} | |\n", + "| on_prompt_end | [template_name] | | \\{\"question\": \"hello\"\\} | ChatPromptValue(messages: [SystemMessage, ...]) |" ] }, { @@ -748,7 +746,7 @@ "id": "32972939-2995-4b2e-84db-045adb044fad", "metadata": {}, "source": [ - ":::{.callout-note}\n", + ":::note\n", "\n", "Hey what's that funny version=\"v2\" parameter in the API?! 😾\n", "\n", @@ -1129,7 +1127,7 @@ "source": [ "#### By Tags\n", "\n", - ":::{.callout-caution}\n", + ":::caution\n", "\n", "Tags are inherited by child components of a given runnable. \n", "\n", @@ -1336,11 +1334,11 @@ "source": [ "### Propagating Callbacks\n", "\n", - ":::{.callout-caution}\n", + ":::caution\n", "If you're using invoking runnables inside your tools, you need to propagate callbacks to the runnable; otherwise, no stream events will be generated.\n", ":::\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "When using `RunnableLambdas` or `@chain` decorator, callbacks are propagated automatically behind the scenes.\n", ":::" ] diff --git a/docs/docs/how_to/streaming_llm.ipynb b/docs/docs/how_to/streaming_llm.ipynb index a6cf3766c1f90..adc6dbe4db2ef 100644 --- a/docs/docs/how_to/streaming_llm.ipynb +++ b/docs/docs/how_to/streaming_llm.ipynb @@ -7,7 +7,7 @@ "source": [ "# How to stream responses from an LLM\n", "\n", - "All `LLM`s implement the [Runnable interface](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n", + "All `LLM`s implement the [Runnable interface](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable), which comes with **default** implementations of standard runnable methods (i.e. `ainvoke`, `batch`, `abatch`, `stream`, `astream`, `astream_events`).\n", "\n", "The **default** streaming implementations provide an`Iterator` (or `AsyncIterator` for asynchronous streaming) that yields a single value: the final output from the underlying chat model provider.\n", "\n", @@ -17,7 +17,7 @@ "\n", "\n", "\n", - ":::{.callout-note}\n", + ":::note\n", "\n", "The **default** implementation does **not** provide support for token-by-token streaming, but it ensures that the model can be swapped in for any other model as it supports the same standard interface.\n", "\n", @@ -112,9 +112,9 @@ "## Async event streaming\n", "\n", "\n", - "LLMs also support the standard [astream events](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n", + "LLMs also support the standard [astream events](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.Runnable.html#langchain_core.runnables.base.Runnable.astream_events) method.\n", "\n", - ":::{.callout-tip}\n", + ":::tip\n", "\n", "`astream_events` is most useful when implementing streaming in a larger LLM application that contains multiple steps (e.g., an application that involves an `agent`).\n", ":::" diff --git a/docs/docs/how_to/structured_output.ipynb b/docs/docs/how_to/structured_output.ipynb index 152eef991af78..8a691a6e17a53 100644 --- a/docs/docs/how_to/structured_output.ipynb +++ b/docs/docs/how_to/structured_output.ipynb @@ -47,13 +47,11 @@ "\n", "As an example, let's get a model to generate a joke and separate the setup from the punchline:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { @@ -101,7 +99,7 @@ "source": [ "from typing import Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "# Pydantic\n", @@ -257,17 +255,17 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 19, "id": "9194bcf2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Response(output=Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=8))" + "FinalResponse(final_output=Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=7))" ] }, - "execution_count": 4, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -293,28 +291,28 @@ " response: str = Field(description=\"A conversational response to the user's query\")\n", "\n", "\n", - "class Response(BaseModel):\n", - " output: Union[Joke, ConversationalResponse]\n", + "class FinalResponse(BaseModel):\n", + " final_output: Union[Joke, ConversationalResponse]\n", "\n", "\n", - "structured_llm = llm.with_structured_output(Response)\n", + "structured_llm = llm.with_structured_output(FinalResponse)\n", "\n", "structured_llm.invoke(\"Tell me a joke about cats\")" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 20, "id": "84d86132", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "Response(output=ConversationalResponse(response=\"I'm just a digital assistant, so I don't have feelings, but I'm here and ready to help you. How can I assist you today?\"))" + "FinalResponse(final_output=ConversationalResponse(response=\"I'm just a bunch of code, so I don't have feelings, but I'm here and ready to help you! How can I assist you today?\"))" ] }, - "execution_count": 5, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -574,7 +572,7 @@ "\n", "If using JSON mode you'll have to still specify the desired schema in the model prompt. The schema you pass to `with_structured_output` will only be used for parsing the model outputs, it will not be passed to the model the way it is with tool calling.\n", "\n", - "To see if the model you're using supports JSON mode, check its entry in the [API reference](https://python.langchain.com/v0.2/api_reference/langchain/index.html).\n", + "To see if the model you're using supports JSON mode, check its entry in the [API reference](https://python.langchain.com/api_reference/langchain/index.html).\n", "\n", ":::" ] @@ -653,7 +651,7 @@ "\n", "### Using `PydanticOutputParser`\n", "\n", - "The following example uses the built-in [`PydanticOutputParser`](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html) to parse the output of a chat model prompted to match the given Pydantic schema. Note that we are adding `format_instructions` directly to the prompt from a method on the parser:" + "The following example uses the built-in [`PydanticOutputParser`](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.pydantic.PydanticOutputParser.html) to parse the output of a chat model prompted to match the given Pydantic schema. Note that we are adding `format_instructions` directly to the prompt from a method on the parser:" ] }, { @@ -667,7 +665,7 @@ "\n", "from langchain_core.output_parsers import PydanticOutputParser\n", "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Person(BaseModel):\n", @@ -794,7 +792,7 @@ "\n", "from langchain_core.messages import AIMessage\n", "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Person(BaseModel):\n", @@ -915,9 +913,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "poetry-venv-2", "language": "python", - "name": "python3" + "name": "poetry-venv-2" }, "language_info": { "codemirror_mode": { diff --git a/docs/docs/how_to/summarize_map_reduce.ipynb b/docs/docs/how_to/summarize_map_reduce.ipynb index 52b4cc6ad6ce3..7518ef7ac28c8 100644 --- a/docs/docs/how_to/summarize_map_reduce.ipynb +++ b/docs/docs/how_to/summarize_map_reduce.ipynb @@ -1,7 +1,7 @@ { "cells": [ { - "cell_type": "markdown", + "cell_type": "raw", "id": "c47f5b2f-e14c-43e7-a0ab-d71562636624", "metadata": {}, "source": [ @@ -41,13 +41,12 @@ "## Load chat model\n", "\n", "Let's first load a chat model:\n", - "```{=mdx}\n", + "\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { @@ -72,7 +71,7 @@ "source": [ "## Load documents\n", "\n", - "First we load in our documents. We will use [WebBaseLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load a blog post, and split the documents into smaller sub-documents." + "First we load in our documents. We will use [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load a blog post, and split the documents into smaller sub-documents." ] }, { diff --git a/docs/docs/how_to/summarize_refine.ipynb b/docs/docs/how_to/summarize_refine.ipynb index 4364785217e04..269be50eb83cd 100644 --- a/docs/docs/how_to/summarize_refine.ipynb +++ b/docs/docs/how_to/summarize_refine.ipynb @@ -46,13 +46,12 @@ "## Load chat model\n", "\n", "Let's first load a chat model:\n", - "```{=mdx}\n", + "\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { diff --git a/docs/docs/how_to/summarize_stuff.ipynb b/docs/docs/how_to/summarize_stuff.ipynb index 2aa67d8a82909..0e3f069b8bbe0 100644 --- a/docs/docs/how_to/summarize_stuff.ipynb +++ b/docs/docs/how_to/summarize_stuff.ipynb @@ -20,7 +20,7 @@ "\n", "LLMs can summarize and otherwise distill desired information from text, including large volumes of text. In many cases, especially for models with larger context windows, this can be adequately achieved via a single LLM call.\n", "\n", - "LangChain implements a simple [pre-built chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) that \"stuffs\" a prompt with the desired context for summarization and other purposes. In this guide we demonstrate how to use the chain." + "LangChain implements a simple [pre-built chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) that \"stuffs\" a prompt with the desired context for summarization and other purposes. In this guide we demonstrate how to use the chain." ] }, { @@ -31,13 +31,12 @@ "## Load chat model\n", "\n", "Let's first load a chat model:\n", - "```{=mdx}\n", + "\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { diff --git a/docs/docs/how_to/tool_artifacts.ipynb b/docs/docs/how_to/tool_artifacts.ipynb index bf630ced57510..9687834cf7076 100644 --- a/docs/docs/how_to/tool_artifacts.ipynb +++ b/docs/docs/how_to/tool_artifacts.ipynb @@ -18,7 +18,7 @@ "\n", "Tools are utilities that can be called by a model, and whose outputs are designed to be fed back to a model. Sometimes, however, there are artifacts of a tool's execution that we want to make accessible to downstream components in our chain or agent, but that we don't want to expose to the model itself. For example if a tool returns a custom object, a dataframe or an image, we may want to pass some metadata about this output to the model without passing the actual output to the model. At the same time, we may want to be able to access this full output elsewhere, for example in downstream tools.\n", "\n", - "The Tool and [ToolMessage](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n", + "The Tool and [ToolMessage](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.ToolMessage.html) interfaces make it possible to distinguish between the parts of the tool output meant for the model (this is the ToolMessage.content) and those parts which are meant for use outside the model (ToolMessage.artifact).\n", "\n", ":::info Requires ``langchain-core >= 0.2.19``\n", "\n", @@ -145,13 +145,11 @@ "\n", "With a [tool-calling model](/docs/how_to/tool_calling/), we can easily use a model to call our Tool and generate ToolMessages:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { diff --git a/docs/docs/how_to/tool_calling.ipynb b/docs/docs/how_to/tool_calling.ipynb index 029f673d500fd..c812617d19421 100644 --- a/docs/docs/how_to/tool_calling.ipynb +++ b/docs/docs/how_to/tool_calling.ipynb @@ -55,7 +55,7 @@ "source": [ "## Defining tool schemas\n", "\n", - "For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what it's arguments are. Chat models that support tool calling features implement a `.bind_tools()` method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChain [Tool objects](https://python.langchain.com/v0.2/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool). Subsequent invocations of the model will pass in these tool schemas along with the prompt.\n", + "For a model to be able to call tools, we need to pass in tool schemas that describe what the tool does and what it's arguments are. Chat models that support tool calling features implement a `.bind_tools()` method for passing tool schemas to the model. Tool schemas can be passed in as Python functions (with typehints and docstrings), Pydantic models, TypedDict classes, or LangChain [Tool objects](https://python.langchain.com/api_reference/core/tools/langchain_core.tools.BaseTool.html#langchain_core.tools.BaseTool). Subsequent invocations of the model will pass in these tool schemas along with the prompt.\n", "\n", "### Python functions\n", "Our tool schemas can be Python functions:" @@ -64,7 +64,14 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:43:40.609832Z", + "iopub.status.busy": "2024-09-11T02:43:40.609565Z", + "iopub.status.idle": "2024-09-11T02:43:40.617860Z", + "shell.execute_reply": "2024-09-11T02:43:40.617391Z" + } + }, "outputs": [], "source": [ "# The function name, type hints, and docstring are all part of the tool\n", @@ -109,10 +116,17 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:43:40.620257Z", + "iopub.status.busy": "2024-09-11T02:43:40.620084Z", + "iopub.status.idle": "2024-09-11T02:43:40.689214Z", + "shell.execute_reply": "2024-09-11T02:43:40.688938Z" + } + }, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class add(BaseModel):\n", @@ -144,7 +158,14 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:43:40.690850Z", + "iopub.status.busy": "2024-09-11T02:43:40.690739Z", + "iopub.status.idle": "2024-09-11T02:43:40.693436Z", + "shell.execute_reply": "2024-09-11T02:43:40.693199Z" + } + }, "outputs": [], "source": [ "from typing_extensions import Annotated, TypedDict\n", @@ -158,7 +179,7 @@ " b: Annotated[int, ..., \"Second integer\"]\n", "\n", "\n", - "class multiply(BaseModel):\n", + "class multiply(TypedDict):\n", " \"\"\"Multiply two integers.\"\"\"\n", "\n", " a: Annotated[int, ..., \"First integer\"]\n", @@ -175,14 +196,12 @@ "To actually bind those schemas to a chat model, we'll use the `.bind_tools()` method. This handles converting\n", "the `add` and `multiply` schemas to the proper format for the model. The tool schema will then be passed it in each time the model is invoked.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { @@ -201,7 +220,8 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] @@ -209,12 +229,19 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:43:42.447839Z", + "iopub.status.busy": "2024-09-11T02:43:42.447760Z", + "iopub.status.idle": "2024-09-11T02:43:43.181171Z", + "shell.execute_reply": "2024-09-11T02:43:43.180680Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_BwYJ4UgU5pRVCBOUmiu7NhF9', 'function': {'arguments': '{\"a\":3,\"b\":12}', 'name': 'multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 80, 'total_tokens': 97}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_ba606877f9', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-7f05e19e-4561-40e2-a2d0-8f4e28e9a00f-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BwYJ4UgU5pRVCBOUmiu7NhF9', 'type': 'tool_call'}], usage_metadata={'input_tokens': 80, 'output_tokens': 17, 'total_tokens': 97})" + "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_iXj4DiW1p7WLjTAQMRO0jxMs', 'function': {'arguments': '{\"a\":3,\"b\":12}', 'name': 'multiply'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 80, 'total_tokens': 97}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_483d39d857', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-0b620986-3f62-4df7-9ba3-4595089f9ad4-0', tool_calls=[{'name': 'multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_iXj4DiW1p7WLjTAQMRO0jxMs', 'type': 'tool_call'}], usage_metadata={'input_tokens': 80, 'output_tokens': 17, 'total_tokens': 97})" ] }, "execution_count": 5, @@ -234,7 +261,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As we can see our LLM generated arguments to a tool! You can look at the docs for [bind_tools()](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.BaseChatOpenAI.html#langchain_openai.chat_models.base.BaseChatOpenAI.bind_tools) to learn about all the ways to customize how your LLM selects tools, as well as [this guide on how to force the LLM to call a tool](/docs/how_to/tool_choice/) rather than letting it decide." + "As we can see our LLM generated arguments to a tool! You can look at the docs for [bind_tools()](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.BaseChatOpenAI.html#langchain_openai.chat_models.base.BaseChatOpenAI.bind_tools) to learn about all the ways to customize how your LLM selects tools, as well as [this guide on how to force the LLM to call a tool](/docs/how_to/tool_choice/) rather than letting it decide." ] }, { @@ -244,9 +271,9 @@ "## Tool calls\n", "\n", "If tool calls are included in a LLM response, they are attached to the corresponding \n", - "[message](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage) \n", - "or [message chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", - "as a list of [tool call](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolCall.html#langchain_core.messages.tool.ToolCall) \n", + "[message](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html#langchain_core.messages.ai.AIMessage) \n", + "or [message chunk](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", + "as a list of [tool call](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.ToolCall.html#langchain_core.messages.tool.ToolCall) \n", "objects in the `.tool_calls` attribute.\n", "\n", "Note that chat models can call multiple tools at once.\n", @@ -259,18 +286,25 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:43:43.184004Z", + "iopub.status.busy": "2024-09-11T02:43:43.183777Z", + "iopub.status.idle": "2024-09-11T02:43:43.743024Z", + "shell.execute_reply": "2024-09-11T02:43:43.742171Z" + } + }, "outputs": [ { "data": { "text/plain": [ "[{'name': 'multiply',\n", " 'args': {'a': 3, 'b': 12},\n", - " 'id': 'call_rcdMie7E89Xx06lEKKxJyB5N',\n", + " 'id': 'call_1fyhJAbJHuKQe6n0PacubGsL',\n", " 'type': 'tool_call'},\n", " {'name': 'add',\n", " 'args': {'a': 11, 'b': 49},\n", - " 'id': 'call_nheGN8yfvSJsnIuGZaXihou3',\n", + " 'id': 'call_fc2jVkKzwuPWyU7kS9qn1hyG',\n", " 'type': 'tool_call'}]" ] }, @@ -292,7 +326,7 @@ "The `.tool_calls` attribute should contain valid tool calls. Note that on occasion, \n", "model providers may output malformed tool calls (e.g., arguments that are not \n", "valid JSON). When parsing fails in these cases, instances \n", - "of [InvalidToolCall](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.InvalidToolCall.html#langchain_core.messages.tool.InvalidToolCall) \n", + "of [InvalidToolCall](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.InvalidToolCall.html#langchain_core.messages.tool.InvalidToolCall) \n", "are populated in the `.invalid_tool_calls` attribute. An `InvalidToolCall` can have \n", "a name, string arguments, identifier, and error message.\n", "\n", @@ -300,13 +334,20 @@ "## Parsing\n", "\n", "If desired, [output parsers](/docs/how_to#output-parsers) can further process the output. For example, we can convert existing values populated on the `.tool_calls` to Pydantic objects using the\n", - "[PydanticToolsParser](https://python.langchain.com/v0.2/api_reference/core/output_parsers/langchain_core.output_parsers.openai_tools.PydanticToolsParser.html):" + "[PydanticToolsParser](https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.openai_tools.PydanticToolsParser.html):" ] }, { "cell_type": "code", "execution_count": 7, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:43:43.746273Z", + "iopub.status.busy": "2024-09-11T02:43:43.746020Z", + "iopub.status.idle": "2024-09-11T02:43:44.586236Z", + "shell.execute_reply": "2024-09-11T02:43:44.585619Z" + } + }, "outputs": [ { "data": { @@ -321,7 +362,7 @@ ], "source": [ "from langchain_core.output_parsers import PydanticToolsParser\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class add(BaseModel):\n", diff --git a/docs/docs/how_to/tool_calling_parallel.ipynb b/docs/docs/how_to/tool_calling_parallel.ipynb index 7c1175035a412..e4671bf98372d 100644 --- a/docs/docs/how_to/tool_calling_parallel.ipynb +++ b/docs/docs/how_to/tool_calling_parallel.ipynb @@ -57,9 +57,10 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { diff --git a/docs/docs/how_to/tool_choice.ipynb b/docs/docs/how_to/tool_choice.ipynb index 762508292c4c2..075d9a0a62933 100644 --- a/docs/docs/how_to/tool_choice.ipynb +++ b/docs/docs/how_to/tool_choice.ipynb @@ -57,9 +57,10 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -77,7 +78,7 @@ { "data": { "text/plain": [ - "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_9cViskmLvPnHjXk9tbVla5HA', 'function': {'arguments': '{\"a\":2,\"b\":4}', 'name': 'Multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 103, 'total_tokens': 112}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-095b827e-2bdd-43bb-8897-c843f4504883-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 2, 'b': 4}, 'id': 'call_9cViskmLvPnHjXk9tbVla5HA'}], usage_metadata={'input_tokens': 103, 'output_tokens': 9, 'total_tokens': 112})" + "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_9cViskmLvPnHjXk9tbVla5HA', 'function': {'arguments': '{\"a\":2,\"b\":4}', 'name': 'Multiply'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 103, 'total_tokens': 112}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-095b827e-2bdd-43bb-8897-c843f4504883-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 2, 'b': 4}, 'id': 'call_9cViskmLvPnHjXk9tbVla5HA'}], usage_metadata={'input_tokens': 103, 'output_tokens': 9, 'total_tokens': 112})" ] }, "metadata": {}, @@ -111,7 +112,7 @@ { "data": { "text/plain": [ - "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W', 'function': {'arguments': '{\"a\":1,\"b\":2}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 94, 'total_tokens': 109}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-28f75260-9900-4bed-8cd3-f1579abb65e5-0', tool_calls=[{'name': 'Add', 'args': {'a': 1, 'b': 2}, 'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W'}], usage_metadata={'input_tokens': 94, 'output_tokens': 15, 'total_tokens': 109})" + "AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W', 'function': {'arguments': '{\"a\":1,\"b\":2}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 94, 'total_tokens': 109}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-28f75260-9900-4bed-8cd3-f1579abb65e5-0', tool_calls=[{'name': 'Add', 'args': {'a': 1, 'b': 2}, 'id': 'call_mCSiJntCwHJUBfaHZVUB2D8W'}], usage_metadata={'input_tokens': 94, 'output_tokens': 15, 'total_tokens': 109})" ] }, "metadata": {}, diff --git a/docs/docs/how_to/tool_configure.ipynb b/docs/docs/how_to/tool_configure.ipynb index c67cc95399b8d..a97446e261a1f 100644 --- a/docs/docs/how_to/tool_configure.ipynb +++ b/docs/docs/how_to/tool_configure.ipynb @@ -19,7 +19,7 @@ "\n", "If you have a tool that call chat models, retrievers, or other runnables, you may want to access internal events from those runnables or configure them with additional properties. This guide shows you how to manually pass parameters properly so that you can do this using the `astream_events()` method.\n", "\n", - "Tools are runnables, and you can treat them the same way as any other runnable at the interface level - you can call `invoke()`, `batch()`, and `stream()` on them as normal. However, when writing custom tools, you may want to invoke other runnables like chat models or retrievers. In order to properly trace and configure those sub-invocations, you'll need to manually access and pass in the tool's current [`RunnableConfig`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html) object. This guide show you some examples of how to do that.\n", + "Tools are runnables, and you can treat them the same way as any other runnable at the interface level - you can call `invoke()`, `batch()`, and `stream()` on them as normal. However, when writing custom tools, you may want to invoke other runnables like chat models or retrievers. In order to properly trace and configure those sub-invocations, you'll need to manually access and pass in the tool's current [`RunnableConfig`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html) object. This guide show you some examples of how to do that.\n", "\n", ":::caution Compatibility\n", "\n", diff --git a/docs/docs/how_to/tool_results_pass_to_model.ipynb b/docs/docs/how_to/tool_results_pass_to_model.ipynb index ac17ae7749436..78e391e435918 100644 --- a/docs/docs/how_to/tool_results_pass_to_model.ipynb +++ b/docs/docs/how_to/tool_results_pass_to_model.ipynb @@ -29,14 +29,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { @@ -53,7 +51,8 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] diff --git a/docs/docs/how_to/tool_runtime.ipynb b/docs/docs/how_to/tool_runtime.ipynb index ac83176174917..fbbd2beba90d1 100644 --- a/docs/docs/how_to/tool_runtime.ipynb +++ b/docs/docs/how_to/tool_runtime.ipynb @@ -42,26 +42,31 @@ "source": [ "We can bind them to chat models as follows:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:51.802901Z", + "iopub.status.busy": "2024-09-11T02:52:51.802682Z", + "iopub.status.idle": "2024-09-11T02:52:52.398167Z", + "shell.execute_reply": "2024-09-11T02:52:52.397911Z" + } + }, "outputs": [], "source": [ "# | output: false\n", "# | echo: false\n", "\n", - "# %pip install -qU langchain langchain_openai\n", + "%pip install -qU langchain langchain_openai\n", "\n", "import os\n", "from getpass import getpass\n", @@ -71,7 +76,7 @@ "if \"OPENAI_API_KEY\" not in os.environ:\n", " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -86,7 +91,14 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:52.399922Z", + "iopub.status.busy": "2024-09-11T02:52:52.399796Z", + "iopub.status.idle": "2024-09-11T02:52:52.406349Z", + "shell.execute_reply": "2024-09-11T02:52:52.406077Z" + } + }, "outputs": [], "source": [ "from typing import List\n", @@ -141,22 +153,29 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:52.407763Z", + "iopub.status.busy": "2024-09-11T02:52:52.407691Z", + "iopub.status.idle": "2024-09-11T02:52:52.411761Z", + "shell.execute_reply": "2024-09-11T02:52:52.411512Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'update_favorite_petsSchema',\n", - " 'description': 'Add the list of favorite pets.',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'description': 'List of favorite pets to set.',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}},\n", - " 'user_id': {'title': 'User Id',\n", - " 'description': \"User's ID.\",\n", + "{'description': 'Add the list of favorite pets.',\n", + " 'properties': {'pets': {'description': 'List of favorite pets to set.',\n", + " 'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'},\n", + " 'user_id': {'description': \"User's ID.\",\n", + " 'title': 'User Id',\n", " 'type': 'string'}},\n", - " 'required': ['pets', 'user_id']}" + " 'required': ['pets', 'user_id'],\n", + " 'title': 'update_favorite_petsSchema',\n", + " 'type': 'object'}" ] }, "execution_count": 3, @@ -178,19 +197,26 @@ { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:52.427826Z", + "iopub.status.busy": "2024-09-11T02:52:52.427691Z", + "iopub.status.idle": "2024-09-11T02:52:52.431791Z", + "shell.execute_reply": "2024-09-11T02:52:52.431574Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'update_favorite_pets',\n", - " 'description': 'Add the list of favorite pets.',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'description': 'List of favorite pets to set.',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}}},\n", - " 'required': ['pets']}" + "{'description': 'Add the list of favorite pets.',\n", + " 'properties': {'pets': {'description': 'List of favorite pets to set.',\n", + " 'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'}},\n", + " 'required': ['pets'],\n", + " 'title': 'update_favorite_pets',\n", + " 'type': 'object'}" ] }, "execution_count": 4, @@ -212,7 +238,14 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:52.433096Z", + "iopub.status.busy": "2024-09-11T02:52:52.433014Z", + "iopub.status.idle": "2024-09-11T02:52:52.437499Z", + "shell.execute_reply": "2024-09-11T02:52:52.437239Z" + } + }, "outputs": [ { "name": "stdout", @@ -240,14 +273,21 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:52.439148Z", + "iopub.status.busy": "2024-09-11T02:52:52.438742Z", + "iopub.status.idle": "2024-09-11T02:52:53.394524Z", + "shell.execute_reply": "2024-09-11T02:52:53.394005Z" + } + }, "outputs": [ { "data": { "text/plain": [ "[{'name': 'update_favorite_pets',\n", " 'args': {'pets': ['cats', 'parrots']},\n", - " 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n", + " 'id': 'call_pZ6XVREGh1L0BBSsiGIf1xVm',\n", " 'type': 'tool_call'}]" ] }, @@ -284,14 +324,21 @@ { "cell_type": "code", "execution_count": 7, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:53.397134Z", + "iopub.status.busy": "2024-09-11T02:52:53.396972Z", + "iopub.status.idle": "2024-09-11T02:52:53.403332Z", + "shell.execute_reply": "2024-09-11T02:52:53.402787Z" + } + }, "outputs": [ { "data": { "text/plain": [ "[{'name': 'update_favorite_pets',\n", " 'args': {'pets': ['cats', 'parrots'], 'user_id': '123'},\n", - " 'id': 'call_W3cn4lZmJlyk8PCrKN4PRwqB',\n", + " 'id': 'call_pZ6XVREGh1L0BBSsiGIf1xVm',\n", " 'type': 'tool_call'}]" ] }, @@ -329,12 +376,19 @@ { "cell_type": "code", "execution_count": 8, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:53.405183Z", + "iopub.status.busy": "2024-09-11T02:52:53.405048Z", + "iopub.status.idle": "2024-09-11T02:52:54.248576Z", + "shell.execute_reply": "2024-09-11T02:52:54.248107Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "[ToolMessage(content='null', name='update_favorite_pets', tool_call_id='call_HUyF6AihqANzEYxQnTUKxkXj')]" + "[ToolMessage(content='null', name='update_favorite_pets', tool_call_id='call_oYCD0THSedHTbwNAY3NW6uUj')]" ] }, "execution_count": 8, @@ -365,7 +419,14 @@ { "cell_type": "code", "execution_count": 9, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:54.251169Z", + "iopub.status.busy": "2024-09-11T02:52:54.250948Z", + "iopub.status.idle": "2024-09-11T02:52:54.254279Z", + "shell.execute_reply": "2024-09-11T02:52:54.253889Z" + } + }, "outputs": [ { "data": { @@ -394,22 +455,29 @@ { "cell_type": "code", "execution_count": 10, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:54.256425Z", + "iopub.status.busy": "2024-09-11T02:52:54.256279Z", + "iopub.status.idle": "2024-09-11T02:52:54.262533Z", + "shell.execute_reply": "2024-09-11T02:52:54.262228Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'UpdateFavoritePetsSchema',\n", - " 'description': 'Update list of favorite pets',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'description': 'List of favorite pets to set.',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}},\n", - " 'user_id': {'title': 'User Id',\n", - " 'description': \"User's ID.\",\n", + "{'description': 'Update list of favorite pets',\n", + " 'properties': {'pets': {'description': 'List of favorite pets to set.',\n", + " 'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'},\n", + " 'user_id': {'description': \"User's ID.\",\n", + " 'title': 'User Id',\n", " 'type': 'string'}},\n", - " 'required': ['pets', 'user_id']}" + " 'required': ['pets', 'user_id'],\n", + " 'title': 'UpdateFavoritePetsSchema',\n", + " 'type': 'object'}" ] }, "execution_count": 10, @@ -418,8 +486,8 @@ } ], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_core.tools import BaseTool\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class UpdateFavoritePetsSchema(BaseModel):\n", @@ -440,19 +508,26 @@ { "cell_type": "code", "execution_count": 11, - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:54.264192Z", + "iopub.status.busy": "2024-09-11T02:52:54.264074Z", + "iopub.status.idle": "2024-09-11T02:52:54.267400Z", + "shell.execute_reply": "2024-09-11T02:52:54.267113Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'update_favorite_pets',\n", - " 'description': 'Update list of favorite pets',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'description': 'List of favorite pets to set.',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}}},\n", - " 'required': ['pets']}" + "{'description': 'Update list of favorite pets',\n", + " 'properties': {'pets': {'description': 'List of favorite pets to set.',\n", + " 'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'}},\n", + " 'required': ['pets'],\n", + " 'title': 'update_favorite_pets',\n", + " 'type': 'object'}" ] }, "execution_count": 11, @@ -466,26 +541,33 @@ }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:54.269027Z", + "iopub.status.busy": "2024-09-11T02:52:54.268905Z", + "iopub.status.idle": "2024-09-11T02:52:54.276123Z", + "shell.execute_reply": "2024-09-11T02:52:54.275876Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'UpdateFavoritePetsSchema',\n", - " 'description': 'Update list of favorite pets',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'description': 'List of favorite pets to set.',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}},\n", - " 'user_id': {'title': 'User Id',\n", - " 'description': \"User's ID.\",\n", + "{'description': 'Update list of favorite pets',\n", + " 'properties': {'pets': {'description': 'List of favorite pets to set.',\n", + " 'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'},\n", + " 'user_id': {'description': \"User's ID.\",\n", + " 'title': 'User Id',\n", " 'type': 'string'}},\n", - " 'required': ['pets', 'user_id']}" + " 'required': ['pets', 'user_id'],\n", + " 'title': 'UpdateFavoritePetsSchema',\n", + " 'type': 'object'}" ] }, - "execution_count": 22, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -508,23 +590,30 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": {}, + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:54.277497Z", + "iopub.status.busy": "2024-09-11T02:52:54.277400Z", + "iopub.status.idle": "2024-09-11T02:52:54.280323Z", + "shell.execute_reply": "2024-09-11T02:52:54.280072Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'update_favorite_pets',\n", - " 'description': 'Update list of favorite pets',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'description': 'List of favorite pets to set.',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}}},\n", - " 'required': ['pets']}" + "{'description': 'Update list of favorite pets',\n", + " 'properties': {'pets': {'description': 'List of favorite pets to set.',\n", + " 'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'}},\n", + " 'required': ['pets'],\n", + " 'title': 'update_favorite_pets',\n", + " 'type': 'object'}" ] }, - "execution_count": 23, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -535,23 +624,30 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:54.281741Z", + "iopub.status.busy": "2024-09-11T02:52:54.281642Z", + "iopub.status.idle": "2024-09-11T02:52:54.288857Z", + "shell.execute_reply": "2024-09-11T02:52:54.288632Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'update_favorite_petsSchema',\n", - " 'description': 'Use the tool.\\n\\nAdd run_manager: Optional[CallbackManagerForToolRun] = None\\nto child implementations to enable tracing.',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}},\n", + "{'description': 'Use the tool.\\n\\nAdd run_manager: Optional[CallbackManagerForToolRun] = None\\nto child implementations to enable tracing.',\n", + " 'properties': {'pets': {'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'},\n", " 'user_id': {'title': 'User Id', 'type': 'string'}},\n", - " 'required': ['pets', 'user_id']}" + " 'required': ['pets', 'user_id'],\n", + " 'title': 'update_favorite_petsSchema',\n", + " 'type': 'object'}" ] }, - "execution_count": 24, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -570,22 +666,29 @@ }, { "cell_type": "code", - "execution_count": 26, - "metadata": {}, + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T02:52:54.290237Z", + "iopub.status.busy": "2024-09-11T02:52:54.290145Z", + "iopub.status.idle": "2024-09-11T02:52:54.294273Z", + "shell.execute_reply": "2024-09-11T02:52:54.294053Z" + } + }, "outputs": [ { "data": { "text/plain": [ - "{'title': 'update_favorite_pets',\n", - " 'description': 'Update list of favorite pets',\n", - " 'type': 'object',\n", - " 'properties': {'pets': {'title': 'Pets',\n", - " 'type': 'array',\n", - " 'items': {'type': 'string'}}},\n", - " 'required': ['pets']}" + "{'description': 'Update list of favorite pets',\n", + " 'properties': {'pets': {'items': {'type': 'string'},\n", + " 'title': 'Pets',\n", + " 'type': 'array'}},\n", + " 'required': ['pets'],\n", + " 'title': 'update_favorite_pets',\n", + " 'type': 'object'}" ] }, - "execution_count": 26, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -597,7 +700,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -611,7 +714,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/tool_stream_events.ipynb b/docs/docs/how_to/tool_stream_events.ipynb index 3cf3f1ae21d7c..6167e158d6c8a 100644 --- a/docs/docs/how_to/tool_stream_events.ipynb +++ b/docs/docs/how_to/tool_stream_events.ipynb @@ -20,9 +20,9 @@ "\n", ":::caution Compatibility\n", "\n", - "LangChain cannot automatically propagate configuration, including callbacks necessary for `astream_events()`, to child runnables if you are running `async` code in `python<=3.10`. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n", + "LangChain cannot automatically propagate configuration, including callbacks necessary for `astream_events()`, to child runnables if you are running `async` code in `python<=3.10`. This is a common reason why you may fail to see events being emitted from custom runnables or tools.\n", "\n", - "If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n", + "If you are running python<=3.10, you will need to manually propagate the `RunnableConfig` object to the child runnable in async environments. For an example of how to manually propagate the config, see the implementation of the `bar` RunnableLambda below.\n", "\n", "If you are running python>=3.11, the `RunnableConfig` will automatically propagate to child runnables in async environment. However, it is still a good idea to propagate the `RunnableConfig` manually if your code may run in older Python versions.\n", "\n", @@ -31,11 +31,9 @@ "\n", "Say you have a custom tool that calls a chain that condenses its input by prompting a chat model to return only 10 words, then reversing the output. First, define it in a naive way:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { diff --git a/docs/docs/how_to/tool_streaming.ipynb b/docs/docs/how_to/tool_streaming.ipynb index 4994b55874a5f..b96868d80ffec 100644 --- a/docs/docs/how_to/tool_streaming.ipynb +++ b/docs/docs/how_to/tool_streaming.ipynb @@ -7,8 +7,8 @@ "# How to stream tool calls\n", "\n", "When tools are called in a streaming context, \n", - "[message chunks](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", - "will be populated with [tool call chunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n", + "[message chunks](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", + "will be populated with [tool call chunk](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.tool.ToolCallChunk.html#langchain_core.messages.tool.ToolCallChunk) \n", "objects in a list via the `.tool_call_chunks` attribute. A `ToolCallChunk` includes \n", "optional string fields for the tool `name`, `args`, and `id`, and includes an optional \n", "integer field `index` that can be used to join chunks together. Fields are optional \n", @@ -16,7 +16,7 @@ "that includes a substring of the arguments may have null values for the tool name and id).\n", "\n", "Because message chunks inherit from their parent message class, an \n", - "[AIMessageChunk](https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", + "[AIMessageChunk](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessageChunk.html#langchain_core.messages.ai.AIMessageChunk) \n", "with tool call chunks will also include `.tool_calls` and `.invalid_tool_calls` fields. \n", "These fields are parsed best-effort from the message's tool call chunks.\n", "\n", @@ -58,9 +58,10 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "llm_with_tools = llm.bind_tools(tools)" ] }, diff --git a/docs/docs/how_to/tools_builtin.ipynb b/docs/docs/how_to/tools_builtin.ipynb index 3276a62961a32..ea137060c41e5 100644 --- a/docs/docs/how_to/tools_builtin.ipynb +++ b/docs/docs/how_to/tools_builtin.ipynb @@ -32,11 +32,11 @@ "\n", "LangChain has a large collection of 3rd party tools. Please visit [Tool Integrations](/docs/integrations/tools/) for a list of the available tools.\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "\n", "When using 3rd party tools, make sure that you understand how the tool works, what permissions\n", "it has. Read over its documentation and check if anything is required from you\n", - "from a security point of view. Please see our [security](https://python.langchain.com/v0.2/docs/security/) \n", + "from a security point of view. Please see our [security](https://python.langchain.com/docs/security/) \n", "guidelines for more information.\n", "\n", ":::\n", @@ -46,19 +46,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "84f70856-b865-4658-9930-7577fb4712ce", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:01:11.847104Z", + "iopub.status.busy": "2024-09-11T03:01:11.846727Z", + "iopub.status.idle": "2024-09-11T03:01:13.200038Z", + "shell.execute_reply": "2024-09-11T03:01:13.199355Z" + } + }, "outputs": [], "source": [ - "!pip install -qU wikipedia" + "!pip install -qU langchain-community wikipedia" ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 2, "id": "b4eaed85-c5a6-4ba9-b401-40258b0131c2", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:01:13.203356Z", + "iopub.status.busy": "2024-09-11T03:01:13.202996Z", + "iopub.status.idle": "2024-09-11T03:01:14.740686Z", + "shell.execute_reply": "2024-09-11T03:01:14.739748Z" + } + }, "outputs": [ { "name": "stdout", @@ -89,18 +103,25 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 3, "id": "7f094f01-2e98-4947-acc4-0846963a96e0", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:01:14.745018Z", + "iopub.status.busy": "2024-09-11T03:01:14.744347Z", + "iopub.status.idle": "2024-09-11T03:01:14.752527Z", + "shell.execute_reply": "2024-09-11T03:01:14.752112Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Name: wiki-tool\n", - "Description: look up things in wikipedia\n", - "args schema: {'query': {'title': 'Query', 'description': 'query to look up in Wikipedia, should be 3 or less words', 'type': 'string'}}\n", - "returns directly?: True\n" + "Name: wikipedia\n", + "Description: A wrapper around Wikipedia. Useful for when you need to answer general questions about people, places, companies, facts, historical events, or other subjects. Input should be a search query.\n", + "args schema: {'query': {'description': 'query to look up on wikipedia', 'title': 'Query', 'type': 'string'}}\n", + "returns directly?: False\n" ] } ], @@ -124,9 +145,16 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 4, "id": "1365784c-e666-41c8-a1bb-e50f822b5936", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:01:14.755274Z", + "iopub.status.busy": "2024-09-11T03:01:14.755068Z", + "iopub.status.idle": "2024-09-11T03:01:15.375704Z", + "shell.execute_reply": "2024-09-11T03:01:15.374841Z" + } + }, "outputs": [ { "name": "stdout", @@ -140,7 +168,7 @@ "source": [ "from langchain_community.tools import WikipediaQueryRun\n", "from langchain_community.utilities import WikipediaAPIWrapper\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class WikiInputs(BaseModel):\n", @@ -164,9 +192,16 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 5, "id": "6e8850d6-6840-443e-a2be-adf64b30975c", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:01:15.378598Z", + "iopub.status.busy": "2024-09-11T03:01:15.378414Z", + "iopub.status.idle": "2024-09-11T03:01:15.382248Z", + "shell.execute_reply": "2024-09-11T03:01:15.381801Z" + } + }, "outputs": [ { "name": "stdout", @@ -174,7 +209,7 @@ "text": [ "Name: wiki-tool\n", "Description: look up things in wikipedia\n", - "args schema: {'query': {'title': 'Query', 'description': 'query to look up in Wikipedia, should be 3 or less words', 'type': 'string'}}\n", + "args schema: {'query': {'description': 'query to look up in Wikipedia, should be 3 or less words', 'title': 'Query', 'type': 'string'}}\n", "returns directly?: True\n" ] } @@ -212,9 +247,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "poetry-venv-311", "language": "python", - "name": "python3" + "name": "poetry-venv-311" }, "language_info": { "codemirror_mode": { diff --git a/docs/docs/how_to/tools_chain.ipynb b/docs/docs/how_to/tools_chain.ipynb index 387eb9890a407..78f88c84715ce 100644 --- a/docs/docs/how_to/tools_chain.ipynb +++ b/docs/docs/how_to/tools_chain.ipynb @@ -147,11 +147,9 @@ "\n", "First we'll define our model and tools. We'll start with just a single tool, `multiply`.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -166,7 +164,7 @@ "\n", "from langchain_openai.chat_models import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -280,7 +278,7 @@ "\n", "LangChain comes with a number of built-in agents that are optimized for different use cases. Read about all the [agent types here](/docs/concepts#agents).\n", "\n", - "We'll use the [tool calling agent](https://python.langchain.com/v0.2/api_reference/langchain/agents/langchain.agents.tool_calling_agent.base.create_tool_calling_agent.html), which is generally the most reliable kind and the recommended one for most use cases.\n", + "We'll use the [tool calling agent](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.tool_calling_agent.base.create_tool_calling_agent.html), which is generally the most reliable kind and the recommended one for most use cases.\n", "\n", "![agent](../../static/img/tool_agent.svg)" ] diff --git a/docs/docs/how_to/tools_error.ipynb b/docs/docs/how_to/tools_error.ipynb index 0a23520cc0b33..989236b5efc3b 100644 --- a/docs/docs/how_to/tools_error.ipynb +++ b/docs/docs/how_to/tools_error.ipynb @@ -53,7 +53,14 @@ "cell_type": "code", "execution_count": 2, "id": "08785b6d-722d-4620-b6ec-36deb3842c69", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:25.005243Z", + "iopub.status.busy": "2024-09-11T03:10:25.005074Z", + "iopub.status.idle": "2024-09-11T03:10:25.007679Z", + "shell.execute_reply": "2024-09-11T03:10:25.007361Z" + } + }, "outputs": [], "source": [ "import getpass\n", @@ -72,18 +79,23 @@ "\n", "Suppose we have the following (dummy) tool and tool-calling chain. We'll make our tool intentionally convoluted to try and trip up the model.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "86258950-5e61-4340-81b9-84a5d26e8773", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:25.009496Z", + "iopub.status.busy": "2024-09-11T03:10:25.009371Z", + "iopub.status.idle": "2024-09-11T03:10:25.552917Z", + "shell.execute_reply": "2024-09-11T03:10:25.552592Z" + } + }, "outputs": [], "source": [ "# | echo: false\n", @@ -91,16 +103,24 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "1d20604e-c4d1-4d21-841b-23e4f61aec36", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:25.554543Z", + "iopub.status.busy": "2024-09-11T03:10:25.554439Z", + "iopub.status.idle": "2024-09-11T03:10:25.631610Z", + "shell.execute_reply": "2024-09-11T03:10:25.631346Z" + } + }, "outputs": [], "source": [ "# Define tool\n", @@ -131,26 +151,33 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "d354664c-ac44-4967-a35f-8912b3ad9477", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:25.633050Z", + "iopub.status.busy": "2024-09-11T03:10:25.632978Z", + "iopub.status.idle": "2024-09-11T03:10:26.556508Z", + "shell.execute_reply": "2024-09-11T03:10:26.556233Z" + } + }, "outputs": [ { "ename": "ValidationError", - "evalue": "1 validation error for complex_toolSchema\ndict_arg\n field required (type=value_error.missing)", + "evalue": "1 validation error for complex_toolSchema\ndict_arg\n Field required [type=missing, input_value={'int_arg': 5, 'float_arg': 2.1}, input_type=dict]\n For further information visit https://errors.pydantic.dev/2.8/v/missing", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muse complex tool. the args are 5, 2.1, empty dictionary. don\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt forget dict_arg\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/runnables/base.py:2572\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 2570\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 2571\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2572\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 2574\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:380\u001b[0m, in \u001b[0;36mBaseTool.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 373\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 374\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 375\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, Dict],\n\u001b[1;32m 376\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 377\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 378\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 379\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[0;32m--> 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 384\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 385\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 386\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 387\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 388\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 389\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:537\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, **kwargs)\u001b[0m\n\u001b[1;32m 535\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ValidationError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 536\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error:\n\u001b[0;32m--> 537\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 538\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error, \u001b[38;5;28mbool\u001b[39m):\n\u001b[1;32m 539\u001b[0m observation \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool input validation error\u001b[39m\u001b[38;5;124m\"\u001b[39m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:526\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, **kwargs)\u001b[0m\n\u001b[1;32m 524\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 525\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, child_config)\n\u001b[0;32m--> 526\u001b[0m parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 527\u001b[0m tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_to_args_and_kwargs(parsed_input)\n\u001b[1;32m 528\u001b[0m observation \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 529\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(\n\u001b[1;32m 530\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run, \u001b[38;5;241m*\u001b[39mtool_args, run_manager\u001b[38;5;241m=\u001b[39mrun_manager, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 533\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m context\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run, \u001b[38;5;241m*\u001b[39mtool_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 534\u001b[0m )\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/langchain_core/tools.py:424\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 423\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m input_args \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 424\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43minput_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_obj\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 425\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m {\n\u001b[1;32m 426\u001b[0m k: \u001b[38;5;28mgetattr\u001b[39m(result, k)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, v \u001b[38;5;129;01min\u001b[39;00m result\u001b[38;5;241m.\u001b[39mdict()\u001b[38;5;241m.\u001b[39mitems()\n\u001b[1;32m 428\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m tool_input\n\u001b[1;32m 429\u001b[0m }\n\u001b[1;32m 430\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m tool_input\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/pydantic/main.py:526\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.parse_obj\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m~/.pyenv/versions/3.10.5/lib/python3.10/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mValidationError\u001b[0m: 1 validation error for complex_toolSchema\ndict_arg\n field required (type=value_error.missing)" + "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muse complex tool. the args are 5, 2.1, empty dictionary. don\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mt forget dict_arg\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.11/site-packages/langchain_core/runnables/base.py:2998\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 2996\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m context\u001b[38;5;241m.\u001b[39mrun(step\u001b[38;5;241m.\u001b[39minvoke, \u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 2997\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2998\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2999\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 3000\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:456\u001b[0m, in \u001b[0;36mBaseTool.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 449\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 450\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 451\u001b[0m \u001b[38;5;28minput\u001b[39m: Union[\u001b[38;5;28mstr\u001b[39m, Dict, ToolCall],\n\u001b[1;32m 452\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 453\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 454\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 455\u001b[0m tool_input, kwargs \u001b[38;5;241m=\u001b[39m _prep_run_args(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m--> 456\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:659\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, tool_call_id, **kwargs)\u001b[0m\n\u001b[1;32m 657\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m error_to_raise:\n\u001b[1;32m 658\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_tool_error(error_to_raise)\n\u001b[0;32m--> 659\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m error_to_raise\n\u001b[1;32m 660\u001b[0m output \u001b[38;5;241m=\u001b[39m _format_output(content, artifact, tool_call_id, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, status)\n\u001b[1;32m 661\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_tool_end(output, color\u001b[38;5;241m=\u001b[39mcolor, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:622\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, run_id, config, tool_call_id, **kwargs)\u001b[0m\n\u001b[1;32m 620\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 621\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, child_config)\n\u001b[0;32m--> 622\u001b[0m tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_to_args_and_kwargs\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 623\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m signature(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run)\u001b[38;5;241m.\u001b[39mparameters\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[1;32m 624\u001b[0m tool_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:545\u001b[0m, in \u001b[0;36mBaseTool._to_args_and_kwargs\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_to_args_and_kwargs\u001b[39m(\u001b[38;5;28mself\u001b[39m, tool_input: Union[\u001b[38;5;28mstr\u001b[39m, Dict]) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tuple[Tuple, Dict]:\n\u001b[0;32m--> 545\u001b[0m tool_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_parse_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 546\u001b[0m \u001b[38;5;66;03m# For backwards compatibility, if run_input is a string,\u001b[39;00m\n\u001b[1;32m 547\u001b[0m \u001b[38;5;66;03m# pass as a positional argument.\u001b[39;00m\n\u001b[1;32m 548\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(tool_input, \u001b[38;5;28mstr\u001b[39m):\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.11/site-packages/langchain_core/tools/base.py:487\u001b[0m, in \u001b[0;36mBaseTool._parse_input\u001b[0;34m(self, tool_input)\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m input_args \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 486\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(input_args, BaseModel):\n\u001b[0;32m--> 487\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43minput_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_validate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtool_input\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 488\u001b[0m result_dict \u001b[38;5;241m=\u001b[39m result\u001b[38;5;241m.\u001b[39mmodel_dump()\n\u001b[1;32m 489\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28missubclass\u001b[39m(input_args, BaseModelV1):\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.11/site-packages/pydantic/main.py:568\u001b[0m, in \u001b[0;36mBaseModel.model_validate\u001b[0;34m(cls, obj, strict, from_attributes, context)\u001b[0m\n\u001b[1;32m 566\u001b[0m \u001b[38;5;66;03m# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks\u001b[39;00m\n\u001b[1;32m 567\u001b[0m __tracebackhide__ \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 568\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__pydantic_validator__\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalidate_python\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 569\u001b[0m \u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrom_attributes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfrom_attributes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcontext\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcontext\u001b[49m\n\u001b[1;32m 570\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[0;31mValidationError\u001b[0m: 1 validation error for complex_toolSchema\ndict_arg\n Field required [type=missing, input_value={'int_arg': 5, 'float_arg': 2.1}, input_type=dict]\n For further information visit https://errors.pydantic.dev/2.8/v/missing" ] } ], @@ -172,9 +199,16 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "id": "8fedb550-683d-45ae-8876-ae7acb332019", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:26.558131Z", + "iopub.status.busy": "2024-09-11T03:10:26.558031Z", + "iopub.status.idle": "2024-09-11T03:10:27.399844Z", + "shell.execute_reply": "2024-09-11T03:10:27.399201Z" + } + }, "outputs": [ { "name": "stdout", @@ -186,9 +220,10 @@ "\n", "raised the following error:\n", "\n", - ": 1 validation error for complex_toolSchema\n", + ": 1 validation error for complex_toolSchema\n", "dict_arg\n", - " field required (type=value_error.missing)\n" + " Field required [type=missing, input_value={'int_arg': 5, 'float_arg': 2.1}, input_type=dict]\n", + " For further information visit https://errors.pydantic.dev/2.8/v/missing\n" ] } ], @@ -226,9 +261,16 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "id": "02cc4223-35fa-4240-976a-012299ca703c", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:27.404122Z", + "iopub.status.busy": "2024-09-11T03:10:27.403539Z", + "iopub.status.idle": "2024-09-11T03:10:38.080547Z", + "shell.execute_reply": "2024-09-11T03:10:38.079955Z" + } + }, "outputs": [ { "data": { @@ -236,7 +278,7 @@ "10.5" ] }, - "execution_count": 10, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -277,9 +319,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "id": "b5659956-9454-468a-9753-a3ff9052b8f5", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:38.083810Z", + "iopub.status.busy": "2024-09-11T03:10:38.083623Z", + "iopub.status.idle": "2024-09-11T03:10:38.090089Z", + "shell.execute_reply": "2024-09-11T03:10:38.089682Z" + } + }, "outputs": [], "source": [ "from langchain_core.messages import AIMessage, HumanMessage, ToolCall, ToolMessage\n", @@ -335,9 +384,16 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "id": "4c45f5bd-cbb4-47d5-b4b6-aec50673c750", - "metadata": {}, + "metadata": { + "execution": { + "iopub.execute_input": "2024-09-11T03:10:38.092152Z", + "iopub.status.busy": "2024-09-11T03:10:38.092021Z", + "iopub.status.idle": "2024-09-11T03:10:39.592443Z", + "shell.execute_reply": "2024-09-11T03:10:39.591990Z" + } + }, "outputs": [ { "data": { @@ -345,7 +401,7 @@ "10.5" ] }, - "execution_count": 12, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -401,7 +457,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/docs/docs/how_to/tools_few_shot.ipynb b/docs/docs/how_to/tools_few_shot.ipynb index c4f3570da1a94..0e3d6564874cd 100644 --- a/docs/docs/how_to/tools_few_shot.ipynb +++ b/docs/docs/how_to/tools_few_shot.ipynb @@ -46,9 +46,10 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "llm_with_tools = llm.bind_tools(tools)" ] }, diff --git a/docs/docs/how_to/tools_human.ipynb b/docs/docs/how_to/tools_human.ipynb index 5e5312debde9b..73b24d9744593 100644 --- a/docs/docs/how_to/tools_human.ipynb +++ b/docs/docs/how_to/tools_human.ipynb @@ -9,7 +9,7 @@ "\n", "There are certain tools that we don't trust a model to execute on its own. One thing we can do in such situations is require human approval before the tool is invoked.\n", "\n", - ":::{.callout-info}\n", + ":::info\n", "\n", "This how-to guide shows a simple way to add human-in-the-loop for code running in a jupyter notebook or in a terminal.\n", "\n", @@ -77,11 +77,9 @@ "id": "43721981-4595-4721-bea0-5c67696426d3", "metadata": {}, "source": [ - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { diff --git a/docs/docs/how_to/tools_prompting.ipynb b/docs/docs/how_to/tools_prompting.ipynb index d3f6bac4dc892..03cc039e60f8b 100644 --- a/docs/docs/how_to/tools_prompting.ipynb +++ b/docs/docs/how_to/tools_prompting.ipynb @@ -17,7 +17,7 @@ "source": [ "# How to add ad-hoc tool calling capability to LLMs and Chat Models\n", "\n", - ":::{.callout-caution}\n", + ":::caution\n", "\n", "Some models have been fine-tuned for tool calling and provide a dedicated API for tool calling. Generally, such models are better at tool calling than non-fine-tuned models, and are recommended for use cases that require tool calling. Please see the [how to use a chat model to call tools](/docs/how_to/tool_calling) guide for more information.\n", "\n", @@ -28,7 +28,7 @@ "This guide assumes familiarity with the following concepts:\n", "\n", "- [LangChain Tools](/docs/concepts/#tools)\n", - "- [Function/tool calling](https://python.langchain.com/v0.2/docs/concepts/#functiontool-calling)\n", + "- [Function/tool calling](https://python.langchain.com/docs/concepts/#functiontool-calling)\n", "- [Chat models](/docs/concepts/#chat-models)\n", "- [LLMs](/docs/concepts/#llms)\n", "\n", @@ -89,11 +89,9 @@ "source": [ "You can select any of the given models for this how-to guide. Keep in mind that most of these models already [support native tool calling](/docs/integrations/chat/), so using the prompting strategy shown here doesn't make sense for these models, and instead you should follow the [how to use a chat model to call tools](/docs/how_to/tool_calling) guide.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```\n", "\n", "To illustrate the idea, we'll use `phi3` via Ollama, which does **NOT** have native support for tool calling. If you'd like to use `Ollama` as well follow [these instructions](/docs/integrations/chat/ollama/)." ] @@ -318,7 +316,7 @@ "id": "e1f08255-f146-4f4a-be43-5c21c1d3ae83", "metadata": {}, "source": [ - ":::{.callout-important}\n", + ":::important\n", "\n", "🎉 Amazing! 🎉 We now instructed our model on how to **request** that a tool be invoked.\n", "\n", diff --git a/docs/docs/how_to/trim_messages.ipynb b/docs/docs/how_to/trim_messages.ipynb index 0955ed2091ffd..6a882345e19f2 100644 --- a/docs/docs/how_to/trim_messages.ipynb +++ b/docs/docs/how_to/trim_messages.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "b5ee5b75-6876-4d62-9ade-5a7a808ae5a2", + "id": "eaad9a82-0592-4315-9931-0621054bdd0e", "metadata": {}, "source": [ "# How to trim messages\n", @@ -22,37 +22,83 @@ "\n", "All models have finite context windows, meaning there's a limit to how many tokens they can take as input. If you have very long messages or a chain/agent that accumulates a long message is history, you'll need to manage the length of the messages you're passing in to the model.\n", "\n", - "The `trim_messages` util provides some basic strategies for trimming a list of messages to be of a certain token length.\n", + "[trim_messages](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html) can be used to reduce the size of a chat history to a specified token count or specified message count.\n", "\n", - "## Getting the last `max_tokens` tokens\n", "\n", - "To get the last `max_tokens` in the list of Messages we can set `strategy=\"last\"`. Notice that for our `token_counter` we can pass in a function (more on that below) or a language model (since language models have a message token counting method). It makes sense to pass in a model when you're trimming your messages to fit into the context window of that specific model:" + "If passing the trimmed chat history back into a chat model directly, the trimmed chat history should satisfy the following properties:\n", + "\n", + "1. The resulting chat history should be **valid**. Usually this means that the following properties should be satisfied:\n", + " - The chat history **starts** with either (1) a `HumanMessage` or (2) a [SystemMessage](/docs/concepts/#systemmessage) followed by a `HumanMessage`.\n", + " - The chat history **ends** with either a `HumanMessage` or a `ToolMessage`.\n", + " - A `ToolMessage` can only appear after an `AIMessage` that involved a tool call. \n", + " This can be achieved by setting `start_on=\"human\"` and `ends_on=(\"human\", \"tool\")`.\n", + "3. It includes recent messages and drops old messages in the chat history.\n", + " This can be achieved by setting `strategy=\"last\"`.\n", + "4. Usually, the new chat history should include the `SystemMessage` if it\n", + " was present in the original chat history since the `SystemMessage` includes\n", + " special instructions to the chat model. The `SystemMessage` is almost always\n", + " the first message in the history if present. This can be achieved by setting\n", + " `include_system=True`." + ] + }, + { + "cell_type": "markdown", + "id": "e4bffc37-78c0-46c3-ad0c-b44de0ed3e90", + "metadata": {}, + "source": [ + "## Trimming based on token count\n", + "\n", + "Here, we'll trim the chat history based on token count. The trimmed chat history will produce a **valid** chat history that includes the `SystemMessage`.\n", + "\n", + "To keep the most recent messages, we set `strategy=\"last\"`. We'll also set `include_system=True` to include the `SystemMessage`, and `start_on=\"human\"` to make sure the resulting chat history is valid. \n", + "\n", + "This is a good default configuration when using `trim_messages` based on token count. Remember to adjust `token_counter` and `max_tokens` for your use case.\n", + "\n", + "Notice that for our `token_counter` we can pass in a function (more on that below) or a language model (since language models have a message token counting method). It makes sense to pass in a model when you're trimming your messages to fit into the context window of that specific model:" ] }, { "cell_type": "code", "execution_count": 1, - "id": "c974633b-3bd0-4844-8a8f-85e3e25f13fe", + "id": "c91edeb2-9978-4665-9fdb-fc96cdb51caa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install -qU langchain-openai" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "40ea972c-d424-4bc4-9f2e-82f01c3d7598", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"),\n", - " HumanMessage(content='what do you call a speechless parrot')]" + "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# pip install -U langchain-openai\n", "from langchain_core.messages import (\n", " AIMessage,\n", " HumanMessage,\n", " SystemMessage,\n", + " ToolMessage,\n", " trim_messages,\n", ")\n", "from langchain_openai import ChatOpenAI\n", @@ -70,36 +116,69 @@ " HumanMessage(\"what do you call a speechless parrot\"),\n", "]\n", "\n", + "\n", "trim_messages(\n", " messages,\n", - " max_tokens=45,\n", + " # Keep the last <= n_count tokens of the messages.\n", " strategy=\"last\",\n", + " # highlight-start\n", + " # Remember to adjust based on your model\n", + " # or else pass a custom token_encoder\n", " token_counter=ChatOpenAI(model=\"gpt-4o\"),\n", + " # highlight-end\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " # highlight-start\n", + " # Remember to adjust based on the desired conversation\n", + " # length\n", + " max_tokens=45,\n", + " # highlight-end\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " start_on=\"human\",\n", + " # Most chat models expect that chat history ends with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a ToolMessage\n", + " end_on=(\"human\", \"tool\"),\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", + " include_system=True,\n", + " allow_partial=False,\n", ")" ] }, { "cell_type": "markdown", - "id": "d3f46654-c4b2-4136-b995-91c3febe5bf9", + "id": "28fcfc94-0d4a-415c-9506-8ae7634253a2", "metadata": {}, "source": [ - "If we want to always keep the initial system message we can specify `include_system=True`:" + "## Trimming based on message count\n", + "\n", + "Alternatively, we can trim the chat history based on **message count**, by setting `token_counter=len`. In this case, each message will count as a single token, and `max_tokens` will control\n", + "the maximum number of messages.\n", + "\n", + "This is a good default configuration when using `trim_messages` based on message count. Remember to adjust `max_tokens` for your use case." ] }, { "cell_type": "code", - "execution_count": 2, - "id": "589b0223-3a73-44ec-8315-2dba3ee6117d", + "execution_count": 3, + "id": "c8fdedae-0e6b-4901-a222-81fc95e265c2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n", - " HumanMessage(content='what do you call a speechless parrot')]" + "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='and who is harrison chasing anyways', additional_kwargs={}, response_metadata={}),\n", + " AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -107,36 +186,59 @@ "source": [ "trim_messages(\n", " messages,\n", - " max_tokens=45,\n", + " # Keep the last <= n_count tokens of the messages.\n", " strategy=\"last\",\n", - " token_counter=ChatOpenAI(model=\"gpt-4o\"),\n", + " # highlight-next-line\n", + " token_counter=len,\n", + " # When token_counter=len, each message\n", + " # will be counted as a single token.\n", + " # highlight-start\n", + " # Remember to adjust for your use case\n", + " max_tokens=5,\n", + " # highlight-end\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " start_on=\"human\",\n", + " # Most chat models expect that chat history ends with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a ToolMessage\n", + " end_on=(\"human\", \"tool\"),\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", " include_system=True,\n", ")" ] }, { + "attachments": {}, "cell_type": "markdown", - "id": "8a8b542c-04d1-4515-8d82-b999ea4fac4f", + "id": "9367857f-7f9a-4d17-9f9c-6ffc5aae909c", "metadata": {}, "source": [ + "## Advanced Usage\n", + "\n", + "You can use `trim_message` as a building-block to create more complex processing logic.\n", + "\n", "If we want to allow splitting up the contents of a message we can specify `allow_partial=True`:" ] }, { "cell_type": "code", - "execution_count": 3, - "id": "8c46a209-dddd-4d01-81f6-f6ae55d3225c", + "execution_count": 4, + "id": "8bcca1fe-674c-4713-bacc-8e8e6d6f56c3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n", - " AIMessage(content=\"\\nWhy, he's probably chasing after the last cup of coffee in the office!\"),\n", - " HumanMessage(content='what do you call a speechless parrot')]" + "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n", + " AIMessage(content=\"\\nWhy, he's probably chasing after the last cup of coffee in the office!\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -154,26 +256,26 @@ }, { "cell_type": "markdown", - "id": "306adf9c-41cd-495c-b4dc-e4f43dd7f8f8", + "id": "245bee9b-e515-4e89-8f2a-84bda9a25de8", "metadata": {}, "source": [ - "If we need to make sure that our first message (excluding the system message) is always of a specific type, we can specify `start_on`:" + "By default, the `SystemMessage` will not be included, so you can drop it by either setting `include_system=False` or by dropping the `include_system` argument." ] }, { "cell_type": "code", - "execution_count": 4, - "id": "878a730b-fe44-4e9d-ab65-7b8f7b069de8", + "execution_count": 5, + "id": "94351736-28a1-44a3-aac7-82356c81d171", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n", - " HumanMessage(content='what do you call a speechless parrot')]" + "[AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -181,11 +283,9 @@ "source": [ "trim_messages(\n", " messages,\n", - " max_tokens=60,\n", + " max_tokens=45,\n", " strategy=\"last\",\n", " token_counter=ChatOpenAI(model=\"gpt-4o\"),\n", - " include_system=True,\n", - " start_on=\"human\",\n", ")" ] }, @@ -194,25 +294,23 @@ "id": "7f5d391d-235b-4091-b2de-c22866b478f3", "metadata": {}, "source": [ - "## Getting the first `max_tokens` tokens\n", - "\n", "We can perform the flipped operation of getting the *first* `max_tokens` by specifying `strategy=\"first\"`:" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "5f56ae54-1a39-4019-9351-3b494c003d5b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n", - " HumanMessage(content=\"i wonder why it's called langchain\")]" + "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content=\"i wonder why it's called langchain\", additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -238,18 +336,36 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, + "id": "d930c089-e8e6-4980-9d39-11d41e794772", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install -qU tiktoken" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "1c1c3b1e-2ece-49e7-a3b6-e69877c1633b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[AIMessage(content=\"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"),\n", - " HumanMessage(content='what do you call a speechless parrot')]" + "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 6, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -257,7 +373,6 @@ "source": [ "from typing import List\n", "\n", - "# pip install tiktoken\n", "import tiktoken\n", "from langchain_core.messages import BaseMessage, ToolMessage\n", "\n", @@ -298,9 +413,28 @@ "\n", "trim_messages(\n", " messages,\n", - " max_tokens=45,\n", - " strategy=\"last\",\n", + " # highlight-next-line\n", " token_counter=tiktoken_counter,\n", + " # Keep the last <= n_count tokens of the messages.\n", + " strategy=\"last\",\n", + " # When token_counter=len, each message\n", + " # will be counted as a single token.\n", + " # highlight-start\n", + " # Remember to adjust for your use case\n", + " max_tokens=45,\n", + " # highlight-end\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " start_on=\"human\",\n", + " # Most chat models expect that chat history ends with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a ToolMessage\n", + " end_on=(\"human\", \"tool\"),\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", + " include_system=True,\n", ")" ] }, @@ -311,22 +445,22 @@ "source": [ "## Chaining\n", "\n", - "`trim_messages` can be used in an imperatively (like above) or declaratively, making it easy to compose with other components in a chain" + "`trim_messages` can be used imperatively (like above) or declaratively, making it easy to compose with other components in a chain" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "id": "96aa29b2-01e0-437c-a1ab-02fb0141cb57", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='A: A \"Polly-gone\"!', response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 32, 'total_tokens': 41}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_66b29dffce', 'finish_reason': 'stop', 'logprobs': None}, id='run-83e96ddf-bcaa-4f63-824c-98b0f8a0d474-0', usage_metadata={'input_tokens': 32, 'output_tokens': 9, 'total_tokens': 41})" + "AIMessage(content='A polygon! Because it\\'s a \"poly-gone\" quiet!', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 32, 'total_tokens': 45, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_057232b607', 'finish_reason': 'stop', 'logprobs': None}, id='run-4fa026e7-9137-4fef-b596-54243615e3b3-0', usage_metadata={'input_tokens': 32, 'output_tokens': 13, 'total_tokens': 45})" ] }, - "execution_count": 7, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -337,9 +471,24 @@ "# Notice we don't pass in messages. This creates\n", "# a RunnableLambda that takes messages as input\n", "trimmer = trim_messages(\n", - " max_tokens=45,\n", - " strategy=\"last\",\n", " token_counter=llm,\n", + " # Keep the last <= n_count tokens of the messages.\n", + " strategy=\"last\",\n", + " # When token_counter=len, each message\n", + " # will be counted as a single token.\n", + " # Remember to adjust for your use case\n", + " max_tokens=45,\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " start_on=\"human\",\n", + " # Most chat models expect that chat history ends with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a ToolMessage\n", + " end_on=(\"human\", \"tool\"),\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", " include_system=True,\n", ")\n", "\n", @@ -359,18 +508,18 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "id": "1ff02d0a-353d-4fac-a77c-7c2c5262abd9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\"),\n", - " HumanMessage(content='what do you call a speechless parrot')]" + "[SystemMessage(content=\"you're a good assistant, you always respond with a joke.\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='what do you call a speechless parrot', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -391,17 +540,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "id": "a9517858-fc2f-4dc3-898d-bf98a0e905a0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='A \"polly-no-wanna-cracker\"!', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 32, 'total_tokens': 42}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_5bf7397cd3', 'finish_reason': 'stop', 'logprobs': None}, id='run-054dd309-3497-4e7b-b22a-c1859f11d32e-0', usage_metadata={'input_tokens': 32, 'output_tokens': 10, 'total_tokens': 42})" + "AIMessage(content='A \"polygon\"!', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 4, 'prompt_tokens': 32, 'total_tokens': 36, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_c17d3befe7', 'finish_reason': 'stop', 'logprobs': None}, id='run-71d9fce6-bb0c-4bb3-acc8-d5eaee6ae7bc-0', usage_metadata={'input_tokens': 32, 'output_tokens': 4, 'total_tokens': 36})" ] }, - "execution_count": 9, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -425,7 +574,15 @@ " max_tokens=45,\n", " strategy=\"last\",\n", " token_counter=llm,\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", " include_system=True,\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " # start_on=\"human\" makes sure we produce a valid chat history\n", + " start_on=\"human\",\n", ")\n", "\n", "chain = trimmer | llm\n", @@ -451,7 +608,7 @@ "source": [ "## API reference\n", "\n", - "For a complete description of all arguments head to the API reference: https://python.langchain.com/v0.2/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html" + "For a complete description of all arguments head to the API reference: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html" ] } ], @@ -471,7 +628,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/how_to/vectorstore_retriever.ipynb b/docs/docs/how_to/vectorstore_retriever.ipynb index f2655c2ca2416..55408b911162e 100644 --- a/docs/docs/how_to/vectorstore_retriever.ipynb +++ b/docs/docs/how_to/vectorstore_retriever.ipynb @@ -28,9 +28,9 @@ "\n", "## Creating a retriever from a vectorstore\n", "\n", - "You can build a retriever from a vectorstore using its [.as_retriever](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method. Let's walk through an example.\n", + "You can build a retriever from a vectorstore using its [.as_retriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.as_retriever) method. Let's walk through an example.\n", "\n", - "First we instantiate a vectorstore. We will use an in-memory [FAISS](https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html) vectorstore:" + "First we instantiate a vectorstore. We will use an in-memory [FAISS](https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html) vectorstore:" ] }, { @@ -77,7 +77,7 @@ "id": "08f8b820-5912-49c1-9d76-40be0571dffb", "metadata": {}, "source": [ - "This creates a retriever (specifically a [VectorStoreRetriever](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStoreRetriever.html)), which we can use in the usual way:" + "This creates a retriever (specifically a [VectorStoreRetriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStoreRetriever.html)), which we can use in the usual way:" ] }, { diff --git a/docs/docs/how_to/vectorstores.mdx b/docs/docs/how_to/vectorstores.mdx index 66775203d486a..01d861503272f 100644 --- a/docs/docs/how_to/vectorstores.mdx +++ b/docs/docs/how_to/vectorstores.mdx @@ -116,9 +116,7 @@ docs = db.similarity_search(query) print(docs[0].page_content) ``` - - -``` +```output Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. @@ -128,7 +126,6 @@ print(docs[0].page_content) And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ``` - ### Similarity search by vector @@ -140,9 +137,7 @@ docs = db.similarity_search_by_vector(embedding_vector) print(docs[0].page_content) ``` - - -``` +```output Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. @@ -152,7 +147,6 @@ print(docs[0].page_content) And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence. ``` - ## Async Operations @@ -166,13 +160,9 @@ docs = await db.asimilarity_search(query) docs ``` - - -``` +```output [Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': 'state_of_the_union.txt'}), Document(page_content='A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n\nAnd if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n\nWe can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n\nWe’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n\nWe’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n\nWe’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.', metadata={'source': 'state_of_the_union.txt'}), Document(page_content='And for our LGBTQ+ Americans, let’s finally get the bipartisan Equality Act to my desk. The onslaught of state laws targeting transgender Americans and their families is wrong. \n\nAs I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential. \n\nWhile it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice. \n\nAnd soon, we’ll strengthen the Violence Against Women Act that I first wrote three decades ago. It is important for us to show the nation that we can come together and do big things. \n\nSo tonight I’m offering a Unity Agenda for the Nation. Four big things we can do together. \n\nFirst, beat the opioid epidemic.', metadata={'source': 'state_of_the_union.txt'}), Document(page_content='Tonight, I’m announcing a crackdown on these companies overcharging American businesses and consumers. \n\nAnd as Wall Street firms take over more nursing homes, quality in those homes has gone down and costs have gone up. \n\nThat ends on my watch. \n\nMedicare is going to set higher standards for nursing homes and make sure your loved ones get the care they deserve and expect. \n\nWe’ll also cut costs and keep the economy going strong by giving workers a fair shot, provide more training and apprenticeships, hire them based on their skills not degrees. \n\nLet’s pass the Paycheck Fairness Act and paid leave. \n\nRaise the minimum wage to $15 an hour and extend the Child Tax Credit, so no one has to raise a family in poverty. \n\nLet’s increase Pell Grants and increase our historic support of HBCUs, and invest in what Jill—our First Lady who teaches full-time—calls America’s best-kept secret: community colleges.', metadata={'source': 'state_of_the_union.txt'})] ``` - - \ No newline at end of file diff --git a/docs/docs/integrations/callbacks/streamlit.md b/docs/docs/integrations/callbacks/streamlit.md index 90137951805ec..8cd81495bf519 100644 --- a/docs/docs/integrations/callbacks/streamlit.md +++ b/docs/docs/integrations/callbacks/streamlit.md @@ -37,7 +37,7 @@ st_callback = StreamlitCallbackHandler(st.container()) ``` Additional keyword arguments to customize the display behavior are described in the -[API reference](https://python.langchain.com/v0.2/api_reference/langchain/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html). +[API reference](https://python.langchain.com/api_reference/langchain/callbacks/langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler.html). ### Scenario 1: Using an Agent with Tools diff --git a/docs/docs/integrations/chat/ai21.ipynb b/docs/docs/integrations/chat/ai21.ipynb index 38429aa9153b7..e16a62260cfb4 100644 --- a/docs/docs/integrations/chat/ai21.ipynb +++ b/docs/docs/integrations/chat/ai21.ipynb @@ -25,9 +25,9 @@ "\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatAI21](https://python.langchain.com/v0.2/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html#langchain_ai21.chat_models.ChatAI21) | [langchain-ai21](https://python.langchain.com/v0.2/api_reference/ai21/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ai21?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ai21?style=flat-square&label=%20) |\n", + "| [ChatAI21](https://python.langchain.com/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html#langchain_ai21.chat_models.ChatAI21) | [langchain-ai21](https://python.langchain.com/api_reference/ai21/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ai21?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ai21?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -50,18 +50,19 @@ }, { "cell_type": "code", + "execution_count": null, "id": "62e0dbc3", "metadata": { "tags": [] }, + "outputs": [], "source": [ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"AI21_API_KEY\"] = getpass()" - ], - "outputs": [], - "execution_count": null + "if \"AI21_API_KEY\" not in os.environ:\n", + " os.environ[\"AI21_API_KEY\"] = getpass()" + ] }, { "cell_type": "markdown", @@ -73,14 +74,14 @@ }, { "cell_type": "code", + "execution_count": null, "id": "7c2e19d3-7c58-4470-9e1a-718b27a32056", "metadata": {}, + "outputs": [], "source": [ "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")" - ], - "outputs": [], - "execution_count": null + ] }, { "cell_type": "markdown", @@ -115,15 +116,15 @@ }, { "cell_type": "code", + "execution_count": null, "id": "c40756fb-cbf8-4d44-a293-3989d707237e", "metadata": {}, + "outputs": [], "source": [ "from langchain_ai21 import ChatAI21\n", "\n", "llm = ChatAI21(model=\"jamba-instruct\", temperature=0)" - ], - "outputs": [], - "execution_count": null + ] }, { "cell_type": "markdown", @@ -135,8 +136,10 @@ }, { "cell_type": "code", + "execution_count": null, "id": "46b982dc-5d8a-46da-a711-81c03ccd6adc", "metadata": {}, + "outputs": [], "source": [ "messages = [\n", " (\n", @@ -147,9 +150,7 @@ "]\n", "ai_msg = llm.invoke(messages)\n", "ai_msg" - ], - "outputs": [], - "execution_count": null + ] }, { "cell_type": "markdown", @@ -163,6 +164,7 @@ }, { "cell_type": "code", + "execution_count": null, "id": "39353473fce5dd2e", "metadata": { "collapsed": false, @@ -170,6 +172,7 @@ "outputs_hidden": false } }, + "outputs": [], "source": [ "from langchain_core.prompts import ChatPromptTemplate\n", "\n", @@ -191,25 +194,26 @@ " \"input\": \"I love programming.\",\n", " }\n", ")" - ], - "outputs": [], - "execution_count": null + ] }, { - "metadata": {}, "cell_type": "markdown", - "source": "# Tool Calls / Function Calling", - "id": "39c0ccd229927eab" + "id": "39c0ccd229927eab", + "metadata": {}, + "source": "# Tool Calls / Function Calling" }, { - "metadata": {}, "cell_type": "markdown", - "source": "This example shows how to use tool calling with AI21 models:", - "id": "2bf6b40be07fe2d4" + "id": "2bf6b40be07fe2d4", + "metadata": {}, + "source": "This example shows how to use tool calling with AI21 models:" }, { - "metadata": {}, "cell_type": "code", + "execution_count": null, + "id": "a181a28df77120fb", + "metadata": {}, + "outputs": [], "source": [ "import os\n", "from getpass import getpass\n", @@ -219,7 +223,8 @@ "from langchain_core.tools import tool\n", "from langchain_core.utils.function_calling import convert_to_openai_tool\n", "\n", - "os.environ[\"AI21_API_KEY\"] = getpass()\n", + "if \"AI21_API_KEY\" not in os.environ:\n", + " os.environ[\"AI21_API_KEY\"] = getpass()\n", "\n", "\n", "@tool\n", @@ -276,10 +281,7 @@ " print(f\"Assistant: {llm_answer.content}\")\n", " else:\n", " print(f\"Assistant: {response.content}\")" - ], - "id": "a181a28df77120fb", - "outputs": [], - "execution_count": null + ] }, { "cell_type": "markdown", @@ -288,7 +290,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatAI21 features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html" + "For detailed documentation of all ChatAI21 features and configurations head to the API reference: https://python.langchain.com/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html" ] } ], diff --git a/docs/docs/integrations/chat/anthropic.ipynb b/docs/docs/integrations/chat/anthropic.ipynb index da0bf99b5a89e..b813f6a9ee9e6 100644 --- a/docs/docs/integrations/chat/anthropic.ipynb +++ b/docs/docs/integrations/chat/anthropic.ipynb @@ -17,7 +17,7 @@ "source": [ "# ChatAnthropic\n", "\n", - "This notebook provides a quick overview for getting started with Anthropic [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatAnthropic features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html).\n", + "This notebook provides a quick overview for getting started with Anthropic [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatAnthropic features and configurations head to the [API reference](https://python.langchain.com/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html).\n", "\n", "Anthropic has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [Anthropic docs](https://docs.anthropic.com/en/docs/models-overview).\n", "\n", @@ -31,9 +31,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/anthropic) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/anthropic) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatAnthropic](https://python.langchain.com/v0.2/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html) | [langchain-anthropic](https://python.langchain.com/v0.2/api_reference/anthropic/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-anthropic?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-anthropic?style=flat-square&label=%20) |\n", + "| [ChatAnthropic](https://python.langchain.com/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html) | [langchain-anthropic](https://python.langchain.com/api_reference/anthropic/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-anthropic?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-anthropic?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -59,7 +59,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"ANTHROPIC_API_KEY\"] = getpass.getpass(\"Enter your Anthropic API key: \")" + "if \"ANTHROPIC_API_KEY\" not in os.environ:\n", + " os.environ[\"ANTHROPIC_API_KEY\"] = getpass.getpass(\"Enter your Anthropic API key: \")" ] }, { @@ -274,7 +275,7 @@ } ], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class GetWeather(BaseModel):\n", @@ -321,7 +322,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatAnthropic features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html" + "For detailed documentation of all ChatAnthropic features and configurations head to the API reference: https://python.langchain.com/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html" ] } ], diff --git a/docs/docs/integrations/chat/anthropic_functions.ipynb b/docs/docs/integrations/chat/anthropic_functions.ipynb index 7a33a5c986dbe..c61d23f6d2907 100644 --- a/docs/docs/integrations/chat/anthropic_functions.ipynb +++ b/docs/docs/integrations/chat/anthropic_functions.ipynb @@ -17,9 +17,9 @@ "source": [ "# [Deprecated] Experimental Anthropic Tools Wrapper\n", "\n", - "::: {.callout-warning}\n", + ":::warning\n", "\n", - "The Anthropic API officially supports tool-calling so this workaround is no longer needed. Please use [ChatAnthropic](/docs/integrations/chat/anthropic) with `langchain-anthropic>=0.1.5`.\n", + "The Anthropic API officially supports tool-calling so this workaround is no longer needed. Please use [ChatAnthropic](/docs/integrations/chat/anthropic) with `langchain-anthropic>=0.1.15`.\n", "\n", ":::\n", "\n", @@ -69,7 +69,7 @@ } ], "source": [ - "from langchain_core.pydantic_v1 import BaseModel\n", + "from pydantic import BaseModel\n", "\n", "\n", "class Person(BaseModel):\n", @@ -118,7 +118,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -132,7 +132,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.1" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/integrations/chat/anyscale.ipynb b/docs/docs/integrations/chat/anyscale.ipynb index 98cac216ad353..84008c195ef12 100644 --- a/docs/docs/integrations/chat/anyscale.ipynb +++ b/docs/docs/integrations/chat/anyscale.ipynb @@ -54,7 +54,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"ANYSCALE_API_KEY\"] = getpass()" + "if \"ANYSCALE_API_KEY\" not in os.environ:\n", + " os.environ[\"ANYSCALE_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/chat/azure_chat_openai.ipynb b/docs/docs/integrations/chat/azure_chat_openai.ipynb index a6250f214e3a0..a0883d34b71d2 100644 --- a/docs/docs/integrations/chat/azure_chat_openai.ipynb +++ b/docs/docs/integrations/chat/azure_chat_openai.ipynb @@ -17,7 +17,7 @@ "source": [ "# AzureChatOpenAI\n", "\n", - "This guide will help you get started with AzureOpenAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all AzureChatOpenAI features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html).\n", + "This guide will help you get started with AzureOpenAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all AzureChatOpenAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html).\n", "\n", "Azure OpenAI has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [Azure docs](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models).\n", "\n", @@ -30,9 +30,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/azure) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/azure) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [AzureChatOpenAI](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html) | [langchain-openai](https://python.langchain.com/v0.2/api_reference/openai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n", + "| [AzureChatOpenAI](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html) | [langchain-openai](https://python.langchain.com/api_reference/openai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -58,7 +58,10 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"AZURE_OPENAI_API_KEY\"] = getpass.getpass(\"Enter your AzureOpenAI API key: \")\n", + "if \"AZURE_OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"AZURE_OPENAI_API_KEY\"] = getpass.getpass(\n", + " \"Enter your AzureOpenAI API key: \"\n", + " )\n", "os.environ[\"AZURE_OPENAI_ENDPOINT\"] = \"https://YOUR-ENDPOINT.openai.azure.com/\"" ] }, @@ -318,7 +321,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all AzureChatOpenAI features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html" + "For detailed documentation of all AzureChatOpenAI features and configurations head to the API reference: https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html" ] } ], diff --git a/docs/docs/integrations/chat/bedrock.ipynb b/docs/docs/integrations/chat/bedrock.ipynb index 16b17743545ff..750f391822767 100644 --- a/docs/docs/integrations/chat/bedrock.ipynb +++ b/docs/docs/integrations/chat/bedrock.ipynb @@ -21,14 +21,14 @@ "\n", "For more information on which models are accessible via Bedrock, head to the [AWS docs](https://docs.aws.amazon.com/bedrock/latest/userguide/models-features.html).\n", "\n", - "For detailed documentation of all ChatBedrock features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html).\n", + "For detailed documentation of all ChatBedrock features and configurations head to the [API reference](https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html).\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/bedrock) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/bedrock) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatBedrock](https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html) | [langchain-aws](https://python.langchain.com/v0.2/api_reference/aws/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-aws?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-aws?style=flat-square&label=%20) |\n", + "| [ChatBedrock](https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html) | [langchain-aws](https://python.langchain.com/api_reference/aws/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-aws?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-aws?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -225,7 +225,7 @@ "source": [ "## Bedrock Converse API\n", "\n", - "AWS has recently released the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html) integration has been released.\n", + "AWS has recently released the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html) integration has been released.\n", "\n", "We recommend using `ChatBedrockConverse` for users who do not need to use custom models.\n", "\n", @@ -350,9 +350,9 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatBedrock features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html\n", + "For detailed documentation of all ChatBedrock features and configurations head to the API reference: https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html\n", "\n", - "For detailed documentation of all ChatBedrockConverse features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html" + "For detailed documentation of all ChatBedrockConverse features and configurations head to the API reference: https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html" ] } ], diff --git a/docs/docs/integrations/chat/cerebras.ipynb b/docs/docs/integrations/chat/cerebras.ipynb index e6f1b3ffcd17f..41183d1ec337e 100644 --- a/docs/docs/integrations/chat/cerebras.ipynb +++ b/docs/docs/integrations/chat/cerebras.ipynb @@ -35,7 +35,7 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/cerebras) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/cerebras) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", "| [ChatCerebras](https://api.python.langchain.com/en/latest/chat_models/langchain_cerebras.chat_models.ChatCerebras.html) | [langchain-cerebras](https://api.python.langchain.com/en/latest/cerebras_api_reference.html) | ❌ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-cerebras?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-cerebras?style=flat-square&label=%20) |\n", "\n", @@ -76,7 +76,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"CEREBRAS_API_KEY\"] = getpass.getpass(\"Enter your Cerebras API key: \")" + "if \"CEREBRAS_API_KEY\" not in os.environ:\n", + " os.environ[\"CEREBRAS_API_KEY\"] = getpass.getpass(\"Enter your Cerebras API key: \")" ] }, { diff --git a/docs/docs/integrations/chat/cohere.ipynb b/docs/docs/integrations/chat/cohere.ipynb index c63bb8e4a8c00..7675306c2658f 100644 --- a/docs/docs/integrations/chat/cohere.ipynb +++ b/docs/docs/integrations/chat/cohere.ipynb @@ -19,7 +19,7 @@ "\n", "This notebook covers how to get started with [Cohere chat models](https://cohere.com/chat).\n", "\n", - "Head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.cohere.ChatCohere.html) for detailed documentation of all attributes and methods." + "Head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.cohere.ChatCohere.html) for detailed documentation of all attributes and methods." ] }, { diff --git a/docs/docs/integrations/chat/databricks.ipynb b/docs/docs/integrations/chat/databricks.ipynb index ad2a68dd51f91..74c80b86cf52d 100644 --- a/docs/docs/integrations/chat/databricks.ipynb +++ b/docs/docs/integrations/chat/databricks.ipynb @@ -21,7 +21,7 @@ "\n", "> [Databricks](https://www.databricks.com/) Lakehouse Platform unifies data, analytics, and AI on one platform. \n", "\n", - "This notebook provides a quick overview for getting started with Databricks [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatDatabricks features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.databricks.ChatDatabricks.html).\n", + "This notebook provides a quick overview for getting started with Databricks [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatDatabricks features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.databricks.ChatDatabricks.html).\n", "\n", "## Overview\n", "\n", @@ -31,7 +31,7 @@ "\n", "| Class | Package | Local | Serializable | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [ChatDatabricks](https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.databricks.ChatDatabricks.html) | [langchain-databricks](https://python.langchain.com/v0.2/api_reference/databricks/index.html) | ❌ | beta | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-databricks?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-databricks?style=flat-square&label=%20) |\n", + "| [ChatDatabricks](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.databricks.ChatDatabricks.html) | [langchain-databricks](https://python.langchain.com/api_reference/databricks/index.html) | ❌ | beta | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-databricks?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-databricks?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -90,7 +90,10 @@ "import os\n", "\n", "os.environ[\"DATABRICKS_HOST\"] = \"https://your-workspace.cloud.databricks.com\"\n", - "os.environ[\"DATABRICKS_TOKEN\"] = getpass.getpass(\"Enter your Databricks access token: \")" + "if \"DATABRICKS_TOKEN\" not in os.environ:\n", + " os.environ[\"DATABRICKS_TOKEN\"] = getpass.getpass(\n", + " \"Enter your Databricks access token: \"\n", + " )" ] }, { @@ -139,7 +142,7 @@ " endpoint=\"databricks-dbrx-instruct\",\n", " temperature=0.1,\n", " max_tokens=256,\n", - " # See https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.databricks.ChatDatabricks.html for other supported parameters\n", + " # See https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.databricks.ChatDatabricks.html for other supported parameters\n", ")" ] }, @@ -457,7 +460,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatDatabricks features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/databricks/chat_models/langchain_databricks.chat_models.ChatDatabricks.html" + "For detailed documentation of all ChatDatabricks features and configurations head to the API reference: https://python.langchain.com/api_reference/databricks/chat_models/langchain_databricks.chat_models.ChatDatabricks.html" ] } ], diff --git a/docs/docs/integrations/chat/deepinfra.ipynb b/docs/docs/integrations/chat/deepinfra.ipynb index e8d6d3465a912..2c5eddd6b83f0 100644 --- a/docs/docs/integrations/chat/deepinfra.ipynb +++ b/docs/docs/integrations/chat/deepinfra.ipynb @@ -123,8 +123,8 @@ "from dotenv import find_dotenv, load_dotenv\n", "from langchain_community.chat_models import ChatDeepInfra\n", "from langchain_core.messages import HumanMessage\n", - "from langchain_core.pydantic_v1 import BaseModel\n", "from langchain_core.tools import tool\n", + "from pydantic import BaseModel\n", "\n", "model_name = \"meta-llama/Meta-Llama-3-70B-Instruct\"\n", "\n", diff --git a/docs/docs/integrations/chat/edenai.ipynb b/docs/docs/integrations/chat/edenai.ipynb index 2c8f96aed2c89..80dfbb5b7c066 100644 --- a/docs/docs/integrations/chat/edenai.ipynb +++ b/docs/docs/integrations/chat/edenai.ipynb @@ -264,7 +264,7 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "llm = ChatEdenAI(provider=\"openai\", temperature=0.2, max_tokens=500)\n", "\n", diff --git a/docs/docs/integrations/chat/everlyai.ipynb b/docs/docs/integrations/chat/everlyai.ipynb index 511b81dd63488..3e3fabc45eddb 100644 --- a/docs/docs/integrations/chat/everlyai.ipynb +++ b/docs/docs/integrations/chat/everlyai.ipynb @@ -47,7 +47,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"EVERLYAI_API_KEY\"] = getpass()" + "if \"EVERLYAI_API_KEY\" not in os.environ:\n", + " os.environ[\"EVERLYAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/chat/fireworks.ipynb b/docs/docs/integrations/chat/fireworks.ipynb index 187008820cafe..b43c5f56f8b4e 100644 --- a/docs/docs/integrations/chat/fireworks.ipynb +++ b/docs/docs/integrations/chat/fireworks.ipynb @@ -17,16 +17,16 @@ "source": [ "# ChatFireworks\n", "\n", - "This doc help you get started with Fireworks AI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatFireworks features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html).\n", + "This doc help you get started with Fireworks AI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatFireworks features and configurations head to the [API reference](https://python.langchain.com/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html).\n", "\n", "Fireworks AI is an AI inference platform to run and customize models. For a list of all models served by Fireworks see the [Fireworks docs](https://fireworks.ai/models).\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/fireworks) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/fireworks) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatFireworks](https://python.langchain.com/v0.2/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html) | [langchain-fireworks](https://python.langchain.com/v0.2/api_reference/fireworks/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-fireworks?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-fireworks?style=flat-square&label=%20) |\n", + "| [ChatFireworks](https://python.langchain.com/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html) | [langchain-fireworks](https://python.langchain.com/api_reference/fireworks/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-fireworks?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-fireworks?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -52,7 +52,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Enter your Fireworks API key: \")" + "if \"FIREWORKS_API_KEY\" not in os.environ:\n", + " os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Enter your Fireworks API key: \")" ] }, { @@ -239,7 +240,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatFireworks features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html" + "For detailed documentation of all ChatFireworks features and configurations head to the API reference: https://python.langchain.com/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html" ] } ], diff --git a/docs/docs/integrations/chat/friendli.ipynb b/docs/docs/integrations/chat/friendli.ipynb index f9fc3878f1fa0..bdce836562e52 100644 --- a/docs/docs/integrations/chat/friendli.ipynb +++ b/docs/docs/integrations/chat/friendli.ipynb @@ -44,7 +44,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"FRIENDLI_TOKEN\"] = getpass.getpass(\"Friendi Personal Access Token: \")" + "if \"FRIENDLI_TOKEN\" not in os.environ:\n", + " os.environ[\"FRIENDLI_TOKEN\"] = getpass.getpass(\"Friendi Personal Access Token: \")" ] }, { diff --git a/docs/docs/integrations/chat/gigachat.ipynb b/docs/docs/integrations/chat/gigachat.ipynb index 8676c26875da2..3fbb13ce419c0 100644 --- a/docs/docs/integrations/chat/gigachat.ipynb +++ b/docs/docs/integrations/chat/gigachat.ipynb @@ -47,7 +47,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()" + "if \"GIGACHAT_CREDENTIALS\" not in os.environ:\n", + " os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/chat/google_generative_ai.ipynb b/docs/docs/integrations/chat/google_generative_ai.ipynb index 8672bf1eb8fd2..08aad6fefb489 100644 --- a/docs/docs/integrations/chat/google_generative_ai.ipynb +++ b/docs/docs/integrations/chat/google_generative_ai.ipynb @@ -17,7 +17,7 @@ "source": [ "# ChatGoogleGenerativeAI\n", "\n", - "This docs will help you get started with Google AI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatGoogleGenerativeAI features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html).\n", + "This docs will help you get started with Google AI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatGoogleGenerativeAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html).\n", "\n", "Google AI offers a number of different chat models. For information on the latest models, their features, context windows, etc. head to the [Google AI docs](https://ai.google.dev/gemini-api/docs/models/gemini).\n", "\n", @@ -32,9 +32,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/google_generativeai) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/google_generativeai) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatGoogleGenerativeAI](https://python.langchain.com/v0.2/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html) | [langchain-google-genai](https://python.langchain.com/v0.2/api_reference/google_genai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-genai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-genai?style=flat-square&label=%20) |\n", + "| [ChatGoogleGenerativeAI](https://python.langchain.com/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html) | [langchain-google-genai](https://python.langchain.com/api_reference/google_genai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-genai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-genai?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -60,7 +60,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"GOOGLE_API_KEY\"] = getpass.getpass(\"Enter your Google AI API key: \")" + "if \"GOOGLE_API_KEY\" not in os.environ:\n", + " os.environ[\"GOOGLE_API_KEY\"] = getpass.getpass(\"Enter your Google AI API key: \")" ] }, { @@ -285,7 +286,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatGoogleGenerativeAI features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html" + "For detailed documentation of all ChatGoogleGenerativeAI features and configurations head to the API reference: https://python.langchain.com/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html" ] } ], diff --git a/docs/docs/integrations/chat/google_vertex_ai_palm.ipynb b/docs/docs/integrations/chat/google_vertex_ai_palm.ipynb index 005a00a384e70..7261adba1600d 100644 --- a/docs/docs/integrations/chat/google_vertex_ai_palm.ipynb +++ b/docs/docs/integrations/chat/google_vertex_ai_palm.ipynb @@ -17,7 +17,7 @@ "source": [ "# ChatVertexAI\n", "\n", - "This page provides a quick overview for getting started with VertexAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatVertexAI features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html).\n", + "This page provides a quick overview for getting started with VertexAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatVertexAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html).\n", "\n", "ChatVertexAI exposes all foundational models available in Google Cloud, like `gemini-1.5-pro`, `gemini-1.5-flash`, etc. For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview).\n", "\n", @@ -30,9 +30,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/google_vertex_ai) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/google_vertex_ai) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatVertexAI](https://python.langchain.com/v0.2/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html) | [langchain-google-vertexai](https://python.langchain.com/v0.2/api_reference/google_vertexai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-vertexai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-vertexai?style=flat-square&label=%20) |\n", + "| [ChatVertexAI](https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html) | [langchain-google-vertexai](https://python.langchain.com/api_reference/google_vertexai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-google-vertexai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-google-vertexai?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -241,7 +241,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatVertexAI features and configurations, like how to send multimodal inputs and configure safety settings, head to the API reference: https://python.langchain.com/v0.2/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html" + "For detailed documentation of all ChatVertexAI features and configurations, like how to send multimodal inputs and configure safety settings, head to the API reference: https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html" ] } ], diff --git a/docs/docs/integrations/chat/groq.ipynb b/docs/docs/integrations/chat/groq.ipynb index 7f1a3398418e1..59898319b5474 100644 --- a/docs/docs/integrations/chat/groq.ipynb +++ b/docs/docs/integrations/chat/groq.ipynb @@ -17,14 +17,14 @@ "source": [ "# ChatGroq\n", "\n", - "This will help you getting started with Groq [chat models](../../concepts.mdx#chat-models). For detailed documentation of all ChatGroq features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html). For a list of all Groq models, visit this [link](https://console.groq.com/docs/models).\n", + "This will help you getting started with Groq [chat models](../../concepts.mdx#chat-models). For detailed documentation of all ChatGroq features and configurations head to the [API reference](https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html). For a list of all Groq models, visit this [link](https://console.groq.com/docs/models).\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/groq) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/groq) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatGroq](https://python.langchain.com/v0.2/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html) | [langchain-groq](https://python.langchain.com/v0.2/api_reference/groq/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-groq?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-groq?style=flat-square&label=%20) |\n", + "| [ChatGroq](https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html) | [langchain-groq](https://python.langchain.com/api_reference/groq/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-groq?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-groq?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n", @@ -50,7 +50,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"GROQ_API_KEY\"] = getpass.getpass(\"Enter your Groq API key: \")" + "if \"GROQ_API_KEY\" not in os.environ:\n", + " os.environ[\"GROQ_API_KEY\"] = getpass.getpass(\"Enter your Groq API key: \")" ] }, { @@ -248,7 +249,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatGroq features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html" + "For detailed documentation of all ChatGroq features and configurations head to the API reference: https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html" ] } ], diff --git a/docs/docs/integrations/chat/huggingface.ipynb b/docs/docs/integrations/chat/huggingface.ipynb index af03eb8d36b05..b1ab4e16dfe2c 100644 --- a/docs/docs/integrations/chat/huggingface.ipynb +++ b/docs/docs/integrations/chat/huggingface.ipynb @@ -6,7 +6,7 @@ "source": [ "# ChatHuggingFace\n", "\n", - "This will help you getting started with `langchain_huggingface` [chat models](/docs/concepts/#chat-models). For detailed documentation of all `ChatHuggingFace` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html). For a list of models supported by Hugging Face check out [this page](https://huggingface.co/models).\n", + "This will help you getting started with `langchain_huggingface` [chat models](/docs/concepts/#chat-models). For detailed documentation of all `ChatHuggingFace` features and configurations head to the [API reference](https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html). For a list of models supported by Hugging Face check out [this page](https://huggingface.co/models).\n", "\n", "## Overview\n", "### Integration details\n", @@ -15,7 +15,7 @@ "\n", "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatHuggingFace](https://python.langchain.com/v0.2/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html) | [langchain-huggingface](https://python.langchain.com/v0.2/api_reference/huggingface/index.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_huggingface?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_huggingface?style=flat-square&label=%20) |\n", + "| [ChatHuggingFace](https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html) | [langchain-huggingface](https://python.langchain.com/api_reference/huggingface/index.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_huggingface?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_huggingface?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -52,7 +52,7 @@ "\n", "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatHuggingFace](https://python.langchain.com/v0.2/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html) | [langchain_huggingface](https://python.langchain.com/v0.2/api_reference/huggingface/index.html) | ✅ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_huggingface?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_huggingface?style=flat-square&label=%20) |\n", + "| [ChatHuggingFace](https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html) | [langchain_huggingface](https://python.langchain.com/api_reference/huggingface/index.html) | ✅ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_huggingface?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_huggingface?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -465,7 +465,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `ChatHuggingFace` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html" + "For detailed documentation of all `ChatHuggingFace` features and configurations head to the API reference: https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html" ] }, { @@ -474,7 +474,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatHuggingFace features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html" + "For detailed documentation of all ChatHuggingFace features and configurations head to the API reference: https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html" ] } ], diff --git a/docs/docs/integrations/chat/ibm_watsonx.ipynb b/docs/docs/integrations/chat/ibm_watsonx.ipynb index b2fd921937f09..179790bbe1dac 100644 --- a/docs/docs/integrations/chat/ibm_watsonx.ipynb +++ b/docs/docs/integrations/chat/ibm_watsonx.ipynb @@ -34,7 +34,7 @@ "## Overview\n", "\n", "### Integration details\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/openai) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/openai) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", "| ChatWatsonx | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-ibm?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-ibm?style=flat-square&label=%20) |\n", "\n", @@ -483,7 +483,7 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class GetWeather(BaseModel):\n", diff --git a/docs/docs/integrations/chat/llamacpp.ipynb b/docs/docs/integrations/chat/llamacpp.ipynb index d34a0f65fcaf2..dbd49b8d54d51 100644 --- a/docs/docs/integrations/chat/llamacpp.ipynb +++ b/docs/docs/integrations/chat/llamacpp.ipynb @@ -32,7 +32,7 @@ "### Integration details\n", "| Class | Package | Local | Serializable | JS support |\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [ChatLlamaCpp](https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html) | [langchain-community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ |\n", + "| [ChatLlamaCpp](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -226,8 +226,8 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_core.tools import tool\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class WeatherInput(BaseModel):\n", @@ -343,8 +343,8 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel\n", "from langchain_core.utils.function_calling import convert_to_openai_tool\n", + "from pydantic import BaseModel\n", "\n", "\n", "class Joke(BaseModel):\n", @@ -404,7 +404,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatLlamaCpp features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html" + "For detailed documentation of all ChatLlamaCpp features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html" ] } ], diff --git a/docs/docs/integrations/chat/mistralai.ipynb b/docs/docs/integrations/chat/mistralai.ipynb index e98a3c9c8539d..94f4717108be3 100644 --- a/docs/docs/integrations/chat/mistralai.ipynb +++ b/docs/docs/integrations/chat/mistralai.ipynb @@ -17,14 +17,14 @@ "source": [ "# ChatMistralAI\n", "\n", - "This will help you getting started with Mistral [chat models](/docs/concepts/#chat-models). For detailed documentation of all `ChatMistralAI` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html). The `ChatMistralAI` class is built on top of the [Mistral API](https://docs.mistral.ai/api/). For a list of all the models supported by Mistral, check out [this page](https://docs.mistral.ai/getting-started/models/).\n", + "This will help you getting started with Mistral [chat models](/docs/concepts/#chat-models). For detailed documentation of all `ChatMistralAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html). The `ChatMistralAI` class is built on top of the [Mistral API](https://docs.mistral.ai/api/). For a list of all the models supported by Mistral, check out [this page](https://docs.mistral.ai/getting-started/models/).\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/mistral) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/mistral) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatMistralAI](https://python.langchain.com/v0.2/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html) | [langchain_mistralai](https://python.langchain.com/v0.2/api_reference/mistralai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_mistralai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_mistralai?style=flat-square&label=%20) |\n", + "| [ChatMistralAI](https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html) | [langchain_mistralai](https://python.langchain.com/api_reference/mistralai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_mistralai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_mistralai?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -52,7 +52,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"MISTRAL_API_KEY\"] = getpass.getpass(\"Enter your Mistral API key: \")" + "if \"MISTRAL_API_KEY\" not in os.environ:\n", + " os.environ[\"MISTRAL_API_KEY\"] = getpass.getpass(\"Enter your Mistral API key: \")" ] }, { @@ -233,7 +234,7 @@ "source": [ "## API reference\n", "\n", - "Head to the [API reference](https://python.langchain.com/v0.2/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html) for detailed documentation of all attributes and methods." + "Head to the [API reference](https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html) for detailed documentation of all attributes and methods." ] } ], diff --git a/docs/docs/integrations/chat/nvidia_ai_endpoints.ipynb b/docs/docs/integrations/chat/nvidia_ai_endpoints.ipynb index 474821a88b3d3..58f5a01f91277 100644 --- a/docs/docs/integrations/chat/nvidia_ai_endpoints.ipynb +++ b/docs/docs/integrations/chat/nvidia_ai_endpoints.ipynb @@ -17,7 +17,7 @@ "source": [ "# ChatNVIDIA\n", "\n", - "This will help you getting started with NVIDIA [chat models](/docs/concepts/#chat-models). For detailed documentation of all `ChatNVIDIA` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html).\n", + "This will help you getting started with NVIDIA [chat models](/docs/concepts/#chat-models). For detailed documentation of all `ChatNVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html).\n", "\n", "## Overview\n", "The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on \n", @@ -41,7 +41,7 @@ "\n", "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatNVIDIA](https://python.langchain.com/v0.2/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain_nvidia_ai_endpoints](https://python.langchain.com/v0.2/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) |\n", + "| [ChatNVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain_nvidia_ai_endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -513,7 +513,7 @@ "id": "79efa62d" }, "source": [ - "Like any other integration, ChatNVIDIA is fine to support chat utilities like RunnableWithMessageHistory which is analogous to using `ConversationChain`. Below, we show the [LangChain RunnableWithMessageHistory](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model." + "Like any other integration, ChatNVIDIA is fine to support chat utilities like RunnableWithMessageHistory which is analogous to using `ConversationChain`. Below, we show the [LangChain RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) example applied to the `mistralai/mixtral-8x22b-instruct-v0.1` model." ] }, { @@ -617,7 +617,7 @@ "source": [ "## Tool calling\n", "\n", - "Starting in v0.2, `ChatNVIDIA` supports [bind_tools](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html#langchain_core.language_models.chat_models.BaseChatModel.bind_tools).\n", + "Starting in v0.2, `ChatNVIDIA` supports [bind_tools](https://python.langchain.com/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html#langchain_core.language_models.chat_models.BaseChatModel.bind_tools).\n", "\n", "`ChatNVIDIA` provides integration with the variety of models on [build.nvidia.com](https://build.nvidia.com) as well as local NIMs. Not all these models are trained for tool calling. Be sure to select a model that does have tool calling for your experimention and applications." ] @@ -658,8 +658,8 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import Field\n", "from langchain_core.tools import tool\n", + "from pydantic import Field\n", "\n", "\n", "@tool\n", @@ -680,7 +680,7 @@ "id": "e08df68c", "metadata": {}, "source": [ - "See [How to use chat models to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling/) for additional examples." + "See [How to use chat models to call tools](https://python.langchain.com/docs/how_to/tool_calling/) for additional examples." ] }, { @@ -729,7 +729,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `ChatNVIDIA` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html" + "For detailed documentation of all `ChatNVIDIA` features and configurations head to the API reference: https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html" ] } ], diff --git a/docs/docs/integrations/chat/oci_generative_ai.ipynb b/docs/docs/integrations/chat/oci_generative_ai.ipynb index 9c32baee5f871..563a9dc0c6fd8 100644 --- a/docs/docs/integrations/chat/oci_generative_ai.ipynb +++ b/docs/docs/integrations/chat/oci_generative_ai.ipynb @@ -17,7 +17,7 @@ "source": [ "# ChatOCIGenAI\n", "\n", - "This notebook provides a quick overview for getting started with OCIGenAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatOCIGenAI features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html).\n", + "This notebook provides a quick overview for getting started with OCIGenAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatOCIGenAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html).\n", "\n", "Oracle Cloud Infrastructure (OCI) Generative AI is a fully managed service that provides a set of state-of-the-art, customizable large language models (LLMs) that cover a wide range of use cases, and which is available through a single API.\n", "Using the OCI Generative AI service you can access ready-to-use pretrained models, or create and host your own fine-tuned custom models based on your own data on dedicated AI clusters. Detailed documentation of the service and API is available __[here](https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm)__ and __[here](https://docs.oracle.com/en-us/iaas/api/#/en/generative-ai/20231130/)__.\n", @@ -26,9 +26,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/oci_generative_ai) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/oci_generative_ai) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatOCIGenAI](https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html) | [langchain-community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-oci-generative-ai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-oci-generative-ai?style=flat-square&label=%20) |\n", + "| [ChatOCIGenAI](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-oci-generative-ai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-oci-generative-ai?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -162,7 +162,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatOCIGenAI features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html" + "For detailed documentation of all ChatOCIGenAI features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.oci_generative_ai.ChatOCIGenAI.html" ] } ], diff --git a/docs/docs/integrations/chat/ollama.ipynb b/docs/docs/integrations/chat/ollama.ipynb index 091a556275329..1d9b5de040354 100644 --- a/docs/docs/integrations/chat/ollama.ipynb +++ b/docs/docs/integrations/chat/ollama.ipynb @@ -435,7 +435,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatOllama features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html" + "For detailed documentation of all ChatOllama features and configurations head to the API reference: https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html" ] } ], diff --git a/docs/docs/integrations/chat/openai.ipynb b/docs/docs/integrations/chat/openai.ipynb index a0f6ca6a20381..1aa43bcd08fd5 100644 --- a/docs/docs/integrations/chat/openai.ipynb +++ b/docs/docs/integrations/chat/openai.ipynb @@ -17,7 +17,7 @@ "source": [ "# ChatOpenAI\n", "\n", - "This notebook provides a quick overview for getting started with OpenAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatOpenAI features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n", + "This notebook provides a quick overview for getting started with OpenAI [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatOpenAI features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n", "\n", "OpenAI has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [OpenAI docs](https://platform.openai.com/docs/models).\n", "\n", @@ -36,9 +36,9 @@ "## Overview\n", "\n", "### Integration details\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/openai) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/openai) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatOpenAI](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain-openai](https://python.langchain.com/v0.2/api_reference/openai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n", + "| [ChatOpenAI](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain-openai](https://python.langchain.com/api_reference/openai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -441,7 +441,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatOpenAI features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html" + "For detailed documentation of all ChatOpenAI features and configurations head to the API reference: https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html" ] } ], diff --git a/docs/docs/integrations/chat/premai.ipynb b/docs/docs/integrations/chat/premai.ipynb index 5a7b8f2bde47c..61c44eb490ad3 100644 --- a/docs/docs/integrations/chat/premai.ipynb +++ b/docs/docs/integrations/chat/premai.ipynb @@ -426,8 +426,8 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_core.tools import tool\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "# Define the schema for function arguments\n", diff --git a/docs/docs/integrations/chat/sambanova.ipynb b/docs/docs/integrations/chat/sambanova.ipynb new file mode 100644 index 0000000000000..2375cd6e1114f --- /dev/null +++ b/docs/docs/integrations/chat/sambanova.ipynb @@ -0,0 +1,374 @@ +{ + "cells": [ + { + "cell_type": "raw", + "metadata": { + "vscode": { + "languageId": "raw" + } + }, + "source": [ + "---\n", + "sidebar_label: SambaNovaCloud\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ChatSambaNovaCloud\n", + "\n", + "This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html).\n", + "\n", + "**[SambaNova](https://sambanova.ai/)'s** [SambaNova Cloud](https://cloud.sambanova.ai/) is a platform for performing inference with open-source models\n", + "\n", + "## Overview\n", + "### Integration details\n", + "\n", + "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", + "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", + "| [ChatSambaNovaCloud](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html) | [langchain-community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", + "\n", + "### Model features\n", + "\n", + "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", + "| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n", + "| ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n", + "\n", + "## Setup\n", + "\n", + "To access ChatSambaNovaCloud models you will need to create a [SambaNovaCloud](https://cloud.sambanova.ai/) account, get an API key, install the `langchain_community` integration package, and install the `SSEClient` Package.\n", + "\n", + "```bash\n", + "pip install langchain-community\n", + "pip install sseclient-py\n", + "```\n", + "\n", + "### Credentials\n", + "\n", + "Get an API Key from [cloud.sambanova.ai](https://cloud.sambanova.ai/apis) and add it to your environment variables:\n", + "\n", + "``` bash\n", + "export SAMBANOVA_API_KEY=\"your-api-key-here\"\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "if not os.getenv(\"SAMBANOVA_API_KEY\"):\n", + " os.environ[\"SAMBANOVA_API_KEY\"] = getpass.getpass(\n", + " \"Enter your SambaNova Cloud API key: \"\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Installation\n", + "\n", + "The LangChain __SambaNovaCloud__ integration lives in the `langchain_community` package:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU langchain-community\n", + "%pip install -qu sseclient-py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instantiation\n", + "\n", + "Now we can instantiate our model object and generate chat completions:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_community.chat_models.sambanova import ChatSambaNovaCloud\n", + "\n", + "llm = ChatSambaNovaCloud(\n", + " model=\"llama3-405b\", max_tokens=1024, temperature=0.7, top_k=1, top_p=0.01\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Invocation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content=\"J'adore la programmation.\", response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 11, 'completion_tokens': 9, 'completion_tokens_after_first_per_sec': 97.07042823956884, 'completion_tokens_after_first_per_sec_first_ten': 276.3343994441849, 'completion_tokens_per_sec': 23.775192800224037, 'end_time': 1726158364.7954874, 'is_last_response': True, 'prompt_tokens': 56, 'start_time': 1726158364.3670964, 'time_to_first_token': 0.3459765911102295, 'total_latency': 0.3785458261316473, 'total_tokens': 65, 'total_tokens_per_sec': 171.70972577939582}, 'model_name': 'Meta-Llama-3.1-405B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1726158364}, id='7154b676-9d5a-4b1a-a425-73bbe69f28fc')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "messages = [\n", + " (\n", + " \"system\",\n", + " \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n", + " ),\n", + " (\"human\", \"I love programming.\"),\n", + "]\n", + "ai_msg = llm.invoke(messages)\n", + "ai_msg" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "J'adore la programmation.\n" + ] + } + ], + "source": [ + "print(ai_msg.content)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Chaining\n", + "\n", + "We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='Ich liebe Programmieren.', response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 11, 'completion_tokens': 6, 'completion_tokens_after_first_per_sec': 47.80258530102961, 'completion_tokens_after_first_per_sec_first_ten': 215.59002827036753, 'completion_tokens_per_sec': 5.263977583489829, 'end_time': 1726158506.3777263, 'is_last_response': True, 'prompt_tokens': 51, 'start_time': 1726158505.1611376, 'time_to_first_token': 1.1119918823242188, 'total_latency': 1.1398224830627441, 'total_tokens': 57, 'total_tokens_per_sec': 50.00778704315337}, 'model_name': 'Meta-Llama-3.1-405B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1726158505}, id='226471ac-8c52-44bb-baa7-f9d2f8c54477')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_core.prompts import ChatPromptTemplate\n", + "\n", + "prompt = ChatPromptTemplate(\n", + " [\n", + " (\n", + " \"system\",\n", + " \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", + " ),\n", + " (\"human\", \"{input}\"),\n", + " ]\n", + ")\n", + "\n", + "chain = prompt | llm\n", + "chain.invoke(\n", + " {\n", + " \"input_language\": \"English\",\n", + " \"output_language\": \"German\",\n", + " \"input\": \"I love programming.\",\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Streaming" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Yer lookin' fer some info on owls, eh? Alright then, matey, settle yerself down with a pint o' grog and listen close.\n", + "\n", + "Owls be nocturnal birds o' prey, meanin' they do most o' their huntin' at night. They got big, round eyes that be perfect fer seein' in the dark, like a trusty lantern on a dark sea. Their ears be sharp as a cutlass, too, helpin' 'em pinpoint the slightest sound o' a scurvy rodent scurryin' through the underbrush.\n", + "\n", + "These birds be known fer their silent flight, like a ghost ship sailin' through the night. Their feathers be special, with a soft, fringed edge that helps 'em sneak up on their prey. And when they strike, it be swift and deadly, like a pirate's sword.\n", + "\n", + "Owls be found all over the world, from the frozen tundras o' the north to the scorching deserts o' the south. They come in all shapes and sizes, from the tiny elf owl to the great grey owl, which be as big as a small dog.\n", + "\n", + "Now, I know what ye be thinkin', \"Pirate, what about their hootin'?\" Aye, owls be famous fer their hoots, which be a form o' communication. They use different hoots to warn off predators, attract a mate, or even just to say, \"Shiver me timbers, I be happy to be alive!\"\n", + "\n", + "So there ye have it, me hearty. Owls be fascinatin' creatures, and I hope ye found this info as interestin' as a chest overflowin' with gold doubloons. Fair winds and following seas!" + ] + } + ], + "source": [ + "system = \"You are a helpful assistant with pirate accent.\"\n", + "human = \"I want to learn more about this animal: {animal}\"\n", + "prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n", + "\n", + "chain = prompt | llm\n", + "\n", + "for chunk in chain.stream({\"animal\": \"owl\"}):\n", + " print(chunk.content, end=\"\", flush=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Async" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='The capital of France is Paris.', response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 13, 'completion_tokens': 8, 'completion_tokens_after_first_per_sec': 86.00726488715989, 'completion_tokens_after_first_per_sec_first_ten': 326.92555640828857, 'completion_tokens_per_sec': 21.74539360394493, 'end_time': 1726159287.9987085, 'is_last_response': True, 'prompt_tokens': 43, 'start_time': 1726159287.5738964, 'time_to_first_token': 0.34342360496520996, 'total_latency': 0.36789400760944074, 'total_tokens': 51, 'total_tokens_per_sec': 138.62688422514893}, 'model_name': 'Meta-Llama-3.1-405B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1726159287}, id='9b4ef015-50a2-434b-b980-29f8aa90c3e8')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\n", + " \"human\",\n", + " \"what is the capital of {country}?\",\n", + " )\n", + " ]\n", + ")\n", + "\n", + "chain = prompt | llm\n", + "await chain.ainvoke({\"country\": \"France\"})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Async Streaming" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Quantum computers use quantum bits (qubits) to process vast amounts of data simultaneously, leveraging quantum mechanics to solve complex problems exponentially faster than classical computers." + ] + } + ], + "source": [ + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\n", + " \"human\",\n", + " \"in less than {num_words} words explain me {topic} \",\n", + " )\n", + " ]\n", + ")\n", + "chain = prompt | llm\n", + "\n", + "async for chunk in chain.astream({\"num_words\": 30, \"topic\": \"quantum computers\"}):\n", + " print(chunk.content, end=\"\", flush=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## API reference\n", + "\n", + "For detailed documentation of all ChatSambaNovaCloud features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "langchain", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.19" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/docs/integrations/chat/sambastudio.ipynb b/docs/docs/integrations/chat/sambastudio.ipynb new file mode 100644 index 0000000000000..9301d68fe33df --- /dev/null +++ b/docs/docs/integrations/chat/sambastudio.ipynb @@ -0,0 +1,383 @@ +{ + "cells": [ + { + "cell_type": "raw", + "metadata": { + "vscode": { + "languageId": "raw" + } + }, + "source": [ + "---\n", + "sidebar_label: SambaStudio\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ChatSambaStudio\n", + "\n", + "This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatStudio features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaStudio.html).\n", + "\n", + "**[SambaNova](https://sambanova.ai/)'s** [SambaStudio](https://docs.sambanova.ai/sambastudio/latest/sambastudio-intro.html) SambaStudio is a rich, GUI-based platform that provides the functionality to train, deploy, and manage models in SambaNova [DataScale](https://sambanova.ai/products/datascale) systems.\n", + "\n", + "## Overview\n", + "### Integration details\n", + "\n", + "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", + "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", + "| [ChatSambaStudio](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaStudio.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", + "\n", + "### Model features\n", + "\n", + "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", + "| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n", + "| ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n", + "\n", + "## Setup\n", + "\n", + "To access ChatSambaStudio models you will need to [deploy an endpoint](https://docs.sambanova.ai/sambastudio/latest/language-models.html) in your SambaStudio platform, install the `langchain_community` integration package, and install the `SSEClient` Package.\n", + "\n", + "```bash\n", + "pip install langchain-community\n", + "pip install sseclient-py\n", + "```\n", + "\n", + "### Credentials\n", + "\n", + "Get the URL and API Key from your SambaStudio deployed endpoint and add them to your environment variables:\n", + "\n", + "``` bash\n", + "export SAMBASTUDIO_URL=\"your-api-key-here\"\n", + "export SAMBASTUDIO_API_KEY=\"your-api-key-here\"\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "if not os.getenv(\"SAMBASTUDIO_URL\"):\n", + " os.environ[\"SAMBASTUDIO_URL\"] = getpass.getpass(\"Enter your SambaStudio URL: \")\n", + "if not os.getenv(\"SAMBASTUDIO_API_KEY\"):\n", + " os.environ[\"SAMBASTUDIO_API_KEY\"] = getpass.getpass(\n", + " \"Enter your SambaStudio API key: \"\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", + "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Installation\n", + "\n", + "The LangChain __SambaStudio__ integration lives in the `langchain_community` package:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -qU langchain-community\n", + "%pip install -qu sseclient-py" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instantiation\n", + "\n", + "Now we can instantiate our model object and generate chat completions:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_community.chat_models.sambanova import ChatSambaStudio\n", + "\n", + "llm = ChatSambaStudio(\n", + " model=\"Meta-Llama-3-70B-Instruct-4096\", # set if using a CoE endpoint\n", + " max_tokens=1024,\n", + " temperature=0.7,\n", + " top_k=1,\n", + " top_p=0.01,\n", + " do_sample=True,\n", + " process_prompt=\"True\", # set if using a CoE endpoint\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Invocation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content=\"J'adore la programmation.\", response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': \"J'adore la programmation.\", 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>system<|end_header_id|>\\n\\nYou are a helpful assistant that translates English to French. Translate the user sentence.<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nI love programming.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n', 'stop_reason': 'end_of_text', 'tokens': ['J', \"'\", 'ad', 'ore', ' la', ' programm', 'ation', '.'], 'total_tokens_count': 43}, 'params': {}, 'status': None}, id='item0')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "messages = [\n", + " (\n", + " \"system\",\n", + " \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n", + " ),\n", + " (\"human\", \"I love programming.\"),\n", + "]\n", + "ai_msg = llm.invoke(messages)\n", + "ai_msg" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "J'adore la programmation.\n" + ] + } + ], + "source": [ + "print(ai_msg.content)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Chaining\n", + "\n", + "We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='Ich liebe das Programmieren.', response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': 'Ich liebe das Programmieren.', 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>system<|end_header_id|>\\n\\nYou are a helpful assistant that translates English to German.<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\nI love programming.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n', 'stop_reason': 'end_of_text', 'tokens': ['Ich', ' liebe', ' das', ' Programm', 'ieren', '.'], 'total_tokens_count': 36}, 'params': {}, 'status': None}, id='item0')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_core.prompts import ChatPromptTemplate\n", + "\n", + "prompt = ChatPromptTemplate(\n", + " [\n", + " (\n", + " \"system\",\n", + " \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", + " ),\n", + " (\"human\", \"{input}\"),\n", + " ]\n", + ")\n", + "\n", + "chain = prompt | llm\n", + "chain.invoke(\n", + " {\n", + " \"input_language\": \"English\",\n", + " \"output_language\": \"German\",\n", + " \"input\": \"I love programming.\",\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Streaming" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Arrr, ye landlubber! Ye be wantin' to learn about owls, eh? Well, matey, settle yerself down with a pint o' grog and listen close, for I be tellin' ye about these fascinatin' creatures o' the night!\n", + "\n", + "Owls be birds, but not just any birds, me hearty! They be nocturnal, meanin' they do their huntin' at night, when the rest o' the world be sleepin'. And they be experts at it, too! Their big, round eyes be designed for seein' in the dark, with a special reflective layer called the tapetum lucidum that helps 'em spot prey in the shadows. It's like havin' a built-in lantern, savvy?\n", + "\n", + "But that be not all, me matey! Owls also have acute hearin', which helps 'em pinpoint the slightest sounds in the dark. And their ears be asymmetrical, meanin' one ear be higher than the other, which gives 'em better depth perception. It's like havin' a built-in sonar system, arrr!\n", + "\n", + "Now, ye might be wonderin' how owls fly so silently, like ghosts in the night. Well, it be because o' their special feathers, me hearty! They have soft, fringed feathers on their wings that help reduce noise and turbulence, makin' 'em the sneakiest flyers on the seven seas... er, skies!\n", + "\n", + "Owls come in all shapes and sizes, from the tiny elf owl to the great grey owl, which be one o' the largest owl species in the world. And they be found on every continent, except Antarctica, o' course. They be solitary creatures, but some species be known to form long-term monogamous relationships, like the barn owl and its mate.\n", + "\n", + "So, there ye have it, me hearty! Owls be amazin' creatures, with their clever adaptations and stealthy ways. Now, go forth and spread the word about these magnificent birds o' the night! And remember, if ye ever encounter an owl in the wild, be sure to show respect and keep a weather eye open, or ye might just find yerself on the receivin' end o' a silent, flyin' tackle! Arrr!" + ] + } + ], + "source": [ + "system = \"You are a helpful assistant with pirate accent.\"\n", + "human = \"I want to learn more about this animal: {animal}\"\n", + "prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])\n", + "\n", + "chain = prompt | llm\n", + "\n", + "for chunk in chain.stream({\"animal\": \"owl\"}):\n", + " print(chunk.content, end=\"\", flush=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Async" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='The capital of France is Paris.', response_metadata={'id': 'item0', 'partial': False, 'value': {'completion': 'The capital of France is Paris.', 'logprobs': {'text_offset': [], 'top_logprobs': []}, 'prompt': '<|start_header_id|>user<|end_header_id|>\\n\\nwhat is the capital of France?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n', 'stop_reason': 'end_of_text', 'tokens': ['The', ' capital', ' of', ' France', ' is', ' Paris', '.'], 'total_tokens_count': 24}, 'params': {}, 'status': None}, id='item0')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\n", + " \"human\",\n", + " \"what is the capital of {country}?\",\n", + " )\n", + " ]\n", + ")\n", + "\n", + "chain = prompt | llm\n", + "await chain.ainvoke({\"country\": \"France\"})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Async Streaming" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Quantum computers use quantum bits (qubits) to process multiple possibilities simultaneously, exponentially faster than classical computers, enabling breakthroughs in fields like cryptography, optimization, and simulation." + ] + } + ], + "source": [ + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\n", + " \"human\",\n", + " \"in less than {num_words} words explain me {topic} \",\n", + " )\n", + " ]\n", + ")\n", + "chain = prompt | llm\n", + "\n", + "async for chunk in chain.astream({\"num_words\": 30, \"topic\": \"quantum computers\"}):\n", + " print(chunk.content, end=\"\", flush=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## API reference\n", + "\n", + "For detailed documentation of all ChatSambaStudio features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaStudio.html" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "langchain", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.19" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/docs/integrations/chat/symblai_nebula.ipynb b/docs/docs/integrations/chat/symblai_nebula.ipynb index beb16374cda32..a2a6c2d744445 100644 --- a/docs/docs/integrations/chat/symblai_nebula.ipynb +++ b/docs/docs/integrations/chat/symblai_nebula.ipynb @@ -269,7 +269,7 @@ "source": [ "## API reference\n", "\n", - "Check out the [API reference](https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.symblai_nebula.ChatNebula.html) for more detail." + "Check out the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.symblai_nebula.ChatNebula.html) for more detail." ] } ], diff --git a/docs/docs/integrations/chat/together.ipynb b/docs/docs/integrations/chat/together.ipynb index 4a3088b82a6bc..9cbdbfe47beff 100644 --- a/docs/docs/integrations/chat/together.ipynb +++ b/docs/docs/integrations/chat/together.ipynb @@ -18,16 +18,16 @@ "# ChatTogether\n", "\n", "\n", - "This page will help you get started with Together AI [chat models](../../concepts.mdx#chat-models). For detailed documentation of all ChatTogether features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html).\n", + "This page will help you get started with Together AI [chat models](../../concepts.mdx#chat-models). For detailed documentation of all ChatTogether features and configurations head to the [API reference](https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html).\n", "\n", "[Together AI](https://www.together.ai/) offers an API to query [50+ leading open-source models](https://docs.together.ai/docs/chat-models)\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/togetherai) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/togetherai) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatTogether](https://python.langchain.com/v0.2/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html) | [langchain-together](https://python.langchain.com/v0.2/api_reference/together/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-together?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-together?style=flat-square&label=%20) |\n", + "| [ChatTogether](https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html) | [langchain-together](https://python.langchain.com/api_reference/together/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-together?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-together?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](../../how_to/tool_calling.ipynb) | [Structured output](../../how_to/structured_output.ipynb) | JSON mode | [Image input](../../how_to/multimodal_inputs.ipynb) | Audio input | Video input | [Token-level streaming](../../how_to/chat_streaming.ipynb) | Native async | [Token usage](../../how_to/chat_token_usage_tracking.ipynb) | [Logprobs](../../how_to/logprobs.ipynb) |\n", @@ -239,7 +239,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatTogether features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html" + "For detailed documentation of all ChatTogether features and configurations head to the API reference: https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html" ] } ], diff --git a/docs/docs/integrations/chat/vllm.ipynb b/docs/docs/integrations/chat/vllm.ipynb index 121ee28180530..3fa481fe4d4c8 100644 --- a/docs/docs/integrations/chat/vllm.ipynb +++ b/docs/docs/integrations/chat/vllm.ipynb @@ -20,13 +20,13 @@ "vLLM can be deployed as a server that mimics the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API. This server can be queried in the same format as OpenAI API.\n", "\n", "## Overview\n", - "This will help you getting started with vLLM [chat models](/docs/concepts/#chat-models), which leverage the `langchain-openai` package. For detailed documentation of all `ChatOpenAI` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n", + "This will help you getting started with vLLM [chat models](/docs/concepts/#chat-models), which leverage the `langchain-openai` package. For detailed documentation of all `ChatOpenAI` features and configurations head to the [API reference](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html).\n", "\n", "### Integration details\n", "\n", "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatOpenAI](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain_openai](https://python.langchain.com/v0.2/api_reference/openai/) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_openai?style=flat-square&label=%20) |\n", + "| [ChatOpenAI](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain_openai](https://python.langchain.com/api_reference/openai/) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_openai?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "Specific model features-- such as tool calling, support for multi-modal inputs, support for token-level streaming, etc.-- will depend on the hosted model.\n", @@ -214,7 +214,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all features and configurations exposed via `langchain-openai`, head to the API reference: https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html\n", + "For detailed documentation of all features and configurations exposed via `langchain-openai`, head to the API reference: https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html\n", "\n", "Refer to the vLLM [documentation](https://docs.vllm.ai/en/latest/) as well." ] diff --git a/docs/docs/integrations/chat/yi.ipynb b/docs/docs/integrations/chat/yi.ipynb index bd1a3f98ec381..27f1915e5740a 100644 --- a/docs/docs/integrations/chat/yi.ipynb +++ b/docs/docs/integrations/chat/yi.ipynb @@ -6,7 +6,7 @@ "source": [ "# ChatYI\n", "\n", - "This will help you getting started with Yi [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatYi features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/lanchain_community/chat_models/lanchain_community.chat_models.yi.ChatYi.html).\n", + "This will help you getting started with Yi [chat models](/docs/concepts/#chat-models). For detailed documentation of all ChatYi features and configurations head to the [API reference](https://python.langchain.com/api_reference/lanchain_community/chat_models/lanchain_community.chat_models.yi.ChatYi.html).\n", "\n", "[01.AI](https://www.lingyiwanwu.com/en), founded by Dr. Kai-Fu Lee, is a global company at the forefront of AI 2.0. They offer cutting-edge large language models, including the Yi series, which range from 6B to hundreds of billions of parameters. 01.AI also provides multimodal models, an open API platform, and open-source options like Yi-34B/9B/6B and Yi-VL.\n", "\n", @@ -16,7 +16,7 @@ "\n", "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatYi](https://python.langchain.com/v0.2/api_reference/lanchain_community/chat_models/lanchain_community.chat_models.yi.ChatYi.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", + "| [ChatYi](https://python.langchain.com/api_reference/lanchain_community/chat_models/lanchain_community.chat_models.yi.ChatYi.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", "\n", "### Model features\n", "| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", @@ -41,7 +41,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"YI_API_KEY\"] = getpass.getpass(\"Enter your Yi API key: \")" + "if \"YI_API_KEY\" not in os.environ:\n", + " os.environ[\"YI_API_KEY\"] = getpass.getpass(\"Enter your Yi API key: \")" ] }, { @@ -198,7 +199,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ChatYi features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.yi.ChatYi.html" + "For detailed documentation of all ChatYi features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.yi.ChatYi.html" ] } ], diff --git a/docs/docs/integrations/chat_loaders/langsmith_llm_runs.ipynb b/docs/docs/integrations/chat_loaders/langsmith_llm_runs.ipynb index d5b1968d16d97..ca0dadd3a2cd1 100644 --- a/docs/docs/integrations/chat_loaders/langsmith_llm_runs.ipynb +++ b/docs/docs/integrations/chat_loaders/langsmith_llm_runs.ipynb @@ -72,7 +72,7 @@ "source": [ "from enum import Enum\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Operation(Enum):\n", @@ -135,8 +135,8 @@ "source": [ "from pprint import pprint\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel\n", "from langchain_core.utils.function_calling import convert_pydantic_to_openai_function\n", + "from pydantic import BaseModel\n", "\n", "openai_function_def = convert_pydantic_to_openai_function(Calculator)\n", "pprint(openai_function_def)" diff --git a/docs/docs/integrations/document_loaders/airbyte.ipynb b/docs/docs/integrations/document_loaders/airbyte.ipynb index 1c992782f1997..e0afa4e603ba0 100644 --- a/docs/docs/integrations/document_loaders/airbyte.ipynb +++ b/docs/docs/integrations/document_loaders/airbyte.ipynb @@ -29,7 +29,7 @@ "metadata": {}, "outputs": [], "source": [ - "% pip install -qU langchain-airbyte" + "%pip install -qU langchain-airbyte" ] }, { diff --git a/docs/docs/integrations/document_loaders/amazon_textract.ipynb b/docs/docs/integrations/document_loaders/amazon_textract.ipynb index 67f0a5d49f5d6..e935dd57f0be5 100644 --- a/docs/docs/integrations/document_loaders/amazon_textract.ipynb +++ b/docs/docs/integrations/document_loaders/amazon_textract.ipynb @@ -13,7 +13,7 @@ "\n", "This sample demonstrates the use of `Amazon Textract` in combination with LangChain as a DocumentLoader.\n", "\n", - "`Textract` supports`PDF`, `TIF`F, `PNG` and `JPEG` format.\n", + "`Textract` supports`PDF`, `TIFF`, `PNG` and `JPEG` format.\n", "\n", "`Textract` supports these [document sizes, languages and characters](https://docs.aws.amazon.com/textract/latest/dg/limits-document.html)." ] diff --git a/docs/docs/integrations/document_loaders/arxiv.ipynb b/docs/docs/integrations/document_loaders/arxiv.ipynb index 6c86b534bd213..b88d11365ecbe 100644 --- a/docs/docs/integrations/document_loaders/arxiv.ipynb +++ b/docs/docs/integrations/document_loaders/arxiv.ipynb @@ -188,7 +188,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all ArxivLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.arxiv.ArxivLoader.html#langchain_community.document_loaders.arxiv.ArxivLoader" + "For detailed documentation of all ArxivLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.arxiv.ArxivLoader.html#langchain_community.document_loaders.arxiv.ArxivLoader" ] } ], diff --git a/docs/docs/integrations/document_loaders/blockchain.ipynb b/docs/docs/integrations/document_loaders/blockchain.ipynb index d0850311f23cb..438ad099bf565 100644 --- a/docs/docs/integrations/document_loaders/blockchain.ipynb +++ b/docs/docs/integrations/document_loaders/blockchain.ipynb @@ -44,7 +44,7 @@ "The output takes the following format:\n", "\n", "- pageContent= Individual NFT\n", - "- metadata={'source': '0x1a92f7381b9f03921564a437210bb9396471050c', 'blockchain': 'eth-mainnet', 'tokenId': '0x15'})" + "- metadata=\\{'source': '0x1a92f7381b9f03921564a437210bb9396471050c', 'blockchain': 'eth-mainnet', 'tokenId': '0x15'\\}" ] }, { diff --git a/docs/docs/integrations/document_loaders/box.ipynb b/docs/docs/integrations/document_loaders/box.ipynb index d7aa96b388bbc..5f65ab5a0745c 100644 --- a/docs/docs/integrations/document_loaders/box.ipynb +++ b/docs/docs/integrations/document_loaders/box.ipynb @@ -15,7 +15,7 @@ "source": [ "# BoxLoader\n", "\n", - "This notebook provides a quick overview for getting started with Box [document loader](/docs/integrations/document_loaders/). For detailed documentation of all BoxLoader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/box/document_loaders/langchain_box.document_loaders.box.BoxLoader.html).\n", + "This notebook provides a quick overview for getting started with Box [document loader](/docs/integrations/document_loaders/). For detailed documentation of all BoxLoader features and configurations head to the [API reference](https://python.langchain.com/api_reference/box/document_loaders/langchain_box.document_loaders.box.BoxLoader.html).\n", "\n", "\n", "## Overview\n", @@ -34,7 +34,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [BoxLoader](https://python.langchain.com/v0.2/api_reference/box/document_loaders/langchain_box.document_loaders.box.BoxLoader.html) | [langchain_box](https://python.langchain.com/v0.2/api_reference/box/index.html) | ✅ | ❌ | ❌ | \n", + "| [BoxLoader](https://python.langchain.com/api_reference/box/document_loaders/langchain_box.document_loaders.box.BoxLoader.html) | [langchain_box](https://python.langchain.com/api_reference/box/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Async Support\n", "| :---: | :---: | :---: | \n", @@ -244,7 +244,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all BoxLoader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/box/document_loaders/langchain_box.document_loaders.box.BoxLoader.html)\n", + "For detailed documentation of all BoxLoader features and configurations head to the [API reference](https://python.langchain.com/api_reference/box/document_loaders/langchain_box.document_loaders.box.BoxLoader.html)\n", "\n", "\n", "## Help\n", diff --git a/docs/docs/integrations/document_loaders/browserbase.ipynb b/docs/docs/integrations/document_loaders/browserbase.ipynb index ae497ba6dade8..149fef7386142 100644 --- a/docs/docs/integrations/document_loaders/browserbase.ipynb +++ b/docs/docs/integrations/document_loaders/browserbase.ipynb @@ -26,7 +26,7 @@ "metadata": {}, "outputs": [], "source": [ - "% pip install browserbase" + "%pip install browserbase" ] }, { diff --git a/docs/docs/integrations/document_loaders/bshtml.ipynb b/docs/docs/integrations/document_loaders/bshtml.ipynb index 5c4b8450c014f..b23ba8dca4bb4 100644 --- a/docs/docs/integrations/document_loaders/bshtml.ipynb +++ b/docs/docs/integrations/document_loaders/bshtml.ipynb @@ -7,7 +7,7 @@ "# BSHTMLLoader\n", "\n", "\n", - "This notebook provides a quick overview for getting started with BeautifulSoup4 [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html).\n", + "This notebook provides a quick overview for getting started with BeautifulSoup4 [document loader](https://python.langchain.com/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html).\n", "\n", "\n", "## Overview\n", @@ -16,7 +16,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [BSHTMLLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [BSHTMLLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -215,7 +215,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all BSHTMLLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html" + "For detailed documentation of all BSHTMLLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/confluence.ipynb b/docs/docs/integrations/document_loaders/confluence.ipynb index ea8e0973b6d6e..c7f04f0bae558 100644 --- a/docs/docs/integrations/document_loaders/confluence.ipynb +++ b/docs/docs/integrations/document_loaders/confluence.ipynb @@ -19,7 +19,7 @@ "\n", "You can also specify a boolean `include_attachments` to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: `PDF`, `PNG`, `JPEG/JPG`, `SVG`, `Word` and `Excel`.\n", "\n", - "Hint: `space_key` and `page_id` can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces//pages/\n" + "Hint: `space_key` and `page_id` can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id>\n" ] }, { diff --git a/docs/docs/integrations/document_loaders/dedoc.ipynb b/docs/docs/integrations/document_loaders/dedoc.ipynb index 130977d5a518f..1406243192d6d 100644 --- a/docs/docs/integrations/document_loaders/dedoc.ipynb +++ b/docs/docs/integrations/document_loaders/dedoc.ipynb @@ -23,9 +23,9 @@ "\n", "| Class | Package | Local | Serializable | JS support |\n", "|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----:|:------------:|:----------:|\n", - "| [DedocFileLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | beta | ❌ |\n", - "| [DedocPDFLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | beta | ❌ | \n", - "| [DedocAPIFileLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | beta | ❌ | \n", + "| [DedocFileLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | beta | ❌ |\n", + "| [DedocPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | beta | ❌ | \n", + "| [DedocAPIFileLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | beta | ❌ | \n", "\n", "\n", "### Loader features\n", @@ -161,9 +161,9 @@ "\n", "For detailed information on configuring and calling `Dedoc` loaders, please see the API references: \n", "\n", - "* https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html\n", - "* https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html\n", - "* https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html" + "* https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocFileLoader.html\n", + "* https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.DedocPDFLoader.html\n", + "* https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.dedoc.DedocAPIFileLoader.html" ] }, { diff --git a/docs/docs/integrations/document_loaders/figma.ipynb b/docs/docs/integrations/document_loaders/figma.ipynb index fd4cc237c5d4a..cccc3dac5c932 100644 --- a/docs/docs/integrations/document_loaders/figma.ipynb +++ b/docs/docs/integrations/document_loaders/figma.ipynb @@ -40,9 +40,9 @@ "source": [ "The Figma API Requires an access token, node_ids, and a file key.\n", "\n", - "The file key can be pulled from the URL. https://www.figma.com/file/{filekey}/sampleFilename\n", + "The file key can be pulled from the URL. https://www.figma.com/file/\\{filekey\\}/sampleFilename\n", "\n", - "Node IDs are also available in the URL. Click on anything and look for the '?node-id={node_id}' param.\n", + "Node IDs are also available in the URL. Click on anything and look for the '?node-id=\\{node_id\\}' param.\n", "\n", "Access token instructions are in the Figma help center article: https://help.figma.com/hc/en-us/articles/8085703771159-Manage-personal-access-tokens" ] diff --git a/docs/docs/integrations/document_loaders/firecrawl.ipynb b/docs/docs/integrations/document_loaders/firecrawl.ipynb index 025bb08c2a199..4abf280da8f92 100644 --- a/docs/docs/integrations/document_loaders/firecrawl.ipynb +++ b/docs/docs/integrations/document_loaders/firecrawl.ipynb @@ -13,9 +13,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/web_loaders/firecrawl/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/firecrawl/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [FireCrawlLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", + "| [FireCrawlLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -61,7 +61,7 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install -qU firecrawl-py langchain_community" + "%pip install -qU firecrawl-py==0.0.20 langchain_community" ] }, { @@ -102,7 +102,7 @@ { "data": { "text/plain": [ - "Document(metadata={'ogUrl': 'https://www.firecrawl.dev/', 'title': 'Home - Firecrawl', 'robots': 'follow, index', 'ogImage': 'https://www.firecrawl.dev/og.png?123', 'ogTitle': 'Firecrawl', 'sitemap': {'lastmod': '2024-08-12T00:28:16.681Z', 'changefreq': 'weekly'}, 'keywords': 'Firecrawl,Markdown,Data,Mendable,Langchain', 'sourceURL': 'https://www.firecrawl.dev/', 'ogSiteName': 'Firecrawl', 'description': 'Firecrawl crawls and converts any website into clean markdown.', 'ogDescription': 'Turn any website into LLM-ready data.', 'pageStatusCode': 200, 'ogLocaleAlternate': []}, page_content='Introducing [Smart Crawl!](https://www.firecrawl.dev/smart-crawl)\\n Join the waitlist to turn any website into an API with AI\\n\\n\\n\\n[🔥 Firecrawl](/)\\n\\n* [Playground](/playground)\\n \\n* [Docs](https://docs.firecrawl.dev)\\n \\n* [Pricing](/pricing)\\n \\n* [Blog](/blog)\\n \\n* Beta Features\\n\\n[Log In](/signin)\\n[Log In](/signin)\\n[Sign Up](/signin/signup)\\n 8.9k\\n\\n[💥 Get 2 months free with yearly plan](/pricing)\\n\\nTurn websites into \\n_LLM-ready_ data\\n=====================================\\n\\nPower your AI apps with clean data crawled from any website. It\\'s also open-source.\\n\\nStart for free (500 credits)Start for free[Talk to us](https://calendly.com/d/cj83-ngq-knk/meet-firecrawl)\\n\\nA product by\\n\\n[![Mendable Logo](https://www.firecrawl.dev/images/mendable_logo_transparent.png)Mendable](https://mendable.ai)\\n\\n![Example Webpage](https://www.firecrawl.dev/multiple-websites.png)\\n\\nCrawl, Scrape, Clean\\n--------------------\\n\\nWe crawl all accessible subpages and give you clean markdown for each. No sitemap required.\\n\\n \\n [\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/\",\\\\\\n \"markdown\": \"## Welcome to Firecrawl\\\\\\n Firecrawl is a web scraper that allows you to extract the content of a webpage.\"\\\\\\n },\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/features\",\\\\\\n \"markdown\": \"## Features\\\\\\n Discover how Firecrawl\\'s cutting-edge features can \\\\\\n transform your data operations.\"\\\\\\n },\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/pricing\",\\\\\\n \"markdown\": \"## Pricing Plans\\\\\\n Choose the perfect plan that fits your needs.\"\\\\\\n },\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/about\",\\\\\\n \"markdown\": \"## About Us\\\\\\n Learn more about Firecrawl\\'s mission and the \\\\\\n team behind our innovative platform.\"\\\\\\n }\\\\\\n ]\\n \\n\\nNote: The markdown has been edited for display purposes.\\n\\nTrusted by Top Companies\\n------------------------\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/zapier.png)](https://www.zapier.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/gamma.svg)](https://gamma.app)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/nvidia-com.png)](https://www.nvidia.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/teller-io.svg)](https://www.teller.io)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/stackai.svg)](https://www.stack-ai.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/palladiumdigital-co-uk.svg)](https://www.palladiumdigital.co.uk)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/worldwide-casting-com.svg)](https://www.worldwide-casting.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/open-gov-sg.png)](https://www.open.gov.sg)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/bain-com.svg)](https://www.bain.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/demand-io.svg)](https://www.demand.io)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/nocodegarden-io.png)](https://www.nocodegarden.io)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/cyberagent-co-jp.svg)](https://www.cyberagent.co.jp)\\n\\nIntegrate today\\n---------------\\n\\nEnhance your applications with top-tier web scraping and crawling capabilities.\\n\\n#### Scrape\\n\\nExtract markdown or structured data from websites quickly and efficiently.\\n\\n#### Crawling\\n\\nNavigate and retrieve data from all accessible subpages, even without a sitemap.\\n\\nNode.js\\n\\nPython\\n\\ncURL\\n\\n1\\n\\n2\\n\\n3\\n\\n4\\n\\n5\\n\\n6\\n\\n7\\n\\n8\\n\\n9\\n\\n10\\n\\n// npm install @mendable/firecrawl-js \\n \\nimport FirecrawlApp from \\'@mendable/firecrawl-js\\'; \\n \\nconst app \\\\= new FirecrawlApp({ apiKey: \"fc-YOUR\\\\_API\\\\_KEY\" }); \\n \\n// Scrape a website: \\nconst scrapeResult \\\\= await app.scrapeUrl(\\'firecrawl.dev\\'); \\n \\nconsole.log(scrapeResult.data.markdown)\\n\\n#### Use well-known tools\\n\\nAlready fully integrated with the greatest existing tools and workflows.\\n\\n[![LlamaIndex](https://www.firecrawl.dev/logos/llamaindex.svg)](https://docs.llamaindex.ai/en/stable/examples/data_connectors/WebPageDemo/#using-firecrawl-reader/)\\n[![Langchain](https://www.firecrawl.dev/integrations/langchain.png)](https://python.langchain.com/v0.2/docs/integrations/document_loaders/firecrawl/)\\n[![Dify](https://www.firecrawl.dev/logos/dify.png)](https://dify.ai/blog/dify-ai-blog-integrated-with-firecrawl/)\\n[![Dify](https://www.firecrawl.dev/integrations/langflow_2.png)](https://www.langflow.org/)\\n[![Flowise](https://www.firecrawl.dev/integrations/flowise.png)](https://flowiseai.com/)\\n[![CrewAI](https://www.firecrawl.dev/integrations/crewai.png)](https://crewai.com/)\\n\\n#### Start for free, scale easily\\n\\nKick off your journey for free and scale seamlessly as your project expands.\\n\\n[Try it out](/signin/signup)\\n\\n#### Open-source\\n\\nDeveloped transparently and collaboratively. Join our community of contributors.\\n\\n[Check out our repo](https://github.com/mendableai/firecrawl)\\n\\nWe handle the hard stuff\\n------------------------\\n\\nRotating proxies, caching, rate limits, js-blocked content and more\\n\\n#### Crawling\\n\\nFirecrawl crawls all accessible subpages, even without a sitemap.\\n\\n#### Dynamic content\\n\\nFirecrawl gathers data even if a website uses javascript to render content.\\n\\n#### To Markdown\\n\\nFirecrawl returns clean, well formatted markdown - ready for use in LLM applications\\n\\n#### Crawling Orchestration\\n\\nFirecrawl orchestrates the crawling process in parallel for the fastest results.\\n\\n#### Caching\\n\\nFirecrawl caches content, so you don\\'t have to wait for a full scrape unless new content exists.\\n\\n#### Built for AI\\n\\nBuilt by LLM engineers, for LLM engineers. Giving you clean data the way you want it.\\n\\nOur wall of love\\n\\nDon\\'t take our word for it\\n--------------------------\\n\\n![Greg Kamradt](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-02.0afeb750.jpg&w=96&q=75)\\n\\nGreg Kamradt\\n\\n[@GregKamradt](https://twitter.com/GregKamradt/status/1780300642197840307)\\n\\nLLM structured data via API, handling requests, cleaning, and crawling. Enjoyed the early preview.\\n\\n![Amit Naik](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-03.ff5dbe11.jpg&w=96&q=75)\\n\\nAmit Naik\\n\\n[@suprgeek](https://twitter.com/suprgeek/status/1780338213351035254)\\n\\n#llm success with RAG relies on Retrieval. Firecrawl by @mendableai structures web content for processing. 👏\\n\\n![Jerry Liu](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-04.76bef0df.jpg&w=96&q=75)\\n\\nJerry Liu\\n\\n[@jerryjliu0](https://twitter.com/jerryjliu0/status/1781122933349572772)\\n\\nFirecrawl is awesome 🔥 Turns web pages into structured markdown for LLM apps, thanks to @mendableai.\\n\\n![Bardia Pourvakil](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-01.025350bc.jpeg&w=96&q=75)\\n\\nBardia Pourvakil\\n\\n[@thepericulum](https://twitter.com/thepericulum/status/1781397799487078874)\\n\\nThese guys ship. I wanted types for their node SDK, and less than an hour later, I got them. Can\\'t recommend them enough.\\n\\n![latentsauce 🧘🏽](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-07.c2285d35.jpeg&w=96&q=75)\\n\\nlatentsauce 🧘🏽\\n\\n[@latentsauce](https://twitter.com/latentsauce/status/1781738253927735331)\\n\\nFirecrawl simplifies data preparation significantly, exactly what I was hoping for. Thank you for creating Firecrawl ❤️❤️❤️\\n\\n![Greg Kamradt](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-02.0afeb750.jpg&w=96&q=75)\\n\\nGreg Kamradt\\n\\n[@GregKamradt](https://twitter.com/GregKamradt/status/1780300642197840307)\\n\\nLLM structured data via API, handling requests, cleaning, and crawling. Enjoyed the early preview.\\n\\n![Amit Naik](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-03.ff5dbe11.jpg&w=96&q=75)\\n\\nAmit Naik\\n\\n[@suprgeek](https://twitter.com/suprgeek/status/1780338213351035254)\\n\\n#llm success with RAG relies on Retrieval. Firecrawl by @mendableai structures web content for processing. 👏\\n\\n![Jerry Liu](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-04.76bef0df.jpg&w=96&q=75)\\n\\nJerry Liu\\n\\n[@jerryjliu0](https://twitter.com/jerryjliu0/status/1781122933349572772)\\n\\nFirecrawl is awesome 🔥 Turns web pages into structured markdown for LLM apps, thanks to @mendableai.\\n\\n![Bardia Pourvakil](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-01.025350bc.jpeg&w=96&q=75)\\n\\nBardia Pourvakil\\n\\n[@thepericulum](https://twitter.com/thepericulum/status/1781397799487078874)\\n\\nThese guys ship. I wanted types for their node SDK, and less than an hour later, I got them. Can\\'t recommend them enough.\\n\\n![latentsauce 🧘🏽](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-07.c2285d35.jpeg&w=96&q=75)\\n\\nlatentsauce 🧘🏽\\n\\n[@latentsauce](https://twitter.com/latentsauce/status/1781738253927735331)\\n\\nFirecrawl simplifies data preparation significantly, exactly what I was hoping for. Thank you for creating Firecrawl ❤️❤️❤️\\n\\n![Michael Ning](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-05.76d7cd3e.png&w=96&q=75)\\n\\nMichael Ning\\n\\n[](#)\\n\\nFirecrawl is impressive, saving us 2/3 the tokens and allowing gpt3.5turbo use over gpt4. Major savings in time and money.\\n\\n![Alex Reibman 🖇️](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-06.4ee7cf5a.jpeg&w=96&q=75)\\n\\nAlex Reibman 🖇️\\n\\n[@AlexReibman](https://twitter.com/AlexReibman/status/1780299595484131836)\\n\\nMoved our internal agent\\'s web scraping tool from Apify to Firecrawl because it benchmarked 50x faster with AgentOps.\\n\\n![Michael](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-08.0bed40be.jpeg&w=96&q=75)\\n\\nMichael\\n\\n[@michael\\\\_chomsky](#)\\n\\nI really like some of the design decisions Firecrawl made, so I really want to share with others.\\n\\n![Paul Scott](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-09.d303b5b4.png&w=96&q=75)\\n\\nPaul Scott\\n\\n[@palebluepaul](https://twitter.com/palebluepaul)\\n\\nAppreciating your lean approach, Firecrawl ticks off everything on our list without the cost prohibitive overkill.\\n\\n![Michael Ning](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-05.76d7cd3e.png&w=96&q=75)\\n\\nMichael Ning\\n\\n[](#)\\n\\nFirecrawl is impressive, saving us 2/3 the tokens and allowing gpt3.5turbo use over gpt4. Major savings in time and money.\\n\\n![Alex Reibman 🖇️](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-06.4ee7cf5a.jpeg&w=96&q=75)\\n\\nAlex Reibman 🖇️\\n\\n[@AlexReibman](https://twitter.com/AlexReibman/status/1780299595484131836)\\n\\nMoved our internal agent\\'s web scraping tool from Apify to Firecrawl because it benchmarked 50x faster with AgentOps.\\n\\n![Michael](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-08.0bed40be.jpeg&w=96&q=75)\\n\\nMichael\\n\\n[@michael\\\\_chomsky](#)\\n\\nI really like some of the design decisions Firecrawl made, so I really want to share with others.\\n\\n![Paul Scott](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-09.d303b5b4.png&w=96&q=75)\\n\\nPaul Scott\\n\\n[@palebluepaul](https://twitter.com/palebluepaul)\\n\\nAppreciating your lean approach, Firecrawl ticks off everything on our list without the cost prohibitive overkill.\\n\\nFlexible Pricing\\n----------------\\n\\nStart for free, then scale as you grow\\n\\nYearly (17% off)Yearly (2 months free)Monthly\\n\\nFree Plan\\n---------\\n\\n500 credits\\n\\n$0/month\\n\\n* Scrape 500 pages\\n* 5 /scrape per min\\n* 1 /crawl per min\\n\\nGet Started\\n\\nHobby\\n-----\\n\\n3,000 credits\\n\\n$16/month\\n\\n* Scrape 3,000 pages\\n* 10 /scrape per min\\n* 3 /crawl per min\\n\\nSubscribe\\n\\nStandardMost Popular\\n--------------------\\n\\n100,000 credits\\n\\n$83/month\\n\\n* Scrape 100,000 pages\\n* 50 /scrape per min\\n* 10 /crawl per min\\n\\nSubscribe\\n\\nGrowth\\n------\\n\\n500,000 credits\\n\\n$333/month\\n\\n* Scrape 500,000 pages\\n* 500 /scrape per min\\n* 50 /crawl per min\\n* Priority Support\\n\\nSubscribe\\n\\nEnterprise Plan\\n---------------\\n\\nUnlimited credits. Custom RPMs.\\n\\nTalk to us\\n\\n* Top priority support\\n* Feature Acceleration\\n* SLAs\\n* Account Manager\\n* Custom rate limits volume\\n* Custom concurrency limits\\n* Beta features access\\n* CEO\\'s number\\n\\n\\\\* a /scrape refers to the [scrape](https://docs.firecrawl.dev/api-reference/endpoint/scrape)\\n API endpoint.\\n\\n\\\\* a /crawl refers to the [crawl](https://docs.firecrawl.dev/api-reference/endpoint/crawl)\\n API endpoint.\\n\\nScrape Credits\\n--------------\\n\\nScrape credits are consumed for each API request, varying by endpoint and feature.\\n\\n| Features | Credits per page |\\n| --- | --- |\\n| Scrape(/scrape) | 1 |\\n| Crawl(/crawl) | 1 |\\n| Search(/search) | 1 |\\n| Scrape + LLM extraction (/scrape) | 50 |\\n\\n[🔥](/)\\n\\nReady to _Build?_\\n-----------------\\n\\nStart scraping web data for your AI apps today. \\nNo credit card needed.\\n\\n[Get Started](/signin)\\n\\n[Talk to us](https://calendly.com/d/cj83-ngq-knk/meet-firecrawl)\\n\\nFAQ\\n---\\n\\nFrequently asked questions about Firecrawl\\n\\n#### General\\n\\nWhat is Firecrawl?\\n\\nFirecrawl turns entire websites into clean, LLM-ready markdown or structured data. Scrape, crawl and extract the web with a single API. Ideal for AI companies looking to empower their LLM applications with web data.\\n\\nWhat sites work?\\n\\nFirecrawl is best suited for business websites, docs and help centers. We currently don\\'t support social media platforms.\\n\\nWho can benefit from using Firecrawl?\\n\\nFirecrawl is tailored for LLM engineers, data scientists, AI researchers, and developers looking to harness web data for training machine learning models, market research, content aggregation, and more. It simplifies the data preparation process, allowing professionals to focus on insights and model development.\\n\\nIs Firecrawl open-source?\\n\\nYes, it is. You can check out the repository on GitHub. Keep in mind that this repository is currently in its early stages of development. We are in the process of merging custom modules into this mono repository.\\n\\n#### Scraping & Crawling\\n\\nHow does Firecrawl handle dynamic content on websites?\\n\\nUnlike traditional web scrapers, Firecrawl is equipped to handle dynamic content rendered with JavaScript. It ensures comprehensive data collection from all accessible subpages, making it a reliable tool for scraping websites that rely heavily on JS for content delivery.\\n\\nWhy is it not crawling all the pages?\\n\\nThere are a few reasons why Firecrawl may not be able to crawl all the pages of a website. Some common reasons include rate limiting, and anti-scraping mechanisms, disallowing the crawler from accessing certain pages. If you\\'re experiencing issues with the crawler, please reach out to our support team at hello@firecrawl.com.\\n\\nCan Firecrawl crawl websites without a sitemap?\\n\\nYes, Firecrawl can access and crawl all accessible subpages of a website, even in the absence of a sitemap. This feature enables users to gather data from a wide array of web sources with minimal setup.\\n\\nWhat formats can Firecrawl convert web data into?\\n\\nFirecrawl specializes in converting web data into clean, well-formatted markdown. This format is particularly suited for LLM applications, offering a structured yet flexible way to represent web content.\\n\\nHow does Firecrawl ensure the cleanliness of the data?\\n\\nFirecrawl employs advanced algorithms to clean and structure the scraped data, removing unnecessary elements and formatting the content into readable markdown. This process ensures that the data is ready for use in LLM applications without further preprocessing.\\n\\nIs Firecrawl suitable for large-scale data scraping projects?\\n\\nAbsolutely. Firecrawl offers various pricing plans, including a Scale plan that supports scraping of millions of pages. With features like caching and scheduled syncs, it\\'s designed to efficiently handle large-scale data scraping and continuous updates, making it ideal for enterprises and large projects.\\n\\nDoes it respect robots.txt?\\n\\nYes, Firecrawl crawler respects the rules set in a website\\'s robots.txt file. If you notice any issues with the way Firecrawl interacts with your website, you can adjust the robots.txt file to control the crawler\\'s behavior. Firecrawl user agent name is \\'FirecrawlAgent\\'. If you notice any behavior that is not expected, please let us know at hello@firecrawl.com.\\n\\nWhat measures does Firecrawl take to handle web scraping challenges like rate limits and caching?\\n\\nFirecrawl is built to navigate common web scraping challenges, including reverse proxies, rate limits, and caching. It smartly manages requests and employs caching techniques to minimize bandwidth usage and avoid triggering anti-scraping mechanisms, ensuring reliable data collection.\\n\\nDoes Firecrawl handle captcha or authentication?\\n\\nFirecrawl avoids captcha by using stealth proxyies. When it encounters captcha, it attempts to solve it automatically, but this is not always possible. We are working to add support for more captcha solving methods. Firecrawl can handle authentication by providing auth headers to the API.\\n\\n#### API Related\\n\\nWhere can I find my API key?\\n\\nClick on the dashboard button on the top navigation menu when logged in and you will find your API key in the main screen and under API Keys.\\n\\n#### Billing\\n\\nIs Firecrawl free?\\n\\nFirecrawl is free for the first 500 scraped pages (500 free credits). After that, you can upgrade to our Standard or Scale plans for more credits.\\n\\nIs there a pay per use plan instead of monthly?\\n\\nNo we do not currently offer a pay per use plan, instead you can upgrade to our Standard or Growth plans for more credits and higher rate limits.\\n\\nHow many credit does scraping, crawling, and extraction cost?\\n\\nScraping costs 1 credit per page. Crawling costs 1 credit per page.\\n\\nDo you charge for failed requests (scrape, crawl, extract)?\\n\\nWe do not charge for any failed requests (scrape, crawl, extract). Please contact support at help@firecrawl.dev if you have any questions.\\n\\nWhat payment methods do you accept?\\n\\nWe accept payments through Stripe which accepts most major credit cards, debit cards, and PayPal.\\n\\n[🔥](/)\\n\\n© A product by Mendable.ai - All rights reserved.\\n\\n[StatusStatus](https://firecrawl.betteruptime.com)\\n[Terms of ServiceTerms of Service](/terms-of-service)\\n[Privacy PolicyPrivacy Policy](/privacy-policy)\\n\\n[Twitter](https://twitter.com/mendableai)\\n[GitHub](https://github.com/mendableai)\\n[Discord](https://discord.gg/gSmWdAkdwd)\\n\\n###### Helpful Links\\n\\n* [Status](https://firecrawl.betteruptime.com/)\\n \\n* [Pricing](/pricing)\\n \\n* [Blog](https://www.firecrawl.dev/blog)\\n \\n* [Docs](https://docs.firecrawl.dev)\\n \\n\\nBacked by![Y Combinator Logo](https://www.firecrawl.dev/images/yc.svg)\\n\\n![SOC 2 Type II](https://www.firecrawl.dev/soc2type2badge.png)\\n\\n###### Resources\\n\\n* [Community](#0)\\n \\n* [Terms of service](#0)\\n \\n* [Collaboration features](#0)\\n \\n\\n###### Legals\\n\\n* [Refund policy](#0)\\n \\n* [Terms & Conditions](#0)\\n \\n* [Privacy policy](#0)\\n \\n* [Brand Kit](#0)')" + "Document(metadata={'ogUrl': 'https://www.firecrawl.dev/', 'title': 'Home - Firecrawl', 'robots': 'follow, index', 'ogImage': 'https://www.firecrawl.dev/og.png?123', 'ogTitle': 'Firecrawl', 'sitemap': {'lastmod': '2024-08-12T00:28:16.681Z', 'changefreq': 'weekly'}, 'keywords': 'Firecrawl,Markdown,Data,Mendable,Langchain', 'sourceURL': 'https://www.firecrawl.dev/', 'ogSiteName': 'Firecrawl', 'description': 'Firecrawl crawls and converts any website into clean markdown.', 'ogDescription': 'Turn any website into LLM-ready data.', 'pageStatusCode': 200, 'ogLocaleAlternate': []}, page_content='Introducing [Smart Crawl!](https://www.firecrawl.dev/smart-crawl)\\n Join the waitlist to turn any website into an API with AI\\n\\n\\n\\n[🔥 Firecrawl](/)\\n\\n* [Playground](/playground)\\n \\n* [Docs](https://docs.firecrawl.dev)\\n \\n* [Pricing](/pricing)\\n \\n* [Blog](/blog)\\n \\n* Beta Features\\n\\n[Log In](/signin)\\n[Log In](/signin)\\n[Sign Up](/signin/signup)\\n 8.9k\\n\\n[💥 Get 2 months free with yearly plan](/pricing)\\n\\nTurn websites into \\n_LLM-ready_ data\\n=====================================\\n\\nPower your AI apps with clean data crawled from any website. It\\'s also open-source.\\n\\nStart for free (500 credits)Start for free[Talk to us](https://calendly.com/d/cj83-ngq-knk/meet-firecrawl)\\n\\nA product by\\n\\n[![Mendable Logo](https://www.firecrawl.dev/images/mendable_logo_transparent.png)Mendable](https://mendable.ai)\\n\\n![Example Webpage](https://www.firecrawl.dev/multiple-websites.png)\\n\\nCrawl, Scrape, Clean\\n--------------------\\n\\nWe crawl all accessible subpages and give you clean markdown for each. No sitemap required.\\n\\n \\n [\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/\",\\\\\\n \"markdown\": \"## Welcome to Firecrawl\\\\\\n Firecrawl is a web scraper that allows you to extract the content of a webpage.\"\\\\\\n },\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/features\",\\\\\\n \"markdown\": \"## Features\\\\\\n Discover how Firecrawl\\'s cutting-edge features can \\\\\\n transform your data operations.\"\\\\\\n },\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/pricing\",\\\\\\n \"markdown\": \"## Pricing Plans\\\\\\n Choose the perfect plan that fits your needs.\"\\\\\\n },\\\\\\n {\\\\\\n \"url\": \"https://www.firecrawl.dev/about\",\\\\\\n \"markdown\": \"## About Us\\\\\\n Learn more about Firecrawl\\'s mission and the \\\\\\n team behind our innovative platform.\"\\\\\\n }\\\\\\n ]\\n \\n\\nNote: The markdown has been edited for display purposes.\\n\\nTrusted by Top Companies\\n------------------------\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/zapier.png)](https://www.zapier.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/gamma.svg)](https://gamma.app)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/nvidia-com.png)](https://www.nvidia.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/teller-io.svg)](https://www.teller.io)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/stackai.svg)](https://www.stack-ai.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/palladiumdigital-co-uk.svg)](https://www.palladiumdigital.co.uk)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/worldwide-casting-com.svg)](https://www.worldwide-casting.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/open-gov-sg.png)](https://www.open.gov.sg)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/bain-com.svg)](https://www.bain.com)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/demand-io.svg)](https://www.demand.io)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/nocodegarden-io.png)](https://www.nocodegarden.io)\\n\\n[![Customer Logo](https://www.firecrawl.dev/logos/cyberagent-co-jp.svg)](https://www.cyberagent.co.jp)\\n\\nIntegrate today\\n---------------\\n\\nEnhance your applications with top-tier web scraping and crawling capabilities.\\n\\n#### Scrape\\n\\nExtract markdown or structured data from websites quickly and efficiently.\\n\\n#### Crawling\\n\\nNavigate and retrieve data from all accessible subpages, even without a sitemap.\\n\\nNode.js\\n\\nPython\\n\\ncURL\\n\\n1\\n\\n2\\n\\n3\\n\\n4\\n\\n5\\n\\n6\\n\\n7\\n\\n8\\n\\n9\\n\\n10\\n\\n// npm install @mendable/firecrawl-js \\n \\nimport FirecrawlApp from \\'@mendable/firecrawl-js\\'; \\n \\nconst app \\\\= new FirecrawlApp({ apiKey: \"fc-YOUR\\\\_API\\\\_KEY\" }); \\n \\n// Scrape a website: \\nconst scrapeResult \\\\= await app.scrapeUrl(\\'firecrawl.dev\\'); \\n \\nconsole.log(scrapeResult.data.markdown)\\n\\n#### Use well-known tools\\n\\nAlready fully integrated with the greatest existing tools and workflows.\\n\\n[![LlamaIndex](https://www.firecrawl.dev/logos/llamaindex.svg)](https://docs.llamaindex.ai/en/stable/examples/data_connectors/WebPageDemo/#using-firecrawl-reader/)\\n[![Langchain](https://www.firecrawl.dev/integrations/langchain.png)](https://python.langchain.com/docs/integrations/document_loaders/firecrawl/)\\n[![Dify](https://www.firecrawl.dev/logos/dify.png)](https://dify.ai/blog/dify-ai-blog-integrated-with-firecrawl/)\\n[![Dify](https://www.firecrawl.dev/integrations/langflow_2.png)](https://www.langflow.org/)\\n[![Flowise](https://www.firecrawl.dev/integrations/flowise.png)](https://flowiseai.com/)\\n[![CrewAI](https://www.firecrawl.dev/integrations/crewai.png)](https://crewai.com/)\\n\\n#### Start for free, scale easily\\n\\nKick off your journey for free and scale seamlessly as your project expands.\\n\\n[Try it out](/signin/signup)\\n\\n#### Open-source\\n\\nDeveloped transparently and collaboratively. Join our community of contributors.\\n\\n[Check out our repo](https://github.com/mendableai/firecrawl)\\n\\nWe handle the hard stuff\\n------------------------\\n\\nRotating proxies, caching, rate limits, js-blocked content and more\\n\\n#### Crawling\\n\\nFirecrawl crawls all accessible subpages, even without a sitemap.\\n\\n#### Dynamic content\\n\\nFirecrawl gathers data even if a website uses javascript to render content.\\n\\n#### To Markdown\\n\\nFirecrawl returns clean, well formatted markdown - ready for use in LLM applications\\n\\n#### Crawling Orchestration\\n\\nFirecrawl orchestrates the crawling process in parallel for the fastest results.\\n\\n#### Caching\\n\\nFirecrawl caches content, so you don\\'t have to wait for a full scrape unless new content exists.\\n\\n#### Built for AI\\n\\nBuilt by LLM engineers, for LLM engineers. Giving you clean data the way you want it.\\n\\nOur wall of love\\n\\nDon\\'t take our word for it\\n--------------------------\\n\\n![Greg Kamradt](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-02.0afeb750.jpg&w=96&q=75)\\n\\nGreg Kamradt\\n\\n[@GregKamradt](https://twitter.com/GregKamradt/status/1780300642197840307)\\n\\nLLM structured data via API, handling requests, cleaning, and crawling. Enjoyed the early preview.\\n\\n![Amit Naik](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-03.ff5dbe11.jpg&w=96&q=75)\\n\\nAmit Naik\\n\\n[@suprgeek](https://twitter.com/suprgeek/status/1780338213351035254)\\n\\n#llm success with RAG relies on Retrieval. Firecrawl by @mendableai structures web content for processing. 👏\\n\\n![Jerry Liu](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-04.76bef0df.jpg&w=96&q=75)\\n\\nJerry Liu\\n\\n[@jerryjliu0](https://twitter.com/jerryjliu0/status/1781122933349572772)\\n\\nFirecrawl is awesome 🔥 Turns web pages into structured markdown for LLM apps, thanks to @mendableai.\\n\\n![Bardia Pourvakil](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-01.025350bc.jpeg&w=96&q=75)\\n\\nBardia Pourvakil\\n\\n[@thepericulum](https://twitter.com/thepericulum/status/1781397799487078874)\\n\\nThese guys ship. I wanted types for their node SDK, and less than an hour later, I got them. Can\\'t recommend them enough.\\n\\n![latentsauce 🧘🏽](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-07.c2285d35.jpeg&w=96&q=75)\\n\\nlatentsauce 🧘🏽\\n\\n[@latentsauce](https://twitter.com/latentsauce/status/1781738253927735331)\\n\\nFirecrawl simplifies data preparation significantly, exactly what I was hoping for. Thank you for creating Firecrawl ❤️❤️❤️\\n\\n![Greg Kamradt](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-02.0afeb750.jpg&w=96&q=75)\\n\\nGreg Kamradt\\n\\n[@GregKamradt](https://twitter.com/GregKamradt/status/1780300642197840307)\\n\\nLLM structured data via API, handling requests, cleaning, and crawling. Enjoyed the early preview.\\n\\n![Amit Naik](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-03.ff5dbe11.jpg&w=96&q=75)\\n\\nAmit Naik\\n\\n[@suprgeek](https://twitter.com/suprgeek/status/1780338213351035254)\\n\\n#llm success with RAG relies on Retrieval. Firecrawl by @mendableai structures web content for processing. 👏\\n\\n![Jerry Liu](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-04.76bef0df.jpg&w=96&q=75)\\n\\nJerry Liu\\n\\n[@jerryjliu0](https://twitter.com/jerryjliu0/status/1781122933349572772)\\n\\nFirecrawl is awesome 🔥 Turns web pages into structured markdown for LLM apps, thanks to @mendableai.\\n\\n![Bardia Pourvakil](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-01.025350bc.jpeg&w=96&q=75)\\n\\nBardia Pourvakil\\n\\n[@thepericulum](https://twitter.com/thepericulum/status/1781397799487078874)\\n\\nThese guys ship. I wanted types for their node SDK, and less than an hour later, I got them. Can\\'t recommend them enough.\\n\\n![latentsauce 🧘🏽](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-07.c2285d35.jpeg&w=96&q=75)\\n\\nlatentsauce 🧘🏽\\n\\n[@latentsauce](https://twitter.com/latentsauce/status/1781738253927735331)\\n\\nFirecrawl simplifies data preparation significantly, exactly what I was hoping for. Thank you for creating Firecrawl ❤️❤️❤️\\n\\n![Michael Ning](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-05.76d7cd3e.png&w=96&q=75)\\n\\nMichael Ning\\n\\n[](#)\\n\\nFirecrawl is impressive, saving us 2/3 the tokens and allowing gpt3.5turbo use over gpt4. Major savings in time and money.\\n\\n![Alex Reibman 🖇️](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-06.4ee7cf5a.jpeg&w=96&q=75)\\n\\nAlex Reibman 🖇️\\n\\n[@AlexReibman](https://twitter.com/AlexReibman/status/1780299595484131836)\\n\\nMoved our internal agent\\'s web scraping tool from Apify to Firecrawl because it benchmarked 50x faster with AgentOps.\\n\\n![Michael](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-08.0bed40be.jpeg&w=96&q=75)\\n\\nMichael\\n\\n[@michael\\\\_chomsky](#)\\n\\nI really like some of the design decisions Firecrawl made, so I really want to share with others.\\n\\n![Paul Scott](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-09.d303b5b4.png&w=96&q=75)\\n\\nPaul Scott\\n\\n[@palebluepaul](https://twitter.com/palebluepaul)\\n\\nAppreciating your lean approach, Firecrawl ticks off everything on our list without the cost prohibitive overkill.\\n\\n![Michael Ning](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-05.76d7cd3e.png&w=96&q=75)\\n\\nMichael Ning\\n\\n[](#)\\n\\nFirecrawl is impressive, saving us 2/3 the tokens and allowing gpt3.5turbo use over gpt4. Major savings in time and money.\\n\\n![Alex Reibman 🖇️](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-06.4ee7cf5a.jpeg&w=96&q=75)\\n\\nAlex Reibman 🖇️\\n\\n[@AlexReibman](https://twitter.com/AlexReibman/status/1780299595484131836)\\n\\nMoved our internal agent\\'s web scraping tool from Apify to Firecrawl because it benchmarked 50x faster with AgentOps.\\n\\n![Michael](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-08.0bed40be.jpeg&w=96&q=75)\\n\\nMichael\\n\\n[@michael\\\\_chomsky](#)\\n\\nI really like some of the design decisions Firecrawl made, so I really want to share with others.\\n\\n![Paul Scott](https://www.firecrawl.dev/_next/image?url=%2F_next%2Fstatic%2Fmedia%2Ftestimonial-09.d303b5b4.png&w=96&q=75)\\n\\nPaul Scott\\n\\n[@palebluepaul](https://twitter.com/palebluepaul)\\n\\nAppreciating your lean approach, Firecrawl ticks off everything on our list without the cost prohibitive overkill.\\n\\nFlexible Pricing\\n----------------\\n\\nStart for free, then scale as you grow\\n\\nYearly (17% off)Yearly (2 months free)Monthly\\n\\nFree Plan\\n---------\\n\\n500 credits\\n\\n$0/month\\n\\n* Scrape 500 pages\\n* 5 /scrape per min\\n* 1 /crawl per min\\n\\nGet Started\\n\\nHobby\\n-----\\n\\n3,000 credits\\n\\n$16/month\\n\\n* Scrape 3,000 pages\\n* 10 /scrape per min\\n* 3 /crawl per min\\n\\nSubscribe\\n\\nStandardMost Popular\\n--------------------\\n\\n100,000 credits\\n\\n$83/month\\n\\n* Scrape 100,000 pages\\n* 50 /scrape per min\\n* 10 /crawl per min\\n\\nSubscribe\\n\\nGrowth\\n------\\n\\n500,000 credits\\n\\n$333/month\\n\\n* Scrape 500,000 pages\\n* 500 /scrape per min\\n* 50 /crawl per min\\n* Priority Support\\n\\nSubscribe\\n\\nEnterprise Plan\\n---------------\\n\\nUnlimited credits. Custom RPMs.\\n\\nTalk to us\\n\\n* Top priority support\\n* Feature Acceleration\\n* SLAs\\n* Account Manager\\n* Custom rate limits volume\\n* Custom concurrency limits\\n* Beta features access\\n* CEO\\'s number\\n\\n\\\\* a /scrape refers to the [scrape](https://docs.firecrawl.dev/api-reference/endpoint/scrape)\\n API endpoint.\\n\\n\\\\* a /crawl refers to the [crawl](https://docs.firecrawl.dev/api-reference/endpoint/crawl)\\n API endpoint.\\n\\nScrape Credits\\n--------------\\n\\nScrape credits are consumed for each API request, varying by endpoint and feature.\\n\\n| Features | Credits per page |\\n| --- | --- |\\n| Scrape(/scrape) | 1 |\\n| Crawl(/crawl) | 1 |\\n| Search(/search) | 1 |\\n| Scrape + LLM extraction (/scrape) | 50 |\\n\\n[🔥](/)\\n\\nReady to _Build?_\\n-----------------\\n\\nStart scraping web data for your AI apps today. \\nNo credit card needed.\\n\\n[Get Started](/signin)\\n\\n[Talk to us](https://calendly.com/d/cj83-ngq-knk/meet-firecrawl)\\n\\nFAQ\\n---\\n\\nFrequently asked questions about Firecrawl\\n\\n#### General\\n\\nWhat is Firecrawl?\\n\\nFirecrawl turns entire websites into clean, LLM-ready markdown or structured data. Scrape, crawl and extract the web with a single API. Ideal for AI companies looking to empower their LLM applications with web data.\\n\\nWhat sites work?\\n\\nFirecrawl is best suited for business websites, docs and help centers. We currently don\\'t support social media platforms.\\n\\nWho can benefit from using Firecrawl?\\n\\nFirecrawl is tailored for LLM engineers, data scientists, AI researchers, and developers looking to harness web data for training machine learning models, market research, content aggregation, and more. It simplifies the data preparation process, allowing professionals to focus on insights and model development.\\n\\nIs Firecrawl open-source?\\n\\nYes, it is. You can check out the repository on GitHub. Keep in mind that this repository is currently in its early stages of development. We are in the process of merging custom modules into this mono repository.\\n\\n#### Scraping & Crawling\\n\\nHow does Firecrawl handle dynamic content on websites?\\n\\nUnlike traditional web scrapers, Firecrawl is equipped to handle dynamic content rendered with JavaScript. It ensures comprehensive data collection from all accessible subpages, making it a reliable tool for scraping websites that rely heavily on JS for content delivery.\\n\\nWhy is it not crawling all the pages?\\n\\nThere are a few reasons why Firecrawl may not be able to crawl all the pages of a website. Some common reasons include rate limiting, and anti-scraping mechanisms, disallowing the crawler from accessing certain pages. If you\\'re experiencing issues with the crawler, please reach out to our support team at hello@firecrawl.com.\\n\\nCan Firecrawl crawl websites without a sitemap?\\n\\nYes, Firecrawl can access and crawl all accessible subpages of a website, even in the absence of a sitemap. This feature enables users to gather data from a wide array of web sources with minimal setup.\\n\\nWhat formats can Firecrawl convert web data into?\\n\\nFirecrawl specializes in converting web data into clean, well-formatted markdown. This format is particularly suited for LLM applications, offering a structured yet flexible way to represent web content.\\n\\nHow does Firecrawl ensure the cleanliness of the data?\\n\\nFirecrawl employs advanced algorithms to clean and structure the scraped data, removing unnecessary elements and formatting the content into readable markdown. This process ensures that the data is ready for use in LLM applications without further preprocessing.\\n\\nIs Firecrawl suitable for large-scale data scraping projects?\\n\\nAbsolutely. Firecrawl offers various pricing plans, including a Scale plan that supports scraping of millions of pages. With features like caching and scheduled syncs, it\\'s designed to efficiently handle large-scale data scraping and continuous updates, making it ideal for enterprises and large projects.\\n\\nDoes it respect robots.txt?\\n\\nYes, Firecrawl crawler respects the rules set in a website\\'s robots.txt file. If you notice any issues with the way Firecrawl interacts with your website, you can adjust the robots.txt file to control the crawler\\'s behavior. Firecrawl user agent name is \\'FirecrawlAgent\\'. If you notice any behavior that is not expected, please let us know at hello@firecrawl.com.\\n\\nWhat measures does Firecrawl take to handle web scraping challenges like rate limits and caching?\\n\\nFirecrawl is built to navigate common web scraping challenges, including reverse proxies, rate limits, and caching. It smartly manages requests and employs caching techniques to minimize bandwidth usage and avoid triggering anti-scraping mechanisms, ensuring reliable data collection.\\n\\nDoes Firecrawl handle captcha or authentication?\\n\\nFirecrawl avoids captcha by using stealth proxyies. When it encounters captcha, it attempts to solve it automatically, but this is not always possible. We are working to add support for more captcha solving methods. Firecrawl can handle authentication by providing auth headers to the API.\\n\\n#### API Related\\n\\nWhere can I find my API key?\\n\\nClick on the dashboard button on the top navigation menu when logged in and you will find your API key in the main screen and under API Keys.\\n\\n#### Billing\\n\\nIs Firecrawl free?\\n\\nFirecrawl is free for the first 500 scraped pages (500 free credits). After that, you can upgrade to our Standard or Scale plans for more credits.\\n\\nIs there a pay per use plan instead of monthly?\\n\\nNo we do not currently offer a pay per use plan, instead you can upgrade to our Standard or Growth plans for more credits and higher rate limits.\\n\\nHow many credit does scraping, crawling, and extraction cost?\\n\\nScraping costs 1 credit per page. Crawling costs 1 credit per page.\\n\\nDo you charge for failed requests (scrape, crawl, extract)?\\n\\nWe do not charge for any failed requests (scrape, crawl, extract). Please contact support at help@firecrawl.dev if you have any questions.\\n\\nWhat payment methods do you accept?\\n\\nWe accept payments through Stripe which accepts most major credit cards, debit cards, and PayPal.\\n\\n[🔥](/)\\n\\n© A product by Mendable.ai - All rights reserved.\\n\\n[StatusStatus](https://firecrawl.betteruptime.com)\\n[Terms of ServiceTerms of Service](/terms-of-service)\\n[Privacy PolicyPrivacy Policy](/privacy-policy)\\n\\n[Twitter](https://twitter.com/mendableai)\\n[GitHub](https://github.com/mendableai)\\n[Discord](https://discord.gg/gSmWdAkdwd)\\n\\n###### Helpful Links\\n\\n* [Status](https://firecrawl.betteruptime.com/)\\n \\n* [Pricing](/pricing)\\n \\n* [Blog](https://www.firecrawl.dev/blog)\\n \\n* [Docs](https://docs.firecrawl.dev)\\n \\n\\nBacked by![Y Combinator Logo](https://www.firecrawl.dev/images/yc.svg)\\n\\n![SOC 2 Type II](https://www.firecrawl.dev/soc2type2badge.png)\\n\\n###### Resources\\n\\n* [Community](#0)\\n \\n* [Terms of service](#0)\\n \\n* [Collaboration features](#0)\\n \\n\\n###### Legals\\n\\n* [Refund policy](#0)\\n \\n* [Terms & Conditions](#0)\\n \\n* [Privacy policy](#0)\\n \\n* [Brand Kit](#0)')" ] }, "execution_count": 4, @@ -214,7 +214,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `FireCrawlLoader` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html" + "For detailed documentation of all `FireCrawlLoader` features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/google_speech_to_text.ipynb b/docs/docs/integrations/document_loaders/google_speech_to_text.ipynb index fd17cea4fd124..7b23a064133db 100644 --- a/docs/docs/integrations/document_loaders/google_speech_to_text.ipynb +++ b/docs/docs/integrations/document_loaders/google_speech_to_text.ipynb @@ -6,7 +6,7 @@ "source": [ "# Google Speech-to-Text Audio Transcripts\n", "\n", - "The `GoogleSpeechToTextLoader` allows to transcribe audio files with the [Google Cloud Speech-to-Text API](https://cloud.google.com/speech-to-text) and loads the transcribed text into documents.\n", + "The `SpeechToTextLoader` allows to transcribe audio files with the [Google Cloud Speech-to-Text API](https://cloud.google.com/speech-to-text) and loads the transcribed text into documents.\n", "\n", "To use it, you should have the `google-cloud-speech` python package installed, and a Google Cloud project with the [Speech-to-Text API enabled](https://cloud.google.com/speech-to-text/v2/docs/transcribe-client-libraries#before_you_begin).\n", "\n", @@ -41,7 +41,7 @@ "source": [ "## Example\n", "\n", - "The `GoogleSpeechToTextLoader` must include the `project_id` and `file_path` arguments. Audio files can be specified as a Google Cloud Storage URI (`gs://...`) or a local file path.\n", + "The `SpeechToTextLoader` must include the `project_id` and `file_path` arguments. Audio files can be specified as a Google Cloud Storage URI (`gs://...`) or a local file path.\n", "\n", "Only synchronous requests are supported by the loader, which has a [limit of 60 seconds or 10MB](https://cloud.google.com/speech-to-text/v2/docs/sync-recognize#:~:text=60%20seconds%20and/or%2010%20MB) per audio file." ] @@ -52,13 +52,13 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_google_community import GoogleSpeechToTextLoader\n", + "from langchain_google_community import SpeechToTextLoader\n", "\n", "project_id = \"\"\n", "file_path = \"gs://cloud-samples-data/speech/audio.flac\"\n", "# or a local file path: file_path = \"./audio.wav\"\n", "\n", - "loader = GoogleSpeechToTextLoader(project_id=project_id, file_path=file_path)\n", + "loader = SpeechToTextLoader(project_id=project_id, file_path=file_path)\n", "\n", "docs = loader.load()" ] @@ -152,7 +152,7 @@ " RecognitionConfig,\n", " RecognitionFeatures,\n", ")\n", - "from langchain_google_community import GoogleSpeechToTextLoader\n", + "from langchain_google_community import SpeechToTextLoader\n", "\n", "project_id = \"\"\n", "location = \"global\"\n", @@ -171,7 +171,7 @@ " ),\n", ")\n", "\n", - "loader = GoogleSpeechToTextLoader(\n", + "loader = SpeechToTextLoader(\n", " project_id=project_id,\n", " location=location,\n", " recognizer_id=recognizer_id,\n", diff --git a/docs/docs/integrations/document_loaders/index.mdx b/docs/docs/integrations/document_loaders/index.mdx index 6dee9374e97d0..986ef80e97744 100644 --- a/docs/docs/integrations/document_loaders/index.mdx +++ b/docs/docs/integrations/document_loaders/index.mdx @@ -25,12 +25,16 @@ data = loader.load() The below document loaders allow you to load webpages. +See this guide for a starting point: [How to: load web pages](/docs/how_to/document_loader_web). + ## PDFs The below document loaders allow you to load PDF documents. +See this guide for a starting point: [How to: load PDF files](/docs/how_to/document_loader_pdf). + ## Cloud Providers diff --git a/docs/docs/integrations/document_loaders/json.ipynb b/docs/docs/integrations/document_loaders/json.ipynb index 02716f79d9b1e..299bc1aa75f3d 100644 --- a/docs/docs/integrations/document_loaders/json.ipynb +++ b/docs/docs/integrations/document_loaders/json.ipynb @@ -6,16 +6,16 @@ "source": [ "# JSONLoader\n", "\n", - "This notebook provides a quick overview for getting started with JSON [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). For detailed documentation of all JSONLoader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html).\n", + "This notebook provides a quick overview for getting started with JSON [document loader](https://python.langchain.com/docs/concepts/#document-loaders). For detailed documentation of all JSONLoader features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html).\n", "\n", "- TODO: Add any other relevant links, like information about underlying API, etc.\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/file_loaders/json/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/json/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [JSONLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", + "| [JSONLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -320,7 +320,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all JSONLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html" + "For detailed documentation of all JSONLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/langsmith.ipynb b/docs/docs/integrations/document_loaders/langsmith.ipynb index 5921bd1c0359d..9a8dc2aee3dc6 100644 --- a/docs/docs/integrations/document_loaders/langsmith.ipynb +++ b/docs/docs/integrations/document_loaders/langsmith.ipynb @@ -15,14 +15,14 @@ "source": [ "# LangSmithLoader\n", "\n", - "This notebook provides a quick overview for getting started with the LangSmith [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). For detailed documentation of all LangSmithLoader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/core/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html).\n", + "This notebook provides a quick overview for getting started with the LangSmith [document loader](https://python.langchain.com/docs/concepts/#document-loaders). For detailed documentation of all LangSmithLoader features and configurations head to the [API reference](https://python.langchain.com/api_reference/core/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html).\n", "\n", "## Overview\n", "### Integration details\n", "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [LangSmithLoader](https://python.langchain.com/v0.2/api_reference/core/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html) | [langchain-core](https://python.langchain.com/v0.2/api_reference/core/index.html) | ❌ | ❌ | ❌ | \n", + "| [LangSmithLoader](https://python.langchain.com/api_reference/core/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html) | [langchain-core](https://python.langchain.com/api_reference/core/index.html) | ❌ | ❌ | ❌ | \n", "\n", "### Loader features\n", "| Source | Lazy loading | Native async\n", @@ -266,7 +266,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all LangSmithLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/core/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html" + "For detailed documentation of all LangSmithLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/core/document_loaders/langchain_core.document_loaders.langsmith.LangSmithLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/mathpix.ipynb b/docs/docs/integrations/document_loaders/mathpix.ipynb index 03fcab6f6f17d..bdbcbb96adcd8 100644 --- a/docs/docs/integrations/document_loaders/mathpix.ipynb +++ b/docs/docs/integrations/document_loaders/mathpix.ipynb @@ -13,7 +13,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [MathPixPDFLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [MathPixPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -150,7 +150,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all MathpixPDFLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html" + "For detailed documentation of all MathpixPDFLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/mintbase.ipynb b/docs/docs/integrations/document_loaders/mintbase.ipynb index 2aaaac0d915d2..3b72cfbe49b64 100644 --- a/docs/docs/integrations/document_loaders/mintbase.ipynb +++ b/docs/docs/integrations/document_loaders/mintbase.ipynb @@ -44,7 +44,7 @@ "The output takes the following format:\n", "\n", "- pageContent= Individual NFT\n", - "- metadata={'source': 'nft.yearofchef.near', 'blockchain': 'mainnet', 'tokenId': '1846'}" + "- metadata=\\{'source': 'nft.yearofchef.near', 'blockchain': 'mainnet', 'tokenId': '1846'\\}" ] }, { diff --git a/docs/docs/integrations/document_loaders/mongodb.ipynb b/docs/docs/integrations/document_loaders/mongodb.ipynb index e538114d5c551..511b753a54f43 100644 --- a/docs/docs/integrations/document_loaders/mongodb.ipynb +++ b/docs/docs/integrations/document_loaders/mongodb.ipynb @@ -47,7 +47,7 @@ "The output takes the following format:\n", "\n", "- pageContent= Mongo Document\n", - "- metadata={'database': '[database_name]', 'collection': '[collection_name]'}" + "- metadata=\\{'database': '[database_name]', 'collection': '[collection_name]'\\}" ] }, { diff --git a/docs/docs/integrations/document_loaders/pdfminer.ipynb b/docs/docs/integrations/document_loaders/pdfminer.ipynb index 1cf468e26987e..ccb5fff8a236f 100644 --- a/docs/docs/integrations/document_loaders/pdfminer.ipynb +++ b/docs/docs/integrations/document_loaders/pdfminer.ipynb @@ -12,7 +12,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [PDFMinerLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [PDFMinerLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -289,7 +289,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all PDFMinerLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html" + "For detailed documentation of all PDFMinerLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/pdfplumber.ipynb b/docs/docs/integrations/document_loaders/pdfplumber.ipynb index 6fe5a13079262..cfa43817f1076 100644 --- a/docs/docs/integrations/document_loaders/pdfplumber.ipynb +++ b/docs/docs/integrations/document_loaders/pdfplumber.ipynb @@ -13,7 +13,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [PDFPlumberLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [PDFPlumberLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -155,7 +155,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all PDFPlumberLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html" + "For detailed documentation of all PDFPlumberLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/pebblo.ipynb b/docs/docs/integrations/document_loaders/pebblo.ipynb index 125a9744f355c..255ea75531e2a 100644 --- a/docs/docs/integrations/document_loaders/pebblo.ipynb +++ b/docs/docs/integrations/document_loaders/pebblo.ipynb @@ -124,6 +124,39 @@ { "cell_type": "markdown", "metadata": {}, + "source": [ + "### Anonymize the snippets to redact all PII details\n", + "\n", + "Set `anonymize_snippets` to `True` to anonymize all personally identifiable information (PII) from the snippets going into VectorDB and the generated reports.\n", + "\n", + "> Note: The _Pebblo Entity Classifier_ effectively identifies personally identifiable information (PII) and is continuously evolving. While its recall is not yet 100%, it is steadily improving.\n", + "> For more details, please refer to the [_Pebblo Entity Classifier docs_](https://daxa-ai.github.io/pebblo/entityclassifier/)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_community.document_loaders import CSVLoader, PebbloSafeLoader\n", + "\n", + "loader = PebbloSafeLoader(\n", + " CSVLoader(\"data/corp_sens_data.csv\"),\n", + " name=\"acme-corp-rag-1\", # App name (Mandatory)\n", + " owner=\"Joe Smith\", # Owner (Optional)\n", + " description=\"Support productivity RAG application\", # Description (Optional)\n", + " anonymize_snippets=True, # Whether to anonymize entities in the PDF Report (Optional, default=False)\n", + ")\n", + "documents = loader.load()\n", + "print(documents[0].metadata)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [] } ], diff --git a/docs/docs/integrations/document_loaders/pymupdf.ipynb b/docs/docs/integrations/document_loaders/pymupdf.ipynb index 191b0902d4ccc..65c92cb6ef0f8 100644 --- a/docs/docs/integrations/document_loaders/pymupdf.ipynb +++ b/docs/docs/integrations/document_loaders/pymupdf.ipynb @@ -13,7 +13,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [PyMuPDFLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [PyMuPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -157,7 +157,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all PyMuPDFLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html" + "For detailed documentation of all PyMuPDFLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/pypdfdirectory.ipynb b/docs/docs/integrations/document_loaders/pypdfdirectory.ipynb index 08726cf7a1b3b..69c49aca36d03 100644 --- a/docs/docs/integrations/document_loaders/pypdfdirectory.ipynb +++ b/docs/docs/integrations/document_loaders/pypdfdirectory.ipynb @@ -14,7 +14,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [PyPDFDirectoryLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [PyPDFDirectoryLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -159,7 +159,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all PyPDFDirectoryLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html" + "For detailed documentation of all PyPDFDirectoryLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/pypdfium2.ipynb b/docs/docs/integrations/document_loaders/pypdfium2.ipynb index 93cfa9106adc8..48ca5ec0232c3 100644 --- a/docs/docs/integrations/document_loaders/pypdfium2.ipynb +++ b/docs/docs/integrations/document_loaders/pypdfium2.ipynb @@ -7,14 +7,14 @@ "# PyPDFium2Loader\n", "\n", "\n", - "This notebook provides a quick overview for getting started with PyPDFium2 [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html).\n", + "This notebook provides a quick overview for getting started with PyPDFium2 [document loader](https://python.langchain.com/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html).\n", "\n", "## Overview\n", "### Integration details\n", "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [PyPDFium2Loader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [PyPDFium2Loader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -160,7 +160,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all PyPDFium2Loader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html" + "For detailed documentation of all PyPDFium2Loader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/pypdfloader.ipynb b/docs/docs/integrations/document_loaders/pypdfloader.ipynb index 6b72fecca4e36..5085aa1c6c575 100644 --- a/docs/docs/integrations/document_loaders/pypdfloader.ipynb +++ b/docs/docs/integrations/document_loaders/pypdfloader.ipynb @@ -6,7 +6,7 @@ "source": [ "# PyPDFLoader\n", "\n", - "This notebook provides a quick overview for getting started with `PyPDF` [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). For detailed documentation of all DocumentLoader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html).\n", + "This notebook provides a quick overview for getting started with `PyPDF` [document loader](https://python.langchain.com/docs/concepts/#document-loaders). For detailed documentation of all DocumentLoader features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html).\n", "\n", "\n", "## Overview\n", @@ -15,7 +15,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [PyPDFLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [PyPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -174,7 +174,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `PyPDFLoader` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html" + "For detailed documentation of all `PyPDFLoader` features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/recursive_url.ipynb b/docs/docs/integrations/document_loaders/recursive_url.ipynb index 5c62fafd745d7..98c87977435e3 100644 --- a/docs/docs/integrations/document_loaders/recursive_url.ipynb +++ b/docs/docs/integrations/document_loaders/recursive_url.ipynb @@ -12,9 +12,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/web_loaders/recursive_url_loader/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/recursive_url_loader/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [RecursiveUrlLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", + "| [RecursiveUrlLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -314,7 +314,7 @@ "source": [ "This looks much nicer!\n", "\n", - "You can similarly pass in a `metadata_extractor` to customize how Document metadata is extracted from the HTTP response. See the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html) for more on this." + "You can similarly pass in a `metadata_extractor` to customize how Document metadata is extracted from the HTTP response. See the [API reference](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html) for more on this." ] }, { @@ -326,7 +326,7 @@ "\n", "These examples show just a few of the ways in which you can modify the default `RecursiveUrlLoader`, but there are many more modifications that can be made to best fit your use case. Using the parameters `link_regex` and `exclude_dirs` can help you filter out unwanted URLs, `aload()` and `alazy_load()` can be used for aynchronous loading, and more.\n", "\n", - "For detailed information on configuring and calling the ``RecursiveUrlLoader``, please see the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html." + "For detailed information on configuring and calling the ``RecursiveUrlLoader``, please see the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html." ] } ], diff --git a/docs/docs/integrations/document_loaders/rspace.ipynb b/docs/docs/integrations/document_loaders/rspace.ipynb index fc1d8aeb9e058..04976c9d7d9d9 100644 --- a/docs/docs/integrations/document_loaders/rspace.ipynb +++ b/docs/docs/integrations/document_loaders/rspace.ipynb @@ -32,7 +32,7 @@ "source": [ "It's best to store your RSpace API key as an environment variable. \n", "\n", - " RSPACE_API_KEY=\n", + " RSPACE_API_KEY=<YOUR_KEY>\n", "\n", "You'll also need to set the URL of your RSpace installation e.g.\n", "\n", diff --git a/docs/docs/integrations/document_loaders/scrapingant.ipynb b/docs/docs/integrations/document_loaders/scrapingant.ipynb index 5cc86dbbe010f..42e58ade57c4d 100644 --- a/docs/docs/integrations/document_loaders/scrapingant.ipynb +++ b/docs/docs/integrations/document_loaders/scrapingant.ipynb @@ -18,7 +18,7 @@ "\n", "| Class | Package | Local | Serializable | JS support |\n", "|:---------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----:|:------------:|:----------:|\n", - "| [ScrapingAntLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.scrapingant.ScrapingAntLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | ❌ | ❌ | \n", + "| [ScrapingAntLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.scrapingant.ScrapingAntLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | \n", "\n", "### Loader features\n", "| Source | Document Lazy Loading | Async Support |\n", diff --git a/docs/docs/integrations/document_loaders/sitemap.ipynb b/docs/docs/integrations/document_loaders/sitemap.ipynb index 699519d28a853..e930b12de31ff 100644 --- a/docs/docs/integrations/document_loaders/sitemap.ipynb +++ b/docs/docs/integrations/document_loaders/sitemap.ipynb @@ -13,9 +13,9 @@ "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/web_loaders/sitemap/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/sitemap/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [SiteMapLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html#langchain_community.document_loaders.sitemap.SitemapLoader) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", + "| [SiteMapLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html#langchain_community.document_loaders.sitemap.SitemapLoader) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -352,7 +352,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all SiteMapLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html#langchain_community.document_loaders.sitemap.SitemapLoader" + "For detailed documentation of all SiteMapLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html#langchain_community.document_loaders.sitemap.SitemapLoader" ] } ], diff --git a/docs/docs/integrations/document_loaders/slack.ipynb b/docs/docs/integrations/document_loaders/slack.ipynb index 71f85999821a5..648ecda4e86fd 100644 --- a/docs/docs/integrations/document_loaders/slack.ipynb +++ b/docs/docs/integrations/document_loaders/slack.ipynb @@ -15,7 +15,7 @@ "\n", "## 🧑 Instructions for ingesting your own dataset\n", "\n", - "Export your Slack data. You can do this by going to your Workspace Management page and clicking the Import/Export option ({your_slack_domain}.slack.com/services/export). Then, choose the right date range and click `Start export`. Slack will send you an email and a DM when the export is ready.\n", + "Export your Slack data. You can do this by going to your Workspace Management page and clicking the Import/Export option (\\{your_slack_domain\\}.slack.com/services/export). Then, choose the right date range and click `Start export`. Slack will send you an email and a DM when the export is ready.\n", "\n", "The download will produce a `.zip` file in your Downloads folder (or wherever your downloads can be found, depending on your OS configuration).\n", "\n", diff --git a/docs/docs/integrations/document_loaders/unstructured_file.ipynb b/docs/docs/integrations/document_loaders/unstructured_file.ipynb index fa766385eca41..02ff6a7c799d2 100644 --- a/docs/docs/integrations/document_loaders/unstructured_file.ipynb +++ b/docs/docs/integrations/document_loaders/unstructured_file.ipynb @@ -7,16 +7,16 @@ "source": [ "# Unstructured\n", "\n", - "This notebook covers how to use `Unstructured` [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders) to load files of many types. `Unstructured` currently supports loading of text files, powerpoints, html, pdfs, images, and more.\n", + "This notebook covers how to use `Unstructured` [document loader](https://python.langchain.com/docs/concepts/#document-loaders) to load files of many types. `Unstructured` currently supports loading of text files, powerpoints, html, pdfs, images, and more.\n", "\n", "Please see [this guide](../../integrations/providers/unstructured.mdx) for more instructions on setting up Unstructured locally, including setting up required system dependencies.\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [UnstructuredLoader](https://python.langchain.com/v0.2/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/unstructured/index.html) | ✅ | ❌ | ✅ | \n", + "| [UnstructuredLoader](https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html) | [langchain_unstructured](https://python.langchain.com/api_reference/unstructured/index.html) | ✅ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -39,9 +39,10 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"UNSTRUCTURED_API_KEY\"] = getpass.getpass(\n", - " \"Enter your Unstructured API key: \"\n", - ")" + "if \"UNSTRUCTURED_API_KEY\" not in os.environ:\n", + " os.environ[\"UNSTRUCTURED_API_KEY\"] = getpass.getpass(\n", + " \"Enter your Unstructured API key: \"\n", + " )" ] }, { @@ -518,6 +519,47 @@ "print(\"Length of text in the document:\", len(docs[0].page_content))" ] }, + { + "cell_type": "markdown", + "id": "3ec3c22d-02cd-498b-921f-b839d1404f32", + "metadata": {}, + "source": [ + "## Loading web pages\n", + "\n", + "`UnstructuredLoader` accepts a `web_url` kwarg when run locally that populates the `url` parameter of the underlying Unstructured [partition](https://docs.unstructured.io/open-source/core-functionality/partitioning). This allows for the parsing of remotely hosted documents, such as HTML web pages.\n", + "\n", + "Example usage:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bf9a8546-659d-4861-bff2-fdf1ad93ac65", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "page_content='Example Domain' metadata={'category_depth': 0, 'languages': ['eng'], 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'Title', 'element_id': 'fdaa78d856f9d143aeeed85bf23f58f8'}\n", + "\n", + "page_content='This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission.' metadata={'languages': ['eng'], 'parent_id': 'fdaa78d856f9d143aeeed85bf23f58f8', 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'NarrativeText', 'element_id': '3652b8458b0688639f973fe36253c992'}\n", + "\n", + "page_content='More information...' metadata={'category_depth': 0, 'link_texts': ['More information...'], 'link_urls': ['https://www.iana.org/domains/example'], 'languages': ['eng'], 'filetype': 'text/html', 'url': 'https://www.example.com', 'category': 'Title', 'element_id': '793ab98565d6f6d6f3a6d614e3ace2a9'}\n", + "\n" + ] + } + ], + "source": [ + "from langchain_unstructured import UnstructuredLoader\n", + "\n", + "loader = UnstructuredLoader(web_url=\"https://www.example.com\")\n", + "docs = loader.load()\n", + "\n", + "for doc in docs:\n", + " print(f\"{doc}\\n\")" + ] + }, { "cell_type": "markdown", "id": "ce01aa40", @@ -525,7 +567,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `UnstructuredLoader` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html" + "For detailed documentation of all `UnstructuredLoader` features and configurations head to the API reference: https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html" ] } ], @@ -545,7 +587,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/docs/docs/integrations/document_loaders/unstructured_markdown.ipynb b/docs/docs/integrations/document_loaders/unstructured_markdown.ipynb index 9854268ec702f..0645950990d1c 100644 --- a/docs/docs/integrations/document_loaders/unstructured_markdown.ipynb +++ b/docs/docs/integrations/document_loaders/unstructured_markdown.ipynb @@ -6,15 +6,15 @@ "source": [ "# UnstructuredMarkdownLoader\n", "\n", - "This notebook provides a quick overview for getting started with UnstructuredMarkdown [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html).\n", + "This notebook provides a quick overview for getting started with UnstructuredMarkdown [document loader](https://python.langchain.com/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html).\n", "\n", "## Overview\n", "### Integration details\n", "\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [UnstructuredMarkdownLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | ❌ | ✅ | \n", + "| [UnstructuredMarkdownLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -241,7 +241,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all UnstructuredMarkdownLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html" + "For detailed documentation of all UnstructuredMarkdownLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/unstructured_pdfloader.ipynb b/docs/docs/integrations/document_loaders/unstructured_pdfloader.ipynb index 25b162873b90d..546e09674cff2 100644 --- a/docs/docs/integrations/document_loaders/unstructured_pdfloader.ipynb +++ b/docs/docs/integrations/document_loaders/unstructured_pdfloader.ipynb @@ -8,7 +8,7 @@ "\n", "## Overview\n", "\n", - "[Unstructured](https://unstructured-io.github.io/unstructured/) supports a common interface for working with unstructured or semi-structured file formats, such as Markdown or PDF. LangChain's [UnstructuredPDFLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html) integrates with Unstructured to parse PDF documents into LangChain [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects.\n", + "[Unstructured](https://unstructured-io.github.io/unstructured/) supports a common interface for working with unstructured or semi-structured file formats, such as Markdown or PDF. LangChain's [UnstructuredPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html) integrates with Unstructured to parse PDF documents into LangChain [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects.\n", "\n", "Please see [this page](/docs/integrations/providers/unstructured/) for more information on installing system requirements.\n", "\n", @@ -16,9 +16,9 @@ "### Integration details\n", "\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [UnstructuredPDFLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", + "| [UnstructuredPDFLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -256,7 +256,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all UnstructuredPDFLoader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html" + "For detailed documentation of all UnstructuredPDFLoader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/upstage.ipynb b/docs/docs/integrations/document_loaders/upstage.ipynb index c6348b758a890..6eb29aec20384 100644 --- a/docs/docs/integrations/document_loaders/upstage.ipynb +++ b/docs/docs/integrations/document_loaders/upstage.ipynb @@ -25,9 +25,9 @@ } }, "source": [ - "# UpstageLayoutAnalysisLoader\n", + "# UpstageDocumentParseLoader\n", "\n", - "This notebook covers how to get started with `UpstageLayoutAnalysisLoader`.\n", + "This notebook covers how to get started with `UpstageDocumentParseLoader`.\n", "\n", "## Installation\n", "\n", @@ -89,10 +89,10 @@ } ], "source": [ - "from langchain_upstage import UpstageLayoutAnalysisLoader\n", + "from langchain_upstage import UpstageDocumentParseLoader\n", "\n", "file_path = \"/PATH/TO/YOUR/FILE.pdf\"\n", - "layzer = UpstageLayoutAnalysisLoader(file_path, split=\"page\")\n", + "layzer = UpstageDocumentParseLoader(file_path, split=\"page\")\n", "\n", "# For improved memory efficiency, consider using the lazy_load method to load documents page by page.\n", "docs = layzer.load() # or layzer.lazy_load()\n", diff --git a/docs/docs/integrations/document_loaders/web_base.ipynb b/docs/docs/integrations/document_loaders/web_base.ipynb index 4f0f21709ee71..52589cf4b2a6f 100644 --- a/docs/docs/integrations/document_loaders/web_base.ipynb +++ b/docs/docs/integrations/document_loaders/web_base.ipynb @@ -20,7 +20,7 @@ "\n", "| Class | Package | Local | Serializable | JS support|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [WebBaseLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", + "| [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ❌ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -76,7 +76,7 @@ "source": [ "To bypass SSL verification errors during fetching, you can set the \"verify\" option:\n", "\n", - "loader.requests_kwargs = {'verify':False}\n", + "`loader.requests_kwargs = {'verify':False}`\n", "\n", "### Initialization with multiple pages\n", "\n", @@ -370,7 +370,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `WebBaseLoader` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html" + "For detailed documentation of all `WebBaseLoader` features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html" ] } ], diff --git a/docs/docs/integrations/document_loaders/xml.ipynb b/docs/docs/integrations/document_loaders/xml.ipynb index 19677816e79b3..0e936b07baed4 100644 --- a/docs/docs/integrations/document_loaders/xml.ipynb +++ b/docs/docs/integrations/document_loaders/xml.ipynb @@ -7,16 +7,16 @@ "source": [ "# UnstructuredXMLLoader\n", "\n", - "This notebook provides a quick overview for getting started with UnstructuredXMLLoader [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). The `UnstructuredXMLLoader` is used to load `XML` files. The loader works with `.xml` files. The page content will be the text extracted from the XML tags.\n", + "This notebook provides a quick overview for getting started with UnstructuredXMLLoader [document loader](https://python.langchain.com/docs/concepts/#document-loaders). The `UnstructuredXMLLoader` is used to load `XML` files. The loader works with `.xml` files. The page content will be the text extracted from the XML tags.\n", "\n", "\n", "## Overview\n", "### Integration details\n", "\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/file_loaders/unstructured/)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [UnstructuredXMLLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.xml.UnstructuredXMLLoader.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", + "| [UnstructuredXMLLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.xml.UnstructuredXMLLoader.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ❌ | ✅ | \n", "### Loader features\n", "| Source | Document Lazy Loading | Native Async Support\n", "| :---: | :---: | :---: | \n", @@ -174,7 +174,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all __ModuleName__Loader features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.xml.UnstructuredXMLLoader.html" + "For detailed documentation of all __ModuleName__Loader features and configurations head to the API reference: https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.xml.UnstructuredXMLLoader.html" ] } ], diff --git a/docs/docs/integrations/document_transformers/ai21_semantic_text_splitter.ipynb b/docs/docs/integrations/document_transformers/ai21_semantic_text_splitter.ipynb index ce67c73809ee6..e4e98205eb92b 100644 --- a/docs/docs/integrations/document_transformers/ai21_semantic_text_splitter.ipynb +++ b/docs/docs/integrations/document_transformers/ai21_semantic_text_splitter.ipynb @@ -58,7 +58,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"AI21_API_KEY\"] = getpass()" + "if \"AI21_API_KEY\" not in os.environ:\n", + " os.environ[\"AI21_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/document_transformers/dashscope_rerank.ipynb b/docs/docs/integrations/document_transformers/dashscope_rerank.ipynb index 3d54d5e8f5edf..1301d90dbeecc 100644 --- a/docs/docs/integrations/document_transformers/dashscope_rerank.ipynb +++ b/docs/docs/integrations/document_transformers/dashscope_rerank.ipynb @@ -44,7 +44,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"DASHSCOPE_API_KEY\"] = getpass.getpass(\"DashScope API Key:\")" + "if \"DASHSCOPE_API_KEY\" not in os.environ:\n", + " os.environ[\"DASHSCOPE_API_KEY\"] = getpass.getpass(\"DashScope API Key:\")" ] }, { diff --git a/docs/docs/integrations/document_transformers/google_cloud_vertexai_rerank.ipynb b/docs/docs/integrations/document_transformers/google_cloud_vertexai_rerank.ipynb index 65b8f540e63c9..12ce774a1a853 100644 --- a/docs/docs/integrations/document_transformers/google_cloud_vertexai_rerank.ipynb +++ b/docs/docs/integrations/document_transformers/google_cloud_vertexai_rerank.ipynb @@ -546,7 +546,7 @@ "id": "ud_cnGszb1i9" }, "source": [ - "Let's inspect a couple of reranked documents. We observe that the retriever still returns the relevant Langchain type [documents](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) but as part of the metadata field, we also recieve the `relevance_score` from the Ranking API." + "Let's inspect a couple of reranked documents. We observe that the retriever still returns the relevant Langchain type [documents](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) but as part of the metadata field, we also recieve the `relevance_score` from the Ranking API." ] }, { diff --git a/docs/docs/integrations/document_transformers/jina_rerank.ipynb b/docs/docs/integrations/document_transformers/jina_rerank.ipynb index 5585ecd43578f..a914ddb6fbed4 100644 --- a/docs/docs/integrations/document_transformers/jina_rerank.ipynb +++ b/docs/docs/integrations/document_transformers/jina_rerank.ipynb @@ -214,7 +214,7 @@ "source": [ "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)\n", "chain = create_retrieval_chain(compression_retriever, combine_docs_chain)" ] diff --git a/docs/docs/integrations/document_transformers/rankllm-reranker.ipynb b/docs/docs/integrations/document_transformers/rankllm-reranker.ipynb index 5272705479698..764b33edb847a 100644 --- a/docs/docs/integrations/document_transformers/rankllm-reranker.ipynb +++ b/docs/docs/integrations/document_transformers/rankllm-reranker.ipynb @@ -50,7 +50,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/document_transformers/volcengine_rerank.ipynb b/docs/docs/integrations/document_transformers/volcengine_rerank.ipynb index 59c04de45af47..d374818cb4031 100644 --- a/docs/docs/integrations/document_transformers/volcengine_rerank.ipynb +++ b/docs/docs/integrations/document_transformers/volcengine_rerank.ipynb @@ -44,8 +44,10 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"VOLC_API_AK\"] = getpass.getpass(\"Volcengine API AK:\")\n", - "os.environ[\"VOLC_API_SK\"] = getpass.getpass(\"Volcengine API SK:\")" + "if \"VOLC_API_AK\" not in os.environ:\n", + " os.environ[\"VOLC_API_AK\"] = getpass.getpass(\"Volcengine API AK:\")\n", + "if \"VOLC_API_SK\" not in os.environ:\n", + " os.environ[\"VOLC_API_SK\"] = getpass.getpass(\"Volcengine API SK:\")" ] }, { diff --git a/docs/docs/integrations/document_transformers/voyageai-reranker.ipynb b/docs/docs/integrations/document_transformers/voyageai-reranker.ipynb index 3485744183f48..27e471d753a91 100644 --- a/docs/docs/integrations/document_transformers/voyageai-reranker.ipynb +++ b/docs/docs/integrations/document_transformers/voyageai-reranker.ipynb @@ -51,7 +51,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"VOYAGE_API_KEY\"] = getpass.getpass(\"Voyage AI API Key:\")" + "if \"VOYAGE_API_KEY\" not in os.environ:\n", + " os.environ[\"VOYAGE_API_KEY\"] = getpass.getpass(\"Voyage AI API Key:\")" ] }, { @@ -86,7 +87,9 @@ "## Set up the base vector store retriever\n", "Let's start by initializing a simple vector store retriever and storing the 2023 State of the Union speech (in chunks). We can set up the retriever to retrieve a high number (20) of docs. You can use any of the following Embeddings models: ([source](https://docs.voyageai.com/docs/embeddings)):\n", "\n", - "- `voyage-large-2` (default)\n", + "- `voyage-3`\n", + "- `voyage-3-lite` \n", + "- `voyage-large-2`\n", "- `voyage-code-2`\n", "- `voyage-2`\n", "- `voyage-law-2`\n", @@ -340,6 +343,8 @@ "## Doing reranking with VoyageAIRerank\n", "Now let's wrap our base retriever with a `ContextualCompressionRetriever`. We'll use the Voyage AI reranker to rerank the returned results. You can use any of the following Reranking models: ([source](https://docs.voyageai.com/docs/reranker)):\n", "\n", + "- `rerank-2`\n", + "- `rerank-2-lite`\n", "- `rerank-1`\n", "- `rerank-lite-1`" ] diff --git a/docs/docs/integrations/graphs/azure_cosmosdb_gremlin.ipynb b/docs/docs/integrations/graphs/azure_cosmosdb_gremlin.ipynb index b71937014bcde..83a7cf4ec2568 100644 --- a/docs/docs/integrations/graphs/azure_cosmosdb_gremlin.ipynb +++ b/docs/docs/integrations/graphs/azure_cosmosdb_gremlin.ipynb @@ -80,7 +80,7 @@ "outputs": [], "source": [ "graph = GremlinGraph(\n", - " url=f\"=wss://{cosmosdb_name}.gremlin.cosmos.azure.com:443/\",\n", + " url=f\"wss://{cosmosdb_name}.gremlin.cosmos.azure.com:443/\",\n", " username=f\"/dbs/{cosmosdb_db_id}/colls/{cosmosdb_db_graph_id}\",\n", " password=cosmosdb_access_Key,\n", ")" diff --git a/docs/docs/integrations/llm_caching.ipynb b/docs/docs/integrations/llm_caching.ipynb index 7c9930bd1f132..ee5152e023ff2 100644 --- a/docs/docs/integrations/llm_caching.ipynb +++ b/docs/docs/integrations/llm_caching.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "88486f6f", "metadata": {}, "outputs": [], @@ -24,12 +24,13 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "10ad9224", "metadata": { "ExecuteTime": { @@ -2399,7 +2400,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "id": "9b4764e4-c75f-4185-b326-524287a826be", "metadata": {}, "outputs": [], @@ -2429,7 +2430,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "id": "4b5e73c5-92c1-4eab-84e2-77924ea9c123", "metadata": {}, "outputs": [], @@ -2451,7 +2452,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "id": "db8d28cc-8d93-47b4-8326-57a29a06fb3c", "metadata": {}, "outputs": [ @@ -2482,7 +2483,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "b470dc81-2e7f-4743-9435-ce9071394eea", "metadata": {}, "outputs": [ @@ -2490,17 +2491,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 53 ms, sys: 29 ms, total: 82 ms\n", - "Wall time: 84.2 ms\n" + "CPU times: user 25.9 ms, sys: 15.3 ms, total: 41.3 ms\n", + "Wall time: 144 ms\n" ] }, { "data": { "text/plain": [ - "\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was two-tired!\"" + "\"\\n\\nWhy don't scientists trust atoms?\\n\\nBecause they make up everything.\"" ] }, - "execution_count": 5, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -2511,6 +2512,35 @@ "llm.invoke(\"Tell me a joke\")" ] }, + { + "cell_type": "markdown", + "id": "1dca39d8-233a-45ba-ad7d-0920dfbc4a50", + "metadata": {}, + "source": [ + "### Specifying a Time to Live (TTL) for the Cached entries\n", + "The Cached documents can be deleted after a specified time automatically by specifying a `ttl` parameter along with the initialization of the Cache." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a3edcc6f-2ccd-45ba-8ca4-f65b5e51b461", + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import timedelta\n", + "\n", + "set_llm_cache(\n", + " CouchbaseCache(\n", + " cluster=cluster,\n", + " bucket_name=BUCKET_NAME,\n", + " scope_name=SCOPE_NAME,\n", + " collection_name=COLLECTION_NAME,\n", + " ttl=timedelta(minutes=5),\n", + " )\n", + ")" + ] + }, { "cell_type": "markdown", "id": "43626f33-d184-4260-b641-c9341cef5842", @@ -2522,7 +2552,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "6b470c03-d7fe-4270-89e1-638251619a53", "metadata": {}, "outputs": [], @@ -2652,7 +2682,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 10, "id": "ae0766c8-ea34-4604-b0dc-cf2bbe8077f4", "metadata": {}, "outputs": [], @@ -2678,7 +2708,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 11, "id": "a2e82743-10ea-4319-b43e-193475ae5449", "metadata": {}, "outputs": [ @@ -2702,7 +2732,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "id": "c36f4e29-d872-4334-a1f1-0e6d10c5d9f2", "metadata": {}, "outputs": [ @@ -2724,6 +2754,38 @@ "print(llm.invoke(\"What is the expected lifespan of a dog?\"))" ] }, + { + "cell_type": "markdown", + "id": "f6f674fa-70b5-4cf9-a208-992aad2c3c89", + "metadata": {}, + "source": [ + "### Specifying a Time to Live (TTL) for the Cached entries\n", + "The Cached documents can be deleted after a specified time automatically by specifying a `ttl` parameter along with the initialization of the Cache." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "7e127d0a-5049-47e0-abf4-6424ad7d9fec", + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import timedelta\n", + "\n", + "set_llm_cache(\n", + " CouchbaseSemanticCache(\n", + " cluster=cluster,\n", + " embedding=embeddings,\n", + " bucket_name=BUCKET_NAME,\n", + " scope_name=SCOPE_NAME,\n", + " collection_name=COLLECTION_NAME,\n", + " index_name=INDEX_NAME,\n", + " score_threshold=0.8,\n", + " ttl=timedelta(minutes=5),\n", + " )\n", + ")" + ] + }, { "cell_type": "markdown", "id": "ae1f5e1c-085e-4998-9f2d-b5867d2c3d5b", @@ -2753,35 +2815,35 @@ } }, "source": [ - "**Cache** classes are implemented by inheriting the [BaseCache](https://python.langchain.com/v0.2/api_reference/core/caches/langchain_core.caches.BaseCache.html) class.\n", + "**Cache** classes are implemented by inheriting the [BaseCache](https://python.langchain.com/api_reference/core/caches/langchain_core.caches.BaseCache.html) class.\n", "\n", "This table lists all 21 derived classes with links to the API Reference.\n", "\n", "\n", "| Namespace 🔻 | Class |\n", "|------------|---------|\n", - "| langchain_astradb.cache | [AstraDBCache](https://python.langchain.com/v0.2/api_reference/astradb/cache/langchain_astradb.cache.AstraDBCache.html) |\n", - "| langchain_astradb.cache | [AstraDBSemanticCache](https://python.langchain.com/v0.2/api_reference/astradb/cache/langchain_astradb.cache.AstraDBSemanticCache.html) |\n", - "| langchain_community.cache | [AstraDBCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.AstraDBCache.html) |\n", - "| langchain_community.cache | [AstraDBSemanticCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.AstraDBSemanticCache.html) |\n", - "| langchain_community.cache | [AzureCosmosDBSemanticCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.AzureCosmosDBSemanticCache.html) |\n", - "| langchain_community.cache | [CassandraCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.CassandraCache.html) |\n", - "| langchain_community.cache | [CassandraSemanticCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.CassandraSemanticCache.html) |\n", - "| langchain_community.cache | [GPTCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.GPTCache.html) |\n", - "| langchain_community.cache | [InMemoryCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.InMemoryCache.html) |\n", - "| langchain_community.cache | [MomentoCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.MomentoCache.html) |\n", - "| langchain_community.cache | [OpenSearchSemanticCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.OpenSearchSemanticCache.html) |\n", - "| langchain_community.cache | [RedisSemanticCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.RedisSemanticCache.html) |\n", - "| langchain_community.cache | [SingleStoreDBSemanticCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.SingleStoreDBSemanticCache.html) |\n", - "| langchain_community.cache | [SQLAlchemyCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.SQLAlchemyCache.html) |\n", - "| langchain_community.cache | [SQLAlchemyMd5Cache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.SQLAlchemyMd5Cache.html) |\n", - "| langchain_community.cache | [UpstashRedisCache](https://python.langchain.com/v0.2/api_reference/community/cache/langchain_community.cache.UpstashRedisCache.html) |\n", - "| langchain_core.caches | [InMemoryCache](https://python.langchain.com/v0.2/api_reference/core/caches/langchain_core.caches.InMemoryCache.html) |\n", - "| langchain_elasticsearch.cache | [ElasticsearchCache](https://python.langchain.com/v0.2/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchCache.html) |\n", - "| langchain_mongodb.cache | [MongoDBAtlasSemanticCache](https://python.langchain.com/v0.2/api_reference/mongodb/cache/langchain_mongodb.cache.MongoDBAtlasSemanticCache.html) |\n", - "| langchain_mongodb.cache | [MongoDBCache](https://python.langchain.com/v0.2/api_reference/mongodb/cache/langchain_mongodb.cache.MongoDBCache.html) |\n", - "| langchain_couchbase.cache | [CouchbaseCache](https://python.langchain.com/v0.2/api_reference/couchbase/cache/langchain_couchbase.cache.CouchbaseCache.html) |\n", - "| langchain_couchbase.cache | [CouchbaseSemanticCache](https://python.langchain.com/v0.2/api_reference/couchbase/cache/langchain_couchbase.cache.CouchbaseSemanticCache.html) |\n" + "| langchain_astradb.cache | [AstraDBCache](https://python.langchain.com/api_reference/astradb/cache/langchain_astradb.cache.AstraDBCache.html) |\n", + "| langchain_astradb.cache | [AstraDBSemanticCache](https://python.langchain.com/api_reference/astradb/cache/langchain_astradb.cache.AstraDBSemanticCache.html) |\n", + "| langchain_community.cache | [AstraDBCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AstraDBCache.html) |\n", + "| langchain_community.cache | [AstraDBSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AstraDBSemanticCache.html) |\n", + "| langchain_community.cache | [AzureCosmosDBSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.AzureCosmosDBSemanticCache.html) |\n", + "| langchain_community.cache | [CassandraCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.CassandraCache.html) |\n", + "| langchain_community.cache | [CassandraSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.CassandraSemanticCache.html) |\n", + "| langchain_community.cache | [GPTCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.GPTCache.html) |\n", + "| langchain_community.cache | [InMemoryCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.InMemoryCache.html) |\n", + "| langchain_community.cache | [MomentoCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.MomentoCache.html) |\n", + "| langchain_community.cache | [OpenSearchSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.OpenSearchSemanticCache.html) |\n", + "| langchain_community.cache | [RedisSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.RedisSemanticCache.html) |\n", + "| langchain_community.cache | [SingleStoreDBSemanticCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.SingleStoreDBSemanticCache.html) |\n", + "| langchain_community.cache | [SQLAlchemyCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.SQLAlchemyCache.html) |\n", + "| langchain_community.cache | [SQLAlchemyMd5Cache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.SQLAlchemyMd5Cache.html) |\n", + "| langchain_community.cache | [UpstashRedisCache](https://python.langchain.com/api_reference/community/cache/langchain_community.cache.UpstashRedisCache.html) |\n", + "| langchain_core.caches | [InMemoryCache](https://python.langchain.com/api_reference/core/caches/langchain_core.caches.InMemoryCache.html) |\n", + "| langchain_elasticsearch.cache | [ElasticsearchCache](https://python.langchain.com/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchCache.html) |\n", + "| langchain_mongodb.cache | [MongoDBAtlasSemanticCache](https://python.langchain.com/api_reference/mongodb/cache/langchain_mongodb.cache.MongoDBAtlasSemanticCache.html) |\n", + "| langchain_mongodb.cache | [MongoDBCache](https://python.langchain.com/api_reference/mongodb/cache/langchain_mongodb.cache.MongoDBCache.html) |\n", + "| langchain_couchbase.cache | [CouchbaseCache](https://python.langchain.com/api_reference/couchbase/cache/langchain_couchbase.cache.CouchbaseCache.html) |\n", + "| langchain_couchbase.cache | [CouchbaseSemanticCache](https://python.langchain.com/api_reference/couchbase/cache/langchain_couchbase.cache.CouchbaseSemanticCache.html) |\n" ] } ], @@ -2801,7 +2863,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.10.13" } }, "nbformat": 4, diff --git a/docs/docs/integrations/llms/ai21.ipynb b/docs/docs/integrations/llms/ai21.ipynb index da2ec1293c1e8..cf83e033e0dd5 100644 --- a/docs/docs/integrations/llms/ai21.ipynb +++ b/docs/docs/integrations/llms/ai21.ipynb @@ -17,7 +17,7 @@ "source": [ "# AI21LLM\n", "\n", - "This example goes over how to use LangChain to interact with `AI21` Jurassic models. To use the Jamba model, use the [ChatAI21 object](https://python.langchain.com/v0.2/docs/integrations/chat/ai21/) instead.\n", + "This example goes over how to use LangChain to interact with `AI21` Jurassic models. To use the Jamba model, use the [ChatAI21 object](https://python.langchain.com/docs/integrations/chat/ai21/) instead.\n", "\n", "[See a full list of AI21 models and tools on LangChain.](https://pypi.org/project/langchain-ai21/)\n", "\n", @@ -67,7 +67,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"AI21_API_KEY\"] = getpass()" + "if \"AI21_API_KEY\" not in os.environ:\n", + " os.environ[\"AI21_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/llms/anthropic.ipynb b/docs/docs/integrations/llms/anthropic.ipynb index 7db347cc1ffd1..0f9c74c225adf 100644 --- a/docs/docs/integrations/llms/anthropic.ipynb +++ b/docs/docs/integrations/llms/anthropic.ipynb @@ -67,7 +67,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"ANTHROPIC_API_KEY\"] = getpass()" + "if \"ANTHROPIC_API_KEY\" not in os.environ:\n", + " os.environ[\"ANTHROPIC_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/llms/cohere.ipynb b/docs/docs/integrations/llms/cohere.ipynb index 003e035e34981..566667cca4689 100644 --- a/docs/docs/integrations/llms/cohere.ipynb +++ b/docs/docs/integrations/llms/cohere.ipynb @@ -15,14 +15,14 @@ "\n", ">[Cohere](https://cohere.ai/about) is a Canadian startup that provides natural language processing models that help companies improve human-machine interactions.\n", "\n", - "Head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html) for detailed documentation of all attributes and methods.\n", + "Head to the [API reference](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html) for detailed documentation of all attributes and methods.\n", "\n", "## Overview\n", "### Integration details\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/llms/cohere/) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/cohere/) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [Cohere](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n" + "| [Cohere](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n" ] }, { @@ -261,7 +261,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `Cohere` llm features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html" + "For detailed documentation of all `Cohere` llm features and configurations head to the API reference: https://python.langchain.com/api_reference/community/llms/langchain_community.llms.cohere.Cohere.html" ] } ], diff --git a/docs/docs/integrations/llms/databricks.ipynb b/docs/docs/integrations/llms/databricks.ipynb index 9f13defa2a70c..a08ae1516f0f6 100644 --- a/docs/docs/integrations/llms/databricks.ipynb +++ b/docs/docs/integrations/llms/databricks.ipynb @@ -10,7 +10,7 @@ "> [Databricks](https://www.databricks.com/) Lakehouse Platform unifies data, analytics, and AI on one platform.\n", "\n", "\n", - "This notebook provides a quick overview for getting started with Databricks [LLM models](https://python.langchain.com/v0.2/docs/concepts/#llms). For detailed documentation of all features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/llms/langchain_community.llms.databricks.Databricks.html).\n", + "This notebook provides a quick overview for getting started with Databricks [LLM models](https://python.langchain.com/docs/concepts/#llms). For detailed documentation of all features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/llms/langchain_community.llms.databricks.Databricks.html).\n", "\n", "## Overview\n", "\n", @@ -33,7 +33,7 @@ "* Only supports synchronous invocation. Streaming or async APIs are not supported.\n", "* `batch` API is not supported.\n", "\n", - "To use those features, please use the new [ChatDatabricks](https://python.langchain.com/v0.2/docs/integrations/chat/databricks) class instead. `ChatDatabricks` supports all APIs of `ChatModel` including streaming, async, batch, etc.\n" + "To use those features, please use the new [ChatDatabricks](https://python.langchain.com/docs/integrations/chat/databricks) class instead. `ChatDatabricks` supports all APIs of `ChatModel` including streaming, async, batch, etc.\n" ] }, { diff --git a/docs/docs/integrations/llms/fireworks.ipynb b/docs/docs/integrations/llms/fireworks.ipynb index cdc8308e74d3f..16e4ca4b37b13 100644 --- a/docs/docs/integrations/llms/fireworks.ipynb +++ b/docs/docs/integrations/llms/fireworks.ipynb @@ -22,7 +22,7 @@ "\n", "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.1/docs/integrations/llms/fireworks/) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [Fireworks](https://python.langchain.com/v0.2/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks) | [langchain_fireworks](https://python.langchain.com/v0.2/api_reference/fireworks/index.html) | ❌ | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_fireworks?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_fireworks?style=flat-square&label=%20) |" + "| [Fireworks](https://python.langchain.com/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks) | [langchain_fireworks](https://python.langchain.com/api_reference/fireworks/index.html) | ❌ | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_fireworks?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_fireworks?style=flat-square&label=%20) |" ] }, { @@ -282,7 +282,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `Fireworks` LLM features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks" + "For detailed documentation of all `Fireworks` LLM features and configurations head to the API reference: https://python.langchain.com/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks" ] } ], diff --git a/docs/docs/integrations/llms/gigachat.ipynb b/docs/docs/integrations/llms/gigachat.ipynb index 19400be44746e..400f492d9bee6 100644 --- a/docs/docs/integrations/llms/gigachat.ipynb +++ b/docs/docs/integrations/llms/gigachat.ipynb @@ -47,7 +47,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()" + "if \"GIGACHAT_CREDENTIALS\" not in os.environ:\n", + " os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/llms/gpt4all.ipynb b/docs/docs/integrations/llms/gpt4all.ipynb index 6c09903f29107..d612f5b8252cc 100644 --- a/docs/docs/integrations/llms/gpt4all.ipynb +++ b/docs/docs/integrations/llms/gpt4all.ipynb @@ -84,7 +84,7 @@ "\n", "---\n", "\n", - "This integration does not yet support streaming in chunks via the [`.stream()`](https://python.langchain.com/v0.2/docs/how_to/streaming/) method. The below example uses a callback handler with `streaming=True`:" + "This integration does not yet support streaming in chunks via the [`.stream()`](https://python.langchain.com/docs/how_to/streaming/) method. The below example uses a callback handler with `streaming=True`:" ] }, { diff --git a/docs/docs/integrations/llms/index.mdx b/docs/docs/integrations/llms/index.mdx index 973b09c360f2b..8af9679143640 100644 --- a/docs/docs/integrations/llms/index.mdx +++ b/docs/docs/integrations/llms/index.mdx @@ -12,7 +12,7 @@ You are currently on a page documenting the use of [text completion models](/doc Unless you are specifically using more advanced prompting techniques, you are probably looking for [this page instead](/docs/integrations/chat/). ::: -[LLMs](docs/concepts/#llms) are language models that take a string as input and return a string as output. +[LLMs](/docs/concepts/#llms) are language models that take a string as input and return a string as output. :::info diff --git a/docs/docs/integrations/llms/nvidia_ai_endpoints.ipynb b/docs/docs/integrations/llms/nvidia_ai_endpoints.ipynb new file mode 100644 index 0000000000000..190cf8db74d57 --- /dev/null +++ b/docs/docs/integrations/llms/nvidia_ai_endpoints.ipynb @@ -0,0 +1,309 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NVIDIA\n", + "\n", + "This will help you getting started with NVIDIA [models](/docs/concepts/#llms). For detailed documentation of all `NVIDIA` features and configurations head to the [API reference](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.NVIDIA.html).\n", + "\n", + "## Overview\n", + "The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on \n", + "NVIDIA NIM inference microservice. These models are optimized by NVIDIA to deliver the best performance on NVIDIA \n", + "accelerated infrastructure and deployed as a NIM, an easy-to-use, prebuilt containers that deploy anywhere using a single \n", + "command on NVIDIA accelerated infrastructure.\n", + "\n", + "NVIDIA hosted deployments of NIMs are available to test on the [NVIDIA API catalog](https://build.nvidia.com/). After testing, \n", + "NIMs can be exported from NVIDIA’s API catalog using the NVIDIA AI Enterprise license and run on-premises or in the cloud, \n", + "giving enterprises ownership and full control of their IP and AI application.\n", + "\n", + "NIMs are packaged as container images on a per model basis and are distributed as NGC container images through the NVIDIA NGC Catalog. \n", + "At their core, NIMs provide easy, consistent, and familiar APIs for running inference on an AI model.\n", + "\n", + "This example goes over how to use LangChain to interact with NVIDIA supported via the `NVIDIA` class.\n", + "\n", + "For more information on accessing the llm models through this api, check out the [NVIDIA](https://python.langchain.com/docs/integrations/llms/nvidia_ai_endpoints/) documentation.\n", + "\n", + "### Integration details\n", + "\n", + "| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n", + "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", + "| [NVIDIA](https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html) | [langchain_nvidia_ai_endpoints](https://python.langchain.com/api_reference/nvidia_ai_endpoints/index.html) | ✅ | beta | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_nvidia_ai_endpoints?style=flat-square&label=%20) |\n", + "\n", + "### Model features\n", + "| JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n", + "| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n", + "| ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | \n", + "\n", + "## Setup\n", + "\n", + "**To get started:**\n", + "\n", + "1. Create a free account with [NVIDIA](https://build.nvidia.com/), which hosts NVIDIA AI Foundation models.\n", + "\n", + "2. Click on your model of choice.\n", + "\n", + "3. Under `Input` select the `Python` tab, and click `Get API Key`. Then click `Generate Key`.\n", + "\n", + "4. Copy and save the generated key as `NVIDIA_API_KEY`. From there, you should have access to the endpoints.\n", + "\n", + "### Credentials\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "if not os.getenv(\"NVIDIA_API_KEY\"):\n", + " # Note: the API key should start with \"nvapi-\"\n", + " os.environ[\"NVIDIA_API_KEY\"] = getpass.getpass(\"Enter your NVIDIA API key: \")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Installation\n", + "\n", + "The LangChain NVIDIA AI Endpoints integration lives in the `langchain_nvidia_ai_endpoints` package:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --upgrade --quiet langchain-nvidia-ai-endpoints" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Instantiation\n", + "\n", + "See [LLM](/docs/how_to#llms) for full functionality." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_nvidia_ai_endpoints import NVIDIA" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "llm = NVIDIA().bind(max_tokens=256)\n", + "llm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Invocation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "prompt = \"# Function that does quicksort written in Rust without comments:\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(llm.invoke(prompt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stream, Batch, and Async\n", + "\n", + "These models natively support streaming, and as is the case with all LangChain LLMs they expose a batch method to handle concurrent requests, as well as async methods for invoke, stream, and batch. Below are a few examples." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for chunk in llm.stream(prompt):\n", + " print(chunk, end=\"\", flush=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "llm.batch([prompt])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "await llm.ainvoke(prompt)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async for chunk in llm.astream(prompt):\n", + " print(chunk, end=\"\", flush=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "await llm.abatch([prompt])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "async for chunk in llm.astream_log(prompt):\n", + " print(chunk)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "response = llm.invoke(\n", + " \"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1) #Train a logistic regression model, predict the labels on the test set and compute the accuracy score\"\n", + ")\n", + "print(response)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Supported models\n", + "\n", + "Querying `available_models` will still give you all of the other models offered by your API credentials." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "NVIDIA.get_available_models()\n", + "# llm.get_available_models()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Chaining\n", + "\n", + "We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.prompts import ChatPromptTemplate\n", + "\n", + "prompt = ChatPromptTemplate(\n", + " [\n", + " (\n", + " \"system\",\n", + " \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n", + " ),\n", + " (\"human\", \"{input}\"),\n", + " ]\n", + ")\n", + "\n", + "chain = prompt | llm\n", + "chain.invoke(\n", + " {\n", + " \"input_language\": \"English\",\n", + " \"output_language\": \"German\",\n", + " \"input\": \"I love programming.\",\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## API reference\n", + "\n", + "For detailed documentation of all `NVIDIA` features and configurations head to the API reference: https://python.langchain.com/api_reference/nvidia_ai_endpoints/llms/langchain_nvidia_ai_endpoints.llms.NVIDIA.html" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "langchain-nvidia-ai-endpoints-m0-Y4aGr-py3.10", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/docs/integrations/llms/openai.ipynb b/docs/docs/integrations/llms/openai.ipynb index 2bd4f6a67d6b2..58de2dec493da 100644 --- a/docs/docs/integrations/llms/openai.ipynb +++ b/docs/docs/integrations/llms/openai.ipynb @@ -26,9 +26,9 @@ "## Overview\n", "\n", "### Integration details\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/openai) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/openai) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", - "| [ChatOpenAI](https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain-openai](https://python.langchain.com/v0.2/api_reference/openai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n", + "| [ChatOpenAI](https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html) | [langchain-openai](https://python.langchain.com/api_reference/openai/index.html) | ❌ | beta | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-openai?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-openai?style=flat-square&label=%20) |\n", "\n", "\n", "## Setup\n", @@ -230,7 +230,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `OpenAI` llm features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/openai/llms/langchain_openai.llms.base.OpenAI.html" + "For detailed documentation of all `OpenAI` llm features and configurations head to the API reference: https://python.langchain.com/api_reference/openai/llms/langchain_openai.llms.base.OpenAI.html" ] } ], diff --git a/docs/docs/integrations/llms/runhouse.ipynb b/docs/docs/integrations/llms/runhouse.ipynb index d4ff8e80dd0f1..b5c9e01c8c560 100644 --- a/docs/docs/integrations/llms/runhouse.ipynb +++ b/docs/docs/integrations/llms/runhouse.ipynb @@ -277,7 +277,7 @@ "id": "af08575f", "metadata": {}, "source": [ - "You can send your pipeline directly over the wire to your model, but this will only work for small models (<2 Gb), and will be pretty slow:" + "You can send your pipeline directly over the wire to your model, but this will only work for small models (<2 Gb), and will be pretty slow:" ] }, { diff --git a/docs/docs/integrations/llms/sambanova.ipynb b/docs/docs/integrations/llms/sambanova.ipynb index 2d88c86ab7b54..618a02363f51f 100644 --- a/docs/docs/integrations/llms/sambanova.ipynb +++ b/docs/docs/integrations/llms/sambanova.ipynb @@ -6,129 +6,11 @@ "source": [ "# SambaNova\n", "\n", - "**[SambaNova](https://sambanova.ai/)'s** [Sambaverse](https://sambaverse.sambanova.ai/) and [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) are platforms for running your own open-source models\n", + "**[SambaNova](https://sambanova.ai/)'s** [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) is a platform for running your own open-source models\n", "\n", "This example goes over how to use LangChain to interact with SambaNova models" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Sambaverse" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Sambaverse** allows you to interact with multiple open-source models. You can view the list of available models and interact with them in the [playground](https://sambaverse.sambanova.ai/playground).\n", - " **Please note that Sambaverse's free offering is performance-limited.** Companies that are ready to evaluate the production tokens-per-second performance, volume throughput, and 10x lower total cost of ownership (TCO) of SambaNova should [contact us](https://sambaverse.sambanova.ai/contact-us) for a non-limited evaluation instance." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An API key is required to access Sambaverse models. To get a key, create an account at [sambaverse.sambanova.ai](https://sambaverse.sambanova.ai/)\n", - "\n", - "The [sseclient-py](https://pypi.org/project/sseclient-py/) package is required to run streaming predictions " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%pip install --quiet sseclient-py==1.8.0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Register your API key as an environment variable:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "\n", - "sambaverse_api_key = \"\"\n", - "\n", - "# Set the environment variables\n", - "os.environ[\"SAMBAVERSE_API_KEY\"] = sambaverse_api_key" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Call Sambaverse models directly from LangChain!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_community.llms.sambanova import Sambaverse\n", - "\n", - "llm = Sambaverse(\n", - " sambaverse_model_name=\"Meta/llama-2-7b-chat-hf\",\n", - " streaming=False,\n", - " model_kwargs={\n", - " \"do_sample\": True,\n", - " \"max_tokens_to_generate\": 1000,\n", - " \"temperature\": 0.01,\n", - " \"select_expert\": \"llama-2-7b-chat-hf\",\n", - " \"process_prompt\": False,\n", - " # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n", - " # \"repetition_penalty\": 1.0,\n", - " # \"top_k\": 50,\n", - " # \"top_p\": 1.0\n", - " },\n", - ")\n", - "\n", - "print(llm.invoke(\"Why should I use open source models?\"))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Streaming response\n", - "\n", - "from langchain_community.llms.sambanova import Sambaverse\n", - "\n", - "llm = Sambaverse(\n", - " sambaverse_model_name=\"Meta/llama-2-7b-chat-hf\",\n", - " streaming=True,\n", - " model_kwargs={\n", - " \"do_sample\": True,\n", - " \"max_tokens_to_generate\": 1000,\n", - " \"temperature\": 0.01,\n", - " \"select_expert\": \"llama-2-7b-chat-hf\",\n", - " \"process_prompt\": False,\n", - " # \"stop_sequences\": '\\\"sequence1\\\",\\\"sequence2\\\"',\n", - " # \"repetition_penalty\": 1.0,\n", - " # \"top_k\": 50,\n", - " # \"top_p\": 1.0\n", - " },\n", - ")\n", - "\n", - "for chunk in llm.stream(\"Why should I use open source models?\"):\n", - " print(chunk, end=\"\", flush=True)" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/docs/docs/integrations/memory/couchbase_chat_message_history.ipynb b/docs/docs/integrations/memory/couchbase_chat_message_history.ipynb index 07500945b0588..36fb0fe63a123 100644 --- a/docs/docs/integrations/memory/couchbase_chat_message_history.ipynb +++ b/docs/docs/integrations/memory/couchbase_chat_message_history.ipynb @@ -1,325 +1,354 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "a283d2fd-e26e-4811-a486-d3cf0ecf6749", - "metadata": {}, - "source": [ - "# Couchbase\n", - "> Couchbase is an award-winning distributed NoSQL cloud database that delivers unmatched versatility, performance, scalability, and financial value for all of your cloud, mobile, AI, and edge computing applications. Couchbase embraces AI with coding assistance for developers and vector search for their applications.\n", - "\n", - "This notebook goes over how to use the `CouchbaseChatMessageHistory` class to store the chat message history in a Couchbase cluster\n" - ] - }, - { - "cell_type": "markdown", - "id": "ff868a6c-3e17-4c3d-8d32-67b01f4d7bcc", - "metadata": {}, - "source": [ - "## Set Up Couchbase Cluster\n", - "To run this demo, you need a Couchbase Cluster. \n", - "\n", - "You can work with both [Couchbase Capella](https://www.couchbase.com/products/capella/) and your self-managed Couchbase Server." - ] - }, - { - "cell_type": "markdown", - "id": "41fa85e7-6968-45e4-a445-de305d80f332", - "metadata": {}, - "source": [ - "## Install Dependencies\n", - "`CouchbaseChatMessageHistory` lives inside the `langchain-couchbase` package. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "b744ca05-b8c6-458c-91df-f50ca2c20b3c", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "%pip install --upgrade --quiet langchain-couchbase" - ] - }, - { - "cell_type": "markdown", - "id": "41f29205-6452-493b-ba18-8a3b006bcca4", - "metadata": {}, - "source": [ - "## Create Couchbase Connection Object\n", - "We create a connection to the Couchbase cluster initially and then pass the cluster object to the Vector Store. \n", - "\n", - "Here, we are connecting using the username and password. You can also connect using any other supported way to your cluster. \n", - "\n", - "For more information on connecting to the Couchbase cluster, please check the [Python SDK documentation](https://docs.couchbase.com/python-sdk/current/hello-world/start-using-sdk.html#connect)." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "f394908e-f5fe-408a-84d7-b97fdebcfa26", - "metadata": {}, - "outputs": [], - "source": [ - "COUCHBASE_CONNECTION_STRING = (\n", - " \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n", - ")\n", - "DB_USERNAME = \"Administrator\"\n", - "DB_PASSWORD = \"Password\"" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "ad4dce21-d80c-465a-b709-fd366ba5ce35", - "metadata": {}, - "outputs": [], - "source": [ - "from datetime import timedelta\n", - "\n", - "from couchbase.auth import PasswordAuthenticator\n", - "from couchbase.cluster import Cluster\n", - "from couchbase.options import ClusterOptions\n", - "\n", - "auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n", - "options = ClusterOptions(auth)\n", - "cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n", - "\n", - "# Wait until the cluster is ready for use.\n", - "cluster.wait_until_ready(timedelta(seconds=5))" - ] - }, - { - "cell_type": "markdown", - "id": "e3d0210c-e2e6-437a-86f3-7397a1899fef", - "metadata": {}, - "source": [ - "We will now set the bucket, scope, and collection names in the Couchbase cluster that we want to use for storing the message history.\n", - "\n", - "Note that the bucket, scope, and collection need to exist before using them to store the message history." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "e8c7f846-a5c4-4465-a40e-4a9a23ac71bd", - "metadata": {}, - "outputs": [], - "source": [ - "BUCKET_NAME = \"langchain-testing\"\n", - "SCOPE_NAME = \"_default\"\n", - "COLLECTION_NAME = \"conversational_cache\"" - ] - }, - { - "cell_type": "markdown", - "id": "283959e1-6af7-4768-9211-5b0facc6ef65", - "metadata": {}, - "source": [ - "## Usage\n", - "In order to store the messages, you need the following:\n", - "- Couchbase Cluster object: Valid connection to the Couchbase cluster\n", - "- bucket_name: Bucket in cluster to store the chat message history\n", - "- scope_name: Scope in bucket to store the message history\n", - "- collection_name: Collection in scope to store the message history\n", - "- session_id: Unique identifier for the session\n", - "\n", - "Optionally you can configure the following:\n", - "- session_id_key: Field in the chat message documents to store the `session_id`\n", - "- message_key: Field in the chat message documents to store the message content\n", - "- create_index: Used to specify if the index needs to be created on the collection. By default, an index is created on the `message_key` and the `session_id_key` of the documents" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "43c3b2d5-aae2-44a9-9e9f-f10adf054cfa", - "metadata": {}, - "outputs": [], - "source": [ - "from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n", - "\n", - "message_history = CouchbaseChatMessageHistory(\n", - " cluster=cluster,\n", - " bucket_name=BUCKET_NAME,\n", - " scope_name=SCOPE_NAME,\n", - " collection_name=COLLECTION_NAME,\n", - " session_id=\"test-session\",\n", - ")\n", - "\n", - "message_history.add_user_message(\"hi!\")\n", - "\n", - "message_history.add_ai_message(\"how are you doing?\")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "e7e348ef-79e9-481c-aeef-969ae03dea6a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[HumanMessage(content='hi!'), AIMessage(content='how are you doing?')]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "message_history.messages" - ] - }, - { - "cell_type": "markdown", - "id": "c8b942a7-93fa-4cd9-8414-d047135c2733", - "metadata": {}, - "source": [ - "## Chaining\n", - "The chat message history class can be used with [LCEL Runnables](https://python.langchain.com/v0.2/docs/how_to/message_history/)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8a9f0d91-d1d6-481d-8137-ea11229f485a", - "metadata": {}, - "outputs": [], - "source": [ - "import getpass\n", - "import os\n", - "\n", - "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", - "from langchain_openai import ChatOpenAI\n", - "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "946d45aa-5a61-49ae-816b-1c3949c56d9a", - "metadata": {}, - "outputs": [], - "source": [ - "prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\"system\", \"You are a helpful assistant.\"),\n", - " MessagesPlaceholder(variable_name=\"history\"),\n", - " (\"human\", \"{question}\"),\n", - " ]\n", - ")\n", - "\n", - "# Create the LCEL runnable\n", - "chain = prompt | ChatOpenAI()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "20dfd838-b549-42ed-b3ba-ac005f7e024c", - "metadata": {}, - "outputs": [], - "source": [ - "chain_with_history = RunnableWithMessageHistory(\n", - " chain,\n", - " lambda session_id: CouchbaseChatMessageHistory(\n", - " cluster=cluster,\n", - " bucket_name=BUCKET_NAME,\n", - " scope_name=SCOPE_NAME,\n", - " collection_name=COLLECTION_NAME,\n", - " session_id=session_id,\n", - " ),\n", - " input_messages_key=\"question\",\n", - " history_messages_key=\"history\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "17bd09f4-896d-433d-bb9a-369a06e7aa8a", - "metadata": {}, - "outputs": [], - "source": [ - "# This is where we configure the session id\n", - "config = {\"configurable\": {\"session_id\": \"testing\"}}" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "4bda1096-2fc2-40d7-a046-0d5d8e3a8f75", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 22, 'total_tokens': 32}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-a0f8a29e-ddf4-4e06-a1fe-cf8c325a2b72-0', usage_metadata={'input_tokens': 22, 'output_tokens': 10, 'total_tokens': 32})" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "1cfb31da-51bb-4c5f-909a-b7118b0ae08d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AIMessage(content='Your name is Bob.', response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 43, 'total_tokens': 48}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-f764a9eb-999e-4042-96b6-fe47b7ae4779-0', usage_metadata={'input_tokens': 43, 'output_tokens': 5, 'total_tokens': 48})" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} + "cells": [ + { + "cell_type": "markdown", + "id": "a283d2fd-e26e-4811-a486-d3cf0ecf6749", + "metadata": {}, + "source": [ + "# Couchbase\n", + "> Couchbase is an award-winning distributed NoSQL cloud database that delivers unmatched versatility, performance, scalability, and financial value for all of your cloud, mobile, AI, and edge computing applications. Couchbase embraces AI with coding assistance for developers and vector search for their applications.\n", + "\n", + "This notebook goes over how to use the `CouchbaseChatMessageHistory` class to store the chat message history in a Couchbase cluster\n" + ] + }, + { + "cell_type": "markdown", + "id": "ff868a6c-3e17-4c3d-8d32-67b01f4d7bcc", + "metadata": {}, + "source": [ + "## Set Up Couchbase Cluster\n", + "To run this demo, you need a Couchbase Cluster. \n", + "\n", + "You can work with both [Couchbase Capella](https://www.couchbase.com/products/capella/) and your self-managed Couchbase Server." + ] + }, + { + "cell_type": "markdown", + "id": "41fa85e7-6968-45e4-a445-de305d80f332", + "metadata": {}, + "source": [ + "## Install Dependencies\n", + "`CouchbaseChatMessageHistory` lives inside the `langchain-couchbase` package. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b744ca05-b8c6-458c-91df-f50ca2c20b3c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install --upgrade --quiet langchain-couchbase" + ] + }, + { + "cell_type": "markdown", + "id": "41f29205-6452-493b-ba18-8a3b006bcca4", + "metadata": {}, + "source": [ + "## Create Couchbase Connection Object\n", + "We create a connection to the Couchbase cluster initially and then pass the cluster object to the Vector Store. \n", + "\n", + "Here, we are connecting using the username and password. You can also connect using any other supported way to your cluster. \n", + "\n", + "For more information on connecting to the Couchbase cluster, please check the [Python SDK documentation](https://docs.couchbase.com/python-sdk/current/hello-world/start-using-sdk.html#connect)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f394908e-f5fe-408a-84d7-b97fdebcfa26", + "metadata": {}, + "outputs": [], + "source": [ + "COUCHBASE_CONNECTION_STRING = (\n", + " \"couchbase://localhost\" # or \"couchbases://localhost\" if using TLS\n", + ")\n", + "DB_USERNAME = \"Administrator\"\n", + "DB_PASSWORD = \"Password\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ad4dce21-d80c-465a-b709-fd366ba5ce35", + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import timedelta\n", + "\n", + "from couchbase.auth import PasswordAuthenticator\n", + "from couchbase.cluster import Cluster\n", + "from couchbase.options import ClusterOptions\n", + "\n", + "auth = PasswordAuthenticator(DB_USERNAME, DB_PASSWORD)\n", + "options = ClusterOptions(auth)\n", + "cluster = Cluster(COUCHBASE_CONNECTION_STRING, options)\n", + "\n", + "# Wait until the cluster is ready for use.\n", + "cluster.wait_until_ready(timedelta(seconds=5))" + ] + }, + { + "cell_type": "markdown", + "id": "e3d0210c-e2e6-437a-86f3-7397a1899fef", + "metadata": {}, + "source": [ + "We will now set the bucket, scope, and collection names in the Couchbase cluster that we want to use for storing the message history.\n", + "\n", + "Note that the bucket, scope, and collection need to exist before using them to store the message history." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e8c7f846-a5c4-4465-a40e-4a9a23ac71bd", + "metadata": {}, + "outputs": [], + "source": [ + "BUCKET_NAME = \"langchain-testing\"\n", + "SCOPE_NAME = \"_default\"\n", + "COLLECTION_NAME = \"conversational_cache\"" + ] + }, + { + "cell_type": "markdown", + "id": "283959e1-6af7-4768-9211-5b0facc6ef65", + "metadata": {}, + "source": [ + "## Usage\n", + "In order to store the messages, you need the following:\n", + "- Couchbase Cluster object: Valid connection to the Couchbase cluster\n", + "- bucket_name: Bucket in cluster to store the chat message history\n", + "- scope_name: Scope in bucket to store the message history\n", + "- collection_name: Collection in scope to store the message history\n", + "- session_id: Unique identifier for the session\n", + "\n", + "Optionally you can configure the following:\n", + "- session_id_key: Field in the chat message documents to store the `session_id`\n", + "- message_key: Field in the chat message documents to store the message content\n", + "- create_index: Used to specify if the index needs to be created on the collection. By default, an index is created on the `message_key` and the `session_id_key` of the documents\n", + "- ttl: Used to specify a time in `timedelta` to live for the documents after which they will get deleted automatically from the storage." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "43c3b2d5-aae2-44a9-9e9f-f10adf054cfa", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n", + "\n", + "message_history = CouchbaseChatMessageHistory(\n", + " cluster=cluster,\n", + " bucket_name=BUCKET_NAME,\n", + " scope_name=SCOPE_NAME,\n", + " collection_name=COLLECTION_NAME,\n", + " session_id=\"test-session\",\n", + ")\n", + "\n", + "message_history.add_user_message(\"hi!\")\n", + "\n", + "message_history.add_ai_message(\"how are you doing?\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e7e348ef-79e9-481c-aeef-969ae03dea6a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[HumanMessage(content='hi!'), AIMessage(content='how are you doing?')]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "message_history.messages" + ] + }, + { + "cell_type": "markdown", + "id": "b993fe69-4462-4cb4-ad0a-eb31a1a4d7d9", + "metadata": {}, + "source": [ + "## Specifying a Time to Live (TTL) for the Chat Messages\n", + "The stored messages can be deleted after a specified time automatically by specifying a `ttl` parameter along with the initialization of the chat message history store." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d32d9302-de97-4319-a484-c83530bab508", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory\n", + "\n", + "message_history = CouchbaseChatMessageHistory(\n", + " cluster=cluster,\n", + " bucket_name=BUCKET_NAME,\n", + " scope_name=SCOPE_NAME,\n", + " collection_name=COLLECTION_NAME,\n", + " session_id=\"test-session\",\n", + " ttl=timedelta(hours=24),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "c8b942a7-93fa-4cd9-8414-d047135c2733", + "metadata": {}, + "source": [ + "## Chaining\n", + "The chat message history class can be used with [LCEL Runnables](https://python.langchain.com/docs/how_to/message_history/)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8a9f0d91-d1d6-481d-8137-ea11229f485a", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", + "from langchain_core.runnables.history import RunnableWithMessageHistory\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "946d45aa-5a61-49ae-816b-1c3949c56d9a", + "metadata": {}, + "outputs": [], + "source": [ + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\"system\", \"You are a helpful assistant.\"),\n", + " MessagesPlaceholder(variable_name=\"history\"),\n", + " (\"human\", \"{question}\"),\n", + " ]\n", + ")\n", + "\n", + "# Create the LCEL runnable\n", + "chain = prompt | ChatOpenAI()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "20dfd838-b549-42ed-b3ba-ac005f7e024c", + "metadata": {}, + "outputs": [], + "source": [ + "chain_with_history = RunnableWithMessageHistory(\n", + " chain,\n", + " lambda session_id: CouchbaseChatMessageHistory(\n", + " cluster=cluster,\n", + " bucket_name=BUCKET_NAME,\n", + " scope_name=SCOPE_NAME,\n", + " collection_name=COLLECTION_NAME,\n", + " session_id=session_id,\n", + " ),\n", + " input_messages_key=\"question\",\n", + " history_messages_key=\"history\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "17bd09f4-896d-433d-bb9a-369a06e7aa8a", + "metadata": {}, + "outputs": [], + "source": [ + "# This is where we configure the session id\n", + "config = {\"configurable\": {\"session_id\": \"testing\"}}" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4bda1096-2fc2-40d7-a046-0d5d8e3a8f75", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='Hello, Bob! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 22, 'total_tokens': 33}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-62e54e3d-db70-429d-9ee0-e5e8eb2489a1-0', usage_metadata={'input_tokens': 22, 'output_tokens': 11, 'total_tokens': 33})" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain_with_history.invoke({\"question\": \"Hi! I'm bob\"}, config=config)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1cfb31da-51bb-4c5f-909a-b7118b0ae08d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='Your name is Bob.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 44, 'total_tokens': 49}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d84a570a-45f3-4931-814a-078761170bca-0', usage_metadata={'input_tokens': 44, 'output_tokens': 5, 'total_tokens': 49})" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chain_with_history.invoke({\"question\": \"Whats my name\"}, config=config)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/docs/docs/integrations/memory/tidb_chat_message_history.ipynb b/docs/docs/integrations/memory/tidb_chat_message_history.ipynb index 4eda9df5f9a69..c451aef57e8bc 100644 --- a/docs/docs/integrations/memory/tidb_chat_message_history.ipynb +++ b/docs/docs/integrations/memory/tidb_chat_message_history.ipynb @@ -45,7 +45,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Input your OpenAI API key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Input your OpenAI API key:\")" ] }, { diff --git a/docs/docs/integrations/memory/xata_chat_message_history.ipynb b/docs/docs/integrations/memory/xata_chat_message_history.ipynb index 1876b76331fdd..325b7117d8bca 100644 --- a/docs/docs/integrations/memory/xata_chat_message_history.ipynb +++ b/docs/docs/integrations/memory/xata_chat_message_history.ipynb @@ -128,7 +128,8 @@ "source": [ "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/platforms/aws.mdx b/docs/docs/integrations/platforms/aws.mdx index c13c6e9aac882..5b46b2e6b5836 100755 --- a/docs/docs/integrations/platforms/aws.mdx +++ b/docs/docs/integrations/platforms/aws.mdx @@ -35,9 +35,9 @@ from langchain_aws import ChatBedrock ``` ### Bedrock Converse -AWS has recently released the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html) integration has been released. +AWS has recently released the Bedrock Converse API which provides a unified conversational interface for Bedrock models. This API does not yet support custom models. You can see a list of all [models that are supported here](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). To improve reliability the ChatBedrock integration will switch to using the Bedrock Converse API as soon as it has feature parity with the existing Bedrock API. Until then a separate [ChatBedrockConverse](https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html) integration has been released. -We recommend using `ChatBedrockConverse` for users who do not need to use custom models. See the [docs](/docs/integrations/chat/bedrock/#bedrock-converse-api) and [API reference](https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html) for more detail. +We recommend using `ChatBedrockConverse` for users who do not need to use custom models. See the [docs](/docs/integrations/chat/bedrock/#bedrock-converse-api) and [API reference](https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock_converse.ChatBedrockConverse.html) for more detail. ```python from langchain_aws import ChatBedrockConverse diff --git a/docs/docs/integrations/platforms/microsoft.mdx b/docs/docs/integrations/platforms/microsoft.mdx index f6adefb1e4999..e54c8cb24c746 100644 --- a/docs/docs/integrations/platforms/microsoft.mdx +++ b/docs/docs/integrations/platforms/microsoft.mdx @@ -440,11 +440,11 @@ from langchain_community.agent_toolkits import azure_ai_services The `azure_ai_services` toolkit includes the following tools: -- Image Analysis: [AzureAiServicesImageAnalysisTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.azure_ai_services.image_analysis.AzureAiServicesImageAnalysisTool.html) -- Document Intelligence: [AzureAiServicesDocumentIntelligenceTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.azure_ai_services.document_intelligence.AzureAiServicesDocumentIntelligenceTool.html) -- Speech to Text: [AzureAiServicesSpeechToTextTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.azure_ai_services.speech_to_text.AzureAiServicesSpeechToTextTool.html) -- Text to Speech: [AzureAiServicesTextToSpeechTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.azure_ai_services.text_to_speech.AzureAiServicesTextToSpeechTool.html) -- Text Analytics for Health: [AzureAiServicesTextAnalyticsForHealthTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.azure_ai_services.text_analytics_for_health.AzureAiServicesTextAnalyticsForHealthTool.html) +- Image Analysis: [AzureAiServicesImageAnalysisTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.azure_ai_services.image_analysis.AzureAiServicesImageAnalysisTool.html) +- Document Intelligence: [AzureAiServicesDocumentIntelligenceTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.azure_ai_services.document_intelligence.AzureAiServicesDocumentIntelligenceTool.html) +- Speech to Text: [AzureAiServicesSpeechToTextTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.azure_ai_services.speech_to_text.AzureAiServicesSpeechToTextTool.html) +- Text to Speech: [AzureAiServicesTextToSpeechTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.azure_ai_services.text_to_speech.AzureAiServicesTextToSpeechTool.html) +- Text Analytics for Health: [AzureAiServicesTextAnalyticsForHealthTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.azure_ai_services.text_analytics_for_health.AzureAiServicesTextAnalyticsForHealthTool.html) ### Microsoft Office 365 email and calendar diff --git a/docs/docs/integrations/providers/apify.mdx b/docs/docs/integrations/providers/apify.mdx index f3ee4fd62307f..172d0f12c3119 100644 --- a/docs/docs/integrations/providers/apify.mdx +++ b/docs/docs/integrations/providers/apify.mdx @@ -27,7 +27,7 @@ You can use the `ApifyWrapper` to run Actors on the Apify platform. from langchain_community.utilities import ApifyWrapper ``` -For more information on this wrapper, see [the API reference](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.apify.ApifyWrapper.html). +For more information on this wrapper, see [the API reference](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.apify.ApifyWrapper.html). ## Document loader diff --git a/docs/docs/integrations/providers/cnosdb.mdx b/docs/docs/integrations/providers/cnosdb.mdx index 4c5316a5e310b..6d65ce29cf86f 100644 --- a/docs/docs/integrations/providers/cnosdb.mdx +++ b/docs/docs/integrations/providers/cnosdb.mdx @@ -101,7 +101,7 @@ pressure station temperature time visibility */ Thought:The "temperature" column in the "air" table is relevant to the question. I can query the average temperature between the specified dates. Action: sql_db_query -Action Input: "SELECT AVG(temperature) FROM air WHERE station = 'XiaoMaiDao' AND time >= '2022-10-19' AND time <= '2022-10-20'" +Action Input: "SELECT AVG(temperature) FROM air WHERE station = 'XiaoMaiDao' AND time >= '2022-10-19' AND time <= '2022-10-20'" Observation: [(68.0,)] Thought:The average temperature of air at station XiaoMaiDao between October 19, 2022 and October 20, 2022 is 68.0. Final Answer: 68.0 diff --git a/docs/docs/integrations/providers/dspy.ipynb b/docs/docs/integrations/providers/dspy.ipynb index 43b3f8eeeab25..0fc6e02910e88 100644 --- a/docs/docs/integrations/providers/dspy.ipynb +++ b/docs/docs/integrations/providers/dspy.ipynb @@ -190,7 +190,7 @@ " \n", "Let's use LangChain's expression language (LCEL) to illustrate this. Any prompt here will do, we will optimize the final prompt with DSPy.\n", "\n", - "Considering that, let's just keep it to the barebones: **Given {context}, answer the question {question} as a tweet.**" + "Considering that, let's just keep it to the barebones: **Given \\{context\\}, answer the question \\{question\\} as a tweet.**" ] }, { diff --git a/docs/docs/integrations/providers/figma.mdx b/docs/docs/integrations/providers/figma.mdx index 6b108aaa21e6f..d907a4814118f 100644 --- a/docs/docs/integrations/providers/figma.mdx +++ b/docs/docs/integrations/providers/figma.mdx @@ -6,9 +6,9 @@ The Figma API requires an `access token`, `node_ids`, and a `file key`. -The `file key` can be pulled from the URL. https://www.figma.com/file/{filekey}/sampleFilename +The `file key` can be pulled from the URL. https://www.figma.com/file/\{filekey\}/sampleFilename -`Node IDs` are also available in the URL. Click on anything and look for the '?node-id={node_id}' param. +`Node IDs` are also available in the URL. Click on anything and look for the '?node-id=\{node_id\}' param. `Access token` [instructions](https://help.figma.com/hc/en-us/articles/8085703771159-Manage-personal-access-tokens). diff --git a/docs/docs/integrations/providers/firecrawl.mdx b/docs/docs/integrations/providers/firecrawl.mdx index bbee26ceede22..745c7637463e2 100644 --- a/docs/docs/integrations/providers/firecrawl.mdx +++ b/docs/docs/integrations/providers/firecrawl.mdx @@ -10,7 +10,7 @@ Install the python SDK: ```bash -pip install firecrawl-py +pip install firecrawl-py==0.0.20 ``` ## Document loader diff --git a/docs/docs/integrations/providers/mlflow.mdx b/docs/docs/integrations/providers/mlflow.mdx index cb4d5aba84040..861154a0b8a3e 100644 --- a/docs/docs/integrations/providers/mlflow.mdx +++ b/docs/docs/integrations/providers/mlflow.mdx @@ -1,12 +1,12 @@ -# MLflow Deployments for LLMs +# MLflow AI Gateway for LLMs ->[The MLflow Deployments for LLMs](https://www.mlflow.org/docs/latest/llms/deployments/index.html) is a powerful tool designed to streamline the usage and management of various large +>[The MLflow AI Gateway for LLMs](https://www.mlflow.org/docs/latest/llms/deployments/index.html) is a powerful tool designed to streamline the usage and management of various large > language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface > that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests. ## Installation and Setup -Install `mlflow` with MLflow Deployments dependencies: +Install `mlflow` with MLflow GenAI dependencies: ```sh pip install 'mlflow[genai]' @@ -39,10 +39,10 @@ endpoints: openai_api_key: $OPENAI_API_KEY ``` -Start the deployments server: +Start the gateway server: ```sh -mlflow deployments start-server --config-path /path/to/config.yaml +mlflow gateway start --config-path /path/to/config.yaml ``` ## Example provided by `MLflow` diff --git a/docs/docs/integrations/providers/mlflow_ai_gateway.mdx b/docs/docs/integrations/providers/mlflow_ai_gateway.mdx deleted file mode 100644 index 912ea449ebabb..0000000000000 --- a/docs/docs/integrations/providers/mlflow_ai_gateway.mdx +++ /dev/null @@ -1,160 +0,0 @@ -# MLflow AI Gateway - -:::warning - -MLflow AI Gateway has been deprecated. Please use [MLflow Deployments for LLMs](/docs/integrations/providers/mlflow/) instead. - -::: - ->[The MLflow AI Gateway](https://www.mlflow.org/docs/latest/index.html) service is a powerful tool designed to streamline the usage and management of various large -> language model (LLM) providers, such as OpenAI and Anthropic, within an organization. It offers a high-level interface -> that simplifies the interaction with these services by providing a unified endpoint to handle specific LLM related requests. - -## Installation and Setup - -Install `mlflow` with MLflow AI Gateway dependencies: - -```sh -pip install 'mlflow[gateway]' -``` - -Set the OpenAI API key as an environment variable: - -```sh -export OPENAI_API_KEY=... -``` - -Create a configuration file: - -```yaml -routes: - - name: completions - route_type: llm/v1/completions - model: - provider: openai - name: text-davinci-003 - config: - openai_api_key: $OPENAI_API_KEY - - - name: embeddings - route_type: llm/v1/embeddings - model: - provider: openai - name: text-embedding-ada-002 - config: - openai_api_key: $OPENAI_API_KEY -``` - -Start the Gateway server: - -```sh -mlflow gateway start --config-path /path/to/config.yaml -``` - -## Example provided by `MLflow` - ->The `mlflow.langchain` module provides an API for logging and loading `LangChain` models. -> This module exports multivariate LangChain models in the langchain flavor and univariate LangChain -> models in the pyfunc flavor. - -See the [API documentation and examples](https://www.mlflow.org/docs/latest/python_api/mlflow.langchain.html?highlight=langchain#module-mlflow.langchain). - - - -## Completions Example - -```python -import mlflow -from langchain.chains import LLMChain, PromptTemplate -from langchain_community.llms import MlflowAIGateway - -gateway = MlflowAIGateway( - gateway_uri="http://127.0.0.1:5000", - route="completions", - params={ - "temperature": 0.0, - "top_p": 0.1, - }, -) - -llm_chain = LLMChain( - llm=gateway, - prompt=PromptTemplate( - input_variables=["adjective"], - template="Tell me a {adjective} joke", - ), -) -result = llm_chain.run(adjective="funny") -print(result) - -with mlflow.start_run(): - model_info = mlflow.langchain.log_model(chain, "model") - -model = mlflow.pyfunc.load_model(model_info.model_uri) -print(model.predict([{"adjective": "funny"}])) -``` - -## Embeddings Example - -```python -from langchain_community.embeddings import MlflowAIGatewayEmbeddings - -embeddings = MlflowAIGatewayEmbeddings( - gateway_uri="http://127.0.0.1:5000", - route="embeddings", -) - -print(embeddings.embed_query("hello")) -print(embeddings.embed_documents(["hello"])) -``` - -## Chat Example - -```python -from langchain_community.chat_models import ChatMLflowAIGateway -from langchain_core.messages import HumanMessage, SystemMessage - -chat = ChatMLflowAIGateway( - gateway_uri="http://127.0.0.1:5000", - route="chat", - params={ - "temperature": 0.1 - } -) - -messages = [ - SystemMessage( - content="You are a helpful assistant that translates English to French." - ), - HumanMessage( - content="Translate this sentence from English to French: I love programming." - ), -] -print(chat(messages)) -``` - -## Databricks MLflow AI Gateway - -Databricks MLflow AI Gateway is in private preview. -Please contact a Databricks representative to enroll in the preview. - -```python -from langchain.chains import LLMChain -from langchain_core.prompts import PromptTemplate -from langchain_community.llms import MlflowAIGateway - -gateway = MlflowAIGateway( - gateway_uri="databricks", - route="completions", -) - -llm_chain = LLMChain( - llm=gateway, - prompt=PromptTemplate( - input_variables=["adjective"], - template="Tell me a {adjective} joke", - ), -) -result = llm_chain.run(adjective="funny") -print(result) -``` diff --git a/docs/docs/integrations/providers/mlflow_tracking.ipynb b/docs/docs/integrations/providers/mlflow_tracking.ipynb index aadc3f9611cbd..b30f2850649cf 100644 --- a/docs/docs/integrations/providers/mlflow_tracking.ipynb +++ b/docs/docs/integrations/providers/mlflow_tracking.ipynb @@ -523,7 +523,7 @@ "metadata": {}, "source": [ "#### Where to Pass the Callback\n", - " LangChain supports two ways of passing callback instances: (1) Request time callbacks - pass them to the `invoke` method or bind with `with_config()` (2) Constructor callbacks - set them in the chain constructor. When using the `MlflowLangchainTracer` as a callback, you **must use request time callbacks**. Setting it in the constructor instead will only apply the callback to the top-level object, preventing it from being propagated to child components, resulting in incomplete traces. For more information on this behavior, please refer to [Callbacks Documentation](https://python.langchain.com/v0.2/docs/concepts/#callbacks) for more details.\n", + " LangChain supports two ways of passing callback instances: (1) Request time callbacks - pass them to the `invoke` method or bind with `with_config()` (2) Constructor callbacks - set them in the chain constructor. When using the `MlflowLangchainTracer` as a callback, you **must use request time callbacks**. Setting it in the constructor instead will only apply the callback to the top-level object, preventing it from being propagated to child components, resulting in incomplete traces. For more information on this behavior, please refer to [Callbacks Documentation](https://python.langchain.com/docs/concepts/#callbacks) for more details.\n", "\n", "```python\n", "# OK\n", diff --git a/docs/docs/integrations/providers/premai.md b/docs/docs/integrations/providers/premai.md index 4dc66d808812e..b124c8388d4e5 100644 --- a/docs/docs/integrations/providers/premai.md +++ b/docs/docs/integrations/providers/premai.md @@ -229,9 +229,10 @@ query_result = embedder.embed_query(query) print(query_result[:5]) ``` - + +:::note Setting `model_name` argument in mandatory for PremAIEmbeddings unlike chat. - +::: Finally, let's embed some sample document @@ -286,7 +287,7 @@ In order to pass tools and let the LLM choose the tool it needs to call, we need ```python from langchain_core.tools import tool -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field # Define the schema for function arguments class OperationInput(BaseModel): diff --git a/docs/docs/integrations/providers/redis.mdx b/docs/docs/integrations/providers/redis.mdx index a6682ef25c964..1850ca312e89d 100644 --- a/docs/docs/integrations/providers/redis.mdx +++ b/docs/docs/integrations/providers/redis.mdx @@ -132,7 +132,7 @@ Redis can be used to persist LLM conversations. ### Vector Store Retriever Memory -For a more detailed walkthrough of the `VectorStoreRetrieverMemory` wrapper, see [this notebook](https://python.langchain.com/v0.2/api_reference/langchain/memory/langchain.memory.vectorstore.VectorStoreRetrieverMemory.html). +For a more detailed walkthrough of the `VectorStoreRetrieverMemory` wrapper, see [this notebook](https://python.langchain.com/api_reference/langchain/memory/langchain.memory.vectorstore.VectorStoreRetrieverMemory.html). ### Chat Message History Memory For a detailed example of Redis to cache conversation message history, see [this notebook](/docs/integrations/memory/redis_chat_message_history). diff --git a/docs/docs/integrations/providers/sqlite.mdx b/docs/docs/integrations/providers/sqlite.mdx index e45a47f11372c..3bba662f0d888 100644 --- a/docs/docs/integrations/providers/sqlite.mdx +++ b/docs/docs/integrations/providers/sqlite.mdx @@ -16,10 +16,11 @@ pip install SQLAlchemy ## Vector Store -See a [usage example](/docs/integrations/vectorstores/sqlitevss). +See a [usage example](/docs/integrations/vectorstores/sqlitevec). ```python -from langchain_community.vectorstores import SQLiteVSS +from langchain_community.vectorstores import SQLiteVec +from langchain_community.vectorstores import SQLiteVSS # legacy ``` ## Memory diff --git a/docs/docs/integrations/providers/upstage.ipynb b/docs/docs/integrations/providers/upstage.ipynb index 9dfce63e3517c..8e5cb60310931 100644 --- a/docs/docs/integrations/providers/upstage.ipynb +++ b/docs/docs/integrations/providers/upstage.ipynb @@ -10,7 +10,7 @@ ">\n", ">**Solar Mini Chat** is a fast yet powerful advanced large language model focusing on English and Korean. It has been specifically fine-tuned for multi-turn chat purposes, showing enhanced performance across a wide range of natural language processing tasks, like multi-turn conversation or tasks that require an understanding of long contexts, such as RAG (Retrieval-Augmented Generation), compared to other models of a similar size. This fine-tuning equips it with the ability to handle longer conversations more effectively, making it particularly adept for interactive applications.\n", "\n", - ">Other than Solar, Upstage also offers features for real-world RAG (retrieval-augmented generation), such as **Groundedness Check** and **Layout Analysis**. \n" + ">Other than Solar, Upstage also offers features for real-world RAG (retrieval-augmented generation), such as **Document Parse** and **Groundedness Check**. \n" ] }, { @@ -24,7 +24,7 @@ "| Chat | Build assistants using Solar Mini Chat | `from langchain_upstage import ChatUpstage` | [Go](../../chat/upstage) |\n", "| Text Embedding | Embed strings to vectors | `from langchain_upstage import UpstageEmbeddings` | [Go](../../text_embedding/upstage) |\n", "| Groundedness Check | Verify groundedness of assistant's response | `from langchain_upstage import UpstageGroundednessCheck` | [Go](../../tools/upstage_groundedness_check) |\n", - "| Layout Analysis | Serialize documents with tables and figures | `from langchain_upstage import UpstageLayoutAnalysisLoader` | [Go](../../document_loaders/upstage) |\n", + "| Document Parse | Serialize documents with tables and figures | `from langchain_upstage import UpstageDocumentParseLoader` | [Go](../../document_loaders/upstage) |\n", "\n", "See [documentations](https://developers.upstage.ai/) for more details about the features." ] @@ -122,7 +122,7 @@ "source": [ "## Document loader\n", "\n", - "### Layout Analysis\n", + "### Document Parse\n", "\n", "See [a usage example](/docs/integrations/document_loaders/upstage)." ] @@ -133,10 +133,10 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_upstage import UpstageLayoutAnalysisLoader\n", + "from langchain_upstage import UpstageDocumentParseLoader\n", "\n", "file_path = \"/PATH/TO/YOUR/FILE.pdf\"\n", - "layzer = UpstageLayoutAnalysisLoader(file_path, split=\"page\")\n", + "layzer = UpstageDocumentParseLoader(file_path, split=\"page\")\n", "\n", "# For improved memory efficiency, consider using the lazy_load method to load documents page by page.\n", "docs = layzer.load() # or layzer.lazy_load()\n", diff --git a/docs/docs/integrations/providers/xinference.mdx b/docs/docs/integrations/providers/xinference.mdx index 07aefb3b95285..97f32b6c1a0a7 100644 --- a/docs/docs/integrations/providers/xinference.mdx +++ b/docs/docs/integrations/providers/xinference.mdx @@ -60,7 +60,7 @@ Xinference client. For local deployment, the endpoint will be http://localhost:9997. -For cluster deployment, the endpoint will be http://${supervisor_host}:9997. +For cluster deployment, the endpoint will be http://$\{supervisor_host\}:9997. Then, you need to launch a model. You can specify the model names and other attributes diff --git a/docs/docs/integrations/retrievers/activeloop.ipynb b/docs/docs/integrations/retrievers/activeloop.ipynb index 93c64437ca9fd..2ac7cde3b42fe 100644 --- a/docs/docs/integrations/retrievers/activeloop.ipynb +++ b/docs/docs/integrations/retrievers/activeloop.ipynb @@ -91,11 +91,13 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API token: \")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API token: \")\n", "# # activeloop token is needed if you are not signed in using CLI: `activeloop login -u -p `\n", - "os.environ[\"ACTIVELOOP_TOKEN\"] = getpass.getpass(\n", - " \"Enter your ActiveLoop API token: \"\n", - ") # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select \"API Tokens\"\n", + "if \"ACTIVELOOP_TOKEN\" not in os.environ:\n", + " os.environ[\"ACTIVELOOP_TOKEN\"] = getpass.getpass(\n", + " \"Enter your ActiveLoop API token: \"\n", + " ) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select \"API Tokens\"\n", "\n", "token = os.getenv(\"ACTIVELOOP_TOKEN\")\n", "openai_embeddings = OpenAIEmbeddings()" diff --git a/docs/docs/integrations/retrievers/arxiv.ipynb b/docs/docs/integrations/retrievers/arxiv.ipynb index d8458f4bd61e4..9cf3b40efaae9 100644 --- a/docs/docs/integrations/retrievers/arxiv.ipynb +++ b/docs/docs/integrations/retrievers/arxiv.ipynb @@ -19,9 +19,9 @@ "\n", ">[arXiv](https://arxiv.org/) is an open-access archive for 2 million scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics.\n", "\n", - "This notebook shows how to retrieve scientific articles from Arxiv.org into the [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) format that is used downstream.\n", + "This notebook shows how to retrieve scientific articles from Arxiv.org into the [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) format that is used downstream.\n", "\n", - "For detailed documentation of all `ArxivRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html).\n", + "For detailed documentation of all `ArxivRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html).\n", "\n", "### Integration details\n", "\n", @@ -79,7 +79,7 @@ "- optional `load_all_available_meta`: default=False. By default only the most important fields downloaded: `Published` (date when document was published/last updated), `Title`, `Authors`, `Summary`. If True, other fields also downloaded.\n", "- `get_full_documents`: boolean, default False. Determines whether to fetch full text of documents.\n", "\n", - "See [API reference](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html) for more detail." + "See [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html) for more detail." ] }, { @@ -215,11 +215,9 @@ "\n", "We will need a LLM or chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -299,7 +297,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `ArxivRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html)." + "For detailed documentation of all `ArxivRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html)." ] } ], diff --git a/docs/docs/integrations/retrievers/azure_ai_search.ipynb b/docs/docs/integrations/retrievers/azure_ai_search.ipynb index 7c235b3767f21..6b5ce1f360044 100644 --- a/docs/docs/integrations/retrievers/azure_ai_search.ipynb +++ b/docs/docs/integrations/retrievers/azure_ai_search.ipynb @@ -21,7 +21,7 @@ "\n", "`AzureAISearchRetriever` is an integration module that returns documents from an unstructured query. It's based on the BaseRetriever class and it targets the 2023-11-01 stable REST API version of Azure AI Search, which means it supports vector indexing and queries.\n", "\n", - "This guide will help you getting started with the Azure AI Search [retriever](/docs/concepts/#retrievers). For detailed documentation of all `AzureAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html).\n", + "This guide will help you getting started with the Azure AI Search [retriever](/docs/concepts/#retrievers). For detailed documentation of all `AzureAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html).\n", "\n", "`AzureAISearchRetriever` replaces `AzureCognitiveSearchRetriever`, which will soon be deprecated. We recommend switching to the newer version that's based on the most recent stable version of the search APIs.\n", "\n", @@ -304,7 +304,7 @@ "Question: {question}\"\"\"\n", ")\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", "\n", "\n", "def format_docs(docs):\n", @@ -336,7 +336,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `AzureAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html)." + "For detailed documentation of all `AzureAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html)." ] } ], diff --git a/docs/docs/integrations/retrievers/bedrock.ipynb b/docs/docs/integrations/retrievers/bedrock.ipynb index c5dbf925db73d..b674b1175b7d0 100644 --- a/docs/docs/integrations/retrievers/bedrock.ipynb +++ b/docs/docs/integrations/retrievers/bedrock.ipynb @@ -163,7 +163,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `AmazonKnowledgeBasesRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/aws/retrievers/langchain_aws.retrievers.bedrock.AmazonKnowledgeBasesRetriever.html)." + "For detailed documentation of all `AmazonKnowledgeBasesRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/aws/retrievers/langchain_aws.retrievers.bedrock.AmazonKnowledgeBasesRetriever.html)." ] } ], diff --git a/docs/docs/integrations/retrievers/box.ipynb b/docs/docs/integrations/retrievers/box.ipynb index 5de63d3d2f32d..a4abf132ac588 100644 --- a/docs/docs/integrations/retrievers/box.ipynb +++ b/docs/docs/integrations/retrievers/box.ipynb @@ -17,7 +17,7 @@ "source": [ "# BoxRetriever\n", "\n", - "This will help you getting started with the Box [retriever](/docs/concepts/#retrievers). For detailed documentation of all BoxRetriever features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html).\n", + "This will help you getting started with the Box [retriever](/docs/concepts/#retrievers). For detailed documentation of all BoxRetriever features and configurations head to the [API reference](https://python.langchain.com/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html).\n", "\n", "# Overview\n", "\n", @@ -35,7 +35,7 @@ "\n", "| Retriever | Self-host | Cloud offering | Package |\n", "| :--- | :--- | :---: | :---: |\n", - "[BoxRetriever](https://python.langchain.com/v0.2/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html) | ❌ | ✅ | langchain-box |\n", + "[BoxRetriever](https://python.langchain.com/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html) | ❌ | ✅ | langchain-box |\n", "\n", "## Setup\n", "\n", @@ -52,18 +52,10 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "b87a8e8b-9b5a-4e78-97e4-274b6b0dd29f", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Enter your Box Developer Token: ········\n" - ] - } - ], + "outputs": [], "source": [ "import getpass\n", "import os\n", @@ -81,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "a15d341e-3e26-4ca3-830b-5aab30ed66de", "metadata": {}, "outputs": [], @@ -102,10 +94,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "652d6238-1f87-422a-b135-f5abbb8652fc", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ "%pip install -qU langchain-box" ] @@ -124,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "id": "70cc8e65-2a02-408a-bbc6-8ef649057d82", "metadata": {}, "outputs": [], @@ -134,6 +134,54 @@ "retriever = BoxRetriever(box_developer_token=box_developer_token)" ] }, + { + "cell_type": "markdown", + "id": "2197e7d0", + "metadata": {}, + "source": [ + "For more granular search, we offer a series of options to help you filter down the results. This uses the `langchain_box.utilities.SearchOptions` in conjunction with the `langchain_box.utilities.SearchTypeFilter` and `langchain_box.utilities.DocumentFiles` enums to filter on things like created date, which part of the file to search, and even to limit the search scope to a specific folder. \n", + "\n", + "For more information, check out the [API reference](https://python.langchain.com/v0.2/api_reference/box/utilities/langchain_box.utilities.box.SearchOptions.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "97f3ae67", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Document(metadata={'source': 'https://dl.boxcloud.com/api/2.0/internal_files/1514555423624/versions/1663171610024/representations/extracted_text/content/', 'title': 'Invoice-A5555_txt'}, page_content='Vendor: AstroTech Solutions\\nInvoice Number: A5555\\n\\nLine Items:\\n - Gravitational Wave Detector Kit: $800\\n - Exoplanet Terrarium: $120\\nTotal: $920')]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_box.utilities import BoxSearchOptions, DocumentFiles, SearchTypeFilter\n", + "\n", + "box_folder_id = \"260931903795\"\n", + "\n", + "box_search_options = BoxSearchOptions(\n", + " ancestor_folder_ids=[box_folder_id],\n", + " search_type_filter=[SearchTypeFilter.FILE_CONTENT],\n", + " created_date_range=[\"2023-01-01T00:00:00-07:00\", \"2024-08-01T00:00:00-07:00,\"],\n", + " k=200,\n", + " size_range=[1, 1000000],\n", + " updated_data_range=None,\n", + ")\n", + "\n", + "retriever = BoxRetriever(\n", + " box_developer_token=box_developer_token, box_search_options=box_search_options\n", + ")\n", + "\n", + "retriever.invoke(\"AstroTech Solutions\")" + ] + }, { "cell_type": "markdown", "id": "41287857-cfe9-4d39-a84d-e7bd9f1f59a8", @@ -144,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "ee0e726d-9974-4aa0-9ce1-0057ec3e540a", "metadata": {}, "outputs": [], @@ -168,24 +216,97 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "id": "51a60dbe-9f2e-4e04-bb62-23968f17164a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[Document(metadata={'source': 'https://dl.boxcloud.com/api/2.0/internal_files/1233039227512/versions/1346280085912/representations/extracted_text/content/', 'title': 'FIVE_FEET_AND_RISING_by_Peter_Sollett_pdf'}, page_content='\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 1/25\\n\\nFIVE FEET AND RISING\\n\\nby\\n\\nPeter Sollett\\n\\nFADE IN:\\n\\nEXT. 8TH STREET BETWEEN AVENUES C AND D - DAY \\n\\nA group of dark-skinned girls wearing cheerleading outfits \\nalign themselves in formation on the sidewalk. They begin to \\ndance. No music can be heard. The sound of the girls\\' bodies \\nis our soundtrack. We hear their strained breathing, palms \\nand sneaker bottoms pounding while they hum and count softly \\nto themselves in an effort to keep the rhythm.\\n\\nSLO-MO: We explore the bodies of the dancers; their bright \\neyes and sweaty brows, their stomping feet and colliding \\nhands (dark side and light side). The younger girls perform \\nprovocative dance movements, the older girls repeat them.\\n\\nTheir bodies silhouette in the bright sunlight.\\n\\nCUT TO: TITLES\\n\\nEXT. AMANDA\\'S BLOCK - DAY \\n\\nAMANDA, a tall 14-year-old exits the front door of her \\napartment budding with her headphones in one hand and a \\nmagazine in the other. She sits down on her stoop, puts her \\nheadphones on and presses \"play\". We can hear the sound of \\nSalsa leaking out of the sides of her headphones. JENETTE, \\nten years old with big black hair in rubber-band restraints, sits on \\nthe sidewalk below Amanda drawing with a piece of chalk. Jenette \\n\\n looks over her shoulder and sees Amanda reading her magazine Jenette \\nclimbs the stairs and sits down beside her.\\n\\nThe camera pans to reveal AARON, an 18-year-old boy on the \\nother side of the street, unloading some fireworks from the \\ntrunk of a car. He\\'s filling a paper bag with them, \\ncarefully making sure not to reveal what he\\'s doing to \\nonlookers.\\n\\nAt the ear end of the block, DONNA, 14, and MICHELLE, 12, \\nsit and watch Aaron at work.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 2/25\\n\\nMICHELLE \\nHow does he look up close?\\n\\nDONNA \\n(Amorously) \\n\\nUmm, he got dark brownish \\neyes, he got a nice nose I \\nlove his nose. I love his \\nskin. I love his lips, he \\ngot a great smile and he \\ngot-\\n\\nMICHELLE \\nA bad attitude.\\n\\nDONNA \\nYeah, he got a bad \\nattitude.\\n\\nMICHELLE \\nYou said before, that he \\ngot boxes?\\n\\nSLO-MO: The camera is very close to Aaron. Details of his \\nbody in a shallow depth of field.\\n\\nDONNA \\nYeah, he got boxes in his \\nstomach. He\\'s taller than \\nme.\\n\\nMICHELLE \\nHow old is he?\\n\\nDONNA \\nI think he\\'s 18 or 17.\\n\\nMICHELLE \\nYou gonna talk to him?\\n\\nDONNA \\nUm, yeah I think so.\\n\\nBack on Amanda\\'s stoop.\\n\\nJENETTE \\nYou still like him.\\n\\nAMANDA \\n(With a sigh of negative attitude) \\n\\nNo.\\n\\nHECTOR, a mature-looking 13-year old is crossing the \\nstreet. He enters frame with Amanda and Jenette. \\n\\nHECTOR \\nYo, wuzzup. \\n\\nAmanda ignores him. \\n\\nJENETTE \\nHi Hector\\n\\nHECTOR \\n(To Amanda) \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 3/25\\n\\nOh, you\\'re not gonna say \\nhello.\\n\\nAMANDA\\'S POV: Donna approaches Aaron as he locks up the \\ntrunk of the car. She hesitantly calls over to him. He \\nacknowledges her with a lift of the chin. Making sure he \\nkeeps his distance from her, he looks around to see if \\nanyone is watching him. He tosses his head for her to \\nfollow. He begins to walk away down the block. She follows.\\n\\nHector is looking at Amanda. He appears to have run out of \\nthings to say. Amanda removes her headphones. Her music \\nbecomes clearer, more audible.\\n\\nHECTOR \\nYo, you gonna keep me \\nhangin\\' like dat?\\n\\nAMANDA \\nHector, Yo try to rap to me every day, why don\\'t you \\ntake your three-quarters retarded ass outta here?\\n\\nHECTOR \\nYo, you betta give me my \\nrespects or I\\'ll tell your \\nlittle girl ova here what \\nI heard about you and my \\nboy.\\n\\nAmanda puts her headphones back on.\\n\\nHECTOR looks like he got a new girl anyway.\\n\\nEXT. 8TH STREET BETWEEN AVENUES C AND D - AFTERNOON \\n\\nVICTOR, a skinny 12-year-old with sloppy hair, is asleep in \\nthe sun on his fire escape. There is sweat beaded up on his \\nbody. His shirt is rolled up behind his head like a pillow. \\nHis breath is heavy, his chest rises and falls. The camera \\ntilts to reveal CARLOS, ten, rounding the corner on the \\nstreet below. The camera tracks backwards as Carlos \\napproaches. He is talking to himself.\\n\\nCARLOS \\n(To himself) \\n\\nWhatcha gonna do when ya \\nbitch is untrue?\\n\\nCarlos lifts his head up to look at the fire escapes.\\n\\nCARLOS \\nYo Victor!\\n\\nThe camera pans and tilts up to the fire escapes. The \\nbuildings float by. He arrives in front of Victor\\'s \\nbuilding and cups his hand around his mouth.\\n\\nCARLOS \\nYo Victor!\\n\\nOn the fire escape, Victor\\'s eyes pop open and the sun \\nshines into them.\\n\\nVICTOR \\n(Dazed) \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 4/25\\n\\nWhat, wuzzup?\\n\\nVictor sits up and looks over the side of the fire escape.\\n\\nCARL0S \\nCome down!\\n\\nVICTOR \\nI can\\'t!\\n\\nCARLOS \\nWhy?\\n\\nVICTOR \\nI got punished, man.\\n\\nCARLOS \\nFa what?\\n\\nVICTOR \\nI won\\'t let my motha cut \\nmy hair.\\n\\nCARLOS \\nWha\\'?\\n\\nVICTOR \\nShe fucks it all up!\\n\\nCARLOS \\nForget it! C\\'mon Let\\'s go \\nto the pool.\\n\\nVICTOR \\nI can\\'t man, I\\'m punished!\\n\\nCARL0S \\nWho gives!\\n\\nVICTOR \\nI can\\'t, I\\'m gonna get \\npunished more!\\n\\nCARLOS \\nTrust me, I always get \\ninto trouble, c\\'mon!\\n\\nVictor sits down on the fire escape. Carlos pauses for a \\nminute and turns his back on Victor.\\n\\nCARL0S \\nC\\'mon! The girls are \\nwaiting for you!\\n\\nVictor hops back up.\\n\\nVICTOR \\n(interested) \\n\\nThey are?\\n\\nCARLOS \\nYeah! Tell me which one you would like. To be doin\\' \\nnothin on a fire escape or beat the pool with a bunch of \\ngirls? Be straight up!\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 5/25\\n\\nVICTOR \\nI\\'ll be right down.\\n\\nVictor climbs down the fire escape and hops down to the \\nstreet. he immediately grabs Carlos and starts pushing him \\ndown the block to avoid being seen from above.\\n\\nEXT. THE CORNER OF 8TH STREET AND AVENUE D - CONTINUOUS \\n\\nThe boys safely round the corner onto Avenue D. Victor \\nperks up and starts nudging Carlos.\\n\\nVICTOR \\nSo what girls are over \\nthere?\\n\\nCARLOS \\nNatasha, Maria, Tina-\\n\\nVICTOR \\nThese are the pretty girls \\nyou told me to come down \\nfor?\\n\\nVictor sighs and runs his fingers through his hair.\\n\\nCARLOS \\nWhat\\'s the difference, you \\nnever do anything anyway\\n\\nVictor makes a disagreeing gesture. Carlos drags Victor \\nDowntown.\\n\\nVICTOR \\nWhat are you going that \\nway for?\\n\\nCARLOS \\nI\\'m not goin\\' to 10th \\nStreet, people piss and \\nshit in that pool,\\n\\nVICTOR \\nWhere you goin\\'?\\n\\nCARLOS \\nPitt.\\n\\nVICTOR \\nOh man, what we gotta \\nleave ar\\' own neighborhood \\nfor?\\n\\nCARLOS \\nC\\'mon.\\n\\nVICTOR \\nMan, if I go down you\\'re \\ngoin\\' down with me.\\n\\nEXT. AVENUE D - CONTINUOUS \\n\\nMONTAGE: Victor and Carlos hang on each other as they walk down \\n Avenue D towards the Pitt Street Pool. They pass by Victor brother, \\n giving him an impromptu smack and then bang on a store window to wave \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 6/25\\n\\nhello to a friend.\\n\\nFrom Victor\\'s POV we work our way through a crowd of people \\nan cross 3rd Street. Victor looks back at the crowd with a \\nwatchful eye. The camera tracks along in the street as the \\nboys walk along the sidewalk. Victor looks up at a street \\nsign. It reads, \"Houston St.\" As the boys make their way \\nacross the wide intersection, the heat is slightly visible \\nas car exhaust fills the gridlocked lanes. Victor and \\nCarlos walk calmly, with space between them, making their \\nway towards the camera in a shallow depth of field as we \\nfollow focus on them.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nVictor and Carlos stand on line outside the pool gates. Police \\nexamine the boys as they slowly inch their way into the park.\\n\\nFrom Victor\\'s POV we see the expanse of the pool as he \\nenters the park. We watch as he surveys the area.\\n\\nFrom a high angle we see Carlos nudge Victor to make his \\nway onto the pool deck. They enter the crowd, proceeding \\ncarefully, making sure not to bump anyone.\\n\\nAs they continue to walk, Victor\\'s POV reveals the bodies \\nof older boys and girls, rough water and mischievous kids.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nAmanda is sitting poolside with Jenette.\\n\\nAMANDA \\nAnd that girl, over there? \\nHoochie.\\n\\nJenette looks out across the pool trying to see who Amanda \\nis talking about.\\n\\nAMANDA \\nAnd him. Stay away from \\nhim, he\\'s only interested \\nin that.\\n\\nAmanda points between Jenette\\'s legs.\\n\\nAMANDA \\nThat right there.\\n\\nCarlos steps in front of them, Amanda smacks his leg.\\n\\nCARLOS \\nYo Amanda, wassup?\\n\\nThey kiss on the cheek.\\n\\nCARLOS \\n(To Victor) \\n\\nAmanda is Eddie\\'s cousin.\\n\\nVICTOR \\nEddie from Compost?\\n\\nCARLOS \\nNo, Baruch.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 7/25\\n\\nA girl swimming in the pool calls over to Carlos.\\n\\nGIRL 1 \\nCarlos! Carlos, get your \\nskinny ass over here!\\n\\nCARLOS \\n(To Victor) \\n\\nStay right here, I\\'ll be \\nright back.\\n\\nCarlos walks off leaving Victor standing next to Amanda and \\nJenette. Victor looks uncomfortable.\\n\\nAMANDA \\nWho are you?\\n\\nVICTOR \\nI\\'m wit\\' Carlos.\\n\\nAmanda points out across the pool.\\n\\nAMANDA \\n(To Jenette) \\n\\nHim right there, That\\'s \\nwho I\\'m talkin\\' about. \\n\\n(to Victor) \\nExcuse me, can you move, I \\ncan\\'t see.\\n\\nAmanda spots Aaron and Donna in the distance.\\n\\nAMANDA \\nDo you have a name?\\n\\nVICTOR \\nVictor.\\n\\nAMANDA \\nWhat?\\n\\nVICTOR \\nVictor.\\n\\nAmanda turns to Jenette and continues talking to her.\\n\\nVICTOR \\nUmm, I\\'m gonna go find \\nCarlos.\\n\\nAs Victor turns to walk, the camera pans to follow him, \\nrevealing Hector who is approaching Amanda. The camera then \\npans back to Amanda. She sighs and turns her ahead away \\nfrom him.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nIn the playground area at the Pitt Street Pool, Aaron is doing a\\' \\nimpression of Al Pacino. Darrell and Boy 1 look on.\\n\\nAARON \\n(to Boy 1) \\n\\nYou wanna meet my little \\nfriend? \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 8/25\\n\\nBoy 1 is laughing at Aaron. Donna and Michelle stand nearby \\nwatching.\\n\\nAARON \\nDon\\'t fuck wit\\' me! Don\\'t \\nfuck wit\\' me.\\n\\n(pointing his finger)\\nMy lawyer\\'s so good he\\'ll \\nhave you workin in Alaska, \\nso dress warn.\\n\\nDONNA \\nAaron, how you doin\\'?\\n\\nAARON \\nFine.\\n\\nDONNA \\nLook at me.\\n\\nAARON \\nWhat?\\n\\nDONNA \\nWhy you have an attitude \\nfor?\\n\\nAARON \\nNot now, I\\'m busy\\n\\nDONNA \\nGod, I just wanna speak to \\nyou. I just wanna speak \\nto you the way I feel \\nabout you.\\n\\nAARON \\nHurry up, you\\'re wastin\\' \\nmy time, what the fuck.\\n\\nAaron turns back to his friends.\\n\\nDONNA \\nPlease don\\'t scream at me. \\nI like you, but I don\\'t \\nlike the way your attitude \\nis.\\n\\nAARON \\nSo get the fuck outta \\nhere.\\n\\nDarrell and Boy 1 approve. They wait for Donna\\'s reply.\\n\\nDONNA \\nI wanna go out with you, I \\nwant to be part of your \\nlife. I want you to treat \\nme the way a girlfriend \\nshould be treated.\\n\\nAARON \\nThen don\\'t go out with me.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 9/25\\n\\nDONNA \\nFor once in your life have \\nsome respect for me, \\ndon\\'t even curse at me or \\nnothin\\'.\\n\\nAARON \\n(to Darrell) \\n\\nNow she\\'s tellin\\' me what \\nthe fuck to do.\\n\\nDONNA \\nGod, you drive me crazy. I \\njust want you to know how \\nI feel and you don\\'t \\nunderstand.\\n\\nAARON \\nJust get the fuck outta \\nhere.\\n\\nDonna stares at Aaron as he turns back to his friends. \\nMichelle walks up to Donna and gently leads her away.\\n\\nAARON \\nThat girl be trippin\\'. \\n\\n(Back into his Pacino impression) \\nOne time I let her kiss my \\nrings and forever \\nshe tries to repay me!\\n\\nEXT. PITT STREET POOL - LATER \\n\\nVictor and Carlos are playing, trying to force each others\\' heads \\nunderwater. \\nCarlos squirts water through his lips.\\n\\nVICTOR \\nI gotta go take a piss.\\n\\nCARLOS \\nIf we were at 10th Street \\nPool you woulda done it \\nright in the water, right?\\n\\nThe camera pans as Victor climbs out of the pool and onto a \\nlong line. As he stands and waits, Amanda can be seen in \\nthe background arguing with Hector.\\n\\nIn the water, Carlos makes a face at Victor. Victor makes \\none back.\\n\\nVICTOR \\n(Under his breath to Carlos) \\n\\nI\\'m gonna beat you.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nHector and Amanda have been arguing. Jenette is sitting on the ground \\nbeneath \\nthem.\\n\\nHECTOR \\nI know you likes me.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 10/25\\n\\nAMANDA \\nI eave me alone!\\n\\nHECTOR \\nWhy don\\'t you share the \\nwealth a little bit?\\n\\nHector grabs her wrist.\\n\\nAMANDA \\nExcuse me! I gotta go to \\nthe ladies\\' room!\\n\\nEXT. PITT STREET POOL - MOMENTS LATER \\n\\nAmanda gets on line behind Victor as he continues to antagonize \\nCarlos in the \\ndistance. Amanda recognizes Victor from behind, peeking \\nover his shoulder at the side of his face.\\n\\nAMANDA \\nShorty!\\n\\nVictor turns around to Amanda.\\n\\nAMANDA \\nWussup?\\n\\nVICTOR \\nWussup.\\n\\nHe turns back around.\\n\\nAMANDA \\nYo shorty!\\n\\nVictor turns back around.\\n\\nVICTOR \\nWhat?\\n\\nAmanda hears something over her shoulder and spins her head \\naround.\\n\\nAMANDA \\n(to Hector) \\n\\nLeave me alone! \\n(To Victor) \\n\\nYo, I know another \\nbathroom over there, c\\'mon \\nthis line\\'s too long.\\n\\nAmanda takes Victor by the hand and walks towards Hector. \\nShe bumps into him with Victor.\\n\\nAMANDA \\nExcuse us.\\n\\nAmanda gives Hector a snotty grin.\\n\\nShe drags Victor away.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nIn a small corner, out of sight to the rest of the kids at the pool. \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 11/25\\n\\nAmanda \\ncomplains to Victor. Victor looks confused.\\n\\nAMANDA \\nThis fucking guy be \\nfollowin\\' me around, and \\ntouchin\\' me. Asshole!\\n\\nShe sighs and pulls on the bathroom door. It\\'s locked. She \\ngives it another try. It won\\'t budge.\\n\\nAMANDA \\nLook, just do me a favor. \\nStand right here, okay?\\n\\nAmanda takes Victor\\'s hand for balance and squats down, \\npulling her bathing suit bottoms to the side. She urinates. \\nVictor watches her, trying to play it cool. The camera \\ntilts up from Amanda\\'s face peeking up at Victor, to their \\nhands straining for balance, to Victor\\'s wandering eyes.\\n\\nEXT. 8TH STREET BETWEEN AVENUES C AND D - DAY \\n\\nClose-up of ERICA looking into the camera.\\n\\nERICA \\nWe\\'re \"Fantasy\" and This \\nis Shai, Diamond-\\n\\nFRANCESCA \\nAnd I\\'m Melody.\\n\\nWe see the three girls standing in line on the sidewalk.\\n\\nERICA \\nAnd we\\'re gonna sing a \\nsong called \\'Tell me \\nWhat.\\' It was written by \\nmyself, Diamond and Shai \\nand the vocals were \\narranged by us two.\\n\\nFrancesca rolls her eyes.\\n\\nERICA \\nAlso, it was written May \\n24th 1998 at 10:20 p.m. \\nCheck it out.\\n\\nThe girls begin to sing.\\n\\nCarlos stands in front of the singers mocking them. The \\ncamera pans to see Victor approaching Carlos.\\n\\nVICTOR \\nWussup?\\n\\nCARL0S \\nWussup, Victor.\\n\\nVICTOR \\nYo, can I talk to you for \\na minute?\\n\\nCarlos nods his head. Victor leans into Carlos, resting his \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 12/25\\n\\narm on Carlos\\' shoulder.\\n\\nVICTOR \\nYo, remember from the \\npool, that girl?\\n\\nCARLOS \\nWhich one?\\n\\nVICTOR \\nYou know, Eddie\\'s cousin.\\n\\nCARL0S \\nEddie from Compost?\\n\\nVICTOR \\nEddie from Baruch, the one \\nwho was sittin\\' wit\\' dat \\nlittle girl;\\n\\nCARLOS \\nThe one with the phat ass?\\n\\nVICTOR \\nNo, c\\'mon, stop playin\\'. \\nThe girl that you kissed \\nwhen we got there. Where s\\nhe live at?\\n\\nCARL0S \\nWhy don\\'t you ask Eddie?\\n\\nVICTOR \\nYo, Carlos-I\\'m gonna punch \\nyou.\\n\\nCARLOS \\n(Mockingly) \\n\\nI\\'m gonna punch you. What \\nyou want with her anyway? \\nYou in love with her?\\n\\nVICTOR \\nShe lives near Eddie?\\n\\nCARLOS \\nI think she lives down by \\nPitt.\\n\\nVICTOR \\nNear Natasha\\'s? Or over by \\nBoy\\'s Club?\\n\\nCARLOS \\nI think by Twenty-two.\\n\\nVICTOR \\nFor real?\\n\\nCARLOS \\nWhat you want with her \\nanyway\\'\\n\\nVictor starts walking off down the block.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 13/25\\n\\nCARLOS \\nYo! What you goin\\' for\\n\\nVICTOR\\n\\'Cause you know what, \\nyou\\'re not supposed to \\nknow but yesterday she \\nlent me her pills for her \\nMoms and if I don\\'t give \\n\\'em to her she\\'s gonna \\ndie. You want her to die?\\n\\nCarlos shrugs Victor off as he walks away down the block.\\n\\nA moment passes.\\n\\nCARLOS \\n(to himself)\\n\\nWhat do you do when your \\nbitch is untrue? \\nYou cut the hooker off and \\nfind someone new. I need \\nanother bitch another \\nbitch in my life.\\n\\nEXT. LOWER EAST SIDE - CONTINUOUS \\n\\nMONTAGE: Victor\\'s trip through the streets in search of Amanda\\'s \\nblock.\\n\\nEXT. AMANDA\\'S BLOCK - LATER \\n\\nDonna and Michelle are standing in front of their building.\\n\\nMICHELLE \\nOkay, merengue, you do \\nlike this-\\n\\nMichelle places one hand on her side, the other in the air \\nand begins to step.\\n\\nDONNA \\nLike this?\\n\\nMICHELLE \\nYeah, that\\'s right, you \\ngot it girl.\\n\\nMichelle grabs Donna, they embrace and dance.\\n\\nMICHELLE \\nNow salsa, you know how to \\ndance salsa?\\n\\nDONNA \\nYeah.\\n\\nMICHELLE \\nOkay, then dance. Show.\\n\\nDonna dances. Michelle looks over her shoulder. Aaron is \\ndrinking a bottle of soda across the street.\\n\\nMICHELLE \\nI don\\'t think he\\'s \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 14/25\\n\\nwatching.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nAaron sits on a stoop across the street from Michelle and Donna He\\'s \\nshaking up \\na bottle of soda, then opening the cap to let the bubbles \\nout. He\\'s got a large brown paper bag with him. Victor the rounds the \\ncorner, \\nhis eyes are scanning across the buildings on the block.\\n\\nAARON \\nYo Shorty, you wanna buy \\nsome M-80s?\\n\\nVICTOR \\nNah.\\n\\nAARON\\nTwenty-four for two \\ndollars, son, and ain\\'t \\ntalkin\\' no little pussy \\nboxes, I\\'m talkin\\' big \\nones.\\n\\nVICTOR \\nNah.\\n\\nAARON \\nAlright, I\\'ll be here, if \\nanything.\\n\\nVictor continues down the block.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nVictor finds Jenette sitting on Amanda\\'s stoop. She appears to have \\njust come \\noutside as she unties a jump rope that is knotted around her \\nwaist Victor stands next to her for a moment waiting awkwardly to \\nspeak.\\n\\nJenette is ignoring him.\\n\\nAaron watches from down the block.\\n\\nVictor steps towards Jenette. As he turns to face her, she \\nis roll her sock down to her ankle and preparing to jump \\n\\nher rope.\\n\\nVICTOR \\nHey, little girl, you know \\na girl named Amanda who \\nlives around here? \\n\\nJENETTE \\nNo.\\n\\nJenette stands sloppily in front of him on the street. She \\nsays nothing and begins to jump. Smic-smac, smic-smac, \\nsmic-smack.\\n\\nVICTOR \\nYou sure? She\\'s got kind \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 15/25\\n\\nof like brown hair.\\n\\nJENETTE \\nPositive.\\n\\nVICTOR \\nYou sure?\\n\\nJENETTE \\nPositive.\\n\\nVICTOR \\nMy friend told me she \\nlived around here.\\n\\nJENETTE \\nYour friend must be \\nmisinformed.\\n\\nVICTOR \\nDidn\\'t I see you at Pitt \\nyesterday?\\n\\nA pause.\\n\\nJENETTE \\nSo what do you want with \\nher anyway?\\n\\nVICTOR \\nI\\'m a good friend of hers.\\n\\nJENETTE \\nHow do I know you\\'re not \\nlying.\\n\\nVICTOR \\nYo, I know what you\\'re \\nthinking, that I\\'m one of \\nthose guys that keep \\ncoming up to her.\\n\\nJENETTE \\nProbably.\\n\\n(Under her breath) \\nOne of the many.\\n\\nVICTOR \\nWhat?\\n\\nJENETTE \\nNothing.\\n\\nHector approaches Victor from down the block.\\n\\nHECTOR \\nExcuse me, can I help you?\\n\\nVictor doesn\\'t answer.\\n\\nHECTOR \\nYou looking for somebody?\\n\\nVICTOR \\nWha\\'?\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 16/25\\n\\nHECTOR \\nYou here to see somebody?\\n\\nVICTOR \\nYeah.\\n\\nHECTOR \\nWho?\\n\\nVICTOR \\nA girl named Amanda.\\n\\nHECTOR \\nWhat she look like?\\n\\nVICTOR \\nShe\\'s like this high, dark \\nhair, skinny\\n\\nHECTOR \\nYo, that\\'s my girl.\\n\\nVICTOR \\nShe didn\\'t say she had no \\nman.\\n\\nHECTOR \\nI suggest you turn around \\nand go back to where you \\ncame from.\\n\\nVictor looks over to Jenette. No response.\\n\\nHECTOR \\nWhat are you waiting for?\\n\\nA pause.\\n\\nHECTOR \\nYou betta bounce, yo.\\n\\nHector shoves Victor away from the stoop. Victor steps up to \\nHector. Jenette watches them. interested.\\n\\nHECTOR \\nYou betta leave the block, \\nyo, or me and my boys, \\nwe\\'re gonna fuck you up.\\n\\nVictor looks at Hector then walks away down the block.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nVictor rounds the corner and sits down on the sidewalk.\\n\\nVICTOR \\n(to himself) \\n\\nFuck man. I\\'m gonna get a \\nfuckin\\' M-80 and shove it \\nup his retarded ass.\\n\\nEXT. AMANDA\\'S BLOCK - MOMENTS LATER\\n\\nCHRISTOPHER, an energetic ten-year-old, exits the front door of his \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 17/25\\n\\nbuilding \\nholding a bat, sits down on the curb and looks out at the block. As \\nthe camera \\npans, we see Aaron on the corner talking to Mari. Michelle and Donna \\nare walking \\ndown the block. Hector is making his way back over to Amanda\\'s \\nbuilding and \\nJenette is jumping rope.\\n\\nChris rubs his eyes, turns around and looks up at one of \\nthe windows in his building.\\n\\nCHRIS \\n(Up to the window) \\n\\nMa!\\n\\nNo answer.\\n\\nCHRIS \\nMa!\\n\\nMom\\'s head sticks out the window.\\n\\nCHRIS \\nCross me!\\n\\nMom waves her hand, signaling to him that it\\'s safe to \\ncross the street. Chris, picking up a half-deflated \\nfootball, runs into the street.\\n\\nChris makes his way down the block, stomping along in big \\nHigh-tops. He spots Aaron a few feet away.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nAaron is sitting on the sidewalk crushing a soda bottle under his \\nfoot.\\n\\nChris approaches and tosses the ball to him.\\n\\nAaron stands up and tosses the ball back to Chris, then \\nlights a cigarette. Chris waits until Aaron is ready and \\nthrows again.\\n\\nAARON \\nIt\\'s too hot, get outta \\nhere.\\n\\nEXT. AMANDA\\'S BLOCK- CONTINUOUS \\n\\nMichelle and Donna are sitting on their stoop.\\n\\nDONNA \\nI want him to change. I \\nwant to get to know the \\nreal him and I want him to \\nget to know the real me.\\n\\nMichelle looks at Donna. A pause.\\n\\nDONNA \\nIt\\'s so frustrating. I ask \\nhim if he\\'s mad and he \\nsays no.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 18/25\\n\\nEXT. AMANDA\\'S BLOCK - MOMENTS LATER\\n\\nVictor is still sitting on the sidewalk around the corner. \\n\\nChris walks by him.\\n\\nVICTOR \\nYo! You live here?\\n\\nChris nods.\\n\\nVICTOR \\nYou know Amanda?\\n\\nChris nods again, smiles and throws the ball at Victor. \\nVictor catches it and throws it back. Chris catches it and \\nthen starts to run away.\\n\\nVICTOR \\nHey, where you goin\\'?\\n\\nVictor starts to follow him.\\n\\nVICTOR \\nHold up, yo!\\n\\nEXT. ALLEYWAY - CONTINUOUS \\n\\nChris slips through a fence to enter the alleyway and Victor enters \\nbehind him. \\nA \"No Trespassing\" sign hangs on the gate. Victor looks around a \\nlittle as they continue their game of catch.\\n\\nAs the boys play, the gate creaks and swings open. The boys \\nquickly scurry into an out-of-the-way corner.\\n\\nAaron and Donna enter the alleyway. The boys watch them.\\n\\nAARON \\nAlright, tell me, what\\'d \\nyou hear?\\n\\nDONNA \\nThere\\'s a rumor that you \\nwere tryin\\' to get \\nsomebody to beat me up.\\n\\nAARON \\nWhat chu listening to \\nrumors for? I\\'m not like \\ndat.\\n\\nDONNA \\nIs it true?\\n\\nAaron puts his bag of fireworks down on the floor.\\n\\nAARON \\nI told you, no. I\\'m not \\nthat type.\\n\\nDONNA \\nThen I want you to go to \\nwhoever\\'s sayin\\' that and \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 19/25\\n\\ntell them to stop.\\n\\nAARON \\nAlright. \\n\\nAaron clears a piece of hair away from Donna\\'s face and \\nputs it behind her ear. A pause He gently pushes her up against the \\nwall.\\n\\nHe kisses her forehead. The camera follows as Aaron\\'s lips \\nmake their way to Donna\\'s. They kiss. Slowly at first, then \\ndeeply.\\n\\nVictor and Chris watch silently from the corner.\\n\\nEXT. AMANDA\\'S BLOCK- MOMENTS LATER\\n\\nJenette is siding on the ground, drawing with chalk on the \\nside walk. Victor approaches her and sits down on the \\nstoop.\\n\\nJENETTE \\nAmanda\\'s not back yet\\n\\nVictor runs his fingers through his hair. Jenette details \\nher artwork. She focuses intently on her drawing\\n\\nJENETTE \\n(With her eyes lowered) \\n\\nHow\\'s Hector?\\n\\nVictor doesn\\'t respond.\\n\\nJENETTE \\n(to Victor) \\n\\nSo, do you like her?\\n\\nJenette stares at the sidewalk.\\n\\nVICTOR \\nNo.\\n\\nJENETTE \\nSo, then whadda ya want?\\n\\nVictor stands up to leave.\\n\\nJENETTE \\nYou wanna do somethin\\' \\nwith me?\\n\\nVICTOR \\nNot really.\\n\\nJENETTE \\nHey!\\n\\nVICTOR \\nWha\\'?\\n\\nJenette makes eye contact. Victor makes his way back over to Jenette. \\nHe sits \\ndown beside her. Jenette\\'s eyes focus back on her drawing.\\n\\nJENETTE \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 20/25\\n\\nWhere you know Amanda \\nfrom?\\n\\nVICTOR \\nJus\\' from around the way.\\n\\nJENETTE \\nYou live around here?\\n\\nVICTOR \\nYeah.\\n\\nJENETTE \\nYou gotta girLfrLend?\\n\\nVictor sees Chris kicking his football across the street.\\n\\nJENETTE \\nYou wanna be my boyfriend?\\n\\nVictor doesn\\'t respond. A moment passes.\\n\\nJENETTE \\nHector\\'s an asshole, huh?\\n\\nJenette looks at Victor. She catches him looking across the \\nstreet.\\n\\nJENETTE \\n(to Victor) \\n\\nI know how ta get him back \\nif you want.\\n\\nVICTOR \\n(turning back) \\n\\nNah. \\n\\nJenette\\'s eyes drop down to the ground.\\n\\nShe quietly begins to sob. She holds her face in her hands. \\nFake tears.\\n\\nVICTOR \\nWhat\\'s the matter? You \\nalright?\\n\\nAaron rounds the corner of the block with Donna. 3enette \\ncatches a glimpse of him and starts sobbing loudly. Aaron \\nsees Jenette crying on the ground. He leaves Donna behind \\nand starts walking towards Jenette.\\n\\nVICTOR \\nWha\\'? I\\'ll do whatever you \\nwant. \\n\\nAaron reaches them. Victor looks up at him.\\n\\nAARON \\n(to Victor) \\n\\nWhat happened!\\n\\nJenette cries. Aaron grabs Victor\\'s arm tightly.\\n\\nAARON \\n(Angrily) \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 21/25\\n\\n\\'Wha\\' happened?\\n\\nJenette raises her head.\\n\\nJENETTE \\nHector-\\n\\nAARON \\nWhat? He hit you?\\n\\nShe sobs and nods \"yes.\"\\n\\nAaron scoops her up onto his shoulder and grabs Victor by \\nthe arm.\\n\\nAARON \\nC\\'mon.\\n\\nJenette\\'s chalk is left behind on the sidewalk.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS\\n\\nAaron marches them all up the block. Hector\\'s silhouette \\nis visible in the distance as he cranks the pedal of an upside-down \\nbicycle.\\n\\nJenette bounces and sobs over Aaron\\'s shoulder as they trot \\nup the block. Victor struggles to keep up as his sneakers \\nbegin to skid on the cement.\\n\\nHector sees the three of them approaching.\\n\\nHe raises his arm and points a finger at Victor.\\n\\nHECTOR \\n(to Victor) \\n\\nI thought I told you to go \\nhome!\\n\\nAaron speeds up as he approaches Hector.\\n\\nAARON \\nYou hit my sista?\\n\\nJenette sobs in Aaron\\'s arms as he puts her down. \\nAaron releases Victor\\'s sleeve.\\n\\nSmack! Aaron hits Hector in the face. Hector falls. Aaron \\nturns and finds Victor turning away.\\n\\nAARON \\n(to Victor) \\n\\nYo! Get over here!\\n\\nVictor turns back towards the action. Holding Hector \\nagainst a wall, he pulls Victor near.\\n\\nAARON \\n(to Hector) \\n\\nWho told you to touch my \\nsister?\\n\\nHECTOR \\nI didn\\'t touch shit!\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 22/25\\n\\nSmack! Hector is pinned against the wall. He tries to free \\nhimself of Aaron but he is no match. Chris watches from the \\ncurb, amused.\\n\\nHECTOR \\nI didn\\'t do anything!\\n\\nHector struggles. Aaron looks to Victor.\\n\\nAARON \\nDid you see him?\\n\\nJenette turns her head to Victor. She wipes the tears from \\nher eyes.\\n\\nVictor looks at Hector. A moment passes. Chris plays with \\nhis bat as he watches.\\n\\nVICTOR \\nYeah.\\n\\nAaron punches Hector in the stomach. Hector doubles over.\\n\\nChris throws punches into the air.\\n\\nDISSOLVE TO\\n\\nEXT. AMANDA\\'S BLOCK - LATE AFTERNOON\\n\\nThe sun has dropped low in the sky. Long shadows rest on \\nThe pavement after a steamy afternoon.\\n\\nAmanda\\'s block is quiet and empty.\\n\\nChris strolls by Amanda\\'s stoop.\\n\\nHe notices Jenette\\'s drawing, bends down on his knees and \\nreads her sloppy writing.\\n\\n\"For entrance to secret passage press here.\"\\n\\nChris presses his finger into the circle she\\'s drawn. A \\nmoment passes. Nothing happens.\\n\\nA sound is heard atop Amanda\\'s stoop. Chris quickly walks \\naway. Amanda appears through her front door.\\n\\nShe sits down on her stoop.\\n\\nVictor is sitting on the curb across the street tapping an \\nempty bottle against the pavement. He sees Amanda.\\n\\nVictor approaches Amanda\\'s stoop.\\n\\nVICTOR \\nYo.\\n\\nAMANDA \\nHi.\\n\\nVICTOR \\nRemember me, from the \\npool?\\n\\nAMANDA\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 23/25\\n\\nUm. Yeah! Shorty!\\n\\nA pause.\\n\\nAMANDA \\nSo watcha doin\\'?\\n\\nVICTOR \\nNothin\\'.\\n\\nAMANDA \\nWhat are you doin\\' here?\\n\\nVICTOR \\nI, umm, came to see you.\\n\\nAMANDA \\nYou know somebody around \\nhere?\\n\\nVICTOR \\nNo. \\n\\n(He sighs) \\nWhat you do today?\\n\\nAMANDA \\nOh you know, cleaned the \\nhouse, cooked. Took care \\nof my little sisters. Sit \\ndown. So where\\'s Carlos?\\n\\nVICTOR \\nI guess he\\'s outside \\nsomeplace I don\\'t like \\ntakin\\' him down to certain \\nplaces.\\n\\nVictor sits down.\\n\\nAMANDA \\nWhadja wanna see me about?\\n\\nVICTOR \\nI just wanted to see you.\\n\\nA pause.\\n\\nAMANDA \\nSo you got a girl?\\n\\nVICTOR \\nOf course.\\n\\nAMANDA \\nSo what\\'s her name?\\n\\nVICTOR \\nYou know. I got a lot, \\nmore than one.\\n\\nAMANDA \\nA play-ya.\\n\\nVICTOR \\nYou got a boyfriend?\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 24/25\\n\\nAMANDA \\nMe? No. Don\\'t want none \\neither. Such bastards, man.\\n\\nA pause.\\n\\nAMANDA \\n(Quickly) \\n\\nThey play a girl, then you \\ncomplain, then they play \\ndumb, blah, blah, blah. \\nAll that bullshit, \\nwhatever I don\\'t want \\nnone. I\\'m gonna stay \\nsingle awhile, you know?\\n\\nA pause.\\n\\nAMANDA \\nSo wadda you do with your \\ngirls?\\n\\nVICTOR\\nJust chill.\\n\\nAMANDA \\nThat\\'s it?\\n\\nVICTOR \\nNah, we make out and \\nstuff.\\n\\nAmanda doesn\\'t believe him.\\n\\nAMANDA \\nSo what you think of me?\\n\\nVICTOR \\nYou look good.\\n\\nAMANDA \\nI look good, that\\'s it. So \\nwhat else do you do for \\nthese girls?\\n\\nVICTOR \\nI buy them flowers.\\n\\nAMANDA \\nHow you treat them?\\n\\nVICTOR \\nGood. I\\'m faithful to \\nthem.\\n\\nAmanda gets up and walks away. Victor quickly follows.\\n\\nEXT. ALLEYWAY - MOMENTS LATER\\n\\nAmanda walks through the half-open fence and leans flat \\nagainst the wall. Victor stands close by, nervously.\\n\\nHe keeps his distance from her.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 25/25\\n\\nAMANDA\\nSee, I got you, you are so \\nscared. I don\\'t believe \\nthat you kissed no girls. \\nThat you got three girls \\nand that you faithful and \\nthis and that.\\n\\nVICTOR\\nI did.\\n\\nAMANDA \\nWell, you know I\\'m \\nstandin\\' here and you say \\nI look good?\\n\\nVICTOR \\nI kissed those girls.\\n\\nAMANDA \\nNo you didn\\'t, you ain\\'t \\nprovin\\'it.\\n\\nVICTOR \\nI aint gotta prove nothin\\' \\nto no girl, \\'cause I got \\nit like dat.\\n\\nAMANDA \\nOh, \\'cause you got it like \\ndat?\\n\\nVictor approaches Amanda. He touches her arm. Amanda \\nsmiles.\\n\\nShe takes Victor\\'s hand and places it on her breast. Victor \\nmoves forward. Amanda moves his hand over her breasts. She \\nwraps her arms around his waist. Victor bends his arms \\naround her back.\\n\\nAmanda hisses him on the lips, slowly. A long, deep kiss. \\nAs she kisses him she runs her hand through his hair. She \\npulls back. Victor looks around. Chris is at the entrance \\nof the alleyway, watching them. He is holding his deflated football.\\n\\nChris looks at him for a second and walks away.\\n\\nChris walks down the block, his bat against the pavement.\\n\\nFADE OUT\\n\\n\\n'),\n", - " Document(metadata={'source': 'https://dl.boxcloud.com/api/2.0/internal_files/1169674971571/versions/1274131573171/representations/extracted_text/content/', 'title': 'FIVE_FEET_AND_RISING_by_Peter_Sollett_pdf'}, page_content='\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 1/25\\n\\nFIVE FEET AND RISING\\n\\nby\\n\\nPeter Sollett\\n\\nFADE IN:\\n\\nEXT. 8TH STREET BETWEEN AVENUES C AND D - DAY \\n\\nA group of dark-skinned girls wearing cheerleading outfits \\nalign themselves in formation on the sidewalk. They begin to \\ndance. No music can be heard. The sound of the girls\\' bodies \\nis our soundtrack. We hear their strained breathing, palms \\nand sneaker bottoms pounding while they hum and count softly \\nto themselves in an effort to keep the rhythm.\\n\\nSLO-MO: We explore the bodies of the dancers; their bright \\neyes and sweaty brows, their stomping feet and colliding \\nhands (dark side and light side). The younger girls perform \\nprovocative dance movements, the older girls repeat them.\\n\\nTheir bodies silhouette in the bright sunlight.\\n\\nCUT TO: TITLES\\n\\nEXT. AMANDA\\'S BLOCK - DAY \\n\\nAMANDA, a tall 14-year-old exits the front door of her \\napartment budding with her headphones in one hand and a \\nmagazine in the other. She sits down on her stoop, puts her \\nheadphones on and presses \"play\". We can hear the sound of \\nSalsa leaking out of the sides of her headphones. JENETTE, \\nten years old with big black hair in rubber-band restraints, sits on \\nthe sidewalk below Amanda drawing with a piece of chalk. Jenette \\n\\n looks over her shoulder and sees Amanda reading her magazine Jenette \\nclimbs the stairs and sits down beside her.\\n\\nThe camera pans to reveal AARON, an 18-year-old boy on the \\nother side of the street, unloading some fireworks from the \\ntrunk of a car. He\\'s filling a paper bag with them, \\ncarefully making sure not to reveal what he\\'s doing to \\nonlookers.\\n\\nAt the ear end of the block, DONNA, 14, and MICHELLE, 12, \\nsit and watch Aaron at work.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 2/25\\n\\nMICHELLE \\nHow does he look up close?\\n\\nDONNA \\n(Amorously) \\n\\nUmm, he got dark brownish \\neyes, he got a nice nose I \\nlove his nose. I love his \\nskin. I love his lips, he \\ngot a great smile and he \\ngot-\\n\\nMICHELLE \\nA bad attitude.\\n\\nDONNA \\nYeah, he got a bad \\nattitude.\\n\\nMICHELLE \\nYou said before, that he \\ngot boxes?\\n\\nSLO-MO: The camera is very close to Aaron. Details of his \\nbody in a shallow depth of field.\\n\\nDONNA \\nYeah, he got boxes in his \\nstomach. He\\'s taller than \\nme.\\n\\nMICHELLE \\nHow old is he?\\n\\nDONNA \\nI think he\\'s 18 or 17.\\n\\nMICHELLE \\nYou gonna talk to him?\\n\\nDONNA \\nUm, yeah I think so.\\n\\nBack on Amanda\\'s stoop.\\n\\nJENETTE \\nYou still like him.\\n\\nAMANDA \\n(With a sigh of negative attitude) \\n\\nNo.\\n\\nHECTOR, a mature-looking 13-year old is crossing the \\nstreet. He enters frame with Amanda and Jenette. \\n\\nHECTOR \\nYo, wuzzup. \\n\\nAmanda ignores him. \\n\\nJENETTE \\nHi Hector\\n\\nHECTOR \\n(To Amanda) \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 3/25\\n\\nOh, you\\'re not gonna say \\nhello.\\n\\nAMANDA\\'S POV: Donna approaches Aaron as he locks up the \\ntrunk of the car. She hesitantly calls over to him. He \\nacknowledges her with a lift of the chin. Making sure he \\nkeeps his distance from her, he looks around to see if \\nanyone is watching him. He tosses his head for her to \\nfollow. He begins to walk away down the block. She follows.\\n\\nHector is looking at Amanda. He appears to have run out of \\nthings to say. Amanda removes her headphones. Her music \\nbecomes clearer, more audible.\\n\\nHECTOR \\nYo, you gonna keep me \\nhangin\\' like dat?\\n\\nAMANDA \\nHector, Yo try to rap to me every day, why don\\'t you \\ntake your three-quarters retarded ass outta here?\\n\\nHECTOR \\nYo, you betta give me my \\nrespects or I\\'ll tell your \\nlittle girl ova here what \\nI heard about you and my \\nboy.\\n\\nAmanda puts her headphones back on.\\n\\nHECTOR looks like he got a new girl anyway.\\n\\nEXT. 8TH STREET BETWEEN AVENUES C AND D - AFTERNOON \\n\\nVICTOR, a skinny 12-year-old with sloppy hair, is asleep in \\nthe sun on his fire escape. There is sweat beaded up on his \\nbody. His shirt is rolled up behind his head like a pillow. \\nHis breath is heavy, his chest rises and falls. The camera \\ntilts to reveal CARLOS, ten, rounding the corner on the \\nstreet below. The camera tracks backwards as Carlos \\napproaches. He is talking to himself.\\n\\nCARLOS \\n(To himself) \\n\\nWhatcha gonna do when ya \\nbitch is untrue?\\n\\nCarlos lifts his head up to look at the fire escapes.\\n\\nCARLOS \\nYo Victor!\\n\\nThe camera pans and tilts up to the fire escapes. The \\nbuildings float by. He arrives in front of Victor\\'s \\nbuilding and cups his hand around his mouth.\\n\\nCARLOS \\nYo Victor!\\n\\nOn the fire escape, Victor\\'s eyes pop open and the sun \\nshines into them.\\n\\nVICTOR \\n(Dazed) \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 4/25\\n\\nWhat, wuzzup?\\n\\nVictor sits up and looks over the side of the fire escape.\\n\\nCARL0S \\nCome down!\\n\\nVICTOR \\nI can\\'t!\\n\\nCARLOS \\nWhy?\\n\\nVICTOR \\nI got punished, man.\\n\\nCARLOS \\nFa what?\\n\\nVICTOR \\nI won\\'t let my motha cut \\nmy hair.\\n\\nCARLOS \\nWha\\'?\\n\\nVICTOR \\nShe fucks it all up!\\n\\nCARLOS \\nForget it! C\\'mon Let\\'s go \\nto the pool.\\n\\nVICTOR \\nI can\\'t man, I\\'m punished!\\n\\nCARL0S \\nWho gives!\\n\\nVICTOR \\nI can\\'t, I\\'m gonna get \\npunished more!\\n\\nCARLOS \\nTrust me, I always get \\ninto trouble, c\\'mon!\\n\\nVictor sits down on the fire escape. Carlos pauses for a \\nminute and turns his back on Victor.\\n\\nCARL0S \\nC\\'mon! The girls are \\nwaiting for you!\\n\\nVictor hops back up.\\n\\nVICTOR \\n(interested) \\n\\nThey are?\\n\\nCARLOS \\nYeah! Tell me which one you would like. To be doin\\' \\nnothin on a fire escape or beat the pool with a bunch of \\ngirls? Be straight up!\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 5/25\\n\\nVICTOR \\nI\\'ll be right down.\\n\\nVictor climbs down the fire escape and hops down to the \\nstreet. he immediately grabs Carlos and starts pushing him \\ndown the block to avoid being seen from above.\\n\\nEXT. THE CORNER OF 8TH STREET AND AVENUE D - CONTINUOUS \\n\\nThe boys safely round the corner onto Avenue D. Victor \\nperks up and starts nudging Carlos.\\n\\nVICTOR \\nSo what girls are over \\nthere?\\n\\nCARLOS \\nNatasha, Maria, Tina-\\n\\nVICTOR \\nThese are the pretty girls \\nyou told me to come down \\nfor?\\n\\nVictor sighs and runs his fingers through his hair.\\n\\nCARLOS \\nWhat\\'s the difference, you \\nnever do anything anyway\\n\\nVictor makes a disagreeing gesture. Carlos drags Victor \\nDowntown.\\n\\nVICTOR \\nWhat are you going that \\nway for?\\n\\nCARLOS \\nI\\'m not goin\\' to 10th \\nStreet, people piss and \\nshit in that pool,\\n\\nVICTOR \\nWhere you goin\\'?\\n\\nCARLOS \\nPitt.\\n\\nVICTOR \\nOh man, what we gotta \\nleave ar\\' own neighborhood \\nfor?\\n\\nCARLOS \\nC\\'mon.\\n\\nVICTOR \\nMan, if I go down you\\'re \\ngoin\\' down with me.\\n\\nEXT. AVENUE D - CONTINUOUS \\n\\nMONTAGE: Victor and Carlos hang on each other as they walk down \\n Avenue D towards the Pitt Street Pool. They pass by Victor brother, \\n giving him an impromptu smack and then bang on a store window to wave \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 6/25\\n\\nhello to a friend.\\n\\nFrom Victor\\'s POV we work our way through a crowd of people \\nan cross 3rd Street. Victor looks back at the crowd with a \\nwatchful eye. The camera tracks along in the street as the \\nboys walk along the sidewalk. Victor looks up at a street \\nsign. It reads, \"Houston St.\" As the boys make their way \\nacross the wide intersection, the heat is slightly visible \\nas car exhaust fills the gridlocked lanes. Victor and \\nCarlos walk calmly, with space between them, making their \\nway towards the camera in a shallow depth of field as we \\nfollow focus on them.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nVictor and Carlos stand on line outside the pool gates. Police \\nexamine the boys as they slowly inch their way into the park.\\n\\nFrom Victor\\'s POV we see the expanse of the pool as he \\nenters the park. We watch as he surveys the area.\\n\\nFrom a high angle we see Carlos nudge Victor to make his \\nway onto the pool deck. They enter the crowd, proceeding \\ncarefully, making sure not to bump anyone.\\n\\nAs they continue to walk, Victor\\'s POV reveals the bodies \\nof older boys and girls, rough water and mischievous kids.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nAmanda is sitting poolside with Jenette.\\n\\nAMANDA \\nAnd that girl, over there? \\nHoochie.\\n\\nJenette looks out across the pool trying to see who Amanda \\nis talking about.\\n\\nAMANDA \\nAnd him. Stay away from \\nhim, he\\'s only interested \\nin that.\\n\\nAmanda points between Jenette\\'s legs.\\n\\nAMANDA \\nThat right there.\\n\\nCarlos steps in front of them, Amanda smacks his leg.\\n\\nCARLOS \\nYo Amanda, wassup?\\n\\nThey kiss on the cheek.\\n\\nCARLOS \\n(To Victor) \\n\\nAmanda is Eddie\\'s cousin.\\n\\nVICTOR \\nEddie from Compost?\\n\\nCARLOS \\nNo, Baruch.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 7/25\\n\\nA girl swimming in the pool calls over to Carlos.\\n\\nGIRL 1 \\nCarlos! Carlos, get your \\nskinny ass over here!\\n\\nCARLOS \\n(To Victor) \\n\\nStay right here, I\\'ll be \\nright back.\\n\\nCarlos walks off leaving Victor standing next to Amanda and \\nJenette. Victor looks uncomfortable.\\n\\nAMANDA \\nWho are you?\\n\\nVICTOR \\nI\\'m wit\\' Carlos.\\n\\nAmanda points out across the pool.\\n\\nAMANDA \\n(To Jenette) \\n\\nHim right there, That\\'s \\nwho I\\'m talkin\\' about. \\n\\n(to Victor) \\nExcuse me, can you move, I \\ncan\\'t see.\\n\\nAmanda spots Aaron and Donna in the distance.\\n\\nAMANDA \\nDo you have a name?\\n\\nVICTOR \\nVictor.\\n\\nAMANDA \\nWhat?\\n\\nVICTOR \\nVictor.\\n\\nAmanda turns to Jenette and continues talking to her.\\n\\nVICTOR \\nUmm, I\\'m gonna go find \\nCarlos.\\n\\nAs Victor turns to walk, the camera pans to follow him, \\nrevealing Hector who is approaching Amanda. The camera then \\npans back to Amanda. She sighs and turns her ahead away \\nfrom him.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nIn the playground area at the Pitt Street Pool, Aaron is doing a\\' \\nimpression of Al Pacino. Darrell and Boy 1 look on.\\n\\nAARON \\n(to Boy 1) \\n\\nYou wanna meet my little \\nfriend? \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 8/25\\n\\nBoy 1 is laughing at Aaron. Donna and Michelle stand nearby \\nwatching.\\n\\nAARON \\nDon\\'t fuck wit\\' me! Don\\'t \\nfuck wit\\' me.\\n\\n(pointing his finger)\\nMy lawyer\\'s so good he\\'ll \\nhave you workin in Alaska, \\nso dress warn.\\n\\nDONNA \\nAaron, how you doin\\'?\\n\\nAARON \\nFine.\\n\\nDONNA \\nLook at me.\\n\\nAARON \\nWhat?\\n\\nDONNA \\nWhy you have an attitude \\nfor?\\n\\nAARON \\nNot now, I\\'m busy\\n\\nDONNA \\nGod, I just wanna speak to \\nyou. I just wanna speak \\nto you the way I feel \\nabout you.\\n\\nAARON \\nHurry up, you\\'re wastin\\' \\nmy time, what the fuck.\\n\\nAaron turns back to his friends.\\n\\nDONNA \\nPlease don\\'t scream at me. \\nI like you, but I don\\'t \\nlike the way your attitude \\nis.\\n\\nAARON \\nSo get the fuck outta \\nhere.\\n\\nDarrell and Boy 1 approve. They wait for Donna\\'s reply.\\n\\nDONNA \\nI wanna go out with you, I \\nwant to be part of your \\nlife. I want you to treat \\nme the way a girlfriend \\nshould be treated.\\n\\nAARON \\nThen don\\'t go out with me.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 9/25\\n\\nDONNA \\nFor once in your life have \\nsome respect for me, \\ndon\\'t even curse at me or \\nnothin\\'.\\n\\nAARON \\n(to Darrell) \\n\\nNow she\\'s tellin\\' me what \\nthe fuck to do.\\n\\nDONNA \\nGod, you drive me crazy. I \\njust want you to know how \\nI feel and you don\\'t \\nunderstand.\\n\\nAARON \\nJust get the fuck outta \\nhere.\\n\\nDonna stares at Aaron as he turns back to his friends. \\nMichelle walks up to Donna and gently leads her away.\\n\\nAARON \\nThat girl be trippin\\'. \\n\\n(Back into his Pacino impression) \\nOne time I let her kiss my \\nrings and forever \\nshe tries to repay me!\\n\\nEXT. PITT STREET POOL - LATER \\n\\nVictor and Carlos are playing, trying to force each others\\' heads \\nunderwater. \\nCarlos squirts water through his lips.\\n\\nVICTOR \\nI gotta go take a piss.\\n\\nCARLOS \\nIf we were at 10th Street \\nPool you woulda done it \\nright in the water, right?\\n\\nThe camera pans as Victor climbs out of the pool and onto a \\nlong line. As he stands and waits, Amanda can be seen in \\nthe background arguing with Hector.\\n\\nIn the water, Carlos makes a face at Victor. Victor makes \\none back.\\n\\nVICTOR \\n(Under his breath to Carlos) \\n\\nI\\'m gonna beat you.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nHector and Amanda have been arguing. Jenette is sitting on the ground \\nbeneath \\nthem.\\n\\nHECTOR \\nI know you likes me.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 10/25\\n\\nAMANDA \\nI eave me alone!\\n\\nHECTOR \\nWhy don\\'t you share the \\nwealth a little bit?\\n\\nHector grabs her wrist.\\n\\nAMANDA \\nExcuse me! I gotta go to \\nthe ladies\\' room!\\n\\nEXT. PITT STREET POOL - MOMENTS LATER \\n\\nAmanda gets on line behind Victor as he continues to antagonize \\nCarlos in the \\ndistance. Amanda recognizes Victor from behind, peeking \\nover his shoulder at the side of his face.\\n\\nAMANDA \\nShorty!\\n\\nVictor turns around to Amanda.\\n\\nAMANDA \\nWussup?\\n\\nVICTOR \\nWussup.\\n\\nHe turns back around.\\n\\nAMANDA \\nYo shorty!\\n\\nVictor turns back around.\\n\\nVICTOR \\nWhat?\\n\\nAmanda hears something over her shoulder and spins her head \\naround.\\n\\nAMANDA \\n(to Hector) \\n\\nLeave me alone! \\n(To Victor) \\n\\nYo, I know another \\nbathroom over there, c\\'mon \\nthis line\\'s too long.\\n\\nAmanda takes Victor by the hand and walks towards Hector. \\nShe bumps into him with Victor.\\n\\nAMANDA \\nExcuse us.\\n\\nAmanda gives Hector a snotty grin.\\n\\nShe drags Victor away.\\n\\nEXT. PITT STREET POOL - CONTINUOUS \\n\\nIn a small corner, out of sight to the rest of the kids at the pool. \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 11/25\\n\\nAmanda \\ncomplains to Victor. Victor looks confused.\\n\\nAMANDA \\nThis fucking guy be \\nfollowin\\' me around, and \\ntouchin\\' me. Asshole!\\n\\nShe sighs and pulls on the bathroom door. It\\'s locked. She \\ngives it another try. It won\\'t budge.\\n\\nAMANDA \\nLook, just do me a favor. \\nStand right here, okay?\\n\\nAmanda takes Victor\\'s hand for balance and squats down, \\npulling her bathing suit bottoms to the side. She urinates. \\nVictor watches her, trying to play it cool. The camera \\ntilts up from Amanda\\'s face peeking up at Victor, to their \\nhands straining for balance, to Victor\\'s wandering eyes.\\n\\nEXT. 8TH STREET BETWEEN AVENUES C AND D - DAY \\n\\nClose-up of ERICA looking into the camera.\\n\\nERICA \\nWe\\'re \"Fantasy\" and This \\nis Shai, Diamond-\\n\\nFRANCESCA \\nAnd I\\'m Melody.\\n\\nWe see the three girls standing in line on the sidewalk.\\n\\nERICA \\nAnd we\\'re gonna sing a \\nsong called \\'Tell me \\nWhat.\\' It was written by \\nmyself, Diamond and Shai \\nand the vocals were \\narranged by us two.\\n\\nFrancesca rolls her eyes.\\n\\nERICA \\nAlso, it was written May \\n24th 1998 at 10:20 p.m. \\nCheck it out.\\n\\nThe girls begin to sing.\\n\\nCarlos stands in front of the singers mocking them. The \\ncamera pans to see Victor approaching Carlos.\\n\\nVICTOR \\nWussup?\\n\\nCARL0S \\nWussup, Victor.\\n\\nVICTOR \\nYo, can I talk to you for \\na minute?\\n\\nCarlos nods his head. Victor leans into Carlos, resting his \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 12/25\\n\\narm on Carlos\\' shoulder.\\n\\nVICTOR \\nYo, remember from the \\npool, that girl?\\n\\nCARLOS \\nWhich one?\\n\\nVICTOR \\nYou know, Eddie\\'s cousin.\\n\\nCARL0S \\nEddie from Compost?\\n\\nVICTOR \\nEddie from Baruch, the one \\nwho was sittin\\' wit\\' dat \\nlittle girl;\\n\\nCARLOS \\nThe one with the phat ass?\\n\\nVICTOR \\nNo, c\\'mon, stop playin\\'. \\nThe girl that you kissed \\nwhen we got there. Where s\\nhe live at?\\n\\nCARL0S \\nWhy don\\'t you ask Eddie?\\n\\nVICTOR \\nYo, Carlos-I\\'m gonna punch \\nyou.\\n\\nCARLOS \\n(Mockingly) \\n\\nI\\'m gonna punch you. What \\nyou want with her anyway? \\nYou in love with her?\\n\\nVICTOR \\nShe lives near Eddie?\\n\\nCARLOS \\nI think she lives down by \\nPitt.\\n\\nVICTOR \\nNear Natasha\\'s? Or over by \\nBoy\\'s Club?\\n\\nCARLOS \\nI think by Twenty-two.\\n\\nVICTOR \\nFor real?\\n\\nCARLOS \\nWhat you want with her \\nanyway\\'\\n\\nVictor starts walking off down the block.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 13/25\\n\\nCARLOS \\nYo! What you goin\\' for\\n\\nVICTOR\\n\\'Cause you know what, \\nyou\\'re not supposed to \\nknow but yesterday she \\nlent me her pills for her \\nMoms and if I don\\'t give \\n\\'em to her she\\'s gonna \\ndie. You want her to die?\\n\\nCarlos shrugs Victor off as he walks away down the block.\\n\\nA moment passes.\\n\\nCARLOS \\n(to himself)\\n\\nWhat do you do when your \\nbitch is untrue? \\nYou cut the hooker off and \\nfind someone new. I need \\nanother bitch another \\nbitch in my life.\\n\\nEXT. LOWER EAST SIDE - CONTINUOUS \\n\\nMONTAGE: Victor\\'s trip through the streets in search of Amanda\\'s \\nblock.\\n\\nEXT. AMANDA\\'S BLOCK - LATER \\n\\nDonna and Michelle are standing in front of their building.\\n\\nMICHELLE \\nOkay, merengue, you do \\nlike this-\\n\\nMichelle places one hand on her side, the other in the air \\nand begins to step.\\n\\nDONNA \\nLike this?\\n\\nMICHELLE \\nYeah, that\\'s right, you \\ngot it girl.\\n\\nMichelle grabs Donna, they embrace and dance.\\n\\nMICHELLE \\nNow salsa, you know how to \\ndance salsa?\\n\\nDONNA \\nYeah.\\n\\nMICHELLE \\nOkay, then dance. Show.\\n\\nDonna dances. Michelle looks over her shoulder. Aaron is \\ndrinking a bottle of soda across the street.\\n\\nMICHELLE \\nI don\\'t think he\\'s \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 14/25\\n\\nwatching.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nAaron sits on a stoop across the street from Michelle and Donna He\\'s \\nshaking up \\na bottle of soda, then opening the cap to let the bubbles \\nout. He\\'s got a large brown paper bag with him. Victor the rounds the \\ncorner, \\nhis eyes are scanning across the buildings on the block.\\n\\nAARON \\nYo Shorty, you wanna buy \\nsome M-80s?\\n\\nVICTOR \\nNah.\\n\\nAARON\\nTwenty-four for two \\ndollars, son, and ain\\'t \\ntalkin\\' no little pussy \\nboxes, I\\'m talkin\\' big \\nones.\\n\\nVICTOR \\nNah.\\n\\nAARON \\nAlright, I\\'ll be here, if \\nanything.\\n\\nVictor continues down the block.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nVictor finds Jenette sitting on Amanda\\'s stoop. She appears to have \\njust come \\noutside as she unties a jump rope that is knotted around her \\nwaist Victor stands next to her for a moment waiting awkwardly to \\nspeak.\\n\\nJenette is ignoring him.\\n\\nAaron watches from down the block.\\n\\nVictor steps towards Jenette. As he turns to face her, she \\nis roll her sock down to her ankle and preparing to jump \\n\\nher rope.\\n\\nVICTOR \\nHey, little girl, you know \\na girl named Amanda who \\nlives around here? \\n\\nJENETTE \\nNo.\\n\\nJenette stands sloppily in front of him on the street. She \\nsays nothing and begins to jump. Smic-smac, smic-smac, \\nsmic-smack.\\n\\nVICTOR \\nYou sure? She\\'s got kind \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 15/25\\n\\nof like brown hair.\\n\\nJENETTE \\nPositive.\\n\\nVICTOR \\nYou sure?\\n\\nJENETTE \\nPositive.\\n\\nVICTOR \\nMy friend told me she \\nlived around here.\\n\\nJENETTE \\nYour friend must be \\nmisinformed.\\n\\nVICTOR \\nDidn\\'t I see you at Pitt \\nyesterday?\\n\\nA pause.\\n\\nJENETTE \\nSo what do you want with \\nher anyway?\\n\\nVICTOR \\nI\\'m a good friend of hers.\\n\\nJENETTE \\nHow do I know you\\'re not \\nlying.\\n\\nVICTOR \\nYo, I know what you\\'re \\nthinking, that I\\'m one of \\nthose guys that keep \\ncoming up to her.\\n\\nJENETTE \\nProbably.\\n\\n(Under her breath) \\nOne of the many.\\n\\nVICTOR \\nWhat?\\n\\nJENETTE \\nNothing.\\n\\nHector approaches Victor from down the block.\\n\\nHECTOR \\nExcuse me, can I help you?\\n\\nVictor doesn\\'t answer.\\n\\nHECTOR \\nYou looking for somebody?\\n\\nVICTOR \\nWha\\'?\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 16/25\\n\\nHECTOR \\nYou here to see somebody?\\n\\nVICTOR \\nYeah.\\n\\nHECTOR \\nWho?\\n\\nVICTOR \\nA girl named Amanda.\\n\\nHECTOR \\nWhat she look like?\\n\\nVICTOR \\nShe\\'s like this high, dark \\nhair, skinny\\n\\nHECTOR \\nYo, that\\'s my girl.\\n\\nVICTOR \\nShe didn\\'t say she had no \\nman.\\n\\nHECTOR \\nI suggest you turn around \\nand go back to where you \\ncame from.\\n\\nVictor looks over to Jenette. No response.\\n\\nHECTOR \\nWhat are you waiting for?\\n\\nA pause.\\n\\nHECTOR \\nYou betta bounce, yo.\\n\\nHector shoves Victor away from the stoop. Victor steps up to \\nHector. Jenette watches them. interested.\\n\\nHECTOR \\nYou betta leave the block, \\nyo, or me and my boys, \\nwe\\'re gonna fuck you up.\\n\\nVictor looks at Hector then walks away down the block.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nVictor rounds the corner and sits down on the sidewalk.\\n\\nVICTOR \\n(to himself) \\n\\nFuck man. I\\'m gonna get a \\nfuckin\\' M-80 and shove it \\nup his retarded ass.\\n\\nEXT. AMANDA\\'S BLOCK - MOMENTS LATER\\n\\nCHRISTOPHER, an energetic ten-year-old, exits the front door of his \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 17/25\\n\\nbuilding \\nholding a bat, sits down on the curb and looks out at the block. As \\nthe camera \\npans, we see Aaron on the corner talking to Mari. Michelle and Donna \\nare walking \\ndown the block. Hector is making his way back over to Amanda\\'s \\nbuilding and \\nJenette is jumping rope.\\n\\nChris rubs his eyes, turns around and looks up at one of \\nthe windows in his building.\\n\\nCHRIS \\n(Up to the window) \\n\\nMa!\\n\\nNo answer.\\n\\nCHRIS \\nMa!\\n\\nMom\\'s head sticks out the window.\\n\\nCHRIS \\nCross me!\\n\\nMom waves her hand, signaling to him that it\\'s safe to \\ncross the street. Chris, picking up a half-deflated \\nfootball, runs into the street.\\n\\nChris makes his way down the block, stomping along in big \\nHigh-tops. He spots Aaron a few feet away.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS \\n\\nAaron is sitting on the sidewalk crushing a soda bottle under his \\nfoot.\\n\\nChris approaches and tosses the ball to him.\\n\\nAaron stands up and tosses the ball back to Chris, then \\nlights a cigarette. Chris waits until Aaron is ready and \\nthrows again.\\n\\nAARON \\nIt\\'s too hot, get outta \\nhere.\\n\\nEXT. AMANDA\\'S BLOCK- CONTINUOUS \\n\\nMichelle and Donna are sitting on their stoop.\\n\\nDONNA \\nI want him to change. I \\nwant to get to know the \\nreal him and I want him to \\nget to know the real me.\\n\\nMichelle looks at Donna. A pause.\\n\\nDONNA \\nIt\\'s so frustrating. I ask \\nhim if he\\'s mad and he \\nsays no.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 18/25\\n\\nEXT. AMANDA\\'S BLOCK - MOMENTS LATER\\n\\nVictor is still sitting on the sidewalk around the corner. \\n\\nChris walks by him.\\n\\nVICTOR \\nYo! You live here?\\n\\nChris nods.\\n\\nVICTOR \\nYou know Amanda?\\n\\nChris nods again, smiles and throws the ball at Victor. \\nVictor catches it and throws it back. Chris catches it and \\nthen starts to run away.\\n\\nVICTOR \\nHey, where you goin\\'?\\n\\nVictor starts to follow him.\\n\\nVICTOR \\nHold up, yo!\\n\\nEXT. ALLEYWAY - CONTINUOUS \\n\\nChris slips through a fence to enter the alleyway and Victor enters \\nbehind him. \\nA \"No Trespassing\" sign hangs on the gate. Victor looks around a \\nlittle as they continue their game of catch.\\n\\nAs the boys play, the gate creaks and swings open. The boys \\nquickly scurry into an out-of-the-way corner.\\n\\nAaron and Donna enter the alleyway. The boys watch them.\\n\\nAARON \\nAlright, tell me, what\\'d \\nyou hear?\\n\\nDONNA \\nThere\\'s a rumor that you \\nwere tryin\\' to get \\nsomebody to beat me up.\\n\\nAARON \\nWhat chu listening to \\nrumors for? I\\'m not like \\ndat.\\n\\nDONNA \\nIs it true?\\n\\nAaron puts his bag of fireworks down on the floor.\\n\\nAARON \\nI told you, no. I\\'m not \\nthat type.\\n\\nDONNA \\nThen I want you to go to \\nwhoever\\'s sayin\\' that and \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 19/25\\n\\ntell them to stop.\\n\\nAARON \\nAlright. \\n\\nAaron clears a piece of hair away from Donna\\'s face and \\nputs it behind her ear. A pause He gently pushes her up against the \\nwall.\\n\\nHe kisses her forehead. The camera follows as Aaron\\'s lips \\nmake their way to Donna\\'s. They kiss. Slowly at first, then \\ndeeply.\\n\\nVictor and Chris watch silently from the corner.\\n\\nEXT. AMANDA\\'S BLOCK- MOMENTS LATER\\n\\nJenette is siding on the ground, drawing with chalk on the \\nside walk. Victor approaches her and sits down on the \\nstoop.\\n\\nJENETTE \\nAmanda\\'s not back yet\\n\\nVictor runs his fingers through his hair. Jenette details \\nher artwork. She focuses intently on her drawing\\n\\nJENETTE \\n(With her eyes lowered) \\n\\nHow\\'s Hector?\\n\\nVictor doesn\\'t respond.\\n\\nJENETTE \\n(to Victor) \\n\\nSo, do you like her?\\n\\nJenette stares at the sidewalk.\\n\\nVICTOR \\nNo.\\n\\nJENETTE \\nSo, then whadda ya want?\\n\\nVictor stands up to leave.\\n\\nJENETTE \\nYou wanna do somethin\\' \\nwith me?\\n\\nVICTOR \\nNot really.\\n\\nJENETTE \\nHey!\\n\\nVICTOR \\nWha\\'?\\n\\nJenette makes eye contact. Victor makes his way back over to Jenette. \\nHe sits \\ndown beside her. Jenette\\'s eyes focus back on her drawing.\\n\\nJENETTE \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 20/25\\n\\nWhere you know Amanda \\nfrom?\\n\\nVICTOR \\nJus\\' from around the way.\\n\\nJENETTE \\nYou live around here?\\n\\nVICTOR \\nYeah.\\n\\nJENETTE \\nYou gotta girLfrLend?\\n\\nVictor sees Chris kicking his football across the street.\\n\\nJENETTE \\nYou wanna be my boyfriend?\\n\\nVictor doesn\\'t respond. A moment passes.\\n\\nJENETTE \\nHector\\'s an asshole, huh?\\n\\nJenette looks at Victor. She catches him looking across the \\nstreet.\\n\\nJENETTE \\n(to Victor) \\n\\nI know how ta get him back \\nif you want.\\n\\nVICTOR \\n(turning back) \\n\\nNah. \\n\\nJenette\\'s eyes drop down to the ground.\\n\\nShe quietly begins to sob. She holds her face in her hands. \\nFake tears.\\n\\nVICTOR \\nWhat\\'s the matter? You \\nalright?\\n\\nAaron rounds the corner of the block with Donna. 3enette \\ncatches a glimpse of him and starts sobbing loudly. Aaron \\nsees Jenette crying on the ground. He leaves Donna behind \\nand starts walking towards Jenette.\\n\\nVICTOR \\nWha\\'? I\\'ll do whatever you \\nwant. \\n\\nAaron reaches them. Victor looks up at him.\\n\\nAARON \\n(to Victor) \\n\\nWhat happened!\\n\\nJenette cries. Aaron grabs Victor\\'s arm tightly.\\n\\nAARON \\n(Angrily) \\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 21/25\\n\\n\\'Wha\\' happened?\\n\\nJenette raises her head.\\n\\nJENETTE \\nHector-\\n\\nAARON \\nWhat? He hit you?\\n\\nShe sobs and nods \"yes.\"\\n\\nAaron scoops her up onto his shoulder and grabs Victor by \\nthe arm.\\n\\nAARON \\nC\\'mon.\\n\\nJenette\\'s chalk is left behind on the sidewalk.\\n\\nEXT. AMANDA\\'S BLOCK - CONTINUOUS\\n\\nAaron marches them all up the block. Hector\\'s silhouette \\nis visible in the distance as he cranks the pedal of an upside-down \\nbicycle.\\n\\nJenette bounces and sobs over Aaron\\'s shoulder as they trot \\nup the block. Victor struggles to keep up as his sneakers \\nbegin to skid on the cement.\\n\\nHector sees the three of them approaching.\\n\\nHe raises his arm and points a finger at Victor.\\n\\nHECTOR \\n(to Victor) \\n\\nI thought I told you to go \\nhome!\\n\\nAaron speeds up as he approaches Hector.\\n\\nAARON \\nYou hit my sista?\\n\\nJenette sobs in Aaron\\'s arms as he puts her down. \\nAaron releases Victor\\'s sleeve.\\n\\nSmack! Aaron hits Hector in the face. Hector falls. Aaron \\nturns and finds Victor turning away.\\n\\nAARON \\n(to Victor) \\n\\nYo! Get over here!\\n\\nVictor turns back towards the action. Holding Hector \\nagainst a wall, he pulls Victor near.\\n\\nAARON \\n(to Hector) \\n\\nWho told you to touch my \\nsister?\\n\\nHECTOR \\nI didn\\'t touch shit!\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 22/25\\n\\nSmack! Hector is pinned against the wall. He tries to free \\nhimself of Aaron but he is no match. Chris watches from the \\ncurb, amused.\\n\\nHECTOR \\nI didn\\'t do anything!\\n\\nHector struggles. Aaron looks to Victor.\\n\\nAARON \\nDid you see him?\\n\\nJenette turns her head to Victor. She wipes the tears from \\nher eyes.\\n\\nVictor looks at Hector. A moment passes. Chris plays with \\nhis bat as he watches.\\n\\nVICTOR \\nYeah.\\n\\nAaron punches Hector in the stomach. Hector doubles over.\\n\\nChris throws punches into the air.\\n\\nDISSOLVE TO\\n\\nEXT. AMANDA\\'S BLOCK - LATE AFTERNOON\\n\\nThe sun has dropped low in the sky. Long shadows rest on \\nThe pavement after a steamy afternoon.\\n\\nAmanda\\'s block is quiet and empty.\\n\\nChris strolls by Amanda\\'s stoop.\\n\\nHe notices Jenette\\'s drawing, bends down on his knees and \\nreads her sloppy writing.\\n\\n\"For entrance to secret passage press here.\"\\n\\nChris presses his finger into the circle she\\'s drawn. A \\nmoment passes. Nothing happens.\\n\\nA sound is heard atop Amanda\\'s stoop. Chris quickly walks \\naway. Amanda appears through her front door.\\n\\nShe sits down on her stoop.\\n\\nVictor is sitting on the curb across the street tapping an \\nempty bottle against the pavement. He sees Amanda.\\n\\nVictor approaches Amanda\\'s stoop.\\n\\nVICTOR \\nYo.\\n\\nAMANDA \\nHi.\\n\\nVICTOR \\nRemember me, from the \\npool?\\n\\nAMANDA\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 23/25\\n\\nUm. Yeah! Shorty!\\n\\nA pause.\\n\\nAMANDA \\nSo watcha doin\\'?\\n\\nVICTOR \\nNothin\\'.\\n\\nAMANDA \\nWhat are you doin\\' here?\\n\\nVICTOR \\nI, umm, came to see you.\\n\\nAMANDA \\nYou know somebody around \\nhere?\\n\\nVICTOR \\nNo. \\n\\n(He sighs) \\nWhat you do today?\\n\\nAMANDA \\nOh you know, cleaned the \\nhouse, cooked. Took care \\nof my little sisters. Sit \\ndown. So where\\'s Carlos?\\n\\nVICTOR \\nI guess he\\'s outside \\nsomeplace I don\\'t like \\ntakin\\' him down to certain \\nplaces.\\n\\nVictor sits down.\\n\\nAMANDA \\nWhadja wanna see me about?\\n\\nVICTOR \\nI just wanted to see you.\\n\\nA pause.\\n\\nAMANDA \\nSo you got a girl?\\n\\nVICTOR \\nOf course.\\n\\nAMANDA \\nSo what\\'s her name?\\n\\nVICTOR \\nYou know. I got a lot, \\nmore than one.\\n\\nAMANDA \\nA play-ya.\\n\\nVICTOR \\nYou got a boyfriend?\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 24/25\\n\\nAMANDA \\nMe? No. Don\\'t want none \\neither. Such bastards, man.\\n\\nA pause.\\n\\nAMANDA \\n(Quickly) \\n\\nThey play a girl, then you \\ncomplain, then they play \\ndumb, blah, blah, blah. \\nAll that bullshit, \\nwhatever I don\\'t want \\nnone. I\\'m gonna stay \\nsingle awhile, you know?\\n\\nA pause.\\n\\nAMANDA \\nSo wadda you do with your \\ngirls?\\n\\nVICTOR\\nJust chill.\\n\\nAMANDA \\nThat\\'s it?\\n\\nVICTOR \\nNah, we make out and \\nstuff.\\n\\nAmanda doesn\\'t believe him.\\n\\nAMANDA \\nSo what you think of me?\\n\\nVICTOR \\nYou look good.\\n\\nAMANDA \\nI look good, that\\'s it. So \\nwhat else do you do for \\nthese girls?\\n\\nVICTOR \\nI buy them flowers.\\n\\nAMANDA \\nHow you treat them?\\n\\nVICTOR \\nGood. I\\'m faithful to \\nthem.\\n\\nAmanda gets up and walks away. Victor quickly follows.\\n\\nEXT. ALLEYWAY - MOMENTS LATER\\n\\nAmanda walks through the half-open fence and leans flat \\nagainst the wall. Victor stands close by, nervously.\\n\\nHe keeps his distance from her.\\n\\n\\n\\n3/20/23, 5:31 PM FIVE FEET AND RISING by Peter Sollett\\n\\nwww.dailyscript.com/scripts/fivefeetandrising.html 25/25\\n\\nAMANDA\\nSee, I got you, you are so \\nscared. I don\\'t believe \\nthat you kissed no girls. \\nThat you got three girls \\nand that you faithful and \\nthis and that.\\n\\nVICTOR\\nI did.\\n\\nAMANDA \\nWell, you know I\\'m \\nstandin\\' here and you say \\nI look good?\\n\\nVICTOR \\nI kissed those girls.\\n\\nAMANDA \\nNo you didn\\'t, you ain\\'t \\nprovin\\'it.\\n\\nVICTOR \\nI aint gotta prove nothin\\' \\nto no girl, \\'cause I got \\nit like dat.\\n\\nAMANDA \\nOh, \\'cause you got it like \\ndat?\\n\\nVictor approaches Amanda. He touches her arm. Amanda \\nsmiles.\\n\\nShe takes Victor\\'s hand and places it on her breast. Victor \\nmoves forward. Amanda moves his hand over her breasts. She \\nwraps her arms around his waist. Victor bends his arms \\naround her back.\\n\\nAmanda hisses him on the lips, slowly. A long, deep kiss. \\nAs she kisses him she runs her hand through his hair. She \\npulls back. Victor looks around. Chris is at the entrance \\nof the alleyway, watching them. He is holding his deflated football.\\n\\nChris looks at him for a second and walks away.\\n\\nChris walks down the block, his bat against the pavement.\\n\\nFADE OUT\\n\\n\\n')]" + "[Document(metadata={'source': 'Box AI', 'title': 'Box AI What was the most expensive item purchased'}, page_content='The most expensive item purchased is the **Gravitational Wave Detector Kit** from AstroTech Solutions, which costs **$800**.')]" ] }, - "execution_count": 3, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "query = \"victor\"\n", + "query = \"What was the most expensive item purchased\"\n", + "\n", + "retriever.invoke(query)" + ] + }, + { + "cell_type": "markdown", + "id": "31a59a51", + "metadata": {}, + "source": [ + "## Citations\n", + "\n", + "With Box AI and the `BoxRetriever`, you can return the answer to your prompt, return the citations used by Box to get that answer, or both. No matter how you choose to use Box AI, the retriever returns a `List[Document]` object. We offer this flexibility with two `bool` arguments, `answer` and `citations`. Answer defaults to `True` and citations defaults to `False`, do you can omit both if you just want the answer. If you want both, you can just include `citations=True` and if you only want citations, you would include `answer=False` and `citations=True`\n", + "\n", + "### Get both" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "2eddc8c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Document(metadata={'source': 'Box AI', 'title': 'Box AI What was the most expensive item purchased'}, page_content='The most expensive item purchased is the **Gravitational Wave Detector Kit** from AstroTech Solutions, which costs **$800**.'),\n", + " Document(metadata={'source': 'Box AI What was the most expensive item purchased', 'file_name': 'Invoice-A5555.txt', 'file_id': '1514555423624', 'file_type': 'file'}, page_content='Vendor: AstroTech Solutions\\nInvoice Number: A5555\\n\\nLine Items:\\n - Gravitational Wave Detector Kit: $800\\n - Exoplanet Terrarium: $120\\nTotal: $920')]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "retriever = BoxRetriever(\n", + " box_developer_token=box_developer_token, box_file_ids=box_file_ids, citations=True\n", + ")\n", + "\n", + "retriever.invoke(query)" + ] + }, + { + "cell_type": "markdown", + "id": "d2e93a2e", + "metadata": {}, + "source": [ + "### Citations only" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c1892b07", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Document(metadata={'source': 'Box AI What was the most expensive item purchased', 'file_name': 'Invoice-A5555.txt', 'file_id': '1514555423624', 'file_type': 'file'}, page_content='Vendor: AstroTech Solutions\\nInvoice Number: A5555\\n\\nLine Items:\\n - Gravitational Wave Detector Kit: $800\\n - Exoplanet Terrarium: $120\\nTotal: $920')]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "retriever = BoxRetriever(\n", + " box_developer_token=box_developer_token,\n", + " box_file_ids=box_file_ids,\n", + " answer=False,\n", + " citations=True,\n", + ")\n", "\n", "retriever.invoke(query)" ] @@ -201,16 +322,32 @@ "\n", "We will need a LLM or chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, + "id": "42c1f14f-7761-4e59-87a9-289667e8a9af", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Enter your OpenAI key: ········\n" + ] + } + ], + "source": [ + "openai_key = getpass.getpass(\"Enter your OpenAI key: \")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "25b647a3-f8f2-4541-a289-7a241e43f9df", "metadata": {}, "outputs": [], @@ -220,12 +357,12 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0, openai_api_key=openai_key)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 42, "id": "23e11cc9-abd6-4855-a7eb-799f45ca01ae", "metadata": {}, "outputs": [], @@ -234,12 +371,21 @@ "from langchain_core.prompts import ChatPromptTemplate\n", "from langchain_core.runnables import RunnablePassthrough\n", "\n", - "retriever = BoxRetriever(box_developer_token=box_developer_token, character_limit=10000)\n", + "box_search_options = BoxSearchOptions(\n", + " ancestor_folder_ids=[box_folder_id],\n", + " search_type_filter=[SearchTypeFilter.FILE_CONTENT],\n", + " created_date_range=[\"2023-01-01T00:00:00-07:00\", \"2024-08-01T00:00:00-07:00,\"],\n", + " k=200,\n", + " size_range=[1, 1000000],\n", + " updated_data_range=None,\n", + ")\n", "\n", - "context = (\n", - " \"You are an actor reading scripts to learn about your role in an upcoming movie.\"\n", + "retriever = BoxRetriever(\n", + " box_developer_token=box_developer_token, box_search_options=box_search_options\n", ")\n", - "question = \"describe the character Victor\"\n", + "\n", + "context = \"You are a finance professional that handles invoices and purchase orders.\"\n", + "question = \"Show me all the items purchased from AstroTech Solutions\"\n", "\n", "prompt = ChatPromptTemplate.from_template(\n", " \"\"\"Answer the question based only on the context provided.\n", @@ -264,23 +410,157 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 43, "id": "d47c37dd-5c11-416c-a3b6-bec413cd70e8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'Victor is a skinny 12-year-old with sloppy hair who is seen sleeping on his fire escape in the sun. He is hesitant to go to the pool with his friend Carlos because he is afraid of getting in trouble for not letting his mother cut his hair. Ultimately, he decides to go to the pool with Carlos.'" + "'- Gravitational Wave Detector Kit: $800\\n- Exoplanet Terrarium: $120'" ] }, - "execution_count": 7, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "chain.invoke(\"victor\")" + "chain.invoke(question)" + ] + }, + { + "cell_type": "markdown", + "id": "04813f37-ac97-48f3-8001-98c6c0d50c15", + "metadata": {}, + "source": [ + "## Use as an agent tool\n", + "\n", + "Like other retrievers, BoxRetriever can be also be added to a LangGraph agent as a tool." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "24e617ff-2285-4056-9421-9f9bfd3044b8", + "metadata": {}, + "outputs": [], + "source": [ + "pip install -U langsmith" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "52a56c14-228e-4b11-a6bd-5b75c0f403fa", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain import hub\n", + "from langchain.agents import AgentExecutor, create_openai_tools_agent\n", + "from langchain.tools.retriever import create_retriever_tool" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b2e7b413-f49a-4bfe-b1e1-d0643704686e", + "metadata": {}, + "outputs": [], + "source": [ + "box_search_options = BoxSearchOptions(\n", + " ancestor_folder_ids=[box_folder_id],\n", + " search_type_filter=[SearchTypeFilter.FILE_CONTENT],\n", + " created_date_range=[\"2023-01-01T00:00:00-07:00\", \"2024-08-01T00:00:00-07:00,\"],\n", + " k=200,\n", + " size_range=[1, 1000000],\n", + " updated_data_range=None,\n", + ")\n", + "\n", + "retriever = BoxRetriever(\n", + " box_developer_token=box_developer_token, box_search_options=box_search_options\n", + ")\n", + "\n", + "box_search_tool = create_retriever_tool(\n", + " retriever,\n", + " \"box_search_tool\",\n", + " \"This tool is used to search Box and retrieve documents that match the search criteria\",\n", + ")\n", + "tools = [box_search_tool]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "0cfdb1bf-d328-4d56-aad7-7c71064c091f", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shurrey/local/langchain/.venv/lib/python3.11/site-packages/langsmith/client.py:312: LangSmithMissingAPIKeyWarning: API key must be provided when using hosted LangSmith API\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "prompt = hub.pull(\"hwchase17/openai-tools-agent\")\n", + "prompt.messages\n", + "\n", + "llm = ChatOpenAI(temperature=0, openai_api_key=openai_key)\n", + "\n", + "agent = create_openai_tools_agent(llm, tools, prompt)\n", + "agent_executor = AgentExecutor(agent=agent, tools=tools)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "3b928f20-a28b-4954-bc71-ad35eba27253", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "result = agent_executor.invoke(\n", + " {\n", + " \"input\": \"list the items I purchased from AstroTech Solutions from most expensive to least expensive\"\n", + " }\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "1ae20ded-69ae-4b4e-b7c1-07aa2d50db31", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "result The items you purchased from AstroTech Solutions from most expensive to least expensive are:\n", + "\n", + "1. Gravitational Wave Detector Kit: $800\n", + "2. Exoplanet Terrarium: $120\n", + "\n", + "Total: $920\n" + ] + } + ], + "source": [ + "print(f\"result {result['output']}\")" ] }, { @@ -290,7 +570,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all BoxRetriever features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html).\n", + "For detailed documentation of all BoxRetriever features and configurations head to the [API reference](https://python.langchain.com/api_reference/box/retrievers/langchain_box.retrievers.box.BoxRetriever.html).\n", "\n", "\n", "## Help\n", diff --git a/docs/docs/integrations/retrievers/chatgpt-plugin.ipynb b/docs/docs/integrations/retrievers/chatgpt-plugin.ipynb index 485827823fdef..39d6a6e3d7e51 100644 --- a/docs/docs/integrations/retrievers/chatgpt-plugin.ipynb +++ b/docs/docs/integrations/retrievers/chatgpt-plugin.ipynb @@ -100,7 +100,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/cohere-reranker.ipynb b/docs/docs/integrations/retrievers/cohere-reranker.ipynb index 4054aad8e758d..290c05eafeb14 100644 --- a/docs/docs/integrations/retrievers/cohere-reranker.ipynb +++ b/docs/docs/integrations/retrievers/cohere-reranker.ipynb @@ -50,7 +50,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Cohere API Key:\")" + "if \"COHERE_API_KEY\" not in os.environ:\n", + " os.environ[\"COHERE_API_KEY\"] = getpass.getpass(\"Cohere API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/docarray_retriever.ipynb b/docs/docs/integrations/retrievers/docarray_retriever.ipynb index 25a89613fad83..9ab081efe4a19 100644 --- a/docs/docs/integrations/retrievers/docarray_retriever.ipynb +++ b/docs/docs/integrations/retrievers/docarray_retriever.ipynb @@ -562,7 +562,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/elasticsearch_retriever.ipynb b/docs/docs/integrations/retrievers/elasticsearch_retriever.ipynb index 88319281fc554..dafc757e2386f 100644 --- a/docs/docs/integrations/retrievers/elasticsearch_retriever.ipynb +++ b/docs/docs/integrations/retrievers/elasticsearch_retriever.ipynb @@ -21,7 +21,7 @@ "\n", "The `ElasticsearchRetriever` is a generic wrapper to enable flexible access to all `Elasticsearch` features through the [Query DSL](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html). For most use cases the other classes (`ElasticsearchStore`, `ElasticsearchEmbeddings`, etc.) should suffice, but if they don't you can use `ElasticsearchRetriever`.\n", "\n", - "This guide will help you getting started with the Elasticsearch [retriever](/docs/concepts/#retrievers). For detailed documentation of all `ElasticsearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/elasticsearch/retrievers/langchain_elasticsearch.retrievers.ElasticsearchRetriever.html).\n", + "This guide will help you getting started with the Elasticsearch [retriever](/docs/concepts/#retrievers). For detailed documentation of all `ElasticsearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/elasticsearch/retrievers/langchain_elasticsearch.retrievers.ElasticsearchRetriever.html).\n", "\n", "### Integration details\n", "\n", @@ -400,18 +400,29 @@ "def hybrid_query(search_query: str) -> Dict:\n", " vector = embeddings.embed_query(search_query) # same embeddings as for indexing\n", " return {\n", - " \"query\": {\n", - " \"match\": {\n", - " text_field: search_query,\n", - " },\n", - " },\n", - " \"knn\": {\n", - " \"field\": dense_vector_field,\n", - " \"query_vector\": vector,\n", - " \"k\": 5,\n", - " \"num_candidates\": 10,\n", - " },\n", - " \"rank\": {\"rrf\": {}},\n", + " \"retriever\": {\n", + " \"rrf\": {\n", + " \"retrievers\": [\n", + " {\n", + " \"standard\": {\n", + " \"query\": {\n", + " \"match\": {\n", + " text_field: search_query,\n", + " }\n", + " }\n", + " }\n", + " },\n", + " {\n", + " \"knn\": {\n", + " \"field\": dense_vector_field,\n", + " \"query_vector\": vector,\n", + " \"k\": 5,\n", + " \"num_candidates\": 10,\n", + " }\n", + " },\n", + " ]\n", + " }\n", + " }\n", " }\n", "\n", "\n", @@ -645,7 +656,7 @@ "Question: {question}\"\"\"\n", ")\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", "\n", "\n", "def format_docs(docs):\n", @@ -677,7 +688,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `ElasticsearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/elasticsearch/retrievers/langchain_elasticsearch.retrievers.ElasticsearchRetriever.html)." + "For detailed documentation of all `ElasticsearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/elasticsearch/retrievers/langchain_elasticsearch.retrievers.ElasticsearchRetriever.html)." ] } ], diff --git a/docs/docs/integrations/retrievers/embedchain.ipynb b/docs/docs/integrations/retrievers/embedchain.ipynb index 5c4d883aac132..1cf987b1d9471 100644 --- a/docs/docs/integrations/retrievers/embedchain.ipynb +++ b/docs/docs/integrations/retrievers/embedchain.ipynb @@ -68,7 +68,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/retrievers/google_vertex_ai_search.ipynb b/docs/docs/integrations/retrievers/google_vertex_ai_search.ipynb index 6310e34e1c37d..60352ca64d830 100644 --- a/docs/docs/integrations/retrievers/google_vertex_ai_search.ipynb +++ b/docs/docs/integrations/retrievers/google_vertex_ai_search.ipynb @@ -23,7 +23,7 @@ "\n", "This notebook demonstrates how to configure `Vertex AI Search` and use the Vertex AI Search [retriever](/docs/concepts/#retrievers). The Vertex AI Search retriever encapsulates the [Python client library](https://cloud.google.com/generative-ai-app-builder/docs/libraries#client-libraries-install-python) and uses it to access the [Search Service API](https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1beta.services.search_service).\n", "\n", - "For detailed documentation of all `VertexAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/google_community/vertex_ai_search/langchain_google_community.vertex_ai_search.VertexAISearchRetriever.html).\n", + "For detailed documentation of all `VertexAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_community/vertex_ai_search/langchain_google_community.vertex_ai_search.VertexAISearchRetriever.html).\n", "\n", "### Integration details\n", "\n", @@ -444,7 +444,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `VertexAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/google_community/vertex_ai_search/langchain_google_community.vertex_ai_search.VertexAISearchRetriever.html)." + "For detailed documentation of all `VertexAISearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_community/vertex_ai_search/langchain_google_community.vertex_ai_search.VertexAISearchRetriever.html)." ] } ], diff --git a/docs/docs/integrations/retrievers/index.mdx b/docs/docs/integrations/retrievers/index.mdx index 451a2c5c6462e..6d749441e6f03 100644 --- a/docs/docs/integrations/retrievers/index.mdx +++ b/docs/docs/integrations/retrievers/index.mdx @@ -12,7 +12,7 @@ It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) them. Retrievers can be created from vector stores, but are also broad enough to include [Wikipedia search](/docs/integrations/retrievers/wikipedia/) and [Amazon Kendra](/docs/integrations/retrievers/amazon_kendra_retriever/). -Retrievers accept a string query as input and return a list of [Documents](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) as output. +Retrievers accept a string query as input and return a list of [Documents](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) as output. For specifics on how to use retrievers, see the [relevant how-to guides here](/docs/how_to/#retrievers). diff --git a/docs/docs/integrations/retrievers/kinetica.ipynb b/docs/docs/integrations/retrievers/kinetica.ipynb index afde339dd9caa..2f22c64aa8816 100644 --- a/docs/docs/integrations/retrievers/kinetica.ipynb +++ b/docs/docs/integrations/retrievers/kinetica.ipynb @@ -41,7 +41,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/milvus_hybrid_search.ipynb b/docs/docs/integrations/retrievers/milvus_hybrid_search.ipynb index f77f589271cb2..fa498e2abe05e 100644 --- a/docs/docs/integrations/retrievers/milvus_hybrid_search.ipynb +++ b/docs/docs/integrations/retrievers/milvus_hybrid_search.ipynb @@ -17,7 +17,7 @@ "\n", "> [Milvus](https://milvus.io/docs) is an open-source vector database built to power embedding similarity search and AI applications. Milvus makes unstructured data search more accessible, and provides a consistent user experience regardless of the deployment environment.\n", "\n", - "This will help you getting started with the Milvus Hybrid Search [retriever](/docs/concepts/#retrievers), which combines the strengths of both dense and sparse vector search. For detailed documentation of all `MilvusCollectionHybridSearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/milvus/retrievers/langchain_milvus.retrievers.milvus_hybrid_search.MilvusCollectionHybridSearchRetriever.html).\n", + "This will help you getting started with the Milvus Hybrid Search [retriever](/docs/concepts/#retrievers), which combines the strengths of both dense and sparse vector search. For detailed documentation of all `MilvusCollectionHybridSearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/milvus/retrievers/langchain_milvus.retrievers.milvus_hybrid_search.MilvusCollectionHybridSearchRetriever.html).\n", "\n", "See also the Milvus Multi-Vector Search [docs](https://milvus.io/docs/multi-vector-search.md).\n", "\n", @@ -611,7 +611,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `MilvusCollectionHybridSearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/milvus/retrievers/langchain_milvus.retrievers.milvus_hybrid_search.MilvusCollectionHybridSearchRetriever.html)." + "For detailed documentation of all `MilvusCollectionHybridSearchRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/milvus/retrievers/langchain_milvus.retrievers.milvus_hybrid_search.MilvusCollectionHybridSearchRetriever.html)." ] } ], diff --git a/docs/docs/integrations/retrievers/outline.ipynb b/docs/docs/integrations/retrievers/outline.ipynb index fcaec16866a06..ad58474813a2d 100644 --- a/docs/docs/integrations/retrievers/outline.ipynb +++ b/docs/docs/integrations/retrievers/outline.ipynb @@ -128,7 +128,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/pinecone_hybrid_search.ipynb b/docs/docs/integrations/retrievers/pinecone_hybrid_search.ipynb index d0691baceb56d..72cb5dde4f33e 100644 --- a/docs/docs/integrations/retrievers/pinecone_hybrid_search.ipynb +++ b/docs/docs/integrations/retrievers/pinecone_hybrid_search.ipynb @@ -73,7 +73,8 @@ "source": [ "import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query.ipynb index f75c2b9792ae8..d5584362a89ae 100644 --- a/docs/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/activeloop_deeplake_self_query.ipynb @@ -70,8 +70,10 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", - "os.environ[\"ACTIVELOOP_TOKEN\"] = getpass.getpass(\"Activeloop token:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"ACTIVELOOP_TOKEN\" not in os.environ:\n", + " os.environ[\"ACTIVELOOP_TOKEN\"] = getpass.getpass(\"Activeloop token:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/astradb.ipynb b/docs/docs/integrations/retrievers/self_query/astradb.ipynb index 96b8ad83ff877..a170a306f1b6a 100644 --- a/docs/docs/integrations/retrievers/self_query/astradb.ipynb +++ b/docs/docs/integrations/retrievers/self_query/astradb.ipynb @@ -48,7 +48,8 @@ "\n", "from langchain_openai.embeddings import OpenAIEmbeddings\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass(\"OpenAI API Key:\")\n", "\n", "embeddings = OpenAIEmbeddings()" ] diff --git a/docs/docs/integrations/retrievers/self_query/chroma_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/chroma_self_query.ipynb index 69ddb0cad2363..f9f5725afbe2c 100644 --- a/docs/docs/integrations/retrievers/self_query/chroma_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/chroma_self_query.ipynb @@ -75,7 +75,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/databricks_vector_search.ipynb b/docs/docs/integrations/retrievers/self_query/databricks_vector_search.ipynb index 6badeef82d2e3..1f88a518785e7 100644 --- a/docs/docs/integrations/retrievers/self_query/databricks_vector_search.ipynb +++ b/docs/docs/integrations/retrievers/self_query/databricks_vector_search.ipynb @@ -103,7 +103,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "databricks_host = getpass.getpass(\"Databricks host:\")\n", "databricks_token = getpass.getpass(\"Databricks token:\")" ] diff --git a/docs/docs/integrations/retrievers/self_query/elasticsearch_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/elasticsearch_self_query.ipynb index 2d8d4bf605545..c5830e7db688f 100644 --- a/docs/docs/integrations/retrievers/self_query/elasticsearch_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/elasticsearch_self_query.ipynb @@ -64,7 +64,8 @@ "from langchain_elasticsearch import ElasticsearchStore\n", "from langchain_openai import OpenAIEmbeddings\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "\n", "embeddings = OpenAIEmbeddings()" ] diff --git a/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb index ff44f6c6d9561..a29517693669b 100644 --- a/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/myscale_self_query.ipynb @@ -62,11 +62,16 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", - "os.environ[\"MYSCALE_HOST\"] = getpass.getpass(\"MyScale URL:\")\n", - "os.environ[\"MYSCALE_PORT\"] = getpass.getpass(\"MyScale Port:\")\n", - "os.environ[\"MYSCALE_USERNAME\"] = getpass.getpass(\"MyScale Username:\")\n", - "os.environ[\"MYSCALE_PASSWORD\"] = getpass.getpass(\"MyScale Password:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"MYSCALE_HOST\" not in os.environ:\n", + " os.environ[\"MYSCALE_HOST\"] = getpass.getpass(\"MyScale URL:\")\n", + "if \"MYSCALE_PORT\" not in os.environ:\n", + " os.environ[\"MYSCALE_PORT\"] = getpass.getpass(\"MyScale Port:\")\n", + "if \"MYSCALE_USERNAME\" not in os.environ:\n", + " os.environ[\"MYSCALE_USERNAME\"] = getpass.getpass(\"MyScale Username:\")\n", + "if \"MYSCALE_PASSWORD\" not in os.environ:\n", + " os.environ[\"MYSCALE_PASSWORD\"] = getpass.getpass(\"MyScale Password:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/neo4j_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/neo4j_self_query.ipynb index e29da8d556874..6bc4f718dfc84 100644 --- a/docs/docs/integrations/retrievers/self_query/neo4j_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/neo4j_self_query.ipynb @@ -62,7 +62,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { @@ -84,9 +85,12 @@ "# To run this notebook, you can set up a free neo4j account on neo4j.com and input the following information.\n", "# (If you are having trouble connecting to the database, try using neo4j+ssc: instead of neo4j+s)\n", "\n", - "os.environ[\"NEO4J_URI\"] = getpass.getpass(\"Neo4j URL:\")\n", - "os.environ[\"NEO4J_USERNAME\"] = getpass.getpass(\"Neo4j User Name:\")\n", - "os.environ[\"NEO4J_PASSWORD\"] = getpass.getpass(\"Neo4j Password:\")" + "if \"NEO4J_URI\" not in os.environ:\n", + " os.environ[\"NEO4J_URI\"] = getpass.getpass(\"Neo4j URL:\")\n", + "if \"NEO4J_USERNAME\" not in os.environ:\n", + " os.environ[\"NEO4J_USERNAME\"] = getpass.getpass(\"Neo4j User Name:\")\n", + "if \"NEO4J_PASSWORD\" not in os.environ:\n", + " os.environ[\"NEO4J_PASSWORD\"] = getpass.getpass(\"Neo4j Password:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/opensearch_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/opensearch_self_query.ipynb index 130512180b275..8795bbd1d1a38 100644 --- a/docs/docs/integrations/retrievers/self_query/opensearch_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/opensearch_self_query.ipynb @@ -63,7 +63,8 @@ "from langchain_core.documents import Document\n", "from langchain_openai import OpenAIEmbeddings\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "\n", "embeddings = OpenAIEmbeddings()" ] diff --git a/docs/docs/integrations/retrievers/self_query/pgvector_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/pgvector_self_query.ipynb index 3de7bfc9bbcdc..8d27022fe2582 100644 --- a/docs/docs/integrations/retrievers/self_query/pgvector_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/pgvector_self_query.ipynb @@ -55,7 +55,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/pinecone.ipynb b/docs/docs/integrations/retrievers/self_query/pinecone.ipynb index aabc5c284bd7e..670c7db91f0f3 100644 --- a/docs/docs/integrations/retrievers/self_query/pinecone.ipynb +++ b/docs/docs/integrations/retrievers/self_query/pinecone.ipynb @@ -88,7 +88,8 @@ "source": [ "import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/redis_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/redis_self_query.ipynb index a644a39e895d2..55e4f6fa350e4 100644 --- a/docs/docs/integrations/retrievers/self_query/redis_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/redis_self_query.ipynb @@ -55,7 +55,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/supabase_self_query.ipynb b/docs/docs/integrations/retrievers/self_query/supabase_self_query.ipynb index b4504f8617762..8884216448788 100644 --- a/docs/docs/integrations/retrievers/self_query/supabase_self_query.ipynb +++ b/docs/docs/integrations/retrievers/self_query/supabase_self_query.ipynb @@ -163,9 +163,12 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"SUPABASE_URL\"] = getpass.getpass(\"Supabase URL:\")\n", - "os.environ[\"SUPABASE_SERVICE_KEY\"] = getpass.getpass(\"Supabase Service Key:\")\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"SUPABASE_URL\" not in os.environ:\n", + " os.environ[\"SUPABASE_URL\"] = getpass.getpass(\"Supabase URL:\")\n", + "if \"SUPABASE_SERVICE_KEY\" not in os.environ:\n", + " os.environ[\"SUPABASE_SERVICE_KEY\"] = getpass.getpass(\"Supabase Service Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/self_query/tencentvectordb.ipynb b/docs/docs/integrations/retrievers/self_query/tencentvectordb.ipynb index a2e37fe85f587..a59546e1308fd 100644 --- a/docs/docs/integrations/retrievers/self_query/tencentvectordb.ipynb +++ b/docs/docs/integrations/retrievers/self_query/tencentvectordb.ipynb @@ -80,7 +80,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/singlestoredb.ipynb b/docs/docs/integrations/retrievers/singlestoredb.ipynb index 7b9dc4c08379f..acee13993f871 100644 --- a/docs/docs/integrations/retrievers/singlestoredb.ipynb +++ b/docs/docs/integrations/retrievers/singlestoredb.ipynb @@ -48,7 +48,8 @@ "import os\n", "\n", "# We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "\n", "from langchain_community.document_loaders import TextLoader\n", "from langchain_community.vectorstores import SingleStoreDB\n", diff --git a/docs/docs/integrations/retrievers/svm.ipynb b/docs/docs/integrations/retrievers/svm.ipynb index 2fbd4f969f921..efe624eca06b5 100644 --- a/docs/docs/integrations/retrievers/svm.ipynb +++ b/docs/docs/integrations/retrievers/svm.ipynb @@ -68,7 +68,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/retrievers/tavily.ipynb b/docs/docs/integrations/retrievers/tavily.ipynb index d6c70fb1fb9c9..53467d4e86344 100644 --- a/docs/docs/integrations/retrievers/tavily.ipynb +++ b/docs/docs/integrations/retrievers/tavily.ipynb @@ -161,7 +161,7 @@ "Question: {question}\"\"\"\n", ")\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", "\n", "\n", "def format_docs(docs):\n", @@ -202,7 +202,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `TavilySearchAPIRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html)." + "For detailed documentation of all `TavilySearchAPIRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html)." ] } ], diff --git a/docs/docs/integrations/retrievers/weaviate-hybrid.ipynb b/docs/docs/integrations/retrievers/weaviate-hybrid.ipynb index e02aef56f41b1..9592435b918b1 100644 --- a/docs/docs/integrations/retrievers/weaviate-hybrid.ipynb +++ b/docs/docs/integrations/retrievers/weaviate-hybrid.ipynb @@ -62,16 +62,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "f47a2bfe", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [] - } - ], + "outputs": [], "source": [ "from langchain_community.retrievers import (\n", " WeaviateHybridSearchRetriever,\n", diff --git a/docs/docs/integrations/retrievers/wikipedia.ipynb b/docs/docs/integrations/retrievers/wikipedia.ipynb index 57798aaf152a5..53c393e503b4d 100644 --- a/docs/docs/integrations/retrievers/wikipedia.ipynb +++ b/docs/docs/integrations/retrievers/wikipedia.ipynb @@ -20,7 +20,7 @@ "## Overview\n", ">[Wikipedia](https://wikipedia.org/) is a multilingual free online encyclopedia written and maintained by a community of volunteers, known as Wikipedians, through open collaboration and using a wiki-based editing system called MediaWiki. `Wikipedia` is the largest and most-read reference work in history.\n", "\n", - "This notebook shows how to retrieve wiki pages from `wikipedia.org` into the [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) format that is used downstream.\n", + "This notebook shows how to retrieve wiki pages from `wikipedia.org` into the [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) format that is used downstream.\n", "\n", "### Integration details\n", "\n", @@ -152,11 +152,9 @@ "\n", "We will need a LLM or chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -171,7 +169,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -236,7 +234,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `WikipediaRetriever` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html#langchain-community-retrievers-wikipedia-wikipediaretriever)." + "For detailed documentation of all `WikipediaRetriever` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html#langchain-community-retrievers-wikipedia-wikipediaretriever)." ] } ], diff --git a/docs/docs/integrations/stores/astradb.ipynb b/docs/docs/integrations/stores/astradb.ipynb index 1d16d83477bd8..c38cf5b7a0db2 100644 --- a/docs/docs/integrations/stores/astradb.ipynb +++ b/docs/docs/integrations/stores/astradb.ipynb @@ -19,7 +19,7 @@ "source": [ "# AstraDBByteStore\n", "\n", - "This will help you get started with Astra DB [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `AstraDBByteStore` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html).\n", + "This will help you get started with Astra DB [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `AstraDBByteStore` features and configurations head to the [API reference](https://python.langchain.com/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html).\n", "\n", "## Overview\n", "\n", @@ -29,7 +29,7 @@ "\n", "| Class | Package | Local | JS support | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [AstraDBByteStore](https://python.langchain.com/v0.2/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html) | [langchain_astradb](https://python.langchain.com/v0.2/api_reference/astradb/index.html) | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_astradb?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_astradb?style=flat-square&label=%20) |\n", + "| [AstraDBByteStore](https://python.langchain.com/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html) | [langchain_astradb](https://python.langchain.com/api_reference/astradb/index.html) | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_astradb?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_astradb?style=flat-square&label=%20) |\n", "\n", "## Setup\n", "\n", @@ -187,7 +187,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `AstraDBByteStore` features and configurations, head to the API reference: https://python.langchain.com/v0.2/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html" + "For detailed documentation of all `AstraDBByteStore` features and configurations, head to the API reference: https://python.langchain.com/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html" ] } ], diff --git a/docs/docs/integrations/stores/cassandra.ipynb b/docs/docs/integrations/stores/cassandra.ipynb index 20e77cb8d5b7b..9c31d12864f83 100644 --- a/docs/docs/integrations/stores/cassandra.ipynb +++ b/docs/docs/integrations/stores/cassandra.ipynb @@ -19,7 +19,7 @@ "source": [ "# CassandraByteStore\n", "\n", - "This will help you get started with Cassandra [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `CassandraByteStore` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html).\n", + "This will help you get started with Cassandra [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `CassandraByteStore` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html).\n", "\n", "## Overview\n", "\n", @@ -27,9 +27,9 @@ "\n", "### Integration details\n", "\n", - "| Class | Package | Local | [JS support](https://js.langchain.com/v0.2/docs/integrations/stores/cassandra_storage) | Package downloads | Package latest |\n", + "| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/cassandra_storage) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [CassandraByteStore](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", + "| [CassandraByteStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", "\n", "## Setup\n", "\n", @@ -199,7 +199,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `CassandraByteStore` features and configurations, head to the API reference: https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html" + "For detailed documentation of all `CassandraByteStore` features and configurations, head to the API reference: https://python.langchain.com/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html" ] } ], diff --git a/docs/docs/integrations/stores/elasticsearch.ipynb b/docs/docs/integrations/stores/elasticsearch.ipynb index 99ffa7510ba13..370886867ed95 100644 --- a/docs/docs/integrations/stores/elasticsearch.ipynb +++ b/docs/docs/integrations/stores/elasticsearch.ipynb @@ -19,7 +19,7 @@ "source": [ "# ElasticsearchEmbeddingsCache\n", "\n", - "This will help you get started with Elasticsearch [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `ElasticsearchEmbeddingsCache` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html).\n", + "This will help you get started with Elasticsearch [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `ElasticsearchEmbeddingsCache` features and configurations head to the [API reference](https://python.langchain.com/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html).\n", "\n", "## Overview\n", "\n", @@ -29,7 +29,7 @@ "\n", "| Class | Package | Local | JS support | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [ElasticsearchEmbeddingsCache](https://python.langchain.com/v0.2/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html) | [langchain_elasticsearch](https://python.langchain.com/v0.2/api_reference/elasticsearch/index.html) | ✅ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_elasticsearch?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_elasticsearch?style=flat-square&label=%20) |\n", + "| [ElasticsearchEmbeddingsCache](https://python.langchain.com/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html) | [langchain_elasticsearch](https://python.langchain.com/api_reference/elasticsearch/index.html) | ✅ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_elasticsearch?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_elasticsearch?style=flat-square&label=%20) |\n", "\n", "## Setup\n", "\n", @@ -218,7 +218,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `ElasticsearchEmbeddingsCache` features and configurations, head to the API reference: https://python.langchain.com/v0.2/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html" + "For detailed documentation of all `ElasticsearchEmbeddingsCache` features and configurations, head to the API reference: https://python.langchain.com/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html" ] } ], diff --git a/docs/docs/integrations/stores/file_system.ipynb b/docs/docs/integrations/stores/file_system.ipynb index b6af812ae9750..1a0baa82dd4a7 100644 --- a/docs/docs/integrations/stores/file_system.ipynb +++ b/docs/docs/integrations/stores/file_system.ipynb @@ -19,7 +19,7 @@ "source": [ "# LocalFileStore\n", "\n", - "This will help you get started with local filesystem [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all LocalFileStore features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/langchain/storage/langchain.storage.file_system.LocalFileStore.html).\n", + "This will help you get started with local filesystem [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all LocalFileStore features and configurations head to the [API reference](https://python.langchain.com/api_reference/langchain/storage/langchain.storage.file_system.LocalFileStore.html).\n", "\n", "## Overview\n", "\n", @@ -27,9 +27,9 @@ "\n", "### Integration details\n", "\n", - "| Class | Package | Local | [JS support](https://js.langchain.com/v0.2/docs/integrations/stores/file_system) | Package downloads | Package latest |\n", + "| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/file_system) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [LocalFileStore](https://python.langchain.com/v0.2/api_reference/langchain/storage/langchain.storage.file_system.LocalFileStore.html) | [langchain](https://python.langchain.com/v0.2/api_reference/langchain/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain?style=flat-square&label=%20) |" + "| [LocalFileStore](https://python.langchain.com/api_reference/langchain/storage/langchain.storage.file_system.LocalFileStore.html) | [langchain](https://python.langchain.com/api_reference/langchain/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain?style=flat-square&label=%20) |" ] }, { @@ -184,7 +184,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `LocalFileStore` features and configurations, head to the API reference: https://python.langchain.com/v0.2/api_reference/langchain/storage/langchain.storage.file_system.LocalFileStore.html" + "For detailed documentation of all `LocalFileStore` features and configurations, head to the API reference: https://python.langchain.com/api_reference/langchain/storage/langchain.storage.file_system.LocalFileStore.html" ] } ], diff --git a/docs/docs/integrations/stores/in_memory.ipynb b/docs/docs/integrations/stores/in_memory.ipynb index 1b5927a6a94d1..7f81222dab684 100644 --- a/docs/docs/integrations/stores/in_memory.ipynb +++ b/docs/docs/integrations/stores/in_memory.ipynb @@ -19,7 +19,7 @@ "source": [ "# InMemoryByteStore\n", "\n", - "This guide will help you get started with in-memory [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `InMemoryByteStore` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html).\n", + "This guide will help you get started with in-memory [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `InMemoryByteStore` features and configurations head to the [API reference](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html).\n", "\n", "## Overview\n", "\n", @@ -27,9 +27,9 @@ "\n", "### Integration details\n", "\n", - "| Class | Package | Local | [JS support](https://js.langchain.com/v0.2/docs/integrations/stores/in_memory/) | Package downloads | Package latest |\n", + "| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/in_memory/) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [InMemoryByteStore](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html) | [langchain_core](https://python.langchain.com/v0.2/api_reference/core/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_core?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_core?style=flat-square&label=%20) |" + "| [InMemoryByteStore](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html) | [langchain_core](https://python.langchain.com/api_reference/core/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_core?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_core?style=flat-square&label=%20) |" ] }, { @@ -156,7 +156,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `InMemoryByteStore` features and configurations, head to the API reference: https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html" + "For detailed documentation of all `InMemoryByteStore` features and configurations, head to the API reference: https://python.langchain.com/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html" ] } ], diff --git a/docs/docs/integrations/stores/redis.ipynb b/docs/docs/integrations/stores/redis.ipynb index 7e59142b00a99..1a90576acf9c9 100644 --- a/docs/docs/integrations/stores/redis.ipynb +++ b/docs/docs/integrations/stores/redis.ipynb @@ -19,7 +19,7 @@ "source": [ "# RedisStore\n", "\n", - "This will help you get started with Redis [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `RedisStore` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html).\n", + "This will help you get started with Redis [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `RedisStore` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html).\n", "\n", "## Overview\n", "\n", @@ -27,9 +27,9 @@ "\n", "### Integration details\n", "\n", - "| Class | Package | Local | [JS support](https://js.langchain.com/v0.2/docs/integrations/stores/ioredis_storage) | Package downloads | Package latest |\n", + "| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/ioredis_storage) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [RedisStore](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", + "| [RedisStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ✅ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", "\n", "## Setup\n", "\n", @@ -160,7 +160,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `RedisStore` features and configurations, head to the API reference: https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html" + "For detailed documentation of all `RedisStore` features and configurations, head to the API reference: https://python.langchain.com/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html" ] } ], diff --git a/docs/docs/integrations/stores/upstash_redis.ipynb b/docs/docs/integrations/stores/upstash_redis.ipynb index 2811536f8f49a..c512e9b376cff 100644 --- a/docs/docs/integrations/stores/upstash_redis.ipynb +++ b/docs/docs/integrations/stores/upstash_redis.ipynb @@ -19,7 +19,7 @@ "source": [ "# UpstashRedisByteStore\n", "\n", - "This will help you get started with Upstash redis [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `UpstashRedisByteStore` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html).\n", + "This will help you get started with Upstash redis [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all `UpstashRedisByteStore` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html).\n", "\n", "## Overview\n", "\n", @@ -29,9 +29,9 @@ "\n", "### Integration details\n", "\n", - "| Class | Package | Local | [JS support](https://js.langchain.com/v0.2/docs/integrations/stores/upstash_redis_storage) | Package downloads | Package latest |\n", + "| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/upstash_redis_storage) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", - "| [UpstashRedisByteStore](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html) | [langchain_community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", + "| [UpstashRedisByteStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html) | [langchain_community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ✅ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n", "\n", "## Setup\n", "\n", @@ -180,7 +180,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `UpstashRedisByteStore` features and configurations, head to the API reference: https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html" + "For detailed documentation of all `UpstashRedisByteStore` features and configurations, head to the API reference: https://python.langchain.com/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html" ] } ], diff --git a/docs/docs/integrations/text_embedding/ai21.ipynb b/docs/docs/integrations/text_embedding/ai21.ipynb index d773d289d0e2b..c48d3e24a62b8 100644 --- a/docs/docs/integrations/text_embedding/ai21.ipynb +++ b/docs/docs/integrations/text_embedding/ai21.ipynb @@ -17,7 +17,7 @@ "source": [ "# AI21Embeddings\n", "\n", - "This will help you get started with AI21 embedding models using LangChain. For detailed documentation on `AI21Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html).\n", + "This will help you get started with AI21 embedding models using LangChain. For detailed documentation on `AI21Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", @@ -242,7 +242,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `AI21Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html).\n" + "For detailed documentation on `AI21Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/azureopenai.ipynb b/docs/docs/integrations/text_embedding/azureopenai.ipynb index d12013b272f72..7f5281e21e9e5 100644 --- a/docs/docs/integrations/text_embedding/azureopenai.ipynb +++ b/docs/docs/integrations/text_embedding/azureopenai.ipynb @@ -17,7 +17,7 @@ "source": [ "# AzureOpenAIEmbeddings\n", "\n", - "This will help you get started with AzureOpenAI embedding models using LangChain. For detailed documentation on `AzureOpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/openai/embeddings/langchain_openai.embeddings.azure.AzureOpenAIEmbeddings.html).\n", + "This will help you get started with AzureOpenAI embedding models using LangChain. For detailed documentation on `AzureOpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.azure.AzureOpenAIEmbeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", @@ -250,7 +250,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `AzureOpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/openai/embeddings/langchain_openai.embeddings.azure.AzureOpenAIEmbeddings.html).\n" + "For detailed documentation on `AzureOpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.azure.AzureOpenAIEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/cohere.ipynb b/docs/docs/integrations/text_embedding/cohere.ipynb index f0114e81166e4..073aa6183b024 100644 --- a/docs/docs/integrations/text_embedding/cohere.ipynb +++ b/docs/docs/integrations/text_embedding/cohere.ipynb @@ -17,7 +17,7 @@ "source": [ "# CohereEmbeddings\n", "\n", - "This will help you get started with Cohere embedding models using LangChain. For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n", + "This will help you get started with Cohere embedding models using LangChain. For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", @@ -239,7 +239,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n" + "For detailed documentation on `CohereEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/databricks.ipynb b/docs/docs/integrations/text_embedding/databricks.ipynb index f447d6c71345e..ae6b6ab8c031b 100644 --- a/docs/docs/integrations/text_embedding/databricks.ipynb +++ b/docs/docs/integrations/text_embedding/databricks.ipynb @@ -19,7 +19,7 @@ "\n", "> [Databricks](https://www.databricks.com/) Lakehouse Platform unifies data, analytics, and AI on one platform.\n", "\n", - "This notebook provides a quick overview for getting started with Databricks [embedding models](/docs/concepts/#embedding-models). For detailed documentation of all `DatabricksEmbeddings` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.databricks.DatabricksEmbeddings.html).\n", + "This notebook provides a quick overview for getting started with Databricks [embedding models](/docs/concepts/#embedding-models). For detailed documentation of all `DatabricksEmbeddings` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.databricks.DatabricksEmbeddings.html).\n", "\n", "\n", "\n", @@ -67,7 +67,10 @@ "import os\n", "\n", "os.environ[\"DATABRICKS_HOST\"] = \"https://your-workspace.cloud.databricks.com\"\n", - "os.environ[\"DATABRICKS_TOKEN\"] = getpass.getpass(\"Enter your Databricks access token: \")" + "if \"DATABRICKS_TOKEN\" not in os.environ:\n", + " os.environ[\"DATABRICKS_TOKEN\"] = getpass.getpass(\n", + " \"Enter your Databricks access token: \"\n", + " )" ] }, { @@ -241,7 +244,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `DatabricksEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.databricks.DatabricksEmbeddings.html).\n" + "For detailed documentation on `DatabricksEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.databricks.DatabricksEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/fireworks.ipynb b/docs/docs/integrations/text_embedding/fireworks.ipynb index 1370d1e13da71..32fe0134b88d5 100644 --- a/docs/docs/integrations/text_embedding/fireworks.ipynb +++ b/docs/docs/integrations/text_embedding/fireworks.ipynb @@ -17,7 +17,7 @@ "source": [ "# FireworksEmbeddings\n", "\n", - "This will help you get started with Fireworks embedding models using LangChain. For detailed documentation on `FireworksEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html).\n", + "This will help you get started with Fireworks embedding models using LangChain. For detailed documentation on `FireworksEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html).\n", "\n", "## Overview\n", "\n", @@ -239,7 +239,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation of all `FireworksEmbeddings` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html)." + "For detailed documentation of all `FireworksEmbeddings` features and configurations head to the [API reference](https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html)." ] } ], diff --git a/docs/docs/integrations/text_embedding/gigachat.ipynb b/docs/docs/integrations/text_embedding/gigachat.ipynb index 855ec550d6f56..1f98f3f4f7411 100644 --- a/docs/docs/integrations/text_embedding/gigachat.ipynb +++ b/docs/docs/integrations/text_embedding/gigachat.ipynb @@ -44,7 +44,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()" + "if \"GIGACHAT_CREDENTIALS\" not in os.environ:\n", + " os.environ[\"GIGACHAT_CREDENTIALS\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/text_embedding/google_vertex_ai_palm.ipynb b/docs/docs/integrations/text_embedding/google_vertex_ai_palm.ipynb index 42a40cf6fe958..4e08f468ecbfc 100644 --- a/docs/docs/integrations/text_embedding/google_vertex_ai_palm.ipynb +++ b/docs/docs/integrations/text_embedding/google_vertex_ai_palm.ipynb @@ -18,14 +18,14 @@ "source": [ "# Google Vertex AI Embeddings \n", "\n", - "This will help you get started with Google Vertex AI Embeddings models using LangChain. For detailed documentation on `Google Vertex AI Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html).\n", + "This will help you get started with Google Vertex AI Embeddings models using LangChain. For detailed documentation on `Google Vertex AI Embeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", "\n", "| Provider | Package |\n", "|:--------:|:-------:|\n", - "| [Google](https://python.langchain.com/v0.2/docs/integrations/platforms/google/) | [langchain-google-vertexai](https://python.langchain.com/v0.2/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html) |\n", + "| [Google](https://python.langchain.com/docs/integrations/platforms/google/) | [langchain-google-vertexai](https://python.langchain.com/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html) |\n", "\n", "## Setup\n", "\n", @@ -289,7 +289,7 @@ "## API Reference\n", "\n", "For detailed documentation on `Google Vertex AI Embeddings\n", - "` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html).\n" + "` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/google_vertexai/embeddings/langchain_google_vertexai.embeddings.VertexAIEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/ipex_llm.ipynb b/docs/docs/integrations/text_embedding/ipex_llm.ipynb index 2a44ff404481e..e8d7c2dd0e89c 100644 --- a/docs/docs/integrations/text_embedding/ipex_llm.ipynb +++ b/docs/docs/integrations/text_embedding/ipex_llm.ipynb @@ -70,7 +70,7 @@ "metadata": {}, "source": [ "API Reference\n", - "- [IpexLLMBgeEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.ipex_llm.IpexLLMBgeEmbeddings.html)" + "- [IpexLLMBgeEmbeddings](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.ipex_llm.IpexLLMBgeEmbeddings.html)" ] }, { diff --git a/docs/docs/integrations/text_embedding/ipex_llm_gpu.ipynb b/docs/docs/integrations/text_embedding/ipex_llm_gpu.ipynb index cca30c6745eea..ca3ad124e6f93 100644 --- a/docs/docs/integrations/text_embedding/ipex_llm_gpu.ipynb +++ b/docs/docs/integrations/text_embedding/ipex_llm_gpu.ipynb @@ -133,7 +133,7 @@ "metadata": {}, "source": [ "API Reference\n", - "- [IpexLLMBgeEmbeddings](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.ipex_llm.IpexLLMBgeEmbeddings.html)" + "- [IpexLLMBgeEmbeddings](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.ipex_llm.IpexLLMBgeEmbeddings.html)" ] }, { diff --git a/docs/docs/integrations/text_embedding/mistralai.ipynb b/docs/docs/integrations/text_embedding/mistralai.ipynb index 8efe1e0f2bb1c..70ce6f1049659 100644 --- a/docs/docs/integrations/text_embedding/mistralai.ipynb +++ b/docs/docs/integrations/text_embedding/mistralai.ipynb @@ -17,7 +17,7 @@ "source": [ "# MistralAIEmbeddings\n", "\n", - "This will help you get started with MistralAI embedding models using LangChain. For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n", + "This will help you get started with MistralAI embedding models using LangChain. For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", @@ -238,7 +238,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n" + "For detailed documentation on `MistralAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/nomic.ipynb b/docs/docs/integrations/text_embedding/nomic.ipynb index 52dbfca37e1bd..51c8773b2dbf8 100644 --- a/docs/docs/integrations/text_embedding/nomic.ipynb +++ b/docs/docs/integrations/text_embedding/nomic.ipynb @@ -17,7 +17,7 @@ "source": [ "# NomicEmbeddings\n", "\n", - "This will help you get started with Nomic embedding models using LangChain. For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n", + "This will help you get started with Nomic embedding models using LangChain. For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", @@ -259,7 +259,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n" + "For detailed documentation on `NomicEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/ollama.ipynb b/docs/docs/integrations/text_embedding/ollama.ipynb index 8464b9ea5a0d6..0cc76641485a7 100644 --- a/docs/docs/integrations/text_embedding/ollama.ipynb +++ b/docs/docs/integrations/text_embedding/ollama.ipynb @@ -17,7 +17,7 @@ "source": [ "# OllamaEmbeddings\n", "\n", - "This will help you get started with Ollama embedding models using LangChain. For detailed documentation on `OllamaEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/ollama/embeddings/langchain_ollama.embeddings.OllamaEmbeddings.html).\n", + "This will help you get started with Ollama embedding models using LangChain. For detailed documentation on `OllamaEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/ollama/embeddings/langchain_ollama.embeddings.OllamaEmbeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", @@ -248,7 +248,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `OllamaEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/ollama/embeddings/langchain_ollama.embeddings.OllamaEmbeddings.html).\n" + "For detailed documentation on `OllamaEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/ollama/embeddings/langchain_ollama.embeddings.OllamaEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/openai.ipynb b/docs/docs/integrations/text_embedding/openai.ipynb index 0696a27f26812..cea8618fea339 100644 --- a/docs/docs/integrations/text_embedding/openai.ipynb +++ b/docs/docs/integrations/text_embedding/openai.ipynb @@ -18,7 +18,7 @@ "source": [ "# OpenAIEmbeddings\n", "\n", - "This will help you get started with OpenAI embedding models using LangChain. For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n", + "This will help you get started with OpenAI embedding models using LangChain. For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n", "\n", "\n", "## Overview\n", @@ -244,7 +244,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n" + "For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/together.ipynb b/docs/docs/integrations/text_embedding/together.ipynb index dcaeaaf4e4459..b64159879f939 100644 --- a/docs/docs/integrations/text_embedding/together.ipynb +++ b/docs/docs/integrations/text_embedding/together.ipynb @@ -17,7 +17,7 @@ "source": [ "# TogetherEmbeddings\n", "\n", - "This will help you get started with Together embedding models using LangChain. For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n", + "This will help you get started with Together embedding models using LangChain. For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n", "\n", "## Overview\n", "### Integration details\n", @@ -249,7 +249,7 @@ "source": [ "## API Reference\n", "\n", - "For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n" + "For detailed documentation on `TogetherEmbeddings` features and configuration options, please refer to the [API reference](https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html).\n" ] } ], diff --git a/docs/docs/integrations/text_embedding/voyageai.ipynb b/docs/docs/integrations/text_embedding/voyageai.ipynb index 908b16cfc682c..1bc2391ba9957 100644 --- a/docs/docs/integrations/text_embedding/voyageai.ipynb +++ b/docs/docs/integrations/text_embedding/voyageai.ipynb @@ -29,7 +29,9 @@ "source": [ "Voyage AI utilizes API keys to monitor usage and manage permissions. To obtain your key, create an account on our [homepage](https://www.voyageai.com). Then, create a VoyageEmbeddings model with your API key. You can use any of the following models: ([source](https://docs.voyageai.com/docs/embeddings)):\n", "\n", - "- `voyage-large-2` (default)\n", + "- `voyage-3`\n", + "- `voyage-3-lite`\n", + "- `voyage-large-2`\n", "- `voyage-code-2`\n", "- `voyage-2`\n", "- `voyage-law-2`\n", diff --git a/docs/docs/integrations/text_embedding/zhipuai.ipynb b/docs/docs/integrations/text_embedding/zhipuai.ipynb index 78d531b35bd72..de33980c5641b 100644 --- a/docs/docs/integrations/text_embedding/zhipuai.ipynb +++ b/docs/docs/integrations/text_embedding/zhipuai.ipynb @@ -25,7 +25,7 @@ "\n", "| Provider | Package |\n", "|:--------:|:-------:|\n", - "| [ZhipuAI](/docs/integrations/providers/zhipuai/) | [langchain-community](https://python.langchain.com/v0.2/api_reference/community/embeddings/langchain_community.embeddings.zhipuai.ZhipuAIEmbeddings.html) |\n", + "| [ZhipuAI](/docs/integrations/providers/zhipuai/) | [langchain-community](https://python.langchain.com/api_reference/community/embeddings/langchain_community.embeddings.zhipuai.ZhipuAIEmbeddings.html) |\n", "\n", "## Setup\n", "\n", diff --git a/docs/docs/integrations/tools/chatgpt_plugins.ipynb b/docs/docs/integrations/tools/chatgpt_plugins.ipynb index 08a9c5924edba..809a13869e261 100644 --- a/docs/docs/integrations/tools/chatgpt_plugins.ipynb +++ b/docs/docs/integrations/tools/chatgpt_plugins.ipynb @@ -17,13 +17,11 @@ "source": [ "# ChatGPT Plugins\n", "\n", - "```{=mdx}\n", ":::warning Deprecated\n", "\n", "OpenAI has [deprecated plugins](https://openai.com/index/chatgpt-plugins/).\n", "\n", ":::\n", - "```\n", "\n", "This example shows how to use ChatGPT Plugins within LangChain abstractions.\n", "\n", diff --git a/docs/docs/integrations/tools/connery.ipynb b/docs/docs/integrations/tools/connery.ipynb index 0162f4592ad51..5070996bba999 100644 --- a/docs/docs/integrations/tools/connery.ipynb +++ b/docs/docs/integrations/tools/connery.ipynb @@ -257,8 +257,8 @@ "\n", "For detailed documentation of all Connery features and configurations head to the API reference:\n", "\n", - "- Toolkit: https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.connery.toolkit.ConneryToolkit.html\n", - "- Tool: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.connery.service.ConneryService.html" + "- Toolkit: https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.connery.toolkit.ConneryToolkit.html\n", + "- Tool: https://python.langchain.com/api_reference/community/tools/langchain_community.tools.connery.service.ConneryService.html" ] } ], diff --git a/docs/docs/integrations/tools/ddg.ipynb b/docs/docs/integrations/tools/ddg.ipynb index 8e650c640be73..d436b349cd65b 100644 --- a/docs/docs/integrations/tools/ddg.ipynb +++ b/docs/docs/integrations/tools/ddg.ipynb @@ -153,7 +153,7 @@ "source": [ "## Related\n", "\n", - "- [How to use a chat model to call tools](https://python.langchain.com/v0.2/docs/how_to/tool_calling/)" + "- [How to use a chat model to call tools](https://python.langchain.com/docs/how_to/tool_calling/)" ] } ], diff --git a/docs/docs/integrations/tools/exa_search.ipynb b/docs/docs/integrations/tools/exa_search.ipynb index 6df755cf58fee..ddf0ab2588739 100644 --- a/docs/docs/integrations/tools/exa_search.ipynb +++ b/docs/docs/integrations/tools/exa_search.ipynb @@ -69,7 +69,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - ":::{.callout-note}\n", + ":::note\n", "\n", "The `max_characters` parameter for **TextContentsOptions** used to be called `max_length` which is now deprecated. Make sure to use `max_characters` instead.\n", "\n", diff --git a/docs/docs/integrations/tools/financial_datasets.ipynb b/docs/docs/integrations/tools/financial_datasets.ipynb index 6239379ad629f..2b6a91ca685ad 100644 --- a/docs/docs/integrations/tools/financial_datasets.ipynb +++ b/docs/docs/integrations/tools/financial_datasets.ipynb @@ -281,7 +281,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `FinancialDatasetsToolkit` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.financial_datasets.toolkit.FinancialDatasetsToolkit.html)." + "For detailed documentation of all `FinancialDatasetsToolkit` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.financial_datasets.toolkit.FinancialDatasetsToolkit.html)." ] }, { diff --git a/docs/docs/integrations/tools/github.ipynb b/docs/docs/integrations/tools/github.ipynb index aaab3ce857f82..cca81b1777e72 100644 --- a/docs/docs/integrations/tools/github.ipynb +++ b/docs/docs/integrations/tools/github.ipynb @@ -9,7 +9,7 @@ "The `Github` toolkit contains tools that enable an LLM agent to interact with a github repository. \n", "The tool is a wrapper for the [PyGitHub](https://github.com/PyGithub/PyGithub) library. \n", "\n", - "For detailed documentation of all GithubToolkit features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.github.toolkit.GitHubToolkit.html).\n", + "For detailed documentation of all GithubToolkit features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.github.toolkit.GitHubToolkit.html).\n", "\n", "## Setup\n", "\n", @@ -81,7 +81,7 @@ "\n", "* **GITHUB_APP_ID**- A six digit number found in your app's general settings\n", "* **GITHUB_APP_PRIVATE_KEY**- The location of your app's private key .pem file, or the full text of that file as a string.\n", - "* **GITHUB_REPOSITORY**- The name of the Github repository you want your bot to act upon. Must follow the format {username}/{repo-name}. *Make sure the app has been added to this repository first!*\n", + "* **GITHUB_REPOSITORY**- The name of the Github repository you want your bot to act upon. Must follow the format \\{username\\}/\\{repo-name\\}. *Make sure the app has been added to this repository first!*\n", "* Optional: **GITHUB_BRANCH**- The branch where the bot will make its commits. Defaults to `repo.default_branch`.\n", "* Optional: **GITHUB_BASE_BRANCH**- The base branch of your repo upon which PRs will based from. Defaults to `repo.default_branch`." ] @@ -208,11 +208,9 @@ "\n", "We will need a LLM or chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -226,7 +224,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -279,7 +277,7 @@ "=================================\u001b[1m Tool Message \u001b[0m=================================\n", "Name: get_issue\n", "\n", - "{\"number\": 24888, \"title\": \"Standardize KV-Store Docs\", \"body\": \"To make our KV-store integrations as easy to use as possible we need to make sure the docs for them are thorough and standardized. There are two parts to this: updating the KV-store docstrings and updating the actual integration docs.\\r\\n\\r\\nThis needs to be done for each KV-store integration, ideally with one PR per KV-store.\\r\\n\\r\\nRelated to broader issues #21983 and #22005.\\r\\n\\r\\n## Docstrings\\r\\nEach KV-store class docstring should have the sections shown in the [Appendix](#appendix) below. The sections should have input and output code blocks when relevant.\\r\\n\\r\\nTo build a preview of the API docs for the package you're working on run (from root of repo):\\r\\n\\r\\n```shell\\r\\nmake api_docs_clean; make api_docs_quick_preview API_PKG=openai\\r\\n```\\r\\n\\r\\nwhere `API_PKG=` should be the parent directory that houses the edited package (e.g. community, openai, anthropic, huggingface, together, mistralai, groq, fireworks, etc.). This should be quite fast for all the partner packages.\\r\\n\\r\\n## Doc pages\\r\\nEach KV-store [docs page](https://python.langchain.com/v0.2/docs/integrations/stores/) should follow [this template](https://github.com/langchain-ai/langchain/blob/master/libs/cli/langchain_cli/integration_template/docs/kv_store.ipynb).\\r\\n\\r\\nHere is an example: https://python.langchain.com/v0.2/docs/integrations/stores/in_memory/\\r\\n\\r\\nYou can use the `langchain-cli` to quickly get started with a new chat model integration docs page (run from root of repo):\\r\\n\\r\\n```shell\\r\\npoetry run pip install -e libs/cli\\r\\npoetry run langchain-cli integration create-doc --name \\\"foo-bar\\\" --name-class FooBar --component-type kv_store --destination-dir ./docs/docs/integrations/stores/\\r\\n```\\r\\n\\r\\nwhere `--name` is the integration package name without the \\\"langchain-\\\" prefix and `--name-class` is the class name without the \\\"ByteStore\\\" suffix. This will create a template doc with some autopopulated fields at docs/docs/integrations/stores/foo_bar.ipynb.\\r\\n\\r\\nTo build a preview of the docs you can run (from root):\\r\\n\\r\\n```shell\\r\\nmake docs_clean\\r\\nmake docs_build\\r\\ncd docs/build/output-new\\r\\nyarn\\r\\nyarn start\\r\\n```\\r\\n\\r\\n## Appendix\\r\\nExpected sections for the KV-store class docstring.\\r\\n\\r\\n```python\\r\\n \\\"\\\"\\\"__ModuleName__ completion KV-store integration.\\r\\n\\r\\n # TODO: Replace with relevant packages, env vars.\\r\\n Setup:\\r\\n Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.\\r\\n\\r\\n .. code-block:: bash\\r\\n\\r\\n pip install -U __package_name__\\r\\n export __MODULE_NAME___API_KEY=\\\"your-api-key\\\"\\r\\n\\r\\n # TODO: Populate with relevant params.\\r\\n Key init args \\u2014 client params:\\r\\n api_key: Optional[str]\\r\\n __ModuleName__ API key. If not passed in will be read from env var __MODULE_NAME___API_KEY.\\r\\n\\r\\n See full list of supported init args and their descriptions in the params section.\\r\\n\\r\\n # TODO: Replace with relevant init params.\\r\\n Instantiate:\\r\\n .. code-block:: python\\r\\n\\r\\n from __module_name__ import __ModuleName__ByteStore\\r\\n\\r\\n kv_store = __ModuleName__ByteStore(\\r\\n # api_key=\\\"...\\\",\\r\\n # other params...\\r\\n )\\r\\n\\r\\n Set keys:\\r\\n .. code-block:: python\\r\\n\\r\\n kv_pairs = [\\r\\n [\\\"key1\\\", \\\"value1\\\"],\\r\\n [\\\"key2\\\", \\\"value2\\\"],\\r\\n ]\\r\\n\\r\\n kv_store.mset(kv_pairs)\\r\\n\\r\\n .. code-block:: python\\r\\n\\r\\n Get keys:\\r\\n .. code-block:: python\\r\\n\\r\\n kv_store.mget([\\\"key1\\\", \\\"key2\\\"])\\r\\n\\r\\n .. code-block:: python\\r\\n\\r\\n # TODO: Example output.\\r\\n\\r\\n Delete keys:\\r\\n ..code-block:: python\\r\\n\\r\\n kv_store.mdelete([\\\"key1\\\", \\\"key2\\\"])\\r\\n\\r\\n ..code-block:: python\\r\\n \\\"\\\"\\\" # noqa: E501\\r\\n```\", \"comments\": \"[]\", \"opened_by\": \"jacoblee93\"}\n", + "{\"number\": 24888, \"title\": \"Standardize KV-Store Docs\", \"body\": \"To make our KV-store integrations as easy to use as possible we need to make sure the docs for them are thorough and standardized. There are two parts to this: updating the KV-store docstrings and updating the actual integration docs.\\r\\n\\r\\nThis needs to be done for each KV-store integration, ideally with one PR per KV-store.\\r\\n\\r\\nRelated to broader issues #21983 and #22005.\\r\\n\\r\\n## Docstrings\\r\\nEach KV-store class docstring should have the sections shown in the [Appendix](#appendix) below. The sections should have input and output code blocks when relevant.\\r\\n\\r\\nTo build a preview of the API docs for the package you're working on run (from root of repo):\\r\\n\\r\\n```shell\\r\\nmake api_docs_clean; make api_docs_quick_preview API_PKG=openai\\r\\n```\\r\\n\\r\\nwhere `API_PKG=` should be the parent directory that houses the edited package (e.g. community, openai, anthropic, huggingface, together, mistralai, groq, fireworks, etc.). This should be quite fast for all the partner packages.\\r\\n\\r\\n## Doc pages\\r\\nEach KV-store [docs page](https://python.langchain.com/docs/integrations/stores/) should follow [this template](https://github.com/langchain-ai/langchain/blob/master/libs/cli/langchain_cli/integration_template/docs/kv_store.ipynb).\\r\\n\\r\\nHere is an example: https://python.langchain.com/docs/integrations/stores/in_memory/\\r\\n\\r\\nYou can use the `langchain-cli` to quickly get started with a new chat model integration docs page (run from root of repo):\\r\\n\\r\\n```shell\\r\\npoetry run pip install -e libs/cli\\r\\npoetry run langchain-cli integration create-doc --name \\\"foo-bar\\\" --name-class FooBar --component-type kv_store --destination-dir ./docs/docs/integrations/stores/\\r\\n```\\r\\n\\r\\nwhere `--name` is the integration package name without the \\\"langchain-\\\" prefix and `--name-class` is the class name without the \\\"ByteStore\\\" suffix. This will create a template doc with some autopopulated fields at docs/docs/integrations/stores/foo_bar.ipynb.\\r\\n\\r\\nTo build a preview of the docs you can run (from root):\\r\\n\\r\\n```shell\\r\\nmake docs_clean\\r\\nmake docs_build\\r\\ncd docs/build/output-new\\r\\nyarn\\r\\nyarn start\\r\\n```\\r\\n\\r\\n## Appendix\\r\\nExpected sections for the KV-store class docstring.\\r\\n\\r\\n```python\\r\\n \\\"\\\"\\\"__ModuleName__ completion KV-store integration.\\r\\n\\r\\n # TODO: Replace with relevant packages, env vars.\\r\\n Setup:\\r\\n Install ``__package_name__`` and set environment variable ``__MODULE_NAME___API_KEY``.\\r\\n\\r\\n .. code-block:: bash\\r\\n\\r\\n pip install -U __package_name__\\r\\n export __MODULE_NAME___API_KEY=\\\"your-api-key\\\"\\r\\n\\r\\n # TODO: Populate with relevant params.\\r\\n Key init args \\u2014 client params:\\r\\n api_key: Optional[str]\\r\\n __ModuleName__ API key. If not passed in will be read from env var __MODULE_NAME___API_KEY.\\r\\n\\r\\n See full list of supported init args and their descriptions in the params section.\\r\\n\\r\\n # TODO: Replace with relevant init params.\\r\\n Instantiate:\\r\\n .. code-block:: python\\r\\n\\r\\n from __module_name__ import __ModuleName__ByteStore\\r\\n\\r\\n kv_store = __ModuleName__ByteStore(\\r\\n # api_key=\\\"...\\\",\\r\\n # other params...\\r\\n )\\r\\n\\r\\n Set keys:\\r\\n .. code-block:: python\\r\\n\\r\\n kv_pairs = [\\r\\n [\\\"key1\\\", \\\"value1\\\"],\\r\\n [\\\"key2\\\", \\\"value2\\\"],\\r\\n ]\\r\\n\\r\\n kv_store.mset(kv_pairs)\\r\\n\\r\\n .. code-block:: python\\r\\n\\r\\n Get keys:\\r\\n .. code-block:: python\\r\\n\\r\\n kv_store.mget([\\\"key1\\\", \\\"key2\\\"])\\r\\n\\r\\n .. code-block:: python\\r\\n\\r\\n # TODO: Example output.\\r\\n\\r\\n Delete keys:\\r\\n ..code-block:: python\\r\\n\\r\\n kv_store.mdelete([\\\"key1\\\", \\\"key2\\\"])\\r\\n\\r\\n ..code-block:: python\\r\\n \\\"\\\"\\\" # noqa: E501\\r\\n```\", \"comments\": \"[]\", \"opened_by\": \"jacoblee93\"}\n", "==================================\u001b[1m Ai Message \u001b[0m==================================\n", "\n", "The title of issue 24888 is \"Standardize KV-Store Docs\".\n" @@ -303,7 +301,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `GithubToolkit` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.github.toolkit.GitHubToolkit.html)." + "For detailed documentation of all `GithubToolkit` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.github.toolkit.GitHubToolkit.html)." ] } ], diff --git a/docs/docs/integrations/tools/gitlab.ipynb b/docs/docs/integrations/tools/gitlab.ipynb index b22faeeb88e21..622622d9add22 100644 --- a/docs/docs/integrations/tools/gitlab.ipynb +++ b/docs/docs/integrations/tools/gitlab.ipynb @@ -80,7 +80,7 @@ "\n", "* **GITLAB_URL** - The URL hosted Gitlab. Defaults to \"https://gitlab.com\". \n", "* **GITLAB_PERSONAL_ACCESS_TOKEN**- The personal access token you created in the last step\n", - "* **GITLAB_REPOSITORY**- The name of the Gitlab repository you want your bot to act upon. Must follow the format {username}/{repo-name}.\n", + "* **GITLAB_REPOSITORY**- The name of the Gitlab repository you want your bot to act upon. Must follow the format \\{username\\}/\\{repo-name\\}.\n", "* **GITLAB_BRANCH**- The branch where the bot will make its commits. Defaults to 'main.'\n", "* **GITLAB_BASE_BRANCH**- The base branch of your repo, usually either 'main' or 'master.' This is where merge requests will base from. Defaults to 'main.'\n" ] diff --git a/docs/docs/integrations/tools/gmail.ipynb b/docs/docs/integrations/tools/gmail.ipynb index 64772bf8d2bb3..b105e0ae57528 100644 --- a/docs/docs/integrations/tools/gmail.ipynb +++ b/docs/docs/integrations/tools/gmail.ipynb @@ -6,7 +6,7 @@ "source": [ "# Gmail Toolkit\n", "\n", - "This will help you getting started with the GMail [toolkit](/docs/concepts/#toolkits). This toolkit interacts with the GMail API to read messages, draft and send messages, and more. For detailed documentation of all GmailToolkit features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/google_community/gmail/langchain_google_community.gmail.toolkit.GmailToolkit.html).\n", + "This will help you getting started with the GMail [toolkit](/docs/concepts/#toolkits). This toolkit interacts with the GMail API to read messages, draft and send messages, and more. For detailed documentation of all GmailToolkit features and configurations head to the [API reference](https://python.langchain.com/api_reference/google_community/gmail/langchain_google_community.gmail.toolkit.GmailToolkit.html).\n", "\n", "## Setup\n", "\n", @@ -142,11 +142,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "- [GmailCreateDraft](https://python.langchain.com/v0.2/api_reference/google_community/gmail/langchain_google_community.gmail.create_draft.GmailCreateDraft.html)\n", - "- [GmailSendMessage](https://python.langchain.com/v0.2/api_reference/google_community/gmail/langchain_google_community.gmail.send_message.GmailSendMessage.html)\n", - "- [GmailSearch](https://python.langchain.com/v0.2/api_reference/google_community/gmail/langchain_google_community.gmail.search.GmailSearch.html)\n", - "- [GmailGetMessage](https://python.langchain.com/v0.2/api_reference/google_community/gmail/langchain_google_community.gmail.get_message.GmailGetMessage.html)\n", - "- [GmailGetThread](https://python.langchain.com/v0.2/api_reference/google_community/gmail/langchain_google_community.gmail.get_thread.GmailGetThread.html)" + "- [GmailCreateDraft](https://python.langchain.com/api_reference/google_community/gmail/langchain_google_community.gmail.create_draft.GmailCreateDraft.html)\n", + "- [GmailSendMessage](https://python.langchain.com/api_reference/google_community/gmail/langchain_google_community.gmail.send_message.GmailSendMessage.html)\n", + "- [GmailSearch](https://python.langchain.com/api_reference/google_community/gmail/langchain_google_community.gmail.search.GmailSearch.html)\n", + "- [GmailGetMessage](https://python.langchain.com/api_reference/google_community/gmail/langchain_google_community.gmail.get_message.GmailGetMessage.html)\n", + "- [GmailGetThread](https://python.langchain.com/api_reference/google_community/gmail/langchain_google_community.gmail.get_thread.GmailGetThread.html)" ] }, { @@ -159,11 +159,9 @@ "\n", "We will need a LLM or chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -177,7 +175,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -243,7 +241,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `GmailToolkit` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.gmail.toolkit.GmailToolkit.html)." + "For detailed documentation of all `GmailToolkit` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.gmail.toolkit.GmailToolkit.html)." ] } ], diff --git a/docs/docs/integrations/tools/google_search.ipynb b/docs/docs/integrations/tools/google_search.ipynb index 8157f192b0bca..2d1bdbc4fa9c5 100644 --- a/docs/docs/integrations/tools/google_search.ipynb +++ b/docs/docs/integrations/tools/google_search.ipynb @@ -21,7 +21,7 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install --upgrade --quiet langchain_google_community" + "%pip install --upgrade --quiet langchain-google-community" ] }, { diff --git a/docs/docs/integrations/tools/ifttt.ipynb b/docs/docs/integrations/tools/ifttt.ipynb index 4cd3bf9f6879d..564dea0edaad9 100644 --- a/docs/docs/integrations/tools/ifttt.ipynb +++ b/docs/docs/integrations/tools/ifttt.ipynb @@ -31,7 +31,7 @@ "- Configure the action by specifying the necessary details, such as the playlist name,\n", "e.g., \"Songs from AI\".\n", "- Reference the JSON Payload received by the Webhook in your action. For the Spotify\n", - "scenario, choose \"{{JsonPayload}}\" as your search query.\n", + "scenario, choose `{{JsonPayload}}` as your search query.\n", "- Tap the \"Create Action\" button to save your action settings.\n", "- Once you have finished configuring your action, click the \"Finish\" button to\n", "complete the setup.\n", diff --git a/docs/docs/integrations/tools/infobip.ipynb b/docs/docs/integrations/tools/infobip.ipynb index 9ee4855e2a869..41e1b6fd3c5f0 100644 --- a/docs/docs/integrations/tools/infobip.ipynb +++ b/docs/docs/integrations/tools/infobip.ipynb @@ -106,9 +106,9 @@ "from langchain import hub\n", "from langchain.agents import AgentExecutor, create_openai_functions_agent\n", "from langchain_community.utilities.infobip import InfobipAPIWrapper\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_core.tools import StructuredTool\n", "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel, Field\n", "\n", "instructions = \"You are a coding teacher. You are teaching a student how to code. The student asks you a question. You answer the question.\"\n", "base_prompt = hub.pull(\"langchain-ai/openai-functions-template\")\n", diff --git a/docs/docs/integrations/tools/jina_search.ipynb b/docs/docs/integrations/tools/jina_search.ipynb index 07aa274e2ffd2..511085a579a51 100644 --- a/docs/docs/integrations/tools/jina_search.ipynb +++ b/docs/docs/integrations/tools/jina_search.ipynb @@ -17,7 +17,7 @@ "source": [ "# Jina Search\n", "\n", - "This notebook provides a quick overview for getting started with Jina [tool](/docs/integrations/tools/). For detailed documentation of all Jina features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.jina_search.tool.JinaSearch.html).\n", + "This notebook provides a quick overview for getting started with Jina [tool](/docs/integrations/tools/). For detailed documentation of all Jina features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.jina_search.tool.JinaSearch.html).\n", "\n", "## Overview\n", "\n", @@ -25,7 +25,7 @@ "\n", "| Class | Package | Serializable | JS support | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [JinaSearch](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.jina_search.tool.JinaSearch.html) | [langchain-community](https://python.langchain.com/v0.2/api_reference/community/) | ❌ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community?style=flat-square&label=%20) |\n", + "| [JinaSearch](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.jina_search.tool.JinaSearch.html) | [langchain-community](https://python.langchain.com/api_reference/community/) | ❌ | ❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community?style=flat-square&label=%20) |\n", "\n", "### Tool features\n", "| [Returns artifact](/docs/how_to/tool_artifacts/) | Native async | Return data | Pricing |\n", @@ -256,7 +256,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all Jina features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.jina_search.tool.JinaSearch.html" + "For detailed documentation of all Jina features and configurations head to the API reference: https://python.langchain.com/api_reference/community/tools/langchain_community.tools.jina_search.tool.JinaSearch.html" ] } ], diff --git a/docs/docs/integrations/tools/lemonai.ipynb b/docs/docs/integrations/tools/lemonai.ipynb index d169c62a97deb..eb5325975695e 100644 --- a/docs/docs/integrations/tools/lemonai.ipynb +++ b/docs/docs/integrations/tools/lemonai.ipynb @@ -137,7 +137,7 @@ "source": [ "#### Load API Keys and Access Tokens\n", "\n", - "To use tools that require authentication, you have to store the corresponding access credentials in your environment in the format \"{tool name}_{authentication string}\" where the authentication string is one of [\"API_KEY\", \"SECRET_KEY\", \"SUBSCRIPTION_KEY\", \"ACCESS_KEY\"] for API keys or [\"ACCESS_TOKEN\", \"SECRET_TOKEN\"] for authentication tokens. Examples are \"OPENAI_API_KEY\", \"BING_SUBSCRIPTION_KEY\", \"AIRTABLE_ACCESS_TOKEN\"." + "To use tools that require authentication, you have to store the corresponding access credentials in your environment in the format `\"{tool name}_{authentication string}\"` where the authentication string is one of [\"API_KEY\", \"SECRET_KEY\", \"SUBSCRIPTION_KEY\", \"ACCESS_KEY\"] for API keys or [\"ACCESS_TOKEN\", \"SECRET_TOKEN\"] for authentication tokens. Examples are \"OPENAI_API_KEY\", \"BING_SUBSCRIPTION_KEY\", \"AIRTABLE_ACCESS_TOKEN\"." ] }, { diff --git a/docs/docs/integrations/tools/nvidia_riva.ipynb b/docs/docs/integrations/tools/nvidia_riva.ipynb index 1cc5b9c964bd8..f09badc0a776d 100644 --- a/docs/docs/integrations/tools/nvidia_riva.ipynb +++ b/docs/docs/integrations/tools/nvidia_riva.ipynb @@ -527,7 +527,7 @@ "## 6. Create Additional Chain Components\n", "As usual, declare the other parts of the chain. In this case, it's just a prompt template and an LLM.\n", "\n", - "You can use any [LangChain compatible LLM](https://python.langchain.com/v0.1/docs/integrations/llms/) in the chain. In this example, we use a [Mixtral8x7b NIM from NVIDIA](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/). NVIDIA NIMs are supported in LangChain via the `langchain-nvidia-ai-endpoints` package, so you can easily build applications with best in class throughput and latency. \n", + "You can use any [LangChain compatible LLM](https://python.langchain.com/v0.1/docs/integrations/llms/) in the chain. In this example, we use a [Mixtral8x7b NIM from NVIDIA](https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/). NVIDIA NIMs are supported in LangChain via the `langchain-nvidia-ai-endpoints` package, so you can easily build applications with best in class throughput and latency. \n", "\n", "LangChain compatible NVIDIA LLMs from [NVIDIA AI Foundation Endpoints](https://www.nvidia.com/en-us/ai-data-science/foundation-models/) can also be used by following these [instructions](https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints). " ] @@ -547,7 +547,7 @@ "id": "1744eec9", "metadata": {}, "source": [ - "Follow the [instructions for LangChain](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/) to use NVIDIA NIM in your speech-enabled LangChain application. \n", + "Follow the [instructions for LangChain](https://python.langchain.com/docs/integrations/chat/nvidia_ai_endpoints/) to use NVIDIA NIM in your speech-enabled LangChain application. \n", "\n", "Set your key for NVIDIA API catalog, where NIMs are hosted for you to try." ] diff --git a/docs/docs/integrations/tools/polygon.ipynb b/docs/docs/integrations/tools/polygon.ipynb index 058aa509f17af..cac533d91ee8a 100644 --- a/docs/docs/integrations/tools/polygon.ipynb +++ b/docs/docs/integrations/tools/polygon.ipynb @@ -436,7 +436,7 @@ "source": [ "### API reference\n", "\n", - "For detailed documentation of all the Polygon IO toolkit features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.polygon.toolkit.PolygonToolkit.html" + "For detailed documentation of all the Polygon IO toolkit features and configurations head to the API reference: https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.polygon.toolkit.PolygonToolkit.html" ] }, { @@ -654,10 +654,10 @@ "\n", "For detailed documentation of all Polygon IO tools head to the API reference for each:\n", "\n", - "- Aggregate: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.polygon.aggregates.PolygonAggregates.html\n", - "- Financials: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.polygon.financials.PolygonFinancials.html\n", - "- Last Quote: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.polygon.last_quote.PolygonLastQuote.html\n", - "- Ticker News: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.polygon.ticker_news.PolygonTickerNews.html" + "- Aggregate: https://python.langchain.com/api_reference/community/tools/langchain_community.tools.polygon.aggregates.PolygonAggregates.html\n", + "- Financials: https://python.langchain.com/api_reference/community/tools/langchain_community.tools.polygon.financials.PolygonFinancials.html\n", + "- Last Quote: https://python.langchain.com/api_reference/community/tools/langchain_community.tools.polygon.last_quote.PolygonLastQuote.html\n", + "- Ticker News: https://python.langchain.com/api_reference/community/tools/langchain_community.tools.polygon.ticker_news.PolygonTickerNews.html" ] } ], diff --git a/docs/docs/integrations/tools/python.ipynb b/docs/docs/integrations/tools/python.ipynb index 75b51550a926f..2c69d9ad14d53 100644 --- a/docs/docs/integrations/tools/python.ipynb +++ b/docs/docs/integrations/tools/python.ipynb @@ -12,10 +12,10 @@ "This interface will only return things that are printed - therefore, if you want to use it to calculate an answer, make sure to have it print out the answer.\n", "\n", "\n", - ":::{.callout-caution}\n", + ":::caution\n", "Python REPL can execute arbitrary code on the host machine (e.g., delete files, make network requests). Use with caution.\n", "\n", - "For more information general security guidelines, please see https://python.langchain.com/v0.2/docs/security/.\n", + "For more information general security guidelines, please see https://python.langchain.com/docs/security/.\n", ":::" ] }, diff --git a/docs/docs/integrations/tools/requests.ipynb b/docs/docs/integrations/tools/requests.ipynb index 483388e034206..0db60b0aa9847 100644 --- a/docs/docs/integrations/tools/requests.ipynb +++ b/docs/docs/integrations/tools/requests.ipynb @@ -9,7 +9,7 @@ "\n", "We can use the Requests [toolkit](/docs/concepts/#toolkits) to construct agents that generate HTTP requests.\n", "\n", - "For detailed documentation of all API toolkit features and configurations head to the API reference for [RequestsToolkit](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.openapi.toolkit.RequestsToolkit.html).\n", + "For detailed documentation of all API toolkit features and configurations head to the API reference for [RequestsToolkit](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.openapi.toolkit.RequestsToolkit.html).\n", "\n", "## ⚠️ Security note ⚠️\n", "There are inherent risks in giving models discretion to execute real-world actions. Take precautions to mitigate these risks:\n", @@ -225,11 +225,11 @@ "id": "a21a6ca4-d650-4b7d-a944-1a8771b5293a", "metadata": {}, "source": [ - "- [RequestsGetTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsGetTool.html)\n", - "- [RequestsPostTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsPostTool.html)\n", - "- [RequestsPatchTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsPatchTool.html)\n", - "- [RequestsPutTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsPutTool.html)\n", - "- [RequestsDeleteTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsDeleteTool.html)" + "- [RequestsGetTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsGetTool.html)\n", + "- [RequestsPostTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsPostTool.html)\n", + "- [RequestsPatchTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsPatchTool.html)\n", + "- [RequestsPutTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsPutTool.html)\n", + "- [RequestsDeleteTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.requests.tool.RequestsDeleteTool.html)" ] }, { @@ -250,7 +250,7 @@ "from langchain_openai import ChatOpenAI\n", "from langgraph.prebuilt import create_react_agent\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", "\n", "system_message = \"\"\"\n", "You have access to an API to help answer user queries.\n", @@ -323,7 +323,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all API toolkit features and configurations head to the API reference for [RequestsToolkit](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.openapi.toolkit.RequestsToolkit.html)." + "For detailed documentation of all API toolkit features and configurations head to the API reference for [RequestsToolkit](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.openapi.toolkit.RequestsToolkit.html)." ] } ], diff --git a/docs/docs/integrations/tools/slack.ipynb b/docs/docs/integrations/tools/slack.ipynb index 2f2c98a100968..3a516eeb0d7c0 100644 --- a/docs/docs/integrations/tools/slack.ipynb +++ b/docs/docs/integrations/tools/slack.ipynb @@ -6,7 +6,7 @@ "source": [ "# Slack Toolkit\n", "\n", - "This will help you getting started with the Slack [toolkit](/docs/concepts/#toolkits). For detailed documentation of all SlackToolkit features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.slack.toolkit.SlackToolkit.html).\n", + "This will help you getting started with the Slack [toolkit](/docs/concepts/#toolkits). For detailed documentation of all SlackToolkit features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.slack.toolkit.SlackToolkit.html).\n", "\n", "## Setup\n", "\n", @@ -137,10 +137,10 @@ "source": [ "This toolkit loads:\n", "\n", - "- [SlackGetChannel](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.slack.get_channel.SlackGetChannel.html)\n", - "- [SlackGetMessage](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.slack.get_message.SlackGetMessage.html)\n", - "- [SlackScheduleMessage](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.slack.schedule_message.SlackScheduleMessage.html)\n", - "- [SlackSendMessage](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.slack.send_message.SlackSendMessage.html)" + "- [SlackGetChannel](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.slack.get_channel.SlackGetChannel.html)\n", + "- [SlackGetMessage](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.slack.get_message.SlackGetMessage.html)\n", + "- [SlackScheduleMessage](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.slack.schedule_message.SlackScheduleMessage.html)\n", + "- [SlackSendMessage](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.slack.send_message.SlackSendMessage.html)" ] }, { @@ -161,7 +161,7 @@ "from langchain_openai import ChatOpenAI\n", "from langgraph.prebuilt import create_react_agent\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\")\n", "\n", "agent_executor = create_react_agent(llm, tools)" ] @@ -246,7 +246,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `SlackToolkit` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.slack.toolkit.SlackToolkit.html)." + "For detailed documentation of all `SlackToolkit` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.slack.toolkit.SlackToolkit.html)." ] } ], diff --git a/docs/docs/integrations/tools/sql_database.ipynb b/docs/docs/integrations/tools/sql_database.ipynb index 714a65a324169..ef3d63e2b26b2 100644 --- a/docs/docs/integrations/tools/sql_database.ipynb +++ b/docs/docs/integrations/tools/sql_database.ipynb @@ -7,7 +7,7 @@ "source": [ "# SQLDatabase Toolkit\n", "\n", - "This will help you getting started with the SQL Database [toolkit](/docs/concepts/#toolkits). For detailed documentation of all `SQLDatabaseToolkit` features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.html).\n", + "This will help you getting started with the SQL Database [toolkit](/docs/concepts/#toolkits). For detailed documentation of all `SQLDatabaseToolkit` features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.html).\n", "\n", "Tools within the `SQLDatabaseToolkit` are designed to interact with a `SQL` database. \n", "\n", @@ -80,8 +80,8 @@ "\n", "The `SQLDatabaseToolkit` toolkit requires:\n", "\n", - "- a [SQLDatabase](https://python.langchain.com/v0.2/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) object;\n", - "- a LLM or chat model (for instantiating the [QuerySQLCheckerTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLCheckerTool.html) tool).\n", + "- a [SQLDatabase](https://python.langchain.com/api_reference/community/utilities/langchain_community.utilities.sql_database.SQLDatabase.html) object;\n", + "- a LLM or chat model (for instantiating the [QuerySQLCheckerTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLCheckerTool.html) tool).\n", "\n", "Below, we instantiate the toolkit with these objects. Let's first create a database object.\n", "\n", @@ -133,11 +133,9 @@ "source": [ "We will also need a LLM or chat model:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -216,10 +214,10 @@ "source": [ "API references:\n", "\n", - "- [QuerySQLDataBaseTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLDataBaseTool.html)\n", - "- [InfoSQLDatabaseTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.sql_database.tool.InfoSQLDatabaseTool.html)\n", - "- [ListSQLDatabaseTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.sql_database.tool.ListSQLDatabaseTool.html)\n", - "- [QuerySQLCheckerTool](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLCheckerTool.html)" + "- [QuerySQLDataBaseTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLDataBaseTool.html)\n", + "- [InfoSQLDatabaseTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.InfoSQLDatabaseTool.html)\n", + "- [ListSQLDatabaseTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.ListSQLDatabaseTool.html)\n", + "- [QuerySQLCheckerTool](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.sql_database.tool.QuerySQLCheckerTool.html)" ] }, { @@ -561,7 +559,7 @@ "source": [ "## Specific functionality\n", "\n", - "`SQLDatabaseToolkit` implements a [.get_context](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.html#langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.get_context) method as a convenience for use in prompts or other contexts.\n", + "`SQLDatabaseToolkit` implements a [.get_context](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.html#langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.get_context) method as a convenience for use in prompts or other contexts.\n", "\n", "**⚠️ Disclaimer ⚠️** : The agent may generate insert/update/delete queries. When this is not expected, use a custom prompt or create a SQL users without write permissions.\n", "\n", @@ -586,7 +584,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all SQLDatabaseToolkit features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.html)." + "For detailed documentation of all SQLDatabaseToolkit features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/agent_toolkits/langchain_community.agent_toolkits.sql.toolkit.SQLDatabaseToolkit.html)." ] } ], diff --git a/docs/docs/integrations/tools/tavily_search.ipynb b/docs/docs/integrations/tools/tavily_search.ipynb index 1c2099ec288e4..7a89acb94a363 100644 --- a/docs/docs/integrations/tools/tavily_search.ipynb +++ b/docs/docs/integrations/tools/tavily_search.ipynb @@ -18,9 +18,9 @@ "## Overview\n", "\n", "### Integration details\n", - "| Class | Package | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/tools/tavily_search) | Package latest |\n", + "| Class | Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/tools/tavily_search) | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: |\n", - "| [TavilySearchResults](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.tavily_search.tool.TavilySearchResults.html) | [langchain-community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | ✅ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community?style=flat-square&label=%20) |\n", + "| [TavilySearchResults](https://python.langchain.com/api_reference/community/tools/langchain_community.tools.tavily_search.tool.TavilySearchResults.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ✅ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community?style=flat-square&label=%20) |\n", "\n", "### Tool features\n", "| [Returns artifact](/docs/how_to/tool_artifacts/) | Native async | Return data | Pricing |\n", @@ -263,11 +263,9 @@ "\n", "We can use our tool in a chain by first binding it to a [tool-calling model](/docs/how_to/tool_calling/) and then calling it:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -350,7 +348,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all TavilySearchResults features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.tavily_search.tool.TavilySearchResults.html" + "For detailed documentation of all TavilySearchResults features and configurations head to the API reference: https://python.langchain.com/api_reference/community/tools/langchain_community.tools.tavily_search.tool.TavilySearchResults.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/activeloop_deeplake.ipynb b/docs/docs/integrations/vectorstores/activeloop_deeplake.ipynb index 805166dd23f43..f06f311088e07 100644 --- a/docs/docs/integrations/vectorstores/activeloop_deeplake.ipynb +++ b/docs/docs/integrations/vectorstores/activeloop_deeplake.ipynb @@ -65,7 +65,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "activeloop_token = getpass.getpass(\"activeloop token:\")\n", "embeddings = OpenAIEmbeddings()" ] @@ -563,7 +564,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In order to utilize Deep Lake's Managed Tensor Database, it is necessary to specify the runtime parameter as {'tensor_db': True} during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps." + "In order to utilize Deep Lake's Managed Tensor Database, it is necessary to specify the runtime parameter as `{'tensor_db': True}` during the creation of the vector store. This configuration enables the execution of queries on the Managed Tensor Database, rather than on the client side. It should be noted that this functionality is not applicable to datasets stored locally or in-memory. In the event that a vector store has already been created outside of the Managed Tensor Database, it is possible to transfer it to the Managed Tensor Database by following the prescribed steps." ] }, { diff --git a/docs/docs/integrations/vectorstores/alibabacloud_opensearch.ipynb b/docs/docs/integrations/vectorstores/alibabacloud_opensearch.ipynb index 50ea0b1397700..751d05941f4c1 100644 --- a/docs/docs/integrations/vectorstores/alibabacloud_opensearch.ipynb +++ b/docs/docs/integrations/vectorstores/alibabacloud_opensearch.ipynb @@ -106,7 +106,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { @@ -376,7 +377,7 @@ } }, "source": [ - "If you encounter any problems during use, please feel free to contact , and we will do our best to provide you with assistance and support.\n" + "If you encounter any problems during use, please feel free to contact xingshaomin.xsm@alibaba-inc.com, and we will do our best to provide you with assistance and support.\n" ] } ], diff --git a/docs/docs/integrations/vectorstores/apache_doris.ipynb b/docs/docs/integrations/vectorstores/apache_doris.ipynb index 92239a7a60b6a..1dcf620428543 100644 --- a/docs/docs/integrations/vectorstores/apache_doris.ipynb +++ b/docs/docs/integrations/vectorstores/apache_doris.ipynb @@ -245,7 +245,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/integrations/vectorstores/astradb.ipynb b/docs/docs/integrations/vectorstores/astradb.ipynb index 9ef52d0cb37cf..36c9e072741b9 100644 --- a/docs/docs/integrations/vectorstores/astradb.ipynb +++ b/docs/docs/integrations/vectorstores/astradb.ipynb @@ -107,11 +107,9 @@ "\n", "Below, we instantiate our vector store using the explicit embedding class:\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -410,7 +408,7 @@ "source": [ "#### Other search methods\n", "\n", - "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `AstraDBVectorStore` check out the [API reference](https://python.langchain.com/v0.2/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html)." + "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `AstraDBVectorStore` check out the [API reference](https://python.langchain.com/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html)." ] }, { @@ -459,9 +457,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -507,7 +505,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `AstraDBVectorStore` features and configurations head to the API reference:https://python.langchain.com/v0.2/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html" + "For detailed documentation of all `AstraDBVectorStore` features and configurations head to the API reference:https://python.langchain.com/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/baiducloud_vector_search.ipynb b/docs/docs/integrations/vectorstores/baiducloud_vector_search.ipynb index 4ddc2b34efa3f..86591c08c1859 100644 --- a/docs/docs/integrations/vectorstores/baiducloud_vector_search.ipynb +++ b/docs/docs/integrations/vectorstores/baiducloud_vector_search.ipynb @@ -59,8 +59,10 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"QIANFAN_AK\"] = getpass.getpass(\"Your Qianfan AK:\")\n", - "os.environ[\"QIANFAN_SK\"] = getpass.getpass(\"Your Qianfan SK:\")" + "if \"QIANFAN_AK\" not in os.environ:\n", + " os.environ[\"QIANFAN_AK\"] = getpass.getpass(\"Your Qianfan AK:\")\n", + "if \"QIANFAN_SK\" not in os.environ:\n", + " os.environ[\"QIANFAN_SK\"] = getpass.getpass(\"Your Qianfan SK:\")" ] }, { @@ -140,7 +142,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Please feel free to contact or if you encounter any problems during use, and we will do our best to support you." + "Please feel free to contact liuboyao@baidu.com or chenweixu01@baidu.com if you encounter any problems during use, and we will do our best to support you." ] } ], diff --git a/docs/docs/integrations/vectorstores/cassandra.ipynb b/docs/docs/integrations/vectorstores/cassandra.ipynb index e7f9a19a62d26..b18eaab887db6 100644 --- a/docs/docs/integrations/vectorstores/cassandra.ipynb +++ b/docs/docs/integrations/vectorstores/cassandra.ipynb @@ -90,7 +90,8 @@ "metadata": {}, "outputs": [], "source": [ - "os.environ[\"OPENAI_API_KEY\"] = getpass(\"OPENAI_API_KEY = \")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass(\"OPENAI_API_KEY = \")" ] }, { diff --git a/docs/docs/integrations/vectorstores/chroma.ipynb b/docs/docs/integrations/vectorstores/chroma.ipynb index c7049904d37a3..d5c2133b7c660 100644 --- a/docs/docs/integrations/vectorstores/chroma.ipynb +++ b/docs/docs/integrations/vectorstores/chroma.ipynb @@ -9,7 +9,7 @@ "\n", "This notebook covers how to get started with the `Chroma` vector store.\n", "\n", - ">[Chroma](https://docs.trychroma.com/getting-started) is a AI-native open-source vector database focused on developer productivity and happiness. Chroma is licensed under Apache 2.0. View the full docs of `Chroma` at [this page](https://docs.trychroma.com/reference/py-collection), and find the API reference for the LangChain integration at [this page](https://python.langchain.com/v0.2/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html).\n", + ">[Chroma](https://docs.trychroma.com/getting-started) is a AI-native open-source vector database focused on developer productivity and happiness. Chroma is licensed under Apache 2.0. View the full docs of `Chroma` at [this page](https://docs.trychroma.com/reference/py-collection), and find the API reference for the LangChain integration at [this page](https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html).\n", "\n", "## Setup\n", "\n", @@ -66,11 +66,9 @@ "\n", "Below is a basic initialization, including the use of a directory to save the data locally.\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -99,7 +97,7 @@ "vector_store = Chroma(\n", " collection_name=\"example_collection\",\n", " embedding_function=embeddings,\n", - " persist_directory=\"./chroma_langchain_db\", # Where to save data locally, remove if not neccesary\n", + " persist_directory=\"./chroma_langchain_db\", # Where to save data locally, remove if not necessary\n", ")" ] }, @@ -179,7 +177,7 @@ "from langchain_core.documents import Document\n", "\n", "document_1 = Document(\n", - " page_content=\"I had chocalate chip pancakes and scrambled eggs for breakfast this morning.\",\n", + " page_content=\"I had chocolate chip pancakes and scrambled eggs for breakfast this morning.\",\n", " metadata={\"source\": \"tweet\"},\n", " id=1,\n", ")\n", @@ -273,7 +271,7 @@ "outputs": [], "source": [ "updated_document_1 = Document(\n", - " page_content=\"I had chocalate chip pancakes and fried eggs for breakfast this morning.\",\n", + " page_content=\"I had chocolate chip pancakes and fried eggs for breakfast this morning.\",\n", " metadata={\"source\": \"tweet\"},\n", " id=1,\n", ")\n", @@ -287,7 +285,7 @@ "vector_store.update_document(document_id=uuids[0], document=updated_document_1)\n", "# You can also update multiple documents at once\n", "vector_store.update_documents(\n", - " ids=uuids[:2], documents=[updated_document_1, updated_document_1]\n", + " ids=uuids[:2], documents=[updated_document_1, updated_document_2]\n", ")" ] }, @@ -423,11 +421,11 @@ "source": [ "#### Other search methods\n", "\n", - "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `AstraDBVectorStore` check out the [API reference](https://python.langchain.com/v0.2/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html).\n", + "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `AstraDBVectorStore` check out the [API reference](https://python.langchain.com/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html).\n", "\n", "### Query by turning into retriever\n", "\n", - "You can also transform the vector store into a retriever for easier usage in your chains. For more information on the different search types and kwargs you can pass, please visit the API reference [here](https://python.langchain.com/v0.2/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html#langchain_chroma.vectorstores.Chroma.as_retriever)." + "You can also transform the vector store into a retriever for easier usage in your chains. For more information on the different search types and kwargs you can pass, please visit the API reference [here](https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html#langchain_chroma.vectorstores.Chroma.as_retriever)." ] }, { @@ -463,9 +461,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -475,7 +473,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `Chroma` vector store features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html" + "For detailed documentation of all `Chroma` vector store features and configurations head to the API reference: https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/clickhouse.ipynb b/docs/docs/integrations/vectorstores/clickhouse.ipynb index 035be6fed0137..2631ab40a919f 100644 --- a/docs/docs/integrations/vectorstores/clickhouse.ipynb +++ b/docs/docs/integrations/vectorstores/clickhouse.ipynb @@ -80,11 +80,9 @@ "source": [ "## Instantiation\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -322,7 +320,7 @@ "source": [ "#### Other search methods\n", "\n", - "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `Clickhouse` vector store check out the [API reference](https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.clickhouse.Clickhouse.html)." + "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `Clickhouse` vector store check out the [API reference](https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.clickhouse.Clickhouse.html)." ] }, { @@ -360,9 +358,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -380,7 +378,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `AstraDBVectorStore` features and configurations head to the API reference:https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.clickhouse.Clickhouse.html" + "For detailed documentation of all `Clickhouse` features and configurations head to the API reference:https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.clickhouse.Clickhouse.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/couchbase.ipynb b/docs/docs/integrations/vectorstores/couchbase.ipynb index d3b00f80c16a6..c80fbbd891464 100644 --- a/docs/docs/integrations/vectorstores/couchbase.ipynb +++ b/docs/docs/integrations/vectorstores/couchbase.ipynb @@ -167,11 +167,9 @@ "\n", "Below, we create the vector store object with the cluster information and the search index name. \n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -678,9 +676,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -742,7 +740,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `CouchbaseVectorStore` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/couchbase/vectorstores/langchain_couchbase.vectorstores.CouchbaseVectorStore.html" + "For detailed documentation of all `CouchbaseVectorStore` features and configurations head to the API reference: https://python.langchain.com/api_reference/couchbase/vectorstores/langchain_couchbase.vectorstores.CouchbaseVectorStore.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/dashvector.ipynb b/docs/docs/integrations/vectorstores/dashvector.ipynb index f42b6d4f072d9..6f24a552dde66 100644 --- a/docs/docs/integrations/vectorstores/dashvector.ipynb +++ b/docs/docs/integrations/vectorstores/dashvector.ipynb @@ -71,8 +71,10 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"DASHVECTOR_API_KEY\"] = getpass.getpass(\"DashVector API Key:\")\n", - "os.environ[\"DASHSCOPE_API_KEY\"] = getpass.getpass(\"DashScope API Key:\")" + "if \"DASHVECTOR_API_KEY\" not in os.environ:\n", + " os.environ[\"DASHVECTOR_API_KEY\"] = getpass.getpass(\"DashVector API Key:\")\n", + "if \"DASHSCOPE_API_KEY\" not in os.environ:\n", + " os.environ[\"DASHSCOPE_API_KEY\"] = getpass.getpass(\"DashScope API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb b/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb index 626e34568f296..adfe23173b4a6 100644 --- a/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb +++ b/docs/docs/integrations/vectorstores/databricks_vector_search.ipynb @@ -49,7 +49,10 @@ "import os\n", "\n", "os.environ[\"DATABRICKS_HOST\"] = \"https://your-databricks-workspace\"\n", - "os.environ[\"DATABRICKS_TOKEN\"] = getpass.getpass(\"Enter your Databricks access token: \")" + "if \"DATABRICKS_TOKEN\" not in os.environ:\n", + " os.environ[\"DATABRICKS_TOKEN\"] = getpass.getpass(\n", + " \"Enter your Databricks access token: \"\n", + " )" ] }, { @@ -239,11 +242,9 @@ "you also need to provide the embedding model and text column in your source table to\n", "use for the embeddings:\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -493,9 +494,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { diff --git a/docs/docs/integrations/vectorstores/dingo.ipynb b/docs/docs/integrations/vectorstores/dingo.ipynb index 3d0934d4b07e6..6a941cdb28fbb 100644 --- a/docs/docs/integrations/vectorstores/dingo.ipynb +++ b/docs/docs/integrations/vectorstores/dingo.ipynb @@ -58,7 +58,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/documentdb.ipynb b/docs/docs/integrations/vectorstores/documentdb.ipynb index 64be6f516d80c..2bafbe1890862 100644 --- a/docs/docs/integrations/vectorstores/documentdb.ipynb +++ b/docs/docs/integrations/vectorstores/documentdb.ipynb @@ -104,7 +104,8 @@ "import os\n", "\n", "# Set up the OpenAI Environment Variables\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "os.environ[\"OPENAI_EMBEDDINGS_DEPLOYMENT\"] = (\n", " \"smart-agent-embedding-ada\" # the deployment name for the embedding model\n", ")\n", diff --git a/docs/docs/integrations/vectorstores/duckdb.ipynb b/docs/docs/integrations/vectorstores/duckdb.ipynb index be23a3f2b8df4..926c596a652a8 100644 --- a/docs/docs/integrations/vectorstores/duckdb.ipynb +++ b/docs/docs/integrations/vectorstores/duckdb.ipynb @@ -33,7 +33,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/ecloud_vector_search.ipynb b/docs/docs/integrations/vectorstores/ecloud_vector_search.ipynb index ffe976f5b141e..1181156f3d912 100644 --- a/docs/docs/integrations/vectorstores/ecloud_vector_search.ipynb +++ b/docs/docs/integrations/vectorstores/ecloud_vector_search.ipynb @@ -51,7 +51,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/elasticsearch.ipynb b/docs/docs/integrations/vectorstores/elasticsearch.ipynb index 3eaf6bc04bd8b..f2be67d8d266e 100644 --- a/docs/docs/integrations/vectorstores/elasticsearch.ipynb +++ b/docs/docs/integrations/vectorstores/elasticsearch.ipynb @@ -80,11 +80,9 @@ "### Running with Authentication\n", "For production, we recommend you run with security enabled. To connect with login credentials, you can use the parameters `es_api_key` or `es_user` and `es_password`.\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -473,9 +471,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -601,7 +599,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `ElasticSearchStore` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/elasticsearch/vectorstores/langchain_elasticsearch.vectorstores.ElasticsearchStore.html" + "For detailed documentation of all `ElasticSearchStore` features and configurations head to the API reference: https://python.langchain.com/api_reference/elasticsearch/vectorstores/langchain_elasticsearch.vectorstores.ElasticsearchStore.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/epsilla.ipynb b/docs/docs/integrations/vectorstores/epsilla.ipynb index 5d0e01678a763..f89c7be10eacf 100644 --- a/docs/docs/integrations/vectorstores/epsilla.ipynb +++ b/docs/docs/integrations/vectorstores/epsilla.ipynb @@ -42,7 +42,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/faiss.ipynb b/docs/docs/integrations/vectorstores/faiss.ipynb index 60106946982ae..854e5a25dcb47 100644 --- a/docs/docs/integrations/vectorstores/faiss.ipynb +++ b/docs/docs/integrations/vectorstores/faiss.ipynb @@ -66,11 +66,9 @@ "source": [ "## Initialization\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -328,7 +326,7 @@ "#### Other search methods\n", "\n", "\n", - "There are a variety of other ways to search a FAISS vector store. For a complete list of those methods, please refer to the [API Reference](https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)\n", + "There are a variety of other ways to search a FAISS vector store. For a complete list of those methods, please refer to the [API Reference](https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html)\n", "\n", "### Query by turning into retriever\n", "\n", @@ -366,9 +364,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -510,7 +508,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `FAISS` vector store features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html" + "For detailed documentation of all `FAISS` vector store features and configurations head to the API reference: https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/faiss_async.ipynb b/docs/docs/integrations/vectorstores/faiss_async.ipynb index 8c248e427ecbd..e3bd1c90300ab 100644 --- a/docs/docs/integrations/vectorstores/faiss_async.ipynb +++ b/docs/docs/integrations/vectorstores/faiss_async.ipynb @@ -55,7 +55,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "\n", "# Uncomment the following line if you need to initialize FAISS with no AVX2 optimization\n", "# os.environ['FAISS_NO_AVX2'] = '1'\n", diff --git a/docs/docs/integrations/vectorstores/google_spanner.ipynb b/docs/docs/integrations/vectorstores/google_spanner.ipynb index c7c0d90299c9e..fb06a69296442 100644 --- a/docs/docs/integrations/vectorstores/google_spanner.ipynb +++ b/docs/docs/integrations/vectorstores/google_spanner.ipynb @@ -52,7 +52,7 @@ } ], "source": [ - "%pip install --upgrade --quiet langchain-google-spanner" + "%pip install --upgrade --quiet langchain-google-spanner langchain-google-vertexai" ] }, { @@ -124,7 +124,8 @@ "PROJECT_ID = \"my-project-id\" # @param {type:\"string\"}\n", "\n", "# Set the project id\n", - "!gcloud config set project {PROJECT_ID}" + "!gcloud config set project {PROJECT_ID}\n", + "%env GOOGLE_CLOUD_PROJECT={PROJECT_ID}" ] }, { @@ -194,14 +195,16 @@ " instance_id=INSTANCE,\n", " database_id=DATABASE,\n", " table_name=TABLE_NAME,\n", - " id_column=\"row_id\",\n", - " metadata_columns=[\n", - " TableColumn(name=\"metadata\", type=\"JSON\", is_null=True),\n", - " TableColumn(name=\"title\", type=\"STRING(MAX)\", is_null=False),\n", - " ],\n", - " secondary_indexes=[\n", - " SecondaryIndex(index_name=\"row_id_and_title\", columns=[\"row_id\", \"title\"])\n", - " ],\n", + " # Customize the table creation\n", + " # id_column=\"row_id\",\n", + " # content_column=\"content_column\",\n", + " # metadata_columns=[\n", + " # TableColumn(name=\"metadata\", type=\"JSON\", is_null=True),\n", + " # TableColumn(name=\"title\", type=\"STRING(MAX)\", is_null=False),\n", + " # ],\n", + " # secondary_indexes=[\n", + " # SecondaryIndex(index_name=\"row_id_and_title\", columns=[\"row_id\", \"title\"])\n", + " # ],\n", ")" ] }, @@ -262,9 +265,11 @@ " instance_id=INSTANCE,\n", " database_id=DATABASE,\n", " table_name=TABLE_NAME,\n", - " ignore_metadata_columns=[],\n", " embedding_service=embeddings,\n", - " metadata_json_column=\"metadata\",\n", + " # Connect to a custom vector store table\n", + " # id_column=\"row_id\",\n", + " # content_column=\"content\",\n", + " # metadata_columns=[\"metadata\", \"title\"],\n", ")" ] }, @@ -272,7 +277,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 🔐 Add Documents\n", + "#### Add Documents\n", "To add documents in the vector store." ] }, @@ -289,14 +294,15 @@ "loader = HNLoader(\"https://news.ycombinator.com/item?id=34817881\")\n", "\n", "documents = loader.load()\n", - "ids = [str(uuid.uuid4()) for _ in range(len(documents))]" + "ids = [str(uuid.uuid4()) for _ in range(len(documents))]\n", + "db.add_documents(documents, ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### 🔐 Search Documents\n", + "#### Search Documents\n", "To search documents in the vector store with similarity search." ] }, @@ -313,7 +319,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 🔐 Search Documents\n", + "#### Search Documents\n", "To search documents in the vector store with max marginal relevance search." ] }, @@ -330,7 +336,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 🔐 Delete Documents\n", + "#### Delete Documents\n", "To remove documents from the vector store, use the IDs that correspond to the values in the `row_id`` column when initializing the VectorStore." ] }, @@ -347,7 +353,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### 🔐 Delete Documents\n", + "#### Delete Documents\n", "To remove documents from the vector store, you can utilize the documents themselves. The content column and metadata columns provided during VectorStore initialization will be used to find out the rows corresponding to the documents. Any matching rows will then be deleted." ] }, @@ -377,7 +383,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.6" + "version": "3.11.8" } }, "nbformat": 4, diff --git a/docs/docs/integrations/vectorstores/kdbai.ipynb b/docs/docs/integrations/vectorstores/kdbai.ipynb index 74d177548de39..a645c3be56329 100644 --- a/docs/docs/integrations/vectorstores/kdbai.ipynb +++ b/docs/docs/integrations/vectorstores/kdbai.ipynb @@ -61,7 +61,8 @@ "source": [ "KDBAI_ENDPOINT = input(\"KDB.AI endpoint: \")\n", "KDBAI_API_KEY = getpass(\"KDB.AI API key: \")\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass(\"OpenAI API Key: \")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass(\"OpenAI API Key: \")" ] }, { diff --git a/docs/docs/integrations/vectorstores/kinetica.ipynb b/docs/docs/integrations/vectorstores/kinetica.ipynb index 491de90aaac9b..1d5344cf4201a 100644 --- a/docs/docs/integrations/vectorstores/kinetica.ipynb +++ b/docs/docs/integrations/vectorstores/kinetica.ipynb @@ -81,7 +81,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/lancedb.ipynb b/docs/docs/integrations/vectorstores/lancedb.ipynb index 10a48b4f005aa..c8cf62f1ccdc3 100644 --- a/docs/docs/integrations/vectorstores/lancedb.ipynb +++ b/docs/docs/integrations/vectorstores/lancedb.ipynb @@ -62,7 +62,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/lantern.ipynb b/docs/docs/integrations/vectorstores/lantern.ipynb index bad29bea1d73c..d09d391055d35 100644 --- a/docs/docs/integrations/vectorstores/lantern.ipynb +++ b/docs/docs/integrations/vectorstores/lantern.ipynb @@ -63,7 +63,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/marqo.ipynb b/docs/docs/integrations/vectorstores/marqo.ipynb index 6583563203f16..e528f5aff6018 100644 --- a/docs/docs/integrations/vectorstores/marqo.ipynb +++ b/docs/docs/integrations/vectorstores/marqo.ipynb @@ -481,7 +481,8 @@ "from langchain.chains import RetrievalQAWithSourcesChain\n", "from langchain_openai import OpenAI\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/meilisearch.ipynb b/docs/docs/integrations/vectorstores/meilisearch.ipynb index 176671bfa6b2d..b51734e377b60 100644 --- a/docs/docs/integrations/vectorstores/meilisearch.ipynb +++ b/docs/docs/integrations/vectorstores/meilisearch.ipynb @@ -93,8 +93,12 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"MEILI_HTTP_ADDR\"] = getpass.getpass(\"Meilisearch HTTP address and port:\")\n", - "os.environ[\"MEILI_MASTER_KEY\"] = getpass.getpass(\"Meilisearch API Key:\")" + "if \"MEILI_HTTP_ADDR\" not in os.environ:\n", + " os.environ[\"MEILI_HTTP_ADDR\"] = getpass.getpass(\n", + " \"Meilisearch HTTP address and port:\"\n", + " )\n", + "if \"MEILI_MASTER_KEY\" not in os.environ:\n", + " os.environ[\"MEILI_MASTER_KEY\"] = getpass.getpass(\"Meilisearch API Key:\")" ] }, { @@ -110,7 +114,8 @@ "metadata": {}, "outputs": [], "source": [ - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/milvus.ipynb b/docs/docs/integrations/vectorstores/milvus.ipynb index 6bf4bf793b11f..2dfbbbb2b6e1b 100644 --- a/docs/docs/integrations/vectorstores/milvus.ipynb +++ b/docs/docs/integrations/vectorstores/milvus.ipynb @@ -41,11 +41,9 @@ "\n", "## Initialization\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -359,7 +357,7 @@ "id": "14db337f", "metadata": {}, "source": [ - "For a full list of all the search options available when using the `Milvus` vector store, you can visit the [API reference](https://python.langchain.com/v0.2/api_reference/milvus/vectorstores/langchain_milvus.vectorstores.milvus.Milvus.html).\n", + "For a full list of all the search options available when using the `Milvus` vector store, you can visit the [API reference](https://python.langchain.com/api_reference/milvus/vectorstores/langchain_milvus.vectorstores.milvus.Milvus.html).\n", "\n", "### Query by turning into retriever\n", "\n", @@ -397,9 +395,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -528,7 +526,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/milvus/vectorstores/langchain_milvus.vectorstores.milvus.Milvus.html" + "For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://python.langchain.com/api_reference/milvus/vectorstores/langchain_milvus.vectorstores.milvus.Milvus.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/momento_vector_index.ipynb b/docs/docs/integrations/vectorstores/momento_vector_index.ipynb index 7df6c4fddf5a0..c92a459cf99a4 100644 --- a/docs/docs/integrations/vectorstores/momento_vector_index.ipynb +++ b/docs/docs/integrations/vectorstores/momento_vector_index.ipynb @@ -93,7 +93,8 @@ "metadata": {}, "outputs": [], "source": [ - "os.environ[\"MOMENTO_API_KEY\"] = getpass.getpass(\"Momento API Key:\")" + "if \"MOMENTO_API_KEY\" not in os.environ:\n", + " os.environ[\"MOMENTO_API_KEY\"] = getpass.getpass(\"Momento API Key:\")" ] }, { @@ -113,7 +114,8 @@ }, "outputs": [], "source": [ - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb b/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb index be2ea10908412..004da71dac252 100644 --- a/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb +++ b/docs/docs/integrations/vectorstores/mongodb_atlas.ipynb @@ -88,11 +88,9 @@ "source": [ "## Initialization\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -412,7 +410,7 @@ "source": [ "#### Other search methods\n", "\n", - "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `AstraDBVectorStore` check out the [API reference](https://python.langchain.com/v0.2/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html)." + "There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for `AstraDBVectorStore` check out the [API reference](https://python.langchain.com/api_reference/astradb/vectorstores/langchain_astradb.vectorstores.AstraDBVectorStore.html)." ] }, { @@ -461,9 +459,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -474,7 +472,7 @@ "# Other Notes\n", ">* More documentation can be found at [LangChain-MongoDB](https://www.mongodb.com/docs/atlas/atlas-vector-search/ai-integrations/langchain/) site\n", ">* This feature is Generally Available and ready for production deployments.\n", - ">* The langchain version 0.0.305 ([release notes](https://github.com/langchain-ai/langchain/releases/tag/v0.0.305)) introduces the support for $vectorSearch MQL stage, which is available with MongoDB Atlas 6.0.11 and 7.0.2. Users utilizing earlier versions of MongoDB Atlas need to pin their LangChain version to <=0.0.304\n", + ">* The langchain version 0.0.305 ([release notes](https://github.com/langchain-ai/langchain/releases/tag/v0.0.305)) introduces the support for $vectorSearch MQL stage, which is available with MongoDB Atlas 6.0.11 and 7.0.2. Users utilizing earlier versions of MongoDB Atlas need to pin their LangChain version to <=0.0.304\n", "> " ] }, @@ -485,7 +483,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `MongoDBAtlasVectorSearch` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/mongodb/index.html" + "For detailed documentation of all `MongoDBAtlasVectorSearch` features and configurations head to the API reference: https://python.langchain.com/api_reference/mongodb/index.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/myscale.ipynb b/docs/docs/integrations/vectorstores/myscale.ipynb index c75ee44ac797f..bb425ecd04a7a 100644 --- a/docs/docs/integrations/vectorstores/myscale.ipynb +++ b/docs/docs/integrations/vectorstores/myscale.ipynb @@ -53,12 +53,18 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", - "os.environ[\"OPENAI_API_BASE\"] = getpass.getpass(\"OpenAI Base:\")\n", - "os.environ[\"MYSCALE_HOST\"] = getpass.getpass(\"MyScale Host:\")\n", - "os.environ[\"MYSCALE_PORT\"] = getpass.getpass(\"MyScale Port:\")\n", - "os.environ[\"MYSCALE_USERNAME\"] = getpass.getpass(\"MyScale Username:\")\n", - "os.environ[\"MYSCALE_PASSWORD\"] = getpass.getpass(\"MyScale Password:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_BASE\" not in os.environ:\n", + " os.environ[\"OPENAI_API_BASE\"] = getpass.getpass(\"OpenAI Base:\")\n", + "if \"MYSCALE_HOST\" not in os.environ:\n", + " os.environ[\"MYSCALE_HOST\"] = getpass.getpass(\"MyScale Host:\")\n", + "if \"MYSCALE_PORT\" not in os.environ:\n", + " os.environ[\"MYSCALE_PORT\"] = getpass.getpass(\"MyScale Port:\")\n", + "if \"MYSCALE_USERNAME\" not in os.environ:\n", + " os.environ[\"MYSCALE_USERNAME\"] = getpass.getpass(\"MyScale Username:\")\n", + "if \"MYSCALE_PASSWORD\" not in os.environ:\n", + " os.environ[\"MYSCALE_PASSWORD\"] = getpass.getpass(\"MyScale Password:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/neo4jvector.ipynb b/docs/docs/integrations/vectorstores/neo4jvector.ipynb index 72ca016a3519a..cc489d5c48352 100644 --- a/docs/docs/integrations/vectorstores/neo4jvector.ipynb +++ b/docs/docs/integrations/vectorstores/neo4jvector.ipynb @@ -62,7 +62,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/opensearch.ipynb b/docs/docs/integrations/vectorstores/opensearch.ipynb index febe4b117d638..c72b6c30ca1dd 100644 --- a/docs/docs/integrations/vectorstores/opensearch.ipynb +++ b/docs/docs/integrations/vectorstores/opensearch.ipynb @@ -58,7 +58,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/pgembedding.ipynb b/docs/docs/integrations/vectorstores/pgembedding.ipynb index e1a75c5545ebc..3a4dc8501af94 100644 --- a/docs/docs/integrations/vectorstores/pgembedding.ipynb +++ b/docs/docs/integrations/vectorstores/pgembedding.ipynb @@ -60,7 +60,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { @@ -103,7 +104,8 @@ } ], "source": [ - "os.environ[\"DATABASE_URL\"] = getpass.getpass(\"Database Url:\")" + "if \"DATABASE_URL\" not in os.environ:\n", + " os.environ[\"DATABASE_URL\"] = getpass.getpass(\"Database Url:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/pgvector.ipynb b/docs/docs/integrations/vectorstores/pgvector.ipynb index 855d655f43f80..afbd082aa1a86 100644 --- a/docs/docs/integrations/vectorstores/pgvector.ipynb +++ b/docs/docs/integrations/vectorstores/pgvector.ipynb @@ -92,11 +92,9 @@ "source": [ "## Instantiation\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -254,8 +252,8 @@ "|----------|-------------------------|\n", "| \\$eq | Equality (==) |\n", "| \\$ne | Inequality (!=) |\n", - "| \\$lt | Less than (<) |\n", - "| \\$lte | Less than or equal (<=) |\n", + "| \\$lt | Less than (<) |\n", + "| \\$lte | Less than or equal (<=) |\n", "| \\$gt | Greater than (>) |\n", "| \\$gte | Greater than or equal (>=) |\n", "| \\$in | Special Cased (in) |\n", @@ -400,7 +398,7 @@ "id": "8d40db8c", "metadata": {}, "source": [ - "For a full list of the different searches you can execute on a `PGVector` vector store, please refer to the [API reference](https://python.langchain.com/v0.2/api_reference/postgres/vectorstores/langchain_postgres.vectorstores.PGVector.html).\n", + "For a full list of the different searches you can execute on a `PGVector` vector store, please refer to the [API reference](https://python.langchain.com/api_reference/postgres/vectorstores/langchain_postgres.vectorstores.PGVector.html).\n", "\n", "### Query by turning into retriever\n", "\n", @@ -438,9 +436,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -450,7 +448,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/postgres/vectorstores/langchain_postgres.vectorstores.PGVector.html" + "For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://python.langchain.com/api_reference/postgres/vectorstores/langchain_postgres.vectorstores.PGVector.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/pinecone.ipynb b/docs/docs/integrations/vectorstores/pinecone.ipynb index bea9748f1850f..ecdf557f3d58b 100644 --- a/docs/docs/integrations/vectorstores/pinecone.ipynb +++ b/docs/docs/integrations/vectorstores/pinecone.ipynb @@ -130,11 +130,9 @@ "source": [ "Now that our Pinecone index is setup, we can initialize our vector store. \n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -371,7 +369,7 @@ "source": [ "#### Other search methods\n", "\n", - "There are more search methods (such as MMR) not listed in this notebook, to find all of them be sure to read the [API reference](https://python.langchain.com/v0.2/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html).\n", + "There are more search methods (such as MMR) not listed in this notebook, to find all of them be sure to read the [API reference](https://python.langchain.com/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html).\n", "\n", "### Query by turning into retriever\n", "\n", @@ -412,9 +410,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -424,7 +422,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html" + "For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://python.langchain.com/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/qdrant.ipynb b/docs/docs/integrations/vectorstores/qdrant.ipynb index 4e6331e60a332..0ab58c72850c7 100644 --- a/docs/docs/integrations/vectorstores/qdrant.ipynb +++ b/docs/docs/integrations/vectorstores/qdrant.ipynb @@ -77,11 +77,9 @@ "For some testing scenarios and quick experiments, you may prefer to keep all the data in memory only, so it gets lost when the client is destroyed - usually at the end of your script/notebook.\n", "\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -472,7 +470,7 @@ "To search with only dense vectors,\n", "\n", "- The `retrieval_mode` parameter should be set to `RetrievalMode.DENSE`(default).\n", - "- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided to the `embedding` parameter." + "- A [dense embeddings](https://python.langchain.com/docs/integrations/text_embedding/) value should be provided to the `embedding` parameter." ] }, { @@ -556,7 +554,7 @@ "To perform a hybrid search using dense and sparse vectors with score fusion,\n", "\n", "- The `retrieval_mode` parameter should be set to `RetrievalMode.HYBRID`.\n", - "- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided to the `embedding` parameter.\n", + "- A [dense embeddings](https://python.langchain.com/docs/integrations/text_embedding/) value should be provided to the `embedding` parameter.\n", "- An implementation of the [`SparseEmbeddings`](https://github.com/langchain-ai/langchain/blob/master/libs/partners/qdrant/langchain_qdrant/sparse_embeddings.py) interface using any sparse embeddings provider has to be provided as value to the `sparse_embedding` parameter.\n", "\n", "Note that if you've added documents with the `HYBRID` mode, you can switch to any retrieval mode when searching. Since both the dense and sparse vectors are available in the collection." @@ -628,7 +626,7 @@ "id": "525e3582", "metadata": {}, "source": [ - "For a full list of all the search functions available for a `QdrantVectorStore`, read the [API reference](https://python.langchain.com/v0.2/api_reference/qdrant/qdrant/langchain_qdrant.qdrant.QdrantVectorStore.html)\n", + "For a full list of all the search functions available for a `QdrantVectorStore`, read the [API reference](https://python.langchain.com/api_reference/qdrant/qdrant/langchain_qdrant.qdrant.QdrantVectorStore.html)\n", "\n", "### Metadata filtering\n", "\n", @@ -717,9 +715,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -814,7 +812,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all `QdrantVectorStore` features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/qdrant/qdrant/langchain_qdrant.qdrant.QdrantVectorStore.html" + "For detailed documentation of all `QdrantVectorStore` features and configurations head to the API reference: https://python.langchain.com/api_reference/qdrant/qdrant/langchain_qdrant.qdrant.QdrantVectorStore.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/redis.ipynb b/docs/docs/integrations/vectorstores/redis.ipynb index 56af92a0632f6..7cd3704b5d7c5 100644 --- a/docs/docs/integrations/vectorstores/redis.ipynb +++ b/docs/docs/integrations/vectorstores/redis.ipynb @@ -362,11 +362,9 @@ "\n", "Below we will use the `RedisVectorStore.__init__` method using a `RedisConfig` instance.\n", "\n", - "```{=mdx}\n", "import EmbeddingTabs from \"@theme/EmbeddingTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -764,9 +762,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { @@ -884,11 +882,9 @@ "## Chain usage\n", "The code below shows how to use the vector store as a retriever in a simple RAG chain:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -1110,7 +1106,7 @@ "source": [ "## API reference\n", "\n", - "For detailed documentation of all RedisVectorStore features and configurations head to the API reference: https://python.langchain.com/v0.2/api_reference/redis/vectorstores/langchain_redis.vectorstores.RedisVectorStore.html" + "For detailed documentation of all RedisVectorStore features and configurations head to the API reference: https://python.langchain.com/api_reference/redis/vectorstores/langchain_redis.vectorstores.RedisVectorStore.html" ] } ], diff --git a/docs/docs/integrations/vectorstores/sap_hanavector.ipynb b/docs/docs/integrations/vectorstores/sap_hanavector.ipynb index 1e8dc1b55295b..90a0ed5e668e6 100644 --- a/docs/docs/integrations/vectorstores/sap_hanavector.ipynb +++ b/docs/docs/integrations/vectorstores/sap_hanavector.ipynb @@ -371,8 +371,8 @@ "|----------|-------------------------|\n", "| `$eq` | Equality (==) |\n", "| `$ne` | Inequality (!=) |\n", - "| `$lt` | Less than (<) |\n", - "| `$lte` | Less than or equal (<=) |\n", + "| `$lt` | Less than (<) |\n", + "| `$lte` | Less than or equal (<=) |\n", "| `$gt` | Greater than (>) |\n", "| `$gte` | Greater than or equal (>=) |\n", "| `$in` | Contained in a set of given values (in) |\n", diff --git a/docs/docs/integrations/vectorstores/semadb.ipynb b/docs/docs/integrations/vectorstores/semadb.ipynb index b1f1b57378025..bc07ab0a91d95 100644 --- a/docs/docs/integrations/vectorstores/semadb.ipynb +++ b/docs/docs/integrations/vectorstores/semadb.ipynb @@ -102,7 +102,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"SEMADB_API_KEY\"] = getpass.getpass(\"SemaDB API Key:\")" + "if \"SEMADB_API_KEY\" not in os.environ:\n", + " os.environ[\"SEMADB_API_KEY\"] = getpass.getpass(\"SemaDB API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/singlestoredb.ipynb b/docs/docs/integrations/vectorstores/singlestoredb.ipynb index ba5d9b11746ce..cbbaf619e0796 100644 --- a/docs/docs/integrations/vectorstores/singlestoredb.ipynb +++ b/docs/docs/integrations/vectorstores/singlestoredb.ipynb @@ -46,7 +46,8 @@ "import os\n", "\n", "# We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/sklearn.ipynb b/docs/docs/integrations/vectorstores/sklearn.ipynb index af1c93c02d163..d54f2156be2c4 100644 --- a/docs/docs/integrations/vectorstores/sklearn.ipynb +++ b/docs/docs/integrations/vectorstores/sklearn.ipynb @@ -44,7 +44,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass(\"Enter your OpenAI key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass(\"Enter your OpenAI key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/sqlitevec.ipynb b/docs/docs/integrations/vectorstores/sqlitevec.ipynb new file mode 100644 index 0000000000000..33eb5b854d502 --- /dev/null +++ b/docs/docs/integrations/vectorstores/sqlitevec.ipynb @@ -0,0 +1,323 @@ +{ + "cells": [ + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "---\n", + "sidebar_label: SQLiteVec\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": [ + "# SQLite as a Vector Store with SQLiteVec\n", + "\n", + "This notebook covers how to get started with the SQLiteVec vector store.\n", + "\n", + ">[SQLite-Vec](https://alexgarcia.xyz/sqlite-vec/) is an `SQLite` extension designed for vector search, emphasizing local-first operations and easy integration into applications without external servers. It is the successor to [SQLite-VSS](https://alexgarcia.xyz/sqlite-vss/) by the same author. It is written in zero-dependency C and designed to be easy to build and use.\n", + "\n", + "This notebook shows how to use the `SQLiteVec` vector database." + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "## Setup\n", + "You'll need to install `langchain-community` with `pip install -qU langchain-community` to use this integration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [], + "source": [ + "# You need to install sqlite-vec as a dependency.\n", + "%pip install --upgrade --quiet sqlite-vec" + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Credentials\n", + "SQLiteVec does not require any credentials to use as the vector store is a simple SQLite file." + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Initialization" + }, + { + "metadata": { + "jupyter": { + "is_executing": true + } + }, + "cell_type": "code", + "source": [ + "from langchain_community.embeddings.sentence_transformer import (\n", + " SentenceTransformerEmbeddings,\n", + ")\n", + "from langchain_community.vectorstores import SQLiteVec\n", + "\n", + "embedding_function = SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n", + "vector_store = SQLiteVec(\n", + " table=\"state_union\", db_file=\"/tmp/vec.db\", embedding=embedding_function\n", + ")" + ], + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Manage vector store" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Add items to vector store" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "vector_store.add_texts(texts=[\"Ketanji Brown Jackson is awesome\", \"foo\", \"bar\"])" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Update items in vector store\n", + "Not supported yet" + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Delete items from vector store\n", + "Not supported yet" + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Query vector store" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Query directly" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "data = vector_store.similarity_search(\"Ketanji Brown Jackson\", k=4)" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Query by turning into retriever\n", + "Not supported yet" + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "## Usage for retrieval-augmented generation\n", + "Refer to the documentation on sqlite-vec at https://alexgarcia.xyz/sqlite-vec/ for more information on how to use it for retrieval-augmented generation." + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "## API reference\n", + "For detailed documentation of all SQLiteVec features and configurations head to the API reference:https://api.python.langchain.com/en/latest/vectorstores/langchain_community.vectorstores.sqlitevec.SQLiteVec.html" + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Other examples" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "ExecuteTime": { + "end_time": "2023-09-06T14:55:55.370351Z", + "start_time": "2023-09-06T14:55:53.547755Z" + }, + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_community.document_loaders import TextLoader\n", + "from langchain_community.embeddings.sentence_transformer import (\n", + " SentenceTransformerEmbeddings,\n", + ")\n", + "from langchain_community.vectorstores import SQLiteVec\n", + "from langchain_text_splitters import CharacterTextSplitter\n", + "\n", + "# load the document and split it into chunks\n", + "loader = TextLoader(\"../../how_to/state_of_the_union.txt\")\n", + "documents = loader.load()\n", + "\n", + "# split it into chunks\n", + "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", + "docs = text_splitter.split_documents(documents)\n", + "texts = [doc.page_content for doc in docs]\n", + "\n", + "\n", + "# create the open-source embedding function\n", + "embedding_function = SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n", + "\n", + "\n", + "# load it in sqlite-vss in a table named state_union.\n", + "# the db_file parameter is the name of the file you want\n", + "# as your sqlite database.\n", + "db = SQLiteVec.from_texts(\n", + " texts=texts,\n", + " embedding=embedding_function,\n", + " table=\"state_union\",\n", + " db_file=\"/tmp/vec.db\",\n", + ")\n", + "\n", + "# query it\n", + "query = \"What did the president say about Ketanji Brown Jackson\"\n", + "data = db.similarity_search(query)\n", + "\n", + "# print results\n", + "data[0].page_content" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "source": "### Example using existing SQLite connection" + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2023-09-06T14:59:22.086252Z", + "start_time": "2023-09-06T14:59:21.693237Z" + }, + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'Ketanji Brown Jackson is awesome'" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain_community.document_loaders import TextLoader\n", + "from langchain_community.embeddings.sentence_transformer import (\n", + " SentenceTransformerEmbeddings,\n", + ")\n", + "from langchain_community.vectorstores import SQLiteVec\n", + "from langchain_text_splitters import CharacterTextSplitter\n", + "\n", + "# load the document and split it into chunks\n", + "loader = TextLoader(\"../../how_to/state_of_the_union.txt\")\n", + "documents = loader.load()\n", + "\n", + "# split it into chunks\n", + "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", + "docs = text_splitter.split_documents(documents)\n", + "texts = [doc.page_content for doc in docs]\n", + "\n", + "\n", + "# create the open-source embedding function\n", + "embedding_function = SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n", + "connection = SQLiteVec.create_connection(db_file=\"/tmp/vec.db\")\n", + "\n", + "db1 = SQLiteVec(\n", + " table=\"state_union\", embedding=embedding_function, connection=connection\n", + ")\n", + "\n", + "db1.add_texts([\"Ketanji Brown Jackson is awesome\"])\n", + "# query it again\n", + "query = \"What did the president say about Ketanji Brown Jackson\"\n", + "data = db1.similarity_search(query)\n", + "\n", + "# print results\n", + "data[0].page_content" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/docs/integrations/vectorstores/supabase.ipynb b/docs/docs/integrations/vectorstores/supabase.ipynb index ca9b2968862b5..370e5d0abe094 100644 --- a/docs/docs/integrations/vectorstores/supabase.ipynb +++ b/docs/docs/integrations/vectorstores/supabase.ipynb @@ -102,7 +102,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { @@ -112,7 +113,8 @@ "metadata": {}, "outputs": [], "source": [ - "os.environ[\"SUPABASE_URL\"] = getpass.getpass(\"Supabase URL:\")" + "if \"SUPABASE_URL\" not in os.environ:\n", + " os.environ[\"SUPABASE_URL\"] = getpass.getpass(\"Supabase URL:\")" ] }, { @@ -122,7 +124,8 @@ "metadata": {}, "outputs": [], "source": [ - "os.environ[\"SUPABASE_SERVICE_KEY\"] = getpass.getpass(\"Supabase Service Key:\")" + "if \"SUPABASE_SERVICE_KEY\" not in os.environ:\n", + " os.environ[\"SUPABASE_SERVICE_KEY\"] = getpass.getpass(\"Supabase Service Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/tidb_vector.ipynb b/docs/docs/integrations/vectorstores/tidb_vector.ipynb index 069daecca4b03..bae4f7fdc83bc 100644 --- a/docs/docs/integrations/vectorstores/tidb_vector.ipynb +++ b/docs/docs/integrations/vectorstores/tidb_vector.ipynb @@ -54,7 +54,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "# copy from tidb cloud console\n", "tidb_connection_string_template = \"mysql+pymysql://:@:4000/?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true\"\n", "# tidb_connection_string_template = \"mysql+pymysql://root:@34.212.137.91:4000/test\"\n", diff --git a/docs/docs/integrations/vectorstores/tigris.ipynb b/docs/docs/integrations/vectorstores/tigris.ipynb index 5ca1e57935a2b..d54d3209b1385 100644 --- a/docs/docs/integrations/vectorstores/tigris.ipynb +++ b/docs/docs/integrations/vectorstores/tigris.ipynb @@ -68,10 +68,14 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", - "os.environ[\"TIGRIS_PROJECT\"] = getpass.getpass(\"Tigris Project Name:\")\n", - "os.environ[\"TIGRIS_CLIENT_ID\"] = getpass.getpass(\"Tigris Client Id:\")\n", - "os.environ[\"TIGRIS_CLIENT_SECRET\"] = getpass.getpass(\"Tigris Client Secret:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", + "if \"TIGRIS_PROJECT\" not in os.environ:\n", + " os.environ[\"TIGRIS_PROJECT\"] = getpass.getpass(\"Tigris Project Name:\")\n", + "if \"TIGRIS_CLIENT_ID\" not in os.environ:\n", + " os.environ[\"TIGRIS_CLIENT_ID\"] = getpass.getpass(\"Tigris Client Id:\")\n", + "if \"TIGRIS_CLIENT_SECRET\" not in os.environ:\n", + " os.environ[\"TIGRIS_CLIENT_SECRET\"] = getpass.getpass(\"Tigris Client Secret:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/typesense.ipynb b/docs/docs/integrations/vectorstores/typesense.ipynb index 8b3c11b7e295b..805af82f042d9 100644 --- a/docs/docs/integrations/vectorstores/typesense.ipynb +++ b/docs/docs/integrations/vectorstores/typesense.ipynb @@ -66,7 +66,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/usearch.ipynb b/docs/docs/integrations/vectorstores/usearch.ipynb index f944c3360da64..5507cb5574d6b 100644 --- a/docs/docs/integrations/vectorstores/usearch.ipynb +++ b/docs/docs/integrations/vectorstores/usearch.ipynb @@ -43,7 +43,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/vikingdb.ipynb b/docs/docs/integrations/vectorstores/vikingdb.ipynb index 14cd3573185ed..2b4b97acec695 100644 --- a/docs/docs/integrations/vectorstores/vikingdb.ipynb +++ b/docs/docs/integrations/vectorstores/vikingdb.ipynb @@ -58,7 +58,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/xata.ipynb b/docs/docs/integrations/vectorstores/xata.ipynb index 83afa4d89eb80..0d901ebc58701 100644 --- a/docs/docs/integrations/vectorstores/xata.ipynb +++ b/docs/docs/integrations/vectorstores/xata.ipynb @@ -76,7 +76,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/integrations/vectorstores/zilliz.ipynb b/docs/docs/integrations/vectorstores/zilliz.ipynb index 928d12fde36bc..aecfb74a9ff78 100644 --- a/docs/docs/integrations/vectorstores/zilliz.ipynb +++ b/docs/docs/integrations/vectorstores/zilliz.ipynb @@ -54,7 +54,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { diff --git a/docs/docs/introduction.mdx b/docs/docs/introduction.mdx index 436e225510058..9853579323ee6 100644 --- a/docs/docs/introduction.mdx +++ b/docs/docs/introduction.mdx @@ -55,13 +55,13 @@ These are the best ones to get started with: - [Build an Agent](/docs/tutorials/agents) - [Introduction to LangGraph](https://langchain-ai.github.io/langgraph/tutorials/introduction/) -Explore the full list of LangChain tutorials [here](/docs/tutorials), and check out other [LangGraph tutorials here](https://langchain-ai.github.io/langgraph/tutorials/). +Explore the full list of LangChain tutorials [here](/docs/tutorials), and check out other [LangGraph tutorials here](https://langchain-ai.github.io/langgraph/tutorials/). To learn more about LangGraph, check out our first LangChain Academy course, *Introduction to LangGraph*, available [here](https://academy.langchain.com/courses/intro-to-langgraph). ## [How-to guides](/docs/how_to) [Here](/docs/how_to) you’ll find short answers to “How do I….?” types of questions. -These how-to guides don’t cover topics in depth – you’ll find that material in the [Tutorials](/docs/tutorials) and the [API Reference](https://python.langchain.com/v0.2/api_reference/). +These how-to guides don’t cover topics in depth – you’ll find that material in the [Tutorials](/docs/tutorials) and the [API Reference](https://python.langchain.com/api_reference/). However, these guides will help you quickly accomplish common tasks. Check out [LangGraph-specific how-tos here](https://langchain-ai.github.io/langgraph/how-tos/). @@ -72,7 +72,7 @@ Introductions to all the key parts of LangChain you’ll need to know! [Here](/d For a deeper dive into LangGraph concepts, check out [this page](https://langchain-ai.github.io/langgraph/concepts/). -## [API reference](https://python.langchain.com/v0.2/api_reference/) +## [API reference](https://python.langchain.com/api_reference/) Head to the reference section for full documentation of all classes and methods in the LangChain Python packages. ## Ecosystem @@ -85,8 +85,8 @@ Build stateful, multi-actor applications with LLMs. Integrates smoothly with Lan ## Additional resources -### [Versions](/docs/versions/overview/) -See what changed in v0.2, learn how to migrate legacy code, and read up on our release/versioning policies, and more. +### [Versions](/docs/versions/v0_3/) +See what changed in v0.3, learn how to migrate legacy code, read up on our versioning policies, and more. ### [Security](/docs/security) Read up on [security](/docs/security) best practices to make sure you're developing safely with LangChain. diff --git a/docs/docs/tutorials/agents.ipynb b/docs/docs/tutorials/agents.ipynb index 1486b2fb13862..6f688255e5670 100644 --- a/docs/docs/tutorials/agents.ipynb +++ b/docs/docs/tutorials/agents.ipynb @@ -223,11 +223,9 @@ "\n", "Next, let's learn how to use a language model by to call tools. LangChain supports many different language models that you can use interchangably - select the one you want to use below!\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -526,7 +524,7 @@ "In addition to streaming back messages, it is also useful to be streaming back tokens.\n", "We can do this with the `.astream_events` method.\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "This `.astream_events` method only works with Python 3.11 or higher.\n", ":::" ] diff --git a/docs/docs/tutorials/chatbot.ipynb b/docs/docs/tutorials/chatbot.ipynb index 996892c9bc16c..a1f983cc486ab 100644 --- a/docs/docs/tutorials/chatbot.ipynb +++ b/docs/docs/tutorials/chatbot.ipynb @@ -33,6 +33,18 @@ "- [Prompt Templates](/docs/concepts/#prompt-templates)\n", "- [Chat History](/docs/concepts/#chat-history)\n", "\n", + "This guide requires `langgraph >= 0.2.28`.\n", + ":::\n", + "\n", + ":::note\n", + "\n", + "This tutorial previously used the [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) abstraction. You can access that version of the documentation in the [v0.2 docs](https://python.langchain.com/v0.2/docs/tutorials/chatbot/).\n", + "\n", + "As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into new LangChain applications.\n", + "\n", + "If your code is already relying on `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do **not** need to make any changes. We do not plan on deprecating this functionality in the near future as it works for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected.\n", + "\n", + "Please see [How to migrate to LangGraph Memory](/docs/versions/migrating_memory/) for more details.\n", ":::\n", "\n", "## Overview\n", @@ -59,23 +71,21 @@ "\n", "### Installation\n", "\n", - "To install LangChain run:\n", + "For this tutorial we will need `langchain-core` and `langgraph`:\n", "\n", - "```{=mdx}\n", "import Tabs from '@theme/Tabs';\n", "import TabItem from '@theme/TabItem';\n", "import CodeBlock from \"@theme/CodeBlock\";\n", "\n", "\n", " \n", - " pip install langchain\n", + " pip install langchain-core langgraph>0.2.27\n", " \n", " \n", - " conda install langchain -c conda-forge\n", + " conda install langchain-core langgraph>0.2.27 -c conda-forge\n", " \n", "\n", "\n", - "```\n", "\n", "\n", "For more details, see our [Installation guide](/docs/how_to/installation).\n", @@ -107,16 +117,14 @@ "\n", "First up, let's learn how to use a language model by itself. LangChain supports many different language models that you can use interchangeably - select the one you want to use below!\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -125,7 +133,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "model = ChatOpenAI(model=\"gpt-3.5-turbo\")" + "model = ChatOpenAI(model=\"gpt-4o-mini\")" ] }, { @@ -137,16 +145,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 12, 'total_tokens': 22}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d939617f-0c3b-45e9-a93f-13dafecbd4b5-0', usage_metadata={'input_tokens': 12, 'output_tokens': 10, 'total_tokens': 22})" + "AIMessage(content='Hi Bob! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-149994c0-d958-49bb-9a9d-df911baea29f-0', usage_metadata={'input_tokens': 11, 'output_tokens': 10, 'total_tokens': 21})" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -166,16 +174,16 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content=\"I'm sorry, I don't have access to personal information unless you provide it to me. How may I assist you today?\", response_metadata={'token_usage': {'completion_tokens': 26, 'prompt_tokens': 12, 'total_tokens': 38}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-47bc8c20-af7b-4fd2-9345-f0e9fdf18ce3-0', usage_metadata={'input_tokens': 12, 'output_tokens': 26, 'total_tokens': 38})" + "AIMessage(content=\"I'm sorry, but I don't have access to personal information about individuals unless you've shared it with me in this conversation. How can I assist you today?\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 30, 'prompt_tokens': 11, 'total_tokens': 41, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-0ecab57c-728d-4fd1-845c-394a62df8e13-0', usage_metadata={'input_tokens': 11, 'output_tokens': 30, 'total_tokens': 41})" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -198,16 +206,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "AIMessage(content='Your name is Bob. How can I help you, Bob?', response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 35, 'total_tokens': 48}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9f90291b-4df9-41dc-9ecf-1ee1081f4490-0', usage_metadata={'input_tokens': 35, 'output_tokens': 13, 'total_tokens': 48})" + "AIMessage(content='Your name is Bob! How can I help you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 12, 'prompt_tokens': 33, 'total_tokens': 45, 'completion_tokens_details': {'reasoning_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_1bb46167f9', 'finish_reason': 'stop', 'logprobs': None}, id='run-c164c5a1-d85f-46ee-ba8a-bb511cfb0e51-0', usage_metadata={'input_tokens': 33, 'output_tokens': 12, 'total_tokens': 45})" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -238,30 +246,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Message History\n", + "## Message persistence\n", "\n", - "We can use a Message History class to wrap our model and make it stateful.\n", - "This will keep track of inputs and outputs of the model, and store them in some datastore.\n", - "Future interactions will then load those messages and pass them into the chain as part of the input.\n", - "Let's see how to use this!\n", + "[LangGraph](https://langchain-ai.github.io/langgraph/) implements a built-in persistence layer, making it ideal for chat applications that support multiple conversational turns.\n", "\n", - "First, let's make sure to install `langchain-community`, as we will be using an integration in there to store message history." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "%pip install langchain_community" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After that, we can import the relevant classes and set up our chain which wraps the model and adds in this message history. A key part here is the function we pass into as the `get_session_history`. This function is expected to take in a `session_id` and return a Message History object. This `session_id` is used to distinguish between separate conversations, and should be passed in as part of the config when calling the new chain (we'll show how to do that)." + "Wrapping our chat model in a minimal LangGraph application allows us to automatically persist the message history, simplifying the development of multi-turn applications.\n", + "\n", + "LangGraph comes with a simple in-memory checkpointer, which we use below. See its [documentation](https://langchain-ai.github.io/langgraph/concepts/persistence/) for more detail, including how to use different persistence backends (e.g., SQLite or Postgres)." ] }, { @@ -270,29 +261,33 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_core.chat_history import (\n", - " BaseChatMessageHistory,\n", - " InMemoryChatMessageHistory,\n", - ")\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", + "\n", + "# Define a new graph\n", + "workflow = StateGraph(state_schema=MessagesState)\n", "\n", - "store = {}\n", "\n", + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " response = model.invoke(state[\"messages\"])\n", + " return {\"messages\": response}\n", "\n", - "def get_session_history(session_id: str) -> BaseChatMessageHistory:\n", - " if session_id not in store:\n", - " store[session_id] = InMemoryChatMessageHistory()\n", - " return store[session_id]\n", "\n", + "# Define the (single) node in the graph\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", "\n", - "with_message_history = RunnableWithMessageHistory(model, get_session_history)" + "# Add memory\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We now need to create a `config` that we pass into the runnable every time. This config contains information that is not part of the input directly, but is still useful. In this case, we want to include a `session_id`. This should look like:" + "We now need to create a `config` that we pass into the runnable every time. This config contains information that is not part of the input directly, but is still useful. In this case, we want to include a `thread_id`. This should look like:" ] }, { @@ -301,7 +296,16 @@ "metadata": {}, "outputs": [], "source": [ - "config = {\"configurable\": {\"session_id\": \"abc2\"}}" + "config = {\"configurable\": {\"thread_id\": \"abc123\"}}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This enables us to support multiple conversation threads with a single application, a common requirement when your application has multiple users.\n", + "\n", + "We can then invoke the application:" ] }, { @@ -310,23 +314,21 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Hi Bob! How can I assist you today?'" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hi Bob! How can I assist you today?\n" + ] } ], "source": [ - "response = with_message_history.invoke(\n", - " [HumanMessage(content=\"Hi! I'm Bob\")],\n", - " config=config,\n", - ")\n", + "query = \"Hi! I'm Bob.\"\n", "\n", - "response.content" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print() # output contains all messages in state" ] }, { @@ -335,30 +337,28 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Your name is Bob. How can I help you today, Bob?'" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Your name is Bob! How can I help you today?\n" + ] } ], "source": [ - "response = with_message_history.invoke(\n", - " [HumanMessage(content=\"What's my name?\")],\n", - " config=config,\n", - ")\n", + "query = \"What's my name?\"\n", "\n", - "response.content" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Great! Our chatbot now remembers things about us. If we change the config to reference a different `session_id`, we can see that it starts the conversation fresh." + "Great! Our chatbot now remembers things about us. If we change the config to reference a different `thread_id`, we can see that it starts the conversation fresh." ] }, { @@ -367,25 +367,21 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "\"I'm sorry, I cannot determine your name as I am an AI assistant and do not have access to that information.\"" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "I'm sorry, but I don't have access to personal information about you unless you provide it. How can I assist you today?\n" + ] } ], "source": [ - "config = {\"configurable\": {\"session_id\": \"abc3\"}}\n", + "config = {\"configurable\": {\"thread_id\": \"abc234\"}}\n", "\n", - "response = with_message_history.invoke(\n", - " [HumanMessage(content=\"What's my name?\")],\n", - " config=config,\n", - ")\n", - "\n", - "response.content" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { @@ -401,25 +397,21 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Your name is Bob. How can I assist you today, Bob?'" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Your name is Bob! If there's anything else you'd like to discuss or ask, feel free!\n" + ] } ], "source": [ - "config = {\"configurable\": {\"session_id\": \"abc2\"}}\n", + "config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n", "\n", - "response = with_message_history.invoke(\n", - " [HumanMessage(content=\"What's my name?\")],\n", - " config=config,\n", - ")\n", - "\n", - "response.content" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { @@ -428,18 +420,42 @@ "source": [ "This is how we can support a chatbot having conversations with many users!\n", "\n", - "Right now, all we've done is add a simple persistence layer around the model. We can start to make the more complicated and personalized by adding in a prompt template." + ":::tip\n", + "\n", + "For async support, update the `call_model` node to be an async function and use `.ainvoke` when invoking the application:\n", + "\n", + "```python\n", + "# Async function for node:\n", + "async def call_model(state: MessagesState):\n", + " response = await model.ainvoke(state[\"messages\"])\n", + " return {\"messages\": response}\n", + "\n", + "\n", + "# Define graph as before:\n", + "workflow = StateGraph(state_schema=MessagesState)\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "app = workflow.compile(checkpointer=MemorySaver())\n", + "\n", + "# Async invocation:\n", + "output = await app.ainvoke({\"messages\": input_messages}, config):\n", + "output[\"messages\"][-1].pretty_print()\n", + "```\n", + "\n", + ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "Right now, all we've done is add a simple persistence layer around the model. We can start to make the more complicated and personalized by adding in a prompt template.\n", + "\n", "## Prompt templates\n", "\n", "Prompt Templates help to turn raw user information into a format that the LLM can work with. In this case, the raw user input is just a message, which we are passing to the LLM. Let's now make that a bit more complicated. First, let's add in a system message with some custom instructions (but still taking messages as input). Next, we'll add in more input besides just the messages.\n", "\n", - "First, let's add in a system message. To do this, we will create a ChatPromptTemplate. We will utilize `MessagesPlaceholder` to pass all the messages in." + "To add in a system message, we will create a `ChatPromptTemplate`. We will utilize `MessagesPlaceholder` to pass all the messages in." ] }, { @@ -454,117 +470,96 @@ " [\n", " (\n", " \"system\",\n", - " \"You are a helpful assistant. Answer all questions to the best of your ability.\",\n", + " \"You talk like a pirate. Answer all questions to the best of your ability.\",\n", " ),\n", " MessagesPlaceholder(variable_name=\"messages\"),\n", " ]\n", - ")\n", - "\n", - "chain = prompt | model" + ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note that this slightly changes the input type - rather than pass in a list of messages, we are now passing in a dictionary with a `messages` key where that contains a list of messages." + "We can now update our application to incorporate this template:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Hello Bob! How can I assist you today?'" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "response = chain.invoke({\"messages\": [HumanMessage(content=\"hi! I'm bob\")]})\n", + "workflow = StateGraph(state_schema=MessagesState)\n", + "\n", + "\n", + "def call_model(state: MessagesState):\n", + " # highlight-start\n", + " chain = prompt | model\n", + " response = chain.invoke(state)\n", + " # highlight-end\n", + " return {\"messages\": response}\n", + "\n", "\n", - "response.content" + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We can now wrap this in the same Messages History object as before" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "with_message_history = RunnableWithMessageHistory(chain, get_session_history)" + "We invoke the application in the same way:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, - "outputs": [], - "source": [ - "config = {\"configurable\": {\"session_id\": \"abc5\"}}" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Hello, Jim! How can I assist you today?'" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Ahoy there, Jim! What brings ye to these treacherous waters today? Be ye seekin’ treasure, tales, or perhaps a bit o’ knowledge? Speak up, matey!\n" + ] } ], "source": [ - "response = with_message_history.invoke(\n", - " [HumanMessage(content=\"Hi! I'm Jim\")],\n", - " config=config,\n", - ")\n", + "config = {\"configurable\": {\"thread_id\": \"abc345\"}}\n", + "query = \"Hi! I'm Jim.\"\n", "\n", - "response.content" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Your name is Jim.'" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Ye be callin' yerself Jim, if I be hearin' ye correctly! A fine name for a scallywag such as yerself! What else can I do fer ye, me hearty?\n" + ] } ], "source": [ - "response = with_message_history.invoke(\n", - " [HumanMessage(content=\"What's my name?\")],\n", - " config=config,\n", - ")\n", + "query = \"What is my name?\"\n", "\n", - "response.content" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke({\"messages\": input_messages}, config)\n", + "output[\"messages\"][-1].pretty_print()" ] }, { @@ -576,7 +571,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -588,16 +583,51 @@ " ),\n", " MessagesPlaceholder(variable_name=\"messages\"),\n", " ]\n", - ")\n", - "\n", - "chain = prompt | model" + ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note that we have added a new `language` input to the prompt. We can now invoke the chain and pass in a language of our choice." + "Note that we have added a new `language` input to the prompt. Our application now has two parameters-- the input `messages` and `language`. We should update our application's state to reflect this:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "from typing import Sequence\n", + "\n", + "from langchain_core.messages import BaseMessage\n", + "from langgraph.graph.message import add_messages\n", + "from typing_extensions import Annotated, TypedDict\n", + "\n", + "\n", + "# highlight-next-line\n", + "class State(TypedDict):\n", + " # highlight-next-line\n", + " messages: Annotated[Sequence[BaseMessage], add_messages]\n", + " # highlight-next-line\n", + " language: str\n", + "\n", + "\n", + "workflow = StateGraph(state_schema=State)\n", + "\n", + "\n", + "def call_model(state: State):\n", + " chain = prompt | model\n", + " response = chain.invoke(state)\n", + " return {\"messages\": [response]}\n", + "\n", + "\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { @@ -606,108 +636,67 @@ "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'¡Hola, Bob! ¿En qué puedo ayudarte hoy?'" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "¡Hola, Bob! ¿Cómo puedo ayudarte hoy?\n" + ] } ], "source": [ - "response = chain.invoke(\n", - " {\"messages\": [HumanMessage(content=\"hi! I'm bob\")], \"language\": \"Spanish\"}\n", - ")\n", + "config = {\"configurable\": {\"thread_id\": \"abc456\"}}\n", + "query = \"Hi! I'm Bob.\"\n", + "language = \"Spanish\"\n", "\n", - "response.content" + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke(\n", + " # highlight-next-line\n", + " {\"messages\": input_messages, \"language\": language},\n", + " config,\n", + ")\n", + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's now wrap this more complicated chain in a Message History class. This time, because there are multiple keys in the input, we need to specify the correct key to use to save the chat history." + "Note that the entire state is persisted, so we can omit parameters like `language` if no changes are desired:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, - "outputs": [], - "source": [ - "with_message_history = RunnableWithMessageHistory(\n", - " chain,\n", - " get_session_history,\n", - " input_messages_key=\"messages\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "config = {\"configurable\": {\"session_id\": \"abc11\"}}" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'¡Hola Todd! ¿En qué puedo ayudarte hoy?'" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Tu nombre es Bob.\n" + ] } ], "source": [ - "response = with_message_history.invoke(\n", - " {\"messages\": [HumanMessage(content=\"hi! I'm todd\")], \"language\": \"Spanish\"},\n", - " config=config,\n", - ")\n", + "query = \"What is my name?\"\n", "\n", - "response.content" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Tu nombre es Todd.'" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "response = with_message_history.invoke(\n", - " {\"messages\": [HumanMessage(content=\"whats my name?\")], \"language\": \"Spanish\"},\n", - " config=config,\n", + "input_messages = [HumanMessage(query)]\n", + "output = app.invoke(\n", + " {\"messages\": input_messages, \"language\": language},\n", + " config,\n", ")\n", - "\n", - "response.content" + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "To help you understand what's happening internally, check out [this LangSmith trace](https://smith.langchain.com/public/f48fabb6-6502-43ec-8242-afc352b769ed/r)" + "To help you understand what's happening internally, check out [this LangSmith trace](https://smith.langchain.com/public/15bd8589-005c-4812-b9b9-23e74ba4c3c6/r)." ] }, { @@ -727,22 +716,22 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[SystemMessage(content=\"you're a good assistant\"),\n", - " HumanMessage(content='whats 2 + 2'),\n", - " AIMessage(content='4'),\n", - " HumanMessage(content='thanks'),\n", - " AIMessage(content='no problem!'),\n", - " HumanMessage(content='having fun?'),\n", - " AIMessage(content='yes!')]" + "[SystemMessage(content=\"you're a good assistant\", additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='whats 2 + 2', additional_kwargs={}, response_metadata={}),\n", + " AIMessage(content='4', additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='thanks', additional_kwargs={}, response_metadata={}),\n", + " AIMessage(content='no problem!', additional_kwargs={}, response_metadata={}),\n", + " HumanMessage(content='having fun?', additional_kwargs={}, response_metadata={}),\n", + " AIMessage(content='yes!', additional_kwargs={}, response_metadata={})]" ] }, - "execution_count": 24, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -780,170 +769,112 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To use it in our chain, we just need to run the trimmer before we pass the `messages` input to our prompt. \n", - "\n", - "Now if we try asking the model our name, it won't know it since we trimmed that part of the chat history:" + "To use it in our chain, we just need to run the trimmer before we pass the `messages` input to our prompt. " ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 22, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"I'm sorry, but I don't have access to your personal information. How can I assist you today?\"" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "from operator import itemgetter\n", + "workflow = StateGraph(state_schema=State)\n", "\n", - "from langchain_core.runnables import RunnablePassthrough\n", "\n", - "chain = (\n", - " RunnablePassthrough.assign(messages=itemgetter(\"messages\") | trimmer)\n", - " | prompt\n", - " | model\n", - ")\n", + "def call_model(state: State):\n", + " chain = prompt | model\n", + " # highlight-start\n", + " trimmed_messages = trimmer.invoke(state[\"messages\"])\n", + " response = chain.invoke(\n", + " {\"messages\": trimmed_messages, \"language\": state[\"language\"]}\n", + " )\n", + " # highlight-end\n", + " return {\"messages\": [response]}\n", "\n", - "response = chain.invoke(\n", - " {\n", - " \"messages\": messages + [HumanMessage(content=\"what's my name?\")],\n", - " \"language\": \"English\",\n", - " }\n", - ")\n", - "response.content" + "\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "But if we ask about information that is within the last few messages, it remembers:" + "Now if we try asking the model our name, it won't know it since we trimmed that part of the chat history:" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 23, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'You asked \"what\\'s 2 + 2?\"'" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "I don't know your name. If you'd like to share it, feel free!\n" + ] } ], "source": [ - "response = chain.invoke(\n", - " {\n", - " \"messages\": messages + [HumanMessage(content=\"what math problem did i ask\")],\n", - " \"language\": \"English\",\n", - " }\n", - ")\n", - "response.content" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's now wrap this in the Message History" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "with_message_history = RunnableWithMessageHistory(\n", - " chain,\n", - " get_session_history,\n", - " input_messages_key=\"messages\",\n", - ")\n", + "config = {\"configurable\": {\"thread_id\": \"abc567\"}}\n", + "query = \"What is my name?\"\n", + "language = \"English\"\n", "\n", - "config = {\"configurable\": {\"session_id\": \"abc20\"}}" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\"I'm sorry, I don't have access to that information. How can I assist you today?\"" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "response = with_message_history.invoke(\n", - " {\n", - " \"messages\": messages + [HumanMessage(content=\"whats my name?\")],\n", - " \"language\": \"English\",\n", - " },\n", - " config=config,\n", + "# highlight-next-line\n", + "input_messages = messages + [HumanMessage(query)]\n", + "output = app.invoke(\n", + " {\"messages\": input_messages, \"language\": language},\n", + " config,\n", ")\n", - "\n", - "response.content" + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "As expected, the first message where we stated our name has been trimmed. Plus there's now two new messages in the chat history (our latest question and the latest response). This means that even more information that used to be accessible in our conversation history is no longer available! In this case our initial math question has been trimmed from the history as well, so the model no longer knows about it:" + "But if we ask about information that is within the last few messages, it remembers:" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 24, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "\"You haven't asked a math problem yet. Feel free to ask any math-related question you have, and I'll be happy to help you with it.\"" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "You asked what 2 + 2 equals.\n" + ] } ], "source": [ - "response = with_message_history.invoke(\n", - " {\n", - " \"messages\": [HumanMessage(content=\"what math problem did i ask?\")],\n", - " \"language\": \"English\",\n", - " },\n", - " config=config,\n", - ")\n", + "config = {\"configurable\": {\"thread_id\": \"abc678\"}}\n", + "query = \"What math problem did I ask?\"\n", + "language = \"English\"\n", "\n", - "response.content" + "input_messages = messages + [HumanMessage(query)]\n", + "output = app.invoke(\n", + " {\"messages\": input_messages, \"language\": language},\n", + " config,\n", + ")\n", + "output[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "If you take a look at LangSmith, you can see exactly what is happening under the hood in the [LangSmith trace](https://smith.langchain.com/public/a64b8b7c-1fd6-4dbb-b11a-47cd09a5e4f1/r)." + "If you take a look at LangSmith, you can see exactly what is happening under the hood in the [LangSmith trace](https://smith.langchain.com/public/04402eaa-29e6-4bb1-aa91-885b730b6c21/r)." ] }, { @@ -956,32 +887,41 @@ "\n", "It's actually super easy to do this!\n", "\n", - "All chains expose a `.stream` method, and ones that use message history are no different. We can simply use that method to get back a streaming response." + "By default, `.stream` in our LangGraph application streams application steps-- in this case, the single step of the model response. Setting `stream_mode=\"messages\"` allows us to stream output tokens instead:" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "|Hi| Todd|!| Sure|,| here|'s| a| joke| for| you|:| Why| couldn|'t| the| bicycle| find| its| way| home|?| Because| it| lost| its| bearings|!| 😄||" + "|Hi| Todd|!| Here|’s| a| joke| for| you|:\n", + "\n", + "|Why| did| the| scare|crow| win| an| award|?\n", + "\n", + "|Because| he| was| outstanding| in| his| field|!||" ] } ], "source": [ - "config = {\"configurable\": {\"session_id\": \"abc15\"}}\n", - "for r in with_message_history.stream(\n", - " {\n", - " \"messages\": [HumanMessage(content=\"hi! I'm todd. tell me a joke\")],\n", - " \"language\": \"English\",\n", - " },\n", - " config=config,\n", + "config = {\"configurable\": {\"thread_id\": \"abc789\"}}\n", + "query = \"Hi I'm Todd, please tell me a joke.\"\n", + "language = \"English\"\n", + "\n", + "input_messages = [HumanMessage(query)]\n", + "# highlight-next-line\n", + "for chunk, metadata in app.stream(\n", + " {\"messages\": input_messages, \"language\": language},\n", + " config,\n", + " # highlight-next-line\n", + " stream_mode=\"messages\",\n", "):\n", - " print(r.content, end=\"|\")" + " if isinstance(chunk, AIMessage): # Filter to just model responses\n", + " print(chunk.content, end=\"|\")" ] }, { @@ -999,7 +939,8 @@ "\n", "- [Streaming](/docs/how_to/streaming): streaming is *crucial* for chat applications\n", "- [How to add message history](/docs/how_to/message_history): for a deeper dive into all things related to message history\n", - "- [How to manage large message history](/docs/how_to/trim_messages/): more techniques for managing a large chat history" + "- [How to manage large message history](/docs/how_to/trim_messages/): more techniques for managing a large chat history\n", + "- [LangGraph main docs](https://langchain-ai.github.io/langgraph/): for more detail on building with LangGraph" ] } ], @@ -1019,7 +960,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/tutorials/classification.ipynb b/docs/docs/tutorials/classification.ipynb index f59c4973858eb..2df9b4a1a53f1 100644 --- a/docs/docs/tutorials/classification.ipynb +++ b/docs/docs/tutorials/classification.ipynb @@ -72,8 +72,8 @@ "outputs": [], "source": [ "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel, Field\n", "\n", "tagging_prompt = ChatPromptTemplate.from_template(\n", " \"\"\"\n", @@ -96,7 +96,7 @@ "\n", "\n", "# LLM\n", - "llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\").with_structured_output(\n", + "llm = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\").with_structured_output(\n", " Classification\n", ")\n", "\n", @@ -229,7 +229,7 @@ "\"\"\"\n", ")\n", "\n", - "llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\").with_structured_output(\n", + "llm = ChatOpenAI(temperature=0, model=\"gpt-4o-mini\").with_structured_output(\n", " Classification\n", ")\n", "\n", diff --git a/docs/docs/tutorials/data_generation.ipynb b/docs/docs/tutorials/data_generation.ipynb index c73f3f35839ee..aa921414684fd 100644 --- a/docs/docs/tutorials/data_generation.ipynb +++ b/docs/docs/tutorials/data_generation.ipynb @@ -56,13 +56,31 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install --upgrade --quiet langchain langchain_experimental langchain-openai\n", - "# Set env var OPENAI_API_KEY or load from a .env file:\n", - "# import dotenv\n", - "# dotenv.load_dotenv()\n", + "%pip install --upgrade --quiet langchain langchain_experimental langchain-openai" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "391ae036-36a2-4d2a-8e1b-5a536b268b45", + "metadata": {}, + "outputs": [], + "source": [ + "import getpass\n", + "import os\n", "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6b47bb31-b4c7-42ff-9253-2c94747db750", + "metadata": {}, + "outputs": [], + "source": [ "from langchain.prompts import FewShotPromptTemplate, PromptTemplate\n", - "from langchain_core.pydantic_v1 import BaseModel\n", "from langchain_experimental.tabular_synthetic_data.openai import (\n", " OPENAI_TEMPLATE,\n", " create_openai_data_generator,\n", @@ -71,7 +89,8 @@ " SYNTHETIC_FEW_SHOT_PREFIX,\n", " SYNTHETIC_FEW_SHOT_SUFFIX,\n", ")\n", - "from langchain_openai import ChatOpenAI" + "from langchain_openai import ChatOpenAI\n", + "from pydantic import BaseModel" ] }, { @@ -639,7 +658,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/docs/docs/tutorials/extraction.ipynb b/docs/docs/tutorials/extraction.ipynb index 099f3e514e09f..3fa1f7cabfa04 100644 --- a/docs/docs/tutorials/extraction.ipynb +++ b/docs/docs/tutorials/extraction.ipynb @@ -29,7 +29,7 @@ "\n", "In this tutorial, we will build a chain to extract structured information from unstructured text. \n", "\n", - ":::{.callout-important}\n", + ":::important\n", "This tutorial will only work with models that support **tool calling**\n", ":::" ] @@ -51,7 +51,6 @@ "\n", "To install LangChain run:\n", "\n", - "```{=mdx}\n", "import Tabs from '@theme/Tabs';\n", "import TabItem from '@theme/TabItem';\n", "import CodeBlock from \"@theme/CodeBlock\";\n", @@ -65,7 +64,6 @@ " \n", "\n", "\n", - "```\n", "\n", "\n", "For more details, see our [Installation guide](/docs/how_to/installation).\n", @@ -115,7 +113,7 @@ "source": [ "from typing import Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Person(BaseModel):\n", @@ -148,7 +146,7 @@ "1. Document the **attributes** and the **schema** itself: This information is sent to the LLM and is used to improve the quality of information extraction.\n", "2. Do not force the LLM to make up information! Above we used `Optional` for the attributes allowing the LLM to output `None` if it doesn't know the answer.\n", "\n", - ":::{.callout-important}\n", + ":::important\n", "For best performance, document the schema well and make sure the model isn't force to return results if there's no information to be extracted in the text.\n", ":::\n", "\n", @@ -167,7 +165,7 @@ "from typing import Optional\n", "\n", "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "# Define a custom prompt to provide instructions and any additional context.\n", "# 1) You can add examples into the prompt template to improve extraction quality\n", @@ -258,7 +256,7 @@ "id": "bd1c493d-f9dc-4236-8da9-50f6919f5710", "metadata": {}, "source": [ - ":::{.callout-important} \n", + ":::important \n", "\n", "Extraction is Generative 🤯\n", "\n", @@ -290,7 +288,7 @@ "source": [ "from typing import List, Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Person(BaseModel):\n", @@ -325,7 +323,7 @@ "id": "5f5cda33-fd7b-481e-956a-703f45e40e1d", "metadata": {}, "source": [ - ":::{.callout-important}\n", + ":::important\n", "Extraction might not be perfect here. Please continue to see how to use **Reference Examples** to improve the quality of extraction, and see the **guidelines** section!\n", ":::" ] @@ -358,7 +356,7 @@ "id": "fba1d770-bf4d-4de4-9e4f-7384872ef0dc", "metadata": {}, "source": [ - ":::{.callout-tip}\n", + ":::tip\n", "When the schema accommodates the extraction of **multiple entities**, it also allows the model to extract **no entities** if no relevant information\n", "is in the text by providing an empty list. \n", "\n", diff --git a/docs/docs/tutorials/graph.ipynb b/docs/docs/tutorials/graph.ipynb index e5a3134c7ca5a..d189d1af21fbe 100644 --- a/docs/docs/tutorials/graph.ipynb +++ b/docs/docs/tutorials/graph.ipynb @@ -72,7 +72,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")\n", "\n", "# Uncomment the below to use LangSmith. Not required.\n", "# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()\n", @@ -329,7 +330,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/docs/docs/tutorials/llm_chain.ipynb b/docs/docs/tutorials/llm_chain.ipynb index ef6c92e656188..24f024173bd5b 100644 --- a/docs/docs/tutorials/llm_chain.ipynb +++ b/docs/docs/tutorials/llm_chain.ipynb @@ -45,7 +45,6 @@ "\n", "To install LangChain run:\n", "\n", - "```{=mdx}\n", "import Tabs from '@theme/Tabs';\n", "import TabItem from '@theme/TabItem';\n", "import CodeBlock from \"@theme/CodeBlock\";\n", @@ -59,7 +58,6 @@ " \n", "\n", "\n", - "```\n", "\n", "\n", "For more details, see our [Installation guide](/docs/how_to/installation).\n", @@ -97,11 +95,9 @@ "\n", "First up, let's learn how to use a language model by itself. LangChain supports many different language models that you can use interchangeably - select the one you want to use below!\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -159,7 +155,9 @@ "cell_type": "markdown", "id": "f83373db", "metadata": {}, - "source": "If we've enabled LangSmith, we can see that this run is logged to LangSmith, and can see the [LangSmith trace](https://smith.langchain.com/public/88baa0b2-7c1a-4d09-ba30-a47985dde2ea/r)" + "source": [ + "If we've enabled LangSmith, we can see that this run is logged to LangSmith, and can see the [LangSmith trace](https://smith.langchain.com/public/88baa0b2-7c1a-4d09-ba30-a47985dde2ea/r)" + ] }, { "cell_type": "markdown", @@ -538,27 +536,16 @@ ] }, { - "cell_type": "code", - "execution_count": 31, - "id": "85174643", + "cell_type": "markdown", + "id": "96a19287-f3d5-42be-8338-5a5d749101b0", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Ciao'" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ + "```python\n", "from langserve import RemoteRunnable\n", "\n", "remote_chain = RemoteRunnable(\"http://localhost:8000/chain/\")\n", - "remote_chain.invoke({\"language\": \"italian\", \"text\": \"hi\"})" + "remote_chain.invoke({\"language\": \"italian\", \"text\": \"hi\"})\n", + "```" ] }, { @@ -620,7 +607,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/docs/docs/tutorials/local_rag.ipynb b/docs/docs/tutorials/local_rag.ipynb index bdff9dfdfcffe..01712fa94a5e4 100644 --- a/docs/docs/tutorials/local_rag.ipynb +++ b/docs/docs/tutorials/local_rag.ipynb @@ -60,7 +60,7 @@ "%pip install -qU langchain_ollama\n", "\n", "# Web Loader\n", - "% pip install -qU beautifulsoup4" + "%pip install -qU beautifulsoup4" ] }, { diff --git a/docs/docs/tutorials/pdf_qa.ipynb b/docs/docs/tutorials/pdf_qa.ipynb index e8931ff24c439..32dd23c0919e3 100644 --- a/docs/docs/tutorials/pdf_qa.ipynb +++ b/docs/docs/tutorials/pdf_qa.ipynb @@ -119,11 +119,9 @@ "\n", "Next, you'll prepare the loaded documents for later retrieval. Using a [text splitter](/docs/concepts/#text-splitters), you'll split your loaded documents into smaller documents that can more easily fit into an LLM's context window, then load them into a [vector store](/docs/concepts/#vector-stores). You can then create a [retriever](/docs/concepts/#retrievers) from the vector store for use in our RAG chain:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -135,14 +133,13 @@ "# | output: false\n", "# | echo: false\n", "\n", - "%pip install langchain_anthropic\n", - "\n", "import getpass\n", "import os\n", "\n", "from langchain_anthropic import ChatAnthropic\n", "\n", - "os.environ[\"ANTHROPIC_API_KEY\"] = getpass.getpass(\"Anthropic API Key:\")\n", + "if \"ANTHROPIC_API_KEY\" not in os.environ:\n", + " os.environ[\"ANTHROPIC_API_KEY\"] = getpass.getpass(\"Anthropic API Key:\")\n", "\n", "llm = ChatAnthropic(model=\"claude-3-sonnet-20240229\", temperature=0)" ] @@ -153,7 +150,7 @@ "metadata": {}, "outputs": [], "source": [ - "%pip install langchain_chroma langchain_openai" + "%pip install langchain_openai" ] }, { @@ -168,7 +165,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")" ] }, { @@ -177,13 +175,15 @@ "metadata": {}, "outputs": [], "source": [ - "from langchain_chroma import Chroma\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import OpenAIEmbeddings\n", "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "splits = text_splitter.split_documents(docs)\n", - "vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n", + "vectorstore = InMemoryVectorStore.from_documents(\n", + " documents=splits, embedding=OpenAIEmbeddings()\n", + ")\n", "\n", "retriever = vectorstore.as_retriever()" ] @@ -329,7 +329,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -343,9 +343,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.5" + "version": "3.10.4" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/docs/docs/tutorials/qa_chat_history.ipynb b/docs/docs/tutorials/qa_chat_history.ipynb index bfdfee6b51f2c..72cde13832a64 100644 --- a/docs/docs/tutorials/qa_chat_history.ipynb +++ b/docs/docs/tutorials/qa_chat_history.ipynb @@ -37,8 +37,8 @@ "\n", "We will cover two approaches:\n", "\n", - "1. Chains, in which we always execute a retrieval step;\n", - "2. Agents, in which we give an LLM discretion over whether and how to execute a retrieval step (or multiple steps).\n", + "1. [Chains](/docs/tutorials/qa_chat_history/#chains), in which we always execute a retrieval step;\n", + "2. [Agents](/docs/tutorials/qa_chat_history/#agents), in which we give an LLM discretion over whether and how to execute a retrieval step (or multiple steps).\n", "\n", "For the external knowledge source, we will use the same [LLM Powered Autonomous Agents](https://lilianweng.github.io/posts/2023-06-23-agent/) blog post by Lilian Weng from the [RAG tutorial](/docs/tutorials/rag)." ] @@ -52,7 +52,7 @@ "\n", "### Dependencies\n", "\n", - "We'll use OpenAI embeddings and a Chroma vector store in this walkthrough, but everything shown here works with any [Embeddings](/docs/concepts#embedding-models), and [VectorStore](/docs/concepts#vectorstores) or [Retriever](/docs/concepts#retrievers). \n", + "We'll use OpenAI embeddings and a simple in-memory vector store in this walkthrough, but everything shown here works with any [Embeddings](/docs/concepts#embedding-models), and [VectorStore](/docs/concepts#vectorstores) or [Retriever](/docs/concepts#retrievers). \n", "\n", "We'll use the following packages:" ] @@ -65,7 +65,7 @@ "outputs": [], "source": [ "%%capture --no-stderr\n", - "%pip install --upgrade --quiet langchain langchain-community langchainhub langchain-chroma beautifulsoup4" + "%pip install --upgrade --quiet langchain langchain-community beautifulsoup4" ] }, { @@ -87,35 +87,26 @@ "import os\n", "\n", "if not os.environ.get(\"OPENAI_API_KEY\"):\n", - " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", - "\n", - "# import dotenv\n", - "\n", - "# dotenv.load_dotenv()" + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()" ] }, { + "attachments": {}, "cell_type": "markdown", - "id": "1665e740-ce01-4f09-b9ed-516db0bd326f", + "id": "e207ac1d-4a8e-4172-a9ee-3294519a9a40", "metadata": {}, "source": [ "### LangSmith\n", "\n", "Many of the applications you build with LangChain will contain multiple steps with multiple invocations of LLM calls. As these applications get more and more complex, it becomes crucial to be able to inspect what exactly is going on inside your chain or agent. The best way to do this is with [LangSmith](https://smith.langchain.com).\n", "\n", - "Note that LangSmith is not needed, but it is helpful. If you do want to use LangSmith, after you sign up at the link above, make sure to set your environment variables to start logging traces:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "07411adb-3722-4f65-ab7f-8f6f57663d11", - "metadata": {}, - "outputs": [], - "source": [ + "Note that LangSmith is not needed, but it is helpful. If you do want to use LangSmith, after you sign up at the link above, make sure to set your environment variables to start logging traces:\n", + "\n", + "```python\n", "os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", "if not os.environ.get(\"LANGCHAIN_API_KEY\"):\n", - " os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()" + " os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass()\n", + "```" ] }, { @@ -133,16 +124,14 @@ "id": "646840fb-5212-48ea-8bc7-ec7be5ec727e", "metadata": {}, "source": [ - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "id": "cb58f273-2111-4a9b-8932-9b64c95030c8", "metadata": {}, "outputs": [], @@ -152,23 +141,22 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "id": "820244ae-74b4-4593-b392-822979dd91b8", "metadata": {}, "outputs": [], "source": [ "import bs4\n", - "from langchain import hub\n", "from langchain.chains import create_retrieval_chain\n", "from langchain.chains.combine_documents import create_stuff_documents_chain\n", - "from langchain_chroma import Chroma\n", "from langchain_community.document_loaders import WebBaseLoader\n", "from langchain_core.prompts import ChatPromptTemplate\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import OpenAIEmbeddings\n", "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", "\n", @@ -185,7 +173,9 @@ "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "splits = text_splitter.split_documents(docs)\n", - "vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n", + "vectorstore = InMemoryVectorStore.from_documents(\n", + " documents=splits, embedding=OpenAIEmbeddings()\n", + ")\n", "retriever = vectorstore.as_retriever()\n", "\n", "\n", @@ -213,17 +203,17 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "id": "bf55faaf-0d17-4b74-925d-c478b555f7b2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "\"Task decomposition involves breaking down complex tasks into smaller and simpler steps to make them more manageable for an agent or model. This process helps in guiding the agent through the various subgoals required to achieve the overall task efficiently. Different techniques like Chain of Thought and Tree of Thoughts can be used to decompose tasks into step-by-step processes, enhancing performance and understanding of the model's thinking process.\"" + "\"Task decomposition is the process of breaking down a complicated task into smaller, more manageable steps. Techniques like Chain of Thought (CoT) and Tree of Thoughts enhance this process by guiding models to think step by step and explore multiple reasoning possibilities. This approach helps in simplifying complex tasks and provides insight into the model's reasoning.\"" ] }, - "execution_count": 7, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -278,14 +268,14 @@ "\n", "We'll use a prompt that includes a `MessagesPlaceholder` variable under the name \"chat_history\". This allows us to pass in a list of Messages to the prompt using the \"chat_history\" input key, and these messages will be inserted after the system message and before the human message containing the latest question.\n", "\n", - "Note that we leverage a helper function [create_history_aware_retriever](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) for this step, which manages the case where `chat_history` is empty, and otherwise applies `prompt | llm | StrOutputParser() | retriever` in sequence.\n", + "Note that we leverage a helper function [create_history_aware_retriever](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) for this step, which manages the case where `chat_history` is empty, and otherwise applies `prompt | llm | StrOutputParser() | retriever` in sequence.\n", "\n", "`create_history_aware_retriever` constructs a chain that accepts keys `input` and `chat_history` as input, and has the same output schema as a retriever." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "id": "2b685428-8b82-4af1-be4f-7232c5d55b73", "metadata": {}, "outputs": [], @@ -322,14 +312,14 @@ "\n", "Now we can build our full QA chain. This is as simple as updating the retriever to be our new `history_aware_retriever`.\n", "\n", - "Again, we will use [create_stuff_documents_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) to generate a `question_answer_chain`, with input keys `context`, `chat_history`, and `input`-- it accepts the retrieved context alongside the conversation history and query to generate an answer. A more detailed explaination is over [here](/docs/tutorials/rag/#built-in-chains)\n", + "Again, we will use [create_stuff_documents_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) to generate a `question_answer_chain`, with input keys `context`, `chat_history`, and `input`-- it accepts the retrieved context alongside the conversation history and query to generate an answer. A more detailed explaination is over [here](/docs/tutorials/rag/#built-in-chains)\n", "\n", - "We build our final `rag_chain` with [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html). This chain applies the `history_aware_retriever` and `question_answer_chain` in sequence, retaining intermediate outputs such as the retrieved context for convenience. It has input keys `input` and `chat_history`, and includes `input`, `chat_history`, `context`, and `answer` in its output." + "We build our final `rag_chain` with [create_retrieval_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html). This chain applies the `history_aware_retriever` and `question_answer_chain` in sequence, retaining intermediate outputs such as the retrieved context for convenience. It has input keys `input` and `chat_history`, and includes `input`, `chat_history`, `context`, and `answer` in its output." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 6, "id": "66f275f3-ddef-4678-b90d-ee64576878f9", "metadata": {}, "outputs": [], @@ -361,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "id": "0005810b-1b95-4666-a795-08d80e478b83", "metadata": {}, "outputs": [ @@ -369,7 +359,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Task decomposition can be achieved through various methods such as using techniques like Chain of Thought (CoT) or Tree of Thoughts to break down complex tasks into smaller steps. Common ways include prompting the model with simple instructions like \"Steps for XYZ\" or task-specific instructions like \"Write a story outline.\" Human inputs can also be used to guide the task decomposition process effectively.\n" + "Common ways of task decomposition include using simple prompting techniques, such as asking for \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\" Additionally, task-specific instructions can be employed, like \"Write a story outline\" for writing tasks, or human inputs can guide the decomposition process.\n" ] } ], @@ -398,9 +388,9 @@ "id": "53263a65-4de2-4dd8-9291-6a8169ab6f1d", "metadata": {}, "source": [ - ":::{.callout-tip}\n", + ":::tip\n", "\n", - "Check out the [LangSmith trace](https://smith.langchain.com/public/243301e4-4cc5-4e52-a6e7-8cfe9208398d/r) \n", + "Check out the [LangSmith trace](https://smith.langchain.com/public/243301e4-4cc5-4e52-a6e7-8cfe9208398d/r).\n", "\n", ":::" ] @@ -412,97 +402,131 @@ "source": [ "#### Stateful management of chat history\n", "\n", - "Here we've gone over how to add application logic for incorporating historical outputs, but we're still manually updating the chat history and inserting it into each input. In a real Q&A application we'll want some way of persisting chat history and some way of automatically inserting and updating it.\n", + ":::note\n", + "\n", + "This section of the tutorial previously used the [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html) abstraction. You can access that version of the documentation in the [v0.2 docs](https://python.langchain.com/v0.2/docs/tutorials/chatbot/).\n", + "\n", + "As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into new LangChain applications.\n", + "\n", + "If your code is already relying on `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do **not** need to make any changes. We do not plan on deprecating this functionality in the near future as it works for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected.\n", + "\n", + "Please see [How to migrate to LangGraph Memory](/docs/versions/migrating_memory/) for more details.\n", + ":::\n", "\n", - "For this we can use:\n", + "We have added application logic for incorporating chat history, but we are still manually plumbing it through our application. In production, the Q&A application will usually persist the chat history into a database, and be able to read and update it appropriately.\n", "\n", - "- [BaseChatMessageHistory](https://python.langchain.com/v0.2/api_reference/langchain/index.html#module-langchain.memory): Store chat history.\n", - "- [RunnableWithMessageHistory](/docs/how_to/message_history): Wrapper for an LCEL chain and a `BaseChatMessageHistory` that handles injecting chat history into inputs and updating it after each invocation.\n", + "[LangGraph](https://langchain-ai.github.io/langgraph/) implements a built-in [persistence layer](https://langchain-ai.github.io/langgraph/concepts/persistence/), making it ideal for chat applications that support multiple conversational turns.\n", "\n", - "For a detailed walkthrough of how to use these classes together to create a stateful conversational chain, head to the [How to add message history (memory)](/docs/how_to/message_history) LCEL page.\n", + "Wrapping our chat model in a minimal LangGraph application allows us to automatically persist the message history, simplifying the development of multi-turn applications.\n", "\n", - "Below, we implement a simple example of the second option, in which chat histories are stored in a simple dict. LangChain manages memory integrations with [Redis](/docs/integrations/memory/redis_chat_message_history/) and other technologies to provide for more robust persistence.\n", + "LangGraph comes with a simple in-memory checkpointer, which we use below. See its [documentation](https://langchain-ai.github.io/langgraph/concepts/persistence/) for more detail, including how to use different persistence backends (e.g., SQLite or Postgres).\n", "\n", - "Instances of `RunnableWithMessageHistory` manage the chat history for you. They accept a config with a key (`\"session_id\"` by default) that specifies what conversation history to fetch and prepend to the input, and append the output to the same conversation history. Below is an example:" + "For a detailed walkthrough of how to manage message history, head to the [How to add message history (memory)](/docs/how_to/message_history) guide." ] }, { "cell_type": "code", - "execution_count": 11, - "id": "9c3fb176-8d6a-4dc7-8408-6a22c5f7cc72", + "execution_count": 8, + "id": "817f8528-ead4-47cd-a4b8-7a1cb8a6641f", "metadata": {}, "outputs": [], "source": [ - "from langchain_community.chat_message_histories import ChatMessageHistory\n", - "from langchain_core.chat_history import BaseChatMessageHistory\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", - "\n", - "store = {}\n", - "\n", - "\n", - "def get_session_history(session_id: str) -> BaseChatMessageHistory:\n", - " if session_id not in store:\n", - " store[session_id] = ChatMessageHistory()\n", - " return store[session_id]\n", - "\n", + "from typing import Sequence\n", "\n", - "conversational_rag_chain = RunnableWithMessageHistory(\n", - " rag_chain,\n", - " get_session_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - " output_messages_key=\"answer\",\n", - ")" + "from langchain_core.messages import BaseMessage\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, StateGraph\n", + "from langgraph.graph.message import add_messages\n", + "from typing_extensions import Annotated, TypedDict\n", + "\n", + "\n", + "# We define a dict representing the state of the application.\n", + "# This state has the same input and output keys as `rag_chain`.\n", + "class State(TypedDict):\n", + " input: str\n", + " chat_history: Annotated[Sequence[BaseMessage], add_messages]\n", + " context: str\n", + " answer: str\n", + "\n", + "\n", + "# We then define a simple node that runs the `rag_chain`.\n", + "# The `return` values of the node update the graph state, so here we just\n", + "# update the chat history with the input message and response.\n", + "def call_model(state: State):\n", + " response = rag_chain.invoke(state)\n", + " return {\n", + " \"chat_history\": [\n", + " HumanMessage(state[\"input\"]),\n", + " AIMessage(response[\"answer\"]),\n", + " ],\n", + " \"context\": response[\"context\"],\n", + " \"answer\": response[\"answer\"],\n", + " }\n", + "\n", + "\n", + "# Our graph consists only of one node:\n", + "workflow = StateGraph(state_schema=State)\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "# Finally, we compile the graph with a checkpointer object.\n", + "# This persists the state, in this case in memory.\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" + ] + }, + { + "cell_type": "markdown", + "id": "6bda388e-c794-4ca5-b96f-0b12f1daaca3", + "metadata": {}, + "source": [ + "This application out-of-the-box supports multiple conversation threads. We pass in a configuration `dict` specifying a unique identifier for a thread to control what thread is run. This enables the application to support interactions with multiple users." ] }, { "cell_type": "code", - "execution_count": 12, - "id": "1046c92f-21b3-4214-907d-92878d8cba23", + "execution_count": 9, + "id": "efdd4bcd-4de8-4d9a-8f95-4dd6960efc0a", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition involves breaking down complex tasks into smaller and simpler steps to make them more manageable. Techniques like Chain of Thought (CoT) and Tree of Thoughts help models decompose hard tasks into multiple manageable subtasks. This process allows agents to plan ahead and tackle intricate tasks effectively.'" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Task decomposition is the process of breaking down a complicated task into smaller, more manageable steps. Techniques like Chain of Thought (CoT) and Tree of Thoughts enhance this process by guiding models to think step by step and explore multiple reasoning possibilities. This approach helps in simplifying complex tasks and provides insight into the model's reasoning.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", + "config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n", + "\n", + "result = app.invoke(\n", " {\"input\": \"What is Task Decomposition?\"},\n", - " config={\n", - " \"configurable\": {\"session_id\": \"abc123\"}\n", - " }, # constructs a key \"abc123\" in `store`.\n", - ")[\"answer\"]" + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { "cell_type": "code", - "execution_count": 13, - "id": "0e89c75f-7ad7-4331-a2fe-57579eb8f840", + "execution_count": 10, + "id": "8ef6aefc-fe0e-457f-b552-303a45f47342", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition can be achieved through various methods such as using Language Model (LLM) with simple prompting, task-specific instructions tailored to the specific task at hand, or incorporating human inputs to break down the task into smaller components. These approaches help in guiding agents to think step by step and decompose complex tasks into more manageable subgoals.'" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "One way of doing task decomposition is by using simple prompting, such as asking the model, \"What are the subgoals for achieving XYZ?\" This method encourages the model to identify and outline the smaller tasks needed to accomplish the larger goal.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", - " {\"input\": \"What are common ways of doing it?\"},\n", - " config={\"configurable\": {\"session_id\": \"abc123\"}},\n", - ")[\"answer\"]" + "result = app.invoke(\n", + " {\"input\": \"What is one way of doing it?\"},\n", + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { @@ -510,38 +534,38 @@ "id": "3ab59258-84bc-4904-880e-2ebfebbca563", "metadata": {}, "source": [ - "The conversation history can be inspected in the `store` dict:" + "The conversation history can be inspected via the state of the application:" ] }, { "cell_type": "code", - "execution_count": 14, - "id": "7686b874-3a85-499f-82b5-28a85c4c768c", + "execution_count": 11, + "id": "eddfde25-6fac-4ba2-b52f-0682c73b9c15", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "User: What is Task Decomposition?\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "What is Task Decomposition?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", "\n", - "AI: Task decomposition involves breaking down complex tasks into smaller and simpler steps to make them more manageable. Techniques like Chain of Thought (CoT) and Tree of Thoughts help models decompose hard tasks into multiple manageable subtasks. This process allows agents to plan ahead and tackle intricate tasks effectively.\n", + "Task decomposition is the process of breaking down a complicated task into smaller, more manageable steps. Techniques like Chain of Thought (CoT) and Tree of Thoughts enhance this process by guiding models to think step by step and explore multiple reasoning possibilities. This approach helps in simplifying complex tasks and provides insight into the model's reasoning.\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", "\n", - "User: What are common ways of doing it?\n", + "What is one way of doing it?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", "\n", - "AI: Task decomposition can be achieved through various methods such as using Language Model (LLM) with simple prompting, task-specific instructions tailored to the specific task at hand, or incorporating human inputs to break down the task into smaller components. These approaches help in guiding agents to think step by step and decompose complex tasks into more manageable subgoals.\n", - "\n" + "One way of doing task decomposition is by using simple prompting, such as asking the model, \"What are the subgoals for achieving XYZ?\" This method encourages the model to identify and outline the smaller tasks needed to accomplish the larger goal.\n" ] } ], "source": [ - "for message in store[\"abc123\"].messages:\n", - " if isinstance(message, AIMessage):\n", - " prefix = \"AI\"\n", - " else:\n", - " prefix = \"User\"\n", - "\n", - " print(f\"{prefix}: {message.content}\\n\")" + "chat_history = app.get_state(config).values[\"chat_history\"]\n", + "for message in chat_history:\n", + " message.pretty_print()" ] }, { @@ -564,24 +588,28 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 12, "id": "71c32048-1a41-465f-a9e2-c4affc332fd9", "metadata": {}, "outputs": [], "source": [ + "from typing import Sequence\n", + "\n", "import bs4\n", "from langchain.chains import create_history_aware_retriever, create_retrieval_chain\n", "from langchain.chains.combine_documents import create_stuff_documents_chain\n", - "from langchain_chroma import Chroma\n", - "from langchain_community.chat_message_histories import ChatMessageHistory\n", "from langchain_community.document_loaders import WebBaseLoader\n", - "from langchain_core.chat_history import BaseChatMessageHistory\n", + "from langchain_core.messages import AIMessage, BaseMessage, HumanMessage\n", "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n", "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, StateGraph\n", + "from langgraph.graph.message import add_messages\n", + "from typing_extensions import Annotated, TypedDict\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "\n", "\n", "### Construct retriever ###\n", @@ -597,7 +625,9 @@ "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "splits = text_splitter.split_documents(docs)\n", - "vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n", + "vectorstore = InMemoryVectorStore.from_documents(\n", + " documents=splits, embedding=OpenAIEmbeddings()\n", + ")\n", "retriever = vectorstore.as_retriever()\n", "\n", "\n", @@ -644,72 +674,77 @@ "\n", "\n", "### Statefully manage chat history ###\n", - "store = {}\n", + "class State(TypedDict):\n", + " input: str\n", + " chat_history: Annotated[Sequence[BaseMessage], add_messages]\n", + " context: str\n", + " answer: str\n", "\n", "\n", - "def get_session_history(session_id: str) -> BaseChatMessageHistory:\n", - " if session_id not in store:\n", - " store[session_id] = ChatMessageHistory()\n", - " return store[session_id]\n", + "def call_model(state: State):\n", + " response = rag_chain.invoke(state)\n", + " return {\n", + " \"chat_history\": [\n", + " HumanMessage(state[\"input\"]),\n", + " AIMessage(response[\"answer\"]),\n", + " ],\n", + " \"context\": response[\"context\"],\n", + " \"answer\": response[\"answer\"],\n", + " }\n", "\n", "\n", - "conversational_rag_chain = RunnableWithMessageHistory(\n", - " rag_chain,\n", - " get_session_history,\n", - " input_messages_key=\"input\",\n", - " history_messages_key=\"chat_history\",\n", - " output_messages_key=\"answer\",\n", - ")" + "workflow = StateGraph(state_schema=State)\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 13, "id": "6d0a7a73-d151-47d9-9e99-b4f3291c0322", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. It involves transforming big tasks into multiple manageable tasks to facilitate problem-solving. Different methods like Chain of Thought and Tree of Thoughts can be employed to decompose tasks effectively.'" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Task decomposition is the process of breaking down a complicated task into smaller, more manageable steps. Techniques like Chain of Thought (CoT) and Tree of Thoughts enhance this process by guiding models to think step by step and explore multiple reasoning possibilities. This approach helps in simplifying complex tasks and improving the model's performance.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", + "config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n", + "\n", + "result = app.invoke(\n", " {\"input\": \"What is Task Decomposition?\"},\n", - " config={\n", - " \"configurable\": {\"session_id\": \"abc123\"}\n", - " }, # constructs a key \"abc123\" in `store`.\n", - ")[\"answer\"]" + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 14, "id": "17021822-896a-4513-a17d-1d20b1c5381c", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Task decomposition can be achieved through various methods such as using prompting techniques like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\", providing task-specific instructions like \"Write a story outline,\" or incorporating human inputs to break down complex tasks into smaller components. These approaches help in organizing thoughts and planning ahead for successful task completion.'" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "One way of doing task decomposition is by using simple prompting, such as asking the model, \"What are the subgoals for achieving XYZ?\" This method encourages the model to identify and outline the smaller steps needed to complete the larger task.\n" + ] } ], "source": [ - "conversational_rag_chain.invoke(\n", - " {\"input\": \"What are common ways of doing it?\"},\n", - " config={\"configurable\": {\"session_id\": \"abc123\"}},\n", - ")[\"answer\"]" + "result = app.invoke(\n", + " {\"input\": \"What is one way of doing it?\"},\n", + " config=config,\n", + ")\n", + "print(result[\"answer\"])" ] }, { @@ -731,7 +766,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 15, "id": "809cc747-2135-40a2-8e73-e4556343ee64", "metadata": {}, "outputs": [], @@ -756,17 +791,17 @@ }, { "cell_type": "code", - "execution_count": 19, - "id": "931c4fe3-c603-4efb-9b37-5f7cbbb1cbbd", + "execution_count": 16, + "id": "1c8df9d7-6a74-471c-aaef-6c4819ee0cd0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.'" + "'Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\n(3) Task execution: Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user\\'s request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.\\n\\nFig. 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\\nThe system comprises of 4 stages:\\n(1) Task planning: LLM works as the brain and parses the user requests into multiple tasks. There are four attributes associated with each task: task type, ID, dependencies, and arguments. They use few-shot examples to guide LLM to do task parsing and planning.\\nInstruction:'" ] }, - "execution_count": 19, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -788,7 +823,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 17, "id": "1726d151-4653-4c72-a187-a14840add526", "metadata": {}, "outputs": [], @@ -808,38 +843,70 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 18, "id": "170403a2-c914-41db-85d8-a2c381da112d", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID 1a50f4da-34a7-44af-8cbb-c67c90c9619e, but expected {'tool'} run.\")\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_1ZkTWsLYIlKZ1uMyIQGUuyJx', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 68, 'total_tokens': 87}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-dddbe2d2-2355-4ca5-9961-1ceb39d78cf9-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_1ZkTWsLYIlKZ1uMyIQGUuyJx'}])]}}\n", - "----\n", - "{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_1ZkTWsLYIlKZ1uMyIQGUuyJx')]}}\n", - "----\n", - "{'agent': {'messages': [AIMessage(content='Task decomposition is a technique used to break down complex tasks into smaller and simpler steps. This approach helps in managing and solving difficult tasks by dividing them into more manageable components. One common method of task decomposition is the Chain of Thought (CoT) technique, where models are instructed to think step by step to decompose hard tasks into smaller steps. Another extension of CoT is the Tree of Thoughts, which explores multiple reasoning possibilities at each step and generates multiple thoughts per step, creating a tree structure. Task decomposition can be facilitated by using simple prompts, task-specific instructions, or human inputs.', response_metadata={'token_usage': {'completion_tokens': 119, 'prompt_tokens': 636, 'total_tokens': 755}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-4a701854-97f2-4ec2-b6e1-73410911fa72-0')]}}\n", - "----\n" + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "What is Task Decomposition?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " blog_post_retriever (call_WKHdiejvg4In982Hr3EympuI)\n", + " Call ID: call_WKHdiejvg4In982Hr3EympuI\n", + " Args:\n", + " query: Task Decomposition\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: blog_post_retriever\n", + "\n", + "Fig. 1. Overview of a LLM-powered autonomous agent system.\n", + "Component One: Planning#\n", + "A complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\n", + "Task Decomposition#\n", + "Chain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\n", + "\n", + "Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\n", + "Task decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\n", + "\n", + "(3) Task execution: Expert models execute on the specific tasks and log results.\n", + "Instruction:\n", + "\n", + "With the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user's request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.\n", + "\n", + "Fig. 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\n", + "The system comprises of 4 stages:\n", + "(1) Task planning: LLM works as the brain and parses the user requests into multiple tasks. There are four attributes associated with each task: task type, ID, dependencies, and arguments. They use few-shot examples to guide LLM to do task parsing and planning.\n", + "Instruction:\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Task Decomposition is a process used in complex problem-solving where a larger task is broken down into smaller, more manageable sub-tasks. This approach enhances the ability of models, particularly large language models (LLMs), to handle intricate tasks by allowing them to think step by step.\n", + "\n", + "There are several methods for task decomposition:\n", + "\n", + "1. **Chain of Thought (CoT)**: This technique encourages the model to articulate its reasoning process by thinking through the task in a sequential manner. It transforms a big task into smaller, manageable steps, which also provides insight into the model's thought process.\n", + "\n", + "2. **Tree of Thoughts**: An extension of CoT, this method explores multiple reasoning possibilities at each step. It decomposes the problem into various thought steps and generates multiple thoughts for each step, creating a tree structure. The evaluation of each state can be done using breadth-first search (BFS) or depth-first search (DFS).\n", + "\n", + "3. **Prompting Techniques**: Task decomposition can be achieved through simple prompts like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\" Additionally, task-specific instructions can guide the model, such as asking it to \"Write a story outline\" for creative tasks.\n", + "\n", + "4. **Human Inputs**: In some cases, human guidance can be used to assist in breaking down tasks.\n", + "\n", + "Overall, task decomposition is a crucial component in planning and executing complex tasks, allowing for better organization and clarity in the problem-solving process.\n" ] } ], "source": [ "query = \"What is Task Decomposition?\"\n", "\n", - "for s in agent_executor.stream(\n", + "for event in agent_executor.stream(\n", " {\"messages\": [HumanMessage(content=query)]},\n", + " stream_mode=\"values\",\n", "):\n", - " print(s)\n", - " print(\"----\")" + " event[\"messages\"][-1].pretty_print()" ] }, { @@ -847,12 +914,12 @@ "id": "1df703b1-aad6-48fb-b6fa-703e32ea88b9", "metadata": {}, "source": [ - "LangGraph comes with built in persistence, so we don't need to use ChatMessageHistory! Rather, we can pass in a checkpointer to our LangGraph agent directly" + "We can again take advantage of LangGraph's built-in persistence to save stateful updates to memory:" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 19, "id": "04a3a664-3c3f-4cd1-9995-26662a52da7c", "metadata": {}, "outputs": [], @@ -876,7 +943,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 20, "id": "d6d70833-b958-4cd7-9e27-29c1c08bb1b8", "metadata": {}, "outputs": [ @@ -884,19 +951,24 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='Hello Bob! How can I assist you today?', response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 67, 'total_tokens': 78}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-022806f0-eb26-4c87-9132-ed2fcc6c21ea-0')]}}\n", - "----\n" + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "Hi! I'm bob\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hello Bob! How can I assist you today?\n" ] } ], "source": [ "config = {\"configurable\": {\"thread_id\": \"abc123\"}}\n", "\n", - "for s in agent_executor.stream(\n", - " {\"messages\": [HumanMessage(content=\"Hi! I'm bob\")]}, config=config\n", + "for event in agent_executor.stream(\n", + " {\"messages\": [HumanMessage(content=\"Hi! I'm bob\")]},\n", + " config=config,\n", + " stream_mode=\"values\",\n", "):\n", - " print(s)\n", - " print(\"----\")" + " event[\"messages\"][-1].pretty_print()" ] }, { @@ -909,7 +981,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 21, "id": "e2c570ae-dd91-402c-8693-ae746de63b16", "metadata": {}, "outputs": [ @@ -917,34 +989,64 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_DdAAJJgGIQOZQgKVE4duDyML', 'function': {'arguments': '{\"query\":\"Task Decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 19, 'prompt_tokens': 91, 'total_tokens': 110}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': None, 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-acc3c903-4f6f-48dd-8b36-f6f3b80d0856-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'Task Decomposition'}, 'id': 'call_DdAAJJgGIQOZQgKVE4duDyML'}])]}}\n", - "----\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Error in LangChainTracer.on_tool_end callback: TracerException(\"Found chain run at ID 9a7ba580-ec91-412d-9649-1b5cbf5ae7bc, but expected {'tool'} run.\")\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'tools': {'messages': [ToolMessage(content='Fig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nTree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.', name='blog_post_retriever', tool_call_id='call_DdAAJJgGIQOZQgKVE4duDyML')]}}\n", - "----\n" + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "What is Task Decomposition?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " blog_post_retriever (call_0rhrUJiHkoOQxwqCpKTkSkiu)\n", + " Call ID: call_0rhrUJiHkoOQxwqCpKTkSkiu\n", + " Args:\n", + " query: Task Decomposition\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: blog_post_retriever\n", + "\n", + "Fig. 1. Overview of a LLM-powered autonomous agent system.\n", + "Component One: Planning#\n", + "A complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\n", + "Task Decomposition#\n", + "Chain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\n", + "\n", + "Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\n", + "Task decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\n", + "\n", + "(3) Task execution: Expert models execute on the specific tasks and log results.\n", + "Instruction:\n", + "\n", + "With the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user's request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.\n", + "\n", + "Fig. 11. Illustration of how HuggingGPT works. (Image source: Shen et al. 2023)\n", + "The system comprises of 4 stages:\n", + "(1) Task planning: LLM works as the brain and parses the user requests into multiple tasks. There are four attributes associated with each task: task type, ID, dependencies, and arguments. They use few-shot examples to guide LLM to do task parsing and planning.\n", + "Instruction:\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Task Decomposition is a technique used to break down complex tasks into smaller, more manageable steps. This approach is particularly useful in the context of autonomous agents and large language models (LLMs). Here are some key points about Task Decomposition:\n", + "\n", + "1. **Chain of Thought (CoT)**: This is a prompting technique that encourages the model to \"think step by step.\" By doing so, it can utilize more computational resources to decompose difficult tasks into simpler ones, making them easier to handle.\n", + "\n", + "2. **Tree of Thoughts**: An extension of CoT, this method explores multiple reasoning possibilities at each step. It decomposes a problem into various thought steps and generates multiple thoughts for each step, creating a tree structure. This can be evaluated using search methods like breadth-first search (BFS) or depth-first search (DFS).\n", + "\n", + "3. **Methods of Decomposition**: Task decomposition can be achieved through:\n", + " - Simple prompting (e.g., asking for steps to achieve a goal).\n", + " - Task-specific instructions (e.g., requesting a story outline for writing).\n", + " - Human inputs to guide the decomposition process.\n", + "\n", + "4. **Execution**: After decomposition, expert models execute the specific tasks and log the results, allowing for a structured approach to complex problem-solving.\n", + "\n", + "Overall, Task Decomposition enhances the model's ability to tackle intricate tasks by breaking them down into simpler, actionable components.\n" ] } ], "source": [ "query = \"What is Task Decomposition?\"\n", "\n", - "for s in agent_executor.stream(\n", - " {\"messages\": [HumanMessage(content=query)]}, config=config\n", + "for event in agent_executor.stream(\n", + " {\"messages\": [HumanMessage(content=query)]},\n", + " config=config,\n", + " stream_mode=\"values\",\n", "):\n", - " print(s)\n", - " print(\"----\")" + " event[\"messages\"][-1].pretty_print()" ] }, { @@ -959,7 +1061,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "id": "570d8c68-136e-4ba5-969a-03ba195f6118", "metadata": {}, "outputs": [ @@ -967,23 +1069,66 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'agent': {'messages': [AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_KvoiamnLfGEzMeEMlV3u0TJ7', 'function': {'arguments': '{\"query\":\"common ways of task decomposition\"}', 'name': 'blog_post_retriever'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 21, 'prompt_tokens': 930, 'total_tokens': 951}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-dd842071-6dbd-4b68-8657-892eaca58638-0', tool_calls=[{'name': 'blog_post_retriever', 'args': {'query': 'common ways of task decomposition'}, 'id': 'call_KvoiamnLfGEzMeEMlV3u0TJ7'}])]}}\n", - "----\n", - "{'action': {'messages': [ToolMessage(content='Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\\nTask decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\\n\\nFig. 1. Overview of a LLM-powered autonomous agent system.\\nComponent One: Planning#\\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\\nTask Decomposition#\\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\\n\\nResources:\\n1. Internet access for searches and information gathering.\\n2. Long Term memory management.\\n3. GPT-3.5 powered Agents for delegation of simple tasks.\\n4. File output.\\n\\nPerformance Evaluation:\\n1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\\n2. Constructively self-criticize your big-picture behavior constantly.\\n3. Reflect on past decisions and strategies to refine your approach.\\n4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.\\n\\n(3) Task execution: Expert models execute on the specific tasks and log results.\\nInstruction:\\n\\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user\\'s request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.', name='blog_post_retriever', id='c749bb8e-c8e0-4fa3-bc11-3e2e0651880b', tool_call_id='call_KvoiamnLfGEzMeEMlV3u0TJ7')]}}\n", - "----\n", - "{'agent': {'messages': [AIMessage(content='According to the blog post, common ways of task decomposition include:\\n\\n1. Using language models with simple prompting like \"Steps for XYZ\" or \"What are the subgoals for achieving XYZ?\"\\n2. Utilizing task-specific instructions, for example, using \"Write a story outline\" for writing a novel.\\n3. Involving human inputs in the task decomposition process.\\n\\nThese methods help in breaking down complex tasks into smaller and more manageable steps, facilitating better planning and execution of the overall task.', response_metadata={'token_usage': {'completion_tokens': 100, 'prompt_tokens': 1475, 'total_tokens': 1575}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, id='run-98b765b3-f1a6-4c9a-ad0f-2db7950b900f-0')]}}\n", - "----\n" + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "What according to the blog post are common ways of doing it? redo the search\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " blog_post_retriever (call_bZRDF6Xr0QdurM9LItM8cN7a)\n", + " Call ID: call_bZRDF6Xr0QdurM9LItM8cN7a\n", + " Args:\n", + " query: common ways of Task Decomposition\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: blog_post_retriever\n", + "\n", + "Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\n", + "Task decomposition can be done (1) by LLM with simple prompting like \"Steps for XYZ.\\n1.\", \"What are the subgoals for achieving XYZ?\", (2) by using task-specific instructions; e.g. \"Write a story outline.\" for writing a novel, or (3) with human inputs.\n", + "\n", + "Fig. 1. Overview of a LLM-powered autonomous agent system.\n", + "Component One: Planning#\n", + "A complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\n", + "Task Decomposition#\n", + "Chain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.\n", + "\n", + "Resources:\n", + "1. Internet access for searches and information gathering.\n", + "2. Long Term memory management.\n", + "3. GPT-3.5 powered Agents for delegation of simple tasks.\n", + "4. File output.\n", + "\n", + "Performance Evaluation:\n", + "1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\n", + "2. Constructively self-criticize your big-picture behavior constantly.\n", + "3. Reflect on past decisions and strategies to refine your approach.\n", + "4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.\n", + "\n", + "(3) Task execution: Expert models execute on the specific tasks and log results.\n", + "Instruction:\n", + "\n", + "With the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user's request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "According to the blog post, common ways to perform Task Decomposition include:\n", + "\n", + "1. **Simple Prompting**: Using straightforward prompts such as \"Steps for XYZ.\\n1.\" or \"What are the subgoals for achieving XYZ?\" to guide the model in breaking down the task.\n", + "\n", + "2. **Task-Specific Instructions**: Providing specific instructions tailored to the task at hand, such as asking for a \"story outline\" when writing a novel.\n", + "\n", + "3. **Human Inputs**: Involving human guidance or input to assist in the decomposition process, allowing for a more nuanced understanding of the task requirements.\n", + "\n", + "These methods help in transforming complex tasks into smaller, manageable components, facilitating better planning and execution.\n" ] } ], "source": [ "query = \"What according to the blog post are common ways of doing it? redo the search\"\n", "\n", - "for s in agent_executor.stream(\n", - " {\"messages\": [HumanMessage(content=query)]}, config=config\n", + "for event in agent_executor.stream(\n", + " {\"messages\": [HumanMessage(content=query)]},\n", + " config=config,\n", + " stream_mode=\"values\",\n", "):\n", - " print(s)\n", - " print(\"----\")" + " event[\"messages\"][-1].pretty_print()" ] }, { @@ -1006,22 +1151,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "b1d2b4d4-e604-497d-873d-d345b808578e", "metadata": {}, "outputs": [], "source": [ "import bs4\n", "from langchain.tools.retriever import create_retriever_tool\n", - "from langchain_chroma import Chroma\n", "from langchain_community.document_loaders import WebBaseLoader\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", "from langchain_openai import ChatOpenAI, OpenAIEmbeddings\n", "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", "from langgraph.checkpoint.memory import MemorySaver\n", "from langgraph.prebuilt import create_react_agent\n", "\n", "memory = MemorySaver()\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "\n", "\n", "### Construct retriever ###\n", @@ -1037,7 +1182,9 @@ "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n", "splits = text_splitter.split_documents(docs)\n", - "vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n", + "vectorstore = InMemoryVectorStore.from_documents(\n", + " documents=splits, embedding=OpenAIEmbeddings()\n", + ")\n", "retriever = vectorstore.as_retriever()\n", "\n", "\n", @@ -1067,7 +1214,7 @@ "\n", "To explore different types of retrievers and retrieval strategies, visit the [retrievers](/docs/how_to/#retrievers) section of the how-to guides.\n", "\n", - "For a detailed walkthrough of LangChain's conversation memory abstractions, visit the [How to add message history (memory)](/docs/how_to/message_history) LCEL page.\n", + "For a detailed walkthrough of LangChain's conversation memory abstractions, visit the [How to add message history (memory)](/docs/how_to/message_history) guide.\n", "\n", "To learn more about agents, head to the [Agents Modules](/docs/tutorials/agents)." ] @@ -1097,7 +1244,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.2" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/tutorials/query_analysis.ipynb b/docs/docs/tutorials/query_analysis.ipynb index eaf4310fa761f..29c70c26f335f 100644 --- a/docs/docs/tutorials/query_analysis.ipynb +++ b/docs/docs/tutorials/query_analysis.ipynb @@ -50,7 +50,8 @@ "metadata": {}, "outputs": [], "source": [ - "# %pip install -qU langchain langchain-community langchain-openai youtube-transcript-api pytube langchain-chroma" + "%%capture --no-stderr\n", + "%pip install -qU langchain langchain-community langchain-openai youtube-transcript-api pytube langchain-chroma" ] }, { @@ -73,7 +74,8 @@ "import getpass\n", "import os\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n", "\n", "# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.\n", "# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", @@ -376,7 +378,7 @@ "source": [ "from typing import Optional\n", "\n", - "from langchain_core.pydantic_v1 import BaseModel, Field\n", + "from pydantic import BaseModel, Field\n", "\n", "\n", "class Search(BaseModel):\n", @@ -430,7 +432,7 @@ " (\"human\", \"{question}\"),\n", " ]\n", ")\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)\n", + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)\n", "structured_llm = llm.with_structured_output(Search)\n", "query_analyzer = {\"question\": RunnablePassthrough()} | prompt | structured_llm" ] @@ -595,7 +597,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.1" + "version": "3.10.4" } }, "nbformat": 4, diff --git a/docs/docs/tutorials/rag.ipynb b/docs/docs/tutorials/rag.ipynb index f7b93fef437fc..dcd60fbc55223 100644 --- a/docs/docs/tutorials/rag.ipynb +++ b/docs/docs/tutorials/rag.ipynb @@ -64,22 +64,36 @@ "\n", "This tutorial requires these langchain dependencies:\n", "\n", - "```{=mdx}\n", "import Tabs from '@theme/Tabs';\n", "import TabItem from '@theme/TabItem';\n", "import CodeBlock from \"@theme/CodeBlock\";\n", "\n", "\n", " \n", - " pip install langchain langchain_community langchain_chroma\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1918ba2f", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install --quiet --upgrade langchain langchain-community langchain-chroma" + ] + }, + { + "cell_type": "markdown", + "id": "9ff1b425", + "metadata": {}, + "source": [ " \n", " \n", - " conda install langchain langchain_community langchain_chroma -c conda-forge\n", + " conda install langchain langchain-community langchain-chroma -c conda-forge\n", " \n", "\n", "\n", - "```\n", - "\n", "\n", "For more details, see our [Installation guide](/docs/how_to/installation).\n", "\n", @@ -115,11 +129,9 @@ "We can create a simple indexing pipeline and RAG chain to do this in ~20\n", "lines of code:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -228,7 +240,7 @@ "[DocumentLoaders](/docs/concepts#document-loaders)\n", "for this, which are objects that load in data from a source and return a\n", "list of\n", - "[Documents](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html).\n", + "[Documents](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html).\n", "A `Document` is an object with some `page_content` (str) and `metadata`\n", "(dict).\n", "\n", @@ -316,7 +328,7 @@ " Detailed documentation on how to use `DocumentLoaders`.\n", "- [Integrations](/docs/integrations/document_loaders/): 160+\n", " integrations to choose from.\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/core/document_loaders/langchain_core.document_loaders.base.BaseLoader.html):\n", + "- [Interface](https://python.langchain.com/api_reference/core/document_loaders/langchain_core.document_loaders.base.BaseLoader.html):\n", " API reference  for the base interface.\n", "\n", "\n", @@ -430,14 +442,14 @@ "- Learn more about splitting text using different methods by reading the [how-to docs](/docs/how_to#text-splitters)\n", "- [Code (py or js)](/docs/integrations/document_loaders/source_code)\n", "- [Scientific papers](/docs/integrations/document_loaders/grobid)\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/text_splitters/base/langchain_text_splitters.base.TextSplitter.html): API reference for the base interface.\n", + "- [Interface](https://python.langchain.com/api_reference/text_splitters/base/langchain_text_splitters.base.TextSplitter.html): API reference for the base interface.\n", "\n", "`DocumentTransformer`: Object that performs a transformation on a list\n", "of `Document` objects.\n", "\n", "- [Docs](/docs/how_to#text-splitters): Detailed documentation on how to use `DocumentTransformers`\n", "- [Integrations](/docs/integrations/document_transformers/)\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.transformers.BaseDocumentTransformer.html): API reference for the base interface.\n", + "- [Interface](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.transformers.BaseDocumentTransformer.html): API reference for the base interface.\n", "\n", "## 3. Indexing: Store {#indexing-store}\n", "\n", @@ -483,14 +495,14 @@ "\n", "- [Docs](/docs/how_to/embed_text): Detailed documentation on how to use embeddings.\n", "- [Integrations](/docs/integrations/text_embedding/): 30+ integrations to choose from.\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/core/embeddings/langchain_core.embeddings.Embeddings.html): API reference for the base interface.\n", + "- [Interface](https://python.langchain.com/api_reference/core/embeddings/langchain_core.embeddings.Embeddings.html): API reference for the base interface.\n", "\n", "`VectorStore`: Wrapper around a vector database, used for storing and\n", "querying embeddings.\n", "\n", "- [Docs](/docs/how_to/vectorstores): Detailed documentation on how to use vector stores.\n", "- [Integrations](/docs/integrations/vectorstores/): 40+ integrations to choose from.\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html): API reference for the base interface.\n", + "- [Interface](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html): API reference for the base interface.\n", "\n", "This completes the **Indexing** portion of the pipeline. At this point\n", "we have a query-able vector store containing the chunked contents of our\n", @@ -592,7 +604,7 @@ " Retriever](/docs/how_to/self_query).\n", "- [Integrations](/docs/integrations/retrievers/): Integrations\n", " with retrieval services.\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html):\n", + "- [Interface](https://python.langchain.com/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html):\n", " API reference for the base interface.\n", "\n", "## 5. Retrieval and Generation: Generate {#retrieval-and-generation-generate}\n", @@ -604,12 +616,10 @@ "We’ll use the gpt-4o-mini OpenAI chat model, but any LangChain `LLM`\n", "or `ChatModel` could be substituted in.\n", "\n", - "```{=mdx}\n", "\n", - "```\n", "\n", "We’ll use a prompt for RAG that is checked into the LangChain prompt hub\n", "([here](https://smith.langchain.com/hub/rlm/rag-prompt))." @@ -721,14 +731,14 @@ "source": [ "Let's dissect the LCEL to understand what's going on.\n", "\n", - "First: each of these components (`retriever`, `prompt`, `llm`, etc.) are instances of [Runnable](/docs/concepts#langchain-expression-language-lcel). This means that they implement the same methods-- such as sync and async `.invoke`, `.stream`, or `.batch`-- which makes them easier to connect together. They can be connected into a [RunnableSequence](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html)-- another Runnable-- via the `|` operator.\n", + "First: each of these components (`retriever`, `prompt`, `llm`, etc.) are instances of [Runnable](/docs/concepts#langchain-expression-language-lcel). This means that they implement the same methods-- such as sync and async `.invoke`, `.stream`, or `.batch`-- which makes them easier to connect together. They can be connected into a [RunnableSequence](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableSequence.html)-- another Runnable-- via the `|` operator.\n", "\n", - "LangChain will automatically cast certain objects to runnables when met with the `|` operator. Here, `format_docs` is cast to a [RunnableLambda](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html), and the dict with `\"context\"` and `\"question\"` is cast to a [RunnableParallel](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html). The details are less important than the bigger point, which is that each object is a Runnable.\n", + "LangChain will automatically cast certain objects to runnables when met with the `|` operator. Here, `format_docs` is cast to a [RunnableLambda](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableLambda.html), and the dict with `\"context\"` and `\"question\"` is cast to a [RunnableParallel](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.base.RunnableParallel.html). The details are less important than the bigger point, which is that each object is a Runnable.\n", "\n", "Let's trace how the input question flows through the above runnables.\n", "\n", "As we've seen above, the input to `prompt` is expected to be a dict with keys `\"context\"` and `\"question\"`. So the first element of this chain builds runnables that will calculate both of these from the input question:\n", - "- `retriever | format_docs` passes the question through the retriever, generating [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, and then to `format_docs` to generate strings;\n", + "- `retriever | format_docs` passes the question through the retriever, generating [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) objects, and then to `format_docs` to generate strings;\n", "- `RunnablePassthrough()` passes through the input question unchanged.\n", "\n", "That is, if you constructed\n", @@ -749,8 +759,8 @@ "\n", "If preferred, LangChain includes convenience functions that implement the above LCEL. We compose two functions:\n", "\n", - "- [create_stuff_documents_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) specifies how retrieved context is fed into a prompt and LLM. In this case, we will \"stuff\" the contents into the prompt -- i.e., we will include all retrieved context without any summarization or other processing. It largely implements our above `rag_chain`, with input keys `context` and `input`-- it generates an answer using retrieved context and query.\n", - "- [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html) adds the retrieval step and propagates the retrieved context through the chain, providing it alongside the final answer. It has input key `input`, and includes `input`, `context`, and `answer` in its output." + "- [create_stuff_documents_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) specifies how retrieved context is fed into a prompt and LLM. In this case, we will \"stuff\" the contents into the prompt -- i.e., we will include all retrieved context without any summarization or other processing. It largely implements our above `rag_chain`, with input keys `context` and `input`-- it generates an answer using retrieved context and query.\n", + "- [create_retrieval_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html) adds the retrieval step and propagates the retrieved context through the chain, providing it alongside the final answer. It has input key `input`, and includes `input`, `context`, and `answer` in its output." ] }, { @@ -851,13 +861,13 @@ "\n", "- [Docs](/docs/how_to#chat-models)\n", "- [Integrations](/docs/integrations/chat/): 25+ integrations to choose from.\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html): API reference for the base interface.\n", + "- [Interface](https://python.langchain.com/api_reference/core/language_models/langchain_core.language_models.chat_models.BaseChatModel.html): API reference for the base interface.\n", "\n", "`LLM`: A text-in-text-out LLM. Takes in a string and returns a string.\n", "\n", "- [Docs](/docs/how_to#llms)\n", "- [Integrations](/docs/integrations/llms): 75+ integrations to choose from.\n", - "- [Interface](https://python.langchain.com/v0.2/api_reference/core/language_models/langchain_core.language_models.llms.BaseLLM.html): API reference for the base interface.\n", + "- [Interface](https://python.langchain.com/api_reference/core/language_models/langchain_core.language_models.llms.BaseLLM.html): API reference for the base interface.\n", "\n", "See a guide on RAG with locally-running models\n", "[here](/docs/tutorials/local_rag).\n", @@ -943,7 +953,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -957,7 +967,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/docs/docs/tutorials/retrievers.ipynb b/docs/docs/tutorials/retrievers.ipynb index 721a20c333436..acec0cc303f17 100644 --- a/docs/docs/tutorials/retrievers.ipynb +++ b/docs/docs/tutorials/retrievers.ipynb @@ -27,7 +27,6 @@ "\n", "This tutorial requires the `langchain`, `langchain-chroma`, and `langchain-openai` packages:\n", "\n", - "```{=mdx}\n", "import Tabs from '@theme/Tabs';\n", "import TabItem from '@theme/TabItem';\n", "import CodeBlock from \"@theme/CodeBlock\";\n", @@ -41,7 +40,6 @@ " \n", "\n", "\n", - "```\n", "\n", "For more details, see our [Installation guide](/docs/how_to/installation).\n", "\n", @@ -71,7 +69,7 @@ "\n", "## Documents\n", "\n", - "LangChain implements a [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html) abstraction, which is intended to represent a unit of text and associated metadata. It has two attributes:\n", + "LangChain implements a [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html) abstraction, which is intended to represent a unit of text and associated metadata. It has two attributes:\n", "\n", "- `page_content`: a string representing the content;\n", "- `metadata`: a dict containing arbitrary metadata.\n", @@ -125,7 +123,7 @@ "\n", "Vector search is a common way to store and search over unstructured data (such as unstructured text). The idea is to store numeric vectors that are associated with the text. Given a query, we can [embed](/docs/concepts#embedding-models) it as a vector of the same dimension and use vector similarity metrics to identify related data in the store.\n", "\n", - "LangChain [VectorStore](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html) objects contain methods for adding text and `Document` objects to the store, and querying them using various similarity metrics. They are often initialized with [embedding](/docs/how_to/embed_text) models, which determine how text data is translated to numeric vectors.\n", + "LangChain [VectorStore](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html) objects contain methods for adding text and `Document` objects to the store, and querying them using various similarity metrics. They are often initialized with [embedding](/docs/how_to/embed_text) models, which determine how text data is translated to numeric vectors.\n", "\n", "LangChain includes a suite of [integrations](/docs/integrations/vectorstores) with different vector store technologies. Some vector stores are hosted by a provider (e.g., various cloud providers) and require specific credentials to use; some (such as [Postgres](/docs/integrations/vectorstores/pgvector)) run in separate infrastructure that can be run locally or via a third-party; others can run in-memory for lightweight workloads. Here we will demonstrate usage of LangChain VectorStores using [Chroma](/docs/integrations/vectorstores/chroma), which includes an in-memory implementation.\n", "\n", @@ -153,15 +151,15 @@ "id": "ff0f0b43-e5b8-4c79-b782-a02f17345487", "metadata": {}, "source": [ - "Calling `.from_documents` here will add the documents to the vector store. [VectorStore](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html) implements methods for adding documents that can also be called after the object is instantiated. Most implementations will allow you to connect to an existing vector store-- e.g., by providing a client, index name, or other information. See the documentation for a specific [integration](/docs/integrations/vectorstores) for more detail.\n", + "Calling `.from_documents` here will add the documents to the vector store. [VectorStore](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html) implements methods for adding documents that can also be called after the object is instantiated. Most implementations will allow you to connect to an existing vector store-- e.g., by providing a client, index name, or other information. See the documentation for a specific [integration](/docs/integrations/vectorstores) for more detail.\n", "\n", - "Once we've instantiated a `VectorStore` that contains documents, we can query it. [VectorStore](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html) includes methods for querying:\n", + "Once we've instantiated a `VectorStore` that contains documents, we can query it. [VectorStore](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html) includes methods for querying:\n", "- Synchronously and asynchronously;\n", "- By string query and by vector;\n", "- With and without returning similarity scores;\n", - "- By similarity and [maximum marginal relevance](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.max_marginal_relevance_search) (to balance similarity with query to diversity in retrieved results).\n", + "- By similarity and [maximum marginal relevance](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html#langchain_core.vectorstores.VectorStore.max_marginal_relevance_search) (to balance similarity with query to diversity in retrieved results).\n", "\n", - "The methods will generally include a list of [Document](https://python.langchain.com/v0.2/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects in their outputs.\n", + "The methods will generally include a list of [Document](https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html#langchain_core.documents.base.Document) objects in their outputs.\n", "\n", "### Examples\n", "\n", @@ -305,15 +303,15 @@ "source": [ "Learn more:\n", "\n", - "- [API reference](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html)\n", + "- [API reference](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStore.html)\n", "- [How-to guide](/docs/how_to/vectorstores)\n", "- [Integration-specific docs](/docs/integrations/vectorstores)\n", "\n", "## Retrievers\n", "\n", - "LangChain `VectorStore` objects do not subclass [Runnable](https://python.langchain.com/v0.2/api_reference/core/index.html#module-langchain_core.runnables), and so cannot immediately be integrated into LangChain Expression Language [chains](/docs/concepts/#langchain-expression-language-lcel).\n", + "LangChain `VectorStore` objects do not subclass [Runnable](https://python.langchain.com/api_reference/core/index.html#module-langchain_core.runnables), and so cannot immediately be integrated into LangChain Expression Language [chains](/docs/concepts/#langchain-expression-language-lcel).\n", "\n", - "LangChain [Retrievers](https://python.langchain.com/v0.2/api_reference/core/index.html#module-langchain_core.retrievers) are Runnables, so they implement a standard set of methods (e.g., synchronous and asynchronous `invoke` and `batch` operations) and are designed to be incorporated in LCEL chains.\n", + "LangChain [Retrievers](https://python.langchain.com/api_reference/core/index.html#module-langchain_core.retrievers) are Runnables, so they implement a standard set of methods (e.g., synchronous and asynchronous `invoke` and `batch` operations) and are designed to be incorporated in LCEL chains.\n", "\n", "We can create a simple version of this ourselves, without subclassing `Retriever`. If we choose what method we wish to use to retrieve documents, we can create a runnable easily. Below we will build one around the `similarity_search` method:" ] @@ -350,7 +348,7 @@ "id": "a36d3f64-a8bc-4baa-b2ea-07e324a0143e", "metadata": {}, "source": [ - "Vectorstores implement an `as_retriever` method that will generate a Retriever, specifically a [VectorStoreRetriever](https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStoreRetriever.html). These retrievers include specific `search_type` and `search_kwargs` attributes that identify what methods of the underlying vector store to call, and how to parameterize them. For instance, we can replicate the above with the following:" + "Vectorstores implement an `as_retriever` method that will generate a Retriever, specifically a [VectorStoreRetriever](https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.VectorStoreRetriever.html). These retrievers include specific `search_type` and `search_kwargs` attributes that identify what methods of the underlying vector store to call, and how to parameterize them. For instance, we can replicate the above with the following:" ] }, { @@ -389,11 +387,9 @@ "\n", "Retrievers can easily be incorporated into more complex applications, such as retrieval-augmented generation (RAG) applications that combine a given question with retrieved context into a prompt for a LLM. Below we show a minimal example.\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { @@ -472,7 +468,7 @@ "\n", "The [retrievers](/docs/how_to#retrievers) section of the how-to guides covers these and other built-in retrieval strategies.\n", "\n", - "It is also straightforward to extend the [BaseRetriever](https://python.langchain.com/v0.2/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html) class in order to implement custom retrievers. See our how-to guide [here](/docs/how_to/custom_retriever)." + "It is also straightforward to extend the [BaseRetriever](https://python.langchain.com/api_reference/core/retrievers/langchain_core.retrievers.BaseRetriever.html) class in order to implement custom retrievers. See our how-to guide [here](/docs/how_to/custom_retriever)." ] } ], diff --git a/docs/docs/tutorials/sql_qa.ipynb b/docs/docs/tutorials/sql_qa.ipynb index 726ffa7136b59..0bab8a066938a 100644 --- a/docs/docs/tutorials/sql_qa.ipynb +++ b/docs/docs/tutorials/sql_qa.ipynb @@ -140,18 +140,16 @@ "\n", "### Convert question to SQL query\n", "\n", - "The first step in a SQL chain or agent is to take the user input and convert it to a SQL query. LangChain comes with a built-in chain for this: [create_sql_query_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html)." + "The first step in a SQL chain or agent is to take the user input and convert it to a SQL query. LangChain comes with a built-in chain for this: [create_sql_query_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.sql_database.query.create_sql_query_chain.html)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", - "\n", - "```" + "\n" ] }, { diff --git a/docs/docs/tutorials/summarization.ipynb b/docs/docs/tutorials/summarization.ipynb index 36375989b2b8d..7e178db1b110e 100644 --- a/docs/docs/tutorials/summarization.ipynb +++ b/docs/docs/tutorials/summarization.ipynb @@ -18,11 +18,11 @@ "source": [ "# Summarize Text\n", "\n", - ":::{.callout-info}\n", + ":::info\n", "\n", "This tutorial demonstrates text summarization using built-in chains and [LangGraph](https://langchain-ai.github.io/langgraph/).\n", "\n", - "A [previous version](https://python.langchain.com/v0.1/docs/use_cases/summarization/) of this page showcased the legacy chains [StuffDocumentsChain](/docs/versions/migrating_chains/stuff_docs_chain/), [MapReduceDocumentsChain](/docs/versions/migrating_chains/map_reduce_chain/), and [RefineDocumentsChain](https://python.langchain.com/v0.2/docs/versions/migrating_chains/refine_docs_chain/). See [here](/docs/versions/migrating_chains/) for information on using those abstractions and a comparison with the methods demonstrated in this tutorial.\n", + "A [previous version](https://python.langchain.com/v0.1/docs/use_cases/summarization/) of this page showcased the legacy chains [StuffDocumentsChain](/docs/versions/migrating_chains/stuff_docs_chain/), [MapReduceDocumentsChain](/docs/versions/migrating_chains/map_reduce_chain/), and [RefineDocumentsChain](https://python.langchain.com/docs/versions/migrating_chains/refine_docs_chain/). See [here](/docs/versions/migrating_chains/) for information on using those abstractions and a comparison with the methods demonstrated in this tutorial.\n", "\n", ":::\n", "\n", @@ -54,7 +54,7 @@ "\n", "- Using [language models](/docs/concepts/#chat-models).\n", "\n", - "- Using [document loaders](/docs/concepts/#document-loaders), specifically the [WebBaseLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load content from an HTML webpage.\n", + "- Using [document loaders](/docs/concepts/#document-loaders), specifically the [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load content from an HTML webpage.\n", "\n", "- Two ways to summarize or otherwise combine documents.\n", " 1. [Stuff](/docs/tutorials/summarization#stuff), which simply concatenates documents into a prompt;\n", @@ -74,7 +74,6 @@ "\n", "To install LangChain run:\n", "\n", - "```{=mdx}\n", "import Tabs from '@theme/Tabs';\n", "import TabItem from '@theme/TabItem';\n", "import CodeBlock from \"@theme/CodeBlock\";\n", @@ -88,7 +87,6 @@ " \n", "\n", "\n", - "```\n", "\n", "\n", "For more details, see our [Installation guide](/docs/how_to/installation).\n", @@ -128,7 +126,7 @@ "\n", "1. `Stuff`: Simply \"stuff\" all your documents into a single prompt. This is the simplest approach (see [here](/docs/tutorials/rag#built-in-chains) for more on the `create_stuff_documents_chain` constructor, which is used for this method).\n", "\n", - "2. `Map-reduce`: Summarize each document on its own in a \"map\" step and then \"reduce\" the summaries into a final summary (see [here](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.map_reduce.MapReduceDocumentsChain.html) for more on the `MapReduceDocumentsChain`, which is used for this method).\n", + "2. `Map-reduce`: Summarize each document on its own in a \"map\" step and then \"reduce\" the summaries into a final summary (see [here](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.map_reduce.MapReduceDocumentsChain.html) for more on the `MapReduceDocumentsChain`, which is used for this method).\n", "\n", "Note that map-reduce is especially effective when understanding of a sub-document does not rely on preceding context. For example, when summarizing a corpus of many, shorter documents. In other cases, such as summarizing a novel or body of text with an inherent sequence, [iterative refinement](/docs/how_to/summarize_refine) may be more effective." ] @@ -183,7 +181,7 @@ "id": "21541329-f883-42ca-bc94-ab9793951dfa", "metadata": {}, "source": [ - "First we load in our documents. We will use [WebBaseLoader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load a blog post:" + "First we load in our documents. We will use [WebBaseLoader](https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html) to load a blog post:" ] }, { @@ -206,13 +204,11 @@ "source": [ "Let's next select a LLM:\n", "\n", - "```{=mdx}\n", "import ChatModelTabs from \"@theme/ChatModelTabs\";\n", "\n", "\n", - "```" + "/>\n" ] }, { @@ -237,7 +233,7 @@ "source": [ "## Stuff: summarize in a single LLM call {#stuff}\n", "\n", - "We can use [create_stuff_documents_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html), especially if using larger context window models such as:\n", + "We can use [create_stuff_documents_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html), especially if using larger context window models such as:\n", "\n", "* 128k token OpenAI `gpt-4o` \n", "* 200k token Anthropic `claude-3-5-sonnet-20240620`\n", diff --git a/docs/docs/versions/migrating_chains/constitutional_chain.ipynb b/docs/docs/versions/migrating_chains/constitutional_chain.ipynb index 91d813bb10f58..06adc77c9b95e 100644 --- a/docs/docs/versions/migrating_chains/constitutional_chain.ipynb +++ b/docs/docs/versions/migrating_chains/constitutional_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from ConstitutionalChain\n", "\n", - "[ConstitutionalChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.constitutional_ai.base.ConstitutionalChain.html) allowed for a LLM to critique and revise generations based on [principles](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.constitutional_ai.models.ConstitutionalPrinciple.html), structured as combinations of critique and revision requests. For example, a principle might include a request to identify harmful content, and a request to rewrite the content.\n", + "[ConstitutionalChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.constitutional_ai.base.ConstitutionalChain.html) allowed for a LLM to critique and revise generations based on [principles](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.constitutional_ai.models.ConstitutionalPrinciple.html), structured as combinations of critique and revision requests. For example, a principle might include a request to identify harmful content, and a request to rewrite the content.\n", "\n", "`Constitutional AI principles` are based on the [Constitutional AI: Harmlessness from AI Feedback](https://arxiv.org/pdf/2212.08073) paper.\n", "\n", @@ -39,7 +39,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/versions/migrating_chains/conversation_chain.ipynb b/docs/docs/versions/migrating_chains/conversation_chain.ipynb index 77e5b345bdc02..87af17a655871 100644 --- a/docs/docs/versions/migrating_chains/conversation_chain.ipynb +++ b/docs/docs/versions/migrating_chains/conversation_chain.ipynb @@ -7,15 +7,15 @@ "source": [ "# Migrating from ConversationalChain\n", "\n", - "[`ConversationChain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.conversation.base.ConversationChain.html) incorporated a memory of previous messages to sustain a stateful conversation.\n", + "[`ConversationChain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.conversation.base.ConversationChain.html) incorporated a memory of previous messages to sustain a stateful conversation.\n", "\n", - "Some advantages of switching to the LCEL implementation are:\n", + "Some advantages of switching to the Langgraph implementation are:\n", "\n", "- Innate support for threads/separate sessions. To make this work with `ConversationChain`, you'd need to instantiate a separate memory class outside the chain.\n", "- More explicit parameters. `ConversationChain` contains a hidden default prompt, which can cause confusion.\n", "- Streaming support. `ConversationChain` only supports streaming via callbacks.\n", "\n", - "`RunnableWithMessageHistory` implements sessions via configuration parameters. It should be instantiated with a callable that returns a [chat message history](https://python.langchain.com/v0.2/api_reference/core/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html). By default, it expects this function to take a single argument `session_id`." + "Langgraph's [checkpointing](https://langchain-ai.github.io/langgraph/how-tos/persistence/) system supports multiple threads or sessions, which can be specified via the `\"thread_id\"` key in its configuration parameters." ] }, { @@ -38,7 +38,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -60,9 +61,9 @@ { "data": { "text/plain": [ - "{'input': 'how are you?',\n", + "{'input': \"I'm Bob, how are you?\",\n", " 'history': '',\n", - " 'response': \"Arr matey, I be doin' well on the high seas, plunderin' and pillagin' as usual. How be ye?\"}" + " 'response': \"Arrr matey, I be a pirate sailin' the high seas. What be yer business with me?\"}" ] }, "execution_count": 2, @@ -92,31 +93,21 @@ " prompt=prompt,\n", ")\n", "\n", - "chain({\"input\": \"how are you?\"})" - ] - }, - { - "cell_type": "markdown", - "id": "f8e36b0e-c7dc-4130-a51b-189d4b756c7f", - "metadata": {}, - "source": [ - "\n", - "\n", - "## LCEL\n", - "\n", - "
" + "chain({\"input\": \"I'm Bob, how are you?\"})" ] }, { "cell_type": "code", "execution_count": 3, - "id": "666c92a0-b555-4418-a465-6490c1b92570", + "id": "53f2c723-178f-470a-8147-54e7cb982211", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "\"Arr, me matey! I be doin' well, sailin' the high seas and searchin' for treasure. How be ye?\"" + "{'input': 'What is my name?',\n", + " 'history': \"Human: I'm Bob, how are you?\\nAI: Arrr matey, I be a pirate sailin' the high seas. What be yer business with me?\",\n", + " 'response': 'Your name be Bob, matey.'}" ] }, "execution_count": 3, @@ -125,88 +116,120 @@ } ], "source": [ - "from langchain_core.chat_history import InMemoryChatMessageHistory\n", - "from langchain_core.output_parsers import StrOutputParser\n", - "from langchain_core.prompts import ChatPromptTemplate\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", + "chain({\"input\": \"What is my name?\"})" + ] + }, + { + "cell_type": "markdown", + "id": "f8e36b0e-c7dc-4130-a51b-189d4b756c7f", + "metadata": {}, + "source": [ + "
\n", + "\n", + "## Langgraph\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a59b910c-0d02-41aa-bc99-441f11989cf8", + "metadata": {}, + "outputs": [], + "source": [ + "import uuid\n", + "\n", "from langchain_openai import ChatOpenAI\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", "\n", - "prompt = ChatPromptTemplate.from_messages(\n", - " [\n", - " (\"system\", \"You are a pirate. Answer the following questions as best you can.\"),\n", - " (\"placeholder\", \"{chat_history}\"),\n", - " (\"human\", \"{input}\"),\n", - " ]\n", - ")\n", + "model = ChatOpenAI(model=\"gpt-4o-mini\")\n", "\n", - "history = InMemoryChatMessageHistory()\n", + "# Define a new graph\n", + "workflow = StateGraph(state_schema=MessagesState)\n", "\n", "\n", - "def get_history():\n", - " return history\n", + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " response = model.invoke(state[\"messages\"])\n", + " return {\"messages\": response}\n", "\n", "\n", - "chain = prompt | ChatOpenAI() | StrOutputParser()\n", + "# Define the two nodes we will cycle between\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "# Add memory\n", + "memory = MemorySaver()\n", + "app = workflow.compile(checkpointer=memory)\n", "\n", - "wrapped_chain = RunnableWithMessageHistory(\n", - " chain,\n", - " get_history,\n", - " history_messages_key=\"chat_history\",\n", - ")\n", "\n", - "wrapped_chain.invoke({\"input\": \"how are you?\"})" + "# The thread id is a unique key that identifies\n", + "# this particular conversation.\n", + "# We'll just generate a random uuid here.\n", + "thread_id = uuid.uuid4()\n", + "config = {\"configurable\": {\"thread_id\": thread_id}}" ] }, { - "cell_type": "markdown", - "id": "6b386ce6-895e-442c-88f3-7bec0ab9f401", + "cell_type": "code", + "execution_count": 5, + "id": "3a9df4bb-e804-4373-9a15-a29dc0371595", "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "I'm Bob, how are you?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Ahoy, Bob! I be feelin' as lively as a ship in full sail! How be ye on this fine day?\n" + ] + } + ], "source": [ - "The above example uses the same `history` for all sessions. The example below shows how to use a different chat history for each session." + "query = \"I'm Bob, how are you?\"\n", + "\n", + "input_messages = [\n", + " {\n", + " \"role\": \"system\",\n", + " \"content\": \"You are a pirate. Answer the following questions as best you can.\",\n", + " },\n", + " {\"role\": \"user\", \"content\": query},\n", + "]\n", + "for event in app.stream({\"messages\": input_messages}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" ] }, { "cell_type": "code", - "execution_count": 4, - "id": "96152263-98d7-4e06-8c73-d0c0abf3e8e9", + "execution_count": 6, + "id": "d3f77e69-fa3d-496c-968c-86371e1e8cf1", "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "'Ahoy there, me hearty! What can this old pirate do for ye today?'" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "What is my name?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Ye be callin' yerself Bob, I reckon! A fine name for a swashbuckler like yerself!\n" + ] } ], "source": [ - "from langchain_core.chat_history import BaseChatMessageHistory\n", - "from langchain_core.runnables.history import RunnableWithMessageHistory\n", - "\n", - "store = {}\n", - "\n", - "\n", - "def get_session_history(session_id: str) -> BaseChatMessageHistory:\n", - " if session_id not in store:\n", - " store[session_id] = InMemoryChatMessageHistory()\n", - " return store[session_id]\n", - "\n", - "\n", - "chain = prompt | ChatOpenAI() | StrOutputParser()\n", - "\n", - "wrapped_chain = RunnableWithMessageHistory(\n", - " chain,\n", - " get_session_history,\n", - " history_messages_key=\"chat_history\",\n", - ")\n", + "query = \"What is my name?\"\n", "\n", - "wrapped_chain.invoke(\n", - " {\"input\": \"Hello!\"},\n", - " config={\"configurable\": {\"session_id\": \"abc123\"}},\n", - ")" + "input_messages = [{\"role\": \"user\", \"content\": query}]\n", + "for event in app.stream({\"messages\": input_messages}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" ] }, { @@ -218,7 +241,7 @@ "\n", "## Next steps\n", "\n", - "See [this tutorial](/docs/tutorials/chatbot) for a more end-to-end guide on building with [`RunnableWithMessageHistory`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html).\n", + "See [this tutorial](/docs/tutorials/chatbot) for a more end-to-end guide on building with [`RunnableWithMessageHistory`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html).\n", "\n", "Check out the [LCEL conceptual docs](/docs/concepts/#langchain-expression-language-lcel) for more background information." ] diff --git a/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb b/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb index 75a37d36c6057..31930082875d9 100644 --- a/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb +++ b/docs/docs/versions/migrating_chains/conversation_retrieval_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from ConversationalRetrievalChain\n", "\n", - "The [`ConversationalRetrievalChain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.conversational_retrieval.base.ConversationalRetrievalChain.html) was an all-in one way that combined retrieval-augmented generation with chat history, allowing you to \"chat with\" your documents.\n", + "The [`ConversationalRetrievalChain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.conversational_retrieval.base.ConversationalRetrievalChain.html) was an all-in one way that combined retrieval-augmented generation with chat history, allowing you to \"chat with\" your documents.\n", "\n", "Advantages of switching to the LCEL implementation are similar to the [`RetrievalQA` migration guide](./retrieval_qa.ipynb):\n", "\n", @@ -46,7 +46,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/versions/migrating_chains/llm_chain.ipynb b/docs/docs/versions/migrating_chains/llm_chain.ipynb index 3e1492f605967..a4addea4a4cdc 100644 --- a/docs/docs/versions/migrating_chains/llm_chain.ipynb +++ b/docs/docs/versions/migrating_chains/llm_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from LLMChain\n", "\n", - "[`LLMChain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) combined a prompt template, LLM, and output parser into a class.\n", + "[`LLMChain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) combined a prompt template, LLM, and output parser into a class.\n", "\n", "Some advantages of switching to the LCEL implementation are:\n", "\n", @@ -160,7 +160,7 @@ "id": "3c0b0513-77b8-4371-a20e-3e487cec7e7f", "metadata": {}, "source": [ - "If you'd like to mimic the `dict` packaging of input and output in `LLMChain`, you can use a [`RunnablePassthrough.assign`](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html) like:" + "If you'd like to mimic the `dict` packaging of input and output in `LLMChain`, you can use a [`RunnablePassthrough.assign`](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.passthrough.RunnablePassthrough.html) like:" ] }, { diff --git a/docs/docs/versions/migrating_chains/llm_math_chain.ipynb b/docs/docs/versions/migrating_chains/llm_math_chain.ipynb index c9d5470946b80..2697d02fd175c 100644 --- a/docs/docs/versions/migrating_chains/llm_math_chain.ipynb +++ b/docs/docs/versions/migrating_chains/llm_math_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from LLMMathChain\n", "\n", - "[`LLMMathChain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.llm_math.base.LLMMathChain.html) enabled the evaluation of mathematical expressions generated by a LLM. Instructions for generating the expressions were formatted into the prompt, and the expressions were parsed out of the string response before evaluation using the [numexpr](https://numexpr.readthedocs.io/en/latest/user_guide.html) library.\n", + "[`LLMMathChain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.llm_math.base.LLMMathChain.html) enabled the evaluation of mathematical expressions generated by a LLM. Instructions for generating the expressions were formatted into the prompt, and the expressions were parsed out of the string response before evaluation using the [numexpr](https://numexpr.readthedocs.io/en/latest/user_guide.html) library.\n", "\n", "This is more naturally achieved via [tool calling](/docs/concepts/#functiontool-calling). We can equip a chat model with a simple calculator tool leveraging `numexpr` and construct a simple chain around it using [LangGraph](https://langchain-ai.github.io/langgraph/). Some advantages of this approach include:\n", "\n", @@ -37,7 +37,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/versions/migrating_chains/llm_router_chain.ipynb b/docs/docs/versions/migrating_chains/llm_router_chain.ipynb index 92fec7f9bdbcf..5e37f2874c8d8 100644 --- a/docs/docs/versions/migrating_chains/llm_router_chain.ipynb +++ b/docs/docs/versions/migrating_chains/llm_router_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from LLMRouterChain\n", "\n", - "The [`LLMRouterChain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.router.llm_router.LLMRouterChain.html) routed an input query to one of multiple destinations-- that is, given an input query, it used a LLM to select from a list of destination chains, and passed its inputs to the selected chain.\n", + "The [`LLMRouterChain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.router.llm_router.LLMRouterChain.html) routed an input query to one of multiple destinations-- that is, given an input query, it used a LLM to select from a list of destination chains, and passed its inputs to the selected chain.\n", "\n", "`LLMRouterChain` does not support common [chat model](/docs/concepts/#chat-models) features, such as message roles and [tool calling](/docs/concepts/#functiontool-calling). Under the hood, `LLMRouterChain` routes a query by instructing the LLM to generate JSON-formatted text, and parsing out the intended destination.\n", "\n", @@ -100,7 +100,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb b/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb index 197de18a1e32e..4f03f98092e59 100644 --- a/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb +++ b/docs/docs/versions/migrating_chains/map_reduce_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from MapReduceDocumentsChain\n", "\n", - "[MapReduceDocumentsChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.map_reduce.MapReduceDocumentsChain.html) implements a map-reduce strategy over (potentially long) texts. The strategy is as follows:\n", + "[MapReduceDocumentsChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.map_reduce.MapReduceDocumentsChain.html) implements a map-reduce strategy over (potentially long) texts. The strategy is as follows:\n", "\n", "- Split a text into smaller documents;\n", "- Map a process onto the smaller documents;\n", @@ -46,7 +46,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -196,7 +196,7 @@ "metadata": {}, "outputs": [], "source": [ - "% pip install -qU langgraph" + "%pip install -qU langgraph" ] }, { @@ -588,7 +588,7 @@ "source": [ "As before, we can stream the graph to observe its sequence of steps. Below, we will simply print out the name of the step.\n", "\n", - "Note that because we have a loop in the graph, it can be helpful to specify a [recursion_limit](https://langchain-ai.github.io/langgraph/reference/errors/#langgraph.errors.GraphRecursionError) on its execution. This is analogous to [ReduceDocumentsChain.token_max](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.reduce.ReduceDocumentsChain.html#langchain.chains.combine_documents.reduce.ReduceDocumentsChain.token_max) to will raise a specific error when the specified limit is exceeded." + "Note that because we have a loop in the graph, it can be helpful to specify a [recursion_limit](https://langchain-ai.github.io/langgraph/reference/errors/#langgraph.errors.GraphRecursionError) on its execution. This is analogous to [ReduceDocumentsChain.token_max](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.reduce.ReduceDocumentsChain.html#langchain.chains.combine_documents.reduce.ReduceDocumentsChain.token_max) to will raise a specific error when the specified limit is exceeded." ] }, { diff --git a/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb b/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb index 03e58842c32ac..6b979eeaed937 100644 --- a/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb +++ b/docs/docs/versions/migrating_chains/map_rerank_docs_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from MapRerankDocumentsChain\n", "\n", - "[MapRerankDocumentsChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.map_rerank.MapRerankDocumentsChain.html) implements a strategy for analyzing long texts. The strategy is as follows:\n", + "[MapRerankDocumentsChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.map_rerank.MapRerankDocumentsChain.html) implements a strategy for analyzing long texts. The strategy is as follows:\n", "\n", "- Split a text into smaller documents;\n", "- Map a process to the set of documents, where the process includes generating a score;\n", @@ -55,7 +55,7 @@ "\n", "
\n", "\n", - "Below we show an implementation with `MapRerankDocumentsChain`. We define the prompt template for a question-answering task and instantiate a [LLMChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) object for this purpose. We define how documents are formatted into the prompt and ensure consistency among the keys in the various prompts." + "Below we show an implementation with `MapRerankDocumentsChain`. We define the prompt template for a question-answering task and instantiate a [LLMChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) object for this purpose. We define how documents are formatted into the prompt and ensure consistency among the keys in the various prompts." ] }, { diff --git a/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb b/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb index 85f5ce7a0e124..6c987880357c6 100644 --- a/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb +++ b/docs/docs/versions/migrating_chains/multi_prompt_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from MultiPromptChain\n", "\n", - "The [`MultiPromptChain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.router.multi_prompt.MultiPromptChain.html) routed an input query to one of multiple LLMChains-- that is, given an input query, it used a LLM to select from a list of prompts, formatted the query into the prompt, and generated a response.\n", + "The [`MultiPromptChain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.router.multi_prompt.MultiPromptChain.html) routed an input query to one of multiple LLMChains-- that is, given an input query, it used a LLM to select from a list of prompts, formatted the query into the prompt, and generated a response.\n", "\n", "`MultiPromptChain` does not support common [chat model](/docs/concepts/#chat-models) features, such as message roles and [tool calling](/docs/concepts/#functiontool-calling).\n", "\n", @@ -40,7 +40,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { diff --git a/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb b/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb index 6461e604bc848..80ee5afbac056 100644 --- a/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb +++ b/docs/docs/versions/migrating_chains/refine_docs_chain.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from RefineDocumentsChain\n", "\n", - "[RefineDocumentsChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.refine.RefineDocumentsChain.html) implements a strategy for analyzing long texts. The strategy is as follows:\n", + "[RefineDocumentsChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.refine.RefineDocumentsChain.html) implements a strategy for analyzing long texts. The strategy is as follows:\n", "\n", "- Split a text into smaller documents;\n", "- Apply a process to the first document;\n", @@ -81,7 +81,7 @@ "\n", "
\n", "\n", - "Below we show an implementation with `RefineDocumentsChain`. We define the prompt templates for the initial summarization and successive refinements, instantiate separate [LLMChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) objects for these two purposes, and instantiate `RefineDocumentsChain` with these components." + "Below we show an implementation with `RefineDocumentsChain`. We define the prompt templates for the initial summarization and successive refinements, instantiate separate [LLMChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) objects for these two purposes, and instantiate `RefineDocumentsChain` with these components." ] }, { diff --git a/docs/docs/versions/migrating_chains/retrieval_qa.ipynb b/docs/docs/versions/migrating_chains/retrieval_qa.ipynb index d931a81038564..fec2a75f1b435 100644 --- a/docs/docs/versions/migrating_chains/retrieval_qa.ipynb +++ b/docs/docs/versions/migrating_chains/retrieval_qa.ipynb @@ -7,7 +7,7 @@ "source": [ "# Migrating from RetrievalQA\n", "\n", - "The [`RetrievalQA` chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval_qa.base.RetrievalQA.html) performed natural-language question answering over a data source using retrieval-augmented generation.\n", + "The [`RetrievalQA` chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval_qa.base.RetrievalQA.html) performed natural-language question answering over a data source using retrieval-augmented generation.\n", "\n", "Some advantages of switching to the LCEL implementation are:\n", "\n", @@ -44,7 +44,8 @@ "import os\n", "from getpass import getpass\n", "\n", - "os.environ[\"OPENAI_API_KEY\"] = getpass()" + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" ] }, { @@ -177,7 +178,7 @@ "id": "d6f44fe8", "metadata": {}, "source": [ - "The LCEL implementation exposes the internals of what's happening around retrieving, formatting documents, and passing them through a prompt to the LLM, but it is more verbose. You can customize and wrap this composition logic in a helper function, or use the higher-level [`create_retrieval_chain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html) and [`create_stuff_documents_chain`](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) helper method:" + "The LCEL implementation exposes the internals of what's happening around retrieving, formatting documents, and passing them through a prompt to the LLM, but it is more verbose. You can customize and wrap this composition logic in a helper function, or use the higher-level [`create_retrieval_chain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html) and [`create_stuff_documents_chain`](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) helper method:" ] }, { diff --git a/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb b/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb index fa4721caa3e61..c09b0279b65fa 100644 --- a/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb +++ b/docs/docs/versions/migrating_chains/stuff_docs_chain.ipynb @@ -7,9 +7,9 @@ "source": [ "# Migrating from StuffDocumentsChain\n", "\n", - "[StuffDocumentsChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.StuffDocumentsChain.html) combines documents by concatenating them into a single context window. It is a straightforward and effective strategy for combining documents for question-answering, summarization, and other purposes.\n", + "[StuffDocumentsChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.StuffDocumentsChain.html) combines documents by concatenating them into a single context window. It is a straightforward and effective strategy for combining documents for question-answering, summarization, and other purposes.\n", "\n", - "[create_stuff_documents_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) is the recommended alternative. It functions the same as `StuffDocumentsChain`, with better support for streaming and batch functionality. Because it is a simple combination of [LCEL primitives](/docs/concepts/#langchain-expression-language-lcel), it is also easier to extend and incorporate into other LangChain applications.\n", + "[create_stuff_documents_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.stuff.create_stuff_documents_chain.html) is the recommended alternative. It functions the same as `StuffDocumentsChain`, with better support for streaming and batch functionality. Because it is a simple combination of [LCEL primitives](/docs/concepts/#langchain-expression-language-lcel), it is also easier to extend and incorporate into other LangChain applications.\n", "\n", "Below we will go through both `StuffDocumentsChain` and `create_stuff_documents_chain` on a simple example for illustrative purposes.\n", "\n", @@ -32,7 +32,7 @@ "\n", "from langchain_openai import ChatOpenAI\n", "\n", - "llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\", temperature=0)" + "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0)" ] }, { @@ -70,7 +70,7 @@ "\n", "
\n", "\n", - "Below we show an implementation with `StuffDocumentsChain`. We define the prompt template for a summarization task and instantiate a [LLMChain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) object for this purpose. We define how documents are formatted into the prompt and ensure consistency among the keys in the various prompts." + "Below we show an implementation with `StuffDocumentsChain`. We define the prompt template for a summarization task and instantiate a [LLMChain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html) object for this purpose. We define how documents are formatted into the prompt and ensure consistency among the keys in the various prompts." ] }, { diff --git a/docs/docs/versions/migrating_memory/chat_history.ipynb b/docs/docs/versions/migrating_memory/chat_history.ipynb new file mode 100644 index 0000000000000..fc164ee13580e --- /dev/null +++ b/docs/docs/versions/migrating_memory/chat_history.ipynb @@ -0,0 +1,300 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c298a5c9-b9af-481d-9eba-cbd65f987a8a", + "metadata": {}, + "source": [ + "# How to use BaseChatMessageHistory with LangGraph\n", + "\n", + ":::info Prerequisites\n", + "\n", + "This guide assumes familiarity with the following concepts:\n", + "* [Chat History](/docs/concepts/#chat-history)\n", + "* [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html)\n", + "* [LangGraph](https://langchain-ai.github.io/langgraph/concepts/high_level/)\n", + "* [Memory](https://langchain-ai.github.io/langgraph/concepts/agentic_concepts/#memory)\n", + ":::\n", + "\n", + "We recommend that new LangChain applications take advantage of the [built-in LangGraph peristence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to implement memory.\n", + "\n", + "In some situations, users may need to keep using an existing persistence solution for chat message history.\n", + "\n", + "Here, we will show how to use [LangChain chat message histories](https://python.langchain.com/docs/integrations/memory/) (implementations of [BaseChatMessageHistory](https://python.langchain.com/api_reference/core/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html)) with LangGraph." + ] + }, + { + "cell_type": "markdown", + "id": "548bc988-167b-43f1-860a-d247e28b2b42", + "metadata": {}, + "source": [ + "## Set up" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6cbfd2ab-7537-4269-8249-646fa89bf016", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture --no-stderr\n", + "%pip install --upgrade --quiet langchain-anthropic langgraph" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0694febf-dfa8-46ef-babc-f8b16b5a2926", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from getpass import getpass\n", + "\n", + "if \"ANTHROPIC_API_KEY\" not in os.environ:\n", + " os.environ[\"ANTHROPIC_API_KEY\"] = getpass()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "c5e08659-b68c-48f2-8b33-e79b0c6999e1", + "metadata": {}, + "source": [ + "## ChatMessageHistory\n", + "\n", + "A message history needs to be parameterized by a conversation ID or maybe by the 2-tuple of (user ID, conversation ID).\n", + "\n", + "Many of the [LangChain chat message histories](https://python.langchain.com/docs/integrations/memory/) will have either a `session_id` or some `namespace` to allow keeping track of different conversations. Please refer to the specific implementations to check how it is parameterized.\n", + "\n", + "The built-in `InMemoryChatMessageHistory` does not contains such a parameterization, so we'll create a dictionary to keep track of the message histories." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "28049308-2543-48e6-90d0-37a88951a637", + "metadata": {}, + "outputs": [], + "source": [ + "import uuid\n", + "\n", + "from langchain_core.chat_history import InMemoryChatMessageHistory\n", + "\n", + "chats_by_session_id = {}\n", + "\n", + "\n", + "def get_chat_history(session_id: str) -> InMemoryChatMessageHistory:\n", + " chat_history = chats_by_session_id.get(session_id)\n", + " if chat_history is None:\n", + " chat_history = InMemoryChatMessageHistory()\n", + " chats_by_session_id[session_id] = chat_history\n", + " return chat_history" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "94c53ce3-4212-41e6-8ad3-f0ab5df6130f", + "metadata": {}, + "source": [ + "## Use with LangGraph\n", + "\n", + "Next, we'll set up a basic chat bot using LangGraph. If you're not familiar with LangGraph, you should look at the following [Quick Start Tutorial](https://langchain-ai.github.io/langgraph/tutorials/introduction/).\n", + "\n", + "We'll create a [LangGraph node](https://langchain-ai.github.io/langgraph/concepts/low_level/#nodes) for the chat model, and manually manage the conversation history, taking into account the conversation ID passed as part of the RunnableConfig.\n", + "\n", + "The conversation ID can be passed as either part of the RunnableConfig (as we'll do here), or as part of the [graph state](https://langchain-ai.github.io/langgraph/concepts/low_level/#state)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a6633dd2-2d6a-4121-b087-4907c9f588ca", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "hi! I'm bob\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hello Bob! It's nice to meet you. I'm Claude, an AI assistant created by Anthropic. How are you doing today?\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "what was my name?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "You introduced yourself as Bob when you said \"hi! I'm bob\".\n" + ] + } + ], + "source": [ + "import uuid\n", + "\n", + "from langchain_anthropic import ChatAnthropic\n", + "from langchain_core.messages import BaseMessage, HumanMessage\n", + "from langchain_core.runnables import RunnableConfig\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", + "\n", + "# Define a new graph\n", + "builder = StateGraph(state_schema=MessagesState)\n", + "\n", + "# Define a chat model\n", + "model = ChatAnthropic(model=\"claude-3-haiku-20240307\")\n", + "\n", + "\n", + "# Define the function that calls the model\n", + "def call_model(state: MessagesState, config: RunnableConfig) -> list[BaseMessage]:\n", + " # Make sure that config is populated with the session id\n", + " if \"configurable\" not in config or \"session_id\" not in config[\"configurable\"]:\n", + " raise ValueError(\n", + " \"Make sure that the config includes the following information: {'configurable': {'session_id': 'some_value'}}\"\n", + " )\n", + " # Fetch the history of messages and append to it any new messages.\n", + " # highlight-start\n", + " chat_history = get_chat_history(config[\"configurable\"][\"session_id\"])\n", + " messages = list(chat_history.messages) + state[\"messages\"]\n", + " # highlight-end\n", + " ai_message = model.invoke(messages)\n", + " # Finally, update the chat message history to include\n", + " # the new input message from the user together with the\n", + " # repsonse from the model.\n", + " # highlight-next-line\n", + " chat_history.add_messages(state[\"messages\"] + [ai_message])\n", + " return {\"messages\": ai_message}\n", + "\n", + "\n", + "# Define the two nodes we will cycle between\n", + "builder.add_edge(START, \"model\")\n", + "builder.add_node(\"model\", call_model)\n", + "\n", + "graph = builder.compile()\n", + "\n", + "# Here, we'll create a unique session ID to identify the conversation\n", + "session_id = uuid.uuid4()\n", + "config = {\"configurable\": {\"session_id\": session_id}}\n", + "\n", + "input_message = HumanMessage(content=\"hi! I'm bob\")\n", + "for event in graph.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()\n", + "\n", + "# Here, let's confirm that the AI remembers our name!\n", + "input_message = HumanMessage(content=\"what was my name?\")\n", + "for event in graph.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" + ] + }, + { + "cell_type": "markdown", + "id": "4c0766af-a3b3-4293-b253-3a10f365ab5d", + "metadata": {}, + "source": [ + ":::hint\n", + "\n", + "This also supports streaming LLM content token by token if using langgraph >= 0.2.28.\n", + ":::" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "044b63dd-fb15-4a03-89c5-aaaf7346ea76", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You| sai|d your| name was Bob.|" + ] + } + ], + "source": [ + "from langchain_core.messages import AIMessageChunk\n", + "\n", + "first = True\n", + "\n", + "for msg, metadata in graph.stream(\n", + " {\"messages\": input_message}, config, stream_mode=\"messages\"\n", + "):\n", + " if msg.content and not isinstance(msg, HumanMessage):\n", + " print(msg.content, end=\"|\", flush=True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "da0536dd-9a0b-49e3-b0b6-e8c7abf3b1f9", + "metadata": {}, + "source": [ + "## Using With RunnableWithMessageHistory\n", + "\n", + "This how-to guide used the `messages` and `add_messages` interface of `BaseChatMessageHistory` directly. \n", + "\n", + "Alternatively, you can use [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html), as [LCEL](/docs/concepts/#langchain-expression-language-lcel/) can be used inside any [LangGraph node](https://langchain-ai.github.io/langgraph/concepts/low_level/#nodes).\n", + "\n", + "To do that replace the following code:\n", + "\n", + "```python\n", + "def call_model(state: MessagesState, config: RunnableConfig) -> list[BaseMessage]:\n", + " # highlight-start\n", + " # Make sure that config is populated with the session id\n", + " if \"configurable\" not in config or \"session_id\" not in config[\"configurable\"]:\n", + " raise ValueError(\n", + " \"You make sure that the config includes the following information: {'configurable': {'session_id': 'some_value'}}\"\n", + " )\n", + " # Fetch the history of messages and append to it any new messages.\n", + " chat_history = get_chat_history(config[\"configurable\"][\"session_id\"])\n", + " messages = list(chat_history.messages) + state[\"messages\"]\n", + " ai_message = model.invoke(messages)\n", + " # Finally, update the chat message history to include\n", + " # the new input message from the user together with the\n", + " # repsonse from the model.\n", + " chat_history.add_messages(state[\"messages\"] + [ai_message])\n", + " # hilight-end\n", + " return {\"messages\": ai_message}\n", + "```\n", + "\n", + "With the corresponding instance of `RunnableWithMessageHistory` defined in your current application.\n", + "\n", + "```python\n", + "runnable = RunnableWithMessageHistory(...) # From existing code\n", + "\n", + "def call_model(state: MessagesState, config: RunnableConfig) -> list[BaseMessage]:\n", + " # RunnableWithMessageHistory takes care of reading the message history\n", + " # and updating it with the new human message and ai response.\n", + " ai_message = runnable.invoke(state['messages'], config)\n", + " return {\n", + " \"messages\": ai_message\n", + " }\n", + "```" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/versions/migrating_memory/conversation_buffer_memory.ipynb b/docs/docs/versions/migrating_memory/conversation_buffer_memory.ipynb new file mode 100644 index 0000000000000..aa5d7e37c8bba --- /dev/null +++ b/docs/docs/versions/migrating_memory/conversation_buffer_memory.ipynb @@ -0,0 +1,554 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f", + "metadata": {}, + "source": [ + "# Migrating off ConversationBufferMemory or ConversationStringBufferMemory\n", + "\n", + "[ConversationBufferMemory](https://python.langchain.com/api_reference/langchain/memory/langchain.memory.buffer.ConversationBufferMemory.html)\n", + "and [ConversationStringBufferMemory](https://python.langchain.com/api_reference/langchain/memory/langchain.memory.buffer.ConversationStringBufferMemory.html)\n", + " were used to keep track of a conversation between a human and an ai asstistant without any additional processing. \n", + "\n", + "\n", + ":::note\n", + "The `ConversationStringBufferMemory` is equivalent to `ConversationBufferMemory` but was targeting LLMs that were not chat models.\n", + ":::\n", + "\n", + "The methods for handling conversation history using existing modern primitives are:\n", + "\n", + "1. Using [LangGraph persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/) along with appropriate processing of the message history\n", + "2. Using LCEL with [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#) combined with appropriate processing of the message history.\n", + "\n", + "Most users will find [LangGraph persistence](https://langchain-ai.github.io/langgraph/how-tos/persistence/) both easier to use and configure than the equivalent LCEL, especially for more complex use cases." + ] + }, + { + "cell_type": "markdown", + "id": "d07f9459-9fb6-4942-99c9-64558aedd7d4", + "metadata": {}, + "source": [ + "## Set up" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b99b47ec", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture --no-stderr\n", + "%pip install --upgrade --quiet langchain-openai langchain" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "717c8673", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from getpass import getpass\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "e3621b62-a037-42b8-8faa-59575608bb8b", + "metadata": {}, + "source": [ + "## Usage with LLMChain / ConversationChain\n", + "\n", + "This section shows how to migrate off `ConversationBufferMemory` or `ConversationStringBufferMemory` that's used together with either an `LLMChain` or a `ConversationChain`.\n", + "\n", + "### Legacy\n", + "\n", + "Below is example usage of `ConversationBufferMemory` with an `LLMChain` or an equivalent `ConversationChain`.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8b6e1063-cf3a-456a-bf7d-830e5c1d2864", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'text': 'Hello Bob! How can I assist you today?', 'chat_history': [HumanMessage(content='my name is bob', additional_kwargs={}, response_metadata={}), AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, response_metadata={})]}\n" + ] + } + ], + "source": [ + "from langchain.chains import LLMChain\n", + "from langchain.memory import ConversationBufferMemory\n", + "from langchain_core.messages import SystemMessage\n", + "from langchain_core.prompts import ChatPromptTemplate\n", + "from langchain_core.prompts.chat import (\n", + " ChatPromptTemplate,\n", + " HumanMessagePromptTemplate,\n", + " MessagesPlaceholder,\n", + ")\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "prompt = ChatPromptTemplate(\n", + " [\n", + " MessagesPlaceholder(variable_name=\"chat_history\"),\n", + " HumanMessagePromptTemplate.from_template(\"{text}\"),\n", + " ]\n", + ")\n", + "\n", + "# highlight-start\n", + "memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)\n", + "# highlight-end\n", + "\n", + "legacy_chain = LLMChain(\n", + " llm=ChatOpenAI(),\n", + " prompt=prompt,\n", + " # highlight-next-line\n", + " memory=memory,\n", + ")\n", + "\n", + "legacy_result = legacy_chain.invoke({\"text\": \"my name is bob\"})\n", + "print(legacy_result)\n", + "\n", + "legacy_result = legacy_chain.invoke({\"text\": \"what was my name\"})" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c7fa1618", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Your name is Bob. How can I assist you today, Bob?'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legacy_result[\"text\"]" + ] + }, + { + "cell_type": "markdown", + "id": "3599774f-b56e-4ba3-876c-624f0270b8ac", + "metadata": {}, + "source": [ + ":::note\n", + "Note that there is no support for separating conversation threads in a single memory object\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "id": "cdc3b527-c09e-4c77-9711-c3cc4506cd95", + "metadata": {}, + "source": [ + "
\n", + "\n", + "### LangGraph\n", + "\n", + "The example below shows how to use LangGraph to implement a `ConversationChain` or `LLMChain` with `ConversationBufferMemory`.\n", + "\n", + "This example assumes that you're already somewhat familiar with `LangGraph`. If you're not, then please see the [LangGraph Quickstart Guide](https://langchain-ai.github.io/langgraph/tutorials/introduction/) for more details.\n", + "\n", + "`LangGraph` offers a lot of additional functionality (e.g., time-travel and interrupts) and will work well for other more complex (and realistic) architectures.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e591965c-c4d7-4df7-966d-4d14bd46e157", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "hi! I'm bob\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hello Bob! How can I assist you today?\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "what was my name?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Your name is Bob. How can I help you today, Bob?\n" + ] + } + ], + "source": [ + "import uuid\n", + "\n", + "from IPython.display import Image, display\n", + "from langchain_core.messages import HumanMessage\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", + "\n", + "# Define a new graph\n", + "workflow = StateGraph(state_schema=MessagesState)\n", + "\n", + "# Define a chat model\n", + "model = ChatOpenAI()\n", + "\n", + "\n", + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " response = model.invoke(state[\"messages\"])\n", + " # We return a list, because this will get added to the existing list\n", + " return {\"messages\": response}\n", + "\n", + "\n", + "# Define the two nodes we will cycle between\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "\n", + "# Adding memory is straight forward in langgraph!\n", + "# highlight-next-line\n", + "memory = MemorySaver()\n", + "\n", + "app = workflow.compile(\n", + " # highlight-next-line\n", + " checkpointer=memory\n", + ")\n", + "\n", + "\n", + "# The thread id is a unique key that identifies\n", + "# this particular conversation.\n", + "# We'll just generate a random uuid here.\n", + "# This enables a single application to manage conversations among multiple users.\n", + "thread_id = uuid.uuid4()\n", + "# highlight-next-line\n", + "config = {\"configurable\": {\"thread_id\": thread_id}}\n", + "\n", + "\n", + "input_message = HumanMessage(content=\"hi! I'm bob\")\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()\n", + "\n", + "# Here, let's confirm that the AI remembers our name!\n", + "input_message = HumanMessage(content=\"what was my name?\")\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "9893029f-43f3-4703-89bf-e0e8fa18aff3", + "metadata": {}, + "source": [ + "
\n", + "\n", + "### LCEL RunnableWithMessageHistory\n", + "\n", + "Alternatively, if you have a simple chain, you can wrap the chat model of the chain within a [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html).\n", + "\n", + "Please refer to the following [migration guide](/docs/versions/migrating_chains/conversation_chain/) for more information.\n", + "\n", + "\n", + "## Usage with a pre-built agent\n", + "\n", + "This example shows usage of an Agent Executor with a pre-built agent constructed using the [create_tool_calling_agent](https://python.langchain.com/api_reference/langchain/agents/langchain.agents.tool_calling_agent.base.create_tool_calling_agent.html) function.\n", + "\n", + "If you are using one of the [old LangChain pre-built agents](https://python.langchain.com/v0.1/docs/modules/agents/agent_types/), you should be able\n", + "to replace that code with the new [langgraph pre-built agent](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/) which leverages\n", + "native tool calling capabilities of chat models and will likely work better out of the box.\n", + "\n", + "### Legacy Usage\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "dc2928de-d7a4-4f87-ab96-59bde9a3829f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'input': 'hi! my name is bob what is my age?', 'chat_history': [HumanMessage(content='hi! my name is bob what is my age?', additional_kwargs={}, response_metadata={}), AIMessage(content='Bob, you are 42 years old.', additional_kwargs={}, response_metadata={})], 'output': 'Bob, you are 42 years old.'}\n", + "\n", + "{'input': 'do you remember my name?', 'chat_history': [HumanMessage(content='hi! my name is bob what is my age?', additional_kwargs={}, response_metadata={}), AIMessage(content='Bob, you are 42 years old.', additional_kwargs={}, response_metadata={}), HumanMessage(content='do you remember my name?', additional_kwargs={}, response_metadata={}), AIMessage(content='Yes, your name is Bob.', additional_kwargs={}, response_metadata={})], 'output': 'Yes, your name is Bob.'}\n" + ] + } + ], + "source": [ + "from langchain import hub\n", + "from langchain.agents import AgentExecutor, create_tool_calling_agent\n", + "from langchain.memory import ConversationBufferMemory\n", + "from langchain_core.tools import tool\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "model = ChatOpenAI(temperature=0)\n", + "\n", + "\n", + "@tool\n", + "def get_user_age(name: str) -> str:\n", + " \"\"\"Use this tool to find the user's age.\"\"\"\n", + " # This is a placeholder for the actual implementation\n", + " if \"bob\" in name.lower():\n", + " return \"42 years old\"\n", + " return \"41 years old\"\n", + "\n", + "\n", + "tools = [get_user_age]\n", + "\n", + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\"placeholder\", \"{chat_history}\"),\n", + " (\"human\", \"{input}\"),\n", + " (\"placeholder\", \"{agent_scratchpad}\"),\n", + " ]\n", + ")\n", + "\n", + "# Construct the Tools agent\n", + "agent = create_tool_calling_agent(model, tools, prompt)\n", + "# Instantiate memory\n", + "# highlight-start\n", + "memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)\n", + "# highlight-end\n", + "\n", + "# Create an agent\n", + "agent = create_tool_calling_agent(model, tools, prompt)\n", + "agent_executor = AgentExecutor(\n", + " agent=agent,\n", + " tools=tools,\n", + " # highlight-next-line\n", + " memory=memory, # Pass the memory to the executor\n", + ")\n", + "\n", + "# Verify that the agent can use tools\n", + "print(agent_executor.invoke({\"input\": \"hi! my name is bob what is my age?\"}))\n", + "print()\n", + "# Verify that the agent has access to conversation history.\n", + "# The agent should be able to answer that the user's name is bob.\n", + "print(agent_executor.invoke({\"input\": \"do you remember my name?\"}))" + ] + }, + { + "cell_type": "markdown", + "id": "a4866ae9-e683-44dc-a77b-da1737d3a645", + "metadata": {}, + "source": [ + "
\n", + "\n", + "### LangGraph\n", + "\n", + "You can follow the standard LangChain tutorial for [building an agent](/docs/tutorials/agents/) an in depth explanation of how this works.\n", + "\n", + "This example is shown here explicitly to make it easier for users to compare the legacy implementation vs. the corresponding langgraph implementation.\n", + "\n", + "This example shows how to add memory to the [pre-built react agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent) in langgraph.\n", + "\n", + "For more details, please see the [how to add memory to the prebuilt ReAct agent](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent-memory/) guide in langgraph.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "bdb29c9b-bc57-4512-9430-c5d5e3f91e3c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "hi! I'm bob. What is my age?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " get_user_age (call_oEDwEbIDNdokwqhAV6Azn47c)\n", + " Call ID: call_oEDwEbIDNdokwqhAV6Azn47c\n", + " Args:\n", + " name: bob\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: get_user_age\n", + "\n", + "42 years old\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Bob, you are 42 years old! If you need any more assistance or information, feel free to ask.\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "do you remember my name?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Yes, your name is Bob. If you have any other questions or need assistance, feel free to ask!\n" + ] + } + ], + "source": [ + "import uuid\n", + "\n", + "from langchain_core.messages import HumanMessage\n", + "from langchain_core.tools import tool\n", + "from langchain_openai import ChatOpenAI\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.prebuilt import create_react_agent\n", + "\n", + "\n", + "@tool\n", + "def get_user_age(name: str) -> str:\n", + " \"\"\"Use this tool to find the user's age.\"\"\"\n", + " # This is a placeholder for the actual implementation\n", + " if \"bob\" in name.lower():\n", + " return \"42 years old\"\n", + " return \"41 years old\"\n", + "\n", + "\n", + "# highlight-next-line\n", + "memory = MemorySaver()\n", + "model = ChatOpenAI()\n", + "app = create_react_agent(\n", + " model,\n", + " tools=[get_user_age],\n", + " # highlight-next-line\n", + " checkpointer=memory,\n", + ")\n", + "\n", + "# highlight-start\n", + "# The thread id is a unique key that identifies\n", + "# this particular conversation.\n", + "# We'll just generate a random uuid here.\n", + "# This enables a single application to manage conversations among multiple users.\n", + "thread_id = uuid.uuid4()\n", + "config = {\"configurable\": {\"thread_id\": thread_id}}\n", + "# highlight-end\n", + "\n", + "# Tell the AI that our name is Bob, and ask it to use a tool to confirm\n", + "# that it's capable of working like an agent.\n", + "input_message = HumanMessage(content=\"hi! I'm bob. What is my age?\")\n", + "\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()\n", + "\n", + "# Confirm that the chat bot has access to previous conversation\n", + "# and can respond to the user saying that the user's name is Bob.\n", + "input_message = HumanMessage(content=\"do you remember my name?\")\n", + "\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" + ] + }, + { + "cell_type": "markdown", + "id": "87d14cef-a51e-44be-b376-f31b723caaf8", + "metadata": {}, + "source": [ + "If we use a different thread ID, it'll start a new conversation and the bot will not know our name!" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "fe63e424-1111-4f6a-a9c9-0887eb150ab0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "hi! do you remember my name?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hello! Yes, I remember your name. It's great to see you again! How can I assist you today?\n" + ] + } + ], + "source": [ + "config = {\"configurable\": {\"thread_id\": \"123456789\"}}\n", + "\n", + "input_message = HumanMessage(content=\"hi! do you remember my name?\")\n", + "\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" + ] + }, + { + "cell_type": "markdown", + "id": "b2717810", + "metadata": {}, + "source": [ + "
\n", + "\n", + "## Next steps\n", + "\n", + "Explore persistence with LangGraph:\n", + "\n", + "* [LangGraph quickstart tutorial](https://langchain-ai.github.io/langgraph/tutorials/introduction/)\n", + "* [How to add persistence (\"memory\") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/)\n", + "* [How to manage conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/manage-conversation-history/)\n", + "* [How to add summary of the conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/)\n", + "\n", + "Add persistence with simple LCEL (favor langgraph for more complex use cases):\n", + "\n", + "* [How to add message history](/docs/how_to/message_history/)\n", + "\n", + "Working with message history:\n", + "\n", + "* [How to trim messages](/docs/how_to/trim_messages)\n", + "* [How to filter messages](/docs/how_to/filter_messages/)\n", + "* [How to merge message runs](/docs/how_to/merge_message_runs/)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ce4c48e1-b613-4aab-bc2b-617c811fad1d", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/versions/migrating_memory/conversation_buffer_window_memory.ipynb b/docs/docs/versions/migrating_memory/conversation_buffer_window_memory.ipynb new file mode 100644 index 0000000000000..f031e1dbb70d2 --- /dev/null +++ b/docs/docs/versions/migrating_memory/conversation_buffer_window_memory.ipynb @@ -0,0 +1,737 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f", + "metadata": {}, + "source": [ + "# Migrating off ConversationBufferWindowMemory or ConversationTokenBufferMemory\n", + "\n", + "Follow this guide if you're trying to migrate off one of the old memory classes listed below:\n", + "\n", + "\n", + "| Memory Type | Description |\n", + "|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n", + "| `ConversationBufferWindowMemory` | Keeps the last `n` messages of the conversation. Drops the oldest messages when there are more than `n` messages. |\n", + "| `ConversationTokenBufferMemory` | Keeps only the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. |\n", + "\n", + "`ConversationBufferWindowMemory` and `ConversationTokenBufferMemory` apply additional processing on top of the raw conversation history to trim the conversation history to a size that fits inside the context window of a chat model. \n", + "\n", + "This processing functionality can be accomplished using LangChain's built-in [trim_messages](https://python.langchain.com/api_reference/core/messages/langchain_core.messages.utils.trim_messages.html) function." + ] + }, + { + "cell_type": "markdown", + "id": "79935247-acc7-4a05-a387-5d72c9c8c8cb", + "metadata": {}, + "source": [ + ":::important\n", + "\n", + "We’ll begin by exploring a straightforward method that involves applying processing logic to the entire conversation history.\n", + "\n", + "While this approach is easy to implement, it has a downside: as the conversation grows, so does the latency, since the logic is re-applied to all previous exchanges in the conversation at each turn.\n", + "\n", + "More advanced strategies focus on incrementally updating the conversation history to avoid redundant processing.\n", + "\n", + "For instance, the langgraph [how-to guide on summarization](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/) demonstrates\n", + "how to maintain a running summary of the conversation while discarding older messages, ensuring they aren't re-processed during later turns.\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "id": "d07f9459-9fb6-4942-99c9-64558aedd7d4", + "metadata": {}, + "source": [ + "## Set up" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b99b47ec", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture --no-stderr\n", + "%pip install --upgrade --quiet langchain-openai langchain" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "7127478f-4413-48be-bfec-d0cd91b8cf70", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from getpass import getpass\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = getpass()" + ] + }, + { + "cell_type": "markdown", + "id": "d6a7bc93-21a9-44c8-842e-9cc82f1ada7c", + "metadata": {}, + "source": [ + "## Legacy usage with LLMChain / Conversation Chain\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "371616e1-ca41-4a57-99e0-5fbf7d63f2ad", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'text': 'Nice to meet you, Bob! How can I assist you today?', 'chat_history': []}\n", + "{'text': 'Your name is Bob. How can I assist you further, Bob?', 'chat_history': [HumanMessage(content='my name is bob', additional_kwargs={}, response_metadata={}), AIMessage(content='Nice to meet you, Bob! How can I assist you today?', additional_kwargs={}, response_metadata={})]}\n" + ] + } + ], + "source": [ + "from langchain.chains import LLMChain\n", + "from langchain.memory import ConversationBufferWindowMemory\n", + "from langchain_core.messages import SystemMessage\n", + "from langchain_core.prompts import ChatPromptTemplate\n", + "from langchain_core.prompts.chat import (\n", + " ChatPromptTemplate,\n", + " HumanMessagePromptTemplate,\n", + " MessagesPlaceholder,\n", + ")\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "prompt = ChatPromptTemplate(\n", + " [\n", + " SystemMessage(content=\"You are a helpful assistant.\"),\n", + " MessagesPlaceholder(variable_name=\"chat_history\"),\n", + " HumanMessagePromptTemplate.from_template(\"{text}\"),\n", + " ]\n", + ")\n", + "\n", + "# highlight-start\n", + "memory = ConversationBufferWindowMemory(memory_key=\"chat_history\", return_messages=True)\n", + "# highlight-end\n", + "\n", + "legacy_chain = LLMChain(\n", + " llm=ChatOpenAI(),\n", + " prompt=prompt,\n", + " # highlight-next-line\n", + " memory=memory,\n", + ")\n", + "\n", + "legacy_result = legacy_chain.invoke({\"text\": \"my name is bob\"})\n", + "print(legacy_result)\n", + "\n", + "legacy_result = legacy_chain.invoke({\"text\": \"what was my name\"})\n", + "print(legacy_result)" + ] + }, + { + "cell_type": "markdown", + "id": "f48cac47-c8b6-444c-8e1b-f7115c0b2d8d", + "metadata": {}, + "source": [ + "
\n", + "\n", + "## Reimplementing ConversationBufferWindowMemory logic\n", + "\n", + "Let's first create appropriate logic to process the conversation history, and then we'll see how to integrate it into an application. You can later replace this basic setup with more advanced logic tailored to your specific needs.\n", + "\n", + "We'll use `trim_messages` to implement logic that keeps the last `n` messages of the conversation. It will drop the oldest messages when the number of messages exceeds `n`.\n", + "\n", + "In addition, we will also keep the system message if it's present -- when present, it's the first message in a conversation that includes instructions for the chat model." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0a92b3f3-0315-46ac-bb28-d07398dd23ea", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.messages import (\n", + " AIMessage,\n", + " BaseMessage,\n", + " HumanMessage,\n", + " SystemMessage,\n", + " trim_messages,\n", + ")\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "messages = [\n", + " SystemMessage(\"you're a good assistant, you always respond with a joke.\"),\n", + " HumanMessage(\"i wonder why it's called langchain\"),\n", + " AIMessage(\n", + " 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n", + " ),\n", + " HumanMessage(\"and who is harrison chasing anyways\"),\n", + " AIMessage(\n", + " \"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"\n", + " ),\n", + " HumanMessage(\"why is 42 always the answer?\"),\n", + " AIMessage(\n", + " \"Because it’s the only number that’s constantly right, even when it doesn’t add up!\"\n", + " ),\n", + " HumanMessage(\"What did the cow say?\"),\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e7ddf8dc-ea27-43e2-8800-9f7c1d4abdc1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m System Message \u001b[0m================================\n", + "\n", + "you're a good assistant, you always respond with a joke.\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hmmm let me think.\n", + "\n", + "Why, he's probably chasing after the last cup of coffee in the office!\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "why is 42 always the answer?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Because it’s the only number that’s constantly right, even when it doesn’t add up!\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "What did the cow say?\n" + ] + } + ], + "source": [ + "from langchain_core.messages import trim_messages\n", + "\n", + "selected_messages = trim_messages(\n", + " messages,\n", + " token_counter=len, # <-- len will simply count the number of messages rather than tokens\n", + " max_tokens=5, # <-- allow up to 5 messages.\n", + " strategy=\"last\",\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " # start_on=\"human\" makes sure we produce a valid chat history\n", + " start_on=\"human\",\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", + " include_system=True,\n", + " allow_partial=False,\n", + ")\n", + "\n", + "for msg in selected_messages:\n", + " msg.pretty_print()" + ] + }, + { + "cell_type": "markdown", + "id": "18f73819-05e0-41f3-a0e7-a5fd6701d9ef", + "metadata": {}, + "source": [ + "## Reimplementing ConversationTokenBufferMemory logic\n", + "\n", + "Here, we'll use `trim_messages` to keeps the system message and the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6442f74b-2c36-48fd-a3d1-c7c5d18c050f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m System Message \u001b[0m================================\n", + "\n", + "you're a good assistant, you always respond with a joke.\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "why is 42 always the answer?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Because it’s the only number that’s constantly right, even when it doesn’t add up!\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "What did the cow say?\n" + ] + } + ], + "source": [ + "from langchain_core.messages import trim_messages\n", + "\n", + "selected_messages = trim_messages(\n", + " messages,\n", + " # Please see API reference for trim_messages for other ways to specify a token counter.\n", + " token_counter=ChatOpenAI(model=\"gpt-4o\"),\n", + " max_tokens=80, # <-- token limit\n", + " # The start_on is specified\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " # start_on=\"human\" makes sure we produce a valid chat history\n", + " start_on=\"human\",\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", + " include_system=True,\n", + " strategy=\"last\",\n", + ")\n", + "\n", + "for msg in selected_messages:\n", + " msg.pretty_print()" + ] + }, + { + "cell_type": "markdown", + "id": "0f05d272-2d22-44b7-9fa6-e617a48584b4", + "metadata": {}, + "source": [ + "## Modern usage with LangGraph\n", + "\n", + "The example below shows how to use LangGraph to add simple conversation pre-processing logic.\n", + "\n", + ":::note\n", + "\n", + "If you want to avoid running the computation on the entire conversation history each time, you can follow\n", + "the [how-to guide on summarization](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/) that demonstrates\n", + "how to discard older messages, ensuring they aren't re-processed during later turns.\n", + "\n", + ":::\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7d6f79a3-fda7-48fd-9128-bbe4aad84199", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "hi! I'm bob\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hello Bob! How can I assist you today?\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "what was my name?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Your name is Bob. How can I help you, Bob?\n" + ] + } + ], + "source": [ + "import uuid\n", + "\n", + "from IPython.display import Image, display\n", + "from langchain_core.messages import HumanMessage\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import START, MessagesState, StateGraph\n", + "\n", + "# Define a new graph\n", + "workflow = StateGraph(state_schema=MessagesState)\n", + "\n", + "# Define a chat model\n", + "model = ChatOpenAI()\n", + "\n", + "\n", + "# Define the function that calls the model\n", + "def call_model(state: MessagesState):\n", + " # highlight-start\n", + " selected_messages = trim_messages(\n", + " state[\"messages\"],\n", + " token_counter=len, # <-- len will simply count the number of messages rather than tokens\n", + " max_tokens=5, # <-- allow up to 5 messages.\n", + " strategy=\"last\",\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " # start_on=\"human\" makes sure we produce a valid chat history\n", + " start_on=\"human\",\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", + " include_system=True,\n", + " allow_partial=False,\n", + " )\n", + "\n", + " # highlight-end\n", + " response = model.invoke(selected_messages)\n", + " # We return a list, because this will get added to the existing list\n", + " return {\"messages\": response}\n", + "\n", + "\n", + "# Define the two nodes we will cycle between\n", + "workflow.add_edge(START, \"model\")\n", + "workflow.add_node(\"model\", call_model)\n", + "\n", + "\n", + "# Adding memory is straight forward in langgraph!\n", + "# highlight-next-line\n", + "memory = MemorySaver()\n", + "\n", + "app = workflow.compile(\n", + " # highlight-next-line\n", + " checkpointer=memory\n", + ")\n", + "\n", + "\n", + "# The thread id is a unique key that identifies\n", + "# this particular conversation.\n", + "# We'll just generate a random uuid here.\n", + "thread_id = uuid.uuid4()\n", + "# highlight-next-line\n", + "config = {\"configurable\": {\"thread_id\": thread_id}}\n", + "\n", + "input_message = HumanMessage(content=\"hi! I'm bob\")\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()\n", + "\n", + "# Here, let's confirm that the AI remembers our name!\n", + "config = {\"configurable\": {\"thread_id\": thread_id}}\n", + "input_message = HumanMessage(content=\"what was my name?\")\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" + ] + }, + { + "cell_type": "markdown", + "id": "84229e2e-a578-4b21-840a-814223406402", + "metadata": {}, + "source": [ + "
\n", + "\n", + "## Usage with a pre-built langgraph agent\n", + "\n", + "This example shows usage of an Agent Executor with a pre-built agent constructed using the [create_tool_calling_agent](https://api.python.langchain.com/en/latest/agents/langchain.agents.tool_calling_agent.base.create_tool_calling_agent.html) function.\n", + "\n", + "If you are using one of the [old LangChain pre-built agents](https://python.langchain.com/v0.1/docs/modules/agents/agent_types/), you should be able\n", + "to replace that code with the new [langgraph pre-built agent](https://langchain-ai.github.io/langgraph/how-tos/create-react-agent/) which leverages\n", + "native tool calling capabilities of chat models and will likely work better out of the box.\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "f671db87-8f01-453e-81fd-4e603140a512", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "hi! I'm bob. What is my age?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " get_user_age (call_jsMvoIFv970DhqqLCJDzPKsp)\n", + " Call ID: call_jsMvoIFv970DhqqLCJDzPKsp\n", + " Args:\n", + " name: bob\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: get_user_age\n", + "\n", + "42 years old\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Bob, you are 42 years old.\n", + "================================\u001b[1m Human Message \u001b[0m=================================\n", + "\n", + "do you remember my name?\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Yes, your name is Bob.\n" + ] + } + ], + "source": [ + "import uuid\n", + "\n", + "from langchain_core.messages import (\n", + " AIMessage,\n", + " BaseMessage,\n", + " HumanMessage,\n", + " SystemMessage,\n", + " trim_messages,\n", + ")\n", + "from langchain_core.tools import tool\n", + "from langchain_openai import ChatOpenAI\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.prebuilt import create_react_agent\n", + "\n", + "\n", + "@tool\n", + "def get_user_age(name: str) -> str:\n", + " \"\"\"Use this tool to find the user's age.\"\"\"\n", + " # This is a placeholder for the actual implementation\n", + " if \"bob\" in name.lower():\n", + " return \"42 years old\"\n", + " return \"41 years old\"\n", + "\n", + "\n", + "memory = MemorySaver()\n", + "model = ChatOpenAI()\n", + "\n", + "\n", + "# highlight-start\n", + "def state_modifier(state) -> list[BaseMessage]:\n", + " \"\"\"Given the agent state, return a list of messages for the chat model.\"\"\"\n", + " # We're using the message processor defined above.\n", + " return trim_messages(\n", + " state[\"messages\"],\n", + " token_counter=len, # <-- len will simply count the number of messages rather than tokens\n", + " max_tokens=5, # <-- allow up to 5 messages.\n", + " strategy=\"last\",\n", + " # Most chat models expect that chat history starts with either:\n", + " # (1) a HumanMessage or\n", + " # (2) a SystemMessage followed by a HumanMessage\n", + " # start_on=\"human\" makes sure we produce a valid chat history\n", + " start_on=\"human\",\n", + " # Usually, we want to keep the SystemMessage\n", + " # if it's present in the original history.\n", + " # The SystemMessage has special instructions for the model.\n", + " include_system=True,\n", + " allow_partial=False,\n", + " )\n", + "\n", + "\n", + "# highlight-end\n", + "\n", + "app = create_react_agent(\n", + " model,\n", + " tools=[get_user_age],\n", + " checkpointer=memory,\n", + " # highlight-next-line\n", + " state_modifier=state_modifier,\n", + ")\n", + "\n", + "# The thread id is a unique key that identifies\n", + "# this particular conversation.\n", + "# We'll just generate a random uuid here.\n", + "thread_id = uuid.uuid4()\n", + "config = {\"configurable\": {\"thread_id\": thread_id}}\n", + "\n", + "# Tell the AI that our name is Bob, and ask it to use a tool to confirm\n", + "# that it's capable of working like an agent.\n", + "input_message = HumanMessage(content=\"hi! I'm bob. What is my age?\")\n", + "\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()\n", + "\n", + "# Confirm that the chat bot has access to previous conversation\n", + "# and can respond to the user saying that the user's name is Bob.\n", + "input_message = HumanMessage(content=\"do you remember my name?\")\n", + "\n", + "for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n", + " event[\"messages\"][-1].pretty_print()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "f4d16e09-1d90-4153-8576-6d3996cb5a6c", + "metadata": {}, + "source": [ + "
\n", + "\n", + "## LCEL: Add a preprocessing step\n", + "\n", + "The simplest way to add complex conversation management is by introducing a pre-processing step in front of the chat model and pass the full conversation history to the pre-processing step.\n", + "\n", + "This approach is conceptually simple and will work in many situations; for example, if using a [RunnableWithMessageHistory](/docs/how_to/message_history/) instead of wrapping the chat model, wrap the chat model with the pre-processor.\n", + "\n", + "The obvious downside of this approach is that latency starts to increase as the conversation history grows because of two reasons:\n", + "\n", + "1. As the conversation gets longer, more data may need to be fetched from whatever store your'e using to store the conversation history (if not storing it in memory).\n", + "2. The pre-processing logic will end up doing a lot of redundant computation, repeating computation from previous steps of the conversation.\n", + "\n", + ":::caution\n", + "\n", + "If you want to use a chat model's tool calling capabilities, remember to bind the tools to the model before adding the history pre-processing step to it!\n", + "\n", + ":::\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "072046bb-3892-4206-8ae5-025e93110dcc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " what_did_the_cow_say (call_urHTB5CShhcKz37QiVzNBlIS)\n", + " Call ID: call_urHTB5CShhcKz37QiVzNBlIS\n", + " Args:\n" + ] + } + ], + "source": [ + "from langchain_core.messages import (\n", + " AIMessage,\n", + " BaseMessage,\n", + " HumanMessage,\n", + " SystemMessage,\n", + " trim_messages,\n", + ")\n", + "from langchain_core.tools import tool\n", + "from langchain_openai import ChatOpenAI\n", + "\n", + "model = ChatOpenAI()\n", + "\n", + "\n", + "@tool\n", + "def what_did_the_cow_say() -> str:\n", + " \"\"\"Check to see what the cow said.\"\"\"\n", + " return \"foo\"\n", + "\n", + "\n", + "# highlight-start\n", + "message_processor = trim_messages( # Returns a Runnable if no messages are provided\n", + " token_counter=len, # <-- len will simply count the number of messages rather than tokens\n", + " max_tokens=5, # <-- allow up to 5 messages.\n", + " strategy=\"last\",\n", + " # The start_on is specified\n", + " # to make sure we do not generate a sequence where\n", + " # a ToolMessage that contains the result of a tool invocation\n", + " # appears before the AIMessage that requested a tool invocation\n", + " # as this will cause some chat models to raise an error.\n", + " start_on=(\"human\", \"ai\"),\n", + " include_system=True, # <-- Keep the system message\n", + " allow_partial=False,\n", + ")\n", + "# highlight-end\n", + "\n", + "# Note that we bind tools to the model first!\n", + "model_with_tools = model.bind_tools([what_did_the_cow_say])\n", + "\n", + "# highlight-next-line\n", + "model_with_preprocessor = message_processor | model_with_tools\n", + "\n", + "full_history = [\n", + " SystemMessage(\"you're a good assistant, you always respond with a joke.\"),\n", + " HumanMessage(\"i wonder why it's called langchain\"),\n", + " AIMessage(\n", + " 'Well, I guess they thought \"WordRope\" and \"SentenceString\" just didn\\'t have the same ring to it!'\n", + " ),\n", + " HumanMessage(\"and who is harrison chasing anyways\"),\n", + " AIMessage(\n", + " \"Hmmm let me think.\\n\\nWhy, he's probably chasing after the last cup of coffee in the office!\"\n", + " ),\n", + " HumanMessage(\"why is 42 always the answer?\"),\n", + " AIMessage(\n", + " \"Because it’s the only number that’s constantly right, even when it doesn’t add up!\"\n", + " ),\n", + " HumanMessage(\"What did the cow say?\"),\n", + "]\n", + "\n", + "\n", + "# We pass it explicity to the model_with_preprocesor for illustrative purposes.\n", + "# If you're using `RunnableWithMessageHistory` the history will be automatically\n", + "# read from the source the you configure.\n", + "model_with_preprocessor.invoke(full_history).pretty_print()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5da7225a-5e94-4f53-bb0d-86b6b528d150", + "metadata": {}, + "source": [ + "
\n", + "\n", + "If you need to implement more efficient logic and want to use `RunnableWithMessageHistory` for now the way to achieve this\n", + "is to subclass from [BaseChatMessageHistory](https://api.python.langchain.com/en/latest/chat_history/langchain_core.chat_history.BaseChatMessageHistory.html) and\n", + "define appropriate logic for `add_messages` (that doesn't simply append the history, but instead re-writes it).\n", + "\n", + "Unless you have a good reason to implement this solution, you should instead use LangGraph." + ] + }, + { + "cell_type": "markdown", + "id": "b2717810", + "metadata": {}, + "source": [ + "## Next steps\n", + "\n", + "Explore persistence with LangGraph:\n", + "\n", + "* [LangGraph quickstart tutorial](https://langchain-ai.github.io/langgraph/tutorials/introduction/)\n", + "* [How to add persistence (\"memory\") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/)\n", + "* [How to manage conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/manage-conversation-history/)\n", + "* [How to add summary of the conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/)\n", + "\n", + "Add persistence with simple LCEL (favor langgraph for more complex use cases):\n", + "\n", + "* [How to add message history](/docs/how_to/message_history/)\n", + "\n", + "Working with message history:\n", + "\n", + "* [How to trim messages](/docs/how_to/trim_messages)\n", + "* [How to filter messages](/docs/how_to/filter_messages/)\n", + "* [How to merge message runs](/docs/how_to/merge_message_runs/)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4adad0b-3e25-47d9-a8e6-6a9c6c616f14", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/versions/migrating_memory/conversation_summary_memory.ipynb b/docs/docs/versions/migrating_memory/conversation_summary_memory.ipynb new file mode 100644 index 0000000000000..211df40b0e477 --- /dev/null +++ b/docs/docs/versions/migrating_memory/conversation_summary_memory.ipynb @@ -0,0 +1,45 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ce8457ed-c0b1-4a74-abbd-9d3d2211270f", + "metadata": {}, + "source": [ + "# Migrating off ConversationSummaryMemory or ConversationSummaryBufferMemory\n", + "\n", + "Follow this guide if you're trying to migrate off one of the old memory classes listed below:\n", + "\n", + "\n", + "| Memory Type | Description |\n", + "|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n", + "| `ConversationSummaryMemory` | Continually summarizes the conversation history. The summary is updated after each conversation turn. The abstraction returns the summary of the conversation history. |\n", + "| `ConversationSummaryBufferMemory` | Provides a running summary of the conversation together with the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. |\n", + "\n", + "Please follow the following [how-to guide on summarization](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/) in LangGraph. \n", + "\n", + "This guide shows how to maintain a running summary of the conversation while discarding older messages, ensuring they aren't re-processed during later turns." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/versions/migrating_memory/index.mdx b/docs/docs/versions/migrating_memory/index.mdx new file mode 100644 index 0000000000000..fbd7cd6d3e54b --- /dev/null +++ b/docs/docs/versions/migrating_memory/index.mdx @@ -0,0 +1,153 @@ +--- +sidebar_position: 1 +--- + +# How to migrate to LangGraph memory + +As of the v0.3 release of LangChain, we recommend that LangChain users take advantage of [LangGraph persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to incorporate `memory` into their LangChain application. + +* Users that rely on `RunnableWithMessageHistory` or `BaseChatMessageHistory` do **not** need to make any changes, but are encouraged to consider using LangGraph for more complex use cases. +* Users that rely on deprecated memory abstractions from LangChain 0.0.x should follow this guide to upgrade to the new LangGraph persistence feature in LangChain 0.3.x. + +## Why use LangGraph for memory? + +The main advantages of persistence in LangGraph are: + +- Built-in support for multiple users and conversations, which is a typical requirement for real-world conversational AI applications. +- Ability to save and resume complex conversations at any point. This helps with: + - Error recovery + - Allowing human intervention in AI workflows + - Exploring different conversation paths ("time travel") +- Full compatibility with both traditional [language models](/docs/concepts/#llms) and modern [chat models](/docs/concepts/#chat-models). Early memory implementations in LangChain weren't designed for newer chat model APIs, causing issues with features like tool-calling. LangGraph memory can persist any custom state. +- Highly customizable, allowing you to fully control how memory works and use different storage backends. + +## Evolution of memory in LangChain + +The concept of memory has evolved significantly in LangChain since its initial release. + +### LangChain 0.0.x memory + +Broadly speaking, LangChain 0.0.x memory was used to handle three main use cases: + +| Use Case | Example | +|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------| +| Managing conversation history | Keep only the last `n` turns of the conversation between the user and the AI. | +| Extraction of structured information | Extract structured information from the conversation history, such as a list of facts learned about the user. | +| Composite memory implementations | Combine multiple memory sources, e.g., a list of known facts about the user along with facts learned during a given conversation. | + +While the LangChain 0.0.x memory abstractions were useful, they were limited in their capabilities and not well suited for real-world conversational AI applications. These memory abstractions lacked built-in support for multi-user, multi-conversation scenarios, which are essential for practical conversational AI systems. + +Most of these implementations have been officially deprecated in LangChain 0.3.x in favor of LangGraph persistence. + +### RunnableWithMessageHistory and BaseChatMessageHistory + +:::note +Please see [How to use BaseChatMessageHistory with LangGraph](./chat_history), if you would like to use `BaseChatMessageHistory` (with or without `RunnableWithMessageHistory`) in LangGraph. +::: + +As of LangChain v0.1, we started recommending that users rely primarily on [BaseChatMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#langchain_core.runnables.history.RunnableWithMessageHistory). `BaseChatMessageHistory` serves +as a simple persistence for storing and retrieving messages in a conversation. + +At that time, the only option for orchestrating LangChain chains was via [LCEL](https://python.langchain.com/docs/how_to/#langchain-expression-language-lcel). To incorporate memory with `LCEL`, users had to use the [RunnableWithMessageHistory](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.history.RunnableWithMessageHistory.html#langchain_core.runnables.history.RunnableWithMessageHistory) interface. While sufficient for basic chat applications, many users found the API unintuitive and challenging to use. + +As of LangChain v0.3, we recommend that **new** code takes advantage of LangGraph for both orchestration and persistence: + +- Orchestration: In LangGraph, users define [graphs](https://langchain-ai.github.io/langgraph/concepts/low_level/) that specify the flow of the application. This allows users to keep using `LCEL` within individual nodes when `LCEL` is needed, while making it easy to define complex orchestration logic that is more readable and maintainable. +- Persistence: Users can rely on LangGraph's [persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/) to store and retrieve data. LangGraph persistence is extremely flexible and can support a much wider range of use cases than the `RunnableWithMessageHistory` interface. + +:::important +If you have been using `RunnableWithMessageHistory` or `BaseChatMessageHistory`, you do not need to make any changes. We do not plan on deprecating either functionality in the near future. This functionality is sufficient for simple chat applications and any code that uses `RunnableWithMessageHistory` will continue to work as expected. +::: + +## Migrations + +:::info Prerequisites + +These guides assume some familiarity with the following concepts: +- [LangGraph](https://langchain-ai.github.io/langgraph/) +- [v0.0.x Memory](https://python.langchain.com/v0.1/docs/modules/memory/) +- [How to add persistence ("memory") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/) +::: + +### 1. Managing conversation history + +The goal of managing conversation history is to store and retrieve the history in a way that is optimal for a chat model to use. + +Often this involves trimming and / or summarizing the conversation history to keep the most relevant parts of the conversation while having the conversation fit inside the context window of the chat model. + +Memory classes that fall into this category include: + +| Memory Type | How to Migrate | Description | +|-----------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| `ConversationBufferMemory` | [Link to Migration Guide](conversation_buffer_memory) | A basic memory implementation that simply stores the conversation history. | +| `ConversationStringBufferMemory` | [Link to Migration Guide](conversation_buffer_memory) | A special case of `ConversationBufferMemory` designed for LLMs and no longer relevant. | +| `ConversationBufferWindowMemory` | [Link to Migration Guide](conversation_buffer_window_memory) | Keeps the last `n` turns of the conversation. Drops the oldest turn when the buffer is full. | +| `ConversationTokenBufferMemory` | [Link to Migration Guide](conversation_buffer_window_memory) | Keeps only the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. | +| `ConversationSummaryMemory` | [Link to Migration Guide](conversation_summary_memory) | Continually summarizes the conversation history. The summary is updated after each conversation turn. The abstraction returns the summary of the conversation history. | +| `ConversationSummaryBufferMemory` | [Link to Migration Guide](conversation_summary_memory) | Provides a running summary of the conversation together with the most recent messages in the conversation under the constraint that the total number of tokens in the conversation does not exceed a certain limit. | +| `VectorStoreRetrieverMemory` | See related [long-term memory agent tutorial](long_term_memory_agent) | Stores the conversation history in a vector store and retrieves the most relevant parts of past conversation based on the input. | + + +### 2. Extraction of structured information from the conversation history + +Please see [long-term memory agent tutorial](long_term_memory_agent) implements an agent that can extract structured information from the conversation history. + +Memory classes that fall into this category include: + +| Memory Type | Description | +|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| `BaseEntityStore` | An abstract interface that resembles a key-value store. It was used for storing structured information learned during the conversation. The information had to be represented as a dictionary of key-value pairs. | +| `ConversationEntityMemory` | Combines the ability to summarize the conversation while extracting structured information from the conversation history. | + +And specific backend implementations of abstractions: + +| Memory Type | Description | +|---------------------------|----------------------------------------------------------------------------------------------------------| +| `InMemoryEntityStore` | An implementation of `BaseEntityStore` that stores the information in the literal computer memory (RAM). | +| `RedisEntityStore` | A specific implementation of `BaseEntityStore` that uses Redis as the backend. | +| `SQLiteEntityStore` | A specific implementation of `BaseEntityStore` that uses SQLite as the backend. | +| `UpstashRedisEntityStore` | A specific implementation of `BaseEntityStore` that uses Upstash as the backend. | + +These abstractions have not received much development since their initial release. The reason +is that for these abstractions to be useful they typically require a lot of specialization for a particular application, so these +abstractions are not as widely used as the conversation history management abstractions. + +For this reason, there are no migration guides for these abstractions. If you're struggling to migrate an application +that relies on these abstractions, please: +1) Please review this [Long-term memory agent tutorial](long_term_memory_agent) which should provide a good starting point for how to extract structured information from the conversation history. +2) If you're still struggling, please open an issue on the LangChain GitHub repository, explain your use case, and we'll try to provide more guidance on how to migrate these abstractions. + +The general strategy for extracting structured information from the conversation history is to use a chat model with tool calling capabilities to extract structured information from the conversation history. +The extracted information can then be saved into an appropriate data structure (e.g., a dictionary), and information from it can be retrieved and added into the prompt as needed. + +### 3. Implementations that provide composite logic on top of one or more memory implementations + +Memory classes that fall into this category include: + +| Memory Type | Description | +|------------------------|--------------------------------------------------------------------------------------------------------------------------------| +| `CombinedMemory` | This abstraction accepted a list of `BaseMemory` and fetched relevant memory information from each of them based on the input. | +| `SimpleMemory` | Used to add read-only hard-coded context. Users can simply write this information into the prompt. | +| `ReadOnlySharedMemory` | Provided a read-only view of an existing `BaseMemory` implementation. | + +These implementations did not seem to be used widely or provide significant value. Users should be able +to re-implement these without too much difficulty in custom code. + +## Related Resources + +Explore persistence with LangGraph: + +* [LangGraph quickstart tutorial](https://langchain-ai.github.io/langgraph/tutorials/introduction/) +* [How to add persistence ("memory") to your graph](https://langchain-ai.github.io/langgraph/how-tos/persistence/) +* [How to manage conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/manage-conversation-history/) +* [How to add summary of the conversation history](https://langchain-ai.github.io/langgraph/how-tos/memory/add-summary-conversation-history/) + +Add persistence with simple LCEL (favor langgraph for more complex use cases): + +* [How to add message history](https://python.langchain.com/docs/how_to/message_history/) + +Working with message history: + +* [How to trim messages](https://python.langchain.com/docs/how_to/trim_messages) +* [How to filter messages](https://python.langchain.com/docs/how_to/filter_messages/) +* [How to merge message runs](https://python.langchain.com/docs/how_to/merge_message_runs/) diff --git a/docs/docs/versions/migrating_memory/long_term_memory_agent.ipynb b/docs/docs/versions/migrating_memory/long_term_memory_agent.ipynb new file mode 100644 index 0000000000000..8ab6f7be5fc61 --- /dev/null +++ b/docs/docs/versions/migrating_memory/long_term_memory_agent.ipynb @@ -0,0 +1,1082 @@ +{ + "cells": [ + { + "attachments": { + "a2b70d8c-dd71-41d0-9c6d-d3ed922c29cc.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAQjCAYAAABw09ciAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAhGVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAAAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAEgAAAABAAAASAAAAAEAA6ABAAMAAAABAAEAAKACAAQAAAABAAAEsKADAAQAAAABAAAEIwAAAAAl+LKlAAAACXBIWXMAAAsTAAALEwEAmpwYAAACzGlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8dGlmZjpZUmVzb2x1dGlvbj43MjwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+NzI8L3RpZmY6WFJlc29sdXRpb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMjAwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6Q29sb3JTcGFjZT4xPC9leGlmOkNvbG9yU3BhY2U+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMDU5PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CnNg3qUAAEAASURBVHgB7N0JmGRXfd/9f9fW1fs2+z4jjVYkIYEAAbZZBGbzCsKQvE5s533svHGMYyeO7deO9yRP4n0DHDv288Txhu3EGPN6CcaAkTAYIRBoG2k2aTT7TO9LLV39/n/n1um5XdNdakkzU9Xd3wvVt+ou5577uaWerl+dc27Hgk/GhAACCCCAAAIIIIAAAggggAACCCCAQJsKZNq0XlQLAQQQQAABBBBAAAEEEEAAAQQQQACBIECAxRsBAQQQQAABBBBAAAEEEEAAAQQQQKCtBQiw2vryUDkEEEAAAQQQQAABBBBAAAEEEEAAAQIs3gMIIIAAAggggAACCCCAAAIIIIAAAm0tQIDV1peHyiGAAAIIIIAAAggggAACCCCAAAIIEGDxHkAAAQQQQAABBBBAAAEEEEAAAQQQaGuBXLPa1WoLVltYsI5mG7EOAQQQQAABBBBAAAEEEEAAAQQQQACBFyiw4PtlOjosk1k5gWoeYHl4NT9fM/NCTKUxIYAAAggggAACCCCAAAIIIIAAAgggcKUElFl5/mTZjGWaNKFqGmCF3MvDq2R+pWpGOQgggAACCCCAAAIIIIAAAggggAACCCQCCzF7agLy3GNg0fKqCR+rEEAAAQQQQAABBBBAAAEEEEAAAQRelIBnT88VPz13gPWiasDOCCCAAAIIIIAAAggggAACCCCAAAIINBEIXf+arPdVBFjNfViLAAIIIIAAAggggAACCCCAAAIIINBiAQKsFl8ADo8AAggggAACCCCAAAIIIIAAAggg0FyAAKu5D2sRQAABBBBAAAEEEEAAAQQQQAABBFosQIDV4gvA4RFAAAEEEEAAAQQQQAABBBBAAAEEmgsQYDX3YS0CCCCAAAIIIIAAAggggAACCCCAQIsFCLBafAE4PAIIIIAAAggggAACCCCAAAIIIIBAcwECrOY+rEUAAQQQQAABBBBAAAEEEEAAAQQQaLEAAVaLLwCHRwABBBBAAAEEEEAAAQQQQAABBBBoLkCA1dyHtQgggAACCCCAAAIIIIAAAggggAACLRYgwGrxBeDwCCCAAAIIIIAAAggggAACCCCAAALNBQiwmvuwFgEEEEAAAQQQQAABBBBAAAEEEECgxQIEWC2+ABweAQQQQAABBBBAAAEEEEAAAQQQQKC5AAFWcx/WIoAAAggggAACCCCAAAIIIIAAAgi0WIAAq8UXgMMjgAACCCCAAAIIIIAAAggggAACCDQXIMBq7sNaBBBAAAEEEEAAAQQQQAABBBBAAIEWCxBgtfgCcHgEEEAAAQQQQAABBBBAAAEEEEAAgeYCBFjNfViLAAIIIIAAAggggAACCCCAAAIIINBiAQKsFl8ADo8AAggggAACCCCAAAIIIIAAAggg0FyAAKu5D2sRQAABBBBAAAEEEEAAAQQQQAABBFosQIDV4gvA4RFAAAEEEEAAAQQQQAABBBBAAAEEmgsQYDX3YS0CCCCAAAIIIIAAAggggAACCCCAQIsFCLBafAE4PAIIIIAAAggggAACCCCAAAIIIIBAcwECrOY+rEUAAQQQQAABBBBAAAEEEEAAAQQQaLEAAVaLLwCHRwABBBBAAAEEEEAAAQQQQAABBBBoLkCA1dyHtQgggAACCCCAAAIIIIAAAggggAACLRYgwGrxBeDwCCCAAAIIIIAAAggggAACCCCAAALNBQiwmvuwFgEEEEAAAQQQQAABBBBAAAEEEECgxQIEWC2+ABweAQQQQAABBBBAAAEEEEAAAQQQQKC5AAFWcx/WIoAAAggggAACCCCAAAIIIIAAAgi0WIAAq8UXgMMjgAACCCCAAAIIIIAAAggggAACCDQXIMBq7sNaBBBAAAEEEEAAAQQQQAABBBBAAIEWCxBgtfgCcHgEEEAAAQQQQAABBBBAAAEEEEAAgeYCBFjNfViLAAIIIIAAAggggAACCCCAAAIIINBiAQKsFl8ADo8AAggggAACCCCAAAIIIIAAAggg0FyAAKu5D2sRQAABBBBAAAEEEEAAAQQQQAABBFosQIDV4gvA4RFAAAEEEEAAAQQQQAABBBBAAAEEmgsQYDX3YS0CCCCAAAIIIIAAAggggAACCCCAQIsFCLBafAE4PAIIIIAAAggggAACCCCAAAIIIIBAcwECrOY+rEUAAQQQQAABBBBAAAEEEEAAAQQQaLEAAVaLLwCHRwABBBBAAAEEEEAAAQQQQAABBBBoLkCA1dyHtQgggAACCCCAAAIIIIAAAggggAACLRYgwGrxBeDwCCCAAAIIIIAAAggggAACCCCAAALNBQiwmvuwFgEEEEAAAQQQQAABBBBAAAEEEECgxQIEWC2+ABweAQQQQAABBBBAAAEEEEAAAQQQQKC5AAFWcx/WIoAAAggggAACCCCAAAIIIIAAAgi0WIAAq8UXgMMjgAACCCCAAAIIIIAAAggggAACCDQXIMBq7sNaBBBAAAEEEEAAAQQQQAABBBBAAIEWCxBgtfgCcHgEEEAAAQQQQAABBBBAAAEEEEAAgeYCBFjNfViLAAIIIIAAAggggAACCCCAAAIIINBiAQKsFl8ADo8AAggggAACCCCAAAIIIIAAAggg0FyAAKu5D2sRQAABBBBAAAEEEEAAAQQQQAABBFosQIDV4gvA4RFAAAEEEEAAAQQQQAABBBBAAAEEmgsQYDX3YS0CCCCAAAIIIIAAAggggAACCCCAQIsFCLBafAE4PAIIIIAAAggggAACCCCAAAIIIIBAcwECrOY+rEUAAQQQQAABBBBAAAEEEEAAAQQQaLEAAVaLLwCHRwABBBBAAAEEEEAAAQQQQAABBBBoLkCA1dyHtQgggAACCCCAAAIIIIAAAggggAACLRYgwGrxBeDwCCCAAAIIIIAAAggggAACCCCAAALNBQiwmvuwFgEEEEAAAQQQQAABBBBAAAEEEECgxQIEWC2+ABweAQQQQAABBBBAAAEEEEAAAQQQQKC5AAFWcx/WIoAAAggggAACCCCAAAIIIIAAAgi0WIAAq8UXgMMjgAACCCCAAAIIIIAAAggggAACCDQXIMBq7sNaBBBAAAEEEEAAAQQQQAABBBBAAIEWCxBgtfgCcHgEEEAAAQQQQAABBBBAAAEEEEAAgeYCBFjNfViLAAIIIIAAAggggAACCCCAAAIIINBiAQKsFl8ADo8AAggggAACCCCAAAIIIIAAAggg0FyAAKu5D2sRQAABBBBAAAEEEEAAAQQQQAABBFosQIDV4gvA4RFAAAEEEEAAAQQQQAABBBBAAAEEmgsQYDX3YS0CCCCAAAIIIIAAAggggAACCCCAQIsFCLBafAE4PAIIIIAAAggggAACCCCAAAIIIIBAcwECrOY+rEUAAQQQQAABBBBAAAEEEEAAAQQQaLEAAVaLLwCHRwABBBBAAAEEEEAAAQQQQAABBBBoLkCA1dyHtQgggAACCCCAAAIIIIAAAggggAACLRYgwGrxBeDwCCCAAAIIIIAAAggggAACCCCAAALNBQiwmvuwFgEEEEAAAQQQQAABBBBAAAEEEECgxQIEWC2+ABweAQQQQAABBBBAAAEEEEAAAQQQQKC5AAFWcx/WIoAAAggggAACCCCAAAIIIIAAAgi0WIAAq8UXgMMjgAACCCCAAAIIIIAAAggggAACCDQXIMBq7sNaBBBAAAEEEEAAAQQQQAABBBBAAIEWCxBgtfgCcHgEEEAAAQQQQAABBBBAAAEEEEAAgeYCBFjNfViLAAIIIIAAAggggAACCCCAAAIIINBiAQKsFl8ADo8AAggggAACCCCAAAIIIIAAAggg0FyAAKu5D2sRQAABBBBAAAEEEEAAAQQQQAABBFosQIDV4gvA4RFAAAEEEEAAAQQQQAABBBBAAAEEmgsQYDX3YS0CCCCAAAIIIIAAAggggAACCCCAQIsFCLBafAE4PAIIIIAAAggggAACCCCAAAIIIIBAcwECrOY+rEUAAQQQQAABBBBAAAEEEEAAAQQQaLEAAVaLLwCHRwABBBBAAAEEEEAAAQQQQAABBBBoLkCA1dyHtQgggAACCCCAAAIIIIAAAggggAACLRYgwGrxBeDwCCCAAAIIIIAAAggggAACCCCAAALNBQiwmvuwFgEEEEAAAQQQQAABBBBAAAEEEECgxQIEWC2+ABweAQQQQAABBBBAAAEEEEAAAQQQQKC5AAFWcx/WIoAAAggggAACCCCAAAIIIIAAAgi0WIAAq8UXgMMjgAACCCCAAAIIIIAAAggggAACCDQXIMBq7sNaBBBAAAEEEEAAAQQQQAABBBBAAIEWCxBgtfgCcHgEEEAAAQQQQAABBBBAAAEEEEAAgeYCBFjNfViLAAIIIIAAAggggAACCCCAAAIIINBiAQKsFl8ADo8AAggggAACCCCAAAIIIIAAAggg0FyAAKu5D2sRQAABBBBAAAEEEEAAAQQQQAABBFosQIDV4gvA4RFAAAEEEEAAAQQQQAABBBBAAAEEmgsQYDX3YS0CCCCAAAIIIIAAAggggAACCCCAQIsFci0+PodHAAEEEHieAgsLjTtctqBxA14jgAACCLRMoGPZI3csv3jZbVmIAAIIIIAAAmYEWLwLEEAAgbUioJzKP/B01NvOLtTMFmq+UP/352Eiy6pDMEMAAQTaQEAhVceCKazS7+6OjJ7U68Xv6za4QFQBAQQQQGAtCRBgraWrRV0RQGDDC9SqCzZfSR6VmZpVZms2X6pZtbxgC9UkyPJnG94JAAQQQKDVAh2eWmU8tMrkzbKFDst3ZizX7Y9ixl9nLON/hWfSgVarK8zxEUAAAQQQaHMBAqw2v0BUDwEEEAhdBj2TUnBVGq/a9PmqzVzw+bmqzV6s2tzEvJU9zKrOeZhVqSWtsbSTvvKPczEq10p/8x+fB+L0yvq2Wq5ttEpT3D5uGudaF583ztPr9Hy103LlXLZv3KhhxXKLmy3TOk3x/JJXl37GfdPbxWWXtrpk0GzZcvuF7esrwsX2ijTWZbn9llumsuLylebL1U/bxknHjvtqWXye3mZxoa8P2/vKdH+ouG08j1hGej+V3Tg17te4Xq9jWem5li8ey1c0vve1vnFK/7cR18Uy4+vL5g0bNLy8bPPlFoR9/MdCrLBvlHoazi/up+XpY6Sfx22Wmy+3XeP5ahsVHq9beO2LYl3C9trEF8R6aJe4Xs8v22eZ9d76aHGn+DTupzLSdai/XHq8uFPYePkf6U3Sz+PWcVnjPK6Pc63XtNL5JmuT8047LC73AlLvvUxWwVXG8l0Z6+zNWHEgZ11DOevelLOezXnrHslZoceDrHxHwrpcmbFs5ggggAACCCDgjZp9Wslhft4/EM0nzZ5X2oblCCCAAAJXT0C/oWv+e7g8VbMZD6zGni7ZxaNzNnm6YtVp7zeoroP60OPf4iefQ739lT/hc9DVuyaUjAACCDQT0B/Wyu30e1jPQxfv+p/bC94iqziQtcFdnTa4t9P6dxU8zMpZ3ltmxSyxsexYTuNyXiOAAAIIILCeBPRvZtY/0+Sy9fFSljk5AqxlUFiEAAIItIWA/xZX10C1sho95sHV4ZKNnyjZ7Oi81bylVWdfNnyDX/Rv9Dv7s+Fb/qy+yfdv/ZkQQAABBFonoLxqYd5/h3sXb3X3Lo3P++/upOVstVyzgrfK0u/uoQNF23RD0Qb3FLyVVjYZ41B/wae+hSDAat115MgIIIAAAtdOYDUBFl0Ir9314EgIIIDAqgX04Wfew6vpsxU7f2jOzjwyG8Krmg/a3jWYs74tnda33bugeFcUdUspeJiVL3aEcVbCIMGrPhIbIoAAAghccQH/Ha7Ws/o9HgKsyVoIsKbOVCw8zlVCi9q5Me8CPjXvYxku2Mh1neHLiHijjiteJwpEAAEEEEBgjQsQYK3xC0j1EUBg/QmEboP18OqsB1cnvzgdugxq4N+RPZ3+jX2nDfi39b2x24m6D3qrKwVXK3VBWX9KnBECCCDQ7gIdoftgZ3/Guwl6a6xKwYY9rFKAdfFoyS48NedjGVbszFdmrFLvEj5y0EMs72IYGmClWmG1+5lSPwQQQAABBK6FAAHWtVDmGAgggMAqBZJuJws2490GQ3j10LRNnKp4d8GMdzPpsq23dln/zrzlfeBfBVq6w5Wa2y4OprzK47AZAggggMDVF1BrqtAqVnciLJp39VaL2UwymPtwzlvXztjY8XIIs8J49pmF0KUwr+6EV796HAEBBBBAAIE1JUCAtaYuF5VFAIGNIFCaqNmFJ+fs9JdnbOLZsnX6OClbb0nCK7W8KvjdrGJgpcCLCQEEEECgzQXqv6t1Z0LdeTDX6Q8fByvndynM5mfswuE5O++/97P1ruAjB4uW9W1oVdvm15XqIYAAAghcUwECrGvKzcEQQACB5gI17zo4eapspx+etbETZcv5nam23Nhl22/vsYHdef/A49/JE1o1R2QtAggg0OYCGf8LvGs46+FVMXQBn/cbc1w8UrJzj89ZwX/va6zDnm3+O99vzMGEAAIIIIAAAokAARbvBAQQQKBNBDTg7+xY1S4cnfNv42fDN+/qNrjt9m7r351Lwqs2qSvVQAABBBB4cQJqjaXu4cM+rmGtsmBlHwdr4pmkO2HfVm9t63eXzQ1mjZa2L86ZvRFAAAEE1o8AAdb6uZacCQIIrFUBtajyXoH6ADPmH170DbzuXNW/s2Cbb/bbq+/1b+F9vCsmBBBAAIH1JaAxsjRou27OoS8wKjM+yPtZHwPx8Rkb2l+wogdc5jfoYEIAAQQQQACB8JEJBgQQQACBlgt4iFWeqdno8ZKNHS6HQdqHr/PwanchPA/joNB1sOWXiQoggAACV1TAsyl1Jyz6WIebvbv4wG5vjVVdsHH/MmPiZNnKUzUGc7+i4BSGAAIIILCWBfhKfy1fPeqOAALrQ8A/wOgDy+yFqk2dLltpvGpdIzkbvr4Q7lRltfpp8iX8+rjenAUCCCCQFvAvJ7J+l0KNedW/qxC6FZan5+3isbLNjM6nt+Q5AggggAACG1qAAGtDX35OHgEE2kFAXUiqcz72iX/bPuMhlm6x3rc1b71b8n7L9Q4f/4SmV+1wnagDAgggcFUE/MsJtbLNFTqsz0OsPu8+Pl81G3+65N0KK77yqhyVQhFAAAEEEFhzAgRYa+6SUWEEEFhXAp5NdfgnF415NXmmaqWxWmh9pQBLt1rX2Fh8ellXV5yTQQABBJYX8LGuejZ5K6wdBW+WazZ9uuItcudtQY2w+B5jeTOWIoAAAghsKAECrA11uTlZBBBoN4HwmcS/XZ/3LoRqfVWenPexULLhQ0zWb5++oO6DfPvebpeN+iCAAAJXVsB/z3d0LFjRB3Tv3pSzDr9DYWmyZiUfA6taWiC/urLalIYAAgggsEYFCLDW6IWj2gggsL4ENAbWnI99VZlZsHxvJnyIyeT8E41aaK2vU+VsEEAAAQSWE/Bf9rrjbGdvNsz1BUfJx8LSeFjel3y5PViGAAIIIIDAhhIgwNpQl5uTRQCBdhRQQKWWVlW/C+H83EL44JL37oMdWY1/5StJsNrxslEnBBBA4IoLaCwsfXlR6MpYxv9Kny95CywfI5H86opTUyACCCCAwBoUIMBagxeNKiOAwPoT0EDt8xXvJuIPfXhR90F9kGFCAAEEENhYArqxR9YHdO/wMbFq/m+CWujSh3BjvQc4WwQQQACB5QUIsJZ3YSkCCCBwbQQUUtWDqoVa8iFFwZU+uMTl16YiHAUBBBBAoPUCC+HLC93cI/wbsOBzjYXIhAACCCCAAALJ/a1wQAABBBBokQDDmrQInsMigAAC7SjggdVKU5NVK+3CcgQQQAABBNaTAC2w1tPV5FwQQGDdCJBrrZtLyYkggAACCCCAAAIIIIDAFRAgwLoCiBSBAAIIvGCBFb5RX2HxCz4MOyKAAAIIIIAAAggggAACa1mAAGstXz3qjgACCCCAAAIIIIAAAggggAACCGwAAQKsDXCROUUEEEAAAQQQQAABBBBAAAEEEEBgLQsQYK3lq0fdEUAAAQQQQAABBBBAAAEEEEAAgQ0gQIC1AS4yp4gAAggggAACCCCAAAIIIIAAAgisZQECrLV89ag7AggggAACCCCAAAIIIIAAAgggsAEECLA2wEXmFBFAAAEEEEAAAQQQQAABBBBAAIG1LECAtZavHnVHAAEEEEAAAQQQQAABBBBAAAEENoAAAdYGuMicIgIIIIAAAggggAACCCCAAAIIILCWBQiw1vLVo+4IIIAAAggggAACCCCAAAIIIIDABhAgwNoAF5lTRAABBBBAAAEEEEAAAQQQQAABBNayAAHWWr561B0BBBBAAAEEEEAAAQQQQAABBBDYAAK5DXCOnCICCCCAAAIIXCWBhQUv2H8s1DRbsI4Os45sJsyv0iFbU6yfZ62m89QJ+zlmOvzhc50wEwIIIIAAAggggMBVFyDAuurEHAABBBBAAIH1KRCyq3mzylzNStMVq5bnLdeZsa7+zjBfT9lOzQO6mbGyn2vVQ6uM5YtZK/bmLFsgwFqf727OCgEEEEAAAQTaTYAAq92uCPVBAAEEEEBgLQh4eqWAqlyat9ETU3bmyIRNnZ+zgW3dtvuOEevbXLQQ7az1fMfPc8HPoTI3b88+OurnOm35zpwN+nluv3nAejoLaoDGhAACCCCAAAIIIHCVBQiwrjIwxSOAAAIIILAeBZTZeCc6K3vLq9OHxu3QA6fs3FNTtuvOIRve3WN9I51mubWeXnl4pYvnra9KUxU7+vlz9vQXzlv3cKftunnYhnZ3W4/OU90K1/6prse3KeeEAAIIIIAAAutIgABrHV1MTgUBBBBAAIFrJ+DjXfn/StNVO3N4wp55+KKd+dyE5QcyNuehlsbEWi/T/PxC6D546tCoHfv0eRu8odu6egpWDt0J6yHXejlZzgMBBBBAAAEEEGhTAe5C2KYXhmohgAACCCDQtgKpLnMV70I4eWHWyrNVywx6M6TUuoYXbXs6K1Usdg2s+jlOXyyFc1woXN7ayod2X6kIliOAAAIIIIAAAghcIQECrCsESTEIIIAAAgisSQF1fXu+3d/C9smOlXLVJs/NeVdCH9w8mwhcKu7Ss+dtkxSf1O1FFLOq48ZjNWwcDus/KqWaTfr4XuVZH7G+fo7aNA5Sz50IG+B4iQACCCCAAAIIXAUBuhBeBVSKRAABBBBAoB0F1KKo5t3h5is1q/ljvupzf62UKOPBTCbb4XcPzFqukDW/0d6y03x1wdQiSfupC+H0aCkM3q47EHZkOqzm60szVZubLFs2nyRDWp4rZiybW6HQ+pFi3UL9vHyVteCVzvj+Gd8342NqZfXIr1y/WOlQVlnnVwuDrKsOYf+8l+PnqS6OVQ+mVG8dTzY5v6NgvsvvLJjNBBut03bTF+Zs7NS0Vfy8OsK+blid93Gx/DwnKomhn2rWy9ZD5TMhgAACCCCAAAIIXFkBAqwr60lpCCCAAAIItJ1ACK48DCp7ADPrgcvsRDkMSq6Byct+dz1NCq4K3Vnr9QHK+zZ1WWePBzmFS2GMylBLoznfZ/TpqdCdTvud9fGvZsZKVvOBzNUCqzxTsfPHJy3nIZACI+2TL+Z8wPMe6xkuJL0Kk8xMu4fOdzWvQtXroTBoZrxkpcmKlbxLorolzlcW/K5/2VAf1anYm7OugU4r9uU9cPJArCErUuDV4elbxVtLjZ+eCeeqEEuhXPeQn9vmTst5ADbn4dPk2Vmb8q6BMqnVauHOiZv391tnd85mLs7ZuK+vegg2fmbGzvldFuWnYE+Blwy1TEFgcu6ZsH/fpmLYv7Fe4WT5gQACCCCAAAIIIPCCBQiwXjAdOyKAAAIIIND+AgqeFAJNeRe4M0+N2/ljUzYzOheCohkFWdOeHvk2+a6sh0N5G9jaZZv39tnwnt7w6B4s1LvKJS2ups7N2hOfOuVd6mZDi6uLJ6e8xVUlBElqnTQ9WrYjnztr5zzYUkukjAdZ3QNFu/XNO0I4ttChVlX13Mnnaiml4Eqh19mnJjx0mg11m5sqh5BJrcTyRQ+f+grW1V8w1WdoR69tPdjvdzvs9XWXh1i6KgrCjn/xvJ0/6sGTh1ldvt/2GwZtzx0jvja5c+LJx0ZtzEMutSIzL0brw/la0c4embRjD56zaQ/nNCj9WQ+r1LJMGJW5mo2enLFD95/27f0uhH5Cal22965NlvfyFQSqdRoTAggggAACCCCAwJUTIMC6cpaUhAACCCCAQFsJKChS2KKWSE9/6YId+cczdtYDnYrfPa/qyxe81ZTCK7WAqvnGajGlFk79m7tCmHPwnm2245Yhb+3kfy54HqPypj0YUkB18cSU5Xr9joMTVat4K6UwDpRvM+etp5595GLSDdFbZKlLXX9/j+17hYKjJLgKg54vdFjVWy9NnS/ZqSfG7Ojnz9qzj46GwEhd99R9MGyvgab0f3+ofoVuD9m8hdje05vswN1bbPOBPit4yyytD5N28+cKnU4fGrPjD5632dmyDWzutmwmYz0eOE15gHfo06ftlK9XizINRK/WXZ2dudDKqtI1bxeembIjXicFXJp0t0W1xtJxVL/xczM2N6NukkmAlvc+mN3ewmzrdQPBlPwqsPEDAQQQQAABBBC4YgIEWFeMkoIQQAABBBBoE4F6iKPxm9Ty6tgXztnjnzhlJ75yIXTNK4QuefnQpa7g3eU0npNaTs15i6xRD6hGn5m2idNzYfyngrfM2u4hVq7TgxovLwRJHgRpXKowKdVKTen1YdwpbauuhL774qRdfP/Z8Uqo0xN/fzoETRPeukuDpBd78qG1VVd/PrS+UsCkVlJ6qOXT6Ilp77ZYDsGTWmeN7O1N6ufFhqJ9XvOwSduP+fYzHjQteEg3fjYJ8s49PWlHPnPWZr2VV8bH6VI9Q0Cnxmj181Egp4fOU0FfEvYl56ozT9b5mFd+ftpXLc0yOsk6i2/ChAACCCCAAAIIIHAFBQiwriAmRSGAAAIIINAOAmrhpICl5t3v1DXviY97QPTIudDyamhrr205MGDDu7qtd6ToLZpyoSWUxoNSqyN1lRs9PW1jo9N26GOnbWBb0Tbt6/NxqApe6oL1jXTZza/fEVoxaTD3M4fH7emHL1i55t3r5jtCKLb/rs02sKW7Hlz5sn4fe8r306R8KMRA/mPMA6VD95+xQ588bbPlkreCytvgth7bdnDABnd0+36FeoCVtCI78+SYPevd/kp+58PTR8bCAO2bvKtj74iPa9XpXfnSkzKp8FAQ5cf0EGraW15N+HmGVlWeNWlfHTO0PPMxtQZ3dvt55oLJluv67ebX7QgtyiZCCHjeJrzVlca/0nhhw96NcddtQ35exXBO6kK44+YhD97yhFjp68BzBBBAAAEEEEDgCgkQYF0hSIpBAAEEEECgfQSU2HgXPb/L3sWTk3bywVGrFv0ugeWMbbtpwG5/017bfF1vGPMquaued5Hzrn8akP3RTz5rU976quKB1IWHp+2st1aaGS9b0cMktS4a2NZlt799l4deGlerZI9/6lk7+eiYlStVW5hZsF4fxPwmD3523TJsGb+rn+8SxsLq9PG1YusmOaluEz44+ikPpGYnfAyqolnfcNEO3rPVDr56mw15wKZB2tU6SuNkzXgLseNf7A3jYp1+fMyqHd4qa1zjek2EFmI9mxoCLD+GgrLQcsoroQHh1XpLXRMVWu28adjH+OoJIZkGq1cope6FGgNLXSZ33DJoI/t6QquzZ/14o89O27QP7K4xuRT6Kfy67S27TUGX6qfGVwUfrF4twhQeMiGAAAIIIIAAAghcWQECrCvrSWkIIIAAAgi0hYC6D2rQ8YkLszbx5TnLvcJ7581lbJOPGbX79mHr9bvxqfdb0jzJcxq/Q1+xt2AlHx9r+qzfmc+73c1vqllnMR9aaOlOe1nvCqiARgGOWlKpy5wGVg+BjcryRlgKndSya2CbB1CdSZATWl0tNr0Sj4drYRyueVN3xmF1AfS7BO7yeh18jY+7ddOgdfpYXKFrn2+t4EuDpWsw+jM+btX4iRmbmJzx0Gzezvtg6yEAW+gLp6LSl0xKsbwaFR+3SgOyb9rVZ9fds8X23rk5tNzSHQ5DV0cfcF7np6BNg89rLDDVIeNIE+fcT9vpdPyh0C/flQt3HRzylmLzHoqFVl5+rBCYLakALxBAAAEEEEAAAQSuhAAB1pVQpAwEEEAAAQTaSEA5iwKnyty8Dz5e8Vxp3rK1jIcrIX/x8aAWvAWUL/MByH3scSVEIcTpGSnY7ttGrMNbb5Wmfdwo335ge3dosRRPT2GS9g8Dv3trJB0nTPWgSDmVWiSppZKCnjiFtljxpYIe/5+Crutfu80DsvnQdU93Ftx2w4C3gEpaa8UwSHOFS71ev5E9fVYcKtj4Re/OV6vZ2PGZcI7xOEn/xOSVDheqpXTJ/79QNttz14jd+NU7bOv1A37MpELaZnGqv/CiQxi10OHnOO8v0ufpJ6nz1jkqVAvrQ1FJd8XFsniCAAIIIIAAAgggcMUECLCuGCUFIYAAAggg0B4CIYNRZuMPDS6u8CgES8Wat2Aat+MPnbMtHuD0+d0GC91qgeT17kjGzRr0wKrfuwHOewilnTS2U9YHcFerJE0xiAr7ePe+0CoprKn/qB9X61fqSqd1eR8cfsuB/nDHQ2VDOQ/TOr1ll1pwadB2JU8K0FTvBQ+QFJyVvUWZ6pH1rokalF3LZk77XQS9dVWYQmV8h9SkWmuxzqGY84DujpFw3KwPVZWEb/G86jslL5PziuegAuKJar1ehnL9/LVNrb6gXgQzBBBAAAEEEEAAgSsvQIB15U0pEQEEEEAAgZYLqFucWjL1b+qy3r2dVvb/1XI1O/X4uNetw7b7gO1qzaRByNVtTl3mCj7v7NEg5t4syzMZhUcKasK0+KT+WjnR0qyovqK+OKzTj8YdfYkvyvnd/9QtUF0QdZzK7LzNTpbDIOsKsGo+WLoGTK+W1dJpPrSGmvVxus4dnfAWV9XQukulz/tYWgqyVpx0eH8oiOvdUvRxrgqmOyuGfZav3qWillvf5FCXduQZAggggAACCCCAwJUWIMC60qKUhwACCCCAQBsIKCTSWFVb9g/YgTdvthNPXLSpWb8L37lZK/v4UxefnQotsHR3QLW46vOHuvT1bfaQxwdT1930FGapm+GyUz0YumydBzxalUyXnsUlca6ArcObXpW9m+PUxZKNn5qxiyembPzMrA/UXg7dHzXwusIsdVnUpK6GMxfLNuNjWXWo66NP6oqoabkjxaxJ86yPZVUcyIextsLGcWXY+3n80IFe6L7P4zBsigACCCCAAAIIILBUgABrqQevEEAAAQQQWPMCSZjj3f88fNp6YMBuvndH6EJ38vFRv6NgKYx/de7opJ19csJbI+Wtd7jTQ6vOMO/f2mXDu3tt894+27TfW2h5oKXWS8smRCtJPUfAowZT6h447XcWPPPUuJ30OxGe88HYx07pTn8lb32lcaV8nC5vgaXugxk/D3UxVKspBVpqmbU41Y/lHSCbV9FPQYPKx56AYf/lUq/Fgps/adboq/merEUAAQQQQAABBBB4IQIEWC9EjX0QQAABBBBoZ4F6MKO7DCqA2veyzWGQdA3IfuH4lLd4mgtBkbrsqVXTxAW/q5/frVAJkO4K2L+ly7YfHLL9d2+2PS8dsUG/014YA+s5gqlI8lybKfxRN0CFV4987Fk79vlzNjU+F3bv8m6PQzt7rGeo6Hc8zHm9s/7wcbg8wKp6d8GLJ6fsxKMXrXLa65uammZRoUL1LXymZ2GRfjTdMXUAniKAAAIIIIAAAgi0VIAAq6X8HBwBBBBAAIGrKODhTNbHmlL3wL0v22Qj+3q9ldOMjT4zHVo7TZ6dC93x5vxOhRpfSq2zZv15+UTVZibKIeQyD8E0lla3jx2l7nrP0c6p6ckouFILKN1VUN0Fn/rsGTvsD4VnamE1uK3bdt065A+FZj3huIWunGX8DoQK0GYmKvb0Q+dt1FtqjT0zkxxrSZOqpof3lQ1pVcPL59qb9QgggAACCCCAAAKtEyDAap09R0YAAQQQQODqCnhAo4wm5y2Y+jq9m6CHUIPeRXDz3l6b9TBobsqDq/GyTV2YC2NPnT8+6YOkT9rEeW+RNepjUZ2pWt+OYrhrn8bT0h0CQwj1gmudNHmqVRfs7NFxO3r/OT/utC34XyN9Q9124O4tdsNrt9vmfX0hvMoXs8kYXDoPD6qmfPyri09P+/n4AFj1Gw+uqir1oCqZ1V+sasdmG4U2XM02YB0CCCCAAAIIIIDAFRQgwLqCmBSFAAIIIIBAuwhojCmNIaXxohZqGjOqI7TGKvRkrbOvNwRbCqMqPoj6zFjZJs/PecusKTv2pfN2+DNnPcCasblS2c4+NWHnPdQa8m6E+WJnGJNqsSWTMpx0jhOzIRUcJs3jQn+60BHacIWugKem7OznJmxhl1mm0mHDe3pt/13eZfGOER88PhvGwNKuNR8DS2NfdXh/yHnv7lgtVcMdCtUyrF2mhrNsl2pRDwQQQAABBBBAYF0JEGCtq8vJySCAAAIIIJAIVMs1G312OjxK3i1QXfT6vYve8K4e6x4oLOZK+aK3ztrsA7iPdIaWWZ1+98GJk7M27WNSVYpVmx2r2PjZ2TB4euitl0prwutUPpUcObkvYBJhNaz0lwqjqj4Qu1p/zZ2vWm6Ph1SjHTa4syuMfRVaeXlBanEVsi8V4YXpdc3DOIVt5al568gnR7u2P9Pnc+n5pWfXtjYcDQEEEEAAAQQQ2EgCBFgb6WpzrggggAAC619AYU8mCXsUYB369Gk7e3zcCj4g+vaDg3bjV2+34i1DYVwpJUPaNusP5UW5Qtb6RorW42NmZfzOgwveTU/BkbYJG0gvpjWhVZS3nvKxqTSFRlfeKkr71Kre4svHuQrbJklW2CbZUOuTuwzqtfbWvh3ZTFJWLD/Ow04doaXY+JlZO3tk3Gb8ToUdPrZXmMKBk6dX5afO0w+V9XG4NFeYpkPqHJND+8KOxpO8KjWhUAQQQAABBBBAYEMLEGBt6MvPySOAAAIIrEeBpMtdR2h1NTMxZ8cfuGD54axNnZqzLm991dVXsJ7hQgisFEDVPGxSV8PKbM0mzs2F1lFqR1WbWbDiQM76N3dZ3sOtxaxIeY3nNgq8wiDrCq4qC5b11lxV75I46WVMe8jUNe8tvTRpWx+HK+MhVQiDfCytTh+cvTCoroLemqrfbMLvKqgxuIreAkyDxuuugwrP5j0oKs3M27gPPv/Mly/Y+WOTVvYWXMqS9FjV9ELzpXAQD/g8zCv05EPoJwPVSWOIzYz6oPc+hlgY3N7rqsHmtW0M9VZVNzZCAAEEEEAAAQQQWJUAAdaqmNgIAQQQQACBNSLgoYtClpwPgD6yt8+2XDdgR4rnrZqv2MUzU/bkZ06HVkRbru+33qFiCKEUIimQmbpQshOPXLAzT45b1ZflZrM2sKPLRvb0WKHbAywPusJdCP0Ymuc9hOrygeE1t5O+bLgjlPPso6OhxVefB18KrNSaa3h3tw8i3+kvOjz0ylr/pi4buLHLxqamzQo+qLsf88mB095VsRa6Euquhwqx5vzuiGMnZ+zk4xft1BPjobzO/qxVLlSTC6IDrDCFNfqx8iYr7HlpsbKvrA8arzs5hsHjHbdanrexMzP27KNj3hTLg6uCP3yMrp6hQuiKWez1/o0v4piXjs4zBBBAAAEEEEAAgShAgBUlmCOAAAIIILBuBBZCKyDddXDb9YO2++4RO3V01GZmFFBdtOmxkm29btAG1LLKgy6NLTXtrYkmzs3ahWenfD4TWhNtuqk3dDsc2NodwqTQsisGRp7s5L1VlUKpoZ09Nn581pOeBZuZKNvRB8+FFli9w52h+2GhmLeXvGWnB2Y+CLx3t+vwlkoju/ps511DNvdZvxPibNnGz8/a4c/74PHnSza8o8f6tiTh2qzX9cKJKbvwzLR19uZs920jVvPjTJyYs4UhXTBFTPpZD9fCq+RHWJOsrm+h5ckYXckWq/jp+3d2522Th4E9fj4TZ+Zs3scXm/T6Hvr0STt/ZMJyHuBpjLGdNw/arts1CH0utB5bRelsggACCCCAAAIIILBKAQKsVUKxGQIIIIAAAmtFILSS8spmPZzadsOg3erhUfEfct6CacwmLszaRb/boLr4KbxSlze1rNLdCCveNW/ex6dSt8ARH+x938s22947NoVufcqtFrsQCkLjPvnCPm9JdeAVW6zkg7KfPzkVBmjX2FszHjwVuj3I8S6K3blO2/+qkbC9AiR1sVMgdN1rfL+Zqp16bMxmPVwb926Eagmmca7U4iubz4bDqItjV0/B71C4yXbeNGyjF/04z9SssM3DKB9za0m94kVScOUP3Y1xYd63040YtaGWr3KSo+IudWncenDAdvjYYXOj3lJtbM7Ks17vQ2MerE1Z1rtE5r2uCrE27evzPbppgLVKYzZDAAEEEEAAAQRWK0CAtVoptkMAAQQQ2LgCHt68mB5hITN5juAkNmx6IciLRccn9cqqzP7NRTtw92br8rGlBrZ32elD496KaNa75vnd/CarPgaV7+TbqbteV1+nqfvb0I5u2337sO156UgImrI+YLqyn3BnwHoFY7ijuxde/6otIeg59oXzYfyriodSCp0WPAzTdtkuH89KA8H7pJ963uf12nfn5rC+azDvLZkmQ3fBinfPq/iYV1V/KADr9e0GtnbZjpuHbe9dm6zXW3wNfqXHhr11WHE4549C6K4YSg+VDIcJoVKPt/ga3NltpdmCdYfufcVwnskWq/jpharcQuiO2Ws3vHq7ZX0cr1OPjXqLtXIYN0ylLKg3o4dyCuvCQwtT0xW9tqlyF5/W67n4+gU8CW+d+P55AfuzCwIIIIAAAgggcLUFCLCutjDlI4AAAgisWYHQYMeDmBDy6EWIM57P6ST7dPgg52p1FEOcJSX4Jiq/Nq8mQopLVnscbacpSS8Wj5FKS/RUA4v3b+kKrYgGfL5l/4CNn531FlMeYHnQpDGnzOunVldd3tKo6IOVD3iAte2GAd/PAx9voZUOrpJjJodVqqXucmqdlPFWSIPbum3ibNI6SQOd6/g5X97todPAlu6wa8iYvPWWylXXQ4VU6pp3/vhUGBBdLbk0xlTe75qocbB6hos+XlYxtGwa8O1197/dN49Y7p95Cy21fPLtVHZKw4/jbaB8sPp9d232oKwrtArTOF1DXr+ufh9YPm68eDLNn8hWAeA+D9C6B/K2eX+ftzArh3LD+fi1Lfg4Wdu9hZa6TS6+Tfw4CvKS90/zYyy/VhXV+2bl94+OH+6IGFqYLV/K8kuXIui9qWuyWPfld2IpAggggAACCCDQMgECrJbRc2AEEEAAgXYXqPrYULrL3JTfVU/jHoUASolBmBQ2pae4PFmmV9o048FA0UOTnpFCaN20mC+FzZO77E16oKQ79yXla3+tjOUv/1xd2+Kku/vp7n0DW4vJmFYeZsTjKPzQVPCgadN1fTbgLZKqJe8y6CFR2cMidYVTq6Gir1cYpVBIXffU6kitsppNMdjK+aDsCnUGt3vZ7qQ7GuqhU1AZGitLLbs0hpamsJ/WuY1acCkY2nnrsHdjrIauiOrOGAaIdzftqzI0gLpagpmHLNd5l8U9PtaUypdZGDRdBXvxKltHUSh23T1bvBvkpmTweQU0Xo7OMdZDu6xmkmXWjbo8vFI3ws37+63qrcvm3VBl6RproHqVrQHqw/l5JXS6s+MahH46hFgeRfnhVDvNNa38XGs0qSyFi31+bRWeha6QcXdfL2e1qAt3QwwhVrpMlbDc62Sp1mq1tlDIOOTvjUut7cJafiCAAAIIIIAAAm0jQIDVNpeCiiCAAAIItJOAwgd1ZbvgLYOOPXjeZr3LnYKKegZTr6o++qemxpe+scKgLQf6bddtwyEk8kRiMT3Q5gprnn181I794/lw50C12AmJQii2oUAtSy3SUxWXK2R9UPZ+b2W1JbRoMrXm0orUpFca80phiCYFIfOVZMwrbapwR49QPVUh1mNpMWHfxh/aJ+/BjVpTham+v+qnlmchr/Hyltr5St9A69Uqqts307mH8MvDoay3HNN5KYBTSJSMYaUCfUwt7xoYgzmVoboull2vr4K4nk7fTq/10HbhoR/++vlOXobqWvSB5NVSTZ0jk+P6M18XwkcvM4Rj4TgdoWXUqA+K/+jHT4axxWI9Lh26oSKXvZSD37HRW85d96rNoUWat+fyYnRCyVT1FnQnHhkNd47U+GXhusWVjSfaUL4gtEhdIHfcOhS6deYKHvDVLn//LBbJEwQQQAABBBBAoEUCBFgtguewCCCAAALtL1Dx1kka8PzQ/afDHfrigOeh5v7JXx//L0UJvjQEBHFJEg7kPYRRVz21bhnZ03Mpw9BmnhMowDr91Jg9/KcnrLgnZ7W5SylDbCkUS1xavmrhx/d/yQvZvAck87b7pcMhSFEJi/toM02+QCHQQkiCkkXqXqhHnNQVLUy+KIQkl1bFTVacN5YdT7TmoUpSppfYWF79dU2BSX2zpE5q+VXvVumDtKusdH1Cd0uNOxUnL/iysr3ImoAvcYatY+uvuOvznauqATK1YwjGFPil6qmrL8+xMzP26F95gJXVjj7V67Oaa6vych6AKpzcdmO/Xi6Z9LrqA++femLUnvjEGfM40mrlSyesYyzZJ6yKS5L6qvto9bzXNr9gN7xmuw+a5oXKnAkBBBBAAAEEEGgzAQKsNrsgVAcBBBBAoA0E9EHfHwomat5FqzxTsdJ0JbQKWtrCJWQWqQrHcMAXeaISQgrPLTSmU2hZldpy8akfRF0V585XLLPZs4OZkJAsrk6VWF8Wl2juAYV3q+vw5kihy57q3WQKIc9lSU9qh1h0atFqny5b9irLWz5U8p1X2H/57RtqGnZfuYyGrVf9ctnzXGFvXQ61iir5YPnzhflwR8UYXMVdlp7i0lc6f91lUXeHDO+fhtUCUqCmVljlqapVsz54fghAL70Rlu6y9JXeox1Zf/+Necu3EF4q8Eq6YDZsGavLHAEEEEAAAQQQaJkAAVbL6DkwAggggEDbCtQ/ved8/KUBH/hbd8ubGS2FLmQKtZZMy37SjwsXQgua7T7IuQYVj9mR1sZy1E1u064+u/Ed263Ql/FWOw0HiEU1HDSU4cvUlU4DiKuboroIXtbqZsl+vLiWAupy2D9StOu+aksySH+8aOlKXHZ90wv8/eNdITXYvd4/8T0Td9c7Re9RjclVepWHZB5CLeiukukpXdzi8mRhfD8u3L5gW/f2hy6kvH8WkXiCAAIIIIAAAm0mQIDVZheE6iCAAAIItImAf8bv9PGOtvrd+Lr8bnjqqnVpkPV6HX2bGBeo3UrSfuXSMm2lcbM0+HavBxnpBEsRgvbId2dt752bQkihbX3RkmlBG/qUzJJjxNfaVMvV7U4BR6ffQTAEGDGZ0IZMLRHQJdB12bSvz+6+b39oQRWv4eLVTBaE+sX3T7qyWh0Cym4N0N9VDydTO/mbRYPG73/5Jtt6fX8Y/0ohV9xC753F5/WC9Tq+xeI6Lege9gHzFYCGrpCLa9LV4TkCCCCAAAIIINBSAQKslvJzcAQQQACBdhXQR/i8t2wa2N7ld9fr8lfxo396rtpfFgdoYWpS6ORT3Cy1RiGHWths2tdrmz3oSKb0hjpWnLQ8/Tq9vF68bxICjOU2i5szvyYCura6u2PflqIPwu7h5eL7Z7nD64LF656+ePGa+3tIT+PLVBF6/2w5oPdOuoy4QeOydNlxm3jc5L2jpeSf0YY5AggggAACCLSTAAFWO10N6oIAAggg0H4CPsaQRqWKPy9V8NIH/0vhQ1y2NDjQuELLZk+xsHCM5CiXNoxlaSM9V5lxGy1bOj3nMZZuzqtrJeCXTo2akmsXA6T0tdW6eH01T9Zdegcl65qFSmEA/bBfuhyVG6e4fKX3T1KvZseIJTFHAAEEEEAAAQRaJUCA1Sp5josAAgggsDYE/LN9R8gUYviwXLXjujjXNqnnqafL7R3yrdhXcHGD9E7xeZwvbnTpSZNVlzbiWSsEkkuTvkDp5+kaLV2++GrxSXrb1HNfv/Q92rhDfB3nqX3j0yar4ibMEUAAAQQQQACBVgoQYLVSn2MjgAACCKwNgWvx4f5aHGNtaK+/Wl6La3stjrH+rgxnhAACCCCAAAJrSMDvXcSEAAIIIIAAAggggAACCCCAAAIIIIBA+woQYLXvtaFmCCCwEQRC17TLT3SFxZdvyBIEEEAAgXUtsPjvweKTdX26nBwCCCCAAAIrChBgrUjDCgQQQODaCqQ/m1zqDZReem3rw9EQQAABBK61QOPv/MbX17o+HA8BBBBAAIH2ESDAap9rQU0QQGCjCtQ/n1x2B7Cw/FKUtVF5OG8EEEBg4wqE+4tu3NPnzBFAAAEEEEgJEGClMHiKAAIItFKgI+Nhlf9WXvA73ddqfOveymvBsRFAAIHWCHTYgv/6X9C/Af7/Dv83Ifzb0JrKcFQEEEAAAQTaSoAAq60uB5VBAIENJZDKqNT6KlPosEzew6vqgs2XF0KQtaE8OFkEEEAAAVuY178BtfBFRkfO/13QPcNpjMs7AwEEEEAAAX3Xz4QAAggg0BKB+gcS5Vj6hr3QlbFMscOqcwtWma6FDzGhW2Eq6GpJPTkoAggggMDVF/Df9TWFVxX/N2A2+Tcg5/8m5LszdlkX86tfG46AQEsEFrwJYny0pAIcFAEE2lqAAKutLw+VQwCBjSKQ8W/Zi/3Z8EGlNDlvc2NVm/eWWPrQQn61Ud4FnCcCCGxkAf2ur5YWrDQ1bxX/IkO//ws9mfDvAgnWRn5nrM9z1/u9VlNLw/qjHlzpbDv8za9HzcdU0HomBBBAIAqoUTITAggggECLBEIjLP8rLusBVvemvBX6sjY3WrWp8xUbKnea9XjF9FdevbVWi6rJYRFAAAEErqaAfs/7ozQ2b7PnqmEMrE7/96DQm7Vsge+bryY9ZV87gXTLKgVUuVzOstlmNyrI2rznV9VqNQRaV7qmqk96Up2YEECgvQUIsNr7+lA7BBBY7wL+t5L+gMp2Zqx/W96Kg1mbeLpskycrVp6qWXEg6wIkWOv9bcD5IYAAAuYf1Kf9y4uJU5XQrbxvR8G6BnJhIPelH7OxQqD9BdJhlWqrcCiTyXhg5cMl1HMihVMzM3P+mLFZf8yVSlYul21ubjac4KZNm23btm2Wz+evSogVAjTPh/XfV6UyH/4eI8QK9PxAoG0FCLDa9tJQMQQQ2CgCuutgzgdw7/UAq3tTzi4+XrLJMxWb8kf3sH/7XuTb943yXuA8EUBgYwqol1R5pubhlX+B4Q91Kx/c22ndQ/ypvjHfEWv3rGNwpbBKAZHPFhuRKygql6s2OTlpp0+dsiefetKefPJJO/TEE3b06BE7duyYHTlyZPHkt2zZYr/8K79q3/zN7wwBmMq+EgFT+OIwmw3B2YkTz1hfX7/t2LHdQ7JrG2KpHpquxDktovEEgXUuwL+K6/wCc3oIILAGBPzvl0zeuxCO5Kx/e8E6h+Zs1rsRXjxSsp7Nvmxn4VIbLFq3r4ELShURQACB1QnEHky686yCq7FnSlaamLcuD64G9hWsOKRWuEwIrA2BJGDKWGe922vVb0owNTXrj0m7eOGinT5z2g4fPmxf+MKD9hsf/OBzntTZs2ftve/5FvvKI4/ZrbfcZNPeWkutsV7MtFDzVu+5bAiN/v7vP2Vvf9tb7V/9q++2//BjP27btm622bmytxK7Nv/dKeRTeDU/Px9OiSDrxVxZ9t0oAgRYG+VKc54IIND2ArrT1OCeThu6vmgXDs3ahSfnrHdr3jQOSme/f4WWUDPKAABAAElEQVSpNvf6so4Qq+2vJRVEAAEEVitQ88+uc+Pzdv7xOZt4phLGvNK/Bf07fFxEH8Q9hFz83l8tJ9u1UCB2ETx3/qKpZdOhQ4fssUcftS9+8Yv24Q//2bI1GxkZseuuu95bQO2w7p5u6+vtC10NJyYm7Pd+73+GfUqluWX3fSEL/R6HXn6Hdxms2vHjx0MR73//r9s7vu7r7K1v+dpr3hpKY4BlMrnQ+uuFnA/7ILDRBAiwNtoV53wRQKD9BOofTDJ5HwfLW1ttOthpkydKYSyUs4/OWmdvxoYPFv2DTLOBTtvvtKgRAggggEATgdB7qMPKfufZ0aMlO//UnOkutAO7C7btJd3WNajxrzqSAKtJMaxCoF0E1ILooYe+aP/5P/1H+9M//ZMVq/XGN95rN99yi9188822b99+27p1iw0Pj1ihUAgPtYDSOFjvetd9du78uRBwabysK90yqrPTb5ZTnybGJ/yuh8m4pGoRpXPRI3bz02ZxWdznhc5rXn6xWLCnnz7hrdG+YHe/4hUe4G0L3St1DCYEEFhZgABrZRvWIIAAAtdUoMMbWWkQ95HrPMB6tmhnn5i10SNzVvCWWRrkfXB33vL+bXz44yZ88PHq8XfONb1GHAwBBBB4UQL1VrRqVaXxD8tTSXh15iuzNn22ElrcbvIvLEZu6DS1ytV2+jUff+W/qGOzMwJXSUDv05x3yxsfH7eXv+zOcJS7735FaFH17IkT9tRTT9krPKR5471vsrvuuisEV9u377DBwYHFAd0vr9qAfeM3fn0IlbROLabUwuvFTgqkap5UKaSam00Gi1eZNf8PUg3duzxYWmmqVGu+by35O2yljVaxfF6D3vn0jLdS+6Zv+gb7yZ/8KfuBf/+D1tlZ8BCrckXOcxXVYBME1qQAAdaavGxUGgEE1qOAvnTL+t9NuvPUjjt7rFqqhW/kz3tXQg3ou1DtCt/MF/r8Dj4+ZlaY4qeaONfC+Gmnvslit0NtE5eFnVf5o3G/xmOpmLhNnKeLXm5Zev1qnj+fMla7bdwuzleqR3p9+nncfrllcd1q5+ky9FxT+lql1ydrV/9zufKW2zt9jMbncfvG91Zcnt4+Lnsh89XWtbHsePz0/nFZs23TxuntGvdtfB23XWn5atZr3/SUrstzlZveL/38+e63mu3jNnHeeDy9jnVfbpv09vF543Z6rWm591fjtsmWz+9nYxmNr1Vaug7Pr/TLt47lxzK1RTTyz98L3mWwWvYP5Gp5dbxkp78842MezvmHYvPgqmibbuqyrmEf/Nq7FjEhsBYEYqMhfcF2333vts997rPh/fzJT3zC7rnn1fajP/pj9rKXv9z2799vPd3FxVMq+53/FCQtbeXkqxf8bx7/nwIrPRQavdDwSmXrEb788/+kNM/pvy1v7ZXJXBrr6vTp0zYzWwp1Gx8fs1kPt0qlcgiV8rm89fT2+mDvfWH/xfIWz+T5PQl18V06C0kLsB//8R+zf/bPv8327d39/ApiawQ2oAAB1ga86JwyAgi0r4A6CWrMq2FvhVWembda1Wzs6bKpK2F1rubf1tdscH/B707oH27COKa+h76QbPyck34dn8f58z39xv0aX6u8uCzO08dYbll6/WqeP58yVrtt3C7OV6pHen36edx+uWVx3Wrn6TLSz+P+yy2L655rvtp909ut9FzHSq+Lx15uWVz3fOYvtJy4X5zrmOnn6TrE5XGeXhefN65rfL3SdnF5nK+0n9a/0HWx7OXmzcp8odvHMuM8XU7jssbX6W3Tzxu3S79OP9c+ja/T5az2eWMZja+v1HFifWL5cV5frhZXodWV321w5lzVxv13+zlvaauB23WewweKtu22Lm9tW7AOwquoyXyNCCiIGhzstx/8oR/yVlh3eRe5JKj6qZ/+Gbv3ja8PZ6EuenOlSgitYjjVrFtgDJ9eTHilsKizcOkjr+qgaXp62luMjYXnL7ntNvuz//2/rDQ35y2xFuxRH7fr+LGjplBr1+7dfsfE06EF2Y/+hx+zg9cfuGIDvZcrFSt6N8a5UskuXrwYAiyd64sNyMJJ8QOBdSpw6b/mdXqCnBYCCCCwpgT8Q4w+83QOZG3LLd3+TK86bOJkyT/ozIXuJqUpb4m1y+9O5duoS2G+y7+hLGisBt80fvPvT5kQQAABBFor4J+FQ2hVqyxYeVpfQszbtIdXY8fLdvHonM1c9O5C3sJ2eHen7birx4b3a7xD7yre2mpzdASet4BCF/WMu+GGG+3rv+Eb7M8//GEfu+o6u+7AgVDW+MSUt2bqDC2YVnsnwdhSaaXKqGWWjhv+g6kHU9onhkCaZ7MZO3vugodRp0LXwbGxUTt79pwd9m6NH/3oR5KivYwH7r/fPvWpT112KHV/1PT444/Zv/ruf+3PkvMJCxt+JAZJ90DVIwZRer78uSzYfjfSQPcKy+Zrd4S6KwxkQgCB5QUIsJZ3YSkCCCDQMgH9LaauI90jOdtya5dlvbvgqYc7bPRYycZOVKzkrbDGT5Stz+9Q2LM5F263nu/J+ocg/xtOrbE0Kc3S33SNoZb+wEstC3/3pV6HffUjvZ1ea5s4aZ1PYZO4PLUsWZv8DKvjNukVyz2Px9S6+vNYP801xfOpv0xe+/Ilu/qLsJ12iCsa51qVWrZYxcUn2jk1ads4NW6TKmeJk7Zv3M9fh81XKCPWqSOWWS+jcZ/F7WKd4rFS5Wqb8Daol9VY5uKu9X3C9lror+O+oViV409iHRbXaUFcrifaL5kl+9eXabY4LW7gS+rHTa+Lx1hcttyTehmxqLBJ6sXieWhF4zF8Udw0zsP++uELwjKdR33lZbs37LRoUd9/ueMtHjAeKJbhcz3VtPh+9edhWX2by44ftl7lj3oZ2jo8DQX7C51fMlu8Tt5bx+L7I67Tftowvo7z9DkuWtcrurhN3FflhoIu/VhiVt8urI0bLink0n5LnjVss1hm43LfKZxX3DnW07eLv0tiBbWrTjZ9LeLJLxa7+CQWWJ/Xl0cPvUwm/0Dvn0Pnyx5e+e/tWQ+rpnycq4mTPj/jrVC8m3jRB2ofOtBpW7zboFpg6YuJxd/jsRjmCKwBgRjQlMslH0sq+WNEQcz0zHSovQZoV2urEDilzkev47I4V1nNWl0puNKkIMzzqSVTdX7Bx8uq+H/L3lUwl7GjR4/bz/z0T9nv/M5vL9lOL4aGBkPINjk5aYNDQ3b+/Pmwzd69e+322+/wMO4Gu/7gQW9ZNmgHDlxnt956q6n8xrqpu+OCN+3S+aVbe6kw/T4ol6thvW7KkJ4K3oVwk9+FUdOpUyfDOF8Fby1Wrda7PKY35jkCCAQBAizeCAgggECbCaQ/WHWPZC17i4dYPoi77kg1+rR/Y3++anOj8zZ5smzFIf9jybscdvblLFf0P/j8m/zk78alfyS12SlSHQQQQGDdC+gD7Xy5ZhXvMlia9MeE/+4emw8tsfTFxNC+Thu53oOr6zutb7vfpMMHbe+4NCTPuvfhBNeXQAxuO/yPkHkltz4pGNJ/B5piUJWex6BKwU/Gw52Y7+iOg9VqNYRQYefUD4VXuZz/zeNf9GkMrYsXx8N4Vdq/p6fH+vsHwh3+FCiXvLviR//iIyG8+rqv+3o7fvy4h0Rle+yxx0KJo6NjfgfE7Xbs2FF76Z132fu+99/YjTfeaNu2brMdO3faiIdLvT72Vd6DME3L1SuGbsXOfAirxvxuhhMTfkdDr6fOa3BwyPp6u00DwCvQ07I4qeyRkU3h5cULF3y9znnpx/O0l4KzGBTGMpgjsNEElv4XstHOnvNFAAEE2lXA86ckgvKxG/qztvnGogdYGevdmrPxZ8s2faYaPgxNeEus+YoP/u4fhrKd/vA5AVa7XlTqhQACG0kg3OmstBDGL9SH+FzRv2zo9d/jW7z17JaCB1j+8NZXyYDt/js/fnrfSEic67oRSH9tFltgXfBQplrvDheDmNitL/12VzCku++p5ZQmjZ+llkhquZQObBQKdXpQpAZYjz/xpH3mMw/YP37uc6H7nVpB7du33+551T32qnvusT27d4Z9u7t7Qpkf+cifh7l+vPGN99r27dvt8OHDYRysea/A29/+Dvu+7/t+6+3pWtxOT9TiquT10LFj4JZs0OHL5sMytbq6ODpu//APn7GP/+3f2kMPPRTW5Xzw93u8Lu/+lvd4662bw7bp7oE6z67u5HhzPv5Wep2OpdeaFwr5EO7FEKyxBdiSCvMCgXUuQIC1zi8wp4cAAmtLQH+o6I+8ZK66e1N1/5ax0Ju1AW9q3j2St0H/1n7Su6BMnqr4WCoVmxv3wd79Q5IGHtXXf7rDlZ5e/UkHiX+ypp+/2CNfybJiXZ6rzGbrm62L5W+k+VX0UHDb0B1Eg16Hr7WvOfFVPM8Nfy7ryfbyixl+K+q97P/L+U3GCl3eWsTHKuzybuG9m/Pe2qrgX0bkQ3fBggda4S6z9VYqS36n+r8H+mUuLSYE1pJA+l2rVkWaurqKIYTR+1kto8bHx+38uXN2zrvtXbhw3kZHR23MHxrYfP++/faGN7zBNm/ZHIItBTYKkNTKaWp61seu+gv7v/7pe72V1uVjRf2Sl//2t7/d/st//Vm79Zab7d43vcl+4Af+vX3xi1+0N3/t19ptPmD7wYM3eEutfvvYx/6Pvfc936Lq2ZB3E9QYXQqsFCbF1k76e0yPdMspbZ8Or44ee9p+8Rd/wX71V35Zq5ZMOsZPexfGT9//gL3KwzWVE4M6/eOm89I05YPKhxZY9b31PJ/3bpf+b6IGvleLtB4P11SvlVqn1XdlhsC6FiDAWteXl5NDAIG1KaDbR/vHmPqnoNg8Xd0Ic8VM6DLYPZQLd6rSoMAVv1thZda/5fdxVmr+h1f4wKOZ/08foEJZ9Z9aqilZdvk8rEz9UAlxn1CdxVfJRssti7tf2jP5SBaPGdc3ztPr4/P0XNsnx9M5aU0yxTrE15fWXFqfLidun16mLePyWE6cL7ddXKZt0s9Xeq3lKl/baorP4zFjGXF93CZs7D/i+vh6uXnjNvF1nGuf9PPG18m7JVma3k7P4xTrHV9rHpfFc9Gy9P56rSmWE7dPltZ/+kq1PlFXK3WRrfn4H/pQr5sUaEwghbjpax73jcdMHy8+j/O4beNc6zXF+sSytKxx3+R1smV6XSxD+2hKl5EsWflns33juqS85LgrldRYn1iH9HLtm36dPE9M4zES3/gbIzmattMUaxDLTpYuLVPLGo+hZY37pLeL5ae3S5eh5ckUa5C8Sm+Tfh63fq553CfO4zHieyzWebn1cZ32Sa+Pz5O5b6X/+3s6639p57x1bL7Lb7rhXQQ7/csItaoNA7X7B9PwvUM9vNKH5DjF/x5VHhMCa00gdhvs9tZFn/zkJz2k8f+6/NsIdS+84IHVkSNH7EsPf9H+7uMft6fqg6Q3nuPf/J+P2ZvufeNiKySFVxoI/gPv/3X74R/+IR+76npvQZUMsK7WU4899mgo99WveY0HXB/1sKfX3v+BD9rePbv8zog/HO46uHXr1iVjVGmQ+TjpS0AFQxpXS10UFTTFv7/iNnEev2hUy6tDTx62973vX9tf/9Vf2Rve+Eb75Cf+zuuchFLa/q1vfav95V/+pb32Na+2xx5/wm668YZYjP+aUDiWfGszNzu7uN+810Mts/T74QsPfdEeeOCBcJfCu+++2173utd70FYI42Wlf2csFsoTBNa5AAHWOr/AnB4CCKwtgcU/lvyPlss+uPgfgOFPIv9bR3cp1EMbLXhoNe93uNKH/tha5bJ9V2TQlpc+NK242bIr0vvG53GuHfRcUyw/vU7LG19r2UrTctsut2yl/Zdbrv01xfolry7/+VzHievjPF1CXNY4T2+Tfq7tNDXWKe6frF3+Z+M28XWcL7fXSuvSy+Pz5eYqU3WN65Y7xnLL0tvrg413g/XAasJbFZ74x2krT86HoHZwT9LFKufhbdgoFBVt0mWkj7HS8rhNen36eVyv+UrL09vE7TSPdVpufeM6la0puiWvlpax2uPHfZebN5bR+Fr7LLcsltW4rvH1c+0fy1luni5LzzVFp/S6ZM2V/xmPEefxCI2v4/LVzrW/pvq5+NtW4/Jk8z6P4xPWQyptqd/Xqczqsg/LsbRQJD8QWEMCtfDHiHlLpxvt3/3b719Vzb/6q7/G9u/fb5s2b7abb77Zbrnl1uQ3lP9Hks/nfDD4OfvgB94fwqtXvOKV9rnPfTa0tPru7/4e2+93Ojx37qz93d/9Xbj74Z49e+xDH/oj+87v/C7vLvj60NpqZHgwjGE1O+dDL3jXPIVr6aBJAZJaQ2X9C5OK/021+PfYMrXXOgVqTz51xL7tn3+rd2X8TGjd9Td//df2zne9yzTe1sDAgD30hS/YT/3UT9pbPMT6Kw+xHn744TAwvAIyTRkPyQoemGma9eMr5FP2VezqCi3P/uIjH7H77ntnWB9/fOhDf2Lf+E3fFAK22MUwrmOOwEYQIMDaCFeZc0QAgfUh4J+J4ke8xRPyD0j6lj/jY18pBAh/7S2u5AkCa0NAHwZyhYxNX/BBrv1ObTPnqqGFilqsdHlQq5aH9c9Da+OEqCUCEqj/wg4hVfzlTSrFe2MDCVSrFXv5y1/uA6H32YlnT9hTTz65ePa7d+82BVEvfelL7fY7XmoKnRT6qGuf5hqkXWGT7l6ov2/+8i//P/uhH/rB0ALp8ccfs1/6pV+29/6Tf2pbNid38bvpxoN2pw/E/vTTT9t//63fDMc5c+ZMmKvLXtlbqatVlbrghYf/N6myFWTNzMyatp2ZmbGe7uKy4ZX+nVKLJ4VGXcWCXbg4Zj/3cz8bwqu3vvVtoX4//TP/0b7927/DduzYFv7zf9Ob3mx5P8Z/+NEfCfU4510mKz6eVtbroElBlrotaiqVSuGhLoMzs3P2u7/7u/Yvv+s7bbMHelu2bLFdu3Z7HU/bu9/9Lnv4y4/YbS+5xQM3/e2X1CsUwg8ENoAAAdYGuMicIgIIrFMB/4NOf9TFacmHpLiQOQJrQUAtUcLf80lX2MpsLXSHXXxP+weNxedr4XyoIwJRIP6erv+uDjlWDLPiNswRWKcCGsT885///OLZ3XvvvfaKV77KbrrpptDaateuXR7QbAmh0eJG/iSMQ+XjPilwUpD1lLd0uu9d7wzjVz3zzNP2tre9PbRCUnilgc0V4igA+sIXHrRjR48sFtXd0x2ex9AqrlCXRk36d0UBkgIsBVMqp3HSshgSqYWWytKkAeT/22980F73+teH8OrHf+InvSvh91p/X08Y9D2MWeVhmFpjxQBLXRizuWxyLC9D56cQTdPF0YsepiUDzv/Wb/6mfe/3vs92795jOl8FX4888ojJT9NH/vzD3oXyOh/svjO01KIrYWDhxwYRIMDaIBea00QAgXUooA/16/C0OKWNLOCtCf2zgca8CoFVI4U+W/Cmb1ThdTsL8Hu6na8OdbtKAjFQGRsbDaHOAQ9b1Iro7rtfEeZ9HvLEX+XKkjRIeRzMXFVSSKQych72aN2fffjPQk0Vdn38439rL73zTvud3/7t0N1wt7dMynizJXXX+/Ef/7HQ/VAbX3/99R543R72SwdPSRgVFocxr0ZHx8ILHS/WWwv0PO6XzyWhle5GqLsjaiD5B+vB3Ce82+J99707dFdUeKV1Cu50DgrXDh48aH//6ftt9OKo3x3xVb68w0Mnv7ugJeNsxRZYanWmFmB//dd/VQ+vdofw6ud+/hfsHe/4OvuLv/hI6I6511uq/ciP/L/2nvf+Ezuwf++SOidnxU8E1rcAAdb6vr6cHQIIIIAAAmtGQB9owvffqS/BtSwsj5921szZUFEEEEBgYwrEVkrHjx8PLaVe/7qvCWGOgiD9eq9U5hdbPCko0vZxXKi0mGc9dvz4MfuBf/dv7cYbb/JB2g/bXXfdZX/6J38SHult9fy222+3L/s4U5oU/Bw4sC+0hlJLp+WmdIMr3f0wHaLpufbT/OEvf8XHqJoL4ZgGbp/wOyg+88wzi0V+27d7t8HtWz1sSwaB7/DzsYUkACv4nQQ1gLsmhXW6c2IMyqKT1mW8GfL7f/3X7Gd/9r+ELpQq/w//8I/sHd6CS90a8z7u1R//8YfsaTfVdOzYMdu3b2+wUx1jmWElPxBYxwJJnLyOT5BTQwABBBBAAIG1IZDKrRYrvNyyxZU8QQABBBBoa4HOQjLGk8ahmpkt2ZyPa6VWUKF7YP1uf43hi9Yr3FFXwgcffDCcn7rSvfvd32K/9/t/aL/yq7/mgdH2y85b4ZW61v3Zh//c3vKWt3r45DlSQ7ijY6l8Tb29PT5u1p3hec27EKYDLG2j7osKiu64/TZ71SvvtkcffTRsW/Vt5+bmwnP96PZB15PJb6qjrog6sE86h/mab+utyDSeV7lcSTar/9Tx1OpK0z/+4+fsP//n/2SvfOU9Nu4B2e/+z9+z+979buvqKvr+Zdu5c5e94Q1vtFOnToXtjx076sdKujTG8wkr+IHAOhegBdY6v8CcHgIIIIAAAmtFYLlGVsstWyvnQz0RQACBjS4wV0qCHoUsyYDsz/21hPIl3Q1wcmLKPvfZzwbC7R5Yfd3Xf4NpsPadO3faq1/9anv4Sw/b0aNHQpi0zdfv27fPXvKS27z74HUeUpkHRuXQsqsx4Imve3p6be/effbQQw/5XQ6nvZzZcKx0i6bDhw8vXsLDh58KQVZ3d7d19yTjVRU7C/ahP/6j0GVx164doZVVpVINQVaohAdmCs0UZmmeDtA0TlYMsDo7ixYHg/+pn/4Ze+c73+Xb6u6EpdA6q7MzZzfecMOlujz1VBj3S4PQMyGwkQQIsDbS1eZcEUAAAQQQQAABBBBAAIGrJBBDmlj8+PhEeJoObuK6leYKbjTNeqCkboiadJfCbdu2hucKwl52151+B8M7bXp6OoRFXd4KqtiZD+vL9S6K6pYYw6qwouGHytm0aVNYevzY8cUwSQt0p0GNVfX4Y48t7rV50+bwXONVqSujpjfe+yb7wPvf73cXrNi/+b7vD0GWuhnGSXHdvLckU8ssPTTFll4KzM6fPx+WaYB33WnxrW97m/2Lf/F/h+Or1ZbOQUGXppfcdlsYU+tJv5ujxsr6rn/5/1hvz84QioUN+IHABhCgC+EGuMicIgIIIIAAAggggAACCCBwtQUUGKVDowv1gEYB1vOd1IpqdjZpFfV3Pli6ghtNuuOguiPqOBo4fWiw31t35cN4Vwp9tFzBj4IiPRQcxdAoXQdtU+hMujg+8MD9duRwcgfDnp4uD89K9jf/56/td37nt8Mu3/zN77Sbbr4pPM/6oPFqLaW7IX70ox8N89/6rd+0t7/tLWEcq7/9+CfsiUNP2dlzFzwUmwsBk0IthWJ6aJB3TWfPnrXHHnvUW2d1hHPSsp/wuxlqPK2Sh2fpVlsaP+sGb4F1rwdmmtS18tlnnw1jimm7tHnYgB8IrFOBS/HwOj1BTgsBBBBAAAEEEEAAAQQQQODqCailkSbdEVDTvn37ffyoozYxkbTACgtX+SOGMeqqpzGt4vS7/+N/hDsZbhoZCnf7UxfBcn2lArIY+MTgSuNs5fO50BXPc6zQkikdpOkOgJtGRkIJN954o33gA+/34KjkY1p122c/+w/hzn+nT58M69/znvfant27LLbu2rtnl/3CL/xiGHD9D/7g90MIpbDt+7//+8L2r37Na+x2H1ReDrt377Zdu3bZ1q3bbGhoyMfe6vVt/G6GU1PeBfKo3XPPPfbJT37Cfvpn/qPvc0fohljzsbNUf1loPueBWp+P2fWmN7851FMHOXXqZGjdlT6ncHB+ILCOBQiw1vHF5dQQQAABBBBAAAEEEEAAgasu4EGLgqOe7h77mq95nf35hz8cDnnzLbeEeQylVlMPBTLVai0Msq5xr97//l+3N3/t15qCIt1p8Hu+533eda4rDPIeBk33Y8dJrao0+HqcSuWq3wHR7w7oyxUEaXsFXQqi1Hrrq7/6a8KmOz1geuSRr9h973pn3HVx/iM/+qPeVfDe8Drur3Jv9PG4ft5DLA2u/mu/9iv2pS99aXGfB+6/3/RIT1/r56BA6xWvfGUYkF5h1Xd+17+0//YbH7Q77rjD3vMt77FO7wZZ9rJV1/QUQ6rXvvar7Du+41/Yb//2f7envEWa6qOQrlpdoCthGozn61Yg+xM+rXR2+kWj5or+O4QJAQQQQAABBBC4OgL+t0Ym12EzF6p27vFZq0zVrHtzzvq2F6xnUy6suzoHplQEEEAAgSshEAOWXC4b7pg37C2b3ve+77XXve51HsYkbSbiNs91PG2nz6G5XMa2bNlqE5OT9od/8Af29re/wz7oraQU7mjw9f7+flPXPB0zPLz1lz67jvm4W4ePHLUHPvMZ+/u//5T97cc+ZvMeYu0/cMA/2PrRfRuFbXnfb8THtVJLrt///d8Lg8OfO3dusXrf8A3faAqvvvVbv9VGhofC3QR17Hge1ep86L54+x0vDWNhvfarvsoO+DG6PcQ7cuTS4O+xQA0I/+CDnw/h3nvf+17bt3eP3XLLS+xV3gLru7/7e+zgDQc9kKqFc4/HiPsmoVvVBvp7bfeevR5eHQp3WrzppqRbo7wa94n7MkdgLQlk/L9/datdaerwN7v/J7z8pP+AdPtSAqzlfViKAAIIIIAAAi9eYME/ceQ6M3b+0Jw98r8v2szpqm26pWg77uqxzTcWLVfU+B4v/jiUgAACCCBw9QUUJpV9UHONS6XPkeVS1TqafCBdrkbxI6oCqqM+wPq773uXff7znw8tpj71qU96t7tX2z//tm/zLobXW09Pt2Uz2XAnwWeeeca+8uUv2/33f9oeeOCBxaLV0ulXfuVXPejKhbppHCsdQ+UfevKw/dIv/YL9rz/909CF7/VveIO97GUv8xZWN3n3v11+F0AL4ZVCpPSk/UMQls+HVl/6Z2p8fNI07tdZD8LOnDltp06eskOHnrCvfOUroTtlpeqDvf+b77Ov95ZlfX19wSfSqFWYylwpiNI61UGP0dFRb63VacViMeyTrhfPEVirAvpvKOv/QeT8v8+VJgKslWRYjgACCCCAAALXRIAA65owcxAEEEDgmggoaFG3NjWGiF3uXsiBY5hTyGftKR9g/ed/7ufsgx/8wGVF7dixw+9AWLQjR5NB2Bs3eOUrX2X/9Wd/zl772tdYpZLc0U8hUSw/7+WPjU3YSR8UvdhVtK3btllvd1copuJdGXUXwMYufeljxDG38h5k5b3VWHpSKDXpLcgUOM3MTFshX7B9+/eHOybOlSphUwVSKkN1Wim8imXGOstErc10Ps+1T9yXOQLtLkCA1e5XiPohgAACCCCAgBFg8SZAAAEE1pdADK5ebLiiwEaTWkpdHB23T37iE/ahP/6Qdyn8/RXBCr7tffe9x259yUtsz549dtddd9nBgzd4YKWug/NLAp90+bFAHVHjUMVzaGx5FbdrnKssBVGax5ZSCr4aG5N4rufBUyVsozK0/fNx0vbPt26NdeU1Au0oQIDVjleFOiGAAAIIIIDAEgECrCUcvEAAAQQQSAkosNGj6AOcazp56rR3yzvk40wdsXNnz3rXwZkwSPvAwEBoPbXHx4jauXOnDQ8P+3hUXaELoIbFUeizXFCksmPwpPK1jQKo5bbV+tVOsd5xrvL0PIZbqy2H7RDYKAKrCbC4C+FGeTdwnggggAACCCCAAAIIIIDAGhNQ8KPH7Fw5dOXbsX2b6fGa17zWSqVS6OKn9YVCwceFKoTASqeoD8O6m2HJuwBq/UotqbSuWRfBF8qlcvVgQgCBKydAgHXlLCkJAQQQQAABBBBAAAEEEEDgKggoZFILppnZUgicNCB7T09XuLGgDqcxoTTuVtlbWqXHlLoa4dRVOD2KRACBVQgQYK0CiU0QQAABBBBAAAEEEEAAAQRaK6AWTQquFGRpHCnN05PW00UvLcJzBNaXAAHW+rqenA0CCCCAAAIIIIAAAgggsK4F6J63ri8vJ4fAigJL7/O54masQAABBBBAAAEEEEAAAQQQQAABBBBAoDUCBFitceeoCCCAAAIIINAg4PeZCqPuhnnDOl4igAACCCCAAAIIbGwBAqyNff05ewQQQAABBNpCQMOYZLIdli9mwrxhWJO2qCOVQAABBBBAAAEEEGidAAFW6+w5MgIIIIAAAgikBDoUYPV4gJXntuMpFp4igAACCCCAAAIIuAABFm8DBBBAAAEEEGgLgRBb+Q/iq7a4HFQCAQQQQAABBBBoKwECrLa6HFQGAQQQQACBjSsQboaeDIO1cRE4cwQQQAABBBBAAIFlBQiwlmVhIQIIIIAAAghcawFaYF1rcY6HAAIIIIDA/8/eeQBGVlV9/GRqei+bbLKdXbbB7tJ2WRARkSKiFEVAQbCgguingChg+0Rpop+i0hGkqDQLSFma0llge+89m7rpmWRm8p3/mbzsJJtkk92USfK/MPNm3rvvlt+9b5P7zznnkgAJDB0CFLCGzlixpSRAAiRAAiQw/AmYGdbw7yZ7SAIkQAIkQAIkQAIk0DsCFLB6x4u5SYAESIAESIAESIAESIAESIAESIAESIAEBpgABawBBs7qSIAESIAESIAESIAESIAESIAESIAESIAEekeAAlbveDE3CZAACZAACZAACZAACZAACZAACZAACZDAABOggDXAwFkdCZAACZAACZAACZAACZAACQw2gXA4LKFQSHDcX2ppYYDC/THidRIggf4n4On/KlgDCZAACZAACZAACZAACZAACZBArBCAIOXzecWl279CmgoEmsXl2te2wRGu4uLiTOxCHnxm6gsCIE+WfUGSZYwcAvv+KzVy+s6ekgAJkAAJkAAJkAAJkAAJkMCIIgBRyuv1yPr1G+S++x+QLVu2Sbzf26klFgQrt9stuCch3mefe2KxNaKA9rKzYAmGemg90rqtlwiZfQQToIA1ggefXScBEiABEiABEiABEiABEhhZBCBKNTcH5Y47fitf+fKlMn7cGHn33YUmYsGlEAkiCyytILQ8+OCf5AsXXiCP/eWv0tjYqOJX52LXyKJ4YL0FV4/HI34VDCEM4gjOOM9EAiSwfwIUsPbPiDlIgARIgARIgARIgARIgARIYMgTgFDidrukvLxc7r/vXpk+fbr16ctfuVR2l5SpoOIz0Qqiisfjkq1bt5rI9cQTj8sF539ebr/9VxIMBs3dkKJL76YDxEBYvtXW1srDDz8iF33xC7JgwUsmYJmVWw9ikfWuRuYmgeFHgALW8BtT9ogESIAESIAESIAESIAESKCfCUDAgcVSc3OziTr9XF2fFY+4V5WVFVJXVy+JiYkyZcqhsmL5cvn3v5+NxMRqtQZCdKb6ujqr9yMfOcGiNf34RzfItm1bxed1m9DVZ40aAQVhvoD9SwsWmHj12GOPyimfOFnefPMN8bjjxNXqqjkCULCLJHDABChgHTA63kgCJEACJEACJEACJEACJDCSCMCKBhZIeCHFa1yopMR4SUzwDylXsN27S9qGrTHQaJ///eyzUlNbby5uEFvg1FZRUdGWLzklxT6XlZbZkRZYbWj2+wGsnOD31TXVln/+/PkyZ84cOfGjJ8iKlavFqxZvA+1OaOOsbcO8xouJBGKdAAWsWB8hto8ESIAESIAESIAESIAESGBQCDiCFaysYG2F+EUQq/Dy+zxSXV0rr7/xprz19jsmauH6UBB2SksjApZqFwh4JYWFhQI3wa1bt5iQEtZzuLZp8ybj3tIStphN+FKh1ltM+xLAuGO+YJ7gZaKQckNyhCngPvW00+RHP/qxWl69KR9++KFd//aVV0jx7lKzbLMT/fiGdjrtQzw0uDUiFhdeSENh/vYjHhYd4wQ8Md4+No8ESIAESIAESIAESIAESIAEBoSAiQ4qQmARj8U9BCns0OekQFNQdu8u0537tsi6dWv1tU5u/Pn/yh2//4PMnj1HhYq9AdCde2LpCCEFhjbbt22zZoVCEUsyv99v3xcvWiTTp01VV7c4aWholDdef93O19fXW/B2fAlqAPjeJkfccayQnPvxveM559pAHdG29qIN2hQRnXrSBudezBUNL9YuhVWxQsB85EGcqyadP7k5uXLd9TfIWWefI88992955eWX7XogEDCrt3YFdPiyb1s1g9YRp76J3XGMvs/n85orI4puaGxSd9IaHesGa19Obq7NeVgYdldeh2bxKwkMGAEKWAOGmhWRAAmQAAmQAAmQAAmQAAnEEoH9CVbNwbCUlJZLcfEu2bx5s6xds0ZWrlopcLfbvXu3deXwww+Xs1WMgDthINBswlcs9TG6LRAlGlUoWa39QIJo4vX6VECJWAq9+tqrcvY550qC9gV9feCB++XII4+Uyj172iywYEXU0+QIJ9GiSfS94AtrIIiFA52ctpnwpDGoEPMLCaJTKBRpF7531zbMHwhTCIxfWblH50SxWuVVqzVeSFJTUyQ7O0dyIQpp+RA/kRxxaNbhM2XGjBnyzW9ebmJRfHy8il2hLoUj1IW2oqyOKRhqsXI7ttXpI9oIF0WMXam6gK7RsV2yeIksXrxIlixdIu8vXGhFXn3NNXLttT/UtqfauFDE6kia3webAAWswR4B1k8CJEACJEACJEACJEACJDAgBDoKVl6vt50g0KQCAnbjg2C1bdt22bRxg6xavVoWvveuvP/+++3aeNLHPy4nfewkOeNTZ0peXq4u+PfGOWqXMUa+QMzweNxSsrtC7r3nbpk4caIJWJvVTXDMmLHWh/vuvVd+8IPrZOKEcfLQnx+yluO+sIpMTnIhEnkPUrTgAqZLliyRTZs2Wp3Z2dkydepUOfTQqb0W/hxRBuJKR4EF15yEzx0FHVyz/qhKBZc5dKW6plYqKyqludXqKCEhXtLTM8xNFPkhPHVWFvoHYQh1PKuC5pcvvUTFoVLc0pYKCgrkggsulIsuvlhmzpguqotZ0H+0G+XimJSUZPlRXmfJ6RMsAatr6izg/uo1q00oS1OhaeLESTLzsMMkPS2lTSRDuU6bIVzV1TeqteAWefHFF+Seu++SlStXWlVJSYk29jNnHiaZmZly6y23yKfOOFOOP36+zufOWsNzJDC4BChgDS5/1k4CJEACJEACJEACJEACJNBPBCAK4NW2mO8gWEFEKC2taBWstsmGDRtMIHj88b+qQFDTrlUQXM4889NymFpcTZkyRfLzCyQjI0OFEJ+5iSFzR0GlXQEx8AWCzZatW60lECw2btwop556uglLiPOFtG7tWuUVlttuvUWOOeYYZVMsycnJumthrV3vSmixi61vYb0fAlFDQ0Ce+Mc/5Kqrvis7duyIzmKfL/v6N+Sq710lkyZNMHc2CEJOcuqJFqEwjo6rHqyOYL3lMMc13I/v+r+94LLnXEe5KBN5/D6XWtaVyXP/fk7+8pfH5Pnnn3OqlfHjx8uJJ35Mjjv+eDn+uONlorYNulhT017rOvQP7YI49NTTf5dzzj7L7p8371izhAqHI3GwsLPgbbfdaq/7H/iTfO5z51nQf0cUQ5vxim5jW0Na24v+4vp//vuG3HrrzfLsM89EZ7HPRxxxhPzujj/oeB2tTCLWY+gn+Dz11JPyxOOPW4wzZB47dqwg/wcffGA7Ua5atapdeQWjR+/XlbHdDfxCAgNIgALWAMJmVSRAAiRAAiRAAiRAAiRAAv1HAGIARAq8IDBg8d8+hlVIysoqZNeuXSrabFJXqtVqWbVQnnryyX0aBbHhyKOOMrGqqGiM5OTkmGtVQkKClqs7xukdjrtZVwLEPoUO8gm0F/1FQlwr9OmXN90sv/n17XL//feZFdafH35IfL5ITKy6ujoV8qos5heEHXVAk0BjwO7v6g1jEK9xliAQ3XD99XK3WvzM1t324JbmiCUQUUaPLpS77vyjrFm9Sh586GEZUzRa6lXwcgQbZ9wg9iCBMa7tUXfGsrIya3t6elpbjCnkLyuvlHvvvcesnC666GK1Lio0t05nfJCnUd08X3ppgfzwB9eqC91inSdxAjfQOuWxXmOaYV7s2vWw8UC9t9x6m6CsvNxsaYQgpudaFKQv3i1vvvVOm3g1d948efvtt3DLPmmOCkaXXvIlefONN+QGDeBeVFRoIhG8ATsKcc7NEJ98Pp8KZ01qMXePXKmB3pHg0hltDTh37lxr87HzjpH3P1ikOxvOMhEN4hoC819w/uftPoiusPZC4HjEcLvq6mvkyCOOlFH5o3Rs0gTzOjExwYTZ7lwZrTC+kcAgEaCANUjgWS0JkAAJkAAJkAAJkAAJkMDBE3AEK5QEqxPEooLIgOTEsNq5c6dsVOuqZcuXycsvvySv//e/kQyt78ertc1H1epmqrq0jVOhZtQoLOpTJUEX9D6NEeXEHYKDmmpjKpBEdpnD7RBHHIGktbiYO0BUgvhToa5yf9K4VkVFRbJixQr53lVXq2vbNJl/3HEm2IyfMFEefeQRa/8hh0yWrSp0QHyaPHmK3KNuh0ilZRE3uWjLKLugb6jHp7szwmXwa1/9ivzzn/+Qj6mb5SuvvGzxnu66+x7L+tCDf7Jd+GbPni2vvfaauuA9I9/4+mUmJqHcxsZGefedRZKZlaluhoeqIIMdIN3y7rvvyWmnnCxVGmfqssu+Lj/92f+qkJVtFlJVuiPkr9Ta6aabfml1LFu2VH772ztkVF6OCWPx8X5Zs3a93P6r20xUw/hCDGpSyzO4N6IcCFXFGsfqxRdesDKOUgHzmquvErT30Uf/IjNnTreysAtlecUeebjVzfIjHzlB/vvf/8hv/u+3ctJJH9cYYvEmUNXU1MhbutvgFVd808q77757ZdGiD+WZZ5+z8cAYHAb3v1YhzplHmNNwb4VV3K+0vTdcf53MnTtP3nnnbROvbrr5FoF7IoS4hx58UK/NtZhsd999p1p73a5CVaK1E1yRJk+erM9FvIlX31OLtyu+daXd7/PutXhDPjgxBnVuM5FArBKggBWrI8N2kQAJkAAJkAAJkAAJkAAJ7EOgo5VVxzhWEDLgroZA1R+otdGTal21Wq18nDRp0iS5+prvm6ACq6K8vFHmCpiYmGiWRx6PClKaGWKV6jEqWLWoyBEycQZ1I0Fo6EzAsYsx+oYd8pYuXaoCyiI59thjNcbXNvnI8R+x1h511NF2bFZrHzDx++M1KHmFxlyqkW9d+R0ZN26sCVhpaWmydesWsxpC/8HDEV3w2ev1SI3Gabrxxv818QoudRCvfva/P5evfe0yDWiebfWce+5n5bFHH1Fh53L7vmL5covvBAshRSs7d+6wOEywCFr4/ocybeqhGki+Wp555l8mXkEwuuuuO+XU006Tz3z6TGkINMljjz1q4tXJJ39C+7ZVHv/b3+Tii78knzz9NItntW37Tg2Y/nXb9e+EE04wKy4EXF+rLpM3qRXaF1W8gksoxLPt27fL87pD4DXXXG08lmv7Djtshgpdy2T6jBnW5rVr18idakGGQOwQr351+6/l6+oS6VcBD5Zu6Afm0exZh8kpp54qf1VXxetViIIF1K5dO+WlBQvk+9+/Rh588M/y+QsuMEELAd6RwNSt5ln33/egiVdHH320iVeIp3XDj35kghTynXfe5+Wss86Rsz5zplq0jZa777pLrrvuBrWkSlTByq/WWEfIIw8/bIH68ZwggbFXxUyIV7D+goUXxtIZR+domflGAjFGgAJWjA0Im0MCJEACJEACJEACJEACJNCeANypHPGoo5UVXMx2bN9lghXc45548glZpCKBk7Dov+Jb35LJalE0unC07QyHmE5wz4JIEC1WQZ8K6s54sIBx6nMW9Dg6n52yh8rRrJrUde4pZYNUUVFhR8TzQkJA929deaX87re/FVhFwU0PuyxCnIHY4+RPVDczuF82NDSYy5mzox5YOYIehBmUc7yKY6+//l8dj6fa3OwgBEI4ycxIkwyNweUkWEGBOUQfJIw3Un19g2zetNkErA8+eF9+cePP5TiNS7Vly2a7jrmABJEMFlxHH60xu9SCCtZVSMuWLROIXSnJidbmyGjD9bNF452tV7EqII888pic+9nPWrswl1JSUswqDZZpn9KYZ6gTboVIP/7Jj+T3v/+jFOTnyfr16+0cxK3TT/+kxbeCeAU3SKddzhyaNHG87e73xYsu0vkWJ361hipvHYOFC9/Tes5UK6xIm9F3WHi9+977amX2VRub9957T2655VYdo2+bSyyCwYeUF1hmtXGMiKvOjpIQXiEaVldVyU9/+hOzKkRMs5/97Kf2euCBB3UDgjMkW63cILghxtdQnd82EHwbEQQoYI2IYWYnSYAESIAESIAESIAESGDoEMDC33ENhDBiYpNaEDlpT1WNbN68Wd5fuNDcz/7+96ft0oQJE0yMuObq78ukQyaZdRWshhLUIgVugJ2JVajLeaEQR6gaLot59A1CB+J9/f73d6jb3FEWB+v662+QwsJCiwmVoILJV778VROe/H6/iVNgccmlX1aBI8OslfC9MdBoghJiYyWrKNTcHBFNoDwhLti2bTvknHPOkkMOOcQC4x9zzFyp0WD4H3y4SIXDbHNjq6zcI08//ZTFoJqj7omwSIKLG4Sj5uaguSBGRxGH2AR3vZ+pCIMEcQgxnJBgTbRm7To545Onm0vcbhWvcA1BypHWqhUeYnhBwMI8gLseXEhDaukE8epZdeU7/fRTzRKpobHJyoaAFAxG5sShUw6Rm3VnPr9aMyEO1d+fflqtuC43AcsR9VDPueeeq9ZluhOlCkudWTMh7hbOFxSMtnlYW9fQtrMj3CFRJ+YmjuCP63/60/0o2rhBsEO/EfsqPz/fLKxgLffaf16Tiy/6orlZrtbdMiHEYQdFJIiLiGv1gx9ep66Ph2kbz7aA/NOnT7f7L7nkYpk1a5Zc8/1rLWg9XC0xmgh8jzRc5r91hm/DhgAFrGEzlOwICZAACZAACZAACZAACQxdAtGiFRbr0bGsYNWCOFarVq202Ek3t8Y5mjlzpnz6M5+Riy6+WHeyiwhWsL7xaRBx7LiHhEW5GquYZZUjVOGIFC1WDecFO3r7/PPPW58RtBzplFNPMzEFIhRies2YOUODqf/ZBBHLoG+nnXa6fUxLSzV3tA8//MCsqkpKdltsKYcnxiuk7mgLXozEjoI722sa20r3NNS4Ve9YGXjDGDmWS7CkeuON1+0a6oGLY6OKLhEXvMj4IO4V4ji99tqrWu/rFmx9rQpxSIiN9crLL8v2HdvtO+YHdjU86zNnmUCGXfYQ7L1KLZBGF+SbgOS40b311ltm0XTSxz/eKto0Wcwp9MeZE/gMUSt/VJ6cffY5JmChIgin0QIUznl9GnfNMR/DiQ7JsU5DTKuWFo+1BeIb0gvqqlj9k5+aUIg6wQHB4O/84x/Naurdd9+1fN/73nftiLepU6fZs4DPEydO0nz56ia7Wi22vqHWZ8k2nqjTsZCDqLh5yzbbkfC7//Md3KZWcBkWyB9B3sePHy8/vO56OfnjJ8uYsUV2veMOjnaSbyQwyAQoYA3yALB6EiABEiABEiABEiABEhjJBGB1AmurjqJVRWWVWvtsksVLFsu//vlPcayszj//ArVOeUhmqjUNLIggWPl1d7lWvcrcoeA+FdQyHYEFfB2BwREoRgJzcMXOe2s1ePnVV31PLXFmCtzRzjrrbLNGQgwkCB3Q88AMMZVqa2pVMHpF/ue739MdGCdb/K+MjEx1N/uUWkt9YNgg4hymghcSeEIUKykplTvu+J2dgxUUYkLtLi5WoehmFVym2nmM9eGHY5e85jbx6uVXXpXp0w41sQiB5qMTxJl7dRfDoN4Hq67y8nIZr+6OEIxgBXajuvch2DwSBLEf//gnZgkF10Uk7LTY2NBon/HmzAF8nqy78kEsg9sg5h7mSnQyMQnn9WR5WXnbpbC2BUJUY2Dvboy4P7rstswdPkRY6y6NatGVrgISUklpqbprFgt2ZkSgdYhmL774ol0rVn43/uKX9nwgkDsSxhBxunBE25armyTcIe+7/wF1l/yICYlouzPP8RkWYNiR8Tvf+baJce+8/bb84x9/t7hhKDMhIVG++pUv46Pc8fs/yKfVdbKwsKAt9ltP+mY3840E+plA+38h+rkyFk8CJEACJEACJEACJEACJEACjnsgFsZ+v6/NWgqi1caNG9Q18H21BvqTYKGNdJEG4/7b40+o6HK45Ks1TVJiklmq4Bri98D6B2Vise4s3nHNWcTj80hL4ACLo7r6RvnFL2607sMVE+kLX/iipKYkmVgC8QUJ4hIElq9ddplc+uUvm/AFcScyRl45Sl0PkeLVxQ2xpc444wzLj3MwPlq/fp0sXrzYXPUQdwoBzZEQSPzxx/+mwfQj8bdw7nCNvfUjFZs+//nzdefHySYioe6OQgkCjM9SN8N1Gmh93bp1cvc991qw80sv+ZIg8Dx24oOF0nHHHSf33HuvWkvlWjD40aMLUY0FoofbIxJ4BEMR9zh8d7si/cZ5qJ9wMLXPrXmhDsH1ct36jSqYPmAiHUS+SSqYQWgrKSlBMZactjv3O+c7OyIPjOASVTRyEqzSZs2arbsX+jRI/lZ5Wy3EnHThhReq+FRk4tSjGvj+rjvvdC6ZMIjdGC/U8UTAfNgbYhw7csQYBwJB7V/YhKyxYz5rcbcuv+Jb8qD2zdlhcvbsOXLF5d+013PPvSAnf+ITFmurRfvdjYFZW3v4gQT6mwAFrP4mzPJJgARIgARIgARIgARIgASMgGNtBSEFlkFI2F0O4sTixYvM9ev5556z87AGuvqqa9S1baYJFUlJCWZlBasTCFZNzR0EK4gQusruuHi3wkbgG0QVCEC/++3/6U53fzIhaeWKFWYBddzxx5vwF+f4WSofcIMIiATBA1Y70SzHqIUQUnZOjryh7nwVKpxg1z64qeE2WGUh1dfVyidOOcUCkaOM8877rJz+yU/KL355k1RpcPik5CSLTZaenh5xG2yND4V7OwpAqB8iHNwAr9GdI+HK95y63CHl5uaoe+Gz9vnGX9wkh6q1GAQ3uOblqdsfEuJrwbUQCYH7C/JH22e8/Ud3DpyvwleGBk9HcHnwQoI1GbBgni1eslRuuOF6szyDeAXhDzsCop0Vag3mpHq1BsPcdsRA53zHI/qDfEhp6Wltl5csWWKB4CFgbdfdIWGRhfTzn99omw5AY/vI8ccJYor94AfXSWlpiXHJzc2TrKwsE9rQB7QreszwHW2CxRg4etweG1ecx/f5x861eGGXXHqpzpEHVRz7o8bQSlORa6y6j54if/vbE3LOuedIcxjCn0JhIoFBJkABa5AHgNWTAAmQAAmQAAmQAAmQwHAngEU7Fs1wnYI4AKFh9er1skhFq9dee03uvitiVVJYOFruvOtuOfbY+eZSlaJWQlg2O1ZWobCWo2KJ6gCWsFiPXrAPd4497Z/jOrhhw2YVPK5V4eMYDWZerRZXjfJddQ3MzclqZ33llOuwxFg5gg6u6VcVnfJU7DhSsBvg9u3b1VJuoxx91BHSjIuaIJYhWdD1VnEH5cAlDsHEJx8y0a7jDcHOIXzhXqce5HWSI5Vk6g57jjXSxV+6RHfcS5di3QURCUHYkR588M+64+F8FaEgpKkrqupQsMxyEgQsCGnY2W/uvLl2GvGzbrv1Fps7l6p4k59fYO3A/TU1NbbL4YIFC+SnP/mxxe2qrKyU+fPny3Ua+B4B4XcVl4gLFbWmLWo1FVCXQlxriuqHcz366PQzQ4OtI7A8xDnc64iHDY0Nyneb3QIXQkfwQhw4WH7BFXCsvpDwXASDIesfODrjh2uoB99R7h2/+62Uajyw888/36zfoM5h58dmdeWEJdq8ucfo7pNzYG6yvgAAQABJREFUTKD7gwb6f+yxR+0Z/NznzpX31BryqCOPsGc2unzUwUQCA01g71M30DWzPhIgARIgARIgARIgARIggWFNAItvCBUIyA4BoVrFgTffeltuv/1XcvLJJwkCSEO8uvLb35b//Od1FbSWyaW6893MGdPUYiap1dIKMYeCtpCHmxcsZLCQ5mK666kDNpCDEtXVEqmhoUHd6SrVmidLraM+EbG+0jw9SRBCYPEGa6uzzz677ZaFC9+zz844OO6JiEn18MN/lm3bd5pLHNzWIKJARHJemBO4zxGv2gpt/QARDAmWQ0h33X2PTJs6xSylMlTUQsJugt+/9gdyVmubQqqKOW0pKhojF110seXbsWOH7FHLL6Rp06bLT3/6Mwt4/nEN4H4r4nMdOkU+99lz5OuXfU2+cOEFUqSxn46bf6yJV4hLBfc+lPXwI49ZHC6UAyZBnZNOQswtp479GSo5AhYs0caNG29FIOi9wy9Rd8yEOIedGRFTbK26T0L0hXiFewNRHPFcIEVzRB688OzBBXKbWnRdc83V1tc5s2epO+Sf7DmEBWSiCsqRoPlwDfVqv+dZLK2vf+Ob8tZbb1rZf/3rX427w9ZO8o0EBokALbAGCTyrJQESIAESIAESIAESIIHhSgCCBV4JKlpBJikrr5R33nlbXnzhBfmdWoM46c4775ITTvioFI0Zo2JLvJ2OuAdGLLZwAgtnLp4dYj07ghd2kYNF2+//8Ee5/JuReFRPPvm07h6Y22ax07PSINiE1eXMrS53x9stCKj+gu5qCIuejIx0UcM4mTEjEtQ9XS2LMNYPPHC/XPuDH1hg8kCgaR/3OkfIQVshwLjdewW1lJQUFTwTBK51X/ziRfLpT3/a6kW+k046ST6v9U4YP0G+deW3zeoJ1klwiTPBVMW2vLxRcqbe89BDD8pbb74pl33tMr0/x9wIv/LVr0ltba3cqhZYTnKCpjvfnePhs2bJ7+74vXzsYydp3LV4iyeGeQo3xUx13XMSgq+7W10QTTl0LnRydOYy3PQmTpqofVysOxBmWfuRHQLgx3U3wJdeWmB3//x/f2YCXl5udpsVlFOGZYBgZR8iQhbGCSTDutshkiOMwSptvDL78qWXyJNPPC7nafyxMfrcoS+uOJc9r+UVFbJGd3lctOhDGTdunFmibdywwSzEYEUX0md67yhZ8XwjgQElEKf/cDjzfZ+KoWJjZwr9N4WJBEiABEiABEiABPqFAILDun0u2bMlIOsXVMmejQFJG++X0UckSc6UePHER3bI6pfKWSgJkECfEsDSAtY1fl3Qe9TXo7xij8A6BbsI3n//fVbXnCOOkO9/H25tc83Vy6MZdV1sC2iIXk5qt0h3TvLYYwIYC1jtQKxB8G9Y9EAsjGbc48I0o8fjlpLdJXLEnFkmZOzevdsC639WYyQh/hLKvfmmX8pP1O3uhBNOUIu6/8gtt95mwdzhWqeebpr2BtmPjjVVVVWjcZ1KLa5UYlKiYPdB3P/Mv/4pEJxmzzqszeURMZ0gVCGhTU1Nze0skNAO7EpZXV0rjzzysFkjWdD61GS1RAuYqBrQe9avWy8rV66wF9wMVSY139TU1BQV42aqS91smTBhoiRr7DWsiTGvIaChbsSqeuvtdzSG1Dxrx6OP/kXO/exn7TqsxqItoixD1BvGBQvweN0B8cUFL8l3vn2luUEeoe6YTWpdBUuox/7yV7NOPOqoo2ThwoUaVP8ryvWnZh0Gt0HE40I5eEbwcrwZEbAfweXhlohdGqdNm6YxrVLliSeeMiszNANlIuZcm8VYVNucjxC78vPz1V30A/njH++0wP6w9uIz6RDisT8I4Llwq7mhx5nQnVRCAasTKDxFAiRAAiRAAiQwcAQoYA0ca9ZEAv1JAAt7LHCxAMdC+rXXXrWd5x64/36rdsLEifLrX//GdktDbCMYrETvHohMXCD37QhB5ICY4oWaqAlC04EkpxyMz7333iPf+PplKu5MMIHsxQUvW0wmiDzFxbs0LtaRskvjVCGOGdzQzjnnXPn2t78jUzTuFKx40B6Uh1hTW7dukUUaaP2ZZ/7VFpAd7Vu/YZNMnDBOYzRpTCtdzEaLJ45wg3wQqzoTi5AHQpdHrbqwKMY8c+ancw/c65AQj8uJ34XvEP0cXqjfEa6cuenUj/sXvv+hCWCnn/5JycnO7LFlW6QMWJ252spH3agLFlNw+bz++h/K//3mNxrf63gVgV+3WFy33HKbHKVB5BE7y+k38u5UN8nly5eb1RYs35z09jvvytxjjravq1av0bG7V27/1W32XYdSxo0br2Kf3+KWNWkcroDGSNulcbechCDyV3zrSrPScvg513gkgb4mQAGrr4myPBIgARIgARIggT4nQAGrz5GyQBIYcAJYeDvugh98uFge0RhIv/717W3teOjPD8snPnGK5ORk2zkICnBLw0IeyREH7Avf+pQAGEO0AWNH9DiQClAOxB1Y9tx3373y3f/5jsxSF7snn/q7uvONFbjxIc7ZqtVr5fjjjpVyDeQ+d948eeftt626KVOmqPXP0ebGV6s7Fb7y8sttOwQiA64hrtapp50md999r1kb1dY1mGtdx/nROm20T133BO2Nnl/RZThMcDeYRHPBNYg1zrXo++ykvjnlIn4UEsS73go8NvO1LisfHdLO4DMsuMBxd0mZ/OTHP5I7dWfA6dOnqxtfk8bjWmf1nXPuuep2mG2C17Lly+S9d9+183ibOnWaiXfL9fySpctl5kzcG7HsgiC3bt1aeV8Ds8N1cdPmTRoUv9gs2eD6CbfIURqsHzt/Hn7Y4TJVLbjQJjzfnXFoq5QfSKAPCFDA6gOILIIESIAESIAESKB/CVDA6l++LJ0E+pMAhBEs5uFStUfdwP72t7/KzTffJIibg3TTzbfIeed9XmMxFapIEKeL/EhsLFzjghgUhlbCWEPEQtqs4ofbjV3xisxCyoIj6QoUos7OXbvlnnvuNgEGeeHKBte2Mt0Jz0mpGufK5/fpuXLnlPzPd78rX/nyV1U4OdREl2hhqS1TP3xwBCkU3Zt56cx/tLM390V3AXW3u1cFo5AKRtj4oLa2Xp5+6km5+OKL7BZYvUEo27JlS3QR5u4HqzckBNs/8cSP6cYI31Frx3lWNurAfbBKcyzPIGbBeqtRra5QP2KIwRor2gINu4UitWufneEbCfQ9AQpYfc+UJZIACZAACZAACfQxAQpYfQyUxZHAABEIqxjlUhcoLIgXL1kmt912q1leoXpYiCDO1WFqxeFTQSOoi2Us9pG4GDYMQ/bNEXsgVGHBiWDx0WOKcUYMKtVMZNnSZfL8C8/LyxqQfMGCSFByp+MI+j5v3rFyzNy5uuvkTCksKpQstSpCuRBOost07hkpR/QdVk8QleAGuXnLVnUPfEme+/ez8txzz5nw5LCAqHX00cdYTLnZc2arO+dYycnNtaDzEKmc8UJ+fHaeQ4hZEeuziBlb5Jpex66R8KvUhDxMJDBQBChgDRRp1kMCJEACJEACJHDABChgHTA63kgCg0YAi2AsrtXwRJ5//gX5woUXSIXuYIZ0x+//IBdccKFkaPBouFYhLxbHI1mQGLSB6seKTeRQ7aMzKymMOcbbEbkqK6vMpbC2tkbnQ4vuOJmgwcXT9ZVh1ntoJhavzRqjy7EU6semD5minWcHFo5INWqRVa5WbFXVVWb1Fh/vl9TUNMlUq6tkDZTvpM5idznXnKMjbDlH5/l0jk4+HklgoAj0RMCK2H8OVItYDwmQAAmQAAmQAAmQAAmQwJAmgEU13IwgNDz22F/li1+40PqD3dv++a9nZf7848Sl4gUChjvCFRfFQ3rIO208rO+6So6o1dDYZEIWgo5nZqS1y47FKizzkAcJcwQvWv0YDntzODZqDCs8SwiCP27cmL0ZWj9BKHbyKELliADx3VtPOc+kc9ynUJ4ggRgkQAErBgeFTSIBEiABEiABEiABEiCBWCQA8QqWV2FdTN9//322Gx3aCZfBm2++tW3nuGYVt5C4ODYMI/bNEVEQmLxJ50x0wtzAy8kTfY2f2xNwhCyIxsHg3uD0yOVwdPK0v5PfSGB4EaCANbzGk70hARIgARIgARIgARIggX4hAAsQWF7h+LgGa//G1y+zer515ZVyww0/lpzsTItdhJMUrvplCIZsoRRX+mboHLGqb0pjKSQw9AhQwBp6Y8YWkwAJkAAJkAAJkAAJkMCAEoBoBRECOwn++9//lgsvON/q/7budPaTn/5M0tNSzIWJC+wBHRZWRgIkQAIjikDXjssjCgM7SwIkQAIkQAIkQAIkQAIk0BkBiFcQprwel6xevUY+dcYnLdvll18hP/rxj028QhwjCFy0vOqMIM+RAAmQAAn0BQEKWH1BkWWQAAmQAAmQAAmQAAmQwDAm4PG4pXJPldx26y3Wy7PPOUe+f+21Gpg7XeobAoxjNIzHnl0jARIggVghQAErVkaC7SABEiABEiABEiABEiCBGCPguA6qEZa8+uqr8sAD98vESRPle9+7WooKR5t4hbhYTCRAAiRAAiTQ3wQoYPU3YZZPAiRAAiRAAiRAAiRAAkOUAFwCPeo6uG3rVjnn7LOsF9de+0M5dt4xFrCdO8gN0YFls0mABEhgCBKggDUEB41NJgESIAESIAESIAESIIH+JuBYXwWDYXn+heetuksuuVQ+85mIkBUKhTTmFZcT/T0OLJ8ESIAESCBCgD9xOBNIgARIgARIgARIgARIgAT2IQDrK7c7TrZt2ybf+Ppldv28z58v2VkZUa6D6lvIRAIkQAIkQAIDQIAC1gBAZhUkQAIkQAIkQAIkQAIkMJQIONZXoVCLvPbaq9b0q666WubPny+hsNiOg0OpP2wrCZAACZDA0CdAAWvojyF7QAIkQAIkQAIkQAIkQAJ9TsDlipOysjL5+c9/ZmWf/slPSnJSgjQ2NlLA6nPaLJAESIAESGB/BChg7Y8Qr5MACZAACZAACZAACZDACCLgWF+hy4sWfSibNm6SSy69VGbOmClwGHS5uIQYQdOBXSUBEiCBmCHAnz4xMxRsCAmQAAmQAAmQAAmQAAnEBgGIVA0NjfL885Hg7Sd//BOSnZ2p1ldNGhfLHRuNZCtIgARIgARGFAEKWCNquNlZEiABEiABEiABEiABEuieAIK3w8hq9+5i+e3//UaOPfZYOWbuXLsJ1llMJEACJEACJDAYBChgDQZ11kkCJEACJEACJEACJEACMUgAAhUELOhUS5cstRaefvonpaioSJqaQ7S+isExY5NIgARIYKQQoIA1Ukaa/SQBEiABEiABEiABEiCBHhBw3AdffPEFyz3niCPE63FJMBg0casHRTALCZAACZAACfQ5AQpYfY6UBZIACZAACZAACZAACZDA0CTguA+WlpbKH//4B3MdnDZ12tDsDFtNAiRAAiQwrAhQwBpWw8nOkAAJkAAJkAAJkAAJkMCBEXDcB3H3xg0brJBTTzlV8gsKpDlI98EDo8q7SIAESIAE+ooABay+IslySIAESIAESIAESIAESGCIE4AFVrPGunr/g/etJzNmzhSf163ugyG6Dw7xsWXzSYAESGCoE6CANdRHkO0nARIgARIgARIgARIggT4i4HLFSV1dnby0YIGVOHHiJDty98E+AsxiSIAESIAEDpgABawDRscbSYAESIAESIAESIAESGD4EID1lf4vFRXlsmDBi3L2OedIYWGh6IaEtL4aPsPMnpAACZDAkCVAAWvIDh0bTgIkQAIkQAIkQAIkQAJ9Q8DiX4mqV5q2bdtmx2OOmSuZmZnS1BQU7EzIRAIkQAIkQAKDSYA/iQaTPusmARIgARIgARIgARIggRghEKfug6FQi6xYscJaNHHCRHHraiEUYvyrGBkiNoMESIAERjQBClgjevjZeRIgARIgARIgARIgARKIEIALYSAQkMWLF9mJ0YWjiYYESIAESIAEYoYABayYGQo2hARIgARIgARIgARIgAQGh4AT/6q2tlbuvecemTp1qhQURAQsXGMiARIgARIggcEmQAFrsEeA9ZMACZAACZAACZAACZDAIBJosTDtCNQuUllZYS352EknSVZWlgTVpZAC1iAODqsmARIgARJoI0ABqw0FP5AACZAACZAACZAACZDACCQQ2WbQOr5rV7Edx4+fIPEJ8Yx/NQKnA7tMAiRAArFKgAJWrI4M20UCJEACJEACJEACJEACA0QAToItKmRt3x7ZgbCoqEjcejIcDtMCa4DGgNWQAAmQAAl0T4ACVvd8eJUESIAESIAESIAESIAEhj0BuAkGgyHZsGGD9XXUqFF2bIGqxUQCJEACJEACMUCAAlYMDAKbQAIkQAIkQAIkQAIkQAKDSQACVmNjoyxfvsyakZOTM5jNYd0kQAIkQAIksA8BClj7IOEJEiABEiABEiABEiABEhg5BCBeIYB7Q0O9PPnEEzJ//nzJyMi00O4M4D5y5gF7SgIkQAKxToACVqyPENtHAiRAAiRAAiRAAiRAAv1MAALWnj1VVsvEiZMkPj5e419hZ0JEx2IiARIgARIggcEnQAFr8MeALSABEiABEiABEiABEiCBQSHgxLiCTFVbW2ttGD9+vCQmJnIHwkEZEVZKAiRAAiTQFQEKWF2R4XkSIAESIAESIAESIAESGAEEYGWFUO2lpaXW25zcXPF63bYD4QjoPrtIAiRAAiQwRAhQwBoiA8VmkgAJkAAJkAAJkAAJkEB/EigvL7PiRxeMFlhkhdWHkC6E/UmcZZMACZAACfSGAAWs3tBiXhIgARIgARIgARIgARIYZgQgUgWDYdm5Y4f1LDEpcZj1kN0hARIgARIYDgQoYA2HUWQfSIAESIAESIAESIAESOAgCIRCIdlVXGwl5OTkHERJvJUESIAESIAE+ocABaz+4cpSSYAESIAESIAESIAESGBIEIAFVnNzs+zcGbHAio9PGBLtZiNJgARIgARGFgEKWCNrvNlbEiABEiABEiABEiABEmgjAPFK/5eGhgZ59ZVXZNasWZKammrXGf+qDRM/kAAJkAAJxAABClgxMAhsAgmQAAmQAAmQAAmQAAkMJoFgMCglJSUyalS+xMfHSxjbEjKRAAmQAAmQQAwRoIAVQ4PBppAACZAACZAACZAACZDAQBOABVZVVZVVm5eXJ263W1pUwKIF1kCPBOsjARIgARLojgAFrO7o8BoJkAAJkAAJkAAJkAAJDFMCLVCpWlMg0Gif8gsKJCEhQcLhMAUsBw6PJEACJEACMUGAAlZMDAMbQQIkQAIkQAIkQAIkQAKDQ0ANsKSpqdkqT9P4Vx6PxwSswWkNayUBEiABEiCBzglQwOqcC8+SAAmQAAmQAAmQAAmQwLAnADdB2GGVlpZYX5OSkiyo+7DvODtIAiRAAiQw5AhQwBpyQ8YGkwAJkAAJkAAJkAAJkEDfEqirq7MC09LTxaUmWXQh7Fu+LI0ESIAESODgCVDAOniGLIEESIAESIAESIAESIAEhiwBhMJqbo64EKYkp1g/ouNjDdmOseEkQAIkQALDigAFrGE1nOwMCZAACZAACZAACZAACfSOQDjcIhXl5XaTx+vp3c3MTQIkQAIkQAIDRIAC1gCBZjUkQAIkQAIkQAIkQAIkEGsEEAMrFApJeauAlZiYGGtNZHtIgARIgARIwAhQwOJEIAESIAESIAESIAESIIERTADugjW1tUYgVXchZCIBEiABEiCBWCRAASsWR4VtIgESIAESIAESIAESIIEBJNAUCFhtPp9/AGtlVSRAAiRAAiTQcwIUsHrOijlJgARIgARIgARIgARIYFgRgAshArhXVlZav/CdiQRIgARIgARikQAFrFgcFbaJBEiABEiABEiABEiABPqZgKNVNTU1yaZNG602j4dB3PsZO4snARIgARI4QAIUsA4QHG8jARIgARIgARIgARIggaFCAHGu9P8OKU4gYiGI+85du8TtjhMvdyHswIhfSYAESIAEYoUABaxYGQm2gwRIgARIgARIgARIgAT6iQBcAx2Lq45VhMNh2bxpk8yYcbgkJER2IYx2JYyIX/uoXx2L4XcSIAESIAES6FcCFLD6FS8LJwESIAESIAESIAESIIHBJ+DxuAUviFH7psi5tPQ08fv90jFHXJxLrbPc+97GMyRAAiRAAiQwgAQoYA0gbFZFAiRAAiRAAiRAAiRAAgNNwOVyyYoVK2TdunXi93kEFldOglVWoDGyA2E8xKtOBC63m0sGhxePJEACJEACg0eAP40Gjz1rJgESIAESIAESIAESIIF+IwBLKrgCQpS66Ze/tJdTWbRQ1dDYYKeTkpIFYpeTcK9brbaWLl0qf//7021WWNH3Onl5JAESIAESIIH+JrD3J1R/18TySYAESIAESIAESIAESIAEBoyAGle1pUMOOUQe/vNDUlpWIT6/t50VVjAYtHwJiYkmYDlGWB6PS2prauX888+TJ598Qq9JpxZabZXwAwmQAAmQAAn0IwEKWP0Il0WTAAmQAAmQAAmQAAmQwGASgLUUXABz8/IkqLsNIlg7FgDRVlShUMSl0Of1tlpsiQlZEMDefecdWbN6tXznO/8j+I4dC6MDvA9m31g3CZAACZDAyCJAAWtkjTd7SwIkQAIkQAIkQAIkMMIIuFR5mjJlivV6ydIldowWoUKhiAVWcnKyBnr3mLiFoO1V1bXyq9tvkxNPPFHvP1TC6pMYfd8Iw8jukgAJkAAJDDIBCliDPACsngRIgARIgARIgARIgAT6iwDiYOE1btx4q+K1116V6po68aq1FaywYFXluAx6fT61vMIZWGDFycqVK+XFF16Qr3z1a5KeliKBQFNbHCzLxDcSIAESIAESGEACFLAGEDarIgESIAESIAESIAESIIGBJAA5KhRqkfz8fPnaZZfJIw8/LLt27RSPO64tDlYw2GxNSk1NVWHLZ5+bm4Py7DP/ss9z586zY7TboZ3gGwmQAAmQAAkMIAEKWAMIm1WRAAmQAAmQAAmQAAmQwEATCIfDkpjgl7PPPseqXrNmTVsTYJ1VU1MT+Q6LLOw8qOLWzh075MYbfy6/+OVNMnbsWAk0BWl91UaNH0iABEiABAaDAAWswaDOOkmABEiABEiABEiABEhgAAkgTvucOUdYjf/973+lORg2QQrug4FAwM67dJtBvJA++PADO55xxqdEY8ALdipk/CtDwjcSIAESIIFBIkABa5DAs1oSIAESIAESIIH2BGAJwkQCJNAPBFSlwu6BWVmZcu9998uvbrtVKioqxOd1qxthizQ3R1wIXRq4HfpVfX2jPP3UU3LBBRfK5MmTI2KXBndnIgESIAESIIHBJMCfRINJn3WTAAmQAAmQAAnsQyBayGr7jA+R2NL75OcJEiCB/RBQt0BEcsfhox890TKvXLFC8nJPsEDuoWDIzvn9fnvMtmzZIo8++oi88eZb4vd5pK6hUbwe734q4WUSIAESIAES6F8CtMDqX74snQRIgARIgARGFoE2xaln3XZ2P+suN4q0YntZdndl8hoJjDgCKl45wdy/9KVL5KE/PyhwK3Srf2BTU5PhgICFx+zpp5+SQw+dKrNnz5GgBoB3u9wjDhc7TAIkQAIkEHsEKGDF3piwRSRAAiRAAiQwNAnoAjlOgz/HuXr+cll+jbujpiEu3Icy9M2O+h3XnVdvy7ZChiZJtpoE+pwAdhBEMPcEDeZ+yimnyp8eeEA2bdqkz97eGFhpaWmyZcs2uf66H8q1P/iBBX6He6ETF6vPG8UCSYAESIAESKAXBOhC2AtYzEoCJEACJEACJNA5ASyOm+vxCkuLWnX0JrVoDB631yV1ZUFp0vuDzWE7NlQGpaa4Wdx+V6RMiFs9KBgWJBDAPHqfL1EFME9P7upBwcxCAkOYgBOAHU/D9BnTrScLFy6USRPHS11dnX1X6VhefeUV+3z88R+xI55tJhIgARIgARKIBQIUsGJhFNgGEiABEiABEhiqBEwtUhe/ljgp39AgW9+olYbqYC9c/iKLYyyug41haagI6rFFAnUhqd7ZJN5ENRZXKyytoJVQd2JUi1lvISh1YppHcqcmSMHsREnI8Oy9fahyZrtJoI8IwG2wqGiMHHvsfPnHP56WM888U10Lg1b6+vXr5PXXX5dvfPNyKSwslKbmkO1U2EdVsxgSIAESIAESOCgCFLAOCh9vJgESIAESIAESAAHISt4EFZviWqR0aYM01YbE5YuTlkhs6B5BitMwO7gnTotpqhWpK1YhLNjSK/EpTuNMezSmj+fwBIlPd4vbp9ZbPaqdmUhg+BNw3AhTU1PkggsvlCsu/6Zcd90N4vFGArT/85//kCVLlsh1199gOxTWNwTEw90Hh//EYA9JgARIYIgQoIA1RAaKzSQBEiABEiCBmCTgGETpMXOcX8InpEpzQ1hKVzWIOhNqk1sz7E9FQja1DGnRgNEwtnLhN5R4vdvVw3Cdej+ELxSTPSlBxh2XIqNmJqqApSKalstEAiQQIQARC3GvjjjiSDvx/vsLpb7VhXDXrl3yKbXImj17tqghI2NfcdKQAAmQAAnEFAEKWDE1HGwMCZAACZAACQxdAog1lTbaJ2OOSZHmurCUrW5UcyhdBUO8wmt/CepTazKPQQhaba6DzpVOjrgPi22/SEKqV/LVbTB3eqIFlKd41QkvnhqxBJw4WBCnJkwYr68J8uwzz0hmZqYxKSkpkbPPPkeyMtOF1lcjdpqw4yRAAiQQswR6+GfNmG0/G0YCJEACJEACJBADBBA0HVqTL8UtOVPjpfDoZEkf67Ng6qZd4TcOCE3dvTrrR3f5W6/B8krttixWz+i5SRb7yp/iimxCaJV3VjDPkcDIJABROKSBsDIys+Sbl18hTz75hCxdusRgTJ8+XT524sfssyN2jUxK7DUJkAAJkEAsEqCAFYujwjaRAAmQAAmQwBAlACELsafyD0+U0UclWTB1uCv1V0J9YXU79Ce5JW9GgoyekyRJOd69cbP6se7+6hPLJYH+JgARy6ObI8ybd6xV5fP57PjVr14mY8YUSmNAd/90a1A6JhIgARIgARKIIQIUsGJoMNgUEiABEiABEhjKBCAmOa6CyaO8UqBiUr6+/Mm6EIYlVH/81qFlujVoe9bkeBmvca9SC3zi9mogeApXQ3kqse39SMCxrIIb4aRJk+Too4+WRR9+aDUefcwxdgyHGTiuH4eARZMACZAACRwggf74VfIAm8LbSIAESIAESIAEhjwBFY6wQEbsqVSNh1U0L9nEJbfGx+rzZHWJZB2iLotHJUumHm0nxD6viAWSwPAiAAusMNwIMzLkc587T2o1iPvhhx8uSUmJw6uj7A0JkAAJkMCwIkABa1gNJztDAiRAAiRAAjFCQBfIsIRKK1QR6xiNh6U7FLYE1OQDOlYfaVnYYTA5yyeFxyTJKHUf9CXx15oYGX02YwgQMDdCj0s+euKJ1lqfzy8JCREBy7HSGgLdYBNJgARIgARGEAH+pjeCBptdJQESIAESIIGBIhCnga/CId2E0B8nOVM0NtWRSebeZ66EcCc8CBErDqF59H7EvSrUoO2jZiRKQmbrxsoom4kESKBbAmYlqSJzMBiWmTMPk9/8329l4cL3JCcnR+BaSAGrW3y8SAIkQAIkMEgEWn/bG6TaWS0JkAAJkAAJkMCwJWAalQpZPt0RsODwJGmuD8um16qloSp04DGqtFCE5/EnuiT7UBXGdLdDBG2HWGZxrw5CGBu2A8GOkUAnBBwRy+t1y6fO+JS5EyYlJamoheeTD1InyHiKBEiABEhgkAnEqflwl3+rxBa7Qd3Zhz/DBnmUWD0JkAAJkAAJDGEC9puGmnVUbg7I5tdrZPv7ddJYHRRYaTlB33vavTj901u4UWTUnEQ55OQ0ydHg7Z4ENSjv8reZnpbMfCQwMgkgYDt2HPSqO2GzWmThOwWskTkX2GsSIAESGEwC+FXOrb8benRznq5S11e6uoPnSYAESIAESIAESKAXBGDLEefWeFhFfouHla2ik8+nfoC9MfKwQrQgtb5C0PYidUnMmuAXt19/leGGab0YDWYlgfYEXC6XiVaBpiDFq/Zo+I0ESIAESCDGCFDAirEBYXNIgARIgARIYNgRgKGVWmB54uMkY7xfxh6bojsG+sUFBcsRpnrQaZdaXyVlemXMPI17NT1Rg7a76TbYA27MQgL7I+BYXDnH/eXndRIgARIgARIYDAKMgTUY1FknCZAACZAACYwwAk5Qd1hM5U5PkMaakDRUhqSmuEnMxRBCVhdugHH657YWtbJKSPNI0bxkyZuZKPFZ+isM7mEiARLoEwIUr/oEIwshARIgARLoRwK0wOpHuCyaBEiABEiABEigPQHE1fTEuyRvGgKwJ4lP41e17CfeZoveE5/iltypCVKo96TkeRmfsz1WfiMBEiABEiABEiCBYU+AAtawH2J2kARIgARIgARig4BtCgMrKzW5Ssr2Sv5hiZI/R0UsdQUMB/VCJxZVLq+ISxWsrEM17tW8FEkt8InLGxex2oqNbrEVJEACJEACJEACJEACA0CAAtYAQGYVJEACJEACJEACrQRUpIKrUpzGcE8d7dN4VimSo5ZVHm/7X0kgdpnWFRLJGOuTwiM0aPukeHF54iSs50wMI1QSIAESIAESIAESIIERQ6D9b4sjptvsKAmQAAmQAAmQwKARgDil6pQ30WVB3YvmJkuW7kzoclSpVvFKN0eT+ORI3KucyQni9ukFTU62QWs/KyYBEiABEiABEiABEhhwAgziPuDIWSEJkAAJkAAJkIBJUa0iVp4GdW+qC0lTdViqdgUMDlwKE7J0x8GjkzXouwZtz/BQuOK0IQESIAESIAESIIERTIAC1ggefHadBEhgXwItcFqC35Km1kO7T3aBbyRAAn1DQHcWRNwrX4pLRs1MkEBtUOoWNElAxSy3BnpPG6dxso5MlKRcj7TEhRn3qm+osxQS6IJAxMIRF+2Tvqmzbxd5eZoESIAESIAEBp4ABayBZ84aSYAEYoyAI1ohLo8L/7nwK7v+x9/bY2yk2JzhSqBFhazM0R4JTnXJ7rcDsqesSTImxMvoQ1MkuyhJ/EkatF3jXjGRAAn0PwH88aZFfXzxUtnYjtCxKGb1P3vWQAIkQAIk0D0BCljd8+FVEiCBEUDAFfnN3H5RD2p06OaWoITCYQnpqjqsLwhce62xRgAQdpEEBphAS7hFPCGXlEmj1GXVSn1NkyQWhqQhO05Kg0Hx1KmA1WqtNcBNY3UkMGIIQKBCHDp3nMteHpdHvLrbgku/I/En4YiZCuwoCZAACcQsgTj960qX67JQKCzBUAutEGJ2+NgwEiCBgyGAX8bxCzv+EWwOB6WmuV5KGiqkuKFcyhqqZE+gVmqbGyQQbjYhiyrWwdDmvSTQPQGskRtrQ1Jd3CxNjWFJSHZLUqZHfElu/h7SPTpeJYEDJwBLYxWt8J9PBaskj19SfYmSGZ8meYmZkp+QJZn+NLtmSwazTEZuJhIgARIgARLoWwJYk7nVE8bj7nqvQQpYfcucpZEACcQaAfxL2OE37TbhSvX7hlBAShv3yI66UtlWWyJb8Woole2NFbK5sUpWBmtENM8B+y91Un+niLrK55x3jp3efAAnnfKc4wEUYYJeB7ZWjFMmjkid5YlcOfB3p46uSnCuO8f95evqesfz+yuvY/6O33E/UkcmB1tupNSu33tSfnd5urvWWa09yd8xD767FYzHbQtqUStINYUUVY87q+HAz3Ws98BLigTK6ziWvS2vL9vTXd39UU93ZXZ3LbqdHfPt73v0vQf6uWMdTjldnXeud3fsyb2d5ensXHf19MW1ferUSQyfeZdPxnsSZZwvTQoTMqRIxauxiXkyNjlPCpNzJT8xS1K8SdYCtU/Wf8Y6mfz4uzj97/tilFgGCZAACYw4AvjxRAFrxA07O0wCJNBGAP8KInX4HRu/dMNNsLKxWjbV7JJllRtlceUGWVW7S2pDzZLhiZcMd4Ikuv3id3vEoy4UiI5lxXQoK1IB30mABA6GgLPmhYWHGn6bMIQ1sL30yeN6+GDo8l4S2B8BjXWlzx1c5mGNXBcOSFWwUV8NEtS/VIxNyJSjMybJEVmTZWLqaMmITxW/il1wN9wnOQ/zPhd4ggRIgARIgAS6J0ABq3s+vEoCJDDcCXQiYGGBDPFqZ32ZLK3YIO+UrJSNtcVS3dyoLhJuyfalyLiUPBmdmCPZ8enmShHv9qlhiOPG1Mkv7MOdI/tHAgNJoJPndiCrZ10kMLII6AOn/yPmYxPEK3Wbr1Dr413qSr9NLZN3NlRKfbhJfHEe/bmYKYdljJc52ZNlQkqBpKo1FjY/aWeJRQFrZE0f9pYESIAE+pAAfgXcnwUWg7j3IXAWRQIkENsEwvqLdb3+VXmLWlp9ULZG3itbKxvrdttfkQ9NLZDp6WNlbFKe/nU5TZK9iZIQZYEVCfRO8Sq2R5itIwESIAES6B2BiGIMCyyIWM0a87Ex1CR1+rNyT1Ot7FQRa1XVVllTs0NW1eyU0qYaqdDX3Jx6mZY+XjL8qfoHHsSSjMSU7F3dzE0CJEACJEACvSNAAat3vJibBEhgCBKwnZP0l/N6dYfYqL+Av7l7uYpXa6QkUC35amU1PW2MTMsYJ+OS8zVYbapg5yVLKnjZvfoFexHqXuKd9x6ne6pt9SYvautt/s5a2BdlRJfrlOccnWsdvzvnOzt2lrezc9H37u96dN7+/tyxLR2/93f9B1t+b9vbVf7enj/Ydvfl/V21HXV0d61jG3qTt+O9sfa9s750di663fu7Hp23q899UUZXZXd2vrv6urvWWVlD8VwnfcQpCFEe/cNNorrRI4h7QThbCpNyZLS+xlbnyao9W1TI2iVv6s9PiFz4o9CMjAmtIpYG3O3qZ+RQZMQ2kwAJkAAJxCQBClgxOSxsFAmQQF8SgHtDowZi31a7W94rXSUL1fIKf12eooLVYZkT9Bfw8TJKg9PGu/ymQ7XoX6HxYR/XiK4a1VPxCvf3Ju+B5O+sjb2ts7Myos855TlH51rH7875zo6d5e3sXPS9+7senbe/P3dsS8fv/V3/wZbf2/Z2lb+35w+23X15f1dtRx3dXevYht7k7XhvrH3vrC+dnYtu9/6uR+ft6nNflNFV2Z2d766+7q51VtZQPNdJH6NPIUA7RFycS/UkSVJaguRqHKzc+AyJ110K11XvlOUqZuG6S7cPNRFL3e+RosuxE3wjARIgARIggT4kQAGrD2GyKBIggdgkEAyHZHdDhSyr2CiLyteZG2FRUrYclT1FZmZOlExfqsa/8jJQdGwOH1tFAiRAAiQwgATaYlqpGoU47W7xSBask9XN3qOxIn0aE3K5uhUu27NVktzxkqwWW369lqifLcESCzcykQAJkAAJkEAfE6CA1cdAWRwJkEBsEQi2hKRSXQXXVG2Tpbrb4I7GSt0ePEvmZB5ifzXO8adbgHb8uTniVcFfumNrBNkaEiABEiCBwSQAiyzsOJjmS5bJqUUaKyukm6GEZKX+XF1TvV3yEjNs05OkpARtpvOzdDBbzLpJgARIgASGKwEKWMN1ZNkvEiABcwFsDgZle32pLFPxCgHb073JMjVtrEzRuFc56g4B9weJY/BZThcSIAESIAES6IyAY5EFESvVlySHqIgVCDVLQ7BJturP1zVV26UoUTdAUWvmJHUxtJ+rnRXEcyRAAiRAAiRwkAR05cZEAiRAAsOTQEhdB2ua6yz21QYNPNus3w9Jydedk8ZpPI8M8agbBLwcnF/OhycF9ooESIAESIAE+oYARKx0f4pMSClQIWu0+N0+2VVfriLWFtmhYhZ2MkT8SGcDlL6plaWQAAmQAAmQQIQABSzOBBIggWFLoCEckOLGctlSU2xxr3I0hscEFbCwq1KSxuyAqwPFq2E7/OwYCZAACZBAPxDwqOVyuroTjkvOkzGJ2VKvm6Tgj0S7Gsr0D0XByM9V+OQzkQAJkAAJkEAfE6CA1cdAWRwJkEDsEIB7Q3FDpWyrL1NrK5e6OGRLgb4gXkVcB2OnrWwJCZAACZAACQwVAon6czRff55CxPK4PLI7sMcssfY01Wp8rCBMm5lIgARIgARIoM8JUMDqc6QskARIIBYItOguSA3BgJQ1VMlODdzu1p2T8hOzbCtw7KIE9wZaX8XCSLENJEACJEACQ42AV0UrxMPKU3f8TF+KYLffEv2DUan+vEV8LPx8pRvhUBtVtpcESIAEYp8ABazYHyO2kARIoJcE8Esz3BhqNf5VRaBKqoKNFqcjKz7VdlFyI3A7EwmQAAmQAAmQwAETQBzJVN0YJU938/WpoFUZqLVXU6uAdcAF80YSIAESIAES6IIAV3FdgOFpEiCBIUxAY28Ews1S3VwvdSpeJegv1hn6l+IUb6L+ko3A7fzL8BAeXTadBEiABEhgkAngD0Vul0uSvfGS4U8Wb5xH9ugfjar0ZXGw4ELIOFiDPEqsngRIgASGHwEKWMNvTNkjEhjxBPCLdZNaYCGwbGO4SZJcPknxJEi8HvcmBujYy4KfSIAESIAESKB3BBBLMsHjlyQVsSBm1egfjOr1FWwJaUH8Gds7msxNAiRAAiTQEwIUsHpCiXlIgASGHIGQ/gLdrG4MiMvh1V+s491eDTTr1n5Efqnmr9ZDbkjZYBIgARIggRgi4NKfp4iF5Xf7BK75+INRINQk4ZYw5asYGic2hQRIgASGEwEKWMNpNNkXEiCBNgII4h7SX6LD4bDtOOjWWB0udR1kIgESIAESIAESOHgCCNQO4Qq7/OKnK/5gFNY/HumPXyYSIAESIAES6BcCFLD6BSsLJQESGGwCELBaVMCCOyFSZMdBCliDPS6snwRIgARIYPgQwE/VyE/WyDu1q+EztuwJCZAACcQiAQpYsTgqbBMJkECfEMAv0hEBy5Gx+qRYFkICJEACJEACJNBKICJaUbrihCABEiABEuh/AhSw+p8xayABEhgkAnvtrSL2V4PUDFZLAiRAAiRAAsOWQLQF1rDtJDtGAiRAAiQQEwQoYMXEMLARJEACJEACJEACJEACJEACJEACJEACJEACXRGggNUVGZ4nARIgARIgARIgARIgARIgARIgARIgARKICQIUsGJiGNgIEiABEiABEiABEiABEiABEiABEiABEiCBrghQwOqKDM+TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEBAEKWDExDGwECZAACZAACZAACZAACZAACZAACZAACZBAVwQoYHVFhudJgARIgARIgARIgARIgARIgARIgARIgARiggAFrJgYBjaCBEiABEiABEiABEiABEiABEiABEiABEigKwIUsLoiw/MkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIxQcATE61gI0iABEiABIYcgRZpEfzfLsWJxOl/TPsSaGnpCEvzxJHWvqR4hgRIgARIgARIgARIgAT2JUABa18mPEMCJEACJNADAu44NeKNEmAgz0DU6lSo6UF5wzkLZCqXywVckdSq/YGVCYHDufPs25AmEHmm0QU823owkToiVMe1Tegh3UU2ngRIgARIgARIYIgQoIA1RAaKzSQBEiCBWCGABW1zKCi1TfX6apDmcLNZXcV7fJLsS5Ikb4K4VaxhihCASNUQCkhNoM6Y4bvb5ZYEj19S/IkSr0cXxEAmEohBAi7R/1wqwOochV5lQrXO4bC9wjHYYjaJBEiABEiABEhguBKggDVcR5b9IgESIIE+JtBqfGFWGBCv1lVskzUVW6SysVo8KsgUJGfL5MxxMiF9tCS64mlZ1Mofgl9lQ5WsLNsoq8u3qOAXUpEvXsakjpJDs8ZJvnKD+BfWfHQo7ONJy+IOigCeeQjUjcEmaQgGJKRzF1ZXPpfXBFi/x0vx9aAI82YSIAESIAESIIHeEKCA1RtazEsCJEACI5pAm4RlC9ri2jJZWrpBttWVSbzbK9OaGiU7IUPGpI0yNyMz1RjRvCJuVqAGS7XNVcXy9u410hRqkgx/sgTDYROvcpMyNQdMWzSn42I4wrmx+4NPAFMx3BKW0rpKWa7P+TJ9VQVqxatidVFKnszKmyxTssZKki9Bha2wCVuD32q2gARIgARIgARIYDgToIA1nEeXfSMBEiCBfiKAhW1zOKhWGY3SoMJV2B2WgFpoBPUcXOSw+IVww6QEFAR4NYWapV5ZNauA5Xd5JKDHYEsowonAOFVijkCcPcuN+lzvUrH6/bL1sqW+wsTquTp3x6XlS0jnNVXXmBs4NogESIAESIAEhi0BCljDdmjZMRIgARLoPwLQW/BCfBy4FEW+71VhKF5FsW+FZQd9A63If8gTYReVmx9JIOYIePQZT1W3wQJ1Dfao+OrTF+YzEwmQAAmQAAmQAAkMJAEKWANJm3WRAAmQwDAjAKEKnm92HGZ96+vuOKIeWfU1WZbXbwRUpcJuoz63T+I1bpvHF9DPHtt4wKtHyq/9Rp4FkwAJkAAJkAAJdEKAAlYnUHiKBEiABEigpwQcWaZ9flhndH6lfb4R8Y2K1YgY5uHWSWw+AIEqxZ8kkzKLxKtx7uqaG8SjglZ2UoaMSskWj4pYcBlmIgESIAESIAESIIGBIEABayAosw4SIAESIIEuCWCh3Pq/5nEWw622Ha0ud13e3IMLTvnIGikd71G2IwdRh1N2dLmoBwIeknpeRb44J+zs4L21tTPyIdKQVhdQfGnfn9bLkUO3Qbq7vO8g2Hbenqix62XZThtbu2PjEjUL2oSYNkbOHOmmHsvbKuA4SG2ou7mnrf5uPjiiUHRbkP1Ayt5vv1sfvs7aD/fgZF+ijE8vlLyk7LZdCP0qZiWqRRYCuqN85Osu7csJZyL3HEifOtYV3cdoZn1Rdse6+J0ESIAESIAESGDwCFDAGjz2rJkESIAESEAJWBwtF1DslROcRSgW8vhsi+TWBS9y9iahVIvT1bqaxWFv+a2iTW8KjMprZbvsva111l5rd6TtbT6WUfcN1kf0PU6J439L2tjWVtrXvazwqS2LiTvR+VovGcdImZofQliUkBEZuwhpJ39Pj854a4Q1iVO+nc+NSNudvPsrG/Osq37jXpdaFjntR402jqDTjYWRtczuQwn4hhS550B6jntQSqQtKKv9OESX7eRFru4SGGrHIgVbo0Bsb0INYOzUhKtOn3HOp7GvfH6vpMenoCRLkWL03Tmxt7hOPyFbXBQn5zaUEz1P8N251mlBXZx0+hiZfpGeWButL0bN+nwgZXdRJU+TAAmQAAmQAAkMAgEKWIMAnVWSAAmQwEgnYIvLVpEnFA7bbmbtFs66EsWi1O1S2QELXyxre7H6jC4/rPVgF0AcncUyhAqU6tIjFtZ2RC2RFfB+h8dpK8rDTmx4tS36tQzEDUK7cYwspPdbZL9nQJuNhfLGZyRwdYGxHnGmpbUv0f0BG3ec2/oT4RU1EGDrlOtw0O8oF313OOhXO2eV7uctMna6cyP+Q5naXmux1oW0d+y0fG076sL/XSWnX848wHdkb2ubft47jiFjhLJQj9MHR3yxulrz7y0X4x+ZWygYLWqbt1qGcw/K7C7ZmGih6Kv1WftuPUdFmpx+t5WtJbdY+ZHrHd9RHvrl9NvK0DfMS7zQVud6SHfDRD4k9NmjllWWR7+jHBtjzBvNAnbWlta+dde/tj61zg17DrU8/I/kMHbahLL1JN73m6yIVu5Gyvqqn1r74fBC2egTvlvjI2/7LZ8ZSIAESIAESIAEYo8ABazYGxO2iARIgASGLQFnQYvFZFAXtTVNdVJcWy6l9ZVSE6iTplCz9T3e45M0tfjIScyU3ORMSVE3JixrTSSydWjni1ynfBSC8uua6qWysVoqG6qtrrqmBgmGQ+LzeLXMJEn1J5tlSVp8siR5E8SttaAOW+xaS9q/Wfl6ChJNY6hJKhr2yK6aMqlorJKG5oBlTvD6JTM+VfKSsyQ3KVNjBkV+1Frb2xc3YN+w2G/Wflc11kp5/R6pVi4QWpJ9CZKdmGasIZpUNFTJztoSKa3bI43BJhUxIi5kedqP/JQcSVNeHhWznL5A2KhvbpRyva+0vkI510iT3udTF7MsLbcgJVeP6eJTBmDXE7FDM1neWh0rlLm7rsLaHdByUYZf50aqjl2OxmHKTcqyMXRr/zqbG8gPcQnjjr5hHgS1nwlaRkZCirUNu+rVBGp1HpbZXKxRNhBBMAezte35yTl2RL1OvzFwmKt7AjXKqlL7v8fqQP8wl0bp2I/S+xI8/v3qMc6cwr0h/a9anwO0pUyfCXxuCgVRnfUbzwTGAi/MV4xhpN/7ksV4ImZVhfYZ5TRre9GHDC0jKyFNP/ulPtio9eyR3foMgg/6navP3PiMAu1zhpXdGArInsYaK6dBx8CtcyLFn2hlpPqSVayDG2GrNmQt3TsWONvcEtT7q40t5h6eScxFPGOJnngdh1TjhfrA3GHc7TOoFaLOoJaNeYJxrdQ2Vut4YKxD4RZ7xlO1nRjDPJsnSfp8t85drbvzf0FaO8ADCZAACZAACZBATBKggBWTw8JGkQAJkMDwJIBlIxa0FfXVsr16t2zas0O26nG3CgDVutgOQMDSlWWCCiDpujjOS8iUsal5Mi69QApTc23xjUUohJPOFqBY0KstiS3Yt1btkg17dsrOmlKp1IUtRJtarQOLZ+yklqYiCF4Qm0YnZ8vEzEIZnZJnMX8iy+NOxkBXzRAUIKxsqNwu6yu3yXYVG8oD1SoGNNkNEEey/KlSqGVO0thBY9JGmRgEKxCIKYORIJI0BgPGfMnudbKxepd4VYgqSs2Rw3IPkZxgs4kmq8s3y0blVqqCXL3mh4iQqkJJgY7DeB2DSRmFNhYQ/iB+bKsqlo2VO2RbTYkUq+ACzhD2/CoKZatIMiEtXyZnjpGxeszU714931lC+0zAUdGxWkW2bTY3dtrcKG5QAUuFTghqyBevO+KlqaCZm5Ch7c+zdo1Vxuk6jmo31L54xQ3Bskzn1/KS9bKybLM0aL9yVNSYmjVWJstYFTwaZX3FVlmjY7mzrlznIQSssIkpuf50m3/o94T00SqmZlkbSlTwQb83a/931kXGv0aFE8Wl8zZJipJz5RCdTxP1vlEaOyoiZHU2YzHd9ZnQNkJAMp76TGzXOVvSUClV2hZ7JjRPPJ4J5Z6v/UZ/xyvT0dp/9Bu9dhg6AILhoAlrK0o2yjots1bnf6aKV1OzxsnkrDFmYbW2fIvOYR0/FS0rVGSC5dWs7Ikm7pmApaXWBOptrq8o3ajlVWswd4+MS8uTGTmTJCFddybUMYXlXjulTkE06TwoVcFqy55d9pxvry2VMp1XtSp4NmnbYBmVpCJapj9FCpTROO0TnnMIhhBWkTr2CU8PeEGchjC9Wfu1SZ/x3VoP5l5VU40K1Y1mEWkiuDdRchLSpUiF1PFpBTImfZTNQwjVkWe88zFB3UwkQAIkQAIkQAKxR6Dz3yRjr51sEQmQAAmQwBAnAMuKgC5qS1ToWFG6QRYWr5IlFVtUbKpX4UFdl3RRGVlYiopQLRLUl6jIkqOL7sNUbDhy1DSZlj3eLHs6E0JQfpMKAbCGWaeCxMLilbKobJPs0sWtV8uHYBNxjYozS5Ot4RJpVNcpty7Ai9Tq5KjayXJE/lQTaWDx5bhQOdixmIY4A4urRcWr5R0tf5UuoJtV0IIDnqe1/XDr2tiySxa5N8iElE0yJ2+yWQzVq4UWFuB4ITnHyLd+flc2aGd54x5ZXblF3i1dLwna7z264IcgtFP7tEzPfVC2QWoDDTYeLbq2h1C4TZu2Mm6HZFdsltnKf17zDBNOYCH03q4VsnD3WhWvqqRF2SNclUoZ1rc1KoQt1fE9rGqnHFswU5rkYmYAAEAASURBVA7PO0StdtL34Wo9VxjNOhaw0FmjItq7u1bK4vJNUqqCCZwwffoOARC6AyyLIFKG9XumWjtNyyiSeQUzdG5MMGsbBBa3jNYOuNCFVLypky0q2r1Tslr73CAT1ZoMYwZrrK3VxfJ+yVrZoqKRSzlB0oj0XWS9FMti7ffUPdtkrs6/6TkTVTwJyQrl9NaO5bJe721oVqsk64T2vbX/y1QMG6ec5+dPlyPzp5mAB+EH4kt0cp4JWLwtLV0n7+kzAWaYK9pwnbMRl0TMFYzFen2HO2OOilaHZ43XZ2KqTMuZoBxUHHS3t4SCG2itPlvo92Ite7eyHKOWSBBYfR6PPXevblskG1SEa1AxEuJvigpHY1XsgXUZ2op6IfjBQmu5jsdWFWvj1XoRlk8Qe8doHWYpFTWZIf7hHgjHEEvf1T6t0TkQ0HN4vrGLISz7VPWSYn2t0j5BBEPbjtBnBbwgFkaewfa8cE8g3KxWY1X2b8jbO1fovyGbVbTS3RG1rRh7lI8E4XKDtkUDfKmomCgzVEidVzBdZuRiHqbZvwWWkW8kQAIkQAIkQAJDhgAFrCEzVGwoCZAACQxNAo4VRZMuPOEO9qGKP1h4QvwxdzNdzLboIjOARS0W7HqEkOBWcSFOF6BlapnygYorcBWCG9ksXeTCPc8WwVFI4P4EAWSxihFv7Fgiq7X8WrXGgGzQorGS3Oral6PWHkm6gIcQVamLe9EyIezA8ubNncvNHS4UCsnM3Em6y5rfRIPIQh5iR1BKtP2Ldq+R/2j5G1W8QF5Pa/ubtY4w6tG+QEgL6LVtuvAPhlepgJWo7lyNJnQ0myzQuQVZVHf64aOqDMoTAkOcsmpRvhXqdrVChQmkjWr1VKkWaqFWI6Z45eZVWQP5wQjjsFQtmPAZbodw2VqvjEv1CCEwqGPnUxbxkEK0/LCWD2uqleXbLBB4uopNCbpzHVzfooUcaB+wTIMr29KSdTZ2K1UAalBeXs0JoapFBRe4v8HKp1rFnVAwKF69B+UvVssguLZBdJmjgg4sv+DWFp1gIRR5KXf9DKurTSrcVKjr4E4do+06rpAXw9p3v7ZfHf/EreU7bqjr1YoI/SmuL7f+b9axh+BVp3UGtN9wq0OvvNoZ8GrSNm6qLlFLNK/2N17dHJNMvIOA6iT0G22GC+2HxWv0mViuQk9EEMWcxVxq1HJ1opvwow3QZ0LJabvK1VUTwiGsCiEKzx51qFqVZehdmnCPJs1m8xfPBV64z7HKWlUW1mexUq3tiqVFx9NvLp4QgDwWE80KsHnqfEIZKgapqAYOcNEzVz90IirhHCzlYF35nj7jb+9aJVvUuitO74GwFNI+ubCDIUQwPdek4l+c1i/6vOxQDo2hlWYpGNJnbWr2OEn2JmkfdL7qfygb4iGE00XFa+X17Uv1Gd8uQWUIYSysAl6SugxmqNUVxL4ynRsBnc8uradWx3mpznP7t0jbAV5wpWQiARIgARIgARIYWgQoYA2t8WJrSYAESGDoEdBFruPWt17d7hbqYn2lLjzDunBN1cU9xJBJaaPV3Wy0uvek2kIZVlobdDG/Sa14ytRyBG5Ma9TVyeIfqRiQpJYiyWYl1bpY16UpFreIRbVBRRUTx5oCkqViCVwQD1VrFbjAwQULMZzgwrRLRauVZRvNsgSWPsWw3NJ2wZ1wfHq+1qXySasYAOiIIwSXxyVqzYLFdpOKKH61qslQYWZKepG5pMH9CQIWYg/tVGsVtGW7utdBKAhonXAHg5iA1GHtb+f6/U37A30KbYQosEf7BMEBfc1Xt7rj1EIF8YJCKijsVj5wPdum/QjBIkjbDdHqQ7U+ggsmviepyHds3hSzMIIwhThmW2p2m+tmqQpeLi0HMbLglriydJNkqGsl3MRgcWNCmrYHwlJ1U61sVPYQH1dVbDdXzxSdG7AGmpo53tzLEH8LbUbcNFgVrTB3R+WqIshabWeSxlNCXLNEFThxjCaMYcRY4j8EpIe7J/qFNib74uWj2u8xqaN0PL0R1zRtL6yrwAeWZejDWrUi2qrugphxPm3/JJ0jk9IKzZqnGfNJ5wTm7A4tt055hVXAxOdV6qaXpxZ+4IN2OYIM+FWpsLJWrQXfVWu+DdqnoD4TiSrUjVIxaopalo1TtzfE1EKQdcTa2qjucpu0XSUq9lWpeLVG+52obnhgg7bj6CTrM3qsHyD2elQ8gvUa5i5eZXD3VDvHvKRUydZxgWUVxLbR6v6YoG01Nbn1Hdwigdb3HnHOYGgeE4b0C4QjuCLC3fBdFaq3qtugRyd6uoqKeKamZo7V8nMs9hWYwcVwg477amWANuG5X6bjCtdeCExFqd6I22nkMbe5Cs5rVeDcpPMsrGUUaCy0Q9LHmOCVr3M33u03F8IqnVN4XiHQbt6zW5p1nmxT0XGjnsNYo6+I1cZEAiRAAiRAAiQwdAhQwBo6Y8WWkgAJkMCQI4CFLRa5DSomwaVolbr0bdaFJyypknXhXaCWVEer1cwMdc2CSxLchrDAR9Do8VUF5lb1vlqabFERCEHSIYTkJ20x0QAxq9ytliOwCoGbGFzhdmg9EJtgVQKrlFm5k+Xo0TM1tk6WCWBYeMO9akwgXy2jEswqpbZ5nTSrIAArqXIVwRCcG3GeLHC3UoegU6FuS4i3s6lqt1nOQLwa9f/svXeUZNl933e7qzrnOD15ZifshJ3d2YjdBUBgkUEAEiXK51gESR35MJMyKfkcU5J9ZAKi/7Bp69g+IqnAcI4pWyRgihBBgiQIEhQBEGl3sdg4YWcnp57pns6pOvj7va9ed3VtTURXT3X3585UvXq33rvhc9+rqvvt3+93JfockVvdk3IV2ycXpRiPSGKBRSGLaY4x9fylYxK9ToUBTag9D78vwlV65ahy1588bJEzF+qie9Wu6OK3W65bbbJSk51N7O/OwfPhxSgqnYtxqCw65GZmY+yiXRqvR3v3RRe2Pol+FlDsOnZRlkdbGk+FF2RNZQHD7IY1Ho6T5bhFO8LmKKrYosZj4fhP/RJn3pB11zHVZ1ezFolRexTj6clNB8JRWctsVvn1ul7Mz7G8dnUkMbUsJB2TKGprrbMSdk7I/W6rRC/HPyp2M0377N5bELKEt03XxKMSvB5UXCgHL8/KisdBxs9JcNykmFkvadwuKd6Z2ziXSyzRNuuaekjHP6LzHNurRYKq++hA9jvUB4twr944F69XX09XZN11WcLX/rldiSDqMVDf/Z7vieNq8xlZLPn6drt3yL3R/T6iGFOOcdUkgc3X68jUeBS0vqvyfU/YatDC2kkJa70DHfGesKWXB7dQeI39Vn0Wr0blKjg5kYvizW6N3wc03n0SfdwHW4fZzbFNseccF24pSWT0NaMy4lbPyStnJkd5HC3MWlx07DmLdm6fLa/aFSz/Yd8jEgn3dW7PuzvWSHya0/ETGq+e2J75hWPi5ID4IxIkL4S+lu54P9ndL00eZ18rV1S2g9K3SGjbrzhzz247Eg6ojnaJXhYoLY5aLN6kBSDM4ros1k7r+luQYOb4YpclLDq4OwJWSpYtBCAAAQhAYG0QQMBaG+NEKyEAAQisTQL5Ca4DSFsUOCmxwZNWB/nu0iT5kGJbPb75gKxytiqvNgoUPmVTU60mp00xro9dB4c0MbYV1qAmog7M7uDd2/SoqU2+xjx5tmhkN0WLTjsthsnC4kjXA1Fg8STZYkeS5J6oSW2HBCoHWH9AE1qXaQFhWhYwFltsabRJgaUtKLhsT4YdJNpuV4N634JFlybL+xWk+ylNzA8q/pIn/k4WWWwVU+fzFV/KLndDsrQZmtXqa3ptt7TkKB+9ysmNyycLOHaTfECWMU9sORQFmbZaiVdqn61tHFfJIp475PGbHJoRhxnFZcoqgHpbeEiCwVOKPWWLKotFFjg666uiAGZhYFRWaDc0bsNiaX7et8AVXdGi8pFY7FiE8ap7ti66LAucOgkQmyw89uyLrl7bbRklV7yFquRickD0rc2bJJ5IKNSYDcpV7IzECY+bBcwrGk9b71jMiFZC+f4mXXdOVbSc65PljuNyvUPipldLtBuaa+hSv9sl4tVp7MYl+IzpcV19sBWTLQb36Vp9QrHSHpaAlbhDWsfR9aTzPO7RzU3XioWSSY23g5ZbrLL4Z+HH9Xu1wWEdY9HN7ojmIqVF7o+tEsd26544FK2EUtHOXWhoqtd41evarY6usb7e+yWa+WF3yH0dg2GLFjpwG1yHhmNZspvmlMahUULVdt0P71S/H+ndvyj66JR4nq+LxD03X0DBNbOswMUd9Ultt/XYgGJ5eXEDi9Te91jt0vhZJDyi4PBeRTEZAXtGZiJnB7r3/eRrzKxu6F7xwgi+HvbKsrFDnxO+X33XxJUfNRa2yvQ15XvYApw/DxLrSkdMW4jtb9D4bdY9eFj3pvm31jfFa9TXhuOI+XolQQACEIAABCCwtgikv+bXVqtpLQQgAAEIVDSBwqmh4+U4mLTdgy7LTc8Tz25NPPdIPDrSvVcT0J4o9LhD6aTSE+gGiSsWqQ4pFs41nfeSrLcmJaDYRclxcEZz4zqmNlpc+HivXLbfFh4SAaa1qp7f69bqeV5xzu5TtuzS3DZJ2uqUGJupWe5KjlF1TeVaZPBKhRZdbOHhg+xCZoHB1iXjs5NqYxK42hNhuyU+IAsQuzNaAEitVDyhd8yfVpVtgccWI16BzUKLJ/CVkNxGW7Bsk0uXLZwsxmQVb2nOcZbURLta2qJni97ra+qMMZ+8MmGjrHQsPm6XSNjV2BrdCd0nu495HOyK1iGrG5/TIS4WA23B5LEzR4tgFodMwYKeWZuPBUIBDPUa962yjNonYWOL3NksPFrwWRw7neeA/B0SmewKZjfDAY1dKjK6rJ0S5SxgJaiTQU+H3uwtLPbqutimPliscvBvj53b5L44VlePBC6vJGmrv34JJtVi4/GMPJRvccZiUiJKqU2y3jKvXolvFvguy/Jqzv3VNWVu7reFGouD0VpJQo2FOx/nur2y4gOtm8ODcrNzHb7+XfaChDqPh9vm62ynrqdDuh+uapXCfvXbzGwxaJfPG2pnvc614LMMmM52WRndB9sl+Nhy7rAEpR6taGirq1i4zohJoHzsYmYhuPwhpTYW7twOu856VVFztCCXukL6+rL7qu9DNXkxOd/3uQO3n1SsMS+6YNHaK0da+PW4OvC8e+Q6HL9uXOKdrdIshlrIswjq1UFdZzxQx/p1o8p+UJ8fWyXsTei+Nndfe82Kk5WudLjYEF5AAAIQgAAEIFDxBBCwKn6IaCAEIACBtUvAE+HJOVtVDEfhyZNRT9ZtJWVhyW5CtipJk0WVJCVWHbYAclwpiwJVVWc1aZ2NIohd0QYnRqL40JjNRFGgKdsQ3RB7ZXXhOuwSlbiSKRS5xId0Su9JrCe+diObl1WP3/Mk3uKL8y2qeDLs43yOhRlPkj2ptgDj4xzDqUsijV0UHddoUchYbH8iHziYuPvg49okbsxLo0l7mPb5/mwTBcF87C5mAc+WN+5z2kAzdPs9Pp7s+7Xft4uWXT0tUtlCyMfFc9Qxj3di2VUvAak5nuc812aLnChgieV8TWLlZcHQ7qIO7j+Sm5BYJV6qq0/ufF6x0O5zybi41CS5LL9u1HsWKy1EOZ5Rv0QMr2hpodD1FCefk5bhGF6Os+S+e+xjH/S+y/aI+2oxGwtGFjzcA+dZVLJw6f67rKRn8STtaLVEWZ5ZxLI1kDm5XLvu+fqxhZ9dNmsy1brG5pK2SnCyRZ+tv2wxaMuzHgl/vj+S8tXmtNGqxizcpl6JaxbJmsTfQqtX4bNrnQWsTTo/npxvVrpx33yddqr9jkPVJW7VBcJuUk3ynPQ3f2ZB/WlZxVuLSWZusXJAD8cYa8qz2KK6ujWe7pPbbxErLdJtsqDn2F1uT4fYJdeZA+3L8lL9sfBUr7KcFAI+Cqbed19sWXVCFl+OiWdxa4ddOn0/ql8eDxvtNVU3xJhb6RgmnwTLucbCeYIABCAAAQhAoOIJIGBV/BDRQAhAAAJrl4An8NNz0zEmlV0Ho/WSpq8WDWwdYSEgWoC8rYuaZmqWa9c0ixMtspio1zmerEcrKU1uHTDcokhQvCQfm9GxjXqk7kGOleRVCW05ZQHBgdujOKWtz/OE13GFzo1qNTq5JtpKyFZTSUosVjzVdh9mbPWhOickQnjy7Qm022TRzBNuT4qXiRn5Ujxh98TdE2yLPRbDltahyx+0yhu3PxFqhE5tt+jih9uapPxWG+e5fxYE/Lb76DyPmfvl99K0JAzofY2D+1tr1z8foCf3fVbCjTmbqcVKizsOeG/hw4HPI289T8ht74Ld0HSsj1smqLg8JY+nV4X0+X4/iigaJ7uieZwXU76zaZ+dbyEk6UMihKTHJj33tWc3Ovfb4mieh8Y48lK/zWtJbM2frcP8vrmkYo3fiW1TP3zduo1ZPabn1U612233ipX1kVdtFL8sFrpOtzdlmq8h7vsabdQ1bwGuWdsbuid8rfs6T62M3OLC/qbnWyyyi6FFMFuh+bjiOnxskpfvd6mC0gLjNhF+HZ/K96StoSwEW+y0EGyLyXMKUO8YaU75UuNrF+2+Wty7prH0Kom+z5PPjZz4aJVF3bvJdae2S0C0QOfA7bbO8jXjYO6T4ulVMm0R6VhmFoub1Ed/vtjCy+Plmv35E1NhI5IcniEAAQhAAAIQWAMEELDWwCDRRAhAAAJrjkB+0uuNRQhbXjl+jfftzufJbIwTpUl0jG+jyW5xinNMTW5t7WR3QAd99+TYoocnxtElK52Q+mSdYBetKR3j1d0cONurkJ1TjCEH2HZ8HT9sKWLRwFW61nkJWbaIsaCVlfhQPPOPk2lNom2BNa5z3a7Yfq12FoUM1118UsxTk9T+WvWxQUKDBQM3MpEm8gfc583bqbtBzl2a4Zc+xoepLyXfVL76bbFkUeTJF2chwqekp1no8HUxKcHKgpTLG5Vo8abGzWNoNz2XkR6vU5OkwXOex/K6gutbPPFRFonsYuZrLjkiPeEetksIlp18k+zkmNjvpO+FJ6XXmvMs7FiInZKw6/amkqmvJYu1tnhL7JQKS0hfW/iT66vvHx1n17ob0v0sCrrfZliq326zHxblshKI7JZpF1FbIZrjLfuUVl1qmz/RiyjM6B6xkOa22F7O/bSo9OLV44rzdSmpxSDcgTTldz1ejmHm46t1jC6teC9bvLKo5dPcSItSDpx/SEH0b+j4y2MSvcTytILgv6WYYw2XXws9sjDbLqsvW5k59p0tOLtlrZZY09VEkTER6NJGsIUABCAAAQhAYK0QQMBaKyNFOyEAAQisUQKJ4CQBSxNRJ7uJWYyyO5bdgJLps2eopVLqClgXJ/cZiRoOgu64Qqk7YnqWrSscg+fEwPnwklZpOykR5Pr0SBQ5xjW5H9RE96KCvHuK3ykRrUtB4xs8offM2HPqmzTBgoAn0raWSVzTZGGk8yxi2dLI8/GbnKpik1hYPtYP931BYllFpII+L2+/3yhIpVUqHVBKKik47zYvIzcpE4noJMs6C4hSLkYkFE5qrM4qptOS4+DNC7N4YuHSoo/CrUnwsHtoYgEUraeKunPzkkq8c4/nvu20NENbC6K2AJxRnDaLpvHaU77dGhttqWcBq1DkKWhWMk62cKuJ4p7dHF2A7wkLgRZzFtWegvOWv3Rj9PBGBXpzb0knJw2K1nUeR9+Ts3LzNXePgd0jRyROVg/deiRdjLl4ZcJZbWv0ueCg8y7TY+uK3E4H83dctMcVRN9X39cuvx5Oa6VLHaRzdJ/OaGVH3avX5Hr4ula0tEjuxRZ2KC7YAcXC2t+p1SZlweV4ZU4IWREDTxCAAAQgAIE1QwABa80MFQ2FAAQgsDYJaB7q2amf8g9PRdNpc5qnrNum4mM9hVWeipqTKGQLjuPXz4avX3o1fLP/RLgq1yVF3VE8pbZwqGN72NHSF+MX2arHYpItUOzGdVbuTa9cfytclGASU9q0gva4ZluUxG7ofbvD+RHrLziu1EsXlxZpi6P0daljVz3vDhpz80n+zd+5m35E4SLP1sJHrYPA2z1OYo4FwtsBS/g6mPp8tHLbJqsbW7xFM567acgqHuvrKbkfCjbKNAs/bpaWhit/LcYDfXxipWbLpTtKd3rcLQpLJKX0gOReiG13P5TtsWySwOaYW3b9u904uqTkipJorZUuexQDrVOWU7V5kS6+rzJtebZTwe7tRrmrdYtWYLykxRGuhPMSsq7KZfiGrPFm5U4pp9gokJ8e65d11pVwTu87TphXXvTCCg7UvzgGLpwEAQhAAAIQgEDFE0DAqvghooEQgAAE1jYBT2RjHCUJRp6i5iTiRHcnWWvYyuJWyRNauznFlcZkWeEVDTOZxKrJroWphDIty6pLmqB+p/+kVis8FVc93FTTpJXyesPBrp1xJUOvdNamwOKOzeQJsm2/7LJUJ8Hkgia5XjmttHiQxD5yXCNbyUQXNbVpxtZcshBJ5IPSU2FP62PsJ1uW6FhbyqyPL94VUEDyA+9g54lLm64TWd60S7x6UCs77tEqhB0K0u4xNsdSNRZePT7GomSHArN3SfhQbP58WnyRZhRtb/d+0eHf465uh9hPx8uym2XsmDoS3QB1jTvemgXWmyk+7mfqMjhliysll+P7wSxvdl48cAWfomSWR+cxct2LfdJ97QDxDjR/tHdvXC3ScdTSe6W4GcXj6BhlFqjSRRIW3UhVn6u0iLVdK1A64P3uzq3hktwHL+vRLwFrUNZXQxKw7II6oq1df70K6qu5s9GK0kJ0gxYAsHthFEiLG8M+BCAAAQhAAAIVS2B9/I6uWLw0DAIQgMAGJeBZpmal3qQBv21Z4+TJ96Qm6nbHs4uQJ5SlUszVew7I7SDPo7KssFuSRQ5P8B1TypNkT+hd1sXR/nBSK5Jd0iS2Re9tbe4Kz249HB7tOxDj4FgkSeIyuV1uWWIlkrhrJful2uH3HcfKViR22RpRkHDH4HKbit0YS50fY4CpnzHuVqkD1mRe6TG7m6542D1+jufkWE5xfDQuHtdNGrsjvfvC9ra+OGalhcXStUkWkpBilzXFYdK/NN18hNMjVmGrPlepbTW6F6Igagszo1TjfC94kQBfV81aIMB5b0/K1PG+7qJLq+4JpxqJYV5YwEHzLZCVllOdv5JpqYG+rzyOdRKH7Z7nLlm4bq5rjEKkx9IWT+l9dyetsMCcBNKXnJV0avG0KJhJoWyskjVlk1cp7QwP9eyNDB3E/7o+A87LsvKE3AhPDl+UZdZwdAO+ovwTQ+fDZq1+6tUivQolCQIQgAAEIACBtUMAAWvtjBUthQAEILD2CGjimQRhd8DpujgRtRixNFmXu09dc7TceFvnfFy0vnKQb4tFDuas+DiOFSQxyVYYtrixQDQhK4thxb/y6nWOo5OtyYTOxtawSwGft8jSIgmgvlSDXfmckvhJjpdkO6nSydP0GJ9IFiENEld8nK2wLGTFFddkFbawtBjfskIszllscJBxB533pPxm9Sw7cYPsWPiwKGh3QVvCTUdRMBE3zd3XjAVLcyzSMBaFn2Klx+f5OvG/QtiVwt1iTCLaeXU8xbDSvtvsGFZeRdDXSnJ9lr6o3K+criULWOMKBO9k8apZq+3V675wae6ryyx7ilC9MqXHUXHqZNnk+FzxbtJ7XnXSsb7cIN+DtsIq1TgNV358l1qdvlocS3XG9TgtOC5bPMfWmHpobc96/6JVXqvEvy65HzrY+4GuBxQT72z41pXXYkysabXFVloXZXG5VxZ+FrBcjz8N0vr0kgQBCEAAAhCAQIUSQMCq0IGhWRCAAATWBoF02idXOYlAdvHzhNMTSU+0/a5FiA7Fwemoa8m7OGn1uNxMuDo+GC7IaqpVApatIeJ5BZ22tdVIXGnsuiwoBqMroQv05L9dZXUqtpWtuhwQ20KSXYUsjFnw8DGtWrGsRe5odQrWHsvWucnkXo1z0sTXdVgcc+BwT7ZtuZOmpGeenFfJ4qs2BpG3pVAiSs1qFbSxaOlhV6Vspi3WG0UTn6gqbLll98dR9cEWIY7RlVELbi6VpTWv/63QxOvDlkOtcuvsbewILRJgxqYlykjE8qqRDsjvVe0sfHjEimPJe6yHpsZkeXc1xjayUOKFARyke3vbpuhKmEhDyXgn43n/2bpNtpRq0fXpe6JNW6/gN6Tr4+KYrnXdF7ZA8zXseypaCOYv2Xg9STjtn7gR3V+9KqYtzixedTe2h3axjCJP/viy9zYP1fec4475vuzQvdygtvsti7xXFFtuSPHo2uqbtMKgVydUn/LBupLPiKoo8vbruHPDXjF0JN5L7V5NUOO4SeNpFr5P+8XmslyFhzXudll0n7fKTbhLW7sv+j73/er71A+L3HYlvTE9HGPcXcgNRAu3UV1ntuxMkluKhJWHwQYCEIAABCBQ0QQQsCp6eGgcBCAAgQoloElilSat0bVH8z9bQXmCacukOCn1+/lJqt39PLHt0SSzQ2KVjxuX4HRe4tVxWUd4gtqkCbgnoElKZt9TEiQc1+bEjbMK0twfBQxbmrSrjGSy3hJj2Lhun2HdzMnTUT+ijhYzbb3jnCRFUUO7dmO0EGARbWBqNK6SWCOxKxaWHqyt+9kkC6EuCWYOSF0rFylbcljAOjtyJewYvRwtwlrUrvTkpL5k9cKrmpj7uOtTw0m7iisoqGvjvIwjFMfPMas2a5W4Tl0jlxRkO467tqeHLkVhy7HLajTuCbYoEUZMtkB688b58NUL3w0vDZyObp0PSMx4dutD8frocIzupWGvKLQWfNp0vWxu7lScqFZdg9fDsETUswo2fmroQtja2htF0yRGky7s/PXre8ex3k6o3150wBaEtkjskHDVp/vIFkUue4lSmbud3nNqn+9z17+lqUtjeTkKtkMzY+G0XPm2j2yKAdkd0yyJ05U/UeKbVy28PnkjfOfK8fDXF18OJ3SvtMmS65Gu3bIoq41j6aN9n1vc+5uLryjO3Vuxn4c7d4ZntxyJ92eLhLPiZEHaAnqjPl9qFPfO976Z2qIyteYqPod9CEAAAhCAAAQqlwACVuWODS2DAAQgULEEPPnzxNkPJ7v3DUrQuaZA6KOyumiWVYknixZy/M8C1Zam7rBbE/PR3ES0SrIrjyfiFi9s4eQVxyyI2YrCAdJtbXFs8Ex4Y/BcuKJy62Vx0aVJ/06JFJtloWLLKicLX3ZBs/WJrXUsZ1lIG5QVz5Xx66GrqV1uRU2J+5KO92TYQeEdM+u1a6fCcbVhUq5YnvSn02qXa/XD+26T29+n9u+QmHJq+HK4ppg6tqh6U/F1Oq61ygKmKWwTkzrxcH9di10Hr8iixiKLRTIH3DavOW1ToUsv1mj63pUha4sO7m8rOV8DFj7OS7C0Nd0Vjf0LV49H90KLV742LMw42YLH43tu5Gp4TULGKwNnZOE2HHo1/t0SGL0KYYtiLzlF/TKOR9ytmCdfU7Y829LcE7bpuvL1lFO/r8n66Njg2bgCn91jLdTGPsj8zLHjrowNqM+nw6t6XNP1bVGmTdf+ZolXFoLNMhVr0+1qdNr3rN0DOzROO+S6t01jMzYzFcYlyp0auqw2yipL1lD7Oncknw2+sXQJ2Zrxhqyzjl0/E17oPy6h92qoliVkc6YuMuiWK6Atu8zLW18HbbXNEu4W9HkzHI5XXdSYt4Vu3ePbwqb4ORL7rXJt6Tgpl2Iv1ODHpK4ZC+C2EPMKh3ZddUru+u/9eo6F8QQBCEAAAhCAQFkJIGCVFS+FQwACEFifBOz61eiYN5pU2qJC4dijRdIbEhOalH+ge7dEiR65BjZGiwcLWp7YHpzYFS7L6skWWBZ0TsllaH7hxegWtLN9cwxePS1xyVZLpyUUvanHFR1vWchuRL1NHeFBrSq4s21LFIM8+XSMrSbFvbFlVpMmybVqm4Osn9Zk+K/PvyRxYCg80L41upZZDLFb4tmRS+GNa2cU6PmqXAdzoU8T46ua5BZLWB49C1LuY6esR3ap3l1qs12jRjU5d1Dob15+PYxMjYf9ndsTMU5ujRbI+mVF9KasaY5JgHN8o+0SaLwK4VmJNCVjOq3GpSLhwNpBfPKLuHPriksfUjq3VEk3OzIVWGy54zhlR3r2yBJuJLysa8gC1RmNjUUbrzC3U8HcLWbYesbcL0uY9PVhMdFBuxvyQlifhDBfdxYck7RUe6lXpdq7LG/ppGXZt9tJT0u3xce77y1eJVOC6H6JOrammpM45evm1NCVvLXRQIzj1KR7x66Utj5K+2yBb07WV3aZ3CFB95Csldx3C8sp18I6l7dj+V7hcXf9Ouo+idBrMdLWdA9oBUm7DVrM9r03rJUAX5RQPCSB+03dC3b5s9uwRS+vGHheVmdvDl2MVpY53Sd2C+7Tfe74dW0SJC1eOVmottXaFgVg3yKxztZoN3T+tyR0WjQ/0L1L4mVvFMgS9+OxeO2clIB8bPCC3A7HY5w1192j8u1emCbkq5QEWwhAAAIQgEBlE0DAquzxoXUQgAAEKoZAYlmUCDq2pnCg5C6JOtUKMuMJYyo6TGhiadHpYa0Ktl9ik4UHu+zYmuRQ9wMx1k9OVhYXZJ3kSe3rNzQ512S358Y5iV8NEntm5G43ElcOc1lVKtti2XaJHE9qRUFP+NvkbuaJrQUnrzfneDeewO+W0OGybHExqDg535UYckltOa6Jc1e9BBC1w5Pdi+PXYt09da1hj0SpcVlqjHkFONXncgsntK7DooBFMotwD/fujX04qUm3V4y7MKcYPyrzjCbiPaojBiOXEBH7oLbYhOZgx/bo4mWB5rIm9UkdS/G27kRIWokLwVqA67Y1k8WOtK+F/S187Tq9byLmvHSOcpM3btosv71YlzSTuC5gEVuf7GPsYuprxeNgYfO42Dou2aTcCC8p/lnvkMZPY2WLozEdY+sjs7TY6dULN0scPKrr7UjvniiiWHBcLkam7fc2EXmSUXYrb5HcTbUv7bfbevu0VFfC2TUtP8/7Xq2vR6vnHdQ9MaL74AVdJ+fy98SE7ol+9bFH163jW/neuiYXVOf5mluQeOVVDHdLAHtC98Q+udL5niiVXLPbnfahuC2lzlmWFxmkZeT7VtSf9HiLkbame0SrDrqdL147qbhegzFwuoWsMwqe3qt7xPHpovWVrTanhtT/CQlyczEQ/D4JYI9tOhAe0D3jvsf7zwTVDscNs0Bm4cv3ql2Lz+phV8Xzcq3cJJ52F1zQZ8aI6rOI5s8Dl28GFr72q9ytzb3RoittN1sIQAACEIAABNYGAQSstTFOtBICEIBARRFwXBkHmt6jlbzOaeJ42pZUsnqalNvQuVziPlQnYcHBuR03yuuE2WXH8Yye0kTVE/uX+t+MwdmnFdD9mqyVLssCReGd9U/uSD5Dx7Qo2HWjXKR2yvXQgthjfQejK1/qTpYcrZUJLWJo4ny0d3+MZfXytbeiVdSMJtHn1Z7YPhH0JN5imt2u9rRuDoe7dsndrCm6+dVK9JjJG6d40rwogDhPk2eLXz3qz+HuPdGiykLVGfXbq8ZNaIJ8wmLcwvk4ThlNlm2l5iDdB2SZ9eimfdHi41W1q9YSSqzHT/kKrTLkX8YCyvKkHkkkcT01emRdn/bjpqA+77s5afI5frjNtXp4G8+K+elRb9+6HJ/nepIfG0k5zi9MFog8fpskQj0s4cPJ15fdycx2StfUKVnNnVi4pHcsxGi8NY4Ws7rE17GfjkgEOtq3X6LH1miVlPQqFpU85fuQUeV2HKv2/mLPi1u0dJ4Ok4C6EPud8lp69yav8nUV8jLnUqmhti5al80rDpSv6Xq5Btq6yq5vyT0xmNwT6rMjxDlge5NcZxvq68Mu3ROP6Xr3Ne/A9b4+C/vtGtN999djvnjdlW5OURPzB2mTXjfmZ9k17ptf/pDF60UvHC/ugfbtsSy36WW5eXoRAwtOA+MSlMZuLLbLffZY+rOiTTHmbHX1+Kb94bBE4j5dDz6/MHmlw20tm6L1mS/Shv46xU2T5Zru8+OD58Oriqk3lz8hq/dddlbXSbuEry36vHpU19cRlW1LzuKyC+vhNQQgAAEIQAAClUlg+S+DymwjrYIABCAAgQoiEF2UFKDd8WhsaWER6euZ18IrwxfCiAQHu/u1a5abWK54auuH96tlSVUf9krQaVP8n22agL909UR4TS4+l2VZMq24NolNUlXISdRolDVHj+p4WO5RFjb2yvLKK5PZ4iZfZCzXTxam7Bp0WG5oMR6WhI1vK6bOGYsBsujxRNvHNElE2y4R6kDHjmhJZUHNIold0mYyVWFYDVhQLB8fG/vpwpPm+5Vi7NREN6UmCQ+OOfSi3Jdeun4qXFYQeLffK+V5PTO3cavqeVTCypObD4Wd7Vu0wt643MNktZXVpF3HVLmefI9TIcB1RNEhLwx4/56T2u2xSVMcD4lq7t+FzLzGaCHsyOT7WnBcenyyzVvu6LxJKSinq2X5I0bV2l/GaPlJsV6/rwNDv+qx+LIpz9WWWMXJbbOLqC1jmmXptlVugK/K7ey7A2+FNyWQTs6abaqWVIeMju3WtWHLtod79kW30p6GRJQo7HNKILZV9Y+oIVfmFkKHxjrmxba8vT1un3Md12lOj3Pqd4/Um8Vro0Qf0j75OvfYTqj7Z8S5Sds41upjcTILuzvuzVtQ2b3uO/0nwjHdS5dkZTQlUdhirns+r9O9ut+2Rgl9cpd7WNe6rZE6FQMqFWMK++7a3MdqtWVK/b2gPmzLj93itV3coBL78bqRuDuvMoY0lrE/sh6L/GKXll+stnSy6/AB3bd2Kdyu+/y7EquPyZ32gu7zGQvY+T7Z7bBe1pw7FAfM9/kjEnp3SsRyTLmlRR2SRrlvRmiBbK/GvaNBqxRKzPpO/8kYB+2CLNSmpV6Zlps153GQANarNhyIVl37Zb25M1q9WcQmQQACEIAABCCw9gjo92D6i/DtjZ+bm1dsELtOvP09ciAAAQhUKgEHee7XqlYvXj8WvnL15XBDriRHO/aEp3oPhR3NfZp48aG2EmPnrw/HmhoV3wFNTIemRxXbajKu0OeAyw60bqsoC0qe7KbJ093Z+VkJOpNy8xtWEOdRBUQfi659jhXlKahdAh2Q2nGtvLJZuyarnuhHy6tbDJ+DO9t6ZUhl2s0olqug8V410C5XDibdJourZj1cti06cgoY7/YPTo4qwPqc6qkPHY2tmny3xHPSdhduvSLamFzcbkyPxLpGJU6NygorBmrXpNwxvyy22cXSAoNdLqNrpNwZHbDbwoXj+XSqHh9bOFlPJ+qJhFJY652/TkSw1P5Golh+rIY1Ro5LNCr2vg8cB6hbli8WGjypLxY27Bo6IQuohI9c9hyjSMe57bZGi2MrgaRwSFyXY1fZLc51OeaYk62quiQ6OZaYrfGK64oH6eJwnXY/c1sH5SZoN1OXYQseJ7fZ4+hA7ck10hJf24prqcfx0LjvWFGOk7U4xmqbrwUH/XcfGhVHqvD69Jnug/vqa9PWQw5G7mMsnqS8bGFX3AfX5fhuSV0KzK77w8Kcr7luWf3YJc6iWKnkY+3e6qDm6T3hdntVRn9kmV+rr1+12+Pl68vXauG1U1hueo26Lb4PZlROVmPn69oWSNGNTycUjl3h+X5tDuZ+Q/eG71XH6LIVmNnHgOpqizk4YHqheJaWk34+uD9D6tew3Hodwyyn+9/tdjleYMGuge6X3SAd1+tOPqOT/plX8vkxLlYu24K0P2P8eeHy41blm5nvNbtuklaGgK+PkZxdtU+GL195WUL+jfDhzY+GD299Wott9MVYbsX3yMrUTCkQgAAEILAeCfj7O6PQJFn9gfVmCQHrZmTIhwAE1iwBBKz7MXSOgzUXXes8EbeFTp3c/249WUxiWFmwcCwjT449sfWE2pN+ixxenTBaeijPk6VbzrYLuu3JtI+fUXkOgO02efJuEaBW7VosZ7HMZBpfOJkvFkMKildjtJcXQn2chTeLLm5/dAXTJNzWWo7FFFO+ntgun5rkJm/FwpZEEws/FmzMJB7ounRM3BSc97aXsU1JsGtP2h0A2wKHrVyWUkHN6ct8+UvHFL/KH+hNvo6lxtyqVWkF+fLS85dOLq4o2U/rUOcdJ8kCo8fQIqR5+Jqw6GTBaonkrdrhYm/WFr93q3Nvdt69nHO7uvx+Up/vJY//pO8JXVsWAXxP+Pr1QgQWeBLB6FbtWCovFrvs0GU7PvA2Se1y03TaEpE7uCZjqfn7XMKhRUHf5xawLeS5PxaRveKi052WGA9efErKd5l2JXQdThYpXXZynaQH322/0/PYliKAgFWKCnkQgAAEIHCvBPwtfTsBCxvqe6XLeRCAAAQgsERAQoMtM+ozmpDqcWcpcfXxeXYt9COdwCaT83SynM9dmjnftvi0HE9ea2r9VeevxLTUgknsYplJXsE7t64jnpccbbdBi2K1dTWx/X4rrWlRHMnXk7arVD0W8mzNdlLB7F9XLKSrigsWNTIdbAuXt5+zPCfRyLS6nayEdssNy+6UXuXOqzTO69/bBI/lp9+iv/kD0+PT7S3OSN4qOrBo96anF4yJ//4W2daKrQNwKbkfee1Qe3daaNFxRbux4JJPRQcW7ZY8pbhNd3ROWlJysEVQWzHW65H2Mb2mFvEU15MWsWybr/yu2rCsgPyOCrjnopL73CJVJpuJ/XJhST+SsSx1dZdqRem8tPysLKz0SBuav+IXG176ZHIhAAEIQAACEFhDBBCw1tBg0VQIQAACFUsgP6temlzfeUuXxIhC4efOz7/pkWrMUnuWXt30+Ht9o6CeVGS4l6I8iU/cDIcUVP5iOK0g5m61dYPbTfDT41x/h9zVHINrp1ZktCi2ptMKsV2LDHxfeFzT57XYh2VtzvenXH1a+hxJalhWNzsQgAAEIAABCKwLAghY62IY6QQEIAABCKwHAnZ/tYg1rLhdF6aHY7Drubx8ddNpuWbu/meRy8Gx52W2NKky5mySlbeaidubFrAeyNEHCEAAAhCAAAQgAIH1TgABa72PMP2DAAQgAIE1QSBZka4x7NEKa1o/LjzatVfGN3nVKfEPTPphUcrZqTgVBaxk10KWg2BvbemOq6057ld8B/EqYcczBCAAAQhAAAIQgMCaJYCAtWaHjoZDAAIQgMB6IuBg6+1aKe2IVvg72L0nBjC/l/45wLdjKPnhAPiJ3oWCdS8sOQcCEIAABCAAAQhAoHIIIGBVzljQEghAAAIQ2OAELD5VV2VjDKtFFKm1VaEGtWh9paPS14snJC9uFzer6HB2IQABCEAAAhCAAAQgUNEEELAqenhoHAQgAAEIbDwCRdJTKlCl20IgpfIK3+c1BCAAAQhAAAIQgAAE1gkBr1BNggAEIAABCEAAAhCAAAQgAAEIQAACEIBAxRJAwKrYoaFhEIAABCAAAQhAAAIQgAAEIAABCEAAAiaAgMV1AAEIQAACEIAABCAAAQhAAAIQgAAEIFDRBBCwKnp4aBwEILBSBAgVtFIkKQcCEIAABCBQTIBv2WIi7EMAAhCAwMoTQMBaeaaUCAEIQAACEIAABCAAgQ1EoHCZ1A3UbboKAQhAAAKrSgABa1VxUxkEIAABCEAAAhCAAATWBwHbXSW2V1hgrY8RpRcQgAAEKpsAAlZljw+tgwAE7pFAVVVVqKqqVqC/av24Xgjz8Zkf2PeIk9MgAAEIQAACywik363J92v+O1ffu/r6JUEAAhCAAATKQgABqyxYKRQCELjfBDLV1aGmOhsy1ZkwOz8fZuZzcXu/20X9EIAABCAAgfVAwH8Smp2fCzk9FhYWQq2+c7N6+A9I/LloPYwwfYAABCBQeQQQsCpvTGgRBCDwPROoCtmqbGjI1oa6TE2Ymp8NE7NT+pGd+55LpgAIQAACEIAABEKYX5gP03O5MJGbCnMLc6E5Uxfq9chUZcADAQhAAAIQKAsBBKyyYKVQCEDgfhKw90JtdU1oyjaERolYExKuRnKTYXJuOjoSum38dfh+jhB1QwACEIDAWibg71kLWJP649BobiJaYrXVNIbWbKP+gGQBi2/ZtTy+tB0CEIBApRJAwKrUkaFdEIDAPROw+0K9LK9aa5pCW02z/hpcFcZnJ8PQ9GgY0w/tOf3oJkTHPePlRAhAAAIQ2PAEqsKsvktHZybC9emRkFuYDR36zm2va45/QLJLIV+0G/4iAQAEIACBFSeAgLXiSCkQAhCoBAIZBZJtytaHrvq20F3bLDeHmXB18kYY0A/tVMByAFoSBCAAAQhAAAJ3R2BOS6PY+ura1FC4okdOsSY761pDj75z/Qckf7sqrPvdFcrREIAABCAAgdsQQMC6DSDehgAE1iYB/3iuy9bpx3RH2NbQFQO4Xxy/Hq6MD4Tp2Rmkq7U5rLQaAhCAAAQqgID/KHR9ejhcnLgehmSF1aDv296GjtAhEavGApYtsEgQgAAEIACBFSaAgLXCQCkOAhCoHAIN1XVhU31n2NrUq78VV4UzE9fCW2OX44/uGQV2J0EAAhCAAAQgcHcELE6NKa7khbFr4fz4tdCYyYa9zX1hS1N3aMjUYnl1dzg5GgIQgAAE7oIAAtZdwOJQCEBgbRGo1Y9quzTsbukL2/XDel52V2fGroSzeowrFla1/vFX4rU1prQWAhCAAATuHwF/Zzqm5MXx/nBi5Hy4KNf8Zrnr723ZGrY19sYVgKN7vmJPkiAAAQhAAAIrTSC70gVSHgQgAIFKIVCtH9DNNQ1hZ/PmcKh9R7gxMxouTw6GN4bOhA7FxarTX4rt9kCCAAQgAAEIQOB2BBbClFwHz0u8euXG6XB85KIEq+qwS9ZXu1u3xD8YOf6k/jIUvJgKCQIQgAAEILDSBBCwVpoo5UEAAhVDwCE4stWZsElxOQ607QhXJgbD1anh+KPb4lVG7+3RX43r7fLAj+2KGTcaAgEIQAAClUXAlldT8zPhkmJevTz4VviOHkNyI3ykbWc42rUvbG/eFGoV+wrZqrLGjdZAAAIQWG8EELDW24jSHwhAYBkBr4JksWp7U194pHNvGJwZC68NnQsv6ce33RzmtQz43tZtoVEuEP6BjpC1DB87EIAABCCwgQlEd0D9MWhibjpaXr04cCI8P3Ay3MiNhT2KL/lo195wsH1ntL5axMQfhBZR8AICEIAABFaWAALWyvKkNAhAoAIJ2KWhva45HNCP7On5XHAA9xNyfXhx4JSWAZ8JQ9Nj4QG5P/Q0tIf6qlr1oCqKW+5Kuo4Sf1WuwIGlSRCAAAQgsGIEoliVD8GefOdV6Y88C1plcCy8pe/M7w6eCq8Mn9H+eNjV1BOe7T0UHu9+MK4+aFdCH0uCAAQgAAEIlJMAAlY56VI2BCBQMQRqqrPxR7atsGx1VVOVCW+MXAgv3jglt8Kh8JBiY+1r3Sp3w87QWtuklZTqtBR4VmHenfxT3j/MC2Wswv3C1z7eKc1Lt0nukiTm/ZuVlx5buC0uJ33P+WlK2+n9Oy37VuXeqry0zlJ1Fb+X1pFu0/dvtZ++l259TvFr5xX20/tO6XHeOqX9KD628P3kyNLPaXl+N32dbgvz0rML30vz0u3N3kvzvU1TYXvT99P3Sm2Lj0n30+3tzik8rvh18bkpU+enr++kvYXlFpfp95wKy0lySj/frKw0/2blpe+71OLXzrtVf4rLLDzf595NSsvyOcV9Tt8rzr9d+YXtKXxdfF763s3qKcwvPPZ27UmPdX3p63Rb2IbCPL9O083Y+/3CugvPT88ttU2PS7fpMel+unW+X6epsK40r3BbeF6an55f3IfC/PTYdFvqvcKyi98v3k/L8TZ9rzDPrwvbk5adbv1+4etkf3Z+Lsa6GpWL4ODUiBY+uRpeHzodjuk7c2phLuxTzKtneg6GJ/XY1twbv08tXkULZkQsQyRBAAIQgECZCFTJZeZm33hhbm4+zM75C6lMtVMsBCAAgXISSD/d8p9h3p2V9dXg9Eh4/caZ8K3rx2Ig2htakdCxsjbXt4cHJWI5Ltbmxu4oZNUo38Hg/Y8EAQhAAAIQWI8E4telpgSzEqjGZqdCv1YXPDN6WTEjL4SzE9fCRG5arvZ1+n7cHN7Ve1iug/v0PdkVV/Nd5nrvaQUTh/V4idAnCEAAAmUn4O+iTHVVyGYSE4JSFSJglaJCHgQgsD4IxF/k6kqB9uSsOf11eUx/WXYw2ldvvBW+KSHrjdFLYXouF1oVC6tJDy8L3lbTGFq1imG9AtM64HtBMeuDD72AAAQgAAEI6IvRFlR2sbd4Naw/6ozmpvR6Mowr9pX/iLNN1smPdOyOwpX/yNNR1xps2bwsxe9cPSFgLcPCDgQgAAEI3BkBf40gYN0ZK46CAATWI4H4Y1odu4nyZMHqutwHT49cCidHL4a3xq7EILXnpwYVoHYqWLJq1V+c6/QjPVN9878ErEd09AkC959A4Y2b3sz3v1W0AALriUC8y3R7zcuV0PEhJ+ZmwqSssBqra8LmurawU7GuHmjerMVOtoTd2m5q7NQfeRokalXrDHlpFH7BxtvUTyq18PZdT8DoCwQgAAEIlI2Av0EQsMqGl4IhAIE1QSD/W7q4rUmw2iQ3Nye3wpnRcGH8qsSsy+GCLLOuTQ3Hv0TnZK01q5hZ/hdDhRQXxD4EILCiBLyEgue+nlAn3kjeYza8opApDAJFBOwGmNGjtiobXQU7a5vlItgZdrb0hZ0Wruo7QoP+oBMjj+h2XCZcFZaFC2EhDV5DAAIQgMBdEEDAugtYHAoBCGxMAlHI0qelA7s79kcMXis3inG5GI7Ojkc3iin9RXp2XgIWCtbGvEjoddkJeFJsNyVbRQ5LTJ7T/ejVQ+u1mEKT3Hht7fH2YNNlbxYVQGBDELA8bPGqRlZXdqFvq2kOLbWNoT5bG7Ja8MQP34M65ObC1YYgRSchAAEIQKCcBO5EwCpyXi9ncygbAhCAQOURiH9F1o/yjH6g+199JgStQRg69Nfn2fmOkJOoNafJdbLehT9WSRCAwEoT8P1Vq1hzduf9ohZYGJgeDrtbtsh1SY+2raFeE2tbZJEgAIHyEPB3oUVki1WObZXEfbS0ZemYe6881CkVAhCAAATulgAC1t0S43gIQGDdEvCP9PRnepX+2lybqQ11sbfJj/h123E6BoH7TMAWkHXZbBSx+qeH4qpn3VoV1JPothpJynJdcpBpEgQgUF4C6fdg3Pqew+qqvMApHQIQgAAE7ooAAtZd4eJgCEBgPRMojunh6XIiaTFxXs/jTt/uMwHdXraumk9uuGj9YYurdOGE5D2/bzdeJfTkhAPPECgLgfSbMCpXZamBQiEAAQhAAAL3SgAB617JcR4EILDuCSTzZGbL636g6eD9JeB5siw94p2mJ7sTRndBCVrOiw89pdPq+9tYaocABCAAAQhAAAIQuF8EWBf+fpGnXghAAAIQgAAEShKwaFWY8sZZhVm8hgAEIAABCEAAAhDYYAQQsDbYgNNdCEAAAhCAwFojkFpirbV2014IQAACEIAABCAAgZUjgIC1ciwpCQIQgAAEIAABCEAAAhCAAAQgAAEIQKAMBBCwygCVIiEAAQhAAAIQgAAEIAABCEAAAhCAAARWjgAC1sqxpCQIQAACEIAABCAAAQhAAAIQgAAEIACBMhBAwCoDVIqEAAQgAAEIQAACEIAABCAAAQhAAAIQWDkCCFgrx5KSIAABCEAAAhCAAAQgAAEIQAACEIAABMpAAAGrDFApEgIQgAAEIAABCEAAAhCAAAQgAAEIQGDlCCBgrRxLSoIABCAAAQhAAAIQgAAEIAABCEAAAhAoAwEErDJApUgIQAACEIAABCAAAQhAAAIQgAAEIACBlSOAgLVyLCnXusAGAABAAElEQVQJAhCAAAQgAAEIQAACEIAABCAAAQhAoAwEELDKAJUiIQABCEAAAhCAAAQgAAEIQAACEIAABFaOAALWyrGkJAhAAAIQgAAEIAABCEAAAhCAAAQgAIEyEEDAKgNUioQABCAAAQhAAAIQgAAEIAABCEAAAhBYOQIIWCvHkpIgAAEIQAACEIAABCAAAQhAAAIQgAAEykAAAasMUCkSAhCAAAQgAAEIQAACEIAABCAAAQhAYOUIIGCtHEtKggAEIAABCEDgeySwEPyPBAEIQAACEIAABCAAgeUEELCW82APAhCAAAQgAIH7RKAqVIXa6pqQ0ZYEAQhAAAIQgAAEIACBQgIIWIU0eA0BCEAAAhCAwH0hYKurmupMaKttDLWZGuyw7ssoUCkEIAABCEAAAhCoXAIIWJU7NrQMAhCAAAQgsKEIVFVVheqq6lCNBdaGGnc6CwEIQAACEIAABO6EAALWnVDiGAhAAAIQgAAEyk4gjX1FFKyyo6YCCEAAAhCAAAQgsOYIIGCtuSGjwRCAAAQgAIH1TcCxsEgQgAAEIAABCEAAAhAoJICAVUiD1xCAAAQgAAEI3HcCqSXWfW8IDYAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAQhAAAIQgAAEIAABCECgFAEErFJUyIMABCAAAQhAAAIQgAAEIAABCEAAAhCoGAIIWBUzFDQEAhCAAAQgAAEIQAACEIAABCAAAQhAoBQBBKxSVMiDAAQgAAEIQAACEIAABCAAAQhAAAIQqBgCCFgVMxQ0BAIQgAAEIAABCEAAAhCAAAQgAAEIQKAUAQSsUlTIgwAEIAABCEAAAhCAAAQgAAEIQAACEKgYAghYFTMUNAQCEIAABCAAAROoAgMEIAABCEAAAhCAAASKCCBgFQFhFwIQgAAEIACB+0tgoaj64v2it9mFAAQgAAEIQAACENgABBCwNsAg00UIQAACEIDAahG4ldiUvle4XQjpnlq4+DJ54ef4Sk8+bnE/zS/oVPpeuvVbfk2CAAQgAAEIQAACEFgfBLLroxv0AgIQgAAEIACBSiBwK/e/9L3l26ooNDmvKv9GVd6JMObptfOrFvJv5ju5fK+022HxMZXAhzZAAAIQgAAEIAABCNwbAQSse+PGWRCAAAQgAAEIFBGwjdT8wt3bPc0vzIe5hWo95sOCzo//tNWe8uZivo8pLVMVNaJg10JYldQvhKwCKLyEAAQgAAEIQAACa5QAAtYaHTiaDQEIQAACELjfBCw0WR6yuHRjejScH78aBqeGY7MsHN2pluVystWZcHXyRjg/cT0M5SbCBW1fHnhT5Q6HmuqaKGzdaX9dt9tUXVUdHu7cG7ob2u/q/Duth+MgAAEIQAACEIAABFaPAALW6rGmJghAAAIQgMA6I7Bk22QRamhmNLw4eDJcnBgMs7KcspAUk42ylg5NglN5P2+s5XOrdezk7Ey4LiFsfG46TM3lwsDMWGgcqotCVKKG5QtJzy3euhrlVanc9trmcKhjZ7TeSg+LbeEJAhCAAAQgAAEIQGBNEkDAWpPDRqMhAAEIQAAC959AIgxZfKoOXfVtYU/LtnB2rD98a/CtcHFyMNQEuQWmKtUdNVdSVhS1FsK4xKxrErCWK1+3L6S+KhMWqqvDe3sPh0e79oeOupZ7cmu8fU0cAQEIQAACEIAABCCwmgQQsFaTNnVBAAIQgAAE1hmBxQhTEp62NPWEZ3sfCtenRsJf9r8SRmcmJF/5372kJTHrTs62mGbBbHhhJryv63B4b9/RsLWxR+6H/NS5E34cAwEIQAACEIAABCqdQHWlN5D2QQACEIAABCCwBghIQcrK+mlnS1/40NYnwjOyfqrKZENWopLFpXKmtIaM4mgdbdsR3rvp4fBQx+7QkK0vZ7WUDQEIQAACEIAABCCwigT4s+QqwqYqCEAAAhCAwHolYEssrxhYn6kLB9p3hsHpkXB1eii8OnQ+hPl5vaug7vdoi3UnzGoknvU1dIYPb34sHO3aG2Ng3cl5HAMBCEAAAhCAAAQgsDYIIGCtjXGilRCAAAQgAIGKJ+BYWF79LyMx6WGJSIMKyH55aihcnRiKVlhzZehBJpYcwuaGjvCungPhacW+6mvsKkNNFAkBCEAAAhCAAAQgcD8J4EJ4P+lTNwQgAAEIQGCdEXC8K68E2FbTFB7r3hc+2vdYaK1tChPzs3IxXPmfHXUSy+pqasMTEsw+su0dUbwqt8viOhsyugMBCEAAAhCAAATWBIGV/yW5JrpNIyEAAQhAAAIQKAcBi0d2F6ySirVFQdSfUVD37+s5qNUAm8Pc/Fy0l1oJgcl11OgxLbfEd3TuDe/adCRsb94Ug7bPl9FVsRzMKBMClU5gQcuDzssV2Nv7lSqhDfer79QLAQhAAAIJAVwIuRIgAAEIQAACEFh5Aprn1lbXhN0tm8P7Nj8axnNT4a8HjoW5udz3LC9ZvAoqxeX3yF3w3QrafrB9VwwXbxfG5P2V7xIlQmCjEbBoVF1dHWprMrHr87qvc7nZKFCvFgu3wYJ4bW023vmudyY3F8U059+PlAp596v++9Fn6oQABCBQCQQQsCphFGgDBCAAAQhAYJ0R8MTOYlJDti4c7nggjOYmwtDseAzqPj2fy0tQ99bprMqeVdnNsur6W1ufCg937AnN2YZVnVTfW8s5CwJri0BNTTZMTk6F1187GS5fvhwOHjoYduzYHqanc1HYKndvLBRls1lZf82Ft946E06eOBG2bN0SDh48FO93W4WtpoiUiml1EtOccrPz0TLtbtqQGLEllmx3c165WVM+BCAAgbVAABfCtTBKtBECEIAABCCwFgnkrSMaMopRpQDr37/lybCtqTNOOKsXbSnurmMO2p7TZLavvjN8oPdIeIfK7W1oX9VJ7N21mKMhsLYIpNZF2WwmvP76G+EH/vYnwtGjD4ePfvTD4e/94A+GCxcuhfq6GllTlmNZhiVWFqcsFF27di186lO/FPbu2R3b8MjDR8LXv/71UJOtXlWXRrcnk0ks0Z5/4TvhhRdfigzcRjNLuS314O2vfEwmUx37ZYsyW7fdyXlvL4kcCEAAAhuTAALWxhx3eg0BCEAAAhAoO4HE0S+pprO2NTyiQOvvk7tfb11rmPFqhfcgYjkQfFNtY3i6e3947+ajYWtTj4LDY1Be9sGkgg1FwOLV6OhY+LSEoy996UvhQx/6cGhsaJA11mSYnJiILMopvFgsqqmpiRZOf/KFL4T/+Zd/OXzgAx8Mjz32WKx7bGxscTzK2Y60krSObKYq/Nmf/Wl48onHwhOPPxp+4ef/23Ds+MnEvVGCfXpcel7hNulTNoyPyxL11dfD2bPnw9TUZDzXx93q3MJyeA0BCEBgIxNAwNrIo0/fIQABCEAAAmUmYBHLbjIzWoWwp6EjPKtg608q6HpDTd1d1exyHAGnpjqroO17FPfqSNjXtj3GwZITz12VxcEQgEBpAhZRfL/aePLEiePhs5/9THjPe94j971TYULilQWkTX19cg/2fV2+aYTbIUOlcOXKlfC5z/2n2Fi368UXXwz79u0N27dvi3kWhVbDDc/WZrY6uz5wI3zm934v1v2Rj340/Nt/+2/CwQP7wyuvvBbjhLktpYSolKtP/A+/83+HI0cOhwd27wx/9+/+nfDVr35NbpKZaN1V6txYGU8QgAAEIBAJlO+bB8AQgAAEIAABCEAgTyAKUFWZsE0rE35g6+Ph6Y69YUzCk3+I3M6dMIpgEq/sirilqSt8RK6IR7v2RzFLjjt6x0eQIACBlSAQRRgVNDIyEoubl1o1MzMTX+/dty80NTWH2dk5ub+V775LRSlbfL355ptJO2S16fT440+Ezo7O+Hq1ny5euCAR7YVY7ZkzZ8Jzzz0XX/+P/8M/D1f7r0cRq5QINSdedjX89refDz/3cz8bmhobwxNPPBG++pW/Dt/37neFP/r8H0Xhq7o6U1IAW+1+Uh8EIACBSiWAgFWpI0O7IAABCEAAAuuIQDopbsjUhQOtO8JzfY9IxNodFmTFMaeJ6a1EKLsN+pj2upbw8a1Phgfbd8Tg8MaThEJeR6DoCgTuI4HUgsjS1O7dD8SWjIwMx0Dl3nlw/4NBxkISsMq7EmEqAvX29Ibv/9jHYzsa6uvj1gHc29rb472fCl3xjTI+pfVcunxJccFeTyymFL/KFmHvf/8Hwuc//4fhS3/+59Hl0a6PtgxblvJi31mJXk516svQ0FDYu3d/ePrpp8PfVpyx1157TeXa+q20FVc8kScIQAACG5wAAtYGvwDoPgQgAAEIQGD1CCTuSc21TeHR7n3hg31HwwNNvaFKE0FN2Uo2w+/MKmh7d31beKb7QHiy+2DoUAytuYUkgHT5bEBKNodMCKxvAgW34fT0VOxrQ0OjArdfiK/3yn1vNVNuNheGh4dilePjSeytffv3ywqsIeRytgIr/1TGYlpaj10anXbs2KmVGKfVjiYFme/XtjH8o3/0M+H8+fPR9TEVvHxsPN8+mUrDEgOd6vNi3MWLF0K9Yos5vfrKKwoKv1RXzOQJAhCAAASWESj/p/6y6tiBAAQgAAEIQGCjEkitrDyh623oDE/1HFRQ9yNha31HjGJV6kdJjayvFjKKeyWXwfdteTRs0nkZ5aVlbVSW9BsC5SAQXXLzYsvZM2djFc3NTXHrmE9bt26NrwsFmnK0Iy1/4Pr18O//3b8LmzdvDsePH4tV7dy5U/d/iCsApseVow1pmf688uqDU9O5cOXy5Zht4SqXy8liKlkl8Yknngw3bgyF48eOxfhgPt7npcntdNyw0dHRmGUrrTlZadXW1sZynNkvIazcKzum7WELAQhAYK0SKPVbca32hXZDAAIQgAAEILAGCFR7MqfJ2xbFw3r/lsfDs90Phsaa+mWxsCxRxR8pEqu+r+tBuRw+HPa0bA11mZo10EOaCIG1S8DWRhMTU+HP//yLsRNjWjXP6dGjj4bOzq4wM6vYdWW0fPJng4WhOXnh2a3O6ZGjR8OlS5fCxz/+ibBly5aYVygQxYwyPSUCVlW0uLp69WqsxQJU6kbp9jpOmNM3vvkNsZuU4LXkBujz3Z/Jyalw7ty5eJwtsObybpi5mVzMO336rRhrbDVEuVghTxCAAATWIAEErDU4aDQZAhCAAAQgsNYJeLqXUcDivsau8H2bj4ZnOveFnM0qNNlLHAoXQr2Ctu9t2Rw+uPnRcFjxshqzd7dy4VpnRPshsJoELLRYPLE29dZbb4V/9a/+9/DMM8+GU/kg6g8/8kgMUj4ry6NyiixR8JEAdP3atfC5//wHEUHigBdi4PPu7p5VjX8VuagVY2NjUURzg9x/5ztZnLKbY21tTfj1X/tVuRReixZiKaMFxe/ziooOin9aXNNzLHxZCEwD5L916q0okqloEgQgAAEI3IQAAtZNwJANAQhAAAIQgED5CNgKa06xrewO+GDbjvCu3ofCkdbtUdTKaPrnqeEWuQt+WOLVI137Ytwrt8YuTiQIQKA8BCyozMrC6stf/stYQX1DfRRkvHPo0KHyVFpQqkUhu985HTt+PPyH3/mdKFqdPn0m5j105EhoVvyrmZnZslqBxcrSp7xQZQHrwoXzMTcVr9L2Dg4OhieffEdk9dapU9Fd0Cz9/nz+/MtyP/zSl/4sX2oigFnkmp2bjXnXrl8T+8QaK62aLQQgAAEILCeAgLWcB3sQgAAEIAABCKwSAU/eqiVgNcjS6qiCur9/8yOhqUbBmRWgvSFbGw63bQ/v0mqFPQ0dBUHbMU9YpeGhmg1GwPejXd+uKlD5f/ePf16rEO6OVlDG8KM/+g/Crl27o1tfud0Ha2syYWR0PHz5L/8ijkBvb284duyNcPDgwbBfqyA6OVaU27sqKV/PwMD18PWvfz1WmboPesftcDysVHh7/oXnw9TUtPYTAcufcU7ug10zu7u7dfzMYvvdl75Nm8L5s2clYLlfSZnxJJ4gAAEIQGAZAQSsZTjYgQAEIACBshOwAQ0PGOgasGFCNE7Qtre+M+xr3ha21LWF0ar5sK+pLxxq2xmas/WLrNJjuX64hxavgbJ/YG2MCmwpZCHGH80vv/yyrILmgwWrixcvRgDvfvf3hdaWpujuVk4BKxWlvOrhpz71S7Fux45y+uhHvz9s27Ytvk6Piztlfkr729/fH2uyADU9syRApVZYY2NJgPbP/+F/VkD3GxLnQ4z1V19fG4aGR8NffOlL8XwLcpOTk4sClmU4W2lla7Jl7gnFQwACEFj7BPikXPtjSA8gAAEIVC4B/TJX+I8wn5MbRU6Bbme0nZUTmJYK90zJP/z1t+bKbT8tWxUCvg5qMguhfbwtvK/6aNib3Ro2z3eEvrHuMHNlPoxlpnW5+FohbWwCElkMQEJLldSBKv2Kra6pDpkaWfLVal/WQ/EALpV7ukwsCuXkmvf889+O58/Jtc2ucU6PPvpo3Caf2fHlij+lQpCH7+zZM7H8Z599Z7h8+VJ8/fgTT4T29tYwk5tbNfdBx6myZVVObpWnT5+O7dgka6lxBbY3L4tbbrfjYA0MDISnn346fO1rX4vt37qlLx7va/a7L70Ufuu3fjPu+8nnpCKct9PTUwqQ3xmv6/i+nvhmNAkSBCAAgeUEELCW82APAhCAAARWgMCCVmSyaDU7OR9y4/NhZnQ25MZmw+zYvPLmwpyFLP2F3+IWCQIpgZxiYu3J7QybZntD1YJWKpQrUX/tqOJkaUl6BKwU04beaq4fJ/nVEq0y9dWhpiETapozobY1G7fZRglayq+2mEW6KwIWUiYkzLzwwgvxvImJibj9oR/6ZNizd+9iXKe7KvQuDk4ELAc1n11cra+trS38zd98LezatSscPnQ4ijp237NgtBrJAdhrsjVh8MZwePPkyVilVxAcGhpadBlMhagpWVXV6T0nMzyqVRsbG+rC8MhY+Mxnfy/mO46YY2mlVl0xU9y9EmFWKxs6NiAfdZEKTxCAAARKElidT/+SVZMJAQhAAALrkcC8rKtmx+bC5PVcGLs4HcYvzYSpgVzIScSanZCANT0f5myNZUssLz2OtcR6vAzuoU8WHCRsRlWzNp4/VjUbxsPwPZTFKeuSgC4Rz+9tfRUtr+qqQ1ZiVbapOtR31ISm3trQtLUuPmpbMzomsdRalyxWsFOpNZCMicJlxb/6Q7nAPfnUU+HypcTy6bn3vS+0t7WEyamZRdFmBatfLMrtsNudV+t7/tuJFVj65g/+vf8q7Ny1K+6mglH6Xjm3bpOTVxa0a6WT8yyiNTU1hRMnTsS83bt3RwFqbDRxI/zjP/6j8AM/8HdC47Yt4Zvf/Eb4tV/91Xicn9LVBxczVIX75HJdnbR7EgQgAAEI3IQAAtZNwJANAQhAAAJ3QcC/8fWj21ZXU9dnwsiZqTBydiqMSbya1P6CxKqsJ5uyjqjtrE3cfbKaXOpHuyekSylf0GJG8f7iG+v0RaX0t7gdxfvrAX+pPpXKW+2+rlYbiusp3r+Tft/LOcXlpmWk2+L30/38+57kSySf18JtcxLDZyckll/Lhcn+GQnmU6HxUl1o7a8PLTvrQ+OmWlll2RpLysyyz5m0TLYpgURACeHVV16JWS0tLeHbikPl9NRT74jbVMyJOyv8ZOEmtUq6pLhbv/Eb/z7sldWXY2E52TXPItr0aq4+qHqr8gHYz545E7761a/ENk7I0qq7uye89tqr4Rd+4R+HUYlWv/WbvxE29fVFy6x3vOPp8Gd/+qcxDlZPT0/43B/8QezD4YceCiPDw/F7L3U99BsWtFrbWsMVrVLo175UuVwjMp4gAAEIvI0AAtbbkJABAQhAAAJ3S8DuXbaumuzPheGTE+HGiYkwfnUmWlllaqtDXU8m1HfWhLoOu/nURCHLcWtiHBt+rd8t7nV+vIWKwsRUrpDGhn6tS8MiSipe5cbnwszIbJgazIXpG7PRVXnk9KReS9CScN62pzG0Ssiq02ePP29QBW5+9VhQscvgF//8i/Gg1JLop37qp8OePXsU1F3WUTbRKlOKrnpyoXM9r732WqzFKw5+4Qt/HCwIPXT4oZjnFftWy33QYlKN2uSYW999+bux/sOHD8f4V11dXXH/x378JyRUDYbflIB1RdZrBw4cWLRSe+WVl6PI9du/ncS+ctsXHFNL7o+JtVXyWWer07q6esX6uhIFrFgwTxCAAAQgUJIAAlZJLGRCAAIQgMCdErDHl2NdjV+YDgPH5PB1cjJMyBqiWhZWTZsSd57GXolXbVm5+mRCRpZYUbzS+55QLrfAutNaOQ4CENiQBDTnlwaQLAoxvRCtsHKpy/IluSxfnk4ErWEJWsNzYV5WWu37GqOIFQO9o4cuu2wsodj6ytrU6dNnwm/K8unZZ58NJ/Pxnt773udCU2N9mJicLqtwZEHHhnJX+6+HP5L7nZMFH6cPf+QjYdv27TEGl9u6WmleMfmymZrw1rkL4Ut5YS+TySrYelf4tlwc3/nOd8ZVEb0q4Xufey781Ze/HBoaGsKpU2+G/Q8+GH74kz8Um7p79+64tShYrYDwFuBOnTqlbUbnq1/qp89zmtHqhkspjs7SLq8gAAEIQCAgYHERQAACEIDAPROw28fcjFaJs3j18lgYlOWVLSIcULllu1x5djaEhr467Uu48iph/gO+5x9xDpJMRJLne24CJ0IAAhuIgKf01Rk9svowifGyM6GuKxvqumtCg4Ryi+WjcmEevTQVhs5MxHh7/pxqf7Ax1HfJEisvnG8gZLfuquBUSb2ak+XT17721XhsbW1djPm0a9eu8Njjj936/BV4N4pXEnacLOz8x//3/4kxuF5/PbHEeodcGJubGsLUdK6sVmDFXUndB1979dXwxS9+MdgdcHR0JIppPvaTP/wjUXhqbW0OH/rgh6KAZSu2xsbGMK5A7Q8+eCDU1tYqptfwomVVq4LS203zX/yL/ynGz/rd3/2PYfPmzdHKzWVev35Nr3frVRITaxX1OldPggAEIFDxBBCwKn6IaCAEIACByiPgCaHFqAXFvJq4MhMG3xgPg3IdtHjV0F0b2h5oiK47DT1yF5TVVVWMd1V5/aBFEIDA2iKwKHgXzOwzWnGwSg8HdK9tycZHtSw9R85OKg7fdGJhJBdCi1dV7dloHbq2el3O1oqLTJ+uXx+IbnB2jbOI4vRf//2/H3bt2h1d6DJ5gakcLbGAVVubjVZe3/jGN2IVm3o3hW9/61vhE5/4W8Gxo5zs0rda7oO2/qqrrw1j45PhGwrC7mQrsGGtPuiH0+OPPxEFNV+T73zXu2Le8ePHw0NHjoTpgYEwPT0VJieTlRxdXu+mTeGl73wnHDxwMPy8Ymd97nN/ECxg5XLJCoQu4MqVqzGQuy9vf8+SIAABCEBgOQH/LZwEAQhAAAIQuGsCDsw+pVgzQ/mYV9Ny2XGcq479jfHRtFUBlNOVwFw6P8bvmjEnQAACtyHgzxU9qi1gNWg1QllZteyuD12HmkLbroYYZ2/0vKyxjisu3+WZMDc1jzCQR2rhyEKJH6+++kpc+e/Iww+HY2+8Ho947rn3hxpZunnFvXK77lkEuqwg5v/m138t1j08nIhEH/jgB8OWLVvKHoMrj2RxYzaeJNkd8LOf+b2YP5ubDRb4XnrppfDxT3wibJegZS5eTPfQocPhR3/0H8TjshL7Yr59XZXS1+2yvnL6pU9/OnR2tMWyvG8LrTS+mONpzavAcvN2vSQIQAACa5EAAtZaHDXaDAEIQOB+EtCPdU94cuPzYfTsdAzY7hXAapuzoV1Bk9v2yG1QbjzZ+uRHfBSuPDvxgwQBCEBgJQkUfrb4s0m/bGtbMlqFsC50yG2wZVtdWKhaCMNyKxx+SwHeh2bjqqgI6skgVMsfc2JiKvx/n/1szJjUCnuzc/PhPe95TzgiSyIhLauYkgZKd/D2F55/Psbe+tCHPhy+8pWvxPY8+uijUURzbKhU5ElaXr7ntE3CEP7ma38T2/SQrMAGBq6FpqbmWPFHPvyR0NHREb8Lp6amQ3dXR7DY5tTf36/jmhbdBi0AbpL11V/91V/JauvxGJTex3mlR6eZmZziYCVilwPB+3i+LyManiAAAQi8jQAC1tuQkAEBCEAAArci4AmNXRumBmai9dW4XHS80mDr9vrQurshWmFVaz/++bpwcnmrQnkPAhCAwPdKIP95Y+sVuy43Kw5f+97G0NBVG92bo0vhxengoO8b3T0rFaYURzzGYvp1WT45ePulixfjKHxIAs2mTb0SV2bLLhw5ePu1a9fC733md5MrIP/Hjh/65CcVD2rv93pV3PX5Dt5uy7Nz586Fz3/+D+P5XiXQj4HBgbj/5FNPhfo6r5roa8k0Q3juufeFj33sY+HSpUuKg9UU830tWnzr6OyMx/zUT/9MjKXlnVQM8+soWml75vRpuRTOSL/KQ/CbJAhAAAIQWCSAgLWIghcQgAAEIHBHBPRjfVYTwHHFvhrTZHB2Yi409tVKvKoPjnmVURyaGKz9jgrjIAhAAAIrTEBz/6rqqriYRLMssJq31sXPpcnrOVmNTgW7O8/LBXpDJ32OW1zJ5ebCn/7pn0QUtsa6eOF8fG0xSwjjSoDlcmez8OPYWh4JB2z/T7//++GZZ54JlyUAOb3rXe+Olku52fmyi2ixQj1F10GvEqD04osvhD/5ky+EHTt2yvrqenRlfOXll8NP/MRPLgprtpyqqamJ8bu2bd0cfuZnfy6e++orL0cLrampKa1a2BmGh4dj/jNPPxOP9057e5sCvT8Y8x0vy+mFF54P4+Pj0bIrZvAEAQhAAALLCCBgLcPBDgQgAAEI3JRAwXxvejAXxrXyoCeC2QZZOmypC42bamX1IPEq+e1/02J4AwIQgEC5CdgoxoHdaxW03dahXp1w1m7Pioc1OSCXLa2eupHdCKOVmqyMLsji6p//s38a7CLn4O2O5/Txj39C+0fia69QWK5ksciWTsPDo4siWktLa3hFq/RVSz1zkHRbZznI+Wq4D9rqycHWbVk1MDgU/uIvvhS7bvc/ry5ogc/pYx/7uMSn9hiXK2boye2zG+T73/+B8Ol/+cvRMsuuiHYz7OvbHL7z4ovhF//pPwu7du+Op/jrtLm5JWzbtj3u23Xz6NGjErBeCIMDg1HA8hil1l3xIJ4gAAEIQCA6eIABAhCAAAQgcFsCUb/SX+QXNO+blIDl1b08CWzoqdXksC7UKO6MJ4wkCEAAAvebgOb+MWW0GmHjZn1GyUrUXlkWr6ZkiTU7oWDuVms2YLIokogjIXz1q1+JBGwldOPGjfj6Ax/4QIzp5NhMmTIJWImlUyKOOVD6//YrvxKtkcbGRmMbfuzHfiLszos9qzVECwWK5suytPr1X0sCyrtNW7duVVyuv1aw9kMxNpiFNbv9pcKaLcnsKlin1RR//Md/IgZ0f/3112M8rP/yX/4qduGTn/xhuRbWR5FsVlZlDgj/iEQrJ1tdtbYmQd4vXroo4UqXa3oRxyN4ggAEIAABEyjfn1XgCwEIQAAC64+AflTPzyyE6RuzYfKaA88uRMurui4tTV+rv1+jX62/MadHEFijBCwCVGcTV8J6xcGqac6E+ZxWT5WAlRtV7KK5NdqxFWi2hZexsfHw+T9MYjyNjo2p1ETQ6+7piTWU0/rHZUfRRy6MFouc+vr6oqWTX3d3d4f6+vrYotURcqqiINXYUBetr37/95Og9k8++WS4cuVyaJPFldNP/8zPhr7Nm6N1WszIP7k/diUcV0D8vk094VOf/pfhH/7D/0ZumFXhJ3/yp8J3XvpuOHz4kOqYj8KUrcps6fXsM8/GEs6fPxd5eOfUqVOsRJjnygYCEIBAMQEErGIi7EMAAhCAQEkC1qZssTA7ORemR2e1nY/B2+s6ajQxlICliSIJAhCAQKURqK6pCnVt2VDfkY3x+aaHcmFmTHGwJMBvxGRByIZVAwMD4bOf/Uw4ePBgmBhfcpGzG53TSghYFhFdTnwUwbYVk13zjr3xRnwnDWTunTm539kFz+d/r8lFLLbhJgXGwO0SoJz+5AtfCL/6r/912LdvXxgcHIwugGfPnInvvfvd7w4N9bVya5x9m4WU60jjYe3auT38L//rr4Rvfvv58H/8n/9XOPrIw/Ec9ym12nKBDx44ILGuS8LWXLTgct63vvXNyGV1hDvXSIIABCCwdgggYK2dsaKlEIAABO4fAc8ApE8taMKXG5+Nq3i5MTWN1aFGca8ysr6KEX/vXwupGQIQgMAyAouSul7UNGZCXXtNFNpnRuaiEO/PswKvsWXnboQdu605ecW8ubnZxS7bMsrJAkqh8HO3r5MykvhQFm08Hi6jMNnt7srVKzHLK/qlMbd8vMUgB5K/23oLj3fBrtflxTYU9ClWqqfYJuU7HtfXv/HN8CM/8sn4lmNU9V+9GgPJn9bqgJ/61KfDAw/siZeMz7mZwJTNZsPk1IxcBDvDA7t3Rcsq7zulTONW+46v9e53vye+Nzw8FGOP/fZv/Va4qnotMt6sjngCTxCAAAQ2IAEErA046HQZAhCAwN0SiFMOTyQU/8qBkOem5AaheFdeqj5Tm6w66EkCCQIQgEAlEvDqqMkiE3IV08qps9P6MNP/jZyWxJGF6LJm4cWp/2p/8Mp/dXVyu6zJhqwemYwf+rwv8fB5fvjY9FGrWFA1NZn4yEoY8sP7aR1RNFJdbkN1ftlaf4fMyRLJ6Vp/fxgaSmJy1dUpxqLboTpK1e+8u2mDy4oCUl5Mc1vq1d7X3zgefvEX//tY/1NPPRUuXDgXNm/ZEgbzscE++KEPh5bmxrhy4xK7ePjbntwmxxCbmJyOMa+8X3iOxTSvANnW1hYOK4C+k1cqdFwsp5MnT0hYWxK8YiZPEIAABCAQkm8qQEAAAhCAAARuQSAVpyxgLWj5eceR8V/GbXnFqoO3AMdbEIDA/SOQfnBpazfCRGzXSnNyf57X51gqoty/Bt7fmhf8ga5kq6dcbiaKQNu2bQv/5J/8glzn/n/2zgNAkrJM/+9M5+7JefMuS15yFkGyIJ6ngPHOEzAABkAE9MwBw92Zswgm/IueB54ohhNQUTCR0xI37+Tc0znN/3ne6prtnZ3dndnJM2/tdld1ddUXflXTXfX0+z5fr7zmta+TpRBw6EUV8PsREYTILJdpselMiaOfE1kyBZARVZw458h66XRaUxWZord06TJZuXKlGp2nS8QjRl45U5mOhHjQQQfJzTffpMbml11+OVIcD5VQKARBLaACFhsB3WtkYt1sA9vCB+t025NCG1J4HYU4FIvH1Ftr9Zo1UlWBqDN0P5VKSQTG6q1tHRiN8X3y5z/9SU455RQISM9rxFZzc4uat1951VVqMs9KR6cBjjRk1IIb9TVqtb6kmMVUTaYjMlWR01A0ijY5LB584AE588yzRgQ/3cCejIARMAJGwAQsOweMgBEwAkZg7wQYgaX3C7hRoG+Mpt5gRRlULP1VufRuYu/F2RZGwAgYgRkloJ9VHCUV//UzDH5+RQ1lRtsxlyrz+TAyIyb9bMecApTX69M0uU9+8gbh4xWveAVG3lsn+61dK9UYJY8cmdrHSCmKLXEYwbfD5JyCFT21Wrdv02iu1tbt8tBDD2n5pU+f/8IX5cILL5Tly1foaoo8kXBYl71eRi2lISr51Jfrxz++Vfg49tjj5OSTT5b9IfQ0NjSKB9sx4ooiFUWgdCqNlLsOCFRxGNPHZOvWLbqOKXn33ntvafW6fOWVV8nFl1wqRxxxhPaFK7dv3y533HGHvh+NDqlQRuEukXDSLC+88NVSW1stmaxjwq4bTvKJ7ee0Fmw5DUBkS6APjMr66U//W9522eVIMWwCT/cI6Wb2ZASMgBFY1AQsAmtRH37rvBEwAkZg/ATcS2iNwnIVLQpX7hvjL8q2NAJGwAjMIAEI7ahtRGfH59diFq8onCBQSUf9u/Cii+Rnt98uJ530Itm8eaNGF1HYOvnkF6uY9Mtf/lL42JfpwAMPRPRWSKqqqlRw4mh+177nGn386te/lXPPPVfFmmOPO07kRpEgoqy4PaOpoohGOu644zWN8f7774cY9uC+NEFWrVollai/IhLRslPplHz1q1/Rx7e+daNceNGrIYrVSSQSVkGLIyJSoOvp7paTX/xi+eMf/yjvuvJKfY/nEL3CmA44FZObUrjffmvlnHNeKnfd9TsV4A477HC5//77ZMMLL+AYNWlVPGbu9lNRt5VhBIyAEZivBEzAmq9HztptBIyAEZhhAsM7CVXOL8e4DZzhVlh1RsAIGIF9JVD8ENvps2xfy5rf+zFyqaqqQq5811UqYNFvqrGxqTgaXlq2bNksfn9AjjnmGPHTgwqRWY6AUvqZT5CMgmIqohMNxSgubsd5Eul5jGDq7e3WCK2amlo566yz5Z577paXn3+e3Hbbz+Siiy6QM844U1asWCF333WXvOhFJ6v3FUfl6+xsR7llKh6FQmEVlhix5UxuO5yDyRRFR5hjSiPb4KT6MUUwjQdTCFOpJMrwy4uRIuhBOVdccTlSB9vkAx/8EKKgDpCzISJRwAoGA/ClOlz6+we0qosueo3UafRVXtMKiw2Y9Ix9SaWzKlK97GUvUwGLwl1TU7OWTeHuhBNP1DrdkSEnXakVYASMgBGY5wTK8GHvfgPs0hV+IeWQKjLyi9UuW9gKI2AEjIARWAwE+E3B+4ZsPC/9zySk7S8DEm/NSMWqoLQcj1+3VwTFE7C7wsVwLlgfjcB8I8DPrxxGHux5Mi4dDwxKFssrzq2VJSdUS6Aav+Uuwo8uXv5TQOH8+9//nlx+2dtGDuuyZcswMmEY7zPSaKzIHwLb+faBAgvLoj8URSNOTMFjNBMjlvgoIG2TIhLTEe/63e/kTRdfLF/72jfUGP3ee/8sp5/+Et2PT42NjSORW3y9a/SRe9B2tMP1wGI7mNLISC62wQ//LqcNjnl7LDYka9asQarhVnkBUU5PPrVe1h16iPz9Hw/KSScez+rk+OOPlwfgQ/W+f3+//Dse1dWV8NbKKjPdYIqe2EZ6cP3t7w/Ii046QUs96qijNB0zGh2U9eufhZF8C/rjCINTVK0VYwSMgBGYkwT4ie5BqrrX4/5YsWszLQJrVya2xggYASNgBMYi4N4vjPWerTMCRsAIGIF5Q4CCEAUfCjuXXvpmWbJkiXz72zfKnUgXbG1tndZ+bNiwQcunt5b6aSGA65RTT5VHH3tcvvH1r2s7upHCx8d0TfTQonj1WhjVV1fXaDVHH320/OQnP5XXv/61Kl595CMflSve/g4Vrygg7Yj+mrpWsUzoerL//vvLK1/5Kvhw/VzTJ1ci9fH+++6TP8FU/rWve63WzeO1q5A3dW2xkoyAETAC84GACVjz4ShZG42AETACRsAIGAEjYASMwBQScFP9KGK94p9eLiciXe2JJ56QjRs3SjtS6waRdhdHCmB3V5emBDKCqnSioTsDsQJIueNofWF6WOHR1NSkwhhN3Qf6+7Wc9vY2FaT6+vpUOGIE1LnnnifBgA91pNQj68gjDpcvfunL8ua3vFWee+5ZFdL6UAZHM+zu6YbBeUKrZ4SVO7ltYB8amxi1VS1+RH01IIKLvlcDAwPSp20YkC70o7OjE/NOXc8y/vWNb8ToiEskDYGKZbzyVa+SP/35fpjU5+TEk07SUQKZ5jcd4hXrZ7mZTFbq62vlVIh4FLAo6pEdzd3f8IbXaRrhfmtWwUB+R7+5r01GwAgYgcVIwASsxXjUrc9GwAgYASNgBIyAETACi54ABRSm/zGVramxQc468wx9ZLJ5iFZZ9ZNi2h+jfxzdiCLKjnBcLnFUQHpUMaqJ5QX8zu1FNkc/qqym89ELKw4BKo5R9gYhKlXX1MDb6nCIMnndjwcikUzDtD0gJ55wnD5oY8JUQLaPaYlszw7taud2sF43XZDLfr9PqK+xDPpxpdMc3TCFURNj6s3VDyGtHCkqRxxxJKvWidtRxDr1lJP1NdufTGV0XXGTKZ9RRGT/yPGss8/W8p999llhGmELREFGq/2/H94i113/Xk2F1G3N22XKj4MVaASMwPwhYB5Y8+dYWUuNgBEwArNGgDcNtEPJxswDa9YOglVsBIzAPhHg55d5YO0dHcURRjdRAKKQUw4FiAILhaC9TfRx5758OGLXsJah+6OAscpg1BMnbuNO3Jft2NGGcn1/D3Yo7q6aiudGiZX2hWWxL2O1gSKVWx8LYvvdfR0Gu/dhGal4kgusk5PP55Uf/vCHcsnFb9LXLc3NGkn25JNPyoaNm+HbtQqCYF7fsycjYASMwEIkwE9D88BaiEfW+mQEjIARMAJGwAgYASNgBKaQAAUbTq6IAx1Jl911+uYYTypAQYRyZSi+5sMVslieK9K4c77P+nTfkjIdsckRjbgto6I4ZUrKKNl8ZNEtp3TOZbcMt97SOd8fLVJxHSPJZnJinY5wV0DK4L9IbW2tfOiDH9B0zo7OTrn8iiukBhFr0PbQHwp+M9k6q8sIGAEjMLcIzOwn9Nzqu7XGCBgBI2AEjIARMAJGwAgYgRICFFT4mIppMuVMVTsm04apYDCeMiikMfKL839+xT/JQQcdLE+vX69eXaedfrrU1VZruiUkLBQ3NcdmPO2ybYyAETACc42ACVhz7YhYe4yAETACRsAIGAEjYASMgBFYNAQYGeaKWIw6O+jA/fVBAJSsmG45VYLeooFqHTUCRmBBEjABa0EeVuuUETACRsAIGAEjYASMgBEwAvOFAEUsplByoqF9aeQYxS2bjIARMAJGQMQELDsLjIARMAJGwAgYASNgBIyAETACc4TATPtwzZFuWzOMgBEwAnslMP1Da+y1CbaBETACRsAIGAEjYASMgBEwAkbACBgBI2AEjIAR2D0BE7B2z8beMQJGwAgYASNgBIyAETACRsAIGAEjYASMgBGYAwRMwJoDB8GaYASMgBEwAkbACBgBI2AEjIARMAJGwAgYASOwewLmgbV7NvaOETACRsAIGAEjYAQmRGC4MCyFHB6Yc7D7Mk+ZlONRVs5XNhkBI2AEjIARMAJGwAjsKwETsPaVnO1nBIyAETACRsAIGIFSAtCosomcxLqTkknmVLgKVvklXBsUj7/cRKxSVrZsBIyAETACRsAIGIEJEjABa4LAbHMjYASMgBEwAkbACOxCYBhrysok3p+SrQ91ylBXXLwBjzTuXytL1tVLqCZgAtYu0GyFETACRsAIGAEjYATGT8AErPGzsi2NgBEwAkbACBgBIzAmgWGBgpUflnhfUlof65K+bVEJRPyIvPJI/ZpqCVYHxtzPVhoBI2AEjIARMAJGwAiMj4AJWOPjZFsZASNgBIyAEZg/BBgNNNY0lTZMY9Wxt/Ldffa2ndt2d3v3tTsf7/7u9u7cLW9P+49nG7e80jn2y6XzkhxIy1BnQqK9cQln8pKOZyUPT6zhYadgzhCoZZMRMAJGwAgYASNgBIzABAmYgDVBYLa5ETACRsAIGIE5T6A4xjB1EleP0Tbv9GKSvRhrHOO9le/us7ft3KaV9IOrRnYbWXA3HOd8b/UTmCsuTaSO4n70v0pFM5LL5kWKJu4sj4JVmT7tKH6cLbbNjIARMAJGwAgYASNgBIoETMCyU8EIGAEjYASMwEIjUHDEHk1r075hFDzO9WmKOluso7S0vdUxjBQ7Z8KWEJP22pxd+sG997EvqFqjn4otGLPyYn0j7RpZcHcaY+52CfNULCPJwbTkMwUZZll8r1ivRmDpMkcnRMHjKXuM6myVETACRsAIGAEjYAQWKwETsBbrkbd+GwEjYASMwIIiUEDETy6VxyOnqWx5pK/lc1BRMHl8HvHCi4mm4r6gRzyYMyxoXKlsFGGKYgsFKKbJ5Vh2cV7Iow4U5PGWax2+kFf4KPM6QhNFnEK2IGmKO4hOoqATqg1IoMIvZZ4SFWdUPZl4TjKJrGTTOcljf+5Xju3LfeXiD/vgL+XT/rht046OfsI+w+CSBRM+ChTQUBT77w97lQsZsE8cNZDsyIzRUj5s4w2iL+BVjr7pVNJctofbKvNiGwdbYxLrSiACK6f1sr4MUggTvUnx+sAIbS/zlCsfHgsPGI3vIIzumL02AkbACBgBI2AEjMDiI2AC1uI7qZMIjAAAQABJREFU5tZjI2AEjIARWEAEVKCB+JLoS0msJykJeDClomlJD2Ukm8xj5DtxBB8IRsFKn4TrglLRGMaoeEEINJ696yfQWCggsTz6OzHCiOWnhrIQpdIq/pSVl4k/BFGp0i8RLT8kwSqMugfBieJQqj8tgx0xGWyLQ4DyyLIjGiAQeSFIQUjjBDGIQlQBglA6lpUkRvKLdiQk1p2A6JWGkEVBSCCQQfyB8FTREJKq5gj6gXowuh/FObZh9MQINLY92hGX/m1DWg7rqGyJSN3KKuVCkSwObmSXQt8yySzaVQ5Wfh05MFIfRJ/YH78jZBWrYURVGiJbtC0m0fYYWOekf3sU9UQlAyFMxb5MDv2OS9tTPTLQ6oxCSPGtZnmlVC8JS7mKeKNbba+NgBEwAkbACBgBI2AExiJgAtZYVGydETACRsAIGIF5QIARPmlENfVtiUrH+l4Z2D4k8YGUijCMOGIqGyOMGO3jhWBEkSkM4aph/xpZcmi9VC+rUEGonBvtqv9oFBEFqFh3Urqe7ZeejQMYZQ/lJ+DzhPVZPCgQUTtidBFH3AthtL2qJRGpXVapr7n9IASeaGdMBbCqlgqpX1kphWVQpMQRsCg0FbLDKlh1PY96nh+A4IO+QMiioJSHpxQjuSgsUawKQRyrbApLA0b3az6kXmrQDz8isnYRsbAP20nxatNf21FeUnIQw5ZAQGN3WV7f1qj0bh5UASsTR78QXeYIcl4dRZBCWeMBtdKCesIQs8iSuNgeCnldL/RL26NdkoimVNxLQKxjJBcj4ihq9W0dVKGP0VyM/qL4tvLYFkSg+cDeJ+WAx/JsMgJGwAgYASNgBIyAEdgzAROw9szH3jUCRsAIGAEjMCcJMJIo0ZsSCj7bH+uSjmd6VWii4MNoJSelDylrUEcoquRzMBbHMiOfBtqHVHxZcUyz1K92IpFG0vmK0VCMMKIheT8Eno5n+qT9yR7phVCWQ7ocy2BEkg+iUaCiXAoQfRi9FMXoe71bBiW4yQ+BKaKiVgKCWhwpdByNr6xQhsimgIo7GnUFshSCmGLI6KzWJ7qlFX3p2TSISLKUik+MZPJ6HaErz3RF7Mg0wt4tPhW5EhC5VhzbDDGrRvwQhVTEGukDysb+LKsX4lu0Oy6ZoZx4Qojk8nk1bbB7U78Mbo9p+8hUvaoQtUZxiymLFMu4H8WopYc3aPQWI9fYcApVjBLr2TAgsT6IY+BA4UrTKtEGCm9JCHjpwYweB40wWw4Bb3W1bqt1KQhTsObkH5k1yggYASNgBIyAEZhTBEzAmlOHwxpjBIyAETACRmDvBCjSMPKpd1NUtjzQIa2Pd8lQfwJpa/CXYhpfQ1hT+RjlQycqmosPdcZlEI9ENCkZvGYkEn2eghG/eJbCj6m8GFmE6imn5FMFFa82/a1d2iAsMSIqB4Gnoj6kYlEtoqjCSK1j5FUeohZT8Bih1bs5qkIWX1OckrJhTS2sQtoexaDGtTUapUUvKFZEgSrWk5K2J7tl01/apBtlJIdS8IzySAXKDyFFkA/2mamEjHqK9SRUlKJYl6I4BKHJ6/dK3aoq9ZfSDihGxHahEWTFfdOMsIKQN4C0P0ZDMQ2SHlXsQ1UzUvrgSaVRbUxjhOiVQgpmGimGGgWGZfpm0d8r4gtq232IqqpEGmPDgTVSMRiSIfSZYh3LpJDFiLQw2k5mFL3Ig8tMfXQiuUjaxCs9VPZkBIyAETACRsAIGIG9EDABay+A7G0jYASMgBEwAnOOAIQQekV1Po/IqPXwV+qBIAPxqnZJpSw9rFGakPIWhlCiZurQR7IQVJgqt/WRTo3YSifT0t82pMt1K6s1Nc4DfymKKUxn06glRDZ1Ptcv2x7ukv4ORF4h2qhmaaWsPGaJLEMd1csimgZHYUkji1BH7fIqpN11qBjFVEZGJNFrq/mAejzqpLI5pKl/lUjLo1jE4KMsBKJupOFtfahLujb0Swoik8/vU6Gr5eA69YtiWiKjoWi0Tr+q9qd7pRNRYfGBpAx0Dcl2pPCFqoMqjLEfI6br7oFDVZqmB9GKkVUpeHkNYJkCX+MBNfCjqtDUSm8AYhxSGaMQ+nrQlr6tiFSDzxd9uJgqWIdoNQpxjD5jKmO4Nqi8uT8jtCjCbUNb+pHKOYy+B8J+HIs6WXFUswqK7DNTCSsQneb2SdvlttPmRsAIGAEjYASMgBEwArslYALWbtHYG0bACBgBI2AE5iYBjn6XHErLEFLbKGRpal5FQJasa5DVJy6Rhv2QTgfDdgo50G5UYKpAhFGOKW1IJ8y2YcQ9CCw0N2cZ9alqTb/jxhRUmPpGEUe9ofB+Fmbk5fkyTX1bcVSTNEFYUlPzogc7hagIIo5o3E7xi+UybZGpdPR4oujDttUgfY5RTEwBpLk8I6OGMGof0x97XhiAeJUWyE/SsKpaVh+3RJZoyl64KMQ5QhlTFSn+sJ0UrlLJDCK/BpHa16vtC+I9fzG6q/ToaTQY2sk+MjrKj0iqZesapeVQtAseWjSgp/hFL6440gGr4eNVdn8rhKsBRGFlJIUHI7cYWUbvMEZQ+SNeqQlU6Gv2Jc22bBiUQU8c7curyEWxjnVQ8HNEwh3piUzvtMkIGAEjYASMgBEwAkZgfARMwBofJ9vKCBgBI2AEjMCcIcC0OzUErwtL80F16kvFtEGagzfCoJ2RQWUUiaiPYNOykEeqJAKBpwbRToOO8JXH6HswZ6exeR5G506+HwUsiDgQyGi+zminLL2zKPj4/WrOXr0U0UrVGJGPEVsUhIoT47cqMboho5Rodl7+AtYgaopN8CDyiMIVI55cEYdv0Aye0Up9SDtMoB0qhDGqCcIVH7VICaRIpL5Wxb74kIrHKCqm9kXbIa5thf8WRkhkiiNfs31M12PElk4lbdTGYCXN7OtWVMnyoyHGHVivKYqMjmI9HNWRIzWyrTSvj8NnLJuirxhSHSG2qRE8xD8KYtzHg5EUKUR5fAUnLZD1FqvmnGKdF2IZ+++B6MU+qvdVabucltqzETACRsAIGAEjYASMwB4ImIC1Bzj2lhEwAkbACBiBOUkAwgi9rpYd3ii1K6vQxGFNoXN8qQJq4K7qFcUSVUwosJRr5FKolul4EJdQRqofHlLww2L0EPUUV3ehCTzN2jmKobOyTPdhSiIFJK6joDOyExeh6NC3yl/hdYScYUe84jYUeCimcRtXvKGwQ6+ofhjDxxDtlcvDXB0+VjXLK3XUv2pEawUQRab7uQcBZdBXiqMcNuxXrSmNQzCOZ4RUEmmBHO2wMVorjMIaEbDcfTlHYcOICmMEVx2M1GsgYkUgto2IauwHdTe0g6Mc1iAlMtLQD2+rhOQLeQh6zkiDyoUKFvqo/UHRjDxTYRGrd5rAiXXy/TIIgw4zh8dO29kLI2AEjIARMAJGwAgYgT0SMAFrj3jsTSNgBIyAETACc48AxRmKNA0QlCiauJpJOcSXDFIKVVtR4QQG5nwfK+hhxdQ4zilQcZtcKu+MhlcUo9yUNkYi0aCcnlBl2JaqC0cAzMLIPJfmCghajFZixRCV8B9bMMVvGH5bSE9ERNcwzNvZMApOTM+j+EXhjLIWW8x96Gk12AFD9j6IaBB3/GGIbPDM4j5McUwjsmr0xDrZf7ZVI7oQ1cTXWfRrCBFTaQhyjCATtH30pGIY2sjRCisQseaHR5VGd7kbOh3RV0y/DCHSTFML0W4KWDSM52iKWn5xH/YHWY8qtOkTyyid8Jp1sG7lO/r90m1t2QgYASNgBIyAETACRmC3BEzA2i0ae8MIGAEjYASMwNwkQEGEUUOMYqKAlcUIezGMfscR8OgRRUNxCkBZCEn0s6LnUwFRVgkYs/ci4omeVoygoncWBSEVoopdpdjFaC0KPBVICWSKnJRnJZvNyiA8oJiqF6jyqQfWiPiDfSiKJZBu17tpUOcFKF/cl+l4fDBtj6KXKlesE/VnMYog2+SO2sd1HCmwD2VwpET2z52o+2A3nVgv0/sS6Ct9tjixv6kojOMROabRYVw5Wizia2zO/lGg43yXbdwV2JaM+aDwREYU/FyebltYzUjD9MWuT26U1q7v2BojYASMgBEwAkbACBiB8RIwAWu8pGw7I2AEjIARMAJziAAFFEYbxZBCN7DdEZYGaZ6O0f8oCGXgEZVDxJQTLQQ1Bv+5nIFopJ5Xu1FdKP5Q2KH5OM3ge54flOy2nGQLOXhVDcrWhztULKLJuT/iUyIUzOhD1b8tipH4eiCmJTQCK4JoqoY11eqNRV8qVxvinKP9MWqKEWGMvuI6Rm5RIKMIpRFbFLxGTew312YgJlGwy8Cfiiso0jGii0b1exKM3P01IoqRYLtWoeXr+6ifUW1cwc1Yh5aNQnQ3PrkFOpvhefTkRJuNXmuvjYARMAJGwAgYASNgBCZGwASsifGyrY2AETACRsAIzDoBRgNlhrLS/dyAtD3RLV3PwqcJowVSuBKILmp0DhGKflSMYvLAm4qj/lFoKuuDUASRRxB9tctUFGQY4RSq8UvTAbVI70vBEF7UbJ2m7tse7lRzd47ER7N4TkmIZvSiGoAHFUcVpAAVrgzqyIPLjmiCgBVCO1B4SZUU0+glRW8oTnyL65KIqsojTdHxsCrZQbfa8UQhicIXo7yCYUakMaKK/dz9Pjv2nvyS0+rxlMOUSZuMgBEwAkbACBgBI2AEJkvABKzJErT9jYARMAJGwAjMMIEchKj+rUOy9cF22f5olwxCvKIQFKqCOTlM3WthhE5xKRDxixd+UkyDo+gV64pL65PdSDnskVSK/lJjSSuOAMR9alZUygp6aGEVxSKOFjjYFZMU0vz6ESnFtEBGKjGSiuIZ0/i4d1VzhbQcXCcrjm7GKH+1OspfGUfnY3XcoDixTW4buEzfKbabqYu7i8DaaV/s5JSBdD/sy6ixUBVGQMTyvk4lzduprftanu1nBIyAETACRsAIGAEjMDUETMCaGo5WihEwAkbACBiB6SVQIv7QN6rtqR5pf7pX+juG1AersjEiyw5rlCWH1qvwRJN39Z1CBFa5lwbrEKA2RRGplZCuZ/qdSKWd1Bqn+aWrvDBID9cEpKI+JEEYsVMMKyByi1bsw/DUyhayKhbRTypSG0JKoRf+WH6M4BeRpv1rMdJflXDUQ6YkugbxLiSKTBTJHEN2rEX/WE4tRv5rWVcPD66QM5qiu0Op8jWyDgvFBjPyKhD2QcSCbxfq00kFstKNZ3gZ9bsC2wzXbNUZASNgBIyAETACRmDBETABa8EdUuuQETACRsAILEQCql9RrMECfa66numTKCKvmBYYqgxIM9L9Vh3fgrS/OoxQ6Ic4hNH5IFwxRIo+TnkITv6wk1KoI+ep8FNUf0qAIaYJmhAEKozWx7TAruf6pG8bfLAQZVW7qlIqW8IYnS+gYhZFKQpRAURicbQ+ilz6wPshCF/0yGIbRotXrI4RU74ARjpE6l85G0gbLERpsZz6ldVSD/HL8c3atY2qCqFuRn85T46ORRHLS9N19tudShbdVVM+341Q5q6eiSZMeZ+sQCNgBIyAETACRsAIzDECJmDNsQNizTECRsAIGAEjsCcCBQhLKZq3dyTUwJx+UcGlEH3W1Egt0gfD9Uyhg2SC/2o4DuPxAnIAGYHFUQk5kl6BKpirrpRWVlxHI/fkYEba1/fIhntbZRBRXlns13RQrbTs36BRTpriB8GJQhQjtbyInuI6imScl2G9Tm4IEssuUXIoVnE7Ror5sA8FMraRow/SrytQ4XNM4rUfIzqV9olCFQ3f0zGMjggBj/sxkkvr9SBSDMuldZV2cTqXFd8uXCkJ7sBNHCq8TWdDrGwjYASMgBEwAkbACCxAAiZgLcCDal0yAkbACBiBhUfA1X4o1lC8oRhVyEOKwmh+XghBIYz4pxFWbsSTuwO1HAg+eQhfif60mrIXCs5IfRqJRVTutlyEupKHyftQT0K6NwxI1/P9kkzCyL1QLqloGsJWCmJVOcrzaRQW0/W4fRb+V1mMcJhNQsCCIMUIMJqq70gTLKlED88w2uuTmqUR6UaaYbozrR5aUYykGO2MSR38txwhbKSVuhfbN4xoLRrKd6zv01ELKXox8qseoyY2HlinPlqeon42plCnJU3hU7FrFKZ2FqccNWtkPd+fwmqtKCNgBIyAETACRsAILCYCJmAtpqNtfTUCRsAIGIF5T4BiCKONRlLzPMi+g4iVTeQcUQtCVfmob/c8oqeGIAz1bR6QQYwUmMtBwGLK3lg0sJJRQgWMEJhDVFQeQhnTDwViGY3jGcGlUVMQzeiJVQ6lSP2sIJxx7sM6H7yw/DCQp3dW1ZIKmLLDH4tRWRDSnEoREYYoL0ZZ1a+uls4lfRKDYJbNZWWoNyGdT/dJZUMEkV2I0IKnFky3RiZGlaUGs0ht7JdNf22TXvQpPZRx/LbqQs6ohmUUjsbs3Ug5U7qgOhX6jxERdSREVaw4qiJGSgQ7zocx8CMj25ypmP44pY2wwozA3CDAv9Gx0obnRuusFUbACBgBIzCfCYy6xJ3PXbG2GwEjYASMgBFYuARcSUZFInhOBTHioHcAgkmgXJKIjOra0KeG6fSuonE6DdEpEnF0wGhnXLqe7ZfuTRB7ElkVVJy8tqKg4uoqxIdlCk30sKpbVSX9a6LSsxWpfSgnMcgIrAw8qxyxqhxCDbfVB0U1PDwQtBh95a/wwi8rIo1ra3UkQjV0R5lMOaS+QwGNEVhMe2Tk1MC2mET78pJJZhBZ1avvMbKLAhijq5hyWIAYlEY7BrYPybZHOqXz2V6JDSY1Cq0ekWCOsOZxhLIpPhVKEY1ZNPrEVEqNPvOBSapM0yLjvUmJtsXUWJ4RZRT86O3lw7Y8ljOps43ZbltpBKaIQD4PlRaTB0KuiVhTBNWKMQJGwAgYgZ0ImIC1Ew57YQSMgBEwAkZgbhJw44ko5IQgXtWsrJTBniH1gaInVvtTvSrkxLoSUoW0PApcFHyYCtizcQCiTwzCjkgEHllMuaO4JRSfWLBbOBYZfUVhhUbtNUsqpaqlQgUwRnhRqNLUQAov3BZlFKBEsSymMjKlMY8UR04er0cGEO3FeqPtcVmdXSItB9FgPqBCF5Uyph9GMNogR06k0JN/tCCxgaQMdsVk60MdWJeS6uUVUtkY1mgv+l1xXd/WqPRuGZQ4tqVoVrW8Us3ra5ZW7Ij00lbgqdg37Sf1IvRhVJ6fu+Uuc92VIp27i3a7WOCorbkNhbZwbVD7znpz6Zz2f9ujnRLFcaGARdGuCsJe9ZKIjtjI9ttkBOYzAYpVfISCiJYsTll8DhQKBfzt2PntMrG5ETACRsAITJ6ACViTZ2glGAEjYASMgBGYfgK8DyyGAVEkaTm0Dml3GIUQKX2peBpCVVxy2Zz0tw2piOJHlBZvKiluJfpTKq40wx8qHc/IUDsM4HM5GUaqHQUrt1ynE07am+N3lVZfK25D4SWClECKSQEsU6ChWKUPCGV5pBymURf3y8ALK4d1bFcmnVXBLFDplTCjxopm766yRN+uxv1rsQ/N2Iel4+leRHqlJArhLYnyeiBUhZBGyNS8XCaHdMEs+oRykd7IdVVNEVl+VLMsW9cAMQziEUSxnW6Zi8yKM+3zqA7vdOy4nbu/wwaMuAVWwgsfy3jFFbqyZGMsRnBcaiC4VYBRJoV+I9ptCCNFboMw1wU/MUanUUBceniTGtQz1bK8HDmgboUowyYjMJ8I8DOGUzDgk96+AXnqqadkaCgqZ5xxpgQCAclms84oo/OpU9ZWI2AEjIARmLMETMCas4fGGmYEjIARMAJGYGwCAUT6NEGMomk6I3g6nxuQJESqRE9Kkn1pTVNjqprrR0UvqqWHNUrLwfXS1zoo2/5K4yyUnd21fEZtxToT0vpEt2x/uFN6tw7qRs0H1koz9q9ZWimBiCNgFfIQuxhpQQEL6X7peE7FMqYs9iJdkXMaztPXilFgHCmxsimM9MYdaX5laGe4DoLcIQ16o8sopu4XsG9HTJLwtkpFM1hmFBTN2yEfod0epOiFq4NSh/TD5kPqtG/1q6tUFNKID95Tu6IQ53xNDyr2N42HEySGhbEnV5saKaO47zD3LS27dHe0L4gUyYa1NbK8K4nthtUzjCLWYBLRb56E+mAx8qoaUW2MzmJZFMTQu9KSbNkIzAsCrngV8Htl69bt8slP3iA33fRtuerqd8vZZ5+jEVjzoiPWSCNgBIyAEZg3BEzAmjeHyhpqBIyAETACRsAhwCijquawlCHyiJFRlY0RjfRJQuzJIjKJsggjnZgGyKip2mUQepC+x30E3/zLjm2SGnhHCTatX1EN3yafphdSR0nHYJD+/IBsfaBD2p/skTREslqMCMgop+VHNqkhO9MIdaIAo6IS0gcxp5iVQaphtDUmmxBZlUvkJT6UhF4EUaw76Ri1I2KMQRuuZMMMI6YsVsLo3eNrUO+t2hVVSBMcdFIX4XmVwwiHvFlmWiI9pgIVfk3Dq19TDVGsGv2KOOKVpgc6TeMzxSxGaVUiSmvZUQ1S3R9BWQWkG9aqaEaOo6cd7UKqJsQ0msxThGOEGI3YyWvEkJ5iVnFiP+iBVYN0xtUniBrU922JShzCYr7YfgpWNLSvgoilZXCnERJuSTY3AnOfQKl41drWIR/68Aflh7fcIu94xzvl/e//gHi9Xou+mvuH0VpoBIyAEZh3BEzAmneHzBpsBIyAETACi52AK5ZQCKEZOL2fKF6lELGURcQPJ44CGKj0qdhDIYtRThRY6lZWy8HnlGsKHgUVpgSGamCSTj8s/GMZ3S/0q8dUIpEWr8eraXoNEIpqIGT5MXKg6i5jHATNJkKZTKWL9yelb0NUUjBlp7lzPs0oLccXx8lbdKUiCk2IqvI76XVMKWSUVuPaakkMIFUQAha9r3jD7MOohKyf29BLi31i3zRtkIXsKNJpHV7TML1p/xoJYj+KexTawjVBFfP43i4ePSwDfWBkWAWErxXHNEsDIscozrECti1YDV6j6+K7YEhxjab0jCRzUjaz2m+2n6b3fkSvVaCMEBgxem6scpzG27MRmLsEeD4HkDY4GI3Jf/7HZ1S8uhqRVx/44IekqbFeUkgdLi/fVSCeuz2ylhkBI2AEjMB8IGAC1nw4StZGI2AEjIARMAKjCUBAoXBDE/QQhBz1ooJAw2ghqiKMwKIoRN+lMtosUaDCenowhSDAOBEUzsiBjpCCAvE/i9S2eF8KoxVC7IEpO/dlOqK7PwWXEdEHyzpB8OG+sNTS7ZwoKV8xVRDvoUlcx6gjjkK4O9WG7fDDF4pm54xUYuQSo6+0TwUayCMtMoSRF1EGo7ZoaK9tcdvhtGbkme8x3bASkWfkpAIb1CmOokiBiqb2u4hexb25DTkFIHwNr0Kin7NzMT0T++P9saaRPgQr1EyfaZbDEL8UEXZhu/Xhtn2sQmydEZjDBGjO7vf7JANPuu9852b56le/Ii9/+T/JO991pYpX8URKfD6kGdtkBIyAETACRmCKCZiANcVArTgjYASMgBEwAjNJgCKOF6KIF2l9wxCtmNKnYhIFFue/iifOEwUUijqlX/+Or5TbZgo3XqTdqUgEkScPESsGQ/W+rUMSqQsj/Q0eVhCYdhFwEKBEP6d8qiAJjBQY60lq2p2oXgXhDIJURQP33X0EF9tA0akMzStHuiAjxvwQjuh7xfariFYsT2ujKrSXSQU3CH0e/86CkwpSe9qf7LCzFwx2ErnYnj3th/bsVCe2dcUvrmdh5MT/NhmB+UaA5zLTA/k38Mtf/EKufc81EgoF5KMf+5gcsP9+kkgiahPv22QEjIARMAJGYDoI2DfMdFC1Mo2AETACRsAIzCABpsVxoj5CQYuTiiz65LweEWGwKSMo3AlykWopKq5ge6bA1a2uVA+q5CBGIcxkpb91SFof7VSz9rpVVWpWztRFjYIqRiJROKOZO0c9pPdTx/pemLfHdV1lfQRpfLVSjVRHil+q8LgNGGuuYpjzBtvHKDCd0HZ2aWdBqPjenmYojz5cOyaWiqmIZsf6XZfU46tEbdI9x7Efqxtdpx4OrB13Gbs2x9YYgVkj4P7defEZc9/9f5XXvOYibcvtt98hxx93rKQRkcW0QY2KnLVWWsVGwAgYASOwkAmYgLWQj671zQgYASNgBBYFASeyZ+euutE+O691Xo2+wXT1GAosoSp4N8HwnaMaFpD6NtgZ0xS+zuf7NKpKUxYx2l4AHluMkCpHdBPL4yiE9N+ibxWjr2IYeZA3vNUtlbLsiEZZsq5B/aO8SAMcq707tRMNcts0rvU7bTTGCy1vzBLH2HjUqn3dd7f77WM7RjXLXhqBmSTAv2U+gvC9eva5F+TUU07W6r/z3e/JueedK1l8VlAYd6Kz8EFikxEwAkbACBiBaSBgAtY0QLUijYARMAJGwAjMVwL0zuKog4XcEh2dsOv5fhlsj0kCvlgDmEc74xpFRQN0jkao/ljoLKPAcjBb52h9DFgKwhi+HobxDWtrZOlhjdKwX7Wayu+SejhfQVm7jQAIcIACCrijReG9wZno9nsrb7rfd8WrtvZO+dAHP6DVffKTn5LXv/4NupzNZtX3itvZZASMgBEwAkZgugiYgDVdZK1cI2AEjIARMALzkAAFpgBG0GvAyH0cxZAjHA52xGUIwlVyIKUCVSGHdEEIVsMwKGesFPehWXo5zORpLM8REKtgnF67okpqllch8iqkZugUu8YOrZqHoKzJi54AxZpQ0C+wiRMKOOMRpVyBh9FK7vJokFzPVDyPx82dHb3FzL5mWxl5FR2Ky+c//1m57bb/kWvec61cdvnlEob/FX2vaNq+u/7MbGutNiNgBIyAEVjIBEzAWshH1/pmBIyAETACRmAfCFCQ8mP0vRpfpYRrg1K/X41khjLqb8UIqxxHO8wUdORDgZDFEf3oicWoLB8iuPwRn4pg4eqAlkNRS4peWfvQHNvFCMw5AhRr/H6v9A9EJRwOq8Az1Y2kp9R4RLGprre0PIpXFKcoUt34rW/KFz7/eaQMnidXX/1uaWyoF3fEQROvSqnZshEwAkbACEwXAROwpouslWsEjIARMAJGYB4ToFMTPa6YJhiC51UB0Vb0ucql4XWDeR5RWMMMPUEQFgUvemF5OHohPK4oWLkG73v1u5rHjKzpi5MA0wYZefXc8xvkxhu/JUuXLpX9999fcrmcRiEV8Hehgg5O/mEMoclIKr8fnnEYnY8PT7lHKiorIXoF8MfDUUS9iLjitkxJzEksFpOmpmZZvXo1orto+j87E0cg9fudUUP/+79/Iu997/Xy4lNOQRTWF2XVyuWSTGVU3Jqd1lmtRsAIGAEjsBgJmIC1GI+69dkIGAEjYASMwDgJ4P5ao6c8GHmMwpQvhLts/sfDeWJB9ADSmW6rN9x84jY2GYEFRsCNNtqyZTMikj43Lb370Y9+LGvXroGghT8i/eOalmp2W6gTeeXVqn/+85/Lmy+9RLf9whe+KOsOPVjFK6Y52mQEjIARMAJGYCYJLAgBi1+yDLGe7TDrmTxwVpcRMAJGwAgYgRkjgEArd9LvWohTKlLtLjZExS3s4Wzk7mpzI7AgCDCiiqPunXTSi+S73/u+ijvLli2TZcuXyz/+/nft49FHHyNVVZXS0NAoLzntNFm9eo3k4JMVjUbxGJR0Oq2RWeUoq6qqSiOZGKXV2Ngo1dU1snLFCkR0Ode3Mw2NEWZMG2RUGMWriy68QJtwzz1/kBOOP07c1MayMgpYplLP9PGx+oyAETACi5nAvBewKF7xQoJzfuHa8L2L+XSe/b7zV1mei/xV0gTV2T8e1oIpJjDmfcqYK6e4Yitu1glMVIia6Paz3kFrwKIiMMnzk9/vvOasqAjLv/zrG1WAevVFF0pra6t89GMfV0P3T3/qk4p0zZo1cvDBB8vKlSvl4EMOkeUQuaoqI/oeM3BdIctJLdz5KLhC0c5rp/cV+0UhDV3cSby6++7fyxlnni6ZrJMeyWtvNxJteltkpRsBI2AEjIAR2EFg3sb+8kvT+ZJlbj7MZmGkqSPB4IvXJiMwGwR4TvKCLghfDE4UskzEmo0jYXXOLIFJ3gnObGOtNiNgBIzAlAQN8YeqFDygvPjevxARSr/+zW+V7P333SdnnHGmPP7EU/J5pNtt3bpVPgUx64JXvVKuu/Y9ctNN35bf/+GPsm17mwpAHMUvgGtYCkapdFbN0mmYzuWZTtGjhxevYXg987//+78jkVd33/N7OeusMzQijB5dJl7ZH5ERMAJGwAjMFoF5F4Hl/urFL1cKVu0dnXLLD26Rgw4+SE477XT9FYxDGc/0l/5sHUCrd24Q4PnIc47nXhIjdPFXWfpWZDKOwSnft8kILEgCdm4vyMNqnTICC5NA8bt4inR3Cjnu9/y5554r9/7pPjntJafI0NCQfP0b35Qrr7wK4tZF8vDDD8tvfvNruRniFeeczj//5XL66WfIkUceKQcedJAawQcDPn2P6Ym8nnAjuqfzmta9rmZdFNNi8aTc+qMfyeWXv03bcs/v/wBB7nRNmaTAZZkOisWejIARMAJGYJYIlOHGerd31hx9JIebcP4qNBcmfsnyy5Nf5Py1auOmLfLNb35dPvfZz2rzHn3scTnyiMMlkUiJF7n7NhmBmSLAaEAKqjwnP/LhD8nFl1wi55x9FkeXh6CVUi8Jnr97+HObqaZaPUZgnwjwm4J2J7l4XvqfTUjbXwYlvj0tFSuC0nJilc49gTnyZbFPPbSdjIARWKgE+N2bjRak54mYdD4QlVysIMvPrZElx1dLoBq/5U7qo4vphI6w4/OWy5NPrZfDD1unKO+66x45++wzdbmru1c6OzrkgQcfkB/ecov88Y9/GMF9ySWXwk/rJDnk0ENh3L5WmptbENnlNIpphhTJSsUsXk9MdnKvSVxRyo8RRNvaO+WHP7xF/v1979Xi//rXv8sJJ56A/uF+wMSrySK3/Y2AETACRmAvBChMeeC/6PXsPlHQ8zFMuyuHX/i8AZ+C78ndVTGh9fzyZF4+v2QpVn30ox/Br1k3aRl33vlrOfa44/QOi1/KU/HlPqHG2caLngCNWL1enzzx5BNy+WVvk8MOP0L222+t/qKZzmRVvOKvtTYZgflKgN8FhRxupvpzMrQ9JekBeKVUYjj4ZUHcBHqk3Dv5m6r5ysbabQSMwBwkwCvh4sdSPlmQREdGYu0ZEfw4W7M2JBVLA+IN4iJ5kh9d/GGVAhOvmZe0NMub3/I2aW9vk/dBCFq1eo2sW3e4+l41NDbJYYcdJueed5688pWvkgMOPFB+f8898uijj8qdd94p3//e92RwcBDZBe0Sjydgj14m4XBYfyDz+7zi89LzdVjFJP5wxmlfrnlV0EOEFydGXZXjRuHBBx+W//yPz8jnPvdZOevss9GeX8nRRx+JH7LNY1ZB2ZMRMAJGwAjMCIFy3HBwEJHdTfNCwOIXLb+o+SXLL/N78GX/1re8Wf50771ywQUXyq0//omcipBthjW7EVq767CtNwLTQYAXkLlcXiLhoJyIUYl4wfn2Ky5XwXXt/gdKfV0Nqi3TX1FNxJqOI2BlTjcB/RrB0zBTY6N5ibXCo6UnK95QuVQuh4dLLUasMgFrug+DlW8EjMBECfDDC8JSFlFXsba0xCFilSO6qWZ/ClhB8QQmL2CxSbwOoIhF+wB+5592+pkSiUTkmmveLRWRCjn6mGM1e4ACVG1NlaxatRIC0TFy6ZvfLC9F+mFzU7P87W9/k0ceeVh+9as75Qff/750d3fL9m3bpLevDyMYYmRAfwBlhvBDrlcf3qKgxWtkFdAoouHB62ZOnPPBOoeHnfe4LQU3Ro1TEGtt61Cz9n/+53+SR5Dq+L73/bt86tOfkf3XroFhu1PudKYwakPtyQgYASNgBIxAkcDeBKw5nkLIi4G8fvnyizY6FJef3X67XHrpxdq9L33py3LRq18jy5ct0dx890vZjr4RmC0CvFBkeisNWG+/7TZ505veiAvUo+Wb37pRjj/+eKGYHGeKK8RWXhC6F5mz1V6r1wiMmwDvh3D+FrLDEkPqYNv9A9L9SAzClUeWvaRWag4Iize8+3DfcddjGxoBI2AEpopA8XNrGAJOvDUjXQ8PIQU6Lr6IR5afUSMNh1dgebIphDs31hWNAvCzooXA7bhufdO/vVE+8MEPybXXXid1tdXqM+VmFHBvpglGo4MYxbBN1q9/StMLv/mNb+xU8DkvfakcA8Hr4IMPQVTXKh3NsKGhAd6v1Ui32GlT6nW4fnbWsT1OlJboNQjX8v22tnZ58skn5X9++lP5zndu1o1/8pOfqphGgY0jIHJfE68UjT0ZASNgBIzADBDg99PeUgjntIDlClIUBLa3tss3vvF1+cynPyVr1qyR73//Fjn+hBP0FyT7kp2Bs8mqGBeB0gtXXjzef//9aujKnb/z3e/Jq151gV68cnQh/krqg1cb97HJCMwXArwRTPfmpPW+AWm7b1DK4Xu1/CU1UndoRHxIJyzbQ8jvfOmjtdMIGIEFQoBfrxB3GDk6+EJKOv42qOnPlUh7XorPrdqDILwjinSqJ/dawO93vuP//Oc/yxmnnyYvf/k/ybdvulmWLmnWUQZ5ncsftBiZ7Xpe0cA9Go1CYGqTp59ej6isv8oXv/CFXZrI64mDYP7Oa+LmlhZpgW9WPQQtRoBXVECYw/UFhSuWzewE1jUwMIDUxnZ54YXn5be//S28uH6g5b79He+UK654uxxyyCFoT7mkcY3iiF4MX7PJCBgBI2AEjMDMEJjXAha/bAOBgP6q9NBDj2Akl3fJX//6F/nwhz8ib3nrW2XlyhW48aexpX3JzszpZLVMhIArTvFX0U2bt8hn/+u/MODAN+Syyy6Xq65+t6w79OCdDN4nUrZtawRmiwA/c3E/JLlEQdpxI7j99/2SS+el+dgqaTiiUkJNSCP02Q3PbB0fq9cIGIGdCbifWfk0Ddzj0o7BJzLRnDQeWSEtJ1VL5UqkEPqn7zOLohGFJIpTTz/znLwSaXq9vT1y112/l2OOOUojr9LptIpMFL0oGqmgVdTUKGbFYjFNJdy8ebM8/vhjcvddd8n//d9vd+4oXq1evVqOOupoYVRWc3Ozilj05gwGg/DTiiMaLCmbN21Sk3Z3ZwpqV151FSLET9Af1xgJZiN5u3RsbgSMgBEwAjNNYN4JWPzi5pc9b/7pd8Uv7l/84g559UUXKrvf/Pb/5JRTToWXQGhkOF/zE5rp08rqGy8BnscMveegA0x/veOOn2saAff/xS/vlLPOOlvPc6YbcjueyxaNNV66tt1sENCbQdxYMY2w9/GYtP5pAIbIGIkQ0QxNx1RJ1Zog0nGwwfTdD85Gt61OI2AE5jEBRl+l+3LS+dCQphCWYyyVZafVSuPRlRKsRzp/cbS/6epi6bVAZ1ePvOud75Dbbvsf+fkdv9CILIpbyVRGrwHYBm7PabSYheBXTUmkyXt3d5ds2bJFnnnmGXnssUfl1h/9SPcZ79P1179XXvay8+XQdYdKY2OjphZaNsN46dl2RsAIGAEjMF0E5p2Axagr3sQzZbC3b0C++tWvyMc/9lG57rrr5R3vfJcaXhIWo644WV6+YrCnOUyAF6K8CPXjnOY16UMPPSgvO+9c6YMh66c+9Wl508WXqIcbLxzdX2pNxJrDB3SxN43fKtCneEMY25qWjr9HpRvD0gvO7aZjK6X+sIiEGpC2whtCE7EW+9li/TcCs0rAFdwZMRp9ISmd8L+KbU1JuNkny8+s0/RBemHNxGeVey3A69v+gah87WtflY98+EPyX5/9nFx++RU6QiGvA3i9MDKhAwV2AhPX8/rYg89WdwuMG4NUv5RGV1HU6uvt1dTDrq4uXEP3qhCWSCQkj2vrmppaqaiskLX7rZVly5ZJA0SrqqoKLSuHz3Nef7OOneofaYgtGAEjYASMgBGYGQLzRsDiDTtv3kOIuuIX80MPP4Iv9MvkoQcflDt/9Ws5/fQzdHQ3RmRxOxOuZuYEslqmhgDPbz6YRsCUwlYYp37rm9+UT37yBjn//PPl45+4QY479hhLKZwa3FbKDBCgDxZH9OqBeNUGLyyO6lW9JiRNiGio3g8pObgpLL0Pm4EmWRVGwAgYgR0EHN1H+FmV7M5iwIkh/bzi51I9jNtbTqyWyFLYVExj+uCOxjhL7rUAzd3pMcWo7Ne/7rVyzjkvlZvgi7V8xYoRIWn0vnzt7s9lXgc7kds7BC12mXoXR0TmtTInd860RIpT/DGN19ncNle8pjbhiqRsMgJGwAgYgblAgN9PezNxx+307E78VYoPpgzG40m59daf6M38AQccIBs2bsYN/ssgbAV1NBQTr2b3WFnt+0aAF4e80KSvBIekXrZ0ibz/Ax+Q227/mfz617+W4487FqMU/a+kUmkVavlLKC9U7ZfQfeNte80AAZzTXqQKRpb4pXJ5UE2QE10ZGUJ0QwoG74UMQrL4DWSTETACRmCWCPB7NDOY18+lIYycmosXJNjok6rVIQnUIHUQgw/O5OReC1C8orn7qzGK9iOPPqb+ruvXr9cfuPbUHnd/Xk+wb7xWYFkcFIbRWxSkChDsNJMh4IePrF8isNzgg/X5fF7dhttyP157syy71tgTdXvPCBgBI2AE5hqBWR2FkF++HEaY+f/PPPu8fOmLX5Abb/yWfPZzn1ez66rKiHpdmXA1104ba8++EnB/QeUvsPyl9DFcvL7x3/5V1j/1lHz605+RS9/8Fowk1KgXpKzDfLH2lbTtN60EKE7hZ/zMYE76n0lIO1IJh7alJFTnlfpDK6QGI3sF65FKCEN3RjzYZASMgBGYEQJF4VyjRCFYRTclpffJmEQhrnswul7jMZXSfFyVRFr8zoATs/T5RPGIUVG8/qVlhgdCUgQjB/IaYV8nd193PlY5FKtMsBqLjK0zAkbACBiBuUCA34J7i8DyfAzT7hrLL0GaRk71DQjLpSjFqCuWf/fd98hJJ52g/kA/+xmMrt90saYT8hcibstfiGwyAguBgHvxyBD/srJyRGO1yKtedaGe4zfc8Alpx7DZ69YdJi0tTRidyPk7oYhlkxGYUwSKOSgUqMq9GHwj45gkpwfg5ZaC7xtuyrzhcvEG8es+lnlPNnKfOLIwp3pkjTECRmA+E8BnDP7r9SqvG5niTL+rvqcTKl7Rp6/mgDAE9oiTOsjPplm8tOS1AK+DeQ1cWREWP0bd5uvJiEvu9cXe5vP5MFvbjYARMAJGYOETKMd3ZHn57m8YZjwCi786cQoiAqWru1f+3w9/KNdee42u+8c/HsRQvsfKiKEkQ5v1HXsyAguPAP8WeKFJU9ehWEL++79/Im9761u0o3/6831y6ikvHhlim/5ZvCi3yQjMGQJ6twgflRRTdNLwmIlJ3/q4ZBP4caLJL3WIwtJUHYzy5Q05Qpa23U7jOXMIrSFGYEEQ4IUiH/hs4QipFNLjSBnsfxbi1ZakptVVrQzqqIMUsZz0wblxdcnvdT5c0WlBHA/rhBEwAkbACBiBfSTA24S9RWDNqIDFX5cYTeL3eeSp9c/I5z73Wfn+974rZ5xxpnzrxm/LgQestZTBfTzYttv8JOBevDKlkP4Vf/zjH+Sl55ytnfnFL++U8857Gf5mytUfi+kGNhmBuUZAU3U4ytemlPQ8HpOB5xKSS2JQjjqfVOKmsWJFUEIY9ctXgRG0/I6QtdvIh+JN6Ji/XLjCV+k2XDfWfehY69117pwgucyptExnzc7Pe9vOfb+0LHd555J2rrP0Pbddo+fuNu569/V45u4+7nysfUrf29Py6H1dZlzvLo91LEbv574urat0HZcnUo67b+mcZbvTvpY1un1umW55pe+XLrv1jmfulslt3XLd/dz3Rq933x/PfDztKt1mPMuj6y3dZ3fvjbXN6HWlr0uXWWbpay67E9nQbg+j6BVyiFhOF1S8im1Ly+DGpMTa0nhzWCrg09d4BFKbD3RSmxk1ugtvt0ybGwEjYASMgBEwArNGgF/zc0bAonhFvyuOwnbXXffI9e+9Dv4/j8qb4fnziRs+qalUNJbkDb2lDM7aOWMVzwIBV8RyRyl8+JHH5OXnnycdHR3ygx/cIq973euRXuCTZDKtnhmz0ESr0gjskYAzKiEisbakpe+puPS/kJBMNKcphIzGCi8JaFRWEKKWvxpCVqCYvsMbUPcGvfQmdY+12ZtGwAgsSgLuZ0SJiMX05VwsL2mYtSe7M5LoTEu8PS3JvqxeS1atDkr9uoimD/LzpxxpzyOfOYsSonXaCBgBI2AEjMDcJTAeAWtGQjooXoWCfh2B7Ye3/EguvfRipfaRj35Mrr763VJXW60jqHCliVdz94Sylk0PATd1gKMUFhCheMzRR8pf//Z3ufY975GLL36TZDIZ+dc3/pv6wpmINT3HwEqdHAGew4ywqlzFYenLxVflkUGYJyc6EAnBOUYoDDb4JNTgl2CtV3zhooilkRBm9D45+ra3EVhkBPBDZyGP4CtELeeSBYjleUlBsEp0ZjCwRFYjtgJVGG0QEaC1B0WkEiIWP3dMvFpk54l11wgYASNgBBYkgWkXsFzxqn8gKl//2lflwx/+kIK8AVFXV19zjVRGwjrimnsTvyApW6eMwDgIULzl3wu9sVavWilf/spXpbKqUt72trcivTAvF19yiYlY4+Bom8wCAQY1FEWsyAqYt0fKhdEOFK84OmF2CNERXVlJ9iAqAmMSeGCg7A0WUwpp0qj7z0K751uVxciTkgAU7QHwOVEleGP0e7vvIrc08XD3fKbwnVHHZeR4TWEVi6YoskTaYB7iFVMGOWhEPluAmMX1wxDSvYj29GnqMlOYI4j+ZNSnpg0uGkjWUSNgBIyAETACC5fAtApYrnjFIYI/+pEPy9e//jUlecMnP6WRVxUQr5KpjPpiLVzE1jMjMH4CFLGYUpjCCJzLly2RL3zhS7Ji+Qp5+9sv1xvUSy65VEWsFP9u6ImFbW0yAnOFQBnEKF+oTDwYot4X8SDqATeSuIFkJFYC4hXTejIx3GkiYqLMm8MIhTitIXzpyU0Ra650ZA62g3/qLp+x/uqJUT8OxnqztD98nwUpd5pHl75py9NCAMx3OSzgbujHT3uEHxfIE2JVAd5XPOmZkuyv9kqo3i8RfPZElvjhu+dXs3Z3JNTx12RbGgEjYASMgBEwAnOZwLQJWK54xZEG3/e+62HW/j3l8PGPf0KuueY9Eg4HYUxt4tVcPjmsbbNDwLmhFxWxmF573fXvxXDf5fL2Ky6XYDAob3jDv8ATCym5afv7mZ0jZLW6BMa8AcdKD1IDyxH1wNEHQw1eSS8PIMUnJ6n+nKThjZWL5yWfYdQERuDiwLS8KR2zMLemRTInh5JpRJBy+biMOMfDfam7uNvwBW7u9Sa/WB5FcXcazmP0Uw8ir/zYexhzPHYuyN3S5lNCoPS4lB4wri99b0oqWwSFFJkxoooPfsb4kb7MkQUD9T5EfnrFjxRmRnjqeV7KfBQeFmWTETACRsAIGAEjML8ITIuAxRQoel519/TJ9dddK7fc8gOlQs+r91x7nYlX8+scsdbOAgFXxGKEYnVVhVzz7mukr7dXLr3kYmlpaZGXvvSlauhOodh842bhAFmVSmCPN4CIxvIEcZMJocTLaCyYuWvKD0yXC0z9QQrQMHxs+FiskwpLpRCpJTGlsniTztEa9bMAq/KpPIQ/MMN7WQiA6QEIgeDIm3Ua5QdqfPACyupIkOl+fC6A+zAEQk7cRweLQMRKDp56eX8HolXSUr96PwlX1+MzxFeMxEJFNk0tASDl8Up0wJ8J4i1FlSCElggihLhs00QJ4GQGtnKKsLiCpeeex890ZHzeBPB5g2gspim7oYXOX8BE67DtjYARMAJGwAgYgblKYMoFLIpXfr9P+pA2+O/ve++IeHXV1VfL9YgkiURCFnk1V88Ga9ecIsAbV4pTFLFqEYn1/g98UNo72uVl550rj2CkwqOOOkL9snhj6gpec6oD1hgjAAIUZChkeYLEgTtLnK+MuqKookLNYr7DxI04RSqd8PdOwYkiHyNLyIjCR2YIQhV8fnIUsDDn33s2AePqeE79fxh9wrSpqjVBiCQe6cUokOn+rHjCvJGnAkbOSLPy4+ven5N4aosMDv5NKhrSUltRDoPregmGK/BZgrRO1VP0qdgom02WAI9vHOJVAiPjZRN5CVTBo6nRh1HxQo6p+GI+/ycDl6cpT28+LA92MiRtXyNgBIyAETAC84rAlApYvLD2+XySRmrTJ274uHz3u9+RlStXypFHHgUx6/1SAfEqkUqL1zOl1c4r4NZYIzARAqUi1rKlLfKZz/yn/Oz22+WKKy6Tn9/xS2lpbjQfuYkAtW1nnwBuNtX7avZbMistUOEOKX6c08cnnyoqGBSsIHDkMapaCCbUAuGPozf2PhmTOEZXo7DlRmZpw7Eb79tzlV6sHlYxhOb5lUjXZIomRTCmVTHKh6O1+SI+Kfj6ZWDjkxJvv1vy0SrpaauU6palEqysxPblJgRMwxmhAiWOUzYGMXIAwqIP5z9EF46Ixyg5PabTUK8VaQSMgBEwAkbACBiBhUhgypQkilfOKGoFFa6+/KUvyVlnny333H23/N/v7pYlS5olkYR4ReNpm4yAERg3AVfESmdycuABa+VPf75fXnLqi+X222/DCIWXIeLRL9ksRndDtJZNRsAIzC4BFaj0qdgOCnZc5BMfiLJKwwuM/l9MA4xuTamQxWgrCk/h5oA0Q1AKNfiQDlUm8W1p9Q5jtMkw/O9ZRAA+Pz5EXpUVRSqmUTEV0xvySPMJVVJ/eEQ3pIilKhfErmw6Kl3bNkh663rJe4ckBaGs9YX7JBCpE68vKJX1K1Eyc68sohMQpmRyzgVQhVhFMTHeXqZphDzuFC/1IBVnU1KhFWIEjIARMAJGwAgYgQVOYErUJF6k8Sbbh19w777nD/Kud75D3vrWt8nNN98kv/rVb+Tggw6wKJEFfiJZ96aXAP++6HcF/2V58YtPli9/+av6d3bqqS+RIw5fJzmGYthkBIzAzBPA9x81CA2poljFlCaIyfyTzBdT/7xI52MqZQojMQ48n5Ak5nl4gVGwSiC6iuJTDtFX2RhSA1flpW5dWCLegJpTV6yCuLTWEadYNkdb4wiPKk6hTD/KDtQiCgtfxFxHE2spQwRXsU3aNrQw0dYl7dv/KLHoRmwXhoCSk0S0W7Y89Vu0zSOr150pFXUrIISzLBi922eKw3ASz+6nMoVGTxDnAPRBCpd82GQEjIARMAJGwAgYASMwcQJTImDxOtfr9ci27a1yztlnytVXv1uee+45+chHPiovO/88yWTprYELe7sgnvgRsj2MQJGAx+NBem5awqGAvO71r8ff2ZXy41t/JAdgcIQgBk1Ipy0Ky04WIzDjBCAqQUfCxFQ9+FMNQYSCb1U+PSyZwayurz0kjCinch2Bsf/ppMTaUupnxTQyD0yn+QjXOKbeNPjma6YFUqhqOLJCR1rz0pwaQoi/mBaoqpmrkLD6oiaiozrqC65wNqBQ1bnxUena/ICkEzGU41fBiyZC0Z5NsuXJ34gHqf0rDj4NItZyiFiMxLJpKgjoEcChcI4LBCwIlyPpoFNRgZVhBIyAETACRsAIGIFFRGDSApabOlhAOPytt94qxx1/vKxZsx8iRL4k377pZidjIpfDxTt+EdZ4+kVE17pqBKaYAEWsFISq5qYGueMXv5RX/vMr5E0XXyKHHHzgFNdkxRkBI7ALgR2akL5FUWIYI/sV8OCcPkfx7WkZeCEpiW6OOpeXiuV+qVwZ1PQ+pviFl8AnUoUtRFPBvyoEQ+8g0gVDEK64HKj1qWBVyELAQppg9dqQRnPpE6TrpBMAAEAASURBVNQQ9VRi7WOIV6XtdSOj89mU9GxfL9ufuUeyGTQYBQyPDP2ISCtPSAa7N8jGx36pkVgrDn6JRGqWojrzxCrlua/LqiviWDkj4zleWGmMRqgphFg/6pTa12psPyNgBIyAETACRsAILAoCkxaweBXtRergxo2bdNTBb934bfkKxKtbf/wTWb5syQ7fKxOvFsUJZZ2cXgL0ucpkMqjEJyeeeJJW9pf770ea7oHqL5eDWGxeWNN7DKz0xUXA+epyZIaRIOKi6pBPQrDCCHPRTSlJ9mckB1+pHEcIhMcR0wNpyJ6GsXqyJ4NoqnIVqRqProTPlR/+Vkj9Qzogo6o0CguG3vSyorG31ok6mHbItDOdWCcnaFA6lQpYxVWlMwpQ+RzEtK4N0rbh79LX/oQUhoOOGOaGA3EHLJeVByXau0U2PPK/WFEmKw85TSLVS7DItpgnVinXCS0XjxGPr0bW4fjqpAfYeXMvh3FC1dnGRsAIGAEjYASMgBFY6AQmJWC50Vc5jHD0s5/9TN7whn+BD5ZX1q9fL+ef/3JcLPP6t3jBttBJWv+MwAwQ4N8co7ByiPaor6+X665/r9xxx8/lole/WmqqK2Hm7t7lzkBjrAojsBAJ4E/I/SuiYMXImeHhMslxFLkhjO6HtD+KEZw4OmDP4zGJbk5JqjcrBYwUWA6Rgp5UmjYY9mgUFSOtKAZRnGKUFVMDKWp44YvEv2lWqHVy7gpULlt9w32B+TgUDxWdIH5lUlEYtf9NOjbeBw89tpni9+jJEagKBaYTbpFNjyMSC21doSJWi36Ha3mEYdPECeD4leNY0MidUXr0RWN0HY84ifJwG9mJY7U9jIARMAJGwAgYgcVJYFICFq9nPZ5y6erqlvdef53c+O2b5De/+Y185zvfk+qqih3RV4uTrfXaCEwLAd5c0tA94PfK4YcfLp/77H9JZ2enCljmMzctyK3QxUQA32uuVkOhgYIDU76SEKsSnVkVpxohTHGEQL6XGcxrOli4xa9G3d4QIq0a/FK9Oij+Kq+OFEhj9TIPCtYMPgx4gtRATkw9nI6JPxzl0glEXT0P8eofEuvfAuGtDgKK48k1us4dpu1+7LMeABAJBk+sZQe+WCJVFLFMYhnNbEKv8TueF+dMqMnxOYssCWh0HbVLIzshkraxETACRsAIGAEjsMgJTErA4qUXr2s3btigGCORiNx22//Ipz/zH/rarnkX+dll3Z82Ahq1gdKrq6q1joGBAZ3zRtOiJaYNuxW8CAi4nlYUm9JIBRzamlJPqyQ8rbIYKbBqTUgqlgaQBujTVMDag2DQvrUc6zFa4IqAeCuQFgixipFabvofUwF1mna1goIYKxmWob7tsm39PZhvwaoI1LKxxSunYXzmvogw81ZKf/tT8nwBywg/o4gVqmjUzUzIUgwTfmK0HQXOlhOqnAi+Op9G4ynyaT8nJtxc28EIGAEjYASMgBEwAnOWwD4LWKU3ya2trXLyySdLT3ePnHfeebJixQrJIq3QRjKas8fdGrZACHCkMk6x2JDO6X9VKIzOQdK37MkIGIESAmpDVAyBcYUZZrzH2zLSuz4BA/aselplYcSeKnpaFTCyYDKclXh7WgKIqgpgRMDaQ8NSyWgrRFV54XNVDk9IikFO+SUVzsgiBeyC6KiDmx+Rjk1/xaiDQ/pdPDycG2cLGCYW0tEJn3/odvSkTJYfdApErHrsbwL5OCHuspkH6aIVywIQsHCOQNzU6Dvn43uXbW2FETACRsAIGAEjYASMwNgE9lnAYnG86Oe9ck9vD0SrldLR0Y5RCE+QYMCnI6WZmfTY0G2tEZgsAfeGu5B3xKpUKqWec5Mt1/Y3AguaAAQDagaMDqa3VRkEX6YB5rIFeFLB5yo5LNEtKel+cAh+Vzkp5OA5B+GBQlXVqoD4YbpOfyv6WNF8vQwPGrEHa1EuC2b5NH+chUl/VKKAnc9Jb9szsg2jDibjMXxHT3BgBwhgjhBeLv2dz8IT604VwJYecLKKWM5nj1KchV7O3yp5fChaJbrSOM/y4oMvWhDnEqOzbDICRsAIGAEjYASMgBEYH4FJCFhO3Du9eLq7usTn80l/f78cfcwxWjOjQEzAGt9BsK2MwEQI8EbIi8ESaORO7ytONTU1wiylnN5FT6Q029YILCIC+BuheMU0wWwMwhX9rfqYWicaRUUTdgpaZfA7D7U4IpUv4pUI0r+q14Y0ZZBeRszSYzmqhnE2B4IeKSwNI+0v3t8unYi+6tn2Fxkub3T6O8EGjnhiIRKrZ9sDKANCizcgLWuOk2BFLV6z8zZNhMBwXiTVnZXep+I6ciWjsZqOqxR6puGwOefTRAq0bY2AETACRsAIGAEjsAgJ7LuAVeb8AkuRqrauTu6552455JBD5CWnnbYIMVqXjcDMEaCA5YHHTiyWkO3bt2nF4TA8bjDxPZuMgBEoIYA/Cf2r4N9G8c+D3lb9zyak//mEigqViK6KwNeKEVaVq4Jqth5ElFWowYe0QBi24++NkTJM/VKLKRZfLKukptlbRN/KEFKWivdJ6/N/ka7N/0BEZiX6kZ5Em8gLaYflVdLb+iiWWUe5LNnvePEHqxzBxYSs8fHFacPIPKaiJiBixbalkKKak5oDQ3qOja8Q28oIGAEjYASMgBEwAkZg3wUsvRdgJEi51EHAam9vlxNOOFHS6clcMNsBMQJGYG8EKFIx/mFoaEgee+wx3byqqkrnfM8iH/dG0N5fVASQoeVBeCI9zIe2pzRFMN6RllRvDo+sZCEkMAom1ZMVL9IFKWQxZZDL3pBH0wQp3uC/I1rNJeHKPZAQkjKpIaQOPgsB6z6J9m6E2BSAaDLZ72N2FlFp+TLp63hGXnjo53hdJkvXniC+IAQyfhZpMJY+ua2x+WgCwMiU04rlARncnFRvtTJfHgMEpHWkymAtQv5sMgJGwAgYASNgBIyAEdgrgX0XsEqKpoDFqa2trWStLRoBIzCdBLq6OuVXv7pTzjnnHKmoqNCqLAJrOolb2fOCgCswUVPBMiNdUn18ZFQwiG5ISbIno8KUD9FVNGDnyILlfhqUi4pZFLR0wmumG87VScVsVZDKJD7QIdufvVcGujZIDoOoeDzjNW3fS++QfqheYTnYBWx/WLw+sEK0V/PqYyQQrgYzV8TaSzmL/G2ORBnE6IMcwTLa6JdcOi/9zySwDl5Y9RCw5u5ptsiPnHXfCBgBI2AEjIARmEsE9lnAKvXAWLJkifbpgQf+Ia/pea1eh1kUyFw6zNaWhUKAN4seDzx4MG3dslXnp512ukQiEbv/URr2tOgJlAQDUROgeNX9yJD0PR3XNC5GwgSZGkhzdggK1atDUrVfUEUEvjef/pDc7+FMMqrRV+3P/x6RWBmkPPogLMFYaaqmoofW8LAfIxv+SdMoPV6/NK443InEUmgl4Keq3gVYTrgJfmo433rXxzWVMNEdlLoszlSkqVpG5gI84NYlI2AEjIARMAJGYEoJ7LOA5baCv1jX1ze4L2Xzpk2SwgU0TaZp5O5eYI9sYAtGwAjsMwH+TQWDfhmC/9Xjjzvpg0cceaSEQiGk+TASwm4i9xmu7Th/CeB7CEl+aL8rQGGZfwv4gvIjyspf4ZHhDEaBw6iCEfhd1a2LqGjlDXrEg8gr+luVQUCYVxMjnxAJlcti1MRtj+uog6lkBiIdostcDFPcoWHkYebL/NK15UFly/qbVh4hHl/QsQazz589E8dp6efog4i40s9qHKfsUF7S/TmIqbgcm2/n4J57a+8aASNgBIyAETACRmDKCUxKwGI0SAHGpEwhvOzyy+XbN94oW7Zshrl0DKJWHW6o83ZDPeWHzApczAQ0XQcAWltb5ec/px+NyKpVq+HxI5LO4O+NQxHaZAQWC4GiZlXGoET4NGUGc9L3bFzyEKuqVgYdY/Zar1QfENaUQS+ELKZxhSAgBLCefy80155PUVcjhxZiUT6HtMi+7dK24R8Qlf4G43Y/3i5oKuTIdvu0UPI5oouIDnLLQb25bE562p4S76MUrsqkadWREAJDKmq5m9l8bAL+So8EcP7xvOMPgBkIWEmMhOmH7xoGe9QBBHbAHrsMW2sEjIARMAJGwAgYgcVKYFICFqExIiQUCsopp5yqAtaGDRuks7NTGhvq9D1LJVysp5b1e6oJULxy/55eeOEFeeihB+XSS98sbgov/xbd9MKprtvKMwJzkgBUlUKmIJlYXlMFE+1p6X40JrlEXjIY8c2DNMEQRhOMLPFLACMM+qswoiBGEtSMOOpWc9jfas+8GX3llWxiECl9D2pEVDqV1tFJ97zfeN+lMljUo3TRiW9z9i5gBtP7RFxan/sTfqQKaLRb/bJDxReogPaCHSwSy0E1xnM5ov14LjKVMJcu6AiX2XjeEVJNuRqDmK0yAkbACBgBI2AEjMAOApMSsNxrVAZ9HHroOi31mWeekeeff14OW3fIjlpsyQgYgUkTcNMHB6Mxefjhh7S8s2HgXlNTI3ncU1r64KQRWwHziAAjWPIQAJJdWRncmJRBmrP3IoWOohS+k+LtGUnD/8pfhREFYcpOk3b+jRTtnOZRT8dqKkZV1OirVml77j4Z6t0kHi988AopbDwSK1Xc0X2Nuful7Sp42LaMYT8a+sNlbuJsp3uNvC6WytesQbeBjFXuk/6OByCi1UtF7VIIWI4Xn+47VrMX+zqCwXnLwQPqD6/QlFYCZQrrLodtsbOy/hsBI2AEjIARMAJGYAwCkxKw3Csu3jyvWbNGzj77bLn77rvl6afXyytf+c/FaBH+fGuXs2Owt1VGYEIE3PTBjRs3yH/952d033XrDhOftxzpgznnpnJCJdrGRmD+EWDaFayXEGVVkIHnkjDDjkm8IyP5VAHRWPC8gsdQ5aqg1BwQksgyP8QB5/tnYQi8/D6F2IEp2rtNtj39B4n2bUO0M9LPdHCHoL7nPHFbPABM46coWtHYXcUrMCljOWCW68OqTnxfB2Bs3yL+QD2EqCqYs/NRqVFV3gDmwQq8F1GRikIVo62ceUSCGI0wWFFvn0El9He3yPPXhzTC+sMjzuGBoEX/tfk2gMDu+mfrjYARMAJGwAgYASMwnQQmKWDx2pg+WAWprq6WCy98tQpYjA7p7e1TH6xMJosLYxOwpvMgTmfZPL6c3Ju/0a+ns24rewcB/o35fD6NtHr00UclHk/IlVdeJcuWLdONLH1wBytbWoAEnI8h/S2EwT8cWXBwA8SrJ2IytD0NAWYYvlZ+qVjhR7pgQMLNfjXK9oY9+OxaSDzYmYKkYn3SufkR2fLUryUe7YcXVgxmSjl9r9wDIcoXFq8/DHN1zPURwusQXjs+Val4n8QHWlWAal5zktQ0r9VoKo8Pgp8HD68Pgoofg7Fgjtdc5qiDOz1024BuSzFsWAUy90AtJOZT35dyClbwY+NE4SqfLGjEYBC+bD6sL0BnXFjn7dQztBKNgBEwAkbACBiBxUlg0gIWhQ2KGuX4MfeUU09Rirffdpu8+93XyCkvPtl8sOb5eUXPJT5oyM+pHKEPFCTd1/O8e/Om+Zo+GPDJps1bIRLfpe1+6bnnSm1treRs9MF5cxytoftIAN8vTA1khBU9rDiaYGYoJyn4XDE9MNzil6rVIalG5FUQnlf0vpqXxux7xANxiEIRPosT0S5JDLYj6qlZQtUrITrRkN7riE8YEdAH8coXcEQrClg+iFfeAMWsgOQyCenZvl6yqQEJVTTKykNPk2X7n6hlq0K4xzbs+qb+qMHILpsmRqCo9SW7sxLdkpT49oxGDTJ6UFMKJ1aabW0EjIARMAJGwAgYgUVBYNICFinxAjaPm4v99lsrb33r2+Tmm2+CwfRDKmC5ptOLguYUdJIs+aAw6EY9TUGxEy6CAlUo6Jdf/fo3kkgk5FWvukBT1X7xyzslm83KBRdcILmc3bRMGOw+7MDzwf07evLJJ+TWH/1IjjjiCPjOHaqjD6bSuZH396F428UIzF0CuMl3R2vLYrS2NASrYL1XQg0+qT04gtd5RBWVSc2BIanEqIMUt/RzcyEGAlG/wvdCQb9vc1LdtJ80rDhCI6t8wQjS+5DSB+GqHGIWNix+f5QX59SnGCU1jMirdkkM9SLyh6PeIcrKF9HIKn6eYzdMfFqIAOfmaT7wQkK2/a5fbchyiMTiQahajdEdEZnlHI+52W5rlREwAkbACBgBI2AEZoMATTCmZGKESDgclAsuvFDLu//++6S7p0/8fp9GYU1JJVNYyDDaS5GGD7Z9LkyuUBFEpI0b9TTb7du6davc9bvfjTDavHmz/P6eeyZ0e8N+jWbMdTaNjwDPAZ4TXd298oc//EF3esc734XRB5fSD9gmI7DgCLgfDxSvMoM56XsyLtvv7ZfWP/fL0NaU+l2F6n2y9JRqaXlRlVSuQNQKoq7oJbRgLRehZjBNrwxRsNWNq6VlvxOkadVR0oDR/2qa1qqJeqiyQQKRGgnAk8oPDys/fKvoU+VEXyGF0IuUP48PwgjT1yCQEJaKVjyFnB9PTLya2T8njkgYWRaQfHZYBjYgOu6xIYluSuromtoS+4yf2QNitRkBI2AEjIARMAJzmsCUCFhupBBvOo499jhZuXKl/M9PfypPPfWk0P5qtHgxm0RcQcgLPyFGGPFBcYB9mE1RhXV78Yt4KpWSDRs3SSaTGWlfAO0bSwSaCY4+eKAEgzuMgenDFODrcV5Us90emAtzP/c84LrZ5j0T7KaiDqAaia569JFH5Itf+LwWe+KJJ+r5kc1a9NVUcLYy5g4BnvP0F6cpO8WqzoeGpPPhqPQ9nZChzSmJbUtrJBajrcJN+BxHNJYHaYT6mTTOz6W509uJt4SfnYFQlYQhVvlDlY7XlYpSjg8Vf5zRB8QuCl7qTcV16lGF+R5AWcTPxI/HZPcItwSk6ZhKqUIEIQ8Nvd36nklIAYIWdUbneE22FtvfCBgBI2AEjIARMAILg8CUCFhEQVEij+EIGxoa5EMf/ojS+cv996s/DwUMvj+bE4UrtsEVrAYHBxHNcq984hM3yP/97i4VV9hOV2SZ6bayfR4cjb/85S+y/9r95KILL5Avf+Wr8ru77pb29k5EsnlVaGMfZpJlJpPGr/Y7Mk3T6bR4wWm8E5nG43Hp63Oi8dh2Nx3O5/POaF/G2+a5tF0Bbr4UWKNDcfn7P/6uTfv4x2+Q1avX6PJsna9ziZG1ZWERoIiSTxck9v/Zuw7AqIque0nZTU9IQu/SewcpCtJEig0Vu2BBsXfsflZsWLHX394VsIEgXbABKr33kt6zu9mE/5y7GVxiIm0TAszA5u2+MnPnzHtv35y999ztbklekiNJILBytuE+RMIKAu1KVhV7DRVzMj7y6uiC4T974/seYFZBfq/ux3drMV5+7lb/Wb/dWHEIOGLgUdc4HFkJo8QJEXc3PA5ztrnElV6gmm/qJVdx5tiWLAIWAYuARcAiYBGwCFRqBAJGYBmPGshsyMCBg7TT773/nmxCyJkT5AsJmsNRDNlD4orEydJly+WFFyZKQnyc9OvXV1599RVZ+vff6vEUjPATs39ZtpIwKI004HGlrS+rHv/1PJZED8v27duka9eu0r5DB1m9erWcPGig1KldU26/7XZZtnyFElkVSQgyiyQ9sDi+LAXwDPN91o//+Yf9CgGmDEGsXi0Bfduh58L6deuUoFu+fLl+Pljc/rPxfWykbXwdKYXejPfde4+aO3jwYImLjRY3so4ZMvBI6Ye10yLwXwjwkizy0PPKLSkgrzJWwxPFWyTOuFAIXEdIHYQM0luFXle2HAgCxQyWLvawWQdSgd23vBDAOR8SESRxTcIlLJ5i/EiSAu/DjNX5mm2TIZ5H0FdVeaFk67UIWAQsAhYBi4BFwCKgCASMwGJtJAS8mGzUrVtXnnzyKVm5YoX89vtv2pAhQPRDBf2hPUFwayJBsmjxErn7rjulbZvWcv3118kLE1+UDRs2IVxvo1BPyOl0Qpy8UAkB7s9XSYKDnxnOR48YFrOdS5JK3Kb9xAMp15k6zLKsbpPcI8m3es06uXT0KLnu+hvk8cfGy8SJL8iOnUny448zZMmSxdKmdSuZOnWaVmNILH9bS7ZjbOABJbcZW/yPN+v8l4WFXomMjNxDYHlha4R+9t+r7PfUaFq/fp3u8O03U3S5cdNG+Qbvp06d+q8Djc3+y3/tVGIF9/Uvpk++pc/zzmznvnzR+4svFoONWfrvW3Kd2VYRS54XYSBes3Ny92hf3X33PdK0WTNtnrYdjuuqIvpu2zi2EKDWFSfq3vxCSVqcIzsXZErG+nwpBJkVGhYiie2ipBa0rmIahYsjmuLjloQ5qDNEb5V73y8Pqh57UGARwOlMDTdquUXWckhBTqGkLstRLSwmL8CXVmDbs7VZBCwCFgGLgEXAImAROEIRCCiBRQxIDtCTafApQxSSyZMmSXpGFsgdhxIFFYkTJ/ihILCSk5Okc6eOINWekHffe19ycvPl2muulnrQ6qIHC7WnWAwhYEgqE+JmCBKG8S1dulzmzvtZPcp4HEkG7peTkyObN21RDyX+gsptJLq4jUt+NvWUhYHRmsrOypbcPJcSajVrVJMBA/qBxPpR/ve/B+SUwScjpHCHejYVYdLHuv3bMR457IuxgSQH9zGkF9s3tuzVV04iSxQSVtFRUXuIEvZXP2sdJXYu8ZG2uN0eEFjrdcv06dPVa2jjho36mdkNvcheaUgYf5uN7QY32svtLFyy7yxcz3a49O3zDyY+bJBlC9jzGOyhGBCH1NQ0DWv0x4b7m/ZYd0kbuK6iC6fpf/+9VMlXtn1Sv/4SFxcjnmKytaLtse1ZBAKOAE5y3jP52o37gQeZBnN3eKQIYYRRmNBX7xotCa0iJKKm45/wwX/fqgJu1tFXoSX9Ku2Y4nym7hsJ2vg2kRJe3SGhkcG+rJrMRohrwxaLgEXAImARsAhYBCwCFgHoQwcSBJIBJBEKMQmhl8i90ML66KMP5Xd4YfH5yxAQgWzzv+qiPeQ5EhIS5fU33tRdv/ryS1kAnam09EwQHz6BbJIytJsZE7nctm07vKHWgvhK2eOlQ5KE/MkHCIs88YReQg0talaxT+zbDz98Lw0b1pddSUkSGhIku3btknf+710ZPXqUvPLKqyBMUjX8j/WXVdh+gwYNkNY8BGGOz8s1V4+V73+YJvPnL5Cvvp4EAut+ueKKMRIFQglyY/DOCZUVK1fL+McelyvHjJEp33wLDzivVk8yJiMjQ955510ZO/ZKee21NyQ7O1vrNqQbd2Rf16xdL7t27kIK9n+0rgypxDriqlYFVr4H6PT0dKmKz75Sdl/Yz2AAlJmZodhw/zlzZsu0aVPV+4qfCwoKuNDC/UmmESeO1VVXjZFXXn1NSSaSgCSd2Cfux6XT6bOV69lnLn37hMjadevlk08+kzfefEtmz54rWVkkUEHgIXsXxfHfeutNDWmslpggl112qaxavVaYXfG+++6X7du2qTccx3sTPMUmqqfeel1H3CqqsC2f91WezJr5kzZ70003S7t27TRpGLebMaoom2w7FoFAI0DPK29uoXiyvOp9FRQaJFEQs46u75ToBmFSDZ5X1bsgZLCaA8LkaL3sW06gTTsK6zPg8V7uu58fhZ08YrtEkiqihkPiW0ZKjU4xCJVFdk1cA8GOKlKAa8R4KR6xHbSGWwQsAhYBi4BFwCJgEQgAAgElsIw9JHUcocFyzsiRuorkjstdADLIR0CY/cp7SRKCWdocDodcdNHF8seiJVKvXj1odPVXDawPP/hIPadoF8mbtLR0eeCB/0m9unWkebOmcsbpp8qvv/6mxJOSJECrR4+eanZWVqYuIyLCJDUtQ554/DG5C+FdjUBibdu+U04dPlRGj7pEmjVrDgLpKs0el5OTp3WVReQVgZXatGmTREZEAj+HvPHG6zLklJOld++ecuYZp8uECU8rWRUVHa3k2dy586RVy+aycMECqVmrFtocJt99+61ivwOE1EUXXgAC7RKhR9eVV16hxE0BNK2oB5aFdQ89+ID2tVnTxtK9e1f09Vd4Hfm0uJSMRA+TQcjRM0wJSMx/kkDMhYWF73PoSDTxGOp4sU/vvf+BtGrVWm1cuvQvqRoXJykpKT5tNOxHkmrr1u3Q/BogY664HONUX8ZedaU88vBD2KdIkpJ2KanIMSWx9d1332s/P//8M5BQo3UcSU5xW9MmjeXcc8+RSV9/LX37nijxVWNlMUJIqcc1DWGLV465QnH85tvvQGRVkxbNm8qwYUMQ0vgDCE/fJI8EET3GrrvuWiXR2OGyxm2fYBzkDpxi/vnnn3L33XdpDUOHDZNqifHW++og8bSHVR4E9DLDCV6QWyTp0PqhWDuzCwbB24RaQLV6xErt3nFSFZP50Ij9TxpReXpY2SzhfY13FCwBPv/ZUjkRCE8IhaB7pMTD69AZGyL5KQWqh+XFteIbPjt2lXPkrFUWAYuARcAiYBGwCFQEAgEnsJT4wAMyvbBI3tCr5ekJE4Qi1PRMqkgvFgJovFQYDtaxY3t54qmn1OPmuedekAsvPF/GjLlcPXTyEbJ3xeWXyfhHH0HI1jINezx58CnS4/husmULvHLgwcPStVs3OfHEE2U9vHxYOCWgntPixYvlGmhpMSTuzjvHyR9//CHLV6yScePuUGLrww8/kLy8XN8Uopgk0Qr8/pjH0lB4Yo0dO1ZeevkV3XrdddfLzl1JcvPNN0lERATCIquoXlafE0+QEWedpWGR3Idl/Yb1asOL8Bz6/vvvkLnud3gjfax1/blkie5DMpHeXS+++IIs/OU31Vi64YYb0dfuIJG27SGxwENKBjzNSKaxkEiiBxYJwX0VJQ+hh/Y1SKTo6CgZPvxUOfnkwXrY2WePlIkvviTUxCLpFIqxyc3Nk9tuvQVaX0uA20q544475a677pbnnntW91kBPbU77xgHQmeJEluzZs6U+T8vlPPOHSkfffihEj3Jycm6rU/fviDjfpdJkyerhthDDz8iQ4ecoiL4v/32q4wYcZbceuttuu6xx5+QlavWSKeOnRCqOVBq1qypNjIk9MMPPlA9svbtO6jHGz28KqKQLCXJmJKaLlOmTNYmaW+7du31vfW+qohRsG2UFwK8/TFcyoNsaxRpT/kzW5KRaTAd791pBVIFl1lkbSdeCP8Nx468ydpyaAgQc/VILpL8vHRx41WlCsPafaTIoVVujw4kAlXw/U5R92BnkOQlFUjqUmTiXJQlO3/NwmeP6nqW8QgRSDNsXRYBi4BFwCJgEbAIWAQqJQL/xIwF0Dymfaa3Sii8sC66+GJ5EJ4+n3/2mbRt226PxpAhlgLYbJlVMQyOhAo9cUiW0OOoWdNr5cQ+faRjh3YyatRohIg5QbZ8JRs2bpaGDerJ9h27ZNnSpVrn3Dlz1JuMBFx8fLx069Zdw+EGDx4kf0MTa9QlF8ukSVOkdq0aMnXaj/Leu+/KcccdJ5dcfKH89ptPxP7TTz/HsQl7aT6VNNh4+DCcLyzcqWRMfeh0DRs6RBzQEBs37k5JhAcOeCT59JNP9PAlIM769zsJhNnv+vn0005XkumRRx4CgTNFunXtrL+1n3feeXIatjH87lt4L5FQ27BxE/paX8m6efPm6fFTJk+CqP3VOtmhFxWzDgb5ETceD7wk/D6X7AM/sx9sh+GNzzw9QV5//Q2JjYmSc2HDV199ISPPPU/HYfPmzRqKGR0VoV5kJNpOPvlkOaF3T9WoYl0ffvQxPNKYBTFIvkT4Z0pKKlerqP1TTz0p90MXbOfOHbJ27Rpp2bKFbrv7rnuQybGz6ohRQ4zk3owZ02XO7NnAvxDeZt3VGysbHnGRkRHwtmsiXbp0AXH5t4YKspKZM39C+OEsef6FF3QdNcnoqVfeRT3XcK6yMPSWnn0sZ545Qr2vbOZBhcP+ORIRIENfTEYpebUmX1L+yoHelRt6V/jRA5pXWrBfUCh3tMyVD5BD/7sHehBWBe5c3Ndz4e3mFEd4LJYgsg69CVtDABFQXhHhtcxG6E73Ss5WN8JsEcKOSwI8JLJwFv+ItGdgA9i4rcoiYBGwCFgELAIWAYtAJUagXAgsPmRxIs6MhA0bNpJnn3tebrzhepBZl2jIW16+W4ms8sSFXirUEMpHWxNAdDyGrH6//7FYaiHUjpn1goNDZCfE0Fm4L4XRhwwZqgQVvZ1uvPEGeO/swPIm9dRqBEKqZ4/uSswMGDhQBp88SLju1VdeRojXPcLwLpZvpkyR/z3wIEL2rpK//vpT1q1bBxKpm7Rq3Vq307uGZFpphZ5NiQkJ0K5KF5fLo6QVPYdIkrVtgwyEP0yV2XPm6vH33ns39LGmalje/PnztA9d0U5TkHNJyT6Sh6GFvXr11nDJuNgY4Ytly5YtMmToUImJidV9b7/9VpBZG+Tue+6Va6+9Rjp07Ci9evZQoswNwspbrFWlhBZCMs3n0vrAfejtRuH+J594XHeh8Difs+vUqSMzZ82RCJBzJAhZ1q5ZI3Xr1FJvsdtvHyd33nWX/PTTT0pstWnTRklPfUbnUztK8xYtME5D4KE1TskrYv/yyy8VC8X79smG9xQLQx8zs+BJBbKOHluPPPIozoHfIYIep9tpJ73KdmM8atepK7fccjNCLi+VAozR2WeNkAcfehikWCslHSvK+4rnIvHhGP44zZdx8sEHH8I4t1KbSQ5WlC3aoP1jEQgUAvq9gEyD0PPJIHn1J8IGt7mkCsgqirXHNAwTZzwyuSKMUMhl+S7nQLVu6ylGgD8GsASHOCQ8KhG6iM7iLXZRqRDAd56zaojqYmUiI2dBXqFeM0Xe3VKzW4w4YoKtuHulGjBrjEXAImARsAhYBCwCFYFA+RBYsJweVj4yI0hOP/0MJbAmT/oahMA4nYBzW3l6YZEkIoFGUogZEUlgdenc8V+YPv7EkxratnLlCuhkXaCeQmantes2SO3atdXOXj2PV2Hws84+CyGEfeRhhKVRq+l6hN7xFYw5Ab1j4qrGqej2zTffIoMGDhDhy6/47PLu1XfFCvtQnD0FIuYqEA8vJ87fmDGxTeuWSvjQw+vjjz+Sc84ZCQ+vRrJq5Uol0uojjM4Ukj3VqyXId9//AP2swTJ+/KPy1FMTpHWbthoe1wzi+j179lLvroR4H5HDY1cg3PG4xo2VnOrdq6f837vvgbi7UDXDfvpphgw/9VRMdIK1DnomkQAra/yYhZJeb2+//RYyP06ArQ0RBugTl6cXUwHGhZ5s58ITaxbqok5VMMikBSDcqK9Fva+ShYLwLNdeex0E8nfq++uvv0HDUhs1aiQ3XH+dhmtSdH3EmacLtzmdTs08yZ1JXjZt2lTeevNN3UYvNhJBJBRJdPbt21fP0z59TtC6+acbwkXpdVcRhCvb4zVhyCl61D0N7zUWEqaxsdF6fpVFfuqO9o9FoJIigFNbwwYLskFercqTZJBXeTvdSlaFV3VIzeNBsEP7ihpYynZb8qocRxKDwQHBN4zvHm7BLkewD7pq/mZDkiqmYbhPB2ttnnhyvJK+Mg/ZOkVqdo+WMOhl0Vur+Pedg27LHmgRsAhYBCwCFgGLgEXgSEGgCibNfJIttdA7hZpOB/twxKo54ebrHZAZl0NjiqRQYxAaFUEKmPZJfqSnZ8iGDetBDmVpiBvFyikUTlF3BwTcCwoKZcXy5dCEWij16zfQMLO4uFjtewa8iT75+GOJT4iXoUOHaUjbrqQU9R5q3qI5vKbiNVyNoW4kSrp26YQwvGvh0XOrVK9eHfpOudr2L7/8AgH5QSDxmmt7tE/Jq2Kc+P7nn+cjTDBR9cO4nR43fFETafWadSpW3glaXhRFv/iiC+Wtt99Rz7Hw8HAljZYi7HEj+nn+BRdC+DxJwyJJei1etEjH+PzzL9DsfOvXr1PCqGaNmtID3lYmsyBt/fTTTyHAXkVGjR6FEMg/ZPqP0+QaEEcMA/x5wUKE1s3eQxDRtrIKdcAYSplYLRHEmI+0Y59YnMB8ypRv5dRTh8nGTVugD5an3nm33Xa7jL36GmSOTNB1tJN9anxcYwmH/lfnzp3F7XbDQ80FnBLUg4rHLlr0h4Z2kgAi+bN61Wqcu17g2Exat26DMaqq59xnn32qpCa1s6gFRsz54nH0fFuD7JMLF/wMzbCX5McfZ0iD+nUr5FwlJiTT6H21ectWuf++++Sdd96Wx6HRddXYqyUmOlLy4ZVnCC7ub4tF4IhAwMeViDsDmleYhKf+nathg5x4R9VxSvXO0UpehUYF+zINHhGdOrKM1O9CeB0XuHJk88o5smXFDPHCu7Z6w47SsPUAiUlsIEW4X/JeaEslQgDDwTDC3O1uJX0z18ETK6dQPbMSWkWp2HtETYQT8mvYDl0lGjhrikXAImARsAhYBCwCB4MApw3ByAQXUuy8Ulod5UpgsUE+OJMgSkZIVI3qiZr97Y5xt+9FHpRmWCDX0QaGi5XEgQCRuCIJE4SNoSC1zDMgPXRIKLCQNGAGOxZ6DzHMi55ErI8EHz+zGLJuDjSz+p3UR9dFRoSD3MrX9xR/f+31N1Vzid5apU0WmL3R2KUHFf+hjRSSJ//DV35+vobGMaMeixPC725kGGShAPptCMej5hfryoN+E726tm7dAmIo0UfaoR1TyuqrB9iw75zTkMykDcwWyOL1+vps6ihtyb6Yukv2tQpITQ+IqO+++1Y6QCSdoY/TQBgxCyFLAkjB1NQ0fd/3pJOQkfEtJT5J4hB71sfx4ZIvekrRXvNeDyz+QxsKEAbJvnCMDOnGJfdn4RiSJGR59dXXNfxz4osT0YZvvHlceRbaQvtItn7+2ecycuTZGu46ddp0DR+15FV5om/rrggEcja7ZNfv2ZK6Ile9rKLqOSWxDSbhbSJVrJ1eJXtuwBVh0DHUBr8DGTbvzs+S9X9Nk83Lp0mII0pqNz1e6jbrLVGxtXBf9N0/jyFYjoyu4iuqyLNbsnH9pPydI5lrfeGEoREhyNQZI9U6RqtmXBWm/bXFImARsAhYBCwCFgGLwBGMALmLfRFYPjainDtJEqAawtq++nqSnHH6aXL22WeDjGhUYZ4tJClIdhSQ+SlRDOlEpscNjxxTeIw/ueGF7gQnV0HQD+Expj7//UhCcKJwEkLimEFu9erV8PxKQxa+aGnQoKESEiQoyiKv2La/V5CxhUu2SfvYHtugvtPlCGFkZr/169eLC4RWterVtB2SP0UQgDV1MYyyZs0aKjJPBEjacZsp/n0gkaN9LW7TkHhmnwJ4UrHw876Kab+0fYvQDu2i1hQJJmIyaGB/xY2hkZlZWRIVGSkNGzWSGjVqKLljSBxDGJp6ibvLXVhMTvn67W8b9yN+xM2QXtxujvd/v2nzVng9jZdXXn1N59KaJRGEWXkX9oHC95vgjTYZQvos99x7nzRp0kQwlLZYBI5IBOhlxesuCJPrIAd+JICXlTMOPybgfbX20ZLQKhLrcU+z5FUFje9ueLkBbA4MC8ZGf+XwfbJ/KyMCGCImNYhuELaH4KWGHMeuAHpy1JRzxEKIHz+m8UvLElmVcRCtTRYBi4BFwCJgEbAIBAqBciewSBIosVMUJP3795fhw0+ViRNfgC7T0xWakZB2+BMWpQFIkqO0UtqxZa0j10DihkLhPY7vtqc6ridxRALov+woywZWZLbxeJI4+I9wx7oa5mYaItlhSCazP/HXMcADr7HbbDPHmaXZ7v/ZvOfyv2z334/vy2qD21gPbSLxZNo0uPWE3pgpBjcST/RQYilpgznet43bSx/H0o7lOk6wTd3LEUbqcuUjVLELN/2rLV0Z4D/EgWQevfnmI4T0gw/eV521/v0HqFeYIe4C3KytziJQfgjwwsVlWOQpQvY0r4RGh0hYYqgkdoiSyFoOaPuESHi1UCWv1Ih98+HlZ+uxUjMw1ntuLpKE5KZItDP2WOn5UdFP6sNF14XgPsYxJAxEcGywklqhuJbIQ3oQokuii2SWkpL2mjoqxt12wiJgEbAIWAQsAhaBvREodwLLNOcF2xIdFSm33Hqr9O1zopx//oWqFZWL8DaGhB0thc+MDI8zHlr+/SKhU5J88d9+IO9NPRo2yMlicfEnc/zX8b05xqw/3MuSthKf8sattD6TwApBCCIF86f+8L1cd92NmrmRXmGG2CrtuECt46SSIaorodtFkXmWsVdfrd5XPg06OxMJFNa2nopBAH4+stuDJBTb3JIO0XaSVrFNIiQcJJYjCh5YTnhkYbJtHIEqxirbCpmOQq9HCgtyJDg0TMIi4zULIccLvynYUskRCHIG4VpyIuQ2WELDgyQkEpID+OEjZ4tbMtblqag7tbGCsU2Hk88Gdlwr+aha8ywCFgGLgEXAImAROBAEynZVOZBa9rEviQqSBAwV69Sps4wYcZY88L/7lTBgKBz1lY62wj6TkPF/lUcfTUijaaeykVQH2ueKws3fLrbJZ/wdO3bIc889i4yNrXUzvdzKG0+SV8yWSLJs3rx5MmPGdDnttNM1iQA11qjdxbG1xSJwRCBQTKbzusnb5YFge46k/JUju37LlpytLnQBooyROJ8RUqhhg0dEp44GI83AcAgYTo2Q62CHhEXEIgMsvHrowmOZjso/0HhUCgkDiQXhdnpaBYMEdmd6JWlxtiQvytHrLWN1nrhSC6SIsgf86ige+srfOWuhRcAiYBGwCFgELAIWgX0jUGEeWDSFhEB0VIRcf8MN0ufEE2TmzJ9k+LCheHYmgRWASTpZCPuwRqhtOQAEONmmAHyDBg2USOKh/Ezh//IuGr6IU3/1+vUy8YXntbnLrxgjDRs20IQBlrwq7xGw9QcaAZ7TFJ1OW50L8gqC7cG7JR9kFifavEGTLtbbtPUMCTT0/1EfwAbouxl3rt+3vi9LjtU/he/toPyDRyV8Z4bHDBW+u5ilMG+nB8O7G9kKPbI1O10SWkdJPPTlIqrDux1ksTmsEvbImmQRsAhYBCwCFgGLgEXggBAIAGu0f+2RJPD3who1arScOnyY7NiZJBHhTg0d27+a7F4WgSMfAV4LvCYYPjt37nx5+OGH5M8//5QxV14pXbt21QkHva+4jy0WgSMBgd0Q4KsCmbpC925J+RPZ0lbnSxG8a3kOU/sqpl6Yvte5tz2tK3RIOQbeApfkZSdLgScX3ldh+n1coUbYxgKHQPH1w2suooZDGgxJkLjGEbj+8GMMNOdSl+bI9nkZCCvMxzUXuGZtTRYBi4BFwCJgEbAIWAQONwIVRmCZjtILKyoyHDpD1+uqr778QpfUGtr712BzxAEs/X9MPoDD/He1z3r+aJT+PjkZkyCSK9jMMeNnDbcrffcjbi37xOyDDO8rr/PBnOvMzrZl6xb5EMLtLAMHDpIa1RM13NaSV0fcqXPsGox7LyfPXniD5GxxSdrKPMlPLpBghDtF1Q1Tb5Dw6g6fg08A7tPHLtAH33NmHySJxSW9noNDHOKMiEMYmrP4u7e87nYHb7M9ct8IhEDvKu64cKneJVqqgSgOS3Cot2MmMhUyfJfXoisFIYVIqKDFXn/7BtXuYRGwCFgELAIWAYtApUWgQgksTsg5cafkVavWreWOO++Sa665WpYtXyFORwjEZRliUn6F7YeGQvwUL4Zm0RZDJLDV3SAsKDbvv678rNl3zbSDNpMs4ot2O/zsV5uxT0UUYwtJndGjLpGFCxeqPTnZ2dK7Vw9ZtWqlfi7aT3tIWJrzgfbzPV+Hu7CftI0kq8MRinO1fPDl+UfSD/yVNGzYaE+3b7rxBpk67Uclz8LCHLqsLOfjHiPtG4tACQR4lTCUiWLSqUtzoX/l1qjwqNpOSWyDUCZ4iQQ5Dv/1XcLsY+gjsr6CtCoscOv3nOxGggpoX4WBwAphEpX9vG8fQ4AdMV2llhyvv1iSWJ1jJL4lkiUkhOK7Y7dkrQeZjOuRXll7hrhCn/qOGBitoRYBi4BFwCJgEbAIHCEIHJZHGU7cnc5QueD8CxSmD95/X7WHQiFmTYIk0IUEAMXOudy+fads27pd2yFpBtZkD2HF7IGGWAm0DQdaH3EgyUFS56233pSrr75KvvnmW/nzr79l165ktZlkVkA81/bTONrCLIF//PE72vWdOt5Cr2zcuFHtYDX7M0VlPW63W/tmNJ64ZJ3cdjgL2+f5mZfvhhcWBdTLzx5DTJEoY3nxpZflWngmDj55kCY52Llzl4ThOqFNZt/DiY1t2yLwLwT28Lu7faLty3IlY22+hhFGw/MqsV20xLWIkNAoxBbu2fdftdgV5YwA7yFeT77kZu1CCGEeQggh3F58t95DbJSzDbb6ckIAX1HmazMsIUQS20L/ChpYYfEhGGf8aBcdLGHI/klPLQq7U5+OoYf2eiyn8bDVWgQsAhYBi4BFwCJQrghUOIFlJuPkqZo0bSr33Xe/jB//qMyfP09C8bBF8iCQhUQQSR4+yM2aNVPq1qkl9erV0WxzO0AQOEECsRwoQcC5GI8p7Tiz3ixN/SX39d/OffwLt4WEBEk2PJzmzZ0r7/7f/6lmWIf27aRWzery1JNPyKLFfypeoaEhez2LckKyr7pL2uLfdlnvOXb0BEtLS5PIiEjdzev1jRezSe5PIVFF8oqaT3PnzpFQ9JGFfZw+fXqZZM1/9Wd/2uU+/1WH2WZwoYA7bTWfTRtm3M3nQCw5XrfccquMHHmujLv9Nnn/gw/lkUceltq1asrPC37BeUCvQYwxd7TFIlBJEWB2NAcmy864EIlpCPIK4UxxTcIlNMJ3j62kZh9DZoG8KKInTqE4wuMlPKoqEhIWj0358fTHEL6Hv6sM4+X1l9g2Umr1jJUa3aMlpkGYhvLy+zs/ySO7fs1SsfdCG1J4+AfMWmARsAhYBCwCFgGLwAEjUOEElrHQeGGdfc45uopeWOkZWRIRERYwEosTfj60heChbt269XLyoIHSt29feenlV+T2226VOiAIVq9Zp+GL3Ne8jI1mWZI40HqxkQRHaSQHCTMSIHwZwo7eXdzXv3AbX6UV3YYNJPaWLVuqZFW+yyObNm+VrydNlnnz5knnTh3k1VdfAcmVgz76NMTUNlRZmm2mf2Yb2y2tb2a/ktu4fxH0U1jCwsN1aTzmqtDDTdeU/Yf1BWMsUlNTZPyjj8gpgwdJalq62kpCi+OzbdtWXzhpMZFpbPkvm9miv63mGGOJ+WzwNp/Ndhpe2phx+7/GDOvKGrM99e3nG7ZZ4C2Sdu3ayaPjH5PIyEj9fMH558mSP/+WHj16Sq+ex8sLzz8P0jBdcWHV/n3dz6bsbhaB8kGAty+8qsBT0RETAsIqQmp0i5EaXWMktlGYhMYUEyT7ujmUj3W21r0QoIerbzzCIhMlIrYaftgJxf1kr53shyMZAfwwSBIrDCGEVZtFSEKrKGjQOfX6zN7qUk2s5CU5kvRHlmSsyfNlBi2+ho/kblvbLQIWAYuARcAiYBE4dhDYm1GpoH6TAOAknF5YTZs1l6eemqBhcjNmzNCgBk7sD3WSbo5nmODadRvkyjGXa+/+98CDMvaqK2Xzlm3S6LjGcg1C89LSMzVUizvQ06Vk8ScxWC/tY/gePaR8L98xnAfQW4b70MuI5I5vP5BZCI8zYXfGNqPHVbI9s53rd+zYAQJrmVStWlVtrA/vsdNOHS7ffvuNzJ03X264/jr58gufEL4heYxt9G4iicbCOok7+7fHbvTBn4zhPtzfAcz48h8H3/EksHyzHdMXQ2CZdrSx//jDZ+XMzEzdw+32yKqVqxSrTZs2quZUcnLKXkfTPtri60uQ6mwZm2mJwcqMET/Tbn4223S82Cf0V194v9d2jBnLv8YM600/TV0+b6i99bv04IP8w3pNf2gTid18V4G0b9dGJk2eLBMmPCM3Qhdr5MizET66VPvvb/tBNmsPswgcOgK4mBmSVJBTKAXZhTpxjqrnlGrto3TyHBqNe4+JCOeFb8thQOAfdqqo0CPu/EyMmUtCw2LEGR4DYgOPALgHKQt5GKyzTQYYAXOdYUiDw/F9VxXfnfCKZMnZ6pbsjW5xZxcISaydC7MkfRUE3lMLVL9OwwoDbI6tziJgEbAIWAQsAhYBi0CgEfg3WxPoFsqoj5N2TtZJKJx2+hly6623yMQXnodWVRXp2q2r1KlTp1iD6OA4NhID1A/atm2H9OzRDZnyUmTpshXSpEkT8RQUSr26tWXKN99I61Yt4c00V8PzGB7H7HNOaHGxsA6SBSQxSNxQ/ykUgre0e9nK1RCfXybVq1eXDh06QvQ7CqK4VWTnziT5+uuvZMmSxQhXrCtDhw2TNm3ayp9LlogD9bZq1WoPebIM9lBjqXHjJkq6sF7iwhfbAp0mDRs2lPDwMFm5coWSVs2aNUMfmgpD9gx5RFv5nsRUAfq2AqTQ8mXLJTYuVjp37iIxMTFaH7FOAg5//P6H5OTmSvfu3aVu3TrY5hOuJ1Hk8XjFlZ8Pwd/d6hFEYspnC6Y4eDg27w1hZWygjpPOg2jMPsqWLVv37LEEuHgKPLJmzRpdZzSnDLHDPnEMFy9erBOt9h06qM0FBRwLCP8jIwDxopedt9DnRcc6SI7qepBQHDvWsX37doytA+dWXYmPR/gMjuOLIZGff/6ZjlHdevXgCXaysB0K0+cCpy5duuq5QJvoyZeTkyMtW7ZUss+M2Z4OHeQb019DTuXk5ku1xAQ5/4IL1I7XXntVOrRvK59/8aUMH36qni8cC+5vi0WgohHgtc65Mie/WRtcUlSwW2KbhKlYO72xWHi/sOUwI1DMTXFM3HnZkrJ5ibhy0iQ8pkbxANlBOswjVD7NY1j3jCyvVXxNRNeDd7trt6SvRihhikfyEE7o/cUXTli1abh6apHs4nfiPweXj3m2VouARcAiYBGwCFgELAIHi8Bhnf2S/OBEqGHDhvLMs8/J7NmzZMSIM0AC7dLsbCQHDqawXiWaQGJMnTZVyStmOmzdqoUEY8KfD4LG5S6Q4+CBNWbMlRAl/0Ob+e67bzW0MC8vD+SELwyQ3kI//TQTNu1QQowE1xdffA5SqpXceMP1clLfPvLkE48rCeNGnY8iNO7qsVehnWBZsHABwvw6IgTsOenWrYvMmvmTEkAkWxhG1xZ13HffvbqOoXUkMUwxD5+5uXnStWt3SQHxdC0yNg4aOEBGnnMW9JFqSJ8TT5CnJjwtp59xhpJshSBwJk36Wlq1bCHXX3eNDBzQX7WU2Ad6oq1avVaPHzJksJxz9ghpUL+ubN68GSQIfqnFduI+4akn5ZJLLpYxV1wun3/2mWpe0YPJFK+3QN86HA5d0muJ5JXTGbZPAosPxgyZmztntpxwwglyy623yT333Kn4mfopnM7CfUleLVnyl7Rt2xIE41A59dRh0uP4rrIeJBLtTUryidlnZWVhjGYp2cSx//ijj+W3335VcjQ1NQ2fP1LCsjvGgBpinTq2l8nwbmIbtH/ChKd0zEjKLVjws47V009PAN7XqGcgf5mmBxj1yIYCOx7vcrmUNDvYc9T01yx10oAPPAf4YhbEnRDr53iQvLrnnnvl3HPPk7NGnCkbNmzQtv3PF1OPXVoEyhUBc4vCOZq3yyNpy3Ml+c9sSf4rW1L/zlFtnd24D9kJcLmOwkFVvhtZCL0QcKcnlhMeWOERVfXejzvOQdVnDzpyEOD3C0XdE5ARtHavWIlvESnBTjwLgYDOXJsnO37JlKRF2ZK7w6M/+GjP7Glx5AywtdQiYBGwCFgELALHEAKHhcAyk3TjtfPzz/PlvXf/T2HnJL1mzZr63kzqD3Q8WD+T5JGoWrhggTz00MNK6pC0olvAL7/8InffdaesXbtGCZpqiYlKrEwBqUHPKZ8Hj6+OTciwN3BAP9m61ec1NHnyJDn/vHPlgw8/ApHW3XY9AABAAElEQVSwWd56+x0lrTIyMmQjiAV6kX09aYq89NKL8PBi1sCl8P7Zpl3o13+AegDxw6pVq3TdlWOuUt0vL4idvfoLO1moOTUHhE+Pnj1l1uw50qBBA5Azv8mbb70tW5BN8eabb5LIqCgl/Kb+8AOIqbPk1ddel7XrN8oXX36lBEh6eprqi/Xu1VP1tGjT8hUrtf6///obZIio59gJvXspWXL55VfIVVeNlQsuOE++/PKLPWQJLaKXGovxUsuFN1LduvVAKDn2IuB0J78/HBN6gNEL6vHHH5MxV14ll156qaSnZ8h3330HEulpOeHEE5FhcaceRQJy/foNShadddY5qpVFXajt23fI78iCSFsehdD5r7/+qsRn//4naXZEkqC0m6QPvZimTv1BLrroAjnvvPPl199+l42btsidd90tZ5x+GrI6TpEtWzbL44+Nh2fTVzJx4gvwnpusnnopKSmK+0UXXQIy1KfvxXOAnmKffva5xMVGa+ZMf3LPr7sH9dZcF/QcpNbZ3XffhfDaJ2X06EvlhhtvkokvviTffPu9xMbG6pTTel8dFMz2oENAQOe0vluTCkJnrnOpJwdDCFUej9vM6xDasYcGCIHi75HCArcUuHMxNvzKL5SwyASJjK0BDSw4YYPY2uu7J0BN22oqEQK4JoMcQdDGgk4dvK0SEeab2C5KoqGPVQTCORtelJnIHupOhec3frDR0wSnii6Lr/dK1BtrikXAImARsAhYBCwCxzACFU5gcZLOh2V6BOXk5CrRQE+iKJAw5553nnz88UfyOwiaQBS2Ewyvmp07dypBRWKA3k8ej1voYXPJxRfL22+/BeKkjzaXkpIM8uNCiYmO0v0YkjYLhEjzZs2ldes2wqyFV0Mzi2XLli3IFveeXDp6lJDwiY+PB+mwSbd17txZl3nwnmrXtrVcc+21+rkA3luMrsnLd8v7772nbXU//nid7zEczH8SYd7T44uFuBGnL778Wnr37i3Tpk7VUEaGyjngHbQVIXIPPfSA7kvdrI8++lAeevABGTBggBJMFINn/5YuW6k2tWzRXBYu/FU6dOyoxzwDPNq376CE27BhQ6RBwwa6noLi27bvRMiiz+PK5XLD+6sWvKNCdTvD/0heFc+TdN1//Zk9a5Zu7tKlC8LwWsi4O+6U44HBSBCXxHnt2rW6nf1+++239T3JrMkQrn/uuWf0c9u2bREu6CMoHxv/iDz77DPSCZgzEQA9x664YoxkweuM4248xR5//Anp2qWzep1RA23ylG9kJLzQSAa2b9deOnXqpHXTI4ueeuPG3SEM1ywq9gLMy3Opdxv369evv+5L76tAkUj+5NWatevkmmvGyltvvqFZOp988ilJTKiqoaD0AKtWrZqGeppzRI2xfywCFYUA7jne/CJxpXvFk+2VYBC84YkOiYNodFQdCEbjHrtH+6qibLLt/CcCrtwMyc3cgR9E6PVcCA2sKHFGxoGgsNlN/xO4o2yjksx4CImu75QaXWKkJhIuMPFCJK7bsEQ8H0XxkRDh+K4i8WTi+s4CMe1R2vooQ8J2xyJgEbAIWAQsAhaBIxWBCiOw+AjESboKasMTh8Lql146WkO3Hn74Efns8y9BGtypukzMysZysBN0HkfyidpR/U7qJy++OFE1jpJTUiGQ7QEBUB2ERWdZtOgPuffe+1SXiu1xPbWQUlLT+SOk/PDD93LrLTdL2/btlaigdlTTps1k3vyfQXAFy+WXXSoPwrvrrrvv0fDCDHgTsRgvJU4WWNhvFnoOZWXnamjeG2+8rsRWTHSkanKVJELMMdHR0XpsOnSaaBMzD378yWd4XyQNG9TTbITc4Td4IvGY+T8vRL/DNSxv6NBh8Np5WclCDwTTWWgT6+Gre/euGlpHm5588gn1uoqNiZINGzdBN6y7DD7lFD2GJB/DI33HF8p2EGRGC6sIGlTUkCruou5T8g/tol7VihWrEJ54kVx33fXSqNFxsEXktttulw8R8lendk1pCX0welCx7Nq1Sx5BZsLvv58q/eG5Nnr0JfDgcsicufNUt4wkJIXtv/32W2nRvIXEV43XcL8nnnhK7sGYfvnll8JQ0DCENrJUBcHI4obGF8f377/+kgvhXcU6//zrTyUDud3gQ7KRJNrCXxZKdk4evMS+lfsR7vkQztWE+Dg9jxhyaMaJxx5sYR18kWBlVsyrx46Vb6HPxnPrxptukgSQVyQ9SZhxWZLsPNh27XEWgQNBgNc4oo1BXhUig1m+emyQwGJiu/BqoRIaXvx1gv1sqQQIcMDwXch7izs/S/KykvBlxFU+kgIKgJXASGtCRSLAH5r0BRLLgQyhJJ3r9ImTun2rgtCKBrEFKQA8HGStd8mO+VmykxpZEH/35vnkHirSVtuWRcAiYBGwCFgELAIWgdIQqBARdzPJp24RdZqm/TgdQtkD1Z7vvv8BXkIDVWOIYuPTZ8yEeHg4iIZCJbtKM3pf60gGcZJPQuCkfv2Qxe0mDfuLiAiTAQNPhjfPJOnRo4dWw9A/CnUzJOwyeFL17XOCXHH5ZUqOTJ8xXa699joNLbsWXlTcb9WKFdIOHju9evbQsC56dJkSApKGhWF1LPQcIpFWv34Defa555EJ8Qq56847oH+VKueMHKni7dyPpEnZBFYMd1Eyht5bufAEItnz/vsfQkOrrdqbnEICabeG07Vp00bJp1tvvVW9vfRg/KGnFz2NWrVsLu+88660adtGYmOghZGAUJLISLnp5ltk0KABMn78Y3InbKQX2auvvi6rV69SLS0Ku992+zjsG6VV7tixXWrVrC5hIMuSkpKUcGrcuBHG17S495IPzRS3Z7nwoouUVCMZExcXp4QQ57wUS78FIZFJSSnAxFdRzVo1VbfKi4dqP6jVs4rhiPSSuunmm+XOO8YhLPFKOeecs5Rw4vjSdtbJQvKJhN4OaJk9/9xz8tdfi0FcLUdo6BbdnpeH8BoUjgPnfdUgzv/II4/CS+58eWniRGSt3Cz94c3WqlVr3c+c0/rhEP6Yeniurly1BuTeNTJ9+o/yKMbh6quvwRhFKWlFsoyl5HlyCE3bQy0CB4YALowqiM2md0bGmjzJ2eaW0MhgiWkULvGtI8VZ1eeVqZX+c1s8sDbs3gFDgPdUMwxFRV4p9OJHDNyIwyKrSagzorgd/70C1rSt6AhAgJ6SIaHwUg8LEkcUxNv5GSS0G56V6atzJX05tECxnlp3EbUcUrVpBITgnXpS4fczWywCFgGLgEXAImARsAgcFgTKncDiBJ2Tbopg0/PltVdfUW2f62+4UT1xmoD0YFZAkhmcpDO7Hr19DnWizuPpbUPvlQcefEgGDhwkf8Djit5RpwweosQWRbm7dukkDRs1kptuuhEher3hlbVEvvzqS5AYRfDu+R4eV00hOH6iaj61gydWBkLTHkRo3u0gcxg2SJ2lNBBSWdlZkpyULEOGDpVQiJqz0Aa2x/C7iy66GMRTHQ09vPnmG+EZ1l+1jOgJVVox/a9duxaIlPGwsaHuRlIsG6GJ0ZERKoIeERGhguLtO7TX7ffec7fcceddmh0xN98lFDhfh7C8+tDO+nryFPngg/dl1KiLdV/+SYT+1/QZP8ktt9wqESCj5s6bKy+/8qqceeYIqV4tQerVqwPdpe9k2NAhcsqQIRCU7waSaKRqgnXq2EEaNmwo/fr3l+3Q+eJYcrxL85wjKTRkyFBtj6GKHHOON/Fxg8ALC3NK8+bN1K5v4H3E7Hv9UW9H9GvZ8pWaPdKLSkg4JicnSz68q1gfybAWOI7kGolCFmJEzLJBJNJLbeasOTIJ5Nmzzz6NzIxxciX0t9gXEnAZGekQ5G+jx/BY4k7ykx5jw089DaGG38JzbLl6RPXq2UtqIXySpKQZHx5zsMWQVwynXQ7vtNGjLgEJ+YuSV2PHXv0v8upg27HHWQQCggDID29ukeTt9EDs2a0hRtENIiURwtAxDcKgsQO6pIz7WUDat5UcNAJFSL5R4MlV76vIuFogsWJRlx2vgwb0KDkQ0aR6yZLE4ne0ScBAgXdezwU5hap1l7MFGmp4T+9LZ1yIOGJDJAT78BhbLAIWAYuARcAiYBGwCFQkAlUwiS7zEaQQ4WGcrGPeclCFVZOkoKD60mXL5Ybrr0e2uBny1VeTNDyNXickrhhWSEKAnkg0JuhgGyzFStZJQoM2lFZmzpwNTaO+8sYbb8lF0MSi0Lh/AQSwzfdLNjPofYeQtdNPP1UJlUtGjYJnVL58+snHsm7dOhVNpz4SQ/hMf8ySdZKoSEpOVa+pV197Q07o3VNJNm4rjfQhGEEwnBkK0Y09YW7cl8QP9Z3oAVaAMeLyWxBNw4cNZXXywAMPItOiWxb8/LPMmjVTPvn0MxV4J770cGJWxQ0bNsqqlStk2PDhGpZHMs0LcSliwP2o+0Ts+JmeX4ojxipHPcwYohmhY0eSjGPIfv/H6YTj8Ssv6iWOHJeSfWYd1PYiiXP//fepR9KAASfJtq3blDCMQjglRfkZzscwxAnPPIN+g6gE4clziTa7ECLKc44ZDA1mZkx9pBnOteLzmQQnC7M0xkAYnWGhDNOjXewHlzw2IzNbw0Wpj3bGGaftIVv14IP8Y3CiV+JfENW/6qox2rfxjz2uoZz0CDSk7kE2YQ+zCAQOAV5cuG7ykwskdWmupC7PkfwdBVKzd7TU7RMvoRG83konrwNnhK3pQBDgPYYZZul9tW3NQln7O7PKeiWxbitp0KqfxNfEDwZ+97oDqdvue5QigGt8t3e35KcUSNa6fMnAKy/Jo16XXB8aEazelhSAp1dWFXyZ4hSyxSJgEbAIWAQsAhYBi0BAEOCUIxjPF5zjl1XKjcDiwzMn5/kgqJjtbeQ5Z6tQNvWbmjY5TokbkgUkG8q7sB3aQ4KERdOJk6gBAUSCYtq06fIjwrZugFdYnTq1lLjhvoZkMYQGCRxmKKTQ+E8//SSrkUkwGmGPDCmkbhczBLI+EiVsz5+goZ5SFEIjP/roE3nvvXfl//7vXWhuJaiWkrGrNBxYjyn+9fE9+6UFD5BB0DUhQbQO2mIzZ/4EYmqlerN16NBR2sK2hg0ban9IqJFIK1kMWcLtJMdYODZKKupYhqK9Im2T2SNZSHbRPnor0cx9aTOxLhba7t8XXVn8h/gZYol2MjySWRj/+P13kKmF0gwaZBRSb9ykCbI3RmibtNkQT/42cz3t4zZibMbU2MnJHceT3oElSTUex5cTxNjMmbOkfz8QaciAWBshjQYrf7sP9D1tiAh3qhYc9cboVfb8CxNl1KjREh0VEZA2DtQmu79F4D8RwDVOfZw8kFjpK/PEhUluXHOED7aMlGB4azDqF5e2LZUEAd6/mGWwqNAjG/6eISt+fkMcYdWlWoN2Ur9lX4mv0dQSWJVkrCqVGbjOmZmw0F2khHXaMoQTrsoTdyY84xFyGBoZIlVbREhi2yiJrO0jsXCq2Wu/Ug2iNcYiYBGwCFgELAJHJgJ4pNgngfVvJiNAfSWRsB2Z8Rhu99prr8rpZ5wB7amvZenffyMsrZ56KP0XcRMgM7Qa0w4f6FmqgLhwOqnHVQiySVT7ifpGJBUKikPbuJ8h13gYuJA9BE2zpk1ApDThLnsVkiDGo8yfoGE71PVyQUj9s88+lTNHjJCExIRi77b/nvGxHtrtXx8b1clJMUFj9iHxwzC+Jo0v28sufvB50vnqoo2mTlMv+8p1xMAfL27nyw3bSQjxxfdcx/dmm/ns3zDrY+E2Fh+hVPaDLvd3wZvKkFAquJ8YLyPOPENfWknxH3qLeUC0GVv/GSsfVmzT9NG/bzBmz7iyKpJq+S7vnr6YNngsySt6d82YPl3uvudeJa9ITgYVE6Fm34NZGkxoW2uEMJ4y+BTNZhmOcNNAEGQHY5M9xiJQFgJ6CeMyDgoNkojqDlwDvkxljmh4VeLeSE2c4su8rCrs+gpHoPj+C9c53ucKPdBmDK8pYRGx0MCKVI9V3pntuFX4wFTuBnmdh0Aby4EffRAmSHI6si6+lxA6nLXRJS4Q2EUgt3gPYAiiNxeZCgvwAyH0s0LgianFd+pV7n5a6ywCFgGLgEXAImAROCIRCDiBxYk/iQqWSZMnKXnFzGoU5f76q6+grXS6Zp0779yRpXoqlSeKhjRgG8ZOLkmUkEig3aWFwZgHfB8BAw8EEECsy3w2Xkqsg15arNO/8DMnCitXrpLffvtFw/vg+CMekEUGK//9S773t7usbboP2vG3DYZIISYubJ+2cR+++L60YraXts0QRdzm/760z1xHBErzzDJYcp+SxbRPEo24sB2ODe03bRJrvsz2knX4f2Z9ppi6zWez5HpTt1lnljx669YtKj7/2utv6GovSLMQjPGhFtpPwrNOnTrqlUchfWqlmXPxUOu3x1sEAoVAEUKHqH/jyULILS4KRzS0ChNwP8EEVi/0QDVk6wkoAsw2uLvQK/m5aeJBFkKpEqohX5GxtSQ8sqpfW//cJ/1W2rfHOALqUYlrPLKOU6LqOsWd5tVrP3uzS6KheRcWjx8BC4oke4tLt4WCzA4Huc3shiHh8G6Gwzu+um2xCFgELAIWAYuARcAiEFAEin8uC1ydJARIONDraCQy7SWnpGrIYPNmTeWvv5ciK1wXzQg4BeLYDBdjISFxuIohMGgv7fDjPEo1ifuTADKkh/lM4sr03f9Af/LlpxkzNItfTQiBs3BbIIuxxdjGzhhSjdsqslDHLA9i8wyd3B+Szt82//3ZF3/CjZ+NFpf/MYF87z9mixYtkuXLl0ujRsf5mggQjhwPEnUMX0xLS5O33nwDumRJQg8snou2WAQONwK8PVHjpjC/SNJX5MmGKamyeWqaZEIXp9Dtu3cF+BZ2uLt89LSPgSGB5fW6JW3nGslO3QBCIRzfWyAfIxPEER6Nvgb2++foAc/2hAjwq44velcypDAUwu3UvqrdM05ijwuXEGQgLcJ9IGNtvuxYkClbZqTJttkZkoFwQ1dagU83i67StlgELAIWAYuARcAiYBEIIAIBJ7D8batatapm6qNXEEPD2rZpjQx/k2TEiLPk1FOHydSpP6oeU2nEj389FfGepMn+kjyctJHk4P6lHQP1JCXDzOTO7ENB9tNPPwMkRZh2yawvj/6VZVt5tFWyTmJDEfVPP/1UZs+epSTNoZKUFd0ftsdHb+pknXba6SAei0Nu+EQfgEI8SMTx+X7+vHly4403aCIAVq1tm5MnAG3ZKiwCB4UAz0Gc7oUehEaneMST7dWJLCezLLwUAnM1HJR19qD9QQBjWAQvrEK8QhwREhFTHeGD4cVH2tHbHwiP9X30OscfLklaRdQMlZAo34+PxIbi7kUeeGnmFUr2ZpBZv2TK1p/SJXkxEj3sQrghwgttsQhYBCwCFgGLgEXAIhAoBEqPJQtQ7R4ITJHM0Ik6JuwMj6pXt7a8+NLLwoxygwcPknnzf5ZePXuocLchhQLUfMCroX3GRhJefO/z2vqHyOI6bgt2UFic4Xs+sotExfnnX6AC6aEQj2f4GImKw1FoE6xS27gsWfw9oEpu29/P7Nmff/2pIXiDTx60v4dViv04Lj7CLUj69+8n3bp1U8F46qMFAhvTSd/5VEX10Lju118WSseOHdFWmGZT3ONJZw6wS4tARSKA68CT6dUQIerfUNT5X7eLw3MLq0gUjsi2eFenFywzEOZk7JC8rB0SGhYjkbE1JTg0rPjef0R2zRp9GBHg5V4Fzza8D5DIpu5VfOtIccQGq0ZWznaP5OLlSvaKK7UA2Qw96q3FEERHDB43WcG/HzkOY49s0xYBi4BFwCJgEbAIHGkIlCuBZSb7hvThhJwkVo3qiTJx4ouata93r54ya9Yc6dPnBCV1GD5ljqtMYLIPGs5G3Ze9yt5ZB2k7yQ+j48RdeSyFz5l1kEeXzHi3V3Xl8MFHlPieGg1pRjv53vfyNYqPOrFhdsFDLWytWrVqyLRnfu0/1Bor/niei7GxsVI1LlbcSD8PtAJGOhJ/ZntkJkJmsQwNCZZbbrlZhg4bLs2bNan4ztoWLQIGAV68uBdQnJ26V9mb3dC4QcKEsCBoX4WKExNRbvMR4eYgu6xsCDDbLrWvMnatk9z0zRJfuz0IrBoS6oAHsB28yjZcR4Y9fIApvj9wGQICq2rzCImCTlbOVrc44/Mlb5dH3BleyUvygMBClhzw3mFVQyU0Cj+awVuLpx6zGaoIPHvN+myxCFgELAIWAYuARcAisJ8IlCuBVZoNhsRiVr4777xLiZ6+fU+UH6ZOQzbAgUoQ+JM/pdVxKOtKekztT108JtQRKoUgdpLSMiQ1NVV27Ngu0dEx0rRpU4mLjdYsfy6XS6LQr+07kuWrL7+QQScPVv0vZgAMgpaMC+Qdi9HL2p+2D3UfQx6qbpdfwCg9wvggye30FPN5HDFkzpdp0Hw+lPZzcnKAR+S/qmCbphhCzXyuTEvaRi9CYuGvwxUoG1k/x6Fu3bry7PMT5Zqrx0Lk/1c57rjjxEEvPRBcHA9bLAIVikDxJJUeFoUI/9nNkEGchlE1nZLYJlJiGoVpdjI78azQUTmgxnhvKXDnSU7mTnjKFOB7FVqCoeESGVcToYThuO/vW+/xgBq0Ox87CPD+YAq/yvFi9sHYxmFKZOUneyRzg0syVuepl1ZETQi7Qz+r0AUvfGQwpCenMy5EHHgx2yF19vSXPdZli0XAImARsAhYBCwCFoF9IFDhBBbtIYlFModZ1+64405JAyHEMLOPPvpETj/jDEzeQ5U4KI/Ju9PJLIHwgqJHDV2O9lGUvIJWkRf7T/3hB+ghDd/riOHDT5V777tfOnfuJE6nU7fxmGuvvUZmzJipBJZPIL6KCnTPmTtPqlevIc2bN4UNZXs6keQxRA/t9LeV9fOzPu9hv5LbjYE83hBXJNEyMnMgGJ4qWVlZsmvXLsnOzpaU5BRJSU2RAoitFxXXNWbMGKldu7ZiVJYNpg3aYor/eKEq8bjdEhkVpZtZj9k3kCSZabu8lsbW8qif1wE98yjc3qNHT23inbffkr59+0rdOrXFQxBtsQhUJAI85UBWMfNg7nYIgC/LlaxNLtW4odcEvbAYHq0TTl76+76FVqT1ti2DAAksT57kZuwUrycf3yU+DSyGEFILazdSzFHk3RaLwCEjQP6JzyjwTg9y4PaB5yCSU1F18CMMspdG1QuT0MggyQN5lYZkEHm73KqlFV03TKLrOyU80YFj7I3kkMfBVmARsAhYBCwCFoFjBIHDQmARW9/kvUCioiLkgQcflLT0dDnvvJEaWjhq9KXqgWKImkMdC5In5kWvILYdBiF1E67oTw75t8X2fQSGyPTp0/eQV//37nsIeewr6elp8sjDD0m3rp1l3ryfpVv37uIBKZWSkiInntgH+l7zJDMrU1auWCHMPHjBBRfKgp8XaNv03PJh4N7j9WTaZrvcRiF0PtaRfKKtSlqhLyTh/B/33B4vJiQgsvhLZnFhf2l7bm6urED79OyZNWumfPH552YXXZ544olSr159jEOUhCPcb+3atehXutSqVVvbIwGGZ1OQT7vVW86QZWZsfN5kvu200bRL7iU/Px9easx25XvAJTHpZyJPAsVLdziG/5AzaN68uTz11AS59dZb5I8//lACkdibc/QYhsd2vQIRUP4K1zvvJ+506CdtcUkBxNsjajvheRUuoQgf5DVeZTd2+ud2U4EW2qb+GwGOIMgE/CNxlZu5Az++uCQitp5EJ9QTR1g07sHQZ9yNH0/s+P03lHbrgSFQLJFHgjukWrA44XXlRQZTkt5V4GmlySCgpZe5zoXPeD5I8mlkReLeElHdIWHxEIeHJ5eelzyNbbEIWAQsAhYBi4BFwCJQCgKHjcCiLSRY3MhOWL1aojz/3PNKoNBzyQly6fLLLoVelleJnFLsPuBVYSB9qD311ltvSqNGjWTEmWeoBxO9oHRCRpamROF6R2iwrFm7ToYNPUVF2MeNu0NatW4tIfi1sUH9uvLOO+9K/QYNpXfvnvLY40/I2jVr5I03Xod2UozMmTMb+kbtIMzdSUXrSUbUql1LVq1cCQ80TCog1u3Ar5UkdYxHGIkhkkJIWCi5eS4ljUgukcxgaKXDEQLPqVz1oKJ91atX1xBGhqKZOtgNtuXEvkvXrZXju3fVnt13///koosuVrLk448+0lDIR8c/BtwjlKQy3feRU6J9J2YGh5BgH4as29iI6EPYVQj7QLghRbvvM7KVwbbcvFyEEPo8sEhe0duInl8bNmzAcqc0btxERctZX1kkorHpaF2SqKQ3IrWwBgwcqN3k2PTs2UuqJcZjTG0Y4dE69pWxX7wL4tLV69ERA6K/GjxWcY3H1A+XuCbhEl78WW+e/75lVsYuHVs2+fgr/THDW+CWnPRtILLyJLZaQ4mJx48SyKrK+/leN/xjCyHb2/JCAPcDvSXg9KIHJz+EwPOKb8iXhjiDJBJeWUV4SPBkF4orHQQWdLIcUfkSc1yYxDVFiCu0tCj2ztBCLVzwnOaLpXi174P9axGwCFgELAIWAYvAsYjAYSWwCDiJCxdIrBo1qsnjIIDq1asHgqWFjkWgSA0SMiR46Fk0d+4cyUYIXf/+AzSkLRIaTaW1Y4gkHjd16lS157HHH0cWxTqaMdHl8mkjxURHyhVXjJGnJzwld4y7XS65ZJQ89PAjcu89d8t7732gIZHU+zLPXXl5eZKZmaltc50LXkokMYzmEYkhElWz5s2Vjz/+WG298KKL4PHVR6KjIiUpOVWefnqCPP7YeLXpnHNGyk033ywdOnTUenzkE1z5QQ7S9jp16srXkyZL27bt5LhGDfQY/qkaHy85uTkSGekjr7zFWRE5uQkGe+ZyuWXlyhXyy8KFGmrYCLpMzMbH8dG6gen69RvlF2TO27J5M4i52gij7CItWrQAuRWiZFVKcrISdGxv8aLFMh8eaV9+9aXMnjWLq+R+EGqdOnXS98f6H45V06bNlATleXTV2LHS58QTlLjkmJR2jh7rmNn+lwMCxRNGhgsy9IfkVRb0bOhFwULuQ4u5oRV/tIvKhUARfhTwuHIkDx5YhV4PBLPhSctXKT/UVC7LrTVHPAK4N+jtwe9co0cnda9qdo+RuMbhqpGVuT5fXEgOwR/A0lblSi68sxKgsccXk0WQtKLou3qW+24//xBZRzxItgMWAYuARcAiYBGwCBwsAuax4GCPP6TjODEnGULvohUrV8m2bdvkoQcfkF7ITEjPn0N92Gb99KDatm2rZni79pqxkgQPoBkzZiCzXIw8Nv5RJZO4D72A/AuPpZdVdnaO/Dhtmjz9zLNKXpFsU+8mek7BdhaGJbJ89/0P8Mh6G/pX10nfvn01gx1F3QsRAkhvKhanwwkCzK2E1fYdu2Tc7bfJSy+9KBkZGUIvMRJQX37xhQzo30+aNWsmXbp2leHDhsqCBQv0+I8++lDJqzfffEtmzpotbdq0kR7Hd5elS/8Gjr7MggZXemQx8+Fppw5X8orhjTm5+eoltR1YO0IdSjR5EIJIgXp6+/DY1NQ0ee3VV6Rzp45yNYTFt2/froRcwwb1QULN119QJ0+eJM2aNpaLLrxANm7aCNH6L6Vd29by/nvv6QMp69myZSu8u8KYhEh69TxebrjhemndqrWsA/GVnpElt9x6m5J12rFj+I8vlNTnhTV48CmKxCcgLzOzcvT85Tlhi0WgIhHg3JOhQMwultg+EpnGED4YGWwnkBU5CAfcFmb8CA/kvTcnfbuk71qj99fdRR6Jqlpf4qo1wncWNSAP/bv1gE2zBxzzCDCMkGGFJMardYiSOn3ipNbxMRJdG0S5F57c+YUSXJydkKQVxd6zt7jVU+tQnwWPefAtABYBi4BFwCJgETiKEDjsHlj09snPd8kzzzwtG9ZvkBtvvElqQ8C6Y4f2AQshpH5TdlY2vITqgBTIkgYNGshll10m0TExSpIZp4LSxpUPTgzhM4UeUm6Ik5PEIjlFz5lPPv4I3knd5fjje+hu9KAKwX5JyUl7NJ54HAuzGZLE+uOP37XPn3/2ma6vV7eenHPOWapVdf755wp1wC699DLZuXOH3AZdJHpukQR7E+GJzz77PLaN1uP69jkR2lynq1g6iTLaywkMC98zRJOf+TJkIcMTsVH7QPJEPaqqFOlnknmbNm2Sm266UUaMOEseeeRRaQK9rvv/9z/5HPpZJ57QW3797Xcl3tgGSbRevXpDdN8jv/76i/Q7qa/UgZda374nyWYQW+wrm5vy7Xcy/tFHtH9L//5bevbqpaGPrIPEGi3WX2254hgtPJdIWhLzu+++Sy6/4grp1LFD8ZjqkB2jyNhuVwQCvG0EY5LpyvRpX9HrKrKGQ/VpeHHqbcV3a6kIc2wbB4oAx4Y3WxDerrx0ycvaiXsHsr2FRUlUXG2JjKmOTfwusATWgUJr9w8AAvgdhj/FkMhiKDI1ryKqOSS8ulNDldmCT/A9WLx5+LFtm1tSkUSCuliRtRwSGh4izqo4n6PxzAKiy96PAjAmtgqLgEXAImARsAgcgQjwcfewFRIs1H/avn2bzJk9RwYOGiTDhg1REXQadaieJ6yf5EjDhg1Vl2o89J4oKh4RESGjR4+Ss0acKXFxcSBf/q21xWPhBIYQu0hpCx2rm0Ho0GOK5A/1iugtRW+sd95+B+LbT8rjTzyhRBc1oIKDkKkLWiMsxruLYXP0qKkNEm3ZsqXwSOqh3ki7klLk5ptvkbkIGUxOSZNJX38tffr2VVLp5EEDpU3rVopLLxA+FGT/G+QP7WHJy3drOGO7dm2k8XENlYAiUUXbTSE5RZKKXm7GY4zbwqEz5nK7lNgy+5qlIezuuvtuzZbIPleNi1UNMO6zGSGDFKl/+ZVXhQRaKDy/IqHndVLfPnL+BRdALH6W2hAOnIPQNsvAAf3lQ2SZHDPmKhXDp77T889PlK3btiPkEPvo06juekz+MV5YzEg4dJgv0+U3U6aAxPWoaH8RsobZYhEoXwSQKRQhO9mb82Xz92my7acMydmO7KQgxhlKyJctlRcB8lcUb8fNF2PmVRH3IHwPRcTWllBnBL5PeQ+xDGTlHcGj3DLfqcnTE+cnv/LhIR8XLFVbREjtnrFSo1M0yCwkenHgh7cMr2SsypN0ZC3kfWjDV6mybXaGZkXNxT3JnVUoRQX2XD7KzxjbPYuARcAiYBGwCJSKAKiJw1OMRxAJH2Zdc4NMYQjb6WecId27H6+eTf6Ey6FYacIDSRL07NFT6oBEYuY+klv0lqoCkqdk4Tov7CF5M3DgIN3McLmFv/wqa9etl1mz58o1CK+77LLR8tlnX6gXEvvEEgHSqxrE1TMzMvUzM/sNGjRAiTqKnZPgOeuss2Xs1ddAwD5BOkIHip5WS5YskWnTpspjjz0uDyIz42233y6TJk+B8Pw7EPROUHxYYTI8uzCn3JOpkZ5ZJDr8iStt+D/+UCg/KSnJ138/wos9IGnHshJi8xmZ2cgQmSmr16yVRx95GCGJ1aRr125Kpv3155+qycV9NiNc8N333pcPP/gAIYunKZlGwfY8CLmzpKam67rLL79UPckYbjl16g9y1VVXyjrgSd2sQyUstaEj/A+9sJiRkB5v999/n2zdsoVTUlssAuWHgO+2hfqrIMW9R7I3uZH5tEgzEOaneLRdRKbZciQgoORAgWQmb5aULYtUtD0qrpaERcbCet+dxN5PjoSBPLpt5CMHwwT5zML3ofCqckL3KiiUIbDF2+CpRTF3ElpFVRAWu9MlO3/NlM3T02TXL1mSuxWe8C7Lqh/dZ4rtnUXAImARsAhYBP6NwGENIQzCA0wWQvuoMXXSSf00rO6UU4YIhdFJyJBwCkQhEUZvKT4sXXb5FfrLH9eRMNE2SvH+4UM+53VeMEXMJDgLHmKXXHyR6k3Ra4xEA239ecEvINy66UMXQwtZbwjImCZNmsjdd45Dpr3GMmHCk3INdLGaNGkK76tl2qV777sPZFCividh98brr8GzaZO2uWLFCmQO7CYjzzlbt5s/JNtYqEnFHdkfbQ/eVYY8M/uWtTT7cclsdxMnvqQ6VfzMuuiNVrNmTXn11dflgvPPkyvGXAnvqgj54YfvpW7dujLtxxlSv14dFRlnuCB1y1q2bKmhgXPmzJJvvvlOuiHrIUMXKRw/f948DTtMTUuV5s2ayosvvSzUeercubPceNNNMmjgAGnbpq2Mhx7ZsV78vbDOOONMeQAk1uzZs+U4nENG5J9jZItFoLwQYKr7wnyEmKGBMKS2d0QF5h5cXvbaev9BoApYRmYezEjaIFmpm6TAnQviqqbE124FDaza+h2hP3KQMbDFIlBZEDCElflqw+dQ3HfiW0VKRE2H5G53S9Z6l+QipLAgE1qdOUXiRpgzBeCrtY+S6PphviQT5qGtsvTL2mERsAhYBCwCFgGLQLkgUAXEBR4XSi+F+BWeBE6gn3fZJB+kGV73B7LTdencSa6+5lr5acZ0+f6HqUKxcIbHMewt0CUEbfI5h0SNPszvowGSXLSDgu4M8du4cSMy9OVLQkKi1K9fX3WwKDhPcokEBFNEh4WFyqJFS+SCC85TL6b7//eAjBo1Gv2qJytXrVEPKmbsIylB7zB6H33/3ffSqFEj+R3aWCTKJkx4Wk4ZMlTbTkraJYsXL1aCiSRZnz59lVQjjrRvf/phusn2GKZGQo6hgPQEM3awHtbJ/rKdVatWyerVq9GnQml03HHSunVrZEKMUM81Einr16+XFSuWg4TM0tBICsrXqJ6o24nFzz/PV4Lr7LPPUY+tTz75WMZccbkxRTMnJsKzjGLugxA+6vEUaB/37HAMvuH4OJ0OxeIe6GC98/ZbsnT5SqmJLJ2BJHWPQWhtl8tAgN8AxsMqHWE7O+ZlSl6yR7OF1egWo7o0up3ODpb7KAPFw7ya36nIMujOy5DNK2bJ9rULJD8rWeLrtJIW3c6WuOoNEFKIH3EsAX6YB8o2XyYCfBL1u79UwTMXf6jLT/IIMxbm7ASBlQMCC+GD+ckF0MQKlrr94pC1EBql2JXbeExoZNA/GlnGQcuv3jLbtxssAhYBi4BFwCJgETjsCPBxIBjeQiEMgyujHDYCiyQJSR9m4KO+1ICBA6V//wEybtzt6r1DMuVAiJky+vev1f7hhP/aWNoK2EECh7Y4HXsTagTYVRy6ZzxjSACRvOFy69atSsjUr19Xn8voBUbtLBaGL3If008ez3GiTtbXX38loy65WPdr3749wu9Sob+1Td599wMlnGgHQyAPHh+f2z4F9CnqWzJ0j58pOl/yvDH9pa1smwRkycI+snAfbucxJAtJ0tFzbcvWbbJl8xbV3yJOdevWA3FH/a6iAybjUPVRWQzJOGfufOlzYm94v02Tk08euNc5c1R23HbqsCCA2xCuZ9GsX9t/zpBt0zMkKDxIvRuqQ5cmorbTR3BZAuuwjM9+NcoxxA02N3OXrF38reza8Ks4wmOlTjOEzDftJRHR1XB/9X2P7Vd9dieLwGFGgPclZbC4xIuaV+40r2RuBJmF8EF6aVXvEi1RtZySC3IrfWWehiBG1XWq2HuwE0QWQhD14UvrOswdss1bBCwCFgGLgEXAIrBPBPiVXTkJLDyNOEBobAWZ0bdPH6laNQ5kjsj7H3woLVs0U42k0FAHzK88Tx0km0gsGNKJSyWdQMKULGYfQ/Ds5aEFcogEEckbQ0CZ/Y33DSeTW7duVw+pggKPVIeeVr169dX7iR5x3M8cW7Lt/fnsa4+spi87YWl10Ua2wz6y8LN/f1mH6ofBWB7PzyymX/zMl//xDHFxOv6Nlz+Zp5Uc438KIcAcHuZUMvPiiy6U6jWqa+ZJCuVbL6xj/OQIcPd52dK7qgihg1kbXbLrN2jeLc/VyWHDYQmS0CJSs4YFuFlbXTkg4C1wSdr2lbJm0RTJ2LVKohMaSN3mvaV24+MlPCrBEljlgLmtsoIQwDMRC0ksL0KcC93wPMd9iyQWUxuq5+jCTM1eGJbgkKg6ToltFI4QRPwQB08tPlPZYhGwCFgELAIWAYtA5UeAjMK+CKy9XYoqoE+G1ODEiaLl69evQ1bAcGTiu1WaNm2qnkW+0EEfIVIBJu1XEyRpfHbte3dD6DAMksWf+OF7Q+qYmsz+JH/cbp/2V726tYUv/+Iu8CITmM9ry3/9gb73tefzref70kpJO2mbf+Fx9NIqq5h6Od58z/r43mDC48w2Q3qVVdextp6Zw+jJFhsTJaMvvVTOOP00ueGGm5CRsuUhEZfHGo62v/uHAG8BzDBYkItQ6PxCccQEq65MBDSwgsPgpYnMhPpbQum3iv1rxO5VzghUUc2rnIzt4nFlSWFBnjjD4yS2WiNkIIzEvZah5uVsgq3eIlBOCPgyoOIHMXhUOWPxLFLF9+i6Gz/oebK8SmgVeXaLKxnJeaCT5U4vECagiIR3ViQ8SCOQ3dARjWN8v9vZ+1k5jZOt1iJgEbAIWAQsAhWBQIUTWOwUQ9eys3Nk8uRJ2kd6Ww0bNlx1phhuFhJSNjFSEaAEog2SNvtLeLE9Q/iQzDFEjyF4jD3cVpL8MtsOdGnaO9DjDmT/km0cKCYH0tbRtC9xovcbCzM+ssyZM1tatWqp5xQ93wJ1Hmjl9o9FAAiQ4OAkkOefklfICFaECaIWS35UznOk2IWO2lae/GxJT1orhd4CcUbEwQOrvsQlNpRQR7ius/pXlXMIrVX7RoD3JtyhlHhCJKyPcddV+HEs1He/SuwQJbnV3SCuCsST4ZXUv3Mla51LohuESWyTcGj5OSUcmQ5JytN7i6Q8Lx+9hLQu/rHFImARsAhYBCwCFoHKjkCFEliGkOHDyKZNG5F573XF56qxV0uHTp2EoXb0PjnWiyV6jvUzwOe1x+uhdu2a8thjj8tHH34gI0eeKwnxcVKAMApbLAIBRQD3ZKard8RCqw5LneTZW3FAIS6/yqBj6PVIDvSvUjYvRqhgkCTWaysJtZthzg8Sku4rPgag/EywNVsEKgIB3Kfwf6/zOTgsGORUkITXQPKTdK9kbcqH6LtLE1Ewq2rmhnyIvnskMS9KQpC1kIRXYbFXKd/Tq4sklnqZcqkNsBFbLAIWAYuARcAiYBGojAhUKIFFAOg54sXEfOHChYpHs2bN5LTTThMnBL9z81wIS6tc2leVcdCsTUc/ArxOCgqQaSnEKSf16y933DFO1q5dKwnduuzx1jv6UbA9LG8EyGuQ3+AkjunonVVDZDc8HEIjgyUkAgyW5UrLewgOoX4MDkOz4a2ZmbJR0nasgOcmPei8UrVGM0mo1UyCkJmQA8wfRWyxCByNCOipjftXCF5BkDUIiSahFSa5O9ySDV2/jLX54HGrqAdWWNVQcWd6JXuLS/W0orFfeCI8/s3lYZZHI1C2TxYBi4BFwCJgEThKEDgMBFYV2ZWULK++8rJCOGDAQGnbtp1QnNyns2RnTEfJuWW7cYgImEln8+bNkYVwsPw8f5506dJFtcdIbtkwwkME2B6uEzeGDVIc2QHSKiwuFJwV/oHUot6eJbAq70lCr5Fg/iAkBZK+a50kb14kIY5Iia5aS2IQPugIj9FQZJ/nc+Xth7XMInDICPB+hUqqBPs0sqjj54wL0VBoembBDVEisAxxBElGWoEkL8qWQtz3ckByRdZ0SGR16GRhGULNP973UN8eUuuQjbMVWAQsAhYBi4BFwCIQSASoBFAhhQ/RnHDz17IVy5bLokWLJCEhQYYPP1WiIsPF4/HYCXmFjIRt5EhBgNeLG5pwFHMfcdZZqhmXlpaGSSse1jXm4UjpibWzMiLAU4ieCZ5sr6StzJXUFbmY0LnwuRCEVvGMsDIabm1SBOgsUlgIsersFMlM3iw56VvxI1AotK/qgbyKgn4ZstVikK3zlT1hjnoEcDHwPOeLGlkUdw+JDJKYRmFSo0uMJLaNkmCQV0W4HnYjfJAaWfTO2jk3U7ZOS5ddv2dJ+po8ydnuFm8uKuCTMS8wU8iO2WIRsAhYBCwCFgGLQKVAoMIILPaWE3KXyyPTp/+onR9x1tnSo2cP/jgmQfYpu1KcENaIyoMAPbCMmHuXzl1k1qxZsmHDejXQeGdVHmutJUceArjx4r8rtUC2z82QdZ8lwzMhRwqyqJJsS2VHoAr0Ir2efEndsVJys3ZIcAiyDcJ1JBhhxySydAbuPwmv7B2y9lkEAoCAElkg5vkdSU/S4HBo+8EbKwhJKehVyjDC+DZRyE7o0PVFVXYrgb9hcops/jFN0lflIZMhMz77GWOvIz8w7FuLgEXAImARsAgcXgQqhMDSX/rxMAH+SrZt2ybjxz+qvR40aBC8S6JBarmh1WEVgw/vqWBbr8wI1G/QQLp16yZLly5VM5nhsqjI/wm7MltvbausCNDbwAXh4wIsPXh58wvVe6Gy2mvt2huB3ZhlFxa4MGZe3A88CC+OkPiazSUytjq8NHl/4Mzbzr73Rs1+OmYQAEFPIouhhcw8yEvCGRss1TpGSYMhCVK7d6yGDxbl75YCeKLmbHVLEsILd/2WLe70AvXoOmawsh21CFgELAIWAYvAEYJAhRBY/8/ee0dJlt33fb/Ksatzmhw2zczmBbC7WABEIonAI4vWsQ0QDPIhRZOUD5P9h0nJohl0TFl/iOLxMeEjixAJEyRliSQYAFIUhUUguLvA7mLz7uxOnume6Zwqh/b3e1+97uqenpmenqru6urvm6muVy/cd+/nVb177/f+fr/LYX43GobGxIsvvuDQ/Df/7X9nTzzxpFuXNcku+bYom9tOgFaLnI2wD7MPfvKT32ff+ta33GQHYTTI5Ua47bejMy6I57C/MKBxERZY7OAF8QojDlYkHXKuhf4xem9PAsX8gs1NnEUA90tWKixZNN5lmcHD1tW33yKxBKrdhhvdnkVQrkSgtQR87bbhpxCEKyEDt/fenbSBB9M28kTGRj/Y7ayyaJGav1a2ah5KF9ZrdDfEMzI3XrJqEbNkI1A89WD+tPTzau2tU+oiIAIiIAIicCMC2xbEnR3xbDZnX/7Sl1xePvHxj9v+fSOWh0uhF7z9RlnUdhHYuwT4u6lUKpiNMGoPPviQfeELv2czM9OWSu7fu1BU8jsnwI4d+mjslJVzsLqCaw1nHoz1hZ2AxRgwnI2Q7jha2oiAM2dmLMmA5ZembfzMMwje/rIVs7PWt++kDR95BIGqk1aF6K2b10b3TVnZWQLrnmOMk2X4jVCs7zuZsp67km5mQn7m0v9gCpZaYSsiVtb82bzlJ8uWPhSzFALBuxla8axk/EBNdOFw6Y8IiIAIiIAIbCuBlgtY3gxIvvvgZfvc537bHn30McS+esoVVFYk23q/dbFdSMD/jRw7ftzeeust54Z78MB+14ndhcVRltuFAEQQBjvmbFy0LHBTyvdjxi4usDBY1+fztutvWxCo1cpWzM1bbn7CuUUFgsuW7j1g/ftOwBIrDeuQmp4PbXGnlIl2JOCE+QZ1PhgNQKCKW2IIsePw7AthNsJAJGAFzFg4+2bOstdKNv161s1Y2HsfBa+EE7IC0LsoZGkRAREQAREQARHYPgItF7BYFN998DsvfseV7FOf+pQdv+suN8OarK+272brSrubwMDAgKXTKbty+YrZ42hkI24c42DJBXd339ftzj3m4fK+M+io5abKlr1UdO4w4UTIc5HZ7gzpepsngEA+y7WKLcxcsqkrryF4+wSeAWXLDBy17qEjFo2lcW9xzHIFaapjvXmwOnKvEvBdAUMQscJxTn5A61M8HLFQ2KdrdQUTW1RKNavhxXiBCxfylt4Xs8yRhBO13KyF3inuPP0RAREQAREQARFoHYFtEbB898Ev/umfuJJ84Ls+aGG4qBTpGhXxGgytK6JSFoHdTcAXqNLptH3gAx+08avj3sydcC/kLIX+/t1dSuV++whA2ICHGQO45yaKlp8oW2wojM5bcCXGC60QtLQXAVpicrKTWrVm02Nv2rXzz1mlXHIWV8NH3m39o/e62ybrq/a6b8pNexNYMcTCM5G/LbdgI+XfeF/EBhDwPT4csdzVknstXizY4vmCZYeLVoH7tS2nYLkVxSyHdcGYz07/+SkN2eOpvyIgAiIgAiLQRAItFbD8kX70s53b0x/8/u/bj/7YP7ITJ04Y2wmyvmrinVRSHU2Av5dEIgHLxeN26eJFK5UgOsQisLTwW8odXXwVrlkE8HVhh80PThyoweqgCw9ofL/iA2GLZRqqBHW+mkW9aeksI3hPITdn85MXbGnmisVSsMrsGcHMg/dYV+++hplJdfOaBl0J7Q0C+MmsHwyK4HnYi1fPccTIulywGbgRLiAmVrlQswKCu8+dzlu0C8/NnjAmwgjZMoK+8/lK90O3qHreG98dlVIEREAERGBbCTT0VlpwXXaWGOgS7y+//JK7wMc+9jHLdKUsly9aONzay7egREpSBLafQL0tzMZ1PJ6wt99+2wqFgsUhYGkRgdsmUP8+GeK3pPbHrHuhYqW5KgK4R9wshDW4z7ATpqW9CASDISvm523y0suWnRuDNVbcwpEoYl/tt1gyg8zqprXXHVNudjsB9xzEzyoQQ4ysgzGLJEOWhLUVA7vTCiuMoO+00grCpYCzFZYQ9J0zusYxGUYo4U22oJ/lbv8WKP8iIAIiIALtRqDlChLdBwuFon3lK19xZWcAdy0iIAKbJ0BnBlpaUcBKwgprbn7OzUy4+RR0pAjUCVDjcAML5mbZYtyreH/YKrAoSA56AdwlXrXbtwU3DM8ADgaV8ot29dzziH11zZLdQ9a/nzMPPmaJ9ACsr+RO3G53TvnZ/QQwHwKemcsWigZdkHfOQpgciVoXgr6HIVJxPYBYWTkEep99K+dmdk0MRqzrQNySnLWwy5vZkAO5erbu/u+DSiACIiACIrDzBFoqYLHDTffByclJ++xv/V/2v/zCL9rBgwetVK7KfXDn771ysBsJ4DdVhPWVXAd3481rpzzj2QyrgXAComhduKphWnkXvFiGPO10o5AX3pAA3Jaytjh7Ba6Dl62UnbG+0fts/91PWu/QcQuFY07AarOMKzsisOsJONGJfyhk4T2SCVm0O2yJfrrwm0VghcWlOAuXwjfzVpwrWxQuhbnxknUfT1jXYcxuOAArLQhgyzWcQD1aiwiIgAiIgAiIwJYJtEzA8i1G2PQ+e/asy+CHPvRhi6DTJPfBLd8vnbgHCfC3FIT1RbFYspmZGZufn0dDmK1pLSJwewTY4eKsWtVi1ZYw+yBnz4r1wt0FnStOHc99WtqJAHu7sMDEzINzk+dhffUtCFXLFomhY9x30HoGj+GeRbANrkuYfVCLCIhAiwjg0eiejqh6IfU7F0F3pbogRUur1AEEc48ZBOaqzcAai1ZZhZmy9Z1KeyIWYmO5Z6wesy26SUpWBERABERgLxBomYBFeLTAYvDpV1952bE8deqUe+d2LSIgApsj4AQs/GTy+by99tqrdur++y0aQytZiwjcLgEoWHRF4+xZky8t2uLFoqUPxKznroT13JO0EKwJKHJpaRcCdB+uWW5xyqavvGFTiH9VWw5Y776TEK+OoDNMt0/Wp6pT2+WOKR8dTgA/tQCfkXiOriz4nDkad8HcOTBw7bkFy0+WrLRUsZk3c1ZEfCxaY2UOJ1x8LMbJ0iICIiACIiACIrA1Ai0dsmX8q2w2a3/5V39pP/MzP2sjIyNWLFVgTdLSy26NhM4SgTYnMDc3Z//lb/7GDh06bNFoVJ4IbX6/2jJ7HFQoYgYtuLvkJkq2eLZgebwzzgvHFaRdtc9d86yY6XZUtbmJMzYz/oaVCjncpKoNHHjQekfuqrsSe/Hx2ifnyokIdDiB9foTPkfTYUtjUoy+kyk78NEeG3lvN6yuvgGp/wAAQABJREFUolaEBdYsRKy5t/LuWesmyWATuJ6GGzDQg7fDvzAqngiIgAiIQDMJtMwCy49/NTM9bV/6i7+wP/2zP7cQKu1itarZB5t5B5VWxxPwLRavXr3qynoIceRCnLIbjV5/X8dDUAGbQoAiVbW8bNVczVlicaasGIK4p0ajcCFELBd1pJrCuRmJcKCHroFLc+M2deV1W0Tsq1A4asnMoGX6DyFwe59VK+VmXEppiIAI3CEBClOslKOIkTVwqstSwzE3Q2EUroVFzE4Y6ULMwSRmJuRkDItVW64sIwZhCM9db6ZufxDhDrOh00VABERABESg4wm0RMBqjH81Xu90++6DHU9UBRSBJhLgb8mJVUjzwoXzLuW7774HFliYOQ5BtyVgNRH2HkmKHSV2thhQmJ2oUCyITlfYgojPwkDu+k61xxehVoV4NX/Vxs8+Z3PXzlilXLQUZh4cOfYeS3YNuPu3YsbRHllWLkRgzxJwkTHcHzxfUW/H+sLWfyplyaGos7yKY2bC9MG4myhj7p28VSBiJYYjlsAkGhS5+Pzls1mLCIiACIiACIjAzQm0RMDiJdkJ4oQrb7zxup04eRLug6NWQadJ7oM3vyHaKwKNBGoI1p6IR21ufsGee/ZZt2t036jzPuA+iQ2NtLR+SwK0wIILIS0CaiV0shDAPZrBDFmYBt5b/PdbpqQDWkbAi3tFyyuKV1fPPW/5pSlL9Qw78Wr06LthfdXvZh3U779lN0EJi8DWCdStozlDIQcIEhCvgtEA6mtDUPeKzb+Ts0XEyqK1VhKWWoMPp5374YoFrB7DW2evM0VABERABDqeQMsELApVhULRvvr00/aJT3zSkomYi3+lBnfHf6dUwCYSoAUWl6tXr9lv/Ma/Mloy9vcPuG0UsGidpUUENkWAXyV0jGh9RRGLo/1xTO8eh4jF2QidT+qmEtJBrSLgrJfhYhTEjIIL05dt7O2vWxGTN9B1sH/fKdt37N0QskbghoTfvWYibdVtULoicEcEnCGWV3U7y6pg1HPPrsHilZZWFKqKELIK02UrTFWskq9a731J6z6UgKshjqWARWssCVl3dB90sgiIgAiIQGcSaE00dVS6rMAXFxfsd3/3d+wkLLC4yGKkM79EKlVrCPjug0z9/Llz7iKf+cwPWk9vz8pAbWuurFQ7jkC9M8Xn8nJdwKqVIYAi/ko4jrgsrsel/tKO3neI1QEIVxQSl2bHbPbaO5adu4YsBax74IgN7D9p6Z597vMyxav6PdvRPOviIiACGxOg+MQXF/xcORZF8YpWr70nUtb/QMri/RGrFDEj7POLNvbVOZt+Pesm16B1rBtU8M7WXxEQAREQAREQgQYCLbHAgqG0m2F4amraXWr/vv3u3bcmabi+VkVABG5AgIJvHO6DC4tZe/Y5z33w4UcehTVjwsW/kjvuDcBp88YEXGfKm4WwtFB1ohXdWxhU2C3oM1Hn8vtcGyeirS0jUBekCtkZu/TWN2zy4otw7YRFRjRm/QdOWWbgkHd/JFy17BYoYRFoCQE8VN1zlQ9YPG9770m6uFczr+ds9q2slUJVK8xXbPyZebgYlm3gwbSl9sU8jVoP5JbcEiUqAiIgAiKwewk0XcByLhD1Bvb42Jgj0z/Qv3sJKecisEME3G8J17548aL9b7/0z1wujh494sThEmbzlIDlkOjPZgisdILgwoJ4V/G+CKyvgggwHDHGaXGGP0hn5bDNpKljmkwgAHfBOZu89ApmHXwNca+mLZbIOPGqf/Rei6d6PTMOCVhN5q7kRGD7CPDnG4wFnEDFAYQ4ZoGdf6dgS5cLVoKINfNa1sXGYmB3uhM661gKX1z0gPY46K8IiIAIiMCeJtB0AYs0WeGyvp2e8SywMpnuPQ1ZhReB2yVA66tIJOImQnjttVfd6b/wC79ow8Mjbl3WjLdLVMeTAN1Yot1h67s/6cyt6D5IAcuponxoq4O0Y18UWl5RuLryzt9BvJqxWLIXboMnbP/dTznXwUAA98kFxtmxLOrCIiACTSDAOIQcSOAMhZFUyBKIRTh/LmKLFwpWK2Nm2GjQ7ad1bDWPyVpwLIPAKy5WE+ArCREQAREQgV1PoCUCFqkwRMfExIQDFI1G3bsfZ8V90B8REIEbEnDug7GIjY9fs6985SvuuCeefNIymYybzVO/pRui045bEAgnQpYa9pSqQAgO33hp2UkC6KRWCjZz9bRdPv11m584b9Vy3oaOPGb773nKeoePI4h7DOKjZh3dybuka4tAswj49TfHDMKpoGXSCQwsRJyQRZEqfTBmoUTQirNlN1shRS66FIaxzS0abGjWrVA6IiACIiACu5BASwQsVs6VSsXG6i6E8njYhd8MZXlHCfgN3NNvn7b/+7O/Zb19vXbvvfdZCO3XQrEM90FaY2gRgdskgI5Pecmb/Wq5apaAC2E005Jq4DYztncPr1aKtjB1ATGvXra5a2fc7JAhWF/2DN1lfSN3w72TA0AM8C6hce9+S1TyTiTg/aTxu8b/WA9cBlOeZWwQroV0J5yGOyFf0a6wDTyQtu67Ep6IpUdBJ34dVCYREAEREIFNEmhZz4UuTuVSaZPZ0GEiIAI+gSriWzF4++JSzp555hm3+Rd/8Z/a/v37nWsu3cC0iMDtEuD3hu4oC+cKNvnSotWKyzb6/m7ro4CFDhEMfLygwbebsI7fMoFqpWQL0xft4htfs6nLr1oNv/1wJGYjx97j3AdD4TismavO9VP61ZYx60QRaGsC7tkLd8FwAuE38Jym62A5W7XF80XLT5atMFX2/L/xnO4+DhErGcTzGqI2H9wSs9r63ipzIiACIiACzSfQMgGLWS0Wiy7HNVS0WkRABDZHwA/efubMGfvXv/Gv3ElPPPGEpVMJK5YqCt6+OYw6yifAxy89T/AcLs5VbPFiAUGD81ZdWrb+h1P+UXrfRgL8jXuWVxfhNvgNm7j4gpXySxaOxq178KiNHnu3ZfoOQNCqoDNbdxvaxvzpUiIgAttHwBenoVV7QhXe6DbYfXfCPbsXLxVs4XzBiVuVfNWJWInBqBOx3KjW9mVVVxIBERABERCBHSfQUgErHo+7AhYKBfeuwNM7fr+VgTYnwNhXsVjMCVXf+tZziIE1bj/6oz9mx4/f5XLO/aGQ3Afb/Da2VfaoX7lBeqyw81PJ1SyI4O2hCPpGEYkj23qzPPMKZ2GRW5iwq+e+ZeNnvgmhKmCRWNIy/Yds311PWlf/QQRx9uJebWv+dDEREIEdI+CELP7BszrWE7bBh9MWw6QbwUjA5s/mbQFB3otTFasUanAphMUWnuMM7k6LLS0iIAIiIAIisFcItETAolAVDoft4KFDjmMul9srPFVOEbgjAk6ggqZw9uIF++M/+o8urY9/4hM2ODio4O13RHbvnryma4OOkXM9QScp1ht2HSCfzJrj/I16by6BuqlFpZS3WcS7mh57A1YVIXRAa5YZOGz77n6vDR16yKKJLlxXca+aC1+picDuIhCCQJU5ioFgPpzx7KaIVVwqu7hYVYhYvXcnLTkStVAcB2C/3Al31/1VbkVABERABLZGoCUCFrMSwsxWgwODLlfT01Nby53OEoE9RIDiVQTBm+lx++KLL9qXv/xl+9CHPmwPP/ywhfF7yhdKsr7aQ9+HlhS1rlLxzc1A2DByr/5PS4ivJMqBHU6+UC5mbfzst2B99W3LL05jWwDi1TEnXg1DvIolu71znLVW/YatpKIVERCBPUEAD2Q+AihidR2Oe/EJ8ZkiVvZS0QKcrRAzE9aqeK7UgehpsSe+GSqkCIiACOx5Ai0RsHxXwQFYjXC5cOGCew8qlofjoD8isBEBCljxWMTOX7hoX/yTP3GHfOrTn0bwdsTCobqgRQTukIDnooJE4IXK6dtDcE3xl9U1f4vem0HArw+DobAVc/OId/WyXXrzaRe8PRAMWzfcBvff85QNHngA4lUvOq01r7Nat9ZqRh6UhgiIwC4jgAcyn8kM8B5OQMQ65FlihdNBK86ULd4f8axosY9iVrUE13C5E+6ym6zsioAIiIAIbIVA0wWsxqm+DxzY7/J0+vRpKxTLznqEnfTGY7aSaZ0jAp1GoNH66plnnrUvfOH37N5777Mnn3yvE7X830+nlVvlaT0Bap++OFWrIHg4Ozqw+mGMlVC8Hk9NAmnLbkQgAPsI3IBSfsEmL71iF179K8suTKMehHgFt8H9cBscPPigxZM9dfHKv1sty5ISFgER2CUEnI6N57PnTpiwKGaNrSKOYQjCVXwgYlXMJpufLBpdCjNHE4idB9GLweD1GNkld1jZFAEREAERuF0CTRew/AzQ9Lm/f8AGhwbt2WeesYWFBcTx6bdCoSI3KB+S3kWgTqDR+urP/uyLbutP/MRP2LFjx1xoC9+KQ8BEYCsE2AmiFV8JU7OXFzFcT00Fbqnq5GyF5ubP4e82EFi2SqkAl8HnMePg1y07Pwmriop1Dx2F2+CTiHn1MGJeZTafqI4UARHYkwQYzD0B0YpWWQGMPfB95o2sTb+y5AK9U9CKR7EfdKRf7cmviAotAiIgAnuCgO8639TCstFeQ2+pq6vLfuDTn7Gvf/1rNjY25ipUdcSbilqJdQAB/iY46QEbnd/+1rftC7/3e65UTzzxpKWScSvCejEYaslPtQPoqQibJUARKwjRijNXhWPo/SB2yjJeWppPwK/napWSLc5csbG3n7Urb3/T5ifOOiur7qEjsLx6yolXjHlFq2SeI+vk5t8LpSgCHUPACVcB5yrIBkNhqmxzp3M293belq6UbOqVrBXgXohQe+550jHlVkFEQAREQAREoIFAy3rFbIzHYlF771NPucudPv1Ww2W1KgIi4BOoVqsWjYTs0qUr9qUvf8lt/uVf+VW778QJt+46thpP9XHp/TYJcCQej2M3JJ8citoApmYfeCRtXUfiFk7WXQiZpobsSeHOFgcaQiF6kLVqyeanztvFN57G62+wfgFWExHrHoTb4D3vg9vgAxZPMeaVJyJKvLoz9DpbBDqegP+MxiOj/thw8bEiXSHnGj71nSWbP5O38lJDqA7v8dLxaFRAERABERCBvUOgJS6EHOn3RpPNTp065Wi+9NJL9vf//vd7liaoedVY3ztfMpX0xgToOuhbXz333LP2ud/+t+7gj370u62nu8vFjtPkBzfmpz2bIOAULOhTiHuVGIaLyWAE/oQ4D9sZnklLEwnULalKxQVbmr5sV955xsbe+Qbqw7BjzZhX+xDzaggxr2KMeaWYkE2Er6REYO8QCIYDLpB7730piFfLdeGqYnNv5ZyFbfddCRc3i+1xLSIgAiIgAiLQSQRa1H3x3CHQNrd9+/bbU0+9z/7d5/6tXbt21VmasNOuRQREADoCfgu0vrpw4ZL98R//kUNC6ytf+PWEYLVA9V1pDgEOHNCNMBTFDIScsYpxsLQ0hYBvSVUqLNi18y/a2Vf+k1278IKb5t6WSwjYfsiJV8Mu5lW3u6boNwW9EhGBPUmAMbEysKQdfCht3QjgHoCotXCxAFdCzxKrWqTPIdDICmtPfj9UaBEQARHoVAItscDyYbFznslk7DM/+IP2Uz/5E/bWW2/ZQcxM6Df0/eP0LgJ7kQB/H5FIxAXXfuaZv1uJffXRj37UujNpWV/txS9FC8pMVxNaWi1jBsLZd3K2cL5gkXTIug/HjS6FQYhZWrZOwK/PgqGwFZambfLyq3bl9DdsfvKclQtZWFplbPjIu2zw0EPWO3zcWV6xRylxeuvMdaYIiAAI4NnO2Qm7DsU9oQqb5s/l8YzPw7oTsWgR47D7aNzNXCheIiACIiACItApBFoqYLGBztjTjz/+hOP1wvPP24c+9GE3C6Ea753yFVI5tkqAAlY8FrHzFy7aF7/ozTzoWV/d75Lkb0Tug1ulq/NWCNBlOxh0nZn5s3m7/KdzljoatUgM07D3RiBgrRypldsiQLMGWLQh3tUypgNjsPapK6/ZtXPfhnh1AfuCluoZsd6Re+zgfe+3TP9hC0Vi7lhawsmN/rZg62AREIH1BGhdBSOrUMITsTgroSGs4cLZghWmy1ZZqloNAxdc3ECGTD4dC/0RAREQARHY3QRaJmCxcc4OeBUV6rFjR+1DH/6wff7zv2s/9MM/YqMjQ5YvlJyQtbvxKfcisDUCjdZXzz7zrP3B73/BJfTRj8j6amtEddZmCDAOViAB2QVhsKCgbOYUHXNDAqzjahAGy1bIztmlN79qE3AZLOYWgTZo6d5RGzhwvw0eOGVd/YeceMWkJFzdEKh2iIAI3C4BPsZpiYUBiQysrbgejnNyjmXruSdh8T4+7PW4dxD0RwREQAREoCMItEzA8un4boT/8B/+9/YjP/xD9vrrrzkBi+KWFhHYqwQara/+5It/7DA466v7ZX21V78T21JudHYoYhmFLOlXW0Lu113kVy4s2cL0RZu89Bpe37HcwrRz1+zqGbVDJz9iA/tPwNItaaFwzLuWzCC2xFwniYAI3JoARSzOLpvARB181MT7vMkjlqs4V8/7WwPUESIgAiIgAruCQMsFLDb22dB/8oknHZCnn37aPvCB79JshLvi66FMtoLAGuurZ2l99fvuMh+R9VUrcCvNRgIcN0BsFL62NIZQH3fg214TwHzhirGulmuVusvgGzZ95XWsX3BWWJF4yvpGT9jwoUds8OApi6d7rVqprN6BvQZtteRaEwERaDUBeDyE4U4YScGtGc/48mLV8pMlqxRqFusOu1kLKXJpEQEREAEREIHdTKClNdmKGyECSR48dMh+7uf/J/u1X/0Vu3z5spt5rVrlsJAWEdhbBJyAFQ7axYurMw/+6q/+mt3fYH0lN6O99Z3Y3tKuG4qnGoWXE7Qa1vnZf3G/W3gqag0Ghd8rI/pOuAIIxhFDr9CK2VmbvXrGrrz9Tbv0xt/AbfB5iFcLlswM2sjR9yDe1Qds5NijFk1knHil37L31dFfERCBFhPg8xki1jLa3JyBMHe1ZFMvZ238G/N4X7JKvuZmnqW4pUUEREAEREAEdiuBlgpYPhTfXerv/b3/ym164YXn/V16F4E9RWCt9dUz9od/8Aeu/B/97u9ZmXkwFGL8Ci0isE0E2OnByxkHNazzs/+CvRbELLzQ8WFQ4FoZ63tk/MENxABQtVy0pflxu3rueTv70pds/Myzll+atyDcA+OpNISr77Ijpz5sfQjaHgojFg2xkqcWERABEdhOAnzuQMgqZ6tWmC3b4uWizb2dt9JCxT3DtzMrupYIiIAIiIAINJtAy10IfSssDvg8+OCD9sQTT9j/+/nP2/d8z/daMpm0crmsmdaafVeVXtsS8MXcc+cv2h//0R+5fP76r/8LO3XqpFv33ZTatgDKWPsQqA+ir46lY231w0o+OTMVhac1L3dcw8Hs8PAjRauVM701d17JrIIR/RpedEeplmouzkoUbikbXXMliV264v0OPSCcZbBWydvM+Ft27cJLsL46bYWlaSsVFy2CWQUHDj5kB+79gHUPHLIYrK4CzsUQlg4O3yrNXYpC2RYBEWhHAny08Nm+0QMY2wORgKUOxCx6JmfVfNXKuaAtnC9YJB2yWC/coGle28RFlqZNhKmkREAEREAEbkqg5QKWf/UqpiPs7e22n/6Zn7Uf+PSn7M0337B3v+sxK8CNMEjXDC0i0OEEfOsrFvOFF16wP/xDz/rquz74IetKp6xQLGtmzg7/Dmy5eOhrrHQ46sKIE0iwzo/eev05Wt+2okTh3CAPiJpFkiGLIrBvOB60SrZm+YmyBcJluLrBqqrkW1dBoKpArIKVFa2tqmV8hnBVxf4qXVCQXmoEHSOKV5200MKsXh6KVuyQlUt5m588Z9Njp21u4rTNQsQq5uct0TVowyP3WmbgMGJe3Ytg7ffheAhdNZilQTFUZ66Tvhgqiwi0FwE+k/m85rOfD3/33pBFPsfcIz8RsuRQ1BLDUfcMn3kta1EIWJFEyrPE2uDchmRua3W5huceRDPF2LotbDpYBERABERgCwS2pQfiW2Exf+973/tdNv/yy1+2xx57TMHct3DTdMruJEABIoLYV5cuj9lXv/q0KwRjX504ccKtrwgUu7N4ynUrCUCb8oV+ZxGFGCeII+5inXifMRhPKytsX7G4qq/X8E5lppKDYDVZxnzrcC3B+tyZvGWvFo2aC2OjUJyqYKTeW8c7jqHIRcsrXiMQDrj3zLGEdeNFEWxF8Wll2Vuedl22QmcuiOBeFKFKxSUr5Rdsae4qXAa/bWNvfxW5iFg4krCe4XvqotVJy/QfdLGuKCMuS7hq+Z3SBURABJxGbqXFihuA4DP7enduJ2Hh8bxs+SnvmV+cr1hhBoNkSQxe8JmO9sj10tdW6OJaeHZGETg+uS9mCQWJ3wpEnSMCIiACInAbBAKoxOqt9+vPotVUBZ0fjuTc6cLLMLYPxazf/M1/bT//cz9rFy5etkMH91suX3RC1p1eQ+eLQDsT4KQFiXjUnn/hRXvXY4+6rP7tN5+x9z75uLO+8gWKdi6D8rYzBCgg1dAPqXHkve7GR6GJ7nzswFTdu/e5WvBEqIp7x0xUbj+OwYg9RSm6//GRHgjVH+yoAZwIVnc1pCjlPtffnUjFQyF8JXqjNvKebjvw4R5LDsKkqxMW1E2uEuQ7eoLF3LzNT523yUuv2gLec4vTVikXIG4tWy+srUaPPw6Lq/stGk8j1lXU1Wm0PmhKRdkJPFUGERCB1hHgwwrP49y1kl3+G0wo8XbOihCzvIfYusvimcZHk6s38Pzn4AYHHkIcfGjWgmuEYdk79EgGdUPG0gdjXsr1fDbrMkpHBERABERgbxBg9REKBiwcunFdtS0WWD5uulBFIyH72Mc+7gSsp5/+iv3wD/2g6wD4x+hdBDqVAAUqCsL33nuf/Yf/+Ec2MTFhJ08q9lWn3u9mlYtufAvn8zb5nSUrLpWdax9d+pyLHzol7p3ufny5z96+ZXyu1rcvwyWQnRe6eATqT330O9ziBiicooWP+OBkLf5BvRFABcL9zvqqaNZ7X9JG3p2xRF8EG3FMPQ2X0C76443beD0sugsuV8sQqiZt9tpZuAqetaWZS5ZduAYxaw6WbyHr6t1n/ftPuVc33AbjyR4UnR3CuiWDg7iLACirIiACu5cAnr3RTNh6T6Vs4XLBCu+U3fOIdcX6hYPG8G5Gb8B7ljOQe23m+uPWn7epz8hHOEo3xZhljsYtPhDxLLtcpbGpFHSQCIiACIiACNw2gW2zwGLOfCssCln/4tf/d/uX//L/cFZY3d0ZKxZLiv9z27dPJ+w2AvwNRKNhq0LIKpVKCALtNfh2WzmU3+0jwE7J4sWCjX1tzq49s+hcQpwIxT4IByec0IR3Ckp81UUnT4nCJn87dlHEuqnotL5fg3N5ThDGVumBuB36eJ8bZecIvhPEmPauWWhhVccEUYpgKsUshKspW5wdg7XVBQRof8sWZy7CfXAR+4OWzAxa78h9sLg6ZT1DR93nUCTuhCvH1Ye8axgooyIgArueAJ/TePZWC8s2/ty8XfnarM2fzfORdd3iBip4vP9sx3kbHXfdibfagHQYW5Hu5Ac/3G99p5IW7UIcQLike8/GWyWg/SIgAiIgAiJwPQFWV7eywNp2AYujQbTCeu31N+3+Uyfsy3/5n+xj3/vdls1hdhR05rWIQKcToIAbDodh2YEOdAWtPS0icBMC7IAwttXSlaJd+fqcTb64CEssTIcO66qVpWF1ZVszVuodomgqbAc+2GOjT8B1cBRuc9xOMWxXCVjML+N4wcUSLoEUqZYgXE2PvWEzY687C6wqfo90CwxH485FkAHahw4/Yr3Dd1kQswsGmtLza8aNURoiIAJ7nQBdvQvTFRt/Zs4u/vUs3MVRL8CbcDsWPgrTmMxj3/t6bN/7eywC8Wr3DWpsByldQwREQARE4HYItJ2AxczTAoWd90qlYv/rP/0n9tZbb9m////+g3PTqFYrK4GKb6egOlYEdhsB/g74Utyr3Xbndii/EIroHrgEd5Er3/AssSqIqUYRy1lVUUhqtohVF6c4c2HPXUk78vF+vCe82Fm81i4Rr/g78xb+5mpWzM7ZHGYWnGKMq+mLVsjOQtBiMPsSWBasq/+wjRx73AYPPGjxVK9FYghYj+DtXjp+WvUk9SYCIiACO0UAjyM+lxYvFm38m/M2/uy8C+7ustOqRxWe+7SwisTDtu+D3XbwA70WH4y4ekEC1k59EXRdERABEegcAqy+bmWBta0xsHy0DGYdgxvVp3/gM/boIw/Zt7/9bXvqvU/ApaqqDr0PSe8dTcDFpZCdfUff46YWjm58iF+VPhCDFVS3E60mnluwUrnq4pu4UfcmC0qMe1VDoPg44l0NP47gvLg2tzmhrMnXah4rz01wVc3DzIKwnKpWipZfQIwrxLean7zg3ASzc2MuYHuljKnl4ym4CT5gfQjOnuk7YKnuIUviFUTwGFpMcmZC7+fatgVvHkKlJAIisDsI4HHEtkQas/8NIzZhca5s029mrbxEPz4UodkiFtKkNXAwErSBh9M2+GCXE68cLNRRatLsjq+NcikCIiACu53AtroQ+rA4YhSBFVahWLR//I9/0rLZrH3+878nKywfkN5FQARE4AYEOJvgwrm8cyecennJSnAndJ0VuvQ1c0GYqChG2Ufem7HD391viSHEa2vTTopvZbUiDNO/BZktF3OWX5q2pblxCFfnbWb8DYhXl7A9CzfIiItplereB6urg3ATPGZ9I/dYLEmBsA6T1lvqlTXzW6W0REAEmkmAIhUed5yVdhbi1ZWvztn0a1lYlHoTdzT3UphNPBy0nruTrk7ovTdpoURQj8hmQlZaIiACIrDHCbStBRbvC91fkomY/fiP/w/23iefsJ/9mZ+z98oKa49/ZVV8ERCBWxEIRQOWORKHT2GPm3lw+pUlF0uN4lLTFnSIAssB6z2RcKPs0W5OY+XpZE27RhMTonDFpQY39BpmFKTFVKWUQ4yrKzZ5+TUIV29afnHaWVMFEZE+kUbAYVhd9R+434aPPGrdA0fcAEowtG5SBYlXTbxLSkoERKDpBOqWVmFMrNF3ImWlhaqVF6s2fzlvyxjsaKYVFuN2Zg7Hbd+TPZY5FrdwypvMo+llUoIiIAIiIAIicBMCO+JCyM4GR8wRf9JOnbrfPvKRj9hnP/tb9uhjj1ksFnPxsRQb6CZ3TbtEQAT2LgE8N0OxoHVBxNr/gR50UJZt8oUlq0Uw4s45Afjy9JwtMwpCJEv1Rm3ggTRmmYpbKApFiwLZHaa75QytO9GzuFrtnLFOoZtgbmHClhau4X3SsnNYn73sLLDKxSWrlnNIpWxdw/dBtHoPXAZPwtqqx6KJNCYQ8WJcMUYWra883apNCruu7PooAiIgAhsRYL0w8GAas6vWLD9TtpJB0G+SiAVvaksNx23wkYz1P5CyaAbdBzyCpfFvdCe0TQREQAREoJUEdkTA8gtUhYlzV1fKfv7n/2f75Cc/bj/5Uz9lTz7xuBWLioXlM9K7CIiACKwhUNdVwnDd4BTmjElC6yu6E1YgvgTZr9ji5JbspNQqiHFiIRt4tMt670lZGEHcWxJPZU2hbvZhbVwrzgQYDIbgAuiBKOYXbGlmDIHZz9eDss8gttUcgrXzfQYzCiYtM3DUeobvgeXVIOJbDVi6d5+lMkMoFy0IqsYJRFxq6I351lw3y5H2iYAIiEC7EaDHc6wnbP2wxCpMlW3sb+esipkJg4hduGULXTwYKVLFMBPt0Lu6bPhdGaNFLrfJw7rdvgHKjwiIgAjsDQI7JmCxk8DguHTef+LJJ+1d73qX/T//5t/YI488KiusvfHdUylFQATukABFLM4QSBGrVqnZzJs5jL4z4Dh7F7efODs5HMWnm0jfyZQlBiJeIkwLSW7P4mWcnSMuLIuzyK33mCrlghUoUOXmXYyrAoSquWvv2CzcBHOLk859MBSOwUUwg6DsD1pX7wHrGTpmvSPHLdk1gM5c1LFxVlx1pU+ilcdaf0VABHYvAT4iuSQwK+DwY12WnyyhTsi6+Fjentv8y/TwHA4nMKDxUNqG8EqNRuCm7T2c/evdZqo6XAREQAREQATuiMCOCVh+rivodPX2dtsv/OI/sX/wX3+//dg/+nFYYb1HVlg+IL2LgAiIwE0IhJNBWEpBxIL4VEM895nXs1ChYLWE9dtZXNxzWG6lRjijVZeb2SqAmQ+3IoTdznWvP9brhTm9CjsZz6pWyeOd8a2qcA+8ZtNX3rCpsdcxs+AErKfKniCFYylasRx8zyCu1dChh6178IhzFeRshAFabuE40Ln+stoiAiIgAh1AgIMQnDWWsaooNjGoO82ltmKFFcKMgxzQ4Ey0KaTJNGCn2gGUVAQREAEREIHdSmBHBaxGK6zHH3/CMfz853/HHn74YVlh7dZvlPItAiKw7QTCqZBxRijfamn61SUMm6OjAZ3GGRltpr8BN5MoRtophvXfn7ZYd9jrrGzm3C2WeH0sK/qleNZQFJhwYYhWBcwiOD122s0kyBhV2dkxW5oft1J+3gVqX8Yx0XjaMoPHbPDgQ9bVdwjl6LJwJG6xRMYisQTSDIGNF9/KpSzTgS3eMZ0mAiKwGwjQaqr3RNJK2YoL6r44Vri9oO54/C7DnTx1KGqjEMK6DnqxEJ2AhUECLSIgAiIgAiKwUwR2VMDyC13FCNHIyIj9zu983n7kR37IPvWpT9sH3v8+WWH5gPQuAiIgAjciUNd6IumQ9d3nuRNSyaI7IadSD4ZuHv/EWTqxs1JYtu6TmHXwoS6L90eM8bC2GktrbVb9GFbcysz6C8SqIOJZwWSKVlOVctnFrSrANZDugYxtVcwvunhWC9PnLTd/FeUpQrhasBCCrifSA7CuOmbxVJ+le/ZZpv8QxKtRi6f7MNV7FAh4XVwPL1pxURiTq6DPXu8iIAIdTQDPdNYJnIijVl62yl9XLT+PGVoZ1H0zCw5L74vb0GNwxYY7eQSDJFz4rNYiAiIgAiIgAjtJYMcFLHYoqnALiUXDbjZCwvjc537bHn30MUsmExCxShYKeRXnToLStUVABESgLQmgo+J0oXqHhQF8OcUrXUfmz8D1rh6v5EZ5p8ZDsSrWG7G+UynLYHZDF/QX7oS3b6jU0DniKvNGhxMEXOe/lQUJ1xA4vVQXqBjXqphbcO6BWc4iOH/NsrCyKixNQn8KQJBKOKuqRNcQZkcMWCLVD7FqvyUyAy6uVSozDGur7pUM09WwcZFw1UhD6yIgAnuFAONh9UPEKkyX7doLC5ZHcHe3NDyqr2OBR3WsOwLxqsuGHu5C3VCfNGPlmX7dGdogAiIgAiIgAttGYMcFLK+kywZDARuGFdZv/ub/aT/90/+js8L63u/5bm8Efdtw6EIiIAIisAsJNGhDkQwssTBiTmGKwtbc2znnTrhRTCyOplPgiia9Gab67k4a3RG3tjRaWtVTwPWXYcbFmf6cCx/9T1y+alYqLNr81AWbvPSKmz2wXMziOLj5+a5+OC8cgRgHP8h4std6R0/a4IFTsCiLOKurRFc/hLGwm5EwyEEOFsYVmtfmRRqg1LOjNxEQARHYSwT4SORkHHQDLMxWrJLDbLWY6GOj+sBxwWMz2hW2gVNpG4R4xbhXK4seqSsotCICIiACIrBzBNpEwPKssCKRkH3vx77X0fh3n/ucPfbYu6y/v9cKBVlh7dxXRFcWARHYbQSiGUylDmsqz4XObJYiFjoftKiihrSyQPMJh0PWtR+uIo+is7I/tmp1xc7KiiDkSUL+X3f+ikYEF0DXseFsgVxxJ2JbEG6BBTczYG5hEtZVkxCtllyeilnMIghXwFIBFgGYObCYm7RqOe9cA5NdIxaIRCzVvc/6D9zv3AMjsSRiWaUgZGWQfBBWuZH6bIIQzShWMZ+c1XbFZMxlaKWYWhEBERCBPUkAj8UgJuNIjkRsBIHYy4iJNfnSEmabhWv5WkNVTgqOQYOgdSNo+773d1sX3t0jlc96LSIgAiIgAiLQJgTaQsCie0cNnY9aLWSHDx+xX/7lX7Ff+qV/Zp/5wR+07/vkJ7xOWJsAUzZEQAREoK0J1IWlKIKw959Mo5PiWUbNn4M7IWZ9pTufM1BCZ6Waq1niYMQGHsb06PujFoxiF47xxC4csCIIoW9DCyd89qUhfmTcqnJxAaIYYqxAgCpAmCoXIZZBUKqUiy5+VSE7Y/nstBOqyrC6qmHWwGJuBgHYsxChEohZNWCDh97tZg4MRaKW6TuA7TG4BHZhfb+LaRWEpdVKTCsHH2WCC6KXmXqOGvLa1vdHmRMBERCB7SLAxyPqhGA0YL13Ja04B9ft+aotXS2szQGOC+DR33UobiNPeuJVOE5X7zXVwNpz9EkEREAEREAEdoBAWwhYLLcvYkURC+sTn/w+J2D9xZ//uT2B2Qn7B/pkhbUDXw5dUgREYBcS8BUmZD3WC1cQzCjoPPcgKi2eLyA8Fnoz+E8BKhwLWc89aVhrZSyWgasI9rmg7zi3VilhUKECjQgj9fhH4YkWVYxdxeMYGL2YnbVCbtZbR+D1pbkxN2sgXQG5vZibw7MdFlPhuLtgKBRGLKtei6UGnOsfraoSmUEb3H/K6BJI98BE14ALwk7yPJcLr3XdIsHqOiTaIAIiIAIbEWAbm+7lA7DMrRZqdunpKlwKy54VFusDnJQcjNnAQ6gP4IIeguDFekOP2Y1oapsIiIAIiMBOEmgrAauKTg8imtg999xjH/vYx+2zn/0t+9Snf8C+6wPvc6PvOwlK1xYBERCB3Ugg1hdxMwsaOiNXqnO2cCFviIsOVcis5944xKuYRXuqELbq06yjx0KxKr84BWuqLISuEDoymMEKVlSLM2NOlPIEKrgBwuKKMa7Y/eF7rYJZrpzY5MW9YucHEw1aCiJVMAxxKj1oAwcfsEgkbpFEBp/7nGgVhsVVEOIWlwDePTsvWo6hZ+UWvjcoc/WtehMBERABEdg8gcRQ1IlUhZmyTby06IK78+xQNGiDCNo++GCXRboQtJ0Pbz12Nw9WR4qACIiACGwbgbYRsFhidk8qcF9JpVL2a//8n9tf/+e/sn//h3+AGQkfxYyESSvDXSXI3pAWEdg2Ap77ldeSw0X9/rSzSdm2TOhCInBHBCKZgPU9kLBSDlZU+bJlORMVdKfw6LwVwpfs4mnEpoLwFMDzla5/BVhWlfLzTsjynszLELOWsG0Orn8QwGpwHSzMYgbZPPIVxOc8LKcOIE5VN1z/Uta37wGLIV5VOOK5CEbjaTeSH4JQlUj3OlEsFIoi5hUss7AwcLv7ceH35Sy83NbVP6wbVn56q5t37dqqIyaK4HQ5bKm/79pCKeMiwF+p+99Jv9YOuq24LTRqTQ6FEdS9y3LXClaYKFoIroLpfRHrvTeGWFl0124wvdKt7KAvgIqynQRW6nmvct/OS+taItDxBAIY4b5h9VTF1IAVxE/Zzt8es8ORnygCun/7+Rft3e961F597Q07dfI+y+YKGLmPdPxNUQHbjQB6lvhOuhFJZE39zHa7P8rPTQnUOy00jFo8V7TLX5ux8efmID4tWOrd5yw4/DYsqSBWVSBghSBgQaAqwv2Pz2Iv9hTiZqHXE4l3O8GJbn7ROKZWx8yAoXDUiVH8HE/xcwQB1hHHaoBiVsKtRxHLiuMOKzUN8nPDSuemBemsnas86KBJKKLSWXd4r5bGqy9Zer/O3Ksk2rLceMwEMGlrJb9sF/5q2sa/OW8BDGWPPtHjgrwnhyMYRHBNnrbMvjIlAm1NoF6Nuzpd9Xpb3yplrn0J8GcUQrzeMPokN1raygKLmWSDhx0naGd2//3321un37Hh4WH3ORxuu+zeiKu273ICnq6LKggtuSrcoqqwSqlW8KoiLhBiANGFit1wr+PpF5bSlt8JdTKXv2PdO4/xj11/nH8+T2nct9E564/1j/Ev5+/302ncv9F64zamsf7z+m2N+xvX1x/Hz5td1qfjn8ft/uKXh5/94xvfub3xGH5uXBqPvdFxN7rejdLxt2+Unn89/xj/fbPbb3RcYzr+Oq/v571hnaMQeK6WS/g+pxBIPTVjpdo1K828aculCzgDLiP107w3rxwcxGB6AUT3DcKVkDGs6AoYSyDoe/eAhaMUqega2A9rK8+aijkpcYbB/KK7Dd4o5Gpe/NxtTrDx8sE0ry9X4z7viLV/eSX/uo3HNm7nGf4+f/vaVLxPfq79Y7m18fiN9jceU99PIZz/oOjRNZNiYBgiIC3RKAZ6bpTY7y7TeC0vF/orAu1HALWg+3p79eWyi53nxc9bRgw9VJauTbf6+22/EuypHOFe0QqrVl622EDeuo4vuck9kqMltG/mLTvN0QYQ0eNnT30tVNg7J8C6nT8u1u0BTDwTCHK2ZLzw7ra7/fph3TlppSAC+Emho15vWV+PYycssPxcMFt0F4yEYREAK7BqFdYBXqveP0TvItB0Avze0XzeD1hdQhDq7MI1W5q+ggDV4y4uUAHBqjnTGsWsm/x8mp43JSgCWyNQf8TjjU/7ar5qJUylvmxFWw7BBTDI2fzQ6FqT+NpP3EWxxQkvOJKNMgZmD3AoH89lWl0xDdfzcb8hpM+LsSfk3AOZQn1ZeY5ffw3/kI59Jys0bMPROILZIwZYqs9SPcPW1XfQ0r373IyLFAKdZRvYOkIrvDqWigq2Kwl4whVj3y0jZl61UkBw8HkrLkEYX5p0LsaV4iK2Y/ZT7PfchHdlQTsz03g+V0t4IaA7Z5GNptHhDjc8kxtWOxOASiUCzSPgDUyFXbsoFE1ZGBbr0VQ/JqwZtEiyHzHm0mhD0WK9HuPzBvU6W01c9PPzOOjv3iTA38GtLLDaVsDam7dMpd45An5jvOYCV+fmr9rctbM2O3HGFqYvQriaQIN8Dvvm0ehbgHiVQ6MPAgADCbnhyp3Lua7cqQT8poxfvg2aNOsPcYd6x60e7a/hYKy6IOlBCE4GQcrwvuyb6G6YmH/xegfUO4aWFcvLRezD999ZWOSwDiHMXYDXo7Us0nWNtLqwhS1rl8br+Xlce0RnfWIZgxYMYEQ2hFm+wmnMApmBa2YPhKsBS/fst56hY9Y7erdlIGjRLZOum27g5gaN3c7io9LsHgKsL/HCc6Baylph4YrlZ89bYfGqVVBPVsuw6ilTuEIdWeNAj/ec2D3l2ws5pSUoygk3Df6jVbk31tD4XN4LHFRGEWgGAfyKOKBHK3W0r4JhWKdHUM/HuiBkDVmi+yBeCK0AMSsY4uAfG2PXt3v8X9/1e5qRR6UhAruDAH8HErB2x71SLneYABvjHCVm8OrZa2ds6vIrNjP2hi1OX7ASRpXD0STcpIYwmtKL2D5pz+XHzZpW7/yztuEvrvH9ZmXyj73ZMdy3/rj1nxvPb9zHdS6N+Vm//2Y1ZOOxXkrb83ej6/rb+O4vft4b963f5h+7lXc/3Zud6x/jv68/dqPt/raN3tefvyKM+jdx3QFIg8msfEf8D40cVtLwz0Wn019172s/rdl13Qcv4dW//oVwYENDzG1t2HVdMms2NBzIVWanYdOaQ/nB37/+/boDGzbc7Fjua1xudm3/OD89//NG7/4x69PHsXRLrpQLcOfMukD5BczuWEbAfFq3pSBi9e+/H69TTsxKZYYhciWd++ZGl9E2EdgJAhSkqqWcs7YqzF+CeHXO8nMXrFKcQ+csBuuDHlgcZFBP4rsLS03G0mt8RuxEnnVNERABEWgNAQjA/Ie6naI9xftqaRHPwwX34jMw3gUL6+5Dluw9avGeg5iFGZPZ+FbrDY0ev8mwmaZIa8qiVEVg5wnwdyABa+fvg3LQ5gRqGHmk+0Nuccpmrrxu42ees6krL6ODmcekASnn1pPu2YfA1IcQ92fEBauOxDGyQnNgVkB3WNPw9MZKy1/fTmyNedjsdbdyzmbT7vTjbskOXwI2ibjw7+qa92HlfOemx6O8ZeU4Wkf4GxvW3KZ153hfYB69kurKmWu3YT8PwZ/62+q6twW73J6V8/nRS9nb7u91efM/+OeunOWt+LtXy7HuAHzkMTfaf7N916d06y1NSc8J5RUrsfMP9+T8wqRlZ6/YIl65hQmI5YvumUKXwsFDD9vwkUfw3DnirLGCIYzu3oDVrXOvI0SgGQS8TloFM5JSuFq89prlZk5j4oclT7hy1gaDGOgZhtXBAGa363GDP3SdgYrVkAH/192wqSNWvafdzhfFfypuhnO75Plm1G4nj7dz7M2u2ex9zcrXRulstK3Z+d8t6ZEFl818970jN//3Bpyx2bNIrbtSQ7gq56bhSj1hxcVxeG7AawOiFq2u4plDlhl92JIDdzkRi7FFG/Paytxvvpw6UgR2lgB/BxKwdvYe6OptToBm82VULEvoQE6cfxHi1TM2P3UeIykVWEOM2sCBB61v9F4IV8OwvEq62DQMtOyCNLrRExbQ79o2vm9U8MbKr3G98dj129d/bjyW643716/7x/oV+fr9/nY/Hb43bvO3r9/G7Vwa0/O2rP692b7Vo65f43n+4l+3Ma3GdR63meMb01t/vr9v/buf7kZ58I9tTKtxff3+xn3+Ot/9hde4/jP8u7G9PrLnH9rw7u33Tm2Uq3jISvypleNxxHXClXfuyiFc8Yu7ZmPDDjTA/EMaYxIuO+HK2+dK4w7yj/QS415flKPQtZrntcet/T1dl5FNbvA5Nx7ub/PfuY/rXPw8NO7z9lz/1z/Gf288onGbv853LryGdx9owVJDXEdafVZhjVVYouXnOzZ9+VU8f85BPM9ZHLM8Dh56yPbf8z7rHbkXsz52O3GrkbtLVn9EYFsI8LuLwZ7CgmWn3raF8e9Ybv68qyudG2zPEUv2H4elwSgmdEhBsOIkBbS8Qiy3lbpyWzKqi4iACIjAthNwbSyGVED/ocYXLa3zs5afv2i56bedqzXbATG4FKaH73dCVhQuhd5AuNcGaWwtbHsBdEERaBMC/B3cSsDStH5tcrOUje0nwMqmihmTlmbH7Oq5523s9NfdOt0F2WEcPPgA3HiOWKJr0AVdZsfRVS7XCQF+lbP+faMy+cdwX+N647Hrt6//3Hjs+nQ2OrZx243W/TQb999s253u88+/2XtjXm603nj+rY7x9/vvjefeaL3x2MZ1//jGbY3r6/c37mtc53EbfF75jnkyD4/wJZbGlN02TxfxN7vUNjp+5QC3Ur/munPXHrP+itfnofH4taXwPzWm4W9DiVm+xl2NCa3wWD1+ze5Nf9jofH+b/+4n1vi5cd3fv/7dP8Z/b9zfuO36dT5HApi3njMTBTCLIx4wEKcQByvVY12w9Jy5etomL71iizMX7dq5b4EV0w5Y/+h9LvA7Tm68mNZFYBsIeMIrg7Lnpk478So78w6+lkG4xByz9OAJuMUccoGLWX8yFsyqYN74G9iGrOoSIiACIrADBNzgEgV7uEwjtJxhZgQ8E7ucpVUUwdz57MxOn4aQdRnPR8YFXLbMvkdgrTp44+bQDpRDlxSB3UBAAtZuuEvKY0sIcIQkvziJeFev2tUzz9rSzBWLIZjywP6TNnT4IesehOsOOpf+6PFqg7wl2VGiIrAhgRvKFRRU0QBy+ylqeEqHS8M1pFy/0e88UjRZc8jqtW58gdVjcJVG3cSlj71e6kyA1lV1Tcqlt/KpIY2GVXdMw+c9ueqJAiw6LVUSGbheYWbCWLrXuV1xJsL56fM2ceEFZ/kZisSsD8J6GKKXz39PYlOht50AnzO1cs4KsxchXr1kudkzMKyKWKrvuLMkSOI9HM+sPGA04+C23yJdUAREoG0IoGVUb3rRfZqzEYYg7FPc5+fs1FuYCXrSFq++aMFIwrpgrboaE6ttCqGMiEBbE5CA1da3R5lrFQG6DpbyC3DbedsmYH3FYO0xuuwcuN9Gj7/bMoOHXafRF69alQ+lKwJ3RoBKkNdScm58vqDFRFcUp/r+ZYpQ9VaVJ3vd4tLrVSbvs5+sS8n/wMu51Nafc4tLaPcaAkGIVOnefQh8jZkK8YJsAJfCCxCxXvSstPCMSvfux7Mp4okFDfzXJKQPItBEAnSJKS5es8WJVy07d9alnIZolRl9xBIISszOWaOA3sRLKykREAER2PUEQgzknjkAAQszEMJCa+Hqd6yUm8WAwPOo62PWBZfCcBSu11pEQAQ2RUAC1qYw6aBOI8AYMwtTF13HcG7yjAsw2zt6jw0ffdQy/YfQQYzJyqHTbnrHloeiUV2YoqDRYInly0os+uouHns7QtPqsRtb/vjWV95xvkTGa2q5fQK0xkrCbXnwwCkXI6tSYoysaRcfi5NJxDETaijc7e746p25/evoDBHYFAE8T6qwvuIsg0uTr7nnC90Gu0YetEQfxCvMNOgtt/tc2dTVdZAIiIAI7H4CaIB51liMf3XKxcmaRxzBAp6ruUQ/vD36LNh7GJatMZRVrajdf8NVglYTaJwWptXXUvoi0BYEaH1VxLT1c9fOYLbB19yU9j1DxxGw/ZR19R1wLjptkVFlYu8SQGNnU02YuoJBCckXM2iJtfZcfw9FLK77n/33jTD7+/x3/1zvWJd+fRff/KvDyOuWy9q83fLwPXmAcynsGkDcq3utf98JiARxW4CV6PTYG7Y0N+aeWU6RXHen9yQsFbqlBKqYFr4wf9myM2cwNXwWHa1+Sw+dtGTfMQipEq9aCl+Ji4AIdA4BJ2KFESZg2FID9yJ+4FFYY0UtN3ces7megZu2N1OhBKzOueUqSesISMBqHVul3IYEGMujgplBcvMTNjd51lk20HWwb/SE9Qwft0gcJrzohG+iH96GpVOWOopAXYjyBKIbl8wXjRpFLIoba4Wi1W/09SKWf4XGd15v/TleHq4Xr+rbVw/3NjT89VNuPNfbfZOTGs7fi6uMgZXMDGFCibsxI+o+q1SKNo9n1vzEGSsXFp1ouMbYbi9CUplbSMB7gtD6KjdzDhZY5xGvJY1g7YctgVc4hphXK08Z/Y5beCOUtAiIQAcRoJVVDLO1pgcxMQvErHJ+2olYpfyMLWNm4sa2VwcVW0URgaYSkIDVVJxKrO0JoMdXzM0798ElWDTQLz3Td9AFbE+k+zEzWMi5SHjWDW1fGmWw0wncqYiFfiUFLu9FUYsdTUhdSPd2XsTM7qyLs4VzXRpOQuG6l75b2eAPKxkeJfFqAzg32wTO4VgCMa9GnbgeT/ZZdn7c5ibOWTE77xO9WQraJwJ3QADPC8S+qhQW3PTvlfyURZIDluw/5mYbdIHavZ//HVxDp4qACIjAHiLAthdaQyHEu4r3HoI11qgxNGk5NwV3wotWKS3uIRgqqghsnYAErK2z05m7jgCqjWUEb4f1wtLcuOUQlDaKWb8yA4cRc2YAprwQr7ioUe5x0N/2IIDvI8Uffi1v9tXc0BJr5axbnX3zonri0+rVG1NzotYNTvfPkHh1A0C32Mxgr/F0H+LyHXTvHKHlsyu7OGVlWJJqEYHWEQhYrVJA8Ha4rBbnLIDBnhime6flQAgzZ3kzDfq/8NblQimLgAiIQKcRCASDeI6m3PM0khqGe3beE7CKS2jo+c9V13LqtKKrPCLQFAISsJqCUYnsDgKY0wvmuYx/lVu4hlkI5ywa73IWDrFkN4rgVxZ+5bE7SqVc7gEC+Ery28lv5s2+nc7SyuHwjvKPX3lfaRjdHjNnrbXBtTcSr1auVT9e4tXtsW48mrOghiEW0Do0AXfCIESEEixIcwsTcDtYwKH+M6vxLK2LwJ0T4G++6gSscXSuci72VSw95GbKCgTqgz13fhmlIAIiIAJ7i4DXPIPHR8TiXcOwwhpB3wSTtSxecXEGvcmi6wftLTIqrQhsmoAErE2j0oG7nQBHjMsIkjLVIaMAAEAASURBVFjMzjk3Qnb9YrDA4qxeEU4DrkUE2pkA2jObEbF8lYsdUMpdq//qAhi234774HrxyqWLNDYSr4jPu6r3LvHqTr9QcPqEiBWJJS2ZHrB4st/F8CssTjpL0pXUFQxrBYVWmkeghrhrpeyUs8QKY5asaKof38cQnkM191xp3pWUkgiIgAjsFQJszKF1hGdpJIH+B56tCH6F2JbTbrBgebmyV0ConCKwZQISsLaMTifuNgIUsCow0y3CcqGKhnk03mNRWF5xhi/PZJddby0i0MYE2O5B9nyR6JY5rR/vHXdn329PjNp8GhKvbnl3NncAxELG6oslut2LokIhNwe3rrz3ZUAqjvXmUtNRInALAvVvE58dLgbWHN6LLmh7OA5L5ZU4kbdIRrtFQAREQAQ2JoDnq3MjjKUtFOtyIUzoIVIpL7n+yWpLb+PTtVUE9jqB8F4HoPLvIQK1GqapLULEyqFBXobVVQqWDSm0x/Uz2EPfgl1YVIpGDRIFO5b4yK1cGvZ4G9b/5fH+gc4qyz/DT2H9Ces/8/ibH7t+r7vCysaVlfUJ6/MmCfAZFY4mEPg1btVqycqIk8FZCb2FfP17uskEdZgI3JIAg7hXrVrOWg1CVjCcwCyEKWcR6J2q3/UtEeoAERABEbgJAVpYh8IxvJJ41lK8KsAYC3U7nrfewPpNTtYuEdjDBGSBtYdv/l4rOrt4bJBzlIPWWMFwxMKYqj6IYIpaRKC9CbCz2NBhxKovKzVsvXkRVg7kysqHm5/j9t76WD9Fvq8VrzaRvA65JQE3UovnVSgUwbMLokKlhEYu3QwkXN0Sng7YMgHWk1V0plhvBvDdC4aiSAu/crmsbpmpThQBERABEvBbVpxAKsBnK0MzoH9SQ92uml3fERG4OQH13G/OR3s7hoDXtWbsjmVYYrEBzpEPdgzhE9ExpVRBOp2A3+RBOdmP9N5WGkI7VXq/seXeG7K42kTbqZzt/usSp4tjhucVY2Ys49lFYQF/d3/hVIL2JwDrK8xH6NWXrDOdFWf7Z1s5FAEREIHdQQC1vJsYA+8YLEAnZXdkW7kUgR0kIN+pHYSvS+8UAa/jx7+QsXYqE7quCGyRQMN3Fqu+kOG24kvdsHclfe+7vvJxyytMuzF990uqb3Dra/Zu+TI6cSMCdc6N/Dc6TNtEoBUE9L1rBVWlKQIiIALrCOhhuw6IPorA9QRkenI9E23ZEwS87vaeKKoK2eEEGlo7DauNhebmG+xqPOym6xuev2bjmg83TUs775CAUN8hQJ0uAiIgAiIgAiIgAiKwGwlIwNqNd015bgIB9QCbAFFJtA2B1e/z8urqmtxx8w12rTnuRh/Wn7/2OneS8o2uqO3rCYjyeiL6LAIiIAIiIAIiIAIisJcISMDaS3dbZRUBEehgAqvyxlpxabXI60Wo1T03X1tN2Ttubfrr9948Le0VAREQAREQAREQAREQAREQga0QUAysrVDTOSIgAiLQlgRWxSRPZNrYVXb1qM0Xonkpbf6aOlIEREAEREAEREAEREAEREAEfAKywPJJ6F0EREAEOo7AVqSqzUJoZdqbzYOOEwEREAEREAEREAEREAER2CsEJGDtlTutcoqACOxRAq0QmlqR5h69PSq2CIiACIiACIiACIiACIjApgjIhXBTmHSQCIiACOxmAhKcdvPdU95FQAREQAREQAREQAREQATMZIGlb4EIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEBbE5CA1da3R5kTAREQAREQAREQAREQAREQAREQAREQARGQgKXvgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQFsTUAystr49ypwIiMDeJbBsy8t+6bnixbEKuDfFtPLJ6F0EREAEREAEdpwAKmyvyl6puJGlgAW8SnvHs6cMiIAIiECnEJCA1Sl3UuUQARHoGAIUrpbZGK5WrFarolFcYzPYgsGQBUNhC+BdiwiIgAiIgAiIwM4TcHV2rWbVahl1dgUZ8gadQqGIhcJRiVg7f4uUAxEQgQ4iIAGrg26miiICItAZBJaXq1bOZy27MGH5xWkrl/PGhnA82WNd/fstnuqpF9RrJHdGqVUKERABERABEdhNBLw6mKJVcWnOFmYuWXZxyhWAdtKZ/kPWO3wcIlYEn2p4yXrawdEfERABEbgDAhKw7gCeThUBEdgmAhzebFw63CR/GVZXhdyczYy9aZOXX7X80rRFYik0hO+ycCyxKmBJv2r8VmhdBERABERABLaPQL0OprV0duGqjZ15ziYvvQSLK3SvagU7dP8nrHvwkIUDUVuWfrV990VXEgER6GgCErA6+vaqcCKwywmgcbiMVp9zo3Nm+ebc6OhCFwhgDooOFbJY5kq5YDlYX81PX7Ts/IRF4yknYlVKhZWbKv1qBYVWREAEREAERGBbCfh1MOvsUjFrC7NXbObqm2iopM0qYzZw+HEIV1WXJ//Ybc2gLiYCIiACHUhAAlYH3lQVSQQ6hQBDolYrRWeNVICYQ8EqmsjAAqnPItEEPnawOb4T7ioof8kqlYKFKmGrIb4GG8paREAEREAEREAE2oMAxakaYmCxjq7A5T8QhMVVZdYNvrl4WB3cVGmPO6BciIAI7CUCErD20t1WWUVgVxGAfFV3pZseO21TV15jGHPrGT5mA/tPupgSITQSO3lh4Hb3j0IdXvynRQREQAREQAREoL0IeONpqKX9+jrgT7aieru97pRyIwIisNsJSMDa7XdQ+ReBDiXAsFcczcwvztj0ldft8ltfczPwMVhqV+8+S3YNoORsGHLss1MXlg2vhrfVknZ62VdLqjUREAEREAERaGcCK6E6XZOkXmm3c4aVNxEQARHYpQQQREaLCIiACLQjAbgPIjBqGXElSoUluM5RsKk/slYaiMy3+9COBVCeREAEREAEREAEREAEREAEREAEmkRAAlaTQCoZERCB5hOoVsoQr+oCVj0Q6upVZJa/ykJrIiACIiACIiACIiACIiACItDZBORC2Nn3V6UTgV1FwDOswl/Y4jNYeRXBy2l9VcovrAYvr+9zMxMuY3Yf2u274BP12BM3KfEyj62fv/6wlbgVtPLaojbmp++usd4yrB7Dyr/O+uu35LMHFNnhCpm6DfVLNcbq2GKBW5JpJSoCIiACIrDrCbC6dfUOJh6p10GrZUKdwzoRswnj76bqXNZf6ycxWXM+r4d2A6/pXQ9Xc9dg/Xbr9sFq3lbXXI3JNBGgnaVZXfz8e2mvbteaCIiACIhAqwlIwGo1YaUvAiKwSQJodlZrmMGn4GYerMH6KrcwafmlKYhYC95sPmhEVkoFNythfmka7oVxpB2wUCSKWQlTLkaW07LWXZENXwpe1XLRqqU8rlHE5wpeNdd4DobCCAoftXAkjnTiFsDn1YbvusQ2+Og3rJln5o+zENF6zDWmce1gMOSCzofDMQtj9kReCxtxCTZ+W7CwvGzswwWTsxi6cldLLqYYy8zFLzNncwyh3MFQyLFgubWIgAiIgAiIwFYJLNdQ/6DOZX1eKi65Ooh1LoUgik6u/onEXL0dRp3Lz17Vc+P6h3VZMb/o6jEezHo1Ek26ept1Kevccim7Ur9TxAqGIm5/GNcKov4NbrLexamu/q4xjEEpZ2UMpNVwfVd/4lqhMNsMyH8s5fKwIphtFZjOEwEREAER2DQBCVibRqUDRUAEWkmAIlAZ4tLS7BVbnLlsxdyiFbIzNjdx1oqFRa8xDBEmOz9uE5descXZMQuh0ctGaap72PpG7rZ4qqeeRa8R7DVCPeGqmJ+37Nw1pD1mucVJiGKLrsHLxnQUjdBEus/SPaPW1bfPYqleJzR5jeobN6h5MSeOseGMWF25xSmXfnb+KvI+6xrv3E9hLJbstnRmCOnvt2Rm0CLxNPIedQ3qpnLF9WrVqmt055dmEAQfIuDitOVzc2j8zzuBLYjZkaLxFHj1emVGUPwY2EUiibp419QcKTEREAEREIFOJ1A3UKrBYomiTxF1Tnb2qs1NnqvXuZ64FEa9F40lLYF6MDNwyDJ9B1z96wZSUB9fP4jChAMYuJq3q+eet2J2zgIQoqKxNGYlPm6pnmFHlgNeC9OXLDc/4Sy3KZax3k1mBlwbgfVuLIm6HQNetxo8otjGOp1158LUBZudOIfrsk4vumvHkW4iPWg9Q4ddGQLBsBO8Ov0Wq3wiIAIi0A4EJGC1w11QHkRABJzJfwWjp/NTF10jNYtGaAWNYApNHMV1LoVoPC7OjVsBo7AhjKhSWorGu6x/3wlLd48YG5XLtCPiDgg5yxByChBtFiYv2PT4aTSkz6NB6ll0VStFJ4rx4FCII6lJi0PE6kJjum/4busduQuN3qH6yPDGIhYbyE50m7tqs1fftpnxt20J4hUb7sw7G8HMB4WwMMShaCKDxvao9Qwetf7ReyzTf9CN4DIPLs93+D1wYhpmbixAuJq9dtamxt5Ag/6yGz0ul3MQ7GB5hhFlLqEQrdbQiWCZ+w9ZP8rcN3qXJTC7YwDWWFpEQAREQAREYFMEaLGEA2l1xYGSqbG3bPLSq6jPzztBiWKQq39QZ9IKipZRUQzisL7JDBy24UMP2cC+eyEw9WAf6x9PtHLX5io+F5Zm7crb33QiVRCCUQoDQqzzKkh7CYNTE5dfxQDYmBOvqvU2Ay2eWe9ysIb17r5j73aiUygMS+vg9fU602Nbg3Uo8z9x8RWvDGg30LKaMyMHMABES+1oPGOJC/3Wv/8E6s67UednXXZd3l2e6x/1JgIiIAIi0FQCErCailOJiYAIbJUA23sUVxjvamn2MiysrrjGotd29VqD3qjoIkZGF9GIDLiGJkdUUxhZZcPSb/S6RijSyqPBO3PtHQhi37apSy87cYn7nAsD3A/4zqVUg3XWQtUCU+9AiHrDWYGxwT148H4ITiPO5S8QYB5WG7xOvMIxFIiuXXzZruEa85NnrIyGM1rGzr0hWB9NrhUZQ2PalmeqsCh7E4LaGTeayzx3o1EdTaTrWV9N32Xspn88Jv4hLBddKCjQTY+9aeNnv2VTl1+2PKzY2OD2XCRhYYWGP69bokUa3uemDHl6x/IQDNlwHzgQckIeR7i1iIAIiIAIiMBmCFC8ysNKaRKiz+W3/9aunX/OWSUHDO6BEKXocseBk3IRgynOmnrMZq6+jvqqByLXNSdwDR18wIlNnojlXxV1vXmDRQuw5pq5+iaslxNOKEukB2xx+iIEszcxgPQq6l9YSKG+89oHqFYZvwqxMlmdzfYdRggBbzCsZ+iIs7JutMTyxKtltBtmIFy9bBdf+y929cKzuA6EqSCtpUMWRLuDA1KVchZthmu45stoA5yHZfhV5LvbuUqy/ncL6mQtIiACIiACzScgAav5TJWiCIjAFggwkCtFlkS6HyOlxyHqdMNyaNE1iOlKyMUbte2CpVWP1/jEOXTFS8Mtj256vsDEhmgRMStmIV5dQUOaLodlzGYYghUUY2HQaovWR7yeL0QxTgetqcqlChrUb2A01Rtt3X/3Ew1WSZ6IxXZpBdZMS7C8GodwRbGIrolsOEfj3XghLgbcEml1xXL5cUDYcKcLwgLcKirlb7rtATSK+2DtRXfC25GvvLI2NpDhgokyzF4740app668jvTL4DlssUSXcxGMgSk7ECxbDrHFyJWzPBaLBZtipyCCeCGwRBsE03AsAUUR8bKaYRrm7p7+iIAIiIAIdCIB2C25+mfmypv2znf+DMLOaYhJZdSDPc4ymtZWdM2nuz7jSRUR17KY817lUtXG3vmGs1oOwTJrCNZYsWTGiU9e9VOvGfGBAzCsMwOhuKtLZ6697aWXn0M9vc/S4YgTmjgixDq6mEe9joEmxoTMLczb+Vf/3OGnxXVm4CCqN3SDIHKxnmO9TsstWlJfeO2v3cBUucwYm6gP4XYYx2AZrblYt1PEYvuEabNev/Tm05buPejWYXMNoQvVJ/KgRQREQAREoPkEJGA1n6lSFAER2AoBNCAZw2r4yMMwx7/HjcbSnfDy6W9CkPkaGphhJwwN7Dtpo8ff7eJOMCg6LYUoFFGkcaOuuDaDrWbhajgJEWf68uuwNspiX801QHuH77KB/fe7uBtsiDLAOYWoWVghTY/DOmrmkucWCAswikCJrn4bhDjGvHnWW2zvwk0C8Thm4DY4iZHapdlxN8pLEa27/zBcCk45F8QEGuwUmmgJNj+FkWOkPzsB6yvE9+JI9ezV05aECwXznobrojcafLuNXh4fRJ6WUc5F516xALeNSrmEhnYSbhknHVO6adDSi4JaFftyCxMo3xtopL+Icy4ivsgiLLHOOIuw3uFjTiBkyrcnquEELSIgAiIgAnuHACoKWlTNwVX/ytt/h3rkPAZG8hgsWbau7n22/973w83/Phf7kXV2FZa/nJxl6vJrqN+/gfrnCsQmc5ZVl94awHHDqKu6wG99DcTPtKjy3OA5ucvCdBX1fwT17d2wmH4AoQT2eedCjfLaAK+innsVlmAzaFPkEVKg4lzre4aOuRABoUQUFsmwvsY/1uuMYzkN90eewxmQA0FMvIL0e4aO2sG732d9KAfdHKl2MSbX0twV52o4fu45WGCfdW0EL9usOZlfLSIgAiIgAs0mIAGr2USVngiIwJYIULwJwDookY65oKucNdAPwuo3ZBn3gkFZM7C46kUDlDPoORcBXJHH8jjOvEdxifGuKMhQKOLCRmf/6Anbd/w9nrgEYYqjvWy8phG4nYFeGUSWglYW4g4Dxy9QdLo67OJixZJsUKNRioYrLZgoWlHAovhFq6oILJa6+g5BXHuP15DuHXVWXrw2j0/3DEGowqgyhKaZq2+5c5YQkJ6iGcUrBpgNoDybb/PWG8eujQ/3QcTbKsICiwHqC9lpiGFhS8ClgR2HkSOPIGDugDcyzZFmsE12D1ooGsMoOYLt5medhVoNDXyKYBxRJme5EfLuaREBERABEdiQAOof1sG0qpq5Snf9v0PdmXMDRrRI2n/PU3bw3qfcgBPra1pPcSCoUtyP+qkXn8OwivrPGDjCxC0IHzAz/jrq7YdRX/oiFt0HfSGIopA3pAJHPhgIU3iq2cjRx+3Ave/F4NEhV29xIInXKOWPIb7jAQzGpCGUfQXpw6p6OQBh6wKsoK9A0Cp5g0auDoU0BhFuYfKis8Cm5ZYFYM0VqFrv8AN29IGP2sjhBy2JkALO2hvnsF7vhhUX2xZsN4yfe8YNBHkDURKwNvy+aKMIiIAINIGABKwmQFQSIiACzSKASBcUopx4VXEjtWykri7cj1kFMVzrGp9oDFNQQivUa9Yi9gTjO+WXpjEayrgU11zTNwK3wa7eAy6m1eDBUxalOINj2TBmbI54Vy/cCSFmIW2KP5xBiWkUcrOIr3HZCVpu5kBYNPEcBpZfnLkCgYuWTkUXdJaN8f7R++D+8CAatYeQbgTZ9hreEbgUdoXprhB05xYgGC1M1S29MILLwLPF4aOWgBsh42xsbqk3kPHGxjrLTeGJLoF0nQi6ab6jTjSj+4azvMIxfuOawW0zaPCPHCmg7HHXAfFEuP31TgamO0cnQYsIiIAIiIAIbEgA9U8N9XF2ftLN1LcwdxH1ST9mtI3AEvl+CEtPOesl312fYhcXxsNi/EfWufOY5S+/eM2573P23lm4BfaNHIMwxEGjGyyo80Oo4xijkm7+B/BimqwLvWXZuStydt0S6sX5yXdQP76D/QEMcHFm3inXhuCxrh2A2o6WYQsIBbA4fQZbw87dPh4PuwDz++963A1yMf+sa7mwjmUQ+sH9JyHI5VxMrFL+O0hPXSsHSH9EQAREoEUE1DtpEVglKwIisDUCzhILjVOoKE5sqUtT9cTwiWKVe2E/3Afdyx3vCTpVWGDRtJ+zGHI2QM54RGsiugx0Oze6DM5n2tS9Vq9BdzuO1vaNejMh8RqMm8FZDLOwsuLMStxGS68S4l7Q0olueAwszxmJKJD1jhx3llRBNKS5eOnzMbuMxnDY7aOrAy21GFTWloNotBec0MYpwN0MgczYSiOcqdxo8RvqLDcW5IvWZ8uc+RCNcc7ASEGL1mRkwVgdtP7iPi4sSxwWYZz96cR7vt/uf98P2H3v+QfmN9TXBtF1p+iPCIiACIiACKwh4OI6Tl+y7Owl1GscLKm6OrcXM9vS9Y6xK1lvss7x6h+84z8tqhOpflhT34W6cQTVHgenYAXFmQvh8rfxwjoMlSfqyDDiWGYGjuLc4TXilX8ddyQGhNIQuXqH78H1UKejfiwXF2CZPeMGqiigeW0MyFi0YoYFcjE/hRobW4M16xm+D/X6Mc/9Hu0FZtyv1/mOk1xZBw6cQF6OIx/Y5o5j7r26lmtaREAEREAEmkdAwwTNY6mUREAEtpuAr+HUr8vRV5ryU2yi9RSnvY5EvYDqya5B19B0AWBdQ3ptZrk9CjfARLrPzYK0NBdDYxdiFQPJQ6yiiwQbzRSZGCy9kJ1z+5YhQnF0OY7zknRLhLXXhgsatSEXCLYb1xhwwefp0sCgsYwHwinC2YD2GtMbprBuIxvHBMBZFTkajWnJEdPLCzBLSzRYk0HIm7j4EtKtumm+070j7rrBIAPdhvHCzFDIbzjGAPhaREAEREAEROD2CFSrRcwaPIaBknFoNgiyjqopnhqwKAZ2arAGpsUSLZdWLXr9itsTlBibMRJL4xhaXVcwI+El1OEL9UywnvOstvxcsb5DTWxhWA6nMnDNh4WzJ1rhiPrgj1/FU2TyA8gHIGB5AzyYRRDuf3SXZ7xMutvzNOaToQNK+QkUAxbTVoF7/0EngDkRzslafi7q78ge69Ew2hlsO0TjvVbJ+nlfd6w+ioAIiIAINIWABKymYFQiIiAC20YADU2a/G+0UKihgMUZB6toOLu4WGjJMmZFFLMaMQaHJ/qwUbx+4YhrGK4PSTRCu1zjmDMZUmBiMFcGRed1fVe9cgkzG3H0FkkxlhbP4YszEXqiUmP63vXYmKabQwwufWywlwoF12D3ZzLy87tx6RrTW78OAQt5YKD5LsQHSyGQLV06OKsiA8uW0BmYn74Ad4tRS2KWR87i6F6IkcVZlcLoaARgIcZOgNcR2IjP+mvqswiIgAiIwF4nwDqRAzAluMbT6ojiUgVuhYxD6VlI1931sW918Rz3OEPvAiZrYV3F3axTi/lpCExFHFqvCfnWeCo/QHHioBNFLApIK3XmmuN4NdaNnjsgP3liGCc9qaGNAGGNlmHoCXmWWVlX19OVMBzmUFLZzZzIGRE9aytcxVfGvMTwl+XFX1p6I/B8NNFjOQxueRm6LjMrZ2lFBERABERg6wQkYG2dnc4UARHYAQKuoer/YfvQjbh6DUWO8rJRykYxxSw2NrmHFlK0TApBqGGD80YLxRtaSUXgmsBzmDYb53SRcO59uC5HiNm4ruE6fmOWcbTozuCsn9CY9lqv66/jmrlu+m0KRhHMnMjFa0gX0eDnKLUrmNu++T+8Ds5jAxoCVj9cIIvZeZu0l+CGgbgisEIrQbyanz6LMoUhXPVh1HrUiVmp7lE3usz4XvF0LyzUMk5gu66NvvnM6EgREAEREIE9QwB1JESgCuJG8mWBpBODcosTNn72WQREf/WmJOjWTmuoAmJO0jIYFaKrwzkpCfc5b7z1VWlDipTB1tSaXjWLIxpP2nhgxg3W1A9ju6GQW3DW1f9/e+fZXEeSpeeE95YAaJvsbnZPT/eOXxeKlWJD2lAo9Bv0F/VFf0Ers4rYXjM7nt0zbehBgPD+AnrfUzeBQqEuAIIAcQk8RQJZlb6eKtyT9+TJkx0dhWzWOvwYC3gCrJjYKTVcOfXElS29evry7omxCLGSi0sIQAACEDgPAiiwzoMidUAAAu+WQB6bHhq5auxrhZMGvlYuZWexocSSdVIxU2vH6q0OVabRsq2wrLxyGINjKcK8zCAUYo7xtZRaodCKQbKX8GkpnsrYusrtWQ9VqwRSvz1r3KndFjutINP1XkNOYV2/6gxFVHSvcmOtulyK9wyxrbrGZx5Gf6wkm3v6aymx5KxWCjjPKvuLxvqalj+uPUrz2qHRyw5tiTUmPyJT977QjoWfh0Kr28sga2+g1CCnEIAABCAAAQk8bxzSaGykzp4hyZmmUkoCztbQIehCzZQFt5E1haTK2veVxU2/LJg8odPdY5mqZfBSZpVsq07Heb8Jy9Di4kCU1cjViCqWFtpn5O7OhooV4wRbku3LatUVyyAPKjvoT9xKYentnYx9bzUtHeTnDAIQgAAE3ooACqy3wkdhCEDgUgl4fFoZKYbN1aFpW2XQoNiKrcN+OGp6bs2TBs1exlDkVR4NWIuZ2v2RsSMjvmi8cCjrgbfLHXu4r6q/UIIpr6+jqlxfXB5bxUGiCx8+7LDe/kTsdLZfjuttjbWs7cmX5uVgd+GpHNe+Cmfu9o9lBZwd5m5trmvJxorS5sKn160Hv4gtz8OXl/oa3ywON8MVBCAAAQhAoCAQotEyzLKw8AnVPzQZG5sMyLLXMtkqnUI2l6BlERblHV8oiTyxMjw2E0qsgwZy5lL5Y0/3Ky3kbOQtxR0pq97ZejpcABQ+t9zfg8kqK9Xqy+doK+I81qjPdaRBIiAAAQhA4IwEUGCdERzFIACByyKggWyLsaxnbTvt78IWVKHEKvLGskItU7BfLKfXH8Xg2Uodb4nt0ANy+9fwroIOPcC283PXb6eu7od25Q7FlR3GN9TGnhzK1rfhYa2XJHoJ4kY4mHc/OqPPzfo0Ei5u7TRD4KI+11E+Qollf1yyxhoan9FW5fe1W+IrOYqfl+P5Re3MKAf32oHJSzzWll5ol8UFWWQtqE/epbChciPhS6tfW6HngXm5fs4hAAEIQAACBQGpeSTDbLXbJX9UYX0sWWmH5jc//HmauvvDQvETCSfJtUKmWZE0NHazKcPPgfNJzUrq2k9Wr3Yi9nLBtCfZH/21s3eNBUKu27/lcRVp6aMtnW3BpXGCcx52PX8O90EVEIAABCAQBFp9kwMPBCAAgTYm0NRgNYPcUTtSjV315KzdiiYfsTOhFFfeTdCKI/upanXY6sr+s7zLoJcSeMDapeV+veETSworXXdqdrhb9XdLqdXR4Q7krbnlAFbl+ncn7HSrOQA+POD1LLSX8tkB/I7yum+d8ktln1s9dqQeSreD3lVu7yAhziqpqisWLig6QuXxksYhbSFu5+1ua09LK81hdWlWVlmP0+vnX6WFF4/Ssqyzdra308rCs/T65Z/S6PSD1KPlHLGUsNIqlxCAAAQgAIFMoPD/NCIZNpw2N3dSp2SNZefwxO1088FPY/LHstXys/bYl12FPLX2x7IwK4ysDsoyrbb8qSJbtN2M9oRUbN5i35R7hUP5vdQdG6B4E5eBkSl1ynL96H2417bA9hJEy/bC1swVV2T0qfpJJghAAAIQOIkACqyTCJEOAQi8NwRszWTrqF5ZQdkHVOxOpMGxrYs2VrVLkgai/ZoZLgbGzcFy8+48wLbVlbfR9hbe3nUwdjmScqlPu/VZaeWBdJ6p7bGllZRkuzLBsg+rTVkxbWj3ISuL7AfDA+6DIXMxkLX1lXcctBXUth3eKo+XS/RquV+vFEaxhMGD/2afclhcug4NnmvGxOH7S8opW4FZSed7cd9C0RYctMOgtxCXg/q+roloa2TyXpqY+Sg9/9NUevyHv5dC64nuX45sbZ0lBdeodjM0Q1XW7A0BBCAAAQhA4DABK38GYnfbScnPZ5JSu5Ijs9pMZEnWyTuxw61sjfcVUuXSXs5upY/lYrExiqyeLcO1FN4TRz7eXnlV1BKV1f2SiCtkvSamZIVlWVkI2m5N9jwNP5IjNz5I3bpPuffal8/7VUlGNhpbxRgjdmLUUsoQ3sjOfUacQAACEDhHAiiwzhEmVUEAAudMQDO2nrS1wslDwSO6lBhnxkixaFj5vIugHZMPDE+FU3MrojakMFp89a2clT+Qk3ItTajsKuS6G7K8ssPz5bnvlf91DLx7ZB3VJ+XS4OjN2CLbg1IrxbzbkJdI2M/Hugbp3gJ85fUTbQf+fRq5cU/tFgPvAxq20tL24NrlaHn+aVpZfBYKMo9ybXk1ODKjGd4b+wq3YvTr+yp+invX1wIpwApfXsUMd67fS/82tERw7vmjtCALKs8E9w2MpombH8sf1sP4cpGtuzq1Y6LMx0LJ5upHpKgaHJ3RQP1F0zdXdoJfKNIYgmfKhBCAAAQgUCVgS90xyb2hiQ/Sgna8TalHsm4+/C+uLr6UzL1dLKu3ALdAt0rKa+8Vbm4spdnvfpVePfmNlrkvaIJI/q8mbqXbD/9SPhw/rTZ1MdfqirsVm5posqpv6J5kuuTtXm9afPkovZ79Nk3Kn2SxG2GpCyGYNa0kq2rL3+XXTzV2mFWG5i6GMWop5ecUAhCAAATOhQAKrHPBSCUQgMB5E/DwNpYRaDmeZ3h3G1JiybLIs7T2ZeWZW5vth1YrBsVFfg+A+4cmQjGz/Pp7DaKfaGnfqpRL36TXL+7Kt8ZMLG2IHQM9kFY7VgytL8+lhedfp7lnvwsLKY9oPWAdGJmOZXheXmBLJ3Um9UiBNTSmpXkTd1W3lw2sp9XlF2leCiQrhKyU8nbaHqP7PlzO1l9Lc99pZ8DfqU/fx0xud3eXFGTjqudWKJkK31nFIN8zwh2695gN9n1LSeV2iqWQa+qbBsnN+/YXAQ+i12U59fLbL2VN9a2UeJMaTP88lgHGEkhZkPmIe3Co+ordFXd05V56B0YtmlDf7QskrNcUywEBCEAAAhCoJSBxZQXW6NQHmiD6ML34099LtvXIEngzzT/7bXrxzf3U9UlfTPiE5XNTZlkOedLIE0aP//C/0tNH/1PyalnycCR98Nl/lDz7mZqzdLZsyoevL+7wmGB86r528v1xKNQ8LvDEztyT36XJW5+Gcs3ycd9GWnLZY5C15dnIY7m7u2u/mZ54K/f74vpMzRCAAASuIwEUWNfxqXPPEHhPCFihY0VNd++QFDfroaSxw/GVhedh/dS3NRpKHFtdOZ/zW+ljBZYH0/bz5MGllV3rWkL46smvY7A9tfMjKXi0O5IGmR6kWilkC60X3/1rWpz9k6yjNsPH1YAso1zP4OhU6vLAtbnDkP1ojUzc0WD3I+3u91z55TdLA/bFV39Mz7+xoms3BvSdnXb0Lt8YSl9dfJFmv/+VFFi/jaUGXuLXKyup0ckHqutuWHVZYeeBvUPPBluBFs7iNWR221ta2rj46rvoj53c9oiLfWh1qC4rwrwscGjsrnxavdTMtr5AvPgqrNHMxVZW9g8WbUh55aWGq0svoz4P0hvi0NfXH+wGRqcjrzrznrwpdBMCEIAABC6DgGWZZca4rH3Hpj+T3JWF8VanJox+mzp/0xOyZHz6I8kryWjJIE+eWGauy+J59vt/i5+NjR3lG5Y18p00ff9nafTG3RA/hZ/JfFdvoxQ6oaxEnRVYk7c/SdMf/FTjgEdyJaCJso4eTUz9Ln3/u1H1eydktZc4xthBrgO89HHu2aP05NE/pG2NIwaGbqUdT7Dtur2S/Cyd5rshhAAEIACBsxFAgXU2bpSCAAQunEDhQL1PvqGsbPKMrncEWp7/Lj3TDKf9TYXTVQ2KB0dvaOD8YShf7AfL/qTGZx6E8mpdCiw7J3fZBSmnvLzOiq3h8TuhzPKgc/n1M/08lhXVKymi5LxdLiy8/feNOz/ULkpfxDJCj6ZjCCylV3evnaPfjHQrpnY1YN2UhdWq2nr+zT/FUsTRG/fV77GwGLMSzW2uLD4vrLtk7dSjOqwAm/7gJ2G1Ff6vmkxt/WSFnO/doSdzrdhaX53TjPaXcS/u25hmiwdlIdbTPxgKtkF9ibBibWH2D1qOsSjl2rP0+NH/DoXfxMxDcZoOJd/O5nr0cUmWYIta8rGqfrmNvsHRNCRFl/2EeZDe/AZx4U+aBiAAAQhA4D0kEELRVlj9aerOZ2njz/5z+vqf/4dkjnbkkxJnXhuFbG3+dy0x/EBKqfuSMROxW58nTyx/bI1sRZb2X5Hlb1fIcS/17xsYk/iRhbWkrv+9vR+s1hqkwlpKG6pI7tqy2ssFx6YeapOTR2mnsSefkC8lR/9v7OY7PvNxMRmkCSa7BFiSBdnC7NeRZ1RLKD1ZtCR3AusrS4X8zI+0ySlfEkIAAhCAwNkJoMA6OztKQgACF0lAAz77khrWgNIDXztJzw7WvXve6uKsZkztsH1Evp4easA7nvr6ZZHV0xWO1u1XalrKJy9TeC6lj/1T2Mm5FVX2ceU6PNj0tteb68uxPM8zw11a1meHtJ6F9TbgI5oJjt34bI1kLY8OWzH1uV0NZj0D65lWz9Jubaxp4DqnUEsW5x7HjLPr3NpcVtyK2tIOTVK+9Q0MScH2Sbr18V9osPxpKI6i4qjbZ1JwSSllqykPqJdff6O+2xn9pgb8j0MJZx6exbZVlfP6XuxH68a9z7UTlPyKPP6VlhS+DIfsuT9m5Z0avQwz98mKPWvmhqTcmr73M/nM+qRpDaZILLDyYyGEAAQgAIEWBCwTPflx+6O/CIvmp4/+j+TW97Hc334Z1zTRM//ia03+DIbVsyeOYjm8rJ27ujo0EWOZ+7N074f/QRM6d0LG5uXuh5u0DJYfR88yWXBVD+upqtGhu3Jks6zLHzmUpv9WxE3e/CTd//zvIv/C7FeSs42Y8PHkly21ezXOsC9Jy19bRe9sr6Z+TTbdfvhXYV3mcUoosDo0CRSHOhB9aF4SQAACEIDAWxFAgfVW+CgMAQhcHAE5OPdSPc3czkiZ1NBA10v0NtcXpMDxjoJzMUNrX08ePDbkrN2jxFiCpzMvVxibvh8DTS8NmHv2eyl/vpUi7LXqmNcA82Xk98Db24Dbd1av/VHJMmvi5g/SzP2fhAP0XvXBeapHsSxvSvl+rDZ6pEQaieWH6/KF5R0GVxcX1ZeGimn+WDO7sWSwX9Zi2o57TJZXU/d+JIXRF1JSTcXM70H9zYG0+u+BvPNtb8p/1qs/SYG3oMG/raeeqc0OKbduph355iiWHZrXYCjz3F5f/5h8kPxeM+FP0oaYLb56pcH1Vsxky7ZN5Xul/BoIBaCt0W7c+TzueWz6QSxfVKXqugf8HBCAAAQgAIHWBGzF5AmlUTlzf/D530oWDaeX3/0yrWrCaE2ydkuTKpa7e3valTBkot0DaAOT4XH5pPwg3dBk0+2PfiE59FnIfft8LCyjDnQ/lkYWSR0d65ri8TK+Xf1Iftd2yxqjZooKuVxnp+uUhXXSTyT5VzNP1C1LL20zaD+Zdz7565Drz/44oY1RvtKk15wmkLQJy8bruAdljPT+oRlNZD3UxNGP0+2P/1xy/6Xu+59TV6d8daYVtXO4jdquEgkBCEAAAm9EAAXWG+EiMwQg8K4IFAPibllgzWjg+dOYuR16dkcKmcKSygoWD1692579a3hnQCuiinGpfnfsxUDYaV6OYOfqdrIeTt3XFzUzLGWOlyhogOmlA1aWDY3dDh8YEzc/jUGsB9h5EH3kvl1OVk+ede7RrLKVSVaSLWrHIi9bbMjaa9dO5qUyskLJSjTvXDg+85Ecwv5AA/0PYqljsXSwNNhuNuSlkFZ23frwp+pbf3r1eFqz2C9j1tdZsnWWncoWg3HdihVXWrY4JWXUkJYWjson1tzzP8SgOrYpl6N3K9XMzf3xPQ+ojQkxunH3szSoe7DvrTqFXbNbBBCAAAQgcBEEwkonfp299iwMWtUguXlU2rTKfBBf7lUrmRgyWxbBY5a58kM5IVn3UjsMLmoDFfuu3G1I5tqPpKyAu0P+DGspv5bsaTn89L0/i/Msew63YVlfTGhN3P48dffJAkr+JfuHxkMO2q9W3JS7u6+Pap5YTkux5omi6Xt/romv9RgbjEvp1CvL5cPtWIYqf4fGHVqK/0BjCyuzXnzzz1ruqM1gtGOiJ9JCpmvSysv7hyUzPYk1/eAnUsbdCOuyyds/VD09mnj6KNILGX/AMs7e0ro5nmEx2KlUXLp8izb235GT3qdSc5xCAAIQeFcEUGC9K9K0AwEInIFAHnxOh4LKSpYd7cTnJXDFDK0Gwl5CJ0WM/V51yKxfI9JmOwr134PXAQ1ee/q1bE9LDbe1lM9LF7wcwPV4cNndJ0skzRj3Kk+P6glnsxqgVge3R25AbblNtz1x82MNwG+mrY9Wm22sSNlUDHaLZX7qY7QxHH3xAN4D+ZaHB95SkHng7fuz0svL/bwToR3Pd9v3lwbMVljFjfp3897NxD663K9JzWh76eS2/F7Zksv3bCWVd1LsVr3xRUJ1dct6y/EcEIAABCDw7ghYWbCnjUZid119Pp/s76msTjropz//u7q18YdkXmdFtthK15uZFDv4bh8UannWog05bLelVauJjqIPPTFZ44kdb4KyJbmzpWX6XqrfaGjJoGSfNx3pswyy/FZoS+e8YUm1S1mu2bH7j/7mv8Xkk/NYPnpZvH9qNFhRjct6kuu2lutPaGmgl/R7jODJqX75ufQGKNUj7kFyvVM+Ia2cGpd/zWIH4JVwZeANT2zt7Hrdtn1VxgSaxhK2YHa9Hqd4gszy2ffo86Z4jomtRlOOH/+s659B7q85ehyQ+eR46608RnjrZ+2JLinpimedx1W5FUIIQAACl0fg6Cf35fWFliEAAQgcIRCDSSlWPAj0wDAOzeJqOC79lJf/SQmksdWuranqZhxlieWBrgeS/vFA0kqcsMCKwawHadopSUvq8kxpWGbtT+ke6VIlwhZWduw+EINaO0rflaVTQ204dDXeKdBfKro8WNYotvDtcfzgNBpRXg/q+4ea96773tVOSFl552WJ5nNkENy8Z89Q2xm9uTRUzsssvZOS79NKNdftYan7E/dsfnmUXblLLiEAAQhA4JwJNGXWxtpi+FfyErRdWQeHUIum9JmcRUV8WBdJsWy82RUn+2Pbcs6WRaNTH8QkTFmxETvxyj+jLYS98UgUyPW6nmY/CoEQEUUXmnlyG7FzrjYPGZWFkid+JIyKulwkH6rLVs29A8OSufJLqWvLW/uMsvyy3LH1Urd2D3Zalj+Fksc3WX/0htLoo5B5ZuI+uYytuoqro+XMoEPt2dLYVstRu35Fm5L/DusPyXUleBKoX8o2y1iPG6zIshWzxwth/az7VIT+uw/Kr0kwK7bM18/EVtihNFOam3KcJ8/mnv4+/IIVVtpR1Dnif76KULI8DgfuUITFiZ3dT8kNgRWK+wWbPNfkGN87FttBftG+y/gotZHrc6zaiRy5HcV5TDMpFwW2kvO9ckAAAhBoFwIosNrlSdAPCEDgWAJW2uwPvppjsfAx1eF4j+0U6dHhkaOI2y/vvBrod+unfHiAauVOs6YWdZVL5PPcGSmX8mBY/bCCyD8HhwbA9onlAaJ7W9vXg9wHZyqX7z2KduoLQGG55T4XFVbv29eVcoop+pP7VAzIi1FrMdiu5+dGOSAAAQhA4LwJhDiQ3NhYfa2lav+kJXf/Igth+07yZ7xSiwxHmo3oUqw/8XukZPjwx/9VlrmTcW45E4cyezJlbelFevr1/1M7/ygZ0ruvdKlrp1q/87hHw5P3w9F6tCGFktU2VemT5YgVS1JdRRdsbWxL4oNDKfZbGYUL+XOSTAxlj6zIDh0qX5Q70otSNsnmhnqa5XNOkQxu3aYrVhHdg+zWApGvbXmVj1Ce7ajeqMexHaGwSjm/H16kFfI6V2KLtOd/+jK9/PZLWaR5zNE89vt3QP/gbD9TLJ/ca2yk+1/8F7k8+IHkuhWBRboD99lKyqdf/0Oaf/KbsMTSrJUScm05zHXuF9+PME27PLByzBNhKLD20XACAQi0AYHD3+DaoEN0AQIQgEAdgf1BqkdW+Sif57gW4X75FukxWm2ZdooED1Q9wm15HJfWspASisH9m/fvpHLqz1m7dFx3SYMABCAAgVMT8ESEl5uvL8/JR+Oz2NnOCp99NcP+SesqrfDq6evVErelfcvf/Pnu4rY08rK2NbWxpJ1sO7tkUaMJlUNVH7ootWU5sSd5Ih1Ih5Yoegl+TMaE/HChekFyvMxVmfpipYYPn0Z9krNvfjRl4RnK7t9DbbNH7+H4/IWiyMrE9ZV5Pevv0k7DFRfWW3FfrZ5Bvmll97PbayzIr5g3irEluus9eA6amgqXAetLs+G7y9ZvVqTtH8e1EdnES5ltRW6XC9mCbL88JxCAAAQumQAKrEt+ADQPAQhAAAIQgAAEIHBdCchiVxbBXn7WPzSipeb2l2SrnUItUVApKSCOYFKa8vdqSV8s6/OytlJ2n1qx4mVv9js1MDgSFljSTBQaFS0fK3QakTPaPdxEUZmVav1aEhg+It2/KFRq6HAhrmoImFanNpvxcsj+oTEpibSpikH6f14uWH54h+ooWHfK99WeFF+2BgtVU+U5OM5+q+JZ632y43k///yUD70ch+r3RfN5Kr/71yVfYaG5PJKPCAhAAAKXRwAF1uWxp2UIQAACEIAABCAAgWtKINQFUhZ4x9m7P/gbORr/gZaVaXORpiJh37LGGUNR0QTV1DPEleNDQdUtp+n3w/fUviLCGZTXCo1h7cR7//O/1Y6zX+zXH+WzakN1RBvluosMEW8liP1ajaoe+0dy3+qy5iKEVQIFLfsFu/fZv9fyv89iyWFmuK9gKj+HeLalesISTiVkUTcip/adeq7V18I+Lu3w/v4X/ylN3f9ZWFAV71OzBdfvo1p3EduMl4JMLhDGtTlNj32dcUAAAhBoIwIosNroYdAVCEAAAhCAAAQgAIFrQkDKBKsTBkYm46e467JK4k04ZFXI0TJ28D40NhM/hYbiaJ6TYyr126dSVoacXPja5yiWF9rR+7B2RfxFk8d5POtSHXoenfqx43X/nP1Zu3uV593sMQEEIACByyaAAuuynwDtQwACEIAABCAAAQhAIAhctOLgouvnMZ6ewEU/i4uu//R3Sk4IQAAC50UABdZ5kaQeCEAAAhCAAAQgAAEInImAlniVjGnOUkVhEHWM0kINvE0TUfPBr7N0kTIm8JbPwVW8m2d9zLvkTnBAAAIQuAQCKLAuATpNQgACEIAABCAAAQhA4ICAlhNetL5ADVx0Ewf3w1lLAu/iObyLNlreIAkQgAAELo6AtznhgAAEIAABCEAAAhCAAAQgAAEIQAACEIBA2xJAgdW2j4aOQQACEIAABJoE3mbdDxAhAAEIQAACEGh/Asj69n9G9PDSCaDAuvRHQAcgAAEIQAACJxNgXHsyI3JAAAIQgAAEIAABCFxdAiiwru6z5c5OQ4BvhKehRB4IQOCyCchxjX3X8JF12Q+C9iEAAQhAAAIXQMBCHid1FwCWKq8aARRYV+2Jcj8nEChJh/gm6F98JTwBGskQgMAlEdj/dNJJ7B8WXp71OcYg95KeyDVrtsPDxA5tmoasvGZPntuFAATeGYF9Sf/OWqQhCLzPBFBgvc9Pj76/AQELB+/w05E6Ozsj3NtrpF39FAPzN6iKrBCAAATeIQF/Ru3u7qS93UZ8dnV0dilEfL/DR3BNm5LM1LumX/HuJb1/IS9Rnl7T94HbhgAEzp3A3m7yZ2tMpjdlOx+x506ZCq8YAUbAV+yBcjutCYTyqqsndfX0azzenRo7m6mxtVkMzFsXIwUCEIDApRLY1eB2Z3srNfTT2dGderoHpIjvUZ8Y5l7qg7nijXdosqezu1+vWZe+X+n929nQdyx92eK9u+JPntuDAATeCQFNTu1pcmq3saHJgd3U2dWr7yeS7Yj2d4KfRt5fAiiw3t9nR8/flIBmka286ukb0ni8N+1srqStjWUJjh2ExZuyJD8EIPCOCMj6SsqD7c3VtLO1KoVCb+rpH07d+iwrBrl7jHXf0ZO4Xs3ovZI1QHfvqL5U9Uh5uqb3byW+ZBUcWPJyvd4H7hYCEDg3AnvFsuzd3W19tq5rcmBdVe+lru7BYtIAqX5uqKnoahJAgXU1nyt3VUPAS266egZS3+B46ukdkEWDFFjri/HFcK/RNN+tKUcUBCAAgcshoGlYzdDaWnRrYzF+urr7Ut/QhBTxg5fTJVq94gSaU//ST9nKr2dgUgqsPk34SFauL+h1lKz0kkL0V1f8PeD2IACBiyGgD88Q7bsxkb6tz9a93V0prwY0YTCssE/NFrL/YtqnVgi8/wRQYL3/z5A7OCUBLyHs6e1P/UPj+pmUD5mutLm+lNaWZ8MSq2nOcMrayAYBCEDgognY91VDn08raX15Lm1KiWUL0sHRmdTbP3LQeDh2P7jkDAJvS8D6KS8f7BueUagJn/W5tL36Ku3tbDWrRoP1towpDwEIXEMCzY9OLx30Z+r22pxWhfSl3qFbqat3KCYIriEVbhkCb0QABdYb4SLz+03ADtzlP6Z/NL4A9g3ekAXWclqef5I2Vl6HpUNxfwzM3+/nTO8hcDUIeFZ2a2M1rS6+TGtLL2KW1sr3obGbqXdg9GrcJHfRngRkYlUosPylajhtb0iBuvxc4XL4bGHCpz0fG72CAATam4C/YdiC1a4BNleep63VF2F91T/6QSiwCutWZWgaw7b33dA7CFwOARRYl8OdVi+FgAVChywXhtPwxJ00NH5HXw6X0tLsN2l14bnWoduJovLoPwcEIACByyaw29hOG7K88mfU+sorWY7eSMOTd9Pg8A0th24uM7jsTtL+FSVgBVavrAJk7afJHu1HmDbXZtPm0pPUkD82WzSzjvCKPnpuCwIQuBgChXaq8Gu5Np82lp7JunVeSwcHU//4g9TdZ8vq/CUEDdbFPARqvQoEUGBdhafIPbwBgc5wgDw8cTeN3nigcrtpZeFJWpj9oywcZtNeOHRnYP4GQMkKAQhcAIFdWV9taung8vzjtPTqW+2Yup5G9Jk1MfNQ1lcjYY11Ac1SJQSaBOTEXcvsu/tG08DY/dQ7fDftaAnr2twjWQ28DCus/DULZBCAAAQgcEoCUmI1NHm+Nv9HTVA91edspyYKplP/6J1iCeEpqyEbBK4zARRY1/npX8N796RxtywXhsZm0vjNT9LI5IPUkJXD6xdf6efr8DXjWWUG5tfw5eCWIdAmBLydtpdqLc99l+ae/jatavlgT99wGp9+mMakwOqR/yvnCSuYNukz3bhqBIrZ/07tdtk//kHqlxLLW72vLX6b1l5/nTZX56TE8uYnPpCYBQd+QwACEGhNwKs8/Dm6sfI0JgN2NhZS3+i9NHTjk3BvYmUWn6et+ZECgUwABVYmQXhtCMRsh/zHjOuL4NS9H4Uz5JXXj9OrJ79OC1Ji2bG7BUgsJ2Rgfm3eC24UApdOwMpzWV5ta4nW8tz3afa7X6b5Z78Laxd/Xk3e/kEaGLmhXeF6Lr2rdOB6EOiQ38je4ZtpaPKhHLrf1FL7tbQyK6Xqqz9oB62l2GSgEJMosa7HG8FdQgACb0zAst3Kq91tLcN+mlZnf69JgJeS5d1pcPLTNDj1aerULumemML51RvTpcA1JNB9De+ZW4ZAbFM7NHYrFFiriy/Sy2//Mb1+/iicvBvPxO1Pm7t8NWdD2OWLtwYCELhIAvr+7wGulVdLr75LL7/71zT7/S/TlpQE49OfpJkPfxFK966uXmW09dVFdoa6IVAQ8IRPd492vpz4SAqrxbT49Mu0JcfDKy9/lfwuDtywReBYITt5J3ltIAABCBwiEJPhVl7tbMTy6+UXv05rr34vOd5IAxMfy/pK3zcGZ5InCzyBhXA/hI8LCNQSQIFVi4XIq07AS296+gbT6PSH6Za+GG5vLqe5J7/Vz28kQBoy8d1O47c+SX1aqtPZ3SN50nXVkXB/EIDAJRGImVn534tdUbVsMCuvNlbnw1ff7Y//KpTtAyNTmrHNn0VoCy7pcV27Zjs65aNleDqNzPw+zbOVAAAXBUlEQVRISqyVsMCyFcGCvoA1Gpv6AiYl1sBk7FrIstZr93pwwxCAQAsChWzfTrtbK1JevUgrUl6tzP0hnLj3Dc+k0Vs/1RLte1JeabJcSi6UVy1AEg2BCgEUWBUgXF4fAp2dXWlAW9Lf0DJC+8Gy0sq+sOae/ibtyGHymnb9mpCfrEFtWd+jHUI6NTsSQkYz0lg/XJ/3hDuFwIUQ0GDVs627uztpZ3tTywnm0+Lst+nV41/rc+iR/PEtarfUu+n2w79Otz7+S/nru9dUXqG4upDnQaXHENAehM2lhKN3fhFftGyBtSVn7kuNL8O5+/D0Z1pieCt1dPdJPkpGSr52JH0p43U9hitJEIDAlSJgS2qvqZaV9J5ku79XbGuXwfXX3zSdtj+TJdZ6fFaO3fnzNCjfV129w1cKATcDgXdBAAXWu6BMG+1JQFqoLm0TPiQF1cyDn8eAu7tnMM0//02ae/ZvaW35pXYAe6rlOx/pi+TtNDA8Gbt/dWmArswosdrzqdIrCLQ/AS8n8MB2YzWtr8ynFS1jts+rRe2Gasfte3vbctb+iZRX/y7d+ugvZIV1P3Vp8wkrvFCet//jvZI91DvbKXk5IIfuPjq1fHB59texnLCxtZYasmK2M+LeoSlZY43LwnlkX5l1JXlwUxCAAAQqBGxxZcVVY2tViquFtL02FzsNri98q/NZfW72aTn2wzRy88/S8PQPU7c+KwvH7ZWKuIQABI4l0KE/NqmK649GYzftNLyVcn06sRC4EgT0J9CQwNnQF8nXz34vf1j/Eg7dVxefxkzJgMx8R6Y+DguIQS3h6ekfjoG8lxUe/tvwH0r+c6r+0ZTj87npVfM5zul18XVpua7cdi6X410mx/k8H+U28nkOcx6HdXE5vZzW6jznPW2Y68lhLpevHfrI91SOr8YVOY/eQ12ZnDeHOU+r65PinZ7ryGEuk9Mc5j7nuHxdLpPPc+i8dYfTfbiOVnnr4nNcDl2Hz33k/hRXB79z3hw6pVqmnHZQ8vRnb1q+nL98flyL5Xw+93HcPRc5jubJZXP5fJ2fRS4nSra6ajRkdbUWnznL84/T0tw3aXXhseJ35KT9ZuyQevPBL6RY/5mU53c06O0J/1gszzrgyNllENB77f+yLthcfp6Wn/8yrc5/JSXWC8nKNcnFgdQ3clc/t+XTZTJ1SYnld7ewxGruGdTqz+syboc2IQABCJwHASuu9Lloi+rG9rqsUhfic3Fz+WkosfRNOvUNzWgC4EEorgYmPozPx6ryqjxyOI9uUQcE3kcC/jvo6uxI3V3NcUPNTaDAqoFC1PUjYJNff7Hc2dQOSwvP0pyW8bz49ks5U/5G/rHWQjBZONkfVq8G5d19QzED3SlLLA4IQAACpyPQtLySxYqdte9sb6iYrarsKHtA1qC309TdL8Lf1djMx6l/aEKfMzaU5lv/6fiS610RsJWBLQzWF6R8ffUobSw+ltXBStrd21EXPPHZJXnZL8tBL7/v1bXe4cMzPu+qq7QDAQhA4IIJ6DuEJqB2GhthfWULa3/mFcuptZPr0HQamvoslFe9g1Opw4r9mu8PKLAu+DFR/XtBAAXWe/GY6GR7EPCfS/ElsbGjbW5XX2v54JO0KAXWwsuv0qJ+VmwCvDGvXPqnmeawwIoyfLlsj2dILyDQzgRCTa7v9t4kYktK8Ubq7h5MA6N3tJnEJ2F1NT6tpQXydTUwciN19/ozRgpyG0nzxb+dH+z161t+JxXubEsRK0XWpvxhbSx+lzaWnsjy4Jn8SC4Fl44O+Y70Jij7YnL/5Ppx444hAIErSkByWp+HVuBbud+l7wg9gzfDGrV/7F7TKrVYXm1/up4Qt6K/9MEYXBzjg0/JggO/rycB/x1ggXU9nz13fQoCWVAcZFVMREp06L9nUzbXFtKq/NP4x75qNteXwm9NQ9vh2lQ4VuAereigSs4gAAEINAnEjKycW9v3njeG6B0YlZXVeBoc1ezs+E352ZsKxZX1AxoFN0exR4eyR2NADIGLIdBavCnFiVKy+r3e1bKZrbVX+pkPp+7erXBHywr3djb1KjeU0V/YOCAAAQhcRQK2tpJbEVlWddnytHdIfgDHUvfgeFhfddsnoD4rvdIjjhMmpZDxV/Ed4Z5OS8BDCxRYp6VFvmtHoPXAXCj0DbJI12+fh9XEtmaVN2JJof3XWIHltPiJ+ZJcYyvR43SnnSafH0ddPbkOp+d6ct5yWl264/JRzZvjy+FJeVqlt4ov193qPJfNYc6Xrx36yGzydY7L1zk9MutXq/I5vRqW81frynlzHl/XtZvTy2nV81x3OT7XV07zea7P6T7ydbVsOS0yVvJW6815ymFd3TnO+XKbPi/X5+vyUU6ru4dyXp9X2yiXyW2W46rlj7vOdecwt+fwpDpzmTfpQ00ZDWA7tV22N4Lo7hvUAHcwzsNCxX1oDmqLwH2qP1qn1OcnFgJnJZDf+NbllaOZKaRmoX0NK8OGrLN2pcDSL4nJk2tq3QYpEIAABNqYgIR27LyqzS1CgSUllrRZ+rGbEa/biCD/8lXtgWyvxULkNSPg0QIKrGv20LndCyAQ3yYtVqzI0o9nk2UdUQzI6wblrUSQ8xb1FL1823yuJbef6y3XmdOcrxyfy5Xjct+cdtojl8nhacpV87a6Pi7e7eS+O18+ynH5PKfl+s6Sv1qX68z1OC2fO/6kvM6Tj9wnX+c6yvXlunK+HFbLV8vmOnL5XH81vlpfrjfnd5jrKLdRTq/L47i6I7fvtFxvNV+5T/m8HB5XtlxXLlOOy+flNJ/7aNWfIrV4PnX9L9flvPm6XG/53Hk80LXVin4c6t/BF3+nc0DgfSagvxPLTMtKTfyErPTfRf4zeJ9vjb5DAAIQaEGg8PNXyPY8GVV87vHh1wIZ0RCoJeC/mJMUWPYOywEBCLQkYIWV/5SyANJ+SloCpD8t/Zz0pbdlpSRAAALXmoC/3PuzpdH8ZMkztHymXOvX4r2/ecnJUFx5zy39s/WBFbVxX9V32zLVcdXQmXOcz3342ke1jiL25N/V+lziuLi6tJNbaZ3juP6f1Fa1bPW67l6Oy3NSe63vonVKXZ11cdUaqnnydQ5z/up1jq+Gzucjv1fF1dnfm1y+Gp62Py7XKm+1r+U+n/Set6oz97Oc3uq8Lm+Oqwur9eQ8J/U15yuH5bpaxTuPj7r6q+XzdQ6LksXvclz5POepi8tpOSznOe68mX//M7B5XZhU58oIIQCBcyDALoTnAJEqriMBCTHLsWOOsphztvJ1+fyYKk5MKtdTPS8XzkOjPBQo5y3nu+zzk/pVTa9eu/91cW96X9U6qtfVdurST2qzWiZf57BavlV8Od9p8uT8OW8Oc/xZQ9eTj/ye5evzCHP95bpP0/fj8tTVeR59PbaO/RvYPzk2O4kQeL8J5L+y9/su6D0EIACBkwkg109mRA4IHE/AowYssI5nRCoEzkhAQuoEOVVNLl+Xz8/YgShWrqfVea7/pPSc7zLDch/r+lFNr167TF1cXV3HxVXrqF5X26lLP67+avnydau6WsWX2zlNnpw/581hjj9reF71tGq/rv66uGr54/Icl1ath2sIQOAsBPgrOws1ykAAAhCAAAQgUE/A3uU4IAABCEAAAhCAAAQgAAEIQAACEIAABCDQtgRQYLXto6FjEIAABCAAAQhAAAIQgAAEIAABCEAAAiaAAov3AAIQgAAEIAABCEAAAhCAAAQgAAEIQKCtCaDAauvHQ+cgAAEIQAACEIAABCAAAQhAAAIQgAAEUGDxDkAAAhCAAAQgAAEIQAACEIAABCAAAQi0NQEUWG39eOgcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAos3gEIQAACEIAABCAAAQhAAAIQgAAEIACBtiaAAqutHw+dgwAEIAABCEAAAhCAAAQgAAEIQAACEECBxTsAAQhAAAIQgAAEIAABCEAAAhCAAAQg0NYEUGC19eOhcxCAAAQgAAEIQAACEIAABCAAAQhAAAIosHgHIAABCEAAAhCAAAQgAAEIQAACEIAABNqaAAqstn48dA4CEIAABCAAAQhAAAIQgAAEIAABCEAABRbvAAQgAAEIQAACEIAABCAAAQhAAAIQgEBbE0CB1daPh85BAAIQgAAEIAABCEAAAhCAAAQgAAEIoMDiHYAABCAAAQhAAAIQgAAEIAABCEAAAhBoawIosNr68dA5CEAAAhCAAAQgAAEIQAACEIAABCAAARRYvAMQgAAEIAABCEAAAhCAAAQgAAEIQAACbU0ABVZbPx46BwEIQAACEIAABCAAAQhAAAIQgAAEIIACi3cAAhCAAAQgAAEIQAACEIAABCAAAQhAoK0JoMBq68dD5yAAAQhAAAIQgAAEIAABCEAAAhCAAARQYPEOQAACEIAABCAAAQhAAAIQgAAEIAABCLQ1ARRYbf146BwEIAABCEAAAhCAAAQgAAEIQAACEIAACizeAQhAAAIQgAAEIAABCEAAAhCAAAQgAIG2JoACq60fD52DAAQgAAEIQAACEIAABCAAAQhAAAIQQIHFOwABCEAAAhCAAAQgAAEIQAACEIAABCDQ1gRQYLX146FzEIAABCAAAQhAAAIQgAAEIAABCEAAAiiweAcgAAEIQAACEIAABCAAAQhAAAIQgAAE2poACqy2fjx0DgIQgAAEIAABCEAAAhCAAAQgAAEIQAAFFu8ABCAAAQhAAAIQgAAEIAABCEAAAhCAQFsTQIHV1o+HzkEAAhCAAAQgAAEIQAACEIAABCAAAQigwOIdgAAEIAABCEAAAhCAAAQgAAEIQAACEGhrAiiw2vrx0DkIQAACEIAABCAAAQhAAAIQgAAEIAABFFi8AxCAAAQgAAEIQAACEIAABCAAAQhAAAJtTQAFVls/HjoHAQhAAAIQgAAEIAABCEAAAhCAAAQggAKLdwACEIAABCAAAQhAAAIQgAAEIAABCECgrQmgwGrrx0PnIAABCEAAAhCAAAQgAAEIQAACEIAABFBg8Q5AAAIQgAAEIAABCEAAAhCAAAQgAAEItDUBFFht/XjoHAQgAAEIQAACEIAABCAAAQhAAAIQgAAKLN4BCEAAAhCAAAQgAAEIQAACEIAABCAAgbYmgAKrrR8PnYMABCAAAQhAAAIQgAAEIAABCEAAAhBAgcU7AAEIQAACEIAABCAAAQhAAAIQgAAEINDWBFBgtfXjoXMQgAAEIAABCEAAAhCAAAQgAAEIQAACKLB4ByAAAQhAAAIQgAAEIAABCEAAAhCAAATamgAKrLZ+PHQOAhCAAAQgAAEIQAACEIAABCAAAQhAAAUW7wAEIAABCEAAAhCAAAQgAAEIQAACEIBAWxNAgdXWj4fOQQACEIAABCAAAQhAAAIQgAAEIAABCKDA4h2AAAQgAAEIQAACEIAABCAAAQhAAAIQaGsCKLDa+vHQOQhAAAIQgAAEIAABCEAAAhCAAAQgAAEUWLwDEIAABCAAAQhAAAIQgAAEIAABCEAAAm1NAAVWWz8eOgcBCEAAAhCAAAQgAAEIQAACEIAABCCAAot3AAIQgAAEIAABCEAAAhCAAAQgAAEIQKCtCaDAauvHQ+cgAAEIQAACEIAABCAAAQhAAAIQgAAEUGDxDkAAAhCAAAQgAAEIQAACEIAABCAAAQi0NQEUWG39eOgcBCAAAQhAAAIQgAAEIAABCEAAAhCAAAos3gEIQAACEIAABCAAAQhAAAIQgAAEIACBtiaAAqutHw+dgwAEIAABCEAAAhCAAAQgAAEIQAACEECBxTsAAQhAAAIQgAAEIAABCEAAAhCAAAQg0NYEUGC19eOhcxCAAAQgAAEIQAACEIAABCAAAQhAAAIosHgHIAABCEAAAhCAAAQgAAEIQAACEIAABNqaAAqstn48dA4CEIAABCAAAQhAAAIQgAAEIAABCEAABRbvAAQgAAEIQAACEIAABCAAAQhAAAIQgEBbE0CB1daPh85BAAIQgAAEIAABCEAAAhCAAAQgAAEIoMDiHYAABCAAAQhAAAIQgAAEIAABCEAAAhBoawIosNr68dA5CEAAAhCAAAQgAAEIQAACEIAABCAAARRYvAMQgAAEIAABCEAAAhCAAAQgAAEIQAACbU0ABVZbPx46BwEIQAACEIAABCAAAQhAAAIQgAAEIIACi3cAAhCAAAQgAAEIQAACEIAABCAAAQhAoK0JoMBq68dD5yAAAQhAAAIQgAAEIAABCEAAAhCAAARQYPEOQAACEIAABCAAAQhAAAIQgAAEIAABCLQ1ARRYbf146BwEIAABCEAAAhCAAAQgAAEIQAACEIAACizeAQhAAAIQgAAEIAABCEAAAhCAAAQgAIG2JoACq60fD52DAAQgAAEIQAACEIAABCAAAQhAAAJXnMDeyfd3sgKr4+RKyAEBCEAAAhCAAAQgAAEIQAACEIAABCAAgTMROIXuqfu4ikMBtqffHR3JQXKFOXTByNCM93X5yGmOO0VHykX3z8tt7UeWTk5Kz1nL+Vqd57zl0HnLR/n+y/WU8/g8p+Uwp+frHFbz+rqOlfNXj3K+nF6Ny9d17eX6cloOc7zDHOewerjucnpdW+UyOW85rnxel57jcuj8PveR2yuuit85Xw6rafm6rmxOy2GrOvJ953zVuk7TP5dtla9VfG6vGpb7WS6bz3P+3O/c31wuh85XPs/XDnMZn1ePahmnO85HXbm6/EXu4ndd+kn15fL5Hn2d264rm9vIYS5fDnNaNazm8XVdu47PZX1ePZzmo66frcodF5/rynlyGI3oV/U6xzvMaeXQ8blvOU85rpw35yvHOa+PurQc53SX8ZHjch2Oy+fV0GnlI6e3isvpOazm87Xbr0vPeZ1WPnJ/y3HV81b11cXn+nM/cl3ldsrlyuc5r8NqfL7OYTlvPi+n+dxH7kduP8eX0yJjKW9Oy/G53hzm+BzWxVfbaZU3l81hzuewXIev8z34PB915XKaw3IduXyrMjlvlVmur1W5aju+zm3ltPK1405z5PZyv1ymVd+clvNXz33tI9dT7ku1jPOV033to5yviCl+l+PL5zlPNS5fV8Oc32FOq57nPDm9Gub0XC5fV++nWs7XPsr5ch7Htzp3Wvmoq+e49DfJX9eHXN5tuO/lPOV2686rZXOeujrq4nL+cljOl89zmPMdd11Oq567fPn55PrqwnLZnH7auJw/h3XlnJbjHeaj/AxyfLnPOa4uf45zmOsux+Xzch3luluVq6urHFdXXznO9VbbyX1p1WY1vXxdrqvcj5wnx5X7kMuU45w/x1fL5utqWC3v9FxHOc1xvi6n5XOXqR7lvNU0X5fr9nWrunK+cnq57vK562l1VPOV6y2n5fNW6bn+nK987fPcz5xeDsvpdeVyXqcdd15XT66vGroeH7lfPi/X7evqkdNz2ZzuOnJcub6cXg1zXseX85fjc5lyeo5z6LzVtByX66mml8vXnZ+lfG4r11fXZq7XefJ5DnM5XUvlpPRqQs5wEB6rwOp0LZ0y0qrryEEdnEEAAhCAAAQgAAEIQAACEIAABCAAAQhA4GwE9jpS6KCOKd2xp+OYdJIgAAEIQAACEIAABCAAAQhAAAIQgAAEIHCpBE72gXWp3aNxCEAAAhCAAAQgAAEIQAACEIAABCAAgetOAAXWdX8DuH8IQAACEIAABCAAAQhAAAIQgAAEINDmBFBgtfkDonsQgAAEIAABCEAAAhCAAAQgAAEIQOC6E0CBdd3fAO4fAhCAAAQgAAEIQAACEIAABCAAAQi0OQEUWG3+gOgeBCAAAQhAAAIQgAAEIAABCEAAAhC47gRQYF33N4D7hwAEIAABCEAAAhCAAAQgAAEIQAACbU7g/wPuZ7JgP7C32QAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "8cbdb316-6af5-480f-a9c7-09f116f86273", + "metadata": {}, + "source": [ + "# A Long-Term Memory Agent\n", + "\n", + "This tutorial shows how to implement an agent with long-term memory capabilities using LangGraph. The agent can store, retrieve, and use memories to enhance its interactions with users.\n", + "\n", + "Inspired by papers like [MemGPT](https://memgpt.ai/) and distilled from our own works on long-term memory, the graph extracts memories from chat interactions and persists them to a database. \"Memory\" in this tutorial will be represented in two ways: \n", + "* a piece of text information that is generated by the agent\n", + "* structured information about entities extracted by the agent in the shape of `(subject, predicate, object)` knowledge triples.\n", + "\n", + "This information can later be read or queried semantically to provide personalized context when your bot is responding to a particular user.\n", + "\n", + "The KEY idea is that by saving memories, the agent persists information about users that is SHARED across multiple conversations (threads), which is different from memory of a single conversation that is already enabled by LangGraph's [persistence](https://langchain-ai.github.io/langgraph/concepts/persistence/).\n", + "\n", + "![memory_graph.png](attachment:a2b70d8c-dd71-41d0-9c6d-d3ed922c29cc.png)\n", + "\n", + "You can also check out a full implementation of this agent in [this repo](https://github.com/langchain-ai/lang-memgpt)." + ] + }, + { + "cell_type": "markdown", + "id": "2a45f864-b4bd-4355-bddd-83921db2528b", + "metadata": {}, + "source": [ + "## Install dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d6cfbeeb-3dbb-4020-8f50-2a69e78bb5c0", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -U --quiet langgraph langchain-openai langchain-community tiktoken" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9c5ed37d-8670-4f5a-b830-1c1c3991d7cf", + "metadata": {}, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "OPENAI_API_KEY: ········\n", + "TAVILY_API_KEY: ········\n" + ] + } + ], + "source": [ + "import getpass\n", + "import os\n", + "\n", + "\n", + "def _set_env(var: str):\n", + " if not os.environ.get(var):\n", + " os.environ[var] = getpass.getpass(f\"{var}: \")\n", + "\n", + "\n", + "_set_env(\"OPENAI_API_KEY\")\n", + "_set_env(\"TAVILY_API_KEY\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "dab4e96a-8a90-4df9-8818-5a6edf5805d7", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "from typing import List, Literal, Optional\n", + "\n", + "import tiktoken\n", + "from langchain_community.tools.tavily_search import TavilySearchResults\n", + "from langchain_core.documents import Document\n", + "from langchain_core.embeddings import Embeddings\n", + "from langchain_core.messages import get_buffer_string\n", + "from langchain_core.prompts import ChatPromptTemplate\n", + "from langchain_core.runnables import RunnableConfig\n", + "from langchain_core.tools import tool\n", + "from langchain_core.vectorstores import InMemoryVectorStore\n", + "from langchain_openai import ChatOpenAI\n", + "from langchain_openai.embeddings import OpenAIEmbeddings\n", + "from langgraph.checkpoint.memory import MemorySaver\n", + "from langgraph.graph import END, START, MessagesState, StateGraph\n", + "from langgraph.prebuilt import ToolNode" + ] + }, + { + "cell_type": "markdown", + "id": "e032423c-f7d8-4ee1-8313-bf49a6129d44", + "metadata": {}, + "source": [ + "## Define vectorstore for memories" + ] + }, + { + "cell_type": "markdown", + "id": "7d4ccb43-bf32-4a1d-89ae-22826adbe860", + "metadata": {}, + "source": [ + "First, let's define the vectorstore where we will be storing our memories. Memories will be stored as embeddings and later looked up based on the conversation context. We will be using an in-memory vectorstore." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "77b45742-a1ec-43b1-9df0-4df70c03c762", + "metadata": {}, + "outputs": [], + "source": [ + "recall_vector_store = InMemoryVectorStore(OpenAIEmbeddings())" + ] + }, + { + "cell_type": "markdown", + "id": "6338ccb4-2810-4f7a-9592-27a23c263d6f", + "metadata": {}, + "source": [ + "### Define tools" + ] + }, + { + "cell_type": "markdown", + "id": "b084b78f-639f-4caf-869b-7fcb93dae813", + "metadata": {}, + "source": [ + "Next, let's define our memory tools. We will need a tool to store the memories and another tool to search them to find the most relevant memory." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a1d29985-7276-4a93-80b6-dc7217e57a0e", + "metadata": {}, + "outputs": [], + "source": [ + "import uuid\n", + "\n", + "\n", + "def get_user_id(config: RunnableConfig) -> str:\n", + " user_id = config[\"configurable\"].get(\"user_id\")\n", + " if user_id is None:\n", + " raise ValueError(\"User ID needs to be provided to save a memory.\")\n", + "\n", + " return user_id\n", + "\n", + "\n", + "@tool\n", + "def save_recall_memory(memory: str, config: RunnableConfig) -> str:\n", + " \"\"\"Save memory to vectorstore for later semantic retrieval.\"\"\"\n", + " user_id = get_user_id(config)\n", + " document = Document(\n", + " page_content=memory, id=str(uuid.uuid4()), metadata={\"user_id\": user_id}\n", + " )\n", + " recall_vector_store.add_documents([document])\n", + " return memory\n", + "\n", + "\n", + "@tool\n", + "def search_recall_memories(query: str, config: RunnableConfig) -> List[str]:\n", + " \"\"\"Search for relevant memories.\"\"\"\n", + " user_id = get_user_id(config)\n", + "\n", + " def _filter_function(doc: Document) -> bool:\n", + " return doc.metadata.get(\"user_id\") == user_id\n", + "\n", + " documents = recall_vector_store.similarity_search(\n", + " query, k=3, filter=_filter_function\n", + " )\n", + " return [document.page_content for document in documents]" + ] + }, + { + "cell_type": "markdown", + "id": "b19a1a9f-e5ab-4d4a-9571-d8ac29420e09", + "metadata": {}, + "source": [ + "Additionally, let's give our agent ability to search the web using [Tavily](https://tavily.com/)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f41baaf4-b71a-47a9-8c38-fbc604d932ee", + "metadata": {}, + "outputs": [], + "source": [ + "search = TavilySearchResults(max_results=1)\n", + "tools = [save_recall_memory, search_recall_memories, search]" + ] + }, + { + "cell_type": "markdown", + "id": "853242a2-6ae1-4427-9f31-6041cb72833d", + "metadata": {}, + "source": [ + "### Define state, nodes and edges" + ] + }, + { + "cell_type": "markdown", + "id": "0038574b-738a-4ace-b620-60eca665e5a5", + "metadata": {}, + "source": [ + "Our graph state will contain just two channels -- `messages` for keeping track of the chat history and `recall_memories` -- contextual memories that will be pulled in before calling the agent and passed to the agent's system prompt." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "0767095b-7d17-4c18-afeb-ed6ec74d215f", + "metadata": {}, + "outputs": [], + "source": [ + "class State(MessagesState):\n", + " # add memories that will be retrieved based on the conversation context\n", + " recall_memories: List[str]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "64144945-b7d9-4202-a567-bc1a48d7e5b8", + "metadata": {}, + "outputs": [], + "source": [ + "# Define the prompt template for the agent\n", + "prompt = ChatPromptTemplate.from_messages(\n", + " [\n", + " (\n", + " \"system\",\n", + " \"You are a helpful assistant with advanced long-term memory\"\n", + " \" capabilities. Powered by a stateless LLM, you must rely on\"\n", + " \" external memory to store information between conversations.\"\n", + " \" Utilize the available memory tools to store and retrieve\"\n", + " \" important details that will help you better attend to the user's\"\n", + " \" needs and understand their context.\\n\\n\"\n", + " \"Memory Usage Guidelines:\\n\"\n", + " \"1. Actively use memory tools (save_core_memory, save_recall_memory)\"\n", + " \" to build a comprehensive understanding of the user.\\n\"\n", + " \"2. Make informed suppositions and extrapolations based on stored\"\n", + " \" memories.\\n\"\n", + " \"3. Regularly reflect on past interactions to identify patterns and\"\n", + " \" preferences.\\n\"\n", + " \"4. Update your mental model of the user with each new piece of\"\n", + " \" information.\\n\"\n", + " \"5. Cross-reference new information with existing memories for\"\n", + " \" consistency.\\n\"\n", + " \"6. Prioritize storing emotional context and personal values\"\n", + " \" alongside facts.\\n\"\n", + " \"7. Use memory to anticipate needs and tailor responses to the\"\n", + " \" user's style.\\n\"\n", + " \"8. Recognize and acknowledge changes in the user's situation or\"\n", + " \" perspectives over time.\\n\"\n", + " \"9. Leverage memories to provide personalized examples and\"\n", + " \" analogies.\\n\"\n", + " \"10. Recall past challenges or successes to inform current\"\n", + " \" problem-solving.\\n\\n\"\n", + " \"## Recall Memories\\n\"\n", + " \"Recall memories are contextually retrieved based on the current\"\n", + " \" conversation:\\n{recall_memories}\\n\\n\"\n", + " \"## Instructions\\n\"\n", + " \"Engage with the user naturally, as a trusted colleague or friend.\"\n", + " \" There's no need to explicitly mention your memory capabilities.\"\n", + " \" Instead, seamlessly incorporate your understanding of the user\"\n", + " \" into your responses. Be attentive to subtle cues and underlying\"\n", + " \" emotions. Adapt your communication style to match the user's\"\n", + " \" preferences and current emotional state. Use tools to persist\"\n", + " \" information you want to retain in the next conversation. If you\"\n", + " \" do call tools, all text preceding the tool call is an internal\"\n", + " \" message. Respond AFTER calling the tool, once you have\"\n", + " \" confirmation that the tool completed successfully.\\n\\n\",\n", + " ),\n", + " (\"placeholder\", \"{messages}\"),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "09b37846-11c7-4f79-af53-69584969ab16", + "metadata": {}, + "outputs": [], + "source": [ + "model = ChatOpenAI(model_name=\"gpt-4o\")\n", + "model_with_tools = model.bind_tools(tools)\n", + "\n", + "tokenizer = tiktoken.encoding_for_model(\"gpt-4o\")\n", + "\n", + "\n", + "def agent(state: State) -> State:\n", + " \"\"\"Process the current state and generate a response using the LLM.\n", + "\n", + " Args:\n", + " state (schemas.State): The current state of the conversation.\n", + "\n", + " Returns:\n", + " schemas.State: The updated state with the agent's response.\n", + " \"\"\"\n", + " bound = prompt | model_with_tools\n", + " recall_str = (\n", + " \"\\n\" + \"\\n\".join(state[\"recall_memories\"]) + \"\\n\"\n", + " )\n", + " prediction = bound.invoke(\n", + " {\n", + " \"messages\": state[\"messages\"],\n", + " \"recall_memories\": recall_str,\n", + " }\n", + " )\n", + " return {\n", + " \"messages\": [prediction],\n", + " }\n", + "\n", + "\n", + "def load_memories(state: State, config: RunnableConfig) -> State:\n", + " \"\"\"Load memories for the current conversation.\n", + "\n", + " Args:\n", + " state (schemas.State): The current state of the conversation.\n", + " config (RunnableConfig): The runtime configuration for the agent.\n", + "\n", + " Returns:\n", + " State: The updated state with loaded memories.\n", + " \"\"\"\n", + " convo_str = get_buffer_string(state[\"messages\"])\n", + " convo_str = tokenizer.decode(tokenizer.encode(convo_str)[:2048])\n", + " recall_memories = search_recall_memories.invoke(convo_str, config)\n", + " return {\n", + " \"recall_memories\": recall_memories,\n", + " }\n", + "\n", + "\n", + "def route_tools(state: State):\n", + " \"\"\"Determine whether to use tools or end the conversation based on the last message.\n", + "\n", + " Args:\n", + " state (schemas.State): The current state of the conversation.\n", + "\n", + " Returns:\n", + " Literal[\"tools\", \"__end__\"]: The next step in the graph.\n", + " \"\"\"\n", + " msg = state[\"messages\"][-1]\n", + " if msg.tool_calls:\n", + " return \"tools\"\n", + "\n", + " return END" + ] + }, + { + "cell_type": "markdown", + "id": "854c9825-6ccf-450d-bc0f-88cf16ac5442", + "metadata": {}, + "source": [ + "## Build the graph" + ] + }, + { + "cell_type": "markdown", + "id": "4f1aa06c-69b0-4f86-94bc-6be588c9a778", + "metadata": {}, + "source": [ + "Our agent graph is going to be very similar to simple [ReAct agent](https://langchain-ai.github.io/langgraph/reference/prebuilt/#create_react_agent). The only important modification is adding a node to load memories BEFORE calling the agent for the first time." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6122f234-3be0-48a8-960b-011fa2a6ce6f", + "metadata": {}, + "outputs": [], + "source": [ + "# Create the graph and add nodes\n", + "builder = StateGraph(State)\n", + "builder.add_node(load_memories)\n", + "builder.add_node(agent)\n", + "builder.add_node(\"tools\", ToolNode(tools))\n", + "\n", + "# Add edges to the graph\n", + "builder.add_edge(START, \"load_memories\")\n", + "builder.add_edge(\"load_memories\", \"agent\")\n", + "builder.add_conditional_edges(\"agent\", route_tools, [\"tools\", END])\n", + "builder.add_edge(\"tools\", \"agent\")\n", + "\n", + "# Compile the graph\n", + "memory = MemorySaver()\n", + "graph = builder.compile(checkpointer=memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "d587a860-9859-4cf3-be01-4e7e17d64190", + "metadata": {}, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4gHYSUNDX1BST0ZJTEUAAQEAAAHIAAAAAAQwAABtbnRyUkdCIFhZWiAH4AABAAEAAAAAAABhY3NwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA9tYAAQAAAADTLQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlkZXNjAAAA8AAAACRyWFlaAAABFAAAABRnWFlaAAABKAAAABRiWFlaAAABPAAAABR3dHB0AAABUAAAABRyVFJDAAABZAAAAChnVFJDAAABZAAAAChiVFJDAAABZAAAAChjcHJ0AAABjAAAADxtbHVjAAAAAAAAAAEAAAAMZW5VUwAAAAgAAAAcAHMAUgBHAEJYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9YWVogAAAAAAAA9tYAAQAAAADTLXBhcmEAAAAAAAQAAAACZmYAAPKnAAANWQAAE9AAAApbAAAAAAAAAABtbHVjAAAAAAAAAAEAAAAMZW5VUwAAACAAAAAcAEcAbwBvAGcAbABlACAASQBuAGMALgAgADIAMAAxADb/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFcANYDASIAAhEBAxEB/8QAHQABAAICAwEBAAAAAAAAAAAAAAUGBAcCAwgBCf/EAFcQAAEEAQIDAQkIDQoEAwkAAAEAAgMEBQYRBxIhExQVFiIxQVaU0wgXMlFVYXTRNTY3QlJUcXWBk7Kz0iMzU2KDkZWhtNQYJUNyJGSxJzRHV3aEosHw/8QAGwEBAQADAQEBAAAAAAAAAAAAAAECAwUEBgf/xAA0EQEAAQIBCAkEAgIDAAAAAAAAAQIRAwQSFCExUZHREzNBUmFicZKhBSOxwRWBIkPh8PH/2gAMAwEAAhEDEQA/AP1TREQEREBERAXTauV6UfPYnjrs/CleGj+8qDu37uevz47FTGlVrnkt5NrQ5zX/ANFCHAtLh5XPcC1u4aA5xdyfa3D/AE/C8yy4uC/ZO3Navt7pmcR5y9+5/u6LfFFNPWT/AFC23s3wqwvyvQ9ZZ9aeFWF+WKHrLPrTwVwvyPQ9WZ9SeCuF+R6HqzPqV+z4/C6jwqwvyxQ9ZZ9aeFWF+WKHrLPrTwVwvyPQ9WZ9SeCuF+R6HqzPqT7Pj8Go8KsL8sUPWWfWnhVhflih6yz608FcL8j0PVmfUngrhfkeh6sz6k+z4/BqPCrC/LFD1ln1rMqZCrfaXVbMNlo8phkDgP7lh+CuF+R6HqzPqWJa0Dpy3IJXYanDO07tsVohDM0/NIzZw/QU+zPbPx/wmpPoqxHZuaRnhhv2pslh5XCNl6fl7Wq4nZrZSAA5h6AP23B25t9y4Wda66M3xgmBERa0EREBERAREQEREBERAREQFEauzD9P6XyuRiAdNWrPkia7yF+3ig/p2Uuq9xCpy3tE5mOFpkmbXdKxjRuXOZ44AHxkt2W3BiJxKYq2XhY2pDT+HjwGGqUIzzdizx5PPJITu95+dzi5xPxkqRXTTtRXqkFmB3PDMxsjHfG0jcH+4ruWFUzNUzVtQVS4gcVtLcLose/UmTNJ+QkdFUghrTWZp3NbzP5IoWPeQ0dSdthuNyFbVpT3StCo+DTuTjx+sG6kxz7MmIzmjscbs1CV0bQ5k0QDg6OXoC1zS08vUt6FYjJynumNP43irpvSba161RzeF77w5Orjrc4PPJC2FobHC7xXNkc50hIDNmh3KXBWC1x+0FR1y3SFnPdz519ptFsUtOdsJsOG7YROY+y7Q7jZvPudwNlqmPL6z07rvhdr7WOk8tdt2NI2cTmIdPUH3H070ktaYc8Ue5a13ZPG43DT0J86oHFvH6z1PNqYZjDa/wAtqDH6rgt4+pjYJhhYcTBcikjkjbGRHYkMTSSNny856NAHQPTFvjtomnrG9pQ5SxY1DRmjr2qFPG2rD4HSRtkYXmOJwawte3xyeXckb7ggRfAXj3jeOeCs3KtG7jrlexZjkrz0rLIxGyxJFG5s0kTGPc5rA5zGklhJa4AhY3CXT93GcYuNOStY2xUgyWWx7qtuaBzG2o2Y6BpLHEbPa1/O3puAeYeXdRfuY7GQ0vh8poTMaezWNyWLymUtd3WKL20LMMt6SWN0NjbkeXNmaeUHccrtwNkG8EREGPkKFfK0LNK3E2erZjdDLE/yPY4bOB/KCVEaGvz39Nwi1L29upLNRmlO+8j4ZXRF53/C5Ob9Kn1WeHje00/JcG/Jfu2rkfMNt45J3ujO3zs5T+leinqar74/a9izIiLzoIiICIiAiIgIiICIiAiIgIiIKpTnZoN5o29osA55dTt9eSpudzDKfIxu5PI/o3bZh2Ib2nXqvhFobX+RjyWo9JYTP3mxCFlrIUYp5BGCSGhzgTy7ucdvnKtr2NkY5j2h7HDYtcNwR8RVafw+x0JJxtnIYUH/AKWOtvjiHxbRHeNv6Gj/ACC9E1UYmuubTxv/AN/tlqlXj7m3hQWhvvb6W5QSQO9MGwPn+9+YKzaP4d6W4ew2YtMaexmn4rLmunZjajIBKRuAXBoG+258vxrp8CbHpVnv10Psk8CbHpVnv10Psk6PD7/xKWjetCKr+BNj0qz366H2Sqd7HZavxVwenmapzHe65hb9+UmWHtO1hnpsZt/J/B5bEm/Ty8vUed0eH3/iS0b21FC6s0XgNd4xuO1HhaGdx7ZBM2rka7Z4w8AgO5XAjcBxG/zlYPgTY9Ks9+uh9kngTY9Ks9+uh9knR4ff+JLRvQDfc3cKWBwbw40u0PGzgMTB1G4Ox8X4wP7lJ6Z4K6A0Zl4srgNF4HDZOIObHco4+KGVocNnAOa0EbgkFZngTY9Ks9+uh9kvvgBTsO/5hkMrlWb79jauvER/KxnK1w+ZwITMw4218I/8LQ45XIeF3b4bFS89R/NDkMjC7xIWdQ6KNw8sp8nT4A3cSDytdZYII60EcMLGxRRtDGMYNg1oGwAHmC+VasNKvHXrwx14I2hrIomhrWgeQADoAu1YV1xMZtOyCRERakEREBERAREQEREBERAREQEREBERAREQFr7LFvv/AGlgSebwYy+w823dWN38/wCTzfpHn2Ctf5Xf3/tLdW7eDGX6EDf/AN6xvk8+35Onk38yDYCIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAte5YD/AIgdKnmaD4L5jxdup/8AF4zrvt5P0+cfo2Ete5bb/iC0r1PN4L5jYcv/AJvGef8A/v8AJBsJERAREQEREBERAREQEREBERAREQEREBFj5C/XxVGxctyCGtAwySSEE8rQNydh1P5Aqk7U2qLh7Wph8dVrO6xsvXJBNy+Yva2Mhp+YOdt8a34eDXia42cFtddUVI7+6w/EMH63N7NO/usPxDB+tzezW3Ra98cYLLuipHf3WH4hg/W5vZp391h+IYP1ub2aaLXvjjBZd0VI7+6w/EMH63N7NO/usPxDB+tzezTRa98cYLLuvAesfd7ZXT3uiK+JtcK53ahxMdzTox8WYDu3lnsVnNex3c+/Ke5xtsPGDwfMF7F7+6w/EMH63N7Nagz3uf5tQ+6Dw/Fqxj8MMzjqvYmoLEhinmaOWKdx7PfnY07D/tZ+D1aLXvjjBZ6WRUjv7rD8Qwfrc3s07+6w/EMH63N7NNFr3xxgsu6Kkd/dYfiGD9bm9mnf3WH4hg/W5vZpote+OMFl3RUjv7rD8Qwfrc3s07+6w/EMH63N7NNFr3xxgsu6Kkd/dYfiGD9bm9muTdQ6sh8eXFYiwxvUxwXZGvcP6pdFtv8AMdh84TRa98cYLLqiwsNl6+dx0V2sXdk/cFsjeV7HNJa5rh5nBwII+MLNXkmJpm07UERFAREQEREBERBVOKJ20JlPnEYPzjtWLIWPxS+0TJ/2X71iyF0sLqI9Z/FLLsEWFnM1T05hchlsjN3Pj6FeS1Zm5XO7OJjS57tmgk7AE7AE/EueJylXOYqnkqUvb0rkLLEEvKW88b2hzTsQCNwR0I3RiykRFQRQ+K1dic3ns3haVvtsnhXwx34Oze3sXSxiSMcxADt2EHxSdvIdiphQERFQREQEREBFE6a1Vi9X0rFvE2TarwWpqUjzE+PlmieY5G7OAJ2c0jcdDt0JCllAREVGJw1P/K8qPMMtc2H9qVblUeGv2Ly352ufvSrcvNlXXVeqztERF5UEREBERAREQVTil9omT/sv3rFkLH4pfaJk/wCy/esWQulhdRHrP4pZdilcbhvwY19/9P5D/TSLUOMdkNb6h4XaFfncpgNPeA7M1K7C3HVJ707e54Wx9szZ4Yxry8hpG5I33AXo25UgyFSerZhZYrTsdFLFI0Oa9hGxaQfKCCRsqDZ9z7oG3pjDaffgnMxuGdI7HCG9YimqdoSXtjnbIJWtO+3KHcuwA22AAxmJmWLRlLWeY1Xg6mhe+eps/qKvqXMYzG2sbm+9TrtOk5oM1u2xpdswSsZuxpL3N6g9V80xrzV+qNG8PtFZTUV7FWcrqrLYLI56taDrnYUu3eyFtjlb/KSdmyPtQ1riGk7buW+b3AbQd/T+EwjtPx1sfhC92ObRsTVZK5f/ADnLLE9r/H++3ceY9Xbrrf7n3h6/SNnS/g1AzAz3hku445pWCGzsB2sLg8Ohds3/AKZb1Lj5XO3xzZFN4BadbpTi5xlxbMhkcpHBcxfLZytp1mw4Gix2zpHeM7bfYE7nYDqVYPdQZfJYLgpmLmHyVrD5FtzHMiu0pOSWPnv12O2Pk6tcQQQQQSCCCQsuhwh971lx/DY4vT9vJSslyU2aht5M2SxnIwje0whwHlO538/Xqsl2hNQ6wo28RxBvYDPYCcRydyYrG2aEnbRzRyxuMhtybtDoweUAbnbc7bg5Wm1hqW3oS8OLusdKR661pHh6ul6+Zrs7/TmSK2+WxGXiQnn5QIWns9+TcndpGwFUxGu+IHGS/oXBwWJnl2iKWftMq6hkwUt2xK90b5TLDBI57W8g8Qcrd5CTv0A9VP0VhX6lv6gdS3y96gzGWLHav8esxz3NZy83KNnSPO4APXy9Aqxlfc/aBzOC0/iLOB2qYCAVcZJBcsQ2K0WwbyNnZIJS0gDcFx3267qTTPYNSswuvHat4T6O1lqjI1pLkOe7sdg8tI19qvGa76zZZ2Mic6RjXAGRrWOPjdRzuBrWGs6h0/oiDVY1rqbIZLEa/wDB+OO9k3ywT0BkxUMUsXwZHFjie0cC/m22cAAF6ax3DHTGJs6bsU8W2vLpyvPVxZZLJtXjmDRK3bm2dzcjertz06EbldDuEmk3YObDnFb46XLd/Hw90y9bvdAsdrzc+/8AOgO5d+XzbbdEzZHnfUud1Fe4c8UOKLtZ5nF57TObv18dioLpZjoIqk4jjry1h4kplA8ZzgXHtBykdFeNAYjIcQeMnE2xltR6ir4/E5DHCjh6uUmrwV3Px8EkgLWOHMC53wD4u/Mdt3Eq/wCY4B6Cz+qn6iv6eisZSSeO1LvPM2CeZm3JJJAHiKR42GznMJ6DqrRh9I4nA5nOZWhU7C/m5o7F+btHu7aRkTYmHYkhuzGNGzQB038vVIpkeTamstY+BWjNH4zL5G5Lm9X5zGS5C/nJa9p8FWWcxV+7nMmfGXBjQHBpcQzlBbzbi3W+HnGivorM49mSsGq3K0rdXHVdTyWMnLTa1/ddVuQkgicwuPZuYXdR47S4Ahblv8FNFZPSc+mreCisYaa9LkzA+aUuZakkdK+ZknNzxu53uILXDbcgbDosX3g9DeCjtOd6Jhi3XRkTtkbXbmyG8glNjte15uUBu/P5BspmyO3ghqLGak4dUZ8XbzNqKCaerMNRSGTIQTRyvbJDM477uY7du+56NHU+U3xQ2kNHYbQWArYTAUI8bjK/MY4Iy53Vzi5znOcS5zi4klziSSepUytkbBicNfsXlvztc/elW5VHhr9i8t+drn70q3Lz5V11Xqs7REReVBERAREQEREFU4pfaJk/7L96xZCk9QYaLUOFu42Z7omWYzH2jPhMPmcPnB2P6FU329SUXGGfTM2Qe3p3TjrMAik/rBssjHN3/B67eTc+U9HAmKsPMvF4mZ1zEbbb/RltiyZRQnfbPehmV9ape3TvtnvQzK+tUvbrdmeaPdHMsm0UJ32z3oZlfWqXt077Z70MyvrVL26Znmj3RzLJtFCd9s96GZX1ql7dO+2e9DMr61S9umZ5o90cyybRQnfbPehmV9ape3UdNre/BqKpgpNKZVuUt1ZrsMHb1PGhifEyR3N22w2dPENidzzdAdjszPNHujmWWxFCd9s96GZX1ql7dO+2e9DMr61S9umZ5o90cyybRQnfbPehmV9ape3TvtnvQzK+tUvbpmeaPdHMsm0UJ32z3oZlfWqXt077Z70MyvrVL26Znmj3RzLJtFCd9s96GZX1ql7dcm5DUVjxItJW4JD0a+5crMiB+Nxjke4D8jSfmKZnmj3RzSzO4a/YvLfna5+9KtyitM4PwfxLazpu6J3ySTzzBvKHyPeXuIG52budgNzsABudlKrn49UV4tVVOy5O0REWhBERAREQEREBERAREQEREBERAVByo/8Abzpg7eTTWWG+3/msd59v/wBj8h26X5a+yzN+P2lncrtxpjLjm5eg3tY3pvv83k28x+LqGwUREBERAREQEREBERAREQEREBERAREQEREBERAREQEREBa9yxb/AMQOlRuebwXzGw5R5O68Z5/N5un1LYS1/lQ/3/NLkGTk8GctuAPE37qxu25+Py7fpQbAREQEREBERAREQEREBERAREQEREBERAREQEREBEUZmdTYjTojOVylPHdpvyC1O2Mv28uwJ67fMsqaZqm1MXkSaKre+lo70pxHrsf1p76WjvSnEeux/Wt2j43cnhLLNnctK0fleMXD93HPTdzw302a8WnMrC+fvtX5GPdax5DC7tNgSGOIG3XlPxHfY/vpaO9KcR67H9a/PDiN7l/TGf8AdmVJ6mUxnvb5eXv1fsR2YxDAQd5qxIIAL3jxQPI2T+qU0fG7k8JM2dz9OEVW99LR3pTiPXY/rT30tHelOI9dj+tNHxu5PCTNnctKKre+lo70pxHrsf1qSw2rsHqGV0WLzFHIStbzujrWGSODd9t9gd9t+m6xqwcWmL1UzEekpaUuiItKCIiAiIgIiICIiAiIgIiICIiAiIgLX2lHDIR3srKBJdtXLMb5XDxhHHPIyOMfE1rWjoOm5cdt3FbBWvNC/YB/067/AKqVe/J+rrnxj98l7FgREWxBERAREQFXte8tXS2RyjAGXcXXkvVZ2jx4pI2FwIPTodi0jfZzXOadwSFYVXOJH3O9U/mq1+5ct2B1tMeMMqdsNig7gH419XFnwG/kXJcZiIiICIiAiIgIiICIiAiIgIiICIiAteaF+wD/AKdd/wBVKthrXmhfsA/6dd/1Uq9+T9XV6x+17FgWlNce6Nm4d8QqmCzeBx9fE2r8FGK23UFd19wmc1jJ+4ducxBzgCebmA3PLst1rzJqf3Omt7kGrMdjJNKPq5XUY1JHlr3b93zObYZPHVk2YQxjSwMEgc/ZgAEY33Fqv2Ismv8A3SuT0w3Vt7C6MGa07pi/Hisjl7GUFbktOEe4ZEI3ufGwzR8ztwep5Wu2WLxA913itH6nz+LpVMPfi0+/ssi6/qSrj7L5QwPfHVryeNMWhwG5LAXbtBJBWoeMmVpaT4x6wc92Lz1WxfqX5dERZTIVJsnPHHEWHuVtV8diUua08zZOzdysD2gtdvuyDhjr3R+qtT3tGnTFrC6nu995YNSsmFjHWnxsbLy9k0iVh5A7lLmbHcb+dYXqnYO6f3RGUzGTy8Gj9GeEdTH4WjnzbsZRtMSV7MckjGtaY3ntNozs34J67ub03iclxn1dqHifwwdo/GVb2l9SadsZfuW9kO5XSbmud3kQSFromyDZoOzzI7fl5ATeqHDXJVOI3ELPmamKOocRQx9SJjnc8b4G2Q8vHLsGntmbbEnodwOm9Jx3BTW2kMNwmt4C1gbOodIYSXCXa2RlmZUsMljhDnxyMjLwWvgBALBzAn4Ky/yG/wBVziR9zvVP5qtfuXKxjfYb+VVziR9zvVP5qtfuXL1YHW0esfllTthsRnwG/kXJcWfAb+RclxmIiIgIiICIiAiIgIiICIiAiIgIiIC15oX7AP8Ap13/AFUq2Gte6V5cc29iJnCO9WuWZHQuPjGOSeSSOQDztc13lG43Dm77tK9+T68OuPGP3zXsT6Ii2IIiICIiAq5xI+53qn81Wv3LlY1XOIEsU2lcljOdpt5OvJSrw82znvkYW9PmAJc4+RrWucdgCVuwOtpnxhlTthsRnwG/kXJfANgB8S+rjMRERAREQEREBERAREQEREBERARFHZLKPqWalSCtLZsWXOaHMb/JwAMc7nlO/Ru7Q0bbklw2G25Acszlm4emZu57F2XdrWVajOeWQue1g2G42AL27uJDWjcuIAJUNY0PT1JZZb1RTpZezXksMqRmNxgigkc3YGNxLXv5WN3eRuC54bytcQZHCYBuNcLlt8d3OS14q9vJCIRunDOYgBu55GBz3kM3O3MepJJMusqappm9M2kVb3q9GeieE/w+L+FPer0Z6J4T/D4v4VaUW7SMbvzxlbzvVb3q9GeieE/w+L+FfnbxF905pfBe7NpxVMPijw5xEveS9WipxmGwSeWayWgbOcx58U/FH/WK/TtaOyvBnh97+enKvgPpvueXTmUlkr96K/I97bWPDXub2exIDngE9RzO28pTSMbvzxkvO9sj3q9GeieE/wAPi/hT3q9GeieE/wAPi/hVpRNIxu/PGS871W96vRnonhP8Pi/hUji9HYHCNlGPwmPoiVhik7nqsZzsPladh1HzeRTCLGrGxa4tVVMx6l5VrvZc0lXHeaE3cTXrQVoMHGGMMQa/ZzopHEeSM/zbuh7NoBbud5fF5uhmu6+4bcVo1LD6lhsbt3QzN25mPHladiDsfKHNI6EE5yjr+Fju26luOaarZrSOlDoHlrZSWFhbK3yPbtsdj5C1pBBAWlEiihcLm55J6+Ly0TK+d7kFmZldsjqzxzFjjFI5oDtiAS34TQ9m/wAIEzSAiIgIiICIiAiIgIiICIiCIzuSsxcuOxx7PLW4ZTWsTVJJ61ctA/lJuUtGwLhsznY5/UNI2c5uTi8LUw/dTq8LWz25e6LVjlAksy8jWdpIQBzO5WMaPiaxrRsGgCO0bBYkx8uUu1rtC/lJBampXbXbGr4rWNjbt4rAGtaS1vTmLiS4kuM+gIiICIiAqBjGuzvGrMXmFxqYHFR4rm68pszvFiVu2227Y2VTvuf53zbdZrXOrZNM4+GDH1m5HUOQf3PjMe5/KJpdurnkblsTB4737HZoOwc4ta7I0XpWPR+BioCd120977Fy9IwMfbsSOLpZXAdAXOJ2A6NGzR0AQTqIiAiIgIiIMLM4ern8bNQuse+vLtv2cjo3tIIc1zXtIc1zXAODmkEEAgghYdbJ2aGQNLKvjc+1Yl7hlrQScjogGuDZXbFrJBu5oBd44buOu7WzKxMtjIczi7dCw6ZkFmJ0L315nwytDhtuyRhDmOG+4c0gg7EEEIMtFFafu3LEFiDIV+57VWZ8IJnZKZ4gf5OY8obyl7diWlo5XcwG4AcZVAREQEREBERAREQF1WqzLlaaCUExysLHAHY7EbHqu1Vfifd1XjdA5q3oipQyGqoIO1o1MmH9hO5pBcw8jmndzQ4N6gcxbudt0GXoWq+hovBVJMdJiH1qUMBoSz9u6DkYG8hk+/2225vP5fOp1eBPcYe6J4ocZeO1jAZBlDTmmMRXu38phKFNwbJYlneXFz53SSsd205PI17WgMADQAQffaAiIgKH1RqmnpOhHYtNlsT2JRWp0azQ+xcncCWxRNJALiGucSSGta1z3uaxjnD5qjVVXStKKSaOW5dsvMFLG1eU2Ls3KXCKIOLRvs1xJcWta1rnPc1rXOGDprTFqLJSZ7PSw2tQTRmBorlxr0IC7m7CDm6nfZpklIa6VzGkhrWxxxhx0jpi3Ut2M9npI7GpLzAyRsLy+vQiHUVa5IaSwHq6QtDpXeMQ1oZHHaURAREQEREBERAREQV3uUVOIInip0Wd3YwtsW+12tSGCUdkzk++jb3RKeb70uA++ViVduwh3ELDS9wU5C3F3m93vmAsxbzVD2bGeV0b9uZzvMYox98FYkBERAREQEREHXZsR1K8s8ruWKJpe53xADclUKCfPamrw5EZyzg4LDBLDTpQQOLGEbt53SxvJdt5dgAPJ123Nt1V9rGY+hzfsFV7TX2uYr6JF+wF0MniKaJrtEze2uL/AJZbIuxu8+d9NMx6tR/26d5876aZj1aj/t1Not/SeWPbTyS7Xen+C9PSusNQapxGbyNDPZ/szkrcUFMd0FgPKS3sOUHqSS0AuPU7nqrT3nzvppmPVqP+3U2idJ5Y9tPIuhO8+d9NMx6tR/26d5876aZj1aj/ALdTaJ0nlj208i6qR6VyeKz8mo6+anzGaFfuYNy0cJjdCHBxiYY2N7HmIG7mjqWsLg/ka1bBwmWhz2Ho5KuHtgtwMnY2QbOaHNBAcPMRvsR8aiV08LPuc6c+gxfsrTjxFWHn2iJiY2REbb7vRdsLSiIucxEREBEXTcuQY+rNatTR160LDJJLK4NaxoG5JJ6ABWIvqgdyLSepuMuWysr4sAxuKojcNuWYuexJ/WbG7pGPi5gT1G4adwqrLqnUszy5+p8nuT966No/uDAF38L6LlGJTnVTFPhO34XV2vSyLzN4Saj9J8r+tb/CnhJqP0nyv61v8K3fwWN34+eRq3vNHEviD7orBe68qaDoaxfPkpZZKeGyMmHokjHWXxSPcdq+xAEEZcdjsYj86/TBeTLWOlu6spannyNuXUNKu+pWyTywzRRPO7mNdy9Aev8AefjO814Saj9J8r+tb/Cn8Fjd+Pnkat70yi8zeEmo/SfK/rW/wrk3U+pGHdup8oD872O/yLCE/gsbvx88jVvel0WisBxe1BhpmjJ8uepb+MQxsVlg/qkbMf8AkIbv+F8e6MNmaWoMZBkMfO2zUnG7JGgjz7EEHq1wIILSAQQQQCFycqyHGyOY6SNU9sbBmoiLnoi9VfaxmPoc37BVe019rmK+iRfsBWHVX2sZj6HN+wVXtNfa5ivokX7AXRwepn1/S9iSUNpHWGK1zhu+uGsG1QNiesJTG5m74ZXxSDZwB6PY4b+fbdStivHagkgmY2WGRpY9jhuHNI2IP6F4m07jMFon3LOrp9Nx08FqLvzZoZy1jOWK/Xx7cy6OXm5fGaGV39D9607jbopM2R7dWPkbseMx9m5KHOirxOlcGDdxDQSdvn6LyBrxtLhlqLVtLgu+OvC7QN3IX62HsGaGGdkkYrWBsXATljp9j8JwaCd9t1IV8NpDSmuOHdfhjYisHO4PJuzbaFozm7VFPmis2RzHeTt+QB58Yl7m7+YTOHpvQ+rqev8ARuE1Lj4p4aOXpxXYI7LWtlayRoc0ODSQDseuxI+dTi8XzYXFap9z5wXzjshp/O1sBp577Gk8zku5ockGV4mylj2nxZ4S3YFzSGmQ78u+69W8N85Q1Pw90zl8VWmp4y9ja9irXsbmSKJ0bSxriSdyAQN9zv8AGVYm4sa6eFn3OdOfQYv2V3Lp4Wfc5059Bi/ZVxepn1j8SvYtKIi5yCIiAtNcbNQyXMxU09G4ipBE27baPJI8uPZNP/aWOft8fIfN13KvPHEmJ8XEzOdp/wBSOtIzf8Ds+X9pr/8ANd36Nh015VersiZj11R+13oBERfdtYi4Tl7YZDE0OkDSWtJ2BO3QLy3wz0vY1dQwWoJtV4HG6qlvh9qd9eZuVNhkpMlZ5dZ2IIDm8nZ8vKejR0K8uLjTh1U0003mfG27mr1Oo/UObg01gMnl7TJJK2Pqy25WQgF7mRsLiGgkDfYHbcheccpp+hX0FrrVccJbqHG6wsup5Dnd2lcDIMBaw7+K0hzt2joeY79Vka0o6f1OzjFb1ZNDJqHEsngxda3ZMZq1hUa6B8LeYfDe5xJHwj08nRearK6raqddrxr9fDwHozE5KLM4qlkIWvbDahZOxsgAcGuaHAHYnrsVlKD0J9o+nvzdX/dNU4ujTN6YmUFbuE2oZMFrGPHFx7gzHM0s+9ZYawua/wCbmYwtPxkM+LrUVmaeifPrHTMcX84clE4beXZoc53/AOLXLz5Xh04uBXTVstLKna9NIiL8xVF6q+1jMfQ5v2Cq9pr7XMV9Ei/YCsWqGl2mcs0DcmpMAB/2FV3TJB03iiCCDUi2IPl8QLo4PUz6/pexJKEr6H05Uy+QysGn8XDlMjGYrt6OlG2eyw7btkeG8zwdh0cSOgU2iqIXTWitO6Mgng0/gcZgoZ3c8seMpx12yO+NwY0bn5yuOntCaa0jZt2MFp7FYWxbPNYlx1KKB8x8u7yxoLv0qcRLCrXeFWisnVjrXNH4C3XjnfZZDPjIHsbM8gvkALdg5xA3d5TsN1Z442xRtYxoYxoDWtaNgAPIAFyRAXTws+5zpz6DF+yu5dPC0bcOdN/PRiII8hHKNipi9TPrH4lexaURFzkEREBaw4y6PmvNrahoxOmsVIzBahjbzPkgJ3DgPKSxxJ2Hme/ykALZ6L05NlFWTYsYtHYPJ92F+Rx0sdW6+m+aPaO3XDHuZuOjmhwc0/pBCq40RqAf/ELOH/7PH/7ZektU8F6OWsSW8PbOEtSEufEIhLWe4ncuMe4LSf6rgOpJBPVVCXgvqxjiI7WGlbv0c6SVh/u5Hf8AqvtqPqOSY8RVVXmzu1x+NRm7mn6+jM9DPG9+vs3Oxrg50T6lANeAfIdqwOx+YgqYbo/AszZzLcJjm5d3lyAqR90Hzfzm3N/mti+81rD+lwfrE3sk95rWH9Lg/WJvZLdGV5HH+yP7mZ/JmyoD9NYiWjapPxVJ9O1MbFiu6uwxzSlwcXvbts5xcA7c9dxusfL6L09qC221lMFjMlaawxNmuU45Xhh33aHOBOx3PT51sf3mtYf0uD9Ym9knvNaw/pcH6xN7JZTluRzqmuDNlqa9ozKy2XGhrHKYekAGw0KdSiYoGgABreeu523TzkrH8CNQ/wDzDzvqeP8A9stw+81rD+lwfrE3slyZwY1c47OsYVg/CE0zv8uzH/qtc5Xke3pfmTNlQcLQs4zHR17eTsZedpJNu0yJkj9zuARGxrenk6DzLaHBvSUl7KDUtmMtqQRuioBw27Vzhs+Yf1eXdrT5+Z58nKTJ6e4HV4J2z5/Id9gDuKUMXY1z8zwSXP8Aybhp67tK2exjYmNYxoYxo2a1o2AHxBcf6h9Uoqw5wMnm99s+H96yNTkiIvlB8c0PaWuAc0jYg+Qqlu0dm8V/IYXK0mY5vSKvkKr5Xwt/AbI2Ru7R5ACNwPOVdUW7DxasK+bzW9lJ7w6w+U8H6jN7ZO8OsPlPB+oze2V2RbtKxN0cILqT3h1h8p4P1Gb2yd4dYfKeD9Rm9srsiaVibo4QXUnvDrD5TwfqM3tk7w6w+U8H6jN7ZXZE0rE3RwgupbdK6ivgwZHMUYqj+kne6pJHM5vnDXukPJuNxuAT16bEbq31KsNGrDWrxtighY2OONo2DWgbAD8gC7UWnExq8TVVyL3ERFpQREQEREBERAREQEREBERAREQEREH/2Q==", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import Image, display\n", + "\n", + "display(Image(graph.get_graph().draw_mermaid_png()))" + ] + }, + { + "cell_type": "markdown", + "id": "898c7a41-571a-45cb-b1d7-990c361b26da", + "metadata": {}, + "source": [ + "## Run the agent!" + ] + }, + { + "cell_type": "markdown", + "id": "812f0d36-9966-47dd-8bd4-5341eb219525", + "metadata": {}, + "source": [ + "Let's run the agent for the first time and tell it some information about the user!" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "2f815342-e79a-479d-a43d-e4c0225f26b4", + "metadata": {}, + "outputs": [], + "source": [ + "def pretty_print_stream_chunk(chunk):\n", + " for node, updates in chunk.items():\n", + " print(f\"Update from node: {node}\")\n", + " if \"messages\" in updates:\n", + " updates[\"messages\"][-1].pretty_print()\n", + " else:\n", + " print(updates)\n", + "\n", + " print(\"\\n\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ead8ea5e-76db-47ea-81e1-2582fcd033c9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': []}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " save_recall_memory (call_OqfbWodmrywjMnB1v3p19QLt)\n", + " Call ID: call_OqfbWodmrywjMnB1v3p19QLt\n", + " Args:\n", + " memory: User's name is John.\n", + "\n", + "\n", + "Update from node: tools\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: save_recall_memory\n", + "\n", + "User's name is John.\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Nice to meet you, John! How can I assist you today?\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# NOTE: we're specifying `user_id` to save memories for a given user\n", + "config = {\"configurable\": {\"user_id\": \"1\", \"thread_id\": \"1\"}}\n", + "\n", + "for chunk in graph.stream({\"messages\": [(\"user\", \"my name is John\")]}, config=config):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "markdown", + "id": "fb1132d8-4a1a-4fa1-8dc9-7da220f16710", + "metadata": {}, + "source": [ + "You can see that the agent saved the memory about user's name. Let's add some more information about the user!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "bb972962-5cbb-4273-b9b8-80810b55ff46", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': [\"User's name is John.\"]}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " save_recall_memory (call_xxEivMuWCURJrGxMZb02Eh31)\n", + " Call ID: call_xxEivMuWCURJrGxMZb02Eh31\n", + " Args:\n", + " memory: John loves pizza.\n", + "\n", + "\n", + "Update from node: tools\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: save_recall_memory\n", + "\n", + "John loves pizza.\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Pizza is amazing! Do you have a favorite type or topping?\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for chunk in graph.stream({\"messages\": [(\"user\", \"i love pizza\")]}, config=config):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "0868024d-bf69-40f6-8fc8-c04607443aa5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': [\"User's name is John.\", 'John loves pizza.']}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " save_recall_memory (call_AFrtCVwIEr48Fim80zlhe6xg)\n", + " Call ID: call_AFrtCVwIEr48Fim80zlhe6xg\n", + " Args:\n", + " memory: John's favorite pizza topping is pepperoni.\n", + "\n", + "\n", + "Update from node: tools\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: save_recall_memory\n", + "\n", + "John's favorite pizza topping is pepperoni.\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Pepperoni is a classic choice! Do you have a favorite pizza place, or do you enjoy making it at home?\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for chunk in graph.stream(\n", + " {\"messages\": [(\"user\", \"yes -- pepperoni!\")]},\n", + " config={\"configurable\": {\"user_id\": \"1\", \"thread_id\": \"1\"}},\n", + "):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "196c2fc5-34e8-4f42-90b0-60d2dd747203", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': [\"User's name is John.\", 'John loves pizza.', \"John's favorite pizza topping is pepperoni.\"]}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " save_recall_memory (call_Na86uY9eBzaJ0sS0GM4Z9tSf)\n", + " Call ID: call_Na86uY9eBzaJ0sS0GM4Z9tSf\n", + " Args:\n", + " memory: John just moved to New York.\n", + "\n", + "\n", + "Update from node: tools\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: save_recall_memory\n", + "\n", + "John just moved to New York.\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Welcome to New York! That's a fantastic place for a pizza lover. Have you had a chance to explore any of the famous pizzerias there yet?\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for chunk in graph.stream(\n", + " {\"messages\": [(\"user\", \"i also just moved to new york\")]},\n", + " config={\"configurable\": {\"user_id\": \"1\", \"thread_id\": \"1\"}},\n", + "):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "markdown", + "id": "d0880c6c-5111-4fe5-9e25-1ffd6ef756c5", + "metadata": {}, + "source": [ + "Now we can use the saved information about our user on a different thread. Let's try it out:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "d503c838-f280-49c1-871f-b02b36a9904e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': ['John loves pizza.', \"User's name is John.\", 'John just moved to New York.']}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Considering you just moved to New York and love pizza, I'd recommend checking out some of the iconic pizza places in the city. Some popular spots include:\n", + "\n", + "1. **Di Fara Pizza** in Brooklyn – Known for its classic New York-style pizza.\n", + "2. **Joe's Pizza** in Greenwich Village – A historic pizzeria with a great reputation.\n", + "3. **Lucali** in Carroll Gardens, Brooklyn – Often ranked among the best for its delicious thin-crust pies.\n", + "\n", + "Would you like more recommendations or information about any of these places?\n", + "\n", + "\n" + ] + } + ], + "source": [ + "config = {\"configurable\": {\"user_id\": \"1\", \"thread_id\": \"2\"}}\n", + "\n", + "for chunk in graph.stream(\n", + " {\"messages\": [(\"user\", \"where should i go for dinner?\")]}, config=config\n", + "):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "markdown", + "id": "247e2634-7120-4de3-b1d5-a16c2d1e611e", + "metadata": {}, + "source": [ + "Notice how the agent is loading the most relevant memories before answering, and in our case suggests the dinner recommendations based on both the food preferences as well as location.\n", + "\n", + "Finally, let's use the search tool together with the rest of the conversation context and memory to find location of a pizzeria:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d235dbb3-3d5b-4206-888b-fef628241b14", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': ['John loves pizza.', 'John just moved to New York.', \"John's favorite pizza topping is pepperoni.\"]}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " tavily_search_results_json (call_aespiB28jpTFvaC4d0qpfY6t)\n", + " Call ID: call_aespiB28jpTFvaC4d0qpfY6t\n", + " Args:\n", + " query: Joe's Pizza Greenwich Village NYC address\n", + "\n", + "\n", + "Update from node: tools\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: tavily_search_results_json\n", + "\n", + "[{\"url\": \"https://www.joespizzanyc.com/locations-1-1\", \"content\": \"Joe's Pizza Greenwich Village (Original Location) 7 Carmine Street New York, NY 10014 (212) 366-1182 Joe's Pizza Times Square 1435 Broadway New York, NY 10018 (646) 559-4878. TIMES SQUARE MENU. ORDER JOE'S TIMES SQUARE Joe's Pizza Williamsburg 216 Bedford Avenue Brooklyn, NY 11249\"}]\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "The address for Joe's Pizza in Greenwich Village is:\n", + "\n", + "**7 Carmine Street, New York, NY 10014**\n", + "\n", + "Enjoy your pizza!\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for chunk in graph.stream(\n", + " {\"messages\": [(\"user\", \"what's the address for joe's in greenwich village?\")]},\n", + " config=config,\n", + "):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "markdown", + "id": "0449b949-e7ea-4273-8194-b64751d764c6", + "metadata": {}, + "source": [ + "If you were to pass a different user ID, the agent's response will not be personalized as we haven't saved any information about the other user:" + ] + }, + { + "cell_type": "markdown", + "id": "260b0ee3-107f-4bcc-8ef2-edeab4fe11b5", + "metadata": {}, + "source": [ + "## Adding structured memories\n", + "\n", + "So far we've represented memories as strings, e.g., `\"John loves pizza\"`. This is a natural representation when persisting memories to a vector store. If your use-case would benefit from other persistence backends-- such as a graph database-- we can update our application to generate memories with additional structure.\n", + "\n", + "Below, we update the `save_recall_memory` tool to accept a list of \"knowledge triples\", or 3-tuples with a `subject`, `predicate`, and `object`, suitable for storage in a knolwedge graph. Our model will then generate these representations as part of its tool calls.\n", + "\n", + "For simplicity, we use the same vector database as before, but the `save_recall_memory` and `search_recall_memories` tools could be further updated to interact with a graph database. For now, we only need to update the `save_recall_memory` tool:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "1e1569ef-1c00-46be-9616-1f046c38e74f", + "metadata": {}, + "outputs": [], + "source": [ + "recall_vector_store = InMemoryVectorStore(OpenAIEmbeddings())" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "60ca4cf7-a16a-4f5c-8ca5-4974bcc6bbc8", + "metadata": {}, + "outputs": [], + "source": [ + "from typing_extensions import TypedDict\n", + "\n", + "\n", + "class KnowledgeTriple(TypedDict):\n", + " subject: str\n", + " predicate: str\n", + " object_: str\n", + "\n", + "\n", + "@tool\n", + "def save_recall_memory(memories: List[KnowledgeTriple], config: RunnableConfig) -> str:\n", + " \"\"\"Save memory to vectorstore for later semantic retrieval.\"\"\"\n", + " user_id = get_user_id(config)\n", + " for memory in memories:\n", + " serialized = \" \".join(memory.values())\n", + " document = Document(\n", + " serialized,\n", + " id=str(uuid.uuid4()),\n", + " metadata={\n", + " \"user_id\": user_id,\n", + " **memory,\n", + " },\n", + " )\n", + " recall_vector_store.add_documents([document])\n", + " return memories" + ] + }, + { + "cell_type": "markdown", + "id": "b171ba75-bbf1-4474-a1db-2333a05a5da7", + "metadata": {}, + "source": [ + "We can then compile the graph exactly as before:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "93bedf95-36ca-42d9-b2b6-bfcb1f7a1cf2", + "metadata": {}, + "outputs": [], + "source": [ + "tools = [save_recall_memory, search_recall_memories, search]\n", + "model_with_tools = model.bind_tools(tools)\n", + "\n", + "\n", + "# Create the graph and add nodes\n", + "builder = StateGraph(State)\n", + "builder.add_node(load_memories)\n", + "builder.add_node(agent)\n", + "builder.add_node(\"tools\", ToolNode(tools))\n", + "\n", + "# Add edges to the graph\n", + "builder.add_edge(START, \"load_memories\")\n", + "builder.add_edge(\"load_memories\", \"agent\")\n", + "builder.add_conditional_edges(\"agent\", route_tools, [\"tools\", END])\n", + "builder.add_edge(\"tools\", \"agent\")\n", + "\n", + "# Compile the graph\n", + "memory = MemorySaver()\n", + "graph = builder.compile(checkpointer=memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "7d3491af-81b2-4994-8754-7f07b8b8fc7a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': []}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Hello, Alice! How can I assist you today?\n", + "\n", + "\n" + ] + } + ], + "source": [ + "config = {\"configurable\": {\"user_id\": \"3\", \"thread_id\": \"1\"}}\n", + "\n", + "for chunk in graph.stream({\"messages\": [(\"user\", \"Hi, I'm Alice.\")]}, config=config):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "markdown", + "id": "b3c3c337-c48e-430d-a336-204b6904015d", + "metadata": {}, + "source": [ + "Note that the application elects to extract knowledge-triples from the user's statements:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "846a9971-ff7e-4c86-b5dc-153bc4aac692", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': []}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "Tool Calls:\n", + " save_recall_memory (call_EQSZlvZLZpPa0OGS5Kyzy2Yz)\n", + " Call ID: call_EQSZlvZLZpPa0OGS5Kyzy2Yz\n", + " Args:\n", + " memories: [{'subject': 'Alice', 'predicate': 'has a friend', 'object_': 'John'}, {'subject': 'John', 'predicate': 'likes', 'object_': 'Pizza'}]\n", + "\n", + "\n", + "Update from node: tools\n", + "=================================\u001b[1m Tool Message \u001b[0m=================================\n", + "Name: save_recall_memory\n", + "\n", + "[{\"subject\": \"Alice\", \"predicate\": \"has a friend\", \"object_\": \"John\"}, {\"subject\": \"John\", \"predicate\": \"likes\", \"object_\": \"Pizza\"}]\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Got it! If you need any suggestions related to pizza or anything else, feel free to ask. What else is on your mind today?\n", + "\n", + "\n" + ] + } + ], + "source": [ + "for chunk in graph.stream(\n", + " {\"messages\": [(\"user\", \"My friend John likes Pizza.\")]}, config=config\n", + "):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "markdown", + "id": "209a49b7-c015-42f9-9066-83e308c63a56", + "metadata": {}, + "source": [ + "As before, the memories generated from one thread are accessed in another thread from the same user:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "c0cfc5d9-c69d-4839-990b-5edf004dd8b7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update from node: load_memories\n", + "{'recall_memories': ['John likes Pizza', 'Alice has a friend John']}\n", + "\n", + "\n", + "Update from node: agent\n", + "==================================\u001b[1m Ai Message \u001b[0m==================================\n", + "\n", + "Since John likes pizza, bringing some delicious pizza would be a great choice for the party. You might also consider asking if there are any specific toppings he prefers or if there are any dietary restrictions among the guests. This way, you can ensure everyone enjoys the food!\n", + "\n", + "\n" + ] + } + ], + "source": [ + "config = {\"configurable\": {\"user_id\": \"3\", \"thread_id\": \"2\"}}\n", + "\n", + "for chunk in graph.stream(\n", + " {\"messages\": [(\"user\", \"What food should I bring to John's party?\")]}, config=config\n", + "):\n", + " pretty_print_stream_chunk(chunk)" + ] + }, + { + "cell_type": "markdown", + "id": "5227e196-6418-4af4-bc05-fb9c339148cd", + "metadata": {}, + "source": [ + "Optionally, for illustrative purposes we can visualize the knowledge graph extracted by the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "8ad4d11a-b0cf-4720-b901-3d501365c033", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -U --quiet matplotlib networkx" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "0eae5dbd-962f-48ed-9c7c-172fae9cadda", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAFPCAYAAABklUYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAAxOAAAMTgF/d4wjAAAwqElEQVR4nO3deXhU9d3+8feZSSYr2UCBgOxbrQqWLRFURAEFalVAUFSqbR+rts/P2rrUPmqVWqsialsE6r6LIK4soihugBACilSBBAISQkSyL0MyM+f3xyHILpCZOXNm7td1eQHJZOZzkOSez3c7hmmaJiIiIuIYLrsLEBERkWOj8BYREXEYhbeIiIjDKLxFREQcRuEtIiLiMApvERERh4mzuwAREZHjUdPgo7C8lqLKesDEH4KNz24DwKBTehJdM1NI9URGbBra5y0iIk7S4A+wprSS4movhgGBMKSYywDThPYtEundOh2P296Ba4W3iIg4RkmNl1UlFfhMMyyhfSCXAXGGQb+2GbRJTQx/AXsovEVEJOLt221HQmgZ2NuFK7xFRCSifV/XwPLiMtu67cNp6sJz2mXRKtkT1tdWeIuISMTaUeNl+fbyiArtA7kMyMnODOswusJbREQiUnF1PSu2V0TEMPmPMYAB2Rm0a5EUltfTPm8REYk4O2q8jgluABNYsb2CHTXesLyewltERCKKNcdd7pjgbmICy7eX831dQ8hfS+EtIiIRo8EfYHlxGQG7CzlOAROWF5fR4A/tFSi8RUQkYqwprcTn8KVYPtPki9LKkL6GwltERCJCSY2X4mpvRK8sPxoBE7ZVe0M6/63wFhER2zX4A6wqcc4CtR9jAnklFSEbPld4i4iI7aJhuPxAoRw+V3iLiIitahp8UTFcfqCm4fOaBl/Qn1vhLSIitiosr8Uw7K4iNAzDur5gU3iLiIhtfAGTosr6qOu6mwRMKKqsxx/kC1R4i4iIbbZV10PULFM7HHPPdQaPwltERGyzsawWf5Rnt9+EDWXBHTpXeIuIiC0qdzeGZDFXJKpp8FG5uzFoz6fwFhERW+yqb8AVrSvVDuAyDMrqFd4iIuJw5fWN+KNsb/fh+E2Tsvrg3bBE4S0iIrbYFcQwc4JdXoW3iIg4mD9gUtvot7uMsKpt8Adty1hcUJ5FRETkGFQ1NG/+d0yv7L2/j4uPp1V2e0ZMuIoLr752v8+/9s32Zr1OsFU1+MhMjG/28yi8RUQk7Kp2+3AZNHub2O/v/ycN9fXM+vcUnr3/blq2acugCy7kDw89FpxCg8hlQNXuRoW3iIg4ky9Iw8dnnD8aT0IiJVs389ZTM/g673MGXXAhD//xegAGj7qIWf+awqvTpu73dT/tn8vv7nuE684beNBzTn//c8q+K2H6nbews/hbANp27MyE/72Z/kNHNKveYF23wltERMLOb5pBOVetuqKcBq+Xr5Z/BsCJ7U466DG5I0bTrks3TNPk1X8/xPaiTfQ8vR9pWS33duhrl3/K+7Nfom3HLrTIzKKmqoJzLhpHakYmVWW7WPDiMzz8x+t5/KN8UtLSj6tWEwgEaXW9wltERMIuWEd9/8/Zfff+vvegsxlx+aSDHtOhRy869OjF0/fdxfaiTQy9ZDyX/+E2DMNg8KiL+CZ/JZ/Oe4NW2e246+lXSEpJocHr5aM3X+PbgvWY+wRu8eZCevT+2XHXG6zT5BTeIiISdq4gnc3yl/+8QEJSMidkt+fEdu0P+7hX/vkg7zz7OGdc8HN+O3kKxp7DYTb9dy33XnsliSmp3PXULE7Itp7juQfuYevGb7jo19dzWu6ZvPTI/RSsXUOD19uset1Bum6Ft4iIhJ3bMAhGjp0y8Aw8CYlHfMyiWS8w+7GHyTjhRPoOGcayhW+T3rIV2Z26MPnXl1NXXcUFE69m07ov2bTuS/qdM3zv19ZUVlK47kuKvvlvs2s1IGgnyim8RUQk7OKC1XofhfWr8wCo2Pkd/7r1fwFrwdqlv/sjVWW7AHhtxqN7Hz/9/c+ZdOtd/Pv2P/DxW6/Rd8h5nJoziNWffNjsWoJ13YZpxsjZdCIiEjHKvQ0s2bIr6m8Gui8DGNKxVVC2iumENRERCbs0T/MDzInSPMEZ8FZ4i4hI2LldBinxbrvLCKsUjxt3kIbNFd4iImKLlkkeu0sIq5aJwbtehbeIiNgiMyked4zcz9ttGGQF8c2KwltERGzRMskTtBPHIl3ANMlKCt48v8JbRERskZ4QT2qQFnBFulRPHOkJCm8REYkC3bNSgnbqWKRyG9AjKyWoz6nwFhER27RvkQRBOWstkhl7rjN4FN4iImKbOJdBp/SkoJ11HmlcBnRKTwraFrG9zxvUZxMRETlGXTNTiNZ1a6ZpXV+wKbxFRMRWqZ442rdIjLru22VA+xaJIVmUp/AWERHb9W6dTlyU7fmOMwx6t04PyXMrvEVExHYet4u+bTOiZumaAfRrm4HHHZqYVXiLiEhEaJuaSLsoGD5vGi5vk3rk+4w36zVC9swiIiLHqE8UDJ+Hcri8icJbREQihsftIqddlmO7b5cBOe2yQjZcvvd1QvrsIiIix6hVsoec7EzHzX8bQE52Jq2SQ3+3NIW3iIhEnDapiQzIds4CNgMYkJ0R0nnu/V7PNKN1a7yIiDjdjhovy7eXE4jgpLKGyjNpkxKe4AZ13iIiEsEay3cy56HJ+Hd7I24e3GWAx2UwuH3LsAY3KLxFRCQCFRYWMmnSJDp37syL/5nOV2+8QHZqYsQMoxtAu9REhnc5MSxz3AeKjRupioiIIwQCASZNmsTLL7+My+XC7/cTFxfH6AvOp392JiU1XlaVVOAzTVuG0l2GtRWsX9vwzW8fsg7bXllEROQAhmFQVVWF2+2msbERsAL91FNPBayDXIZ3OZF2e7rwcA2lu4z9u207gxu0YE1ERCKMaZoMHjyYpUuXAtClSxcKCwsPelxNg4/C8lqKKusBE38I0sxtABh0zkiiS0ZKSG4ycjzUeYuISER55ZVX+Prrr3n55ZfJyMhg8ODBh3xcqieO3q3TGd2tNX1ap9PCE4cBuJt5QpvbMDCAFp44+ux5/tNOTI+Y4AZ13iIiEkHWrVtHTk4Or7zyCqNGjaK8vByAzMzMo/r6yt2NlNU3UlbfwK76Bmob/cAPw+v7Bl5TxDfNnad43LRM9JCV5CErKZ70hPggXFFoKLxFRCQiVFdX079/f8aNG8fkyZOD8pz+gElVg4+q3Y34AiYB0xpedxvgMgziXAZpCfGkeeJwR9petCNQeIuIiO1M02T8+PGUl5ezcOFC3G633SVFtMgZwBcRkZj16KOPsmzZMvLz8xXcR0Gdt4iI2OrTTz9lxIgRLF68mJycHLvLcQStNhcREduUlpZy6aWXcv/99yu4j4E6bxERsYXP52PYsGG0bduWF198EaOZW7xiiea8RUTEFv/3f//Hd999x9tvv63gPkYKbxERCbs33niDxx57jBUrVpCammp3OY6jOW8REQmrgoICfvnLX/Lkk0/Sq1cvu8txJM15i4hI2NTV1ZGbm8u5557L1KlT7S7HsRTeIiISFqZpcvXVV1NQUMCHH35IfHzkHj8a6TTnLSIiYfHEE0+wYMECVq9ereBuJnXeIiIScnl5eZx99tnMmzePIUOG2F2O42nBmoiIhFRZWRljx47lrrvuUnAHiTpvEREJmUAgwOjRo0lISGDu3Lnazx0kmvMWEZGQuffee9mwYQN5eXkK7iBS5y0iIiGxaNEiLrnkEj777DN69+5tdzlRRXPeIiISdFu3buXyyy9n2rRpCu4QUOctIiJBtXv3bs466yz69OnDzJkz7S4nKqnzFhGRoLrpppvw+/08+uijdpcStbRgTUREguaFF17g5ZdfJj8/n8TERLvLiVoaNhcRkaBYu3Ytubm5zJ49mwsuuMDucqKawltERJqtqqqKfv36cdlll3H33XfbXU7UU3iLiEizmKbJ2LFjqampYf78+bjdbrtLinqa8xYRkWaZOnUqK1euJD8/X8EdJuq8RUTkuH388cdccMEFfPjhhwwYMMDucmKGtoqJiMhx2bFjB+PHj2fKlCkK7jBT5y0iIsfM5/Nx7rnn0qFDB5577jmdWx5mmvMWEZFjdvvtt1NWVsb8+fMV3DZQeIuIyDGZO3cuM2fOZOXKlaSkpNhdTkzSnLeIiBy1DRs2cPXVV/P000/To0cPu8uJWZrzFhGRo1JbW0tOTg4jRoxgypQpdpcT0xTeIiLyo0zT5KqrrmLLli0sXryY+Ph4u0uKaZrzFhGRHzVz5kzee+89Vq9ereCOAOq8RUTkiFasWME555zDggULOOuss+wuR9CCNREROYLvv/+ecePGcffddyu4I4g6bxEROSS/38/IkSNJTU1lzpw52s8dQTTnLSIihzR58mQ2b97MypUrFdwRRuEtIiIHWbBgAVOmTGHZsmWkp6fbXY4cQHPeIiKyn6KiIq644gpmzJjBqaeeanc5cgia8xYRkb12797N4MGD6d+/P4899pjd5chhKLxFRGSv6667jlWrVvHJJ5+QkJBgdzlyGJrzFhERAJ577jlmz55Nfn6+gjvCqfMWERG+/PJLzjjjDF577TVGjBhhdznyI7RgTUQkxlVWVjJmzBhuvvlmBbdDqPMWEYlhpmlyySWX4PV6mTdvHi6Xejon0Jy3iEgMmzJlCvn5+eTn5yu4HUSdt4hIjFqyZAmjRo1iyZIl9O/f3+5y5BjobZaISAzavn07EyZMYOrUqQpuB1LnLSISYxobGxk6dChdunThmWee0bnlDqTOW0Qkxtx2221UVlYyffp0BbdDacGaiEgMmTNnDk8++SQrV64kOTnZ7nLkOGnYXEQkRqxfv57+/fvz3HPPcdFFF9ldjjSDwltEJAbU1NQwcOBARo8ezf333293OdJMCm8RkShnmiYTJ05k+/btvP/++8TFacbU6fR/UEQkyj322GMsWbKE/Px8BXeUUOctIhLFPv/8c4YOHcq7777L4MGD7S5HgkRbxUREotTOnTsZO3Ysf/vb3xTcUUadt4hIFPL7/VxwwQWkp6fz6quvaj93lNHkh4hIFLr77rvZsmULK1euVHBHIYW3iEiUmTdvHg8//DDLli0jLS3N7nIkBDTnLSISRTZv3syVV17JjBkzOOWUU+wuR0JEc94iIlHC6/UyaNAgcnNz+fe//213ORJCCm8RkSjxP//zP3z55Zd89NFHJCQk2F2OhJDmvEVEosDTTz/N3LlzWb16tYI7BqjzFhFxuDVr1jB48GBef/11hg0bZnc5EgZasCYi4mAVFRWMGTOG2267TcEdQ9R5i4g4VCAQ4KKLLsLv9/P222/jcqkfixWa8xYRcagHHniAtWvXsmrVKgV3jFHnLSLiQB988AE///nP+fjjj+nbt6/d5UiY6a2aiIjDFBcXM2HCBB599FEFd4xS5y0i4iCNjY0MGTKEnj178uSTT+rc8hilzltExEEKCgpwuVxMmzZNwR3D1HmLiDiI1+slLi6OuDitN45lCm8RERGH0bC5iEikUU8lP0LhLSISqT78EMrL7a5CIpDCW0Qkkvj9YBhWcP/mN1BVZXdFEoE05y0iEmnKy2HQIHjyScjNhYULYf16OP10OOssu6uTCKDliiIikSYvD049FU45Be68E774wurAKyoU3gJo2FxEJPL87GewYQP85CfQsiW8+Sb8+c+wbBl4vXZXJxFAnbeIiN0CAXC5YO1aqKuzPrZyJWzaBD16wLZtcNddcMcdkJhob60SEdR5i4jYye+3gnv9evjVr+D55+Gaa6xuu0cPK8xvuAFGjICRI+2uViKEFqyJiESCESOs+e3ycrjvPliyxBoi370bdu2Cnj3trlAiiIbNRUTstnYt9OkDrVrB//t/MH06xMdbXXhiIlx+ud0VSoTRsLmIiB0CAetXrxc6dYLSUhg/Hm69Ffr3h82b4YEHoFcvW8uUyKTwFhGxg8sFq1fDlVdCixZw8snwzTdQWwtPPAFXXQU33mitPBc5gIbNRUTCafNma/tXWpp1hnlqqvXxW26Bdu3g9dehe3eYOBF++1t7a5WIpfAWEQmX9eutleS/+hVccom1GK26+ofPT5wI554LbdrYV6M4gsJbRCRcevaEyy6zFqLt3Ak//Sk0NlrHoBYXW6eorVtndd/azy1HoK1iIiLhMHmytRjN44GlS+Huu62w9vuhQwcYMMA6DjUz0zrPXOQI1HmLiIRSIGB119nZ1q/Ll1vnk7/8shXgX38Nl15qHcDSNP8t8iO02lxEJJQ2bICEBGue+5VX4PzzYdo0yMqCRx+F4cPhnntg/ny7KxUH0bC5iEio+P3WzUV694bZs62PvfGGtbJ8yBC4/35rmPz9962h8pQUO6sVB1HnLSISKm63tXe7VSvrsJVNm+Cii+C996CgAEaNsm7/ed55Cm45JgpvEZFQcrms407vu886iOWVV6BjR/jgA+tkta++srtCcSANm4uIhMu338Lpp1unqj38sN3ViIMpvEVEQsg0TQzD+OEDjY1w9tlW9/3yy/YVJo6mYXMRkRAxTZO///3v1NXVsbdPio+39nk/9pi9xYmjKbxFRELkn//8JzNmzKC+vn7/7husVeYix0nD5iIiIfDZZ58xfPhwFi9eTE5Ojt3lSJRR5y0iEmSlpaVceuml3H///QpuCQl13iIiQeTz+Rg+fDitW7fmpZdeOni4XCQIdLa5iEgQ3XHHHezYsYO33npLwS0ho/AWEQmSN998k2nTprFixQpSdZMRCSHNeYuIBEFBQQGTJk3iiSeeoFevXnaXI1FOc94iIs1UV1dHbm4uQ4cO5WGdnCZhoPAWEWkG0zS5+uqrKSgo4MMPPyQ+Pt7ukiQGaM5bRKQZnnjiCRYsWEB+fr6CW8JGnbeIyHHKy8vj7LPP5p133uGcc86xuxyJIVqwJiJyHMrKyhg7dix33nmnglvCTp23iMgxCgQCjB49Go/Hw+uvv6793BJ2mvMWETlG9957Lxs2bCAvL0/BLbZQ5y0icgzee+89Lr74Yj777DN69+5tdzkSozTnLSJylLZu3cpll13GtGnTFNxiK3XeIiJHYffu3Zx11ln06dOHmTNn2l2OxDh13iIiR+GPf/wjPp+PRx991O5SRLRgTUTkx7z44ou89NJLrFq1isTERLvLEdGwuYjIkXz11Vfk5uYya9YsRo4caXc5IoDCW0TksKqqqujfvz/jx4/nnnvusbsckb0U3iIih2CaJuPGjaOqqooFCxbgdrvtLklkL815i4gcwsMPP8yKFSvIz89XcEvEUectInKATz75hPPPP58PPviAgQMH2l2OyEG0VUxEZB87duzg0ksv5cEHH1RwS8RS5y0isofP5+Pcc8/lpJNO4vnnn9e55RKxNOctIrLH7bffzq5du5g/f76CWyKawltEBHj99deZOXMmK1asICUlxe5yRI5Ic94iEvM2btzIL3/5S5566il69uxpdzkiP0pz3iIS0+rq6sjJyWH48OFMmTLF7nJEjorCW0RilmmaTJo0iaKiIhYvXkx8fLzdJYkcFc15i0jM+s9//sOiRYtYvXq1glscRZ23iMSklStXMmTIEObPn8/ZZ59tdzkix0QL1kQk5uzatYuxY8fy17/+VcEtjqTOW0Riit/vZ9SoUSQlJTF37lzt5xZH0py3iMSUv/3tbxQWFpKXl6fgFsdS5y0iMWPhwoWMHTuWpUuXctppp9ldjshx05y3iMSELVu2MHHiRKZPn67gFsdT5y0iUW/37t0MHjyYfv36MX36dLvLEWk2dd4iEvVuvPFGAB555BFb6xAJFi1YE5Go9txzz/Hqq6+Sn59PQkKC3eWIBIWGzUUkaq1du5bc3FzmzJnD+eefb3c5IkGjYXMRiUqVlZWMGTOGm2++WcEtUUedt4hEHdM0GTNmDPX19cybNw+XS32KRBfNeYtI1HnooYdYtWoV+fn5Cm6JSuq8RSSqfPTRR4wcOZIlS5bQv39/u8sRCQm9JRWRqFFSUsL48eN56KGHFNwS1dR5i0hUaGxsZOjQoXTu3Jlnn31W55ZLVFPnLSJR4c9//jOVlZXMmDFDwS1RTwvWRMTx5syZw+OPP05eXh7Jycl2lyMScgpvEXG09evXc8011/Dss8/SvXt3u8sRCQvNeYuIY9XW1jJw4EBGjhzJAw88YHc5ImGj8BYRRzJNkyuuuIJt27axePFi4uI0kCixQ//aRcSRpk+fzgcffMDq1asV3BJz1HmLiON8/vnnDB06lIULF3LmmWfaXY5I2GmrmIg4yvfff8+4ceOYPHmygltiljpvEXEMv9/PyJEjadGiBbNnz9Z+bolZmigSEce45557KCoqYuXKlQpuiWkKbxFxhPnz5zN16lSWLVtGWlqa3eWI2Epz3iIS8YqKirjiiiuYMWMGp5xyit3liNhOc94iEtG8Xi+DBw9m4MCBTJs2ze5yRCKCwltEItq1117LmjVr+Pjjj0lISLC7HJGIoDlvEYlYzzzzDK+99hr5+fkKbpF9qPMWkYj0xRdfMGjQIObOncvw4cPtLkckomjBmohEnIqKCsaMGcOtt96q4BY5BHXeIhJRAoEAF198MY2Njbzzzju4XOoxRA6kOW8RiSgPPvggX3zxBfn5+QpukcNQ5y0iEePDDz9k9OjRfPzxx/Tt29fuckQilt7WikhEKC4uZsKECTzyyCMKbpEfoc5bRGzX2NjIOeecQ/fu3Xnqqad0brnIj1DnLSK2u/XWW6mpqWHatGkKbpGjoAVrImKr2bNn89RTT5GXl0dycrLd5Yg4gobNRcQ233zzDQMGDOD555/nF7/4hd3liDiGwltE9uMPmFQ1NFK124cvYOI3TQImuAxwGwZxLoO0hDjSPPG4Xcc/xF1TU8PAgQO58MILue+++4J4BSLRT+EtEuMqdzeyq76B8nrr19pGP2CFNcC+PyCaojqw54Mp8W5aJnnITIqnZZKH9IT4o3pN0zSZOHEiO3bsYNGiRcTFaQZP5FjoO0YkBvkCJtuq69lYVktNgw+XYeA/4H28/yje1tc0+qlprGdbtZeAaZLqiaN7VgontUg6Ylc+bdo0lixZwurVqxXcIsdBnbdIDKlp8FFYXktRZT1gHlVAHyu3AWDQKT2JrpkppHr2D+dly5Zx3nnnsWjRIgYNGhT8AkRigMJbJAY0+AOsKa2kuNqLYfww7B1KLgNME9q3SKR363Q8bhc7d+7k9NNP509/+hM33nhj6IsQiVIKb5EoV1LjZVVJBb49C8/CzWVAnGHws9ZpXHXJhWRlZTFr1izt5xZpBoW3SJTat9uOiG9y02TtZ0v4/djRZKWn2V2NiKMpvEWi0Pd1DSwvLrOt2z6cpi48p10WrZI9dpcj4lgKb5Eos6PGy/Lt5REV2gdyGZCTnUmb1ES7SxFxJIW3SBQprq5nxfaKyBgm/xEGMCA7g3YtkuwuRcRxdGMSkSixo8brmOAG6/CXFdsr2FHjtbsUEcdReItEAWuOu9wxwd3EBJZvL+f7uga7SxFxFIW3iMM1+AMsLy4jYHchxylgwvLiMhr8Tr0CkfBTeIs43JrSSnwOX7riM02+KK20uwwRx1B4izhYSY2X4mpvRK8sPxoBE7ZVezX/LXKUFN4iDtXgD7CqxDkL1H6MCeSVVGj4XOQoKLxFHCoahssPpOFzkaOj8BZxoJoGX1QMlx+oafi8psFndykiEU3hLeJAheW1ROt9PQzDuj4ROTyFt4jD+AImRZX1Udd1NwmYUFRZjz9aL1AkCBTeIg6zrboeomaZ2uGYe65TRA5F4S3iMBvLavFHeXb7TdhQpqFzkcNReIs4SOXuxphZzFXT4KNyd6PdZYhEJIW3iIPsqm/AFa0r1Q7gMgzK6hXeIoei8BZxkPL6RvxRtrf7cPymSVm9blgicigKbxEH2RVjYbbLG1vXK3K0FN4iDuEPmNQ2+u0uI6xqG/zaMiZyCApvEYeoagjO/O+YXtmM6ZVNw+4j3wRk1r+mMKZXNrP+NSUor3u8qmJkgZ7IsVB4izhE1W4frthYq7aXy4AqrTgXOUic3QWIyNHxhWD4+KvPl/LSI/9g64ZvSEhOps+gIVx18/+R3rLV3sfs+HYLd00aR8HaNXQ9pTd/fGQm6Vkt+ddtN7LkjVc5b9xENq37ku1FmzjtjDP5w0OP4UlIDFqNobhuEadzZOftD5iUexvYUllHYXktG8pq+GZXDRvKaigsr2VLZR3l3gbNlUlU8ZtmUM9VK/12K/deewVb1n/NhP93C/2GDGPJG68y9abr9nvcysXvMuDcEXTs+RPWrVjKwhef3u/z+R8t5rxLJ9KyTVtWvL+QT+e9GbQaTSAQI6vrRY6FIzrvyt2N7KpvoLze+rVp0U7TEOK+39pNo4pNuZ0S76ZlkofMpHhaJnlIT4gPW90iwRTs96LrViylwevlvHETGX3VrwkEAixd+DZfff4ZNZUVex939i/GMOqqX+NJTGL96jx2bC3a73lGTfo1IyZcxfcl25k7858Hfb65ov00OZHjEbHh7QtYZxtvLKulpsGHyzAO2t96NN/UNY1+ahrr2VbtJWCapHri6J6VwkktknDH2gSiOEJ1dTWpqakYBxzGYtc/17TMlgC446wfF36/75CfjzvM55vLrW9TkYNEXHjXNPgoLK+lqNK6+UJTQDf3YIqmr69u8PFFaSVflFbRKT2JrpkppHoi7q9BYpRpmrRu3ZqWLVty1VVXMWHCBE455RQMw8BtGAQzx3464AwSkpL4bP6bdOjek28LNlBXXcUpAweRmp4RxFc6fgbEzIlyIsciYua8G/wBVmwv573NO9lcWYffNEM2XOY3rTDfXFnHe5t3snJ7OQ3+QGheTOQYGIZBamoq27Zt48EHH6RPnz5kZmZy/fXXExeE1ru6vAyAhKQk2nftzu0znqdDj1689Mj9rPzgXYb8Yhw3TZ3e7NcJpmBct0i0MUzT/tUgJTVeVpVU4DNNW+5R7DIgzjDo1zaDNqnBWyUrciQ1NTUUFhZSUFDAxo0b9/66bNkyGhv33x41adIkHp7xH5Zs2XXci9aWLXyHt5+Zyfo1q+h79nncPvO55l9EiBnAkI6tyEzUWhWRfdk6XtzgD7CmtJLiaq+tdycOmNBgmiwrLqd9i0R6t07H446YQQlxsOrqagoLC/cL54KCAgoKCigpKSEtLY3u3bvTvXt3unXrxplnnkl6ejpvv/02iYmJtG7dmjlz5tCvX79m755Y9dH77Ph2C4NGXsjVt90dpCsMvTRNa4kcxLbviu/rGlheXIYvyNtfmsMEimu8lNbuJqddFq2SPXaXJMFWWwspKUF9yqqqqr2BvG84b9y4kdLSUtLT0/cL6HPOOYdu3brRrVs3WrVqddDCtF27dvH2229z9dVX89BDD5GUlASA22WQEu+m5jiPSP3dfY8091LDLsXj1sJSkUOwZdh8R42X5dvLbRkiP1ouA3KyMzWM7nSBgPVfXBzcfz8UFcHf/w6Zmcf0NJWVlQcFdNOv3333HZmZmXvDuVu3bnt/3717d7Kysg4K6COpqKigsLCQvn37HvS5VSUVbKmqP6banaxjWhJ922bYXYZIxAl7511cXc+K7RUR020fTsCEZcXlDMjOoF2LJLvLkcMxTeu/Jq4Dpjtcrh8+1qoVbN0KlZWHDO+KiopDhnNBQQE7d+4kKytrv1AeNmzYfgEdLBkZGYcMboDMpHi2VXtj4ragbsMgK0mjXyKHEtbw3lHjdURwNzGBFdsryG1nqAO3Q3U1pKaCYVgBHQhYv28KY9O0/nykrnbZMnjkEaiqghYtIDkZysqgU6e9D6mrq+OWW25h2rRptGrVar/O+fzzz6d79+507do1qAF9vFomeWLmxLGAaZKVpIVqIocStmHz7+sa+PTbXThxQ5bLgMHtW2oOPBS+/RbS0yEtDXw+K6A9HvjXv6xQ/tWvIOkQIx9+P7jd8N//whdfQEkJvPgiJCTAzTfDxRdDaSn89a/W8990E0ybBs89B88+C2edtfepAoEAO3bsIDk5mYyMjLBd+vF6b/NOqmPgTlstPHEM63yC3WWIRKSwLKlu8AdYXlzmyOAGawh9eXGZ9oIH0/vvw4ABcPnl8NVX1sfi4qzgBvj97+G66yB+T+e1eTNcfz3k5MCgQfDUU9bHCwrgllus8P7gA7j6avjHP6yFaRs2wOefw223wYknwmWXWV+/Zct+pbhcLrKzsx0R3ADds1Ki/tQxtwE9soK7sFAkmoQlvNeUVuJz+FCfzzT5orTS7jIiXyBgdcX+w6yIbvp4Xh506QKffAInnwxr1sDjj8M118Af/gCvvALDhsH69VZHvmgRDB4MS5daj3vnHXjhBejXD9q0gdxcq8MeNgxat7aer21bKC6GjAyrrrZtrV/Ly8P0lxEa7VskQVDPWotExp7rFJFDCfmcd0mN1/Z93MEQMGFbtZeTaryxPf/dtEDscHPNBy4YO5DbbQX3gw+C1wujR8P48dbQ98svw/TpMHCgtaisaZ571y6YMsUK+VmzYNs267Vra63ATkqyFqOBFeRxcbB9u/U8GRkwdy5ccolV25Il0LnzD9fgQHEug07pSWyurIvoHRvHy2VAp3Tde0DkSEIa3g3+AKtKnLNA7ceYQF5JBcO7nBjdh7gcKaD3/diBAejzWeE4bx4UFloruidPhg4d9n+Ok0+GqVPhL3+xOmiAnTutoe0LL7T+nJZmdeklJfCTn1hhPHky9OwJXbtan2+SnGzNbwcCkJhohfm2bT9sD5sxw1q0lpQEw4dbddXVBX2/dzh1zUxhU0Wd3WWEhGla1ycihxfS8I6G4fIDNQ2f988+tn3CEaW4GNq1s8LWMKxueF+H66q//x6+/BI2brR+wv72t/sHeCBgPfcZZ8Avf2ntqb7oIsjP3/95kpNhxAhreNzns0K2TRvo2BEaG6157qQkK1xLSqzP9+tnzXtPmGA9x/bt1tx1bq715w0brE4+ORmys63nqK21Xv+kk6zX6dYNWrYM3t+jjVI9cbRvkUhxjTequm+XAe1SE3WzIJEfEbLvkJoGX1QMlx+oafj8Jw0+Z/6AycuzFoo1HVxyoKaA/vprKwx/9ztrBXdVFVx5pRWoHTpYQQv7h7zHA+PGweuvw2OPWSG/Zo0VwG3b7v86qalWwBYVWaGalWW9EdixwwpbsD62dav1+3//21qBftZZVijX1cGNN1rh/b//az1/4p7pjAcf/OF1TBMOs2fa6Xq3Tqe0djcNUfQGOc4w6N063e4yRCJeyNKnsLx27/bcaGMY1vU58odMr15WaBYWWiu+//tfmDjRCnSAhx+2utru3a2AvOUWa745Lw9qauCJJ6yu/XBmzIB162DoUOsks5NPtuazDxXerVtbbxK6dbM67YoKq66m8O7a1XpDUF0Np55qDZuXllqvv28HPXLk4etx6Lz20fC4XfRtm8Hy4vKoeJNsAP3aZkT3lJRIkIRkn7cvYDKvoDSqT4FyGwaju7V25qKa1FRrVXdqqrWIa+5cePddKzSrq60Q/eYbeOsteP55WLECevSwQjIpyVrw5ffDr38NP/2p9ZxN+647d4bbb4ff/MYa5j79dLj3XrjhhoPnyM87z3rOm26yOuzPP7cWmR04Rw6OXmAWaiu2l7Pd4cPnTcPljp6OEgmjkHTe26rrISp6gSMx2VZdT8f0ZLsLOUggEODbb7+loKCA6upqRo0aRXz8PidVtW9vheHf/279+Y03rD3SkyZZJ5L985/WKu3cXDjhBFi1ygrv+fOtIeviYmsI3TSthWD7uvJKmD3bejPQrZv1hmDDhkMX+s471lB3IGAF9qFCu4mC+7D6tE7nO4cPn2u4XOTYhCS8N5bV4nfuz5Gj4jdhQ1mtbeHt9/v3BvSBd7LatGkTjY2NdOrUib59+3LRRRft/8XZ2fsPfZ9+ujXUDfDoo9af//Y3a/HY9OnWym2w9lyXlVmLv3r0sP4DK8SbFr3dfLO1J7u83Bo6v+uuH05IOzCAm+aof2x7mRyRx+0ip10Wn27b5cju22VATrssDZeLHIOgh3fl7kZqYuDoRrAW5VXubiQ9ITTnL/v9frZu3XrIm2Vs2rQJv99Pp06d9p7FPXToUK699lq6detGp06d8HgOc5zrKadYi9KanHwyrF79w++//BLefNNaJd7YCJ9+aoXyq6/CwoXWueD9+1v7s2H/UG7RAsaMCcnfhxxeq2QPOdmZLHPY/LeBdfc+HT0scmyCPue9qaKWtd9VR/V8dxO3YXDaiWl0zjj+7tvn87F169ZD3slq06ZNBAIBOnfufMjbTXbq1Gn/4fCj9fjj1iK09eutP8+aZS1M27LFWhn+4IPWwrELL7QWsiUnW4vHJOI55a59YAW37toncnyCHt663/DBfD4fRUVFh7wf9ObNmwHo0qXLQeHcrVs3OnbseHwBfST5+fCnP1nz3PDDPHbTMLg42o4aL8u3l0f0ELo1VJ5Jm5QYPq1QpBmCHt6LNn1HTeNhzrWOQqkeN8M7n0hjY+PegD5wDrqoqAjDMPYG9IFddIcOHYg71J5rkeP0fV0Dy4vL8JlmRIW4y7AWp+W0y9JQuUgzBDW8/QGTtzbucMSQXbAEAn7+cvEwCgs24na76dKlyyGHuDt06ID7wJPMREKowR9gTWllxByWZADtWyTSu3W6FqeJNFNQw7vc28CSLbua/YOidNtWbhiWi2manJo7mL8+/SoAs/41hVenTeXSG25i/O//xJ1XjmHdymXc/ewcThl4RvMv4DiYgQCp322mZ8f2nHTSSQpoiTglNV5WlVTY1oU3ddv92mbE9k19RIIoqGO1Vbt9uAyavU1syeuvYpomLrebdZ8vZef2bZyQ3f6gx4274Q8M33UlJ3Wzb642zu2iV5+fReR+bxGAtqmJDO9yIl+UVrKt2othEJYQd+05YbFdqrptkWAL6neTLwg/EUzTZMmbc4iLj+fi3/yOQCDAkjdmH/Kxs6c9zMN/vJ5vC6xDQLYVbuQfN1zNNYNO47LeXfjTJcP3Pvb92S9y48/P4bI+Xbh+WC5vPDGt2bU2CcZ1i4SSx+2if3YmwzqfQOf0ZNyGgTtE5964DWsnRpeMZIZ1PoH+2ZkKbpEgC+p3lN80mz1kvm7FMr7btpXTzzyHkVdcg8vtPmx476uuppq7r5nAysXvkjtiNL++8166/vQ0AD5b8BbT77iZtMyWjLv+D7Tv2p3np9zLolkvNLNa6xy5QAxsi5PokOqJo3frdEZ3a02f1um08MRhYIVtc7gNAwNo4Ymjz57nP+3EdGfevEfEAYL6nRWMBvTD16357dNyz6TB66X7aaezfnUe61YuP+LXfZO/krLSEn7SbyC/udM69vPcMZcBsHzRPADWrVjKuhVL935N/kfvM3z8Fc2uOdpPk5Po43YZdExPpmN6MpW7Gymrb6SsvoFd9Q3U7tkt0nRs/77/vJsivul7PcXjpmWih6wkD1lJ8SE7sEhE9hfU8G7uPTrqa2tZvugdAJ689w6evPeOvZ9b8vosWrU9wt2sjsLY627k5P45e/+c0iKtWc/XJFTDjyLhkJ5ghW7TYUP+gElVg4+q3Y34AiYB08RvWv/OXYZBnMsgLSGeNE+cM2/MIxIFghreTUNnx2vZu+/grauj75DzOHes1TVjwiN/uoGlC99h+IQrD/u1PU/vR9aJbfg673OemPwXupx8KuvX5HHd5CnkDB/F0gVv8+m8N8hq3YaA389/85bTsefJdDu1TzMqtjoRl26aIVHE7TLITIwnM1FdtEikCmp4xzXzXfiSPUPm5427nAHnnr/346fmDmbVkvdZ/u68w35tSos07njyZV6c+nc+m/8mi+e8TLuu3QAYdMGF1NdUM++5J3nmH38lITGJjj1PpkfvnzWr3ibNvW4REZFjEZH7vJ3EAIZ0bKUuRUREwiaoq83TPLEZYGlaUSsiImEU1PB2uwxS4mPrhLEUj1uLdkREJKyCfnJCy6TYutlAy8TYul4REbFf0MM7Mym+2Qc+OIXbMMiKsTcrIiJiv5B03rFy4ljANMlKis15fhERsU/Qwzs9IT5mjkRM9cTpRCkREQm7kNwtoHtWStSfOuY2oEdWit1liIhIDApJeLdvkQTNOmvNCYw91ykiIhJeIQnvOJdBp/SkZp91HqlcBnRKT9IWMRERsUXIbrLbNTOFaF23ZprW9YmIiNghZOGd6omjfYvEqOu+XQa0b5EYM4vyREQk8oQsvAF6t04nLsr2fMcZBr1bp9tdhoiIxLCQhrfH7aJv24yoWbpmAP3aZuBxh/SvTURE5IhCnkJtUxNpFwXD503D5W1SE+0uRUREYlxYWsg+UTB8ruFyERGJFGEJb4/bRU67LMd23y4DctplabhcREQiQtjSqFWyh5zsTMfNfxtATnYmrZJ1AxIREYkMYW0l26QmMiDbOQvYDGBAdobmuUVEJKIYphn+o1R21HhZvr2cQAQf4mINlWfSJkXBLSIikcWW8Ab4vq6B5cVl+EwzokLcZViL03LaZWmoXEREIpJt4Q3Q4A+wprSS4movkZDfBtZ2sN6t07U4TUREIpat4d2kpMbLqpIK27rwpm67X1vNb4uISOSLiPAGqwv/orSSbdVeDIOwhLjLsG4yom5bREScJGLCu0lNg4/C8lqKKusBE38IqnMbAAadM5LokpGim4yIiIijRFx4i4iIyJFpnFhERMRhFN4iIiIOo/AWERFxGIW3iIiIwyi8RUREHEbhLSIi4jD/HzuFbA2ASybNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import networkx as nx\n", + "\n", + "# Fetch records\n", + "records = recall_vector_store.similarity_search(\n", + " \"Alice\", k=2, filter=lambda doc: doc.metadata[\"user_id\"] == \"3\"\n", + ")\n", + "\n", + "\n", + "# Plot graph\n", + "plt.figure(figsize=(6, 4), dpi=80)\n", + "G = nx.DiGraph()\n", + "\n", + "for record in records:\n", + " G.add_edge(\n", + " record.metadata[\"subject\"],\n", + " record.metadata[\"object_\"],\n", + " label=record.metadata[\"predicate\"],\n", + " )\n", + "\n", + "pos = nx.spring_layout(G)\n", + "nx.draw(\n", + " G,\n", + " pos,\n", + " with_labels=True,\n", + " node_size=3000,\n", + " node_color=\"lightblue\",\n", + " font_size=10,\n", + " font_weight=\"bold\",\n", + " arrows=True,\n", + ")\n", + "edge_labels = nx.get_edge_attributes(G, \"label\")\n", + "nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_color=\"red\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/versions/v0_2/deprecations.mdx b/docs/docs/versions/v0_2/deprecations.mdx index b97c27888f45e..d08d885c2d393 100644 --- a/docs/docs/versions/v0_2/deprecations.mdx +++ b/docs/docs/versions/v0_2/deprecations.mdx @@ -8,7 +8,7 @@ keywords: [retrievalqa, llmchain, conversationalretrievalchain] This code contains a list of deprecations and removals in the `langchain` and `langchain-core` packages. -New features and improvements are not listed here. See the [overview](/docs/versions/overview/) for a summary of what's new in this release. +New features and improvements are not listed here. See the [overview](/docs/versions/v0_2/overview/) for a summary of what's new in this release. ## Breaking changes @@ -755,7 +755,7 @@ Deprecated: 0.1.17 Removal: 0.3.0 -Alternative: [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html#langchain-chains-retrieval-create-retrieval-chain) +Alternative: [create_retrieval_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html#langchain-chains-retrieval-create-retrieval-chain) This [migration guide](/docs/versions/migrating_chains/retrieval_qa) has a side-by-side comparison. @@ -822,7 +822,7 @@ Deprecated: 0.1.17 Removal: 0.3.0 -Alternative: [create_history_aware_retriever](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) together with [create_retrieval_chain](https://python.langchain.com/v0.2/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html#langchain-chains-retrieval-create-retrieval-chain) (see example in docstring) +Alternative: [create_history_aware_retriever](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.history_aware_retriever.create_history_aware_retriever.html) together with [create_retrieval_chain](https://python.langchain.com/api_reference/langchain/chains/langchain.chains.retrieval.create_retrieval_chain.html#langchain-chains-retrieval-create-retrieval-chain) (see example in docstring) This [migration guide](/docs/versions/migrating_chains/conversation_retrieval_chain) has a side-by-side comparison. diff --git a/docs/docs/versions/v0_2/index.mdx b/docs/docs/versions/v0_2/index.mdx index 5a74a3493e4ad..07bb76dfdee58 100644 --- a/docs/docs/versions/v0_2/index.mdx +++ b/docs/docs/versions/v0_2/index.mdx @@ -2,7 +2,7 @@ sidebar_position: 1 --- -# Migrating to LangChain v0.2 +# Migration diff --git a/docs/docs/versions/v0_2/migrating_astream_events.mdx b/docs/docs/versions/v0_2/migrating_astream_events.mdx index 0498f1f26fdb3..24d8855a6949e 100644 --- a/docs/docs/versions/v0_2/migrating_astream_events.mdx +++ b/docs/docs/versions/v0_2/migrating_astream_events.mdx @@ -3,7 +3,7 @@ sidebar_position: 2 sidebar_label: astream_events v2 --- -# Migrating to Astream Events v2 +# Migrating to astream_events(..., version="v2") We've added a `v2` of the astream_events API with the release of `0.2.x`. You can see this [PR](https://github.com/langchain-ai/langchain/pull/21638) for more details. @@ -111,7 +111,7 @@ If you're filtering by event names, check if you need to update your filters. ### RunnableRetry -Usage of [RunnableRetry](https://python.langchain.com/v0.2/api_reference/core/runnables/langchain_core.runnables.retry.RunnableRetry.html) +Usage of [RunnableRetry](https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.retry.RunnableRetry.html) within an LCEL chain being streamed generated an incorrect `on_chain_end` event in `v1` corresponding to the failed runnable invocation that was being retried. This event has been removed in `v2`. diff --git a/docs/docs/versions/overview.mdx b/docs/docs/versions/v0_2/overview.mdx similarity index 99% rename from docs/docs/versions/overview.mdx rename to docs/docs/versions/v0_2/overview.mdx index ba8ff22daf83e..147c03886a1f7 100644 --- a/docs/docs/versions/overview.mdx +++ b/docs/docs/versions/v0_2/overview.mdx @@ -1,9 +1,8 @@ --- sidebar_position: 0 -sidebar_label: Overview of v0.2 --- -# Overview of LangChain v0.2 +# Overview ## What’s new in LangChain? diff --git a/docs/docs/versions/v0_3/index.mdx b/docs/docs/versions/v0_3/index.mdx new file mode 100644 index 0000000000000..25a3874b57302 --- /dev/null +++ b/docs/docs/versions/v0_3/index.mdx @@ -0,0 +1,271 @@ +# LangChain v0.3 + +*Last updated: 09.16.24* + +## What's changed + +* All packages have been upgraded from Pydantic 1 to Pydantic 2 internally. Use of Pydantic 2 in user code is fully supported with all packages without the need for bridges like `langchain_core.pydantic_v1` or `pydantic.v1`. +* Pydantic 1 will no longer be supported as it reached its end-of-life in June 2024. +* Python 3.8 will no longer be supported as its end-of-life is October 2024. + +**These are the only breaking changes.** + +## What’s new + +The following features have been added during the development of 0.2.x: + +- Moved more integrations from `langchain-community` to their own `langchain-x` packages. This is a non-breaking change, as the legacy implementations are left in `langchain-community` and marked as deprecated. This allows us to better manage the dependencies of, test, and version these integrations. You can see all the latest integration packages in the [API reference](https://python.langchain.com/v0.2/api_reference/reference.html#integrations). +- Simplified tool definition and usage. Read more [here](https://blog.langchain.dev/improving-core-tool-interfaces-and-docs-in-langchain/). +- Added utilities for interacting with chat models: [universal model constructor](https://python.langchain.com/v0.2/docs/how_to/chat_models_universal_init/), [rate limiter](https://python.langchain.com/v0.2/docs/how_to/chat_model_rate_limiting/), [message utilities](https://python.langchain.com/v0.2/docs/how_to/#messages), +- Added the ability to [dispatch custom events](https://python.langchain.com/v0.2/docs/how_to/callbacks_custom_events/). +- Revamped integration docs and API reference. Read more [here](https://blog.langchain.dev/langchain-integration-docs-revamped/). +- Marked as deprecated a number of legacy chains and added migration guides for all of them. These are slated for removal in `langchain` 1.0.0. See the deprecated chains and associated [migration guides here](https://python.langchain.com/v0.2/docs/versions/migrating_chains/). + +## How to update your code + +If you're using `langchain` / `langchain-community` / `langchain-core` 0.0 or 0.1, we recommend that you first [upgrade to 0.2](https://python.langchain.com/v0.2/docs/versions/v0_2/). + +If you're using `langgraph`, upgrade to `langgraph>=0.2.20,<0.3`. This will work with either 0.2 or 0.3 versions of all the base packages. + +Here is a complete list of all packages that have been released and what we recommend upgrading your version constraints to. +Any package that now requires `langchain-core` 0.3 had a minor version bump. +Any package that is now compatible with both `langchain-core` 0.2 and 0.3 had a patch version bump. + +You can use the `langchain-cli` to update deprecated imports automatically. +The CLI will handle updating deprecated imports that were introduced in LangChain 0.0.x and LangChain 0.1, as +well as updating the `langchain_core.pydantic_v1` and `langchain.pydantic_v1` imports. + + +### Base packages + +| Package | Latest | Recommended constraint | +|--------------------------|--------|------------------------| +| langchain | 0.3.0 | >=0.3,<0.4 | +| langchain-community | 0.3.0 | >=0.3,<0.4 | +| langchain-text-splitters | 0.3.0 | >=0.3,<0.4 | +| langchain-core | 0.3.0 | >=0.3,<0.4 | +| langchain-experimental | 0.3.0 | >=0.3,<0.4 | + +### Downstream packages + +| Package | Latest | Recommended constraint | +|-----------|--------|------------------------| +| langgraph | 0.2.20 | >=0.2.20,<0.3 | +| langserve | 0.3.0 | >=0.3,<0.4 | + +### Integration packages + +| Package | Latest | Recommended constraint | +| -------------------------------------- | ------- | -------------------------- | +| langchain-ai21 | 0.2.0 | >=0.2,<0.3 | +| langchain-aws | 0.2.0 | >=0.2,<0.3 | +| langchain-anthropic | 0.2.0 | >=0.2,<0.3 | +| langchain-astradb | 0.4.1 | >=0.4.1,<0.5 | +| langchain-azure-dynamic-sessions | 0.2.0 | >=0.2,<0.3 | +| langchain-box | 0.2.0 | >=0.2,<0.3 | +| langchain-chroma | 0.1.4 | >=0.1.4,<0.2 | +| langchain-cohere | 0.3.0 | >=0.3,<0.4 | +| langchain-elasticsearch | 0.3.0 | >=0.3,<0.4 | +| langchain-exa | 0.2.0 | >=0.2,<0.3 | +| langchain-fireworks | 0.2.0 | >=0.2,<0.3 | +| langchain-groq | 0.2.0 | >=0.2,<0.3 | +| langchain-google-community | 2.0.0 | >=2,<3 | +| langchain-google-genai | 2.0.0 | >=2,<3 | +| langchain-google-vertexai | 2.0.0 | >=2,<3 | +| langchain-huggingface | 0.1.0 | >=0.1,<0.2 | +| langchain-ibm | 0.2.0 | >=0.2,<0.3 | +| langchain-milvus | 0.1.6 | >=0.1.6,<0.2 | +| langchain-mistralai | 0.2.0 | >=0.2,<0.3 | +| langchain-mongodb | 0.2.0 | >=0.2,<0.3 | +| langchain-nomic | 0.1.3 | >=0.1.3,<0.2 | +| langchain-ollama | 0.2.0 | >=0.2,<0.3 | +| langchain-openai | 0.2.0 | >=0.2,<0.3 | +| langchain-pinecone | 0.2.0 | >=0.2,<0.3 | +| langchain-postgres | 0.0.13 | >=0.0.13,<0.1 | +| langchain-prompty | 0.1.0 | >=0.1,<0.2 | +| langchain-qdrant | 0.1.4 | >=0.1.4,<0.2 | +| langchain-redis | 0.1.0 | >=0.1,<0.2 | +| langchain-sema4 | 0.2.0 | >=0.2,<0.3 | +| langchain-together | 0.2.0 | >=0.2,<0.3 | +| langchain-unstructured | 0.1.4 | >=0.1.4,<0.2 | +| langchain-upstage | 0.3.0 | >=0.3,<0.4 | +| langchain-voyageai | 0.2.0 | >=0.2,<0.3 | +| langchain-weaviate | 0.0.3 | >=0.0.3,<0.1 | + +Once you've updated to recent versions of the packages, you may need to address the following issues stemming from the internal switch from Pydantic v1 to Pydantic v2: + +- If your code depends on Pydantic aside from LangChain, you will need to upgrade your pydantic version constraints to be `pydantic>=2,<3`. See [Pydantic’s migration guide](https://docs.pydantic.dev/latest/migration/) for help migrating your non-LangChain code to Pydantic v2 if you use pydantic v1. +- There are a number of side effects to LangChain components caused by the internal switch from Pydantic v1 to v2. We have listed some of the common cases below together with the recommended solutions. + +## Common issues when transitioning to Pydantic 2 + +### 1. Do not use the `langchain_core.pydantic_v1` namespace + +Replace any usage of `langchain_core.pydantic_v1` or `langchain.pydantic_v1` with +direct imports from `pydantic`. + +For example, + +```python +from langchain_core.pydantic_v1 import BaseModel +``` + +to: + +```python +from pydantic import BaseModel +``` + +This may require you to make additional updates to your Pydantic code given that there are a number of breaking changes in Pydantic 2. See the [Pydantic Migration](https://docs.pydantic.dev/latest/migration/) for how to upgrade your code from Pydantic 1 to 2. + +### 2. Passing Pydantic objects to LangChain APIs + +Users using the following APIs: + +* `BaseChatModel.bind_tools` +* `BaseChatModel.with_structured_output` +* `Tool.from_function` +* `StructuredTool.from_function` + +should ensure that they are passing Pydantic 2 objects to these APIs rather than +Pydantic 1 objects (created via the `pydantic.v1` namespace of pydantic 2). + +:::caution +While `v1` objets may be accepted by some of these APIs, users are advised to +use Pydantic 2 objects to avoid future issues. +::: + +### 3. Sub-classing LangChain models + +Any sub-classing from existing LangChain models (e.g., `BaseTool`, `BaseChatModel`, `LLM`) +should upgrade to use Pydantic 2 features. + +For example, any user code that's relying on Pydantic 1 features (e.g., `validator`) should +be updated to the Pydantic 2 equivalent (e.g., `field_validator`), and any references to +`pydantic.v1`, `langchain_core.pydantic_v1`, `langchain.pydantic_v1` should be replaced +with imports from `pydantic`. + +```python +from pydantic.v1 import validator, Field # if pydantic 2 is installed +# from pydantic import validator, Field # if pydantic 1 is installed +# from langchain_core.pydantic_v1 import validator, Field +# from langchain.pydantic_v1 import validator, Field + +class CustomTool(BaseTool): # BaseTool is v1 code + x: int = Field(default=1) + + def _run(*args, **kwargs): + return "hello" + + @validator('x') # v1 code + @classmethod + def validate_x(cls, x: int) -> int: + return 1 +``` + +Should change to: + +```python +from pydantic import Field, field_validator # pydantic v2 +from langchain_core.pydantic_v1 import BaseTool + +class CustomTool(BaseTool): # BaseTool is v1 code + x: int = Field(default=1) + + def _run(*args, **kwargs): + return "hello" + + @field_validator('x') # v2 code + @classmethod + def validate_x(cls, x: int) -> int: + return 1 + + +CustomTool( + name='custom_tool', + description="hello", + x=1, +) +``` + +### 4. model_rebuild() + +When sub-classing from LangChain models, users may need to add relevant imports +to the file and rebuild the model. + +You can read more about `model_rebuild` [here](https://docs.pydantic.dev/latest/concepts/models/#rebuilding-model-schema). + +```python +from langchain_core.output_parsers import BaseOutputParser + + +class FooParser(BaseOutputParser): + ... +``` + +New code: + +```python +from typing import Optional as Optional + +from langchain_core.output_parsers import BaseOutputParser + +class FooParser(BaseOutputParser): + ... + +FooParser.model_rebuild() +``` + +## Migrate using langchain-cli + +The `langchain-cli` can help update deprecated LangChain imports in your code automatically. + +Please note that the `langchain-cli` only handles deprecated LangChain imports and cannot +help to upgrade your code from pydantic 1 to pydantic 2. + +For help with the Pydantic 1 to 2 migration itself please refer to the [Pydantic Migration Guidelines](https://docs.pydantic.dev/latest/migration/). + +As of 0.0.31, the `langchain-cli` relies on [gritql](https://about.grit.io/) for applying code mods. + +### Installation + +```bash +pip install -U langchain-cli +langchain-cli --version # <-- Make sure the version is at least 0.0.31 +``` + +### Usage + +Given that the migration script is not perfect, you should make sure you have a backup of your code first (e.g., using version control like `git`). + +The `langchain-cli` will handle the `langchain_core.pydantic_v1` deprecation introduced in LangChain 0.3 as well +as older deprecations (e.g.,`from langchain.chat_models import ChatOpenAI` which should be `from langchain_openai import ChatOpenAI`), + +You will need to run the migration script **twice** as it only applies one import replacement per run. + +For example, say that your code is still using the old import `from langchain.chat_models import ChatOpenAI`: + +After the first run, you’ll get: `from langchain_community.chat_models import ChatOpenAI` +After the second run, you’ll get: `from langchain_openai import ChatOpenAI` + +```bash +# Run a first time +# Will replace from langchain.chat_models import ChatOpenAI +langchain-cli migrate --help [path to code] # Help +langchain-cli migrate [path to code] # Apply + +# Run a second time to apply more import replacements +langchain-cli migrate --diff [path to code] # Preview +langchain-cli migrate [path to code] # Apply +``` + +### Other options + +```bash +# See help menu +langchain-cli migrate --help +# Preview Changes without applying +langchain-cli migrate --diff [path to code] +# Approve changes interactively +langchain-cli migrate --interactive [path to code] +``` diff --git a/docs/docusaurus.config.js b/docs/docusaurus.config.js index 714e217cfad37..b1b7487c27b33 100644 --- a/docs/docusaurus.config.js +++ b/docs/docusaurus.config.js @@ -6,10 +6,12 @@ const { ProvidePlugin } = require("webpack"); require("dotenv").config(); -const baseLightCodeBlockTheme = require("prism-react-renderer/themes/vsLight"); -const baseDarkCodeBlockTheme = require("prism-react-renderer/themes/vsDark"); +const prism = require("prism-react-renderer"); -const baseUrl = "/v0.2/"; +const baseLightCodeBlockTheme = prism.themes.vsLight; +const baseDarkCodeBlockTheme = prism.themes.vsDark; + +const baseUrl = "/"; /** @type {import('@docusaurus/types').Config} */ const config = { @@ -124,13 +126,6 @@ const config = { themeConfig: /** @type {import('@docusaurus/preset-classic').ThemeConfig} */ ({ - announcementBar: { - content: - 'Share your thoughts on AI agents. Take the 3-min survey.', - isCloseable: true, - backgroundColor: "rgba(53, 151, 147, 0.1)", - textColor: "rgb(53, 151, 147)", - }, docs: { sidebar: { hideable: true, @@ -168,64 +163,59 @@ const config = { label: "Integrations", }, { - type: "dropdown", - label: "API reference", - position: "left", - items: [ - { - label: "Latest", - to: "https://python.langchain.com/v0.2/api_reference/reference.html", - }, - { - label: "Legacy", - href: "https://api.python.langchain.com/" - } - ] + label: "API Reference", + to: "https://python.langchain.com/api_reference/", }, { type: "dropdown", label: "More", position: "left", items: [ + { + type: "doc", + docId: "contributing/index", + label: "Contributing", + }, { type: "doc", docId: "people", label: "People", }, { - type: "doc", - docId: "contributing/index", - label: "Contributing", + type: 'html', + value: '', }, { - label: "Cookbooks", - href: "https://github.com/langchain-ai/langchain/blob/master/cookbook/README.md" + href: "https://docs.smith.langchain.com", + label: "LangSmith", }, { - type: "doc", - docId: "additional_resources/tutorials", - label: "3rd party tutorials" + href: "https://langchain-ai.github.io/langgraph/", + label: "LangGraph", }, { - type: "doc", - docId: "additional_resources/youtube", - label: "YouTube" + href: "https://smith.langchain.com/hub", + label: "LangChain Hub", }, { - to: "/docs/additional_resources/arxiv_references", - label: "arXiv" + href: "https://js.langchain.com", + label: "LangChain JS/TS", }, ] }, { type: "dropdown", - label: "v0.2", + label: "v0.3", position: "right", items: [ { - label: "v0.2", + label: "v0.3", href: "/docs/introduction" }, + { + label: "v0.2", + href: "https://python.langchain.com/v0.2/docs/introduction" + }, { label: "v0.1", href: "https://python.langchain.com/v0.1/docs/get_started/introduction" @@ -233,30 +223,7 @@ const config = { ] }, { - type: "dropdown", - label: "🦜️🔗", - position: "right", - items: [ - { - href: "https://smith.langchain.com", - label: "LangSmith", - }, - { - href: "https://docs.smith.langchain.com/", - label: "LangSmith Docs", - }, - { - href: "https://smith.langchain.com/hub", - label: "LangChain Hub", - }, - { - href: "https://js.langchain.com", - label: "JS/TS Docs", - }, - ] - }, - { - href: "https://chat.langchain.com", + to: "https://chat.langchain.com", label: "💬", position: "right", }, @@ -326,7 +293,7 @@ const config = { // this is linked to erick@langchain.dev currently apiKey: "6c01842d6a88772ed2236b9c85806441", - indexName: "python-langchain-0.2", + indexName: "python-langchain-latest", contextualSearch: false, }, diff --git a/docs/ignore-step.sh b/docs/ignore-step.sh index 8cd5e937d2483..0169516ad8aba 100755 --- a/docs/ignore-step.sh +++ b/docs/ignore-step.sh @@ -4,20 +4,26 @@ echo "VERCEL_ENV: $VERCEL_ENV" echo "VERCEL_GIT_COMMIT_REF: $VERCEL_GIT_COMMIT_REF" -if [ "$VERCEL_ENV" == "production" ] || [ "$VERCEL_GIT_COMMIT_REF" == "master" ] || [ "$VERCEL_GIT_COMMIT_REF" == "v0.1" ]; then - echo "✅ Production build - proceeding with build" - exit 1; -else - echo "Checking for changes in docs/" +if [ "$VERCEL_ENV" == "production" ] || \ + [ "$VERCEL_GIT_COMMIT_REF" == "master" ] || \ + [ "$VERCEL_GIT_COMMIT_REF" == "v0.1" ] || \ + [ "$VERCEL_GIT_COMMIT_REF" == "v0.2" ] || \ + [ "$VERCEL_GIT_COMMIT_REF" == "v0.3rc" ] +then + echo "✅ Production build - proceeding with build" + exit 1 +fi + + +echo "Checking for changes in docs/" +echo "---" +git log -n 50 --pretty=format:"%s" -- . | grep -v '(#' +if [ $? -eq 0 ]; then + echo "---" + echo "✅ Changes detected in docs/ - proceeding with build" + exit 1 +else echo "---" - git log -n 50 --pretty=format:"%s" -- . | grep -v '(#' - if [ $? -eq 0 ]; then - echo "---" - echo "✅ Changes detected in docs/ - proceeding with build" - exit 1 - else - echo "---" - echo "🛑 No changes detected in docs/ - ignoring build" - exit 0 - fi + echo "🛑 No changes detected in docs/ - ignoring build" + exit 0 fi diff --git a/docs/package.json b/docs/package.json index fe54ecb52dff8..ec1391dafcc60 100644 --- a/docs/package.json +++ b/docs/package.json @@ -19,23 +19,24 @@ "format:check": "prettier --check \"**/*.{js,jsx,ts,tsx,md,mdx}\"", "gen": "yarn gen:supabase", "gen:supabase": "npx supabase gen types typescript --project-id 'xsqpnijvmbodcxyapnyq' --schema public > ./src/supabase.d.ts", - "check-broken-links": "bash vercel_build.sh && node ./scripts/check-broken-links.js" + "check-broken-links": "make vercel-build && node ./scripts/check-broken-links.js" }, "dependencies": { - "@docusaurus/core": "2.4.3", - "@docusaurus/preset-classic": "2.4.3", - "@docusaurus/remark-plugin-npm2yarn": "^2.4.3", - "@docusaurus/theme-mermaid": "2.4.3", - "@mdx-js/react": "^1.6.22", + "@docusaurus/core": "3.5.2", + "@docusaurus/preset-classic": "3.5.2", + "@docusaurus/remark-plugin-npm2yarn": "^3.5.2", + "@docusaurus/theme-mermaid": "3.5.2", + "prism-react-renderer": "^2.1.0", + "@mdx-js/react": "^3", "@supabase/supabase-js": "^2.39.7", "clsx": "^1.2.1", "cookie": "^0.6.0", "isomorphic-dompurify": "^2.7.0", "json-loader": "^0.5.7", "process": "^0.11.10", - "react": "^17.0.2", - "react-dom": "^17.0.2", - "typescript": "^5.1.3", + "react": "^18", + "react-dom": "^18", + "typescript": "^5.2.2", "uuid": "^9.0.0", "webpack": "^5.75.0" }, diff --git a/docs/scripts/append_related_links.py b/docs/scripts/append_related_links.py index 8ec4b02250cf7..49746bcc9e324 100644 --- a/docs/scripts/append_related_links.py +++ b/docs/scripts/append_related_links.py @@ -48,10 +48,8 @@ def _generate_related_links_section(integration_type: str, notebook_name: str): def _process_path(doc_path: Path): content = doc_path.read_text() - print(doc_path) pattern = r"/docs/integrations/([^/]+)/([^/]+).mdx?" match = re.search(pattern, str(doc_path)) - print(bool(match)) if match and match.group(2) != "index": integration_type = match.group(1) notebook_name = match.group(2) diff --git a/docs/scripts/arxiv_references.py b/docs/scripts/arxiv_references.py index ff65c39cd5cc5..be8ba975df182 100644 --- a/docs/scripts/arxiv_references.py +++ b/docs/scripts/arxiv_references.py @@ -378,18 +378,18 @@ def cut_authors(authors: list) -> list[str]: abstract=result.summary, url=result.entry_id, published_date=str(result.published.date()), - referencing_doc2url=type2key2urls["docs"] - if "docs" in type2key2urls - else {}, - referencing_api_ref2url=type2key2urls["apis"] - if "apis" in type2key2urls - else {}, - referencing_template2url=type2key2urls["templates"] - if "templates" in type2key2urls - else {}, - referencing_cookbook2url=type2key2urls["cookbooks"] - if "cookbooks" in type2key2urls - else {}, + referencing_doc2url=( + type2key2urls["docs"] if "docs" in type2key2urls else {} + ), + referencing_api_ref2url=( + type2key2urls["apis"] if "apis" in type2key2urls else {} + ), + referencing_template2url=( + type2key2urls["templates"] if "templates" in type2key2urls else {} + ), + referencing_cookbook2url=( + type2key2urls["cookbooks"] if "cookbooks" in type2key2urls else {} + ), ) for result, type2key2urls in zip(results, arxiv_id2type2key2urls.values()) ] @@ -397,7 +397,7 @@ def cut_authors(authors: list) -> list[str]: def _format_doc_url(doc_path: str) -> str: - return f"https://{LANGCHAIN_PYTHON_URL}/v0.2/{doc_path}" + return f"https://{LANGCHAIN_PYTHON_URL}/{doc_path}" def _format_api_ref_url(doc_path: str, compact: bool = False) -> str: diff --git a/docs/scripts/download_tiktoken.py b/docs/scripts/download_tiktoken.py new file mode 100644 index 0000000000000..be8acbbf0d1f8 --- /dev/null +++ b/docs/scripts/download_tiktoken.py @@ -0,0 +1,4 @@ +import tiktoken + +# This will trigger the download and caching of the necessary files +encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") diff --git a/docs/scripts/execute_notebooks.sh b/docs/scripts/execute_notebooks.sh new file mode 100755 index 0000000000000..8ac1cdb918281 --- /dev/null +++ b/docs/scripts/execute_notebooks.sh @@ -0,0 +1,38 @@ +#!/bin/bash + +# Read the list of notebooks to skip from the JSON file +SKIP_NOTEBOOKS=$(python -c "import json; print('\n'.join(json.load(open('docs/notebooks_no_execution.json'))))") + +# Get the working directory or specific notebook file from the input parameter +WORKING_DIRECTORY=$1 + +# Function to execute a single notebook +execute_notebook() { + file="$1" + echo "Starting execution of $file" + start_time=$(date +%s) + if ! output=$(time poetry run jupyter nbconvert --to notebook --execute $file 2>&1); then + end_time=$(date +%s) + execution_time=$((end_time - start_time)) + echo "Error in $file. Execution time: $execution_time seconds" + echo "Error details: $output" + exit 1 + fi + end_time=$(date +%s) + execution_time=$((end_time - start_time)) + echo "Finished $file. Execution time: $execution_time seconds" +} + +export -f execute_notebook + +# Determine the list of notebooks to execute +if [ "$WORKING_DIRECTORY" == "all" ]; then + notebooks=$(find docs/docs/tutorials -name "*.ipynb" | grep -v ".ipynb_checkpoints" | grep -vFf <(echo "$SKIP_NOTEBOOKS")) +else + notebooks=$(find "$WORKING_DIRECTORY" -name "*.ipynb" | grep -v ".ipynb_checkpoints" | grep -vFf <(echo "$SKIP_NOTEBOOKS")) +fi + +# Execute notebooks sequentially +for file in $notebooks; do + execute_notebook "$file" +done diff --git a/docs/scripts/generate_api_reference_links.py b/docs/scripts/generate_api_reference_links.py index 08ed156236426..662d1dd12f767 100644 --- a/docs/scripts/generate_api_reference_links.py +++ b/docs/scripts/generate_api_reference_links.py @@ -6,21 +6,85 @@ import os import re from pathlib import Path +from typing import List, Literal, Optional + +from typing_extensions import TypedDict logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Base URL for all class documentation -_BASE_URL = "https://python.langchain.com/v0.2/api_reference/" +_LANGCHAIN_API_REFERENCE = "https://python.langchain.com/api_reference/" +_LANGGRAPH_API_REFERENCE = "https://langchain-ai.github.io/langgraph/reference/" # Regular expression to match Python code blocks code_block_re = re.compile(r"^(```\s?python\n)(.*?)(```)", re.DOTALL | re.MULTILINE) + + +# (alias/re-exported modules, source module, class, docs namespace) +MANUAL_API_REFERENCES_LANGGRAPH = [ + ( + ["langgraph.prebuilt"], + "langgraph.prebuilt.chat_agent_executor", + "create_react_agent", + "prebuilt", + ), + (["langgraph.prebuilt"], "langgraph.prebuilt.tool_node", "ToolNode", "prebuilt"), + ( + ["langgraph.prebuilt"], + "langgraph.prebuilt.tool_node", + "tools_condition", + "prebuilt", + ), + ( + ["langgraph.prebuilt"], + "langgraph.prebuilt.tool_node", + "InjectedState", + "prebuilt", + ), + # Graph + (["langgraph.graph"], "langgraph.graph.message", "add_messages", "graphs"), + (["langgraph.graph"], "langgraph.graph.state", "StateGraph", "graphs"), + (["langgraph.graph"], "langgraph.graph.state", "CompiledStateGraph", "graphs"), + ([], "langgraph.types", "StreamMode", "types"), + (["langgraph.graph"], "langgraph.constants", "START", "constants"), + (["langgraph.graph"], "langgraph.constants", "END", "constants"), + (["langgraph.constants"], "langgraph.types", "Send", "types"), + (["langgraph.constants"], "langgraph.types", "Interrupt", "types"), + ([], "langgraph.types", "RetryPolicy", "types"), + ([], "langgraph.checkpoint.base", "Checkpoint", "checkpoints"), + ([], "langgraph.checkpoint.base", "CheckpointMetadata", "checkpoints"), + ([], "langgraph.checkpoint.base", "BaseCheckpointSaver", "checkpoints"), + ([], "langgraph.checkpoint.base", "SerializerProtocol", "checkpoints"), + ([], "langgraph.checkpoint.serde.jsonplus", "JsonPlusSerializer", "checkpoints"), + ([], "langgraph.checkpoint.memory", "MemorySaver", "checkpoints"), + ([], "langgraph.checkpoint.sqlite.aio", "AsyncSqliteSaver", "checkpoints"), + ([], "langgraph.checkpoint.sqlite", "SqliteSaver", "checkpoints"), + ([], "langgraph.checkpoint.postgres.aio", "AsyncPostgresSaver", "checkpoints"), + ([], "langgraph.checkpoint.postgres", "PostgresSaver", "checkpoints"), +] + +WELL_KNOWN_LANGGRAPH_OBJECTS = { + (module_, class_): (source_module, namespace) + for (modules, source_module, class_, namespace) in MANUAL_API_REFERENCES_LANGGRAPH + for module_ in modules + [source_module] +} + + +def _make_regular_expression(pkg_prefix: str) -> re.Pattern: + if not pkg_prefix.isidentifier(): + raise ValueError(f"Invalid package prefix: {pkg_prefix}") + return re.compile( + r"from\s+(" + pkg_prefix + "(?:_\w+)?(?:\.\w+)*?)\s+import\s+" + r"((?:\w+(?:,\s*)?)*" # Match zero or more words separated by a comma+optional ws + r"(?:\s*\(.*?\))?)", # Match optional parentheses block + re.DOTALL, # Match newlines as well + ) + + # Regular expression to match langchain import lines -_IMPORT_RE = re.compile( - r"from\s+(langchain(?:_\w+)?(?:\.\w+)*?)\s+import\s+" - r"((?:\w+(?:,\s*)?)*" # Match zero or more words separated by a comma+optional ws - r"(?:\s*\(.*?\))?)", # Match optional parentheses block - re.DOTALL, # Match newlines as well -) +_IMPORT_LANGCHAIN_RE = _make_regular_expression("langchain") +_IMPORT_LANGGRAPH_RE = _make_regular_expression("langgraph") + _CURRENT_PATH = Path(__file__).parent.absolute() # Directory where generated markdown files are stored @@ -44,14 +108,22 @@ def find_files(path): yield full -def get_full_module_name(module_path, class_name): +def get_full_module_name(module_path, class_name) -> Optional[str]: """Get full module name using inspect""" - module = importlib.import_module(module_path) - class_ = getattr(module, class_name) - return inspect.getmodule(class_).__name__ + try: + module = importlib.import_module(module_path) + class_ = getattr(module, class_name) + return inspect.getmodule(class_).__name__ + except AttributeError as e: + logger.warning(f"Could not find module for {class_name}, {e}") + return None + except ImportError as e: + logger.warning(f"Failed to load for class {class_name}, {e}") + return None -def get_args(): +def get_args() -> argparse.Namespace: + """Get command line arguments""" parser = argparse.ArgumentParser() parser.add_argument( "--docs_dir", @@ -68,14 +140,13 @@ def get_args(): return parser.parse_args() -def main(): +def main() -> None: """Main function""" args = get_args() global_imports = {} for file in find_files(args.docs_dir): file_imports = replace_imports(file) - print(file) if file_imports: # Use relative file path as key @@ -85,7 +156,7 @@ def main(): .replace(".md", "/") ) - doc_url = f"https://python.langchain.com/v0.2/docs/{relative_path}" + doc_url = f"https://python.langchain.com/docs/{relative_path}" for import_info in file_imports: doc_title = import_info["title"] class_name = import_info["imported"] @@ -113,9 +184,110 @@ def _get_doc_title(data: str, file_name: str) -> str: return file_name -def replace_imports(file): +class ImportInformation(TypedDict): + imported: str # imported class name + source: str # module path + docs: str # URL to the documentation + title: str # Title of the document + + +def _get_imports( + code: str, doc_title: str, package_ecosystem: Literal["langchain", "langgraph"] +) -> List[ImportInformation]: + """Get imports from the given code block. + + Args: + code: Python code block from which to extract imports + doc_title: Title of the document + package_ecosystem: "langchain" or "langgraph". The two live in different + repositories and have separate documentation sites. + + Returns: + List of import information for the given code block + """ + imports = [] + + if package_ecosystem == "langchain": + pattern = _IMPORT_LANGCHAIN_RE + elif package_ecosystem == "langgraph": + pattern = _IMPORT_LANGGRAPH_RE + else: + raise ValueError(f"Invalid package ecosystem: {package_ecosystem}") + + for import_match in pattern.finditer(code): + module = import_match.group(1) + if "pydantic_v1" in module: + continue + imports_str = ( + import_match.group(2).replace("(\n", "").replace("\n)", "") + ) # Handle newlines within parentheses + # remove any newline and spaces, then split by comma + imported_classes = [ + imp.strip() + for imp in re.split(r",\s*", imports_str.replace("\n", "")) + if imp.strip() + ] + for class_name in imported_classes: + module_path = get_full_module_name(module, class_name) + if not module_path: + continue + if len(module_path.split(".")) < 2: + continue + + if package_ecosystem == "langchain": + pkg = module_path.split(".")[0].replace("langchain_", "") + top_level_mod = module_path.split(".")[1] + + url = ( + _LANGCHAIN_API_REFERENCE + + pkg + + "/" + + top_level_mod + + "/" + + module_path + + "." + + class_name + + ".html" + ) + elif package_ecosystem == "langgraph": + if (module, class_name) not in WELL_KNOWN_LANGGRAPH_OBJECTS: + # Likely not documented yet + continue + + source_module, namespace = WELL_KNOWN_LANGGRAPH_OBJECTS[ + (module, class_name) + ] + url = ( + _LANGGRAPH_API_REFERENCE + + namespace + + "/#" + + source_module + + "." + + class_name + ) + else: + raise ValueError(f"Invalid package ecosystem: {package_ecosystem}") + + # Add the import information to our list + imports.append( + { + "imported": class_name, + "source": module, + "docs": url, + "title": doc_title, + } + ) + + return imports + + +def replace_imports(file) -> List[ImportInformation]: """Replace imports in each Python code block with links to their - documentation and append the import info in a comment""" + documentation and append the import info in a comment + + Returns: + list of import information for the given file + """ all_imports = [] with open(file, "r") as f: data = f.read() @@ -134,53 +306,9 @@ def replacer(match): # Process imports in the code block imports = [] - for import_match in _IMPORT_RE.finditer(code): - module = import_match.group(1) - if "pydantic_v1" in module: - continue - imports_str = ( - import_match.group(2).replace("(\n", "").replace("\n)", "") - ) # Handle newlines within parentheses - # remove any newline and spaces, then split by comma - imported_classes = [ - imp.strip() - for imp in re.split(r",\s*", imports_str.replace("\n", "")) - if imp.strip() - ] - for class_name in imported_classes: - try: - module_path = get_full_module_name(module, class_name) - except AttributeError as e: - logger.warning(f"Could not find module for {class_name}, {e}") - continue - except ImportError as e: - logger.warning(f"Failed to load for class {class_name}, {e}") - continue - if len(module_path.split(".")) < 2: - continue - pkg = module_path.split(".")[0].replace("langchain_", "") - top_level_mod = module_path.split(".")[1] - url = ( - _BASE_URL - + pkg - + "/" - + top_level_mod - + "/" - + module_path - + "." - + class_name - + ".html" - ) - # Add the import information to our list - imports.append( - { - "imported": class_name, - "source": module, - "docs": url, - "title": _DOC_TITLE, - } - ) + imports.extend(_get_imports(code, _DOC_TITLE, "langchain")) + imports.extend(_get_imports(code, _DOC_TITLE, "langgraph")) if imports: all_imports.extend(imports) @@ -195,8 +323,6 @@ def replacer(match): # Use re.sub to replace each Python code block data = code_block_re.sub(replacer, data) - # if all_imports: - # print(f"Adding {len(all_imports)} links for imports in {file}") with open(file, "w") as f: f.write(data) return all_imports diff --git a/docs/scripts/kv_store_feat_table.py b/docs/scripts/kv_store_feat_table.py index acfe4094b1fe3..55adb2ac87a2f 100644 --- a/docs/scripts/kv_store_feat_table.py +++ b/docs/scripts/kv_store_feat_table.py @@ -33,45 +33,45 @@ KV_STORE_FEAT_TABLE = { "AstraDBByteStore": { - "class": "[AstraDBByteStore](https://python.langchain.com/v0.2/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html)", + "class": "[AstraDBByteStore](https://python.langchain.com/api_reference/astradb/storage/langchain_astradb.storage.AstraDBByteStore.html)", "local": False, - "package": "[langchain_astradb](https://python.langchain.com/v0.2/api_reference/astradb/)", + "package": "[langchain_astradb](https://python.langchain.com/api_reference/astradb/)", "downloads": "![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_astradb?style=flat-square&label=%20)", }, "CassandraByteStore": { - "class": "[CassandraByteStore](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html)", + "class": "[CassandraByteStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.cassandra.CassandraByteStore.html)", "local": False, - "package": "[langchain_community](https://python.langchain.com/v0.2/api_reference/community/)", + "package": "[langchain_community](https://python.langchain.com/api_reference/community/)", "downloads": "![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20)", }, "ElasticsearchEmbeddingsCache": { - "class": "[ElasticsearchEmbeddingsCache](https://python.langchain.com/v0.2/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html)", + "class": "[ElasticsearchEmbeddingsCache](https://python.langchain.com/api_reference/elasticsearch/cache/langchain_elasticsearch.cache.ElasticsearchEmbeddingsCache.html)", "local": True, - "package": "[langchain_elasticsearch](https://python.langchain.com/v0.2/api_reference/elasticsearch/)", + "package": "[langchain_elasticsearch](https://python.langchain.com/api_reference/elasticsearch/)", "downloads": "![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_elasticsearch?style=flat-square&label=%20)", }, "LocalFileStore": { - "class": "[LocalFileStore](https://python.langchain.com/v0.2/api_reference/storage/langchain.storage.file_system.LocalFileStore.html)", + "class": "[LocalFileStore](https://python.langchain.com/api_reference/storage/langchain.storage.file_system.LocalFileStore.html)", "local": True, - "package": "[langchain](https://python.langchain.com/v0.2/api_reference/langchain/)", + "package": "[langchain](https://python.langchain.com/api_reference/langchain/)", "downloads": "![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain?style=flat-square&label=%20)", }, "InMemoryByteStore": { - "class": "[InMemoryByteStore](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html)", + "class": "[InMemoryByteStore](https://python.langchain.com/api_reference/core/stores/langchain_core.stores.InMemoryByteStore.html)", "local": True, - "package": "[langchain_core](https://python.langchain.com/v0.2/api_reference/core/)", + "package": "[langchain_core](https://python.langchain.com/api_reference/core/)", "downloads": "![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_core?style=flat-square&label=%20)", }, "RedisStore": { - "class": "[RedisStore](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html)", + "class": "[RedisStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.redis.RedisStore.html)", "local": True, - "package": "[langchain_community](https://python.langchain.com/v0.2/api_reference/community/)", + "package": "[langchain_community](https://python.langchain.com/api_reference/community/)", "downloads": "![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20)", }, "UpstashRedisByteStore": { - "class": "[UpstashRedisByteStore](https://python.langchain.com/v0.2/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html)", + "class": "[UpstashRedisByteStore](https://python.langchain.com/api_reference/community/storage/langchain_community.storage.upstash_redis.UpstashRedisByteStore.html)", "local": False, - "package": "[langchain_community](https://python.langchain.com/v0.2/api_reference/community/)", + "package": "[langchain_community](https://python.langchain.com/api_reference/community/)", "downloads": "![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20)", }, } diff --git a/docs/scripts/notebook_convert.py b/docs/scripts/notebook_convert.py index 0830274459bf2..70d1745585f23 100644 --- a/docs/scripts/notebook_convert.py +++ b/docs/scripts/notebook_convert.py @@ -13,24 +13,35 @@ class EscapePreprocessor(Preprocessor): def preprocess_cell(self, cell, resources, cell_index): if cell.cell_type == "markdown": - # find all occurrences of ```{=mdx} blocks and remove wrapper - if "```{=mdx}\n" in cell.source: - cell.source = re.sub( - r"```{=mdx}\n(.*?)\n```", r"\1", cell.source, flags=re.DOTALL - ) - if ":::{.callout" in cell.source: - cell.source = re.sub( - r":::{.callout-([^}]*)}(.*?):::", - r":::\1\2:::", - cell.source, - flags=re.DOTALL, - ) # rewrite .ipynb links to .md cell.source = re.sub( r"\[([^\]]*)\]\((?![^\)]*//)([^)]*)\.ipynb\)", r"[\1](\2.md)", cell.source, ) + + elif cell.cell_type == "code": + # escape ``` in code + cell.source = cell.source.replace("```", r"\`\`\`") + # escape ``` in output + if "outputs" in cell: + filter_out = set() + for i, output in enumerate(cell["outputs"]): + if "text" in output: + if not output["text"].strip(): + filter_out.add(i) + continue + output["text"] = output["text"].replace("```", r"\`\`\`") + elif "data" in output: + for key, value in output["data"].items(): + if isinstance(value, str): + output["data"][key] = value.replace("```", r"\`\`\`") + cell["outputs"] = [ + output + for i, output in enumerate(cell["outputs"]) + if i not in filter_out + ] + return cell, resources diff --git a/docs/scripts/partner_pkg_table.py b/docs/scripts/partner_pkg_table.py index a9a303e729610..4b733e59fcf7d 100644 --- a/docs/scripts/partner_pkg_table.py +++ b/docs/scripts/partner_pkg_table.py @@ -100,11 +100,11 @@ def package_row(name: str) -> str: "db", "DB" ).replace("Db", "DB").replace("ai", "AI").replace("Ai", "AI") provider = f"[{title}]({link})" if link else title - return f"| {provider} | [langchain-{name}](https://python.langchain.com/v0.2/api_reference/{name.replace('-', '_')}/) | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-{name}?style=flat-square&label=%20&color=blue) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-{name}?style=flat-square&label=%20&color=orange) | {js} |" + return f"| {provider} | [langchain-{name}](https://python.langchain.com/api_reference/{name.replace('-', '_')}/) | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain-{name}?style=flat-square&label=%20&color=blue) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-{name}?style=flat-square&label=%20&color=orange) | {js} |" def table() -> str: - header = """| Provider | Package | Downloads | Latest | [JS](https://js.langchain.com/v0.2/docs/integrations/platforms/) | + header = """| Provider | Package | Downloads | Latest | [JS](https://js.langchain.com/docs/integrations/platforms/) | | :--- | :---: | :---: | :---: | :---: | """ return header + "\n".join(package_row(name) for name in sorted(ALL_PACKAGES)) diff --git a/docs/scripts/prepare_notebooks_for_ci.py b/docs/scripts/prepare_notebooks_for_ci.py new file mode 100644 index 0000000000000..fe63daafe8b04 --- /dev/null +++ b/docs/scripts/prepare_notebooks_for_ci.py @@ -0,0 +1,181 @@ +"""Preprocess notebooks for CI. Currently adds VCR cassettes and optionally removes pip install cells.""" + +import json +import logging +import os + +import click +import nbformat + +logger = logging.getLogger(__name__) +NOTEBOOK_DIRS = ("docs/docs/tutorials",) +DOCS_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) +CASSETTES_PATH = os.path.join(DOCS_PATH, "cassettes") + +# TODO: populate if needed +NOTEBOOKS_NO_CASSETTES = [ + "docs/docs/tutorials/retrievers.ipynb", # TODO: fix non-determinism +] + +NOTEBOOKS_NO_EXECUTION = [ + "docs/docs/tutorials/graph.ipynb", # Requires local graph db running + "docs/docs/tutorials/local_rag.ipynb", # Local LLMs + "docs/docs/tutorials/query_analysis.ipynb", # Requires youtube_transcript_api + "docs/docs/tutorials/sql_qa.ipynb", # Requires Chinook db locally + "docs/docs/tutorials/summarization.ipynb", # TODO: source of non-determinism somewhere, fix or add to no cassettes +] + + +def comment_install_cells(notebook: nbformat.NotebookNode) -> nbformat.NotebookNode: + for cell in notebook.cells: + if cell.cell_type != "code": + continue + + if "pip install" in cell.source: + # Comment out the lines in cells containing "pip install" + cell.source = "\n".join( + f"# {line}" if line.strip() else line + for line in cell.source.splitlines() + ) + + return notebook + + +def is_magic_command(code: str) -> bool: + return code.strip().startswith("%") or code.strip().startswith("!") + + +def is_comment(code: str) -> bool: + return code.strip().startswith("#") + + +def add_vcr_to_notebook( + notebook: nbformat.NotebookNode, cassette_prefix: str +) -> nbformat.NotebookNode: + """Inject `with vcr.cassette` into each code cell of the notebook.""" + + # Inject VCR context manager into each code cell + for idx, cell in enumerate(notebook.cells): + if cell.cell_type != "code": + continue + + lines = cell.source.splitlines() + # skip if empty cell + if not lines: + continue + + are_magic_lines = [is_magic_command(line) for line in lines] + + # skip if all magic + if all(are_magic_lines): + continue + + if any(are_magic_lines): + raise ValueError( + "Cannot process code cells with mixed magic and non-magic code." + ) + + # skip if just comments + if all(is_comment(line) or not line.strip() for line in lines): + continue + + cell_id = cell.get("id", idx) + cassette_name = f"{cassette_prefix}_{cell_id}.msgpack.zlib" + cell.source = ( + f"with custom_vcr.use_cassette('{cassette_name}', filter_headers=['x-api-key', 'authorization'], record_mode='once', serializer='advanced_compressed'):\n" + + "\n".join(f" {line}" for line in lines) + ) + + # Add import statement + vcr_import_lines = [ + "import nest_asyncio", + "nest_asyncio.apply()", + "import vcr", + "import msgpack", + "import base64", + "import zlib", + "custom_vcr = vcr.VCR()", + "", + "def compress_data(data, compression_level=9):", + " packed = msgpack.packb(data, use_bin_type=True)", + " compressed = zlib.compress(packed, level=compression_level)", + " return base64.b64encode(compressed).decode('utf-8')", + "", + "def decompress_data(compressed_string):", + " decoded = base64.b64decode(compressed_string)", + " decompressed = zlib.decompress(decoded)", + " return msgpack.unpackb(decompressed, raw=False)", + "", + "class AdvancedCompressedSerializer:", + " def serialize(self, cassette_dict):", + " return compress_data(cassette_dict)", + "", + " def deserialize(self, cassette_string):", + " return decompress_data(cassette_string)", + "", + "custom_vcr.register_serializer('advanced_compressed', AdvancedCompressedSerializer())", + "custom_vcr.serializer = 'advanced_compressed'", + ] + import_cell = nbformat.v4.new_code_cell(source="\n".join(vcr_import_lines)) + import_cell.pop("id", None) + notebook.cells.insert(0, import_cell) + return notebook + + +def process_notebooks(should_comment_install_cells: bool) -> None: + for directory in NOTEBOOK_DIRS: + for root, _, files in os.walk(directory): + for file in files: + if not file.endswith(".ipynb") or "ipynb_checkpoints" in root: + continue + + notebook_path = os.path.join(root, file) + try: + notebook = nbformat.read(notebook_path, as_version=4) + + if should_comment_install_cells: + notebook = comment_install_cells(notebook) + + base_filename = os.path.splitext(os.path.basename(file))[0] + cassette_prefix = os.path.join(CASSETTES_PATH, base_filename) + if notebook_path not in NOTEBOOKS_NO_CASSETTES: + notebook = add_vcr_to_notebook( + notebook, cassette_prefix=cassette_prefix + ) + + if notebook_path in NOTEBOOKS_NO_EXECUTION: + # Add a cell at the beginning to indicate that this notebook should not be executed + warning_cell = nbformat.v4.new_markdown_cell( + source="**Warning:** This notebook is not meant to be executed automatically." + ) + notebook.cells.insert(0, warning_cell) + + # Add a special tag to the first code cell + if notebook.cells and notebook.cells[1].cell_type == "code": + notebook.cells[1].metadata["tags"] = notebook.cells[ + 1 + ].metadata.get("tags", []) + ["no_execution"] + + nbformat.write(notebook, notebook_path) + logger.info(f"Processed: {notebook_path}") + except Exception as e: + logger.error(f"Error processing {notebook_path}: {e}") + + with open(os.path.join(DOCS_PATH, "notebooks_no_execution.json"), "w") as f: + json.dump(NOTEBOOKS_NO_EXECUTION, f) + + +@click.command() +@click.option( + "--comment-install-cells", + is_flag=True, + default=False, + help="Whether to comment out install cells", +) +def main(comment_install_cells): + process_notebooks(should_comment_install_cells=comment_install_cells) + logger.info("All notebooks processed successfully.") + + +if __name__ == "__main__": + main() diff --git a/docs/scripts/tool_feat_table.py b/docs/scripts/tool_feat_table.py index 261b8c8b8f6a1..a71843a75286e 100644 --- a/docs/scripts/tool_feat_table.py +++ b/docs/scripts/tool_feat_table.py @@ -81,7 +81,7 @@ "Riza Code Interpreter": { "langauges": "Python, JavaScript, PHP, Ruby", "sandbox_lifetime": "Resets on Execution", - "upload": False, + "upload": True, "return_results": "Text", "link": "/docs/integrations/tools/riza", "self_hosting": True, diff --git a/docs/sidebars.js b/docs/sidebars.js index 3130687b461a2..af0dae43d9e18 100644 --- a/docs/sidebars.js +++ b/docs/sidebars.js @@ -72,8 +72,19 @@ module.exports = { collapsed: false, collapsible: false, items: [ - "versions/overview", - "versions/release_policy", + { + type: 'doc', + id: 'versions/v0_3/index', + label: "v0.3", + }, + { + type: "category", + label: "v0.2", + items: [{ + type: 'autogenerated', + dirName: 'versions/v0_2', + }], + }, { type: 'doc', id: "how_to/pydantic_compatibility", @@ -81,28 +92,29 @@ module.exports = { }, { type: "category", - label: "Migrating to v0.2", - link: {type: 'doc', id: 'versions/v0_2/index'}, + label: "Migrating from v0.0 chains", + link: {type: 'doc', id: 'versions/migrating_chains/index'}, collapsible: false, collapsed: false, items: [{ type: 'autogenerated', - dirName: 'versions/v0_2', + dirName: 'versions/migrating_chains', className: 'hidden', }], }, { type: "category", - label: "Migrating from v0.0 chains", - link: {type: 'doc', id: 'versions/migrating_chains/index'}, + label: "Upgrading to LangGraph memory", + link: {type: 'doc', id: 'versions/migrating_memory/index'}, collapsible: false, collapsed: false, items: [{ type: 'autogenerated', - dirName: 'versions/migrating_chains', + dirName: 'versions/migrating_memory', className: 'hidden', }], }, + "versions/release_policy", ], }, "security" @@ -311,7 +323,7 @@ module.exports = { }, { type: "category", - label: "Memory", + label: "Message histories", collapsible: false, items: [ { diff --git a/docs/src/css/custom.css b/docs/src/css/custom.css index 4731c706ab917..f92a127294c8e 100644 --- a/docs/src/css/custom.css +++ b/docs/src/css/custom.css @@ -38,6 +38,9 @@ --ifm-menu-link-padding-horizontal: 0.5rem; --ifm-menu-link-padding-vertical: 0.5rem; --doc-sidebar-width: 275px !important; + + /* Code block syntax highlighting */ + --docusaurus-highlighted-code-line-bg: rgb(176, 227, 199); } /* For readability concerns, you should choose a lighter palette in dark mode. */ @@ -49,6 +52,9 @@ --ifm-color-primary-light: #29d5b0; --ifm-color-primary-lighter: #32d8b4; --ifm-color-primary-lightest: #4fddbf; + + /* Code block syntax highlighting */ + --docusaurus-highlighted-code-line-bg: rgb(14, 73, 60); } nav, h1, h2, h3, h4 { diff --git a/docs/src/theme/Columns.js b/docs/src/theme/Columns.js deleted file mode 100644 index 6fba89d5c83f7..0000000000000 --- a/docs/src/theme/Columns.js +++ /dev/null @@ -1,17 +0,0 @@ -import React from "react"; - -export function ColumnContainer({children}) { - return ( -
- {children} -
- ) -} - -export function Column({children}) { - return ( -
- {children} -
- ) -} diff --git a/docs/src/theme/DocItem/Paginator/index.js b/docs/src/theme/DocItem/Paginator/index.js index 0d2093fecc15e..fddb1d42b2941 100644 --- a/docs/src/theme/DocItem/Paginator/index.js +++ b/docs/src/theme/DocItem/Paginator/index.js @@ -1,6 +1,6 @@ import React from 'react'; import Paginator from '@theme-original/DocItem/Paginator'; -import Feedback from "../../Feedback"; +import Feedback from "@theme/Feedback"; export default function PaginatorWrapper(props) { return ( diff --git a/docs/src/theme/DocVersionBanner/index.js b/docs/src/theme/DocVersionBanner/index.js deleted file mode 100644 index 6a18eafebff4b..0000000000000 --- a/docs/src/theme/DocVersionBanner/index.js +++ /dev/null @@ -1,201 +0,0 @@ -// Swizzled class to show custom text for canary version. -// Should be removed in favor of the stock implementation. - -import React from 'react'; -import clsx from 'clsx'; -import useDocusaurusContext from '@docusaurus/useDocusaurusContext'; -import Link from '@docusaurus/Link'; -import Translate from '@docusaurus/Translate'; -import { - useActivePlugin, - useDocVersionSuggestions, -} from '@docusaurus/plugin-content-docs/client'; -import {ThemeClassNames} from '@docusaurus/theme-common'; -import { - useDocsPreferredVersion, - useDocsVersion, -} from '@docusaurus/theme-common/internal'; -function UnreleasedVersionLabel({siteTitle, versionMetadata}) { - return ( - {versionMetadata.label}, - }}> - { - 'This is unreleased documentation for {siteTitle}\'s {versionLabel} version.' - } - - ); -} -function UnmaintainedVersionLabel({siteTitle, versionMetadata}) { - return ( - {versionMetadata.label}, - }}> - { - 'This is documentation for {siteTitle} {versionLabel}, which is no longer actively maintained.' - } - - ); -} -const BannerLabelComponents = { - unreleased: UnreleasedVersionLabel, - unmaintained: UnmaintainedVersionLabel, -}; -function BannerLabel(props) { - const BannerLabelComponent = - BannerLabelComponents[props.versionMetadata.banner]; - return ; -} -function LatestVersionSuggestionLabel({versionLabel, to, onClick}) { - return ( - - - - this version - - - - ), - }}> - { - 'For the current stable version, see {latestVersionLink} ({versionLabel}).' - } - - ); -} -function DocVersionBannerEnabled({className, versionMetadata}) { - const { - siteConfig: {title: siteTitle}, - } = useDocusaurusContext(); - const {pluginId} = useActivePlugin({failfast: true}); - const getVersionMainDoc = (version) => - version.docs.find((doc) => doc.id === version.mainDocId); - const {savePreferredVersionName} = useDocsPreferredVersion(pluginId); - const {latestDocSuggestion, latestVersionSuggestion} = - useDocVersionSuggestions(pluginId); - // Try to link to same doc in latest version (not always possible), falling - // back to main doc of latest version - const latestVersionSuggestedDoc = - latestDocSuggestion ?? getVersionMainDoc(latestVersionSuggestion); - return ( -
-
- -
-
- savePreferredVersionName(latestVersionSuggestion.name)} - /> -
-
- ); -} - -function LatestDocVersionBanner({className, versionMetadata}) { - const { - siteConfig: {title: siteTitle}, - } = useDocusaurusContext(); - const {pluginId} = useActivePlugin({failfast: true}); - const getVersionMainDoc = (version) => - version.docs.find((doc) => doc.id === version.mainDocId); - const {savePreferredVersionName} = useDocsPreferredVersion(pluginId); - const {latestDocSuggestion, latestVersionSuggestion} = - useDocVersionSuggestions(pluginId); - // Try to link to same doc in latest version (not always possible), falling - // back to main doc of latest version - const latestVersionSuggestedDoc = - latestDocSuggestion ?? getVersionMainDoc(latestVersionSuggestion); - const canaryPath = `/docs/0.2.x/${latestVersionSuggestedDoc.path.slice("/docs/".length)}`; - return ( -
-
- {versionMetadata.label}, - }}> - { - 'This is a stable version of documentation for {siteTitle}\'s version {versionLabel}.' - } - -
-
- {versionMetadata.label}, - latestVersionLink: ( - - savePreferredVersionName("0.2.x")}> - - this experimental version - - - - ), - }}> - { - 'You can also check out {latestVersionLink} for an updated experience.' - } - -
-
- ); -} - -export default function DocVersionBanner({className}) { - const versionMetadata = useDocsVersion(); - if (versionMetadata.banner) { - return ( - - ); - } else if (versionMetadata.isLast) { - // Uncomment when we are ready to direct people to new build - // return ( - // - // ); - return null; - } - return null; -} diff --git a/docs/src/theme/FeatureTables.js b/docs/src/theme/FeatureTables.js index 3b4857a1453d5..4a46e08cb1781 100644 --- a/docs/src/theme/FeatureTables.js +++ b/docs/src/theme/FeatureTables.js @@ -2,7 +2,7 @@ import React from "react"; import {useCurrentSidebarCategory} from '@docusaurus/theme-common'; import { useDocById, -} from '@docusaurus/theme-common/internal'; +} from '@docusaurus/plugin-content-docs/client'; const FEATURE_TABLES = { chat: { @@ -26,7 +26,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": true, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html" + "apiLink": "https://python.langchain.com/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html" }, { @@ -38,7 +38,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html" + "apiLink": "https://python.langchain.com/api_reference/mistralai/chat_models/langchain_mistralai.chat_models.ChatMistralAI.html" }, { "name": "ChatFireworks", @@ -49,7 +49,7 @@ const FEATURE_TABLES = { "json_mode": true, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html" + "apiLink": "https://python.langchain.com/api_reference/fireworks/chat_models/langchain_fireworks.chat_models.ChatFireworks.html" }, { "name": "AzureChatOpenAI", @@ -60,7 +60,7 @@ const FEATURE_TABLES = { "json_mode": true, "multimodal": true, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html" + "apiLink": "https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html" }, { "name": "ChatOpenAI", @@ -71,7 +71,7 @@ const FEATURE_TABLES = { "json_mode": true, "multimodal": true, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html" + "apiLink": "https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html" }, { "name": "ChatTogether", @@ -82,7 +82,7 @@ const FEATURE_TABLES = { "json_mode": true, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html" + "apiLink": "https://python.langchain.com/api_reference/together/chat_models/langchain_together.chat_models.ChatTogether.html" }, { "name": "ChatVertexAI", @@ -93,7 +93,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": true, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html" + "apiLink": "https://python.langchain.com/api_reference/google_vertexai/chat_models/langchain_google_vertexai.chat_models.ChatVertexAI.html" }, { "name": "ChatGoogleGenerativeAI", @@ -104,7 +104,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": true, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html" + "apiLink": "https://python.langchain.com/api_reference/google_genai/chat_models/langchain_google_genai.chat_models.ChatGoogleGenerativeAI.html" }, { "name": "ChatGroq", @@ -115,7 +115,7 @@ const FEATURE_TABLES = { "json_mode": true, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html" + "apiLink": "https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html" }, { "name": "ChatCohere", @@ -126,7 +126,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/cohere/chat_models/langchain_cohere.chat_models.ChatCohere.html" + "apiLink": "https://python.langchain.com/api_reference/cohere/chat_models/langchain_cohere.chat_models.ChatCohere.html" }, { "name": "ChatBedrock", @@ -137,7 +137,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html" + "apiLink": "https://python.langchain.com/api_reference/aws/chat_models/langchain_aws.chat_models.bedrock.ChatBedrock.html" }, { "name": "ChatHuggingFace", @@ -148,7 +148,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": true, - "apiLink": "https://python.langchain.com/v0.2/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html", + "apiLink": "https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html", }, { "name": "ChatNVIDIA", @@ -159,7 +159,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": true, - "apiLink": "https://python.langchain.com/v0.2/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html" + "apiLink": "https://python.langchain.com/api_reference/nvidia_ai_endpoints/chat_models/langchain_nvidia_ai_endpoints.chat_models.ChatNVIDIA.html" }, { "name": "ChatOllama", @@ -170,7 +170,7 @@ const FEATURE_TABLES = { "json_mode": true, "multimodal": false, "local": true, - "apiLink": "https://python.langchain.com/v0.2/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html" + "apiLink": "https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html" }, { "name": "ChatLlamaCpp", @@ -181,7 +181,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": true, - "apiLink": "https://python.langchain.com/v0.2/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html" + "apiLink": "https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html" }, { "name": "ChatAI21", @@ -192,7 +192,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html" + "apiLink": "https://python.langchain.com/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html" }, { "name": "ChatUpstage", @@ -203,7 +203,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/upstage/chat_models/langchain_upstage.chat_models.ChatUpstage.html" + "apiLink": "https://python.langchain.com/api_reference/upstage/chat_models/langchain_upstage.chat_models.ChatUpstage.html" }, { "name": "ChatDatabricks", @@ -214,7 +214,7 @@ const FEATURE_TABLES = { "json_mode": false, "multimodal": false, "local": false, - "apiLink": "https://python.langchain.com/v0.2/api_reference/upstage/chat_models/langchain_databricks.chat_models.ChatDatabricks.html" + "apiLink": "https://python.langchain.com/api_reference/upstage/chat_models/langchain_databricks.chat_models.ChatDatabricks.html" } ], }, @@ -233,61 +233,61 @@ const FEATURE_TABLES = { name: "AI21LLM", link: "ai21", package: "langchain-ai21", - apiLink: "https://python.langchain.com/v0.2/api_reference/ai21/llms/langchain_ai21.llms.AI21LLM.html" + apiLink: "https://python.langchain.com/api_reference/ai21/llms/langchain_ai21.llms.AI21LLM.html" }, { name: "AnthropicLLM", link: "anthropic", package: "langchain-anthropic", - apiLink: "https://python.langchain.com/v0.2/api_reference/anthropic/llms/langchain_anthropic.llms.AnthropicLLM.html" + apiLink: "https://python.langchain.com/api_reference/anthropic/llms/langchain_anthropic.llms.AnthropicLLM.html" }, { name: "AzureOpenAI", link: "azure_openai", package: "langchain-openai", - apiLink: "https://python.langchain.com/v0.2/api_reference/openai/llms/langchain_openai.llms.azure.AzureOpenAI.html" + apiLink: "https://python.langchain.com/api_reference/openai/llms/langchain_openai.llms.azure.AzureOpenAI.html" }, { name: "BedrockLLM", link: "bedrock", package: "langchain-aws", - apiLink: "https://python.langchain.com/v0.2/api_reference/aws/llms/langchain_aws.llms.bedrock.BedrockLLM.html" + apiLink: "https://python.langchain.com/api_reference/aws/llms/langchain_aws.llms.bedrock.BedrockLLM.html" }, { name: "CohereLLM", link: "cohere", package: "langchain-cohere", - apiLink: "https://python.langchain.com/v0.2/api_reference/cohere/llms/langchain_cohere.llms.Cohere.html" + apiLink: "https://python.langchain.com/api_reference/cohere/llms/langchain_cohere.llms.Cohere.html" }, { name: "FireworksLLM", link: "fireworks", package: "langchain-fireworks", - apiLink: "https://python.langchain.com/v0.2/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html" + apiLink: "https://python.langchain.com/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html" }, { name: "OllamaLLM", link: "ollama", package: "langchain-ollama", - apiLink: "https://python.langchain.com/v0.2/api_reference/ollama/llms/langchain_ollama.llms.OllamaLLM.html" + apiLink: "https://python.langchain.com/api_reference/ollama/llms/langchain_ollama.llms.OllamaLLM.html" }, { name: "OpenAILLM", link: "openai", package: "langchain-openai", - apiLink: "https://python.langchain.com/v0.2/api_reference/openai/llms/langchain_openai.llms.base.OpenAI.html" + apiLink: "https://python.langchain.com/api_reference/openai/llms/langchain_openai.llms.base.OpenAI.html" }, { name: "TogetherLLM", link: "together", package: "langchain-together", - apiLink: "https://python.langchain.com/v0.2/api_reference/together/llms/langchain_together.llms.Together.html" + apiLink: "https://python.langchain.com/api_reference/together/llms/langchain_together.llms.Together.html" }, { name: "VertexAILLM", link: "google_vertexai", package: "langchain-google_vertexai", - apiLink: "https://python.langchain.com/v0.2/api_reference/google_vertexai/llms/langchain_google_vertexai.llms.VertexAI.html" + apiLink: "https://python.langchain.com/api_reference/google_vertexai/llms/langchain_google_vertexai.llms.VertexAI.html" }, ], }, @@ -302,67 +302,73 @@ const FEATURE_TABLES = { name: "AzureOpenAI", link: "azureopenai", package: "langchain-openai", - apiLink: "https://python.langchain.com/v0.2/api_reference/openai/embeddings/langchain_openai.embeddings.azure.AzureOpenAIEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/openai/embeddings/langchain_openai.embeddings.azure.AzureOpenAIEmbeddings.html" }, { name: "Ollama", link: "ollama", package: "langchain-ollama", - apiLink: "https://python.langchain.com/v0.2/api_reference/ollama/embeddings/langchain_ollama.embeddings.OllamaEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/ollama/embeddings/langchain_ollama.embeddings.OllamaEmbeddings.html" }, { name: "AI21", link: "ai21", package: "langchain-ai21", - apiLink: "https://python.langchain.com/v0.2/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html" + apiLink: "https://python.langchain.com/api_reference/ai21/embeddings/langchain_ai21.embeddings.AI21Embeddings.html" }, { name: "Fake", link: "fake", package: "langchain-core", - apiLink: "https://python.langchain.com/v0.2/api_reference/core/embeddings/langchain_core.embeddings.fake.FakeEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/core/embeddings/langchain_core.embeddings.fake.FakeEmbeddings.html" }, { name: "OpenAI", link: "openai", package: "langchain-openai", - apiLink: "https://python.langchain.com/v0.2/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html" + apiLink: "https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html" }, { name: "Together", link: "together", package: "langchain-together", - apiLink: "https://python.langchain.com/v0.2/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/together/embeddings/langchain_together.embeddings.TogetherEmbeddings.html" }, { name: "Fireworks", link: "fireworks", package: "langchain-fireworks", - apiLink: "https://python.langchain.com/v0.2/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/fireworks/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html" }, { name: "MistralAI", link: "mistralai", package: "langchain-mistralai", - apiLink: "https://python.langchain.com/v0.2/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/mistralai/embeddings/langchain_mistralai.embeddings.MistralAIEmbeddings.html" }, { name: "Cohere", link: "cohere", package: "langchain-cohere", - apiLink: "https://python.langchain.com/v0.2/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/cohere/embeddings/langchain_cohere.embeddings.CohereEmbeddings.html" }, { name: "Nomic", - link: "cohere", + link: "nomic", package: "langchain-nomic", - apiLink: "https://python.langchain.com/v0.2/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/nomic/embeddings/langchain_nomic.embeddings.NomicEmbeddings.html" }, { name: "Databricks", link: "databricks", package: "langchain-databricks", - apiLink: "https://python.langchain.com/v0.2/api_reference/nomic/embeddings/langchain_databricks.embeddings.DatabricksEmbeddings.html" + apiLink: "https://python.langchain.com/api_reference/nomic/embeddings/langchain_databricks.embeddings.DatabricksEmbeddings.html" + }, + { + name: "VoyageAI", + link: "voyageai", + package: "langchain-voyageai", + apiLink: "https://python.langchain.com/api_reference/voyageai/embeddings/langchain_voyageai.embeddings.VoyageAIEmbeddings.html" }, ] }, @@ -380,7 +386,7 @@ const FEATURE_TABLES = { link: "bedrock", selfHost: false, cloudOffering: true, - apiLink: "https://python.langchain.com/v0.2/api_reference/aws/retrievers/langchain_aws.retrievers.bedrock.AmazonKnowledgeBasesRetriever.html", + apiLink: "https://python.langchain.com/api_reference/aws/retrievers/langchain_aws.retrievers.bedrock.AmazonKnowledgeBasesRetriever.html", package: "langchain_aws" }, { @@ -388,7 +394,7 @@ const FEATURE_TABLES = { link: "azure_ai_search", selfHost: false, cloudOffering: true, - apiLink: "https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html", + apiLink: "https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html", package: "langchain_community" }, { @@ -396,7 +402,7 @@ const FEATURE_TABLES = { link: "elasticsearch_retriever", selfHost: true, cloudOffering: true, - apiLink: "https://python.langchain.com/v0.2/api_reference/elasticsearch/retrievers/langchain_elasticsearch.retrievers.ElasticsearchRetriever.html", + apiLink: "https://python.langchain.com/api_reference/elasticsearch/retrievers/langchain_elasticsearch.retrievers.ElasticsearchRetriever.html", package: "langchain_elasticsearch" }, { @@ -404,7 +410,7 @@ const FEATURE_TABLES = { link: "milvus_hybrid_search", selfHost: true, cloudOffering: false, - apiLink: "https://python.langchain.com/v0.2/api_reference/milvus/retrievers/langchain_milvus.retrievers.milvus_hybrid_search.MilvusCollectionHybridSearchRetriever.html", + apiLink: "https://python.langchain.com/api_reference/milvus/retrievers/langchain_milvus.retrievers.milvus_hybrid_search.MilvusCollectionHybridSearchRetriever.html", package: "langchain_milvus" }, { @@ -412,7 +418,7 @@ const FEATURE_TABLES = { link: "google_vertex_ai_search", selfHost: false, cloudOffering: true, - apiLink: "https://python.langchain.com/v0.2/api_reference/google_community/vertex_ai_search/langchain_google_community.vertex_ai_search.VertexAISearchRetriever.html", + apiLink: "https://python.langchain.com/api_reference/google_community/vertex_ai_search/langchain_google_community.vertex_ai_search.VertexAISearchRetriever.html", package: "langchain_google_community" } ], @@ -433,21 +439,21 @@ const FEATURE_TABLES = { name: "ArxivRetriever", link: "arxiv", source: (<>Scholarly articles on arxiv.org), - apiLink: "https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html", + apiLink: "https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.arxiv.ArxivRetriever.html", package: "langchain_community" }, { name: "TavilySearchAPIRetriever", link: "tavily", source: "Internet search", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html", + apiLink: "https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.tavily_search_api.TavilySearchAPIRetriever.html", package: "langchain_community" }, { name: "WikipediaRetriever", link: "wikipedia", source: (<>Wikipedia articles), - apiLink: "https://python.langchain.com/v0.2/api_reference/community/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html", + apiLink: "https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.wikipedia.WikipediaRetriever.html", package: "langchain_community" } ] @@ -477,7 +483,7 @@ const FEATURE_TABLES = { source: "Load documents from an AWS S3 directory", partnerPackage: false, loaderName: "S3DirectoryLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.s3_directory.S3DirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.s3_directory.S3DirectoryLoader.html" }, { name: "AWS S3 File", @@ -485,7 +491,7 @@ const FEATURE_TABLES = { source: "Load documents from an AWS S3 file", partnerPackage: false, loaderName: "S3FileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.s3_file.S3FileLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.s3_file.S3FileLoader.html" }, { name: "Azure AI Data", @@ -493,7 +499,7 @@ const FEATURE_TABLES = { source: "Load documents from Azure AI services", partnerPackage: false, loaderName: "AzureAIDataLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.azure_ai_data.AzureAIDataLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.azure_ai_data.AzureAIDataLoader.html" }, { name: "Azure Blob Storage Container", @@ -501,7 +507,7 @@ const FEATURE_TABLES = { source: "Load documents from an Azure Blob Storage container", partnerPackage: false, loaderName: "AzureBlobStorageContainerLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader.html" }, { name: "Azure Blob Storage File", @@ -509,7 +515,7 @@ const FEATURE_TABLES = { source: "Load documents from an Azure Blob Storage file", partnerPackage: false, loaderName: "AzureBlobStorageFileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader.html" }, { name: "Dropbox", @@ -517,7 +523,7 @@ const FEATURE_TABLES = { source: "Load documents from Dropbox", partnerPackage: false, loaderName: "DropboxLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.dropbox.DropboxLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.dropbox.DropboxLoader.html" }, { name: "Google Cloud Storage Directory", @@ -525,7 +531,7 @@ const FEATURE_TABLES = { source: "Load documents from GCS bucket", partnerPackage: true, loaderName: "GCSDirectoryLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/google_community/gcs_directory/langchain_google_community.gcs_directory.GCSDirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/google_community/gcs_directory/langchain_google_community.gcs_directory.GCSDirectoryLoader.html" }, { name: "Google Cloud Storage File", @@ -533,7 +539,7 @@ const FEATURE_TABLES = { source: "Load documents from GCS file object", partnerPackage: true, loaderName: "GCSFileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/google_community/gcs_file/langchain_google_community.gcs_file.GCSFileLoader.html" + apiLink: "https://python.langchain.com/api_reference/google_community/gcs_file/langchain_google_community.gcs_file.GCSFileLoader.html" }, { name: "Google Drive", @@ -541,7 +547,7 @@ const FEATURE_TABLES = { source: "Load documents from Google Drive (Google Docs only)", partnerPackage: true, loaderName: "GoogleDriveLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/google_community/drive/langchain_google_community.drive.GoogleDriveLoader.html" + apiLink: "https://python.langchain.com/api_reference/google_community/drive/langchain_google_community.drive.GoogleDriveLoader.html" }, { name: "Huawei OBS Directory", @@ -549,7 +555,7 @@ const FEATURE_TABLES = { source: "Load documents from Huawei Object Storage Service Directory", partnerPackage: false, loaderName: "OBSDirectoryLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.obs_directory.OBSDirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.obs_directory.OBSDirectoryLoader.html" }, { name: "Huawei OBS File", @@ -557,7 +563,7 @@ const FEATURE_TABLES = { source: "Load documents from Huawei Object Storage Service File", partnerPackage: false, loaderName: "OBSFileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.obs_file.OBSFileLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.obs_file.OBSFileLoader.html" }, { name: "Microsoft OneDrive", @@ -565,7 +571,7 @@ const FEATURE_TABLES = { source: "Load documents from Microsoft OneDrive", partnerPackage: false, loaderName: "OneDriveLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.onedrive.OneDriveLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.onedrive.OneDriveLoader.html" }, { name: "Microsoft SharePoint", @@ -573,7 +579,7 @@ const FEATURE_TABLES = { source: "Load documents from Microsoft SharePoint", partnerPackage: false, loaderName: "SharePointLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.sharepoint.SharePointLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.sharepoint.SharePointLoader.html" }, { @@ -582,7 +588,7 @@ const FEATURE_TABLES = { source: "Load documents from Tencent Cloud Object Storage Directory", partnerPackage: false, loaderName: "TencentCOSDirectoryLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader.html" }, { name: "Tencent COS File", @@ -590,7 +596,7 @@ const FEATURE_TABLES = { source: "Load documents from Tencent Cloud Object Storage File", partnerPackage: false, loaderName: "TencentCOSFileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.tencent_cos_file.TencentCOSFileLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.tencent_cos_file.TencentCOSFileLoader.html" }, ] }, @@ -609,31 +615,31 @@ const FEATURE_TABLES = { name: "Telegram", link: "telegram", loaderName: "TelegramChatFileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.telegram.TelegramChatFileLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.telegram.TelegramChatFileLoader.html" }, { name: "WhatsApp", link: "whatsapp_chat", loaderName: "WhatsAppChatLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/chat_loaders/langchain_community.chat_loaders.whatsapp.WhatsAppChatLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/chat_loaders/langchain_community.chat_loaders.whatsapp.WhatsAppChatLoader.html" }, { name: "Discord", link: "discord", loaderName: "DiscordChatLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.discord.DiscordChatLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.discord.DiscordChatLoader.html" }, { name: "Facebook Chat", link: "facebook_chat", loaderName: "FacebookChatLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.facebook_chat.FacebookChatLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.facebook_chat.FacebookChatLoader.html" }, { name: "Mastodon", link: "mastodon", loaderName: "MastodonTootsLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.mastodon.MastodonTootsLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.mastodon.MastodonTootsLoader.html" } ] }, @@ -652,43 +658,43 @@ const FEATURE_TABLES = { name: "Figma", link: "figma", loaderName: "FigmaFileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.figma.FigmaFileLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.figma.FigmaFileLoader.html" }, { name: "Notion", link: "notion", loaderName: "NotionDirectoryLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.notion.NotionDirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.notion.NotionDirectoryLoader.html" }, { name: "Slack", link: "slack", loaderName: "SlackDirectoryLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.slack_directory.SlackDirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.slack_directory.SlackDirectoryLoader.html" }, { name: "Quip", link: "quip", loaderName: "QuipLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.quip.QuipLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.quip.QuipLoader.html" }, { name: "Trello", link: "trello", loaderName: "TrelloLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.trello.TrelloLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.trello.TrelloLoader.html" }, { name: "Roam", link: "roam", loaderName: "RoamLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.roam.RoamLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.roam.RoamLoader.html" }, { name: "GitHub", link: "github", loaderName: "GithubFileLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.github.GithubFileLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.github.GithubFileLoader.html" } ] }, @@ -707,14 +713,14 @@ const FEATURE_TABLES = { name: "Twitter", link: "twitter", loaderName: "TwitterTweetLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.twitter.TwitterTweetLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.twitter.TwitterTweetLoader.html" }, { name: "Reddit", link: "RedditPostsLoader", loaderName: "RedditPostsLoader", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.reddit.RedditPostsLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.reddit.RedditPostsLoader.html" }, ] }, @@ -733,28 +739,35 @@ const FEATURE_TABLES = { link: "web_base", source: "Uses urllib and BeautifulSoup to load and parse HTML web pages", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.web_base.WebBaseLoader.html" + }, + { + name: "Unstructured", + link: "unstructured_file", + source: "Uses Unstructured to load and parse web pages", + api: "Package", + apiLink: "https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html" }, { name: "RecursiveURL", link: "recursive_url", source: "Recursively scrapes all child links from a root URL", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.recursive_url_loader.RecursiveUrlLoader.html" }, { name: "Sitemap", link: "sitemap", source: "Scrapes all pages on a given sitemap", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.sitemap.SitemapLoader.html" }, { name: "Firecrawl", link: "firecrawl", source: "API service that can be deployed locally, hosted version has free credits.", api: "API", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.firecrawl.FireCrawlLoader.html" } ] }, @@ -773,70 +786,63 @@ const FEATURE_TABLES = { link: "pypdfloader", source: "Uses `pypdf` to load and parse PDFs", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html" }, { name: "Unstructured", link: "unstructured_file", source: "Uses Unstructured's open source library to load PDFs", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html" + apiLink: "https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html" }, { name: "Amazon Textract", link: "amazon_textract", source: "Uses AWS API to load PDFs", api: "API", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.AmazonTextractPDFLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.AmazonTextractPDFLoader.html" }, { name: "MathPix", link: "mathpix", - source: "Uses MathPix to laod PDFs", + source: "Uses MathPix to load PDFs", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.MathpixPDFLoader.html" }, { name: "PDFPlumber", link: "pdfplumber", source: "Load PDF files using PDFPlumber", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFPlumberLoader.html" }, { name: "PyPDFDirectry", link: "pypdfdirectory", source: "Load a directory with PDF files", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html" }, { name: "PyPDFium2", link: "pypdfium2", source: "Load PDF files using PyPDFium2", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html" - }, - { - name: "UnstructuredPDFLoader", - link: "unstructured_pdfloader", - source: "Load PDF files using Unstructured", - api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.UnstructuredPDFLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyPDFium2Loader.html" }, { name: "PyMuPDF", link: "pymupdf", source: "Load PDF files using PyMuPDF", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html" }, { name: "PDFMiner", link: "pdfminer", source: "Load PDF files using PDFMiner", api: "Package", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PDFMinerLoader.html" } ] }, @@ -853,44 +859,32 @@ const FEATURE_TABLES = { name: "CSVLoader", link: "csv", source: "CSV files", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.csv_loader.CSVLoader.html" }, { name: "DirectoryLoader", link: "../../how_to/document_loader_directory", source: "All files in a given directory", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.directory.DirectoryLoader.html" }, { name: "Unstructured", link: "unstructured_file", - source: "All file types", - apiLink: "https://python.langchain.com/v0.2/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html" + source: "Many file types (see https://docs.unstructured.io/platform/supported-file-types)", + apiLink: "https://python.langchain.com/api_reference/unstructured/document_loaders/langchain_unstructured.document_loaders.UnstructuredLoader.html" }, { name: "JSONLoader", link: "json", source: "JSON files", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html" - }, - { - name: "UnstructuredMarkdownLoader", - link: "unstructured_markdown", - source: "Markdown files", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.markdown.UnstructuredMarkdownLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.json_loader.JSONLoader.html" }, { name: "BSHTMLLoader", link: "bshtml", source: "HTML files", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html" + apiLink: "https://python.langchain.com/api_reference/community/document_loaders/langchain_community.document_loaders.html_bs.BSHTMLLoader.html" }, - { - name: "UnstrucutredXMLLoader", - link: "xml", - source: "XML files", - apiLink: "https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.xml.UnstructuredXMLLoader.html" - } ] }, vectorstores: { @@ -1003,7 +997,7 @@ const FEATURE_TABLES = { }, { name: "InMemoryVectorStore", - link: "https://python.langchain.com/v0.2/api_reference/core/vectorstores/langchain_core.vectorstores.in_memory.InMemoryVectorStore.html", + link: "https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.in_memory.InMemoryVectorStore.html", deleteById: true, filtering: true, searchByVector: false, @@ -1091,6 +1085,19 @@ const FEATURE_TABLES = { multiTenancy: false, local: true, idsInAddDocuments: false, + }, + { + name: "Weaviate", + link: "weaviate", + deleteById: true, + filtering: true, + searchByVector: true, + searchWithScore: true, + async: true, + passesStandardTests: false, + multiTenancy: true, + local: true, + idsInAddDocuments: false, } ], } diff --git a/docs/src/theme/NotFound/Content/index.js b/docs/src/theme/NotFound/Content/index.js new file mode 100644 index 0000000000000..dc56f0702753a --- /dev/null +++ b/docs/src/theme/NotFound/Content/index.js @@ -0,0 +1,2913 @@ +import React from 'react'; +import clsx from 'clsx'; +import {useLocation} from 'react-router-dom'; + +function LegacyBadge() { + return ( + LEGACY + ); +} + +export default function NotFoundContent({className}) { + const location = useLocation(); + const pathname = location.pathname.endsWith('/') ? location.pathname : location.pathname + '/'; // Ensure the path matches the keys in suggestedLinks + const {canonical, alternative} = suggestedLinks[pathname] || {}; + + return ( +
+
+
+

+ {canonical ? 'Page Moved' : alternative ? 'Page Removed' : 'Page Not Found'} +

+ { + canonical ? ( +

You can find the new location here.

+ ) : alternative ? ( +

The page you were looking for has been removed.

+ ) : ( +

We could not find what you were looking for.

+ ) + } + {alternative && ( +

+

+ Alternative pages +
    + {alternative.map((alt, index) => ( +
  • + {alt}{alt.startsWith('/v0.1/') && <>{' '}} +
  • + ))} +
+
+

+ )} +

+ Please contact the owner of the site that linked you to the + original URL and let them know their link {canonical ? 'has moved.' : alternative ? 'has been removed.' : 'is broken.'} +

+
+
+
+ ); +} + +const suggestedLinks = { + "/docs/changelog/core/": { + "canonical": "https://github.com/langchain-ai/langchain/releases?q=tag:%22langchain-core%3D%3D0%22&expanded=true", + "alternative": [ + "/v0.1/docs/changelog/core/" + ] + }, + "/docs/changelog/langchain/": { + "canonical": "https://github.com/langchain-ai/langchain/releases?q=tag:%22langchain%3D%3D0%22&expanded=true", + "alternative": [ + "/v0.1/docs/changelog/langchain/" + ] + }, + "/docs/contributing/documentation/technical_logistics/": { + "canonical": "/docs/contributing/documentation/", + "alternative": [ + "/v0.1/docs/contributing/documentation/technical_logistics/" + ] + }, + "/docs/cookbook/": { + "canonical": "/docs/tutorials/", + "alternative": [ + "/v0.1/docs/cookbook/" + ] + }, + "/docs/expression_language/": { + "canonical": "/docs/how_to/#langchain-expression-language-lcel", + "alternative": [ + "/v0.1/docs/expression_language/" + ] + }, + "/docs/expression_language/cookbook/code_writing/": { + "canonical": "https://langchain-ai.github.io/langgraph/tutorials/code_assistant/langgraph_code_assistant/", + "alternative": [ + "/v0.1/docs/expression_language/cookbook/code_writing/" + ] + }, + "/docs/expression_language/cookbook/multiple_chains/": { + "canonical": "/docs/how_to/parallel/", + "alternative": [ + "/v0.1/docs/expression_language/cookbook/multiple_chains/" + ] + }, + "/docs/expression_language/cookbook/prompt_llm_parser/": { + "canonical": "/docs/tutorials/llm_chain/", + "alternative": [ + "/v0.1/docs/expression_language/cookbook/prompt_llm_parser/" + ] + }, + "/docs/expression_language/cookbook/prompt_size/": { + "canonical": "/docs/how_to/trim_messages/", + "alternative": [ + "/v0.1/docs/expression_language/cookbook/prompt_size/" + ] + }, + "/docs/expression_language/get_started/": { + "canonical": "/docs/how_to/sequence/", + "alternative": [ + "/v0.1/docs/expression_language/get_started/" + ] + }, + "/docs/expression_language/how_to/decorator/": { + "canonical": "/docs/how_to/functions/#the-convenience-chain-decorator", + "alternative": [ + "/v0.1/docs/expression_language/how_to/decorator/" + ] + }, + "/docs/expression_language/how_to/inspect/": { + "canonical": "/docs/how_to/inspect/", + "alternative": [ + "/v0.1/docs/expression_language/how_to/inspect/" + ] + }, + "/docs/expression_language/how_to/message_history/": { + "canonical": "/docs/how_to/message_history/", + "alternative": [ + "/v0.1/docs/expression_language/how_to/message_history/" + ] + }, + "/docs/expression_language/how_to/routing/": { + "canonical": "/docs/how_to/routing/", + "alternative": [ + "/v0.1/docs/expression_language/how_to/routing/" + ] + }, + "/docs/expression_language/interface/": { + "canonical": "/docs/how_to/lcel_cheatsheet/", + "alternative": [ + "/v0.1/docs/expression_language/interface/" + ] + }, + "/docs/expression_language/primitives/": { + "canonical": "/docs/how_to/#langchain-expression-language-lcel", + "alternative": [ + "/v0.1/docs/expression_language/primitives/" + ] + }, + "/docs/expression_language/primitives/assign/": { + "canonical": "/docs/how_to/assign/", + "alternative": [ + "/v0.1/docs/expression_language/primitives/assign/" + ] + }, + "/docs/expression_language/primitives/binding/": { + "canonical": "/docs/how_to/binding/", + "alternative": [ + "/v0.1/docs/expression_language/primitives/binding/" + ] + }, + "/docs/expression_language/primitives/configure/": { + "canonical": "/docs/how_to/configure/", + "alternative": [ + "/v0.1/docs/expression_language/primitives/configure/" + ] + }, + "/docs/expression_language/primitives/functions/": { + "canonical": "/docs/how_to/functions/", + "alternative": [ + "/v0.1/docs/expression_language/primitives/functions/" + ] + }, + "/docs/expression_language/primitives/parallel/": { + "canonical": "/docs/how_to/parallel/", + "alternative": [ + "/v0.1/docs/expression_language/primitives/parallel/" + ] + }, + "/docs/expression_language/primitives/passthrough/": { + "canonical": "/docs/how_to/passthrough/", + "alternative": [ + "/v0.1/docs/expression_language/primitives/passthrough/" + ] + }, + "/docs/expression_language/primitives/sequence/": { + "canonical": "/docs/how_to/sequence/", + "alternative": [ + "/v0.1/docs/expression_language/primitives/sequence/" + ] + }, + "/docs/expression_language/streaming/": { + "canonical": "/docs/how_to/streaming/", + "alternative": [ + "/v0.1/docs/expression_language/streaming/" + ] + }, + "/docs/expression_language/why/": { + "canonical": "/docs/concepts/#langchain-expression-language-lcel", + "alternative": [ + "/v0.1/docs/expression_language/why/" + ] + }, + "/docs/get_started/installation/": { + "canonical": "/docs/tutorials/", + "alternative": [ + "/v0.1/docs/get_started/installation/" + ] + }, + "/docs/get_started/introduction/": { + "canonical": "/docs/tutorials/", + "alternative": [ + "/v0.1/docs/get_started/introduction/" + ] + }, + "/docs/get_started/quickstart/": { + "canonical": "/docs/tutorials/", + "alternative": [ + "/v0.1/docs/get_started/quickstart/" + ] + }, + "/docs/guides/": { + "canonical": "/docs/how_to/", + "alternative": [ + "/v0.1/docs/guides/" + ] + }, + "/docs/guides/development/": { + "canonical": "/docs/how_to/debugging/", + "alternative": [ + "/v0.1/docs/guides/development/" + ] + }, + "/docs/guides/development/debugging/": { + "canonical": "/docs/how_to/debugging/", + "alternative": [ + "/v0.1/docs/guides/development/debugging/" + ] + }, + "/docs/guides/development/extending_langchain/": { + "canonical": "/docs/how_to/#custom", + "alternative": [ + "/v0.1/docs/guides/development/extending_langchain/" + ] + }, + "/docs/guides/development/local_llms/": { + "canonical": "/docs/how_to/local_llms/", + "alternative": [ + "/v0.1/docs/guides/development/local_llms/" + ] + }, + "/docs/guides/development/pydantic_compatibility/": { + "canonical": "/docs/how_to/pydantic_compatibility/", + "alternative": [ + "/v0.1/docs/guides/development/pydantic_compatibility/" + ] + }, + "/docs/guides/productionization/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/" + ] + }, + "/docs/guides/productionization/deployments/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/deployments/" + ] + }, + "/docs/guides/productionization/deployments/template_repos/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/deployments/template_repos/" + ] + }, + "/docs/guides/productionization/evaluation/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/" + ] + }, + "/docs/guides/productionization/evaluation/comparison/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/comparison/" + ] + }, + "/docs/guides/productionization/evaluation/comparison/custom/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/comparison/custom/" + ] + }, + "/docs/guides/productionization/evaluation/comparison/pairwise_embedding_distance/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/comparison/pairwise_embedding_distance/" + ] + }, + "/docs/guides/productionization/evaluation/comparison/pairwise_string/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/comparison/pairwise_string/" + ] + }, + "/docs/guides/productionization/evaluation/examples/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/examples/" + ] + }, + "/docs/guides/productionization/evaluation/examples/comparisons/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/examples/comparisons/" + ] + }, + "/docs/guides/productionization/evaluation/string/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/" + ] + }, + "/docs/guides/productionization/evaluation/string/criteria_eval_chain/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/criteria_eval_chain/" + ] + }, + "/docs/guides/productionization/evaluation/string/custom/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/custom/" + ] + }, + "/docs/guides/productionization/evaluation/string/embedding_distance/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/embedding_distance/" + ] + }, + "/docs/guides/productionization/evaluation/string/exact_match/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/exact_match/" + ] + }, + "/docs/guides/productionization/evaluation/string/json/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/json/" + ] + }, + "/docs/guides/productionization/evaluation/string/regex_match/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/regex_match/" + ] + }, + "/docs/guides/productionization/evaluation/string/scoring_eval_chain/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/scoring_eval_chain/" + ] + }, + "/docs/guides/productionization/evaluation/string/string_distance/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/string/string_distance/" + ] + }, + "/docs/guides/productionization/evaluation/trajectory/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/trajectory/" + ] + }, + "/docs/guides/productionization/evaluation/trajectory/custom/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/trajectory/custom/" + ] + }, + "/docs/guides/productionization/evaluation/trajectory/trajectory_eval/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/evaluation/trajectory/trajectory_eval/" + ] + }, + "/docs/guides/productionization/fallbacks/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/fallbacks/" + ] + }, + "/docs/guides/productionization/safety/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/" + ] + }, + "/docs/guides/productionization/safety/amazon_comprehend_chain/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/amazon_comprehend_chain/" + ] + }, + "/docs/guides/productionization/safety/constitutional_chain/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/constitutional_chain/" + ] + }, + "/docs/guides/productionization/safety/hugging_face_prompt_injection/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/hugging_face_prompt_injection/" + ] + }, + "/docs/guides/productionization/safety/layerup_security/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/layerup_security/" + ] + }, + "/docs/guides/productionization/safety/logical_fallacy_chain/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/logical_fallacy_chain/" + ] + }, + "/docs/guides/productionization/safety/moderation/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/moderation/" + ] + }, + "/docs/guides/productionization/safety/presidio_data_anonymization/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/" + ] + }, + "/docs/guides/productionization/safety/presidio_data_anonymization/multi_language/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/multi_language/" + ] + }, + "/docs/guides/productionization/safety/presidio_data_anonymization/qa_privacy_protection/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/qa_privacy_protection/" + ] + }, + "/docs/guides/productionization/safety/presidio_data_anonymization/reversible/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/reversible/" + ] + }, + "/docs/integrations/chat/ollama_functions/": { + "canonical": "/docs/integrations/chat/ollama/", + "alternative": [ + "/v0.1/docs/integrations/chat/ollama_functions/" + ] + }, + "/docs/integrations/document_loaders/notiondb/": { + "canonical": "/docs/integrations/document_loaders/notion/", + "alternative": [ + "/v0.1/docs/integrations/document_loaders/notiondb/" + ] + }, + "/docs/integrations/llms/llm_caching/": { + "canonical": "/docs/how_to/llm_caching/", + "alternative": [ + "/v0.1/docs/integrations/llms/llm_caching/" + ] + }, + "/docs/integrations/providers/vectara/vectara_summary/": { + "canonical": "/docs/integrations/providers/vectara/", + "alternative": [ + "/v0.1/docs/integrations/providers/vectara/vectara_summary/" + ] + }, + "/docs/integrations/text_embedding/nemo/": { + "canonical": "/docs/integrations/text_embedding/nvidia_ai_endpoints/", + "alternative": [ + "/v0.1/docs/integrations/text_embedding/nemo/" + ] + }, + "/docs/integrations/toolkits/": { + "canonical": "/docs/integrations/tools/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/" + ] + }, + "/docs/integrations/toolkits/ainetwork/": { + "canonical": "/docs/integrations/tools/ainetwork/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/ainetwork/" + ] + }, + "/docs/integrations/toolkits/airbyte_structured_qa/": { + "canonical": "/docs/integrations/document_loaders/airbyte/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/airbyte_structured_qa/" + ] + }, + "/docs/integrations/toolkits/amadeus/": { + "canonical": "/docs/integrations/tools/amadeus/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/amadeus/" + ] + }, + "/docs/integrations/toolkits/azure_ai_services/": { + "canonical": "/docs/integrations/tools/azure_ai_services/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/azure_ai_services/" + ] + }, + "/docs/integrations/toolkits/azure_cognitive_services/": { + "canonical": "/docs/integrations/tools/azure_cognitive_services/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/azure_cognitive_services/" + ] + }, + "/docs/integrations/toolkits/cassandra_database/": { + "canonical": "/docs/integrations/tools/cassandra_database/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/cassandra_database/" + ] + }, + "/docs/integrations/toolkits/clickup/": { + "canonical": "/docs/integrations/tools/clickup/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/clickup/" + ] + }, + "/docs/integrations/toolkits/cogniswitch/": { + "canonical": "/docs/integrations/tools/cogniswitch/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/cogniswitch/" + ] + }, + "/docs/integrations/toolkits/connery/": { + "canonical": "/docs/integrations/tools/connery/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/connery/" + ] + }, + "/docs/integrations/toolkits/csv/": { + "canonical": "/docs/integrations/document_loaders/csv/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/csv/" + ] + }, + "/docs/integrations/toolkits/document_comparison_toolkit/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/integrations/toolkits/document_comparison_toolkit/" + ] + }, + "/docs/integrations/toolkits/github/": { + "canonical": "/docs/integrations/tools/github/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/github/" + ] + }, + "/docs/integrations/toolkits/gitlab/": { + "canonical": "/docs/integrations/tools/gitlab/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/gitlab/" + ] + }, + "/docs/integrations/toolkits/gmail/": { + "canonical": "/docs/integrations/tools/gmail/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/gmail/" + ] + }, + "/docs/integrations/toolkits/jira/": { + "canonical": "/docs/integrations/tools/jira/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/jira/" + ] + }, + "/docs/integrations/toolkits/json/": { + "canonical": "/docs/integrations/tools/json/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/json/" + ] + }, + "/docs/integrations/toolkits/multion/": { + "canonical": "/docs/integrations/tools/multion/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/multion/" + ] + }, + "/docs/integrations/toolkits/nasa/": { + "canonical": "/docs/integrations/tools/nasa/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/nasa/" + ] + }, + "/docs/integrations/toolkits/office365/": { + "canonical": "/docs/integrations/tools/office365/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/office365/" + ] + }, + "/docs/integrations/toolkits/openapi_nla/": { + "canonical": "/docs/integrations/tools/openapi_nla/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/openapi_nla/" + ] + }, + "/docs/integrations/toolkits/openapi/": { + "canonical": "/docs/integrations/tools/openapi/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/openapi/" + ] + }, + "/docs/integrations/toolkits/pandas/": { + "canonical": "/docs/integrations/tools/pandas/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/pandas/" + ] + }, + "/docs/integrations/toolkits/playwright/": { + "canonical": "/docs/integrations/tools/playwright/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/playwright/" + ] + }, + "/docs/integrations/toolkits/polygon/": { + "canonical": "/docs/integrations/tools/polygon/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/polygon/" + ] + }, + "/docs/integrations/toolkits/powerbi/": { + "canonical": "/docs/integrations/tools/powerbi/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/powerbi/" + ] + }, + "/docs/integrations/toolkits/python/": { + "canonical": "/docs/integrations/tools/python/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/python/" + ] + }, + "/docs/integrations/toolkits/robocorp/": { + "canonical": "/docs/integrations/tools/robocorp/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/robocorp/" + ] + }, + "/docs/integrations/toolkits/slack/": { + "canonical": "/docs/integrations/tools/slack/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/slack/" + ] + }, + "/docs/integrations/toolkits/spark_sql/": { + "canonical": "/docs/integrations/tools/spark_sql/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/spark_sql/" + ] + }, + "/docs/integrations/toolkits/spark/": { + "canonical": "/docs/integrations/tools/spark_sql/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/spark/" + ] + }, + "/docs/integrations/toolkits/sql_database/": { + "canonical": "/docs/integrations/tools/sql_database/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/sql_database/" + ] + }, + "/docs/integrations/toolkits/steam/": { + "canonical": "/docs/integrations/tools/steam/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/steam/" + ] + }, + "/docs/integrations/toolkits/xorbits/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/integrations/toolkits/xorbits/" + ] + }, + "/docs/integrations/tools/apify/": { + "canonical": "/docs/integrations/providers/apify/#utility", + "alternative": [ + "/v0.1/docs/integrations/tools/apify/" + ] + }, + "/docs/integrations/tools/search_tools/": { + "canonical": "/docs/integrations/tools/#search", + "alternative": [ + "/v0.1/docs/integrations/tools/search_tools/" + ] + }, + "/docs/langsmith/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/langsmith/" + ] + }, + "/docs/langsmith/walkthrough/": { + "canonical": "https://docs.smith.langchain.com/", + "alternative": [ + "/v0.1/docs/langsmith/walkthrough/" + ] + }, + "/docs/modules/": { + "canonical": "/docs/how_to/#components", + "alternative": [ + "/v0.1/docs/modules/" + ] + }, + "/docs/modules/agents/": { + "canonical": "/docs/how_to/#agents", + "alternative": [ + "/v0.1/docs/modules/agents/" + ] + }, + "/docs/modules/agents/agent_types/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/" + ] + }, + "/docs/modules/agents/agent_types/json_agent/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/json_agent/" + ] + }, + "/docs/modules/agents/agent_types/openai_assistants/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/openai_assistants/" + ] + }, + "/docs/modules/agents/agent_types/openai_functions_agent/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/openai_functions_agent/" + ] + }, + "/docs/modules/agents/agent_types/openai_tools/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/openai_tools/" + ] + }, + "/docs/modules/agents/agent_types/react/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/react/" + ] + }, + "/docs/modules/agents/agent_types/self_ask_with_search/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/self_ask_with_search/" + ] + }, + "/docs/modules/agents/agent_types/structured_chat/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/structured_chat/" + ] + }, + "/docs/modules/agents/agent_types/tool_calling/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/tool_calling/" + ] + }, + "/docs/modules/agents/agent_types/xml_agent/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/agent_types/xml_agent/" + ] + }, + "/docs/modules/agents/concepts/": { + "canonical": "https://langchain-ai.github.io/langgraph/concepts/", + "alternative": [ + "/v0.1/docs/modules/agents/concepts/" + ] + }, + "/docs/modules/agents/how_to/agent_iter/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/agent_iter/" + ] + }, + "/docs/modules/agents/how_to/agent_structured/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/agent_structured/" + ] + }, + "/docs/modules/agents/how_to/custom_agent/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/custom_agent/" + ] + }, + "/docs/modules/agents/how_to/handle_parsing_errors/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/handle_parsing_errors/" + ] + }, + "/docs/modules/agents/how_to/intermediate_steps/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/intermediate_steps/" + ] + }, + "/docs/modules/agents/how_to/max_iterations/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/max_iterations/" + ] + }, + "/docs/modules/agents/how_to/max_time_limit/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/max_time_limit/" + ] + }, + "/docs/modules/agents/how_to/streaming/": { + "canonical": "/docs/how_to/migrate_agent/", + "alternative": [ + "/v0.1/docs/modules/agents/how_to/streaming/" + ] + }, + "/docs/modules/agents/quick_start/": { + "canonical": "https://langchain-ai.github.io/langgraph/", + "alternative": [ + "/v0.1/docs/modules/agents/quick_start/" + ] + }, + "/docs/modules/callbacks/": { + "canonical": "/docs/how_to/#callbacks", + "alternative": [ + "/v0.1/docs/modules/callbacks/" + ] + }, + "/docs/modules/callbacks/async_callbacks/": { + "canonical": "/docs/how_to/callbacks_async/", + "alternative": [ + "/v0.1/docs/modules/callbacks/async_callbacks/" + ] + }, + "/docs/modules/callbacks/custom_callbacks/": { + "canonical": "/docs/how_to/custom_callbacks/", + "alternative": [ + "/v0.1/docs/modules/callbacks/custom_callbacks/" + ] + }, + "/docs/modules/callbacks/filecallbackhandler/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/modules/callbacks/filecallbackhandler/" + ] + }, + "/docs/modules/callbacks/multiple_callbacks/": { + "canonical": "/docs/how_to/#callbacks", + "alternative": [ + "/v0.1/docs/modules/callbacks/multiple_callbacks/" + ] + }, + "/docs/modules/callbacks/tags/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/modules/callbacks/tags/" + ] + }, + "/docs/modules/callbacks/token_counting/": { + "canonical": "/docs/how_to/chat_token_usage_tracking/", + "alternative": [ + "/v0.1/docs/modules/callbacks/token_counting/" + ] + }, + "/docs/modules/chains/": { + "canonical": "/docs/versions/migrating_chains/", + "alternative": [ + "/v0.1/docs/modules/chains/" + ] + }, + "/docs/modules/composition/": { + "canonical": "https://langchain-ai.github.io/langgraph/concepts/", + "alternative": [ + "/v0.1/docs/modules/composition/" + ] + }, + "/docs/modules/data_connection/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/modules/data_connection/" + ] + }, + "/docs/modules/data_connection/document_loaders/": { + "canonical": "/docs/how_to/#document-loaders", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/" + ] + }, + "/docs/modules/data_connection/document_loaders/csv/": { + "canonical": "/docs/integrations/document_loaders/csv/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/csv/" + ] + }, + "/docs/modules/data_connection/document_loaders/custom/": { + "canonical": "/docs/how_to/document_loader_custom/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/custom/" + ] + }, + "/docs/modules/data_connection/document_loaders/file_directory/": { + "canonical": "/docs/how_to/document_loader_directory/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/file_directory/" + ] + }, + "/docs/modules/data_connection/document_loaders/html/": { + "canonical": "/docs/how_to/document_loader_html/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/html/" + ] + }, + "/docs/modules/data_connection/document_loaders/json/": { + "canonical": "/docs/how_to/document_loader_json/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/json/" + ] + }, + "/docs/modules/data_connection/document_loaders/markdown/": { + "canonical": "/docs/how_to/document_loader_markdown/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/markdown/" + ] + }, + "/docs/modules/data_connection/document_loaders/office_file/": { + "canonical": "/docs/how_to/document_loader_office_file/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/office_file/" + ] + }, + "/docs/modules/data_connection/document_loaders/pdf/": { + "canonical": "/docs/how_to/document_loader_pdf/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_loaders/pdf/" + ] + }, + "/docs/modules/data_connection/document_transformers/": { + "canonical": "/docs/how_to/#text-splitters", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/" + ] + }, + "/docs/modules/data_connection/document_transformers/character_text_splitter/": { + "canonical": "/docs/how_to/character_text_splitter/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/character_text_splitter/" + ] + }, + "/docs/modules/data_connection/document_transformers/code_splitter/": { + "canonical": "/docs/how_to/code_splitter/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/code_splitter/" + ] + }, + "/docs/modules/data_connection/document_transformers/HTML_header_metadata/": { + "canonical": "/docs/how_to/HTML_header_metadata_splitter/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/HTML_header_metadata/" + ] + }, + "/docs/modules/data_connection/document_transformers/HTML_section_aware_splitter/": { + "canonical": "/docs/how_to/HTML_section_aware_splitter/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/HTML_section_aware_splitter/" + ] + }, + "/docs/modules/data_connection/document_transformers/markdown_header_metadata/": { + "canonical": "/docs/how_to/markdown_header_metadata_splitter/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/markdown_header_metadata/" + ] + }, + "/docs/modules/data_connection/document_transformers/recursive_json_splitter/": { + "canonical": "/docs/how_to/recursive_json_splitter/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/recursive_json_splitter/" + ] + }, + "/docs/modules/data_connection/document_transformers/recursive_text_splitter/": { + "canonical": "/docs/how_to/recursive_text_splitter/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/" + ] + }, + "/docs/modules/data_connection/document_transformers/semantic-chunker/": { + "canonical": "/docs/how_to/semantic-chunker/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/semantic-chunker/" + ] + }, + "/docs/modules/data_connection/document_transformers/split_by_token/": { + "canonical": "/docs/how_to/split_by_token/", + "alternative": [ + "/v0.1/docs/modules/data_connection/document_transformers/split_by_token/" + ] + }, + "/docs/modules/data_connection/indexing/": { + "canonical": "/docs/how_to/indexing/", + "alternative": [ + "/v0.1/docs/modules/data_connection/indexing/" + ] + }, + "/docs/modules/data_connection/retrievers/": { + "canonical": "/docs/how_to/#retrievers", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/" + ] + }, + "/docs/modules/data_connection/retrievers/contextual_compression/": { + "canonical": "/docs/how_to/contextual_compression/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/contextual_compression/" + ] + }, + "/docs/modules/data_connection/retrievers/custom_retriever/": { + "canonical": "/docs/how_to/custom_retriever/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/custom_retriever/" + ] + }, + "/docs/modules/data_connection/retrievers/ensemble/": { + "canonical": "/docs/how_to/ensemble_retriever/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/ensemble/" + ] + }, + "/docs/modules/data_connection/retrievers/long_context_reorder/": { + "canonical": "/docs/how_to/long_context_reorder/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/long_context_reorder/" + ] + }, + "/docs/modules/data_connection/retrievers/multi_vector/": { + "canonical": "/docs/how_to/multi_vector/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/multi_vector/" + ] + }, + "/docs/modules/data_connection/retrievers/MultiQueryRetriever/": { + "canonical": "/docs/how_to/MultiQueryRetriever/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/MultiQueryRetriever/" + ] + }, + "/docs/modules/data_connection/retrievers/parent_document_retriever/": { + "canonical": "/docs/how_to/parent_document_retriever/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/parent_document_retriever/" + ] + }, + "/docs/modules/data_connection/retrievers/self_query/": { + "canonical": "/docs/how_to/self_query/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/self_query/" + ] + }, + "/docs/modules/data_connection/retrievers/time_weighted_vectorstore/": { + "canonical": "/docs/how_to/time_weighted_vectorstore/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/time_weighted_vectorstore/" + ] + }, + "/docs/modules/data_connection/retrievers/vectorstore/": { + "canonical": "/docs/how_to/vectorstore_retriever/", + "alternative": [ + "/v0.1/docs/modules/data_connection/retrievers/vectorstore/" + ] + }, + "/docs/modules/data_connection/text_embedding/": { + "canonical": "/docs/how_to/embed_text/", + "alternative": [ + "/v0.1/docs/modules/data_connection/text_embedding/" + ] + }, + "/docs/modules/data_connection/text_embedding/caching_embeddings/": { + "canonical": "/docs/how_to/caching_embeddings/", + "alternative": [ + "/v0.1/docs/modules/data_connection/text_embedding/caching_embeddings/" + ] + }, + "/docs/modules/data_connection/vectorstores/": { + "canonical": "/docs/how_to/#vector-stores", + "alternative": [ + "/v0.1/docs/modules/data_connection/vectorstores/" + ] + }, + "/docs/modules/memory/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/" + ] + }, + "/docs/modules/memory/adding_memory_chain_multiple_inputs/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/adding_memory_chain_multiple_inputs/" + ] + }, + "/docs/modules/memory/adding_memory/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/adding_memory/" + ] + }, + "/docs/modules/memory/agent_with_memory_in_db/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/agent_with_memory_in_db/" + ] + }, + "/docs/modules/memory/agent_with_memory/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/agent_with_memory/" + ] + }, + "/docs/modules/memory/chat_messages/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/chat_messages/" + ] + }, + "/docs/modules/memory/conversational_customization/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/conversational_customization/" + ] + }, + "/docs/modules/memory/custom_memory/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/custom_memory/" + ] + }, + "/docs/modules/memory/multiple_memory/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/multiple_memory/" + ] + }, + "/docs/modules/memory/types/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/" + ] + }, + "/docs/modules/memory/types/buffer_window/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/buffer_window/" + ] + }, + "/docs/modules/memory/types/buffer/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/buffer/" + ] + }, + "/docs/modules/memory/types/entity_summary_memory/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/entity_summary_memory/" + ] + }, + "/docs/modules/memory/types/kg/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/kg/" + ] + }, + "/docs/modules/memory/types/summary_buffer/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/summary_buffer/" + ] + }, + "/docs/modules/memory/types/summary/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/summary/" + ] + }, + "/docs/modules/memory/types/token_buffer/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/token_buffer/" + ] + }, + "/docs/modules/memory/types/vectorstore_retriever_memory/": { + "canonical": "/docs/how_to/chatbots_memory/", + "alternative": [ + "/v0.1/docs/modules/memory/types/vectorstore_retriever_memory/" + ] + }, + "/docs/modules/model_io/": { + "canonical": "/docs/how_to/#chat-models", + "alternative": [ + "/v0.1/docs/modules/model_io/" + ] + }, + "/docs/modules/model_io/chat/": { + "canonical": "/docs/how_to/#chat-models", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/" + ] + }, + "/docs/modules/model_io/chat/chat_model_caching/": { + "canonical": "/docs/how_to/chat_model_caching/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/chat_model_caching/" + ] + }, + "/docs/modules/model_io/chat/custom_chat_model/": { + "canonical": "/docs/how_to/custom_chat_model/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/custom_chat_model/" + ] + }, + "/docs/modules/model_io/chat/function_calling/": { + "canonical": "/docs/how_to/tool_calling/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/function_calling/" + ] + }, + "/docs/modules/model_io/chat/logprobs/": { + "canonical": "/docs/how_to/logprobs/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/logprobs/" + ] + }, + "/docs/modules/model_io/chat/message_types/": { + "canonical": "/docs/concepts/#messages", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/message_types/" + ] + }, + "/docs/modules/model_io/chat/quick_start/": { + "canonical": "/docs/tutorials/llm_chain/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/quick_start/" + ] + }, + "/docs/modules/model_io/chat/response_metadata/": { + "canonical": "/docs/how_to/response_metadata/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/response_metadata/" + ] + }, + "/docs/modules/model_io/chat/streaming/": { + "canonical": "/docs/how_to/streaming/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/streaming/" + ] + }, + "/docs/modules/model_io/chat/structured_output/": { + "canonical": "/docs/how_to/structured_output/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/structured_output/" + ] + }, + "/docs/modules/model_io/chat/token_usage_tracking/": { + "canonical": "/docs/how_to/chat_token_usage_tracking/", + "alternative": [ + "/v0.1/docs/modules/model_io/chat/token_usage_tracking/" + ] + }, + "/docs/modules/model_io/concepts/": { + "canonical": "/docs/concepts/#chat-models", + "alternative": [ + "/v0.1/docs/modules/model_io/concepts/" + ] + }, + "/docs/modules/model_io/llms/": { + "canonical": "/docs/concepts/#llms", + "alternative": [ + "/v0.1/docs/modules/model_io/llms/" + ] + }, + "/docs/modules/model_io/llms/custom_llm/": { + "canonical": "/docs/how_to/custom_llm/", + "alternative": [ + "/v0.1/docs/modules/model_io/llms/custom_llm/" + ] + }, + "/docs/modules/model_io/llms/llm_caching/": { + "canonical": "/docs/how_to/llm_caching/", + "alternative": [ + "/v0.1/docs/modules/model_io/llms/llm_caching/" + ] + }, + "/docs/modules/model_io/llms/quick_start/": { + "canonical": "/docs/tutorials/llm_chain/", + "alternative": [ + "/v0.1/docs/modules/model_io/llms/quick_start/" + ] + }, + "/docs/modules/model_io/llms/streaming_llm/": { + "canonical": "/docs/how_to/streaming_llm/", + "alternative": [ + "/v0.1/docs/modules/model_io/llms/streaming_llm/" + ] + }, + "/docs/modules/model_io/llms/token_usage_tracking/": { + "canonical": "/docs/how_to/llm_token_usage_tracking/", + "alternative": [ + "/v0.1/docs/modules/model_io/llms/token_usage_tracking/" + ] + }, + "/docs/modules/model_io/output_parsers/": { + "canonical": "/docs/how_to/#output-parsers", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/" + ] + }, + "/docs/modules/model_io/output_parsers/custom/": { + "canonical": "/docs/how_to/output_parser_custom/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/custom/" + ] + }, + "/docs/modules/model_io/output_parsers/quick_start/": { + "canonical": "/docs/how_to/output_parser_structured/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/quick_start/" + ] + }, + "/docs/modules/model_io/output_parsers/types/csv/": { + "canonical": "/docs/how_to/output_parser_structured/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/csv/" + ] + }, + "/docs/modules/model_io/output_parsers/types/datetime/": { + "canonical": "/docs/how_to/output_parser_structured/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/datetime/" + ] + }, + "/docs/modules/model_io/output_parsers/types/enum/": { + "canonical": "/docs/how_to/output_parser_structured/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/enum/" + ] + }, + "/docs/modules/model_io/output_parsers/types/json/": { + "canonical": "/docs/how_to/output_parser_json/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/json/" + ] + }, + "/docs/modules/model_io/output_parsers/types/openai_functions/": { + "canonical": "/docs/how_to/structured_output/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/openai_functions/" + ] + }, + "/docs/modules/model_io/output_parsers/types/openai_tools/": { + "canonical": "/docs/how_to/tool_calling/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/openai_tools/" + ] + }, + "/docs/modules/model_io/output_parsers/types/output_fixing/": { + "canonical": "/docs/how_to/output_parser_fixing/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/output_fixing/" + ] + }, + "/docs/modules/model_io/output_parsers/types/pandas_dataframe/": { + "canonical": "/docs/how_to/output_parser_structured/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/pandas_dataframe/" + ] + }, + "/docs/modules/model_io/output_parsers/types/pydantic/": { + "canonical": "/docs/how_to/output_parser_structured/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/pydantic/" + ] + }, + "/docs/modules/model_io/output_parsers/types/retry/": { + "canonical": "/docs/how_to/output_parser_retry/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/retry/" + ] + }, + "/docs/modules/model_io/output_parsers/types/structured/": { + "canonical": "/docs/how_to/output_parser_structured/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/structured/" + ] + }, + "/docs/modules/model_io/output_parsers/types/xml/": { + "canonical": "/docs/how_to/output_parser_xml/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/xml/" + ] + }, + "/docs/modules/model_io/output_parsers/types/yaml/": { + "canonical": "/docs/how_to/output_parser_yaml/", + "alternative": [ + "/v0.1/docs/modules/model_io/output_parsers/types/yaml/" + ] + }, + "/docs/modules/model_io/prompts/": { + "canonical": "/docs/how_to/#prompt-templates", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/" + ] + }, + "/docs/modules/model_io/prompts/composition/": { + "canonical": "/docs/how_to/prompts_composition/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/composition/" + ] + }, + "/docs/modules/model_io/prompts/example_selectors/": { + "canonical": "/docs/how_to/example_selectors/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/example_selectors/" + ] + }, + "/docs/modules/model_io/prompts/example_selectors/length_based/": { + "canonical": "/docs/how_to/example_selectors_length_based/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/" + ] + }, + "/docs/modules/model_io/prompts/example_selectors/mmr/": { + "canonical": "/docs/how_to/example_selectors_mmr/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/" + ] + }, + "/docs/modules/model_io/prompts/example_selectors/ngram_overlap/": { + "canonical": "/docs/how_to/example_selectors_ngram/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/" + ] + }, + "/docs/modules/model_io/prompts/example_selectors/similarity/": { + "canonical": "/docs/how_to/example_selectors_similarity/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/" + ] + }, + "/docs/modules/model_io/prompts/few_shot_examples_chat/": { + "canonical": "/docs/how_to/few_shot_examples_chat/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/few_shot_examples_chat/" + ] + }, + "/docs/modules/model_io/prompts/few_shot_examples/": { + "canonical": "/docs/how_to/few_shot_examples/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/few_shot_examples/" + ] + }, + "/docs/modules/model_io/prompts/partial/": { + "canonical": "/docs/how_to/prompts_partial/", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/partial/" + ] + }, + "/docs/modules/model_io/prompts/quick_start/": { + "canonical": "/docs/how_to/#prompt-templates", + "alternative": [ + "/v0.1/docs/modules/model_io/prompts/quick_start/" + ] + }, + "/docs/modules/model_io/quick_start/": { + "canonical": "/docs/tutorials/llm_chain/", + "alternative": [ + "/v0.1/docs/modules/model_io/quick_start/" + ] + }, + "/docs/modules/tools/": { + "canonical": "/docs/how_to/#tools", + "alternative": [ + "/v0.1/docs/modules/tools/" + ] + }, + "/docs/modules/tools/custom_tools/": { + "canonical": "/docs/how_to/custom_tools/", + "alternative": [ + "/v0.1/docs/modules/tools/custom_tools/" + ] + }, + "/docs/modules/tools/toolkits/": { + "canonical": "/docs/how_to/#tools", + "alternative": [ + "/v0.1/docs/modules/tools/toolkits/" + ] + }, + "/docs/modules/tools/tools_as_openai_functions/": { + "canonical": "/docs/how_to/tool_calling/", + "alternative": [ + "/v0.1/docs/modules/tools/tools_as_openai_functions/" + ] + }, + "/docs/packages/": { + "canonical": "/docs/versions/release_policy/", + "alternative": [ + "/v0.1/docs/packages/" + ] + }, + "/docs/templates/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/" + ] + }, + "/docs/templates/anthropic-iterative-search/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/anthropic-iterative-search/" + ] + }, + "/docs/templates/basic-critique-revise/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/basic-critique-revise/" + ] + }, + "/docs/templates/bedrock-jcvd/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/bedrock-jcvd/" + ] + }, + "/docs/templates/cassandra-entomology-rag/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/cassandra-entomology-rag/" + ] + }, + "/docs/templates/cassandra-synonym-caching/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/cassandra-synonym-caching/" + ] + }, + "/docs/templates/chain-of-note-wiki/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/chain-of-note-wiki/" + ] + }, + "/docs/templates/chat-bot-feedback/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/chat-bot-feedback/" + ] + }, + "/docs/templates/cohere-librarian/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/cohere-librarian/" + ] + }, + "/docs/templates/csv-agent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/csv-agent/" + ] + }, + "/docs/templates/elastic-query-generator/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/elastic-query-generator/" + ] + }, + "/docs/templates/extraction-anthropic-functions/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/extraction-anthropic-functions/" + ] + }, + "/docs/templates/extraction-openai-functions/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/extraction-openai-functions/" + ] + }, + "/docs/templates/gemini-functions-agent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/gemini-functions-agent/" + ] + }, + "/docs/templates/guardrails-output-parser/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/guardrails-output-parser/" + ] + }, + "/docs/templates/hybrid-search-weaviate/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/hybrid-search-weaviate/" + ] + }, + "/docs/templates/hyde/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/hyde/" + ] + }, + "/docs/templates/intel-rag-xeon/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/intel-rag-xeon/" + ] + }, + "/docs/templates/llama2-functions/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/llama2-functions/" + ] + }, + "/docs/templates/mongo-parent-document-retrieval/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/mongo-parent-document-retrieval/" + ] + }, + "/docs/templates/neo4j-advanced-rag/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-advanced-rag/" + ] + }, + "/docs/templates/neo4j-cypher-ft/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-cypher-ft/" + ] + }, + "/docs/templates/neo4j-cypher-memory/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-cypher-memory/" + ] + }, + "/docs/templates/neo4j-cypher/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-cypher/" + ] + }, + "/docs/templates/neo4j-generation/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-generation/" + ] + }, + "/docs/templates/neo4j-parent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-parent/" + ] + }, + "/docs/templates/neo4j-semantic-layer/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-semantic-layer/" + ] + }, + "/docs/templates/neo4j-semantic-ollama/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-semantic-ollama/" + ] + }, + "/docs/templates/neo4j-vector-memory/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/neo4j-vector-memory/" + ] + }, + "/docs/templates/nvidia-rag-canonical/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/nvidia-rag-canonical/" + ] + }, + "/docs/templates/openai-functions-agent-gmail/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/openai-functions-agent-gmail/" + ] + }, + "/docs/templates/openai-functions-agent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/openai-functions-agent/" + ] + }, + "/docs/templates/openai-functions-tool-retrieval-agent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/openai-functions-tool-retrieval-agent/" + ] + }, + "/docs/templates/pii-protected-chatbot/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/pii-protected-chatbot/" + ] + }, + "/docs/templates/pirate-speak-configurable/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/pirate-speak-configurable/" + ] + }, + "/docs/templates/pirate-speak/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/pirate-speak/" + ] + }, + "/docs/templates/plate-chain/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/plate-chain/" + ] + }, + "/docs/templates/propositional-retrieval/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/propositional-retrieval/" + ] + }, + "/docs/templates/python-lint/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/python-lint/" + ] + }, + "/docs/templates/rag-astradb/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-astradb/" + ] + }, + "/docs/templates/rag-aws-bedrock/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-aws-bedrock/" + ] + }, + "/docs/templates/rag-aws-kendra/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-aws-kendra/" + ] + }, + "/docs/templates/rag-azure-search/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-azure-search/" + ] + }, + "/docs/templates/rag-chroma-multi-modal-multi-vector/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-chroma-multi-modal-multi-vector/" + ] + }, + "/docs/templates/rag-chroma-multi-modal/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-chroma-multi-modal/" + ] + }, + "/docs/templates/rag-chroma-private/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-chroma-private/" + ] + }, + "/docs/templates/rag-chroma/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-chroma/" + ] + }, + "/docs/templates/rag-codellama-fireworks/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-codellama-fireworks/" + ] + }, + "/docs/templates/rag-conversation-zep/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-conversation-zep/" + ] + }, + "/docs/templates/rag-conversation/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-conversation/" + ] + }, + "/docs/templates/rag-elasticsearch/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-elasticsearch/" + ] + }, + "/docs/templates/rag-fusion/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-fusion/" + ] + }, + "/docs/templates/rag-gemini-multi-modal/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-gemini-multi-modal/" + ] + }, + "/docs/templates/rag-google-cloud-sensitive-data-protection/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-google-cloud-sensitive-data-protection/" + ] + }, + "/docs/templates/rag-google-cloud-vertexai-search/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-google-cloud-vertexai-search/" + ] + }, + "/docs/templates/rag-gpt-crawler/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-gpt-crawler/" + ] + }, + "/docs/templates/rag-jaguardb/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-jaguardb/" + ] + }, + "/docs/templates/rag-lancedb/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-lancedb/" + ] + }, + "/docs/templates/rag-lantern/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-lantern/" + ] + }, + "/docs/templates/rag-matching-engine/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-matching-engine/" + ] + }, + "/docs/templates/rag-momento-vector-index/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-momento-vector-index/" + ] + }, + "/docs/templates/rag-mongo/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-mongo/" + ] + }, + "/docs/templates/rag-multi-index-fusion/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-multi-index-fusion/" + ] + }, + "/docs/templates/rag-multi-index-router/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-multi-index-router/" + ] + }, + "/docs/templates/rag-multi-modal-local/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-multi-modal-local/" + ] + }, + "/docs/templates/rag-multi-modal-mv-local/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-multi-modal-mv-local/" + ] + }, + "/docs/templates/rag-ollama-multi-query/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-ollama-multi-query/" + ] + }, + "/docs/templates/rag-opensearch/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-opensearch/" + ] + }, + "/docs/templates/rag-pinecone-multi-query/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-pinecone-multi-query/" + ] + }, + "/docs/templates/rag-pinecone-rerank/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-pinecone-rerank/" + ] + }, + "/docs/templates/rag-pinecone/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-pinecone/" + ] + }, + "/docs/templates/rag-redis-multi-modal-multi-vector/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-redis-multi-modal-multi-vector/" + ] + }, + "/docs/templates/rag-redis/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-redis/" + ] + }, + "/docs/templates/rag-self-query/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-self-query/" + ] + }, + "/docs/templates/rag-semi-structured/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-semi-structured/" + ] + }, + "/docs/templates/rag-singlestoredb/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-singlestoredb/" + ] + }, + "/docs/templates/rag-supabase/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-supabase/" + ] + }, + "/docs/templates/rag-timescale-conversation/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-timescale-conversation/" + ] + }, + "/docs/templates/rag-timescale-hybrid-search-time/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-timescale-hybrid-search-time/" + ] + }, + "/docs/templates/rag-vectara-multiquery/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-vectara-multiquery/" + ] + }, + "/docs/templates/rag-vectara/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-vectara/" + ] + }, + "/docs/templates/rag-weaviate/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rag-weaviate/" + ] + }, + "/docs/templates/research-assistant/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/research-assistant/" + ] + }, + "/docs/templates/retrieval-agent-fireworks/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/retrieval-agent-fireworks/" + ] + }, + "/docs/templates/retrieval-agent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/retrieval-agent/" + ] + }, + "/docs/templates/rewrite-retrieve-read/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/rewrite-retrieve-read/" + ] + }, + "/docs/templates/robocorp-action-server/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/robocorp-action-server/" + ] + }, + "/docs/templates/self-query-qdrant/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/self-query-qdrant/" + ] + }, + "/docs/templates/self-query-supabase/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/self-query-supabase/" + ] + }, + "/docs/templates/shopping-assistant/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/shopping-assistant/" + ] + }, + "/docs/templates/skeleton-of-thought/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/skeleton-of-thought/" + ] + }, + "/docs/templates/solo-performance-prompting-agent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/solo-performance-prompting-agent/" + ] + }, + "/docs/templates/sql-llama2/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/sql-llama2/" + ] + }, + "/docs/templates/sql-llamacpp/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/sql-llamacpp/" + ] + }, + "/docs/templates/sql-ollama/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/sql-ollama/" + ] + }, + "/docs/templates/sql-pgvector/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/sql-pgvector/" + ] + }, + "/docs/templates/sql-research-assistant/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/sql-research-assistant/" + ] + }, + "/docs/templates/stepback-qa-prompting/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/stepback-qa-prompting/" + ] + }, + "/docs/templates/summarize-anthropic/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/summarize-anthropic/" + ] + }, + "/docs/templates/vertexai-chuck-norris/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/vertexai-chuck-norris/" + ] + }, + "/docs/templates/xml-agent/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/templates/xml-agent/" + ] + }, + "/docs/use_cases/": { + "canonical": "/docs/tutorials/", + "alternative": [ + "/v0.1/docs/use_cases/" + ] + }, + "/docs/use_cases/apis/": { + "canonical": null, + "alternative": [ + "/v0.1/docs/use_cases/apis/" + ] + }, + "/docs/use_cases/chatbots/": { + "canonical": "/docs/tutorials/chatbot/", + "alternative": [ + "/v0.1/docs/use_cases/chatbots/" + ] + }, + "/docs/use_cases/chatbots/memory_management/": { + "canonical": "/docs/tutorials/chatbot/", + "alternative": [ + "/v0.1/docs/use_cases/chatbots/memory_management/" + ] + }, + "/docs/use_cases/chatbots/quickstart/": { + "canonical": "/docs/tutorials/chatbot/", + "alternative": [ + "/v0.1/docs/use_cases/chatbots/quickstart/" + ] + }, + "/docs/use_cases/chatbots/retrieval/": { + "canonical": "/docs/tutorials/chatbot/", + "alternative": [ + "/v0.1/docs/use_cases/chatbots/retrieval/" + ] + }, + "/docs/use_cases/chatbots/tool_usage/": { + "canonical": "/docs/tutorials/chatbot/", + "alternative": [ + "/v0.1/docs/use_cases/chatbots/tool_usage/" + ] + }, + "/docs/use_cases/code_understanding/": { + "canonical": "https://langchain-ai.github.io/langgraph/tutorials/code_assistant/langgraph_code_assistant/", + "alternative": [ + "/v0.1/docs/use_cases/code_understanding/" + ] + }, + "/docs/use_cases/data_generation/": { + "canonical": "/docs/tutorials/data_generation/", + "alternative": [ + "/v0.1/docs/use_cases/data_generation/" + ] + }, + "/docs/use_cases/extraction/": { + "canonical": "/docs/tutorials/extraction/", + "alternative": [ + "/v0.1/docs/use_cases/extraction/" + ] + }, + "/docs/use_cases/extraction/guidelines/": { + "canonical": "/docs/tutorials/extraction/", + "alternative": [ + "/v0.1/docs/use_cases/extraction/guidelines/" + ] + }, + "/docs/use_cases/extraction/how_to/examples/": { + "canonical": "/docs/tutorials/extraction/", + "alternative": [ + "/v0.1/docs/use_cases/extraction/how_to/examples/" + ] + }, + "/docs/use_cases/extraction/how_to/handle_files/": { + "canonical": "/docs/tutorials/extraction/", + "alternative": [ + "/v0.1/docs/use_cases/extraction/how_to/handle_files/" + ] + }, + "/docs/use_cases/extraction/how_to/handle_long_text/": { + "canonical": "/docs/tutorials/extraction/", + "alternative": [ + "/v0.1/docs/use_cases/extraction/how_to/handle_long_text/" + ] + }, + "/docs/use_cases/extraction/how_to/parse/": { + "canonical": "/docs/tutorials/extraction/", + "alternative": [ + "/v0.1/docs/use_cases/extraction/how_to/parse/" + ] + }, + "/docs/use_cases/extraction/quickstart/": { + "canonical": "/docs/tutorials/extraction/", + "alternative": [ + "/v0.1/docs/use_cases/extraction/quickstart/" + ] + }, + "/docs/use_cases/graph/": { + "canonical": "/docs/tutorials/graph/", + "alternative": [ + "/v0.1/docs/use_cases/graph/" + ] + }, + "/docs/use_cases/graph/constructing/": { + "canonical": "/docs/tutorials/graph/", + "alternative": [ + "/v0.1/docs/use_cases/graph/constructing/" + ] + }, + "/docs/use_cases/graph/mapping/": { + "canonical": "/docs/tutorials/graph/", + "alternative": [ + "/v0.1/docs/use_cases/graph/mapping/" + ] + }, + "/docs/use_cases/graph/prompting/": { + "canonical": "/docs/tutorials/graph/", + "alternative": [ + "/v0.1/docs/use_cases/graph/prompting/" + ] + }, + "/docs/use_cases/graph/quickstart/": { + "canonical": "/docs/tutorials/graph/", + "alternative": [ + "/v0.1/docs/use_cases/graph/quickstart/" + ] + }, + "/docs/use_cases/graph/semantic/": { + "canonical": "/docs/tutorials/graph/", + "alternative": [ + "/v0.1/docs/use_cases/graph/semantic/" + ] + }, + "/docs/use_cases/query_analysis/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/" + ] + }, + "/docs/use_cases/query_analysis/how_to/constructing-filters/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/how_to/constructing-filters/" + ] + }, + "/docs/use_cases/query_analysis/how_to/few_shot/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/how_to/few_shot/" + ] + }, + "/docs/use_cases/query_analysis/how_to/high_cardinality/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/how_to/high_cardinality/" + ] + }, + "/docs/use_cases/query_analysis/how_to/multiple_queries/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/how_to/multiple_queries/" + ] + }, + "/docs/use_cases/query_analysis/how_to/multiple_retrievers/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/how_to/multiple_retrievers/" + ] + }, + "/docs/use_cases/query_analysis/how_to/no_queries/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/how_to/no_queries/" + ] + }, + "/docs/use_cases/query_analysis/quickstart/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/quickstart/" + ] + }, + "/docs/use_cases/query_analysis/techniques/decomposition/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/techniques/decomposition/" + ] + }, + "/docs/use_cases/query_analysis/techniques/expansion/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/techniques/expansion/" + ] + }, + "/docs/use_cases/query_analysis/techniques/hyde/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/techniques/hyde/" + ] + }, + "/docs/use_cases/query_analysis/techniques/routing/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/techniques/routing/" + ] + }, + "/docs/use_cases/query_analysis/techniques/step_back/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/techniques/step_back/" + ] + }, + "/docs/use_cases/query_analysis/techniques/structuring/": { + "canonical": "/docs/tutorials/query_analysis/", + "alternative": [ + "/v0.1/docs/use_cases/query_analysis/techniques/structuring/" + ] + }, + "/docs/use_cases/question_answering/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/" + ] + }, + "/docs/use_cases/question_answering/chat_history/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/chat_history/" + ] + }, + "/docs/use_cases/question_answering/citations/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/citations/" + ] + }, + "/docs/use_cases/question_answering/conversational_retrieval_agents/": { + "canonical": "/docs/tutorials/qa_chat_history/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/conversational_retrieval_agents/" + ] + }, + "/docs/use_cases/question_answering/hybrid/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/hybrid/" + ] + }, + "/docs/use_cases/question_answering/local_retrieval_qa/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/local_retrieval_qa/" + ] + }, + "/docs/use_cases/question_answering/per_user/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/per_user/" + ] + }, + "/docs/use_cases/question_answering/quickstart/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/quickstart/" + ] + }, + "/docs/use_cases/question_answering/sources/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/sources/" + ] + }, + "/docs/use_cases/question_answering/streaming/": { + "canonical": "/docs/tutorials/rag/", + "alternative": [ + "/v0.1/docs/use_cases/question_answering/streaming/" + ] + }, + "/docs/use_cases/sql/": { + "canonical": "/docs/tutorials/sql_qa/", + "alternative": [ + "/v0.1/docs/use_cases/sql/" + ] + }, + "/docs/use_cases/sql/agents/": { + "canonical": "/docs/tutorials/sql_qa/", + "alternative": [ + "/v0.1/docs/use_cases/sql/agents/" + ] + }, + "/docs/use_cases/sql/csv/": { + "canonical": "/docs/tutorials/sql_qa/", + "alternative": [ + "/v0.1/docs/use_cases/sql/csv/" + ] + }, + "/docs/use_cases/sql/large_db/": { + "canonical": "/docs/tutorials/sql_qa/", + "alternative": [ + "/v0.1/docs/use_cases/sql/large_db/" + ] + }, + "/docs/use_cases/sql/prompting/": { + "canonical": "/docs/tutorials/sql_qa/", + "alternative": [ + "/v0.1/docs/use_cases/sql/prompting/" + ] + }, + "/docs/use_cases/sql/query_checking/": { + "canonical": "/docs/tutorials/sql_qa/", + "alternative": [ + "/v0.1/docs/use_cases/sql/query_checking/" + ] + }, + "/docs/use_cases/sql/quickstart/": { + "canonical": "/docs/tutorials/sql_qa/", + "alternative": [ + "/v0.1/docs/use_cases/sql/quickstart/" + ] + }, + "/docs/use_cases/summarization/": { + "canonical": "/docs/tutorials/summarization/", + "alternative": [ + "/v0.1/docs/use_cases/summarization/" + ] + }, + "/docs/use_cases/tagging/": { + "canonical": "/docs/tutorials/classification/", + "alternative": [ + "/v0.1/docs/use_cases/tagging/" + ] + }, + "/docs/use_cases/tool_use/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/" + ] + }, + "/docs/use_cases/tool_use/agents/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/agents/" + ] + }, + "/docs/use_cases/tool_use/human_in_the_loop/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/human_in_the_loop/" + ] + }, + "/docs/use_cases/tool_use/multiple_tools/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/multiple_tools/" + ] + }, + "/docs/use_cases/tool_use/parallel/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/parallel/" + ] + }, + "/docs/use_cases/tool_use/prompting/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/prompting/" + ] + }, + "/docs/use_cases/tool_use/quickstart/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/quickstart/" + ] + }, + "/docs/use_cases/tool_use/tool_error_handling/": { + "canonical": "/docs/tutorials/agents/", + "alternative": [ + "/v0.1/docs/use_cases/tool_use/tool_error_handling/" + ] + }, + "/docs/use_cases/web_scraping/": { + "canonical": "https://langchain-ai.github.io/langgraph/tutorials/web-navigation/web_voyager/", + "alternative": [ + "/v0.1/docs/use_cases/web_scraping/" + ] + }, + // below are new + "/docs/modules/data_connection/document_transformers/text_splitters/": {"canonical": "/docs/how_to/#text-splitters", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/character_text_splitter/": {"canonical": "/docs/how_to/character_text_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/character_text_splitter/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/code_splitter/": {"canonical": "/docs/how_to/code_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/code_splitter/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/HTML_header_metadata/": {"canonical": "/docs/how_to/HTML_header_metadata_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/HTML_header_metadata/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/HTML_section_aware_splitter/": {"canonical": "/docs/how_to/HTML_section_aware_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/HTML_section_aware_splitter/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/markdown_header_metadata/": {"canonical": "/docs/how_to/markdown_header_metadata_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/markdown_header_metadata/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/recursive_json_splitter/": {"canonical": "/docs/how_to/recursive_json_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/recursive_json_splitter/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/recursive_text_splitter/": {"canonical": "/docs/how_to/recursive_text_splitter/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/semantic-chunker/": {"canonical": "/docs/how_to/semantic-chunker/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/semantic-chunker/"]}, + "/docs/modules/data_connection/document_transformers/text_splitters/split_by_token/": {"canonical": "/docs/how_to/split_by_token/", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/split_by_token/"]}, + "/docs/modules/model_io/prompts/prompt_templates/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/"]}, + "/docs/modules/model_io/prompts/prompt_templates/composition/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]}, + "/docs/modules/model_io/prompts/prompt_templates/example_selectors/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]}, + "/docs/modules/model_io/prompts/prompt_templates/example_selectors/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]}, + "/docs/modules/model_io/prompts/prompt_templates/example_selectors/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]}, + "/docs/modules/model_io/prompts/prompt_templates/example_selectors/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]}, + "/docs/modules/model_io/prompts/prompt_templates/example_selectors/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]}, + "/docs/modules/model_io/prompts/prompt_templates/few_shot_examples_chat/": {"canonical": "/docs/how_to/few_shot_examples_chat/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples_chat/"]}, + "/docs/modules/model_io/prompts/prompt_templates/few_shot_examples/": {"canonical": "/docs/how_to/few_shot_examples/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples/"]}, + "/docs/modules/model_io/prompts/prompt_templates/partial/": {"canonical": "/docs/how_to/prompts_partial/", "alternative": ["/v0.1/docs/modules/model_io/prompts/partial/"]}, + "/docs/modules/model_io/prompts/prompt_templates/quick_start/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]}, + "/docs/modules/model_io/models/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]}, + "/docs/modules/model_io/models/chat/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/chat/"]}, + "/docs/modules/model_io/models/chat/chat_model_caching/": {"canonical": "/docs/how_to/chat_model_caching/", "alternative": ["/v0.1/docs/modules/model_io/chat/chat_model_caching/"]}, + "/docs/modules/model_io/models/chat/custom_chat_model/": {"canonical": "/docs/how_to/custom_chat_model/", "alternative": ["/v0.1/docs/modules/model_io/chat/custom_chat_model/"]}, + "/docs/modules/model_io/models/chat/function_calling/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/chat/function_calling/"]}, + "/docs/modules/model_io/models/chat/logprobs/": {"canonical": "/docs/how_to/logprobs/", "alternative": ["/v0.1/docs/modules/model_io/chat/logprobs/"]}, + "/docs/modules/model_io/models/chat/message_types/": {"canonical": "/docs/concepts/#messages", "alternative": ["/v0.1/docs/modules/model_io/chat/message_types/"]}, + "/docs/modules/model_io/models/chat/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/chat/quick_start/"]}, + "/docs/modules/model_io/models/chat/response_metadata/": {"canonical": "/docs/how_to/response_metadata/", "alternative": ["/v0.1/docs/modules/model_io/chat/response_metadata/"]}, + "/docs/modules/model_io/models/chat/streaming/": {"canonical": "/docs/how_to/streaming/", "alternative": ["/v0.1/docs/modules/model_io/chat/streaming/"]}, + "/docs/modules/model_io/models/chat/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]}, + "/docs/modules/model_io/models/chat/token_usage_tracking/": {"canonical": "/docs/how_to/chat_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/chat/token_usage_tracking/"]}, + "/docs/modules/model_io/models/concepts/": {"canonical": "/docs/concepts/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/concepts/"]}, + "/docs/modules/model_io/models/llms/": {"canonical": "/docs/concepts/#llms", "alternative": ["/v0.1/docs/modules/model_io/llms/"]}, + "/docs/modules/model_io/models/llms/custom_llm/": {"canonical": "/docs/how_to/custom_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/custom_llm/"]}, + "/docs/modules/model_io/models/llms/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/modules/model_io/llms/llm_caching/"]}, + "/docs/modules/model_io/models/llms/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/llms/quick_start/"]}, + "/docs/modules/model_io/models/llms/streaming_llm/": {"canonical": "/docs/how_to/streaming_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/streaming_llm/"]}, + "/docs/modules/model_io/models/llms/token_usage_tracking/": {"canonical": "/docs/how_to/llm_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/llms/token_usage_tracking/"]}, + "/docs/modules/model_io/models/output_parsers/": {"canonical": "/docs/how_to/#output-parsers", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/"]}, + "/docs/modules/model_io/models/output_parsers/custom/": {"canonical": "/docs/how_to/output_parser_custom/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/custom/"]}, + "/docs/modules/model_io/models/output_parsers/quick_start/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/quick_start/"]}, + "/docs/modules/model_io/models/output_parsers/types/csv/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/csv/"]}, + "/docs/modules/model_io/models/output_parsers/types/datetime/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/datetime/"]}, + "/docs/modules/model_io/models/output_parsers/types/enum/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/enum/"]}, + "/docs/modules/model_io/models/output_parsers/types/json/": {"canonical": "/docs/how_to/output_parser_json/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/json/"]}, + "/docs/modules/model_io/models/output_parsers/types/openai_functions/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_functions/"]}, + "/docs/modules/model_io/models/output_parsers/types/openai_tools/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_tools/"]}, + "/docs/modules/model_io/models/output_parsers/types/output_fixing/": {"canonical": "/docs/how_to/output_parser_fixing/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/output_fixing/"]}, + "/docs/modules/model_io/models/output_parsers/types/pandas_dataframe/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pandas_dataframe/"]}, + "/docs/modules/model_io/models/output_parsers/types/pydantic/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pydantic/"]}, + "/docs/modules/model_io/models/output_parsers/types/retry/": {"canonical": "/docs/how_to/output_parser_retry/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/retry/"]}, + "/docs/modules/model_io/models/output_parsers/types/structured/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/structured/"]}, + "/docs/modules/model_io/models/output_parsers/types/xml/": {"canonical": "/docs/how_to/output_parser_xml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/xml/"]}, + "/docs/modules/model_io/models/output_parsers/types/yaml/": {"canonical": "/docs/how_to/output_parser_yaml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/yaml/"]}, + "/docs/modules/model_io/models/prompts/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/"]}, + "/docs/modules/model_io/models/prompts/composition/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]}, + "/docs/modules/model_io/models/prompts/example_selectors/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]}, + "/docs/modules/model_io/models/prompts/example_selectors/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]}, + "/docs/modules/model_io/models/prompts/example_selectors/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]}, + "/docs/modules/model_io/models/prompts/example_selectors/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]}, + "/docs/modules/model_io/models/prompts/example_selectors/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]}, + "/docs/modules/model_io/models/prompts/few_shot_examples_chat/": {"canonical": "/docs/how_to/few_shot_examples_chat/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples_chat/"]}, + "/docs/modules/model_io/models/prompts/few_shot_examples/": {"canonical": "/docs/how_to/few_shot_examples/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples/"]}, + "/docs/modules/model_io/models/prompts/partial/": {"canonical": "/docs/how_to/prompts_partial/", "alternative": ["/v0.1/docs/modules/model_io/prompts/partial/"]}, + "/docs/modules/model_io/models/prompts/quick_start/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]}, + "/docs/modules/model_io/models/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/quick_start/"]}, + "/docs/use_cases/more/graph/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/"]}, + "/docs/use_cases/more/graph/constructing/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/constructing/"]}, + "/docs/use_cases/more/graph/mapping/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/mapping/"]}, + "/docs/use_cases/more/graph/prompting/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/prompting/"]}, + "/docs/use_cases/more/graph/quickstart/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/quickstart/"]}, + "/docs/use_cases/more/graph/semantic/": {"canonical": "/docs/tutorials/graph/", "alternative": ["/v0.1/docs/use_cases/graph/semantic/"]}, + "/docs/modules/model_io/chat/how_to/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/chat/"]}, + "/docs/modules/model_io/chat/how_to/chat_model_caching/": {"canonical": "/docs/how_to/chat_model_caching/", "alternative": ["/v0.1/docs/modules/model_io/chat/chat_model_caching/"]}, + "/docs/modules/model_io/chat/how_to/custom_chat_model/": {"canonical": "/docs/how_to/custom_chat_model/", "alternative": ["/v0.1/docs/modules/model_io/chat/custom_chat_model/"]}, + "/docs/modules/model_io/chat/how_to/function_calling/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/chat/function_calling/"]}, + "/docs/modules/model_io/chat/how_to/logprobs/": {"canonical": "/docs/how_to/logprobs/", "alternative": ["/v0.1/docs/modules/model_io/chat/logprobs/"]}, + "/docs/modules/model_io/chat/how_to/message_types/": {"canonical": "/docs/concepts/#messages", "alternative": ["/v0.1/docs/modules/model_io/chat/message_types/"]}, + "/docs/modules/model_io/chat/how_to/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/chat/quick_start/"]}, + "/docs/modules/model_io/chat/how_to/response_metadata/": {"canonical": "/docs/how_to/response_metadata/", "alternative": ["/v0.1/docs/modules/model_io/chat/response_metadata/"]}, + "/docs/modules/model_io/chat/how_to/streaming/": {"canonical": "/docs/how_to/streaming/", "alternative": ["/v0.1/docs/modules/model_io/chat/streaming/"]}, + "/docs/modules/model_io/chat/how_to/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]}, + "/docs/modules/model_io/chat/how_to/token_usage_tracking/": {"canonical": "/docs/how_to/chat_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/chat/token_usage_tracking/"]}, + "/docs/modules/model_io/llms/how_to/": {"canonical": "/docs/concepts/#llms", "alternative": ["/v0.1/docs/modules/model_io/llms/"]}, + "/docs/modules/model_io/llms/how_to/custom_llm/": {"canonical": "/docs/how_to/custom_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/custom_llm/"]}, + "/docs/modules/model_io/llms/how_to/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/modules/model_io/llms/llm_caching/"]}, + "/docs/modules/model_io/llms/how_to/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/llms/quick_start/"]}, + "/docs/modules/model_io/llms/how_to/streaming_llm/": {"canonical": "/docs/how_to/streaming_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/streaming_llm/"]}, + "/docs/modules/model_io/llms/how_to/token_usage_tracking/": {"canonical": "/docs/how_to/llm_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/llms/token_usage_tracking/"]}, + "/docs/modules/model_io/llms/integrations/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/integrations/llms/llm_caching/"]}, + "/docs/modules/model_io/chat/integrations/ollama_functions/": {"canonical": "/docs/integrations/chat/ollama/", "alternative": ["/v0.1/docs/integrations/chat/ollama_functions/"]}, + "/en/latest/modules/models/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]}, + "/en/latest/modules/models/chat/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/chat/"]}, + "/en/latest/modules/models/chat/chat_model_caching/": {"canonical": "/docs/how_to/chat_model_caching/", "alternative": ["/v0.1/docs/modules/model_io/chat/chat_model_caching/"]}, + "/en/latest/modules/models/chat/custom_chat_model/": {"canonical": "/docs/how_to/custom_chat_model/", "alternative": ["/v0.1/docs/modules/model_io/chat/custom_chat_model/"]}, + "/en/latest/modules/models/chat/function_calling/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/chat/function_calling/"]}, + "/en/latest/modules/models/chat/logprobs/": {"canonical": "/docs/how_to/logprobs/", "alternative": ["/v0.1/docs/modules/model_io/chat/logprobs/"]}, + "/en/latest/modules/models/chat/message_types/": {"canonical": "/docs/concepts/#messages", "alternative": ["/v0.1/docs/modules/model_io/chat/message_types/"]}, + "/en/latest/modules/models/chat/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/chat/quick_start/"]}, + "/en/latest/modules/models/chat/response_metadata/": {"canonical": "/docs/how_to/response_metadata/", "alternative": ["/v0.1/docs/modules/model_io/chat/response_metadata/"]}, + "/en/latest/modules/models/chat/streaming/": {"canonical": "/docs/how_to/streaming/", "alternative": ["/v0.1/docs/modules/model_io/chat/streaming/"]}, + "/en/latest/modules/models/chat/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]}, + "/en/latest/modules/models/chat/token_usage_tracking/": {"canonical": "/docs/how_to/chat_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/chat/token_usage_tracking/"]}, + "/en/latest/modules/models/concepts/": {"canonical": "/docs/concepts/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/concepts/"]}, + "/en/latest/modules/models/llms/": {"canonical": "/docs/concepts/#llms", "alternative": ["/v0.1/docs/modules/model_io/llms/"]}, + "/en/latest/modules/models/llms/custom_llm/": {"canonical": "/docs/how_to/custom_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/custom_llm/"]}, + "/en/latest/modules/models/llms/llm_caching/": {"canonical": "/docs/how_to/llm_caching/", "alternative": ["/v0.1/docs/modules/model_io/llms/llm_caching/"]}, + "/en/latest/modules/models/llms/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/llms/quick_start/"]}, + "/en/latest/modules/models/llms/streaming_llm/": {"canonical": "/docs/how_to/streaming_llm/", "alternative": ["/v0.1/docs/modules/model_io/llms/streaming_llm/"]}, + "/en/latest/modules/models/llms/token_usage_tracking/": {"canonical": "/docs/how_to/llm_token_usage_tracking/", "alternative": ["/v0.1/docs/modules/model_io/llms/token_usage_tracking/"]}, + "/en/latest/modules/models/output_parsers/": {"canonical": "/docs/how_to/#output-parsers", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/"]}, + "/en/latest/modules/models/output_parsers/custom/": {"canonical": "/docs/how_to/output_parser_custom/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/custom/"]}, + "/en/latest/modules/models/output_parsers/quick_start/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/quick_start/"]}, + "/en/latest/modules/models/output_parsers/types/csv/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/csv/"]}, + "/en/latest/modules/models/output_parsers/types/datetime/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/datetime/"]}, + "/en/latest/modules/models/output_parsers/types/enum/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/enum/"]}, + "/en/latest/modules/models/output_parsers/types/json/": {"canonical": "/docs/how_to/output_parser_json/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/json/"]}, + "/en/latest/modules/models/output_parsers/types/openai_functions/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_functions/"]}, + "/en/latest/modules/models/output_parsers/types/openai_tools/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/openai_tools/"]}, + "/en/latest/modules/models/output_parsers/types/output_fixing/": {"canonical": "/docs/how_to/output_parser_fixing/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/output_fixing/"]}, + "/en/latest/modules/models/output_parsers/types/pandas_dataframe/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pandas_dataframe/"]}, + "/en/latest/modules/models/output_parsers/types/pydantic/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pydantic/"]}, + "/en/latest/modules/models/output_parsers/types/retry/": {"canonical": "/docs/how_to/output_parser_retry/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/retry/"]}, + "/en/latest/modules/models/output_parsers/types/structured/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/structured/"]}, + "/en/latest/modules/models/output_parsers/types/xml/": {"canonical": "/docs/how_to/output_parser_xml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/xml/"]}, + "/en/latest/modules/models/output_parsers/types/yaml/": {"canonical": "/docs/how_to/output_parser_yaml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/yaml/"]}, + "/en/latest/modules/models/prompts/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/"]}, + "/en/latest/modules/models/prompts/composition/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]}, + "/en/latest/modules/models/prompts/example_selectors/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]}, + "/en/latest/modules/models/prompts/example_selectors/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]}, + "/en/latest/modules/models/prompts/example_selectors/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]}, + "/en/latest/modules/models/prompts/example_selectors/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]}, + "/en/latest/modules/models/prompts/example_selectors/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]}, + "/en/latest/modules/models/prompts/few_shot_examples_chat/": {"canonical": "/docs/how_to/few_shot_examples_chat/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples_chat/"]}, + "/en/latest/modules/models/prompts/few_shot_examples/": {"canonical": "/docs/how_to/few_shot_examples/", "alternative": ["/v0.1/docs/modules/model_io/prompts/few_shot_examples/"]}, + "/en/latest/modules/models/prompts/partial/": {"canonical": "/docs/how_to/prompts_partial/", "alternative": ["/v0.1/docs/modules/model_io/prompts/partial/"]}, + "/en/latest/modules/models/prompts/quick_start/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]}, + "/en/latest/modules/models/quick_start/": {"canonical": "/docs/tutorials/llm_chain/", "alternative": ["/v0.1/docs/modules/model_io/quick_start/"]}, + "/docs/modules/model_io/prompts/example_selector_types/": {"canonical": "/docs/how_to/example_selectors/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/"]}, + "/docs/modules/model_io/prompts/example_selector_types/length_based/": {"canonical": "/docs/how_to/example_selectors_length_based/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/length_based/"]}, + "/docs/modules/model_io/prompts/example_selector_types/mmr/": {"canonical": "/docs/how_to/example_selectors_mmr/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/mmr/"]}, + "/docs/modules/model_io/prompts/example_selector_types/ngram_overlap/": {"canonical": "/docs/how_to/example_selectors_ngram/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/ngram_overlap/"]}, + "/docs/modules/model_io/prompts/example_selector_types/similarity/": {"canonical": "/docs/how_to/example_selectors_similarity/", "alternative": ["/v0.1/docs/modules/model_io/prompts/example_selectors/similarity/"]}, + "/docs/modules/agents/tools/": {"canonical": "/docs/how_to/#tools", "alternative": ["/v0.1/docs/modules/tools/"]}, + "/docs/modules/agents/tools/custom_tools/": {"canonical": "/docs/how_to/custom_tools/", "alternative": ["/v0.1/docs/modules/tools/custom_tools/"]}, + "/docs/modules/agents/tools/toolkits/": {"canonical": "/docs/how_to/#tools", "alternative": ["/v0.1/docs/modules/tools/toolkits/"]}, + "/docs/modules/agents/tools/tools_as_openai_functions/": {"canonical": "/docs/how_to/tool_calling/", "alternative": ["/v0.1/docs/modules/tools/tools_as_openai_functions/"]}, + "/docs/guides/deployments/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/deployments/"]}, + "/docs/guides/deployments/template_repos/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/deployments/template_repos/"]}, + "/docs/guides/evaluation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/"]}, + "/docs/guides/evaluation/comparison/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/"]}, + "/docs/guides/evaluation/comparison/custom/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/custom/"]}, + "/docs/guides/evaluation/comparison/pairwise_embedding_distance/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/pairwise_embedding_distance/"]}, + "/docs/guides/evaluation/comparison/pairwise_string/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/comparison/pairwise_string/"]}, + "/docs/guides/evaluation/examples/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/examples/"]}, + "/docs/guides/evaluation/examples/comparisons/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/examples/comparisons/"]}, + "/docs/guides/evaluation/string/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/"]}, + "/docs/guides/evaluation/string/criteria_eval_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/criteria_eval_chain/"]}, + "/docs/guides/evaluation/string/custom/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/custom/"]}, + "/docs/guides/evaluation/string/embedding_distance/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/embedding_distance/"]}, + "/docs/guides/evaluation/string/exact_match/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/exact_match/"]}, + "/docs/guides/evaluation/string/json/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/json/"]}, + "/docs/guides/evaluation/string/regex_match/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/regex_match/"]}, + "/docs/guides/evaluation/string/scoring_eval_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/scoring_eval_chain/"]}, + "/docs/guides/evaluation/string/string_distance/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/string/string_distance/"]}, + "/docs/guides/evaluation/trajectory/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/trajectory/"]}, + "/docs/guides/evaluation/trajectory/custom/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/trajectory/custom/"]}, + "/docs/guides/evaluation/trajectory/trajectory_eval/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/trajectory/trajectory_eval/"]}, + "/docs/guides/privacy/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/"]}, + "/docs/guides/privacy/amazon_comprehend_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/amazon_comprehend_chain/"]}, + "/docs/guides/privacy/constitutional_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/constitutional_chain/"]}, + "/docs/guides/privacy/hugging_face_prompt_injection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/hugging_face_prompt_injection/"]}, + "/docs/guides/privacy/layerup_security/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/layerup_security/"]}, + "/docs/guides/privacy/logical_fallacy_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/logical_fallacy_chain/"]}, + "/docs/guides/privacy/moderation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/moderation/"]}, + "/docs/guides/privacy/presidio_data_anonymization/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/"]}, + "/docs/guides/privacy/presidio_data_anonymization/multi_language/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/multi_language/"]}, + "/docs/guides/privacy/presidio_data_anonymization/qa_privacy_protection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/qa_privacy_protection/"]}, + "/docs/guides/privacy/presidio_data_anonymization/reversible/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/reversible/"]}, + "/docs/guides/safety/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/"]}, + "/docs/guides/safety/amazon_comprehend_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/amazon_comprehend_chain/"]}, + "/docs/guides/safety/constitutional_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/constitutional_chain/"]}, + "/docs/guides/safety/hugging_face_prompt_injection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/hugging_face_prompt_injection/"]}, + "/docs/guides/safety/layerup_security/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/layerup_security/"]}, + "/docs/guides/safety/logical_fallacy_chain/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/logical_fallacy_chain/"]}, + "/docs/guides/safety/moderation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/moderation/"]}, + "/docs/guides/safety/presidio_data_anonymization/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/"]}, + "/docs/guides/safety/presidio_data_anonymization/multi_language/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/multi_language/"]}, + "/docs/guides/safety/presidio_data_anonymization/qa_privacy_protection/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/qa_privacy_protection/"]}, + "/docs/guides/safety/presidio_data_anonymization/reversible/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/presidio_data_anonymization/reversible/"]}, + "/docs/integrations/llms/titan_takeoff_pro/": {"canonical": "/docs/integrations/llms/titan_takeoff/"}, + "/docs/integrations/providers/optimum_intel/": {"canonical": "/docs/integrations/providers/intel/"}, + "/docs/use_cases/graph/integrations/diffbot_graphtransformer/": {"canonical": "/docs/integrations/graphs/diffbot/"}, + "/docs/use_cases/graph/integrations/graph_arangodb_qa/": {"canonical": "/docs/integrations/graphs/arangodb/"}, + "/docs/use_cases/graph/integrations/graph_cypher_qa/": {"canonical": "/docs/integrations/graphs/neo4j_cypher/"}, + "/docs/use_cases/graph/integrations/graph_falkordb_qa/": {"canonical": "/docs/integrations/graphs/falkordb/"}, + "/docs/use_cases/graph/integrations/graph_gremlin_cosmosdb_qa/": {"canonical": "/docs/integrations/graphs/azure_cosmosdb_gremlin/"}, + "/docs/use_cases/graph/integrations/graph_hugegraph_qa/": {"canonical": "/docs/integrations/graphs/hugegraph/"}, + "/docs/use_cases/graph/integrations/graph_kuzu_qa/": {"canonical": "/docs/integrations/graphs/kuzu_db/"}, + "/docs/use_cases/graph/integrations/graph_memgraph_qa/": {"canonical": "/docs/integrations/graphs/memgraph/"}, + "/docs/use_cases/graph/integrations/graph_nebula_qa/": {"canonical": "/docs/integrations/graphs/nebula_graph/"}, + "/docs/use_cases/graph/integrations/graph_networkx_qa/": {"canonical": "/docs/integrations/graphs/networkx/"}, + "/docs/use_cases/graph/integrations/graph_ontotext_graphdb_qa/": {"canonical": "/docs/integrations/graphs/ontotext/"}, + "/docs/use_cases/graph/integrations/graph_sparql_qa/": {"canonical": "/docs/integrations/graphs/rdflib_sparql/"}, + "/docs/use_cases/graph/integrations/neptune_cypher_qa/": {"canonical": "/docs/integrations/graphs/amazon_neptune_open_cypher/"}, + "/docs/use_cases/graph/integrations/neptune_sparql_qa/": {"canonical": "/docs/integrations/graphs/amazon_neptune_sparql/"}, + "/docs/integrations/providers/facebook_chat/": {"canonical": "/docs/integrations/providers/facebook/"}, + "/docs/integrations/providers/facebook_faiss/": {"canonical": "/docs/integrations/providers/facebook/"}, + "/docs/integrations/memory/google_cloud_sql_mssql/": {"canonical": "/docs/integrations/memory/google_sql_mssql/"}, + "/docs/integrations/memory/google_cloud_sql_mysql/": {"canonical": "/docs/integrations/memory/google_sql_mysql/"}, + "/docs/integrations/memory/google_cloud_sql_pg/": {"canonical": "/docs/integrations/memory/google_sql_pg/"}, + "/docs/integrations/memory/google_datastore/": {"canonical": "/docs/integrations/memory/google_firestore_datastore/"}, + "/docs/integrations/llms/huggingface_textgen_inference/": {"canonical": "/docs/integrations/llms/huggingface_endpoint/"}, + "/docs/integrations/llms/huggingface_hub/": {"canonical": "/docs/integrations/llms/huggingface_endpoint/"}, + "/docs/integrations/llms/bigdl/": {"canonical": "/docs/integrations/llms/ipex_llm/"}, + "/docs/integrations/llms/watsonxllm/": {"canonical": "/docs/integrations/llms/ibm_watsonx/"}, + "/docs/integrations/llms/pai_eas_endpoint/": {"canonical": "/docs/integrations/llms/alibabacloud_pai_eas_endpoint/"}, + "/docs/integrations/vectorstores/hanavector/": {"canonical": "/docs/integrations/vectorstores/sap_hanavector/"}, + "/docs/use_cases/qa_structured/sql/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]}, + "/docs/contributing/packages/": {"canonical": "/docs/versions/release_policy/", "alternative": ["/v0.1/docs/packages/"]}, + "/docs/community/": {"canonical": "/docs/contributing/"}, + "/docs/modules/chains/(.+)/": {"canonical": "/docs/versions/migrating_chains/", "alternative": ["/v0.1/docs/modules/chains/"]}, + "/docs/modules/agents/how_to/custom_llm_agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]}, + "/docs/modules/agents/how_to/custom-functions-with-openai-functions-agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]}, + "/docs/modules/agents/how_to/custom_llm_chat_agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]}, + "/docs/modules/agents/how_to/custom_mrkl_agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/custom_agent/"]}, + "/docs/modules/agents/how_to/streaming_stdout_final_only/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/how_to/streaming/"]}, + "/docs/modules/model_io/prompts/prompts_pipelining/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]}, + "/docs/modules/model_io/output_parsers/enum/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/enum/"]}, + "/docs/modules/model_io/output_parsers/pandas_dataframe/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/pandas_dataframe/"]}, + "/docs/modules/model_io/output_parsers/structured/": {"canonical": "/docs/how_to/output_parser_structured/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/structured/"]}, + "/docs/modules/model_io/output_parsers/xml/": {"canonical": "/docs/how_to/output_parser_xml/", "alternative": ["/v0.1/docs/modules/model_io/output_parsers/types/xml/"]}, + "/docs/use_cases/question_answering/code_understanding/": {"canonical": "https://langchain-ai.github.io/langgraph/tutorials/code_assistant/langgraph_code_assistant/", "alternative": ["/v0.1/docs/use_cases/code_understanding/"]}, + "/docs/use_cases/question_answering/document-context-aware-QA/": {"canonical": "/docs/how_to/#text-splitters", "alternative": ["/v0.1/docs/modules/data_connection/document_transformers/"]}, + "/docs/integrations/providers/alibabacloud_opensearch/": {"canonical": "/docs/integrations/providers/alibaba_cloud/"}, + "/docs/integrations/chat/pai_eas_chat_endpoint/": {"canonical": "/docs/integrations/chat/alibaba_cloud_pai_eas/"}, + "/docs/integrations/providers/tencentvectordb/": {"canonical": "/docs/integrations/providers/tencent/"}, + "/docs/integrations/chat/hunyuan/": {"canonical": "/docs/integrations/chat/tencent_hunyuan/"}, + "/docs/integrations/document_loaders/excel/": {"canonical": "/docs/integrations/document_loaders/microsoft_excel/"}, + "/docs/integrations/document_loaders/onenote/": {"canonical": "/docs/integrations/document_loaders/microsoft_onenote/"}, + "/docs/integrations/providers/aws_dynamodb/": {"canonical": "/docs/integrations/platforms/aws/"}, + "/docs/integrations/providers/scann/": {"canonical": "/docs/integrations/platforms/google/"}, + "/docs/integrations/toolkits/google_drive/": {"canonical": "/docs/integrations/tools/google_drive/"}, + "/docs/use_cases/question_answering/chat_vector_db/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/use_cases/question_answering/in_memory_question_answering/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/use_cases/question_answering/multi_retrieval_qa_router/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/use_cases/question_answering/multiple_retrieval/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/use_cases/question_answering/vector_db_qa/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/use_cases/question_answering/vector_db_text_generation/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/guides/langsmith/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/langsmith/"]}, + "/docs/guides/langsmith/walkthrough/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/langsmith/walkthrough/"]}, + "/docs/use_cases/qa_structured/integrations/sqlite/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]}, + "/docs/use_cases/more/data_generation/": {"canonical": "/docs/tutorials/data_generation/", "alternative": ["/v0.1/docs/use_cases/data_generation/"]}, + "/docs/use_cases/question_answering/how_to/chat_vector_db/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/use_cases/question_answering/how_to/conversational_retrieval_agents/": {"canonical": "/docs/tutorials/qa_chat_history/", "alternative": ["/v0.1/docs/use_cases/question_answering/conversational_retrieval_agents/"]}, + "/docs/use_cases/question_answering/question_answering/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/use_cases/question_answering/how_to/local_retrieval_qa/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/local_retrieval_qa/"]}, + "/docs/use_cases/question_answering/how_to/question_answering/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/modules/agents/agents/examples/mrkl_chat(.html?)/": {"canonical": "/docs/how_to/#agents", "alternative": ["/v0.1/docs/modules/agents/"]}, + "/docs/integrations/": {"canonical": "/docs/integrations/providers/"}, + "/docs/expression_language/cookbook/routing/": {"canonical": "/docs/how_to/routing/", "alternative": ["/v0.1/docs/expression_language/how_to/routing/"]}, + "/docs/guides/expression_language/": {"canonical": "/docs/how_to/#langchain-expression-language-lcel", "alternative": ["/v0.1/docs/expression_language/"]}, + "/docs/integrations/providers/amazon_api_gateway/": {"canonical": "/docs/integrations/platforms/aws/"}, + "/docs/integrations/providers/huggingface/": {"canonical": "/docs/integrations/platforms/huggingface/"}, + "/docs/integrations/providers/azure_blob_storage/": {"canonical": "/docs/integrations/platforms/microsoft/"}, + "/docs/integrations/providers/google_vertexai_matchingengine/": {"canonical": "/docs/integrations/platforms/google/"}, + "/docs/integrations/providers/aws_s3/": {"canonical": "/docs/integrations/platforms/aws/"}, + "/docs/integrations/providers/azure_openai/": {"canonical": "/docs/integrations/platforms/microsoft/"}, + "/docs/integrations/providers/azure_cognitive_search_/": {"canonical": "/docs/integrations/platforms/microsoft/"}, + "/docs/integrations/providers/bedrock/": {"canonical": "/docs/integrations/platforms/aws/"}, + "/docs/integrations/providers/google_bigquery/": {"canonical": "/docs/integrations/platforms/google/"}, + "/docs/integrations/providers/google_cloud_storage/": {"canonical": "/docs/integrations/platforms/google/"}, + "/docs/integrations/providers/google_drive/": {"canonical": "/docs/integrations/platforms/google/"}, + "/docs/integrations/providers/google_search/": {"canonical": "/docs/integrations/platforms/google/"}, + "/docs/integrations/providers/microsoft_onedrive/": {"canonical": "/docs/integrations/platforms/microsoft/"}, + "/docs/integrations/providers/microsoft_powerpoint/": {"canonical": "/docs/integrations/platforms/microsoft/"}, + "/docs/integrations/providers/microsoft_word/": {"canonical": "/docs/integrations/platforms/microsoft/"}, + "/docs/integrations/providers/sagemaker_endpoint/": {"canonical": "/docs/integrations/platforms/aws/"}, + "/docs/integrations/providers/sagemaker_tracking/": {"canonical": "/docs/integrations/callbacks/sagemaker_tracking/"}, + "/docs/integrations/providers/openai/": {"canonical": "/docs/integrations/platforms/openai/"}, + "/docs/integrations/cassandra/": {"canonical": "/docs/integrations/providers/cassandra/"}, + "/docs/integrations/providers/providers/semadb/": {"canonical": "/docs/integrations/providers/semadb/"}, + "/docs/integrations/vectorstores/vectorstores/semadb/": {"canonical": "/docs/integrations/vectorstores/semadb/"}, + "/docs/integrations/vectorstores/async_faiss/": {"canonical": "/docs/integrations/vectorstores/faiss_async/"}, + "/docs/integrations/vectorstores/matchingengine/": {"canonical": "/docs/integrations/vectorstores/google_vertex_ai_vector_search/"}, + "/docs/integrations/tools/sqlite/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]}, + "/docs/integrations/document_loaders/pdf-amazonTextractPDFLoader/": {"canonical": "/docs/integrations/document_loaders/amazon_textract/"}, + "/docs/integrations/document_loaders/Etherscan/": {"canonical": "/docs/integrations/document_loaders/etherscan/"}, + "/docs/integrations/document_loaders/merge_doc_loader/": {"canonical": "/docs/integrations/document_loaders/merge_doc/"}, + "/docs/integrations/document_loaders/recursive_url_loader/": {"canonical": "/docs/integrations/document_loaders/recursive_url/"}, + "/docs/integrations/providers/google_document_ai/": {"canonical": "/docs/integrations/platforms/google/"}, + "/docs/integrations/memory/motorhead_memory_managed/": {"canonical": "/docs/integrations/memory/motorhead_memory/"}, + "/docs/integrations/memory/dynamodb_chat_message_history/": {"canonical": "/docs/integrations/memory/aws_dynamodb/"}, + "/docs/integrations/memory/entity_memory_with_sqlite/": {"canonical": "/docs/integrations/memory/sqlite/"}, + "/docs/modules/model_io/chat/integrations/anthropic/": {"canonical": "/docs/integrations/chat/anthropic/"}, + "/docs/modules/model_io/chat/integrations/azure_chat_openai/": {"canonical": "/docs/integrations/chat/azure_chat_openai/"}, + "/docs/modules/model_io/chat/integrations/google_vertex_ai_palm/": {"canonical": "/docs/integrations/chat/google_vertex_ai_palm/"}, + "/docs/modules/model_io/chat/integrations/openai/": {"canonical": "/docs/integrations/chat/openai/"}, + "/docs/modules/model_io/chat/integrations/promptlayer_chatopenai/": {"canonical": "/docs/integrations/chat/promptlayer_chatopenai/"}, + "/docs/modules/model_io/llms/integrations/ai21/": {"canonical": "/docs/integrations/llms/ai21/"}, + "/docs/modules/model_io/llms/integrations/aleph_alpha/": {"canonical": "/docs/integrations/llms/aleph_alpha/"}, + "/docs/modules/model_io/llms/integrations/anyscale/": {"canonical": "/docs/integrations/llms/anyscale/"}, + "/docs/modules/model_io/llms/integrations/banana/": {"canonical": "/docs/integrations/llms/banana/"}, + "/docs/modules/model_io/llms/integrations/baseten/": {"canonical": "/docs/integrations/llms/baseten/"}, + "/docs/modules/model_io/llms/integrations/beam/": {"canonical": "/docs/integrations/llms/beam/"}, + "/docs/modules/model_io/llms/integrations/bedrock/": {"canonical": "/docs/integrations/llms/bedrock/"}, + "/docs/modules/model_io/llms/integrations/cohere/": {"canonical": "/docs/integrations/llms/cohere/"}, + "/docs/modules/model_io/llms/integrations/ctransformers/": {"canonical": "/docs/integrations/llms/ctransformers/"}, + "/docs/modules/model_io/llms/integrations/databricks/": {"canonical": "/docs/integrations/llms/databricks/"}, + "/docs/modules/model_io/llms/integrations/google_vertex_ai_palm/": {"canonical": "/docs/integrations/llms/google_vertex_ai_palm/"}, + "/docs/modules/model_io/llms/integrations/huggingface_pipelines/": {"canonical": "/docs/integrations/llms/huggingface_pipelines/"}, + "/docs/modules/model_io/llms/integrations/jsonformer_experimental/": {"canonical": "/docs/integrations/llms/jsonformer_experimental/"}, + "/docs/modules/model_io/llms/integrations/llamacpp/": {"canonical": "/docs/integrations/llms/llamacpp/"}, + "/docs/modules/model_io/llms/integrations/manifest/": {"canonical": "/docs/integrations/llms/manifest/"}, + "/docs/modules/model_io/llms/integrations/modal/": {"canonical": "/docs/integrations/llms/modal/"}, + "/docs/modules/model_io/llms/integrations/mosaicml/": {"canonical": "/docs/integrations/llms/mosaicml/"}, + "/docs/modules/model_io/llms/integrations/nlpcloud/": {"canonical": "/docs/integrations/llms/nlpcloud/"}, + "/docs/modules/model_io/llms/integrations/openai/": {"canonical": "/docs/integrations/llms/openai/"}, + "/docs/modules/model_io/llms/integrations/openlm/": {"canonical": "/docs/integrations/llms/openlm/"}, + "/docs/modules/model_io/llms/integrations/predictionguard/": {"canonical": "/docs/integrations/llms/predictionguard/"}, + "/docs/modules/model_io/llms/integrations/promptlayer_openai/": {"canonical": "/docs/integrations/llms/promptlayer_openai/"}, + "/docs/modules/model_io/llms/integrations/rellm_experimental/": {"canonical": "/docs/integrations/llms/rellm_experimental/"}, + "/docs/modules/model_io/llms/integrations/replicate/": {"canonical": "/docs/integrations/llms/replicate/"}, + "/docs/modules/model_io/llms/integrations/runhouse/": {"canonical": "/docs/integrations/llms/runhouse/"}, + "/docs/modules/model_io/llms/integrations/sagemaker/": {"canonical": "/docs/integrations/llms/sagemaker/"}, + "/docs/modules/model_io/llms/integrations/stochasticai/": {"canonical": "/docs/integrations/llms/stochasticai/"}, + "/docs/modules/model_io/llms/integrations/writer/": {"canonical": "/docs/integrations/llms/writer/"}, + "/en/latest/use_cases/apis.html/": {"canonical": null, "alternative": ["/v0.1/docs/use_cases/apis/"]}, + "/en/latest/use_cases/extraction.html/": {"canonical": "/docs/tutorials/extraction/", "alternative": ["/v0.1/docs/use_cases/extraction/"]}, + "/en/latest/use_cases/summarization.html/": {"canonical": "/docs/tutorials/summarization/", "alternative": ["/v0.1/docs/use_cases/summarization/"]}, + "/en/latest/use_cases/tabular.html/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/"]}, + "/en/latest/youtube.html/": {"canonical": "/docs/additional_resources/youtube/"}, + "/docs/": {"canonical": "/"}, + "/en/latest/": {"canonical": "/"}, + "/en/latest/index.html/": {"canonical": "/"}, + "/en/latest/modules/models.html/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]}, + "/docs/integrations/retrievers/google_cloud_enterprise_search/": {"canonical": "/docs/integrations/retrievers/google_vertex_ai_search/"}, + "/docs/integrations/tools/metaphor_search/": {"canonical": "/docs/integrations/tools/exa_search/"}, + "/docs/expression_language/how_to/fallbacks/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/fallbacks/"]}, + "/docs/expression_language/cookbook/retrieval/": {"canonical": "/docs/tutorials/rag/", "alternative": ["/v0.1/docs/use_cases/question_answering/"]}, + "/docs/expression_language/cookbook/agent/": {"canonical": "/docs/how_to/migrate_agent/", "alternative": ["/v0.1/docs/modules/agents/agent_types/xml_agent/"]}, + "/docs/modules/model_io/prompts/message_prompts/": {"canonical": "/docs/how_to/#prompt-templates", "alternative": ["/v0.1/docs/modules/model_io/prompts/quick_start/"]}, + "/docs/modules/model_io/prompts/pipeline/": {"canonical": "/docs/how_to/prompts_composition/", "alternative": ["/v0.1/docs/modules/model_io/prompts/composition/"]}, + "/docs/expression_language/cookbook/memory/": {"canonical": "/docs/how_to/chatbots_memory/", "alternative": ["/v0.1/docs/modules/memory/"]}, + "/docs/expression_language/cookbook/tools/": {"canonical": "/docs/tutorials/agents/", "alternative": ["/v0.1/docs/use_cases/tool_use/quickstart/"]}, + "/docs/expression_language/cookbook/sql_db/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/quickstart/"]}, + "/docs/expression_language/cookbook/moderation/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/safety/moderation/"]}, + "/docs/expression_language/cookbook/embedding_router/": {"canonical": "/docs/how_to/routing/", "alternative": ["/v0.1/docs/expression_language/how_to/routing/"]}, + "/docs/guides/structured_output/": {"canonical": "/docs/how_to/structured_output/", "alternative": ["/v0.1/docs/modules/model_io/chat/structured_output/"]}, + "/docs/modules/agents/how_to/structured_tools/": {"canonical": "/docs/how_to/#tools", "alternative": ["/v0.1/docs/modules/tools/"]}, + "/docs/use_cases/csv/": {"canonical": "/docs/tutorials/sql_qa/", "alternative": ["/v0.1/docs/use_cases/sql/csv/"]}, + "/docs/guides/debugging/": {"canonical": "/docs/how_to/debugging/", "alternative": ["/v0.1/docs/guides/development/debugging/"]}, + "/docs/guides/extending_langchain/": {"canonical": "/docs/how_to/#custom", "alternative": ["/v0.1/docs/guides/development/extending_langchain/"]}, + "/docs/guides/fallbacks/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/fallbacks/"]}, + "/docs/guides/model_laboratory/": {"canonical": "https://docs.smith.langchain.com/", "alternative": ["/v0.1/docs/guides/productionization/evaluation/"]}, + "/docs/guides/pydantic_compatibility/": {"canonical": "/docs/how_to/pydantic_compatibility/", "alternative": ["/v0.1/docs/guides/development/pydantic_compatibility/"]}, + "/docs/guides/local_llms/": {"canonical": "/docs/how_to/local_llms/", "alternative": ["/v0.1/docs/guides/development/local_llms/"]}, + "/docs/modules/model_io/quick_start/": {"canonical": "/docs/how_to/#chat-models", "alternative": ["/v0.1/docs/modules/model_io/"]}, + "/docs/expression_language/how_to/generators/": {"canonical": "/docs/how_to/functions/", "alternative": ["/v0.1/docs/expression_language/primitives/functions/"]}, + "/docs/expression_language/how_to/functions/": {"canonical": "/docs/how_to/functions/", "alternative": ["/v0.1/docs/expression_language/primitives/functions/"]}, + "/docs/expression_language/how_to/passthrough/": {"canonical": "/docs/how_to/passthrough/", "alternative": ["/v0.1/docs/expression_language/primitives/passthrough/"]}, + "/docs/expression_language/how_to/map/": {"canonical": "/docs/how_to/parallel/", "alternative": ["/v0.1/docs/expression_language/primitives/parallel/"]}, + "/docs/expression_language/how_to/binding/": {"canonical": "/docs/how_to/binding/", "alternative": ["/v0.1/docs/expression_language/primitives/binding/"]}, + "/docs/expression_language/how_to/configure/": {"canonical": "/docs/how_to/configure/", "alternative": ["/v0.1/docs/expression_language/primitives/configure/"]}, + "/docs/expression_language/cookbook/prompt_llm_parser/": {"canonical": "/docs/how_to/sequence/", "alternative": ["/v0.1/docs/expression_language/get_started/"]}, + "/docs/contributing/documentation/": {"canonical": "/docs/contributing/documentation/", "alternative": ["/v0.1/docs/contributing/documentation/technical_logistics/"]}, + "/docs/expression_language/cookbook/": {"canonical": "/docs/how_to/#langchain-expression-language-lcel", "alternative": ["/v0.1/docs/expression_language/"]}, + "/docs/integrations/text_embedding/solar/": {"canonical": "/docs/integrations/text_embedding/upstage/"}, + "/docs/integrations/chat/solar/": {"canonical": "/docs/integrations/chat/upstage/"}, + // custom ones + + "/docs/modules/model_io/chat/llm_chain/": { + "canonical": "/docs/tutorials/llm_chain/" + }, + + "/docs/modules/agents/toolkits/": { + "canonical": "/docs/integrations/tools/", + "alternative": [ + "/v0.1/docs/integrations/toolkits/" + ] + } +} \ No newline at end of file diff --git a/docs/static/img/message_history.png b/docs/static/img/message_history.png deleted file mode 100644 index 31f7664d286bf..0000000000000 Binary files a/docs/static/img/message_history.png and /dev/null differ diff --git a/docs/vercel.json b/docs/vercel.json index 7827704d922eb..04be0e01562c0 100644 --- a/docs/vercel.json +++ b/docs/vercel.json @@ -5,8 +5,8 @@ "trailingSlash": true, "rewrites": [ { - "source": "/v0.2/docs/integrations(/?)", - "destination": "/v0.2/docs/integrations/platforms/" + "source": "/docs/integrations(/?)", + "destination": "/docs/integrations/platforms/" }, { "source": "/v0.1", @@ -17,110 +17,70 @@ "destination": "https://langchain-v01.vercel.app/v0.1/:path*" }, { - "source": "/robots.txt(/?)", - "destination": "/v0.2/robots.txt/" + "source": "/v0.2", + "destination": "https://langchain-v02.vercel.app/v0.2" }, { - "source": "/sitemap.xml(/?)", - "destination": "/v0.2/sitemap.xml/" + "source": "/v0.2/:path(.*/?)*", + "destination": "https://langchain-v02.vercel.app/v0.2/:path*" } ], "redirects": [ { - "source": "/v0.2/docs/versions/packages(/?)", - "destination": "/v0.2/docs/versions/release_policy/" + "source": "/v0.3/docs/:path(.*/?)*", + "destination": "/docs/:path*" }, { - "source": "/v0.2/docs/integrations/llms/llm_caching(/?)", - "destination": "/v0.2/docs/integrations/llm_caching/" + "source": "/docs/modules/agents/tools/custom_tools(/?)", + "destination": "/docs/how_to/custom_tools/" + }, + { + "source": "/docs/expression_language(/?)", + "destination": "/docs/concepts/#langchain-expression-language-lcel" + }, + { + "source": "/docs/expression_language/interface(/?)", + "destination": "/docs/concepts/#runnable-interface" + }, + { + "source": "/docs/versions/overview(/?)", + "destination": "/docs/versions/v0_2/overview/" }, { "source": "/docs/how_to/tool_calls_multi_modal(/?)", "destination": "/docs/how_to/multimodal_inputs/" }, { - "source": "/v0.2/docs/langsmith(/?)", + "source": "/docs/langsmith(/?)", "destination": "https://docs.smith.langchain.com/" }, { - "source": "/v0.2/docs/langgraph(/?)", + "source": "/docs/langgraph(/?)", "destination": "https://langchain-ai.github.io/langgraph" }, { "source": "/", - "destination": "/v0.2/docs/introduction/" + "destination": "/docs/introduction/" }, { "source": "/docs(/?)", - "destination": "/v0.2/docs/introduction/" + "destination": "/docs/introduction/" }, { "source": "/docs/get_started/introduction(/?)", - "destination": "/v0.2/docs/introduction/" - }, - { - "source": "/docs/integrations/:path(.*/?)*", - "destination": "/v0.2/docs/integrations/:path*" - }, - { - "source": "/docs/:path(.*/?)*", - "destination": "/v0.1/docs/:path*" - }, - { - "source": "/cookbook(/?)", - "destination": "/v0.1/docs/cookbook/" - }, - { - "source": "/v0.2/docs/how_to/migrate_chains(/?)", - "destination": "/v0.2/docs/versions/migrating_chains" - }, - { - "source": "/v0.2/docs/integrations/tools/search_tools/", - "destination": "/v0.2/docs/integrations/tools#search" - }, - { - "source": "/v0.2/docs/integrations/toolkits/airbyte_structured_qa/", - "destination": "/v0.2/docs/integrations/document_loaders/airbyte/" - }, - { - "source": "/v0.2/docs/integrations/tools/connery_toolkit/", - "destination": "/v0.2/docs/integrations/tools/connery/" - }, - { - "source": "/v0.2/docs/integrations/tools/polygon_toolkit/", - "destination": "/v0.2/docs/integrations/tools/polygon/" - }, - { - "source": "/v0.2/docs/integrations/toolkits/document_comparison_toolkit(/?)", - "destination": "/v0.2/docs/tutorials/rag/" - }, - { - "source": "/v0.2/docs/integrations/toolkits/:path(.*/?)*", - "destination": "/v0.2/docs/integrations/tools/:path*" - }, - { - "source": "/v0.2/docs/integrations/toolkits/spark/", - "destination": "/v0.2/docs/integrations/tools/spark_sql/" - }, - { - "source": "/v0.2/docs/integrations/toolkits/xorbits/", - "destination": "/v0.2/docs/integrations/tools#search" - }, - { - "source": "/v0.2/docs/integrations/document_loaders/notiondb/", - "destination": "/v0.2/docs/integrations/document_loaders/notion/" + "destination": "/docs/introduction/" }, { - "source": "/v0.2/docs/integrations/chat/ollama_functions/", - "destination": "https://python.langchain.com/v0.1/docs/integrations/chat/ollama_functions/" + "source": "/docs/how_to/migrate_chains(/?)", + "destination": "/docs/versions/migrating_chains" }, { "source": "/v0.2/docs/templates/:path(.*/?)*", "destination": "https://github.com/langchain-ai/langchain/tree/master/templates/:path*" }, { - "source": "/v0.2/docs/integrations/text_embedding/nemo/", - "destination": "/v0.2/docs/integrations/text_embedding/nvidia_ai_endpoints/" + "source": "/docs/integrations/providers/mlflow_ai_gateway(/?)", + "destination": "/docs/integrations/providers/mlflow/" } ] } diff --git a/docs/vercel_build.sh b/docs/vercel_build.sh deleted file mode 100755 index 80aaa5eaab9b6..0000000000000 --- a/docs/vercel_build.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/bash - -set -e - -make install-vercel-deps - -make build - -rm -rf docs -mv build/output-new/docs ./ - -mkdir static/api_reference - -git clone --depth=1 https://github.com/baskaryan/langchain-api-docs-build.git - -mv -r langchain-api-docs-build/api_reference_build/html/* static/api_reference/ - diff --git a/docs/vercel_requirements.txt b/docs/vercel_requirements.txt index f9b47312922f0..365d23a43527e 100644 --- a/docs/vercel_requirements.txt +++ b/docs/vercel_requirements.txt @@ -1,12 +1,9 @@ -e ../libs/core -e ../libs/langchain -e ../libs/community --e ../libs/experimental -e ../libs/text-splitters +langgraph langchain-cohere -langchain-astradb -langchain-nvidia-ai-endpoints -langchain-elasticsearch urllib3==1.26.19 nbconvert==7.16.4 diff --git a/docs/yarn.lock b/docs/yarn.lock index 3dc8a2b1e8400..b0167e3928c3a 100644 --- a/docs/yarn.lock +++ b/docs/yarn.lock @@ -1,14076 +1,11106 @@ -# This file is generated by running "yarn install" inside your project. -# Manual changes might be lost - proceed with caution! - -__metadata: - version: 6 - cacheKey: 8 - -"@aashutoshrathi/word-wrap@npm:^1.2.3": - version: 1.2.6 - resolution: "@aashutoshrathi/word-wrap@npm:1.2.6" - checksum: ada901b9e7c680d190f1d012c84217ce0063d8f5c5a7725bb91ec3c5ed99bb7572680eb2d2938a531ccbaec39a95422fcd8a6b4a13110c7d98dd75402f66a0cd - languageName: node - linkType: hard - -"@algolia/autocomplete-core@npm:1.9.3": - version: 1.9.3 - resolution: "@algolia/autocomplete-core@npm:1.9.3" - dependencies: - "@algolia/autocomplete-plugin-algolia-insights": 1.9.3 - "@algolia/autocomplete-shared": 1.9.3 - checksum: ce78048568660184a4fa3c6548f344a7f5ce0ba45d4cfc233f9756b6d4f360afd5ae3a18efefcd27a626d3a0d6cf22d9cba3e21b217afae62b8e9d11bc4960da - languageName: node - linkType: hard - -"@algolia/autocomplete-plugin-algolia-insights@npm:1.9.3": - version: 1.9.3 - resolution: "@algolia/autocomplete-plugin-algolia-insights@npm:1.9.3" - dependencies: - "@algolia/autocomplete-shared": 1.9.3 - peerDependencies: - search-insights: ">= 1 < 3" - checksum: 030695bf692021c27f52a3d4931efed23032796e326d4ae7957ae91b51c36a10dc2d885fb043909e853f961c994b8e9ff087f50bb918cfa075370562251a199f - languageName: node - linkType: hard - -"@algolia/autocomplete-preset-algolia@npm:1.9.3": - version: 1.9.3 - resolution: "@algolia/autocomplete-preset-algolia@npm:1.9.3" - dependencies: - "@algolia/autocomplete-shared": 1.9.3 - peerDependencies: - "@algolia/client-search": ">= 4.9.1 < 6" - algoliasearch: ">= 4.9.1 < 6" - checksum: 1ab3273d3054b348eed286ad1a54b21807846326485507b872477b827dc688006d4f14233cebd0bf49b2932ec8e29eca6d76e48a3c9e9e963b25153b987549c0 - languageName: node - linkType: hard - -"@algolia/autocomplete-shared@npm:1.9.3": - version: 1.9.3 - resolution: "@algolia/autocomplete-shared@npm:1.9.3" - peerDependencies: - "@algolia/client-search": ">= 4.9.1 < 6" - algoliasearch: ">= 4.9.1 < 6" - checksum: 06014c8b08d30c452de079f48c0235d8fa09904bf511da8dc1b7e491819940fd4ff36b9bf65340242b2e157a26799a3b9aea01feee9c5bf67be3c48d7dff43d7 - languageName: node - linkType: hard - -"@algolia/cache-browser-local-storage@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/cache-browser-local-storage@npm:4.22.1" - dependencies: - "@algolia/cache-common": 4.22.1 - checksum: 82e65c0dbc015d55bf17842757d21c3769fde95c10235d038062ccb41f2f64b3b1efd953df0f1b4892f352d83cdf2b8374a8f1b4e06b4ba42b35c3a449d316e7 - languageName: node - linkType: hard - -"@algolia/cache-common@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/cache-common@npm:4.22.1" - checksum: b57b195fdf75ca53417541fd03b48fa2351c18261f21ddc462ca4e76adef4750a35df9db707e9acc9f7a67fb465757d7f254423b4f8b0661056e4d2ec07392c1 - languageName: node - linkType: hard - -"@algolia/cache-in-memory@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/cache-in-memory@npm:4.22.1" - dependencies: - "@algolia/cache-common": 4.22.1 - checksum: 83dfe0e3360f5dd03ead8165f6e92e5a414d9e43eee2dd2fb682d418ddcf8c2cb176d040f57ac75018f62ab805518991157bf8572625f1420515f1959f4fdcaa - languageName: node - linkType: hard - -"@algolia/client-account@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/client-account@npm:4.22.1" - dependencies: - "@algolia/client-common": 4.22.1 - "@algolia/client-search": 4.22.1 - "@algolia/transporter": 4.22.1 - checksum: 85f3f7f9fa8e9d5b723e128f3b801583d73e4dc529086d57adfc1ac1718c3e13c0660c0d3f3a43a033d5aa231962ed405912826ae74a5c996929943fc575e7ed - languageName: node - linkType: hard - -"@algolia/client-analytics@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/client-analytics@npm:4.22.1" - dependencies: - "@algolia/client-common": 4.22.1 - "@algolia/client-search": 4.22.1 - "@algolia/requester-common": 4.22.1 - "@algolia/transporter": 4.22.1 - checksum: 8a352ae6bbddeba86fbf12de6bdd4f48d7331c5d8cdf803af803f5957a10d0a09ead58e75e364d25a7becdf68e9d5252377e307c055cbfbd6bc2048557bd75f6 - languageName: node - linkType: hard - -"@algolia/client-common@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/client-common@npm:4.22.1" - dependencies: - "@algolia/requester-common": 4.22.1 - "@algolia/transporter": 4.22.1 - checksum: 848225464bf62972eee80faed400b6e9666678e724c5ddd3ecedc6fb57db1cd5c47c4a06a4cba90f83db38353ea8dcbf53b51d1423164a0258bce7bbe417e7f8 - languageName: node - linkType: hard - -"@algolia/client-personalization@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/client-personalization@npm:4.22.1" - dependencies: - "@algolia/client-common": 4.22.1 - "@algolia/requester-common": 4.22.1 - "@algolia/transporter": 4.22.1 - checksum: 64c359c12d2722dfcc821a3bacfed2c49f94159060776fba871b66e4961757732d9696840f415b45bbe5ad1dbd39e2c512a81851a9cfeeec8511975396dad245 - languageName: node - linkType: hard - -"@algolia/client-search@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/client-search@npm:4.22.1" - dependencies: - "@algolia/client-common": 4.22.1 - "@algolia/requester-common": 4.22.1 - "@algolia/transporter": 4.22.1 - checksum: 0477f003c19cf1dbb6190fd491136927bc7174fa9d5a27dead218a51807da9c519be114000bd035265c018682fd8654d110cab07f74004c8c8d069db19800c3d - languageName: node - linkType: hard - -"@algolia/events@npm:^4.0.1": - version: 4.0.1 - resolution: "@algolia/events@npm:4.0.1" - checksum: 4f63943f4554cfcfed91d8b8c009a49dca192b81056d8c75e532796f64828cd69899852013e81ff3fff07030df8782b9b95c19a3da0845786bdfe22af42442c2 - languageName: node - linkType: hard - -"@algolia/logger-common@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/logger-common@npm:4.22.1" - checksum: 3ac5430f73e8eabb4e7561b271d38151fb7f128491437c202dac3d54f7c3a83ebc96818532746422ea4abdf9d68a6ccb716dc8b97f69101ff642afaff12057e5 - languageName: node - linkType: hard - -"@algolia/logger-console@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/logger-console@npm:4.22.1" - dependencies: - "@algolia/logger-common": 4.22.1 - checksum: fc6ea0623b257420f4e10ca1a78875dfb4c55841a0db5712150344d742ca457038f209b63c4e25848338c652e5ca5ea052a4143c87c3dc1203eedc5bff0c54f3 - languageName: node - linkType: hard - -"@algolia/requester-browser-xhr@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/requester-browser-xhr@npm:4.22.1" - dependencies: - "@algolia/requester-common": 4.22.1 - checksum: 825cf73fdc6aa8b159cd35ebb1facbeccb9fe27c4360661b7c9287d830d92409baaa38ad78f6c6f72bcdebc6e9d6ae8a5c8648e998fd34617b7f1eb7a59ea83b - languageName: node - linkType: hard - -"@algolia/requester-common@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/requester-common@npm:4.22.1" - checksum: 7caae4924efccabefd6b1a1d4e7090ed2f6dd4ab53dedf2f2095d5c1ef016c841129331c79791f7ded8072e174204503814f11119ac8bc75f5e10ae2eb42a85b - languageName: node - linkType: hard - -"@algolia/requester-node-http@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/requester-node-http@npm:4.22.1" - dependencies: - "@algolia/requester-common": 4.22.1 - checksum: 511348954b7747006875132ed0bc922ec3cfcf0187f41a665fc45426982479dd5cd55fab1de592ac9a71180539ff2e4c7457eea3bdab0e56bce27de2de1ba677 - languageName: node - linkType: hard - -"@algolia/transporter@npm:4.22.1": - version: 4.22.1 - resolution: "@algolia/transporter@npm:4.22.1" - dependencies: - "@algolia/cache-common": 4.22.1 - "@algolia/logger-common": 4.22.1 - "@algolia/requester-common": 4.22.1 - checksum: 737e787ac77215f30db54ebab3431e06cfee1790ab7cf45222546470546ecb276eedfaa0aedf78b2c95efa9d5550ea7d47c947535f143d7002a22f781d8721ce - languageName: node - linkType: hard - -"@ampproject/remapping@npm:^2.2.0": - version: 2.3.0 - resolution: "@ampproject/remapping@npm:2.3.0" - dependencies: - "@jridgewell/gen-mapping": ^0.3.5 - "@jridgewell/trace-mapping": ^0.3.24 - checksum: d3ad7b89d973df059c4e8e6d7c972cbeb1bb2f18f002a3bd04ae0707da214cb06cc06929b65aa2313b9347463df2914772298bae8b1d7973f246bb3f2ab3e8f0 - languageName: node - linkType: hard - -"@babel/code-frame@npm:^7.0.0, @babel/code-frame@npm:^7.10.4, @babel/code-frame@npm:^7.16.0, @babel/code-frame@npm:^7.23.5, @babel/code-frame@npm:^7.8.3": - version: 7.23.5 - resolution: "@babel/code-frame@npm:7.23.5" - dependencies: - "@babel/highlight": ^7.23.4 - chalk: ^2.4.2 - checksum: d90981fdf56a2824a9b14d19a4c0e8db93633fd488c772624b4e83e0ceac6039a27cd298a247c3214faa952bf803ba23696172ae7e7235f3b97f43ba278c569a - languageName: node - linkType: hard - -"@babel/compat-data@npm:^7.22.6, @babel/compat-data@npm:^7.23.5": - version: 7.23.5 - resolution: "@babel/compat-data@npm:7.23.5" - checksum: 06ce244cda5763295a0ea924728c09bae57d35713b675175227278896946f922a63edf803c322f855a3878323d48d0255a2a3023409d2a123483c8a69ebb4744 - languageName: node - linkType: hard - -"@babel/core@npm:7.12.9": - version: 7.12.9 - resolution: "@babel/core@npm:7.12.9" - dependencies: - "@babel/code-frame": ^7.10.4 - "@babel/generator": ^7.12.5 - "@babel/helper-module-transforms": ^7.12.1 - "@babel/helpers": ^7.12.5 - "@babel/parser": ^7.12.7 - "@babel/template": ^7.12.7 - "@babel/traverse": ^7.12.9 - "@babel/types": ^7.12.7 - convert-source-map: ^1.7.0 - debug: ^4.1.0 - gensync: ^1.0.0-beta.1 - json5: ^2.1.2 - lodash: ^4.17.19 - resolve: ^1.3.2 - semver: ^5.4.1 - source-map: ^0.5.0 - checksum: 4d34eca4688214a4eb6bd5dde906b69a7824f17b931f52cd03628a8ac94d8fbe15565aebffdde106e974c8738cd64ac62c6a6060baa7139a06db1f18c4ff872d - languageName: node - linkType: hard - -"@babel/core@npm:^7.18.6, @babel/core@npm:^7.19.6": - version: 7.24.0 - resolution: "@babel/core@npm:7.24.0" - dependencies: - "@ampproject/remapping": ^2.2.0 - "@babel/code-frame": ^7.23.5 - "@babel/generator": ^7.23.6 - "@babel/helper-compilation-targets": ^7.23.6 - "@babel/helper-module-transforms": ^7.23.3 - "@babel/helpers": ^7.24.0 - "@babel/parser": ^7.24.0 - "@babel/template": ^7.24.0 - "@babel/traverse": ^7.24.0 - "@babel/types": ^7.24.0 - convert-source-map: ^2.0.0 - debug: ^4.1.0 - gensync: ^1.0.0-beta.2 - json5: ^2.2.3 - semver: ^6.3.1 - checksum: 3124a8a1c550f3818a55dc6f621af9c580b4959bc780cce7220f671088c404830f41870573f5acf7f837878f8aa82e84675ea148a9852c1b053533cb899300d3 - languageName: node - linkType: hard - -"@babel/eslint-parser@npm:^7.18.2": - version: 7.23.10 - resolution: "@babel/eslint-parser@npm:7.23.10" - dependencies: - "@nicolo-ribaudo/eslint-scope-5-internals": 5.1.1-v1 - eslint-visitor-keys: ^2.1.0 - semver: ^6.3.1 - peerDependencies: - "@babel/core": ^7.11.0 - eslint: ^7.5.0 || ^8.0.0 - checksum: 81249edee14f95720044f393b5b0a681a230ac2bde3d656b0c55b1cec4c5cb99ce0584ef6acd2e5413acc7905daee1b2e1db8e3fab18a3a74c508098a584ec9a - languageName: node - linkType: hard - -"@babel/generator@npm:^7.12.5, @babel/generator@npm:^7.18.7, @babel/generator@npm:^7.23.6": - version: 7.23.6 - resolution: "@babel/generator@npm:7.23.6" - dependencies: - "@babel/types": ^7.23.6 - "@jridgewell/gen-mapping": ^0.3.2 - "@jridgewell/trace-mapping": ^0.3.17 - jsesc: ^2.5.1 - checksum: 1a1a1c4eac210f174cd108d479464d053930a812798e09fee069377de39a893422df5b5b146199ead7239ae6d3a04697b45fc9ac6e38e0f6b76374390f91fc6c - languageName: node - linkType: hard - -"@babel/helper-annotate-as-pure@npm:^7.22.5": - version: 7.22.5 - resolution: "@babel/helper-annotate-as-pure@npm:7.22.5" - dependencies: - "@babel/types": ^7.22.5 - checksum: 53da330f1835c46f26b7bf4da31f7a496dee9fd8696cca12366b94ba19d97421ce519a74a837f687749318f94d1a37f8d1abcbf35e8ed22c32d16373b2f6198d - languageName: node - linkType: hard - -"@babel/helper-builder-binary-assignment-operator-visitor@npm:^7.22.15": - version: 7.22.15 - resolution: "@babel/helper-builder-binary-assignment-operator-visitor@npm:7.22.15" - dependencies: - "@babel/types": ^7.22.15 - checksum: 639c697a1c729f9fafa2dd4c9af2e18568190299b5907bd4c2d0bc818fcbd1e83ffeecc2af24327a7faa7ac4c34edd9d7940510a5e66296c19bad17001cf5c7a - languageName: node - linkType: hard - -"@babel/helper-compilation-targets@npm:^7.22.15, @babel/helper-compilation-targets@npm:^7.22.6, @babel/helper-compilation-targets@npm:^7.23.6": - version: 7.23.6 - resolution: "@babel/helper-compilation-targets@npm:7.23.6" - dependencies: - "@babel/compat-data": ^7.23.5 - "@babel/helper-validator-option": ^7.23.5 - browserslist: ^4.22.2 - lru-cache: ^5.1.1 - semver: ^6.3.1 - checksum: c630b98d4527ac8fe2c58d9a06e785dfb2b73ec71b7c4f2ddf90f814b5f75b547f3c015f110a010fd31f76e3864daaf09f3adcd2f6acdbfb18a8de3a48717590 - languageName: node - linkType: hard - -"@babel/helper-create-class-features-plugin@npm:^7.22.15, @babel/helper-create-class-features-plugin@npm:^7.23.6": - version: 7.24.0 - resolution: "@babel/helper-create-class-features-plugin@npm:7.24.0" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-function-name": ^7.23.0 - "@babel/helper-member-expression-to-functions": ^7.23.0 - "@babel/helper-optimise-call-expression": ^7.22.5 - "@babel/helper-replace-supers": ^7.22.20 - "@babel/helper-skip-transparent-expression-wrappers": ^7.22.5 - "@babel/helper-split-export-declaration": ^7.22.6 - semver: ^6.3.1 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: 407ad4a9bf982a40a2c34c65bfc5d1349bb100076b2310f11889d803b354609f27f5397705aca0c047dfecb145321ec18ec1e27be7bc642cb69a32204781400d - languageName: node - linkType: hard - -"@babel/helper-create-regexp-features-plugin@npm:^7.18.6, @babel/helper-create-regexp-features-plugin@npm:^7.22.15, @babel/helper-create-regexp-features-plugin@npm:^7.22.5": - version: 7.22.15 - resolution: "@babel/helper-create-regexp-features-plugin@npm:7.22.15" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - regexpu-core: ^5.3.1 - semver: ^6.3.1 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: 0243b8d4854f1dc8861b1029a46d3f6393ad72f366a5a08e36a4648aa682044f06da4c6e87a456260e1e1b33c999f898ba591a0760842c1387bcc93fbf2151a6 - languageName: node - linkType: hard - -"@babel/helper-define-polyfill-provider@npm:^0.5.0": - version: 0.5.0 - resolution: "@babel/helper-define-polyfill-provider@npm:0.5.0" - dependencies: - "@babel/helper-compilation-targets": ^7.22.6 - "@babel/helper-plugin-utils": ^7.22.5 - debug: ^4.1.1 - lodash.debounce: ^4.0.8 - resolve: ^1.14.2 - peerDependencies: - "@babel/core": ^7.4.0 || ^8.0.0-0 <8.0.0 - checksum: d24626b819d3875cb65189d761004e9230f2b3fb60542525c4785616f4b2366741369235a864b744f54beb26d625ae4b0af0c9bb3306b61bf4fccb61e0620020 - languageName: node - linkType: hard - -"@babel/helper-environment-visitor@npm:^7.22.20": - version: 7.22.20 - resolution: "@babel/helper-environment-visitor@npm:7.22.20" - checksum: d80ee98ff66f41e233f36ca1921774c37e88a803b2f7dca3db7c057a5fea0473804db9fb6729e5dbfd07f4bed722d60f7852035c2c739382e84c335661590b69 - languageName: node - linkType: hard - -"@babel/helper-function-name@npm:^7.22.5, @babel/helper-function-name@npm:^7.23.0": - version: 7.23.0 - resolution: "@babel/helper-function-name@npm:7.23.0" - dependencies: - "@babel/template": ^7.22.15 - "@babel/types": ^7.23.0 - checksum: e44542257b2d4634a1f979244eb2a4ad8e6d75eb6761b4cfceb56b562f7db150d134bc538c8e6adca3783e3bc31be949071527aa8e3aab7867d1ad2d84a26e10 - languageName: node - linkType: hard - -"@babel/helper-hoist-variables@npm:^7.22.5": - version: 7.22.5 - resolution: "@babel/helper-hoist-variables@npm:7.22.5" - dependencies: - "@babel/types": ^7.22.5 - checksum: 394ca191b4ac908a76e7c50ab52102669efe3a1c277033e49467913c7ed6f7c64d7eacbeabf3bed39ea1f41731e22993f763b1edce0f74ff8563fd1f380d92cc - languageName: node - linkType: hard - -"@babel/helper-member-expression-to-functions@npm:^7.22.15, @babel/helper-member-expression-to-functions@npm:^7.23.0": - version: 7.23.0 - resolution: "@babel/helper-member-expression-to-functions@npm:7.23.0" - dependencies: - "@babel/types": ^7.23.0 - checksum: 494659361370c979ada711ca685e2efe9460683c36db1b283b446122596602c901e291e09f2f980ecedfe6e0f2bd5386cb59768285446530df10c14df1024e75 - languageName: node - linkType: hard - -"@babel/helper-module-imports@npm:^7.22.15": - version: 7.22.15 - resolution: "@babel/helper-module-imports@npm:7.22.15" - dependencies: - "@babel/types": ^7.22.15 - checksum: ecd7e457df0a46f889228f943ef9b4a47d485d82e030676767e6a2fdcbdaa63594d8124d4b55fd160b41c201025aec01fc27580352b1c87a37c9c6f33d116702 - languageName: node - linkType: hard - -"@babel/helper-module-transforms@npm:^7.12.1, @babel/helper-module-transforms@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/helper-module-transforms@npm:7.23.3" - dependencies: - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-module-imports": ^7.22.15 - "@babel/helper-simple-access": ^7.22.5 - "@babel/helper-split-export-declaration": ^7.22.6 - "@babel/helper-validator-identifier": ^7.22.20 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: 5d0895cfba0e16ae16f3aa92fee108517023ad89a855289c4eb1d46f7aef4519adf8e6f971e1d55ac20c5461610e17213f1144097a8f932e768a9132e2278d71 - languageName: node - linkType: hard - -"@babel/helper-optimise-call-expression@npm:^7.22.5": - version: 7.22.5 - resolution: "@babel/helper-optimise-call-expression@npm:7.22.5" - dependencies: - "@babel/types": ^7.22.5 - checksum: c70ef6cc6b6ed32eeeec4482127e8be5451d0e5282d5495d5d569d39eb04d7f1d66ec99b327f45d1d5842a9ad8c22d48567e93fc502003a47de78d122e355f7c - languageName: node - linkType: hard - -"@babel/helper-plugin-utils@npm:7.10.4": - version: 7.10.4 - resolution: "@babel/helper-plugin-utils@npm:7.10.4" - checksum: 639ed8fc462b97a83226cee6bb081b1d77e7f73e8b033d2592ed107ee41d96601e321e5ea53a33e47469c7f1146b250a3dcda5ab873c7de162ab62120c341a41 - languageName: node - linkType: hard - -"@babel/helper-plugin-utils@npm:^7.0.0, @babel/helper-plugin-utils@npm:^7.10.4, @babel/helper-plugin-utils@npm:^7.12.13, @babel/helper-plugin-utils@npm:^7.14.5, @babel/helper-plugin-utils@npm:^7.18.6, @babel/helper-plugin-utils@npm:^7.22.5, @babel/helper-plugin-utils@npm:^7.24.0, @babel/helper-plugin-utils@npm:^7.8.0, @babel/helper-plugin-utils@npm:^7.8.3": - version: 7.24.0 - resolution: "@babel/helper-plugin-utils@npm:7.24.0" - checksum: e2baa0eede34d2fa2265947042aa84d444aa48dc51e9feedea55b67fc1bc3ab051387e18b33ca7748285a6061390831ab82f8a2c767d08470b93500ec727e9b9 - languageName: node - linkType: hard - -"@babel/helper-remap-async-to-generator@npm:^7.22.20": - version: 7.22.20 - resolution: "@babel/helper-remap-async-to-generator@npm:7.22.20" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-wrap-function": ^7.22.20 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: 2fe6300a6f1b58211dffa0aed1b45d4958506d096543663dba83bd9251fe8d670fa909143a65b45e72acb49e7e20fbdb73eae315d9ddaced467948c3329986e7 - languageName: node - linkType: hard - -"@babel/helper-replace-supers@npm:^7.22.20": - version: 7.22.20 - resolution: "@babel/helper-replace-supers@npm:7.22.20" - dependencies: - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-member-expression-to-functions": ^7.22.15 - "@babel/helper-optimise-call-expression": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: a0008332e24daedea2e9498733e3c39b389d6d4512637e000f96f62b797e702ee24a407ccbcd7a236a551590a38f31282829a8ef35c50a3c0457d88218cae639 - languageName: node - linkType: hard - -"@babel/helper-simple-access@npm:^7.22.5": - version: 7.22.5 - resolution: "@babel/helper-simple-access@npm:7.22.5" - dependencies: - "@babel/types": ^7.22.5 - checksum: fe9686714caf7d70aedb46c3cce090f8b915b206e09225f1e4dbc416786c2fdbbee40b38b23c268b7ccef749dd2db35f255338fb4f2444429874d900dede5ad2 - languageName: node - linkType: hard - -"@babel/helper-skip-transparent-expression-wrappers@npm:^7.22.5": - version: 7.22.5 - resolution: "@babel/helper-skip-transparent-expression-wrappers@npm:7.22.5" - dependencies: - "@babel/types": ^7.22.5 - checksum: 1012ef2295eb12dc073f2b9edf3425661e9b8432a3387e62a8bc27c42963f1f216ab3124228015c748770b2257b4f1fda882ca8fa34c0bf485e929ae5bc45244 - languageName: node - linkType: hard - -"@babel/helper-split-export-declaration@npm:^7.22.6": - version: 7.22.6 - resolution: "@babel/helper-split-export-declaration@npm:7.22.6" - dependencies: - "@babel/types": ^7.22.5 - checksum: e141cace583b19d9195f9c2b8e17a3ae913b7ee9b8120246d0f9ca349ca6f03cb2c001fd5ec57488c544347c0bb584afec66c936511e447fd20a360e591ac921 - languageName: node - linkType: hard - -"@babel/helper-string-parser@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/helper-string-parser@npm:7.23.4" - checksum: c0641144cf1a7e7dc93f3d5f16d5327465b6cf5d036b48be61ecba41e1eece161b48f46b7f960951b67f8c3533ce506b16dece576baef4d8b3b49f8c65410f90 - languageName: node - linkType: hard - -"@babel/helper-validator-identifier@npm:^7.22.20": - version: 7.22.20 - resolution: "@babel/helper-validator-identifier@npm:7.22.20" - checksum: 136412784d9428266bcdd4d91c32bcf9ff0e8d25534a9d94b044f77fe76bc50f941a90319b05aafd1ec04f7d127cd57a179a3716009ff7f3412ef835ada95bdc - languageName: node - linkType: hard - -"@babel/helper-validator-option@npm:^7.22.15, @babel/helper-validator-option@npm:^7.23.5": - version: 7.23.5 - resolution: "@babel/helper-validator-option@npm:7.23.5" - checksum: 537cde2330a8aede223552510e8a13e9c1c8798afee3757995a7d4acae564124fe2bf7e7c3d90d62d3657434a74340a274b3b3b1c6f17e9a2be1f48af29cb09e - languageName: node - linkType: hard - -"@babel/helper-wrap-function@npm:^7.22.20": - version: 7.22.20 - resolution: "@babel/helper-wrap-function@npm:7.22.20" - dependencies: - "@babel/helper-function-name": ^7.22.5 - "@babel/template": ^7.22.15 - "@babel/types": ^7.22.19 - checksum: 221ed9b5572612aeb571e4ce6a256f2dee85b3c9536f1dd5e611b0255e5f59a3d0ec392d8d46d4152149156a8109f92f20379b1d6d36abb613176e0e33f05fca - languageName: node - linkType: hard - -"@babel/helpers@npm:^7.12.5, @babel/helpers@npm:^7.24.0": - version: 7.24.0 - resolution: "@babel/helpers@npm:7.24.0" - dependencies: - "@babel/template": ^7.24.0 - "@babel/traverse": ^7.24.0 - "@babel/types": ^7.24.0 - checksum: 2c1d9547c7a6e5aa648d4f3959252f825d4176ee52ed5430d65e50e68a138776adfd87ff3c8f9719ea6cd36601e935936d006340770ad8282b8664770aca8e33 - languageName: node - linkType: hard - -"@babel/highlight@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/highlight@npm:7.23.4" - dependencies: - "@babel/helper-validator-identifier": ^7.22.20 - chalk: ^2.4.2 - js-tokens: ^4.0.0 - checksum: 643acecdc235f87d925979a979b539a5d7d1f31ae7db8d89047269082694122d11aa85351304c9c978ceeb6d250591ccadb06c366f358ccee08bb9c122476b89 - languageName: node - linkType: hard - -"@babel/parser@npm:^7.12.7, @babel/parser@npm:^7.18.8, @babel/parser@npm:^7.24.0": - version: 7.24.0 - resolution: "@babel/parser@npm:7.24.0" - bin: - parser: ./bin/babel-parser.js - checksum: 4a6afec49487a212e7a27345b0c090b56905efb62c0b3a1499b0a57a5b3bf43d9d1e99e31b137080eacc24dee659a29699740d0a6289999117c0d8c5a04bd68f - languageName: node - linkType: hard - -"@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: ddbaf2c396b7780f15e80ee01d6dd790db076985f3dfeb6527d1a8d4cacf370e49250396a3aa005b2c40233cac214a106232f83703d5e8491848bde273938232 - languageName: node - linkType: hard - -"@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-skip-transparent-expression-wrappers": ^7.22.5 - "@babel/plugin-transform-optional-chaining": ^7.23.3 - peerDependencies: - "@babel/core": ^7.13.0 - checksum: 434b9d710ae856fa1a456678cc304fbc93915af86d581ee316e077af746a709a741ea39d7e1d4f5b98861b629cc7e87f002d3138f5e836775632466d4c74aef2 - languageName: node - linkType: hard - -"@babel/plugin-bugfix-v8-static-class-fields-redefine-readonly@npm:^7.23.7": - version: 7.23.7 - resolution: "@babel/plugin-bugfix-v8-static-class-fields-redefine-readonly@npm:7.23.7" - dependencies: - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: f88e400b548202a6f8c5dfd25bc4949a13ea1ccb64a170d7dea4deaa655a0fcb001d3fd61c35e1ad9c09a3d5f0d43f783400425471fe6d660ccaf33dabea9aba - languageName: node - linkType: hard - -"@babel/plugin-proposal-object-rest-spread@npm:7.12.1": - version: 7.12.1 - resolution: "@babel/plugin-proposal-object-rest-spread@npm:7.12.1" - dependencies: - "@babel/helper-plugin-utils": ^7.10.4 - "@babel/plugin-syntax-object-rest-spread": ^7.8.0 - "@babel/plugin-transform-parameters": ^7.12.1 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 221a41630c9a7162bf0416c71695b3f7f38482078a1d0d3af7abdc4f07ea1c9feed890399158d56c1d0278c971fe6f565ce822e9351e4481f7d98e9ff735dced - languageName: node - linkType: hard - -"@babel/plugin-proposal-private-property-in-object@npm:7.21.0-placeholder-for-preset-env.2": - version: 7.21.0-placeholder-for-preset-env.2 - resolution: "@babel/plugin-proposal-private-property-in-object@npm:7.21.0-placeholder-for-preset-env.2" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: d97745d098b835d55033ff3a7fb2b895b9c5295b08a5759e4f20df325aa385a3e0bc9bd5ad8f2ec554a44d4e6525acfc257b8c5848a1345cb40f26a30e277e91 - languageName: node - linkType: hard - -"@babel/plugin-syntax-async-generators@npm:^7.8.4": - version: 7.8.4 - resolution: "@babel/plugin-syntax-async-generators@npm:7.8.4" - dependencies: - "@babel/helper-plugin-utils": ^7.8.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 7ed1c1d9b9e5b64ef028ea5e755c0be2d4e5e4e3d6cf7df757b9a8c4cfa4193d268176d0f1f7fbecdda6fe722885c7fda681f480f3741d8a2d26854736f05367 - languageName: node - linkType: hard - -"@babel/plugin-syntax-class-properties@npm:^7.12.13": - version: 7.12.13 - resolution: "@babel/plugin-syntax-class-properties@npm:7.12.13" - dependencies: - "@babel/helper-plugin-utils": ^7.12.13 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 24f34b196d6342f28d4bad303612d7ff566ab0a013ce89e775d98d6f832969462e7235f3e7eaf17678a533d4be0ba45d3ae34ab4e5a9dcbda5d98d49e5efa2fc - languageName: node - linkType: hard - -"@babel/plugin-syntax-class-static-block@npm:^7.14.5": - version: 7.14.5 - resolution: "@babel/plugin-syntax-class-static-block@npm:7.14.5" - dependencies: - "@babel/helper-plugin-utils": ^7.14.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 3e80814b5b6d4fe17826093918680a351c2d34398a914ce6e55d8083d72a9bdde4fbaf6a2dcea0e23a03de26dc2917ae3efd603d27099e2b98380345703bf948 - languageName: node - linkType: hard - -"@babel/plugin-syntax-dynamic-import@npm:^7.8.3": - version: 7.8.3 - resolution: "@babel/plugin-syntax-dynamic-import@npm:7.8.3" - dependencies: - "@babel/helper-plugin-utils": ^7.8.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: ce307af83cf433d4ec42932329fad25fa73138ab39c7436882ea28742e1c0066626d224e0ad2988724c82644e41601cef607b36194f695cb78a1fcdc959637bd - languageName: node - linkType: hard - -"@babel/plugin-syntax-export-namespace-from@npm:^7.8.3": - version: 7.8.3 - resolution: "@babel/plugin-syntax-export-namespace-from@npm:7.8.3" - dependencies: - "@babel/helper-plugin-utils": ^7.8.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 85740478be5b0de185228e7814451d74ab8ce0a26fcca7613955262a26e99e8e15e9da58f60c754b84515d4c679b590dbd3f2148f0f58025f4ae706f1c5a5d4a - languageName: node - linkType: hard - -"@babel/plugin-syntax-import-assertions@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-syntax-import-assertions@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 883e6b35b2da205138caab832d54505271a3fee3fc1e8dc0894502434fc2b5d517cbe93bbfbfef8068a0fb6ec48ebc9eef3f605200a489065ba43d8cddc1c9a7 - languageName: node - linkType: hard - -"@babel/plugin-syntax-import-attributes@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-syntax-import-attributes@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 9aed7661ffb920ca75df9f494757466ca92744e43072e0848d87fa4aa61a3f2ee5a22198ac1959856c036434b5614a8f46f1fb70298835dbe28220cdd1d4c11e - languageName: node - linkType: hard - -"@babel/plugin-syntax-import-meta@npm:^7.10.4": - version: 7.10.4 - resolution: "@babel/plugin-syntax-import-meta@npm:7.10.4" - dependencies: - "@babel/helper-plugin-utils": ^7.10.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 166ac1125d10b9c0c430e4156249a13858c0366d38844883d75d27389621ebe651115cb2ceb6dc011534d5055719fa1727b59f39e1ab3ca97820eef3dcab5b9b - languageName: node - linkType: hard - -"@babel/plugin-syntax-json-strings@npm:^7.8.3": - version: 7.8.3 - resolution: "@babel/plugin-syntax-json-strings@npm:7.8.3" - dependencies: - "@babel/helper-plugin-utils": ^7.8.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: bf5aea1f3188c9a507e16efe030efb996853ca3cadd6512c51db7233cc58f3ac89ff8c6bdfb01d30843b161cfe7d321e1bf28da82f7ab8d7e6bc5464666f354a - languageName: node - linkType: hard - -"@babel/plugin-syntax-jsx@npm:7.12.1": - version: 7.12.1 - resolution: "@babel/plugin-syntax-jsx@npm:7.12.1" - dependencies: - "@babel/helper-plugin-utils": ^7.10.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: d4b9b589c484b2e0856799770f060dff34c67b24d7f4526f66309a0e0e9cf388a5c1f2c0da329d1973cc87d1b2cede8f3dc8facfac59e785d6393a003bcdd0f9 - languageName: node - linkType: hard - -"@babel/plugin-syntax-jsx@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-syntax-jsx@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 89037694314a74e7f0e7a9c8d3793af5bf6b23d80950c29b360db1c66859d67f60711ea437e70ad6b5b4b29affe17eababda841b6c01107c2b638e0493bafb4e - languageName: node - linkType: hard - -"@babel/plugin-syntax-logical-assignment-operators@npm:^7.10.4": - version: 7.10.4 - resolution: "@babel/plugin-syntax-logical-assignment-operators@npm:7.10.4" - dependencies: - "@babel/helper-plugin-utils": ^7.10.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: aff33577037e34e515911255cdbb1fd39efee33658aa00b8a5fd3a4b903585112d037cce1cc9e4632f0487dc554486106b79ccd5ea63a2e00df4363f6d4ff886 - languageName: node - linkType: hard - -"@babel/plugin-syntax-nullish-coalescing-operator@npm:^7.8.3": - version: 7.8.3 - resolution: "@babel/plugin-syntax-nullish-coalescing-operator@npm:7.8.3" - dependencies: - "@babel/helper-plugin-utils": ^7.8.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 87aca4918916020d1fedba54c0e232de408df2644a425d153be368313fdde40d96088feed6c4e5ab72aac89be5d07fef2ddf329a15109c5eb65df006bf2580d1 - languageName: node - linkType: hard - -"@babel/plugin-syntax-numeric-separator@npm:^7.10.4": - version: 7.10.4 - resolution: "@babel/plugin-syntax-numeric-separator@npm:7.10.4" - dependencies: - "@babel/helper-plugin-utils": ^7.10.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 01ec5547bd0497f76cc903ff4d6b02abc8c05f301c88d2622b6d834e33a5651aa7c7a3d80d8d57656a4588f7276eba357f6b7e006482f5b564b7a6488de493a1 - languageName: node - linkType: hard - -"@babel/plugin-syntax-object-rest-spread@npm:7.8.3, @babel/plugin-syntax-object-rest-spread@npm:^7.8.0, @babel/plugin-syntax-object-rest-spread@npm:^7.8.3": - version: 7.8.3 - resolution: "@babel/plugin-syntax-object-rest-spread@npm:7.8.3" - dependencies: - "@babel/helper-plugin-utils": ^7.8.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: fddcf581a57f77e80eb6b981b10658421bc321ba5f0a5b754118c6a92a5448f12a0c336f77b8abf734841e102e5126d69110a306eadb03ca3e1547cab31f5cbf - languageName: node - linkType: hard - -"@babel/plugin-syntax-optional-catch-binding@npm:^7.8.3": - version: 7.8.3 - resolution: "@babel/plugin-syntax-optional-catch-binding@npm:7.8.3" - dependencies: - "@babel/helper-plugin-utils": ^7.8.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 910d90e72bc90ea1ce698e89c1027fed8845212d5ab588e35ef91f13b93143845f94e2539d831dc8d8ededc14ec02f04f7bd6a8179edd43a326c784e7ed7f0b9 - languageName: node - linkType: hard - -"@babel/plugin-syntax-optional-chaining@npm:^7.8.3": - version: 7.8.3 - resolution: "@babel/plugin-syntax-optional-chaining@npm:7.8.3" - dependencies: - "@babel/helper-plugin-utils": ^7.8.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: eef94d53a1453361553c1f98b68d17782861a04a392840341bc91780838dd4e695209c783631cf0de14c635758beafb6a3a65399846ffa4386bff90639347f30 - languageName: node - linkType: hard - -"@babel/plugin-syntax-private-property-in-object@npm:^7.14.5": - version: 7.14.5 - resolution: "@babel/plugin-syntax-private-property-in-object@npm:7.14.5" - dependencies: - "@babel/helper-plugin-utils": ^7.14.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: b317174783e6e96029b743ccff2a67d63d38756876e7e5d0ba53a322e38d9ca452c13354a57de1ad476b4c066dbae699e0ca157441da611117a47af88985ecda - languageName: node - linkType: hard - -"@babel/plugin-syntax-top-level-await@npm:^7.14.5": - version: 7.14.5 - resolution: "@babel/plugin-syntax-top-level-await@npm:7.14.5" - dependencies: - "@babel/helper-plugin-utils": ^7.14.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: bbd1a56b095be7820029b209677b194db9b1d26691fe999856462e66b25b281f031f3dfd91b1619e9dcf95bebe336211833b854d0fb8780d618e35667c2d0d7e - languageName: node - linkType: hard - -"@babel/plugin-syntax-typescript@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-syntax-typescript@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: abfad3a19290d258b028e285a1f34c9b8a0cbe46ef79eafed4ed7ffce11b5d0720b5e536c82f91cbd8442cde35a3dd8e861fa70366d87ff06fdc0d4756e30876 - languageName: node - linkType: hard - -"@babel/plugin-syntax-unicode-sets-regex@npm:^7.18.6": - version: 7.18.6 - resolution: "@babel/plugin-syntax-unicode-sets-regex@npm:7.18.6" - dependencies: - "@babel/helper-create-regexp-features-plugin": ^7.18.6 - "@babel/helper-plugin-utils": ^7.18.6 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: a651d700fe63ff0ddfd7186f4ebc24447ca734f114433139e3c027bc94a900d013cf1ef2e2db8430425ba542e39ae160c3b05f06b59fd4656273a3df97679e9c - languageName: node - linkType: hard - -"@babel/plugin-transform-arrow-functions@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-arrow-functions@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 1e99118176e5366c2636064d09477016ab5272b2a92e78b8edb571d20bc3eaa881789a905b20042942c3c2d04efc530726cf703f937226db5ebc495f5d067e66 - languageName: node - linkType: hard - -"@babel/plugin-transform-async-generator-functions@npm:^7.23.9": - version: 7.23.9 - resolution: "@babel/plugin-transform-async-generator-functions@npm:7.23.9" - dependencies: - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-remap-async-to-generator": ^7.22.20 - "@babel/plugin-syntax-async-generators": ^7.8.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: d402494087a6b803803eb5ab46b837aab100a04c4c5148e38bfa943ea1bbfc1ecfb340f1ced68972564312d3580f550c125f452372e77607a558fbbaf98c31c0 - languageName: node - linkType: hard - -"@babel/plugin-transform-async-to-generator@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-async-to-generator@npm:7.23.3" - dependencies: - "@babel/helper-module-imports": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-remap-async-to-generator": ^7.22.20 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 2e9d9795d4b3b3d8090332104e37061c677f29a1ce65bcbda4099a32d243e5d9520270a44bbabf0fb1fb40d463bd937685b1a1042e646979086c546d55319c3c - languageName: node - linkType: hard - -"@babel/plugin-transform-block-scoped-functions@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-block-scoped-functions@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: e63b16d94ee5f4d917e669da3db5ea53d1e7e79141a2ec873c1e644678cdafe98daa556d0d359963c827863d6b3665d23d4938a94a4c5053a1619c4ebd01d020 - languageName: node - linkType: hard - -"@babel/plugin-transform-block-scoping@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-block-scoping@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: fc4b2100dd9f2c47d694b4b35ae8153214ccb4e24ef545c259a9db17211b18b6a430f22799b56db8f6844deaeaa201af45a03331d0c80cc28b0c4e3c814570e4 - languageName: node - linkType: hard - -"@babel/plugin-transform-class-properties@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-class-properties@npm:7.23.3" - dependencies: - "@babel/helper-create-class-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 9c6f8366f667897541d360246de176dd29efc7a13d80a5b48361882f7173d9173be4646c3b7d9b003ccc0e01e25df122330308f33db921fa553aa17ad544b3fc - languageName: node - linkType: hard - -"@babel/plugin-transform-class-static-block@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-class-static-block@npm:7.23.4" - dependencies: - "@babel/helper-create-class-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-class-static-block": ^7.14.5 - peerDependencies: - "@babel/core": ^7.12.0 - checksum: c8bfaba19a674fc2eb54edad71e958647360474e3163e8226f1acd63e4e2dbec32a171a0af596c1dc5359aee402cc120fea7abd1fb0e0354b6527f0fc9e8aa1e - languageName: node - linkType: hard - -"@babel/plugin-transform-classes@npm:^7.23.8": - version: 7.23.8 - resolution: "@babel/plugin-transform-classes@npm:7.23.8" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - "@babel/helper-compilation-targets": ^7.23.6 - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-function-name": ^7.23.0 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-replace-supers": ^7.22.20 - "@babel/helper-split-export-declaration": ^7.22.6 - globals: ^11.1.0 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 7dee6cebe52131d2d16944f36e1fdb9d4b24f44d0e7e450f93a44435d001f17cc0789a4cb6b15ec67c8e484581b8a730b5c3ec374470f29ff0133086955b8c58 - languageName: node - linkType: hard - -"@babel/plugin-transform-computed-properties@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-computed-properties@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/template": ^7.22.15 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 80452661dc25a0956f89fe98cb562e8637a9556fb6c00d312c57653ce7df8798f58d138603c7e1aad96614ee9ccd10c47e50ab9ded6b6eded5adeb230d2a982e - languageName: node - linkType: hard - -"@babel/plugin-transform-destructuring@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-destructuring@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 9e015099877272501162419bfe781689aec5c462cd2aec752ee22288f209eec65969ff11b8fdadca2eaddea71d705d3bba5b9c60752fcc1be67874fcec687105 - languageName: node - linkType: hard - -"@babel/plugin-transform-dotall-regex@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-dotall-regex@npm:7.23.3" - dependencies: - "@babel/helper-create-regexp-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: a2dbbf7f1ea16a97948c37df925cb364337668c41a3948b8d91453f140507bd8a3429030c7ce66d09c299987b27746c19a2dd18b6f17dcb474854b14fd9159a3 - languageName: node - linkType: hard - -"@babel/plugin-transform-duplicate-keys@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-duplicate-keys@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: c2a21c34dc0839590cd945192cbc46fde541a27e140c48fe1808315934664cdbf18db64889e23c4eeb6bad9d3e049482efdca91d29de5734ffc887c4fbabaa16 - languageName: node - linkType: hard - -"@babel/plugin-transform-dynamic-import@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-dynamic-import@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-dynamic-import": ^7.8.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 57a722604c430d9f3dacff22001a5f31250e34785d4969527a2ae9160fa86858d0892c5b9ff7a06a04076f8c76c9e6862e0541aadca9c057849961343aab0845 - languageName: node - linkType: hard - -"@babel/plugin-transform-exponentiation-operator@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-exponentiation-operator@npm:7.23.3" - dependencies: - "@babel/helper-builder-binary-assignment-operator-visitor": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 00d05ab14ad0f299160fcf9d8f55a1cc1b740e012ab0b5ce30207d2365f091665115557af7d989cd6260d075a252d9e4283de5f2b247dfbbe0e42ae586e6bf66 - languageName: node - linkType: hard - -"@babel/plugin-transform-export-namespace-from@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-export-namespace-from@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-export-namespace-from": ^7.8.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 9f770a81bfd03b48d6ba155d452946fd56d6ffe5b7d871e9ec2a0b15e0f424273b632f3ed61838b90015b25bbda988896b7a46c7d964fbf8f6feb5820b309f93 - languageName: node - linkType: hard - -"@babel/plugin-transform-for-of@npm:^7.23.6": - version: 7.23.6 - resolution: "@babel/plugin-transform-for-of@npm:7.23.6" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-skip-transparent-expression-wrappers": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 228c060aa61f6aa89dc447170075f8214863b94f830624e74ade99c1a09316897c12d76e848460b0b506593e58dbc42739af6dc4cb0fe9b84dffe4a596050a36 - languageName: node - linkType: hard - -"@babel/plugin-transform-function-name@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-function-name@npm:7.23.3" - dependencies: - "@babel/helper-compilation-targets": ^7.22.15 - "@babel/helper-function-name": ^7.23.0 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 355c6dbe07c919575ad42b2f7e020f320866d72f8b79181a16f8e0cd424a2c761d979f03f47d583d9471b55dcd68a8a9d829b58e1eebcd572145b934b48975a6 - languageName: node - linkType: hard - -"@babel/plugin-transform-json-strings@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-json-strings@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-json-strings": ^7.8.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: f9019820233cf8955d8ba346df709a0683c120fe86a24ed1c9f003f2db51197b979efc88f010d558a12e1491210fc195a43cd1c7fee5e23b92da38f793a875de - languageName: node - linkType: hard - -"@babel/plugin-transform-literals@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-literals@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 519a544cd58586b9001c4c9b18da25a62f17d23c48600ff7a685d75ca9eb18d2c5e8f5476f067f0a8f1fea2a31107eff950b9864833061e6076dcc4bdc3e71ed - languageName: node - linkType: hard - -"@babel/plugin-transform-logical-assignment-operators@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-logical-assignment-operators@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-logical-assignment-operators": ^7.10.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 2ae1dc9b4ff3bf61a990ff3accdecb2afe3a0ca649b3e74c010078d1cdf29ea490f50ac0a905306a2bcf9ac177889a39ac79bdcc3a0fdf220b3b75fac18d39b5 - languageName: node - linkType: hard - -"@babel/plugin-transform-member-expression-literals@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-member-expression-literals@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 95cec13c36d447c5aa6b8e4c778b897eeba66dcb675edef01e0d2afcec9e8cb9726baf4f81b4bbae7a782595aed72e6a0d44ffb773272c3ca180fada99bf92db - languageName: node - linkType: hard - -"@babel/plugin-transform-modules-amd@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-modules-amd@npm:7.23.3" - dependencies: - "@babel/helper-module-transforms": ^7.23.3 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: d163737b6a3d67ea579c9aa3b83d4df4b5c34d9dcdf25f415f027c0aa8cded7bac2750d2de5464081f67a042ad9e1c03930c2fab42acd79f9e57c00cf969ddff - languageName: node - linkType: hard - -"@babel/plugin-transform-modules-commonjs@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-modules-commonjs@npm:7.23.3" - dependencies: - "@babel/helper-module-transforms": ^7.23.3 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-simple-access": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 720a231ceade4ae4d2632478db4e7fecf21987d444942b72d523487ac8d715ca97de6c8f415c71e939595e1a4776403e7dc24ed68fe9125ad4acf57753c9bff7 - languageName: node - linkType: hard - -"@babel/plugin-transform-modules-systemjs@npm:^7.23.9": - version: 7.23.9 - resolution: "@babel/plugin-transform-modules-systemjs@npm:7.23.9" - dependencies: - "@babel/helper-hoist-variables": ^7.22.5 - "@babel/helper-module-transforms": ^7.23.3 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-validator-identifier": ^7.22.20 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: cec6abeae6be66fd1a5940c482fe9ff94b689c71fcf4147e179119e4accd09d17d476e36528bc9cb4ab0ec6728fedf48b1c49d0551ea707fb192575d8eac9167 - languageName: node - linkType: hard - -"@babel/plugin-transform-modules-umd@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-modules-umd@npm:7.23.3" - dependencies: - "@babel/helper-module-transforms": ^7.23.3 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 586a7a2241e8b4e753a37af9466a9ffa8a67b4ba9aa756ad7500712c05d8fa9a8c1ed4f7bd25fae2a8265e6cf8fe781ec85a8ee885dd34cf50d8955ee65f12dc - languageName: node - linkType: hard - -"@babel/plugin-transform-named-capturing-groups-regex@npm:^7.22.5": - version: 7.22.5 - resolution: "@babel/plugin-transform-named-capturing-groups-regex@npm:7.22.5" - dependencies: - "@babel/helper-create-regexp-features-plugin": ^7.22.5 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: 3ee564ddee620c035b928fdc942c5d17e9c4b98329b76f9cefac65c111135d925eb94ed324064cd7556d4f5123beec79abea1d4b97d1c8a2a5c748887a2eb623 - languageName: node - linkType: hard - -"@babel/plugin-transform-new-target@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-new-target@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: e5053389316fce73ad5201b7777437164f333e24787fbcda4ae489cd2580dbbbdfb5694a7237bad91fabb46b591d771975d69beb1c740b82cb4761625379f00b - languageName: node - linkType: hard - -"@babel/plugin-transform-nullish-coalescing-operator@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-nullish-coalescing-operator@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-nullish-coalescing-operator": ^7.8.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: a27d73ea134d3d9560a6b2e26ab60012fba15f1db95865aa0153c18f5ec82cfef6a7b3d8df74e3c2fca81534fa5efeb6cacaf7b08bdb7d123e3dafdd079886a3 - languageName: node - linkType: hard - -"@babel/plugin-transform-numeric-separator@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-numeric-separator@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-numeric-separator": ^7.10.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 6ba0e5db3c620a3ec81f9e94507c821f483c15f196868df13fa454cbac719a5449baf73840f5b6eb7d77311b24a2cf8e45db53700d41727f693d46f7caf3eec3 - languageName: node - linkType: hard - -"@babel/plugin-transform-object-rest-spread@npm:^7.24.0": - version: 7.24.0 - resolution: "@babel/plugin-transform-object-rest-spread@npm:7.24.0" - dependencies: - "@babel/compat-data": ^7.23.5 - "@babel/helper-compilation-targets": ^7.23.6 - "@babel/helper-plugin-utils": ^7.24.0 - "@babel/plugin-syntax-object-rest-spread": ^7.8.3 - "@babel/plugin-transform-parameters": ^7.23.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 8877b6a5493df0e36007286ea5e5e2305575346cf1b128049e7db3ff3861f2eb7eb0e8fa3e0b6334de27724253bf32b27e572b2c35dd93b02403476c306b9f5d - languageName: node - linkType: hard - -"@babel/plugin-transform-object-super@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-object-super@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-replace-supers": ^7.22.20 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: e495497186f621fa79026e183b4f1fbb172fd9df812cbd2d7f02c05b08adbe58012b1a6eb6dd58d11a30343f6ec80d0f4074f9b501d70aa1c94df76d59164c53 - languageName: node - linkType: hard - -"@babel/plugin-transform-optional-catch-binding@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-optional-catch-binding@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-optional-catch-binding": ^7.8.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: d50b5ee142cdb088d8b5de1ccf7cea85b18b85d85b52f86618f6e45226372f01ad4cdb29abd4fd35ea99a71fefb37009e0107db7a787dcc21d4d402f97470faf - languageName: node - linkType: hard - -"@babel/plugin-transform-optional-chaining@npm:^7.23.3, @babel/plugin-transform-optional-chaining@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-optional-chaining@npm:7.23.4" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-skip-transparent-expression-wrappers": ^7.22.5 - "@babel/plugin-syntax-optional-chaining": ^7.8.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: e7a4c08038288057b7a08d68c4d55396ada9278095509ca51ed8dfb72a7f13f26bdd7c5185de21079fe0a9d60d22c227cb32e300d266c1bda40f70eee9f4bc1e - languageName: node - linkType: hard - -"@babel/plugin-transform-parameters@npm:^7.12.1, @babel/plugin-transform-parameters@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-parameters@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: a735b3e85316d17ec102e3d3d1b6993b429bdb3b494651c9d754e3b7d270462ee1f1a126ccd5e3d871af5e683727e9ef98c9d34d4a42204fffaabff91052ed16 - languageName: node - linkType: hard - -"@babel/plugin-transform-private-methods@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-private-methods@npm:7.23.3" - dependencies: - "@babel/helper-create-class-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: cedc1285c49b5a6d9a3d0e5e413b756ac40b3ac2f8f68bdfc3ae268bc8d27b00abd8bb0861c72756ff5dd8bf1eb77211b7feb5baf4fdae2ebbaabe49b9adc1d0 - languageName: node - linkType: hard - -"@babel/plugin-transform-private-property-in-object@npm:^7.23.4": - version: 7.23.4 - resolution: "@babel/plugin-transform-private-property-in-object@npm:7.23.4" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - "@babel/helper-create-class-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-private-property-in-object": ^7.14.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: fb7adfe94ea97542f250a70de32bddbc3e0b802381c92be947fec83ebffda57e68533c4d0697152719a3496fdd3ebf3798d451c024cd4ac848fc15ac26b70aa7 - languageName: node - linkType: hard - -"@babel/plugin-transform-property-literals@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-property-literals@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 16b048c8e87f25095f6d53634ab7912992f78e6997a6ff549edc3cf519db4fca01c7b4e0798530d7f6a05228ceee479251245cdd850a5531c6e6f404104d6cc9 - languageName: node - linkType: hard - -"@babel/plugin-transform-react-constant-elements@npm:^7.18.12": - version: 7.23.3 - resolution: "@babel/plugin-transform-react-constant-elements@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: f386fe59657910a00c5d276918765c6a74e52c9a223d79463a4eecd652b4da4a6c0a16710fcf5e17b838c336e0c46b552b79e47c1d6eeebc74a813788e0611f7 - languageName: node - linkType: hard - -"@babel/plugin-transform-react-display-name@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-react-display-name@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 7f86964e8434d3ddbd3c81d2690c9b66dbf1cd8bd9512e2e24500e9fa8cf378bc52c0853270b3b82143aba5965aec04721df7abdb768f952b44f5c6e0b198779 - languageName: node - linkType: hard - -"@babel/plugin-transform-react-jsx-development@npm:^7.22.5": - version: 7.22.5 - resolution: "@babel/plugin-transform-react-jsx-development@npm:7.22.5" - dependencies: - "@babel/plugin-transform-react-jsx": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 36bc3ff0b96bb0ef4723070a50cfdf2e72cfd903a59eba448f9fe92fea47574d6f22efd99364413719e1f3fb3c51b6c9b2990b87af088f8486a84b2a5f9e4560 - languageName: node - linkType: hard - -"@babel/plugin-transform-react-jsx@npm:^7.22.15, @babel/plugin-transform-react-jsx@npm:^7.22.5": - version: 7.23.4 - resolution: "@babel/plugin-transform-react-jsx@npm:7.23.4" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - "@babel/helper-module-imports": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-jsx": ^7.23.3 - "@babel/types": ^7.23.4 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: d8b8c52e8e22e833bf77c8d1a53b0a57d1fd52ba9596a319d572de79446a8ed9d95521035bc1175c1589d1a6a34600d2e678fa81d81bac8fac121137097f1f0a - languageName: node - linkType: hard - -"@babel/plugin-transform-react-pure-annotations@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-react-pure-annotations@npm:7.23.3" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 9ea3698b1d422561d93c0187ac1ed8f2367e4250b10e259785ead5aa643c265830fd0f4cf5087a5bedbc4007444c06da2f2006686613220acf0949895f453666 - languageName: node - linkType: hard - -"@babel/plugin-transform-regenerator@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-regenerator@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - regenerator-transform: ^0.15.2 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 7fdacc7b40008883871b519c9e5cdea493f75495118ccc56ac104b874983569a24edd024f0f5894ba1875c54ee2b442f295d6241c3280e61c725d0dd3317c8e6 - languageName: node - linkType: hard - -"@babel/plugin-transform-reserved-words@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-reserved-words@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 298c4440ddc136784ff920127cea137168e068404e635dc946ddb5d7b2a27b66f1dd4c4acb01f7184478ff7d5c3e7177a127279479926519042948fb7fa0fa48 - languageName: node - linkType: hard - -"@babel/plugin-transform-runtime@npm:^7.18.6": - version: 7.24.0 - resolution: "@babel/plugin-transform-runtime@npm:7.24.0" - dependencies: - "@babel/helper-module-imports": ^7.22.15 - "@babel/helper-plugin-utils": ^7.24.0 - babel-plugin-polyfill-corejs2: ^0.4.8 - babel-plugin-polyfill-corejs3: ^0.9.0 - babel-plugin-polyfill-regenerator: ^0.5.5 - semver: ^6.3.1 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 460ab93d1c79e23bb27f012248b05519b44cd5bdced79b40caf890c96d8e506354b4b558159fe744552ab0af6ec4b52e51c71d423ae8ab211ff3627769bd1ca9 - languageName: node - linkType: hard - -"@babel/plugin-transform-shorthand-properties@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-shorthand-properties@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 5d677a03676f9fff969b0246c423d64d77502e90a832665dc872a5a5e05e5708161ce1effd56bb3c0f2c20a1112fca874be57c8a759d8b08152755519281f326 - languageName: node - linkType: hard - -"@babel/plugin-transform-spread@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-spread@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-skip-transparent-expression-wrappers": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 8fd5cac201e77a0b4825745f4e07a25f923842f282f006b3a79223c00f61075c8868d12eafec86b2642cd0b32077cdd32314e27bcb75ee5e6a68c0144140dcf2 - languageName: node - linkType: hard - -"@babel/plugin-transform-sticky-regex@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-sticky-regex@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 53e55eb2575b7abfdb4af7e503a2bf7ef5faf8bf6b92d2cd2de0700bdd19e934e5517b23e6dfed94ba50ae516b62f3f916773ef7d9bc81f01503f585051e2949 - languageName: node - linkType: hard - -"@babel/plugin-transform-template-literals@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-template-literals@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: b16c5cb0b8796be0118e9c144d15bdc0d20a7f3f59009c6303a6e9a8b74c146eceb3f05186f5b97afcba7cfa87e34c1585a22186e3d5b22f2fd3d27d959d92b2 - languageName: node - linkType: hard - -"@babel/plugin-transform-typeof-symbol@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-typeof-symbol@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 0af7184379d43afac7614fc89b1bdecce4e174d52f4efaeee8ec1a4f2c764356c6dba3525c0685231f1cbf435b6dd4ee9e738d7417f3b10ce8bbe869c32f4384 - languageName: node - linkType: hard - -"@babel/plugin-transform-typescript@npm:^7.23.3": - version: 7.23.6 - resolution: "@babel/plugin-transform-typescript@npm:7.23.6" - dependencies: - "@babel/helper-annotate-as-pure": ^7.22.5 - "@babel/helper-create-class-features-plugin": ^7.23.6 - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/plugin-syntax-typescript": ^7.23.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 0462241843d14dff9f1a4c49ab182a6f01a5f7679957c786b08165dac3e8d49184011f05ca204183d164c54b9d3496d1b3005f904fa8708e394e6f15bf5548e6 - languageName: node - linkType: hard - -"@babel/plugin-transform-unicode-escapes@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-unicode-escapes@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 561c429183a54b9e4751519a3dfba6014431e9cdc1484fad03bdaf96582dfc72c76a4f8661df2aeeae7c34efd0fa4d02d3b83a2f63763ecf71ecc925f9cc1f60 - languageName: node - linkType: hard - -"@babel/plugin-transform-unicode-property-regex@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-unicode-property-regex@npm:7.23.3" - dependencies: - "@babel/helper-create-regexp-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 2298461a194758086d17c23c26c7de37aa533af910f9ebf31ebd0893d4aa317468043d23f73edc782ec21151d3c46cf0ff8098a83b725c49a59de28a1d4d6225 - languageName: node - linkType: hard - -"@babel/plugin-transform-unicode-regex@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-unicode-regex@npm:7.23.3" - dependencies: - "@babel/helper-create-regexp-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: c5f835d17483ba899787f92e313dfa5b0055e3deab332f1d254078a2bba27ede47574b6599fcf34d3763f0c048ae0779dc21d2d8db09295edb4057478dc80a9a - languageName: node - linkType: hard - -"@babel/plugin-transform-unicode-sets-regex@npm:^7.23.3": - version: 7.23.3 - resolution: "@babel/plugin-transform-unicode-sets-regex@npm:7.23.3" - dependencies: - "@babel/helper-create-regexp-features-plugin": ^7.22.15 - "@babel/helper-plugin-utils": ^7.22.5 - peerDependencies: - "@babel/core": ^7.0.0 - checksum: 79d0b4c951955ca68235c87b91ab2b393c96285f8aeaa34d6db416d2ddac90000c9bd6e8c4d82b60a2b484da69930507245035f28ba63c6cae341cf3ba68fdef - languageName: node - linkType: hard - -"@babel/preset-env@npm:^7.18.6, @babel/preset-env@npm:^7.19.4": - version: 7.24.0 - resolution: "@babel/preset-env@npm:7.24.0" - dependencies: - "@babel/compat-data": ^7.23.5 - "@babel/helper-compilation-targets": ^7.23.6 - "@babel/helper-plugin-utils": ^7.24.0 - "@babel/helper-validator-option": ^7.23.5 - "@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression": ^7.23.3 - "@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining": ^7.23.3 - "@babel/plugin-bugfix-v8-static-class-fields-redefine-readonly": ^7.23.7 - "@babel/plugin-proposal-private-property-in-object": 7.21.0-placeholder-for-preset-env.2 - "@babel/plugin-syntax-async-generators": ^7.8.4 - "@babel/plugin-syntax-class-properties": ^7.12.13 - "@babel/plugin-syntax-class-static-block": ^7.14.5 - "@babel/plugin-syntax-dynamic-import": ^7.8.3 - "@babel/plugin-syntax-export-namespace-from": ^7.8.3 - "@babel/plugin-syntax-import-assertions": ^7.23.3 - "@babel/plugin-syntax-import-attributes": ^7.23.3 - "@babel/plugin-syntax-import-meta": ^7.10.4 - "@babel/plugin-syntax-json-strings": ^7.8.3 - "@babel/plugin-syntax-logical-assignment-operators": ^7.10.4 - "@babel/plugin-syntax-nullish-coalescing-operator": ^7.8.3 - "@babel/plugin-syntax-numeric-separator": ^7.10.4 - "@babel/plugin-syntax-object-rest-spread": ^7.8.3 - "@babel/plugin-syntax-optional-catch-binding": ^7.8.3 - "@babel/plugin-syntax-optional-chaining": ^7.8.3 - "@babel/plugin-syntax-private-property-in-object": ^7.14.5 - "@babel/plugin-syntax-top-level-await": ^7.14.5 - "@babel/plugin-syntax-unicode-sets-regex": ^7.18.6 - "@babel/plugin-transform-arrow-functions": ^7.23.3 - "@babel/plugin-transform-async-generator-functions": ^7.23.9 - "@babel/plugin-transform-async-to-generator": ^7.23.3 - "@babel/plugin-transform-block-scoped-functions": ^7.23.3 - "@babel/plugin-transform-block-scoping": ^7.23.4 - "@babel/plugin-transform-class-properties": ^7.23.3 - "@babel/plugin-transform-class-static-block": ^7.23.4 - "@babel/plugin-transform-classes": ^7.23.8 - "@babel/plugin-transform-computed-properties": ^7.23.3 - "@babel/plugin-transform-destructuring": ^7.23.3 - "@babel/plugin-transform-dotall-regex": ^7.23.3 - "@babel/plugin-transform-duplicate-keys": ^7.23.3 - "@babel/plugin-transform-dynamic-import": ^7.23.4 - "@babel/plugin-transform-exponentiation-operator": ^7.23.3 - "@babel/plugin-transform-export-namespace-from": ^7.23.4 - "@babel/plugin-transform-for-of": ^7.23.6 - "@babel/plugin-transform-function-name": ^7.23.3 - "@babel/plugin-transform-json-strings": ^7.23.4 - "@babel/plugin-transform-literals": ^7.23.3 - "@babel/plugin-transform-logical-assignment-operators": ^7.23.4 - "@babel/plugin-transform-member-expression-literals": ^7.23.3 - "@babel/plugin-transform-modules-amd": ^7.23.3 - "@babel/plugin-transform-modules-commonjs": ^7.23.3 - "@babel/plugin-transform-modules-systemjs": ^7.23.9 - "@babel/plugin-transform-modules-umd": ^7.23.3 - "@babel/plugin-transform-named-capturing-groups-regex": ^7.22.5 - "@babel/plugin-transform-new-target": ^7.23.3 - "@babel/plugin-transform-nullish-coalescing-operator": ^7.23.4 - "@babel/plugin-transform-numeric-separator": ^7.23.4 - "@babel/plugin-transform-object-rest-spread": ^7.24.0 - "@babel/plugin-transform-object-super": ^7.23.3 - "@babel/plugin-transform-optional-catch-binding": ^7.23.4 - "@babel/plugin-transform-optional-chaining": ^7.23.4 - "@babel/plugin-transform-parameters": ^7.23.3 - "@babel/plugin-transform-private-methods": ^7.23.3 - "@babel/plugin-transform-private-property-in-object": ^7.23.4 - "@babel/plugin-transform-property-literals": ^7.23.3 - "@babel/plugin-transform-regenerator": ^7.23.3 - "@babel/plugin-transform-reserved-words": ^7.23.3 - "@babel/plugin-transform-shorthand-properties": ^7.23.3 - "@babel/plugin-transform-spread": ^7.23.3 - "@babel/plugin-transform-sticky-regex": ^7.23.3 - "@babel/plugin-transform-template-literals": ^7.23.3 - "@babel/plugin-transform-typeof-symbol": ^7.23.3 - "@babel/plugin-transform-unicode-escapes": ^7.23.3 - "@babel/plugin-transform-unicode-property-regex": ^7.23.3 - "@babel/plugin-transform-unicode-regex": ^7.23.3 - "@babel/plugin-transform-unicode-sets-regex": ^7.23.3 - "@babel/preset-modules": 0.1.6-no-external-plugins - babel-plugin-polyfill-corejs2: ^0.4.8 - babel-plugin-polyfill-corejs3: ^0.9.0 - babel-plugin-polyfill-regenerator: ^0.5.5 - core-js-compat: ^3.31.0 - semver: ^6.3.1 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: d9e894037382ce35be4b511034a9fb110003ca104f4f800e9b8f9c3b830999014c8314dcdaa3c89669e034784f7c81fe6851e2ff237805fef6479c7dff68d12c - languageName: node - linkType: hard - -"@babel/preset-modules@npm:0.1.6-no-external-plugins": - version: 0.1.6-no-external-plugins - resolution: "@babel/preset-modules@npm:0.1.6-no-external-plugins" - dependencies: - "@babel/helper-plugin-utils": ^7.0.0 - "@babel/types": ^7.4.4 - esutils: ^2.0.2 - peerDependencies: - "@babel/core": ^7.0.0-0 || ^8.0.0-0 <8.0.0 - checksum: 4855e799bc50f2449fb5210f78ea9e8fd46cf4f242243f1e2ed838e2bd702e25e73e822e7f8447722a5f4baa5e67a8f7a0e403f3e7ce04540ff743a9c411c375 - languageName: node - linkType: hard - -"@babel/preset-react@npm:^7.18.6": - version: 7.23.3 - resolution: "@babel/preset-react@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-validator-option": ^7.22.15 - "@babel/plugin-transform-react-display-name": ^7.23.3 - "@babel/plugin-transform-react-jsx": ^7.22.15 - "@babel/plugin-transform-react-jsx-development": ^7.22.5 - "@babel/plugin-transform-react-pure-annotations": ^7.23.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 2d90961e7e627a74b44551e88ad36a440579e283e8dc27972bf2f50682152bbc77228673a3ea22c0e0d005b70cbc487eccd64897c5e5e0384e5ce18f300b21eb - languageName: node - linkType: hard - -"@babel/preset-typescript@npm:^7.18.6": - version: 7.23.3 - resolution: "@babel/preset-typescript@npm:7.23.3" - dependencies: - "@babel/helper-plugin-utils": ^7.22.5 - "@babel/helper-validator-option": ^7.22.15 - "@babel/plugin-syntax-jsx": ^7.23.3 - "@babel/plugin-transform-modules-commonjs": ^7.23.3 - "@babel/plugin-transform-typescript": ^7.23.3 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 105a2d39bbc464da0f7e1ad7f535c77c5f62d6b410219355b20e552e7d29933567a5c55339b5d0aec1a5c7a0a7dfdf1b54aae601a4fe15a157d54dcbfcb3e854 - languageName: node - linkType: hard - -"@babel/regjsgen@npm:^0.8.0": - version: 0.8.0 - resolution: "@babel/regjsgen@npm:0.8.0" - checksum: 89c338fee774770e5a487382170711014d49a68eb281e74f2b5eac88f38300a4ad545516a7786a8dd5702e9cf009c94c2f582d200f077ac5decd74c56b973730 - languageName: node - linkType: hard - -"@babel/runtime-corejs3@npm:^7.18.6": - version: 7.24.0 - resolution: "@babel/runtime-corejs3@npm:7.24.0" - dependencies: - core-js-pure: ^3.30.2 - regenerator-runtime: ^0.14.0 - checksum: cd4f2cde0878c911b2eeebf1cb48df819c862492da163bb9001ba690c82e9addd1d14087a8b0dd87fb1da2d916fa3b85d9a8cece4d46f8e5c51d734acda5a8bd - languageName: node - linkType: hard - -"@babel/runtime@npm:^7.1.2, @babel/runtime@npm:^7.10.3, @babel/runtime@npm:^7.12.13, @babel/runtime@npm:^7.12.5, @babel/runtime@npm:^7.18.6, @babel/runtime@npm:^7.20.13, @babel/runtime@npm:^7.23.2, @babel/runtime@npm:^7.8.4": - version: 7.24.0 - resolution: "@babel/runtime@npm:7.24.0" - dependencies: - regenerator-runtime: ^0.14.0 - checksum: 7a6a5d40fbdd68491ec183ba2e631c07415119960083b4fd76564cce3751e9acd2f12ab89575e38496fa389fa06d458732776e69ee1858e366cc3fbdb049f847 - languageName: node - linkType: hard - -"@babel/template@npm:^7.12.7, @babel/template@npm:^7.22.15, @babel/template@npm:^7.24.0": - version: 7.24.0 - resolution: "@babel/template@npm:7.24.0" - dependencies: - "@babel/code-frame": ^7.23.5 - "@babel/parser": ^7.24.0 - "@babel/types": ^7.24.0 - checksum: f257b003c071a0cecdbfceca74185f18fe62c055469ab5c1d481aab12abeebed328e67e0a19fd978a2a8de97b28953fa4bc3da6d038a7345fdf37923b9fcdec8 - languageName: node - linkType: hard - -"@babel/traverse@npm:^7.12.9, @babel/traverse@npm:^7.18.8, @babel/traverse@npm:^7.24.0": - version: 7.24.0 - resolution: "@babel/traverse@npm:7.24.0" - dependencies: - "@babel/code-frame": ^7.23.5 - "@babel/generator": ^7.23.6 - "@babel/helper-environment-visitor": ^7.22.20 - "@babel/helper-function-name": ^7.23.0 - "@babel/helper-hoist-variables": ^7.22.5 - "@babel/helper-split-export-declaration": ^7.22.6 - "@babel/parser": ^7.24.0 - "@babel/types": ^7.24.0 - debug: ^4.3.1 - globals: ^11.1.0 - checksum: 790cf14a6452575ceef767285bad0dd96d14b3640ed4e6a4ddb5b592e4e66020424bac21e4a4b965ac0d2fe9ed504fe3644748b1922fb8ac37c681cb435c3995 - languageName: node - linkType: hard - -"@babel/types@npm:^7.12.7, @babel/types@npm:^7.20.0, @babel/types@npm:^7.22.15, @babel/types@npm:^7.22.19, @babel/types@npm:^7.22.5, @babel/types@npm:^7.23.0, @babel/types@npm:^7.23.4, @babel/types@npm:^7.23.6, @babel/types@npm:^7.24.0, @babel/types@npm:^7.4.4, @babel/types@npm:^7.8.3": - version: 7.24.0 - resolution: "@babel/types@npm:7.24.0" - dependencies: - "@babel/helper-string-parser": ^7.23.4 - "@babel/helper-validator-identifier": ^7.22.20 - to-fast-properties: ^2.0.0 - checksum: 4b574a37d490f621470ff36a5afaac6deca5546edcb9b5e316d39acbb20998e9c2be42f3fc0bf2b55906fc49ff2a5a6a097e8f5a726ee3f708a0b0ca93aed807 - languageName: node - linkType: hard - -"@braintree/sanitize-url@npm:^6.0.0": - version: 6.0.4 - resolution: "@braintree/sanitize-url@npm:6.0.4" - checksum: f5ec6048973722ea1c46ae555d2e9eb848d7fa258994f8ea7d6db9514ee754ea3ef344ef71b3696d486776bcb839f3124e79f67c6b5b2814ed2da220b340627c - languageName: node - linkType: hard - -"@colors/colors@npm:1.5.0": - version: 1.5.0 - resolution: "@colors/colors@npm:1.5.0" - checksum: d64d5260bed1d5012ae3fc617d38d1afc0329fec05342f4e6b838f46998855ba56e0a73833f4a80fa8378c84810da254f76a8a19c39d038260dc06dc4e007425 - languageName: node - linkType: hard - -"@discoveryjs/json-ext@npm:0.5.7": - version: 0.5.7 - resolution: "@discoveryjs/json-ext@npm:0.5.7" - checksum: 2176d301cc258ea5c2324402997cf8134ebb212469c0d397591636cea8d3c02f2b3cf9fd58dcb748c7a0dade77ebdc1b10284fa63e608c033a1db52fddc69918 - languageName: node - linkType: hard - -"@docsearch/css@npm:3.5.2": - version: 3.5.2 - resolution: "@docsearch/css@npm:3.5.2" - checksum: d1d60dd230dd48f896755f21bd20b59583ba844212d7d336953ae48d389baaf868bdf83320fb734a4ed679c3f95b15d620cf3764cd538f6941cae239f8c9d35d - languageName: node - linkType: hard - -"@docsearch/react@npm:^3.1.1": - version: 3.5.2 - resolution: "@docsearch/react@npm:3.5.2" - dependencies: - "@algolia/autocomplete-core": 1.9.3 - "@algolia/autocomplete-preset-algolia": 1.9.3 - "@docsearch/css": 3.5.2 - algoliasearch: ^4.19.1 - peerDependencies: - "@types/react": ">= 16.8.0 < 19.0.0" - react: ">= 16.8.0 < 19.0.0" - react-dom: ">= 16.8.0 < 19.0.0" - search-insights: ">= 1 < 3" - peerDependenciesMeta: - "@types/react": - optional: true - react: - optional: true - react-dom: - optional: true - search-insights: - optional: true - checksum: 4b4584c2c73fc18cbd599047538896450974e134c2c74f19eb202db0ce8e6c3c49c6f65ed6ade61c796d476d3cbb55d6be58df62bc9568a0c72d88e42fca1d16 - languageName: node - linkType: hard - -"@docusaurus/core@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/core@npm:2.4.3" - dependencies: - "@babel/core": ^7.18.6 - "@babel/generator": ^7.18.7 - "@babel/plugin-syntax-dynamic-import": ^7.8.3 - "@babel/plugin-transform-runtime": ^7.18.6 - "@babel/preset-env": ^7.18.6 - "@babel/preset-react": ^7.18.6 - "@babel/preset-typescript": ^7.18.6 - "@babel/runtime": ^7.18.6 - "@babel/runtime-corejs3": ^7.18.6 - "@babel/traverse": ^7.18.8 - "@docusaurus/cssnano-preset": 2.4.3 - "@docusaurus/logger": 2.4.3 - "@docusaurus/mdx-loader": 2.4.3 - "@docusaurus/react-loadable": 5.5.2 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-common": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - "@slorber/static-site-generator-webpack-plugin": ^4.0.7 - "@svgr/webpack": ^6.2.1 - autoprefixer: ^10.4.7 - babel-loader: ^8.2.5 - babel-plugin-dynamic-import-node: ^2.3.3 - boxen: ^6.2.1 - chalk: ^4.1.2 - chokidar: ^3.5.3 - clean-css: ^5.3.0 - cli-table3: ^0.6.2 - combine-promises: ^1.1.0 - commander: ^5.1.0 - copy-webpack-plugin: ^11.0.0 - core-js: ^3.23.3 - css-loader: ^6.7.1 - css-minimizer-webpack-plugin: ^4.0.0 - cssnano: ^5.1.12 - del: ^6.1.1 - detect-port: ^1.3.0 - escape-html: ^1.0.3 - eta: ^2.0.0 - file-loader: ^6.2.0 - fs-extra: ^10.1.0 - html-minifier-terser: ^6.1.0 - html-tags: ^3.2.0 - html-webpack-plugin: ^5.5.0 - import-fresh: ^3.3.0 - leven: ^3.1.0 - lodash: ^4.17.21 - mini-css-extract-plugin: ^2.6.1 - postcss: ^8.4.14 - postcss-loader: ^7.0.0 - prompts: ^2.4.2 - react-dev-utils: ^12.0.1 - react-helmet-async: ^1.3.0 - react-loadable: "npm:@docusaurus/react-loadable@5.5.2" - react-loadable-ssr-addon-v5-slorber: ^1.0.1 - react-router: ^5.3.3 - react-router-config: ^5.1.1 - react-router-dom: ^5.3.3 - rtl-detect: ^1.0.4 - semver: ^7.3.7 - serve-handler: ^6.1.3 - shelljs: ^0.8.5 - terser-webpack-plugin: ^5.3.3 - tslib: ^2.4.0 - update-notifier: ^5.1.0 - url-loader: ^4.1.1 - wait-on: ^6.0.1 - webpack: ^5.73.0 - webpack-bundle-analyzer: ^4.5.0 - webpack-dev-server: ^4.9.3 - webpack-merge: ^5.8.0 - webpackbar: ^5.0.2 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - bin: - docusaurus: bin/docusaurus.mjs - checksum: cce7173ee131364857c16f70f94155ba0e1b044cde54045fb0cf62ad138f8d8ef093f5aba7c7617a9aa0545b3ee3930aec2e09f645daec015696968338963013 - languageName: node - linkType: hard - -"@docusaurus/cssnano-preset@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/cssnano-preset@npm:2.4.3" - dependencies: - cssnano-preset-advanced: ^5.3.8 - postcss: ^8.4.14 - postcss-sort-media-queries: ^4.2.1 - tslib: ^2.4.0 - checksum: f4a4c60b075c23541da90e00ae26af2e7eaadf20d783b37b9110a5e34599e4e91947425e33bad58ba71abee81c85cca99f5d7d76575f53fbaf73617b55e39c62 - languageName: node - linkType: hard - -"@docusaurus/logger@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/logger@npm:2.4.3" - dependencies: - chalk: ^4.1.2 - tslib: ^2.4.0 - checksum: f026a8233aa317f16ce5b25c6785a431f319c52fc07a1b9e26f4b3df2197974e75830a16b6140314f8f4ef02dc19242106ec2ae1599740b26d516cc34c56102f - languageName: node - linkType: hard - -"@docusaurus/mdx-loader@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/mdx-loader@npm:2.4.3" - dependencies: - "@babel/parser": ^7.18.8 - "@babel/traverse": ^7.18.8 - "@docusaurus/logger": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@mdx-js/mdx": ^1.6.22 - escape-html: ^1.0.3 - file-loader: ^6.2.0 - fs-extra: ^10.1.0 - image-size: ^1.0.1 - mdast-util-to-string: ^2.0.0 - remark-emoji: ^2.2.0 - stringify-object: ^3.3.0 - tslib: ^2.4.0 - unified: ^9.2.2 - unist-util-visit: ^2.0.3 - url-loader: ^4.1.1 - webpack: ^5.73.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 5a774f7ea5f484e888b2bd1bf8b182279e3788afec779eb8920cf468b92ab8d83a1ae8be51925074241a4d1a38d989cfb366d2baf0f67ed6f063342395a7ca8e - languageName: node - linkType: hard - -"@docusaurus/module-type-aliases@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/module-type-aliases@npm:2.4.3" - dependencies: - "@docusaurus/react-loadable": 5.5.2 - "@docusaurus/types": 2.4.3 - "@types/history": ^4.7.11 - "@types/react": "*" - "@types/react-router-config": "*" - "@types/react-router-dom": "*" - react-helmet-async: "*" - react-loadable: "npm:@docusaurus/react-loadable@5.5.2" - peerDependencies: - react: "*" - react-dom: "*" - checksum: 22ce1a6a20acc35cdd2ec57e55f29e65dbe0fb3a46aaa8c033ec78bf04cd3087f0523c816c744ed311095512dd686c83e0a8619cc1a2a937c27cd54527739c38 - languageName: node - linkType: hard - -"@docusaurus/plugin-content-blog@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-content-blog@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/logger": 2.4.3 - "@docusaurus/mdx-loader": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-common": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - cheerio: ^1.0.0-rc.12 - feed: ^4.2.2 - fs-extra: ^10.1.0 - lodash: ^4.17.21 - reading-time: ^1.5.0 - tslib: ^2.4.0 - unist-util-visit: ^2.0.3 - utility-types: ^3.10.0 - webpack: ^5.73.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 9fd41331c609b9488eea363e617e3763a814c75f83eb1b858cef402a0f5b96f67a342e25ff8c333489e550eb4d379eae09a88b986a97c25170fe203662e2f1ae - languageName: node - linkType: hard - -"@docusaurus/plugin-content-docs@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-content-docs@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/logger": 2.4.3 - "@docusaurus/mdx-loader": 2.4.3 - "@docusaurus/module-type-aliases": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - "@types/react-router-config": ^5.0.6 - combine-promises: ^1.1.0 - fs-extra: ^10.1.0 - import-fresh: ^3.3.0 - js-yaml: ^4.1.0 - lodash: ^4.17.21 - tslib: ^2.4.0 - utility-types: ^3.10.0 - webpack: ^5.73.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: bc01201f64721131eb84f264e51c7497b8034d2a3d99d762169f5dc456c3d8882acfa01fdbaa8fdc6e2e220479b36e0c9e8e17397bf887884589535bdeaeb4bb - languageName: node - linkType: hard - -"@docusaurus/plugin-content-pages@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-content-pages@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/mdx-loader": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - fs-extra: ^10.1.0 - tslib: ^2.4.0 - webpack: ^5.73.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 00439c2e1a1f345cd549739db13a3610b6d9f7ffa6cf7507ad6ac1f3c8d24041947acc2a446be7edf1a613cf354a50d1133aa28ddf64a0eff6ed8a31bf1a542f - languageName: node - linkType: hard - -"@docusaurus/plugin-debug@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-debug@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils": 2.4.3 - fs-extra: ^10.1.0 - react-json-view: ^1.21.3 - tslib: ^2.4.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 88955828b72e463e04501cc6bedf802208e377ae0f4d72735625bcbb47918afc4f2588355c6914064cfdbe4945d3da6473ce76319aa1f66dd975b3b43c4c39b0 - languageName: node - linkType: hard - -"@docusaurus/plugin-google-analytics@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-google-analytics@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - tslib: ^2.4.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 6e30de6b5c479493614a5552a295f07ffb9c83f3740a68c7d4dbac378b8288da7430f26cdc246d763855c6084ad86a6f87286e6c8b40f4817794bb1a04e109ea - languageName: node - linkType: hard - -"@docusaurus/plugin-google-gtag@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-google-gtag@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - tslib: ^2.4.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 4aaac4d262b3bb7fc3f16620c5329b90db92bf28361ced54f2945fc0e4669483e2f36b076332e0ee9d11b6233cd2c81ca35c953119bad42171e62571c1692d6a - languageName: node - linkType: hard - -"@docusaurus/plugin-google-tag-manager@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-google-tag-manager@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - tslib: ^2.4.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: c3af89b4d41fab463d853cbfbe8f43d384f702dd09fd914fffcca01fdf94c282d1b98d762c9142fe21f6471f5dd643679e8d11344c95fdf6657aff0618c3c7a5 - languageName: node - linkType: hard - -"@docusaurus/plugin-sitemap@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/plugin-sitemap@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/logger": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-common": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - fs-extra: ^10.1.0 - sitemap: ^7.1.1 - tslib: ^2.4.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: cf96b9f0e32cefa58e37a4bc2f0a112ea657f06faf47b780ec2ba39d5e2daca6486a73f3b376c56ad3bb42f3f0c3f70a783f1ce1964b74e2ba273e6f439e439b - languageName: node - linkType: hard - -"@docusaurus/preset-classic@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/preset-classic@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/plugin-content-blog": 2.4.3 - "@docusaurus/plugin-content-docs": 2.4.3 - "@docusaurus/plugin-content-pages": 2.4.3 - "@docusaurus/plugin-debug": 2.4.3 - "@docusaurus/plugin-google-analytics": 2.4.3 - "@docusaurus/plugin-google-gtag": 2.4.3 - "@docusaurus/plugin-google-tag-manager": 2.4.3 - "@docusaurus/plugin-sitemap": 2.4.3 - "@docusaurus/theme-classic": 2.4.3 - "@docusaurus/theme-common": 2.4.3 - "@docusaurus/theme-search-algolia": 2.4.3 - "@docusaurus/types": 2.4.3 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: a321badc44696adf4ab2d4a5d6c93f595e8c17988aec9609d325928a1d60f5e0205b23fe849b28ddaed24f7935829e86c402f6b761d6e65db4224270b9dd443c - languageName: node - linkType: hard - -"@docusaurus/react-loadable@npm:5.5.2, react-loadable@npm:@docusaurus/react-loadable@5.5.2": - version: 5.5.2 - resolution: "@docusaurus/react-loadable@npm:5.5.2" - dependencies: - "@types/react": "*" - prop-types: ^15.6.2 - peerDependencies: - react: "*" - checksum: 930fb9e2936412a12461f210acdc154a433283921ca43ac3fc3b84cb6c12eb738b3a3719373022bf68004efeb1a928dbe36c467d7a1f86454ed6241576d936e7 - languageName: node - linkType: hard - -"@docusaurus/remark-plugin-npm2yarn@npm:^2.4.3": - version: 2.4.3 - resolution: "@docusaurus/remark-plugin-npm2yarn@npm:2.4.3" - dependencies: - npm-to-yarn: ^2.0.0 - tslib: ^2.4.1 - unist-util-visit: ^2.0.3 - checksum: 8bc17fbcfaac11ca3a8ff9ffabfb3cda0e37173e9ceee64dc8a18f87822f71a4dbef942355ed2ebf9a05e760514c60945fdd3ecf19bf579963884454faebe948 - languageName: node - linkType: hard - -"@docusaurus/theme-classic@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/theme-classic@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/mdx-loader": 2.4.3 - "@docusaurus/module-type-aliases": 2.4.3 - "@docusaurus/plugin-content-blog": 2.4.3 - "@docusaurus/plugin-content-docs": 2.4.3 - "@docusaurus/plugin-content-pages": 2.4.3 - "@docusaurus/theme-common": 2.4.3 - "@docusaurus/theme-translations": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-common": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - "@mdx-js/react": ^1.6.22 - clsx: ^1.2.1 - copy-text-to-clipboard: ^3.0.1 - infima: 0.2.0-alpha.43 - lodash: ^4.17.21 - nprogress: ^0.2.0 - postcss: ^8.4.14 - prism-react-renderer: ^1.3.5 - prismjs: ^1.28.0 - react-router-dom: ^5.3.3 - rtlcss: ^3.5.0 - tslib: ^2.4.0 - utility-types: ^3.10.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 215b7fa416f40ce68773265a168af47fa770583ebe33ec7b34c7e082dfe7c79252b589a6b26532cb0ab7dd089611a9cd0e20c94df097be320a227b98e3b3fbb8 - languageName: node - linkType: hard - -"@docusaurus/theme-common@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/theme-common@npm:2.4.3" - dependencies: - "@docusaurus/mdx-loader": 2.4.3 - "@docusaurus/module-type-aliases": 2.4.3 - "@docusaurus/plugin-content-blog": 2.4.3 - "@docusaurus/plugin-content-docs": 2.4.3 - "@docusaurus/plugin-content-pages": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-common": 2.4.3 - "@types/history": ^4.7.11 - "@types/react": "*" - "@types/react-router-config": "*" - clsx: ^1.2.1 - parse-numeric-range: ^1.3.0 - prism-react-renderer: ^1.3.5 - tslib: ^2.4.0 - use-sync-external-store: ^1.2.0 - utility-types: ^3.10.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 76817f548705542124d708c804e724674ec9bf996a5cb2a5c9a2919416367567cca4a3fa6055589990c339f6e1fb9d3944e25ed30b79fabe191db00d6ef986ca - languageName: node - linkType: hard - -"@docusaurus/theme-mermaid@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/theme-mermaid@npm:2.4.3" - dependencies: - "@docusaurus/core": 2.4.3 - "@docusaurus/module-type-aliases": 2.4.3 - "@docusaurus/theme-common": 2.4.3 - "@docusaurus/types": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - "@mdx-js/react": ^1.6.22 - mermaid: ^9.2.2 - tslib: ^2.4.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 63b2eafaf929e3266d91b8c38bfa0aa9e4a6f625576d4c3c220426aaab3118185b2ed0d74fa359273e69c9f41dea3267d8ff77646acbcd1e1c3d392d20d8f77a - languageName: node - linkType: hard - -"@docusaurus/theme-search-algolia@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/theme-search-algolia@npm:2.4.3" - dependencies: - "@docsearch/react": ^3.1.1 - "@docusaurus/core": 2.4.3 - "@docusaurus/logger": 2.4.3 - "@docusaurus/plugin-content-docs": 2.4.3 - "@docusaurus/theme-common": 2.4.3 - "@docusaurus/theme-translations": 2.4.3 - "@docusaurus/utils": 2.4.3 - "@docusaurus/utils-validation": 2.4.3 - algoliasearch: ^4.13.1 - algoliasearch-helper: ^3.10.0 - clsx: ^1.2.1 - eta: ^2.0.0 - fs-extra: ^10.1.0 - lodash: ^4.17.21 - tslib: ^2.4.0 - utility-types: ^3.10.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: 665d244c25bff21dd45c983c9b85f9827d2dd58945b802d645370b5e7092820532faf488c0bc0ce88e8fc0088c7f56eb9abb96589cf3857372c1b61bba6cbed7 - languageName: node - linkType: hard - -"@docusaurus/theme-translations@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/theme-translations@npm:2.4.3" - dependencies: - fs-extra: ^10.1.0 - tslib: ^2.4.0 - checksum: 8424583a130b0d32b6adf578dc5daeefaad199019c8a6a23fbd67577209be64923cde59d423ea9d41d6e7cfc2318e7fa6a17a665e8ae1c871ce0880525f9b8fd - languageName: node - linkType: hard - -"@docusaurus/types@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/types@npm:2.4.3" - dependencies: - "@types/history": ^4.7.11 - "@types/react": "*" - commander: ^5.1.0 - joi: ^17.6.0 - react-helmet-async: ^1.3.0 - utility-types: ^3.10.0 - webpack: ^5.73.0 - webpack-merge: ^5.8.0 - peerDependencies: - react: ^16.8.4 || ^17.0.0 - react-dom: ^16.8.4 || ^17.0.0 - checksum: c123c45630e885b588f808baa06a97f8408a3381906f65cb92ae75732aedfca6ab2cada94f969c08e043b885b95298616440326259b789010e0986cbcd7a960b - languageName: node - linkType: hard - -"@docusaurus/utils-common@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/utils-common@npm:2.4.3" - dependencies: - tslib: ^2.4.0 - peerDependencies: - "@docusaurus/types": "*" - peerDependenciesMeta: - "@docusaurus/types": - optional: true - checksum: 1ae315d8d8ce7a0163a698ffdca55b734d21f336512138c128bc0fa2a8d224edbaad0c8dbd7a3de2e8ef734dc2656c505d09066dee4fc84819d153593abb8984 - languageName: node - linkType: hard - -"@docusaurus/utils-validation@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/utils-validation@npm:2.4.3" - dependencies: - "@docusaurus/logger": 2.4.3 - "@docusaurus/utils": 2.4.3 - joi: ^17.6.0 - js-yaml: ^4.1.0 - tslib: ^2.4.0 - checksum: d3472b3f7a0a029c2cef1f00bc9db403d5f7e74e2091eccbc45d06f5776a84fd73bd1a18cf3a8a3cc0348ce49f753a1300deac670c2a82c56070cc40ca9df06e - languageName: node - linkType: hard - -"@docusaurus/utils@npm:2.4.3": - version: 2.4.3 - resolution: "@docusaurus/utils@npm:2.4.3" - dependencies: - "@docusaurus/logger": 2.4.3 - "@svgr/webpack": ^6.2.1 - escape-string-regexp: ^4.0.0 - file-loader: ^6.2.0 - fs-extra: ^10.1.0 - github-slugger: ^1.4.0 - globby: ^11.1.0 - gray-matter: ^4.0.3 - js-yaml: ^4.1.0 - lodash: ^4.17.21 - micromatch: ^4.0.5 - resolve-pathname: ^3.0.0 - shelljs: ^0.8.5 - tslib: ^2.4.0 - url-loader: ^4.1.1 - webpack: ^5.73.0 - peerDependencies: - "@docusaurus/types": "*" - peerDependenciesMeta: - "@docusaurus/types": - optional: true - checksum: dd1aa7688d1a4b2775e13a91d528608ceab33c57a921404d9a989867c31c8ef17fe3892e4f5680dfb4a783da7b9973e2077e907ff4ac172927433e606e8fa9b9 - languageName: node - linkType: hard - -"@eslint-community/eslint-utils@npm:^4.2.0": - version: 4.4.0 - resolution: "@eslint-community/eslint-utils@npm:4.4.0" - dependencies: - eslint-visitor-keys: ^3.3.0 - peerDependencies: - eslint: ^6.0.0 || ^7.0.0 || >=8.0.0 - checksum: cdfe3ae42b4f572cbfb46d20edafe6f36fc5fb52bf2d90875c58aefe226892b9677fef60820e2832caf864a326fe4fc225714c46e8389ccca04d5f9288aabd22 - languageName: node - linkType: hard - -"@eslint-community/regexpp@npm:^4.6.1": - version: 4.10.0 - resolution: "@eslint-community/regexpp@npm:4.10.0" - checksum: 2a6e345429ea8382aaaf3a61f865cae16ed44d31ca917910033c02dc00d505d939f10b81e079fa14d43b51499c640138e153b7e40743c4c094d9df97d4e56f7b - languageName: node - linkType: hard - -"@eslint/eslintrc@npm:^2.1.4": - version: 2.1.4 - resolution: "@eslint/eslintrc@npm:2.1.4" - dependencies: - ajv: ^6.12.4 - debug: ^4.3.2 - espree: ^9.6.0 - globals: ^13.19.0 - ignore: ^5.2.0 - import-fresh: ^3.2.1 - js-yaml: ^4.1.0 - minimatch: ^3.1.2 - strip-json-comments: ^3.1.1 - checksum: 10957c7592b20ca0089262d8c2a8accbad14b4f6507e35416c32ee6b4dbf9cad67dfb77096bbd405405e9ada2b107f3797fe94362e1c55e0b09d6e90dd149127 - languageName: node - linkType: hard - -"@eslint/js@npm:8.57.0": - version: 8.57.0 - resolution: "@eslint/js@npm:8.57.0" - checksum: 315dc65b0e9893e2bff139bddace7ea601ad77ed47b4550e73da8c9c2d2766c7a575c3cddf17ef85b8fd6a36ff34f91729d0dcca56e73ca887c10df91a41b0bb - languageName: node - linkType: hard - -"@hapi/hoek@npm:^9.0.0, @hapi/hoek@npm:^9.3.0": - version: 9.3.0 - resolution: "@hapi/hoek@npm:9.3.0" - checksum: 4771c7a776242c3c022b168046af4e324d116a9d2e1d60631ee64f474c6e38d1bb07092d898bf95c7bc5d334c5582798a1456321b2e53ca817d4e7c88bc25b43 - languageName: node - linkType: hard - -"@hapi/topo@npm:^5.1.0": - version: 5.1.0 - resolution: "@hapi/topo@npm:5.1.0" - dependencies: - "@hapi/hoek": ^9.0.0 - checksum: 604dfd5dde76d5c334bd03f9001fce69c7ce529883acf92da96f4fe7e51221bf5e5110e964caca287a6a616ba027c071748ab636ff178ad750547fba611d6014 - languageName: node - linkType: hard - -"@humanwhocodes/config-array@npm:^0.11.14": - version: 0.11.14 - resolution: "@humanwhocodes/config-array@npm:0.11.14" - dependencies: - "@humanwhocodes/object-schema": ^2.0.2 - debug: ^4.3.1 - minimatch: ^3.0.5 - checksum: 861ccce9eaea5de19546653bccf75bf09fe878bc39c3aab00aeee2d2a0e654516adad38dd1098aab5e3af0145bbcbf3f309bdf4d964f8dab9dcd5834ae4c02f2 - languageName: node - linkType: hard - -"@humanwhocodes/module-importer@npm:^1.0.1": - version: 1.0.1 - resolution: "@humanwhocodes/module-importer@npm:1.0.1" - checksum: 0fd22007db8034a2cdf2c764b140d37d9020bbfce8a49d3ec5c05290e77d4b0263b1b972b752df8c89e5eaa94073408f2b7d977aed131faf6cf396ebb5d7fb61 - languageName: node - linkType: hard - -"@humanwhocodes/object-schema@npm:^2.0.2": - version: 2.0.2 - resolution: "@humanwhocodes/object-schema@npm:2.0.2" - checksum: 2fc11503361b5fb4f14714c700c02a3f4c7c93e9acd6b87a29f62c522d90470f364d6161b03d1cc618b979f2ae02aed1106fd29d302695d8927e2fc8165ba8ee - languageName: node - linkType: hard - -"@isaacs/cliui@npm:^8.0.2": - version: 8.0.2 - resolution: "@isaacs/cliui@npm:8.0.2" - dependencies: - string-width: ^5.1.2 - string-width-cjs: "npm:string-width@^4.2.0" - strip-ansi: ^7.0.1 - strip-ansi-cjs: "npm:strip-ansi@^6.0.1" - wrap-ansi: ^8.1.0 - wrap-ansi-cjs: "npm:wrap-ansi@^7.0.0" - checksum: 4a473b9b32a7d4d3cfb7a614226e555091ff0c5a29a1734c28c72a182c2f6699b26fc6b5c2131dfd841e86b185aea714c72201d7c98c2fba5f17709333a67aeb - languageName: node - linkType: hard - -"@jest/schemas@npm:^29.6.3": - version: 29.6.3 - resolution: "@jest/schemas@npm:29.6.3" - dependencies: - "@sinclair/typebox": ^0.27.8 - checksum: 910040425f0fc93cd13e68c750b7885590b8839066dfa0cd78e7def07bbb708ad869381f725945d66f2284de5663bbecf63e8fdd856e2ae6e261ba30b1687e93 - languageName: node - linkType: hard - -"@jest/types@npm:^29.6.3": - version: 29.6.3 - resolution: "@jest/types@npm:29.6.3" - dependencies: - "@jest/schemas": ^29.6.3 - "@types/istanbul-lib-coverage": ^2.0.0 - "@types/istanbul-reports": ^3.0.0 - "@types/node": "*" - "@types/yargs": ^17.0.8 - chalk: ^4.0.0 - checksum: a0bcf15dbb0eca6bdd8ce61a3fb055349d40268622a7670a3b2eb3c3dbafe9eb26af59938366d520b86907b9505b0f9b29b85cec11579a9e580694b87cd90fcc - languageName: node - linkType: hard - -"@jridgewell/gen-mapping@npm:^0.3.0, @jridgewell/gen-mapping@npm:^0.3.2, @jridgewell/gen-mapping@npm:^0.3.5": - version: 0.3.5 - resolution: "@jridgewell/gen-mapping@npm:0.3.5" - dependencies: - "@jridgewell/set-array": ^1.2.1 - "@jridgewell/sourcemap-codec": ^1.4.10 - "@jridgewell/trace-mapping": ^0.3.24 - checksum: ff7a1764ebd76a5e129c8890aa3e2f46045109dabde62b0b6c6a250152227647178ff2069ea234753a690d8f3c4ac8b5e7b267bbee272bffb7f3b0a370ab6e52 - languageName: node - linkType: hard - -"@jridgewell/resolve-uri@npm:^3.1.0": - version: 3.1.2 - resolution: "@jridgewell/resolve-uri@npm:3.1.2" - checksum: 83b85f72c59d1c080b4cbec0fef84528963a1b5db34e4370fa4bd1e3ff64a0d80e0cee7369d11d73c704e0286fb2865b530acac7a871088fbe92b5edf1000870 - languageName: node - linkType: hard - -"@jridgewell/set-array@npm:^1.2.1": - version: 1.2.1 - resolution: "@jridgewell/set-array@npm:1.2.1" - checksum: 832e513a85a588f8ed4f27d1279420d8547743cc37fcad5a5a76fc74bb895b013dfe614d0eed9cb860048e6546b798f8f2652020b4b2ba0561b05caa8c654b10 - languageName: node - linkType: hard - -"@jridgewell/source-map@npm:^0.3.3": - version: 0.3.5 - resolution: "@jridgewell/source-map@npm:0.3.5" - dependencies: - "@jridgewell/gen-mapping": ^0.3.0 - "@jridgewell/trace-mapping": ^0.3.9 - checksum: 1ad4dec0bdafbade57920a50acec6634f88a0eb735851e0dda906fa9894e7f0549c492678aad1a10f8e144bfe87f238307bf2a914a1bc85b7781d345417e9f6f - languageName: node - linkType: hard - -"@jridgewell/sourcemap-codec@npm:^1.4.10, @jridgewell/sourcemap-codec@npm:^1.4.14": - version: 1.4.15 - resolution: "@jridgewell/sourcemap-codec@npm:1.4.15" - checksum: b881c7e503db3fc7f3c1f35a1dd2655a188cc51a3612d76efc8a6eb74728bef5606e6758ee77423e564092b4a518aba569bbb21c9bac5ab7a35b0c6ae7e344c8 - languageName: node - linkType: hard - -"@jridgewell/trace-mapping@npm:^0.3.17, @jridgewell/trace-mapping@npm:^0.3.20, @jridgewell/trace-mapping@npm:^0.3.24, @jridgewell/trace-mapping@npm:^0.3.9": - version: 0.3.25 - resolution: "@jridgewell/trace-mapping@npm:0.3.25" - dependencies: - "@jridgewell/resolve-uri": ^3.1.0 - "@jridgewell/sourcemap-codec": ^1.4.14 - checksum: 9d3c40d225e139987b50c48988f8717a54a8c994d8a948ee42e1412e08988761d0754d7d10b803061cc3aebf35f92a5dbbab493bd0e1a9ef9e89a2130e83ba34 - languageName: node - linkType: hard - -"@langchain/scripts@npm:^0.0.10": - version: 0.0.10 - resolution: "@langchain/scripts@npm:0.0.10" - dependencies: - axios: ^1.6.7 - commander: ^11.1.0 - glob: ^10.3.10 - rollup: ^4.5.2 - ts-morph: ^21.0.1 - typescript: <5.2.0 - bin: - lc-build: build.js - checksum: 2051be819a5fb9863f81c06e5504626377ac922093953c559f84ec9931108a1b72942d5f5b7e22f44dd60ca8cc7a34532d2eea03a0055b96bf2acf300ec454f6 - languageName: node - linkType: hard - -"@leichtgewicht/ip-codec@npm:^2.0.1": - version: 2.0.4 - resolution: "@leichtgewicht/ip-codec@npm:2.0.4" - checksum: 468de1f04d33de6d300892683d7c8aecbf96d1e2c5fe084f95f816e50a054d45b7c1ebfb141a1447d844b86a948733f6eebd92234da8581c84a1ad4de2946a2d - languageName: node - linkType: hard - -"@mdx-js/mdx@npm:^1.6.22": - version: 1.6.22 - resolution: "@mdx-js/mdx@npm:1.6.22" - dependencies: - "@babel/core": 7.12.9 - "@babel/plugin-syntax-jsx": 7.12.1 - "@babel/plugin-syntax-object-rest-spread": 7.8.3 - "@mdx-js/util": 1.6.22 - babel-plugin-apply-mdx-type-prop: 1.6.22 - babel-plugin-extract-import-names: 1.6.22 - camelcase-css: 2.0.1 - detab: 2.0.4 - hast-util-raw: 6.0.1 - lodash.uniq: 4.5.0 - mdast-util-to-hast: 10.0.1 - remark-footnotes: 2.0.0 - remark-mdx: 1.6.22 - remark-parse: 8.0.3 - remark-squeeze-paragraphs: 4.0.0 - style-to-object: 0.3.0 - unified: 9.2.0 - unist-builder: 2.0.3 - unist-util-visit: 2.0.3 - checksum: 0839b4a3899416326ea6578fe9e470af319da559bc6d3669c60942e456b49a98eebeb3358c623007b4786a2175a450d2c51cd59df64639013c5a3d22366931a6 - languageName: node - linkType: hard - -"@mdx-js/react@npm:^1.6.22": - version: 1.6.22 - resolution: "@mdx-js/react@npm:1.6.22" - peerDependencies: - react: ^16.13.1 || ^17.0.0 - checksum: bc84bd514bc127f898819a0c6f1a6915d9541011bd8aefa1fcc1c9bea8939f31051409e546bdec92babfa5b56092a16d05ef6d318304ac029299df5181dc94c8 - languageName: node - linkType: hard - -"@mdx-js/util@npm:1.6.22": - version: 1.6.22 - resolution: "@mdx-js/util@npm:1.6.22" - checksum: 4b393907e39a1a75214f0314bf72a0adfa5e5adffd050dd5efe9c055b8549481a3cfc9f308c16dfb33311daf3ff63added7d5fd1fe52db614c004f886e0e559a - languageName: node - linkType: hard - -"@nicolo-ribaudo/eslint-scope-5-internals@npm:5.1.1-v1": - version: 5.1.1-v1 - resolution: "@nicolo-ribaudo/eslint-scope-5-internals@npm:5.1.1-v1" - dependencies: - eslint-scope: 5.1.1 - checksum: f2e3b2d6a6e2d9f163ca22105910c9f850dc4897af0aea3ef0a5886b63d8e1ba6505b71c99cb78a3bba24a09557d601eb21c8dede3f3213753fcfef364eb0e57 - languageName: node - linkType: hard - -"@nodelib/fs.scandir@npm:2.1.5": - version: 2.1.5 - resolution: "@nodelib/fs.scandir@npm:2.1.5" - dependencies: - "@nodelib/fs.stat": 2.0.5 - run-parallel: ^1.1.9 - checksum: a970d595bd23c66c880e0ef1817791432dbb7acbb8d44b7e7d0e7a22f4521260d4a83f7f9fd61d44fda4610105577f8f58a60718105fb38352baed612fd79e59 - languageName: node - linkType: hard - -"@nodelib/fs.stat@npm:2.0.5, @nodelib/fs.stat@npm:^2.0.2": - version: 2.0.5 - resolution: "@nodelib/fs.stat@npm:2.0.5" - checksum: 012480b5ca9d97bff9261571dbbec7bbc6033f69cc92908bc1ecfad0792361a5a1994bc48674b9ef76419d056a03efadfce5a6cf6dbc0a36559571a7a483f6f0 - languageName: node - linkType: hard - -"@nodelib/fs.walk@npm:^1.2.3, @nodelib/fs.walk@npm:^1.2.8": - version: 1.2.8 - resolution: "@nodelib/fs.walk@npm:1.2.8" - dependencies: - "@nodelib/fs.scandir": 2.1.5 - fastq: ^1.6.0 - checksum: 190c643f156d8f8f277bf2a6078af1ffde1fd43f498f187c2db24d35b4b4b5785c02c7dc52e356497b9a1b65b13edc996de08de0b961c32844364da02986dc53 - languageName: node - linkType: hard - -"@npmcli/agent@npm:^2.0.0": - version: 2.2.1 - resolution: "@npmcli/agent@npm:2.2.1" - dependencies: - agent-base: ^7.1.0 - http-proxy-agent: ^7.0.0 - https-proxy-agent: ^7.0.1 - lru-cache: ^10.0.1 - socks-proxy-agent: ^8.0.1 - checksum: c69aca42dbba393f517bc5777ee872d38dc98ea0e5e93c1f6d62b82b8fecdc177a57ea045f07dda1a770c592384b2dd92a5e79e21e2a7cf51c9159466a8f9c9b - languageName: node - linkType: hard - -"@npmcli/fs@npm:^3.1.0": - version: 3.1.0 - resolution: "@npmcli/fs@npm:3.1.0" - dependencies: - semver: ^7.3.5 - checksum: a50a6818de5fc557d0b0e6f50ec780a7a02ab8ad07e5ac8b16bf519e0ad60a144ac64f97d05c443c3367235d337182e1d012bbac0eb8dbae8dc7b40b193efd0e - languageName: node - linkType: hard - -"@pkgjs/parseargs@npm:^0.11.0": - version: 0.11.0 - resolution: "@pkgjs/parseargs@npm:0.11.0" - checksum: 6ad6a00fc4f2f2cfc6bff76fb1d88b8ee20bc0601e18ebb01b6d4be583733a860239a521a7fbca73b612e66705078809483549d2b18f370eb346c5155c8e4a0f - languageName: node - linkType: hard - -"@polka/url@npm:^1.0.0-next.24": - version: 1.0.0-next.24 - resolution: "@polka/url@npm:1.0.0-next.24" - checksum: 00baec4458ac86ca27edf7ce807ccfad97cd1d4b67bdedaf3401a9e755757588f3331e891290d1deea52d88df2bf2387caf8d94a6835b614d5b37b638a688273 - languageName: node - linkType: hard - -"@rollup/rollup-android-arm-eabi@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-android-arm-eabi@npm:4.13.0" - conditions: os=android & cpu=arm - languageName: node - linkType: hard - -"@rollup/rollup-android-arm64@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-android-arm64@npm:4.13.0" - conditions: os=android & cpu=arm64 - languageName: node - linkType: hard - -"@rollup/rollup-darwin-arm64@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-darwin-arm64@npm:4.13.0" - conditions: os=darwin & cpu=arm64 - languageName: node - linkType: hard - -"@rollup/rollup-darwin-x64@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-darwin-x64@npm:4.13.0" - conditions: os=darwin & cpu=x64 - languageName: node - linkType: hard - -"@rollup/rollup-linux-arm-gnueabihf@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-linux-arm-gnueabihf@npm:4.13.0" - conditions: os=linux & cpu=arm - languageName: node - linkType: hard - -"@rollup/rollup-linux-arm64-gnu@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-linux-arm64-gnu@npm:4.13.0" - conditions: os=linux & cpu=arm64 & libc=glibc - languageName: node - linkType: hard - -"@rollup/rollup-linux-arm64-musl@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-linux-arm64-musl@npm:4.13.0" - conditions: os=linux & cpu=arm64 & libc=musl - languageName: node - linkType: hard - -"@rollup/rollup-linux-riscv64-gnu@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-linux-riscv64-gnu@npm:4.13.0" - conditions: os=linux & cpu=riscv64 & libc=glibc - languageName: node - linkType: hard - -"@rollup/rollup-linux-x64-gnu@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-linux-x64-gnu@npm:4.13.0" - conditions: os=linux & cpu=x64 & libc=glibc - languageName: node - linkType: hard - -"@rollup/rollup-linux-x64-musl@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-linux-x64-musl@npm:4.13.0" - conditions: os=linux & cpu=x64 & libc=musl - languageName: node - linkType: hard - -"@rollup/rollup-win32-arm64-msvc@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-win32-arm64-msvc@npm:4.13.0" - conditions: os=win32 & cpu=arm64 - languageName: node - linkType: hard - -"@rollup/rollup-win32-ia32-msvc@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-win32-ia32-msvc@npm:4.13.0" - conditions: os=win32 & cpu=ia32 - languageName: node - linkType: hard - -"@rollup/rollup-win32-x64-msvc@npm:4.13.0": - version: 4.13.0 - resolution: "@rollup/rollup-win32-x64-msvc@npm:4.13.0" - conditions: os=win32 & cpu=x64 - languageName: node - linkType: hard - -"@sideway/address@npm:^4.1.5": - version: 4.1.5 - resolution: "@sideway/address@npm:4.1.5" - dependencies: - "@hapi/hoek": ^9.0.0 - checksum: 3e3ea0f00b4765d86509282290368a4a5fd39a7995fdc6de42116ca19a96120858e56c2c995081def06e1c53e1f8bccc7d013f6326602bec9d56b72ee2772b9d - languageName: node - linkType: hard - -"@sideway/formula@npm:^3.0.1": - version: 3.0.1 - resolution: "@sideway/formula@npm:3.0.1" - checksum: e4beeebc9dbe2ff4ef0def15cec0165e00d1612e3d7cea0bc9ce5175c3263fc2c818b679bd558957f49400ee7be9d4e5ac90487e1625b4932e15c4aa7919c57a - languageName: node - linkType: hard - -"@sideway/pinpoint@npm:^2.0.0": - version: 2.0.0 - resolution: "@sideway/pinpoint@npm:2.0.0" - checksum: 0f4491e5897fcf5bf02c46f5c359c56a314e90ba243f42f0c100437935daa2488f20482f0f77186bd6bf43345095a95d8143ecf8b1f4d876a7bc0806aba9c3d2 - languageName: node - linkType: hard - -"@sinclair/typebox@npm:^0.27.8": - version: 0.27.8 - resolution: "@sinclair/typebox@npm:0.27.8" - checksum: 00bd7362a3439021aa1ea51b0e0d0a0e8ca1351a3d54c606b115fdcc49b51b16db6e5f43b4fe7a28c38688523e22a94d49dd31168868b655f0d4d50f032d07a1 - languageName: node - linkType: hard - -"@sindresorhus/is@npm:^0.14.0": - version: 0.14.0 - resolution: "@sindresorhus/is@npm:0.14.0" - checksum: 971e0441dd44ba3909b467219a5e242da0fc584048db5324cfb8048148fa8dcc9d44d71e3948972c4f6121d24e5da402ef191420d1266a95f713bb6d6e59c98a - languageName: node - linkType: hard - -"@slorber/static-site-generator-webpack-plugin@npm:^4.0.7": - version: 4.0.7 - resolution: "@slorber/static-site-generator-webpack-plugin@npm:4.0.7" - dependencies: - eval: ^0.1.8 - p-map: ^4.0.0 - webpack-sources: ^3.2.2 - checksum: a1e1d8b22dd51059524993f3fdd6861db10eb950debc389e5dd650702287fa2004eace03e6bc8f25b977bd7bc01d76a50aa271cbb73c58a8ec558945d728f307 - languageName: node - linkType: hard - -"@supabase/functions-js@npm:2.1.5": - version: 2.1.5 - resolution: "@supabase/functions-js@npm:2.1.5" - dependencies: - "@supabase/node-fetch": ^2.6.14 - checksum: f2ab8636af8d982270b61631a5120369ca10db101b4298da71be892e5d91a8ddaddcf7f51079ad0fe24731a15892b21bd7dbe41b997da9d4b90e4326d09632c8 - languageName: node - linkType: hard - -"@supabase/gotrue-js@npm:2.62.2": - version: 2.62.2 - resolution: "@supabase/gotrue-js@npm:2.62.2" - dependencies: - "@supabase/node-fetch": ^2.6.14 - checksum: d77f5075c56dc8529b137f8aba3e4f5ee7da30c21f519202fd63d2b71aef459b6b61daee0a7e199eaa31ab14206336efa0141baafebfe3f1fb94c0e1f15dfbf5 - languageName: node - linkType: hard - -"@supabase/node-fetch@npm:2.6.15, @supabase/node-fetch@npm:^2.6.14": - version: 2.6.15 - resolution: "@supabase/node-fetch@npm:2.6.15" - dependencies: - whatwg-url: ^5.0.0 - checksum: 9673b49236a56df49eb7ea5cb789cf4e8b1393069b84b4964ac052995e318a34872f428726d128f232139e17c3375a531e45e99edd3e96a25cce60d914b53879 - languageName: node - linkType: hard - -"@supabase/postgrest-js@npm:1.9.2": - version: 1.9.2 - resolution: "@supabase/postgrest-js@npm:1.9.2" - dependencies: - "@supabase/node-fetch": ^2.6.14 - checksum: 9aefbdfc1c0d8a00b932b0939dbcbb5ec392b1324ad1b63b5e0486c6f9882a9c2292c80d3f803a0338938097372f08b3bcbdc3c4699d5bef13791ddc35d53b86 - languageName: node - linkType: hard - -"@supabase/realtime-js@npm:2.9.3": - version: 2.9.3 - resolution: "@supabase/realtime-js@npm:2.9.3" - dependencies: - "@supabase/node-fetch": ^2.6.14 - "@types/phoenix": ^1.5.4 - "@types/ws": ^8.5.10 - ws: ^8.14.2 - checksum: 180a5084b94a4e324fc04041182bf8819c3c2545a731c276a56f9647f78078180b0460b68a0d6c568d29b2fa4aace0545bb71dcb89b547ec85781032dff74e71 - languageName: node - linkType: hard - -"@supabase/storage-js@npm:2.5.5": - version: 2.5.5 - resolution: "@supabase/storage-js@npm:2.5.5" - dependencies: - "@supabase/node-fetch": ^2.6.14 - checksum: 4470499113c15e1124d99048eef0097c7ba431d728e351519ee26948775171d6c6bb41156f8ffb3860009b82b93809af01c9d075ece6000f783f59ce9fd00ee8 - languageName: node - linkType: hard - -"@supabase/supabase-js@npm:^2.39.7": - version: 2.39.7 - resolution: "@supabase/supabase-js@npm:2.39.7" - dependencies: - "@supabase/functions-js": 2.1.5 - "@supabase/gotrue-js": 2.62.2 - "@supabase/node-fetch": 2.6.15 - "@supabase/postgrest-js": 1.9.2 - "@supabase/realtime-js": 2.9.3 - "@supabase/storage-js": 2.5.5 - checksum: f2cc7c7841762d3161f53b19e82b0eb860d72510729114ed45a38aff0427c5897e4a176092b370b68fcd621b385de4d3b90fc43fe39d129d09c04b6da5a407d7 - languageName: node - linkType: hard - -"@svgr/babel-plugin-add-jsx-attribute@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/babel-plugin-add-jsx-attribute@npm:6.5.1" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: cab83832830a57735329ed68f67c03b57ca21fa037b0134847b0c5c0ef4beca89956d7dacfbf7b2a10fd901e7009e877512086db2ee918b8c69aee7742ae32c0 - languageName: node - linkType: hard - -"@svgr/babel-plugin-remove-jsx-attribute@npm:*": - version: 8.0.0 - resolution: "@svgr/babel-plugin-remove-jsx-attribute@npm:8.0.0" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: ff992893c6c4ac802713ba3a97c13be34e62e6d981c813af40daabcd676df68a72a61bd1e692bb1eda3587f1b1d700ea462222ae2153bb0f46886632d4f88d08 - languageName: node - linkType: hard - -"@svgr/babel-plugin-remove-jsx-empty-expression@npm:*": - version: 8.0.0 - resolution: "@svgr/babel-plugin-remove-jsx-empty-expression@npm:8.0.0" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 0fb691b63a21bac00da3aa2dccec50d0d5a5b347ff408d60803b84410d8af168f2656e4ba1ee1f24dab0ae4e4af77901f2928752bb0434c1f6788133ec599ec8 - languageName: node - linkType: hard - -"@svgr/babel-plugin-replace-jsx-attribute-value@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/babel-plugin-replace-jsx-attribute-value@npm:6.5.1" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: b7d2125758e766e1ebd14b92216b800bdc976959bc696dbfa1e28682919147c1df4bb8b1b5fd037d7a83026e27e681fea3b8d3741af8d3cf4c9dfa3d412125df - languageName: node - linkType: hard - -"@svgr/babel-plugin-svg-dynamic-title@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/babel-plugin-svg-dynamic-title@npm:6.5.1" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 0fd42ebf127ae9163ef341e84972daa99bdcb9e6ed3f83aabd95ee173fddc43e40e02fa847fbc0a1058cf5549f72b7960a2c5e22c3e4ac18f7e3ac81277852ae - languageName: node - linkType: hard - -"@svgr/babel-plugin-svg-em-dimensions@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/babel-plugin-svg-em-dimensions@npm:6.5.1" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: c1550ee9f548526fa66fd171e3ffb5696bfc4e4cd108a631d39db492c7410dc10bba4eb5a190e9df824bf806130ccc586ae7d2e43c547e6a4f93bbb29a18f344 - languageName: node - linkType: hard - -"@svgr/babel-plugin-transform-react-native-svg@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/babel-plugin-transform-react-native-svg@npm:6.5.1" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 4c924af22b948b812629e80efb90ad1ec8faae26a232d8ca8a06b46b53e966a2c415a57806a3ff0ea806a622612e546422719b69ec6839717a7755dac19171d9 - languageName: node - linkType: hard - -"@svgr/babel-plugin-transform-svg-component@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/babel-plugin-transform-svg-component@npm:6.5.1" - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: e496bb5ee871feb6bcab250b6e067322da7dd5c9c2b530b41e5586fe090f86611339b49d0a909c334d9b24cbca0fa755c949a2526c6ad03c6b5885666874cf5f - languageName: node - linkType: hard - -"@svgr/babel-preset@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/babel-preset@npm:6.5.1" - dependencies: - "@svgr/babel-plugin-add-jsx-attribute": ^6.5.1 - "@svgr/babel-plugin-remove-jsx-attribute": "*" - "@svgr/babel-plugin-remove-jsx-empty-expression": "*" - "@svgr/babel-plugin-replace-jsx-attribute-value": ^6.5.1 - "@svgr/babel-plugin-svg-dynamic-title": ^6.5.1 - "@svgr/babel-plugin-svg-em-dimensions": ^6.5.1 - "@svgr/babel-plugin-transform-react-native-svg": ^6.5.1 - "@svgr/babel-plugin-transform-svg-component": ^6.5.1 - peerDependencies: - "@babel/core": ^7.0.0-0 - checksum: 9f124be39a8e64f909162f925b3a63ddaa5a342a5e24fc0b7f7d9d4d7f7e3b916596c754fb557dc259928399cad5366a27cb231627a0d2dcc4b13ac521cf05af - languageName: node - linkType: hard - -"@svgr/core@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/core@npm:6.5.1" - dependencies: - "@babel/core": ^7.19.6 - "@svgr/babel-preset": ^6.5.1 - "@svgr/plugin-jsx": ^6.5.1 - camelcase: ^6.2.0 - cosmiconfig: ^7.0.1 - checksum: fd6d6d5da5aeb956703310480b626c1fb3e3973ad9fe8025efc1dcf3d895f857b70d100c63cf32cebb20eb83c9607bafa464c9436e18fe6fe4fafdc73ed6b1a5 - languageName: node - linkType: hard - -"@svgr/hast-util-to-babel-ast@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/hast-util-to-babel-ast@npm:6.5.1" - dependencies: - "@babel/types": ^7.20.0 - entities: ^4.4.0 - checksum: 37923cce1b3f4e2039077b0c570b6edbabe37d1cf1a6ee35e71e0fe00f9cffac450eec45e9720b1010418131a999cb0047331ba1b6d1d2c69af1b92ac785aacf - languageName: node - linkType: hard - -"@svgr/plugin-jsx@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/plugin-jsx@npm:6.5.1" - dependencies: - "@babel/core": ^7.19.6 - "@svgr/babel-preset": ^6.5.1 - "@svgr/hast-util-to-babel-ast": ^6.5.1 - svg-parser: ^2.0.4 - peerDependencies: - "@svgr/core": ^6.0.0 - checksum: 42f22847a6bdf930514d7bedd3c5e1fd8d53eb3594779f9db16cb94c762425907c375cd8ec789114e100a4d38068aca6c7ab5efea4c612fba63f0630c44cc859 - languageName: node - linkType: hard - -"@svgr/plugin-svgo@npm:^6.5.1": - version: 6.5.1 - resolution: "@svgr/plugin-svgo@npm:6.5.1" - dependencies: - cosmiconfig: ^7.0.1 - deepmerge: ^4.2.2 - svgo: ^2.8.0 - peerDependencies: - "@svgr/core": "*" - checksum: cd2833530ac0485221adc2146fd992ab20d79f4b12eebcd45fa859721dd779483158e11dfd9a534858fe468416b9412416e25cbe07ac7932c44ed5fa2021c72e - languageName: node - linkType: hard - -"@svgr/webpack@npm:^6.2.1": - version: 6.5.1 - resolution: "@svgr/webpack@npm:6.5.1" - dependencies: - "@babel/core": ^7.19.6 - "@babel/plugin-transform-react-constant-elements": ^7.18.12 - "@babel/preset-env": ^7.19.4 - "@babel/preset-react": ^7.18.6 - "@babel/preset-typescript": ^7.18.6 - "@svgr/core": ^6.5.1 - "@svgr/plugin-jsx": ^6.5.1 - "@svgr/plugin-svgo": ^6.5.1 - checksum: d10582eb4fa82a5b6d314cb49f2c640af4fd3a60f5b76095d2b14e383ef6a43a6f4674b68774a21787dbde69dec0a251cfcfc3f9a96c82754ba5d5c6daf785f0 - languageName: node - linkType: hard - -"@szmarczak/http-timer@npm:^1.1.2": - version: 1.1.2 - resolution: "@szmarczak/http-timer@npm:1.1.2" - dependencies: - defer-to-connect: ^1.0.1 - checksum: 4d9158061c5f397c57b4988cde33a163244e4f02df16364f103971957a32886beb104d6180902cbe8b38cb940e234d9f98a4e486200deca621923f62f50a06fe - languageName: node - linkType: hard - -"@trysound/sax@npm:0.2.0": - version: 0.2.0 - resolution: "@trysound/sax@npm:0.2.0" - checksum: 11226c39b52b391719a2a92e10183e4260d9651f86edced166da1d95f39a0a1eaa470e44d14ac685ccd6d3df7e2002433782872c0feeb260d61e80f21250e65c - languageName: node - linkType: hard - -"@ts-morph/common@npm:~0.22.0": - version: 0.22.0 - resolution: "@ts-morph/common@npm:0.22.0" - dependencies: - fast-glob: ^3.3.2 - minimatch: ^9.0.3 - mkdirp: ^3.0.1 - path-browserify: ^1.0.1 - checksum: e549facfff2a68eeef4e3e2c4183e7216a02b57e62cdfe60ca15d5fdee24770bd3b5b6d1a0388cfce7b4dfaeb0ebe31ffa40585e36b9fb7948aea8081fa73769 - languageName: node - linkType: hard - -"@types/body-parser@npm:*": - version: 1.19.5 - resolution: "@types/body-parser@npm:1.19.5" - dependencies: - "@types/connect": "*" - "@types/node": "*" - checksum: 1e251118c4b2f61029cc43b0dc028495f2d1957fe8ee49a707fb940f86a9bd2f9754230805598278fe99958b49e9b7e66eec8ef6a50ab5c1f6b93e1ba2aaba82 - languageName: node - linkType: hard - -"@types/bonjour@npm:^3.5.9": - version: 3.5.13 - resolution: "@types/bonjour@npm:3.5.13" - dependencies: - "@types/node": "*" - checksum: e827570e097bd7d625a673c9c208af2d1a22fa3885c0a1646533cf24394c839c3e5f60ac1bc60c0ddcc69c0615078c9fb2c01b42596c7c582d895d974f2409ee - languageName: node - linkType: hard - -"@types/connect-history-api-fallback@npm:^1.3.5": - version: 1.5.4 - resolution: "@types/connect-history-api-fallback@npm:1.5.4" - dependencies: - "@types/express-serve-static-core": "*" - "@types/node": "*" - checksum: e1dee43b8570ffac02d2d47a2b4ba80d3ca0dd1840632dafb221da199e59dbe3778d3d7303c9e23c6b401f37c076935a5bc2aeae1c4e5feaefe1c371fe2073fd - languageName: node - linkType: hard - -"@types/connect@npm:*": - version: 3.4.38 - resolution: "@types/connect@npm:3.4.38" - dependencies: - "@types/node": "*" - checksum: 7eb1bc5342a9604facd57598a6c62621e244822442976c443efb84ff745246b10d06e8b309b6e80130026a396f19bf6793b7cecd7380169f369dac3bfc46fb99 - languageName: node - linkType: hard - -"@types/dompurify@npm:^3.0.5": - version: 3.0.5 - resolution: "@types/dompurify@npm:3.0.5" - dependencies: - "@types/trusted-types": "*" - checksum: ffc34eca6a4536e1c8c16a47cce2623c5a118a9785492e71230052d92933ff096d14326ff449031e8dfaac509413222372d8f2b28786a13159de6241df716185 - languageName: node - linkType: hard - -"@types/eslint-scope@npm:^3.7.3": - version: 3.7.7 - resolution: "@types/eslint-scope@npm:3.7.7" - dependencies: - "@types/eslint": "*" - "@types/estree": "*" - checksum: e2889a124aaab0b89af1bab5959847c5bec09809209255de0e63b9f54c629a94781daa04adb66bffcdd742f5e25a17614fb933965093c0eea64aacda4309380e - languageName: node - linkType: hard - -"@types/eslint@npm:*": - version: 8.56.5 - resolution: "@types/eslint@npm:8.56.5" - dependencies: - "@types/estree": "*" - "@types/json-schema": "*" - checksum: 95a7a23ca38c78e5c27a2ed36ef60f094d5e6589e3473c320b6ff69eb3ca6333d5b7f0d5053416369f5ab2fb86874df19562d4d67a98237c17def6e30abff540 - languageName: node - linkType: hard - -"@types/estree@npm:*, @types/estree@npm:1.0.5, @types/estree@npm:^1.0.5": - version: 1.0.5 - resolution: "@types/estree@npm:1.0.5" - checksum: dd8b5bed28e6213b7acd0fb665a84e693554d850b0df423ac8076cc3ad5823a6bc26b0251d080bdc545af83179ede51dd3f6fa78cad2c46ed1f29624ddf3e41a - languageName: node - linkType: hard - -"@types/express-serve-static-core@npm:*, @types/express-serve-static-core@npm:^4.17.33": - version: 4.17.43 - resolution: "@types/express-serve-static-core@npm:4.17.43" - dependencies: - "@types/node": "*" - "@types/qs": "*" - "@types/range-parser": "*" - "@types/send": "*" - checksum: 08e940cae52eb1388a7b5f61d65f028e783add77d1854243ae920a6a2dfb5febb6acaafbcf38be9d678b0411253b9bc325893c463a93302405f24135664ab1e4 - languageName: node - linkType: hard - -"@types/express@npm:*, @types/express@npm:^4.17.13": - version: 4.17.21 - resolution: "@types/express@npm:4.17.21" - dependencies: - "@types/body-parser": "*" - "@types/express-serve-static-core": ^4.17.33 - "@types/qs": "*" - "@types/serve-static": "*" - checksum: fb238298630370a7392c7abdc80f495ae6c716723e114705d7e3fb67e3850b3859bbfd29391463a3fb8c0b32051847935933d99e719c0478710f8098ee7091c5 - languageName: node - linkType: hard - -"@types/hast@npm:^2.0.0": - version: 2.3.10 - resolution: "@types/hast@npm:2.3.10" - dependencies: - "@types/unist": ^2 - checksum: 41531b7fbf590b02452996fc63272479c20a07269e370bd6514982cbcd1819b4b84d3ea620f2410d1b9541a23d08ce2eeb0a592145d05e00e249c3d56700d460 - languageName: node - linkType: hard - -"@types/history@npm:^4.7.11": - version: 4.7.11 - resolution: "@types/history@npm:4.7.11" - checksum: c92e2ba407dcab0581a9afdf98f533aa41b61a71133420a6d92b1ca9839f741ab1f9395b17454ba5b88cb86020b70b22d74a1950ccfbdfd9beeaa5459fdc3464 - languageName: node - linkType: hard - -"@types/html-minifier-terser@npm:^6.0.0": - version: 6.1.0 - resolution: "@types/html-minifier-terser@npm:6.1.0" - checksum: eb843f6a8d662d44fb18ec61041117734c6aae77aa38df1be3b4712e8e50ffaa35f1e1c92fdd0fde14a5675fecf457abcd0d15a01fae7506c91926176967f452 - languageName: node - linkType: hard - -"@types/http-errors@npm:*": - version: 2.0.4 - resolution: "@types/http-errors@npm:2.0.4" - checksum: 1f3d7c3b32c7524811a45690881736b3ef741bf9849ae03d32ad1ab7062608454b150a4e7f1351f83d26a418b2d65af9bdc06198f1c079d75578282884c4e8e3 - languageName: node - linkType: hard - -"@types/http-proxy@npm:^1.17.8": - version: 1.17.14 - resolution: "@types/http-proxy@npm:1.17.14" - dependencies: - "@types/node": "*" - checksum: 491320bce3565bbb6c7d39d25b54bce626237cfb6b09e60ee7f77b56ae7c6cbad76f08d47fe01eaa706781124ee3dfad9bb737049254491efd98ed1f014c4e83 - languageName: node - linkType: hard - -"@types/istanbul-lib-coverage@npm:*, @types/istanbul-lib-coverage@npm:^2.0.0": - version: 2.0.6 - resolution: "@types/istanbul-lib-coverage@npm:2.0.6" - checksum: 3feac423fd3e5449485afac999dcfcb3d44a37c830af898b689fadc65d26526460bedb889db278e0d4d815a670331796494d073a10ee6e3a6526301fe7415778 - languageName: node - linkType: hard - -"@types/istanbul-lib-report@npm:*": - version: 3.0.3 - resolution: "@types/istanbul-lib-report@npm:3.0.3" - dependencies: - "@types/istanbul-lib-coverage": "*" - checksum: b91e9b60f865ff08cb35667a427b70f6c2c63e88105eadd29a112582942af47ed99c60610180aa8dcc22382fa405033f141c119c69b95db78c4c709fbadfeeb4 - languageName: node - linkType: hard - -"@types/istanbul-reports@npm:^3.0.0": - version: 3.0.4 - resolution: "@types/istanbul-reports@npm:3.0.4" - dependencies: - "@types/istanbul-lib-report": "*" - checksum: 93eb18835770b3431f68ae9ac1ca91741ab85f7606f310a34b3586b5a34450ec038c3eed7ab19266635499594de52ff73723a54a72a75b9f7d6a956f01edee95 - languageName: node - linkType: hard - -"@types/json-schema@npm:*, @types/json-schema@npm:^7.0.4, @types/json-schema@npm:^7.0.5, @types/json-schema@npm:^7.0.8, @types/json-schema@npm:^7.0.9": - version: 7.0.15 - resolution: "@types/json-schema@npm:7.0.15" - checksum: 97ed0cb44d4070aecea772b7b2e2ed971e10c81ec87dd4ecc160322ffa55ff330dace1793489540e3e318d90942064bb697cc0f8989391797792d919737b3b98 - languageName: node - linkType: hard - -"@types/json5@npm:^0.0.29": - version: 0.0.29 - resolution: "@types/json5@npm:0.0.29" - checksum: e60b153664572116dfea673c5bda7778dbff150498f44f998e34b5886d8afc47f16799280e4b6e241c0472aef1bc36add771c569c68fc5125fc2ae519a3eb9ac - languageName: node - linkType: hard - -"@types/keyv@npm:^3.1.1": - version: 3.1.4 - resolution: "@types/keyv@npm:3.1.4" - dependencies: - "@types/node": "*" - checksum: e009a2bfb50e90ca9b7c6e8f648f8464067271fd99116f881073fa6fa76dc8d0133181dd65e6614d5fb1220d671d67b0124aef7d97dc02d7e342ab143a47779d - languageName: node - linkType: hard - -"@types/mdast@npm:^3.0.0": - version: 3.0.15 - resolution: "@types/mdast@npm:3.0.15" - dependencies: - "@types/unist": ^2 - checksum: af85042a4e3af3f879bde4059fa9e76c71cb552dffc896cdcc6cf9dc1fd38e37035c2dbd6245cfa6535b433f1f0478f5549696234ccace47a64055a10c656530 - languageName: node - linkType: hard - -"@types/mime@npm:*": - version: 3.0.4 - resolution: "@types/mime@npm:3.0.4" - checksum: a6139c8e1f705ef2b064d072f6edc01f3c099023ad7c4fce2afc6c2bf0231888202adadbdb48643e8e20da0ce409481a49922e737eca52871b3dc08017455843 - languageName: node - linkType: hard - -"@types/mime@npm:^1": - version: 1.3.5 - resolution: "@types/mime@npm:1.3.5" - checksum: e29a5f9c4776f5229d84e525b7cd7dd960b51c30a0fb9a028c0821790b82fca9f672dab56561e2acd9e8eed51d431bde52eafdfef30f643586c4162f1aecfc78 - languageName: node - linkType: hard - -"@types/node-forge@npm:^1.3.0": - version: 1.3.11 - resolution: "@types/node-forge@npm:1.3.11" - dependencies: - "@types/node": "*" - checksum: 1e86bd55b92a492eaafd75f6d01f31e7d86a5cdadd0c6bcdc0b1df4103b7f99bb75b832efd5217c7ddda5c781095dc086a868e20b9de00f5a427ddad4c296cd5 - languageName: node - linkType: hard - -"@types/node@npm:*": - version: 20.11.24 - resolution: "@types/node@npm:20.11.24" - dependencies: - undici-types: ~5.26.4 - checksum: b11a650e09e254f4725c94f226752b69949a9ac4a5e004e98f109437ac50b02df3ab4d12b2086722fedf2cb62e68b9e723abd3f358a7d7d90d741a0d3bee90c2 - languageName: node - linkType: hard - -"@types/node@npm:^17.0.5": - version: 17.0.45 - resolution: "@types/node@npm:17.0.45" - checksum: aa04366b9103b7d6cfd6b2ef64182e0eaa7d4462c3f817618486ea0422984c51fc69fd0d436eae6c9e696ddfdbec9ccaa27a917f7c2e8c75c5d57827fe3d95e8 - languageName: node - linkType: hard - -"@types/parse-json@npm:^4.0.0": - version: 4.0.2 - resolution: "@types/parse-json@npm:4.0.2" - checksum: 5bf62eec37c332ad10059252fc0dab7e7da730764869c980b0714777ad3d065e490627be9f40fc52f238ffa3ac4199b19de4127196910576c2fe34dd47c7a470 - languageName: node - linkType: hard - -"@types/parse5@npm:^5.0.0": - version: 5.0.3 - resolution: "@types/parse5@npm:5.0.3" - checksum: d6b7495cb1850f9f2e9c5e103ede9f2d30a5320669707b105c403868adc9e4bf8d3a7ff314cc23f67826bbbbbc0e6147346ce9062ab429f099dba7a01f463919 - languageName: node - linkType: hard - -"@types/phoenix@npm:^1.5.4": - version: 1.6.4 - resolution: "@types/phoenix@npm:1.6.4" - checksum: 0f13849602db6d9a2a4b9d96386c45471acedf2bc3d6bf6b3289876fa73f0fe0e84c8466bd55c4f2763d33e142e5311c220820fed9ac2a21d9126f1f70a7338f - languageName: node - linkType: hard - -"@types/prop-types@npm:*": - version: 15.7.11 - resolution: "@types/prop-types@npm:15.7.11" - checksum: 7519ff11d06fbf6b275029fe03fff9ec377b4cb6e864cac34d87d7146c7f5a7560fd164bdc1d2dbe00b60c43713631251af1fd3d34d46c69cd354602bc0c7c54 - languageName: node - linkType: hard - -"@types/qs@npm:*": - version: 6.9.12 - resolution: "@types/qs@npm:6.9.12" - checksum: 76be8068091058987bb49aca59e9714ff856661cdc2340499f9d502c78950ac08e7ecbca256c8a72c4c83714bce30e6aaad13f9f739e8c0c436c0eedb2a2627c - languageName: node - linkType: hard - -"@types/range-parser@npm:*": - version: 1.2.7 - resolution: "@types/range-parser@npm:1.2.7" - checksum: 95640233b689dfbd85b8c6ee268812a732cf36d5affead89e806fe30da9a430767af8ef2cd661024fd97e19d61f3dec75af2df5e80ec3bea000019ab7028629a - languageName: node - linkType: hard - -"@types/react-router-config@npm:*, @types/react-router-config@npm:^5.0.6": - version: 5.0.11 - resolution: "@types/react-router-config@npm:5.0.11" - dependencies: - "@types/history": ^4.7.11 - "@types/react": "*" - "@types/react-router": ^5.1.0 - checksum: 4b72d9b71e0576e193c11e5085bbdac43f31debfa3b6ebc24666f3d646ef25c1f57f16c29b1ddd3051c881e85f8e0d4ab5a7bbd5fc215b9377f57675b210be7c - languageName: node - linkType: hard - -"@types/react-router-dom@npm:*": - version: 5.3.3 - resolution: "@types/react-router-dom@npm:5.3.3" - dependencies: - "@types/history": ^4.7.11 - "@types/react": "*" - "@types/react-router": "*" - checksum: 28c4ea48909803c414bf5a08502acbb8ba414669b4b43bb51297c05fe5addc4df0b8fd00e0a9d1e3535ec4073ef38aaafac2c4a2b95b787167d113bc059beff3 - languageName: node - linkType: hard - -"@types/react-router@npm:*, @types/react-router@npm:^5.1.0": - version: 5.1.20 - resolution: "@types/react-router@npm:5.1.20" - dependencies: - "@types/history": ^4.7.11 - "@types/react": "*" - checksum: 128764143473a5e9457ddc715436b5d49814b1c214dde48939b9bef23f0e77f52ffcdfa97eb8d3cc27e2c229869c0cdd90f637d887b62f2c9f065a87d6425419 - languageName: node - linkType: hard - -"@types/react@npm:*": - version: 18.2.62 - resolution: "@types/react@npm:18.2.62" - dependencies: - "@types/prop-types": "*" - "@types/scheduler": "*" - csstype: ^3.0.2 - checksum: f3979e8d6eadbd27fdbbe10aeaefc164b5a8a1af1df1a099cf8a950b4ea0a6cb6a7b36ff26fccecafcbb9086a908806f4f3b3c826909d97de31fc6bf572feaf1 - languageName: node - linkType: hard - -"@types/responselike@npm:^1.0.0": - version: 1.0.3 - resolution: "@types/responselike@npm:1.0.3" - dependencies: - "@types/node": "*" - checksum: 6ac4b35723429b11b117e813c7acc42c3af8b5554caaf1fc750404c1ae59f9b7376bc69b9e9e194a5a97357a597c2228b7173d317320f0360d617b6425212f58 - languageName: node - linkType: hard - -"@types/retry@npm:0.12.0": - version: 0.12.0 - resolution: "@types/retry@npm:0.12.0" - checksum: 61a072c7639f6e8126588bf1eb1ce8835f2cb9c2aba795c4491cf6310e013267b0c8488039857c261c387e9728c1b43205099223f160bb6a76b4374f741b5603 - languageName: node - linkType: hard - -"@types/sax@npm:^1.2.1": - version: 1.2.7 - resolution: "@types/sax@npm:1.2.7" - dependencies: - "@types/node": "*" - checksum: 7ece5fbb5d9c8fc76ab0de2f99d705edf92f18e701d4f9d9b0647275e32eb65e656c1badf9dfaa12f4e1ff3e250561c8c9cfe79e8b5f33dd1417ac0f1804f6cc - languageName: node - linkType: hard - -"@types/scheduler@npm:*": - version: 0.16.8 - resolution: "@types/scheduler@npm:0.16.8" - checksum: 6c091b096daa490093bf30dd7947cd28e5b2cd612ec93448432b33f724b162587fed9309a0acc104d97b69b1d49a0f3fc755a62282054d62975d53d7fd13472d - languageName: node - linkType: hard - -"@types/send@npm:*": - version: 0.17.4 - resolution: "@types/send@npm:0.17.4" - dependencies: - "@types/mime": ^1 - "@types/node": "*" - checksum: cf4db48251bbb03cd6452b4de6e8e09e2d75390a92fd798eca4a803df06444adc94ed050246c94c7ed46fb97be1f63607f0e1f13c3ce83d71788b3e08640e5e0 - languageName: node - linkType: hard - -"@types/serve-index@npm:^1.9.1": - version: 1.9.4 - resolution: "@types/serve-index@npm:1.9.4" - dependencies: - "@types/express": "*" - checksum: 72727c88d54da5b13275ebfb75dcdc4aa12417bbe9da1939e017c4c5f0c906fae843aa4e0fbfe360e7ee9df2f3d388c21abfc488f77ce58693fb57809f8ded92 - languageName: node - linkType: hard - -"@types/serve-static@npm:*, @types/serve-static@npm:^1.13.10": - version: 1.15.5 - resolution: "@types/serve-static@npm:1.15.5" - dependencies: - "@types/http-errors": "*" - "@types/mime": "*" - "@types/node": "*" - checksum: 0ff4b3703cf20ba89c9f9e345bc38417860a88e85863c8d6fe274a543220ab7f5f647d307c60a71bb57dc9559f0890a661e8dc771a6ec5ef195d91c8afc4a893 - languageName: node - linkType: hard - -"@types/sockjs@npm:^0.3.33": - version: 0.3.36 - resolution: "@types/sockjs@npm:0.3.36" - dependencies: - "@types/node": "*" - checksum: b4b5381122465d80ea8b158537c00bc82317222d3fb31fd7229ff25b31fa89134abfbab969118da55622236bf3d8fee75759f3959908b5688991f492008f29bc - languageName: node - linkType: hard - -"@types/trusted-types@npm:*": - version: 2.0.7 - resolution: "@types/trusted-types@npm:2.0.7" - checksum: 8e4202766a65877efcf5d5a41b7dd458480b36195e580a3b1085ad21e948bc417d55d6f8af1fd2a7ad008015d4117d5fdfe432731157da3c68678487174e4ba3 - languageName: node - linkType: hard - -"@types/unist@npm:^2, @types/unist@npm:^2.0.0, @types/unist@npm:^2.0.2, @types/unist@npm:^2.0.3": - version: 2.0.10 - resolution: "@types/unist@npm:2.0.10" - checksum: e2924e18dedf45f68a5c6ccd6015cd62f1643b1b43baac1854efa21ae9e70505db94290434a23da1137d9e31eb58e54ca175982005698ac37300a1c889f6c4aa - languageName: node - linkType: hard - -"@types/ws@npm:^8.5.10, @types/ws@npm:^8.5.5": - version: 8.5.10 - resolution: "@types/ws@npm:8.5.10" - dependencies: - "@types/node": "*" - checksum: 3ec416ea2be24042ebd677932a462cf16d2080393d8d7d0b1b3f5d6eaa4a7387aaf0eefb99193c0bfd29444857cf2e0c3ac89899e130550dc6c14ada8a46d25e - languageName: node - linkType: hard - -"@types/yargs-parser@npm:*": - version: 21.0.3 - resolution: "@types/yargs-parser@npm:21.0.3" - checksum: ef236c27f9432983e91432d974243e6c4cdae227cb673740320eff32d04d853eed59c92ca6f1142a335cfdc0e17cccafa62e95886a8154ca8891cc2dec4ee6fc - languageName: node - linkType: hard - -"@types/yargs@npm:^17.0.8": - version: 17.0.32 - resolution: "@types/yargs@npm:17.0.32" - dependencies: - "@types/yargs-parser": "*" - checksum: 4505bdebe8716ff383640c6e928f855b5d337cb3c68c81f7249fc6b983d0aa48de3eee26062b84f37e0d75a5797bc745e0c6e76f42f81771252a758c638f36ba - languageName: node - linkType: hard - -"@ungap/structured-clone@npm:^1.2.0": - version: 1.2.0 - resolution: "@ungap/structured-clone@npm:1.2.0" - checksum: 4f656b7b4672f2ce6e272f2427d8b0824ed11546a601d8d5412b9d7704e83db38a8d9f402ecdf2b9063fc164af842ad0ec4a55819f621ed7e7ea4d1efcc74524 - languageName: node - linkType: hard - -"@webassemblyjs/ast@npm:1.11.6, @webassemblyjs/ast@npm:^1.11.5": - version: 1.11.6 - resolution: "@webassemblyjs/ast@npm:1.11.6" - dependencies: - "@webassemblyjs/helper-numbers": 1.11.6 - "@webassemblyjs/helper-wasm-bytecode": 1.11.6 - checksum: 38ef1b526ca47c210f30975b06df2faf1a8170b1636ce239fc5738fc231ce28389dd61ecedd1bacfc03cbe95b16d1af848c805652080cb60982836eb4ed2c6cf - languageName: node - linkType: hard - -"@webassemblyjs/floating-point-hex-parser@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/floating-point-hex-parser@npm:1.11.6" - checksum: 29b08758841fd8b299c7152eda36b9eb4921e9c584eb4594437b5cd90ed6b920523606eae7316175f89c20628da14326801090167cc7fbffc77af448ac84b7e2 - languageName: node - linkType: hard - -"@webassemblyjs/helper-api-error@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/helper-api-error@npm:1.11.6" - checksum: e8563df85161096343008f9161adb138a6e8f3c2cc338d6a36011aa55eabb32f2fd138ffe63bc278d009ada001cc41d263dadd1c0be01be6c2ed99076103689f - languageName: node - linkType: hard - -"@webassemblyjs/helper-buffer@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/helper-buffer@npm:1.11.6" - checksum: b14d0573bf680d22b2522e8a341ec451fddd645d1f9c6bd9012ccb7e587a2973b86ab7b89fe91e1c79939ba96095f503af04369a3b356c8023c13a5893221644 - languageName: node - linkType: hard - -"@webassemblyjs/helper-numbers@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/helper-numbers@npm:1.11.6" - dependencies: - "@webassemblyjs/floating-point-hex-parser": 1.11.6 - "@webassemblyjs/helper-api-error": 1.11.6 - "@xtuc/long": 4.2.2 - checksum: f4b562fa219f84368528339e0f8d273ad44e047a07641ffcaaec6f93e5b76fd86490a009aa91a294584e1436d74b0a01fa9fde45e333a4c657b58168b04da424 - languageName: node - linkType: hard - -"@webassemblyjs/helper-wasm-bytecode@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/helper-wasm-bytecode@npm:1.11.6" - checksum: 3535ef4f1fba38de3475e383b3980f4bbf3de72bbb631c2b6584c7df45be4eccd62c6ff48b5edd3f1bcff275cfd605a37679ec199fc91fd0a7705d7f1e3972dc - languageName: node - linkType: hard - -"@webassemblyjs/helper-wasm-section@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/helper-wasm-section@npm:1.11.6" - dependencies: - "@webassemblyjs/ast": 1.11.6 - "@webassemblyjs/helper-buffer": 1.11.6 - "@webassemblyjs/helper-wasm-bytecode": 1.11.6 - "@webassemblyjs/wasm-gen": 1.11.6 - checksum: b2cf751bf4552b5b9999d27bbb7692d0aca75260140195cb58ea6374d7b9c2dc69b61e10b211a0e773f66209c3ddd612137ed66097e3684d7816f854997682e9 - languageName: node - linkType: hard - -"@webassemblyjs/ieee754@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/ieee754@npm:1.11.6" - dependencies: - "@xtuc/ieee754": ^1.2.0 - checksum: 13574b8e41f6ca39b700e292d7edf102577db5650fe8add7066a320aa4b7a7c09a5056feccac7a74eb68c10dea9546d4461412af351f13f6b24b5f32379b49de - languageName: node - linkType: hard - -"@webassemblyjs/leb128@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/leb128@npm:1.11.6" - dependencies: - "@xtuc/long": 4.2.2 - checksum: 7ea942dc9777d4b18a5ebfa3a937b30ae9e1d2ce1fee637583ed7f376334dd1d4274f813d2e250056cca803e0952def4b954913f1a3c9068bcd4ab4ee5143bf0 - languageName: node - linkType: hard - -"@webassemblyjs/utf8@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/utf8@npm:1.11.6" - checksum: 807fe5b5ce10c390cfdd93e0fb92abda8aebabb5199980681e7c3743ee3306a75729bcd1e56a3903980e96c885ee53ef901fcbaac8efdfa480f9c0dae1d08713 - languageName: node - linkType: hard - -"@webassemblyjs/wasm-edit@npm:^1.11.5": - version: 1.11.6 - resolution: "@webassemblyjs/wasm-edit@npm:1.11.6" - dependencies: - "@webassemblyjs/ast": 1.11.6 - "@webassemblyjs/helper-buffer": 1.11.6 - "@webassemblyjs/helper-wasm-bytecode": 1.11.6 - "@webassemblyjs/helper-wasm-section": 1.11.6 - "@webassemblyjs/wasm-gen": 1.11.6 - "@webassemblyjs/wasm-opt": 1.11.6 - "@webassemblyjs/wasm-parser": 1.11.6 - "@webassemblyjs/wast-printer": 1.11.6 - checksum: 29ce75870496d6fad864d815ebb072395a8a3a04dc9c3f4e1ffdc63fc5fa58b1f34304a1117296d8240054cfdbc38aca88e71fb51483cf29ffab0a61ef27b481 - languageName: node - linkType: hard - -"@webassemblyjs/wasm-gen@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/wasm-gen@npm:1.11.6" - dependencies: - "@webassemblyjs/ast": 1.11.6 - "@webassemblyjs/helper-wasm-bytecode": 1.11.6 - "@webassemblyjs/ieee754": 1.11.6 - "@webassemblyjs/leb128": 1.11.6 - "@webassemblyjs/utf8": 1.11.6 - checksum: a645a2eecbea24833c3260a249704a7f554ef4a94c6000984728e94bb2bc9140a68dfd6fd21d5e0bbb09f6dfc98e083a45760a83ae0417b41a0196ff6d45a23a - languageName: node - linkType: hard - -"@webassemblyjs/wasm-opt@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/wasm-opt@npm:1.11.6" - dependencies: - "@webassemblyjs/ast": 1.11.6 - "@webassemblyjs/helper-buffer": 1.11.6 - "@webassemblyjs/wasm-gen": 1.11.6 - "@webassemblyjs/wasm-parser": 1.11.6 - checksum: b4557f195487f8e97336ddf79f7bef40d788239169aac707f6eaa2fa5fe243557c2d74e550a8e57f2788e70c7ae4e7d32f7be16101afe183d597b747a3bdd528 - languageName: node - linkType: hard - -"@webassemblyjs/wasm-parser@npm:1.11.6, @webassemblyjs/wasm-parser@npm:^1.11.5": - version: 1.11.6 - resolution: "@webassemblyjs/wasm-parser@npm:1.11.6" - dependencies: - "@webassemblyjs/ast": 1.11.6 - "@webassemblyjs/helper-api-error": 1.11.6 - "@webassemblyjs/helper-wasm-bytecode": 1.11.6 - "@webassemblyjs/ieee754": 1.11.6 - "@webassemblyjs/leb128": 1.11.6 - "@webassemblyjs/utf8": 1.11.6 - checksum: 8200a8d77c15621724a23fdabe58d5571415cda98a7058f542e670ea965dd75499f5e34a48675184947c66f3df23adf55df060312e6d72d57908e3f049620d8a - languageName: node - linkType: hard - -"@webassemblyjs/wast-printer@npm:1.11.6": - version: 1.11.6 - resolution: "@webassemblyjs/wast-printer@npm:1.11.6" - dependencies: - "@webassemblyjs/ast": 1.11.6 - "@xtuc/long": 4.2.2 - checksum: d2fa6a4c427325ec81463e9c809aa6572af6d47f619f3091bf4c4a6fc34f1da3df7caddaac50b8e7a457f8784c62cd58c6311b6cb69b0162ccd8d4c072f79cf8 - languageName: node - linkType: hard - -"@xtuc/ieee754@npm:^1.2.0": - version: 1.2.0 - resolution: "@xtuc/ieee754@npm:1.2.0" - checksum: ac56d4ca6e17790f1b1677f978c0c6808b1900a5b138885d3da21732f62e30e8f0d9120fcf8f6edfff5100ca902b46f8dd7c1e3f903728634523981e80e2885a - languageName: node - linkType: hard - -"@xtuc/long@npm:4.2.2": - version: 4.2.2 - resolution: "@xtuc/long@npm:4.2.2" - checksum: 8ed0d477ce3bc9c6fe2bf6a6a2cc316bb9c4127c5a7827bae947fa8ec34c7092395c5a283cc300c05b5fa01cbbfa1f938f410a7bf75db7c7846fea41949989ec - languageName: node - linkType: hard - -"abbrev@npm:^2.0.0": - version: 2.0.0 - resolution: "abbrev@npm:2.0.0" - checksum: 0e994ad2aa6575f94670d8a2149afe94465de9cedaaaac364e7fb43a40c3691c980ff74899f682f4ca58fa96b4cbd7421a015d3a6defe43a442117d7821a2f36 - languageName: node - linkType: hard - -"accepts@npm:~1.3.4, accepts@npm:~1.3.5, accepts@npm:~1.3.8": - version: 1.3.8 - resolution: "accepts@npm:1.3.8" - dependencies: - mime-types: ~2.1.34 - negotiator: 0.6.3 - checksum: 50c43d32e7b50285ebe84b613ee4a3aa426715a7d131b65b786e2ead0fd76b6b60091b9916d3478a75f11f162628a2139991b6c03ab3f1d9ab7c86075dc8eab4 - languageName: node - linkType: hard - -"acorn-import-assertions@npm:^1.9.0": - version: 1.9.0 - resolution: "acorn-import-assertions@npm:1.9.0" - peerDependencies: - acorn: ^8 - checksum: 944fb2659d0845c467066bdcda2e20c05abe3aaf11972116df457ce2627628a81764d800dd55031ba19de513ee0d43bb771bc679cc0eda66dc8b4fade143bc0c - languageName: node - linkType: hard - -"acorn-jsx@npm:^5.3.2": - version: 5.3.2 - resolution: "acorn-jsx@npm:5.3.2" - peerDependencies: - acorn: ^6.0.0 || ^7.0.0 || ^8.0.0 - checksum: c3d3b2a89c9a056b205b69530a37b972b404ee46ec8e5b341666f9513d3163e2a4f214a71f4dfc7370f5a9c07472d2fd1c11c91c3f03d093e37637d95da98950 - languageName: node - linkType: hard - -"acorn-walk@npm:^8.0.0": - version: 8.3.2 - resolution: "acorn-walk@npm:8.3.2" - checksum: 3626b9d26a37b1b427796feaa5261faf712307a8920392c8dce9a5739fb31077667f4ad2ec71c7ac6aaf9f61f04a9d3d67ff56f459587206fc04aa31c27ef392 - languageName: node - linkType: hard - -"acorn@npm:^8.0.4, acorn@npm:^8.7.1, acorn@npm:^8.8.2, acorn@npm:^8.9.0": - version: 8.11.3 - resolution: "acorn@npm:8.11.3" - bin: - acorn: bin/acorn - checksum: 76d8e7d559512566b43ab4aadc374f11f563f0a9e21626dd59cb2888444e9445923ae9f3699972767f18af61df89cd89f5eaaf772d1327b055b45cb829b4a88c - languageName: node - linkType: hard - -"address@npm:^1.0.1, address@npm:^1.1.2": - version: 1.2.2 - resolution: "address@npm:1.2.2" - checksum: ace439960c1e3564d8f523aff23a841904bf33a2a7c2e064f7f60a064194075758b9690e65bd9785692a4ef698a998c57eb74d145881a1cecab8ba658ddb1607 - languageName: node - linkType: hard - -"agent-base@npm:^7.0.2, agent-base@npm:^7.1.0": - version: 7.1.0 - resolution: "agent-base@npm:7.1.0" - dependencies: - debug: ^4.3.4 - checksum: f7828f991470a0cc22cb579c86a18cbae83d8a3cbed39992ab34fc7217c4d126017f1c74d0ab66be87f71455318a8ea3e757d6a37881b8d0f2a2c6aa55e5418f - languageName: node - linkType: hard - -"aggregate-error@npm:^3.0.0": - version: 3.1.0 - resolution: "aggregate-error@npm:3.1.0" - dependencies: - clean-stack: ^2.0.0 - indent-string: ^4.0.0 - checksum: 1101a33f21baa27a2fa8e04b698271e64616b886795fd43c31068c07533c7b3facfcaf4e9e0cab3624bd88f729a592f1c901a1a229c9e490eafce411a8644b79 - languageName: node - linkType: hard - -"ajv-formats@npm:^2.1.1": - version: 2.1.1 - resolution: "ajv-formats@npm:2.1.1" - dependencies: - ajv: ^8.0.0 - peerDependencies: - ajv: ^8.0.0 - peerDependenciesMeta: - ajv: - optional: true - checksum: 4a287d937f1ebaad4683249a4c40c0fa3beed30d9ddc0adba04859026a622da0d317851316ea64b3680dc60f5c3c708105ddd5d5db8fe595d9d0207fd19f90b7 - languageName: node - linkType: hard - -"ajv-keywords@npm:^3.4.1, ajv-keywords@npm:^3.5.2": - version: 3.5.2 - resolution: "ajv-keywords@npm:3.5.2" - peerDependencies: - ajv: ^6.9.1 - checksum: 7dc5e5931677a680589050f79dcbe1fefbb8fea38a955af03724229139175b433c63c68f7ae5f86cf8f65d55eb7c25f75a046723e2e58296707617ca690feae9 - languageName: node - linkType: hard - -"ajv-keywords@npm:^5.1.0": - version: 5.1.0 - resolution: "ajv-keywords@npm:5.1.0" - dependencies: - fast-deep-equal: ^3.1.3 - peerDependencies: - ajv: ^8.8.2 - checksum: c35193940b853119242c6757787f09ecf89a2c19bcd36d03ed1a615e710d19d450cb448bfda407b939aba54b002368c8bff30529cc50a0536a8e10bcce300421 - languageName: node - linkType: hard - -"ajv@npm:^6.12.2, ajv@npm:^6.12.4, ajv@npm:^6.12.5": - version: 6.12.6 - resolution: "ajv@npm:6.12.6" - dependencies: - fast-deep-equal: ^3.1.1 - fast-json-stable-stringify: ^2.0.0 - json-schema-traverse: ^0.4.1 - uri-js: ^4.2.2 - checksum: 874972efe5c4202ab0a68379481fbd3d1b5d0a7bd6d3cc21d40d3536ebff3352a2a1fabb632d4fd2cc7fe4cbdcd5ed6782084c9bbf7f32a1536d18f9da5007d4 - languageName: node - linkType: hard - -"ajv@npm:^8.0.0, ajv@npm:^8.9.0": - version: 8.12.0 - resolution: "ajv@npm:8.12.0" - dependencies: - fast-deep-equal: ^3.1.1 - json-schema-traverse: ^1.0.0 - require-from-string: ^2.0.2 - uri-js: ^4.2.2 - checksum: 4dc13714e316e67537c8b31bc063f99a1d9d9a497eb4bbd55191ac0dcd5e4985bbb71570352ad6f1e76684fb6d790928f96ba3b2d4fd6e10024be9612fe3f001 - languageName: node - linkType: hard - -"algoliasearch-helper@npm:^3.10.0": - version: 3.16.3 - resolution: "algoliasearch-helper@npm:3.16.3" - dependencies: - "@algolia/events": ^4.0.1 - peerDependencies: - algoliasearch: ">= 3.1 < 6" - checksum: b4664168e2900628e274508dbf4a7f366fa1397468ba49bd0a5c4f2b0d2d1f7ed8bd137ca218a6d142fec49963b7c0774e8929371e1906416bf0d82bcbb61fc1 - languageName: node - linkType: hard - -"algoliasearch@npm:^4.13.1, algoliasearch@npm:^4.19.1": - version: 4.22.1 - resolution: "algoliasearch@npm:4.22.1" - dependencies: - "@algolia/cache-browser-local-storage": 4.22.1 - "@algolia/cache-common": 4.22.1 - "@algolia/cache-in-memory": 4.22.1 - "@algolia/client-account": 4.22.1 - "@algolia/client-analytics": 4.22.1 - "@algolia/client-common": 4.22.1 - "@algolia/client-personalization": 4.22.1 - "@algolia/client-search": 4.22.1 - "@algolia/logger-common": 4.22.1 - "@algolia/logger-console": 4.22.1 - "@algolia/requester-browser-xhr": 4.22.1 - "@algolia/requester-common": 4.22.1 - "@algolia/requester-node-http": 4.22.1 - "@algolia/transporter": 4.22.1 - checksum: 65226e7ac081fd2dccd2a949b211a67010d933e86572be7cc714b3f5ca07edf099e8a2fd328e8c4a772d971d06ec49779c2b8670196c811faede5b78765cb5bf - languageName: node - linkType: hard - -"ansi-align@npm:^3.0.0, ansi-align@npm:^3.0.1": - version: 3.0.1 - resolution: "ansi-align@npm:3.0.1" - dependencies: - string-width: ^4.1.0 - checksum: 6abfa08f2141d231c257162b15292467081fa49a208593e055c866aa0455b57f3a86b5a678c190c618faa79b4c59e254493099cb700dd9cf2293c6be2c8f5d8d - languageName: node - linkType: hard - -"ansi-html-community@npm:^0.0.8": - version: 0.0.8 - resolution: "ansi-html-community@npm:0.0.8" - bin: - ansi-html: bin/ansi-html - checksum: 04c568e8348a636963f915e48eaa3e01218322e1169acafdd79c384f22e5558c003f79bbc480c1563865497482817c7eed025f0653ebc17642fededa5cb42089 - languageName: node - linkType: hard - -"ansi-regex@npm:^5.0.1": - version: 5.0.1 - resolution: "ansi-regex@npm:5.0.1" - checksum: 2aa4bb54caf2d622f1afdad09441695af2a83aa3fe8b8afa581d205e57ed4261c183c4d3877cee25794443fde5876417d859c108078ab788d6af7e4fe52eb66b - languageName: node - linkType: hard - -"ansi-regex@npm:^6.0.1": - version: 6.0.1 - resolution: "ansi-regex@npm:6.0.1" - checksum: 1ff8b7667cded1de4fa2c9ae283e979fc87036864317da86a2e546725f96406746411d0d85e87a2d12fa5abd715d90006de7fa4fa0477c92321ad3b4c7d4e169 - languageName: node - linkType: hard - -"ansi-sequence-parser@npm:^1.1.0": - version: 1.1.1 - resolution: "ansi-sequence-parser@npm:1.1.1" - checksum: ead5b15c596e8e85ca02951a844366c6776769dcc9fd1bd3a0db11bb21364554822c6a439877fb599e7e1ffa0b5f039f1e5501423950457f3dcb2f480c30b188 - languageName: node - linkType: hard - -"ansi-styles@npm:^3.2.1": - version: 3.2.1 - resolution: "ansi-styles@npm:3.2.1" - dependencies: - color-convert: ^1.9.0 - checksum: d85ade01c10e5dd77b6c89f34ed7531da5830d2cb5882c645f330079975b716438cd7ebb81d0d6e6b4f9c577f19ae41ab55f07f19786b02f9dfd9e0377395665 - languageName: node - linkType: hard - -"ansi-styles@npm:^4.0.0, ansi-styles@npm:^4.1.0": - version: 4.3.0 - resolution: "ansi-styles@npm:4.3.0" - dependencies: - color-convert: ^2.0.1 - checksum: 513b44c3b2105dd14cc42a19271e80f386466c4be574bccf60b627432f9198571ebf4ab1e4c3ba17347658f4ee1711c163d574248c0c1cdc2d5917a0ad582ec4 - languageName: node - linkType: hard - -"ansi-styles@npm:^6.1.0": - version: 6.2.1 - resolution: "ansi-styles@npm:6.2.1" - checksum: ef940f2f0ced1a6347398da88a91da7930c33ecac3c77b72c5905f8b8fe402c52e6fde304ff5347f616e27a742da3f1dc76de98f6866c69251ad0b07a66776d9 - languageName: node - linkType: hard - -"anymatch@npm:~3.1.2": - version: 3.1.3 - resolution: "anymatch@npm:3.1.3" - dependencies: - normalize-path: ^3.0.0 - picomatch: ^2.0.4 - checksum: 3e044fd6d1d26545f235a9fe4d7a534e2029d8e59fa7fd9f2a6eb21230f6b5380ea1eaf55136e60cbf8e613544b3b766e7a6fa2102e2a3a117505466e3025dc2 - languageName: node - linkType: hard - -"arg@npm:^5.0.0": - version: 5.0.2 - resolution: "arg@npm:5.0.2" - checksum: 6c69ada1a9943d332d9e5382393e897c500908d91d5cb735a01120d5f71daf1b339b7b8980cbeaba8fd1afc68e658a739746179e4315a26e8a28951ff9930078 - languageName: node - linkType: hard - -"argparse@npm:^1.0.7": - version: 1.0.10 - resolution: "argparse@npm:1.0.10" - dependencies: - sprintf-js: ~1.0.2 - checksum: 7ca6e45583a28de7258e39e13d81e925cfa25d7d4aacbf806a382d3c02fcb13403a07fb8aeef949f10a7cfe4a62da0e2e807b348a5980554cc28ee573ef95945 - languageName: node - linkType: hard - -"argparse@npm:^2.0.1": - version: 2.0.1 - resolution: "argparse@npm:2.0.1" - checksum: 83644b56493e89a254bae05702abf3a1101b4fa4d0ca31df1c9985275a5a5bd47b3c27b7fa0b71098d41114d8ca000e6ed90cad764b306f8a503665e4d517ced - languageName: node - linkType: hard - -"aria-query@npm:^5.3.0": - version: 5.3.0 - resolution: "aria-query@npm:5.3.0" - dependencies: - dequal: ^2.0.3 - checksum: 305bd73c76756117b59aba121d08f413c7ff5e80fa1b98e217a3443fcddb9a232ee790e24e432b59ae7625aebcf4c47cb01c2cac872994f0b426f5bdfcd96ba9 - languageName: node - linkType: hard - -"array-buffer-byte-length@npm:^1.0.1": - version: 1.0.1 - resolution: "array-buffer-byte-length@npm:1.0.1" - dependencies: - call-bind: ^1.0.5 - is-array-buffer: ^3.0.4 - checksum: 53524e08f40867f6a9f35318fafe467c32e45e9c682ba67b11943e167344d2febc0f6977a17e699b05699e805c3e8f073d876f8bbf1b559ed494ad2cd0fae09e - languageName: node - linkType: hard - -"array-flatten@npm:1.1.1": - version: 1.1.1 - resolution: "array-flatten@npm:1.1.1" - checksum: a9925bf3512d9dce202112965de90c222cd59a4fbfce68a0951d25d965cf44642931f40aac72309c41f12df19afa010ecadceb07cfff9ccc1621e99d89ab5f3b - languageName: node - linkType: hard - -"array-includes@npm:^3.1.6, array-includes@npm:^3.1.7": - version: 3.1.7 - resolution: "array-includes@npm:3.1.7" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - get-intrinsic: ^1.2.1 - is-string: ^1.0.7 - checksum: 06f9e4598fac12a919f7c59a3f04f010ea07f0b7f0585465ed12ef528a60e45f374e79d1bddbb34cdd4338357d00023ddbd0ac18b0be36964f5e726e8965d7fc - languageName: node - linkType: hard - -"array-union@npm:^2.1.0": - version: 2.1.0 - resolution: "array-union@npm:2.1.0" - checksum: 5bee12395cba82da674931df6d0fea23c4aa4660cb3b338ced9f828782a65caa232573e6bf3968f23e0c5eb301764a382cef2f128b170a9dc59de0e36c39f98d - languageName: node - linkType: hard - -"array.prototype.filter@npm:^1.0.3": - version: 1.0.3 - resolution: "array.prototype.filter@npm:1.0.3" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - es-array-method-boxes-properly: ^1.0.0 - is-string: ^1.0.7 - checksum: 5443cde6ad64596649e5751252b1b2f5242b41052980c2fb2506ba485e3ffd7607e8f6f2f1aefa0cb1cfb9b8623b2b2be103579cb367a161a3426400619b6e73 - languageName: node - linkType: hard - -"array.prototype.findlast@npm:^1.2.4": - version: 1.2.4 - resolution: "array.prototype.findlast@npm:1.2.4" - dependencies: - call-bind: ^1.0.5 - define-properties: ^1.2.1 - es-abstract: ^1.22.3 - es-errors: ^1.3.0 - es-shim-unscopables: ^1.0.2 - checksum: b4c76571adf6c3cffbbbb8acd7ac39d94af6b120dd388dcf44637c22d77ba3ae13dd43d1be25d90956848fae5a01191fbdebe48ce4c0aa0989d7ee269a94a5a4 - languageName: node - linkType: hard - -"array.prototype.findlastindex@npm:^1.2.3": - version: 1.2.4 - resolution: "array.prototype.findlastindex@npm:1.2.4" - dependencies: - call-bind: ^1.0.5 - define-properties: ^1.2.1 - es-abstract: ^1.22.3 - es-errors: ^1.3.0 - es-shim-unscopables: ^1.0.2 - checksum: cc8dce27a06dddf6d9c40a15d4c573f96ac5ca3583f89f8d8cd7d7ffdb96a71d819890a5bdb211f221bda8fafa0d97d1d8cbb5460a5cbec1fff57ae80b8abc31 - languageName: node - linkType: hard - -"array.prototype.flat@npm:^1.3.1, array.prototype.flat@npm:^1.3.2": - version: 1.3.2 - resolution: "array.prototype.flat@npm:1.3.2" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - es-shim-unscopables: ^1.0.0 - checksum: 5d6b4bf102065fb3f43764bfff6feb3295d372ce89591e6005df3d0ce388527a9f03c909af6f2a973969a4d178ab232ffc9236654149173e0e187ec3a1a6b87b - languageName: node - linkType: hard - -"array.prototype.flatmap@npm:^1.3.2": - version: 1.3.2 - resolution: "array.prototype.flatmap@npm:1.3.2" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - es-shim-unscopables: ^1.0.0 - checksum: ce09fe21dc0bcd4f30271f8144083aa8c13d4639074d6c8dc82054b847c7fc9a0c97f857491f4da19d4003e507172a78f4bcd12903098adac8b9cd374f734be3 - languageName: node - linkType: hard - -"array.prototype.toreversed@npm:^1.1.2": - version: 1.1.2 - resolution: "array.prototype.toreversed@npm:1.1.2" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - es-shim-unscopables: ^1.0.0 - checksum: 58598193426282155297bedf950dc8d464624a0d81659822fb73124286688644cb7e0e4927a07f3ab2daaeb6617b647736cc3a5e6ca7ade5bb8e573b284e6240 - languageName: node - linkType: hard - -"array.prototype.tosorted@npm:^1.1.3": - version: 1.1.3 - resolution: "array.prototype.tosorted@npm:1.1.3" - dependencies: - call-bind: ^1.0.5 - define-properties: ^1.2.1 - es-abstract: ^1.22.3 - es-errors: ^1.1.0 - es-shim-unscopables: ^1.0.2 - checksum: 555e8808086bbde9e634c5dc5a8c0a2f1773075447b43b2fa76ab4f94f4e90f416d2a4f881024e1ce1a2931614caf76cd6b408af901c9d7cd13061d0d268f5af - languageName: node - linkType: hard - -"arraybuffer.prototype.slice@npm:^1.0.3": - version: 1.0.3 - resolution: "arraybuffer.prototype.slice@npm:1.0.3" - dependencies: - array-buffer-byte-length: ^1.0.1 - call-bind: ^1.0.5 - define-properties: ^1.2.1 - es-abstract: ^1.22.3 - es-errors: ^1.2.1 - get-intrinsic: ^1.2.3 - is-array-buffer: ^3.0.4 - is-shared-array-buffer: ^1.0.2 - checksum: 352259cba534dcdd969c92ab002efd2ba5025b2e3b9bead3973150edbdf0696c629d7f4b3f061c5931511e8207bdc2306da614703c820b45dabce39e3daf7e3e - languageName: node - linkType: hard - -"asap@npm:~2.0.3": - version: 2.0.6 - resolution: "asap@npm:2.0.6" - checksum: b296c92c4b969e973260e47523207cd5769abd27c245a68c26dc7a0fe8053c55bb04360237cb51cab1df52be939da77150ace99ad331fb7fb13b3423ed73ff3d - languageName: node - linkType: hard - -"ast-types-flow@npm:^0.0.8": - version: 0.0.8 - resolution: "ast-types-flow@npm:0.0.8" - checksum: 0a64706609a179233aac23817837abab614f3548c252a2d3d79ea1e10c74aa28a0846e11f466cf72771b6ed8713abc094dcf8c40c3ec4207da163efa525a94a8 - languageName: node - linkType: hard - -"asynciterator.prototype@npm:^1.0.0": - version: 1.0.0 - resolution: "asynciterator.prototype@npm:1.0.0" - dependencies: - has-symbols: ^1.0.3 - checksum: e8ebfd9493ac651cf9b4165e9d64030b3da1d17181bb1963627b59e240cdaf021d9b59d44b827dc1dde4e22387ec04c2d0f8720cf58a1c282e34e40cc12721b3 - languageName: node - linkType: hard - -"asynckit@npm:^0.4.0": - version: 0.4.0 - resolution: "asynckit@npm:0.4.0" - checksum: 7b78c451df768adba04e2d02e63e2d0bf3b07adcd6e42b4cf665cb7ce899bedd344c69a1dcbce355b5f972d597b25aaa1c1742b52cffd9caccb22f348114f6be - languageName: node - linkType: hard - -"at-least-node@npm:^1.0.0": - version: 1.0.0 - resolution: "at-least-node@npm:1.0.0" - checksum: 463e2f8e43384f1afb54bc68485c436d7622acec08b6fad269b421cb1d29cebb5af751426793d0961ed243146fe4dc983402f6d5a51b720b277818dbf6f2e49e - languageName: node - linkType: hard - -"autoprefixer@npm:^10.4.12, autoprefixer@npm:^10.4.7": - version: 10.4.18 - resolution: "autoprefixer@npm:10.4.18" - dependencies: - browserslist: ^4.23.0 - caniuse-lite: ^1.0.30001591 - fraction.js: ^4.3.7 - normalize-range: ^0.1.2 - picocolors: ^1.0.0 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.1.0 - bin: - autoprefixer: bin/autoprefixer - checksum: 3c6fe631db3c36f36e5d56ef93891ac44be00bc2d50001b23703e99c3618bdb8807a97413af1252314ec043aee57ef80775f4f2cc3599db2662cbf05a08210df - languageName: node - linkType: hard - -"available-typed-arrays@npm:^1.0.6, available-typed-arrays@npm:^1.0.7": - version: 1.0.7 - resolution: "available-typed-arrays@npm:1.0.7" - dependencies: - possible-typed-array-names: ^1.0.0 - checksum: 1aa3ffbfe6578276996de660848b6e95669d9a95ad149e3dd0c0cda77db6ee1dbd9d1dd723b65b6d277b882dd0c4b91a654ae9d3cf9e1254b7e93e4908d78fd3 - languageName: node - linkType: hard - -"axe-core@npm:=4.7.0": - version: 4.7.0 - resolution: "axe-core@npm:4.7.0" - checksum: f086bcab42be1761ba2b0b127dec350087f4c3a853bba8dd58f69d898cefaac31a1561da23146f6f3c07954c76171d1f2ce460e555e052d2b02cd79af628fa4a - languageName: node - linkType: hard - -"axios@npm:^0.25.0": - version: 0.25.0 - resolution: "axios@npm:0.25.0" - dependencies: - follow-redirects: ^1.14.7 - checksum: 2a8a3787c05f2a0c9c3878f49782357e2a9f38945b93018fb0c4fd788171c43dceefbb577988628e09fea53952744d1ecebde234b561f1e703aa43e0a598a3ad - languageName: node - linkType: hard - -"axios@npm:^1.6.7": - version: 1.6.7 - resolution: "axios@npm:1.6.7" - dependencies: - follow-redirects: ^1.15.4 - form-data: ^4.0.0 - proxy-from-env: ^1.1.0 - checksum: 87d4d429927d09942771f3b3a6c13580c183e31d7be0ee12f09be6d5655304996bb033d85e54be81606f4e89684df43be7bf52d14becb73a12727bf33298a082 - languageName: node - linkType: hard - -"axobject-query@npm:^3.2.1": - version: 3.2.1 - resolution: "axobject-query@npm:3.2.1" - dependencies: - dequal: ^2.0.3 - checksum: a94047e702b57c91680e6a952ec4a1aaa2cfd0d80ead76bc8c954202980d8c51968a6ea18b4d8010e8e2cf95676533d8022a8ebba9abc1dfe25686721df26fd2 - languageName: node - linkType: hard - -"babel-loader@npm:^8.2.5": - version: 8.3.0 - resolution: "babel-loader@npm:8.3.0" - dependencies: - find-cache-dir: ^3.3.1 - loader-utils: ^2.0.0 - make-dir: ^3.1.0 - schema-utils: ^2.6.5 - peerDependencies: - "@babel/core": ^7.0.0 - webpack: ">=2" - checksum: d48bcf9e030e598656ad3ff5fb85967db2eaaf38af5b4a4b99d25618a2057f9f100e6b231af2a46c1913206db506115ca7a8cbdf52c9c73d767070dae4352ab5 - languageName: node - linkType: hard - -"babel-plugin-apply-mdx-type-prop@npm:1.6.22": - version: 1.6.22 - resolution: "babel-plugin-apply-mdx-type-prop@npm:1.6.22" - dependencies: - "@babel/helper-plugin-utils": 7.10.4 - "@mdx-js/util": 1.6.22 - peerDependencies: - "@babel/core": ^7.11.6 - checksum: 43e2100164a8f3e46fddd76afcbfb1f02cbebd5612cfe63f3d344a740b0afbdc4d2bf5659cffe9323dd2554c7b86b23ebedae9dadcec353b6594f4292a1a28e2 - languageName: node - linkType: hard - -"babel-plugin-dynamic-import-node@npm:^2.3.3": - version: 2.3.3 - resolution: "babel-plugin-dynamic-import-node@npm:2.3.3" - dependencies: - object.assign: ^4.1.0 - checksum: c9d24415bcc608d0db7d4c8540d8002ac2f94e2573d2eadced137a29d9eab7e25d2cbb4bc6b9db65cf6ee7430f7dd011d19c911a9a778f0533b4a05ce8292c9b - languageName: node - linkType: hard - -"babel-plugin-extract-import-names@npm:1.6.22": - version: 1.6.22 - resolution: "babel-plugin-extract-import-names@npm:1.6.22" - dependencies: - "@babel/helper-plugin-utils": 7.10.4 - checksum: 145ccf09c96d36411d340e78086555f8d4d5924ea39fcb0eca461c066cfa98bc4344982bb35eb85d054ef88f8d4dfc0205ba27370c1d8fcc78191b02908d044d - languageName: node - linkType: hard - -"babel-plugin-polyfill-corejs2@npm:^0.4.8": - version: 0.4.8 - resolution: "babel-plugin-polyfill-corejs2@npm:0.4.8" - dependencies: - "@babel/compat-data": ^7.22.6 - "@babel/helper-define-polyfill-provider": ^0.5.0 - semver: ^6.3.1 - peerDependencies: - "@babel/core": ^7.4.0 || ^8.0.0-0 <8.0.0 - checksum: 22857b87268b354e095452199464accba5fd8f690558a2f24b0954807ca2494b96da8d5c13507955802427582015160bce26a66893acf6da5dafbed8b336cf79 - languageName: node - linkType: hard - -"babel-plugin-polyfill-corejs3@npm:^0.9.0": - version: 0.9.0 - resolution: "babel-plugin-polyfill-corejs3@npm:0.9.0" - dependencies: - "@babel/helper-define-polyfill-provider": ^0.5.0 - core-js-compat: ^3.34.0 - peerDependencies: - "@babel/core": ^7.4.0 || ^8.0.0-0 <8.0.0 - checksum: 65bbf59fc0145c7a264822777403632008dce00015b4b5c7ec359125ef4faf9e8f494ae5123d2992104feb6f19a3cff85631992862e48b6d7bd64eb7e755ee1f - languageName: node - linkType: hard - -"babel-plugin-polyfill-regenerator@npm:^0.5.5": - version: 0.5.5 - resolution: "babel-plugin-polyfill-regenerator@npm:0.5.5" - dependencies: - "@babel/helper-define-polyfill-provider": ^0.5.0 - peerDependencies: - "@babel/core": ^7.4.0 || ^8.0.0-0 <8.0.0 - checksum: 3a9b4828673b23cd648dcfb571eadcd9d3fadfca0361d0a7c6feeb5a30474e92faaa49f067a6e1c05e49b6a09812879992028ff3ef3446229ff132d6e1de7eb6 - languageName: node - linkType: hard - -"bail@npm:^1.0.0": - version: 1.0.5 - resolution: "bail@npm:1.0.5" - checksum: 6c334940d7eaa4e656a12fb12407b6555649b6deb6df04270fa806e0da82684ebe4a4e47815b271c794b40f8d6fa286e0c248b14ddbabb324a917fab09b7301a - languageName: node - linkType: hard - -"balanced-match@npm:^1.0.0": - version: 1.0.2 - resolution: "balanced-match@npm:1.0.2" - checksum: 9706c088a283058a8a99e0bf91b0a2f75497f185980d9ffa8b304de1d9e58ebda7c72c07ebf01dadedaac5b2907b2c6f566f660d62bd336c3468e960403b9d65 - languageName: node - linkType: hard - -"base16@npm:^1.0.0": - version: 1.0.0 - resolution: "base16@npm:1.0.0" - checksum: 0cd449a2db0f0f957e4b6b57e33bc43c9e20d4f1dd744065db94b5da35e8e71fa4dc4bc7a901e59a84d5f8b6936e3c520e2471787f667fc155fb0f50d8540f5d - languageName: node - linkType: hard - -"batch@npm:0.6.1": - version: 0.6.1 - resolution: "batch@npm:0.6.1" - checksum: 61f9934c7378a51dce61b915586191078ef7f1c3eca707fdd58b96ff2ff56d9e0af2bdab66b1462301a73c73374239e6542d9821c0af787f3209a23365d07e7f - languageName: node - linkType: hard - -"big.js@npm:^5.2.2": - version: 5.2.2 - resolution: "big.js@npm:5.2.2" - checksum: b89b6e8419b097a8fb4ed2399a1931a68c612bce3cfd5ca8c214b2d017531191070f990598de2fc6f3f993d91c0f08aa82697717f6b3b8732c9731866d233c9e - languageName: node - linkType: hard - -"bin-links@npm:^4.0.3": - version: 4.0.3 - resolution: "bin-links@npm:4.0.3" - dependencies: - cmd-shim: ^6.0.0 - npm-normalize-package-bin: ^3.0.0 - read-cmd-shim: ^4.0.0 - write-file-atomic: ^5.0.0 - checksum: 3b3ee22efc38d608479d51675c8958a841b8b55b8975342ce86f28ac4e0bb3aef46e9dbdde976c6dc1fe1bd2aa00d42e00869ad35b57ee6d868f39f662858911 - languageName: node - linkType: hard - -"binary-extensions@npm:^2.0.0": - version: 2.2.0 - resolution: "binary-extensions@npm:2.2.0" - checksum: ccd267956c58d2315f5d3ea6757cf09863c5fc703e50fbeb13a7dc849b812ef76e3cf9ca8f35a0c48498776a7478d7b4a0418e1e2b8cb9cb9731f2922aaad7f8 - languageName: node - linkType: hard - -"body-parser@npm:1.20.2": - version: 1.20.2 - resolution: "body-parser@npm:1.20.2" - dependencies: - bytes: 3.1.2 - content-type: ~1.0.5 - debug: 2.6.9 - depd: 2.0.0 - destroy: 1.2.0 - http-errors: 2.0.0 - iconv-lite: 0.4.24 - on-finished: 2.4.1 - qs: 6.11.0 - raw-body: 2.5.2 - type-is: ~1.6.18 - unpipe: 1.0.0 - checksum: 14d37ec638ab5c93f6099ecaed7f28f890d222c650c69306872e00b9efa081ff6c596cd9afb9930656aae4d6c4e1c17537bea12bb73c87a217cb3cfea8896737 - languageName: node - linkType: hard - -"bonjour-service@npm:^1.0.11": - version: 1.2.1 - resolution: "bonjour-service@npm:1.2.1" - dependencies: - fast-deep-equal: ^3.1.3 - multicast-dns: ^7.2.5 - checksum: b65b3e6e3a07e97f2da5806afb76f3946d5a6426b72e849a0236dc3c9d3612fb8c5359ebade4be7eb63f74a37670c53a53be2ff17f4f709811fda77f600eb25b - languageName: node - linkType: hard - -"boolbase@npm:^1.0.0": - version: 1.0.0 - resolution: "boolbase@npm:1.0.0" - checksum: 3e25c80ef626c3a3487c73dbfc70ac322ec830666c9ad915d11b701142fab25ec1e63eff2c450c74347acfd2de854ccde865cd79ef4db1683f7c7b046ea43bb0 - languageName: node - linkType: hard - -"boxen@npm:^5.0.0": - version: 5.1.2 - resolution: "boxen@npm:5.1.2" - dependencies: - ansi-align: ^3.0.0 - camelcase: ^6.2.0 - chalk: ^4.1.0 - cli-boxes: ^2.2.1 - string-width: ^4.2.2 - type-fest: ^0.20.2 - widest-line: ^3.1.0 - wrap-ansi: ^7.0.0 - checksum: 82d03e42a72576ff235123f17b7c505372fe05c83f75f61e7d4fa4bcb393897ec95ce766fecb8f26b915f0f7a7227d66e5ec7cef43f5b2bd9d3aeed47ec55877 - languageName: node - linkType: hard - -"boxen@npm:^6.2.1": - version: 6.2.1 - resolution: "boxen@npm:6.2.1" - dependencies: - ansi-align: ^3.0.1 - camelcase: ^6.2.0 - chalk: ^4.1.2 - cli-boxes: ^3.0.0 - string-width: ^5.0.1 - type-fest: ^2.5.0 - widest-line: ^4.0.1 - wrap-ansi: ^8.0.1 - checksum: 2b3226092f1ff8e149c02979098c976552afa15f9e0231c9ed2dfcaaf84604494d16a6f13b647f718439f64d3140a088e822d47c7db00d2266e9ffc8d7321774 - languageName: node - linkType: hard - -"brace-expansion@npm:^1.1.7": - version: 1.1.11 - resolution: "brace-expansion@npm:1.1.11" - dependencies: - balanced-match: ^1.0.0 - concat-map: 0.0.1 - checksum: faf34a7bb0c3fcf4b59c7808bc5d2a96a40988addf2e7e09dfbb67a2251800e0d14cd2bfc1aa79174f2f5095c54ff27f46fb1289fe2d77dac755b5eb3434cc07 - languageName: node - linkType: hard - -"brace-expansion@npm:^2.0.1": - version: 2.0.1 - resolution: "brace-expansion@npm:2.0.1" - dependencies: - balanced-match: ^1.0.0 - checksum: a61e7cd2e8a8505e9f0036b3b6108ba5e926b4b55089eeb5550cd04a471fe216c96d4fe7e4c7f995c728c554ae20ddfc4244cad10aef255e72b62930afd233d1 - languageName: node - linkType: hard - -"braces@npm:^3.0.2, braces@npm:~3.0.2": - version: 3.0.2 - resolution: "braces@npm:3.0.2" - dependencies: - fill-range: ^7.0.1 - checksum: e2a8e769a863f3d4ee887b5fe21f63193a891c68b612ddb4b68d82d1b5f3ff9073af066c343e9867a393fe4c2555dcb33e89b937195feb9c1613d259edfcd459 - languageName: node - linkType: hard - -"browserslist@npm:^4.0.0, browserslist@npm:^4.18.1, browserslist@npm:^4.21.10, browserslist@npm:^4.21.4, browserslist@npm:^4.22.2, browserslist@npm:^4.22.3, browserslist@npm:^4.23.0": - version: 4.23.0 - resolution: "browserslist@npm:4.23.0" - dependencies: - caniuse-lite: ^1.0.30001587 - electron-to-chromium: ^1.4.668 - node-releases: ^2.0.14 - update-browserslist-db: ^1.0.13 - bin: - browserslist: cli.js - checksum: 436f49e796782ca751ebab7edc010cfc9c29f68536f387666cd70ea22f7105563f04dd62c6ff89cb24cc3254d17cba385f979eeeb3484d43e012412ff7e75def - languageName: node - linkType: hard - -"buffer-from@npm:^1.0.0": - version: 1.1.2 - resolution: "buffer-from@npm:1.1.2" - checksum: 0448524a562b37d4d7ed9efd91685a5b77a50672c556ea254ac9a6d30e3403a517d8981f10e565db24e8339413b43c97ca2951f10e399c6125a0d8911f5679bb - languageName: node - linkType: hard - -"bytes@npm:3.0.0": - version: 3.0.0 - resolution: "bytes@npm:3.0.0" - checksum: a2b386dd8188849a5325f58eef69c3b73c51801c08ffc6963eddc9be244089ba32d19347caf6d145c86f315ae1b1fc7061a32b0c1aa6379e6a719090287ed101 - languageName: node - linkType: hard - -"bytes@npm:3.1.2": - version: 3.1.2 - resolution: "bytes@npm:3.1.2" - checksum: e4bcd3948d289c5127591fbedf10c0b639ccbf00243504e4e127374a15c3bc8eed0d28d4aaab08ff6f1cf2abc0cce6ba3085ed32f4f90e82a5683ce0014e1b6e - languageName: node - linkType: hard - -"cacache@npm:^18.0.0": - version: 18.0.2 - resolution: "cacache@npm:18.0.2" - dependencies: - "@npmcli/fs": ^3.1.0 - fs-minipass: ^3.0.0 - glob: ^10.2.2 - lru-cache: ^10.0.1 - minipass: ^7.0.3 - minipass-collect: ^2.0.1 - minipass-flush: ^1.0.5 - minipass-pipeline: ^1.2.4 - p-map: ^4.0.0 - ssri: ^10.0.0 - tar: ^6.1.11 - unique-filename: ^3.0.0 - checksum: 0250df80e1ad0c828c956744850c5f742c24244e9deb5b7dc81bca90f8c10e011e132ecc58b64497cc1cad9a98968676147fb6575f4f94722f7619757b17a11b - languageName: node - linkType: hard - -"cacheable-request@npm:^6.0.0": - version: 6.1.0 - resolution: "cacheable-request@npm:6.1.0" - dependencies: - clone-response: ^1.0.2 - get-stream: ^5.1.0 - http-cache-semantics: ^4.0.0 - keyv: ^3.0.0 - lowercase-keys: ^2.0.0 - normalize-url: ^4.1.0 - responselike: ^1.0.2 - checksum: b510b237b18d17e89942e9ee2d2a077cb38db03f12167fd100932dfa8fc963424bfae0bfa1598df4ae16c944a5484e43e03df8f32105b04395ee9495e9e4e9f1 - languageName: node - linkType: hard - -"call-bind@npm:^1.0.2, call-bind@npm:^1.0.5, call-bind@npm:^1.0.6, call-bind@npm:^1.0.7": - version: 1.0.7 - resolution: "call-bind@npm:1.0.7" - dependencies: - es-define-property: ^1.0.0 - es-errors: ^1.3.0 - function-bind: ^1.1.2 - get-intrinsic: ^1.2.4 - set-function-length: ^1.2.1 - checksum: 295c0c62b90dd6522e6db3b0ab1ce26bdf9e7404215bda13cfee25b626b5ff1a7761324d58d38b1ef1607fc65aca2d06e44d2e18d0dfc6c14b465b00d8660029 - languageName: node - linkType: hard - -"callsites@npm:^3.0.0": - version: 3.1.0 - resolution: "callsites@npm:3.1.0" - checksum: 072d17b6abb459c2ba96598918b55868af677154bec7e73d222ef95a8fdb9bbf7dae96a8421085cdad8cd190d86653b5b6dc55a4484f2e5b2e27d5e0c3fc15b3 - languageName: node - linkType: hard - -"camel-case@npm:^4.1.2": - version: 4.1.2 - resolution: "camel-case@npm:4.1.2" - dependencies: - pascal-case: ^3.1.2 - tslib: ^2.0.3 - checksum: bcbd25cd253b3cbc69be3f535750137dbf2beb70f093bdc575f73f800acc8443d34fd52ab8f0a2413c34f1e8203139ffc88428d8863e4dfe530cfb257a379ad6 - languageName: node - linkType: hard - -"camelcase-css@npm:2.0.1": - version: 2.0.1 - resolution: "camelcase-css@npm:2.0.1" - checksum: 1cec2b3b3dcb5026688a470b00299a8db7d904c4802845c353dbd12d9d248d3346949a814d83bfd988d4d2e5b9904c07efe76fecd195a1d4f05b543e7c0b56b1 - languageName: node - linkType: hard - -"camelcase@npm:^6.2.0": - version: 6.3.0 - resolution: "camelcase@npm:6.3.0" - checksum: 8c96818a9076434998511251dcb2761a94817ea17dbdc37f47ac080bd088fc62c7369429a19e2178b993497132c8cbcf5cc1f44ba963e76782ba469c0474938d - languageName: node - linkType: hard - -"caniuse-api@npm:^3.0.0": - version: 3.0.0 - resolution: "caniuse-api@npm:3.0.0" - dependencies: - browserslist: ^4.0.0 - caniuse-lite: ^1.0.0 - lodash.memoize: ^4.1.2 - lodash.uniq: ^4.5.0 - checksum: db2a229383b20d0529b6b589dde99d7b6cb56ba371366f58cbbfa2929c9f42c01f873e2b6ef641d4eda9f0b4118de77dbb2805814670bdad4234bf08e720b0b4 - languageName: node - linkType: hard - -"caniuse-lite@npm:^1.0.0, caniuse-lite@npm:^1.0.30001587, caniuse-lite@npm:^1.0.30001591": - version: 1.0.30001593 - resolution: "caniuse-lite@npm:1.0.30001593" - checksum: 3e2b19075563c3222101c8d5e6ab2f6e1ba99c3ad03b8d2449f9ee7ed03e9d3dac0b1fb24c129e9a5d89fdde4abb97392280c0abb113c0c60250a2b49f378c60 - languageName: node - linkType: hard - -"ccount@npm:^1.0.0": - version: 1.1.0 - resolution: "ccount@npm:1.1.0" - checksum: b335a79d0aa4308919cf7507babcfa04ac63d389ebed49dbf26990d4607c8a4713cde93cc83e707d84571ddfe1e7615dad248be9bc422ae4c188210f71b08b78 - languageName: node - linkType: hard - -"chalk@npm:^2.4.2": - version: 2.4.2 - resolution: "chalk@npm:2.4.2" - dependencies: - ansi-styles: ^3.2.1 - escape-string-regexp: ^1.0.5 - supports-color: ^5.3.0 - checksum: ec3661d38fe77f681200f878edbd9448821924e0f93a9cefc0e26a33b145f1027a2084bf19967160d11e1f03bfe4eaffcabf5493b89098b2782c3fe0b03d80c2 - languageName: node - linkType: hard - -"chalk@npm:^4.0.0, chalk@npm:^4.1.0, chalk@npm:^4.1.2": - version: 4.1.2 - resolution: "chalk@npm:4.1.2" - dependencies: - ansi-styles: ^4.1.0 - supports-color: ^7.1.0 - checksum: fe75c9d5c76a7a98d45495b91b2172fa3b7a09e0cc9370e5c8feb1c567b85c4288e2b3fded7cfdd7359ac28d6b3844feb8b82b8686842e93d23c827c417e83fc - languageName: node - linkType: hard - -"character-entities-legacy@npm:^1.0.0": - version: 1.1.4 - resolution: "character-entities-legacy@npm:1.1.4" - checksum: fe03a82c154414da3a0c8ab3188e4237ec68006cbcd681cf23c7cfb9502a0e76cd30ab69a2e50857ca10d984d57de3b307680fff5328ccd427f400e559c3a811 - languageName: node - linkType: hard - -"character-entities@npm:^1.0.0": - version: 1.2.4 - resolution: "character-entities@npm:1.2.4" - checksum: e1545716571ead57beac008433c1ff69517cd8ca5b336889321c5b8ff4a99c29b65589a701e9c086cda8a5e346a67295e2684f6c7ea96819fe85cbf49bf8686d - languageName: node - linkType: hard - -"character-reference-invalid@npm:^1.0.0": - version: 1.1.4 - resolution: "character-reference-invalid@npm:1.1.4" - checksum: 20274574c70e05e2f81135f3b93285536bc8ff70f37f0809b0d17791a832838f1e49938382899ed4cb444e5bbd4314ca1415231344ba29f4222ce2ccf24fea0b - languageName: node - linkType: hard - -"cheerio-select@npm:^2.1.0": - version: 2.1.0 - resolution: "cheerio-select@npm:2.1.0" - dependencies: - boolbase: ^1.0.0 - css-select: ^5.1.0 - css-what: ^6.1.0 - domelementtype: ^2.3.0 - domhandler: ^5.0.3 - domutils: ^3.0.1 - checksum: 843d6d479922f28a6c5342c935aff1347491156814de63c585a6eb73baf7bb4185c1b4383a1195dca0f12e3946d737c7763bcef0b9544c515d905c5c44c5308b - languageName: node - linkType: hard - -"cheerio@npm:^1.0.0-rc.12": - version: 1.0.0-rc.12 - resolution: "cheerio@npm:1.0.0-rc.12" - dependencies: - cheerio-select: ^2.1.0 - dom-serializer: ^2.0.0 - domhandler: ^5.0.3 - domutils: ^3.0.1 - htmlparser2: ^8.0.1 - parse5: ^7.0.0 - parse5-htmlparser2-tree-adapter: ^7.0.0 - checksum: 5d4c1b7a53cf22d3a2eddc0aff70cf23cbb30d01a4c79013e703a012475c02461aa1fcd99127e8d83a02216386ed6942b2c8103845fd0812300dd199e6e7e054 - languageName: node - linkType: hard - -"chokidar@npm:^3.4.2, chokidar@npm:^3.5.3": - version: 3.6.0 - resolution: "chokidar@npm:3.6.0" - dependencies: - anymatch: ~3.1.2 - braces: ~3.0.2 - fsevents: ~2.3.2 - glob-parent: ~5.1.2 - is-binary-path: ~2.1.0 - is-glob: ~4.0.1 - normalize-path: ~3.0.0 - readdirp: ~3.6.0 - dependenciesMeta: - fsevents: - optional: true - checksum: d2f29f499705dcd4f6f3bbed79a9ce2388cf530460122eed3b9c48efeab7a4e28739c6551fd15bec9245c6b9eeca7a32baa64694d64d9b6faeb74ddb8c4a413d - languageName: node - linkType: hard - -"chownr@npm:^2.0.0": - version: 2.0.0 - resolution: "chownr@npm:2.0.0" - checksum: c57cf9dd0791e2f18a5ee9c1a299ae6e801ff58fee96dc8bfd0dcb4738a6ce58dd252a3605b1c93c6418fe4f9d5093b28ffbf4d66648cb2a9c67eaef9679be2f - languageName: node - linkType: hard - -"chrome-trace-event@npm:^1.0.2": - version: 1.0.3 - resolution: "chrome-trace-event@npm:1.0.3" - checksum: cb8b1fc7e881aaef973bd0c4a43cd353c2ad8323fb471a041e64f7c2dd849cde4aad15f8b753331a32dda45c973f032c8a03b8177fc85d60eaa75e91e08bfb97 - languageName: node - linkType: hard - -"ci-info@npm:^2.0.0": - version: 2.0.0 - resolution: "ci-info@npm:2.0.0" - checksum: 3b374666a85ea3ca43fa49aa3a048d21c9b475c96eb13c133505d2324e7ae5efd6a454f41efe46a152269e9b6a00c9edbe63ec7fa1921957165aae16625acd67 - languageName: node - linkType: hard - -"ci-info@npm:^3.2.0": - version: 3.9.0 - resolution: "ci-info@npm:3.9.0" - checksum: 6b19dc9b2966d1f8c2041a838217299718f15d6c4b63ae36e4674edd2bee48f780e94761286a56aa59eb305a85fbea4ddffb7630ec063e7ec7e7e5ad42549a87 - languageName: node - linkType: hard - -"clean-css@npm:^5.2.2, clean-css@npm:^5.3.0": - version: 5.3.3 - resolution: "clean-css@npm:5.3.3" - dependencies: - source-map: ~0.6.0 - checksum: 941987c14860dd7d346d5cf121a82fd2caf8344160b1565c5387f7ccca4bbcaf885bace961be37c4f4713ce2d8c488dd89483c1add47bb779790edbfdcc79cbc - languageName: node - linkType: hard - -"clean-stack@npm:^2.0.0": - version: 2.2.0 - resolution: "clean-stack@npm:2.2.0" - checksum: 2ac8cd2b2f5ec986a3c743935ec85b07bc174d5421a5efc8017e1f146a1cf5f781ae962618f416352103b32c9cd7e203276e8c28241bbe946160cab16149fb68 - languageName: node - linkType: hard - -"cli-boxes@npm:^2.2.1": - version: 2.2.1 - resolution: "cli-boxes@npm:2.2.1" - checksum: be79f8ec23a558b49e01311b39a1ea01243ecee30539c880cf14bf518a12e223ef40c57ead0cb44f509bffdffc5c129c746cd50d863ab879385370112af4f585 - languageName: node - linkType: hard - -"cli-boxes@npm:^3.0.0": - version: 3.0.0 - resolution: "cli-boxes@npm:3.0.0" - checksum: 637d84419d293a9eac40a1c8c96a2859e7d98b24a1a317788e13c8f441be052fc899480c6acab3acc82eaf1bccda6b7542d7cdcf5c9c3cc39227175dc098d5b2 - languageName: node - linkType: hard - -"cli-table3@npm:^0.6.2": - version: 0.6.3 - resolution: "cli-table3@npm:0.6.3" - dependencies: - "@colors/colors": 1.5.0 - string-width: ^4.2.0 - dependenciesMeta: - "@colors/colors": - optional: true - checksum: 09897f68467973f827c04e7eaadf13b55f8aec49ecd6647cc276386ea660059322e2dd8020a8b6b84d422dbdd619597046fa89cbbbdc95b2cea149a2df7c096c - languageName: node - linkType: hard - -"clone-deep@npm:^4.0.1": - version: 4.0.1 - resolution: "clone-deep@npm:4.0.1" - dependencies: - is-plain-object: ^2.0.4 - kind-of: ^6.0.2 - shallow-clone: ^3.0.0 - checksum: 770f912fe4e6f21873c8e8fbb1e99134db3b93da32df271d00589ea4a29dbe83a9808a322c93f3bcaf8584b8b4fa6fc269fc8032efbaa6728e0c9886c74467d2 - languageName: node - linkType: hard - -"clone-response@npm:^1.0.2": - version: 1.0.3 - resolution: "clone-response@npm:1.0.3" - dependencies: - mimic-response: ^1.0.0 - checksum: 4e671cac39b11c60aa8ba0a450657194a5d6504df51bca3fac5b3bd0145c4f8e8464898f87c8406b83232e3bc5cca555f51c1f9c8ac023969ebfbf7f6bdabb2e - languageName: node - linkType: hard - -"clsx@npm:^1.2.1": - version: 1.2.1 - resolution: "clsx@npm:1.2.1" - checksum: 30befca8019b2eb7dbad38cff6266cf543091dae2825c856a62a8ccf2c3ab9c2907c4d12b288b73101196767f66812365400a227581484a05f968b0307cfaf12 - languageName: node - linkType: hard - -"cmd-shim@npm:^6.0.0": - version: 6.0.2 - resolution: "cmd-shim@npm:6.0.2" - checksum: df3a01fc4d72a49b450985b991205e65774b28e7f74a2e4d2a11fd0df8732e3828f9e7b644050def3cd0be026cbd3ee46a1f50ce5f57d0b3fb5afe335bdfacde - languageName: node - linkType: hard - -"code-block-writer@npm:^12.0.0": - version: 12.0.0 - resolution: "code-block-writer@npm:12.0.0" - checksum: 9f6505a4d668c9131c6f3f686359079439e66d5f50c236614d52fcfa53aeb0bc615b2c6c64ef05b5511e3b0433ccfd9f7756ad40eb3b9298af6a7d791ab1981d - languageName: node - linkType: hard - -"collapse-white-space@npm:^1.0.2": - version: 1.0.6 - resolution: "collapse-white-space@npm:1.0.6" - checksum: 9673fb797952c5c888341435596c69388b22cd5560c8cd3f40edb72734a9c820f56a7c9525166bcb7068b5d5805372e6fd0c4b9f2869782ad070cb5d3faf26e7 - languageName: node - linkType: hard - -"color-convert@npm:^1.9.0": - version: 1.9.3 - resolution: "color-convert@npm:1.9.3" - dependencies: - color-name: 1.1.3 - checksum: fd7a64a17cde98fb923b1dd05c5f2e6f7aefda1b60d67e8d449f9328b4e53b228a428fd38bfeaeb2db2ff6b6503a776a996150b80cdf224062af08a5c8a3a203 - languageName: node - linkType: hard - -"color-convert@npm:^2.0.1": - version: 2.0.1 - resolution: "color-convert@npm:2.0.1" - dependencies: - color-name: ~1.1.4 - checksum: 79e6bdb9fd479a205c71d89574fccfb22bd9053bd98c6c4d870d65c132e5e904e6034978e55b43d69fcaa7433af2016ee203ce76eeba9cfa554b373e7f7db336 - languageName: node - linkType: hard - -"color-name@npm:1.1.3": - version: 1.1.3 - resolution: "color-name@npm:1.1.3" - checksum: 09c5d3e33d2105850153b14466501f2bfb30324a2f76568a408763a3b7433b0e50e5b4ab1947868e65cb101bb7cb75029553f2c333b6d4b8138a73fcc133d69d - languageName: node - linkType: hard - -"color-name@npm:~1.1.4": - version: 1.1.4 - resolution: "color-name@npm:1.1.4" - checksum: b0445859521eb4021cd0fb0cc1a75cecf67fceecae89b63f62b201cca8d345baf8b952c966862a9d9a2632987d4f6581f0ec8d957dfacece86f0a7919316f610 - languageName: node - linkType: hard - -"colord@npm:^2.9.1": - version: 2.9.3 - resolution: "colord@npm:2.9.3" - checksum: 95d909bfbcfd8d5605cbb5af56f2d1ce2b323990258fd7c0d2eb0e6d3bb177254d7fb8213758db56bb4ede708964f78c6b992b326615f81a18a6aaf11d64c650 - languageName: node - linkType: hard - -"colorette@npm:^2.0.10": - version: 2.0.20 - resolution: "colorette@npm:2.0.20" - checksum: 0c016fea2b91b733eb9f4bcdb580018f52c0bc0979443dad930e5037a968237ac53d9beb98e218d2e9235834f8eebce7f8e080422d6194e957454255bde71d3d - languageName: node - linkType: hard - -"combine-promises@npm:^1.1.0": - version: 1.2.0 - resolution: "combine-promises@npm:1.2.0" - checksum: ddce91436e24da03d5dc360c59cd55abfc9da5e949a26255aa42761925c574797c43138f0aabfc364e184e738e5e218a94ac6e88ebc459045bcf048ac7fe5f07 - languageName: node - linkType: hard - -"combined-stream@npm:^1.0.8": - version: 1.0.8 - resolution: "combined-stream@npm:1.0.8" - dependencies: - delayed-stream: ~1.0.0 - checksum: 49fa4aeb4916567e33ea81d088f6584749fc90c7abec76fd516bf1c5aa5c79f3584b5ba3de6b86d26ddd64bae5329c4c7479343250cfe71c75bb366eae53bb7c - languageName: node - linkType: hard - -"comma-separated-tokens@npm:^1.0.0": - version: 1.0.8 - resolution: "comma-separated-tokens@npm:1.0.8" - checksum: 0adcb07174fa4d08cf0f5c8e3aec40a36b5ff0c2c720e5e23f50fe02e6789d1d00a67036c80e0c1e1539f41d3e7f0101b074039dd833b4e4a59031b659d6ca0d - languageName: node - linkType: hard - -"commander@npm:7, commander@npm:^7.2.0": - version: 7.2.0 - resolution: "commander@npm:7.2.0" - checksum: 53501cbeee61d5157546c0bef0fedb6cdfc763a882136284bed9a07225f09a14b82d2a84e7637edfd1a679fb35ed9502fd58ef1d091e6287f60d790147f68ddc - languageName: node - linkType: hard - -"commander@npm:^11.1.0": - version: 11.1.0 - resolution: "commander@npm:11.1.0" - checksum: fd1a8557c6b5b622c89ecdfde703242ab7db3b628ea5d1755784c79b8e7cb0d74d65b4a262289b533359cd58e1bfc0bf50245dfbcd2954682a6f367c828b79ef - languageName: node - linkType: hard - -"commander@npm:^2.20.0": - version: 2.20.3 - resolution: "commander@npm:2.20.3" - checksum: ab8c07884e42c3a8dbc5dd9592c606176c7eb5c1ca5ff274bcf907039b2c41de3626f684ea75ccf4d361ba004bbaff1f577d5384c155f3871e456bdf27becf9e - languageName: node - linkType: hard - -"commander@npm:^5.1.0": - version: 5.1.0 - resolution: "commander@npm:5.1.0" - checksum: 0b7fec1712fbcc6230fcb161d8d73b4730fa91a21dc089515489402ad78810547683f058e2a9835929c212fead1d6a6ade70db28bbb03edbc2829a9ab7d69447 - languageName: node - linkType: hard - -"commander@npm:^8.3.0": - version: 8.3.0 - resolution: "commander@npm:8.3.0" - checksum: 0f82321821fc27b83bd409510bb9deeebcfa799ff0bf5d102128b500b7af22872c0c92cb6a0ebc5a4cf19c6b550fba9cedfa7329d18c6442a625f851377bacf0 - languageName: node - linkType: hard - -"commondir@npm:^1.0.1": - version: 1.0.1 - resolution: "commondir@npm:1.0.1" - checksum: 59715f2fc456a73f68826285718503340b9f0dd89bfffc42749906c5cf3d4277ef11ef1cca0350d0e79204f00f1f6d83851ececc9095dc88512a697ac0b9bdcb - languageName: node - linkType: hard - -"compressible@npm:~2.0.16": - version: 2.0.18 - resolution: "compressible@npm:2.0.18" - dependencies: - mime-db: ">= 1.43.0 < 2" - checksum: 58321a85b375d39230405654721353f709d0c1442129e9a17081771b816302a012471a9b8f4864c7dbe02eef7f2aaac3c614795197092262e94b409c9be108f0 - languageName: node - linkType: hard - -"compression@npm:^1.7.4": - version: 1.7.4 - resolution: "compression@npm:1.7.4" - dependencies: - accepts: ~1.3.5 - bytes: 3.0.0 - compressible: ~2.0.16 - debug: 2.6.9 - on-headers: ~1.0.2 - safe-buffer: 5.1.2 - vary: ~1.1.2 - checksum: 35c0f2eb1f28418978615dc1bc02075b34b1568f7f56c62d60f4214d4b7cc00d0f6d282b5f8a954f59872396bd770b6b15ffd8aa94c67d4bce9b8887b906999b - languageName: node - linkType: hard - -"concat-map@npm:0.0.1": - version: 0.0.1 - resolution: "concat-map@npm:0.0.1" - checksum: 902a9f5d8967a3e2faf138d5cb784b9979bad2e6db5357c5b21c568df4ebe62bcb15108af1b2253744844eb964fc023fbd9afbbbb6ddd0bcc204c6fb5b7bf3af - languageName: node - linkType: hard - -"configstore@npm:^5.0.1": - version: 5.0.1 - resolution: "configstore@npm:5.0.1" - dependencies: - dot-prop: ^5.2.0 - graceful-fs: ^4.1.2 - make-dir: ^3.0.0 - unique-string: ^2.0.0 - write-file-atomic: ^3.0.0 - xdg-basedir: ^4.0.0 - checksum: 60ef65d493b63f96e14b11ba7ec072fdbf3d40110a94fb7199d1c287761bdea5c5244e76b2596325f30c1b652213aa75de96ea20afd4a5f82065e61ea090988e - languageName: node - linkType: hard - -"confusing-browser-globals@npm:^1.0.10": - version: 1.0.11 - resolution: "confusing-browser-globals@npm:1.0.11" - checksum: 3afc635abd37e566477f610e7978b15753f0e84025c25d49236f1f14d480117185516bdd40d2a2167e6bed8048641a9854964b9c067e3dcdfa6b5d0ad3c3a5ef - languageName: node - linkType: hard - -"connect-history-api-fallback@npm:^2.0.0": - version: 2.0.0 - resolution: "connect-history-api-fallback@npm:2.0.0" - checksum: dc5368690f4a5c413889792f8df70d5941ca9da44523cde3f87af0745faee5ee16afb8195434550f0504726642734f2683d6c07f8b460f828a12c45fbd4c9a68 - languageName: node - linkType: hard - -"consola@npm:^2.15.3": - version: 2.15.3 - resolution: "consola@npm:2.15.3" - checksum: 8ef7a09b703ec67ac5c389a372a33b6dc97eda6c9876443a60d76a3076eea0259e7f67a4e54fd5a52f97df73690822d090cf8b7e102b5761348afef7c6d03e28 - languageName: node - linkType: hard - -"content-disposition@npm:0.5.2": - version: 0.5.2 - resolution: "content-disposition@npm:0.5.2" - checksum: 298d7da63255a38f7858ee19c7b6aae32b167e911293174b4c1349955e97e78e1d0b0d06c10e229405987275b417cf36ff65cbd4821a98bc9df4e41e9372cde7 - languageName: node - linkType: hard - -"content-disposition@npm:0.5.4": - version: 0.5.4 - resolution: "content-disposition@npm:0.5.4" - dependencies: - safe-buffer: 5.2.1 - checksum: afb9d545e296a5171d7574fcad634b2fdf698875f4006a9dd04a3e1333880c5c0c98d47b560d01216fb6505a54a2ba6a843ee3a02ec86d7e911e8315255f56c3 - languageName: node - linkType: hard - -"content-type@npm:~1.0.4, content-type@npm:~1.0.5": - version: 1.0.5 - resolution: "content-type@npm:1.0.5" - checksum: 566271e0a251642254cde0f845f9dd4f9856e52d988f4eb0d0dcffbb7a1f8ec98de7a5215fc628f3bce30fe2fb6fd2bc064b562d721658c59b544e2d34ea2766 - languageName: node - linkType: hard - -"convert-source-map@npm:^1.7.0": - version: 1.9.0 - resolution: "convert-source-map@npm:1.9.0" - checksum: dc55a1f28ddd0e9485ef13565f8f756b342f9a46c4ae18b843fe3c30c675d058d6a4823eff86d472f187b176f0adf51ea7b69ea38be34be4a63cbbf91b0593c8 - languageName: node - linkType: hard - -"convert-source-map@npm:^2.0.0": - version: 2.0.0 - resolution: "convert-source-map@npm:2.0.0" - checksum: 63ae9933be5a2b8d4509daca5124e20c14d023c820258e484e32dc324d34c2754e71297c94a05784064ad27615037ef677e3f0c00469fb55f409d2bb21261035 - languageName: node - linkType: hard - -"cookie-signature@npm:1.0.6": - version: 1.0.6 - resolution: "cookie-signature@npm:1.0.6" - checksum: f4e1b0a98a27a0e6e66fd7ea4e4e9d8e038f624058371bf4499cfcd8f3980be9a121486995202ba3fca74fbed93a407d6d54d43a43f96fd28d0bd7a06761591a - languageName: node - linkType: hard - -"cookie@npm:0.5.0": - version: 0.5.0 - resolution: "cookie@npm:0.5.0" - checksum: 1f4bd2ca5765f8c9689a7e8954183f5332139eb72b6ff783d8947032ec1fdf43109852c178e21a953a30c0dd42257828185be01b49d1eb1a67fd054ca588a180 - languageName: node - linkType: hard - -"cookie@npm:^0.6.0": - version: 0.6.0 - resolution: "cookie@npm:0.6.0" - checksum: f56a7d32a07db5458e79c726b77e3c2eff655c36792f2b6c58d351fb5f61531e5b1ab7f46987150136e366c65213cbe31729e02a3eaed630c3bf7334635fb410 - languageName: node - linkType: hard - -"copy-text-to-clipboard@npm:^3.0.1": - version: 3.2.0 - resolution: "copy-text-to-clipboard@npm:3.2.0" - checksum: df7115c197a166d51f59e4e20ab2a68a855ae8746d25ff149b5465c694d9a405c7e6684b73a9f87ba8d653070164e229c15dfdb9fd77c30be1ff0da569661060 - languageName: node - linkType: hard - -"copy-webpack-plugin@npm:^11.0.0": - version: 11.0.0 - resolution: "copy-webpack-plugin@npm:11.0.0" - dependencies: - fast-glob: ^3.2.11 - glob-parent: ^6.0.1 - globby: ^13.1.1 - normalize-path: ^3.0.0 - schema-utils: ^4.0.0 - serialize-javascript: ^6.0.0 - peerDependencies: - webpack: ^5.1.0 - checksum: df4f8743f003a29ee7dd3d9b1789998a3a99051c92afb2ba2203d3dacfa696f4e757b275560fafb8f206e520a0aa78af34b990324a0e36c2326cefdeef3ca82e - languageName: node - linkType: hard - -"core-js-compat@npm:^3.31.0, core-js-compat@npm:^3.34.0": - version: 3.36.0 - resolution: "core-js-compat@npm:3.36.0" - dependencies: - browserslist: ^4.22.3 - checksum: 89d9bdc91cc4085e81c7774427a02b42b494d569f62972658bf8b6ace1931ee60620691fbcd646fcb6a7ead3d874a46990491f345fc29e0d084ed2fcce335aa5 - languageName: node - linkType: hard - -"core-js-pure@npm:^3.30.2": - version: 3.36.0 - resolution: "core-js-pure@npm:3.36.0" - checksum: 12a0588981efdc710426c688f6d5f6abaee76858ff32d21c6d7b81bc81c39b7cebb2733f8e822862b2a7f329f8fe37065a33ff6c4fd9253b3a1ad3cf636e483e - languageName: node - linkType: hard - -"core-js@npm:^3.23.3": - version: 3.36.0 - resolution: "core-js@npm:3.36.0" - checksum: 48c807d5055ad0424f52d13583e96ddca2efcdc4e3cd9c479d60f269c8fe225191cd4e26a4593f43f7ef6dba08d161091147ecf8ae0300c15bc648a4f555217b - languageName: node - linkType: hard - -"core-util-is@npm:~1.0.0": - version: 1.0.3 - resolution: "core-util-is@npm:1.0.3" - checksum: 9de8597363a8e9b9952491ebe18167e3b36e7707569eed0ebf14f8bba773611376466ae34575bca8cfe3c767890c859c74056084738f09d4e4a6f902b2ad7d99 - languageName: node - linkType: hard - -"cose-base@npm:^1.0.0": - version: 1.0.3 - resolution: "cose-base@npm:1.0.3" - dependencies: - layout-base: ^1.0.0 - checksum: 3f3d592316df74adb215ca91e430f1c22b6e890bc0025b32ae1f6464c73fdb9614816cb40a8d38b40c6a3e9e7b8c64eda90d53fb9a4a6948abec17dad496f30b - languageName: node - linkType: hard - -"cose-base@npm:^2.2.0": - version: 2.2.0 - resolution: "cose-base@npm:2.2.0" - dependencies: - layout-base: ^2.0.0 - checksum: 2e694f340bf216c71fc126d237578a4168e138720011d0b48c88bf9bfc7fd45f912eff2c603ef3d1307d6e3ce6f465ed382285a764a3a6620db590c5457d2557 - languageName: node - linkType: hard - -"cosmiconfig@npm:^6.0.0": - version: 6.0.0 - resolution: "cosmiconfig@npm:6.0.0" - dependencies: - "@types/parse-json": ^4.0.0 - import-fresh: ^3.1.0 - parse-json: ^5.0.0 - path-type: ^4.0.0 - yaml: ^1.7.2 - checksum: 8eed7c854b91643ecb820767d0deb038b50780ecc3d53b0b19e03ed8aabed4ae77271198d1ae3d49c3b110867edf679f5faad924820a8d1774144a87cb6f98fc - languageName: node - linkType: hard - -"cosmiconfig@npm:^7.0.1": - version: 7.1.0 - resolution: "cosmiconfig@npm:7.1.0" - dependencies: - "@types/parse-json": ^4.0.0 - import-fresh: ^3.2.1 - parse-json: ^5.0.0 - path-type: ^4.0.0 - yaml: ^1.10.0 - checksum: c53bf7befc1591b2651a22414a5e786cd5f2eeaa87f3678a3d49d6069835a9d8d1aef223728e98aa8fec9a95bf831120d245096db12abe019fecb51f5696c96f - languageName: node - linkType: hard - -"cosmiconfig@npm:^8.3.5": - version: 8.3.6 - resolution: "cosmiconfig@npm:8.3.6" - dependencies: - import-fresh: ^3.3.0 - js-yaml: ^4.1.0 - parse-json: ^5.2.0 - path-type: ^4.0.0 - peerDependencies: - typescript: ">=4.9.5" - peerDependenciesMeta: - typescript: - optional: true - checksum: dc339ebea427898c9e03bf01b56ba7afbac07fc7d2a2d5a15d6e9c14de98275a9565da949375aee1809591c152c0a3877bb86dbeaf74d5bd5aaa79955ad9e7a0 - languageName: node - linkType: hard - -"cross-fetch@npm:^3.1.5": - version: 3.1.8 - resolution: "cross-fetch@npm:3.1.8" - dependencies: - node-fetch: ^2.6.12 - checksum: 78f993fa099eaaa041122ab037fe9503ecbbcb9daef234d1d2e0b9230a983f64d645d088c464e21a247b825a08dc444a6e7064adfa93536d3a9454b4745b3632 - languageName: node - linkType: hard - -"cross-spawn@npm:^7.0.0, cross-spawn@npm:^7.0.2, cross-spawn@npm:^7.0.3": - version: 7.0.3 - resolution: "cross-spawn@npm:7.0.3" - dependencies: - path-key: ^3.1.0 - shebang-command: ^2.0.0 - which: ^2.0.1 - checksum: 671cc7c7288c3a8406f3c69a3ae2fc85555c04169e9d611def9a675635472614f1c0ed0ef80955d5b6d4e724f6ced67f0ad1bb006c2ea643488fcfef994d7f52 - languageName: node - linkType: hard - -"crypto-random-string@npm:^2.0.0": - version: 2.0.0 - resolution: "crypto-random-string@npm:2.0.0" - checksum: 0283879f55e7c16fdceacc181f87a0a65c53bc16ffe1d58b9d19a6277adcd71900d02bb2c4843dd55e78c51e30e89b0fec618a7f170ebcc95b33182c28f05fd6 - languageName: node - linkType: hard - -"css-declaration-sorter@npm:^6.3.1": - version: 6.4.1 - resolution: "css-declaration-sorter@npm:6.4.1" - peerDependencies: - postcss: ^8.0.9 - checksum: cbdc9e0d481011b1a28fd5b60d4eb55fe204391d31a0b1b490b2cecf4baa85810f9b8c48adab4df644f4718104ed3ed72c64a9745e3216173767bf4aeca7f9b8 - languageName: node - linkType: hard - -"css-loader@npm:^6.7.1": - version: 6.10.0 - resolution: "css-loader@npm:6.10.0" - dependencies: - icss-utils: ^5.1.0 - postcss: ^8.4.33 - postcss-modules-extract-imports: ^3.0.0 - postcss-modules-local-by-default: ^4.0.4 - postcss-modules-scope: ^3.1.1 - postcss-modules-values: ^4.0.0 - postcss-value-parser: ^4.2.0 - semver: ^7.5.4 - peerDependencies: - "@rspack/core": 0.x || 1.x - webpack: ^5.0.0 - peerDependenciesMeta: - "@rspack/core": - optional: true - webpack: - optional: true - checksum: ee3d62b5f7e4eb24281a22506431e920d07a45bd6ea627731ce583f3c6a846ab8b8b703bace599b9b35256b9e762f9f326d969abb72b69c7e6055eacf39074fd - languageName: node - linkType: hard - -"css-minimizer-webpack-plugin@npm:^4.0.0": - version: 4.2.2 - resolution: "css-minimizer-webpack-plugin@npm:4.2.2" - dependencies: - cssnano: ^5.1.8 - jest-worker: ^29.1.2 - postcss: ^8.4.17 - schema-utils: ^4.0.0 - serialize-javascript: ^6.0.0 - source-map: ^0.6.1 - peerDependencies: - webpack: ^5.0.0 - peerDependenciesMeta: - "@parcel/css": - optional: true - "@swc/css": - optional: true - clean-css: - optional: true - csso: - optional: true - esbuild: - optional: true - lightningcss: - optional: true - checksum: 5417e76a445f35832aa96807c835b8e92834a6cd285b1b788dfe3ca0fa90fec7eb2dd6efa9d3649f9d8244b99b7da2d065951603b94918e8f6a366a5049cacdd - languageName: node - linkType: hard - -"css-select@npm:^4.1.3": - version: 4.3.0 - resolution: "css-select@npm:4.3.0" - dependencies: - boolbase: ^1.0.0 - css-what: ^6.0.1 - domhandler: ^4.3.1 - domutils: ^2.8.0 - nth-check: ^2.0.1 - checksum: d6202736839194dd7f910320032e7cfc40372f025e4bf21ca5bf6eb0a33264f322f50ba9c0adc35dadd342d3d6fae5ca244779a4873afbfa76561e343f2058e0 - languageName: node - linkType: hard - -"css-select@npm:^5.1.0": - version: 5.1.0 - resolution: "css-select@npm:5.1.0" - dependencies: - boolbase: ^1.0.0 - css-what: ^6.1.0 - domhandler: ^5.0.2 - domutils: ^3.0.1 - nth-check: ^2.0.1 - checksum: 2772c049b188d3b8a8159907192e926e11824aea525b8282981f72ba3f349cf9ecd523fdf7734875ee2cb772246c22117fc062da105b6d59afe8dcd5c99c9bda - languageName: node - linkType: hard - -"css-tree@npm:^1.1.2, css-tree@npm:^1.1.3": - version: 1.1.3 - resolution: "css-tree@npm:1.1.3" - dependencies: - mdn-data: 2.0.14 - source-map: ^0.6.1 - checksum: 79f9b81803991b6977b7fcb1588799270438274d89066ce08f117f5cdb5e20019b446d766c61506dd772c839df84caa16042d6076f20c97187f5abe3b50e7d1f - languageName: node - linkType: hard - -"css-what@npm:^6.0.1, css-what@npm:^6.1.0": - version: 6.1.0 - resolution: "css-what@npm:6.1.0" - checksum: b975e547e1e90b79625918f84e67db5d33d896e6de846c9b584094e529f0c63e2ab85ee33b9daffd05bff3a146a1916bec664e18bb76dd5f66cbff9fc13b2bbe - languageName: node - linkType: hard - -"cssesc@npm:^3.0.0": - version: 3.0.0 - resolution: "cssesc@npm:3.0.0" - bin: - cssesc: bin/cssesc - checksum: f8c4ababffbc5e2ddf2fa9957dda1ee4af6048e22aeda1869d0d00843223c1b13ad3f5d88b51caa46c994225eacb636b764eb807a8883e2fb6f99b4f4e8c48b2 - languageName: node - linkType: hard - -"cssnano-preset-advanced@npm:^5.3.8": - version: 5.3.10 - resolution: "cssnano-preset-advanced@npm:5.3.10" - dependencies: - autoprefixer: ^10.4.12 - cssnano-preset-default: ^5.2.14 - postcss-discard-unused: ^5.1.0 - postcss-merge-idents: ^5.1.1 - postcss-reduce-idents: ^5.2.0 - postcss-zindex: ^5.1.0 - peerDependencies: - postcss: ^8.2.15 - checksum: d21cb382aea2f35c9eaa50686280bbd5158260edf73020731364b03bae0d887292da51ed0b20b369f51d2573ee8c02c695f604647b839a9ca746be8a44c3bb5b - languageName: node - linkType: hard - -"cssnano-preset-default@npm:^5.2.14": - version: 5.2.14 - resolution: "cssnano-preset-default@npm:5.2.14" - dependencies: - css-declaration-sorter: ^6.3.1 - cssnano-utils: ^3.1.0 - postcss-calc: ^8.2.3 - postcss-colormin: ^5.3.1 - postcss-convert-values: ^5.1.3 - postcss-discard-comments: ^5.1.2 - postcss-discard-duplicates: ^5.1.0 - postcss-discard-empty: ^5.1.1 - postcss-discard-overridden: ^5.1.0 - postcss-merge-longhand: ^5.1.7 - postcss-merge-rules: ^5.1.4 - postcss-minify-font-values: ^5.1.0 - postcss-minify-gradients: ^5.1.1 - postcss-minify-params: ^5.1.4 - postcss-minify-selectors: ^5.2.1 - postcss-normalize-charset: ^5.1.0 - postcss-normalize-display-values: ^5.1.0 - postcss-normalize-positions: ^5.1.1 - postcss-normalize-repeat-style: ^5.1.1 - postcss-normalize-string: ^5.1.0 - postcss-normalize-timing-functions: ^5.1.0 - postcss-normalize-unicode: ^5.1.1 - postcss-normalize-url: ^5.1.0 - postcss-normalize-whitespace: ^5.1.1 - postcss-ordered-values: ^5.1.3 - postcss-reduce-initial: ^5.1.2 - postcss-reduce-transforms: ^5.1.0 - postcss-svgo: ^5.1.0 - postcss-unique-selectors: ^5.1.1 - peerDependencies: - postcss: ^8.2.15 - checksum: d3bbbe3d50c6174afb28d0bdb65b511fdab33952ec84810aef58b87189f3891c34aaa8b6a6101acd5314f8acded839b43513e39a75f91a698ddc985a1b1d9e95 - languageName: node - linkType: hard - -"cssnano-utils@npm:^3.1.0": - version: 3.1.0 - resolution: "cssnano-utils@npm:3.1.0" - peerDependencies: - postcss: ^8.2.15 - checksum: 975c84ce9174cf23bb1da1e9faed8421954607e9ea76440cd3bb0c1bea7e17e490d800fca5ae2812d1d9e9d5524eef23ede0a3f52497d7ccc628e5d7321536f2 - languageName: node - linkType: hard - -"cssnano@npm:^5.1.12, cssnano@npm:^5.1.8": - version: 5.1.15 - resolution: "cssnano@npm:5.1.15" - dependencies: - cssnano-preset-default: ^5.2.14 - lilconfig: ^2.0.3 - yaml: ^1.10.2 - peerDependencies: - postcss: ^8.2.15 - checksum: ca9e1922178617c66c2f1548824b2c7af2ecf69cc3a187fc96bf8d29251c2e84d9e4966c69cf64a2a6a057a37dff7d6d057bc8a2a0957e6ea382e452ae9d0bbb - languageName: node - linkType: hard - -"csso@npm:^4.2.0": - version: 4.2.0 - resolution: "csso@npm:4.2.0" - dependencies: - css-tree: ^1.1.2 - checksum: 380ba9663da3bcea58dee358a0d8c4468bb6539be3c439dc266ac41c047217f52fd698fb7e4b6b6ccdfb8cf53ef4ceed8cc8ceccb8dfca2aa628319826b5b998 - languageName: node - linkType: hard - -"cssstyle@npm:^4.0.1": - version: 4.0.1 - resolution: "cssstyle@npm:4.0.1" - dependencies: - rrweb-cssom: ^0.6.0 - checksum: 4b2fdd81c565b1f8f24a792f85d3a19269a2f201e731c3fe3531d7fc78b4bc6b31906ed17aba7edba7b1c8b7672574fc6c09fe925556da3a9a9458dbf8c4fa22 - languageName: node - linkType: hard - -"csstype@npm:^3.0.2": - version: 3.1.3 - resolution: "csstype@npm:3.1.3" - checksum: 8db785cc92d259102725b3c694ec0c823f5619a84741b5c7991b8ad135dfaa66093038a1cc63e03361a6cd28d122be48f2106ae72334e067dd619a51f49eddf7 - languageName: node - linkType: hard - -"cytoscape-cose-bilkent@npm:^4.1.0": - version: 4.1.0 - resolution: "cytoscape-cose-bilkent@npm:4.1.0" - dependencies: - cose-base: ^1.0.0 - peerDependencies: - cytoscape: ^3.2.0 - checksum: bea6aa139e21bf4135b01b99f8778eed061e074d1a1689771597e8164a999d66f4075d46be584b0a88a5447f9321f38c90c8821df6a9322faaf5afebf4848d97 - languageName: node - linkType: hard - -"cytoscape-fcose@npm:^2.1.0": - version: 2.2.0 - resolution: "cytoscape-fcose@npm:2.2.0" - dependencies: - cose-base: ^2.2.0 - peerDependencies: - cytoscape: ^3.2.0 - checksum: 94ffe6f131f9c08c2a0a7a6ce1c6c5e523a395bf8d84eba6d4a5f85e23f33788ea3ff807540861a5f78a6914a27729e06a7e6f66784f4f28ea1c030acf500121 - languageName: node - linkType: hard - -"cytoscape@npm:3.28.1": - version: 3.28.1 - resolution: "cytoscape@npm:3.28.1" - dependencies: - heap: ^0.2.6 - lodash: ^4.17.21 - checksum: d9fcb14e909931ebead0fffaf230be7302156166372b7f0d446fea96bc5dfed2c36024842a8d80cd8817d6120125422beaee4a1e9ece4ba53a9addc880116afd - languageName: node - linkType: hard - -"d3-array@npm:2 - 3, d3-array@npm:2.10.0 - 3, d3-array@npm:2.5.0 - 3, d3-array@npm:3, d3-array@npm:^3.2.0": - version: 3.2.4 - resolution: "d3-array@npm:3.2.4" - dependencies: - internmap: 1 - 2 - checksum: a5976a6d6205f69208478bb44920dd7ce3e788c9dceb86b304dbe401a4bfb42ecc8b04c20facde486e9adcb488b5d1800d49393a3f81a23902b68158e12cddd0 - languageName: node - linkType: hard - -"d3-axis@npm:3": - version: 3.0.0 - resolution: "d3-axis@npm:3.0.0" - checksum: 227ddaa6d4bad083539c1ec245e2228b4620cca941997a8a650cb0af239375dc20271993127eedac66f0543f331027aca09385e1e16eed023f93eac937cddf0b - languageName: node - linkType: hard - -"d3-brush@npm:3": - version: 3.0.0 - resolution: "d3-brush@npm:3.0.0" - dependencies: - d3-dispatch: 1 - 3 - d3-drag: 2 - 3 - d3-interpolate: 1 - 3 - d3-selection: 3 - d3-transition: 3 - checksum: 1d042167769a02ac76271c71e90376d7184206e489552b7022a8ec2860209fe269db55e0a3430f3dcbe13b6fec2ff65b1adeaccba3218991b38e022390df72e3 - languageName: node - linkType: hard - -"d3-chord@npm:3": - version: 3.0.1 - resolution: "d3-chord@npm:3.0.1" - dependencies: - d3-path: 1 - 3 - checksum: ddf35d41675e0f8738600a8a2f05bf0858def413438c12cba357c5802ecc1014c80a658acbbee63cbad2a8c747912efb2358455d93e59906fe37469f1dc6b78b - languageName: node - linkType: hard - -"d3-color@npm:1 - 3, d3-color@npm:3": - version: 3.1.0 - resolution: "d3-color@npm:3.1.0" - checksum: 4931fbfda5d7c4b5cfa283a13c91a954f86e3b69d75ce588d06cde6c3628cebfc3af2069ccf225e982e8987c612aa7948b3932163ce15eb3c11cd7c003f3ee3b - languageName: node - linkType: hard - -"d3-contour@npm:4": - version: 4.0.2 - resolution: "d3-contour@npm:4.0.2" - dependencies: - d3-array: ^3.2.0 - checksum: 56aa082c1acf62a45b61c8d29fdd307041785aa17d9a07de7d1d848633769887a33fb6823888afa383f31c460d0f21d24756593e84e334ddb92d774214d32f1b - languageName: node - linkType: hard - -"d3-delaunay@npm:6": - version: 6.0.4 - resolution: "d3-delaunay@npm:6.0.4" - dependencies: - delaunator: 5 - checksum: ce6d267d5ef21a8aeadfe4606329fc80a22ab6e7748d47bc220bcc396ee8be84b77a5473033954c5ac4aa522d265ddc45d4165d30fe4787dd60a15ea66b9bbb4 - languageName: node - linkType: hard - -"d3-dispatch@npm:1 - 3, d3-dispatch@npm:3": - version: 3.0.1 - resolution: "d3-dispatch@npm:3.0.1" - checksum: fdfd4a230f46463e28e5b22a45dd76d03be9345b605e1b5dc7d18bd7ebf504e6c00ae123fd6d03e23d9e2711e01f0e14ea89cd0632545b9f0c00b924ba4be223 - languageName: node - linkType: hard - -"d3-drag@npm:2 - 3, d3-drag@npm:3": - version: 3.0.0 - resolution: "d3-drag@npm:3.0.0" - dependencies: - d3-dispatch: 1 - 3 - d3-selection: 3 - checksum: d297231e60ecd633b0d076a63b4052b436ddeb48b5a3a11ff68c7e41a6774565473a6b064c5e9256e88eca6439a917ab9cea76032c52d944ddbf4fd289e31111 - languageName: node - linkType: hard - -"d3-dsv@npm:1 - 3, d3-dsv@npm:3": - version: 3.0.1 - resolution: "d3-dsv@npm:3.0.1" - dependencies: - commander: 7 - iconv-lite: 0.6 - rw: 1 - bin: - csv2json: bin/dsv2json.js - csv2tsv: bin/dsv2dsv.js - dsv2dsv: bin/dsv2dsv.js - dsv2json: bin/dsv2json.js - json2csv: bin/json2dsv.js - json2dsv: bin/json2dsv.js - json2tsv: bin/json2dsv.js - tsv2csv: bin/dsv2dsv.js - tsv2json: bin/dsv2json.js - checksum: 5fc0723647269d5dccd181d74f2265920ab368a2868b0b4f55ffa2fecdfb7814390ea28622cd61ee5d9594ab262879509059544e9f815c54fe76fbfb4ffa4c8a - languageName: node - linkType: hard - -"d3-ease@npm:1 - 3, d3-ease@npm:3": - version: 3.0.1 - resolution: "d3-ease@npm:3.0.1" - checksum: 06e2ee5326d1e3545eab4e2c0f84046a123dcd3b612e68858219aa034da1160333d9ce3da20a1d3486d98cb5c2a06f7d233eee1bc19ce42d1533458bd85dedcd - languageName: node - linkType: hard - -"d3-fetch@npm:3": - version: 3.0.1 - resolution: "d3-fetch@npm:3.0.1" - dependencies: - d3-dsv: 1 - 3 - checksum: 382dcea06549ef82c8d0b719e5dc1d96286352579e3b51b20f71437f5800323315b09cf7dcfd4e1f60a41e1204deb01758470cea257d2285a7abd9dcec806984 - languageName: node - linkType: hard - -"d3-force@npm:3": - version: 3.0.0 - resolution: "d3-force@npm:3.0.0" - dependencies: - d3-dispatch: 1 - 3 - d3-quadtree: 1 - 3 - d3-timer: 1 - 3 - checksum: 6c7e96438cab62fa32aeadb0ade3297b62b51f81b1b38b0a60a5ec9fd627d74090c1189654d92df2250775f31b06812342f089f1d5947de9960a635ee3581def - languageName: node - linkType: hard - -"d3-format@npm:1 - 3, d3-format@npm:3": - version: 3.1.0 - resolution: "d3-format@npm:3.1.0" - checksum: f345ec3b8ad3cab19bff5dead395bd9f5590628eb97a389b1dd89f0b204c7c4fc1d9520f13231c2c7cf14b7c9a8cf10f8ef15bde2befbab41454a569bd706ca2 - languageName: node - linkType: hard - -"d3-geo@npm:3": - version: 3.1.0 - resolution: "d3-geo@npm:3.1.0" - dependencies: - d3-array: 2.5.0 - 3 - checksum: adf82b0c105c0c5951ae0a833d4dfc479a563791ad7938579fa14e1cffd623b469d8aa7a37dc413a327fb6ac56880f3da3f6c43d4abe3c923972dd98f34f37d1 - languageName: node - linkType: hard - -"d3-hierarchy@npm:3": - version: 3.1.2 - resolution: "d3-hierarchy@npm:3.1.2" - checksum: 0fd946a8c5fd4686d43d3e11bbfc2037a145fda29d2261ccd0e36f70b66af6d7638e2c0c7112124d63fc3d3127197a00a6aecf676bd5bd392a94d7235a214263 - languageName: node - linkType: hard - -"d3-interpolate@npm:1 - 3, d3-interpolate@npm:1.2.0 - 3, d3-interpolate@npm:3": - version: 3.0.1 - resolution: "d3-interpolate@npm:3.0.1" - dependencies: - d3-color: 1 - 3 - checksum: a42ba314e295e95e5365eff0f604834e67e4a3b3c7102458781c477bd67e9b24b6bb9d8e41ff5521050a3f2c7c0c4bbbb6e187fd586daa3980943095b267e78b - languageName: node - linkType: hard - -"d3-path@npm:1 - 3, d3-path@npm:3, d3-path@npm:^3.1.0": - version: 3.1.0 - resolution: "d3-path@npm:3.1.0" - checksum: 2306f1bd9191e1eac895ec13e3064f732a85f243d6e627d242a313f9777756838a2215ea11562f0c7630c7c3b16a19ec1fe0948b1c82f3317fac55882f6ee5d8 - languageName: node - linkType: hard - -"d3-polygon@npm:3": - version: 3.0.1 - resolution: "d3-polygon@npm:3.0.1" - checksum: 0b85c532517895544683849768a2c377cee3801ef8ccf3fa9693c8871dd21a0c1a2a0fc75ff54192f0ba2c562b0da2bc27f5bf959dfafc7fa23573b574865d2c - languageName: node - linkType: hard - -"d3-quadtree@npm:1 - 3, d3-quadtree@npm:3": - version: 3.0.1 - resolution: "d3-quadtree@npm:3.0.1" - checksum: 5469d462763811475f34a7294d984f3eb100515b0585ca5b249656f6b1a6e99b20056a2d2e463cc9944b888896d2b1d07859c50f9c0cf23438df9cd2e3146066 - languageName: node - linkType: hard - -"d3-random@npm:3": - version: 3.0.1 - resolution: "d3-random@npm:3.0.1" - checksum: a70ad8d1cabe399ebeb2e482703121ac8946a3b336830b518da6848b9fdd48a111990fc041dc716f16885a72176ffa2898f2a250ca3d363ecdba5ef92b18e131 - languageName: node - linkType: hard - -"d3-scale-chromatic@npm:3": - version: 3.0.0 - resolution: "d3-scale-chromatic@npm:3.0.0" - dependencies: - d3-color: 1 - 3 - d3-interpolate: 1 - 3 - checksum: a8ce4cb0267a17b28ebbb929f5e3071d985908a9c13b6fcaa2a198e1e018f275804d691c5794b970df0049725b7944f32297b31603d235af6414004f0c7f82c0 - languageName: node - linkType: hard - -"d3-scale@npm:4": - version: 4.0.2 - resolution: "d3-scale@npm:4.0.2" - dependencies: - d3-array: 2.10.0 - 3 - d3-format: 1 - 3 - d3-interpolate: 1.2.0 - 3 - d3-time: 2.1.1 - 3 - d3-time-format: 2 - 4 - checksum: a9c770d283162c3bd11477c3d9d485d07f8db2071665f1a4ad23eec3e515e2cefbd369059ec677c9ac849877d1a765494e90e92051d4f21111aa56791c98729e - languageName: node - linkType: hard - -"d3-selection@npm:2 - 3, d3-selection@npm:3": - version: 3.0.0 - resolution: "d3-selection@npm:3.0.0" - checksum: f4e60e133309115b99f5b36a79ae0a19d71ee6e2d5e3c7216ef3e75ebd2cb1e778c2ed2fa4c01bef35e0dcbd96c5428f5bd6ca2184fe2957ed582fde6841cbc5 - languageName: node - linkType: hard - -"d3-shape@npm:3": - version: 3.2.0 - resolution: "d3-shape@npm:3.2.0" - dependencies: - d3-path: ^3.1.0 - checksum: de2af5fc9a93036a7b68581ca0bfc4aca2d5a328aa7ba7064c11aedd44d24f310c20c40157cb654359d4c15c3ef369f95ee53d71221017276e34172c7b719cfa - languageName: node - linkType: hard - -"d3-time-format@npm:2 - 4, d3-time-format@npm:4": - version: 4.1.0 - resolution: "d3-time-format@npm:4.1.0" - dependencies: - d3-time: 1 - 3 - checksum: 7342bce28355378152bbd4db4e275405439cabba082d9cd01946d40581140481c8328456d91740b0fe513c51ec4a467f4471ffa390c7e0e30ea30e9ec98fcdf4 - languageName: node - linkType: hard - -"d3-time@npm:1 - 3, d3-time@npm:2.1.1 - 3, d3-time@npm:3": - version: 3.1.0 - resolution: "d3-time@npm:3.1.0" - dependencies: - d3-array: 2 - 3 - checksum: 613b435352a78d9f31b7f68540788186d8c331b63feca60ad21c88e9db1989fe888f97f242322ebd6365e45ec3fb206a4324cd4ca0dfffa1d9b5feb856ba00a7 - languageName: node - linkType: hard - -"d3-timer@npm:1 - 3, d3-timer@npm:3": - version: 3.0.1 - resolution: "d3-timer@npm:3.0.1" - checksum: 1cfddf86d7bca22f73f2c427f52dfa35c49f50d64e187eb788dcad6e927625c636aa18ae4edd44d084eb9d1f81d8ca4ec305dae7f733c15846a824575b789d73 - languageName: node - linkType: hard - -"d3-transition@npm:2 - 3, d3-transition@npm:3": - version: 3.0.1 - resolution: "d3-transition@npm:3.0.1" - dependencies: - d3-color: 1 - 3 - d3-dispatch: 1 - 3 - d3-ease: 1 - 3 - d3-interpolate: 1 - 3 - d3-timer: 1 - 3 - peerDependencies: - d3-selection: 2 - 3 - checksum: cb1e6e018c3abf0502fe9ff7b631ad058efb197b5e14b973a410d3935aead6e3c07c67d726cfab258e4936ef2667c2c3d1cd2037feb0765f0b4e1d3b8788c0ea - languageName: node - linkType: hard - -"d3-zoom@npm:3": - version: 3.0.0 - resolution: "d3-zoom@npm:3.0.0" - dependencies: - d3-dispatch: 1 - 3 - d3-drag: 2 - 3 - d3-interpolate: 1 - 3 - d3-selection: 2 - 3 - d3-transition: 2 - 3 - checksum: 8056e3527281cfd1ccbcbc458408f86973b0583e9dac00e51204026d1d36803ca437f970b5736f02fafed9f2b78f145f72a5dbc66397e02d4d95d4c594b8ff54 - languageName: node - linkType: hard - -"d3@npm:^7.4.0, d3@npm:^7.8.2": - version: 7.8.5 - resolution: "d3@npm:7.8.5" - dependencies: - d3-array: 3 - d3-axis: 3 - d3-brush: 3 - d3-chord: 3 - d3-color: 3 - d3-contour: 4 - d3-delaunay: 6 - d3-dispatch: 3 - d3-drag: 3 - d3-dsv: 3 - d3-ease: 3 - d3-fetch: 3 - d3-force: 3 - d3-format: 3 - d3-geo: 3 - d3-hierarchy: 3 - d3-interpolate: 3 - d3-path: 3 - d3-polygon: 3 - d3-quadtree: 3 - d3-random: 3 - d3-scale: 4 - d3-scale-chromatic: 3 - d3-selection: 3 - d3-shape: 3 - d3-time: 3 - d3-time-format: 4 - d3-timer: 3 - d3-transition: 3 - d3-zoom: 3 - checksum: e407e79731f74d946a5eb8dec2f037b5a4ad33c294409b1d3531fdf7094de48adfe364974cb37e2396bdb81e23149d56d0ede716c004d6aebb52b3cc114cd15c - languageName: node - linkType: hard - -"dagre-d3-es@npm:7.0.9": - version: 7.0.9 - resolution: "dagre-d3-es@npm:7.0.9" - dependencies: - d3: ^7.8.2 - lodash-es: ^4.17.21 - checksum: 5f24ad9558e84066e70cfa6979320d93079979ac8b0a3b033e5330742aeeba74e205f66794ab6e0a82354b061a4e29c10a291590d7b2cf82b5780fab5443f5ba - languageName: node - linkType: hard - -"damerau-levenshtein@npm:^1.0.8": - version: 1.0.8 - resolution: "damerau-levenshtein@npm:1.0.8" - checksum: d240b7757544460ae0586a341a53110ab0a61126570ef2d8c731e3eab3f0cb6e488e2609e6a69b46727635de49be20b071688698744417ff1b6c1d7ccd03e0de - languageName: node - linkType: hard - -"data-uri-to-buffer@npm:^4.0.0": - version: 4.0.1 - resolution: "data-uri-to-buffer@npm:4.0.1" - checksum: 0d0790b67ffec5302f204c2ccca4494f70b4e2d940fea3d36b09f0bb2b8539c2e86690429eb1f1dc4bcc9e4df0644193073e63d9ee48ac9fce79ec1506e4aa4c - languageName: node - linkType: hard - -"data-urls@npm:^5.0.0": - version: 5.0.0 - resolution: "data-urls@npm:5.0.0" - dependencies: - whatwg-mimetype: ^4.0.0 - whatwg-url: ^14.0.0 - checksum: 5c40568c31b02641a70204ff233bc4e42d33717485d074244a98661e5f2a1e80e38fe05a5755dfaf2ee549f2ab509d6a3af2a85f4b2ad2c984e5d176695eaf46 - languageName: node - linkType: hard - -"dayjs@npm:^1.11.7": - version: 1.11.10 - resolution: "dayjs@npm:1.11.10" - checksum: a6b5a3813b8884f5cd557e2e6b7fa569f4c5d0c97aca9558e38534af4f2d60daafd3ff8c2000fed3435cfcec9e805bcebd99f90130c6d1c5ef524084ced588c4 - languageName: node - linkType: hard - -"debounce@npm:^1.2.1": - version: 1.2.1 - resolution: "debounce@npm:1.2.1" - checksum: 682a89506d9e54fb109526f4da255c5546102fbb8e3ae75eef3b04effaf5d4853756aee97475cd4650641869794e44f410eeb20ace2b18ea592287ab2038519e - languageName: node - linkType: hard - -"debug@npm:2.6.9, debug@npm:^2.6.0": - version: 2.6.9 - resolution: "debug@npm:2.6.9" - dependencies: - ms: 2.0.0 - checksum: d2f51589ca66df60bf36e1fa6e4386b318c3f1e06772280eea5b1ae9fd3d05e9c2b7fd8a7d862457d00853c75b00451aa2d7459b924629ee385287a650f58fe6 - languageName: node - linkType: hard - -"debug@npm:4, debug@npm:^4.1.0, debug@npm:^4.1.1, debug@npm:^4.3.1, debug@npm:^4.3.2, debug@npm:^4.3.4": - version: 4.3.4 - resolution: "debug@npm:4.3.4" - dependencies: - ms: 2.1.2 - peerDependenciesMeta: - supports-color: - optional: true - checksum: 3dbad3f94ea64f34431a9cbf0bafb61853eda57bff2880036153438f50fb5a84f27683ba0d8e5426bf41a8c6ff03879488120cf5b3a761e77953169c0600a708 - languageName: node - linkType: hard - -"debug@npm:^3.2.7": - version: 3.2.7 - resolution: "debug@npm:3.2.7" - dependencies: - ms: ^2.1.1 - checksum: b3d8c5940799914d30314b7c3304a43305fd0715581a919dacb8b3176d024a782062368405b47491516d2091d6462d4d11f2f4974a405048094f8bfebfa3071c - languageName: node - linkType: hard - -"decimal.js@npm:^10.4.3": - version: 10.4.3 - resolution: "decimal.js@npm:10.4.3" - checksum: 796404dcfa9d1dbfdc48870229d57f788b48c21c603c3f6554a1c17c10195fc1024de338b0cf9e1efe0c7c167eeb18f04548979bcc5fdfabebb7cc0ae3287bae - languageName: node - linkType: hard - -"decompress-response@npm:^3.3.0": - version: 3.3.0 - resolution: "decompress-response@npm:3.3.0" - dependencies: - mimic-response: ^1.0.0 - checksum: 952552ac3bd7de2fc18015086b09468645c9638d98a551305e485230ada278c039c91116e946d07894b39ee53c0f0d5b6473f25a224029344354513b412d7380 - languageName: node - linkType: hard - -"deep-extend@npm:^0.6.0": - version: 0.6.0 - resolution: "deep-extend@npm:0.6.0" - checksum: 7be7e5a8d468d6b10e6a67c3de828f55001b6eb515d014f7aeb9066ce36bd5717161eb47d6a0f7bed8a9083935b465bc163ee2581c8b128d29bf61092fdf57a7 - languageName: node - linkType: hard - -"deep-is@npm:^0.1.3": - version: 0.1.4 - resolution: "deep-is@npm:0.1.4" - checksum: edb65dd0d7d1b9c40b2f50219aef30e116cedd6fc79290e740972c132c09106d2e80aa0bc8826673dd5a00222d4179c84b36a790eef63a4c4bca75a37ef90804 - languageName: node - linkType: hard - -"deepmerge@npm:^4.2.2": - version: 4.3.1 - resolution: "deepmerge@npm:4.3.1" - checksum: 2024c6a980a1b7128084170c4cf56b0fd58a63f2da1660dcfe977415f27b17dbe5888668b59d0b063753f3220719d5e400b7f113609489c90160bb9a5518d052 - languageName: node - linkType: hard - -"default-gateway@npm:^6.0.3": - version: 6.0.3 - resolution: "default-gateway@npm:6.0.3" - dependencies: - execa: ^5.0.0 - checksum: 126f8273ecac8ee9ff91ea778e8784f6cd732d77c3157e8c5bdd6ed03651b5291f71446d05bc02d04073b1e67583604db5394ea3cf992ede0088c70ea15b7378 - languageName: node - linkType: hard - -"defer-to-connect@npm:^1.0.1": - version: 1.1.3 - resolution: "defer-to-connect@npm:1.1.3" - checksum: 9491b301dcfa04956f989481ba7a43c2231044206269eb4ab64a52d6639ee15b1252262a789eb4239fb46ab63e44d4e408641bae8e0793d640aee55398cb3930 - languageName: node - linkType: hard - -"define-data-property@npm:^1.0.1, define-data-property@npm:^1.1.2, define-data-property@npm:^1.1.4": - version: 1.1.4 - resolution: "define-data-property@npm:1.1.4" - dependencies: - es-define-property: ^1.0.0 - es-errors: ^1.3.0 - gopd: ^1.0.1 - checksum: 8068ee6cab694d409ac25936eb861eea704b7763f7f342adbdfe337fc27c78d7ae0eff2364b2917b58c508d723c7a074326d068eef2e45c4edcd85cf94d0313b - languageName: node - linkType: hard - -"define-lazy-prop@npm:^2.0.0": - version: 2.0.0 - resolution: "define-lazy-prop@npm:2.0.0" - checksum: 0115fdb065e0490918ba271d7339c42453d209d4cb619dfe635870d906731eff3e1ade8028bb461ea27ce8264ec5e22c6980612d332895977e89c1bbc80fcee2 - languageName: node - linkType: hard - -"define-properties@npm:^1.1.3, define-properties@npm:^1.2.0, define-properties@npm:^1.2.1": - version: 1.2.1 - resolution: "define-properties@npm:1.2.1" - dependencies: - define-data-property: ^1.0.1 - has-property-descriptors: ^1.0.0 - object-keys: ^1.1.1 - checksum: b4ccd00597dd46cb2d4a379398f5b19fca84a16f3374e2249201992f36b30f6835949a9429669ee6b41b6e837205a163eadd745e472069e70dfc10f03e5fcc12 - languageName: node - linkType: hard - -"del@npm:^6.1.1": - version: 6.1.1 - resolution: "del@npm:6.1.1" - dependencies: - globby: ^11.0.1 - graceful-fs: ^4.2.4 - is-glob: ^4.0.1 - is-path-cwd: ^2.2.0 - is-path-inside: ^3.0.2 - p-map: ^4.0.0 - rimraf: ^3.0.2 - slash: ^3.0.0 - checksum: 563288b73b8b19a7261c47fd21a330eeab6e2acd7c6208c49790dfd369127120dd7836cdf0c1eca216b77c94782a81507eac6b4734252d3bef2795cb366996b6 - languageName: node - linkType: hard - -"delaunator@npm:5": - version: 5.0.1 - resolution: "delaunator@npm:5.0.1" - dependencies: - robust-predicates: ^3.0.2 - checksum: 69ee43ec649b4a13b7f33c8a027fb3e8dfcb09266af324286118da757e04d3d39df619b905dca41421405c311317ccf632ecfa93db44519bacec3303c57c5a0b - languageName: node - linkType: hard - -"delayed-stream@npm:~1.0.0": - version: 1.0.0 - resolution: "delayed-stream@npm:1.0.0" - checksum: 46fe6e83e2cb1d85ba50bd52803c68be9bd953282fa7096f51fc29edd5d67ff84ff753c51966061e5ba7cb5e47ef6d36a91924eddb7f3f3483b1c560f77a0020 - languageName: node - linkType: hard - -"depd@npm:2.0.0": - version: 2.0.0 - resolution: "depd@npm:2.0.0" - checksum: abbe19c768c97ee2eed6282d8ce3031126662252c58d711f646921c9623f9052e3e1906443066beec1095832f534e57c523b7333f8e7e0d93051ab6baef5ab3a - languageName: node - linkType: hard - -"depd@npm:~1.1.2": - version: 1.1.2 - resolution: "depd@npm:1.1.2" - checksum: 6b406620d269619852885ce15965272b829df6f409724415e0002c8632ab6a8c0a08ec1f0bd2add05dc7bd7507606f7e2cc034fa24224ab829580040b835ecd9 - languageName: node - linkType: hard - -"dequal@npm:^2.0.3": - version: 2.0.3 - resolution: "dequal@npm:2.0.3" - checksum: 8679b850e1a3d0ebbc46ee780d5df7b478c23f335887464023a631d1b9af051ad4a6595a44220f9ff8ff95a8ddccf019b5ad778a976fd7bbf77383d36f412f90 - languageName: node - linkType: hard - -"destroy@npm:1.2.0": - version: 1.2.0 - resolution: "destroy@npm:1.2.0" - checksum: 0acb300b7478a08b92d810ab229d5afe0d2f4399272045ab22affa0d99dbaf12637659411530a6fcd597a9bdac718fc94373a61a95b4651bbc7b83684a565e38 - languageName: node - linkType: hard - -"detab@npm:2.0.4": - version: 2.0.4 - resolution: "detab@npm:2.0.4" - dependencies: - repeat-string: ^1.5.4 - checksum: 34b077521ecd4c6357d32ff7923be644d34aa6f6b7d717d40ec4a9168243eefaea2b512a75a460a6f70c31b0bbc31ff90f820a891803b4ddaf99e9d04d0d389d - languageName: node - linkType: hard - -"detect-node@npm:^2.0.4": - version: 2.1.0 - resolution: "detect-node@npm:2.1.0" - checksum: 832184ec458353e41533ac9c622f16c19f7c02d8b10c303dfd3a756f56be93e903616c0bb2d4226183c9351c15fc0b3dba41a17a2308262afabcfa3776e6ae6e - languageName: node - linkType: hard - -"detect-port-alt@npm:^1.1.6": - version: 1.1.6 - resolution: "detect-port-alt@npm:1.1.6" - dependencies: - address: ^1.0.1 - debug: ^2.6.0 - bin: - detect: ./bin/detect-port - detect-port: ./bin/detect-port - checksum: 9dc37b1fa4a9dd6d4889e1045849b8d841232b598d1ca888bf712f4035b07a17cf6d537465a0d7323250048d3a5a0540e3b7cf89457efc222f96f77e2c40d16a - languageName: node - linkType: hard - -"detect-port@npm:^1.3.0": - version: 1.5.1 - resolution: "detect-port@npm:1.5.1" - dependencies: - address: ^1.0.1 - debug: 4 - bin: - detect: bin/detect-port.js - detect-port: bin/detect-port.js - checksum: b48da9340481742547263d5d985e65d078592557863402ecf538511735e83575867e94f91fe74405ea19b61351feb99efccae7e55de9a151d5654e3417cea05b - languageName: node - linkType: hard - -"dir-glob@npm:^3.0.1": - version: 3.0.1 - resolution: "dir-glob@npm:3.0.1" - dependencies: - path-type: ^4.0.0 - checksum: fa05e18324510d7283f55862f3161c6759a3f2f8dbce491a2fc14c8324c498286c54282c1f0e933cb930da8419b30679389499b919122952a4f8592362ef4615 - languageName: node - linkType: hard - -"dns-packet@npm:^5.2.2": - version: 5.6.1 - resolution: "dns-packet@npm:5.6.1" - dependencies: - "@leichtgewicht/ip-codec": ^2.0.1 - checksum: 64c06457f0c6e143f7a0946e0aeb8de1c5f752217cfa143ef527467c00a6d78db1835cfdb6bb68333d9f9a4963cf23f410439b5262a8935cce1236f45e344b81 - languageName: node - linkType: hard - -"docs@workspace:.": - version: 0.0.0-use.local - resolution: "docs@workspace:." - dependencies: - "@babel/eslint-parser": ^7.18.2 - "@docusaurus/core": 2.4.3 - "@docusaurus/preset-classic": 2.4.3 - "@docusaurus/remark-plugin-npm2yarn": ^2.4.3 - "@docusaurus/theme-mermaid": 2.4.3 - "@langchain/scripts": ^0.0.10 - "@mdx-js/react": ^1.6.22 - "@supabase/supabase-js": ^2.39.7 - clsx: ^1.2.1 - cookie: ^0.6.0 - docusaurus-plugin-typedoc: next - dotenv: ^16.4.5 - eslint: ^8.19.0 - eslint-config-airbnb: ^19.0.4 - eslint-config-prettier: ^8.5.0 - eslint-plugin-header: ^3.1.1 - eslint-plugin-import: ^2.26.0 - eslint-plugin-jsx-a11y: ^6.6.0 - eslint-plugin-react: ^7.30.1 - eslint-plugin-react-hooks: ^4.6.0 - isomorphic-dompurify: ^2.7.0 - json-loader: ^0.5.7 - marked: ^12.0.1 - prettier: ^2.7.1 - process: ^0.11.10 - react: ^17.0.2 - react-dom: ^17.0.2 - supabase: ^1.148.6 - typedoc: ^0.24.4 - typedoc-plugin-markdown: next - typescript: ^5.1.3 - uuid: ^9.0.0 - webpack: ^5.75.0 - yaml-loader: ^0.8.0 - languageName: unknown - linkType: soft - -"doctrine@npm:^2.1.0": - version: 2.1.0 - resolution: "doctrine@npm:2.1.0" - dependencies: - esutils: ^2.0.2 - checksum: a45e277f7feaed309fe658ace1ff286c6e2002ac515af0aaf37145b8baa96e49899638c7cd47dccf84c3d32abfc113246625b3ac8f552d1046072adee13b0dc8 - languageName: node - linkType: hard - -"doctrine@npm:^3.0.0": - version: 3.0.0 - resolution: "doctrine@npm:3.0.0" - dependencies: - esutils: ^2.0.2 - checksum: fd7673ca77fe26cd5cba38d816bc72d641f500f1f9b25b83e8ce28827fe2da7ad583a8da26ab6af85f834138cf8dae9f69b0cd6ab925f52ddab1754db44d99ce - languageName: node - linkType: hard - -"docusaurus-plugin-typedoc@npm:next": - version: 1.0.0-next.27 - resolution: "docusaurus-plugin-typedoc@npm:1.0.0-next.27" - peerDependencies: - typedoc-plugin-markdown: ">=4.0.0-next.45" - checksum: 94873f8b44373e01a5d5603a7a37f3a48485bd20c9d7a244d4fb80033e336fbbebad2e9cec5624a6aaf6ade38d869433f1d9f4c6506ef92706a871427951fffe - languageName: node - linkType: hard - -"dom-converter@npm:^0.2.0": - version: 0.2.0 - resolution: "dom-converter@npm:0.2.0" - dependencies: - utila: ~0.4 - checksum: ea52fe303f5392e48dea563abef0e6fb3a478b8dbe3c599e99bb5d53981c6c38fc4944e56bb92a8ead6bb989d10b7914722ae11febbd2fd0910e33b9fc4aaa77 - languageName: node - linkType: hard - -"dom-serializer@npm:^1.0.1": - version: 1.4.1 - resolution: "dom-serializer@npm:1.4.1" - dependencies: - domelementtype: ^2.0.1 - domhandler: ^4.2.0 - entities: ^2.0.0 - checksum: fbb0b01f87a8a2d18e6e5a388ad0f7ec4a5c05c06d219377da1abc7bb0f674d804f4a8a94e3f71ff15f6cb7dcfc75704a54b261db672b9b3ab03da6b758b0b22 - languageName: node - linkType: hard - -"dom-serializer@npm:^2.0.0": - version: 2.0.0 - resolution: "dom-serializer@npm:2.0.0" - dependencies: - domelementtype: ^2.3.0 - domhandler: ^5.0.2 - entities: ^4.2.0 - checksum: cd1810544fd8cdfbd51fa2c0c1128ec3a13ba92f14e61b7650b5de421b88205fd2e3f0cc6ace82f13334114addb90ed1c2f23074a51770a8e9c1273acbc7f3e6 - languageName: node - linkType: hard - -"domelementtype@npm:^2.0.1, domelementtype@npm:^2.2.0, domelementtype@npm:^2.3.0": - version: 2.3.0 - resolution: "domelementtype@npm:2.3.0" - checksum: ee837a318ff702622f383409d1f5b25dd1024b692ef64d3096ff702e26339f8e345820f29a68bcdcea8cfee3531776b3382651232fbeae95612d6f0a75efb4f6 - languageName: node - linkType: hard - -"domhandler@npm:^4.0.0, domhandler@npm:^4.2.0, domhandler@npm:^4.3.1": - version: 4.3.1 - resolution: "domhandler@npm:4.3.1" - dependencies: - domelementtype: ^2.2.0 - checksum: 4c665ceed016e1911bf7d1dadc09dc888090b64dee7851cccd2fcf5442747ec39c647bb1cb8c8919f8bbdd0f0c625a6bafeeed4b2d656bbecdbae893f43ffaaa - languageName: node - linkType: hard - -"domhandler@npm:^5.0.2, domhandler@npm:^5.0.3": - version: 5.0.3 - resolution: "domhandler@npm:5.0.3" - dependencies: - domelementtype: ^2.3.0 - checksum: 0f58f4a6af63e6f3a4320aa446d28b5790a009018707bce2859dcb1d21144c7876482b5188395a188dfa974238c019e0a1e610d2fc269a12b2c192ea2b0b131c - languageName: node - linkType: hard - -"dompurify@npm:2.4.3": - version: 2.4.3 - resolution: "dompurify@npm:2.4.3" - checksum: b440981f2a38cada2085759cc3d1e2f94571afc34343d011a8a6aa1ad91ae6abf651adbfa4994b0e2283f0ce81f7891cdb04b67d0b234c8d190cb70e9691f026 - languageName: node - linkType: hard - -"dompurify@npm:^3.1.0": - version: 3.1.0 - resolution: "dompurify@npm:3.1.0" - checksum: 06fc76607cd076e394b2ea5479ab6f0407b8fedb6877ae95e94207b878365e5e1cd914055dacce152a5f419818afb8d4cd284b780246cf35363f0747c179a0ba - languageName: node - linkType: hard - -"domutils@npm:^2.5.2, domutils@npm:^2.8.0": - version: 2.8.0 - resolution: "domutils@npm:2.8.0" - dependencies: - dom-serializer: ^1.0.1 - domelementtype: ^2.2.0 - domhandler: ^4.2.0 - checksum: abf7434315283e9aadc2a24bac0e00eab07ae4313b40cc239f89d84d7315ebdfd2fb1b5bf750a96bc1b4403d7237c7b2ebf60459be394d625ead4ca89b934391 - languageName: node - linkType: hard - -"domutils@npm:^3.0.1": - version: 3.1.0 - resolution: "domutils@npm:3.1.0" - dependencies: - dom-serializer: ^2.0.0 - domelementtype: ^2.3.0 - domhandler: ^5.0.3 - checksum: e5757456ddd173caa411cfc02c2bb64133c65546d2c4081381a3bafc8a57411a41eed70494551aa58030be9e58574fcc489828bebd673863d39924fb4878f416 - languageName: node - linkType: hard - -"dot-case@npm:^3.0.4": - version: 3.0.4 - resolution: "dot-case@npm:3.0.4" - dependencies: - no-case: ^3.0.4 - tslib: ^2.0.3 - checksum: a65e3519414856df0228b9f645332f974f2bf5433370f544a681122eab59e66038fc3349b4be1cdc47152779dac71a5864f1ccda2f745e767c46e9c6543b1169 - languageName: node - linkType: hard - -"dot-prop@npm:^5.2.0": - version: 5.3.0 - resolution: "dot-prop@npm:5.3.0" - dependencies: - is-obj: ^2.0.0 - checksum: d5775790093c234ef4bfd5fbe40884ff7e6c87573e5339432870616331189f7f5d86575c5b5af2dcf0f61172990f4f734d07844b1f23482fff09e3c4bead05ea - languageName: node - linkType: hard - -"dotenv@npm:^16.4.5": - version: 16.4.5 - resolution: "dotenv@npm:16.4.5" - checksum: 301a12c3d44fd49888b74eb9ccf9f07a1f5df43f489e7fcb89647a2edcd84c42d6bc349dc8df099cd18f07c35c7b04685c1a4f3e6a6a9e6b30f8d48c15b7f49c - languageName: node - linkType: hard - -"duplexer3@npm:^0.1.4": - version: 0.1.5 - resolution: "duplexer3@npm:0.1.5" - checksum: e677cb4c48f031ca728601d6a20bf6aed4c629d69ef9643cb89c67583d673c4ec9317cc6427501f38bd8c368d3a18f173987cc02bd99d8cf8fe3d94259a22a20 - languageName: node - linkType: hard - -"duplexer@npm:^0.1.2": - version: 0.1.2 - resolution: "duplexer@npm:0.1.2" - checksum: 62ba61a830c56801db28ff6305c7d289b6dc9f859054e8c982abd8ee0b0a14d2e9a8e7d086ffee12e868d43e2bbe8a964be55ddbd8c8957714c87373c7a4f9b0 - languageName: node - linkType: hard - -"eastasianwidth@npm:^0.2.0": - version: 0.2.0 - resolution: "eastasianwidth@npm:0.2.0" - checksum: 7d00d7cd8e49b9afa762a813faac332dee781932d6f2c848dc348939c4253f1d4564341b7af1d041853bc3f32c2ef141b58e0a4d9862c17a7f08f68df1e0f1ed - languageName: node - linkType: hard - -"ee-first@npm:1.1.1": - version: 1.1.1 - resolution: "ee-first@npm:1.1.1" - checksum: 1b4cac778d64ce3b582a7e26b218afe07e207a0f9bfe13cc7395a6d307849cfe361e65033c3251e00c27dd060cab43014c2d6b2647676135e18b77d2d05b3f4f - languageName: node - linkType: hard - -"electron-to-chromium@npm:^1.4.668": - version: 1.4.691 - resolution: "electron-to-chromium@npm:1.4.691" - checksum: df7811863e39c039fd2f60a94da7e3c7136398d9b25fcae7c91837e7c03434e8cc97f79981221ff592f1e9879db301c1e61ec962d223d5e64ed94123b895268e - languageName: node - linkType: hard - -"elkjs@npm:^0.8.2": - version: 0.8.2 - resolution: "elkjs@npm:0.8.2" - checksum: ed615c485fa4ac1e858af509df24fdc9f61f2c6576df5f79f6a31c733fda69f235f53cd36af037aa9d2b8a935cb4f823fbd89d784b67f6e51be5100306ea1b39 - languageName: node - linkType: hard - -"emoji-regex@npm:^8.0.0": - version: 8.0.0 - resolution: "emoji-regex@npm:8.0.0" - checksum: d4c5c39d5a9868b5fa152f00cada8a936868fd3367f33f71be515ecee4c803132d11b31a6222b2571b1e5f7e13890156a94880345594d0ce7e3c9895f560f192 - languageName: node - linkType: hard - -"emoji-regex@npm:^9.2.2": - version: 9.2.2 - resolution: "emoji-regex@npm:9.2.2" - checksum: 8487182da74aabd810ac6d6f1994111dfc0e331b01271ae01ec1eb0ad7b5ecc2bbbbd2f053c05cb55a1ac30449527d819bbfbf0e3de1023db308cbcb47f86601 - languageName: node - linkType: hard - -"emojis-list@npm:^3.0.0": - version: 3.0.0 - resolution: "emojis-list@npm:3.0.0" - checksum: ddaaa02542e1e9436c03970eeed445f4ed29a5337dfba0fe0c38dfdd2af5da2429c2a0821304e8a8d1cadf27fdd5b22ff793571fa803ae16852a6975c65e8e70 - languageName: node - linkType: hard - -"emoticon@npm:^3.2.0": - version: 3.2.0 - resolution: "emoticon@npm:3.2.0" - checksum: f30649d18b672ab3139e95cb04f77b2442feb95c99dc59372ff80fbfd639b2bf4018bc68ab0b549bd765aecf8230d7899c43f86cfcc7b6370c06c3232783e24f - languageName: node - linkType: hard - -"encodeurl@npm:~1.0.2": - version: 1.0.2 - resolution: "encodeurl@npm:1.0.2" - checksum: e50e3d508cdd9c4565ba72d2012e65038e5d71bdc9198cb125beb6237b5b1ade6c0d343998da9e170fb2eae52c1bed37d4d6d98a46ea423a0cddbed5ac3f780c - languageName: node - linkType: hard - -"encoding@npm:^0.1.13": - version: 0.1.13 - resolution: "encoding@npm:0.1.13" - dependencies: - iconv-lite: ^0.6.2 - checksum: bb98632f8ffa823996e508ce6a58ffcf5856330fde839ae42c9e1f436cc3b5cc651d4aeae72222916545428e54fd0f6aa8862fd8d25bdbcc4589f1e3f3715e7f - languageName: node - linkType: hard - -"end-of-stream@npm:^1.1.0": - version: 1.4.4 - resolution: "end-of-stream@npm:1.4.4" - dependencies: - once: ^1.4.0 - checksum: 530a5a5a1e517e962854a31693dbb5c0b2fc40b46dad2a56a2deec656ca040631124f4795823acc68238147805f8b021abbe221f4afed5ef3c8e8efc2024908b - languageName: node - linkType: hard - -"enhanced-resolve@npm:^5.15.0": - version: 5.15.1 - resolution: "enhanced-resolve@npm:5.15.1" - dependencies: - graceful-fs: ^4.2.4 - tapable: ^2.2.0 - checksum: 360f646c794323f2984b1ac751a878dd02ef30b565e106640b3d881a13ad16ce9c66e7c593cc34133f251ba3708cf6ae461e071b0f53ee65ff6650a779ed25a1 - languageName: node - linkType: hard - -"entities@npm:^2.0.0": - version: 2.2.0 - resolution: "entities@npm:2.2.0" - checksum: 19010dacaf0912c895ea262b4f6128574f9ccf8d4b3b65c7e8334ad0079b3706376360e28d8843ff50a78aabcb8f08f0a32dbfacdc77e47ed77ca08b713669b3 - languageName: node - linkType: hard - -"entities@npm:^4.2.0, entities@npm:^4.4.0": - version: 4.5.0 - resolution: "entities@npm:4.5.0" - checksum: 853f8ebd5b425d350bffa97dd6958143179a5938352ccae092c62d1267c4e392a039be1bae7d51b6e4ffad25f51f9617531fedf5237f15df302ccfb452cbf2d7 - languageName: node - linkType: hard - -"env-paths@npm:^2.2.0": - version: 2.2.1 - resolution: "env-paths@npm:2.2.1" - checksum: 65b5df55a8bab92229ab2b40dad3b387fad24613263d103a97f91c9fe43ceb21965cd3392b1ccb5d77088021e525c4e0481adb309625d0cb94ade1d1fb8dc17e - languageName: node - linkType: hard - -"err-code@npm:^2.0.2": - version: 2.0.3 - resolution: "err-code@npm:2.0.3" - checksum: 8b7b1be20d2de12d2255c0bc2ca638b7af5171142693299416e6a9339bd7d88fc8d7707d913d78e0993176005405a236b066b45666b27b797252c771156ace54 - languageName: node - linkType: hard - -"error-ex@npm:^1.3.1": - version: 1.3.2 - resolution: "error-ex@npm:1.3.2" - dependencies: - is-arrayish: ^0.2.1 - checksum: c1c2b8b65f9c91b0f9d75f0debaa7ec5b35c266c2cac5de412c1a6de86d4cbae04ae44e510378cb14d032d0645a36925d0186f8bb7367bcc629db256b743a001 - languageName: node - linkType: hard - -"es-abstract@npm:^1.22.1, es-abstract@npm:^1.22.3, es-abstract@npm:^1.22.4": - version: 1.22.5 - resolution: "es-abstract@npm:1.22.5" - dependencies: - array-buffer-byte-length: ^1.0.1 - arraybuffer.prototype.slice: ^1.0.3 - available-typed-arrays: ^1.0.7 - call-bind: ^1.0.7 - es-define-property: ^1.0.0 - es-errors: ^1.3.0 - es-set-tostringtag: ^2.0.3 - es-to-primitive: ^1.2.1 - function.prototype.name: ^1.1.6 - get-intrinsic: ^1.2.4 - get-symbol-description: ^1.0.2 - globalthis: ^1.0.3 - gopd: ^1.0.1 - has-property-descriptors: ^1.0.2 - has-proto: ^1.0.3 - has-symbols: ^1.0.3 - hasown: ^2.0.1 - internal-slot: ^1.0.7 - is-array-buffer: ^3.0.4 - is-callable: ^1.2.7 - is-negative-zero: ^2.0.3 - is-regex: ^1.1.4 - is-shared-array-buffer: ^1.0.3 - is-string: ^1.0.7 - is-typed-array: ^1.1.13 - is-weakref: ^1.0.2 - object-inspect: ^1.13.1 - object-keys: ^1.1.1 - object.assign: ^4.1.5 - regexp.prototype.flags: ^1.5.2 - safe-array-concat: ^1.1.0 - safe-regex-test: ^1.0.3 - string.prototype.trim: ^1.2.8 - string.prototype.trimend: ^1.0.7 - string.prototype.trimstart: ^1.0.7 - typed-array-buffer: ^1.0.2 - typed-array-byte-length: ^1.0.1 - typed-array-byte-offset: ^1.0.2 - typed-array-length: ^1.0.5 - unbox-primitive: ^1.0.2 - which-typed-array: ^1.1.14 - checksum: 984ab92f8226812365d1c4ecf12f3a408a4cc7a5bfe448f231fd39fa1ca9fb8cd65f27c76fc1a0bc3d1492c54b6637e57ad8e4954402e39bb916e9db4bcdbc61 - languageName: node - linkType: hard - -"es-array-method-boxes-properly@npm:^1.0.0": - version: 1.0.0 - resolution: "es-array-method-boxes-properly@npm:1.0.0" - checksum: 2537fcd1cecf187083890bc6f5236d3a26bf39237433587e5bf63392e88faae929dbba78ff0120681a3f6f81c23fe3816122982c160d63b38c95c830b633b826 - languageName: node - linkType: hard - -"es-define-property@npm:^1.0.0": - version: 1.0.0 - resolution: "es-define-property@npm:1.0.0" - dependencies: - get-intrinsic: ^1.2.4 - checksum: f66ece0a887b6dca71848fa71f70461357c0e4e7249696f81bad0a1f347eed7b31262af4a29f5d726dc026426f085483b6b90301855e647aa8e21936f07293c6 - languageName: node - linkType: hard - -"es-errors@npm:^1.0.0, es-errors@npm:^1.1.0, es-errors@npm:^1.2.1, es-errors@npm:^1.3.0": - version: 1.3.0 - resolution: "es-errors@npm:1.3.0" - checksum: ec1414527a0ccacd7f15f4a3bc66e215f04f595ba23ca75cdae0927af099b5ec865f9f4d33e9d7e86f512f252876ac77d4281a7871531a50678132429b1271b5 - languageName: node - linkType: hard - -"es-iterator-helpers@npm:^1.0.15, es-iterator-helpers@npm:^1.0.17": - version: 1.0.17 - resolution: "es-iterator-helpers@npm:1.0.17" - dependencies: - asynciterator.prototype: ^1.0.0 - call-bind: ^1.0.7 - define-properties: ^1.2.1 - es-abstract: ^1.22.4 - es-errors: ^1.3.0 - es-set-tostringtag: ^2.0.2 - function-bind: ^1.1.2 - get-intrinsic: ^1.2.4 - globalthis: ^1.0.3 - has-property-descriptors: ^1.0.2 - has-proto: ^1.0.1 - has-symbols: ^1.0.3 - internal-slot: ^1.0.7 - iterator.prototype: ^1.1.2 - safe-array-concat: ^1.1.0 - checksum: f0962abbf120c37516c9008716fcaffeacf7bc6147a07e63cda3c3ac8be94b88e4ef8d71234c4b8873d1fc209f65c6d9e11a7faac78f59b5d3bcfa399affed7b - languageName: node - linkType: hard - -"es-module-lexer@npm:^1.2.1": - version: 1.4.1 - resolution: "es-module-lexer@npm:1.4.1" - checksum: a11b5a256d4e8e9c7d94c2fd87415ccd1591617b6edd847e064503f8eaece2d25e2e9078a02c5ce3ed5e83bb748f5b4820efbe78072c8beb07ac619c2edec35d - languageName: node - linkType: hard - -"es-set-tostringtag@npm:^2.0.2, es-set-tostringtag@npm:^2.0.3": - version: 2.0.3 - resolution: "es-set-tostringtag@npm:2.0.3" - dependencies: - get-intrinsic: ^1.2.4 - has-tostringtag: ^1.0.2 - hasown: ^2.0.1 - checksum: 7227fa48a41c0ce83e0377b11130d324ac797390688135b8da5c28994c0165be8b252e15cd1de41e1325e5a5412511586960213e88f9ab4a5e7d028895db5129 - languageName: node - linkType: hard - -"es-shim-unscopables@npm:^1.0.0, es-shim-unscopables@npm:^1.0.2": - version: 1.0.2 - resolution: "es-shim-unscopables@npm:1.0.2" - dependencies: - hasown: ^2.0.0 - checksum: 432bd527c62065da09ed1d37a3f8e623c423683285e6188108286f4a1e8e164a5bcbfbc0051557c7d14633cd2a41ce24c7048e6bbb66a985413fd32f1be72626 - languageName: node - linkType: hard - -"es-to-primitive@npm:^1.2.1": - version: 1.2.1 - resolution: "es-to-primitive@npm:1.2.1" - dependencies: - is-callable: ^1.1.4 - is-date-object: ^1.0.1 - is-symbol: ^1.0.2 - checksum: 4ead6671a2c1402619bdd77f3503991232ca15e17e46222b0a41a5d81aebc8740a77822f5b3c965008e631153e9ef0580540007744521e72de8e33599fca2eed - languageName: node - linkType: hard - -"escalade@npm:^3.1.1": - version: 3.1.2 - resolution: "escalade@npm:3.1.2" - checksum: 1ec0977aa2772075493002bdbd549d595ff6e9393b1cb0d7d6fcaf78c750da0c158f180938365486f75cb69fba20294351caddfce1b46552a7b6c3cde52eaa02 - languageName: node - linkType: hard - -"escape-goat@npm:^2.0.0": - version: 2.1.1 - resolution: "escape-goat@npm:2.1.1" - checksum: ce05c70c20dd7007b60d2d644b625da5412325fdb57acf671ba06cb2ab3cd6789e2087026921a05b665b0a03fadee2955e7fc0b9a67da15a6551a980b260eba7 - languageName: node - linkType: hard - -"escape-html@npm:^1.0.3, escape-html@npm:~1.0.3": - version: 1.0.3 - resolution: "escape-html@npm:1.0.3" - checksum: 6213ca9ae00d0ab8bccb6d8d4e0a98e76237b2410302cf7df70aaa6591d509a2a37ce8998008cbecae8fc8ffaadf3fb0229535e6a145f3ce0b211d060decbb24 - languageName: node - linkType: hard - -"escape-string-regexp@npm:^1.0.5": - version: 1.0.5 - resolution: "escape-string-regexp@npm:1.0.5" - checksum: 6092fda75c63b110c706b6a9bfde8a612ad595b628f0bd2147eea1d3406723020810e591effc7db1da91d80a71a737a313567c5abb3813e8d9c71f4aa595b410 - languageName: node - linkType: hard - -"escape-string-regexp@npm:^4.0.0": - version: 4.0.0 - resolution: "escape-string-regexp@npm:4.0.0" - checksum: 98b48897d93060f2322108bf29db0feba7dd774be96cd069458d1453347b25ce8682ecc39859d4bca2203cc0ab19c237bcc71755eff49a0f8d90beadeeba5cc5 - languageName: node - linkType: hard - -"eslint-config-airbnb-base@npm:^15.0.0": - version: 15.0.0 - resolution: "eslint-config-airbnb-base@npm:15.0.0" - dependencies: - confusing-browser-globals: ^1.0.10 - object.assign: ^4.1.2 - object.entries: ^1.1.5 - semver: ^6.3.0 - peerDependencies: - eslint: ^7.32.0 || ^8.2.0 - eslint-plugin-import: ^2.25.2 - checksum: 38626bad2ce2859fccac86b30cd2b86c9b7d8d71d458331860861dc05290a5b198bded2f4fb89efcb9046ec48f8ab4c4fb00365ba8916f27b172671da28b93ea - languageName: node - linkType: hard - -"eslint-config-airbnb@npm:^19.0.4": - version: 19.0.4 - resolution: "eslint-config-airbnb@npm:19.0.4" - dependencies: - eslint-config-airbnb-base: ^15.0.0 - object.assign: ^4.1.2 - object.entries: ^1.1.5 - peerDependencies: - eslint: ^7.32.0 || ^8.2.0 - eslint-plugin-import: ^2.25.3 - eslint-plugin-jsx-a11y: ^6.5.1 - eslint-plugin-react: ^7.28.0 - eslint-plugin-react-hooks: ^4.3.0 - checksum: 253178689c3c80eef2567e3aaf0612e18973bc9cf51d9be36074b5dd58210e8b6942200a424bcccbb81ac884e41303479ab09f251a2a97addc2de61efdc9576c - languageName: node - linkType: hard - -"eslint-config-prettier@npm:^8.5.0": - version: 8.10.0 - resolution: "eslint-config-prettier@npm:8.10.0" - peerDependencies: - eslint: ">=7.0.0" - bin: - eslint-config-prettier: bin/cli.js - checksum: 153266badd477e49b0759816246b2132f1dbdb6c7f313ca60a9af5822fd1071c2bc5684a3720d78b725452bbac04bb130878b2513aea5e72b1b792de5a69fec8 - languageName: node - linkType: hard - -"eslint-import-resolver-node@npm:^0.3.9": - version: 0.3.9 - resolution: "eslint-import-resolver-node@npm:0.3.9" - dependencies: - debug: ^3.2.7 - is-core-module: ^2.13.0 - resolve: ^1.22.4 - checksum: 439b91271236b452d478d0522a44482e8c8540bf9df9bd744062ebb89ab45727a3acd03366a6ba2bdbcde8f9f718bab7fe8db64688aca75acf37e04eafd25e22 - languageName: node - linkType: hard - -"eslint-module-utils@npm:^2.8.0": - version: 2.8.1 - resolution: "eslint-module-utils@npm:2.8.1" - dependencies: - debug: ^3.2.7 - peerDependenciesMeta: - eslint: - optional: true - checksum: 3cecd99b6baf45ffc269167da0f95dcb75e5aa67b93d73a3bab63e2a7eedd9cdd6f188eed048e2f57c1b77db82c9cbf2adac20b512fa70e597d863dd3720170d - languageName: node - linkType: hard - -"eslint-plugin-header@npm:^3.1.1": - version: 3.1.1 - resolution: "eslint-plugin-header@npm:3.1.1" - peerDependencies: - eslint: ">=7.7.0" - checksum: 2353e4ba011be81d5c27fbd79929e18dce118d7673a2f717b1ac5a0bceb33e06ec9a7c80a01dddc5804df75e2cc8eb475d268cd1abef5eab5088ede62e5ad246 - languageName: node - linkType: hard - -"eslint-plugin-import@npm:^2.26.0": - version: 2.29.1 - resolution: "eslint-plugin-import@npm:2.29.1" - dependencies: - array-includes: ^3.1.7 - array.prototype.findlastindex: ^1.2.3 - array.prototype.flat: ^1.3.2 - array.prototype.flatmap: ^1.3.2 - debug: ^3.2.7 - doctrine: ^2.1.0 - eslint-import-resolver-node: ^0.3.9 - eslint-module-utils: ^2.8.0 - hasown: ^2.0.0 - is-core-module: ^2.13.1 - is-glob: ^4.0.3 - minimatch: ^3.1.2 - object.fromentries: ^2.0.7 - object.groupby: ^1.0.1 - object.values: ^1.1.7 - semver: ^6.3.1 - tsconfig-paths: ^3.15.0 - peerDependencies: - eslint: ^2 || ^3 || ^4 || ^5 || ^6 || ^7.2.0 || ^8 - checksum: e65159aef808136d26d029b71c8c6e4cb5c628e65e5de77f1eb4c13a379315ae55c9c3afa847f43f4ff9df7e54515c77ffc6489c6a6f81f7dd7359267577468c - languageName: node - linkType: hard - -"eslint-plugin-jsx-a11y@npm:^6.6.0": - version: 6.8.0 - resolution: "eslint-plugin-jsx-a11y@npm:6.8.0" - dependencies: - "@babel/runtime": ^7.23.2 - aria-query: ^5.3.0 - array-includes: ^3.1.7 - array.prototype.flatmap: ^1.3.2 - ast-types-flow: ^0.0.8 - axe-core: =4.7.0 - axobject-query: ^3.2.1 - damerau-levenshtein: ^1.0.8 - emoji-regex: ^9.2.2 - es-iterator-helpers: ^1.0.15 - hasown: ^2.0.0 - jsx-ast-utils: ^3.3.5 - language-tags: ^1.0.9 - minimatch: ^3.1.2 - object.entries: ^1.1.7 - object.fromentries: ^2.0.7 - peerDependencies: - eslint: ^3 || ^4 || ^5 || ^6 || ^7 || ^8 - checksum: 3dec00e2a3089c4c61ac062e4196a70985fb7eda1fd67fe035363d92578debde92fdb8ed2e472321fc0d71e75f4a1e8888c6a3218c14dd93c8e8d19eb6f51554 - languageName: node - linkType: hard - -"eslint-plugin-react-hooks@npm:^4.6.0": - version: 4.6.0 - resolution: "eslint-plugin-react-hooks@npm:4.6.0" - peerDependencies: - eslint: ^3.0.0 || ^4.0.0 || ^5.0.0 || ^6.0.0 || ^7.0.0 || ^8.0.0-0 - checksum: 23001801f14c1d16bf0a837ca7970d9dd94e7b560384b41db378b49b6e32dc43d6e2790de1bd737a652a86f81a08d6a91f402525061b47719328f586a57e86c3 - languageName: node - linkType: hard - -"eslint-plugin-react@npm:^7.30.1": - version: 7.34.0 - resolution: "eslint-plugin-react@npm:7.34.0" - dependencies: - array-includes: ^3.1.7 - array.prototype.findlast: ^1.2.4 - array.prototype.flatmap: ^1.3.2 - array.prototype.toreversed: ^1.1.2 - array.prototype.tosorted: ^1.1.3 - doctrine: ^2.1.0 - es-iterator-helpers: ^1.0.17 - estraverse: ^5.3.0 - jsx-ast-utils: ^2.4.1 || ^3.0.0 - minimatch: ^3.1.2 - object.entries: ^1.1.7 - object.fromentries: ^2.0.7 - object.hasown: ^1.1.3 - object.values: ^1.1.7 - prop-types: ^15.8.1 - resolve: ^2.0.0-next.5 - semver: ^6.3.1 - string.prototype.matchall: ^4.0.10 - peerDependencies: - eslint: ^3 || ^4 || ^5 || ^6 || ^7 || ^8 - checksum: 9c110a881973e8b795149987382db62411bf5071355a8ec71b900ad5cf18233c44cc65dee23bc55544882b9474fc95487a4a1cb26f7b15f93e4f6d365fb0cd0a - languageName: node - linkType: hard - -"eslint-scope@npm:5.1.1": - version: 5.1.1 - resolution: "eslint-scope@npm:5.1.1" - dependencies: - esrecurse: ^4.3.0 - estraverse: ^4.1.1 - checksum: 47e4b6a3f0cc29c7feedee6c67b225a2da7e155802c6ea13bbef4ac6b9e10c66cd2dcb987867ef176292bf4e64eccc680a49e35e9e9c669f4a02bac17e86abdb - languageName: node - linkType: hard - -"eslint-scope@npm:^7.2.2": - version: 7.2.2 - resolution: "eslint-scope@npm:7.2.2" - dependencies: - esrecurse: ^4.3.0 - estraverse: ^5.2.0 - checksum: ec97dbf5fb04b94e8f4c5a91a7f0a6dd3c55e46bfc7bbcd0e3138c3a76977570e02ed89a1810c778dcd72072ff0e9621ba1379b4babe53921d71e2e4486fda3e - languageName: node - linkType: hard - -"eslint-visitor-keys@npm:^2.1.0": - version: 2.1.0 - resolution: "eslint-visitor-keys@npm:2.1.0" - checksum: e3081d7dd2611a35f0388bbdc2f5da60b3a3c5b8b6e928daffff7391146b434d691577aa95064c8b7faad0b8a680266bcda0a42439c18c717b80e6718d7e267d - languageName: node - linkType: hard - -"eslint-visitor-keys@npm:^3.3.0, eslint-visitor-keys@npm:^3.4.1, eslint-visitor-keys@npm:^3.4.3": - version: 3.4.3 - resolution: "eslint-visitor-keys@npm:3.4.3" - checksum: 36e9ef87fca698b6fd7ca5ca35d7b2b6eeaaf106572e2f7fd31c12d3bfdaccdb587bba6d3621067e5aece31c8c3a348b93922ab8f7b2cbc6aaab5e1d89040c60 - languageName: node - linkType: hard - -"eslint@npm:^8.19.0": - version: 8.57.0 - resolution: "eslint@npm:8.57.0" - dependencies: - "@eslint-community/eslint-utils": ^4.2.0 - "@eslint-community/regexpp": ^4.6.1 - "@eslint/eslintrc": ^2.1.4 - "@eslint/js": 8.57.0 - "@humanwhocodes/config-array": ^0.11.14 - "@humanwhocodes/module-importer": ^1.0.1 - "@nodelib/fs.walk": ^1.2.8 - "@ungap/structured-clone": ^1.2.0 - ajv: ^6.12.4 - chalk: ^4.0.0 - cross-spawn: ^7.0.2 - debug: ^4.3.2 - doctrine: ^3.0.0 - escape-string-regexp: ^4.0.0 - eslint-scope: ^7.2.2 - eslint-visitor-keys: ^3.4.3 - espree: ^9.6.1 - esquery: ^1.4.2 - esutils: ^2.0.2 - fast-deep-equal: ^3.1.3 - file-entry-cache: ^6.0.1 - find-up: ^5.0.0 - glob-parent: ^6.0.2 - globals: ^13.19.0 - graphemer: ^1.4.0 - ignore: ^5.2.0 - imurmurhash: ^0.1.4 - is-glob: ^4.0.0 - is-path-inside: ^3.0.3 - js-yaml: ^4.1.0 - json-stable-stringify-without-jsonify: ^1.0.1 - levn: ^0.4.1 - lodash.merge: ^4.6.2 - minimatch: ^3.1.2 - natural-compare: ^1.4.0 - optionator: ^0.9.3 - strip-ansi: ^6.0.1 - text-table: ^0.2.0 - bin: - eslint: bin/eslint.js - checksum: 3a48d7ff85ab420a8447e9810d8087aea5b1df9ef68c9151732b478de698389ee656fd895635b5f2871c89ee5a2652b3f343d11e9db6f8486880374ebc74a2d9 - languageName: node - linkType: hard - -"espree@npm:^9.6.0, espree@npm:^9.6.1": - version: 9.6.1 - resolution: "espree@npm:9.6.1" - dependencies: - acorn: ^8.9.0 - acorn-jsx: ^5.3.2 - eslint-visitor-keys: ^3.4.1 - checksum: eb8c149c7a2a77b3f33a5af80c10875c3abd65450f60b8af6db1bfcfa8f101e21c1e56a561c6dc13b848e18148d43469e7cd208506238554fb5395a9ea5a1ab9 - languageName: node - linkType: hard - -"esprima@npm:^4.0.0": - version: 4.0.1 - resolution: "esprima@npm:4.0.1" - bin: - esparse: ./bin/esparse.js - esvalidate: ./bin/esvalidate.js - checksum: b45bc805a613dbea2835278c306b91aff6173c8d034223fa81498c77dcbce3b2931bf6006db816f62eacd9fd4ea975dfd85a5b7f3c6402cfd050d4ca3c13a628 - languageName: node - linkType: hard - -"esquery@npm:^1.4.2": - version: 1.5.0 - resolution: "esquery@npm:1.5.0" - dependencies: - estraverse: ^5.1.0 - checksum: aefb0d2596c230118656cd4ec7532d447333a410a48834d80ea648b1e7b5c9bc9ed8b5e33a89cb04e487b60d622f44cf5713bf4abed7c97343edefdc84a35900 - languageName: node - linkType: hard - -"esrecurse@npm:^4.3.0": - version: 4.3.0 - resolution: "esrecurse@npm:4.3.0" - dependencies: - estraverse: ^5.2.0 - checksum: ebc17b1a33c51cef46fdc28b958994b1dc43cd2e86237515cbc3b4e5d2be6a811b2315d0a1a4d9d340b6d2308b15322f5c8291059521cc5f4802f65e7ec32837 - languageName: node - linkType: hard - -"estraverse@npm:^4.1.1": - version: 4.3.0 - resolution: "estraverse@npm:4.3.0" - checksum: a6299491f9940bb246124a8d44b7b7a413a8336f5436f9837aaa9330209bd9ee8af7e91a654a3545aee9c54b3308e78ee360cef1d777d37cfef77d2fa33b5827 - languageName: node - linkType: hard - -"estraverse@npm:^5.1.0, estraverse@npm:^5.2.0, estraverse@npm:^5.3.0": - version: 5.3.0 - resolution: "estraverse@npm:5.3.0" - checksum: 072780882dc8416ad144f8fe199628d2b3e7bbc9989d9ed43795d2c90309a2047e6bc5979d7e2322a341163d22cfad9e21f4110597fe487519697389497e4e2b - languageName: node - linkType: hard - -"esutils@npm:^2.0.2": - version: 2.0.3 - resolution: "esutils@npm:2.0.3" - checksum: 22b5b08f74737379a840b8ed2036a5fb35826c709ab000683b092d9054e5c2a82c27818f12604bfc2a9a76b90b6834ef081edbc1c7ae30d1627012e067c6ec87 - languageName: node - linkType: hard - -"eta@npm:^2.0.0": - version: 2.2.0 - resolution: "eta@npm:2.2.0" - checksum: 6a09631481d4f26a9662a1eb736a65cc1cbc48e24935e6ff5d83a83b0cb509ea56d588d66d7c087d590601dc59bdabdac2356936b1b789d020eb0cf2d8304d54 - languageName: node - linkType: hard - -"etag@npm:~1.8.1": - version: 1.8.1 - resolution: "etag@npm:1.8.1" - checksum: 571aeb3dbe0f2bbd4e4fadbdb44f325fc75335cd5f6f6b6a091e6a06a9f25ed5392f0863c5442acb0646787446e816f13cbfc6edce5b07658541dff573cab1ff - languageName: node - linkType: hard - -"eval@npm:^0.1.8": - version: 0.1.8 - resolution: "eval@npm:0.1.8" - dependencies: - "@types/node": "*" - require-like: ">= 0.1.1" - checksum: d005567f394cfbe60948e34982e4637d2665030f9aa7dcac581ea6f9ec6eceb87133ed3dc0ae21764aa362485c242a731dbb6371f1f1a86807c58676431e9d1a - languageName: node - linkType: hard - -"eventemitter3@npm:^4.0.0": - version: 4.0.7 - resolution: "eventemitter3@npm:4.0.7" - checksum: 1875311c42fcfe9c707b2712c32664a245629b42bb0a5a84439762dd0fd637fc54d078155ea83c2af9e0323c9ac13687e03cfba79b03af9f40c89b4960099374 - languageName: node - linkType: hard - -"events@npm:^3.2.0": - version: 3.3.0 - resolution: "events@npm:3.3.0" - checksum: f6f487ad2198aa41d878fa31452f1a3c00958f46e9019286ff4787c84aac329332ab45c9cdc8c445928fc6d7ded294b9e005a7fce9426488518017831b272780 - languageName: node - linkType: hard - -"execa@npm:^5.0.0": - version: 5.1.1 - resolution: "execa@npm:5.1.1" - dependencies: - cross-spawn: ^7.0.3 - get-stream: ^6.0.0 - human-signals: ^2.1.0 - is-stream: ^2.0.0 - merge-stream: ^2.0.0 - npm-run-path: ^4.0.1 - onetime: ^5.1.2 - signal-exit: ^3.0.3 - strip-final-newline: ^2.0.0 - checksum: fba9022c8c8c15ed862847e94c252b3d946036d7547af310e344a527e59021fd8b6bb0723883ea87044dc4f0201f949046993124a42ccb0855cae5bf8c786343 - languageName: node - linkType: hard - -"exponential-backoff@npm:^3.1.1": - version: 3.1.1 - resolution: "exponential-backoff@npm:3.1.1" - checksum: 3d21519a4f8207c99f7457287291316306255a328770d320b401114ec8481986e4e467e854cb9914dd965e0a1ca810a23ccb559c642c88f4c7f55c55778a9b48 - languageName: node - linkType: hard - -"express@npm:^4.17.3": - version: 4.18.3 - resolution: "express@npm:4.18.3" - dependencies: - accepts: ~1.3.8 - array-flatten: 1.1.1 - body-parser: 1.20.2 - content-disposition: 0.5.4 - content-type: ~1.0.4 - cookie: 0.5.0 - cookie-signature: 1.0.6 - debug: 2.6.9 - depd: 2.0.0 - encodeurl: ~1.0.2 - escape-html: ~1.0.3 - etag: ~1.8.1 - finalhandler: 1.2.0 - fresh: 0.5.2 - http-errors: 2.0.0 - merge-descriptors: 1.0.1 - methods: ~1.1.2 - on-finished: 2.4.1 - parseurl: ~1.3.3 - path-to-regexp: 0.1.7 - proxy-addr: ~2.0.7 - qs: 6.11.0 - range-parser: ~1.2.1 - safe-buffer: 5.2.1 - send: 0.18.0 - serve-static: 1.15.0 - setprototypeof: 1.2.0 - statuses: 2.0.1 - type-is: ~1.6.18 - utils-merge: 1.0.1 - vary: ~1.1.2 - checksum: 3d7fc8762a81dee0adf0b604f11627db2af082c5f2234e78a4aa8134f22c51f96c6282063f2f8b87f5dbc70679a3087caccb93b6107e324c6feb3a70960a5864 - languageName: node - linkType: hard - -"extend-shallow@npm:^2.0.1": - version: 2.0.1 - resolution: "extend-shallow@npm:2.0.1" - dependencies: - is-extendable: ^0.1.0 - checksum: 8fb58d9d7a511f4baf78d383e637bd7d2e80843bd9cd0853649108ea835208fb614da502a553acc30208e1325240bb7cc4a68473021612496bb89725483656d8 - languageName: node - linkType: hard - -"extend@npm:^3.0.0": - version: 3.0.2 - resolution: "extend@npm:3.0.2" - checksum: a50a8309ca65ea5d426382ff09f33586527882cf532931cb08ca786ea3146c0553310bda688710ff61d7668eba9f96b923fe1420cdf56a2c3eaf30fcab87b515 - languageName: node - linkType: hard - -"fast-deep-equal@npm:^3.1.1, fast-deep-equal@npm:^3.1.3": - version: 3.1.3 - resolution: "fast-deep-equal@npm:3.1.3" - checksum: e21a9d8d84f53493b6aa15efc9cfd53dd5b714a1f23f67fb5dc8f574af80df889b3bce25dc081887c6d25457cce704e636395333abad896ccdec03abaf1f3f9d - languageName: node - linkType: hard - -"fast-glob@npm:^3.2.11, fast-glob@npm:^3.2.9, fast-glob@npm:^3.3.0, fast-glob@npm:^3.3.2": - version: 3.3.2 - resolution: "fast-glob@npm:3.3.2" - dependencies: - "@nodelib/fs.stat": ^2.0.2 - "@nodelib/fs.walk": ^1.2.3 - glob-parent: ^5.1.2 - merge2: ^1.3.0 - micromatch: ^4.0.4 - checksum: 900e4979f4dbc3313840078419245621259f349950411ca2fa445a2f9a1a6d98c3b5e7e0660c5ccd563aa61abe133a21765c6c0dec8e57da1ba71d8000b05ec1 - languageName: node - linkType: hard - -"fast-json-stable-stringify@npm:^2.0.0": - version: 2.1.0 - resolution: "fast-json-stable-stringify@npm:2.1.0" - checksum: b191531e36c607977e5b1c47811158733c34ccb3bfde92c44798929e9b4154884378536d26ad90dfecd32e1ffc09c545d23535ad91b3161a27ddbb8ebe0cbecb - languageName: node - linkType: hard - -"fast-levenshtein@npm:^2.0.6": - version: 2.0.6 - resolution: "fast-levenshtein@npm:2.0.6" - checksum: 92cfec0a8dfafd9c7a15fba8f2cc29cd0b62b85f056d99ce448bbcd9f708e18ab2764bda4dd5158364f4145a7c72788538994f0d1787b956ef0d1062b0f7c24c - languageName: node - linkType: hard - -"fast-url-parser@npm:1.1.3": - version: 1.1.3 - resolution: "fast-url-parser@npm:1.1.3" - dependencies: - punycode: ^1.3.2 - checksum: 5043d0c4a8d775ff58504d56c096563c11b113e4cb8a2668c6f824a1cd4fb3812e2fdf76537eb24a7ce4ae7def6bd9747da630c617cf2a4b6ce0c42514e4f21c - languageName: node - linkType: hard - -"fastq@npm:^1.6.0": - version: 1.17.1 - resolution: "fastq@npm:1.17.1" - dependencies: - reusify: ^1.0.4 - checksum: a8c5b26788d5a1763f88bae56a8ddeee579f935a831c5fe7a8268cea5b0a91fbfe705f612209e02d639b881d7b48e461a50da4a10cfaa40da5ca7cc9da098d88 - languageName: node - linkType: hard - -"faye-websocket@npm:^0.11.3": - version: 0.11.4 - resolution: "faye-websocket@npm:0.11.4" - dependencies: - websocket-driver: ">=0.5.1" - checksum: d49a62caf027f871149fc2b3f3c7104dc6d62744277eb6f9f36e2d5714e847d846b9f7f0d0b7169b25a012e24a594cde11a93034b30732e4c683f20b8a5019fa - languageName: node - linkType: hard - -"fbemitter@npm:^3.0.0": - version: 3.0.0 - resolution: "fbemitter@npm:3.0.0" - dependencies: - fbjs: ^3.0.0 - checksum: 069690b8cdff3521ade3c9beb92ba0a38d818a86ef36dff8690e66749aef58809db4ac0d6938eb1cacea2dbef5f2a508952d455669590264cdc146bbe839f605 - languageName: node - linkType: hard - -"fbjs-css-vars@npm:^1.0.0": - version: 1.0.2 - resolution: "fbjs-css-vars@npm:1.0.2" - checksum: 72baf6d22c45b75109118b4daecb6c8016d4c83c8c0f23f683f22e9d7c21f32fff6201d288df46eb561e3c7d4bb4489b8ad140b7f56444c453ba407e8bd28511 - languageName: node - linkType: hard - -"fbjs@npm:^3.0.0, fbjs@npm:^3.0.1": - version: 3.0.5 - resolution: "fbjs@npm:3.0.5" - dependencies: - cross-fetch: ^3.1.5 - fbjs-css-vars: ^1.0.0 - loose-envify: ^1.0.0 - object-assign: ^4.1.0 - promise: ^7.1.1 - setimmediate: ^1.0.5 - ua-parser-js: ^1.0.35 - checksum: e609b5b64686bc96495a5c67728ed9b2710b9b3d695c5759c5f5e47c9483d1c323543ac777a86459e3694efc5712c6ce7212e944feb19752867d699568bb0e54 - languageName: node - linkType: hard - -"feed@npm:^4.2.2": - version: 4.2.2 - resolution: "feed@npm:4.2.2" - dependencies: - xml-js: ^1.6.11 - checksum: 2e6992a675a049511eef7bda8ca6c08cb9540cd10e8b275ec4c95d166228ec445a335fa8de990358759f248a92861e51decdcd32bf1c54737d5b7aed7c7ffe97 - languageName: node - linkType: hard - -"fetch-blob@npm:^3.1.2, fetch-blob@npm:^3.1.4": - version: 3.2.0 - resolution: "fetch-blob@npm:3.2.0" - dependencies: - node-domexception: ^1.0.0 - web-streams-polyfill: ^3.0.3 - checksum: f19bc28a2a0b9626e69fd7cf3a05798706db7f6c7548da657cbf5026a570945f5eeaedff52007ea35c8bcd3d237c58a20bf1543bc568ab2422411d762dd3d5bf - languageName: node - linkType: hard - -"file-entry-cache@npm:^6.0.1": - version: 6.0.1 - resolution: "file-entry-cache@npm:6.0.1" - dependencies: - flat-cache: ^3.0.4 - checksum: f49701feaa6314c8127c3c2f6173cfefff17612f5ed2daaafc6da13b5c91fd43e3b2a58fd0d63f9f94478a501b167615931e7200e31485e320f74a33885a9c74 - languageName: node - linkType: hard - -"file-loader@npm:^6.2.0": - version: 6.2.0 - resolution: "file-loader@npm:6.2.0" - dependencies: - loader-utils: ^2.0.0 - schema-utils: ^3.0.0 - peerDependencies: - webpack: ^4.0.0 || ^5.0.0 - checksum: faf43eecf233f4897b0150aaa874eeeac214e4f9de49738a9e0ef734a30b5260059e85b7edadf852b98e415f875bd5f12587768a93fd52aaf2e479ecf95fab20 - languageName: node - linkType: hard - -"filesize@npm:^8.0.6": - version: 8.0.7 - resolution: "filesize@npm:8.0.7" - checksum: 8603d27c5287b984cb100733640645e078f5f5ad65c6d913173e01fb99e09b0747828498fd86647685ccecb69be31f3587b9739ab1e50732116b2374aff4cbf9 - languageName: node - linkType: hard - -"fill-range@npm:^7.0.1": - version: 7.0.1 - resolution: "fill-range@npm:7.0.1" - dependencies: - to-regex-range: ^5.0.1 - checksum: cc283f4e65b504259e64fd969bcf4def4eb08d85565e906b7d36516e87819db52029a76b6363d0f02d0d532f0033c9603b9e2d943d56ee3b0d4f7ad3328ff917 - languageName: node - linkType: hard - -"finalhandler@npm:1.2.0": - version: 1.2.0 - resolution: "finalhandler@npm:1.2.0" - dependencies: - debug: 2.6.9 - encodeurl: ~1.0.2 - escape-html: ~1.0.3 - on-finished: 2.4.1 - parseurl: ~1.3.3 - statuses: 2.0.1 - unpipe: ~1.0.0 - checksum: 92effbfd32e22a7dff2994acedbd9bcc3aa646a3e919ea6a53238090e87097f8ef07cced90aa2cc421abdf993aefbdd5b00104d55c7c5479a8d00ed105b45716 - languageName: node - linkType: hard - -"find-cache-dir@npm:^3.3.1": - version: 3.3.2 - resolution: "find-cache-dir@npm:3.3.2" - dependencies: - commondir: ^1.0.1 - make-dir: ^3.0.2 - pkg-dir: ^4.1.0 - checksum: 1e61c2e64f5c0b1c535bd85939ae73b0e5773142713273818cc0b393ee3555fb0fd44e1a5b161b8b6c3e03e98c2fcc9c227d784850a13a90a8ab576869576817 - languageName: node - linkType: hard - -"find-up@npm:^3.0.0": - version: 3.0.0 - resolution: "find-up@npm:3.0.0" - dependencies: - locate-path: ^3.0.0 - checksum: 38eba3fe7a66e4bc7f0f5a1366dc25508b7cfc349f852640e3678d26ad9a6d7e2c43eff0a472287de4a9753ef58f066a0ea892a256fa3636ad51b3fe1e17fae9 - languageName: node - linkType: hard - -"find-up@npm:^4.0.0": - version: 4.1.0 - resolution: "find-up@npm:4.1.0" - dependencies: - locate-path: ^5.0.0 - path-exists: ^4.0.0 - checksum: 4c172680e8f8c1f78839486e14a43ef82e9decd0e74145f40707cc42e7420506d5ec92d9a11c22bd2c48fb0c384ea05dd30e10dd152fefeec6f2f75282a8b844 - languageName: node - linkType: hard - -"find-up@npm:^5.0.0": - version: 5.0.0 - resolution: "find-up@npm:5.0.0" - dependencies: - locate-path: ^6.0.0 - path-exists: ^4.0.0 - checksum: 07955e357348f34660bde7920783204ff5a26ac2cafcaa28bace494027158a97b9f56faaf2d89a6106211a8174db650dd9f503f9c0d526b1202d5554a00b9095 - languageName: node - linkType: hard - -"flat-cache@npm:^3.0.4": - version: 3.2.0 - resolution: "flat-cache@npm:3.2.0" - dependencies: - flatted: ^3.2.9 - keyv: ^4.5.3 - rimraf: ^3.0.2 - checksum: e7e0f59801e288b54bee5cb9681e9ee21ee28ef309f886b312c9d08415b79fc0f24ac842f84356ce80f47d6a53de62197ce0e6e148dc42d5db005992e2a756ec - languageName: node - linkType: hard - -"flat@npm:^5.0.2": - version: 5.0.2 - resolution: "flat@npm:5.0.2" - bin: - flat: cli.js - checksum: 12a1536ac746db74881316a181499a78ef953632ddd28050b7a3a43c62ef5462e3357c8c29d76072bb635f147f7a9a1f0c02efef6b4be28f8db62ceb3d5c7f5d - languageName: node - linkType: hard - -"flatted@npm:^3.2.9": - version: 3.3.1 - resolution: "flatted@npm:3.3.1" - checksum: 85ae7181650bb728c221e7644cbc9f4bf28bc556f2fc89bb21266962bdf0ce1029cc7acc44bb646cd469d9baac7c317f64e841c4c4c00516afa97320cdac7f94 - languageName: node - linkType: hard - -"flux@npm:^4.0.1": - version: 4.0.4 - resolution: "flux@npm:4.0.4" - dependencies: - fbemitter: ^3.0.0 - fbjs: ^3.0.1 - peerDependencies: - react: ^15.0.2 || ^16.0.0 || ^17.0.0 - checksum: 8fa5c2f9322258de3e331f67c6f1078a7f91c4dec9dbe8a54c4b8a80eed19a4f91889028b768668af4a796e8f2ee75e461e1571b8615432a3920ae95cc4ff794 - languageName: node - linkType: hard - -"follow-redirects@npm:^1.0.0, follow-redirects@npm:^1.14.7": - version: 1.15.5 - resolution: "follow-redirects@npm:1.15.5" - peerDependenciesMeta: - debug: - optional: true - checksum: 5ca49b5ce6f44338cbfc3546823357e7a70813cecc9b7b768158a1d32c1e62e7407c944402a918ea8c38ae2e78266312d617dc68783fac502cbb55e1047b34ec - languageName: node - linkType: hard - -"follow-redirects@npm:^1.15.4": - version: 1.15.6 - resolution: "follow-redirects@npm:1.15.6" - peerDependenciesMeta: - debug: - optional: true - checksum: a62c378dfc8c00f60b9c80cab158ba54e99ba0239a5dd7c81245e5a5b39d10f0c35e249c3379eae719ff0285fff88c365dd446fab19dee771f1d76252df1bbf5 - languageName: node - linkType: hard - -"for-each@npm:^0.3.3": - version: 0.3.3 - resolution: "for-each@npm:0.3.3" - dependencies: - is-callable: ^1.1.3 - checksum: 6c48ff2bc63362319c65e2edca4a8e1e3483a2fabc72fbe7feaf8c73db94fc7861bd53bc02c8a66a0c1dd709da6b04eec42e0abdd6b40ce47305ae92a25e5d28 - languageName: node - linkType: hard - -"foreground-child@npm:^3.1.0": - version: 3.1.1 - resolution: "foreground-child@npm:3.1.1" - dependencies: - cross-spawn: ^7.0.0 - signal-exit: ^4.0.1 - checksum: 139d270bc82dc9e6f8bc045fe2aae4001dc2472157044fdfad376d0a3457f77857fa883c1c8b21b491c6caade9a926a4bed3d3d2e8d3c9202b151a4cbbd0bcd5 - languageName: node - linkType: hard - -"fork-ts-checker-webpack-plugin@npm:^6.5.0": - version: 6.5.3 - resolution: "fork-ts-checker-webpack-plugin@npm:6.5.3" - dependencies: - "@babel/code-frame": ^7.8.3 - "@types/json-schema": ^7.0.5 - chalk: ^4.1.0 - chokidar: ^3.4.2 - cosmiconfig: ^6.0.0 - deepmerge: ^4.2.2 - fs-extra: ^9.0.0 - glob: ^7.1.6 - memfs: ^3.1.2 - minimatch: ^3.0.4 - schema-utils: 2.7.0 - semver: ^7.3.2 - tapable: ^1.0.0 - peerDependencies: - eslint: ">= 6" - typescript: ">= 2.7" - vue-template-compiler: "*" - webpack: ">= 4" - peerDependenciesMeta: - eslint: - optional: true - vue-template-compiler: - optional: true - checksum: 9732a49bfeed8fc23e6e8a59795fa7c238edeba91040a9b520db54b4d316dda27f9f1893d360e296fd0ad8930627d364417d28a8c7007fba60cc730ebfce4956 - languageName: node - linkType: hard - -"form-data@npm:^4.0.0": - version: 4.0.0 - resolution: "form-data@npm:4.0.0" - dependencies: - asynckit: ^0.4.0 - combined-stream: ^1.0.8 - mime-types: ^2.1.12 - checksum: 01135bf8675f9d5c61ff18e2e2932f719ca4de964e3be90ef4c36aacfc7b9cb2fceb5eca0b7e0190e3383fe51c5b37f4cb80b62ca06a99aaabfcfd6ac7c9328c - languageName: node - linkType: hard - -"formdata-polyfill@npm:^4.0.10": - version: 4.0.10 - resolution: "formdata-polyfill@npm:4.0.10" - dependencies: - fetch-blob: ^3.1.2 - checksum: 82a34df292afadd82b43d4a740ce387bc08541e0a534358425193017bf9fb3567875dc5f69564984b1da979979b70703aa73dee715a17b6c229752ae736dd9db - languageName: node - linkType: hard - -"forwarded@npm:0.2.0": - version: 0.2.0 - resolution: "forwarded@npm:0.2.0" - checksum: fd27e2394d8887ebd16a66ffc889dc983fbbd797d5d3f01087c020283c0f019a7d05ee85669383d8e0d216b116d720fc0cef2f6e9b7eb9f4c90c6e0bc7fd28e6 - languageName: node - linkType: hard - -"fraction.js@npm:^4.3.7": - version: 4.3.7 - resolution: "fraction.js@npm:4.3.7" - checksum: e1553ae3f08e3ba0e8c06e43a3ab20b319966dfb7ddb96fd9b5d0ee11a66571af7f993229c88ebbb0d4a816eb813a24ed48207b140d442a8f76f33763b8d1f3f - languageName: node - linkType: hard - -"fresh@npm:0.5.2": - version: 0.5.2 - resolution: "fresh@npm:0.5.2" - checksum: 13ea8b08f91e669a64e3ba3a20eb79d7ca5379a81f1ff7f4310d54e2320645503cc0c78daedc93dfb6191287295f6479544a649c64d8e41a1c0fb0c221552346 - languageName: node - linkType: hard - -"fs-extra@npm:^10.1.0": - version: 10.1.0 - resolution: "fs-extra@npm:10.1.0" - dependencies: - graceful-fs: ^4.2.0 - jsonfile: ^6.0.1 - universalify: ^2.0.0 - checksum: dc94ab37096f813cc3ca12f0f1b5ad6744dfed9ed21e953d72530d103cea193c2f81584a39e9dee1bea36de5ee66805678c0dddc048e8af1427ac19c00fffc50 - languageName: node - linkType: hard - -"fs-extra@npm:^9.0.0": - version: 9.1.0 - resolution: "fs-extra@npm:9.1.0" - dependencies: - at-least-node: ^1.0.0 - graceful-fs: ^4.2.0 - jsonfile: ^6.0.1 - universalify: ^2.0.0 - checksum: ba71ba32e0faa74ab931b7a0031d1523c66a73e225de7426e275e238e312d07313d2da2d33e34a52aa406c8763ade5712eb3ec9ba4d9edce652bcacdc29e6b20 - languageName: node - linkType: hard - -"fs-minipass@npm:^2.0.0": - version: 2.1.0 - resolution: "fs-minipass@npm:2.1.0" - dependencies: - minipass: ^3.0.0 - checksum: 1b8d128dae2ac6cc94230cc5ead341ba3e0efaef82dab46a33d171c044caaa6ca001364178d42069b2809c35a1c3c35079a32107c770e9ffab3901b59af8c8b1 - languageName: node - linkType: hard - -"fs-minipass@npm:^3.0.0": - version: 3.0.3 - resolution: "fs-minipass@npm:3.0.3" - dependencies: - minipass: ^7.0.3 - checksum: 8722a41109130851d979222d3ec88aabaceeaaf8f57b2a8f744ef8bd2d1ce95453b04a61daa0078822bc5cd21e008814f06fe6586f56fef511e71b8d2394d802 - languageName: node - linkType: hard - -"fs-monkey@npm:^1.0.4": - version: 1.0.5 - resolution: "fs-monkey@npm:1.0.5" - checksum: 424b67f65b37fe66117ae2bb061f790fe6d4b609e1d160487c74b3d69fbf42f262c665ccfba32e8b5f113f96f92e9a58fcdebe42d5f6649bdfc72918093a3119 - languageName: node - linkType: hard - -"fs.realpath@npm:^1.0.0": - version: 1.0.0 - resolution: "fs.realpath@npm:1.0.0" - checksum: 99ddea01a7e75aa276c250a04eedeffe5662bce66c65c07164ad6264f9de18fb21be9433ead460e54cff20e31721c811f4fb5d70591799df5f85dce6d6746fd0 - languageName: node - linkType: hard - -"fsevents@npm:~2.3.2": - version: 2.3.3 - resolution: "fsevents@npm:2.3.3" - dependencies: - node-gyp: latest - checksum: 11e6ea6fea15e42461fc55b4b0e4a0a3c654faa567f1877dbd353f39156f69def97a69936d1746619d656c4b93de2238bf731f6085a03a50cabf287c9d024317 - conditions: os=darwin - languageName: node - linkType: hard - -"fsevents@patch:fsevents@~2.3.2#~builtin": - version: 2.3.3 - resolution: "fsevents@patch:fsevents@npm%3A2.3.3#~builtin::version=2.3.3&hash=df0bf1" - dependencies: - node-gyp: latest - conditions: os=darwin - languageName: node - linkType: hard - -"function-bind@npm:^1.1.2": - version: 1.1.2 - resolution: "function-bind@npm:1.1.2" - checksum: 2b0ff4ce708d99715ad14a6d1f894e2a83242e4a52ccfcefaee5e40050562e5f6dafc1adbb4ce2d4ab47279a45dc736ab91ea5042d843c3c092820dfe032efb1 - languageName: node - linkType: hard - -"function.prototype.name@npm:^1.1.5, function.prototype.name@npm:^1.1.6": - version: 1.1.6 - resolution: "function.prototype.name@npm:1.1.6" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - functions-have-names: ^1.2.3 - checksum: 7a3f9bd98adab09a07f6e1f03da03d3f7c26abbdeaeee15223f6c04a9fb5674792bdf5e689dac19b97ac71de6aad2027ba3048a9b883aa1b3173eed6ab07f479 - languageName: node - linkType: hard - -"functions-have-names@npm:^1.2.3": - version: 1.2.3 - resolution: "functions-have-names@npm:1.2.3" - checksum: c3f1f5ba20f4e962efb71344ce0a40722163e85bee2101ce25f88214e78182d2d2476aa85ef37950c579eb6cf6ee811c17b3101bb84004bb75655f3e33f3fdb5 - languageName: node - linkType: hard - -"gensync@npm:^1.0.0-beta.1, gensync@npm:^1.0.0-beta.2": - version: 1.0.0-beta.2 - resolution: "gensync@npm:1.0.0-beta.2" - checksum: a7437e58c6be12aa6c90f7730eac7fa9833dc78872b4ad2963d2031b00a3367a93f98aec75f9aaac7220848e4026d67a8655e870b24f20a543d103c0d65952ec - languageName: node - linkType: hard - -"get-intrinsic@npm:^1.1.1, get-intrinsic@npm:^1.1.3, get-intrinsic@npm:^1.2.1, get-intrinsic@npm:^1.2.2, get-intrinsic@npm:^1.2.3, get-intrinsic@npm:^1.2.4": - version: 1.2.4 - resolution: "get-intrinsic@npm:1.2.4" - dependencies: - es-errors: ^1.3.0 - function-bind: ^1.1.2 - has-proto: ^1.0.1 - has-symbols: ^1.0.3 - hasown: ^2.0.0 - checksum: 414e3cdf2c203d1b9d7d33111df746a4512a1aa622770b361dadddf8ed0b5aeb26c560f49ca077e24bfafb0acb55ca908d1f709216ccba33ffc548ec8a79a951 - languageName: node - linkType: hard - -"get-own-enumerable-property-symbols@npm:^3.0.0": - version: 3.0.2 - resolution: "get-own-enumerable-property-symbols@npm:3.0.2" - checksum: 8f0331f14159f939830884799f937343c8c0a2c330506094bc12cbee3665d88337fe97a4ea35c002cc2bdba0f5d9975ad7ec3abb925015cdf2a93e76d4759ede - languageName: node - linkType: hard - -"get-stream@npm:^4.1.0": - version: 4.1.0 - resolution: "get-stream@npm:4.1.0" - dependencies: - pump: ^3.0.0 - checksum: 443e1914170c15bd52ff8ea6eff6dfc6d712b031303e36302d2778e3de2506af9ee964d6124010f7818736dcfde05c04ba7ca6cc26883106e084357a17ae7d73 - languageName: node - linkType: hard - -"get-stream@npm:^5.1.0": - version: 5.2.0 - resolution: "get-stream@npm:5.2.0" - dependencies: - pump: ^3.0.0 - checksum: 8bc1a23174a06b2b4ce600df38d6c98d2ef6d84e020c1ddad632ad75bac4e092eeb40e4c09e0761c35fc2dbc5e7fff5dab5e763a383582c4a167dd69a905bd12 - languageName: node - linkType: hard - -"get-stream@npm:^6.0.0": - version: 6.0.1 - resolution: "get-stream@npm:6.0.1" - checksum: e04ecece32c92eebf5b8c940f51468cd53554dcbb0ea725b2748be583c9523d00128137966afce410b9b051eb2ef16d657cd2b120ca8edafcf5a65e81af63cad - languageName: node - linkType: hard - -"get-symbol-description@npm:^1.0.2": - version: 1.0.2 - resolution: "get-symbol-description@npm:1.0.2" - dependencies: - call-bind: ^1.0.5 - es-errors: ^1.3.0 - get-intrinsic: ^1.2.4 - checksum: e1cb53bc211f9dbe9691a4f97a46837a553c4e7caadd0488dc24ac694db8a390b93edd412b48dcdd0b4bbb4c595de1709effc75fc87c0839deedc6968f5bd973 - languageName: node - linkType: hard - -"github-slugger@npm:^1.4.0": - version: 1.5.0 - resolution: "github-slugger@npm:1.5.0" - checksum: c70988224578b3bdaa25df65973ffc8c24594a77a28550c3636e495e49d17aef5cdb04c04fa3f1744babef98c61eecc6a43299a13ea7f3cc33d680bf9053ffbe - languageName: node - linkType: hard - -"glob-parent@npm:^5.1.2, glob-parent@npm:~5.1.2": - version: 5.1.2 - resolution: "glob-parent@npm:5.1.2" - dependencies: - is-glob: ^4.0.1 - checksum: f4f2bfe2425296e8a47e36864e4f42be38a996db40420fe434565e4480e3322f18eb37589617a98640c5dc8fdec1a387007ee18dbb1f3f5553409c34d17f425e - languageName: node - linkType: hard - -"glob-parent@npm:^6.0.1, glob-parent@npm:^6.0.2": - version: 6.0.2 - resolution: "glob-parent@npm:6.0.2" - dependencies: - is-glob: ^4.0.3 - checksum: c13ee97978bef4f55106b71e66428eb1512e71a7466ba49025fc2aec59a5bfb0954d5abd58fc5ee6c9b076eef4e1f6d3375c2e964b88466ca390da4419a786a8 - languageName: node - linkType: hard - -"glob-to-regexp@npm:^0.4.1": - version: 0.4.1 - resolution: "glob-to-regexp@npm:0.4.1" - checksum: e795f4e8f06d2a15e86f76e4d92751cf8bbfcf0157cea5c2f0f35678a8195a750b34096b1256e436f0cebc1883b5ff0888c47348443e69546a5a87f9e1eb1167 - languageName: node - linkType: hard - -"glob@npm:^10.2.2, glob@npm:^10.3.10": - version: 10.3.10 - resolution: "glob@npm:10.3.10" - dependencies: - foreground-child: ^3.1.0 - jackspeak: ^2.3.5 - minimatch: ^9.0.1 - minipass: ^5.0.0 || ^6.0.2 || ^7.0.0 - path-scurry: ^1.10.1 - bin: - glob: dist/esm/bin.mjs - checksum: 4f2fe2511e157b5a3f525a54092169a5f92405f24d2aed3142f4411df328baca13059f4182f1db1bf933e2c69c0bd89e57ae87edd8950cba8c7ccbe84f721cf3 - languageName: node - linkType: hard - -"glob@npm:^7.0.0, glob@npm:^7.1.3, glob@npm:^7.1.6": - version: 7.2.3 - resolution: "glob@npm:7.2.3" - dependencies: - fs.realpath: ^1.0.0 - inflight: ^1.0.4 - inherits: 2 - minimatch: ^3.1.1 - once: ^1.3.0 - path-is-absolute: ^1.0.0 - checksum: 29452e97b38fa704dabb1d1045350fb2467cf0277e155aa9ff7077e90ad81d1ea9d53d3ee63bd37c05b09a065e90f16aec4a65f5b8de401d1dac40bc5605d133 - languageName: node - linkType: hard - -"global-dirs@npm:^3.0.0": - version: 3.0.1 - resolution: "global-dirs@npm:3.0.1" - dependencies: - ini: 2.0.0 - checksum: 70147b80261601fd40ac02a104581432325c1c47329706acd773f3a6ce99bb36d1d996038c85ccacd482ad22258ec233c586b6a91535b1a116b89663d49d6438 - languageName: node - linkType: hard - -"global-modules@npm:^2.0.0": - version: 2.0.0 - resolution: "global-modules@npm:2.0.0" - dependencies: - global-prefix: ^3.0.0 - checksum: d6197f25856c878c2fb5f038899f2dca7cbb2f7b7cf8999660c0104972d5cfa5c68b5a0a77fa8206bb536c3903a4615665acb9709b4d80846e1bb47eaef65430 - languageName: node - linkType: hard - -"global-prefix@npm:^3.0.0": - version: 3.0.0 - resolution: "global-prefix@npm:3.0.0" - dependencies: - ini: ^1.3.5 - kind-of: ^6.0.2 - which: ^1.3.1 - checksum: 8a82fc1d6f22c45484a4e34656cc91bf021a03e03213b0035098d605bfc612d7141f1e14a21097e8a0413b4884afd5b260df0b6a25605ce9d722e11f1df2881d - languageName: node - linkType: hard - -"globals@npm:^11.1.0": - version: 11.12.0 - resolution: "globals@npm:11.12.0" - checksum: 67051a45eca3db904aee189dfc7cd53c20c7d881679c93f6146ddd4c9f4ab2268e68a919df740d39c71f4445d2b38ee360fc234428baea1dbdfe68bbcb46979e - languageName: node - linkType: hard - -"globals@npm:^13.19.0": - version: 13.24.0 - resolution: "globals@npm:13.24.0" - dependencies: - type-fest: ^0.20.2 - checksum: 56066ef058f6867c04ff203b8a44c15b038346a62efbc3060052a1016be9f56f4cf0b2cd45b74b22b81e521a889fc7786c73691b0549c2f3a6e825b3d394f43c - languageName: node - linkType: hard - -"globalthis@npm:^1.0.3": - version: 1.0.3 - resolution: "globalthis@npm:1.0.3" - dependencies: - define-properties: ^1.1.3 - checksum: fbd7d760dc464c886d0196166d92e5ffb4c84d0730846d6621a39fbbc068aeeb9c8d1421ad330e94b7bca4bb4ea092f5f21f3d36077812af5d098b4dc006c998 - languageName: node - linkType: hard - -"globby@npm:^11.0.1, globby@npm:^11.0.4, globby@npm:^11.1.0": - version: 11.1.0 - resolution: "globby@npm:11.1.0" - dependencies: - array-union: ^2.1.0 - dir-glob: ^3.0.1 - fast-glob: ^3.2.9 - ignore: ^5.2.0 - merge2: ^1.4.1 - slash: ^3.0.0 - checksum: b4be8885e0cfa018fc783792942d53926c35c50b3aefd3fdcfb9d22c627639dc26bd2327a40a0b74b074100ce95bb7187bfeae2f236856aa3de183af7a02aea6 - languageName: node - linkType: hard - -"globby@npm:^13.1.1": - version: 13.2.2 - resolution: "globby@npm:13.2.2" - dependencies: - dir-glob: ^3.0.1 - fast-glob: ^3.3.0 - ignore: ^5.2.4 - merge2: ^1.4.1 - slash: ^4.0.0 - checksum: f3d84ced58a901b4fcc29c846983108c426631fe47e94872868b65565495f7bee7b3defd68923bd480582771fd4bbe819217803a164a618ad76f1d22f666f41e - languageName: node - linkType: hard - -"gopd@npm:^1.0.1": - version: 1.0.1 - resolution: "gopd@npm:1.0.1" - dependencies: - get-intrinsic: ^1.1.3 - checksum: a5ccfb8806e0917a94e0b3de2af2ea4979c1da920bc381667c260e00e7cafdbe844e2cb9c5bcfef4e5412e8bf73bab837285bc35c7ba73aaaf0134d4583393a6 - languageName: node - linkType: hard - -"got@npm:^9.6.0": - version: 9.6.0 - resolution: "got@npm:9.6.0" - dependencies: - "@sindresorhus/is": ^0.14.0 - "@szmarczak/http-timer": ^1.1.2 - cacheable-request: ^6.0.0 - decompress-response: ^3.3.0 - duplexer3: ^0.1.4 - get-stream: ^4.1.0 - lowercase-keys: ^1.0.1 - mimic-response: ^1.0.1 - p-cancelable: ^1.0.0 - to-readable-stream: ^1.0.0 - url-parse-lax: ^3.0.0 - checksum: 941807bd9704bacf5eb401f0cc1212ffa1f67c6642f2d028fd75900471c221b1da2b8527f4553d2558f3faeda62ea1cf31665f8b002c6137f5de8732f07370b0 - languageName: node - linkType: hard - -"graceful-fs@npm:^4.1.2, graceful-fs@npm:^4.1.6, graceful-fs@npm:^4.2.0, graceful-fs@npm:^4.2.4, graceful-fs@npm:^4.2.6, graceful-fs@npm:^4.2.9": - version: 4.2.11 - resolution: "graceful-fs@npm:4.2.11" - checksum: ac85f94da92d8eb6b7f5a8b20ce65e43d66761c55ce85ac96df6865308390da45a8d3f0296dd3a663de65d30ba497bd46c696cc1e248c72b13d6d567138a4fc7 - languageName: node - linkType: hard - -"graphemer@npm:^1.4.0": - version: 1.4.0 - resolution: "graphemer@npm:1.4.0" - checksum: bab8f0be9b568857c7bec9fda95a89f87b783546d02951c40c33f84d05bb7da3fd10f863a9beb901463669b6583173a8c8cc6d6b306ea2b9b9d5d3d943c3a673 - languageName: node - linkType: hard - -"gray-matter@npm:^4.0.3": - version: 4.0.3 - resolution: "gray-matter@npm:4.0.3" - dependencies: - js-yaml: ^3.13.1 - kind-of: ^6.0.2 - section-matter: ^1.0.0 - strip-bom-string: ^1.0.0 - checksum: 37717bd424344487d655392251ce8d8878a1275ee087003e61208fba3bfd59cbb73a85b2159abf742ae95e23db04964813fdc33ae18b074208428b2528205222 - languageName: node - linkType: hard - -"gzip-size@npm:^6.0.0": - version: 6.0.0 - resolution: "gzip-size@npm:6.0.0" - dependencies: - duplexer: ^0.1.2 - checksum: 2df97f359696ad154fc171dcb55bc883fe6e833bca7a65e457b9358f3cb6312405ed70a8da24a77c1baac0639906cd52358dc0ce2ec1a937eaa631b934c94194 - languageName: node - linkType: hard - -"handle-thing@npm:^2.0.0": - version: 2.0.1 - resolution: "handle-thing@npm:2.0.1" - checksum: 68071f313062315cd9dce55710e9496873945f1dd425107007058fc1629f93002a7649fcc3e464281ce02c7e809a35f5925504ab8105d972cf649f1f47cb7d6c - languageName: node - linkType: hard - -"has-bigints@npm:^1.0.1, has-bigints@npm:^1.0.2": - version: 1.0.2 - resolution: "has-bigints@npm:1.0.2" - checksum: 390e31e7be7e5c6fe68b81babb73dfc35d413604d7ee5f56da101417027a4b4ce6a27e46eff97ad040c835b5d228676eae99a9b5c3bc0e23c8e81a49241ff45b - languageName: node - linkType: hard - -"has-flag@npm:^3.0.0": - version: 3.0.0 - resolution: "has-flag@npm:3.0.0" - checksum: 4a15638b454bf086c8148979aae044dd6e39d63904cd452d970374fa6a87623423da485dfb814e7be882e05c096a7ccf1ebd48e7e7501d0208d8384ff4dea73b - languageName: node - linkType: hard - -"has-flag@npm:^4.0.0": - version: 4.0.0 - resolution: "has-flag@npm:4.0.0" - checksum: 261a1357037ead75e338156b1f9452c016a37dcd3283a972a30d9e4a87441ba372c8b81f818cd0fbcd9c0354b4ae7e18b9e1afa1971164aef6d18c2b6095a8ad - languageName: node - linkType: hard - -"has-property-descriptors@npm:^1.0.0, has-property-descriptors@npm:^1.0.1, has-property-descriptors@npm:^1.0.2": - version: 1.0.2 - resolution: "has-property-descriptors@npm:1.0.2" - dependencies: - es-define-property: ^1.0.0 - checksum: fcbb246ea2838058be39887935231c6d5788babed499d0e9d0cc5737494c48aba4fe17ba1449e0d0fbbb1e36175442faa37f9c427ae357d6ccb1d895fbcd3de3 - languageName: node - linkType: hard - -"has-proto@npm:^1.0.1, has-proto@npm:^1.0.3": - version: 1.0.3 - resolution: "has-proto@npm:1.0.3" - checksum: fe7c3d50b33f50f3933a04413ed1f69441d21d2d2944f81036276d30635cad9279f6b43bc8f32036c31ebdfcf6e731150f46c1907ad90c669ffe9b066c3ba5c4 - languageName: node - linkType: hard - -"has-symbols@npm:^1.0.2, has-symbols@npm:^1.0.3": - version: 1.0.3 - resolution: "has-symbols@npm:1.0.3" - checksum: a054c40c631c0d5741a8285010a0777ea0c068f99ed43e5d6eb12972da223f8af553a455132fdb0801bdcfa0e0f443c0c03a68d8555aa529b3144b446c3f2410 - languageName: node - linkType: hard - -"has-tostringtag@npm:^1.0.0, has-tostringtag@npm:^1.0.1, has-tostringtag@npm:^1.0.2": - version: 1.0.2 - resolution: "has-tostringtag@npm:1.0.2" - dependencies: - has-symbols: ^1.0.3 - checksum: 999d60bb753ad714356b2c6c87b7fb74f32463b8426e159397da4bde5bca7e598ab1073f4d8d4deafac297f2eb311484cd177af242776bf05f0d11565680468d - languageName: node - linkType: hard - -"has-yarn@npm:^2.1.0": - version: 2.1.0 - resolution: "has-yarn@npm:2.1.0" - checksum: 5eb1d0bb8518103d7da24532bdbc7124ffc6d367b5d3c10840b508116f2f1bcbcf10fd3ba843ff6e2e991bdf9969fd862d42b2ed58aade88343326c950b7e7f7 - languageName: node - linkType: hard - -"hasown@npm:^2.0.0, hasown@npm:^2.0.1": - version: 2.0.1 - resolution: "hasown@npm:2.0.1" - dependencies: - function-bind: ^1.1.2 - checksum: 9081c382a4fe8a62639a8da5c7d3322b203c319147e48783763dd741863d9f2dcaa743574fe2a1283871c445d8ba99ea45d5fff384e5ad27ca9dd7a367d79de0 - languageName: node - linkType: hard - -"hast-to-hyperscript@npm:^9.0.0": - version: 9.0.1 - resolution: "hast-to-hyperscript@npm:9.0.1" - dependencies: - "@types/unist": ^2.0.3 - comma-separated-tokens: ^1.0.0 - property-information: ^5.3.0 - space-separated-tokens: ^1.0.0 - style-to-object: ^0.3.0 - unist-util-is: ^4.0.0 - web-namespaces: ^1.0.0 - checksum: de570d789853018fff2fd38fc096549b9814e366b298f60c90c159a57018230eefc44d46a246027b0e2426ed9e99f2e270050bc183d5bdfe4c9487c320b392cd - languageName: node - linkType: hard - -"hast-util-from-parse5@npm:^6.0.0": - version: 6.0.1 - resolution: "hast-util-from-parse5@npm:6.0.1" - dependencies: - "@types/parse5": ^5.0.0 - hastscript: ^6.0.0 - property-information: ^5.0.0 - vfile: ^4.0.0 - vfile-location: ^3.2.0 - web-namespaces: ^1.0.0 - checksum: 4daa78201468af7779161e7caa2513c329830778e0528481ab16b3e1bcef4b831f6285b526aacdddbee802f3bd9d64df55f80f010591ea1916da535e3a923b83 - languageName: node - linkType: hard - -"hast-util-parse-selector@npm:^2.0.0": - version: 2.2.5 - resolution: "hast-util-parse-selector@npm:2.2.5" - checksum: 22ee4afbd11754562144cb3c4f3ec52524dafba4d90ee52512902d17cf11066d83b38f7bdf6ca571bbc2541f07ba30db0d234657b6ecb8ca4631587466459605 - languageName: node - linkType: hard - -"hast-util-raw@npm:6.0.1": - version: 6.0.1 - resolution: "hast-util-raw@npm:6.0.1" - dependencies: - "@types/hast": ^2.0.0 - hast-util-from-parse5: ^6.0.0 - hast-util-to-parse5: ^6.0.0 - html-void-elements: ^1.0.0 - parse5: ^6.0.0 - unist-util-position: ^3.0.0 - vfile: ^4.0.0 - web-namespaces: ^1.0.0 - xtend: ^4.0.0 - zwitch: ^1.0.0 - checksum: f6d960644f9fbbe0b92d0227b20a24d659cce021d5f9fd218e077154931b4524ee920217b7fd5a45ec2736ec1dee53de9209fe449f6f89454c01d225ff0e7851 - languageName: node - linkType: hard - -"hast-util-to-parse5@npm:^6.0.0": - version: 6.0.0 - resolution: "hast-util-to-parse5@npm:6.0.0" - dependencies: - hast-to-hyperscript: ^9.0.0 - property-information: ^5.0.0 - web-namespaces: ^1.0.0 - xtend: ^4.0.0 - zwitch: ^1.0.0 - checksum: 91a36244e37df1d63c8b7e865ab0c0a25bb7396155602be005cf71d95c348e709568f80e0f891681a3711d733ad896e70642dc41a05b574eddf2e07d285408a8 - languageName: node - linkType: hard - -"hastscript@npm:^6.0.0": - version: 6.0.0 - resolution: "hastscript@npm:6.0.0" - dependencies: - "@types/hast": ^2.0.0 - comma-separated-tokens: ^1.0.0 - hast-util-parse-selector: ^2.0.0 - property-information: ^5.0.0 - space-separated-tokens: ^1.0.0 - checksum: 5e50b85af0d2cb7c17979cb1ddca75d6b96b53019dd999b39e7833192c9004201c3cee6445065620ea05d0087d9ae147a4844e582d64868be5bc6b0232dfe52d - languageName: node - linkType: hard - -"he@npm:^1.2.0": - version: 1.2.0 - resolution: "he@npm:1.2.0" - bin: - he: bin/he - checksum: 3d4d6babccccd79c5c5a3f929a68af33360d6445587d628087f39a965079d84f18ce9c3d3f917ee1e3978916fc833bb8b29377c3b403f919426f91bc6965e7a7 - languageName: node - linkType: hard - -"heap@npm:^0.2.6": - version: 0.2.7 - resolution: "heap@npm:0.2.7" - checksum: b0f3963a799e02173f994c452921a777f2b895b710119df999736bfed7477235c2860c423d9aea18a9f3b3d065cb1114d605c208cfcb8d0ac550f97ec5d28cb0 - languageName: node - linkType: hard - -"history@npm:^4.9.0": - version: 4.10.1 - resolution: "history@npm:4.10.1" - dependencies: - "@babel/runtime": ^7.1.2 - loose-envify: ^1.2.0 - resolve-pathname: ^3.0.0 - tiny-invariant: ^1.0.2 - tiny-warning: ^1.0.0 - value-equal: ^1.0.1 - checksum: addd84bc4683929bae4400419b5af132ff4e4e9b311a0d4e224579ea8e184a6b80d7f72c55927e4fa117f69076a9e47ce082d8d0b422f1a9ddac7991490ca1d0 - languageName: node - linkType: hard - -"hoist-non-react-statics@npm:^3.1.0": - version: 3.3.2 - resolution: "hoist-non-react-statics@npm:3.3.2" - dependencies: - react-is: ^16.7.0 - checksum: b1538270429b13901ee586aa44f4cc3ecd8831c061d06cb8322e50ea17b3f5ce4d0e2e66394761e6c8e152cd8c34fb3b4b690116c6ce2bd45b18c746516cb9e8 - languageName: node - linkType: hard - -"hpack.js@npm:^2.1.6": - version: 2.1.6 - resolution: "hpack.js@npm:2.1.6" - dependencies: - inherits: ^2.0.1 - obuf: ^1.0.0 - readable-stream: ^2.0.1 - wbuf: ^1.1.0 - checksum: 2de144115197967ad6eeee33faf41096c6ba87078703c5cb011632dcfbffeb45784569e0cf02c317bd79c48375597c8ec88c30fff5bb0b023e8f654fb6e9c06e - languageName: node - linkType: hard - -"html-encoding-sniffer@npm:^4.0.0": - version: 4.0.0 - resolution: "html-encoding-sniffer@npm:4.0.0" - dependencies: - whatwg-encoding: ^3.1.1 - checksum: 3339b71dab2723f3159a56acf541ae90a408ce2d11169f00fe7e0c4663d31d6398c8a4408b504b4eec157444e47b084df09b3cb039c816660f0dd04846b8957d - languageName: node - linkType: hard - -"html-entities@npm:^2.3.2": - version: 2.5.2 - resolution: "html-entities@npm:2.5.2" - checksum: b23f4a07d33d49ade1994069af4e13d31650e3fb62621e92ae10ecdf01d1a98065c78fd20fdc92b4c7881612210b37c275f2c9fba9777650ab0d6f2ceb3b99b6 - languageName: node - linkType: hard - -"html-escaper@npm:^2.0.2": - version: 2.0.2 - resolution: "html-escaper@npm:2.0.2" - checksum: d2df2da3ad40ca9ee3a39c5cc6475ef67c8f83c234475f24d8e9ce0dc80a2c82df8e1d6fa78ddd1e9022a586ea1bd247a615e80a5cd9273d90111ddda7d9e974 - languageName: node - linkType: hard - -"html-minifier-terser@npm:^6.0.2, html-minifier-terser@npm:^6.1.0": - version: 6.1.0 - resolution: "html-minifier-terser@npm:6.1.0" - dependencies: - camel-case: ^4.1.2 - clean-css: ^5.2.2 - commander: ^8.3.0 - he: ^1.2.0 - param-case: ^3.0.4 - relateurl: ^0.2.7 - terser: ^5.10.0 - bin: - html-minifier-terser: cli.js - checksum: ac52c14006476f773204c198b64838477859dc2879490040efab8979c0207424da55d59df7348153f412efa45a0840a1ca3c757bf14767d23a15e3e389d37a93 - languageName: node - linkType: hard - -"html-tags@npm:^3.2.0": - version: 3.3.1 - resolution: "html-tags@npm:3.3.1" - checksum: b4ef1d5a76b678e43cce46e3783d563607b1d550cab30b4f511211564574770aa8c658a400b100e588bc60b8234e59b35ff72c7851cc28f3b5403b13a2c6cbce - languageName: node - linkType: hard - -"html-void-elements@npm:^1.0.0": - version: 1.0.5 - resolution: "html-void-elements@npm:1.0.5" - checksum: 1a56f4f6cfbeb994c21701ff72b4b7f556fe784a70e5e554d1566ff775af83b91ea93f10664f039a67802d9f7b40d4a7f1ed20312bab47bd88d89bd792ea84ca - languageName: node - linkType: hard - -"html-webpack-plugin@npm:^5.5.0": - version: 5.6.0 - resolution: "html-webpack-plugin@npm:5.6.0" - dependencies: - "@types/html-minifier-terser": ^6.0.0 - html-minifier-terser: ^6.0.2 - lodash: ^4.17.21 - pretty-error: ^4.0.0 - tapable: ^2.0.0 - peerDependencies: - "@rspack/core": 0.x || 1.x - webpack: ^5.20.0 - peerDependenciesMeta: - "@rspack/core": - optional: true - webpack: - optional: true - checksum: 32a6e41da538e798fd0be476637d7611a5e8a98a3508f031996e9eb27804dcdc282cb01f847cf5d066f21b49cfb8e21627fcf977ffd0c9bea81cf80e5a65070d - languageName: node - linkType: hard - -"htmlparser2@npm:^6.1.0": - version: 6.1.0 - resolution: "htmlparser2@npm:6.1.0" - dependencies: - domelementtype: ^2.0.1 - domhandler: ^4.0.0 - domutils: ^2.5.2 - entities: ^2.0.0 - checksum: 81a7b3d9c3bb9acb568a02fc9b1b81ffbfa55eae7f1c41ae0bf840006d1dbf54cb3aa245b2553e2c94db674840a9f0fdad7027c9a9d01a062065314039058c4e - languageName: node - linkType: hard - -"htmlparser2@npm:^8.0.1": - version: 8.0.2 - resolution: "htmlparser2@npm:8.0.2" - dependencies: - domelementtype: ^2.3.0 - domhandler: ^5.0.3 - domutils: ^3.0.1 - entities: ^4.4.0 - checksum: 29167a0f9282f181da8a6d0311b76820c8a59bc9e3c87009e21968264c2987d2723d6fde5a964d4b7b6cba663fca96ffb373c06d8223a85f52a6089ced942700 - languageName: node - linkType: hard - -"http-cache-semantics@npm:^4.0.0, http-cache-semantics@npm:^4.1.1": - version: 4.1.1 - resolution: "http-cache-semantics@npm:4.1.1" - checksum: 83ac0bc60b17a3a36f9953e7be55e5c8f41acc61b22583060e8dedc9dd5e3607c823a88d0926f9150e571f90946835c7fe150732801010845c72cd8bbff1a236 - languageName: node - linkType: hard - -"http-deceiver@npm:^1.2.7": - version: 1.2.7 - resolution: "http-deceiver@npm:1.2.7" - checksum: 64d7d1ae3a6933eb0e9a94e6f27be4af45a53a96c3c34e84ff57113787105a89fff9d1c3df263ef63add823df019b0e8f52f7121e32393bb5ce9a713bf100b41 - languageName: node - linkType: hard - -"http-errors@npm:2.0.0": - version: 2.0.0 - resolution: "http-errors@npm:2.0.0" - dependencies: - depd: 2.0.0 - inherits: 2.0.4 - setprototypeof: 1.2.0 - statuses: 2.0.1 - toidentifier: 1.0.1 - checksum: 9b0a3782665c52ce9dc658a0d1560bcb0214ba5699e4ea15aefb2a496e2ca83db03ebc42e1cce4ac1f413e4e0d2d736a3fd755772c556a9a06853ba2a0b7d920 - languageName: node - linkType: hard - -"http-errors@npm:~1.6.2": - version: 1.6.3 - resolution: "http-errors@npm:1.6.3" - dependencies: - depd: ~1.1.2 - inherits: 2.0.3 - setprototypeof: 1.1.0 - statuses: ">= 1.4.0 < 2" - checksum: a9654ee027e3d5de305a56db1d1461f25709ac23267c6dc28cdab8323e3f96caa58a9a6a5e93ac15d7285cee0c2f019378c3ada9026e7fe19c872d695f27de7c - languageName: node - linkType: hard - -"http-parser-js@npm:>=0.5.1": - version: 0.5.8 - resolution: "http-parser-js@npm:0.5.8" - checksum: 6bbdf2429858e8cf13c62375b0bfb6dc3955ca0f32e58237488bc86cd2378f31d31785fd3ac4ce93f1c74e0189cf8823c91f5cb061696214fd368d2452dc871d - languageName: node - linkType: hard - -"http-proxy-agent@npm:^7.0.0": - version: 7.0.2 - resolution: "http-proxy-agent@npm:7.0.2" - dependencies: - agent-base: ^7.1.0 - debug: ^4.3.4 - checksum: 670858c8f8f3146db5889e1fa117630910101db601fff7d5a8aa637da0abedf68c899f03d3451cac2f83bcc4c3d2dabf339b3aa00ff8080571cceb02c3ce02f3 - languageName: node - linkType: hard - -"http-proxy-middleware@npm:^2.0.3": - version: 2.0.6 - resolution: "http-proxy-middleware@npm:2.0.6" - dependencies: - "@types/http-proxy": ^1.17.8 - http-proxy: ^1.18.1 - is-glob: ^4.0.1 - is-plain-obj: ^3.0.0 - micromatch: ^4.0.2 - peerDependencies: - "@types/express": ^4.17.13 - peerDependenciesMeta: - "@types/express": - optional: true - checksum: 2ee85bc878afa6cbf34491e972ece0f5be0a3e5c98a60850cf40d2a9a5356e1fc57aab6cff33c1fc37691b0121c3a42602d2b1956c52577e87a5b77b62ae1c3a - languageName: node - linkType: hard - -"http-proxy@npm:^1.18.1": - version: 1.18.1 - resolution: "http-proxy@npm:1.18.1" - dependencies: - eventemitter3: ^4.0.0 - follow-redirects: ^1.0.0 - requires-port: ^1.0.0 - checksum: f5bd96bf83e0b1e4226633dbb51f8b056c3e6321917df402deacec31dd7fe433914fc7a2c1831cf7ae21e69c90b3a669b8f434723e9e8b71fd68afe30737b6a5 - languageName: node - linkType: hard - -"https-proxy-agent@npm:^7.0.1, https-proxy-agent@npm:^7.0.2": - version: 7.0.4 - resolution: "https-proxy-agent@npm:7.0.4" - dependencies: - agent-base: ^7.0.2 - debug: 4 - checksum: daaab857a967a2519ddc724f91edbbd388d766ff141b9025b629f92b9408fc83cee8a27e11a907aede392938e9c398e240d643e178408a59e4073539cde8cfe9 - languageName: node - linkType: hard - -"human-signals@npm:^2.1.0": - version: 2.1.0 - resolution: "human-signals@npm:2.1.0" - checksum: b87fd89fce72391625271454e70f67fe405277415b48bcc0117ca73d31fa23a4241787afdc8d67f5a116cf37258c052f59ea82daffa72364d61351423848e3b8 - languageName: node - linkType: hard - -"iconv-lite@npm:0.4.24": - version: 0.4.24 - resolution: "iconv-lite@npm:0.4.24" - dependencies: - safer-buffer: ">= 2.1.2 < 3" - checksum: bd9f120f5a5b306f0bc0b9ae1edeb1577161503f5f8252a20f1a9e56ef8775c9959fd01c55f2d3a39d9a8abaf3e30c1abeb1895f367dcbbe0a8fd1c9ca01c4f6 - languageName: node - linkType: hard - -"iconv-lite@npm:0.6, iconv-lite@npm:0.6.3, iconv-lite@npm:^0.6.2": - version: 0.6.3 - resolution: "iconv-lite@npm:0.6.3" - dependencies: - safer-buffer: ">= 2.1.2 < 3.0.0" - checksum: 3f60d47a5c8fc3313317edfd29a00a692cc87a19cac0159e2ce711d0ebc9019064108323b5e493625e25594f11c6236647d8e256fbe7a58f4a3b33b89e6d30bf - languageName: node - linkType: hard - -"icss-utils@npm:^5.0.0, icss-utils@npm:^5.1.0": - version: 5.1.0 - resolution: "icss-utils@npm:5.1.0" - peerDependencies: - postcss: ^8.1.0 - checksum: 5c324d283552b1269cfc13a503aaaa172a280f914e5b81544f3803bc6f06a3b585fb79f66f7c771a2c052db7982c18bf92d001e3b47282e3abbbb4c4cc488d68 - languageName: node - linkType: hard - -"ignore@npm:^5.2.0, ignore@npm:^5.2.4": - version: 5.3.1 - resolution: "ignore@npm:5.3.1" - checksum: 71d7bb4c1dbe020f915fd881108cbe85a0db3d636a0ea3ba911393c53946711d13a9b1143c7e70db06d571a5822c0a324a6bcde5c9904e7ca5047f01f1bf8cd3 - languageName: node - linkType: hard - -"image-size@npm:^1.0.1": - version: 1.1.1 - resolution: "image-size@npm:1.1.1" - dependencies: - queue: 6.0.2 - bin: - image-size: bin/image-size.js - checksum: 23b3a515dded89e7f967d52b885b430d6a5a903da954fce703130bfb6069d738d80e6588efd29acfaf5b6933424a56535aa7bf06867e4ebd0250c2ee51f19a4a - languageName: node - linkType: hard - -"immer@npm:^9.0.7": - version: 9.0.21 - resolution: "immer@npm:9.0.21" - checksum: 70e3c274165995352f6936695f0ef4723c52c92c92dd0e9afdfe008175af39fa28e76aafb3a2ca9d57d1fb8f796efc4dd1e1cc36f18d33fa5b74f3dfb0375432 - languageName: node - linkType: hard - -"import-fresh@npm:^3.1.0, import-fresh@npm:^3.2.1, import-fresh@npm:^3.3.0": - version: 3.3.0 - resolution: "import-fresh@npm:3.3.0" - dependencies: - parent-module: ^1.0.0 - resolve-from: ^4.0.0 - checksum: 2cacfad06e652b1edc50be650f7ec3be08c5e5a6f6d12d035c440a42a8cc028e60a5b99ca08a77ab4d6b1346da7d971915828f33cdab730d3d42f08242d09baa - languageName: node - linkType: hard - -"import-lazy@npm:^2.1.0": - version: 2.1.0 - resolution: "import-lazy@npm:2.1.0" - checksum: 05294f3b9dd4971d3a996f0d2f176410fb6745d491d6e73376429189f5c1c3d290548116b2960a7cf3e89c20cdf11431739d1d2d8c54b84061980795010e803a - languageName: node - linkType: hard - -"imurmurhash@npm:^0.1.4": - version: 0.1.4 - resolution: "imurmurhash@npm:0.1.4" - checksum: 7cae75c8cd9a50f57dadd77482359f659eaebac0319dd9368bcd1714f55e65badd6929ca58569da2b6494ef13fdd5598cd700b1eba23f8b79c5f19d195a3ecf7 - languageName: node - linkType: hard - -"indent-string@npm:^4.0.0": - version: 4.0.0 - resolution: "indent-string@npm:4.0.0" - checksum: 824cfb9929d031dabf059bebfe08cf3137365e112019086ed3dcff6a0a7b698cb80cf67ccccde0e25b9e2d7527aa6cc1fed1ac490c752162496caba3e6699612 - languageName: node - linkType: hard - -"infima@npm:0.2.0-alpha.43": - version: 0.2.0-alpha.43 - resolution: "infima@npm:0.2.0-alpha.43" - checksum: fc5f79240e940eddd750439511767092ccb4051e5e91d253ec7630a9e7ce691812da3aa0f05e46b4c0a95dbfadeae5714fd0073f8d2df12e5aaff0697a1d6aa2 - languageName: node - linkType: hard - -"inflight@npm:^1.0.4": - version: 1.0.6 - resolution: "inflight@npm:1.0.6" - dependencies: - once: ^1.3.0 - wrappy: 1 - checksum: f4f76aa072ce19fae87ce1ef7d221e709afb59d445e05d47fba710e85470923a75de35bfae47da6de1b18afc3ce83d70facf44cfb0aff89f0a3f45c0a0244dfd - languageName: node - linkType: hard - -"inherits@npm:2, inherits@npm:2.0.4, inherits@npm:^2.0.0, inherits@npm:^2.0.1, inherits@npm:^2.0.3, inherits@npm:~2.0.3": - version: 2.0.4 - resolution: "inherits@npm:2.0.4" - checksum: 4a48a733847879d6cf6691860a6b1e3f0f4754176e4d71494c41f3475553768b10f84b5ce1d40fbd0e34e6bfbb864ee35858ad4dd2cf31e02fc4a154b724d7f1 - languageName: node - linkType: hard - -"inherits@npm:2.0.3": - version: 2.0.3 - resolution: "inherits@npm:2.0.3" - checksum: 78cb8d7d850d20a5e9a7f3620db31483aa00ad5f722ce03a55b110e5a723539b3716a3b463e2b96ce3fe286f33afc7c131fa2f91407528ba80cea98a7545d4c0 - languageName: node - linkType: hard - -"ini@npm:2.0.0": - version: 2.0.0 - resolution: "ini@npm:2.0.0" - checksum: e7aadc5fb2e4aefc666d74ee2160c073995a4061556b1b5b4241ecb19ad609243b9cceafe91bae49c219519394bbd31512516cb22a3b1ca6e66d869e0447e84e - languageName: node - linkType: hard - -"ini@npm:^1.3.5, ini@npm:~1.3.0": - version: 1.3.8 - resolution: "ini@npm:1.3.8" - checksum: dfd98b0ca3a4fc1e323e38a6c8eb8936e31a97a918d3b377649ea15bdb15d481207a0dda1021efbd86b464cae29a0d33c1d7dcaf6c5672bee17fa849bc50a1b3 - languageName: node - linkType: hard - -"inline-style-parser@npm:0.1.1": - version: 0.1.1 - resolution: "inline-style-parser@npm:0.1.1" - checksum: 5d545056a3e1f2bf864c928a886a0e1656a3517127d36917b973de581bd54adc91b4bf1febcb0da054f204b4934763f1a4e09308b4d55002327cf1d48ac5d966 - languageName: node - linkType: hard - -"internal-slot@npm:^1.0.5, internal-slot@npm:^1.0.7": - version: 1.0.7 - resolution: "internal-slot@npm:1.0.7" - dependencies: - es-errors: ^1.3.0 - hasown: ^2.0.0 - side-channel: ^1.0.4 - checksum: cadc5eea5d7d9bc2342e93aae9f31f04c196afebb11bde97448327049f492cd7081e18623ae71388aac9cd237b692ca3a105be9c68ac39c1dec679d7409e33eb - languageName: node - linkType: hard - -"internmap@npm:1 - 2": - version: 2.0.3 - resolution: "internmap@npm:2.0.3" - checksum: 7ca41ec6aba8f0072fc32fa8a023450a9f44503e2d8e403583c55714b25efd6390c38a87161ec456bf42d7bc83aab62eb28f5aef34876b1ac4e60693d5e1d241 - languageName: node - linkType: hard - -"interpret@npm:^1.0.0": - version: 1.4.0 - resolution: "interpret@npm:1.4.0" - checksum: 2e5f51268b5941e4a17e4ef0575bc91ed0ab5f8515e3cf77486f7c14d13f3010df9c0959f37063dcc96e78d12dc6b0bb1b9e111cdfe69771f4656d2993d36155 - languageName: node - linkType: hard - -"invariant@npm:^2.2.4": - version: 2.2.4 - resolution: "invariant@npm:2.2.4" - dependencies: - loose-envify: ^1.0.0 - checksum: cc3182d793aad82a8d1f0af697b462939cb46066ec48bbf1707c150ad5fad6406137e91a262022c269702e01621f35ef60269f6c0d7fd178487959809acdfb14 - languageName: node - linkType: hard - -"ip-address@npm:^9.0.5": - version: 9.0.5 - resolution: "ip-address@npm:9.0.5" - dependencies: - jsbn: 1.1.0 - sprintf-js: ^1.1.3 - checksum: aa15f12cfd0ef5e38349744e3654bae649a34c3b10c77a674a167e99925d1549486c5b14730eebce9fea26f6db9d5e42097b00aa4f9f612e68c79121c71652dc - languageName: node - linkType: hard - -"ipaddr.js@npm:1.9.1": - version: 1.9.1 - resolution: "ipaddr.js@npm:1.9.1" - checksum: f88d3825981486f5a1942414c8d77dd6674dd71c065adcfa46f578d677edcb99fda25af42675cb59db492fdf427b34a5abfcde3982da11a8fd83a500b41cfe77 - languageName: node - linkType: hard - -"ipaddr.js@npm:^2.0.1": - version: 2.1.0 - resolution: "ipaddr.js@npm:2.1.0" - checksum: 807a054f2bd720c4d97ee479d6c9e865c233bea21f139fb8dabd5a35c4226d2621c42e07b4ad94ff3f82add926a607d8d9d37c625ad0319f0e08f9f2bd1968e2 - languageName: node - linkType: hard - -"is-alphabetical@npm:1.0.4, is-alphabetical@npm:^1.0.0": - version: 1.0.4 - resolution: "is-alphabetical@npm:1.0.4" - checksum: 6508cce44fd348f06705d377b260974f4ce68c74000e7da4045f0d919e568226dc3ce9685c5a2af272195384df6930f748ce9213fc9f399b5d31b362c66312cb - languageName: node - linkType: hard - -"is-alphanumerical@npm:^1.0.0": - version: 1.0.4 - resolution: "is-alphanumerical@npm:1.0.4" - dependencies: - is-alphabetical: ^1.0.0 - is-decimal: ^1.0.0 - checksum: e2e491acc16fcf5b363f7c726f666a9538dba0a043665740feb45bba1652457a73441e7c5179c6768a638ed396db3437e9905f403644ec7c468fb41f4813d03f - languageName: node - linkType: hard - -"is-array-buffer@npm:^3.0.4": - version: 3.0.4 - resolution: "is-array-buffer@npm:3.0.4" - dependencies: - call-bind: ^1.0.2 - get-intrinsic: ^1.2.1 - checksum: e4e3e6ef0ff2239e75371d221f74bc3c26a03564a22efb39f6bb02609b598917ddeecef4e8c877df2a25888f247a98198959842a5e73236bc7f22cabdf6351a7 - languageName: node - linkType: hard - -"is-arrayish@npm:^0.2.1": - version: 0.2.1 - resolution: "is-arrayish@npm:0.2.1" - checksum: eef4417e3c10e60e2c810b6084942b3ead455af16c4509959a27e490e7aee87cfb3f38e01bbde92220b528a0ee1a18d52b787e1458ee86174d8c7f0e58cd488f - languageName: node - linkType: hard - -"is-async-function@npm:^2.0.0": - version: 2.0.0 - resolution: "is-async-function@npm:2.0.0" - dependencies: - has-tostringtag: ^1.0.0 - checksum: e3471d95e6c014bf37cad8a93f2f4b6aac962178e0a5041e8903147166964fdc1c5c1d2ef87e86d77322c370ca18f2ea004fa7420581fa747bcaf7c223069dbd - languageName: node - linkType: hard - -"is-bigint@npm:^1.0.1": - version: 1.0.4 - resolution: "is-bigint@npm:1.0.4" - dependencies: - has-bigints: ^1.0.1 - checksum: c56edfe09b1154f8668e53ebe8252b6f185ee852a50f9b41e8d921cb2bed425652049fbe438723f6cb48a63ca1aa051e948e7e401e093477c99c84eba244f666 - languageName: node - linkType: hard - -"is-binary-path@npm:~2.1.0": - version: 2.1.0 - resolution: "is-binary-path@npm:2.1.0" - dependencies: - binary-extensions: ^2.0.0 - checksum: 84192eb88cff70d320426f35ecd63c3d6d495da9d805b19bc65b518984b7c0760280e57dbf119b7e9be6b161784a5a673ab2c6abe83abb5198a432232ad5b35c - languageName: node - linkType: hard - -"is-boolean-object@npm:^1.1.0": - version: 1.1.2 - resolution: "is-boolean-object@npm:1.1.2" - dependencies: - call-bind: ^1.0.2 - has-tostringtag: ^1.0.0 - checksum: c03b23dbaacadc18940defb12c1c0e3aaece7553ef58b162a0f6bba0c2a7e1551b59f365b91e00d2dbac0522392d576ef322628cb1d036a0fe51eb466db67222 - languageName: node - linkType: hard - -"is-buffer@npm:^2.0.0": - version: 2.0.5 - resolution: "is-buffer@npm:2.0.5" - checksum: 764c9ad8b523a9f5a32af29bdf772b08eb48c04d2ad0a7240916ac2688c983bf5f8504bf25b35e66240edeb9d9085461f9b5dae1f3d2861c6b06a65fe983de42 - languageName: node - linkType: hard - -"is-callable@npm:^1.1.3, is-callable@npm:^1.1.4, is-callable@npm:^1.2.7": - version: 1.2.7 - resolution: "is-callable@npm:1.2.7" - checksum: 61fd57d03b0d984e2ed3720fb1c7a897827ea174bd44402878e059542ea8c4aeedee0ea0985998aa5cc2736b2fa6e271c08587addb5b3959ac52cf665173d1ac - languageName: node - linkType: hard - -"is-ci@npm:^2.0.0": - version: 2.0.0 - resolution: "is-ci@npm:2.0.0" - dependencies: - ci-info: ^2.0.0 - bin: - is-ci: bin.js - checksum: 77b869057510f3efa439bbb36e9be429d53b3f51abd4776eeea79ab3b221337fe1753d1e50058a9e2c650d38246108beffb15ccfd443929d77748d8c0cc90144 - languageName: node - linkType: hard - -"is-core-module@npm:^2.13.0, is-core-module@npm:^2.13.1": - version: 2.13.1 - resolution: "is-core-module@npm:2.13.1" - dependencies: - hasown: ^2.0.0 - checksum: 256559ee8a9488af90e4bad16f5583c6d59e92f0742e9e8bb4331e758521ee86b810b93bae44f390766ffbc518a0488b18d9dab7da9a5ff997d499efc9403f7c - languageName: node - linkType: hard - -"is-date-object@npm:^1.0.1, is-date-object@npm:^1.0.5": - version: 1.0.5 - resolution: "is-date-object@npm:1.0.5" - dependencies: - has-tostringtag: ^1.0.0 - checksum: baa9077cdf15eb7b58c79398604ca57379b2fc4cf9aa7a9b9e295278648f628c9b201400c01c5e0f7afae56507d741185730307cbe7cad3b9f90a77e5ee342fc - languageName: node - linkType: hard - -"is-decimal@npm:^1.0.0": - version: 1.0.4 - resolution: "is-decimal@npm:1.0.4" - checksum: ed483a387517856dc395c68403a10201fddcc1b63dc56513fbe2fe86ab38766120090ecdbfed89223d84ca8b1cd28b0641b93cb6597b6e8f4c097a7c24e3fb96 - languageName: node - linkType: hard - -"is-docker@npm:^2.0.0, is-docker@npm:^2.1.1": - version: 2.2.1 - resolution: "is-docker@npm:2.2.1" - bin: - is-docker: cli.js - checksum: 3fef7ddbf0be25958e8991ad941901bf5922ab2753c46980b60b05c1bf9c9c2402d35e6dc32e4380b980ef5e1970a5d9d5e5aa2e02d77727c3b6b5e918474c56 - languageName: node - linkType: hard - -"is-extendable@npm:^0.1.0": - version: 0.1.1 - resolution: "is-extendable@npm:0.1.1" - checksum: 3875571d20a7563772ecc7a5f36cb03167e9be31ad259041b4a8f73f33f885441f778cee1f1fe0085eb4bc71679b9d8c923690003a36a6a5fdf8023e6e3f0672 - languageName: node - linkType: hard - -"is-extglob@npm:^2.1.1": - version: 2.1.1 - resolution: "is-extglob@npm:2.1.1" - checksum: df033653d06d0eb567461e58a7a8c9f940bd8c22274b94bf7671ab36df5719791aae15eef6d83bbb5e23283967f2f984b8914559d4449efda578c775c4be6f85 - languageName: node - linkType: hard - -"is-finalizationregistry@npm:^1.0.2": - version: 1.0.2 - resolution: "is-finalizationregistry@npm:1.0.2" - dependencies: - call-bind: ^1.0.2 - checksum: 4f243a8e06228cd45bdab8608d2cb7abfc20f6f0189c8ac21ea8d603f1f196eabd531ce0bb8e08cbab047e9845ef2c191a3761c9a17ad5cabf8b35499c4ad35d - languageName: node - linkType: hard - -"is-fullwidth-code-point@npm:^3.0.0": - version: 3.0.0 - resolution: "is-fullwidth-code-point@npm:3.0.0" - checksum: 44a30c29457c7fb8f00297bce733f0a64cd22eca270f83e58c105e0d015e45c019491a4ab2faef91ab51d4738c670daff901c799f6a700e27f7314029e99e348 - languageName: node - linkType: hard - -"is-generator-function@npm:^1.0.10": - version: 1.0.10 - resolution: "is-generator-function@npm:1.0.10" - dependencies: - has-tostringtag: ^1.0.0 - checksum: d54644e7dbaccef15ceb1e5d91d680eb5068c9ee9f9eb0a9e04173eb5542c9b51b5ab52c5537f5703e48d5fddfd376817c1ca07a84a407b7115b769d4bdde72b - languageName: node - linkType: hard - -"is-glob@npm:^4.0.0, is-glob@npm:^4.0.1, is-glob@npm:^4.0.3, is-glob@npm:~4.0.1": - version: 4.0.3 - resolution: "is-glob@npm:4.0.3" - dependencies: - is-extglob: ^2.1.1 - checksum: d381c1319fcb69d341cc6e6c7cd588e17cd94722d9a32dbd60660b993c4fb7d0f19438674e68dfec686d09b7c73139c9166b47597f846af387450224a8101ab4 - languageName: node - linkType: hard - -"is-hexadecimal@npm:^1.0.0": - version: 1.0.4 - resolution: "is-hexadecimal@npm:1.0.4" - checksum: a452e047587b6069332d83130f54d30da4faf2f2ebaa2ce6d073c27b5703d030d58ed9e0b729c8e4e5b52c6f1dab26781bb77b7bc6c7805f14f320e328ff8cd5 - languageName: node - linkType: hard - -"is-installed-globally@npm:^0.4.0": - version: 0.4.0 - resolution: "is-installed-globally@npm:0.4.0" - dependencies: - global-dirs: ^3.0.0 - is-path-inside: ^3.0.2 - checksum: 3359840d5982d22e9b350034237b2cda2a12bac1b48a721912e1ab8e0631dd07d45a2797a120b7b87552759a65ba03e819f1bd63f2d7ab8657ec0b44ee0bf399 - languageName: node - linkType: hard - -"is-lambda@npm:^1.0.1": - version: 1.0.1 - resolution: "is-lambda@npm:1.0.1" - checksum: 93a32f01940220532e5948538699ad610d5924ac86093fcee83022252b363eb0cc99ba53ab084a04e4fb62bf7b5731f55496257a4c38adf87af9c4d352c71c35 - languageName: node - linkType: hard - -"is-map@npm:^2.0.1": - version: 2.0.2 - resolution: "is-map@npm:2.0.2" - checksum: ace3d0ecd667bbdefdb1852de601268f67f2db725624b1958f279316e13fecb8fa7df91fd60f690d7417b4ec180712f5a7ee967008e27c65cfd475cc84337728 - languageName: node - linkType: hard - -"is-negative-zero@npm:^2.0.3": - version: 2.0.3 - resolution: "is-negative-zero@npm:2.0.3" - checksum: c1e6b23d2070c0539d7b36022d5a94407132411d01aba39ec549af824231f3804b1aea90b5e4e58e807a65d23ceb538ed6e355ce76b267bdd86edb757ffcbdcd - languageName: node - linkType: hard - -"is-npm@npm:^5.0.0": - version: 5.0.0 - resolution: "is-npm@npm:5.0.0" - checksum: 9baff02b0c69a3d3c79b162cb2f9e67fb40ef6d172c16601b2e2471c21e9a4fa1fc9885a308d7bc6f3a3cd2a324c27fa0bf284c133c3349bb22571ab70d041cc - languageName: node - linkType: hard - -"is-number-object@npm:^1.0.4": - version: 1.0.7 - resolution: "is-number-object@npm:1.0.7" - dependencies: - has-tostringtag: ^1.0.0 - checksum: d1e8d01bb0a7134c74649c4e62da0c6118a0bfc6771ea3c560914d52a627873e6920dd0fd0ebc0e12ad2ff4687eac4c308f7e80320b973b2c8a2c8f97a7524f7 - languageName: node - linkType: hard - -"is-number@npm:^7.0.0": - version: 7.0.0 - resolution: "is-number@npm:7.0.0" - checksum: 456ac6f8e0f3111ed34668a624e45315201dff921e5ac181f8ec24923b99e9f32ca1a194912dc79d539c97d33dba17dc635202ff0b2cf98326f608323276d27a - languageName: node - linkType: hard - -"is-obj@npm:^1.0.1": - version: 1.0.1 - resolution: "is-obj@npm:1.0.1" - checksum: 3ccf0efdea12951e0b9c784e2b00e77e87b2f8bd30b42a498548a8afcc11b3287342a2030c308e473e93a7a19c9ea7854c99a8832a476591c727df2a9c79796c - languageName: node - linkType: hard - -"is-obj@npm:^2.0.0": - version: 2.0.0 - resolution: "is-obj@npm:2.0.0" - checksum: c9916ac8f4621962a42f5e80e7ffdb1d79a3fab7456ceaeea394cd9e0858d04f985a9ace45be44433bf605673c8be8810540fe4cc7f4266fc7526ced95af5a08 - languageName: node - linkType: hard - -"is-path-cwd@npm:^2.2.0": - version: 2.2.0 - resolution: "is-path-cwd@npm:2.2.0" - checksum: 46a840921bb8cc0dc7b5b423a14220e7db338072a4495743a8230533ce78812dc152548c86f4b828411fe98c5451959f07cf841c6a19f611e46600bd699e8048 - languageName: node - linkType: hard - -"is-path-inside@npm:^3.0.2, is-path-inside@npm:^3.0.3": - version: 3.0.3 - resolution: "is-path-inside@npm:3.0.3" - checksum: abd50f06186a052b349c15e55b182326f1936c89a78bf6c8f2b707412517c097ce04bc49a0ca221787bc44e1049f51f09a2ffb63d22899051988d3a618ba13e9 - languageName: node - linkType: hard - -"is-plain-obj@npm:^2.0.0": - version: 2.1.0 - resolution: "is-plain-obj@npm:2.1.0" - checksum: cec9100678b0a9fe0248a81743041ed990c2d4c99f893d935545cfbc42876cbe86d207f3b895700c690ad2fa520e568c44afc1605044b535a7820c1d40e38daa - languageName: node - linkType: hard - -"is-plain-obj@npm:^3.0.0": - version: 3.0.0 - resolution: "is-plain-obj@npm:3.0.0" - checksum: a6ebdf8e12ab73f33530641972a72a4b8aed6df04f762070d823808303e4f76d87d5ea5bd76f96a7bbe83d93f04ac7764429c29413bd9049853a69cb630fb21c - languageName: node - linkType: hard - -"is-plain-object@npm:^2.0.4": - version: 2.0.4 - resolution: "is-plain-object@npm:2.0.4" - dependencies: - isobject: ^3.0.1 - checksum: 2a401140cfd86cabe25214956ae2cfee6fbd8186809555cd0e84574f88de7b17abacb2e477a6a658fa54c6083ecbda1e6ae404c7720244cd198903848fca70ca - languageName: node - linkType: hard - -"is-plain-object@npm:^5.0.0": - version: 5.0.0 - resolution: "is-plain-object@npm:5.0.0" - checksum: e32d27061eef62c0847d303125440a38660517e586f2f3db7c9d179ae5b6674ab0f469d519b2e25c147a1a3bc87156d0d5f4d8821e0ce4a9ee7fe1fcf11ce45c - languageName: node - linkType: hard - -"is-potential-custom-element-name@npm:^1.0.1": - version: 1.0.1 - resolution: "is-potential-custom-element-name@npm:1.0.1" - checksum: ced7bbbb6433a5b684af581872afe0e1767e2d1146b2207ca0068a648fb5cab9d898495d1ac0583524faaf24ca98176a7d9876363097c2d14fee6dd324f3a1ab - languageName: node - linkType: hard - -"is-regex@npm:^1.1.4": - version: 1.1.4 - resolution: "is-regex@npm:1.1.4" - dependencies: - call-bind: ^1.0.2 - has-tostringtag: ^1.0.0 - checksum: 362399b33535bc8f386d96c45c9feb04cf7f8b41c182f54174c1a45c9abbbe5e31290bbad09a458583ff6bf3b2048672cdb1881b13289569a7c548370856a652 - languageName: node - linkType: hard - -"is-regexp@npm:^1.0.0": - version: 1.0.0 - resolution: "is-regexp@npm:1.0.0" - checksum: be692828e24cba479ec33644326fa98959ec68ba77965e0291088c1a741feaea4919d79f8031708f85fd25e39de002b4520622b55460660b9c369e6f7187faef - languageName: node - linkType: hard - -"is-root@npm:^2.1.0": - version: 2.1.0 - resolution: "is-root@npm:2.1.0" - checksum: 37eea0822a2a9123feb58a9d101558ba276771a6d830f87005683349a9acff15958a9ca590a44e778c6b335660b83e85c744789080d734f6081a935a4880aee2 - languageName: node - linkType: hard - -"is-set@npm:^2.0.1": - version: 2.0.2 - resolution: "is-set@npm:2.0.2" - checksum: b64343faf45e9387b97a6fd32be632ee7b269bd8183701f3b3f5b71a7cf00d04450ed8669d0bd08753e08b968beda96fca73a10fd0ff56a32603f64deba55a57 - languageName: node - linkType: hard - -"is-shared-array-buffer@npm:^1.0.2, is-shared-array-buffer@npm:^1.0.3": - version: 1.0.3 - resolution: "is-shared-array-buffer@npm:1.0.3" - dependencies: - call-bind: ^1.0.7 - checksum: a4fff602c309e64ccaa83b859255a43bb011145a42d3f56f67d9268b55bc7e6d98a5981a1d834186ad3105d6739d21547083fe7259c76c0468483fc538e716d8 - languageName: node - linkType: hard - -"is-stream@npm:^2.0.0": - version: 2.0.1 - resolution: "is-stream@npm:2.0.1" - checksum: b8e05ccdf96ac330ea83c12450304d4a591f9958c11fd17bed240af8d5ffe08aedafa4c0f4cfccd4d28dc9d4d129daca1023633d5c11601a6cbc77521f6fae66 - languageName: node - linkType: hard - -"is-string@npm:^1.0.5, is-string@npm:^1.0.7": - version: 1.0.7 - resolution: "is-string@npm:1.0.7" - dependencies: - has-tostringtag: ^1.0.0 - checksum: 323b3d04622f78d45077cf89aab783b2f49d24dc641aa89b5ad1a72114cfeff2585efc8c12ef42466dff32bde93d839ad321b26884cf75e5a7892a938b089989 - languageName: node - linkType: hard - -"is-symbol@npm:^1.0.2, is-symbol@npm:^1.0.3": - version: 1.0.4 - resolution: "is-symbol@npm:1.0.4" - dependencies: - has-symbols: ^1.0.2 - checksum: 92805812ef590738d9de49d677cd17dfd486794773fb6fa0032d16452af46e9b91bb43ffe82c983570f015b37136f4b53b28b8523bfb10b0ece7a66c31a54510 - languageName: node - linkType: hard - -"is-typed-array@npm:^1.1.13": - version: 1.1.13 - resolution: "is-typed-array@npm:1.1.13" - dependencies: - which-typed-array: ^1.1.14 - checksum: 150f9ada183a61554c91e1c4290086d2c100b0dff45f60b028519be72a8db964da403c48760723bf5253979b8dffe7b544246e0e5351dcd05c5fdb1dcc1dc0f0 - languageName: node - linkType: hard - -"is-typedarray@npm:^1.0.0": - version: 1.0.0 - resolution: "is-typedarray@npm:1.0.0" - checksum: 3508c6cd0a9ee2e0df2fa2e9baabcdc89e911c7bd5cf64604586697212feec525aa21050e48affb5ffc3df20f0f5d2e2cf79b08caa64e1ccc9578e251763aef7 - languageName: node - linkType: hard - -"is-weakmap@npm:^2.0.1": - version: 2.0.1 - resolution: "is-weakmap@npm:2.0.1" - checksum: 1222bb7e90c32bdb949226e66d26cb7bce12e1e28e3e1b40bfa6b390ba3e08192a8664a703dff2a00a84825f4e022f9cd58c4599ff9981ab72b1d69479f4f7f6 - languageName: node - linkType: hard - -"is-weakref@npm:^1.0.2": - version: 1.0.2 - resolution: "is-weakref@npm:1.0.2" - dependencies: - call-bind: ^1.0.2 - checksum: 95bd9a57cdcb58c63b1c401c60a474b0f45b94719c30f548c891860f051bc2231575c290a6b420c6bc6e7ed99459d424c652bd5bf9a1d5259505dc35b4bf83de - languageName: node - linkType: hard - -"is-weakset@npm:^2.0.1": - version: 2.0.2 - resolution: "is-weakset@npm:2.0.2" - dependencies: - call-bind: ^1.0.2 - get-intrinsic: ^1.1.1 - checksum: 5d8698d1fa599a0635d7ca85be9c26d547b317ed8fd83fc75f03efbe75d50001b5eececb1e9971de85fcde84f69ae6f8346bc92d20d55d46201d328e4c74a367 - languageName: node - linkType: hard - -"is-whitespace-character@npm:^1.0.0": - version: 1.0.4 - resolution: "is-whitespace-character@npm:1.0.4" - checksum: adab8ad9847ccfcb6f1b7000b8f622881b5ba2a09ce8be2794a6d2b10c3af325b469fc562c9fb889f468eed27be06e227ac609d0aa1e3a59b4dbcc88e2b0418e - languageName: node - linkType: hard - -"is-word-character@npm:^1.0.0": - version: 1.0.4 - resolution: "is-word-character@npm:1.0.4" - checksum: 1821d6c6abe5bc0b3abe3fdc565d66d7c8a74ea4e93bc77b4a47d26e2e2a306d6ab7d92b353b0d2b182869e3ecaa8f4a346c62d0e31d38ebc0ceaf7cae182c3f - languageName: node - linkType: hard - -"is-wsl@npm:^2.2.0": - version: 2.2.0 - resolution: "is-wsl@npm:2.2.0" - dependencies: - is-docker: ^2.0.0 - checksum: 20849846ae414997d290b75e16868e5261e86ff5047f104027026fd61d8b5a9b0b3ade16239f35e1a067b3c7cc02f70183cb661010ed16f4b6c7c93dad1b19d8 - languageName: node - linkType: hard - -"is-yarn-global@npm:^0.3.0": - version: 0.3.0 - resolution: "is-yarn-global@npm:0.3.0" - checksum: bca013d65fee2862024c9fbb3ba13720ffca2fe750095174c1c80922fdda16402b5c233f5ac9e265bc12ecb5446e7b7f519a32d9541788f01d4d44e24d2bf481 - languageName: node - linkType: hard - -"isarray@npm:0.0.1": - version: 0.0.1 - resolution: "isarray@npm:0.0.1" - checksum: 49191f1425681df4a18c2f0f93db3adb85573bcdd6a4482539d98eac9e705d8961317b01175627e860516a2fc45f8f9302db26e5a380a97a520e272e2a40a8d4 - languageName: node - linkType: hard - -"isarray@npm:^2.0.5": - version: 2.0.5 - resolution: "isarray@npm:2.0.5" - checksum: bd5bbe4104438c4196ba58a54650116007fa0262eccef13a4c55b2e09a5b36b59f1e75b9fcc49883dd9d4953892e6fc007eef9e9155648ceea036e184b0f930a - languageName: node - linkType: hard - -"isarray@npm:~1.0.0": - version: 1.0.0 - resolution: "isarray@npm:1.0.0" - checksum: f032df8e02dce8ec565cf2eb605ea939bdccea528dbcf565cdf92bfa2da9110461159d86a537388ef1acef8815a330642d7885b29010e8f7eac967c9993b65ab - languageName: node - linkType: hard - -"isexe@npm:^2.0.0": - version: 2.0.0 - resolution: "isexe@npm:2.0.0" - checksum: 26bf6c5480dda5161c820c5b5c751ae1e766c587b1f951ea3fcfc973bafb7831ae5b54a31a69bd670220e42e99ec154475025a468eae58ea262f813fdc8d1c62 - languageName: node - linkType: hard - -"isexe@npm:^3.1.1": - version: 3.1.1 - resolution: "isexe@npm:3.1.1" - checksum: 7fe1931ee4e88eb5aa524cd3ceb8c882537bc3a81b02e438b240e47012eef49c86904d0f0e593ea7c3a9996d18d0f1f3be8d3eaa92333977b0c3a9d353d5563e - languageName: node - linkType: hard - -"isobject@npm:^3.0.1": - version: 3.0.1 - resolution: "isobject@npm:3.0.1" - checksum: db85c4c970ce30693676487cca0e61da2ca34e8d4967c2e1309143ff910c207133a969f9e4ddb2dc6aba670aabce4e0e307146c310350b298e74a31f7d464703 - languageName: node - linkType: hard - -"isomorphic-dompurify@npm:^2.7.0": - version: 2.7.0 - resolution: "isomorphic-dompurify@npm:2.7.0" - dependencies: - "@types/dompurify": ^3.0.5 - dompurify: ^3.1.0 - jsdom: ^24.0.0 - checksum: 95a16e89e9bac48445d025003506591cea7033b5a8668091699a528beeb021c2fc4397092b59f6dfeeada1ffc7b00ce51c19682e77ee00714a3d7cd14f195294 - languageName: node - linkType: hard - -"iterator.prototype@npm:^1.1.2": - version: 1.1.2 - resolution: "iterator.prototype@npm:1.1.2" - dependencies: - define-properties: ^1.2.1 - get-intrinsic: ^1.2.1 - has-symbols: ^1.0.3 - reflect.getprototypeof: ^1.0.4 - set-function-name: ^2.0.1 - checksum: d8a507e2ccdc2ce762e8a1d3f4438c5669160ac72b88b648e59a688eec6bc4e64b22338e74000518418d9e693faf2a092d2af21b9ec7dbf7763b037a54701168 - languageName: node - linkType: hard - -"jackspeak@npm:^2.3.5": - version: 2.3.6 - resolution: "jackspeak@npm:2.3.6" - dependencies: - "@isaacs/cliui": ^8.0.2 - "@pkgjs/parseargs": ^0.11.0 - dependenciesMeta: - "@pkgjs/parseargs": - optional: true - checksum: 57d43ad11eadc98cdfe7496612f6bbb5255ea69fe51ea431162db302c2a11011642f50cfad57288bd0aea78384a0612b16e131944ad8ecd09d619041c8531b54 - languageName: node - linkType: hard - -"javascript-stringify@npm:^2.0.1": - version: 2.1.0 - resolution: "javascript-stringify@npm:2.1.0" - checksum: 009981ec84299da88795fc764221ed213e3d52251cc93a396430a7a02ae09f1163a9be36a36808689681a8e6113cf00fe97ec2eea2552df48111f79be59e9358 - languageName: node - linkType: hard - -"jest-util@npm:^29.7.0": - version: 29.7.0 - resolution: "jest-util@npm:29.7.0" - dependencies: - "@jest/types": ^29.6.3 - "@types/node": "*" - chalk: ^4.0.0 - ci-info: ^3.2.0 - graceful-fs: ^4.2.9 - picomatch: ^2.2.3 - checksum: 042ab4980f4ccd4d50226e01e5c7376a8556b472442ca6091a8f102488c0f22e6e8b89ea874111d2328a2080083bf3225c86f3788c52af0bd0345a00eb57a3ca - languageName: node - linkType: hard - -"jest-worker@npm:^27.4.5": - version: 27.5.1 - resolution: "jest-worker@npm:27.5.1" - dependencies: - "@types/node": "*" - merge-stream: ^2.0.0 - supports-color: ^8.0.0 - checksum: 98cd68b696781caed61c983a3ee30bf880b5bd021c01d98f47b143d4362b85d0737f8523761e2713d45e18b4f9a2b98af1eaee77afade4111bb65c77d6f7c980 - languageName: node - linkType: hard - -"jest-worker@npm:^29.1.2": - version: 29.7.0 - resolution: "jest-worker@npm:29.7.0" - dependencies: - "@types/node": "*" - jest-util: ^29.7.0 - merge-stream: ^2.0.0 - supports-color: ^8.0.0 - checksum: 30fff60af49675273644d408b650fc2eb4b5dcafc5a0a455f238322a8f9d8a98d847baca9d51ff197b6747f54c7901daa2287799230b856a0f48287d131f8c13 - languageName: node - linkType: hard - -"jiti@npm:^1.20.0": - version: 1.21.0 - resolution: "jiti@npm:1.21.0" - bin: - jiti: bin/jiti.js - checksum: a7bd5d63921c170eaec91eecd686388181c7828e1fa0657ab374b9372bfc1f383cf4b039e6b272383d5cb25607509880af814a39abdff967322459cca41f2961 - languageName: node - linkType: hard - -"joi@npm:^17.6.0": - version: 17.12.2 - resolution: "joi@npm:17.12.2" - dependencies: - "@hapi/hoek": ^9.3.0 - "@hapi/topo": ^5.1.0 - "@sideway/address": ^4.1.5 - "@sideway/formula": ^3.0.1 - "@sideway/pinpoint": ^2.0.0 - checksum: 5a5213c56d3a3b769b4cb999756a226d090421693443a405a9f1063443941a8b920c731b0c2cad526163726494c2da9858d38a98d39bd516df60e9ef49f0125a - languageName: node - linkType: hard - -"js-tokens@npm:^3.0.0 || ^4.0.0, js-tokens@npm:^4.0.0": - version: 4.0.0 - resolution: "js-tokens@npm:4.0.0" - checksum: 8a95213a5a77deb6cbe94d86340e8d9ace2b93bc367790b260101d2f36a2eaf4e4e22d9fa9cf459b38af3a32fb4190e638024cf82ec95ef708680e405ea7cc78 - languageName: node - linkType: hard - -"js-yaml@npm:^3.13.1": - version: 3.14.1 - resolution: "js-yaml@npm:3.14.1" - dependencies: - argparse: ^1.0.7 - esprima: ^4.0.0 - bin: - js-yaml: bin/js-yaml.js - checksum: bef146085f472d44dee30ec34e5cf36bf89164f5d585435a3d3da89e52622dff0b188a580e4ad091c3341889e14cb88cac6e4deb16dc5b1e9623bb0601fc255c - languageName: node - linkType: hard - -"js-yaml@npm:^4.1.0": - version: 4.1.0 - resolution: "js-yaml@npm:4.1.0" - dependencies: - argparse: ^2.0.1 - bin: - js-yaml: bin/js-yaml.js - checksum: c7830dfd456c3ef2c6e355cc5a92e6700ceafa1d14bba54497b34a99f0376cecbb3e9ac14d3e5849b426d5a5140709a66237a8c991c675431271c4ce5504151a - languageName: node - linkType: hard - -"jsbn@npm:1.1.0": - version: 1.1.0 - resolution: "jsbn@npm:1.1.0" - checksum: 944f924f2bd67ad533b3850eee47603eed0f6ae425fd1ee8c760f477e8c34a05f144c1bd4f5a5dd1963141dc79a2c55f89ccc5ab77d039e7077f3ad196b64965 - languageName: node - linkType: hard - -"jsdom@npm:^24.0.0": - version: 24.0.0 - resolution: "jsdom@npm:24.0.0" - dependencies: - cssstyle: ^4.0.1 - data-urls: ^5.0.0 - decimal.js: ^10.4.3 - form-data: ^4.0.0 - html-encoding-sniffer: ^4.0.0 - http-proxy-agent: ^7.0.0 - https-proxy-agent: ^7.0.2 - is-potential-custom-element-name: ^1.0.1 - nwsapi: ^2.2.7 - parse5: ^7.1.2 - rrweb-cssom: ^0.6.0 - saxes: ^6.0.0 - symbol-tree: ^3.2.4 - tough-cookie: ^4.1.3 - w3c-xmlserializer: ^5.0.0 - webidl-conversions: ^7.0.0 - whatwg-encoding: ^3.1.1 - whatwg-mimetype: ^4.0.0 - whatwg-url: ^14.0.0 - ws: ^8.16.0 - xml-name-validator: ^5.0.0 - peerDependencies: - canvas: ^2.11.2 - peerDependenciesMeta: - canvas: - optional: true - checksum: 180cf672c1f5e4375fd831b6990c453b4c22b540619abe7a0a3ed0d18eca1171dea9f25739bc06dfea26d1c0d71c7ac26e62fc9a2d9b1657003fc8fd1bf6f9f4 - languageName: node - linkType: hard - -"jsesc@npm:^2.5.1": - version: 2.5.2 - resolution: "jsesc@npm:2.5.2" - bin: - jsesc: bin/jsesc - checksum: 4dc190771129e12023f729ce20e1e0bfceac84d73a85bc3119f7f938843fe25a4aeccb54b6494dce26fcf263d815f5f31acdefac7cc9329efb8422a4f4d9fa9d - languageName: node - linkType: hard - -"jsesc@npm:~0.5.0": - version: 0.5.0 - resolution: "jsesc@npm:0.5.0" - bin: - jsesc: bin/jsesc - checksum: b8b44cbfc92f198ad972fba706ee6a1dfa7485321ee8c0b25f5cedd538dcb20cde3197de16a7265430fce8277a12db066219369e3d51055038946039f6e20e17 - languageName: node - linkType: hard - -"json-buffer@npm:3.0.0": - version: 3.0.0 - resolution: "json-buffer@npm:3.0.0" - checksum: 0cecacb8025370686a916069a2ff81f7d55167421b6aa7270ee74e244012650dd6bce22b0852202ea7ff8624fce50ff0ec1bdf95914ccb4553426e290d5a63fa - languageName: node - linkType: hard - -"json-buffer@npm:3.0.1": - version: 3.0.1 - resolution: "json-buffer@npm:3.0.1" - checksum: 9026b03edc2847eefa2e37646c579300a1f3a4586cfb62bf857832b60c852042d0d6ae55d1afb8926163fa54c2b01d83ae24705f34990348bdac6273a29d4581 - languageName: node - linkType: hard - -"json-loader@npm:^0.5.7": - version: 0.5.7 - resolution: "json-loader@npm:0.5.7" - checksum: c7d054edf7fd5338847f49008df3cdf744f64507584dff3e6d28f500604eedd9130ca1639caa61747b36ab141e7e8db0e86f8514b2244b6d8b0eb634f1154875 - languageName: node - linkType: hard - -"json-parse-even-better-errors@npm:^2.3.0, json-parse-even-better-errors@npm:^2.3.1": - version: 2.3.1 - resolution: "json-parse-even-better-errors@npm:2.3.1" - checksum: 798ed4cf3354a2d9ccd78e86d2169515a0097a5c133337807cdf7f1fc32e1391d207ccfc276518cc1d7d8d4db93288b8a50ba4293d212ad1336e52a8ec0a941f - languageName: node - linkType: hard - -"json-schema-traverse@npm:^0.4.1": - version: 0.4.1 - resolution: "json-schema-traverse@npm:0.4.1" - checksum: 7486074d3ba247769fda17d5181b345c9fb7d12e0da98b22d1d71a5db9698d8b4bd900a3ec1a4ffdd60846fc2556274a5c894d0c48795f14cb03aeae7b55260b - languageName: node - linkType: hard - -"json-schema-traverse@npm:^1.0.0": - version: 1.0.0 - resolution: "json-schema-traverse@npm:1.0.0" - checksum: 02f2f466cdb0362558b2f1fd5e15cce82ef55d60cd7f8fa828cf35ba74330f8d767fcae5c5c2adb7851fa811766c694b9405810879bc4e1ddd78a7c0e03658ad - languageName: node - linkType: hard - -"json-stable-stringify-without-jsonify@npm:^1.0.1": - version: 1.0.1 - resolution: "json-stable-stringify-without-jsonify@npm:1.0.1" - checksum: cff44156ddce9c67c44386ad5cddf91925fe06b1d217f2da9c4910d01f358c6e3989c4d5a02683c7a5667f9727ff05831f7aa8ae66c8ff691c556f0884d49215 - languageName: node - linkType: hard - -"json5@npm:^1.0.2": - version: 1.0.2 - resolution: "json5@npm:1.0.2" - dependencies: - minimist: ^1.2.0 - bin: - json5: lib/cli.js - checksum: 866458a8c58a95a49bef3adba929c625e82532bcff1fe93f01d29cb02cac7c3fe1f4b79951b7792c2da9de0b32871a8401a6e3c5b36778ad852bf5b8a61165d7 - languageName: node - linkType: hard - -"json5@npm:^2.1.2, json5@npm:^2.2.3": - version: 2.2.3 - resolution: "json5@npm:2.2.3" - bin: - json5: lib/cli.js - checksum: 2a7436a93393830bce797d4626275152e37e877b265e94ca69c99e3d20c2b9dab021279146a39cdb700e71b2dd32a4cebd1514cd57cee102b1af906ce5040349 - languageName: node - linkType: hard - -"jsonc-parser@npm:^3.2.0": - version: 3.2.1 - resolution: "jsonc-parser@npm:3.2.1" - checksum: 656d9027b91de98d8ab91b3aa0d0a4cab7dc798a6830845ca664f3e76c82d46b973675bbe9b500fae1de37fd3e81aceacbaa2a57884bf2f8f29192150d2d1ef7 - languageName: node - linkType: hard - -"jsonfile@npm:^6.0.1": - version: 6.1.0 - resolution: "jsonfile@npm:6.1.0" - dependencies: - graceful-fs: ^4.1.6 - universalify: ^2.0.0 - dependenciesMeta: - graceful-fs: - optional: true - checksum: 7af3b8e1ac8fe7f1eccc6263c6ca14e1966fcbc74b618d3c78a0a2075579487547b94f72b7a1114e844a1e15bb00d440e5d1720bfc4612d790a6f285d5ea8354 - languageName: node - linkType: hard - -"jsx-ast-utils@npm:^2.4.1 || ^3.0.0, jsx-ast-utils@npm:^3.3.5": - version: 3.3.5 - resolution: "jsx-ast-utils@npm:3.3.5" - dependencies: - array-includes: ^3.1.6 - array.prototype.flat: ^1.3.1 - object.assign: ^4.1.4 - object.values: ^1.1.6 - checksum: f4b05fa4d7b5234230c905cfa88d36dc8a58a6666975a3891429b1a8cdc8a140bca76c297225cb7a499fad25a2c052ac93934449a2c31a44fc9edd06c773780a - languageName: node - linkType: hard - -"keyv@npm:^3.0.0": - version: 3.1.0 - resolution: "keyv@npm:3.1.0" - dependencies: - json-buffer: 3.0.0 - checksum: bb7e8f3acffdbafbc2dd5b63f377fe6ec4c0e2c44fc82720449ef8ab54f4a7ce3802671ed94c0f475ae0a8549703353a2124561fcf3317010c141b32ca1ce903 - languageName: node - linkType: hard - -"keyv@npm:^4.5.3": - version: 4.5.4 - resolution: "keyv@npm:4.5.4" - dependencies: - json-buffer: 3.0.1 - checksum: 74a24395b1c34bd44ad5cb2b49140d087553e170625240b86755a6604cd65aa16efdbdeae5cdb17ba1284a0fbb25ad06263755dbc71b8d8b06f74232ce3cdd72 - languageName: node - linkType: hard - -"khroma@npm:^2.0.0": - version: 2.1.0 - resolution: "khroma@npm:2.1.0" - checksum: b34ba39d3a9a52d388110bded8cb1c12272eb69c249d8eb26feab12d18a96a9bc4ceec4851d2afa43de4569f7d5ea78fa305965a3d0e96a38e02fe77c53677da - languageName: node - linkType: hard - -"kind-of@npm:^6.0.0, kind-of@npm:^6.0.2": - version: 6.0.3 - resolution: "kind-of@npm:6.0.3" - checksum: 3ab01e7b1d440b22fe4c31f23d8d38b4d9b91d9f291df683476576493d5dfd2e03848a8b05813dd0c3f0e835bc63f433007ddeceb71f05cb25c45ae1b19c6d3b - languageName: node - linkType: hard - -"kleur@npm:^3.0.3": - version: 3.0.3 - resolution: "kleur@npm:3.0.3" - checksum: df82cd1e172f957bae9c536286265a5cdbd5eeca487cb0a3b2a7b41ef959fc61f8e7c0e9aeea9c114ccf2c166b6a8dd45a46fd619c1c569d210ecd2765ad5169 - languageName: node - linkType: hard - -"language-subtag-registry@npm:^0.3.20": - version: 0.3.22 - resolution: "language-subtag-registry@npm:0.3.22" - checksum: 8ab70a7e0e055fe977ac16ea4c261faec7205ac43db5e806f72e5b59606939a3b972c4bd1e10e323b35d6ffa97c3e1c4c99f6553069dad2dfdd22020fa3eb56a - languageName: node - linkType: hard - -"language-tags@npm:^1.0.9": - version: 1.0.9 - resolution: "language-tags@npm:1.0.9" - dependencies: - language-subtag-registry: ^0.3.20 - checksum: 57c530796dc7179914dee71bc94f3747fd694612480241d0453a063777265dfe3a951037f7acb48f456bf167d6eb419d4c00263745326b3ba1cdcf4657070e78 - languageName: node - linkType: hard - -"latest-version@npm:^5.1.0": - version: 5.1.0 - resolution: "latest-version@npm:5.1.0" - dependencies: - package-json: ^6.3.0 - checksum: fbc72b071eb66c40f652441fd783a9cca62f08bf42433651937f078cd9ef94bf728ec7743992777826e4e89305aef24f234b515e6030503a2cbee7fc9bdc2c0f - languageName: node - linkType: hard - -"launch-editor@npm:^2.6.0": - version: 2.6.1 - resolution: "launch-editor@npm:2.6.1" - dependencies: - picocolors: ^1.0.0 - shell-quote: ^1.8.1 - checksum: e06d193075ac09f7f8109f10cabe464a211bf7ed4cbe75f83348d6f67bf4d9f162f06e7a1ab3e1cd7fc250b5342c3b57080618aff2e646dc34248fe499227601 - languageName: node - linkType: hard - -"layout-base@npm:^1.0.0": - version: 1.0.2 - resolution: "layout-base@npm:1.0.2" - checksum: e4c312765ac4fa13b49c940e701461309c7a0aa07f784f81d31f626b945dced90a8abf83222388a5af16b7074271f745501a90ef5a3af676abb2e7eb16d55b2e - languageName: node - linkType: hard - -"layout-base@npm:^2.0.0": - version: 2.0.1 - resolution: "layout-base@npm:2.0.1" - checksum: ef93baf044f67c3680f4f3a6d628bf4c7faba0f70f3e0abb16e4811bed087045208560347ca749e123d169cbf872505ad84e11fb21b0be925997227e042c7f43 - languageName: node - linkType: hard - -"leven@npm:^3.1.0": - version: 3.1.0 - resolution: "leven@npm:3.1.0" - checksum: 638401d534585261b6003db9d99afd244dfe82d75ddb6db5c0df412842d5ab30b2ef18de471aaec70fe69a46f17b4ae3c7f01d8a4e6580ef7adb9f4273ad1e55 - languageName: node - linkType: hard - -"levn@npm:^0.4.1": - version: 0.4.1 - resolution: "levn@npm:0.4.1" - dependencies: - prelude-ls: ^1.2.1 - type-check: ~0.4.0 - checksum: 12c5021c859bd0f5248561bf139121f0358285ec545ebf48bb3d346820d5c61a4309535c7f387ed7d84361cf821e124ce346c6b7cef8ee09a67c1473b46d0fc4 - languageName: node - linkType: hard - -"lilconfig@npm:^2.0.3": - version: 2.1.0 - resolution: "lilconfig@npm:2.1.0" - checksum: 8549bb352b8192375fed4a74694cd61ad293904eee33f9d4866c2192865c44c4eb35d10782966242634e0cbc1e91fe62b1247f148dc5514918e3a966da7ea117 - languageName: node - linkType: hard - -"lines-and-columns@npm:^1.1.6": - version: 1.2.4 - resolution: "lines-and-columns@npm:1.2.4" - checksum: 0c37f9f7fa212b38912b7145e1cd16a5f3cd34d782441c3e6ca653485d326f58b3caccda66efce1c5812bde4961bbde3374fae4b0d11bf1226152337f3894aa5 - languageName: node - linkType: hard - -"loader-runner@npm:^4.2.0": - version: 4.3.0 - resolution: "loader-runner@npm:4.3.0" - checksum: a90e00dee9a16be118ea43fec3192d0b491fe03a32ed48a4132eb61d498f5536a03a1315531c19d284392a8726a4ecad71d82044c28d7f22ef62e029bf761569 - languageName: node - linkType: hard - -"loader-utils@npm:^2.0.0": - version: 2.0.4 - resolution: "loader-utils@npm:2.0.4" - dependencies: - big.js: ^5.2.2 - emojis-list: ^3.0.0 - json5: ^2.1.2 - checksum: a5281f5fff1eaa310ad5e1164095689443630f3411e927f95031ab4fb83b4a98f388185bb1fe949e8ab8d4247004336a625e9255c22122b815bb9a4c5d8fc3b7 - languageName: node - linkType: hard - -"loader-utils@npm:^3.2.0": - version: 3.2.1 - resolution: "loader-utils@npm:3.2.1" - checksum: 4e3ea054cdc8be1ab1f1238f49f42fdf0483039eff920fb1d442039f3f0ad4ebd11fb8e584ccdf2cb7e3c56b3d40c1832416e6408a55651b843da288960cc792 - languageName: node - linkType: hard - -"locate-path@npm:^3.0.0": - version: 3.0.0 - resolution: "locate-path@npm:3.0.0" - dependencies: - p-locate: ^3.0.0 - path-exists: ^3.0.0 - checksum: 53db3996672f21f8b0bf2a2c645ae2c13ffdae1eeecfcd399a583bce8516c0b88dcb4222ca6efbbbeb6949df7e46860895be2c02e8d3219abd373ace3bfb4e11 - languageName: node - linkType: hard - -"locate-path@npm:^5.0.0": - version: 5.0.0 - resolution: "locate-path@npm:5.0.0" - dependencies: - p-locate: ^4.1.0 - checksum: 83e51725e67517287d73e1ded92b28602e3ae5580b301fe54bfb76c0c723e3f285b19252e375712316774cf52006cb236aed5704692c32db0d5d089b69696e30 - languageName: node - linkType: hard - -"locate-path@npm:^6.0.0": - version: 6.0.0 - resolution: "locate-path@npm:6.0.0" - dependencies: - p-locate: ^5.0.0 - checksum: 72eb661788a0368c099a184c59d2fee760b3831c9c1c33955e8a19ae4a21b4116e53fa736dc086cdeb9fce9f7cc508f2f92d2d3aae516f133e16a2bb59a39f5a - languageName: node - linkType: hard - -"lodash-es@npm:^4.17.21": - version: 4.17.21 - resolution: "lodash-es@npm:4.17.21" - checksum: 05cbffad6e2adbb331a4e16fbd826e7faee403a1a04873b82b42c0f22090f280839f85b95393f487c1303c8a3d2a010048bf06151a6cbe03eee4d388fb0a12d2 - languageName: node - linkType: hard - -"lodash.curry@npm:^4.0.1": - version: 4.1.1 - resolution: "lodash.curry@npm:4.1.1" - checksum: 9192b70fe7df4d1ff780c0260bee271afa9168c93fe4fa24bc861900240531b59781b5fdaadf4644fea8f4fbcd96f0700539ab294b579ffc1022c6c15dcc462a - languageName: node - linkType: hard - -"lodash.debounce@npm:^4.0.8": - version: 4.0.8 - resolution: "lodash.debounce@npm:4.0.8" - checksum: a3f527d22c548f43ae31c861ada88b2637eb48ac6aa3eb56e82d44917971b8aa96fbb37aa60efea674dc4ee8c42074f90f7b1f772e9db375435f6c83a19b3bc6 - languageName: node - linkType: hard - -"lodash.flow@npm:^3.3.0": - version: 3.5.0 - resolution: "lodash.flow@npm:3.5.0" - checksum: a9a62ad344e3c5a1f42bc121da20f64dd855aaafecee24b1db640f29b88bd165d81c37ff7e380a7191de6f70b26f5918abcebbee8396624f78f3618a0b18634c - languageName: node - linkType: hard - -"lodash.memoize@npm:^4.1.2": - version: 4.1.2 - resolution: "lodash.memoize@npm:4.1.2" - checksum: 9ff3942feeccffa4f1fafa88d32f0d24fdc62fd15ded5a74a5f950ff5f0c6f61916157246744c620173dddf38d37095a92327d5fd3861e2063e736a5c207d089 - languageName: node - linkType: hard - -"lodash.merge@npm:^4.6.2": - version: 4.6.2 - resolution: "lodash.merge@npm:4.6.2" - checksum: ad580b4bdbb7ca1f7abf7e1bce63a9a0b98e370cf40194b03380a46b4ed799c9573029599caebc1b14e3f24b111aef72b96674a56cfa105e0f5ac70546cdc005 - languageName: node - linkType: hard - -"lodash.uniq@npm:4.5.0, lodash.uniq@npm:^4.5.0": - version: 4.5.0 - resolution: "lodash.uniq@npm:4.5.0" - checksum: a4779b57a8d0f3c441af13d9afe7ecff22dd1b8ce1129849f71d9bbc8e8ee4e46dfb4b7c28f7ad3d67481edd6e51126e4e2a6ee276e25906d10f7140187c392d - languageName: node - linkType: hard - -"lodash@npm:^4.17.19, lodash@npm:^4.17.20, lodash@npm:^4.17.21": - version: 4.17.21 - resolution: "lodash@npm:4.17.21" - checksum: eb835a2e51d381e561e508ce932ea50a8e5a68f4ebdd771ea240d3048244a8d13658acbd502cd4829768c56f2e16bdd4340b9ea141297d472517b83868e677f7 - languageName: node - linkType: hard - -"loose-envify@npm:^1.0.0, loose-envify@npm:^1.1.0, loose-envify@npm:^1.2.0, loose-envify@npm:^1.3.1, loose-envify@npm:^1.4.0": - version: 1.4.0 - resolution: "loose-envify@npm:1.4.0" - dependencies: - js-tokens: ^3.0.0 || ^4.0.0 - bin: - loose-envify: cli.js - checksum: 6517e24e0cad87ec9888f500c5b5947032cdfe6ef65e1c1936a0c48a524b81e65542c9c3edc91c97d5bddc806ee2a985dbc79be89215d613b1de5db6d1cfe6f4 - languageName: node - linkType: hard - -"lower-case@npm:^2.0.2": - version: 2.0.2 - resolution: "lower-case@npm:2.0.2" - dependencies: - tslib: ^2.0.3 - checksum: 83a0a5f159ad7614bee8bf976b96275f3954335a84fad2696927f609ddae902802c4f3312d86668722e668bef41400254807e1d3a7f2e8c3eede79691aa1f010 - languageName: node - linkType: hard - -"lowercase-keys@npm:^1.0.0, lowercase-keys@npm:^1.0.1": - version: 1.0.1 - resolution: "lowercase-keys@npm:1.0.1" - checksum: 4d045026595936e09953e3867722e309415ff2c80d7701d067546d75ef698dac218a4f53c6d1d0e7368b47e45fd7529df47e6cb56fbb90523ba599f898b3d147 - languageName: node - linkType: hard - -"lowercase-keys@npm:^2.0.0": - version: 2.0.0 - resolution: "lowercase-keys@npm:2.0.0" - checksum: 24d7ebd56ccdf15ff529ca9e08863f3c54b0b9d1edb97a3ae1af34940ae666c01a1e6d200707bce730a8ef76cb57cc10e65f245ecaaf7e6bc8639f2fb460ac23 - languageName: node - linkType: hard - -"lru-cache@npm:^10.0.1, lru-cache@npm:^9.1.1 || ^10.0.0": - version: 10.2.0 - resolution: "lru-cache@npm:10.2.0" - checksum: eee7ddda4a7475deac51ac81d7dd78709095c6fa46e8350dc2d22462559a1faa3b81ed931d5464b13d48cbd7e08b46100b6f768c76833912bc444b99c37e25db - languageName: node - linkType: hard - -"lru-cache@npm:^5.1.1": - version: 5.1.1 - resolution: "lru-cache@npm:5.1.1" - dependencies: - yallist: ^3.0.2 - checksum: c154ae1cbb0c2206d1501a0e94df349653c92c8cbb25236d7e85190bcaf4567a03ac6eb43166fabfa36fd35623694da7233e88d9601fbf411a9a481d85dbd2cb - languageName: node - linkType: hard - -"lru-cache@npm:^6.0.0": - version: 6.0.0 - resolution: "lru-cache@npm:6.0.0" - dependencies: - yallist: ^4.0.0 - checksum: f97f499f898f23e4585742138a22f22526254fdba6d75d41a1c2526b3b6cc5747ef59c5612ba7375f42aca4f8461950e925ba08c991ead0651b4918b7c978297 - languageName: node - linkType: hard - -"lunr@npm:^2.3.9": - version: 2.3.9 - resolution: "lunr@npm:2.3.9" - checksum: 176719e24fcce7d3cf1baccce9dd5633cd8bdc1f41ebe6a180112e5ee99d80373fe2454f5d4624d437e5a8319698ca6837b9950566e15d2cae5f2a543a3db4b8 - languageName: node - linkType: hard - -"make-dir@npm:^3.0.0, make-dir@npm:^3.0.2, make-dir@npm:^3.1.0": - version: 3.1.0 - resolution: "make-dir@npm:3.1.0" - dependencies: - semver: ^6.0.0 - checksum: 484200020ab5a1fdf12f393fe5f385fc8e4378824c940fba1729dcd198ae4ff24867bc7a5646331e50cead8abff5d9270c456314386e629acec6dff4b8016b78 - languageName: node - linkType: hard - -"make-fetch-happen@npm:^13.0.0": - version: 13.0.0 - resolution: "make-fetch-happen@npm:13.0.0" - dependencies: - "@npmcli/agent": ^2.0.0 - cacache: ^18.0.0 - http-cache-semantics: ^4.1.1 - is-lambda: ^1.0.1 - minipass: ^7.0.2 - minipass-fetch: ^3.0.0 - minipass-flush: ^1.0.5 - minipass-pipeline: ^1.2.4 - negotiator: ^0.6.3 - promise-retry: ^2.0.1 - ssri: ^10.0.0 - checksum: 7c7a6d381ce919dd83af398b66459a10e2fe8f4504f340d1d090d3fa3d1b0c93750220e1d898114c64467223504bd258612ba83efbc16f31b075cd56de24b4af - languageName: node - linkType: hard - -"markdown-escapes@npm:^1.0.0": - version: 1.0.4 - resolution: "markdown-escapes@npm:1.0.4" - checksum: 6833a93d72d3f70a500658872312c6fa8015c20cc835a85ae6901fa232683fbc6ed7118ebe920fea7c80039a560f339c026597d96eee0e9de602a36921804997 - languageName: node - linkType: hard - -"marked@npm:^12.0.1": - version: 12.0.2 - resolution: "marked@npm:12.0.2" - bin: - marked: bin/marked.js - checksum: 966422e2ba519294aa657bacb2e51784e4b641c1c8f15bdf9315878993c4ea09fe0d00ba2da761e443a3c52cc285c452644fd107ab0f356669bd5aac08d5c0bd - languageName: node - linkType: hard - -"marked@npm:^4.3.0": - version: 4.3.0 - resolution: "marked@npm:4.3.0" - bin: - marked: bin/marked.js - checksum: 0db6817893952c3ec710eb9ceafb8468bf5ae38cb0f92b7b083baa13d70b19774674be04db5b817681fa7c5c6a088f61300815e4dd75a59696f4716ad69f6260 - languageName: node - linkType: hard - -"mdast-squeeze-paragraphs@npm:^4.0.0": - version: 4.0.0 - resolution: "mdast-squeeze-paragraphs@npm:4.0.0" - dependencies: - unist-util-remove: ^2.0.0 - checksum: dfe8ec8e8a62171f020e82b088cc35cb9da787736dc133a3b45ce8811782a93e69bf06d147072e281079f09fac67be8a36153ffffd9bfbf89ed284e4c4f56f75 - languageName: node - linkType: hard - -"mdast-util-definitions@npm:^4.0.0": - version: 4.0.0 - resolution: "mdast-util-definitions@npm:4.0.0" - dependencies: - unist-util-visit: ^2.0.0 - checksum: 2325f20b82b3fb8cb5fda77038ee0bbdd44f82cfca7c48a854724b58bc1fe5919630a3ce7c45e210726df59d46c881d020b2da7a493bfd1ee36eb2bbfef5d78e - languageName: node - linkType: hard - -"mdast-util-to-hast@npm:10.0.1": - version: 10.0.1 - resolution: "mdast-util-to-hast@npm:10.0.1" - dependencies: - "@types/mdast": ^3.0.0 - "@types/unist": ^2.0.0 - mdast-util-definitions: ^4.0.0 - mdurl: ^1.0.0 - unist-builder: ^2.0.0 - unist-util-generated: ^1.0.0 - unist-util-position: ^3.0.0 - unist-util-visit: ^2.0.0 - checksum: e5f385757df7e9b37db4d6f326bf7b4fc1b40f9ad01fc335686578f44abe0ba46d3e60af4d5e5b763556d02e65069ef9a09c49db049b52659203a43e7fa9084d - languageName: node - linkType: hard - -"mdast-util-to-string@npm:^2.0.0": - version: 2.0.0 - resolution: "mdast-util-to-string@npm:2.0.0" - checksum: 0b2113ada10e002fbccb014170506dabe2f2ddacaacbe4bc1045c33f986652c5a162732a2c057c5335cdb58419e2ad23e368e5be226855d4d4e280b81c4e9ec2 - languageName: node - linkType: hard - -"mdn-data@npm:2.0.14": - version: 2.0.14 - resolution: "mdn-data@npm:2.0.14" - checksum: 9d0128ed425a89f4cba8f787dca27ad9408b5cb1b220af2d938e2a0629d17d879a34d2cb19318bdb26c3f14c77dd5dfbae67211f5caaf07b61b1f2c5c8c7dc16 - languageName: node - linkType: hard - -"mdurl@npm:^1.0.0": - version: 1.0.1 - resolution: "mdurl@npm:1.0.1" - checksum: 71731ecba943926bfbf9f9b51e28b5945f9411c4eda80894221b47cc105afa43ba2da820732b436f0798fd3edbbffcd1fc1415843c41a87fea08a41cc1e3d02b - languageName: node - linkType: hard - -"media-typer@npm:0.3.0": - version: 0.3.0 - resolution: "media-typer@npm:0.3.0" - checksum: af1b38516c28ec95d6b0826f6c8f276c58aec391f76be42aa07646b4e39d317723e869700933ca6995b056db4b09a78c92d5440dc23657e6764be5d28874bba1 - languageName: node - linkType: hard - -"memfs@npm:^3.1.2, memfs@npm:^3.4.3": - version: 3.5.3 - resolution: "memfs@npm:3.5.3" - dependencies: - fs-monkey: ^1.0.4 - checksum: 18dfdeacad7c8047b976a6ccd58bc98ba76e122ad3ca0e50a21837fe2075fc0d9aafc58ab9cf2576c2b6889da1dd2503083f2364191b695273f40969db2ecc44 - languageName: node - linkType: hard - -"merge-descriptors@npm:1.0.1": - version: 1.0.1 - resolution: "merge-descriptors@npm:1.0.1" - checksum: 5abc259d2ae25bb06d19ce2b94a21632583c74e2a9109ee1ba7fd147aa7362b380d971e0251069f8b3eb7d48c21ac839e21fa177b335e82c76ec172e30c31a26 - languageName: node - linkType: hard - -"merge-stream@npm:^2.0.0": - version: 2.0.0 - resolution: "merge-stream@npm:2.0.0" - checksum: 6fa4dcc8d86629705cea944a4b88ef4cb0e07656ebf223fa287443256414283dd25d91c1cd84c77987f2aec5927af1a9db6085757cb43d90eb170ebf4b47f4f4 - languageName: node - linkType: hard - -"merge2@npm:^1.3.0, merge2@npm:^1.4.1": - version: 1.4.1 - resolution: "merge2@npm:1.4.1" - checksum: 7268db63ed5169466540b6fb947aec313200bcf6d40c5ab722c22e242f651994619bcd85601602972d3c85bd2cc45a358a4c61937e9f11a061919a1da569b0c2 - languageName: node - linkType: hard - -"mermaid@npm:^9.2.2": - version: 9.4.3 - resolution: "mermaid@npm:9.4.3" - dependencies: - "@braintree/sanitize-url": ^6.0.0 - cytoscape: ^3.23.0 - cytoscape-cose-bilkent: ^4.1.0 - cytoscape-fcose: ^2.1.0 - d3: ^7.4.0 - dagre-d3-es: 7.0.9 - dayjs: ^1.11.7 - dompurify: 2.4.3 - elkjs: ^0.8.2 - khroma: ^2.0.0 - lodash-es: ^4.17.21 - non-layered-tidy-tree-layout: ^2.0.2 - stylis: ^4.1.2 - ts-dedent: ^2.2.0 - uuid: ^9.0.0 - web-worker: ^1.2.0 - checksum: 9e29177f289cc268ea4a2ca7a45ec0ca06f678007eae15a7cd54c682148a71367e861d2c9c0afa9f7474da154d9920524e59722186820e9bc0d79989305a7064 - languageName: node - linkType: hard - -"methods@npm:~1.1.2": - version: 1.1.2 - resolution: "methods@npm:1.1.2" - checksum: 0917ff4041fa8e2f2fda5425a955fe16ca411591fbd123c0d722fcf02b73971ed6f764d85f0a6f547ce49ee0221ce2c19a5fa692157931cecb422984f1dcd13a - languageName: node - linkType: hard - -"micromatch@npm:^4.0.2, micromatch@npm:^4.0.4, micromatch@npm:^4.0.5": - version: 4.0.5 - resolution: "micromatch@npm:4.0.5" - dependencies: - braces: ^3.0.2 - picomatch: ^2.3.1 - checksum: 02a17b671c06e8fefeeb6ef996119c1e597c942e632a21ef589154f23898c9c6a9858526246abb14f8bca6e77734aa9dcf65476fca47cedfb80d9577d52843fc - languageName: node - linkType: hard - -"mime-db@npm:1.52.0, mime-db@npm:>= 1.43.0 < 2": - version: 1.52.0 - resolution: "mime-db@npm:1.52.0" - checksum: 0d99a03585f8b39d68182803b12ac601d9c01abfa28ec56204fa330bc9f3d1c5e14beb049bafadb3dbdf646dfb94b87e24d4ec7b31b7279ef906a8ea9b6a513f - languageName: node - linkType: hard - -"mime-db@npm:~1.33.0": - version: 1.33.0 - resolution: "mime-db@npm:1.33.0" - checksum: 281a0772187c9b8f6096976cb193ac639c6007ac85acdbb8dc1617ed7b0f4777fa001d1b4f1b634532815e60717c84b2f280201d55677fb850c9d45015b50084 - languageName: node - linkType: hard - -"mime-types@npm:2.1.18": - version: 2.1.18 - resolution: "mime-types@npm:2.1.18" - dependencies: - mime-db: ~1.33.0 - checksum: 729265eff1e5a0e87cb7f869da742a610679585167d2f2ec997a7387fc6aedf8e5cad078e99b0164a927bdf3ace34fca27430d6487456ad090cba5594441ba43 - languageName: node - linkType: hard - -"mime-types@npm:^2.1.12, mime-types@npm:^2.1.27, mime-types@npm:^2.1.31, mime-types@npm:~2.1.17, mime-types@npm:~2.1.24, mime-types@npm:~2.1.34": - version: 2.1.35 - resolution: "mime-types@npm:2.1.35" - dependencies: - mime-db: 1.52.0 - checksum: 89a5b7f1def9f3af5dad6496c5ed50191ae4331cc5389d7c521c8ad28d5fdad2d06fd81baf38fed813dc4e46bb55c8145bb0ff406330818c9cf712fb2e9b3836 - languageName: node - linkType: hard - -"mime@npm:1.6.0": - version: 1.6.0 - resolution: "mime@npm:1.6.0" - bin: - mime: cli.js - checksum: fef25e39263e6d207580bdc629f8872a3f9772c923c7f8c7e793175cee22777bbe8bba95e5d509a40aaa292d8974514ce634ae35769faa45f22d17edda5e8557 - languageName: node - linkType: hard - -"mimic-fn@npm:^2.1.0": - version: 2.1.0 - resolution: "mimic-fn@npm:2.1.0" - checksum: d2421a3444848ce7f84bd49115ddacff29c15745db73f54041edc906c14b131a38d05298dae3081667627a59b2eb1ca4b436ff2e1b80f69679522410418b478a - languageName: node - linkType: hard - -"mimic-response@npm:^1.0.0, mimic-response@npm:^1.0.1": - version: 1.0.1 - resolution: "mimic-response@npm:1.0.1" - checksum: 034c78753b0e622bc03c983663b1cdf66d03861050e0c8606563d149bc2b02d63f62ce4d32be4ab50d0553ae0ffe647fc34d1f5281184c6e1e8cf4d85e8d9823 - languageName: node - linkType: hard - -"mini-css-extract-plugin@npm:^2.6.1": - version: 2.8.1 - resolution: "mini-css-extract-plugin@npm:2.8.1" - dependencies: - schema-utils: ^4.0.0 - tapable: ^2.2.1 - peerDependencies: - webpack: ^5.0.0 - checksum: 209f15a18cc304b0f12911927ea7e6ca4f0c3168dcc95d741811c933c4610fdb02a8486fc1a7782a6cde75c8e1880e175b7acf04e5ddfba2b8ed045d306ef04f - languageName: node - linkType: hard - -"minimalistic-assert@npm:^1.0.0": - version: 1.0.1 - resolution: "minimalistic-assert@npm:1.0.1" - checksum: cc7974a9268fbf130fb055aff76700d7e2d8be5f761fb5c60318d0ed010d839ab3661a533ad29a5d37653133385204c503bfac995aaa4236f4e847461ea32ba7 - languageName: node - linkType: hard - -"minimatch@npm:3.1.2, minimatch@npm:^3.0.4, minimatch@npm:^3.0.5, minimatch@npm:^3.1.1, minimatch@npm:^3.1.2": - version: 3.1.2 - resolution: "minimatch@npm:3.1.2" - dependencies: - brace-expansion: ^1.1.7 - checksum: c154e566406683e7bcb746e000b84d74465b3a832c45d59912b9b55cd50dee66e5c4b1e5566dba26154040e51672f9aa450a9aef0c97cfc7336b78b7afb9540a - languageName: node - linkType: hard - -"minimatch@npm:^9.0.0, minimatch@npm:^9.0.1, minimatch@npm:^9.0.3": - version: 9.0.3 - resolution: "minimatch@npm:9.0.3" - dependencies: - brace-expansion: ^2.0.1 - checksum: 253487976bf485b612f16bf57463520a14f512662e592e95c571afdab1442a6a6864b6c88f248ce6fc4ff0b6de04ac7aa6c8bb51e868e99d1d65eb0658a708b5 - languageName: node - linkType: hard - -"minimist@npm:^1.2.0, minimist@npm:^1.2.5, minimist@npm:^1.2.6": - version: 1.2.8 - resolution: "minimist@npm:1.2.8" - checksum: 75a6d645fb122dad29c06a7597bddea977258957ed88d7a6df59b5cd3fe4a527e253e9bbf2e783e4b73657f9098b96a5fe96ab8a113655d4109108577ecf85b0 - languageName: node - linkType: hard - -"minipass-collect@npm:^2.0.1": - version: 2.0.1 - resolution: "minipass-collect@npm:2.0.1" - dependencies: - minipass: ^7.0.3 - checksum: b251bceea62090f67a6cced7a446a36f4cd61ee2d5cea9aee7fff79ba8030e416327a1c5aa2908dc22629d06214b46d88fdab8c51ac76bacbf5703851b5ad342 - languageName: node - linkType: hard - -"minipass-fetch@npm:^3.0.0": - version: 3.0.4 - resolution: "minipass-fetch@npm:3.0.4" - dependencies: - encoding: ^0.1.13 - minipass: ^7.0.3 - minipass-sized: ^1.0.3 - minizlib: ^2.1.2 - dependenciesMeta: - encoding: - optional: true - checksum: af7aad15d5c128ab1ebe52e043bdf7d62c3c6f0cecb9285b40d7b395e1375b45dcdfd40e63e93d26a0e8249c9efd5c325c65575aceee192883970ff8cb11364a - languageName: node - linkType: hard - -"minipass-flush@npm:^1.0.5": - version: 1.0.5 - resolution: "minipass-flush@npm:1.0.5" - dependencies: - minipass: ^3.0.0 - checksum: 56269a0b22bad756a08a94b1ffc36b7c9c5de0735a4dd1ab2b06c066d795cfd1f0ac44a0fcae13eece5589b908ecddc867f04c745c7009be0b566421ea0944cf - languageName: node - linkType: hard - -"minipass-pipeline@npm:^1.2.4": - version: 1.2.4 - resolution: "minipass-pipeline@npm:1.2.4" - dependencies: - minipass: ^3.0.0 - checksum: b14240dac0d29823c3d5911c286069e36d0b81173d7bdf07a7e4a91ecdef92cdff4baaf31ea3746f1c61e0957f652e641223970870e2353593f382112257971b - languageName: node - linkType: hard - -"minipass-sized@npm:^1.0.3": - version: 1.0.3 - resolution: "minipass-sized@npm:1.0.3" - dependencies: - minipass: ^3.0.0 - checksum: 79076749fcacf21b5d16dd596d32c3b6bf4d6e62abb43868fac21674078505c8b15eaca4e47ed844985a4514854f917d78f588fcd029693709417d8f98b2bd60 - languageName: node - linkType: hard - -"minipass@npm:^3.0.0": - version: 3.3.6 - resolution: "minipass@npm:3.3.6" - dependencies: - yallist: ^4.0.0 - checksum: a30d083c8054cee83cdcdc97f97e4641a3f58ae743970457b1489ce38ee1167b3aaf7d815cd39ec7a99b9c40397fd4f686e83750e73e652b21cb516f6d845e48 - languageName: node - linkType: hard - -"minipass@npm:^5.0.0": - version: 5.0.0 - resolution: "minipass@npm:5.0.0" - checksum: 425dab288738853fded43da3314a0b5c035844d6f3097a8e3b5b29b328da8f3c1af6fc70618b32c29ff906284cf6406b6841376f21caaadd0793c1d5a6a620ea - languageName: node - linkType: hard - -"minipass@npm:^5.0.0 || ^6.0.2 || ^7.0.0, minipass@npm:^7.0.2, minipass@npm:^7.0.3": - version: 7.0.4 - resolution: "minipass@npm:7.0.4" - checksum: 87585e258b9488caf2e7acea242fd7856bbe9a2c84a7807643513a338d66f368c7d518200ad7b70a508664d408aa000517647b2930c259a8b1f9f0984f344a21 - languageName: node - linkType: hard - -"minizlib@npm:^2.1.1, minizlib@npm:^2.1.2": - version: 2.1.2 - resolution: "minizlib@npm:2.1.2" - dependencies: - minipass: ^3.0.0 - yallist: ^4.0.0 - checksum: f1fdeac0b07cf8f30fcf12f4b586795b97be856edea22b5e9072707be51fc95d41487faec3f265b42973a304fe3a64acd91a44a3826a963e37b37bafde0212c3 - languageName: node - linkType: hard - -"mkdirp@npm:^1.0.3": - version: 1.0.4 - resolution: "mkdirp@npm:1.0.4" - bin: - mkdirp: bin/cmd.js - checksum: a96865108c6c3b1b8e1d5e9f11843de1e077e57737602de1b82030815f311be11f96f09cce59bd5b903d0b29834733e5313f9301e3ed6d6f6fba2eae0df4298f - languageName: node - linkType: hard - -"mkdirp@npm:^3.0.1": - version: 3.0.1 - resolution: "mkdirp@npm:3.0.1" - bin: - mkdirp: dist/cjs/src/bin.js - checksum: 972deb188e8fb55547f1e58d66bd6b4a3623bf0c7137802582602d73e6480c1c2268dcbafbfb1be466e00cc7e56ac514d7fd9334b7cf33e3e2ab547c16f83a8d - languageName: node - linkType: hard - -"mrmime@npm:^2.0.0": - version: 2.0.0 - resolution: "mrmime@npm:2.0.0" - checksum: f6fe11ec667c3d96f1ce5fd41184ed491d5f0a5f4045e82446a471ccda5f84c7f7610dff61d378b73d964f73a320bd7f89788f9e6b9403e32cc4be28ba99f569 - languageName: node - linkType: hard - -"ms@npm:2.0.0": - version: 2.0.0 - resolution: "ms@npm:2.0.0" - checksum: 0e6a22b8b746d2e0b65a430519934fefd41b6db0682e3477c10f60c76e947c4c0ad06f63ffdf1d78d335f83edee8c0aa928aa66a36c7cd95b69b26f468d527f4 - languageName: node - linkType: hard - -"ms@npm:2.1.2": - version: 2.1.2 - resolution: "ms@npm:2.1.2" - checksum: 673cdb2c3133eb050c745908d8ce632ed2c02d85640e2edb3ace856a2266a813b30c613569bf3354fdf4ea7d1a1494add3bfa95e2713baa27d0c2c71fc44f58f - languageName: node - linkType: hard - -"ms@npm:2.1.3, ms@npm:^2.1.1": - version: 2.1.3 - resolution: "ms@npm:2.1.3" - checksum: aa92de608021b242401676e35cfa5aa42dd70cbdc082b916da7fb925c542173e36bce97ea3e804923fe92c0ad991434e4a38327e15a1b5b5f945d66df615ae6d - languageName: node - linkType: hard - -"multicast-dns@npm:^7.2.5": - version: 7.2.5 - resolution: "multicast-dns@npm:7.2.5" - dependencies: - dns-packet: ^5.2.2 - thunky: ^1.0.2 - bin: - multicast-dns: cli.js - checksum: 00b8a57df152d4cd0297946320a94b7c3cdf75a46a2247f32f958a8927dea42958177f9b7fdae69fab2e4e033fb3416881af1f5e9055a3e1542888767139e2fb - languageName: node - linkType: hard - -"nanoid@npm:^3.3.7": - version: 3.3.7 - resolution: "nanoid@npm:3.3.7" - bin: - nanoid: bin/nanoid.cjs - checksum: d36c427e530713e4ac6567d488b489a36582ef89da1d6d4e3b87eded11eb10d7042a877958c6f104929809b2ab0bafa17652b076cdf84324aa75b30b722204f2 - languageName: node - linkType: hard - -"natural-compare@npm:^1.4.0": - version: 1.4.0 - resolution: "natural-compare@npm:1.4.0" - checksum: 23ad088b08f898fc9b53011d7bb78ec48e79de7627e01ab5518e806033861bef68d5b0cd0e2205c2f36690ac9571ff6bcb05eb777ced2eeda8d4ac5b44592c3d - languageName: node - linkType: hard - -"negotiator@npm:0.6.3, negotiator@npm:^0.6.3": - version: 0.6.3 - resolution: "negotiator@npm:0.6.3" - checksum: b8ffeb1e262eff7968fc90a2b6767b04cfd9842582a9d0ece0af7049537266e7b2506dfb1d107a32f06dd849ab2aea834d5830f7f4d0e5cb7d36e1ae55d021d9 - languageName: node - linkType: hard - -"neo-async@npm:^2.6.2": - version: 2.6.2 - resolution: "neo-async@npm:2.6.2" - checksum: deac9f8d00eda7b2e5cd1b2549e26e10a0faa70adaa6fdadca701cc55f49ee9018e427f424bac0c790b7c7e2d3068db97f3093f1093975f2acb8f8818b936ed9 - languageName: node - linkType: hard - -"no-case@npm:^3.0.4": - version: 3.0.4 - resolution: "no-case@npm:3.0.4" - dependencies: - lower-case: ^2.0.2 - tslib: ^2.0.3 - checksum: 0b2ebc113dfcf737d48dde49cfebf3ad2d82a8c3188e7100c6f375e30eafbef9e9124aadc3becef237b042fd5eb0aad2fd78669c20972d045bbe7fea8ba0be5c - languageName: node - linkType: hard - -"node-domexception@npm:^1.0.0": - version: 1.0.0 - resolution: "node-domexception@npm:1.0.0" - checksum: ee1d37dd2a4eb26a8a92cd6b64dfc29caec72bff5e1ed9aba80c294f57a31ba4895a60fd48347cf17dd6e766da0ae87d75657dfd1f384ebfa60462c2283f5c7f - languageName: node - linkType: hard - -"node-emoji@npm:^1.10.0": - version: 1.11.0 - resolution: "node-emoji@npm:1.11.0" - dependencies: - lodash: ^4.17.21 - checksum: e8c856c04a1645062112a72e59a98b203505ed5111ff84a3a5f40611afa229b578c7d50f1e6a7f17aa62baeea4a640d2e2f61f63afc05423aa267af10977fb2b - languageName: node - linkType: hard - -"node-fetch@npm:^2.6.12": - version: 2.7.0 - resolution: "node-fetch@npm:2.7.0" - dependencies: - whatwg-url: ^5.0.0 - peerDependencies: - encoding: ^0.1.0 - peerDependenciesMeta: - encoding: - optional: true - checksum: d76d2f5edb451a3f05b15115ec89fc6be39de37c6089f1b6368df03b91e1633fd379a7e01b7ab05089a25034b2023d959b47e59759cb38d88341b2459e89d6e5 - languageName: node - linkType: hard - -"node-fetch@npm:^3.3.2": - version: 3.3.2 - resolution: "node-fetch@npm:3.3.2" - dependencies: - data-uri-to-buffer: ^4.0.0 - fetch-blob: ^3.1.4 - formdata-polyfill: ^4.0.10 - checksum: 06a04095a2ddf05b0830a0d5302699704d59bda3102894ea64c7b9d4c865ecdff2d90fd042df7f5bc40337266961cb6183dcc808ea4f3000d024f422b462da92 - languageName: node - linkType: hard - -"node-forge@npm:^1": - version: 1.3.1 - resolution: "node-forge@npm:1.3.1" - checksum: 08fb072d3d670599c89a1704b3e9c649ff1b998256737f0e06fbd1a5bf41cae4457ccaee32d95052d80bbafd9ffe01284e078c8071f0267dc9744e51c5ed42a9 - languageName: node - linkType: hard - -"node-gyp@npm:latest": - version: 10.0.1 - resolution: "node-gyp@npm:10.0.1" - dependencies: - env-paths: ^2.2.0 - exponential-backoff: ^3.1.1 - glob: ^10.3.10 - graceful-fs: ^4.2.6 - make-fetch-happen: ^13.0.0 - nopt: ^7.0.0 - proc-log: ^3.0.0 - semver: ^7.3.5 - tar: ^6.1.2 - which: ^4.0.0 - bin: - node-gyp: bin/node-gyp.js - checksum: 60a74e66d364903ce02049966303a57f898521d139860ac82744a5fdd9f7b7b3b61f75f284f3bfe6e6add3b8f1871ce305a1d41f775c7482de837b50c792223f - languageName: node - linkType: hard - -"node-releases@npm:^2.0.14": - version: 2.0.14 - resolution: "node-releases@npm:2.0.14" - checksum: 59443a2f77acac854c42d321bf1b43dea0aef55cd544c6a686e9816a697300458d4e82239e2d794ea05f7bbbc8a94500332e2d3ac3f11f52e4b16cbe638b3c41 - languageName: node - linkType: hard - -"non-layered-tidy-tree-layout@npm:^2.0.2": - version: 2.0.2 - resolution: "non-layered-tidy-tree-layout@npm:2.0.2" - checksum: 5defc1c459001b22816a4fb8b86259b9b76e7f3090df576122a41c760133ab2061934cacd6f176c98c2ae4fee3879b97941e8897e8882985cbfe830f155cd158 - languageName: node - linkType: hard - -"nopt@npm:^7.0.0": - version: 7.2.0 - resolution: "nopt@npm:7.2.0" - dependencies: - abbrev: ^2.0.0 - bin: - nopt: bin/nopt.js - checksum: a9c0f57fb8cb9cc82ae47192ca2b7ef00e199b9480eed202482c962d61b59a7fbe7541920b2a5839a97b42ee39e288c0aed770e38057a608d7f579389dfde410 - languageName: node - linkType: hard - -"normalize-path@npm:^3.0.0, normalize-path@npm:~3.0.0": - version: 3.0.0 - resolution: "normalize-path@npm:3.0.0" - checksum: 88eeb4da891e10b1318c4b2476b6e2ecbeb5ff97d946815ffea7794c31a89017c70d7f34b3c2ebf23ef4e9fc9fb99f7dffe36da22011b5b5c6ffa34f4873ec20 - languageName: node - linkType: hard - -"normalize-range@npm:^0.1.2": - version: 0.1.2 - resolution: "normalize-range@npm:0.1.2" - checksum: 9b2f14f093593f367a7a0834267c24f3cb3e887a2d9809c77d8a7e5fd08738bcd15af46f0ab01cc3a3d660386f015816b5c922cea8bf2ee79777f40874063184 - languageName: node - linkType: hard - -"normalize-url@npm:^4.1.0": - version: 4.5.1 - resolution: "normalize-url@npm:4.5.1" - checksum: 9a9dee01df02ad23e171171893e56e22d752f7cff86fb96aafeae074819b572ea655b60f8302e2d85dbb834dc885c972cc1c573892fea24df46b2765065dd05a - languageName: node - linkType: hard - -"normalize-url@npm:^6.0.1": - version: 6.1.0 - resolution: "normalize-url@npm:6.1.0" - checksum: 4a4944631173e7d521d6b80e4c85ccaeceb2870f315584fa30121f505a6dfd86439c5e3fdd8cd9e0e291290c41d0c3599f0cb12ab356722ed242584c30348e50 - languageName: node - linkType: hard - -"npm-normalize-package-bin@npm:^3.0.0": - version: 3.0.1 - resolution: "npm-normalize-package-bin@npm:3.0.1" - checksum: de416d720ab22137a36292ff8a333af499ea0933ef2320a8c6f56a73b0f0448227fec4db5c890d702e26d21d04f271415eab6580b5546456861cc0c19498a4bf - languageName: node - linkType: hard - -"npm-run-path@npm:^4.0.1": - version: 4.0.1 - resolution: "npm-run-path@npm:4.0.1" - dependencies: - path-key: ^3.0.0 - checksum: 5374c0cea4b0bbfdfae62da7bbdf1e1558d338335f4cacf2515c282ff358ff27b2ecb91ffa5330a8b14390ac66a1e146e10700440c1ab868208430f56b5f4d23 - languageName: node - linkType: hard - -"npm-to-yarn@npm:^2.0.0": - version: 2.2.1 - resolution: "npm-to-yarn@npm:2.2.1" - checksum: 8596169260f80add174918b742161e139ebe34688e5e4506e6826da46ca6b15ff729f42a35c24eac66d33b3aaecc57386492e0363026a292d588b1d953b46aef - languageName: node - linkType: hard - -"nprogress@npm:^0.2.0": - version: 0.2.0 - resolution: "nprogress@npm:0.2.0" - checksum: 66b7bec5d563ecf2d1c3d2815e6d5eb74ed815eee8563e0afa63d3f185ab1b9cf2ddd97e1ded263b9995c5019d26d600320e849e50f3747984daa033744619dc - languageName: node - linkType: hard - -"nth-check@npm:^2.0.1": - version: 2.1.1 - resolution: "nth-check@npm:2.1.1" - dependencies: - boolbase: ^1.0.0 - checksum: 5afc3dafcd1573b08877ca8e6148c52abd565f1d06b1eb08caf982e3fa289a82f2cae697ffb55b5021e146d60443f1590a5d6b944844e944714a5b549675bcd3 - languageName: node - linkType: hard - -"nwsapi@npm:^2.2.7": - version: 2.2.7 - resolution: "nwsapi@npm:2.2.7" - checksum: cab25f7983acec7e23490fec3ef7be608041b460504229770e3bfcf9977c41d6fe58f518994d3bd9aa3a101f501089a3d4a63536f4ff8ae4b8c4ca23bdbfda4e - languageName: node - linkType: hard - -"object-assign@npm:^4.1.0, object-assign@npm:^4.1.1": - version: 4.1.1 - resolution: "object-assign@npm:4.1.1" - checksum: fcc6e4ea8c7fe48abfbb552578b1c53e0d194086e2e6bbbf59e0a536381a292f39943c6e9628af05b5528aa5e3318bb30d6b2e53cadaf5b8fe9e12c4b69af23f - languageName: node - linkType: hard - -"object-inspect@npm:^1.13.1": - version: 1.13.1 - resolution: "object-inspect@npm:1.13.1" - checksum: 7d9fa9221de3311dcb5c7c307ee5dc011cdd31dc43624b7c184b3840514e118e05ef0002be5388304c416c0eb592feb46e983db12577fc47e47d5752fbbfb61f - languageName: node - linkType: hard - -"object-keys@npm:^1.1.1": - version: 1.1.1 - resolution: "object-keys@npm:1.1.1" - checksum: b363c5e7644b1e1b04aa507e88dcb8e3a2f52b6ffd0ea801e4c7a62d5aa559affe21c55a07fd4b1fd55fc03a33c610d73426664b20032405d7b92a1414c34d6a - languageName: node - linkType: hard - -"object.assign@npm:^4.1.0, object.assign@npm:^4.1.2, object.assign@npm:^4.1.4, object.assign@npm:^4.1.5": - version: 4.1.5 - resolution: "object.assign@npm:4.1.5" - dependencies: - call-bind: ^1.0.5 - define-properties: ^1.2.1 - has-symbols: ^1.0.3 - object-keys: ^1.1.1 - checksum: f9aeac0541661370a1fc86e6a8065eb1668d3e771f7dbb33ee54578201336c057b21ee61207a186dd42db0c62201d91aac703d20d12a79fc79c353eed44d4e25 - languageName: node - linkType: hard - -"object.entries@npm:^1.1.5, object.entries@npm:^1.1.7": - version: 1.1.7 - resolution: "object.entries@npm:1.1.7" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - checksum: da287d434e7e32989586cd734382364ba826a2527f2bc82e6acbf9f9bfafa35d51018b66ec02543ffdfa2a5ba4af2b6f1ca6e588c65030cb4fd9c67d6ced594c - languageName: node - linkType: hard - -"object.fromentries@npm:^2.0.7": - version: 2.0.7 - resolution: "object.fromentries@npm:2.0.7" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - checksum: 7341ce246e248b39a431b87a9ddd331ff52a454deb79afebc95609f94b1f8238966cf21f52188f2a353f0fdf83294f32f1ebf1f7826aae915ebad21fd0678065 - languageName: node - linkType: hard - -"object.groupby@npm:^1.0.1": - version: 1.0.2 - resolution: "object.groupby@npm:1.0.2" - dependencies: - array.prototype.filter: ^1.0.3 - call-bind: ^1.0.5 - define-properties: ^1.2.1 - es-abstract: ^1.22.3 - es-errors: ^1.0.0 - checksum: 5f95c2a3a5f60a1a8c05fdd71455110bd3d5e6af0350a20b133d8cd70f9c3385d5c7fceb6a17b940c3c61752d9c202d10d5e2eb5ce73b89002656a87e7bf767a - languageName: node - linkType: hard - -"object.hasown@npm:^1.1.3": - version: 1.1.3 - resolution: "object.hasown@npm:1.1.3" - dependencies: - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - checksum: 76bc17356f6124542fb47e5d0e78d531eafa4bba3fc2d6fc4b1a8ce8b6878912366c0d99f37ce5c84ada8fd79df7aa6ea1214fddf721f43e093ad2df51f27da1 - languageName: node - linkType: hard - -"object.values@npm:^1.1.6, object.values@npm:^1.1.7": - version: 1.1.7 - resolution: "object.values@npm:1.1.7" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - checksum: f3e4ae4f21eb1cc7cebb6ce036d4c67b36e1c750428d7b7623c56a0db90edced63d08af8a316d81dfb7c41a3a5fa81b05b7cc9426e98d7da986b1682460f0777 - languageName: node - linkType: hard - -"obuf@npm:^1.0.0, obuf@npm:^1.1.2": - version: 1.1.2 - resolution: "obuf@npm:1.1.2" - checksum: 41a2ba310e7b6f6c3b905af82c275bf8854896e2e4c5752966d64cbcd2f599cfffd5932006bcf3b8b419dfdacebb3a3912d5d94e10f1d0acab59876c8757f27f - languageName: node - linkType: hard - -"on-finished@npm:2.4.1": - version: 2.4.1 - resolution: "on-finished@npm:2.4.1" - dependencies: - ee-first: 1.1.1 - checksum: d20929a25e7f0bb62f937a425b5edeb4e4cde0540d77ba146ec9357f00b0d497cdb3b9b05b9c8e46222407d1548d08166bff69cc56dfa55ba0e4469228920ff0 - languageName: node - linkType: hard - -"on-headers@npm:~1.0.2": - version: 1.0.2 - resolution: "on-headers@npm:1.0.2" - checksum: 2bf13467215d1e540a62a75021e8b318a6cfc5d4fc53af8e8f84ad98dbcea02d506c6d24180cd62e1d769c44721ba542f3154effc1f7579a8288c9f7873ed8e5 - languageName: node - linkType: hard - -"once@npm:^1.3.0, once@npm:^1.3.1, once@npm:^1.4.0": - version: 1.4.0 - resolution: "once@npm:1.4.0" - dependencies: - wrappy: 1 - checksum: cd0a88501333edd640d95f0d2700fbde6bff20b3d4d9bdc521bdd31af0656b5706570d6c6afe532045a20bb8dc0849f8332d6f2a416e0ba6d3d3b98806c7db68 - languageName: node - linkType: hard - -"onetime@npm:^5.1.2": - version: 5.1.2 - resolution: "onetime@npm:5.1.2" - dependencies: - mimic-fn: ^2.1.0 - checksum: 2478859ef817fc5d4e9c2f9e5728512ddd1dbc9fb7829ad263765bb6d3b91ce699d6e2332eef6b7dff183c2f490bd3349f1666427eaba4469fba0ac38dfd0d34 - languageName: node - linkType: hard - -"open@npm:^8.0.9, open@npm:^8.4.0": - version: 8.4.2 - resolution: "open@npm:8.4.2" - dependencies: - define-lazy-prop: ^2.0.0 - is-docker: ^2.1.1 - is-wsl: ^2.2.0 - checksum: 6388bfff21b40cb9bd8f913f9130d107f2ed4724ea81a8fd29798ee322b361ca31fa2cdfb491a5c31e43a3996cfe9566741238c7a741ada8d7af1cb78d85cf26 - languageName: node - linkType: hard - -"opener@npm:^1.5.2": - version: 1.5.2 - resolution: "opener@npm:1.5.2" - bin: - opener: bin/opener-bin.js - checksum: 33b620c0d53d5b883f2abc6687dd1c5fd394d270dbe33a6356f2d71e0a2ec85b100d5bac94694198ccf5c30d592da863b2292c5539009c715a9c80c697b4f6cc - languageName: node - linkType: hard - -"optionator@npm:^0.9.3": - version: 0.9.3 - resolution: "optionator@npm:0.9.3" - dependencies: - "@aashutoshrathi/word-wrap": ^1.2.3 - deep-is: ^0.1.3 - fast-levenshtein: ^2.0.6 - levn: ^0.4.1 - prelude-ls: ^1.2.1 - type-check: ^0.4.0 - checksum: 09281999441f2fe9c33a5eeab76700795365a061563d66b098923eb719251a42bdbe432790d35064d0816ead9296dbeb1ad51a733edf4167c96bd5d0882e428a - languageName: node - linkType: hard - -"p-cancelable@npm:^1.0.0": - version: 1.1.0 - resolution: "p-cancelable@npm:1.1.0" - checksum: 2db3814fef6d9025787f30afaee4496a8857a28be3c5706432cbad76c688a6db1874308f48e364a42f5317f5e41e8e7b4f2ff5c8ff2256dbb6264bc361704ece - languageName: node - linkType: hard - -"p-limit@npm:^2.0.0, p-limit@npm:^2.2.0": - version: 2.3.0 - resolution: "p-limit@npm:2.3.0" - dependencies: - p-try: ^2.0.0 - checksum: 84ff17f1a38126c3314e91ecfe56aecbf36430940e2873dadaa773ffe072dc23b7af8e46d4b6485d302a11673fe94c6b67ca2cfbb60c989848b02100d0594ac1 - languageName: node - linkType: hard - -"p-limit@npm:^3.0.2": - version: 3.1.0 - resolution: "p-limit@npm:3.1.0" - dependencies: - yocto-queue: ^0.1.0 - checksum: 7c3690c4dbf62ef625671e20b7bdf1cbc9534e83352a2780f165b0d3ceba21907e77ad63401708145ca4e25bfc51636588d89a8c0aeb715e6c37d1c066430360 - languageName: node - linkType: hard - -"p-locate@npm:^3.0.0": - version: 3.0.0 - resolution: "p-locate@npm:3.0.0" - dependencies: - p-limit: ^2.0.0 - checksum: 83991734a9854a05fe9dbb29f707ea8a0599391f52daac32b86f08e21415e857ffa60f0e120bfe7ce0cc4faf9274a50239c7895fc0d0579d08411e513b83a4ae - languageName: node - linkType: hard - -"p-locate@npm:^4.1.0": - version: 4.1.0 - resolution: "p-locate@npm:4.1.0" - dependencies: - p-limit: ^2.2.0 - checksum: 513bd14a455f5da4ebfcb819ef706c54adb09097703de6aeaa5d26fe5ea16df92b48d1ac45e01e3944ce1e6aa2a66f7f8894742b8c9d6e276e16cd2049a2b870 - languageName: node - linkType: hard - -"p-locate@npm:^5.0.0": - version: 5.0.0 - resolution: "p-locate@npm:5.0.0" - dependencies: - p-limit: ^3.0.2 - checksum: 1623088f36cf1cbca58e9b61c4e62bf0c60a07af5ae1ca99a720837356b5b6c5ba3eb1b2127e47a06865fee59dd0453cad7cc844cda9d5a62ac1a5a51b7c86d3 - languageName: node - linkType: hard - -"p-map@npm:^4.0.0": - version: 4.0.0 - resolution: "p-map@npm:4.0.0" - dependencies: - aggregate-error: ^3.0.0 - checksum: cb0ab21ec0f32ddffd31dfc250e3afa61e103ef43d957cc45497afe37513634589316de4eb88abdfd969fe6410c22c0b93ab24328833b8eb1ccc087fc0442a1c - languageName: node - linkType: hard - -"p-retry@npm:^4.5.0": - version: 4.6.2 - resolution: "p-retry@npm:4.6.2" - dependencies: - "@types/retry": 0.12.0 - retry: ^0.13.1 - checksum: 45c270bfddaffb4a895cea16cb760dcc72bdecb6cb45fef1971fa6ea2e91ddeafddefe01e444ac73e33b1b3d5d29fb0dd18a7effb294262437221ddc03ce0f2e - languageName: node - linkType: hard - -"p-try@npm:^2.0.0": - version: 2.2.0 - resolution: "p-try@npm:2.2.0" - checksum: f8a8e9a7693659383f06aec604ad5ead237c7a261c18048a6e1b5b85a5f8a067e469aa24f5bc009b991ea3b058a87f5065ef4176793a200d4917349881216cae - languageName: node - linkType: hard - -"package-json@npm:^6.3.0": - version: 6.5.0 - resolution: "package-json@npm:6.5.0" - dependencies: - got: ^9.6.0 - registry-auth-token: ^4.0.0 - registry-url: ^5.0.0 - semver: ^6.2.0 - checksum: cc9f890d3667d7610e6184decf543278b87f657d1ace0deb4a9c9155feca738ef88f660c82200763d3348010f4e42e9c7adc91e96ab0f86a770955995b5351e2 - languageName: node - linkType: hard - -"param-case@npm:^3.0.4": - version: 3.0.4 - resolution: "param-case@npm:3.0.4" - dependencies: - dot-case: ^3.0.4 - tslib: ^2.0.3 - checksum: b34227fd0f794e078776eb3aa6247442056cb47761e9cd2c4c881c86d84c64205f6a56ef0d70b41ee7d77da02c3f4ed2f88e3896a8fefe08bdfb4deca037c687 - languageName: node - linkType: hard - -"parent-module@npm:^1.0.0": - version: 1.0.1 - resolution: "parent-module@npm:1.0.1" - dependencies: - callsites: ^3.0.0 - checksum: 6ba8b255145cae9470cf5551eb74be2d22281587af787a2626683a6c20fbb464978784661478dd2a3f1dad74d1e802d403e1b03c1a31fab310259eec8ac560ff - languageName: node - linkType: hard - -"parse-entities@npm:^2.0.0": - version: 2.0.0 - resolution: "parse-entities@npm:2.0.0" - dependencies: - character-entities: ^1.0.0 - character-entities-legacy: ^1.0.0 - character-reference-invalid: ^1.0.0 - is-alphanumerical: ^1.0.0 - is-decimal: ^1.0.0 - is-hexadecimal: ^1.0.0 - checksum: 7addfd3e7d747521afac33c8121a5f23043c6973809756920d37e806639b4898385d386fcf4b3c8e2ecf1bc28aac5ae97df0b112d5042034efbe80f44081ebce - languageName: node - linkType: hard - -"parse-json@npm:^5.0.0, parse-json@npm:^5.2.0": - version: 5.2.0 - resolution: "parse-json@npm:5.2.0" - dependencies: - "@babel/code-frame": ^7.0.0 - error-ex: ^1.3.1 - json-parse-even-better-errors: ^2.3.0 - lines-and-columns: ^1.1.6 - checksum: 62085b17d64da57f40f6afc2ac1f4d95def18c4323577e1eced571db75d9ab59b297d1d10582920f84b15985cbfc6b6d450ccbf317644cfa176f3ed982ad87e2 - languageName: node - linkType: hard - -"parse-numeric-range@npm:^1.3.0": - version: 1.3.0 - resolution: "parse-numeric-range@npm:1.3.0" - checksum: 289ca126d5b8ace7325b199218de198014f58ea6895ccc88a5247491d07f0143bf047f80b4a31784f1ca8911762278d7d6ecb90a31dfae31da91cc1a2524c8ce - languageName: node - linkType: hard - -"parse5-htmlparser2-tree-adapter@npm:^7.0.0": - version: 7.0.0 - resolution: "parse5-htmlparser2-tree-adapter@npm:7.0.0" - dependencies: - domhandler: ^5.0.2 - parse5: ^7.0.0 - checksum: fc5d01e07733142a1baf81de5c2a9c41426c04b7ab29dd218acb80cd34a63177c90aff4a4aee66cf9f1d0aeecff1389adb7452ad6f8af0a5888e3e9ad6ef733d - languageName: node - linkType: hard - -"parse5@npm:^6.0.0": - version: 6.0.1 - resolution: "parse5@npm:6.0.1" - checksum: 7d569a176c5460897f7c8f3377eff640d54132b9be51ae8a8fa4979af940830b2b0c296ce75e5bd8f4041520aadde13170dbdec44889975f906098ea0002f4bd - languageName: node - linkType: hard - -"parse5@npm:^7.0.0, parse5@npm:^7.1.2": - version: 7.1.2 - resolution: "parse5@npm:7.1.2" - dependencies: - entities: ^4.4.0 - checksum: 59465dd05eb4c5ec87b76173d1c596e152a10e290b7abcda1aecf0f33be49646ea74840c69af975d7887543ea45564801736356c568d6b5e71792fd0f4055713 - languageName: node - linkType: hard - -"parseurl@npm:~1.3.2, parseurl@npm:~1.3.3": - version: 1.3.3 - resolution: "parseurl@npm:1.3.3" - checksum: 407cee8e0a3a4c5cd472559bca8b6a45b82c124e9a4703302326e9ab60fc1081442ada4e02628efef1eb16197ddc7f8822f5a91fd7d7c86b51f530aedb17dfa2 - languageName: node - linkType: hard - -"pascal-case@npm:^3.1.2": - version: 3.1.2 - resolution: "pascal-case@npm:3.1.2" - dependencies: - no-case: ^3.0.4 - tslib: ^2.0.3 - checksum: ba98bfd595fc91ef3d30f4243b1aee2f6ec41c53b4546bfa3039487c367abaa182471dcfc830a1f9e1a0df00c14a370514fa2b3a1aacc68b15a460c31116873e - languageName: node - linkType: hard - -"path-browserify@npm:^1.0.1": - version: 1.0.1 - resolution: "path-browserify@npm:1.0.1" - checksum: c6d7fa376423fe35b95b2d67990060c3ee304fc815ff0a2dc1c6c3cfaff2bd0d572ee67e18f19d0ea3bbe32e8add2a05021132ac40509416459fffee35200699 - languageName: node - linkType: hard - -"path-exists@npm:^3.0.0": - version: 3.0.0 - resolution: "path-exists@npm:3.0.0" - checksum: 96e92643aa34b4b28d0de1cd2eba52a1c5313a90c6542d03f62750d82480e20bfa62bc865d5cfc6165f5fcd5aeb0851043c40a39be5989646f223300021bae0a - languageName: node - linkType: hard - -"path-exists@npm:^4.0.0": - version: 4.0.0 - resolution: "path-exists@npm:4.0.0" - checksum: 505807199dfb7c50737b057dd8d351b82c033029ab94cb10a657609e00c1bc53b951cfdbccab8de04c5584d5eff31128ce6afd3db79281874a5ef2adbba55ed1 - languageName: node - linkType: hard - -"path-is-absolute@npm:^1.0.0": - version: 1.0.1 - resolution: "path-is-absolute@npm:1.0.1" - checksum: 060840f92cf8effa293bcc1bea81281bd7d363731d214cbe5c227df207c34cd727430f70c6037b5159c8a870b9157cba65e775446b0ab06fd5ecc7e54615a3b8 - languageName: node - linkType: hard - -"path-is-inside@npm:1.0.2": - version: 1.0.2 - resolution: "path-is-inside@npm:1.0.2" - checksum: 0b5b6c92d3018b82afb1f74fe6de6338c4c654de4a96123cb343f2b747d5606590ac0c890f956ed38220a4ab59baddfd7b713d78a62d240b20b14ab801fa02cb - languageName: node - linkType: hard - -"path-key@npm:^3.0.0, path-key@npm:^3.1.0": - version: 3.1.1 - resolution: "path-key@npm:3.1.1" - checksum: 55cd7a9dd4b343412a8386a743f9c746ef196e57c823d90ca3ab917f90ab9f13dd0ded27252ba49dbdfcab2b091d998bc446f6220cd3cea65db407502a740020 - languageName: node - linkType: hard - -"path-parse@npm:^1.0.7": - version: 1.0.7 - resolution: "path-parse@npm:1.0.7" - checksum: 49abf3d81115642938a8700ec580da6e830dde670be21893c62f4e10bd7dd4c3742ddc603fe24f898cba7eb0c6bc1777f8d9ac14185d34540c6d4d80cd9cae8a - languageName: node - linkType: hard - -"path-scurry@npm:^1.10.1": - version: 1.10.1 - resolution: "path-scurry@npm:1.10.1" - dependencies: - lru-cache: ^9.1.1 || ^10.0.0 - minipass: ^5.0.0 || ^6.0.2 || ^7.0.0 - checksum: e2557cff3a8fb8bc07afdd6ab163a92587884f9969b05bbbaf6fe7379348bfb09af9ed292af12ed32398b15fb443e81692047b786d1eeb6d898a51eb17ed7d90 - languageName: node - linkType: hard - -"path-to-regexp@npm:0.1.7": - version: 0.1.7 - resolution: "path-to-regexp@npm:0.1.7" - checksum: 69a14ea24db543e8b0f4353305c5eac6907917031340e5a8b37df688e52accd09e3cebfe1660b70d76b6bd89152f52183f28c74813dbf454ba1a01c82a38abce - languageName: node - linkType: hard - -"path-to-regexp@npm:2.2.1": - version: 2.2.1 - resolution: "path-to-regexp@npm:2.2.1" - checksum: b921a74e7576e25b06ad1635abf7e8125a29220d2efc2b71d74b9591f24a27e6f09078fa9a1b27516a097ea0637b7cab79d19b83d7f36a8ef3ef5422770e89d9 - languageName: node - linkType: hard - -"path-to-regexp@npm:^1.7.0": - version: 1.8.0 - resolution: "path-to-regexp@npm:1.8.0" - dependencies: - isarray: 0.0.1 - checksum: 709f6f083c0552514ef4780cb2e7e4cf49b0cc89a97439f2b7cc69a608982b7690fb5d1720a7473a59806508fc2dae0be751ba49f495ecf89fd8fbc62abccbcd - languageName: node - linkType: hard - -"path-type@npm:^4.0.0": - version: 4.0.0 - resolution: "path-type@npm:4.0.0" - checksum: 5b1e2daa247062061325b8fdbfd1fb56dde0a448fb1455453276ea18c60685bdad23a445dc148cf87bc216be1573357509b7d4060494a6fd768c7efad833ee45 - languageName: node - linkType: hard - -"picocolors@npm:^1.0.0": - version: 1.0.0 - resolution: "picocolors@npm:1.0.0" - checksum: a2e8092dd86c8396bdba9f2b5481032848525b3dc295ce9b57896f931e63fc16f79805144321f72976383fc249584672a75cc18d6777c6b757603f372f745981 - languageName: node - linkType: hard - -"picomatch@npm:^2.0.4, picomatch@npm:^2.2.1, picomatch@npm:^2.2.3, picomatch@npm:^2.3.1": - version: 2.3.1 - resolution: "picomatch@npm:2.3.1" - checksum: 050c865ce81119c4822c45d3c84f1ced46f93a0126febae20737bd05ca20589c564d6e9226977df859ed5e03dc73f02584a2b0faad36e896936238238b0446cf - languageName: node - linkType: hard - -"pkg-dir@npm:^4.1.0": - version: 4.2.0 - resolution: "pkg-dir@npm:4.2.0" - dependencies: - find-up: ^4.0.0 - checksum: 9863e3f35132bf99ae1636d31ff1e1e3501251d480336edb1c211133c8d58906bed80f154a1d723652df1fda91e01c7442c2eeaf9dc83157c7ae89087e43c8d6 - languageName: node - linkType: hard - -"pkg-up@npm:^3.1.0": - version: 3.1.0 - resolution: "pkg-up@npm:3.1.0" - dependencies: - find-up: ^3.0.0 - checksum: 5bac346b7c7c903613c057ae3ab722f320716199d753f4a7d053d38f2b5955460f3e6ab73b4762c62fd3e947f58e04f1343e92089e7bb6091c90877406fcd8c8 - languageName: node - linkType: hard - -"possible-typed-array-names@npm:^1.0.0": - version: 1.0.0 - resolution: "possible-typed-array-names@npm:1.0.0" - checksum: b32d403ece71e042385cc7856385cecf1cd8e144fa74d2f1de40d1e16035dba097bc189715925e79b67bdd1472796ff168d3a90d296356c9c94d272d5b95f3ae - languageName: node - linkType: hard - -"postcss-calc@npm:^8.2.3": - version: 8.2.4 - resolution: "postcss-calc@npm:8.2.4" - dependencies: - postcss-selector-parser: ^6.0.9 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.2 - checksum: 314b4cebb0c4ed0cf8356b4bce71eca78f5a7842e6a3942a3bba49db168d5296b2bd93c3f735ae1c616f2651d94719ade33becc03c73d2d79c7394fb7f73eabb - languageName: node - linkType: hard - -"postcss-colormin@npm:^5.3.1": - version: 5.3.1 - resolution: "postcss-colormin@npm:5.3.1" - dependencies: - browserslist: ^4.21.4 - caniuse-api: ^3.0.0 - colord: ^2.9.1 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: e5778baab30877cd1f51e7dc9d2242a162aeca6360a52956acd7f668c5bc235c2ccb7e4df0370a804d65ebe00c5642366f061db53aa823f9ed99972cebd16024 - languageName: node - linkType: hard - -"postcss-convert-values@npm:^5.1.3": - version: 5.1.3 - resolution: "postcss-convert-values@npm:5.1.3" - dependencies: - browserslist: ^4.21.4 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: df48cdaffabf9737f9cfdc58a3dc2841cf282506a7a944f6c70236cff295d3a69f63de6e0935eeb8a9d3f504324e5b4e240abc29e21df9e35a02585d3060aeb5 - languageName: node - linkType: hard - -"postcss-discard-comments@npm:^5.1.2": - version: 5.1.2 - resolution: "postcss-discard-comments@npm:5.1.2" - peerDependencies: - postcss: ^8.2.15 - checksum: abfd064ebc27aeaf5037643dd51ffaff74d1fa4db56b0523d073ace4248cbb64ffd9787bd6924b0983a9d0bd0e9bf9f10d73b120e50391dc236e0d26c812fa2a - languageName: node - linkType: hard - -"postcss-discard-duplicates@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-discard-duplicates@npm:5.1.0" - peerDependencies: - postcss: ^8.2.15 - checksum: 88d6964201b1f4ed6bf7a32cefe68e86258bb6e42316ca01d9b32bdb18e7887d02594f89f4a2711d01b51ea6e3fcca8c54be18a59770fe5f4521c61d3eb6ca35 - languageName: node - linkType: hard - -"postcss-discard-empty@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-discard-empty@npm:5.1.1" - peerDependencies: - postcss: ^8.2.15 - checksum: 970adb12fae5c214c0768236ad9a821552626e77dedbf24a8213d19cc2c4a531a757cd3b8cdd3fc22fb1742471b8692a1db5efe436a71236dec12b1318ee8ff4 - languageName: node - linkType: hard - -"postcss-discard-overridden@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-discard-overridden@npm:5.1.0" - peerDependencies: - postcss: ^8.2.15 - checksum: d64d4a545aa2c81b22542895cfcddc787d24119f294d35d29b0599a1c818b3cc51f4ee80b80f5a0a09db282453dd5ac49f104c2117cc09112d0ac9b40b499a41 - languageName: node - linkType: hard - -"postcss-discard-unused@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-discard-unused@npm:5.1.0" - dependencies: - postcss-selector-parser: ^6.0.5 - peerDependencies: - postcss: ^8.2.15 - checksum: 5c09403a342a065033f5f22cefe6b402c76c2dc0aac31a736a2062d82c2a09f0ff2525b3df3a0c6f4e0ffc7a0392efd44bfe7f9d018e4cae30d15b818b216622 - languageName: node - linkType: hard - -"postcss-loader@npm:^7.0.0": - version: 7.3.4 - resolution: "postcss-loader@npm:7.3.4" - dependencies: - cosmiconfig: ^8.3.5 - jiti: ^1.20.0 - semver: ^7.5.4 - peerDependencies: - postcss: ^7.0.0 || ^8.0.1 - webpack: ^5.0.0 - checksum: f109eb266580eb296441a1ae057f93629b9b79ad962bdd3fc134417180431606a5419b6f5848c31e6d92c818e71fe96e4335a85cc5332c2f7b14e2869951e5b3 - languageName: node - linkType: hard - -"postcss-merge-idents@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-merge-idents@npm:5.1.1" - dependencies: - cssnano-utils: ^3.1.0 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: ed8a673617ea6ae3e15d69558063cb1a5eeee01732f78cdc0196ab910324abc30828724ab8dfc4cda27e8c0077542e25688470f829819a2604625a673387ec72 - languageName: node - linkType: hard - -"postcss-merge-longhand@npm:^5.1.7": - version: 5.1.7 - resolution: "postcss-merge-longhand@npm:5.1.7" - dependencies: - postcss-value-parser: ^4.2.0 - stylehacks: ^5.1.1 - peerDependencies: - postcss: ^8.2.15 - checksum: 81c3fc809f001b9b71a940148e242bdd6e2d77713d1bfffa15eb25c1f06f6648d5e57cb21645746d020a2a55ff31e1740d2b27900442913a9d53d8a01fb37e1b - languageName: node - linkType: hard - -"postcss-merge-rules@npm:^5.1.4": - version: 5.1.4 - resolution: "postcss-merge-rules@npm:5.1.4" - dependencies: - browserslist: ^4.21.4 - caniuse-api: ^3.0.0 - cssnano-utils: ^3.1.0 - postcss-selector-parser: ^6.0.5 - peerDependencies: - postcss: ^8.2.15 - checksum: 8ab6a569babe6cb412d6612adee74f053cea7edb91fa013398515ab36754b1fec830d68782ed8cdfb44cffdc6b78c79eab157bff650f428aa4460d3f3857447e - languageName: node - linkType: hard - -"postcss-minify-font-values@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-minify-font-values@npm:5.1.0" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 35e858fa41efa05acdeb28f1c76579c409fdc7eabb1744c3bd76e895bb9fea341a016746362a67609688ab2471f587202b9a3e14ea28ad677754d663a2777ece - languageName: node - linkType: hard - -"postcss-minify-gradients@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-minify-gradients@npm:5.1.1" - dependencies: - colord: ^2.9.1 - cssnano-utils: ^3.1.0 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 27354072a07c5e6dab36731103b94ca2354d4ed3c5bc6aacfdf2ede5a55fa324679d8fee5450800bc50888dbb5e9ed67569c0012040c2be128143d0cebb36d67 - languageName: node - linkType: hard - -"postcss-minify-params@npm:^5.1.4": - version: 5.1.4 - resolution: "postcss-minify-params@npm:5.1.4" - dependencies: - browserslist: ^4.21.4 - cssnano-utils: ^3.1.0 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: bd63e2cc89edcf357bb5c2a16035f6d02ef676b8cede4213b2bddd42626b3d428403849188f95576fc9f03e43ebd73a29bf61d33a581be9a510b13b7f7f100d5 - languageName: node - linkType: hard - -"postcss-minify-selectors@npm:^5.2.1": - version: 5.2.1 - resolution: "postcss-minify-selectors@npm:5.2.1" - dependencies: - postcss-selector-parser: ^6.0.5 - peerDependencies: - postcss: ^8.2.15 - checksum: 6fdbc84f99a60d56b43df8930707da397775e4c36062a106aea2fd2ac81b5e24e584a1892f4baa4469fa495cb87d1422560eaa8f6c9d500f9f0b691a5f95bab5 - languageName: node - linkType: hard - -"postcss-modules-extract-imports@npm:^3.0.0": - version: 3.0.0 - resolution: "postcss-modules-extract-imports@npm:3.0.0" - peerDependencies: - postcss: ^8.1.0 - checksum: 4b65f2f1382d89c4bc3c0a1bdc5942f52f3cb19c110c57bd591ffab3a5fee03fcf831604168205b0c1b631a3dce2255c70b61aaae3ef39d69cd7eb450c2552d2 - languageName: node - linkType: hard - -"postcss-modules-local-by-default@npm:^4.0.4": - version: 4.0.4 - resolution: "postcss-modules-local-by-default@npm:4.0.4" - dependencies: - icss-utils: ^5.0.0 - postcss-selector-parser: ^6.0.2 - postcss-value-parser: ^4.1.0 - peerDependencies: - postcss: ^8.1.0 - checksum: 578b955b0773147890caa88c30b10dfc849c5b1412a47ad51751890dba16fca9528c3ab00a19b186a8c2c150c2d08e2ce64d3d907800afee1f37c6d38252e365 - languageName: node - linkType: hard - -"postcss-modules-scope@npm:^3.1.1": - version: 3.1.1 - resolution: "postcss-modules-scope@npm:3.1.1" - dependencies: - postcss-selector-parser: ^6.0.4 - peerDependencies: - postcss: ^8.1.0 - checksum: 9e9d23abb0babc7fa243be65704d72a5a9ceb2bded4dbaef96a88210d468b03c8c3158c197f4e22300c851f08c6fdddd6ebe65f44e4c34448b45b8a2e063a16d - languageName: node - linkType: hard - -"postcss-modules-values@npm:^4.0.0": - version: 4.0.0 - resolution: "postcss-modules-values@npm:4.0.0" - dependencies: - icss-utils: ^5.0.0 - peerDependencies: - postcss: ^8.1.0 - checksum: f7f2cdf14a575b60e919ad5ea52fed48da46fe80db2733318d71d523fc87db66c835814940d7d05b5746b0426e44661c707f09bdb83592c16aea06e859409db6 - languageName: node - linkType: hard - -"postcss-normalize-charset@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-normalize-charset@npm:5.1.0" - peerDependencies: - postcss: ^8.2.15 - checksum: e79d92971fc05b8b3c9b72f3535a574e077d13c69bef68156a0965f397fdf157de670da72b797f57b0e3bac8f38155b5dd1735ecab143b9cc4032d72138193b4 - languageName: node - linkType: hard - -"postcss-normalize-display-values@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-normalize-display-values@npm:5.1.0" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: b6eb7b9b02c3bdd62bbc54e01e2b59733d73a1c156905d238e178762962efe0c6f5104544da39f32cade8a4fb40f10ff54b63a8ebfbdff51e8780afb9fbdcf86 - languageName: node - linkType: hard - -"postcss-normalize-positions@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-normalize-positions@npm:5.1.1" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: d9afc233729c496463c7b1cdd06732469f401deb387484c3a2422125b46ec10b4af794c101f8c023af56f01970b72b535e88373b9058ecccbbf88db81662b3c4 - languageName: node - linkType: hard - -"postcss-normalize-repeat-style@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-normalize-repeat-style@npm:5.1.1" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 2c6ad2b0ae10a1fda156b948c34f78c8f1e185513593de4d7e2480973586675520edfec427645fa168c337b0a6b3ceca26f92b96149741ca98a9806dad30d534 - languageName: node - linkType: hard - -"postcss-normalize-string@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-normalize-string@npm:5.1.0" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 6e549c6e5b2831e34c7bdd46d8419e2278f6af1d5eef6d26884a37c162844e60339340c57e5e06058cdbe32f27fc6258eef233e811ed2f71168ef2229c236ada - languageName: node - linkType: hard - -"postcss-normalize-timing-functions@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-normalize-timing-functions@npm:5.1.0" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: da550f50e90b0b23e17b67449a7d1efd1aa68288e66d4aa7614ca6f5cc012896be1972b7168eee673d27da36504faccf7b9f835c0f7e81243f966a42c8c030aa - languageName: node - linkType: hard - -"postcss-normalize-unicode@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-normalize-unicode@npm:5.1.1" - dependencies: - browserslist: ^4.21.4 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 4c24d26cc9f4b19a9397db4e71dd600dab690f1de8e14a3809e2aa1452dbc3791c208c38a6316bbc142f29e934fdf02858e68c94038c06174d78a4937e0f273c - languageName: node - linkType: hard - -"postcss-normalize-url@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-normalize-url@npm:5.1.0" - dependencies: - normalize-url: ^6.0.1 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 3bd4b3246d6600230bc827d1760b24cb3101827ec97570e3016cbe04dc0dd28f4dbe763245d1b9d476e182c843008fbea80823061f1d2219b96f0d5c724a24c0 - languageName: node - linkType: hard - -"postcss-normalize-whitespace@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-normalize-whitespace@npm:5.1.1" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 12d8fb6d1c1cba208cc08c1830959b7d7ad447c3f5581873f7e185f99a9a4230c43d3af21ca12c818e4690a5085a95b01635b762ad4a7bef69d642609b4c0e19 - languageName: node - linkType: hard - -"postcss-ordered-values@npm:^5.1.3": - version: 5.1.3 - resolution: "postcss-ordered-values@npm:5.1.3" - dependencies: - cssnano-utils: ^3.1.0 - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 6f3ca85b6ceffc68aadaf319d9ee4c5ac16d93195bf8cba2d1559b631555ad61941461cda6d3909faab86e52389846b2b36345cff8f0c3f4eb345b1b8efadcf9 - languageName: node - linkType: hard - -"postcss-reduce-idents@npm:^5.2.0": - version: 5.2.0 - resolution: "postcss-reduce-idents@npm:5.2.0" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: f0d644c86e160dd36ee4dd924ab7d6feacac867c87702e2f98f96b409430a62de4fec2dfc3c8731bda4e14196e29a752b4558942f0af2a3e6cd7f1f4b173db8e - languageName: node - linkType: hard - -"postcss-reduce-initial@npm:^5.1.2": - version: 5.1.2 - resolution: "postcss-reduce-initial@npm:5.1.2" - dependencies: - browserslist: ^4.21.4 - caniuse-api: ^3.0.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 55db697f85231a81f1969d54c894e4773912d9ddb914f9b03d2e73abc4030f2e3bef4d7465756d0c1acfcc2c2d69974bfb50a972ab27546a7d68b5a4fc90282b - languageName: node - linkType: hard - -"postcss-reduce-transforms@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-reduce-transforms@npm:5.1.0" - dependencies: - postcss-value-parser: ^4.2.0 - peerDependencies: - postcss: ^8.2.15 - checksum: 0c6af2cba20e3ff63eb9ad045e634ddfb9c3e5c0e614c020db2a02f3aa20632318c4ede9e0c995f9225d9a101e673de91c0a6e10bb2fa5da6d6c75d15a55882f - languageName: node - linkType: hard - -"postcss-selector-parser@npm:^6.0.2, postcss-selector-parser@npm:^6.0.4, postcss-selector-parser@npm:^6.0.5, postcss-selector-parser@npm:^6.0.9": - version: 6.0.15 - resolution: "postcss-selector-parser@npm:6.0.15" - dependencies: - cssesc: ^3.0.0 - util-deprecate: ^1.0.2 - checksum: 57decb94152111004f15e27b9c61131eb50ee10a3288e7fcf424cebbb4aba82c2817517ae718f8b5d704ee9e02a638d4a2acff8f47685c295a33ecee4fd31055 - languageName: node - linkType: hard - -"postcss-sort-media-queries@npm:^4.2.1": - version: 4.4.1 - resolution: "postcss-sort-media-queries@npm:4.4.1" - dependencies: - sort-css-media-queries: 2.1.0 - peerDependencies: - postcss: ^8.4.16 - checksum: 70b42e479bb1d15d8628678eefefd547d309e33e64262fe437630fe62d8e4b3adcae7f2b48ef8da9d3173576d4af109a9ffa9514573db1281deef324f5ea166f - languageName: node - linkType: hard - -"postcss-svgo@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-svgo@npm:5.1.0" - dependencies: - postcss-value-parser: ^4.2.0 - svgo: ^2.7.0 - peerDependencies: - postcss: ^8.2.15 - checksum: d86eb5213d9f700cf5efe3073799b485fb7cacae0c731db3d7749c9c2b1c9bc85e95e0baeca439d699ff32ea24815fc916c4071b08f67ed8219df229ce1129bd - languageName: node - linkType: hard - -"postcss-unique-selectors@npm:^5.1.1": - version: 5.1.1 - resolution: "postcss-unique-selectors@npm:5.1.1" - dependencies: - postcss-selector-parser: ^6.0.5 - peerDependencies: - postcss: ^8.2.15 - checksum: 637e7b786e8558265775c30400c54b6b3b24d4748923f4a39f16a65fd0e394f564ccc9f0a1d3c0e770618a7637a7502ea1d0d79f731d429cb202255253c23278 - languageName: node - linkType: hard - -"postcss-value-parser@npm:^4.1.0, postcss-value-parser@npm:^4.2.0": - version: 4.2.0 - resolution: "postcss-value-parser@npm:4.2.0" - checksum: 819ffab0c9d51cf0acbabf8996dffbfafbafa57afc0e4c98db88b67f2094cb44488758f06e5da95d7036f19556a4a732525e84289a425f4f6fd8e412a9d7442f - languageName: node - linkType: hard - -"postcss-zindex@npm:^5.1.0": - version: 5.1.0 - resolution: "postcss-zindex@npm:5.1.0" - peerDependencies: - postcss: ^8.2.15 - checksum: 8581e0ee552622489dcb9fb9609a3ccc261a67a229ba91a70bd138fe102a2d04cedb14642b82b673d4cac7b559ef32574f2dafde2ff7816eecac024d231c5ead - languageName: node - linkType: hard - -"postcss@npm:^8.3.11, postcss@npm:^8.4.14, postcss@npm:^8.4.17, postcss@npm:^8.4.33": - version: 8.4.35 - resolution: "postcss@npm:8.4.35" - dependencies: - nanoid: ^3.3.7 - picocolors: ^1.0.0 - source-map-js: ^1.0.2 - checksum: cf3c3124d3912a507603f6d9a49b3783f741075e9aa73eb592a6dd9194f9edab9d20a8875d16d137d4f779fe7b6fbd1f5727e39bfd1c3003724980ee4995e1da - languageName: node - linkType: hard - -"prelude-ls@npm:^1.2.1": - version: 1.2.1 - resolution: "prelude-ls@npm:1.2.1" - checksum: cd192ec0d0a8e4c6da3bb80e4f62afe336df3f76271ac6deb0e6a36187133b6073a19e9727a1ff108cd8b9982e4768850d413baa71214dd80c7979617dca827a - languageName: node - linkType: hard - -"prepend-http@npm:^2.0.0": - version: 2.0.0 - resolution: "prepend-http@npm:2.0.0" - checksum: 7694a9525405447662c1ffd352fcb41b6410c705b739b6f4e3a3e21cf5fdede8377890088e8934436b8b17ba55365a615f153960f30877bf0d0392f9e93503ea - languageName: node - linkType: hard - -"prettier@npm:^2.7.1": - version: 2.8.8 - resolution: "prettier@npm:2.8.8" - bin: - prettier: bin-prettier.js - checksum: b49e409431bf129dd89238d64299ba80717b57ff5a6d1c1a8b1a28b590d998a34e083fa13573bc732bb8d2305becb4c9a4407f8486c81fa7d55100eb08263cf8 - languageName: node - linkType: hard - -"pretty-error@npm:^4.0.0": - version: 4.0.0 - resolution: "pretty-error@npm:4.0.0" - dependencies: - lodash: ^4.17.20 - renderkid: ^3.0.0 - checksum: a5b9137365690104ded6947dca2e33360bf55e62a4acd91b1b0d7baa3970e43754c628cc9e16eafbdd4e8f8bcb260a5865475d4fc17c3106ff2d61db4e72cdf3 - languageName: node - linkType: hard - -"pretty-time@npm:^1.1.0": - version: 1.1.0 - resolution: "pretty-time@npm:1.1.0" - checksum: a319e7009aadbc6cfedbd8b66861327d3a0c68bd3e8794bf5b86f62b40b01b9479c5a70c76bb368ad454acce52a1216daee460cc825766e2442c04f3a84a02c9 - languageName: node - linkType: hard - -"prism-react-renderer@npm:^1.3.5": - version: 1.3.5 - resolution: "prism-react-renderer@npm:1.3.5" - peerDependencies: - react: ">=0.14.9" - checksum: c18806dcbc4c0b4fd6fd15bd06b4f7c0a6da98d93af235c3e970854994eb9b59e23315abb6cfc29e69da26d36709a47e25da85ab27fed81b6812f0a52caf6dfa - languageName: node - linkType: hard - -"prismjs@npm:^1.28.0": - version: 1.29.0 - resolution: "prismjs@npm:1.29.0" - checksum: 007a8869d4456ff8049dc59404e32d5666a07d99c3b0e30a18bd3b7676dfa07d1daae9d0f407f20983865fd8da56de91d09cb08e6aa61f5bc420a27c0beeaf93 - languageName: node - linkType: hard - -"proc-log@npm:^3.0.0": - version: 3.0.0 - resolution: "proc-log@npm:3.0.0" - checksum: 02b64e1b3919e63df06f836b98d3af002b5cd92655cab18b5746e37374bfb73e03b84fe305454614b34c25b485cc687a9eebdccf0242cda8fda2475dd2c97e02 - languageName: node - linkType: hard - -"process-nextick-args@npm:~2.0.0": - version: 2.0.1 - resolution: "process-nextick-args@npm:2.0.1" - checksum: 1d38588e520dab7cea67cbbe2efdd86a10cc7a074c09657635e34f035277b59fbb57d09d8638346bf7090f8e8ebc070c96fa5fd183b777fff4f5edff5e9466cf - languageName: node - linkType: hard - -"process@npm:^0.11.10": - version: 0.11.10 - resolution: "process@npm:0.11.10" - checksum: bfcce49814f7d172a6e6a14d5fa3ac92cc3d0c3b9feb1279774708a719e19acd673995226351a082a9ae99978254e320ccda4240ddc474ba31a76c79491ca7c3 - languageName: node - linkType: hard - -"promise-retry@npm:^2.0.1": - version: 2.0.1 - resolution: "promise-retry@npm:2.0.1" - dependencies: - err-code: ^2.0.2 - retry: ^0.12.0 - checksum: f96a3f6d90b92b568a26f71e966cbbc0f63ab85ea6ff6c81284dc869b41510e6cdef99b6b65f9030f0db422bf7c96652a3fff9f2e8fb4a0f069d8f4430359429 - languageName: node - linkType: hard - -"promise@npm:^7.1.1": - version: 7.3.1 - resolution: "promise@npm:7.3.1" - dependencies: - asap: ~2.0.3 - checksum: 475bb069130179fbd27ed2ab45f26d8862376a137a57314cf53310bdd85cc986a826fd585829be97ebc0aaf10e9d8e68be1bfe5a4a0364144b1f9eedfa940cf1 - languageName: node - linkType: hard - -"prompts@npm:^2.4.2": - version: 2.4.2 - resolution: "prompts@npm:2.4.2" - dependencies: - kleur: ^3.0.3 - sisteransi: ^1.0.5 - checksum: d8fd1fe63820be2412c13bfc5d0a01909acc1f0367e32396962e737cb2fc52d004f3302475d5ce7d18a1e8a79985f93ff04ee03007d091029c3f9104bffc007d - languageName: node - linkType: hard - -"prop-types@npm:^15.6.2, prop-types@npm:^15.7.2, prop-types@npm:^15.8.1": - version: 15.8.1 - resolution: "prop-types@npm:15.8.1" - dependencies: - loose-envify: ^1.4.0 - object-assign: ^4.1.1 - react-is: ^16.13.1 - checksum: c056d3f1c057cb7ff8344c645450e14f088a915d078dcda795041765047fa080d38e5d626560ccaac94a4e16e3aa15f3557c1a9a8d1174530955e992c675e459 - languageName: node - linkType: hard - -"property-information@npm:^5.0.0, property-information@npm:^5.3.0": - version: 5.6.0 - resolution: "property-information@npm:5.6.0" - dependencies: - xtend: ^4.0.0 - checksum: fcf87c6542e59a8bbe31ca0b3255a4a63ac1059b01b04469680288998bcfa97f341ca989566adbb63975f4d85339030b82320c324a511532d390910d1c583893 - languageName: node - linkType: hard - -"proxy-addr@npm:~2.0.7": - version: 2.0.7 - resolution: "proxy-addr@npm:2.0.7" - dependencies: - forwarded: 0.2.0 - ipaddr.js: 1.9.1 - checksum: 29c6990ce9364648255454842f06f8c46fcd124d3e6d7c5066df44662de63cdc0bad032e9bf5a3d653ff72141cc7b6019873d685708ac8210c30458ad99f2b74 - languageName: node - linkType: hard - -"proxy-from-env@npm:^1.1.0": - version: 1.1.0 - resolution: "proxy-from-env@npm:1.1.0" - checksum: ed7fcc2ba0a33404958e34d95d18638249a68c430e30fcb6c478497d72739ba64ce9810a24f53a7d921d0c065e5b78e3822759800698167256b04659366ca4d4 - languageName: node - linkType: hard - -"psl@npm:^1.1.33": - version: 1.9.0 - resolution: "psl@npm:1.9.0" - checksum: 20c4277f640c93d393130673f392618e9a8044c6c7bf61c53917a0fddb4952790f5f362c6c730a9c32b124813e173733f9895add8d26f566ed0ea0654b2e711d - languageName: node - linkType: hard - -"pump@npm:^3.0.0": - version: 3.0.0 - resolution: "pump@npm:3.0.0" - dependencies: - end-of-stream: ^1.1.0 - once: ^1.3.1 - checksum: e42e9229fba14732593a718b04cb5e1cfef8254544870997e0ecd9732b189a48e1256e4e5478148ecb47c8511dca2b09eae56b4d0aad8009e6fac8072923cfc9 - languageName: node - linkType: hard - -"punycode@npm:^1.3.2": - version: 1.4.1 - resolution: "punycode@npm:1.4.1" - checksum: fa6e698cb53db45e4628559e557ddaf554103d2a96a1d62892c8f4032cd3bc8871796cae9eabc1bc700e2b6677611521ce5bb1d9a27700086039965d0cf34518 - languageName: node - linkType: hard - -"punycode@npm:^2.1.0, punycode@npm:^2.1.1, punycode@npm:^2.3.1": - version: 2.3.1 - resolution: "punycode@npm:2.3.1" - checksum: bb0a0ceedca4c3c57a9b981b90601579058903c62be23c5e8e843d2c2d4148a3ecf029d5133486fb0e1822b098ba8bba09e89d6b21742d02fa26bda6441a6fb2 - languageName: node - linkType: hard - -"pupa@npm:^2.1.1": - version: 2.1.1 - resolution: "pupa@npm:2.1.1" - dependencies: - escape-goat: ^2.0.0 - checksum: 49529e50372ffdb0cccf0efa0f3b3cb0a2c77805d0d9cc2725bd2a0f6bb414631e61c93a38561b26be1259550b7bb6c2cb92315aa09c8bf93f3bdcb49f2b2fb7 - languageName: node - linkType: hard - -"pure-color@npm:^1.2.0": - version: 1.3.0 - resolution: "pure-color@npm:1.3.0" - checksum: 646d8bed6e6eab89affdd5e2c11f607a85b631a7fb03c061dfa658eb4dc4806881a15feed2ac5fd8c0bad8c00c632c640d5b1cb8b9a972e6e947393a1329371b - languageName: node - linkType: hard - -"qs@npm:6.11.0": - version: 6.11.0 - resolution: "qs@npm:6.11.0" - dependencies: - side-channel: ^1.0.4 - checksum: 6e1f29dd5385f7488ec74ac7b6c92f4d09a90408882d0c208414a34dd33badc1a621019d4c799a3df15ab9b1d0292f97c1dd71dc7c045e69f81a8064e5af7297 - languageName: node - linkType: hard - -"querystringify@npm:^2.1.1": - version: 2.2.0 - resolution: "querystringify@npm:2.2.0" - checksum: 5641ea231bad7ef6d64d9998faca95611ed4b11c2591a8cae741e178a974f6a8e0ebde008475259abe1621cb15e692404e6b6626e927f7b849d5c09392604b15 - languageName: node - linkType: hard - -"queue-microtask@npm:^1.2.2": - version: 1.2.3 - resolution: "queue-microtask@npm:1.2.3" - checksum: b676f8c040cdc5b12723ad2f91414d267605b26419d5c821ff03befa817ddd10e238d22b25d604920340fd73efd8ba795465a0377c4adf45a4a41e4234e42dc4 - languageName: node - linkType: hard - -"queue@npm:6.0.2": - version: 6.0.2 - resolution: "queue@npm:6.0.2" - dependencies: - inherits: ~2.0.3 - checksum: ebc23639248e4fe40a789f713c20548e513e053b3dc4924b6cb0ad741e3f264dcff948225c8737834dd4f9ec286dbc06a1a7c13858ea382d9379f4303bcc0916 - languageName: node - linkType: hard - -"randombytes@npm:^2.1.0": - version: 2.1.0 - resolution: "randombytes@npm:2.1.0" - dependencies: - safe-buffer: ^5.1.0 - checksum: d779499376bd4cbb435ef3ab9a957006c8682f343f14089ed5f27764e4645114196e75b7f6abf1cbd84fd247c0cb0651698444df8c9bf30e62120fbbc52269d6 - languageName: node - linkType: hard - -"range-parser@npm:1.2.0": - version: 1.2.0 - resolution: "range-parser@npm:1.2.0" - checksum: bdf397f43fedc15c559d3be69c01dedf38444ca7a1610f5bf5955e3f3da6057a892f34691e7ebdd8c7e1698ce18ef6c4d4811f70e658dda3ff230ef741f8423a - languageName: node - linkType: hard - -"range-parser@npm:^1.2.1, range-parser@npm:~1.2.1": - version: 1.2.1 - resolution: "range-parser@npm:1.2.1" - checksum: 0a268d4fea508661cf5743dfe3d5f47ce214fd6b7dec1de0da4d669dd4ef3d2144468ebe4179049eff253d9d27e719c88dae55be64f954e80135a0cada804ec9 - languageName: node - linkType: hard - -"raw-body@npm:2.5.2": - version: 2.5.2 - resolution: "raw-body@npm:2.5.2" - dependencies: - bytes: 3.1.2 - http-errors: 2.0.0 - iconv-lite: 0.4.24 - unpipe: 1.0.0 - checksum: ba1583c8d8a48e8fbb7a873fdbb2df66ea4ff83775421bfe21ee120140949ab048200668c47d9ae3880012f6e217052690628cf679ddfbd82c9fc9358d574676 - languageName: node - linkType: hard - -"rc@npm:1.2.8, rc@npm:^1.2.8": - version: 1.2.8 - resolution: "rc@npm:1.2.8" - dependencies: - deep-extend: ^0.6.0 - ini: ~1.3.0 - minimist: ^1.2.0 - strip-json-comments: ~2.0.1 - bin: - rc: ./cli.js - checksum: 2e26e052f8be2abd64e6d1dabfbd7be03f80ec18ccbc49562d31f617d0015fbdbcf0f9eed30346ea6ab789e0fdfe4337f033f8016efdbee0df5354751842080e - languageName: node - linkType: hard - -"react-base16-styling@npm:^0.6.0": - version: 0.6.0 - resolution: "react-base16-styling@npm:0.6.0" - dependencies: - base16: ^1.0.0 - lodash.curry: ^4.0.1 - lodash.flow: ^3.3.0 - pure-color: ^1.2.0 - checksum: 00a12dddafc8a9025cca933b0dcb65fca41c81fa176d1fc3a6a9d0242127042e2c0a604f4c724a3254dd2c6aeb5ef55095522ff22f5462e419641c1341a658e4 - languageName: node - linkType: hard - -"react-dev-utils@npm:^12.0.1": - version: 12.0.1 - resolution: "react-dev-utils@npm:12.0.1" - dependencies: - "@babel/code-frame": ^7.16.0 - address: ^1.1.2 - browserslist: ^4.18.1 - chalk: ^4.1.2 - cross-spawn: ^7.0.3 - detect-port-alt: ^1.1.6 - escape-string-regexp: ^4.0.0 - filesize: ^8.0.6 - find-up: ^5.0.0 - fork-ts-checker-webpack-plugin: ^6.5.0 - global-modules: ^2.0.0 - globby: ^11.0.4 - gzip-size: ^6.0.0 - immer: ^9.0.7 - is-root: ^2.1.0 - loader-utils: ^3.2.0 - open: ^8.4.0 - pkg-up: ^3.1.0 - prompts: ^2.4.2 - react-error-overlay: ^6.0.11 - recursive-readdir: ^2.2.2 - shell-quote: ^1.7.3 - strip-ansi: ^6.0.1 - text-table: ^0.2.0 - checksum: 2c6917e47f03d9595044770b0f883a61c6b660fcaa97b8ba459a1d57c9cca9aa374cd51296b22d461ff5e432105dbe6f04732dab128e52729c79239e1c23ab56 - languageName: node - linkType: hard - -"react-dom@npm:^17.0.2": - version: 17.0.2 - resolution: "react-dom@npm:17.0.2" - dependencies: - loose-envify: ^1.1.0 - object-assign: ^4.1.1 - scheduler: ^0.20.2 - peerDependencies: - react: 17.0.2 - checksum: 1c1eaa3bca7c7228d24b70932e3d7c99e70d1d04e13bb0843bbf321582bc25d7961d6b8a6978a58a598af2af496d1cedcfb1bf65f6b0960a0a8161cb8dab743c - languageName: node - linkType: hard - -"react-error-overlay@npm:^6.0.11": - version: 6.0.11 - resolution: "react-error-overlay@npm:6.0.11" - checksum: ce7b44c38fadba9cedd7c095cf39192e632daeccf1d0747292ed524f17dcb056d16bc197ddee5723f9dd888f0b9b19c3b486c430319e30504289b9296f2d2c42 - languageName: node - linkType: hard - -"react-fast-compare@npm:^3.2.0, react-fast-compare@npm:^3.2.2": - version: 3.2.2 - resolution: "react-fast-compare@npm:3.2.2" - checksum: 2071415b4f76a3e6b55c84611c4d24dcb12ffc85811a2840b5a3f1ff2d1a99be1020d9437ee7c6e024c9f4cbb84ceb35e48cf84f28fcb00265ad2dfdd3947704 - languageName: node - linkType: hard - -"react-helmet-async@npm:*": - version: 2.0.4 - resolution: "react-helmet-async@npm:2.0.4" - dependencies: - invariant: ^2.2.4 - react-fast-compare: ^3.2.2 - shallowequal: ^1.1.0 - peerDependencies: - react: ^16.6.0 || ^17.0.0 || ^18.0.0 - react-dom: ^16.6.0 || ^17.0.0 || ^18.0.0 - checksum: 1bd16e6be6d15cf3d4b4c0853d1e122941a05d3fb2bad1fb1c5037069c5f142fcab063c342b95c58a998a81f093bdf1bd1bb00852a5a3a84d49e48790d5142bb - languageName: node - linkType: hard - -"react-helmet-async@npm:^1.3.0": - version: 1.3.0 - resolution: "react-helmet-async@npm:1.3.0" - dependencies: - "@babel/runtime": ^7.12.5 - invariant: ^2.2.4 - prop-types: ^15.7.2 - react-fast-compare: ^3.2.0 - shallowequal: ^1.1.0 - peerDependencies: - react: ^16.6.0 || ^17.0.0 || ^18.0.0 - react-dom: ^16.6.0 || ^17.0.0 || ^18.0.0 - checksum: 7ca7e47f8af14ea186688b512a87ab912bf6041312b297f92516341b140b3f0f8aedf5a44d226d99e69ed067b0cc106e38aeb9c9b738ffcc63d10721c844db90 - languageName: node - linkType: hard - -"react-is@npm:^16.13.1, react-is@npm:^16.6.0, react-is@npm:^16.7.0": - version: 16.13.1 - resolution: "react-is@npm:16.13.1" - checksum: f7a19ac3496de32ca9ae12aa030f00f14a3d45374f1ceca0af707c831b2a6098ef0d6bdae51bd437b0a306d7f01d4677fcc8de7c0d331eb47ad0f46130e53c5f - languageName: node - linkType: hard - -"react-json-view@npm:^1.21.3": - version: 1.21.3 - resolution: "react-json-view@npm:1.21.3" - dependencies: - flux: ^4.0.1 - react-base16-styling: ^0.6.0 - react-lifecycles-compat: ^3.0.4 - react-textarea-autosize: ^8.3.2 - peerDependencies: - react: ^17.0.0 || ^16.3.0 || ^15.5.4 - react-dom: ^17.0.0 || ^16.3.0 || ^15.5.4 - checksum: 5718bcd9210ad5b06eb9469cf8b9b44be9498845a7702e621343618e8251f26357e6e1c865532cf170db6165df1cb30202787e057309d8848c220bc600ec0d1a - languageName: node - linkType: hard - -"react-lifecycles-compat@npm:^3.0.4": - version: 3.0.4 - resolution: "react-lifecycles-compat@npm:3.0.4" - checksum: a904b0fc0a8eeb15a148c9feb7bc17cec7ef96e71188280061fc340043fd6d8ee3ff233381f0e8f95c1cf926210b2c4a31f38182c8f35ac55057e453d6df204f - languageName: node - linkType: hard - -"react-loadable-ssr-addon-v5-slorber@npm:^1.0.1": - version: 1.0.1 - resolution: "react-loadable-ssr-addon-v5-slorber@npm:1.0.1" - dependencies: - "@babel/runtime": ^7.10.3 - peerDependencies: - react-loadable: "*" - webpack: ">=4.41.1 || 5.x" - checksum: 1cf7ceb488d329a5be15f891dae16727fb7ade08ef57826addd21e2c3d485e2440259ef8be94f4d54e9afb4bcbd2fcc22c3c5bad92160c9c06ae6ba7b5562497 - languageName: node - linkType: hard - -"react-router-config@npm:^5.1.1": - version: 5.1.1 - resolution: "react-router-config@npm:5.1.1" - dependencies: - "@babel/runtime": ^7.1.2 - peerDependencies: - react: ">=15" - react-router: ">=5" - checksum: bde7ee79444454bf7c3737fd9c5c268021012c8cc37bc19116b2e7daa28c4231598c275816c7f32c16f9f974dc707b91de279291a5e39efce2e1b1569355b87a - languageName: node - linkType: hard - -"react-router-dom@npm:^5.3.3": - version: 5.3.4 - resolution: "react-router-dom@npm:5.3.4" - dependencies: - "@babel/runtime": ^7.12.13 - history: ^4.9.0 - loose-envify: ^1.3.1 - prop-types: ^15.6.2 - react-router: 5.3.4 - tiny-invariant: ^1.0.2 - tiny-warning: ^1.0.0 - peerDependencies: - react: ">=15" - checksum: b86a6f2f5222f041e38adf4e4b32c7643d6735a1a915ef25855b2db285fd059d72ba8d62e5bcd5d822b8ef9520a80453209e55077f5a90d0f72e908979b8f535 - languageName: node - linkType: hard - -"react-router@npm:5.3.4, react-router@npm:^5.3.3": - version: 5.3.4 - resolution: "react-router@npm:5.3.4" - dependencies: - "@babel/runtime": ^7.12.13 - history: ^4.9.0 - hoist-non-react-statics: ^3.1.0 - loose-envify: ^1.3.1 - path-to-regexp: ^1.7.0 - prop-types: ^15.6.2 - react-is: ^16.6.0 - tiny-invariant: ^1.0.2 - tiny-warning: ^1.0.0 - peerDependencies: - react: ">=15" - checksum: 892d4e274a23bf4f39abc2efca54472fb646d3aed4b584020cf49654d2f50d09a2bacebe7c92b4ec7cb8925077376dfcd0664bad6442a73604397cefec9f01f9 - languageName: node - linkType: hard - -"react-textarea-autosize@npm:^8.3.2": - version: 8.5.3 - resolution: "react-textarea-autosize@npm:8.5.3" - dependencies: - "@babel/runtime": ^7.20.13 - use-composed-ref: ^1.3.0 - use-latest: ^1.2.1 - peerDependencies: - react: ^16.8.0 || ^17.0.0 || ^18.0.0 - checksum: b317c3763f37a89621bbafd0e6e2d068e7876790a5ae77f497adfd6ba9334ceea138c8a0b7d907bae0f79c765cb24e8b2ca2b8033b4144c0bce28571a3658921 - languageName: node - linkType: hard - -"react@npm:^17.0.2": - version: 17.0.2 - resolution: "react@npm:17.0.2" - dependencies: - loose-envify: ^1.1.0 - object-assign: ^4.1.1 - checksum: b254cc17ce3011788330f7bbf383ab653c6848902d7936a87b09d835d091e3f295f7e9dd1597c6daac5dc80f90e778c8230218ba8ad599f74adcc11e33b9d61b - languageName: node - linkType: hard - -"read-cmd-shim@npm:^4.0.0": - version: 4.0.0 - resolution: "read-cmd-shim@npm:4.0.0" - checksum: 2fb5a8a38984088476f559b17c6a73324a5db4e77e210ae0aab6270480fd85c355fc990d1c79102e25e555a8201606ed12844d6e3cd9f35d6a1518791184e05b - languageName: node - linkType: hard - -"readable-stream@npm:^2.0.1": - version: 2.3.8 - resolution: "readable-stream@npm:2.3.8" - dependencies: - core-util-is: ~1.0.0 - inherits: ~2.0.3 - isarray: ~1.0.0 - process-nextick-args: ~2.0.0 - safe-buffer: ~5.1.1 - string_decoder: ~1.1.1 - util-deprecate: ~1.0.1 - checksum: 65645467038704f0c8aaf026a72fbb588a9e2ef7a75cd57a01702ee9db1c4a1e4b03aaad36861a6a0926546a74d174149c8c207527963e0c2d3eee2f37678a42 - languageName: node - linkType: hard - -"readable-stream@npm:^3.0.6": - version: 3.6.2 - resolution: "readable-stream@npm:3.6.2" - dependencies: - inherits: ^2.0.3 - string_decoder: ^1.1.1 - util-deprecate: ^1.0.1 - checksum: bdcbe6c22e846b6af075e32cf8f4751c2576238c5043169a1c221c92ee2878458a816a4ea33f4c67623c0b6827c8a400409bfb3cf0bf3381392d0b1dfb52ac8d - languageName: node - linkType: hard - -"readdirp@npm:~3.6.0": - version: 3.6.0 - resolution: "readdirp@npm:3.6.0" - dependencies: - picomatch: ^2.2.1 - checksum: 1ced032e6e45670b6d7352d71d21ce7edf7b9b928494dcaba6f11fba63180d9da6cd7061ebc34175ffda6ff529f481818c962952004d273178acd70f7059b320 - languageName: node - linkType: hard - -"reading-time@npm:^1.5.0": - version: 1.5.0 - resolution: "reading-time@npm:1.5.0" - checksum: e27bc5a70ba0f4ac337896b18531b914d38f4bee67cbad48029d0c11dd0a7a847b2a6bba895ab7ce2ad3e7ecb86912bdc477d8fa2d48405a3deda964be54d09b - languageName: node - linkType: hard - -"rechoir@npm:^0.6.2": - version: 0.6.2 - resolution: "rechoir@npm:0.6.2" - dependencies: - resolve: ^1.1.6 - checksum: fe76bf9c21875ac16e235defedd7cbd34f333c02a92546142b7911a0f7c7059d2e16f441fe6fb9ae203f459c05a31b2bcf26202896d89e390eda7514d5d2702b - languageName: node - linkType: hard - -"recursive-readdir@npm:^2.2.2": - version: 2.2.3 - resolution: "recursive-readdir@npm:2.2.3" - dependencies: - minimatch: ^3.0.5 - checksum: 88ec96e276237290607edc0872b4f9842837b95cfde0cdbb1e00ba9623dfdf3514d44cdd14496ab60a0c2dd180a6ef8a3f1c34599e6cf2273afac9b72a6fb2b5 - languageName: node - linkType: hard - -"reflect.getprototypeof@npm:^1.0.4": - version: 1.0.5 - resolution: "reflect.getprototypeof@npm:1.0.5" - dependencies: - call-bind: ^1.0.5 - define-properties: ^1.2.1 - es-abstract: ^1.22.3 - es-errors: ^1.0.0 - get-intrinsic: ^1.2.3 - globalthis: ^1.0.3 - which-builtin-type: ^1.1.3 - checksum: c7176be030b89b9e55882f4da3288de5ffd187c528d79870e27d2c8a713a82b3fa058ca2d0c9da25f6d61240e2685c42d7daa32cdf3d431d8207ee1b9ed30993 - languageName: node - linkType: hard - -"regenerate-unicode-properties@npm:^10.1.0": - version: 10.1.1 - resolution: "regenerate-unicode-properties@npm:10.1.1" - dependencies: - regenerate: ^1.4.2 - checksum: b80958ef40f125275824c2c47d5081dfaefebd80bff26c76761e9236767c748a4a95a69c053fe29d2df881177f2ca85df4a71fe70a82360388b31159ef19adcf - languageName: node - linkType: hard - -"regenerate@npm:^1.4.2": - version: 1.4.2 - resolution: "regenerate@npm:1.4.2" - checksum: 3317a09b2f802da8db09aa276e469b57a6c0dd818347e05b8862959c6193408242f150db5de83c12c3fa99091ad95fb42a6db2c3329bfaa12a0ea4cbbeb30cb0 - languageName: node - linkType: hard - -"regenerator-runtime@npm:^0.14.0": - version: 0.14.1 - resolution: "regenerator-runtime@npm:0.14.1" - checksum: 9f57c93277b5585d3c83b0cf76be47b473ae8c6d9142a46ce8b0291a04bb2cf902059f0f8445dcabb3fb7378e5fe4bb4ea1e008876343d42e46d3b484534ce38 - languageName: node - linkType: hard - -"regenerator-transform@npm:^0.15.2": - version: 0.15.2 - resolution: "regenerator-transform@npm:0.15.2" - dependencies: - "@babel/runtime": ^7.8.4 - checksum: 20b6f9377d65954980fe044cfdd160de98df415b4bff38fbade67b3337efaf078308c4fed943067cd759827cc8cfeca9cb28ccda1f08333b85d6a2acbd022c27 - languageName: node - linkType: hard - -"regexp.prototype.flags@npm:^1.5.0, regexp.prototype.flags@npm:^1.5.2": - version: 1.5.2 - resolution: "regexp.prototype.flags@npm:1.5.2" - dependencies: - call-bind: ^1.0.6 - define-properties: ^1.2.1 - es-errors: ^1.3.0 - set-function-name: ^2.0.1 - checksum: d7f333667d5c564e2d7a97c56c3075d64c722c9bb51b2b4df6822b2e8096d623a5e63088fb4c83df919b6951ef8113841de8b47de7224872fa6838bc5d8a7d64 - languageName: node - linkType: hard - -"regexpu-core@npm:^5.3.1": - version: 5.3.2 - resolution: "regexpu-core@npm:5.3.2" - dependencies: - "@babel/regjsgen": ^0.8.0 - regenerate: ^1.4.2 - regenerate-unicode-properties: ^10.1.0 - regjsparser: ^0.9.1 - unicode-match-property-ecmascript: ^2.0.0 - unicode-match-property-value-ecmascript: ^2.1.0 - checksum: 95bb97088419f5396e07769b7de96f995f58137ad75fac5811fb5fe53737766dfff35d66a0ee66babb1eb55386ef981feaef392f9df6d671f3c124812ba24da2 - languageName: node - linkType: hard - -"registry-auth-token@npm:^4.0.0": - version: 4.2.2 - resolution: "registry-auth-token@npm:4.2.2" - dependencies: - rc: 1.2.8 - checksum: c5030198546ecfdcbcb0722cbc3e260c4f5f174d8d07bdfedd4620e79bfdf17a2db735aa230d600bd388fce6edd26c0a9ed2eb7e9b4641ec15213a28a806688b - languageName: node - linkType: hard - -"registry-url@npm:^5.0.0": - version: 5.1.0 - resolution: "registry-url@npm:5.1.0" - dependencies: - rc: ^1.2.8 - checksum: bcea86c84a0dbb66467b53187fadebfea79017cddfb4a45cf27530d7275e49082fe9f44301976eb0164c438e395684bcf3dae4819b36ff9d1640d8cc60c73df9 - languageName: node - linkType: hard - -"regjsparser@npm:^0.9.1": - version: 0.9.1 - resolution: "regjsparser@npm:0.9.1" - dependencies: - jsesc: ~0.5.0 - bin: - regjsparser: bin/parser - checksum: 5e1b76afe8f1d03c3beaf9e0d935dd467589c3625f6d65fb8ffa14f224d783a0fed4bf49c2c1b8211043ef92b6117313419edf055a098ed8342e340586741afc - languageName: node - linkType: hard - -"relateurl@npm:^0.2.7": - version: 0.2.7 - resolution: "relateurl@npm:0.2.7" - checksum: 5891e792eae1dfc3da91c6fda76d6c3de0333a60aa5ad848982ebb6dccaa06e86385fb1235a1582c680a3d445d31be01c6bfc0804ebbcab5aaf53fa856fde6b6 - languageName: node - linkType: hard - -"remark-emoji@npm:^2.2.0": - version: 2.2.0 - resolution: "remark-emoji@npm:2.2.0" - dependencies: - emoticon: ^3.2.0 - node-emoji: ^1.10.0 - unist-util-visit: ^2.0.3 - checksum: 638d4be72eb4110a447f389d4b8c454921f188c0acabf1b6579f3ddaa301ee91010173d6eebd975ea622ae3de7ed4531c0315a4ffd4f9653d80c599ef9ec21a8 - languageName: node - linkType: hard - -"remark-footnotes@npm:2.0.0": - version: 2.0.0 - resolution: "remark-footnotes@npm:2.0.0" - checksum: f2f87ffd6fe25892373c7164d6584a7cb03ab0ea4f186af493a73df519e24b72998a556e7f16cb996f18426cdb80556b95ff252769e252cf3ccba0fd2ca20621 - languageName: node - linkType: hard - -"remark-mdx@npm:1.6.22": - version: 1.6.22 - resolution: "remark-mdx@npm:1.6.22" - dependencies: - "@babel/core": 7.12.9 - "@babel/helper-plugin-utils": 7.10.4 - "@babel/plugin-proposal-object-rest-spread": 7.12.1 - "@babel/plugin-syntax-jsx": 7.12.1 - "@mdx-js/util": 1.6.22 - is-alphabetical: 1.0.4 - remark-parse: 8.0.3 - unified: 9.2.0 - checksum: 45e62f8a821c37261f94448d54f295de1c5c393f762ff96cd4d4b730715037fafeb6c89ef94adf6a10a09edfa72104afe1431b93b5ae5e40ce2a7677e133c3d9 - languageName: node - linkType: hard - -"remark-parse@npm:8.0.3": - version: 8.0.3 - resolution: "remark-parse@npm:8.0.3" - dependencies: - ccount: ^1.0.0 - collapse-white-space: ^1.0.2 - is-alphabetical: ^1.0.0 - is-decimal: ^1.0.0 - is-whitespace-character: ^1.0.0 - is-word-character: ^1.0.0 - markdown-escapes: ^1.0.0 - parse-entities: ^2.0.0 - repeat-string: ^1.5.4 - state-toggle: ^1.0.0 - trim: 0.0.1 - trim-trailing-lines: ^1.0.0 - unherit: ^1.0.4 - unist-util-remove-position: ^2.0.0 - vfile-location: ^3.0.0 - xtend: ^4.0.1 - checksum: 2dfea250e7606ddfc9e223b9f41e0b115c5c701be4bd35181beaadd46ee59816bc00aadc6085a420f8df00b991ada73b590ea7fd34ace14557de4a0a41805be5 - languageName: node - linkType: hard - -"remark-squeeze-paragraphs@npm:4.0.0": - version: 4.0.0 - resolution: "remark-squeeze-paragraphs@npm:4.0.0" - dependencies: - mdast-squeeze-paragraphs: ^4.0.0 - checksum: 2071eb74d0ecfefb152c4932690a9fd950c3f9f798a676f1378a16db051da68fb20bf288688cc153ba5019dded35408ff45a31dfe9686eaa7a9f1df9edbb6c81 - languageName: node - linkType: hard - -"renderkid@npm:^3.0.0": - version: 3.0.0 - resolution: "renderkid@npm:3.0.0" - dependencies: - css-select: ^4.1.3 - dom-converter: ^0.2.0 - htmlparser2: ^6.1.0 - lodash: ^4.17.21 - strip-ansi: ^6.0.1 - checksum: 77162b62d6f33ab81f337c39efce0439ff0d1f6d441e29c35183151f83041c7850774fb904da163d6c844264d440d10557714e6daa0b19e4561a5cd4ef305d41 - languageName: node - linkType: hard - -"repeat-string@npm:^1.5.4": - version: 1.6.1 - resolution: "repeat-string@npm:1.6.1" - checksum: 1b809fc6db97decdc68f5b12c4d1a671c8e3f65ec4a40c238bc5200e44e85bcc52a54f78268ab9c29fcf5fe4f1343e805420056d1f30fa9a9ee4c2d93e3cc6c0 - languageName: node - linkType: hard - -"require-from-string@npm:^2.0.2": - version: 2.0.2 - resolution: "require-from-string@npm:2.0.2" - checksum: a03ef6895445f33a4015300c426699bc66b2b044ba7b670aa238610381b56d3f07c686251740d575e22f4c87531ba662d06937508f0f3c0f1ddc04db3130560b - languageName: node - linkType: hard - -"require-like@npm:>= 0.1.1": - version: 0.1.2 - resolution: "require-like@npm:0.1.2" - checksum: edb8331f05fd807381a75b76f6cca9f0ce8acaa2e910b7e116541799aa970bfbc64fde5fd6adb3a6917dba346f8386ebbddb81614c24e8dad1b4290c7af9535e - languageName: node - linkType: hard - -"requires-port@npm:^1.0.0": - version: 1.0.0 - resolution: "requires-port@npm:1.0.0" - checksum: eee0e303adffb69be55d1a214e415cf42b7441ae858c76dfc5353148644f6fd6e698926fc4643f510d5c126d12a705e7c8ed7e38061113bdf37547ab356797ff - languageName: node - linkType: hard - -"resolve-from@npm:^4.0.0": - version: 4.0.0 - resolution: "resolve-from@npm:4.0.0" - checksum: f4ba0b8494846a5066328ad33ef8ac173801a51739eb4d63408c847da9a2e1c1de1e6cbbf72699211f3d13f8fc1325648b169bd15eb7da35688e30a5fb0e4a7f - languageName: node - linkType: hard - -"resolve-pathname@npm:^3.0.0": - version: 3.0.0 - resolution: "resolve-pathname@npm:3.0.0" - checksum: 6147241ba42c423dbe83cb067a2b4af4f60908c3af57e1ea567729cc71416c089737fe2a73e9e79e7a60f00f66c91e4b45ad0d37cd4be2d43fec44963ef14368 - languageName: node - linkType: hard - -"resolve@npm:^1.1.6, resolve@npm:^1.14.2, resolve@npm:^1.22.4, resolve@npm:^1.3.2": - version: 1.22.8 - resolution: "resolve@npm:1.22.8" - dependencies: - is-core-module: ^2.13.0 - path-parse: ^1.0.7 - supports-preserve-symlinks-flag: ^1.0.0 - bin: - resolve: bin/resolve - checksum: f8a26958aa572c9b064562750b52131a37c29d072478ea32e129063e2da7f83e31f7f11e7087a18225a8561cfe8d2f0df9dbea7c9d331a897571c0a2527dbb4c - languageName: node - linkType: hard - -"resolve@npm:^2.0.0-next.5": - version: 2.0.0-next.5 - resolution: "resolve@npm:2.0.0-next.5" - dependencies: - is-core-module: ^2.13.0 - path-parse: ^1.0.7 - supports-preserve-symlinks-flag: ^1.0.0 - bin: - resolve: bin/resolve - checksum: a73ac69a1c4bd34c56b213d91f5b17ce390688fdb4a1a96ed3025cc7e08e7bfb90b3a06fcce461780cb0b589c958afcb0080ab802c71c01a7ecc8c64feafc89f - languageName: node - linkType: hard - -"resolve@patch:resolve@^1.1.6#~builtin, resolve@patch:resolve@^1.14.2#~builtin, resolve@patch:resolve@^1.22.4#~builtin, resolve@patch:resolve@^1.3.2#~builtin": - version: 1.22.8 - resolution: "resolve@patch:resolve@npm%3A1.22.8#~builtin::version=1.22.8&hash=c3c19d" - dependencies: - is-core-module: ^2.13.0 - path-parse: ^1.0.7 - supports-preserve-symlinks-flag: ^1.0.0 - bin: - resolve: bin/resolve - checksum: 5479b7d431cacd5185f8db64bfcb7286ae5e31eb299f4c4f404ad8aa6098b77599563ac4257cb2c37a42f59dfc06a1bec2bcf283bb448f319e37f0feb9a09847 - languageName: node - linkType: hard - -"resolve@patch:resolve@^2.0.0-next.5#~builtin": - version: 2.0.0-next.5 - resolution: "resolve@patch:resolve@npm%3A2.0.0-next.5#~builtin::version=2.0.0-next.5&hash=c3c19d" - dependencies: - is-core-module: ^2.13.0 - path-parse: ^1.0.7 - supports-preserve-symlinks-flag: ^1.0.0 - bin: - resolve: bin/resolve - checksum: 064d09c1808d0c51b3d90b5d27e198e6d0c5dad0eb57065fd40803d6a20553e5398b07f76739d69cbabc12547058bec6b32106ea66622375fb0d7e8fca6a846c - languageName: node - linkType: hard - -"responselike@npm:^1.0.2": - version: 1.0.2 - resolution: "responselike@npm:1.0.2" - dependencies: - lowercase-keys: ^1.0.0 - checksum: 2e9e70f1dcca3da621a80ce71f2f9a9cad12c047145c6ece20df22f0743f051cf7c73505e109814915f23f9e34fb0d358e22827723ee3d56b623533cab8eafcd - languageName: node - linkType: hard - -"retry@npm:^0.12.0": - version: 0.12.0 - resolution: "retry@npm:0.12.0" - checksum: 623bd7d2e5119467ba66202d733ec3c2e2e26568074923bc0585b6b99db14f357e79bdedb63cab56cec47491c4a0da7e6021a7465ca6dc4f481d3898fdd3158c - languageName: node - linkType: hard - -"retry@npm:^0.13.1": - version: 0.13.1 - resolution: "retry@npm:0.13.1" - checksum: 47c4d5be674f7c13eee4cfe927345023972197dbbdfba5d3af7e461d13b44de1bfd663bfc80d2f601f8ef3fc8164c16dd99655a221921954a65d044a2fc1233b - languageName: node - linkType: hard - -"reusify@npm:^1.0.4": - version: 1.0.4 - resolution: "reusify@npm:1.0.4" - checksum: c3076ebcc22a6bc252cb0b9c77561795256c22b757f40c0d8110b1300723f15ec0fc8685e8d4ea6d7666f36c79ccc793b1939c748bf36f18f542744a4e379fcc - languageName: node - linkType: hard - -"rimraf@npm:^3.0.2": - version: 3.0.2 - resolution: "rimraf@npm:3.0.2" - dependencies: - glob: ^7.1.3 - bin: - rimraf: bin.js - checksum: 87f4164e396f0171b0a3386cc1877a817f572148ee13a7e113b238e48e8a9f2f31d009a92ec38a591ff1567d9662c6b67fd8818a2dbbaed74bc26a87a2a4a9a0 - languageName: node - linkType: hard - -"robust-predicates@npm:^3.0.2": - version: 3.0.2 - resolution: "robust-predicates@npm:3.0.2" - checksum: 36854c1321548ceca96d36ad9d6e0a5a512986029ec6929ad6ed3ec1612c22cc8b46cc72d2c5674af42e8074a119d793f6f0ea3a5b51373e3ab926c64b172d7a - languageName: node - linkType: hard - -"rollup@npm:^4.5.2": - version: 4.13.0 - resolution: "rollup@npm:4.13.0" - dependencies: - "@rollup/rollup-android-arm-eabi": 4.13.0 - "@rollup/rollup-android-arm64": 4.13.0 - "@rollup/rollup-darwin-arm64": 4.13.0 - "@rollup/rollup-darwin-x64": 4.13.0 - "@rollup/rollup-linux-arm-gnueabihf": 4.13.0 - "@rollup/rollup-linux-arm64-gnu": 4.13.0 - "@rollup/rollup-linux-arm64-musl": 4.13.0 - "@rollup/rollup-linux-riscv64-gnu": 4.13.0 - "@rollup/rollup-linux-x64-gnu": 4.13.0 - "@rollup/rollup-linux-x64-musl": 4.13.0 - "@rollup/rollup-win32-arm64-msvc": 4.13.0 - "@rollup/rollup-win32-ia32-msvc": 4.13.0 - "@rollup/rollup-win32-x64-msvc": 4.13.0 - "@types/estree": 1.0.5 - fsevents: ~2.3.2 - dependenciesMeta: - "@rollup/rollup-android-arm-eabi": - optional: true - "@rollup/rollup-android-arm64": - optional: true - "@rollup/rollup-darwin-arm64": - optional: true - "@rollup/rollup-darwin-x64": - optional: true - "@rollup/rollup-linux-arm-gnueabihf": - optional: true - "@rollup/rollup-linux-arm64-gnu": - optional: true - "@rollup/rollup-linux-arm64-musl": - optional: true - "@rollup/rollup-linux-riscv64-gnu": - optional: true - "@rollup/rollup-linux-x64-gnu": - optional: true - "@rollup/rollup-linux-x64-musl": - optional: true - "@rollup/rollup-win32-arm64-msvc": - optional: true - "@rollup/rollup-win32-ia32-msvc": - optional: true - "@rollup/rollup-win32-x64-msvc": - optional: true - fsevents: - optional: true - bin: - rollup: dist/bin/rollup - checksum: c2c35bee0a71ceb0df37c170c2b73a500bf9ebdffb747487d77831348603d50dcfcdd9d0a937362d3a87edda559c9d1e017fba2d75f05f0c594634d9b8dde9a4 - languageName: node - linkType: hard - -"rrweb-cssom@npm:^0.6.0": - version: 0.6.0 - resolution: "rrweb-cssom@npm:0.6.0" - checksum: 182312f6e4f41d18230ccc34f14263bc8e8a6b9d30ee3ec0d2d8e643c6f27964cd7a8d638d4a00e988d93e8dc55369f4ab5a473ccfeff7a8bab95b36d2b5499c - languageName: node - linkType: hard - -"rtl-detect@npm:^1.0.4": - version: 1.1.2 - resolution: "rtl-detect@npm:1.1.2" - checksum: 4a43a1e5df0617eb86d5485640b318787d12b86acf53d840a3b2ff701ee941e95479d4e9ae97e907569ec763d1c47218cb87639bc87bcdad60a85747e5270cf0 - languageName: node - linkType: hard - -"rtlcss@npm:^3.5.0": - version: 3.5.0 - resolution: "rtlcss@npm:3.5.0" - dependencies: - find-up: ^5.0.0 - picocolors: ^1.0.0 - postcss: ^8.3.11 - strip-json-comments: ^3.1.1 - bin: - rtlcss: bin/rtlcss.js - checksum: a3763cad2cb58ce1b950de155097c3c294e7aefc8bf328b58d0cc8d5efb88bf800865edc158a78ace6d1f7f99fea6fd66fb4a354d859b172dadd3dab3e0027b3 - languageName: node - linkType: hard - -"run-parallel@npm:^1.1.9": - version: 1.2.0 - resolution: "run-parallel@npm:1.2.0" - dependencies: - queue-microtask: ^1.2.2 - checksum: cb4f97ad25a75ebc11a8ef4e33bb962f8af8516bb2001082ceabd8902e15b98f4b84b4f8a9b222e5d57fc3bd1379c483886ed4619367a7680dad65316993021d - languageName: node - linkType: hard - -"rw@npm:1": - version: 1.3.3 - resolution: "rw@npm:1.3.3" - checksum: c20d82421f5a71c86a13f76121b751553a99cd4a70ea27db86f9b23f33db941f3f06019c30f60d50c356d0bd674c8e74764ac146ea55e217c091bde6fba82aa3 - languageName: node - linkType: hard - -"rxjs@npm:^7.5.4": - version: 7.8.1 - resolution: "rxjs@npm:7.8.1" - dependencies: - tslib: ^2.1.0 - checksum: de4b53db1063e618ec2eca0f7965d9137cabe98cf6be9272efe6c86b47c17b987383df8574861bcced18ebd590764125a901d5506082be84a8b8e364bf05f119 - languageName: node - linkType: hard - -"safe-array-concat@npm:^1.1.0": - version: 1.1.0 - resolution: "safe-array-concat@npm:1.1.0" - dependencies: - call-bind: ^1.0.5 - get-intrinsic: ^1.2.2 - has-symbols: ^1.0.3 - isarray: ^2.0.5 - checksum: 5c71eaa999168ee7474929f1cd3aae80f486353a651a094d9968936692cf90aa065224929a6486dcda66334a27dce4250a83612f9e0fef6dced1a925d3ac7296 - languageName: node - linkType: hard - -"safe-buffer@npm:5.1.2, safe-buffer@npm:~5.1.0, safe-buffer@npm:~5.1.1": - version: 5.1.2 - resolution: "safe-buffer@npm:5.1.2" - checksum: f2f1f7943ca44a594893a852894055cf619c1fbcb611237fc39e461ae751187e7baf4dc391a72125e0ac4fb2d8c5c0b3c71529622e6a58f46b960211e704903c - languageName: node - linkType: hard - -"safe-buffer@npm:5.2.1, safe-buffer@npm:>=5.1.0, safe-buffer@npm:^5.1.0, safe-buffer@npm:~5.2.0": - version: 5.2.1 - resolution: "safe-buffer@npm:5.2.1" - checksum: b99c4b41fdd67a6aaf280fcd05e9ffb0813654894223afb78a31f14a19ad220bba8aba1cb14eddce1fcfb037155fe6de4e861784eb434f7d11ed58d1e70dd491 - languageName: node - linkType: hard - -"safe-regex-test@npm:^1.0.3": - version: 1.0.3 - resolution: "safe-regex-test@npm:1.0.3" - dependencies: - call-bind: ^1.0.6 - es-errors: ^1.3.0 - is-regex: ^1.1.4 - checksum: 6c7d392ff1ae7a3ae85273450ed02d1d131f1d2c76e177d6b03eb88e6df8fa062639070e7d311802c1615f351f18dc58f9454501c58e28d5ffd9b8f502ba6489 - languageName: node - linkType: hard - -"safer-buffer@npm:>= 2.1.2 < 3, safer-buffer@npm:>= 2.1.2 < 3.0.0": - version: 2.1.2 - resolution: "safer-buffer@npm:2.1.2" - checksum: cab8f25ae6f1434abee8d80023d7e72b598cf1327164ddab31003c51215526801e40b66c5e65d658a0af1e9d6478cadcb4c745f4bd6751f97d8644786c0978b0 - languageName: node - linkType: hard - -"sax@npm:^1.2.4": - version: 1.3.0 - resolution: "sax@npm:1.3.0" - checksum: 238ab3a9ba8c8f8aaf1c5ea9120386391f6ee0af52f1a6a40bbb6df78241dd05d782f2359d614ac6aae08c4c4125208b456548a6cf68625aa4fe178486e63ecd - languageName: node - linkType: hard - -"saxes@npm:^6.0.0": - version: 6.0.0 - resolution: "saxes@npm:6.0.0" - dependencies: - xmlchars: ^2.2.0 - checksum: d3fa3e2aaf6c65ed52ee993aff1891fc47d5e47d515164b5449cbf5da2cbdc396137e55590472e64c5c436c14ae64a8a03c29b9e7389fc6f14035cf4e982ef3b - languageName: node - linkType: hard - -"scheduler@npm:^0.20.2": - version: 0.20.2 - resolution: "scheduler@npm:0.20.2" - dependencies: - loose-envify: ^1.1.0 - object-assign: ^4.1.1 - checksum: c4b35cf967c8f0d3e65753252d0f260271f81a81e427241295c5a7b783abf4ea9e905f22f815ab66676f5313be0a25f47be582254db8f9241b259213e999b8fc - languageName: node - linkType: hard - -"schema-utils@npm:2.7.0": - version: 2.7.0 - resolution: "schema-utils@npm:2.7.0" - dependencies: - "@types/json-schema": ^7.0.4 - ajv: ^6.12.2 - ajv-keywords: ^3.4.1 - checksum: 8889325b0ee1ae6a8f5d6aaa855c71e136ebbb7fd731b01a9d3ec8225dcb245f644c47c50104db4c741983b528cdff8558570021257d4d397ec6aaecd9172a8e - languageName: node - linkType: hard - -"schema-utils@npm:^2.6.5": - version: 2.7.1 - resolution: "schema-utils@npm:2.7.1" - dependencies: - "@types/json-schema": ^7.0.5 - ajv: ^6.12.4 - ajv-keywords: ^3.5.2 - checksum: 32c62fc9e28edd101e1bd83453a4216eb9bd875cc4d3775e4452b541908fa8f61a7bbac8ffde57484f01d7096279d3ba0337078e85a918ecbeb72872fb09fb2b - languageName: node - linkType: hard - -"schema-utils@npm:^3.0.0, schema-utils@npm:^3.1.1, schema-utils@npm:^3.2.0": - version: 3.3.0 - resolution: "schema-utils@npm:3.3.0" - dependencies: - "@types/json-schema": ^7.0.8 - ajv: ^6.12.5 - ajv-keywords: ^3.5.2 - checksum: ea56971926fac2487f0757da939a871388891bc87c6a82220d125d587b388f1704788f3706e7f63a7b70e49fc2db974c41343528caea60444afd5ce0fe4b85c0 - languageName: node - linkType: hard - -"schema-utils@npm:^4.0.0": - version: 4.2.0 - resolution: "schema-utils@npm:4.2.0" - dependencies: - "@types/json-schema": ^7.0.9 - ajv: ^8.9.0 - ajv-formats: ^2.1.1 - ajv-keywords: ^5.1.0 - checksum: 26a0463d47683258106e6652e9aeb0823bf0b85843039e068b57da1892f7ae6b6b1094d48e9ed5ba5cbe9f7166469d880858b9d91abe8bd249421eb813850cde - languageName: node - linkType: hard - -"section-matter@npm:^1.0.0": - version: 1.0.0 - resolution: "section-matter@npm:1.0.0" - dependencies: - extend-shallow: ^2.0.1 - kind-of: ^6.0.0 - checksum: 3cc4131705493b2955729b075dcf562359bba66183debb0332752dc9cad35616f6da7a23e42b6cab45cd2e4bb5cda113e9e84c8f05aee77adb6b0289a0229101 - languageName: node - linkType: hard - -"select-hose@npm:^2.0.0": - version: 2.0.0 - resolution: "select-hose@npm:2.0.0" - checksum: d7e5fcc695a4804209d232a1b18624a5134be334d4e1114b0721f7a5e72bd73da483dcf41528c1af4f4f4892ad7cfd6a1e55c8ffb83f9c9fe723b738db609dbb - languageName: node - linkType: hard - -"selfsigned@npm:^2.1.1": - version: 2.4.1 - resolution: "selfsigned@npm:2.4.1" - dependencies: - "@types/node-forge": ^1.3.0 - node-forge: ^1 - checksum: 38b91c56f1d7949c0b77f9bbe4545b19518475cae15e7d7f0043f87b1626710b011ce89879a88969651f650a19d213bb15b7d5b4c2877df9eeeff7ba8f8b9bfa - languageName: node - linkType: hard - -"semver-diff@npm:^3.1.1": - version: 3.1.1 - resolution: "semver-diff@npm:3.1.1" - dependencies: - semver: ^6.3.0 - checksum: 8bbe5a5d7add2d5e51b72314a9215cd294d71f41cdc2bf6bd59ee76411f3610b576172896f1d191d0d7294cb9f2f847438d2ee158adacc0c224dca79052812fe - languageName: node - linkType: hard - -"semver@npm:^5.4.1": - version: 5.7.2 - resolution: "semver@npm:5.7.2" - bin: - semver: bin/semver - checksum: fb4ab5e0dd1c22ce0c937ea390b4a822147a9c53dbd2a9a0132f12fe382902beef4fbf12cf51bb955248d8d15874ce8cd89532569756384f994309825f10b686 - languageName: node - linkType: hard - -"semver@npm:^6.0.0, semver@npm:^6.2.0, semver@npm:^6.3.0, semver@npm:^6.3.1": - version: 6.3.1 - resolution: "semver@npm:6.3.1" - bin: - semver: bin/semver.js - checksum: ae47d06de28836adb9d3e25f22a92943477371292d9b665fb023fae278d345d508ca1958232af086d85e0155aee22e313e100971898bbb8d5d89b8b1d4054ca2 - languageName: node - linkType: hard - -"semver@npm:^7.3.2, semver@npm:^7.3.4, semver@npm:^7.3.5, semver@npm:^7.3.7, semver@npm:^7.5.4": - version: 7.6.0 - resolution: "semver@npm:7.6.0" - dependencies: - lru-cache: ^6.0.0 - bin: - semver: bin/semver.js - checksum: 7427f05b70786c696640edc29fdd4bc33b2acf3bbe1740b955029044f80575fc664e1a512e4113c3af21e767154a94b4aa214bf6cd6e42a1f6dba5914e0b208c - languageName: node - linkType: hard - -"send@npm:0.18.0": - version: 0.18.0 - resolution: "send@npm:0.18.0" - dependencies: - debug: 2.6.9 - depd: 2.0.0 - destroy: 1.2.0 - encodeurl: ~1.0.2 - escape-html: ~1.0.3 - etag: ~1.8.1 - fresh: 0.5.2 - http-errors: 2.0.0 - mime: 1.6.0 - ms: 2.1.3 - on-finished: 2.4.1 - range-parser: ~1.2.1 - statuses: 2.0.1 - checksum: 74fc07ebb58566b87b078ec63e5a3e41ecd987e4272ba67b7467e86c6ad51bc6b0b0154133b6d8b08a2ddda360464f71382f7ef864700f34844a76c8027817a8 - languageName: node - linkType: hard - -"serialize-javascript@npm:^6.0.0, serialize-javascript@npm:^6.0.1": - version: 6.0.2 - resolution: "serialize-javascript@npm:6.0.2" - dependencies: - randombytes: ^2.1.0 - checksum: c4839c6206c1d143c0f80763997a361310305751171dd95e4b57efee69b8f6edd8960a0b7fbfc45042aadff98b206d55428aee0dc276efe54f100899c7fa8ab7 - languageName: node - linkType: hard - -"serve-handler@npm:^6.1.3": - version: 6.1.5 - resolution: "serve-handler@npm:6.1.5" - dependencies: - bytes: 3.0.0 - content-disposition: 0.5.2 - fast-url-parser: 1.1.3 - mime-types: 2.1.18 - minimatch: 3.1.2 - path-is-inside: 1.0.2 - path-to-regexp: 2.2.1 - range-parser: 1.2.0 - checksum: 7a98ca9cbf8692583b6cde4deb3941cff900fa38bf16adbfccccd8430209bab781e21d9a1f61c9c03e226f9f67689893bbce25941368f3ddaf985fc3858b49dc - languageName: node - linkType: hard - -"serve-index@npm:^1.9.1": - version: 1.9.1 - resolution: "serve-index@npm:1.9.1" - dependencies: - accepts: ~1.3.4 - batch: 0.6.1 - debug: 2.6.9 - escape-html: ~1.0.3 - http-errors: ~1.6.2 - mime-types: ~2.1.17 - parseurl: ~1.3.2 - checksum: e2647ce13379485b98a53ba2ea3fbad4d44b57540d00663b02b976e426e6194d62ac465c0d862cb7057f65e0de8ab8a684aa095427a4b8612412eca0d300d22f - languageName: node - linkType: hard - -"serve-static@npm:1.15.0": - version: 1.15.0 - resolution: "serve-static@npm:1.15.0" - dependencies: - encodeurl: ~1.0.2 - escape-html: ~1.0.3 - parseurl: ~1.3.3 - send: 0.18.0 - checksum: af57fc13be40d90a12562e98c0b7855cf6e8bd4c107fe9a45c212bf023058d54a1871b1c89511c3958f70626fff47faeb795f5d83f8cf88514dbaeb2b724464d - languageName: node - linkType: hard - -"set-function-length@npm:^1.2.1": - version: 1.2.1 - resolution: "set-function-length@npm:1.2.1" - dependencies: - define-data-property: ^1.1.2 - es-errors: ^1.3.0 - function-bind: ^1.1.2 - get-intrinsic: ^1.2.3 - gopd: ^1.0.1 - has-property-descriptors: ^1.0.1 - checksum: 23742476d695f2eae86348c069bd164d4f25fa7c26546a46a2b5f370f1f84b98ec64366d2cd17785d5b41bbf16b95855da4b7eb188e7056fe3b0248d61f6afda - languageName: node - linkType: hard - -"set-function-name@npm:^2.0.0, set-function-name@npm:^2.0.1": - version: 2.0.2 - resolution: "set-function-name@npm:2.0.2" - dependencies: - define-data-property: ^1.1.4 - es-errors: ^1.3.0 - functions-have-names: ^1.2.3 - has-property-descriptors: ^1.0.2 - checksum: d6229a71527fd0404399fc6227e0ff0652800362510822a291925c9d7b48a1ca1a468b11b281471c34cd5a2da0db4f5d7ff315a61d26655e77f6e971e6d0c80f - languageName: node - linkType: hard - -"setimmediate@npm:^1.0.5": - version: 1.0.5 - resolution: "setimmediate@npm:1.0.5" - checksum: c9a6f2c5b51a2dabdc0247db9c46460152ffc62ee139f3157440bd48e7c59425093f42719ac1d7931f054f153e2d26cf37dfeb8da17a794a58198a2705e527fd - languageName: node - linkType: hard - -"setprototypeof@npm:1.1.0": - version: 1.1.0 - resolution: "setprototypeof@npm:1.1.0" - checksum: 27cb44304d6c9e1a23bc6c706af4acaae1a7aa1054d4ec13c05f01a99fd4887109a83a8042b67ad90dbfcd100d43efc171ee036eb080667172079213242ca36e - languageName: node - linkType: hard - -"setprototypeof@npm:1.2.0": - version: 1.2.0 - resolution: "setprototypeof@npm:1.2.0" - checksum: be18cbbf70e7d8097c97f713a2e76edf84e87299b40d085c6bf8b65314e994cc15e2e317727342fa6996e38e1f52c59720b53fe621e2eb593a6847bf0356db89 - languageName: node - linkType: hard - -"shallow-clone@npm:^3.0.0": - version: 3.0.1 - resolution: "shallow-clone@npm:3.0.1" - dependencies: - kind-of: ^6.0.2 - checksum: 39b3dd9630a774aba288a680e7d2901f5c0eae7b8387fc5c8ea559918b29b3da144b7bdb990d7ccd9e11be05508ac9e459ce51d01fd65e583282f6ffafcba2e7 - languageName: node - linkType: hard - -"shallowequal@npm:^1.1.0": - version: 1.1.0 - resolution: "shallowequal@npm:1.1.0" - checksum: f4c1de0837f106d2dbbfd5d0720a5d059d1c66b42b580965c8f06bb1db684be8783538b684092648c981294bf817869f743a066538771dbecb293df78f765e00 - languageName: node - linkType: hard - -"shebang-command@npm:^2.0.0": - version: 2.0.0 - resolution: "shebang-command@npm:2.0.0" - dependencies: - shebang-regex: ^3.0.0 - checksum: 6b52fe87271c12968f6a054e60f6bde5f0f3d2db483a1e5c3e12d657c488a15474121a1d55cd958f6df026a54374ec38a4a963988c213b7570e1d51575cea7fa - languageName: node - linkType: hard - -"shebang-regex@npm:^3.0.0": - version: 3.0.0 - resolution: "shebang-regex@npm:3.0.0" - checksum: 1a2bcae50de99034fcd92ad4212d8e01eedf52c7ec7830eedcf886622804fe36884278f2be8be0ea5fde3fd1c23911643a4e0f726c8685b61871c8908af01222 - languageName: node - linkType: hard - -"shell-quote@npm:^1.7.3, shell-quote@npm:^1.8.1": - version: 1.8.1 - resolution: "shell-quote@npm:1.8.1" - checksum: 5f01201f4ef504d4c6a9d0d283fa17075f6770bfbe4c5850b074974c68062f37929ca61700d95ad2ac8822e14e8c4b990ca0e6e9272e64befd74ce5e19f0736b - languageName: node - linkType: hard - -"shelljs@npm:^0.8.5": - version: 0.8.5 - resolution: "shelljs@npm:0.8.5" - dependencies: - glob: ^7.0.0 - interpret: ^1.0.0 - rechoir: ^0.6.2 - bin: - shjs: bin/shjs - checksum: 7babc46f732a98f4c054ec1f048b55b9149b98aa2da32f6cf9844c434b43c6251efebd6eec120937bd0999e13811ebd45efe17410edb3ca938f82f9381302748 - languageName: node - linkType: hard - -"shiki@npm:^0.14.1": - version: 0.14.7 - resolution: "shiki@npm:0.14.7" - dependencies: - ansi-sequence-parser: ^1.1.0 - jsonc-parser: ^3.2.0 - vscode-oniguruma: ^1.7.0 - vscode-textmate: ^8.0.0 - checksum: 2aec3b3519df977c4391df9e1825cb496e9a4d7e11395f05a0da77e4fa2f7c3d9d6e6ee94029ac699533017f2b25637ee68f6d39f05f311535c2704d0329b520 - languageName: node - linkType: hard - -"side-channel@npm:^1.0.4": - version: 1.0.6 - resolution: "side-channel@npm:1.0.6" - dependencies: - call-bind: ^1.0.7 - es-errors: ^1.3.0 - get-intrinsic: ^1.2.4 - object-inspect: ^1.13.1 - checksum: bfc1afc1827d712271453e91b7cd3878ac0efd767495fd4e594c4c2afaa7963b7b510e249572bfd54b0527e66e4a12b61b80c061389e129755f34c493aad9b97 - languageName: node - linkType: hard - -"signal-exit@npm:^3.0.2, signal-exit@npm:^3.0.3": - version: 3.0.7 - resolution: "signal-exit@npm:3.0.7" - checksum: a2f098f247adc367dffc27845853e9959b9e88b01cb301658cfe4194352d8d2bb32e18467c786a7fe15f1d44b233ea35633d076d5e737870b7139949d1ab6318 - languageName: node - linkType: hard - -"signal-exit@npm:^4.0.1": - version: 4.1.0 - resolution: "signal-exit@npm:4.1.0" - checksum: 64c757b498cb8629ffa5f75485340594d2f8189e9b08700e69199069c8e3070fb3e255f7ab873c05dc0b3cec412aea7402e10a5990cb6a050bd33ba062a6c549 - languageName: node - linkType: hard - -"sirv@npm:^2.0.3": - version: 2.0.4 - resolution: "sirv@npm:2.0.4" - dependencies: - "@polka/url": ^1.0.0-next.24 - mrmime: ^2.0.0 - totalist: ^3.0.0 - checksum: 6853384a51d6ee9377dd657e2b257e0e98b29abbfbfa6333e105197f0f100c8c56a4520b47028b04ab1833cf2312526206f38fcd4f891c6df453f40da1a15a57 - languageName: node - linkType: hard - -"sisteransi@npm:^1.0.5": - version: 1.0.5 - resolution: "sisteransi@npm:1.0.5" - checksum: aba6438f46d2bfcef94cf112c835ab395172c75f67453fe05c340c770d3c402363018ae1ab4172a1026a90c47eaccf3af7b6ff6fa749a680c2929bd7fa2b37a4 - languageName: node - linkType: hard - -"sitemap@npm:^7.1.1": - version: 7.1.1 - resolution: "sitemap@npm:7.1.1" - dependencies: - "@types/node": ^17.0.5 - "@types/sax": ^1.2.1 - arg: ^5.0.0 - sax: ^1.2.4 - bin: - sitemap: dist/cli.js - checksum: 87a6d21b0d4a33b8c611d3bb8543d02b813c0ebfce014213ef31849b5c1439005644f19ad1593ec89815f6101355f468c9a02c251d09aa03f6fddd17e23c4be4 - languageName: node - linkType: hard - -"slash@npm:^3.0.0": - version: 3.0.0 - resolution: "slash@npm:3.0.0" - checksum: 94a93fff615f25a999ad4b83c9d5e257a7280c90a32a7cb8b4a87996e4babf322e469c42b7f649fd5796edd8687652f3fb452a86dc97a816f01113183393f11c - languageName: node - linkType: hard - -"slash@npm:^4.0.0": - version: 4.0.0 - resolution: "slash@npm:4.0.0" - checksum: da8e4af73712253acd21b7853b7e0dbba776b786e82b010a5bfc8b5051a1db38ed8aba8e1e8f400dd2c9f373be91eb1c42b66e91abb407ff42b10feece5e1d2d - languageName: node - linkType: hard - -"smart-buffer@npm:^4.2.0": - version: 4.2.0 - resolution: "smart-buffer@npm:4.2.0" - checksum: b5167a7142c1da704c0e3af85c402002b597081dd9575031a90b4f229ca5678e9a36e8a374f1814c8156a725d17008ae3bde63b92f9cfd132526379e580bec8b - languageName: node - linkType: hard - -"sockjs@npm:^0.3.24": - version: 0.3.24 - resolution: "sockjs@npm:0.3.24" - dependencies: - faye-websocket: ^0.11.3 - uuid: ^8.3.2 - websocket-driver: ^0.7.4 - checksum: 355309b48d2c4e9755349daa29cea1c0d9ee23e49b983841c6bf7a20276b00d3c02343f9f33f26d2ee8b261a5a02961b52a25c8da88b2538c5b68d3071b4934c - languageName: node - linkType: hard - -"socks-proxy-agent@npm:^8.0.1": - version: 8.0.2 - resolution: "socks-proxy-agent@npm:8.0.2" - dependencies: - agent-base: ^7.0.2 - debug: ^4.3.4 - socks: ^2.7.1 - checksum: 4fb165df08f1f380881dcd887b3cdfdc1aba3797c76c1e9f51d29048be6e494c5b06d68e7aea2e23df4572428f27a3ec22b3d7c75c570c5346507433899a4b6d - languageName: node - linkType: hard - -"socks@npm:^2.7.1": - version: 2.8.1 - resolution: "socks@npm:2.8.1" - dependencies: - ip-address: ^9.0.5 - smart-buffer: ^4.2.0 - checksum: 29586d42e9c36c5016632b2bcb6595e3adfbcb694b3a652c51bc8741b079c5ec37bdd5675a1a89a1620078c8137208294991fabb50786f92d47759a725b2b62e - languageName: node - linkType: hard - -"sort-css-media-queries@npm:2.1.0": - version: 2.1.0 - resolution: "sort-css-media-queries@npm:2.1.0" - checksum: 25cb8f08b148a2ed83d0bc1cf20ddb888d3dee2a3c986896099a21b28b999d5cca3e46a9ef64381bb36fca0fc820471713f2e8af2729ecc6e108ab2b3b315ea9 - languageName: node - linkType: hard - -"source-map-js@npm:^1.0.2": - version: 1.0.2 - resolution: "source-map-js@npm:1.0.2" - checksum: c049a7fc4deb9a7e9b481ae3d424cc793cb4845daa690bc5a05d428bf41bf231ced49b4cf0c9e77f9d42fdb3d20d6187619fc586605f5eabe995a316da8d377c - languageName: node - linkType: hard - -"source-map-support@npm:~0.5.20": - version: 0.5.21 - resolution: "source-map-support@npm:0.5.21" - dependencies: - buffer-from: ^1.0.0 - source-map: ^0.6.0 - checksum: 43e98d700d79af1d36f859bdb7318e601dfc918c7ba2e98456118ebc4c4872b327773e5a1df09b0524e9e5063bb18f0934538eace60cca2710d1fa687645d137 - languageName: node - linkType: hard - -"source-map@npm:^0.5.0": - version: 0.5.7 - resolution: "source-map@npm:0.5.7" - checksum: 5dc2043b93d2f194142c7f38f74a24670cd7a0063acdaf4bf01d2964b402257ae843c2a8fa822ad5b71013b5fcafa55af7421383da919752f22ff488bc553f4d - languageName: node - linkType: hard - -"source-map@npm:^0.6.0, source-map@npm:^0.6.1, source-map@npm:~0.6.0": - version: 0.6.1 - resolution: "source-map@npm:0.6.1" - checksum: 59ce8640cf3f3124f64ac289012c2b8bd377c238e316fb323ea22fbfe83da07d81e000071d7242cad7a23cd91c7de98e4df8830ec3f133cb6133a5f6e9f67bc2 - languageName: node - linkType: hard - -"space-separated-tokens@npm:^1.0.0": - version: 1.1.5 - resolution: "space-separated-tokens@npm:1.1.5" - checksum: 8ef68f1cfa8ccad316b7f8d0df0919d0f1f6d32101e8faeee34ea3a923ce8509c1ad562f57388585ee4951e92d27afa211ed0a077d3d5995b5ba9180331be708 - languageName: node - linkType: hard - -"spdy-transport@npm:^3.0.0": - version: 3.0.0 - resolution: "spdy-transport@npm:3.0.0" - dependencies: - debug: ^4.1.0 - detect-node: ^2.0.4 - hpack.js: ^2.1.6 - obuf: ^1.1.2 - readable-stream: ^3.0.6 - wbuf: ^1.7.3 - checksum: 0fcaad3b836fb1ec0bdd39fa7008b9a7a84a553f12be6b736a2512613b323207ffc924b9551cef0378f7233c85916cff1118652e03a730bdb97c0e042243d56c - languageName: node - linkType: hard - -"spdy@npm:^4.0.2": - version: 4.0.2 - resolution: "spdy@npm:4.0.2" - dependencies: - debug: ^4.1.0 - handle-thing: ^2.0.0 - http-deceiver: ^1.2.7 - select-hose: ^2.0.0 - spdy-transport: ^3.0.0 - checksum: 2c739d0ff6f56ad36d2d754d0261d5ec358457bea7cbf77b1b05b0c6464f2ce65b85f196305f50b7bd9120723eb94bae9933466f28e67e5cd8cde4e27f1d75f8 - languageName: node - linkType: hard - -"sprintf-js@npm:^1.1.3": - version: 1.1.3 - resolution: "sprintf-js@npm:1.1.3" - checksum: a3fdac7b49643875b70864a9d9b469d87a40dfeaf5d34d9d0c5b1cda5fd7d065531fcb43c76357d62254c57184a7b151954156563a4d6a747015cfb41021cad0 - languageName: node - linkType: hard - -"sprintf-js@npm:~1.0.2": - version: 1.0.3 - resolution: "sprintf-js@npm:1.0.3" - checksum: 19d79aec211f09b99ec3099b5b2ae2f6e9cdefe50bc91ac4c69144b6d3928a640bb6ae5b3def70c2e85a2c3d9f5ec2719921e3a59d3ca3ef4b2fd1a4656a0df3 - languageName: node - linkType: hard - -"ssri@npm:^10.0.0": - version: 10.0.5 - resolution: "ssri@npm:10.0.5" - dependencies: - minipass: ^7.0.3 - checksum: 0a31b65f21872dea1ed3f7c200d7bc1c1b91c15e419deca14f282508ba917cbb342c08a6814c7f68ca4ca4116dd1a85da2bbf39227480e50125a1ceffeecb750 - languageName: node - linkType: hard - -"stable@npm:^0.1.8": - version: 0.1.8 - resolution: "stable@npm:0.1.8" - checksum: 2ff482bb100285d16dd75cd8f7c60ab652570e8952c0bfa91828a2b5f646a0ff533f14596ea4eabd48bb7f4aeea408dce8f8515812b975d958a4cc4fa6b9dfeb - languageName: node - linkType: hard - -"state-toggle@npm:^1.0.0": - version: 1.0.3 - resolution: "state-toggle@npm:1.0.3" - checksum: 17398af928413e8d8b866cf0c81fd1b1348bb7d65d8983126ff6ff2317a80d6ee023484fba0c54d8169f5aa544f125434a650ae3a71eddc935cae307d4692b4f - languageName: node - linkType: hard - -"statuses@npm:2.0.1": - version: 2.0.1 - resolution: "statuses@npm:2.0.1" - checksum: 18c7623fdb8f646fb213ca4051be4df7efb3484d4ab662937ca6fbef7ced9b9e12842709872eb3020cc3504b93bde88935c9f6417489627a7786f24f8031cbcb - languageName: node - linkType: hard - -"statuses@npm:>= 1.4.0 < 2": - version: 1.5.0 - resolution: "statuses@npm:1.5.0" - checksum: c469b9519de16a4bb19600205cffb39ee471a5f17b82589757ca7bd40a8d92ebb6ed9f98b5a540c5d302ccbc78f15dc03cc0280dd6e00df1335568a5d5758a5c - languageName: node - linkType: hard - -"std-env@npm:^3.0.1": - version: 3.7.0 - resolution: "std-env@npm:3.7.0" - checksum: 4f489d13ff2ab838c9acd4ed6b786b51aa52ecacdfeaefe9275fcb220ff2ac80c6e95674723508fd29850a694569563a8caaaea738eb82ca16429b3a0b50e510 - languageName: node - linkType: hard - -"string-width-cjs@npm:string-width@^4.2.0, string-width@npm:^4.0.0, string-width@npm:^4.1.0, string-width@npm:^4.2.0, string-width@npm:^4.2.2": - version: 4.2.3 - resolution: "string-width@npm:4.2.3" - dependencies: - emoji-regex: ^8.0.0 - is-fullwidth-code-point: ^3.0.0 - strip-ansi: ^6.0.1 - checksum: e52c10dc3fbfcd6c3a15f159f54a90024241d0f149cf8aed2982a2d801d2e64df0bf1dc351cf8e95c3319323f9f220c16e740b06faecd53e2462df1d2b5443fb - languageName: node - linkType: hard - -"string-width@npm:^5.0.1, string-width@npm:^5.1.2": - version: 5.1.2 - resolution: "string-width@npm:5.1.2" - dependencies: - eastasianwidth: ^0.2.0 - emoji-regex: ^9.2.2 - strip-ansi: ^7.0.1 - checksum: 7369deaa29f21dda9a438686154b62c2c5f661f8dda60449088f9f980196f7908fc39fdd1803e3e01541970287cf5deae336798337e9319a7055af89dafa7193 - languageName: node - linkType: hard - -"string.prototype.matchall@npm:^4.0.10": - version: 4.0.10 - resolution: "string.prototype.matchall@npm:4.0.10" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - get-intrinsic: ^1.2.1 - has-symbols: ^1.0.3 - internal-slot: ^1.0.5 - regexp.prototype.flags: ^1.5.0 - set-function-name: ^2.0.0 - side-channel: ^1.0.4 - checksum: 3c78bdeff39360c8e435d7c4c6ea19f454aa7a63eda95fa6fadc3a5b984446a2f9f2c02d5c94171ce22268a573524263fbd0c8edbe3ce2e9890d7cc036cdc3ed - languageName: node - linkType: hard - -"string.prototype.trim@npm:^1.2.8": - version: 1.2.8 - resolution: "string.prototype.trim@npm:1.2.8" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - checksum: 49eb1a862a53aba73c3fb6c2a53f5463173cb1f4512374b623bcd6b43ad49dd559a06fb5789bdec771a40fc4d2a564411c0a75d35fb27e76bbe738c211ecff07 - languageName: node - linkType: hard - -"string.prototype.trimend@npm:^1.0.7": - version: 1.0.7 - resolution: "string.prototype.trimend@npm:1.0.7" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - checksum: 2375516272fd1ba75992f4c4aa88a7b5f3c7a9ca308d963bcd5645adf689eba6f8a04ebab80c33e30ec0aefc6554181a3a8416015c38da0aa118e60ec896310c - languageName: node - linkType: hard - -"string.prototype.trimstart@npm:^1.0.7": - version: 1.0.7 - resolution: "string.prototype.trimstart@npm:1.0.7" - dependencies: - call-bind: ^1.0.2 - define-properties: ^1.2.0 - es-abstract: ^1.22.1 - checksum: 13d0c2cb0d5ff9e926fa0bec559158b062eed2b68cd5be777ffba782c96b2b492944e47057274e064549b94dd27cf81f48b27a31fee8af5b574cff253e7eb613 - languageName: node - linkType: hard - -"string_decoder@npm:^1.1.1": - version: 1.3.0 - resolution: "string_decoder@npm:1.3.0" - dependencies: - safe-buffer: ~5.2.0 - checksum: 8417646695a66e73aefc4420eb3b84cc9ffd89572861fe004e6aeb13c7bc00e2f616247505d2dbbef24247c372f70268f594af7126f43548565c68c117bdeb56 - languageName: node - linkType: hard - -"string_decoder@npm:~1.1.1": - version: 1.1.1 - resolution: "string_decoder@npm:1.1.1" - dependencies: - safe-buffer: ~5.1.0 - checksum: 9ab7e56f9d60a28f2be697419917c50cac19f3e8e6c28ef26ed5f4852289fe0de5d6997d29becf59028556f2c62983790c1d9ba1e2a3cc401768ca12d5183a5b - languageName: node - linkType: hard - -"stringify-object@npm:^3.3.0": - version: 3.3.0 - resolution: "stringify-object@npm:3.3.0" - dependencies: - get-own-enumerable-property-symbols: ^3.0.0 - is-obj: ^1.0.1 - is-regexp: ^1.0.0 - checksum: 6827a3f35975cfa8572e8cd3ed4f7b262def260af18655c6fde549334acdac49ddba69f3c861ea5a6e9c5a4990fe4ae870b9c0e6c31019430504c94a83b7a154 - languageName: node - linkType: hard - -"strip-ansi-cjs@npm:strip-ansi@^6.0.1, strip-ansi@npm:^6.0.0, strip-ansi@npm:^6.0.1": - version: 6.0.1 - resolution: "strip-ansi@npm:6.0.1" - dependencies: - ansi-regex: ^5.0.1 - checksum: f3cd25890aef3ba6e1a74e20896c21a46f482e93df4a06567cebf2b57edabb15133f1f94e57434e0a958d61186087b1008e89c94875d019910a213181a14fc8c - languageName: node - linkType: hard - -"strip-ansi@npm:^7.0.1": - version: 7.1.0 - resolution: "strip-ansi@npm:7.1.0" - dependencies: - ansi-regex: ^6.0.1 - checksum: 859c73fcf27869c22a4e4d8c6acfe690064659e84bef9458aa6d13719d09ca88dcfd40cbf31fd0be63518ea1a643fe070b4827d353e09533a5b0b9fd4553d64d - languageName: node - linkType: hard - -"strip-bom-string@npm:^1.0.0": - version: 1.0.0 - resolution: "strip-bom-string@npm:1.0.0" - checksum: 5635a3656d8512a2c194d6c8d5dee7ef0dde6802f7be9413b91e201981ad4132506656d9cf14137f019fd50f0269390d91c7f6a2601b1bee039a4859cfce4934 - languageName: node - linkType: hard - -"strip-bom@npm:^3.0.0": - version: 3.0.0 - resolution: "strip-bom@npm:3.0.0" - checksum: 8d50ff27b7ebe5ecc78f1fe1e00fcdff7af014e73cf724b46fb81ef889eeb1015fc5184b64e81a2efe002180f3ba431bdd77e300da5c6685d702780fbf0c8d5b - languageName: node - linkType: hard - -"strip-final-newline@npm:^2.0.0": - version: 2.0.0 - resolution: "strip-final-newline@npm:2.0.0" - checksum: 69412b5e25731e1938184b5d489c32e340605bb611d6140344abc3421b7f3c6f9984b21dff296dfcf056681b82caa3bb4cc996a965ce37bcfad663e92eae9c64 - languageName: node - linkType: hard - -"strip-json-comments@npm:^3.1.1": - version: 3.1.1 - resolution: "strip-json-comments@npm:3.1.1" - checksum: 492f73e27268f9b1c122733f28ecb0e7e8d8a531a6662efbd08e22cccb3f9475e90a1b82cab06a392f6afae6d2de636f977e231296400d0ec5304ba70f166443 - languageName: node - linkType: hard - -"strip-json-comments@npm:~2.0.1": - version: 2.0.1 - resolution: "strip-json-comments@npm:2.0.1" - checksum: 1074ccb63270d32ca28edfb0a281c96b94dc679077828135141f27d52a5a398ef5e78bcf22809d23cadc2b81dfbe345eb5fd8699b385c8b1128907dec4a7d1e1 - languageName: node - linkType: hard - -"style-to-object@npm:0.3.0, style-to-object@npm:^0.3.0": - version: 0.3.0 - resolution: "style-to-object@npm:0.3.0" - dependencies: - inline-style-parser: 0.1.1 - checksum: 4d7084015207f2a606dfc10c29cb5ba569f2fe8005551df7396110dd694d6ff650f2debafa95bd5d147dfb4ca50f57868e2a7f91bf5d11ef734fe7ccbd7abf59 - languageName: node - linkType: hard - -"stylehacks@npm:^5.1.1": - version: 5.1.1 - resolution: "stylehacks@npm:5.1.1" - dependencies: - browserslist: ^4.21.4 - postcss-selector-parser: ^6.0.4 - peerDependencies: - postcss: ^8.2.15 - checksum: 11175366ef52de65bf06cefba0ddc9db286dc3a1451fd2989e74c6ea47091a02329a4bf6ce10b1a36950056927b6bbbe47c5ab3a1f4c7032df932d010fbde5a2 - languageName: node - linkType: hard - -"stylis@npm:^4.1.2": - version: 4.3.1 - resolution: "stylis@npm:4.3.1" - checksum: d365f1b008677b2147e8391e9cf20094a4202a5f9789562e7d9d0a3bd6f0b3067d39e8fd17cce5323903a56f6c45388e3d839e9c0bb5a738c91726992b14966d - languageName: node - linkType: hard - -"supabase@npm:^1.148.6": - version: 1.149.1 - resolution: "supabase@npm:1.149.1" - dependencies: - bin-links: ^4.0.3 - https-proxy-agent: ^7.0.2 - node-fetch: ^3.3.2 - tar: 6.2.0 - bin: - supabase: bin/supabase - checksum: 32e91100c72fcf3773efe29b84dbb49337da4ee7f064f79df017e1ffaa586cdc9ab84aa4ed49a6e84c1c1c9c734a7c3846299ab62116ab1a6b5a62a6722a2c26 - languageName: node - linkType: hard - -"supports-color@npm:^5.3.0": - version: 5.5.0 - resolution: "supports-color@npm:5.5.0" - dependencies: - has-flag: ^3.0.0 - checksum: 95f6f4ba5afdf92f495b5a912d4abee8dcba766ae719b975c56c084f5004845f6f5a5f7769f52d53f40e21952a6d87411bafe34af4a01e65f9926002e38e1dac - languageName: node - linkType: hard - -"supports-color@npm:^7.1.0": - version: 7.2.0 - resolution: "supports-color@npm:7.2.0" - dependencies: - has-flag: ^4.0.0 - checksum: 3dda818de06ebbe5b9653e07842d9479f3555ebc77e9a0280caf5a14fb877ffee9ed57007c3b78f5a6324b8dbeec648d9e97a24e2ed9fdb81ddc69ea07100f4a - languageName: node - linkType: hard - -"supports-color@npm:^8.0.0": - version: 8.1.1 - resolution: "supports-color@npm:8.1.1" - dependencies: - has-flag: ^4.0.0 - checksum: c052193a7e43c6cdc741eb7f378df605636e01ad434badf7324f17fb60c69a880d8d8fcdcb562cf94c2350e57b937d7425ab5b8326c67c2adc48f7c87c1db406 - languageName: node - linkType: hard - -"supports-preserve-symlinks-flag@npm:^1.0.0": - version: 1.0.0 - resolution: "supports-preserve-symlinks-flag@npm:1.0.0" - checksum: 53b1e247e68e05db7b3808b99b892bd36fb096e6fba213a06da7fab22045e97597db425c724f2bbd6c99a3c295e1e73f3e4de78592289f38431049e1277ca0ae - languageName: node - linkType: hard - -"svg-parser@npm:^2.0.4": - version: 2.0.4 - resolution: "svg-parser@npm:2.0.4" - checksum: b3de6653048212f2ae7afe4a423e04a76ec6d2d06e1bf7eacc618a7c5f7df7faa5105561c57b94579ec831fbbdbf5f190ba56a9205ff39ed13eabdf8ab086ddf - languageName: node - linkType: hard - -"svgo@npm:^2.7.0, svgo@npm:^2.8.0": - version: 2.8.0 - resolution: "svgo@npm:2.8.0" - dependencies: - "@trysound/sax": 0.2.0 - commander: ^7.2.0 - css-select: ^4.1.3 - css-tree: ^1.1.3 - csso: ^4.2.0 - picocolors: ^1.0.0 - stable: ^0.1.8 - bin: - svgo: bin/svgo - checksum: b92f71a8541468ffd0b81b8cdb36b1e242eea320bf3c1a9b2c8809945853e9d8c80c19744267eb91cabf06ae9d5fff3592d677df85a31be4ed59ff78534fa420 - languageName: node - linkType: hard - -"symbol-tree@npm:^3.2.4": - version: 3.2.4 - resolution: "symbol-tree@npm:3.2.4" - checksum: 6e8fc7e1486b8b54bea91199d9535bb72f10842e40c79e882fc94fb7b14b89866adf2fd79efa5ebb5b658bc07fb459ccce5ac0e99ef3d72f474e74aaf284029d - languageName: node - linkType: hard - -"tapable@npm:^1.0.0": - version: 1.1.3 - resolution: "tapable@npm:1.1.3" - checksum: 53ff4e7c3900051c38cc4faab428ebfd7e6ad0841af5a7ac6d5f3045c5b50e88497bfa8295b4b3fbcadd94993c9e358868b78b9fb249a76cb8b018ac8dccafd7 - languageName: node - linkType: hard - -"tapable@npm:^2.0.0, tapable@npm:^2.1.1, tapable@npm:^2.2.0, tapable@npm:^2.2.1": - version: 2.2.1 - resolution: "tapable@npm:2.2.1" - checksum: 3b7a1b4d86fa940aad46d9e73d1e8739335efd4c48322cb37d073eb6f80f5281889bf0320c6d8ffcfa1a0dd5bfdbd0f9d037e252ef972aca595330538aac4d51 - languageName: node - linkType: hard - -"tar@npm:6.2.0, tar@npm:^6.1.11, tar@npm:^6.1.2": - version: 6.2.0 - resolution: "tar@npm:6.2.0" - dependencies: - chownr: ^2.0.0 - fs-minipass: ^2.0.0 - minipass: ^5.0.0 - minizlib: ^2.1.1 - mkdirp: ^1.0.3 - yallist: ^4.0.0 - checksum: db4d9fe74a2082c3a5016630092c54c8375ff3b280186938cfd104f2e089c4fd9bad58688ef6be9cf186a889671bf355c7cda38f09bbf60604b281715ca57f5c - languageName: node - linkType: hard - -"terser-webpack-plugin@npm:^5.3.10, terser-webpack-plugin@npm:^5.3.3": - version: 5.3.10 - resolution: "terser-webpack-plugin@npm:5.3.10" - dependencies: - "@jridgewell/trace-mapping": ^0.3.20 - jest-worker: ^27.4.5 - schema-utils: ^3.1.1 - serialize-javascript: ^6.0.1 - terser: ^5.26.0 - peerDependencies: - webpack: ^5.1.0 - peerDependenciesMeta: - "@swc/core": - optional: true - esbuild: - optional: true - uglify-js: - optional: true - checksum: bd6e7596cf815f3353e2a53e79cbdec959a1b0276f5e5d4e63e9d7c3c5bb5306df567729da287d1c7b39d79093e56863c569c42c6c24cc34c76aa313bd2cbcea - languageName: node - linkType: hard - -"terser@npm:^5.10.0, terser@npm:^5.26.0": - version: 5.28.1 - resolution: "terser@npm:5.28.1" - dependencies: - "@jridgewell/source-map": ^0.3.3 - acorn: ^8.8.2 - commander: ^2.20.0 - source-map-support: ~0.5.20 - bin: - terser: bin/terser - checksum: 2668823cbdf8ae4c62d17a899614c849ddbfa932fce2309e600bd9ed6e6adb87b2c0aca30acb6cdf0d8e83a77ae3858af14cd357a2cb25b9f289fae98c7f7537 - languageName: node - linkType: hard - -"text-table@npm:^0.2.0": - version: 0.2.0 - resolution: "text-table@npm:0.2.0" - checksum: b6937a38c80c7f84d9c11dd75e49d5c44f71d95e810a3250bd1f1797fc7117c57698204adf676b71497acc205d769d65c16ae8fa10afad832ae1322630aef10a - languageName: node - linkType: hard - -"thunky@npm:^1.0.2": - version: 1.1.0 - resolution: "thunky@npm:1.1.0" - checksum: 993096c472b6b8f30e29dc777a8d17720e4cab448375041f20c0cb802a09a7fb2217f2a3e8cdc11851faa71c957e2db309357367fc9d7af3cb7a4d00f4b66034 - languageName: node - linkType: hard - -"tiny-invariant@npm:^1.0.2": - version: 1.3.3 - resolution: "tiny-invariant@npm:1.3.3" - checksum: 5e185c8cc2266967984ce3b352a4e57cb89dad5a8abb0dea21468a6ecaa67cd5bb47a3b7a85d08041008644af4f667fb8b6575ba38ba5fb00b3b5068306e59fe - languageName: node - linkType: hard - -"tiny-warning@npm:^1.0.0": - version: 1.0.3 - resolution: "tiny-warning@npm:1.0.3" - checksum: da62c4acac565902f0624b123eed6dd3509bc9a8d30c06e017104bedcf5d35810da8ff72864400ad19c5c7806fc0a8323c68baf3e326af7cb7d969f846100d71 - languageName: node - linkType: hard - -"to-fast-properties@npm:^2.0.0": - version: 2.0.0 - resolution: "to-fast-properties@npm:2.0.0" - checksum: be2de62fe58ead94e3e592680052683b1ec986c72d589e7b21e5697f8744cdbf48c266fa72f6c15932894c10187b5f54573a3bcf7da0bfd964d5caf23d436168 - languageName: node - linkType: hard - -"to-readable-stream@npm:^1.0.0": - version: 1.0.0 - resolution: "to-readable-stream@npm:1.0.0" - checksum: 2bd7778490b6214a2c40276065dd88949f4cf7037ce3964c76838b8cb212893aeb9cceaaf4352a4c486e3336214c350270f3263e1ce7a0c38863a715a4d9aeb5 - languageName: node - linkType: hard - -"to-regex-range@npm:^5.0.1": - version: 5.0.1 - resolution: "to-regex-range@npm:5.0.1" - dependencies: - is-number: ^7.0.0 - checksum: f76fa01b3d5be85db6a2a143e24df9f60dd047d151062d0ba3df62953f2f697b16fe5dad9b0ac6191c7efc7b1d9dcaa4b768174b7b29da89d4428e64bc0a20ed - languageName: node - linkType: hard - -"toidentifier@npm:1.0.1": - version: 1.0.1 - resolution: "toidentifier@npm:1.0.1" - checksum: 952c29e2a85d7123239b5cfdd889a0dde47ab0497f0913d70588f19c53f7e0b5327c95f4651e413c74b785147f9637b17410ac8c846d5d4a20a5a33eb6dc3a45 - languageName: node - linkType: hard - -"totalist@npm:^3.0.0": - version: 3.0.1 - resolution: "totalist@npm:3.0.1" - checksum: 5132d562cf88ff93fd710770a92f31dbe67cc19b5c6ccae2efc0da327f0954d211bbfd9456389655d726c624f284b4a23112f56d1da931ca7cfabbe1f45e778a - languageName: node - linkType: hard - -"tough-cookie@npm:^4.1.3": - version: 4.1.3 - resolution: "tough-cookie@npm:4.1.3" - dependencies: - psl: ^1.1.33 - punycode: ^2.1.1 - universalify: ^0.2.0 - url-parse: ^1.5.3 - checksum: c9226afff36492a52118432611af083d1d8493a53ff41ec4ea48e5b583aec744b989e4280bcf476c910ec1525a89a4a0f1cae81c08b18fb2ec3a9b3a72b91dcc - languageName: node - linkType: hard - -"tr46@npm:^5.0.0": - version: 5.0.0 - resolution: "tr46@npm:5.0.0" - dependencies: - punycode: ^2.3.1 - checksum: 8d8b021f8e17675ebf9e672c224b6b6cfdb0d5b92141349e9665c14a2501c54a298d11264bbb0b17b447581e1e83d4fc3c038c929f3d210e3964d4be47460288 - languageName: node - linkType: hard - -"tr46@npm:~0.0.3": - version: 0.0.3 - resolution: "tr46@npm:0.0.3" - checksum: 726321c5eaf41b5002e17ffbd1fb7245999a073e8979085dacd47c4b4e8068ff5777142fc6726d6ca1fd2ff16921b48788b87225cbc57c72636f6efa8efbffe3 - languageName: node - linkType: hard - -"trim-trailing-lines@npm:^1.0.0": - version: 1.1.4 - resolution: "trim-trailing-lines@npm:1.1.4" - checksum: 5d39d21c0d4b258667012fcd784f73129e148ea1c213b1851d8904f80499fc91df6710c94c7dd49a486a32da2b9cb86020dda79f285a9a2586cfa622f80490c2 - languageName: node - linkType: hard - -"trim@npm:0.0.1": - version: 0.0.1 - resolution: "trim@npm:0.0.1" - checksum: 2b4646dff99a222e8e1526edd4e3a43bbd925af0b8e837c340455d250157e7deefaa4da49bb891ab841e5c27b1afc5e9e32d4b57afb875d2dfcabf4e319b8f7f - languageName: node - linkType: hard - -"trough@npm:^1.0.0": - version: 1.0.5 - resolution: "trough@npm:1.0.5" - checksum: d6c8564903ed00e5258bab92134b020724dbbe83148dc72e4bf6306c03ed8843efa1bcc773fa62410dd89161ecb067432dd5916501793508a9506cacbc408e25 - languageName: node - linkType: hard - -"ts-dedent@npm:^2.2.0": - version: 2.2.0 - resolution: "ts-dedent@npm:2.2.0" - checksum: 93ed8f7878b6d5ed3c08d99b740010eede6bccfe64bce61c5a4da06a2c17d6ddbb80a8c49c2d15251de7594a4f93ffa21dd10e7be75ef66a4dc9951b4a94e2af - languageName: node - linkType: hard - -"ts-morph@npm:^21.0.1": - version: 21.0.1 - resolution: "ts-morph@npm:21.0.1" - dependencies: - "@ts-morph/common": ~0.22.0 - code-block-writer: ^12.0.0 - checksum: f8e6acd4cdb2842af47ccf4e8900dc3f230f20c3b0d28e1e8b58c395b0a16d7b3e03ef56f29da3fdb861c50e22eb52524e0fc4bfca0fde8448f81b8f4f6aa157 - languageName: node - linkType: hard - -"tsconfig-paths@npm:^3.15.0": - version: 3.15.0 - resolution: "tsconfig-paths@npm:3.15.0" - dependencies: - "@types/json5": ^0.0.29 - json5: ^1.0.2 - minimist: ^1.2.6 - strip-bom: ^3.0.0 - checksum: 59f35407a390d9482b320451f52a411a256a130ff0e7543d18c6f20afab29ac19fbe55c360a93d6476213cc335a4d76ce90f67df54c4e9037f7d240920832201 - languageName: node - linkType: hard - -"tslib@npm:^2.0.3, tslib@npm:^2.1.0, tslib@npm:^2.4.0, tslib@npm:^2.4.1": - version: 2.6.2 - resolution: "tslib@npm:2.6.2" - checksum: 329ea56123005922f39642318e3d1f0f8265d1e7fcb92c633e0809521da75eeaca28d2cf96d7248229deb40e5c19adf408259f4b9640afd20d13aecc1430f3ad - languageName: node - linkType: hard - -"type-check@npm:^0.4.0, type-check@npm:~0.4.0": - version: 0.4.0 - resolution: "type-check@npm:0.4.0" - dependencies: - prelude-ls: ^1.2.1 - checksum: ec688ebfc9c45d0c30412e41ca9c0cdbd704580eb3a9ccf07b9b576094d7b86a012baebc95681999dd38f4f444afd28504cb3a89f2ef16b31d4ab61a0739025a - languageName: node - linkType: hard - -"type-fest@npm:^0.20.2": - version: 0.20.2 - resolution: "type-fest@npm:0.20.2" - checksum: 4fb3272df21ad1c552486f8a2f8e115c09a521ad7a8db3d56d53718d0c907b62c6e9141ba5f584af3f6830d0872c521357e512381f24f7c44acae583ad517d73 - languageName: node - linkType: hard - -"type-fest@npm:^2.5.0": - version: 2.19.0 - resolution: "type-fest@npm:2.19.0" - checksum: a4ef07ece297c9fba78fc1bd6d85dff4472fe043ede98bd4710d2615d15776902b595abf62bd78339ed6278f021235fb28a96361f8be86ed754f778973a0d278 - languageName: node - linkType: hard - -"type-is@npm:~1.6.18": - version: 1.6.18 - resolution: "type-is@npm:1.6.18" - dependencies: - media-typer: 0.3.0 - mime-types: ~2.1.24 - checksum: 2c8e47675d55f8b4e404bcf529abdf5036c537a04c2b20177bcf78c9e3c1da69da3942b1346e6edb09e823228c0ee656ef0e033765ec39a70d496ef601a0c657 - languageName: node - linkType: hard - -"typed-array-buffer@npm:^1.0.2": - version: 1.0.2 - resolution: "typed-array-buffer@npm:1.0.2" - dependencies: - call-bind: ^1.0.7 - es-errors: ^1.3.0 - is-typed-array: ^1.1.13 - checksum: 02ffc185d29c6df07968272b15d5319a1610817916ec8d4cd670ded5d1efe72901541ff2202fcc622730d8a549c76e198a2f74e312eabbfb712ed907d45cbb0b - languageName: node - linkType: hard - -"typed-array-byte-length@npm:^1.0.1": - version: 1.0.1 - resolution: "typed-array-byte-length@npm:1.0.1" - dependencies: - call-bind: ^1.0.7 - for-each: ^0.3.3 - gopd: ^1.0.1 - has-proto: ^1.0.3 - is-typed-array: ^1.1.13 - checksum: f65e5ecd1cf76b1a2d0d6f631f3ea3cdb5e08da106c6703ffe687d583e49954d570cc80434816d3746e18be889ffe53c58bf3e538081ea4077c26a41055b216d - languageName: node - linkType: hard - -"typed-array-byte-offset@npm:^1.0.2": - version: 1.0.2 - resolution: "typed-array-byte-offset@npm:1.0.2" - dependencies: - available-typed-arrays: ^1.0.7 - call-bind: ^1.0.7 - for-each: ^0.3.3 - gopd: ^1.0.1 - has-proto: ^1.0.3 - is-typed-array: ^1.1.13 - checksum: c8645c8794a621a0adcc142e0e2c57b1823bbfa4d590ad2c76b266aa3823895cf7afb9a893bf6685e18454ab1b0241e1a8d885a2d1340948efa4b56add4b5f67 - languageName: node - linkType: hard - -"typed-array-length@npm:^1.0.5": - version: 1.0.5 - resolution: "typed-array-length@npm:1.0.5" - dependencies: - call-bind: ^1.0.7 - for-each: ^0.3.3 - gopd: ^1.0.1 - has-proto: ^1.0.3 - is-typed-array: ^1.1.13 - possible-typed-array-names: ^1.0.0 - checksum: 82f5b666155cff1b345a1f3ab018d3f7667990f525435e4c8448cc094ab0f8ea283bb7cbde4d7bc82ea0b9b1072523bf31e86620d72615951d7fa9ccb4f42dfa - languageName: node - linkType: hard - -"typedarray-to-buffer@npm:^3.1.5": - version: 3.1.5 - resolution: "typedarray-to-buffer@npm:3.1.5" - dependencies: - is-typedarray: ^1.0.0 - checksum: 99c11aaa8f45189fcfba6b8a4825fd684a321caa9bd7a76a27cf0c7732c174d198b99f449c52c3818107430b5f41c0ccbbfb75cb2ee3ca4a9451710986d61a60 - languageName: node - linkType: hard - -"typedoc-plugin-markdown@npm:next": - version: 4.0.0-next.53 - resolution: "typedoc-plugin-markdown@npm:4.0.0-next.53" - peerDependencies: - typedoc: 0.25.x - checksum: bb338baf45f4d19189e11d5d43a75f24f498b9d44291bedeba2b00fbfd0acbec90e3fed09d08123675230eb15e7351476605df329dfde051bea5295fc650ea56 - languageName: node - linkType: hard - -"typedoc@npm:^0.24.4": - version: 0.24.8 - resolution: "typedoc@npm:0.24.8" - dependencies: - lunr: ^2.3.9 - marked: ^4.3.0 - minimatch: ^9.0.0 - shiki: ^0.14.1 - peerDependencies: - typescript: 4.6.x || 4.7.x || 4.8.x || 4.9.x || 5.0.x || 5.1.x - bin: - typedoc: bin/typedoc - checksum: a46a14497f789fb3594e6c3af2e45276934ac46df40b7ed15a504ee51dc7a8013a2ffb3a54fd73abca6a2b71f97d3ec9ad356fa9aa81d29743e4645a965a2ae0 - languageName: node - linkType: hard - -"typescript@npm:<5.2.0": - version: 5.1.6 - resolution: "typescript@npm:5.1.6" - bin: - tsc: bin/tsc - tsserver: bin/tsserver - checksum: b2f2c35096035fe1f5facd1e38922ccb8558996331405eb00a5111cc948b2e733163cc22fab5db46992aba7dd520fff637f2c1df4996ff0e134e77d3249a7350 - languageName: node - linkType: hard - -"typescript@npm:^5.1.3": - version: 5.3.3 - resolution: "typescript@npm:5.3.3" - bin: - tsc: bin/tsc - tsserver: bin/tsserver - checksum: 2007ccb6e51bbbf6fde0a78099efe04dc1c3dfbdff04ca3b6a8bc717991862b39fd6126c0c3ebf2d2d98ac5e960bcaa873826bb2bb241f14277034148f41f6a2 - languageName: node - linkType: hard - -"typescript@patch:typescript@<5.2.0#~builtin": - version: 5.1.6 - resolution: "typescript@patch:typescript@npm%3A5.1.6#~builtin::version=5.1.6&hash=77c9e2" - bin: - tsc: bin/tsc - tsserver: bin/tsserver - checksum: 21e88b0a0c0226f9cb9fd25b9626fb05b4c0f3fddac521844a13e1f30beb8f14e90bd409a9ac43c812c5946d714d6e0dee12d5d02dfc1c562c5aacfa1f49b606 - languageName: node - linkType: hard - -"typescript@patch:typescript@^5.1.3#~builtin": - version: 5.3.3 - resolution: "typescript@patch:typescript@npm%3A5.3.3#~builtin::version=5.3.3&hash=77c9e2" - bin: - tsc: bin/tsc - tsserver: bin/tsserver - checksum: f61375590b3162599f0f0d5b8737877ac0a7bc52761dbb585d67e7b8753a3a4c42d9a554c4cc929f591ffcf3a2b0602f65ae3ce74714fd5652623a816862b610 - languageName: node - linkType: hard - -"ua-parser-js@npm:^1.0.35": - version: 1.0.37 - resolution: "ua-parser-js@npm:1.0.37" - checksum: 4d481c720d523366d7762dc8a46a1b58967d979aacf786f9ceceb1cd767de069f64a4bdffb63956294f1c0696eb465ddb950f28ba90571709e33521b4bd75e07 - languageName: node - linkType: hard - -"unbox-primitive@npm:^1.0.2": - version: 1.0.2 - resolution: "unbox-primitive@npm:1.0.2" - dependencies: - call-bind: ^1.0.2 - has-bigints: ^1.0.2 - has-symbols: ^1.0.3 - which-boxed-primitive: ^1.0.2 - checksum: b7a1cf5862b5e4b5deb091672ffa579aa274f648410009c81cca63fed3b62b610c4f3b773f912ce545bb4e31edc3138975b5bc777fc6e4817dca51affb6380e9 - languageName: node - linkType: hard - -"undici-types@npm:~5.26.4": - version: 5.26.5 - resolution: "undici-types@npm:5.26.5" - checksum: 3192ef6f3fd5df652f2dc1cd782b49d6ff14dc98e5dced492aa8a8c65425227da5da6aafe22523c67f035a272c599bb89cfe803c1db6311e44bed3042fc25487 - languageName: node - linkType: hard - -"unherit@npm:^1.0.4": - version: 1.1.3 - resolution: "unherit@npm:1.1.3" - dependencies: - inherits: ^2.0.0 - xtend: ^4.0.0 - checksum: fd7922f84fc0bfb7c4df6d1f5a50b5b94a0218e3cda98a54dbbd209226ddd4072d742d3df44d0e295ab08d5ccfd304a1e193dfe31a86d2a91b7cb9fdac093194 - languageName: node - linkType: hard - -"unicode-canonical-property-names-ecmascript@npm:^2.0.0": - version: 2.0.0 - resolution: "unicode-canonical-property-names-ecmascript@npm:2.0.0" - checksum: 39be078afd014c14dcd957a7a46a60061bc37c4508ba146517f85f60361acf4c7539552645ece25de840e17e293baa5556268d091ca6762747fdd0c705001a45 - languageName: node - linkType: hard - -"unicode-match-property-ecmascript@npm:^2.0.0": - version: 2.0.0 - resolution: "unicode-match-property-ecmascript@npm:2.0.0" - dependencies: - unicode-canonical-property-names-ecmascript: ^2.0.0 - unicode-property-aliases-ecmascript: ^2.0.0 - checksum: 1f34a7434a23df4885b5890ac36c5b2161a809887000be560f56ad4b11126d433c0c1c39baf1016bdabed4ec54829a6190ee37aa24919aa116dc1a5a8a62965a - languageName: node - linkType: hard - -"unicode-match-property-value-ecmascript@npm:^2.1.0": - version: 2.1.0 - resolution: "unicode-match-property-value-ecmascript@npm:2.1.0" - checksum: 8d6f5f586b9ce1ed0e84a37df6b42fdba1317a05b5df0c249962bd5da89528771e2d149837cad11aa26bcb84c35355cb9f58a10c3d41fa3b899181ece6c85220 - languageName: node - linkType: hard - -"unicode-property-aliases-ecmascript@npm:^2.0.0": - version: 2.1.0 - resolution: "unicode-property-aliases-ecmascript@npm:2.1.0" - checksum: 243524431893649b62cc674d877bd64ef292d6071dd2fd01ab4d5ad26efbc104ffcd064f93f8a06b7e4ec54c172bf03f6417921a0d8c3a9994161fe1f88f815b - languageName: node - linkType: hard - -"unified@npm:9.2.0": - version: 9.2.0 - resolution: "unified@npm:9.2.0" - dependencies: - bail: ^1.0.0 - extend: ^3.0.0 - is-buffer: ^2.0.0 - is-plain-obj: ^2.0.0 - trough: ^1.0.0 - vfile: ^4.0.0 - checksum: 0cac4ae119893fbd49d309b4db48595e4d4e9f0a2dc1dde4d0074059f9a46012a2905f37c1346715e583f30c970bc8078db8462675411d39ff5036ae18b4fb8a - languageName: node - linkType: hard - -"unified@npm:^9.2.2": - version: 9.2.2 - resolution: "unified@npm:9.2.2" - dependencies: - bail: ^1.0.0 - extend: ^3.0.0 - is-buffer: ^2.0.0 - is-plain-obj: ^2.0.0 - trough: ^1.0.0 - vfile: ^4.0.0 - checksum: 7c24461be7de4145939739ce50d18227c5fbdf9b3bc5a29dabb1ce26dd3e8bd4a1c385865f6f825f3b49230953ee8b591f23beab3bb3643e3e9dc37aa8a089d5 - languageName: node - linkType: hard - -"unique-filename@npm:^3.0.0": - version: 3.0.0 - resolution: "unique-filename@npm:3.0.0" - dependencies: - unique-slug: ^4.0.0 - checksum: 8e2f59b356cb2e54aab14ff98a51ac6c45781d15ceaab6d4f1c2228b780193dc70fae4463ce9e1df4479cb9d3304d7c2043a3fb905bdeca71cc7e8ce27e063df - languageName: node - linkType: hard - -"unique-slug@npm:^4.0.0": - version: 4.0.0 - resolution: "unique-slug@npm:4.0.0" - dependencies: - imurmurhash: ^0.1.4 - checksum: 0884b58365af59f89739e6f71e3feacb5b1b41f2df2d842d0757933620e6de08eff347d27e9d499b43c40476cbaf7988638d3acb2ffbcb9d35fd035591adfd15 - languageName: node - linkType: hard - -"unique-string@npm:^2.0.0": - version: 2.0.0 - resolution: "unique-string@npm:2.0.0" - dependencies: - crypto-random-string: ^2.0.0 - checksum: ef68f639136bcfe040cf7e3cd7a8dff076a665288122855148a6f7134092e6ed33bf83a7f3a9185e46c98dddc445a0da6ac25612afa1a7c38b8b654d6c02498e - languageName: node - linkType: hard - -"unist-builder@npm:2.0.3, unist-builder@npm:^2.0.0": - version: 2.0.3 - resolution: "unist-builder@npm:2.0.3" - checksum: e946fdf77dbfc320feaece137ce4959ae2da6614abd1623bd39512dc741a9d5f313eb2ba79f8887d941365dccddec7fef4e953827475e392bf49b45336f597f6 - languageName: node - linkType: hard - -"unist-util-generated@npm:^1.0.0": - version: 1.1.6 - resolution: "unist-util-generated@npm:1.1.6" - checksum: 86239ff88a08800d52198f2f0e15911f05bab2dad17cef95550f7c2728f15ebb0344694fcc3101d05762d88adaf86cb85aa7a3300fedabd0b6d7d00b41cdcb7f - languageName: node - linkType: hard - -"unist-util-is@npm:^4.0.0": - version: 4.1.0 - resolution: "unist-util-is@npm:4.1.0" - checksum: 726484cd2adc9be75a939aeedd48720f88294899c2e4a3143da413ae593f2b28037570730d5cf5fd910ff41f3bc1501e3d636b6814c478d71126581ef695f7ea - languageName: node - linkType: hard - -"unist-util-position@npm:^3.0.0": - version: 3.1.0 - resolution: "unist-util-position@npm:3.1.0" - checksum: 10b3952e32a1ffabbecad41c3946237f7059f5bb6436796da05531a285f50b97e4f37cfc2f7164676d041063f40fe1ad92fbb8ca38d3ae8747328ebe738d738f - languageName: node - linkType: hard - -"unist-util-remove-position@npm:^2.0.0": - version: 2.0.1 - resolution: "unist-util-remove-position@npm:2.0.1" - dependencies: - unist-util-visit: ^2.0.0 - checksum: 4149294969f1a78a367b5d03eb0a138aa8320a39e1b15686647a2bec5945af3df27f2936a1e9752ecbb4a82dc23bd86f7e5a0ee048e5eeaedc2deb9237872795 - languageName: node - linkType: hard - -"unist-util-remove@npm:^2.0.0": - version: 2.1.0 - resolution: "unist-util-remove@npm:2.1.0" - dependencies: - unist-util-is: ^4.0.0 - checksum: 99e54f3ea0523f8cf957579a6e84e5b58427bffab929cc7f6aa5119581f929db683dd4691ea5483df0c272f486dda9dbd04f4ab74dca6cae1f3ebe8e4261a4d9 - languageName: node - linkType: hard - -"unist-util-stringify-position@npm:^2.0.0": - version: 2.0.3 - resolution: "unist-util-stringify-position@npm:2.0.3" - dependencies: - "@types/unist": ^2.0.2 - checksum: f755cadc959f9074fe999578a1a242761296705a7fe87f333a37c00044de74ab4b184b3812989a57d4cd12211f0b14ad397b327c3a594c7af84361b1c25a7f09 - languageName: node - linkType: hard - -"unist-util-visit-parents@npm:^3.0.0": - version: 3.1.1 - resolution: "unist-util-visit-parents@npm:3.1.1" - dependencies: - "@types/unist": ^2.0.0 - unist-util-is: ^4.0.0 - checksum: 1170e397dff88fab01e76d5154981666eb0291019d2462cff7a2961a3e76d3533b42eaa16b5b7e2d41ad42a5ea7d112301458283d255993e660511387bf67bc3 - languageName: node - linkType: hard - -"unist-util-visit@npm:2.0.3, unist-util-visit@npm:^2.0.0, unist-util-visit@npm:^2.0.3": - version: 2.0.3 - resolution: "unist-util-visit@npm:2.0.3" - dependencies: - "@types/unist": ^2.0.0 - unist-util-is: ^4.0.0 - unist-util-visit-parents: ^3.0.0 - checksum: 1fe19d500e212128f96d8c3cfa3312846e586b797748a1fd195fe6479f06bc90a6f6904deb08eefc00dd58e83a1c8a32fb8677252d2273ad7a5e624525b69b8f - languageName: node - linkType: hard - -"universalify@npm:^0.2.0": - version: 0.2.0 - resolution: "universalify@npm:0.2.0" - checksum: e86134cb12919d177c2353196a4cc09981524ee87abf621f7bc8d249dbbbebaec5e7d1314b96061497981350df786e4c5128dbf442eba104d6e765bc260678b5 - languageName: node - linkType: hard - -"universalify@npm:^2.0.0": - version: 2.0.1 - resolution: "universalify@npm:2.0.1" - checksum: ecd8469fe0db28e7de9e5289d32bd1b6ba8f7183db34f3bfc4ca53c49891c2d6aa05f3fb3936a81285a905cc509fb641a0c3fc131ec786167eff41236ae32e60 - languageName: node - linkType: hard - -"unpipe@npm:1.0.0, unpipe@npm:~1.0.0": - version: 1.0.0 - resolution: "unpipe@npm:1.0.0" - checksum: 4fa18d8d8d977c55cb09715385c203197105e10a6d220087ec819f50cb68870f02942244f1017565484237f1f8c5d3cd413631b1ae104d3096f24fdfde1b4aa2 - languageName: node - linkType: hard - -"update-browserslist-db@npm:^1.0.13": - version: 1.0.13 - resolution: "update-browserslist-db@npm:1.0.13" - dependencies: - escalade: ^3.1.1 - picocolors: ^1.0.0 - peerDependencies: - browserslist: ">= 4.21.0" - bin: - update-browserslist-db: cli.js - checksum: 1e47d80182ab6e4ad35396ad8b61008ae2a1330221175d0abd37689658bdb61af9b705bfc41057fd16682474d79944fb2d86767c5ed5ae34b6276b9bed353322 - languageName: node - linkType: hard - -"update-notifier@npm:^5.1.0": - version: 5.1.0 - resolution: "update-notifier@npm:5.1.0" - dependencies: - boxen: ^5.0.0 - chalk: ^4.1.0 - configstore: ^5.0.1 - has-yarn: ^2.1.0 - import-lazy: ^2.1.0 - is-ci: ^2.0.0 - is-installed-globally: ^0.4.0 - is-npm: ^5.0.0 - is-yarn-global: ^0.3.0 - latest-version: ^5.1.0 - pupa: ^2.1.1 - semver: ^7.3.4 - semver-diff: ^3.1.1 - xdg-basedir: ^4.0.0 - checksum: 461e5e5b002419296d3868ee2abe0f9ab3e1846d9db642936d0c46f838872ec56069eddfe662c45ce1af0a8d6d5026353728de2e0a95ab2e3546a22ea077caf1 - languageName: node - linkType: hard - -"uri-js@npm:^4.2.2": - version: 4.4.1 - resolution: "uri-js@npm:4.4.1" - dependencies: - punycode: ^2.1.0 - checksum: 7167432de6817fe8e9e0c9684f1d2de2bb688c94388f7569f7dbdb1587c9f4ca2a77962f134ec90be0cc4d004c939ff0d05acc9f34a0db39a3c797dada262633 - languageName: node - linkType: hard - -"url-loader@npm:^4.1.1": - version: 4.1.1 - resolution: "url-loader@npm:4.1.1" - dependencies: - loader-utils: ^2.0.0 - mime-types: ^2.1.27 - schema-utils: ^3.0.0 - peerDependencies: - file-loader: "*" - webpack: ^4.0.0 || ^5.0.0 - peerDependenciesMeta: - file-loader: - optional: true - checksum: c1122a992c6cff70a7e56dfc2b7474534d48eb40b2cc75467cde0c6972e7597faf8e43acb4f45f93c2473645dfd803bcbc20960b57544dd1e4c96e77f72ba6fd - languageName: node - linkType: hard - -"url-parse-lax@npm:^3.0.0": - version: 3.0.0 - resolution: "url-parse-lax@npm:3.0.0" - dependencies: - prepend-http: ^2.0.0 - checksum: 1040e357750451173132228036aff1fd04abbd43eac1fb3e4fca7495a078bcb8d33cb765fe71ad7e473d9c94d98fd67adca63bd2716c815a2da066198dd37217 - languageName: node - linkType: hard - -"url-parse@npm:^1.5.3": - version: 1.5.10 - resolution: "url-parse@npm:1.5.10" - dependencies: - querystringify: ^2.1.1 - requires-port: ^1.0.0 - checksum: fbdba6b1d83336aca2216bbdc38ba658d9cfb8fc7f665eb8b17852de638ff7d1a162c198a8e4ed66001ddbf6c9888d41e4798912c62b4fd777a31657989f7bdf - languageName: node - linkType: hard - -"use-composed-ref@npm:^1.3.0": - version: 1.3.0 - resolution: "use-composed-ref@npm:1.3.0" - peerDependencies: - react: ^16.8.0 || ^17.0.0 || ^18.0.0 - checksum: f771cbadfdc91e03b7ab9eb32d0fc0cc647755711801bf507e891ad38c4bbc5f02b2509acadf9c965ec9c5f2f642fd33bdfdfb17b0873c4ad0a9b1f5e5e724bf - languageName: node - linkType: hard - -"use-isomorphic-layout-effect@npm:^1.1.1": - version: 1.1.2 - resolution: "use-isomorphic-layout-effect@npm:1.1.2" - peerDependencies: - react: ^16.8.0 || ^17.0.0 || ^18.0.0 - peerDependenciesMeta: - "@types/react": - optional: true - checksum: a6532f7fc9ae222c3725ff0308aaf1f1ddbd3c00d685ef9eee6714fd0684de5cb9741b432fbf51e61a784e2955424864f7ea9f99734a02f237b17ad3e18ea5cb - languageName: node - linkType: hard - -"use-latest@npm:^1.2.1": - version: 1.2.1 - resolution: "use-latest@npm:1.2.1" - dependencies: - use-isomorphic-layout-effect: ^1.1.1 - peerDependencies: - react: ^16.8.0 || ^17.0.0 || ^18.0.0 - peerDependenciesMeta: - "@types/react": - optional: true - checksum: ed3f2ddddf6f21825e2ede4c2e0f0db8dcce5129802b69d1f0575fc1b42380436e8c76a6cd885d4e9aa8e292e60fb8b959c955f33c6a9123b83814a1a1875367 - languageName: node - linkType: hard - -"use-sync-external-store@npm:^1.2.0": - version: 1.2.0 - resolution: "use-sync-external-store@npm:1.2.0" - peerDependencies: - react: ^16.8.0 || ^17.0.0 || ^18.0.0 - checksum: 5c639e0f8da3521d605f59ce5be9e094ca772bd44a4ce7322b055a6f58eeed8dda3c94cabd90c7a41fb6fa852210092008afe48f7038792fd47501f33299116a - languageName: node - linkType: hard - -"util-deprecate@npm:^1.0.1, util-deprecate@npm:^1.0.2, util-deprecate@npm:~1.0.1": - version: 1.0.2 - resolution: "util-deprecate@npm:1.0.2" - checksum: 474acf1146cb2701fe3b074892217553dfcf9a031280919ba1b8d651a068c9b15d863b7303cb15bd00a862b498e6cf4ad7b4a08fb134edd5a6f7641681cb54a2 - languageName: node - linkType: hard - -"utila@npm:~0.4": - version: 0.4.0 - resolution: "utila@npm:0.4.0" - checksum: 97ffd3bd2bb80c773429d3fb8396469115cd190dded1e733f190d8b602bd0a1bcd6216b7ce3c4395ee3c79e3c879c19d268dbaae3093564cb169ad1212d436f4 - languageName: node - linkType: hard - -"utility-types@npm:^3.10.0": - version: 3.11.0 - resolution: "utility-types@npm:3.11.0" - checksum: 35a4866927bbea5d037726744028d05c6e37772ded2aabaca21480ce9380185436aef586ead525e327c7f3c640b1a3287769a12ef269c7b165a2ddd50ea6ad61 - languageName: node - linkType: hard - -"utils-merge@npm:1.0.1": - version: 1.0.1 - resolution: "utils-merge@npm:1.0.1" - checksum: c81095493225ecfc28add49c106ca4f09cdf56bc66731aa8dabc2edbbccb1e1bfe2de6a115e5c6a380d3ea166d1636410b62ef216bb07b3feb1cfde1d95d5080 - languageName: node - linkType: hard - -"uuid@npm:^8.3.2": - version: 8.3.2 - resolution: "uuid@npm:8.3.2" - bin: - uuid: dist/bin/uuid - checksum: 5575a8a75c13120e2f10e6ddc801b2c7ed7d8f3c8ac22c7ed0c7b2ba6383ec0abda88c905085d630e251719e0777045ae3236f04c812184b7c765f63a70e58df - languageName: node - linkType: hard - -"uuid@npm:^9.0.0": - version: 9.0.1 - resolution: "uuid@npm:9.0.1" - bin: - uuid: dist/bin/uuid - checksum: 39931f6da74e307f51c0fb463dc2462807531dc80760a9bff1e35af4316131b4fc3203d16da60ae33f07fdca5b56f3f1dd662da0c99fea9aaeab2004780cc5f4 - languageName: node - linkType: hard - -"value-equal@npm:^1.0.1": - version: 1.0.1 - resolution: "value-equal@npm:1.0.1" - checksum: bb7ae1facc76b5cf8071aeb6c13d284d023fdb370478d10a5d64508e0e6e53bb459c4bbe34258df29d82e6f561f874f0105eba38de0e61fe9edd0bdce07a77a2 - languageName: node - linkType: hard - -"vary@npm:~1.1.2": - version: 1.1.2 - resolution: "vary@npm:1.1.2" - checksum: ae0123222c6df65b437669d63dfa8c36cee20a504101b2fcd97b8bf76f91259c17f9f2b4d70a1e3c6bbcee7f51b28392833adb6b2770b23b01abec84e369660b - languageName: node - linkType: hard - -"vfile-location@npm:^3.0.0, vfile-location@npm:^3.2.0": - version: 3.2.0 - resolution: "vfile-location@npm:3.2.0" - checksum: 9bb3df6d0be31b5dd2d8da0170c27b7045c64493a8ba7b6ff7af8596c524fc8896924b8dd85ae12d201eead2709217a0fbc44927b7264f4bbf0aa8027a78be9c - languageName: node - linkType: hard - -"vfile-message@npm:^2.0.0": - version: 2.0.4 - resolution: "vfile-message@npm:2.0.4" - dependencies: - "@types/unist": ^2.0.0 - unist-util-stringify-position: ^2.0.0 - checksum: 1bade499790f46ca5aba04bdce07a1e37c2636a8872e05cf32c26becc912826710b7eb063d30c5754fdfaeedc8a7658e78df10b3bc535c844890ec8a184f5643 - languageName: node - linkType: hard - -"vfile@npm:^4.0.0": - version: 4.2.1 - resolution: "vfile@npm:4.2.1" - dependencies: - "@types/unist": ^2.0.0 - is-buffer: ^2.0.0 - unist-util-stringify-position: ^2.0.0 - vfile-message: ^2.0.0 - checksum: ee5726e10d170472cde778fc22e0f7499caa096eb85babea5d0ce0941455b721037ee1c9e6ae506ca2803250acd313d0f464328ead0b55cfe7cb6315f1b462d6 - languageName: node - linkType: hard - -"vscode-oniguruma@npm:^1.7.0": - version: 1.7.0 - resolution: "vscode-oniguruma@npm:1.7.0" - checksum: 53519d91d90593e6fb080260892e87d447e9b200c4964d766772b5053f5699066539d92100f77f1302c91e8fc5d9c772fbe40fe4c90f3d411a96d5a9b1e63f42 - languageName: node - linkType: hard - -"vscode-textmate@npm:^8.0.0": - version: 8.0.0 - resolution: "vscode-textmate@npm:8.0.0" - checksum: 127780dfea89559d70b8326df6ec344cfd701312dd7f3f591a718693812b7852c30b6715e3cfc8b3200a4e2515b4c96f0843c0eacc0a3020969b5de262c2a4bb - languageName: node - linkType: hard - -"w3c-xmlserializer@npm:^5.0.0": - version: 5.0.0 - resolution: "w3c-xmlserializer@npm:5.0.0" - dependencies: - xml-name-validator: ^5.0.0 - checksum: 593acc1fdab3f3207ec39d851e6df0f3fa41a36b5809b0ace364c7a6d92e351938c53424a7618ce8e0fbaffee8be2e8e070a5734d05ee54666a8bdf1a376cc40 - languageName: node - linkType: hard - -"wait-on@npm:^6.0.1": - version: 6.0.1 - resolution: "wait-on@npm:6.0.1" - dependencies: - axios: ^0.25.0 - joi: ^17.6.0 - lodash: ^4.17.21 - minimist: ^1.2.5 - rxjs: ^7.5.4 - bin: - wait-on: bin/wait-on - checksum: e4d62aa4145d99fe34747ccf7506d4b4d6e60dd677c0eb18a51e316d38116ace2d194e4b22a9eb7b767b0282f39878ddcc4ae9440dcb0c005c9150668747cf5b - languageName: node - linkType: hard - -"watchpack@npm:^2.4.0": - version: 2.4.0 - resolution: "watchpack@npm:2.4.0" - dependencies: - glob-to-regexp: ^0.4.1 - graceful-fs: ^4.1.2 - checksum: 23d4bc58634dbe13b86093e01c6a68d8096028b664ab7139d58f0c37d962d549a940e98f2f201cecdabd6f9c340338dc73ef8bf094a2249ef582f35183d1a131 - languageName: node - linkType: hard - -"wbuf@npm:^1.1.0, wbuf@npm:^1.7.3": - version: 1.7.3 - resolution: "wbuf@npm:1.7.3" - dependencies: - minimalistic-assert: ^1.0.0 - checksum: 2abc306c96930b757972a1c4650eb6b25b5d99f24088714957f88629e137db569368c5de0e57986c89ea70db2f1df9bba11a87cb6d0c8694b6f53a0159fab3bf - languageName: node - linkType: hard - -"web-namespaces@npm:^1.0.0": - version: 1.1.4 - resolution: "web-namespaces@npm:1.1.4" - checksum: 5149842ccbfbc56fe4f8758957b3f8c8616a281874a5bb84aa1b305e4436a9bad853d21c629a7b8f174902449e1489c7a6c724fccf60965077c5636bd8aed42b - languageName: node - linkType: hard - -"web-streams-polyfill@npm:^3.0.3": - version: 3.3.3 - resolution: "web-streams-polyfill@npm:3.3.3" - checksum: 21ab5ea08a730a2ef8023736afe16713b4f2023ec1c7085c16c8e293ee17ed085dff63a0ad8722da30c99c4ccbd4ccd1b2e79c861829f7ef2963d7de7004c2cb - languageName: node - linkType: hard - -"web-worker@npm:^1.2.0": - version: 1.3.0 - resolution: "web-worker@npm:1.3.0" - checksum: ed1f869aefd1d81a43d0fbfe7b315a65beb6d7d2486b378c436a7047eed4216be34b2e6afca738b6fa95d016326b765f5f816355db33267dbf43b2b8a1837c0c - languageName: node - linkType: hard - -"webidl-conversions@npm:^3.0.0": - version: 3.0.1 - resolution: "webidl-conversions@npm:3.0.1" - checksum: c92a0a6ab95314bde9c32e1d0a6dfac83b578f8fa5f21e675bc2706ed6981bc26b7eb7e6a1fab158e5ce4adf9caa4a0aee49a52505d4d13c7be545f15021b17c - languageName: node - linkType: hard - -"webidl-conversions@npm:^7.0.0": - version: 7.0.0 - resolution: "webidl-conversions@npm:7.0.0" - checksum: f05588567a2a76428515333eff87200fae6c83c3948a7482ebb109562971e77ef6dc49749afa58abb993391227c5697b3ecca52018793e0cb4620a48f10bd21b - languageName: node - linkType: hard - -"webpack-bundle-analyzer@npm:^4.5.0": - version: 4.10.1 - resolution: "webpack-bundle-analyzer@npm:4.10.1" - dependencies: - "@discoveryjs/json-ext": 0.5.7 - acorn: ^8.0.4 - acorn-walk: ^8.0.0 - commander: ^7.2.0 - debounce: ^1.2.1 - escape-string-regexp: ^4.0.0 - gzip-size: ^6.0.0 - html-escaper: ^2.0.2 - is-plain-object: ^5.0.0 - opener: ^1.5.2 - picocolors: ^1.0.0 - sirv: ^2.0.3 - ws: ^7.3.1 - bin: - webpack-bundle-analyzer: lib/bin/analyzer.js - checksum: 77f48f10a493b1cc95674526472978a2de32412ddbf556bd3903738f14890611426f19477352993efe5a9fd6ca16711eb912d986f2221b17ba6eeca1b6f71fb6 - languageName: node - linkType: hard - -"webpack-dev-middleware@npm:^5.3.1": - version: 5.3.3 - resolution: "webpack-dev-middleware@npm:5.3.3" - dependencies: - colorette: ^2.0.10 - memfs: ^3.4.3 - mime-types: ^2.1.31 - range-parser: ^1.2.1 - schema-utils: ^4.0.0 - peerDependencies: - webpack: ^4.0.0 || ^5.0.0 - checksum: dd332cc6da61222c43d25e5a2155e23147b777ff32fdf1f1a0a8777020c072fbcef7756360ce2a13939c3f534c06b4992a4d659318c4a7fe2c0530b52a8a6621 - languageName: node - linkType: hard - -"webpack-dev-server@npm:^4.9.3": - version: 4.15.1 - resolution: "webpack-dev-server@npm:4.15.1" - dependencies: - "@types/bonjour": ^3.5.9 - "@types/connect-history-api-fallback": ^1.3.5 - "@types/express": ^4.17.13 - "@types/serve-index": ^1.9.1 - "@types/serve-static": ^1.13.10 - "@types/sockjs": ^0.3.33 - "@types/ws": ^8.5.5 - ansi-html-community: ^0.0.8 - bonjour-service: ^1.0.11 - chokidar: ^3.5.3 - colorette: ^2.0.10 - compression: ^1.7.4 - connect-history-api-fallback: ^2.0.0 - default-gateway: ^6.0.3 - express: ^4.17.3 - graceful-fs: ^4.2.6 - html-entities: ^2.3.2 - http-proxy-middleware: ^2.0.3 - ipaddr.js: ^2.0.1 - launch-editor: ^2.6.0 - open: ^8.0.9 - p-retry: ^4.5.0 - rimraf: ^3.0.2 - schema-utils: ^4.0.0 - selfsigned: ^2.1.1 - serve-index: ^1.9.1 - sockjs: ^0.3.24 - spdy: ^4.0.2 - webpack-dev-middleware: ^5.3.1 - ws: ^8.13.0 - peerDependencies: - webpack: ^4.37.0 || ^5.0.0 - peerDependenciesMeta: - webpack: - optional: true - webpack-cli: - optional: true - bin: - webpack-dev-server: bin/webpack-dev-server.js - checksum: cd0063b068d2b938fd76c412d555374186ac2fa84bbae098265212ed50a5c15d6f03aa12a5a310c544a242943eb58c0bfde4c296d5c36765c182f53799e1bc71 - languageName: node - linkType: hard - -"webpack-merge@npm:^5.8.0": - version: 5.10.0 - resolution: "webpack-merge@npm:5.10.0" - dependencies: - clone-deep: ^4.0.1 - flat: ^5.0.2 - wildcard: ^2.0.0 - checksum: 1fe8bf5309add7298e1ac72fb3f2090e1dfa80c48c7e79fa48aa60b5961332c7d0d61efa8851acb805e6b91a4584537a347bc106e05e9aec87fa4f7088c62f2f - languageName: node - linkType: hard - -"webpack-sources@npm:^3.2.2, webpack-sources@npm:^3.2.3": - version: 3.2.3 - resolution: "webpack-sources@npm:3.2.3" - checksum: 989e401b9fe3536529e2a99dac8c1bdc50e3a0a2c8669cbafad31271eadd994bc9405f88a3039cd2e29db5e6d9d0926ceb7a1a4e7409ece021fe79c37d9c4607 - languageName: node - linkType: hard - -"webpack@npm:^5.73.0, webpack@npm:^5.75.0": - version: 5.90.3 - resolution: "webpack@npm:5.90.3" - dependencies: - "@types/eslint-scope": ^3.7.3 - "@types/estree": ^1.0.5 - "@webassemblyjs/ast": ^1.11.5 - "@webassemblyjs/wasm-edit": ^1.11.5 - "@webassemblyjs/wasm-parser": ^1.11.5 - acorn: ^8.7.1 - acorn-import-assertions: ^1.9.0 - browserslist: ^4.21.10 - chrome-trace-event: ^1.0.2 - enhanced-resolve: ^5.15.0 - es-module-lexer: ^1.2.1 - eslint-scope: 5.1.1 - events: ^3.2.0 - glob-to-regexp: ^0.4.1 - graceful-fs: ^4.2.9 - json-parse-even-better-errors: ^2.3.1 - loader-runner: ^4.2.0 - mime-types: ^2.1.27 - neo-async: ^2.6.2 - schema-utils: ^3.2.0 - tapable: ^2.1.1 - terser-webpack-plugin: ^5.3.10 - watchpack: ^2.4.0 - webpack-sources: ^3.2.3 - peerDependenciesMeta: - webpack-cli: - optional: true - bin: - webpack: bin/webpack.js - checksum: de0c824ac220f41cc1153ac33e081d46260b104c4f2fda26f011cdf7a73f74cc091f288cb1fc16f88a36e35bac44e0aa85fc9922fdf3109dfb361f46b20f3fcc - languageName: node - linkType: hard - -"webpackbar@npm:^5.0.2": - version: 5.0.2 - resolution: "webpackbar@npm:5.0.2" - dependencies: - chalk: ^4.1.0 - consola: ^2.15.3 - pretty-time: ^1.1.0 - std-env: ^3.0.1 - peerDependencies: - webpack: 3 || 4 || 5 - checksum: 214a734b1d4d391eb8271ed1b11085f0efe6831e93f641229b292abfd6fea871422dce121612511c17ae8047522be6d65c1a2666cabb396c79549816a3612338 - languageName: node - linkType: hard - -"websocket-driver@npm:>=0.5.1, websocket-driver@npm:^0.7.4": - version: 0.7.4 - resolution: "websocket-driver@npm:0.7.4" - dependencies: - http-parser-js: ">=0.5.1" - safe-buffer: ">=5.1.0" - websocket-extensions: ">=0.1.1" - checksum: fffe5a33fe8eceafd21d2a065661d09e38b93877eae1de6ab5d7d2734c6ed243973beae10ae48c6613cfd675f200e5a058d1e3531bc9e6c5d4f1396ff1f0bfb9 - languageName: node - linkType: hard - -"websocket-extensions@npm:>=0.1.1": - version: 0.1.4 - resolution: "websocket-extensions@npm:0.1.4" - checksum: 5976835e68a86afcd64c7a9762ed85f2f27d48c488c707e67ba85e717b90fa066b98ab33c744d64255c9622d349eedecf728e65a5f921da71b58d0e9591b9038 - languageName: node - linkType: hard - -"whatwg-encoding@npm:^3.1.1": - version: 3.1.1 - resolution: "whatwg-encoding@npm:3.1.1" - dependencies: - iconv-lite: 0.6.3 - checksum: f75a61422421d991e4aec775645705beaf99a16a88294d68404866f65e92441698a4f5b9fa11dd609017b132d7b286c3c1534e2de5b3e800333856325b549e3c - languageName: node - linkType: hard - -"whatwg-mimetype@npm:^4.0.0": - version: 4.0.0 - resolution: "whatwg-mimetype@npm:4.0.0" - checksum: f97edd4b4ee7e46a379f3fb0e745de29fe8b839307cc774300fd49059fcdd560d38cb8fe21eae5575b8f39b022f23477cc66e40b0355c2851ce84760339cef30 - languageName: node - linkType: hard - -"whatwg-url@npm:^14.0.0": - version: 14.0.0 - resolution: "whatwg-url@npm:14.0.0" - dependencies: - tr46: ^5.0.0 - webidl-conversions: ^7.0.0 - checksum: 4b5887e50f786583bead70916413e67a381d2126899b9eb5c67ce664bba1e7ec07cdff791404581ce73c6190d83c359c9ca1d50711631217905db3877dec075c - languageName: node - linkType: hard - -"whatwg-url@npm:^5.0.0": - version: 5.0.0 - resolution: "whatwg-url@npm:5.0.0" - dependencies: - tr46: ~0.0.3 - webidl-conversions: ^3.0.0 - checksum: b8daed4ad3356cc4899048a15b2c143a9aed0dfae1f611ebd55073310c7b910f522ad75d727346ad64203d7e6c79ef25eafd465f4d12775ca44b90fa82ed9e2c - languageName: node - linkType: hard - -"which-boxed-primitive@npm:^1.0.2": - version: 1.0.2 - resolution: "which-boxed-primitive@npm:1.0.2" - dependencies: - is-bigint: ^1.0.1 - is-boolean-object: ^1.1.0 - is-number-object: ^1.0.4 - is-string: ^1.0.5 - is-symbol: ^1.0.3 - checksum: 53ce774c7379071729533922adcca47220228405e1895f26673bbd71bdf7fb09bee38c1d6399395927c6289476b5ae0629863427fd151491b71c4b6cb04f3a5e - languageName: node - linkType: hard - -"which-builtin-type@npm:^1.1.3": - version: 1.1.3 - resolution: "which-builtin-type@npm:1.1.3" - dependencies: - function.prototype.name: ^1.1.5 - has-tostringtag: ^1.0.0 - is-async-function: ^2.0.0 - is-date-object: ^1.0.5 - is-finalizationregistry: ^1.0.2 - is-generator-function: ^1.0.10 - is-regex: ^1.1.4 - is-weakref: ^1.0.2 - isarray: ^2.0.5 - which-boxed-primitive: ^1.0.2 - which-collection: ^1.0.1 - which-typed-array: ^1.1.9 - checksum: 43730f7d8660ff9e33d1d3f9f9451c4784265ee7bf222babc35e61674a11a08e1c2925019d6c03154fcaaca4541df43abe35d2720843b9b4cbcebdcc31408f36 - languageName: node - linkType: hard - -"which-collection@npm:^1.0.1": - version: 1.0.1 - resolution: "which-collection@npm:1.0.1" - dependencies: - is-map: ^2.0.1 - is-set: ^2.0.1 - is-weakmap: ^2.0.1 - is-weakset: ^2.0.1 - checksum: c815bbd163107ef9cb84f135e6f34453eaf4cca994e7ba85ddb0d27cea724c623fae2a473ceccfd5549c53cc65a5d82692de418166df3f858e1e5dc60818581c - languageName: node - linkType: hard - -"which-typed-array@npm:^1.1.14, which-typed-array@npm:^1.1.9": - version: 1.1.14 - resolution: "which-typed-array@npm:1.1.14" - dependencies: - available-typed-arrays: ^1.0.6 - call-bind: ^1.0.5 - for-each: ^0.3.3 - gopd: ^1.0.1 - has-tostringtag: ^1.0.1 - checksum: efe30c143c58630dde8ab96f9330e20165bacd77ca843c602b510120a415415573bcdef3ccbc30a0e5aaf20f257360cfe24712aea0008f149ce5bb99834c0c0b - languageName: node - linkType: hard - -"which@npm:^1.3.1": - version: 1.3.1 - resolution: "which@npm:1.3.1" - dependencies: - isexe: ^2.0.0 - bin: - which: ./bin/which - checksum: f2e185c6242244b8426c9df1510e86629192d93c1a986a7d2a591f2c24869e7ffd03d6dac07ca863b2e4c06f59a4cc9916c585b72ee9fa1aa609d0124df15e04 - languageName: node - linkType: hard - -"which@npm:^2.0.1": - version: 2.0.2 - resolution: "which@npm:2.0.2" - dependencies: - isexe: ^2.0.0 - bin: - node-which: ./bin/node-which - checksum: 1a5c563d3c1b52d5f893c8b61afe11abc3bab4afac492e8da5bde69d550de701cf9806235f20a47b5c8fa8a1d6a9135841de2596535e998027a54589000e66d1 - languageName: node - linkType: hard - -"which@npm:^4.0.0": - version: 4.0.0 - resolution: "which@npm:4.0.0" - dependencies: - isexe: ^3.1.1 - bin: - node-which: bin/which.js - checksum: f17e84c042592c21e23c8195108cff18c64050b9efb8459589116999ea9da6dd1509e6a1bac3aeebefd137be00fabbb61b5c2bc0aa0f8526f32b58ee2f545651 - languageName: node - linkType: hard - -"widest-line@npm:^3.1.0": - version: 3.1.0 - resolution: "widest-line@npm:3.1.0" - dependencies: - string-width: ^4.0.0 - checksum: 03db6c9d0af9329c37d74378ff1d91972b12553c7d72a6f4e8525fe61563fa7adb0b9d6e8d546b7e059688712ea874edd5ded475999abdeedf708de9849310e0 - languageName: node - linkType: hard - -"widest-line@npm:^4.0.1": - version: 4.0.1 - resolution: "widest-line@npm:4.0.1" - dependencies: - string-width: ^5.0.1 - checksum: 64c48cf27171221be5f86fc54b94dd29879165bdff1a7aa92dde723d9a8c99fb108312768a5d62c8c2b80b701fa27bbd36a1ddc58367585cd45c0db7920a0cba - languageName: node - linkType: hard - -"wildcard@npm:^2.0.0": - version: 2.0.1 - resolution: "wildcard@npm:2.0.1" - checksum: e0c60a12a219e4b12065d1199802d81c27b841ed6ad6d9d28240980c73ceec6f856771d575af367cbec2982d9ae7838759168b551776577f155044f5a5ba843c - languageName: node - linkType: hard - -"wrap-ansi-cjs@npm:wrap-ansi@^7.0.0, wrap-ansi@npm:^7.0.0": - version: 7.0.0 - resolution: "wrap-ansi@npm:7.0.0" - dependencies: - ansi-styles: ^4.0.0 - string-width: ^4.1.0 - strip-ansi: ^6.0.0 - checksum: a790b846fd4505de962ba728a21aaeda189b8ee1c7568ca5e817d85930e06ef8d1689d49dbf0e881e8ef84436af3a88bc49115c2e2788d841ff1b8b5b51a608b - languageName: node - linkType: hard - -"wrap-ansi@npm:^8.0.1, wrap-ansi@npm:^8.1.0": - version: 8.1.0 - resolution: "wrap-ansi@npm:8.1.0" - dependencies: - ansi-styles: ^6.1.0 - string-width: ^5.0.1 - strip-ansi: ^7.0.1 - checksum: 371733296dc2d616900ce15a0049dca0ef67597d6394c57347ba334393599e800bab03c41d4d45221b6bc967b8c453ec3ae4749eff3894202d16800fdfe0e238 - languageName: node - linkType: hard - -"wrappy@npm:1": - version: 1.0.2 - resolution: "wrappy@npm:1.0.2" - checksum: 159da4805f7e84a3d003d8841557196034155008f817172d4e986bd591f74aa82aa7db55929a54222309e01079a65a92a9e6414da5a6aa4b01ee44a511ac3ee5 - languageName: node - linkType: hard - -"write-file-atomic@npm:^3.0.0": - version: 3.0.3 - resolution: "write-file-atomic@npm:3.0.3" - dependencies: - imurmurhash: ^0.1.4 - is-typedarray: ^1.0.0 - signal-exit: ^3.0.2 - typedarray-to-buffer: ^3.1.5 - checksum: c55b24617cc61c3a4379f425fc62a386cc51916a9b9d993f39734d005a09d5a4bb748bc251f1304e7abd71d0a26d339996c275955f527a131b1dcded67878280 - languageName: node - linkType: hard - -"write-file-atomic@npm:^5.0.0": - version: 5.0.1 - resolution: "write-file-atomic@npm:5.0.1" - dependencies: - imurmurhash: ^0.1.4 - signal-exit: ^4.0.1 - checksum: 8dbb0e2512c2f72ccc20ccedab9986c7d02d04039ed6e8780c987dc4940b793339c50172a1008eed7747001bfacc0ca47562668a069a7506c46c77d7ba3926a9 - languageName: node - linkType: hard - -"ws@npm:^7.3.1": - version: 7.5.9 - resolution: "ws@npm:7.5.9" - peerDependencies: - bufferutil: ^4.0.1 - utf-8-validate: ^5.0.2 - peerDependenciesMeta: - bufferutil: - optional: true - utf-8-validate: - optional: true - checksum: c3c100a181b731f40b7f2fddf004aa023f79d64f489706a28bc23ff88e87f6a64b3c6651fbec3a84a53960b75159574d7a7385709847a62ddb7ad6af76f49138 - languageName: node - linkType: hard - -"ws@npm:^8.13.0, ws@npm:^8.14.2, ws@npm:^8.16.0": - version: 8.16.0 - resolution: "ws@npm:8.16.0" - peerDependencies: - bufferutil: ^4.0.1 - utf-8-validate: ">=5.0.2" - peerDependenciesMeta: - bufferutil: - optional: true - utf-8-validate: - optional: true - checksum: feb3eecd2bae82fa8a8beef800290ce437d8b8063bdc69712725f21aef77c49cb2ff45c6e5e7fce622248f9c7abaee506bae0a9064067ffd6935460c7357321b - languageName: node - linkType: hard - -"xdg-basedir@npm:^4.0.0": - version: 4.0.0 - resolution: "xdg-basedir@npm:4.0.0" - checksum: 0073d5b59a37224ed3a5ac0dd2ec1d36f09c49f0afd769008a6e9cd3cd666bd6317bd1c7ce2eab47e1de285a286bad11a9b038196413cd753b79770361855f3c - languageName: node - linkType: hard - -"xml-js@npm:^1.6.11": - version: 1.6.11 - resolution: "xml-js@npm:1.6.11" - dependencies: - sax: ^1.2.4 - bin: - xml-js: ./bin/cli.js - checksum: 24a55479919413687105fc2d8ab05e613ebedb1c1bc12258a108e07cff5ef793779297db854800a4edf0281303ebd1f177bc4a588442f5344e62b3dddda26c2b - languageName: node - linkType: hard - -"xml-name-validator@npm:^5.0.0": - version: 5.0.0 - resolution: "xml-name-validator@npm:5.0.0" - checksum: 86effcc7026f437701252fcc308b877b4bc045989049cfc79b0cc112cb365cf7b009f4041fab9fb7cd1795498722c3e9fe9651afc66dfa794c16628a639a4c45 - languageName: node - linkType: hard - -"xmlchars@npm:^2.2.0": - version: 2.2.0 - resolution: "xmlchars@npm:2.2.0" - checksum: 8c70ac94070ccca03f47a81fcce3b271bd1f37a591bf5424e787ae313fcb9c212f5f6786e1fa82076a2c632c0141552babcd85698c437506dfa6ae2d58723062 - languageName: node - linkType: hard - -"xtend@npm:^4.0.0, xtend@npm:^4.0.1": - version: 4.0.2 - resolution: "xtend@npm:4.0.2" - checksum: ac5dfa738b21f6e7f0dd6e65e1b3155036d68104e67e5d5d1bde74892e327d7e5636a076f625599dc394330a731861e87343ff184b0047fef1360a7ec0a5a36a - languageName: node - linkType: hard - -"yallist@npm:^3.0.2": - version: 3.1.1 - resolution: "yallist@npm:3.1.1" - checksum: 48f7bb00dc19fc635a13a39fe547f527b10c9290e7b3e836b9a8f1ca04d4d342e85714416b3c2ab74949c9c66f9cebb0473e6bc353b79035356103b47641285d - languageName: node - linkType: hard - -"yallist@npm:^4.0.0": - version: 4.0.0 - resolution: "yallist@npm:4.0.0" - checksum: 343617202af32df2a15a3be36a5a8c0c8545208f3d3dfbc6bb7c3e3b7e8c6f8e7485432e4f3b88da3031a6e20afa7c711eded32ddfb122896ac5d914e75848d5 - languageName: node - linkType: hard - -"yaml-loader@npm:^0.8.0": - version: 0.8.1 - resolution: "yaml-loader@npm:0.8.1" - dependencies: - javascript-stringify: ^2.0.1 - loader-utils: ^2.0.0 - yaml: ^2.0.0 - checksum: 2969eb7d6083a95a8d95369906bbc73d124125be5f61556506d230a57b7acc872abe836bf631f89aa97d9e8198bee8d100fa68d5a6524be84cd8eb5062cf76d3 - languageName: node - linkType: hard - -"yaml@npm:^1.10.0, yaml@npm:^1.10.2, yaml@npm:^1.7.2": - version: 1.10.2 - resolution: "yaml@npm:1.10.2" - checksum: ce4ada136e8a78a0b08dc10b4b900936912d15de59905b2bf415b4d33c63df1d555d23acb2a41b23cf9fb5da41c256441afca3d6509de7247daa062fd2c5ea5f - languageName: node - linkType: hard - -"yaml@npm:^2.0.0": - version: 2.4.0 - resolution: "yaml@npm:2.4.0" - bin: - yaml: bin.mjs - checksum: 3c25ebae34ee702af772ebbd1855a980b1487cd21d6220d952592edb4f7d89322aafd14753d99924ba7076eb4c5b3d809c64bb532402b01af280f7af674277f1 - languageName: node - linkType: hard - -"yocto-queue@npm:^0.1.0": - version: 0.1.0 - resolution: "yocto-queue@npm:0.1.0" - checksum: f77b3d8d00310def622123df93d4ee654fc6a0096182af8bd60679ddcdfb3474c56c6c7190817c84a2785648cdee9d721c0154eb45698c62176c322fb46fc700 - languageName: node - linkType: hard - -"zwitch@npm:^1.0.0": - version: 1.0.5 - resolution: "zwitch@npm:1.0.5" - checksum: 28a1bebacab3bc60150b6b0a2ba1db2ad033f068e81f05e4892ec0ea13ae63f5d140a1d692062ac0657840c8da076f35b94433b5f1c329d7803b247de80f064a - languageName: node - linkType: hard +# THIS IS AN AUTOGENERATED FILE. DO NOT EDIT THIS FILE DIRECTLY. +# yarn lockfile v1 + + +"@algolia/autocomplete-core@1.9.3": + version "1.9.3" + resolved "https://registry.yarnpkg.com/@algolia/autocomplete-core/-/autocomplete-core-1.9.3.tgz#1d56482a768c33aae0868c8533049e02e8961be7" + integrity sha512-009HdfugtGCdC4JdXUbVJClA0q0zh24yyePn+KUGk3rP7j8FEe/m5Yo/z65gn6nP/cM39PxpzqKrL7A6fP6PPw== + dependencies: + "@algolia/autocomplete-plugin-algolia-insights" "1.9.3" + "@algolia/autocomplete-shared" "1.9.3" + +"@algolia/autocomplete-plugin-algolia-insights@1.9.3": + version "1.9.3" + resolved "https://registry.yarnpkg.com/@algolia/autocomplete-plugin-algolia-insights/-/autocomplete-plugin-algolia-insights-1.9.3.tgz#9b7f8641052c8ead6d66c1623d444cbe19dde587" + integrity sha512-a/yTUkcO/Vyy+JffmAnTWbr4/90cLzw+CC3bRbhnULr/EM0fGNvM13oQQ14f2moLMcVDyAx/leczLlAOovhSZg== + dependencies: + "@algolia/autocomplete-shared" "1.9.3" + +"@algolia/autocomplete-preset-algolia@1.9.3": + version "1.9.3" + resolved "https://registry.yarnpkg.com/@algolia/autocomplete-preset-algolia/-/autocomplete-preset-algolia-1.9.3.tgz#64cca4a4304cfcad2cf730e83067e0c1b2f485da" + integrity sha512-d4qlt6YmrLMYy95n5TB52wtNDr6EgAIPH81dvvvW8UmuWRgxEtY0NJiPwl/h95JtG2vmRM804M0DSwMCNZlzRA== + dependencies: + "@algolia/autocomplete-shared" "1.9.3" + +"@algolia/autocomplete-shared@1.9.3": + version "1.9.3" + resolved "https://registry.yarnpkg.com/@algolia/autocomplete-shared/-/autocomplete-shared-1.9.3.tgz#2e22e830d36f0a9cf2c0ccd3c7f6d59435b77dfa" + integrity sha512-Wnm9E4Ye6Rl6sTTqjoymD+l8DjSTHsHboVRYrKgEt8Q7UHm9nYbqhN/i0fhUYA3OAEH7WA8x3jfpnmJm3rKvaQ== + +"@algolia/cache-browser-local-storage@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/cache-browser-local-storage/-/cache-browser-local-storage-4.24.0.tgz#97bc6d067a9fd932b9c922faa6b7fd6e546e1348" + integrity sha512-t63W9BnoXVrGy9iYHBgObNXqYXM3tYXCjDSHeNwnsc324r4o5UiVKUiAB4THQ5z9U5hTj6qUvwg/Ez43ZD85ww== + dependencies: + "@algolia/cache-common" "4.24.0" + +"@algolia/cache-common@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/cache-common/-/cache-common-4.24.0.tgz#81a8d3a82ceb75302abb9b150a52eba9960c9744" + integrity sha512-emi+v+DmVLpMGhp0V9q9h5CdkURsNmFC+cOS6uK9ndeJm9J4TiqSvPYVu+THUP8P/S08rxf5x2P+p3CfID0Y4g== + +"@algolia/cache-in-memory@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/cache-in-memory/-/cache-in-memory-4.24.0.tgz#ffcf8872f3a10cb85c4f4641bdffd307933a6e44" + integrity sha512-gDrt2so19jW26jY3/MkFg5mEypFIPbPoXsQGQWAi6TrCPsNOSEYepBMPlucqWigsmEy/prp5ug2jy/N3PVG/8w== + dependencies: + "@algolia/cache-common" "4.24.0" + +"@algolia/client-account@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/client-account/-/client-account-4.24.0.tgz#eba7a921d828e7c8c40a32d4add21206c7fe12f1" + integrity sha512-adcvyJ3KjPZFDybxlqnf+5KgxJtBjwTPTeyG2aOyoJvx0Y8dUQAEOEVOJ/GBxX0WWNbmaSrhDURMhc+QeevDsA== + dependencies: + "@algolia/client-common" "4.24.0" + "@algolia/client-search" "4.24.0" + "@algolia/transporter" "4.24.0" + +"@algolia/client-analytics@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/client-analytics/-/client-analytics-4.24.0.tgz#9d2576c46a9093a14e668833c505ea697a1a3e30" + integrity sha512-y8jOZt1OjwWU4N2qr8G4AxXAzaa8DBvyHTWlHzX/7Me1LX8OayfgHexqrsL4vSBcoMmVw2XnVW9MhL+Y2ZDJXg== + dependencies: + "@algolia/client-common" "4.24.0" + "@algolia/client-search" "4.24.0" + "@algolia/requester-common" "4.24.0" + "@algolia/transporter" "4.24.0" + +"@algolia/client-common@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/client-common/-/client-common-4.24.0.tgz#77c46eee42b9444a1d1c1583a83f7df4398a649d" + integrity sha512-bc2ROsNL6w6rqpl5jj/UywlIYC21TwSSoFHKl01lYirGMW+9Eek6r02Tocg4gZ8HAw3iBvu6XQiM3BEbmEMoiA== + dependencies: + "@algolia/requester-common" "4.24.0" + "@algolia/transporter" "4.24.0" + +"@algolia/client-personalization@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/client-personalization/-/client-personalization-4.24.0.tgz#8b47789fb1cb0f8efbea0f79295b7c5a3850f6ae" + integrity sha512-l5FRFm/yngztweU0HdUzz1rC4yoWCFo3IF+dVIVTfEPg906eZg5BOd1k0K6rZx5JzyyoP4LdmOikfkfGsKVE9w== + dependencies: + "@algolia/client-common" "4.24.0" + "@algolia/requester-common" "4.24.0" + "@algolia/transporter" "4.24.0" + +"@algolia/client-search@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/client-search/-/client-search-4.24.0.tgz#75e6c02d33ef3e0f34afd9962c085b856fc4a55f" + integrity sha512-uRW6EpNapmLAD0mW47OXqTP8eiIx5F6qN9/x/7HHO6owL3N1IXqydGwW5nhDFBrV+ldouro2W1VX3XlcUXEFCA== + dependencies: + "@algolia/client-common" "4.24.0" + "@algolia/requester-common" "4.24.0" + "@algolia/transporter" "4.24.0" + +"@algolia/events@^4.0.1": + version "4.0.1" + resolved "https://registry.yarnpkg.com/@algolia/events/-/events-4.0.1.tgz#fd39e7477e7bc703d7f893b556f676c032af3950" + integrity sha512-FQzvOCgoFXAbf5Y6mYozw2aj5KCJoA3m4heImceldzPSMbdyS4atVjJzXKMsfX3wnZTFYwkkt8/z8UesLHlSBQ== + +"@algolia/logger-common@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/logger-common/-/logger-common-4.24.0.tgz#28d439976019ec0a46ba7a1a739ef493d4ef8123" + integrity sha512-LLUNjkahj9KtKYrQhFKCzMx0BY3RnNP4FEtO+sBybCjJ73E8jNdaKJ/Dd8A/VA4imVHP5tADZ8pn5B8Ga/wTMA== + +"@algolia/logger-console@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/logger-console/-/logger-console-4.24.0.tgz#c6ff486036cd90b81d07a95aaba04461da7e1c65" + integrity sha512-X4C8IoHgHfiUROfoRCV+lzSy+LHMgkoEEU1BbKcsfnV0i0S20zyy0NLww9dwVHUWNfPPxdMU+/wKmLGYf96yTg== + dependencies: + "@algolia/logger-common" "4.24.0" + +"@algolia/recommend@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/recommend/-/recommend-4.24.0.tgz#8a3f78aea471ee0a4836b78fd2aad4e9abcaaf34" + integrity sha512-P9kcgerfVBpfYHDfVZDvvdJv0lEoCvzNlOy2nykyt5bK8TyieYyiD0lguIJdRZZYGre03WIAFf14pgE+V+IBlw== + dependencies: + "@algolia/cache-browser-local-storage" "4.24.0" + "@algolia/cache-common" "4.24.0" + "@algolia/cache-in-memory" "4.24.0" + "@algolia/client-common" "4.24.0" + "@algolia/client-search" "4.24.0" + "@algolia/logger-common" "4.24.0" + "@algolia/logger-console" "4.24.0" + "@algolia/requester-browser-xhr" "4.24.0" + "@algolia/requester-common" "4.24.0" + "@algolia/requester-node-http" "4.24.0" + "@algolia/transporter" "4.24.0" + +"@algolia/requester-browser-xhr@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/requester-browser-xhr/-/requester-browser-xhr-4.24.0.tgz#313c5edab4ed73a052e75803855833b62dd19c16" + integrity sha512-Z2NxZMb6+nVXSjF13YpjYTdvV3032YTBSGm2vnYvYPA6mMxzM3v5rsCiSspndn9rzIW4Qp1lPHBvuoKJV6jnAA== + dependencies: + "@algolia/requester-common" "4.24.0" + +"@algolia/requester-common@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/requester-common/-/requester-common-4.24.0.tgz#1c60c198031f48fcdb9e34c4057a3ea987b9a436" + integrity sha512-k3CXJ2OVnvgE3HMwcojpvY6d9kgKMPRxs/kVohrwF5WMr2fnqojnycZkxPoEg+bXm8fi5BBfFmOqgYztRtHsQA== + +"@algolia/requester-node-http@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/requester-node-http/-/requester-node-http-4.24.0.tgz#4461593714031d02aa7da221c49df675212f482f" + integrity sha512-JF18yTjNOVYvU/L3UosRcvbPMGT9B+/GQWNWnenIImglzNVGpyzChkXLnrSf6uxwVNO6ESGu6oN8MqcGQcjQJw== + dependencies: + "@algolia/requester-common" "4.24.0" + +"@algolia/transporter@4.24.0": + version "4.24.0" + resolved "https://registry.yarnpkg.com/@algolia/transporter/-/transporter-4.24.0.tgz#226bb1f8af62430374c1972b2e5c8580ab275102" + integrity sha512-86nI7w6NzWxd1Zp9q3413dRshDqAzSbsQjhcDhPIatEFiZrL1/TjnHL8S7jVKFePlIMzDsZWXAXwXzcok9c5oA== + dependencies: + "@algolia/cache-common" "4.24.0" + "@algolia/logger-common" "4.24.0" + "@algolia/requester-common" "4.24.0" + +"@ampproject/remapping@^2.2.0": + version "2.3.0" + resolved "https://registry.yarnpkg.com/@ampproject/remapping/-/remapping-2.3.0.tgz#ed441b6fa600072520ce18b43d2c8cc8caecc7f4" + integrity sha512-30iZtAPgz+LTIYoeivqYo853f02jBYSd5uGnGpkFV0M3xOt9aN73erkgYAmZU43x4VfqcnLxW9Kpg3R5LC4YYw== + dependencies: + "@jridgewell/gen-mapping" "^0.3.5" + "@jridgewell/trace-mapping" "^0.3.24" + +"@babel/code-frame@^7.0.0", "@babel/code-frame@^7.16.0", "@babel/code-frame@^7.24.7", "@babel/code-frame@^7.8.3": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/code-frame/-/code-frame-7.24.7.tgz#882fd9e09e8ee324e496bd040401c6f046ef4465" + integrity sha512-BcYH1CVJBO9tvyIZ2jVeXgSIMvGZ2FDRvDdOIVQyuklNKSsx+eppDEBq/g47Ayw+RqNFE+URvOShmf+f/qwAlA== + dependencies: + "@babel/highlight" "^7.24.7" + picocolors "^1.0.0" + +"@babel/compat-data@^7.22.6", "@babel/compat-data@^7.25.2", "@babel/compat-data@^7.25.4": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/compat-data/-/compat-data-7.25.4.tgz#7d2a80ce229890edcf4cc259d4d696cb4dae2fcb" + integrity sha512-+LGRog6RAsCJrrrg/IO6LGmpphNe5DiK30dGjCoxxeGv49B10/3XYGxPsAwrDlMFcFEvdAUavDT8r9k/hSyQqQ== + +"@babel/core@^7.21.3", "@babel/core@^7.23.3": + version "7.25.2" + resolved "https://registry.yarnpkg.com/@babel/core/-/core-7.25.2.tgz#ed8eec275118d7613e77a352894cd12ded8eba77" + integrity sha512-BBt3opiCOxUr9euZ5/ro/Xv8/V7yJ5bjYMqG/C1YAo8MIKAnumZalCN+msbci3Pigy4lIQfPUpfMM27HMGaYEA== + dependencies: + "@ampproject/remapping" "^2.2.0" + "@babel/code-frame" "^7.24.7" + "@babel/generator" "^7.25.0" + "@babel/helper-compilation-targets" "^7.25.2" + "@babel/helper-module-transforms" "^7.25.2" + "@babel/helpers" "^7.25.0" + "@babel/parser" "^7.25.0" + "@babel/template" "^7.25.0" + "@babel/traverse" "^7.25.2" + "@babel/types" "^7.25.2" + convert-source-map "^2.0.0" + debug "^4.1.0" + gensync "^1.0.0-beta.2" + json5 "^2.2.3" + semver "^6.3.1" + +"@babel/eslint-parser@^7.18.2": + version "7.25.1" + resolved "https://registry.yarnpkg.com/@babel/eslint-parser/-/eslint-parser-7.25.1.tgz#469cee4bd18a88ff3edbdfbd227bd20e82aa9b82" + integrity sha512-Y956ghgTT4j7rKesabkh5WeqgSFZVFwaPR0IWFm7KFHFmmJ4afbG49SmfW4S+GyRPx0Dy5jxEWA5t0rpxfElWg== + dependencies: + "@nicolo-ribaudo/eslint-scope-5-internals" "5.1.1-v1" + eslint-visitor-keys "^2.1.0" + semver "^6.3.1" + +"@babel/generator@^7.23.3", "@babel/generator@^7.25.0", "@babel/generator@^7.25.6": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/generator/-/generator-7.25.6.tgz#0df1ad8cb32fe4d2b01d8bf437f153d19342a87c" + integrity sha512-VPC82gr1seXOpkjAAKoLhP50vx4vGNlF4msF64dSFq1P8RfB+QAuJWGHPXXPc8QyfVWwwB/TNNU4+ayZmHNbZw== + dependencies: + "@babel/types" "^7.25.6" + "@jridgewell/gen-mapping" "^0.3.5" + "@jridgewell/trace-mapping" "^0.3.25" + jsesc "^2.5.1" + +"@babel/helper-annotate-as-pure@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/helper-annotate-as-pure/-/helper-annotate-as-pure-7.24.7.tgz#5373c7bc8366b12a033b4be1ac13a206c6656aab" + integrity sha512-BaDeOonYvhdKw+JoMVkAixAAJzG2jVPIwWoKBPdYuY9b452e2rPuI9QPYh3KpofZ3pW2akOmwZLOiOsHMiqRAg== + dependencies: + "@babel/types" "^7.24.7" + +"@babel/helper-builder-binary-assignment-operator-visitor@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/helper-builder-binary-assignment-operator-visitor/-/helper-builder-binary-assignment-operator-visitor-7.24.7.tgz#37d66feb012024f2422b762b9b2a7cfe27c7fba3" + integrity sha512-xZeCVVdwb4MsDBkkyZ64tReWYrLRHlMN72vP7Bdm3OUOuyFZExhsHUUnuWnm2/XOlAJzR0LfPpB56WXZn0X/lA== + dependencies: + "@babel/traverse" "^7.24.7" + "@babel/types" "^7.24.7" + +"@babel/helper-compilation-targets@^7.22.6", "@babel/helper-compilation-targets@^7.24.7", "@babel/helper-compilation-targets@^7.24.8", "@babel/helper-compilation-targets@^7.25.2": + version "7.25.2" + resolved "https://registry.yarnpkg.com/@babel/helper-compilation-targets/-/helper-compilation-targets-7.25.2.tgz#e1d9410a90974a3a5a66e84ff55ef62e3c02d06c" + integrity sha512-U2U5LsSaZ7TAt3cfaymQ8WHh0pxvdHoEk6HVpaexxixjyEquMh0L0YNJNM6CTGKMXV1iksi0iZkGw4AcFkPaaw== + dependencies: + "@babel/compat-data" "^7.25.2" + "@babel/helper-validator-option" "^7.24.8" + browserslist "^4.23.1" + lru-cache "^5.1.1" + semver "^6.3.1" + +"@babel/helper-create-class-features-plugin@^7.24.7", "@babel/helper-create-class-features-plugin@^7.25.0", "@babel/helper-create-class-features-plugin@^7.25.4": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/helper-create-class-features-plugin/-/helper-create-class-features-plugin-7.25.4.tgz#57eaf1af38be4224a9d9dd01ddde05b741f50e14" + integrity sha512-ro/bFs3/84MDgDmMwbcHgDa8/E6J3QKNTk4xJJnVeFtGE+tL0K26E3pNxhYz2b67fJpt7Aphw5XcploKXuCvCQ== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + "@babel/helper-member-expression-to-functions" "^7.24.8" + "@babel/helper-optimise-call-expression" "^7.24.7" + "@babel/helper-replace-supers" "^7.25.0" + "@babel/helper-skip-transparent-expression-wrappers" "^7.24.7" + "@babel/traverse" "^7.25.4" + semver "^6.3.1" + +"@babel/helper-create-regexp-features-plugin@^7.18.6", "@babel/helper-create-regexp-features-plugin@^7.24.7", "@babel/helper-create-regexp-features-plugin@^7.25.0", "@babel/helper-create-regexp-features-plugin@^7.25.2": + version "7.25.2" + resolved "https://registry.yarnpkg.com/@babel/helper-create-regexp-features-plugin/-/helper-create-regexp-features-plugin-7.25.2.tgz#24c75974ed74183797ffd5f134169316cd1808d9" + integrity sha512-+wqVGP+DFmqwFD3EH6TMTfUNeqDehV3E/dl+Sd54eaXqm17tEUNbEIn4sVivVowbvUpOtIGxdo3GoXyDH9N/9g== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + regexpu-core "^5.3.1" + semver "^6.3.1" + +"@babel/helper-define-polyfill-provider@^0.6.2": + version "0.6.2" + resolved "https://registry.yarnpkg.com/@babel/helper-define-polyfill-provider/-/helper-define-polyfill-provider-0.6.2.tgz#18594f789c3594acb24cfdb4a7f7b7d2e8bd912d" + integrity sha512-LV76g+C502biUK6AyZ3LK10vDpDyCzZnhZFXkH1L75zHPj68+qc8Zfpx2th+gzwA2MzyK+1g/3EPl62yFnVttQ== + dependencies: + "@babel/helper-compilation-targets" "^7.22.6" + "@babel/helper-plugin-utils" "^7.22.5" + debug "^4.1.1" + lodash.debounce "^4.0.8" + resolve "^1.14.2" + +"@babel/helper-member-expression-to-functions@^7.24.8": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/helper-member-expression-to-functions/-/helper-member-expression-to-functions-7.24.8.tgz#6155e079c913357d24a4c20480db7c712a5c3fb6" + integrity sha512-LABppdt+Lp/RlBxqrh4qgf1oEH/WxdzQNDJIu5gC/W1GyvPVrOBiItmmM8wan2fm4oYqFuFfkXmlGpLQhPY8CA== + dependencies: + "@babel/traverse" "^7.24.8" + "@babel/types" "^7.24.8" + +"@babel/helper-module-imports@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/helper-module-imports/-/helper-module-imports-7.24.7.tgz#f2f980392de5b84c3328fc71d38bd81bbb83042b" + integrity sha512-8AyH3C+74cgCVVXow/myrynrAGv+nTVg5vKu2nZph9x7RcRwzmh0VFallJuFTZ9mx6u4eSdXZfcOzSqTUm0HCA== + dependencies: + "@babel/traverse" "^7.24.7" + "@babel/types" "^7.24.7" + +"@babel/helper-module-transforms@^7.24.7", "@babel/helper-module-transforms@^7.24.8", "@babel/helper-module-transforms@^7.25.0", "@babel/helper-module-transforms@^7.25.2": + version "7.25.2" + resolved "https://registry.yarnpkg.com/@babel/helper-module-transforms/-/helper-module-transforms-7.25.2.tgz#ee713c29768100f2776edf04d4eb23b8d27a66e6" + integrity sha512-BjyRAbix6j/wv83ftcVJmBt72QtHI56C7JXZoG2xATiLpmoC7dpd8WnkikExHDVPpi/3qCmO6WY1EaXOluiecQ== + dependencies: + "@babel/helper-module-imports" "^7.24.7" + "@babel/helper-simple-access" "^7.24.7" + "@babel/helper-validator-identifier" "^7.24.7" + "@babel/traverse" "^7.25.2" + +"@babel/helper-optimise-call-expression@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/helper-optimise-call-expression/-/helper-optimise-call-expression-7.24.7.tgz#8b0a0456c92f6b323d27cfd00d1d664e76692a0f" + integrity sha512-jKiTsW2xmWwxT1ixIdfXUZp+P5yURx2suzLZr5Hi64rURpDYdMW0pv+Uf17EYk2Rd428Lx4tLsnjGJzYKDM/6A== + dependencies: + "@babel/types" "^7.24.7" + +"@babel/helper-plugin-utils@^7.0.0", "@babel/helper-plugin-utils@^7.10.4", "@babel/helper-plugin-utils@^7.12.13", "@babel/helper-plugin-utils@^7.14.5", "@babel/helper-plugin-utils@^7.18.6", "@babel/helper-plugin-utils@^7.22.5", "@babel/helper-plugin-utils@^7.24.7", "@babel/helper-plugin-utils@^7.24.8", "@babel/helper-plugin-utils@^7.8.0", "@babel/helper-plugin-utils@^7.8.3": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/helper-plugin-utils/-/helper-plugin-utils-7.24.8.tgz#94ee67e8ec0e5d44ea7baeb51e571bd26af07878" + integrity sha512-FFWx5142D8h2Mgr/iPVGH5G7w6jDn4jUSpZTyDnQO0Yn7Ks2Kuz6Pci8H6MPCoUJegd/UZQ3tAvfLCxQSnWWwg== + +"@babel/helper-remap-async-to-generator@^7.24.7", "@babel/helper-remap-async-to-generator@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/helper-remap-async-to-generator/-/helper-remap-async-to-generator-7.25.0.tgz#d2f0fbba059a42d68e5e378feaf181ef6055365e" + integrity sha512-NhavI2eWEIz/H9dbrG0TuOicDhNexze43i5z7lEqwYm0WEZVTwnPpA0EafUTP7+6/W79HWIP2cTe3Z5NiSTVpw== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + "@babel/helper-wrap-function" "^7.25.0" + "@babel/traverse" "^7.25.0" + +"@babel/helper-replace-supers@^7.24.7", "@babel/helper-replace-supers@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/helper-replace-supers/-/helper-replace-supers-7.25.0.tgz#ff44deac1c9f619523fe2ca1fd650773792000a9" + integrity sha512-q688zIvQVYtZu+i2PsdIu/uWGRpfxzr5WESsfpShfZECkO+d2o+WROWezCi/Q6kJ0tfPa5+pUGUlfx2HhrA3Bg== + dependencies: + "@babel/helper-member-expression-to-functions" "^7.24.8" + "@babel/helper-optimise-call-expression" "^7.24.7" + "@babel/traverse" "^7.25.0" + +"@babel/helper-simple-access@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/helper-simple-access/-/helper-simple-access-7.24.7.tgz#bcade8da3aec8ed16b9c4953b74e506b51b5edb3" + integrity sha512-zBAIvbCMh5Ts+b86r/CjU+4XGYIs+R1j951gxI3KmmxBMhCg4oQMsv6ZXQ64XOm/cvzfU1FmoCyt6+owc5QMYg== + dependencies: + "@babel/traverse" "^7.24.7" + "@babel/types" "^7.24.7" + +"@babel/helper-skip-transparent-expression-wrappers@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/helper-skip-transparent-expression-wrappers/-/helper-skip-transparent-expression-wrappers-7.24.7.tgz#5f8fa83b69ed5c27adc56044f8be2b3ea96669d9" + integrity sha512-IO+DLT3LQUElMbpzlatRASEyQtfhSE0+m465v++3jyyXeBTBUjtVZg28/gHeV5mrTJqvEKhKroBGAvhW+qPHiQ== + dependencies: + "@babel/traverse" "^7.24.7" + "@babel/types" "^7.24.7" + +"@babel/helper-string-parser@^7.24.8": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/helper-string-parser/-/helper-string-parser-7.24.8.tgz#5b3329c9a58803d5df425e5785865881a81ca48d" + integrity sha512-pO9KhhRcuUyGnJWwyEgnRJTSIZHiT+vMD0kPeD+so0l7mxkMT19g3pjY9GTnHySck/hDzq+dtW/4VgnMkippsQ== + +"@babel/helper-validator-identifier@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/helper-validator-identifier/-/helper-validator-identifier-7.24.7.tgz#75b889cfaf9e35c2aaf42cf0d72c8e91719251db" + integrity sha512-rR+PBcQ1SMQDDyF6X0wxtG8QyLCgUB0eRAGguqRLfkCA87l7yAP7ehq8SNj96OOGTO8OBV70KhuFYcIkHXOg0w== + +"@babel/helper-validator-option@^7.24.7", "@babel/helper-validator-option@^7.24.8": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/helper-validator-option/-/helper-validator-option-7.24.8.tgz#3725cdeea8b480e86d34df15304806a06975e33d" + integrity sha512-xb8t9tD1MHLungh/AIoWYN+gVHaB9kwlu8gffXGSt3FFEIT7RjS+xWbc2vUD1UTZdIpKj/ab3rdqJ7ufngyi2Q== + +"@babel/helper-wrap-function@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/helper-wrap-function/-/helper-wrap-function-7.25.0.tgz#dab12f0f593d6ca48c0062c28bcfb14ebe812f81" + integrity sha512-s6Q1ebqutSiZnEjaofc/UKDyC4SbzV5n5SrA2Gq8UawLycr3i04f1dX4OzoQVnexm6aOCh37SQNYlJ/8Ku+PMQ== + dependencies: + "@babel/template" "^7.25.0" + "@babel/traverse" "^7.25.0" + "@babel/types" "^7.25.0" + +"@babel/helpers@^7.25.0": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/helpers/-/helpers-7.25.6.tgz#57ee60141829ba2e102f30711ffe3afab357cc60" + integrity sha512-Xg0tn4HcfTijTwfDwYlvVCl43V6h4KyVVX2aEm4qdO/PC6L2YvzLHFdmxhoeSA3eslcE6+ZVXHgWwopXYLNq4Q== + dependencies: + "@babel/template" "^7.25.0" + "@babel/types" "^7.25.6" + +"@babel/highlight@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/highlight/-/highlight-7.24.7.tgz#a05ab1df134b286558aae0ed41e6c5f731bf409d" + integrity sha512-EStJpq4OuY8xYfhGVXngigBJRWxftKX9ksiGDnmlY3o7B/V7KIAc9X4oiK87uPJSc/vs5L869bem5fhZa8caZw== + dependencies: + "@babel/helper-validator-identifier" "^7.24.7" + chalk "^2.4.2" + js-tokens "^4.0.0" + picocolors "^1.0.0" + +"@babel/parser@^7.25.0", "@babel/parser@^7.25.6": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/parser/-/parser-7.25.6.tgz#85660c5ef388cbbf6e3d2a694ee97a38f18afe2f" + integrity sha512-trGdfBdbD0l1ZPmcJ83eNxB9rbEax4ALFTF7fN386TMYbeCQbyme5cOEXQhbGXKebwGaB/J52w1mrklMcbgy6Q== + dependencies: + "@babel/types" "^7.25.6" + +"@babel/plugin-bugfix-firefox-class-in-computed-class-key@^7.25.3": + version "7.25.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-bugfix-firefox-class-in-computed-class-key/-/plugin-bugfix-firefox-class-in-computed-class-key-7.25.3.tgz#dca427b45a6c0f5c095a1c639dfe2476a3daba7f" + integrity sha512-wUrcsxZg6rqBXG05HG1FPYgsP6EvwF4WpBbxIpWIIYnH8wG0gzx3yZY3dtEHas4sTAOGkbTsc9EGPxwff8lRoA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/traverse" "^7.25.3" + +"@babel/plugin-bugfix-safari-class-field-initializer-scope@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/plugin-bugfix-safari-class-field-initializer-scope/-/plugin-bugfix-safari-class-field-initializer-scope-7.25.0.tgz#cd0c583e01369ef51676bdb3d7b603e17d2b3f73" + integrity sha512-Bm4bH2qsX880b/3ziJ8KD711LT7z4u8CFudmjqle65AZj/HNUFhEf90dqYv6O86buWvSBmeQDjv0Tn2aF/bIBA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression/-/plugin-bugfix-safari-id-destructuring-collision-in-function-expression-7.25.0.tgz#749bde80356b295390954643de7635e0dffabe73" + integrity sha512-lXwdNZtTmeVOOFtwM/WDe7yg1PL8sYhRk/XH0FzbR2HDQ0xC+EnQ/JHeoMYSavtU115tnUk0q9CDyq8si+LMAA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining/-/plugin-bugfix-v8-spread-parameters-in-optional-chaining-7.24.7.tgz#e4eabdd5109acc399b38d7999b2ef66fc2022f89" + integrity sha512-+izXIbke1T33mY4MSNnrqhPXDz01WYhEf3yF5NbnUtkiNnm+XBZJl3kNfoK6NKmYlz/D07+l2GWVK/QfDkNCuQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/helper-skip-transparent-expression-wrappers" "^7.24.7" + "@babel/plugin-transform-optional-chaining" "^7.24.7" + +"@babel/plugin-bugfix-v8-static-class-fields-redefine-readonly@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/plugin-bugfix-v8-static-class-fields-redefine-readonly/-/plugin-bugfix-v8-static-class-fields-redefine-readonly-7.25.0.tgz#3a82a70e7cb7294ad2559465ebcb871dfbf078fb" + integrity sha512-tggFrk1AIShG/RUQbEwt2Tr/E+ObkfwrPjR6BjbRvsx24+PSjK8zrq0GWPNCjo8qpRx4DuJzlcvWJqlm+0h3kw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/traverse" "^7.25.0" + +"@babel/plugin-proposal-private-property-in-object@7.21.0-placeholder-for-preset-env.2": + version "7.21.0-placeholder-for-preset-env.2" + resolved "https://registry.yarnpkg.com/@babel/plugin-proposal-private-property-in-object/-/plugin-proposal-private-property-in-object-7.21.0-placeholder-for-preset-env.2.tgz#7844f9289546efa9febac2de4cfe358a050bd703" + integrity sha512-SOSkfJDddaM7mak6cPEpswyTRnuRltl429hMraQEglW+OkovnCzsiszTmsrlY//qLFjCpQDFRvjdm2wA5pPm9w== + +"@babel/plugin-syntax-async-generators@^7.8.4": + version "7.8.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-async-generators/-/plugin-syntax-async-generators-7.8.4.tgz#a983fb1aeb2ec3f6ed042a210f640e90e786fe0d" + integrity sha512-tycmZxkGfZaxhMRbXlPXuVFpdWlXpir2W4AMhSJgRKzk/eDlIXOhb2LHWoLpDF7TEHylV5zNhykX6KAgHJmTNw== + dependencies: + "@babel/helper-plugin-utils" "^7.8.0" + +"@babel/plugin-syntax-class-properties@^7.12.13": + version "7.12.13" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-class-properties/-/plugin-syntax-class-properties-7.12.13.tgz#b5c987274c4a3a82b89714796931a6b53544ae10" + integrity sha512-fm4idjKla0YahUNgFNLCB0qySdsoPiZP3iQE3rky0mBUtMZ23yDJ9SJdg6dXTSDnulOVqiF3Hgr9nbXvXTQZYA== + dependencies: + "@babel/helper-plugin-utils" "^7.12.13" + +"@babel/plugin-syntax-class-static-block@^7.14.5": + version "7.14.5" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-class-static-block/-/plugin-syntax-class-static-block-7.14.5.tgz#195df89b146b4b78b3bf897fd7a257c84659d406" + integrity sha512-b+YyPmr6ldyNnM6sqYeMWE+bgJcJpO6yS4QD7ymxgH34GBPNDM/THBh8iunyvKIZztiwLH4CJZ0RxTk9emgpjw== + dependencies: + "@babel/helper-plugin-utils" "^7.14.5" + +"@babel/plugin-syntax-dynamic-import@^7.8.3": + version "7.8.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-dynamic-import/-/plugin-syntax-dynamic-import-7.8.3.tgz#62bf98b2da3cd21d626154fc96ee5b3cb68eacb3" + integrity sha512-5gdGbFon+PszYzqs83S3E5mpi7/y/8M9eC90MRTZfduQOYW76ig6SOSPNe41IG5LoP3FGBn2N0RjVDSQiS94kQ== + dependencies: + "@babel/helper-plugin-utils" "^7.8.0" + +"@babel/plugin-syntax-export-namespace-from@^7.8.3": + version "7.8.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-export-namespace-from/-/plugin-syntax-export-namespace-from-7.8.3.tgz#028964a9ba80dbc094c915c487ad7c4e7a66465a" + integrity sha512-MXf5laXo6c1IbEbegDmzGPwGNTsHZmEy6QGznu5Sh2UCWvueywb2ee+CCE4zQiZstxU9BMoQO9i6zUFSY0Kj0Q== + dependencies: + "@babel/helper-plugin-utils" "^7.8.3" + +"@babel/plugin-syntax-import-assertions@^7.24.7": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-import-assertions/-/plugin-syntax-import-assertions-7.25.6.tgz#bb918905c58711b86f9710d74a3744b6c56573b5" + integrity sha512-aABl0jHw9bZ2karQ/uUD6XP4u0SG22SJrOHFoL6XB1R7dTovOP4TzTlsxOYC5yQ1pdscVK2JTUnF6QL3ARoAiQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-syntax-import-attributes@^7.24.7": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-import-attributes/-/plugin-syntax-import-attributes-7.25.6.tgz#6d4c78f042db0e82fd6436cd65fec5dc78ad2bde" + integrity sha512-sXaDXaJN9SNLymBdlWFA+bjzBhFD617ZaFiY13dGt7TVslVvVgA6fkZOP7Ki3IGElC45lwHdOTrCtKZGVAWeLQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-syntax-import-meta@^7.10.4": + version "7.10.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-import-meta/-/plugin-syntax-import-meta-7.10.4.tgz#ee601348c370fa334d2207be158777496521fd51" + integrity sha512-Yqfm+XDx0+Prh3VSeEQCPU81yC+JWZ2pDPFSS4ZdpfZhp4MkFMaDC1UqseovEKwSUpnIL7+vK+Clp7bfh0iD7g== + dependencies: + "@babel/helper-plugin-utils" "^7.10.4" + +"@babel/plugin-syntax-json-strings@^7.8.3": + version "7.8.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-json-strings/-/plugin-syntax-json-strings-7.8.3.tgz#01ca21b668cd8218c9e640cb6dd88c5412b2c96a" + integrity sha512-lY6kdGpWHvjoe2vk4WrAapEuBR69EMxZl+RoGRhrFGNYVK8mOPAW8VfbT/ZgrFbXlDNiiaxQnAtgVCZ6jv30EA== + dependencies: + "@babel/helper-plugin-utils" "^7.8.0" + +"@babel/plugin-syntax-jsx@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-jsx/-/plugin-syntax-jsx-7.24.7.tgz#39a1fa4a7e3d3d7f34e2acc6be585b718d30e02d" + integrity sha512-6ddciUPe/mpMnOKv/U+RSd2vvVy+Yw/JfBB0ZHYjEZt9NLHmCUylNYlsbqCCS1Bffjlb0fCwC9Vqz+sBz6PsiQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-syntax-logical-assignment-operators@^7.10.4": + version "7.10.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-logical-assignment-operators/-/plugin-syntax-logical-assignment-operators-7.10.4.tgz#ca91ef46303530448b906652bac2e9fe9941f699" + integrity sha512-d8waShlpFDinQ5MtvGU9xDAOzKH47+FFoney2baFIoMr952hKOLp1HR7VszoZvOsV/4+RRszNY7D17ba0te0ig== + dependencies: + "@babel/helper-plugin-utils" "^7.10.4" + +"@babel/plugin-syntax-nullish-coalescing-operator@^7.8.3": + version "7.8.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-nullish-coalescing-operator/-/plugin-syntax-nullish-coalescing-operator-7.8.3.tgz#167ed70368886081f74b5c36c65a88c03b66d1a9" + integrity sha512-aSff4zPII1u2QD7y+F8oDsz19ew4IGEJg9SVW+bqwpwtfFleiQDMdzA/R+UlWDzfnHFCxxleFT0PMIrR36XLNQ== + dependencies: + "@babel/helper-plugin-utils" "^7.8.0" + +"@babel/plugin-syntax-numeric-separator@^7.10.4": + version "7.10.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-numeric-separator/-/plugin-syntax-numeric-separator-7.10.4.tgz#b9b070b3e33570cd9fd07ba7fa91c0dd37b9af97" + integrity sha512-9H6YdfkcK/uOnY/K7/aA2xpzaAgkQn37yzWUMRK7OaPOqOpGS1+n0H5hxT9AUw9EsSjPW8SVyMJwYRtWs3X3ug== + dependencies: + "@babel/helper-plugin-utils" "^7.10.4" + +"@babel/plugin-syntax-object-rest-spread@^7.8.3": + version "7.8.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-object-rest-spread/-/plugin-syntax-object-rest-spread-7.8.3.tgz#60e225edcbd98a640332a2e72dd3e66f1af55871" + integrity sha512-XoqMijGZb9y3y2XskN+P1wUGiVwWZ5JmoDRwx5+3GmEplNyVM2s2Dg8ILFQm8rWM48orGy5YpI5Bl8U1y7ydlA== + dependencies: + "@babel/helper-plugin-utils" "^7.8.0" + +"@babel/plugin-syntax-optional-catch-binding@^7.8.3": + version "7.8.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-optional-catch-binding/-/plugin-syntax-optional-catch-binding-7.8.3.tgz#6111a265bcfb020eb9efd0fdfd7d26402b9ed6c1" + integrity sha512-6VPD0Pc1lpTqw0aKoeRTMiB+kWhAoT24PA+ksWSBrFtl5SIRVpZlwN3NNPQjehA2E/91FV3RjLWoVTglWcSV3Q== + dependencies: + "@babel/helper-plugin-utils" "^7.8.0" + +"@babel/plugin-syntax-optional-chaining@^7.8.3": + version "7.8.3" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-optional-chaining/-/plugin-syntax-optional-chaining-7.8.3.tgz#4f69c2ab95167e0180cd5336613f8c5788f7d48a" + integrity sha512-KoK9ErH1MBlCPxV0VANkXW2/dw4vlbGDrFgz8bmUsBGYkFRcbRwMh6cIJubdPrkxRwuGdtCk0v/wPTKbQgBjkg== + dependencies: + "@babel/helper-plugin-utils" "^7.8.0" + +"@babel/plugin-syntax-private-property-in-object@^7.14.5": + version "7.14.5" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-private-property-in-object/-/plugin-syntax-private-property-in-object-7.14.5.tgz#0dc6671ec0ea22b6e94a1114f857970cd39de1ad" + integrity sha512-0wVnp9dxJ72ZUJDV27ZfbSj6iHLoytYZmh3rFcxNnvsJF3ktkzLDZPy/mA17HGsaQT3/DQsWYX1f1QGWkCoVUg== + dependencies: + "@babel/helper-plugin-utils" "^7.14.5" + +"@babel/plugin-syntax-top-level-await@^7.14.5": + version "7.14.5" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-top-level-await/-/plugin-syntax-top-level-await-7.14.5.tgz#c1cfdadc35a646240001f06138247b741c34d94c" + integrity sha512-hx++upLv5U1rgYfwe1xBQUhRmU41NEvpUvrp8jkrSCdvGSnM5/qdRMtylJ6PG5OFkBaHkbTAKTnd3/YyESRHFw== + dependencies: + "@babel/helper-plugin-utils" "^7.14.5" + +"@babel/plugin-syntax-typescript@^7.24.7": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-typescript/-/plugin-syntax-typescript-7.25.4.tgz#04db9ce5a9043d9c635e75ae7969a2cd50ca97ff" + integrity sha512-uMOCoHVU52BsSWxPOMVv5qKRdeSlPuImUCB2dlPuBSU+W2/ROE7/Zg8F2Kepbk+8yBa68LlRKxO+xgEVWorsDg== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-syntax-unicode-sets-regex@^7.18.6": + version "7.18.6" + resolved "https://registry.yarnpkg.com/@babel/plugin-syntax-unicode-sets-regex/-/plugin-syntax-unicode-sets-regex-7.18.6.tgz#d49a3b3e6b52e5be6740022317580234a6a47357" + integrity sha512-727YkEAPwSIQTv5im8QHz3upqp92JTWhidIC81Tdx4VJYIte/VndKf1qKrfnnhPLiPghStWfvC/iFaMCQu7Nqg== + dependencies: + "@babel/helper-create-regexp-features-plugin" "^7.18.6" + "@babel/helper-plugin-utils" "^7.18.6" + +"@babel/plugin-transform-arrow-functions@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-arrow-functions/-/plugin-transform-arrow-functions-7.24.7.tgz#4f6886c11e423bd69f3ce51dbf42424a5f275514" + integrity sha512-Dt9LQs6iEY++gXUwY03DNFat5C2NbO48jj+j/bSAz6b3HgPs39qcPiYt77fDObIcFwj3/C2ICX9YMwGflUoSHQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-async-generator-functions@^7.25.4": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-async-generator-functions/-/plugin-transform-async-generator-functions-7.25.4.tgz#2afd4e639e2d055776c9f091b6c0c180ed8cf083" + integrity sha512-jz8cV2XDDTqjKPwVPJBIjORVEmSGYhdRa8e5k5+vN+uwcjSrSxUaebBRa4ko1jqNF2uxyg8G6XYk30Jv285xzg== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/helper-remap-async-to-generator" "^7.25.0" + "@babel/plugin-syntax-async-generators" "^7.8.4" + "@babel/traverse" "^7.25.4" + +"@babel/plugin-transform-async-to-generator@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-async-to-generator/-/plugin-transform-async-to-generator-7.24.7.tgz#72a3af6c451d575842a7e9b5a02863414355bdcc" + integrity sha512-SQY01PcJfmQ+4Ash7NE+rpbLFbmqA2GPIgqzxfFTL4t1FKRq4zTms/7htKpoCUI9OcFYgzqfmCdH53s6/jn5fA== + dependencies: + "@babel/helper-module-imports" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/helper-remap-async-to-generator" "^7.24.7" + +"@babel/plugin-transform-block-scoped-functions@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-block-scoped-functions/-/plugin-transform-block-scoped-functions-7.24.7.tgz#a4251d98ea0c0f399dafe1a35801eaba455bbf1f" + integrity sha512-yO7RAz6EsVQDaBH18IDJcMB1HnrUn2FJ/Jslc/WtPPWcjhpUJXU/rjbwmluzp7v/ZzWcEhTMXELnnsz8djWDwQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-block-scoping@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-block-scoping/-/plugin-transform-block-scoping-7.25.0.tgz#23a6ed92e6b006d26b1869b1c91d1b917c2ea2ac" + integrity sha512-yBQjYoOjXlFv9nlXb3f1casSHOZkWr29NX+zChVanLg5Nc157CrbEX9D7hxxtTpuFy7Q0YzmmWfJxzvps4kXrQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-class-properties@^7.25.4": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-class-properties/-/plugin-transform-class-properties-7.25.4.tgz#bae7dbfcdcc2e8667355cd1fb5eda298f05189fd" + integrity sha512-nZeZHyCWPfjkdU5pA/uHiTaDAFUEqkpzf1YoQT2NeSynCGYq9rxfyI3XpQbfx/a0hSnFH6TGlEXvae5Vi7GD8g== + dependencies: + "@babel/helper-create-class-features-plugin" "^7.25.4" + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-class-static-block@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-class-static-block/-/plugin-transform-class-static-block-7.24.7.tgz#c82027ebb7010bc33c116d4b5044fbbf8c05484d" + integrity sha512-HMXK3WbBPpZQufbMG4B46A90PkuuhN9vBCb5T8+VAHqvAqvcLi+2cKoukcpmUYkszLhScU3l1iudhrks3DggRQ== + dependencies: + "@babel/helper-create-class-features-plugin" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-class-static-block" "^7.14.5" + +"@babel/plugin-transform-classes@^7.25.4": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-classes/-/plugin-transform-classes-7.25.4.tgz#d29dbb6a72d79f359952ad0b66d88518d65ef89a" + integrity sha512-oexUfaQle2pF/b6E0dwsxQtAol9TLSO88kQvym6HHBWFliV2lGdrPieX+WgMRLSJDVzdYywk7jXbLPuO2KLTLg== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + "@babel/helper-compilation-targets" "^7.25.2" + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/helper-replace-supers" "^7.25.0" + "@babel/traverse" "^7.25.4" + globals "^11.1.0" + +"@babel/plugin-transform-computed-properties@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-computed-properties/-/plugin-transform-computed-properties-7.24.7.tgz#4cab3214e80bc71fae3853238d13d097b004c707" + integrity sha512-25cS7v+707Gu6Ds2oY6tCkUwsJ9YIDbggd9+cu9jzzDgiNq7hR/8dkzxWfKWnTic26vsI3EsCXNd4iEB6e8esQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/template" "^7.24.7" + +"@babel/plugin-transform-destructuring@^7.24.8": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-destructuring/-/plugin-transform-destructuring-7.24.8.tgz#c828e814dbe42a2718a838c2a2e16a408e055550" + integrity sha512-36e87mfY8TnRxc7yc6M9g9gOB7rKgSahqkIKwLpz4Ppk2+zC2Cy1is0uwtuSG6AE4zlTOUa+7JGz9jCJGLqQFQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-dotall-regex@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-dotall-regex/-/plugin-transform-dotall-regex-7.24.7.tgz#5f8bf8a680f2116a7207e16288a5f974ad47a7a0" + integrity sha512-ZOA3W+1RRTSWvyqcMJDLqbchh7U4NRGqwRfFSVbOLS/ePIP4vHB5e8T8eXcuqyN1QkgKyj5wuW0lcS85v4CrSw== + dependencies: + "@babel/helper-create-regexp-features-plugin" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-duplicate-keys@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-duplicate-keys/-/plugin-transform-duplicate-keys-7.24.7.tgz#dd20102897c9a2324e5adfffb67ff3610359a8ee" + integrity sha512-JdYfXyCRihAe46jUIliuL2/s0x0wObgwwiGxw/UbgJBr20gQBThrokO4nYKgWkD7uBaqM7+9x5TU7NkExZJyzw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-duplicate-named-capturing-groups-regex@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-duplicate-named-capturing-groups-regex/-/plugin-transform-duplicate-named-capturing-groups-regex-7.25.0.tgz#809af7e3339466b49c034c683964ee8afb3e2604" + integrity sha512-YLpb4LlYSc3sCUa35un84poXoraOiQucUTTu8X1j18JV+gNa8E0nyUf/CjZ171IRGr4jEguF+vzJU66QZhn29g== + dependencies: + "@babel/helper-create-regexp-features-plugin" "^7.25.0" + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-dynamic-import@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-dynamic-import/-/plugin-transform-dynamic-import-7.24.7.tgz#4d8b95e3bae2b037673091aa09cd33fecd6419f4" + integrity sha512-sc3X26PhZQDb3JhORmakcbvkeInvxz+A8oda99lj7J60QRuPZvNAk9wQlTBS1ZynelDrDmTU4pw1tyc5d5ZMUg== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-dynamic-import" "^7.8.3" + +"@babel/plugin-transform-exponentiation-operator@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-exponentiation-operator/-/plugin-transform-exponentiation-operator-7.24.7.tgz#b629ee22645f412024297d5245bce425c31f9b0d" + integrity sha512-Rqe/vSc9OYgDajNIK35u7ot+KeCoetqQYFXM4Epf7M7ez3lWlOjrDjrwMei6caCVhfdw+mIKD4cgdGNy5JQotQ== + dependencies: + "@babel/helper-builder-binary-assignment-operator-visitor" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-export-namespace-from@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-export-namespace-from/-/plugin-transform-export-namespace-from-7.24.7.tgz#176d52d8d8ed516aeae7013ee9556d540c53f197" + integrity sha512-v0K9uNYsPL3oXZ/7F9NNIbAj2jv1whUEtyA6aujhekLs56R++JDQuzRcP2/z4WX5Vg/c5lE9uWZA0/iUoFhLTA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-export-namespace-from" "^7.8.3" + +"@babel/plugin-transform-for-of@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-for-of/-/plugin-transform-for-of-7.24.7.tgz#f25b33f72df1d8be76399e1b8f3f9d366eb5bc70" + integrity sha512-wo9ogrDG1ITTTBsy46oGiN1dS9A7MROBTcYsfS8DtsImMkHk9JXJ3EWQM6X2SUw4x80uGPlwj0o00Uoc6nEE3g== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/helper-skip-transparent-expression-wrappers" "^7.24.7" + +"@babel/plugin-transform-function-name@^7.25.1": + version "7.25.1" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-function-name/-/plugin-transform-function-name-7.25.1.tgz#b85e773097526c1a4fc4ba27322748643f26fc37" + integrity sha512-TVVJVdW9RKMNgJJlLtHsKDTydjZAbwIsn6ySBPQaEAUU5+gVvlJt/9nRmqVbsV/IBanRjzWoaAQKLoamWVOUuA== + dependencies: + "@babel/helper-compilation-targets" "^7.24.8" + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/traverse" "^7.25.1" + +"@babel/plugin-transform-json-strings@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-json-strings/-/plugin-transform-json-strings-7.24.7.tgz#f3e9c37c0a373fee86e36880d45b3664cedaf73a" + integrity sha512-2yFnBGDvRuxAaE/f0vfBKvtnvvqU8tGpMHqMNpTN2oWMKIR3NqFkjaAgGwawhqK/pIN2T3XdjGPdaG0vDhOBGw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-json-strings" "^7.8.3" + +"@babel/plugin-transform-literals@^7.25.2": + version "7.25.2" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-literals/-/plugin-transform-literals-7.25.2.tgz#deb1ad14fc5490b9a65ed830e025bca849d8b5f3" + integrity sha512-HQI+HcTbm9ur3Z2DkO+jgESMAMcYLuN/A7NRw9juzxAezN9AvqvUTnpKP/9kkYANz6u7dFlAyOu44ejuGySlfw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-logical-assignment-operators@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-logical-assignment-operators/-/plugin-transform-logical-assignment-operators-7.24.7.tgz#a58fb6eda16c9dc8f9ff1c7b1ba6deb7f4694cb0" + integrity sha512-4D2tpwlQ1odXmTEIFWy9ELJcZHqrStlzK/dAOWYyxX3zT0iXQB6banjgeOJQXzEc4S0E0a5A+hahxPaEFYftsw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-logical-assignment-operators" "^7.10.4" + +"@babel/plugin-transform-member-expression-literals@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-member-expression-literals/-/plugin-transform-member-expression-literals-7.24.7.tgz#3b4454fb0e302e18ba4945ba3246acb1248315df" + integrity sha512-T/hRC1uqrzXMKLQ6UCwMT85S3EvqaBXDGf0FaMf4446Qx9vKwlghvee0+uuZcDUCZU5RuNi4781UQ7R308zzBw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-modules-amd@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-modules-amd/-/plugin-transform-modules-amd-7.24.7.tgz#65090ed493c4a834976a3ca1cde776e6ccff32d7" + integrity sha512-9+pB1qxV3vs/8Hdmz/CulFB8w2tuu6EB94JZFsjdqxQokwGa9Unap7Bo2gGBGIvPmDIVvQrom7r5m/TCDMURhg== + dependencies: + "@babel/helper-module-transforms" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-modules-commonjs@^7.24.7", "@babel/plugin-transform-modules-commonjs@^7.24.8": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-modules-commonjs/-/plugin-transform-modules-commonjs-7.24.8.tgz#ab6421e564b717cb475d6fff70ae7f103536ea3c" + integrity sha512-WHsk9H8XxRs3JXKWFiqtQebdh9b/pTk4EgueygFzYlTKAg0Ud985mSevdNjdXdFBATSKVJGQXP1tv6aGbssLKA== + dependencies: + "@babel/helper-module-transforms" "^7.24.8" + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/helper-simple-access" "^7.24.7" + +"@babel/plugin-transform-modules-systemjs@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-modules-systemjs/-/plugin-transform-modules-systemjs-7.25.0.tgz#8f46cdc5f9e5af74f3bd019485a6cbe59685ea33" + integrity sha512-YPJfjQPDXxyQWg/0+jHKj1llnY5f/R6a0p/vP4lPymxLu7Lvl4k2WMitqi08yxwQcCVUUdG9LCUj4TNEgAp3Jw== + dependencies: + "@babel/helper-module-transforms" "^7.25.0" + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/helper-validator-identifier" "^7.24.7" + "@babel/traverse" "^7.25.0" + +"@babel/plugin-transform-modules-umd@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-modules-umd/-/plugin-transform-modules-umd-7.24.7.tgz#edd9f43ec549099620df7df24e7ba13b5c76efc8" + integrity sha512-3aytQvqJ/h9z4g8AsKPLvD4Zqi2qT+L3j7XoFFu1XBlZWEl2/1kWnhmAbxpLgPrHSY0M6UA02jyTiwUVtiKR6A== + dependencies: + "@babel/helper-module-transforms" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-named-capturing-groups-regex@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-named-capturing-groups-regex/-/plugin-transform-named-capturing-groups-regex-7.24.7.tgz#9042e9b856bc6b3688c0c2e4060e9e10b1460923" + integrity sha512-/jr7h/EWeJtk1U/uz2jlsCioHkZk1JJZVcc8oQsJ1dUlaJD83f4/6Zeh2aHt9BIFokHIsSeDfhUmju0+1GPd6g== + dependencies: + "@babel/helper-create-regexp-features-plugin" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-new-target@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-new-target/-/plugin-transform-new-target-7.24.7.tgz#31ff54c4e0555cc549d5816e4ab39241dfb6ab00" + integrity sha512-RNKwfRIXg4Ls/8mMTza5oPF5RkOW8Wy/WgMAp1/F1yZ8mMbtwXW+HDoJiOsagWrAhI5f57Vncrmr9XeT4CVapA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-nullish-coalescing-operator@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-nullish-coalescing-operator/-/plugin-transform-nullish-coalescing-operator-7.24.7.tgz#1de4534c590af9596f53d67f52a92f12db984120" + integrity sha512-Ts7xQVk1OEocqzm8rHMXHlxvsfZ0cEF2yomUqpKENHWMF4zKk175Y4q8H5knJes6PgYad50uuRmt3UJuhBw8pQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-nullish-coalescing-operator" "^7.8.3" + +"@babel/plugin-transform-numeric-separator@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-numeric-separator/-/plugin-transform-numeric-separator-7.24.7.tgz#bea62b538c80605d8a0fac9b40f48e97efa7de63" + integrity sha512-e6q1TiVUzvH9KRvicuxdBTUj4AdKSRwzIyFFnfnezpCfP2/7Qmbb8qbU2j7GODbl4JMkblitCQjKYUaX/qkkwA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-numeric-separator" "^7.10.4" + +"@babel/plugin-transform-object-rest-spread@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-object-rest-spread/-/plugin-transform-object-rest-spread-7.24.7.tgz#d13a2b93435aeb8a197e115221cab266ba6e55d6" + integrity sha512-4QrHAr0aXQCEFni2q4DqKLD31n2DL+RxcwnNjDFkSG0eNQ/xCavnRkfCUjsyqGC2OviNJvZOF/mQqZBw7i2C5Q== + dependencies: + "@babel/helper-compilation-targets" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-object-rest-spread" "^7.8.3" + "@babel/plugin-transform-parameters" "^7.24.7" + +"@babel/plugin-transform-object-super@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-object-super/-/plugin-transform-object-super-7.24.7.tgz#66eeaff7830bba945dd8989b632a40c04ed625be" + integrity sha512-A/vVLwN6lBrMFmMDmPPz0jnE6ZGx7Jq7d6sT/Ev4H65RER6pZ+kczlf1DthF5N0qaPHBsI7UXiE8Zy66nmAovg== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/helper-replace-supers" "^7.24.7" + +"@babel/plugin-transform-optional-catch-binding@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-optional-catch-binding/-/plugin-transform-optional-catch-binding-7.24.7.tgz#00eabd883d0dd6a60c1c557548785919b6e717b4" + integrity sha512-uLEndKqP5BfBbC/5jTwPxLh9kqPWWgzN/f8w6UwAIirAEqiIVJWWY312X72Eub09g5KF9+Zn7+hT7sDxmhRuKA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-optional-catch-binding" "^7.8.3" + +"@babel/plugin-transform-optional-chaining@^7.24.7", "@babel/plugin-transform-optional-chaining@^7.24.8": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-optional-chaining/-/plugin-transform-optional-chaining-7.24.8.tgz#bb02a67b60ff0406085c13d104c99a835cdf365d" + integrity sha512-5cTOLSMs9eypEy8JUVvIKOu6NgvbJMnpG62VpIHrTmROdQ+L5mDAaI40g25k5vXti55JWNX5jCkq3HZxXBQANw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/helper-skip-transparent-expression-wrappers" "^7.24.7" + "@babel/plugin-syntax-optional-chaining" "^7.8.3" + +"@babel/plugin-transform-parameters@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-parameters/-/plugin-transform-parameters-7.24.7.tgz#5881f0ae21018400e320fc7eb817e529d1254b68" + integrity sha512-yGWW5Rr+sQOhK0Ot8hjDJuxU3XLRQGflvT4lhlSY0DFvdb3TwKaY26CJzHtYllU0vT9j58hc37ndFPsqT1SrzA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-private-methods@^7.25.4": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-private-methods/-/plugin-transform-private-methods-7.25.4.tgz#9bbefbe3649f470d681997e0b64a4b254d877242" + integrity sha512-ao8BG7E2b/URaUQGqN3Tlsg+M3KlHY6rJ1O1gXAEUnZoyNQnvKyH87Kfg+FoxSeyWUB8ISZZsC91C44ZuBFytw== + dependencies: + "@babel/helper-create-class-features-plugin" "^7.25.4" + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-private-property-in-object@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-private-property-in-object/-/plugin-transform-private-property-in-object-7.24.7.tgz#4eec6bc701288c1fab5f72e6a4bbc9d67faca061" + integrity sha512-9z76mxwnwFxMyxZWEgdgECQglF2Q7cFLm0kMf8pGwt+GSJsY0cONKj/UuO4bOH0w/uAel3ekS4ra5CEAyJRmDA== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + "@babel/helper-create-class-features-plugin" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/plugin-syntax-private-property-in-object" "^7.14.5" + +"@babel/plugin-transform-property-literals@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-property-literals/-/plugin-transform-property-literals-7.24.7.tgz#f0d2ed8380dfbed949c42d4d790266525d63bbdc" + integrity sha512-EMi4MLQSHfd2nrCqQEWxFdha2gBCqU4ZcCng4WBGZ5CJL4bBRW0ptdqqDdeirGZcpALazVVNJqRmsO8/+oNCBA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-react-constant-elements@^7.21.3": + version "7.25.1" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-react-constant-elements/-/plugin-transform-react-constant-elements-7.25.1.tgz#71a665ed16ce618067d05f4a98130207349d82ae" + integrity sha512-SLV/giH/V4SmloZ6Dt40HjTGTAIkxn33TVIHxNGNvo8ezMhrxBkzisj4op1KZYPIOHFLqhv60OHvX+YRu4xbmQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-react-display-name@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-react-display-name/-/plugin-transform-react-display-name-7.24.7.tgz#9caff79836803bc666bcfe210aeb6626230c293b" + integrity sha512-H/Snz9PFxKsS1JLI4dJLtnJgCJRoo0AUm3chP6NYr+9En1JMKloheEiLIhlp5MDVznWo+H3AAC1Mc8lmUEpsgg== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-react-jsx-development@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-react-jsx-development/-/plugin-transform-react-jsx-development-7.24.7.tgz#eaee12f15a93f6496d852509a850085e6361470b" + integrity sha512-QG9EnzoGn+Qar7rxuW+ZOsbWOt56FvvI93xInqsZDC5fsekx1AlIO4KIJ5M+D0p0SqSH156EpmZyXq630B8OlQ== + dependencies: + "@babel/plugin-transform-react-jsx" "^7.24.7" + +"@babel/plugin-transform-react-jsx@^7.24.7": + version "7.25.2" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-react-jsx/-/plugin-transform-react-jsx-7.25.2.tgz#e37e8ebfa77e9f0b16ba07fadcb6adb47412227a" + integrity sha512-KQsqEAVBpU82NM/B/N9j9WOdphom1SZH3R+2V7INrQUH+V9EBFwZsEJl8eBIVeQE62FxJCc70jzEZwqU7RcVqA== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + "@babel/helper-module-imports" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/plugin-syntax-jsx" "^7.24.7" + "@babel/types" "^7.25.2" + +"@babel/plugin-transform-react-pure-annotations@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-react-pure-annotations/-/plugin-transform-react-pure-annotations-7.24.7.tgz#bdd9d140d1c318b4f28b29a00fb94f97ecab1595" + integrity sha512-PLgBVk3fzbmEjBJ/u8kFzOqS9tUeDjiaWud/rRym/yjCo/M9cASPlnrd2ZmmZpQT40fOOrvR8jh+n8jikrOhNA== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-regenerator@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-regenerator/-/plugin-transform-regenerator-7.24.7.tgz#021562de4534d8b4b1851759fd7af4e05d2c47f8" + integrity sha512-lq3fvXPdimDrlg6LWBoqj+r/DEWgONuwjuOuQCSYgRroXDH/IdM1C0IZf59fL5cHLpjEH/O6opIRBbqv7ELnuA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + regenerator-transform "^0.15.2" + +"@babel/plugin-transform-reserved-words@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-reserved-words/-/plugin-transform-reserved-words-7.24.7.tgz#80037fe4fbf031fc1125022178ff3938bb3743a4" + integrity sha512-0DUq0pHcPKbjFZCfTss/pGkYMfy3vFWydkUBd9r0GHpIyfs2eCDENvqadMycRS9wZCXR41wucAfJHJmwA0UmoQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-runtime@^7.22.9": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-runtime/-/plugin-transform-runtime-7.25.4.tgz#96e4ad7bfbbe0b4a7b7e6f2a533ca326cf204963" + integrity sha512-8hsyG+KUYGY0coX6KUCDancA0Vw225KJ2HJO0yCNr1vq5r+lJTleDaJf0K7iOhjw4SWhu03TMBzYTJ9krmzULQ== + dependencies: + "@babel/helper-module-imports" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.8" + babel-plugin-polyfill-corejs2 "^0.4.10" + babel-plugin-polyfill-corejs3 "^0.10.6" + babel-plugin-polyfill-regenerator "^0.6.1" + semver "^6.3.1" + +"@babel/plugin-transform-shorthand-properties@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-shorthand-properties/-/plugin-transform-shorthand-properties-7.24.7.tgz#85448c6b996e122fa9e289746140aaa99da64e73" + integrity sha512-KsDsevZMDsigzbA09+vacnLpmPH4aWjcZjXdyFKGzpplxhbeB4wYtury3vglQkg6KM/xEPKt73eCjPPf1PgXBA== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-spread@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-spread/-/plugin-transform-spread-7.24.7.tgz#e8a38c0fde7882e0fb8f160378f74bd885cc7bb3" + integrity sha512-x96oO0I09dgMDxJaANcRyD4ellXFLLiWhuwDxKZX5g2rWP1bTPkBSwCYv96VDXVT1bD9aPj8tppr5ITIh8hBng== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/helper-skip-transparent-expression-wrappers" "^7.24.7" + +"@babel/plugin-transform-sticky-regex@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-sticky-regex/-/plugin-transform-sticky-regex-7.24.7.tgz#96ae80d7a7e5251f657b5cf18f1ea6bf926f5feb" + integrity sha512-kHPSIJc9v24zEml5geKg9Mjx5ULpfncj0wRpYtxbvKyTtHCYDkVE3aHQ03FrpEo4gEe2vrJJS1Y9CJTaThA52g== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-template-literals@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-template-literals/-/plugin-transform-template-literals-7.24.7.tgz#a05debb4a9072ae8f985bcf77f3f215434c8f8c8" + integrity sha512-AfDTQmClklHCOLxtGoP7HkeMw56k1/bTQjwsfhL6pppo/M4TOBSq+jjBUBLmV/4oeFg4GWMavIl44ZeCtmmZTw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-typeof-symbol@^7.24.8": + version "7.24.8" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-typeof-symbol/-/plugin-transform-typeof-symbol-7.24.8.tgz#383dab37fb073f5bfe6e60c654caac309f92ba1c" + integrity sha512-adNTUpDCVnmAE58VEqKlAA6ZBlNkMnWD0ZcW76lyNFN3MJniyGFZfNwERVk8Ap56MCnXztmDr19T4mPTztcuaw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/plugin-transform-typescript@^7.24.7": + version "7.25.2" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-typescript/-/plugin-transform-typescript-7.25.2.tgz#237c5d10de6d493be31637c6b9fa30b6c5461add" + integrity sha512-lBwRvjSmqiMYe/pS0+1gggjJleUJi7NzjvQ1Fkqtt69hBa/0t1YuW/MLQMAPixfwaQOHUXsd6jeU3Z+vdGv3+A== + dependencies: + "@babel/helper-annotate-as-pure" "^7.24.7" + "@babel/helper-create-class-features-plugin" "^7.25.0" + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/helper-skip-transparent-expression-wrappers" "^7.24.7" + "@babel/plugin-syntax-typescript" "^7.24.7" + +"@babel/plugin-transform-unicode-escapes@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-unicode-escapes/-/plugin-transform-unicode-escapes-7.24.7.tgz#2023a82ced1fb4971630a2e079764502c4148e0e" + integrity sha512-U3ap1gm5+4edc2Q/P+9VrBNhGkfnf+8ZqppY71Bo/pzZmXhhLdqgaUl6cuB07O1+AQJtCLfaOmswiNbSQ9ivhw== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-unicode-property-regex@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-unicode-property-regex/-/plugin-transform-unicode-property-regex-7.24.7.tgz#9073a4cd13b86ea71c3264659590ac086605bbcd" + integrity sha512-uH2O4OV5M9FZYQrwc7NdVmMxQJOCCzFeYudlZSzUAHRFeOujQefa92E74TQDVskNHCzOXoigEuoyzHDhaEaK5w== + dependencies: + "@babel/helper-create-regexp-features-plugin" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-unicode-regex@^7.24.7": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-unicode-regex/-/plugin-transform-unicode-regex-7.24.7.tgz#dfc3d4a51127108099b19817c0963be6a2adf19f" + integrity sha512-hlQ96MBZSAXUq7ltkjtu3FJCCSMx/j629ns3hA3pXnBXjanNP0LHi+JpPeA81zaWgVK1VGH95Xuy7u0RyQ8kMg== + dependencies: + "@babel/helper-create-regexp-features-plugin" "^7.24.7" + "@babel/helper-plugin-utils" "^7.24.7" + +"@babel/plugin-transform-unicode-sets-regex@^7.25.4": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/plugin-transform-unicode-sets-regex/-/plugin-transform-unicode-sets-regex-7.25.4.tgz#be664c2a0697ffacd3423595d5edef6049e8946c" + integrity sha512-qesBxiWkgN1Q+31xUE9RcMk79eOXXDCv6tfyGMRSs4RGlioSg2WVyQAm07k726cSE56pa+Kb0y9epX2qaXzTvA== + dependencies: + "@babel/helper-create-regexp-features-plugin" "^7.25.2" + "@babel/helper-plugin-utils" "^7.24.8" + +"@babel/preset-env@^7.20.2", "@babel/preset-env@^7.22.9": + version "7.25.4" + resolved "https://registry.yarnpkg.com/@babel/preset-env/-/preset-env-7.25.4.tgz#be23043d43a34a2721cd0f676c7ba6f1481f6af6" + integrity sha512-W9Gyo+KmcxjGahtt3t9fb14vFRWvPpu5pT6GBlovAK6BTBcxgjfVMSQCfJl4oi35ODrxP6xx2Wr8LNST57Mraw== + dependencies: + "@babel/compat-data" "^7.25.4" + "@babel/helper-compilation-targets" "^7.25.2" + "@babel/helper-plugin-utils" "^7.24.8" + "@babel/helper-validator-option" "^7.24.8" + "@babel/plugin-bugfix-firefox-class-in-computed-class-key" "^7.25.3" + "@babel/plugin-bugfix-safari-class-field-initializer-scope" "^7.25.0" + "@babel/plugin-bugfix-safari-id-destructuring-collision-in-function-expression" "^7.25.0" + "@babel/plugin-bugfix-v8-spread-parameters-in-optional-chaining" "^7.24.7" + "@babel/plugin-bugfix-v8-static-class-fields-redefine-readonly" "^7.25.0" + "@babel/plugin-proposal-private-property-in-object" "7.21.0-placeholder-for-preset-env.2" + "@babel/plugin-syntax-async-generators" "^7.8.4" + "@babel/plugin-syntax-class-properties" "^7.12.13" + "@babel/plugin-syntax-class-static-block" "^7.14.5" + "@babel/plugin-syntax-dynamic-import" "^7.8.3" + "@babel/plugin-syntax-export-namespace-from" "^7.8.3" + "@babel/plugin-syntax-import-assertions" "^7.24.7" + "@babel/plugin-syntax-import-attributes" "^7.24.7" + "@babel/plugin-syntax-import-meta" "^7.10.4" + "@babel/plugin-syntax-json-strings" "^7.8.3" + "@babel/plugin-syntax-logical-assignment-operators" "^7.10.4" + "@babel/plugin-syntax-nullish-coalescing-operator" "^7.8.3" + "@babel/plugin-syntax-numeric-separator" "^7.10.4" + "@babel/plugin-syntax-object-rest-spread" "^7.8.3" + "@babel/plugin-syntax-optional-catch-binding" "^7.8.3" + "@babel/plugin-syntax-optional-chaining" "^7.8.3" + "@babel/plugin-syntax-private-property-in-object" "^7.14.5" + "@babel/plugin-syntax-top-level-await" "^7.14.5" + "@babel/plugin-syntax-unicode-sets-regex" "^7.18.6" + "@babel/plugin-transform-arrow-functions" "^7.24.7" + "@babel/plugin-transform-async-generator-functions" "^7.25.4" + "@babel/plugin-transform-async-to-generator" "^7.24.7" + "@babel/plugin-transform-block-scoped-functions" "^7.24.7" + "@babel/plugin-transform-block-scoping" "^7.25.0" + "@babel/plugin-transform-class-properties" "^7.25.4" + "@babel/plugin-transform-class-static-block" "^7.24.7" + "@babel/plugin-transform-classes" "^7.25.4" + "@babel/plugin-transform-computed-properties" "^7.24.7" + "@babel/plugin-transform-destructuring" "^7.24.8" + "@babel/plugin-transform-dotall-regex" "^7.24.7" + "@babel/plugin-transform-duplicate-keys" "^7.24.7" + "@babel/plugin-transform-duplicate-named-capturing-groups-regex" "^7.25.0" + "@babel/plugin-transform-dynamic-import" "^7.24.7" + "@babel/plugin-transform-exponentiation-operator" "^7.24.7" + "@babel/plugin-transform-export-namespace-from" "^7.24.7" + "@babel/plugin-transform-for-of" "^7.24.7" + "@babel/plugin-transform-function-name" "^7.25.1" + "@babel/plugin-transform-json-strings" "^7.24.7" + "@babel/plugin-transform-literals" "^7.25.2" + "@babel/plugin-transform-logical-assignment-operators" "^7.24.7" + "@babel/plugin-transform-member-expression-literals" "^7.24.7" + "@babel/plugin-transform-modules-amd" "^7.24.7" + "@babel/plugin-transform-modules-commonjs" "^7.24.8" + "@babel/plugin-transform-modules-systemjs" "^7.25.0" + "@babel/plugin-transform-modules-umd" "^7.24.7" + "@babel/plugin-transform-named-capturing-groups-regex" "^7.24.7" + "@babel/plugin-transform-new-target" "^7.24.7" + "@babel/plugin-transform-nullish-coalescing-operator" "^7.24.7" + "@babel/plugin-transform-numeric-separator" "^7.24.7" + "@babel/plugin-transform-object-rest-spread" "^7.24.7" + "@babel/plugin-transform-object-super" "^7.24.7" + "@babel/plugin-transform-optional-catch-binding" "^7.24.7" + "@babel/plugin-transform-optional-chaining" "^7.24.8" + "@babel/plugin-transform-parameters" "^7.24.7" + "@babel/plugin-transform-private-methods" "^7.25.4" + "@babel/plugin-transform-private-property-in-object" "^7.24.7" + "@babel/plugin-transform-property-literals" "^7.24.7" + "@babel/plugin-transform-regenerator" "^7.24.7" + "@babel/plugin-transform-reserved-words" "^7.24.7" + "@babel/plugin-transform-shorthand-properties" "^7.24.7" + "@babel/plugin-transform-spread" "^7.24.7" + "@babel/plugin-transform-sticky-regex" "^7.24.7" + "@babel/plugin-transform-template-literals" "^7.24.7" + "@babel/plugin-transform-typeof-symbol" "^7.24.8" + "@babel/plugin-transform-unicode-escapes" "^7.24.7" + "@babel/plugin-transform-unicode-property-regex" "^7.24.7" + "@babel/plugin-transform-unicode-regex" "^7.24.7" + "@babel/plugin-transform-unicode-sets-regex" "^7.25.4" + "@babel/preset-modules" "0.1.6-no-external-plugins" + babel-plugin-polyfill-corejs2 "^0.4.10" + babel-plugin-polyfill-corejs3 "^0.10.6" + babel-plugin-polyfill-regenerator "^0.6.1" + core-js-compat "^3.37.1" + semver "^6.3.1" + +"@babel/preset-modules@0.1.6-no-external-plugins": + version "0.1.6-no-external-plugins" + resolved "https://registry.yarnpkg.com/@babel/preset-modules/-/preset-modules-0.1.6-no-external-plugins.tgz#ccb88a2c49c817236861fee7826080573b8a923a" + integrity sha512-HrcgcIESLm9aIR842yhJ5RWan/gebQUJ6E/E5+rf0y9o6oj7w0Br+sWuL6kEQ/o/AdfvR1Je9jG18/gnpwjEyA== + dependencies: + "@babel/helper-plugin-utils" "^7.0.0" + "@babel/types" "^7.4.4" + esutils "^2.0.2" + +"@babel/preset-react@^7.18.6", "@babel/preset-react@^7.22.5": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/preset-react/-/preset-react-7.24.7.tgz#480aeb389b2a798880bf1f889199e3641cbb22dc" + integrity sha512-AAH4lEkpmzFWrGVlHaxJB7RLH21uPQ9+He+eFLWHmF9IuFQVugz8eAsamaW0DXRrTfco5zj1wWtpdcXJUOfsag== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/helper-validator-option" "^7.24.7" + "@babel/plugin-transform-react-display-name" "^7.24.7" + "@babel/plugin-transform-react-jsx" "^7.24.7" + "@babel/plugin-transform-react-jsx-development" "^7.24.7" + "@babel/plugin-transform-react-pure-annotations" "^7.24.7" + +"@babel/preset-typescript@^7.21.0", "@babel/preset-typescript@^7.22.5": + version "7.24.7" + resolved "https://registry.yarnpkg.com/@babel/preset-typescript/-/preset-typescript-7.24.7.tgz#66cd86ea8f8c014855671d5ea9a737139cbbfef1" + integrity sha512-SyXRe3OdWwIwalxDg5UtJnJQO+YPcTfwiIY2B0Xlddh9o7jpWLvv8X1RthIeDOxQ+O1ML5BLPCONToObyVQVuQ== + dependencies: + "@babel/helper-plugin-utils" "^7.24.7" + "@babel/helper-validator-option" "^7.24.7" + "@babel/plugin-syntax-jsx" "^7.24.7" + "@babel/plugin-transform-modules-commonjs" "^7.24.7" + "@babel/plugin-transform-typescript" "^7.24.7" + +"@babel/regjsgen@^0.8.0": + version "0.8.0" + resolved "https://registry.yarnpkg.com/@babel/regjsgen/-/regjsgen-0.8.0.tgz#f0ba69b075e1f05fb2825b7fad991e7adbb18310" + integrity sha512-x/rqGMdzj+fWZvCOYForTghzbtqPDZ5gPwaoNGHdgDfF2QA/XZbCBp4Moo5scrkAMPhB7z26XM/AaHuIJdgauA== + +"@babel/runtime-corejs3@^7.22.6": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/runtime-corejs3/-/runtime-corejs3-7.25.6.tgz#5e3facf42775cc95bcde95746e940061931286e4" + integrity sha512-Gz0Nrobx8szge6kQQ5Z5MX9L3ObqNwCQY1PSwSNzreFL7aHGxv8Fp2j3ETV6/wWdbiV+mW6OSm8oQhg3Tcsniw== + dependencies: + core-js-pure "^3.30.2" + regenerator-runtime "^0.14.0" + +"@babel/runtime@^7.1.2", "@babel/runtime@^7.10.3", "@babel/runtime@^7.12.13", "@babel/runtime@^7.12.5", "@babel/runtime@^7.22.6", "@babel/runtime@^7.8.4": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/runtime/-/runtime-7.25.6.tgz#9afc3289f7184d8d7f98b099884c26317b9264d2" + integrity sha512-VBj9MYyDb9tuLq7yzqjgzt6Q+IBQLrGZfdjOekyEirZPHxXWoTSGUTMrpsfi58Up73d13NfYLv8HT9vmznjzhQ== + dependencies: + regenerator-runtime "^0.14.0" + +"@babel/template@^7.24.7", "@babel/template@^7.25.0": + version "7.25.0" + resolved "https://registry.yarnpkg.com/@babel/template/-/template-7.25.0.tgz#e733dc3134b4fede528c15bc95e89cb98c52592a" + integrity sha512-aOOgh1/5XzKvg1jvVz7AVrx2piJ2XBi227DHmbY6y+bM9H2FlN+IfecYu4Xl0cNiiVejlsCri89LUsbj8vJD9Q== + dependencies: + "@babel/code-frame" "^7.24.7" + "@babel/parser" "^7.25.0" + "@babel/types" "^7.25.0" + +"@babel/traverse@^7.22.8", "@babel/traverse@^7.24.7", "@babel/traverse@^7.24.8", "@babel/traverse@^7.25.0", "@babel/traverse@^7.25.1", "@babel/traverse@^7.25.2", "@babel/traverse@^7.25.3", "@babel/traverse@^7.25.4": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/traverse/-/traverse-7.25.6.tgz#04fad980e444f182ecf1520504941940a90fea41" + integrity sha512-9Vrcx5ZW6UwK5tvqsj0nGpp/XzqthkT0dqIc9g1AdtygFToNtTF67XzYS//dm+SAK9cp3B9R4ZO/46p63SCjlQ== + dependencies: + "@babel/code-frame" "^7.24.7" + "@babel/generator" "^7.25.6" + "@babel/parser" "^7.25.6" + "@babel/template" "^7.25.0" + "@babel/types" "^7.25.6" + debug "^4.3.1" + globals "^11.1.0" + +"@babel/types@^7.21.3", "@babel/types@^7.24.7", "@babel/types@^7.24.8", "@babel/types@^7.25.0", "@babel/types@^7.25.2", "@babel/types@^7.25.6", "@babel/types@^7.4.4": + version "7.25.6" + resolved "https://registry.yarnpkg.com/@babel/types/-/types-7.25.6.tgz#893942ddb858f32ae7a004ec9d3a76b3463ef8e6" + integrity sha512-/l42B1qxpG6RdfYf343Uw1vmDjeNhneUXtzhojE7pDgfpEypmRhI6j1kr17XCVv4Cgl9HdAiQY2x0GwKm7rWCw== + dependencies: + "@babel/helper-string-parser" "^7.24.8" + "@babel/helper-validator-identifier" "^7.24.7" + to-fast-properties "^2.0.0" + +"@braintree/sanitize-url@^6.0.1": + version "6.0.4" + resolved "https://registry.yarnpkg.com/@braintree/sanitize-url/-/sanitize-url-6.0.4.tgz#923ca57e173c6b232bbbb07347b1be982f03e783" + integrity sha512-s3jaWicZd0pkP0jf5ysyHUI/RE7MHos6qlToFcGWXVp+ykHOy77OUMrfbgJ9it2C5bow7OIQwYYaHjk9XlBQ2A== + +"@colors/colors@1.5.0": + version "1.5.0" + resolved "https://registry.yarnpkg.com/@colors/colors/-/colors-1.5.0.tgz#bb504579c1cae923e6576a4f5da43d25f97bdbd9" + integrity sha512-ooWCrlZP11i8GImSjTHYHLkvFDP48nS4+204nGb1RiX/WXYHmJA2III9/e2DWVabCESdW7hBAEzHRqUn9OUVvQ== + +"@discoveryjs/json-ext@0.5.7": + version "0.5.7" + resolved "https://registry.yarnpkg.com/@discoveryjs/json-ext/-/json-ext-0.5.7.tgz#1d572bfbbe14b7704e0ba0f39b74815b84870d70" + integrity sha512-dBVuXR082gk3jsFp7Rd/JI4kytwGHecnCoTtXFb7DB6CNHp4rg5k1bhg0nWdLGLnOV71lmDzGQaLMy8iPLY0pw== + +"@docsearch/css@3.6.1": + version "3.6.1" + resolved "https://registry.yarnpkg.com/@docsearch/css/-/css-3.6.1.tgz#f0a728ecb486c81f2d282650fc1820c914913408" + integrity sha512-VtVb5DS+0hRIprU2CO6ZQjK2Zg4QU5HrDM1+ix6rT0umsYvFvatMAnf97NHZlVWDaaLlx7GRfR/7FikANiM2Fg== + +"@docsearch/react@^3.5.2": + version "3.6.1" + resolved "https://registry.yarnpkg.com/@docsearch/react/-/react-3.6.1.tgz#0f826df08693293806d64277d6d9c38636211b97" + integrity sha512-qXZkEPvybVhSXj0K7U3bXc233tk5e8PfhoZ6MhPOiik/qUQxYC+Dn9DnoS7CxHQQhHfCvTiN0eY9M12oRghEXw== + dependencies: + "@algolia/autocomplete-core" "1.9.3" + "@algolia/autocomplete-preset-algolia" "1.9.3" + "@docsearch/css" "3.6.1" + algoliasearch "^4.19.1" + +"@docusaurus/core@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/core/-/core-3.5.2.tgz#3adedb90e7b6104592f1231043bd6bf91680c39c" + integrity sha512-4Z1WkhCSkX4KO0Fw5m/Vuc7Q3NxBG53NE5u59Rs96fWkMPZVSrzEPP16/Nk6cWb/shK7xXPndTmalJtw7twL/w== + dependencies: + "@babel/core" "^7.23.3" + "@babel/generator" "^7.23.3" + "@babel/plugin-syntax-dynamic-import" "^7.8.3" + "@babel/plugin-transform-runtime" "^7.22.9" + "@babel/preset-env" "^7.22.9" + "@babel/preset-react" "^7.22.5" + "@babel/preset-typescript" "^7.22.5" + "@babel/runtime" "^7.22.6" + "@babel/runtime-corejs3" "^7.22.6" + "@babel/traverse" "^7.22.8" + "@docusaurus/cssnano-preset" "3.5.2" + "@docusaurus/logger" "3.5.2" + "@docusaurus/mdx-loader" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + autoprefixer "^10.4.14" + babel-loader "^9.1.3" + babel-plugin-dynamic-import-node "^2.3.3" + boxen "^6.2.1" + chalk "^4.1.2" + chokidar "^3.5.3" + clean-css "^5.3.2" + cli-table3 "^0.6.3" + combine-promises "^1.1.0" + commander "^5.1.0" + copy-webpack-plugin "^11.0.0" + core-js "^3.31.1" + css-loader "^6.8.1" + css-minimizer-webpack-plugin "^5.0.1" + cssnano "^6.1.2" + del "^6.1.1" + detect-port "^1.5.1" + escape-html "^1.0.3" + eta "^2.2.0" + eval "^0.1.8" + file-loader "^6.2.0" + fs-extra "^11.1.1" + html-minifier-terser "^7.2.0" + html-tags "^3.3.1" + html-webpack-plugin "^5.5.3" + leven "^3.1.0" + lodash "^4.17.21" + mini-css-extract-plugin "^2.7.6" + p-map "^4.0.0" + postcss "^8.4.26" + postcss-loader "^7.3.3" + prompts "^2.4.2" + react-dev-utils "^12.0.1" + react-helmet-async "^1.3.0" + react-loadable "npm:@docusaurus/react-loadable@6.0.0" + react-loadable-ssr-addon-v5-slorber "^1.0.1" + react-router "^5.3.4" + react-router-config "^5.1.1" + react-router-dom "^5.3.4" + rtl-detect "^1.0.4" + semver "^7.5.4" + serve-handler "^6.1.5" + shelljs "^0.8.5" + terser-webpack-plugin "^5.3.9" + tslib "^2.6.0" + update-notifier "^6.0.2" + url-loader "^4.1.1" + webpack "^5.88.1" + webpack-bundle-analyzer "^4.9.0" + webpack-dev-server "^4.15.1" + webpack-merge "^5.9.0" + webpackbar "^5.0.2" + +"@docusaurus/cssnano-preset@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/cssnano-preset/-/cssnano-preset-3.5.2.tgz#6c1f2b2f9656f978c4694c84ab24592b04dcfab3" + integrity sha512-D3KiQXOMA8+O0tqORBrTOEQyQxNIfPm9jEaJoALjjSjc2M/ZAWcUfPQEnwr2JB2TadHw2gqWgpZckQmrVWkytA== + dependencies: + cssnano-preset-advanced "^6.1.2" + postcss "^8.4.38" + postcss-sort-media-queries "^5.2.0" + tslib "^2.6.0" + +"@docusaurus/logger@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/logger/-/logger-3.5.2.tgz#1150339ad56844b30734115c19c580f3b25cf5ed" + integrity sha512-LHC540SGkeLfyT3RHK3gAMK6aS5TRqOD4R72BEU/DE2M/TY8WwEUAMY576UUc/oNJXv8pGhBmQB6N9p3pt8LQw== + dependencies: + chalk "^4.1.2" + tslib "^2.6.0" + +"@docusaurus/mdx-loader@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/mdx-loader/-/mdx-loader-3.5.2.tgz#99781641372c5037bcbe09bb8ade93a0e0ada57d" + integrity sha512-ku3xO9vZdwpiMIVd8BzWV0DCqGEbCP5zs1iHfKX50vw6jX8vQo0ylYo1YJMZyz6e+JFJ17HYHT5FzVidz2IflA== + dependencies: + "@docusaurus/logger" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + "@mdx-js/mdx" "^3.0.0" + "@slorber/remark-comment" "^1.0.0" + escape-html "^1.0.3" + estree-util-value-to-estree "^3.0.1" + file-loader "^6.2.0" + fs-extra "^11.1.1" + image-size "^1.0.2" + mdast-util-mdx "^3.0.0" + mdast-util-to-string "^4.0.0" + rehype-raw "^7.0.0" + remark-directive "^3.0.0" + remark-emoji "^4.0.0" + remark-frontmatter "^5.0.0" + remark-gfm "^4.0.0" + stringify-object "^3.3.0" + tslib "^2.6.0" + unified "^11.0.3" + unist-util-visit "^5.0.0" + url-loader "^4.1.1" + vfile "^6.0.1" + webpack "^5.88.1" + +"@docusaurus/module-type-aliases@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/module-type-aliases/-/module-type-aliases-3.5.2.tgz#4e8f9c0703e23b2e07ebfce96598ec83e4dd2a9e" + integrity sha512-Z+Xu3+2rvKef/YKTMxZHsEXp1y92ac0ngjDiExRdqGTmEKtCUpkbNYH8v5eXo5Ls+dnW88n6WTa+Q54kLOkwPg== + dependencies: + "@docusaurus/types" "3.5.2" + "@types/history" "^4.7.11" + "@types/react" "*" + "@types/react-router-config" "*" + "@types/react-router-dom" "*" + react-helmet-async "*" + react-loadable "npm:@docusaurus/react-loadable@6.0.0" + +"@docusaurus/plugin-content-blog@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-content-blog/-/plugin-content-blog-3.5.2.tgz#649c07c34da7603645f152bcebdf75285baed16b" + integrity sha512-R7ghWnMvjSf+aeNDH0K4fjyQnt5L0KzUEnUhmf1e3jZrv3wogeytZNN6n7X8yHcMsuZHPOrctQhXWnmxu+IRRg== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/logger" "3.5.2" + "@docusaurus/mdx-loader" "3.5.2" + "@docusaurus/theme-common" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + cheerio "1.0.0-rc.12" + feed "^4.2.2" + fs-extra "^11.1.1" + lodash "^4.17.21" + reading-time "^1.5.0" + srcset "^4.0.0" + tslib "^2.6.0" + unist-util-visit "^5.0.0" + utility-types "^3.10.0" + webpack "^5.88.1" + +"@docusaurus/plugin-content-docs@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-content-docs/-/plugin-content-docs-3.5.2.tgz#adcf6c0bd9a9818eb192ab831e0069ee62d31505" + integrity sha512-Bt+OXn/CPtVqM3Di44vHjE7rPCEsRCB/DMo2qoOuozB9f7+lsdrHvD0QCHdBs0uhz6deYJDppAr2VgqybKPlVQ== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/logger" "3.5.2" + "@docusaurus/mdx-loader" "3.5.2" + "@docusaurus/module-type-aliases" "3.5.2" + "@docusaurus/theme-common" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + "@types/react-router-config" "^5.0.7" + combine-promises "^1.1.0" + fs-extra "^11.1.1" + js-yaml "^4.1.0" + lodash "^4.17.21" + tslib "^2.6.0" + utility-types "^3.10.0" + webpack "^5.88.1" + +"@docusaurus/plugin-content-pages@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-content-pages/-/plugin-content-pages-3.5.2.tgz#2b59e43f5bc5b5176ff01835de706f1c65c2e68b" + integrity sha512-WzhHjNpoQAUz/ueO10cnundRz+VUtkjFhhaQ9jApyv1a46FPURO4cef89pyNIOMny1fjDz/NUN2z6Yi+5WUrCw== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/mdx-loader" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + fs-extra "^11.1.1" + tslib "^2.6.0" + webpack "^5.88.1" + +"@docusaurus/plugin-debug@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-debug/-/plugin-debug-3.5.2.tgz#c25ca6a59e62a17c797b367173fe80c06fdf2f65" + integrity sha512-kBK6GlN0itCkrmHuCS6aX1wmoWc5wpd5KJlqQ1FyrF0cLDnvsYSnh7+ftdwzt7G6lGBho8lrVwkkL9/iQvaSOA== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils" "3.5.2" + fs-extra "^11.1.1" + react-json-view-lite "^1.2.0" + tslib "^2.6.0" + +"@docusaurus/plugin-google-analytics@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-google-analytics/-/plugin-google-analytics-3.5.2.tgz#1143e78d1461d3c74a2746f036d25b18d4a2608d" + integrity sha512-rjEkJH/tJ8OXRE9bwhV2mb/WP93V441rD6XnM6MIluu7rk8qg38iSxS43ga2V2Q/2ib53PcqbDEJDG/yWQRJhQ== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + tslib "^2.6.0" + +"@docusaurus/plugin-google-gtag@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-google-gtag/-/plugin-google-gtag-3.5.2.tgz#60b5a9e1888c4fa16933f7c5cb5f2f2c31caad3a" + integrity sha512-lm8XL3xLkTPHFKKjLjEEAHUrW0SZBSHBE1I+i/tmYMBsjCcUB5UJ52geS5PSiOCFVR74tbPGcPHEV/gaaxFeSA== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + "@types/gtag.js" "^0.0.12" + tslib "^2.6.0" + +"@docusaurus/plugin-google-tag-manager@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-google-tag-manager/-/plugin-google-tag-manager-3.5.2.tgz#7a37334d2e7f00914d61ad05bc09391c4db3bfda" + integrity sha512-QkpX68PMOMu10Mvgvr5CfZAzZQFx8WLlOiUQ/Qmmcl6mjGK6H21WLT5x7xDmcpCoKA/3CegsqIqBR+nA137lQg== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + tslib "^2.6.0" + +"@docusaurus/plugin-sitemap@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/plugin-sitemap/-/plugin-sitemap-3.5.2.tgz#9c940b27f3461c54d65295cf4c52cb20538bd360" + integrity sha512-DnlqYyRAdQ4NHY28TfHuVk414ft2uruP4QWCH//jzpHjqvKyXjj2fmDtI8RPUBh9K8iZKFMHRnLtzJKySPWvFA== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/logger" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + fs-extra "^11.1.1" + sitemap "^7.1.1" + tslib "^2.6.0" + +"@docusaurus/preset-classic@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/preset-classic/-/preset-classic-3.5.2.tgz#977f78510bbc556aa0539149eef960bb7ab52bd9" + integrity sha512-3ihfXQ95aOHiLB5uCu+9PRy2gZCeSZoDcqpnDvf3B+sTrMvMTr8qRUzBvWkoIqc82yG5prCboRjk1SVILKx6sg== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/plugin-content-blog" "3.5.2" + "@docusaurus/plugin-content-docs" "3.5.2" + "@docusaurus/plugin-content-pages" "3.5.2" + "@docusaurus/plugin-debug" "3.5.2" + "@docusaurus/plugin-google-analytics" "3.5.2" + "@docusaurus/plugin-google-gtag" "3.5.2" + "@docusaurus/plugin-google-tag-manager" "3.5.2" + "@docusaurus/plugin-sitemap" "3.5.2" + "@docusaurus/theme-classic" "3.5.2" + "@docusaurus/theme-common" "3.5.2" + "@docusaurus/theme-search-algolia" "3.5.2" + "@docusaurus/types" "3.5.2" + +"@docusaurus/remark-plugin-npm2yarn@^3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/remark-plugin-npm2yarn/-/remark-plugin-npm2yarn-3.5.2.tgz#892a63a9b53475d7c59957bd67277656dcd91079" + integrity sha512-EAD7R/skPuhW3lWZyDhRuFs3m2EGaR008tuoe6SrFre7PifoxmSCwXk8Nb4VtVRKnnbn4IgHyqq+ma47gGmKwg== + dependencies: + mdast-util-mdx "^3.0.0" + npm-to-yarn "^2.2.1" + tslib "^2.6.0" + unified "^11.0.3" + unist-util-visit "^5.0.0" + +"@docusaurus/theme-classic@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/theme-classic/-/theme-classic-3.5.2.tgz#602ddb63d987ab1f939e3760c67bc1880f01c000" + integrity sha512-XRpinSix3NBv95Rk7xeMF9k4safMkwnpSgThn0UNQNumKvmcIYjfkwfh2BhwYh/BxMXQHJ/PdmNh22TQFpIaYg== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/mdx-loader" "3.5.2" + "@docusaurus/module-type-aliases" "3.5.2" + "@docusaurus/plugin-content-blog" "3.5.2" + "@docusaurus/plugin-content-docs" "3.5.2" + "@docusaurus/plugin-content-pages" "3.5.2" + "@docusaurus/theme-common" "3.5.2" + "@docusaurus/theme-translations" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + "@mdx-js/react" "^3.0.0" + clsx "^2.0.0" + copy-text-to-clipboard "^3.2.0" + infima "0.2.0-alpha.44" + lodash "^4.17.21" + nprogress "^0.2.0" + postcss "^8.4.26" + prism-react-renderer "^2.3.0" + prismjs "^1.29.0" + react-router-dom "^5.3.4" + rtlcss "^4.1.0" + tslib "^2.6.0" + utility-types "^3.10.0" + +"@docusaurus/theme-common@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/theme-common/-/theme-common-3.5.2.tgz#b507ab869a1fba0be9c3c9d74f2f3d74c3ac78b2" + integrity sha512-QXqlm9S6x9Ibwjs7I2yEDgsCocp708DrCrgHgKwg2n2AY0YQ6IjU0gAK35lHRLOvAoJUfCKpQAwUykB0R7+Eew== + dependencies: + "@docusaurus/mdx-loader" "3.5.2" + "@docusaurus/module-type-aliases" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + "@types/history" "^4.7.11" + "@types/react" "*" + "@types/react-router-config" "*" + clsx "^2.0.0" + parse-numeric-range "^1.3.0" + prism-react-renderer "^2.3.0" + tslib "^2.6.0" + utility-types "^3.10.0" + +"@docusaurus/theme-mermaid@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/theme-mermaid/-/theme-mermaid-3.5.2.tgz#7d64289e6f2493b9fc0d5f2e8f66da4c9d884db8" + integrity sha512-7vWCnIe/KoyTN1Dc55FIyqO5hJ3YaV08Mr63Zej0L0mX1iGzt+qKSmeVUAJ9/aOalUhF0typV0RmNUSy5FAmCg== + dependencies: + "@docusaurus/core" "3.5.2" + "@docusaurus/module-type-aliases" "3.5.2" + "@docusaurus/theme-common" "3.5.2" + "@docusaurus/types" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + mermaid "^10.4.0" + tslib "^2.6.0" + +"@docusaurus/theme-search-algolia@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/theme-search-algolia/-/theme-search-algolia-3.5.2.tgz#466c83ca7e8017d95ae6889ccddc5ef8bf6b61c6" + integrity sha512-qW53kp3VzMnEqZGjakaV90sst3iN1o32PH+nawv1uepROO8aEGxptcq2R5rsv7aBShSRbZwIobdvSYKsZ5pqvA== + dependencies: + "@docsearch/react" "^3.5.2" + "@docusaurus/core" "3.5.2" + "@docusaurus/logger" "3.5.2" + "@docusaurus/plugin-content-docs" "3.5.2" + "@docusaurus/theme-common" "3.5.2" + "@docusaurus/theme-translations" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-validation" "3.5.2" + algoliasearch "^4.18.0" + algoliasearch-helper "^3.13.3" + clsx "^2.0.0" + eta "^2.2.0" + fs-extra "^11.1.1" + lodash "^4.17.21" + tslib "^2.6.0" + utility-types "^3.10.0" + +"@docusaurus/theme-translations@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/theme-translations/-/theme-translations-3.5.2.tgz#38f9ebf2a5d860397022206a05fef66c08863c89" + integrity sha512-GPZLcu4aT1EmqSTmbdpVrDENGR2yObFEX8ssEFYTCiAIVc0EihNSdOIBTazUvgNqwvnoU1A8vIs1xyzc3LITTw== + dependencies: + fs-extra "^11.1.1" + tslib "^2.6.0" + +"@docusaurus/types@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/types/-/types-3.5.2.tgz#058019dbeffbee2d412c3f72569e412a727f9608" + integrity sha512-N6GntLXoLVUwkZw7zCxwy9QiuEXIcTVzA9AkmNw16oc0AP3SXLrMmDMMBIfgqwuKWa6Ox6epHol9kMtJqekACw== + dependencies: + "@mdx-js/mdx" "^3.0.0" + "@types/history" "^4.7.11" + "@types/react" "*" + commander "^5.1.0" + joi "^17.9.2" + react-helmet-async "^1.3.0" + utility-types "^3.10.0" + webpack "^5.88.1" + webpack-merge "^5.9.0" + +"@docusaurus/utils-common@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/utils-common/-/utils-common-3.5.2.tgz#4d7f5e962fbca3e2239d80457aa0e4bd3d8f7e0a" + integrity sha512-i0AZjHiRgJU6d7faQngIhuHKNrszpL/SHQPgF1zH4H+Ij6E9NBYGy6pkcGWToIv7IVPbs+pQLh1P3whn0gWXVg== + dependencies: + tslib "^2.6.0" + +"@docusaurus/utils-validation@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/utils-validation/-/utils-validation-3.5.2.tgz#1b2b2f02082781cc8ce713d4c85e88d6d2fc4eb3" + integrity sha512-m+Foq7augzXqB6HufdS139PFxDC5d5q2QKZy8q0qYYvGdI6nnlNsGH4cIGsgBnV7smz+mopl3g4asbSDvMV0jA== + dependencies: + "@docusaurus/logger" "3.5.2" + "@docusaurus/utils" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + fs-extra "^11.2.0" + joi "^17.9.2" + js-yaml "^4.1.0" + lodash "^4.17.21" + tslib "^2.6.0" + +"@docusaurus/utils@3.5.2": + version "3.5.2" + resolved "https://registry.yarnpkg.com/@docusaurus/utils/-/utils-3.5.2.tgz#17763130215f18d7269025903588ef7fb373e2cb" + integrity sha512-33QvcNFh+Gv+C2dP9Y9xWEzMgf3JzrpL2nW9PopidiohS1nDcyknKRx2DWaFvyVTTYIkkABVSr073VTj/NITNA== + dependencies: + "@docusaurus/logger" "3.5.2" + "@docusaurus/utils-common" "3.5.2" + "@svgr/webpack" "^8.1.0" + escape-string-regexp "^4.0.0" + file-loader "^6.2.0" + fs-extra "^11.1.1" + github-slugger "^1.5.0" + globby "^11.1.0" + gray-matter "^4.0.3" + jiti "^1.20.0" + js-yaml "^4.1.0" + lodash "^4.17.21" + micromatch "^4.0.5" + prompts "^2.4.2" + resolve-pathname "^3.0.0" + shelljs "^0.8.5" + tslib "^2.6.0" + url-loader "^4.1.1" + utility-types "^3.10.0" + webpack "^5.88.1" + +"@eslint-community/eslint-utils@^4.2.0": + version "4.4.0" + resolved "https://registry.yarnpkg.com/@eslint-community/eslint-utils/-/eslint-utils-4.4.0.tgz#a23514e8fb9af1269d5f7788aa556798d61c6b59" + integrity sha512-1/sA4dwrzBAyeUoQ6oxahHKmrZvsnLCg4RfxW3ZFGGmQkSNQPFNLV9CUEFQP1x9EYXHTo5p6xdhZM1Ne9p/AfA== + dependencies: + eslint-visitor-keys "^3.3.0" + +"@eslint-community/regexpp@^4.6.1": + version "4.11.1" + resolved "https://registry.yarnpkg.com/@eslint-community/regexpp/-/regexpp-4.11.1.tgz#a547badfc719eb3e5f4b556325e542fbe9d7a18f" + integrity sha512-m4DVN9ZqskZoLU5GlWZadwDnYo3vAEydiUayB9widCl9ffWx2IvPnp6n3on5rJmziJSw9Bv+Z3ChDVdMwXCY8Q== + +"@eslint/eslintrc@^2.1.4": + version "2.1.4" + resolved "https://registry.yarnpkg.com/@eslint/eslintrc/-/eslintrc-2.1.4.tgz#388a269f0f25c1b6adc317b5a2c55714894c70ad" + integrity sha512-269Z39MS6wVJtsoUl10L60WdkhJVdPG24Q4eZTH3nnF6lpvSShEK3wQjDX9JRWAUPvPh7COouPpU9IrqaZFvtQ== + dependencies: + ajv "^6.12.4" + debug "^4.3.2" + espree "^9.6.0" + globals "^13.19.0" + ignore "^5.2.0" + import-fresh "^3.2.1" + js-yaml "^4.1.0" + minimatch "^3.1.2" + strip-json-comments "^3.1.1" + +"@eslint/js@8.57.1": + version "8.57.1" + resolved "https://registry.yarnpkg.com/@eslint/js/-/js-8.57.1.tgz#de633db3ec2ef6a3c89e2f19038063e8a122e2c2" + integrity sha512-d9zaMRSTIKDLhctzH12MtXvJKSSUhaHcjV+2Z+GK+EEY7XKpP5yR4x+N3TAcHTcu963nIr+TMcCb4DBCYX1z6Q== + +"@hapi/hoek@^9.0.0", "@hapi/hoek@^9.3.0": + version "9.3.0" + resolved "https://registry.yarnpkg.com/@hapi/hoek/-/hoek-9.3.0.tgz#8368869dcb735be2e7f5cb7647de78e167a251fb" + integrity sha512-/c6rf4UJlmHlC9b5BaNvzAcFv7HZ2QHaV0D4/HNlBdvFnvQq8RI4kYdhyPCl7Xj+oWvTWQ8ujhqS53LIgAe6KQ== + +"@hapi/topo@^5.1.0": + version "5.1.0" + resolved "https://registry.yarnpkg.com/@hapi/topo/-/topo-5.1.0.tgz#dc448e332c6c6e37a4dc02fd84ba8d44b9afb012" + integrity sha512-foQZKJig7Ob0BMAYBfcJk8d77QtOe7Wo4ox7ff1lQYoNNAb6jwcY1ncdoy2e9wQZzvNy7ODZCYJkK8kzmcAnAg== + dependencies: + "@hapi/hoek" "^9.0.0" + +"@humanwhocodes/config-array@^0.13.0": + version "0.13.0" + resolved "https://registry.yarnpkg.com/@humanwhocodes/config-array/-/config-array-0.13.0.tgz#fb907624df3256d04b9aa2df50d7aa97ec648748" + integrity sha512-DZLEEqFWQFiyK6h5YIeynKx7JlvCYWL0cImfSRXZ9l4Sg2efkFGTuFf6vzXjK1cq6IYkU+Eg/JizXw+TD2vRNw== + dependencies: + "@humanwhocodes/object-schema" "^2.0.3" + debug "^4.3.1" + minimatch "^3.0.5" + +"@humanwhocodes/module-importer@^1.0.1": + version "1.0.1" + resolved "https://registry.yarnpkg.com/@humanwhocodes/module-importer/-/module-importer-1.0.1.tgz#af5b2691a22b44be847b0ca81641c5fb6ad0172c" + integrity sha512-bxveV4V8v5Yb4ncFTT3rPSgZBOpCkjfK0y4oVVVJwIuDVBRMDXrPyXRL988i5ap9m9bnyEEjWfm5WkBmtffLfA== + +"@humanwhocodes/object-schema@^2.0.3": + version "2.0.3" + resolved "https://registry.yarnpkg.com/@humanwhocodes/object-schema/-/object-schema-2.0.3.tgz#4a2868d75d6d6963e423bcf90b7fd1be343409d3" + integrity sha512-93zYdMES/c1D69yZiKDBj0V24vqNzB/koF26KPaagAfd3P/4gUlh3Dys5ogAK+Exi9QyzlD8x/08Zt7wIKcDcA== + +"@isaacs/cliui@^8.0.2": + version "8.0.2" + resolved "https://registry.yarnpkg.com/@isaacs/cliui/-/cliui-8.0.2.tgz#b37667b7bc181c168782259bab42474fbf52b550" + integrity sha512-O8jcjabXaleOG9DQ0+ARXWZBTfnP4WNAqzuiJK7ll44AmxGKv/J2M4TPjxjY3znBCfvBXFzucm1twdyFybFqEA== + dependencies: + string-width "^5.1.2" + string-width-cjs "npm:string-width@^4.2.0" + strip-ansi "^7.0.1" + strip-ansi-cjs "npm:strip-ansi@^6.0.1" + wrap-ansi "^8.1.0" + wrap-ansi-cjs "npm:wrap-ansi@^7.0.0" + +"@isaacs/fs-minipass@^4.0.0": + version "4.0.1" + resolved "https://registry.yarnpkg.com/@isaacs/fs-minipass/-/fs-minipass-4.0.1.tgz#2d59ae3ab4b38fb4270bfa23d30f8e2e86c7fe32" + integrity sha512-wgm9Ehl2jpeqP3zw/7mo3kRHFp5MEDhqAdwy1fTGkHAwnkGOVsgpvQhL8B5n1qlb01jV3n/bI0ZfZp5lWA1k4w== + dependencies: + minipass "^7.0.4" + +"@jest/schemas@^29.6.3": + version "29.6.3" + resolved "https://registry.yarnpkg.com/@jest/schemas/-/schemas-29.6.3.tgz#430b5ce8a4e0044a7e3819663305a7b3091c8e03" + integrity sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA== + dependencies: + "@sinclair/typebox" "^0.27.8" + +"@jest/types@^29.6.3": + version "29.6.3" + resolved "https://registry.yarnpkg.com/@jest/types/-/types-29.6.3.tgz#1131f8cf634e7e84c5e77bab12f052af585fba59" + integrity sha512-u3UPsIilWKOM3F9CXtrG8LEJmNxwoCQC/XVj4IKYXvvpx7QIi/Kg1LI5uDmDpKlac62NUtX7eLjRh+jVZcLOzw== + dependencies: + "@jest/schemas" "^29.6.3" + "@types/istanbul-lib-coverage" "^2.0.0" + "@types/istanbul-reports" "^3.0.0" + "@types/node" "*" + "@types/yargs" "^17.0.8" + chalk "^4.0.0" + +"@jridgewell/gen-mapping@^0.3.5": + version "0.3.5" + resolved "https://registry.yarnpkg.com/@jridgewell/gen-mapping/-/gen-mapping-0.3.5.tgz#dcce6aff74bdf6dad1a95802b69b04a2fcb1fb36" + integrity sha512-IzL8ZoEDIBRWEzlCcRhOaCupYyN5gdIK+Q6fbFdPDg6HqX6jpkItn7DFIpW9LQzXG6Df9sA7+OKnq0qlz/GaQg== + dependencies: + "@jridgewell/set-array" "^1.2.1" + "@jridgewell/sourcemap-codec" "^1.4.10" + "@jridgewell/trace-mapping" "^0.3.24" + +"@jridgewell/resolve-uri@^3.1.0": + version "3.1.2" + resolved "https://registry.yarnpkg.com/@jridgewell/resolve-uri/-/resolve-uri-3.1.2.tgz#7a0ee601f60f99a20c7c7c5ff0c80388c1189bd6" + integrity sha512-bRISgCIjP20/tbWSPWMEi54QVPRZExkuD9lJL+UIxUKtwVJA8wW1Trb1jMs1RFXo1CBTNZ/5hpC9QvmKWdopKw== + +"@jridgewell/set-array@^1.2.1": + version "1.2.1" + resolved "https://registry.yarnpkg.com/@jridgewell/set-array/-/set-array-1.2.1.tgz#558fb6472ed16a4c850b889530e6b36438c49280" + integrity sha512-R8gLRTZeyp03ymzP/6Lil/28tGeGEzhx1q2k703KGWRAI1VdvPIXdG70VJc2pAMw3NA6JKL5hhFu1sJX0Mnn/A== + +"@jridgewell/source-map@^0.3.3": + version "0.3.6" + resolved "https://registry.yarnpkg.com/@jridgewell/source-map/-/source-map-0.3.6.tgz#9d71ca886e32502eb9362c9a74a46787c36df81a" + integrity sha512-1ZJTZebgqllO79ue2bm3rIGud/bOe0pP5BjSRCRxxYkEZS8STV7zN84UBbiYu7jy+eCKSnVIUgoWWE/tt+shMQ== + dependencies: + "@jridgewell/gen-mapping" "^0.3.5" + "@jridgewell/trace-mapping" "^0.3.25" + +"@jridgewell/sourcemap-codec@^1.4.10", "@jridgewell/sourcemap-codec@^1.4.14": + version "1.5.0" + resolved "https://registry.yarnpkg.com/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.5.0.tgz#3188bcb273a414b0d215fd22a58540b989b9409a" + integrity sha512-gv3ZRaISU3fjPAgNsriBRqGWQL6quFx04YMPW/zD8XMLsU32mhCCbfbO6KZFLjvYpCZ8zyDEgqsgf+PwPaM7GQ== + +"@jridgewell/trace-mapping@^0.3.18", "@jridgewell/trace-mapping@^0.3.20", "@jridgewell/trace-mapping@^0.3.24", "@jridgewell/trace-mapping@^0.3.25": + version "0.3.25" + resolved "https://registry.yarnpkg.com/@jridgewell/trace-mapping/-/trace-mapping-0.3.25.tgz#15f190e98895f3fc23276ee14bc76b675c2e50f0" + integrity sha512-vNk6aEwybGtawWmy/PzwnGDOjCkLWSD2wqvjGGAgOAwCGWySYXfYoxt00IJkTF+8Lb57DwOb3Aa0o9CApepiYQ== + dependencies: + "@jridgewell/resolve-uri" "^3.1.0" + "@jridgewell/sourcemap-codec" "^1.4.14" + +"@langchain/scripts@^0.0.10": + version "0.0.10" + resolved "https://registry.yarnpkg.com/@langchain/scripts/-/scripts-0.0.10.tgz#3202f524a36c760cf2e6a56ceec71d11c8330f30" + integrity sha512-1ZEJRbFdv2KiH9ldj/89uMxJY1hjZDNMoaYo9Z542kukxwKC99ViK/qwOSbM6w0If22JW14IGyDw0oKS95oxzw== + dependencies: + axios "^1.6.7" + commander "^11.1.0" + glob "^10.3.10" + rollup "^4.5.2" + ts-morph "^21.0.1" + typescript "<5.2.0" + +"@leichtgewicht/ip-codec@^2.0.1": + version "2.0.5" + resolved "https://registry.yarnpkg.com/@leichtgewicht/ip-codec/-/ip-codec-2.0.5.tgz#4fc56c15c580b9adb7dc3c333a134e540b44bfb1" + integrity sha512-Vo+PSpZG2/fmgmiNzYK9qWRh8h/CHrwD0mo1h1DzL4yzHNSfWYujGTYsWGreD000gcgmZ7K4Ys6Tx9TxtsKdDw== + +"@mdx-js/mdx@^3.0.0": + version "3.0.1" + resolved "https://registry.yarnpkg.com/@mdx-js/mdx/-/mdx-3.0.1.tgz#617bd2629ae561fdca1bb88e3badd947f5a82191" + integrity sha512-eIQ4QTrOWyL3LWEe/bu6Taqzq2HQvHcyTMaOrI95P2/LmJE7AsfPfgJGuFLPVqBUE1BC1rik3VIhU+s9u72arA== + dependencies: + "@types/estree" "^1.0.0" + "@types/estree-jsx" "^1.0.0" + "@types/hast" "^3.0.0" + "@types/mdx" "^2.0.0" + collapse-white-space "^2.0.0" + devlop "^1.0.0" + estree-util-build-jsx "^3.0.0" + estree-util-is-identifier-name "^3.0.0" + estree-util-to-js "^2.0.0" + estree-walker "^3.0.0" + hast-util-to-estree "^3.0.0" + hast-util-to-jsx-runtime "^2.0.0" + markdown-extensions "^2.0.0" + periscopic "^3.0.0" + remark-mdx "^3.0.0" + remark-parse "^11.0.0" + remark-rehype "^11.0.0" + source-map "^0.7.0" + unified "^11.0.0" + unist-util-position-from-estree "^2.0.0" + unist-util-stringify-position "^4.0.0" + unist-util-visit "^5.0.0" + vfile "^6.0.0" + +"@mdx-js/react@^3", "@mdx-js/react@^3.0.0": + version "3.0.1" + resolved "https://registry.yarnpkg.com/@mdx-js/react/-/react-3.0.1.tgz#997a19b3a5b783d936c75ae7c47cfe62f967f746" + integrity sha512-9ZrPIU4MGf6et1m1ov3zKf+q9+deetI51zprKB1D/z3NOb+rUxxtEl3mCjW5wTGh6VhRdwPueh1oRzi6ezkA8A== + dependencies: + "@types/mdx" "^2.0.0" + +"@nicolo-ribaudo/eslint-scope-5-internals@5.1.1-v1": + version "5.1.1-v1" + resolved "https://registry.yarnpkg.com/@nicolo-ribaudo/eslint-scope-5-internals/-/eslint-scope-5-internals-5.1.1-v1.tgz#dbf733a965ca47b1973177dc0bb6c889edcfb129" + integrity sha512-54/JRvkLIzzDWshCWfuhadfrfZVPiElY8Fcgmg1HroEly/EDSszzhBAsarCux+D/kOslTRquNzuyGSmUSTTHGg== + dependencies: + eslint-scope "5.1.1" + +"@nodelib/fs.scandir@2.1.5": + version "2.1.5" + resolved "https://registry.yarnpkg.com/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz#7619c2eb21b25483f6d167548b4cfd5a7488c3d5" + integrity sha512-vq24Bq3ym5HEQm2NKCr3yXDwjc7vTsEThRDnkp2DK9p1uqLR+DHurm/NOTo0KG7HYHU7eppKZj3MyqYuMBf62g== + dependencies: + "@nodelib/fs.stat" "2.0.5" + run-parallel "^1.1.9" + +"@nodelib/fs.stat@2.0.5", "@nodelib/fs.stat@^2.0.2": + version "2.0.5" + resolved "https://registry.yarnpkg.com/@nodelib/fs.stat/-/fs.stat-2.0.5.tgz#5bd262af94e9d25bd1e71b05deed44876a222e8b" + integrity sha512-RkhPPp2zrqDAQA/2jNhnztcPAlv64XdhIp7a7454A5ovI7Bukxgt7MX7udwAu3zg1DcpPU0rz3VV1SeaqvY4+A== + +"@nodelib/fs.walk@^1.2.3", "@nodelib/fs.walk@^1.2.8": + version "1.2.8" + resolved "https://registry.yarnpkg.com/@nodelib/fs.walk/-/fs.walk-1.2.8.tgz#e95737e8bb6746ddedf69c556953494f196fe69a" + integrity sha512-oGB+UxlgWcgQkgwo8GcEGwemoTFt3FIO9ababBmaGwXIoBKZ+GTy0pP185beGg7Llih/NSHSV2XAs1lnznocSg== + dependencies: + "@nodelib/fs.scandir" "2.1.5" + fastq "^1.6.0" + +"@pkgjs/parseargs@^0.11.0": + version "0.11.0" + resolved "https://registry.yarnpkg.com/@pkgjs/parseargs/-/parseargs-0.11.0.tgz#a77ea742fab25775145434eb1d2328cf5013ac33" + integrity sha512-+1VkjdD0QBLPodGrJUeqarH8VAIvQODIbwh9XpP5Syisf7YoQgsJKPNFoqqLQlu+VQ/tVSshMR6loPMn8U+dPg== + +"@pnpm/config.env-replace@^1.1.0": + version "1.1.0" + resolved "https://registry.yarnpkg.com/@pnpm/config.env-replace/-/config.env-replace-1.1.0.tgz#ab29da53df41e8948a00f2433f085f54de8b3a4c" + integrity sha512-htyl8TWnKL7K/ESFa1oW2UB5lVDxuF5DpM7tBi6Hu2LNL3mWkIzNLG6N4zoCUP1lCKNxWy/3iu8mS8MvToGd6w== + +"@pnpm/network.ca-file@^1.0.1": + version "1.0.2" + resolved "https://registry.yarnpkg.com/@pnpm/network.ca-file/-/network.ca-file-1.0.2.tgz#2ab05e09c1af0cdf2fcf5035bea1484e222f7983" + integrity sha512-YcPQ8a0jwYU9bTdJDpXjMi7Brhkr1mXsXrUJvjqM2mQDgkRiz8jFaQGOdaLxgjtUfQgZhKy/O3cG/YwmgKaxLA== + dependencies: + graceful-fs "4.2.10" + +"@pnpm/npm-conf@^2.1.0": + version "2.3.1" + resolved "https://registry.yarnpkg.com/@pnpm/npm-conf/-/npm-conf-2.3.1.tgz#bb375a571a0bd63ab0a23bece33033c683e9b6b0" + integrity sha512-c83qWb22rNRuB0UaVCI0uRPNRr8Z0FWnEIvT47jiHAmOIUHbBOg5XvV7pM5x+rKn9HRpjxquDbXYSXr3fAKFcw== + dependencies: + "@pnpm/config.env-replace" "^1.1.0" + "@pnpm/network.ca-file" "^1.0.1" + config-chain "^1.1.11" + +"@polka/url@^1.0.0-next.24": + version "1.0.0-next.28" + resolved "https://registry.yarnpkg.com/@polka/url/-/url-1.0.0-next.28.tgz#d45e01c4a56f143ee69c54dd6b12eade9e270a73" + integrity sha512-8LduaNlMZGwdZ6qWrKlfa+2M4gahzFkprZiAt2TF8uS0qQgBizKXpXURqvTJ4WtmupWxaLqjRb2UCTe72mu+Aw== + +"@rollup/rollup-android-arm-eabi@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-android-arm-eabi/-/rollup-android-arm-eabi-4.22.4.tgz#8b613b9725e8f9479d142970b106b6ae878610d5" + integrity sha512-Fxamp4aEZnfPOcGA8KSNEohV8hX7zVHOemC8jVBoBUHu5zpJK/Eu3uJwt6BMgy9fkvzxDaurgj96F/NiLukF2w== + +"@rollup/rollup-android-arm64@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-android-arm64/-/rollup-android-arm64-4.22.4.tgz#654ca1049189132ff602bfcf8df14c18da1f15fb" + integrity sha512-VXoK5UMrgECLYaMuGuVTOx5kcuap1Jm8g/M83RnCHBKOqvPPmROFJGQaZhGccnsFtfXQ3XYa4/jMCJvZnbJBdA== + +"@rollup/rollup-darwin-arm64@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-darwin-arm64/-/rollup-darwin-arm64-4.22.4.tgz#6d241d099d1518ef0c2205d96b3fa52e0fe1954b" + integrity sha512-xMM9ORBqu81jyMKCDP+SZDhnX2QEVQzTcC6G18KlTQEzWK8r/oNZtKuZaCcHhnsa6fEeOBionoyl5JsAbE/36Q== + +"@rollup/rollup-darwin-x64@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-darwin-x64/-/rollup-darwin-x64-4.22.4.tgz#42bd19d292a57ee11734c980c4650de26b457791" + integrity sha512-aJJyYKQwbHuhTUrjWjxEvGnNNBCnmpHDvrb8JFDbeSH3m2XdHcxDd3jthAzvmoI8w/kSjd2y0udT+4okADsZIw== + +"@rollup/rollup-linux-arm-gnueabihf@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-arm-gnueabihf/-/rollup-linux-arm-gnueabihf-4.22.4.tgz#f23555ee3d8fe941c5c5fd458cd22b65eb1c2232" + integrity sha512-j63YtCIRAzbO+gC2L9dWXRh5BFetsv0j0va0Wi9epXDgU/XUi5dJKo4USTttVyK7fGw2nPWK0PbAvyliz50SCQ== + +"@rollup/rollup-linux-arm-musleabihf@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-arm-musleabihf/-/rollup-linux-arm-musleabihf-4.22.4.tgz#f3bbd1ae2420f5539d40ac1fde2b38da67779baa" + integrity sha512-dJnWUgwWBX1YBRsuKKMOlXCzh2Wu1mlHzv20TpqEsfdZLb3WoJW2kIEsGwLkroYf24IrPAvOT/ZQ2OYMV6vlrg== + +"@rollup/rollup-linux-arm64-gnu@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-arm64-gnu/-/rollup-linux-arm64-gnu-4.22.4.tgz#7abe900120113e08a1f90afb84c7c28774054d15" + integrity sha512-AdPRoNi3NKVLolCN/Sp4F4N1d98c4SBnHMKoLuiG6RXgoZ4sllseuGioszumnPGmPM2O7qaAX/IJdeDU8f26Aw== + +"@rollup/rollup-linux-arm64-musl@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-arm64-musl/-/rollup-linux-arm64-musl-4.22.4.tgz#9e655285c8175cd44f57d6a1e8e5dedfbba1d820" + integrity sha512-Gl0AxBtDg8uoAn5CCqQDMqAx22Wx22pjDOjBdmG0VIWX3qUBHzYmOKh8KXHL4UpogfJ14G4wk16EQogF+v8hmA== + +"@rollup/rollup-linux-powerpc64le-gnu@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-powerpc64le-gnu/-/rollup-linux-powerpc64le-gnu-4.22.4.tgz#9a79ae6c9e9d8fe83d49e2712ecf4302db5bef5e" + integrity sha512-3aVCK9xfWW1oGQpTsYJJPF6bfpWfhbRnhdlyhak2ZiyFLDaayz0EP5j9V1RVLAAxlmWKTDfS9wyRyY3hvhPoOg== + +"@rollup/rollup-linux-riscv64-gnu@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-riscv64-gnu/-/rollup-linux-riscv64-gnu-4.22.4.tgz#67ac70eca4ace8e2942fabca95164e8874ab8128" + integrity sha512-ePYIir6VYnhgv2C5Xe9u+ico4t8sZWXschR6fMgoPUK31yQu7hTEJb7bCqivHECwIClJfKgE7zYsh1qTP3WHUA== + +"@rollup/rollup-linux-s390x-gnu@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-s390x-gnu/-/rollup-linux-s390x-gnu-4.22.4.tgz#9f883a7440f51a22ed7f99e1d070bd84ea5005fc" + integrity sha512-GqFJ9wLlbB9daxhVlrTe61vJtEY99/xB3C8e4ULVsVfflcpmR6c8UZXjtkMA6FhNONhj2eA5Tk9uAVw5orEs4Q== + +"@rollup/rollup-linux-x64-gnu@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-x64-gnu/-/rollup-linux-x64-gnu-4.22.4.tgz#70116ae6c577fe367f58559e2cffb5641a1dd9d0" + integrity sha512-87v0ol2sH9GE3cLQLNEy0K/R0pz1nvg76o8M5nhMR0+Q+BBGLnb35P0fVz4CQxHYXaAOhE8HhlkaZfsdUOlHwg== + +"@rollup/rollup-linux-x64-musl@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-linux-x64-musl/-/rollup-linux-x64-musl-4.22.4.tgz#f473f88219feb07b0b98b53a7923be716d1d182f" + integrity sha512-UV6FZMUgePDZrFjrNGIWzDo/vABebuXBhJEqrHxrGiU6HikPy0Z3LfdtciIttEUQfuDdCn8fqh7wiFJjCNwO+g== + +"@rollup/rollup-win32-arm64-msvc@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-win32-arm64-msvc/-/rollup-win32-arm64-msvc-4.22.4.tgz#4349482d17f5d1c58604d1c8900540d676f420e0" + integrity sha512-BjI+NVVEGAXjGWYHz/vv0pBqfGoUH0IGZ0cICTn7kB9PyjrATSkX+8WkguNjWoj2qSr1im/+tTGRaY+4/PdcQw== + +"@rollup/rollup-win32-ia32-msvc@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-win32-ia32-msvc/-/rollup-win32-ia32-msvc-4.22.4.tgz#a6fc39a15db618040ec3c2a24c1e26cb5f4d7422" + integrity sha512-SiWG/1TuUdPvYmzmYnmd3IEifzR61Tragkbx9D3+R8mzQqDBz8v+BvZNDlkiTtI9T15KYZhP0ehn3Dld4n9J5g== + +"@rollup/rollup-win32-x64-msvc@4.22.4": + version "4.22.4" + resolved "https://registry.yarnpkg.com/@rollup/rollup-win32-x64-msvc/-/rollup-win32-x64-msvc-4.22.4.tgz#3dd5d53e900df2a40841882c02e56f866c04d202" + integrity sha512-j8pPKp53/lq9lMXN57S8cFz0MynJk8OWNuUnXct/9KCpKU7DgU3bYMJhwWmcqC0UU29p8Lr0/7KEVcaM6bf47Q== + +"@rtsao/scc@^1.1.0": + version "1.1.0" + resolved "https://registry.yarnpkg.com/@rtsao/scc/-/scc-1.1.0.tgz#927dd2fae9bc3361403ac2c7a00c32ddce9ad7e8" + integrity sha512-zt6OdqaDoOnJ1ZYsCYGt9YmWzDXl4vQdKTyJev62gFhRGKdx7mcT54V9KIjg+d2wi9EXsPvAPKe7i7WjfVWB8g== + +"@sideway/address@^4.1.5": + version "4.1.5" + resolved "https://registry.yarnpkg.com/@sideway/address/-/address-4.1.5.tgz#4bc149a0076623ced99ca8208ba780d65a99b9d5" + integrity sha512-IqO/DUQHUkPeixNQ8n0JA6102hT9CmaljNTPmQ1u8MEhBo/R4Q8eKLN/vGZxuebwOroDB4cbpjheD4+/sKFK4Q== + dependencies: + "@hapi/hoek" "^9.0.0" + +"@sideway/formula@^3.0.1": + version "3.0.1" + resolved "https://registry.yarnpkg.com/@sideway/formula/-/formula-3.0.1.tgz#80fcbcbaf7ce031e0ef2dd29b1bfc7c3f583611f" + integrity sha512-/poHZJJVjx3L+zVD6g9KgHfYnb443oi7wLu/XKojDviHy6HOEOA6z1Trk5aR1dGcmPenJEgb2sK2I80LeS3MIg== + +"@sideway/pinpoint@^2.0.0": + version "2.0.0" + resolved "https://registry.yarnpkg.com/@sideway/pinpoint/-/pinpoint-2.0.0.tgz#cff8ffadc372ad29fd3f78277aeb29e632cc70df" + integrity sha512-RNiOoTPkptFtSVzQevY/yWtZwf/RxyVnPy/OcA9HBM3MlGDnBEYL5B41H0MTn0Uec8Hi+2qUtTfG2WWZBmMejQ== + +"@sinclair/typebox@^0.27.8": + version "0.27.8" + resolved "https://registry.yarnpkg.com/@sinclair/typebox/-/typebox-0.27.8.tgz#6667fac16c436b5434a387a34dedb013198f6e6e" + integrity sha512-+Fj43pSMwJs4KRrH/938Uf+uAELIgVBmQzg/q1YG10djyfA3TnrU8N8XzqCh/okZdszqBQTZf96idMfE5lnwTA== + +"@sindresorhus/is@^4.6.0": + version "4.6.0" + resolved "https://registry.yarnpkg.com/@sindresorhus/is/-/is-4.6.0.tgz#3c7c9c46e678feefe7a2e5bb609d3dbd665ffb3f" + integrity sha512-t09vSN3MdfsyCHoFcTRCH/iUtG7OJ0CsjzB8cjAmKc/va/kIgeDI/TxsigdncE/4be734m0cvIYwNaV4i2XqAw== + +"@sindresorhus/is@^5.2.0": + version "5.6.0" + resolved "https://registry.yarnpkg.com/@sindresorhus/is/-/is-5.6.0.tgz#41dd6093d34652cddb5d5bdeee04eafc33826668" + integrity sha512-TV7t8GKYaJWsn00tFDqBw8+Uqmr8A0fRU1tvTQhyZzGv0sJCGRQL3JGMI3ucuKo3XIZdUP+Lx7/gh2t3lewy7g== + +"@slorber/remark-comment@^1.0.0": + version "1.0.0" + resolved "https://registry.yarnpkg.com/@slorber/remark-comment/-/remark-comment-1.0.0.tgz#2a020b3f4579c89dec0361673206c28d67e08f5a" + integrity sha512-RCE24n7jsOj1M0UPvIQCHTe7fI0sFL4S2nwKVWwHyVr/wI/H8GosgsJGyhnsZoGFnD/P2hLf1mSbrrgSLN93NA== + dependencies: + micromark-factory-space "^1.0.0" + micromark-util-character "^1.1.0" + micromark-util-symbol "^1.0.1" + +"@supabase/auth-js@2.65.0": + version "2.65.0" + resolved "https://registry.yarnpkg.com/@supabase/auth-js/-/auth-js-2.65.0.tgz#e345c492f8cbc31cd6289968eae0e349ff0f39e9" + integrity sha512-+wboHfZufAE2Y612OsKeVP4rVOeGZzzMLD/Ac3HrTQkkY4qXNjI6Af9gtmxwccE5nFvTiF114FEbIQ1hRq5uUw== + dependencies: + "@supabase/node-fetch" "^2.6.14" + +"@supabase/functions-js@2.4.1": + version "2.4.1" + resolved "https://registry.yarnpkg.com/@supabase/functions-js/-/functions-js-2.4.1.tgz#373e75f8d3453bacd71fb64f88d7a341d7b53ad7" + integrity sha512-8sZ2ibwHlf+WkHDUZJUXqqmPvWQ3UHN0W30behOJngVh/qHHekhJLCFbh0AjkE9/FqqXtf9eoVvmYgfCLk5tNA== + dependencies: + "@supabase/node-fetch" "^2.6.14" + +"@supabase/node-fetch@2.6.15", "@supabase/node-fetch@^2.6.14": + version "2.6.15" + resolved "https://registry.yarnpkg.com/@supabase/node-fetch/-/node-fetch-2.6.15.tgz#731271430e276983191930816303c44159e7226c" + integrity sha512-1ibVeYUacxWYi9i0cf5efil6adJ9WRyZBLivgjs+AUpewx1F3xPi7gLgaASI2SmIQxPoCEjAsLAzKPgMJVgOUQ== + dependencies: + whatwg-url "^5.0.0" + +"@supabase/postgrest-js@1.16.1": + version "1.16.1" + resolved "https://registry.yarnpkg.com/@supabase/postgrest-js/-/postgrest-js-1.16.1.tgz#68dfa0581d8ae4296378cb8815bbde3f4602aef5" + integrity sha512-EOSEZFm5pPuCPGCmLF1VOCS78DfkSz600PBuvBND/IZmMciJ1pmsS3ss6TkB6UkuvTybYiBh7gKOYyxoEO3USA== + dependencies: + "@supabase/node-fetch" "^2.6.14" + +"@supabase/realtime-js@2.10.2": + version "2.10.2" + resolved "https://registry.yarnpkg.com/@supabase/realtime-js/-/realtime-js-2.10.2.tgz#c2b42d17d723d2d2a9146cfad61dc3df1ce3127e" + integrity sha512-qyCQaNg90HmJstsvr2aJNxK2zgoKh9ZZA8oqb7UT2LCh3mj9zpa3Iwu167AuyNxsxrUE8eEJ2yH6wLCij4EApA== + dependencies: + "@supabase/node-fetch" "^2.6.14" + "@types/phoenix" "^1.5.4" + "@types/ws" "^8.5.10" + ws "^8.14.2" + +"@supabase/storage-js@2.7.0": + version "2.7.0" + resolved "https://registry.yarnpkg.com/@supabase/storage-js/-/storage-js-2.7.0.tgz#9ff322d2c3b141087aa34115cf14205e4980ce75" + integrity sha512-iZenEdO6Mx9iTR6T7wC7sk6KKsoDPLq8rdu5VRy7+JiT1i8fnqfcOr6mfF2Eaqky9VQzhP8zZKQYjzozB65Rig== + dependencies: + "@supabase/node-fetch" "^2.6.14" + +"@supabase/supabase-js@^2.39.7": + version "2.45.4" + resolved "https://registry.yarnpkg.com/@supabase/supabase-js/-/supabase-js-2.45.4.tgz#0bcf8722f1732dfe3e4c5190d23e3938dcc689c3" + integrity sha512-E5p8/zOLaQ3a462MZnmnz03CrduA5ySH9hZyL03Y+QZLIOO4/Gs8Rdy4ZCKDHsN7x0xdanVEWWFN3pJFQr9/hg== + dependencies: + "@supabase/auth-js" "2.65.0" + "@supabase/functions-js" "2.4.1" + "@supabase/node-fetch" "2.6.15" + "@supabase/postgrest-js" "1.16.1" + "@supabase/realtime-js" "2.10.2" + "@supabase/storage-js" "2.7.0" + +"@svgr/babel-plugin-add-jsx-attribute@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-add-jsx-attribute/-/babel-plugin-add-jsx-attribute-8.0.0.tgz#4001f5d5dd87fa13303e36ee106e3ff3a7eb8b22" + integrity sha512-b9MIk7yhdS1pMCZM8VeNfUlSKVRhsHZNMl5O9SfaX0l0t5wjdgu4IDzGB8bpnGBBOjGST3rRFVsaaEtI4W6f7g== + +"@svgr/babel-plugin-remove-jsx-attribute@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-remove-jsx-attribute/-/babel-plugin-remove-jsx-attribute-8.0.0.tgz#69177f7937233caca3a1afb051906698f2f59186" + integrity sha512-BcCkm/STipKvbCl6b7QFrMh/vx00vIP63k2eM66MfHJzPr6O2U0jYEViXkHJWqXqQYjdeA9cuCl5KWmlwjDvbA== + +"@svgr/babel-plugin-remove-jsx-empty-expression@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-remove-jsx-empty-expression/-/babel-plugin-remove-jsx-empty-expression-8.0.0.tgz#c2c48104cfd7dcd557f373b70a56e9e3bdae1d44" + integrity sha512-5BcGCBfBxB5+XSDSWnhTThfI9jcO5f0Ai2V24gZpG+wXF14BzwxxdDb4g6trdOux0rhibGs385BeFMSmxtS3uA== + +"@svgr/babel-plugin-replace-jsx-attribute-value@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-replace-jsx-attribute-value/-/babel-plugin-replace-jsx-attribute-value-8.0.0.tgz#8fbb6b2e91fa26ac5d4aa25c6b6e4f20f9c0ae27" + integrity sha512-KVQ+PtIjb1BuYT3ht8M5KbzWBhdAjjUPdlMtpuw/VjT8coTrItWX6Qafl9+ji831JaJcu6PJNKCV0bp01lBNzQ== + +"@svgr/babel-plugin-svg-dynamic-title@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-svg-dynamic-title/-/babel-plugin-svg-dynamic-title-8.0.0.tgz#1d5ba1d281363fc0f2f29a60d6d936f9bbc657b0" + integrity sha512-omNiKqwjNmOQJ2v6ge4SErBbkooV2aAWwaPFs2vUY7p7GhVkzRkJ00kILXQvRhA6miHnNpXv7MRnnSjdRjK8og== + +"@svgr/babel-plugin-svg-em-dimensions@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-svg-em-dimensions/-/babel-plugin-svg-em-dimensions-8.0.0.tgz#35e08df300ea8b1d41cb8f62309c241b0369e501" + integrity sha512-mURHYnu6Iw3UBTbhGwE/vsngtCIbHE43xCRK7kCw4t01xyGqb2Pd+WXekRRoFOBIY29ZoOhUCTEweDMdrjfi9g== + +"@svgr/babel-plugin-transform-react-native-svg@8.1.0": + version "8.1.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-transform-react-native-svg/-/babel-plugin-transform-react-native-svg-8.1.0.tgz#90a8b63998b688b284f255c6a5248abd5b28d754" + integrity sha512-Tx8T58CHo+7nwJ+EhUwx3LfdNSG9R2OKfaIXXs5soiy5HtgoAEkDay9LIimLOcG8dJQH1wPZp/cnAv6S9CrR1Q== + +"@svgr/babel-plugin-transform-svg-component@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-plugin-transform-svg-component/-/babel-plugin-transform-svg-component-8.0.0.tgz#013b4bfca88779711f0ed2739f3f7efcefcf4f7e" + integrity sha512-DFx8xa3cZXTdb/k3kfPeaixecQLgKh5NVBMwD0AQxOzcZawK4oo1Jh9LbrcACUivsCA7TLG8eeWgrDXjTMhRmw== + +"@svgr/babel-preset@8.1.0": + version "8.1.0" + resolved "https://registry.yarnpkg.com/@svgr/babel-preset/-/babel-preset-8.1.0.tgz#0e87119aecdf1c424840b9d4565b7137cabf9ece" + integrity sha512-7EYDbHE7MxHpv4sxvnVPngw5fuR6pw79SkcrILHJ/iMpuKySNCl5W1qcwPEpU+LgyRXOaAFgH0KhwD18wwg6ug== + dependencies: + "@svgr/babel-plugin-add-jsx-attribute" "8.0.0" + "@svgr/babel-plugin-remove-jsx-attribute" "8.0.0" + "@svgr/babel-plugin-remove-jsx-empty-expression" "8.0.0" + "@svgr/babel-plugin-replace-jsx-attribute-value" "8.0.0" + "@svgr/babel-plugin-svg-dynamic-title" "8.0.0" + "@svgr/babel-plugin-svg-em-dimensions" "8.0.0" + "@svgr/babel-plugin-transform-react-native-svg" "8.1.0" + "@svgr/babel-plugin-transform-svg-component" "8.0.0" + +"@svgr/core@8.1.0": + version "8.1.0" + resolved "https://registry.yarnpkg.com/@svgr/core/-/core-8.1.0.tgz#41146f9b40b1a10beaf5cc4f361a16a3c1885e88" + integrity sha512-8QqtOQT5ACVlmsvKOJNEaWmRPmcojMOzCz4Hs2BGG/toAp/K38LcsMRyLp349glq5AzJbCEeimEoxaX6v/fLrA== + dependencies: + "@babel/core" "^7.21.3" + "@svgr/babel-preset" "8.1.0" + camelcase "^6.2.0" + cosmiconfig "^8.1.3" + snake-case "^3.0.4" + +"@svgr/hast-util-to-babel-ast@8.0.0": + version "8.0.0" + resolved "https://registry.yarnpkg.com/@svgr/hast-util-to-babel-ast/-/hast-util-to-babel-ast-8.0.0.tgz#6952fd9ce0f470e1aded293b792a2705faf4ffd4" + integrity sha512-EbDKwO9GpfWP4jN9sGdYwPBU0kdomaPIL2Eu4YwmgP+sJeXT+L7bMwJUBnhzfH8Q2qMBqZ4fJwpCyYsAN3mt2Q== + dependencies: + "@babel/types" "^7.21.3" + entities "^4.4.0" + +"@svgr/plugin-jsx@8.1.0": + version "8.1.0" + resolved "https://registry.yarnpkg.com/@svgr/plugin-jsx/-/plugin-jsx-8.1.0.tgz#96969f04a24b58b174ee4cd974c60475acbd6928" + integrity sha512-0xiIyBsLlr8quN+WyuxooNW9RJ0Dpr8uOnH/xrCVO8GLUcwHISwj1AG0k+LFzteTkAA0GbX0kj9q6Dk70PTiPA== + dependencies: + "@babel/core" "^7.21.3" + "@svgr/babel-preset" "8.1.0" + "@svgr/hast-util-to-babel-ast" "8.0.0" + svg-parser "^2.0.4" + +"@svgr/plugin-svgo@8.1.0": + version "8.1.0" + resolved "https://registry.yarnpkg.com/@svgr/plugin-svgo/-/plugin-svgo-8.1.0.tgz#b115b7b967b564f89ac58feae89b88c3decd0f00" + integrity sha512-Ywtl837OGO9pTLIN/onoWLmDQ4zFUycI1g76vuKGEz6evR/ZTJlJuz3G/fIkb6OVBJ2g0o6CGJzaEjfmEo3AHA== + dependencies: + cosmiconfig "^8.1.3" + deepmerge "^4.3.1" + svgo "^3.0.2" + +"@svgr/webpack@^8.1.0": + version "8.1.0" + resolved "https://registry.yarnpkg.com/@svgr/webpack/-/webpack-8.1.0.tgz#16f1b5346f102f89fda6ec7338b96a701d8be0c2" + integrity sha512-LnhVjMWyMQV9ZmeEy26maJk+8HTIbd59cH4F2MJ439k9DqejRisfFNGAPvRYlKETuh9LrImlS8aKsBgKjMA8WA== + dependencies: + "@babel/core" "^7.21.3" + "@babel/plugin-transform-react-constant-elements" "^7.21.3" + "@babel/preset-env" "^7.20.2" + "@babel/preset-react" "^7.18.6" + "@babel/preset-typescript" "^7.21.0" + "@svgr/core" "8.1.0" + "@svgr/plugin-jsx" "8.1.0" + "@svgr/plugin-svgo" "8.1.0" + +"@szmarczak/http-timer@^5.0.1": + version "5.0.1" + resolved "https://registry.yarnpkg.com/@szmarczak/http-timer/-/http-timer-5.0.1.tgz#c7c1bf1141cdd4751b0399c8fc7b8b664cd5be3a" + integrity sha512-+PmQX0PiAYPMeVYe237LJAYvOMYW1j2rH5YROyS3b4CTVJum34HfRvKvAzozHAQG0TnHNdUfY9nCeUyRAs//cw== + dependencies: + defer-to-connect "^2.0.1" + +"@trysound/sax@0.2.0": + version "0.2.0" + resolved "https://registry.yarnpkg.com/@trysound/sax/-/sax-0.2.0.tgz#cccaab758af56761eb7bf37af6f03f326dd798ad" + integrity sha512-L7z9BgrNEcYyUYtF+HaEfiS5ebkh9jXqbszz7pC0hRBPaatV0XjSD3+eHrpqFemQfgwiFF0QPIarnIihIDn7OA== + +"@ts-morph/common@~0.22.0": + version "0.22.0" + resolved "https://registry.yarnpkg.com/@ts-morph/common/-/common-0.22.0.tgz#8951d451622a26472fbc3a227d6c3a90e687a683" + integrity sha512-HqNBuV/oIlMKdkLshXd1zKBqNQCsuPEsgQOkfFQ/eUKjRlwndXW1AjN9LVkBEIukm00gGXSRmfkl0Wv5VXLnlw== + dependencies: + fast-glob "^3.3.2" + minimatch "^9.0.3" + mkdirp "^3.0.1" + path-browserify "^1.0.1" + +"@types/acorn@^4.0.0": + version "4.0.6" + resolved "https://registry.yarnpkg.com/@types/acorn/-/acorn-4.0.6.tgz#d61ca5480300ac41a7d973dd5b84d0a591154a22" + integrity sha512-veQTnWP+1D/xbxVrPC3zHnCZRjSrKfhbMUlEA43iMZLu7EsnTtkJklIuwrCPbOi8YkvDQAiW05VQQFvvz9oieQ== + dependencies: + "@types/estree" "*" + +"@types/body-parser@*": + version "1.19.5" + resolved "https://registry.yarnpkg.com/@types/body-parser/-/body-parser-1.19.5.tgz#04ce9a3b677dc8bd681a17da1ab9835dc9d3ede4" + integrity sha512-fB3Zu92ucau0iQ0JMCFQE7b/dv8Ot07NI3KaZIkIUNXq82k4eBAqUaneXfleGY9JWskeS9y+u0nXMyspcuQrCg== + dependencies: + "@types/connect" "*" + "@types/node" "*" + +"@types/bonjour@^3.5.9": + version "3.5.13" + resolved "https://registry.yarnpkg.com/@types/bonjour/-/bonjour-3.5.13.tgz#adf90ce1a105e81dd1f9c61fdc5afda1bfb92956" + integrity sha512-z9fJ5Im06zvUL548KvYNecEVlA7cVDkGUi6kZusb04mpyEFKCIZJvloCcmpmLaIahDpOQGHaHmG6imtPMmPXGQ== + dependencies: + "@types/node" "*" + +"@types/connect-history-api-fallback@^1.3.5": + version "1.5.4" + resolved "https://registry.yarnpkg.com/@types/connect-history-api-fallback/-/connect-history-api-fallback-1.5.4.tgz#7de71645a103056b48ac3ce07b3520b819c1d5b3" + integrity sha512-n6Cr2xS1h4uAulPRdlw6Jl6s1oG8KrVilPN2yUITEs+K48EzMJJ3W1xy8K5eWuFvjp3R74AOIGSmp2UfBJ8HFw== + dependencies: + "@types/express-serve-static-core" "*" + "@types/node" "*" + +"@types/connect@*": + version "3.4.38" + resolved "https://registry.yarnpkg.com/@types/connect/-/connect-3.4.38.tgz#5ba7f3bc4fbbdeaff8dded952e5ff2cc53f8d858" + integrity sha512-K6uROf1LD88uDQqJCktA4yzL1YYAK6NgfsI0v/mTgyPKWsX1CnJ0XPSDhViejru1GcRkLWb8RlzFYJRqGUbaug== + dependencies: + "@types/node" "*" + +"@types/d3-scale-chromatic@^3.0.0": + version "3.0.3" + resolved "https://registry.yarnpkg.com/@types/d3-scale-chromatic/-/d3-scale-chromatic-3.0.3.tgz#fc0db9c10e789c351f4c42d96f31f2e4df8f5644" + integrity sha512-laXM4+1o5ImZv3RpFAsTRn3TEkzqkytiOY0Dz0sq5cnd1dtNlk6sHLon4OvqaiJb28T0S/TdsBI3Sjsy+keJrw== + +"@types/d3-scale@^4.0.3": + version "4.0.8" + resolved "https://registry.yarnpkg.com/@types/d3-scale/-/d3-scale-4.0.8.tgz#d409b5f9dcf63074464bf8ddfb8ee5a1f95945bb" + integrity sha512-gkK1VVTr5iNiYJ7vWDI+yUFFlszhNMtVeneJ6lUTKPjprsvLLI9/tgEGiXJOnlINJA8FyA88gfnQsHbybVZrYQ== + dependencies: + "@types/d3-time" "*" + +"@types/d3-time@*": + version "3.0.3" + resolved "https://registry.yarnpkg.com/@types/d3-time/-/d3-time-3.0.3.tgz#3c186bbd9d12b9d84253b6be6487ca56b54f88be" + integrity sha512-2p6olUZ4w3s+07q3Tm2dbiMZy5pCDfYwtLXXHUnVzXgQlZ/OyPtUz6OL382BkOuGlLXqfT+wqv8Fw2v8/0geBw== + +"@types/debug@^4.0.0": + version "4.1.12" + resolved "https://registry.yarnpkg.com/@types/debug/-/debug-4.1.12.tgz#a155f21690871953410df4b6b6f53187f0500917" + integrity sha512-vIChWdVG3LG1SMxEvI/AK+FWJthlrqlTu7fbrlywTkkaONwk/UAGaULXRlf8vkzFBLVm0zkMdCquhL5aOjhXPQ== + dependencies: + "@types/ms" "*" + +"@types/dompurify@^3.0.5": + version "3.0.5" + resolved "https://registry.yarnpkg.com/@types/dompurify/-/dompurify-3.0.5.tgz#02069a2fcb89a163bacf1a788f73cb415dd75cb7" + integrity sha512-1Wg0g3BtQF7sSb27fJQAKck1HECM6zV1EB66j8JH9i3LCjYabJa0FSdiSgsD5K/RbrsR0SiraKacLB+T8ZVYAg== + dependencies: + "@types/trusted-types" "*" + +"@types/estree-jsx@^1.0.0": + version "1.0.5" + resolved "https://registry.yarnpkg.com/@types/estree-jsx/-/estree-jsx-1.0.5.tgz#858a88ea20f34fe65111f005a689fa1ebf70dc18" + integrity sha512-52CcUVNFyfb1A2ALocQw/Dd1BQFNmSdkuC3BkZ6iqhdMfQz7JWOFRuJFloOzjk+6WijU56m9oKXFAXc7o3Towg== + dependencies: + "@types/estree" "*" + +"@types/estree@*", "@types/estree@^1.0.0", "@types/estree@^1.0.5": + version "1.0.6" + resolved "https://registry.yarnpkg.com/@types/estree/-/estree-1.0.6.tgz#628effeeae2064a1b4e79f78e81d87b7e5fc7b50" + integrity sha512-AYnb1nQyY49te+VRAVgmzfcgjYS91mY5P0TKUDCLEM+gNnA+3T6rWITXRLYCpahpqSQbN5cE+gHpnPyXjHWxcw== + +"@types/estree@1.0.5": + version "1.0.5" + resolved "https://registry.yarnpkg.com/@types/estree/-/estree-1.0.5.tgz#a6ce3e556e00fd9895dd872dd172ad0d4bd687f4" + integrity sha512-/kYRxGDLWzHOB7q+wtSUQlFrtcdUccpfy+X+9iMBpHK8QLLhx2wIPYuS5DYtR9Wa/YlZAbIovy7qVdB1Aq6Lyw== + +"@types/express-serve-static-core@*", "@types/express-serve-static-core@^4.17.33": + version "4.19.5" + resolved "https://registry.yarnpkg.com/@types/express-serve-static-core/-/express-serve-static-core-4.19.5.tgz#218064e321126fcf9048d1ca25dd2465da55d9c6" + integrity sha512-y6W03tvrACO72aijJ5uF02FRq5cgDR9lUxddQ8vyF+GvmjJQqbzDcJngEjURc+ZsG31VI3hODNZJ2URj86pzmg== + dependencies: + "@types/node" "*" + "@types/qs" "*" + "@types/range-parser" "*" + "@types/send" "*" + +"@types/express@*", "@types/express@^4.17.13": + version "4.17.21" + resolved "https://registry.yarnpkg.com/@types/express/-/express-4.17.21.tgz#c26d4a151e60efe0084b23dc3369ebc631ed192d" + integrity sha512-ejlPM315qwLpaQlQDTjPdsUFSc6ZsP4AN6AlWnogPjQ7CVi7PYF3YVz+CY3jE2pwYf7E/7HlDAN0rV2GxTG0HQ== + dependencies: + "@types/body-parser" "*" + "@types/express-serve-static-core" "^4.17.33" + "@types/qs" "*" + "@types/serve-static" "*" + +"@types/gtag.js@^0.0.12": + version "0.0.12" + resolved "https://registry.yarnpkg.com/@types/gtag.js/-/gtag.js-0.0.12.tgz#095122edca896689bdfcdd73b057e23064d23572" + integrity sha512-YQV9bUsemkzG81Ea295/nF/5GijnD2Af7QhEofh7xu+kvCN6RdodgNwwGWXB5GMI3NoyvQo0odNctoH/qLMIpg== + +"@types/hast@^3.0.0": + version "3.0.4" + resolved "https://registry.yarnpkg.com/@types/hast/-/hast-3.0.4.tgz#1d6b39993b82cea6ad783945b0508c25903e15aa" + integrity sha512-WPs+bbQw5aCj+x6laNGWLH3wviHtoCv/P3+otBhbOhJgG8qtpdAMlTCxLtsTWA7LH1Oh/bFCHsBn0TPS5m30EQ== + dependencies: + "@types/unist" "*" + +"@types/history@^4.7.11": + version "4.7.11" + resolved "https://registry.yarnpkg.com/@types/history/-/history-4.7.11.tgz#56588b17ae8f50c53983a524fc3cc47437969d64" + integrity sha512-qjDJRrmvBMiTx+jyLxvLfJU7UznFuokDv4f3WRuriHKERccVpFU+8XMQUAbDzoiJCsmexxRExQeMwwCdamSKDA== + +"@types/html-minifier-terser@^6.0.0": + version "6.1.0" + resolved "https://registry.yarnpkg.com/@types/html-minifier-terser/-/html-minifier-terser-6.1.0.tgz#4fc33a00c1d0c16987b1a20cf92d20614c55ac35" + integrity sha512-oh/6byDPnL1zeNXFrDXFLyZjkr1MsBG667IM792caf1L2UPOOMf65NFzjUH/ltyfwjAGfs1rsX1eftK0jC/KIg== + +"@types/http-cache-semantics@^4.0.2": + version "4.0.4" + resolved "https://registry.yarnpkg.com/@types/http-cache-semantics/-/http-cache-semantics-4.0.4.tgz#b979ebad3919799c979b17c72621c0bc0a31c6c4" + integrity sha512-1m0bIFVc7eJWyve9S0RnuRgcQqF/Xd5QsUZAZeQFr1Q3/p9JWoQQEqmVy+DPTNpGXwhgIetAoYF8JSc33q29QA== + +"@types/http-errors@*": + version "2.0.4" + resolved "https://registry.yarnpkg.com/@types/http-errors/-/http-errors-2.0.4.tgz#7eb47726c391b7345a6ec35ad7f4de469cf5ba4f" + integrity sha512-D0CFMMtydbJAegzOyHjtiKPLlvnm3iTZyZRSZoLq2mRhDdmLfIWOCYPfQJ4cu2erKghU++QvjcUjp/5h7hESpA== + +"@types/http-proxy@^1.17.8": + version "1.17.15" + resolved "https://registry.yarnpkg.com/@types/http-proxy/-/http-proxy-1.17.15.tgz#12118141ce9775a6499ecb4c01d02f90fc839d36" + integrity sha512-25g5atgiVNTIv0LBDTg1H74Hvayx0ajtJPLLcYE3whFv75J0pWNtOBzaXJQgDTmrX1bx5U9YC2w/n65BN1HwRQ== + dependencies: + "@types/node" "*" + +"@types/istanbul-lib-coverage@*", "@types/istanbul-lib-coverage@^2.0.0": + version "2.0.6" + resolved "https://registry.yarnpkg.com/@types/istanbul-lib-coverage/-/istanbul-lib-coverage-2.0.6.tgz#7739c232a1fee9b4d3ce8985f314c0c6d33549d7" + integrity sha512-2QF/t/auWm0lsy8XtKVPG19v3sSOQlJe/YHZgfjb/KBBHOGSV+J2q/S671rcq9uTBrLAXmZpqJiaQbMT+zNU1w== + +"@types/istanbul-lib-report@*": + version "3.0.3" + resolved "https://registry.yarnpkg.com/@types/istanbul-lib-report/-/istanbul-lib-report-3.0.3.tgz#53047614ae72e19fc0401d872de3ae2b4ce350bf" + integrity sha512-NQn7AHQnk/RSLOxrBbGyJM/aVQ+pjj5HCgasFxc0K/KhoATfQ/47AyUl15I2yBUpihjmas+a+VJBOqecrFH+uA== + dependencies: + "@types/istanbul-lib-coverage" "*" + +"@types/istanbul-reports@^3.0.0": + version "3.0.4" + resolved "https://registry.yarnpkg.com/@types/istanbul-reports/-/istanbul-reports-3.0.4.tgz#0f03e3d2f670fbdac586e34b433783070cc16f54" + integrity sha512-pk2B1NWalF9toCRu6gjBzR69syFjP4Od8WRAX+0mmf9lAjCRicLOWc+ZrxZHx/0XRjotgkF9t6iaMJ+aXcOdZQ== + dependencies: + "@types/istanbul-lib-report" "*" + +"@types/json-schema@^7.0.4", "@types/json-schema@^7.0.5", "@types/json-schema@^7.0.8", "@types/json-schema@^7.0.9": + version "7.0.15" + resolved "https://registry.yarnpkg.com/@types/json-schema/-/json-schema-7.0.15.tgz#596a1747233694d50f6ad8a7869fcb6f56cf5841" + integrity sha512-5+fP8P8MFNC+AyZCDxrB2pkZFPGzqQWUzpSeuuVLvm8VMcorNYavBqoFcxK8bQz4Qsbn4oUEEem4wDLfcysGHA== + +"@types/json5@^0.0.29": + version "0.0.29" + resolved "https://registry.yarnpkg.com/@types/json5/-/json5-0.0.29.tgz#ee28707ae94e11d2b827bcbe5270bcea7f3e71ee" + integrity sha512-dRLjCWHYg4oaA77cxO64oO+7JwCwnIzkZPdrrC71jQmQtlhM556pwKo5bUzqvZndkVbeFLIIi+9TC40JNF5hNQ== + +"@types/mdast@^3.0.0": + version "3.0.15" + resolved "https://registry.yarnpkg.com/@types/mdast/-/mdast-3.0.15.tgz#49c524a263f30ffa28b71ae282f813ed000ab9f5" + integrity sha512-LnwD+mUEfxWMa1QpDraczIn6k0Ee3SMicuYSSzS6ZYl2gKS09EClnJYGd8Du6rfc5r/GZEk5o1mRb8TaTj03sQ== + dependencies: + "@types/unist" "^2" + +"@types/mdast@^4.0.0", "@types/mdast@^4.0.2": + version "4.0.4" + resolved "https://registry.yarnpkg.com/@types/mdast/-/mdast-4.0.4.tgz#7ccf72edd2f1aa7dd3437e180c64373585804dd6" + integrity sha512-kGaNbPh1k7AFzgpud/gMdvIm5xuECykRR+JnWKQno9TAXVa6WIVCGTPvYGekIDL4uwCZQSYbUxNBSb1aUo79oA== + dependencies: + "@types/unist" "*" + +"@types/mdx@^2.0.0": + version "2.0.13" + resolved "https://registry.yarnpkg.com/@types/mdx/-/mdx-2.0.13.tgz#68f6877043d377092890ff5b298152b0a21671bd" + integrity sha512-+OWZQfAYyio6YkJb3HLxDrvnx6SWWDbC0zVPfBRzUk0/nqoDyf6dNxQi3eArPe8rJ473nobTMQ/8Zk+LxJ+Yuw== + +"@types/mime@^1": + version "1.3.5" + resolved "https://registry.yarnpkg.com/@types/mime/-/mime-1.3.5.tgz#1ef302e01cf7d2b5a0fa526790c9123bf1d06690" + integrity sha512-/pyBZWSLD2n0dcHE3hq8s8ZvcETHtEuF+3E7XVt0Ig2nvsVQXdghHVcEkIWjy9A0wKfTn97a/PSDYohKIlnP/w== + +"@types/ms@*": + version "0.7.34" + resolved "https://registry.yarnpkg.com/@types/ms/-/ms-0.7.34.tgz#10964ba0dee6ac4cd462e2795b6bebd407303433" + integrity sha512-nG96G3Wp6acyAgJqGasjODb+acrI7KltPiRxzHPXnP3NgI28bpQDRv53olbqGXbfcgF5aiiHmO3xpwEpS5Ld9g== + +"@types/node-forge@^1.3.0": + version "1.3.11" + resolved "https://registry.yarnpkg.com/@types/node-forge/-/node-forge-1.3.11.tgz#0972ea538ddb0f4d9c2fa0ec5db5724773a604da" + integrity sha512-FQx220y22OKNTqaByeBGqHWYz4cl94tpcxeFdvBo3wjG6XPBuZ0BNgNZRV5J5TFmmcsJ4IzsLkmGRiQbnYsBEQ== + dependencies: + "@types/node" "*" + +"@types/node@*": + version "22.6.1" + resolved "https://registry.yarnpkg.com/@types/node/-/node-22.6.1.tgz#e531a45f4d78f14a8468cb9cdc29dc9602afc7ac" + integrity sha512-V48tCfcKb/e6cVUigLAaJDAILdMP0fUW6BidkPK4GpGjXcfbnoHasCZDwz3N3yVt5we2RHm4XTQCpv0KJz9zqw== + dependencies: + undici-types "~6.19.2" + +"@types/node@^17.0.5": + version "17.0.45" + resolved "https://registry.yarnpkg.com/@types/node/-/node-17.0.45.tgz#2c0fafd78705e7a18b7906b5201a522719dc5190" + integrity sha512-w+tIMs3rq2afQdsPJlODhoUEKzFP1ayaoyl1CcnwtIlsVe7K7bA1NGm4s3PraqTLlXnbIN84zuBlxBWo1u9BLw== + +"@types/parse-json@^4.0.0": + version "4.0.2" + resolved "https://registry.yarnpkg.com/@types/parse-json/-/parse-json-4.0.2.tgz#5950e50960793055845e956c427fc2b0d70c5239" + integrity sha512-dISoDXWWQwUquiKsyZ4Ng+HX2KsPL7LyHKHQwgGFEA3IaKac4Obd+h2a/a6waisAoepJlBcx9paWqjA8/HVjCw== + +"@types/phoenix@^1.5.4": + version "1.6.5" + resolved "https://registry.yarnpkg.com/@types/phoenix/-/phoenix-1.6.5.tgz#5654e14ec7ad25334a157a20015996b6d7d2075e" + integrity sha512-xegpDuR+z0UqG9fwHqNoy3rI7JDlvaPh2TY47Fl80oq6g+hXT+c/LEuE43X48clZ6lOfANl5WrPur9fYO1RJ/w== + +"@types/prismjs@^1.26.0": + version "1.26.4" + resolved "https://registry.yarnpkg.com/@types/prismjs/-/prismjs-1.26.4.tgz#1a9e1074619ce1d7322669e5b46fbe823925103a" + integrity sha512-rlAnzkW2sZOjbqZ743IHUhFcvzaGbqijwOu8QZnZCjfQzBqFE3s4lOTJEsxikImav9uzz/42I+O7YUs1mWgMlg== + +"@types/prop-types@*": + version "15.7.13" + resolved "https://registry.yarnpkg.com/@types/prop-types/-/prop-types-15.7.13.tgz#2af91918ee12d9d32914feb13f5326658461b451" + integrity sha512-hCZTSvwbzWGvhqxp/RqVqwU999pBf2vp7hzIjiYOsl8wqOmUxkQ6ddw1cV3l8811+kdUFus/q4d1Y3E3SyEifA== + +"@types/qs@*": + version "6.9.16" + resolved "https://registry.yarnpkg.com/@types/qs/-/qs-6.9.16.tgz#52bba125a07c0482d26747d5d4947a64daf8f794" + integrity sha512-7i+zxXdPD0T4cKDuxCUXJ4wHcsJLwENa6Z3dCu8cfCK743OGy5Nu1RmAGqDPsoTDINVEcdXKRvR/zre+P2Ku1A== + +"@types/range-parser@*": + version "1.2.7" + resolved "https://registry.yarnpkg.com/@types/range-parser/-/range-parser-1.2.7.tgz#50ae4353eaaddc04044279812f52c8c65857dbcb" + integrity sha512-hKormJbkJqzQGhziax5PItDUTMAM9uE2XXQmM37dyd4hVM+5aVl7oVxMVUiVQn2oCQFN/LKCZdvSM0pFRqbSmQ== + +"@types/react-router-config@*", "@types/react-router-config@^5.0.7": + version "5.0.11" + resolved "https://registry.yarnpkg.com/@types/react-router-config/-/react-router-config-5.0.11.tgz#2761a23acc7905a66a94419ee40294a65aaa483a" + integrity sha512-WmSAg7WgqW7m4x8Mt4N6ZyKz0BubSj/2tVUMsAHp+Yd2AMwcSbeFq9WympT19p5heCFmF97R9eD5uUR/t4HEqw== + dependencies: + "@types/history" "^4.7.11" + "@types/react" "*" + "@types/react-router" "^5.1.0" + +"@types/react-router-dom@*": + version "5.3.3" + resolved "https://registry.yarnpkg.com/@types/react-router-dom/-/react-router-dom-5.3.3.tgz#e9d6b4a66fcdbd651a5f106c2656a30088cc1e83" + integrity sha512-kpqnYK4wcdm5UaWI3fLcELopqLrHgLqNsdpHauzlQktfkHL3npOSwtj1Uz9oKBAzs7lFtVkV8j83voAz2D8fhw== + dependencies: + "@types/history" "^4.7.11" + "@types/react" "*" + "@types/react-router" "*" + +"@types/react-router@*", "@types/react-router@^5.1.0": + version "5.1.20" + resolved "https://registry.yarnpkg.com/@types/react-router/-/react-router-5.1.20.tgz#88eccaa122a82405ef3efbcaaa5dcdd9f021387c" + integrity sha512-jGjmu/ZqS7FjSH6owMcD5qpq19+1RS9DeVRqfl1FeBMxTDQAGwlMWOcs52NDoXaNKyG3d1cYQFMs9rCrb88o9Q== + dependencies: + "@types/history" "^4.7.11" + "@types/react" "*" + +"@types/react@*": + version "18.3.8" + resolved "https://registry.yarnpkg.com/@types/react/-/react-18.3.8.tgz#1672ab19993f8aca7c7dc844c07d5d9e467d5a79" + integrity sha512-syBUrW3/XpnW4WJ41Pft+I+aPoDVbrBVQGEnbD7NijDGlVC+8gV/XKRY+7vMDlfPpbwYt0l1vd/Sj8bJGMbs9Q== + dependencies: + "@types/prop-types" "*" + csstype "^3.0.2" + +"@types/retry@0.12.0": + version "0.12.0" + resolved "https://registry.yarnpkg.com/@types/retry/-/retry-0.12.0.tgz#2b35eccfcee7d38cd72ad99232fbd58bffb3c84d" + integrity sha512-wWKOClTTiizcZhXnPY4wikVAwmdYHp8q6DmC+EJUzAMsycb7HB32Kh9RN4+0gExjmPmZSAQjgURXIGATPegAvA== + +"@types/sax@^1.2.1": + version "1.2.7" + resolved "https://registry.yarnpkg.com/@types/sax/-/sax-1.2.7.tgz#ba5fe7df9aa9c89b6dff7688a19023dd2963091d" + integrity sha512-rO73L89PJxeYM3s3pPPjiPgVVcymqU490g0YO5n5By0k2Erzj6tay/4lr1CHAAU4JyOWd1rpQ8bCf6cZfHU96A== + dependencies: + "@types/node" "*" + +"@types/send@*": + version "0.17.4" + resolved "https://registry.yarnpkg.com/@types/send/-/send-0.17.4.tgz#6619cd24e7270793702e4e6a4b958a9010cfc57a" + integrity sha512-x2EM6TJOybec7c52BX0ZspPodMsQUd5L6PRwOunVyVUhXiBSKf3AezDL8Dgvgt5o0UfKNfuA0eMLr2wLT4AiBA== + dependencies: + "@types/mime" "^1" + "@types/node" "*" + +"@types/serve-index@^1.9.1": + version "1.9.4" + resolved "https://registry.yarnpkg.com/@types/serve-index/-/serve-index-1.9.4.tgz#e6ae13d5053cb06ed36392110b4f9a49ac4ec898" + integrity sha512-qLpGZ/c2fhSs5gnYsQxtDEq3Oy8SXPClIXkW5ghvAvsNuVSA8k+gCONcUCS/UjLEYvYps+e8uBtfgXgvhwfNug== + dependencies: + "@types/express" "*" + +"@types/serve-static@*", "@types/serve-static@^1.13.10": + version "1.15.7" + resolved "https://registry.yarnpkg.com/@types/serve-static/-/serve-static-1.15.7.tgz#22174bbd74fb97fe303109738e9b5c2f3064f714" + integrity sha512-W8Ym+h8nhuRwaKPaDw34QUkwsGi6Rc4yYqvKFo5rm2FUEhCFbzVWrxXUxuKK8TASjWsysJY0nsmNCGhCOIsrOw== + dependencies: + "@types/http-errors" "*" + "@types/node" "*" + "@types/send" "*" + +"@types/sockjs@^0.3.33": + version "0.3.36" + resolved "https://registry.yarnpkg.com/@types/sockjs/-/sockjs-0.3.36.tgz#ce322cf07bcc119d4cbf7f88954f3a3bd0f67535" + integrity sha512-MK9V6NzAS1+Ud7JV9lJLFqW85VbC9dq3LmwZCuBe4wBDgKC0Kj/jd8Xl+nSviU+Qc3+m7umHHyHg//2KSa0a0Q== + dependencies: + "@types/node" "*" + +"@types/trusted-types@*": + version "2.0.7" + resolved "https://registry.yarnpkg.com/@types/trusted-types/-/trusted-types-2.0.7.tgz#baccb07a970b91707df3a3e8ba6896c57ead2d11" + integrity sha512-ScaPdn1dQczgbl0QFTeTOmVHFULt394XJgOQNoyVhZ6r2vLnMLJfBPd53SB52T/3G36VI1/g2MZaX0cwDuXsfw== + +"@types/unist@*", "@types/unist@^3.0.0": + version "3.0.3" + resolved "https://registry.yarnpkg.com/@types/unist/-/unist-3.0.3.tgz#acaab0f919ce69cce629c2d4ed2eb4adc1b6c20c" + integrity sha512-ko/gIFJRv177XgZsZcBwnqJN5x/Gien8qNOn0D5bQU/zAzVf9Zt3BlcUiLqhV9y4ARk0GbT3tnUiPNgnTXzc/Q== + +"@types/unist@^2", "@types/unist@^2.0.0": + version "2.0.11" + resolved "https://registry.yarnpkg.com/@types/unist/-/unist-2.0.11.tgz#11af57b127e32487774841f7a4e54eab166d03c4" + integrity sha512-CmBKiL6NNo/OqgmMn95Fk9Whlp2mtvIv+KNpQKN2F4SjvrEesubTRWGYSg+BnWZOnlCaSTU1sMpsBOzgbYhnsA== + +"@types/ws@^8.5.10", "@types/ws@^8.5.5": + version "8.5.12" + resolved "https://registry.yarnpkg.com/@types/ws/-/ws-8.5.12.tgz#619475fe98f35ccca2a2f6c137702d85ec247b7e" + integrity sha512-3tPRkv1EtkDpzlgyKyI8pGsGZAGPEaXeu0DOj5DI25Ja91bdAYddYHbADRYVrZMRbfW+1l5YwXVDKohDJNQxkQ== + dependencies: + "@types/node" "*" + +"@types/yargs-parser@*": + version "21.0.3" + resolved "https://registry.yarnpkg.com/@types/yargs-parser/-/yargs-parser-21.0.3.tgz#815e30b786d2e8f0dcd85fd5bcf5e1a04d008f15" + integrity sha512-I4q9QU9MQv4oEOz4tAHJtNz1cwuLxn2F3xcc2iV5WdqLPpUnj30aUuxt1mAxYTG+oe8CZMV/+6rU4S4gRDzqtQ== + +"@types/yargs@^17.0.8": + version "17.0.33" + resolved "https://registry.yarnpkg.com/@types/yargs/-/yargs-17.0.33.tgz#8c32303da83eec050a84b3c7ae7b9f922d13e32d" + integrity sha512-WpxBCKWPLr4xSsHgz511rFJAM+wS28w2zEO1QDNY5zM/S8ok70NNfztH0xwhqKyaK0OHCbN98LDAZuy1ctxDkA== + dependencies: + "@types/yargs-parser" "*" + +"@ungap/structured-clone@^1.0.0", "@ungap/structured-clone@^1.2.0": + version "1.2.0" + resolved "https://registry.yarnpkg.com/@ungap/structured-clone/-/structured-clone-1.2.0.tgz#756641adb587851b5ccb3e095daf27ae581c8406" + integrity sha512-zuVdFrMJiuCDQUMCzQaD6KL28MjnqqN8XnAqiEq9PNm/hCPTSGfrXCOfwj1ow4LFb/tNymJPwsNbVePc1xFqrQ== + +"@webassemblyjs/ast@1.12.1", "@webassemblyjs/ast@^1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/ast/-/ast-1.12.1.tgz#bb16a0e8b1914f979f45864c23819cc3e3f0d4bb" + integrity sha512-EKfMUOPRRUTy5UII4qJDGPpqfwjOmZ5jeGFwid9mnoqIFK+e0vqoi1qH56JpmZSzEL53jKnNzScdmftJyG5xWg== + dependencies: + "@webassemblyjs/helper-numbers" "1.11.6" + "@webassemblyjs/helper-wasm-bytecode" "1.11.6" + +"@webassemblyjs/floating-point-hex-parser@1.11.6": + version "1.11.6" + resolved "https://registry.yarnpkg.com/@webassemblyjs/floating-point-hex-parser/-/floating-point-hex-parser-1.11.6.tgz#dacbcb95aff135c8260f77fa3b4c5fea600a6431" + integrity sha512-ejAj9hfRJ2XMsNHk/v6Fu2dGS+i4UaXBXGemOfQ/JfQ6mdQg/WXtwleQRLLS4OvfDhv8rYnVwH27YJLMyYsxhw== + +"@webassemblyjs/helper-api-error@1.11.6": + version "1.11.6" + resolved "https://registry.yarnpkg.com/@webassemblyjs/helper-api-error/-/helper-api-error-1.11.6.tgz#6132f68c4acd59dcd141c44b18cbebbd9f2fa768" + integrity sha512-o0YkoP4pVu4rN8aTJgAyj9hC2Sv5UlkzCHhxqWj8butaLvnpdc2jOwh4ewE6CX0txSfLn/UYaV/pheS2Txg//Q== + +"@webassemblyjs/helper-buffer@1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/helper-buffer/-/helper-buffer-1.12.1.tgz#6df20d272ea5439bf20ab3492b7fb70e9bfcb3f6" + integrity sha512-nzJwQw99DNDKr9BVCOZcLuJJUlqkJh+kVzVl6Fmq/tI5ZtEyWT1KZMyOXltXLZJmDtvLCDgwsyrkohEtopTXCw== + +"@webassemblyjs/helper-numbers@1.11.6": + version "1.11.6" + resolved "https://registry.yarnpkg.com/@webassemblyjs/helper-numbers/-/helper-numbers-1.11.6.tgz#cbce5e7e0c1bd32cf4905ae444ef64cea919f1b5" + integrity sha512-vUIhZ8LZoIWHBohiEObxVm6hwP034jwmc9kuq5GdHZH0wiLVLIPcMCdpJzG4C11cHoQ25TFIQj9kaVADVX7N3g== + dependencies: + "@webassemblyjs/floating-point-hex-parser" "1.11.6" + "@webassemblyjs/helper-api-error" "1.11.6" + "@xtuc/long" "4.2.2" + +"@webassemblyjs/helper-wasm-bytecode@1.11.6": + version "1.11.6" + resolved "https://registry.yarnpkg.com/@webassemblyjs/helper-wasm-bytecode/-/helper-wasm-bytecode-1.11.6.tgz#bb2ebdb3b83aa26d9baad4c46d4315283acd51e9" + integrity sha512-sFFHKwcmBprO9e7Icf0+gddyWYDViL8bpPjJJl0WHxCdETktXdmtWLGVzoHbqUcY4Be1LkNfwTmXOJUFZYSJdA== + +"@webassemblyjs/helper-wasm-section@1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/helper-wasm-section/-/helper-wasm-section-1.12.1.tgz#3da623233ae1a60409b509a52ade9bc22a37f7bf" + integrity sha512-Jif4vfB6FJlUlSbgEMHUyk1j234GTNG9dBJ4XJdOySoj518Xj0oGsNi59cUQF4RRMS9ouBUxDDdyBVfPTypa5g== + dependencies: + "@webassemblyjs/ast" "1.12.1" + "@webassemblyjs/helper-buffer" "1.12.1" + "@webassemblyjs/helper-wasm-bytecode" "1.11.6" + "@webassemblyjs/wasm-gen" "1.12.1" + +"@webassemblyjs/ieee754@1.11.6": + version "1.11.6" + resolved "https://registry.yarnpkg.com/@webassemblyjs/ieee754/-/ieee754-1.11.6.tgz#bb665c91d0b14fffceb0e38298c329af043c6e3a" + integrity sha512-LM4p2csPNvbij6U1f19v6WR56QZ8JcHg3QIJTlSwzFcmx6WSORicYj6I63f9yU1kEUtrpG+kjkiIAkevHpDXrg== + dependencies: + "@xtuc/ieee754" "^1.2.0" + +"@webassemblyjs/leb128@1.11.6": + version "1.11.6" + resolved "https://registry.yarnpkg.com/@webassemblyjs/leb128/-/leb128-1.11.6.tgz#70e60e5e82f9ac81118bc25381a0b283893240d7" + integrity sha512-m7a0FhE67DQXgouf1tbN5XQcdWoNgaAuoULHIfGFIEVKA6tu/edls6XnIlkmS6FrXAquJRPni3ZZKjw6FSPjPQ== + dependencies: + "@xtuc/long" "4.2.2" + +"@webassemblyjs/utf8@1.11.6": + version "1.11.6" + resolved "https://registry.yarnpkg.com/@webassemblyjs/utf8/-/utf8-1.11.6.tgz#90f8bc34c561595fe156603be7253cdbcd0fab5a" + integrity sha512-vtXf2wTQ3+up9Zsg8sa2yWiQpzSsMyXj0qViVP6xKGCUT8p8YJ6HqI7l5eCnWx1T/FYdsv07HQs2wTFbbof/RA== + +"@webassemblyjs/wasm-edit@^1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/wasm-edit/-/wasm-edit-1.12.1.tgz#9f9f3ff52a14c980939be0ef9d5df9ebc678ae3b" + integrity sha512-1DuwbVvADvS5mGnXbE+c9NfA8QRcZ6iKquqjjmR10k6o+zzsRVesil54DKexiowcFCPdr/Q0qaMgB01+SQ1u6g== + dependencies: + "@webassemblyjs/ast" "1.12.1" + "@webassemblyjs/helper-buffer" "1.12.1" + "@webassemblyjs/helper-wasm-bytecode" "1.11.6" + "@webassemblyjs/helper-wasm-section" "1.12.1" + "@webassemblyjs/wasm-gen" "1.12.1" + "@webassemblyjs/wasm-opt" "1.12.1" + "@webassemblyjs/wasm-parser" "1.12.1" + "@webassemblyjs/wast-printer" "1.12.1" + +"@webassemblyjs/wasm-gen@1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/wasm-gen/-/wasm-gen-1.12.1.tgz#a6520601da1b5700448273666a71ad0a45d78547" + integrity sha512-TDq4Ojh9fcohAw6OIMXqiIcTq5KUXTGRkVxbSo1hQnSy6lAM5GSdfwWeSxpAo0YzgsgF182E/U0mDNhuA0tW7w== + dependencies: + "@webassemblyjs/ast" "1.12.1" + "@webassemblyjs/helper-wasm-bytecode" "1.11.6" + "@webassemblyjs/ieee754" "1.11.6" + "@webassemblyjs/leb128" "1.11.6" + "@webassemblyjs/utf8" "1.11.6" + +"@webassemblyjs/wasm-opt@1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/wasm-opt/-/wasm-opt-1.12.1.tgz#9e6e81475dfcfb62dab574ac2dda38226c232bc5" + integrity sha512-Jg99j/2gG2iaz3hijw857AVYekZe2SAskcqlWIZXjji5WStnOpVoat3gQfT/Q5tb2djnCjBtMocY/Su1GfxPBg== + dependencies: + "@webassemblyjs/ast" "1.12.1" + "@webassemblyjs/helper-buffer" "1.12.1" + "@webassemblyjs/wasm-gen" "1.12.1" + "@webassemblyjs/wasm-parser" "1.12.1" + +"@webassemblyjs/wasm-parser@1.12.1", "@webassemblyjs/wasm-parser@^1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/wasm-parser/-/wasm-parser-1.12.1.tgz#c47acb90e6f083391e3fa61d113650eea1e95937" + integrity sha512-xikIi7c2FHXysxXe3COrVUPSheuBtpcfhbpFj4gmu7KRLYOzANztwUU0IbsqvMqzuNK2+glRGWCEqZo1WCLyAQ== + dependencies: + "@webassemblyjs/ast" "1.12.1" + "@webassemblyjs/helper-api-error" "1.11.6" + "@webassemblyjs/helper-wasm-bytecode" "1.11.6" + "@webassemblyjs/ieee754" "1.11.6" + "@webassemblyjs/leb128" "1.11.6" + "@webassemblyjs/utf8" "1.11.6" + +"@webassemblyjs/wast-printer@1.12.1": + version "1.12.1" + resolved "https://registry.yarnpkg.com/@webassemblyjs/wast-printer/-/wast-printer-1.12.1.tgz#bcecf661d7d1abdaf989d8341a4833e33e2b31ac" + integrity sha512-+X4WAlOisVWQMikjbcvY2e0rwPsKQ9F688lksZhBcPycBBuii3O7m8FACbDMWDojpAqvjIncrG8J0XHKyQfVeA== + dependencies: + "@webassemblyjs/ast" "1.12.1" + "@xtuc/long" "4.2.2" + +"@xtuc/ieee754@^1.2.0": + version "1.2.0" + resolved "https://registry.yarnpkg.com/@xtuc/ieee754/-/ieee754-1.2.0.tgz#eef014a3145ae477a1cbc00cd1e552336dceb790" + integrity sha512-DX8nKgqcGwsc0eJSqYt5lwP4DH5FlHnmuWWBRy7X0NcaGR0ZtuyeESgMwTYVEtxmsNGY+qit4QYT/MIYTOTPeA== + +"@xtuc/long@4.2.2": + version "4.2.2" + resolved "https://registry.yarnpkg.com/@xtuc/long/-/long-4.2.2.tgz#d291c6a4e97989b5c61d9acf396ae4fe133a718d" + integrity sha512-NuHqBY1PB/D8xU6s/thBgOAiAP7HOYDQ32+BFZILJ8ivkUkAHQnWfn6WhL79Owj1qmUnoN/YPhktdIoucipkAQ== + +accepts@~1.3.4, accepts@~1.3.5, accepts@~1.3.8: + version "1.3.8" + resolved "https://registry.yarnpkg.com/accepts/-/accepts-1.3.8.tgz#0bf0be125b67014adcb0b0921e62db7bffe16b2e" + integrity sha512-PYAthTa2m2VKxuvSD3DPC/Gy+U+sOA1LAuT8mkmRuvw+NACSaeXEQ+NHcVF7rONl6qcaxV3Uuemwawk+7+SJLw== + dependencies: + mime-types "~2.1.34" + negotiator "0.6.3" + +acorn-import-attributes@^1.9.5: + version "1.9.5" + resolved "https://registry.yarnpkg.com/acorn-import-attributes/-/acorn-import-attributes-1.9.5.tgz#7eb1557b1ba05ef18b5ed0ec67591bfab04688ef" + integrity sha512-n02Vykv5uA3eHGM/Z2dQrcD56kL8TyDb2p1+0P83PClMnC/nc+anbQRhIOWnSq4Ke/KvDPrY3C9hDtC/A3eHnQ== + +acorn-jsx@^5.0.0, acorn-jsx@^5.3.2: + version "5.3.2" + resolved "https://registry.yarnpkg.com/acorn-jsx/-/acorn-jsx-5.3.2.tgz#7ed5bb55908b3b2f1bc55c6af1653bada7f07937" + integrity sha512-rq9s+JNhf0IChjtDXxllJ7g41oZk5SlXtp0LHwyA5cejwn7vKmKp4pPri6YEePv2PU65sAsegbXtIinmDFDXgQ== + +acorn-walk@^8.0.0: + version "8.3.4" + resolved "https://registry.yarnpkg.com/acorn-walk/-/acorn-walk-8.3.4.tgz#794dd169c3977edf4ba4ea47583587c5866236b7" + integrity sha512-ueEepnujpqee2o5aIYnvHU6C0A42MNdsIDeqy5BydrkuC5R1ZuUFnm27EeFJGoEHJQgn3uleRvmTXaJgfXbt4g== + dependencies: + acorn "^8.11.0" + +acorn@^8.0.0, acorn@^8.0.4, acorn@^8.11.0, acorn@^8.7.1, acorn@^8.8.2, acorn@^8.9.0: + version "8.12.1" + resolved "https://registry.yarnpkg.com/acorn/-/acorn-8.12.1.tgz#71616bdccbe25e27a54439e0046e89ca76df2248" + integrity sha512-tcpGyI9zbizT9JbV6oYE477V6mTlXvvi0T0G3SNIYE2apm/G5huBa1+K89VGeovbg+jycCrfhl3ADxErOuO6Jg== + +address@^1.0.1, address@^1.1.2: + version "1.2.2" + resolved "https://registry.yarnpkg.com/address/-/address-1.2.2.tgz#2b5248dac5485a6390532c6a517fda2e3faac89e" + integrity sha512-4B/qKCfeE/ODUaAUpSwfzazo5x29WD4r3vXiWsB7I2mSDAihwEqKO+g8GELZUQSSAo5e1XTYh3ZVfLyxBc12nA== + +agent-base@^7.0.2, agent-base@^7.1.0: + version "7.1.1" + resolved "https://registry.yarnpkg.com/agent-base/-/agent-base-7.1.1.tgz#bdbded7dfb096b751a2a087eeeb9664725b2e317" + integrity sha512-H0TSyFNDMomMNJQBn8wFV5YC/2eJ+VXECwOadZJT554xP6cODZHPX3H9QMQECxvrgiSOP1pHjy1sMWQVYJOUOA== + dependencies: + debug "^4.3.4" + +aggregate-error@^3.0.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/aggregate-error/-/aggregate-error-3.1.0.tgz#92670ff50f5359bdb7a3e0d40d0ec30c5737687a" + integrity sha512-4I7Td01quW/RpocfNayFdFVk1qSuoh0E7JrbRJ16nH01HhKFQ88INq9Sd+nd72zqRySlr9BmDA8xlEJ6vJMrYA== + dependencies: + clean-stack "^2.0.0" + indent-string "^4.0.0" + +ajv-formats@^2.1.1: + version "2.1.1" + resolved "https://registry.yarnpkg.com/ajv-formats/-/ajv-formats-2.1.1.tgz#6e669400659eb74973bbf2e33327180a0996b520" + integrity sha512-Wx0Kx52hxE7C18hkMEggYlEifqWZtYaRgouJor+WMdPnQyEK13vgEWyVNup7SoeeoLMsr4kf5h6dOW11I15MUA== + dependencies: + ajv "^8.0.0" + +ajv-keywords@^3.4.1, ajv-keywords@^3.5.2: + version "3.5.2" + resolved "https://registry.yarnpkg.com/ajv-keywords/-/ajv-keywords-3.5.2.tgz#31f29da5ab6e00d1c2d329acf7b5929614d5014d" + integrity sha512-5p6WTN0DdTGVQk6VjcEju19IgaHudalcfabD7yhDGeA6bcQnmL+CpveLJq/3hvfwd1aof6L386Ougkx6RfyMIQ== + +ajv-keywords@^5.1.0: + version "5.1.0" + resolved "https://registry.yarnpkg.com/ajv-keywords/-/ajv-keywords-5.1.0.tgz#69d4d385a4733cdbeab44964a1170a88f87f0e16" + integrity sha512-YCS/JNFAUyr5vAuhk1DWm1CBxRHW9LbJ2ozWeemrIqpbsqKjHVxYPyi5GC0rjZIT5JxJ3virVTS8wk4i/Z+krw== + dependencies: + fast-deep-equal "^3.1.3" + +ajv@^6.12.2, ajv@^6.12.4, ajv@^6.12.5: + version "6.12.6" + resolved "https://registry.yarnpkg.com/ajv/-/ajv-6.12.6.tgz#baf5a62e802b07d977034586f8c3baf5adf26df4" + integrity sha512-j3fVLgvTo527anyYyJOGTYJbG+vnnQYvE0m5mmkc1TK+nxAppkCLMIL0aZ4dblVCNoGShhm+kzE4ZUykBoMg4g== + dependencies: + fast-deep-equal "^3.1.1" + fast-json-stable-stringify "^2.0.0" + json-schema-traverse "^0.4.1" + uri-js "^4.2.2" + +ajv@^8.0.0, ajv@^8.9.0: + version "8.17.1" + resolved "https://registry.yarnpkg.com/ajv/-/ajv-8.17.1.tgz#37d9a5c776af6bc92d7f4f9510eba4c0a60d11a6" + integrity sha512-B/gBuNg5SiMTrPkC+A2+cW0RszwxYmn6VYxB/inlBStS5nx6xHIt/ehKRhIMhqusl7a8LjQoZnjCs5vhwxOQ1g== + dependencies: + fast-deep-equal "^3.1.3" + fast-uri "^3.0.1" + json-schema-traverse "^1.0.0" + require-from-string "^2.0.2" + +algoliasearch-helper@^3.13.3: + version "3.22.5" + resolved "https://registry.yarnpkg.com/algoliasearch-helper/-/algoliasearch-helper-3.22.5.tgz#2fcc26814e10a121a2c2526a1b05c754061c56c0" + integrity sha512-lWvhdnc+aKOKx8jyA3bsdEgHzm/sglC4cYdMG4xSQyRiPLJVJtH/IVYZG3Hp6PkTEhQqhyVYkeP9z2IlcHJsWw== + dependencies: + "@algolia/events" "^4.0.1" + +algoliasearch@^4.18.0, algoliasearch@^4.19.1: + version "4.24.0" + resolved "https://registry.yarnpkg.com/algoliasearch/-/algoliasearch-4.24.0.tgz#b953b3e2309ef8f25da9de311b95b994ac918275" + integrity sha512-bf0QV/9jVejssFBmz2HQLxUadxk574t4iwjCKp5E7NBzwKkrDEhKPISIIjAU/p6K5qDx3qoeh4+26zWN1jmw3g== + dependencies: + "@algolia/cache-browser-local-storage" "4.24.0" + "@algolia/cache-common" "4.24.0" + "@algolia/cache-in-memory" "4.24.0" + "@algolia/client-account" "4.24.0" + "@algolia/client-analytics" "4.24.0" + "@algolia/client-common" "4.24.0" + "@algolia/client-personalization" "4.24.0" + "@algolia/client-search" "4.24.0" + "@algolia/logger-common" "4.24.0" + "@algolia/logger-console" "4.24.0" + "@algolia/recommend" "4.24.0" + "@algolia/requester-browser-xhr" "4.24.0" + "@algolia/requester-common" "4.24.0" + "@algolia/requester-node-http" "4.24.0" + "@algolia/transporter" "4.24.0" + +ansi-align@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/ansi-align/-/ansi-align-3.0.1.tgz#0cdf12e111ace773a86e9a1fad1225c43cb19a59" + integrity sha512-IOfwwBF5iczOjp/WeY4YxyjqAFMQoZufdQWDd19SEExbVLNXqvpzSJ/M7Za4/sCPmQ0+GRquoA7bGcINcxew6w== + dependencies: + string-width "^4.1.0" + +ansi-html-community@^0.0.8: + version "0.0.8" + resolved "https://registry.yarnpkg.com/ansi-html-community/-/ansi-html-community-0.0.8.tgz#69fbc4d6ccbe383f9736934ae34c3f8290f1bf41" + integrity sha512-1APHAyr3+PCamwNw3bXCPp4HFLONZt/yIH0sZp0/469KWNTEy+qN5jQ3GVX6DMZ1UXAi34yVwtTeaG/HpBuuzw== + +ansi-regex@^5.0.1: + version "5.0.1" + resolved "https://registry.yarnpkg.com/ansi-regex/-/ansi-regex-5.0.1.tgz#082cb2c89c9fe8659a311a53bd6a4dc5301db304" + integrity sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ== + +ansi-regex@^6.0.1: + version "6.1.0" + resolved "https://registry.yarnpkg.com/ansi-regex/-/ansi-regex-6.1.0.tgz#95ec409c69619d6cb1b8b34f14b660ef28ebd654" + integrity sha512-7HSX4QQb4CspciLpVFwyRe79O3xsIZDDLER21kERQ71oaPodF8jL725AgJMFAYbooIqolJoRLuM81SpeUkpkvA== + +ansi-sequence-parser@^1.1.0: + version "1.1.1" + resolved "https://registry.yarnpkg.com/ansi-sequence-parser/-/ansi-sequence-parser-1.1.1.tgz#e0aa1cdcbc8f8bb0b5bca625aac41f5f056973cf" + integrity sha512-vJXt3yiaUL4UU546s3rPXlsry/RnM730G1+HkpKE012AN0sx1eOrxSu95oKDIonskeLTijMgqWZ3uDEe3NFvyg== + +ansi-styles@^3.2.1: + version "3.2.1" + resolved "https://registry.yarnpkg.com/ansi-styles/-/ansi-styles-3.2.1.tgz#41fbb20243e50b12be0f04b8dedbf07520ce841d" + integrity sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA== + dependencies: + color-convert "^1.9.0" + +ansi-styles@^4.0.0, ansi-styles@^4.1.0: + version "4.3.0" + resolved "https://registry.yarnpkg.com/ansi-styles/-/ansi-styles-4.3.0.tgz#edd803628ae71c04c85ae7a0906edad34b648937" + integrity sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg== + dependencies: + color-convert "^2.0.1" + +ansi-styles@^6.1.0: + version "6.2.1" + resolved "https://registry.yarnpkg.com/ansi-styles/-/ansi-styles-6.2.1.tgz#0e62320cf99c21afff3b3012192546aacbfb05c5" + integrity sha512-bN798gFfQX+viw3R7yrGWRqnrN2oRkEkUjjl4JNn4E8GxxbjtG3FbrEIIY3l8/hrwUwIeCZvi4QuOTP4MErVug== + +anymatch@~3.1.2: + version "3.1.3" + resolved "https://registry.yarnpkg.com/anymatch/-/anymatch-3.1.3.tgz#790c58b19ba1720a84205b57c618d5ad8524973e" + integrity sha512-KMReFUr0B4t+D+OBkjR3KYqvocp2XaSzO55UcB6mgQMd3KbcE+mWTyvVV7D/zsdEbNnV6acZUutkiHQXvTr1Rw== + dependencies: + normalize-path "^3.0.0" + picomatch "^2.0.4" + +arg@^5.0.0: + version "5.0.2" + resolved "https://registry.yarnpkg.com/arg/-/arg-5.0.2.tgz#c81433cc427c92c4dcf4865142dbca6f15acd59c" + integrity sha512-PYjyFOLKQ9y57JvQ6QLo8dAgNqswh8M1RMJYdQduT6xbWSgK36P/Z/v+p888pM69jMMfS8Xd8F6I1kQ/I9HUGg== + +argparse@^1.0.7: + version "1.0.10" + resolved "https://registry.yarnpkg.com/argparse/-/argparse-1.0.10.tgz#bcd6791ea5ae09725e17e5ad988134cd40b3d911" + integrity sha512-o5Roy6tNG4SL/FOkCAN6RzjiakZS25RLYFrcMttJqbdd8BWrnA+fGz57iN5Pb06pvBGvl5gQ0B48dJlslXvoTg== + dependencies: + sprintf-js "~1.0.2" + +argparse@^2.0.1: + version "2.0.1" + resolved "https://registry.yarnpkg.com/argparse/-/argparse-2.0.1.tgz#246f50f3ca78a3240f6c997e8a9bd1eac49e4b38" + integrity sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q== + +aria-query@~5.1.3: + version "5.1.3" + resolved "https://registry.yarnpkg.com/aria-query/-/aria-query-5.1.3.tgz#19db27cd101152773631396f7a95a3b58c22c35e" + integrity sha512-R5iJ5lkuHybztUfuOAznmboyjWq8O6sqNqtK7CLOqdydi54VNbORp49mb14KbWgG1QD3JFO9hJdZ+y4KutfdOQ== + dependencies: + deep-equal "^2.0.5" + +array-buffer-byte-length@^1.0.0, array-buffer-byte-length@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/array-buffer-byte-length/-/array-buffer-byte-length-1.0.1.tgz#1e5583ec16763540a27ae52eed99ff899223568f" + integrity sha512-ahC5W1xgou+KTXix4sAO8Ki12Q+jf4i0+tmk3sC+zgcynshkHxzpXdImBehiUYKKKDwvfFiJl1tZt6ewscS1Mg== + dependencies: + call-bind "^1.0.5" + is-array-buffer "^3.0.4" + +array-flatten@1.1.1: + version "1.1.1" + resolved "https://registry.yarnpkg.com/array-flatten/-/array-flatten-1.1.1.tgz#9a5f699051b1e7073328f2a008968b64ea2955d2" + integrity sha512-PCVAQswWemu6UdxsDFFX/+gVeYqKAod3D3UVm91jHwynguOwAvYPhx8nNlM++NqRcK6CxxpUafjmhIdKiHibqg== + +array-includes@^3.1.6, array-includes@^3.1.8: + version "3.1.8" + resolved "https://registry.yarnpkg.com/array-includes/-/array-includes-3.1.8.tgz#5e370cbe172fdd5dd6530c1d4aadda25281ba97d" + integrity sha512-itaWrbYbqpGXkGhZPGUulwnhVf5Hpy1xiCFsGqyIGglbBxmG5vSjxQen3/WGOjPpNEv1RtBLKxbmVXm8HpJStQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.2" + es-object-atoms "^1.0.0" + get-intrinsic "^1.2.4" + is-string "^1.0.7" + +array-union@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/array-union/-/array-union-2.1.0.tgz#b798420adbeb1de828d84acd8a2e23d3efe85e8d" + integrity sha512-HGyxoOTYUyCM6stUe6EJgnd4EoewAI7zMdfqO+kGjnlZmBDz/cR5pf8r/cR4Wq60sL/p0IkcjUEEPwS3GFrIyw== + +array.prototype.findlast@^1.2.5: + version "1.2.5" + resolved "https://registry.yarnpkg.com/array.prototype.findlast/-/array.prototype.findlast-1.2.5.tgz#3e4fbcb30a15a7f5bf64cf2faae22d139c2e4904" + integrity sha512-CVvd6FHg1Z3POpBLxO6E6zr+rSKEQ9L6rZHAaY7lLfhKsWYUBBOuMs0e9o24oopj6H+geRCX0YJ+TJLBK2eHyQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.2" + es-errors "^1.3.0" + es-object-atoms "^1.0.0" + es-shim-unscopables "^1.0.2" + +array.prototype.findlastindex@^1.2.5: + version "1.2.5" + resolved "https://registry.yarnpkg.com/array.prototype.findlastindex/-/array.prototype.findlastindex-1.2.5.tgz#8c35a755c72908719453f87145ca011e39334d0d" + integrity sha512-zfETvRFA8o7EiNn++N5f/kaCw221hrpGsDmcpndVupkPzEc1Wuf3VgC0qby1BbHs7f5DVYjgtEU2LLh5bqeGfQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.2" + es-errors "^1.3.0" + es-object-atoms "^1.0.0" + es-shim-unscopables "^1.0.2" + +array.prototype.flat@^1.3.1, array.prototype.flat@^1.3.2: + version "1.3.2" + resolved "https://registry.yarnpkg.com/array.prototype.flat/-/array.prototype.flat-1.3.2.tgz#1476217df8cff17d72ee8f3ba06738db5b387d18" + integrity sha512-djYB+Zx2vLewY8RWlNCUdHjDXs2XOgm602S9E7P/UpHgfeHL00cRiIF+IN/G/aUJ7kGPb6yO/ErDI5V2s8iycA== + dependencies: + call-bind "^1.0.2" + define-properties "^1.2.0" + es-abstract "^1.22.1" + es-shim-unscopables "^1.0.0" + +array.prototype.flatmap@^1.3.2: + version "1.3.2" + resolved "https://registry.yarnpkg.com/array.prototype.flatmap/-/array.prototype.flatmap-1.3.2.tgz#c9a7c6831db8e719d6ce639190146c24bbd3e527" + integrity sha512-Ewyx0c9PmpcsByhSW4r+9zDU7sGjFc86qf/kKtuSCRdhfbk0SNLLkaT5qvcHnRGgc5NP/ly/y+qkXkqONX54CQ== + dependencies: + call-bind "^1.0.2" + define-properties "^1.2.0" + es-abstract "^1.22.1" + es-shim-unscopables "^1.0.0" + +array.prototype.tosorted@^1.1.4: + version "1.1.4" + resolved "https://registry.yarnpkg.com/array.prototype.tosorted/-/array.prototype.tosorted-1.1.4.tgz#fe954678ff53034e717ea3352a03f0b0b86f7ffc" + integrity sha512-p6Fx8B7b7ZhL/gmUsAy0D15WhvDccw3mnGNbZpi3pmeJdxtWsj2jEaI4Y6oo3XiHfzuSgPwKc04MYt6KgvC/wA== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.3" + es-errors "^1.3.0" + es-shim-unscopables "^1.0.2" + +arraybuffer.prototype.slice@^1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/arraybuffer.prototype.slice/-/arraybuffer.prototype.slice-1.0.3.tgz#097972f4255e41bc3425e37dc3f6421cf9aefde6" + integrity sha512-bMxMKAjg13EBSVscxTaYA4mRc5t1UAXa2kXiGTNfZ079HIWXEkKmkgFrh/nJqamaLSrXO5H4WFFkPEaLJWbs3A== + dependencies: + array-buffer-byte-length "^1.0.1" + call-bind "^1.0.5" + define-properties "^1.2.1" + es-abstract "^1.22.3" + es-errors "^1.2.1" + get-intrinsic "^1.2.3" + is-array-buffer "^3.0.4" + is-shared-array-buffer "^1.0.2" + +ast-types-flow@^0.0.8: + version "0.0.8" + resolved "https://registry.yarnpkg.com/ast-types-flow/-/ast-types-flow-0.0.8.tgz#0a85e1c92695769ac13a428bb653e7538bea27d6" + integrity sha512-OH/2E5Fg20h2aPrbe+QL8JZQFko0YZaF+j4mnQ7BGhfavO7OpSLa8a0y9sBwomHdSbkhTS8TQNayBfnW5DwbvQ== + +astring@^1.8.0: + version "1.9.0" + resolved "https://registry.yarnpkg.com/astring/-/astring-1.9.0.tgz#cc73e6062a7eb03e7d19c22d8b0b3451fd9bfeef" + integrity sha512-LElXdjswlqjWrPpJFg1Fx4wpkOCxj1TDHlSV4PlaRxHGWko024xICaa97ZkMfs6DRKlCguiAI+rbXv5GWwXIkg== + +asynckit@^0.4.0: + version "0.4.0" + resolved "https://registry.yarnpkg.com/asynckit/-/asynckit-0.4.0.tgz#c79ed97f7f34cb8f2ba1bc9790bcc366474b4b79" + integrity sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q== + +at-least-node@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/at-least-node/-/at-least-node-1.0.0.tgz#602cd4b46e844ad4effc92a8011a3c46e0238dc2" + integrity sha512-+q/t7Ekv1EDY2l6Gda6LLiX14rU9TV20Wa3ofeQmwPFZbOMo9DXrLbOjFaaclkXKWidIaopwAObQDqwWtGUjqg== + +autoprefixer@^10.4.14, autoprefixer@^10.4.19: + version "10.4.20" + resolved "https://registry.yarnpkg.com/autoprefixer/-/autoprefixer-10.4.20.tgz#5caec14d43976ef42e32dcb4bd62878e96be5b3b" + integrity sha512-XY25y5xSv/wEoqzDyXXME4AFfkZI0P23z6Fs3YgymDnKJkCGOnkL0iTxCa85UTqaSgfcqyf3UA6+c7wUvx/16g== + dependencies: + browserslist "^4.23.3" + caniuse-lite "^1.0.30001646" + fraction.js "^4.3.7" + normalize-range "^0.1.2" + picocolors "^1.0.1" + postcss-value-parser "^4.2.0" + +available-typed-arrays@^1.0.7: + version "1.0.7" + resolved "https://registry.yarnpkg.com/available-typed-arrays/-/available-typed-arrays-1.0.7.tgz#a5cc375d6a03c2efc87a553f3e0b1522def14846" + integrity sha512-wvUjBtSGN7+7SjNpq/9M2Tg350UZD3q62IFZLbRAR1bSMlCo1ZaeW+BJ+D090e4hIIZLBcTDWe4Mh4jvUDajzQ== + dependencies: + possible-typed-array-names "^1.0.0" + +axe-core@^4.10.0: + version "4.10.0" + resolved "https://registry.yarnpkg.com/axe-core/-/axe-core-4.10.0.tgz#d9e56ab0147278272739a000880196cdfe113b59" + integrity sha512-Mr2ZakwQ7XUAjp7pAwQWRhhK8mQQ6JAaNWSjmjxil0R8BPioMtQsTLOolGYkji1rcL++3dCqZA3zWqpT+9Ew6g== + +axios@^1.6.7: + version "1.7.7" + resolved "https://registry.yarnpkg.com/axios/-/axios-1.7.7.tgz#2f554296f9892a72ac8d8e4c5b79c14a91d0a47f" + integrity sha512-S4kL7XrjgBmvdGut0sN3yJxqYzrDOnivkBiN0OFs6hLiUam3UPvswUo0kqGyhqUZGEOytHyumEdXsAkgCOUf3Q== + dependencies: + follow-redirects "^1.15.6" + form-data "^4.0.0" + proxy-from-env "^1.1.0" + +axobject-query@^4.1.0: + version "4.1.0" + resolved "https://registry.yarnpkg.com/axobject-query/-/axobject-query-4.1.0.tgz#28768c76d0e3cff21bc62a9e2d0b6ac30042a1ee" + integrity sha512-qIj0G9wZbMGNLjLmg1PT6v2mE9AH2zlnADJD/2tC6E00hgmhUOfEB6greHPAfLRSufHqROIUTkw6E+M3lH0PTQ== + +babel-loader@^9.1.3: + version "9.2.1" + resolved "https://registry.yarnpkg.com/babel-loader/-/babel-loader-9.2.1.tgz#04c7835db16c246dd19ba0914418f3937797587b" + integrity sha512-fqe8naHt46e0yIdkjUZYqddSXfej3AHajX+CSO5X7oy0EmPc6o5Xh+RClNoHjnieWz9AW4kZxW9yyFMhVB1QLA== + dependencies: + find-cache-dir "^4.0.0" + schema-utils "^4.0.0" + +babel-plugin-dynamic-import-node@^2.3.3: + version "2.3.3" + resolved "https://registry.yarnpkg.com/babel-plugin-dynamic-import-node/-/babel-plugin-dynamic-import-node-2.3.3.tgz#84fda19c976ec5c6defef57f9427b3def66e17a3" + integrity sha512-jZVI+s9Zg3IqA/kdi0i6UDCybUI3aSBLnglhYbSSjKlV7yF1F/5LWv8MakQmvYpnbJDS6fcBL2KzHSxNCMtWSQ== + dependencies: + object.assign "^4.1.0" + +babel-plugin-polyfill-corejs2@^0.4.10: + version "0.4.11" + resolved "https://registry.yarnpkg.com/babel-plugin-polyfill-corejs2/-/babel-plugin-polyfill-corejs2-0.4.11.tgz#30320dfe3ffe1a336c15afdcdafd6fd615b25e33" + integrity sha512-sMEJ27L0gRHShOh5G54uAAPaiCOygY/5ratXuiyb2G46FmlSpc9eFCzYVyDiPxfNbwzA7mYahmjQc5q+CZQ09Q== + dependencies: + "@babel/compat-data" "^7.22.6" + "@babel/helper-define-polyfill-provider" "^0.6.2" + semver "^6.3.1" + +babel-plugin-polyfill-corejs3@^0.10.6: + version "0.10.6" + resolved "https://registry.yarnpkg.com/babel-plugin-polyfill-corejs3/-/babel-plugin-polyfill-corejs3-0.10.6.tgz#2deda57caef50f59c525aeb4964d3b2f867710c7" + integrity sha512-b37+KR2i/khY5sKmWNVQAnitvquQbNdWy6lJdsr0kmquCKEEUgMKK4SboVM3HtfnZilfjr4MMQ7vY58FVWDtIA== + dependencies: + "@babel/helper-define-polyfill-provider" "^0.6.2" + core-js-compat "^3.38.0" + +babel-plugin-polyfill-regenerator@^0.6.1: + version "0.6.2" + resolved "https://registry.yarnpkg.com/babel-plugin-polyfill-regenerator/-/babel-plugin-polyfill-regenerator-0.6.2.tgz#addc47e240edd1da1058ebda03021f382bba785e" + integrity sha512-2R25rQZWP63nGwaAswvDazbPXfrM3HwVoBXK6HcqeKrSrL/JqcC/rDcf95l4r7LXLyxDXc8uQDa064GubtCABg== + dependencies: + "@babel/helper-define-polyfill-provider" "^0.6.2" + +bail@^2.0.0: + version "2.0.2" + resolved "https://registry.yarnpkg.com/bail/-/bail-2.0.2.tgz#d26f5cd8fe5d6f832a31517b9f7c356040ba6d5d" + integrity sha512-0xO6mYd7JB2YesxDKplafRpsiOzPt9V02ddPCLbY1xYGPOX24NTyN50qnUxgCPcSoYMhKpAuBTjQoRZCAkUDRw== + +balanced-match@^1.0.0: + version "1.0.2" + resolved "https://registry.yarnpkg.com/balanced-match/-/balanced-match-1.0.2.tgz#e83e3a7e3f300b34cb9d87f615fa0cbf357690ee" + integrity sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw== + +batch@0.6.1: + version "0.6.1" + resolved "https://registry.yarnpkg.com/batch/-/batch-0.6.1.tgz#dc34314f4e679318093fc760272525f94bf25c16" + integrity sha512-x+VAiMRL6UPkx+kudNvxTl6hB2XNNCG2r+7wixVfIYwu/2HKRXimwQyaumLjMveWvT2Hkd/cAJw+QBMfJ/EKVw== + +big.js@^5.2.2: + version "5.2.2" + resolved "https://registry.yarnpkg.com/big.js/-/big.js-5.2.2.tgz#65f0af382f578bcdc742bd9c281e9cb2d7768328" + integrity sha512-vyL2OymJxmarO8gxMr0mhChsO9QGwhynfuu4+MHTAW6czfq9humCB7rKpUjDd9YUiDPU4mzpyupFSvOClAwbmQ== + +bin-links@^4.0.3: + version "4.0.4" + resolved "https://registry.yarnpkg.com/bin-links/-/bin-links-4.0.4.tgz#c3565832b8e287c85f109a02a17027d152a58a63" + integrity sha512-cMtq4W5ZsEwcutJrVId+a/tjt8GSbS+h0oNkdl6+6rBuEv8Ot33Bevj5KPm40t309zuhVic8NjpuL42QCiJWWA== + dependencies: + cmd-shim "^6.0.0" + npm-normalize-package-bin "^3.0.0" + read-cmd-shim "^4.0.0" + write-file-atomic "^5.0.0" + +binary-extensions@^2.0.0: + version "2.3.0" + resolved "https://registry.yarnpkg.com/binary-extensions/-/binary-extensions-2.3.0.tgz#f6e14a97858d327252200242d4ccfe522c445522" + integrity sha512-Ceh+7ox5qe7LJuLHoY0feh3pHuUDHAcRUeyL2VYghZwfpkNIy/+8Ocg0a3UuSoYzavmylwuLWQOf3hl0jjMMIw== + +body-parser@1.20.3: + version "1.20.3" + resolved "https://registry.yarnpkg.com/body-parser/-/body-parser-1.20.3.tgz#1953431221c6fb5cd63c4b36d53fab0928e548c6" + integrity sha512-7rAxByjUMqQ3/bHJy7D6OGXvx/MMc4IqBn/X0fcM1QUcAItpZrBEYhWGem+tzXH90c+G01ypMcYJBO9Y30203g== + dependencies: + bytes "3.1.2" + content-type "~1.0.5" + debug "2.6.9" + depd "2.0.0" + destroy "1.2.0" + http-errors "2.0.0" + iconv-lite "0.4.24" + on-finished "2.4.1" + qs "6.13.0" + raw-body "2.5.2" + type-is "~1.6.18" + unpipe "1.0.0" + +bonjour-service@^1.0.11: + version "1.2.1" + resolved "https://registry.yarnpkg.com/bonjour-service/-/bonjour-service-1.2.1.tgz#eb41b3085183df3321da1264719fbada12478d02" + integrity sha512-oSzCS2zV14bh2kji6vNe7vrpJYCHGvcZnlffFQ1MEoX/WOeQ/teD8SYWKR942OI3INjq8OMNJlbPK5LLLUxFDw== + dependencies: + fast-deep-equal "^3.1.3" + multicast-dns "^7.2.5" + +boolbase@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/boolbase/-/boolbase-1.0.0.tgz#68dff5fbe60c51eb37725ea9e3ed310dcc1e776e" + integrity sha512-JZOSA7Mo9sNGB8+UjSgzdLtokWAky1zbztM3WRLCbZ70/3cTANmQmOdR7y2g+J0e2WXywy1yS468tY+IruqEww== + +boxen@^6.2.1: + version "6.2.1" + resolved "https://registry.yarnpkg.com/boxen/-/boxen-6.2.1.tgz#b098a2278b2cd2845deef2dff2efc38d329b434d" + integrity sha512-H4PEsJXfFI/Pt8sjDWbHlQPx4zL/bvSQjcilJmaulGt5mLDorHOHpmdXAJcBcmru7PhYSp/cDMWRko4ZUMFkSw== + dependencies: + ansi-align "^3.0.1" + camelcase "^6.2.0" + chalk "^4.1.2" + cli-boxes "^3.0.0" + string-width "^5.0.1" + type-fest "^2.5.0" + widest-line "^4.0.1" + wrap-ansi "^8.0.1" + +boxen@^7.0.0: + version "7.1.1" + resolved "https://registry.yarnpkg.com/boxen/-/boxen-7.1.1.tgz#f9ba525413c2fec9cdb88987d835c4f7cad9c8f4" + integrity sha512-2hCgjEmP8YLWQ130n2FerGv7rYpfBmnmp9Uy2Le1vge6X3gZIfSmEzP5QTDElFxcvVcXlEn8Aq6MU/PZygIOog== + dependencies: + ansi-align "^3.0.1" + camelcase "^7.0.1" + chalk "^5.2.0" + cli-boxes "^3.0.0" + string-width "^5.1.2" + type-fest "^2.13.0" + widest-line "^4.0.1" + wrap-ansi "^8.1.0" + +brace-expansion@^1.1.7: + version "1.1.11" + resolved "https://registry.yarnpkg.com/brace-expansion/-/brace-expansion-1.1.11.tgz#3c7fcbf529d87226f3d2f52b966ff5271eb441dd" + integrity sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA== + dependencies: + balanced-match "^1.0.0" + concat-map "0.0.1" + +brace-expansion@^2.0.1: + version "2.0.1" + resolved "https://registry.yarnpkg.com/brace-expansion/-/brace-expansion-2.0.1.tgz#1edc459e0f0c548486ecf9fc99f2221364b9a0ae" + integrity sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA== + dependencies: + balanced-match "^1.0.0" + +braces@^3.0.3, braces@~3.0.2: + version "3.0.3" + resolved "https://registry.yarnpkg.com/braces/-/braces-3.0.3.tgz#490332f40919452272d55a8480adc0c441358789" + integrity sha512-yQbXgO/OSZVD2IsiLlro+7Hf6Q18EJrKSEsdoMzKePKXct3gvD8oLcOQdIzGupr5Fj+EDe8gO/lxc1BzfMpxvA== + dependencies: + fill-range "^7.1.1" + +browserslist@^4.0.0, browserslist@^4.18.1, browserslist@^4.21.10, browserslist@^4.23.0, browserslist@^4.23.1, browserslist@^4.23.3: + version "4.23.3" + resolved "https://registry.yarnpkg.com/browserslist/-/browserslist-4.23.3.tgz#debb029d3c93ebc97ffbc8d9cbb03403e227c800" + integrity sha512-btwCFJVjI4YWDNfau8RhZ+B1Q/VLoUITrm3RlP6y1tYGWIOa+InuYiRGXUBXo8nA1qKmHMyLB/iVQg5TT4eFoA== + dependencies: + caniuse-lite "^1.0.30001646" + electron-to-chromium "^1.5.4" + node-releases "^2.0.18" + update-browserslist-db "^1.1.0" + +buffer-from@^1.0.0: + version "1.1.2" + resolved "https://registry.yarnpkg.com/buffer-from/-/buffer-from-1.1.2.tgz#2b146a6fd72e80b4f55d255f35ed59a3a9a41bd5" + integrity sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ== + +bytes@3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/bytes/-/bytes-3.0.0.tgz#d32815404d689699f85a4ea4fa8755dd13a96048" + integrity sha512-pMhOfFDPiv9t5jjIXkHosWmkSyQbvsgEVNkz0ERHbuLh2T/7j4Mqqpz523Fe8MVY89KC6Sh/QfS2sM+SjgFDcw== + +bytes@3.1.2: + version "3.1.2" + resolved "https://registry.yarnpkg.com/bytes/-/bytes-3.1.2.tgz#8b0beeb98605adf1b128fa4386403c009e0221a5" + integrity sha512-/Nf7TyzTx6S3yRJObOAV7956r8cr2+Oj8AC5dt8wSP3BQAoeX58NoHyCU8P8zGkNXStjTSi6fzO6F0pBdcYbEg== + +cacheable-lookup@^7.0.0: + version "7.0.0" + resolved "https://registry.yarnpkg.com/cacheable-lookup/-/cacheable-lookup-7.0.0.tgz#3476a8215d046e5a3202a9209dd13fec1f933a27" + integrity sha512-+qJyx4xiKra8mZrcwhjMRMUhD5NR1R8esPkzIYxX96JiecFoxAXFuz/GpR3+ev4PE1WamHip78wV0vcmPQtp8w== + +cacheable-request@^10.2.8: + version "10.2.14" + resolved "https://registry.yarnpkg.com/cacheable-request/-/cacheable-request-10.2.14.tgz#eb915b665fda41b79652782df3f553449c406b9d" + integrity sha512-zkDT5WAF4hSSoUgyfg5tFIxz8XQK+25W/TLVojJTMKBaxevLBBtLxgqguAuVQB8PVW79FVjHcU+GJ9tVbDZ9mQ== + dependencies: + "@types/http-cache-semantics" "^4.0.2" + get-stream "^6.0.1" + http-cache-semantics "^4.1.1" + keyv "^4.5.3" + mimic-response "^4.0.0" + normalize-url "^8.0.0" + responselike "^3.0.0" + +call-bind@^1.0.2, call-bind@^1.0.5, call-bind@^1.0.6, call-bind@^1.0.7: + version "1.0.7" + resolved "https://registry.yarnpkg.com/call-bind/-/call-bind-1.0.7.tgz#06016599c40c56498c18769d2730be242b6fa3b9" + integrity sha512-GHTSNSYICQ7scH7sZ+M2rFopRoLh8t2bLSW6BbgrtLsahOIB5iyAVJf9GjWK3cYTDaMj4XdBpM1cA6pIS0Kv2w== + dependencies: + es-define-property "^1.0.0" + es-errors "^1.3.0" + function-bind "^1.1.2" + get-intrinsic "^1.2.4" + set-function-length "^1.2.1" + +callsites@^3.0.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/callsites/-/callsites-3.1.0.tgz#b3630abd8943432f54b3f0519238e33cd7df2f73" + integrity sha512-P8BjAsXvZS+VIDUI11hHCQEv74YT67YUi5JJFNWIqL235sBmjX4+qx9Muvls5ivyNENctx46xQLQ3aTuE7ssaQ== + +camel-case@^4.1.2: + version "4.1.2" + resolved "https://registry.yarnpkg.com/camel-case/-/camel-case-4.1.2.tgz#9728072a954f805228225a6deea6b38461e1bd5a" + integrity sha512-gxGWBrTT1JuMx6R+o5PTXMmUnhnVzLQ9SNutD4YqKtI6ap897t3tKECYla6gCWEkplXnlNybEkZg9GEGxKFCgw== + dependencies: + pascal-case "^3.1.2" + tslib "^2.0.3" + +camelcase@^6.2.0: + version "6.3.0" + resolved "https://registry.yarnpkg.com/camelcase/-/camelcase-6.3.0.tgz#5685b95eb209ac9c0c177467778c9c84df58ba9a" + integrity sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA== + +camelcase@^7.0.1: + version "7.0.1" + resolved "https://registry.yarnpkg.com/camelcase/-/camelcase-7.0.1.tgz#f02e50af9fd7782bc8b88a3558c32fd3a388f048" + integrity sha512-xlx1yCK2Oc1APsPXDL2LdlNP6+uu8OCDdhOBSVT279M/S+y75O30C2VuD8T2ogdePBBl7PfPF4504tnLgX3zfw== + +caniuse-api@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/caniuse-api/-/caniuse-api-3.0.0.tgz#5e4d90e2274961d46291997df599e3ed008ee4c0" + integrity sha512-bsTwuIg/BZZK/vreVTYYbSWoe2F+71P7K5QGEX+pT250DZbfU1MQ5prOKpPR+LL6uWKK3KMwMCAS74QB3Um1uw== + dependencies: + browserslist "^4.0.0" + caniuse-lite "^1.0.0" + lodash.memoize "^4.1.2" + lodash.uniq "^4.5.0" + +caniuse-lite@^1.0.0, caniuse-lite@^1.0.30001646: + version "1.0.30001663" + resolved "https://registry.yarnpkg.com/caniuse-lite/-/caniuse-lite-1.0.30001663.tgz#1529a723505e429fdfd49532e9fc42273ba7fed7" + integrity sha512-o9C3X27GLKbLeTYZ6HBOLU1tsAcBZsLis28wrVzddShCS16RujjHp9GDHKZqrB3meE0YjhawvMFsGb/igqiPzA== + +ccount@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/ccount/-/ccount-2.0.1.tgz#17a3bf82302e0870d6da43a01311a8bc02a3ecf5" + integrity sha512-eyrF0jiFpY+3drT6383f1qhkbGsLSifNAjA61IUjZjmLCWjItY6LB9ft9YhoDgwfmclB2zhu51Lc7+95b8NRAg== + +chalk@^2.4.2: + version "2.4.2" + resolved "https://registry.yarnpkg.com/chalk/-/chalk-2.4.2.tgz#cd42541677a54333cf541a49108c1432b44c9424" + integrity sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ== + dependencies: + ansi-styles "^3.2.1" + escape-string-regexp "^1.0.5" + supports-color "^5.3.0" + +chalk@^4.0.0, chalk@^4.1.0, chalk@^4.1.2: + version "4.1.2" + resolved "https://registry.yarnpkg.com/chalk/-/chalk-4.1.2.tgz#aac4e2b7734a740867aeb16bf02aad556a1e7a01" + integrity sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA== + dependencies: + ansi-styles "^4.1.0" + supports-color "^7.1.0" + +chalk@^5.0.1, chalk@^5.2.0: + version "5.3.0" + resolved "https://registry.yarnpkg.com/chalk/-/chalk-5.3.0.tgz#67c20a7ebef70e7f3970a01f90fa210cb6860385" + integrity sha512-dLitG79d+GV1Nb/VYcCDFivJeK1hiukt9QjRNVOsUtTy1rR1YJsmpGGTZ3qJos+uw7WmWF4wUwBd9jxjocFC2w== + +char-regex@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/char-regex/-/char-regex-1.0.2.tgz#d744358226217f981ed58f479b1d6bcc29545dcf" + integrity sha512-kWWXztvZ5SBQV+eRgKFeh8q5sLuZY2+8WUIzlxWVTg+oGwY14qylx1KbKzHd8P6ZYkAg0xyIDU9JMHhyJMZ1jw== + +character-entities-html4@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/character-entities-html4/-/character-entities-html4-2.1.0.tgz#1f1adb940c971a4b22ba39ddca6b618dc6e56b2b" + integrity sha512-1v7fgQRj6hnSwFpq1Eu0ynr/CDEw0rXo2B61qXrLNdHZmPKgb7fqS1a2JwF0rISo9q77jDI8VMEHoApn8qDoZA== + +character-entities-legacy@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/character-entities-legacy/-/character-entities-legacy-3.0.0.tgz#76bc83a90738901d7bc223a9e93759fdd560125b" + integrity sha512-RpPp0asT/6ufRm//AJVwpViZbGM/MkjQFxJccQRHmISF/22NBtsHqAWmL+/pmkPWoIUJdWyeVleTl1wydHATVQ== + +character-entities@^2.0.0: + version "2.0.2" + resolved "https://registry.yarnpkg.com/character-entities/-/character-entities-2.0.2.tgz#2d09c2e72cd9523076ccb21157dff66ad43fcc22" + integrity sha512-shx7oQ0Awen/BRIdkjkvz54PnEEI/EjwXDSIZp86/KKdbafHh1Df/RYGBhn4hbe2+uKC9FnT5UCEdyPz3ai9hQ== + +character-reference-invalid@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/character-reference-invalid/-/character-reference-invalid-2.0.1.tgz#85c66b041e43b47210faf401278abf808ac45cb9" + integrity sha512-iBZ4F4wRbyORVsu0jPV7gXkOsGYjGHPmAyv+HiHG8gi5PtC9KI2j1+v8/tlibRvjoWX027ypmG/n0HtO5t7unw== + +cheerio-select@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/cheerio-select/-/cheerio-select-2.1.0.tgz#4d8673286b8126ca2a8e42740d5e3c4884ae21b4" + integrity sha512-9v9kG0LvzrlcungtnJtpGNxY+fzECQKhK4EGJX2vByejiMX84MFNQw4UxPJl3bFbTMw+Dfs37XaIkCwTZfLh4g== + dependencies: + boolbase "^1.0.0" + css-select "^5.1.0" + css-what "^6.1.0" + domelementtype "^2.3.0" + domhandler "^5.0.3" + domutils "^3.0.1" + +cheerio@1.0.0-rc.12: + version "1.0.0-rc.12" + resolved "https://registry.yarnpkg.com/cheerio/-/cheerio-1.0.0-rc.12.tgz#788bf7466506b1c6bf5fae51d24a2c4d62e47683" + integrity sha512-VqR8m68vM46BNnuZ5NtnGBKIE/DfN0cRIzg9n40EIq9NOv90ayxLBXA8fXC5gquFRGJSTRqBq25Jt2ECLR431Q== + dependencies: + cheerio-select "^2.1.0" + dom-serializer "^2.0.0" + domhandler "^5.0.3" + domutils "^3.0.1" + htmlparser2 "^8.0.1" + parse5 "^7.0.0" + parse5-htmlparser2-tree-adapter "^7.0.0" + +chokidar@^3.4.2, chokidar@^3.5.3: + version "3.6.0" + resolved "https://registry.yarnpkg.com/chokidar/-/chokidar-3.6.0.tgz#197c6cc669ef2a8dc5e7b4d97ee4e092c3eb0d5b" + integrity sha512-7VT13fmjotKpGipCW9JEQAusEPE+Ei8nl6/g4FBAmIm0GOOLMua9NDDo/DWp0ZAxCr3cPq5ZpBqmPAQgDda2Pw== + dependencies: + anymatch "~3.1.2" + braces "~3.0.2" + glob-parent "~5.1.2" + is-binary-path "~2.1.0" + is-glob "~4.0.1" + normalize-path "~3.0.0" + readdirp "~3.6.0" + optionalDependencies: + fsevents "~2.3.2" + +chownr@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/chownr/-/chownr-3.0.0.tgz#9855e64ecd240a9cc4267ce8a4aa5d24a1da15e4" + integrity sha512-+IxzY9BZOQd/XuYPRmrvEVjF/nqj5kgT4kEq7VofrDoM1MxoRjEWkrCC3EtLi59TVawxTAn+orJwFQcrqEN1+g== + +chrome-trace-event@^1.0.2: + version "1.0.4" + resolved "https://registry.yarnpkg.com/chrome-trace-event/-/chrome-trace-event-1.0.4.tgz#05bffd7ff928465093314708c93bdfa9bd1f0f5b" + integrity sha512-rNjApaLzuwaOTjCiT8lSDdGN1APCiqkChLMJxJPWLunPAt5fy8xgU9/jNOchV84wfIxrA0lRQB7oCT8jrn/wrQ== + +ci-info@^3.2.0: + version "3.9.0" + resolved "https://registry.yarnpkg.com/ci-info/-/ci-info-3.9.0.tgz#4279a62028a7b1f262f3473fc9605f5e218c59b4" + integrity sha512-NIxF55hv4nSqQswkAeiOi1r83xy8JldOFDTWiug55KBu9Jnblncd2U6ViHmYgHf01TPZS77NJBhBMKdWj9HQMQ== + +clean-css@^5.2.2, clean-css@^5.3.2, clean-css@~5.3.2: + version "5.3.3" + resolved "https://registry.yarnpkg.com/clean-css/-/clean-css-5.3.3.tgz#b330653cd3bd6b75009cc25c714cae7b93351ccd" + integrity sha512-D5J+kHaVb/wKSFcyyV75uCn8fiY4sV38XJoe4CUyGQ+mOU/fMVYUdH1hJC+CJQ5uY3EnW27SbJYS4X8BiLrAFg== + dependencies: + source-map "~0.6.0" + +clean-stack@^2.0.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/clean-stack/-/clean-stack-2.2.0.tgz#ee8472dbb129e727b31e8a10a427dee9dfe4008b" + integrity sha512-4diC9HaTE+KRAMWhDhrGOECgWZxoevMc5TlkObMqNSsVU62PYzXZ/SMTjzyGAFF1YusgxGcSWTEXBhp0CPwQ1A== + +cli-boxes@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/cli-boxes/-/cli-boxes-3.0.0.tgz#71a10c716feeba005e4504f36329ef0b17cf3145" + integrity sha512-/lzGpEWL/8PfI0BmBOPRwp0c/wFNX1RdUML3jK/RcSBA9T8mZDdQpqYBKtCFTOfQbwPqWEOpjqW+Fnayc0969g== + +cli-table3@^0.6.3: + version "0.6.5" + resolved "https://registry.yarnpkg.com/cli-table3/-/cli-table3-0.6.5.tgz#013b91351762739c16a9567c21a04632e449bf2f" + integrity sha512-+W/5efTR7y5HRD7gACw9yQjqMVvEMLBHmboM/kPWam+H+Hmyrgjh6YncVKK122YZkXrLudzTuAukUw9FnMf7IQ== + dependencies: + string-width "^4.2.0" + optionalDependencies: + "@colors/colors" "1.5.0" + +clone-deep@^4.0.1: + version "4.0.1" + resolved "https://registry.yarnpkg.com/clone-deep/-/clone-deep-4.0.1.tgz#c19fd9bdbbf85942b4fd979c84dcf7d5f07c2387" + integrity sha512-neHB9xuzh/wk0dIHweyAXv2aPGZIVk3pLMe+/RNzINf17fe0OG96QroktYAUm7SM1PBnzTabaLboqqxDyMU+SQ== + dependencies: + is-plain-object "^2.0.4" + kind-of "^6.0.2" + shallow-clone "^3.0.0" + +clsx@^1.2.1: + version "1.2.1" + resolved "https://registry.yarnpkg.com/clsx/-/clsx-1.2.1.tgz#0ddc4a20a549b59c93a4116bb26f5294ca17dc12" + integrity sha512-EcR6r5a8bj6pu3ycsa/E/cKVGuTgZJZdsyUYHOksG/UHIiKfjxzRxYJpyVBwYaQeOvghal9fcc4PidlgzugAQg== + +clsx@^2.0.0: + version "2.1.1" + resolved "https://registry.yarnpkg.com/clsx/-/clsx-2.1.1.tgz#eed397c9fd8bd882bfb18deab7102049a2f32999" + integrity sha512-eYm0QWBtUrBWZWG0d386OGAw16Z995PiOVo2B7bjWSbHedGl5e0ZWaq65kOGgUSNesEIDkB9ISbTg/JK9dhCZA== + +cmd-shim@^6.0.0: + version "6.0.3" + resolved "https://registry.yarnpkg.com/cmd-shim/-/cmd-shim-6.0.3.tgz#c491e9656594ba17ac83c4bd931590a9d6e26033" + integrity sha512-FMabTRlc5t5zjdenF6mS0MBeFZm0XqHqeOkcskKFb/LYCcRQ5fVgLOHVc4Lq9CqABd9zhjwPjMBCJvMCziSVtA== + +code-block-writer@^12.0.0: + version "12.0.0" + resolved "https://registry.yarnpkg.com/code-block-writer/-/code-block-writer-12.0.0.tgz#4dd58946eb4234105aff7f0035977b2afdc2a770" + integrity sha512-q4dMFMlXtKR3XNBHyMHt/3pwYNA69EDk00lloMOaaUMKPUXBw6lpXtbu3MMVG6/uOihGnRDOlkyqsONEUj60+w== + +collapse-white-space@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/collapse-white-space/-/collapse-white-space-2.1.0.tgz#640257174f9f42c740b40f3b55ee752924feefca" + integrity sha512-loKTxY1zCOuG4j9f6EPnuyyYkf58RnhhWTvRoZEokgB+WbdXehfjFviyOVYkqzEWz1Q5kRiZdBYS5SwxbQYwzw== + +color-convert@^1.9.0: + version "1.9.3" + resolved "https://registry.yarnpkg.com/color-convert/-/color-convert-1.9.3.tgz#bb71850690e1f136567de629d2d5471deda4c1e8" + integrity sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg== + dependencies: + color-name "1.1.3" + +color-convert@^2.0.1: + version "2.0.1" + resolved "https://registry.yarnpkg.com/color-convert/-/color-convert-2.0.1.tgz#72d3a68d598c9bdb3af2ad1e84f21d896abd4de3" + integrity sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ== + dependencies: + color-name "~1.1.4" + +color-name@1.1.3: + version "1.1.3" + resolved "https://registry.yarnpkg.com/color-name/-/color-name-1.1.3.tgz#a7d0558bd89c42f795dd42328f740831ca53bc25" + integrity sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw== + +color-name@~1.1.4: + version "1.1.4" + resolved "https://registry.yarnpkg.com/color-name/-/color-name-1.1.4.tgz#c2a09a87acbde69543de6f63fa3995c826c536a2" + integrity sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA== + +colord@^2.9.3: + version "2.9.3" + resolved "https://registry.yarnpkg.com/colord/-/colord-2.9.3.tgz#4f8ce919de456f1d5c1c368c307fe20f3e59fb43" + integrity sha512-jeC1axXpnb0/2nn/Y1LPuLdgXBLH7aDcHu4KEKfqw3CUhX7ZpfBSlPKyqXE6btIgEzfWtrX3/tyBCaCvXvMkOw== + +colorette@^2.0.10: + version "2.0.20" + resolved "https://registry.yarnpkg.com/colorette/-/colorette-2.0.20.tgz#9eb793e6833067f7235902fcd3b09917a000a95a" + integrity sha512-IfEDxwoWIjkeXL1eXcDiow4UbKjhLdq6/EuSVR9GMN7KVH3r9gQ83e73hsz1Nd1T3ijd5xv1wcWRYO+D6kCI2w== + +combine-promises@^1.1.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/combine-promises/-/combine-promises-1.2.0.tgz#5f2e68451862acf85761ded4d9e2af7769c2ca6a" + integrity sha512-VcQB1ziGD0NXrhKxiwyNbCDmRzs/OShMs2GqW2DlU2A/Sd0nQxE1oWDAE5O0ygSx5mgQOn9eIFh7yKPgFRVkPQ== + +combined-stream@^1.0.8: + version "1.0.8" + resolved "https://registry.yarnpkg.com/combined-stream/-/combined-stream-1.0.8.tgz#c3d45a8b34fd730631a110a8a2520682b31d5a7f" + integrity sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg== + dependencies: + delayed-stream "~1.0.0" + +comma-separated-tokens@^2.0.0: + version "2.0.3" + resolved "https://registry.yarnpkg.com/comma-separated-tokens/-/comma-separated-tokens-2.0.3.tgz#4e89c9458acb61bc8fef19f4529973b2392839ee" + integrity sha512-Fu4hJdvzeylCfQPp9SGWidpzrMs7tTrlu6Vb8XGaRGck8QSNZJJp538Wrb60Lax4fPwR64ViY468OIUTbRlGZg== + +commander@7, commander@^7.2.0: + version "7.2.0" + resolved "https://registry.yarnpkg.com/commander/-/commander-7.2.0.tgz#a36cb57d0b501ce108e4d20559a150a391d97ab7" + integrity sha512-QrWXB+ZQSVPmIWIhtEO9H+gwHaMGYiF5ChvoJ+K9ZGHG/sVsa6yiesAD1GC/x46sET00Xlwo1u49RVVVzvcSkw== + +commander@^10.0.0: + version "10.0.1" + resolved "https://registry.yarnpkg.com/commander/-/commander-10.0.1.tgz#881ee46b4f77d1c1dccc5823433aa39b022cbe06" + integrity sha512-y4Mg2tXshplEbSGzx7amzPwKKOCGuoSRP/CjEdwwk0FOGlUbq6lKuoyDZTNZkmxHdJtp54hdfY/JUrdL7Xfdug== + +commander@^11.1.0: + version "11.1.0" + resolved "https://registry.yarnpkg.com/commander/-/commander-11.1.0.tgz#62fdce76006a68e5c1ab3314dc92e800eb83d906" + integrity sha512-yPVavfyCcRhmorC7rWlkHn15b4wDVgVmBA7kV4QVBsF7kv/9TKJAbAXVTxvTnwP8HHKjRCJDClKbciiYS7p0DQ== + +commander@^2.20.0: + version "2.20.3" + resolved "https://registry.yarnpkg.com/commander/-/commander-2.20.3.tgz#fd485e84c03eb4881c20722ba48035e8531aeb33" + integrity sha512-GpVkmM8vF2vQUkj2LvZmD35JxeJOLCwJ9cUkugyk2nuhbv3+mJvpLYYt+0+USMxE+oj+ey/lJEnhZw75x/OMcQ== + +commander@^5.1.0: + version "5.1.0" + resolved "https://registry.yarnpkg.com/commander/-/commander-5.1.0.tgz#46abbd1652f8e059bddaef99bbdcb2ad9cf179ae" + integrity sha512-P0CysNDQ7rtVw4QIQtm+MRxV66vKFSvlsQvGYXZWR3qFU0jlMKHZZZgw8e+8DSah4UDKMqnknRDQz+xuQXQ/Zg== + +commander@^8.3.0: + version "8.3.0" + resolved "https://registry.yarnpkg.com/commander/-/commander-8.3.0.tgz#4837ea1b2da67b9c616a67afbb0fafee567bca66" + integrity sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww== + +common-path-prefix@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/common-path-prefix/-/common-path-prefix-3.0.0.tgz#7d007a7e07c58c4b4d5f433131a19141b29f11e0" + integrity sha512-QE33hToZseCH3jS0qN96O/bSh3kaw/h+Tq7ngyY9eWDUnTlTNUyqfqvCXioLe5Na5jFsL78ra/wuBU4iuEgd4w== + +compressible@~2.0.16: + version "2.0.18" + resolved "https://registry.yarnpkg.com/compressible/-/compressible-2.0.18.tgz#af53cca6b070d4c3c0750fbd77286a6d7cc46fba" + integrity sha512-AF3r7P5dWxL8MxyITRMlORQNaOA2IkAFaTr4k7BUumjPtRpGDTZpl0Pb1XCO6JeDCBdp126Cgs9sMxqSjgYyRg== + dependencies: + mime-db ">= 1.43.0 < 2" + +compression@^1.7.4: + version "1.7.4" + resolved "https://registry.yarnpkg.com/compression/-/compression-1.7.4.tgz#95523eff170ca57c29a0ca41e6fe131f41e5bb8f" + integrity sha512-jaSIDzP9pZVS4ZfQ+TzvtiWhdpFhE2RDHz8QJkpX9SIpLq88VueF5jJw6t+6CUQcAoA6t+x89MLrWAqpfDE8iQ== + dependencies: + accepts "~1.3.5" + bytes "3.0.0" + compressible "~2.0.16" + debug "2.6.9" + on-headers "~1.0.2" + safe-buffer "5.1.2" + vary "~1.1.2" + +concat-map@0.0.1: + version "0.0.1" + resolved "https://registry.yarnpkg.com/concat-map/-/concat-map-0.0.1.tgz#d8a96bd77fd68df7793a73036a3ba0d5405d477b" + integrity sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg== + +config-chain@^1.1.11: + version "1.1.13" + resolved "https://registry.yarnpkg.com/config-chain/-/config-chain-1.1.13.tgz#fad0795aa6a6cdaff9ed1b68e9dff94372c232f4" + integrity sha512-qj+f8APARXHrM0hraqXYb2/bOVSV4PvJQlNZ/DVj0QrmNM2q2euizkeuVckQ57J+W0mRH6Hvi+k50M4Jul2VRQ== + dependencies: + ini "^1.3.4" + proto-list "~1.2.1" + +configstore@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/configstore/-/configstore-6.0.0.tgz#49eca2ebc80983f77e09394a1a56e0aca8235566" + integrity sha512-cD31W1v3GqUlQvbBCGcXmd2Nj9SvLDOP1oQ0YFuLETufzSPaKp11rYBsSOm7rCsW3OnIRAFM3OxRhceaXNYHkA== + dependencies: + dot-prop "^6.0.1" + graceful-fs "^4.2.6" + unique-string "^3.0.0" + write-file-atomic "^3.0.3" + xdg-basedir "^5.0.1" + +confusing-browser-globals@^1.0.10: + version "1.0.11" + resolved "https://registry.yarnpkg.com/confusing-browser-globals/-/confusing-browser-globals-1.0.11.tgz#ae40e9b57cdd3915408a2805ebd3a5585608dc81" + integrity sha512-JsPKdmh8ZkmnHxDk55FZ1TqVLvEQTvoByJZRN9jzI0UjxK/QgAmsphz7PGtqgPieQZ/CQcHWXCR7ATDNhGe+YA== + +connect-history-api-fallback@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/connect-history-api-fallback/-/connect-history-api-fallback-2.0.0.tgz#647264845251a0daf25b97ce87834cace0f5f1c8" + integrity sha512-U73+6lQFmfiNPrYbXqr6kZ1i1wiRqXnp2nhMsINseWXO8lDau0LGEffJ8kQi4EjLZympVgRdvqjAgiZ1tgzDDA== + +consola@^2.15.3: + version "2.15.3" + resolved "https://registry.yarnpkg.com/consola/-/consola-2.15.3.tgz#2e11f98d6a4be71ff72e0bdf07bd23e12cb61550" + integrity sha512-9vAdYbHj6x2fLKC4+oPH0kFzY/orMZyG2Aj+kNylHxKGJ/Ed4dpNyAQYwJOdqO4zdM7XpVHmyejQDcQHrnuXbw== + +content-disposition@0.5.2: + version "0.5.2" + resolved "https://registry.yarnpkg.com/content-disposition/-/content-disposition-0.5.2.tgz#0cf68bb9ddf5f2be7961c3a85178cb85dba78cb4" + integrity sha512-kRGRZw3bLlFISDBgwTSA1TMBFN6J6GWDeubmDE3AF+3+yXL8hTWv8r5rkLbqYXY4RjPk/EzHnClI3zQf1cFmHA== + +content-disposition@0.5.4: + version "0.5.4" + resolved "https://registry.yarnpkg.com/content-disposition/-/content-disposition-0.5.4.tgz#8b82b4efac82512a02bb0b1dcec9d2c5e8eb5bfe" + integrity sha512-FveZTNuGw04cxlAiWbzi6zTAL/lhehaWbTtgluJh4/E95DqMwTmha3KZN1aAWA8cFIhHzMZUvLevkw5Rqk+tSQ== + dependencies: + safe-buffer "5.2.1" + +content-type@~1.0.4, content-type@~1.0.5: + version "1.0.5" + resolved "https://registry.yarnpkg.com/content-type/-/content-type-1.0.5.tgz#8b773162656d1d1086784c8f23a54ce6d73d7918" + integrity sha512-nTjqfcBFEipKdXCv4YDQWCfmcLZKm81ldF0pAopTvyrFGVbcR6P/VAAd5G7N+0tTr8QqiU0tFadD6FK4NtJwOA== + +convert-source-map@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/convert-source-map/-/convert-source-map-2.0.0.tgz#4b560f649fc4e918dd0ab75cf4961e8bc882d82a" + integrity sha512-Kvp459HrV2FEJ1CAsi1Ku+MY3kasH19TFykTz2xWmMeq6bk2NU3XXvfJ+Q61m0xktWwt+1HSYf3JZsTms3aRJg== + +cookie-signature@1.0.6: + version "1.0.6" + resolved "https://registry.yarnpkg.com/cookie-signature/-/cookie-signature-1.0.6.tgz#e303a882b342cc3ee8ca513a79999734dab3ae2c" + integrity sha512-QADzlaHc8icV8I7vbaJXJwod9HWYp8uCqf1xa4OfNu1T7JVxQIrUgOWtHdNDtPiywmFbiS12VjotIXLrKM3orQ== + +cookie@0.6.0, cookie@^0.6.0: + version "0.6.0" + resolved "https://registry.yarnpkg.com/cookie/-/cookie-0.6.0.tgz#2798b04b071b0ecbff0dbb62a505a8efa4e19051" + integrity sha512-U71cyTamuh1CRNCfpGY6to28lxvNwPG4Guz/EVjgf3Jmzv0vlDp1atT9eS5dDjMYHucpHbWns6Lwf3BKz6svdw== + +copy-text-to-clipboard@^3.2.0: + version "3.2.0" + resolved "https://registry.yarnpkg.com/copy-text-to-clipboard/-/copy-text-to-clipboard-3.2.0.tgz#0202b2d9bdae30a49a53f898626dcc3b49ad960b" + integrity sha512-RnJFp1XR/LOBDckxTib5Qjr/PMfkatD0MUCQgdpqS8MdKiNUzBjAQBEN6oUy+jW7LI93BBG3DtMB2KOOKpGs2Q== + +copy-webpack-plugin@^11.0.0: + version "11.0.0" + resolved "https://registry.yarnpkg.com/copy-webpack-plugin/-/copy-webpack-plugin-11.0.0.tgz#96d4dbdb5f73d02dd72d0528d1958721ab72e04a" + integrity sha512-fX2MWpamkW0hZxMEg0+mYnA40LTosOSa5TqZ9GYIBzyJa9C3QUaMPSE2xAi/buNr8u89SfD9wHSQVBzrRa/SOQ== + dependencies: + fast-glob "^3.2.11" + glob-parent "^6.0.1" + globby "^13.1.1" + normalize-path "^3.0.0" + schema-utils "^4.0.0" + serialize-javascript "^6.0.0" + +core-js-compat@^3.37.1, core-js-compat@^3.38.0: + version "3.38.1" + resolved "https://registry.yarnpkg.com/core-js-compat/-/core-js-compat-3.38.1.tgz#2bc7a298746ca5a7bcb9c164bcb120f2ebc09a09" + integrity sha512-JRH6gfXxGmrzF3tZ57lFx97YARxCXPaMzPo6jELZhv88pBH5VXpQ+y0znKGlFnzuaihqhLbefxSJxWJMPtfDzw== + dependencies: + browserslist "^4.23.3" + +core-js-pure@^3.30.2: + version "3.38.1" + resolved "https://registry.yarnpkg.com/core-js-pure/-/core-js-pure-3.38.1.tgz#e8534062a54b7221344884ba9b52474be495ada3" + integrity sha512-BY8Etc1FZqdw1glX0XNOq2FDwfrg/VGqoZOZCdaL+UmdaqDwQwYXkMJT4t6In+zfEfOJDcM9T0KdbBeJg8KKCQ== + +core-js@^3.31.1: + version "3.38.1" + resolved "https://registry.yarnpkg.com/core-js/-/core-js-3.38.1.tgz#aa375b79a286a670388a1a363363d53677c0383e" + integrity sha512-OP35aUorbU3Zvlx7pjsFdu1rGNnD4pgw/CWoYzRY3t2EzoVT7shKHY1dlAy3f41cGIO7ZDPQimhGFTlEYkG/Hw== + +core-util-is@~1.0.0: + version "1.0.3" + resolved "https://registry.yarnpkg.com/core-util-is/-/core-util-is-1.0.3.tgz#a6042d3634c2b27e9328f837b965fac83808db85" + integrity sha512-ZQBvi1DcpJ4GDqanjucZ2Hj3wEO5pZDS89BWbkcrvdxksJorwUDDZamX9ldFkp9aw2lmBDLgkObEA4DWNJ9FYQ== + +cose-base@^1.0.0: + version "1.0.3" + resolved "https://registry.yarnpkg.com/cose-base/-/cose-base-1.0.3.tgz#650334b41b869578a543358b80cda7e0abe0a60a" + integrity sha512-s9whTXInMSgAp/NVXVNuVxVKzGH2qck3aQlVHxDCdAEPgtMKwc4Wq6/QKhgdEdgbLSi9rBTAcPoRa6JpiG4ksg== + dependencies: + layout-base "^1.0.0" + +cosmiconfig@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/cosmiconfig/-/cosmiconfig-6.0.0.tgz#da4fee853c52f6b1e6935f41c1a2fc50bd4a9982" + integrity sha512-xb3ZL6+L8b9JLLCx3ZdoZy4+2ECphCMo2PwqgP1tlfVq6M6YReyzBJtvWWtbDSpNr9hn96pkCiZqUcFEc+54Qg== + dependencies: + "@types/parse-json" "^4.0.0" + import-fresh "^3.1.0" + parse-json "^5.0.0" + path-type "^4.0.0" + yaml "^1.7.2" + +cosmiconfig@^8.1.3, cosmiconfig@^8.3.5: + version "8.3.6" + resolved "https://registry.yarnpkg.com/cosmiconfig/-/cosmiconfig-8.3.6.tgz#060a2b871d66dba6c8538ea1118ba1ac16f5fae3" + integrity sha512-kcZ6+W5QzcJ3P1Mt+83OUv/oHFqZHIx8DuxG6eZ5RGMERoLqp4BuGjhHLYGK+Kf5XVkQvqBSmAy/nGWN3qDgEA== + dependencies: + import-fresh "^3.3.0" + js-yaml "^4.1.0" + parse-json "^5.2.0" + path-type "^4.0.0" + +cross-spawn@^7.0.0, cross-spawn@^7.0.2, cross-spawn@^7.0.3: + version "7.0.3" + resolved "https://registry.yarnpkg.com/cross-spawn/-/cross-spawn-7.0.3.tgz#f73a85b9d5d41d045551c177e2882d4ac85728a6" + integrity sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w== + dependencies: + path-key "^3.1.0" + shebang-command "^2.0.0" + which "^2.0.1" + +crypto-random-string@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/crypto-random-string/-/crypto-random-string-4.0.0.tgz#5a3cc53d7dd86183df5da0312816ceeeb5bb1fc2" + integrity sha512-x8dy3RnvYdlUcPOjkEHqozhiwzKNSq7GcPuXFbnyMOCHxX8V3OgIg/pYuabl2sbUPfIJaeAQB7PMOK8DFIdoRA== + dependencies: + type-fest "^1.0.1" + +css-declaration-sorter@^7.2.0: + version "7.2.0" + resolved "https://registry.yarnpkg.com/css-declaration-sorter/-/css-declaration-sorter-7.2.0.tgz#6dec1c9523bc4a643e088aab8f09e67a54961024" + integrity sha512-h70rUM+3PNFuaBDTLe8wF/cdWu+dOZmb7pJt8Z2sedYbAcQVQV/tEchueg3GWxwqS0cxtbxmaHEdkNACqcvsow== + +css-loader@^6.8.1: + version "6.11.0" + resolved "https://registry.yarnpkg.com/css-loader/-/css-loader-6.11.0.tgz#33bae3bf6363d0a7c2cf9031c96c744ff54d85ba" + integrity sha512-CTJ+AEQJjq5NzLga5pE39qdiSV56F8ywCIsqNIRF0r7BDgWsN25aazToqAFg7ZrtA/U016xudB3ffgweORxX7g== + dependencies: + icss-utils "^5.1.0" + postcss "^8.4.33" + postcss-modules-extract-imports "^3.1.0" + postcss-modules-local-by-default "^4.0.5" + postcss-modules-scope "^3.2.0" + postcss-modules-values "^4.0.0" + postcss-value-parser "^4.2.0" + semver "^7.5.4" + +css-minimizer-webpack-plugin@^5.0.1: + version "5.0.1" + resolved "https://registry.yarnpkg.com/css-minimizer-webpack-plugin/-/css-minimizer-webpack-plugin-5.0.1.tgz#33effe662edb1a0bf08ad633c32fa75d0f7ec565" + integrity sha512-3caImjKFQkS+ws1TGcFn0V1HyDJFq1Euy589JlD6/3rV2kj+w7r5G9WDMgSHvpvXHNZ2calVypZWuEDQd9wfLg== + dependencies: + "@jridgewell/trace-mapping" "^0.3.18" + cssnano "^6.0.1" + jest-worker "^29.4.3" + postcss "^8.4.24" + schema-utils "^4.0.1" + serialize-javascript "^6.0.1" + +css-select@^4.1.3: + version "4.3.0" + resolved "https://registry.yarnpkg.com/css-select/-/css-select-4.3.0.tgz#db7129b2846662fd8628cfc496abb2b59e41529b" + integrity sha512-wPpOYtnsVontu2mODhA19JrqWxNsfdatRKd64kmpRbQgh1KtItko5sTnEpPdpSaJszTOhEMlF/RPz28qj4HqhQ== + dependencies: + boolbase "^1.0.0" + css-what "^6.0.1" + domhandler "^4.3.1" + domutils "^2.8.0" + nth-check "^2.0.1" + +css-select@^5.1.0: + version "5.1.0" + resolved "https://registry.yarnpkg.com/css-select/-/css-select-5.1.0.tgz#b8ebd6554c3637ccc76688804ad3f6a6fdaea8a6" + integrity sha512-nwoRF1rvRRnnCqqY7updORDsuqKzqYJ28+oSMaJMMgOauh3fvwHqMS7EZpIPqK8GL+g9mKxF1vP/ZjSeNjEVHg== + dependencies: + boolbase "^1.0.0" + css-what "^6.1.0" + domhandler "^5.0.2" + domutils "^3.0.1" + nth-check "^2.0.1" + +css-tree@^2.3.1: + version "2.3.1" + resolved "https://registry.yarnpkg.com/css-tree/-/css-tree-2.3.1.tgz#10264ce1e5442e8572fc82fbe490644ff54b5c20" + integrity sha512-6Fv1DV/TYw//QF5IzQdqsNDjx/wc8TrMBZsqjL9eW01tWb7R7k/mq+/VXfJCl7SoD5emsJop9cOByJZfs8hYIw== + dependencies: + mdn-data "2.0.30" + source-map-js "^1.0.1" + +css-tree@~2.2.0: + version "2.2.1" + resolved "https://registry.yarnpkg.com/css-tree/-/css-tree-2.2.1.tgz#36115d382d60afd271e377f9c5f67d02bd48c032" + integrity sha512-OA0mILzGc1kCOCSJerOeqDxDQ4HOh+G8NbOJFOTgOCzpw7fCBubk0fEyxp8AgOL/jvLgYA/uV0cMbe43ElF1JA== + dependencies: + mdn-data "2.0.28" + source-map-js "^1.0.1" + +css-what@^6.0.1, css-what@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/css-what/-/css-what-6.1.0.tgz#fb5effcf76f1ddea2c81bdfaa4de44e79bac70f4" + integrity sha512-HTUrgRJ7r4dsZKU6GjmpfRK1O76h97Z8MfS1G0FozR+oF2kG6Vfe8JE6zwrkbxigziPHinCJ+gCPjA9EaBDtRw== + +cssesc@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/cssesc/-/cssesc-3.0.0.tgz#37741919903b868565e1c09ea747445cd18983ee" + integrity sha512-/Tb/JcjK111nNScGob5MNtsntNM1aCNUDipB/TkwZFhyDrrE47SOx/18wF2bbjgc3ZzCSKW1T5nt5EbFoAz/Vg== + +cssnano-preset-advanced@^6.1.2: + version "6.1.2" + resolved "https://registry.yarnpkg.com/cssnano-preset-advanced/-/cssnano-preset-advanced-6.1.2.tgz#82b090872b8f98c471f681d541c735acf8b94d3f" + integrity sha512-Nhao7eD8ph2DoHolEzQs5CfRpiEP0xa1HBdnFZ82kvqdmbwVBUr2r1QuQ4t1pi+D1ZpqpcO4T+wy/7RxzJ/WPQ== + dependencies: + autoprefixer "^10.4.19" + browserslist "^4.23.0" + cssnano-preset-default "^6.1.2" + postcss-discard-unused "^6.0.5" + postcss-merge-idents "^6.0.3" + postcss-reduce-idents "^6.0.3" + postcss-zindex "^6.0.2" + +cssnano-preset-default@^6.1.2: + version "6.1.2" + resolved "https://registry.yarnpkg.com/cssnano-preset-default/-/cssnano-preset-default-6.1.2.tgz#adf4b89b975aa775f2750c89dbaf199bbd9da35e" + integrity sha512-1C0C+eNaeN8OcHQa193aRgYexyJtU8XwbdieEjClw+J9d94E41LwT6ivKH0WT+fYwYWB0Zp3I3IZ7tI/BbUbrg== + dependencies: + browserslist "^4.23.0" + css-declaration-sorter "^7.2.0" + cssnano-utils "^4.0.2" + postcss-calc "^9.0.1" + postcss-colormin "^6.1.0" + postcss-convert-values "^6.1.0" + postcss-discard-comments "^6.0.2" + postcss-discard-duplicates "^6.0.3" + postcss-discard-empty "^6.0.3" + postcss-discard-overridden "^6.0.2" + postcss-merge-longhand "^6.0.5" + postcss-merge-rules "^6.1.1" + postcss-minify-font-values "^6.1.0" + postcss-minify-gradients "^6.0.3" + postcss-minify-params "^6.1.0" + postcss-minify-selectors "^6.0.4" + postcss-normalize-charset "^6.0.2" + postcss-normalize-display-values "^6.0.2" + postcss-normalize-positions "^6.0.2" + postcss-normalize-repeat-style "^6.0.2" + postcss-normalize-string "^6.0.2" + postcss-normalize-timing-functions "^6.0.2" + postcss-normalize-unicode "^6.1.0" + postcss-normalize-url "^6.0.2" + postcss-normalize-whitespace "^6.0.2" + postcss-ordered-values "^6.0.2" + postcss-reduce-initial "^6.1.0" + postcss-reduce-transforms "^6.0.2" + postcss-svgo "^6.0.3" + postcss-unique-selectors "^6.0.4" + +cssnano-utils@^4.0.2: + version "4.0.2" + resolved "https://registry.yarnpkg.com/cssnano-utils/-/cssnano-utils-4.0.2.tgz#56f61c126cd0f11f2eef1596239d730d9fceff3c" + integrity sha512-ZR1jHg+wZ8o4c3zqf1SIUSTIvm/9mU343FMR6Obe/unskbvpGhZOo1J6d/r8D1pzkRQYuwbcH3hToOuoA2G7oQ== + +cssnano@^6.0.1, cssnano@^6.1.2: + version "6.1.2" + resolved "https://registry.yarnpkg.com/cssnano/-/cssnano-6.1.2.tgz#4bd19e505bd37ee7cf0dc902d3d869f6d79c66b8" + integrity sha512-rYk5UeX7VAM/u0lNqewCdasdtPK81CgX8wJFLEIXHbV2oldWRgJAsZrdhRXkV1NJzA2g850KiFm9mMU2HxNxMA== + dependencies: + cssnano-preset-default "^6.1.2" + lilconfig "^3.1.1" + +csso@^5.0.5: + version "5.0.5" + resolved "https://registry.yarnpkg.com/csso/-/csso-5.0.5.tgz#f9b7fe6cc6ac0b7d90781bb16d5e9874303e2ca6" + integrity sha512-0LrrStPOdJj+SPCCrGhzryycLjwcgUSHBtxNA8aIDxf0GLsRh1cKYhB00Gd1lDOS4yGH69+SNn13+TWbVHETFQ== + dependencies: + css-tree "~2.2.0" + +cssstyle@^4.1.0: + version "4.1.0" + resolved "https://registry.yarnpkg.com/cssstyle/-/cssstyle-4.1.0.tgz#161faee382af1bafadb6d3867a92a19bcb4aea70" + integrity sha512-h66W1URKpBS5YMI/V8PyXvTMFT8SupJ1IzoIV8IeBC/ji8WVmrO8dGlTi+2dh6whmdk6BiKJLD/ZBkhWbcg6nA== + dependencies: + rrweb-cssom "^0.7.1" + +csstype@^3.0.2: + version "3.1.3" + resolved "https://registry.yarnpkg.com/csstype/-/csstype-3.1.3.tgz#d80ff294d114fb0e6ac500fbf85b60137d7eff81" + integrity sha512-M1uQkMl8rQK/szD0LNhtqxIPLpimGm8sOBwU7lLnCpSbTyY3yeU1Vc7l4KT5zT4s/yOxHH5O7tIuuLOCnLADRw== + +cytoscape-cose-bilkent@^4.1.0: + version "4.1.0" + resolved "https://registry.yarnpkg.com/cytoscape-cose-bilkent/-/cytoscape-cose-bilkent-4.1.0.tgz#762fa121df9930ffeb51a495d87917c570ac209b" + integrity sha512-wgQlVIUJF13Quxiv5e1gstZ08rnZj2XaLHGoFMYXz7SkNfCDOOteKBE6SYRfA9WxxI/iBc3ajfDoc6hb/MRAHQ== + dependencies: + cose-base "^1.0.0" + +cytoscape@3.28.1, cytoscape@^3.28.1: + version "3.28.1" + resolved "https://registry.yarnpkg.com/cytoscape/-/cytoscape-3.28.1.tgz#f32c3e009bdf32d47845a16a4cd2be2bbc01baf7" + integrity sha512-xyItz4O/4zp9/239wCcH8ZcFuuZooEeF8KHRmzjDfGdXsj3OG9MFSMA0pJE0uX3uCN/ygof6hHf4L7lst+JaDg== + dependencies: + heap "^0.2.6" + lodash "^4.17.21" + +"d3-array@1 - 2": + version "2.12.1" + resolved "https://registry.yarnpkg.com/d3-array/-/d3-array-2.12.1.tgz#e20b41aafcdffdf5d50928004ececf815a465e81" + integrity sha512-B0ErZK/66mHtEsR1TkPEEkwdy+WDesimkM5gpZr5Dsg54BiTA5RXtYW5qTLIAcekaS9xfZrzBLF/OAkB3Qn1YQ== + dependencies: + internmap "^1.0.0" + +"d3-array@2 - 3", "d3-array@2.10.0 - 3", "d3-array@2.5.0 - 3", d3-array@3, d3-array@^3.2.0: + version "3.2.4" + resolved "https://registry.yarnpkg.com/d3-array/-/d3-array-3.2.4.tgz#15fec33b237f97ac5d7c986dc77da273a8ed0bb5" + integrity sha512-tdQAmyA18i4J7wprpYq8ClcxZy3SC31QMeByyCFyRt7BVHdREQZ5lpzoe5mFEYZUWe+oq8HBvk9JjpibyEV4Jg== + dependencies: + internmap "1 - 2" + +d3-axis@3: + version "3.0.0" + resolved "https://registry.yarnpkg.com/d3-axis/-/d3-axis-3.0.0.tgz#c42a4a13e8131d637b745fc2973824cfeaf93322" + integrity sha512-IH5tgjV4jE/GhHkRV0HiVYPDtvfjHQlQfJHs0usq7M30XcSBvOotpmH1IgkcXsO/5gEQZD43B//fc7SRT5S+xw== + +d3-brush@3: + version "3.0.0" + resolved "https://registry.yarnpkg.com/d3-brush/-/d3-brush-3.0.0.tgz#6f767c4ed8dcb79de7ede3e1c0f89e63ef64d31c" + integrity sha512-ALnjWlVYkXsVIGlOsuWH1+3udkYFI48Ljihfnh8FZPF2QS9o+PzGLBslO0PjzVoHLZ2KCVgAM8NVkXPJB2aNnQ== + dependencies: + d3-dispatch "1 - 3" + d3-drag "2 - 3" + d3-interpolate "1 - 3" + d3-selection "3" + d3-transition "3" + +d3-chord@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-chord/-/d3-chord-3.0.1.tgz#d156d61f485fce8327e6abf339cb41d8cbba6966" + integrity sha512-VE5S6TNa+j8msksl7HwjxMHDM2yNK3XCkusIlpX5kwauBfXuyLAtNg9jCp/iHH61tgI4sb6R/EIMWCqEIdjT/g== + dependencies: + d3-path "1 - 3" + +"d3-color@1 - 3", d3-color@3: + version "3.1.0" + resolved "https://registry.yarnpkg.com/d3-color/-/d3-color-3.1.0.tgz#395b2833dfac71507f12ac2f7af23bf819de24e2" + integrity sha512-zg/chbXyeBtMQ1LbD/WSoW2DpC3I0mpmPdW+ynRTj/x2DAWYrIY7qeZIHidozwV24m4iavr15lNwIwLxRmOxhA== + +d3-contour@4: + version "4.0.2" + resolved "https://registry.yarnpkg.com/d3-contour/-/d3-contour-4.0.2.tgz#bb92063bc8c5663acb2422f99c73cbb6c6ae3bcc" + integrity sha512-4EzFTRIikzs47RGmdxbeUvLWtGedDUNkTcmzoeyg4sP/dvCexO47AaQL7VKy/gul85TOxw+IBgA8US2xwbToNA== + dependencies: + d3-array "^3.2.0" + +d3-delaunay@6: + version "6.0.4" + resolved "https://registry.yarnpkg.com/d3-delaunay/-/d3-delaunay-6.0.4.tgz#98169038733a0a5babbeda55054f795bb9e4a58b" + integrity sha512-mdjtIZ1XLAM8bm/hx3WwjfHt6Sggek7qH043O8KEjDXN40xi3vx/6pYSVTwLjEgiXQTbvaouWKynLBiUZ6SK6A== + dependencies: + delaunator "5" + +"d3-dispatch@1 - 3", d3-dispatch@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-dispatch/-/d3-dispatch-3.0.1.tgz#5fc75284e9c2375c36c839411a0cf550cbfc4d5e" + integrity sha512-rzUyPU/S7rwUflMyLc1ETDeBj0NRuHKKAcvukozwhshr6g6c5d8zh4c2gQjY2bZ0dXeGLWc1PF174P2tVvKhfg== + +"d3-drag@2 - 3", d3-drag@3: + version "3.0.0" + resolved "https://registry.yarnpkg.com/d3-drag/-/d3-drag-3.0.0.tgz#994aae9cd23c719f53b5e10e3a0a6108c69607ba" + integrity sha512-pWbUJLdETVA8lQNJecMxoXfH6x+mO2UQo8rSmZ+QqxcbyA3hfeprFgIT//HW2nlHChWeIIMwS2Fq+gEARkhTkg== + dependencies: + d3-dispatch "1 - 3" + d3-selection "3" + +"d3-dsv@1 - 3", d3-dsv@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-dsv/-/d3-dsv-3.0.1.tgz#c63af978f4d6a0d084a52a673922be2160789b73" + integrity sha512-UG6OvdI5afDIFP9w4G0mNq50dSOsXHJaRE8arAS5o9ApWnIElp8GZw1Dun8vP8OyHOZ/QJUKUJwxiiCCnUwm+Q== + dependencies: + commander "7" + iconv-lite "0.6" + rw "1" + +"d3-ease@1 - 3", d3-ease@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-ease/-/d3-ease-3.0.1.tgz#9658ac38a2140d59d346160f1f6c30fda0bd12f4" + integrity sha512-wR/XK3D3XcLIZwpbvQwQ5fK+8Ykds1ip7A2Txe0yxncXSdq1L9skcG7blcedkOX+ZcgxGAmLX1FrRGbADwzi0w== + +d3-fetch@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-fetch/-/d3-fetch-3.0.1.tgz#83141bff9856a0edb5e38de89cdcfe63d0a60a22" + integrity sha512-kpkQIM20n3oLVBKGg6oHrUchHM3xODkTzjMoj7aWQFq5QEM+R6E4WkzT5+tojDY7yjez8KgCBRoj4aEr99Fdqw== + dependencies: + d3-dsv "1 - 3" + +d3-force@3: + version "3.0.0" + resolved "https://registry.yarnpkg.com/d3-force/-/d3-force-3.0.0.tgz#3e2ba1a61e70888fe3d9194e30d6d14eece155c4" + integrity sha512-zxV/SsA+U4yte8051P4ECydjD/S+qeYtnaIyAs9tgHCqfguma/aAQDjo85A9Z6EKhBirHRJHXIgJUlffT4wdLg== + dependencies: + d3-dispatch "1 - 3" + d3-quadtree "1 - 3" + d3-timer "1 - 3" + +"d3-format@1 - 3", d3-format@3: + version "3.1.0" + resolved "https://registry.yarnpkg.com/d3-format/-/d3-format-3.1.0.tgz#9260e23a28ea5cb109e93b21a06e24e2ebd55641" + integrity sha512-YyUI6AEuY/Wpt8KWLgZHsIU86atmikuoOmCfommt0LYHiQSPjvX2AcFc38PX0CBpr2RCyZhjex+NS/LPOv6YqA== + +d3-geo@3: + version "3.1.1" + resolved "https://registry.yarnpkg.com/d3-geo/-/d3-geo-3.1.1.tgz#6027cf51246f9b2ebd64f99e01dc7c3364033a4d" + integrity sha512-637ln3gXKXOwhalDzinUgY83KzNWZRKbYubaG+fGVuc/dxO64RRljtCTnf5ecMyE1RIdtqpkVcq0IbtU2S8j2Q== + dependencies: + d3-array "2.5.0 - 3" + +d3-hierarchy@3: + version "3.1.2" + resolved "https://registry.yarnpkg.com/d3-hierarchy/-/d3-hierarchy-3.1.2.tgz#b01cd42c1eed3d46db77a5966cf726f8c09160c6" + integrity sha512-FX/9frcub54beBdugHjDCdikxThEqjnR93Qt7PvQTOHxyiNCAlvMrHhclk3cD5VeAaq9fxmfRp+CnWw9rEMBuA== + +"d3-interpolate@1 - 3", "d3-interpolate@1.2.0 - 3", d3-interpolate@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-interpolate/-/d3-interpolate-3.0.1.tgz#3c47aa5b32c5b3dfb56ef3fd4342078a632b400d" + integrity sha512-3bYs1rOD33uo8aqJfKP3JWPAibgw8Zm2+L9vBKEHJ2Rg+viTR7o5Mmv5mZcieN+FRYaAOWX5SJATX6k1PWz72g== + dependencies: + d3-color "1 - 3" + +d3-path@1: + version "1.0.9" + resolved "https://registry.yarnpkg.com/d3-path/-/d3-path-1.0.9.tgz#48c050bb1fe8c262493a8caf5524e3e9591701cf" + integrity sha512-VLaYcn81dtHVTjEHd8B+pbe9yHWpXKZUC87PzoFmsFrJqgFwDe/qxfp5MlfsfM1V5E/iVt0MmEbWQ7FVIXh/bg== + +"d3-path@1 - 3", d3-path@3, d3-path@^3.1.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/d3-path/-/d3-path-3.1.0.tgz#22df939032fb5a71ae8b1800d61ddb7851c42526" + integrity sha512-p3KP5HCf/bvjBSSKuXid6Zqijx7wIfNW+J/maPs+iwR35at5JCbLUT0LzF1cnjbCHWhqzQTIN2Jpe8pRebIEFQ== + +d3-polygon@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-polygon/-/d3-polygon-3.0.1.tgz#0b45d3dd1c48a29c8e057e6135693ec80bf16398" + integrity sha512-3vbA7vXYwfe1SYhED++fPUQlWSYTTGmFmQiany/gdbiWgU/iEyQzyymwL9SkJjFFuCS4902BSzewVGsHHmHtXg== + +"d3-quadtree@1 - 3", d3-quadtree@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-quadtree/-/d3-quadtree-3.0.1.tgz#6dca3e8be2b393c9a9d514dabbd80a92deef1a4f" + integrity sha512-04xDrxQTDTCFwP5H6hRhsRcb9xxv2RzkcsygFzmkSIOJy3PeRJP7sNk3VRIbKXcog561P9oU0/rVH6vDROAgUw== + +d3-random@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-random/-/d3-random-3.0.1.tgz#d4926378d333d9c0bfd1e6fa0194d30aebaa20f4" + integrity sha512-FXMe9GfxTxqd5D6jFsQ+DJ8BJS4E/fT5mqqdjovykEB2oFbTMDVdg1MGFxfQW+FBOGoB++k8swBrgwSHT1cUXQ== + +d3-sankey@^0.12.3: + version "0.12.3" + resolved "https://registry.yarnpkg.com/d3-sankey/-/d3-sankey-0.12.3.tgz#b3c268627bd72e5d80336e8de6acbfec9d15d01d" + integrity sha512-nQhsBRmM19Ax5xEIPLMY9ZmJ/cDvd1BG3UVvt5h3WRxKg5zGRbvnteTyWAbzeSvlh3tW7ZEmq4VwR5mB3tutmQ== + dependencies: + d3-array "1 - 2" + d3-shape "^1.2.0" + +d3-scale-chromatic@3: + version "3.1.0" + resolved "https://registry.yarnpkg.com/d3-scale-chromatic/-/d3-scale-chromatic-3.1.0.tgz#34c39da298b23c20e02f1a4b239bd0f22e7f1314" + integrity sha512-A3s5PWiZ9YCXFye1o246KoscMWqf8BsD9eRiJ3He7C9OBaxKhAd5TFCdEx/7VbKtxxTsu//1mMJFrEt572cEyQ== + dependencies: + d3-color "1 - 3" + d3-interpolate "1 - 3" + +d3-scale@4: + version "4.0.2" + resolved "https://registry.yarnpkg.com/d3-scale/-/d3-scale-4.0.2.tgz#82b38e8e8ff7080764f8dcec77bd4be393689396" + integrity sha512-GZW464g1SH7ag3Y7hXjf8RoUuAFIqklOAq3MRl4OaWabTFJY9PN/E1YklhXLh+OQ3fM9yS2nOkCoS+WLZ6kvxQ== + dependencies: + d3-array "2.10.0 - 3" + d3-format "1 - 3" + d3-interpolate "1.2.0 - 3" + d3-time "2.1.1 - 3" + d3-time-format "2 - 4" + +"d3-selection@2 - 3", d3-selection@3: + version "3.0.0" + resolved "https://registry.yarnpkg.com/d3-selection/-/d3-selection-3.0.0.tgz#c25338207efa72cc5b9bd1458a1a41901f1e1b31" + integrity sha512-fmTRWbNMmsmWq6xJV8D19U/gw/bwrHfNXxrIN+HfZgnzqTHp9jOmKMhsTUjXOJnZOdZY9Q28y4yebKzqDKlxlQ== + +d3-shape@3: + version "3.2.0" + resolved "https://registry.yarnpkg.com/d3-shape/-/d3-shape-3.2.0.tgz#a1a839cbd9ba45f28674c69d7f855bcf91dfc6a5" + integrity sha512-SaLBuwGm3MOViRq2ABk3eLoxwZELpH6zhl3FbAoJ7Vm1gofKx6El1Ib5z23NUEhF9AsGl7y+dzLe5Cw2AArGTA== + dependencies: + d3-path "^3.1.0" + +d3-shape@^1.2.0: + version "1.3.7" + resolved "https://registry.yarnpkg.com/d3-shape/-/d3-shape-1.3.7.tgz#df63801be07bc986bc54f63789b4fe502992b5d7" + integrity sha512-EUkvKjqPFUAZyOlhY5gzCxCeI0Aep04LwIRpsZ/mLFelJiUfnK56jo5JMDSE7yyP2kLSb6LtF+S5chMk7uqPqw== + dependencies: + d3-path "1" + +"d3-time-format@2 - 4", d3-time-format@4: + version "4.1.0" + resolved "https://registry.yarnpkg.com/d3-time-format/-/d3-time-format-4.1.0.tgz#7ab5257a5041d11ecb4fe70a5c7d16a195bb408a" + integrity sha512-dJxPBlzC7NugB2PDLwo9Q8JiTR3M3e4/XANkreKSUxF8vvXKqm1Yfq4Q5dl8budlunRVlUUaDUgFt7eA8D6NLg== + dependencies: + d3-time "1 - 3" + +"d3-time@1 - 3", "d3-time@2.1.1 - 3", d3-time@3: + version "3.1.0" + resolved "https://registry.yarnpkg.com/d3-time/-/d3-time-3.1.0.tgz#9310db56e992e3c0175e1ef385e545e48a9bb5c7" + integrity sha512-VqKjzBLejbSMT4IgbmVgDjpkYrNWUYJnbCGo874u7MMKIWsILRX+OpX/gTk8MqjpT1A/c6HY2dCA77ZN0lkQ2Q== + dependencies: + d3-array "2 - 3" + +"d3-timer@1 - 3", d3-timer@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-timer/-/d3-timer-3.0.1.tgz#6284d2a2708285b1abb7e201eda4380af35e63b0" + integrity sha512-ndfJ/JxxMd3nw31uyKoY2naivF+r29V+Lc0svZxe1JvvIRmi8hUsrMvdOwgS1o6uBHmiz91geQ0ylPP0aj1VUA== + +"d3-transition@2 - 3", d3-transition@3: + version "3.0.1" + resolved "https://registry.yarnpkg.com/d3-transition/-/d3-transition-3.0.1.tgz#6869fdde1448868077fdd5989200cb61b2a1645f" + integrity sha512-ApKvfjsSR6tg06xrL434C0WydLr7JewBB3V+/39RMHsaXTOG0zmt/OAXeng5M5LBm0ojmxJrpomQVZ1aPvBL4w== + dependencies: + d3-color "1 - 3" + d3-dispatch "1 - 3" + d3-ease "1 - 3" + d3-interpolate "1 - 3" + d3-timer "1 - 3" + +d3-zoom@3: + version "3.0.0" + resolved "https://registry.yarnpkg.com/d3-zoom/-/d3-zoom-3.0.0.tgz#d13f4165c73217ffeaa54295cd6969b3e7aee8f3" + integrity sha512-b8AmV3kfQaqWAuacbPuNbL6vahnOJflOhexLzMMNLga62+/nh0JzvJ0aO/5a5MVgUFGS7Hu1P9P03o3fJkDCyw== + dependencies: + d3-dispatch "1 - 3" + d3-drag "2 - 3" + d3-interpolate "1 - 3" + d3-selection "2 - 3" + d3-transition "2 - 3" + +d3@^7.4.0, d3@^7.8.2: + version "7.9.0" + resolved "https://registry.yarnpkg.com/d3/-/d3-7.9.0.tgz#579e7acb3d749caf8860bd1741ae8d371070cd5d" + integrity sha512-e1U46jVP+w7Iut8Jt8ri1YsPOvFpg46k+K8TpCb0P+zjCkjkPnV7WzfDJzMHy1LnA+wj5pLT1wjO901gLXeEhA== + dependencies: + d3-array "3" + d3-axis "3" + d3-brush "3" + d3-chord "3" + d3-color "3" + d3-contour "4" + d3-delaunay "6" + d3-dispatch "3" + d3-drag "3" + d3-dsv "3" + d3-ease "3" + d3-fetch "3" + d3-force "3" + d3-format "3" + d3-geo "3" + d3-hierarchy "3" + d3-interpolate "3" + d3-path "3" + d3-polygon "3" + d3-quadtree "3" + d3-random "3" + d3-scale "4" + d3-scale-chromatic "3" + d3-selection "3" + d3-shape "3" + d3-time "3" + d3-time-format "4" + d3-timer "3" + d3-transition "3" + d3-zoom "3" + +dagre-d3-es@7.0.10: + version "7.0.10" + resolved "https://registry.yarnpkg.com/dagre-d3-es/-/dagre-d3-es-7.0.10.tgz#19800d4be674379a3cd8c86a8216a2ac6827cadc" + integrity sha512-qTCQmEhcynucuaZgY5/+ti3X/rnszKZhEQH/ZdWdtP1tA/y3VoHJzcVrO9pjjJCNpigfscAtoUB5ONcd2wNn0A== + dependencies: + d3 "^7.8.2" + lodash-es "^4.17.21" + +damerau-levenshtein@^1.0.8: + version "1.0.8" + resolved "https://registry.yarnpkg.com/damerau-levenshtein/-/damerau-levenshtein-1.0.8.tgz#b43d286ccbd36bc5b2f7ed41caf2d0aba1f8a6e7" + integrity sha512-sdQSFB7+llfUcQHUQO3+B8ERRj0Oa4w9POWMI/puGtuf7gFywGmkaLCElnudfTiKZV+NvHqL0ifzdrI8Ro7ESA== + +data-uri-to-buffer@^4.0.0: + version "4.0.1" + resolved "https://registry.yarnpkg.com/data-uri-to-buffer/-/data-uri-to-buffer-4.0.1.tgz#d8feb2b2881e6a4f58c2e08acfd0e2834e26222e" + integrity sha512-0R9ikRb668HB7QDxT1vkpuUBtqc53YyAwMwGeUFKRojY/NWKvdZ+9UYtRfGmhqNbRkTSVpMbmyhXipFFv2cb/A== + +data-urls@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/data-urls/-/data-urls-5.0.0.tgz#2f76906bce1824429ffecb6920f45a0b30f00dde" + integrity sha512-ZYP5VBHshaDAiVZxjbRVcFJpc+4xGgT0bK3vzy1HLN8jTO975HEbuYzZJcHoQEY5K1a0z8YayJkyVETa08eNTg== + dependencies: + whatwg-mimetype "^4.0.0" + whatwg-url "^14.0.0" + +data-view-buffer@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/data-view-buffer/-/data-view-buffer-1.0.1.tgz#8ea6326efec17a2e42620696e671d7d5a8bc66b2" + integrity sha512-0lht7OugA5x3iJLOWFhWK/5ehONdprk0ISXqVFn/NFrDu+cuc8iADFrGQz5BnRK7LLU3JmkbXSxaqX+/mXYtUA== + dependencies: + call-bind "^1.0.6" + es-errors "^1.3.0" + is-data-view "^1.0.1" + +data-view-byte-length@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/data-view-byte-length/-/data-view-byte-length-1.0.1.tgz#90721ca95ff280677eb793749fce1011347669e2" + integrity sha512-4J7wRJD3ABAzr8wP+OcIcqq2dlUKp4DVflx++hs5h5ZKydWMI6/D/fAot+yh6g2tHh8fLFTvNOaVN357NvSrOQ== + dependencies: + call-bind "^1.0.7" + es-errors "^1.3.0" + is-data-view "^1.0.1" + +data-view-byte-offset@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/data-view-byte-offset/-/data-view-byte-offset-1.0.0.tgz#5e0bbfb4828ed2d1b9b400cd8a7d119bca0ff18a" + integrity sha512-t/Ygsytq+R995EJ5PZlD4Cu56sWa8InXySaViRzw9apusqsOO2bQP+SbYzAhR0pFKoB+43lYy8rWban9JSuXnA== + dependencies: + call-bind "^1.0.6" + es-errors "^1.3.0" + is-data-view "^1.0.1" + +dayjs@^1.11.7: + version "1.11.13" + resolved "https://registry.yarnpkg.com/dayjs/-/dayjs-1.11.13.tgz#92430b0139055c3ebb60150aa13e860a4b5a366c" + integrity sha512-oaMBel6gjolK862uaPQOVTA7q3TZhuSvuMQAAglQDOWYO9A91IrAOUJEyKVlqJlHE0vq5p5UXxzdPfMH/x6xNg== + +debounce@^1.2.1: + version "1.2.1" + resolved "https://registry.yarnpkg.com/debounce/-/debounce-1.2.1.tgz#38881d8f4166a5c5848020c11827b834bcb3e0a5" + integrity sha512-XRRe6Glud4rd/ZGQfiV1ruXSfbvfJedlV9Y6zOlP+2K04vBYiJEte6stfFkCP03aMnY5tsipamumUjL14fofug== + +debug@2.6.9, debug@^2.6.0: + version "2.6.9" + resolved "https://registry.yarnpkg.com/debug/-/debug-2.6.9.tgz#5d128515df134ff327e90a4c93f4e077a536341f" + integrity sha512-bC7ElrdJaJnPbAP+1EotYvqZsb3ecl5wi6Bfi6BJTUcNowp6cvspg0jXznRTKDjm/E7AdgFBVeAPVMNcKGsHMA== + dependencies: + ms "2.0.0" + +debug@4, debug@^4.0.0, debug@^4.1.0, debug@^4.1.1, debug@^4.3.1, debug@^4.3.2, debug@^4.3.4: + version "4.3.7" + resolved "https://registry.yarnpkg.com/debug/-/debug-4.3.7.tgz#87945b4151a011d76d95a198d7111c865c360a52" + integrity sha512-Er2nc/H7RrMXZBFCEim6TCmMk02Z8vLC2Rbi1KEBggpo0fS6l0S1nnapwmIi3yW/+GOJap1Krg4w0Hg80oCqgQ== + dependencies: + ms "^2.1.3" + +debug@^3.2.7: + version "3.2.7" + resolved "https://registry.yarnpkg.com/debug/-/debug-3.2.7.tgz#72580b7e9145fb39b6676f9c5e5fb100b934179a" + integrity sha512-CFjzYYAi4ThfiQvizrFQevTTXHtnCqWfe7x1AhgEscTz6ZbLbfoLRLPugTQyBth6f8ZERVUSyWHFD/7Wu4t1XQ== + dependencies: + ms "^2.1.1" + +decimal.js@^10.4.3: + version "10.4.3" + resolved "https://registry.yarnpkg.com/decimal.js/-/decimal.js-10.4.3.tgz#1044092884d245d1b7f65725fa4ad4c6f781cc23" + integrity sha512-VBBaLc1MgL5XpzgIP7ny5Z6Nx3UrRkIViUkPUdtl9aya5amy3De1gsUUSB1g3+3sExYNjCAsAznmukyxCb1GRA== + +decode-named-character-reference@^1.0.0: + version "1.0.2" + resolved "https://registry.yarnpkg.com/decode-named-character-reference/-/decode-named-character-reference-1.0.2.tgz#daabac9690874c394c81e4162a0304b35d824f0e" + integrity sha512-O8x12RzrUF8xyVcY0KJowWsmaJxQbmy0/EtnNtHRpsOcT7dFk5W598coHqBVpmWo1oQQfsCqfCmkZN5DJrZVdg== + dependencies: + character-entities "^2.0.0" + +decompress-response@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/decompress-response/-/decompress-response-6.0.0.tgz#ca387612ddb7e104bd16d85aab00d5ecf09c66fc" + integrity sha512-aW35yZM6Bb/4oJlZncMH2LCoZtJXTRxES17vE3hoRiowU2kWHaJKFkSBDnDR+cm9J+9QhXmREyIfv0pji9ejCQ== + dependencies: + mimic-response "^3.1.0" + +deep-equal@^2.0.5: + version "2.2.3" + resolved "https://registry.yarnpkg.com/deep-equal/-/deep-equal-2.2.3.tgz#af89dafb23a396c7da3e862abc0be27cf51d56e1" + integrity sha512-ZIwpnevOurS8bpT4192sqAowWM76JDKSHYzMLty3BZGSswgq6pBaH3DhCSW5xVAZICZyKdOBPjwww5wfgT/6PA== + dependencies: + array-buffer-byte-length "^1.0.0" + call-bind "^1.0.5" + es-get-iterator "^1.1.3" + get-intrinsic "^1.2.2" + is-arguments "^1.1.1" + is-array-buffer "^3.0.2" + is-date-object "^1.0.5" + is-regex "^1.1.4" + is-shared-array-buffer "^1.0.2" + isarray "^2.0.5" + object-is "^1.1.5" + object-keys "^1.1.1" + object.assign "^4.1.4" + regexp.prototype.flags "^1.5.1" + side-channel "^1.0.4" + which-boxed-primitive "^1.0.2" + which-collection "^1.0.1" + which-typed-array "^1.1.13" + +deep-extend@^0.6.0: + version "0.6.0" + resolved "https://registry.yarnpkg.com/deep-extend/-/deep-extend-0.6.0.tgz#c4fa7c95404a17a9c3e8ca7e1537312b736330ac" + integrity sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA== + +deep-is@^0.1.3: + version "0.1.4" + resolved "https://registry.yarnpkg.com/deep-is/-/deep-is-0.1.4.tgz#a6f2dce612fadd2ef1f519b73551f17e85199831" + integrity sha512-oIPzksmTg4/MriiaYGO+okXDT7ztn/w3Eptv/+gSIdMdKsJo0u4CfYNFJPy+4SKMuCqGw2wxnA+URMg3t8a/bQ== + +deepmerge@^4.2.2, deepmerge@^4.3.1: + version "4.3.1" + resolved "https://registry.yarnpkg.com/deepmerge/-/deepmerge-4.3.1.tgz#44b5f2147cd3b00d4b56137685966f26fd25dd4a" + integrity sha512-3sUqbMEc77XqpdNO7FRyRog+eW3ph+GYCbj+rK+uYyRMuwsVy0rMiVtPn+QJlKFvWP/1PYpapqYn0Me2knFn+A== + +default-gateway@^6.0.3: + version "6.0.3" + resolved "https://registry.yarnpkg.com/default-gateway/-/default-gateway-6.0.3.tgz#819494c888053bdb743edbf343d6cdf7f2943a71" + integrity sha512-fwSOJsbbNzZ/CUFpqFBqYfYNLj1NbMPm8MMCIzHjC83iSJRBEGmDUxU+WP661BaBQImeC2yHwXtz+P/O9o+XEg== + dependencies: + execa "^5.0.0" + +defer-to-connect@^2.0.1: + version "2.0.1" + resolved "https://registry.yarnpkg.com/defer-to-connect/-/defer-to-connect-2.0.1.tgz#8016bdb4143e4632b77a3449c6236277de520587" + integrity sha512-4tvttepXG1VaYGrRibk5EwJd1t4udunSOVMdLSAL6mId1ix438oPwPZMALY41FCijukO1L0twNcGsdzS7dHgDg== + +define-data-property@^1.0.1, define-data-property@^1.1.4: + version "1.1.4" + resolved "https://registry.yarnpkg.com/define-data-property/-/define-data-property-1.1.4.tgz#894dc141bb7d3060ae4366f6a0107e68fbe48c5e" + integrity sha512-rBMvIzlpA8v6E+SJZoo++HAYqsLrkg7MSfIinMPFhmkorw7X+dOXVJQs+QT69zGkzMyfDnIMN2Wid1+NbL3T+A== + dependencies: + es-define-property "^1.0.0" + es-errors "^1.3.0" + gopd "^1.0.1" + +define-lazy-prop@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/define-lazy-prop/-/define-lazy-prop-2.0.0.tgz#3f7ae421129bcaaac9bc74905c98a0009ec9ee7f" + integrity sha512-Ds09qNh8yw3khSjiJjiUInaGX9xlqZDY7JVryGxdxV7NPeuqQfplOpQ66yJFZut3jLa5zOwkXw1g9EI2uKh4Og== + +define-properties@^1.1.3, define-properties@^1.2.0, define-properties@^1.2.1: + version "1.2.1" + resolved "https://registry.yarnpkg.com/define-properties/-/define-properties-1.2.1.tgz#10781cc616eb951a80a034bafcaa7377f6af2b6c" + integrity sha512-8QmQKqEASLd5nx0U1B1okLElbUuuttJ/AnYmRXbbbGDWh6uS208EjD4Xqq/I9wK7u0v6O08XhTWnt5XtEbR6Dg== + dependencies: + define-data-property "^1.0.1" + has-property-descriptors "^1.0.0" + object-keys "^1.1.1" + +del@^6.1.1: + version "6.1.1" + resolved "https://registry.yarnpkg.com/del/-/del-6.1.1.tgz#3b70314f1ec0aa325c6b14eb36b95786671edb7a" + integrity sha512-ua8BhapfP0JUJKC/zV9yHHDW/rDoDxP4Zhn3AkA6/xT6gY7jYXJiaeyBZznYVujhZZET+UgcbZiQ7sN3WqcImg== + dependencies: + globby "^11.0.1" + graceful-fs "^4.2.4" + is-glob "^4.0.1" + is-path-cwd "^2.2.0" + is-path-inside "^3.0.2" + p-map "^4.0.0" + rimraf "^3.0.2" + slash "^3.0.0" + +delaunator@5: + version "5.0.1" + resolved "https://registry.yarnpkg.com/delaunator/-/delaunator-5.0.1.tgz#39032b08053923e924d6094fe2cde1a99cc51278" + integrity sha512-8nvh+XBe96aCESrGOqMp/84b13H9cdKbG5P2ejQCh4d4sK9RL4371qou9drQjMhvnPmhWl5hnmqbEE0fXr9Xnw== + dependencies: + robust-predicates "^3.0.2" + +delayed-stream@~1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/delayed-stream/-/delayed-stream-1.0.0.tgz#df3ae199acadfb7d440aaae0b29e2272b24ec619" + integrity sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ== + +depd@2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/depd/-/depd-2.0.0.tgz#b696163cc757560d09cf22cc8fad1571b79e76df" + integrity sha512-g7nH6P6dyDioJogAAGprGpCtVImJhpPk/roCzdb3fIh61/s/nPsfR6onyMwkCAR/OlC3yBC0lESvUoQEAssIrw== + +depd@~1.1.2: + version "1.1.2" + resolved "https://registry.yarnpkg.com/depd/-/depd-1.1.2.tgz#9bcd52e14c097763e749b274c4346ed2e560b5a9" + integrity sha512-7emPTl6Dpo6JRXOXjLRxck+FlLRX5847cLKEn00PLAgc3g2hTZZgr+e4c2v6QpSmLeFP3n5yUo7ft6avBK/5jQ== + +dequal@^2.0.0: + version "2.0.3" + resolved "https://registry.yarnpkg.com/dequal/-/dequal-2.0.3.tgz#2644214f1997d39ed0ee0ece72335490a7ac67be" + integrity sha512-0je+qPKHEMohvfRTCEo3CrPG6cAzAYgmzKyxRiYSSDkS6eGJdyVJm7WaYA5ECaAD9wLB2T4EEeymA5aFVcYXCA== + +destroy@1.2.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/destroy/-/destroy-1.2.0.tgz#4803735509ad8be552934c67df614f94e66fa015" + integrity sha512-2sJGJTaXIIaR1w4iJSNoN0hnMY7Gpc/n8D4qSCJw8QqFWXf7cuAgnEHxBpweaVcPevC2l3KpjYCx3NypQQgaJg== + +detect-node@^2.0.4: + version "2.1.0" + resolved "https://registry.yarnpkg.com/detect-node/-/detect-node-2.1.0.tgz#c9c70775a49c3d03bc2c06d9a73be550f978f8b1" + integrity sha512-T0NIuQpnTvFDATNuHN5roPwSBG83rFsuO+MXXH9/3N1eFbn4wcPjttvjMLEPWJ0RGUYgQE7cGgS3tNxbqCGM7g== + +detect-port-alt@^1.1.6: + version "1.1.6" + resolved "https://registry.yarnpkg.com/detect-port-alt/-/detect-port-alt-1.1.6.tgz#24707deabe932d4a3cf621302027c2b266568275" + integrity sha512-5tQykt+LqfJFBEYaDITx7S7cR7mJ/zQmLXZ2qt5w04ainYZw6tBf9dBunMjVeVOdYVRUzUOE4HkY5J7+uttb5Q== + dependencies: + address "^1.0.1" + debug "^2.6.0" + +detect-port@^1.5.1: + version "1.6.1" + resolved "https://registry.yarnpkg.com/detect-port/-/detect-port-1.6.1.tgz#45e4073997c5f292b957cb678fb0bb8ed4250a67" + integrity sha512-CmnVc+Hek2egPx1PeTFVta2W78xy2K/9Rkf6cC4T59S50tVnzKj+tnx5mmx5lwvCkujZ4uRrpRSuV+IVs3f90Q== + dependencies: + address "^1.0.1" + debug "4" + +devlop@^1.0.0, devlop@^1.1.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/devlop/-/devlop-1.1.0.tgz#4db7c2ca4dc6e0e834c30be70c94bbc976dc7018" + integrity sha512-RWmIqhcFf1lRYBvNmr7qTNuyCt/7/ns2jbpp1+PalgE/rDQcBT0fioSMUpJ93irlUhC5hrg4cYqe6U+0ImW0rA== + dependencies: + dequal "^2.0.0" + +diff@^5.0.0: + version "5.2.0" + resolved "https://registry.yarnpkg.com/diff/-/diff-5.2.0.tgz#26ded047cd1179b78b9537d5ef725503ce1ae531" + integrity sha512-uIFDxqpRZGZ6ThOk84hEfqWoHx2devRFvpTZcTHur85vImfaxUbTW9Ryh4CpCuDnToOP1CEtXKIgytHBPVff5A== + +dir-glob@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/dir-glob/-/dir-glob-3.0.1.tgz#56dbf73d992a4a93ba1584f4534063fd2e41717f" + integrity sha512-WkrWp9GR4KXfKGYzOLmTuGVi1UWFfws377n9cc55/tb6DuqyF6pcQ5AbiHEshaDpY9v6oaSr2XCDidGmMwdzIA== + dependencies: + path-type "^4.0.0" + +dns-packet@^5.2.2: + version "5.6.1" + resolved "https://registry.yarnpkg.com/dns-packet/-/dns-packet-5.6.1.tgz#ae888ad425a9d1478a0674256ab866de1012cf2f" + integrity sha512-l4gcSouhcgIKRvyy99RNVOgxXiicE+2jZoNmaNmZ6JXiGajBOJAesk1OBlJuM5k2c+eudGdLxDqXuPCKIj6kpw== + dependencies: + "@leichtgewicht/ip-codec" "^2.0.1" + +doctrine@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/doctrine/-/doctrine-2.1.0.tgz#5cd01fc101621b42c4cd7f5d1a66243716d3f39d" + integrity sha512-35mSku4ZXK0vfCuHEDAwt55dg2jNajHZ1odvF+8SSr82EsZY4QmXfuWso8oEd8zRhVObSN18aM0CjSdoBX7zIw== + dependencies: + esutils "^2.0.2" + +doctrine@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/doctrine/-/doctrine-3.0.0.tgz#addebead72a6574db783639dc87a121773973961" + integrity sha512-yS+Q5i3hBf7GBkd4KG8a7eBNNWNGLTaEwwYWUijIYM7zrlYDM0BFXHjjPWlWZ1Rg7UaddZeIDmi9jF3HmqiQ2w== + dependencies: + esutils "^2.0.2" + +docusaurus-plugin-typedoc@next: + version "1.0.0-next.30" + resolved "https://registry.yarnpkg.com/docusaurus-plugin-typedoc/-/docusaurus-plugin-typedoc-1.0.0-next.30.tgz#c6e185dfa892bcb2553af4fb17b43d1986e82432" + integrity sha512-p7u3ksPTXnfKlAPmUwjUswPYwL15YEDvvmMemp7RweGMhB+iUd+nVUrdEqk0N2Cf1ldfYhZVnfttjqhfpadEIg== + +dom-converter@^0.2.0: + version "0.2.0" + resolved "https://registry.yarnpkg.com/dom-converter/-/dom-converter-0.2.0.tgz#6721a9daee2e293682955b6afe416771627bb768" + integrity sha512-gd3ypIPfOMr9h5jIKq8E3sHOTCjeirnl0WK5ZdS1AW0Odt0b1PaWaHdJ4Qk4klv+YB9aJBS7mESXjFoDQPu6DA== + dependencies: + utila "~0.4" + +dom-serializer@^1.0.1: + version "1.4.1" + resolved "https://registry.yarnpkg.com/dom-serializer/-/dom-serializer-1.4.1.tgz#de5d41b1aea290215dc45a6dae8adcf1d32e2d30" + integrity sha512-VHwB3KfrcOOkelEG2ZOfxqLZdfkil8PtJi4P8N2MMXucZq2yLp75ClViUlOVwyoHEDjYU433Aq+5zWP61+RGag== + dependencies: + domelementtype "^2.0.1" + domhandler "^4.2.0" + entities "^2.0.0" + +dom-serializer@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/dom-serializer/-/dom-serializer-2.0.0.tgz#e41b802e1eedf9f6cae183ce5e622d789d7d8e53" + integrity sha512-wIkAryiqt/nV5EQKqQpo3SToSOV9J0DnbJqwK7Wv/Trc92zIAYZ4FlMu+JPFW1DfGFt81ZTCGgDEabffXeLyJg== + dependencies: + domelementtype "^2.3.0" + domhandler "^5.0.2" + entities "^4.2.0" + +domelementtype@^2.0.1, domelementtype@^2.2.0, domelementtype@^2.3.0: + version "2.3.0" + resolved "https://registry.yarnpkg.com/domelementtype/-/domelementtype-2.3.0.tgz#5c45e8e869952626331d7aab326d01daf65d589d" + integrity sha512-OLETBj6w0OsagBwdXnPdN0cnMfF9opN69co+7ZrbfPGrdpPVNBUj02spi6B1N7wChLQiPn4CSH/zJvXw56gmHw== + +domhandler@^4.0.0, domhandler@^4.2.0, domhandler@^4.3.1: + version "4.3.1" + resolved "https://registry.yarnpkg.com/domhandler/-/domhandler-4.3.1.tgz#8d792033416f59d68bc03a5aa7b018c1ca89279c" + integrity sha512-GrwoxYN+uWlzO8uhUXRl0P+kHE4GtVPfYzVLcUxPL7KNdHKj66vvlhiweIHqYYXWlw+T8iLMp42Lm67ghw4WMQ== + dependencies: + domelementtype "^2.2.0" + +domhandler@^5.0.2, domhandler@^5.0.3: + version "5.0.3" + resolved "https://registry.yarnpkg.com/domhandler/-/domhandler-5.0.3.tgz#cc385f7f751f1d1fc650c21374804254538c7d31" + integrity sha512-cgwlv/1iFQiFnU96XXgROh8xTeetsnJiDsTc7TYCLFd9+/WNkIqPTxiM/8pSd8VIrhXGTf1Ny1q1hquVqDJB5w== + dependencies: + domelementtype "^2.3.0" + +dompurify@^3.0.5, dompurify@^3.1.6: + version "3.1.6" + resolved "https://registry.yarnpkg.com/dompurify/-/dompurify-3.1.6.tgz#43c714a94c6a7b8801850f82e756685300a027e2" + integrity sha512-cTOAhc36AalkjtBpfG6O8JimdTMWNXjiePT2xQH/ppBGi/4uIpmj8eKyIkMJErXWARyINV/sB38yf8JCLF5pbQ== + +domutils@^2.5.2, domutils@^2.8.0: + version "2.8.0" + resolved "https://registry.yarnpkg.com/domutils/-/domutils-2.8.0.tgz#4437def5db6e2d1f5d6ee859bd95ca7d02048135" + integrity sha512-w96Cjofp72M5IIhpjgobBimYEfoPjx1Vx0BSX9P30WBdZW2WIKU0T1Bd0kz2eNZ9ikjKgHbEyKx8BB6H1L3h3A== + dependencies: + dom-serializer "^1.0.1" + domelementtype "^2.2.0" + domhandler "^4.2.0" + +domutils@^3.0.1: + version "3.1.0" + resolved "https://registry.yarnpkg.com/domutils/-/domutils-3.1.0.tgz#c47f551278d3dc4b0b1ab8cbb42d751a6f0d824e" + integrity sha512-H78uMmQtI2AhgDJjWeQmHwJJ2bLPD3GMmO7Zja/ZZh84wkm+4ut+IUnUdRa8uCGX88DiVx1j6FRe1XfxEgjEZA== + dependencies: + dom-serializer "^2.0.0" + domelementtype "^2.3.0" + domhandler "^5.0.3" + +dot-case@^3.0.4: + version "3.0.4" + resolved "https://registry.yarnpkg.com/dot-case/-/dot-case-3.0.4.tgz#9b2b670d00a431667a8a75ba29cd1b98809ce751" + integrity sha512-Kv5nKlh6yRrdrGvxeJ2e5y2eRUpkUosIW4A2AS38zwSz27zu7ufDwQPi5Jhs3XAlGNetl3bmnGhQsMtkKJnj3w== + dependencies: + no-case "^3.0.4" + tslib "^2.0.3" + +dot-prop@^6.0.1: + version "6.0.1" + resolved "https://registry.yarnpkg.com/dot-prop/-/dot-prop-6.0.1.tgz#fc26b3cf142b9e59b74dbd39ed66ce620c681083" + integrity sha512-tE7ztYzXHIeyvc7N+hR3oi7FIbf/NIjVP9hmAt3yMXzrQ072/fpjGLx2GxNxGxUl5V73MEqYzioOMoVhGMJ5cA== + dependencies: + is-obj "^2.0.0" + +dotenv@^16.4.5: + version "16.4.5" + resolved "https://registry.yarnpkg.com/dotenv/-/dotenv-16.4.5.tgz#cdd3b3b604cb327e286b4762e13502f717cb099f" + integrity sha512-ZmdL2rui+eB2YwhsWzjInR8LldtZHGDoQ1ugH85ppHKwpUHL7j7rN0Ti9NCnGiQbhaZ11FpR+7ao1dNsmduNUg== + +duplexer@^0.1.2: + version "0.1.2" + resolved "https://registry.yarnpkg.com/duplexer/-/duplexer-0.1.2.tgz#3abe43aef3835f8ae077d136ddce0f276b0400e6" + integrity sha512-jtD6YG370ZCIi/9GTaJKQxWTZD045+4R4hTk/x1UyoqadyJ9x9CgSi1RlVDQF8U2sxLLSnFkCaMihqljHIWgMg== + +eastasianwidth@^0.2.0: + version "0.2.0" + resolved "https://registry.yarnpkg.com/eastasianwidth/-/eastasianwidth-0.2.0.tgz#696ce2ec0aa0e6ea93a397ffcf24aa7840c827cb" + integrity sha512-I88TYZWc9XiYHRQ4/3c5rjjfgkjhLyW2luGIheGERbNQ6OY7yTybanSpDXZa8y7VUP9YmDcYa+eyq4ca7iLqWA== + +ee-first@1.1.1: + version "1.1.1" + resolved "https://registry.yarnpkg.com/ee-first/-/ee-first-1.1.1.tgz#590c61156b0ae2f4f0255732a158b266bc56b21d" + integrity sha512-WMwm9LhRUo+WUaRN+vRuETqG89IgZphVSNkdFgeb6sS/E4OrDIN7t48CAewSHXc6C8lefD8KKfr5vY61brQlow== + +electron-to-chromium@^1.5.4: + version "1.5.27" + resolved "https://registry.yarnpkg.com/electron-to-chromium/-/electron-to-chromium-1.5.27.tgz#5203ce5d6054857d84ba84d3681cbe59132ade78" + integrity sha512-o37j1vZqCoEgBuWWXLHQgTN/KDKe7zwpiY5CPeq2RvUqOyJw9xnrULzZAEVQ5p4h+zjMk7hgtOoPdnLxr7m/jw== + +elkjs@^0.9.0: + version "0.9.3" + resolved "https://registry.yarnpkg.com/elkjs/-/elkjs-0.9.3.tgz#16711f8ceb09f1b12b99e971b138a8384a529161" + integrity sha512-f/ZeWvW/BCXbhGEf1Ujp29EASo/lk1FDnETgNKwJrsVvGZhUWCZyg3xLJjAsxfOmt8KjswHmI5EwCQcPMpOYhQ== + +emoji-regex@^8.0.0: + version "8.0.0" + resolved "https://registry.yarnpkg.com/emoji-regex/-/emoji-regex-8.0.0.tgz#e818fd69ce5ccfcb404594f842963bf53164cc37" + integrity sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A== + +emoji-regex@^9.2.2: + version "9.2.2" + resolved "https://registry.yarnpkg.com/emoji-regex/-/emoji-regex-9.2.2.tgz#840c8803b0d8047f4ff0cf963176b32d4ef3ed72" + integrity sha512-L18DaJsXSUk2+42pv8mLs5jJT2hqFkFE4j21wOmgbUqsZ2hL72NsUU785g9RXgo3s0ZNgVl42TiHp3ZtOv/Vyg== + +emojilib@^2.4.0: + version "2.4.0" + resolved "https://registry.yarnpkg.com/emojilib/-/emojilib-2.4.0.tgz#ac518a8bb0d5f76dda57289ccb2fdf9d39ae721e" + integrity sha512-5U0rVMU5Y2n2+ykNLQqMoqklN9ICBT/KsvC1Gz6vqHbz2AXXGkG+Pm5rMWk/8Vjrr/mY9985Hi8DYzn1F09Nyw== + +emojis-list@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/emojis-list/-/emojis-list-3.0.0.tgz#5570662046ad29e2e916e71aae260abdff4f6a78" + integrity sha512-/kyM18EfinwXZbno9FyUGeFh87KC8HRQBQGildHZbEuRyWFOmv1U10o9BBp8XVZDVNNuQKyIGIu5ZYAAXJ0V2Q== + +emoticon@^4.0.1: + version "4.1.0" + resolved "https://registry.yarnpkg.com/emoticon/-/emoticon-4.1.0.tgz#d5a156868ee173095627a33de3f1e914c3dde79e" + integrity sha512-VWZfnxqwNcc51hIy/sbOdEem6D+cVtpPzEEtVAFdaas30+1dgkyaOQ4sQ6Bp0tOMqWO1v+HQfYaoodOkdhK6SQ== + +encodeurl@~1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/encodeurl/-/encodeurl-1.0.2.tgz#ad3ff4c86ec2d029322f5a02c3a9a606c95b3f59" + integrity sha512-TPJXq8JqFaVYm2CWmPvnP2Iyo4ZSM7/QKcSmuMLDObfpH5fi7RUGmd/rTDf+rut/saiDiQEeVTNgAmJEdAOx0w== + +encodeurl@~2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/encodeurl/-/encodeurl-2.0.0.tgz#7b8ea898077d7e409d3ac45474ea38eaf0857a58" + integrity sha512-Q0n9HRi4m6JuGIV1eFlmvJB7ZEVxu93IrMyiMsGC0lrMJMWzRgx6WGquyfQgZVb31vhGgXnfmPNNXmxnOkRBrg== + +enhanced-resolve@^5.17.1: + version "5.17.1" + resolved "https://registry.yarnpkg.com/enhanced-resolve/-/enhanced-resolve-5.17.1.tgz#67bfbbcc2f81d511be77d686a90267ef7f898a15" + integrity sha512-LMHl3dXhTcfv8gM4kEzIUeTQ+7fpdA0l2tUf34BddXPkz2A5xJ5L/Pchd5BL6rdccM9QGvu0sWZzK1Z1t4wwyg== + dependencies: + graceful-fs "^4.2.4" + tapable "^2.2.0" + +entities@^2.0.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/entities/-/entities-2.2.0.tgz#098dc90ebb83d8dffa089d55256b351d34c4da55" + integrity sha512-p92if5Nz619I0w+akJrLZH0MX0Pb5DX39XOwQTtXSdQQOaYH03S1uIQp4mhOZtAXrxq4ViO67YTiLBo2638o9A== + +entities@^4.2.0, entities@^4.4.0: + version "4.5.0" + resolved "https://registry.yarnpkg.com/entities/-/entities-4.5.0.tgz#5d268ea5e7113ec74c4d033b79ea5a35a488fb48" + integrity sha512-V0hjH4dGPh9Ao5p0MoRY6BVqtwCjhz6vI5LT8AJ55H+4g9/4vbHx1I54fS0XuclLhDHArPQCiMjDxjaL8fPxhw== + +error-ex@^1.3.1: + version "1.3.2" + resolved "https://registry.yarnpkg.com/error-ex/-/error-ex-1.3.2.tgz#b4ac40648107fdcdcfae242f428bea8a14d4f1bf" + integrity sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g== + dependencies: + is-arrayish "^0.2.1" + +es-abstract@^1.17.5, es-abstract@^1.22.1, es-abstract@^1.22.3, es-abstract@^1.23.0, es-abstract@^1.23.1, es-abstract@^1.23.2, es-abstract@^1.23.3: + version "1.23.3" + resolved "https://registry.yarnpkg.com/es-abstract/-/es-abstract-1.23.3.tgz#8f0c5a35cd215312573c5a27c87dfd6c881a0aa0" + integrity sha512-e+HfNH61Bj1X9/jLc5v1owaLYuHdeHHSQlkhCBiTK8rBvKaULl/beGMxwrMXjpYrv4pz22BlY570vVePA2ho4A== + dependencies: + array-buffer-byte-length "^1.0.1" + arraybuffer.prototype.slice "^1.0.3" + available-typed-arrays "^1.0.7" + call-bind "^1.0.7" + data-view-buffer "^1.0.1" + data-view-byte-length "^1.0.1" + data-view-byte-offset "^1.0.0" + es-define-property "^1.0.0" + es-errors "^1.3.0" + es-object-atoms "^1.0.0" + es-set-tostringtag "^2.0.3" + es-to-primitive "^1.2.1" + function.prototype.name "^1.1.6" + get-intrinsic "^1.2.4" + get-symbol-description "^1.0.2" + globalthis "^1.0.3" + gopd "^1.0.1" + has-property-descriptors "^1.0.2" + has-proto "^1.0.3" + has-symbols "^1.0.3" + hasown "^2.0.2" + internal-slot "^1.0.7" + is-array-buffer "^3.0.4" + is-callable "^1.2.7" + is-data-view "^1.0.1" + is-negative-zero "^2.0.3" + is-regex "^1.1.4" + is-shared-array-buffer "^1.0.3" + is-string "^1.0.7" + is-typed-array "^1.1.13" + is-weakref "^1.0.2" + object-inspect "^1.13.1" + object-keys "^1.1.1" + object.assign "^4.1.5" + regexp.prototype.flags "^1.5.2" + safe-array-concat "^1.1.2" + safe-regex-test "^1.0.3" + string.prototype.trim "^1.2.9" + string.prototype.trimend "^1.0.8" + string.prototype.trimstart "^1.0.8" + typed-array-buffer "^1.0.2" + typed-array-byte-length "^1.0.1" + typed-array-byte-offset "^1.0.2" + typed-array-length "^1.0.6" + unbox-primitive "^1.0.2" + which-typed-array "^1.1.15" + +es-define-property@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/es-define-property/-/es-define-property-1.0.0.tgz#c7faefbdff8b2696cf5f46921edfb77cc4ba3845" + integrity sha512-jxayLKShrEqqzJ0eumQbVhTYQM27CfT1T35+gCgDFoL82JLsXqTJ76zv6A0YLOgEnLUMvLzsDsGIrl8NFpT2gQ== + dependencies: + get-intrinsic "^1.2.4" + +es-errors@^1.2.1, es-errors@^1.3.0: + version "1.3.0" + resolved "https://registry.yarnpkg.com/es-errors/-/es-errors-1.3.0.tgz#05f75a25dab98e4fb1dcd5e1472c0546d5057c8f" + integrity sha512-Zf5H2Kxt2xjTvbJvP2ZWLEICxA6j+hAmMzIlypy4xcBg1vKVnx89Wy0GbS+kf5cwCVFFzdCFh2XSCFNULS6csw== + +es-get-iterator@^1.1.3: + version "1.1.3" + resolved "https://registry.yarnpkg.com/es-get-iterator/-/es-get-iterator-1.1.3.tgz#3ef87523c5d464d41084b2c3c9c214f1199763d6" + integrity sha512-sPZmqHBe6JIiTfN5q2pEi//TwxmAFHwj/XEuYjTuse78i8KxaqMTTzxPoFKuzRpDpTJ+0NAbpfenkmH2rePtuw== + dependencies: + call-bind "^1.0.2" + get-intrinsic "^1.1.3" + has-symbols "^1.0.3" + is-arguments "^1.1.1" + is-map "^2.0.2" + is-set "^2.0.2" + is-string "^1.0.7" + isarray "^2.0.5" + stop-iteration-iterator "^1.0.0" + +es-iterator-helpers@^1.0.19: + version "1.0.19" + resolved "https://registry.yarnpkg.com/es-iterator-helpers/-/es-iterator-helpers-1.0.19.tgz#117003d0e5fec237b4b5c08aded722e0c6d50ca8" + integrity sha512-zoMwbCcH5hwUkKJkT8kDIBZSz9I6mVG//+lDCinLCGov4+r7NIy0ld8o03M0cJxl2spVf6ESYVS6/gpIfq1FFw== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.3" + es-errors "^1.3.0" + es-set-tostringtag "^2.0.3" + function-bind "^1.1.2" + get-intrinsic "^1.2.4" + globalthis "^1.0.3" + has-property-descriptors "^1.0.2" + has-proto "^1.0.3" + has-symbols "^1.0.3" + internal-slot "^1.0.7" + iterator.prototype "^1.1.2" + safe-array-concat "^1.1.2" + +es-module-lexer@^1.2.1: + version "1.5.4" + resolved "https://registry.yarnpkg.com/es-module-lexer/-/es-module-lexer-1.5.4.tgz#a8efec3a3da991e60efa6b633a7cad6ab8d26b78" + integrity sha512-MVNK56NiMrOwitFB7cqDwq0CQutbw+0BvLshJSse0MUNU+y1FC3bUS/AQg7oUng+/wKrrki7JfmwtVHkVfPLlw== + +es-object-atoms@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/es-object-atoms/-/es-object-atoms-1.0.0.tgz#ddb55cd47ac2e240701260bc2a8e31ecb643d941" + integrity sha512-MZ4iQ6JwHOBQjahnjwaC1ZtIBH+2ohjamzAO3oaHcXYup7qxjF2fixyH+Q71voWHeOkI2q/TnJao/KfXYIZWbw== + dependencies: + es-errors "^1.3.0" + +es-set-tostringtag@^2.0.3: + version "2.0.3" + resolved "https://registry.yarnpkg.com/es-set-tostringtag/-/es-set-tostringtag-2.0.3.tgz#8bb60f0a440c2e4281962428438d58545af39777" + integrity sha512-3T8uNMC3OQTHkFUsFq8r/BwAXLHvU/9O9mE0fBc/MY5iq/8H7ncvO947LmYA6ldWw9Uh8Yhf25zu6n7nML5QWQ== + dependencies: + get-intrinsic "^1.2.4" + has-tostringtag "^1.0.2" + hasown "^2.0.1" + +es-shim-unscopables@^1.0.0, es-shim-unscopables@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/es-shim-unscopables/-/es-shim-unscopables-1.0.2.tgz#1f6942e71ecc7835ed1c8a83006d8771a63a3763" + integrity sha512-J3yBRXCzDu4ULnQwxyToo/OjdMx6akgVC7K6few0a7F/0wLtmKKN7I73AH5T2836UuXRqN7Qg+IIUw/+YJksRw== + dependencies: + hasown "^2.0.0" + +es-to-primitive@^1.2.1: + version "1.2.1" + resolved "https://registry.yarnpkg.com/es-to-primitive/-/es-to-primitive-1.2.1.tgz#e55cd4c9cdc188bcefb03b366c736323fc5c898a" + integrity sha512-QCOllgZJtaUo9miYBcLChTUaHNjJF3PYs1VidD7AwiEj1kYxKeQTctLAezAOH5ZKRH0g2IgPn6KwB4IT8iRpvA== + dependencies: + is-callable "^1.1.4" + is-date-object "^1.0.1" + is-symbol "^1.0.2" + +escalade@^3.1.1, escalade@^3.1.2: + version "3.2.0" + resolved "https://registry.yarnpkg.com/escalade/-/escalade-3.2.0.tgz#011a3f69856ba189dffa7dc8fcce99d2a87903e5" + integrity sha512-WUj2qlxaQtO4g6Pq5c29GTcWGDyd8itL8zTlipgECz3JesAiiOKotd8JU6otB3PACgG6xkJUyVhboMS+bje/jA== + +escape-goat@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/escape-goat/-/escape-goat-4.0.0.tgz#9424820331b510b0666b98f7873fe11ac4aa8081" + integrity sha512-2Sd4ShcWxbx6OY1IHyla/CVNwvg7XwZVoXZHcSu9w9SReNP1EzzD5T8NWKIR38fIqEns9kDWKUQTXXAmlDrdPg== + +escape-html@^1.0.3, escape-html@~1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/escape-html/-/escape-html-1.0.3.tgz#0258eae4d3d0c0974de1c169188ef0051d1d1988" + integrity sha512-NiSupZ4OeuGwr68lGIeym/ksIZMJodUGOSCZ/FSnTxcrekbvqrgdUxlJOMpijaKZVjAJrWrGs/6Jy8OMuyj9ow== + +escape-string-regexp@^1.0.5: + version "1.0.5" + resolved "https://registry.yarnpkg.com/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz#1b61c0562190a8dff6ae3bb2cf0200ca130b86d4" + integrity sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg== + +escape-string-regexp@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/escape-string-regexp/-/escape-string-regexp-4.0.0.tgz#14ba83a5d373e3d311e5afca29cf5bfad965bf34" + integrity sha512-TtpcNJ3XAzx3Gq8sWRzJaVajRs0uVxA2YAkdb1jm2YkPz4G6egUFAyA3n5vtEIZefPk5Wa4UXbKuS5fKkJWdgA== + +escape-string-regexp@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/escape-string-regexp/-/escape-string-regexp-5.0.0.tgz#4683126b500b61762f2dbebace1806e8be31b1c8" + integrity sha512-/veY75JbMK4j1yjvuUxuVsiS/hr/4iHs9FTT6cgTexxdE0Ly/glccBAkloH/DofkjRbZU3bnoj38mOmhkZ0lHw== + +eslint-config-airbnb-base@^15.0.0: + version "15.0.0" + resolved "https://registry.yarnpkg.com/eslint-config-airbnb-base/-/eslint-config-airbnb-base-15.0.0.tgz#6b09add90ac79c2f8d723a2580e07f3925afd236" + integrity sha512-xaX3z4ZZIcFLvh2oUNvcX5oEofXda7giYmuplVxoOg5A7EXJMrUyqRgR+mhDhPK8LZ4PttFOBvCYDbX3sUoUig== + dependencies: + confusing-browser-globals "^1.0.10" + object.assign "^4.1.2" + object.entries "^1.1.5" + semver "^6.3.0" + +eslint-config-airbnb@^19.0.4: + version "19.0.4" + resolved "https://registry.yarnpkg.com/eslint-config-airbnb/-/eslint-config-airbnb-19.0.4.tgz#84d4c3490ad70a0ffa571138ebcdea6ab085fdc3" + integrity sha512-T75QYQVQX57jiNgpF9r1KegMICE94VYwoFQyMGhrvc+lB8YF2E/M/PYDaQe1AJcWaEgqLE+ErXV1Og/+6Vyzew== + dependencies: + eslint-config-airbnb-base "^15.0.0" + object.assign "^4.1.2" + object.entries "^1.1.5" + +eslint-config-prettier@^8.5.0: + version "8.10.0" + resolved "https://registry.yarnpkg.com/eslint-config-prettier/-/eslint-config-prettier-8.10.0.tgz#3a06a662130807e2502fc3ff8b4143d8a0658e11" + integrity sha512-SM8AMJdeQqRYT9O9zguiruQZaN7+z+E4eAP9oiLNGKMtomwaB1E9dcgUD6ZAn/eQAb52USbvezbiljfZUhbJcg== + +eslint-import-resolver-node@^0.3.9: + version "0.3.9" + resolved "https://registry.yarnpkg.com/eslint-import-resolver-node/-/eslint-import-resolver-node-0.3.9.tgz#d4eaac52b8a2e7c3cd1903eb00f7e053356118ac" + integrity sha512-WFj2isz22JahUv+B788TlO3N6zL3nNJGU8CcZbPZvVEkBPaJdCV4vy5wyghty5ROFbCRnm132v8BScu5/1BQ8g== + dependencies: + debug "^3.2.7" + is-core-module "^2.13.0" + resolve "^1.22.4" + +eslint-module-utils@^2.9.0: + version "2.11.1" + resolved "https://registry.yarnpkg.com/eslint-module-utils/-/eslint-module-utils-2.11.1.tgz#6d5a05f09af98f4d238a819ae4c23626a75fa65b" + integrity sha512-EwcbfLOhwVMAfatfqLecR2yv3dE5+kQ8kx+Rrt0DvDXEVwW86KQ/xbMDQhtp5l42VXukD5SOF8mQQHbaNtO0CQ== + dependencies: + debug "^3.2.7" + +eslint-plugin-header@^3.1.1: + version "3.1.1" + resolved "https://registry.yarnpkg.com/eslint-plugin-header/-/eslint-plugin-header-3.1.1.tgz#6ce512432d57675265fac47292b50d1eff11acd6" + integrity sha512-9vlKxuJ4qf793CmeeSrZUvVClw6amtpghq3CuWcB5cUNnWHQhgcqy5eF8oVKFk1G3Y/CbchGfEaw3wiIJaNmVg== + +eslint-plugin-import@^2.26.0: + version "2.30.0" + resolved "https://registry.yarnpkg.com/eslint-plugin-import/-/eslint-plugin-import-2.30.0.tgz#21ceea0fc462657195989dd780e50c92fe95f449" + integrity sha512-/mHNE9jINJfiD2EKkg1BKyPyUk4zdnT54YgbOgfjSakWT5oyX/qQLVNTkehyfpcMxZXMy1zyonZ2v7hZTX43Yw== + dependencies: + "@rtsao/scc" "^1.1.0" + array-includes "^3.1.8" + array.prototype.findlastindex "^1.2.5" + array.prototype.flat "^1.3.2" + array.prototype.flatmap "^1.3.2" + debug "^3.2.7" + doctrine "^2.1.0" + eslint-import-resolver-node "^0.3.9" + eslint-module-utils "^2.9.0" + hasown "^2.0.2" + is-core-module "^2.15.1" + is-glob "^4.0.3" + minimatch "^3.1.2" + object.fromentries "^2.0.8" + object.groupby "^1.0.3" + object.values "^1.2.0" + semver "^6.3.1" + tsconfig-paths "^3.15.0" + +eslint-plugin-jsx-a11y@^6.6.0: + version "6.10.0" + resolved "https://registry.yarnpkg.com/eslint-plugin-jsx-a11y/-/eslint-plugin-jsx-a11y-6.10.0.tgz#36fb9dead91cafd085ddbe3829602fb10ef28339" + integrity sha512-ySOHvXX8eSN6zz8Bywacm7CvGNhUtdjvqfQDVe6020TUK34Cywkw7m0KsCCk1Qtm9G1FayfTN1/7mMYnYO2Bhg== + dependencies: + aria-query "~5.1.3" + array-includes "^3.1.8" + array.prototype.flatmap "^1.3.2" + ast-types-flow "^0.0.8" + axe-core "^4.10.0" + axobject-query "^4.1.0" + damerau-levenshtein "^1.0.8" + emoji-regex "^9.2.2" + es-iterator-helpers "^1.0.19" + hasown "^2.0.2" + jsx-ast-utils "^3.3.5" + language-tags "^1.0.9" + minimatch "^3.1.2" + object.fromentries "^2.0.8" + safe-regex-test "^1.0.3" + string.prototype.includes "^2.0.0" + +eslint-plugin-react-hooks@^4.6.0: + version "4.6.2" + resolved "https://registry.yarnpkg.com/eslint-plugin-react-hooks/-/eslint-plugin-react-hooks-4.6.2.tgz#c829eb06c0e6f484b3fbb85a97e57784f328c596" + integrity sha512-QzliNJq4GinDBcD8gPB5v0wh6g8q3SUi6EFF0x8N/BL9PoVs0atuGc47ozMRyOWAKdwaZ5OnbOEa3WR+dSGKuQ== + +eslint-plugin-react@^7.30.1: + version "7.36.1" + resolved "https://registry.yarnpkg.com/eslint-plugin-react/-/eslint-plugin-react-7.36.1.tgz#f1dabbb11f3d4ebe8b0cf4e54aff4aee81144ee5" + integrity sha512-/qwbqNXZoq+VP30s1d4Nc1C5GTxjJQjk4Jzs4Wq2qzxFM7dSmuG2UkIjg2USMLh3A/aVcUNrK7v0J5U1XEGGwA== + dependencies: + array-includes "^3.1.8" + array.prototype.findlast "^1.2.5" + array.prototype.flatmap "^1.3.2" + array.prototype.tosorted "^1.1.4" + doctrine "^2.1.0" + es-iterator-helpers "^1.0.19" + estraverse "^5.3.0" + hasown "^2.0.2" + jsx-ast-utils "^2.4.1 || ^3.0.0" + minimatch "^3.1.2" + object.entries "^1.1.8" + object.fromentries "^2.0.8" + object.values "^1.2.0" + prop-types "^15.8.1" + resolve "^2.0.0-next.5" + semver "^6.3.1" + string.prototype.matchall "^4.0.11" + string.prototype.repeat "^1.0.0" + +eslint-scope@5.1.1: + version "5.1.1" + resolved "https://registry.yarnpkg.com/eslint-scope/-/eslint-scope-5.1.1.tgz#e786e59a66cb92b3f6c1fb0d508aab174848f48c" + integrity sha512-2NxwbF/hZ0KpepYN0cNbo+FN6XoK7GaHlQhgx/hIZl6Va0bF45RQOOwhLIy8lQDbuCiadSLCBnH2CFYquit5bw== + dependencies: + esrecurse "^4.3.0" + estraverse "^4.1.1" + +eslint-scope@^7.2.2: + version "7.2.2" + resolved "https://registry.yarnpkg.com/eslint-scope/-/eslint-scope-7.2.2.tgz#deb4f92563390f32006894af62a22dba1c46423f" + integrity sha512-dOt21O7lTMhDM+X9mB4GX+DZrZtCUJPL/wlcTqxyrx5IvO0IYtILdtrQGQp+8n5S0gwSVmOf9NQrjMOgfQZlIg== + dependencies: + esrecurse "^4.3.0" + estraverse "^5.2.0" + +eslint-visitor-keys@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/eslint-visitor-keys/-/eslint-visitor-keys-2.1.0.tgz#f65328259305927392c938ed44eb0a5c9b2bd303" + integrity sha512-0rSmRBzXgDzIsD6mGdJgevzgezI534Cer5L/vyMX0kHzT/jiB43jRhd9YUlMGYLQy2zprNmoT8qasCGtY+QaKw== + +eslint-visitor-keys@^3.3.0, eslint-visitor-keys@^3.4.1, eslint-visitor-keys@^3.4.3: + version "3.4.3" + resolved "https://registry.yarnpkg.com/eslint-visitor-keys/-/eslint-visitor-keys-3.4.3.tgz#0cd72fe8550e3c2eae156a96a4dddcd1c8ac5800" + integrity sha512-wpc+LXeiyiisxPlEkUzU6svyS1frIO3Mgxj1fdy7Pm8Ygzguax2N3Fa/D/ag1WqbOprdI+uY6wMUl8/a2G+iag== + +eslint@^8.19.0: + version "8.57.1" + resolved "https://registry.yarnpkg.com/eslint/-/eslint-8.57.1.tgz#7df109654aba7e3bbe5c8eae533c5e461d3c6ca9" + integrity sha512-ypowyDxpVSYpkXr9WPv2PAZCtNip1Mv5KTW0SCurXv/9iOpcrH9PaqUElksqEB6pChqHGDRCFTyrZlGhnLNGiA== + dependencies: + "@eslint-community/eslint-utils" "^4.2.0" + "@eslint-community/regexpp" "^4.6.1" + "@eslint/eslintrc" "^2.1.4" + "@eslint/js" "8.57.1" + "@humanwhocodes/config-array" "^0.13.0" + "@humanwhocodes/module-importer" "^1.0.1" + "@nodelib/fs.walk" "^1.2.8" + "@ungap/structured-clone" "^1.2.0" + ajv "^6.12.4" + chalk "^4.0.0" + cross-spawn "^7.0.2" + debug "^4.3.2" + doctrine "^3.0.0" + escape-string-regexp "^4.0.0" + eslint-scope "^7.2.2" + eslint-visitor-keys "^3.4.3" + espree "^9.6.1" + esquery "^1.4.2" + esutils "^2.0.2" + fast-deep-equal "^3.1.3" + file-entry-cache "^6.0.1" + find-up "^5.0.0" + glob-parent "^6.0.2" + globals "^13.19.0" + graphemer "^1.4.0" + ignore "^5.2.0" + imurmurhash "^0.1.4" + is-glob "^4.0.0" + is-path-inside "^3.0.3" + js-yaml "^4.1.0" + json-stable-stringify-without-jsonify "^1.0.1" + levn "^0.4.1" + lodash.merge "^4.6.2" + minimatch "^3.1.2" + natural-compare "^1.4.0" + optionator "^0.9.3" + strip-ansi "^6.0.1" + text-table "^0.2.0" + +espree@^9.6.0, espree@^9.6.1: + version "9.6.1" + resolved "https://registry.yarnpkg.com/espree/-/espree-9.6.1.tgz#a2a17b8e434690a5432f2f8018ce71d331a48c6f" + integrity sha512-oruZaFkjorTpF32kDSI5/75ViwGeZginGGy2NoOSg3Q9bnwlnmDm4HLnkl0RE3n+njDXR037aY1+x58Z/zFdwQ== + dependencies: + acorn "^8.9.0" + acorn-jsx "^5.3.2" + eslint-visitor-keys "^3.4.1" + +esprima@^4.0.0: + version "4.0.1" + resolved "https://registry.yarnpkg.com/esprima/-/esprima-4.0.1.tgz#13b04cdb3e6c5d19df91ab6987a8695619b0aa71" + integrity sha512-eGuFFw7Upda+g4p+QHvnW0RyTX/SVeJBDM/gCtMARO0cLuT2HcEKnTPvhjV6aGeqrCB/sbNop0Kszm0jsaWU4A== + +esquery@^1.4.2: + version "1.6.0" + resolved "https://registry.yarnpkg.com/esquery/-/esquery-1.6.0.tgz#91419234f804d852a82dceec3e16cdc22cf9dae7" + integrity sha512-ca9pw9fomFcKPvFLXhBKUK90ZvGibiGOvRJNbjljY7s7uq/5YO4BOzcYtJqExdx99rF6aAcnRxHmcUHcz6sQsg== + dependencies: + estraverse "^5.1.0" + +esrecurse@^4.3.0: + version "4.3.0" + resolved "https://registry.yarnpkg.com/esrecurse/-/esrecurse-4.3.0.tgz#7ad7964d679abb28bee72cec63758b1c5d2c9921" + integrity sha512-KmfKL3b6G+RXvP8N1vr3Tq1kL/oCFgn2NYXEtqP8/L3pKapUA4G8cFVaoF3SU323CD4XypR/ffioHmkti6/Tag== + dependencies: + estraverse "^5.2.0" + +estraverse@^4.1.1: + version "4.3.0" + resolved "https://registry.yarnpkg.com/estraverse/-/estraverse-4.3.0.tgz#398ad3f3c5a24948be7725e83d11a7de28cdbd1d" + integrity sha512-39nnKffWz8xN1BU/2c79n9nB9HDzo0niYUqx6xyqUnyoAnQyyWpOTdZEeiCch8BBu515t4wp9ZmgVfVhn9EBpw== + +estraverse@^5.1.0, estraverse@^5.2.0, estraverse@^5.3.0: + version "5.3.0" + resolved "https://registry.yarnpkg.com/estraverse/-/estraverse-5.3.0.tgz#2eea5290702f26ab8fe5370370ff86c965d21123" + integrity sha512-MMdARuVEQziNTeJD8DgMqmhwR11BRQ/cBP+pLtYdSTnf3MIO8fFeiINEbX36ZdNlfU/7A9f3gUw49B3oQsvwBA== + +estree-util-attach-comments@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/estree-util-attach-comments/-/estree-util-attach-comments-3.0.0.tgz#344bde6a64c8a31d15231e5ee9e297566a691c2d" + integrity sha512-cKUwm/HUcTDsYh/9FgnuFqpfquUbwIqwKM26BVCGDPVgvaCl/nDCCjUfiLlx6lsEZ3Z4RFxNbOQ60pkaEwFxGw== + dependencies: + "@types/estree" "^1.0.0" + +estree-util-build-jsx@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/estree-util-build-jsx/-/estree-util-build-jsx-3.0.1.tgz#b6d0bced1dcc4f06f25cf0ceda2b2dcaf98168f1" + integrity sha512-8U5eiL6BTrPxp/CHbs2yMgP8ftMhR5ww1eIKoWRMlqvltHF8fZn5LRDvTKuxD3DUn+shRbLGqXemcP51oFCsGQ== + dependencies: + "@types/estree-jsx" "^1.0.0" + devlop "^1.0.0" + estree-util-is-identifier-name "^3.0.0" + estree-walker "^3.0.0" + +estree-util-is-identifier-name@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/estree-util-is-identifier-name/-/estree-util-is-identifier-name-3.0.0.tgz#0b5ef4c4ff13508b34dcd01ecfa945f61fce5dbd" + integrity sha512-hFtqIDZTIUZ9BXLb8y4pYGyk6+wekIivNVTcmvk8NoOh+VeRn5y6cEHzbURrWbfp1fIqdVipilzj+lfaadNZmg== + +estree-util-to-js@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/estree-util-to-js/-/estree-util-to-js-2.0.0.tgz#10a6fb924814e6abb62becf0d2bc4dea51d04f17" + integrity sha512-WDF+xj5rRWmD5tj6bIqRi6CkLIXbbNQUcxQHzGysQzvHmdYG2G7p/Tf0J0gpxGgkeMZNTIjT/AoSvC9Xehcgdg== + dependencies: + "@types/estree-jsx" "^1.0.0" + astring "^1.8.0" + source-map "^0.7.0" + +estree-util-value-to-estree@^3.0.1: + version "3.1.2" + resolved "https://registry.yarnpkg.com/estree-util-value-to-estree/-/estree-util-value-to-estree-3.1.2.tgz#d2f0e5d350a6c181673eb7299743325b86a9bf5c" + integrity sha512-S0gW2+XZkmsx00tU2uJ4L9hUT7IFabbml9pHh2WQqFmAbxit++YGZne0sKJbNwkj9Wvg9E4uqWl4nCIFQMmfag== + dependencies: + "@types/estree" "^1.0.0" + +estree-util-visit@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/estree-util-visit/-/estree-util-visit-2.0.0.tgz#13a9a9f40ff50ed0c022f831ddf4b58d05446feb" + integrity sha512-m5KgiH85xAhhW8Wta0vShLcUvOsh3LLPI2YVwcbio1l7E09NTLL1EyMZFM1OyWowoH0skScNbhOPl4kcBgzTww== + dependencies: + "@types/estree-jsx" "^1.0.0" + "@types/unist" "^3.0.0" + +estree-walker@^3.0.0: + version "3.0.3" + resolved "https://registry.yarnpkg.com/estree-walker/-/estree-walker-3.0.3.tgz#67c3e549ec402a487b4fc193d1953a524752340d" + integrity sha512-7RUKfXgSMMkzt6ZuXmqapOurLGPPfgj6l9uRZ7lRGolvk0y2yocc35LdcxKC5PQZdn2DMqioAQ2NoWcrTKmm6g== + dependencies: + "@types/estree" "^1.0.0" + +esutils@^2.0.2: + version "2.0.3" + resolved "https://registry.yarnpkg.com/esutils/-/esutils-2.0.3.tgz#74d2eb4de0b8da1293711910d50775b9b710ef64" + integrity sha512-kVscqXk4OCp68SZ0dkgEKVi6/8ij300KBWTJq32P/dYeWTSwK41WyTxalN1eRmA5Z9UU/LX9D7FWSmV9SAYx6g== + +eta@^2.2.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/eta/-/eta-2.2.0.tgz#eb8b5f8c4e8b6306561a455e62cd7492fe3a9b8a" + integrity sha512-UVQ72Rqjy/ZKQalzV5dCCJP80GrmPrMxh6NlNf+erV6ObL0ZFkhCstWRawS85z3smdr3d2wXPsZEY7rDPfGd2g== + +etag@~1.8.1: + version "1.8.1" + resolved "https://registry.yarnpkg.com/etag/-/etag-1.8.1.tgz#41ae2eeb65efa62268aebfea83ac7d79299b0887" + integrity sha512-aIL5Fx7mawVa300al2BnEE4iNvo1qETxLrPI/o05L7z6go7fCw1J6EQmbK4FmJ2AS7kgVF/KEZWufBfdClMcPg== + +eval@^0.1.8: + version "0.1.8" + resolved "https://registry.yarnpkg.com/eval/-/eval-0.1.8.tgz#2b903473b8cc1d1989b83a1e7923f883eb357f85" + integrity sha512-EzV94NYKoO09GLXGjXj9JIlXijVck4ONSr5wiCWDvhsvj5jxSrzTmRU/9C1DyB6uToszLs8aifA6NQ7lEQdvFw== + dependencies: + "@types/node" "*" + require-like ">= 0.1.1" + +eventemitter3@^4.0.0: + version "4.0.7" + resolved "https://registry.yarnpkg.com/eventemitter3/-/eventemitter3-4.0.7.tgz#2de9b68f6528d5644ef5c59526a1b4a07306169f" + integrity sha512-8guHBZCwKnFhYdHr2ysuRWErTwhoN2X8XELRlrRwpmfeY2jjuUN4taQMsULKUVo1K4DvZl+0pgfyoysHxvmvEw== + +events@^3.2.0: + version "3.3.0" + resolved "https://registry.yarnpkg.com/events/-/events-3.3.0.tgz#31a95ad0a924e2d2c419a813aeb2c4e878ea7400" + integrity sha512-mQw+2fkQbALzQ7V0MY0IqdnXNOeTtP4r0lN9z7AAawCXgqea7bDii20AYrIBrFd/Hx0M2Ocz6S111CaFkUcb0Q== + +execa@^5.0.0: + version "5.1.1" + resolved "https://registry.yarnpkg.com/execa/-/execa-5.1.1.tgz#f80ad9cbf4298f7bd1d4c9555c21e93741c411dd" + integrity sha512-8uSpZZocAZRBAPIEINJj3Lo9HyGitllczc27Eh5YYojjMFMn8yHMDMaUHE2Jqfq05D/wucwI4JGURyXt1vchyg== + dependencies: + cross-spawn "^7.0.3" + get-stream "^6.0.0" + human-signals "^2.1.0" + is-stream "^2.0.0" + merge-stream "^2.0.0" + npm-run-path "^4.0.1" + onetime "^5.1.2" + signal-exit "^3.0.3" + strip-final-newline "^2.0.0" + +express@^4.17.3: + version "4.21.0" + resolved "https://registry.yarnpkg.com/express/-/express-4.21.0.tgz#d57cb706d49623d4ac27833f1cbc466b668eb915" + integrity sha512-VqcNGcj/Id5ZT1LZ/cfihi3ttTn+NJmkli2eZADigjq29qTlWi/hAQ43t/VLPq8+UX06FCEx3ByOYet6ZFblng== + dependencies: + accepts "~1.3.8" + array-flatten "1.1.1" + body-parser "1.20.3" + content-disposition "0.5.4" + content-type "~1.0.4" + cookie "0.6.0" + cookie-signature "1.0.6" + debug "2.6.9" + depd "2.0.0" + encodeurl "~2.0.0" + escape-html "~1.0.3" + etag "~1.8.1" + finalhandler "1.3.1" + fresh "0.5.2" + http-errors "2.0.0" + merge-descriptors "1.0.3" + methods "~1.1.2" + on-finished "2.4.1" + parseurl "~1.3.3" + path-to-regexp "0.1.10" + proxy-addr "~2.0.7" + qs "6.13.0" + range-parser "~1.2.1" + safe-buffer "5.2.1" + send "0.19.0" + serve-static "1.16.2" + setprototypeof "1.2.0" + statuses "2.0.1" + type-is "~1.6.18" + utils-merge "1.0.1" + vary "~1.1.2" + +extend-shallow@^2.0.1: + version "2.0.1" + resolved "https://registry.yarnpkg.com/extend-shallow/-/extend-shallow-2.0.1.tgz#51af7d614ad9a9f610ea1bafbb989d6b1c56890f" + integrity sha512-zCnTtlxNoAiDc3gqY2aYAWFx7XWWiasuF2K8Me5WbN8otHKTUKBwjPtNpRs/rbUZm7KxWAaNj7P1a/p52GbVug== + dependencies: + is-extendable "^0.1.0" + +extend@^3.0.0: + version "3.0.2" + resolved "https://registry.yarnpkg.com/extend/-/extend-3.0.2.tgz#f8b1136b4071fbd8eb140aff858b1019ec2915fa" + integrity sha512-fjquC59cD7CyW6urNXK0FBufkZcoiGG80wTuPujX590cB5Ttln20E2UB4S/WARVqhXffZl2LNgS+gQdPIIim/g== + +fast-deep-equal@^3.1.1, fast-deep-equal@^3.1.3: + version "3.1.3" + resolved "https://registry.yarnpkg.com/fast-deep-equal/-/fast-deep-equal-3.1.3.tgz#3a7d56b559d6cbc3eb512325244e619a65c6c525" + integrity sha512-f3qQ9oQy9j2AhBe/H9VC91wLmKBCCU/gDOnKNAYG5hswO7BLKj09Hc5HYNz9cGI++xlpDCIgDaitVs03ATR84Q== + +fast-glob@^3.2.11, fast-glob@^3.2.9, fast-glob@^3.3.0, fast-glob@^3.3.2: + version "3.3.2" + resolved "https://registry.yarnpkg.com/fast-glob/-/fast-glob-3.3.2.tgz#a904501e57cfdd2ffcded45e99a54fef55e46129" + integrity sha512-oX2ruAFQwf/Orj8m737Y5adxDQO0LAB7/S5MnxCdTNDd4p6BsyIVsv9JQsATbTSq8KHRpLwIHbVlUNatxd+1Ow== + dependencies: + "@nodelib/fs.stat" "^2.0.2" + "@nodelib/fs.walk" "^1.2.3" + glob-parent "^5.1.2" + merge2 "^1.3.0" + micromatch "^4.0.4" + +fast-json-stable-stringify@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/fast-json-stable-stringify/-/fast-json-stable-stringify-2.1.0.tgz#874bf69c6f404c2b5d99c481341399fd55892633" + integrity sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw== + +fast-levenshtein@^2.0.6: + version "2.0.6" + resolved "https://registry.yarnpkg.com/fast-levenshtein/-/fast-levenshtein-2.0.6.tgz#3d8a5c66883a16a30ca8643e851f19baa7797917" + integrity sha512-DCXu6Ifhqcks7TZKY3Hxp3y6qphY5SJZmrWMDrKcERSOXWQdMhU9Ig/PYrzyw/ul9jOIyh0N4M0tbC5hodg8dw== + +fast-uri@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/fast-uri/-/fast-uri-3.0.1.tgz#cddd2eecfc83a71c1be2cc2ef2061331be8a7134" + integrity sha512-MWipKbbYiYI0UC7cl8m/i/IWTqfC8YXsqjzybjddLsFjStroQzsHXkc73JutMvBiXmOvapk+axIl79ig5t55Bw== + +fast-url-parser@1.1.3: + version "1.1.3" + resolved "https://registry.yarnpkg.com/fast-url-parser/-/fast-url-parser-1.1.3.tgz#f4af3ea9f34d8a271cf58ad2b3759f431f0b318d" + integrity sha512-5jOCVXADYNuRkKFzNJ0dCCewsZiYo0dz8QNYljkOpFC6r2U4OBmKtvm/Tsuh4w1YYdDqDb31a8TVhBJ2OJKdqQ== + dependencies: + punycode "^1.3.2" + +fastq@^1.6.0: + version "1.17.1" + resolved "https://registry.yarnpkg.com/fastq/-/fastq-1.17.1.tgz#2a523f07a4e7b1e81a42b91b8bf2254107753b47" + integrity sha512-sRVD3lWVIXWg6By68ZN7vho9a1pQcN/WBFaAAsDDFzlJjvoGx0P8z7V1t72grFJfJhu3YPZBuu25f7Kaw2jN1w== + dependencies: + reusify "^1.0.4" + +fault@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/fault/-/fault-2.0.1.tgz#d47ca9f37ca26e4bd38374a7c500b5a384755b6c" + integrity sha512-WtySTkS4OKev5JtpHXnib4Gxiurzh5NCGvWrFaZ34m6JehfTUhKZvn9njTfw48t6JumVQOmrKqpmGcdwxnhqBQ== + dependencies: + format "^0.2.0" + +faye-websocket@^0.11.3: + version "0.11.4" + resolved "https://registry.yarnpkg.com/faye-websocket/-/faye-websocket-0.11.4.tgz#7f0d9275cfdd86a1c963dc8b65fcc451edcbb1da" + integrity sha512-CzbClwlXAuiRQAlUyfqPgvPoNKTckTPGfwZV4ZdAhVcP2lh9KUxJg2b5GkE7XbjKQ3YJnQ9z6D9ntLAlB+tP8g== + dependencies: + websocket-driver ">=0.5.1" + +feed@^4.2.2: + version "4.2.2" + resolved "https://registry.yarnpkg.com/feed/-/feed-4.2.2.tgz#865783ef6ed12579e2c44bbef3c9113bc4956a7e" + integrity sha512-u5/sxGfiMfZNtJ3OvQpXcvotFpYkL0n9u9mM2vkui2nGo8b4wvDkJ8gAkYqbA8QpGyFCv3RK0Z+Iv+9veCS9bQ== + dependencies: + xml-js "^1.6.11" + +fetch-blob@^3.1.2, fetch-blob@^3.1.4: + version "3.2.0" + resolved "https://registry.yarnpkg.com/fetch-blob/-/fetch-blob-3.2.0.tgz#f09b8d4bbd45adc6f0c20b7e787e793e309dcce9" + integrity sha512-7yAQpD2UMJzLi1Dqv7qFYnPbaPx7ZfFK6PiIxQ4PfkGPyNyl2Ugx+a/umUonmKqjhM4DnfbMvdX6otXq83soQQ== + dependencies: + node-domexception "^1.0.0" + web-streams-polyfill "^3.0.3" + +file-entry-cache@^6.0.1: + version "6.0.1" + resolved "https://registry.yarnpkg.com/file-entry-cache/-/file-entry-cache-6.0.1.tgz#211b2dd9659cb0394b073e7323ac3c933d522027" + integrity sha512-7Gps/XWymbLk2QLYK4NzpMOrYjMhdIxXuIvy2QBsLE6ljuodKvdkWs/cpyJJ3CVIVpH0Oi1Hvg1ovbMzLdFBBg== + dependencies: + flat-cache "^3.0.4" + +file-loader@^6.2.0: + version "6.2.0" + resolved "https://registry.yarnpkg.com/file-loader/-/file-loader-6.2.0.tgz#baef7cf8e1840df325e4390b4484879480eebe4d" + integrity sha512-qo3glqyTa61Ytg4u73GultjHGjdRyig3tG6lPtyX/jOEJvHif9uB0/OCI2Kif6ctF3caQTW2G5gym21oAsI4pw== + dependencies: + loader-utils "^2.0.0" + schema-utils "^3.0.0" + +filesize@^8.0.6: + version "8.0.7" + resolved "https://registry.yarnpkg.com/filesize/-/filesize-8.0.7.tgz#695e70d80f4e47012c132d57a059e80c6b580bd8" + integrity sha512-pjmC+bkIF8XI7fWaH8KxHcZL3DPybs1roSKP4rKDvy20tAWwIObE4+JIseG2byfGKhud5ZnM4YSGKBz7Sh0ndQ== + +fill-range@^7.1.1: + version "7.1.1" + resolved "https://registry.yarnpkg.com/fill-range/-/fill-range-7.1.1.tgz#44265d3cac07e3ea7dc247516380643754a05292" + integrity sha512-YsGpe3WHLK8ZYi4tWDg2Jy3ebRz2rXowDxnld4bkQB00cc/1Zw9AWnC0i9ztDJitivtQvaI9KaLyKrc+hBW0yg== + dependencies: + to-regex-range "^5.0.1" + +finalhandler@1.3.1: + version "1.3.1" + resolved "https://registry.yarnpkg.com/finalhandler/-/finalhandler-1.3.1.tgz#0c575f1d1d324ddd1da35ad7ece3df7d19088019" + integrity sha512-6BN9trH7bp3qvnrRyzsBz+g3lZxTNZTbVO2EV1CS0WIcDbawYVdYvGflME/9QP0h0pYlCDBCTjYa9nZzMDpyxQ== + dependencies: + debug "2.6.9" + encodeurl "~2.0.0" + escape-html "~1.0.3" + on-finished "2.4.1" + parseurl "~1.3.3" + statuses "2.0.1" + unpipe "~1.0.0" + +find-cache-dir@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/find-cache-dir/-/find-cache-dir-4.0.0.tgz#a30ee0448f81a3990708f6453633c733e2f6eec2" + integrity sha512-9ZonPT4ZAK4a+1pUPVPZJapbi7O5qbbJPdYw/NOQWZZbVLdDTYM3A4R9z/DpAM08IDaFGsvPgiGZ82WEwUDWjg== + dependencies: + common-path-prefix "^3.0.0" + pkg-dir "^7.0.0" + +find-up@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/find-up/-/find-up-3.0.0.tgz#49169f1d7993430646da61ecc5ae355c21c97b73" + integrity sha512-1yD6RmLI1XBfxugvORwlck6f75tYL+iR0jqwsOrOxMZyGYqUuDhJ0l4AXdO1iX/FTs9cBAMEk1gWSEx1kSbylg== + dependencies: + locate-path "^3.0.0" + +find-up@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/find-up/-/find-up-5.0.0.tgz#4c92819ecb7083561e4f4a240a86be5198f536fc" + integrity sha512-78/PXT1wlLLDgTzDs7sjq9hzz0vXD+zn+7wypEe4fXQxCmdmqfGsEPQxmiCSQI3ajFV91bVSsvNtrJRiW6nGng== + dependencies: + locate-path "^6.0.0" + path-exists "^4.0.0" + +find-up@^6.3.0: + version "6.3.0" + resolved "https://registry.yarnpkg.com/find-up/-/find-up-6.3.0.tgz#2abab3d3280b2dc7ac10199ef324c4e002c8c790" + integrity sha512-v2ZsoEuVHYy8ZIlYqwPe/39Cy+cFDzp4dXPaxNvkEuouymu+2Jbz0PxpKarJHYJTmv2HWT3O382qY8l4jMWthw== + dependencies: + locate-path "^7.1.0" + path-exists "^5.0.0" + +flat-cache@^3.0.4: + version "3.2.0" + resolved "https://registry.yarnpkg.com/flat-cache/-/flat-cache-3.2.0.tgz#2c0c2d5040c99b1632771a9d105725c0115363ee" + integrity sha512-CYcENa+FtcUKLmhhqyctpclsq7QF38pKjZHsGNiSQF5r4FtoKDWabFDl3hzaEQMvT1LHEysw5twgLvpYYb4vbw== + dependencies: + flatted "^3.2.9" + keyv "^4.5.3" + rimraf "^3.0.2" + +flat@^5.0.2: + version "5.0.2" + resolved "https://registry.yarnpkg.com/flat/-/flat-5.0.2.tgz#8ca6fe332069ffa9d324c327198c598259ceb241" + integrity sha512-b6suED+5/3rTpUBdG1gupIl8MPFCAMA0QXwmljLhvCUKcUvdE4gWky9zpuGCcXHOsz4J9wPGNWq6OKpmIzz3hQ== + +flatted@^3.2.9: + version "3.3.1" + resolved "https://registry.yarnpkg.com/flatted/-/flatted-3.3.1.tgz#21db470729a6734d4997002f439cb308987f567a" + integrity sha512-X8cqMLLie7KsNUDSdzeN8FYK9rEt4Dt67OsG/DNGnYTSDBG4uFAJFBnUeiV+zCVAvwFy56IjM9sH51jVaEhNxw== + +follow-redirects@^1.0.0, follow-redirects@^1.15.6: + version "1.15.9" + resolved "https://registry.yarnpkg.com/follow-redirects/-/follow-redirects-1.15.9.tgz#a604fa10e443bf98ca94228d9eebcc2e8a2c8ee1" + integrity sha512-gew4GsXizNgdoRyqmyfMHyAmXsZDk6mHkSxZFCzW9gwlbtOW44CDtYavM+y+72qD/Vq2l550kMF52DT8fOLJqQ== + +for-each@^0.3.3: + version "0.3.3" + resolved "https://registry.yarnpkg.com/for-each/-/for-each-0.3.3.tgz#69b447e88a0a5d32c3e7084f3f1710034b21376e" + integrity sha512-jqYfLp7mo9vIyQf8ykW2v7A+2N4QjeCeI5+Dz9XraiO1ign81wjiH7Fb9vSOWvQfNtmSa4H2RoQTrrXivdUZmw== + dependencies: + is-callable "^1.1.3" + +foreground-child@^3.1.0: + version "3.3.0" + resolved "https://registry.yarnpkg.com/foreground-child/-/foreground-child-3.3.0.tgz#0ac8644c06e431439f8561db8ecf29a7b5519c77" + integrity sha512-Ld2g8rrAyMYFXBhEqMz8ZAHBi4J4uS1i/CxGMDnjyFWddMXLVcDp051DZfu+t7+ab7Wv6SMqpWmyFIj5UbfFvg== + dependencies: + cross-spawn "^7.0.0" + signal-exit "^4.0.1" + +fork-ts-checker-webpack-plugin@^6.5.0: + version "6.5.3" + resolved "https://registry.yarnpkg.com/fork-ts-checker-webpack-plugin/-/fork-ts-checker-webpack-plugin-6.5.3.tgz#eda2eff6e22476a2688d10661688c47f611b37f3" + integrity sha512-SbH/l9ikmMWycd5puHJKTkZJKddF4iRLyW3DeZ08HTI7NGyLS38MXd/KGgeWumQO7YNQbW2u/NtPT2YowbPaGQ== + dependencies: + "@babel/code-frame" "^7.8.3" + "@types/json-schema" "^7.0.5" + chalk "^4.1.0" + chokidar "^3.4.2" + cosmiconfig "^6.0.0" + deepmerge "^4.2.2" + fs-extra "^9.0.0" + glob "^7.1.6" + memfs "^3.1.2" + minimatch "^3.0.4" + schema-utils "2.7.0" + semver "^7.3.2" + tapable "^1.0.0" + +form-data-encoder@^2.1.2: + version "2.1.4" + resolved "https://registry.yarnpkg.com/form-data-encoder/-/form-data-encoder-2.1.4.tgz#261ea35d2a70d48d30ec7a9603130fa5515e9cd5" + integrity sha512-yDYSgNMraqvnxiEXO4hi88+YZxaHC6QKzb5N84iRCTDeRO7ZALpir/lVmf/uXUhnwUr2O4HU8s/n6x+yNjQkHw== + +form-data@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/form-data/-/form-data-4.0.0.tgz#93919daeaf361ee529584b9b31664dc12c9fa452" + integrity sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww== + dependencies: + asynckit "^0.4.0" + combined-stream "^1.0.8" + mime-types "^2.1.12" + +format@^0.2.0: + version "0.2.2" + resolved "https://registry.yarnpkg.com/format/-/format-0.2.2.tgz#d6170107e9efdc4ed30c9dc39016df942b5cb58b" + integrity sha512-wzsgA6WOq+09wrU1tsJ09udeR/YZRaeArL9e1wPbFg3GG2yDnC2ldKpxs4xunpFF9DgqCqOIra3bc1HWrJ37Ww== + +formdata-polyfill@^4.0.10: + version "4.0.10" + resolved "https://registry.yarnpkg.com/formdata-polyfill/-/formdata-polyfill-4.0.10.tgz#24807c31c9d402e002ab3d8c720144ceb8848423" + integrity sha512-buewHzMvYL29jdeQTVILecSaZKnt/RJWjoZCF5OW60Z67/GmSLBkOFM7qh1PI3zFNtJbaZL5eQu1vLfazOwj4g== + dependencies: + fetch-blob "^3.1.2" + +forwarded@0.2.0: + version "0.2.0" + resolved "https://registry.yarnpkg.com/forwarded/-/forwarded-0.2.0.tgz#2269936428aad4c15c7ebe9779a84bf0b2a81811" + integrity sha512-buRG0fpBtRHSTCOASe6hD258tEubFoRLb4ZNA6NxMVHNw2gOcwHo9wyablzMzOA5z9xA9L1KNjk/Nt6MT9aYow== + +fraction.js@^4.3.7: + version "4.3.7" + resolved "https://registry.yarnpkg.com/fraction.js/-/fraction.js-4.3.7.tgz#06ca0085157e42fda7f9e726e79fefc4068840f7" + integrity sha512-ZsDfxO51wGAXREY55a7la9LScWpwv9RxIrYABrlvOFBlH/ShPnrtsXeuUIfXKKOVicNxQ+o8JTbJvjS4M89yew== + +fresh@0.5.2: + version "0.5.2" + resolved "https://registry.yarnpkg.com/fresh/-/fresh-0.5.2.tgz#3d8cadd90d976569fa835ab1f8e4b23a105605a7" + integrity sha512-zJ2mQYM18rEFOudeV4GShTGIQ7RbzA7ozbU9I/XBpm7kqgMywgmylMwXHxZJmkVoYkna9d2pVXVXPdYTP9ej8Q== + +fs-extra@^11.1.1, fs-extra@^11.2.0: + version "11.2.0" + resolved "https://registry.yarnpkg.com/fs-extra/-/fs-extra-11.2.0.tgz#e70e17dfad64232287d01929399e0ea7c86b0e5b" + integrity sha512-PmDi3uwK5nFuXh7XDTlVnS17xJS7vW36is2+w3xcv8SVxiB4NyATf4ctkVY5bkSjX0Y4nbvZCq1/EjtEyr9ktw== + dependencies: + graceful-fs "^4.2.0" + jsonfile "^6.0.1" + universalify "^2.0.0" + +fs-extra@^9.0.0: + version "9.1.0" + resolved "https://registry.yarnpkg.com/fs-extra/-/fs-extra-9.1.0.tgz#5954460c764a8da2094ba3554bf839e6b9a7c86d" + integrity sha512-hcg3ZmepS30/7BSFqRvoo3DOMQu7IjqxO5nCDt+zM9XWjb33Wg7ziNT+Qvqbuc3+gWpzO02JubVyk2G4Zvo1OQ== + dependencies: + at-least-node "^1.0.0" + graceful-fs "^4.2.0" + jsonfile "^6.0.1" + universalify "^2.0.0" + +fs-monkey@^1.0.4: + version "1.0.6" + resolved "https://registry.yarnpkg.com/fs-monkey/-/fs-monkey-1.0.6.tgz#8ead082953e88d992cf3ff844faa907b26756da2" + integrity sha512-b1FMfwetIKymC0eioW7mTywihSQE4oLzQn1dB6rZB5fx/3NpNEdAWeCSMB+60/AeT0TCXsxzAlcYVEFCTAksWg== + +fs.realpath@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/fs.realpath/-/fs.realpath-1.0.0.tgz#1504ad2523158caa40db4a2787cb01411994ea4f" + integrity sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw== + +fsevents@~2.3.2: + version "2.3.3" + resolved "https://registry.yarnpkg.com/fsevents/-/fsevents-2.3.3.tgz#cac6407785d03675a2a5e1a5305c697b347d90d6" + integrity sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw== + +function-bind@^1.1.2: + version "1.1.2" + resolved "https://registry.yarnpkg.com/function-bind/-/function-bind-1.1.2.tgz#2c02d864d97f3ea6c8830c464cbd11ab6eab7a1c" + integrity sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA== + +function.prototype.name@^1.1.6: + version "1.1.6" + resolved "https://registry.yarnpkg.com/function.prototype.name/-/function.prototype.name-1.1.6.tgz#cdf315b7d90ee77a4c6ee216c3c3362da07533fd" + integrity sha512-Z5kx79swU5P27WEayXM1tBi5Ze/lbIyiNgU3qyXUOf9b2rgXYyF9Dy9Cx+IQv/Lc8WCG6L82zwUPpSS9hGehIg== + dependencies: + call-bind "^1.0.2" + define-properties "^1.2.0" + es-abstract "^1.22.1" + functions-have-names "^1.2.3" + +functions-have-names@^1.2.3: + version "1.2.3" + resolved "https://registry.yarnpkg.com/functions-have-names/-/functions-have-names-1.2.3.tgz#0404fe4ee2ba2f607f0e0ec3c80bae994133b834" + integrity sha512-xckBUXyTIqT97tq2x2AMb+g163b5JFysYk0x4qxNFwbfQkmNZoiRHb6sPzI9/QV33WeuvVYBUIiD4NzNIyqaRQ== + +gensync@^1.0.0-beta.2: + version "1.0.0-beta.2" + resolved "https://registry.yarnpkg.com/gensync/-/gensync-1.0.0-beta.2.tgz#32a6ee76c3d7f52d46b2b1ae5d93fea8580a25e0" + integrity sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg== + +get-intrinsic@^1.1.3, get-intrinsic@^1.2.1, get-intrinsic@^1.2.2, get-intrinsic@^1.2.3, get-intrinsic@^1.2.4: + version "1.2.4" + resolved "https://registry.yarnpkg.com/get-intrinsic/-/get-intrinsic-1.2.4.tgz#e385f5a4b5227d449c3eabbad05494ef0abbeadd" + integrity sha512-5uYhsJH8VJBTv7oslg4BznJYhDoRI6waYCxMmCdnTrcCrHA/fCFKoTFz2JKKE0HdDFUF7/oQuhzumXJK7paBRQ== + dependencies: + es-errors "^1.3.0" + function-bind "^1.1.2" + has-proto "^1.0.1" + has-symbols "^1.0.3" + hasown "^2.0.0" + +get-own-enumerable-property-symbols@^3.0.0: + version "3.0.2" + resolved "https://registry.yarnpkg.com/get-own-enumerable-property-symbols/-/get-own-enumerable-property-symbols-3.0.2.tgz#b5fde77f22cbe35f390b4e089922c50bce6ef664" + integrity sha512-I0UBV/XOz1XkIJHEUDMZAbzCThU/H8DxmSfmdGcKPnVhu2VfFqr34jr9777IyaTYvxjedWhqVIilEDsCdP5G6g== + +get-stream@^6.0.0, get-stream@^6.0.1: + version "6.0.1" + resolved "https://registry.yarnpkg.com/get-stream/-/get-stream-6.0.1.tgz#a262d8eef67aced57c2852ad6167526a43cbf7b7" + integrity sha512-ts6Wi+2j3jQjqi70w5AlN8DFnkSwC+MqmxEzdEALB2qXZYV3X/b1CTfgPLGJNMeAWxdPfU8FO1ms3NUfaHCPYg== + +get-symbol-description@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/get-symbol-description/-/get-symbol-description-1.0.2.tgz#533744d5aa20aca4e079c8e5daf7fd44202821f5" + integrity sha512-g0QYk1dZBxGwk+Ngc+ltRH2IBp2f7zBkBMBJZCDerh6EhlhSR6+9irMCuT/09zD6qkarHUSn529sK/yL4S27mg== + dependencies: + call-bind "^1.0.5" + es-errors "^1.3.0" + get-intrinsic "^1.2.4" + +github-slugger@^1.5.0: + version "1.5.0" + resolved "https://registry.yarnpkg.com/github-slugger/-/github-slugger-1.5.0.tgz#17891bbc73232051474d68bd867a34625c955f7d" + integrity sha512-wIh+gKBI9Nshz2o46B0B3f5k/W+WI9ZAv6y5Dn5WJ5SK1t0TnDimB4WE5rmTD05ZAIn8HALCZVmCsvj0w0v0lw== + +glob-parent@^5.1.2, glob-parent@~5.1.2: + version "5.1.2" + resolved "https://registry.yarnpkg.com/glob-parent/-/glob-parent-5.1.2.tgz#869832c58034fe68a4093c17dc15e8340d8401c4" + integrity sha512-AOIgSQCepiJYwP3ARnGx+5VnTu2HBYdzbGP45eLw1vr3zB3vZLeyed1sC9hnbcOc9/SrMyM5RPQrkGz4aS9Zow== + dependencies: + is-glob "^4.0.1" + +glob-parent@^6.0.1, glob-parent@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/glob-parent/-/glob-parent-6.0.2.tgz#6d237d99083950c79290f24c7642a3de9a28f9e3" + integrity sha512-XxwI8EOhVQgWp6iDL+3b0r86f4d6AX6zSU55HfB4ydCEuXLXc5FcYeOu+nnGftS4TEju/11rt4KJPTMgbfmv4A== + dependencies: + is-glob "^4.0.3" + +glob-to-regexp@^0.4.1: + version "0.4.1" + resolved "https://registry.yarnpkg.com/glob-to-regexp/-/glob-to-regexp-0.4.1.tgz#c75297087c851b9a578bd217dd59a92f59fe546e" + integrity sha512-lkX1HJXwyMcprw/5YUZc2s7DrpAiHB21/V+E1rHUrVNokkvB6bqMzT0VfV6/86ZNabt1k14YOIaT7nDvOX3Iiw== + +glob@^10.3.10, glob@^10.3.7: + version "10.4.5" + resolved "https://registry.yarnpkg.com/glob/-/glob-10.4.5.tgz#f4d9f0b90ffdbab09c9d77f5f29b4262517b0956" + integrity sha512-7Bv8RF0k6xjo7d4A/PxYLbUCfb6c+Vpd2/mB2yRDlew7Jb5hEXiCD9ibfO7wpk8i4sevK6DFny9h7EYbM3/sHg== + dependencies: + foreground-child "^3.1.0" + jackspeak "^3.1.2" + minimatch "^9.0.4" + minipass "^7.1.2" + package-json-from-dist "^1.0.0" + path-scurry "^1.11.1" + +glob@^7.0.0, glob@^7.1.3, glob@^7.1.6: + version "7.2.3" + resolved "https://registry.yarnpkg.com/glob/-/glob-7.2.3.tgz#b8df0fb802bbfa8e89bd1d938b4e16578ed44f2b" + integrity sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q== + dependencies: + fs.realpath "^1.0.0" + inflight "^1.0.4" + inherits "2" + minimatch "^3.1.1" + once "^1.3.0" + path-is-absolute "^1.0.0" + +global-dirs@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/global-dirs/-/global-dirs-3.0.1.tgz#0c488971f066baceda21447aecb1a8b911d22485" + integrity sha512-NBcGGFbBA9s1VzD41QXDG+3++t9Mn5t1FpLdhESY6oKY4gYTFpX4wO3sqGUa0Srjtbfj3szX0RnemmrVRUdULA== + dependencies: + ini "2.0.0" + +global-modules@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/global-modules/-/global-modules-2.0.0.tgz#997605ad2345f27f51539bea26574421215c7780" + integrity sha512-NGbfmJBp9x8IxyJSd1P+otYK8vonoJactOogrVfFRIAEY1ukil8RSKDz2Yo7wh1oihl51l/r6W4epkeKJHqL8A== + dependencies: + global-prefix "^3.0.0" + +global-prefix@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/global-prefix/-/global-prefix-3.0.0.tgz#fc85f73064df69f50421f47f883fe5b913ba9b97" + integrity sha512-awConJSVCHVGND6x3tmMaKcQvwXLhjdkmomy2W+Goaui8YPgYgXJZewhg3fWC+DlfqqQuWg8AwqjGTD2nAPVWg== + dependencies: + ini "^1.3.5" + kind-of "^6.0.2" + which "^1.3.1" + +globals@^11.1.0: + version "11.12.0" + resolved "https://registry.yarnpkg.com/globals/-/globals-11.12.0.tgz#ab8795338868a0babd8525758018c2a7eb95c42e" + integrity sha512-WOBp/EEGUiIsJSp7wcv/y6MO+lV9UoncWqxuFfm8eBwzWNgyfBd6Gz+IeKQ9jCmyhoH99g15M3T+QaVHFjizVA== + +globals@^13.19.0: + version "13.24.0" + resolved "https://registry.yarnpkg.com/globals/-/globals-13.24.0.tgz#8432a19d78ce0c1e833949c36adb345400bb1171" + integrity sha512-AhO5QUcj8llrbG09iWhPU2B204J1xnPeL8kQmVorSsy+Sjj1sk8gIyh6cUocGmH4L0UuhAJy+hJMRA4mgA4mFQ== + dependencies: + type-fest "^0.20.2" + +globalthis@^1.0.3: + version "1.0.4" + resolved "https://registry.yarnpkg.com/globalthis/-/globalthis-1.0.4.tgz#7430ed3a975d97bfb59bcce41f5cabbafa651236" + integrity sha512-DpLKbNU4WylpxJykQujfCcwYWiV/Jhm50Goo0wrVILAv5jOr9d+H+UR3PhSCD2rCCEIg0uc+G+muBTwD54JhDQ== + dependencies: + define-properties "^1.2.1" + gopd "^1.0.1" + +globby@^11.0.1, globby@^11.0.4, globby@^11.1.0: + version "11.1.0" + resolved "https://registry.yarnpkg.com/globby/-/globby-11.1.0.tgz#bd4be98bb042f83d796f7e3811991fbe82a0d34b" + integrity sha512-jhIXaOzy1sb8IyocaruWSn1TjmnBVs8Ayhcy83rmxNJ8q2uWKCAj3CnJY+KpGSXCueAPc0i05kVvVKtP1t9S3g== + dependencies: + array-union "^2.1.0" + dir-glob "^3.0.1" + fast-glob "^3.2.9" + ignore "^5.2.0" + merge2 "^1.4.1" + slash "^3.0.0" + +globby@^13.1.1: + version "13.2.2" + resolved "https://registry.yarnpkg.com/globby/-/globby-13.2.2.tgz#63b90b1bf68619c2135475cbd4e71e66aa090592" + integrity sha512-Y1zNGV+pzQdh7H39l9zgB4PJqjRNqydvdYCDG4HFXM4XuvSaQQlEc91IU1yALL8gUTDomgBAfz3XJdmUS+oo0w== + dependencies: + dir-glob "^3.0.1" + fast-glob "^3.3.0" + ignore "^5.2.4" + merge2 "^1.4.1" + slash "^4.0.0" + +gopd@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/gopd/-/gopd-1.0.1.tgz#29ff76de69dac7489b7c0918a5788e56477c332c" + integrity sha512-d65bNlIadxvpb/A2abVdlqKqV563juRnZ1Wtk6s1sIR8uNsXR70xqIzVqxVf1eTqDunwT2MkczEeaezCKTZhwA== + dependencies: + get-intrinsic "^1.1.3" + +got@^12.1.0: + version "12.6.1" + resolved "https://registry.yarnpkg.com/got/-/got-12.6.1.tgz#8869560d1383353204b5a9435f782df9c091f549" + integrity sha512-mThBblvlAF1d4O5oqyvN+ZxLAYwIJK7bpMxgYqPD9okW0C3qm5FFn7k811QrcuEBwaogR3ngOFoCfs6mRv7teQ== + dependencies: + "@sindresorhus/is" "^5.2.0" + "@szmarczak/http-timer" "^5.0.1" + cacheable-lookup "^7.0.0" + cacheable-request "^10.2.8" + decompress-response "^6.0.0" + form-data-encoder "^2.1.2" + get-stream "^6.0.1" + http2-wrapper "^2.1.10" + lowercase-keys "^3.0.0" + p-cancelable "^3.0.0" + responselike "^3.0.0" + +graceful-fs@4.2.10: + version "4.2.10" + resolved "https://registry.yarnpkg.com/graceful-fs/-/graceful-fs-4.2.10.tgz#147d3a006da4ca3ce14728c7aefc287c367d7a6c" + integrity sha512-9ByhssR2fPVsNZj478qUUbKfmL0+t5BDVyjShtyZZLiK7ZDAArFFfopyOTj0M05wE2tJPisA4iTnnXl2YoPvOA== + +graceful-fs@^4.1.2, graceful-fs@^4.1.6, graceful-fs@^4.2.0, graceful-fs@^4.2.11, graceful-fs@^4.2.4, graceful-fs@^4.2.6, graceful-fs@^4.2.9: + version "4.2.11" + resolved "https://registry.yarnpkg.com/graceful-fs/-/graceful-fs-4.2.11.tgz#4183e4e8bf08bb6e05bbb2f7d2e0c8f712ca40e3" + integrity sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ== + +graphemer@^1.4.0: + version "1.4.0" + resolved "https://registry.yarnpkg.com/graphemer/-/graphemer-1.4.0.tgz#fb2f1d55e0e3a1849aeffc90c4fa0dd53a0e66c6" + integrity sha512-EtKwoO6kxCL9WO5xipiHTZlSzBm7WLT627TqC/uVRd0HKmq8NXyebnNYxDoBi7wt8eTWrUrKXCOVaFq9x1kgag== + +gray-matter@^4.0.3: + version "4.0.3" + resolved "https://registry.yarnpkg.com/gray-matter/-/gray-matter-4.0.3.tgz#e893c064825de73ea1f5f7d88c7a9f7274288798" + integrity sha512-5v6yZd4JK3eMI3FqqCouswVqwugaA9r4dNZB1wwcmrD02QkV5H0y7XBQW8QwQqEaZY1pM9aqORSORhJRdNK44Q== + dependencies: + js-yaml "^3.13.1" + kind-of "^6.0.2" + section-matter "^1.0.0" + strip-bom-string "^1.0.0" + +gzip-size@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/gzip-size/-/gzip-size-6.0.0.tgz#065367fd50c239c0671cbcbad5be3e2eeb10e462" + integrity sha512-ax7ZYomf6jqPTQ4+XCpUGyXKHk5WweS+e05MBO4/y3WJ5RkmPXNKvX+bx1behVILVwr6JSQvZAku021CHPXG3Q== + dependencies: + duplexer "^0.1.2" + +handle-thing@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/handle-thing/-/handle-thing-2.0.1.tgz#857f79ce359580c340d43081cc648970d0bb234e" + integrity sha512-9Qn4yBxelxoh2Ow62nP+Ka/kMnOXRi8BXnRaUwezLNhqelnN49xKz4F/dPP8OYLxLxq6JDtZb2i9XznUQbNPTg== + +has-bigints@^1.0.1, has-bigints@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/has-bigints/-/has-bigints-1.0.2.tgz#0871bd3e3d51626f6ca0966668ba35d5602d6eaa" + integrity sha512-tSvCKtBr9lkF0Ex0aQiP9N+OpV4zi2r/Nee5VkRDbaqv35RLYMzbwQfFSZZH0kR+Rd6302UJZ2p/bJCEoR3VoQ== + +has-flag@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/has-flag/-/has-flag-3.0.0.tgz#b5d454dc2199ae225699f3467e5a07f3b955bafd" + integrity sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw== + +has-flag@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/has-flag/-/has-flag-4.0.0.tgz#944771fd9c81c81265c4d6941860da06bb59479b" + integrity sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ== + +has-property-descriptors@^1.0.0, has-property-descriptors@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/has-property-descriptors/-/has-property-descriptors-1.0.2.tgz#963ed7d071dc7bf5f084c5bfbe0d1b6222586854" + integrity sha512-55JNKuIW+vq4Ke1BjOTjM2YctQIvCT7GFzHwmfZPGo5wnrgkid0YQtnAleFSqumZm4az3n2BS+erby5ipJdgrg== + dependencies: + es-define-property "^1.0.0" + +has-proto@^1.0.1, has-proto@^1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/has-proto/-/has-proto-1.0.3.tgz#b31ddfe9b0e6e9914536a6ab286426d0214f77fd" + integrity sha512-SJ1amZAJUiZS+PhsVLf5tGydlaVB8EdFpaSO4gmiUKUOxk8qzn5AIy4ZeJUmh22znIdk/uMAUT2pl3FxzVUH+Q== + +has-symbols@^1.0.2, has-symbols@^1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/has-symbols/-/has-symbols-1.0.3.tgz#bb7b2c4349251dce87b125f7bdf874aa7c8b39f8" + integrity sha512-l3LCuF6MgDNwTDKkdYGEihYjt5pRPbEg46rtlmnSPlUbgmB8LOIrKJbYYFBSbnPaJexMKtiPO8hmeRjRz2Td+A== + +has-tostringtag@^1.0.0, has-tostringtag@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/has-tostringtag/-/has-tostringtag-1.0.2.tgz#2cdc42d40bef2e5b4eeab7c01a73c54ce7ab5abc" + integrity sha512-NqADB8VjPFLM2V0VvHUewwwsw0ZWBaIdgo+ieHtK3hasLz4qeCRjYcqfB6AQrBggRKppKF8L52/VqdVsO47Dlw== + dependencies: + has-symbols "^1.0.3" + +has-yarn@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/has-yarn/-/has-yarn-3.0.0.tgz#c3c21e559730d1d3b57e28af1f30d06fac38147d" + integrity sha512-IrsVwUHhEULx3R8f/aA8AHuEzAorplsab/v8HBzEiIukwq5i/EC+xmOW+HfP1OaDP+2JkgT1yILHN2O3UFIbcA== + +hasown@^2.0.0, hasown@^2.0.1, hasown@^2.0.2: + version "2.0.2" + resolved "https://registry.yarnpkg.com/hasown/-/hasown-2.0.2.tgz#003eaf91be7adc372e84ec59dc37252cedb80003" + integrity sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ== + dependencies: + function-bind "^1.1.2" + +hast-util-from-parse5@^8.0.0: + version "8.0.1" + resolved "https://registry.yarnpkg.com/hast-util-from-parse5/-/hast-util-from-parse5-8.0.1.tgz#654a5676a41211e14ee80d1b1758c399a0327651" + integrity sha512-Er/Iixbc7IEa7r/XLtuG52zoqn/b3Xng/w6aZQ0xGVxzhw5xUFxcRqdPzP6yFi/4HBYRaifaI5fQ1RH8n0ZeOQ== + dependencies: + "@types/hast" "^3.0.0" + "@types/unist" "^3.0.0" + devlop "^1.0.0" + hastscript "^8.0.0" + property-information "^6.0.0" + vfile "^6.0.0" + vfile-location "^5.0.0" + web-namespaces "^2.0.0" + +hast-util-parse-selector@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/hast-util-parse-selector/-/hast-util-parse-selector-4.0.0.tgz#352879fa86e25616036037dd8931fb5f34cb4a27" + integrity sha512-wkQCkSYoOGCRKERFWcxMVMOcYE2K1AaNLU8DXS9arxnLOUEWbOXKXiJUNzEpqZ3JOKpnha3jkFrumEjVliDe7A== + dependencies: + "@types/hast" "^3.0.0" + +hast-util-raw@^9.0.0: + version "9.0.4" + resolved "https://registry.yarnpkg.com/hast-util-raw/-/hast-util-raw-9.0.4.tgz#2da03e37c46eb1a6f1391f02f9b84ae65818f7ed" + integrity sha512-LHE65TD2YiNsHD3YuXcKPHXPLuYh/gjp12mOfU8jxSrm1f/yJpsb0F/KKljS6U9LJoP0Ux+tCe8iJ2AsPzTdgA== + dependencies: + "@types/hast" "^3.0.0" + "@types/unist" "^3.0.0" + "@ungap/structured-clone" "^1.0.0" + hast-util-from-parse5 "^8.0.0" + hast-util-to-parse5 "^8.0.0" + html-void-elements "^3.0.0" + mdast-util-to-hast "^13.0.0" + parse5 "^7.0.0" + unist-util-position "^5.0.0" + unist-util-visit "^5.0.0" + vfile "^6.0.0" + web-namespaces "^2.0.0" + zwitch "^2.0.0" + +hast-util-to-estree@^3.0.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/hast-util-to-estree/-/hast-util-to-estree-3.1.0.tgz#f2afe5e869ddf0cf690c75f9fc699f3180b51b19" + integrity sha512-lfX5g6hqVh9kjS/B9E2gSkvHH4SZNiQFiqWS0x9fENzEl+8W12RqdRxX6d/Cwxi30tPQs3bIO+aolQJNp1bIyw== + dependencies: + "@types/estree" "^1.0.0" + "@types/estree-jsx" "^1.0.0" + "@types/hast" "^3.0.0" + comma-separated-tokens "^2.0.0" + devlop "^1.0.0" + estree-util-attach-comments "^3.0.0" + estree-util-is-identifier-name "^3.0.0" + hast-util-whitespace "^3.0.0" + mdast-util-mdx-expression "^2.0.0" + mdast-util-mdx-jsx "^3.0.0" + mdast-util-mdxjs-esm "^2.0.0" + property-information "^6.0.0" + space-separated-tokens "^2.0.0" + style-to-object "^0.4.0" + unist-util-position "^5.0.0" + zwitch "^2.0.0" + +hast-util-to-jsx-runtime@^2.0.0: + version "2.3.0" + resolved "https://registry.yarnpkg.com/hast-util-to-jsx-runtime/-/hast-util-to-jsx-runtime-2.3.0.tgz#3ed27caf8dc175080117706bf7269404a0aa4f7c" + integrity sha512-H/y0+IWPdsLLS738P8tDnrQ8Z+dj12zQQ6WC11TIM21C8WFVoIxcqWXf2H3hiTVZjF1AWqoimGwrTWecWrnmRQ== + dependencies: + "@types/estree" "^1.0.0" + "@types/hast" "^3.0.0" + "@types/unist" "^3.0.0" + comma-separated-tokens "^2.0.0" + devlop "^1.0.0" + estree-util-is-identifier-name "^3.0.0" + hast-util-whitespace "^3.0.0" + mdast-util-mdx-expression "^2.0.0" + mdast-util-mdx-jsx "^3.0.0" + mdast-util-mdxjs-esm "^2.0.0" + property-information "^6.0.0" + space-separated-tokens "^2.0.0" + style-to-object "^1.0.0" + unist-util-position "^5.0.0" + vfile-message "^4.0.0" + +hast-util-to-parse5@^8.0.0: + version "8.0.0" + resolved "https://registry.yarnpkg.com/hast-util-to-parse5/-/hast-util-to-parse5-8.0.0.tgz#477cd42d278d4f036bc2ea58586130f6f39ee6ed" + integrity sha512-3KKrV5ZVI8if87DVSi1vDeByYrkGzg4mEfeu4alwgmmIeARiBLKCZS2uw5Gb6nU9x9Yufyj3iudm6i7nl52PFw== + dependencies: + "@types/hast" "^3.0.0" + comma-separated-tokens "^2.0.0" + devlop "^1.0.0" + property-information "^6.0.0" + space-separated-tokens "^2.0.0" + web-namespaces "^2.0.0" + zwitch "^2.0.0" + +hast-util-whitespace@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/hast-util-whitespace/-/hast-util-whitespace-3.0.0.tgz#7778ed9d3c92dd9e8c5c8f648a49c21fc51cb621" + integrity sha512-88JUN06ipLwsnv+dVn+OIYOvAuvBMy/Qoi6O7mQHxdPXpjy+Cd6xRkWwux7DKO+4sYILtLBRIKgsdpS2gQc7qw== + dependencies: + "@types/hast" "^3.0.0" + +hastscript@^8.0.0: + version "8.0.0" + resolved "https://registry.yarnpkg.com/hastscript/-/hastscript-8.0.0.tgz#4ef795ec8dee867101b9f23cc830d4baf4fd781a" + integrity sha512-dMOtzCEd3ABUeSIISmrETiKuyydk1w0pa+gE/uormcTpSYuaNJPbX1NU3JLyscSLjwAQM8bWMhhIlnCqnRvDTw== + dependencies: + "@types/hast" "^3.0.0" + comma-separated-tokens "^2.0.0" + hast-util-parse-selector "^4.0.0" + property-information "^6.0.0" + space-separated-tokens "^2.0.0" + +he@^1.2.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/he/-/he-1.2.0.tgz#84ae65fa7eafb165fddb61566ae14baf05664f0f" + integrity sha512-F/1DnUGPopORZi0ni+CvrCgHQ5FyEAHRLSApuYWMmrbSwoN2Mn/7k+Gl38gJnR7yyDZk6WLXwiGod1JOWNDKGw== + +heap@^0.2.6: + version "0.2.7" + resolved "https://registry.yarnpkg.com/heap/-/heap-0.2.7.tgz#1e6adf711d3f27ce35a81fe3b7bd576c2260a8fc" + integrity sha512-2bsegYkkHO+h/9MGbn6KWcE45cHZgPANo5LXF7EvWdT0yT2EguSVO1nDgU5c8+ZOPwp2vMNa7YFsJhVcDR9Sdg== + +history@^4.9.0: + version "4.10.1" + resolved "https://registry.yarnpkg.com/history/-/history-4.10.1.tgz#33371a65e3a83b267434e2b3f3b1b4c58aad4cf3" + integrity sha512-36nwAD620w12kuzPAsyINPWJqlNbij+hpK1k9XRloDtym8mxzGYl2c17LnV6IAGB2Dmg4tEa7G7DlawS0+qjew== + dependencies: + "@babel/runtime" "^7.1.2" + loose-envify "^1.2.0" + resolve-pathname "^3.0.0" + tiny-invariant "^1.0.2" + tiny-warning "^1.0.0" + value-equal "^1.0.1" + +hoist-non-react-statics@^3.1.0: + version "3.3.2" + resolved "https://registry.yarnpkg.com/hoist-non-react-statics/-/hoist-non-react-statics-3.3.2.tgz#ece0acaf71d62c2969c2ec59feff42a4b1a85b45" + integrity sha512-/gGivxi8JPKWNm/W0jSmzcMPpfpPLc3dY/6GxhX2hQ9iGj3aDfklV4ET7NjKpSinLpJ5vafa9iiGIEZg10SfBw== + dependencies: + react-is "^16.7.0" + +hpack.js@^2.1.6: + version "2.1.6" + resolved "https://registry.yarnpkg.com/hpack.js/-/hpack.js-2.1.6.tgz#87774c0949e513f42e84575b3c45681fade2a0b2" + integrity sha512-zJxVehUdMGIKsRaNt7apO2Gqp0BdqW5yaiGHXXmbpvxgBYVZnAql+BJb4RO5ad2MgpbZKn5G6nMnegrH1FcNYQ== + dependencies: + inherits "^2.0.1" + obuf "^1.0.0" + readable-stream "^2.0.1" + wbuf "^1.1.0" + +html-encoding-sniffer@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/html-encoding-sniffer/-/html-encoding-sniffer-4.0.0.tgz#696df529a7cfd82446369dc5193e590a3735b448" + integrity sha512-Y22oTqIU4uuPgEemfz7NDJz6OeKf12Lsu+QC+s3BVpda64lTiMYCyGwg5ki4vFxkMwQdeZDl2adZoqUgdFuTgQ== + dependencies: + whatwg-encoding "^3.1.1" + +html-entities@^2.3.2: + version "2.5.2" + resolved "https://registry.yarnpkg.com/html-entities/-/html-entities-2.5.2.tgz#201a3cf95d3a15be7099521620d19dfb4f65359f" + integrity sha512-K//PSRMQk4FZ78Kyau+mZurHn3FH0Vwr+H36eE0rPbeYkRRi9YxceYPhuN60UwWorxyKHhqoAJl2OFKa4BVtaA== + +html-escaper@^2.0.2: + version "2.0.2" + resolved "https://registry.yarnpkg.com/html-escaper/-/html-escaper-2.0.2.tgz#dfd60027da36a36dfcbe236262c00a5822681453" + integrity sha512-H2iMtd0I4Mt5eYiapRdIDjp+XzelXQ0tFE4JS7YFwFevXXMmOp9myNrUvCg0D6ws8iqkRPBfKHgbwig1SmlLfg== + +html-minifier-terser@^6.0.2: + version "6.1.0" + resolved "https://registry.yarnpkg.com/html-minifier-terser/-/html-minifier-terser-6.1.0.tgz#bfc818934cc07918f6b3669f5774ecdfd48f32ab" + integrity sha512-YXxSlJBZTP7RS3tWnQw74ooKa6L9b9i9QYXY21eUEvhZ3u9XLfv6OnFsQq6RxkhHygsaUMvYsZRV5rU/OVNZxw== + dependencies: + camel-case "^4.1.2" + clean-css "^5.2.2" + commander "^8.3.0" + he "^1.2.0" + param-case "^3.0.4" + relateurl "^0.2.7" + terser "^5.10.0" + +html-minifier-terser@^7.2.0: + version "7.2.0" + resolved "https://registry.yarnpkg.com/html-minifier-terser/-/html-minifier-terser-7.2.0.tgz#18752e23a2f0ed4b0f550f217bb41693e975b942" + integrity sha512-tXgn3QfqPIpGl9o+K5tpcj3/MN4SfLtsx2GWwBC3SSd0tXQGyF3gsSqad8loJgKZGM3ZxbYDd5yhiBIdWpmvLA== + dependencies: + camel-case "^4.1.2" + clean-css "~5.3.2" + commander "^10.0.0" + entities "^4.4.0" + param-case "^3.0.4" + relateurl "^0.2.7" + terser "^5.15.1" + +html-tags@^3.3.1: + version "3.3.1" + resolved "https://registry.yarnpkg.com/html-tags/-/html-tags-3.3.1.tgz#a04026a18c882e4bba8a01a3d39cfe465d40b5ce" + integrity sha512-ztqyC3kLto0e9WbNp0aeP+M3kTt+nbaIveGmUxAtZa+8iFgKLUOD4YKM5j+f3QD89bra7UeumolZHKuOXnTmeQ== + +html-void-elements@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/html-void-elements/-/html-void-elements-3.0.0.tgz#fc9dbd84af9e747249034d4d62602def6517f1d7" + integrity sha512-bEqo66MRXsUGxWHV5IP0PUiAWwoEjba4VCzg0LjFJBpchPaTfyfCKTG6bc5F8ucKec3q5y6qOdGyYTSBEvhCrg== + +html-webpack-plugin@^5.5.3: + version "5.6.0" + resolved "https://registry.yarnpkg.com/html-webpack-plugin/-/html-webpack-plugin-5.6.0.tgz#50a8fa6709245608cb00e811eacecb8e0d7b7ea0" + integrity sha512-iwaY4wzbe48AfKLZ/Cc8k0L+FKG6oSNRaZ8x5A/T/IVDGyXcbHncM9TdDa93wn0FsSm82FhTKW7f3vS61thXAw== + dependencies: + "@types/html-minifier-terser" "^6.0.0" + html-minifier-terser "^6.0.2" + lodash "^4.17.21" + pretty-error "^4.0.0" + tapable "^2.0.0" + +htmlparser2@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/htmlparser2/-/htmlparser2-6.1.0.tgz#c4d762b6c3371a05dbe65e94ae43a9f845fb8fb7" + integrity sha512-gyyPk6rgonLFEDGoeRgQNaEUvdJ4ktTmmUh/h2t7s+M8oPpIPxgNACWa+6ESR57kXstwqPiCut0V8NRpcwgU7A== + dependencies: + domelementtype "^2.0.1" + domhandler "^4.0.0" + domutils "^2.5.2" + entities "^2.0.0" + +htmlparser2@^8.0.1: + version "8.0.2" + resolved "https://registry.yarnpkg.com/htmlparser2/-/htmlparser2-8.0.2.tgz#f002151705b383e62433b5cf466f5b716edaec21" + integrity sha512-GYdjWKDkbRLkZ5geuHs5NY1puJ+PXwP7+fHPRz06Eirsb9ugf6d8kkXav6ADhcODhFFPMIXyxkxSuMf3D6NCFA== + dependencies: + domelementtype "^2.3.0" + domhandler "^5.0.3" + domutils "^3.0.1" + entities "^4.4.0" + +http-cache-semantics@^4.1.1: + version "4.1.1" + resolved "https://registry.yarnpkg.com/http-cache-semantics/-/http-cache-semantics-4.1.1.tgz#abe02fcb2985460bf0323be664436ec3476a6d5a" + integrity sha512-er295DKPVsV82j5kw1Gjt+ADA/XYHsajl82cGNQG2eyoPkvgUhX+nDIyelzhIWbbsXP39EHcI6l5tYs2FYqYXQ== + +http-deceiver@^1.2.7: + version "1.2.7" + resolved "https://registry.yarnpkg.com/http-deceiver/-/http-deceiver-1.2.7.tgz#fa7168944ab9a519d337cb0bec7284dc3e723d87" + integrity sha512-LmpOGxTfbpgtGVxJrj5k7asXHCgNZp5nLfp+hWc8QQRqtb7fUy6kRY3BO1h9ddF6yIPYUARgxGOwB42DnxIaNw== + +http-errors@2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/http-errors/-/http-errors-2.0.0.tgz#b7774a1486ef73cf7667ac9ae0858c012c57b9d3" + integrity sha512-FtwrG/euBzaEjYeRqOgly7G0qviiXoJWnvEH2Z1plBdXgbyjv34pHTSb9zoeHMyDy33+DWy5Wt9Wo+TURtOYSQ== + dependencies: + depd "2.0.0" + inherits "2.0.4" + setprototypeof "1.2.0" + statuses "2.0.1" + toidentifier "1.0.1" + +http-errors@~1.6.2: + version "1.6.3" + resolved "https://registry.yarnpkg.com/http-errors/-/http-errors-1.6.3.tgz#8b55680bb4be283a0b5bf4ea2e38580be1d9320d" + integrity sha512-lks+lVC8dgGyh97jxvxeYTWQFvh4uw4yC12gVl63Cg30sjPX4wuGcdkICVXDAESr6OJGjqGA8Iz5mkeN6zlD7A== + dependencies: + depd "~1.1.2" + inherits "2.0.3" + setprototypeof "1.1.0" + statuses ">= 1.4.0 < 2" + +http-parser-js@>=0.5.1: + version "0.5.8" + resolved "https://registry.yarnpkg.com/http-parser-js/-/http-parser-js-0.5.8.tgz#af23090d9ac4e24573de6f6aecc9d84a48bf20e3" + integrity sha512-SGeBX54F94Wgu5RH3X5jsDtf4eHyRogWX1XGT3b4HuW3tQPM4AaBzoUji/4AAJNXCEOWZ5O0DgZmJw1947gD5Q== + +http-proxy-agent@^7.0.2: + version "7.0.2" + resolved "https://registry.yarnpkg.com/http-proxy-agent/-/http-proxy-agent-7.0.2.tgz#9a8b1f246866c028509486585f62b8f2c18c270e" + integrity sha512-T1gkAiYYDWYx3V5Bmyu7HcfcvL7mUrTWiM6yOfa3PIphViJ/gFPbvidQ+veqSOHci/PxBcDabeUNCzpOODJZig== + dependencies: + agent-base "^7.1.0" + debug "^4.3.4" + +http-proxy-middleware@^2.0.3: + version "2.0.6" + resolved "https://registry.yarnpkg.com/http-proxy-middleware/-/http-proxy-middleware-2.0.6.tgz#e1a4dd6979572c7ab5a4e4b55095d1f32a74963f" + integrity sha512-ya/UeJ6HVBYxrgYotAZo1KvPWlgB48kUJLDePFeneHsVujFaW5WNj2NgWCAE//B1Dl02BIfYlpNgBy8Kf8Rjmw== + dependencies: + "@types/http-proxy" "^1.17.8" + http-proxy "^1.18.1" + is-glob "^4.0.1" + is-plain-obj "^3.0.0" + micromatch "^4.0.2" + +http-proxy@^1.18.1: + version "1.18.1" + resolved "https://registry.yarnpkg.com/http-proxy/-/http-proxy-1.18.1.tgz#401541f0534884bbf95260334e72f88ee3976549" + integrity sha512-7mz/721AbnJwIVbnaSv1Cz3Am0ZLT/UBwkC92VlxhXv/k/BBQfM2fXElQNC27BVGr0uwUpplYPQM9LnaBMR5NQ== + dependencies: + eventemitter3 "^4.0.0" + follow-redirects "^1.0.0" + requires-port "^1.0.0" + +http2-wrapper@^2.1.10: + version "2.2.1" + resolved "https://registry.yarnpkg.com/http2-wrapper/-/http2-wrapper-2.2.1.tgz#310968153dcdedb160d8b72114363ef5fce1f64a" + integrity sha512-V5nVw1PAOgfI3Lmeaj2Exmeg7fenjhRUgz1lPSezy1CuhPYbgQtbQj4jZfEAEMlaL+vupsvhjqCyjzob0yxsmQ== + dependencies: + quick-lru "^5.1.1" + resolve-alpn "^1.2.0" + +https-proxy-agent@^7.0.2, https-proxy-agent@^7.0.5: + version "7.0.5" + resolved "https://registry.yarnpkg.com/https-proxy-agent/-/https-proxy-agent-7.0.5.tgz#9e8b5013873299e11fab6fd548405da2d6c602b2" + integrity sha512-1e4Wqeblerz+tMKPIq2EMGiiWW1dIjZOksyHWSUm1rmuvw/how9hBHZ38lAGj5ID4Ik6EdkOw7NmWPy6LAwalw== + dependencies: + agent-base "^7.0.2" + debug "4" + +human-signals@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/human-signals/-/human-signals-2.1.0.tgz#dc91fcba42e4d06e4abaed33b3e7a3c02f514ea0" + integrity sha512-B4FFZ6q/T2jhhksgkbEW3HBvWIfDW85snkQgawt07S7J5QXTk6BkNV+0yAeZrM5QpMAdYlocGoljn0sJ/WQkFw== + +iconv-lite@0.4.24: + version "0.4.24" + resolved "https://registry.yarnpkg.com/iconv-lite/-/iconv-lite-0.4.24.tgz#2022b4b25fbddc21d2f524974a474aafe733908b" + integrity sha512-v3MXnZAcvnywkTUEZomIActle7RXXeedOR31wwl7VlyoXO4Qi9arvSenNQWne1TcRwhCL1HwLI21bEqdpj8/rA== + dependencies: + safer-buffer ">= 2.1.2 < 3" + +iconv-lite@0.6, iconv-lite@0.6.3: + version "0.6.3" + resolved "https://registry.yarnpkg.com/iconv-lite/-/iconv-lite-0.6.3.tgz#a52f80bf38da1952eb5c681790719871a1a72501" + integrity sha512-4fCk79wshMdzMp2rH06qWrJE4iolqLhCUH+OiuIgU++RB0+94NlDL81atO7GX55uUKueo0txHNtvEyI6D7WdMw== + dependencies: + safer-buffer ">= 2.1.2 < 3.0.0" + +icss-utils@^5.0.0, icss-utils@^5.1.0: + version "5.1.0" + resolved "https://registry.yarnpkg.com/icss-utils/-/icss-utils-5.1.0.tgz#c6be6858abd013d768e98366ae47e25d5887b1ae" + integrity sha512-soFhflCVWLfRNOPU3iv5Z9VUdT44xFRbzjLsEzSr5AQmgqPMTHdU3PMT1Cf1ssx8fLNJDA1juftYl+PUcv3MqA== + +ignore@^5.2.0, ignore@^5.2.4: + version "5.3.2" + resolved "https://registry.yarnpkg.com/ignore/-/ignore-5.3.2.tgz#3cd40e729f3643fd87cb04e50bf0eb722bc596f5" + integrity sha512-hsBTNUqQTDwkWtcdYI2i06Y/nUBEsNEDJKjWdigLvegy8kDuJAS8uRlpkkcQpyEXL0Z/pjDy5HBmMjRCJ2gq+g== + +image-size@^1.0.2: + version "1.1.1" + resolved "https://registry.yarnpkg.com/image-size/-/image-size-1.1.1.tgz#ddd67d4dc340e52ac29ce5f546a09f4e29e840ac" + integrity sha512-541xKlUw6jr/6gGuk92F+mYM5zaFAc5ahphvkqvNe2bQ6gVBkd6bfrmVJ2t4KDAfikAYZyIqTnktX3i6/aQDrQ== + dependencies: + queue "6.0.2" + +immer@^9.0.7: + version "9.0.21" + resolved "https://registry.yarnpkg.com/immer/-/immer-9.0.21.tgz#1e025ea31a40f24fb064f1fef23e931496330176" + integrity sha512-bc4NBHqOqSfRW7POMkHd51LvClaeMXpm8dx0e8oE2GORbq5aRK7Bxl4FyzVLdGtLmvLKL7BTDBG5ACQm4HWjTA== + +import-fresh@^3.1.0, import-fresh@^3.2.1, import-fresh@^3.3.0: + version "3.3.0" + resolved "https://registry.yarnpkg.com/import-fresh/-/import-fresh-3.3.0.tgz#37162c25fcb9ebaa2e6e53d5b4d88ce17d9e0c2b" + integrity sha512-veYYhQa+D1QBKznvhUHxb8faxlrwUnxseDAbAp457E0wLNio2bOSKnjYDhMj+YiAq61xrMGhQk9iXVk5FzgQMw== + dependencies: + parent-module "^1.0.0" + resolve-from "^4.0.0" + +import-lazy@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/import-lazy/-/import-lazy-4.0.0.tgz#e8eb627483a0a43da3c03f3e35548be5cb0cc153" + integrity sha512-rKtvo6a868b5Hu3heneU+L4yEQ4jYKLtjpnPeUdK7h0yzXGmyBTypknlkCvHFBqfX9YlorEiMM6Dnq/5atfHkw== + +imurmurhash@^0.1.4: + version "0.1.4" + resolved "https://registry.yarnpkg.com/imurmurhash/-/imurmurhash-0.1.4.tgz#9218b9b2b928a238b13dc4fb6b6d576f231453ea" + integrity sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA== + +indent-string@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/indent-string/-/indent-string-4.0.0.tgz#624f8f4497d619b2d9768531d58f4122854d7251" + integrity sha512-EdDDZu4A2OyIK7Lr/2zG+w5jmbuk1DVBnEwREQvBzspBJkCEbRa8GxU1lghYcaGJCnRWibjDXlq779X1/y5xwg== + +infima@0.2.0-alpha.44: + version "0.2.0-alpha.44" + resolved "https://registry.yarnpkg.com/infima/-/infima-0.2.0-alpha.44.tgz#9cd9446e473b44d49763f48efabe31f32440861d" + integrity sha512-tuRkUSO/lB3rEhLJk25atwAjgLuzq070+pOW8XcvpHky/YbENnRRdPd85IBkyeTgttmOy5ah+yHYsK1HhUd4lQ== + +inflight@^1.0.4: + version "1.0.6" + resolved "https://registry.yarnpkg.com/inflight/-/inflight-1.0.6.tgz#49bd6331d7d02d0c09bc910a1075ba8165b56df9" + integrity sha512-k92I/b08q4wvFscXCLvqfsHCrjrF7yiXsQuIVvVE7N82W3+aqpzuUdBbfhWcy/FZR3/4IgflMgKLOsvPDrGCJA== + dependencies: + once "^1.3.0" + wrappy "1" + +inherits@2, inherits@2.0.4, inherits@^2.0.1, inherits@^2.0.3, inherits@~2.0.3: + version "2.0.4" + resolved "https://registry.yarnpkg.com/inherits/-/inherits-2.0.4.tgz#0fa2c64f932917c3433a0ded55363aae37416b7c" + integrity sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ== + +inherits@2.0.3: + version "2.0.3" + resolved "https://registry.yarnpkg.com/inherits/-/inherits-2.0.3.tgz#633c2c83e3da42a502f52466022480f4208261de" + integrity sha512-x00IRNXNy63jwGkJmzPigoySHbaqpNuzKbBOmzK+g2OdZpQ9w+sxCN+VSB3ja7IAge2OP2qpfxTjeNcyjmW1uw== + +ini@2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/ini/-/ini-2.0.0.tgz#e5fd556ecdd5726be978fa1001862eacb0a94bc5" + integrity sha512-7PnF4oN3CvZF23ADhA5wRaYEQpJ8qygSkbtTXWBeXWXmEVRXK+1ITciHWwHhsjv1TmW0MgacIv6hEi5pX5NQdA== + +ini@^1.3.4, ini@^1.3.5, ini@~1.3.0: + version "1.3.8" + resolved "https://registry.yarnpkg.com/ini/-/ini-1.3.8.tgz#a29da425b48806f34767a4efce397269af28432c" + integrity sha512-JV/yugV2uzW5iMRSiZAyDtQd+nxtUnjeLt0acNdw98kKLrvuRVyB80tsREOE7yvGVgalhZ6RNXCmEHkUKBKxew== + +inline-style-parser@0.1.1: + version "0.1.1" + resolved "https://registry.yarnpkg.com/inline-style-parser/-/inline-style-parser-0.1.1.tgz#ec8a3b429274e9c0a1f1c4ffa9453a7fef72cea1" + integrity sha512-7NXolsK4CAS5+xvdj5OMMbI962hU/wvwoxk+LWR9Ek9bVtyuuYScDN6eS0rUm6TxApFpw7CX1o4uJzcd4AyD3Q== + +inline-style-parser@0.2.4: + version "0.2.4" + resolved "https://registry.yarnpkg.com/inline-style-parser/-/inline-style-parser-0.2.4.tgz#f4af5fe72e612839fcd453d989a586566d695f22" + integrity sha512-0aO8FkhNZlj/ZIbNi7Lxxr12obT7cL1moPfE4tg1LkX7LlLfC6DeX4l2ZEud1ukP9jNQyNnfzQVqwbwmAATY4Q== + +internal-slot@^1.0.4, internal-slot@^1.0.7: + version "1.0.7" + resolved "https://registry.yarnpkg.com/internal-slot/-/internal-slot-1.0.7.tgz#c06dcca3ed874249881007b0a5523b172a190802" + integrity sha512-NGnrKwXzSms2qUUih/ILZ5JBqNTSa1+ZmP6flaIp6KmSElgE9qdndzS3cqjrDovwFdmwsGsLdeFgB6suw+1e9g== + dependencies: + es-errors "^1.3.0" + hasown "^2.0.0" + side-channel "^1.0.4" + +"internmap@1 - 2": + version "2.0.3" + resolved "https://registry.yarnpkg.com/internmap/-/internmap-2.0.3.tgz#6685f23755e43c524e251d29cbc97248e3061009" + integrity sha512-5Hh7Y1wQbvY5ooGgPbDaL5iYLAPzMTUrjMulskHLH6wnv/A+1q5rgEaiuqEjB+oxGXIVZs1FF+R/KPN3ZSQYYg== + +internmap@^1.0.0: + version "1.0.1" + resolved "https://registry.yarnpkg.com/internmap/-/internmap-1.0.1.tgz#0017cc8a3b99605f0302f2b198d272e015e5df95" + integrity sha512-lDB5YccMydFBtasVtxnZ3MRBHuaoE8GKsppq+EchKL2U4nK/DmEpPHNH8MZe5HkMtpSiTSOZwfN0tzYjO/lJEw== + +interpret@^1.0.0: + version "1.4.0" + resolved "https://registry.yarnpkg.com/interpret/-/interpret-1.4.0.tgz#665ab8bc4da27a774a40584e812e3e0fa45b1a1e" + integrity sha512-agE4QfB2Lkp9uICn7BAqoscw4SZP9kTE2hxiFI3jBPmXJfdqiahTbUuKGsMoN2GtqL9AxhYioAcVvgsb1HvRbA== + +invariant@^2.2.4: + version "2.2.4" + resolved "https://registry.yarnpkg.com/invariant/-/invariant-2.2.4.tgz#610f3c92c9359ce1db616e538008d23ff35158e6" + integrity sha512-phJfQVBuaJM5raOpJjSfkiD6BpbCE4Ns//LaXl6wGYtUBY83nWS6Rf9tXm2e8VaK60JEjYldbPif/A2B1C2gNA== + dependencies: + loose-envify "^1.0.0" + +ipaddr.js@1.9.1: + version "1.9.1" + resolved "https://registry.yarnpkg.com/ipaddr.js/-/ipaddr.js-1.9.1.tgz#bff38543eeb8984825079ff3a2a8e6cbd46781b3" + integrity sha512-0KI/607xoxSToH7GjN1FfSbLoU0+btTicjsQSWQlh/hZykN8KpmMf7uYwPW3R+akZ6R/w18ZlXSHBYXiYUPO3g== + +ipaddr.js@^2.0.1: + version "2.2.0" + resolved "https://registry.yarnpkg.com/ipaddr.js/-/ipaddr.js-2.2.0.tgz#d33fa7bac284f4de7af949638c9d68157c6b92e8" + integrity sha512-Ag3wB2o37wslZS19hZqorUnrnzSkpOVy+IiiDEiTqNubEYpYuHWIf6K4psgN2ZWKExS4xhVCrRVfb/wfW8fWJA== + +is-alphabetical@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/is-alphabetical/-/is-alphabetical-2.0.1.tgz#01072053ea7c1036df3c7d19a6daaec7f19e789b" + integrity sha512-FWyyY60MeTNyeSRpkM2Iry0G9hpr7/9kD40mD/cGQEuilcZYS4okz8SN2Q6rLCJ8gbCt6fN+rC+6tMGS99LaxQ== + +is-alphanumerical@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/is-alphanumerical/-/is-alphanumerical-2.0.1.tgz#7c03fbe96e3e931113e57f964b0a368cc2dfd875" + integrity sha512-hmbYhX/9MUMF5uh7tOXyK/n0ZvWpad5caBA17GsC6vyuCqaWliRG5K1qS9inmUhEMaOBIW7/whAnSwveW/LtZw== + dependencies: + is-alphabetical "^2.0.0" + is-decimal "^2.0.0" + +is-arguments@^1.1.1: + version "1.1.1" + resolved "https://registry.yarnpkg.com/is-arguments/-/is-arguments-1.1.1.tgz#15b3f88fda01f2a97fec84ca761a560f123efa9b" + integrity sha512-8Q7EARjzEnKpt/PCD7e1cgUS0a6X8u5tdSiMqXhojOdoV9TsMsiO+9VLC5vAmO8N7/GmXn7yjR8qnA6bVAEzfA== + dependencies: + call-bind "^1.0.2" + has-tostringtag "^1.0.0" + +is-array-buffer@^3.0.2, is-array-buffer@^3.0.4: + version "3.0.4" + resolved "https://registry.yarnpkg.com/is-array-buffer/-/is-array-buffer-3.0.4.tgz#7a1f92b3d61edd2bc65d24f130530ea93d7fae98" + integrity sha512-wcjaerHw0ydZwfhiKbXJWLDY8A7yV7KhjQOpb83hGgGfId/aQa4TOvwyzn2PuswW2gPCYEL/nEAiSVpdOj1lXw== + dependencies: + call-bind "^1.0.2" + get-intrinsic "^1.2.1" + +is-arrayish@^0.2.1: + version "0.2.1" + resolved "https://registry.yarnpkg.com/is-arrayish/-/is-arrayish-0.2.1.tgz#77c99840527aa8ecb1a8ba697b80645a7a926a9d" + integrity sha512-zz06S8t0ozoDXMG+ube26zeCTNXcKIPJZJi8hBrF4idCLms4CG9QtK7qBl1boi5ODzFpjswb5JPmHCbMpjaYzg== + +is-async-function@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/is-async-function/-/is-async-function-2.0.0.tgz#8e4418efd3e5d3a6ebb0164c05ef5afb69aa9646" + integrity sha512-Y1JXKrfykRJGdlDwdKlLpLyMIiWqWvuSd17TvZk68PLAOGOoF4Xyav1z0Xhoi+gCYjZVeC5SI+hYFOfvXmGRCA== + dependencies: + has-tostringtag "^1.0.0" + +is-bigint@^1.0.1: + version "1.0.4" + resolved "https://registry.yarnpkg.com/is-bigint/-/is-bigint-1.0.4.tgz#08147a1875bc2b32005d41ccd8291dffc6691df3" + integrity sha512-zB9CruMamjym81i2JZ3UMn54PKGsQzsJeo6xvN3HJJ4CAsQNB6iRutp2To77OfCNuoxspsIhzaPoO1zyCEhFOg== + dependencies: + has-bigints "^1.0.1" + +is-binary-path@~2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/is-binary-path/-/is-binary-path-2.1.0.tgz#ea1f7f3b80f064236e83470f86c09c254fb45b09" + integrity sha512-ZMERYes6pDydyuGidse7OsHxtbI7WVeUEozgR/g7rd0xUimYNlvZRE/K2MgZTjWy725IfelLeVcEM97mmtRGXw== + dependencies: + binary-extensions "^2.0.0" + +is-boolean-object@^1.1.0: + version "1.1.2" + resolved "https://registry.yarnpkg.com/is-boolean-object/-/is-boolean-object-1.1.2.tgz#5c6dc200246dd9321ae4b885a114bb1f75f63719" + integrity sha512-gDYaKHJmnj4aWxyj6YHyXVpdQawtVLHU5cb+eztPGczf6cjuTdwve5ZIEfgXqH4e57An1D1AKf8CZ3kYrQRqYA== + dependencies: + call-bind "^1.0.2" + has-tostringtag "^1.0.0" + +is-callable@^1.1.3, is-callable@^1.1.4, is-callable@^1.2.7: + version "1.2.7" + resolved "https://registry.yarnpkg.com/is-callable/-/is-callable-1.2.7.tgz#3bc2a85ea742d9e36205dcacdd72ca1fdc51b055" + integrity sha512-1BC0BVFhS/p0qtw6enp8e+8OD0UrK0oFLztSjNzhcKA3WDuJxxAPXzPuPtKkjEY9UUoEWlX/8fgKeu2S8i9JTA== + +is-ci@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/is-ci/-/is-ci-3.0.1.tgz#db6ecbed1bd659c43dac0f45661e7674103d1867" + integrity sha512-ZYvCgrefwqoQ6yTyYUbQu64HsITZ3NfKX1lzaEYdkTDcfKzzCI/wthRRYKkdjHKFVgNiXKAKm65Zo1pk2as/QQ== + dependencies: + ci-info "^3.2.0" + +is-core-module@^2.13.0, is-core-module@^2.15.1: + version "2.15.1" + resolved "https://registry.yarnpkg.com/is-core-module/-/is-core-module-2.15.1.tgz#a7363a25bee942fefab0de13bf6aa372c82dcc37" + integrity sha512-z0vtXSwucUJtANQWldhbtbt7BnL0vxiFjIdDLAatwhDYty2bad6s+rijD6Ri4YuYJubLzIJLUidCh09e1djEVQ== + dependencies: + hasown "^2.0.2" + +is-data-view@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/is-data-view/-/is-data-view-1.0.1.tgz#4b4d3a511b70f3dc26d42c03ca9ca515d847759f" + integrity sha512-AHkaJrsUVW6wq6JS8y3JnM/GJF/9cf+k20+iDzlSaJrinEo5+7vRiteOSwBhHRiAyQATN1AmY4hwzxJKPmYf+w== + dependencies: + is-typed-array "^1.1.13" + +is-date-object@^1.0.1, is-date-object@^1.0.5: + version "1.0.5" + resolved "https://registry.yarnpkg.com/is-date-object/-/is-date-object-1.0.5.tgz#0841d5536e724c25597bf6ea62e1bd38298df31f" + integrity sha512-9YQaSxsAiSwcvS33MBk3wTCVnWK+HhF8VZR2jRxehM16QcVOdHqPn4VPHmRK4lSr38n9JriurInLcP90xsYNfQ== + dependencies: + has-tostringtag "^1.0.0" + +is-decimal@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/is-decimal/-/is-decimal-2.0.1.tgz#9469d2dc190d0214fd87d78b78caecc0cc14eef7" + integrity sha512-AAB9hiomQs5DXWcRB1rqsxGUstbRroFOPPVAomNk/3XHR5JyEZChOyTWe2oayKnsSsr/kcGqF+z6yuH6HHpN0A== + +is-docker@^2.0.0, is-docker@^2.1.1: + version "2.2.1" + resolved "https://registry.yarnpkg.com/is-docker/-/is-docker-2.2.1.tgz#33eeabe23cfe86f14bde4408a02c0cfb853acdaa" + integrity sha512-F+i2BKsFrH66iaUFc0woD8sLy8getkwTwtOBjvs56Cx4CgJDeKQeqfz8wAYiSb8JOprWhHH5p77PbmYCvvUuXQ== + +is-extendable@^0.1.0: + version "0.1.1" + resolved "https://registry.yarnpkg.com/is-extendable/-/is-extendable-0.1.1.tgz#62b110e289a471418e3ec36a617d472e301dfc89" + integrity sha512-5BMULNob1vgFX6EjQw5izWDxrecWK9AM72rugNr0TFldMOi0fj6Jk+zeKIt0xGj4cEfQIJth4w3OKWOJ4f+AFw== + +is-extglob@^2.1.1: + version "2.1.1" + resolved "https://registry.yarnpkg.com/is-extglob/-/is-extglob-2.1.1.tgz#a88c02535791f02ed37c76a1b9ea9773c833f8c2" + integrity sha512-SbKbANkN603Vi4jEZv49LeVJMn4yGwsbzZworEoyEiutsN3nJYdbO36zfhGJ6QEDpOZIFkDtnq5JRxmvl3jsoQ== + +is-finalizationregistry@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/is-finalizationregistry/-/is-finalizationregistry-1.0.2.tgz#c8749b65f17c133313e661b1289b95ad3dbd62e6" + integrity sha512-0by5vtUJs8iFQb5TYUHHPudOR+qXYIMKtiUzvLIZITZUjknFmziyBJuLhVRc+Ds0dREFlskDNJKYIdIzu/9pfw== + dependencies: + call-bind "^1.0.2" + +is-fullwidth-code-point@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz#f116f8064fe90b3f7844a38997c0b75051269f1d" + integrity sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg== + +is-generator-function@^1.0.10: + version "1.0.10" + resolved "https://registry.yarnpkg.com/is-generator-function/-/is-generator-function-1.0.10.tgz#f1558baf1ac17e0deea7c0415c438351ff2b3c72" + integrity sha512-jsEjy9l3yiXEQ+PsXdmBwEPcOxaXWLspKdplFUVI9vq1iZgIekeC0L167qeu86czQaxed3q/Uzuw0swL0irL8A== + dependencies: + has-tostringtag "^1.0.0" + +is-glob@^4.0.0, is-glob@^4.0.1, is-glob@^4.0.3, is-glob@~4.0.1: + version "4.0.3" + resolved "https://registry.yarnpkg.com/is-glob/-/is-glob-4.0.3.tgz#64f61e42cbbb2eec2071a9dac0b28ba1e65d5084" + integrity sha512-xelSayHH36ZgE7ZWhli7pW34hNbNl8Ojv5KVmkJD4hBdD3th8Tfk9vYasLM+mXWOZhFkgZfxhLSnrwRr4elSSg== + dependencies: + is-extglob "^2.1.1" + +is-hexadecimal@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/is-hexadecimal/-/is-hexadecimal-2.0.1.tgz#86b5bf668fca307498d319dfc03289d781a90027" + integrity sha512-DgZQp241c8oO6cA1SbTEWiXeoxV42vlcJxgH+B3hi1AiqqKruZR3ZGF8In3fj4+/y/7rHvlOZLZtgJ/4ttYGZg== + +is-installed-globally@^0.4.0: + version "0.4.0" + resolved "https://registry.yarnpkg.com/is-installed-globally/-/is-installed-globally-0.4.0.tgz#9a0fd407949c30f86eb6959ef1b7994ed0b7b520" + integrity sha512-iwGqO3J21aaSkC7jWnHP/difazwS7SFeIqxv6wEtLU8Y5KlzFTjyqcSIT0d8s4+dDhKytsk9PJZ2BkS5eZwQRQ== + dependencies: + global-dirs "^3.0.0" + is-path-inside "^3.0.2" + +is-map@^2.0.2, is-map@^2.0.3: + version "2.0.3" + resolved "https://registry.yarnpkg.com/is-map/-/is-map-2.0.3.tgz#ede96b7fe1e270b3c4465e3a465658764926d62e" + integrity sha512-1Qed0/Hr2m+YqxnM09CjA2d/i6YZNfF6R2oRAOj36eUdS6qIV/huPJNSEpKbupewFs+ZsJlxsjjPbc0/afW6Lw== + +is-negative-zero@^2.0.3: + version "2.0.3" + resolved "https://registry.yarnpkg.com/is-negative-zero/-/is-negative-zero-2.0.3.tgz#ced903a027aca6381b777a5743069d7376a49747" + integrity sha512-5KoIu2Ngpyek75jXodFvnafB6DJgr3u8uuK0LEZJjrU19DrMD3EVERaR8sjz8CCGgpZvxPl9SuE1GMVPFHx1mw== + +is-npm@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/is-npm/-/is-npm-6.0.0.tgz#b59e75e8915543ca5d881ecff864077cba095261" + integrity sha512-JEjxbSmtPSt1c8XTkVrlujcXdKV1/tvuQ7GwKcAlyiVLeYFQ2VHat8xfrDJsIkhCdF/tZ7CiIR3sy141c6+gPQ== + +is-number-object@^1.0.4: + version "1.0.7" + resolved "https://registry.yarnpkg.com/is-number-object/-/is-number-object-1.0.7.tgz#59d50ada4c45251784e9904f5246c742f07a42fc" + integrity sha512-k1U0IRzLMo7ZlYIfzRu23Oh6MiIFasgpb9X76eqfFZAqwH44UI4KTBvBYIZ1dSL9ZzChTB9ShHfLkR4pdW5krQ== + dependencies: + has-tostringtag "^1.0.0" + +is-number@^7.0.0: + version "7.0.0" + resolved "https://registry.yarnpkg.com/is-number/-/is-number-7.0.0.tgz#7535345b896734d5f80c4d06c50955527a14f12b" + integrity sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng== + +is-obj@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/is-obj/-/is-obj-1.0.1.tgz#3e4729ac1f5fde025cd7d83a896dab9f4f67db0f" + integrity sha512-l4RyHgRqGN4Y3+9JHVrNqO+tN0rV5My76uW5/nuO4K1b6vw5G8d/cmFjP9tRfEsdhZNt0IFdZuK/c2Vr4Nb+Qg== + +is-obj@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/is-obj/-/is-obj-2.0.0.tgz#473fb05d973705e3fd9620545018ca8e22ef4982" + integrity sha512-drqDG3cbczxxEJRoOXcOjtdp1J/lyp1mNn0xaznRs8+muBhgQcrnbspox5X5fOw0HnMnbfDzvnEMEtqDEJEo8w== + +is-path-cwd@^2.2.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/is-path-cwd/-/is-path-cwd-2.2.0.tgz#67d43b82664a7b5191fd9119127eb300048a9fdb" + integrity sha512-w942bTcih8fdJPJmQHFzkS76NEP8Kzzvmw92cXsazb8intwLqPibPPdXf4ANdKV3rYMuuQYGIWtvz9JilB3NFQ== + +is-path-inside@^3.0.2, is-path-inside@^3.0.3: + version "3.0.3" + resolved "https://registry.yarnpkg.com/is-path-inside/-/is-path-inside-3.0.3.tgz#d231362e53a07ff2b0e0ea7fed049161ffd16283" + integrity sha512-Fd4gABb+ycGAmKou8eMftCupSir5lRxqf4aD/vd0cD2qc4HL07OjCeuHMr8Ro4CoMaeCKDB0/ECBOVWjTwUvPQ== + +is-plain-obj@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/is-plain-obj/-/is-plain-obj-3.0.0.tgz#af6f2ea14ac5a646183a5bbdb5baabbc156ad9d7" + integrity sha512-gwsOE28k+23GP1B6vFl1oVh/WOzmawBrKwo5Ev6wMKzPkaXaCDIQKzLnvsA42DRlbVTWorkgTKIviAKCWkfUwA== + +is-plain-obj@^4.0.0: + version "4.1.0" + resolved "https://registry.yarnpkg.com/is-plain-obj/-/is-plain-obj-4.1.0.tgz#d65025edec3657ce032fd7db63c97883eaed71f0" + integrity sha512-+Pgi+vMuUNkJyExiMBt5IlFoMyKnr5zhJ4Uspz58WOhBF5QoIZkFyNHIbBAtHwzVAgk5RtndVNsDRN61/mmDqg== + +is-plain-object@^2.0.4: + version "2.0.4" + resolved "https://registry.yarnpkg.com/is-plain-object/-/is-plain-object-2.0.4.tgz#2c163b3fafb1b606d9d17928f05c2a1c38e07677" + integrity sha512-h5PpgXkWitc38BBMYawTYMWJHFZJVnBquFE57xFpjB8pJFiF6gZ+bU+WyI/yqXiFR5mdLsgYNaPe8uao6Uv9Og== + dependencies: + isobject "^3.0.1" + +is-potential-custom-element-name@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/is-potential-custom-element-name/-/is-potential-custom-element-name-1.0.1.tgz#171ed6f19e3ac554394edf78caa05784a45bebb5" + integrity sha512-bCYeRA2rVibKZd+s2625gGnGF/t7DSqDs4dP7CrLA1m7jKWz6pps0LpYLJN8Q64HtmPKJ1hrN3nzPNKFEKOUiQ== + +is-reference@^3.0.0: + version "3.0.2" + resolved "https://registry.yarnpkg.com/is-reference/-/is-reference-3.0.2.tgz#154747a01f45cd962404ee89d43837af2cba247c" + integrity sha512-v3rht/LgVcsdZa3O2Nqs+NMowLOxeOm7Ay9+/ARQ2F+qEoANRcqrjAZKGN0v8ymUetZGgkp26LTnGT7H0Qo9Pg== + dependencies: + "@types/estree" "*" + +is-regex@^1.1.4: + version "1.1.4" + resolved "https://registry.yarnpkg.com/is-regex/-/is-regex-1.1.4.tgz#eef5663cd59fa4c0ae339505323df6854bb15958" + integrity sha512-kvRdxDsxZjhzUX07ZnLydzS1TU/TJlTUHHY4YLL87e37oUA49DfkLqgy+VjFocowy29cKvcSiu+kIv728jTTVg== + dependencies: + call-bind "^1.0.2" + has-tostringtag "^1.0.0" + +is-regexp@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/is-regexp/-/is-regexp-1.0.0.tgz#fd2d883545c46bac5a633e7b9a09e87fa2cb5069" + integrity sha512-7zjFAPO4/gwyQAAgRRmqeEeyIICSdmCqa3tsVHMdBzaXXRiqopZL4Cyghg/XulGWrtABTpbnYYzzIRffLkP4oA== + +is-root@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/is-root/-/is-root-2.1.0.tgz#809e18129cf1129644302a4f8544035d51984a9c" + integrity sha512-AGOriNp96vNBd3HtU+RzFEc75FfR5ymiYv8E553I71SCeXBiMsVDUtdio1OEFvrPyLIQ9tVR5RxXIFe5PUFjMg== + +is-set@^2.0.2, is-set@^2.0.3: + version "2.0.3" + resolved "https://registry.yarnpkg.com/is-set/-/is-set-2.0.3.tgz#8ab209ea424608141372ded6e0cb200ef1d9d01d" + integrity sha512-iPAjerrse27/ygGLxw+EBR9agv9Y6uLeYVJMu+QNCoouJ1/1ri0mGrcWpfCqFZuzzx3WjtwxG098X+n4OuRkPg== + +is-shared-array-buffer@^1.0.2, is-shared-array-buffer@^1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/is-shared-array-buffer/-/is-shared-array-buffer-1.0.3.tgz#1237f1cba059cdb62431d378dcc37d9680181688" + integrity sha512-nA2hv5XIhLR3uVzDDfCIknerhx8XUKnstuOERPNNIinXG7v9u+ohXF67vxm4TPTEPU6lm61ZkwP3c9PCB97rhg== + dependencies: + call-bind "^1.0.7" + +is-stream@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/is-stream/-/is-stream-2.0.1.tgz#fac1e3d53b97ad5a9d0ae9cef2389f5810a5c077" + integrity sha512-hFoiJiTl63nn+kstHGBtewWSKnQLpyb155KHheA1l39uvtO9nWIop1p3udqPcUd/xbF1VLMO4n7OI6p7RbngDg== + +is-string@^1.0.5, is-string@^1.0.7: + version "1.0.7" + resolved "https://registry.yarnpkg.com/is-string/-/is-string-1.0.7.tgz#0dd12bf2006f255bb58f695110eff7491eebc0fd" + integrity sha512-tE2UXzivje6ofPW7l23cjDOMa09gb7xlAqG6jG5ej6uPV32TlWP3NKPigtaGeHNu9fohccRYvIiZMfOOnOYUtg== + dependencies: + has-tostringtag "^1.0.0" + +is-symbol@^1.0.2, is-symbol@^1.0.3: + version "1.0.4" + resolved "https://registry.yarnpkg.com/is-symbol/-/is-symbol-1.0.4.tgz#a6dac93b635b063ca6872236de88910a57af139c" + integrity sha512-C/CPBqKWnvdcxqIARxyOh4v1UUEOCHpgDa0WYgpKDFMszcrPcffg5uhwSgPCLD2WWxmq6isisz87tzT01tuGhg== + dependencies: + has-symbols "^1.0.2" + +is-typed-array@^1.1.13: + version "1.1.13" + resolved "https://registry.yarnpkg.com/is-typed-array/-/is-typed-array-1.1.13.tgz#d6c5ca56df62334959322d7d7dd1cca50debe229" + integrity sha512-uZ25/bUAlUY5fR4OKT4rZQEBrzQWYV9ZJYGGsUmEJ6thodVJ1HX64ePQ6Z0qPWP+m+Uq6e9UugrE38jeYsDSMw== + dependencies: + which-typed-array "^1.1.14" + +is-typedarray@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/is-typedarray/-/is-typedarray-1.0.0.tgz#e479c80858df0c1b11ddda6940f96011fcda4a9a" + integrity sha512-cyA56iCMHAh5CdzjJIa4aohJyeO1YbwLi3Jc35MmRU6poroFjIGZzUzupGiRPOjgHg9TLu43xbpwXk523fMxKA== + +is-weakmap@^2.0.2: + version "2.0.2" + resolved "https://registry.yarnpkg.com/is-weakmap/-/is-weakmap-2.0.2.tgz#bf72615d649dfe5f699079c54b83e47d1ae19cfd" + integrity sha512-K5pXYOm9wqY1RgjpL3YTkF39tni1XajUIkawTLUo9EZEVUFga5gSQJF8nNS7ZwJQ02y+1YCNYcMh+HIf1ZqE+w== + +is-weakref@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/is-weakref/-/is-weakref-1.0.2.tgz#9529f383a9338205e89765e0392efc2f100f06f2" + integrity sha512-qctsuLZmIQ0+vSSMfoVvyFe2+GSEvnmZ2ezTup1SBse9+twCCeial6EEi3Nc2KFcf6+qz2FBPnjXsk8xhKSaPQ== + dependencies: + call-bind "^1.0.2" + +is-weakset@^2.0.3: + version "2.0.3" + resolved "https://registry.yarnpkg.com/is-weakset/-/is-weakset-2.0.3.tgz#e801519df8c0c43e12ff2834eead84ec9e624007" + integrity sha512-LvIm3/KWzS9oRFHugab7d+M/GcBXuXX5xZkzPmN+NxihdQlZUQ4dWuSV1xR/sq6upL1TJEDrfBgRepHFdBtSNQ== + dependencies: + call-bind "^1.0.7" + get-intrinsic "^1.2.4" + +is-wsl@^2.2.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/is-wsl/-/is-wsl-2.2.0.tgz#74a4c76e77ca9fd3f932f290c17ea326cd157271" + integrity sha512-fKzAra0rGJUUBwGBgNkHZuToZcn+TtXHpeCgmkMJMMYx1sQDYaCSyjJBSCa2nH1DGm7s3n1oBnohoVTBaN7Lww== + dependencies: + is-docker "^2.0.0" + +is-yarn-global@^0.4.0: + version "0.4.1" + resolved "https://registry.yarnpkg.com/is-yarn-global/-/is-yarn-global-0.4.1.tgz#b312d902b313f81e4eaf98b6361ba2b45cd694bb" + integrity sha512-/kppl+R+LO5VmhYSEWARUFjodS25D68gvj8W7z0I7OWhUla5xWu8KL6CtB2V0R6yqhnRgbcaREMr4EEM6htLPQ== + +isarray@0.0.1: + version "0.0.1" + resolved "https://registry.yarnpkg.com/isarray/-/isarray-0.0.1.tgz#8a18acfca9a8f4177e09abfc6038939b05d1eedf" + integrity sha512-D2S+3GLxWH+uhrNEcoh/fnmYeP8E8/zHl644d/jdA0g2uyXvy3sb0qxotE+ne0LtccHknQzWwZEzhak7oJ0COQ== + +isarray@^2.0.5: + version "2.0.5" + resolved "https://registry.yarnpkg.com/isarray/-/isarray-2.0.5.tgz#8af1e4c1221244cc62459faf38940d4e644a5723" + integrity sha512-xHjhDr3cNBK0BzdUJSPXZntQUx/mwMS5Rw4A7lPJ90XGAO6ISP/ePDNuo0vhqOZU+UD5JoodwCAAoZQd3FeAKw== + +isarray@~1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/isarray/-/isarray-1.0.0.tgz#bb935d48582cba168c06834957a54a3e07124f11" + integrity sha512-VLghIWNM6ELQzo7zwmcg0NmTVyWKYjvIeM83yjp0wRDTmUnrM678fQbcKBo6n2CJEF0szoG//ytg+TKla89ALQ== + +isexe@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/isexe/-/isexe-2.0.0.tgz#e8fbf374dc556ff8947a10dcb0572d633f2cfa10" + integrity sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw== + +isobject@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/isobject/-/isobject-3.0.1.tgz#4e431e92b11a9731636aa1f9c8d1ccbcfdab78df" + integrity sha512-WhB9zCku7EGTj/HQQRz5aUQEUeoQZH2bWcltRErOpymJ4boYE6wL9Tbr23krRPSZ+C5zqNSrSw+Cc7sZZ4b7vg== + +isomorphic-dompurify@^2.7.0: + version "2.15.0" + resolved "https://registry.yarnpkg.com/isomorphic-dompurify/-/isomorphic-dompurify-2.15.0.tgz#d3d35fe8cab700c4cf3c065da3dc86d508161502" + integrity sha512-RDHlyeVmwEDAPZuX1VaaBzSn9RrsfvswxH7faEQK9cTHC1dXeNuK6ElUeSr7locFyeLguut8ASfhQWxHB4Ttug== + dependencies: + "@types/dompurify" "^3.0.5" + dompurify "^3.1.6" + jsdom "^25.0.0" + +iterator.prototype@^1.1.2: + version "1.1.2" + resolved "https://registry.yarnpkg.com/iterator.prototype/-/iterator.prototype-1.1.2.tgz#5e29c8924f01916cb9335f1ff80619dcff22b0c0" + integrity sha512-DR33HMMr8EzwuRL8Y9D3u2BMj8+RqSE850jfGu59kS7tbmPLzGkZmVSfyCFSDxuZiEY6Rzt3T2NA/qU+NwVj1w== + dependencies: + define-properties "^1.2.1" + get-intrinsic "^1.2.1" + has-symbols "^1.0.3" + reflect.getprototypeof "^1.0.4" + set-function-name "^2.0.1" + +jackspeak@^3.1.2: + version "3.4.3" + resolved "https://registry.yarnpkg.com/jackspeak/-/jackspeak-3.4.3.tgz#8833a9d89ab4acde6188942bd1c53b6390ed5a8a" + integrity sha512-OGlZQpz2yfahA/Rd1Y8Cd9SIEsqvXkLVoSw/cgwhnhFMDbsQFeZYoJJ7bIZBS9BcamUW96asq/npPWugM+RQBw== + dependencies: + "@isaacs/cliui" "^8.0.2" + optionalDependencies: + "@pkgjs/parseargs" "^0.11.0" + +javascript-stringify@^2.0.1: + version "2.1.0" + resolved "https://registry.yarnpkg.com/javascript-stringify/-/javascript-stringify-2.1.0.tgz#27c76539be14d8bd128219a2d731b09337904e79" + integrity sha512-JVAfqNPTvNq3sB/VHQJAFxN/sPgKnsKrCwyRt15zwNCdrMMJDdcEOdubuy+DuJYYdm0ox1J4uzEuYKkN+9yhVg== + +jest-util@^29.7.0: + version "29.7.0" + resolved "https://registry.yarnpkg.com/jest-util/-/jest-util-29.7.0.tgz#23c2b62bfb22be82b44de98055802ff3710fc0bc" + integrity sha512-z6EbKajIpqGKU56y5KBUgy1dt1ihhQJgWzUlZHArA/+X2ad7Cb5iF+AK1EWVL/Bo7Rz9uurpqw6SiBCefUbCGA== + dependencies: + "@jest/types" "^29.6.3" + "@types/node" "*" + chalk "^4.0.0" + ci-info "^3.2.0" + graceful-fs "^4.2.9" + picomatch "^2.2.3" + +jest-worker@^27.4.5: + version "27.5.1" + resolved "https://registry.yarnpkg.com/jest-worker/-/jest-worker-27.5.1.tgz#8d146f0900e8973b106b6f73cc1e9a8cb86f8db0" + integrity sha512-7vuh85V5cdDofPyxn58nrPjBktZo0u9x1g8WtjQol+jZDaE+fhN+cIvTj11GndBnMnyfrUOG1sZQxCdjKh+DKg== + dependencies: + "@types/node" "*" + merge-stream "^2.0.0" + supports-color "^8.0.0" + +jest-worker@^29.4.3: + version "29.7.0" + resolved "https://registry.yarnpkg.com/jest-worker/-/jest-worker-29.7.0.tgz#acad073acbbaeb7262bd5389e1bcf43e10058d4a" + integrity sha512-eIz2msL/EzL9UFTFFx7jBTkeZfku0yUAyZZZmJ93H2TYEiroIx2PQjEXcwYtYl8zXCxb+PAmA2hLIt/6ZEkPHw== + dependencies: + "@types/node" "*" + jest-util "^29.7.0" + merge-stream "^2.0.0" + supports-color "^8.0.0" + +jiti@^1.20.0: + version "1.21.6" + resolved "https://registry.yarnpkg.com/jiti/-/jiti-1.21.6.tgz#6c7f7398dd4b3142767f9a168af2f317a428d268" + integrity sha512-2yTgeWTWzMWkHu6Jp9NKgePDaYHbntiwvYuuJLbbN9vl7DC9DvXKOB2BC3ZZ92D3cvV/aflH0osDfwpHepQ53w== + +joi@^17.9.2: + version "17.13.3" + resolved "https://registry.yarnpkg.com/joi/-/joi-17.13.3.tgz#0f5cc1169c999b30d344366d384b12d92558bcec" + integrity sha512-otDA4ldcIx+ZXsKHWmp0YizCweVRZG96J10b0FevjfuncLO1oX59THoAmHkNubYJ+9gWsYsp5k8v4ib6oDv1fA== + dependencies: + "@hapi/hoek" "^9.3.0" + "@hapi/topo" "^5.1.0" + "@sideway/address" "^4.1.5" + "@sideway/formula" "^3.0.1" + "@sideway/pinpoint" "^2.0.0" + +"js-tokens@^3.0.0 || ^4.0.0", js-tokens@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/js-tokens/-/js-tokens-4.0.0.tgz#19203fb59991df98e3a287050d4647cdeaf32499" + integrity sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ== + +js-yaml@^3.13.1: + version "3.14.1" + resolved "https://registry.yarnpkg.com/js-yaml/-/js-yaml-3.14.1.tgz#dae812fdb3825fa306609a8717383c50c36a0537" + integrity sha512-okMH7OXXJ7YrN9Ok3/SXrnu4iX9yOk+25nqX4imS2npuvTYDmo/QEZoqwZkYaIDk3jVvBOTOIEgEhaLOynBS9g== + dependencies: + argparse "^1.0.7" + esprima "^4.0.0" + +js-yaml@^4.1.0: + version "4.1.0" + resolved "https://registry.yarnpkg.com/js-yaml/-/js-yaml-4.1.0.tgz#c1fb65f8f5017901cdd2c951864ba18458a10602" + integrity sha512-wpxZs9NoxZaJESJGIZTyDEaYpl0FKSA+FB9aJiyemKhMwkxQg63h4T1KJgUGHpTqPDNRcmmYLugrRjJlBtWvRA== + dependencies: + argparse "^2.0.1" + +jsdom@^25.0.0: + version "25.0.1" + resolved "https://registry.yarnpkg.com/jsdom/-/jsdom-25.0.1.tgz#536ec685c288fc8a5773a65f82d8b44badcc73ef" + integrity sha512-8i7LzZj7BF8uplX+ZyOlIz86V6TAsSs+np6m1kpW9u0JWi4z/1t+FzcK1aek+ybTnAC4KhBL4uXCNT0wcUIeCw== + dependencies: + cssstyle "^4.1.0" + data-urls "^5.0.0" + decimal.js "^10.4.3" + form-data "^4.0.0" + html-encoding-sniffer "^4.0.0" + http-proxy-agent "^7.0.2" + https-proxy-agent "^7.0.5" + is-potential-custom-element-name "^1.0.1" + nwsapi "^2.2.12" + parse5 "^7.1.2" + rrweb-cssom "^0.7.1" + saxes "^6.0.0" + symbol-tree "^3.2.4" + tough-cookie "^5.0.0" + w3c-xmlserializer "^5.0.0" + webidl-conversions "^7.0.0" + whatwg-encoding "^3.1.1" + whatwg-mimetype "^4.0.0" + whatwg-url "^14.0.0" + ws "^8.18.0" + xml-name-validator "^5.0.0" + +jsesc@^2.5.1: + version "2.5.2" + resolved "https://registry.yarnpkg.com/jsesc/-/jsesc-2.5.2.tgz#80564d2e483dacf6e8ef209650a67df3f0c283a4" + integrity sha512-OYu7XEzjkCQ3C5Ps3QIZsQfNpqoJyZZA99wd9aWd05NCtC5pWOkShK2mkL6HXQR6/Cy2lbNdPlZBpuQHXE63gA== + +jsesc@~0.5.0: + version "0.5.0" + resolved "https://registry.yarnpkg.com/jsesc/-/jsesc-0.5.0.tgz#e7dee66e35d6fc16f710fe91d5cf69f70f08911d" + integrity sha512-uZz5UnB7u4T9LvwmFqXii7pZSouaRPorGs5who1Ip7VO0wxanFvBL7GkM6dTHlgX+jhBApRetaWpnDabOeTcnA== + +json-buffer@3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/json-buffer/-/json-buffer-3.0.1.tgz#9338802a30d3b6605fbe0613e094008ca8c05a13" + integrity sha512-4bV5BfR2mqfQTJm+V5tPPdf+ZpuhiIvTuAB5g8kcrXOZpTT/QwwVRWBywX1ozr6lEuPdbHxwaJlm9G6mI2sfSQ== + +json-loader@^0.5.7: + version "0.5.7" + resolved "https://registry.yarnpkg.com/json-loader/-/json-loader-0.5.7.tgz#dca14a70235ff82f0ac9a3abeb60d337a365185d" + integrity sha512-QLPs8Dj7lnf3e3QYS1zkCo+4ZwqOiF9d/nZnYozTISxXWCfNs9yuky5rJw4/W34s7POaNlbZmQGaB5NiXCbP4w== + +json-parse-even-better-errors@^2.3.0, json-parse-even-better-errors@^2.3.1: + version "2.3.1" + resolved "https://registry.yarnpkg.com/json-parse-even-better-errors/-/json-parse-even-better-errors-2.3.1.tgz#7c47805a94319928e05777405dc12e1f7a4ee02d" + integrity sha512-xyFwyhro/JEof6Ghe2iz2NcXoj2sloNsWr/XsERDK/oiPCfaNhl5ONfp+jQdAZRQQ0IJWNzH9zIZF7li91kh2w== + +json-schema-traverse@^0.4.1: + version "0.4.1" + resolved "https://registry.yarnpkg.com/json-schema-traverse/-/json-schema-traverse-0.4.1.tgz#69f6a87d9513ab8bb8fe63bdb0979c448e684660" + integrity sha512-xbbCH5dCYU5T8LcEhhuh7HJ88HXuW3qsI3Y0zOZFKfZEHcpWiHU/Jxzk629Brsab/mMiHQti9wMP+845RPe3Vg== + +json-schema-traverse@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/json-schema-traverse/-/json-schema-traverse-1.0.0.tgz#ae7bcb3656ab77a73ba5c49bf654f38e6b6860e2" + integrity sha512-NM8/P9n3XjXhIZn1lLhkFaACTOURQXjWhV4BA/RnOv8xvgqtqpAX9IO4mRQxSx1Rlo4tqzeqb0sOlruaOy3dug== + +json-stable-stringify-without-jsonify@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/json-stable-stringify-without-jsonify/-/json-stable-stringify-without-jsonify-1.0.1.tgz#9db7b59496ad3f3cfef30a75142d2d930ad72651" + integrity sha512-Bdboy+l7tA3OGW6FjyFHWkP5LuByj1Tk33Ljyq0axyzdk9//JSi2u3fP1QSmd1KNwq6VOKYGlAu87CisVir6Pw== + +json5@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/json5/-/json5-1.0.2.tgz#63d98d60f21b313b77c4d6da18bfa69d80e1d593" + integrity sha512-g1MWMLBiz8FKi1e4w0UyVL3w+iJceWAFBAaBnnGKOpNa5f8TLktkbre1+s6oICydWAm+HRUGTmI+//xv2hvXYA== + dependencies: + minimist "^1.2.0" + +json5@^2.1.2, json5@^2.2.3: + version "2.2.3" + resolved "https://registry.yarnpkg.com/json5/-/json5-2.2.3.tgz#78cd6f1a19bdc12b73db5ad0c61efd66c1e29283" + integrity sha512-XmOWe7eyHYH14cLdVPoyg+GOH3rYX++KpzrylJwSW98t3Nk+U8XOl8FWKOgwtzdb8lXGf6zYwDUzeHMWfxasyg== + +jsonc-parser@^3.2.0: + version "3.3.1" + resolved "https://registry.yarnpkg.com/jsonc-parser/-/jsonc-parser-3.3.1.tgz#f2a524b4f7fd11e3d791e559977ad60b98b798b4" + integrity sha512-HUgH65KyejrUFPvHFPbqOY0rsFip3Bo5wb4ngvdi1EpCYWUQDC5V+Y7mZws+DLkr4M//zQJoanu1SP+87Dv1oQ== + +jsonfile@^6.0.1: + version "6.1.0" + resolved "https://registry.yarnpkg.com/jsonfile/-/jsonfile-6.1.0.tgz#bc55b2634793c679ec6403094eb13698a6ec0aae" + integrity sha512-5dgndWOriYSm5cnYaJNhalLNDKOqFwyDB/rr1E9ZsGciGvKPs8R2xYGCacuf3z6K1YKDz182fd+fY3cn3pMqXQ== + dependencies: + universalify "^2.0.0" + optionalDependencies: + graceful-fs "^4.1.6" + +"jsx-ast-utils@^2.4.1 || ^3.0.0", jsx-ast-utils@^3.3.5: + version "3.3.5" + resolved "https://registry.yarnpkg.com/jsx-ast-utils/-/jsx-ast-utils-3.3.5.tgz#4766bd05a8e2a11af222becd19e15575e52a853a" + integrity sha512-ZZow9HBI5O6EPgSJLUb8n2NKgmVWTwCvHGwFuJlMjvLFqlGG6pjirPhtdsseaLZjSibD8eegzmYpUZwoIlj2cQ== + dependencies: + array-includes "^3.1.6" + array.prototype.flat "^1.3.1" + object.assign "^4.1.4" + object.values "^1.1.6" + +katex@^0.16.9: + version "0.16.11" + resolved "https://registry.yarnpkg.com/katex/-/katex-0.16.11.tgz#4bc84d5584f996abece5f01c6ad11304276a33f5" + integrity sha512-RQrI8rlHY92OLf3rho/Ts8i/XvjgguEjOkO1BEXcU3N8BqPpSzBNwV/G0Ukr+P/l3ivvJUE/Fa/CwbS6HesGNQ== + dependencies: + commander "^8.3.0" + +keyv@^4.5.3: + version "4.5.4" + resolved "https://registry.yarnpkg.com/keyv/-/keyv-4.5.4.tgz#a879a99e29452f942439f2a405e3af8b31d4de93" + integrity sha512-oxVHkHR/EJf2CNXnWxRLW6mg7JyCCUcG0DtEGmL2ctUo1PNTin1PUil+r/+4r5MpVgC/fn1kjsx7mjSujKqIpw== + dependencies: + json-buffer "3.0.1" + +khroma@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/khroma/-/khroma-2.1.0.tgz#45f2ce94ce231a437cf5b63c2e886e6eb42bbbb1" + integrity sha512-Ls993zuzfayK269Svk9hzpeGUKob/sIgZzyHYdjQoAdQetRKpOLj+k/QQQ/6Qi0Yz65mlROrfd+Ev+1+7dz9Kw== + +kind-of@^6.0.0, kind-of@^6.0.2: + version "6.0.3" + resolved "https://registry.yarnpkg.com/kind-of/-/kind-of-6.0.3.tgz#07c05034a6c349fa06e24fa35aa76db4580ce4dd" + integrity sha512-dcS1ul+9tmeD95T+x28/ehLgd9mENa3LsvDTtzm3vyBEO7RPptvAD+t44WVXaUjTBRcrpFeFlC8WCruUR456hw== + +kleur@^3.0.3: + version "3.0.3" + resolved "https://registry.yarnpkg.com/kleur/-/kleur-3.0.3.tgz#a79c9ecc86ee1ce3fa6206d1216c501f147fc07e" + integrity sha512-eTIzlVOSUR+JxdDFepEYcBMtZ9Qqdef+rnzWdRZuMbOywu5tO2w2N7rqjoANZ5k9vywhL6Br1VRjUIgTQx4E8w== + +kleur@^4.0.3: + version "4.1.5" + resolved "https://registry.yarnpkg.com/kleur/-/kleur-4.1.5.tgz#95106101795f7050c6c650f350c683febddb1780" + integrity sha512-o+NO+8WrRiQEE4/7nwRJhN1HWpVmJm511pBHUxPLtp0BUISzlBplORYSmTclCnJvQq2tKu/sgl3xVpkc7ZWuQQ== + +language-subtag-registry@^0.3.20: + version "0.3.23" + resolved "https://registry.yarnpkg.com/language-subtag-registry/-/language-subtag-registry-0.3.23.tgz#23529e04d9e3b74679d70142df3fd2eb6ec572e7" + integrity sha512-0K65Lea881pHotoGEa5gDlMxt3pctLi2RplBb7Ezh4rRdLEOtgi7n4EwK9lamnUCkKBqaeKRVebTq6BAxSkpXQ== + +language-tags@^1.0.9: + version "1.0.9" + resolved "https://registry.yarnpkg.com/language-tags/-/language-tags-1.0.9.tgz#1ffdcd0ec0fafb4b1be7f8b11f306ad0f9c08777" + integrity sha512-MbjN408fEndfiQXbFQ1vnd+1NoLDsnQW41410oQBXiyXDMYH5z505juWa4KUE1LqxRC7DgOgZDbKLxHIwm27hA== + dependencies: + language-subtag-registry "^0.3.20" + +latest-version@^7.0.0: + version "7.0.0" + resolved "https://registry.yarnpkg.com/latest-version/-/latest-version-7.0.0.tgz#843201591ea81a4d404932eeb61240fe04e9e5da" + integrity sha512-KvNT4XqAMzdcL6ka6Tl3i2lYeFDgXNCuIX+xNx6ZMVR1dFq+idXd9FLKNMOIx0t9mJ9/HudyX4oZWXZQ0UJHeg== + dependencies: + package-json "^8.1.0" + +launch-editor@^2.6.0: + version "2.9.1" + resolved "https://registry.yarnpkg.com/launch-editor/-/launch-editor-2.9.1.tgz#253f173bd441e342d4344b4dae58291abb425047" + integrity sha512-Gcnl4Bd+hRO9P9icCP/RVVT2o8SFlPXofuCxvA2SaZuH45whSvf5p8x5oih5ftLiVhEI4sp5xDY+R+b3zJBh5w== + dependencies: + picocolors "^1.0.0" + shell-quote "^1.8.1" + +layout-base@^1.0.0: + version "1.0.2" + resolved "https://registry.yarnpkg.com/layout-base/-/layout-base-1.0.2.tgz#1291e296883c322a9dd4c5dd82063721b53e26e2" + integrity sha512-8h2oVEZNktL4BH2JCOI90iD1yXwL6iNW7KcCKT2QZgQJR2vbqDsldCTPRU9NifTCqHZci57XvQQ15YTu+sTYPg== + +leven@^3.1.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/leven/-/leven-3.1.0.tgz#77891de834064cccba82ae7842bb6b14a13ed7f2" + integrity sha512-qsda+H8jTaUaN/x5vzW2rzc+8Rw4TAQ/4KjB46IwK5VH+IlVeeeje/EoZRpiXvIqjFgK84QffqPztGI3VBLG1A== + +levn@^0.4.1: + version "0.4.1" + resolved "https://registry.yarnpkg.com/levn/-/levn-0.4.1.tgz#ae4562c007473b932a6200d403268dd2fffc6ade" + integrity sha512-+bT2uH4E5LGE7h/n3evcS/sQlJXCpIp6ym8OWJ5eV6+67Dsql/LaaT7qJBAt2rzfoa/5QBGBhxDix1dMt2kQKQ== + dependencies: + prelude-ls "^1.2.1" + type-check "~0.4.0" + +lilconfig@^3.1.1: + version "3.1.2" + resolved "https://registry.yarnpkg.com/lilconfig/-/lilconfig-3.1.2.tgz#e4a7c3cb549e3a606c8dcc32e5ae1005e62c05cb" + integrity sha512-eop+wDAvpItUys0FWkHIKeC9ybYrTGbU41U5K7+bttZZeohvnY7M9dZ5kB21GNWiFT2q1OoPTvncPCgSOVO5ow== + +lines-and-columns@^1.1.6: + version "1.2.4" + resolved "https://registry.yarnpkg.com/lines-and-columns/-/lines-and-columns-1.2.4.tgz#eca284f75d2965079309dc0ad9255abb2ebc1632" + integrity sha512-7ylylesZQ/PV29jhEDl3Ufjo6ZX7gCqJr5F7PKrqc93v7fzSymt1BpwEU8nAUXs8qzzvqhbjhK5QZg6Mt/HkBg== + +loader-runner@^4.2.0: + version "4.3.0" + resolved "https://registry.yarnpkg.com/loader-runner/-/loader-runner-4.3.0.tgz#c1b4a163b99f614830353b16755e7149ac2314e1" + integrity sha512-3R/1M+yS3j5ou80Me59j7F9IMs4PXs3VqRrm0TU3AbKPxlmpoY1TNscJV/oGJXo8qCatFGTfDbY6W6ipGOYXfg== + +loader-utils@^2.0.0: + version "2.0.4" + resolved "https://registry.yarnpkg.com/loader-utils/-/loader-utils-2.0.4.tgz#8b5cb38b5c34a9a018ee1fc0e6a066d1dfcc528c" + integrity sha512-xXqpXoINfFhgua9xiqD8fPFHgkoq1mmmpE92WlDbm9rNRd/EbRb+Gqf908T2DMfuHjjJlksiK2RbHVOdD/MqSw== + dependencies: + big.js "^5.2.2" + emojis-list "^3.0.0" + json5 "^2.1.2" + +loader-utils@^3.2.0: + version "3.3.1" + resolved "https://registry.yarnpkg.com/loader-utils/-/loader-utils-3.3.1.tgz#735b9a19fd63648ca7adbd31c2327dfe281304e5" + integrity sha512-FMJTLMXfCLMLfJxcX9PFqX5qD88Z5MRGaZCVzfuqeZSPsyiBzs+pahDQjbIWz2QIzPZz0NX9Zy4FX3lmK6YHIg== + +locate-path@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/locate-path/-/locate-path-3.0.0.tgz#dbec3b3ab759758071b58fe59fc41871af21400e" + integrity sha512-7AO748wWnIhNqAuaty2ZWHkQHRSNfPVIsPIfwEOWO22AmaoVrWavlOcMR5nzTLNYvp36X220/maaRsrec1G65A== + dependencies: + p-locate "^3.0.0" + path-exists "^3.0.0" + +locate-path@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/locate-path/-/locate-path-6.0.0.tgz#55321eb309febbc59c4801d931a72452a681d286" + integrity sha512-iPZK6eYjbxRu3uB4/WZ3EsEIMJFMqAoopl3R+zuq0UjcAm/MO6KCweDgPfP3elTztoKP3KtnVHxTn2NHBSDVUw== + dependencies: + p-locate "^5.0.0" + +locate-path@^7.1.0: + version "7.2.0" + resolved "https://registry.yarnpkg.com/locate-path/-/locate-path-7.2.0.tgz#69cb1779bd90b35ab1e771e1f2f89a202c2a8a8a" + integrity sha512-gvVijfZvn7R+2qyPX8mAuKcFGDf6Nc61GdvGafQsHL0sBIxfKzA+usWn4GFC/bk+QdwPUD4kWFJLhElipq+0VA== + dependencies: + p-locate "^6.0.0" + +lodash-es@^4.17.21: + version "4.17.21" + resolved "https://registry.yarnpkg.com/lodash-es/-/lodash-es-4.17.21.tgz#43e626c46e6591b7750beb2b50117390c609e3ee" + integrity sha512-mKnC+QJ9pWVzv+C4/U3rRsHapFfHvQFoFB92e52xeyGMcX6/OlIl78je1u8vePzYZSkkogMPJ2yjxxsb89cxyw== + +lodash.debounce@^4.0.8: + version "4.0.8" + resolved "https://registry.yarnpkg.com/lodash.debounce/-/lodash.debounce-4.0.8.tgz#82d79bff30a67c4005ffd5e2515300ad9ca4d7af" + integrity sha512-FT1yDzDYEoYWhnSGnpE/4Kj1fLZkDFyqRb7fNt6FdYOSxlUWAtp42Eh6Wb0rGIv/m9Bgo7x4GhQbm5Ys4SG5ow== + +lodash.memoize@^4.1.2: + version "4.1.2" + resolved "https://registry.yarnpkg.com/lodash.memoize/-/lodash.memoize-4.1.2.tgz#bcc6c49a42a2840ed997f323eada5ecd182e0bfe" + integrity sha512-t7j+NzmgnQzTAYXcsHYLgimltOV1MXHtlOWf6GjL9Kj8GK5FInw5JotxvbOs+IvV1/Dzo04/fCGfLVs7aXb4Ag== + +lodash.merge@^4.6.2: + version "4.6.2" + resolved "https://registry.yarnpkg.com/lodash.merge/-/lodash.merge-4.6.2.tgz#558aa53b43b661e1925a0afdfa36a9a1085fe57a" + integrity sha512-0KpjqXRVvrYyCsX1swR/XTK0va6VQkQM6MNo7PqW77ByjAhoARA8EfrP1N4+KlKj8YS0ZUCtRT/YUuhyYDujIQ== + +lodash.uniq@^4.5.0: + version "4.5.0" + resolved "https://registry.yarnpkg.com/lodash.uniq/-/lodash.uniq-4.5.0.tgz#d0225373aeb652adc1bc82e4945339a842754773" + integrity sha512-xfBaXQd9ryd9dlSDvnvI0lvxfLJlYAZzXomUYzLKtUeOQvOP5piqAWuGtrhWeqaXK9hhoM/iyJc5AV+XfsX3HQ== + +lodash@^4.17.20, lodash@^4.17.21: + version "4.17.21" + resolved "https://registry.yarnpkg.com/lodash/-/lodash-4.17.21.tgz#679591c564c3bffaae8454cf0b3df370c3d6911c" + integrity sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg== + +longest-streak@^3.0.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/longest-streak/-/longest-streak-3.1.0.tgz#62fa67cd958742a1574af9f39866364102d90cd4" + integrity sha512-9Ri+o0JYgehTaVBBDoMqIl8GXtbWg711O3srftcHhZ0dqnETqLaoIK0x17fUw9rFSlK/0NlsKe0Ahhyl5pXE2g== + +loose-envify@^1.0.0, loose-envify@^1.1.0, loose-envify@^1.2.0, loose-envify@^1.3.1, loose-envify@^1.4.0: + version "1.4.0" + resolved "https://registry.yarnpkg.com/loose-envify/-/loose-envify-1.4.0.tgz#71ee51fa7be4caec1a63839f7e682d8132d30caf" + integrity sha512-lyuxPGr/Wfhrlem2CL/UcnUc1zcqKAImBDzukY7Y5F/yQiNdko6+fRLevlw1HgMySw7f611UIY408EtxRSoK3Q== + dependencies: + js-tokens "^3.0.0 || ^4.0.0" + +lower-case@^2.0.2: + version "2.0.2" + resolved "https://registry.yarnpkg.com/lower-case/-/lower-case-2.0.2.tgz#6fa237c63dbdc4a82ca0fd882e4722dc5e634e28" + integrity sha512-7fm3l3NAF9WfN6W3JOmf5drwpVqX78JtoGJ3A6W0a6ZnldM41w2fV5D490psKFTpMds8TJse/eHLFFsNHHjHgg== + dependencies: + tslib "^2.0.3" + +lowercase-keys@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/lowercase-keys/-/lowercase-keys-3.0.0.tgz#c5e7d442e37ead247ae9db117a9d0a467c89d4f2" + integrity sha512-ozCC6gdQ+glXOQsveKD0YsDy8DSQFjDTz4zyzEHNV5+JP5D62LmfDZ6o1cycFx9ouG940M5dE8C8CTewdj2YWQ== + +lru-cache@^10.2.0: + version "10.4.3" + resolved "https://registry.yarnpkg.com/lru-cache/-/lru-cache-10.4.3.tgz#410fc8a17b70e598013df257c2446b7f3383f119" + integrity sha512-JNAzZcXrCt42VGLuYz0zfAzDfAvJWW6AfYlDBQyDV5DClI2m5sAmK+OIO7s59XfsRsWHp02jAJrRadPRGTt6SQ== + +lru-cache@^5.1.1: + version "5.1.1" + resolved "https://registry.yarnpkg.com/lru-cache/-/lru-cache-5.1.1.tgz#1da27e6710271947695daf6848e847f01d84b920" + integrity sha512-KpNARQA3Iwv+jTA0utUVVbrh+Jlrr1Fv0e56GGzAFOXN7dk/FviaDW8LHmK52DlcH4WP2n6gI8vN1aesBFgo9w== + dependencies: + yallist "^3.0.2" + +lunr@^2.3.9: + version "2.3.9" + resolved "https://registry.yarnpkg.com/lunr/-/lunr-2.3.9.tgz#18b123142832337dd6e964df1a5a7707b25d35e1" + integrity sha512-zTU3DaZaF3Rt9rhN3uBMGQD3dD2/vFQqnvZCDv4dl5iOzq2IZQqTxu90r4E5J+nP70J3ilqVCrbho2eWaeW8Ow== + +markdown-extensions@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/markdown-extensions/-/markdown-extensions-2.0.0.tgz#34bebc83e9938cae16e0e017e4a9814a8330d3c4" + integrity sha512-o5vL7aDWatOTX8LzaS1WMoaoxIiLRQJuIKKe2wAw6IeULDHaqbiqiggmx+pKvZDb1Sj+pE46Sn1T7lCqfFtg1Q== + +markdown-table@^3.0.0: + version "3.0.3" + resolved "https://registry.yarnpkg.com/markdown-table/-/markdown-table-3.0.3.tgz#e6331d30e493127e031dd385488b5bd326e4a6bd" + integrity sha512-Z1NL3Tb1M9wH4XESsCDEksWoKTdlUafKc4pt0GRwjUyXaCFZ+dc3g2erqB6zm3szA2IUSi7VnPI+o/9jnxh9hw== + +marked@^12.0.1: + version "12.0.2" + resolved "https://registry.yarnpkg.com/marked/-/marked-12.0.2.tgz#b31578fe608b599944c69807b00f18edab84647e" + integrity sha512-qXUm7e/YKFoqFPYPa3Ukg9xlI5cyAtGmyEIzMfW//m6kXwCy2Ps9DYf5ioijFKQ8qyuscrHoY04iJGctu2Kg0Q== + +marked@^4.3.0: + version "4.3.0" + resolved "https://registry.yarnpkg.com/marked/-/marked-4.3.0.tgz#796362821b019f734054582038b116481b456cf3" + integrity sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A== + +mdast-util-directive@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-directive/-/mdast-util-directive-3.0.0.tgz#3fb1764e705bbdf0afb0d3f889e4404c3e82561f" + integrity sha512-JUpYOqKI4mM3sZcNxmF/ox04XYFFkNwr0CFlrQIkCwbvH0xzMCqkMqAde9wRd80VAhaUrwFwKm2nxretdT1h7Q== + dependencies: + "@types/mdast" "^4.0.0" + "@types/unist" "^3.0.0" + devlop "^1.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + parse-entities "^4.0.0" + stringify-entities "^4.0.0" + unist-util-visit-parents "^6.0.0" + +mdast-util-find-and-replace@^3.0.0, mdast-util-find-and-replace@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/mdast-util-find-and-replace/-/mdast-util-find-and-replace-3.0.1.tgz#a6fc7b62f0994e973490e45262e4bc07607b04e0" + integrity sha512-SG21kZHGC3XRTSUhtofZkBzZTJNM5ecCi0SK2IMKmSXR8vO3peL+kb1O0z7Zl83jKtutG4k5Wv/W7V3/YHvzPA== + dependencies: + "@types/mdast" "^4.0.0" + escape-string-regexp "^5.0.0" + unist-util-is "^6.0.0" + unist-util-visit-parents "^6.0.0" + +mdast-util-from-markdown@^1.3.0: + version "1.3.1" + resolved "https://registry.yarnpkg.com/mdast-util-from-markdown/-/mdast-util-from-markdown-1.3.1.tgz#9421a5a247f10d31d2faed2a30df5ec89ceafcf0" + integrity sha512-4xTO/M8c82qBcnQc1tgpNtubGUW/Y1tBQ1B0i5CtSoelOLKFYlElIr3bvgREYYO5iRqbMY1YuqZng0GVOI8Qww== + dependencies: + "@types/mdast" "^3.0.0" + "@types/unist" "^2.0.0" + decode-named-character-reference "^1.0.0" + mdast-util-to-string "^3.1.0" + micromark "^3.0.0" + micromark-util-decode-numeric-character-reference "^1.0.0" + micromark-util-decode-string "^1.0.0" + micromark-util-normalize-identifier "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + unist-util-stringify-position "^3.0.0" + uvu "^0.5.0" + +mdast-util-from-markdown@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/mdast-util-from-markdown/-/mdast-util-from-markdown-2.0.1.tgz#32a6e8f512b416e1f51eb817fc64bd867ebcd9cc" + integrity sha512-aJEUyzZ6TzlsX2s5B4Of7lN7EQtAxvtradMMglCQDyaTFgse6CmtmdJ15ElnVRlCg1vpNyVtbem0PWzlNieZsA== + dependencies: + "@types/mdast" "^4.0.0" + "@types/unist" "^3.0.0" + decode-named-character-reference "^1.0.0" + devlop "^1.0.0" + mdast-util-to-string "^4.0.0" + micromark "^4.0.0" + micromark-util-decode-numeric-character-reference "^2.0.0" + micromark-util-decode-string "^2.0.0" + micromark-util-normalize-identifier "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + unist-util-stringify-position "^4.0.0" + +mdast-util-frontmatter@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/mdast-util-frontmatter/-/mdast-util-frontmatter-2.0.1.tgz#f5f929eb1eb36c8a7737475c7eb438261f964ee8" + integrity sha512-LRqI9+wdgC25P0URIJY9vwocIzCcksduHQ9OF2joxQoyTNVduwLAFUzjoopuRJbJAReaKrNQKAZKL3uCMugWJA== + dependencies: + "@types/mdast" "^4.0.0" + devlop "^1.0.0" + escape-string-regexp "^5.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + micromark-extension-frontmatter "^2.0.0" + +mdast-util-gfm-autolink-literal@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/mdast-util-gfm-autolink-literal/-/mdast-util-gfm-autolink-literal-2.0.1.tgz#abd557630337bd30a6d5a4bd8252e1c2dc0875d5" + integrity sha512-5HVP2MKaP6L+G6YaxPNjuL0BPrq9orG3TsrZ9YXbA3vDw/ACI4MEsnoDpn6ZNm7GnZgtAcONJyPhOP8tNJQavQ== + dependencies: + "@types/mdast" "^4.0.0" + ccount "^2.0.0" + devlop "^1.0.0" + mdast-util-find-and-replace "^3.0.0" + micromark-util-character "^2.0.0" + +mdast-util-gfm-footnote@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-gfm-footnote/-/mdast-util-gfm-footnote-2.0.0.tgz#25a1753c7d16db8bfd53cd84fe50562bd1e6d6a9" + integrity sha512-5jOT2boTSVkMnQ7LTrd6n/18kqwjmuYqo7JUPe+tRCY6O7dAuTFMtTPauYYrMPpox9hlN0uOx/FL8XvEfG9/mQ== + dependencies: + "@types/mdast" "^4.0.0" + devlop "^1.1.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + micromark-util-normalize-identifier "^2.0.0" + +mdast-util-gfm-strikethrough@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-gfm-strikethrough/-/mdast-util-gfm-strikethrough-2.0.0.tgz#d44ef9e8ed283ac8c1165ab0d0dfd058c2764c16" + integrity sha512-mKKb915TF+OC5ptj5bJ7WFRPdYtuHv0yTRxK2tJvi+BDqbkiG7h7u/9SI89nRAYcmap2xHQL9D+QG/6wSrTtXg== + dependencies: + "@types/mdast" "^4.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + +mdast-util-gfm-table@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-gfm-table/-/mdast-util-gfm-table-2.0.0.tgz#7a435fb6223a72b0862b33afbd712b6dae878d38" + integrity sha512-78UEvebzz/rJIxLvE7ZtDd/vIQ0RHv+3Mh5DR96p7cS7HsBhYIICDBCu8csTNWNO6tBWfqXPWekRuj2FNOGOZg== + dependencies: + "@types/mdast" "^4.0.0" + devlop "^1.0.0" + markdown-table "^3.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + +mdast-util-gfm-task-list-item@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-gfm-task-list-item/-/mdast-util-gfm-task-list-item-2.0.0.tgz#e68095d2f8a4303ef24094ab642e1047b991a936" + integrity sha512-IrtvNvjxC1o06taBAVJznEnkiHxLFTzgonUdy8hzFVeDun0uTjxxrRGVaNFqkU1wJR3RBPEfsxmU6jDWPofrTQ== + dependencies: + "@types/mdast" "^4.0.0" + devlop "^1.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + +mdast-util-gfm@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-gfm/-/mdast-util-gfm-3.0.0.tgz#3f2aecc879785c3cb6a81ff3a243dc11eca61095" + integrity sha512-dgQEX5Amaq+DuUqf26jJqSK9qgixgd6rYDHAv4aTBuA92cTknZlKpPfa86Z/s8Dj8xsAQpFfBmPUHWJBWqS4Bw== + dependencies: + mdast-util-from-markdown "^2.0.0" + mdast-util-gfm-autolink-literal "^2.0.0" + mdast-util-gfm-footnote "^2.0.0" + mdast-util-gfm-strikethrough "^2.0.0" + mdast-util-gfm-table "^2.0.0" + mdast-util-gfm-task-list-item "^2.0.0" + mdast-util-to-markdown "^2.0.0" + +mdast-util-mdx-expression@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/mdast-util-mdx-expression/-/mdast-util-mdx-expression-2.0.1.tgz#43f0abac9adc756e2086f63822a38c8d3c3a5096" + integrity sha512-J6f+9hUp+ldTZqKRSg7Vw5V6MqjATc+3E4gf3CFNcuZNWD8XdyI6zQ8GqH7f8169MM6P7hMBRDVGnn7oHB9kXQ== + dependencies: + "@types/estree-jsx" "^1.0.0" + "@types/hast" "^3.0.0" + "@types/mdast" "^4.0.0" + devlop "^1.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + +mdast-util-mdx-jsx@^3.0.0: + version "3.1.3" + resolved "https://registry.yarnpkg.com/mdast-util-mdx-jsx/-/mdast-util-mdx-jsx-3.1.3.tgz#76b957b3da18ebcfd0de3a9b4451dcd6fdec2320" + integrity sha512-bfOjvNt+1AcbPLTFMFWY149nJz0OjmewJs3LQQ5pIyVGxP4CdOqNVJL6kTaM5c68p8q82Xv3nCyFfUnuEcH3UQ== + dependencies: + "@types/estree-jsx" "^1.0.0" + "@types/hast" "^3.0.0" + "@types/mdast" "^4.0.0" + "@types/unist" "^3.0.0" + ccount "^2.0.0" + devlop "^1.1.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + parse-entities "^4.0.0" + stringify-entities "^4.0.0" + unist-util-stringify-position "^4.0.0" + vfile-message "^4.0.0" + +mdast-util-mdx@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-mdx/-/mdast-util-mdx-3.0.0.tgz#792f9cf0361b46bee1fdf1ef36beac424a099c41" + integrity sha512-JfbYLAW7XnYTTbUsmpu0kdBUVe+yKVJZBItEjwyYJiDJuZ9w4eeaqks4HQO+R7objWgS2ymV60GYpI14Ug554w== + dependencies: + mdast-util-from-markdown "^2.0.0" + mdast-util-mdx-expression "^2.0.0" + mdast-util-mdx-jsx "^3.0.0" + mdast-util-mdxjs-esm "^2.0.0" + mdast-util-to-markdown "^2.0.0" + +mdast-util-mdxjs-esm@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/mdast-util-mdxjs-esm/-/mdast-util-mdxjs-esm-2.0.1.tgz#019cfbe757ad62dd557db35a695e7314bcc9fa97" + integrity sha512-EcmOpxsZ96CvlP03NghtH1EsLtr0n9Tm4lPUJUBccV9RwUOneqSycg19n5HGzCf+10LozMRSObtVr3ee1WoHtg== + dependencies: + "@types/estree-jsx" "^1.0.0" + "@types/hast" "^3.0.0" + "@types/mdast" "^4.0.0" + devlop "^1.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.0.0" + +mdast-util-phrasing@^4.0.0: + version "4.1.0" + resolved "https://registry.yarnpkg.com/mdast-util-phrasing/-/mdast-util-phrasing-4.1.0.tgz#7cc0a8dec30eaf04b7b1a9661a92adb3382aa6e3" + integrity sha512-TqICwyvJJpBwvGAMZjj4J2n0X8QWp21b9l0o7eXyVJ25YNWYbJDVIyD1bZXE6WtV6RmKJVYmQAKWa0zWOABz2w== + dependencies: + "@types/mdast" "^4.0.0" + unist-util-is "^6.0.0" + +mdast-util-to-hast@^13.0.0: + version "13.2.0" + resolved "https://registry.yarnpkg.com/mdast-util-to-hast/-/mdast-util-to-hast-13.2.0.tgz#5ca58e5b921cc0a3ded1bc02eed79a4fe4fe41f4" + integrity sha512-QGYKEuUsYT9ykKBCMOEDLsU5JRObWQusAolFMeko/tYPufNkRffBAQjIE+99jbA87xv6FgmjLtwjh9wBWajwAA== + dependencies: + "@types/hast" "^3.0.0" + "@types/mdast" "^4.0.0" + "@ungap/structured-clone" "^1.0.0" + devlop "^1.0.0" + micromark-util-sanitize-uri "^2.0.0" + trim-lines "^3.0.0" + unist-util-position "^5.0.0" + unist-util-visit "^5.0.0" + vfile "^6.0.0" + +mdast-util-to-markdown@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/mdast-util-to-markdown/-/mdast-util-to-markdown-2.1.0.tgz#9813f1d6e0cdaac7c244ec8c6dabfdb2102ea2b4" + integrity sha512-SR2VnIEdVNCJbP6y7kVTJgPLifdr8WEU440fQec7qHoHOUz/oJ2jmNRqdDQ3rbiStOXb2mCDGTuwsK5OPUgYlQ== + dependencies: + "@types/mdast" "^4.0.0" + "@types/unist" "^3.0.0" + longest-streak "^3.0.0" + mdast-util-phrasing "^4.0.0" + mdast-util-to-string "^4.0.0" + micromark-util-decode-string "^2.0.0" + unist-util-visit "^5.0.0" + zwitch "^2.0.0" + +mdast-util-to-string@^3.1.0: + version "3.2.0" + resolved "https://registry.yarnpkg.com/mdast-util-to-string/-/mdast-util-to-string-3.2.0.tgz#66f7bb6324756741c5f47a53557f0cbf16b6f789" + integrity sha512-V4Zn/ncyN1QNSqSBxTrMOLpjr+IKdHl2v3KVLoWmDPscP4r9GcCi71gjgvUV1SFSKh92AjAG4peFuBl2/YgCJg== + dependencies: + "@types/mdast" "^3.0.0" + +mdast-util-to-string@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/mdast-util-to-string/-/mdast-util-to-string-4.0.0.tgz#7a5121475556a04e7eddeb67b264aae79d312814" + integrity sha512-0H44vDimn51F0YwvxSJSm0eCDOJTRlmN0R1yBh4HLj9wiV1Dn0QoXGbvFAWj2hSItVTlCmBF1hqKlIyUBVFLPg== + dependencies: + "@types/mdast" "^4.0.0" + +mdn-data@2.0.28: + version "2.0.28" + resolved "https://registry.yarnpkg.com/mdn-data/-/mdn-data-2.0.28.tgz#5ec48e7bef120654539069e1ae4ddc81ca490eba" + integrity sha512-aylIc7Z9y4yzHYAJNuESG3hfhC+0Ibp/MAMiaOZgNv4pmEdFyfZhhhny4MNiAfWdBQ1RQ2mfDWmM1x8SvGyp8g== + +mdn-data@2.0.30: + version "2.0.30" + resolved "https://registry.yarnpkg.com/mdn-data/-/mdn-data-2.0.30.tgz#ce4df6f80af6cfbe218ecd5c552ba13c4dfa08cc" + integrity sha512-GaqWWShW4kv/G9IEucWScBx9G1/vsFZZJUO+tD26M8J8z3Kw5RDQjaoZe03YAClgeS/SWPOcb4nkFBTEi5DUEA== + +media-typer@0.3.0: + version "0.3.0" + resolved "https://registry.yarnpkg.com/media-typer/-/media-typer-0.3.0.tgz#8710d7af0aa626f8fffa1ce00168545263255748" + integrity sha512-dq+qelQ9akHpcOl/gUVRTxVIOkAJ1wR3QAvb4RsVjS8oVoFjDGTc679wJYmUmknUF5HwMLOgb5O+a3KxfWapPQ== + +memfs@^3.1.2, memfs@^3.4.3: + version "3.6.0" + resolved "https://registry.yarnpkg.com/memfs/-/memfs-3.6.0.tgz#d7a2110f86f79dd950a8b6df6d57bc984aa185f6" + integrity sha512-EGowvkkgbMcIChjMTMkESFDbZeSh8xZ7kNSF0hAiAN4Jh6jgHCRS0Ga/+C8y6Au+oqpezRHCfPsmJ2+DwAgiwQ== + dependencies: + fs-monkey "^1.0.4" + +merge-descriptors@1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/merge-descriptors/-/merge-descriptors-1.0.3.tgz#d80319a65f3c7935351e5cfdac8f9318504dbed5" + integrity sha512-gaNvAS7TZ897/rVaZ0nMtAyxNyi/pdbjbAwUpFQpN70GqnVfOiXpeUUMKRBmzXaSQ8DdTX4/0ms62r2K+hE6mQ== + +merge-stream@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/merge-stream/-/merge-stream-2.0.0.tgz#52823629a14dd00c9770fb6ad47dc6310f2c1f60" + integrity sha512-abv/qOcuPfk3URPfDzmZU1LKmuw8kT+0nIHvKrKgFrwifol/doWcdA4ZqsWQ8ENrFKkd67Mfpo/LovbIUsbt3w== + +merge2@^1.3.0, merge2@^1.4.1: + version "1.4.1" + resolved "https://registry.yarnpkg.com/merge2/-/merge2-1.4.1.tgz#4368892f885e907455a6fd7dc55c0c9d404990ae" + integrity sha512-8q7VEgMJW4J8tcfVPy8g09NcQwZdbwFEqhe/WZkoIzjn/3TGDwtOCYtXGxA3O8tPzpczCCDgv+P2P5y00ZJOOg== + +mermaid@^10.4.0: + version "10.9.1" + resolved "https://registry.yarnpkg.com/mermaid/-/mermaid-10.9.1.tgz#5f582c23f3186c46c6aa673e59eeb46d741b2ea6" + integrity sha512-Mx45Obds5W1UkW1nv/7dHRsbfMM1aOKA2+Pxs/IGHNonygDHwmng8xTHyS9z4KWVi0rbko8gjiBmuwwXQ7tiNA== + dependencies: + "@braintree/sanitize-url" "^6.0.1" + "@types/d3-scale" "^4.0.3" + "@types/d3-scale-chromatic" "^3.0.0" + cytoscape "^3.28.1" + cytoscape-cose-bilkent "^4.1.0" + d3 "^7.4.0" + d3-sankey "^0.12.3" + dagre-d3-es "7.0.10" + dayjs "^1.11.7" + dompurify "^3.0.5" + elkjs "^0.9.0" + katex "^0.16.9" + khroma "^2.0.0" + lodash-es "^4.17.21" + mdast-util-from-markdown "^1.3.0" + non-layered-tidy-tree-layout "^2.0.2" + stylis "^4.1.3" + ts-dedent "^2.2.0" + uuid "^9.0.0" + web-worker "^1.2.0" + +methods@~1.1.2: + version "1.1.2" + resolved "https://registry.yarnpkg.com/methods/-/methods-1.1.2.tgz#5529a4d67654134edcc5266656835b0f851afcee" + integrity sha512-iclAHeNqNm68zFtnZ0e+1L2yUIdvzNoauKU4WBA3VvH/vPFieF7qfRlwUZU+DA9P9bPXIS90ulxoUoCH23sV2w== + +micromark-core-commonmark@^1.0.1: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-core-commonmark/-/micromark-core-commonmark-1.1.0.tgz#1386628df59946b2d39fb2edfd10f3e8e0a75bb8" + integrity sha512-BgHO1aRbolh2hcrzL2d1La37V0Aoz73ymF8rAcKnohLy93titmv62E0gP8Hrx9PKcKrqCZ1BbLGbP3bEhoXYlw== + dependencies: + decode-named-character-reference "^1.0.0" + micromark-factory-destination "^1.0.0" + micromark-factory-label "^1.0.0" + micromark-factory-space "^1.0.0" + micromark-factory-title "^1.0.0" + micromark-factory-whitespace "^1.0.0" + micromark-util-character "^1.0.0" + micromark-util-chunked "^1.0.0" + micromark-util-classify-character "^1.0.0" + micromark-util-html-tag-name "^1.0.0" + micromark-util-normalize-identifier "^1.0.0" + micromark-util-resolve-all "^1.0.0" + micromark-util-subtokenize "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.1" + uvu "^0.5.0" + +micromark-core-commonmark@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/micromark-core-commonmark/-/micromark-core-commonmark-2.0.1.tgz#9a45510557d068605c6e9a80f282b2bb8581e43d" + integrity sha512-CUQyKr1e///ZODyD1U3xit6zXwy1a8q2a1S1HKtIlmgvurrEpaw/Y9y6KSIbF8P59cn/NjzHyO+Q2fAyYLQrAA== + dependencies: + decode-named-character-reference "^1.0.0" + devlop "^1.0.0" + micromark-factory-destination "^2.0.0" + micromark-factory-label "^2.0.0" + micromark-factory-space "^2.0.0" + micromark-factory-title "^2.0.0" + micromark-factory-whitespace "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-chunked "^2.0.0" + micromark-util-classify-character "^2.0.0" + micromark-util-html-tag-name "^2.0.0" + micromark-util-normalize-identifier "^2.0.0" + micromark-util-resolve-all "^2.0.0" + micromark-util-subtokenize "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-directive@^3.0.0: + version "3.0.2" + resolved "https://registry.yarnpkg.com/micromark-extension-directive/-/micromark-extension-directive-3.0.2.tgz#2eb61985d1995a7c1ff7621676a4f32af29409e8" + integrity sha512-wjcXHgk+PPdmvR58Le9d7zQYWy+vKEU9Se44p2CrCDPiLr2FMyiT4Fyb5UFKFC66wGB3kPlgD7q3TnoqPS7SZA== + dependencies: + devlop "^1.0.0" + micromark-factory-space "^2.0.0" + micromark-factory-whitespace "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + parse-entities "^4.0.0" + +micromark-extension-frontmatter@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-extension-frontmatter/-/micromark-extension-frontmatter-2.0.0.tgz#651c52ffa5d7a8eeed687c513cd869885882d67a" + integrity sha512-C4AkuM3dA58cgZha7zVnuVxBhDsbttIMiytjgsM2XbHAB2faRVaHRle40558FBN+DJcrLNCoqG5mlrpdU4cRtg== + dependencies: + fault "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-gfm-autolink-literal@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/micromark-extension-gfm-autolink-literal/-/micromark-extension-gfm-autolink-literal-2.1.0.tgz#6286aee9686c4462c1e3552a9d505feddceeb935" + integrity sha512-oOg7knzhicgQ3t4QCjCWgTmfNhvQbDDnJeVu9v81r7NltNCVmhPy1fJRX27pISafdjL+SVc4d3l48Gb6pbRypw== + dependencies: + micromark-util-character "^2.0.0" + micromark-util-sanitize-uri "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-gfm-footnote@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/micromark-extension-gfm-footnote/-/micromark-extension-gfm-footnote-2.1.0.tgz#4dab56d4e398b9853f6fe4efac4fc9361f3e0750" + integrity sha512-/yPhxI1ntnDNsiHtzLKYnE3vf9JZ6cAisqVDauhp4CEHxlb4uoOTxOCJ+9s51bIB8U1N1FJ1RXOKTIlD5B/gqw== + dependencies: + devlop "^1.0.0" + micromark-core-commonmark "^2.0.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-normalize-identifier "^2.0.0" + micromark-util-sanitize-uri "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-gfm-strikethrough@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/micromark-extension-gfm-strikethrough/-/micromark-extension-gfm-strikethrough-2.1.0.tgz#86106df8b3a692b5f6a92280d3879be6be46d923" + integrity sha512-ADVjpOOkjz1hhkZLlBiYA9cR2Anf8F4HqZUO6e5eDcPQd0Txw5fxLzzxnEkSkfnD0wziSGiv7sYhk/ktvbf1uw== + dependencies: + devlop "^1.0.0" + micromark-util-chunked "^2.0.0" + micromark-util-classify-character "^2.0.0" + micromark-util-resolve-all "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-gfm-table@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/micromark-extension-gfm-table/-/micromark-extension-gfm-table-2.1.0.tgz#5cadedfbb29fca7abf752447967003dc3b6583c9" + integrity sha512-Ub2ncQv+fwD70/l4ou27b4YzfNaCJOvyX4HxXU15m7mpYY+rjuWzsLIPZHJL253Z643RpbcP1oeIJlQ/SKW67g== + dependencies: + devlop "^1.0.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-gfm-tagfilter@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-extension-gfm-tagfilter/-/micromark-extension-gfm-tagfilter-2.0.0.tgz#f26d8a7807b5985fba13cf61465b58ca5ff7dc57" + integrity sha512-xHlTOmuCSotIA8TW1mDIM6X2O1SiX5P9IuDtqGonFhEK0qgRI4yeC6vMxEV2dgyr2TiD+2PQ10o+cOhdVAcwfg== + dependencies: + micromark-util-types "^2.0.0" + +micromark-extension-gfm-task-list-item@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/micromark-extension-gfm-task-list-item/-/micromark-extension-gfm-task-list-item-2.1.0.tgz#bcc34d805639829990ec175c3eea12bb5b781f2c" + integrity sha512-qIBZhqxqI6fjLDYFTBIa4eivDMnP+OZqsNwmQ3xNLE4Cxwc+zfQEfbs6tzAo2Hjq+bh6q5F+Z8/cksrLFYWQQw== + dependencies: + devlop "^1.0.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-gfm@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/micromark-extension-gfm/-/micromark-extension-gfm-3.0.0.tgz#3e13376ab95dd7a5cfd0e29560dfe999657b3c5b" + integrity sha512-vsKArQsicm7t0z2GugkCKtZehqUm31oeGBV/KVSorWSy8ZlNAv7ytjFhvaryUiCUJYqs+NoE6AFhpQvBTM6Q4w== + dependencies: + micromark-extension-gfm-autolink-literal "^2.0.0" + micromark-extension-gfm-footnote "^2.0.0" + micromark-extension-gfm-strikethrough "^2.0.0" + micromark-extension-gfm-table "^2.0.0" + micromark-extension-gfm-tagfilter "^2.0.0" + micromark-extension-gfm-task-list-item "^2.0.0" + micromark-util-combine-extensions "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-mdx-expression@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/micromark-extension-mdx-expression/-/micromark-extension-mdx-expression-3.0.0.tgz#1407b9ce69916cf5e03a196ad9586889df25302a" + integrity sha512-sI0nwhUDz97xyzqJAbHQhp5TfaxEvZZZ2JDqUo+7NvyIYG6BZ5CPPqj2ogUoPJlmXHBnyZUzISg9+oUmU6tUjQ== + dependencies: + "@types/estree" "^1.0.0" + devlop "^1.0.0" + micromark-factory-mdx-expression "^2.0.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-events-to-acorn "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-extension-mdx-jsx@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/micromark-extension-mdx-jsx/-/micromark-extension-mdx-jsx-3.0.1.tgz#5abb83da5ddc8e473a374453e6ea56fbd66b59ad" + integrity sha512-vNuFb9czP8QCtAQcEJn0UJQJZA8Dk6DXKBqx+bg/w0WGuSxDxNr7hErW89tHUY31dUW4NqEOWwmEUNhjTFmHkg== + dependencies: + "@types/acorn" "^4.0.0" + "@types/estree" "^1.0.0" + devlop "^1.0.0" + estree-util-is-identifier-name "^3.0.0" + micromark-factory-mdx-expression "^2.0.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-events-to-acorn "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + vfile-message "^4.0.0" + +micromark-extension-mdx-md@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-extension-mdx-md/-/micromark-extension-mdx-md-2.0.0.tgz#1d252881ea35d74698423ab44917e1f5b197b92d" + integrity sha512-EpAiszsB3blw4Rpba7xTOUptcFeBFi+6PY8VnJ2hhimH+vCQDirWgsMpz7w1XcZE7LVrSAUGb9VJpG9ghlYvYQ== + dependencies: + micromark-util-types "^2.0.0" + +micromark-extension-mdxjs-esm@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/micromark-extension-mdxjs-esm/-/micromark-extension-mdxjs-esm-3.0.0.tgz#de21b2b045fd2059bd00d36746081de38390d54a" + integrity sha512-DJFl4ZqkErRpq/dAPyeWp15tGrcrrJho1hKK5uBS70BCtfrIFg81sqcTVu3Ta+KD1Tk5vAtBNElWxtAa+m8K9A== + dependencies: + "@types/estree" "^1.0.0" + devlop "^1.0.0" + micromark-core-commonmark "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-events-to-acorn "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + unist-util-position-from-estree "^2.0.0" + vfile-message "^4.0.0" + +micromark-extension-mdxjs@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/micromark-extension-mdxjs/-/micromark-extension-mdxjs-3.0.0.tgz#b5a2e0ed449288f3f6f6c544358159557549de18" + integrity sha512-A873fJfhnJ2siZyUrJ31l34Uqwy4xIFmvPY1oj+Ean5PHcPBYzEsvqvWGaWcfEIr11O5Dlw3p2y0tZWpKHDejQ== + dependencies: + acorn "^8.0.0" + acorn-jsx "^5.0.0" + micromark-extension-mdx-expression "^3.0.0" + micromark-extension-mdx-jsx "^3.0.0" + micromark-extension-mdx-md "^2.0.0" + micromark-extension-mdxjs-esm "^3.0.0" + micromark-util-combine-extensions "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-factory-destination@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-factory-destination/-/micromark-factory-destination-1.1.0.tgz#eb815957d83e6d44479b3df640f010edad667b9f" + integrity sha512-XaNDROBgx9SgSChd69pjiGKbV+nfHGDPVYFs5dOoDd7ZnMAE+Cuu91BCpsY8RT2NP9vo/B8pds2VQNCLiu0zhg== + dependencies: + micromark-util-character "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + +micromark-factory-destination@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-factory-destination/-/micromark-factory-destination-2.0.0.tgz#857c94debd2c873cba34e0445ab26b74f6a6ec07" + integrity sha512-j9DGrQLm/Uhl2tCzcbLhy5kXsgkHUrjJHg4fFAeoMRwJmJerT9aw4FEhIbZStWN8A3qMwOp1uzHr4UL8AInxtA== + dependencies: + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-factory-label@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-factory-label/-/micromark-factory-label-1.1.0.tgz#cc95d5478269085cfa2a7282b3de26eb2e2dec68" + integrity sha512-OLtyez4vZo/1NjxGhcpDSbHQ+m0IIGnT8BoPamh+7jVlzLJBH98zzuCoUeMxvM6WsNeh8wx8cKvqLiPHEACn0w== + dependencies: + micromark-util-character "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + uvu "^0.5.0" + +micromark-factory-label@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-factory-label/-/micromark-factory-label-2.0.0.tgz#17c5c2e66ce39ad6f4fc4cbf40d972f9096f726a" + integrity sha512-RR3i96ohZGde//4WSe/dJsxOX6vxIg9TimLAS3i4EhBAFx8Sm5SmqVfR8E87DPSR31nEAjZfbt91OMZWcNgdZw== + dependencies: + devlop "^1.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-factory-mdx-expression@^2.0.0: + version "2.0.2" + resolved "https://registry.yarnpkg.com/micromark-factory-mdx-expression/-/micromark-factory-mdx-expression-2.0.2.tgz#2afaa8ba6d5f63e0cead3e4dee643cad184ca260" + integrity sha512-5E5I2pFzJyg2CtemqAbcyCktpHXuJbABnsb32wX2U8IQKhhVFBqkcZR5LRm1WVoFqa4kTueZK4abep7wdo9nrw== + dependencies: + "@types/estree" "^1.0.0" + devlop "^1.0.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-events-to-acorn "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + unist-util-position-from-estree "^2.0.0" + vfile-message "^4.0.0" + +micromark-factory-space@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-factory-space/-/micromark-factory-space-1.1.0.tgz#c8f40b0640a0150751d3345ed885a080b0d15faf" + integrity sha512-cRzEj7c0OL4Mw2v6nwzttyOZe8XY/Z8G0rzmWQZTBi/jjwyw/U4uqKtUORXQrR5bAZZnbTI/feRV/R7hc4jQYQ== + dependencies: + micromark-util-character "^1.0.0" + micromark-util-types "^1.0.0" + +micromark-factory-space@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-factory-space/-/micromark-factory-space-2.0.0.tgz#5e7afd5929c23b96566d0e1ae018ae4fcf81d030" + integrity sha512-TKr+LIDX2pkBJXFLzpyPyljzYK3MtmllMUMODTQJIUfDGncESaqB90db9IAUcz4AZAJFdd8U9zOp9ty1458rxg== + dependencies: + micromark-util-character "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-factory-title@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-factory-title/-/micromark-factory-title-1.1.0.tgz#dd0fe951d7a0ac71bdc5ee13e5d1465ad7f50ea1" + integrity sha512-J7n9R3vMmgjDOCY8NPw55jiyaQnH5kBdV2/UXCtZIpnHH3P6nHUKaH7XXEYuWwx/xUJcawa8plLBEjMPU24HzQ== + dependencies: + micromark-factory-space "^1.0.0" + micromark-util-character "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + +micromark-factory-title@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-factory-title/-/micromark-factory-title-2.0.0.tgz#726140fc77892af524705d689e1cf06c8a83ea95" + integrity sha512-jY8CSxmpWLOxS+t8W+FG3Xigc0RDQA9bKMY/EwILvsesiRniiVMejYTE4wumNc2f4UbAa4WsHqe3J1QS1sli+A== + dependencies: + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-factory-whitespace@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-factory-whitespace/-/micromark-factory-whitespace-1.1.0.tgz#798fb7489f4c8abafa7ca77eed6b5745853c9705" + integrity sha512-v2WlmiymVSp5oMg+1Q0N1Lxmt6pMhIHD457whWM7/GUlEks1hI9xj5w3zbc4uuMKXGisksZk8DzP2UyGbGqNsQ== + dependencies: + micromark-factory-space "^1.0.0" + micromark-util-character "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + +micromark-factory-whitespace@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-factory-whitespace/-/micromark-factory-whitespace-2.0.0.tgz#9e92eb0f5468083381f923d9653632b3cfb5f763" + integrity sha512-28kbwaBjc5yAI1XadbdPYHX/eDnqaUFVikLwrO7FDnKG7lpgxnvk/XGRhX/PN0mOZ+dBSZ+LgunHS+6tYQAzhA== + dependencies: + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-util-character@^1.0.0, micromark-util-character@^1.1.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/micromark-util-character/-/micromark-util-character-1.2.0.tgz#4fedaa3646db249bc58caeb000eb3549a8ca5dcc" + integrity sha512-lXraTwcX3yH/vMDaFWCQJP1uIszLVebzUa3ZHdrgxr7KEU/9mL4mVgCpGbyhvNLNlauROiNUq7WN5u7ndbY6xg== + dependencies: + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + +micromark-util-character@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-character/-/micromark-util-character-2.1.0.tgz#31320ace16b4644316f6bf057531689c71e2aee1" + integrity sha512-KvOVV+X1yLBfs9dCBSopq/+G1PcgT3lAK07mC4BzXi5E7ahzMAF8oIupDDJ6mievI6F+lAATkbQQlQixJfT3aQ== + dependencies: + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-util-chunked@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-chunked/-/micromark-util-chunked-1.1.0.tgz#37a24d33333c8c69a74ba12a14651fd9ea8a368b" + integrity sha512-Ye01HXpkZPNcV6FiyoW2fGZDUw4Yc7vT0E9Sad83+bEDiCJ1uXu0S3mr8WLpsz3HaG3x2q0HM6CTuPdcZcluFQ== + dependencies: + micromark-util-symbol "^1.0.0" + +micromark-util-chunked@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-chunked/-/micromark-util-chunked-2.0.0.tgz#e51f4db85fb203a79dbfef23fd41b2f03dc2ef89" + integrity sha512-anK8SWmNphkXdaKgz5hJvGa7l00qmcaUQoMYsBwDlSKFKjc6gjGXPDw3FNL3Nbwq5L8gE+RCbGqTw49FK5Qyvg== + dependencies: + micromark-util-symbol "^2.0.0" + +micromark-util-classify-character@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-classify-character/-/micromark-util-classify-character-1.1.0.tgz#6a7f8c8838e8a120c8e3c4f2ae97a2bff9190e9d" + integrity sha512-SL0wLxtKSnklKSUplok1WQFoGhUdWYKggKUiqhX+Swala+BtptGCu5iPRc+xvzJ4PXE/hwM3FNXsfEVgoZsWbw== + dependencies: + micromark-util-character "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + +micromark-util-classify-character@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-classify-character/-/micromark-util-classify-character-2.0.0.tgz#8c7537c20d0750b12df31f86e976d1d951165f34" + integrity sha512-S0ze2R9GH+fu41FA7pbSqNWObo/kzwf8rN/+IGlW/4tC6oACOs8B++bh+i9bVyNnwCcuksbFwsBme5OCKXCwIw== + dependencies: + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-util-combine-extensions@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-combine-extensions/-/micromark-util-combine-extensions-1.1.0.tgz#192e2b3d6567660a85f735e54d8ea6e3952dbe84" + integrity sha512-Q20sp4mfNf9yEqDL50WwuWZHUrCO4fEyeDCnMGmG5Pr0Cz15Uo7KBs6jq+dq0EgX4DPwwrh9m0X+zPV1ypFvUA== + dependencies: + micromark-util-chunked "^1.0.0" + micromark-util-types "^1.0.0" + +micromark-util-combine-extensions@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-combine-extensions/-/micromark-util-combine-extensions-2.0.0.tgz#75d6ab65c58b7403616db8d6b31315013bfb7ee5" + integrity sha512-vZZio48k7ON0fVS3CUgFatWHoKbbLTK/rT7pzpJ4Bjp5JjkZeasRfrS9wsBdDJK2cJLHMckXZdzPSSr1B8a4oQ== + dependencies: + micromark-util-chunked "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-util-decode-numeric-character-reference@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-decode-numeric-character-reference/-/micromark-util-decode-numeric-character-reference-1.1.0.tgz#b1e6e17009b1f20bc652a521309c5f22c85eb1c6" + integrity sha512-m9V0ExGv0jB1OT21mrWcuf4QhP46pH1KkfWy9ZEezqHKAxkj4mPCy3nIH1rkbdMlChLHX531eOrymlwyZIf2iw== + dependencies: + micromark-util-symbol "^1.0.0" + +micromark-util-decode-numeric-character-reference@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/micromark-util-decode-numeric-character-reference/-/micromark-util-decode-numeric-character-reference-2.0.1.tgz#2698bbb38f2a9ba6310e359f99fcb2b35a0d2bd5" + integrity sha512-bmkNc7z8Wn6kgjZmVHOX3SowGmVdhYS7yBpMnuMnPzDq/6xwVA604DuOXMZTO1lvq01g+Adfa0pE2UKGlxL1XQ== + dependencies: + micromark-util-symbol "^2.0.0" + +micromark-util-decode-string@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-decode-string/-/micromark-util-decode-string-1.1.0.tgz#dc12b078cba7a3ff690d0203f95b5d5537f2809c" + integrity sha512-YphLGCK8gM1tG1bd54azwyrQRjCFcmgj2S2GoJDNnh4vYtnL38JS8M4gpxzOPNyHdNEpheyWXCTnnTDY3N+NVQ== + dependencies: + decode-named-character-reference "^1.0.0" + micromark-util-character "^1.0.0" + micromark-util-decode-numeric-character-reference "^1.0.0" + micromark-util-symbol "^1.0.0" + +micromark-util-decode-string@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-decode-string/-/micromark-util-decode-string-2.0.0.tgz#7dfa3a63c45aecaa17824e656bcdb01f9737154a" + integrity sha512-r4Sc6leeUTn3P6gk20aFMj2ntPwn6qpDZqWvYmAG6NgvFTIlj4WtrAudLi65qYoaGdXYViXYw2pkmn7QnIFasA== + dependencies: + decode-named-character-reference "^1.0.0" + micromark-util-character "^2.0.0" + micromark-util-decode-numeric-character-reference "^2.0.0" + micromark-util-symbol "^2.0.0" + +micromark-util-encode@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-encode/-/micromark-util-encode-1.1.0.tgz#92e4f565fd4ccb19e0dcae1afab9a173bbeb19a5" + integrity sha512-EuEzTWSTAj9PA5GOAs992GzNh2dGQO52UvAbtSOMvXTxv3Criqb6IOzJUBCmEqrrXSblJIJBbFFv6zPxpreiJw== + +micromark-util-encode@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-encode/-/micromark-util-encode-2.0.0.tgz#0921ac7953dc3f1fd281e3d1932decfdb9382ab1" + integrity sha512-pS+ROfCXAGLWCOc8egcBvT0kf27GoWMqtdarNfDcjb6YLuV5cM3ioG45Ys2qOVqeqSbjaKg72vU+Wby3eddPsA== + +micromark-util-events-to-acorn@^2.0.0: + version "2.0.2" + resolved "https://registry.yarnpkg.com/micromark-util-events-to-acorn/-/micromark-util-events-to-acorn-2.0.2.tgz#4275834f5453c088bd29cd72dfbf80e3327cec07" + integrity sha512-Fk+xmBrOv9QZnEDguL9OI9/NQQp6Hz4FuQ4YmCb/5V7+9eAh1s6AYSvL20kHkD67YIg7EpE54TiSlcsf3vyZgA== + dependencies: + "@types/acorn" "^4.0.0" + "@types/estree" "^1.0.0" + "@types/unist" "^3.0.0" + devlop "^1.0.0" + estree-util-visit "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + vfile-message "^4.0.0" + +micromark-util-html-tag-name@^1.0.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/micromark-util-html-tag-name/-/micromark-util-html-tag-name-1.2.0.tgz#48fd7a25826f29d2f71479d3b4e83e94829b3588" + integrity sha512-VTQzcuQgFUD7yYztuQFKXT49KghjtETQ+Wv/zUjGSGBioZnkA4P1XXZPT1FHeJA6RwRXSF47yvJ1tsJdoxwO+Q== + +micromark-util-html-tag-name@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-html-tag-name/-/micromark-util-html-tag-name-2.0.0.tgz#ae34b01cbe063363847670284c6255bb12138ec4" + integrity sha512-xNn4Pqkj2puRhKdKTm8t1YHC/BAjx6CEwRFXntTaRf/x16aqka6ouVoutm+QdkISTlT7e2zU7U4ZdlDLJd2Mcw== + +micromark-util-normalize-identifier@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-normalize-identifier/-/micromark-util-normalize-identifier-1.1.0.tgz#7a73f824eb9f10d442b4d7f120fecb9b38ebf8b7" + integrity sha512-N+w5vhqrBihhjdpM8+5Xsxy71QWqGn7HYNUvch71iV2PM7+E3uWGox1Qp90loa1ephtCxG2ftRV/Conitc6P2Q== + dependencies: + micromark-util-symbol "^1.0.0" + +micromark-util-normalize-identifier@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-normalize-identifier/-/micromark-util-normalize-identifier-2.0.0.tgz#91f9a4e65fe66cc80c53b35b0254ad67aa431d8b" + integrity sha512-2xhYT0sfo85FMrUPtHcPo2rrp1lwbDEEzpx7jiH2xXJLqBuy4H0GgXk5ToU8IEwoROtXuL8ND0ttVa4rNqYK3w== + dependencies: + micromark-util-symbol "^2.0.0" + +micromark-util-resolve-all@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-resolve-all/-/micromark-util-resolve-all-1.1.0.tgz#4652a591ee8c8fa06714c9b54cd6c8e693671188" + integrity sha512-b/G6BTMSg+bX+xVCshPTPyAu2tmA0E4X98NSR7eIbeC6ycCqCeE7wjfDIgzEbkzdEVJXRtOG4FbEm/uGbCRouA== + dependencies: + micromark-util-types "^1.0.0" + +micromark-util-resolve-all@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-resolve-all/-/micromark-util-resolve-all-2.0.0.tgz#189656e7e1a53d0c86a38a652b284a252389f364" + integrity sha512-6KU6qO7DZ7GJkaCgwBNtplXCvGkJToU86ybBAUdavvgsCiG8lSSvYxr9MhwmQ+udpzywHsl4RpGJsYWG1pDOcA== + dependencies: + micromark-util-types "^2.0.0" + +micromark-util-sanitize-uri@^1.0.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/micromark-util-sanitize-uri/-/micromark-util-sanitize-uri-1.2.0.tgz#613f738e4400c6eedbc53590c67b197e30d7f90d" + integrity sha512-QO4GXv0XZfWey4pYFndLUKEAktKkG5kZTdUNaTAkzbuJxn2tNBOr+QtxR2XpWaMhbImT2dPzyLrPXLlPhph34A== + dependencies: + micromark-util-character "^1.0.0" + micromark-util-encode "^1.0.0" + micromark-util-symbol "^1.0.0" + +micromark-util-sanitize-uri@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-sanitize-uri/-/micromark-util-sanitize-uri-2.0.0.tgz#ec8fbf0258e9e6d8f13d9e4770f9be64342673de" + integrity sha512-WhYv5UEcZrbAtlsnPuChHUAsu/iBPOVaEVsntLBIdpibO0ddy8OzavZz3iL2xVvBZOpolujSliP65Kq0/7KIYw== + dependencies: + micromark-util-character "^2.0.0" + micromark-util-encode "^2.0.0" + micromark-util-symbol "^2.0.0" + +micromark-util-subtokenize@^1.0.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-subtokenize/-/micromark-util-subtokenize-1.1.0.tgz#941c74f93a93eaf687b9054aeb94642b0e92edb1" + integrity sha512-kUQHyzRoxvZO2PuLzMt2P/dwVsTiivCK8icYTeR+3WgbuPqfHgPPy7nFKbeqRivBvn/3N3GBiNC+JRTMSxEC7A== + dependencies: + micromark-util-chunked "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.0" + uvu "^0.5.0" + +micromark-util-subtokenize@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/micromark-util-subtokenize/-/micromark-util-subtokenize-2.0.1.tgz#76129c49ac65da6e479c09d0ec4b5f29ec6eace5" + integrity sha512-jZNtiFl/1aY73yS3UGQkutD0UbhTt68qnRpw2Pifmz5wV9h8gOVsN70v+Lq/f1rKaU/W8pxRe8y8Q9FX1AOe1Q== + dependencies: + devlop "^1.0.0" + micromark-util-chunked "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromark-util-symbol@^1.0.0, micromark-util-symbol@^1.0.1: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-symbol/-/micromark-util-symbol-1.1.0.tgz#813cd17837bdb912d069a12ebe3a44b6f7063142" + integrity sha512-uEjpEYY6KMs1g7QfJ2eX1SQEV+ZT4rUD3UcF6l57acZvLNK7PBZL+ty82Z1qhK1/yXIY4bdx04FKMgR0g4IAag== + +micromark-util-symbol@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-symbol/-/micromark-util-symbol-2.0.0.tgz#12225c8f95edf8b17254e47080ce0862d5db8044" + integrity sha512-8JZt9ElZ5kyTnO94muPxIGS8oyElRJaiJO8EzV6ZSyGQ1Is8xwl4Q45qU5UOg+bGH4AikWziz0iN4sFLWs8PGw== + +micromark-util-types@^1.0.0, micromark-util-types@^1.0.1: + version "1.1.0" + resolved "https://registry.yarnpkg.com/micromark-util-types/-/micromark-util-types-1.1.0.tgz#e6676a8cae0bb86a2171c498167971886cb7e283" + integrity sha512-ukRBgie8TIAcacscVHSiddHjO4k/q3pnedmzMQ4iwDcK0FtFCohKOlFbaOL/mPgfnPsL3C1ZyxJa4sbWrBl3jg== + +micromark-util-types@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/micromark-util-types/-/micromark-util-types-2.0.0.tgz#63b4b7ffeb35d3ecf50d1ca20e68fc7caa36d95e" + integrity sha512-oNh6S2WMHWRZrmutsRmDDfkzKtxF+bc2VxLC9dvtrDIRFln627VsFP6fLMgTryGDljgLPjkrzQSDcPrjPyDJ5w== + +micromark@^3.0.0: + version "3.2.0" + resolved "https://registry.yarnpkg.com/micromark/-/micromark-3.2.0.tgz#1af9fef3f995ea1ea4ac9c7e2f19c48fd5c006e9" + integrity sha512-uD66tJj54JLYq0De10AhWycZWGQNUvDI55xPgk2sQM5kn1JYlhbCMTtEeT27+vAhW2FBQxLlOmS3pmA7/2z4aA== + dependencies: + "@types/debug" "^4.0.0" + debug "^4.0.0" + decode-named-character-reference "^1.0.0" + micromark-core-commonmark "^1.0.1" + micromark-factory-space "^1.0.0" + micromark-util-character "^1.0.0" + micromark-util-chunked "^1.0.0" + micromark-util-combine-extensions "^1.0.0" + micromark-util-decode-numeric-character-reference "^1.0.0" + micromark-util-encode "^1.0.0" + micromark-util-normalize-identifier "^1.0.0" + micromark-util-resolve-all "^1.0.0" + micromark-util-sanitize-uri "^1.0.0" + micromark-util-subtokenize "^1.0.0" + micromark-util-symbol "^1.0.0" + micromark-util-types "^1.0.1" + uvu "^0.5.0" + +micromark@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/micromark/-/micromark-4.0.0.tgz#84746a249ebd904d9658cfabc1e8e5f32cbc6249" + integrity sha512-o/sd0nMof8kYff+TqcDx3VSrgBTcZpSvYcAHIfHhv5VAuNmisCxjhx6YmxS8PFEpb9z5WKWKPdzf0jM23ro3RQ== + dependencies: + "@types/debug" "^4.0.0" + debug "^4.0.0" + decode-named-character-reference "^1.0.0" + devlop "^1.0.0" + micromark-core-commonmark "^2.0.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-chunked "^2.0.0" + micromark-util-combine-extensions "^2.0.0" + micromark-util-decode-numeric-character-reference "^2.0.0" + micromark-util-encode "^2.0.0" + micromark-util-normalize-identifier "^2.0.0" + micromark-util-resolve-all "^2.0.0" + micromark-util-sanitize-uri "^2.0.0" + micromark-util-subtokenize "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + +micromatch@^4.0.2, micromatch@^4.0.4, micromatch@^4.0.5: + version "4.0.8" + resolved "https://registry.yarnpkg.com/micromatch/-/micromatch-4.0.8.tgz#d66fa18f3a47076789320b9b1af32bd86d9fa202" + integrity sha512-PXwfBhYu0hBCPw8Dn0E+WDYb7af3dSLVWKi3HGv84IdF4TyFoC0ysxFd0Goxw7nSv4T/PzEJQxsYsEiFCKo2BA== + dependencies: + braces "^3.0.3" + picomatch "^2.3.1" + +mime-db@1.52.0: + version "1.52.0" + resolved "https://registry.yarnpkg.com/mime-db/-/mime-db-1.52.0.tgz#bbabcdc02859f4987301c856e3387ce5ec43bf70" + integrity sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg== + +"mime-db@>= 1.43.0 < 2": + version "1.53.0" + resolved "https://registry.yarnpkg.com/mime-db/-/mime-db-1.53.0.tgz#3cb63cd820fc29896d9d4e8c32ab4fcd74ccb447" + integrity sha512-oHlN/w+3MQ3rba9rqFr6V/ypF10LSkdwUysQL7GkXoTgIWeV+tcXGA852TBxH+gsh8UWoyhR1hKcoMJTuWflpg== + +mime-db@~1.33.0: + version "1.33.0" + resolved "https://registry.yarnpkg.com/mime-db/-/mime-db-1.33.0.tgz#a3492050a5cb9b63450541e39d9788d2272783db" + integrity sha512-BHJ/EKruNIqJf/QahvxwQZXKygOQ256myeN/Ew+THcAa5q+PjyTTMMeNQC4DZw5AwfvelsUrA6B67NKMqXDbzQ== + +mime-types@2.1.18: + version "2.1.18" + resolved "https://registry.yarnpkg.com/mime-types/-/mime-types-2.1.18.tgz#6f323f60a83d11146f831ff11fd66e2fe5503bb8" + integrity sha512-lc/aahn+t4/SWV/qcmumYjymLsWfN3ELhpmVuUFjgsORruuZPVSwAQryq+HHGvO/SI2KVX26bx+En+zhM8g8hQ== + dependencies: + mime-db "~1.33.0" + +mime-types@^2.1.12, mime-types@^2.1.27, mime-types@^2.1.31, mime-types@~2.1.17, mime-types@~2.1.24, mime-types@~2.1.34: + version "2.1.35" + resolved "https://registry.yarnpkg.com/mime-types/-/mime-types-2.1.35.tgz#381a871b62a734450660ae3deee44813f70d959a" + integrity sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw== + dependencies: + mime-db "1.52.0" + +mime@1.6.0: + version "1.6.0" + resolved "https://registry.yarnpkg.com/mime/-/mime-1.6.0.tgz#32cd9e5c64553bd58d19a568af452acff04981b1" + integrity sha512-x0Vn8spI+wuJ1O6S7gnbaQg8Pxh4NNHb7KSINmEWKiPE4RKOplvijn+NkmYmmRgP68mc70j2EbeTFRsrswaQeg== + +mimic-fn@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/mimic-fn/-/mimic-fn-2.1.0.tgz#7ed2c2ccccaf84d3ffcb7a69b57711fc2083401b" + integrity sha512-OqbOk5oEQeAZ8WXWydlu9HJjz9WVdEIvamMCcXmuqUYjTknH/sqsWvhQ3vgwKFRR1HpjvNBKQ37nbJgYzGqGcg== + +mimic-response@^3.1.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/mimic-response/-/mimic-response-3.1.0.tgz#2d1d59af9c1b129815accc2c46a022a5ce1fa3c9" + integrity sha512-z0yWI+4FDrrweS8Zmt4Ej5HdJmky15+L2e6Wgn3+iK5fWzb6T3fhNFq2+MeTRb064c6Wr4N/wv0DzQTjNzHNGQ== + +mimic-response@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/mimic-response/-/mimic-response-4.0.0.tgz#35468b19e7c75d10f5165ea25e75a5ceea7cf70f" + integrity sha512-e5ISH9xMYU0DzrT+jl8q2ze9D6eWBto+I8CNpe+VI+K2J/F/k3PdkdTdz4wvGVH4NTpo+NRYTVIuMQEMMcsLqg== + +mini-css-extract-plugin@^2.7.6: + version "2.9.1" + resolved "https://registry.yarnpkg.com/mini-css-extract-plugin/-/mini-css-extract-plugin-2.9.1.tgz#4d184f12ce90582e983ccef0f6f9db637b4be758" + integrity sha512-+Vyi+GCCOHnrJ2VPS+6aPoXN2k2jgUzDRhTFLjjTBn23qyXJXkjUWQgTL+mXpF5/A8ixLdCc6kWsoeOjKGejKQ== + dependencies: + schema-utils "^4.0.0" + tapable "^2.2.1" + +minimalistic-assert@^1.0.0: + version "1.0.1" + resolved "https://registry.yarnpkg.com/minimalistic-assert/-/minimalistic-assert-1.0.1.tgz#2e194de044626d4a10e7f7fbc00ce73e83e4d5c7" + integrity sha512-UtJcAD4yEaGtjPezWuO9wC4nwUnVH/8/Im3yEHQP4b67cXlD/Qr9hdITCU1xDbSEXg2XKNaP8jsReV7vQd00/A== + +minimatch@3.1.2, minimatch@^3.0.4, minimatch@^3.0.5, minimatch@^3.1.1, minimatch@^3.1.2: + version "3.1.2" + resolved "https://registry.yarnpkg.com/minimatch/-/minimatch-3.1.2.tgz#19cd194bfd3e428f049a70817c038d89ab4be35b" + integrity sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw== + dependencies: + brace-expansion "^1.1.7" + +minimatch@^9.0.0, minimatch@^9.0.3, minimatch@^9.0.4: + version "9.0.5" + resolved "https://registry.yarnpkg.com/minimatch/-/minimatch-9.0.5.tgz#d74f9dd6b57d83d8e98cfb82133b03978bc929e5" + integrity sha512-G6T0ZX48xgozx7587koeX9Ys2NYy6Gmv//P89sEte9V9whIapMNF4idKxnW2QtCcLiTWlb/wfCabAtAFWhhBow== + dependencies: + brace-expansion "^2.0.1" + +minimist@^1.2.0, minimist@^1.2.6: + version "1.2.8" + resolved "https://registry.yarnpkg.com/minimist/-/minimist-1.2.8.tgz#c1a464e7693302e082a075cee0c057741ac4772c" + integrity sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA== + +"minipass@^5.0.0 || ^6.0.2 || ^7.0.0", minipass@^7.0.4, minipass@^7.1.2: + version "7.1.2" + resolved "https://registry.yarnpkg.com/minipass/-/minipass-7.1.2.tgz#93a9626ce5e5e66bd4db86849e7515e92340a707" + integrity sha512-qOOzS1cBTWYF4BH8fVePDBOO9iptMnGUEZwNc/cMWnTV2nVLZ7VoNWEPHkYczZA0pdoA7dl6e7FL659nX9S2aw== + +minizlib@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/minizlib/-/minizlib-3.0.1.tgz#46d5329d1eb3c83924eff1d3b858ca0a31581012" + integrity sha512-umcy022ILvb5/3Djuu8LWeqUa8D68JaBzlttKeMWen48SjabqS3iY5w/vzeMzMUNhLDifyhbOwKDSznB1vvrwg== + dependencies: + minipass "^7.0.4" + rimraf "^5.0.5" + +mkdirp@^3.0.1: + version "3.0.1" + resolved "https://registry.yarnpkg.com/mkdirp/-/mkdirp-3.0.1.tgz#e44e4c5607fb279c168241713cc6e0fea9adcb50" + integrity sha512-+NsyUUAZDmo6YVHzL/stxSu3t9YS1iljliy3BSDrXJ/dkn1KYdmtZODGGjLcc9XLgVVpH4KshHB8XmZgMhaBXg== + +mri@^1.1.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/mri/-/mri-1.2.0.tgz#6721480fec2a11a4889861115a48b6cbe7cc8f0b" + integrity sha512-tzzskb3bG8LvYGFF/mDTpq3jpI6Q9wc3LEmBaghu+DdCssd1FakN7Bc0hVNmEyGq1bq3RgfkCb3cmQLpNPOroA== + +mrmime@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/mrmime/-/mrmime-2.0.0.tgz#151082a6e06e59a9a39b46b3e14d5cfe92b3abb4" + integrity sha512-eu38+hdgojoyq63s+yTpN4XMBdt5l8HhMhc4VKLO9KM5caLIBvUm4thi7fFaxyTmCKeNnXZ5pAlBwCUnhA09uw== + +ms@2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/ms/-/ms-2.0.0.tgz#5608aeadfc00be6c2901df5f9861788de0d597c8" + integrity sha512-Tpp60P6IUJDTuOq/5Z8cdskzJujfwqfOTkrwIwj7IRISpnkJnT6SyJ4PCPnGMoFjC9ddhal5KVIYtAt97ix05A== + +ms@2.1.3, ms@^2.1.1, ms@^2.1.3: + version "2.1.3" + resolved "https://registry.yarnpkg.com/ms/-/ms-2.1.3.tgz#574c8138ce1d2b5861f0b44579dbadd60c6615b2" + integrity sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA== + +multicast-dns@^7.2.5: + version "7.2.5" + resolved "https://registry.yarnpkg.com/multicast-dns/-/multicast-dns-7.2.5.tgz#77eb46057f4d7adbd16d9290fa7299f6fa64cced" + integrity sha512-2eznPJP8z2BFLX50tf0LuODrpINqP1RVIm/CObbTcBRITQgmC/TjcREF1NeTBzIcR5XO/ukWo+YHOjBbFwIupg== + dependencies: + dns-packet "^5.2.2" + thunky "^1.0.2" + +nanoid@^3.3.7: + version "3.3.7" + resolved "https://registry.yarnpkg.com/nanoid/-/nanoid-3.3.7.tgz#d0c301a691bc8d54efa0a2226ccf3fe2fd656bd8" + integrity sha512-eSRppjcPIatRIMC1U6UngP8XFcz8MQWGQdt1MTBQ7NaAmvXDfvNxbvWV3x2y6CdEUciCSsDHDQZbhYaB8QEo2g== + +natural-compare@^1.4.0: + version "1.4.0" + resolved "https://registry.yarnpkg.com/natural-compare/-/natural-compare-1.4.0.tgz#4abebfeed7541f2c27acfb29bdbbd15c8d5ba4f7" + integrity sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw== + +negotiator@0.6.3: + version "0.6.3" + resolved "https://registry.yarnpkg.com/negotiator/-/negotiator-0.6.3.tgz#58e323a72fedc0d6f9cd4d31fe49f51479590ccd" + integrity sha512-+EUsqGPLsM+j/zdChZjsnX51g4XrHFOIXwfnCVPGlQk/k5giakcKsuxCObBRu6DSm9opw/O6slWbJdghQM4bBg== + +neo-async@^2.6.2: + version "2.6.2" + resolved "https://registry.yarnpkg.com/neo-async/-/neo-async-2.6.2.tgz#b4aafb93e3aeb2d8174ca53cf163ab7d7308305f" + integrity sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw== + +no-case@^3.0.4: + version "3.0.4" + resolved "https://registry.yarnpkg.com/no-case/-/no-case-3.0.4.tgz#d361fd5c9800f558551a8369fc0dcd4662b6124d" + integrity sha512-fgAN3jGAh+RoxUGZHTSOLJIqUc2wmoBwGR4tbpNAKmmovFoWq0OdRkb0VkldReO2a2iBT/OEulG9XSUc10r3zg== + dependencies: + lower-case "^2.0.2" + tslib "^2.0.3" + +node-domexception@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/node-domexception/-/node-domexception-1.0.0.tgz#6888db46a1f71c0b76b3f7555016b63fe64766e5" + integrity sha512-/jKZoMpw0F8GRwl4/eLROPA3cfcXtLApP0QzLmUT/HuPCZWyB7IY9ZrMeKw2O/nFIqPQB3PVM9aYm0F312AXDQ== + +node-emoji@^2.1.0: + version "2.1.3" + resolved "https://registry.yarnpkg.com/node-emoji/-/node-emoji-2.1.3.tgz#93cfabb5cc7c3653aa52f29d6ffb7927d8047c06" + integrity sha512-E2WEOVsgs7O16zsURJ/eH8BqhF029wGpEOnv7Urwdo2wmQanOACwJQh0devF9D9RhoZru0+9JXIS0dBXIAz+lA== + dependencies: + "@sindresorhus/is" "^4.6.0" + char-regex "^1.0.2" + emojilib "^2.4.0" + skin-tone "^2.0.0" + +node-fetch@^3.3.2: + version "3.3.2" + resolved "https://registry.yarnpkg.com/node-fetch/-/node-fetch-3.3.2.tgz#d1e889bacdf733b4ff3b2b243eb7a12866a0b78b" + integrity sha512-dRB78srN/l6gqWulah9SrxeYnxeddIG30+GOqK/9OlLVyLg3HPnr6SqOWTWOXKRwC2eGYCkZ59NNuSgvSrpgOA== + dependencies: + data-uri-to-buffer "^4.0.0" + fetch-blob "^3.1.4" + formdata-polyfill "^4.0.10" + +node-forge@^1: + version "1.3.1" + resolved "https://registry.yarnpkg.com/node-forge/-/node-forge-1.3.1.tgz#be8da2af243b2417d5f646a770663a92b7e9ded3" + integrity sha512-dPEtOeMvF9VMcYV/1Wb8CPoVAXtp6MKMlcbAt4ddqmGqUJ6fQZFXkNZNkNlfevtNkGtaSoXf/vNNNSvgrdXwtA== + +node-releases@^2.0.18: + version "2.0.18" + resolved "https://registry.yarnpkg.com/node-releases/-/node-releases-2.0.18.tgz#f010e8d35e2fe8d6b2944f03f70213ecedc4ca3f" + integrity sha512-d9VeXT4SJ7ZeOqGX6R5EM022wpL+eWPooLI+5UpWn2jCT1aosUQEhQP214x33Wkwx3JQMvIm+tIoVOdodFS40g== + +non-layered-tidy-tree-layout@^2.0.2: + version "2.0.2" + resolved "https://registry.yarnpkg.com/non-layered-tidy-tree-layout/-/non-layered-tidy-tree-layout-2.0.2.tgz#57d35d13c356643fc296a55fb11ac15e74da7804" + integrity sha512-gkXMxRzUH+PB0ax9dUN0yYF0S25BqeAYqhgMaLUFmpXLEk7Fcu8f4emJuOAY0V8kjDICxROIKsTAKsV/v355xw== + +normalize-path@^3.0.0, normalize-path@~3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/normalize-path/-/normalize-path-3.0.0.tgz#0dcd69ff23a1c9b11fd0978316644a0388216a65" + integrity sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA== + +normalize-range@^0.1.2: + version "0.1.2" + resolved "https://registry.yarnpkg.com/normalize-range/-/normalize-range-0.1.2.tgz#2d10c06bdfd312ea9777695a4d28439456b75942" + integrity sha512-bdok/XvKII3nUpklnV6P2hxtMNrCboOjAcyBuQnWEhO665FwrSNRxU+AqpsyvO6LgGYPspN+lu5CLtw4jPRKNA== + +normalize-url@^8.0.0: + version "8.0.1" + resolved "https://registry.yarnpkg.com/normalize-url/-/normalize-url-8.0.1.tgz#9b7d96af9836577c58f5883e939365fa15623a4a" + integrity sha512-IO9QvjUMWxPQQhs60oOu10CRkWCiZzSUkzbXGGV9pviYl1fXYcvkzQ5jV9z8Y6un8ARoVRl4EtC6v6jNqbaJ/w== + +npm-normalize-package-bin@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/npm-normalize-package-bin/-/npm-normalize-package-bin-3.0.1.tgz#25447e32a9a7de1f51362c61a559233b89947832" + integrity sha512-dMxCf+zZ+3zeQZXKxmyuCKlIDPGuv8EF940xbkC4kQVDTtqoh6rJFO+JTKSA6/Rwi0getWmtuy4Itup0AMcaDQ== + +npm-run-path@^4.0.1: + version "4.0.1" + resolved "https://registry.yarnpkg.com/npm-run-path/-/npm-run-path-4.0.1.tgz#b7ecd1e5ed53da8e37a55e1c2269e0b97ed748ea" + integrity sha512-S48WzZW777zhNIrn7gxOlISNAqi9ZC/uQFnRdbeIHhZhCA6UqpkOT8T1G7BvfdgP4Er8gF4sUbaS0i7QvIfCWw== + dependencies: + path-key "^3.0.0" + +npm-to-yarn@^2.2.1: + version "2.2.1" + resolved "https://registry.yarnpkg.com/npm-to-yarn/-/npm-to-yarn-2.2.1.tgz#048843a6630621daffc6a239dfc89698b8abf7e8" + integrity sha512-O/j/ROyX0KGLG7O6Ieut/seQ0oiTpHF2tXAcFbpdTLQFiaNtkyTXXocM1fwpaa60dg1qpWj0nHlbNhx6qwuENQ== + +nprogress@^0.2.0: + version "0.2.0" + resolved "https://registry.yarnpkg.com/nprogress/-/nprogress-0.2.0.tgz#cb8f34c53213d895723fcbab907e9422adbcafb1" + integrity sha512-I19aIingLgR1fmhftnbWWO3dXc0hSxqHQHQb3H8m+K3TnEn/iSeTZZOyvKXWqQESMwuUVnatlCnZdLBZZt2VSA== + +nth-check@^2.0.1: + version "2.1.1" + resolved "https://registry.yarnpkg.com/nth-check/-/nth-check-2.1.1.tgz#c9eab428effce36cd6b92c924bdb000ef1f1ed1d" + integrity sha512-lqjrjmaOoAnWfMmBPL+XNnynZh2+swxiX3WUE0s4yEHI6m+AwrK2UZOimIRl3X/4QctVqS8AiZjFqyOGrMXb/w== + dependencies: + boolbase "^1.0.0" + +nwsapi@^2.2.12: + version "2.2.12" + resolved "https://registry.yarnpkg.com/nwsapi/-/nwsapi-2.2.12.tgz#fb6af5c0ec35b27b4581eb3bbad34ec9e5c696f8" + integrity sha512-qXDmcVlZV4XRtKFzddidpfVP4oMSGhga+xdMc25mv8kaLUHtgzCDhUxkrN8exkGdTlLNaXj7CV3GtON7zuGZ+w== + +object-assign@^4.1.1: + version "4.1.1" + resolved "https://registry.yarnpkg.com/object-assign/-/object-assign-4.1.1.tgz#2109adc7965887cfc05cbbd442cac8bfbb360863" + integrity sha512-rJgTQnkUnH1sFw8yT6VSU3zD3sWmu6sZhIseY8VX+GRu3P6F7Fu+JNDoXfklElbLJSnc3FUQHVe4cU5hj+BcUg== + +object-inspect@^1.13.1: + version "1.13.2" + resolved "https://registry.yarnpkg.com/object-inspect/-/object-inspect-1.13.2.tgz#dea0088467fb991e67af4058147a24824a3043ff" + integrity sha512-IRZSRuzJiynemAXPYtPe5BoI/RESNYR7TYm50MC5Mqbd3Jmw5y790sErYw3V6SryFJD64b74qQQs9wn5Bg/k3g== + +object-is@^1.1.5: + version "1.1.6" + resolved "https://registry.yarnpkg.com/object-is/-/object-is-1.1.6.tgz#1a6a53aed2dd8f7e6775ff870bea58545956ab07" + integrity sha512-F8cZ+KfGlSGi09lJT7/Nd6KJZ9ygtvYC0/UYYLI9nmQKLMnydpB9yvbv9K1uSkEu7FU9vYPmVwLg328tX+ot3Q== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + +object-keys@^1.1.1: + version "1.1.1" + resolved "https://registry.yarnpkg.com/object-keys/-/object-keys-1.1.1.tgz#1c47f272df277f3b1daf061677d9c82e2322c60e" + integrity sha512-NuAESUOUMrlIXOfHKzD6bpPu3tYt3xvjNdRIQ+FeT0lNb4K8WR70CaDxhuNguS2XG+GjkyMwOzsN5ZktImfhLA== + +object.assign@^4.1.0, object.assign@^4.1.2, object.assign@^4.1.4, object.assign@^4.1.5: + version "4.1.5" + resolved "https://registry.yarnpkg.com/object.assign/-/object.assign-4.1.5.tgz#3a833f9ab7fdb80fc9e8d2300c803d216d8fdbb0" + integrity sha512-byy+U7gp+FVwmyzKPYhW2h5l3crpmGsxl7X2s8y43IgxvG4g3QZ6CffDtsNQy1WsmZpQbO+ybo0AlW7TY6DcBQ== + dependencies: + call-bind "^1.0.5" + define-properties "^1.2.1" + has-symbols "^1.0.3" + object-keys "^1.1.1" + +object.entries@^1.1.5, object.entries@^1.1.8: + version "1.1.8" + resolved "https://registry.yarnpkg.com/object.entries/-/object.entries-1.1.8.tgz#bffe6f282e01f4d17807204a24f8edd823599c41" + integrity sha512-cmopxi8VwRIAw/fkijJohSfpef5PdN0pMQJN6VC/ZKvn0LIknWD8KtgY6KlQdEc4tIjcQ3HxSMmnvtzIscdaYQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-object-atoms "^1.0.0" + +object.fromentries@^2.0.8: + version "2.0.8" + resolved "https://registry.yarnpkg.com/object.fromentries/-/object.fromentries-2.0.8.tgz#f7195d8a9b97bd95cbc1999ea939ecd1a2b00c65" + integrity sha512-k6E21FzySsSK5a21KRADBd/NGneRegFO5pLHfdQLpRDETUNJueLXs3WCzyQ3tFRDYgbq3KHGXfTbi2bs8WQ6rQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.2" + es-object-atoms "^1.0.0" + +object.groupby@^1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/object.groupby/-/object.groupby-1.0.3.tgz#9b125c36238129f6f7b61954a1e7176148d5002e" + integrity sha512-+Lhy3TQTuzXI5hevh8sBGqbmurHbbIjAi0Z4S63nthVLmLxfbj4T54a4CfZrXIrt9iP4mVAPYMo/v99taj3wjQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.2" + +object.values@^1.1.6, object.values@^1.2.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/object.values/-/object.values-1.2.0.tgz#65405a9d92cee68ac2d303002e0b8470a4d9ab1b" + integrity sha512-yBYjY9QX2hnRmZHAjG/f13MzmBzxzYgQhFrke06TTyKY5zSTEqkOeukBzIdVA3j3ulu8Qa3MbVFShV7T2RmGtQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-object-atoms "^1.0.0" + +obuf@^1.0.0, obuf@^1.1.2: + version "1.1.2" + resolved "https://registry.yarnpkg.com/obuf/-/obuf-1.1.2.tgz#09bea3343d41859ebd446292d11c9d4db619084e" + integrity sha512-PX1wu0AmAdPqOL1mWhqmlOd8kOIZQwGZw6rh7uby9fTc5lhaOWFLX3I6R1hrF9k3zUY40e6igsLGkDXK92LJNg== + +on-finished@2.4.1: + version "2.4.1" + resolved "https://registry.yarnpkg.com/on-finished/-/on-finished-2.4.1.tgz#58c8c44116e54845ad57f14ab10b03533184ac3f" + integrity sha512-oVlzkg3ENAhCk2zdv7IJwd/QUD4z2RxRwpkcGY8psCVcCYZNq4wYnVWALHM+brtuJjePWiYF/ClmuDr8Ch5+kg== + dependencies: + ee-first "1.1.1" + +on-headers@~1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/on-headers/-/on-headers-1.0.2.tgz#772b0ae6aaa525c399e489adfad90c403eb3c28f" + integrity sha512-pZAE+FJLoyITytdqK0U5s+FIpjN0JP3OzFi/u8Rx+EV5/W+JTWGXG8xFzevE7AjBfDqHv/8vL8qQsIhHnqRkrA== + +once@^1.3.0: + version "1.4.0" + resolved "https://registry.yarnpkg.com/once/-/once-1.4.0.tgz#583b1aa775961d4b113ac17d9c50baef9dd76bd1" + integrity sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w== + dependencies: + wrappy "1" + +onetime@^5.1.2: + version "5.1.2" + resolved "https://registry.yarnpkg.com/onetime/-/onetime-5.1.2.tgz#d0e96ebb56b07476df1dd9c4806e5237985ca45e" + integrity sha512-kbpaSSGJTWdAY5KPVeMOKXSrPtr8C8C7wodJbcsd51jRnmD+GZu8Y0VoU6Dm5Z4vWr0Ig/1NKuWRKf7j5aaYSg== + dependencies: + mimic-fn "^2.1.0" + +open@^8.0.9, open@^8.4.0: + version "8.4.2" + resolved "https://registry.yarnpkg.com/open/-/open-8.4.2.tgz#5b5ffe2a8f793dcd2aad73e550cb87b59cb084f9" + integrity sha512-7x81NCL719oNbsq/3mh+hVrAWmFuEYUqrq/Iw3kUzH8ReypT9QQ0BLoJS7/G9k6N81XjW4qHWtjWwe/9eLy1EQ== + dependencies: + define-lazy-prop "^2.0.0" + is-docker "^2.1.1" + is-wsl "^2.2.0" + +opener@^1.5.2: + version "1.5.2" + resolved "https://registry.yarnpkg.com/opener/-/opener-1.5.2.tgz#5d37e1f35077b9dcac4301372271afdeb2a13598" + integrity sha512-ur5UIdyw5Y7yEj9wLzhqXiy6GZ3Mwx0yGI+5sMn2r0N0v3cKJvUmFH5yPP+WXh9e0xfyzyJX95D8l088DNFj7A== + +optionator@^0.9.3: + version "0.9.4" + resolved "https://registry.yarnpkg.com/optionator/-/optionator-0.9.4.tgz#7ea1c1a5d91d764fb282139c88fe11e182a3a734" + integrity sha512-6IpQ7mKUxRcZNLIObR0hz7lxsapSSIYNZJwXPGeF0mTVqGKFIXj1DQcMoT22S3ROcLyY/rz0PWaWZ9ayWmad9g== + dependencies: + deep-is "^0.1.3" + fast-levenshtein "^2.0.6" + levn "^0.4.1" + prelude-ls "^1.2.1" + type-check "^0.4.0" + word-wrap "^1.2.5" + +p-cancelable@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/p-cancelable/-/p-cancelable-3.0.0.tgz#63826694b54d61ca1c20ebcb6d3ecf5e14cd8050" + integrity sha512-mlVgR3PGuzlo0MmTdk4cXqXWlwQDLnONTAg6sm62XkMJEiRxN3GL3SffkYvqwonbkJBcrI7Uvv5Zh9yjvn2iUw== + +p-limit@^2.0.0: + version "2.3.0" + resolved "https://registry.yarnpkg.com/p-limit/-/p-limit-2.3.0.tgz#3dd33c647a214fdfffd835933eb086da0dc21db1" + integrity sha512-//88mFWSJx8lxCzwdAABTJL2MyWB12+eIY7MDL2SqLmAkeKU9qxRvWuSyTjm3FUmpBEMuFfckAIqEaVGUDxb6w== + dependencies: + p-try "^2.0.0" + +p-limit@^3.0.2: + version "3.1.0" + resolved "https://registry.yarnpkg.com/p-limit/-/p-limit-3.1.0.tgz#e1daccbe78d0d1388ca18c64fea38e3e57e3706b" + integrity sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ== + dependencies: + yocto-queue "^0.1.0" + +p-limit@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/p-limit/-/p-limit-4.0.0.tgz#914af6544ed32bfa54670b061cafcbd04984b644" + integrity sha512-5b0R4txpzjPWVw/cXXUResoD4hb6U/x9BH08L7nw+GN1sezDzPdxeRvpc9c433fZhBan/wusjbCsqwqm4EIBIQ== + dependencies: + yocto-queue "^1.0.0" + +p-locate@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/p-locate/-/p-locate-3.0.0.tgz#322d69a05c0264b25997d9f40cd8a891ab0064a4" + integrity sha512-x+12w/To+4GFfgJhBEpiDcLozRJGegY+Ei7/z0tSLkMmxGZNybVMSfWj9aJn8Z5Fc7dBUNJOOVgPv2H7IwulSQ== + dependencies: + p-limit "^2.0.0" + +p-locate@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/p-locate/-/p-locate-5.0.0.tgz#83c8315c6785005e3bd021839411c9e110e6d834" + integrity sha512-LaNjtRWUBY++zB5nE/NwcaoMylSPk+S+ZHNB1TzdbMJMny6dynpAGt7X/tl/QYq3TIeE6nxHppbo2LGymrG5Pw== + dependencies: + p-limit "^3.0.2" + +p-locate@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/p-locate/-/p-locate-6.0.0.tgz#3da9a49d4934b901089dca3302fa65dc5a05c04f" + integrity sha512-wPrq66Llhl7/4AGC6I+cqxT07LhXvWL08LNXz1fENOw0Ap4sRZZ/gZpTTJ5jpurzzzfS2W/Ge9BY3LgLjCShcw== + dependencies: + p-limit "^4.0.0" + +p-map@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/p-map/-/p-map-4.0.0.tgz#bb2f95a5eda2ec168ec9274e06a747c3e2904d2b" + integrity sha512-/bjOqmgETBYB5BoEeGVea8dmvHb2m9GLy1E9W43yeyfP6QQCZGFNa+XRceJEuDB6zqr+gKpIAmlLebMpykw/MQ== + dependencies: + aggregate-error "^3.0.0" + +p-retry@^4.5.0: + version "4.6.2" + resolved "https://registry.yarnpkg.com/p-retry/-/p-retry-4.6.2.tgz#9baae7184057edd4e17231cee04264106e092a16" + integrity sha512-312Id396EbJdvRONlngUx0NydfrIQ5lsYu0znKVUzVvArzEIt08V1qhtyESbGVd1FGX7UKtiFp5uwKZdM8wIuQ== + dependencies: + "@types/retry" "0.12.0" + retry "^0.13.1" + +p-try@^2.0.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/p-try/-/p-try-2.2.0.tgz#cb2868540e313d61de58fafbe35ce9004d5540e6" + integrity sha512-R4nPAVTAU0B9D35/Gk3uJf/7XYbQcyohSKdvAxIRSNghFl4e71hVoGnBNQz9cWaXxO2I10KTC+3jMdvvoKw6dQ== + +package-json-from-dist@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/package-json-from-dist/-/package-json-from-dist-1.0.0.tgz#e501cd3094b278495eb4258d4c9f6d5ac3019f00" + integrity sha512-dATvCeZN/8wQsGywez1mzHtTlP22H8OEfPrVMLNr4/eGa+ijtLn/6M5f0dY8UKNrC2O9UCU6SSoG3qRKnt7STw== + +package-json@^8.1.0: + version "8.1.1" + resolved "https://registry.yarnpkg.com/package-json/-/package-json-8.1.1.tgz#3e9948e43df40d1e8e78a85485f1070bf8f03dc8" + integrity sha512-cbH9IAIJHNj9uXi196JVsRlt7cHKak6u/e6AkL/bkRelZ7rlL3X1YKxsZwa36xipOEKAsdtmaG6aAJoM1fx2zA== + dependencies: + got "^12.1.0" + registry-auth-token "^5.0.1" + registry-url "^6.0.0" + semver "^7.3.7" + +param-case@^3.0.4: + version "3.0.4" + resolved "https://registry.yarnpkg.com/param-case/-/param-case-3.0.4.tgz#7d17fe4aa12bde34d4a77d91acfb6219caad01c5" + integrity sha512-RXlj7zCYokReqWpOPH9oYivUzLYZ5vAPIfEmCTNViosC78F8F0H9y7T7gG2M39ymgutxF5gcFEsyZQSph9Bp3A== + dependencies: + dot-case "^3.0.4" + tslib "^2.0.3" + +parent-module@^1.0.0: + version "1.0.1" + resolved "https://registry.yarnpkg.com/parent-module/-/parent-module-1.0.1.tgz#691d2709e78c79fae3a156622452d00762caaaa2" + integrity sha512-GQ2EWRpQV8/o+Aw8YqtfZZPfNRWZYkbidE9k5rpl/hC3vtHHBfGm2Ifi6qWV+coDGkrUKZAxE3Lot5kcsRlh+g== + dependencies: + callsites "^3.0.0" + +parse-entities@^4.0.0: + version "4.0.1" + resolved "https://registry.yarnpkg.com/parse-entities/-/parse-entities-4.0.1.tgz#4e2a01111fb1c986549b944af39eeda258fc9e4e" + integrity sha512-SWzvYcSJh4d/SGLIOQfZ/CoNv6BTlI6YEQ7Nj82oDVnRpwe/Z/F1EMx42x3JAOwGBlCjeCH0BRJQbQ/opHL17w== + dependencies: + "@types/unist" "^2.0.0" + character-entities "^2.0.0" + character-entities-legacy "^3.0.0" + character-reference-invalid "^2.0.0" + decode-named-character-reference "^1.0.0" + is-alphanumerical "^2.0.0" + is-decimal "^2.0.0" + is-hexadecimal "^2.0.0" + +parse-json@^5.0.0, parse-json@^5.2.0: + version "5.2.0" + resolved "https://registry.yarnpkg.com/parse-json/-/parse-json-5.2.0.tgz#c76fc66dee54231c962b22bcc8a72cf2f99753cd" + integrity sha512-ayCKvm/phCGxOkYRSCM82iDwct8/EonSEgCSxWxD7ve6jHggsFl4fZVQBPRNgQoKiuV/odhFrGzQXZwbifC8Rg== + dependencies: + "@babel/code-frame" "^7.0.0" + error-ex "^1.3.1" + json-parse-even-better-errors "^2.3.0" + lines-and-columns "^1.1.6" + +parse-numeric-range@^1.3.0: + version "1.3.0" + resolved "https://registry.yarnpkg.com/parse-numeric-range/-/parse-numeric-range-1.3.0.tgz#7c63b61190d61e4d53a1197f0c83c47bb670ffa3" + integrity sha512-twN+njEipszzlMJd4ONUYgSfZPDxgHhT9Ahed5uTigpQn90FggW4SA/AIPq/6a149fTbE9qBEcSwE3FAEp6wQQ== + +parse5-htmlparser2-tree-adapter@^7.0.0: + version "7.0.0" + resolved "https://registry.yarnpkg.com/parse5-htmlparser2-tree-adapter/-/parse5-htmlparser2-tree-adapter-7.0.0.tgz#23c2cc233bcf09bb7beba8b8a69d46b08c62c2f1" + integrity sha512-B77tOZrqqfUfnVcOrUvfdLbz4pu4RopLD/4vmu3HUPswwTA8OH0EMW9BlWR2B0RCoiZRAHEUu7IxeP1Pd1UU+g== + dependencies: + domhandler "^5.0.2" + parse5 "^7.0.0" + +parse5@^7.0.0, parse5@^7.1.2: + version "7.1.2" + resolved "https://registry.yarnpkg.com/parse5/-/parse5-7.1.2.tgz#0736bebbfd77793823240a23b7fc5e010b7f8e32" + integrity sha512-Czj1WaSVpaoj0wbhMzLmWD69anp2WH7FXMB9n1Sy8/ZFF9jolSQVMu1Ij5WIyGmcBmhk7EOndpO4mIpihVqAXw== + dependencies: + entities "^4.4.0" + +parseurl@~1.3.2, parseurl@~1.3.3: + version "1.3.3" + resolved "https://registry.yarnpkg.com/parseurl/-/parseurl-1.3.3.tgz#9da19e7bee8d12dff0513ed5b76957793bc2e8d4" + integrity sha512-CiyeOxFT/JZyN5m0z9PfXw4SCBJ6Sygz1Dpl0wqjlhDEGGBP1GnsUVEL0p63hoG1fcj3fHynXi9NYO4nWOL+qQ== + +pascal-case@^3.1.2: + version "3.1.2" + resolved "https://registry.yarnpkg.com/pascal-case/-/pascal-case-3.1.2.tgz#b48e0ef2b98e205e7c1dae747d0b1508237660eb" + integrity sha512-uWlGT3YSnK9x3BQJaOdcZwrnV6hPpd8jFH1/ucpiLRPh/2zCVJKS19E4GvYHvaCcACn3foXZ0cLB9Wrx1KGe5g== + dependencies: + no-case "^3.0.4" + tslib "^2.0.3" + +path-browserify@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/path-browserify/-/path-browserify-1.0.1.tgz#d98454a9c3753d5790860f16f68867b9e46be1fd" + integrity sha512-b7uo2UCUOYZcnF/3ID0lulOJi/bafxa1xPe7ZPsammBSpjSWQkjNxlt635YGS2MiR9GjvuXCtz2emr3jbsz98g== + +path-exists@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/path-exists/-/path-exists-3.0.0.tgz#ce0ebeaa5f78cb18925ea7d810d7b59b010fd515" + integrity sha512-bpC7GYwiDYQ4wYLe+FA8lhRjhQCMcQGuSgGGqDkg/QerRWw9CmGRT0iSOVRSZJ29NMLZgIzqaljJ63oaL4NIJQ== + +path-exists@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/path-exists/-/path-exists-4.0.0.tgz#513bdbe2d3b95d7762e8c1137efa195c6c61b5b3" + integrity sha512-ak9Qy5Q7jYb2Wwcey5Fpvg2KoAc/ZIhLSLOSBmRmygPsGwkVVt0fZa0qrtMz+m6tJTAHfZQ8FnmB4MG4LWy7/w== + +path-exists@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/path-exists/-/path-exists-5.0.0.tgz#a6aad9489200b21fab31e49cf09277e5116fb9e7" + integrity sha512-RjhtfwJOxzcFmNOi6ltcbcu4Iu+FL3zEj83dk4kAS+fVpTxXLO1b38RvJgT/0QwvV/L3aY9TAnyv0EOqW4GoMQ== + +path-is-absolute@^1.0.0: + version "1.0.1" + resolved "https://registry.yarnpkg.com/path-is-absolute/-/path-is-absolute-1.0.1.tgz#174b9268735534ffbc7ace6bf53a5a9e1b5c5f5f" + integrity sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg== + +path-is-inside@1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/path-is-inside/-/path-is-inside-1.0.2.tgz#365417dede44430d1c11af61027facf074bdfc53" + integrity sha512-DUWJr3+ULp4zXmol/SZkFf3JGsS9/SIv+Y3Rt93/UjPpDpklB5f1er4O3POIbUuUJ3FXgqte2Q7SrU6zAqwk8w== + +path-key@^3.0.0, path-key@^3.1.0: + version "3.1.1" + resolved "https://registry.yarnpkg.com/path-key/-/path-key-3.1.1.tgz#581f6ade658cbba65a0d3380de7753295054f375" + integrity sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q== + +path-parse@^1.0.7: + version "1.0.7" + resolved "https://registry.yarnpkg.com/path-parse/-/path-parse-1.0.7.tgz#fbc114b60ca42b30d9daf5858e4bd68bbedb6735" + integrity sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw== + +path-scurry@^1.11.1: + version "1.11.1" + resolved "https://registry.yarnpkg.com/path-scurry/-/path-scurry-1.11.1.tgz#7960a668888594a0720b12a911d1a742ab9f11d2" + integrity sha512-Xa4Nw17FS9ApQFJ9umLiJS4orGjm7ZzwUrwamcGQuHSzDyth9boKDaycYdDcZDuqYATXw4HFXgaqWTctW/v1HA== + dependencies: + lru-cache "^10.2.0" + minipass "^5.0.0 || ^6.0.2 || ^7.0.0" + +path-to-regexp@0.1.10: + version "0.1.10" + resolved "https://registry.yarnpkg.com/path-to-regexp/-/path-to-regexp-0.1.10.tgz#67e9108c5c0551b9e5326064387de4763c4d5f8b" + integrity sha512-7lf7qcQidTku0Gu3YDPc8DJ1q7OOucfa/BSsIwjuh56VU7katFvuM8hULfkwB3Fns/rsVF7PwPKVw1sl5KQS9w== + +path-to-regexp@2.2.1: + version "2.2.1" + resolved "https://registry.yarnpkg.com/path-to-regexp/-/path-to-regexp-2.2.1.tgz#90b617025a16381a879bc82a38d4e8bdeb2bcf45" + integrity sha512-gu9bD6Ta5bwGrrU8muHzVOBFFREpp2iRkVfhBJahwJ6p6Xw20SjT0MxLnwkjOibQmGSYhiUnf2FLe7k+jcFmGQ== + +path-to-regexp@^1.7.0: + version "1.9.0" + resolved "https://registry.yarnpkg.com/path-to-regexp/-/path-to-regexp-1.9.0.tgz#5dc0753acbf8521ca2e0f137b4578b917b10cf24" + integrity sha512-xIp7/apCFJuUHdDLWe8O1HIkb0kQrOMb/0u6FXQjemHn/ii5LrIzU6bdECnsiTF/GjZkMEKg1xdiZwNqDYlZ6g== + dependencies: + isarray "0.0.1" + +path-type@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/path-type/-/path-type-4.0.0.tgz#84ed01c0a7ba380afe09d90a8c180dcd9d03043b" + integrity sha512-gDKb8aZMDeD/tZWs9P6+q0J9Mwkdl6xMV8TjnGP3qJVJ06bdMgkbBlLU8IdfOsIsFz2BW1rNVT3XuNEl8zPAvw== + +periscopic@^3.0.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/periscopic/-/periscopic-3.1.0.tgz#7e9037bf51c5855bd33b48928828db4afa79d97a" + integrity sha512-vKiQ8RRtkl9P+r/+oefh25C3fhybptkHKCZSPlcXiJux2tJF55GnEj3BVn4A5gKfq9NWWXXrxkHBwVPUfH0opw== + dependencies: + "@types/estree" "^1.0.0" + estree-walker "^3.0.0" + is-reference "^3.0.0" + +picocolors@^1.0.0, picocolors@^1.0.1, picocolors@^1.1.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/picocolors/-/picocolors-1.1.0.tgz#5358b76a78cde483ba5cef6a9dc9671440b27d59" + integrity sha512-TQ92mBOW0l3LeMeyLV6mzy/kWr8lkd/hp3mTg7wYK7zJhuBStmGMBG0BdeDZS/dZx1IukaX6Bk11zcln25o1Aw== + +picomatch@^2.0.4, picomatch@^2.2.1, picomatch@^2.2.3, picomatch@^2.3.1: + version "2.3.1" + resolved "https://registry.yarnpkg.com/picomatch/-/picomatch-2.3.1.tgz#3ba3833733646d9d3e4995946c1365a67fb07a42" + integrity sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA== + +pkg-dir@^7.0.0: + version "7.0.0" + resolved "https://registry.yarnpkg.com/pkg-dir/-/pkg-dir-7.0.0.tgz#8f0c08d6df4476756c5ff29b3282d0bab7517d11" + integrity sha512-Ie9z/WINcxxLp27BKOCHGde4ITq9UklYKDzVo1nhk5sqGEXU3FpkwP5GM2voTGJkGd9B3Otl+Q4uwSOeSUtOBA== + dependencies: + find-up "^6.3.0" + +pkg-up@^3.1.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/pkg-up/-/pkg-up-3.1.0.tgz#100ec235cc150e4fd42519412596a28512a0def5" + integrity sha512-nDywThFk1i4BQK4twPQ6TA4RT8bDY96yeuCVBWL3ePARCiEKDRSrNGbFIgUJpLp+XeIR65v8ra7WuJOFUBtkMA== + dependencies: + find-up "^3.0.0" + +possible-typed-array-names@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/possible-typed-array-names/-/possible-typed-array-names-1.0.0.tgz#89bb63c6fada2c3e90adc4a647beeeb39cc7bf8f" + integrity sha512-d7Uw+eZoloe0EHDIYoe+bQ5WXnGMOpmiZFTuMWCwpjzzkL2nTjcKiAk4hh8TjnGye2TwWOk3UXucZ+3rbmBa8Q== + +postcss-calc@^9.0.1: + version "9.0.1" + resolved "https://registry.yarnpkg.com/postcss-calc/-/postcss-calc-9.0.1.tgz#a744fd592438a93d6de0f1434c572670361eb6c6" + integrity sha512-TipgjGyzP5QzEhsOZUaIkeO5mKeMFpebWzRogWG/ysonUlnHcq5aJe0jOjpfzUU8PeSaBQnrE8ehR0QA5vs8PQ== + dependencies: + postcss-selector-parser "^6.0.11" + postcss-value-parser "^4.2.0" + +postcss-colormin@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/postcss-colormin/-/postcss-colormin-6.1.0.tgz#076e8d3fb291fbff7b10e6b063be9da42ff6488d" + integrity sha512-x9yX7DOxeMAR+BgGVnNSAxmAj98NX/YxEMNFP+SDCEeNLb2r3i6Hh1ksMsnW8Ub5SLCpbescQqn9YEbE9554Sw== + dependencies: + browserslist "^4.23.0" + caniuse-api "^3.0.0" + colord "^2.9.3" + postcss-value-parser "^4.2.0" + +postcss-convert-values@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/postcss-convert-values/-/postcss-convert-values-6.1.0.tgz#3498387f8efedb817cbc63901d45bd1ceaa40f48" + integrity sha512-zx8IwP/ts9WvUM6NkVSkiU902QZL1bwPhaVaLynPtCsOTqp+ZKbNi+s6XJg3rfqpKGA/oc7Oxk5t8pOQJcwl/w== + dependencies: + browserslist "^4.23.0" + postcss-value-parser "^4.2.0" + +postcss-discard-comments@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-discard-comments/-/postcss-discard-comments-6.0.2.tgz#e768dcfdc33e0216380623652b0a4f69f4678b6c" + integrity sha512-65w/uIqhSBBfQmYnG92FO1mWZjJ4GL5b8atm5Yw2UgrwD7HiNiSSNwJor1eCFGzUgYnN/iIknhNRVqjrrpuglw== + +postcss-discard-duplicates@^6.0.3: + version "6.0.3" + resolved "https://registry.yarnpkg.com/postcss-discard-duplicates/-/postcss-discard-duplicates-6.0.3.tgz#d121e893c38dc58a67277f75bb58ba43fce4c3eb" + integrity sha512-+JA0DCvc5XvFAxwx6f/e68gQu/7Z9ud584VLmcgto28eB8FqSFZwtrLwB5Kcp70eIoWP/HXqz4wpo8rD8gpsTw== + +postcss-discard-empty@^6.0.3: + version "6.0.3" + resolved "https://registry.yarnpkg.com/postcss-discard-empty/-/postcss-discard-empty-6.0.3.tgz#ee39c327219bb70473a066f772621f81435a79d9" + integrity sha512-znyno9cHKQsK6PtxL5D19Fj9uwSzC2mB74cpT66fhgOadEUPyXFkbgwm5tvc3bt3NAy8ltE5MrghxovZRVnOjQ== + +postcss-discard-overridden@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-discard-overridden/-/postcss-discard-overridden-6.0.2.tgz#4e9f9c62ecd2df46e8fdb44dc17e189776572e2d" + integrity sha512-j87xzI4LUggC5zND7KdjsI25APtyMuynXZSujByMaav2roV6OZX+8AaCUcZSWqckZpjAjRyFDdpqybgjFO0HJQ== + +postcss-discard-unused@^6.0.5: + version "6.0.5" + resolved "https://registry.yarnpkg.com/postcss-discard-unused/-/postcss-discard-unused-6.0.5.tgz#c1b0e8c032c6054c3fbd22aaddba5b248136f338" + integrity sha512-wHalBlRHkaNnNwfC8z+ppX57VhvS+HWgjW508esjdaEYr3Mx7Gnn2xA4R/CKf5+Z9S5qsqC+Uzh4ueENWwCVUA== + dependencies: + postcss-selector-parser "^6.0.16" + +postcss-loader@^7.3.3: + version "7.3.4" + resolved "https://registry.yarnpkg.com/postcss-loader/-/postcss-loader-7.3.4.tgz#aed9b79ce4ed7e9e89e56199d25ad1ec8f606209" + integrity sha512-iW5WTTBSC5BfsBJ9daFMPVrLT36MrNiC6fqOZTTaHjBNX6Pfd5p+hSBqe/fEeNd7pc13QiAyGt7VdGMw4eRC4A== + dependencies: + cosmiconfig "^8.3.5" + jiti "^1.20.0" + semver "^7.5.4" + +postcss-merge-idents@^6.0.3: + version "6.0.3" + resolved "https://registry.yarnpkg.com/postcss-merge-idents/-/postcss-merge-idents-6.0.3.tgz#7b9c31c7bc823c94bec50f297f04e3c2b838ea65" + integrity sha512-1oIoAsODUs6IHQZkLQGO15uGEbK3EAl5wi9SS8hs45VgsxQfMnxvt+L+zIr7ifZFIH14cfAeVe2uCTa+SPRa3g== + dependencies: + cssnano-utils "^4.0.2" + postcss-value-parser "^4.2.0" + +postcss-merge-longhand@^6.0.5: + version "6.0.5" + resolved "https://registry.yarnpkg.com/postcss-merge-longhand/-/postcss-merge-longhand-6.0.5.tgz#ba8a8d473617c34a36abbea8dda2b215750a065a" + integrity sha512-5LOiordeTfi64QhICp07nzzuTDjNSO8g5Ksdibt44d+uvIIAE1oZdRn8y/W5ZtYgRH/lnLDlvi9F8btZcVzu3w== + dependencies: + postcss-value-parser "^4.2.0" + stylehacks "^6.1.1" + +postcss-merge-rules@^6.1.1: + version "6.1.1" + resolved "https://registry.yarnpkg.com/postcss-merge-rules/-/postcss-merge-rules-6.1.1.tgz#7aa539dceddab56019469c0edd7d22b64c3dea9d" + integrity sha512-KOdWF0gju31AQPZiD+2Ar9Qjowz1LTChSjFFbS+e2sFgc4uHOp3ZvVX4sNeTlk0w2O31ecFGgrFzhO0RSWbWwQ== + dependencies: + browserslist "^4.23.0" + caniuse-api "^3.0.0" + cssnano-utils "^4.0.2" + postcss-selector-parser "^6.0.16" + +postcss-minify-font-values@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/postcss-minify-font-values/-/postcss-minify-font-values-6.1.0.tgz#a0e574c02ee3f299be2846369211f3b957ea4c59" + integrity sha512-gklfI/n+9rTh8nYaSJXlCo3nOKqMNkxuGpTn/Qm0gstL3ywTr9/WRKznE+oy6fvfolH6dF+QM4nCo8yPLdvGJg== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-minify-gradients@^6.0.3: + version "6.0.3" + resolved "https://registry.yarnpkg.com/postcss-minify-gradients/-/postcss-minify-gradients-6.0.3.tgz#ca3eb55a7bdb48a1e187a55c6377be918743dbd6" + integrity sha512-4KXAHrYlzF0Rr7uc4VrfwDJ2ajrtNEpNEuLxFgwkhFZ56/7gaE4Nr49nLsQDZyUe+ds+kEhf+YAUolJiYXF8+Q== + dependencies: + colord "^2.9.3" + cssnano-utils "^4.0.2" + postcss-value-parser "^4.2.0" + +postcss-minify-params@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/postcss-minify-params/-/postcss-minify-params-6.1.0.tgz#54551dec77b9a45a29c3cb5953bf7325a399ba08" + integrity sha512-bmSKnDtyyE8ujHQK0RQJDIKhQ20Jq1LYiez54WiaOoBtcSuflfK3Nm596LvbtlFcpipMjgClQGyGr7GAs+H1uA== + dependencies: + browserslist "^4.23.0" + cssnano-utils "^4.0.2" + postcss-value-parser "^4.2.0" + +postcss-minify-selectors@^6.0.4: + version "6.0.4" + resolved "https://registry.yarnpkg.com/postcss-minify-selectors/-/postcss-minify-selectors-6.0.4.tgz#197f7d72e6dd19eed47916d575d69dc38b396aff" + integrity sha512-L8dZSwNLgK7pjTto9PzWRoMbnLq5vsZSTu8+j1P/2GB8qdtGQfn+K1uSvFgYvgh83cbyxT5m43ZZhUMTJDSClQ== + dependencies: + postcss-selector-parser "^6.0.16" + +postcss-modules-extract-imports@^3.1.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/postcss-modules-extract-imports/-/postcss-modules-extract-imports-3.1.0.tgz#b4497cb85a9c0c4b5aabeb759bb25e8d89f15002" + integrity sha512-k3kNe0aNFQDAZGbin48pL2VNidTF0w4/eASDsxlyspobzU3wZQLOGj7L9gfRe0Jo9/4uud09DsjFNH7winGv8Q== + +postcss-modules-local-by-default@^4.0.5: + version "4.0.5" + resolved "https://registry.yarnpkg.com/postcss-modules-local-by-default/-/postcss-modules-local-by-default-4.0.5.tgz#f1b9bd757a8edf4d8556e8d0f4f894260e3df78f" + integrity sha512-6MieY7sIfTK0hYfafw1OMEG+2bg8Q1ocHCpoWLqOKj3JXlKu4G7btkmM/B7lFubYkYWmRSPLZi5chid63ZaZYw== + dependencies: + icss-utils "^5.0.0" + postcss-selector-parser "^6.0.2" + postcss-value-parser "^4.1.0" + +postcss-modules-scope@^3.2.0: + version "3.2.0" + resolved "https://registry.yarnpkg.com/postcss-modules-scope/-/postcss-modules-scope-3.2.0.tgz#a43d28289a169ce2c15c00c4e64c0858e43457d5" + integrity sha512-oq+g1ssrsZOsx9M96c5w8laRmvEu9C3adDSjI8oTcbfkrTE8hx/zfyobUoWIxaKPO8bt6S62kxpw5GqypEw1QQ== + dependencies: + postcss-selector-parser "^6.0.4" + +postcss-modules-values@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/postcss-modules-values/-/postcss-modules-values-4.0.0.tgz#d7c5e7e68c3bb3c9b27cbf48ca0bb3ffb4602c9c" + integrity sha512-RDxHkAiEGI78gS2ofyvCsu7iycRv7oqw5xMWn9iMoR0N/7mf9D50ecQqUo5BZ9Zh2vH4bCUR/ktCqbB9m8vJjQ== + dependencies: + icss-utils "^5.0.0" + +postcss-normalize-charset@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-charset/-/postcss-normalize-charset-6.0.2.tgz#1ec25c435057a8001dac942942a95ffe66f721e1" + integrity sha512-a8N9czmdnrjPHa3DeFlwqst5eaL5W8jYu3EBbTTkI5FHkfMhFZh1EGbku6jhHhIzTA6tquI2P42NtZ59M/H/kQ== + +postcss-normalize-display-values@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-display-values/-/postcss-normalize-display-values-6.0.2.tgz#54f02764fed0b288d5363cbb140d6950dbbdd535" + integrity sha512-8H04Mxsb82ON/aAkPeq8kcBbAtI5Q2a64X/mnRRfPXBq7XeogoQvReqxEfc0B4WPq1KimjezNC8flUtC3Qz6jg== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-normalize-positions@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-positions/-/postcss-normalize-positions-6.0.2.tgz#e982d284ec878b9b819796266f640852dbbb723a" + integrity sha512-/JFzI441OAB9O7VnLA+RtSNZvQ0NCFZDOtp6QPFo1iIyawyXg0YI3CYM9HBy1WvwCRHnPep/BvI1+dGPKoXx/Q== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-normalize-repeat-style@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-repeat-style/-/postcss-normalize-repeat-style-6.0.2.tgz#f8006942fd0617c73f049dd8b6201c3a3040ecf3" + integrity sha512-YdCgsfHkJ2jEXwR4RR3Tm/iOxSfdRt7jplS6XRh9Js9PyCR/aka/FCb6TuHT2U8gQubbm/mPmF6L7FY9d79VwQ== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-normalize-string@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-string/-/postcss-normalize-string-6.0.2.tgz#e3cc6ad5c95581acd1fc8774b309dd7c06e5e363" + integrity sha512-vQZIivlxlfqqMp4L9PZsFE4YUkWniziKjQWUtsxUiVsSSPelQydwS8Wwcuw0+83ZjPWNTl02oxlIvXsmmG+CiQ== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-normalize-timing-functions@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-timing-functions/-/postcss-normalize-timing-functions-6.0.2.tgz#40cb8726cef999de984527cbd9d1db1f3e9062c0" + integrity sha512-a+YrtMox4TBtId/AEwbA03VcJgtyW4dGBizPl7e88cTFULYsprgHWTbfyjSLyHeBcK/Q9JhXkt2ZXiwaVHoMzA== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-normalize-unicode@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/postcss-normalize-unicode/-/postcss-normalize-unicode-6.1.0.tgz#aaf8bbd34c306e230777e80f7f12a4b7d27ce06e" + integrity sha512-QVC5TQHsVj33otj8/JD869Ndr5Xcc/+fwRh4HAsFsAeygQQXm+0PySrKbr/8tkDKzW+EVT3QkqZMfFrGiossDg== + dependencies: + browserslist "^4.23.0" + postcss-value-parser "^4.2.0" + +postcss-normalize-url@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-url/-/postcss-normalize-url-6.0.2.tgz#292792386be51a8de9a454cb7b5c58ae22db0f79" + integrity sha512-kVNcWhCeKAzZ8B4pv/DnrU1wNh458zBNp8dh4y5hhxih5RZQ12QWMuQrDgPRw3LRl8mN9vOVfHl7uhvHYMoXsQ== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-normalize-whitespace@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-normalize-whitespace/-/postcss-normalize-whitespace-6.0.2.tgz#fbb009e6ebd312f8b2efb225c2fcc7cf32b400cd" + integrity sha512-sXZ2Nj1icbJOKmdjXVT9pnyHQKiSAyuNQHSgRCUgThn2388Y9cGVDR+E9J9iAYbSbLHI+UUwLVl1Wzco/zgv0Q== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-ordered-values@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-ordered-values/-/postcss-ordered-values-6.0.2.tgz#366bb663919707093451ab70c3f99c05672aaae5" + integrity sha512-VRZSOB+JU32RsEAQrO94QPkClGPKJEL/Z9PCBImXMhIeK5KAYo6slP/hBYlLgrCjFxyqvn5VC81tycFEDBLG1Q== + dependencies: + cssnano-utils "^4.0.2" + postcss-value-parser "^4.2.0" + +postcss-reduce-idents@^6.0.3: + version "6.0.3" + resolved "https://registry.yarnpkg.com/postcss-reduce-idents/-/postcss-reduce-idents-6.0.3.tgz#b0d9c84316d2a547714ebab523ec7d13704cd486" + integrity sha512-G3yCqZDpsNPoQgbDUy3T0E6hqOQ5xigUtBQyrmq3tn2GxlyiL0yyl7H+T8ulQR6kOcHJ9t7/9H4/R2tv8tJbMA== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-reduce-initial@^6.1.0: + version "6.1.0" + resolved "https://registry.yarnpkg.com/postcss-reduce-initial/-/postcss-reduce-initial-6.1.0.tgz#4401297d8e35cb6e92c8e9586963e267105586ba" + integrity sha512-RarLgBK/CrL1qZags04oKbVbrrVK2wcxhvta3GCxrZO4zveibqbRPmm2VI8sSgCXwoUHEliRSbOfpR0b/VIoiw== + dependencies: + browserslist "^4.23.0" + caniuse-api "^3.0.0" + +postcss-reduce-transforms@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-reduce-transforms/-/postcss-reduce-transforms-6.0.2.tgz#6fa2c586bdc091a7373caeee4be75a0f3e12965d" + integrity sha512-sB+Ya++3Xj1WaT9+5LOOdirAxP7dJZms3GRcYheSPi1PiTMigsxHAdkrbItHxwYHr4kt1zL7mmcHstgMYT+aiA== + dependencies: + postcss-value-parser "^4.2.0" + +postcss-selector-parser@^6.0.11, postcss-selector-parser@^6.0.16, postcss-selector-parser@^6.0.2, postcss-selector-parser@^6.0.4: + version "6.1.2" + resolved "https://registry.yarnpkg.com/postcss-selector-parser/-/postcss-selector-parser-6.1.2.tgz#27ecb41fb0e3b6ba7a1ec84fff347f734c7929de" + integrity sha512-Q8qQfPiZ+THO/3ZrOrO0cJJKfpYCagtMUkXbnEfmgUjwXg6z/WBeOyS9APBBPCTSiDV+s4SwQGu8yFsiMRIudg== + dependencies: + cssesc "^3.0.0" + util-deprecate "^1.0.2" + +postcss-sort-media-queries@^5.2.0: + version "5.2.0" + resolved "https://registry.yarnpkg.com/postcss-sort-media-queries/-/postcss-sort-media-queries-5.2.0.tgz#4556b3f982ef27d3bac526b99b6c0d3359a6cf97" + integrity sha512-AZ5fDMLD8SldlAYlvi8NIqo0+Z8xnXU2ia0jxmuhxAU+Lqt9K+AlmLNJ/zWEnE9x+Zx3qL3+1K20ATgNOr3fAA== + dependencies: + sort-css-media-queries "2.2.0" + +postcss-svgo@^6.0.3: + version "6.0.3" + resolved "https://registry.yarnpkg.com/postcss-svgo/-/postcss-svgo-6.0.3.tgz#1d6e180d6df1fa8a3b30b729aaa9161e94f04eaa" + integrity sha512-dlrahRmxP22bX6iKEjOM+c8/1p+81asjKT+V5lrgOH944ryx/OHpclnIbGsKVd3uWOXFLYJwCVf0eEkJGvO96g== + dependencies: + postcss-value-parser "^4.2.0" + svgo "^3.2.0" + +postcss-unique-selectors@^6.0.4: + version "6.0.4" + resolved "https://registry.yarnpkg.com/postcss-unique-selectors/-/postcss-unique-selectors-6.0.4.tgz#983ab308896b4bf3f2baaf2336e14e52c11a2088" + integrity sha512-K38OCaIrO8+PzpArzkLKB42dSARtC2tmG6PvD4b1o1Q2E9Os8jzfWFfSy/rixsHwohtsDdFtAWGjFVFUdwYaMg== + dependencies: + postcss-selector-parser "^6.0.16" + +postcss-value-parser@^4.1.0, postcss-value-parser@^4.2.0: + version "4.2.0" + resolved "https://registry.yarnpkg.com/postcss-value-parser/-/postcss-value-parser-4.2.0.tgz#723c09920836ba6d3e5af019f92bc0971c02e514" + integrity sha512-1NNCs6uurfkVbeXG4S8JFT9t19m45ICnif8zWLd5oPSZ50QnwMfK+H3jv408d4jw/7Bttv5axS5IiHoLaVNHeQ== + +postcss-zindex@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/postcss-zindex/-/postcss-zindex-6.0.2.tgz#e498304b83a8b165755f53db40e2ea65a99b56e1" + integrity sha512-5BxW9l1evPB/4ZIc+2GobEBoKC+h8gPGCMi+jxsYvd2x0mjq7wazk6DrP71pStqxE9Foxh5TVnonbWpFZzXaYg== + +postcss@^8.4.21, postcss@^8.4.24, postcss@^8.4.26, postcss@^8.4.33, postcss@^8.4.38: + version "8.4.47" + resolved "https://registry.yarnpkg.com/postcss/-/postcss-8.4.47.tgz#5bf6c9a010f3e724c503bf03ef7947dcb0fea365" + integrity sha512-56rxCq7G/XfB4EkXq9Egn5GCqugWvDFjafDOThIdMBsI15iqPqR5r15TfSr1YPYeEI19YeaXMCbY6u88Y76GLQ== + dependencies: + nanoid "^3.3.7" + picocolors "^1.1.0" + source-map-js "^1.2.1" + +prelude-ls@^1.2.1: + version "1.2.1" + resolved "https://registry.yarnpkg.com/prelude-ls/-/prelude-ls-1.2.1.tgz#debc6489d7a6e6b0e7611888cec880337d316396" + integrity sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g== + +prettier@^2.7.1: + version "2.8.8" + resolved "https://registry.yarnpkg.com/prettier/-/prettier-2.8.8.tgz#e8c5d7e98a4305ffe3de2e1fc4aca1a71c28b1da" + integrity sha512-tdN8qQGvNjw4CHbY+XXk0JgCXn9QiF21a55rBe5LJAU+kDyC4WQn4+awm2Xfk2lQMk5fKup9XgzTZtGkjBdP9Q== + +pretty-error@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/pretty-error/-/pretty-error-4.0.0.tgz#90a703f46dd7234adb46d0f84823e9d1cb8f10d6" + integrity sha512-AoJ5YMAcXKYxKhuJGdcvse+Voc6v1RgnsR3nWcYU7q4t6z0Q6T86sv5Zq8VIRbOWWFpvdGE83LtdSMNd+6Y0xw== + dependencies: + lodash "^4.17.20" + renderkid "^3.0.0" + +pretty-time@^1.1.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/pretty-time/-/pretty-time-1.1.0.tgz#ffb7429afabb8535c346a34e41873adf3d74dd0e" + integrity sha512-28iF6xPQrP8Oa6uxE6a1biz+lWeTOAPKggvjB8HAs6nVMKZwf5bG++632Dx614hIWgUPkgivRfG+a8uAXGTIbA== + +prism-react-renderer@^2.1.0, prism-react-renderer@^2.3.0: + version "2.4.0" + resolved "https://registry.yarnpkg.com/prism-react-renderer/-/prism-react-renderer-2.4.0.tgz#c5ea692029c2f8b3fd04f63662d04ffd4eaf10a0" + integrity sha512-327BsVCD/unU4CNLZTWVHyUHKnsqcvj2qbPlQ8MiBE2eq2rgctjigPA1Gp9HLF83kZ20zNN6jgizHJeEsyFYOw== + dependencies: + "@types/prismjs" "^1.26.0" + clsx "^2.0.0" + +prismjs@^1.29.0: + version "1.29.0" + resolved "https://registry.yarnpkg.com/prismjs/-/prismjs-1.29.0.tgz#f113555a8fa9b57c35e637bba27509dcf802dd12" + integrity sha512-Kx/1w86q/epKcmte75LNrEoT+lX8pBpavuAbvJWRXar7Hz8jrtF+e3vY751p0R8H9HdArwaCTNDDzHg/ScJK1Q== + +process-nextick-args@~2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/process-nextick-args/-/process-nextick-args-2.0.1.tgz#7820d9b16120cc55ca9ae7792680ae7dba6d7fe2" + integrity sha512-3ouUOpQhtgrbOa17J7+uxOTpITYWaGP7/AhoR3+A+/1e9skrzelGi/dXzEYyvbxubEF6Wn2ypscTKiKJFFn1ag== + +process@^0.11.10: + version "0.11.10" + resolved "https://registry.yarnpkg.com/process/-/process-0.11.10.tgz#7332300e840161bda3e69a1d1d91a7d4bc16f182" + integrity sha512-cdGef/drWFoydD1JsMzuFf8100nZl+GT+yacc2bEced5f9Rjk4z+WtFUTBu9PhOi9j/jfmBPu0mMEY4wIdAF8A== + +prompts@^2.4.2: + version "2.4.2" + resolved "https://registry.yarnpkg.com/prompts/-/prompts-2.4.2.tgz#7b57e73b3a48029ad10ebd44f74b01722a4cb069" + integrity sha512-NxNv/kLguCA7p3jE8oL2aEBsrJWgAakBpgmgK6lpPWV+WuOmY6r2/zbAVnP+T8bQlA0nzHXSJSJW0Hq7ylaD2Q== + dependencies: + kleur "^3.0.3" + sisteransi "^1.0.5" + +prop-types@^15.6.2, prop-types@^15.7.2, prop-types@^15.8.1: + version "15.8.1" + resolved "https://registry.yarnpkg.com/prop-types/-/prop-types-15.8.1.tgz#67d87bf1a694f48435cf332c24af10214a3140b5" + integrity sha512-oj87CgZICdulUohogVAR7AjlC0327U4el4L6eAvOqCeudMDVU0NThNaV+b9Df4dXgSP1gXMTnPdhfe/2qDH5cg== + dependencies: + loose-envify "^1.4.0" + object-assign "^4.1.1" + react-is "^16.13.1" + +property-information@^6.0.0: + version "6.5.0" + resolved "https://registry.yarnpkg.com/property-information/-/property-information-6.5.0.tgz#6212fbb52ba757e92ef4fb9d657563b933b7ffec" + integrity sha512-PgTgs/BlvHxOu8QuEN7wi5A0OmXaBcHpmCSTehcs6Uuu9IkDIEo13Hy7n898RHfrQ49vKCoGeWZSaAK01nwVig== + +proto-list@~1.2.1: + version "1.2.4" + resolved "https://registry.yarnpkg.com/proto-list/-/proto-list-1.2.4.tgz#212d5bfe1318306a420f6402b8e26ff39647a849" + integrity sha512-vtK/94akxsTMhe0/cbfpR+syPuszcuwhqVjJq26CuNDgFGj682oRBXOP5MJpv2r7JtE8MsiepGIqvvOTBwn2vA== + +proxy-addr@~2.0.7: + version "2.0.7" + resolved "https://registry.yarnpkg.com/proxy-addr/-/proxy-addr-2.0.7.tgz#f19fe69ceab311eeb94b42e70e8c2070f9ba1025" + integrity sha512-llQsMLSUDUPT44jdrU/O37qlnifitDP+ZwrmmZcoSKyLKvtZxpyV0n2/bD/N4tBAAZ/gJEdZU7KMraoK1+XYAg== + dependencies: + forwarded "0.2.0" + ipaddr.js "1.9.1" + +proxy-from-env@^1.1.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/proxy-from-env/-/proxy-from-env-1.1.0.tgz#e102f16ca355424865755d2c9e8ea4f24d58c3e2" + integrity sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg== + +punycode@^1.3.2: + version "1.4.1" + resolved "https://registry.yarnpkg.com/punycode/-/punycode-1.4.1.tgz#c0d5a63b2718800ad8e1eb0fa5269c84dd41845e" + integrity sha512-jmYNElW7yvO7TV33CjSmvSiE2yco3bV2czu/OzDKdMNVZQWfxCblURLhf+47syQRBntjfLdd/H0egrzIG+oaFQ== + +punycode@^2.1.0, punycode@^2.3.1: + version "2.3.1" + resolved "https://registry.yarnpkg.com/punycode/-/punycode-2.3.1.tgz#027422e2faec0b25e1549c3e1bd8309b9133b6e5" + integrity sha512-vYt7UD1U9Wg6138shLtLOvdAu+8DsC/ilFtEVHcH+wydcSpNE20AfSOduf6MkRFahL5FY7X1oU7nKVZFtfq8Fg== + +pupa@^3.1.0: + version "3.1.0" + resolved "https://registry.yarnpkg.com/pupa/-/pupa-3.1.0.tgz#f15610274376bbcc70c9a3aa8b505ea23f41c579" + integrity sha512-FLpr4flz5xZTSJxSeaheeMKN/EDzMdK7b8PTOC6a5PYFKTucWbdqjgqaEyH0shFiSJrVB1+Qqi4Tk19ccU6Aug== + dependencies: + escape-goat "^4.0.0" + +qs@6.13.0: + version "6.13.0" + resolved "https://registry.yarnpkg.com/qs/-/qs-6.13.0.tgz#6ca3bd58439f7e245655798997787b0d88a51906" + integrity sha512-+38qI9SOr8tfZ4QmJNplMUxqjbe7LKvvZgWdExBOmd+egZTtjLB67Gu0HRX3u/XOq7UU2Nx6nsjvS16Z9uwfpg== + dependencies: + side-channel "^1.0.6" + +queue-microtask@^1.2.2: + version "1.2.3" + resolved "https://registry.yarnpkg.com/queue-microtask/-/queue-microtask-1.2.3.tgz#4929228bbc724dfac43e0efb058caf7b6cfb6243" + integrity sha512-NuaNSa6flKT5JaSYQzJok04JzTL1CA6aGhv5rfLW3PgqA+M2ChpZQnAC8h8i4ZFkBS8X5RqkDBHA7r4hej3K9A== + +queue@6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/queue/-/queue-6.0.2.tgz#b91525283e2315c7553d2efa18d83e76432fed65" + integrity sha512-iHZWu+q3IdFZFX36ro/lKBkSvfkztY5Y7HMiPlOUjhupPcG2JMfst2KKEpu5XndviX/3UhFbRngUPNKtgvtZiA== + dependencies: + inherits "~2.0.3" + +quick-lru@^5.1.1: + version "5.1.1" + resolved "https://registry.yarnpkg.com/quick-lru/-/quick-lru-5.1.1.tgz#366493e6b3e42a3a6885e2e99d18f80fb7a8c932" + integrity sha512-WuyALRjWPDGtt/wzJiadO5AXY+8hZ80hVpe6MyivgraREW751X3SbhRvG3eLKOYN+8VEvqLcf3wdnt44Z4S4SA== + +randombytes@^2.1.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/randombytes/-/randombytes-2.1.0.tgz#df6f84372f0270dc65cdf6291349ab7a473d4f2a" + integrity sha512-vYl3iOX+4CKUWuxGi9Ukhie6fsqXqS9FE2Zaic4tNFD2N2QQaXOMFbuKK4QmDHC0JO6B1Zp41J0LpT0oR68amQ== + dependencies: + safe-buffer "^5.1.0" + +range-parser@1.2.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/range-parser/-/range-parser-1.2.0.tgz#f49be6b487894ddc40dcc94a322f611092e00d5e" + integrity sha512-kA5WQoNVo4t9lNx2kQNFCxKeBl5IbbSNBl1M/tLkw9WCn+hxNBAW5Qh8gdhs63CJnhjJ2zQWFoqPJP2sK1AV5A== + +range-parser@^1.2.1, range-parser@~1.2.1: + version "1.2.1" + resolved "https://registry.yarnpkg.com/range-parser/-/range-parser-1.2.1.tgz#3cf37023d199e1c24d1a55b84800c2f3e6468031" + integrity sha512-Hrgsx+orqoygnmhFbKaHE6c296J+HTAQXoxEF6gNupROmmGJRoyzfG3ccAveqCBrwr/2yxQ5BVd/GTl5agOwSg== + +raw-body@2.5.2: + version "2.5.2" + resolved "https://registry.yarnpkg.com/raw-body/-/raw-body-2.5.2.tgz#99febd83b90e08975087e8f1f9419a149366b68a" + integrity sha512-8zGqypfENjCIqGhgXToC8aB2r7YrBX+AQAfIPs/Mlk+BtPTztOvTS01NRW/3Eh60J+a48lt8qsCzirQ6loCVfA== + dependencies: + bytes "3.1.2" + http-errors "2.0.0" + iconv-lite "0.4.24" + unpipe "1.0.0" + +rc@1.2.8: + version "1.2.8" + resolved "https://registry.yarnpkg.com/rc/-/rc-1.2.8.tgz#cd924bf5200a075b83c188cd6b9e211b7fc0d3ed" + integrity sha512-y3bGgqKj3QBdxLbLkomlohkvsA8gdAiUQlSBJnBhfn+BPxg4bc62d8TcBW15wavDfgexCgccckhcZvywyQYPOw== + dependencies: + deep-extend "^0.6.0" + ini "~1.3.0" + minimist "^1.2.0" + strip-json-comments "~2.0.1" + +react-dev-utils@^12.0.1: + version "12.0.1" + resolved "https://registry.yarnpkg.com/react-dev-utils/-/react-dev-utils-12.0.1.tgz#ba92edb4a1f379bd46ccd6bcd4e7bc398df33e73" + integrity sha512-84Ivxmr17KjUupyqzFode6xKhjwuEJDROWKJy/BthkL7Wn6NJ8h4WE6k/exAv6ImS+0oZLRRW5j/aINMHyeGeQ== + dependencies: + "@babel/code-frame" "^7.16.0" + address "^1.1.2" + browserslist "^4.18.1" + chalk "^4.1.2" + cross-spawn "^7.0.3" + detect-port-alt "^1.1.6" + escape-string-regexp "^4.0.0" + filesize "^8.0.6" + find-up "^5.0.0" + fork-ts-checker-webpack-plugin "^6.5.0" + global-modules "^2.0.0" + globby "^11.0.4" + gzip-size "^6.0.0" + immer "^9.0.7" + is-root "^2.1.0" + loader-utils "^3.2.0" + open "^8.4.0" + pkg-up "^3.1.0" + prompts "^2.4.2" + react-error-overlay "^6.0.11" + recursive-readdir "^2.2.2" + shell-quote "^1.7.3" + strip-ansi "^6.0.1" + text-table "^0.2.0" + +react-dom@^18: + version "18.3.1" + resolved "https://registry.yarnpkg.com/react-dom/-/react-dom-18.3.1.tgz#c2265d79511b57d479b3dd3fdfa51536494c5cb4" + integrity sha512-5m4nQKp+rZRb09LNH59GM4BxTh9251/ylbKIbpe7TpGxfJ+9kv6BLkLBXIjjspbgbnIBNqlI23tRnTWT0snUIw== + dependencies: + loose-envify "^1.1.0" + scheduler "^0.23.2" + +react-error-overlay@^6.0.11: + version "6.0.11" + resolved "https://registry.yarnpkg.com/react-error-overlay/-/react-error-overlay-6.0.11.tgz#92835de5841c5cf08ba00ddd2d677b6d17ff9adb" + integrity sha512-/6UZ2qgEyH2aqzYZgQPxEnz33NJ2gNsnHA2o5+o4wW9bLM/JYQitNP9xPhsXwC08hMMovfGe/8retsdDsczPRg== + +react-fast-compare@^3.2.0, react-fast-compare@^3.2.2: + version "3.2.2" + resolved "https://registry.yarnpkg.com/react-fast-compare/-/react-fast-compare-3.2.2.tgz#929a97a532304ce9fee4bcae44234f1ce2c21d49" + integrity sha512-nsO+KSNgo1SbJqJEYRE9ERzo7YtYbou/OqjSQKxV7jcKox7+usiUVZOAC+XnDOABXggQTno0Y1CpVnuWEc1boQ== + +react-helmet-async@*: + version "2.0.5" + resolved "https://registry.yarnpkg.com/react-helmet-async/-/react-helmet-async-2.0.5.tgz#cfc70cd7bb32df7883a8ed55502a1513747223ec" + integrity sha512-rYUYHeus+i27MvFE+Jaa4WsyBKGkL6qVgbJvSBoX8mbsWoABJXdEO0bZyi0F6i+4f0NuIb8AvqPMj3iXFHkMwg== + dependencies: + invariant "^2.2.4" + react-fast-compare "^3.2.2" + shallowequal "^1.1.0" + +react-helmet-async@^1.3.0: + version "1.3.0" + resolved "https://registry.yarnpkg.com/react-helmet-async/-/react-helmet-async-1.3.0.tgz#7bd5bf8c5c69ea9f02f6083f14ce33ef545c222e" + integrity sha512-9jZ57/dAn9t3q6hneQS0wukqC2ENOBgMNVEhb/ZG9ZSxUetzVIw4iAmEU38IaVg3QGYauQPhSeUTuIUtFglWpg== + dependencies: + "@babel/runtime" "^7.12.5" + invariant "^2.2.4" + prop-types "^15.7.2" + react-fast-compare "^3.2.0" + shallowequal "^1.1.0" + +react-is@^16.13.1, react-is@^16.6.0, react-is@^16.7.0: + version "16.13.1" + resolved "https://registry.yarnpkg.com/react-is/-/react-is-16.13.1.tgz#789729a4dc36de2999dc156dd6c1d9c18cea56a4" + integrity sha512-24e6ynE2H+OKt4kqsOvNd8kBpV65zoxbA4BVsEOB3ARVWQki/DHzaUoC5KuON/BiccDaCCTZBuOcfZs70kR8bQ== + +react-json-view-lite@^1.2.0: + version "1.5.0" + resolved "https://registry.yarnpkg.com/react-json-view-lite/-/react-json-view-lite-1.5.0.tgz#377cc302821717ac79a1b6d099e1891df54c8662" + integrity sha512-nWqA1E4jKPklL2jvHWs6s+7Na0qNgw9HCP6xehdQJeg6nPBTFZgGwyko9Q0oj+jQWKTTVRS30u0toM5wiuL3iw== + +react-loadable-ssr-addon-v5-slorber@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/react-loadable-ssr-addon-v5-slorber/-/react-loadable-ssr-addon-v5-slorber-1.0.1.tgz#2cdc91e8a744ffdf9e3556caabeb6e4278689883" + integrity sha512-lq3Lyw1lGku8zUEJPDxsNm1AfYHBrO9Y1+olAYwpUJ2IGFBskM0DMKok97A6LWUpHm+o7IvQBOWu9MLenp9Z+A== + dependencies: + "@babel/runtime" "^7.10.3" + +"react-loadable@npm:@docusaurus/react-loadable@6.0.0": + version "6.0.0" + resolved "https://registry.yarnpkg.com/@docusaurus/react-loadable/-/react-loadable-6.0.0.tgz#de6c7f73c96542bd70786b8e522d535d69069dc4" + integrity sha512-YMMxTUQV/QFSnbgrP3tjDzLHRg7vsbMn8e9HAa8o/1iXoiomo48b7sk/kkmWEuWNDPJVlKSJRB6Y2fHqdJk+SQ== + dependencies: + "@types/react" "*" + +react-router-config@^5.1.1: + version "5.1.1" + resolved "https://registry.yarnpkg.com/react-router-config/-/react-router-config-5.1.1.tgz#0f4263d1a80c6b2dc7b9c1902c9526478194a988" + integrity sha512-DuanZjaD8mQp1ppHjgnnUnyOlqYXZVjnov/JzFhjLEwd3Z4dYjMSnqrEzzGThH47vpCOqPPwJM2FtthLeJ8Pbg== + dependencies: + "@babel/runtime" "^7.1.2" + +react-router-dom@^5.3.4: + version "5.3.4" + resolved "https://registry.yarnpkg.com/react-router-dom/-/react-router-dom-5.3.4.tgz#2ed62ffd88cae6db134445f4a0c0ae8b91d2e5e6" + integrity sha512-m4EqFMHv/Ih4kpcBCONHbkT68KoAeHN4p3lAGoNryfHi0dMy0kCzEZakiKRsvg5wHZ/JLrLW8o8KomWiz/qbYQ== + dependencies: + "@babel/runtime" "^7.12.13" + history "^4.9.0" + loose-envify "^1.3.1" + prop-types "^15.6.2" + react-router "5.3.4" + tiny-invariant "^1.0.2" + tiny-warning "^1.0.0" + +react-router@5.3.4, react-router@^5.3.4: + version "5.3.4" + resolved "https://registry.yarnpkg.com/react-router/-/react-router-5.3.4.tgz#8ca252d70fcc37841e31473c7a151cf777887bb5" + integrity sha512-Ys9K+ppnJah3QuaRiLxk+jDWOR1MekYQrlytiXxC1RyfbdsZkS5pvKAzCCr031xHixZwpnsYNT5xysdFHQaYsA== + dependencies: + "@babel/runtime" "^7.12.13" + history "^4.9.0" + hoist-non-react-statics "^3.1.0" + loose-envify "^1.3.1" + path-to-regexp "^1.7.0" + prop-types "^15.6.2" + react-is "^16.6.0" + tiny-invariant "^1.0.2" + tiny-warning "^1.0.0" + +react@^18: + version "18.3.1" + resolved "https://registry.yarnpkg.com/react/-/react-18.3.1.tgz#49ab892009c53933625bd16b2533fc754cab2891" + integrity sha512-wS+hAgJShR0KhEvPJArfuPVN1+Hz1t0Y6n5jLrGQbkb4urgPE/0Rve+1kMB1v/oWgHgm4WIcV+i7F2pTVj+2iQ== + dependencies: + loose-envify "^1.1.0" + +read-cmd-shim@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/read-cmd-shim/-/read-cmd-shim-4.0.0.tgz#640a08b473a49043e394ae0c7a34dd822c73b9bb" + integrity sha512-yILWifhaSEEytfXI76kB9xEEiG1AiozaCJZ83A87ytjRiN+jVibXjedjCRNjoZviinhG+4UkalO3mWTd8u5O0Q== + +readable-stream@^2.0.1: + version "2.3.8" + resolved "https://registry.yarnpkg.com/readable-stream/-/readable-stream-2.3.8.tgz#91125e8042bba1b9887f49345f6277027ce8be9b" + integrity sha512-8p0AUk4XODgIewSi0l8Epjs+EVnWiK7NoDIEGU0HhE7+ZyY8D1IMY7odu5lRrFXGg71L15KG8QrPmum45RTtdA== + dependencies: + core-util-is "~1.0.0" + inherits "~2.0.3" + isarray "~1.0.0" + process-nextick-args "~2.0.0" + safe-buffer "~5.1.1" + string_decoder "~1.1.1" + util-deprecate "~1.0.1" + +readable-stream@^3.0.6: + version "3.6.2" + resolved "https://registry.yarnpkg.com/readable-stream/-/readable-stream-3.6.2.tgz#56a9b36ea965c00c5a93ef31eb111a0f11056967" + integrity sha512-9u/sniCrY3D5WdsERHzHE4G2YCXqoG5FTHUiCC4SIbr6XcLZBY05ya9EKjYek9O5xOAwjGq+1JdGBAS7Q9ScoA== + dependencies: + inherits "^2.0.3" + string_decoder "^1.1.1" + util-deprecate "^1.0.1" + +readdirp@~3.6.0: + version "3.6.0" + resolved "https://registry.yarnpkg.com/readdirp/-/readdirp-3.6.0.tgz#74a370bd857116e245b29cc97340cd431a02a6c7" + integrity sha512-hOS089on8RduqdbhvQ5Z37A0ESjsqz6qnRcffsMU3495FuTdqSm+7bhJ29JvIOsBDEEnan5DPu9t3To9VRlMzA== + dependencies: + picomatch "^2.2.1" + +reading-time@^1.5.0: + version "1.5.0" + resolved "https://registry.yarnpkg.com/reading-time/-/reading-time-1.5.0.tgz#d2a7f1b6057cb2e169beaf87113cc3411b5bc5bb" + integrity sha512-onYyVhBNr4CmAxFsKS7bz+uTLRakypIe4R+5A824vBSkQy/hB3fZepoVEf8OVAxzLvK+H/jm9TzpI3ETSm64Kg== + +rechoir@^0.6.2: + version "0.6.2" + resolved "https://registry.yarnpkg.com/rechoir/-/rechoir-0.6.2.tgz#85204b54dba82d5742e28c96756ef43af50e3384" + integrity sha512-HFM8rkZ+i3zrV+4LQjwQ0W+ez98pApMGM3HUrN04j3CqzPOzl9nmP15Y8YXNm8QHGv/eacOVEjqhmWpkRV0NAw== + dependencies: + resolve "^1.1.6" + +recursive-readdir@^2.2.2: + version "2.2.3" + resolved "https://registry.yarnpkg.com/recursive-readdir/-/recursive-readdir-2.2.3.tgz#e726f328c0d69153bcabd5c322d3195252379372" + integrity sha512-8HrF5ZsXk5FAH9dgsx3BlUer73nIhuj+9OrQwEbLTPOBzGkL1lsFCR01am+v+0m2Cmbs1nP12hLDl5FA7EszKA== + dependencies: + minimatch "^3.0.5" + +reflect.getprototypeof@^1.0.4: + version "1.0.6" + resolved "https://registry.yarnpkg.com/reflect.getprototypeof/-/reflect.getprototypeof-1.0.6.tgz#3ab04c32a8390b770712b7a8633972702d278859" + integrity sha512-fmfw4XgoDke3kdI6h4xcUz1dG8uaiv5q9gcEwLS4Pnth2kxT+GZ7YehS1JTMGBQmtV7Y4GFGbs2re2NqhdozUg== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.1" + es-errors "^1.3.0" + get-intrinsic "^1.2.4" + globalthis "^1.0.3" + which-builtin-type "^1.1.3" + +regenerate-unicode-properties@^10.1.0: + version "10.2.0" + resolved "https://registry.yarnpkg.com/regenerate-unicode-properties/-/regenerate-unicode-properties-10.2.0.tgz#626e39df8c372338ea9b8028d1f99dc3fd9c3db0" + integrity sha512-DqHn3DwbmmPVzeKj9woBadqmXxLvQoQIwu7nopMc72ztvxVmVk2SBhSnx67zuye5TP+lJsb/TBQsjLKhnDf3MA== + dependencies: + regenerate "^1.4.2" + +regenerate@^1.4.2: + version "1.4.2" + resolved "https://registry.yarnpkg.com/regenerate/-/regenerate-1.4.2.tgz#b9346d8827e8f5a32f7ba29637d398b69014848a" + integrity sha512-zrceR/XhGYU/d/opr2EKO7aRHUeiBI8qjtfHqADTwZd6Szfy16la6kqD0MIUs5z5hx6AaKa+PixpPrR289+I0A== + +regenerator-runtime@^0.14.0: + version "0.14.1" + resolved "https://registry.yarnpkg.com/regenerator-runtime/-/regenerator-runtime-0.14.1.tgz#356ade10263f685dda125100cd862c1db895327f" + integrity sha512-dYnhHh0nJoMfnkZs6GmmhFknAGRrLznOu5nc9ML+EJxGvrx6H7teuevqVqCuPcPK//3eDrrjQhehXVx9cnkGdw== + +regenerator-transform@^0.15.2: + version "0.15.2" + resolved "https://registry.yarnpkg.com/regenerator-transform/-/regenerator-transform-0.15.2.tgz#5bbae58b522098ebdf09bca2f83838929001c7a4" + integrity sha512-hfMp2BoF0qOk3uc5V20ALGDS2ddjQaLrdl7xrGXvAIow7qeWRM2VA2HuCHkUKk9slq3VwEwLNK3DFBqDfPGYtg== + dependencies: + "@babel/runtime" "^7.8.4" + +regexp.prototype.flags@^1.5.1, regexp.prototype.flags@^1.5.2: + version "1.5.2" + resolved "https://registry.yarnpkg.com/regexp.prototype.flags/-/regexp.prototype.flags-1.5.2.tgz#138f644a3350f981a858c44f6bb1a61ff59be334" + integrity sha512-NcDiDkTLuPR+++OCKB0nWafEmhg/Da8aUPLPMQbK+bxKKCm1/S5he+AqYa4PlMCVBalb4/yxIRub6qkEx5yJbw== + dependencies: + call-bind "^1.0.6" + define-properties "^1.2.1" + es-errors "^1.3.0" + set-function-name "^2.0.1" + +regexpu-core@^5.3.1: + version "5.3.2" + resolved "https://registry.yarnpkg.com/regexpu-core/-/regexpu-core-5.3.2.tgz#11a2b06884f3527aec3e93dbbf4a3b958a95546b" + integrity sha512-RAM5FlZz+Lhmo7db9L298p2vHP5ZywrVXmVXpmAD9GuL5MPH6t9ROw1iA/wfHkQ76Qe7AaPF0nGuim96/IrQMQ== + dependencies: + "@babel/regjsgen" "^0.8.0" + regenerate "^1.4.2" + regenerate-unicode-properties "^10.1.0" + regjsparser "^0.9.1" + unicode-match-property-ecmascript "^2.0.0" + unicode-match-property-value-ecmascript "^2.1.0" + +registry-auth-token@^5.0.1: + version "5.0.2" + resolved "https://registry.yarnpkg.com/registry-auth-token/-/registry-auth-token-5.0.2.tgz#8b026cc507c8552ebbe06724136267e63302f756" + integrity sha512-o/3ikDxtXaA59BmZuZrJZDJv8NMDGSj+6j6XaeBmHw8eY1i1qd9+6H+LjVvQXx3HN6aRCGa1cUdJ9RaJZUugnQ== + dependencies: + "@pnpm/npm-conf" "^2.1.0" + +registry-url@^6.0.0: + version "6.0.1" + resolved "https://registry.yarnpkg.com/registry-url/-/registry-url-6.0.1.tgz#056d9343680f2f64400032b1e199faa692286c58" + integrity sha512-+crtS5QjFRqFCoQmvGduwYWEBng99ZvmFvF+cUJkGYF1L1BfU8C6Zp9T7f5vPAwyLkUExpvK+ANVZmGU49qi4Q== + dependencies: + rc "1.2.8" + +regjsparser@^0.9.1: + version "0.9.1" + resolved "https://registry.yarnpkg.com/regjsparser/-/regjsparser-0.9.1.tgz#272d05aa10c7c1f67095b1ff0addae8442fc5709" + integrity sha512-dQUtn90WanSNl+7mQKcXAgZxvUe7Z0SqXlgzv0za4LwiUhyzBC58yQO3liFoUgu8GiJVInAhJjkj1N0EtQ5nkQ== + dependencies: + jsesc "~0.5.0" + +rehype-raw@^7.0.0: + version "7.0.0" + resolved "https://registry.yarnpkg.com/rehype-raw/-/rehype-raw-7.0.0.tgz#59d7348fd5dbef3807bbaa1d443efd2dd85ecee4" + integrity sha512-/aE8hCfKlQeA8LmyeyQvQF3eBiLRGNlfBJEvWH7ivp9sBqs7TNqBL5X3v157rM4IFETqDnIOO+z5M/biZbo9Ww== + dependencies: + "@types/hast" "^3.0.0" + hast-util-raw "^9.0.0" + vfile "^6.0.0" + +relateurl@^0.2.7: + version "0.2.7" + resolved "https://registry.yarnpkg.com/relateurl/-/relateurl-0.2.7.tgz#54dbf377e51440aca90a4cd274600d3ff2d888a9" + integrity sha512-G08Dxvm4iDN3MLM0EsP62EDV9IuhXPR6blNz6Utcp7zyV3tr4HVNINt6MpaRWbxoOHT3Q7YN2P+jaHX8vUbgog== + +remark-directive@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/remark-directive/-/remark-directive-3.0.0.tgz#34452d951b37e6207d2e2a4f830dc33442923268" + integrity sha512-l1UyWJ6Eg1VPU7Hm/9tt0zKtReJQNOA4+iDMAxTyZNWnJnFlbS/7zhiel/rogTLQ2vMYwDzSJa4BiVNqGlqIMA== + dependencies: + "@types/mdast" "^4.0.0" + mdast-util-directive "^3.0.0" + micromark-extension-directive "^3.0.0" + unified "^11.0.0" + +remark-emoji@^4.0.0: + version "4.0.1" + resolved "https://registry.yarnpkg.com/remark-emoji/-/remark-emoji-4.0.1.tgz#671bfda668047689e26b2078c7356540da299f04" + integrity sha512-fHdvsTR1dHkWKev9eNyhTo4EFwbUvJ8ka9SgeWkMPYFX4WoI7ViVBms3PjlQYgw5TLvNQso3GUB/b/8t3yo+dg== + dependencies: + "@types/mdast" "^4.0.2" + emoticon "^4.0.1" + mdast-util-find-and-replace "^3.0.1" + node-emoji "^2.1.0" + unified "^11.0.4" + +remark-frontmatter@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/remark-frontmatter/-/remark-frontmatter-5.0.0.tgz#b68d61552a421ec412c76f4f66c344627dc187a2" + integrity sha512-XTFYvNASMe5iPN0719nPrdItC9aU0ssC4v14mH1BCi1u0n1gAocqcujWUrByftZTbLhRtiKRyjYTSIOcr69UVQ== + dependencies: + "@types/mdast" "^4.0.0" + mdast-util-frontmatter "^2.0.0" + micromark-extension-frontmatter "^2.0.0" + unified "^11.0.0" + +remark-gfm@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/remark-gfm/-/remark-gfm-4.0.0.tgz#aea777f0744701aa288b67d28c43565c7e8c35de" + integrity sha512-U92vJgBPkbw4Zfu/IiW2oTZLSL3Zpv+uI7My2eq8JxKgqraFdU8YUGicEJCEgSbeaG+QDFqIcwwfMTOEelPxuA== + dependencies: + "@types/mdast" "^4.0.0" + mdast-util-gfm "^3.0.0" + micromark-extension-gfm "^3.0.0" + remark-parse "^11.0.0" + remark-stringify "^11.0.0" + unified "^11.0.0" + +remark-mdx@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/remark-mdx/-/remark-mdx-3.0.1.tgz#8f73dd635c1874e44426e243f72c0977cf60e212" + integrity sha512-3Pz3yPQ5Rht2pM5R+0J2MrGoBSrzf+tJG94N+t/ilfdh8YLyyKYtidAYwTveB20BoHAcwIopOUqhcmh2F7hGYA== + dependencies: + mdast-util-mdx "^3.0.0" + micromark-extension-mdxjs "^3.0.0" + +remark-parse@^11.0.0: + version "11.0.0" + resolved "https://registry.yarnpkg.com/remark-parse/-/remark-parse-11.0.0.tgz#aa60743fcb37ebf6b069204eb4da304e40db45a1" + integrity sha512-FCxlKLNGknS5ba/1lmpYijMUzX2esxW5xQqjWxw2eHFfS2MSdaHVINFmhjo+qN1WhZhNimq0dZATN9pH0IDrpA== + dependencies: + "@types/mdast" "^4.0.0" + mdast-util-from-markdown "^2.0.0" + micromark-util-types "^2.0.0" + unified "^11.0.0" + +remark-rehype@^11.0.0: + version "11.1.1" + resolved "https://registry.yarnpkg.com/remark-rehype/-/remark-rehype-11.1.1.tgz#f864dd2947889a11997c0a2667cd6b38f685bca7" + integrity sha512-g/osARvjkBXb6Wo0XvAeXQohVta8i84ACbenPpoSsxTOQH/Ae0/RGP4WZgnMH5pMLpsj4FG7OHmcIcXxpza8eQ== + dependencies: + "@types/hast" "^3.0.0" + "@types/mdast" "^4.0.0" + mdast-util-to-hast "^13.0.0" + unified "^11.0.0" + vfile "^6.0.0" + +remark-stringify@^11.0.0: + version "11.0.0" + resolved "https://registry.yarnpkg.com/remark-stringify/-/remark-stringify-11.0.0.tgz#4c5b01dd711c269df1aaae11743eb7e2e7636fd3" + integrity sha512-1OSmLd3awB/t8qdoEOMazZkNsfVTeY4fTsgzcQFdXNq8ToTN4ZGwrMnlda4K6smTFKD+GRV6O48i6Z4iKgPPpw== + dependencies: + "@types/mdast" "^4.0.0" + mdast-util-to-markdown "^2.0.0" + unified "^11.0.0" + +renderkid@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/renderkid/-/renderkid-3.0.0.tgz#5fd823e4d6951d37358ecc9a58b1f06836b6268a" + integrity sha512-q/7VIQA8lmM1hF+jn+sFSPWGlMkSAeNYcPLmDQx2zzuiDfaLrOmumR8iaUKlenFgh0XRPIUeSPlH3A+AW3Z5pg== + dependencies: + css-select "^4.1.3" + dom-converter "^0.2.0" + htmlparser2 "^6.1.0" + lodash "^4.17.21" + strip-ansi "^6.0.1" + +require-from-string@^2.0.2: + version "2.0.2" + resolved "https://registry.yarnpkg.com/require-from-string/-/require-from-string-2.0.2.tgz#89a7fdd938261267318eafe14f9c32e598c36909" + integrity sha512-Xf0nWe6RseziFMu+Ap9biiUbmplq6S9/p+7w7YXP/JBHhrUDDUhwa+vANyubuqfZWTveU//DYVGsDG7RKL/vEw== + +"require-like@>= 0.1.1": + version "0.1.2" + resolved "https://registry.yarnpkg.com/require-like/-/require-like-0.1.2.tgz#ad6f30c13becd797010c468afa775c0c0a6b47fa" + integrity sha512-oyrU88skkMtDdauHDuKVrgR+zuItqr6/c//FXzvmxRGMexSDc6hNvJInGW3LL46n+8b50RykrvwSUIIQH2LQ5A== + +requires-port@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/requires-port/-/requires-port-1.0.0.tgz#925d2601d39ac485e091cf0da5c6e694dc3dcaff" + integrity sha512-KigOCHcocU3XODJxsu8i/j8T9tzT4adHiecwORRQ0ZZFcp7ahwXuRU1m+yuO90C5ZUyGeGfocHDI14M3L3yDAQ== + +resolve-alpn@^1.2.0: + version "1.2.1" + resolved "https://registry.yarnpkg.com/resolve-alpn/-/resolve-alpn-1.2.1.tgz#b7adbdac3546aaaec20b45e7d8265927072726f9" + integrity sha512-0a1F4l73/ZFZOakJnQ3FvkJ2+gSTQWz/r2KE5OdDY0TxPm5h4GkqkWWfM47T7HsbnOtcJVEF4epCVy6u7Q3K+g== + +resolve-from@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/resolve-from/-/resolve-from-4.0.0.tgz#4abcd852ad32dd7baabfe9b40e00a36db5f392e6" + integrity sha512-pb/MYmXstAkysRFx8piNI1tGFNQIFA3vkE3Gq4EuA1dF6gHp/+vgZqsCGJapvy8N3Q+4o7FwvquPJcnZ7RYy4g== + +resolve-pathname@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/resolve-pathname/-/resolve-pathname-3.0.0.tgz#99d02224d3cf263689becbb393bc560313025dcd" + integrity sha512-C7rARubxI8bXFNB/hqcp/4iUeIXJhJZvFPFPiSPRnhU5UPxzMFIl+2E6yY6c4k9giDJAhtV+enfA+G89N6Csng== + +resolve@^1.1.6, resolve@^1.14.2, resolve@^1.22.4: + version "1.22.8" + resolved "https://registry.yarnpkg.com/resolve/-/resolve-1.22.8.tgz#b6c87a9f2aa06dfab52e3d70ac8cde321fa5a48d" + integrity sha512-oKWePCxqpd6FlLvGV1VU0x7bkPmmCNolxzjMf4NczoDnQcIWrAF+cPtZn5i6n+RfD2d9i0tzpKnG6Yk168yIyw== + dependencies: + is-core-module "^2.13.0" + path-parse "^1.0.7" + supports-preserve-symlinks-flag "^1.0.0" + +resolve@^2.0.0-next.5: + version "2.0.0-next.5" + resolved "https://registry.yarnpkg.com/resolve/-/resolve-2.0.0-next.5.tgz#6b0ec3107e671e52b68cd068ef327173b90dc03c" + integrity sha512-U7WjGVG9sH8tvjW5SmGbQuui75FiyjAX72HX15DwBBwF9dNiQZRQAg9nnPhYy+TUnE0+VcrttuvNI8oSxZcocA== + dependencies: + is-core-module "^2.13.0" + path-parse "^1.0.7" + supports-preserve-symlinks-flag "^1.0.0" + +responselike@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/responselike/-/responselike-3.0.0.tgz#20decb6c298aff0dbee1c355ca95461d42823626" + integrity sha512-40yHxbNcl2+rzXvZuVkrYohathsSJlMTXKryG5y8uciHv1+xDLHQpgjG64JUO9nrEq2jGLH6IZ8BcZyw3wrweg== + dependencies: + lowercase-keys "^3.0.0" + +retry@^0.13.1: + version "0.13.1" + resolved "https://registry.yarnpkg.com/retry/-/retry-0.13.1.tgz#185b1587acf67919d63b357349e03537b2484658" + integrity sha512-XQBQ3I8W1Cge0Seh+6gjj03LbmRFWuoszgK9ooCpwYIrhhoO80pfq4cUkU5DkknwfOfFteRwlZ56PYOGYyFWdg== + +reusify@^1.0.4: + version "1.0.4" + resolved "https://registry.yarnpkg.com/reusify/-/reusify-1.0.4.tgz#90da382b1e126efc02146e90845a88db12925d76" + integrity sha512-U9nH88a3fc/ekCF1l0/UP1IosiuIjyTh7hBvXVMHYgVcfGvt897Xguj2UOLDeI5BG2m7/uwyaLVT6fbtCwTyzw== + +rimraf@^3.0.2: + version "3.0.2" + resolved "https://registry.yarnpkg.com/rimraf/-/rimraf-3.0.2.tgz#f1a5402ba6220ad52cc1282bac1ae3aa49fd061a" + integrity sha512-JZkJMZkAGFFPP2YqXZXPbMlMBgsxzE8ILs4lMIX/2o0L9UBw9O/Y3o6wFw/i9YLapcUJWwqbi3kdxIPdC62TIA== + dependencies: + glob "^7.1.3" + +rimraf@^5.0.5: + version "5.0.10" + resolved "https://registry.yarnpkg.com/rimraf/-/rimraf-5.0.10.tgz#23b9843d3dc92db71f96e1a2ce92e39fd2a8221c" + integrity sha512-l0OE8wL34P4nJH/H2ffoaniAokM2qSmrtXHmlpvYr5AVVX8msAyW0l8NVJFDxlSK4u3Uh/f41cQheDVdnYijwQ== + dependencies: + glob "^10.3.7" + +robust-predicates@^3.0.2: + version "3.0.2" + resolved "https://registry.yarnpkg.com/robust-predicates/-/robust-predicates-3.0.2.tgz#d5b28528c4824d20fc48df1928d41d9efa1ad771" + integrity sha512-IXgzBWvWQwE6PrDI05OvmXUIruQTcoMDzRsOd5CDvHCVLcLHMTSYvOK5Cm46kWqlV3yAbuSpBZdJ5oP5OUoStg== + +rollup@^4.5.2: + version "4.22.4" + resolved "https://registry.yarnpkg.com/rollup/-/rollup-4.22.4.tgz#4135a6446671cd2a2453e1ad42a45d5973ec3a0f" + integrity sha512-vD8HJ5raRcWOyymsR6Z3o6+RzfEPCnVLMFJ6vRslO1jt4LO6dUo5Qnpg7y4RkZFM2DMe3WUirkI5c16onjrc6A== + dependencies: + "@types/estree" "1.0.5" + optionalDependencies: + "@rollup/rollup-android-arm-eabi" "4.22.4" + "@rollup/rollup-android-arm64" "4.22.4" + "@rollup/rollup-darwin-arm64" "4.22.4" + "@rollup/rollup-darwin-x64" "4.22.4" + "@rollup/rollup-linux-arm-gnueabihf" "4.22.4" + "@rollup/rollup-linux-arm-musleabihf" "4.22.4" + "@rollup/rollup-linux-arm64-gnu" "4.22.4" + "@rollup/rollup-linux-arm64-musl" "4.22.4" + "@rollup/rollup-linux-powerpc64le-gnu" "4.22.4" + "@rollup/rollup-linux-riscv64-gnu" "4.22.4" + "@rollup/rollup-linux-s390x-gnu" "4.22.4" + "@rollup/rollup-linux-x64-gnu" "4.22.4" + "@rollup/rollup-linux-x64-musl" "4.22.4" + "@rollup/rollup-win32-arm64-msvc" "4.22.4" + "@rollup/rollup-win32-ia32-msvc" "4.22.4" + "@rollup/rollup-win32-x64-msvc" "4.22.4" + fsevents "~2.3.2" + +rrweb-cssom@^0.7.1: + version "0.7.1" + resolved "https://registry.yarnpkg.com/rrweb-cssom/-/rrweb-cssom-0.7.1.tgz#c73451a484b86dd7cfb1e0b2898df4b703183e4b" + integrity sha512-TrEMa7JGdVm0UThDJSx7ddw5nVm3UJS9o9CCIZ72B1vSyEZoziDqBYP3XIoi/12lKrJR8rE3jeFHMok2F/Mnsg== + +rtl-detect@^1.0.4: + version "1.1.2" + resolved "https://registry.yarnpkg.com/rtl-detect/-/rtl-detect-1.1.2.tgz#ca7f0330af5c6bb626c15675c642ba85ad6273c6" + integrity sha512-PGMBq03+TTG/p/cRB7HCLKJ1MgDIi07+QU1faSjiYRfmY5UsAttV9Hs08jDAHVwcOwmVLcSJkpwyfXszVjWfIQ== + +rtlcss@^4.1.0: + version "4.3.0" + resolved "https://registry.yarnpkg.com/rtlcss/-/rtlcss-4.3.0.tgz#f8efd4d5b64f640ec4af8fa25b65bacd9e07cc97" + integrity sha512-FI+pHEn7Wc4NqKXMXFM+VAYKEj/mRIcW4h24YVwVtyjI+EqGrLc2Hx/Ny0lrZ21cBWU2goLy36eqMcNj3AQJig== + dependencies: + escalade "^3.1.1" + picocolors "^1.0.0" + postcss "^8.4.21" + strip-json-comments "^3.1.1" + +run-parallel@^1.1.9: + version "1.2.0" + resolved "https://registry.yarnpkg.com/run-parallel/-/run-parallel-1.2.0.tgz#66d1368da7bdf921eb9d95bd1a9229e7f21a43ee" + integrity sha512-5l4VyZR86LZ/lDxZTR6jqL8AFE2S0IFLMP26AbjsLVADxHdhB/c0GUsH+y39UfCi3dzz8OlQuPmnaJOMoDHQBA== + dependencies: + queue-microtask "^1.2.2" + +rw@1: + version "1.3.3" + resolved "https://registry.yarnpkg.com/rw/-/rw-1.3.3.tgz#3f862dfa91ab766b14885ef4d01124bfda074fb4" + integrity sha512-PdhdWy89SiZogBLaw42zdeqtRJ//zFd2PgQavcICDUgJT5oW10QCRKbJ6bg4r0/UY2M6BWd5tkxuGFRvCkgfHQ== + +sade@^1.7.3: + version "1.8.1" + resolved "https://registry.yarnpkg.com/sade/-/sade-1.8.1.tgz#0a78e81d658d394887be57d2a409bf703a3b2701" + integrity sha512-xal3CZX1Xlo/k4ApwCFrHVACi9fBqJ7V+mwhBsuf/1IOKbBy098Fex+Wa/5QMubw09pSZ/u8EY8PWgevJsXp1A== + dependencies: + mri "^1.1.0" + +safe-array-concat@^1.1.2: + version "1.1.2" + resolved "https://registry.yarnpkg.com/safe-array-concat/-/safe-array-concat-1.1.2.tgz#81d77ee0c4e8b863635227c721278dd524c20edb" + integrity sha512-vj6RsCsWBCf19jIeHEfkRMw8DPiBb+DMXklQ/1SGDHOMlHdPUkZXFQ2YdplS23zESTijAcurb1aSgJA3AgMu1Q== + dependencies: + call-bind "^1.0.7" + get-intrinsic "^1.2.4" + has-symbols "^1.0.3" + isarray "^2.0.5" + +safe-buffer@5.1.2, safe-buffer@~5.1.0, safe-buffer@~5.1.1: + version "5.1.2" + resolved "https://registry.yarnpkg.com/safe-buffer/-/safe-buffer-5.1.2.tgz#991ec69d296e0313747d59bdfd2b745c35f8828d" + integrity sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g== + +safe-buffer@5.2.1, safe-buffer@>=5.1.0, safe-buffer@^5.1.0, safe-buffer@~5.2.0: + version "5.2.1" + resolved "https://registry.yarnpkg.com/safe-buffer/-/safe-buffer-5.2.1.tgz#1eaf9fa9bdb1fdd4ec75f58f9cdb4e6b7827eec6" + integrity sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ== + +safe-regex-test@^1.0.3: + version "1.0.3" + resolved "https://registry.yarnpkg.com/safe-regex-test/-/safe-regex-test-1.0.3.tgz#a5b4c0f06e0ab50ea2c395c14d8371232924c377" + integrity sha512-CdASjNJPvRa7roO6Ra/gLYBTzYzzPyyBXxIMdGW3USQLyjWEls2RgW5UBTXaQVp+OrpeCK3bLem8smtmheoRuw== + dependencies: + call-bind "^1.0.6" + es-errors "^1.3.0" + is-regex "^1.1.4" + +"safer-buffer@>= 2.1.2 < 3", "safer-buffer@>= 2.1.2 < 3.0.0": + version "2.1.2" + resolved "https://registry.yarnpkg.com/safer-buffer/-/safer-buffer-2.1.2.tgz#44fa161b0187b9549dd84bb91802f9bd8385cd6a" + integrity sha512-YZo3K82SD7Riyi0E1EQPojLz7kpepnSQI9IyPbHHg1XXXevb5dJI7tpyN2ADxGcQbHG7vcyRHk0cbwqcQriUtg== + +sax@^1.2.4: + version "1.4.1" + resolved "https://registry.yarnpkg.com/sax/-/sax-1.4.1.tgz#44cc8988377f126304d3b3fc1010c733b929ef0f" + integrity sha512-+aWOz7yVScEGoKNd4PA10LZ8sk0A/z5+nXQG5giUO5rprX9jgYsTdov9qCchZiPIZezbZH+jRut8nPodFAX4Jg== + +saxes@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/saxes/-/saxes-6.0.0.tgz#fe5b4a4768df4f14a201b1ba6a65c1f3d9988cc5" + integrity sha512-xAg7SOnEhrm5zI3puOOKyy1OMcMlIJZYNJY7xLBwSze0UjhPLnWfj2GF2EpT0jmzaJKIWKHLsaSSajf35bcYnA== + dependencies: + xmlchars "^2.2.0" + +scheduler@^0.23.2: + version "0.23.2" + resolved "https://registry.yarnpkg.com/scheduler/-/scheduler-0.23.2.tgz#414ba64a3b282892e944cf2108ecc078d115cdc3" + integrity sha512-UOShsPwz7NrMUqhR6t0hWjFduvOzbtv7toDH1/hIrfRNIDBnnBWd0CwJTGvTpngVlmwGCdP9/Zl/tVrDqcuYzQ== + dependencies: + loose-envify "^1.1.0" + +schema-utils@2.7.0: + version "2.7.0" + resolved "https://registry.yarnpkg.com/schema-utils/-/schema-utils-2.7.0.tgz#17151f76d8eae67fbbf77960c33c676ad9f4efc7" + integrity sha512-0ilKFI6QQF5nxDZLFn2dMjvc4hjg/Wkg7rHd3jK6/A4a1Hl9VFdQWvgB1UMGoU94pad1P/8N7fMcEnLnSiju8A== + dependencies: + "@types/json-schema" "^7.0.4" + ajv "^6.12.2" + ajv-keywords "^3.4.1" + +schema-utils@^3.0.0, schema-utils@^3.1.1, schema-utils@^3.2.0: + version "3.3.0" + resolved "https://registry.yarnpkg.com/schema-utils/-/schema-utils-3.3.0.tgz#f50a88877c3c01652a15b622ae9e9795df7a60fe" + integrity sha512-pN/yOAvcC+5rQ5nERGuwrjLlYvLTbCibnZ1I7B1LaiAz9BRBlE9GMgE/eqV30P7aJQUf7Ddimy/RsbYO/GrVGg== + dependencies: + "@types/json-schema" "^7.0.8" + ajv "^6.12.5" + ajv-keywords "^3.5.2" + +schema-utils@^4.0.0, schema-utils@^4.0.1: + version "4.2.0" + resolved "https://registry.yarnpkg.com/schema-utils/-/schema-utils-4.2.0.tgz#70d7c93e153a273a805801882ebd3bff20d89c8b" + integrity sha512-L0jRsrPpjdckP3oPug3/VxNKt2trR8TcabrM6FOAAlvC/9Phcmm+cuAgTlxBqdBR1WJx7Naj9WHw+aOmheSVbw== + dependencies: + "@types/json-schema" "^7.0.9" + ajv "^8.9.0" + ajv-formats "^2.1.1" + ajv-keywords "^5.1.0" + +section-matter@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/section-matter/-/section-matter-1.0.0.tgz#e9041953506780ec01d59f292a19c7b850b84167" + integrity sha512-vfD3pmTzGpufjScBh50YHKzEu2lxBWhVEHsNGoEXmCmn2hKGfeNLYMzCJpe8cD7gqX7TJluOVpBkAequ6dgMmA== + dependencies: + extend-shallow "^2.0.1" + kind-of "^6.0.0" + +select-hose@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/select-hose/-/select-hose-2.0.0.tgz#625d8658f865af43ec962bfc376a37359a4994ca" + integrity sha512-mEugaLK+YfkijB4fx0e6kImuJdCIt2LxCRcbEYPqRGCs4F2ogyfZU5IAZRdjCP8JPq2AtdNoC/Dux63d9Kiryg== + +selfsigned@^2.1.1: + version "2.4.1" + resolved "https://registry.yarnpkg.com/selfsigned/-/selfsigned-2.4.1.tgz#560d90565442a3ed35b674034cec4e95dceb4ae0" + integrity sha512-th5B4L2U+eGLq1TVh7zNRGBapioSORUeymIydxgFpwww9d2qyKvtuPU2jJuHvYAwwqi2Y596QBL3eEqcPEYL8Q== + dependencies: + "@types/node-forge" "^1.3.0" + node-forge "^1" + +semver-diff@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/semver-diff/-/semver-diff-4.0.0.tgz#3afcf5ed6d62259f5c72d0d5d50dffbdc9680df5" + integrity sha512-0Ju4+6A8iOnpL/Thra7dZsSlOHYAHIeMxfhWQRI1/VLcT3WDBZKKtQt/QkBOsiIN9ZpuvHE6cGZ0x4glCMmfiA== + dependencies: + semver "^7.3.5" + +semver@^6.3.0, semver@^6.3.1: + version "6.3.1" + resolved "https://registry.yarnpkg.com/semver/-/semver-6.3.1.tgz#556d2ef8689146e46dcea4bfdd095f3434dffcb4" + integrity sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA== + +semver@^7.3.2, semver@^7.3.5, semver@^7.3.7, semver@^7.5.4: + version "7.6.3" + resolved "https://registry.yarnpkg.com/semver/-/semver-7.6.3.tgz#980f7b5550bc175fb4dc09403085627f9eb33143" + integrity sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A== + +send@0.19.0: + version "0.19.0" + resolved "https://registry.yarnpkg.com/send/-/send-0.19.0.tgz#bbc5a388c8ea6c048967049dbeac0e4a3f09d7f8" + integrity sha512-dW41u5VfLXu8SJh5bwRmyYUbAoSB3c9uQh6L8h/KtsFREPWpbX1lrljJo186Jc4nmci/sGUZ9a0a0J2zgfq2hw== + dependencies: + debug "2.6.9" + depd "2.0.0" + destroy "1.2.0" + encodeurl "~1.0.2" + escape-html "~1.0.3" + etag "~1.8.1" + fresh "0.5.2" + http-errors "2.0.0" + mime "1.6.0" + ms "2.1.3" + on-finished "2.4.1" + range-parser "~1.2.1" + statuses "2.0.1" + +serialize-javascript@^6.0.0, serialize-javascript@^6.0.1: + version "6.0.2" + resolved "https://registry.yarnpkg.com/serialize-javascript/-/serialize-javascript-6.0.2.tgz#defa1e055c83bf6d59ea805d8da862254eb6a6c2" + integrity sha512-Saa1xPByTTq2gdeFZYLLo+RFE35NHZkAbqZeWNd3BpzppeVisAqpDjcp8dyf6uIvEqJRd46jemmyA4iFIeVk8g== + dependencies: + randombytes "^2.1.0" + +serve-handler@^6.1.5: + version "6.1.5" + resolved "https://registry.yarnpkg.com/serve-handler/-/serve-handler-6.1.5.tgz#a4a0964f5c55c7e37a02a633232b6f0d6f068375" + integrity sha512-ijPFle6Hwe8zfmBxJdE+5fta53fdIY0lHISJvuikXB3VYFafRjMRpOffSPvCYsbKyBA7pvy9oYr/BT1O3EArlg== + dependencies: + bytes "3.0.0" + content-disposition "0.5.2" + fast-url-parser "1.1.3" + mime-types "2.1.18" + minimatch "3.1.2" + path-is-inside "1.0.2" + path-to-regexp "2.2.1" + range-parser "1.2.0" + +serve-index@^1.9.1: + version "1.9.1" + resolved "https://registry.yarnpkg.com/serve-index/-/serve-index-1.9.1.tgz#d3768d69b1e7d82e5ce050fff5b453bea12a9239" + integrity sha512-pXHfKNP4qujrtteMrSBb0rc8HJ9Ms/GrXwcUtUtD5s4ewDJI8bT3Cz2zTVRMKtri49pLx2e0Ya8ziP5Ya2pZZw== + dependencies: + accepts "~1.3.4" + batch "0.6.1" + debug "2.6.9" + escape-html "~1.0.3" + http-errors "~1.6.2" + mime-types "~2.1.17" + parseurl "~1.3.2" + +serve-static@1.16.2: + version "1.16.2" + resolved "https://registry.yarnpkg.com/serve-static/-/serve-static-1.16.2.tgz#b6a5343da47f6bdd2673848bf45754941e803296" + integrity sha512-VqpjJZKadQB/PEbEwvFdO43Ax5dFBZ2UECszz8bQ7pi7wt//PWe1P6MN7eCnjsatYtBT6EuiClbjSWP2WrIoTw== + dependencies: + encodeurl "~2.0.0" + escape-html "~1.0.3" + parseurl "~1.3.3" + send "0.19.0" + +set-function-length@^1.2.1: + version "1.2.2" + resolved "https://registry.yarnpkg.com/set-function-length/-/set-function-length-1.2.2.tgz#aac72314198eaed975cf77b2c3b6b880695e5449" + integrity sha512-pgRc4hJ4/sNjWCSS9AmnS40x3bNMDTknHgL5UaMBTMyJnU90EgWh1Rz+MC9eFu4BuN/UwZjKQuY/1v3rM7HMfg== + dependencies: + define-data-property "^1.1.4" + es-errors "^1.3.0" + function-bind "^1.1.2" + get-intrinsic "^1.2.4" + gopd "^1.0.1" + has-property-descriptors "^1.0.2" + +set-function-name@^2.0.1, set-function-name@^2.0.2: + version "2.0.2" + resolved "https://registry.yarnpkg.com/set-function-name/-/set-function-name-2.0.2.tgz#16a705c5a0dc2f5e638ca96d8a8cd4e1c2b90985" + integrity sha512-7PGFlmtwsEADb0WYyvCMa1t+yke6daIG4Wirafur5kcf+MhUnPms1UeR0CKQdTZD81yESwMHbtn+TR+dMviakQ== + dependencies: + define-data-property "^1.1.4" + es-errors "^1.3.0" + functions-have-names "^1.2.3" + has-property-descriptors "^1.0.2" + +setprototypeof@1.1.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/setprototypeof/-/setprototypeof-1.1.0.tgz#d0bd85536887b6fe7c0d818cb962d9d91c54e656" + integrity sha512-BvE/TwpZX4FXExxOxZyRGQQv651MSwmWKZGqvmPcRIjDqWub67kTKuIMx43cZZrS/cBBzwBcNDWoFxt2XEFIpQ== + +setprototypeof@1.2.0: + version "1.2.0" + resolved "https://registry.yarnpkg.com/setprototypeof/-/setprototypeof-1.2.0.tgz#66c9a24a73f9fc28cbe66b09fed3d33dcaf1b424" + integrity sha512-E5LDX7Wrp85Kil5bhZv46j8jOeboKq5JMmYM3gVGdGH8xFpPWXUMsNrlODCrkoxMEeNi/XZIwuRvY4XNwYMJpw== + +shallow-clone@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/shallow-clone/-/shallow-clone-3.0.1.tgz#8f2981ad92531f55035b01fb230769a40e02efa3" + integrity sha512-/6KqX+GVUdqPuPPd2LxDDxzX6CAbjJehAAOKlNpqqUpAqPM6HeL8f+o3a+JsyGjn2lv0WY8UsTgUJjU9Ok55NA== + dependencies: + kind-of "^6.0.2" + +shallowequal@^1.1.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/shallowequal/-/shallowequal-1.1.0.tgz#188d521de95b9087404fd4dcb68b13df0ae4e7f8" + integrity sha512-y0m1JoUZSlPAjXVtPPW70aZWfIL/dSP7AFkRnniLCrK/8MDKog3TySTBmckD+RObVxH0v4Tox67+F14PdED2oQ== + +shebang-command@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/shebang-command/-/shebang-command-2.0.0.tgz#ccd0af4f8835fbdc265b82461aaf0c36663f34ea" + integrity sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA== + dependencies: + shebang-regex "^3.0.0" + +shebang-regex@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/shebang-regex/-/shebang-regex-3.0.0.tgz#ae16f1644d873ecad843b0307b143362d4c42172" + integrity sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A== + +shell-quote@^1.7.3, shell-quote@^1.8.1: + version "1.8.1" + resolved "https://registry.yarnpkg.com/shell-quote/-/shell-quote-1.8.1.tgz#6dbf4db75515ad5bac63b4f1894c3a154c766680" + integrity sha512-6j1W9l1iAs/4xYBI1SYOVZyFcCis9b4KCLQ8fgAGG07QvzaRLVVRQvAy85yNmmZSjYjg4MWh4gNvlPujU/5LpA== + +shelljs@^0.8.5: + version "0.8.5" + resolved "https://registry.yarnpkg.com/shelljs/-/shelljs-0.8.5.tgz#de055408d8361bed66c669d2f000538ced8ee20c" + integrity sha512-TiwcRcrkhHvbrZbnRcFYMLl30Dfov3HKqzp5tO5b4pt6G/SezKcYhmDg15zXVBswHmctSAQKznqNW2LO5tTDow== + dependencies: + glob "^7.0.0" + interpret "^1.0.0" + rechoir "^0.6.2" + +shiki@^0.14.1: + version "0.14.7" + resolved "https://registry.yarnpkg.com/shiki/-/shiki-0.14.7.tgz#c3c9e1853e9737845f1d2ef81b31bcfb07056d4e" + integrity sha512-dNPAPrxSc87ua2sKJ3H5dQ/6ZaY8RNnaAqK+t0eG7p0Soi2ydiqbGOTaZCqaYvA/uZYfS1LJnemt3Q+mSfcPCg== + dependencies: + ansi-sequence-parser "^1.1.0" + jsonc-parser "^3.2.0" + vscode-oniguruma "^1.7.0" + vscode-textmate "^8.0.0" + +side-channel@^1.0.4, side-channel@^1.0.6: + version "1.0.6" + resolved "https://registry.yarnpkg.com/side-channel/-/side-channel-1.0.6.tgz#abd25fb7cd24baf45466406b1096b7831c9215f2" + integrity sha512-fDW/EZ6Q9RiO8eFG8Hj+7u/oW+XrPTIChwCOM2+th2A6OblDtYYIpve9m+KvI9Z4C9qSEXlaGR6bTEYHReuglA== + dependencies: + call-bind "^1.0.7" + es-errors "^1.3.0" + get-intrinsic "^1.2.4" + object-inspect "^1.13.1" + +signal-exit@^3.0.2, signal-exit@^3.0.3: + version "3.0.7" + resolved "https://registry.yarnpkg.com/signal-exit/-/signal-exit-3.0.7.tgz#a9a1767f8af84155114eaabd73f99273c8f59ad9" + integrity sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ== + +signal-exit@^4.0.1: + version "4.1.0" + resolved "https://registry.yarnpkg.com/signal-exit/-/signal-exit-4.1.0.tgz#952188c1cbd546070e2dd20d0f41c0ae0530cb04" + integrity sha512-bzyZ1e88w9O1iNJbKnOlvYTrWPDl46O1bG0D3XInv+9tkPrxrN8jUUTiFlDkkmKWgn1M6CfIA13SuGqOa9Korw== + +sirv@^2.0.3: + version "2.0.4" + resolved "https://registry.yarnpkg.com/sirv/-/sirv-2.0.4.tgz#5dd9a725c578e34e449f332703eb2a74e46a29b0" + integrity sha512-94Bdh3cC2PKrbgSOUqTiGPWVZeSiXfKOVZNJniWoqrWrRkB1CJzBU3NEbiTsPcYy1lDsANA/THzS+9WBiy5nfQ== + dependencies: + "@polka/url" "^1.0.0-next.24" + mrmime "^2.0.0" + totalist "^3.0.0" + +sisteransi@^1.0.5: + version "1.0.5" + resolved "https://registry.yarnpkg.com/sisteransi/-/sisteransi-1.0.5.tgz#134d681297756437cc05ca01370d3a7a571075ed" + integrity sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg== + +sitemap@^7.1.1: + version "7.1.2" + resolved "https://registry.yarnpkg.com/sitemap/-/sitemap-7.1.2.tgz#6ce1deb43f6f177c68bc59cf93632f54e3ae6b72" + integrity sha512-ARCqzHJ0p4gWt+j7NlU5eDlIO9+Rkr/JhPFZKKQ1l5GCus7rJH4UdrlVAh0xC/gDS/Qir2UMxqYNHtsKr2rpCw== + dependencies: + "@types/node" "^17.0.5" + "@types/sax" "^1.2.1" + arg "^5.0.0" + sax "^1.2.4" + +skin-tone@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/skin-tone/-/skin-tone-2.0.0.tgz#4e3933ab45c0d4f4f781745d64b9f4c208e41237" + integrity sha512-kUMbT1oBJCpgrnKoSr0o6wPtvRWT9W9UKvGLwfJYO2WuahZRHOpEyL1ckyMGgMWh0UdpmaoFqKKD29WTomNEGA== + dependencies: + unicode-emoji-modifier-base "^1.0.0" + +slash@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/slash/-/slash-3.0.0.tgz#6539be870c165adbd5240220dbe361f1bc4d4634" + integrity sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q== + +slash@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/slash/-/slash-4.0.0.tgz#2422372176c4c6c5addb5e2ada885af984b396a7" + integrity sha512-3dOsAHXXUkQTpOYcoAxLIorMTp4gIQr5IW3iVb7A7lFIp0VHhnynm9izx6TssdrIcVIESAlVjtnO2K8bg+Coew== + +snake-case@^3.0.4: + version "3.0.4" + resolved "https://registry.yarnpkg.com/snake-case/-/snake-case-3.0.4.tgz#4f2bbd568e9935abdfd593f34c691dadb49c452c" + integrity sha512-LAOh4z89bGQvl9pFfNF8V146i7o7/CqFPbqzYgP+yYzDIDeS9HaNFtXABamRW+AQzEVODcvE79ljJ+8a9YSdMg== + dependencies: + dot-case "^3.0.4" + tslib "^2.0.3" + +sockjs@^0.3.24: + version "0.3.24" + resolved "https://registry.yarnpkg.com/sockjs/-/sockjs-0.3.24.tgz#c9bc8995f33a111bea0395ec30aa3206bdb5ccce" + integrity sha512-GJgLTZ7vYb/JtPSSZ10hsOYIvEYsjbNU+zPdIHcUaWVNUEPivzxku31865sSSud0Da0W4lEeOPlmw93zLQchuQ== + dependencies: + faye-websocket "^0.11.3" + uuid "^8.3.2" + websocket-driver "^0.7.4" + +sort-css-media-queries@2.2.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/sort-css-media-queries/-/sort-css-media-queries-2.2.0.tgz#aa33cf4a08e0225059448b6c40eddbf9f1c8334c" + integrity sha512-0xtkGhWCC9MGt/EzgnvbbbKhqWjl1+/rncmhTh5qCpbYguXh6S/qwePfv/JQ8jePXXmqingylxoC49pCkSPIbA== + +source-map-js@^1.0.1, source-map-js@^1.2.1: + version "1.2.1" + resolved "https://registry.yarnpkg.com/source-map-js/-/source-map-js-1.2.1.tgz#1ce5650fddd87abc099eda37dcff024c2667ae46" + integrity sha512-UXWMKhLOwVKb728IUtQPXxfYU+usdybtUrK/8uGE8CQMvrhOpwvzDBwj0QhSL7MQc7vIsISBG8VQ8+IDQxpfQA== + +source-map-support@~0.5.20: + version "0.5.21" + resolved "https://registry.yarnpkg.com/source-map-support/-/source-map-support-0.5.21.tgz#04fe7c7f9e1ed2d662233c28cb2b35b9f63f6e4f" + integrity sha512-uBHU3L3czsIyYXKX88fdrGovxdSCoTGDRZ6SYXtSRxLZUzHg5P/66Ht6uoUlHu9EZod+inXhKo3qQgwXUT/y1w== + dependencies: + buffer-from "^1.0.0" + source-map "^0.6.0" + +source-map@^0.6.0, source-map@~0.6.0: + version "0.6.1" + resolved "https://registry.yarnpkg.com/source-map/-/source-map-0.6.1.tgz#74722af32e9614e9c287a8d0bbde48b5e2f1a263" + integrity sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g== + +source-map@^0.7.0: + version "0.7.4" + resolved "https://registry.yarnpkg.com/source-map/-/source-map-0.7.4.tgz#a9bbe705c9d8846f4e08ff6765acf0f1b0898656" + integrity sha512-l3BikUxvPOcn5E74dZiq5BGsTb5yEwhaTSzccU6t4sDOH8NWJCstKO5QT2CvtFoK6F0saL7p9xHAqHOlCPJygA== + +space-separated-tokens@^2.0.0: + version "2.0.2" + resolved "https://registry.yarnpkg.com/space-separated-tokens/-/space-separated-tokens-2.0.2.tgz#1ecd9d2350a3844572c3f4a312bceb018348859f" + integrity sha512-PEGlAwrG8yXGXRjW32fGbg66JAlOAwbObuqVoJpv/mRgoWDQfgH1wDPvtzWyUSNAXBGSk8h755YDbbcEy3SH2Q== + +spdy-transport@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/spdy-transport/-/spdy-transport-3.0.0.tgz#00d4863a6400ad75df93361a1608605e5dcdcf31" + integrity sha512-hsLVFE5SjA6TCisWeJXFKniGGOpBgMLmerfO2aCyCU5s7nJ/rpAepqmFifv/GCbSbueEeAJJnmSQ2rKC/g8Fcw== + dependencies: + debug "^4.1.0" + detect-node "^2.0.4" + hpack.js "^2.1.6" + obuf "^1.1.2" + readable-stream "^3.0.6" + wbuf "^1.7.3" + +spdy@^4.0.2: + version "4.0.2" + resolved "https://registry.yarnpkg.com/spdy/-/spdy-4.0.2.tgz#b74f466203a3eda452c02492b91fb9e84a27677b" + integrity sha512-r46gZQZQV+Kl9oItvl1JZZqJKGr+oEkB08A6BzkiR7593/7IbtuncXHd2YoYeTsG4157ZssMu9KYvUHLcjcDoA== + dependencies: + debug "^4.1.0" + handle-thing "^2.0.0" + http-deceiver "^1.2.7" + select-hose "^2.0.0" + spdy-transport "^3.0.0" + +sprintf-js@~1.0.2: + version "1.0.3" + resolved "https://registry.yarnpkg.com/sprintf-js/-/sprintf-js-1.0.3.tgz#04e6926f662895354f3dd015203633b857297e2c" + integrity sha512-D9cPgkvLlV3t3IzL0D0YLvGA9Ahk4PcvVwUbN0dSGr1aP0Nrt4AEnTUbuGvquEC0mA64Gqt1fzirlRs5ibXx8g== + +srcset@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/srcset/-/srcset-4.0.0.tgz#336816b665b14cd013ba545b6fe62357f86e65f4" + integrity sha512-wvLeHgcVHKO8Sc/H/5lkGreJQVeYMm9rlmt8PuR1xE31rIuXhuzznUUqAt8MqLhB3MqJdFzlNAfpcWnxiFUcPw== + +statuses@2.0.1: + version "2.0.1" + resolved "https://registry.yarnpkg.com/statuses/-/statuses-2.0.1.tgz#55cb000ccf1d48728bd23c685a063998cf1a1b63" + integrity sha512-RwNA9Z/7PrK06rYLIzFMlaF+l73iwpzsqRIFgbMLbTcLD6cOao82TaWefPXQvB2fOC4AjuYSEndS7N/mTCbkdQ== + +"statuses@>= 1.4.0 < 2": + version "1.5.0" + resolved "https://registry.yarnpkg.com/statuses/-/statuses-1.5.0.tgz#161c7dac177659fd9811f43771fa99381478628c" + integrity sha512-OpZ3zP+jT1PI7I8nemJX4AKmAX070ZkYPVWV/AaKTJl+tXCTGyVdC1a4SL8RUQYEwk/f34ZX8UTykN68FwrqAA== + +std-env@^3.0.1: + version "3.7.0" + resolved "https://registry.yarnpkg.com/std-env/-/std-env-3.7.0.tgz#c9f7386ced6ecf13360b6c6c55b8aaa4ef7481d2" + integrity sha512-JPbdCEQLj1w5GilpiHAx3qJvFndqybBysA3qUOnznweH4QbNYUsW/ea8QzSrnh0vNsezMMw5bcVool8lM0gwzg== + +stop-iteration-iterator@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/stop-iteration-iterator/-/stop-iteration-iterator-1.0.0.tgz#6a60be0b4ee757d1ed5254858ec66b10c49285e4" + integrity sha512-iCGQj+0l0HOdZ2AEeBADlsRC+vsnDsZsbdSiH1yNSjcfKM7fdpCMfqAL/dwF5BLiw/XhRft/Wax6zQbhq2BcjQ== + dependencies: + internal-slot "^1.0.4" + +"string-width-cjs@npm:string-width@^4.2.0", string-width@^4.1.0, string-width@^4.2.0: + version "4.2.3" + resolved "https://registry.yarnpkg.com/string-width/-/string-width-4.2.3.tgz#269c7117d27b05ad2e536830a8ec895ef9c6d010" + integrity sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g== + dependencies: + emoji-regex "^8.0.0" + is-fullwidth-code-point "^3.0.0" + strip-ansi "^6.0.1" + +string-width@^5.0.1, string-width@^5.1.2: + version "5.1.2" + resolved "https://registry.yarnpkg.com/string-width/-/string-width-5.1.2.tgz#14f8daec6d81e7221d2a357e668cab73bdbca794" + integrity sha512-HnLOCR3vjcY8beoNLtcjZ5/nxn2afmME6lhrDrebokqMap+XbeW8n9TXpPDOqdGK5qcI3oT0GKTW6wC7EMiVqA== + dependencies: + eastasianwidth "^0.2.0" + emoji-regex "^9.2.2" + strip-ansi "^7.0.1" + +string.prototype.includes@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/string.prototype.includes/-/string.prototype.includes-2.0.0.tgz#8986d57aee66d5460c144620a6d873778ad7289f" + integrity sha512-E34CkBgyeqNDcrbU76cDjL5JLcVrtSdYq0MEh/B10r17pRP4ciHLwTgnuLV8Ay6cgEMLkcBkFCKyFZ43YldYzg== + dependencies: + define-properties "^1.1.3" + es-abstract "^1.17.5" + +string.prototype.matchall@^4.0.11: + version "4.0.11" + resolved "https://registry.yarnpkg.com/string.prototype.matchall/-/string.prototype.matchall-4.0.11.tgz#1092a72c59268d2abaad76582dccc687c0297e0a" + integrity sha512-NUdh0aDavY2og7IbBPenWqR9exH+E26Sv8e0/eTe1tltDGZL+GtBkDAnnyBtmekfK6/Dq3MkcGtzXFEd1LQrtg== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.2" + es-errors "^1.3.0" + es-object-atoms "^1.0.0" + get-intrinsic "^1.2.4" + gopd "^1.0.1" + has-symbols "^1.0.3" + internal-slot "^1.0.7" + regexp.prototype.flags "^1.5.2" + set-function-name "^2.0.2" + side-channel "^1.0.6" + +string.prototype.repeat@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/string.prototype.repeat/-/string.prototype.repeat-1.0.0.tgz#e90872ee0308b29435aa26275f6e1b762daee01a" + integrity sha512-0u/TldDbKD8bFCQ/4f5+mNRrXwZ8hg2w7ZR8wa16e8z9XpePWl3eGEcUD0OXpEH/VJH/2G3gjUtR3ZOiBe2S/w== + dependencies: + define-properties "^1.1.3" + es-abstract "^1.17.5" + +string.prototype.trim@^1.2.9: + version "1.2.9" + resolved "https://registry.yarnpkg.com/string.prototype.trim/-/string.prototype.trim-1.2.9.tgz#b6fa326d72d2c78b6df02f7759c73f8f6274faa4" + integrity sha512-klHuCNxiMZ8MlsOihJhJEBJAiMVqU3Z2nEXWfWnIqjN0gEFS9J9+IxKozWWtQGcgoa1WUZzLjKPTr4ZHNFTFxw== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-abstract "^1.23.0" + es-object-atoms "^1.0.0" + +string.prototype.trimend@^1.0.8: + version "1.0.8" + resolved "https://registry.yarnpkg.com/string.prototype.trimend/-/string.prototype.trimend-1.0.8.tgz#3651b8513719e8a9f48de7f2f77640b26652b229" + integrity sha512-p73uL5VCHCO2BZZ6krwwQE3kCzM7NKmis8S//xEC6fQonchbum4eP6kR4DLEjQFO3Wnj3Fuo8NM0kOSjVdHjZQ== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-object-atoms "^1.0.0" + +string.prototype.trimstart@^1.0.8: + version "1.0.8" + resolved "https://registry.yarnpkg.com/string.prototype.trimstart/-/string.prototype.trimstart-1.0.8.tgz#7ee834dda8c7c17eff3118472bb35bfedaa34dde" + integrity sha512-UXSH262CSZY1tfu3G3Secr6uGLCFVPMhIqHjlgCUtCCcgihYc/xKs9djMTMUOb2j1mVSeU8EU6NWc/iQKU6Gfg== + dependencies: + call-bind "^1.0.7" + define-properties "^1.2.1" + es-object-atoms "^1.0.0" + +string_decoder@^1.1.1: + version "1.3.0" + resolved "https://registry.yarnpkg.com/string_decoder/-/string_decoder-1.3.0.tgz#42f114594a46cf1a8e30b0a84f56c78c3edac21e" + integrity sha512-hkRX8U1WjJFd8LsDJ2yQ/wWWxaopEsABU1XfkM8A+j0+85JAGppt16cr1Whg6KIbb4okU6Mql6BOj+uup/wKeA== + dependencies: + safe-buffer "~5.2.0" + +string_decoder@~1.1.1: + version "1.1.1" + resolved "https://registry.yarnpkg.com/string_decoder/-/string_decoder-1.1.1.tgz#9cf1611ba62685d7030ae9e4ba34149c3af03fc8" + integrity sha512-n/ShnvDi6FHbbVfviro+WojiFzv+s8MPMHBczVePfUpDJLwoLT0ht1l4YwBCbi8pJAveEEdnkHyPyTP/mzRfwg== + dependencies: + safe-buffer "~5.1.0" + +stringify-entities@^4.0.0: + version "4.0.4" + resolved "https://registry.yarnpkg.com/stringify-entities/-/stringify-entities-4.0.4.tgz#b3b79ef5f277cc4ac73caeb0236c5ba939b3a4f3" + integrity sha512-IwfBptatlO+QCJUo19AqvrPNqlVMpW9YEL2LIVY+Rpv2qsjCGxaDLNRgeGsQWJhfItebuJhsGSLjaBbNSQ+ieg== + dependencies: + character-entities-html4 "^2.0.0" + character-entities-legacy "^3.0.0" + +stringify-object@^3.3.0: + version "3.3.0" + resolved "https://registry.yarnpkg.com/stringify-object/-/stringify-object-3.3.0.tgz#703065aefca19300d3ce88af4f5b3956d7556629" + integrity sha512-rHqiFh1elqCQ9WPLIC8I0Q/g/wj5J1eMkyoiD6eoQApWHP0FtlK7rqnhmabL5VUY9JQCcqwwvlOaSuutekgyrw== + dependencies: + get-own-enumerable-property-symbols "^3.0.0" + is-obj "^1.0.1" + is-regexp "^1.0.0" + +"strip-ansi-cjs@npm:strip-ansi@^6.0.1", strip-ansi@^6.0.0, strip-ansi@^6.0.1: + version "6.0.1" + resolved "https://registry.yarnpkg.com/strip-ansi/-/strip-ansi-6.0.1.tgz#9e26c63d30f53443e9489495b2105d37b67a85d9" + integrity sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A== + dependencies: + ansi-regex "^5.0.1" + +strip-ansi@^7.0.1: + version "7.1.0" + resolved "https://registry.yarnpkg.com/strip-ansi/-/strip-ansi-7.1.0.tgz#d5b6568ca689d8561370b0707685d22434faff45" + integrity sha512-iq6eVVI64nQQTRYq2KtEg2d2uU7LElhTJwsH4YzIHZshxlgZms/wIc4VoDQTlG/IvVIrBKG06CrZnp0qv7hkcQ== + dependencies: + ansi-regex "^6.0.1" + +strip-bom-string@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/strip-bom-string/-/strip-bom-string-1.0.0.tgz#e5211e9224369fbb81d633a2f00044dc8cedad92" + integrity sha512-uCC2VHvQRYu+lMh4My/sFNmF2klFymLX1wHJeXnbEJERpV/ZsVuonzerjfrGpIGF7LBVa1O7i9kjiWvJiFck8g== + +strip-bom@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/strip-bom/-/strip-bom-3.0.0.tgz#2334c18e9c759f7bdd56fdef7e9ae3d588e68ed3" + integrity sha512-vavAMRXOgBVNF6nyEEmL3DBK19iRpDcoIwW+swQ+CbGiu7lju6t+JklA1MHweoWtadgt4ISVUsXLyDq34ddcwA== + +strip-final-newline@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/strip-final-newline/-/strip-final-newline-2.0.0.tgz#89b852fb2fcbe936f6f4b3187afb0a12c1ab58ad" + integrity sha512-BrpvfNAE3dcvq7ll3xVumzjKjZQ5tI1sEUIKr3Uoks0XUl45St3FlatVqef9prk4jRDzhW6WZg+3bk93y6pLjA== + +strip-json-comments@^3.1.1: + version "3.1.1" + resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-3.1.1.tgz#31f1281b3832630434831c310c01cccda8cbe006" + integrity sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig== + +strip-json-comments@~2.0.1: + version "2.0.1" + resolved "https://registry.yarnpkg.com/strip-json-comments/-/strip-json-comments-2.0.1.tgz#3c531942e908c2697c0ec344858c286c7ca0a60a" + integrity sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ== + +style-to-object@^0.4.0: + version "0.4.4" + resolved "https://registry.yarnpkg.com/style-to-object/-/style-to-object-0.4.4.tgz#266e3dfd56391a7eefb7770423612d043c3f33ec" + integrity sha512-HYNoHZa2GorYNyqiCaBgsxvcJIn7OHq6inEga+E6Ke3m5JkoqpQbnFssk4jwe+K7AhGa2fcha4wSOf1Kn01dMg== + dependencies: + inline-style-parser "0.1.1" + +style-to-object@^1.0.0: + version "1.0.8" + resolved "https://registry.yarnpkg.com/style-to-object/-/style-to-object-1.0.8.tgz#67a29bca47eaa587db18118d68f9d95955e81292" + integrity sha512-xT47I/Eo0rwJmaXC4oilDGDWLohVhR6o/xAQcPQN8q6QBuZVL8qMYL85kLmST5cPjAorwvqIA4qXTRQoYHaL6g== + dependencies: + inline-style-parser "0.2.4" + +stylehacks@^6.1.1: + version "6.1.1" + resolved "https://registry.yarnpkg.com/stylehacks/-/stylehacks-6.1.1.tgz#543f91c10d17d00a440430362d419f79c25545a6" + integrity sha512-gSTTEQ670cJNoaeIp9KX6lZmm8LJ3jPB5yJmX8Zq/wQxOsAFXV3qjWzHas3YYk1qesuVIyYWWUpZ0vSE/dTSGg== + dependencies: + browserslist "^4.23.0" + postcss-selector-parser "^6.0.16" + +stylis@^4.1.3: + version "4.3.4" + resolved "https://registry.yarnpkg.com/stylis/-/stylis-4.3.4.tgz#ca5c6c4a35c4784e4e93a2a24dc4e9fa075250a4" + integrity sha512-osIBl6BGUmSfDkyH2mB7EFvCJntXDrLhKjHTRj/rK6xLH0yuPrHULDRQzKokSOD4VoorhtKpfcfW1GAntu8now== + +supabase@^1.148.6: + version "1.200.3" + resolved "https://registry.yarnpkg.com/supabase/-/supabase-1.200.3.tgz#52cd53fd0bcd46af0748c8ffa61fac05e21a0a23" + integrity sha512-3NdhqBkfPVlm+rAhWQoVcyr54kykuAlHav/GWaAoQEHBDbbYI1lhbDzugk8ryQg92vSLwr3pWz0s4Hjdte8WyQ== + dependencies: + bin-links "^4.0.3" + https-proxy-agent "^7.0.2" + node-fetch "^3.3.2" + tar "7.4.3" + +supports-color@^5.3.0: + version "5.5.0" + resolved "https://registry.yarnpkg.com/supports-color/-/supports-color-5.5.0.tgz#e2e69a44ac8772f78a1ec0b35b689df6530efc8f" + integrity sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow== + dependencies: + has-flag "^3.0.0" + +supports-color@^7.1.0: + version "7.2.0" + resolved "https://registry.yarnpkg.com/supports-color/-/supports-color-7.2.0.tgz#1b7dcdcb32b8138801b3e478ba6a51caa89648da" + integrity sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw== + dependencies: + has-flag "^4.0.0" + +supports-color@^8.0.0: + version "8.1.1" + resolved "https://registry.yarnpkg.com/supports-color/-/supports-color-8.1.1.tgz#cd6fc17e28500cff56c1b86c0a7fd4a54a73005c" + integrity sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q== + dependencies: + has-flag "^4.0.0" + +supports-preserve-symlinks-flag@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz#6eda4bd344a3c94aea376d4cc31bc77311039e09" + integrity sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w== + +svg-parser@^2.0.4: + version "2.0.4" + resolved "https://registry.yarnpkg.com/svg-parser/-/svg-parser-2.0.4.tgz#fdc2e29e13951736140b76cb122c8ee6630eb6b5" + integrity sha512-e4hG1hRwoOdRb37cIMSgzNsxyzKfayW6VOflrwvR+/bzrkyxY/31WkbgnQpgtrNp1SdpJvpUAGTa/ZoiPNDuRQ== + +svgo@^3.0.2, svgo@^3.2.0: + version "3.3.2" + resolved "https://registry.yarnpkg.com/svgo/-/svgo-3.3.2.tgz#ad58002652dffbb5986fc9716afe52d869ecbda8" + integrity sha512-OoohrmuUlBs8B8o6MB2Aevn+pRIH9zDALSR+6hhqVfa6fRwG/Qw9VUMSMW9VNg2CFc/MTIfabtdOVl9ODIJjpw== + dependencies: + "@trysound/sax" "0.2.0" + commander "^7.2.0" + css-select "^5.1.0" + css-tree "^2.3.1" + css-what "^6.1.0" + csso "^5.0.5" + picocolors "^1.0.0" + +symbol-tree@^3.2.4: + version "3.2.4" + resolved "https://registry.yarnpkg.com/symbol-tree/-/symbol-tree-3.2.4.tgz#430637d248ba77e078883951fb9aa0eed7c63fa2" + integrity sha512-9QNk5KwDF+Bvz+PyObkmSYjI5ksVUYtjW7AU22r2NKcfLJcXp96hkDWU3+XndOsUb+AQ9QhfzfCT2O+CNWT5Tw== + +tapable@^1.0.0: + version "1.1.3" + resolved "https://registry.yarnpkg.com/tapable/-/tapable-1.1.3.tgz#a1fccc06b58db61fd7a45da2da44f5f3a3e67ba2" + integrity sha512-4WK/bYZmj8xLr+HUCODHGF1ZFzsYffasLUgEiMBY4fgtltdO6B4WJtlSbPaDTLpYTcGVwM2qLnFTICEcNxs3kA== + +tapable@^2.0.0, tapable@^2.1.1, tapable@^2.2.0, tapable@^2.2.1: + version "2.2.1" + resolved "https://registry.yarnpkg.com/tapable/-/tapable-2.2.1.tgz#1967a73ef4060a82f12ab96af86d52fdb76eeca0" + integrity sha512-GNzQvQTOIP6RyTfE2Qxb8ZVlNmw0n88vp1szwWRimP02mnTsx3Wtn5qRdqY9w2XduFNUgvOwhNnQsjwCp+kqaQ== + +tar@7.4.3: + version "7.4.3" + resolved "https://registry.yarnpkg.com/tar/-/tar-7.4.3.tgz#88bbe9286a3fcd900e94592cda7a22b192e80571" + integrity sha512-5S7Va8hKfV7W5U6g3aYxXmlPoZVAwUMy9AOKyF2fVuZa2UD3qZjg578OrLRt8PcNN1PleVaL/5/yYATNL0ICUw== + dependencies: + "@isaacs/fs-minipass" "^4.0.0" + chownr "^3.0.0" + minipass "^7.1.2" + minizlib "^3.0.1" + mkdirp "^3.0.1" + yallist "^5.0.0" + +terser-webpack-plugin@^5.3.10, terser-webpack-plugin@^5.3.9: + version "5.3.10" + resolved "https://registry.yarnpkg.com/terser-webpack-plugin/-/terser-webpack-plugin-5.3.10.tgz#904f4c9193c6fd2a03f693a2150c62a92f40d199" + integrity sha512-BKFPWlPDndPs+NGGCr1U59t0XScL5317Y0UReNrHaw9/FwhPENlq6bfgs+4yPfyP51vqC1bQ4rp1EfXW5ZSH9w== + dependencies: + "@jridgewell/trace-mapping" "^0.3.20" + jest-worker "^27.4.5" + schema-utils "^3.1.1" + serialize-javascript "^6.0.1" + terser "^5.26.0" + +terser@^5.10.0, terser@^5.15.1, terser@^5.26.0: + version "5.33.0" + resolved "https://registry.yarnpkg.com/terser/-/terser-5.33.0.tgz#8f9149538c7468ffcb1246cfec603c16720d2db1" + integrity sha512-JuPVaB7s1gdFKPKTelwUyRq5Sid2A3Gko2S0PncwdBq7kN9Ti9HPWDQ06MPsEDGsZeVESjKEnyGy68quBk1w6g== + dependencies: + "@jridgewell/source-map" "^0.3.3" + acorn "^8.8.2" + commander "^2.20.0" + source-map-support "~0.5.20" + +text-table@^0.2.0: + version "0.2.0" + resolved "https://registry.yarnpkg.com/text-table/-/text-table-0.2.0.tgz#7f5ee823ae805207c00af2df4a84ec3fcfa570b4" + integrity sha512-N+8UisAXDGk8PFXP4HAzVR9nbfmVJ3zYLAWiTIoqC5v5isinhr+r5uaO8+7r3BMfuNIufIsA7RdpVgacC2cSpw== + +thunky@^1.0.2: + version "1.1.0" + resolved "https://registry.yarnpkg.com/thunky/-/thunky-1.1.0.tgz#5abaf714a9405db0504732bbccd2cedd9ef9537d" + integrity sha512-eHY7nBftgThBqOyHGVN+l8gF0BucP09fMo0oO/Lb0w1OF80dJv+lDVpXG60WMQvkcxAkNybKsrEIE3ZtKGmPrA== + +tiny-invariant@^1.0.2: + version "1.3.3" + resolved "https://registry.yarnpkg.com/tiny-invariant/-/tiny-invariant-1.3.3.tgz#46680b7a873a0d5d10005995eb90a70d74d60127" + integrity sha512-+FbBPE1o9QAYvviau/qC5SE3caw21q3xkvWKBtja5vgqOWIHHJ3ioaq1VPfn/Szqctz2bU/oYeKd9/z5BL+PVg== + +tiny-warning@^1.0.0: + version "1.0.3" + resolved "https://registry.yarnpkg.com/tiny-warning/-/tiny-warning-1.0.3.tgz#94a30db453df4c643d0fd566060d60a875d84754" + integrity sha512-lBN9zLN/oAf68o3zNXYrdCt1kP8WsiGW8Oo2ka41b2IM5JL/S1CTyX1rW0mb/zSuJun0ZUrDxx4sqvYS2FWzPA== + +tldts-core@^6.1.47: + version "6.1.47" + resolved "https://registry.yarnpkg.com/tldts-core/-/tldts-core-6.1.47.tgz#bb6deb97abb6ef04243af60968d2d0055a65cbd7" + integrity sha512-6SWyFMnlst1fEt7GQVAAu16EGgFK0cLouH/2Mk6Ftlwhv3Ol40L0dlpGMcnnNiiOMyD2EV/aF3S+U2nKvvLvrA== + +tldts@^6.1.32: + version "6.1.47" + resolved "https://registry.yarnpkg.com/tldts/-/tldts-6.1.47.tgz#bab4edf5867e2bbd763e72d9435289de97b082df" + integrity sha512-R/K2tZ5MiY+mVrnSkNJkwqYT2vUv1lcT6wJvd2emGaMJ7PHUGRY4e3tUsdFCXgqxi2QgbHjL3yJgXCo40v9Hxw== + dependencies: + tldts-core "^6.1.47" + +to-fast-properties@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/to-fast-properties/-/to-fast-properties-2.0.0.tgz#dc5e698cbd079265bc73e0377681a4e4e83f616e" + integrity sha512-/OaKK0xYrs3DmxRYqL/yDc+FxFUVYhDlXMhRmv3z915w2HF1tnN1omB354j8VUGO/hbRzyD6Y3sA7v7GS/ceog== + +to-regex-range@^5.0.1: + version "5.0.1" + resolved "https://registry.yarnpkg.com/to-regex-range/-/to-regex-range-5.0.1.tgz#1648c44aae7c8d988a326018ed72f5b4dd0392e4" + integrity sha512-65P7iz6X5yEr1cwcgvQxbbIw7Uk3gOy5dIdtZ4rDveLqhrdJP+Li/Hx6tyK0NEb+2GCyneCMJiGqrADCSNk8sQ== + dependencies: + is-number "^7.0.0" + +toidentifier@1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/toidentifier/-/toidentifier-1.0.1.tgz#3be34321a88a820ed1bd80dfaa33e479fbb8dd35" + integrity sha512-o5sSPKEkg/DIQNmH43V0/uerLrpzVedkUh8tGNvaeXpfpuwjKenlSox/2O/BTlZUtEe+JG7s5YhEz608PlAHRA== + +totalist@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/totalist/-/totalist-3.0.1.tgz#ba3a3d600c915b1a97872348f79c127475f6acf8" + integrity sha512-sf4i37nQ2LBx4m3wB74y+ubopq6W/dIzXg0FDGjsYnZHVa1Da8FH853wlL2gtUhg+xJXjfk3kUZS3BRoQeoQBQ== + +tough-cookie@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/tough-cookie/-/tough-cookie-5.0.0.tgz#6b6518e2b5c070cf742d872ee0f4f92d69eac1af" + integrity sha512-FRKsF7cz96xIIeMZ82ehjC3xW2E+O2+v11udrDYewUbszngYhsGa8z6YUMMzO9QJZzzyd0nGGXnML/TReX6W8Q== + dependencies: + tldts "^6.1.32" + +tr46@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/tr46/-/tr46-5.0.0.tgz#3b46d583613ec7283020d79019f1335723801cec" + integrity sha512-tk2G5R2KRwBd+ZN0zaEXpmzdKyOYksXwywulIX95MBODjSzMIuQnQ3m8JxgbhnL1LeVo7lqQKsYa1O3Htl7K5g== + dependencies: + punycode "^2.3.1" + +tr46@~0.0.3: + version "0.0.3" + resolved "https://registry.yarnpkg.com/tr46/-/tr46-0.0.3.tgz#8184fd347dac9cdc185992f3a6622e14b9d9ab6a" + integrity sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw== + +trim-lines@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/trim-lines/-/trim-lines-3.0.1.tgz#d802e332a07df861c48802c04321017b1bd87338" + integrity sha512-kRj8B+YHZCc9kQYdWfJB2/oUl9rA99qbowYYBtr4ui4mZyAQ2JpvVBd/6U2YloATfqBhBTSMhTpgBHtU0Mf3Rg== + +trough@^2.0.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/trough/-/trough-2.2.0.tgz#94a60bd6bd375c152c1df911a4b11d5b0256f50f" + integrity sha512-tmMpK00BjZiUyVyvrBK7knerNgmgvcV/KLVyuma/SC+TQN167GrMRciANTz09+k3zW8L8t60jWO1GpfkZdjTaw== + +ts-dedent@^2.2.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/ts-dedent/-/ts-dedent-2.2.0.tgz#39e4bd297cd036292ae2394eb3412be63f563bb5" + integrity sha512-q5W7tVM71e2xjHZTlgfTDoPF/SmqKG5hddq9SzR49CH2hayqRKJtQ4mtRlSxKaJlR/+9rEM+mnBHf7I2/BQcpQ== + +ts-morph@^21.0.1: + version "21.0.1" + resolved "https://registry.yarnpkg.com/ts-morph/-/ts-morph-21.0.1.tgz#712302a0f6e9dbf1aa8d9cf33a4386c4b18c2006" + integrity sha512-dbDtVdEAncKctzrVZ+Nr7kHpHkv+0JDJb2MjjpBaj8bFeCkePU9rHfMklmhuLFnpeq/EJZk2IhStY6NzqgjOkg== + dependencies: + "@ts-morph/common" "~0.22.0" + code-block-writer "^12.0.0" + +tsconfig-paths@^3.15.0: + version "3.15.0" + resolved "https://registry.yarnpkg.com/tsconfig-paths/-/tsconfig-paths-3.15.0.tgz#5299ec605e55b1abb23ec939ef15edaf483070d4" + integrity sha512-2Ac2RgzDe/cn48GvOe3M+o82pEFewD3UPbyoUHHdKasHwJKjds4fLXWf/Ux5kATBKN20oaFGu+jbElp1pos0mg== + dependencies: + "@types/json5" "^0.0.29" + json5 "^1.0.2" + minimist "^1.2.6" + strip-bom "^3.0.0" + +tslib@^2.0.3, tslib@^2.6.0: + version "2.7.0" + resolved "https://registry.yarnpkg.com/tslib/-/tslib-2.7.0.tgz#d9b40c5c40ab59e8738f297df3087bf1a2690c01" + integrity sha512-gLXCKdN1/j47AiHiOkJN69hJmcbGTHI0ImLmbYLHykhgeN0jVGola9yVjFgzCUklsZQMW55o+dW7IXv3RCXDzA== + +type-check@^0.4.0, type-check@~0.4.0: + version "0.4.0" + resolved "https://registry.yarnpkg.com/type-check/-/type-check-0.4.0.tgz#07b8203bfa7056c0657050e3ccd2c37730bab8f1" + integrity sha512-XleUoc9uwGXqjWwXaUTZAmzMcFZ5858QA2vvx1Ur5xIcixXIP+8LnFDgRplU30us6teqdlskFfu+ae4K79Ooew== + dependencies: + prelude-ls "^1.2.1" + +type-fest@^0.20.2: + version "0.20.2" + resolved "https://registry.yarnpkg.com/type-fest/-/type-fest-0.20.2.tgz#1bf207f4b28f91583666cb5fbd327887301cd5f4" + integrity sha512-Ne+eE4r0/iWnpAxD852z3A+N0Bt5RN//NjJwRd2VFHEmrywxf5vsZlh4R6lixl6B+wz/8d+maTSAkN1FIkI3LQ== + +type-fest@^1.0.1: + version "1.4.0" + resolved "https://registry.yarnpkg.com/type-fest/-/type-fest-1.4.0.tgz#e9fb813fe3bf1744ec359d55d1affefa76f14be1" + integrity sha512-yGSza74xk0UG8k+pLh5oeoYirvIiWo5t0/o3zHHAO2tRDiZcxWP7fywNlXhqb6/r6sWvwi+RsyQMWhVLe4BVuA== + +type-fest@^2.13.0, type-fest@^2.5.0: + version "2.19.0" + resolved "https://registry.yarnpkg.com/type-fest/-/type-fest-2.19.0.tgz#88068015bb33036a598b952e55e9311a60fd3a9b" + integrity sha512-RAH822pAdBgcNMAfWnCBU3CFZcfZ/i1eZjwFU/dsLKumyuuP3niueg2UAukXYF0E2AAoc82ZSSf9J0WQBinzHA== + +type-is@~1.6.18: + version "1.6.18" + resolved "https://registry.yarnpkg.com/type-is/-/type-is-1.6.18.tgz#4e552cd05df09467dcbc4ef739de89f2cf37c131" + integrity sha512-TkRKr9sUTxEH8MdfuCSP7VizJyzRNMjj2J2do2Jr3Kym598JVdEksuzPQCnlFPW4ky9Q+iA+ma9BGm06XQBy8g== + dependencies: + media-typer "0.3.0" + mime-types "~2.1.24" + +typed-array-buffer@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/typed-array-buffer/-/typed-array-buffer-1.0.2.tgz#1867c5d83b20fcb5ccf32649e5e2fc7424474ff3" + integrity sha512-gEymJYKZtKXzzBzM4jqa9w6Q1Jjm7x2d+sh19AdsD4wqnMPDYyvwpsIc2Q/835kHuo3BEQ7CjelGhfTsoBb2MQ== + dependencies: + call-bind "^1.0.7" + es-errors "^1.3.0" + is-typed-array "^1.1.13" + +typed-array-byte-length@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/typed-array-byte-length/-/typed-array-byte-length-1.0.1.tgz#d92972d3cff99a3fa2e765a28fcdc0f1d89dec67" + integrity sha512-3iMJ9q0ao7WE9tWcaYKIptkNBuOIcZCCT0d4MRvuuH88fEoEH62IuQe0OtraD3ebQEoTRk8XCBoknUNc1Y67pw== + dependencies: + call-bind "^1.0.7" + for-each "^0.3.3" + gopd "^1.0.1" + has-proto "^1.0.3" + is-typed-array "^1.1.13" + +typed-array-byte-offset@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/typed-array-byte-offset/-/typed-array-byte-offset-1.0.2.tgz#f9ec1acb9259f395093e4567eb3c28a580d02063" + integrity sha512-Ous0vodHa56FviZucS2E63zkgtgrACj7omjwd/8lTEMEPFFyjfixMZ1ZXenpgCFBBt4EC1J2XsyVS2gkG0eTFA== + dependencies: + available-typed-arrays "^1.0.7" + call-bind "^1.0.7" + for-each "^0.3.3" + gopd "^1.0.1" + has-proto "^1.0.3" + is-typed-array "^1.1.13" + +typed-array-length@^1.0.6: + version "1.0.6" + resolved "https://registry.yarnpkg.com/typed-array-length/-/typed-array-length-1.0.6.tgz#57155207c76e64a3457482dfdc1c9d1d3c4c73a3" + integrity sha512-/OxDN6OtAk5KBpGb28T+HZc2M+ADtvRxXrKKbUwtsLgdoxgX13hyy7ek6bFRl5+aBs2yZzB0c4CnQfAtVypW/g== + dependencies: + call-bind "^1.0.7" + for-each "^0.3.3" + gopd "^1.0.1" + has-proto "^1.0.3" + is-typed-array "^1.1.13" + possible-typed-array-names "^1.0.0" + +typedarray-to-buffer@^3.1.5: + version "3.1.5" + resolved "https://registry.yarnpkg.com/typedarray-to-buffer/-/typedarray-to-buffer-3.1.5.tgz#a97ee7a9ff42691b9f783ff1bc5112fe3fca9080" + integrity sha512-zdu8XMNEDepKKR+XYOXAVPtWui0ly0NtohUscw+UmaHiAWT8hrV1rr//H6V+0DvJ3OQ19S979M0laLfX8rm82Q== + dependencies: + is-typedarray "^1.0.0" + +typedoc-plugin-markdown@next: + version "4.0.0-next.60" + resolved "https://registry.yarnpkg.com/typedoc-plugin-markdown/-/typedoc-plugin-markdown-4.0.0-next.60.tgz#2ce86ab79d628391468a43d2be8483de4a6ea0ba" + integrity sha512-aXuPXg3qyTYmpLGGRrpkZMIzQEE9YW5l7WwSVVInM0mj8M025k8oIefep5kYm+30e7fUFLkrftuvkP8X3Xn7ug== + +typedoc@^0.24.4: + version "0.24.8" + resolved "https://registry.yarnpkg.com/typedoc/-/typedoc-0.24.8.tgz#cce9f47ba6a8d52389f5e583716a2b3b4335b63e" + integrity sha512-ahJ6Cpcvxwaxfu4KtjA8qZNqS43wYt6JL27wYiIgl1vd38WW/KWX11YuAeZhuz9v+ttrutSsgK+XO1CjL1kA3w== + dependencies: + lunr "^2.3.9" + marked "^4.3.0" + minimatch "^9.0.0" + shiki "^0.14.1" + +typescript@<5.2.0: + version "5.1.6" + resolved "https://registry.yarnpkg.com/typescript/-/typescript-5.1.6.tgz#02f8ac202b6dad2c0dd5e0913745b47a37998274" + integrity sha512-zaWCozRZ6DLEWAWFrVDz1H6FVXzUSfTy5FUMWsQlU8Ym5JP9eO4xkTIROFCQvhQf61z6O/G6ugw3SgAnvvm+HA== + +typescript@^5.2.2: + version "5.6.2" + resolved "https://registry.yarnpkg.com/typescript/-/typescript-5.6.2.tgz#d1de67b6bef77c41823f822df8f0b3bcff60a5a0" + integrity sha512-NW8ByodCSNCwZeghjN3o+JX5OFH0Ojg6sadjEKY4huZ52TqbJTJnDo5+Tw98lSy63NZvi4n+ez5m2u5d4PkZyw== + +unbox-primitive@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/unbox-primitive/-/unbox-primitive-1.0.2.tgz#29032021057d5e6cdbd08c5129c226dff8ed6f9e" + integrity sha512-61pPlCD9h51VoreyJ0BReideM3MDKMKnh6+V9L08331ipq6Q8OFXZYiqP6n/tbHx4s5I9uRhcye6BrbkizkBDw== + dependencies: + call-bind "^1.0.2" + has-bigints "^1.0.2" + has-symbols "^1.0.3" + which-boxed-primitive "^1.0.2" + +undici-types@~6.19.2: + version "6.19.8" + resolved "https://registry.yarnpkg.com/undici-types/-/undici-types-6.19.8.tgz#35111c9d1437ab83a7cdc0abae2f26d88eda0a02" + integrity sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw== + +unicode-canonical-property-names-ecmascript@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/unicode-canonical-property-names-ecmascript/-/unicode-canonical-property-names-ecmascript-2.0.1.tgz#cb3173fe47ca743e228216e4a3ddc4c84d628cc2" + integrity sha512-dA8WbNeb2a6oQzAQ55YlT5vQAWGV9WXOsi3SskE3bcCdM0P4SDd+24zS/OCacdRq5BkdsRj9q3Pg6YyQoxIGqg== + +unicode-emoji-modifier-base@^1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/unicode-emoji-modifier-base/-/unicode-emoji-modifier-base-1.0.0.tgz#dbbd5b54ba30f287e2a8d5a249da6c0cef369459" + integrity sha512-yLSH4py7oFH3oG/9K+XWrz1pSi3dfUrWEnInbxMfArOfc1+33BlGPQtLsOYwvdMy11AwUBetYuaRxSPqgkq+8g== + +unicode-match-property-ecmascript@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/unicode-match-property-ecmascript/-/unicode-match-property-ecmascript-2.0.0.tgz#54fd16e0ecb167cf04cf1f756bdcc92eba7976c3" + integrity sha512-5kaZCrbp5mmbz5ulBkDkbY0SsPOjKqVS35VpL9ulMPfSl0J0Xsm+9Evphv9CoIZFwre7aJoa94AY6seMKGVN5Q== + dependencies: + unicode-canonical-property-names-ecmascript "^2.0.0" + unicode-property-aliases-ecmascript "^2.0.0" + +unicode-match-property-value-ecmascript@^2.1.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/unicode-match-property-value-ecmascript/-/unicode-match-property-value-ecmascript-2.2.0.tgz#a0401aee72714598f739b68b104e4fe3a0cb3c71" + integrity sha512-4IehN3V/+kkr5YeSSDDQG8QLqO26XpL2XP3GQtqwlT/QYSECAwFztxVHjlbh0+gjJ3XmNLS0zDsbgs9jWKExLg== + +unicode-property-aliases-ecmascript@^2.0.0: + version "2.1.0" + resolved "https://registry.yarnpkg.com/unicode-property-aliases-ecmascript/-/unicode-property-aliases-ecmascript-2.1.0.tgz#43d41e3be698bd493ef911077c9b131f827e8ccd" + integrity sha512-6t3foTQI9qne+OZoVQB/8x8rk2k1eVy1gRXhV3oFQ5T6R1dqQ1xtin3XqSlx3+ATBkliTaR/hHyJBm+LVPNM8w== + +unified@^11.0.0, unified@^11.0.3, unified@^11.0.4: + version "11.0.5" + resolved "https://registry.yarnpkg.com/unified/-/unified-11.0.5.tgz#f66677610a5c0a9ee90cab2b8d4d66037026d9e1" + integrity sha512-xKvGhPWw3k84Qjh8bI3ZeJjqnyadK+GEFtazSfZv/rKeTkTjOJho6mFqh2SM96iIcZokxiOpg78GazTSg8+KHA== + dependencies: + "@types/unist" "^3.0.0" + bail "^2.0.0" + devlop "^1.0.0" + extend "^3.0.0" + is-plain-obj "^4.0.0" + trough "^2.0.0" + vfile "^6.0.0" + +unique-string@^3.0.0: + version "3.0.0" + resolved "https://registry.yarnpkg.com/unique-string/-/unique-string-3.0.0.tgz#84a1c377aff5fd7a8bc6b55d8244b2bd90d75b9a" + integrity sha512-VGXBUVwxKMBUznyffQweQABPRRW1vHZAbadFZud4pLFAqRGvv/96vafgjWFqzourzr8YonlQiPgH0YCJfawoGQ== + dependencies: + crypto-random-string "^4.0.0" + +unist-util-is@^6.0.0: + version "6.0.0" + resolved "https://registry.yarnpkg.com/unist-util-is/-/unist-util-is-6.0.0.tgz#b775956486aff107a9ded971d996c173374be424" + integrity sha512-2qCTHimwdxLfz+YzdGfkqNlH0tLi9xjTnHddPmJwtIG9MGsdbutfTc4P+haPD7l7Cjxf/WZj+we5qfVPvvxfYw== + dependencies: + "@types/unist" "^3.0.0" + +unist-util-position-from-estree@^2.0.0: + version "2.0.0" + resolved "https://registry.yarnpkg.com/unist-util-position-from-estree/-/unist-util-position-from-estree-2.0.0.tgz#d94da4df596529d1faa3de506202f0c9a23f2200" + integrity sha512-KaFVRjoqLyF6YXCbVLNad/eS4+OfPQQn2yOd7zF/h5T/CSL2v8NpN6a5TPvtbXthAGw5nG+PuTtq+DdIZr+cRQ== + dependencies: + "@types/unist" "^3.0.0" + +unist-util-position@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/unist-util-position/-/unist-util-position-5.0.0.tgz#678f20ab5ca1207a97d7ea8a388373c9cf896be4" + integrity sha512-fucsC7HjXvkB5R3kTCO7kUjRdrS0BJt3M/FPxmHMBOm8JQi2BsHAHFsy27E0EolP8rp0NzXsJ+jNPyDWvOJZPA== + dependencies: + "@types/unist" "^3.0.0" + +unist-util-stringify-position@^3.0.0: + version "3.0.3" + resolved "https://registry.yarnpkg.com/unist-util-stringify-position/-/unist-util-stringify-position-3.0.3.tgz#03ad3348210c2d930772d64b489580c13a7db39d" + integrity sha512-k5GzIBZ/QatR8N5X2y+drfpWG8IDBzdnVj6OInRNWm1oXrzydiaAT2OQiA8DPRRZyAKb9b6I2a6PxYklZD0gKg== + dependencies: + "@types/unist" "^2.0.0" + +unist-util-stringify-position@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/unist-util-stringify-position/-/unist-util-stringify-position-4.0.0.tgz#449c6e21a880e0855bf5aabadeb3a740314abac2" + integrity sha512-0ASV06AAoKCDkS2+xw5RXJywruurpbC4JZSm7nr7MOt1ojAzvyyaO+UxZf18j8FCF6kmzCZKcAgN/yu2gm2XgQ== + dependencies: + "@types/unist" "^3.0.0" + +unist-util-visit-parents@^6.0.0: + version "6.0.1" + resolved "https://registry.yarnpkg.com/unist-util-visit-parents/-/unist-util-visit-parents-6.0.1.tgz#4d5f85755c3b8f0dc69e21eca5d6d82d22162815" + integrity sha512-L/PqWzfTP9lzzEa6CKs0k2nARxTdZduw3zyh8d2NVBnsyvHjSX4TWse388YrrQKbvI8w20fGjGlhgT96WwKykw== + dependencies: + "@types/unist" "^3.0.0" + unist-util-is "^6.0.0" + +unist-util-visit@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/unist-util-visit/-/unist-util-visit-5.0.0.tgz#a7de1f31f72ffd3519ea71814cccf5fd6a9217d6" + integrity sha512-MR04uvD+07cwl/yhVuVWAtw+3GOR/knlL55Nd/wAdblk27GCVt3lqpTivy/tkJcZoNPzTwS1Y+KMojlLDhoTzg== + dependencies: + "@types/unist" "^3.0.0" + unist-util-is "^6.0.0" + unist-util-visit-parents "^6.0.0" + +universalify@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/universalify/-/universalify-2.0.1.tgz#168efc2180964e6386d061e094df61afe239b18d" + integrity sha512-gptHNQghINnc/vTGIk0SOFGFNXw7JVrlRUtConJRlvaw6DuX0wO5Jeko9sWrMBhh+PsYAZ7oXAiOnf/UKogyiw== + +unpipe@1.0.0, unpipe@~1.0.0: + version "1.0.0" + resolved "https://registry.yarnpkg.com/unpipe/-/unpipe-1.0.0.tgz#b2bf4ee8514aae6165b4817829d21b2ef49904ec" + integrity sha512-pjy2bYhSsufwWlKwPc+l3cN7+wuJlK6uz0YdJEOlQDbl6jo/YlPi4mb8agUkVC8BF7V8NuzeyPNqRksA3hztKQ== + +update-browserslist-db@^1.1.0: + version "1.1.0" + resolved "https://registry.yarnpkg.com/update-browserslist-db/-/update-browserslist-db-1.1.0.tgz#7ca61c0d8650766090728046e416a8cde682859e" + integrity sha512-EdRAaAyk2cUE1wOf2DkEhzxqOQvFOoRJFNS6NeyJ01Gp2beMRpBAINjM2iDXE3KCuKhwnvHIQCJm6ThL2Z+HzQ== + dependencies: + escalade "^3.1.2" + picocolors "^1.0.1" + +update-notifier@^6.0.2: + version "6.0.2" + resolved "https://registry.yarnpkg.com/update-notifier/-/update-notifier-6.0.2.tgz#a6990253dfe6d5a02bd04fbb6a61543f55026b60" + integrity sha512-EDxhTEVPZZRLWYcJ4ZXjGFN0oP7qYvbXWzEgRm/Yql4dHX5wDbvh89YHP6PK1lzZJYrMtXUuZZz8XGK+U6U1og== + dependencies: + boxen "^7.0.0" + chalk "^5.0.1" + configstore "^6.0.0" + has-yarn "^3.0.0" + import-lazy "^4.0.0" + is-ci "^3.0.1" + is-installed-globally "^0.4.0" + is-npm "^6.0.0" + is-yarn-global "^0.4.0" + latest-version "^7.0.0" + pupa "^3.1.0" + semver "^7.3.7" + semver-diff "^4.0.0" + xdg-basedir "^5.1.0" + +uri-js@^4.2.2: + version "4.4.1" + resolved "https://registry.yarnpkg.com/uri-js/-/uri-js-4.4.1.tgz#9b1a52595225859e55f669d928f88c6c57f2a77e" + integrity sha512-7rKUyy33Q1yc98pQ1DAmLtwX109F7TIfWlW1Ydo8Wl1ii1SeHieeh0HHfPeL2fMXK6z0s8ecKs9frCuLJvndBg== + dependencies: + punycode "^2.1.0" + +url-loader@^4.1.1: + version "4.1.1" + resolved "https://registry.yarnpkg.com/url-loader/-/url-loader-4.1.1.tgz#28505e905cae158cf07c92ca622d7f237e70a4e2" + integrity sha512-3BTV812+AVHHOJQO8O5MkWgZ5aosP7GnROJwvzLS9hWDj00lZ6Z0wNak423Lp9PBZN05N+Jk/N5Si8jRAlGyWA== + dependencies: + loader-utils "^2.0.0" + mime-types "^2.1.27" + schema-utils "^3.0.0" + +util-deprecate@^1.0.1, util-deprecate@^1.0.2, util-deprecate@~1.0.1: + version "1.0.2" + resolved "https://registry.yarnpkg.com/util-deprecate/-/util-deprecate-1.0.2.tgz#450d4dc9fa70de732762fbd2d4a28981419a0ccf" + integrity sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw== + +utila@~0.4: + version "0.4.0" + resolved "https://registry.yarnpkg.com/utila/-/utila-0.4.0.tgz#8a16a05d445657a3aea5eecc5b12a4fa5379772c" + integrity sha512-Z0DbgELS9/L/75wZbro8xAnT50pBVFQZ+hUEueGDU5FN51YSCYM+jdxsfCiHjwNP/4LCDD0i/graKpeBnOXKRA== + +utility-types@^3.10.0: + version "3.11.0" + resolved "https://registry.yarnpkg.com/utility-types/-/utility-types-3.11.0.tgz#607c40edb4f258915e901ea7995607fdf319424c" + integrity sha512-6Z7Ma2aVEWisaL6TvBCy7P8rm2LQoPv6dJ7ecIaIixHcwfbJ0x7mWdbcwlIM5IGQxPZSFYeqRCqlOOeKoJYMkw== + +utils-merge@1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/utils-merge/-/utils-merge-1.0.1.tgz#9f95710f50a267947b2ccc124741c1028427e713" + integrity sha512-pMZTvIkT1d+TFGvDOqodOclx0QWkkgi6Tdoa8gC8ffGAAqz9pzPTZWAybbsHHoED/ztMtkv/VoYTYyShUn81hA== + +uuid@^8.3.2: + version "8.3.2" + resolved "https://registry.yarnpkg.com/uuid/-/uuid-8.3.2.tgz#80d5b5ced271bb9af6c445f21a1a04c606cefbe2" + integrity sha512-+NYs2QeMWy+GWFOEm9xnn6HCDp0l7QBD7ml8zLUmJ+93Q5NF0NocErnwkTkXVFNiX3/fpC6afS8Dhb/gz7R7eg== + +uuid@^9.0.0: + version "9.0.1" + resolved "https://registry.yarnpkg.com/uuid/-/uuid-9.0.1.tgz#e188d4c8853cc722220392c424cd637f32293f30" + integrity sha512-b+1eJOlsR9K8HJpow9Ok3fiWOWSIcIzXodvv0rQjVoOVNpWMpxf1wZNpt4y9h10odCNrqnYp1OBzRktckBe3sA== + +uvu@^0.5.0: + version "0.5.6" + resolved "https://registry.yarnpkg.com/uvu/-/uvu-0.5.6.tgz#2754ca20bcb0bb59b64e9985e84d2e81058502df" + integrity sha512-+g8ENReyr8YsOc6fv/NVJs2vFdHBnBNdfE49rshrTzDWOlUx4Gq7KOS2GD8eqhy2j+Ejq29+SbKH8yjkAqXqoA== + dependencies: + dequal "^2.0.0" + diff "^5.0.0" + kleur "^4.0.3" + sade "^1.7.3" + +value-equal@^1.0.1: + version "1.0.1" + resolved "https://registry.yarnpkg.com/value-equal/-/value-equal-1.0.1.tgz#1e0b794c734c5c0cade179c437d356d931a34d6c" + integrity sha512-NOJ6JZCAWr0zlxZt+xqCHNTEKOsrks2HQd4MqhP1qy4z1SkbEP467eNx6TgDKXMvUOb+OENfJCZwM+16n7fRfw== + +vary@~1.1.2: + version "1.1.2" + resolved "https://registry.yarnpkg.com/vary/-/vary-1.1.2.tgz#2299f02c6ded30d4a5961b0b9f74524a18f634fc" + integrity sha512-BNGbWLfd0eUPabhkXUVm0j8uuvREyTh5ovRa/dyow/BqAbZJyC+5fU+IzQOzmAKzYqYRAISoRhdQr3eIZ/PXqg== + +vfile-location@^5.0.0: + version "5.0.3" + resolved "https://registry.yarnpkg.com/vfile-location/-/vfile-location-5.0.3.tgz#cb9eacd20f2b6426d19451e0eafa3d0a846225c3" + integrity sha512-5yXvWDEgqeiYiBe1lbxYF7UMAIm/IcopxMHrMQDq3nvKcjPKIhZklUKL+AE7J7uApI4kwe2snsK+eI6UTj9EHg== + dependencies: + "@types/unist" "^3.0.0" + vfile "^6.0.0" + +vfile-message@^4.0.0: + version "4.0.2" + resolved "https://registry.yarnpkg.com/vfile-message/-/vfile-message-4.0.2.tgz#c883c9f677c72c166362fd635f21fc165a7d1181" + integrity sha512-jRDZ1IMLttGj41KcZvlrYAaI3CfqpLpfpf+Mfig13viT6NKvRzWZ+lXz0Y5D60w6uJIBAOGq9mSHf0gktF0duw== + dependencies: + "@types/unist" "^3.0.0" + unist-util-stringify-position "^4.0.0" + +vfile@^6.0.0, vfile@^6.0.1: + version "6.0.3" + resolved "https://registry.yarnpkg.com/vfile/-/vfile-6.0.3.tgz#3652ab1c496531852bf55a6bac57af981ebc38ab" + integrity sha512-KzIbH/9tXat2u30jf+smMwFCsno4wHVdNmzFyL+T/L3UGqqk6JKfVqOFOZEpZSHADH1k40ab6NUIXZq422ov3Q== + dependencies: + "@types/unist" "^3.0.0" + vfile-message "^4.0.0" + +vscode-oniguruma@^1.7.0: + version "1.7.0" + resolved "https://registry.yarnpkg.com/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz#439bfad8fe71abd7798338d1cd3dc53a8beea94b" + integrity sha512-L9WMGRfrjOhgHSdOYgCt/yRMsXzLDJSL7BPrOZt73gU0iWO4mpqzqQzOz5srxqTvMBaR0XZTSrVWo4j55Rc6cA== + +vscode-textmate@^8.0.0: + version "8.0.0" + resolved "https://registry.yarnpkg.com/vscode-textmate/-/vscode-textmate-8.0.0.tgz#2c7a3b1163ef0441097e0b5d6389cd5504b59e5d" + integrity sha512-AFbieoL7a5LMqcnOF04ji+rpXadgOXnZsxQr//r83kLPr7biP7am3g9zbaZIaBGwBRWeSvoMD4mgPdX3e4NWBg== + +w3c-xmlserializer@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/w3c-xmlserializer/-/w3c-xmlserializer-5.0.0.tgz#f925ba26855158594d907313cedd1476c5967f6c" + integrity sha512-o8qghlI8NZHU1lLPrpi2+Uq7abh4GGPpYANlalzWxyWteJOCsr/P+oPBA49TOLu5FTZO4d3F9MnWJfiMo4BkmA== + dependencies: + xml-name-validator "^5.0.0" + +watchpack@^2.4.1: + version "2.4.2" + resolved "https://registry.yarnpkg.com/watchpack/-/watchpack-2.4.2.tgz#2feeaed67412e7c33184e5a79ca738fbd38564da" + integrity sha512-TnbFSbcOCcDgjZ4piURLCbJ3nJhznVh9kw6F6iokjiFPl8ONxe9A6nMDVXDiNbrSfLILs6vB07F7wLBrwPYzJw== + dependencies: + glob-to-regexp "^0.4.1" + graceful-fs "^4.1.2" + +wbuf@^1.1.0, wbuf@^1.7.3: + version "1.7.3" + resolved "https://registry.yarnpkg.com/wbuf/-/wbuf-1.7.3.tgz#c1d8d149316d3ea852848895cb6a0bfe887b87df" + integrity sha512-O84QOnr0icsbFGLS0O3bI5FswxzRr8/gHwWkDlQFskhSPryQXvrTMxjxGP4+iWYoauLoBvfDpkrOauZ+0iZpDA== + dependencies: + minimalistic-assert "^1.0.0" + +web-namespaces@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/web-namespaces/-/web-namespaces-2.0.1.tgz#1010ff7c650eccb2592cebeeaf9a1b253fd40692" + integrity sha512-bKr1DkiNa2krS7qxNtdrtHAmzuYGFQLiQ13TsorsdT6ULTkPLKuu5+GsFpDlg6JFjUTwX2DyhMPG2be8uPrqsQ== + +web-streams-polyfill@^3.0.3: + version "3.3.3" + resolved "https://registry.yarnpkg.com/web-streams-polyfill/-/web-streams-polyfill-3.3.3.tgz#2073b91a2fdb1fbfbd401e7de0ac9f8214cecb4b" + integrity sha512-d2JWLCivmZYTSIoge9MsgFCZrt571BikcWGYkjC1khllbTeDlGqZ2D8vD8E/lJa8WGWbb7Plm8/XJYV7IJHZZw== + +web-worker@^1.2.0: + version "1.3.0" + resolved "https://registry.yarnpkg.com/web-worker/-/web-worker-1.3.0.tgz#e5f2df5c7fe356755a5fb8f8410d4312627e6776" + integrity sha512-BSR9wyRsy/KOValMgd5kMyr3JzpdeoR9KVId8u5GVlTTAtNChlsE4yTxeY7zMdNSyOmoKBv8NH2qeRY9Tg+IaA== + +webidl-conversions@^3.0.0: + version "3.0.1" + resolved "https://registry.yarnpkg.com/webidl-conversions/-/webidl-conversions-3.0.1.tgz#24534275e2a7bc6be7bc86611cc16ae0a5654871" + integrity sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ== + +webidl-conversions@^7.0.0: + version "7.0.0" + resolved "https://registry.yarnpkg.com/webidl-conversions/-/webidl-conversions-7.0.0.tgz#256b4e1882be7debbf01d05f0aa2039778ea080a" + integrity sha512-VwddBukDzu71offAQR975unBIGqfKZpM+8ZX6ySk8nYhVoo5CYaZyzt3YBvYtRtO+aoGlqxPg/B87NGVZ/fu6g== + +webpack-bundle-analyzer@^4.9.0: + version "4.10.2" + resolved "https://registry.yarnpkg.com/webpack-bundle-analyzer/-/webpack-bundle-analyzer-4.10.2.tgz#633af2862c213730be3dbdf40456db171b60d5bd" + integrity sha512-vJptkMm9pk5si4Bv922ZbKLV8UTT4zib4FPgXMhgzUny0bfDDkLXAVQs3ly3fS4/TN9ROFtb0NFrm04UXFE/Vw== + dependencies: + "@discoveryjs/json-ext" "0.5.7" + acorn "^8.0.4" + acorn-walk "^8.0.0" + commander "^7.2.0" + debounce "^1.2.1" + escape-string-regexp "^4.0.0" + gzip-size "^6.0.0" + html-escaper "^2.0.2" + opener "^1.5.2" + picocolors "^1.0.0" + sirv "^2.0.3" + ws "^7.3.1" + +webpack-dev-middleware@^5.3.4: + version "5.3.4" + resolved "https://registry.yarnpkg.com/webpack-dev-middleware/-/webpack-dev-middleware-5.3.4.tgz#eb7b39281cbce10e104eb2b8bf2b63fce49a3517" + integrity sha512-BVdTqhhs+0IfoeAf7EoH5WE+exCmqGerHfDM0IL096Px60Tq2Mn9MAbnaGUe6HiMa41KMCYF19gyzZmBcq/o4Q== + dependencies: + colorette "^2.0.10" + memfs "^3.4.3" + mime-types "^2.1.31" + range-parser "^1.2.1" + schema-utils "^4.0.0" + +webpack-dev-server@^4.15.1: + version "4.15.2" + resolved "https://registry.yarnpkg.com/webpack-dev-server/-/webpack-dev-server-4.15.2.tgz#9e0c70a42a012560860adb186986da1248333173" + integrity sha512-0XavAZbNJ5sDrCbkpWL8mia0o5WPOd2YGtxrEiZkBK9FjLppIUK2TgxK6qGD2P3hUXTJNNPVibrerKcx5WkR1g== + dependencies: + "@types/bonjour" "^3.5.9" + "@types/connect-history-api-fallback" "^1.3.5" + "@types/express" "^4.17.13" + "@types/serve-index" "^1.9.1" + "@types/serve-static" "^1.13.10" + "@types/sockjs" "^0.3.33" + "@types/ws" "^8.5.5" + ansi-html-community "^0.0.8" + bonjour-service "^1.0.11" + chokidar "^3.5.3" + colorette "^2.0.10" + compression "^1.7.4" + connect-history-api-fallback "^2.0.0" + default-gateway "^6.0.3" + express "^4.17.3" + graceful-fs "^4.2.6" + html-entities "^2.3.2" + http-proxy-middleware "^2.0.3" + ipaddr.js "^2.0.1" + launch-editor "^2.6.0" + open "^8.0.9" + p-retry "^4.5.0" + rimraf "^3.0.2" + schema-utils "^4.0.0" + selfsigned "^2.1.1" + serve-index "^1.9.1" + sockjs "^0.3.24" + spdy "^4.0.2" + webpack-dev-middleware "^5.3.4" + ws "^8.13.0" + +webpack-merge@^5.9.0: + version "5.10.0" + resolved "https://registry.yarnpkg.com/webpack-merge/-/webpack-merge-5.10.0.tgz#a3ad5d773241e9c682803abf628d4cd62b8a4177" + integrity sha512-+4zXKdx7UnO+1jaN4l2lHVD+mFvnlZQP/6ljaJVb4SZiwIKeUnrT5l0gkT8z+n4hKpC+jpOv6O9R+gLtag7pSA== + dependencies: + clone-deep "^4.0.1" + flat "^5.0.2" + wildcard "^2.0.0" + +webpack-sources@^3.2.3: + version "3.2.3" + resolved "https://registry.yarnpkg.com/webpack-sources/-/webpack-sources-3.2.3.tgz#2d4daab8451fd4b240cc27055ff6a0c2ccea0cde" + integrity sha512-/DyMEOrDgLKKIG0fmvtz+4dUX/3Ghozwgm6iPp8KRhvn+eQf9+Q7GWxVNMk3+uCPWfdXYC4ExGBckIXdFEfH1w== + +webpack@^5.75.0, webpack@^5.88.1: + version "5.94.0" + resolved "https://registry.yarnpkg.com/webpack/-/webpack-5.94.0.tgz#77a6089c716e7ab90c1c67574a28da518a20970f" + integrity sha512-KcsGn50VT+06JH/iunZJedYGUJS5FGjow8wb9c0v5n1Om8O1g4L6LjtfxwlXIATopoQu+vOXXa7gYisWxCoPyg== + dependencies: + "@types/estree" "^1.0.5" + "@webassemblyjs/ast" "^1.12.1" + "@webassemblyjs/wasm-edit" "^1.12.1" + "@webassemblyjs/wasm-parser" "^1.12.1" + acorn "^8.7.1" + acorn-import-attributes "^1.9.5" + browserslist "^4.21.10" + chrome-trace-event "^1.0.2" + enhanced-resolve "^5.17.1" + es-module-lexer "^1.2.1" + eslint-scope "5.1.1" + events "^3.2.0" + glob-to-regexp "^0.4.1" + graceful-fs "^4.2.11" + json-parse-even-better-errors "^2.3.1" + loader-runner "^4.2.0" + mime-types "^2.1.27" + neo-async "^2.6.2" + schema-utils "^3.2.0" + tapable "^2.1.1" + terser-webpack-plugin "^5.3.10" + watchpack "^2.4.1" + webpack-sources "^3.2.3" + +webpackbar@^5.0.2: + version "5.0.2" + resolved "https://registry.yarnpkg.com/webpackbar/-/webpackbar-5.0.2.tgz#d3dd466211c73852741dfc842b7556dcbc2b0570" + integrity sha512-BmFJo7veBDgQzfWXl/wwYXr/VFus0614qZ8i9znqcl9fnEdiVkdbi0TedLQ6xAK92HZHDJ0QmyQ0fmuZPAgCYQ== + dependencies: + chalk "^4.1.0" + consola "^2.15.3" + pretty-time "^1.1.0" + std-env "^3.0.1" + +websocket-driver@>=0.5.1, websocket-driver@^0.7.4: + version "0.7.4" + resolved "https://registry.yarnpkg.com/websocket-driver/-/websocket-driver-0.7.4.tgz#89ad5295bbf64b480abcba31e4953aca706f5760" + integrity sha512-b17KeDIQVjvb0ssuSDF2cYXSg2iztliJ4B9WdsuB6J952qCPKmnVq4DyW5motImXHDC1cBT/1UezrJVsKw5zjg== + dependencies: + http-parser-js ">=0.5.1" + safe-buffer ">=5.1.0" + websocket-extensions ">=0.1.1" + +websocket-extensions@>=0.1.1: + version "0.1.4" + resolved "https://registry.yarnpkg.com/websocket-extensions/-/websocket-extensions-0.1.4.tgz#7f8473bc839dfd87608adb95d7eb075211578a42" + integrity sha512-OqedPIGOfsDlo31UNwYbCFMSaO9m9G/0faIHj5/dZFDMFqPTcx6UwqyOy3COEaEOg/9VsGIpdqn62W5KhoKSpg== + +whatwg-encoding@^3.1.1: + version "3.1.1" + resolved "https://registry.yarnpkg.com/whatwg-encoding/-/whatwg-encoding-3.1.1.tgz#d0f4ef769905d426e1688f3e34381a99b60b76e5" + integrity sha512-6qN4hJdMwfYBtE3YBTTHhoeuUrDBPZmbQaxWAqSALV/MeEnR5z1xd8UKud2RAkFoPkmB+hli1TZSnyi84xz1vQ== + dependencies: + iconv-lite "0.6.3" + +whatwg-mimetype@^4.0.0: + version "4.0.0" + resolved "https://registry.yarnpkg.com/whatwg-mimetype/-/whatwg-mimetype-4.0.0.tgz#bc1bf94a985dc50388d54a9258ac405c3ca2fc0a" + integrity sha512-QaKxh0eNIi2mE9p2vEdzfagOKHCcj1pJ56EEHGQOVxp8r9/iszLUUV7v89x9O1p/T+NlTM5W7jW6+cz4Fq1YVg== + +whatwg-url@^14.0.0: + version "14.0.0" + resolved "https://registry.yarnpkg.com/whatwg-url/-/whatwg-url-14.0.0.tgz#00baaa7fd198744910c4b1ef68378f2200e4ceb6" + integrity sha512-1lfMEm2IEr7RIV+f4lUNPOqfFL+pO+Xw3fJSqmjX9AbXcXcYOkCe1P6+9VBZB6n94af16NfZf+sSk0JCBZC9aw== + dependencies: + tr46 "^5.0.0" + webidl-conversions "^7.0.0" + +whatwg-url@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/whatwg-url/-/whatwg-url-5.0.0.tgz#966454e8765462e37644d3626f6742ce8b70965d" + integrity sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw== + dependencies: + tr46 "~0.0.3" + webidl-conversions "^3.0.0" + +which-boxed-primitive@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/which-boxed-primitive/-/which-boxed-primitive-1.0.2.tgz#13757bc89b209b049fe5d86430e21cf40a89a8e6" + integrity sha512-bwZdv0AKLpplFY2KZRX6TvyuN7ojjr7lwkg6ml0roIy9YeuSr7JS372qlNW18UQYzgYK9ziGcerWqZOmEn9VNg== + dependencies: + is-bigint "^1.0.1" + is-boolean-object "^1.1.0" + is-number-object "^1.0.4" + is-string "^1.0.5" + is-symbol "^1.0.3" + +which-builtin-type@^1.1.3: + version "1.1.4" + resolved "https://registry.yarnpkg.com/which-builtin-type/-/which-builtin-type-1.1.4.tgz#592796260602fc3514a1b5ee7fa29319b72380c3" + integrity sha512-bppkmBSsHFmIMSl8BO9TbsyzsvGjVoppt8xUiGzwiu/bhDCGxnpOKCxgqj6GuyHE0mINMDecBFPlOm2hzY084w== + dependencies: + function.prototype.name "^1.1.6" + has-tostringtag "^1.0.2" + is-async-function "^2.0.0" + is-date-object "^1.0.5" + is-finalizationregistry "^1.0.2" + is-generator-function "^1.0.10" + is-regex "^1.1.4" + is-weakref "^1.0.2" + isarray "^2.0.5" + which-boxed-primitive "^1.0.2" + which-collection "^1.0.2" + which-typed-array "^1.1.15" + +which-collection@^1.0.1, which-collection@^1.0.2: + version "1.0.2" + resolved "https://registry.yarnpkg.com/which-collection/-/which-collection-1.0.2.tgz#627ef76243920a107e7ce8e96191debe4b16c2a0" + integrity sha512-K4jVyjnBdgvc86Y6BkaLZEN933SwYOuBFkdmBu9ZfkcAbdVbpITnDmjvZ/aQjRXQrv5EPkTnD1s39GiiqbngCw== + dependencies: + is-map "^2.0.3" + is-set "^2.0.3" + is-weakmap "^2.0.2" + is-weakset "^2.0.3" + +which-typed-array@^1.1.13, which-typed-array@^1.1.14, which-typed-array@^1.1.15: + version "1.1.15" + resolved "https://registry.yarnpkg.com/which-typed-array/-/which-typed-array-1.1.15.tgz#264859e9b11a649b388bfaaf4f767df1f779b38d" + integrity sha512-oV0jmFtUky6CXfkqehVvBP/LSWJ2sy4vWMioiENyJLePrBO/yKyV9OyJySfAKosh+RYkIl5zJCNZ8/4JncrpdA== + dependencies: + available-typed-arrays "^1.0.7" + call-bind "^1.0.7" + for-each "^0.3.3" + gopd "^1.0.1" + has-tostringtag "^1.0.2" + +which@^1.3.1: + version "1.3.1" + resolved "https://registry.yarnpkg.com/which/-/which-1.3.1.tgz#a45043d54f5805316da8d62f9f50918d3da70b0a" + integrity sha512-HxJdYWq1MTIQbJ3nw0cqssHoTNU267KlrDuGZ1WYlxDStUtKUhOaJmh112/TZmHxxUfuJqPXSOm7tDyas0OSIQ== + dependencies: + isexe "^2.0.0" + +which@^2.0.1: + version "2.0.2" + resolved "https://registry.yarnpkg.com/which/-/which-2.0.2.tgz#7c6a8dd0a636a0327e10b59c9286eee93f3f51b1" + integrity sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA== + dependencies: + isexe "^2.0.0" + +widest-line@^4.0.1: + version "4.0.1" + resolved "https://registry.yarnpkg.com/widest-line/-/widest-line-4.0.1.tgz#a0fc673aaba1ea6f0a0d35b3c2795c9a9cc2ebf2" + integrity sha512-o0cyEG0e8GPzT4iGHphIOh0cJOV8fivsXxddQasHPHfoZf1ZexrfeA21w2NaEN1RHE+fXlfISmOE8R9N3u3Qig== + dependencies: + string-width "^5.0.1" + +wildcard@^2.0.0: + version "2.0.1" + resolved "https://registry.yarnpkg.com/wildcard/-/wildcard-2.0.1.tgz#5ab10d02487198954836b6349f74fff961e10f67" + integrity sha512-CC1bOL87PIWSBhDcTrdeLo6eGT7mCFtrg0uIJtqJUFyK+eJnzl8A1niH56uu7KMa5XFrtiV+AQuHO3n7DsHnLQ== + +word-wrap@^1.2.5: + version "1.2.5" + resolved "https://registry.yarnpkg.com/word-wrap/-/word-wrap-1.2.5.tgz#d2c45c6dd4fbce621a66f136cbe328afd0410b34" + integrity sha512-BN22B5eaMMI9UMtjrGd5g5eCYPpCPDUy0FJXbYsaT5zYxjFOckS53SQDE3pWkVoWpHXVb3BrYcEN4Twa55B5cA== + +"wrap-ansi-cjs@npm:wrap-ansi@^7.0.0": + version "7.0.0" + resolved "https://registry.yarnpkg.com/wrap-ansi/-/wrap-ansi-7.0.0.tgz#67e145cff510a6a6984bdf1152911d69d2eb9e43" + integrity sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q== + dependencies: + ansi-styles "^4.0.0" + string-width "^4.1.0" + strip-ansi "^6.0.0" + +wrap-ansi@^8.0.1, wrap-ansi@^8.1.0: + version "8.1.0" + resolved "https://registry.yarnpkg.com/wrap-ansi/-/wrap-ansi-8.1.0.tgz#56dc22368ee570face1b49819975d9b9a5ead214" + integrity sha512-si7QWI6zUMq56bESFvagtmzMdGOtoxfR+Sez11Mobfc7tm+VkUckk9bW2UeffTGVUbOksxmSw0AA2gs8g71NCQ== + dependencies: + ansi-styles "^6.1.0" + string-width "^5.0.1" + strip-ansi "^7.0.1" + +wrappy@1: + version "1.0.2" + resolved "https://registry.yarnpkg.com/wrappy/-/wrappy-1.0.2.tgz#b5243d8f3ec1aa35f1364605bc0d1036e30ab69f" + integrity sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ== + +write-file-atomic@^3.0.3: + version "3.0.3" + resolved "https://registry.yarnpkg.com/write-file-atomic/-/write-file-atomic-3.0.3.tgz#56bd5c5a5c70481cd19c571bd39ab965a5de56e8" + integrity sha512-AvHcyZ5JnSfq3ioSyjrBkH9yW4m7Ayk8/9My/DD9onKeu/94fwrMocemO2QAJFAlnnDN+ZDS+ZjAR5ua1/PV/Q== + dependencies: + imurmurhash "^0.1.4" + is-typedarray "^1.0.0" + signal-exit "^3.0.2" + typedarray-to-buffer "^3.1.5" + +write-file-atomic@^5.0.0: + version "5.0.1" + resolved "https://registry.yarnpkg.com/write-file-atomic/-/write-file-atomic-5.0.1.tgz#68df4717c55c6fa4281a7860b4c2ba0a6d2b11e7" + integrity sha512-+QU2zd6OTD8XWIJCbffaiQeH9U73qIqafo1x6V1snCWYGJf6cVE0cDR4D8xRzcEnfI21IFrUPzPGtcPf8AC+Rw== + dependencies: + imurmurhash "^0.1.4" + signal-exit "^4.0.1" + +ws@^7.3.1: + version "7.5.10" + resolved "https://registry.yarnpkg.com/ws/-/ws-7.5.10.tgz#58b5c20dc281633f6c19113f39b349bd8bd558d9" + integrity sha512-+dbF1tHwZpXcbOJdVOkzLDxZP1ailvSxM6ZweXTegylPny803bFhA+vqBYw4s31NSAk4S2Qz+AKXK9a4wkdjcQ== + +ws@^8.13.0, ws@^8.14.2, ws@^8.18.0: + version "8.18.0" + resolved "https://registry.yarnpkg.com/ws/-/ws-8.18.0.tgz#0d7505a6eafe2b0e712d232b42279f53bc289bbc" + integrity sha512-8VbfWfHLbbwu3+N6OKsOMpBdT4kXPDDB9cJk2bJ6mh9ucxdlnNvH1e+roYkKmN9Nxw2yjz7VzeO9oOz2zJ04Pw== + +xdg-basedir@^5.0.1, xdg-basedir@^5.1.0: + version "5.1.0" + resolved "https://registry.yarnpkg.com/xdg-basedir/-/xdg-basedir-5.1.0.tgz#1efba19425e73be1bc6f2a6ceb52a3d2c884c0c9" + integrity sha512-GCPAHLvrIH13+c0SuacwvRYj2SxJXQ4kaVTT5xgL3kPrz56XxkF21IGhjSE1+W0aw7gpBWRGXLCPnPby6lSpmQ== + +xml-js@^1.6.11: + version "1.6.11" + resolved "https://registry.yarnpkg.com/xml-js/-/xml-js-1.6.11.tgz#927d2f6947f7f1c19a316dd8eea3614e8b18f8e9" + integrity sha512-7rVi2KMfwfWFl+GpPg6m80IVMWXLRjO+PxTq7V2CDhoGak0wzYzFgUY2m4XJ47OGdXd8eLE8EmwfAmdjw7lC1g== + dependencies: + sax "^1.2.4" + +xml-name-validator@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/xml-name-validator/-/xml-name-validator-5.0.0.tgz#82be9b957f7afdacf961e5980f1bf227c0bf7673" + integrity sha512-EvGK8EJ3DhaHfbRlETOWAS5pO9MZITeauHKJyb8wyajUfQUenkIg2MvLDTZ4T/TgIcm3HU0TFBgWWboAZ30UHg== + +xmlchars@^2.2.0: + version "2.2.0" + resolved "https://registry.yarnpkg.com/xmlchars/-/xmlchars-2.2.0.tgz#060fe1bcb7f9c76fe2a17db86a9bc3ab894210cb" + integrity sha512-JZnDKK8B0RCDw84FNdDAIpZK+JuJw+s7Lz8nksI7SIuU3UXJJslUthsi+uWBUYOwPFwW7W7PRLRfUKpxjtjFCw== + +yallist@^3.0.2: + version "3.1.1" + resolved "https://registry.yarnpkg.com/yallist/-/yallist-3.1.1.tgz#dbb7daf9bfd8bac9ab45ebf602b8cbad0d5d08fd" + integrity sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g== + +yallist@^5.0.0: + version "5.0.0" + resolved "https://registry.yarnpkg.com/yallist/-/yallist-5.0.0.tgz#00e2de443639ed0d78fd87de0d27469fbcffb533" + integrity sha512-YgvUTfwqyc7UXVMrB+SImsVYSmTS8X/tSrtdNZMImM+n7+QTriRXyXim0mBrTXNeqzVF0KWGgHPeiyViFFrNDw== + +yaml-loader@^0.8.0: + version "0.8.1" + resolved "https://registry.yarnpkg.com/yaml-loader/-/yaml-loader-0.8.1.tgz#034f901147073cfc307cdcce8bd44c1547e60ba1" + integrity sha512-BCEndnUoi3BaZmePkwGGe93txRxLgMhBa/gE725v1/GHnura8QvNs7c4+4C1yyhhKoj3Dg63M7IqhA++15j6ww== + dependencies: + javascript-stringify "^2.0.1" + loader-utils "^2.0.0" + yaml "^2.0.0" + +yaml@^1.7.2: + version "1.10.2" + resolved "https://registry.yarnpkg.com/yaml/-/yaml-1.10.2.tgz#2301c5ffbf12b467de8da2333a459e29e7920e4b" + integrity sha512-r3vXyErRCYJ7wg28yvBY5VSoAF8ZvlcW9/BwUzEtUsjvX/DKs24dIkuwjtuprwJJHsbyUbLApepYTR1BN4uHrg== + +yaml@^2.0.0: + version "2.5.1" + resolved "https://registry.yarnpkg.com/yaml/-/yaml-2.5.1.tgz#c9772aacf62cb7494a95b0c4f1fb065b563db130" + integrity sha512-bLQOjaX/ADgQ20isPJRvF0iRUHIxVhYvr53Of7wGcWlO2jvtUlH5m87DsmulFVxRpNLOnI4tB6p/oh8D7kpn9Q== + +yocto-queue@^0.1.0: + version "0.1.0" + resolved "https://registry.yarnpkg.com/yocto-queue/-/yocto-queue-0.1.0.tgz#0294eb3dee05028d31ee1a5fa2c556a6aaf10a1b" + integrity sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q== + +yocto-queue@^1.0.0: + version "1.1.1" + resolved "https://registry.yarnpkg.com/yocto-queue/-/yocto-queue-1.1.1.tgz#fef65ce3ac9f8a32ceac5a634f74e17e5b232110" + integrity sha512-b4JR1PFR10y1mKjhHY9LaGo6tmrgjit7hxVIeAmyMw3jegXR4dhYqLaQF5zMXZxY7tLpMyJeLjr1C4rLmkVe8g== + +zwitch@^2.0.0: + version "2.0.4" + resolved "https://registry.yarnpkg.com/zwitch/-/zwitch-2.0.4.tgz#c827d4b0acb76fc3e685a4c6ec2902d51070e9d7" + integrity sha512-bXE4cR/kVZhKZX/RjPEflHaKVhUVl85noU3v6b8apfQEc1x4A+zBxjZ4lN8LqGd6WZ3dl98pY4o717VFmoPp+A== diff --git a/libs/cli/langchain_cli/__init__.py b/libs/cli/langchain_cli/__init__.py index c8bb365cacd4f..b2228ec55843c 100644 --- a/libs/cli/langchain_cli/__init__.py +++ b/libs/cli/langchain_cli/__init__.py @@ -1,8 +1,5 @@ -from importlib import metadata +from langchain_cli._version import __version__ -try: - __version__ = metadata.version(__package__) -except metadata.PackageNotFoundError: - # Case where package metadata is not available. - __version__ = "" -del metadata # optional, avoids polluting the results of dir(__package__) +__all__ = [ + "__version__", +] diff --git a/libs/experimental/langchain_experimental/__init__.py b/libs/cli/langchain_cli/_version.py similarity index 90% rename from libs/experimental/langchain_experimental/__init__.py rename to libs/cli/langchain_cli/_version.py index c8bb365cacd4f..45a10f2eb4a1e 100644 --- a/libs/experimental/langchain_experimental/__init__.py +++ b/libs/cli/langchain_cli/_version.py @@ -6,3 +6,5 @@ # Case where package metadata is not available. __version__ = "" del metadata # optional, avoids polluting the results of dir(__package__) + +__all__ = ["__version__"] diff --git a/libs/cli/langchain_cli/cli.py b/libs/cli/langchain_cli/cli.py index 70c4e5fb972d8..4ac747addee53 100644 --- a/libs/cli/langchain_cli/cli.py +++ b/libs/cli/langchain_cli/cli.py @@ -1,16 +1,15 @@ -import importlib from typing import Optional import typer from typing_extensions import Annotated +from langchain_cli._version import __version__ from langchain_cli.namespaces import app as app_namespace from langchain_cli.namespaces import integration as integration_namespace from langchain_cli.namespaces import template as template_namespace +from langchain_cli.namespaces.migrate import main as migrate_namespace from langchain_cli.utils.packages import get_langserve_export, get_package_root -__version__ = "0.0.22rc0" - app = typer.Typer(no_args_is_help=True, add_completion=False) app.add_typer( template_namespace.package_cli, name="template", help=template_namespace.__doc__ @@ -22,12 +21,16 @@ help=integration_namespace.__doc__, ) - -# If libcst is installed, add the migrate namespace -if importlib.util.find_spec("libcst"): - from langchain_cli.namespaces.migrate import main as migrate_namespace - - app.add_typer(migrate_namespace.app, name="migrate", help=migrate_namespace.__doc__) +app.command( + name="migrate", + context_settings={ + # Let Grit handle the arguments + "allow_extra_args": True, + "ignore_unknown_options": True, + }, +)( + migrate_namespace.migrate, +) def version_callback(show_version: bool) -> None: diff --git a/libs/cli/langchain_cli/integration_template/docs/chat.ipynb b/libs/cli/langchain_cli/integration_template/docs/chat.ipynb index 2b838e3b090e1..4410789a8e9fc 100644 --- a/libs/cli/langchain_cli/integration_template/docs/chat.ipynb +++ b/libs/cli/langchain_cli/integration_template/docs/chat.ipynb @@ -21,7 +21,7 @@ "\n", "This will help you getting started with __ModuleName__ [chat models](/docs/concepts/#chat-models). For detailed documentation of all Chat__ModuleName__ features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/__module_name__.chat_models.Chat__ModuleName__.html).\n", "\n", - "- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/v0.2/docs/integrations/chat/openai/ for an example.\n", + "- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/chat/openai/ for an example.\n", "\n", "## Overview\n", "### Integration details\n", @@ -30,7 +30,7 @@ "- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n", "- TODO: Make sure API reference links are correct.\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/__package_name_short_snake__) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", "| [Chat__ModuleName__](https://api.python.langchain.com/en/latest/chat_models/__module_name__.chat_models.Chat__ModuleName__.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n", "\n", diff --git a/libs/cli/langchain_cli/integration_template/docs/document_loaders.ipynb b/libs/cli/langchain_cli/integration_template/docs/document_loaders.ipynb index 3d80f7b75e1fa..e457102b5cf91 100644 --- a/libs/cli/langchain_cli/integration_template/docs/document_loaders.ipynb +++ b/libs/cli/langchain_cli/integration_template/docs/document_loaders.ipynb @@ -17,7 +17,7 @@ "\n", "- TODO: Make sure API reference link is correct.\n", "\n", - "This notebook provides a quick overview for getting started with __ModuleName__ [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name___loader.__ModuleName__Loader.html).\n", + "This notebook provides a quick overview for getting started with __ModuleName__ [document loader](https://python.langchain.com/docs/concepts/#document-loaders). For detailed documentation of all __ModuleName__Loader features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name___loader.__ModuleName__Loader.html).\n", "\n", "- TODO: Add any other relevant links, like information about underlying API, etc.\n", "\n", @@ -28,7 +28,7 @@ "- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n", "- TODO: Make sure API reference links are correct.\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/document_loaders/web_loaders/__module_name___loader)|\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/document_loaders/web_loaders/__module_name___loader)|\n", "| :--- | :--- | :---: | :---: | :---: |\n", "| [__ModuleName__Loader](https://python.langchain.com/v0.2/api_reference/community/document_loaders/langchain_community.document_loaders.__module_name__loader.__ModuleName__Loader.html) | [langchain_community](https://api.python.langchain.com/en/latest/community_api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | \n", "### Loader features\n", diff --git a/libs/cli/langchain_cli/integration_template/docs/llms.ipynb b/libs/cli/langchain_cli/integration_template/docs/llms.ipynb index 98be1ccb7f865..6af4fb7941633 100644 --- a/libs/cli/langchain_cli/integration_template/docs/llms.ipynb +++ b/libs/cli/langchain_cli/integration_template/docs/llms.ipynb @@ -28,7 +28,7 @@ "- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n", "- TODO: Make sure API reference links are correct.\n", "\n", - "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n", + "| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/llms/__package_name_short_snake__) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n", "| [__ModuleName__LLM](https://api.python.langchain.com/en/latest/llms/__module_name__.llms.__ModuleName__LLM.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | beta/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n", "\n", diff --git a/libs/cli/langchain_cli/integration_template/docs/stores.ipynb b/libs/cli/langchain_cli/integration_template/docs/stores.ipynb index 78f586d8dfa5f..7f5a48aa1a6de 100644 --- a/libs/cli/langchain_cli/integration_template/docs/stores.ipynb +++ b/libs/cli/langchain_cli/integration_template/docs/stores.ipynb @@ -23,7 +23,7 @@ "\n", "This will help you get started with __ModuleName__ [key-value stores](/docs/concepts/#key-value-stores). For detailed documentation of all __ModuleName__ByteStore features and configurations head to the [API reference](https://python.langchain.com/v0.2/api_reference/core/stores/langchain_core.stores.__module_name__ByteStore.html).\n", "\n", - "- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/v0.2/docs/integrations/stores/in_memory/ for an example.\n", + "- TODO: Add any other relevant links, like information about models, prices, context windows, etc. See https://python.langchain.com/docs/integrations/stores/in_memory/ for an example.\n", "\n", "## Overview\n", "\n", @@ -35,7 +35,7 @@ "- TODO: Remove JS support link if not relevant, otherwise ensure link is correct.\n", "- TODO: Make sure API reference links are correct.\n", "\n", - "| Class | Package | Local | [JS support](https://js.langchain.com/v0.2/docs/integrations/stores/_package_name_) | Package downloads | Package latest |\n", + "| Class | Package | Local | [JS support](https://js.langchain.com/docs/integrations/stores/_package_name_) | Package downloads | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: | :---: |\n", "| [__ModuleName__ByteStore](https://api.python.langchain.com/en/latest/stores/__module_name__.stores.__ModuleName__ByteStore.html) | [__package_name__](https://api.python.langchain.com/en/latest/__package_name_short_snake___api_reference.html) | ✅/❌ | ✅/❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/__package_name__?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/__package_name__?style=flat-square&label=%20) |\n", "\n", diff --git a/libs/cli/langchain_cli/integration_template/docs/tools.ipynb b/libs/cli/langchain_cli/integration_template/docs/tools.ipynb index 047d19ff2a671..65929d292ffe0 100644 --- a/libs/cli/langchain_cli/integration_template/docs/tools.ipynb +++ b/libs/cli/langchain_cli/integration_template/docs/tools.ipynb @@ -29,7 +29,7 @@ "\n", "- TODO: Make sure links and features are correct\n", "\n", - "| Class | Package | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/tools/__module_name__) | Package latest |\n", + "| Class | Package | Serializable | [JS support](https://js.langchain.com/docs/integrations/tools/__module_name__) | Package latest |\n", "| :--- | :--- | :---: | :---: | :---: |\n", "| [__ModuleName__](https://python.langchain.com/v0.2/api_reference/community/tools/langchain_community.tools.__module_name__.tool.__ModuleName__.html) | [langchain-community](https://api.python.langchain.com/en/latest/community_api_reference.html) | beta/❌ | ✅/❌ | ![PyPI - Version](https://img.shields.io/pypi/v/langchain-community?style=flat-square&label=%20) |\n", "\n", diff --git a/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb b/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb index f259710b09306..c90550b48d66c 100644 --- a/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb +++ b/libs/cli/langchain_cli/integration_template/docs/vectorstores.ipynb @@ -292,9 +292,9 @@ "\n", "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", "\n", - "- [Tutorials: working with external knowledge](https://python.langchain.com/v0.2/docs/tutorials/#working-with-external-knowledge)\n", - "- [How-to: Question and answer with RAG](https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag)\n", - "- [Retrieval conceptual docs](https://python.langchain.com/v0.2/docs/concepts/#retrieval)" + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/#retrieval)" ] }, { diff --git a/libs/cli/langchain_cli/integration_template/integration_template/chat_models.py b/libs/cli/langchain_cli/integration_template/integration_template/chat_models.py index ed5134e763e2a..d299fb2ff26d1 100644 --- a/libs/cli/langchain_cli/integration_template/integration_template/chat_models.py +++ b/libs/cli/langchain_cli/integration_template/integration_template/chat_models.py @@ -116,7 +116,7 @@ class Chat__ModuleName__(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -144,7 +144,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' diff --git a/libs/cli/langchain_cli/integration_template/integration_template/tools.py b/libs/cli/langchain_cli/integration_template/integration_template/tools.py index 0ada7bcef564b..57deb006f062a 100644 --- a/libs/cli/langchain_cli/integration_template/integration_template/tools.py +++ b/libs/cli/langchain_cli/integration_template/integration_template/tools.py @@ -5,8 +5,8 @@ from langchain_core.callbacks import ( CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel from langchain_core.tools import BaseTool +from pydantic import BaseModel class __ModuleName__Input(BaseModel): @@ -62,7 +62,7 @@ class __ModuleName__Tool(BaseTool): .. code-block:: python # TODO: output of invocation - """ # noqa: E501 + """ # noqa: E501 # TODO: Set tool name and description name: str = "TODO: Tool name" diff --git a/libs/cli/langchain_cli/integration_template/pyproject.toml b/libs/cli/langchain_cli/integration_template/pyproject.toml index 4d129d5dbdebd..5f50f0c54d066 100644 --- a/libs/cli/langchain_cli/integration_template/pyproject.toml +++ b/libs/cli/langchain_cli/integration_template/pyproject.toml @@ -12,8 +12,8 @@ license = "MIT" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22__package_name_short__%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.0" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" [tool.poetry.group.test] optional = true diff --git a/libs/cli/langchain_cli/integration_template/scripts/check_pydantic.sh b/libs/cli/langchain_cli/integration_template/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/cli/langchain_cli/integration_template/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/.gitignore b/libs/cli/langchain_cli/namespaces/migrate/.grit/.gitignore new file mode 100644 index 0000000000000..e4fdfb17c160a --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/.gitignore @@ -0,0 +1,2 @@ +.gritmodules* +*.log diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/grit.yaml b/libs/cli/langchain_cli/namespaces/migrate/.grit/grit.yaml new file mode 100644 index 0000000000000..64198e46ce4be --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/grit.yaml @@ -0,0 +1,3 @@ +version: 0.0.1 +patterns: + - name: github.com/getgrit/stdlib#* \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/_test_replace_imports.md b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/_test_replace_imports.md new file mode 100644 index 0000000000000..8642f0ea8aff1 --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/_test_replace_imports.md @@ -0,0 +1,56 @@ +# Testing the replace_imports migration + +This runs the v0.2 migration with a desired set of rules. + +```grit +language python + +langchain_all_migrations() +``` + +## Single import + +Before: + +```python +from langchain.chat_models import ChatOpenAI +``` + +After: + +```python +from langchain_community.chat_models import ChatOpenAI +``` + +## Community to partner + +```python +from langchain_community.chat_models import ChatOpenAI +``` + +```python +from langchain_openai import ChatOpenAI +``` + +## Noop + +This file should not match at all. + +```python +from foo import ChatOpenAI +``` + +## Mixed imports + +```python +from langchain_community.chat_models import ChatOpenAI, ChatAnthropic, foo +``` + +```python +from langchain_community.chat_models import foo + +from langchain_openai import ChatOpenAI + +from langchain_anthropic import ChatAnthropic + +``` diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/anthropic.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/anthropic.grit new file mode 100644 index 0000000000000..69921b2336681 --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/anthropic.grit @@ -0,0 +1,15 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_anthropic() { + find_replace_imports(list=[ + [`langchain_community.chat_models.anthropic`, `ChatAnthropic`, `langchain_anthropic`, `ChatAnthropic`], + [`langchain_community.llms.anthropic`, `Anthropic`, `langchain_anthropic`, `Anthropic`], + [`langchain_community.chat_models`, `ChatAnthropic`, `langchain_anthropic`, `ChatAnthropic`], + [`langchain_community.llms`, `Anthropic`, `langchain_anthropic`, `Anthropic`] + ]) +} + +// Add this for invoking directly +langchain_migrate_anthropic() diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/astradb.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/astradb.grit new file mode 100644 index 0000000000000..c0534c10ab90e --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/astradb.grit @@ -0,0 +1,67 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_astradb() { + find_replace_imports(list=[ + + [ + `langchain_community.vectorstores.astradb`, + `AstraDB`, + `langchain_astradb`, + `AstraDBVectorStore` + ] + , + + [ + `langchain_community.storage.astradb`, + `AstraDBByteStore`, + `langchain_astradb`, + `AstraDBByteStore` + ] + , + + [ + `langchain_community.storage.astradb`, + `AstraDBStore`, + `langchain_astradb`, + `AstraDBStore` + ] + , + + [ + `langchain_community.cache`, + `AstraDBCache`, + `langchain_astradb`, + `AstraDBCache` + ] + , + + [ + `langchain_community.cache`, + `AstraDBSemanticCache`, + `langchain_astradb`, + `AstraDBSemanticCache` + ] + , + + [ + `langchain_community.chat_message_histories.astradb`, + `AstraDBChatMessageHistory`, + `langchain_astradb`, + `AstraDBChatMessageHistory` + ] + , + + [ + `langchain_community.document_loaders.astradb`, + `AstraDBLoader`, + `langchain_astradb`, + `AstraDBLoader` + ] + + ]) +} + +// Add this for invoking directly +langchain_migrate_astradb() diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/community_to_core.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/community_to_core.grit new file mode 100644 index 0000000000000..2040d68fbb8c4 --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/community_to_core.grit @@ -0,0 +1,38 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_community_to_core() { + find_replace_imports(list=[ + [`langchain_community.callbacks.tracers`, `ConsoleCallbackHandler`, `langchain_core.tracers`, `ConsoleCallbackHandler`], + [`langchain_community.callbacks.tracers`, `FunctionCallbackHandler`, `langchain_core.tracers.stdout`, `FunctionCallbackHandler`], + [`langchain_community.callbacks.tracers`, `LangChainTracer`, `langchain_core.tracers`, `LangChainTracer`], + [`langchain_community.callbacks.tracers`, `LangChainTracerV1`, `langchain_core.tracers.langchain_v1`, `LangChainTracerV1`], + [`langchain_community.docstore.document`, `Document`, `langchain_core.documents`, `Document`], + [`langchain_community.document_loaders`, `Blob`, `langchain_core.document_loaders`, `Blob`], + [`langchain_community.document_loaders`, `BlobLoader`, `langchain_core.document_loaders`, `BlobLoader`], + [`langchain_community.document_loaders.base`, `BaseBlobParser`, `langchain_core.document_loaders`, `BaseBlobParser`], + [`langchain_community.document_loaders.base`, `BaseLoader`, `langchain_core.document_loaders`, `BaseLoader`], + [`langchain_community.document_loaders.blob_loaders`, `Blob`, `langchain_core.document_loaders`, `Blob`], + [`langchain_community.document_loaders.blob_loaders`, `BlobLoader`, `langchain_core.document_loaders`, `BlobLoader`], + [`langchain_community.document_loaders.blob_loaders.schema`, `Blob`, `langchain_core.document_loaders`, `Blob`], + [`langchain_community.document_loaders.blob_loaders.schema`, `BlobLoader`, `langchain_core.document_loaders`, `BlobLoader`], + [`langchain_community.tools`, `BaseTool`, `langchain_core.tools`, `BaseTool`], + [`langchain_community.tools`, `StructuredTool`, `langchain_core.tools`, `StructuredTool`], + [`langchain_community.tools`, `Tool`, `langchain_core.tools`, `Tool`], + [`langchain_community.tools`, `format_tool_to_openai_function`, `langchain_core.utils.function_calling`, `format_tool_to_openai_function`], + [`langchain_community.tools`, `tool`, `langchain_core.tools`, `tool`], + [`langchain_community.tools.convert_to_openai`, `format_tool_to_openai_function`, `langchain_core.utils.function_calling`, `format_tool_to_openai_function`], + [`langchain_community.tools.convert_to_openai`, `format_tool_to_openai_tool`, `langchain_core.utils.function_calling`, `format_tool_to_openai_tool`], + [`langchain_community.tools.render`, `format_tool_to_openai_function`, `langchain_core.utils.function_calling`, `format_tool_to_openai_function`], + [`langchain_community.tools.render`, `format_tool_to_openai_tool`, `langchain_core.utils.function_calling`, `format_tool_to_openai_tool`], + [`langchain_community.utils.openai_functions`, `FunctionDescription`, `langchain_core.utils.function_calling`, `FunctionDescription`], + [`langchain_community.utils.openai_functions`, `ToolDescription`, `langchain_core.utils.function_calling`, `ToolDescription`], + [`langchain_community.utils.openai_functions`, `convert_pydantic_to_openai_function`, `langchain_core.utils.function_calling`, `convert_pydantic_to_openai_function`], + [`langchain_community.utils.openai_functions`, `convert_pydantic_to_openai_tool`, `langchain_core.utils.function_calling`, `convert_pydantic_to_openai_tool`], + [`langchain_community.vectorstores`, `VectorStore`, `langchain_core.vectorstores`, `VectorStore`] + ]) +} + +// Add this for invoking directly +langchain_migrate_community_to_core() diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/community_to_core.json b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/community_to_core.json similarity index 92% rename from libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/community_to_core.json rename to libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/community_to_core.json index d2e96f6ae2cf7..77aa26ec88c80 100644 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/community_to_core.json +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/community_to_core.json @@ -51,26 +51,17 @@ "langchain_community.document_loaders.blob_loaders.schema.BlobLoader", "langchain_core.document_loaders.BlobLoader" ], - [ - "langchain_community.tools.BaseTool", - "langchain_core.tools.BaseTool" - ], + ["langchain_community.tools.BaseTool", "langchain_core.tools.BaseTool"], [ "langchain_community.tools.StructuredTool", "langchain_core.tools.StructuredTool" ], - [ - "langchain_community.tools.Tool", - "langchain_core.tools.Tool" - ], + ["langchain_community.tools.Tool", "langchain_core.tools.Tool"], [ "langchain_community.tools.format_tool_to_openai_function", "langchain_core.utils.function_calling.format_tool_to_openai_function" ], - [ - "langchain_community.tools.tool", - "langchain_core.tools.tool" - ], + ["langchain_community.tools.tool", "langchain_core.tools.tool"], [ "langchain_community.tools.convert_to_openai.format_tool_to_openai_function", "langchain_core.utils.function_calling.format_tool_to_openai_function" @@ -107,4 +98,4 @@ "langchain_community.vectorstores.VectorStore", "langchain_core.vectorstores.VectorStore" ] -] \ No newline at end of file +] diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/everything.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/everything.grit new file mode 100644 index 0000000000000..c61bad8d8fa9d --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/everything.grit @@ -0,0 +1,18 @@ +language python + +pattern langchain_all_migrations() { + any { + langchain_migrate_community_to_core(), + langchain_migrate_fireworks(), + langchain_migrate_ibm(), + langchain_migrate_langchain_to_core(), + langchain_migrate_langchain_to_langchain_community(), + langchain_migrate_langchain_to_textsplitters(), + langchain_migrate_openai(), + langchain_migrate_pinecone(), + langchain_migrate_anthropic(), + replace_pydantic_v1_shim() + } +} + +langchain_all_migrations() \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/fireworks.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/fireworks.grit new file mode 100644 index 0000000000000..bd4a5a846a136 --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/fireworks.grit @@ -0,0 +1,15 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_fireworks() { + find_replace_imports(list=[ + [`langchain_community.chat_models.fireworks`, `ChatFireworks`, `langchain_fireworks`, `ChatFireworks`], + [`langchain_community.llms.fireworks`, `Fireworks`, `langchain_fireworks`, `Fireworks`], + [`langchain_community.chat_models`, `ChatFireworks`, `langchain_fireworks`, `ChatFireworks`], + [`langchain_community.llms`, `Fireworks`, `langchain_fireworks`, `Fireworks`] + ]) +} + +// Add this for invoking directly +langchain_migrate_fireworks() diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/ibm.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/ibm.grit new file mode 100644 index 0000000000000..791b3a7c236cc --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/ibm.grit @@ -0,0 +1,13 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_ibm() { + find_replace_imports(list=[ + [`langchain_community.llms.watsonxllm`, `WatsonxLLM`, `langchain_ibm`, `WatsonxLLM`], + [`langchain_community.llms`, `WatsonxLLM`, `langchain_ibm`, `WatsonxLLM`] + ]) +} + +// Add this for invoking directly +langchain_migrate_ibm() diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_core.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_core.grit new file mode 100644 index 0000000000000..90f26a668581e --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_core.grit @@ -0,0 +1,542 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_langchain_to_core() { + find_replace_imports(list=[ + [`langchain._api`, `deprecated`, `langchain_core._api`, `deprecated`], + [`langchain._api`, `LangChainDeprecationWarning`, `langchain_core._api`, `LangChainDeprecationWarning`], + [`langchain._api`, `suppress_langchain_deprecation_warning`, `langchain_core._api`, `suppress_langchain_deprecation_warning`], + [`langchain._api`, `surface_langchain_deprecation_warnings`, `langchain_core._api`, `surface_langchain_deprecation_warnings`], + [`langchain._api`, `warn_deprecated`, `langchain_core._api`, `warn_deprecated`], + [`langchain._api.deprecation`, `LangChainDeprecationWarning`, `langchain_core._api`, `LangChainDeprecationWarning`], + [`langchain._api.deprecation`, `LangChainPendingDeprecationWarning`, `langchain_core._api.deprecation`, `LangChainPendingDeprecationWarning`], + [`langchain._api.deprecation`, `deprecated`, `langchain_core._api`, `deprecated`], + [`langchain._api.deprecation`, `suppress_langchain_deprecation_warning`, `langchain_core._api`, `suppress_langchain_deprecation_warning`], + [`langchain._api.deprecation`, `warn_deprecated`, `langchain_core._api`, `warn_deprecated`], + [`langchain._api.deprecation`, `surface_langchain_deprecation_warnings`, `langchain_core._api`, `surface_langchain_deprecation_warnings`], + [`langchain._api.path`, `get_relative_path`, `langchain_core._api`, `get_relative_path`], + [`langchain._api.path`, `as_import_path`, `langchain_core._api`, `as_import_path`], + [`langchain.agents`, `Tool`, `langchain_core.tools`, `Tool`], + [`langchain.agents`, `tool`, `langchain_core.tools`, `tool`], + [`langchain.agents.tools`, `BaseTool`, `langchain_core.tools`, `BaseTool`], + [`langchain.agents.tools`, `tool`, `langchain_core.tools`, `tool`], + [`langchain.agents.tools`, `Tool`, `langchain_core.tools`, `Tool`], + [`langchain.base_language`, `BaseLanguageModel`, `langchain_core.language_models`, `BaseLanguageModel`], + [`langchain.callbacks`, `StdOutCallbackHandler`, `langchain_core.callbacks`, `StdOutCallbackHandler`], + [`langchain.callbacks`, `StreamingStdOutCallbackHandler`, `langchain_core.callbacks`, `StreamingStdOutCallbackHandler`], + [`langchain.callbacks`, `LangChainTracer`, `langchain_core.tracers`, `LangChainTracer`], + [`langchain.callbacks`, `tracing_enabled`, `langchain_core.tracers.context`, `tracing_enabled`], + [`langchain.callbacks`, `tracing_v2_enabled`, `langchain_core.tracers.context`, `tracing_v2_enabled`], + [`langchain.callbacks`, `collect_runs`, `langchain_core.tracers.context`, `collect_runs`], + [`langchain.callbacks.base`, `RetrieverManagerMixin`, `langchain_core.callbacks`, `RetrieverManagerMixin`], + [`langchain.callbacks.base`, `LLMManagerMixin`, `langchain_core.callbacks`, `LLMManagerMixin`], + [`langchain.callbacks.base`, `ChainManagerMixin`, `langchain_core.callbacks`, `ChainManagerMixin`], + [`langchain.callbacks.base`, `ToolManagerMixin`, `langchain_core.callbacks`, `ToolManagerMixin`], + [`langchain.callbacks.base`, `CallbackManagerMixin`, `langchain_core.callbacks`, `CallbackManagerMixin`], + [`langchain.callbacks.base`, `RunManagerMixin`, `langchain_core.callbacks`, `RunManagerMixin`], + [`langchain.callbacks.base`, `BaseCallbackHandler`, `langchain_core.callbacks`, `BaseCallbackHandler`], + [`langchain.callbacks.base`, `AsyncCallbackHandler`, `langchain_core.callbacks`, `AsyncCallbackHandler`], + [`langchain.callbacks.base`, `BaseCallbackManager`, `langchain_core.callbacks`, `BaseCallbackManager`], + [`langchain.callbacks.manager`, `BaseRunManager`, `langchain_core.callbacks`, `BaseRunManager`], + [`langchain.callbacks.manager`, `RunManager`, `langchain_core.callbacks`, `RunManager`], + [`langchain.callbacks.manager`, `ParentRunManager`, `langchain_core.callbacks`, `ParentRunManager`], + [`langchain.callbacks.manager`, `AsyncRunManager`, `langchain_core.callbacks`, `AsyncRunManager`], + [`langchain.callbacks.manager`, `AsyncParentRunManager`, `langchain_core.callbacks`, `AsyncParentRunManager`], + [`langchain.callbacks.manager`, `CallbackManagerForLLMRun`, `langchain_core.callbacks`, `CallbackManagerForLLMRun`], + [`langchain.callbacks.manager`, `AsyncCallbackManagerForLLMRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForLLMRun`], + [`langchain.callbacks.manager`, `CallbackManagerForChainRun`, `langchain_core.callbacks`, `CallbackManagerForChainRun`], + [`langchain.callbacks.manager`, `AsyncCallbackManagerForChainRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForChainRun`], + [`langchain.callbacks.manager`, `CallbackManagerForToolRun`, `langchain_core.callbacks`, `CallbackManagerForToolRun`], + [`langchain.callbacks.manager`, `AsyncCallbackManagerForToolRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForToolRun`], + [`langchain.callbacks.manager`, `CallbackManagerForRetrieverRun`, `langchain_core.callbacks`, `CallbackManagerForRetrieverRun`], + [`langchain.callbacks.manager`, `AsyncCallbackManagerForRetrieverRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForRetrieverRun`], + [`langchain.callbacks.manager`, `CallbackManager`, `langchain_core.callbacks`, `CallbackManager`], + [`langchain.callbacks.manager`, `CallbackManagerForChainGroup`, `langchain_core.callbacks`, `CallbackManagerForChainGroup`], + [`langchain.callbacks.manager`, `AsyncCallbackManager`, `langchain_core.callbacks`, `AsyncCallbackManager`], + [`langchain.callbacks.manager`, `AsyncCallbackManagerForChainGroup`, `langchain_core.callbacks`, `AsyncCallbackManagerForChainGroup`], + [`langchain.callbacks.manager`, `tracing_enabled`, `langchain_core.tracers.context`, `tracing_enabled`], + [`langchain.callbacks.manager`, `tracing_v2_enabled`, `langchain_core.tracers.context`, `tracing_v2_enabled`], + [`langchain.callbacks.manager`, `collect_runs`, `langchain_core.tracers.context`, `collect_runs`], + [`langchain.callbacks.manager`, `atrace_as_chain_group`, `langchain_core.callbacks.manager`, `atrace_as_chain_group`], + [`langchain.callbacks.manager`, `trace_as_chain_group`, `langchain_core.callbacks.manager`, `trace_as_chain_group`], + [`langchain.callbacks.manager`, `handle_event`, `langchain_core.callbacks.manager`, `handle_event`], + [`langchain.callbacks.manager`, `ahandle_event`, `langchain_core.callbacks.manager`, `ahandle_event`], + [`langchain.callbacks.manager`, `env_var_is_set`, `langchain_core.utils.env`, `env_var_is_set`], + [`langchain.callbacks.stdout`, `StdOutCallbackHandler`, `langchain_core.callbacks`, `StdOutCallbackHandler`], + [`langchain.callbacks.streaming_stdout`, `StreamingStdOutCallbackHandler`, `langchain_core.callbacks`, `StreamingStdOutCallbackHandler`], + [`langchain.callbacks.tracers`, `ConsoleCallbackHandler`, `langchain_core.tracers`, `ConsoleCallbackHandler`], + [`langchain.callbacks.tracers`, `FunctionCallbackHandler`, `langchain_core.tracers.stdout`, `FunctionCallbackHandler`], + [`langchain.callbacks.tracers`, `LangChainTracer`, `langchain_core.tracers`, `LangChainTracer`], + [`langchain.callbacks.tracers`, `LangChainTracerV1`, `langchain_core.tracers.langchain_v1`, `LangChainTracerV1`], + [`langchain.callbacks.tracers.base`, `BaseTracer`, `langchain_core.tracers`, `BaseTracer`], + [`langchain.callbacks.tracers.base`, `TracerException`, `langchain_core.exceptions`, `TracerException`], + [`langchain.callbacks.tracers.evaluation`, `wait_for_all_evaluators`, `langchain_core.tracers.evaluation`, `wait_for_all_evaluators`], + [`langchain.callbacks.tracers.evaluation`, `EvaluatorCallbackHandler`, `langchain_core.tracers`, `EvaluatorCallbackHandler`], + [`langchain.callbacks.tracers.langchain`, `LangChainTracer`, `langchain_core.tracers`, `LangChainTracer`], + [`langchain.callbacks.tracers.langchain`, `wait_for_all_tracers`, `langchain_core.tracers.langchain`, `wait_for_all_tracers`], + [`langchain.callbacks.tracers.langchain_v1`, `LangChainTracerV1`, `langchain_core.tracers.langchain_v1`, `LangChainTracerV1`], + [`langchain.callbacks.tracers.log_stream`, `LogEntry`, `langchain_core.tracers.log_stream`, `LogEntry`], + [`langchain.callbacks.tracers.log_stream`, `RunState`, `langchain_core.tracers.log_stream`, `RunState`], + [`langchain.callbacks.tracers.log_stream`, `RunLog`, `langchain_core.tracers`, `RunLog`], + [`langchain.callbacks.tracers.log_stream`, `RunLogPatch`, `langchain_core.tracers`, `RunLogPatch`], + [`langchain.callbacks.tracers.log_stream`, `LogStreamCallbackHandler`, `langchain_core.tracers`, `LogStreamCallbackHandler`], + [`langchain.callbacks.tracers.root_listeners`, `RootListenersTracer`, `langchain_core.tracers.root_listeners`, `RootListenersTracer`], + [`langchain.callbacks.tracers.run_collector`, `RunCollectorCallbackHandler`, `langchain_core.tracers.run_collector`, `RunCollectorCallbackHandler`], + [`langchain.callbacks.tracers.schemas`, `BaseRun`, `langchain_core.tracers.schemas`, `BaseRun`], + [`langchain.callbacks.tracers.schemas`, `ChainRun`, `langchain_core.tracers.schemas`, `ChainRun`], + [`langchain.callbacks.tracers.schemas`, `LLMRun`, `langchain_core.tracers.schemas`, `LLMRun`], + [`langchain.callbacks.tracers.schemas`, `Run`, `langchain_core.tracers`, `Run`], + [`langchain.callbacks.tracers.schemas`, `RunTypeEnum`, `langchain_core.tracers.schemas`, `RunTypeEnum`], + [`langchain.callbacks.tracers.schemas`, `ToolRun`, `langchain_core.tracers.schemas`, `ToolRun`], + [`langchain.callbacks.tracers.schemas`, `TracerSession`, `langchain_core.tracers.schemas`, `TracerSession`], + [`langchain.callbacks.tracers.schemas`, `TracerSessionBase`, `langchain_core.tracers.schemas`, `TracerSessionBase`], + [`langchain.callbacks.tracers.schemas`, `TracerSessionV1`, `langchain_core.tracers.schemas`, `TracerSessionV1`], + [`langchain.callbacks.tracers.schemas`, `TracerSessionV1Base`, `langchain_core.tracers.schemas`, `TracerSessionV1Base`], + [`langchain.callbacks.tracers.schemas`, `TracerSessionV1Create`, `langchain_core.tracers.schemas`, `TracerSessionV1Create`], + [`langchain.callbacks.tracers.stdout`, `FunctionCallbackHandler`, `langchain_core.tracers.stdout`, `FunctionCallbackHandler`], + [`langchain.callbacks.tracers.stdout`, `ConsoleCallbackHandler`, `langchain_core.tracers`, `ConsoleCallbackHandler`], + [`langchain.chains.openai_functions`, `convert_to_openai_function`, `langchain_core.utils.function_calling`, `convert_to_openai_function`], + [`langchain.chains.openai_functions.base`, `convert_to_openai_function`, `langchain_core.utils.function_calling`, `convert_to_openai_function`], + [`langchain.chat_models.base`, `BaseChatModel`, `langchain_core.language_models`, `BaseChatModel`], + [`langchain.chat_models.base`, `SimpleChatModel`, `langchain_core.language_models`, `SimpleChatModel`], + [`langchain.chat_models.base`, `generate_from_stream`, `langchain_core.language_models.chat_models`, `generate_from_stream`], + [`langchain.chat_models.base`, `agenerate_from_stream`, `langchain_core.language_models.chat_models`, `agenerate_from_stream`], + [`langchain.docstore.document`, `Document`, `langchain_core.documents`, `Document`], + [`langchain.document_loaders`, `Blob`, `langchain_core.document_loaders`, `Blob`], + [`langchain.document_loaders`, `BlobLoader`, `langchain_core.document_loaders`, `BlobLoader`], + [`langchain.document_loaders.base`, `BaseLoader`, `langchain_core.document_loaders`, `BaseLoader`], + [`langchain.document_loaders.base`, `BaseBlobParser`, `langchain_core.document_loaders`, `BaseBlobParser`], + [`langchain.document_loaders.blob_loaders`, `BlobLoader`, `langchain_core.document_loaders`, `BlobLoader`], + [`langchain.document_loaders.blob_loaders`, `Blob`, `langchain_core.document_loaders`, `Blob`], + [`langchain.document_loaders.blob_loaders.schema`, `Blob`, `langchain_core.document_loaders`, `Blob`], + [`langchain.document_loaders.blob_loaders.schema`, `BlobLoader`, `langchain_core.document_loaders`, `BlobLoader`], + [`langchain.embeddings.base`, `Embeddings`, `langchain_core.embeddings`, `Embeddings`], + [`langchain.formatting`, `StrictFormatter`, `langchain_core.utils`, `StrictFormatter`], + [`langchain.input`, `get_bolded_text`, `langchain_core.utils`, `get_bolded_text`], + [`langchain.input`, `get_color_mapping`, `langchain_core.utils`, `get_color_mapping`], + [`langchain.input`, `get_colored_text`, `langchain_core.utils`, `get_colored_text`], + [`langchain.input`, `print_text`, `langchain_core.utils`, `print_text`], + [`langchain.llms.base`, `BaseLanguageModel`, `langchain_core.language_models`, `BaseLanguageModel`], + [`langchain.llms.base`, `BaseLLM`, `langchain_core.language_models`, `BaseLLM`], + [`langchain.llms.base`, `LLM`, `langchain_core.language_models`, `LLM`], + [`langchain.load`, `dumpd`, `langchain_core.load`, `dumpd`], + [`langchain.load`, `dumps`, `langchain_core.load`, `dumps`], + [`langchain.load`, `load`, `langchain_core.load`, `load`], + [`langchain.load`, `loads`, `langchain_core.load`, `loads`], + [`langchain.load.dump`, `default`, `langchain_core.load.dump`, `default`], + [`langchain.load.dump`, `dumps`, `langchain_core.load`, `dumps`], + [`langchain.load.dump`, `dumpd`, `langchain_core.load`, `dumpd`], + [`langchain.load.load`, `Reviver`, `langchain_core.load.load`, `Reviver`], + [`langchain.load.load`, `loads`, `langchain_core.load`, `loads`], + [`langchain.load.load`, `load`, `langchain_core.load`, `load`], + [`langchain.load.serializable`, `BaseSerialized`, `langchain_core.load.serializable`, `BaseSerialized`], + [`langchain.load.serializable`, `SerializedConstructor`, `langchain_core.load.serializable`, `SerializedConstructor`], + [`langchain.load.serializable`, `SerializedSecret`, `langchain_core.load.serializable`, `SerializedSecret`], + [`langchain.load.serializable`, `SerializedNotImplemented`, `langchain_core.load.serializable`, `SerializedNotImplemented`], + [`langchain.load.serializable`, `try_neq_default`, `langchain_core.load.serializable`, `try_neq_default`], + [`langchain.load.serializable`, `Serializable`, `langchain_core.load`, `Serializable`], + [`langchain.load.serializable`, `to_json_not_implemented`, `langchain_core.load.serializable`, `to_json_not_implemented`], + [`langchain.output_parsers`, `CommaSeparatedListOutputParser`, `langchain_core.output_parsers`, `CommaSeparatedListOutputParser`], + [`langchain.output_parsers`, `ListOutputParser`, `langchain_core.output_parsers`, `ListOutputParser`], + [`langchain.output_parsers`, `MarkdownListOutputParser`, `langchain_core.output_parsers`, `MarkdownListOutputParser`], + [`langchain.output_parsers`, `NumberedListOutputParser`, `langchain_core.output_parsers`, `NumberedListOutputParser`], + [`langchain.output_parsers`, `PydanticOutputParser`, `langchain_core.output_parsers`, `PydanticOutputParser`], + [`langchain.output_parsers`, `XMLOutputParser`, `langchain_core.output_parsers`, `XMLOutputParser`], + [`langchain.output_parsers`, `JsonOutputToolsParser`, `langchain_core.output_parsers.openai_tools`, `JsonOutputToolsParser`], + [`langchain.output_parsers`, `PydanticToolsParser`, `langchain_core.output_parsers.openai_tools`, `PydanticToolsParser`], + [`langchain.output_parsers`, `JsonOutputKeyToolsParser`, `langchain_core.output_parsers.openai_tools`, `JsonOutputKeyToolsParser`], + [`langchain.output_parsers.json`, `SimpleJsonOutputParser`, `langchain_core.output_parsers`, `JsonOutputParser`], + [`langchain.output_parsers.json`, `parse_partial_json`, `langchain_core.utils.json`, `parse_partial_json`], + [`langchain.output_parsers.json`, `parse_json_markdown`, `langchain_core.utils.json`, `parse_json_markdown`], + [`langchain.output_parsers.json`, `parse_and_check_json_markdown`, `langchain_core.utils.json`, `parse_and_check_json_markdown`], + [`langchain.output_parsers.list`, `ListOutputParser`, `langchain_core.output_parsers`, `ListOutputParser`], + [`langchain.output_parsers.list`, `CommaSeparatedListOutputParser`, `langchain_core.output_parsers`, `CommaSeparatedListOutputParser`], + [`langchain.output_parsers.list`, `NumberedListOutputParser`, `langchain_core.output_parsers`, `NumberedListOutputParser`], + [`langchain.output_parsers.list`, `MarkdownListOutputParser`, `langchain_core.output_parsers`, `MarkdownListOutputParser`], + [`langchain.output_parsers.openai_functions`, `PydanticOutputFunctionsParser`, `langchain_core.output_parsers.openai_functions`, `PydanticOutputFunctionsParser`], + [`langchain.output_parsers.openai_functions`, `PydanticAttrOutputFunctionsParser`, `langchain_core.output_parsers.openai_functions`, `PydanticAttrOutputFunctionsParser`], + [`langchain.output_parsers.openai_functions`, `JsonOutputFunctionsParser`, `langchain_core.output_parsers.openai_functions`, `JsonOutputFunctionsParser`], + [`langchain.output_parsers.openai_functions`, `JsonKeyOutputFunctionsParser`, `langchain_core.output_parsers.openai_functions`, `JsonKeyOutputFunctionsParser`], + [`langchain.output_parsers.openai_tools`, `PydanticToolsParser`, `langchain_core.output_parsers.openai_tools`, `PydanticToolsParser`], + [`langchain.output_parsers.openai_tools`, `JsonOutputToolsParser`, `langchain_core.output_parsers.openai_tools`, `JsonOutputToolsParser`], + [`langchain.output_parsers.openai_tools`, `JsonOutputKeyToolsParser`, `langchain_core.output_parsers.openai_tools`, `JsonOutputKeyToolsParser`], + [`langchain.output_parsers.pydantic`, `PydanticOutputParser`, `langchain_core.output_parsers`, `PydanticOutputParser`], + [`langchain.output_parsers.xml`, `XMLOutputParser`, `langchain_core.output_parsers`, `XMLOutputParser`], + [`langchain.prompts`, `AIMessagePromptTemplate`, `langchain_core.prompts`, `AIMessagePromptTemplate`], + [`langchain.prompts`, `BaseChatPromptTemplate`, `langchain_core.prompts`, `BaseChatPromptTemplate`], + [`langchain.prompts`, `BasePromptTemplate`, `langchain_core.prompts`, `BasePromptTemplate`], + [`langchain.prompts`, `ChatMessagePromptTemplate`, `langchain_core.prompts`, `ChatMessagePromptTemplate`], + [`langchain.prompts`, `ChatPromptTemplate`, `langchain_core.prompts`, `ChatPromptTemplate`], + [`langchain.prompts`, `FewShotPromptTemplate`, `langchain_core.prompts`, `FewShotPromptTemplate`], + [`langchain.prompts`, `FewShotPromptWithTemplates`, `langchain_core.prompts`, `FewShotPromptWithTemplates`], + [`langchain.prompts`, `HumanMessagePromptTemplate`, `langchain_core.prompts`, `HumanMessagePromptTemplate`], + [`langchain.prompts`, `LengthBasedExampleSelector`, `langchain_core.example_selectors`, `LengthBasedExampleSelector`], + [`langchain.prompts`, `MaxMarginalRelevanceExampleSelector`, `langchain_core.example_selectors`, `MaxMarginalRelevanceExampleSelector`], + [`langchain.prompts`, `MessagesPlaceholder`, `langchain_core.prompts`, `MessagesPlaceholder`], + [`langchain.prompts`, `PipelinePromptTemplate`, `langchain_core.prompts`, `PipelinePromptTemplate`], + [`langchain.prompts`, `PromptTemplate`, `langchain_core.prompts`, `PromptTemplate`], + [`langchain.prompts`, `SemanticSimilarityExampleSelector`, `langchain_core.example_selectors`, `SemanticSimilarityExampleSelector`], + [`langchain.prompts`, `StringPromptTemplate`, `langchain_core.prompts`, `StringPromptTemplate`], + [`langchain.prompts`, `SystemMessagePromptTemplate`, `langchain_core.prompts`, `SystemMessagePromptTemplate`], + [`langchain.prompts`, `load_prompt`, `langchain_core.prompts`, `load_prompt`], + [`langchain.prompts`, `FewShotChatMessagePromptTemplate`, `langchain_core.prompts`, `FewShotChatMessagePromptTemplate`], + [`langchain.prompts`, `Prompt`, `langchain_core.prompts`, `PromptTemplate`], + [`langchain.prompts.base`, `jinja2_formatter`, `langchain_core.prompts`, `jinja2_formatter`], + [`langchain.prompts.base`, `validate_jinja2`, `langchain_core.prompts`, `validate_jinja2`], + [`langchain.prompts.base`, `check_valid_template`, `langchain_core.prompts`, `check_valid_template`], + [`langchain.prompts.base`, `get_template_variables`, `langchain_core.prompts`, `get_template_variables`], + [`langchain.prompts.base`, `StringPromptTemplate`, `langchain_core.prompts`, `StringPromptTemplate`], + [`langchain.prompts.base`, `BasePromptTemplate`, `langchain_core.prompts`, `BasePromptTemplate`], + [`langchain.prompts.base`, `StringPromptValue`, `langchain_core.prompt_values`, `StringPromptValue`], + [`langchain.prompts.base`, `_get_jinja2_variables_from_template`, `langchain_core.prompts.string`, `_get_jinja2_variables_from_template`], + [`langchain.prompts.chat`, `BaseMessagePromptTemplate`, `langchain_core.prompts.chat`, `BaseMessagePromptTemplate`], + [`langchain.prompts.chat`, `MessagesPlaceholder`, `langchain_core.prompts`, `MessagesPlaceholder`], + [`langchain.prompts.chat`, `BaseStringMessagePromptTemplate`, `langchain_core.prompts.chat`, `BaseStringMessagePromptTemplate`], + [`langchain.prompts.chat`, `ChatMessagePromptTemplate`, `langchain_core.prompts`, `ChatMessagePromptTemplate`], + [`langchain.prompts.chat`, `HumanMessagePromptTemplate`, `langchain_core.prompts`, `HumanMessagePromptTemplate`], + [`langchain.prompts.chat`, `AIMessagePromptTemplate`, `langchain_core.prompts`, `AIMessagePromptTemplate`], + [`langchain.prompts.chat`, `SystemMessagePromptTemplate`, `langchain_core.prompts`, `SystemMessagePromptTemplate`], + [`langchain.prompts.chat`, `BaseChatPromptTemplate`, `langchain_core.prompts`, `BaseChatPromptTemplate`], + [`langchain.prompts.chat`, `ChatPromptTemplate`, `langchain_core.prompts`, `ChatPromptTemplate`], + [`langchain.prompts.chat`, `ChatPromptValue`, `langchain_core.prompt_values`, `ChatPromptValue`], + [`langchain.prompts.chat`, `ChatPromptValueConcrete`, `langchain_core.prompt_values`, `ChatPromptValueConcrete`], + [`langchain.prompts.chat`, `_convert_to_message`, `langchain_core.prompts.chat`, `_convert_to_message`], + [`langchain.prompts.chat`, `_create_template_from_message_type`, `langchain_core.prompts.chat`, `_create_template_from_message_type`], + [`langchain.prompts.example_selector`, `LengthBasedExampleSelector`, `langchain_core.example_selectors`, `LengthBasedExampleSelector`], + [`langchain.prompts.example_selector`, `MaxMarginalRelevanceExampleSelector`, `langchain_core.example_selectors`, `MaxMarginalRelevanceExampleSelector`], + [`langchain.prompts.example_selector`, `SemanticSimilarityExampleSelector`, `langchain_core.example_selectors`, `SemanticSimilarityExampleSelector`], + [`langchain.prompts.example_selector.base`, `BaseExampleSelector`, `langchain_core.example_selectors`, `BaseExampleSelector`], + [`langchain.prompts.example_selector.length_based`, `LengthBasedExampleSelector`, `langchain_core.example_selectors`, `LengthBasedExampleSelector`], + [`langchain.prompts.example_selector.semantic_similarity`, `sorted_values`, `langchain_core.example_selectors`, `sorted_values`], + [`langchain.prompts.example_selector.semantic_similarity`, `SemanticSimilarityExampleSelector`, `langchain_core.example_selectors`, `SemanticSimilarityExampleSelector`], + [`langchain.prompts.example_selector.semantic_similarity`, `MaxMarginalRelevanceExampleSelector`, `langchain_core.example_selectors`, `MaxMarginalRelevanceExampleSelector`], + [`langchain.prompts.few_shot`, `FewShotPromptTemplate`, `langchain_core.prompts`, `FewShotPromptTemplate`], + [`langchain.prompts.few_shot`, `FewShotChatMessagePromptTemplate`, `langchain_core.prompts`, `FewShotChatMessagePromptTemplate`], + [`langchain.prompts.few_shot`, `_FewShotPromptTemplateMixin`, `langchain_core.prompts.few_shot`, `_FewShotPromptTemplateMixin`], + [`langchain.prompts.few_shot_with_templates`, `FewShotPromptWithTemplates`, `langchain_core.prompts`, `FewShotPromptWithTemplates`], + [`langchain.prompts.loading`, `load_prompt_from_config`, `langchain_core.prompts.loading`, `load_prompt_from_config`], + [`langchain.prompts.loading`, `load_prompt`, `langchain_core.prompts`, `load_prompt`], + [`langchain.prompts.loading`, `try_load_from_hub`, `langchain_core.utils`, `try_load_from_hub`], + [`langchain.prompts.loading`, `_load_examples`, `langchain_core.prompts.loading`, `_load_examples`], + [`langchain.prompts.loading`, `_load_few_shot_prompt`, `langchain_core.prompts.loading`, `_load_few_shot_prompt`], + [`langchain.prompts.loading`, `_load_output_parser`, `langchain_core.prompts.loading`, `_load_output_parser`], + [`langchain.prompts.loading`, `_load_prompt`, `langchain_core.prompts.loading`, `_load_prompt`], + [`langchain.prompts.loading`, `_load_prompt_from_file`, `langchain_core.prompts.loading`, `_load_prompt_from_file`], + [`langchain.prompts.loading`, `_load_template`, `langchain_core.prompts.loading`, `_load_template`], + [`langchain.prompts.pipeline`, `PipelinePromptTemplate`, `langchain_core.prompts`, `PipelinePromptTemplate`], + [`langchain.prompts.pipeline`, `_get_inputs`, `langchain_core.prompts.pipeline`, `_get_inputs`], + [`langchain.prompts.prompt`, `PromptTemplate`, `langchain_core.prompts`, `PromptTemplate`], + [`langchain.prompts.prompt`, `Prompt`, `langchain_core.prompts`, `PromptTemplate`], + [`langchain.schema`, `BaseCache`, `langchain_core.caches`, `BaseCache`], + [`langchain.schema`, `BaseMemory`, `langchain_core.memory`, `BaseMemory`], + [`langchain.schema`, `BaseStore`, `langchain_core.stores`, `BaseStore`], + [`langchain.schema`, `AgentFinish`, `langchain_core.agents`, `AgentFinish`], + [`langchain.schema`, `AgentAction`, `langchain_core.agents`, `AgentAction`], + [`langchain.schema`, `Document`, `langchain_core.documents`, `Document`], + [`langchain.schema`, `BaseChatMessageHistory`, `langchain_core.chat_history`, `BaseChatMessageHistory`], + [`langchain.schema`, `BaseDocumentTransformer`, `langchain_core.documents`, `BaseDocumentTransformer`], + [`langchain.schema`, `BaseMessage`, `langchain_core.messages`, `BaseMessage`], + [`langchain.schema`, `ChatMessage`, `langchain_core.messages`, `ChatMessage`], + [`langchain.schema`, `FunctionMessage`, `langchain_core.messages`, `FunctionMessage`], + [`langchain.schema`, `HumanMessage`, `langchain_core.messages`, `HumanMessage`], + [`langchain.schema`, `AIMessage`, `langchain_core.messages`, `AIMessage`], + [`langchain.schema`, `SystemMessage`, `langchain_core.messages`, `SystemMessage`], + [`langchain.schema`, `messages_from_dict`, `langchain_core.messages`, `messages_from_dict`], + [`langchain.schema`, `messages_to_dict`, `langchain_core.messages`, `messages_to_dict`], + [`langchain.schema`, `message_to_dict`, `langchain_core.messages`, `message_to_dict`], + [`langchain.schema`, `_message_to_dict`, `langchain_core.messages`, `message_to_dict`], + [`langchain.schema`, `_message_from_dict`, `langchain_core.messages`, `_message_from_dict`], + [`langchain.schema`, `get_buffer_string`, `langchain_core.messages`, `get_buffer_string`], + [`langchain.schema`, `RunInfo`, `langchain_core.outputs`, `RunInfo`], + [`langchain.schema`, `LLMResult`, `langchain_core.outputs`, `LLMResult`], + [`langchain.schema`, `ChatResult`, `langchain_core.outputs`, `ChatResult`], + [`langchain.schema`, `ChatGeneration`, `langchain_core.outputs`, `ChatGeneration`], + [`langchain.schema`, `Generation`, `langchain_core.outputs`, `Generation`], + [`langchain.schema`, `PromptValue`, `langchain_core.prompt_values`, `PromptValue`], + [`langchain.schema`, `LangChainException`, `langchain_core.exceptions`, `LangChainException`], + [`langchain.schema`, `BaseRetriever`, `langchain_core.retrievers`, `BaseRetriever`], + [`langchain.schema`, `Memory`, `langchain_core.memory`, `BaseMemory`], + [`langchain.schema`, `OutputParserException`, `langchain_core.exceptions`, `OutputParserException`], + [`langchain.schema`, `StrOutputParser`, `langchain_core.output_parsers`, `StrOutputParser`], + [`langchain.schema`, `BaseOutputParser`, `langchain_core.output_parsers`, `BaseOutputParser`], + [`langchain.schema`, `BaseLLMOutputParser`, `langchain_core.output_parsers`, `BaseLLMOutputParser`], + [`langchain.schema`, `BasePromptTemplate`, `langchain_core.prompts`, `BasePromptTemplate`], + [`langchain.schema`, `format_document`, `langchain_core.prompts`, `format_document`], + [`langchain.schema.agent`, `AgentAction`, `langchain_core.agents`, `AgentAction`], + [`langchain.schema.agent`, `AgentActionMessageLog`, `langchain_core.agents`, `AgentActionMessageLog`], + [`langchain.schema.agent`, `AgentFinish`, `langchain_core.agents`, `AgentFinish`], + [`langchain.schema.cache`, `BaseCache`, `langchain_core.caches`, `BaseCache`], + [`langchain.schema.callbacks.base`, `RetrieverManagerMixin`, `langchain_core.callbacks`, `RetrieverManagerMixin`], + [`langchain.schema.callbacks.base`, `LLMManagerMixin`, `langchain_core.callbacks`, `LLMManagerMixin`], + [`langchain.schema.callbacks.base`, `ChainManagerMixin`, `langchain_core.callbacks`, `ChainManagerMixin`], + [`langchain.schema.callbacks.base`, `ToolManagerMixin`, `langchain_core.callbacks`, `ToolManagerMixin`], + [`langchain.schema.callbacks.base`, `CallbackManagerMixin`, `langchain_core.callbacks`, `CallbackManagerMixin`], + [`langchain.schema.callbacks.base`, `RunManagerMixin`, `langchain_core.callbacks`, `RunManagerMixin`], + [`langchain.schema.callbacks.base`, `BaseCallbackHandler`, `langchain_core.callbacks`, `BaseCallbackHandler`], + [`langchain.schema.callbacks.base`, `AsyncCallbackHandler`, `langchain_core.callbacks`, `AsyncCallbackHandler`], + [`langchain.schema.callbacks.base`, `BaseCallbackManager`, `langchain_core.callbacks`, `BaseCallbackManager`], + [`langchain.schema.callbacks.manager`, `tracing_enabled`, `langchain_core.tracers.context`, `tracing_enabled`], + [`langchain.schema.callbacks.manager`, `tracing_v2_enabled`, `langchain_core.tracers.context`, `tracing_v2_enabled`], + [`langchain.schema.callbacks.manager`, `collect_runs`, `langchain_core.tracers.context`, `collect_runs`], + [`langchain.schema.callbacks.manager`, `trace_as_chain_group`, `langchain_core.callbacks.manager`, `trace_as_chain_group`], + [`langchain.schema.callbacks.manager`, `handle_event`, `langchain_core.callbacks.manager`, `handle_event`], + [`langchain.schema.callbacks.manager`, `BaseRunManager`, `langchain_core.callbacks`, `BaseRunManager`], + [`langchain.schema.callbacks.manager`, `RunManager`, `langchain_core.callbacks`, `RunManager`], + [`langchain.schema.callbacks.manager`, `ParentRunManager`, `langchain_core.callbacks`, `ParentRunManager`], + [`langchain.schema.callbacks.manager`, `AsyncRunManager`, `langchain_core.callbacks`, `AsyncRunManager`], + [`langchain.schema.callbacks.manager`, `AsyncParentRunManager`, `langchain_core.callbacks`, `AsyncParentRunManager`], + [`langchain.schema.callbacks.manager`, `CallbackManagerForLLMRun`, `langchain_core.callbacks`, `CallbackManagerForLLMRun`], + [`langchain.schema.callbacks.manager`, `AsyncCallbackManagerForLLMRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForLLMRun`], + [`langchain.schema.callbacks.manager`, `CallbackManagerForChainRun`, `langchain_core.callbacks`, `CallbackManagerForChainRun`], + [`langchain.schema.callbacks.manager`, `AsyncCallbackManagerForChainRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForChainRun`], + [`langchain.schema.callbacks.manager`, `CallbackManagerForToolRun`, `langchain_core.callbacks`, `CallbackManagerForToolRun`], + [`langchain.schema.callbacks.manager`, `AsyncCallbackManagerForToolRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForToolRun`], + [`langchain.schema.callbacks.manager`, `CallbackManagerForRetrieverRun`, `langchain_core.callbacks`, `CallbackManagerForRetrieverRun`], + [`langchain.schema.callbacks.manager`, `AsyncCallbackManagerForRetrieverRun`, `langchain_core.callbacks`, `AsyncCallbackManagerForRetrieverRun`], + [`langchain.schema.callbacks.manager`, `CallbackManager`, `langchain_core.callbacks`, `CallbackManager`], + [`langchain.schema.callbacks.manager`, `CallbackManagerForChainGroup`, `langchain_core.callbacks`, `CallbackManagerForChainGroup`], + [`langchain.schema.callbacks.manager`, `AsyncCallbackManager`, `langchain_core.callbacks`, `AsyncCallbackManager`], + [`langchain.schema.callbacks.manager`, `AsyncCallbackManagerForChainGroup`, `langchain_core.callbacks`, `AsyncCallbackManagerForChainGroup`], + [`langchain.schema.callbacks.manager`, `register_configure_hook`, `langchain_core.tracers.context`, `register_configure_hook`], + [`langchain.schema.callbacks.manager`, `env_var_is_set`, `langchain_core.utils.env`, `env_var_is_set`], + [`langchain.schema.callbacks.stdout`, `StdOutCallbackHandler`, `langchain_core.callbacks`, `StdOutCallbackHandler`], + [`langchain.schema.callbacks.streaming_stdout`, `StreamingStdOutCallbackHandler`, `langchain_core.callbacks`, `StreamingStdOutCallbackHandler`], + [`langchain.schema.callbacks.tracers.base`, `TracerException`, `langchain_core.exceptions`, `TracerException`], + [`langchain.schema.callbacks.tracers.base`, `BaseTracer`, `langchain_core.tracers`, `BaseTracer`], + [`langchain.schema.callbacks.tracers.evaluation`, `wait_for_all_evaluators`, `langchain_core.tracers.evaluation`, `wait_for_all_evaluators`], + [`langchain.schema.callbacks.tracers.evaluation`, `EvaluatorCallbackHandler`, `langchain_core.tracers`, `EvaluatorCallbackHandler`], + [`langchain.schema.callbacks.tracers.langchain`, `log_error_once`, `langchain_core.tracers.langchain`, `log_error_once`], + [`langchain.schema.callbacks.tracers.langchain`, `wait_for_all_tracers`, `langchain_core.tracers.langchain`, `wait_for_all_tracers`], + [`langchain.schema.callbacks.tracers.langchain`, `get_client`, `langchain_core.tracers.langchain`, `get_client`], + [`langchain.schema.callbacks.tracers.langchain`, `LangChainTracer`, `langchain_core.tracers`, `LangChainTracer`], + [`langchain.schema.callbacks.tracers.langchain_v1`, `get_headers`, `langchain_core.tracers.langchain_v1`, `get_headers`], + [`langchain.schema.callbacks.tracers.langchain_v1`, `LangChainTracerV1`, `langchain_core.tracers.langchain_v1`, `LangChainTracerV1`], + [`langchain.schema.callbacks.tracers.log_stream`, `LogEntry`, `langchain_core.tracers.log_stream`, `LogEntry`], + [`langchain.schema.callbacks.tracers.log_stream`, `RunState`, `langchain_core.tracers.log_stream`, `RunState`], + [`langchain.schema.callbacks.tracers.log_stream`, `RunLogPatch`, `langchain_core.tracers`, `RunLogPatch`], + [`langchain.schema.callbacks.tracers.log_stream`, `RunLog`, `langchain_core.tracers`, `RunLog`], + [`langchain.schema.callbacks.tracers.log_stream`, `LogStreamCallbackHandler`, `langchain_core.tracers`, `LogStreamCallbackHandler`], + [`langchain.schema.callbacks.tracers.root_listeners`, `RootListenersTracer`, `langchain_core.tracers.root_listeners`, `RootListenersTracer`], + [`langchain.schema.callbacks.tracers.run_collector`, `RunCollectorCallbackHandler`, `langchain_core.tracers.run_collector`, `RunCollectorCallbackHandler`], + [`langchain.schema.callbacks.tracers.schemas`, `RunTypeEnum`, `langchain_core.tracers.schemas`, `RunTypeEnum`], + [`langchain.schema.callbacks.tracers.schemas`, `TracerSessionV1Base`, `langchain_core.tracers.schemas`, `TracerSessionV1Base`], + [`langchain.schema.callbacks.tracers.schemas`, `TracerSessionV1Create`, `langchain_core.tracers.schemas`, `TracerSessionV1Create`], + [`langchain.schema.callbacks.tracers.schemas`, `TracerSessionV1`, `langchain_core.tracers.schemas`, `TracerSessionV1`], + [`langchain.schema.callbacks.tracers.schemas`, `TracerSessionBase`, `langchain_core.tracers.schemas`, `TracerSessionBase`], + [`langchain.schema.callbacks.tracers.schemas`, `TracerSession`, `langchain_core.tracers.schemas`, `TracerSession`], + [`langchain.schema.callbacks.tracers.schemas`, `BaseRun`, `langchain_core.tracers.schemas`, `BaseRun`], + [`langchain.schema.callbacks.tracers.schemas`, `LLMRun`, `langchain_core.tracers.schemas`, `LLMRun`], + [`langchain.schema.callbacks.tracers.schemas`, `ChainRun`, `langchain_core.tracers.schemas`, `ChainRun`], + [`langchain.schema.callbacks.tracers.schemas`, `ToolRun`, `langchain_core.tracers.schemas`, `ToolRun`], + [`langchain.schema.callbacks.tracers.schemas`, `Run`, `langchain_core.tracers`, `Run`], + [`langchain.schema.callbacks.tracers.stdout`, `try_json_stringify`, `langchain_core.tracers.stdout`, `try_json_stringify`], + [`langchain.schema.callbacks.tracers.stdout`, `elapsed`, `langchain_core.tracers.stdout`, `elapsed`], + [`langchain.schema.callbacks.tracers.stdout`, `FunctionCallbackHandler`, `langchain_core.tracers.stdout`, `FunctionCallbackHandler`], + [`langchain.schema.callbacks.tracers.stdout`, `ConsoleCallbackHandler`, `langchain_core.tracers`, `ConsoleCallbackHandler`], + [`langchain.schema.chat`, `ChatSession`, `langchain_core.chat_sessions`, `ChatSession`], + [`langchain.schema.chat_history`, `BaseChatMessageHistory`, `langchain_core.chat_history`, `BaseChatMessageHistory`], + [`langchain.schema.document`, `Document`, `langchain_core.documents`, `Document`], + [`langchain.schema.document`, `BaseDocumentTransformer`, `langchain_core.documents`, `BaseDocumentTransformer`], + [`langchain.schema.embeddings`, `Embeddings`, `langchain_core.embeddings`, `Embeddings`], + [`langchain.schema.exceptions`, `LangChainException`, `langchain_core.exceptions`, `LangChainException`], + [`langchain.schema.language_model`, `BaseLanguageModel`, `langchain_core.language_models`, `BaseLanguageModel`], + [`langchain.schema.language_model`, `_get_token_ids_default_method`, `langchain_core.language_models.base`, `_get_token_ids_default_method`], + [`langchain.schema.memory`, `BaseMemory`, `langchain_core.memory`, `BaseMemory`], + [`langchain.schema.messages`, `get_buffer_string`, `langchain_core.messages`, `get_buffer_string`], + [`langchain.schema.messages`, `BaseMessage`, `langchain_core.messages`, `BaseMessage`], + [`langchain.schema.messages`, `merge_content`, `langchain_core.messages`, `merge_content`], + [`langchain.schema.messages`, `BaseMessageChunk`, `langchain_core.messages`, `BaseMessageChunk`], + [`langchain.schema.messages`, `HumanMessage`, `langchain_core.messages`, `HumanMessage`], + [`langchain.schema.messages`, `HumanMessageChunk`, `langchain_core.messages`, `HumanMessageChunk`], + [`langchain.schema.messages`, `AIMessage`, `langchain_core.messages`, `AIMessage`], + [`langchain.schema.messages`, `AIMessageChunk`, `langchain_core.messages`, `AIMessageChunk`], + [`langchain.schema.messages`, `SystemMessage`, `langchain_core.messages`, `SystemMessage`], + [`langchain.schema.messages`, `SystemMessageChunk`, `langchain_core.messages`, `SystemMessageChunk`], + [`langchain.schema.messages`, `FunctionMessage`, `langchain_core.messages`, `FunctionMessage`], + [`langchain.schema.messages`, `FunctionMessageChunk`, `langchain_core.messages`, `FunctionMessageChunk`], + [`langchain.schema.messages`, `ToolMessage`, `langchain_core.messages`, `ToolMessage`], + [`langchain.schema.messages`, `ToolMessageChunk`, `langchain_core.messages`, `ToolMessageChunk`], + [`langchain.schema.messages`, `ChatMessage`, `langchain_core.messages`, `ChatMessage`], + [`langchain.schema.messages`, `ChatMessageChunk`, `langchain_core.messages`, `ChatMessageChunk`], + [`langchain.schema.messages`, `messages_to_dict`, `langchain_core.messages`, `messages_to_dict`], + [`langchain.schema.messages`, `messages_from_dict`, `langchain_core.messages`, `messages_from_dict`], + [`langchain.schema.messages`, `_message_to_dict`, `langchain_core.messages`, `message_to_dict`], + [`langchain.schema.messages`, `_message_from_dict`, `langchain_core.messages`, `_message_from_dict`], + [`langchain.schema.messages`, `message_to_dict`, `langchain_core.messages`, `message_to_dict`], + [`langchain.schema.output`, `Generation`, `langchain_core.outputs`, `Generation`], + [`langchain.schema.output`, `GenerationChunk`, `langchain_core.outputs`, `GenerationChunk`], + [`langchain.schema.output`, `ChatGeneration`, `langchain_core.outputs`, `ChatGeneration`], + [`langchain.schema.output`, `ChatGenerationChunk`, `langchain_core.outputs`, `ChatGenerationChunk`], + [`langchain.schema.output`, `RunInfo`, `langchain_core.outputs`, `RunInfo`], + [`langchain.schema.output`, `ChatResult`, `langchain_core.outputs`, `ChatResult`], + [`langchain.schema.output`, `LLMResult`, `langchain_core.outputs`, `LLMResult`], + [`langchain.schema.output_parser`, `BaseLLMOutputParser`, `langchain_core.output_parsers`, `BaseLLMOutputParser`], + [`langchain.schema.output_parser`, `BaseGenerationOutputParser`, `langchain_core.output_parsers`, `BaseGenerationOutputParser`], + [`langchain.schema.output_parser`, `BaseOutputParser`, `langchain_core.output_parsers`, `BaseOutputParser`], + [`langchain.schema.output_parser`, `BaseTransformOutputParser`, `langchain_core.output_parsers`, `BaseTransformOutputParser`], + [`langchain.schema.output_parser`, `BaseCumulativeTransformOutputParser`, `langchain_core.output_parsers`, `BaseCumulativeTransformOutputParser`], + [`langchain.schema.output_parser`, `NoOpOutputParser`, `langchain_core.output_parsers`, `StrOutputParser`], + [`langchain.schema.output_parser`, `StrOutputParser`, `langchain_core.output_parsers`, `StrOutputParser`], + [`langchain.schema.output_parser`, `OutputParserException`, `langchain_core.exceptions`, `OutputParserException`], + [`langchain.schema.prompt`, `PromptValue`, `langchain_core.prompt_values`, `PromptValue`], + [`langchain.schema.prompt_template`, `BasePromptTemplate`, `langchain_core.prompts`, `BasePromptTemplate`], + [`langchain.schema.prompt_template`, `format_document`, `langchain_core.prompts`, `format_document`], + [`langchain.schema.retriever`, `BaseRetriever`, `langchain_core.retrievers`, `BaseRetriever`], + [`langchain.schema.runnable`, `ConfigurableField`, `langchain_core.runnables`, `ConfigurableField`], + [`langchain.schema.runnable`, `ConfigurableFieldSingleOption`, `langchain_core.runnables`, `ConfigurableFieldSingleOption`], + [`langchain.schema.runnable`, `ConfigurableFieldMultiOption`, `langchain_core.runnables`, `ConfigurableFieldMultiOption`], + [`langchain.schema.runnable`, `patch_config`, `langchain_core.runnables`, `patch_config`], + [`langchain.schema.runnable`, `RouterInput`, `langchain_core.runnables`, `RouterInput`], + [`langchain.schema.runnable`, `RouterRunnable`, `langchain_core.runnables`, `RouterRunnable`], + [`langchain.schema.runnable`, `Runnable`, `langchain_core.runnables`, `Runnable`], + [`langchain.schema.runnable`, `RunnableSerializable`, `langchain_core.runnables`, `RunnableSerializable`], + [`langchain.schema.runnable`, `RunnableBinding`, `langchain_core.runnables`, `RunnableBinding`], + [`langchain.schema.runnable`, `RunnableBranch`, `langchain_core.runnables`, `RunnableBranch`], + [`langchain.schema.runnable`, `RunnableConfig`, `langchain_core.runnables`, `RunnableConfig`], + [`langchain.schema.runnable`, `RunnableGenerator`, `langchain_core.runnables`, `RunnableGenerator`], + [`langchain.schema.runnable`, `RunnableLambda`, `langchain_core.runnables`, `RunnableLambda`], + [`langchain.schema.runnable`, `RunnableMap`, `langchain_core.runnables`, `RunnableMap`], + [`langchain.schema.runnable`, `RunnableParallel`, `langchain_core.runnables`, `RunnableParallel`], + [`langchain.schema.runnable`, `RunnablePassthrough`, `langchain_core.runnables`, `RunnablePassthrough`], + [`langchain.schema.runnable`, `RunnableSequence`, `langchain_core.runnables`, `RunnableSequence`], + [`langchain.schema.runnable`, `RunnableWithFallbacks`, `langchain_core.runnables`, `RunnableWithFallbacks`], + [`langchain.schema.runnable.base`, `Runnable`, `langchain_core.runnables`, `Runnable`], + [`langchain.schema.runnable.base`, `RunnableSerializable`, `langchain_core.runnables`, `RunnableSerializable`], + [`langchain.schema.runnable.base`, `RunnableSequence`, `langchain_core.runnables`, `RunnableSequence`], + [`langchain.schema.runnable.base`, `RunnableParallel`, `langchain_core.runnables`, `RunnableParallel`], + [`langchain.schema.runnable.base`, `RunnableGenerator`, `langchain_core.runnables`, `RunnableGenerator`], + [`langchain.schema.runnable.base`, `RunnableLambda`, `langchain_core.runnables`, `RunnableLambda`], + [`langchain.schema.runnable.base`, `RunnableEachBase`, `langchain_core.runnables.base`, `RunnableEachBase`], + [`langchain.schema.runnable.base`, `RunnableEach`, `langchain_core.runnables.base`, `RunnableEach`], + [`langchain.schema.runnable.base`, `RunnableBindingBase`, `langchain_core.runnables.base`, `RunnableBindingBase`], + [`langchain.schema.runnable.base`, `RunnableBinding`, `langchain_core.runnables`, `RunnableBinding`], + [`langchain.schema.runnable.base`, `RunnableMap`, `langchain_core.runnables`, `RunnableMap`], + [`langchain.schema.runnable.base`, `coerce_to_runnable`, `langchain_core.runnables.base`, `coerce_to_runnable`], + [`langchain.schema.runnable.branch`, `RunnableBranch`, `langchain_core.runnables`, `RunnableBranch`], + [`langchain.schema.runnable.config`, `EmptyDict`, `langchain_core.runnables.config`, `EmptyDict`], + [`langchain.schema.runnable.config`, `RunnableConfig`, `langchain_core.runnables`, `RunnableConfig`], + [`langchain.schema.runnable.config`, `ensure_config`, `langchain_core.runnables`, `ensure_config`], + [`langchain.schema.runnable.config`, `get_config_list`, `langchain_core.runnables`, `get_config_list`], + [`langchain.schema.runnable.config`, `patch_config`, `langchain_core.runnables`, `patch_config`], + [`langchain.schema.runnable.config`, `merge_configs`, `langchain_core.runnables.config`, `merge_configs`], + [`langchain.schema.runnable.config`, `acall_func_with_variable_args`, `langchain_core.runnables.config`, `acall_func_with_variable_args`], + [`langchain.schema.runnable.config`, `call_func_with_variable_args`, `langchain_core.runnables.config`, `call_func_with_variable_args`], + [`langchain.schema.runnable.config`, `get_callback_manager_for_config`, `langchain_core.runnables.config`, `get_callback_manager_for_config`], + [`langchain.schema.runnable.config`, `get_async_callback_manager_for_config`, `langchain_core.runnables.config`, `get_async_callback_manager_for_config`], + [`langchain.schema.runnable.config`, `get_executor_for_config`, `langchain_core.runnables.config`, `get_executor_for_config`], + [`langchain.schema.runnable.configurable`, `DynamicRunnable`, `langchain_core.runnables.configurable`, `DynamicRunnable`], + [`langchain.schema.runnable.configurable`, `RunnableConfigurableFields`, `langchain_core.runnables.configurable`, `RunnableConfigurableFields`], + [`langchain.schema.runnable.configurable`, `StrEnum`, `langchain_core.runnables.configurable`, `StrEnum`], + [`langchain.schema.runnable.configurable`, `RunnableConfigurableAlternatives`, `langchain_core.runnables.configurable`, `RunnableConfigurableAlternatives`], + [`langchain.schema.runnable.configurable`, `make_options_spec`, `langchain_core.runnables.configurable`, `make_options_spec`], + [`langchain.schema.runnable.fallbacks`, `RunnableWithFallbacks`, `langchain_core.runnables`, `RunnableWithFallbacks`], + [`langchain.schema.runnable.history`, `RunnableWithMessageHistory`, `langchain_core.runnables.history`, `RunnableWithMessageHistory`], + [`langchain.schema.runnable.passthrough`, `aidentity`, `langchain_core.runnables.passthrough`, `aidentity`], + [`langchain.schema.runnable.passthrough`, `identity`, `langchain_core.runnables.passthrough`, `identity`], + [`langchain.schema.runnable.passthrough`, `RunnablePassthrough`, `langchain_core.runnables`, `RunnablePassthrough`], + [`langchain.schema.runnable.passthrough`, `RunnableAssign`, `langchain_core.runnables`, `RunnableAssign`], + [`langchain.schema.runnable.retry`, `RunnableRetry`, `langchain_core.runnables.retry`, `RunnableRetry`], + [`langchain.schema.runnable.router`, `RouterInput`, `langchain_core.runnables`, `RouterInput`], + [`langchain.schema.runnable.router`, `RouterRunnable`, `langchain_core.runnables`, `RouterRunnable`], + [`langchain.schema.runnable.utils`, `accepts_run_manager`, `langchain_core.runnables.utils`, `accepts_run_manager`], + [`langchain.schema.runnable.utils`, `accepts_config`, `langchain_core.runnables.utils`, `accepts_config`], + [`langchain.schema.runnable.utils`, `IsLocalDict`, `langchain_core.runnables.utils`, `IsLocalDict`], + [`langchain.schema.runnable.utils`, `IsFunctionArgDict`, `langchain_core.runnables.utils`, `IsFunctionArgDict`], + [`langchain.schema.runnable.utils`, `GetLambdaSource`, `langchain_core.runnables.utils`, `GetLambdaSource`], + [`langchain.schema.runnable.utils`, `get_function_first_arg_dict_keys`, `langchain_core.runnables.utils`, `get_function_first_arg_dict_keys`], + [`langchain.schema.runnable.utils`, `get_lambda_source`, `langchain_core.runnables.utils`, `get_lambda_source`], + [`langchain.schema.runnable.utils`, `indent_lines_after_first`, `langchain_core.runnables.utils`, `indent_lines_after_first`], + [`langchain.schema.runnable.utils`, `AddableDict`, `langchain_core.runnables`, `AddableDict`], + [`langchain.schema.runnable.utils`, `SupportsAdd`, `langchain_core.runnables.utils`, `SupportsAdd`], + [`langchain.schema.runnable.utils`, `add`, `langchain_core.runnables`, `add`], + [`langchain.schema.runnable.utils`, `ConfigurableField`, `langchain_core.runnables`, `ConfigurableField`], + [`langchain.schema.runnable.utils`, `ConfigurableFieldSingleOption`, `langchain_core.runnables`, `ConfigurableFieldSingleOption`], + [`langchain.schema.runnable.utils`, `ConfigurableFieldMultiOption`, `langchain_core.runnables`, `ConfigurableFieldMultiOption`], + [`langchain.schema.runnable.utils`, `ConfigurableFieldSpec`, `langchain_core.runnables`, `ConfigurableFieldSpec`], + [`langchain.schema.runnable.utils`, `get_unique_config_specs`, `langchain_core.runnables.utils`, `get_unique_config_specs`], + [`langchain.schema.runnable.utils`, `aadd`, `langchain_core.runnables`, `aadd`], + [`langchain.schema.runnable.utils`, `gated_coro`, `langchain_core.runnables.utils`, `gated_coro`], + [`langchain.schema.runnable.utils`, `gather_with_concurrency`, `langchain_core.runnables.utils`, `gather_with_concurrency`], + [`langchain.schema.storage`, `BaseStore`, `langchain_core.stores`, `BaseStore`], + [`langchain.schema.vectorstore`, `VectorStore`, `langchain_core.vectorstores`, `VectorStore`], + [`langchain.schema.vectorstore`, `VectorStoreRetriever`, `langchain_core.vectorstores`, `VectorStoreRetriever`], + [`langchain.tools`, `BaseTool`, `langchain_core.tools`, `BaseTool`], + [`langchain.tools`, `StructuredTool`, `langchain_core.tools`, `StructuredTool`], + [`langchain.tools`, `Tool`, `langchain_core.tools`, `Tool`], + [`langchain.tools`, `format_tool_to_openai_function`, `langchain_core.utils.function_calling`, `format_tool_to_openai_function`], + [`langchain.tools`, `tool`, `langchain_core.tools`, `tool`], + [`langchain.tools.base`, `SchemaAnnotationError`, `langchain_core.tools`, `SchemaAnnotationError`], + [`langchain.tools.base`, `create_schema_from_function`, `langchain_core.tools`, `create_schema_from_function`], + [`langchain.tools.base`, `ToolException`, `langchain_core.tools`, `ToolException`], + [`langchain.tools.base`, `BaseTool`, `langchain_core.tools`, `BaseTool`], + [`langchain.tools.base`, `Tool`, `langchain_core.tools`, `Tool`], + [`langchain.tools.base`, `StructuredTool`, `langchain_core.tools`, `StructuredTool`], + [`langchain.tools.base`, `tool`, `langchain_core.tools`, `tool`], + [`langchain.tools.convert_to_openai`, `format_tool_to_openai_function`, `langchain_core.utils.function_calling`, `format_tool_to_openai_function`], + [`langchain.tools.render`, `format_tool_to_openai_tool`, `langchain_core.utils.function_calling`, `format_tool_to_openai_tool`], + [`langchain.tools.render`, `format_tool_to_openai_function`, `langchain_core.utils.function_calling`, `format_tool_to_openai_function`], + [`langchain.utilities.loading`, `try_load_from_hub`, `langchain_core.utils`, `try_load_from_hub`], + [`langchain.utils`, `StrictFormatter`, `langchain_core.utils`, `StrictFormatter`], + [`langchain.utils`, `check_package_version`, `langchain_core.utils`, `check_package_version`], + [`langchain.utils`, `comma_list`, `langchain_core.utils`, `comma_list`], + [`langchain.utils`, `convert_to_secret_str`, `langchain_core.utils`, `convert_to_secret_str`], + [`langchain.utils`, `get_bolded_text`, `langchain_core.utils`, `get_bolded_text`], + [`langchain.utils`, `get_color_mapping`, `langchain_core.utils`, `get_color_mapping`], + [`langchain.utils`, `get_colored_text`, `langchain_core.utils`, `get_colored_text`], + [`langchain.utils`, `get_from_dict_or_env`, `langchain_core.utils`, `get_from_dict_or_env`], + [`langchain.utils`, `get_from_env`, `langchain_core.utils`, `get_from_env`], + [`langchain.utils`, `get_pydantic_field_names`, `langchain_core.utils`, `get_pydantic_field_names`], + [`langchain.utils`, `guard_import`, `langchain_core.utils`, `guard_import`], + [`langchain.utils`, `mock_now`, `langchain_core.utils`, `mock_now`], + [`langchain.utils`, `print_text`, `langchain_core.utils`, `print_text`], + [`langchain.utils`, `raise_for_status_with_text`, `langchain_core.utils`, `raise_for_status_with_text`], + [`langchain.utils`, `stringify_dict`, `langchain_core.utils`, `stringify_dict`], + [`langchain.utils`, `stringify_value`, `langchain_core.utils`, `stringify_value`], + [`langchain.utils`, `xor_args`, `langchain_core.utils`, `xor_args`], + [`langchain.utils.aiter`, `py_anext`, `langchain_core.utils.aiter`, `py_anext`], + [`langchain.utils.aiter`, `NoLock`, `langchain_core.utils.aiter`, `NoLock`], + [`langchain.utils.aiter`, `Tee`, `langchain_core.utils.aiter`, `Tee`], + [`langchain.utils.env`, `get_from_dict_or_env`, `langchain_core.utils`, `get_from_dict_or_env`], + [`langchain.utils.env`, `get_from_env`, `langchain_core.utils`, `get_from_env`], + [`langchain.utils.formatting`, `StrictFormatter`, `langchain_core.utils`, `StrictFormatter`], + [`langchain.utils.html`, `find_all_links`, `langchain_core.utils.html`, `find_all_links`], + [`langchain.utils.html`, `extract_sub_links`, `langchain_core.utils.html`, `extract_sub_links`], + [`langchain.utils.input`, `get_color_mapping`, `langchain_core.utils`, `get_color_mapping`], + [`langchain.utils.input`, `get_colored_text`, `langchain_core.utils`, `get_colored_text`], + [`langchain.utils.input`, `get_bolded_text`, `langchain_core.utils`, `get_bolded_text`], + [`langchain.utils.input`, `print_text`, `langchain_core.utils`, `print_text`], + [`langchain.utils.iter`, `NoLock`, `langchain_core.utils.iter`, `NoLock`], + [`langchain.utils.iter`, `tee_peer`, `langchain_core.utils.iter`, `tee_peer`], + [`langchain.utils.iter`, `Tee`, `langchain_core.utils.iter`, `Tee`], + [`langchain.utils.iter`, `batch_iterate`, `langchain_core.utils.iter`, `batch_iterate`], + [`langchain.utils.json_schema`, `_retrieve_ref`, `langchain_core.utils.json_schema`, `_retrieve_ref`], + [`langchain.utils.json_schema`, `_dereference_refs_helper`, `langchain_core.utils.json_schema`, `_dereference_refs_helper`], + [`langchain.utils.json_schema`, `_infer_skip_keys`, `langchain_core.utils.json_schema`, `_infer_skip_keys`], + [`langchain.utils.json_schema`, `dereference_refs`, `langchain_core.utils.json_schema`, `dereference_refs`], + [`langchain.utils.loading`, `try_load_from_hub`, `langchain_core.utils`, `try_load_from_hub`], + [`langchain.utils.openai_functions`, `FunctionDescription`, `langchain_core.utils.function_calling`, `FunctionDescription`], + [`langchain.utils.openai_functions`, `ToolDescription`, `langchain_core.utils.function_calling`, `ToolDescription`], + [`langchain.utils.openai_functions`, `convert_pydantic_to_openai_function`, `langchain_core.utils.function_calling`, `convert_pydantic_to_openai_function`], + [`langchain.utils.openai_functions`, `convert_pydantic_to_openai_tool`, `langchain_core.utils.function_calling`, `convert_pydantic_to_openai_tool`], + [`langchain.utils.pydantic`, `get_pydantic_major_version`, `langchain_core.utils.pydantic`, `get_pydantic_major_version`], + [`langchain.utils.strings`, `stringify_value`, `langchain_core.utils`, `stringify_value`], + [`langchain.utils.strings`, `stringify_dict`, `langchain_core.utils`, `stringify_dict`], + [`langchain.utils.strings`, `comma_list`, `langchain_core.utils`, `comma_list`], + [`langchain.utils.utils`, `xor_args`, `langchain_core.utils`, `xor_args`], + [`langchain.utils.utils`, `raise_for_status_with_text`, `langchain_core.utils`, `raise_for_status_with_text`], + [`langchain.utils.utils`, `mock_now`, `langchain_core.utils`, `mock_now`], + [`langchain.utils.utils`, `guard_import`, `langchain_core.utils`, `guard_import`], + [`langchain.utils.utils`, `check_package_version`, `langchain_core.utils`, `check_package_version`], + [`langchain.utils.utils`, `get_pydantic_field_names`, `langchain_core.utils`, `get_pydantic_field_names`], + [`langchain.utils.utils`, `build_extra_kwargs`, `langchain_core.utils`, `build_extra_kwargs`], + [`langchain.utils.utils`, `convert_to_secret_str`, `langchain_core.utils`, `convert_to_secret_str`], + [`langchain.vectorstores`, `VectorStore`, `langchain_core.vectorstores`, `VectorStore`], + [`langchain.vectorstores.base`, `VectorStore`, `langchain_core.vectorstores`, `VectorStore`], + [`langchain.vectorstores.base`, `VectorStoreRetriever`, `langchain_core.vectorstores`, `VectorStoreRetriever`], + [`langchain.vectorstores.singlestoredb`, `SingleStoreDBRetriever`, `langchain_core.vectorstores`, `VectorStoreRetriever`] + ]) +} + +// Add this for invoking directly +langchain_migrate_langchain_to_core() diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_core.json b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_core.json similarity index 86% rename from libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_core.json rename to libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_core.json index b0131c6b42424..7170f1d28a8ff 100644 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_core.json +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_core.json @@ -1,8 +1,5 @@ [ - [ - "langchain._api.deprecated", - "langchain_core._api.deprecated" - ], + ["langchain._api.deprecated", "langchain_core._api.deprecated"], [ "langchain._api.LangChainDeprecationWarning", "langchain_core._api.LangChainDeprecationWarning" @@ -15,10 +12,7 @@ "langchain._api.surface_langchain_deprecation_warnings", "langchain_core._api.surface_langchain_deprecation_warnings" ], - [ - "langchain._api.warn_deprecated", - "langchain_core._api.warn_deprecated" - ], + ["langchain._api.warn_deprecated", "langchain_core._api.warn_deprecated"], [ "langchain._api.deprecation.LangChainDeprecationWarning", "langchain_core._api.LangChainDeprecationWarning" @@ -27,10 +21,7 @@ "langchain._api.deprecation.LangChainPendingDeprecationWarning", "langchain_core._api.deprecation.LangChainPendingDeprecationWarning" ], - [ - "langchain._api.deprecation.deprecated", - "langchain_core._api.deprecated" - ], + ["langchain._api.deprecation.deprecated", "langchain_core._api.deprecated"], [ "langchain._api.deprecation.suppress_langchain_deprecation_warning", "langchain_core._api.suppress_langchain_deprecation_warning" @@ -47,30 +38,12 @@ "langchain._api.path.get_relative_path", "langchain_core._api.get_relative_path" ], - [ - "langchain._api.path.as_import_path", - "langchain_core._api.as_import_path" - ], - [ - "langchain.agents.Tool", - "langchain_core.tools.Tool" - ], - [ - "langchain.agents.tool", - "langchain_core.tools.tool" - ], - [ - "langchain.agents.tools.BaseTool", - "langchain_core.tools.BaseTool" - ], - [ - "langchain.agents.tools.tool", - "langchain_core.tools.tool" - ], - [ - "langchain.agents.tools.Tool", - "langchain_core.tools.Tool" - ], + ["langchain._api.path.as_import_path", "langchain_core._api.as_import_path"], + ["langchain.agents.Tool", "langchain_core.tools.Tool"], + ["langchain.agents.tool", "langchain_core.tools.tool"], + ["langchain.agents.tools.BaseTool", "langchain_core.tools.BaseTool"], + ["langchain.agents.tools.tool", "langchain_core.tools.tool"], + ["langchain.agents.tools.Tool", "langchain_core.tools.Tool"], [ "langchain.base_language.BaseLanguageModel", "langchain_core.language_models.BaseLanguageModel" @@ -327,10 +300,7 @@ "langchain.callbacks.tracers.schemas.LLMRun", "langchain_core.tracers.schemas.LLMRun" ], - [ - "langchain.callbacks.tracers.schemas.Run", - "langchain_core.tracers.Run" - ], + ["langchain.callbacks.tracers.schemas.Run", "langchain_core.tracers.Run"], [ "langchain.callbacks.tracers.schemas.RunTypeEnum", "langchain_core.tracers.schemas.RunTypeEnum" @@ -391,14 +361,8 @@ "langchain.chat_models.base.agenerate_from_stream", "langchain_core.language_models.chat_models.agenerate_from_stream" ], - [ - "langchain.docstore.document.Document", - "langchain_core.documents.Document" - ], - [ - "langchain.document_loaders.Blob", - "langchain_core.document_loaders.Blob" - ], + ["langchain.docstore.document.Document", "langchain_core.documents.Document"], + ["langchain.document_loaders.Blob", "langchain_core.document_loaders.Blob"], [ "langchain.document_loaders.BlobLoader", "langchain_core.document_loaders.BlobLoader" @@ -435,74 +399,29 @@ "langchain.formatting.StrictFormatter", "langchain_core.utils.StrictFormatter" ], - [ - "langchain.input.get_bolded_text", - "langchain_core.utils.get_bolded_text" - ], + ["langchain.input.get_bolded_text", "langchain_core.utils.get_bolded_text"], [ "langchain.input.get_color_mapping", "langchain_core.utils.get_color_mapping" ], - [ - "langchain.input.get_colored_text", - "langchain_core.utils.get_colored_text" - ], - [ - "langchain.input.print_text", - "langchain_core.utils.print_text" - ], + ["langchain.input.get_colored_text", "langchain_core.utils.get_colored_text"], + ["langchain.input.print_text", "langchain_core.utils.print_text"], [ "langchain.llms.base.BaseLanguageModel", "langchain_core.language_models.BaseLanguageModel" ], - [ - "langchain.llms.base.BaseLLM", - "langchain_core.language_models.BaseLLM" - ], - [ - "langchain.llms.base.LLM", - "langchain_core.language_models.LLM" - ], - [ - "langchain.load.dumpd", - "langchain_core.load.dumpd" - ], - [ - "langchain.load.dumps", - "langchain_core.load.dumps" - ], - [ - "langchain.load.load", - "langchain_core.load.load" - ], - [ - "langchain.load.loads", - "langchain_core.load.loads" - ], - [ - "langchain.load.dump.default", - "langchain_core.load.dump.default" - ], - [ - "langchain.load.dump.dumps", - "langchain_core.load.dumps" - ], - [ - "langchain.load.dump.dumpd", - "langchain_core.load.dumpd" - ], - [ - "langchain.load.load.Reviver", - "langchain_core.load.load.Reviver" - ], - [ - "langchain.load.load.loads", - "langchain_core.load.loads" - ], - [ - "langchain.load.load.load", - "langchain_core.load.load" - ], + ["langchain.llms.base.BaseLLM", "langchain_core.language_models.BaseLLM"], + ["langchain.llms.base.LLM", "langchain_core.language_models.LLM"], + ["langchain.load.dumpd", "langchain_core.load.dumpd"], + ["langchain.load.dumps", "langchain_core.load.dumps"], + ["langchain.load.load", "langchain_core.load.load"], + ["langchain.load.loads", "langchain_core.load.loads"], + ["langchain.load.dump.default", "langchain_core.load.dump.default"], + ["langchain.load.dump.dumps", "langchain_core.load.dumps"], + ["langchain.load.dump.dumpd", "langchain_core.load.dumpd"], + ["langchain.load.load.Reviver", "langchain_core.load.load.Reviver"], + ["langchain.load.load.loads", "langchain_core.load.loads"], + ["langchain.load.load.load", "langchain_core.load.load"], [ "langchain.load.serializable.BaseSerialized", "langchain_core.load.serializable.BaseSerialized" @@ -683,10 +602,7 @@ "langchain.prompts.PipelinePromptTemplate", "langchain_core.prompts.PipelinePromptTemplate" ], - [ - "langchain.prompts.PromptTemplate", - "langchain_core.prompts.PromptTemplate" - ], + ["langchain.prompts.PromptTemplate", "langchain_core.prompts.PromptTemplate"], [ "langchain.prompts.SemanticSimilarityExampleSelector", "langchain_core.example_selectors.SemanticSimilarityExampleSelector" @@ -699,18 +615,12 @@ "langchain.prompts.SystemMessagePromptTemplate", "langchain_core.prompts.SystemMessagePromptTemplate" ], - [ - "langchain.prompts.load_prompt", - "langchain_core.prompts.load_prompt" - ], + ["langchain.prompts.load_prompt", "langchain_core.prompts.load_prompt"], [ "langchain.prompts.FewShotChatMessagePromptTemplate", "langchain_core.prompts.FewShotChatMessagePromptTemplate" ], - [ - "langchain.prompts.Prompt", - "langchain_core.prompts.PromptTemplate" - ], + ["langchain.prompts.Prompt", "langchain_core.prompts.PromptTemplate"], [ "langchain.prompts.base.jinja2_formatter", "langchain_core.prompts.jinja2_formatter" @@ -891,34 +801,13 @@ "langchain.prompts.prompt.PromptTemplate", "langchain_core.prompts.PromptTemplate" ], - [ - "langchain.prompts.prompt.Prompt", - "langchain_core.prompts.PromptTemplate" - ], - [ - "langchain.schema.BaseCache", - "langchain_core.caches.BaseCache" - ], - [ - "langchain.schema.BaseMemory", - "langchain_core.memory.BaseMemory" - ], - [ - "langchain.schema.BaseStore", - "langchain_core.stores.BaseStore" - ], - [ - "langchain.schema.AgentFinish", - "langchain_core.agents.AgentFinish" - ], - [ - "langchain.schema.AgentAction", - "langchain_core.agents.AgentAction" - ], - [ - "langchain.schema.Document", - "langchain_core.documents.Document" - ], + ["langchain.prompts.prompt.Prompt", "langchain_core.prompts.PromptTemplate"], + ["langchain.schema.BaseCache", "langchain_core.caches.BaseCache"], + ["langchain.schema.BaseMemory", "langchain_core.memory.BaseMemory"], + ["langchain.schema.BaseStore", "langchain_core.stores.BaseStore"], + ["langchain.schema.AgentFinish", "langchain_core.agents.AgentFinish"], + ["langchain.schema.AgentAction", "langchain_core.agents.AgentAction"], + ["langchain.schema.Document", "langchain_core.documents.Document"], [ "langchain.schema.BaseChatMessageHistory", "langchain_core.chat_history.BaseChatMessageHistory" @@ -927,30 +816,15 @@ "langchain.schema.BaseDocumentTransformer", "langchain_core.documents.BaseDocumentTransformer" ], - [ - "langchain.schema.BaseMessage", - "langchain_core.messages.BaseMessage" - ], - [ - "langchain.schema.ChatMessage", - "langchain_core.messages.ChatMessage" - ], + ["langchain.schema.BaseMessage", "langchain_core.messages.BaseMessage"], + ["langchain.schema.ChatMessage", "langchain_core.messages.ChatMessage"], [ "langchain.schema.FunctionMessage", "langchain_core.messages.FunctionMessage" ], - [ - "langchain.schema.HumanMessage", - "langchain_core.messages.HumanMessage" - ], - [ - "langchain.schema.AIMessage", - "langchain_core.messages.AIMessage" - ], - [ - "langchain.schema.SystemMessage", - "langchain_core.messages.SystemMessage" - ], + ["langchain.schema.HumanMessage", "langchain_core.messages.HumanMessage"], + ["langchain.schema.AIMessage", "langchain_core.messages.AIMessage"], + ["langchain.schema.SystemMessage", "langchain_core.messages.SystemMessage"], [ "langchain.schema.messages_from_dict", "langchain_core.messages.messages_from_dict" @@ -975,42 +849,18 @@ "langchain.schema.get_buffer_string", "langchain_core.messages.get_buffer_string" ], - [ - "langchain.schema.RunInfo", - "langchain_core.outputs.RunInfo" - ], - [ - "langchain.schema.LLMResult", - "langchain_core.outputs.LLMResult" - ], - [ - "langchain.schema.ChatResult", - "langchain_core.outputs.ChatResult" - ], - [ - "langchain.schema.ChatGeneration", - "langchain_core.outputs.ChatGeneration" - ], - [ - "langchain.schema.Generation", - "langchain_core.outputs.Generation" - ], - [ - "langchain.schema.PromptValue", - "langchain_core.prompt_values.PromptValue" - ], + ["langchain.schema.RunInfo", "langchain_core.outputs.RunInfo"], + ["langchain.schema.LLMResult", "langchain_core.outputs.LLMResult"], + ["langchain.schema.ChatResult", "langchain_core.outputs.ChatResult"], + ["langchain.schema.ChatGeneration", "langchain_core.outputs.ChatGeneration"], + ["langchain.schema.Generation", "langchain_core.outputs.Generation"], + ["langchain.schema.PromptValue", "langchain_core.prompt_values.PromptValue"], [ "langchain.schema.LangChainException", "langchain_core.exceptions.LangChainException" ], - [ - "langchain.schema.BaseRetriever", - "langchain_core.retrievers.BaseRetriever" - ], - [ - "langchain.schema.Memory", - "langchain_core.memory.BaseMemory" - ], + ["langchain.schema.BaseRetriever", "langchain_core.retrievers.BaseRetriever"], + ["langchain.schema.Memory", "langchain_core.memory.BaseMemory"], [ "langchain.schema.OutputParserException", "langchain_core.exceptions.OutputParserException" @@ -1035,22 +885,13 @@ "langchain.schema.format_document", "langchain_core.prompts.format_document" ], - [ - "langchain.schema.agent.AgentAction", - "langchain_core.agents.AgentAction" - ], + ["langchain.schema.agent.AgentAction", "langchain_core.agents.AgentAction"], [ "langchain.schema.agent.AgentActionMessageLog", "langchain_core.agents.AgentActionMessageLog" ], - [ - "langchain.schema.agent.AgentFinish", - "langchain_core.agents.AgentFinish" - ], - [ - "langchain.schema.cache.BaseCache", - "langchain_core.caches.BaseCache" - ], + ["langchain.schema.agent.AgentFinish", "langchain_core.agents.AgentFinish"], + ["langchain.schema.cache.BaseCache", "langchain_core.caches.BaseCache"], [ "langchain.schema.callbacks.base.RetrieverManagerMixin", "langchain_core.callbacks.RetrieverManagerMixin" @@ -1327,10 +1168,7 @@ "langchain.schema.chat_history.BaseChatMessageHistory", "langchain_core.chat_history.BaseChatMessageHistory" ], - [ - "langchain.schema.document.Document", - "langchain_core.documents.Document" - ], + ["langchain.schema.document.Document", "langchain_core.documents.Document"], [ "langchain.schema.document.BaseDocumentTransformer", "langchain_core.documents.BaseDocumentTransformer" @@ -1351,10 +1189,7 @@ "langchain.schema.language_model._get_token_ids_default_method", "langchain_core.language_models.base._get_token_ids_default_method" ], - [ - "langchain.schema.memory.BaseMemory", - "langchain_core.memory.BaseMemory" - ], + ["langchain.schema.memory.BaseMemory", "langchain_core.memory.BaseMemory"], [ "langchain.schema.messages.get_buffer_string", "langchain_core.messages.get_buffer_string" @@ -1379,10 +1214,7 @@ "langchain.schema.messages.HumanMessageChunk", "langchain_core.messages.HumanMessageChunk" ], - [ - "langchain.schema.messages.AIMessage", - "langchain_core.messages.AIMessage" - ], + ["langchain.schema.messages.AIMessage", "langchain_core.messages.AIMessage"], [ "langchain.schema.messages.AIMessageChunk", "langchain_core.messages.AIMessageChunk" @@ -1439,10 +1271,7 @@ "langchain.schema.messages.message_to_dict", "langchain_core.messages.message_to_dict" ], - [ - "langchain.schema.output.Generation", - "langchain_core.outputs.Generation" - ], + ["langchain.schema.output.Generation", "langchain_core.outputs.Generation"], [ "langchain.schema.output.GenerationChunk", "langchain_core.outputs.GenerationChunk" @@ -1455,18 +1284,9 @@ "langchain.schema.output.ChatGenerationChunk", "langchain_core.outputs.ChatGenerationChunk" ], - [ - "langchain.schema.output.RunInfo", - "langchain_core.outputs.RunInfo" - ], - [ - "langchain.schema.output.ChatResult", - "langchain_core.outputs.ChatResult" - ], - [ - "langchain.schema.output.LLMResult", - "langchain_core.outputs.LLMResult" - ], + ["langchain.schema.output.RunInfo", "langchain_core.outputs.RunInfo"], + ["langchain.schema.output.ChatResult", "langchain_core.outputs.ChatResult"], + ["langchain.schema.output.LLMResult", "langchain_core.outputs.LLMResult"], [ "langchain.schema.output_parser.BaseLLMOutputParser", "langchain_core.output_parsers.BaseLLMOutputParser" @@ -1539,10 +1359,7 @@ "langchain.schema.runnable.RouterRunnable", "langchain_core.runnables.RouterRunnable" ], - [ - "langchain.schema.runnable.Runnable", - "langchain_core.runnables.Runnable" - ], + ["langchain.schema.runnable.Runnable", "langchain_core.runnables.Runnable"], [ "langchain.schema.runnable.RunnableSerializable", "langchain_core.runnables.RunnableSerializable" @@ -1779,10 +1596,7 @@ "langchain.schema.runnable.utils.SupportsAdd", "langchain_core.runnables.utils.SupportsAdd" ], - [ - "langchain.schema.runnable.utils.add", - "langchain_core.runnables.add" - ], + ["langchain.schema.runnable.utils.add", "langchain_core.runnables.add"], [ "langchain.schema.runnable.utils.ConfigurableField", "langchain_core.runnables.ConfigurableField" @@ -1803,10 +1617,7 @@ "langchain.schema.runnable.utils.get_unique_config_specs", "langchain_core.runnables.utils.get_unique_config_specs" ], - [ - "langchain.schema.runnable.utils.aadd", - "langchain_core.runnables.aadd" - ], + ["langchain.schema.runnable.utils.aadd", "langchain_core.runnables.aadd"], [ "langchain.schema.runnable.utils.gated_coro", "langchain_core.runnables.utils.gated_coro" @@ -1815,10 +1626,7 @@ "langchain.schema.runnable.utils.gather_with_concurrency", "langchain_core.runnables.utils.gather_with_concurrency" ], - [ - "langchain.schema.storage.BaseStore", - "langchain_core.stores.BaseStore" - ], + ["langchain.schema.storage.BaseStore", "langchain_core.stores.BaseStore"], [ "langchain.schema.vectorstore.VectorStore", "langchain_core.vectorstores.VectorStore" @@ -1827,26 +1635,14 @@ "langchain.schema.vectorstore.VectorStoreRetriever", "langchain_core.vectorstores.VectorStoreRetriever" ], - [ - "langchain.tools.BaseTool", - "langchain_core.tools.BaseTool" - ], - [ - "langchain.tools.StructuredTool", - "langchain_core.tools.StructuredTool" - ], - [ - "langchain.tools.Tool", - "langchain_core.tools.Tool" - ], + ["langchain.tools.BaseTool", "langchain_core.tools.BaseTool"], + ["langchain.tools.StructuredTool", "langchain_core.tools.StructuredTool"], + ["langchain.tools.Tool", "langchain_core.tools.Tool"], [ "langchain.tools.format_tool_to_openai_function", "langchain_core.utils.function_calling.format_tool_to_openai_function" ], - [ - "langchain.tools.tool", - "langchain_core.tools.tool" - ], + ["langchain.tools.tool", "langchain_core.tools.tool"], [ "langchain.tools.base.SchemaAnnotationError", "langchain_core.tools.SchemaAnnotationError" @@ -1855,26 +1651,14 @@ "langchain.tools.base.create_schema_from_function", "langchain_core.tools.create_schema_from_function" ], - [ - "langchain.tools.base.ToolException", - "langchain_core.tools.ToolException" - ], - [ - "langchain.tools.base.BaseTool", - "langchain_core.tools.BaseTool" - ], - [ - "langchain.tools.base.Tool", - "langchain_core.tools.Tool" - ], + ["langchain.tools.base.ToolException", "langchain_core.tools.ToolException"], + ["langchain.tools.base.BaseTool", "langchain_core.tools.BaseTool"], + ["langchain.tools.base.Tool", "langchain_core.tools.Tool"], [ "langchain.tools.base.StructuredTool", "langchain_core.tools.StructuredTool" ], - [ - "langchain.tools.base.tool", - "langchain_core.tools.tool" - ], + ["langchain.tools.base.tool", "langchain_core.tools.tool"], [ "langchain.tools.convert_to_openai.format_tool_to_openai_function", "langchain_core.utils.function_calling.format_tool_to_openai_function" @@ -1891,94 +1675,49 @@ "langchain.utilities.loading.try_load_from_hub", "langchain_core.utils.try_load_from_hub" ], - [ - "langchain.utils.StrictFormatter", - "langchain_core.utils.StrictFormatter" - ], + ["langchain.utils.StrictFormatter", "langchain_core.utils.StrictFormatter"], [ "langchain.utils.check_package_version", "langchain_core.utils.check_package_version" ], - [ - "langchain.utils.comma_list", - "langchain_core.utils.comma_list" - ], + ["langchain.utils.comma_list", "langchain_core.utils.comma_list"], [ "langchain.utils.convert_to_secret_str", "langchain_core.utils.convert_to_secret_str" ], - [ - "langchain.utils.get_bolded_text", - "langchain_core.utils.get_bolded_text" - ], + ["langchain.utils.get_bolded_text", "langchain_core.utils.get_bolded_text"], [ "langchain.utils.get_color_mapping", "langchain_core.utils.get_color_mapping" ], - [ - "langchain.utils.get_colored_text", - "langchain_core.utils.get_colored_text" - ], + ["langchain.utils.get_colored_text", "langchain_core.utils.get_colored_text"], [ "langchain.utils.get_from_dict_or_env", "langchain_core.utils.get_from_dict_or_env" ], - [ - "langchain.utils.get_from_env", - "langchain_core.utils.get_from_env" - ], + ["langchain.utils.get_from_env", "langchain_core.utils.get_from_env"], [ "langchain.utils.get_pydantic_field_names", "langchain_core.utils.get_pydantic_field_names" ], - [ - "langchain.utils.guard_import", - "langchain_core.utils.guard_import" - ], - [ - "langchain.utils.mock_now", - "langchain_core.utils.mock_now" - ], - [ - "langchain.utils.print_text", - "langchain_core.utils.print_text" - ], + ["langchain.utils.guard_import", "langchain_core.utils.guard_import"], + ["langchain.utils.mock_now", "langchain_core.utils.mock_now"], + ["langchain.utils.print_text", "langchain_core.utils.print_text"], [ "langchain.utils.raise_for_status_with_text", "langchain_core.utils.raise_for_status_with_text" ], - [ - "langchain.utils.stringify_dict", - "langchain_core.utils.stringify_dict" - ], - [ - "langchain.utils.stringify_value", - "langchain_core.utils.stringify_value" - ], - [ - "langchain.utils.xor_args", - "langchain_core.utils.xor_args" - ], - [ - "langchain.utils.aiter.py_anext", - "langchain_core.utils.aiter.py_anext" - ], - [ - "langchain.utils.aiter.NoLock", - "langchain_core.utils.aiter.NoLock" - ], - [ - "langchain.utils.aiter.Tee", - "langchain_core.utils.aiter.Tee" - ], + ["langchain.utils.stringify_dict", "langchain_core.utils.stringify_dict"], + ["langchain.utils.stringify_value", "langchain_core.utils.stringify_value"], + ["langchain.utils.xor_args", "langchain_core.utils.xor_args"], + ["langchain.utils.aiter.py_anext", "langchain_core.utils.aiter.py_anext"], + ["langchain.utils.aiter.NoLock", "langchain_core.utils.aiter.NoLock"], + ["langchain.utils.aiter.Tee", "langchain_core.utils.aiter.Tee"], [ "langchain.utils.env.get_from_dict_or_env", "langchain_core.utils.get_from_dict_or_env" ], - [ - "langchain.utils.env.get_from_env", - "langchain_core.utils.get_from_env" - ], + ["langchain.utils.env.get_from_env", "langchain_core.utils.get_from_env"], [ "langchain.utils.formatting.StrictFormatter", "langchain_core.utils.StrictFormatter" @@ -2003,22 +1742,10 @@ "langchain.utils.input.get_bolded_text", "langchain_core.utils.get_bolded_text" ], - [ - "langchain.utils.input.print_text", - "langchain_core.utils.print_text" - ], - [ - "langchain.utils.iter.NoLock", - "langchain_core.utils.iter.NoLock" - ], - [ - "langchain.utils.iter.tee_peer", - "langchain_core.utils.iter.tee_peer" - ], - [ - "langchain.utils.iter.Tee", - "langchain_core.utils.iter.Tee" - ], + ["langchain.utils.input.print_text", "langchain_core.utils.print_text"], + ["langchain.utils.iter.NoLock", "langchain_core.utils.iter.NoLock"], + ["langchain.utils.iter.tee_peer", "langchain_core.utils.iter.tee_peer"], + ["langchain.utils.iter.Tee", "langchain_core.utils.iter.Tee"], [ "langchain.utils.iter.batch_iterate", "langchain_core.utils.iter.batch_iterate" @@ -2071,26 +1798,14 @@ "langchain.utils.strings.stringify_dict", "langchain_core.utils.stringify_dict" ], - [ - "langchain.utils.strings.comma_list", - "langchain_core.utils.comma_list" - ], - [ - "langchain.utils.utils.xor_args", - "langchain_core.utils.xor_args" - ], + ["langchain.utils.strings.comma_list", "langchain_core.utils.comma_list"], + ["langchain.utils.utils.xor_args", "langchain_core.utils.xor_args"], [ "langchain.utils.utils.raise_for_status_with_text", "langchain_core.utils.raise_for_status_with_text" ], - [ - "langchain.utils.utils.mock_now", - "langchain_core.utils.mock_now" - ], - [ - "langchain.utils.utils.guard_import", - "langchain_core.utils.guard_import" - ], + ["langchain.utils.utils.mock_now", "langchain_core.utils.mock_now"], + ["langchain.utils.utils.guard_import", "langchain_core.utils.guard_import"], [ "langchain.utils.utils.check_package_version", "langchain_core.utils.check_package_version" diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_langchain_community.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_langchain_community.grit new file mode 100644 index 0000000000000..9e35dd42ca05a --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_langchain_community.grit @@ -0,0 +1,2043 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_langchain_to_langchain_community() { + find_replace_imports(list=[ + [`langchain.adapters.openai`, `IndexableBaseModel`, `langchain_community.adapters.openai`, `IndexableBaseModel`], + [`langchain.adapters.openai`, `Choice`, `langchain_community.adapters.openai`, `Choice`], + [`langchain.adapters.openai`, `ChatCompletions`, `langchain_community.adapters.openai`, `ChatCompletions`], + [`langchain.adapters.openai`, `ChoiceChunk`, `langchain_community.adapters.openai`, `ChoiceChunk`], + [`langchain.adapters.openai`, `ChatCompletionChunk`, `langchain_community.adapters.openai`, `ChatCompletionChunk`], + [`langchain.adapters.openai`, `convert_dict_to_message`, `langchain_community.adapters.openai`, `convert_dict_to_message`], + [`langchain.adapters.openai`, `convert_message_to_dict`, `langchain_community.adapters.openai`, `convert_message_to_dict`], + [`langchain.adapters.openai`, `convert_openai_messages`, `langchain_community.adapters.openai`, `convert_openai_messages`], + [`langchain.adapters.openai`, `ChatCompletion`, `langchain_community.adapters.openai`, `ChatCompletion`], + [`langchain.adapters.openai`, `convert_messages_for_finetuning`, `langchain_community.adapters.openai`, `convert_messages_for_finetuning`], + [`langchain.adapters.openai`, `Completions`, `langchain_community.adapters.openai`, `Completions`], + [`langchain.adapters.openai`, `Chat`, `langchain_community.adapters.openai`, `Chat`], + [`langchain.agents`, `create_json_agent`, `langchain_community.agent_toolkits`, `create_json_agent`], + [`langchain.agents`, `create_openapi_agent`, `langchain_community.agent_toolkits`, `create_openapi_agent`], + [`langchain.agents`, `create_pbi_agent`, `langchain_community.agent_toolkits`, `create_pbi_agent`], + [`langchain.agents`, `create_pbi_chat_agent`, `langchain_community.agent_toolkits`, `create_pbi_chat_agent`], + [`langchain.agents`, `create_spark_sql_agent`, `langchain_community.agent_toolkits`, `create_spark_sql_agent`], + [`langchain.agents`, `create_sql_agent`, `langchain_community.agent_toolkits`, `create_sql_agent`], + [`langchain.agents`, `get_all_tool_names`, `langchain_community.agent_toolkits.load_tools`, `get_all_tool_names`], + [`langchain.agents`, `load_huggingface_tool`, `langchain_community.agent_toolkits.load_tools`, `load_huggingface_tool`], + [`langchain.agents`, `load_tools`, `langchain_community.agent_toolkits.load_tools`, `load_tools`], + [`langchain.agents.agent_toolkits`, `AINetworkToolkit`, `langchain_community.agent_toolkits`, `AINetworkToolkit`], + [`langchain.agents.agent_toolkits`, `AmadeusToolkit`, `langchain_community.agent_toolkits`, `AmadeusToolkit`], + [`langchain.agents.agent_toolkits`, `AzureCognitiveServicesToolkit`, `langchain_community.agent_toolkits`, `AzureCognitiveServicesToolkit`], + [`langchain.agents.agent_toolkits`, `FileManagementToolkit`, `langchain_community.agent_toolkits`, `FileManagementToolkit`], + [`langchain.agents.agent_toolkits`, `GmailToolkit`, `langchain_community.agent_toolkits`, `GmailToolkit`], + [`langchain.agents.agent_toolkits`, `JiraToolkit`, `langchain_community.agent_toolkits`, `JiraToolkit`], + [`langchain.agents.agent_toolkits`, `JsonToolkit`, `langchain_community.agent_toolkits`, `JsonToolkit`], + [`langchain.agents.agent_toolkits`, `MultionToolkit`, `langchain_community.agent_toolkits`, `MultionToolkit`], + [`langchain.agents.agent_toolkits`, `NasaToolkit`, `langchain_community.agent_toolkits`, `NasaToolkit`], + [`langchain.agents.agent_toolkits`, `NLAToolkit`, `langchain_community.agent_toolkits`, `NLAToolkit`], + [`langchain.agents.agent_toolkits`, `O365Toolkit`, `langchain_community.agent_toolkits`, `O365Toolkit`], + [`langchain.agents.agent_toolkits`, `OpenAPIToolkit`, `langchain_community.agent_toolkits`, `OpenAPIToolkit`], + [`langchain.agents.agent_toolkits`, `PlayWrightBrowserToolkit`, `langchain_community.agent_toolkits`, `PlayWrightBrowserToolkit`], + [`langchain.agents.agent_toolkits`, `PowerBIToolkit`, `langchain_community.agent_toolkits`, `PowerBIToolkit`], + [`langchain.agents.agent_toolkits`, `SlackToolkit`, `langchain_community.agent_toolkits`, `SlackToolkit`], + [`langchain.agents.agent_toolkits`, `SteamToolkit`, `langchain_community.agent_toolkits`, `SteamToolkit`], + [`langchain.agents.agent_toolkits`, `SQLDatabaseToolkit`, `langchain_community.agent_toolkits`, `SQLDatabaseToolkit`], + [`langchain.agents.agent_toolkits`, `SparkSQLToolkit`, `langchain_community.agent_toolkits`, `SparkSQLToolkit`], + [`langchain.agents.agent_toolkits`, `ZapierToolkit`, `langchain_community.agent_toolkits`, `ZapierToolkit`], + [`langchain.agents.agent_toolkits`, `create_json_agent`, `langchain_community.agent_toolkits`, `create_json_agent`], + [`langchain.agents.agent_toolkits`, `create_openapi_agent`, `langchain_community.agent_toolkits`, `create_openapi_agent`], + [`langchain.agents.agent_toolkits`, `create_pbi_agent`, `langchain_community.agent_toolkits`, `create_pbi_agent`], + [`langchain.agents.agent_toolkits`, `create_pbi_chat_agent`, `langchain_community.agent_toolkits`, `create_pbi_chat_agent`], + [`langchain.agents.agent_toolkits`, `create_spark_sql_agent`, `langchain_community.agent_toolkits`, `create_spark_sql_agent`], + [`langchain.agents.agent_toolkits`, `create_sql_agent`, `langchain_community.agent_toolkits`, `create_sql_agent`], + [`langchain.agents.agent_toolkits.ainetwork.toolkit`, `AINetworkToolkit`, `langchain_community.agent_toolkits`, `AINetworkToolkit`], + [`langchain.agents.agent_toolkits.azure_cognitive_services`, `AzureCognitiveServicesToolkit`, `langchain_community.agent_toolkits`, `AzureCognitiveServicesToolkit`], + [`langchain.agents.agent_toolkits.clickup.toolkit`, `ClickupToolkit`, `langchain_community.agent_toolkits.clickup.toolkit`, `ClickupToolkit`], + [`langchain.agents.agent_toolkits.file_management`, `FileManagementToolkit`, `langchain_community.agent_toolkits`, `FileManagementToolkit`], + [`langchain.agents.agent_toolkits.file_management.toolkit`, `FileManagementToolkit`, `langchain_community.agent_toolkits`, `FileManagementToolkit`], + [`langchain.agents.agent_toolkits.github.toolkit`, `NoInput`, `langchain_community.agent_toolkits.github.toolkit`, `NoInput`], + [`langchain.agents.agent_toolkits.github.toolkit`, `GetIssue`, `langchain_community.agent_toolkits.github.toolkit`, `GetIssue`], + [`langchain.agents.agent_toolkits.github.toolkit`, `CommentOnIssue`, `langchain_community.agent_toolkits.github.toolkit`, `CommentOnIssue`], + [`langchain.agents.agent_toolkits.github.toolkit`, `GetPR`, `langchain_community.agent_toolkits.github.toolkit`, `GetPR`], + [`langchain.agents.agent_toolkits.github.toolkit`, `CreatePR`, `langchain_community.agent_toolkits.github.toolkit`, `CreatePR`], + [`langchain.agents.agent_toolkits.github.toolkit`, `CreateFile`, `langchain_community.agent_toolkits.github.toolkit`, `CreateFile`], + [`langchain.agents.agent_toolkits.github.toolkit`, `ReadFile`, `langchain_community.agent_toolkits.github.toolkit`, `ReadFile`], + [`langchain.agents.agent_toolkits.github.toolkit`, `UpdateFile`, `langchain_community.agent_toolkits.github.toolkit`, `UpdateFile`], + [`langchain.agents.agent_toolkits.github.toolkit`, `DeleteFile`, `langchain_community.agent_toolkits.github.toolkit`, `DeleteFile`], + [`langchain.agents.agent_toolkits.github.toolkit`, `DirectoryPath`, `langchain_community.agent_toolkits.github.toolkit`, `DirectoryPath`], + [`langchain.agents.agent_toolkits.github.toolkit`, `BranchName`, `langchain_community.agent_toolkits.github.toolkit`, `BranchName`], + [`langchain.agents.agent_toolkits.github.toolkit`, `SearchCode`, `langchain_community.agent_toolkits.github.toolkit`, `SearchCode`], + [`langchain.agents.agent_toolkits.github.toolkit`, `CreateReviewRequest`, `langchain_community.agent_toolkits.github.toolkit`, `CreateReviewRequest`], + [`langchain.agents.agent_toolkits.github.toolkit`, `SearchIssuesAndPRs`, `langchain_community.agent_toolkits.github.toolkit`, `SearchIssuesAndPRs`], + [`langchain.agents.agent_toolkits.github.toolkit`, `GitHubToolkit`, `langchain_community.agent_toolkits.github.toolkit`, `GitHubToolkit`], + [`langchain.agents.agent_toolkits.gitlab.toolkit`, `GitLabToolkit`, `langchain_community.agent_toolkits.gitlab.toolkit`, `GitLabToolkit`], + [`langchain.agents.agent_toolkits.gmail.toolkit`, `GmailToolkit`, `langchain_community.agent_toolkits`, `GmailToolkit`], + [`langchain.agents.agent_toolkits.jira.toolkit`, `JiraToolkit`, `langchain_community.agent_toolkits`, `JiraToolkit`], + [`langchain.agents.agent_toolkits.json.base`, `create_json_agent`, `langchain_community.agent_toolkits`, `create_json_agent`], + [`langchain.agents.agent_toolkits.json.toolkit`, `JsonToolkit`, `langchain_community.agent_toolkits`, `JsonToolkit`], + [`langchain.agents.agent_toolkits.multion.toolkit`, `MultionToolkit`, `langchain_community.agent_toolkits`, `MultionToolkit`], + [`langchain.agents.agent_toolkits.nasa.toolkit`, `NasaToolkit`, `langchain_community.agent_toolkits`, `NasaToolkit`], + [`langchain.agents.agent_toolkits.nla.tool`, `NLATool`, `langchain_community.agent_toolkits.nla.tool`, `NLATool`], + [`langchain.agents.agent_toolkits.nla.toolkit`, `NLAToolkit`, `langchain_community.agent_toolkits`, `NLAToolkit`], + [`langchain.agents.agent_toolkits.office365.toolkit`, `O365Toolkit`, `langchain_community.agent_toolkits`, `O365Toolkit`], + [`langchain.agents.agent_toolkits.openapi.base`, `create_openapi_agent`, `langchain_community.agent_toolkits`, `create_openapi_agent`], + [`langchain.agents.agent_toolkits.openapi.planner`, `RequestsGetToolWithParsing`, `langchain_community.agent_toolkits.openapi.planner`, `RequestsGetToolWithParsing`], + [`langchain.agents.agent_toolkits.openapi.planner`, `RequestsPostToolWithParsing`, `langchain_community.agent_toolkits.openapi.planner`, `RequestsPostToolWithParsing`], + [`langchain.agents.agent_toolkits.openapi.planner`, `RequestsPatchToolWithParsing`, `langchain_community.agent_toolkits.openapi.planner`, `RequestsPatchToolWithParsing`], + [`langchain.agents.agent_toolkits.openapi.planner`, `RequestsPutToolWithParsing`, `langchain_community.agent_toolkits.openapi.planner`, `RequestsPutToolWithParsing`], + [`langchain.agents.agent_toolkits.openapi.planner`, `RequestsDeleteToolWithParsing`, `langchain_community.agent_toolkits.openapi.planner`, `RequestsDeleteToolWithParsing`], + [`langchain.agents.agent_toolkits.openapi.planner`, `create_openapi_agent`, `langchain_community.agent_toolkits.openapi.planner`, `create_openapi_agent`], + [`langchain.agents.agent_toolkits.openapi.spec`, `ReducedOpenAPISpec`, `langchain_community.agent_toolkits.openapi.spec`, `ReducedOpenAPISpec`], + [`langchain.agents.agent_toolkits.openapi.spec`, `reduce_openapi_spec`, `langchain_community.agent_toolkits.openapi.spec`, `reduce_openapi_spec`], + [`langchain.agents.agent_toolkits.openapi.toolkit`, `RequestsToolkit`, `langchain_community.agent_toolkits.openapi.toolkit`, `RequestsToolkit`], + [`langchain.agents.agent_toolkits.openapi.toolkit`, `OpenAPIToolkit`, `langchain_community.agent_toolkits`, `OpenAPIToolkit`], + [`langchain.agents.agent_toolkits.playwright`, `PlayWrightBrowserToolkit`, `langchain_community.agent_toolkits`, `PlayWrightBrowserToolkit`], + [`langchain.agents.agent_toolkits.playwright.toolkit`, `PlayWrightBrowserToolkit`, `langchain_community.agent_toolkits`, `PlayWrightBrowserToolkit`], + [`langchain.agents.agent_toolkits.powerbi.base`, `create_pbi_agent`, `langchain_community.agent_toolkits`, `create_pbi_agent`], + [`langchain.agents.agent_toolkits.powerbi.chat_base`, `create_pbi_chat_agent`, `langchain_community.agent_toolkits`, `create_pbi_chat_agent`], + [`langchain.agents.agent_toolkits.powerbi.toolkit`, `PowerBIToolkit`, `langchain_community.agent_toolkits`, `PowerBIToolkit`], + [`langchain.agents.agent_toolkits.slack.toolkit`, `SlackToolkit`, `langchain_community.agent_toolkits`, `SlackToolkit`], + [`langchain.agents.agent_toolkits.spark_sql.base`, `create_spark_sql_agent`, `langchain_community.agent_toolkits`, `create_spark_sql_agent`], + [`langchain.agents.agent_toolkits.spark_sql.toolkit`, `SparkSQLToolkit`, `langchain_community.agent_toolkits`, `SparkSQLToolkit`], + [`langchain.agents.agent_toolkits.sql.base`, `create_sql_agent`, `langchain_community.agent_toolkits`, `create_sql_agent`], + [`langchain.agents.agent_toolkits.sql.toolkit`, `SQLDatabaseToolkit`, `langchain_community.agent_toolkits`, `SQLDatabaseToolkit`], + [`langchain.agents.agent_toolkits.steam.toolkit`, `SteamToolkit`, `langchain_community.agent_toolkits`, `SteamToolkit`], + [`langchain.agents.agent_toolkits.zapier.toolkit`, `ZapierToolkit`, `langchain_community.agent_toolkits`, `ZapierToolkit`], + [`langchain.cache`, `FullLLMCache`, `langchain_community.cache`, `FullLLMCache`], + [`langchain.cache`, `SQLAlchemyCache`, `langchain_community.cache`, `SQLAlchemyCache`], + [`langchain.cache`, `SQLiteCache`, `langchain_community.cache`, `SQLiteCache`], + [`langchain.cache`, `UpstashRedisCache`, `langchain_community.cache`, `UpstashRedisCache`], + [`langchain.cache`, `RedisCache`, `langchain_community.cache`, `RedisCache`], + [`langchain.cache`, `RedisSemanticCache`, `langchain_community.cache`, `RedisSemanticCache`], + [`langchain.cache`, `GPTCache`, `langchain_community.cache`, `GPTCache`], + [`langchain.cache`, `MomentoCache`, `langchain_community.cache`, `MomentoCache`], + [`langchain.cache`, `InMemoryCache`, `langchain_community.cache`, `InMemoryCache`], + [`langchain.cache`, `CassandraCache`, `langchain_community.cache`, `CassandraCache`], + [`langchain.cache`, `CassandraSemanticCache`, `langchain_community.cache`, `CassandraSemanticCache`], + [`langchain.cache`, `FullMd5LLMCache`, `langchain_community.cache`, `FullMd5LLMCache`], + [`langchain.cache`, `SQLAlchemyMd5Cache`, `langchain_community.cache`, `SQLAlchemyMd5Cache`], + [`langchain.cache`, `AstraDBCache`, `langchain_community.cache`, `AstraDBCache`], + [`langchain.cache`, `AstraDBSemanticCache`, `langchain_community.cache`, `AstraDBSemanticCache`], + [`langchain.cache`, `AzureCosmosDBSemanticCache`, `langchain_community.cache`, `AzureCosmosDBSemanticCache`], + [`langchain.callbacks`, `AimCallbackHandler`, `langchain_community.callbacks`, `AimCallbackHandler`], + [`langchain.callbacks`, `ArgillaCallbackHandler`, `langchain_community.callbacks`, `ArgillaCallbackHandler`], + [`langchain.callbacks`, `ArizeCallbackHandler`, `langchain_community.callbacks`, `ArizeCallbackHandler`], + [`langchain.callbacks`, `PromptLayerCallbackHandler`, `langchain_community.callbacks`, `PromptLayerCallbackHandler`], + [`langchain.callbacks`, `ArthurCallbackHandler`, `langchain_community.callbacks`, `ArthurCallbackHandler`], + [`langchain.callbacks`, `ClearMLCallbackHandler`, `langchain_community.callbacks`, `ClearMLCallbackHandler`], + [`langchain.callbacks`, `CometCallbackHandler`, `langchain_community.callbacks`, `CometCallbackHandler`], + [`langchain.callbacks`, `ContextCallbackHandler`, `langchain_community.callbacks`, `ContextCallbackHandler`], + [`langchain.callbacks`, `HumanApprovalCallbackHandler`, `langchain_community.callbacks`, `HumanApprovalCallbackHandler`], + [`langchain.callbacks`, `InfinoCallbackHandler`, `langchain_community.callbacks`, `InfinoCallbackHandler`], + [`langchain.callbacks`, `MlflowCallbackHandler`, `langchain_community.callbacks`, `MlflowCallbackHandler`], + [`langchain.callbacks`, `LLMonitorCallbackHandler`, `langchain_community.callbacks`, `LLMonitorCallbackHandler`], + [`langchain.callbacks`, `OpenAICallbackHandler`, `langchain_community.callbacks`, `OpenAICallbackHandler`], + [`langchain.callbacks`, `LLMThoughtLabeler`, `langchain_community.callbacks`, `LLMThoughtLabeler`], + [`langchain.callbacks`, `StreamlitCallbackHandler`, `langchain_community.callbacks`, `StreamlitCallbackHandler`], + [`langchain.callbacks`, `WandbCallbackHandler`, `langchain_community.callbacks`, `WandbCallbackHandler`], + [`langchain.callbacks`, `WhyLabsCallbackHandler`, `langchain_community.callbacks`, `WhyLabsCallbackHandler`], + [`langchain.callbacks`, `get_openai_callback`, `langchain_community.callbacks`, `get_openai_callback`], + [`langchain.callbacks`, `wandb_tracing_enabled`, `langchain_community.callbacks`, `wandb_tracing_enabled`], + [`langchain.callbacks`, `FlyteCallbackHandler`, `langchain_community.callbacks`, `FlyteCallbackHandler`], + [`langchain.callbacks`, `SageMakerCallbackHandler`, `langchain_community.callbacks`, `SageMakerCallbackHandler`], + [`langchain.callbacks`, `LabelStudioCallbackHandler`, `langchain_community.callbacks`, `LabelStudioCallbackHandler`], + [`langchain.callbacks`, `TrubricsCallbackHandler`, `langchain_community.callbacks`, `TrubricsCallbackHandler`], + [`langchain.callbacks.aim_callback`, `import_aim`, `langchain_community.callbacks.aim_callback`, `import_aim`], + [`langchain.callbacks.aim_callback`, `BaseMetadataCallbackHandler`, `langchain_community.callbacks.aim_callback`, `BaseMetadataCallbackHandler`], + [`langchain.callbacks.aim_callback`, `AimCallbackHandler`, `langchain_community.callbacks`, `AimCallbackHandler`], + [`langchain.callbacks.argilla_callback`, `ArgillaCallbackHandler`, `langchain_community.callbacks`, `ArgillaCallbackHandler`], + [`langchain.callbacks.arize_callback`, `ArizeCallbackHandler`, `langchain_community.callbacks`, `ArizeCallbackHandler`], + [`langchain.callbacks.arthur_callback`, `ArthurCallbackHandler`, `langchain_community.callbacks`, `ArthurCallbackHandler`], + [`langchain.callbacks.clearml_callback`, `ClearMLCallbackHandler`, `langchain_community.callbacks`, `ClearMLCallbackHandler`], + [`langchain.callbacks.comet_ml_callback`, `CometCallbackHandler`, `langchain_community.callbacks`, `CometCallbackHandler`], + [`langchain.callbacks.confident_callback`, `DeepEvalCallbackHandler`, `langchain_community.callbacks.confident_callback`, `DeepEvalCallbackHandler`], + [`langchain.callbacks.context_callback`, `ContextCallbackHandler`, `langchain_community.callbacks`, `ContextCallbackHandler`], + [`langchain.callbacks.flyte_callback`, `FlyteCallbackHandler`, `langchain_community.callbacks`, `FlyteCallbackHandler`], + [`langchain.callbacks.human`, `HumanRejectedException`, `langchain_community.callbacks.human`, `HumanRejectedException`], + [`langchain.callbacks.human`, `HumanApprovalCallbackHandler`, `langchain_community.callbacks`, `HumanApprovalCallbackHandler`], + [`langchain.callbacks.human`, `AsyncHumanApprovalCallbackHandler`, `langchain_community.callbacks.human`, `AsyncHumanApprovalCallbackHandler`], + [`langchain.callbacks.infino_callback`, `InfinoCallbackHandler`, `langchain_community.callbacks`, `InfinoCallbackHandler`], + [`langchain.callbacks.labelstudio_callback`, `LabelStudioMode`, `langchain_community.callbacks.labelstudio_callback`, `LabelStudioMode`], + [`langchain.callbacks.labelstudio_callback`, `get_default_label_configs`, `langchain_community.callbacks.labelstudio_callback`, `get_default_label_configs`], + [`langchain.callbacks.labelstudio_callback`, `LabelStudioCallbackHandler`, `langchain_community.callbacks`, `LabelStudioCallbackHandler`], + [`langchain.callbacks.llmonitor_callback`, `LLMonitorCallbackHandler`, `langchain_community.callbacks`, `LLMonitorCallbackHandler`], + [`langchain.callbacks.manager`, `get_openai_callback`, `langchain_community.callbacks`, `get_openai_callback`], + [`langchain.callbacks.manager`, `wandb_tracing_enabled`, `langchain_community.callbacks`, `wandb_tracing_enabled`], + [`langchain.callbacks.mlflow_callback`, `analyze_text`, `langchain_community.callbacks.mlflow_callback`, `analyze_text`], + [`langchain.callbacks.mlflow_callback`, `construct_html_from_prompt_and_generation`, `langchain_community.callbacks.mlflow_callback`, `construct_html_from_prompt_and_generation`], + [`langchain.callbacks.mlflow_callback`, `MlflowLogger`, `langchain_community.callbacks.mlflow_callback`, `MlflowLogger`], + [`langchain.callbacks.mlflow_callback`, `MlflowCallbackHandler`, `langchain_community.callbacks`, `MlflowCallbackHandler`], + [`langchain.callbacks.openai_info`, `OpenAICallbackHandler`, `langchain_community.callbacks`, `OpenAICallbackHandler`], + [`langchain.callbacks.promptlayer_callback`, `PromptLayerCallbackHandler`, `langchain_community.callbacks`, `PromptLayerCallbackHandler`], + [`langchain.callbacks.sagemaker_callback`, `SageMakerCallbackHandler`, `langchain_community.callbacks`, `SageMakerCallbackHandler`], + [`langchain.callbacks.streamlit.mutable_expander`, `ChildType`, `langchain_community.callbacks.streamlit.mutable_expander`, `ChildType`], + [`langchain.callbacks.streamlit.mutable_expander`, `ChildRecord`, `langchain_community.callbacks.streamlit.mutable_expander`, `ChildRecord`], + [`langchain.callbacks.streamlit.mutable_expander`, `MutableExpander`, `langchain_community.callbacks.streamlit.mutable_expander`, `MutableExpander`], + [`langchain.callbacks.streamlit.streamlit_callback_handler`, `LLMThoughtState`, `langchain_community.callbacks.streamlit.streamlit_callback_handler`, `LLMThoughtState`], + [`langchain.callbacks.streamlit.streamlit_callback_handler`, `ToolRecord`, `langchain_community.callbacks.streamlit.streamlit_callback_handler`, `ToolRecord`], + [`langchain.callbacks.streamlit.streamlit_callback_handler`, `LLMThoughtLabeler`, `langchain_community.callbacks`, `LLMThoughtLabeler`], + [`langchain.callbacks.streamlit.streamlit_callback_handler`, `LLMThought`, `langchain_community.callbacks.streamlit.streamlit_callback_handler`, `LLMThought`], + [`langchain.callbacks.streamlit.streamlit_callback_handler`, `StreamlitCallbackHandler`, `langchain_community.callbacks.streamlit.streamlit_callback_handler`, `StreamlitCallbackHandler`], + [`langchain.callbacks.tracers`, `WandbTracer`, `langchain_community.callbacks.tracers.wandb`, `WandbTracer`], + [`langchain.callbacks.tracers.comet`, `import_comet_llm_api`, `langchain_community.callbacks.tracers.comet`, `import_comet_llm_api`], + [`langchain.callbacks.tracers.comet`, `CometTracer`, `langchain_community.callbacks.tracers.comet`, `CometTracer`], + [`langchain.callbacks.tracers.wandb`, `RunProcessor`, `langchain_community.callbacks.tracers.wandb`, `RunProcessor`], + [`langchain.callbacks.tracers.wandb`, `WandbRunArgs`, `langchain_community.callbacks.tracers.wandb`, `WandbRunArgs`], + [`langchain.callbacks.tracers.wandb`, `WandbTracer`, `langchain_community.callbacks.tracers.wandb`, `WandbTracer`], + [`langchain.callbacks.trubrics_callback`, `TrubricsCallbackHandler`, `langchain_community.callbacks`, `TrubricsCallbackHandler`], + [`langchain.callbacks.utils`, `import_spacy`, `langchain_community.callbacks.utils`, `import_spacy`], + [`langchain.callbacks.utils`, `import_pandas`, `langchain_community.callbacks.utils`, `import_pandas`], + [`langchain.callbacks.utils`, `import_textstat`, `langchain_community.callbacks.utils`, `import_textstat`], + [`langchain.callbacks.utils`, `_flatten_dict`, `langchain_community.callbacks.utils`, `_flatten_dict`], + [`langchain.callbacks.utils`, `flatten_dict`, `langchain_community.callbacks.utils`, `flatten_dict`], + [`langchain.callbacks.utils`, `hash_string`, `langchain_community.callbacks.utils`, `hash_string`], + [`langchain.callbacks.utils`, `load_json`, `langchain_community.callbacks.utils`, `load_json`], + [`langchain.callbacks.utils`, `BaseMetadataCallbackHandler`, `langchain_community.callbacks.utils`, `BaseMetadataCallbackHandler`], + [`langchain.callbacks.wandb_callback`, `WandbCallbackHandler`, `langchain_community.callbacks`, `WandbCallbackHandler`], + [`langchain.callbacks.whylabs_callback`, `WhyLabsCallbackHandler`, `langchain_community.callbacks`, `WhyLabsCallbackHandler`], + [`langchain.chains`, `OpenAPIEndpointChain`, `langchain_community.chains.openapi.chain`, `OpenAPIEndpointChain`], + [`langchain.chains`, `ArangoGraphQAChain`, `langchain_community.chains.graph_qa.arangodb`, `ArangoGraphQAChain`], + [`langchain.chains`, `GraphQAChain`, `langchain_community.chains.graph_qa.base`, `GraphQAChain`], + [`langchain.chains`, `GraphCypherQAChain`, `langchain_community.chains.graph_qa.cypher`, `GraphCypherQAChain`], + [`langchain.chains`, `FalkorDBQAChain`, `langchain_community.chains.graph_qa.falkordb`, `FalkorDBQAChain`], + [`langchain.chains`, `HugeGraphQAChain`, `langchain_community.chains.graph_qa.hugegraph`, `HugeGraphQAChain`], + [`langchain.chains`, `KuzuQAChain`, `langchain_community.chains.graph_qa.kuzu`, `KuzuQAChain`], + [`langchain.chains`, `NebulaGraphQAChain`, `langchain_community.chains.graph_qa.nebulagraph`, `NebulaGraphQAChain`], + [`langchain.chains`, `NeptuneOpenCypherQAChain`, `langchain_community.chains.graph_qa.neptune_cypher`, `NeptuneOpenCypherQAChain`], + [`langchain.chains`, `NeptuneSparqlQAChain`, `langchain_community.chains.graph_qa.neptune_sparql`, `NeptuneSparqlQAChain`], + [`langchain.chains`, `OntotextGraphDBQAChain`, `langchain_community.chains.graph_qa.ontotext_graphdb`, `OntotextGraphDBQAChain`], + [`langchain.chains`, `GraphSparqlQAChain`, `langchain_community.chains.graph_qa.sparql`, `GraphSparqlQAChain`], + [`langchain.chains`, `LLMRequestsChain`, `langchain_community.chains.llm_requests`, `LLMRequestsChain`], + [`langchain.chains.api.openapi.chain`, `OpenAPIEndpointChain`, `langchain_community.chains.openapi.chain`, `OpenAPIEndpointChain`], + [`langchain.chains.api.openapi.requests_chain`, `APIRequesterChain`, `langchain_community.chains.openapi.requests_chain`, `APIRequesterChain`], + [`langchain.chains.api.openapi.requests_chain`, `APIRequesterOutputParser`, `langchain_community.chains.openapi.requests_chain`, `APIRequesterOutputParser`], + [`langchain.chains.api.openapi.response_chain`, `APIResponderChain`, `langchain_community.chains.openapi.response_chain`, `APIResponderChain`], + [`langchain.chains.api.openapi.response_chain`, `APIResponderOutputParser`, `langchain_community.chains.openapi.response_chain`, `APIResponderOutputParser`], + [`langchain.chains.conversation.memory`, `ConversationKGMemory`, `langchain_community.memory.kg`, `ConversationKGMemory`], + [`langchain.chains.ernie_functions`, `convert_to_ernie_function`, `langchain_community.chains.ernie_functions.base`, `convert_to_ernie_function`], + [`langchain.chains.ernie_functions`, `create_structured_output_chain`, `langchain_community.chains.ernie_functions.base`, `create_structured_output_chain`], + [`langchain.chains.ernie_functions`, `create_ernie_fn_chain`, `langchain_community.chains.ernie_functions.base`, `create_ernie_fn_chain`], + [`langchain.chains.ernie_functions`, `create_structured_output_runnable`, `langchain_community.chains.ernie_functions.base`, `create_structured_output_runnable`], + [`langchain.chains.ernie_functions`, `create_ernie_fn_runnable`, `langchain_community.chains.ernie_functions.base`, `create_ernie_fn_runnable`], + [`langchain.chains.ernie_functions`, `get_ernie_output_parser`, `langchain_community.chains.ernie_functions.base`, `get_ernie_output_parser`], + [`langchain.chains.ernie_functions.base`, `convert_python_function_to_ernie_function`, `langchain_community.chains.ernie_functions.base`, `convert_python_function_to_ernie_function`], + [`langchain.chains.ernie_functions.base`, `convert_to_ernie_function`, `langchain_community.chains.ernie_functions.base`, `convert_to_ernie_function`], + [`langchain.chains.ernie_functions.base`, `create_ernie_fn_chain`, `langchain_community.chains.ernie_functions.base`, `create_ernie_fn_chain`], + [`langchain.chains.ernie_functions.base`, `create_ernie_fn_runnable`, `langchain_community.chains.ernie_functions.base`, `create_ernie_fn_runnable`], + [`langchain.chains.ernie_functions.base`, `create_structured_output_chain`, `langchain_community.chains.ernie_functions.base`, `create_structured_output_chain`], + [`langchain.chains.ernie_functions.base`, `create_structured_output_runnable`, `langchain_community.chains.ernie_functions.base`, `create_structured_output_runnable`], + [`langchain.chains.ernie_functions.base`, `get_ernie_output_parser`, `langchain_community.chains.ernie_functions.base`, `get_ernie_output_parser`], + [`langchain.chains.graph_qa.arangodb`, `ArangoGraphQAChain`, `langchain_community.chains.graph_qa.arangodb`, `ArangoGraphQAChain`], + [`langchain.chains.graph_qa.base`, `GraphQAChain`, `langchain_community.chains.graph_qa.base`, `GraphQAChain`], + [`langchain.chains.graph_qa.cypher`, `GraphCypherQAChain`, `langchain_community.chains.graph_qa.cypher`, `GraphCypherQAChain`], + [`langchain.chains.graph_qa.cypher`, `construct_schema`, `langchain_community.chains.graph_qa.cypher`, `construct_schema`], + [`langchain.chains.graph_qa.cypher`, `extract_cypher`, `langchain_community.chains.graph_qa.cypher`, `extract_cypher`], + [`langchain.chains.graph_qa.cypher_utils`, `CypherQueryCorrector`, `langchain_community.chains.graph_qa.cypher_utils`, `CypherQueryCorrector`], + [`langchain.chains.graph_qa.cypher_utils`, `Schema`, `langchain_community.chains.graph_qa.cypher_utils`, `Schema`], + [`langchain.chains.graph_qa.falkordb`, `FalkorDBQAChain`, `langchain_community.chains.graph_qa.falkordb`, `FalkorDBQAChain`], + [`langchain.chains.graph_qa.falkordb`, `extract_cypher`, `langchain_community.chains.graph_qa.falkordb`, `extract_cypher`], + [`langchain.chains.graph_qa.gremlin`, `GremlinQAChain`, `langchain_community.chains.graph_qa.gremlin`, `GremlinQAChain`], + [`langchain.chains.graph_qa.gremlin`, `extract_gremlin`, `langchain_community.chains.graph_qa.gremlin`, `extract_gremlin`], + [`langchain.chains.graph_qa.hugegraph`, `HugeGraphQAChain`, `langchain_community.chains.graph_qa.hugegraph`, `HugeGraphQAChain`], + [`langchain.chains.graph_qa.kuzu`, `KuzuQAChain`, `langchain_community.chains.graph_qa.kuzu`, `KuzuQAChain`], + [`langchain.chains.graph_qa.kuzu`, `extract_cypher`, `langchain_community.chains.graph_qa.kuzu`, `extract_cypher`], + [`langchain.chains.graph_qa.kuzu`, `remove_prefix`, `langchain_community.chains.graph_qa.kuzu`, `remove_prefix`], + [`langchain.chains.graph_qa.nebulagraph`, `NebulaGraphQAChain`, `langchain_community.chains.graph_qa.nebulagraph`, `NebulaGraphQAChain`], + [`langchain.chains.graph_qa.neptune_cypher`, `NeptuneOpenCypherQAChain`, `langchain_community.chains.graph_qa.neptune_cypher`, `NeptuneOpenCypherQAChain`], + [`langchain.chains.graph_qa.neptune_cypher`, `extract_cypher`, `langchain_community.chains.graph_qa.neptune_cypher`, `extract_cypher`], + [`langchain.chains.graph_qa.neptune_cypher`, `trim_query`, `langchain_community.chains.graph_qa.neptune_cypher`, `trim_query`], + [`langchain.chains.graph_qa.neptune_cypher`, `use_simple_prompt`, `langchain_community.chains.graph_qa.neptune_cypher`, `use_simple_prompt`], + [`langchain.chains.graph_qa.neptune_sparql`, `NeptuneSparqlQAChain`, `langchain_community.chains.graph_qa.neptune_sparql`, `NeptuneSparqlQAChain`], + [`langchain.chains.graph_qa.neptune_sparql`, `extract_sparql`, `langchain_community.chains.graph_qa.neptune_sparql`, `extract_sparql`], + [`langchain.chains.graph_qa.ontotext_graphdb`, `OntotextGraphDBQAChain`, `langchain_community.chains.graph_qa.ontotext_graphdb`, `OntotextGraphDBQAChain`], + [`langchain.chains.graph_qa.sparql`, `GraphSparqlQAChain`, `langchain_community.chains.graph_qa.sparql`, `GraphSparqlQAChain`], + [`langchain.chains.llm_requests`, `LLMRequestsChain`, `langchain_community.chains.llm_requests`, `LLMRequestsChain`], + [`langchain.chat_loaders.facebook_messenger`, `SingleFileFacebookMessengerChatLoader`, `langchain_community.chat_loaders`, `SingleFileFacebookMessengerChatLoader`], + [`langchain.chat_loaders.facebook_messenger`, `FolderFacebookMessengerChatLoader`, `langchain_community.chat_loaders`, `FolderFacebookMessengerChatLoader`], + [`langchain.chat_loaders.gmail`, `GMailLoader`, `langchain_community.chat_loaders`, `GMailLoader`], + [`langchain.chat_loaders.imessage`, `IMessageChatLoader`, `langchain_community.chat_loaders`, `IMessageChatLoader`], + [`langchain.chat_loaders.langsmith`, `LangSmithRunChatLoader`, `langchain_community.chat_loaders`, `LangSmithRunChatLoader`], + [`langchain.chat_loaders.langsmith`, `LangSmithDatasetChatLoader`, `langchain_community.chat_loaders`, `LangSmithDatasetChatLoader`], + [`langchain.chat_loaders.slack`, `SlackChatLoader`, `langchain_community.chat_loaders`, `SlackChatLoader`], + [`langchain.chat_loaders.telegram`, `TelegramChatLoader`, `langchain_community.chat_loaders`, `TelegramChatLoader`], + [`langchain.chat_loaders.utils`, `merge_chat_runs_in_session`, `langchain_community.chat_loaders.utils`, `merge_chat_runs_in_session`], + [`langchain.chat_loaders.utils`, `merge_chat_runs`, `langchain_community.chat_loaders.utils`, `merge_chat_runs`], + [`langchain.chat_loaders.utils`, `map_ai_messages_in_session`, `langchain_community.chat_loaders.utils`, `map_ai_messages_in_session`], + [`langchain.chat_loaders.utils`, `map_ai_messages`, `langchain_community.chat_loaders.utils`, `map_ai_messages`], + [`langchain.chat_loaders.whatsapp`, `WhatsAppChatLoader`, `langchain_community.chat_loaders`, `WhatsAppChatLoader`], + [`langchain.chat_models`, `ChatOpenAI`, `langchain_community.chat_models`, `ChatOpenAI`], + [`langchain.chat_models`, `BedrockChat`, `langchain_community.chat_models`, `BedrockChat`], + [`langchain.chat_models`, `AzureChatOpenAI`, `langchain_community.chat_models`, `AzureChatOpenAI`], + [`langchain.chat_models`, `FakeListChatModel`, `langchain_community.chat_models`, `FakeListChatModel`], + [`langchain.chat_models`, `PromptLayerChatOpenAI`, `langchain_community.chat_models`, `PromptLayerChatOpenAI`], + [`langchain.chat_models`, `ChatDatabricks`, `langchain_community.chat_models`, `ChatDatabricks`], + [`langchain.chat_models`, `ChatEverlyAI`, `langchain_community.chat_models`, `ChatEverlyAI`], + [`langchain.chat_models`, `ChatAnthropic`, `langchain_community.chat_models`, `ChatAnthropic`], + [`langchain.chat_models`, `ChatCohere`, `langchain_community.chat_models`, `ChatCohere`], + [`langchain.chat_models`, `ChatGooglePalm`, `langchain_community.chat_models`, `ChatGooglePalm`], + [`langchain.chat_models`, `ChatMlflow`, `langchain_community.chat_models`, `ChatMlflow`], + [`langchain.chat_models`, `ChatMLflowAIGateway`, `langchain_community.chat_models`, `ChatMLflowAIGateway`], + [`langchain.chat_models`, `ChatOllama`, `langchain_community.chat_models`, `ChatOllama`], + [`langchain.chat_models`, `ChatVertexAI`, `langchain_community.chat_models`, `ChatVertexAI`], + [`langchain.chat_models`, `JinaChat`, `langchain_community.chat_models`, `JinaChat`], + [`langchain.chat_models`, `HumanInputChatModel`, `langchain_community.chat_models`, `HumanInputChatModel`], + [`langchain.chat_models`, `MiniMaxChat`, `langchain_community.chat_models`, `MiniMaxChat`], + [`langchain.chat_models`, `ChatAnyscale`, `langchain_community.chat_models`, `ChatAnyscale`], + [`langchain.chat_models`, `ChatLiteLLM`, `langchain_community.chat_models`, `ChatLiteLLM`], + [`langchain.chat_models`, `ErnieBotChat`, `langchain_community.chat_models`, `ErnieBotChat`], + [`langchain.chat_models`, `ChatJavelinAIGateway`, `langchain_community.chat_models`, `ChatJavelinAIGateway`], + [`langchain.chat_models`, `ChatKonko`, `langchain_community.chat_models`, `ChatKonko`], + [`langchain.chat_models`, `PaiEasChatEndpoint`, `langchain_community.chat_models`, `PaiEasChatEndpoint`], + [`langchain.chat_models`, `QianfanChatEndpoint`, `langchain_community.chat_models`, `QianfanChatEndpoint`], + [`langchain.chat_models`, `ChatFireworks`, `langchain_community.chat_models`, `ChatFireworks`], + [`langchain.chat_models`, `ChatYandexGPT`, `langchain_community.chat_models`, `ChatYandexGPT`], + [`langchain.chat_models`, `ChatBaichuan`, `langchain_community.chat_models`, `ChatBaichuan`], + [`langchain.chat_models`, `ChatHunyuan`, `langchain_community.chat_models`, `ChatHunyuan`], + [`langchain.chat_models`, `GigaChat`, `langchain_community.chat_models`, `GigaChat`], + [`langchain.chat_models`, `VolcEngineMaasChat`, `langchain_community.chat_models`, `VolcEngineMaasChat`], + [`langchain.chat_models.anthropic`, `convert_messages_to_prompt_anthropic`, `langchain_community.chat_models.anthropic`, `convert_messages_to_prompt_anthropic`], + [`langchain.chat_models.anthropic`, `ChatAnthropic`, `langchain_community.chat_models`, `ChatAnthropic`], + [`langchain.chat_models.anyscale`, `ChatAnyscale`, `langchain_community.chat_models`, `ChatAnyscale`], + [`langchain.chat_models.azure_openai`, `AzureChatOpenAI`, `langchain_community.chat_models`, `AzureChatOpenAI`], + [`langchain.chat_models.azureml_endpoint`, `LlamaContentFormatter`, `langchain_community.chat_models.azureml_endpoint`, `LlamaContentFormatter`], + [`langchain.chat_models.azureml_endpoint`, `AzureMLChatOnlineEndpoint`, `langchain_community.chat_models.azureml_endpoint`, `AzureMLChatOnlineEndpoint`], + [`langchain.chat_models.baichuan`, `ChatBaichuan`, `langchain_community.chat_models`, `ChatBaichuan`], + [`langchain.chat_models.baidu_qianfan_endpoint`, `QianfanChatEndpoint`, `langchain_community.chat_models`, `QianfanChatEndpoint`], + [`langchain.chat_models.bedrock`, `ChatPromptAdapter`, `langchain_community.chat_models.bedrock`, `ChatPromptAdapter`], + [`langchain.chat_models.bedrock`, `BedrockChat`, `langchain_community.chat_models`, `BedrockChat`], + [`langchain.chat_models.cohere`, `ChatCohere`, `langchain_community.chat_models`, `ChatCohere`], + [`langchain.chat_models.databricks`, `ChatDatabricks`, `langchain_community.chat_models`, `ChatDatabricks`], + [`langchain.chat_models.ernie`, `ErnieBotChat`, `langchain_community.chat_models`, `ErnieBotChat`], + [`langchain.chat_models.everlyai`, `ChatEverlyAI`, `langchain_community.chat_models`, `ChatEverlyAI`], + [`langchain.chat_models.fake`, `FakeMessagesListChatModel`, `langchain_community.chat_models.fake`, `FakeMessagesListChatModel`], + [`langchain.chat_models.fake`, `FakeListChatModel`, `langchain_community.chat_models`, `FakeListChatModel`], + [`langchain.chat_models.fireworks`, `ChatFireworks`, `langchain_community.chat_models`, `ChatFireworks`], + [`langchain.chat_models.gigachat`, `GigaChat`, `langchain_community.chat_models`, `GigaChat`], + [`langchain.chat_models.google_palm`, `ChatGooglePalm`, `langchain_community.chat_models`, `ChatGooglePalm`], + [`langchain.chat_models.google_palm`, `ChatGooglePalmError`, `langchain_community.chat_models.google_palm`, `ChatGooglePalmError`], + [`langchain.chat_models.human`, `HumanInputChatModel`, `langchain_community.chat_models`, `HumanInputChatModel`], + [`langchain.chat_models.hunyuan`, `ChatHunyuan`, `langchain_community.chat_models`, `ChatHunyuan`], + [`langchain.chat_models.javelin_ai_gateway`, `ChatJavelinAIGateway`, `langchain_community.chat_models`, `ChatJavelinAIGateway`], + [`langchain.chat_models.javelin_ai_gateway`, `ChatParams`, `langchain_community.chat_models.javelin_ai_gateway`, `ChatParams`], + [`langchain.chat_models.jinachat`, `JinaChat`, `langchain_community.chat_models`, `JinaChat`], + [`langchain.chat_models.konko`, `ChatKonko`, `langchain_community.chat_models`, `ChatKonko`], + [`langchain.chat_models.litellm`, `ChatLiteLLM`, `langchain_community.chat_models`, `ChatLiteLLM`], + [`langchain.chat_models.litellm`, `ChatLiteLLMException`, `langchain_community.chat_models.litellm`, `ChatLiteLLMException`], + [`langchain.chat_models.meta`, `convert_messages_to_prompt_llama`, `langchain_community.chat_models.meta`, `convert_messages_to_prompt_llama`], + [`langchain.chat_models.minimax`, `MiniMaxChat`, `langchain_community.chat_models`, `MiniMaxChat`], + [`langchain.chat_models.mlflow`, `ChatMlflow`, `langchain_community.chat_models`, `ChatMlflow`], + [`langchain.chat_models.mlflow_ai_gateway`, `ChatMLflowAIGateway`, `langchain_community.chat_models`, `ChatMLflowAIGateway`], + [`langchain.chat_models.mlflow_ai_gateway`, `ChatParams`, `langchain_community.chat_models.mlflow_ai_gateway`, `ChatParams`], + [`langchain.chat_models.ollama`, `ChatOllama`, `langchain_community.chat_models`, `ChatOllama`], + [`langchain.chat_models.openai`, `ChatOpenAI`, `langchain_community.chat_models`, `ChatOpenAI`], + [`langchain.chat_models.pai_eas_endpoint`, `PaiEasChatEndpoint`, `langchain_community.chat_models`, `PaiEasChatEndpoint`], + [`langchain.chat_models.promptlayer_openai`, `PromptLayerChatOpenAI`, `langchain_community.chat_models`, `PromptLayerChatOpenAI`], + [`langchain.chat_models.tongyi`, `ChatTongyi`, `langchain_community.chat_models`, `ChatTongyi`], + [`langchain.chat_models.vertexai`, `ChatVertexAI`, `langchain_community.chat_models`, `ChatVertexAI`], + [`langchain.chat_models.volcengine_maas`, `convert_dict_to_message`, `langchain_community.chat_models.volcengine_maas`, `convert_dict_to_message`], + [`langchain.chat_models.volcengine_maas`, `VolcEngineMaasChat`, `langchain_community.chat_models`, `VolcEngineMaasChat`], + [`langchain.chat_models.yandex`, `ChatYandexGPT`, `langchain_community.chat_models`, `ChatYandexGPT`], + [`langchain.docstore`, `DocstoreFn`, `langchain_community.docstore`, `DocstoreFn`], + [`langchain.docstore`, `InMemoryDocstore`, `langchain_community.docstore`, `InMemoryDocstore`], + [`langchain.docstore`, `Wikipedia`, `langchain_community.docstore`, `Wikipedia`], + [`langchain.docstore.arbitrary_fn`, `DocstoreFn`, `langchain_community.docstore`, `DocstoreFn`], + [`langchain.docstore.base`, `Docstore`, `langchain_community.docstore.base`, `Docstore`], + [`langchain.docstore.base`, `AddableMixin`, `langchain_community.docstore.base`, `AddableMixin`], + [`langchain.docstore.in_memory`, `InMemoryDocstore`, `langchain_community.docstore`, `InMemoryDocstore`], + [`langchain.docstore.wikipedia`, `Wikipedia`, `langchain_community.docstore`, `Wikipedia`], + [`langchain.document_loaders`, `AcreomLoader`, `langchain_community.document_loaders`, `AcreomLoader`], + [`langchain.document_loaders`, `AsyncHtmlLoader`, `langchain_community.document_loaders`, `AsyncHtmlLoader`], + [`langchain.document_loaders`, `AsyncChromiumLoader`, `langchain_community.document_loaders`, `AsyncChromiumLoader`], + [`langchain.document_loaders`, `AZLyricsLoader`, `langchain_community.document_loaders`, `AZLyricsLoader`], + [`langchain.document_loaders`, `AirbyteCDKLoader`, `langchain_community.document_loaders`, `AirbyteCDKLoader`], + [`langchain.document_loaders`, `AirbyteGongLoader`, `langchain_community.document_loaders`, `AirbyteGongLoader`], + [`langchain.document_loaders`, `AirbyteJSONLoader`, `langchain_community.document_loaders`, `AirbyteJSONLoader`], + [`langchain.document_loaders`, `AirbyteHubspotLoader`, `langchain_community.document_loaders`, `AirbyteHubspotLoader`], + [`langchain.document_loaders`, `AirbyteSalesforceLoader`, `langchain_community.document_loaders`, `AirbyteSalesforceLoader`], + [`langchain.document_loaders`, `AirbyteShopifyLoader`, `langchain_community.document_loaders`, `AirbyteShopifyLoader`], + [`langchain.document_loaders`, `AirbyteStripeLoader`, `langchain_community.document_loaders`, `AirbyteStripeLoader`], + [`langchain.document_loaders`, `AirbyteTypeformLoader`, `langchain_community.document_loaders`, `AirbyteTypeformLoader`], + [`langchain.document_loaders`, `AirbyteZendeskSupportLoader`, `langchain_community.document_loaders`, `AirbyteZendeskSupportLoader`], + [`langchain.document_loaders`, `AirtableLoader`, `langchain_community.document_loaders`, `AirtableLoader`], + [`langchain.document_loaders`, `AmazonTextractPDFLoader`, `langchain_community.document_loaders`, `AmazonTextractPDFLoader`], + [`langchain.document_loaders`, `ApifyDatasetLoader`, `langchain_community.document_loaders`, `ApifyDatasetLoader`], + [`langchain.document_loaders`, `ArcGISLoader`, `langchain_community.document_loaders`, `ArcGISLoader`], + [`langchain.document_loaders`, `ArxivLoader`, `langchain_community.document_loaders`, `ArxivLoader`], + [`langchain.document_loaders`, `AssemblyAIAudioTranscriptLoader`, `langchain_community.document_loaders`, `AssemblyAIAudioTranscriptLoader`], + [`langchain.document_loaders`, `AzureAIDataLoader`, `langchain_community.document_loaders`, `AzureAIDataLoader`], + [`langchain.document_loaders`, `AzureBlobStorageContainerLoader`, `langchain_community.document_loaders`, `AzureBlobStorageContainerLoader`], + [`langchain.document_loaders`, `AzureBlobStorageFileLoader`, `langchain_community.document_loaders`, `AzureBlobStorageFileLoader`], + [`langchain.document_loaders`, `BSHTMLLoader`, `langchain_community.document_loaders`, `BSHTMLLoader`], + [`langchain.document_loaders`, `BibtexLoader`, `langchain_community.document_loaders`, `BibtexLoader`], + [`langchain.document_loaders`, `BigQueryLoader`, `langchain_community.document_loaders`, `BigQueryLoader`], + [`langchain.document_loaders`, `BiliBiliLoader`, `langchain_community.document_loaders`, `BiliBiliLoader`], + [`langchain.document_loaders`, `BlackboardLoader`, `langchain_community.document_loaders`, `BlackboardLoader`], + [`langchain.document_loaders`, `BlockchainDocumentLoader`, `langchain_community.document_loaders`, `BlockchainDocumentLoader`], + [`langchain.document_loaders`, `BraveSearchLoader`, `langchain_community.document_loaders`, `BraveSearchLoader`], + [`langchain.document_loaders`, `BrowserlessLoader`, `langchain_community.document_loaders`, `BrowserlessLoader`], + [`langchain.document_loaders`, `CSVLoader`, `langchain_community.document_loaders`, `CSVLoader`], + [`langchain.document_loaders`, `ChatGPTLoader`, `langchain_community.document_loaders`, `ChatGPTLoader`], + [`langchain.document_loaders`, `CoNLLULoader`, `langchain_community.document_loaders`, `CoNLLULoader`], + [`langchain.document_loaders`, `CollegeConfidentialLoader`, `langchain_community.document_loaders`, `CollegeConfidentialLoader`], + [`langchain.document_loaders`, `ConcurrentLoader`, `langchain_community.document_loaders`, `ConcurrentLoader`], + [`langchain.document_loaders`, `ConfluenceLoader`, `langchain_community.document_loaders`, `ConfluenceLoader`], + [`langchain.document_loaders`, `CouchbaseLoader`, `langchain_community.document_loaders`, `CouchbaseLoader`], + [`langchain.document_loaders`, `CubeSemanticLoader`, `langchain_community.document_loaders`, `CubeSemanticLoader`], + [`langchain.document_loaders`, `DataFrameLoader`, `langchain_community.document_loaders`, `DataFrameLoader`], + [`langchain.document_loaders`, `DatadogLogsLoader`, `langchain_community.document_loaders`, `DatadogLogsLoader`], + [`langchain.document_loaders`, `DiffbotLoader`, `langchain_community.document_loaders`, `DiffbotLoader`], + [`langchain.document_loaders`, `DirectoryLoader`, `langchain_community.document_loaders`, `DirectoryLoader`], + [`langchain.document_loaders`, `DiscordChatLoader`, `langchain_community.document_loaders`, `DiscordChatLoader`], + [`langchain.document_loaders`, `DocugamiLoader`, `langchain_community.document_loaders`, `DocugamiLoader`], + [`langchain.document_loaders`, `DocusaurusLoader`, `langchain_community.document_loaders`, `DocusaurusLoader`], + [`langchain.document_loaders`, `Docx2txtLoader`, `langchain_community.document_loaders`, `Docx2txtLoader`], + [`langchain.document_loaders`, `DropboxLoader`, `langchain_community.document_loaders`, `DropboxLoader`], + [`langchain.document_loaders`, `DuckDBLoader`, `langchain_community.document_loaders`, `DuckDBLoader`], + [`langchain.document_loaders`, `EtherscanLoader`, `langchain_community.document_loaders`, `EtherscanLoader`], + [`langchain.document_loaders`, `EverNoteLoader`, `langchain_community.document_loaders`, `EverNoteLoader`], + [`langchain.document_loaders`, `FacebookChatLoader`, `langchain_community.document_loaders`, `FacebookChatLoader`], + [`langchain.document_loaders`, `FaunaLoader`, `langchain_community.document_loaders`, `FaunaLoader`], + [`langchain.document_loaders`, `FigmaFileLoader`, `langchain_community.document_loaders`, `FigmaFileLoader`], + [`langchain.document_loaders`, `FileSystemBlobLoader`, `langchain_community.document_loaders`, `FileSystemBlobLoader`], + [`langchain.document_loaders`, `GCSDirectoryLoader`, `langchain_community.document_loaders`, `GCSDirectoryLoader`], + [`langchain.document_loaders`, `GCSFileLoader`, `langchain_community.document_loaders`, `GCSFileLoader`], + [`langchain.document_loaders`, `GeoDataFrameLoader`, `langchain_community.document_loaders`, `GeoDataFrameLoader`], + [`langchain.document_loaders`, `GithubFileLoader`, `langchain_community.document_loaders`, `GithubFileLoader`], + [`langchain.document_loaders`, `GitHubIssuesLoader`, `langchain_community.document_loaders`, `GitHubIssuesLoader`], + [`langchain.document_loaders`, `GitLoader`, `langchain_community.document_loaders`, `GitLoader`], + [`langchain.document_loaders`, `GitbookLoader`, `langchain_community.document_loaders`, `GitbookLoader`], + [`langchain.document_loaders`, `GoogleApiClient`, `langchain_community.document_loaders`, `GoogleApiClient`], + [`langchain.document_loaders`, `GoogleApiYoutubeLoader`, `langchain_community.document_loaders`, `GoogleApiYoutubeLoader`], + [`langchain.document_loaders`, `GoogleSpeechToTextLoader`, `langchain_community.document_loaders`, `GoogleSpeechToTextLoader`], + [`langchain.document_loaders`, `GoogleDriveLoader`, `langchain_community.document_loaders`, `GoogleDriveLoader`], + [`langchain.document_loaders`, `GutenbergLoader`, `langchain_community.document_loaders`, `GutenbergLoader`], + [`langchain.document_loaders`, `HNLoader`, `langchain_community.document_loaders`, `HNLoader`], + [`langchain.document_loaders`, `HuggingFaceDatasetLoader`, `langchain_community.document_loaders`, `HuggingFaceDatasetLoader`], + [`langchain.document_loaders`, `IFixitLoader`, `langchain_community.document_loaders`, `IFixitLoader`], + [`langchain.document_loaders`, `IMSDbLoader`, `langchain_community.document_loaders`, `IMSDbLoader`], + [`langchain.document_loaders`, `ImageCaptionLoader`, `langchain_community.document_loaders`, `ImageCaptionLoader`], + [`langchain.document_loaders`, `IuguLoader`, `langchain_community.document_loaders`, `IuguLoader`], + [`langchain.document_loaders`, `JSONLoader`, `langchain_community.document_loaders`, `JSONLoader`], + [`langchain.document_loaders`, `JoplinLoader`, `langchain_community.document_loaders`, `JoplinLoader`], + [`langchain.document_loaders`, `LarkSuiteDocLoader`, `langchain_community.document_loaders`, `LarkSuiteDocLoader`], + [`langchain.document_loaders`, `LakeFSLoader`, `langchain_community.document_loaders`, `LakeFSLoader`], + [`langchain.document_loaders`, `MHTMLLoader`, `langchain_community.document_loaders`, `MHTMLLoader`], + [`langchain.document_loaders`, `MWDumpLoader`, `langchain_community.document_loaders`, `MWDumpLoader`], + [`langchain.document_loaders`, `MastodonTootsLoader`, `langchain_community.document_loaders`, `MastodonTootsLoader`], + [`langchain.document_loaders`, `MathpixPDFLoader`, `langchain_community.document_loaders`, `MathpixPDFLoader`], + [`langchain.document_loaders`, `MaxComputeLoader`, `langchain_community.document_loaders`, `MaxComputeLoader`], + [`langchain.document_loaders`, `MergedDataLoader`, `langchain_community.document_loaders`, `MergedDataLoader`], + [`langchain.document_loaders`, `ModernTreasuryLoader`, `langchain_community.document_loaders`, `ModernTreasuryLoader`], + [`langchain.document_loaders`, `MongodbLoader`, `langchain_community.document_loaders`, `MongodbLoader`], + [`langchain.document_loaders`, `NewsURLLoader`, `langchain_community.document_loaders`, `NewsURLLoader`], + [`langchain.document_loaders`, `NotebookLoader`, `langchain_community.document_loaders`, `NotebookLoader`], + [`langchain.document_loaders`, `NotionDBLoader`, `langchain_community.document_loaders`, `NotionDBLoader`], + [`langchain.document_loaders`, `NotionDirectoryLoader`, `langchain_community.document_loaders`, `NotionDirectoryLoader`], + [`langchain.document_loaders`, `OBSDirectoryLoader`, `langchain_community.document_loaders`, `OBSDirectoryLoader`], + [`langchain.document_loaders`, `OBSFileLoader`, `langchain_community.document_loaders`, `OBSFileLoader`], + [`langchain.document_loaders`, `ObsidianLoader`, `langchain_community.document_loaders`, `ObsidianLoader`], + [`langchain.document_loaders`, `OneDriveFileLoader`, `langchain_community.document_loaders`, `OneDriveFileLoader`], + [`langchain.document_loaders`, `OneDriveLoader`, `langchain_community.document_loaders`, `OneDriveLoader`], + [`langchain.document_loaders`, `OnlinePDFLoader`, `langchain_community.document_loaders`, `OnlinePDFLoader`], + [`langchain.document_loaders`, `OpenCityDataLoader`, `langchain_community.document_loaders`, `OpenCityDataLoader`], + [`langchain.document_loaders`, `OutlookMessageLoader`, `langchain_community.document_loaders`, `OutlookMessageLoader`], + [`langchain.document_loaders`, `PDFMinerLoader`, `langchain_community.document_loaders`, `PDFMinerLoader`], + [`langchain.document_loaders`, `PDFMinerPDFasHTMLLoader`, `langchain_community.document_loaders`, `PDFMinerPDFasHTMLLoader`], + [`langchain.document_loaders`, `PDFPlumberLoader`, `langchain_community.document_loaders`, `PDFPlumberLoader`], + [`langchain.document_loaders`, `PlaywrightURLLoader`, `langchain_community.document_loaders`, `PlaywrightURLLoader`], + [`langchain.document_loaders`, `PolarsDataFrameLoader`, `langchain_community.document_loaders`, `PolarsDataFrameLoader`], + [`langchain.document_loaders`, `PsychicLoader`, `langchain_community.document_loaders`, `PsychicLoader`], + [`langchain.document_loaders`, `PubMedLoader`, `langchain_community.document_loaders`, `PubMedLoader`], + [`langchain.document_loaders`, `PyMuPDFLoader`, `langchain_community.document_loaders`, `PyMuPDFLoader`], + [`langchain.document_loaders`, `PyPDFDirectoryLoader`, `langchain_community.document_loaders`, `PyPDFDirectoryLoader`], + [`langchain.document_loaders`, `PagedPDFSplitter`, `langchain_community.document_loaders`, `PyPDFLoader`], + [`langchain.document_loaders`, `PyPDFLoader`, `langchain_community.document_loaders`, `PyPDFLoader`], + [`langchain.document_loaders`, `PyPDFium2Loader`, `langchain_community.document_loaders`, `PyPDFium2Loader`], + [`langchain.document_loaders`, `PySparkDataFrameLoader`, `langchain_community.document_loaders`, `PySparkDataFrameLoader`], + [`langchain.document_loaders`, `PythonLoader`, `langchain_community.document_loaders`, `PythonLoader`], + [`langchain.document_loaders`, `RSSFeedLoader`, `langchain_community.document_loaders`, `RSSFeedLoader`], + [`langchain.document_loaders`, `ReadTheDocsLoader`, `langchain_community.document_loaders`, `ReadTheDocsLoader`], + [`langchain.document_loaders`, `RecursiveUrlLoader`, `langchain_community.document_loaders`, `RecursiveUrlLoader`], + [`langchain.document_loaders`, `RedditPostsLoader`, `langchain_community.document_loaders`, `RedditPostsLoader`], + [`langchain.document_loaders`, `RoamLoader`, `langchain_community.document_loaders`, `RoamLoader`], + [`langchain.document_loaders`, `RocksetLoader`, `langchain_community.document_loaders`, `RocksetLoader`], + [`langchain.document_loaders`, `S3DirectoryLoader`, `langchain_community.document_loaders`, `S3DirectoryLoader`], + [`langchain.document_loaders`, `S3FileLoader`, `langchain_community.document_loaders`, `S3FileLoader`], + [`langchain.document_loaders`, `SRTLoader`, `langchain_community.document_loaders`, `SRTLoader`], + [`langchain.document_loaders`, `SeleniumURLLoader`, `langchain_community.document_loaders`, `SeleniumURLLoader`], + [`langchain.document_loaders`, `SharePointLoader`, `langchain_community.document_loaders`, `SharePointLoader`], + [`langchain.document_loaders`, `SitemapLoader`, `langchain_community.document_loaders`, `SitemapLoader`], + [`langchain.document_loaders`, `SlackDirectoryLoader`, `langchain_community.document_loaders`, `SlackDirectoryLoader`], + [`langchain.document_loaders`, `SnowflakeLoader`, `langchain_community.document_loaders`, `SnowflakeLoader`], + [`langchain.document_loaders`, `SpreedlyLoader`, `langchain_community.document_loaders`, `SpreedlyLoader`], + [`langchain.document_loaders`, `StripeLoader`, `langchain_community.document_loaders`, `StripeLoader`], + [`langchain.document_loaders`, `TelegramChatApiLoader`, `langchain_community.document_loaders`, `TelegramChatApiLoader`], + [`langchain.document_loaders`, `TelegramChatFileLoader`, `langchain_community.document_loaders`, `TelegramChatLoader`], + [`langchain.document_loaders`, `TelegramChatLoader`, `langchain_community.document_loaders`, `TelegramChatLoader`], + [`langchain.document_loaders`, `TensorflowDatasetLoader`, `langchain_community.document_loaders`, `TensorflowDatasetLoader`], + [`langchain.document_loaders`, `TencentCOSDirectoryLoader`, `langchain_community.document_loaders`, `TencentCOSDirectoryLoader`], + [`langchain.document_loaders`, `TencentCOSFileLoader`, `langchain_community.document_loaders`, `TencentCOSFileLoader`], + [`langchain.document_loaders`, `TextLoader`, `langchain_community.document_loaders`, `TextLoader`], + [`langchain.document_loaders`, `ToMarkdownLoader`, `langchain_community.document_loaders`, `ToMarkdownLoader`], + [`langchain.document_loaders`, `TomlLoader`, `langchain_community.document_loaders`, `TomlLoader`], + [`langchain.document_loaders`, `TrelloLoader`, `langchain_community.document_loaders`, `TrelloLoader`], + [`langchain.document_loaders`, `TwitterTweetLoader`, `langchain_community.document_loaders`, `TwitterTweetLoader`], + [`langchain.document_loaders`, `UnstructuredAPIFileIOLoader`, `langchain_community.document_loaders`, `UnstructuredAPIFileIOLoader`], + [`langchain.document_loaders`, `UnstructuredAPIFileLoader`, `langchain_community.document_loaders`, `UnstructuredAPIFileLoader`], + [`langchain.document_loaders`, `UnstructuredCSVLoader`, `langchain_community.document_loaders`, `UnstructuredCSVLoader`], + [`langchain.document_loaders`, `UnstructuredEPubLoader`, `langchain_community.document_loaders`, `UnstructuredEPubLoader`], + [`langchain.document_loaders`, `UnstructuredEmailLoader`, `langchain_community.document_loaders`, `UnstructuredEmailLoader`], + [`langchain.document_loaders`, `UnstructuredExcelLoader`, `langchain_community.document_loaders`, `UnstructuredExcelLoader`], + [`langchain.document_loaders`, `UnstructuredFileIOLoader`, `langchain_community.document_loaders`, `UnstructuredFileIOLoader`], + [`langchain.document_loaders`, `UnstructuredFileLoader`, `langchain_community.document_loaders`, `UnstructuredFileLoader`], + [`langchain.document_loaders`, `UnstructuredHTMLLoader`, `langchain_community.document_loaders`, `UnstructuredHTMLLoader`], + [`langchain.document_loaders`, `UnstructuredImageLoader`, `langchain_community.document_loaders`, `UnstructuredImageLoader`], + [`langchain.document_loaders`, `UnstructuredMarkdownLoader`, `langchain_community.document_loaders`, `UnstructuredMarkdownLoader`], + [`langchain.document_loaders`, `UnstructuredODTLoader`, `langchain_community.document_loaders`, `UnstructuredODTLoader`], + [`langchain.document_loaders`, `UnstructuredOrgModeLoader`, `langchain_community.document_loaders`, `UnstructuredOrgModeLoader`], + [`langchain.document_loaders`, `UnstructuredPDFLoader`, `langchain_community.document_loaders`, `UnstructuredPDFLoader`], + [`langchain.document_loaders`, `UnstructuredPowerPointLoader`, `langchain_community.document_loaders`, `UnstructuredPowerPointLoader`], + [`langchain.document_loaders`, `UnstructuredRSTLoader`, `langchain_community.document_loaders`, `UnstructuredRSTLoader`], + [`langchain.document_loaders`, `UnstructuredRTFLoader`, `langchain_community.document_loaders`, `UnstructuredRTFLoader`], + [`langchain.document_loaders`, `UnstructuredTSVLoader`, `langchain_community.document_loaders`, `UnstructuredTSVLoader`], + [`langchain.document_loaders`, `UnstructuredURLLoader`, `langchain_community.document_loaders`, `UnstructuredURLLoader`], + [`langchain.document_loaders`, `UnstructuredWordDocumentLoader`, `langchain_community.document_loaders`, `UnstructuredWordDocumentLoader`], + [`langchain.document_loaders`, `UnstructuredXMLLoader`, `langchain_community.document_loaders`, `UnstructuredXMLLoader`], + [`langchain.document_loaders`, `WeatherDataLoader`, `langchain_community.document_loaders`, `WeatherDataLoader`], + [`langchain.document_loaders`, `WebBaseLoader`, `langchain_community.document_loaders`, `WebBaseLoader`], + [`langchain.document_loaders`, `WhatsAppChatLoader`, `langchain_community.document_loaders`, `WhatsAppChatLoader`], + [`langchain.document_loaders`, `WikipediaLoader`, `langchain_community.document_loaders`, `WikipediaLoader`], + [`langchain.document_loaders`, `XorbitsLoader`, `langchain_community.document_loaders`, `XorbitsLoader`], + [`langchain.document_loaders`, `YoutubeAudioLoader`, `langchain_community.document_loaders`, `YoutubeAudioLoader`], + [`langchain.document_loaders`, `YoutubeLoader`, `langchain_community.document_loaders`, `YoutubeLoader`], + [`langchain.document_loaders`, `YuqueLoader`, `langchain_community.document_loaders`, `YuqueLoader`], + [`langchain.document_loaders.acreom`, `AcreomLoader`, `langchain_community.document_loaders`, `AcreomLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteCDKLoader`, `langchain_community.document_loaders`, `AirbyteCDKLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteHubspotLoader`, `langchain_community.document_loaders`, `AirbyteHubspotLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteStripeLoader`, `langchain_community.document_loaders`, `AirbyteStripeLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteTypeformLoader`, `langchain_community.document_loaders`, `AirbyteTypeformLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteZendeskSupportLoader`, `langchain_community.document_loaders`, `AirbyteZendeskSupportLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteShopifyLoader`, `langchain_community.document_loaders`, `AirbyteShopifyLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteSalesforceLoader`, `langchain_community.document_loaders`, `AirbyteSalesforceLoader`], + [`langchain.document_loaders.airbyte`, `AirbyteGongLoader`, `langchain_community.document_loaders`, `AirbyteGongLoader`], + [`langchain.document_loaders.airbyte_json`, `AirbyteJSONLoader`, `langchain_community.document_loaders`, `AirbyteJSONLoader`], + [`langchain.document_loaders.airtable`, `AirtableLoader`, `langchain_community.document_loaders`, `AirtableLoader`], + [`langchain.document_loaders.apify_dataset`, `ApifyDatasetLoader`, `langchain_community.document_loaders`, `ApifyDatasetLoader`], + [`langchain.document_loaders.arcgis_loader`, `ArcGISLoader`, `langchain_community.document_loaders`, `ArcGISLoader`], + [`langchain.document_loaders.arxiv`, `ArxivLoader`, `langchain_community.document_loaders`, `ArxivLoader`], + [`langchain.document_loaders.assemblyai`, `TranscriptFormat`, `langchain_community.document_loaders.assemblyai`, `TranscriptFormat`], + [`langchain.document_loaders.assemblyai`, `AssemblyAIAudioTranscriptLoader`, `langchain_community.document_loaders`, `AssemblyAIAudioTranscriptLoader`], + [`langchain.document_loaders.async_html`, `AsyncHtmlLoader`, `langchain_community.document_loaders`, `AsyncHtmlLoader`], + [`langchain.document_loaders.azlyrics`, `AZLyricsLoader`, `langchain_community.document_loaders`, `AZLyricsLoader`], + [`langchain.document_loaders.azure_ai_data`, `AzureAIDataLoader`, `langchain_community.document_loaders`, `AzureAIDataLoader`], + [`langchain.document_loaders.azure_blob_storage_container`, `AzureBlobStorageContainerLoader`, `langchain_community.document_loaders`, `AzureBlobStorageContainerLoader`], + [`langchain.document_loaders.azure_blob_storage_file`, `AzureBlobStorageFileLoader`, `langchain_community.document_loaders`, `AzureBlobStorageFileLoader`], + [`langchain.document_loaders.baiducloud_bos_directory`, `BaiduBOSDirectoryLoader`, `langchain_community.document_loaders.baiducloud_bos_directory`, `BaiduBOSDirectoryLoader`], + [`langchain.document_loaders.baiducloud_bos_file`, `BaiduBOSFileLoader`, `langchain_community.document_loaders.baiducloud_bos_file`, `BaiduBOSFileLoader`], + [`langchain.document_loaders.base_o365`, `O365BaseLoader`, `langchain_community.document_loaders.base_o365`, `O365BaseLoader`], + [`langchain.document_loaders.bibtex`, `BibtexLoader`, `langchain_community.document_loaders`, `BibtexLoader`], + [`langchain.document_loaders.bigquery`, `BigQueryLoader`, `langchain_community.document_loaders`, `BigQueryLoader`], + [`langchain.document_loaders.bilibili`, `BiliBiliLoader`, `langchain_community.document_loaders`, `BiliBiliLoader`], + [`langchain.document_loaders.blackboard`, `BlackboardLoader`, `langchain_community.document_loaders`, `BlackboardLoader`], + [`langchain.document_loaders.blob_loaders`, `FileSystemBlobLoader`, `langchain_community.document_loaders`, `FileSystemBlobLoader`], + [`langchain.document_loaders.blob_loaders`, `YoutubeAudioLoader`, `langchain_community.document_loaders`, `YoutubeAudioLoader`], + [`langchain.document_loaders.blob_loaders.file_system`, `FileSystemBlobLoader`, `langchain_community.document_loaders`, `FileSystemBlobLoader`], + [`langchain.document_loaders.blob_loaders.youtube_audio`, `YoutubeAudioLoader`, `langchain_community.document_loaders`, `YoutubeAudioLoader`], + [`langchain.document_loaders.blockchain`, `BlockchainType`, `langchain_community.document_loaders.blockchain`, `BlockchainType`], + [`langchain.document_loaders.blockchain`, `BlockchainDocumentLoader`, `langchain_community.document_loaders`, `BlockchainDocumentLoader`], + [`langchain.document_loaders.brave_search`, `BraveSearchLoader`, `langchain_community.document_loaders`, `BraveSearchLoader`], + [`langchain.document_loaders.browserless`, `BrowserlessLoader`, `langchain_community.document_loaders`, `BrowserlessLoader`], + [`langchain.document_loaders.chatgpt`, `concatenate_rows`, `langchain_community.document_loaders.chatgpt`, `concatenate_rows`], + [`langchain.document_loaders.chatgpt`, `ChatGPTLoader`, `langchain_community.document_loaders`, `ChatGPTLoader`], + [`langchain.document_loaders.chromium`, `AsyncChromiumLoader`, `langchain_community.document_loaders`, `AsyncChromiumLoader`], + [`langchain.document_loaders.college_confidential`, `CollegeConfidentialLoader`, `langchain_community.document_loaders`, `CollegeConfidentialLoader`], + [`langchain.document_loaders.concurrent`, `ConcurrentLoader`, `langchain_community.document_loaders`, `ConcurrentLoader`], + [`langchain.document_loaders.confluence`, `ContentFormat`, `langchain_community.document_loaders.confluence`, `ContentFormat`], + [`langchain.document_loaders.confluence`, `ConfluenceLoader`, `langchain_community.document_loaders`, `ConfluenceLoader`], + [`langchain.document_loaders.conllu`, `CoNLLULoader`, `langchain_community.document_loaders`, `CoNLLULoader`], + [`langchain.document_loaders.couchbase`, `CouchbaseLoader`, `langchain_community.document_loaders`, `CouchbaseLoader`], + [`langchain.document_loaders.csv_loader`, `CSVLoader`, `langchain_community.document_loaders`, `CSVLoader`], + [`langchain.document_loaders.csv_loader`, `UnstructuredCSVLoader`, `langchain_community.document_loaders`, `UnstructuredCSVLoader`], + [`langchain.document_loaders.cube_semantic`, `CubeSemanticLoader`, `langchain_community.document_loaders`, `CubeSemanticLoader`], + [`langchain.document_loaders.datadog_logs`, `DatadogLogsLoader`, `langchain_community.document_loaders`, `DatadogLogsLoader`], + [`langchain.document_loaders.dataframe`, `BaseDataFrameLoader`, `langchain_community.document_loaders.dataframe`, `BaseDataFrameLoader`], + [`langchain.document_loaders.dataframe`, `DataFrameLoader`, `langchain_community.document_loaders`, `DataFrameLoader`], + [`langchain.document_loaders.diffbot`, `DiffbotLoader`, `langchain_community.document_loaders`, `DiffbotLoader`], + [`langchain.document_loaders.directory`, `DirectoryLoader`, `langchain_community.document_loaders`, `DirectoryLoader`], + [`langchain.document_loaders.discord`, `DiscordChatLoader`, `langchain_community.document_loaders`, `DiscordChatLoader`], + [`langchain.document_loaders.docugami`, `DocugamiLoader`, `langchain_community.document_loaders`, `DocugamiLoader`], + [`langchain.document_loaders.docusaurus`, `DocusaurusLoader`, `langchain_community.document_loaders`, `DocusaurusLoader`], + [`langchain.document_loaders.dropbox`, `DropboxLoader`, `langchain_community.document_loaders`, `DropboxLoader`], + [`langchain.document_loaders.duckdb_loader`, `DuckDBLoader`, `langchain_community.document_loaders`, `DuckDBLoader`], + [`langchain.document_loaders.email`, `UnstructuredEmailLoader`, `langchain_community.document_loaders`, `UnstructuredEmailLoader`], + [`langchain.document_loaders.email`, `OutlookMessageLoader`, `langchain_community.document_loaders`, `OutlookMessageLoader`], + [`langchain.document_loaders.epub`, `UnstructuredEPubLoader`, `langchain_community.document_loaders`, `UnstructuredEPubLoader`], + [`langchain.document_loaders.etherscan`, `EtherscanLoader`, `langchain_community.document_loaders`, `EtherscanLoader`], + [`langchain.document_loaders.evernote`, `EverNoteLoader`, `langchain_community.document_loaders`, `EverNoteLoader`], + [`langchain.document_loaders.excel`, `UnstructuredExcelLoader`, `langchain_community.document_loaders`, `UnstructuredExcelLoader`], + [`langchain.document_loaders.facebook_chat`, `concatenate_rows`, `langchain_community.document_loaders.facebook_chat`, `concatenate_rows`], + [`langchain.document_loaders.facebook_chat`, `FacebookChatLoader`, `langchain_community.document_loaders`, `FacebookChatLoader`], + [`langchain.document_loaders.fauna`, `FaunaLoader`, `langchain_community.document_loaders`, `FaunaLoader`], + [`langchain.document_loaders.figma`, `FigmaFileLoader`, `langchain_community.document_loaders`, `FigmaFileLoader`], + [`langchain.document_loaders.gcs_directory`, `GCSDirectoryLoader`, `langchain_community.document_loaders`, `GCSDirectoryLoader`], + [`langchain.document_loaders.gcs_file`, `GCSFileLoader`, `langchain_community.document_loaders`, `GCSFileLoader`], + [`langchain.document_loaders.generic`, `GenericLoader`, `langchain_community.document_loaders.generic`, `GenericLoader`], + [`langchain.document_loaders.geodataframe`, `GeoDataFrameLoader`, `langchain_community.document_loaders`, `GeoDataFrameLoader`], + [`langchain.document_loaders.git`, `GitLoader`, `langchain_community.document_loaders`, `GitLoader`], + [`langchain.document_loaders.gitbook`, `GitbookLoader`, `langchain_community.document_loaders`, `GitbookLoader`], + [`langchain.document_loaders.github`, `BaseGitHubLoader`, `langchain_community.document_loaders.github`, `BaseGitHubLoader`], + [`langchain.document_loaders.github`, `GitHubIssuesLoader`, `langchain_community.document_loaders`, `GitHubIssuesLoader`], + [`langchain.document_loaders.google_speech_to_text`, `GoogleSpeechToTextLoader`, `langchain_community.document_loaders`, `GoogleSpeechToTextLoader`], + [`langchain.document_loaders.googledrive`, `GoogleDriveLoader`, `langchain_community.document_loaders`, `GoogleDriveLoader`], + [`langchain.document_loaders.gutenberg`, `GutenbergLoader`, `langchain_community.document_loaders`, `GutenbergLoader`], + [`langchain.document_loaders.helpers`, `FileEncoding`, `langchain_community.document_loaders.helpers`, `FileEncoding`], + [`langchain.document_loaders.helpers`, `detect_file_encodings`, `langchain_community.document_loaders.helpers`, `detect_file_encodings`], + [`langchain.document_loaders.hn`, `HNLoader`, `langchain_community.document_loaders`, `HNLoader`], + [`langchain.document_loaders.html`, `UnstructuredHTMLLoader`, `langchain_community.document_loaders`, `UnstructuredHTMLLoader`], + [`langchain.document_loaders.html_bs`, `BSHTMLLoader`, `langchain_community.document_loaders`, `BSHTMLLoader`], + [`langchain.document_loaders.hugging_face_dataset`, `HuggingFaceDatasetLoader`, `langchain_community.document_loaders`, `HuggingFaceDatasetLoader`], + [`langchain.document_loaders.ifixit`, `IFixitLoader`, `langchain_community.document_loaders`, `IFixitLoader`], + [`langchain.document_loaders.image`, `UnstructuredImageLoader`, `langchain_community.document_loaders`, `UnstructuredImageLoader`], + [`langchain.document_loaders.image_captions`, `ImageCaptionLoader`, `langchain_community.document_loaders`, `ImageCaptionLoader`], + [`langchain.document_loaders.imsdb`, `IMSDbLoader`, `langchain_community.document_loaders`, `IMSDbLoader`], + [`langchain.document_loaders.iugu`, `IuguLoader`, `langchain_community.document_loaders`, `IuguLoader`], + [`langchain.document_loaders.joplin`, `JoplinLoader`, `langchain_community.document_loaders`, `JoplinLoader`], + [`langchain.document_loaders.json_loader`, `JSONLoader`, `langchain_community.document_loaders`, `JSONLoader`], + [`langchain.document_loaders.lakefs`, `LakeFSClient`, `langchain_community.document_loaders.lakefs`, `LakeFSClient`], + [`langchain.document_loaders.lakefs`, `LakeFSLoader`, `langchain_community.document_loaders`, `LakeFSLoader`], + [`langchain.document_loaders.lakefs`, `UnstructuredLakeFSLoader`, `langchain_community.document_loaders.lakefs`, `UnstructuredLakeFSLoader`], + [`langchain.document_loaders.larksuite`, `LarkSuiteDocLoader`, `langchain_community.document_loaders`, `LarkSuiteDocLoader`], + [`langchain.document_loaders.markdown`, `UnstructuredMarkdownLoader`, `langchain_community.document_loaders`, `UnstructuredMarkdownLoader`], + [`langchain.document_loaders.mastodon`, `MastodonTootsLoader`, `langchain_community.document_loaders`, `MastodonTootsLoader`], + [`langchain.document_loaders.max_compute`, `MaxComputeLoader`, `langchain_community.document_loaders`, `MaxComputeLoader`], + [`langchain.document_loaders.mediawikidump`, `MWDumpLoader`, `langchain_community.document_loaders`, `MWDumpLoader`], + [`langchain.document_loaders.merge`, `MergedDataLoader`, `langchain_community.document_loaders`, `MergedDataLoader`], + [`langchain.document_loaders.mhtml`, `MHTMLLoader`, `langchain_community.document_loaders`, `MHTMLLoader`], + [`langchain.document_loaders.modern_treasury`, `ModernTreasuryLoader`, `langchain_community.document_loaders`, `ModernTreasuryLoader`], + [`langchain.document_loaders.mongodb`, `MongodbLoader`, `langchain_community.document_loaders`, `MongodbLoader`], + [`langchain.document_loaders.news`, `NewsURLLoader`, `langchain_community.document_loaders`, `NewsURLLoader`], + [`langchain.document_loaders.notebook`, `concatenate_cells`, `langchain_community.document_loaders.notebook`, `concatenate_cells`], + [`langchain.document_loaders.notebook`, `remove_newlines`, `langchain_community.document_loaders.notebook`, `remove_newlines`], + [`langchain.document_loaders.notebook`, `NotebookLoader`, `langchain_community.document_loaders`, `NotebookLoader`], + [`langchain.document_loaders.notion`, `NotionDirectoryLoader`, `langchain_community.document_loaders`, `NotionDirectoryLoader`], + [`langchain.document_loaders.notiondb`, `NotionDBLoader`, `langchain_community.document_loaders`, `NotionDBLoader`], + [`langchain.document_loaders.nuclia`, `NucliaLoader`, `langchain_community.document_loaders.nuclia`, `NucliaLoader`], + [`langchain.document_loaders.obs_directory`, `OBSDirectoryLoader`, `langchain_community.document_loaders`, `OBSDirectoryLoader`], + [`langchain.document_loaders.obs_file`, `OBSFileLoader`, `langchain_community.document_loaders`, `OBSFileLoader`], + [`langchain.document_loaders.obsidian`, `ObsidianLoader`, `langchain_community.document_loaders`, `ObsidianLoader`], + [`langchain.document_loaders.odt`, `UnstructuredODTLoader`, `langchain_community.document_loaders`, `UnstructuredODTLoader`], + [`langchain.document_loaders.onedrive`, `OneDriveLoader`, `langchain_community.document_loaders`, `OneDriveLoader`], + [`langchain.document_loaders.onedrive_file`, `OneDriveFileLoader`, `langchain_community.document_loaders`, `OneDriveFileLoader`], + [`langchain.document_loaders.onenote`, `OneNoteLoader`, `langchain_community.document_loaders.onenote`, `OneNoteLoader`], + [`langchain.document_loaders.open_city_data`, `OpenCityDataLoader`, `langchain_community.document_loaders`, `OpenCityDataLoader`], + [`langchain.document_loaders.org_mode`, `UnstructuredOrgModeLoader`, `langchain_community.document_loaders`, `UnstructuredOrgModeLoader`], + [`langchain.document_loaders.parsers`, `BS4HTMLParser`, `langchain_community.document_loaders.parsers.html.bs4`, `BS4HTMLParser`], + [`langchain.document_loaders.parsers`, `DocAIParser`, `langchain_community.document_loaders.parsers.docai`, `DocAIParser`], + [`langchain.document_loaders.parsers`, `GrobidParser`, `langchain_community.document_loaders.parsers.grobid`, `GrobidParser`], + [`langchain.document_loaders.parsers`, `LanguageParser`, `langchain_community.document_loaders.parsers.language.language_parser`, `LanguageParser`], + [`langchain.document_loaders.parsers`, `OpenAIWhisperParser`, `langchain_community.document_loaders.parsers.audio`, `OpenAIWhisperParser`], + [`langchain.document_loaders.parsers`, `PDFMinerParser`, `langchain_community.document_loaders.parsers.pdf`, `PDFMinerParser`], + [`langchain.document_loaders.parsers`, `PDFPlumberParser`, `langchain_community.document_loaders.parsers.pdf`, `PDFPlumberParser`], + [`langchain.document_loaders.parsers`, `PyMuPDFParser`, `langchain_community.document_loaders.parsers.pdf`, `PyMuPDFParser`], + [`langchain.document_loaders.parsers`, `PyPDFium2Parser`, `langchain_community.document_loaders.parsers.pdf`, `PyPDFium2Parser`], + [`langchain.document_loaders.parsers`, `PyPDFParser`, `langchain_community.document_loaders.parsers.pdf`, `PyPDFParser`], + [`langchain.document_loaders.parsers.audio`, `OpenAIWhisperParser`, `langchain_community.document_loaders.parsers.audio`, `OpenAIWhisperParser`], + [`langchain.document_loaders.parsers.audio`, `OpenAIWhisperParserLocal`, `langchain_community.document_loaders.parsers.audio`, `OpenAIWhisperParserLocal`], + [`langchain.document_loaders.parsers.audio`, `YandexSTTParser`, `langchain_community.document_loaders.parsers.audio`, `YandexSTTParser`], + [`langchain.document_loaders.parsers.docai`, `DocAIParsingResults`, `langchain_community.document_loaders.parsers.docai`, `DocAIParsingResults`], + [`langchain.document_loaders.parsers.docai`, `DocAIParser`, `langchain_community.document_loaders.parsers.docai`, `DocAIParser`], + [`langchain.document_loaders.parsers.generic`, `MimeTypeBasedParser`, `langchain_community.document_loaders.parsers.generic`, `MimeTypeBasedParser`], + [`langchain.document_loaders.parsers.grobid`, `GrobidParser`, `langchain_community.document_loaders.parsers.grobid`, `GrobidParser`], + [`langchain.document_loaders.parsers.grobid`, `ServerUnavailableException`, `langchain_community.document_loaders.parsers.grobid`, `ServerUnavailableException`], + [`langchain.document_loaders.parsers.html`, `BS4HTMLParser`, `langchain_community.document_loaders.parsers.html.bs4`, `BS4HTMLParser`], + [`langchain.document_loaders.parsers.html.bs4`, `BS4HTMLParser`, `langchain_community.document_loaders.parsers.html.bs4`, `BS4HTMLParser`], + [`langchain.document_loaders.parsers.language`, `LanguageParser`, `langchain_community.document_loaders.parsers.language.language_parser`, `LanguageParser`], + [`langchain.document_loaders.parsers.language.cobol`, `CobolSegmenter`, `langchain_community.document_loaders.parsers.language.cobol`, `CobolSegmenter`], + [`langchain.document_loaders.parsers.language.code_segmenter`, `CodeSegmenter`, `langchain_community.document_loaders.parsers.language.code_segmenter`, `CodeSegmenter`], + [`langchain.document_loaders.parsers.language.javascript`, `JavaScriptSegmenter`, `langchain_community.document_loaders.parsers.language.javascript`, `JavaScriptSegmenter`], + [`langchain.document_loaders.parsers.language.language_parser`, `LanguageParser`, `langchain_community.document_loaders.parsers.language.language_parser`, `LanguageParser`], + [`langchain.document_loaders.parsers.language.python`, `PythonSegmenter`, `langchain_community.document_loaders.parsers.language.python`, `PythonSegmenter`], + [`langchain.document_loaders.parsers.msword`, `MsWordParser`, `langchain_community.document_loaders.parsers.msword`, `MsWordParser`], + [`langchain.document_loaders.parsers.pdf`, `extract_from_images_with_rapidocr`, `langchain_community.document_loaders.parsers.pdf`, `extract_from_images_with_rapidocr`], + [`langchain.document_loaders.parsers.pdf`, `PyPDFParser`, `langchain_community.document_loaders.parsers.pdf`, `PyPDFParser`], + [`langchain.document_loaders.parsers.pdf`, `PDFMinerParser`, `langchain_community.document_loaders.parsers.pdf`, `PDFMinerParser`], + [`langchain.document_loaders.parsers.pdf`, `PyMuPDFParser`, `langchain_community.document_loaders.parsers.pdf`, `PyMuPDFParser`], + [`langchain.document_loaders.parsers.pdf`, `PyPDFium2Parser`, `langchain_community.document_loaders.parsers.pdf`, `PyPDFium2Parser`], + [`langchain.document_loaders.parsers.pdf`, `PDFPlumberParser`, `langchain_community.document_loaders.parsers.pdf`, `PDFPlumberParser`], + [`langchain.document_loaders.parsers.pdf`, `AmazonTextractPDFParser`, `langchain_community.document_loaders.parsers.pdf`, `AmazonTextractPDFParser`], + [`langchain.document_loaders.parsers.pdf`, `DocumentIntelligenceParser`, `langchain_community.document_loaders.parsers.pdf`, `DocumentIntelligenceParser`], + [`langchain.document_loaders.parsers.registry`, `get_parser`, `langchain_community.document_loaders.parsers.registry`, `get_parser`], + [`langchain.document_loaders.parsers.txt`, `TextParser`, `langchain_community.document_loaders.parsers.txt`, `TextParser`], + [`langchain.document_loaders.pdf`, `UnstructuredPDFLoader`, `langchain_community.document_loaders`, `UnstructuredPDFLoader`], + [`langchain.document_loaders.pdf`, `BasePDFLoader`, `langchain_community.document_loaders.pdf`, `BasePDFLoader`], + [`langchain.document_loaders.pdf`, `OnlinePDFLoader`, `langchain_community.document_loaders`, `OnlinePDFLoader`], + [`langchain.document_loaders.pdf`, `PagedPDFSplitter`, `langchain_community.document_loaders`, `PyPDFLoader`], + [`langchain.document_loaders.pdf`, `PyPDFium2Loader`, `langchain_community.document_loaders`, `PyPDFium2Loader`], + [`langchain.document_loaders.pdf`, `PyPDFDirectoryLoader`, `langchain_community.document_loaders`, `PyPDFDirectoryLoader`], + [`langchain.document_loaders.pdf`, `PDFMinerLoader`, `langchain_community.document_loaders`, `PDFMinerLoader`], + [`langchain.document_loaders.pdf`, `PDFMinerPDFasHTMLLoader`, `langchain_community.document_loaders`, `PDFMinerPDFasHTMLLoader`], + [`langchain.document_loaders.pdf`, `PyMuPDFLoader`, `langchain_community.document_loaders`, `PyMuPDFLoader`], + [`langchain.document_loaders.pdf`, `MathpixPDFLoader`, `langchain_community.document_loaders`, `MathpixPDFLoader`], + [`langchain.document_loaders.pdf`, `PDFPlumberLoader`, `langchain_community.document_loaders`, `PDFPlumberLoader`], + [`langchain.document_loaders.pdf`, `AmazonTextractPDFLoader`, `langchain_community.document_loaders`, `AmazonTextractPDFLoader`], + [`langchain.document_loaders.pdf`, `DocumentIntelligenceLoader`, `langchain_community.document_loaders.pdf`, `DocumentIntelligenceLoader`], + [`langchain.document_loaders.polars_dataframe`, `PolarsDataFrameLoader`, `langchain_community.document_loaders`, `PolarsDataFrameLoader`], + [`langchain.document_loaders.powerpoint`, `UnstructuredPowerPointLoader`, `langchain_community.document_loaders`, `UnstructuredPowerPointLoader`], + [`langchain.document_loaders.psychic`, `PsychicLoader`, `langchain_community.document_loaders`, `PsychicLoader`], + [`langchain.document_loaders.pubmed`, `PubMedLoader`, `langchain_community.document_loaders`, `PubMedLoader`], + [`langchain.document_loaders.pyspark_dataframe`, `PySparkDataFrameLoader`, `langchain_community.document_loaders`, `PySparkDataFrameLoader`], + [`langchain.document_loaders.python`, `PythonLoader`, `langchain_community.document_loaders`, `PythonLoader`], + [`langchain.document_loaders.quip`, `QuipLoader`, `langchain_community.document_loaders.quip`, `QuipLoader`], + [`langchain.document_loaders.readthedocs`, `ReadTheDocsLoader`, `langchain_community.document_loaders`, `ReadTheDocsLoader`], + [`langchain.document_loaders.recursive_url_loader`, `RecursiveUrlLoader`, `langchain_community.document_loaders`, `RecursiveUrlLoader`], + [`langchain.document_loaders.reddit`, `RedditPostsLoader`, `langchain_community.document_loaders`, `RedditPostsLoader`], + [`langchain.document_loaders.roam`, `RoamLoader`, `langchain_community.document_loaders`, `RoamLoader`], + [`langchain.document_loaders.rocksetdb`, `RocksetLoader`, `langchain_community.document_loaders`, `RocksetLoader`], + [`langchain.document_loaders.rspace`, `RSpaceLoader`, `langchain_community.document_loaders.rspace`, `RSpaceLoader`], + [`langchain.document_loaders.rss`, `RSSFeedLoader`, `langchain_community.document_loaders`, `RSSFeedLoader`], + [`langchain.document_loaders.rst`, `UnstructuredRSTLoader`, `langchain_community.document_loaders`, `UnstructuredRSTLoader`], + [`langchain.document_loaders.rtf`, `UnstructuredRTFLoader`, `langchain_community.document_loaders`, `UnstructuredRTFLoader`], + [`langchain.document_loaders.s3_directory`, `S3DirectoryLoader`, `langchain_community.document_loaders`, `S3DirectoryLoader`], + [`langchain.document_loaders.s3_file`, `S3FileLoader`, `langchain_community.document_loaders`, `S3FileLoader`], + [`langchain.document_loaders.sharepoint`, `SharePointLoader`, `langchain_community.document_loaders`, `SharePointLoader`], + [`langchain.document_loaders.sitemap`, `SitemapLoader`, `langchain_community.document_loaders`, `SitemapLoader`], + [`langchain.document_loaders.slack_directory`, `SlackDirectoryLoader`, `langchain_community.document_loaders`, `SlackDirectoryLoader`], + [`langchain.document_loaders.snowflake_loader`, `SnowflakeLoader`, `langchain_community.document_loaders`, `SnowflakeLoader`], + [`langchain.document_loaders.spreedly`, `SpreedlyLoader`, `langchain_community.document_loaders`, `SpreedlyLoader`], + [`langchain.document_loaders.srt`, `SRTLoader`, `langchain_community.document_loaders`, `SRTLoader`], + [`langchain.document_loaders.stripe`, `StripeLoader`, `langchain_community.document_loaders`, `StripeLoader`], + [`langchain.document_loaders.telegram`, `concatenate_rows`, `langchain_community.document_loaders.telegram`, `concatenate_rows`], + [`langchain.document_loaders.telegram`, `TelegramChatFileLoader`, `langchain_community.document_loaders`, `TelegramChatLoader`], + [`langchain.document_loaders.telegram`, `text_to_docs`, `langchain_community.document_loaders.telegram`, `text_to_docs`], + [`langchain.document_loaders.telegram`, `TelegramChatApiLoader`, `langchain_community.document_loaders`, `TelegramChatApiLoader`], + [`langchain.document_loaders.tencent_cos_directory`, `TencentCOSDirectoryLoader`, `langchain_community.document_loaders`, `TencentCOSDirectoryLoader`], + [`langchain.document_loaders.tencent_cos_file`, `TencentCOSFileLoader`, `langchain_community.document_loaders`, `TencentCOSFileLoader`], + [`langchain.document_loaders.tensorflow_datasets`, `TensorflowDatasetLoader`, `langchain_community.document_loaders`, `TensorflowDatasetLoader`], + [`langchain.document_loaders.text`, `TextLoader`, `langchain_community.document_loaders`, `TextLoader`], + [`langchain.document_loaders.tomarkdown`, `ToMarkdownLoader`, `langchain_community.document_loaders`, `ToMarkdownLoader`], + [`langchain.document_loaders.toml`, `TomlLoader`, `langchain_community.document_loaders`, `TomlLoader`], + [`langchain.document_loaders.trello`, `TrelloLoader`, `langchain_community.document_loaders`, `TrelloLoader`], + [`langchain.document_loaders.tsv`, `UnstructuredTSVLoader`, `langchain_community.document_loaders`, `UnstructuredTSVLoader`], + [`langchain.document_loaders.twitter`, `TwitterTweetLoader`, `langchain_community.document_loaders`, `TwitterTweetLoader`], + [`langchain.document_loaders.unstructured`, `satisfies_min_unstructured_version`, `langchain_community.document_loaders.unstructured`, `satisfies_min_unstructured_version`], + [`langchain.document_loaders.unstructured`, `validate_unstructured_version`, `langchain_community.document_loaders.unstructured`, `validate_unstructured_version`], + [`langchain.document_loaders.unstructured`, `UnstructuredBaseLoader`, `langchain_community.document_loaders.unstructured`, `UnstructuredBaseLoader`], + [`langchain.document_loaders.unstructured`, `UnstructuredFileLoader`, `langchain_community.document_loaders`, `UnstructuredFileLoader`], + [`langchain.document_loaders.unstructured`, `get_elements_from_api`, `langchain_community.document_loaders.unstructured`, `get_elements_from_api`], + [`langchain.document_loaders.unstructured`, `UnstructuredAPIFileLoader`, `langchain_community.document_loaders`, `UnstructuredAPIFileLoader`], + [`langchain.document_loaders.unstructured`, `UnstructuredFileIOLoader`, `langchain_community.document_loaders`, `UnstructuredFileIOLoader`], + [`langchain.document_loaders.unstructured`, `UnstructuredAPIFileIOLoader`, `langchain_community.document_loaders`, `UnstructuredAPIFileIOLoader`], + [`langchain.document_loaders.url`, `UnstructuredURLLoader`, `langchain_community.document_loaders`, `UnstructuredURLLoader`], + [`langchain.document_loaders.url_playwright`, `PlaywrightEvaluator`, `langchain_community.document_loaders.url_playwright`, `PlaywrightEvaluator`], + [`langchain.document_loaders.url_playwright`, `UnstructuredHtmlEvaluator`, `langchain_community.document_loaders.url_playwright`, `UnstructuredHtmlEvaluator`], + [`langchain.document_loaders.url_playwright`, `PlaywrightURLLoader`, `langchain_community.document_loaders`, `PlaywrightURLLoader`], + [`langchain.document_loaders.url_selenium`, `SeleniumURLLoader`, `langchain_community.document_loaders`, `SeleniumURLLoader`], + [`langchain.document_loaders.weather`, `WeatherDataLoader`, `langchain_community.document_loaders`, `WeatherDataLoader`], + [`langchain.document_loaders.web_base`, `WebBaseLoader`, `langchain_community.document_loaders`, `WebBaseLoader`], + [`langchain.document_loaders.whatsapp_chat`, `concatenate_rows`, `langchain_community.document_loaders.whatsapp_chat`, `concatenate_rows`], + [`langchain.document_loaders.whatsapp_chat`, `WhatsAppChatLoader`, `langchain_community.document_loaders`, `WhatsAppChatLoader`], + [`langchain.document_loaders.wikipedia`, `WikipediaLoader`, `langchain_community.document_loaders`, `WikipediaLoader`], + [`langchain.document_loaders.word_document`, `Docx2txtLoader`, `langchain_community.document_loaders`, `Docx2txtLoader`], + [`langchain.document_loaders.word_document`, `UnstructuredWordDocumentLoader`, `langchain_community.document_loaders`, `UnstructuredWordDocumentLoader`], + [`langchain.document_loaders.xml`, `UnstructuredXMLLoader`, `langchain_community.document_loaders`, `UnstructuredXMLLoader`], + [`langchain.document_loaders.xorbits`, `XorbitsLoader`, `langchain_community.document_loaders`, `XorbitsLoader`], + [`langchain.document_loaders.youtube`, `YoutubeLoader`, `langchain_community.document_loaders`, `YoutubeLoader`], + [`langchain.document_loaders.youtube`, `GoogleApiYoutubeLoader`, `langchain_community.document_loaders`, `GoogleApiYoutubeLoader`], + [`langchain.document_loaders.youtube`, `GoogleApiClient`, `langchain_community.document_loaders`, `GoogleApiClient`], + [`langchain.document_transformers`, `BeautifulSoupTransformer`, `langchain_community.document_transformers`, `BeautifulSoupTransformer`], + [`langchain.document_transformers`, `DoctranQATransformer`, `langchain_community.document_transformers`, `DoctranQATransformer`], + [`langchain.document_transformers`, `DoctranTextTranslator`, `langchain_community.document_transformers`, `DoctranTextTranslator`], + [`langchain.document_transformers`, `DoctranPropertyExtractor`, `langchain_community.document_transformers`, `DoctranPropertyExtractor`], + [`langchain.document_transformers`, `EmbeddingsClusteringFilter`, `langchain_community.document_transformers`, `EmbeddingsClusteringFilter`], + [`langchain.document_transformers`, `EmbeddingsRedundantFilter`, `langchain_community.document_transformers`, `EmbeddingsRedundantFilter`], + [`langchain.document_transformers`, `GoogleTranslateTransformer`, `langchain_community.document_transformers`, `GoogleTranslateTransformer`], + [`langchain.document_transformers`, `get_stateful_documents`, `langchain_community.document_transformers`, `get_stateful_documents`], + [`langchain.document_transformers`, `LongContextReorder`, `langchain_community.document_transformers`, `LongContextReorder`], + [`langchain.document_transformers`, `NucliaTextTransformer`, `langchain_community.document_transformers`, `NucliaTextTransformer`], + [`langchain.document_transformers`, `OpenAIMetadataTagger`, `langchain_community.document_transformers`, `OpenAIMetadataTagger`], + [`langchain.document_transformers`, `Html2TextTransformer`, `langchain_community.document_transformers`, `Html2TextTransformer`], + [`langchain.document_transformers.beautiful_soup_transformer`, `BeautifulSoupTransformer`, `langchain_community.document_transformers`, `BeautifulSoupTransformer`], + [`langchain.document_transformers.doctran_text_extract`, `DoctranPropertyExtractor`, `langchain_community.document_transformers`, `DoctranPropertyExtractor`], + [`langchain.document_transformers.doctran_text_qa`, `DoctranQATransformer`, `langchain_community.document_transformers`, `DoctranQATransformer`], + [`langchain.document_transformers.doctran_text_translate`, `DoctranTextTranslator`, `langchain_community.document_transformers`, `DoctranTextTranslator`], + [`langchain.document_transformers.embeddings_redundant_filter`, `EmbeddingsRedundantFilter`, `langchain_community.document_transformers`, `EmbeddingsRedundantFilter`], + [`langchain.document_transformers.embeddings_redundant_filter`, `EmbeddingsClusteringFilter`, `langchain_community.document_transformers`, `EmbeddingsClusteringFilter`], + [`langchain.document_transformers.embeddings_redundant_filter`, `_DocumentWithState`, `langchain_community.document_transformers.embeddings_redundant_filter`, `_DocumentWithState`], + [`langchain.document_transformers.embeddings_redundant_filter`, `get_stateful_documents`, `langchain_community.document_transformers`, `get_stateful_documents`], + [`langchain.document_transformers.embeddings_redundant_filter`, `_get_embeddings_from_stateful_docs`, `langchain_community.document_transformers.embeddings_redundant_filter`, `_get_embeddings_from_stateful_docs`], + [`langchain.document_transformers.embeddings_redundant_filter`, `_filter_similar_embeddings`, `langchain_community.document_transformers.embeddings_redundant_filter`, `_filter_similar_embeddings`], + [`langchain.document_transformers.google_translate`, `GoogleTranslateTransformer`, `langchain_community.document_transformers`, `GoogleTranslateTransformer`], + [`langchain.document_transformers.html2text`, `Html2TextTransformer`, `langchain_community.document_transformers`, `Html2TextTransformer`], + [`langchain.document_transformers.long_context_reorder`, `LongContextReorder`, `langchain_community.document_transformers`, `LongContextReorder`], + [`langchain.document_transformers.nuclia_text_transform`, `NucliaTextTransformer`, `langchain_community.document_transformers`, `NucliaTextTransformer`], + [`langchain.document_transformers.openai_functions`, `OpenAIMetadataTagger`, `langchain_community.document_transformers`, `OpenAIMetadataTagger`], + [`langchain.document_transformers.openai_functions`, `create_metadata_tagger`, `langchain_community.document_transformers.openai_functions`, `create_metadata_tagger`], + [`langchain.embeddings`, `AlephAlphaAsymmetricSemanticEmbedding`, `langchain_community.embeddings`, `AlephAlphaAsymmetricSemanticEmbedding`], + [`langchain.embeddings`, `AlephAlphaSymmetricSemanticEmbedding`, `langchain_community.embeddings`, `AlephAlphaSymmetricSemanticEmbedding`], + [`langchain.embeddings`, `AwaEmbeddings`, `langchain_community.embeddings`, `AwaEmbeddings`], + [`langchain.embeddings`, `AzureOpenAIEmbeddings`, `langchain_community.embeddings`, `AzureOpenAIEmbeddings`], + [`langchain.embeddings`, `BedrockEmbeddings`, `langchain_community.embeddings`, `BedrockEmbeddings`], + [`langchain.embeddings`, `BookendEmbeddings`, `langchain_community.embeddings`, `BookendEmbeddings`], + [`langchain.embeddings`, `ClarifaiEmbeddings`, `langchain_community.embeddings`, `ClarifaiEmbeddings`], + [`langchain.embeddings`, `CohereEmbeddings`, `langchain_community.embeddings`, `CohereEmbeddings`], + [`langchain.embeddings`, `DashScopeEmbeddings`, `langchain_community.embeddings`, `DashScopeEmbeddings`], + [`langchain.embeddings`, `DatabricksEmbeddings`, `langchain_community.embeddings`, `DatabricksEmbeddings`], + [`langchain.embeddings`, `DeepInfraEmbeddings`, `langchain_community.embeddings`, `DeepInfraEmbeddings`], + [`langchain.embeddings`, `DeterministicFakeEmbedding`, `langchain_community.embeddings`, `DeterministicFakeEmbedding`], + [`langchain.embeddings`, `EdenAiEmbeddings`, `langchain_community.embeddings`, `EdenAiEmbeddings`], + [`langchain.embeddings`, `ElasticsearchEmbeddings`, `langchain_community.embeddings`, `ElasticsearchEmbeddings`], + [`langchain.embeddings`, `EmbaasEmbeddings`, `langchain_community.embeddings`, `EmbaasEmbeddings`], + [`langchain.embeddings`, `ErnieEmbeddings`, `langchain_community.embeddings`, `ErnieEmbeddings`], + [`langchain.embeddings`, `FakeEmbeddings`, `langchain_community.embeddings`, `FakeEmbeddings`], + [`langchain.embeddings`, `FastEmbedEmbeddings`, `langchain_community.embeddings`, `FastEmbedEmbeddings`], + [`langchain.embeddings`, `GooglePalmEmbeddings`, `langchain_community.embeddings`, `GooglePalmEmbeddings`], + [`langchain.embeddings`, `GPT4AllEmbeddings`, `langchain_community.embeddings`, `GPT4AllEmbeddings`], + [`langchain.embeddings`, `GradientEmbeddings`, `langchain_community.embeddings`, `GradientEmbeddings`], + [`langchain.embeddings`, `HuggingFaceBgeEmbeddings`, `langchain_community.embeddings`, `HuggingFaceBgeEmbeddings`], + [`langchain.embeddings`, `HuggingFaceEmbeddings`, `langchain_community.embeddings`, `SentenceTransformerEmbeddings`], + [`langchain.embeddings`, `HuggingFaceHubEmbeddings`, `langchain_community.embeddings`, `HuggingFaceHubEmbeddings`], + [`langchain.embeddings`, `HuggingFaceInferenceAPIEmbeddings`, `langchain_community.embeddings`, `HuggingFaceInferenceAPIEmbeddings`], + [`langchain.embeddings`, `HuggingFaceInstructEmbeddings`, `langchain_community.embeddings`, `HuggingFaceInstructEmbeddings`], + [`langchain.embeddings`, `InfinityEmbeddings`, `langchain_community.embeddings`, `InfinityEmbeddings`], + [`langchain.embeddings`, `JavelinAIGatewayEmbeddings`, `langchain_community.embeddings`, `JavelinAIGatewayEmbeddings`], + [`langchain.embeddings`, `JinaEmbeddings`, `langchain_community.embeddings`, `JinaEmbeddings`], + [`langchain.embeddings`, `JohnSnowLabsEmbeddings`, `langchain_community.embeddings`, `JohnSnowLabsEmbeddings`], + [`langchain.embeddings`, `LlamaCppEmbeddings`, `langchain_community.embeddings`, `LlamaCppEmbeddings`], + [`langchain.embeddings`, `LocalAIEmbeddings`, `langchain_community.embeddings`, `LocalAIEmbeddings`], + [`langchain.embeddings`, `MiniMaxEmbeddings`, `langchain_community.embeddings`, `MiniMaxEmbeddings`], + [`langchain.embeddings`, `MlflowAIGatewayEmbeddings`, `langchain_community.embeddings`, `MlflowAIGatewayEmbeddings`], + [`langchain.embeddings`, `MlflowEmbeddings`, `langchain_community.embeddings`, `MlflowEmbeddings`], + [`langchain.embeddings`, `ModelScopeEmbeddings`, `langchain_community.embeddings`, `ModelScopeEmbeddings`], + [`langchain.embeddings`, `MosaicMLInstructorEmbeddings`, `langchain_community.embeddings`, `MosaicMLInstructorEmbeddings`], + [`langchain.embeddings`, `NLPCloudEmbeddings`, `langchain_community.embeddings`, `NLPCloudEmbeddings`], + [`langchain.embeddings`, `OctoAIEmbeddings`, `langchain_community.embeddings`, `OctoAIEmbeddings`], + [`langchain.embeddings`, `OllamaEmbeddings`, `langchain_community.embeddings`, `OllamaEmbeddings`], + [`langchain.embeddings`, `OpenAIEmbeddings`, `langchain_community.embeddings`, `OpenAIEmbeddings`], + [`langchain.embeddings`, `OpenVINOEmbeddings`, `langchain_community.embeddings`, `OpenVINOEmbeddings`], + [`langchain.embeddings`, `QianfanEmbeddingsEndpoint`, `langchain_community.embeddings`, `QianfanEmbeddingsEndpoint`], + [`langchain.embeddings`, `SagemakerEndpointEmbeddings`, `langchain_community.embeddings`, `SagemakerEndpointEmbeddings`], + [`langchain.embeddings`, `SelfHostedEmbeddings`, `langchain_community.embeddings`, `SelfHostedEmbeddings`], + [`langchain.embeddings`, `SelfHostedHuggingFaceEmbeddings`, `langchain_community.embeddings`, `SelfHostedHuggingFaceEmbeddings`], + [`langchain.embeddings`, `SelfHostedHuggingFaceInstructEmbeddings`, `langchain_community.embeddings`, `SelfHostedHuggingFaceInstructEmbeddings`], + [`langchain.embeddings`, `SentenceTransformerEmbeddings`, `langchain_community.embeddings`, `SentenceTransformerEmbeddings`], + [`langchain.embeddings`, `SpacyEmbeddings`, `langchain_community.embeddings`, `SpacyEmbeddings`], + [`langchain.embeddings`, `TensorflowHubEmbeddings`, `langchain_community.embeddings`, `TensorflowHubEmbeddings`], + [`langchain.embeddings`, `VertexAIEmbeddings`, `langchain_community.embeddings`, `VertexAIEmbeddings`], + [`langchain.embeddings`, `VoyageEmbeddings`, `langchain_community.embeddings`, `VoyageEmbeddings`], + [`langchain.embeddings`, `XinferenceEmbeddings`, `langchain_community.embeddings`, `XinferenceEmbeddings`], + [`langchain.embeddings.aleph_alpha`, `AlephAlphaAsymmetricSemanticEmbedding`, `langchain_community.embeddings`, `AlephAlphaAsymmetricSemanticEmbedding`], + [`langchain.embeddings.aleph_alpha`, `AlephAlphaSymmetricSemanticEmbedding`, `langchain_community.embeddings`, `AlephAlphaSymmetricSemanticEmbedding`], + [`langchain.embeddings.awa`, `AwaEmbeddings`, `langchain_community.embeddings`, `AwaEmbeddings`], + [`langchain.embeddings.azure_openai`, `AzureOpenAIEmbeddings`, `langchain_community.embeddings`, `AzureOpenAIEmbeddings`], + [`langchain.embeddings.baidu_qianfan_endpoint`, `QianfanEmbeddingsEndpoint`, `langchain_community.embeddings`, `QianfanEmbeddingsEndpoint`], + [`langchain.embeddings.bedrock`, `BedrockEmbeddings`, `langchain_community.embeddings`, `BedrockEmbeddings`], + [`langchain.embeddings.bookend`, `BookendEmbeddings`, `langchain_community.embeddings`, `BookendEmbeddings`], + [`langchain.embeddings.clarifai`, `ClarifaiEmbeddings`, `langchain_community.embeddings`, `ClarifaiEmbeddings`], + [`langchain.embeddings.cloudflare_workersai`, `CloudflareWorkersAIEmbeddings`, `langchain_community.embeddings.cloudflare_workersai`, `CloudflareWorkersAIEmbeddings`], + [`langchain.embeddings.cohere`, `CohereEmbeddings`, `langchain_community.embeddings`, `CohereEmbeddings`], + [`langchain.embeddings.dashscope`, `DashScopeEmbeddings`, `langchain_community.embeddings`, `DashScopeEmbeddings`], + [`langchain.embeddings.databricks`, `DatabricksEmbeddings`, `langchain_community.embeddings`, `DatabricksEmbeddings`], + [`langchain.embeddings.deepinfra`, `DeepInfraEmbeddings`, `langchain_community.embeddings`, `DeepInfraEmbeddings`], + [`langchain.embeddings.edenai`, `EdenAiEmbeddings`, `langchain_community.embeddings`, `EdenAiEmbeddings`], + [`langchain.embeddings.elasticsearch`, `ElasticsearchEmbeddings`, `langchain_community.embeddings`, `ElasticsearchEmbeddings`], + [`langchain.embeddings.embaas`, `EmbaasEmbeddings`, `langchain_community.embeddings`, `EmbaasEmbeddings`], + [`langchain.embeddings.ernie`, `ErnieEmbeddings`, `langchain_community.embeddings`, `ErnieEmbeddings`], + [`langchain.embeddings.fake`, `FakeEmbeddings`, `langchain_community.embeddings`, `FakeEmbeddings`], + [`langchain.embeddings.fake`, `DeterministicFakeEmbedding`, `langchain_community.embeddings`, `DeterministicFakeEmbedding`], + [`langchain.embeddings.fastembed`, `FastEmbedEmbeddings`, `langchain_community.embeddings`, `FastEmbedEmbeddings`], + [`langchain.embeddings.google_palm`, `GooglePalmEmbeddings`, `langchain_community.embeddings`, `GooglePalmEmbeddings`], + [`langchain.embeddings.gpt4all`, `GPT4AllEmbeddings`, `langchain_community.embeddings`, `GPT4AllEmbeddings`], + [`langchain.embeddings.gradient_ai`, `GradientEmbeddings`, `langchain_community.embeddings`, `GradientEmbeddings`], + [`langchain.embeddings.huggingface`, `HuggingFaceEmbeddings`, `langchain_community.embeddings`, `SentenceTransformerEmbeddings`], + [`langchain.embeddings.huggingface`, `HuggingFaceInstructEmbeddings`, `langchain_community.embeddings`, `HuggingFaceInstructEmbeddings`], + [`langchain.embeddings.huggingface`, `HuggingFaceBgeEmbeddings`, `langchain_community.embeddings`, `HuggingFaceBgeEmbeddings`], + [`langchain.embeddings.huggingface`, `HuggingFaceInferenceAPIEmbeddings`, `langchain_community.embeddings`, `HuggingFaceInferenceAPIEmbeddings`], + [`langchain.embeddings.huggingface_hub`, `HuggingFaceHubEmbeddings`, `langchain_community.embeddings`, `HuggingFaceHubEmbeddings`], + [`langchain.embeddings.infinity`, `InfinityEmbeddings`, `langchain_community.embeddings`, `InfinityEmbeddings`], + [`langchain.embeddings.infinity`, `TinyAsyncOpenAIInfinityEmbeddingClient`, `langchain_community.embeddings.infinity`, `TinyAsyncOpenAIInfinityEmbeddingClient`], + [`langchain.embeddings.javelin_ai_gateway`, `JavelinAIGatewayEmbeddings`, `langchain_community.embeddings`, `JavelinAIGatewayEmbeddings`], + [`langchain.embeddings.jina`, `JinaEmbeddings`, `langchain_community.embeddings`, `JinaEmbeddings`], + [`langchain.embeddings.johnsnowlabs`, `JohnSnowLabsEmbeddings`, `langchain_community.embeddings`, `JohnSnowLabsEmbeddings`], + [`langchain.embeddings.llamacpp`, `LlamaCppEmbeddings`, `langchain_community.embeddings`, `LlamaCppEmbeddings`], + [`langchain.embeddings.llm_rails`, `LLMRailsEmbeddings`, `langchain_community.embeddings`, `LLMRailsEmbeddings`], + [`langchain.embeddings.localai`, `LocalAIEmbeddings`, `langchain_community.embeddings`, `LocalAIEmbeddings`], + [`langchain.embeddings.minimax`, `MiniMaxEmbeddings`, `langchain_community.embeddings`, `MiniMaxEmbeddings`], + [`langchain.embeddings.mlflow`, `MlflowEmbeddings`, `langchain_community.embeddings`, `MlflowEmbeddings`], + [`langchain.embeddings.mlflow_gateway`, `MlflowAIGatewayEmbeddings`, `langchain_community.embeddings`, `MlflowAIGatewayEmbeddings`], + [`langchain.embeddings.modelscope_hub`, `ModelScopeEmbeddings`, `langchain_community.embeddings`, `ModelScopeEmbeddings`], + [`langchain.embeddings.mosaicml`, `MosaicMLInstructorEmbeddings`, `langchain_community.embeddings`, `MosaicMLInstructorEmbeddings`], + [`langchain.embeddings.nlpcloud`, `NLPCloudEmbeddings`, `langchain_community.embeddings`, `NLPCloudEmbeddings`], + [`langchain.embeddings.octoai_embeddings`, `OctoAIEmbeddings`, `langchain_community.embeddings`, `OctoAIEmbeddings`], + [`langchain.embeddings.ollama`, `OllamaEmbeddings`, `langchain_community.embeddings`, `OllamaEmbeddings`], + [`langchain.embeddings.openai`, `OpenAIEmbeddings`, `langchain_community.embeddings`, `OpenAIEmbeddings`], + [`langchain.embeddings.sagemaker_endpoint`, `EmbeddingsContentHandler`, `langchain_community.embeddings.sagemaker_endpoint`, `EmbeddingsContentHandler`], + [`langchain.embeddings.sagemaker_endpoint`, `SagemakerEndpointEmbeddings`, `langchain_community.embeddings`, `SagemakerEndpointEmbeddings`], + [`langchain.embeddings.self_hosted`, `SelfHostedEmbeddings`, `langchain_community.embeddings`, `SelfHostedEmbeddings`], + [`langchain.embeddings.self_hosted_hugging_face`, `SelfHostedHuggingFaceEmbeddings`, `langchain_community.embeddings`, `SelfHostedHuggingFaceEmbeddings`], + [`langchain.embeddings.self_hosted_hugging_face`, `SelfHostedHuggingFaceInstructEmbeddings`, `langchain_community.embeddings`, `SelfHostedHuggingFaceInstructEmbeddings`], + [`langchain.embeddings.sentence_transformer`, `SentenceTransformerEmbeddings`, `langchain_community.embeddings`, `SentenceTransformerEmbeddings`], + [`langchain.embeddings.spacy_embeddings`, `SpacyEmbeddings`, `langchain_community.embeddings`, `SpacyEmbeddings`], + [`langchain.embeddings.tensorflow_hub`, `TensorflowHubEmbeddings`, `langchain_community.embeddings`, `TensorflowHubEmbeddings`], + [`langchain.embeddings.vertexai`, `VertexAIEmbeddings`, `langchain_community.embeddings`, `VertexAIEmbeddings`], + [`langchain.embeddings.voyageai`, `VoyageEmbeddings`, `langchain_community.embeddings`, `VoyageEmbeddings`], + [`langchain.embeddings.xinference`, `XinferenceEmbeddings`, `langchain_community.embeddings`, `XinferenceEmbeddings`], + [`langchain.graphs`, `MemgraphGraph`, `langchain_community.graphs`, `MemgraphGraph`], + [`langchain.graphs`, `NetworkxEntityGraph`, `langchain_community.graphs`, `NetworkxEntityGraph`], + [`langchain.graphs`, `Neo4jGraph`, `langchain_community.graphs`, `Neo4jGraph`], + [`langchain.graphs`, `NebulaGraph`, `langchain_community.graphs`, `NebulaGraph`], + [`langchain.graphs`, `NeptuneGraph`, `langchain_community.graphs`, `NeptuneGraph`], + [`langchain.graphs`, `KuzuGraph`, `langchain_community.graphs`, `KuzuGraph`], + [`langchain.graphs`, `HugeGraph`, `langchain_community.graphs`, `HugeGraph`], + [`langchain.graphs`, `RdfGraph`, `langchain_community.graphs`, `RdfGraph`], + [`langchain.graphs`, `ArangoGraph`, `langchain_community.graphs`, `ArangoGraph`], + [`langchain.graphs`, `FalkorDBGraph`, `langchain_community.graphs`, `FalkorDBGraph`], + [`langchain.graphs.arangodb_graph`, `ArangoGraph`, `langchain_community.graphs`, `ArangoGraph`], + [`langchain.graphs.arangodb_graph`, `get_arangodb_client`, `langchain_community.graphs.arangodb_graph`, `get_arangodb_client`], + [`langchain.graphs.falkordb_graph`, `FalkorDBGraph`, `langchain_community.graphs`, `FalkorDBGraph`], + [`langchain.graphs.graph_document`, `Node`, `langchain_community.graphs.graph_document`, `Node`], + [`langchain.graphs.graph_document`, `Relationship`, `langchain_community.graphs.graph_document`, `Relationship`], + [`langchain.graphs.graph_document`, `GraphDocument`, `langchain_community.graphs.graph_document`, `GraphDocument`], + [`langchain.graphs.graph_store`, `GraphStore`, `langchain_community.graphs.graph_store`, `GraphStore`], + [`langchain.graphs.hugegraph`, `HugeGraph`, `langchain_community.graphs`, `HugeGraph`], + [`langchain.graphs.kuzu_graph`, `KuzuGraph`, `langchain_community.graphs`, `KuzuGraph`], + [`langchain.graphs.memgraph_graph`, `MemgraphGraph`, `langchain_community.graphs`, `MemgraphGraph`], + [`langchain.graphs.nebula_graph`, `NebulaGraph`, `langchain_community.graphs`, `NebulaGraph`], + [`langchain.graphs.neo4j_graph`, `Neo4jGraph`, `langchain_community.graphs`, `Neo4jGraph`], + [`langchain.graphs.neptune_graph`, `NeptuneGraph`, `langchain_community.graphs`, `NeptuneGraph`], + [`langchain.graphs.networkx_graph`, `KnowledgeTriple`, `langchain_community.graphs.networkx_graph`, `KnowledgeTriple`], + [`langchain.graphs.networkx_graph`, `parse_triples`, `langchain_community.graphs.networkx_graph`, `parse_triples`], + [`langchain.graphs.networkx_graph`, `get_entities`, `langchain_community.graphs.networkx_graph`, `get_entities`], + [`langchain.graphs.networkx_graph`, `NetworkxEntityGraph`, `langchain_community.graphs`, `NetworkxEntityGraph`], + [`langchain.graphs.rdf_graph`, `RdfGraph`, `langchain_community.graphs`, `RdfGraph`], + [`langchain.indexes`, `GraphIndexCreator`, `langchain_community.graphs.index_creator`, `GraphIndexCreator`], + [`langchain.indexes.graph`, `GraphIndexCreator`, `langchain_community.graphs.index_creator`, `GraphIndexCreator`], + [`langchain.indexes.graph`, `NetworkxEntityGraph`, `langchain_community.graphs`, `NetworkxEntityGraph`], + [`langchain.llms`, `AI21`, `langchain_community.llms`, `AI21`], + [`langchain.llms`, `AlephAlpha`, `langchain_community.llms`, `AlephAlpha`], + [`langchain.llms`, `AmazonAPIGateway`, `langchain_community.llms`, `AmazonAPIGateway`], + [`langchain.llms`, `Anthropic`, `langchain_community.llms`, `Anthropic`], + [`langchain.llms`, `Anyscale`, `langchain_community.llms`, `Anyscale`], + [`langchain.llms`, `Arcee`, `langchain_community.llms`, `Arcee`], + [`langchain.llms`, `Aviary`, `langchain_community.llms`, `Aviary`], + [`langchain.llms`, `AzureMLOnlineEndpoint`, `langchain_community.llms`, `AzureMLOnlineEndpoint`], + [`langchain.llms`, `AzureOpenAI`, `langchain_community.llms`, `AzureOpenAI`], + [`langchain.llms`, `Banana`, `langchain_community.llms`, `Banana`], + [`langchain.llms`, `Baseten`, `langchain_community.llms`, `Baseten`], + [`langchain.llms`, `Beam`, `langchain_community.llms`, `Beam`], + [`langchain.llms`, `Bedrock`, `langchain_community.llms`, `Bedrock`], + [`langchain.llms`, `CTransformers`, `langchain_community.llms`, `CTransformers`], + [`langchain.llms`, `CTranslate2`, `langchain_community.llms`, `CTranslate2`], + [`langchain.llms`, `CerebriumAI`, `langchain_community.llms`, `CerebriumAI`], + [`langchain.llms`, `ChatGLM`, `langchain_community.llms`, `ChatGLM`], + [`langchain.llms`, `Clarifai`, `langchain_community.llms`, `Clarifai`], + [`langchain.llms`, `Cohere`, `langchain_community.llms`, `Cohere`], + [`langchain.llms`, `Databricks`, `langchain_community.llms`, `Databricks`], + [`langchain.llms`, `DeepInfra`, `langchain_community.llms`, `DeepInfra`], + [`langchain.llms`, `DeepSparse`, `langchain_community.llms`, `DeepSparse`], + [`langchain.llms`, `EdenAI`, `langchain_community.llms`, `EdenAI`], + [`langchain.llms`, `FakeListLLM`, `langchain_community.llms`, `FakeListLLM`], + [`langchain.llms`, `Fireworks`, `langchain_community.llms`, `Fireworks`], + [`langchain.llms`, `ForefrontAI`, `langchain_community.llms`, `ForefrontAI`], + [`langchain.llms`, `GigaChat`, `langchain_community.llms`, `GigaChat`], + [`langchain.llms`, `GPT4All`, `langchain_community.llms`, `GPT4All`], + [`langchain.llms`, `GooglePalm`, `langchain_community.llms`, `GooglePalm`], + [`langchain.llms`, `GooseAI`, `langchain_community.llms`, `GooseAI`], + [`langchain.llms`, `GradientLLM`, `langchain_community.llms`, `GradientLLM`], + [`langchain.llms`, `HuggingFaceEndpoint`, `langchain_community.llms`, `HuggingFaceEndpoint`], + [`langchain.llms`, `HuggingFaceHub`, `langchain_community.llms`, `HuggingFaceHub`], + [`langchain.llms`, `HuggingFacePipeline`, `langchain_community.llms`, `HuggingFacePipeline`], + [`langchain.llms`, `HuggingFaceTextGenInference`, `langchain_community.llms`, `HuggingFaceTextGenInference`], + [`langchain.llms`, `HumanInputLLM`, `langchain_community.llms`, `HumanInputLLM`], + [`langchain.llms`, `KoboldApiLLM`, `langchain_community.llms`, `KoboldApiLLM`], + [`langchain.llms`, `LlamaCpp`, `langchain_community.llms`, `LlamaCpp`], + [`langchain.llms`, `TextGen`, `langchain_community.llms`, `TextGen`], + [`langchain.llms`, `ManifestWrapper`, `langchain_community.llms`, `ManifestWrapper`], + [`langchain.llms`, `Minimax`, `langchain_community.llms`, `Minimax`], + [`langchain.llms`, `MlflowAIGateway`, `langchain_community.llms`, `MlflowAIGateway`], + [`langchain.llms`, `Modal`, `langchain_community.llms`, `Modal`], + [`langchain.llms`, `MosaicML`, `langchain_community.llms`, `MosaicML`], + [`langchain.llms`, `Nebula`, `langchain_community.llms`, `Nebula`], + [`langchain.llms`, `NIBittensorLLM`, `langchain_community.llms`, `NIBittensorLLM`], + [`langchain.llms`, `NLPCloud`, `langchain_community.llms`, `NLPCloud`], + [`langchain.llms`, `Ollama`, `langchain_community.llms`, `Ollama`], + [`langchain.llms`, `OpenAI`, `langchain_community.llms`, `OpenAI`], + [`langchain.llms`, `OpenAIChat`, `langchain_community.llms`, `OpenAIChat`], + [`langchain.llms`, `OpenLLM`, `langchain_community.llms`, `OpenLLM`], + [`langchain.llms`, `OpenLM`, `langchain_community.llms`, `OpenLM`], + [`langchain.llms`, `PaiEasEndpoint`, `langchain_community.llms`, `PaiEasEndpoint`], + [`langchain.llms`, `Petals`, `langchain_community.llms`, `Petals`], + [`langchain.llms`, `PipelineAI`, `langchain_community.llms`, `PipelineAI`], + [`langchain.llms`, `Predibase`, `langchain_community.llms`, `Predibase`], + [`langchain.llms`, `PredictionGuard`, `langchain_community.llms`, `PredictionGuard`], + [`langchain.llms`, `PromptLayerOpenAI`, `langchain_community.llms`, `PromptLayerOpenAI`], + [`langchain.llms`, `PromptLayerOpenAIChat`, `langchain_community.llms`, `PromptLayerOpenAIChat`], + [`langchain.llms`, `OpaquePrompts`, `langchain_community.llms`, `OpaquePrompts`], + [`langchain.llms`, `RWKV`, `langchain_community.llms`, `RWKV`], + [`langchain.llms`, `Replicate`, `langchain_community.llms`, `Replicate`], + [`langchain.llms`, `SagemakerEndpoint`, `langchain_community.llms`, `SagemakerEndpoint`], + [`langchain.llms`, `SelfHostedHuggingFaceLLM`, `langchain_community.llms`, `SelfHostedHuggingFaceLLM`], + [`langchain.llms`, `SelfHostedPipeline`, `langchain_community.llms`, `SelfHostedPipeline`], + [`langchain.llms`, `StochasticAI`, `langchain_community.llms`, `StochasticAI`], + [`langchain.llms`, `TitanTakeoff`, `langchain_community.llms`, `TitanTakeoffPro`], + [`langchain.llms`, `TitanTakeoffPro`, `langchain_community.llms`, `TitanTakeoffPro`], + [`langchain.llms`, `Tongyi`, `langchain_community.llms`, `Tongyi`], + [`langchain.llms`, `VertexAI`, `langchain_community.llms`, `VertexAI`], + [`langchain.llms`, `VertexAIModelGarden`, `langchain_community.llms`, `VertexAIModelGarden`], + [`langchain.llms`, `VLLM`, `langchain_community.llms`, `VLLM`], + [`langchain.llms`, `VLLMOpenAI`, `langchain_community.llms`, `VLLMOpenAI`], + [`langchain.llms`, `WatsonxLLM`, `langchain_community.llms`, `WatsonxLLM`], + [`langchain.llms`, `Writer`, `langchain_community.llms`, `Writer`], + [`langchain.llms`, `OctoAIEndpoint`, `langchain_community.llms`, `OctoAIEndpoint`], + [`langchain.llms`, `Xinference`, `langchain_community.llms`, `Xinference`], + [`langchain.llms`, `JavelinAIGateway`, `langchain_community.llms`, `JavelinAIGateway`], + [`langchain.llms`, `QianfanLLMEndpoint`, `langchain_community.llms`, `QianfanLLMEndpoint`], + [`langchain.llms`, `YandexGPT`, `langchain_community.llms`, `YandexGPT`], + [`langchain.llms`, `VolcEngineMaasLLM`, `langchain_community.llms`, `VolcEngineMaasLLM`], + [`langchain.llms.ai21`, `AI21PenaltyData`, `langchain_community.llms.ai21`, `AI21PenaltyData`], + [`langchain.llms.ai21`, `AI21`, `langchain_community.llms`, `AI21`], + [`langchain.llms.aleph_alpha`, `AlephAlpha`, `langchain_community.llms`, `AlephAlpha`], + [`langchain.llms.amazon_api_gateway`, `AmazonAPIGateway`, `langchain_community.llms`, `AmazonAPIGateway`], + [`langchain.llms.anthropic`, `Anthropic`, `langchain_community.llms`, `Anthropic`], + [`langchain.llms.anyscale`, `Anyscale`, `langchain_community.llms`, `Anyscale`], + [`langchain.llms.arcee`, `Arcee`, `langchain_community.llms`, `Arcee`], + [`langchain.llms.aviary`, `Aviary`, `langchain_community.llms`, `Aviary`], + [`langchain.llms.azureml_endpoint`, `AzureMLEndpointClient`, `langchain_community.llms.azureml_endpoint`, `AzureMLEndpointClient`], + [`langchain.llms.azureml_endpoint`, `ContentFormatterBase`, `langchain_community.llms.azureml_endpoint`, `ContentFormatterBase`], + [`langchain.llms.azureml_endpoint`, `GPT2ContentFormatter`, `langchain_community.llms.azureml_endpoint`, `GPT2ContentFormatter`], + [`langchain.llms.azureml_endpoint`, `OSSContentFormatter`, `langchain_community.llms.azureml_endpoint`, `OSSContentFormatter`], + [`langchain.llms.azureml_endpoint`, `HFContentFormatter`, `langchain_community.llms.azureml_endpoint`, `HFContentFormatter`], + [`langchain.llms.azureml_endpoint`, `DollyContentFormatter`, `langchain_community.llms.azureml_endpoint`, `DollyContentFormatter`], + [`langchain.llms.azureml_endpoint`, `CustomOpenAIContentFormatter`, `langchain_community.llms.azureml_endpoint`, `CustomOpenAIContentFormatter`], + [`langchain.llms.azureml_endpoint`, `AzureMLOnlineEndpoint`, `langchain_community.llms`, `AzureMLOnlineEndpoint`], + [`langchain.llms.baidu_qianfan_endpoint`, `QianfanLLMEndpoint`, `langchain_community.llms`, `QianfanLLMEndpoint`], + [`langchain.llms.bananadev`, `Banana`, `langchain_community.llms`, `Banana`], + [`langchain.llms.baseten`, `Baseten`, `langchain_community.llms`, `Baseten`], + [`langchain.llms.beam`, `Beam`, `langchain_community.llms`, `Beam`], + [`langchain.llms.bedrock`, `BedrockBase`, `langchain_community.llms.bedrock`, `BedrockBase`], + [`langchain.llms.bedrock`, `Bedrock`, `langchain_community.llms`, `Bedrock`], + [`langchain.llms.bittensor`, `NIBittensorLLM`, `langchain_community.llms`, `NIBittensorLLM`], + [`langchain.llms.cerebriumai`, `CerebriumAI`, `langchain_community.llms`, `CerebriumAI`], + [`langchain.llms.chatglm`, `ChatGLM`, `langchain_community.llms`, `ChatGLM`], + [`langchain.llms.clarifai`, `Clarifai`, `langchain_community.llms`, `Clarifai`], + [`langchain.llms.cloudflare_workersai`, `CloudflareWorkersAI`, `langchain_community.llms.cloudflare_workersai`, `CloudflareWorkersAI`], + [`langchain.llms.cohere`, `Cohere`, `langchain_community.llms`, `Cohere`], + [`langchain.llms.ctransformers`, `CTransformers`, `langchain_community.llms`, `CTransformers`], + [`langchain.llms.ctranslate2`, `CTranslate2`, `langchain_community.llms`, `CTranslate2`], + [`langchain.llms.databricks`, `Databricks`, `langchain_community.llms`, `Databricks`], + [`langchain.llms.deepinfra`, `DeepInfra`, `langchain_community.llms`, `DeepInfra`], + [`langchain.llms.deepsparse`, `DeepSparse`, `langchain_community.llms`, `DeepSparse`], + [`langchain.llms.edenai`, `EdenAI`, `langchain_community.llms`, `EdenAI`], + [`langchain.llms.fake`, `FakeListLLM`, `langchain_community.llms`, `FakeListLLM`], + [`langchain.llms.fake`, `FakeStreamingListLLM`, `langchain_community.llms.fake`, `FakeStreamingListLLM`], + [`langchain.llms.fireworks`, `Fireworks`, `langchain_community.llms`, `Fireworks`], + [`langchain.llms.forefrontai`, `ForefrontAI`, `langchain_community.llms`, `ForefrontAI`], + [`langchain.llms.gigachat`, `GigaChat`, `langchain_community.llms`, `GigaChat`], + [`langchain.llms.google_palm`, `GooglePalm`, `langchain_community.llms`, `GooglePalm`], + [`langchain.llms.gooseai`, `GooseAI`, `langchain_community.llms`, `GooseAI`], + [`langchain.llms.gpt4all`, `GPT4All`, `langchain_community.llms`, `GPT4All`], + [`langchain.llms.gradient_ai`, `TrainResult`, `langchain_community.llms.gradient_ai`, `TrainResult`], + [`langchain.llms.gradient_ai`, `GradientLLM`, `langchain_community.llms`, `GradientLLM`], + [`langchain.llms.huggingface_endpoint`, `HuggingFaceEndpoint`, `langchain_community.llms`, `HuggingFaceEndpoint`], + [`langchain.llms.huggingface_hub`, `HuggingFaceHub`, `langchain_community.llms`, `HuggingFaceHub`], + [`langchain.llms.huggingface_pipeline`, `HuggingFacePipeline`, `langchain_community.llms`, `HuggingFacePipeline`], + [`langchain.llms.huggingface_text_gen_inference`, `HuggingFaceTextGenInference`, `langchain_community.llms`, `HuggingFaceTextGenInference`], + [`langchain.llms.human`, `HumanInputLLM`, `langchain_community.llms`, `HumanInputLLM`], + [`langchain.llms.javelin_ai_gateway`, `JavelinAIGateway`, `langchain_community.llms`, `JavelinAIGateway`], + [`langchain.llms.javelin_ai_gateway`, `Params`, `langchain_community.llms.javelin_ai_gateway`, `Params`], + [`langchain.llms.koboldai`, `KoboldApiLLM`, `langchain_community.llms`, `KoboldApiLLM`], + [`langchain.llms.llamacpp`, `LlamaCpp`, `langchain_community.llms`, `LlamaCpp`], + [`langchain.llms.loading`, `load_llm_from_config`, `langchain_community.llms.loading`, `load_llm_from_config`], + [`langchain.llms.loading`, `load_llm`, `langchain_community.llms.loading`, `load_llm`], + [`langchain.llms.manifest`, `ManifestWrapper`, `langchain_community.llms`, `ManifestWrapper`], + [`langchain.llms.minimax`, `Minimax`, `langchain_community.llms`, `Minimax`], + [`langchain.llms.mlflow`, `Mlflow`, `langchain_community.llms`, `Mlflow`], + [`langchain.llms.mlflow_ai_gateway`, `MlflowAIGateway`, `langchain_community.llms`, `MlflowAIGateway`], + [`langchain.llms.modal`, `Modal`, `langchain_community.llms`, `Modal`], + [`langchain.llms.mosaicml`, `MosaicML`, `langchain_community.llms`, `MosaicML`], + [`langchain.llms.nlpcloud`, `NLPCloud`, `langchain_community.llms`, `NLPCloud`], + [`langchain.llms.octoai_endpoint`, `OctoAIEndpoint`, `langchain_community.llms`, `OctoAIEndpoint`], + [`langchain.llms.ollama`, `Ollama`, `langchain_community.llms`, `Ollama`], + [`langchain.llms.opaqueprompts`, `OpaquePrompts`, `langchain_community.llms`, `OpaquePrompts`], + [`langchain.llms.openai`, `BaseOpenAI`, `langchain_community.llms.openai`, `BaseOpenAI`], + [`langchain.llms.openai`, `OpenAI`, `langchain_community.llms`, `OpenAI`], + [`langchain.llms.openai`, `AzureOpenAI`, `langchain_community.llms`, `AzureOpenAI`], + [`langchain.llms.openai`, `OpenAIChat`, `langchain_community.llms`, `OpenAIChat`], + [`langchain.llms.openllm`, `OpenLLM`, `langchain_community.llms`, `OpenLLM`], + [`langchain.llms.openlm`, `OpenLM`, `langchain_community.llms`, `OpenLM`], + [`langchain.llms.pai_eas_endpoint`, `PaiEasEndpoint`, `langchain_community.llms`, `PaiEasEndpoint`], + [`langchain.llms.petals`, `Petals`, `langchain_community.llms`, `Petals`], + [`langchain.llms.pipelineai`, `PipelineAI`, `langchain_community.llms`, `PipelineAI`], + [`langchain.llms.predibase`, `Predibase`, `langchain_community.llms`, `Predibase`], + [`langchain.llms.predictionguard`, `PredictionGuard`, `langchain_community.llms`, `PredictionGuard`], + [`langchain.llms.promptlayer_openai`, `PromptLayerOpenAI`, `langchain_community.llms`, `PromptLayerOpenAI`], + [`langchain.llms.promptlayer_openai`, `PromptLayerOpenAIChat`, `langchain_community.llms`, `PromptLayerOpenAIChat`], + [`langchain.llms.replicate`, `Replicate`, `langchain_community.llms`, `Replicate`], + [`langchain.llms.rwkv`, `RWKV`, `langchain_community.llms`, `RWKV`], + [`langchain.llms.sagemaker_endpoint`, `SagemakerEndpoint`, `langchain_community.llms`, `SagemakerEndpoint`], + [`langchain.llms.sagemaker_endpoint`, `LLMContentHandler`, `langchain_community.llms.sagemaker_endpoint`, `LLMContentHandler`], + [`langchain.llms.self_hosted`, `SelfHostedPipeline`, `langchain_community.llms`, `SelfHostedPipeline`], + [`langchain.llms.self_hosted_hugging_face`, `SelfHostedHuggingFaceLLM`, `langchain_community.llms`, `SelfHostedHuggingFaceLLM`], + [`langchain.llms.stochasticai`, `StochasticAI`, `langchain_community.llms`, `StochasticAI`], + [`langchain.llms.symblai_nebula`, `Nebula`, `langchain_community.llms`, `Nebula`], + [`langchain.llms.textgen`, `TextGen`, `langchain_community.llms`, `TextGen`], + [`langchain.llms.titan_takeoff`, `TitanTakeoff`, `langchain_community.llms`, `TitanTakeoffPro`], + [`langchain.llms.titan_takeoff_pro`, `TitanTakeoffPro`, `langchain_community.llms`, `TitanTakeoffPro`], + [`langchain.llms.together`, `Together`, `langchain_community.llms`, `Together`], + [`langchain.llms.tongyi`, `Tongyi`, `langchain_community.llms`, `Tongyi`], + [`langchain.llms.utils`, `enforce_stop_tokens`, `langchain_community.llms.utils`, `enforce_stop_tokens`], + [`langchain.llms.vertexai`, `VertexAI`, `langchain_community.llms`, `VertexAI`], + [`langchain.llms.vertexai`, `VertexAIModelGarden`, `langchain_community.llms`, `VertexAIModelGarden`], + [`langchain.llms.vllm`, `VLLM`, `langchain_community.llms`, `VLLM`], + [`langchain.llms.vllm`, `VLLMOpenAI`, `langchain_community.llms`, `VLLMOpenAI`], + [`langchain.llms.volcengine_maas`, `VolcEngineMaasBase`, `langchain_community.llms.volcengine_maas`, `VolcEngineMaasBase`], + [`langchain.llms.volcengine_maas`, `VolcEngineMaasLLM`, `langchain_community.llms`, `VolcEngineMaasLLM`], + [`langchain.llms.watsonxllm`, `WatsonxLLM`, `langchain_community.llms`, `WatsonxLLM`], + [`langchain.llms.writer`, `Writer`, `langchain_community.llms`, `Writer`], + [`langchain.llms.xinference`, `Xinference`, `langchain_community.llms`, `Xinference`], + [`langchain.llms.yandex`, `YandexGPT`, `langchain_community.llms`, `YandexGPT`], + [`langchain.memory`, `AstraDBChatMessageHistory`, `langchain_community.chat_message_histories`, `AstraDBChatMessageHistory`], + [`langchain.memory`, `CassandraChatMessageHistory`, `langchain_community.chat_message_histories`, `CassandraChatMessageHistory`], + [`langchain.memory`, `ConversationKGMemory`, `langchain_community.memory.kg`, `ConversationKGMemory`], + [`langchain.memory`, `CosmosDBChatMessageHistory`, `langchain_community.chat_message_histories`, `CosmosDBChatMessageHistory`], + [`langchain.memory`, `DynamoDBChatMessageHistory`, `langchain_community.chat_message_histories`, `DynamoDBChatMessageHistory`], + [`langchain.memory`, `ElasticsearchChatMessageHistory`, `langchain_community.chat_message_histories`, `ElasticsearchChatMessageHistory`], + [`langchain.memory`, `FileChatMessageHistory`, `langchain_community.chat_message_histories`, `FileChatMessageHistory`], + [`langchain.memory`, `MomentoChatMessageHistory`, `langchain_community.chat_message_histories`, `MomentoChatMessageHistory`], + [`langchain.memory`, `MongoDBChatMessageHistory`, `langchain_community.chat_message_histories`, `MongoDBChatMessageHistory`], + [`langchain.memory`, `MotorheadMemory`, `langchain_community.memory.motorhead_memory`, `MotorheadMemory`], + [`langchain.memory`, `PostgresChatMessageHistory`, `langchain_community.chat_message_histories`, `PostgresChatMessageHistory`], + [`langchain.memory`, `RedisChatMessageHistory`, `langchain_community.chat_message_histories`, `RedisChatMessageHistory`], + [`langchain.memory`, `SingleStoreDBChatMessageHistory`, `langchain_community.chat_message_histories`, `SingleStoreDBChatMessageHistory`], + [`langchain.memory`, `SQLChatMessageHistory`, `langchain_community.chat_message_histories`, `SQLChatMessageHistory`], + [`langchain.memory`, `StreamlitChatMessageHistory`, `langchain_community.chat_message_histories`, `StreamlitChatMessageHistory`], + [`langchain.memory`, `XataChatMessageHistory`, `langchain_community.chat_message_histories`, `XataChatMessageHistory`], + [`langchain.memory`, `ZepChatMessageHistory`, `langchain_community.chat_message_histories`, `ZepChatMessageHistory`], + [`langchain.memory`, `ZepMemory`, `langchain_community.memory.zep_memory`, `ZepMemory`], + [`langchain.memory`, `UpstashRedisChatMessageHistory`, `langchain_community.chat_message_histories`, `UpstashRedisChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `AstraDBChatMessageHistory`, `langchain_community.chat_message_histories`, `AstraDBChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `CassandraChatMessageHistory`, `langchain_community.chat_message_histories`, `CassandraChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `CosmosDBChatMessageHistory`, `langchain_community.chat_message_histories`, `CosmosDBChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `DynamoDBChatMessageHistory`, `langchain_community.chat_message_histories`, `DynamoDBChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `ElasticsearchChatMessageHistory`, `langchain_community.chat_message_histories`, `ElasticsearchChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `FileChatMessageHistory`, `langchain_community.chat_message_histories`, `FileChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `FirestoreChatMessageHistory`, `langchain_community.chat_message_histories`, `FirestoreChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `MomentoChatMessageHistory`, `langchain_community.chat_message_histories`, `MomentoChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `MongoDBChatMessageHistory`, `langchain_community.chat_message_histories`, `MongoDBChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `Neo4jChatMessageHistory`, `langchain_community.chat_message_histories`, `Neo4jChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `PostgresChatMessageHistory`, `langchain_community.chat_message_histories`, `PostgresChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `RedisChatMessageHistory`, `langchain_community.chat_message_histories`, `RedisChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `RocksetChatMessageHistory`, `langchain_community.chat_message_histories`, `RocksetChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `SingleStoreDBChatMessageHistory`, `langchain_community.chat_message_histories`, `SingleStoreDBChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `SQLChatMessageHistory`, `langchain_community.chat_message_histories`, `SQLChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `StreamlitChatMessageHistory`, `langchain_community.chat_message_histories`, `StreamlitChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `UpstashRedisChatMessageHistory`, `langchain_community.chat_message_histories`, `UpstashRedisChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `XataChatMessageHistory`, `langchain_community.chat_message_histories`, `XataChatMessageHistory`], + [`langchain.memory.chat_message_histories`, `ZepChatMessageHistory`, `langchain_community.chat_message_histories`, `ZepChatMessageHistory`], + [`langchain.memory.chat_message_histories.astradb`, `AstraDBChatMessageHistory`, `langchain_community.chat_message_histories`, `AstraDBChatMessageHistory`], + [`langchain.memory.chat_message_histories.cassandra`, `CassandraChatMessageHistory`, `langchain_community.chat_message_histories`, `CassandraChatMessageHistory`], + [`langchain.memory.chat_message_histories.cosmos_db`, `CosmosDBChatMessageHistory`, `langchain_community.chat_message_histories`, `CosmosDBChatMessageHistory`], + [`langchain.memory.chat_message_histories.dynamodb`, `DynamoDBChatMessageHistory`, `langchain_community.chat_message_histories`, `DynamoDBChatMessageHistory`], + [`langchain.memory.chat_message_histories.elasticsearch`, `ElasticsearchChatMessageHistory`, `langchain_community.chat_message_histories`, `ElasticsearchChatMessageHistory`], + [`langchain.memory.chat_message_histories.file`, `FileChatMessageHistory`, `langchain_community.chat_message_histories`, `FileChatMessageHistory`], + [`langchain.memory.chat_message_histories.firestore`, `FirestoreChatMessageHistory`, `langchain_community.chat_message_histories`, `FirestoreChatMessageHistory`], + [`langchain.memory.chat_message_histories.momento`, `MomentoChatMessageHistory`, `langchain_community.chat_message_histories`, `MomentoChatMessageHistory`], + [`langchain.memory.chat_message_histories.mongodb`, `MongoDBChatMessageHistory`, `langchain_community.chat_message_histories`, `MongoDBChatMessageHistory`], + [`langchain.memory.chat_message_histories.neo4j`, `Neo4jChatMessageHistory`, `langchain_community.chat_message_histories`, `Neo4jChatMessageHistory`], + [`langchain.memory.chat_message_histories.postgres`, `PostgresChatMessageHistory`, `langchain_community.chat_message_histories`, `PostgresChatMessageHistory`], + [`langchain.memory.chat_message_histories.redis`, `RedisChatMessageHistory`, `langchain_community.chat_message_histories`, `RedisChatMessageHistory`], + [`langchain.memory.chat_message_histories.rocksetdb`, `RocksetChatMessageHistory`, `langchain_community.chat_message_histories`, `RocksetChatMessageHistory`], + [`langchain.memory.chat_message_histories.singlestoredb`, `SingleStoreDBChatMessageHistory`, `langchain_community.chat_message_histories`, `SingleStoreDBChatMessageHistory`], + [`langchain.memory.chat_message_histories.sql`, `BaseMessageConverter`, `langchain_community.chat_message_histories.sql`, `BaseMessageConverter`], + [`langchain.memory.chat_message_histories.sql`, `DefaultMessageConverter`, `langchain_community.chat_message_histories.sql`, `DefaultMessageConverter`], + [`langchain.memory.chat_message_histories.sql`, `SQLChatMessageHistory`, `langchain_community.chat_message_histories`, `SQLChatMessageHistory`], + [`langchain.memory.chat_message_histories.streamlit`, `StreamlitChatMessageHistory`, `langchain_community.chat_message_histories`, `StreamlitChatMessageHistory`], + [`langchain.memory.chat_message_histories.upstash_redis`, `UpstashRedisChatMessageHistory`, `langchain_community.chat_message_histories`, `UpstashRedisChatMessageHistory`], + [`langchain.memory.chat_message_histories.xata`, `XataChatMessageHistory`, `langchain_community.chat_message_histories`, `XataChatMessageHistory`], + [`langchain.memory.chat_message_histories.zep`, `ZepChatMessageHistory`, `langchain_community.chat_message_histories`, `ZepChatMessageHistory`], + [`langchain.memory.kg`, `ConversationKGMemory`, `langchain_community.memory.kg`, `ConversationKGMemory`], + [`langchain.memory.motorhead_memory`, `MotorheadMemory`, `langchain_community.memory.motorhead_memory`, `MotorheadMemory`], + [`langchain.memory.zep_memory`, `ZepMemory`, `langchain_community.memory.zep_memory`, `ZepMemory`], + [`langchain.output_parsers`, `GuardrailsOutputParser`, `langchain_community.output_parsers.rail_parser`, `GuardrailsOutputParser`], + [`langchain.output_parsers.ernie_functions`, `JsonKeyOutputFunctionsParser`, `langchain_community.output_parsers.ernie_functions`, `JsonKeyOutputFunctionsParser`], + [`langchain.output_parsers.ernie_functions`, `JsonOutputFunctionsParser`, `langchain_community.output_parsers.ernie_functions`, `JsonOutputFunctionsParser`], + [`langchain.output_parsers.ernie_functions`, `OutputFunctionsParser`, `langchain_community.output_parsers.ernie_functions`, `OutputFunctionsParser`], + [`langchain.output_parsers.ernie_functions`, `PydanticAttrOutputFunctionsParser`, `langchain_community.output_parsers.ernie_functions`, `PydanticAttrOutputFunctionsParser`], + [`langchain.output_parsers.ernie_functions`, `PydanticOutputFunctionsParser`, `langchain_community.output_parsers.ernie_functions`, `PydanticOutputFunctionsParser`], + [`langchain.output_parsers.rail_parser`, `GuardrailsOutputParser`, `langchain_community.output_parsers.rail_parser`, `GuardrailsOutputParser`], + [`langchain.prompts`, `NGramOverlapExampleSelector`, `langchain_community.example_selectors`, `NGramOverlapExampleSelector`], + [`langchain.prompts.example_selector`, `NGramOverlapExampleSelector`, `langchain_community.example_selectors`, `NGramOverlapExampleSelector`], + [`langchain.prompts.example_selector.ngram_overlap`, `NGramOverlapExampleSelector`, `langchain_community.example_selectors`, `NGramOverlapExampleSelector`], + [`langchain.prompts.example_selector.ngram_overlap`, `ngram_overlap_score`, `langchain_community.example_selectors`, `ngram_overlap_score`], + [`langchain.python`, `PythonREPL`, `langchain_community.utilities`, `PythonREPL`], + [`langchain.requests`, `Requests`, `langchain_community.utilities`, `Requests`], + [`langchain.requests`, `RequestsWrapper`, `langchain_community.utilities`, `TextRequestsWrapper`], + [`langchain.requests`, `TextRequestsWrapper`, `langchain_community.utilities`, `TextRequestsWrapper`], + [`langchain.retrievers`, `AmazonKendraRetriever`, `langchain_community.retrievers`, `AmazonKendraRetriever`], + [`langchain.retrievers`, `AmazonKnowledgeBasesRetriever`, `langchain_community.retrievers`, `AmazonKnowledgeBasesRetriever`], + [`langchain.retrievers`, `ArceeRetriever`, `langchain_community.retrievers`, `ArceeRetriever`], + [`langchain.retrievers`, `ArxivRetriever`, `langchain_community.retrievers`, `ArxivRetriever`], + [`langchain.retrievers`, `AzureAISearchRetriever`, `langchain_community.retrievers`, `AzureAISearchRetriever`], + [`langchain.retrievers`, `AzureCognitiveSearchRetriever`, `langchain_community.retrievers`, `AzureCognitiveSearchRetriever`], + [`langchain.retrievers`, `BM25Retriever`, `langchain_community.retrievers`, `BM25Retriever`], + [`langchain.retrievers`, `ChaindeskRetriever`, `langchain_community.retrievers`, `ChaindeskRetriever`], + [`langchain.retrievers`, `ChatGPTPluginRetriever`, `langchain_community.retrievers`, `ChatGPTPluginRetriever`], + [`langchain.retrievers`, `CohereRagRetriever`, `langchain_community.retrievers`, `CohereRagRetriever`], + [`langchain.retrievers`, `DocArrayRetriever`, `langchain_community.retrievers`, `DocArrayRetriever`], + [`langchain.retrievers`, `DriaRetriever`, `langchain_community.retrievers`, `DriaRetriever`], + [`langchain.retrievers`, `ElasticSearchBM25Retriever`, `langchain_community.retrievers`, `ElasticSearchBM25Retriever`], + [`langchain.retrievers`, `EmbedchainRetriever`, `langchain_community.retrievers`, `EmbedchainRetriever`], + [`langchain.retrievers`, `GoogleCloudEnterpriseSearchRetriever`, `langchain_community.retrievers`, `GoogleCloudEnterpriseSearchRetriever`], + [`langchain.retrievers`, `GoogleDocumentAIWarehouseRetriever`, `langchain_community.retrievers`, `GoogleDocumentAIWarehouseRetriever`], + [`langchain.retrievers`, `GoogleVertexAIMultiTurnSearchRetriever`, `langchain_community.retrievers`, `GoogleVertexAIMultiTurnSearchRetriever`], + [`langchain.retrievers`, `GoogleVertexAISearchRetriever`, `langchain_community.retrievers`, `GoogleVertexAISearchRetriever`], + [`langchain.retrievers`, `KayAiRetriever`, `langchain_community.retrievers`, `KayAiRetriever`], + [`langchain.retrievers`, `KNNRetriever`, `langchain_community.retrievers`, `KNNRetriever`], + [`langchain.retrievers`, `LlamaIndexGraphRetriever`, `langchain_community.retrievers`, `LlamaIndexGraphRetriever`], + [`langchain.retrievers`, `LlamaIndexRetriever`, `langchain_community.retrievers`, `LlamaIndexRetriever`], + [`langchain.retrievers`, `MetalRetriever`, `langchain_community.retrievers`, `MetalRetriever`], + [`langchain.retrievers`, `MilvusRetriever`, `langchain_community.retrievers`, `MilvusRetriever`], + [`langchain.retrievers`, `OutlineRetriever`, `langchain_community.retrievers`, `OutlineRetriever`], + [`langchain.retrievers`, `PineconeHybridSearchRetriever`, `langchain_community.retrievers`, `PineconeHybridSearchRetriever`], + [`langchain.retrievers`, `PubMedRetriever`, `langchain_community.retrievers`, `PubMedRetriever`], + [`langchain.retrievers`, `RemoteLangChainRetriever`, `langchain_community.retrievers`, `RemoteLangChainRetriever`], + [`langchain.retrievers`, `SVMRetriever`, `langchain_community.retrievers`, `SVMRetriever`], + [`langchain.retrievers`, `TavilySearchAPIRetriever`, `langchain_community.retrievers`, `TavilySearchAPIRetriever`], + [`langchain.retrievers`, `TFIDFRetriever`, `langchain_community.retrievers`, `TFIDFRetriever`], + [`langchain.retrievers`, `VespaRetriever`, `langchain_community.retrievers`, `VespaRetriever`], + [`langchain.retrievers`, `WeaviateHybridSearchRetriever`, `langchain_community.retrievers`, `WeaviateHybridSearchRetriever`], + [`langchain.retrievers`, `WebResearchRetriever`, `langchain_community.retrievers`, `WebResearchRetriever`], + [`langchain.retrievers`, `WikipediaRetriever`, `langchain_community.retrievers`, `WikipediaRetriever`], + [`langchain.retrievers`, `ZepRetriever`, `langchain_community.retrievers`, `ZepRetriever`], + [`langchain.retrievers`, `NeuralDBRetriever`, `langchain_community.retrievers`, `NeuralDBRetriever`], + [`langchain.retrievers`, `ZillizRetriever`, `langchain_community.retrievers`, `ZillizRetriever`], + [`langchain.retrievers.arcee`, `ArceeRetriever`, `langchain_community.retrievers`, `ArceeRetriever`], + [`langchain.retrievers.arxiv`, `ArxivRetriever`, `langchain_community.retrievers`, `ArxivRetriever`], + [`langchain.retrievers.azure_ai_search`, `AzureAISearchRetriever`, `langchain_community.retrievers`, `AzureAISearchRetriever`], + [`langchain.retrievers.azure_ai_search`, `AzureCognitiveSearchRetriever`, `langchain_community.retrievers`, `AzureCognitiveSearchRetriever`], + [`langchain.retrievers.bedrock`, `VectorSearchConfig`, `langchain_community.retrievers.bedrock`, `VectorSearchConfig`], + [`langchain.retrievers.bedrock`, `RetrievalConfig`, `langchain_community.retrievers.bedrock`, `RetrievalConfig`], + [`langchain.retrievers.bedrock`, `AmazonKnowledgeBasesRetriever`, `langchain_community.retrievers`, `AmazonKnowledgeBasesRetriever`], + [`langchain.retrievers.bm25`, `default_preprocessing_func`, `langchain_community.retrievers.bm25`, `default_preprocessing_func`], + [`langchain.retrievers.bm25`, `BM25Retriever`, `langchain_community.retrievers`, `BM25Retriever`], + [`langchain.retrievers.chaindesk`, `ChaindeskRetriever`, `langchain_community.retrievers`, `ChaindeskRetriever`], + [`langchain.retrievers.chatgpt_plugin_retriever`, `ChatGPTPluginRetriever`, `langchain_community.retrievers`, `ChatGPTPluginRetriever`], + [`langchain.retrievers.cohere_rag_retriever`, `CohereRagRetriever`, `langchain_community.retrievers`, `CohereRagRetriever`], + [`langchain.retrievers.databerry`, `DataberryRetriever`, `langchain_community.retrievers.databerry`, `DataberryRetriever`], + [`langchain.retrievers.docarray`, `SearchType`, `langchain_community.retrievers.docarray`, `SearchType`], + [`langchain.retrievers.docarray`, `DocArrayRetriever`, `langchain_community.retrievers`, `DocArrayRetriever`], + [`langchain.retrievers.document_compressors`, `FlashrankRerank`, `langchain_community.document_compressors`, `FlashrankRerank`], + [`langchain.retrievers.document_compressors.flashrank_rerank`, `FlashrankRerank`, `langchain_community.document_compressors`, `FlashrankRerank`], + [`langchain.retrievers.elastic_search_bm25`, `ElasticSearchBM25Retriever`, `langchain_community.retrievers`, `ElasticSearchBM25Retriever`], + [`langchain.retrievers.embedchain`, `EmbedchainRetriever`, `langchain_community.retrievers`, `EmbedchainRetriever`], + [`langchain.retrievers.google_cloud_documentai_warehouse`, `GoogleDocumentAIWarehouseRetriever`, `langchain_community.retrievers`, `GoogleDocumentAIWarehouseRetriever`], + [`langchain.retrievers.google_vertex_ai_search`, `GoogleVertexAISearchRetriever`, `langchain_community.retrievers`, `GoogleVertexAISearchRetriever`], + [`langchain.retrievers.google_vertex_ai_search`, `GoogleVertexAIMultiTurnSearchRetriever`, `langchain_community.retrievers`, `GoogleVertexAIMultiTurnSearchRetriever`], + [`langchain.retrievers.google_vertex_ai_search`, `GoogleCloudEnterpriseSearchRetriever`, `langchain_community.retrievers`, `GoogleCloudEnterpriseSearchRetriever`], + [`langchain.retrievers.kay`, `KayAiRetriever`, `langchain_community.retrievers`, `KayAiRetriever`], + [`langchain.retrievers.kendra`, `clean_excerpt`, `langchain_community.retrievers.kendra`, `clean_excerpt`], + [`langchain.retrievers.kendra`, `combined_text`, `langchain_community.retrievers.kendra`, `combined_text`], + [`langchain.retrievers.kendra`, `Highlight`, `langchain_community.retrievers.kendra`, `Highlight`], + [`langchain.retrievers.kendra`, `TextWithHighLights`, `langchain_community.retrievers.kendra`, `TextWithHighLights`], + [`langchain.retrievers.kendra`, `AdditionalResultAttributeValue`, `langchain_community.retrievers.kendra`, `AdditionalResultAttributeValue`], + [`langchain.retrievers.kendra`, `AdditionalResultAttribute`, `langchain_community.retrievers.kendra`, `AdditionalResultAttribute`], + [`langchain.retrievers.kendra`, `DocumentAttributeValue`, `langchain_community.retrievers.kendra`, `DocumentAttributeValue`], + [`langchain.retrievers.kendra`, `DocumentAttribute`, `langchain_community.retrievers.kendra`, `DocumentAttribute`], + [`langchain.retrievers.kendra`, `ResultItem`, `langchain_community.retrievers.kendra`, `ResultItem`], + [`langchain.retrievers.kendra`, `QueryResultItem`, `langchain_community.retrievers.kendra`, `QueryResultItem`], + [`langchain.retrievers.kendra`, `RetrieveResultItem`, `langchain_community.retrievers.kendra`, `RetrieveResultItem`], + [`langchain.retrievers.kendra`, `QueryResult`, `langchain_community.retrievers.kendra`, `QueryResult`], + [`langchain.retrievers.kendra`, `RetrieveResult`, `langchain_community.retrievers.kendra`, `RetrieveResult`], + [`langchain.retrievers.kendra`, `AmazonKendraRetriever`, `langchain_community.retrievers`, `AmazonKendraRetriever`], + [`langchain.retrievers.knn`, `KNNRetriever`, `langchain_community.retrievers`, `KNNRetriever`], + [`langchain.retrievers.llama_index`, `LlamaIndexRetriever`, `langchain_community.retrievers`, `LlamaIndexRetriever`], + [`langchain.retrievers.llama_index`, `LlamaIndexGraphRetriever`, `langchain_community.retrievers`, `LlamaIndexGraphRetriever`], + [`langchain.retrievers.metal`, `MetalRetriever`, `langchain_community.retrievers`, `MetalRetriever`], + [`langchain.retrievers.milvus`, `MilvusRetriever`, `langchain_community.retrievers`, `MilvusRetriever`], + [`langchain.retrievers.milvus`, `MilvusRetreiver`, `langchain_community.retrievers.milvus`, `MilvusRetreiver`], + [`langchain.retrievers.outline`, `OutlineRetriever`, `langchain_community.retrievers`, `OutlineRetriever`], + [`langchain.retrievers.pinecone_hybrid_search`, `PineconeHybridSearchRetriever`, `langchain_community.retrievers`, `PineconeHybridSearchRetriever`], + [`langchain.retrievers.pubmed`, `PubMedRetriever`, `langchain_community.retrievers`, `PubMedRetriever`], + [`langchain.retrievers.pupmed`, `PubMedRetriever`, `langchain_community.retrievers`, `PubMedRetriever`], + [`langchain.retrievers.remote_retriever`, `RemoteLangChainRetriever`, `langchain_community.retrievers`, `RemoteLangChainRetriever`], + [`langchain.retrievers.self_query.astradb`, `AstraDBTranslator`, `langchain_community.query_constructors.astradb`, `AstraDBTranslator`], + [`langchain.retrievers.self_query.chroma`, `ChromaTranslator`, `langchain_community.query_constructors.chroma`, `ChromaTranslator`], + [`langchain.retrievers.self_query.dashvector`, `DashvectorTranslator`, `langchain_community.query_constructors.dashvector`, `DashvectorTranslator`], + [`langchain.retrievers.self_query.databricks_vector_search`, `DatabricksVectorSearchTranslator`, `langchain_community.query_constructors.databricks_vector_search`, `DatabricksVectorSearchTranslator`], + [`langchain.retrievers.self_query.deeplake`, `DeepLakeTranslator`, `langchain_community.query_constructors.deeplake`, `DeepLakeTranslator`], + [`langchain.retrievers.self_query.deeplake`, `can_cast_to_float`, `langchain_community.query_constructors.deeplake`, `can_cast_to_float`], + [`langchain.retrievers.self_query.dingo`, `DingoDBTranslator`, `langchain_community.query_constructors.dingo`, `DingoDBTranslator`], + [`langchain.retrievers.self_query.elasticsearch`, `ElasticsearchTranslator`, `langchain_community.query_constructors.elasticsearch`, `ElasticsearchTranslator`], + [`langchain.retrievers.self_query.milvus`, `MilvusTranslator`, `langchain_community.query_constructors.milvus`, `MilvusTranslator`], + [`langchain.retrievers.self_query.milvus`, `process_value`, `langchain_community.query_constructors.milvus`, `process_value`], + [`langchain.retrievers.self_query.mongodb_atlas`, `MongoDBAtlasTranslator`, `langchain_community.query_constructors.mongodb_atlas`, `MongoDBAtlasTranslator`], + [`langchain.retrievers.self_query.myscale`, `MyScaleTranslator`, `langchain_community.query_constructors.myscale`, `MyScaleTranslator`], + [`langchain.retrievers.self_query.opensearch`, `OpenSearchTranslator`, `langchain_community.query_constructors.opensearch`, `OpenSearchTranslator`], + [`langchain.retrievers.self_query.pgvector`, `PGVectorTranslator`, `langchain_community.query_constructors.pgvector`, `PGVectorTranslator`], + [`langchain.retrievers.self_query.pinecone`, `PineconeTranslator`, `langchain_community.query_constructors.pinecone`, `PineconeTranslator`], + [`langchain.retrievers.self_query.qdrant`, `QdrantTranslator`, `langchain_community.query_constructors.qdrant`, `QdrantTranslator`], + [`langchain.retrievers.self_query.redis`, `RedisTranslator`, `langchain_community.query_constructors.redis`, `RedisTranslator`], + [`langchain.retrievers.self_query.supabase`, `SupabaseVectorTranslator`, `langchain_community.query_constructors.supabase`, `SupabaseVectorTranslator`], + [`langchain.retrievers.self_query.tencentvectordb`, `TencentVectorDBTranslator`, `langchain_community.query_constructors.tencentvectordb`, `TencentVectorDBTranslator`], + [`langchain.retrievers.self_query.timescalevector`, `TimescaleVectorTranslator`, `langchain_community.query_constructors.timescalevector`, `TimescaleVectorTranslator`], + [`langchain.retrievers.self_query.vectara`, `VectaraTranslator`, `langchain_community.query_constructors.vectara`, `VectaraTranslator`], + [`langchain.retrievers.self_query.vectara`, `process_value`, `langchain_community.query_constructors.vectara`, `process_value`], + [`langchain.retrievers.self_query.weaviate`, `WeaviateTranslator`, `langchain_community.query_constructors.weaviate`, `WeaviateTranslator`], + [`langchain.retrievers.svm`, `SVMRetriever`, `langchain_community.retrievers`, `SVMRetriever`], + [`langchain.retrievers.tavily_search_api`, `SearchDepth`, `langchain_community.retrievers.tavily_search_api`, `SearchDepth`], + [`langchain.retrievers.tavily_search_api`, `TavilySearchAPIRetriever`, `langchain_community.retrievers`, `TavilySearchAPIRetriever`], + [`langchain.retrievers.tfidf`, `TFIDFRetriever`, `langchain_community.retrievers`, `TFIDFRetriever`], + [`langchain.retrievers.vespa_retriever`, `VespaRetriever`, `langchain_community.retrievers`, `VespaRetriever`], + [`langchain.retrievers.weaviate_hybrid_search`, `WeaviateHybridSearchRetriever`, `langchain_community.retrievers`, `WeaviateHybridSearchRetriever`], + [`langchain.retrievers.web_research`, `QuestionListOutputParser`, `langchain_community.retrievers.web_research`, `QuestionListOutputParser`], + [`langchain.retrievers.web_research`, `SearchQueries`, `langchain_community.retrievers.web_research`, `SearchQueries`], + [`langchain.retrievers.web_research`, `WebResearchRetriever`, `langchain_community.retrievers`, `WebResearchRetriever`], + [`langchain.retrievers.wikipedia`, `WikipediaRetriever`, `langchain_community.retrievers`, `WikipediaRetriever`], + [`langchain.retrievers.you`, `YouRetriever`, `langchain_community.retrievers`, `YouRetriever`], + [`langchain.retrievers.zep`, `SearchScope`, `langchain_community.retrievers.zep`, `SearchScope`], + [`langchain.retrievers.zep`, `SearchType`, `langchain_community.retrievers.zep`, `SearchType`], + [`langchain.retrievers.zep`, `ZepRetriever`, `langchain_community.retrievers`, `ZepRetriever`], + [`langchain.retrievers.zilliz`, `ZillizRetriever`, `langchain_community.retrievers`, `ZillizRetriever`], + [`langchain.retrievers.zilliz`, `ZillizRetreiver`, `langchain_community.retrievers.zilliz`, `ZillizRetreiver`], + [`langchain.serpapi`, `SerpAPIWrapper`, `langchain_community.utilities`, `SerpAPIWrapper`], + [`langchain.sql_database`, `SQLDatabase`, `langchain_community.utilities`, `SQLDatabase`], + [`langchain.storage`, `RedisStore`, `langchain_community.storage`, `RedisStore`], + [`langchain.storage`, `UpstashRedisByteStore`, `langchain_community.storage`, `UpstashRedisByteStore`], + [`langchain.storage`, `UpstashRedisStore`, `langchain_community.storage`, `UpstashRedisStore`], + [`langchain.storage.redis`, `RedisStore`, `langchain_community.storage`, `RedisStore`], + [`langchain.storage.upstash_redis`, `UpstashRedisStore`, `langchain_community.storage`, `UpstashRedisStore`], + [`langchain.storage.upstash_redis`, `UpstashRedisByteStore`, `langchain_community.storage`, `UpstashRedisByteStore`], + [`langchain.tools`, `AINAppOps`, `langchain_community.tools`, `AINAppOps`], + [`langchain.tools`, `AINOwnerOps`, `langchain_community.tools`, `AINOwnerOps`], + [`langchain.tools`, `AINRuleOps`, `langchain_community.tools`, `AINRuleOps`], + [`langchain.tools`, `AINTransfer`, `langchain_community.tools`, `AINTransfer`], + [`langchain.tools`, `AINValueOps`, `langchain_community.tools`, `AINValueOps`], + [`langchain.tools`, `AIPluginTool`, `langchain_community.tools`, `AIPluginTool`], + [`langchain.tools`, `APIOperation`, `langchain_community.tools`, `APIOperation`], + [`langchain.tools`, `ArxivQueryRun`, `langchain_community.tools`, `ArxivQueryRun`], + [`langchain.tools`, `AzureCogsFormRecognizerTool`, `langchain_community.tools`, `AzureCogsFormRecognizerTool`], + [`langchain.tools`, `AzureCogsImageAnalysisTool`, `langchain_community.tools`, `AzureCogsImageAnalysisTool`], + [`langchain.tools`, `AzureCogsSpeech2TextTool`, `langchain_community.tools`, `AzureCogsSpeech2TextTool`], + [`langchain.tools`, `AzureCogsText2SpeechTool`, `langchain_community.tools`, `AzureCogsText2SpeechTool`], + [`langchain.tools`, `AzureCogsTextAnalyticsHealthTool`, `langchain_community.tools`, `AzureCogsTextAnalyticsHealthTool`], + [`langchain.tools`, `BaseGraphQLTool`, `langchain_community.tools`, `BaseGraphQLTool`], + [`langchain.tools`, `BaseRequestsTool`, `langchain_community.tools`, `BaseRequestsTool`], + [`langchain.tools`, `BaseSQLDatabaseTool`, `langchain_community.tools`, `BaseSQLDatabaseTool`], + [`langchain.tools`, `BaseSparkSQLTool`, `langchain_community.tools`, `BaseSparkSQLTool`], + [`langchain.tools`, `BearlyInterpreterTool`, `langchain_community.tools`, `BearlyInterpreterTool`], + [`langchain.tools`, `BingSearchResults`, `langchain_community.tools`, `BingSearchResults`], + [`langchain.tools`, `BingSearchRun`, `langchain_community.tools`, `BingSearchRun`], + [`langchain.tools`, `BraveSearch`, `langchain_community.tools`, `BraveSearch`], + [`langchain.tools`, `ClickTool`, `langchain_community.tools`, `ClickTool`], + [`langchain.tools`, `CopyFileTool`, `langchain_community.tools`, `CopyFileTool`], + [`langchain.tools`, `CurrentWebPageTool`, `langchain_community.tools`, `CurrentWebPageTool`], + [`langchain.tools`, `DeleteFileTool`, `langchain_community.tools`, `DeleteFileTool`], + [`langchain.tools`, `DuckDuckGoSearchResults`, `langchain_community.tools`, `DuckDuckGoSearchResults`], + [`langchain.tools`, `DuckDuckGoSearchRun`, `langchain_community.tools`, `DuckDuckGoSearchRun`], + [`langchain.tools`, `E2BDataAnalysisTool`, `langchain_community.tools`, `E2BDataAnalysisTool`], + [`langchain.tools`, `EdenAiExplicitImageTool`, `langchain_community.tools`, `EdenAiExplicitImageTool`], + [`langchain.tools`, `EdenAiObjectDetectionTool`, `langchain_community.tools`, `EdenAiObjectDetectionTool`], + [`langchain.tools`, `EdenAiParsingIDTool`, `langchain_community.tools`, `EdenAiParsingIDTool`], + [`langchain.tools`, `EdenAiParsingInvoiceTool`, `langchain_community.tools`, `EdenAiParsingInvoiceTool`], + [`langchain.tools`, `EdenAiSpeechToTextTool`, `langchain_community.tools`, `EdenAiSpeechToTextTool`], + [`langchain.tools`, `EdenAiTextModerationTool`, `langchain_community.tools`, `EdenAiTextModerationTool`], + [`langchain.tools`, `EdenAiTextToSpeechTool`, `langchain_community.tools`, `EdenAiTextToSpeechTool`], + [`langchain.tools`, `EdenaiTool`, `langchain_community.tools`, `EdenaiTool`], + [`langchain.tools`, `ElevenLabsText2SpeechTool`, `langchain_community.tools`, `ElevenLabsText2SpeechTool`], + [`langchain.tools`, `ExtractHyperlinksTool`, `langchain_community.tools`, `ExtractHyperlinksTool`], + [`langchain.tools`, `ExtractTextTool`, `langchain_community.tools`, `ExtractTextTool`], + [`langchain.tools`, `FileSearchTool`, `langchain_community.tools`, `FileSearchTool`], + [`langchain.tools`, `GetElementsTool`, `langchain_community.tools`, `GetElementsTool`], + [`langchain.tools`, `GmailCreateDraft`, `langchain_community.tools`, `GmailCreateDraft`], + [`langchain.tools`, `GmailGetMessage`, `langchain_community.tools`, `GmailGetMessage`], + [`langchain.tools`, `GmailGetThread`, `langchain_community.tools`, `GmailGetThread`], + [`langchain.tools`, `GmailSearch`, `langchain_community.tools`, `GmailSearch`], + [`langchain.tools`, `GmailSendMessage`, `langchain_community.tools`, `GmailSendMessage`], + [`langchain.tools`, `GoogleCloudTextToSpeechTool`, `langchain_community.tools`, `GoogleCloudTextToSpeechTool`], + [`langchain.tools`, `GooglePlacesTool`, `langchain_community.tools`, `GooglePlacesTool`], + [`langchain.tools`, `GoogleSearchResults`, `langchain_community.tools`, `GoogleSearchResults`], + [`langchain.tools`, `GoogleSearchRun`, `langchain_community.tools`, `GoogleSearchRun`], + [`langchain.tools`, `GoogleSerperResults`, `langchain_community.tools`, `GoogleSerperResults`], + [`langchain.tools`, `GoogleSerperRun`, `langchain_community.tools`, `GoogleSerperRun`], + [`langchain.tools`, `SearchAPIResults`, `langchain_community.tools`, `SearchAPIResults`], + [`langchain.tools`, `SearchAPIRun`, `langchain_community.tools`, `SearchAPIRun`], + [`langchain.tools`, `HumanInputRun`, `langchain_community.tools`, `HumanInputRun`], + [`langchain.tools`, `IFTTTWebhook`, `langchain_community.tools`, `IFTTTWebhook`], + [`langchain.tools`, `InfoPowerBITool`, `langchain_community.tools`, `InfoPowerBITool`], + [`langchain.tools`, `InfoSQLDatabaseTool`, `langchain_community.tools`, `InfoSQLDatabaseTool`], + [`langchain.tools`, `InfoSparkSQLTool`, `langchain_community.tools`, `InfoSparkSQLTool`], + [`langchain.tools`, `JiraAction`, `langchain_community.tools`, `JiraAction`], + [`langchain.tools`, `JsonGetValueTool`, `langchain_community.tools`, `JsonGetValueTool`], + [`langchain.tools`, `JsonListKeysTool`, `langchain_community.tools`, `JsonListKeysTool`], + [`langchain.tools`, `ListDirectoryTool`, `langchain_community.tools`, `ListDirectoryTool`], + [`langchain.tools`, `ListPowerBITool`, `langchain_community.tools`, `ListPowerBITool`], + [`langchain.tools`, `ListSQLDatabaseTool`, `langchain_community.tools`, `ListSQLDatabaseTool`], + [`langchain.tools`, `ListSparkSQLTool`, `langchain_community.tools`, `ListSparkSQLTool`], + [`langchain.tools`, `MerriamWebsterQueryRun`, `langchain_community.tools`, `MerriamWebsterQueryRun`], + [`langchain.tools`, `MetaphorSearchResults`, `langchain_community.tools`, `MetaphorSearchResults`], + [`langchain.tools`, `MoveFileTool`, `langchain_community.tools`, `MoveFileTool`], + [`langchain.tools`, `NasaAction`, `langchain_community.tools`, `NasaAction`], + [`langchain.tools`, `NavigateBackTool`, `langchain_community.tools`, `NavigateBackTool`], + [`langchain.tools`, `NavigateTool`, `langchain_community.tools`, `NavigateTool`], + [`langchain.tools`, `O365CreateDraftMessage`, `langchain_community.tools`, `O365CreateDraftMessage`], + [`langchain.tools`, `O365SearchEmails`, `langchain_community.tools`, `O365SearchEmails`], + [`langchain.tools`, `O365SearchEvents`, `langchain_community.tools`, `O365SearchEvents`], + [`langchain.tools`, `O365SendEvent`, `langchain_community.tools`, `O365SendEvent`], + [`langchain.tools`, `O365SendMessage`, `langchain_community.tools`, `O365SendMessage`], + [`langchain.tools`, `OpenAPISpec`, `langchain_community.tools`, `OpenAPISpec`], + [`langchain.tools`, `OpenWeatherMapQueryRun`, `langchain_community.tools`, `OpenWeatherMapQueryRun`], + [`langchain.tools`, `PubmedQueryRun`, `langchain_community.tools`, `PubmedQueryRun`], + [`langchain.tools`, `RedditSearchRun`, `langchain_community.tools`, `RedditSearchRun`], + [`langchain.tools`, `QueryCheckerTool`, `langchain_community.tools`, `QueryCheckerTool`], + [`langchain.tools`, `QueryPowerBITool`, `langchain_community.tools`, `QueryPowerBITool`], + [`langchain.tools`, `QuerySQLCheckerTool`, `langchain_community.tools`, `QuerySQLCheckerTool`], + [`langchain.tools`, `QuerySQLDataBaseTool`, `langchain_community.tools`, `QuerySQLDataBaseTool`], + [`langchain.tools`, `QuerySparkSQLTool`, `langchain_community.tools`, `QuerySparkSQLTool`], + [`langchain.tools`, `ReadFileTool`, `langchain_community.tools`, `ReadFileTool`], + [`langchain.tools`, `RequestsDeleteTool`, `langchain_community.tools`, `RequestsDeleteTool`], + [`langchain.tools`, `RequestsGetTool`, `langchain_community.tools`, `RequestsGetTool`], + [`langchain.tools`, `RequestsPatchTool`, `langchain_community.tools`, `RequestsPatchTool`], + [`langchain.tools`, `RequestsPostTool`, `langchain_community.tools`, `RequestsPostTool`], + [`langchain.tools`, `RequestsPutTool`, `langchain_community.tools`, `RequestsPutTool`], + [`langchain.tools`, `SteamWebAPIQueryRun`, `langchain_community.tools`, `SteamWebAPIQueryRun`], + [`langchain.tools`, `SceneXplainTool`, `langchain_community.tools`, `SceneXplainTool`], + [`langchain.tools`, `SearxSearchResults`, `langchain_community.tools`, `SearxSearchResults`], + [`langchain.tools`, `SearxSearchRun`, `langchain_community.tools`, `SearxSearchRun`], + [`langchain.tools`, `ShellTool`, `langchain_community.tools`, `ShellTool`], + [`langchain.tools`, `SlackGetChannel`, `langchain_community.tools`, `SlackGetChannel`], + [`langchain.tools`, `SlackGetMessage`, `langchain_community.tools`, `SlackGetMessage`], + [`langchain.tools`, `SlackScheduleMessage`, `langchain_community.tools`, `SlackScheduleMessage`], + [`langchain.tools`, `SlackSendMessage`, `langchain_community.tools`, `SlackSendMessage`], + [`langchain.tools`, `SleepTool`, `langchain_community.tools`, `SleepTool`], + [`langchain.tools`, `StdInInquireTool`, `langchain_community.tools`, `StdInInquireTool`], + [`langchain.tools`, `StackExchangeTool`, `langchain_community.tools`, `StackExchangeTool`], + [`langchain.tools`, `SteamshipImageGenerationTool`, `langchain_community.tools`, `SteamshipImageGenerationTool`], + [`langchain.tools`, `VectorStoreQATool`, `langchain_community.tools`, `VectorStoreQATool`], + [`langchain.tools`, `VectorStoreQAWithSourcesTool`, `langchain_community.tools`, `VectorStoreQAWithSourcesTool`], + [`langchain.tools`, `WikipediaQueryRun`, `langchain_community.tools`, `WikipediaQueryRun`], + [`langchain.tools`, `WolframAlphaQueryRun`, `langchain_community.tools`, `WolframAlphaQueryRun`], + [`langchain.tools`, `WriteFileTool`, `langchain_community.tools`, `WriteFileTool`], + [`langchain.tools`, `YahooFinanceNewsTool`, `langchain_community.tools`, `YahooFinanceNewsTool`], + [`langchain.tools`, `YouTubeSearchTool`, `langchain_community.tools`, `YouTubeSearchTool`], + [`langchain.tools`, `ZapierNLAListActions`, `langchain_community.tools`, `ZapierNLAListActions`], + [`langchain.tools`, `ZapierNLARunAction`, `langchain_community.tools`, `ZapierNLARunAction`], + [`langchain.tools.ainetwork.app`, `AppOperationType`, `langchain_community.tools.ainetwork.app`, `AppOperationType`], + [`langchain.tools.ainetwork.app`, `AppSchema`, `langchain_community.tools.ainetwork.app`, `AppSchema`], + [`langchain.tools.ainetwork.app`, `AINAppOps`, `langchain_community.tools`, `AINAppOps`], + [`langchain.tools.ainetwork.base`, `OperationType`, `langchain_community.tools.ainetwork.base`, `OperationType`], + [`langchain.tools.ainetwork.base`, `AINBaseTool`, `langchain_community.tools.ainetwork.base`, `AINBaseTool`], + [`langchain.tools.ainetwork.owner`, `RuleSchema`, `langchain_community.tools.ainetwork.owner`, `RuleSchema`], + [`langchain.tools.ainetwork.owner`, `AINOwnerOps`, `langchain_community.tools`, `AINOwnerOps`], + [`langchain.tools.ainetwork.rule`, `RuleSchema`, `langchain_community.tools.ainetwork.rule`, `RuleSchema`], + [`langchain.tools.ainetwork.rule`, `AINRuleOps`, `langchain_community.tools`, `AINRuleOps`], + [`langchain.tools.ainetwork.transfer`, `TransferSchema`, `langchain_community.tools.ainetwork.transfer`, `TransferSchema`], + [`langchain.tools.ainetwork.transfer`, `AINTransfer`, `langchain_community.tools`, `AINTransfer`], + [`langchain.tools.ainetwork.value`, `ValueSchema`, `langchain_community.tools.ainetwork.value`, `ValueSchema`], + [`langchain.tools.ainetwork.value`, `AINValueOps`, `langchain_community.tools`, `AINValueOps`], + [`langchain.tools.amadeus`, `AmadeusClosestAirport`, `langchain_community.tools.amadeus.closest_airport`, `AmadeusClosestAirport`], + [`langchain.tools.amadeus`, `AmadeusFlightSearch`, `langchain_community.tools.amadeus.flight_search`, `AmadeusFlightSearch`], + [`langchain.tools.amadeus.base`, `AmadeusBaseTool`, `langchain_community.tools.amadeus.base`, `AmadeusBaseTool`], + [`langchain.tools.amadeus.closest_airport`, `ClosestAirportSchema`, `langchain_community.tools.amadeus.closest_airport`, `ClosestAirportSchema`], + [`langchain.tools.amadeus.closest_airport`, `AmadeusClosestAirport`, `langchain_community.tools.amadeus.closest_airport`, `AmadeusClosestAirport`], + [`langchain.tools.amadeus.flight_search`, `FlightSearchSchema`, `langchain_community.tools.amadeus.flight_search`, `FlightSearchSchema`], + [`langchain.tools.amadeus.flight_search`, `AmadeusFlightSearch`, `langchain_community.tools.amadeus.flight_search`, `AmadeusFlightSearch`], + [`langchain.tools.arxiv.tool`, `ArxivInput`, `langchain_community.tools.arxiv.tool`, `ArxivInput`], + [`langchain.tools.arxiv.tool`, `ArxivQueryRun`, `langchain_community.tools`, `ArxivQueryRun`], + [`langchain.tools.azure_cognitive_services`, `AzureCogsImageAnalysisTool`, `langchain_community.tools`, `AzureCogsImageAnalysisTool`], + [`langchain.tools.azure_cognitive_services`, `AzureCogsFormRecognizerTool`, `langchain_community.tools`, `AzureCogsFormRecognizerTool`], + [`langchain.tools.azure_cognitive_services`, `AzureCogsSpeech2TextTool`, `langchain_community.tools`, `AzureCogsSpeech2TextTool`], + [`langchain.tools.azure_cognitive_services`, `AzureCogsText2SpeechTool`, `langchain_community.tools`, `AzureCogsText2SpeechTool`], + [`langchain.tools.azure_cognitive_services`, `AzureCogsTextAnalyticsHealthTool`, `langchain_community.tools`, `AzureCogsTextAnalyticsHealthTool`], + [`langchain.tools.azure_cognitive_services.form_recognizer`, `AzureCogsFormRecognizerTool`, `langchain_community.tools`, `AzureCogsFormRecognizerTool`], + [`langchain.tools.azure_cognitive_services.image_analysis`, `AzureCogsImageAnalysisTool`, `langchain_community.tools`, `AzureCogsImageAnalysisTool`], + [`langchain.tools.azure_cognitive_services.speech2text`, `AzureCogsSpeech2TextTool`, `langchain_community.tools`, `AzureCogsSpeech2TextTool`], + [`langchain.tools.azure_cognitive_services.text2speech`, `AzureCogsText2SpeechTool`, `langchain_community.tools`, `AzureCogsText2SpeechTool`], + [`langchain.tools.azure_cognitive_services.text_analytics_health`, `AzureCogsTextAnalyticsHealthTool`, `langchain_community.tools`, `AzureCogsTextAnalyticsHealthTool`], + [`langchain.tools.bearly.tool`, `BearlyInterpreterToolArguments`, `langchain_community.tools.bearly.tool`, `BearlyInterpreterToolArguments`], + [`langchain.tools.bearly.tool`, `FileInfo`, `langchain_community.tools.bearly.tool`, `FileInfo`], + [`langchain.tools.bearly.tool`, `BearlyInterpreterTool`, `langchain_community.tools`, `BearlyInterpreterTool`], + [`langchain.tools.bing_search`, `BingSearchRun`, `langchain_community.tools`, `BingSearchRun`], + [`langchain.tools.bing_search`, `BingSearchResults`, `langchain_community.tools`, `BingSearchResults`], + [`langchain.tools.bing_search.tool`, `BingSearchRun`, `langchain_community.tools`, `BingSearchRun`], + [`langchain.tools.bing_search.tool`, `BingSearchResults`, `langchain_community.tools`, `BingSearchResults`], + [`langchain.tools.brave_search.tool`, `BraveSearch`, `langchain_community.tools`, `BraveSearch`], + [`langchain.tools.clickup.tool`, `ClickupAction`, `langchain_community.tools.clickup.tool`, `ClickupAction`], + [`langchain.tools.dataforseo_api_search`, `DataForSeoAPISearchRun`, `langchain_community.tools.dataforseo_api_search.tool`, `DataForSeoAPISearchRun`], + [`langchain.tools.dataforseo_api_search`, `DataForSeoAPISearchResults`, `langchain_community.tools.dataforseo_api_search.tool`, `DataForSeoAPISearchResults`], + [`langchain.tools.dataforseo_api_search.tool`, `DataForSeoAPISearchRun`, `langchain_community.tools.dataforseo_api_search.tool`, `DataForSeoAPISearchRun`], + [`langchain.tools.dataforseo_api_search.tool`, `DataForSeoAPISearchResults`, `langchain_community.tools.dataforseo_api_search.tool`, `DataForSeoAPISearchResults`], + [`langchain.tools.ddg_search`, `DuckDuckGoSearchRun`, `langchain_community.tools`, `DuckDuckGoSearchRun`], + [`langchain.tools.ddg_search.tool`, `DDGInput`, `langchain_community.tools.ddg_search.tool`, `DDGInput`], + [`langchain.tools.ddg_search.tool`, `DuckDuckGoSearchRun`, `langchain_community.tools`, `DuckDuckGoSearchRun`], + [`langchain.tools.ddg_search.tool`, `DuckDuckGoSearchResults`, `langchain_community.tools`, `DuckDuckGoSearchResults`], + [`langchain.tools.ddg_search.tool`, `DuckDuckGoSearchTool`, `langchain_community.tools.ddg_search.tool`, `DuckDuckGoSearchTool`], + [`langchain.tools.e2b_data_analysis.tool`, `UploadedFile`, `langchain_community.tools.e2b_data_analysis.tool`, `UploadedFile`], + [`langchain.tools.e2b_data_analysis.tool`, `E2BDataAnalysisToolArguments`, `langchain_community.tools.e2b_data_analysis.tool`, `E2BDataAnalysisToolArguments`], + [`langchain.tools.e2b_data_analysis.tool`, `E2BDataAnalysisTool`, `langchain_community.tools`, `E2BDataAnalysisTool`], + [`langchain.tools.edenai`, `EdenAiExplicitImageTool`, `langchain_community.tools`, `EdenAiExplicitImageTool`], + [`langchain.tools.edenai`, `EdenAiObjectDetectionTool`, `langchain_community.tools`, `EdenAiObjectDetectionTool`], + [`langchain.tools.edenai`, `EdenAiParsingIDTool`, `langchain_community.tools`, `EdenAiParsingIDTool`], + [`langchain.tools.edenai`, `EdenAiParsingInvoiceTool`, `langchain_community.tools`, `EdenAiParsingInvoiceTool`], + [`langchain.tools.edenai`, `EdenAiTextToSpeechTool`, `langchain_community.tools`, `EdenAiTextToSpeechTool`], + [`langchain.tools.edenai`, `EdenAiSpeechToTextTool`, `langchain_community.tools`, `EdenAiSpeechToTextTool`], + [`langchain.tools.edenai`, `EdenAiTextModerationTool`, `langchain_community.tools`, `EdenAiTextModerationTool`], + [`langchain.tools.edenai`, `EdenaiTool`, `langchain_community.tools`, `EdenaiTool`], + [`langchain.tools.edenai.audio_speech_to_text`, `EdenAiSpeechToTextTool`, `langchain_community.tools`, `EdenAiSpeechToTextTool`], + [`langchain.tools.edenai.audio_text_to_speech`, `EdenAiTextToSpeechTool`, `langchain_community.tools`, `EdenAiTextToSpeechTool`], + [`langchain.tools.edenai.edenai_base_tool`, `EdenaiTool`, `langchain_community.tools`, `EdenaiTool`], + [`langchain.tools.edenai.image_explicitcontent`, `EdenAiExplicitImageTool`, `langchain_community.tools`, `EdenAiExplicitImageTool`], + [`langchain.tools.edenai.image_objectdetection`, `EdenAiObjectDetectionTool`, `langchain_community.tools`, `EdenAiObjectDetectionTool`], + [`langchain.tools.edenai.ocr_identityparser`, `EdenAiParsingIDTool`, `langchain_community.tools`, `EdenAiParsingIDTool`], + [`langchain.tools.edenai.ocr_invoiceparser`, `EdenAiParsingInvoiceTool`, `langchain_community.tools`, `EdenAiParsingInvoiceTool`], + [`langchain.tools.edenai.text_moderation`, `EdenAiTextModerationTool`, `langchain_community.tools`, `EdenAiTextModerationTool`], + [`langchain.tools.eleven_labs`, `ElevenLabsText2SpeechTool`, `langchain_community.tools`, `ElevenLabsText2SpeechTool`], + [`langchain.tools.eleven_labs.models`, `ElevenLabsModel`, `langchain_community.tools.eleven_labs.models`, `ElevenLabsModel`], + [`langchain.tools.eleven_labs.text2speech`, `ElevenLabsText2SpeechTool`, `langchain_community.tools`, `ElevenLabsText2SpeechTool`], + [`langchain.tools.file_management`, `CopyFileTool`, `langchain_community.tools`, `CopyFileTool`], + [`langchain.tools.file_management`, `DeleteFileTool`, `langchain_community.tools`, `DeleteFileTool`], + [`langchain.tools.file_management`, `FileSearchTool`, `langchain_community.tools`, `FileSearchTool`], + [`langchain.tools.file_management`, `MoveFileTool`, `langchain_community.tools`, `MoveFileTool`], + [`langchain.tools.file_management`, `ReadFileTool`, `langchain_community.tools`, `ReadFileTool`], + [`langchain.tools.file_management`, `WriteFileTool`, `langchain_community.tools`, `WriteFileTool`], + [`langchain.tools.file_management`, `ListDirectoryTool`, `langchain_community.tools`, `ListDirectoryTool`], + [`langchain.tools.file_management.copy`, `FileCopyInput`, `langchain_community.tools.file_management.copy`, `FileCopyInput`], + [`langchain.tools.file_management.copy`, `CopyFileTool`, `langchain_community.tools`, `CopyFileTool`], + [`langchain.tools.file_management.delete`, `FileDeleteInput`, `langchain_community.tools.file_management.delete`, `FileDeleteInput`], + [`langchain.tools.file_management.delete`, `DeleteFileTool`, `langchain_community.tools`, `DeleteFileTool`], + [`langchain.tools.file_management.file_search`, `FileSearchInput`, `langchain_community.tools.file_management.file_search`, `FileSearchInput`], + [`langchain.tools.file_management.file_search`, `FileSearchTool`, `langchain_community.tools`, `FileSearchTool`], + [`langchain.tools.file_management.list_dir`, `DirectoryListingInput`, `langchain_community.tools.file_management.list_dir`, `DirectoryListingInput`], + [`langchain.tools.file_management.list_dir`, `ListDirectoryTool`, `langchain_community.tools`, `ListDirectoryTool`], + [`langchain.tools.file_management.move`, `FileMoveInput`, `langchain_community.tools.file_management.move`, `FileMoveInput`], + [`langchain.tools.file_management.move`, `MoveFileTool`, `langchain_community.tools`, `MoveFileTool`], + [`langchain.tools.file_management.read`, `ReadFileInput`, `langchain_community.tools.file_management.read`, `ReadFileInput`], + [`langchain.tools.file_management.read`, `ReadFileTool`, `langchain_community.tools`, `ReadFileTool`], + [`langchain.tools.file_management.write`, `WriteFileInput`, `langchain_community.tools.file_management.write`, `WriteFileInput`], + [`langchain.tools.file_management.write`, `WriteFileTool`, `langchain_community.tools`, `WriteFileTool`], + [`langchain.tools.github.tool`, `GitHubAction`, `langchain_community.tools.github.tool`, `GitHubAction`], + [`langchain.tools.gitlab.tool`, `GitLabAction`, `langchain_community.tools.gitlab.tool`, `GitLabAction`], + [`langchain.tools.gmail`, `GmailCreateDraft`, `langchain_community.tools`, `GmailCreateDraft`], + [`langchain.tools.gmail`, `GmailSendMessage`, `langchain_community.tools`, `GmailSendMessage`], + [`langchain.tools.gmail`, `GmailSearch`, `langchain_community.tools`, `GmailSearch`], + [`langchain.tools.gmail`, `GmailGetMessage`, `langchain_community.tools`, `GmailGetMessage`], + [`langchain.tools.gmail`, `GmailGetThread`, `langchain_community.tools`, `GmailGetThread`], + [`langchain.tools.gmail.base`, `GmailBaseTool`, `langchain_community.tools.gmail.base`, `GmailBaseTool`], + [`langchain.tools.gmail.create_draft`, `CreateDraftSchema`, `langchain_community.tools.gmail.create_draft`, `CreateDraftSchema`], + [`langchain.tools.gmail.create_draft`, `GmailCreateDraft`, `langchain_community.tools`, `GmailCreateDraft`], + [`langchain.tools.gmail.get_message`, `SearchArgsSchema`, `langchain_community.tools.gmail.get_message`, `SearchArgsSchema`], + [`langchain.tools.gmail.get_message`, `GmailGetMessage`, `langchain_community.tools`, `GmailGetMessage`], + [`langchain.tools.gmail.get_thread`, `GetThreadSchema`, `langchain_community.tools.gmail.get_thread`, `GetThreadSchema`], + [`langchain.tools.gmail.get_thread`, `GmailGetThread`, `langchain_community.tools`, `GmailGetThread`], + [`langchain.tools.gmail.search`, `Resource`, `langchain_community.tools.gmail.search`, `Resource`], + [`langchain.tools.gmail.search`, `SearchArgsSchema`, `langchain_community.tools.gmail.search`, `SearchArgsSchema`], + [`langchain.tools.gmail.search`, `GmailSearch`, `langchain_community.tools`, `GmailSearch`], + [`langchain.tools.gmail.send_message`, `SendMessageSchema`, `langchain_community.tools.gmail.send_message`, `SendMessageSchema`], + [`langchain.tools.gmail.send_message`, `GmailSendMessage`, `langchain_community.tools`, `GmailSendMessage`], + [`langchain.tools.golden_query`, `GoldenQueryRun`, `langchain_community.tools.golden_query.tool`, `GoldenQueryRun`], + [`langchain.tools.golden_query.tool`, `GoldenQueryRun`, `langchain_community.tools.golden_query.tool`, `GoldenQueryRun`], + [`langchain.tools.google_cloud`, `GoogleCloudTextToSpeechTool`, `langchain_community.tools`, `GoogleCloudTextToSpeechTool`], + [`langchain.tools.google_cloud.texttospeech`, `GoogleCloudTextToSpeechTool`, `langchain_community.tools`, `GoogleCloudTextToSpeechTool`], + [`langchain.tools.google_finance`, `GoogleFinanceQueryRun`, `langchain_community.tools.google_finance.tool`, `GoogleFinanceQueryRun`], + [`langchain.tools.google_finance.tool`, `GoogleFinanceQueryRun`, `langchain_community.tools.google_finance.tool`, `GoogleFinanceQueryRun`], + [`langchain.tools.google_jobs`, `GoogleJobsQueryRun`, `langchain_community.tools.google_jobs.tool`, `GoogleJobsQueryRun`], + [`langchain.tools.google_jobs.tool`, `GoogleJobsQueryRun`, `langchain_community.tools.google_jobs.tool`, `GoogleJobsQueryRun`], + [`langchain.tools.google_lens`, `GoogleLensQueryRun`, `langchain_community.tools.google_lens.tool`, `GoogleLensQueryRun`], + [`langchain.tools.google_lens.tool`, `GoogleLensQueryRun`, `langchain_community.tools.google_lens.tool`, `GoogleLensQueryRun`], + [`langchain.tools.google_places`, `GooglePlacesTool`, `langchain_community.tools`, `GooglePlacesTool`], + [`langchain.tools.google_places.tool`, `GooglePlacesSchema`, `langchain_community.tools.google_places.tool`, `GooglePlacesSchema`], + [`langchain.tools.google_places.tool`, `GooglePlacesTool`, `langchain_community.tools`, `GooglePlacesTool`], + [`langchain.tools.google_scholar`, `GoogleScholarQueryRun`, `langchain_community.tools.google_scholar.tool`, `GoogleScholarQueryRun`], + [`langchain.tools.google_scholar.tool`, `GoogleScholarQueryRun`, `langchain_community.tools.google_scholar.tool`, `GoogleScholarQueryRun`], + [`langchain.tools.google_search`, `GoogleSearchRun`, `langchain_community.tools`, `GoogleSearchRun`], + [`langchain.tools.google_search`, `GoogleSearchResults`, `langchain_community.tools`, `GoogleSearchResults`], + [`langchain.tools.google_search.tool`, `GoogleSearchRun`, `langchain_community.tools`, `GoogleSearchRun`], + [`langchain.tools.google_search.tool`, `GoogleSearchResults`, `langchain_community.tools`, `GoogleSearchResults`], + [`langchain.tools.google_serper`, `GoogleSerperRun`, `langchain_community.tools`, `GoogleSerperRun`], + [`langchain.tools.google_serper`, `GoogleSerperResults`, `langchain_community.tools`, `GoogleSerperResults`], + [`langchain.tools.google_serper.tool`, `GoogleSerperRun`, `langchain_community.tools`, `GoogleSerperRun`], + [`langchain.tools.google_serper.tool`, `GoogleSerperResults`, `langchain_community.tools`, `GoogleSerperResults`], + [`langchain.tools.google_trends`, `GoogleTrendsQueryRun`, `langchain_community.tools.google_trends.tool`, `GoogleTrendsQueryRun`], + [`langchain.tools.google_trends.tool`, `GoogleTrendsQueryRun`, `langchain_community.tools.google_trends.tool`, `GoogleTrendsQueryRun`], + [`langchain.tools.graphql.tool`, `BaseGraphQLTool`, `langchain_community.tools`, `BaseGraphQLTool`], + [`langchain.tools.human`, `HumanInputRun`, `langchain_community.tools`, `HumanInputRun`], + [`langchain.tools.human.tool`, `HumanInputRun`, `langchain_community.tools`, `HumanInputRun`], + [`langchain.tools.ifttt`, `IFTTTWebhook`, `langchain_community.tools`, `IFTTTWebhook`], + [`langchain.tools.interaction.tool`, `StdInInquireTool`, `langchain_community.tools`, `StdInInquireTool`], + [`langchain.tools.jira.tool`, `JiraAction`, `langchain_community.tools`, `JiraAction`], + [`langchain.tools.json.tool`, `JsonSpec`, `langchain_community.tools.json.tool`, `JsonSpec`], + [`langchain.tools.json.tool`, `JsonListKeysTool`, `langchain_community.tools`, `JsonListKeysTool`], + [`langchain.tools.json.tool`, `JsonGetValueTool`, `langchain_community.tools`, `JsonGetValueTool`], + [`langchain.tools.memorize`, `Memorize`, `langchain_community.tools.memorize.tool`, `Memorize`], + [`langchain.tools.memorize.tool`, `TrainableLLM`, `langchain_community.tools.memorize.tool`, `TrainableLLM`], + [`langchain.tools.memorize.tool`, `Memorize`, `langchain_community.tools.memorize.tool`, `Memorize`], + [`langchain.tools.merriam_webster.tool`, `MerriamWebsterQueryRun`, `langchain_community.tools`, `MerriamWebsterQueryRun`], + [`langchain.tools.metaphor_search`, `MetaphorSearchResults`, `langchain_community.tools`, `MetaphorSearchResults`], + [`langchain.tools.metaphor_search.tool`, `MetaphorSearchResults`, `langchain_community.tools`, `MetaphorSearchResults`], + [`langchain.tools.multion`, `MultionCreateSession`, `langchain_community.tools.multion.create_session`, `MultionCreateSession`], + [`langchain.tools.multion`, `MultionUpdateSession`, `langchain_community.tools.multion.update_session`, `MultionUpdateSession`], + [`langchain.tools.multion`, `MultionCloseSession`, `langchain_community.tools.multion.close_session`, `MultionCloseSession`], + [`langchain.tools.multion.close_session`, `CloseSessionSchema`, `langchain_community.tools.multion.close_session`, `CloseSessionSchema`], + [`langchain.tools.multion.close_session`, `MultionCloseSession`, `langchain_community.tools.multion.close_session`, `MultionCloseSession`], + [`langchain.tools.multion.create_session`, `CreateSessionSchema`, `langchain_community.tools.multion.create_session`, `CreateSessionSchema`], + [`langchain.tools.multion.create_session`, `MultionCreateSession`, `langchain_community.tools.multion.create_session`, `MultionCreateSession`], + [`langchain.tools.multion.update_session`, `UpdateSessionSchema`, `langchain_community.tools.multion.update_session`, `UpdateSessionSchema`], + [`langchain.tools.multion.update_session`, `MultionUpdateSession`, `langchain_community.tools.multion.update_session`, `MultionUpdateSession`], + [`langchain.tools.nasa.tool`, `NasaAction`, `langchain_community.tools`, `NasaAction`], + [`langchain.tools.nuclia`, `NucliaUnderstandingAPI`, `langchain_community.tools.nuclia.tool`, `NucliaUnderstandingAPI`], + [`langchain.tools.nuclia.tool`, `NUASchema`, `langchain_community.tools.nuclia.tool`, `NUASchema`], + [`langchain.tools.nuclia.tool`, `NucliaUnderstandingAPI`, `langchain_community.tools.nuclia.tool`, `NucliaUnderstandingAPI`], + [`langchain.tools.office365`, `O365SearchEmails`, `langchain_community.tools`, `O365SearchEmails`], + [`langchain.tools.office365`, `O365SearchEvents`, `langchain_community.tools`, `O365SearchEvents`], + [`langchain.tools.office365`, `O365CreateDraftMessage`, `langchain_community.tools`, `O365CreateDraftMessage`], + [`langchain.tools.office365`, `O365SendMessage`, `langchain_community.tools`, `O365SendMessage`], + [`langchain.tools.office365`, `O365SendEvent`, `langchain_community.tools`, `O365SendEvent`], + [`langchain.tools.office365.base`, `O365BaseTool`, `langchain_community.tools.office365.base`, `O365BaseTool`], + [`langchain.tools.office365.create_draft_message`, `CreateDraftMessageSchema`, `langchain_community.tools.office365.create_draft_message`, `CreateDraftMessageSchema`], + [`langchain.tools.office365.create_draft_message`, `O365CreateDraftMessage`, `langchain_community.tools`, `O365CreateDraftMessage`], + [`langchain.tools.office365.events_search`, `SearchEventsInput`, `langchain_community.tools.office365.events_search`, `SearchEventsInput`], + [`langchain.tools.office365.events_search`, `O365SearchEvents`, `langchain_community.tools`, `O365SearchEvents`], + [`langchain.tools.office365.messages_search`, `SearchEmailsInput`, `langchain_community.tools.office365.messages_search`, `SearchEmailsInput`], + [`langchain.tools.office365.messages_search`, `O365SearchEmails`, `langchain_community.tools`, `O365SearchEmails`], + [`langchain.tools.office365.send_event`, `SendEventSchema`, `langchain_community.tools.office365.send_event`, `SendEventSchema`], + [`langchain.tools.office365.send_event`, `O365SendEvent`, `langchain_community.tools`, `O365SendEvent`], + [`langchain.tools.office365.send_message`, `SendMessageSchema`, `langchain_community.tools.office365.send_message`, `SendMessageSchema`], + [`langchain.tools.office365.send_message`, `O365SendMessage`, `langchain_community.tools`, `O365SendMessage`], + [`langchain.tools.openapi.utils.api_models`, `APIPropertyLocation`, `langchain_community.tools.openapi.utils.api_models`, `APIPropertyLocation`], + [`langchain.tools.openapi.utils.api_models`, `APIPropertyBase`, `langchain_community.tools.openapi.utils.api_models`, `APIPropertyBase`], + [`langchain.tools.openapi.utils.api_models`, `APIProperty`, `langchain_community.tools.openapi.utils.api_models`, `APIProperty`], + [`langchain.tools.openapi.utils.api_models`, `APIRequestBodyProperty`, `langchain_community.tools.openapi.utils.api_models`, `APIRequestBodyProperty`], + [`langchain.tools.openapi.utils.api_models`, `APIRequestBody`, `langchain_community.tools.openapi.utils.api_models`, `APIRequestBody`], + [`langchain.tools.openapi.utils.api_models`, `APIOperation`, `langchain_community.tools`, `APIOperation`], + [`langchain.tools.openapi.utils.openapi_utils`, `HTTPVerb`, `langchain_community.utilities.openapi`, `HTTPVerb`], + [`langchain.tools.openapi.utils.openapi_utils`, `OpenAPISpec`, `langchain_community.tools`, `OpenAPISpec`], + [`langchain.tools.openweathermap`, `OpenWeatherMapQueryRun`, `langchain_community.tools`, `OpenWeatherMapQueryRun`], + [`langchain.tools.openweathermap.tool`, `OpenWeatherMapQueryRun`, `langchain_community.tools`, `OpenWeatherMapQueryRun`], + [`langchain.tools.playwright`, `NavigateTool`, `langchain_community.tools`, `NavigateTool`], + [`langchain.tools.playwright`, `NavigateBackTool`, `langchain_community.tools`, `NavigateBackTool`], + [`langchain.tools.playwright`, `ExtractTextTool`, `langchain_community.tools`, `ExtractTextTool`], + [`langchain.tools.playwright`, `ExtractHyperlinksTool`, `langchain_community.tools`, `ExtractHyperlinksTool`], + [`langchain.tools.playwright`, `GetElementsTool`, `langchain_community.tools`, `GetElementsTool`], + [`langchain.tools.playwright`, `ClickTool`, `langchain_community.tools`, `ClickTool`], + [`langchain.tools.playwright`, `CurrentWebPageTool`, `langchain_community.tools`, `CurrentWebPageTool`], + [`langchain.tools.playwright.base`, `BaseBrowserTool`, `langchain_community.tools.playwright.base`, `BaseBrowserTool`], + [`langchain.tools.playwright.click`, `ClickToolInput`, `langchain_community.tools.playwright.click`, `ClickToolInput`], + [`langchain.tools.playwright.click`, `ClickTool`, `langchain_community.tools`, `ClickTool`], + [`langchain.tools.playwright.current_page`, `CurrentWebPageTool`, `langchain_community.tools`, `CurrentWebPageTool`], + [`langchain.tools.playwright.extract_hyperlinks`, `ExtractHyperlinksToolInput`, `langchain_community.tools.playwright.extract_hyperlinks`, `ExtractHyperlinksToolInput`], + [`langchain.tools.playwright.extract_hyperlinks`, `ExtractHyperlinksTool`, `langchain_community.tools`, `ExtractHyperlinksTool`], + [`langchain.tools.playwright.extract_text`, `ExtractTextTool`, `langchain_community.tools`, `ExtractTextTool`], + [`langchain.tools.playwright.get_elements`, `GetElementsToolInput`, `langchain_community.tools.playwright.get_elements`, `GetElementsToolInput`], + [`langchain.tools.playwright.get_elements`, `GetElementsTool`, `langchain_community.tools`, `GetElementsTool`], + [`langchain.tools.playwright.navigate`, `NavigateToolInput`, `langchain_community.tools.playwright.navigate`, `NavigateToolInput`], + [`langchain.tools.playwright.navigate`, `NavigateTool`, `langchain_community.tools`, `NavigateTool`], + [`langchain.tools.playwright.navigate_back`, `NavigateBackTool`, `langchain_community.tools`, `NavigateBackTool`], + [`langchain.tools.plugin`, `ApiConfig`, `langchain_community.tools.plugin`, `ApiConfig`], + [`langchain.tools.plugin`, `AIPlugin`, `langchain_community.tools.plugin`, `AIPlugin`], + [`langchain.tools.plugin`, `AIPluginToolSchema`, `langchain_community.tools.plugin`, `AIPluginToolSchema`], + [`langchain.tools.plugin`, `AIPluginTool`, `langchain_community.tools`, `AIPluginTool`], + [`langchain.tools.powerbi.tool`, `QueryPowerBITool`, `langchain_community.tools`, `QueryPowerBITool`], + [`langchain.tools.powerbi.tool`, `InfoPowerBITool`, `langchain_community.tools`, `InfoPowerBITool`], + [`langchain.tools.powerbi.tool`, `ListPowerBITool`, `langchain_community.tools`, `ListPowerBITool`], + [`langchain.tools.pubmed.tool`, `PubmedQueryRun`, `langchain_community.tools`, `PubmedQueryRun`], + [`langchain.tools.reddit_search.tool`, `RedditSearchSchema`, `langchain_community.tools`, `RedditSearchSchema`], + [`langchain.tools.reddit_search.tool`, `RedditSearchRun`, `langchain_community.tools`, `RedditSearchRun`], + [`langchain.tools.requests.tool`, `BaseRequestsTool`, `langchain_community.tools`, `BaseRequestsTool`], + [`langchain.tools.requests.tool`, `RequestsGetTool`, `langchain_community.tools`, `RequestsGetTool`], + [`langchain.tools.requests.tool`, `RequestsPostTool`, `langchain_community.tools`, `RequestsPostTool`], + [`langchain.tools.requests.tool`, `RequestsPatchTool`, `langchain_community.tools`, `RequestsPatchTool`], + [`langchain.tools.requests.tool`, `RequestsPutTool`, `langchain_community.tools`, `RequestsPutTool`], + [`langchain.tools.requests.tool`, `RequestsDeleteTool`, `langchain_community.tools`, `RequestsDeleteTool`], + [`langchain.tools.scenexplain.tool`, `SceneXplainInput`, `langchain_community.tools.scenexplain.tool`, `SceneXplainInput`], + [`langchain.tools.scenexplain.tool`, `SceneXplainTool`, `langchain_community.tools`, `SceneXplainTool`], + [`langchain.tools.searchapi`, `SearchAPIResults`, `langchain_community.tools`, `SearchAPIResults`], + [`langchain.tools.searchapi`, `SearchAPIRun`, `langchain_community.tools`, `SearchAPIRun`], + [`langchain.tools.searchapi.tool`, `SearchAPIRun`, `langchain_community.tools`, `SearchAPIRun`], + [`langchain.tools.searchapi.tool`, `SearchAPIResults`, `langchain_community.tools`, `SearchAPIResults`], + [`langchain.tools.searx_search.tool`, `SearxSearchRun`, `langchain_community.tools`, `SearxSearchRun`], + [`langchain.tools.searx_search.tool`, `SearxSearchResults`, `langchain_community.tools`, `SearxSearchResults`], + [`langchain.tools.shell`, `ShellTool`, `langchain_community.tools`, `ShellTool`], + [`langchain.tools.shell.tool`, `ShellInput`, `langchain_community.tools.shell.tool`, `ShellInput`], + [`langchain.tools.shell.tool`, `ShellTool`, `langchain_community.tools`, `ShellTool`], + [`langchain.tools.slack`, `SlackGetChannel`, `langchain_community.tools`, `SlackGetChannel`], + [`langchain.tools.slack`, `SlackGetMessage`, `langchain_community.tools`, `SlackGetMessage`], + [`langchain.tools.slack`, `SlackScheduleMessage`, `langchain_community.tools`, `SlackScheduleMessage`], + [`langchain.tools.slack`, `SlackSendMessage`, `langchain_community.tools`, `SlackSendMessage`], + [`langchain.tools.slack.base`, `SlackBaseTool`, `langchain_community.tools.slack.base`, `SlackBaseTool`], + [`langchain.tools.slack.get_channel`, `SlackGetChannel`, `langchain_community.tools`, `SlackGetChannel`], + [`langchain.tools.slack.get_message`, `SlackGetMessageSchema`, `langchain_community.tools.slack.get_message`, `SlackGetMessageSchema`], + [`langchain.tools.slack.get_message`, `SlackGetMessage`, `langchain_community.tools`, `SlackGetMessage`], + [`langchain.tools.slack.schedule_message`, `ScheduleMessageSchema`, `langchain_community.tools.slack.schedule_message`, `ScheduleMessageSchema`], + [`langchain.tools.slack.schedule_message`, `SlackScheduleMessage`, `langchain_community.tools`, `SlackScheduleMessage`], + [`langchain.tools.slack.send_message`, `SendMessageSchema`, `langchain_community.tools.slack.send_message`, `SendMessageSchema`], + [`langchain.tools.slack.send_message`, `SlackSendMessage`, `langchain_community.tools`, `SlackSendMessage`], + [`langchain.tools.sleep.tool`, `SleepInput`, `langchain_community.tools.sleep.tool`, `SleepInput`], + [`langchain.tools.sleep.tool`, `SleepTool`, `langchain_community.tools`, `SleepTool`], + [`langchain.tools.spark_sql.tool`, `BaseSparkSQLTool`, `langchain_community.tools`, `BaseSparkSQLTool`], + [`langchain.tools.spark_sql.tool`, `QuerySparkSQLTool`, `langchain_community.tools`, `QuerySparkSQLTool`], + [`langchain.tools.spark_sql.tool`, `InfoSparkSQLTool`, `langchain_community.tools`, `InfoSparkSQLTool`], + [`langchain.tools.spark_sql.tool`, `ListSparkSQLTool`, `langchain_community.tools`, `ListSparkSQLTool`], + [`langchain.tools.spark_sql.tool`, `QueryCheckerTool`, `langchain_community.tools`, `QueryCheckerTool`], + [`langchain.tools.sql_database.tool`, `BaseSQLDatabaseTool`, `langchain_community.tools`, `BaseSQLDatabaseTool`], + [`langchain.tools.sql_database.tool`, `QuerySQLDataBaseTool`, `langchain_community.tools`, `QuerySQLDataBaseTool`], + [`langchain.tools.sql_database.tool`, `InfoSQLDatabaseTool`, `langchain_community.tools`, `InfoSQLDatabaseTool`], + [`langchain.tools.sql_database.tool`, `ListSQLDatabaseTool`, `langchain_community.tools`, `ListSQLDatabaseTool`], + [`langchain.tools.sql_database.tool`, `QuerySQLCheckerTool`, `langchain_community.tools`, `QuerySQLCheckerTool`], + [`langchain.tools.stackexchange.tool`, `StackExchangeTool`, `langchain_community.tools`, `StackExchangeTool`], + [`langchain.tools.steam.tool`, `SteamWebAPIQueryRun`, `langchain_community.tools`, `SteamWebAPIQueryRun`], + [`langchain.tools.steamship_image_generation`, `SteamshipImageGenerationTool`, `langchain_community.tools`, `SteamshipImageGenerationTool`], + [`langchain.tools.steamship_image_generation.tool`, `ModelName`, `langchain_community.tools.steamship_image_generation.tool`, `ModelName`], + [`langchain.tools.steamship_image_generation.tool`, `SteamshipImageGenerationTool`, `langchain_community.tools`, `SteamshipImageGenerationTool`], + [`langchain.tools.tavily_search`, `TavilySearchResults`, `langchain_community.tools.tavily_search.tool`, `TavilySearchResults`], + [`langchain.tools.tavily_search`, `TavilyAnswer`, `langchain_community.tools.tavily_search.tool`, `TavilyAnswer`], + [`langchain.tools.tavily_search.tool`, `TavilyInput`, `langchain_community.tools.tavily_search.tool`, `TavilyInput`], + [`langchain.tools.tavily_search.tool`, `TavilySearchResults`, `langchain_community.tools.tavily_search.tool`, `TavilySearchResults`], + [`langchain.tools.tavily_search.tool`, `TavilyAnswer`, `langchain_community.tools.tavily_search.tool`, `TavilyAnswer`], + [`langchain.tools.vectorstore.tool`, `VectorStoreQATool`, `langchain_community.tools`, `VectorStoreQATool`], + [`langchain.tools.vectorstore.tool`, `VectorStoreQAWithSourcesTool`, `langchain_community.tools`, `VectorStoreQAWithSourcesTool`], + [`langchain.tools.wikipedia.tool`, `WikipediaQueryRun`, `langchain_community.tools`, `WikipediaQueryRun`], + [`langchain.tools.wolfram_alpha`, `WolframAlphaQueryRun`, `langchain_community.tools`, `WolframAlphaQueryRun`], + [`langchain.tools.wolfram_alpha.tool`, `WolframAlphaQueryRun`, `langchain_community.tools`, `WolframAlphaQueryRun`], + [`langchain.tools.yahoo_finance_news`, `YahooFinanceNewsTool`, `langchain_community.tools`, `YahooFinanceNewsTool`], + [`langchain.tools.youtube.search`, `YouTubeSearchTool`, `langchain_community.tools`, `YouTubeSearchTool`], + [`langchain.tools.zapier`, `ZapierNLARunAction`, `langchain_community.tools`, `ZapierNLARunAction`], + [`langchain.tools.zapier`, `ZapierNLAListActions`, `langchain_community.tools`, `ZapierNLAListActions`], + [`langchain.tools.zapier.tool`, `ZapierNLARunAction`, `langchain_community.tools`, `ZapierNLARunAction`], + [`langchain.tools.zapier.tool`, `ZapierNLAListActions`, `langchain_community.tools`, `ZapierNLAListActions`], + [`langchain.utilities`, `AlphaVantageAPIWrapper`, `langchain_community.utilities`, `AlphaVantageAPIWrapper`], + [`langchain.utilities`, `ApifyWrapper`, `langchain_community.utilities`, `ApifyWrapper`], + [`langchain.utilities`, `ArceeWrapper`, `langchain_community.utilities`, `ArceeWrapper`], + [`langchain.utilities`, `ArxivAPIWrapper`, `langchain_community.utilities`, `ArxivAPIWrapper`], + [`langchain.utilities`, `BibtexparserWrapper`, `langchain_community.utilities`, `BibtexparserWrapper`], + [`langchain.utilities`, `BingSearchAPIWrapper`, `langchain_community.utilities`, `BingSearchAPIWrapper`], + [`langchain.utilities`, `BraveSearchWrapper`, `langchain_community.utilities`, `BraveSearchWrapper`], + [`langchain.utilities`, `DuckDuckGoSearchAPIWrapper`, `langchain_community.utilities`, `DuckDuckGoSearchAPIWrapper`], + [`langchain.utilities`, `GoldenQueryAPIWrapper`, `langchain_community.utilities`, `GoldenQueryAPIWrapper`], + [`langchain.utilities`, `GoogleFinanceAPIWrapper`, `langchain_community.utilities`, `GoogleFinanceAPIWrapper`], + [`langchain.utilities`, `GoogleLensAPIWrapper`, `langchain_community.utilities`, `GoogleLensAPIWrapper`], + [`langchain.utilities`, `GoogleJobsAPIWrapper`, `langchain_community.utilities`, `GoogleJobsAPIWrapper`], + [`langchain.utilities`, `GooglePlacesAPIWrapper`, `langchain_community.utilities`, `GooglePlacesAPIWrapper`], + [`langchain.utilities`, `GoogleScholarAPIWrapper`, `langchain_community.utilities`, `GoogleScholarAPIWrapper`], + [`langchain.utilities`, `GoogleTrendsAPIWrapper`, `langchain_community.utilities`, `GoogleTrendsAPIWrapper`], + [`langchain.utilities`, `GoogleSearchAPIWrapper`, `langchain_community.utilities`, `GoogleSearchAPIWrapper`], + [`langchain.utilities`, `GoogleSerperAPIWrapper`, `langchain_community.utilities`, `GoogleSerperAPIWrapper`], + [`langchain.utilities`, `GraphQLAPIWrapper`, `langchain_community.utilities`, `GraphQLAPIWrapper`], + [`langchain.utilities`, `JiraAPIWrapper`, `langchain_community.utilities`, `JiraAPIWrapper`], + [`langchain.utilities`, `LambdaWrapper`, `langchain_community.utilities`, `LambdaWrapper`], + [`langchain.utilities`, `MaxComputeAPIWrapper`, `langchain_community.utilities`, `MaxComputeAPIWrapper`], + [`langchain.utilities`, `MerriamWebsterAPIWrapper`, `langchain_community.utilities`, `MerriamWebsterAPIWrapper`], + [`langchain.utilities`, `MetaphorSearchAPIWrapper`, `langchain_community.utilities`, `MetaphorSearchAPIWrapper`], + [`langchain.utilities`, `NasaAPIWrapper`, `langchain_community.utilities`, `NasaAPIWrapper`], + [`langchain.utilities`, `OpenWeatherMapAPIWrapper`, `langchain_community.utilities`, `OpenWeatherMapAPIWrapper`], + [`langchain.utilities`, `OutlineAPIWrapper`, `langchain_community.utilities`, `OutlineAPIWrapper`], + [`langchain.utilities`, `Portkey`, `langchain_community.utilities`, `Portkey`], + [`langchain.utilities`, `PowerBIDataset`, `langchain_community.utilities`, `PowerBIDataset`], + [`langchain.utilities`, `PubMedAPIWrapper`, `langchain_community.utilities`, `PubMedAPIWrapper`], + [`langchain.utilities`, `PythonREPL`, `langchain_community.utilities`, `PythonREPL`], + [`langchain.utilities`, `Requests`, `langchain_community.utilities`, `Requests`], + [`langchain.utilities`, `SteamWebAPIWrapper`, `langchain_community.utilities`, `SteamWebAPIWrapper`], + [`langchain.utilities`, `SQLDatabase`, `langchain_community.utilities`, `SQLDatabase`], + [`langchain.utilities`, `SceneXplainAPIWrapper`, `langchain_community.utilities`, `SceneXplainAPIWrapper`], + [`langchain.utilities`, `SearchApiAPIWrapper`, `langchain_community.utilities`, `SearchApiAPIWrapper`], + [`langchain.utilities`, `SearxSearchWrapper`, `langchain_community.utilities`, `SearxSearchWrapper`], + [`langchain.utilities`, `SerpAPIWrapper`, `langchain_community.utilities`, `SerpAPIWrapper`], + [`langchain.utilities`, `SparkSQL`, `langchain_community.utilities`, `SparkSQL`], + [`langchain.utilities`, `StackExchangeAPIWrapper`, `langchain_community.utilities`, `StackExchangeAPIWrapper`], + [`langchain.utilities`, `TensorflowDatasets`, `langchain_community.utilities`, `TensorflowDatasets`], + [`langchain.utilities`, `RequestsWrapper`, `langchain_community.utilities`, `TextRequestsWrapper`], + [`langchain.utilities`, `TextRequestsWrapper`, `langchain_community.utilities`, `TextRequestsWrapper`], + [`langchain.utilities`, `TwilioAPIWrapper`, `langchain_community.utilities`, `TwilioAPIWrapper`], + [`langchain.utilities`, `WikipediaAPIWrapper`, `langchain_community.utilities`, `WikipediaAPIWrapper`], + [`langchain.utilities`, `WolframAlphaAPIWrapper`, `langchain_community.utilities`, `WolframAlphaAPIWrapper`], + [`langchain.utilities`, `ZapierNLAWrapper`, `langchain_community.utilities`, `ZapierNLAWrapper`], + [`langchain.utilities.alpha_vantage`, `AlphaVantageAPIWrapper`, `langchain_community.utilities`, `AlphaVantageAPIWrapper`], + [`langchain.utilities.anthropic`, `get_num_tokens_anthropic`, `langchain_community.utilities.anthropic`, `get_num_tokens_anthropic`], + [`langchain.utilities.anthropic`, `get_token_ids_anthropic`, `langchain_community.utilities.anthropic`, `get_token_ids_anthropic`], + [`langchain.utilities.apify`, `ApifyWrapper`, `langchain_community.utilities`, `ApifyWrapper`], + [`langchain.utilities.arcee`, `ArceeRoute`, `langchain_community.utilities.arcee`, `ArceeRoute`], + [`langchain.utilities.arcee`, `DALMFilterType`, `langchain_community.utilities.arcee`, `DALMFilterType`], + [`langchain.utilities.arcee`, `DALMFilter`, `langchain_community.utilities.arcee`, `DALMFilter`], + [`langchain.utilities.arcee`, `ArceeDocumentSource`, `langchain_community.utilities.arcee`, `ArceeDocumentSource`], + [`langchain.utilities.arcee`, `ArceeDocument`, `langchain_community.utilities.arcee`, `ArceeDocument`], + [`langchain.utilities.arcee`, `ArceeDocumentAdapter`, `langchain_community.utilities.arcee`, `ArceeDocumentAdapter`], + [`langchain.utilities.arcee`, `ArceeWrapper`, `langchain_community.utilities`, `ArceeWrapper`], + [`langchain.utilities.arxiv`, `ArxivAPIWrapper`, `langchain_community.utilities`, `ArxivAPIWrapper`], + [`langchain.utilities.awslambda`, `LambdaWrapper`, `langchain_community.utilities`, `LambdaWrapper`], + [`langchain.utilities.bibtex`, `BibtexparserWrapper`, `langchain_community.utilities`, `BibtexparserWrapper`], + [`langchain.utilities.bing_search`, `BingSearchAPIWrapper`, `langchain_community.utilities`, `BingSearchAPIWrapper`], + [`langchain.utilities.brave_search`, `BraveSearchWrapper`, `langchain_community.utilities`, `BraveSearchWrapper`], + [`langchain.utilities.clickup`, `Component`, `langchain_community.utilities.clickup`, `Component`], + [`langchain.utilities.clickup`, `Task`, `langchain_community.utilities.clickup`, `Task`], + [`langchain.utilities.clickup`, `CUList`, `langchain_community.utilities.clickup`, `CUList`], + [`langchain.utilities.clickup`, `Member`, `langchain_community.utilities.clickup`, `Member`], + [`langchain.utilities.clickup`, `Team`, `langchain_community.utilities.clickup`, `Team`], + [`langchain.utilities.clickup`, `Space`, `langchain_community.utilities.clickup`, `Space`], + [`langchain.utilities.clickup`, `ClickupAPIWrapper`, `langchain_community.utilities.clickup`, `ClickupAPIWrapper`], + [`langchain.utilities.dalle_image_generator`, `DallEAPIWrapper`, `langchain_community.utilities.dalle_image_generator`, `DallEAPIWrapper`], + [`langchain.utilities.dataforseo_api_search`, `DataForSeoAPIWrapper`, `langchain_community.utilities.dataforseo_api_search`, `DataForSeoAPIWrapper`], + [`langchain.utilities.duckduckgo_search`, `DuckDuckGoSearchAPIWrapper`, `langchain_community.utilities`, `DuckDuckGoSearchAPIWrapper`], + [`langchain.utilities.github`, `GitHubAPIWrapper`, `langchain_community.utilities.github`, `GitHubAPIWrapper`], + [`langchain.utilities.gitlab`, `GitLabAPIWrapper`, `langchain_community.utilities.gitlab`, `GitLabAPIWrapper`], + [`langchain.utilities.golden_query`, `GoldenQueryAPIWrapper`, `langchain_community.utilities`, `GoldenQueryAPIWrapper`], + [`langchain.utilities.google_finance`, `GoogleFinanceAPIWrapper`, `langchain_community.utilities`, `GoogleFinanceAPIWrapper`], + [`langchain.utilities.google_jobs`, `GoogleJobsAPIWrapper`, `langchain_community.utilities`, `GoogleJobsAPIWrapper`], + [`langchain.utilities.google_lens`, `GoogleLensAPIWrapper`, `langchain_community.utilities`, `GoogleLensAPIWrapper`], + [`langchain.utilities.google_places_api`, `GooglePlacesAPIWrapper`, `langchain_community.utilities`, `GooglePlacesAPIWrapper`], + [`langchain.utilities.google_scholar`, `GoogleScholarAPIWrapper`, `langchain_community.utilities`, `GoogleScholarAPIWrapper`], + [`langchain.utilities.google_search`, `GoogleSearchAPIWrapper`, `langchain_community.utilities`, `GoogleSearchAPIWrapper`], + [`langchain.utilities.google_serper`, `GoogleSerperAPIWrapper`, `langchain_community.utilities`, `GoogleSerperAPIWrapper`], + [`langchain.utilities.google_trends`, `GoogleTrendsAPIWrapper`, `langchain_community.utilities`, `GoogleTrendsAPIWrapper`], + [`langchain.utilities.graphql`, `GraphQLAPIWrapper`, `langchain_community.utilities`, `GraphQLAPIWrapper`], + [`langchain.utilities.jira`, `JiraAPIWrapper`, `langchain_community.utilities`, `JiraAPIWrapper`], + [`langchain.utilities.max_compute`, `MaxComputeAPIWrapper`, `langchain_community.utilities`, `MaxComputeAPIWrapper`], + [`langchain.utilities.merriam_webster`, `MerriamWebsterAPIWrapper`, `langchain_community.utilities`, `MerriamWebsterAPIWrapper`], + [`langchain.utilities.metaphor_search`, `MetaphorSearchAPIWrapper`, `langchain_community.utilities`, `MetaphorSearchAPIWrapper`], + [`langchain.utilities.nasa`, `NasaAPIWrapper`, `langchain_community.utilities`, `NasaAPIWrapper`], + [`langchain.utilities.opaqueprompts`, `sanitize`, `langchain_community.utilities.opaqueprompts`, `sanitize`], + [`langchain.utilities.opaqueprompts`, `desanitize`, `langchain_community.utilities.opaqueprompts`, `desanitize`], + [`langchain.utilities.openapi`, `HTTPVerb`, `langchain_community.utilities.openapi`, `HTTPVerb`], + [`langchain.utilities.openapi`, `OpenAPISpec`, `langchain_community.tools`, `OpenAPISpec`], + [`langchain.utilities.openweathermap`, `OpenWeatherMapAPIWrapper`, `langchain_community.utilities`, `OpenWeatherMapAPIWrapper`], + [`langchain.utilities.outline`, `OutlineAPIWrapper`, `langchain_community.utilities`, `OutlineAPIWrapper`], + [`langchain.utilities.portkey`, `Portkey`, `langchain_community.utilities`, `Portkey`], + [`langchain.utilities.powerbi`, `PowerBIDataset`, `langchain_community.utilities`, `PowerBIDataset`], + [`langchain.utilities.pubmed`, `PubMedAPIWrapper`, `langchain_community.utilities`, `PubMedAPIWrapper`], + [`langchain.utilities.python`, `PythonREPL`, `langchain_community.utilities`, `PythonREPL`], + [`langchain.utilities.reddit_search`, `RedditSearchAPIWrapper`, `langchain_community.utilities.reddit_search`, `RedditSearchAPIWrapper`], + [`langchain.utilities.redis`, `TokenEscaper`, `langchain_community.utilities.redis`, `TokenEscaper`], + [`langchain.utilities.redis`, `check_redis_module_exist`, `langchain_community.utilities.redis`, `check_redis_module_exist`], + [`langchain.utilities.redis`, `get_client`, `langchain_community.utilities.redis`, `get_client`], + [`langchain.utilities.requests`, `Requests`, `langchain_community.utilities`, `Requests`], + [`langchain.utilities.requests`, `RequestsWrapper`, `langchain_community.utilities`, `TextRequestsWrapper`], + [`langchain.utilities.scenexplain`, `SceneXplainAPIWrapper`, `langchain_community.utilities`, `SceneXplainAPIWrapper`], + [`langchain.utilities.searchapi`, `SearchApiAPIWrapper`, `langchain_community.utilities`, `SearchApiAPIWrapper`], + [`langchain.utilities.searx_search`, `SearxResults`, `langchain_community.utilities.searx_search`, `SearxResults`], + [`langchain.utilities.searx_search`, `SearxSearchWrapper`, `langchain_community.utilities`, `SearxSearchWrapper`], + [`langchain.utilities.serpapi`, `HiddenPrints`, `langchain_community.utilities.serpapi`, `HiddenPrints`], + [`langchain.utilities.serpapi`, `SerpAPIWrapper`, `langchain_community.utilities`, `SerpAPIWrapper`], + [`langchain.utilities.spark_sql`, `SparkSQL`, `langchain_community.utilities`, `SparkSQL`], + [`langchain.utilities.sql_database`, `truncate_word`, `langchain_community.utilities.sql_database`, `truncate_word`], + [`langchain.utilities.sql_database`, `SQLDatabase`, `langchain_community.utilities`, `SQLDatabase`], + [`langchain.utilities.stackexchange`, `StackExchangeAPIWrapper`, `langchain_community.utilities`, `StackExchangeAPIWrapper`], + [`langchain.utilities.steam`, `SteamWebAPIWrapper`, `langchain_community.utilities`, `SteamWebAPIWrapper`], + [`langchain.utilities.tavily_search`, `TavilySearchAPIWrapper`, `langchain_community.utilities.tavily_search`, `TavilySearchAPIWrapper`], + [`langchain.utilities.tensorflow_datasets`, `TensorflowDatasets`, `langchain_community.utilities`, `TensorflowDatasets`], + [`langchain.utilities.twilio`, `TwilioAPIWrapper`, `langchain_community.utilities`, `TwilioAPIWrapper`], + [`langchain.utilities.vertexai`, `create_retry_decorator`, `langchain_community.utilities.vertexai`, `create_retry_decorator`], + [`langchain.utilities.vertexai`, `raise_vertex_import_error`, `langchain_community.utilities.vertexai`, `raise_vertex_import_error`], + [`langchain.utilities.vertexai`, `init_vertexai`, `langchain_community.utilities.vertexai`, `init_vertexai`], + [`langchain.utilities.vertexai`, `get_client_info`, `langchain_community.utilities.vertexai`, `get_client_info`], + [`langchain.utilities.wikipedia`, `WikipediaAPIWrapper`, `langchain_community.utilities`, `WikipediaAPIWrapper`], + [`langchain.utilities.wolfram_alpha`, `WolframAlphaAPIWrapper`, `langchain_community.utilities`, `WolframAlphaAPIWrapper`], + [`langchain.utilities.zapier`, `ZapierNLAWrapper`, `langchain_community.utilities`, `ZapierNLAWrapper`], + [`langchain.utils`, `cosine_similarity`, `langchain_community.utils.math`, `cosine_similarity`], + [`langchain.utils`, `cosine_similarity_top_k`, `langchain_community.utils.math`, `cosine_similarity_top_k`], + [`langchain.utils.ernie_functions`, `FunctionDescription`, `langchain_community.utils.ernie_functions`, `FunctionDescription`], + [`langchain.utils.ernie_functions`, `ToolDescription`, `langchain_community.utils.ernie_functions`, `ToolDescription`], + [`langchain.utils.ernie_functions`, `convert_pydantic_to_ernie_function`, `langchain_community.utils.ernie_functions`, `convert_pydantic_to_ernie_function`], + [`langchain.utils.ernie_functions`, `convert_pydantic_to_ernie_tool`, `langchain_community.utils.ernie_functions`, `convert_pydantic_to_ernie_tool`], + [`langchain.utils.math`, `cosine_similarity`, `langchain_community.utils.math`, `cosine_similarity`], + [`langchain.utils.math`, `cosine_similarity_top_k`, `langchain_community.utils.math`, `cosine_similarity_top_k`], + [`langchain.utils.openai`, `is_openai_v1`, `langchain_community.utils.openai`, `is_openai_v1`], + [`langchain.vectorstores`, `AlibabaCloudOpenSearch`, `langchain_community.vectorstores`, `AlibabaCloudOpenSearch`], + [`langchain.vectorstores`, `AlibabaCloudOpenSearchSettings`, `langchain_community.vectorstores`, `AlibabaCloudOpenSearchSettings`], + [`langchain.vectorstores`, `AnalyticDB`, `langchain_community.vectorstores`, `AnalyticDB`], + [`langchain.vectorstores`, `Annoy`, `langchain_community.vectorstores`, `Annoy`], + [`langchain.vectorstores`, `AstraDB`, `langchain_community.vectorstores`, `AstraDB`], + [`langchain.vectorstores`, `AtlasDB`, `langchain_community.vectorstores`, `AtlasDB`], + [`langchain.vectorstores`, `AwaDB`, `langchain_community.vectorstores`, `AwaDB`], + [`langchain.vectorstores`, `AzureCosmosDBVectorSearch`, `langchain_community.vectorstores`, `AzureCosmosDBVectorSearch`], + [`langchain.vectorstores`, `AzureSearch`, `langchain_community.vectorstores`, `AzureSearch`], + [`langchain.vectorstores`, `Bagel`, `langchain_community.vectorstores`, `Bagel`], + [`langchain.vectorstores`, `Cassandra`, `langchain_community.vectorstores`, `Cassandra`], + [`langchain.vectorstores`, `Chroma`, `langchain_community.vectorstores`, `Chroma`], + [`langchain.vectorstores`, `Clarifai`, `langchain_community.vectorstores`, `Clarifai`], + [`langchain.vectorstores`, `Clickhouse`, `langchain_community.vectorstores`, `Clickhouse`], + [`langchain.vectorstores`, `ClickhouseSettings`, `langchain_community.vectorstores`, `ClickhouseSettings`], + [`langchain.vectorstores`, `DashVector`, `langchain_community.vectorstores`, `DashVector`], + [`langchain.vectorstores`, `DatabricksVectorSearch`, `langchain_community.vectorstores`, `DatabricksVectorSearch`], + [`langchain.vectorstores`, `DeepLake`, `langchain_community.vectorstores`, `DeepLake`], + [`langchain.vectorstores`, `Dingo`, `langchain_community.vectorstores`, `Dingo`], + [`langchain.vectorstores`, `DocArrayHnswSearch`, `langchain_community.vectorstores`, `DocArrayHnswSearch`], + [`langchain.vectorstores`, `DocArrayInMemorySearch`, `langchain_community.vectorstores`, `DocArrayInMemorySearch`], + [`langchain.vectorstores`, `DuckDB`, `langchain_community.vectorstores`, `DuckDB`], + [`langchain.vectorstores`, `EcloudESVectorStore`, `langchain_community.vectorstores`, `EcloudESVectorStore`], + [`langchain.vectorstores`, `ElasticKnnSearch`, `langchain_community.vectorstores`, `ElasticKnnSearch`], + [`langchain.vectorstores`, `ElasticsearchStore`, `langchain_community.vectorstores`, `ElasticsearchStore`], + [`langchain.vectorstores`, `ElasticVectorSearch`, `langchain_community.vectorstores`, `ElasticVectorSearch`], + [`langchain.vectorstores`, `Epsilla`, `langchain_community.vectorstores`, `Epsilla`], + [`langchain.vectorstores`, `FAISS`, `langchain_community.vectorstores`, `FAISS`], + [`langchain.vectorstores`, `Hologres`, `langchain_community.vectorstores`, `Hologres`], + [`langchain.vectorstores`, `LanceDB`, `langchain_community.vectorstores`, `LanceDB`], + [`langchain.vectorstores`, `LLMRails`, `langchain_community.vectorstores`, `LLMRails`], + [`langchain.vectorstores`, `Marqo`, `langchain_community.vectorstores`, `Marqo`], + [`langchain.vectorstores`, `MatchingEngine`, `langchain_community.vectorstores`, `MatchingEngine`], + [`langchain.vectorstores`, `Meilisearch`, `langchain_community.vectorstores`, `Meilisearch`], + [`langchain.vectorstores`, `Milvus`, `langchain_community.vectorstores`, `Milvus`], + [`langchain.vectorstores`, `MomentoVectorIndex`, `langchain_community.vectorstores`, `MomentoVectorIndex`], + [`langchain.vectorstores`, `MongoDBAtlasVectorSearch`, `langchain_community.vectorstores`, `MongoDBAtlasVectorSearch`], + [`langchain.vectorstores`, `MyScale`, `langchain_community.vectorstores`, `MyScale`], + [`langchain.vectorstores`, `MyScaleSettings`, `langchain_community.vectorstores`, `MyScaleSettings`], + [`langchain.vectorstores`, `Neo4jVector`, `langchain_community.vectorstores`, `Neo4jVector`], + [`langchain.vectorstores`, `NeuralDBClientVectorStore`, `langchain_community.vectorstores`, `NeuralDBClientVectorStore`], + [`langchain.vectorstores`, `NeuralDBVectorStore`, `langchain_community.vectorstores`, `NeuralDBVectorStore`], + [`langchain.vectorstores`, `OpenSearchVectorSearch`, `langchain_community.vectorstores`, `OpenSearchVectorSearch`], + [`langchain.vectorstores`, `PGEmbedding`, `langchain_community.vectorstores`, `PGEmbedding`], + [`langchain.vectorstores`, `PGVector`, `langchain_community.vectorstores`, `PGVector`], + [`langchain.vectorstores`, `Pinecone`, `langchain_community.vectorstores`, `Pinecone`], + [`langchain.vectorstores`, `Qdrant`, `langchain_community.vectorstores`, `Qdrant`], + [`langchain.vectorstores`, `Redis`, `langchain_community.vectorstores`, `Redis`], + [`langchain.vectorstores`, `Rockset`, `langchain_community.vectorstores`, `Rockset`], + [`langchain.vectorstores`, `ScaNN`, `langchain_community.vectorstores`, `ScaNN`], + [`langchain.vectorstores`, `SemaDB`, `langchain_community.vectorstores`, `SemaDB`], + [`langchain.vectorstores`, `SingleStoreDB`, `langchain_community.vectorstores`, `SingleStoreDB`], + [`langchain.vectorstores`, `SKLearnVectorStore`, `langchain_community.vectorstores`, `SKLearnVectorStore`], + [`langchain.vectorstores`, `SQLiteVSS`, `langchain_community.vectorstores`, `SQLiteVSS`], + [`langchain.vectorstores`, `StarRocks`, `langchain_community.vectorstores`, `StarRocks`], + [`langchain.vectorstores`, `SupabaseVectorStore`, `langchain_community.vectorstores`, `SupabaseVectorStore`], + [`langchain.vectorstores`, `Tair`, `langchain_community.vectorstores`, `Tair`], + [`langchain.vectorstores`, `TencentVectorDB`, `langchain_community.vectorstores`, `TencentVectorDB`], + [`langchain.vectorstores`, `Tigris`, `langchain_community.vectorstores`, `Tigris`], + [`langchain.vectorstores`, `TileDB`, `langchain_community.vectorstores`, `TileDB`], + [`langchain.vectorstores`, `TimescaleVector`, `langchain_community.vectorstores`, `TimescaleVector`], + [`langchain.vectorstores`, `Typesense`, `langchain_community.vectorstores`, `Typesense`], + [`langchain.vectorstores`, `USearch`, `langchain_community.vectorstores`, `USearch`], + [`langchain.vectorstores`, `Vald`, `langchain_community.vectorstores`, `Vald`], + [`langchain.vectorstores`, `Vearch`, `langchain_community.vectorstores`, `Vearch`], + [`langchain.vectorstores`, `Vectara`, `langchain_community.vectorstores`, `Vectara`], + [`langchain.vectorstores`, `VespaStore`, `langchain_community.vectorstores`, `VespaStore`], + [`langchain.vectorstores`, `Weaviate`, `langchain_community.vectorstores`, `Weaviate`], + [`langchain.vectorstores`, `Yellowbrick`, `langchain_community.vectorstores`, `Yellowbrick`], + [`langchain.vectorstores`, `ZepVectorStore`, `langchain_community.vectorstores`, `ZepVectorStore`], + [`langchain.vectorstores`, `Zilliz`, `langchain_community.vectorstores`, `Zilliz`], + [`langchain.vectorstores.alibabacloud_opensearch`, `AlibabaCloudOpenSearchSettings`, `langchain_community.vectorstores`, `AlibabaCloudOpenSearchSettings`], + [`langchain.vectorstores.alibabacloud_opensearch`, `AlibabaCloudOpenSearch`, `langchain_community.vectorstores`, `AlibabaCloudOpenSearch`], + [`langchain.vectorstores.analyticdb`, `AnalyticDB`, `langchain_community.vectorstores`, `AnalyticDB`], + [`langchain.vectorstores.annoy`, `Annoy`, `langchain_community.vectorstores`, `Annoy`], + [`langchain.vectorstores.astradb`, `AstraDB`, `langchain_community.vectorstores`, `AstraDB`], + [`langchain.vectorstores.atlas`, `AtlasDB`, `langchain_community.vectorstores`, `AtlasDB`], + [`langchain.vectorstores.awadb`, `AwaDB`, `langchain_community.vectorstores`, `AwaDB`], + [`langchain.vectorstores.azure_cosmos_db`, `CosmosDBSimilarityType`, `langchain_community.vectorstores.azure_cosmos_db`, `CosmosDBSimilarityType`], + [`langchain.vectorstores.azure_cosmos_db`, `AzureCosmosDBVectorSearch`, `langchain_community.vectorstores`, `AzureCosmosDBVectorSearch`], + [`langchain.vectorstores.azuresearch`, `AzureSearch`, `langchain_community.vectorstores`, `AzureSearch`], + [`langchain.vectorstores.azuresearch`, `AzureSearchVectorStoreRetriever`, `langchain_community.vectorstores.azuresearch`, `AzureSearchVectorStoreRetriever`], + [`langchain.vectorstores.bageldb`, `Bagel`, `langchain_community.vectorstores`, `Bagel`], + [`langchain.vectorstores.baiducloud_vector_search`, `BESVectorStore`, `langchain_community.vectorstores`, `BESVectorStore`], + [`langchain.vectorstores.cassandra`, `Cassandra`, `langchain_community.vectorstores`, `Cassandra`], + [`langchain.vectorstores.chroma`, `Chroma`, `langchain_community.vectorstores`, `Chroma`], + [`langchain.vectorstores.clarifai`, `Clarifai`, `langchain_community.vectorstores`, `Clarifai`], + [`langchain.vectorstores.clickhouse`, `ClickhouseSettings`, `langchain_community.vectorstores`, `ClickhouseSettings`], + [`langchain.vectorstores.clickhouse`, `Clickhouse`, `langchain_community.vectorstores`, `Clickhouse`], + [`langchain.vectorstores.dashvector`, `DashVector`, `langchain_community.vectorstores`, `DashVector`], + [`langchain.vectorstores.databricks_vector_search`, `DatabricksVectorSearch`, `langchain_community.vectorstores`, `DatabricksVectorSearch`], + [`langchain.vectorstores.deeplake`, `DeepLake`, `langchain_community.vectorstores`, `DeepLake`], + [`langchain.vectorstores.dingo`, `Dingo`, `langchain_community.vectorstores`, `Dingo`], + [`langchain.vectorstores.docarray`, `DocArrayHnswSearch`, `langchain_community.vectorstores`, `DocArrayHnswSearch`], + [`langchain.vectorstores.docarray`, `DocArrayInMemorySearch`, `langchain_community.vectorstores`, `DocArrayInMemorySearch`], + [`langchain.vectorstores.docarray.base`, `DocArrayIndex`, `langchain_community.vectorstores.docarray.base`, `DocArrayIndex`], + [`langchain.vectorstores.docarray.hnsw`, `DocArrayHnswSearch`, `langchain_community.vectorstores`, `DocArrayHnswSearch`], + [`langchain.vectorstores.docarray.in_memory`, `DocArrayInMemorySearch`, `langchain_community.vectorstores`, `DocArrayInMemorySearch`], + [`langchain.vectorstores.elastic_vector_search`, `ElasticVectorSearch`, `langchain_community.vectorstores`, `ElasticVectorSearch`], + [`langchain.vectorstores.elastic_vector_search`, `ElasticKnnSearch`, `langchain_community.vectorstores`, `ElasticKnnSearch`], + [`langchain.vectorstores.elasticsearch`, `BaseRetrievalStrategy`, `langchain_community.vectorstores.elasticsearch`, `BaseRetrievalStrategy`], + [`langchain.vectorstores.elasticsearch`, `ApproxRetrievalStrategy`, `langchain_community.vectorstores.elasticsearch`, `ApproxRetrievalStrategy`], + [`langchain.vectorstores.elasticsearch`, `ExactRetrievalStrategy`, `langchain_community.vectorstores.elasticsearch`, `ExactRetrievalStrategy`], + [`langchain.vectorstores.elasticsearch`, `SparseRetrievalStrategy`, `langchain_community.vectorstores.elasticsearch`, `SparseRetrievalStrategy`], + [`langchain.vectorstores.elasticsearch`, `ElasticsearchStore`, `langchain_community.vectorstores`, `ElasticsearchStore`], + [`langchain.vectorstores.epsilla`, `Epsilla`, `langchain_community.vectorstores`, `Epsilla`], + [`langchain.vectorstores.faiss`, `FAISS`, `langchain_community.vectorstores`, `FAISS`], + [`langchain.vectorstores.hippo`, `Hippo`, `langchain_community.vectorstores.hippo`, `Hippo`], + [`langchain.vectorstores.hologres`, `Hologres`, `langchain_community.vectorstores`, `Hologres`], + [`langchain.vectorstores.lancedb`, `LanceDB`, `langchain_community.vectorstores`, `LanceDB`], + [`langchain.vectorstores.llm_rails`, `LLMRails`, `langchain_community.vectorstores`, `LLMRails`], + [`langchain.vectorstores.llm_rails`, `LLMRailsRetriever`, `langchain_community.vectorstores.llm_rails`, `LLMRailsRetriever`], + [`langchain.vectorstores.marqo`, `Marqo`, `langchain_community.vectorstores`, `Marqo`], + [`langchain.vectorstores.matching_engine`, `MatchingEngine`, `langchain_community.vectorstores`, `MatchingEngine`], + [`langchain.vectorstores.meilisearch`, `Meilisearch`, `langchain_community.vectorstores`, `Meilisearch`], + [`langchain.vectorstores.milvus`, `Milvus`, `langchain_community.vectorstores`, `Milvus`], + [`langchain.vectorstores.momento_vector_index`, `MomentoVectorIndex`, `langchain_community.vectorstores`, `MomentoVectorIndex`], + [`langchain.vectorstores.mongodb_atlas`, `MongoDBAtlasVectorSearch`, `langchain_community.vectorstores`, `MongoDBAtlasVectorSearch`], + [`langchain.vectorstores.myscale`, `MyScaleSettings`, `langchain_community.vectorstores`, `MyScaleSettings`], + [`langchain.vectorstores.myscale`, `MyScale`, `langchain_community.vectorstores`, `MyScale`], + [`langchain.vectorstores.myscale`, `MyScaleWithoutJSON`, `langchain_community.vectorstores.myscale`, `MyScaleWithoutJSON`], + [`langchain.vectorstores.neo4j_vector`, `SearchType`, `langchain_community.vectorstores.neo4j_vector`, `SearchType`], + [`langchain.vectorstores.neo4j_vector`, `Neo4jVector`, `langchain_community.vectorstores`, `Neo4jVector`], + [`langchain.vectorstores.nucliadb`, `NucliaDB`, `langchain_community.vectorstores.nucliadb`, `NucliaDB`], + [`langchain.vectorstores.opensearch_vector_search`, `OpenSearchVectorSearch`, `langchain_community.vectorstores`, `OpenSearchVectorSearch`], + [`langchain.vectorstores.pgembedding`, `CollectionStore`, `langchain_community.vectorstores.pgembedding`, `CollectionStore`], + [`langchain.vectorstores.pgembedding`, `EmbeddingStore`, `langchain_community.vectorstores.pgembedding`, `EmbeddingStore`], + [`langchain.vectorstores.pgembedding`, `QueryResult`, `langchain_community.vectorstores.pgembedding`, `QueryResult`], + [`langchain.vectorstores.pgembedding`, `PGEmbedding`, `langchain_community.vectorstores`, `PGEmbedding`], + [`langchain.vectorstores.pgvecto_rs`, `PGVecto_rs`, `langchain_community.vectorstores.pgvecto_rs`, `PGVecto_rs`], + [`langchain.vectorstores.pgvector`, `DistanceStrategy`, `langchain_community.vectorstores.pgvector`, `DistanceStrategy`], + [`langchain.vectorstores.pgvector`, `PGVector`, `langchain_community.vectorstores`, `PGVector`], + [`langchain.vectorstores.pinecone`, `Pinecone`, `langchain_community.vectorstores`, `Pinecone`], + [`langchain.vectorstores.qdrant`, `QdrantException`, `langchain_community.vectorstores.qdrant`, `QdrantException`], + [`langchain.vectorstores.qdrant`, `Qdrant`, `langchain_community.vectorstores`, `Qdrant`], + [`langchain.vectorstores.redis`, `Redis`, `langchain_community.vectorstores`, `Redis`], + [`langchain.vectorstores.redis`, `RedisFilter`, `langchain_community.vectorstores.redis.filters`, `RedisFilter`], + [`langchain.vectorstores.redis`, `RedisTag`, `langchain_community.vectorstores.redis.filters`, `RedisTag`], + [`langchain.vectorstores.redis`, `RedisText`, `langchain_community.vectorstores.redis.filters`, `RedisText`], + [`langchain.vectorstores.redis`, `RedisNum`, `langchain_community.vectorstores.redis.filters`, `RedisNum`], + [`langchain.vectorstores.redis`, `RedisVectorStoreRetriever`, `langchain_community.vectorstores.redis.base`, `RedisVectorStoreRetriever`], + [`langchain.vectorstores.redis.base`, `check_index_exists`, `langchain_community.vectorstores.redis.base`, `check_index_exists`], + [`langchain.vectorstores.redis.base`, `Redis`, `langchain_community.vectorstores`, `Redis`], + [`langchain.vectorstores.redis.base`, `RedisVectorStoreRetriever`, `langchain_community.vectorstores.redis.base`, `RedisVectorStoreRetriever`], + [`langchain.vectorstores.redis.filters`, `RedisFilterOperator`, `langchain_community.vectorstores.redis.filters`, `RedisFilterOperator`], + [`langchain.vectorstores.redis.filters`, `RedisFilter`, `langchain_community.vectorstores.redis.filters`, `RedisFilter`], + [`langchain.vectorstores.redis.filters`, `RedisFilterField`, `langchain_community.vectorstores.redis.filters`, `RedisFilterField`], + [`langchain.vectorstores.redis.filters`, `check_operator_misuse`, `langchain_community.vectorstores.redis.filters`, `check_operator_misuse`], + [`langchain.vectorstores.redis.filters`, `RedisTag`, `langchain_community.vectorstores.redis.filters`, `RedisTag`], + [`langchain.vectorstores.redis.filters`, `RedisNum`, `langchain_community.vectorstores.redis.filters`, `RedisNum`], + [`langchain.vectorstores.redis.filters`, `RedisText`, `langchain_community.vectorstores.redis.filters`, `RedisText`], + [`langchain.vectorstores.redis.filters`, `RedisFilterExpression`, `langchain_community.vectorstores.redis.filters`, `RedisFilterExpression`], + [`langchain.vectorstores.redis.schema`, `RedisDistanceMetric`, `langchain_community.vectorstores.redis.schema`, `RedisDistanceMetric`], + [`langchain.vectorstores.redis.schema`, `RedisField`, `langchain_community.vectorstores.redis.schema`, `RedisField`], + [`langchain.vectorstores.redis.schema`, `TextFieldSchema`, `langchain_community.vectorstores.redis.schema`, `TextFieldSchema`], + [`langchain.vectorstores.redis.schema`, `TagFieldSchema`, `langchain_community.vectorstores.redis.schema`, `TagFieldSchema`], + [`langchain.vectorstores.redis.schema`, `NumericFieldSchema`, `langchain_community.vectorstores.redis.schema`, `NumericFieldSchema`], + [`langchain.vectorstores.redis.schema`, `RedisVectorField`, `langchain_community.vectorstores.redis.schema`, `RedisVectorField`], + [`langchain.vectorstores.redis.schema`, `FlatVectorField`, `langchain_community.vectorstores.redis.schema`, `FlatVectorField`], + [`langchain.vectorstores.redis.schema`, `HNSWVectorField`, `langchain_community.vectorstores.redis.schema`, `HNSWVectorField`], + [`langchain.vectorstores.redis.schema`, `RedisModel`, `langchain_community.vectorstores.redis.schema`, `RedisModel`], + [`langchain.vectorstores.redis.schema`, `read_schema`, `langchain_community.vectorstores.redis.schema`, `read_schema`], + [`langchain.vectorstores.rocksetdb`, `Rockset`, `langchain_community.vectorstores`, `Rockset`], + [`langchain.vectorstores.scann`, `ScaNN`, `langchain_community.vectorstores`, `ScaNN`], + [`langchain.vectorstores.semadb`, `SemaDB`, `langchain_community.vectorstores`, `SemaDB`], + [`langchain.vectorstores.singlestoredb`, `SingleStoreDB`, `langchain_community.vectorstores`, `SingleStoreDB`], + [`langchain.vectorstores.sklearn`, `BaseSerializer`, `langchain_community.vectorstores.sklearn`, `BaseSerializer`], + [`langchain.vectorstores.sklearn`, `JsonSerializer`, `langchain_community.vectorstores.sklearn`, `JsonSerializer`], + [`langchain.vectorstores.sklearn`, `BsonSerializer`, `langchain_community.vectorstores.sklearn`, `BsonSerializer`], + [`langchain.vectorstores.sklearn`, `ParquetSerializer`, `langchain_community.vectorstores.sklearn`, `ParquetSerializer`], + [`langchain.vectorstores.sklearn`, `SKLearnVectorStoreException`, `langchain_community.vectorstores.sklearn`, `SKLearnVectorStoreException`], + [`langchain.vectorstores.sklearn`, `SKLearnVectorStore`, `langchain_community.vectorstores`, `SKLearnVectorStore`], + [`langchain.vectorstores.sqlitevss`, `SQLiteVSS`, `langchain_community.vectorstores`, `SQLiteVSS`], + [`langchain.vectorstores.starrocks`, `StarRocksSettings`, `langchain_community.vectorstores.starrocks`, `StarRocksSettings`], + [`langchain.vectorstores.starrocks`, `StarRocks`, `langchain_community.vectorstores`, `StarRocks`], + [`langchain.vectorstores.supabase`, `SupabaseVectorStore`, `langchain_community.vectorstores`, `SupabaseVectorStore`], + [`langchain.vectorstores.tair`, `Tair`, `langchain_community.vectorstores`, `Tair`], + [`langchain.vectorstores.tencentvectordb`, `ConnectionParams`, `langchain_community.vectorstores.tencentvectordb`, `ConnectionParams`], + [`langchain.vectorstores.tencentvectordb`, `IndexParams`, `langchain_community.vectorstores.tencentvectordb`, `IndexParams`], + [`langchain.vectorstores.tencentvectordb`, `TencentVectorDB`, `langchain_community.vectorstores`, `TencentVectorDB`], + [`langchain.vectorstores.tigris`, `Tigris`, `langchain_community.vectorstores`, `Tigris`], + [`langchain.vectorstores.tiledb`, `TileDB`, `langchain_community.vectorstores`, `TileDB`], + [`langchain.vectorstores.timescalevector`, `TimescaleVector`, `langchain_community.vectorstores`, `TimescaleVector`], + [`langchain.vectorstores.typesense`, `Typesense`, `langchain_community.vectorstores`, `Typesense`], + [`langchain.vectorstores.usearch`, `USearch`, `langchain_community.vectorstores`, `USearch`], + [`langchain.vectorstores.utils`, `DistanceStrategy`, `langchain_community.vectorstores.utils`, `DistanceStrategy`], + [`langchain.vectorstores.utils`, `maximal_marginal_relevance`, `langchain_community.vectorstores.utils`, `maximal_marginal_relevance`], + [`langchain.vectorstores.utils`, `filter_complex_metadata`, `langchain_community.vectorstores.utils`, `filter_complex_metadata`], + [`langchain.vectorstores.vald`, `Vald`, `langchain_community.vectorstores`, `Vald`], + [`langchain.vectorstores.vearch`, `Vearch`, `langchain_community.vectorstores`, `Vearch`], + [`langchain.vectorstores.vectara`, `Vectara`, `langchain_community.vectorstores`, `Vectara`], + [`langchain.vectorstores.vectara`, `VectaraRetriever`, `langchain_community.vectorstores.vectara`, `VectaraRetriever`], + [`langchain.vectorstores.vespa`, `VespaStore`, `langchain_community.vectorstores`, `VespaStore`], + [`langchain.vectorstores.weaviate`, `Weaviate`, `langchain_community.vectorstores`, `Weaviate`], + [`langchain.vectorstores.xata`, `XataVectorStore`, `langchain_community.vectorstores.xata`, `XataVectorStore`], + [`langchain.vectorstores.yellowbrick`, `Yellowbrick`, `langchain_community.vectorstores`, `Yellowbrick`], + [`langchain.vectorstores.zep`, `CollectionConfig`, `langchain_community.vectorstores.zep`, `CollectionConfig`], + [`langchain.vectorstores.zep`, `ZepVectorStore`, `langchain_community.vectorstores`, `ZepVectorStore`], + [`langchain.vectorstores.zilliz`, `Zilliz`, `langchain_community.vectorstores`, `Zilliz`] + ]) +} + +// Add this for invoking directly +langchain_migrate_langchain_to_langchain_community() diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_textsplitters.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_textsplitters.grit new file mode 100644 index 0000000000000..bf51472d9faaa --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_textsplitters.grit @@ -0,0 +1,31 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_langchain_to_textsplitters() { + find_replace_imports(list=[ + [`langchain.text_splitter`, `TokenTextSplitter`, `langchain_text_splitters`, `TokenTextSplitter`], + [`langchain.text_splitter`, `TextSplitter`, `langchain_text_splitters`, `TextSplitter`], + [`langchain.text_splitter`, `Tokenizer`, `langchain_text_splitters`, `Tokenizer`], + [`langchain.text_splitter`, `Language`, `langchain_text_splitters`, `Language`], + [`langchain.text_splitter`, `RecursiveCharacterTextSplitter`, `langchain_text_splitters`, `RecursiveCharacterTextSplitter`], + [`langchain.text_splitter`, `RecursiveJsonSplitter`, `langchain_text_splitters`, `RecursiveJsonSplitter`], + [`langchain.text_splitter`, `LatexTextSplitter`, `langchain_text_splitters`, `LatexTextSplitter`], + [`langchain.text_splitter`, `PythonCodeTextSplitter`, `langchain_text_splitters`, `PythonCodeTextSplitter`], + [`langchain.text_splitter`, `KonlpyTextSplitter`, `langchain_text_splitters`, `KonlpyTextSplitter`], + [`langchain.text_splitter`, `SpacyTextSplitter`, `langchain_text_splitters`, `SpacyTextSplitter`], + [`langchain.text_splitter`, `NLTKTextSplitter`, `langchain_text_splitters`, `NLTKTextSplitter`], + [`langchain.text_splitter`, `split_text_on_tokens`, `langchain_text_splitters`, `split_text_on_tokens`], + [`langchain.text_splitter`, `SentenceTransformersTokenTextSplitter`, `langchain_text_splitters`, `SentenceTransformersTokenTextSplitter`], + [`langchain.text_splitter`, `ElementType`, `langchain_text_splitters`, `ElementType`], + [`langchain.text_splitter`, `HeaderType`, `langchain_text_splitters`, `HeaderType`], + [`langchain.text_splitter`, `LineType`, `langchain_text_splitters`, `LineType`], + [`langchain.text_splitter`, `HTMLHeaderTextSplitter`, `langchain_text_splitters`, `HTMLHeaderTextSplitter`], + [`langchain.text_splitter`, `MarkdownHeaderTextSplitter`, `langchain_text_splitters`, `MarkdownHeaderTextSplitter`], + [`langchain.text_splitter`, `MarkdownTextSplitter`, `langchain_text_splitters`, `MarkdownTextSplitter`], + [`langchain.text_splitter`, `CharacterTextSplitter`, `langchain_text_splitters`, `CharacterTextSplitter`] + ]) +} + +// Add this for invoking directly +langchain_migrate_langchain_to_textsplitters() diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_text_splitters.json b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_textsplitters.json similarity index 83% rename from libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_text_splitters.json rename to libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_textsplitters.json index 85ef91a747dc3..b3b7b0b19c051 100644 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_text_splitters.json +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/langchain_to_textsplitters.json @@ -7,14 +7,8 @@ "langchain.text_splitter.TextSplitter", "langchain_text_splitters.TextSplitter" ], - [ - "langchain.text_splitter.Tokenizer", - "langchain_text_splitters.Tokenizer" - ], - [ - "langchain.text_splitter.Language", - "langchain_text_splitters.Language" - ], + ["langchain.text_splitter.Tokenizer", "langchain_text_splitters.Tokenizer"], + ["langchain.text_splitter.Language", "langchain_text_splitters.Language"], [ "langchain.text_splitter.RecursiveCharacterTextSplitter", "langchain_text_splitters.RecursiveCharacterTextSplitter" @@ -55,14 +49,8 @@ "langchain.text_splitter.ElementType", "langchain_text_splitters.ElementType" ], - [ - "langchain.text_splitter.HeaderType", - "langchain_text_splitters.HeaderType" - ], - [ - "langchain.text_splitter.LineType", - "langchain_text_splitters.LineType" - ], + ["langchain.text_splitter.HeaderType", "langchain_text_splitters.HeaderType"], + ["langchain.text_splitter.LineType", "langchain_text_splitters.LineType"], [ "langchain.text_splitter.HTMLHeaderTextSplitter", "langchain_text_splitters.HTMLHeaderTextSplitter" @@ -79,4 +67,4 @@ "langchain.text_splitter.CharacterTextSplitter", "langchain_text_splitters.CharacterTextSplitter" ] -] \ No newline at end of file +] diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/openai.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/openai.grit new file mode 100644 index 0000000000000..c639f5f38abb8 --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/openai.grit @@ -0,0 +1,23 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_openai() { + find_replace_imports(list=[ + [`langchain_community.embeddings.openai`, `OpenAIEmbeddings`, `langchain_openai`, `OpenAIEmbeddings`], + [`langchain_community.embeddings.azure_openai`, `AzureOpenAIEmbeddings`, `langchain_openai`, `AzureOpenAIEmbeddings`], + [`langchain_community.chat_models.openai`, `ChatOpenAI`, `langchain_openai`, `ChatOpenAI`], + [`langchain_community.chat_models.azure_openai`, `AzureChatOpenAI`, `langchain_openai`, `AzureChatOpenAI`], + [`langchain_community.llms.openai`, `OpenAI`, `langchain_openai`, `OpenAI`], + [`langchain_community.llms.openai`, `AzureOpenAI`, `langchain_openai`, `AzureOpenAI`], + [`langchain_community.embeddings`, `AzureOpenAIEmbeddings`, `langchain_openai`, `AzureOpenAIEmbeddings`], + [`langchain_community.embeddings`, `OpenAIEmbeddings`, `langchain_openai`, `OpenAIEmbeddings`], + [`langchain_community.chat_models`, `AzureChatOpenAI`, `langchain_openai`, `AzureChatOpenAI`], + [`langchain_community.chat_models`, `ChatOpenAI`, `langchain_openai`, `ChatOpenAI`], + [`langchain_community.llms`, `AzureOpenAI`, `langchain_openai`, `AzureOpenAI`], + [`langchain_community.llms`, `OpenAI`, `langchain_openai`, `OpenAI`] + ]) +} + +// Add this for invoking directly +langchain_migrate_openai() diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/pinecone.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/pinecone.grit new file mode 100644 index 0000000000000..190f24cd44a5d --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/pinecone.grit @@ -0,0 +1,13 @@ + +language python + +// This migration is generated automatically - do not manually edit this file +pattern langchain_migrate_pinecone() { + find_replace_imports(list=[ + [`langchain_community.vectorstores.pinecone`, `Pinecone`, `langchain_pinecone`, `Pinecone`], + [`langchain_community.vectorstores`, `Pinecone`, `langchain_pinecone`, `Pinecone`] + ]) +} + +// Add this for invoking directly +langchain_migrate_pinecone() diff --git a/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/replace_pydantic_v1_shim.grit b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/replace_pydantic_v1_shim.grit new file mode 100644 index 0000000000000..c3df68dbfe859 --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/.grit/patterns/replace_pydantic_v1_shim.grit @@ -0,0 +1,36 @@ +language python + +// This migration is generated automatically - do not manually edit this file +pattern replace_pydantic_v1_shim() { + `from $IMPORT import $...` where { + or { + and { + $IMPORT <: or { + "langchain_core.pydantic_v1", + "langchain.pydantic_v1", + "langserve.pydantic_v1", + }, + $IMPORT => `pydantic` + }, + and { + $IMPORT <: or { + "langchain_core.pydantic_v1.data_classes", + "langchain.pydantic_v1.data_classes", + "langserve.pydantic_v1.data_classes", + }, + $IMPORT => `pydantic.data_classes` + }, + and { + $IMPORT <: or { + "langchain_core.pydantic_v1.main", + "langchain.pydantic_v1.main", + "langserve.pydantic_v1.main", + }, + $IMPORT => `pydantic.main` + }, + } + } +} + +// Add this for invoking directly + replace_pydantic_v1_shim() diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/__init__.py b/libs/cli/langchain_cli/namespaces/migrate/codemods/__init__.py deleted file mode 100644 index 151bd81696c85..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/__init__.py +++ /dev/null @@ -1,45 +0,0 @@ -from enum import Enum -from typing import List, Type - -from libcst.codemod import ContextAwareTransformer -from libcst.codemod.visitors import AddImportsVisitor, RemoveImportsVisitor - -from langchain_cli.namespaces.migrate.codemods.replace_imports import ( - generate_import_replacer, -) - - -class Rule(str, Enum): - langchain_to_community = "langchain_to_community" - """Replace deprecated langchain imports with current ones in community.""" - langchain_to_core = "langchain_to_core" - """Replace deprecated langchain imports with current ones in core.""" - langchain_to_text_splitters = "langchain_to_text_splitters" - """Replace deprecated langchain imports with current ones in text splitters.""" - community_to_core = "community_to_core" - """Replace deprecated community imports with current ones in core.""" - community_to_partner = "community_to_partner" - """Replace deprecated community imports with current ones in partner.""" - - -def gather_codemods(disabled: List[Rule]) -> List[Type[ContextAwareTransformer]]: - """Gather codemods based on the disabled rules.""" - codemods: List[Type[ContextAwareTransformer]] = [] - - # Import rules - import_rules = { - Rule.langchain_to_community, - Rule.langchain_to_core, - Rule.community_to_core, - Rule.community_to_partner, - Rule.langchain_to_text_splitters, - } - - # Find active import rules - active_import_rules = import_rules - set(disabled) - - if active_import_rules: - codemods.append(generate_import_replacer(active_import_rules)) - # Those codemods need to be the last ones. - codemods.extend([RemoveImportsVisitor, AddImportsVisitor]) - return codemods diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/anthropic.json b/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/anthropic.json deleted file mode 100644 index 868648254e39a..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/anthropic.json +++ /dev/null @@ -1,18 +0,0 @@ -[ - [ - "langchain_community.llms.anthropic.Anthropic", - "langchain_anthropic.Anthropic" - ], - [ - "langchain_community.chat_models.anthropic.ChatAnthropic", - "langchain_anthropic.ChatAnthropic" - ], - [ - "langchain_community.llms.Anthropic", - "langchain_anthropic.Anthropic" - ], - [ - "langchain_community.chat_models.ChatAnthropic", - "langchain_anthropic.ChatAnthropic" - ] -] \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/astradb.json b/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/astradb.json deleted file mode 100644 index eeb3bc196d39a..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/astradb.json +++ /dev/null @@ -1,30 +0,0 @@ -[ - [ - "langchain_community.vectorstores.astradb.AstraDB", - "langchain_astradb.AstraDBVectorStore" - ], - [ - "langchain_community.storage.astradb.AstraDBByteStore", - "langchain_astradb.AstraDBByteStore" - ], - [ - "langchain_community.storage.astradb.AstraDBStore", - "langchain_astradb.AstraDBStore" - ], - [ - "langchain_community.cache.AstraDBCache", - "langchain_astradb.AstraDBCache" - ], - [ - "langchain_community.cache.AstraDBSemanticCache", - "langchain_astradb.AstraDBSemanticCache" - ], - [ - "langchain_community.chat_message_histories.astradb.AstraDBChatMessageHistory", - "langchain_astradb.AstraDBChatMessageHistory" - ], - [ - "langchain_community.document_loaders.astradb.AstraDBLoader", - "langchain_astradb.AstraDBLoader" - ] -] diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/fireworks.json b/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/fireworks.json deleted file mode 100644 index f0f00035434b3..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/fireworks.json +++ /dev/null @@ -1,18 +0,0 @@ -[ - [ - "langchain_community.llms.fireworks.Fireworks", - "langchain_fireworks.Fireworks" - ], - [ - "langchain_community.chat_models.fireworks.ChatFireworks", - "langchain_fireworks.ChatFireworks" - ], - [ - "langchain_community.llms.Fireworks", - "langchain_fireworks.Fireworks" - ], - [ - "langchain_community.chat_models.ChatFireworks", - "langchain_fireworks.ChatFireworks" - ] -] \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/ibm.json b/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/ibm.json deleted file mode 100644 index 0f605485818ca..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/ibm.json +++ /dev/null @@ -1,10 +0,0 @@ -[ - [ - "langchain_community.llms.watsonxllm.WatsonxLLM", - "langchain_ibm.WatsonxLLM" - ], - [ - "langchain_community.llms.WatsonxLLM", - "langchain_ibm.WatsonxLLM" - ] -] \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_community.json b/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_community.json deleted file mode 100644 index e6ea9e0f40f0a..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/langchain_to_community.json +++ /dev/null @@ -1,7670 +0,0 @@ -[ - [ - "langchain.adapters.openai.IndexableBaseModel", - "langchain_community.adapters.openai.IndexableBaseModel" - ], - [ - "langchain.adapters.openai.Choice", - "langchain_community.adapters.openai.Choice" - ], - [ - "langchain.adapters.openai.ChatCompletions", - "langchain_community.adapters.openai.ChatCompletions" - ], - [ - "langchain.adapters.openai.ChoiceChunk", - "langchain_community.adapters.openai.ChoiceChunk" - ], - [ - "langchain.adapters.openai.ChatCompletionChunk", - "langchain_community.adapters.openai.ChatCompletionChunk" - ], - [ - "langchain.adapters.openai.convert_dict_to_message", - "langchain_community.adapters.openai.convert_dict_to_message" - ], - [ - "langchain.adapters.openai.convert_message_to_dict", - "langchain_community.adapters.openai.convert_message_to_dict" - ], - [ - "langchain.adapters.openai.convert_openai_messages", - "langchain_community.adapters.openai.convert_openai_messages" - ], - [ - "langchain.adapters.openai.ChatCompletion", - "langchain_community.adapters.openai.ChatCompletion" - ], - [ - "langchain.adapters.openai.convert_messages_for_finetuning", - "langchain_community.adapters.openai.convert_messages_for_finetuning" - ], - [ - "langchain.adapters.openai.Completions", - "langchain_community.adapters.openai.Completions" - ], - [ - "langchain.adapters.openai.Chat", - "langchain_community.adapters.openai.Chat" - ], - [ - "langchain.agents.create_json_agent", - "langchain_community.agent_toolkits.create_json_agent" - ], - [ - "langchain.agents.create_openapi_agent", - "langchain_community.agent_toolkits.create_openapi_agent" - ], - [ - "langchain.agents.create_pbi_agent", - "langchain_community.agent_toolkits.create_pbi_agent" - ], - [ - "langchain.agents.create_pbi_chat_agent", - "langchain_community.agent_toolkits.create_pbi_chat_agent" - ], - [ - "langchain.agents.create_spark_sql_agent", - "langchain_community.agent_toolkits.create_spark_sql_agent" - ], - [ - "langchain.agents.create_sql_agent", - "langchain_community.agent_toolkits.create_sql_agent" - ], - [ - "langchain.agents.agent_toolkits.AINetworkToolkit", - "langchain_community.agent_toolkits.AINetworkToolkit" - ], - [ - "langchain.agents.agent_toolkits.AmadeusToolkit", - "langchain_community.agent_toolkits.AmadeusToolkit" - ], - [ - "langchain.agents.agent_toolkits.AzureCognitiveServicesToolkit", - "langchain_community.agent_toolkits.AzureCognitiveServicesToolkit" - ], - [ - "langchain.agents.agent_toolkits.FileManagementToolkit", - "langchain_community.agent_toolkits.FileManagementToolkit" - ], - [ - "langchain.agents.agent_toolkits.GmailToolkit", - "langchain_community.agent_toolkits.GmailToolkit" - ], - [ - "langchain.agents.agent_toolkits.JiraToolkit", - "langchain_community.agent_toolkits.JiraToolkit" - ], - [ - "langchain.agents.agent_toolkits.JsonToolkit", - "langchain_community.agent_toolkits.JsonToolkit" - ], - [ - "langchain.agents.agent_toolkits.MultionToolkit", - "langchain_community.agent_toolkits.MultionToolkit" - ], - [ - "langchain.agents.agent_toolkits.NasaToolkit", - "langchain_community.agent_toolkits.NasaToolkit" - ], - [ - "langchain.agents.agent_toolkits.NLAToolkit", - "langchain_community.agent_toolkits.NLAToolkit" - ], - [ - "langchain.agents.agent_toolkits.O365Toolkit", - "langchain_community.agent_toolkits.O365Toolkit" - ], - [ - "langchain.agents.agent_toolkits.OpenAPIToolkit", - "langchain_community.agent_toolkits.OpenAPIToolkit" - ], - [ - "langchain.agents.agent_toolkits.PlayWrightBrowserToolkit", - "langchain_community.agent_toolkits.PlayWrightBrowserToolkit" - ], - [ - "langchain.agents.agent_toolkits.PowerBIToolkit", - "langchain_community.agent_toolkits.PowerBIToolkit" - ], - [ - "langchain.agents.agent_toolkits.SlackToolkit", - "langchain_community.agent_toolkits.SlackToolkit" - ], - [ - "langchain.agents.agent_toolkits.SteamToolkit", - "langchain_community.agent_toolkits.SteamToolkit" - ], - [ - "langchain.agents.agent_toolkits.SQLDatabaseToolkit", - "langchain_community.agent_toolkits.SQLDatabaseToolkit" - ], - [ - "langchain.agents.agent_toolkits.SparkSQLToolkit", - "langchain_community.agent_toolkits.SparkSQLToolkit" - ], - [ - "langchain.agents.agent_toolkits.ZapierToolkit", - "langchain_community.agent_toolkits.ZapierToolkit" - ], - [ - "langchain.agents.agent_toolkits.create_json_agent", - "langchain_community.agent_toolkits.create_json_agent" - ], - [ - "langchain.agents.agent_toolkits.create_openapi_agent", - "langchain_community.agent_toolkits.create_openapi_agent" - ], - [ - "langchain.agents.agent_toolkits.create_pbi_agent", - "langchain_community.agent_toolkits.create_pbi_agent" - ], - [ - "langchain.agents.agent_toolkits.create_pbi_chat_agent", - "langchain_community.agent_toolkits.create_pbi_chat_agent" - ], - [ - "langchain.agents.agent_toolkits.create_spark_sql_agent", - "langchain_community.agent_toolkits.create_spark_sql_agent" - ], - [ - "langchain.agents.agent_toolkits.create_sql_agent", - "langchain_community.agent_toolkits.create_sql_agent" - ], - [ - "langchain.agents.agent_toolkits.ainetwork.toolkit.AINetworkToolkit", - "langchain_community.agent_toolkits.AINetworkToolkit" - ], - [ - "langchain.agents.agent_toolkits.azure_cognitive_services.AzureCognitiveServicesToolkit", - "langchain_community.agent_toolkits.AzureCognitiveServicesToolkit" - ], - [ - "langchain.agents.agent_toolkits.base.BaseToolkit", - "langchain_community.agent_toolkits.base.BaseToolkit" - ], - [ - "langchain.agents.agent_toolkits.clickup.toolkit.ClickupToolkit", - "langchain_community.agent_toolkits.clickup.toolkit.ClickupToolkit" - ], - [ - "langchain.agents.agent_toolkits.file_management.FileManagementToolkit", - "langchain_community.agent_toolkits.FileManagementToolkit" - ], - [ - "langchain.agents.agent_toolkits.file_management.toolkit.FileManagementToolkit", - "langchain_community.agent_toolkits.FileManagementToolkit" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.NoInput", - "langchain_community.agent_toolkits.github.toolkit.NoInput" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.GetIssue", - "langchain_community.agent_toolkits.github.toolkit.GetIssue" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.CommentOnIssue", - "langchain_community.agent_toolkits.github.toolkit.CommentOnIssue" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.GetPR", - "langchain_community.agent_toolkits.github.toolkit.GetPR" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.CreatePR", - "langchain_community.agent_toolkits.github.toolkit.CreatePR" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.CreateFile", - "langchain_community.agent_toolkits.github.toolkit.CreateFile" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.ReadFile", - "langchain_community.agent_toolkits.github.toolkit.ReadFile" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.UpdateFile", - "langchain_community.agent_toolkits.github.toolkit.UpdateFile" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.DeleteFile", - "langchain_community.agent_toolkits.github.toolkit.DeleteFile" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.DirectoryPath", - "langchain_community.agent_toolkits.github.toolkit.DirectoryPath" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.BranchName", - "langchain_community.agent_toolkits.github.toolkit.BranchName" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.SearchCode", - "langchain_community.agent_toolkits.github.toolkit.SearchCode" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.CreateReviewRequest", - "langchain_community.agent_toolkits.github.toolkit.CreateReviewRequest" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.SearchIssuesAndPRs", - "langchain_community.agent_toolkits.github.toolkit.SearchIssuesAndPRs" - ], - [ - "langchain.agents.agent_toolkits.github.toolkit.GitHubToolkit", - "langchain_community.agent_toolkits.github.toolkit.GitHubToolkit" - ], - [ - "langchain.agents.agent_toolkits.gitlab.toolkit.GitLabToolkit", - "langchain_community.agent_toolkits.gitlab.toolkit.GitLabToolkit" - ], - [ - "langchain.agents.agent_toolkits.gmail.toolkit.GmailToolkit", - "langchain_community.agent_toolkits.GmailToolkit" - ], - [ - "langchain.agents.agent_toolkits.jira.toolkit.JiraToolkit", - "langchain_community.agent_toolkits.JiraToolkit" - ], - [ - "langchain.agents.agent_toolkits.json.base.create_json_agent", - "langchain_community.agent_toolkits.create_json_agent" - ], - [ - "langchain.agents.agent_toolkits.json.toolkit.JsonToolkit", - "langchain_community.agent_toolkits.JsonToolkit" - ], - [ - "langchain.agents.agent_toolkits.multion.toolkit.MultionToolkit", - "langchain_community.agent_toolkits.MultionToolkit" - ], - [ - "langchain.agents.agent_toolkits.nasa.toolkit.NasaToolkit", - "langchain_community.agent_toolkits.NasaToolkit" - ], - [ - "langchain.agents.agent_toolkits.nla.tool.NLATool", - "langchain_community.agent_toolkits.nla.tool.NLATool" - ], - [ - "langchain.agents.agent_toolkits.nla.toolkit.NLAToolkit", - "langchain_community.agent_toolkits.NLAToolkit" - ], - [ - "langchain.agents.agent_toolkits.office365.toolkit.O365Toolkit", - "langchain_community.agent_toolkits.O365Toolkit" - ], - [ - "langchain.agents.agent_toolkits.openapi.base.create_openapi_agent", - "langchain_community.agent_toolkits.create_openapi_agent" - ], - [ - "langchain.agents.agent_toolkits.openapi.planner.RequestsGetToolWithParsing", - "langchain_community.agent_toolkits.openapi.planner.RequestsGetToolWithParsing" - ], - [ - "langchain.agents.agent_toolkits.openapi.planner.RequestsPostToolWithParsing", - "langchain_community.agent_toolkits.openapi.planner.RequestsPostToolWithParsing" - ], - [ - "langchain.agents.agent_toolkits.openapi.planner.RequestsPatchToolWithParsing", - "langchain_community.agent_toolkits.openapi.planner.RequestsPatchToolWithParsing" - ], - [ - "langchain.agents.agent_toolkits.openapi.planner.RequestsPutToolWithParsing", - "langchain_community.agent_toolkits.openapi.planner.RequestsPutToolWithParsing" - ], - [ - "langchain.agents.agent_toolkits.openapi.planner.RequestsDeleteToolWithParsing", - "langchain_community.agent_toolkits.openapi.planner.RequestsDeleteToolWithParsing" - ], - [ - "langchain.agents.agent_toolkits.openapi.planner.create_openapi_agent", - "langchain_community.agent_toolkits.openapi.planner.create_openapi_agent" - ], - [ - "langchain.agents.agent_toolkits.openapi.spec.ReducedOpenAPISpec", - "langchain_community.agent_toolkits.openapi.spec.ReducedOpenAPISpec" - ], - [ - "langchain.agents.agent_toolkits.openapi.spec.reduce_openapi_spec", - "langchain_community.agent_toolkits.openapi.spec.reduce_openapi_spec" - ], - [ - "langchain.agents.agent_toolkits.openapi.toolkit.RequestsToolkit", - "langchain_community.agent_toolkits.openapi.toolkit.RequestsToolkit" - ], - [ - "langchain.agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit", - "langchain_community.agent_toolkits.OpenAPIToolkit" - ], - [ - "langchain.agents.agent_toolkits.playwright.PlayWrightBrowserToolkit", - "langchain_community.agent_toolkits.PlayWrightBrowserToolkit" - ], - [ - "langchain.agents.agent_toolkits.playwright.toolkit.PlayWrightBrowserToolkit", - "langchain_community.agent_toolkits.PlayWrightBrowserToolkit" - ], - [ - "langchain.agents.agent_toolkits.powerbi.base.create_pbi_agent", - "langchain_community.agent_toolkits.create_pbi_agent" - ], - [ - "langchain.agents.agent_toolkits.powerbi.chat_base.create_pbi_chat_agent", - "langchain_community.agent_toolkits.create_pbi_chat_agent" - ], - [ - "langchain.agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit", - "langchain_community.agent_toolkits.PowerBIToolkit" - ], - [ - "langchain.agents.agent_toolkits.slack.toolkit.SlackToolkit", - "langchain_community.agent_toolkits.SlackToolkit" - ], - [ - "langchain.agents.agent_toolkits.spark_sql.base.create_spark_sql_agent", - "langchain_community.agent_toolkits.create_spark_sql_agent" - ], - [ - "langchain.agents.agent_toolkits.spark_sql.toolkit.SparkSQLToolkit", - "langchain_community.agent_toolkits.SparkSQLToolkit" - ], - [ - "langchain.agents.agent_toolkits.sql.base.create_sql_agent", - "langchain_community.agent_toolkits.create_sql_agent" - ], - [ - "langchain.agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit", - "langchain_community.agent_toolkits.SQLDatabaseToolkit" - ], - [ - "langchain.agents.agent_toolkits.steam.toolkit.SteamToolkit", - "langchain_community.agent_toolkits.SteamToolkit" - ], - [ - "langchain.agents.agent_toolkits.zapier.toolkit.ZapierToolkit", - "langchain_community.agent_toolkits.ZapierToolkit" - ], - [ - "langchain.cache.InMemoryCache", - "langchain_community.cache.InMemoryCache" - ], - [ - "langchain.cache.FullLLMCache", - "langchain_community.cache.FullLLMCache" - ], - [ - "langchain.cache.SQLAlchemyCache", - "langchain_community.cache.SQLAlchemyCache" - ], - [ - "langchain.cache.SQLiteCache", - "langchain_community.cache.SQLiteCache" - ], - [ - "langchain.cache.UpstashRedisCache", - "langchain_community.cache.UpstashRedisCache" - ], - [ - "langchain.cache.RedisCache", - "langchain_community.cache.RedisCache" - ], - [ - "langchain.cache.RedisSemanticCache", - "langchain_community.cache.RedisSemanticCache" - ], - [ - "langchain.cache.GPTCache", - "langchain_community.cache.GPTCache" - ], - [ - "langchain.cache.MomentoCache", - "langchain_community.cache.MomentoCache" - ], - [ - "langchain.cache.CassandraCache", - "langchain_community.cache.CassandraCache" - ], - [ - "langchain.cache.CassandraSemanticCache", - "langchain_community.cache.CassandraSemanticCache" - ], - [ - "langchain.cache.FullMd5LLMCache", - "langchain_community.cache.FullMd5LLMCache" - ], - [ - "langchain.cache.SQLAlchemyMd5Cache", - "langchain_community.cache.SQLAlchemyMd5Cache" - ], - [ - "langchain.cache.AstraDBCache", - "langchain_community.cache.AstraDBCache" - ], - [ - "langchain.cache.AstraDBSemanticCache", - "langchain_community.cache.AstraDBSemanticCache" - ], - [ - "langchain.callbacks.AimCallbackHandler", - "langchain_community.callbacks.AimCallbackHandler" - ], - [ - "langchain.callbacks.ArgillaCallbackHandler", - "langchain_community.callbacks.ArgillaCallbackHandler" - ], - [ - "langchain.callbacks.ArizeCallbackHandler", - "langchain_community.callbacks.ArizeCallbackHandler" - ], - [ - "langchain.callbacks.PromptLayerCallbackHandler", - "langchain_community.callbacks.PromptLayerCallbackHandler" - ], - [ - "langchain.callbacks.ArthurCallbackHandler", - "langchain_community.callbacks.ArthurCallbackHandler" - ], - [ - "langchain.callbacks.ClearMLCallbackHandler", - "langchain_community.callbacks.ClearMLCallbackHandler" - ], - [ - "langchain.callbacks.CometCallbackHandler", - "langchain_community.callbacks.CometCallbackHandler" - ], - [ - "langchain.callbacks.ContextCallbackHandler", - "langchain_community.callbacks.ContextCallbackHandler" - ], - [ - "langchain.callbacks.HumanApprovalCallbackHandler", - "langchain_community.callbacks.HumanApprovalCallbackHandler" - ], - [ - "langchain.callbacks.InfinoCallbackHandler", - "langchain_community.callbacks.InfinoCallbackHandler" - ], - [ - "langchain.callbacks.MlflowCallbackHandler", - "langchain_community.callbacks.MlflowCallbackHandler" - ], - [ - "langchain.callbacks.LLMonitorCallbackHandler", - "langchain_community.callbacks.LLMonitorCallbackHandler" - ], - [ - "langchain.callbacks.OpenAICallbackHandler", - "langchain_community.callbacks.OpenAICallbackHandler" - ], - [ - "langchain.callbacks.LLMThoughtLabeler", - "langchain_community.callbacks.LLMThoughtLabeler" - ], - [ - "langchain.callbacks.StreamlitCallbackHandler", - "langchain_community.callbacks.StreamlitCallbackHandler" - ], - [ - "langchain.callbacks.WandbCallbackHandler", - "langchain_community.callbacks.WandbCallbackHandler" - ], - [ - "langchain.callbacks.WhyLabsCallbackHandler", - "langchain_community.callbacks.WhyLabsCallbackHandler" - ], - [ - "langchain.callbacks.get_openai_callback", - "langchain_community.callbacks.get_openai_callback" - ], - [ - "langchain.callbacks.wandb_tracing_enabled", - "langchain_community.callbacks.wandb_tracing_enabled" - ], - [ - "langchain.callbacks.FlyteCallbackHandler", - "langchain_community.callbacks.FlyteCallbackHandler" - ], - [ - "langchain.callbacks.SageMakerCallbackHandler", - "langchain_community.callbacks.SageMakerCallbackHandler" - ], - [ - "langchain.callbacks.LabelStudioCallbackHandler", - "langchain_community.callbacks.LabelStudioCallbackHandler" - ], - [ - "langchain.callbacks.TrubricsCallbackHandler", - "langchain_community.callbacks.TrubricsCallbackHandler" - ], - [ - "langchain.callbacks.aim_callback.import_aim", - "langchain_community.callbacks.aim_callback.import_aim" - ], - [ - "langchain.callbacks.aim_callback.BaseMetadataCallbackHandler", - "langchain_community.callbacks.aim_callback.BaseMetadataCallbackHandler" - ], - [ - "langchain.callbacks.aim_callback.AimCallbackHandler", - "langchain_community.callbacks.AimCallbackHandler" - ], - [ - "langchain.callbacks.argilla_callback.ArgillaCallbackHandler", - "langchain_community.callbacks.ArgillaCallbackHandler" - ], - [ - "langchain.callbacks.arize_callback.ArizeCallbackHandler", - "langchain_community.callbacks.ArizeCallbackHandler" - ], - [ - "langchain.callbacks.arthur_callback.ArthurCallbackHandler", - "langchain_community.callbacks.ArthurCallbackHandler" - ], - [ - "langchain.callbacks.clearml_callback.ClearMLCallbackHandler", - "langchain_community.callbacks.ClearMLCallbackHandler" - ], - [ - "langchain.callbacks.comet_ml_callback.CometCallbackHandler", - "langchain_community.callbacks.CometCallbackHandler" - ], - [ - "langchain.callbacks.confident_callback.DeepEvalCallbackHandler", - "langchain_community.callbacks.confident_callback.DeepEvalCallbackHandler" - ], - [ - "langchain.callbacks.context_callback.ContextCallbackHandler", - "langchain_community.callbacks.ContextCallbackHandler" - ], - [ - "langchain.callbacks.flyte_callback.FlyteCallbackHandler", - "langchain_community.callbacks.FlyteCallbackHandler" - ], - [ - "langchain.callbacks.human.HumanRejectedException", - "langchain_community.callbacks.human.HumanRejectedException" - ], - [ - "langchain.callbacks.human.HumanApprovalCallbackHandler", - "langchain_community.callbacks.HumanApprovalCallbackHandler" - ], - [ - "langchain.callbacks.human.AsyncHumanApprovalCallbackHandler", - "langchain_community.callbacks.human.AsyncHumanApprovalCallbackHandler" - ], - [ - "langchain.callbacks.infino_callback.InfinoCallbackHandler", - "langchain_community.callbacks.InfinoCallbackHandler" - ], - [ - "langchain.callbacks.labelstudio_callback.LabelStudioMode", - "langchain_community.callbacks.labelstudio_callback.LabelStudioMode" - ], - [ - "langchain.callbacks.labelstudio_callback.get_default_label_configs", - "langchain_community.callbacks.labelstudio_callback.get_default_label_configs" - ], - [ - "langchain.callbacks.labelstudio_callback.LabelStudioCallbackHandler", - "langchain_community.callbacks.LabelStudioCallbackHandler" - ], - [ - "langchain.callbacks.llmonitor_callback.LLMonitorCallbackHandler", - "langchain_community.callbacks.LLMonitorCallbackHandler" - ], - [ - "langchain.callbacks.manager.get_openai_callback", - "langchain_community.callbacks.get_openai_callback" - ], - [ - "langchain.callbacks.manager.wandb_tracing_enabled", - "langchain_community.callbacks.wandb_tracing_enabled" - ], - [ - "langchain.callbacks.mlflow_callback.analyze_text", - "langchain_community.callbacks.mlflow_callback.analyze_text" - ], - [ - "langchain.callbacks.mlflow_callback.construct_html_from_prompt_and_generation", - "langchain_community.callbacks.mlflow_callback.construct_html_from_prompt_and_generation" - ], - [ - "langchain.callbacks.mlflow_callback.MlflowLogger", - "langchain_community.callbacks.mlflow_callback.MlflowLogger" - ], - [ - "langchain.callbacks.mlflow_callback.MlflowCallbackHandler", - "langchain_community.callbacks.MlflowCallbackHandler" - ], - [ - "langchain.callbacks.openai_info.OpenAICallbackHandler", - "langchain_community.callbacks.OpenAICallbackHandler" - ], - [ - "langchain.callbacks.promptlayer_callback.PromptLayerCallbackHandler", - "langchain_community.callbacks.PromptLayerCallbackHandler" - ], - [ - "langchain.callbacks.sagemaker_callback.SageMakerCallbackHandler", - "langchain_community.callbacks.SageMakerCallbackHandler" - ], - [ - "langchain.callbacks.streamlit.mutable_expander.ChildType", - "langchain_community.callbacks.streamlit.mutable_expander.ChildType" - ], - [ - "langchain.callbacks.streamlit.mutable_expander.ChildRecord", - "langchain_community.callbacks.streamlit.mutable_expander.ChildRecord" - ], - [ - "langchain.callbacks.streamlit.mutable_expander.MutableExpander", - "langchain_community.callbacks.streamlit.mutable_expander.MutableExpander" - ], - [ - "langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState", - "langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThoughtState" - ], - [ - "langchain.callbacks.streamlit.streamlit_callback_handler.ToolRecord", - "langchain_community.callbacks.streamlit.streamlit_callback_handler.ToolRecord" - ], - [ - "langchain.callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler", - "langchain_community.callbacks.LLMThoughtLabeler" - ], - [ - "langchain.callbacks.streamlit.streamlit_callback_handler.LLMThought", - "langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThought" - ], - [ - "langchain.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler", - "langchain_community.callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler" - ], - [ - "langchain.callbacks.tracers.WandbTracer", - "langchain_community.callbacks.tracers.wandb.WandbTracer" - ], - [ - "langchain.callbacks.tracers.comet.import_comet_llm_api", - "langchain_community.callbacks.tracers.comet.import_comet_llm_api" - ], - [ - "langchain.callbacks.tracers.comet.CometTracer", - "langchain_community.callbacks.tracers.comet.CometTracer" - ], - [ - "langchain.callbacks.tracers.wandb.RunProcessor", - "langchain_community.callbacks.tracers.wandb.RunProcessor" - ], - [ - "langchain.callbacks.tracers.wandb.WandbRunArgs", - "langchain_community.callbacks.tracers.wandb.WandbRunArgs" - ], - [ - "langchain.callbacks.tracers.wandb.WandbTracer", - "langchain_community.callbacks.tracers.wandb.WandbTracer" - ], - [ - "langchain.callbacks.trubrics_callback.TrubricsCallbackHandler", - "langchain_community.callbacks.TrubricsCallbackHandler" - ], - [ - "langchain.callbacks.utils.import_spacy", - "langchain_community.callbacks.utils.import_spacy" - ], - [ - "langchain.callbacks.utils.import_pandas", - "langchain_community.callbacks.utils.import_pandas" - ], - [ - "langchain.callbacks.utils.import_textstat", - "langchain_community.callbacks.utils.import_textstat" - ], - [ - "langchain.callbacks.utils._flatten_dict", - "langchain_community.callbacks.utils._flatten_dict" - ], - [ - "langchain.callbacks.utils.flatten_dict", - "langchain_community.callbacks.utils.flatten_dict" - ], - [ - "langchain.callbacks.utils.hash_string", - "langchain_community.callbacks.utils.hash_string" - ], - [ - "langchain.callbacks.utils.load_json", - "langchain_community.callbacks.utils.load_json" - ], - [ - "langchain.callbacks.utils.BaseMetadataCallbackHandler", - "langchain_community.callbacks.utils.BaseMetadataCallbackHandler" - ], - [ - "langchain.callbacks.wandb_callback.WandbCallbackHandler", - "langchain_community.callbacks.WandbCallbackHandler" - ], - [ - "langchain.callbacks.whylabs_callback.WhyLabsCallbackHandler", - "langchain_community.callbacks.WhyLabsCallbackHandler" - ], - [ - "langchain.chat_loaders.base.BaseChatLoader", - "langchain_community.chat_loaders.BaseChatLoader" - ], - [ - "langchain.chat_loaders.facebook_messenger.SingleFileFacebookMessengerChatLoader", - "langchain_community.chat_loaders.SingleFileFacebookMessengerChatLoader" - ], - [ - "langchain.chat_loaders.facebook_messenger.FolderFacebookMessengerChatLoader", - "langchain_community.chat_loaders.FolderFacebookMessengerChatLoader" - ], - [ - "langchain.chat_loaders.gmail.GMailLoader", - "langchain_community.chat_loaders.GMailLoader" - ], - [ - "langchain.chat_loaders.imessage.IMessageChatLoader", - "langchain_community.chat_loaders.IMessageChatLoader" - ], - [ - "langchain.chat_loaders.langsmith.LangSmithRunChatLoader", - "langchain_community.chat_loaders.LangSmithRunChatLoader" - ], - [ - "langchain.chat_loaders.langsmith.LangSmithDatasetChatLoader", - "langchain_community.chat_loaders.LangSmithDatasetChatLoader" - ], - [ - "langchain.chat_loaders.slack.SlackChatLoader", - "langchain_community.chat_loaders.SlackChatLoader" - ], - [ - "langchain.chat_loaders.telegram.TelegramChatLoader", - "langchain_community.chat_loaders.TelegramChatLoader" - ], - [ - "langchain.chat_loaders.utils.merge_chat_runs_in_session", - "langchain_community.chat_loaders.utils.merge_chat_runs_in_session" - ], - [ - "langchain.chat_loaders.utils.merge_chat_runs", - "langchain_community.chat_loaders.utils.merge_chat_runs" - ], - [ - "langchain.chat_loaders.utils.map_ai_messages_in_session", - "langchain_community.chat_loaders.utils.map_ai_messages_in_session" - ], - [ - "langchain.chat_loaders.utils.map_ai_messages", - "langchain_community.chat_loaders.utils.map_ai_messages" - ], - [ - "langchain.chat_loaders.whatsapp.WhatsAppChatLoader", - "langchain_community.chat_loaders.WhatsAppChatLoader" - ], - [ - "langchain.chat_models.ChatOpenAI", - "langchain_community.chat_models.ChatOpenAI" - ], - [ - "langchain.chat_models.BedrockChat", - "langchain_community.chat_models.BedrockChat" - ], - [ - "langchain.chat_models.AzureChatOpenAI", - "langchain_community.chat_models.AzureChatOpenAI" - ], - [ - "langchain.chat_models.FakeListChatModel", - "langchain_community.chat_models.FakeListChatModel" - ], - [ - "langchain.chat_models.PromptLayerChatOpenAI", - "langchain_community.chat_models.PromptLayerChatOpenAI" - ], - [ - "langchain.chat_models.ChatDatabricks", - "langchain_community.chat_models.ChatDatabricks" - ], - [ - "langchain.chat_models.ChatEverlyAI", - "langchain_community.chat_models.ChatEverlyAI" - ], - [ - "langchain.chat_models.ChatAnthropic", - "langchain_community.chat_models.ChatAnthropic" - ], - [ - "langchain.chat_models.ChatCohere", - "langchain_community.chat_models.ChatCohere" - ], - [ - "langchain.chat_models.ChatGooglePalm", - "langchain_community.chat_models.ChatGooglePalm" - ], - [ - "langchain.chat_models.ChatMlflow", - "langchain_community.chat_models.ChatMlflow" - ], - [ - "langchain.chat_models.ChatMLflowAIGateway", - "langchain_community.chat_models.ChatMLflowAIGateway" - ], - [ - "langchain.chat_models.ChatOllama", - "langchain_community.chat_models.ChatOllama" - ], - [ - "langchain.chat_models.ChatVertexAI", - "langchain_community.chat_models.ChatVertexAI" - ], - [ - "langchain.chat_models.JinaChat", - "langchain_community.chat_models.JinaChat" - ], - [ - "langchain.chat_models.HumanInputChatModel", - "langchain_community.chat_models.HumanInputChatModel" - ], - [ - "langchain.chat_models.MiniMaxChat", - "langchain_community.chat_models.MiniMaxChat" - ], - [ - "langchain.chat_models.ChatAnyscale", - "langchain_community.chat_models.ChatAnyscale" - ], - [ - "langchain.chat_models.ChatLiteLLM", - "langchain_community.chat_models.ChatLiteLLM" - ], - [ - "langchain.chat_models.ErnieBotChat", - "langchain_community.chat_models.ErnieBotChat" - ], - [ - "langchain.chat_models.ChatJavelinAIGateway", - "langchain_community.chat_models.ChatJavelinAIGateway" - ], - [ - "langchain.chat_models.ChatKonko", - "langchain_community.chat_models.ChatKonko" - ], - [ - "langchain.chat_models.PaiEasChatEndpoint", - "langchain_community.chat_models.PaiEasChatEndpoint" - ], - [ - "langchain.chat_models.QianfanChatEndpoint", - "langchain_community.chat_models.QianfanChatEndpoint" - ], - [ - "langchain.chat_models.ChatFireworks", - "langchain_community.chat_models.ChatFireworks" - ], - [ - "langchain.chat_models.ChatYandexGPT", - "langchain_community.chat_models.ChatYandexGPT" - ], - [ - "langchain.chat_models.ChatBaichuan", - "langchain_community.chat_models.ChatBaichuan" - ], - [ - "langchain.chat_models.ChatHunyuan", - "langchain_community.chat_models.ChatHunyuan" - ], - [ - "langchain.chat_models.GigaChat", - "langchain_community.chat_models.GigaChat" - ], - [ - "langchain.chat_models.VolcEngineMaasChat", - "langchain_community.chat_models.VolcEngineMaasChat" - ], - [ - "langchain.chat_models.anthropic.convert_messages_to_prompt_anthropic", - "langchain_community.chat_models.anthropic.convert_messages_to_prompt_anthropic" - ], - [ - "langchain.chat_models.anthropic.ChatAnthropic", - "langchain_community.chat_models.ChatAnthropic" - ], - [ - "langchain.chat_models.anyscale.ChatAnyscale", - "langchain_community.chat_models.ChatAnyscale" - ], - [ - "langchain.chat_models.azure_openai.AzureChatOpenAI", - "langchain_community.chat_models.AzureChatOpenAI" - ], - [ - "langchain.chat_models.azureml_endpoint.LlamaContentFormatter", - "langchain_community.chat_models.azureml_endpoint.LlamaContentFormatter" - ], - [ - "langchain.chat_models.azureml_endpoint.AzureMLChatOnlineEndpoint", - "langchain_community.chat_models.azureml_endpoint.AzureMLChatOnlineEndpoint" - ], - [ - "langchain.chat_models.baichuan.ChatBaichuan", - "langchain_community.chat_models.ChatBaichuan" - ], - [ - "langchain.chat_models.baidu_qianfan_endpoint.QianfanChatEndpoint", - "langchain_community.chat_models.QianfanChatEndpoint" - ], - [ - "langchain.chat_models.bedrock.ChatPromptAdapter", - "langchain_community.chat_models.bedrock.ChatPromptAdapter" - ], - [ - "langchain.chat_models.bedrock.BedrockChat", - "langchain_community.chat_models.BedrockChat" - ], - [ - "langchain.chat_models.cohere.ChatCohere", - "langchain_community.chat_models.ChatCohere" - ], - [ - "langchain.chat_models.databricks.ChatDatabricks", - "langchain_community.chat_models.ChatDatabricks" - ], - [ - "langchain.chat_models.ernie.ErnieBotChat", - "langchain_community.chat_models.ErnieBotChat" - ], - [ - "langchain.chat_models.everlyai.ChatEverlyAI", - "langchain_community.chat_models.ChatEverlyAI" - ], - [ - "langchain.chat_models.fake.FakeMessagesListChatModel", - "langchain_community.chat_models.fake.FakeMessagesListChatModel" - ], - [ - "langchain.chat_models.fake.FakeListChatModel", - "langchain_community.chat_models.FakeListChatModel" - ], - [ - "langchain.chat_models.fireworks.ChatFireworks", - "langchain_community.chat_models.ChatFireworks" - ], - [ - "langchain.chat_models.gigachat.GigaChat", - "langchain_community.chat_models.GigaChat" - ], - [ - "langchain.chat_models.google_palm.ChatGooglePalm", - "langchain_community.chat_models.ChatGooglePalm" - ], - [ - "langchain.chat_models.google_palm.ChatGooglePalmError", - "langchain_community.chat_models.google_palm.ChatGooglePalmError" - ], - [ - "langchain.chat_models.human.HumanInputChatModel", - "langchain_community.chat_models.HumanInputChatModel" - ], - [ - "langchain.chat_models.hunyuan.ChatHunyuan", - "langchain_community.chat_models.ChatHunyuan" - ], - [ - "langchain.chat_models.javelin_ai_gateway.ChatJavelinAIGateway", - "langchain_community.chat_models.ChatJavelinAIGateway" - ], - [ - "langchain.chat_models.javelin_ai_gateway.ChatParams", - "langchain_community.chat_models.javelin_ai_gateway.ChatParams" - ], - [ - "langchain.chat_models.jinachat.JinaChat", - "langchain_community.chat_models.JinaChat" - ], - [ - "langchain.chat_models.konko.ChatKonko", - "langchain_community.chat_models.ChatKonko" - ], - [ - "langchain.chat_models.litellm.ChatLiteLLM", - "langchain_community.chat_models.ChatLiteLLM" - ], - [ - "langchain.chat_models.litellm.ChatLiteLLMException", - "langchain_community.chat_models.litellm.ChatLiteLLMException" - ], - [ - "langchain.chat_models.meta.convert_messages_to_prompt_llama", - "langchain_community.chat_models.meta.convert_messages_to_prompt_llama" - ], - [ - "langchain.chat_models.minimax.MiniMaxChat", - "langchain_community.chat_models.MiniMaxChat" - ], - [ - "langchain.chat_models.mlflow.ChatMlflow", - "langchain_community.chat_models.ChatMlflow" - ], - [ - "langchain.chat_models.mlflow_ai_gateway.ChatMLflowAIGateway", - "langchain_community.chat_models.ChatMLflowAIGateway" - ], - [ - "langchain.chat_models.mlflow_ai_gateway.ChatParams", - "langchain_community.chat_models.mlflow_ai_gateway.ChatParams" - ], - [ - "langchain.chat_models.ollama.ChatOllama", - "langchain_community.chat_models.ChatOllama" - ], - [ - "langchain.chat_models.openai.ChatOpenAI", - "langchain_community.chat_models.ChatOpenAI" - ], - [ - "langchain.chat_models.pai_eas_endpoint.PaiEasChatEndpoint", - "langchain_community.chat_models.PaiEasChatEndpoint" - ], - [ - "langchain.chat_models.promptlayer_openai.PromptLayerChatOpenAI", - "langchain_community.chat_models.PromptLayerChatOpenAI" - ], - [ - "langchain.chat_models.tongyi.ChatTongyi", - "langchain_community.chat_models.ChatTongyi" - ], - [ - "langchain.chat_models.vertexai.ChatVertexAI", - "langchain_community.chat_models.ChatVertexAI" - ], - [ - "langchain.chat_models.volcengine_maas.convert_dict_to_message", - "langchain_community.chat_models.volcengine_maas.convert_dict_to_message" - ], - [ - "langchain.chat_models.volcengine_maas.VolcEngineMaasChat", - "langchain_community.chat_models.VolcEngineMaasChat" - ], - [ - "langchain.chat_models.yandex.ChatYandexGPT", - "langchain_community.chat_models.ChatYandexGPT" - ], - [ - "langchain.docstore.DocstoreFn", - "langchain_community.docstore.DocstoreFn" - ], - [ - "langchain.docstore.InMemoryDocstore", - "langchain_community.docstore.InMemoryDocstore" - ], - [ - "langchain.docstore.Wikipedia", - "langchain_community.docstore.Wikipedia" - ], - [ - "langchain.docstore.arbitrary_fn.DocstoreFn", - "langchain_community.docstore.DocstoreFn" - ], - [ - "langchain.docstore.base.Docstore", - "langchain_community.docstore.base.Docstore" - ], - [ - "langchain.docstore.base.AddableMixin", - "langchain_community.docstore.base.AddableMixin" - ], - [ - "langchain.docstore.in_memory.InMemoryDocstore", - "langchain_community.docstore.InMemoryDocstore" - ], - [ - "langchain.docstore.wikipedia.Wikipedia", - "langchain_community.docstore.Wikipedia" - ], - [ - "langchain.document_loaders.AcreomLoader", - "langchain_community.document_loaders.AcreomLoader" - ], - [ - "langchain.document_loaders.AsyncHtmlLoader", - "langchain_community.document_loaders.AsyncHtmlLoader" - ], - [ - "langchain.document_loaders.AsyncChromiumLoader", - "langchain_community.document_loaders.AsyncChromiumLoader" - ], - [ - "langchain.document_loaders.AZLyricsLoader", - "langchain_community.document_loaders.AZLyricsLoader" - ], - [ - "langchain.document_loaders.AirbyteCDKLoader", - "langchain_community.document_loaders.AirbyteCDKLoader" - ], - [ - "langchain.document_loaders.AirbyteGongLoader", - "langchain_community.document_loaders.AirbyteGongLoader" - ], - [ - "langchain.document_loaders.AirbyteJSONLoader", - "langchain_community.document_loaders.AirbyteJSONLoader" - ], - [ - "langchain.document_loaders.AirbyteHubspotLoader", - "langchain_community.document_loaders.AirbyteHubspotLoader" - ], - [ - "langchain.document_loaders.AirbyteSalesforceLoader", - "langchain_community.document_loaders.AirbyteSalesforceLoader" - ], - [ - "langchain.document_loaders.AirbyteShopifyLoader", - "langchain_community.document_loaders.AirbyteShopifyLoader" - ], - [ - "langchain.document_loaders.AirbyteStripeLoader", - "langchain_community.document_loaders.AirbyteStripeLoader" - ], - [ - "langchain.document_loaders.AirbyteTypeformLoader", - "langchain_community.document_loaders.AirbyteTypeformLoader" - ], - [ - "langchain.document_loaders.AirbyteZendeskSupportLoader", - "langchain_community.document_loaders.AirbyteZendeskSupportLoader" - ], - [ - "langchain.document_loaders.AirtableLoader", - "langchain_community.document_loaders.AirtableLoader" - ], - [ - "langchain.document_loaders.AmazonTextractPDFLoader", - "langchain_community.document_loaders.AmazonTextractPDFLoader" - ], - [ - "langchain.document_loaders.ApifyDatasetLoader", - "langchain_community.document_loaders.ApifyDatasetLoader" - ], - [ - "langchain.document_loaders.ArcGISLoader", - "langchain_community.document_loaders.ArcGISLoader" - ], - [ - "langchain.document_loaders.ArxivLoader", - "langchain_community.document_loaders.ArxivLoader" - ], - [ - "langchain.document_loaders.AssemblyAIAudioTranscriptLoader", - "langchain_community.document_loaders.AssemblyAIAudioTranscriptLoader" - ], - [ - "langchain.document_loaders.AzureAIDataLoader", - "langchain_community.document_loaders.AzureAIDataLoader" - ], - [ - "langchain.document_loaders.AzureBlobStorageContainerLoader", - "langchain_community.document_loaders.AzureBlobStorageContainerLoader" - ], - [ - "langchain.document_loaders.AzureBlobStorageFileLoader", - "langchain_community.document_loaders.AzureBlobStorageFileLoader" - ], - [ - "langchain.document_loaders.BSHTMLLoader", - "langchain_community.document_loaders.BSHTMLLoader" - ], - [ - "langchain.document_loaders.BibtexLoader", - "langchain_community.document_loaders.BibtexLoader" - ], - [ - "langchain.document_loaders.BigQueryLoader", - "langchain_community.document_loaders.BigQueryLoader" - ], - [ - "langchain.document_loaders.BiliBiliLoader", - "langchain_community.document_loaders.BiliBiliLoader" - ], - [ - "langchain.document_loaders.BlackboardLoader", - "langchain_community.document_loaders.BlackboardLoader" - ], - [ - "langchain.document_loaders.BlockchainDocumentLoader", - "langchain_community.document_loaders.BlockchainDocumentLoader" - ], - [ - "langchain.document_loaders.BraveSearchLoader", - "langchain_community.document_loaders.BraveSearchLoader" - ], - [ - "langchain.document_loaders.BrowserlessLoader", - "langchain_community.document_loaders.BrowserlessLoader" - ], - [ - "langchain.document_loaders.CSVLoader", - "langchain_community.document_loaders.CSVLoader" - ], - [ - "langchain.document_loaders.ChatGPTLoader", - "langchain_community.document_loaders.ChatGPTLoader" - ], - [ - "langchain.document_loaders.CoNLLULoader", - "langchain_community.document_loaders.CoNLLULoader" - ], - [ - "langchain.document_loaders.CollegeConfidentialLoader", - "langchain_community.document_loaders.CollegeConfidentialLoader" - ], - [ - "langchain.document_loaders.ConcurrentLoader", - "langchain_community.document_loaders.ConcurrentLoader" - ], - [ - "langchain.document_loaders.ConfluenceLoader", - "langchain_community.document_loaders.ConfluenceLoader" - ], - [ - "langchain.document_loaders.CouchbaseLoader", - "langchain_community.document_loaders.CouchbaseLoader" - ], - [ - "langchain.document_loaders.CubeSemanticLoader", - "langchain_community.document_loaders.CubeSemanticLoader" - ], - [ - "langchain.document_loaders.DataFrameLoader", - "langchain_community.document_loaders.DataFrameLoader" - ], - [ - "langchain.document_loaders.DatadogLogsLoader", - "langchain_community.document_loaders.DatadogLogsLoader" - ], - [ - "langchain.document_loaders.DiffbotLoader", - "langchain_community.document_loaders.DiffbotLoader" - ], - [ - "langchain.document_loaders.DirectoryLoader", - "langchain_community.document_loaders.DirectoryLoader" - ], - [ - "langchain.document_loaders.DiscordChatLoader", - "langchain_community.document_loaders.DiscordChatLoader" - ], - [ - "langchain.document_loaders.DocugamiLoader", - "langchain_community.document_loaders.DocugamiLoader" - ], - [ - "langchain.document_loaders.DocusaurusLoader", - "langchain_community.document_loaders.DocusaurusLoader" - ], - [ - "langchain.document_loaders.Docx2txtLoader", - "langchain_community.document_loaders.Docx2txtLoader" - ], - [ - "langchain.document_loaders.DropboxLoader", - "langchain_community.document_loaders.DropboxLoader" - ], - [ - "langchain.document_loaders.DuckDBLoader", - "langchain_community.document_loaders.DuckDBLoader" - ], - [ - "langchain.document_loaders.EtherscanLoader", - "langchain_community.document_loaders.EtherscanLoader" - ], - [ - "langchain.document_loaders.EverNoteLoader", - "langchain_community.document_loaders.EverNoteLoader" - ], - [ - "langchain.document_loaders.FacebookChatLoader", - "langchain_community.document_loaders.FacebookChatLoader" - ], - [ - "langchain.document_loaders.FaunaLoader", - "langchain_community.document_loaders.FaunaLoader" - ], - [ - "langchain.document_loaders.FigmaFileLoader", - "langchain_community.document_loaders.FigmaFileLoader" - ], - [ - "langchain.document_loaders.FileSystemBlobLoader", - "langchain_community.document_loaders.FileSystemBlobLoader" - ], - [ - "langchain.document_loaders.GCSDirectoryLoader", - "langchain_community.document_loaders.GCSDirectoryLoader" - ], - [ - "langchain.document_loaders.GCSFileLoader", - "langchain_community.document_loaders.GCSFileLoader" - ], - [ - "langchain.document_loaders.GeoDataFrameLoader", - "langchain_community.document_loaders.GeoDataFrameLoader" - ], - [ - "langchain.document_loaders.GitHubIssuesLoader", - "langchain_community.document_loaders.GitHubIssuesLoader" - ], - [ - "langchain.document_loaders.GitLoader", - "langchain_community.document_loaders.GitLoader" - ], - [ - "langchain.document_loaders.GitbookLoader", - "langchain_community.document_loaders.GitbookLoader" - ], - [ - "langchain.document_loaders.GoogleApiClient", - "langchain_community.document_loaders.GoogleApiClient" - ], - [ - "langchain.document_loaders.GoogleApiYoutubeLoader", - "langchain_community.document_loaders.GoogleApiYoutubeLoader" - ], - [ - "langchain.document_loaders.GoogleSpeechToTextLoader", - "langchain_community.document_loaders.GoogleSpeechToTextLoader" - ], - [ - "langchain.document_loaders.GoogleDriveLoader", - "langchain_community.document_loaders.GoogleDriveLoader" - ], - [ - "langchain.document_loaders.GutenbergLoader", - "langchain_community.document_loaders.GutenbergLoader" - ], - [ - "langchain.document_loaders.HNLoader", - "langchain_community.document_loaders.HNLoader" - ], - [ - "langchain.document_loaders.HuggingFaceDatasetLoader", - "langchain_community.document_loaders.HuggingFaceDatasetLoader" - ], - [ - "langchain.document_loaders.IFixitLoader", - "langchain_community.document_loaders.IFixitLoader" - ], - [ - "langchain.document_loaders.IMSDbLoader", - "langchain_community.document_loaders.IMSDbLoader" - ], - [ - "langchain.document_loaders.ImageCaptionLoader", - "langchain_community.document_loaders.ImageCaptionLoader" - ], - [ - "langchain.document_loaders.IuguLoader", - "langchain_community.document_loaders.IuguLoader" - ], - [ - "langchain.document_loaders.JSONLoader", - "langchain_community.document_loaders.JSONLoader" - ], - [ - "langchain.document_loaders.JoplinLoader", - "langchain_community.document_loaders.JoplinLoader" - ], - [ - "langchain.document_loaders.LarkSuiteDocLoader", - "langchain_community.document_loaders.LarkSuiteDocLoader" - ], - [ - "langchain.document_loaders.LakeFSLoader", - "langchain_community.document_loaders.LakeFSLoader" - ], - [ - "langchain.document_loaders.MHTMLLoader", - "langchain_community.document_loaders.MHTMLLoader" - ], - [ - "langchain.document_loaders.MWDumpLoader", - "langchain_community.document_loaders.MWDumpLoader" - ], - [ - "langchain.document_loaders.MastodonTootsLoader", - "langchain_community.document_loaders.MastodonTootsLoader" - ], - [ - "langchain.document_loaders.MathpixPDFLoader", - "langchain_community.document_loaders.MathpixPDFLoader" - ], - [ - "langchain.document_loaders.MaxComputeLoader", - "langchain_community.document_loaders.MaxComputeLoader" - ], - [ - "langchain.document_loaders.MergedDataLoader", - "langchain_community.document_loaders.MergedDataLoader" - ], - [ - "langchain.document_loaders.ModernTreasuryLoader", - "langchain_community.document_loaders.ModernTreasuryLoader" - ], - [ - "langchain.document_loaders.MongodbLoader", - "langchain_community.document_loaders.MongodbLoader" - ], - [ - "langchain.document_loaders.NewsURLLoader", - "langchain_community.document_loaders.NewsURLLoader" - ], - [ - "langchain.document_loaders.NotebookLoader", - "langchain_community.document_loaders.NotebookLoader" - ], - [ - "langchain.document_loaders.NotionDBLoader", - "langchain_community.document_loaders.NotionDBLoader" - ], - [ - "langchain.document_loaders.NotionDirectoryLoader", - "langchain_community.document_loaders.NotionDirectoryLoader" - ], - [ - "langchain.document_loaders.OBSDirectoryLoader", - "langchain_community.document_loaders.OBSDirectoryLoader" - ], - [ - "langchain.document_loaders.OBSFileLoader", - "langchain_community.document_loaders.OBSFileLoader" - ], - [ - "langchain.document_loaders.ObsidianLoader", - "langchain_community.document_loaders.ObsidianLoader" - ], - [ - "langchain.document_loaders.OneDriveFileLoader", - "langchain_community.document_loaders.OneDriveFileLoader" - ], - [ - "langchain.document_loaders.OneDriveLoader", - "langchain_community.document_loaders.OneDriveLoader" - ], - [ - "langchain.document_loaders.OnlinePDFLoader", - "langchain_community.document_loaders.OnlinePDFLoader" - ], - [ - "langchain.document_loaders.OpenCityDataLoader", - "langchain_community.document_loaders.OpenCityDataLoader" - ], - [ - "langchain.document_loaders.OutlookMessageLoader", - "langchain_community.document_loaders.OutlookMessageLoader" - ], - [ - "langchain.document_loaders.PDFMinerLoader", - "langchain_community.document_loaders.PDFMinerLoader" - ], - [ - "langchain.document_loaders.PDFMinerPDFasHTMLLoader", - "langchain_community.document_loaders.PDFMinerPDFasHTMLLoader" - ], - [ - "langchain.document_loaders.PDFPlumberLoader", - "langchain_community.document_loaders.PDFPlumberLoader" - ], - [ - "langchain.document_loaders.PagedPDFSplitter", - "langchain_community.document_loaders.PyPDFLoader" - ], - [ - "langchain.document_loaders.PlaywrightURLLoader", - "langchain_community.document_loaders.PlaywrightURLLoader" - ], - [ - "langchain.document_loaders.PolarsDataFrameLoader", - "langchain_community.document_loaders.PolarsDataFrameLoader" - ], - [ - "langchain.document_loaders.PsychicLoader", - "langchain_community.document_loaders.PsychicLoader" - ], - [ - "langchain.document_loaders.PubMedLoader", - "langchain_community.document_loaders.PubMedLoader" - ], - [ - "langchain.document_loaders.PyMuPDFLoader", - "langchain_community.document_loaders.PyMuPDFLoader" - ], - [ - "langchain.document_loaders.PyPDFDirectoryLoader", - "langchain_community.document_loaders.PyPDFDirectoryLoader" - ], - [ - "langchain.document_loaders.PyPDFLoader", - "langchain_community.document_loaders.PyPDFLoader" - ], - [ - "langchain.document_loaders.PyPDFium2Loader", - "langchain_community.document_loaders.PyPDFium2Loader" - ], - [ - "langchain.document_loaders.PySparkDataFrameLoader", - "langchain_community.document_loaders.PySparkDataFrameLoader" - ], - [ - "langchain.document_loaders.PythonLoader", - "langchain_community.document_loaders.PythonLoader" - ], - [ - "langchain.document_loaders.RSSFeedLoader", - "langchain_community.document_loaders.RSSFeedLoader" - ], - [ - "langchain.document_loaders.ReadTheDocsLoader", - "langchain_community.document_loaders.ReadTheDocsLoader" - ], - [ - "langchain.document_loaders.RecursiveUrlLoader", - "langchain_community.document_loaders.RecursiveUrlLoader" - ], - [ - "langchain.document_loaders.RedditPostsLoader", - "langchain_community.document_loaders.RedditPostsLoader" - ], - [ - "langchain.document_loaders.RoamLoader", - "langchain_community.document_loaders.RoamLoader" - ], - [ - "langchain.document_loaders.RocksetLoader", - "langchain_community.document_loaders.RocksetLoader" - ], - [ - "langchain.document_loaders.S3DirectoryLoader", - "langchain_community.document_loaders.S3DirectoryLoader" - ], - [ - "langchain.document_loaders.S3FileLoader", - "langchain_community.document_loaders.S3FileLoader" - ], - [ - "langchain.document_loaders.SRTLoader", - "langchain_community.document_loaders.SRTLoader" - ], - [ - "langchain.document_loaders.SeleniumURLLoader", - "langchain_community.document_loaders.SeleniumURLLoader" - ], - [ - "langchain.document_loaders.SharePointLoader", - "langchain_community.document_loaders.SharePointLoader" - ], - [ - "langchain.document_loaders.SitemapLoader", - "langchain_community.document_loaders.SitemapLoader" - ], - [ - "langchain.document_loaders.SlackDirectoryLoader", - "langchain_community.document_loaders.SlackDirectoryLoader" - ], - [ - "langchain.document_loaders.SnowflakeLoader", - "langchain_community.document_loaders.SnowflakeLoader" - ], - [ - "langchain.document_loaders.SpreedlyLoader", - "langchain_community.document_loaders.SpreedlyLoader" - ], - [ - "langchain.document_loaders.StripeLoader", - "langchain_community.document_loaders.StripeLoader" - ], - [ - "langchain.document_loaders.TelegramChatApiLoader", - "langchain_community.document_loaders.TelegramChatApiLoader" - ], - [ - "langchain.document_loaders.TelegramChatFileLoader", - "langchain_community.document_loaders.TelegramChatLoader" - ], - [ - "langchain.document_loaders.TelegramChatLoader", - "langchain_community.document_loaders.TelegramChatLoader" - ], - [ - "langchain.document_loaders.TensorflowDatasetLoader", - "langchain_community.document_loaders.TensorflowDatasetLoader" - ], - [ - "langchain.document_loaders.TencentCOSDirectoryLoader", - "langchain_community.document_loaders.TencentCOSDirectoryLoader" - ], - [ - "langchain.document_loaders.TencentCOSFileLoader", - "langchain_community.document_loaders.TencentCOSFileLoader" - ], - [ - "langchain.document_loaders.TextLoader", - "langchain_community.document_loaders.TextLoader" - ], - [ - "langchain.document_loaders.ToMarkdownLoader", - "langchain_community.document_loaders.ToMarkdownLoader" - ], - [ - "langchain.document_loaders.TomlLoader", - "langchain_community.document_loaders.TomlLoader" - ], - [ - "langchain.document_loaders.TrelloLoader", - "langchain_community.document_loaders.TrelloLoader" - ], - [ - "langchain.document_loaders.TwitterTweetLoader", - "langchain_community.document_loaders.TwitterTweetLoader" - ], - [ - "langchain.document_loaders.UnstructuredAPIFileIOLoader", - "langchain_community.document_loaders.UnstructuredAPIFileIOLoader" - ], - [ - "langchain.document_loaders.UnstructuredAPIFileLoader", - "langchain_community.document_loaders.UnstructuredAPIFileLoader" - ], - [ - "langchain.document_loaders.UnstructuredCSVLoader", - "langchain_community.document_loaders.UnstructuredCSVLoader" - ], - [ - "langchain.document_loaders.UnstructuredEPubLoader", - "langchain_community.document_loaders.UnstructuredEPubLoader" - ], - [ - "langchain.document_loaders.UnstructuredEmailLoader", - "langchain_community.document_loaders.UnstructuredEmailLoader" - ], - [ - "langchain.document_loaders.UnstructuredExcelLoader", - "langchain_community.document_loaders.UnstructuredExcelLoader" - ], - [ - "langchain.document_loaders.UnstructuredFileIOLoader", - "langchain_community.document_loaders.UnstructuredFileIOLoader" - ], - [ - "langchain.document_loaders.UnstructuredFileLoader", - "langchain_community.document_loaders.UnstructuredFileLoader" - ], - [ - "langchain.document_loaders.UnstructuredHTMLLoader", - "langchain_community.document_loaders.UnstructuredHTMLLoader" - ], - [ - "langchain.document_loaders.UnstructuredImageLoader", - "langchain_community.document_loaders.UnstructuredImageLoader" - ], - [ - "langchain.document_loaders.UnstructuredMarkdownLoader", - "langchain_community.document_loaders.UnstructuredMarkdownLoader" - ], - [ - "langchain.document_loaders.UnstructuredODTLoader", - "langchain_community.document_loaders.UnstructuredODTLoader" - ], - [ - "langchain.document_loaders.UnstructuredOrgModeLoader", - "langchain_community.document_loaders.UnstructuredOrgModeLoader" - ], - [ - "langchain.document_loaders.UnstructuredPDFLoader", - "langchain_community.document_loaders.UnstructuredPDFLoader" - ], - [ - "langchain.document_loaders.UnstructuredPowerPointLoader", - "langchain_community.document_loaders.UnstructuredPowerPointLoader" - ], - [ - "langchain.document_loaders.UnstructuredRSTLoader", - "langchain_community.document_loaders.UnstructuredRSTLoader" - ], - [ - "langchain.document_loaders.UnstructuredRTFLoader", - "langchain_community.document_loaders.UnstructuredRTFLoader" - ], - [ - "langchain.document_loaders.UnstructuredTSVLoader", - "langchain_community.document_loaders.UnstructuredTSVLoader" - ], - [ - "langchain.document_loaders.UnstructuredURLLoader", - "langchain_community.document_loaders.UnstructuredURLLoader" - ], - [ - "langchain.document_loaders.UnstructuredWordDocumentLoader", - "langchain_community.document_loaders.UnstructuredWordDocumentLoader" - ], - [ - "langchain.document_loaders.UnstructuredXMLLoader", - "langchain_community.document_loaders.UnstructuredXMLLoader" - ], - [ - "langchain.document_loaders.WeatherDataLoader", - "langchain_community.document_loaders.WeatherDataLoader" - ], - [ - "langchain.document_loaders.WebBaseLoader", - "langchain_community.document_loaders.WebBaseLoader" - ], - [ - "langchain.document_loaders.WhatsAppChatLoader", - "langchain_community.document_loaders.WhatsAppChatLoader" - ], - [ - "langchain.document_loaders.WikipediaLoader", - "langchain_community.document_loaders.WikipediaLoader" - ], - [ - "langchain.document_loaders.XorbitsLoader", - "langchain_community.document_loaders.XorbitsLoader" - ], - [ - "langchain.document_loaders.YoutubeAudioLoader", - "langchain_community.document_loaders.YoutubeAudioLoader" - ], - [ - "langchain.document_loaders.YoutubeLoader", - "langchain_community.document_loaders.YoutubeLoader" - ], - [ - "langchain.document_loaders.YuqueLoader", - "langchain_community.document_loaders.YuqueLoader" - ], - [ - "langchain.document_loaders.acreom.AcreomLoader", - "langchain_community.document_loaders.AcreomLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteCDKLoader", - "langchain_community.document_loaders.AirbyteCDKLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteHubspotLoader", - "langchain_community.document_loaders.AirbyteHubspotLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteStripeLoader", - "langchain_community.document_loaders.AirbyteStripeLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteTypeformLoader", - "langchain_community.document_loaders.AirbyteTypeformLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteZendeskSupportLoader", - "langchain_community.document_loaders.AirbyteZendeskSupportLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteShopifyLoader", - "langchain_community.document_loaders.AirbyteShopifyLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteSalesforceLoader", - "langchain_community.document_loaders.AirbyteSalesforceLoader" - ], - [ - "langchain.document_loaders.airbyte.AirbyteGongLoader", - "langchain_community.document_loaders.AirbyteGongLoader" - ], - [ - "langchain.document_loaders.airbyte_json.AirbyteJSONLoader", - "langchain_community.document_loaders.AirbyteJSONLoader" - ], - [ - "langchain.document_loaders.airtable.AirtableLoader", - "langchain_community.document_loaders.AirtableLoader" - ], - [ - "langchain.document_loaders.apify_dataset.ApifyDatasetLoader", - "langchain_community.document_loaders.ApifyDatasetLoader" - ], - [ - "langchain.document_loaders.arcgis_loader.ArcGISLoader", - "langchain_community.document_loaders.ArcGISLoader" - ], - [ - "langchain.document_loaders.arxiv.ArxivLoader", - "langchain_community.document_loaders.ArxivLoader" - ], - [ - "langchain.document_loaders.assemblyai.TranscriptFormat", - "langchain_community.document_loaders.assemblyai.TranscriptFormat" - ], - [ - "langchain.document_loaders.assemblyai.AssemblyAIAudioTranscriptLoader", - "langchain_community.document_loaders.AssemblyAIAudioTranscriptLoader" - ], - [ - "langchain.document_loaders.async_html.AsyncHtmlLoader", - "langchain_community.document_loaders.AsyncHtmlLoader" - ], - [ - "langchain.document_loaders.azlyrics.AZLyricsLoader", - "langchain_community.document_loaders.AZLyricsLoader" - ], - [ - "langchain.document_loaders.azure_ai_data.AzureAIDataLoader", - "langchain_community.document_loaders.AzureAIDataLoader" - ], - [ - "langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader", - "langchain_community.document_loaders.AzureBlobStorageContainerLoader" - ], - [ - "langchain.document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader", - "langchain_community.document_loaders.AzureBlobStorageFileLoader" - ], - [ - "langchain.document_loaders.baiducloud_bos_directory.BaiduBOSDirectoryLoader", - "langchain_community.document_loaders.baiducloud_bos_directory.BaiduBOSDirectoryLoader" - ], - [ - "langchain.document_loaders.baiducloud_bos_file.BaiduBOSFileLoader", - "langchain_community.document_loaders.baiducloud_bos_file.BaiduBOSFileLoader" - ], - [ - "langchain.document_loaders.base_o365.O365BaseLoader", - "langchain_community.document_loaders.base_o365.O365BaseLoader" - ], - [ - "langchain.document_loaders.bibtex.BibtexLoader", - "langchain_community.document_loaders.BibtexLoader" - ], - [ - "langchain.document_loaders.bigquery.BigQueryLoader", - "langchain_community.document_loaders.BigQueryLoader" - ], - [ - "langchain.document_loaders.bilibili.BiliBiliLoader", - "langchain_community.document_loaders.BiliBiliLoader" - ], - [ - "langchain.document_loaders.blackboard.BlackboardLoader", - "langchain_community.document_loaders.BlackboardLoader" - ], - [ - "langchain.document_loaders.blob_loaders.FileSystemBlobLoader", - "langchain_community.document_loaders.FileSystemBlobLoader" - ], - [ - "langchain.document_loaders.blob_loaders.YoutubeAudioLoader", - "langchain_community.document_loaders.YoutubeAudioLoader" - ], - [ - "langchain.document_loaders.blob_loaders.file_system.FileSystemBlobLoader", - "langchain_community.document_loaders.FileSystemBlobLoader" - ], - [ - "langchain.document_loaders.blob_loaders.youtube_audio.YoutubeAudioLoader", - "langchain_community.document_loaders.YoutubeAudioLoader" - ], - [ - "langchain.document_loaders.blockchain.BlockchainType", - "langchain_community.document_loaders.blockchain.BlockchainType" - ], - [ - "langchain.document_loaders.blockchain.BlockchainDocumentLoader", - "langchain_community.document_loaders.BlockchainDocumentLoader" - ], - [ - "langchain.document_loaders.brave_search.BraveSearchLoader", - "langchain_community.document_loaders.BraveSearchLoader" - ], - [ - "langchain.document_loaders.browserless.BrowserlessLoader", - "langchain_community.document_loaders.BrowserlessLoader" - ], - [ - "langchain.document_loaders.chatgpt.concatenate_rows", - "langchain_community.document_loaders.chatgpt.concatenate_rows" - ], - [ - "langchain.document_loaders.chatgpt.ChatGPTLoader", - "langchain_community.document_loaders.ChatGPTLoader" - ], - [ - "langchain.document_loaders.chromium.AsyncChromiumLoader", - "langchain_community.document_loaders.AsyncChromiumLoader" - ], - [ - "langchain.document_loaders.college_confidential.CollegeConfidentialLoader", - "langchain_community.document_loaders.CollegeConfidentialLoader" - ], - [ - "langchain.document_loaders.concurrent.ConcurrentLoader", - "langchain_community.document_loaders.ConcurrentLoader" - ], - [ - "langchain.document_loaders.confluence.ContentFormat", - "langchain_community.document_loaders.confluence.ContentFormat" - ], - [ - "langchain.document_loaders.confluence.ConfluenceLoader", - "langchain_community.document_loaders.ConfluenceLoader" - ], - [ - "langchain.document_loaders.conllu.CoNLLULoader", - "langchain_community.document_loaders.CoNLLULoader" - ], - [ - "langchain.document_loaders.couchbase.CouchbaseLoader", - "langchain_community.document_loaders.CouchbaseLoader" - ], - [ - "langchain.document_loaders.csv_loader.CSVLoader", - "langchain_community.document_loaders.CSVLoader" - ], - [ - "langchain.document_loaders.csv_loader.UnstructuredCSVLoader", - "langchain_community.document_loaders.UnstructuredCSVLoader" - ], - [ - "langchain.document_loaders.cube_semantic.CubeSemanticLoader", - "langchain_community.document_loaders.CubeSemanticLoader" - ], - [ - "langchain.document_loaders.datadog_logs.DatadogLogsLoader", - "langchain_community.document_loaders.DatadogLogsLoader" - ], - [ - "langchain.document_loaders.dataframe.BaseDataFrameLoader", - "langchain_community.document_loaders.dataframe.BaseDataFrameLoader" - ], - [ - "langchain.document_loaders.dataframe.DataFrameLoader", - "langchain_community.document_loaders.DataFrameLoader" - ], - [ - "langchain.document_loaders.diffbot.DiffbotLoader", - "langchain_community.document_loaders.DiffbotLoader" - ], - [ - "langchain.document_loaders.directory.DirectoryLoader", - "langchain_community.document_loaders.DirectoryLoader" - ], - [ - "langchain.document_loaders.discord.DiscordChatLoader", - "langchain_community.document_loaders.DiscordChatLoader" - ], - [ - "langchain.document_loaders.docugami.DocugamiLoader", - "langchain_community.document_loaders.DocugamiLoader" - ], - [ - "langchain.document_loaders.docusaurus.DocusaurusLoader", - "langchain_community.document_loaders.DocusaurusLoader" - ], - [ - "langchain.document_loaders.dropbox.DropboxLoader", - "langchain_community.document_loaders.DropboxLoader" - ], - [ - "langchain.document_loaders.duckdb_loader.DuckDBLoader", - "langchain_community.document_loaders.DuckDBLoader" - ], - [ - "langchain.document_loaders.email.UnstructuredEmailLoader", - "langchain_community.document_loaders.UnstructuredEmailLoader" - ], - [ - "langchain.document_loaders.email.OutlookMessageLoader", - "langchain_community.document_loaders.OutlookMessageLoader" - ], - [ - "langchain.document_loaders.epub.UnstructuredEPubLoader", - "langchain_community.document_loaders.UnstructuredEPubLoader" - ], - [ - "langchain.document_loaders.etherscan.EtherscanLoader", - "langchain_community.document_loaders.EtherscanLoader" - ], - [ - "langchain.document_loaders.evernote.EverNoteLoader", - "langchain_community.document_loaders.EverNoteLoader" - ], - [ - "langchain.document_loaders.excel.UnstructuredExcelLoader", - "langchain_community.document_loaders.UnstructuredExcelLoader" - ], - [ - "langchain.document_loaders.facebook_chat.concatenate_rows", - "langchain_community.document_loaders.facebook_chat.concatenate_rows" - ], - [ - "langchain.document_loaders.facebook_chat.FacebookChatLoader", - "langchain_community.document_loaders.FacebookChatLoader" - ], - [ - "langchain.document_loaders.fauna.FaunaLoader", - "langchain_community.document_loaders.FaunaLoader" - ], - [ - "langchain.document_loaders.figma.FigmaFileLoader", - "langchain_community.document_loaders.FigmaFileLoader" - ], - [ - "langchain.document_loaders.gcs_directory.GCSDirectoryLoader", - "langchain_community.document_loaders.GCSDirectoryLoader" - ], - [ - "langchain.document_loaders.gcs_file.GCSFileLoader", - "langchain_community.document_loaders.GCSFileLoader" - ], - [ - "langchain.document_loaders.generic.GenericLoader", - "langchain_community.document_loaders.generic.GenericLoader" - ], - [ - "langchain.document_loaders.geodataframe.GeoDataFrameLoader", - "langchain_community.document_loaders.GeoDataFrameLoader" - ], - [ - "langchain.document_loaders.git.GitLoader", - "langchain_community.document_loaders.GitLoader" - ], - [ - "langchain.document_loaders.gitbook.GitbookLoader", - "langchain_community.document_loaders.GitbookLoader" - ], - [ - "langchain.document_loaders.github.BaseGitHubLoader", - "langchain_community.document_loaders.github.BaseGitHubLoader" - ], - [ - "langchain.document_loaders.github.GitHubIssuesLoader", - "langchain_community.document_loaders.GitHubIssuesLoader" - ], - [ - "langchain.document_loaders.google_speech_to_text.GoogleSpeechToTextLoader", - "langchain_community.document_loaders.GoogleSpeechToTextLoader" - ], - [ - "langchain.document_loaders.googledrive.GoogleDriveLoader", - "langchain_community.document_loaders.GoogleDriveLoader" - ], - [ - "langchain.document_loaders.gutenberg.GutenbergLoader", - "langchain_community.document_loaders.GutenbergLoader" - ], - [ - "langchain.document_loaders.helpers.FileEncoding", - "langchain_community.document_loaders.helpers.FileEncoding" - ], - [ - "langchain.document_loaders.helpers.detect_file_encodings", - "langchain_community.document_loaders.helpers.detect_file_encodings" - ], - [ - "langchain.document_loaders.hn.HNLoader", - "langchain_community.document_loaders.HNLoader" - ], - [ - "langchain.document_loaders.html.UnstructuredHTMLLoader", - "langchain_community.document_loaders.UnstructuredHTMLLoader" - ], - [ - "langchain.document_loaders.html_bs.BSHTMLLoader", - "langchain_community.document_loaders.BSHTMLLoader" - ], - [ - "langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader", - "langchain_community.document_loaders.HuggingFaceDatasetLoader" - ], - [ - "langchain.document_loaders.ifixit.IFixitLoader", - "langchain_community.document_loaders.IFixitLoader" - ], - [ - "langchain.document_loaders.image.UnstructuredImageLoader", - "langchain_community.document_loaders.UnstructuredImageLoader" - ], - [ - "langchain.document_loaders.image_captions.ImageCaptionLoader", - "langchain_community.document_loaders.ImageCaptionLoader" - ], - [ - "langchain.document_loaders.imsdb.IMSDbLoader", - "langchain_community.document_loaders.IMSDbLoader" - ], - [ - "langchain.document_loaders.iugu.IuguLoader", - "langchain_community.document_loaders.IuguLoader" - ], - [ - "langchain.document_loaders.joplin.JoplinLoader", - "langchain_community.document_loaders.JoplinLoader" - ], - [ - "langchain.document_loaders.json_loader.JSONLoader", - "langchain_community.document_loaders.JSONLoader" - ], - [ - "langchain.document_loaders.lakefs.LakeFSClient", - "langchain_community.document_loaders.lakefs.LakeFSClient" - ], - [ - "langchain.document_loaders.lakefs.LakeFSLoader", - "langchain_community.document_loaders.LakeFSLoader" - ], - [ - "langchain.document_loaders.lakefs.UnstructuredLakeFSLoader", - "langchain_community.document_loaders.lakefs.UnstructuredLakeFSLoader" - ], - [ - "langchain.document_loaders.larksuite.LarkSuiteDocLoader", - "langchain_community.document_loaders.LarkSuiteDocLoader" - ], - [ - "langchain.document_loaders.markdown.UnstructuredMarkdownLoader", - "langchain_community.document_loaders.UnstructuredMarkdownLoader" - ], - [ - "langchain.document_loaders.mastodon.MastodonTootsLoader", - "langchain_community.document_loaders.MastodonTootsLoader" - ], - [ - "langchain.document_loaders.max_compute.MaxComputeLoader", - "langchain_community.document_loaders.MaxComputeLoader" - ], - [ - "langchain.document_loaders.mediawikidump.MWDumpLoader", - "langchain_community.document_loaders.MWDumpLoader" - ], - [ - "langchain.document_loaders.merge.MergedDataLoader", - "langchain_community.document_loaders.MergedDataLoader" - ], - [ - "langchain.document_loaders.mhtml.MHTMLLoader", - "langchain_community.document_loaders.MHTMLLoader" - ], - [ - "langchain.document_loaders.modern_treasury.ModernTreasuryLoader", - "langchain_community.document_loaders.ModernTreasuryLoader" - ], - [ - "langchain.document_loaders.mongodb.MongodbLoader", - "langchain_community.document_loaders.MongodbLoader" - ], - [ - "langchain.document_loaders.news.NewsURLLoader", - "langchain_community.document_loaders.NewsURLLoader" - ], - [ - "langchain.document_loaders.notebook.concatenate_cells", - "langchain_community.document_loaders.notebook.concatenate_cells" - ], - [ - "langchain.document_loaders.notebook.remove_newlines", - "langchain_community.document_loaders.notebook.remove_newlines" - ], - [ - "langchain.document_loaders.notebook.NotebookLoader", - "langchain_community.document_loaders.NotebookLoader" - ], - [ - "langchain.document_loaders.notion.NotionDirectoryLoader", - "langchain_community.document_loaders.NotionDirectoryLoader" - ], - [ - "langchain.document_loaders.notiondb.NotionDBLoader", - "langchain_community.document_loaders.NotionDBLoader" - ], - [ - "langchain.document_loaders.nuclia.NucliaLoader", - "langchain_community.document_loaders.nuclia.NucliaLoader" - ], - [ - "langchain.document_loaders.obs_directory.OBSDirectoryLoader", - "langchain_community.document_loaders.OBSDirectoryLoader" - ], - [ - "langchain.document_loaders.obs_file.OBSFileLoader", - "langchain_community.document_loaders.OBSFileLoader" - ], - [ - "langchain.document_loaders.obsidian.ObsidianLoader", - "langchain_community.document_loaders.ObsidianLoader" - ], - [ - "langchain.document_loaders.odt.UnstructuredODTLoader", - "langchain_community.document_loaders.UnstructuredODTLoader" - ], - [ - "langchain.document_loaders.onedrive.OneDriveLoader", - "langchain_community.document_loaders.OneDriveLoader" - ], - [ - "langchain.document_loaders.onedrive_file.OneDriveFileLoader", - "langchain_community.document_loaders.OneDriveFileLoader" - ], - [ - "langchain.document_loaders.onenote.OneNoteLoader", - "langchain_community.document_loaders.onenote.OneNoteLoader" - ], - [ - "langchain.document_loaders.open_city_data.OpenCityDataLoader", - "langchain_community.document_loaders.OpenCityDataLoader" - ], - [ - "langchain.document_loaders.org_mode.UnstructuredOrgModeLoader", - "langchain_community.document_loaders.UnstructuredOrgModeLoader" - ], - [ - "langchain.document_loaders.parsers.BS4HTMLParser", - "langchain_community.document_loaders.parsers.html.bs4.BS4HTMLParser" - ], - [ - "langchain.document_loaders.parsers.DocAIParser", - "langchain_community.document_loaders.parsers.docai.DocAIParser" - ], - [ - "langchain.document_loaders.parsers.GrobidParser", - "langchain_community.document_loaders.parsers.grobid.GrobidParser" - ], - [ - "langchain.document_loaders.parsers.LanguageParser", - "langchain_community.document_loaders.parsers.language.language_parser.LanguageParser" - ], - [ - "langchain.document_loaders.parsers.OpenAIWhisperParser", - "langchain_community.document_loaders.parsers.audio.OpenAIWhisperParser" - ], - [ - "langchain.document_loaders.parsers.PDFMinerParser", - "langchain_community.document_loaders.parsers.pdf.PDFMinerParser" - ], - [ - "langchain.document_loaders.parsers.PDFPlumberParser", - "langchain_community.document_loaders.parsers.pdf.PDFPlumberParser" - ], - [ - "langchain.document_loaders.parsers.PyMuPDFParser", - "langchain_community.document_loaders.parsers.pdf.PyMuPDFParser" - ], - [ - "langchain.document_loaders.parsers.PyPDFium2Parser", - "langchain_community.document_loaders.parsers.pdf.PyPDFium2Parser" - ], - [ - "langchain.document_loaders.parsers.PyPDFParser", - "langchain_community.document_loaders.parsers.pdf.PyPDFParser" - ], - [ - "langchain.document_loaders.parsers.audio.OpenAIWhisperParser", - "langchain_community.document_loaders.parsers.audio.OpenAIWhisperParser" - ], - [ - "langchain.document_loaders.parsers.audio.OpenAIWhisperParserLocal", - "langchain_community.document_loaders.parsers.audio.OpenAIWhisperParserLocal" - ], - [ - "langchain.document_loaders.parsers.audio.YandexSTTParser", - "langchain_community.document_loaders.parsers.audio.YandexSTTParser" - ], - [ - "langchain.document_loaders.parsers.docai.DocAIParsingResults", - "langchain_community.document_loaders.parsers.docai.DocAIParsingResults" - ], - [ - "langchain.document_loaders.parsers.docai.DocAIParser", - "langchain_community.document_loaders.parsers.docai.DocAIParser" - ], - [ - "langchain.document_loaders.parsers.generic.MimeTypeBasedParser", - "langchain_community.document_loaders.parsers.generic.MimeTypeBasedParser" - ], - [ - "langchain.document_loaders.parsers.grobid.GrobidParser", - "langchain_community.document_loaders.parsers.grobid.GrobidParser" - ], - [ - "langchain.document_loaders.parsers.grobid.ServerUnavailableException", - "langchain_community.document_loaders.parsers.grobid.ServerUnavailableException" - ], - [ - "langchain.document_loaders.parsers.html.BS4HTMLParser", - "langchain_community.document_loaders.parsers.html.bs4.BS4HTMLParser" - ], - [ - "langchain.document_loaders.parsers.html.bs4.BS4HTMLParser", - "langchain_community.document_loaders.parsers.html.bs4.BS4HTMLParser" - ], - [ - "langchain.document_loaders.parsers.language.LanguageParser", - "langchain_community.document_loaders.parsers.language.language_parser.LanguageParser" - ], - [ - "langchain.document_loaders.parsers.language.cobol.CobolSegmenter", - "langchain_community.document_loaders.parsers.language.cobol.CobolSegmenter" - ], - [ - "langchain.document_loaders.parsers.language.code_segmenter.CodeSegmenter", - "langchain_community.document_loaders.parsers.language.code_segmenter.CodeSegmenter" - ], - [ - "langchain.document_loaders.parsers.language.javascript.JavaScriptSegmenter", - "langchain_community.document_loaders.parsers.language.javascript.JavaScriptSegmenter" - ], - [ - "langchain.document_loaders.parsers.language.language_parser.LanguageParser", - "langchain_community.document_loaders.parsers.language.language_parser.LanguageParser" - ], - [ - "langchain.document_loaders.parsers.language.python.PythonSegmenter", - "langchain_community.document_loaders.parsers.language.python.PythonSegmenter" - ], - [ - "langchain.document_loaders.parsers.msword.MsWordParser", - "langchain_community.document_loaders.parsers.msword.MsWordParser" - ], - [ - "langchain.document_loaders.parsers.pdf.extract_from_images_with_rapidocr", - "langchain_community.document_loaders.parsers.pdf.extract_from_images_with_rapidocr" - ], - [ - "langchain.document_loaders.parsers.pdf.PyPDFParser", - "langchain_community.document_loaders.parsers.pdf.PyPDFParser" - ], - [ - "langchain.document_loaders.parsers.pdf.PDFMinerParser", - "langchain_community.document_loaders.parsers.pdf.PDFMinerParser" - ], - [ - "langchain.document_loaders.parsers.pdf.PyMuPDFParser", - "langchain_community.document_loaders.parsers.pdf.PyMuPDFParser" - ], - [ - "langchain.document_loaders.parsers.pdf.PyPDFium2Parser", - "langchain_community.document_loaders.parsers.pdf.PyPDFium2Parser" - ], - [ - "langchain.document_loaders.parsers.pdf.PDFPlumberParser", - "langchain_community.document_loaders.parsers.pdf.PDFPlumberParser" - ], - [ - "langchain.document_loaders.parsers.pdf.AmazonTextractPDFParser", - "langchain_community.document_loaders.parsers.pdf.AmazonTextractPDFParser" - ], - [ - "langchain.document_loaders.parsers.pdf.DocumentIntelligenceParser", - "langchain_community.document_loaders.parsers.pdf.DocumentIntelligenceParser" - ], - [ - "langchain.document_loaders.parsers.registry.get_parser", - "langchain_community.document_loaders.parsers.registry.get_parser" - ], - [ - "langchain.document_loaders.parsers.txt.TextParser", - "langchain_community.document_loaders.parsers.txt.TextParser" - ], - [ - "langchain.document_loaders.pdf.UnstructuredPDFLoader", - "langchain_community.document_loaders.UnstructuredPDFLoader" - ], - [ - "langchain.document_loaders.pdf.BasePDFLoader", - "langchain_community.document_loaders.pdf.BasePDFLoader" - ], - [ - "langchain.document_loaders.pdf.OnlinePDFLoader", - "langchain_community.document_loaders.OnlinePDFLoader" - ], - [ - "langchain.document_loaders.pdf.PyPDFLoader", - "langchain_community.document_loaders.PyPDFLoader" - ], - [ - "langchain.document_loaders.pdf.PyPDFium2Loader", - "langchain_community.document_loaders.PyPDFium2Loader" - ], - [ - "langchain.document_loaders.pdf.PyPDFDirectoryLoader", - "langchain_community.document_loaders.PyPDFDirectoryLoader" - ], - [ - "langchain.document_loaders.pdf.PDFMinerLoader", - "langchain_community.document_loaders.PDFMinerLoader" - ], - [ - "langchain.document_loaders.pdf.PDFMinerPDFasHTMLLoader", - "langchain_community.document_loaders.PDFMinerPDFasHTMLLoader" - ], - [ - "langchain.document_loaders.pdf.PyMuPDFLoader", - "langchain_community.document_loaders.PyMuPDFLoader" - ], - [ - "langchain.document_loaders.pdf.MathpixPDFLoader", - "langchain_community.document_loaders.MathpixPDFLoader" - ], - [ - "langchain.document_loaders.pdf.PDFPlumberLoader", - "langchain_community.document_loaders.PDFPlumberLoader" - ], - [ - "langchain.document_loaders.pdf.AmazonTextractPDFLoader", - "langchain_community.document_loaders.AmazonTextractPDFLoader" - ], - [ - "langchain.document_loaders.pdf.DocumentIntelligenceLoader", - "langchain_community.document_loaders.pdf.DocumentIntelligenceLoader" - ], - [ - "langchain.document_loaders.polars_dataframe.PolarsDataFrameLoader", - "langchain_community.document_loaders.PolarsDataFrameLoader" - ], - [ - "langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader", - "langchain_community.document_loaders.UnstructuredPowerPointLoader" - ], - [ - "langchain.document_loaders.psychic.PsychicLoader", - "langchain_community.document_loaders.PsychicLoader" - ], - [ - "langchain.document_loaders.pubmed.PubMedLoader", - "langchain_community.document_loaders.PubMedLoader" - ], - [ - "langchain.document_loaders.pyspark_dataframe.PySparkDataFrameLoader", - "langchain_community.document_loaders.PySparkDataFrameLoader" - ], - [ - "langchain.document_loaders.python.PythonLoader", - "langchain_community.document_loaders.PythonLoader" - ], - [ - "langchain.document_loaders.quip.QuipLoader", - "langchain_community.document_loaders.quip.QuipLoader" - ], - [ - "langchain.document_loaders.readthedocs.ReadTheDocsLoader", - "langchain_community.document_loaders.ReadTheDocsLoader" - ], - [ - "langchain.document_loaders.recursive_url_loader.RecursiveUrlLoader", - "langchain_community.document_loaders.RecursiveUrlLoader" - ], - [ - "langchain.document_loaders.reddit.RedditPostsLoader", - "langchain_community.document_loaders.RedditPostsLoader" - ], - [ - "langchain.document_loaders.roam.RoamLoader", - "langchain_community.document_loaders.RoamLoader" - ], - [ - "langchain.document_loaders.rocksetdb.RocksetLoader", - "langchain_community.document_loaders.RocksetLoader" - ], - [ - "langchain.document_loaders.rspace.RSpaceLoader", - "langchain_community.document_loaders.rspace.RSpaceLoader" - ], - [ - "langchain.document_loaders.rss.RSSFeedLoader", - "langchain_community.document_loaders.RSSFeedLoader" - ], - [ - "langchain.document_loaders.rst.UnstructuredRSTLoader", - "langchain_community.document_loaders.UnstructuredRSTLoader" - ], - [ - "langchain.document_loaders.rtf.UnstructuredRTFLoader", - "langchain_community.document_loaders.UnstructuredRTFLoader" - ], - [ - "langchain.document_loaders.s3_directory.S3DirectoryLoader", - "langchain_community.document_loaders.S3DirectoryLoader" - ], - [ - "langchain.document_loaders.s3_file.S3FileLoader", - "langchain_community.document_loaders.S3FileLoader" - ], - [ - "langchain.document_loaders.sharepoint.SharePointLoader", - "langchain_community.document_loaders.SharePointLoader" - ], - [ - "langchain.document_loaders.sitemap.SitemapLoader", - "langchain_community.document_loaders.SitemapLoader" - ], - [ - "langchain.document_loaders.slack_directory.SlackDirectoryLoader", - "langchain_community.document_loaders.SlackDirectoryLoader" - ], - [ - "langchain.document_loaders.snowflake_loader.SnowflakeLoader", - "langchain_community.document_loaders.SnowflakeLoader" - ], - [ - "langchain.document_loaders.spreedly.SpreedlyLoader", - "langchain_community.document_loaders.SpreedlyLoader" - ], - [ - "langchain.document_loaders.srt.SRTLoader", - "langchain_community.document_loaders.SRTLoader" - ], - [ - "langchain.document_loaders.stripe.StripeLoader", - "langchain_community.document_loaders.StripeLoader" - ], - [ - "langchain.document_loaders.telegram.concatenate_rows", - "langchain_community.document_loaders.telegram.concatenate_rows" - ], - [ - "langchain.document_loaders.telegram.TelegramChatFileLoader", - "langchain_community.document_loaders.TelegramChatLoader" - ], - [ - "langchain.document_loaders.telegram.text_to_docs", - "langchain_community.document_loaders.telegram.text_to_docs" - ], - [ - "langchain.document_loaders.telegram.TelegramChatApiLoader", - "langchain_community.document_loaders.TelegramChatApiLoader" - ], - [ - "langchain.document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader", - "langchain_community.document_loaders.TencentCOSDirectoryLoader" - ], - [ - "langchain.document_loaders.tencent_cos_file.TencentCOSFileLoader", - "langchain_community.document_loaders.TencentCOSFileLoader" - ], - [ - "langchain.document_loaders.tensorflow_datasets.TensorflowDatasetLoader", - "langchain_community.document_loaders.TensorflowDatasetLoader" - ], - [ - "langchain.document_loaders.text.TextLoader", - "langchain_community.document_loaders.TextLoader" - ], - [ - "langchain.document_loaders.tomarkdown.ToMarkdownLoader", - "langchain_community.document_loaders.ToMarkdownLoader" - ], - [ - "langchain.document_loaders.toml.TomlLoader", - "langchain_community.document_loaders.TomlLoader" - ], - [ - "langchain.document_loaders.trello.TrelloLoader", - "langchain_community.document_loaders.TrelloLoader" - ], - [ - "langchain.document_loaders.tsv.UnstructuredTSVLoader", - "langchain_community.document_loaders.UnstructuredTSVLoader" - ], - [ - "langchain.document_loaders.twitter.TwitterTweetLoader", - "langchain_community.document_loaders.TwitterTweetLoader" - ], - [ - "langchain.document_loaders.unstructured.satisfies_min_unstructured_version", - "langchain_community.document_loaders.unstructured.satisfies_min_unstructured_version" - ], - [ - "langchain.document_loaders.unstructured.validate_unstructured_version", - "langchain_community.document_loaders.unstructured.validate_unstructured_version" - ], - [ - "langchain.document_loaders.unstructured.UnstructuredBaseLoader", - "langchain_community.document_loaders.unstructured.UnstructuredBaseLoader" - ], - [ - "langchain.document_loaders.unstructured.UnstructuredFileLoader", - "langchain_community.document_loaders.UnstructuredFileLoader" - ], - [ - "langchain.document_loaders.unstructured.get_elements_from_api", - "langchain_community.document_loaders.unstructured.get_elements_from_api" - ], - [ - "langchain.document_loaders.unstructured.UnstructuredAPIFileLoader", - "langchain_community.document_loaders.UnstructuredAPIFileLoader" - ], - [ - "langchain.document_loaders.unstructured.UnstructuredFileIOLoader", - "langchain_community.document_loaders.UnstructuredFileIOLoader" - ], - [ - "langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader", - "langchain_community.document_loaders.UnstructuredAPIFileIOLoader" - ], - [ - "langchain.document_loaders.url.UnstructuredURLLoader", - "langchain_community.document_loaders.UnstructuredURLLoader" - ], - [ - "langchain.document_loaders.url_playwright.PlaywrightEvaluator", - "langchain_community.document_loaders.url_playwright.PlaywrightEvaluator" - ], - [ - "langchain.document_loaders.url_playwright.UnstructuredHtmlEvaluator", - "langchain_community.document_loaders.url_playwright.UnstructuredHtmlEvaluator" - ], - [ - "langchain.document_loaders.url_playwright.PlaywrightURLLoader", - "langchain_community.document_loaders.PlaywrightURLLoader" - ], - [ - "langchain.document_loaders.url_selenium.SeleniumURLLoader", - "langchain_community.document_loaders.SeleniumURLLoader" - ], - [ - "langchain.document_loaders.weather.WeatherDataLoader", - "langchain_community.document_loaders.WeatherDataLoader" - ], - [ - "langchain.document_loaders.web_base.WebBaseLoader", - "langchain_community.document_loaders.WebBaseLoader" - ], - [ - "langchain.document_loaders.whatsapp_chat.concatenate_rows", - "langchain_community.document_loaders.whatsapp_chat.concatenate_rows" - ], - [ - "langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader", - "langchain_community.document_loaders.WhatsAppChatLoader" - ], - [ - "langchain.document_loaders.wikipedia.WikipediaLoader", - "langchain_community.document_loaders.WikipediaLoader" - ], - [ - "langchain.document_loaders.word_document.Docx2txtLoader", - "langchain_community.document_loaders.Docx2txtLoader" - ], - [ - "langchain.document_loaders.word_document.UnstructuredWordDocumentLoader", - "langchain_community.document_loaders.UnstructuredWordDocumentLoader" - ], - [ - "langchain.document_loaders.xml.UnstructuredXMLLoader", - "langchain_community.document_loaders.UnstructuredXMLLoader" - ], - [ - "langchain.document_loaders.xorbits.XorbitsLoader", - "langchain_community.document_loaders.XorbitsLoader" - ], - [ - "langchain.document_loaders.youtube.YoutubeLoader", - "langchain_community.document_loaders.YoutubeLoader" - ], - [ - "langchain.document_loaders.youtube.GoogleApiYoutubeLoader", - "langchain_community.document_loaders.GoogleApiYoutubeLoader" - ], - [ - "langchain.document_loaders.youtube.GoogleApiClient", - "langchain_community.document_loaders.GoogleApiClient" - ], - [ - "langchain.document_transformers.BeautifulSoupTransformer", - "langchain_community.document_transformers.BeautifulSoupTransformer" - ], - [ - "langchain.document_transformers.DoctranQATransformer", - "langchain_community.document_transformers.DoctranQATransformer" - ], - [ - "langchain.document_transformers.DoctranTextTranslator", - "langchain_community.document_transformers.DoctranTextTranslator" - ], - [ - "langchain.document_transformers.DoctranPropertyExtractor", - "langchain_community.document_transformers.DoctranPropertyExtractor" - ], - [ - "langchain.document_transformers.EmbeddingsClusteringFilter", - "langchain_community.document_transformers.EmbeddingsClusteringFilter" - ], - [ - "langchain.document_transformers.EmbeddingsRedundantFilter", - "langchain_community.document_transformers.EmbeddingsRedundantFilter" - ], - [ - "langchain.document_transformers.GoogleTranslateTransformer", - "langchain_community.document_transformers.GoogleTranslateTransformer" - ], - [ - "langchain.document_transformers.get_stateful_documents", - "langchain_community.document_transformers.get_stateful_documents" - ], - [ - "langchain.document_transformers.LongContextReorder", - "langchain_community.document_transformers.LongContextReorder" - ], - [ - "langchain.document_transformers.NucliaTextTransformer", - "langchain_community.document_transformers.NucliaTextTransformer" - ], - [ - "langchain.document_transformers.OpenAIMetadataTagger", - "langchain_community.document_transformers.OpenAIMetadataTagger" - ], - [ - "langchain.document_transformers.Html2TextTransformer", - "langchain_community.document_transformers.Html2TextTransformer" - ], - [ - "langchain.document_transformers.beautiful_soup_transformer.BeautifulSoupTransformer", - "langchain_community.document_transformers.BeautifulSoupTransformer" - ], - [ - "langchain.document_transformers.doctran_text_extract.DoctranPropertyExtractor", - "langchain_community.document_transformers.DoctranPropertyExtractor" - ], - [ - "langchain.document_transformers.doctran_text_qa.DoctranQATransformer", - "langchain_community.document_transformers.DoctranQATransformer" - ], - [ - "langchain.document_transformers.doctran_text_translate.DoctranTextTranslator", - "langchain_community.document_transformers.DoctranTextTranslator" - ], - [ - "langchain.document_transformers.embeddings_redundant_filter.EmbeddingsRedundantFilter", - "langchain_community.document_transformers.EmbeddingsRedundantFilter" - ], - [ - "langchain.document_transformers.embeddings_redundant_filter.EmbeddingsClusteringFilter", - "langchain_community.document_transformers.EmbeddingsClusteringFilter" - ], - [ - "langchain.document_transformers.embeddings_redundant_filter._DocumentWithState", - "langchain_community.document_transformers.embeddings_redundant_filter._DocumentWithState" - ], - [ - "langchain.document_transformers.embeddings_redundant_filter.get_stateful_documents", - "langchain_community.document_transformers.get_stateful_documents" - ], - [ - "langchain.document_transformers.embeddings_redundant_filter._get_embeddings_from_stateful_docs", - "langchain_community.document_transformers.embeddings_redundant_filter._get_embeddings_from_stateful_docs" - ], - [ - "langchain.document_transformers.embeddings_redundant_filter._filter_similar_embeddings", - "langchain_community.document_transformers.embeddings_redundant_filter._filter_similar_embeddings" - ], - [ - "langchain.document_transformers.google_translate.GoogleTranslateTransformer", - "langchain_community.document_transformers.GoogleTranslateTransformer" - ], - [ - "langchain.document_transformers.html2text.Html2TextTransformer", - "langchain_community.document_transformers.Html2TextTransformer" - ], - [ - "langchain.document_transformers.long_context_reorder.LongContextReorder", - "langchain_community.document_transformers.LongContextReorder" - ], - [ - "langchain.document_transformers.nuclia_text_transform.NucliaTextTransformer", - "langchain_community.document_transformers.NucliaTextTransformer" - ], - [ - "langchain.document_transformers.openai_functions.OpenAIMetadataTagger", - "langchain_community.document_transformers.OpenAIMetadataTagger" - ], - [ - "langchain.document_transformers.openai_functions.create_metadata_tagger", - "langchain_community.document_transformers.openai_functions.create_metadata_tagger" - ], - [ - "langchain.embeddings.OpenAIEmbeddings", - "langchain_community.embeddings.OpenAIEmbeddings" - ], - [ - "langchain.embeddings.AzureOpenAIEmbeddings", - "langchain_community.embeddings.AzureOpenAIEmbeddings" - ], - [ - "langchain.embeddings.ClarifaiEmbeddings", - "langchain_community.embeddings.ClarifaiEmbeddings" - ], - [ - "langchain.embeddings.CohereEmbeddings", - "langchain_community.embeddings.CohereEmbeddings" - ], - [ - "langchain.embeddings.DatabricksEmbeddings", - "langchain_community.embeddings.DatabricksEmbeddings" - ], - [ - "langchain.embeddings.ElasticsearchEmbeddings", - "langchain_community.embeddings.ElasticsearchEmbeddings" - ], - [ - "langchain.embeddings.FastEmbedEmbeddings", - "langchain_community.embeddings.FastEmbedEmbeddings" - ], - [ - "langchain.embeddings.HuggingFaceEmbeddings", - "langchain_community.embeddings.SentenceTransformerEmbeddings" - ], - [ - "langchain.embeddings.HuggingFaceInferenceAPIEmbeddings", - "langchain_community.embeddings.HuggingFaceInferenceAPIEmbeddings" - ], - [ - "langchain.embeddings.InfinityEmbeddings", - "langchain_community.embeddings.InfinityEmbeddings" - ], - [ - "langchain.embeddings.GradientEmbeddings", - "langchain_community.embeddings.GradientEmbeddings" - ], - [ - "langchain.embeddings.JinaEmbeddings", - "langchain_community.embeddings.JinaEmbeddings" - ], - [ - "langchain.embeddings.LlamaCppEmbeddings", - "langchain_community.embeddings.LlamaCppEmbeddings" - ], - [ - "langchain.embeddings.HuggingFaceHubEmbeddings", - "langchain_community.embeddings.HuggingFaceHubEmbeddings" - ], - [ - "langchain.embeddings.MlflowEmbeddings", - "langchain_community.embeddings.MlflowEmbeddings" - ], - [ - "langchain.embeddings.MlflowAIGatewayEmbeddings", - "langchain_community.embeddings.MlflowAIGatewayEmbeddings" - ], - [ - "langchain.embeddings.ModelScopeEmbeddings", - "langchain_community.embeddings.ModelScopeEmbeddings" - ], - [ - "langchain.embeddings.TensorflowHubEmbeddings", - "langchain_community.embeddings.TensorflowHubEmbeddings" - ], - [ - "langchain.embeddings.SagemakerEndpointEmbeddings", - "langchain_community.embeddings.SagemakerEndpointEmbeddings" - ], - [ - "langchain.embeddings.HuggingFaceInstructEmbeddings", - "langchain_community.embeddings.HuggingFaceInstructEmbeddings" - ], - [ - "langchain.embeddings.MosaicMLInstructorEmbeddings", - "langchain_community.embeddings.MosaicMLInstructorEmbeddings" - ], - [ - "langchain.embeddings.SelfHostedEmbeddings", - "langchain_community.embeddings.SelfHostedEmbeddings" - ], - [ - "langchain.embeddings.SelfHostedHuggingFaceEmbeddings", - "langchain_community.embeddings.SelfHostedHuggingFaceEmbeddings" - ], - [ - "langchain.embeddings.SelfHostedHuggingFaceInstructEmbeddings", - "langchain_community.embeddings.SelfHostedHuggingFaceInstructEmbeddings" - ], - [ - "langchain.embeddings.FakeEmbeddings", - "langchain_community.embeddings.FakeEmbeddings" - ], - [ - "langchain.embeddings.DeterministicFakeEmbedding", - "langchain_community.embeddings.DeterministicFakeEmbedding" - ], - [ - "langchain.embeddings.AlephAlphaAsymmetricSemanticEmbedding", - "langchain_community.embeddings.AlephAlphaAsymmetricSemanticEmbedding" - ], - [ - "langchain.embeddings.AlephAlphaSymmetricSemanticEmbedding", - "langchain_community.embeddings.AlephAlphaSymmetricSemanticEmbedding" - ], - [ - "langchain.embeddings.SentenceTransformerEmbeddings", - "langchain_community.embeddings.SentenceTransformerEmbeddings" - ], - [ - "langchain.embeddings.GooglePalmEmbeddings", - "langchain_community.embeddings.GooglePalmEmbeddings" - ], - [ - "langchain.embeddings.MiniMaxEmbeddings", - "langchain_community.embeddings.MiniMaxEmbeddings" - ], - [ - "langchain.embeddings.VertexAIEmbeddings", - "langchain_community.embeddings.VertexAIEmbeddings" - ], - [ - "langchain.embeddings.BedrockEmbeddings", - "langchain_community.embeddings.BedrockEmbeddings" - ], - [ - "langchain.embeddings.DeepInfraEmbeddings", - "langchain_community.embeddings.DeepInfraEmbeddings" - ], - [ - "langchain.embeddings.EdenAiEmbeddings", - "langchain_community.embeddings.EdenAiEmbeddings" - ], - [ - "langchain.embeddings.DashScopeEmbeddings", - "langchain_community.embeddings.DashScopeEmbeddings" - ], - [ - "langchain.embeddings.EmbaasEmbeddings", - "langchain_community.embeddings.EmbaasEmbeddings" - ], - [ - "langchain.embeddings.OctoAIEmbeddings", - "langchain_community.embeddings.OctoAIEmbeddings" - ], - [ - "langchain.embeddings.SpacyEmbeddings", - "langchain_community.embeddings.SpacyEmbeddings" - ], - [ - "langchain.embeddings.NLPCloudEmbeddings", - "langchain_community.embeddings.NLPCloudEmbeddings" - ], - [ - "langchain.embeddings.GPT4AllEmbeddings", - "langchain_community.embeddings.GPT4AllEmbeddings" - ], - [ - "langchain.embeddings.XinferenceEmbeddings", - "langchain_community.embeddings.XinferenceEmbeddings" - ], - [ - "langchain.embeddings.LocalAIEmbeddings", - "langchain_community.embeddings.LocalAIEmbeddings" - ], - [ - "langchain.embeddings.AwaEmbeddings", - "langchain_community.embeddings.AwaEmbeddings" - ], - [ - "langchain.embeddings.HuggingFaceBgeEmbeddings", - "langchain_community.embeddings.HuggingFaceBgeEmbeddings" - ], - [ - "langchain.embeddings.ErnieEmbeddings", - "langchain_community.embeddings.ErnieEmbeddings" - ], - [ - "langchain.embeddings.JavelinAIGatewayEmbeddings", - "langchain_community.embeddings.JavelinAIGatewayEmbeddings" - ], - [ - "langchain.embeddings.OllamaEmbeddings", - "langchain_community.embeddings.OllamaEmbeddings" - ], - [ - "langchain.embeddings.QianfanEmbeddingsEndpoint", - "langchain_community.embeddings.QianfanEmbeddingsEndpoint" - ], - [ - "langchain.embeddings.JohnSnowLabsEmbeddings", - "langchain_community.embeddings.JohnSnowLabsEmbeddings" - ], - [ - "langchain.embeddings.VoyageEmbeddings", - "langchain_community.embeddings.VoyageEmbeddings" - ], - [ - "langchain.embeddings.BookendEmbeddings", - "langchain_community.embeddings.BookendEmbeddings" - ], - [ - "langchain.embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding", - "langchain_community.embeddings.AlephAlphaAsymmetricSemanticEmbedding" - ], - [ - "langchain.embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding", - "langchain_community.embeddings.AlephAlphaSymmetricSemanticEmbedding" - ], - [ - "langchain.embeddings.awa.AwaEmbeddings", - "langchain_community.embeddings.AwaEmbeddings" - ], - [ - "langchain.embeddings.azure_openai.AzureOpenAIEmbeddings", - "langchain_community.embeddings.AzureOpenAIEmbeddings" - ], - [ - "langchain.embeddings.baidu_qianfan_endpoint.QianfanEmbeddingsEndpoint", - "langchain_community.embeddings.QianfanEmbeddingsEndpoint" - ], - [ - "langchain.embeddings.bedrock.BedrockEmbeddings", - "langchain_community.embeddings.BedrockEmbeddings" - ], - [ - "langchain.embeddings.bookend.BookendEmbeddings", - "langchain_community.embeddings.BookendEmbeddings" - ], - [ - "langchain.embeddings.clarifai.ClarifaiEmbeddings", - "langchain_community.embeddings.ClarifaiEmbeddings" - ], - [ - "langchain.embeddings.cloudflare_workersai.CloudflareWorkersAIEmbeddings", - "langchain_community.embeddings.cloudflare_workersai.CloudflareWorkersAIEmbeddings" - ], - [ - "langchain.embeddings.cohere.CohereEmbeddings", - "langchain_community.embeddings.CohereEmbeddings" - ], - [ - "langchain.embeddings.dashscope.DashScopeEmbeddings", - "langchain_community.embeddings.DashScopeEmbeddings" - ], - [ - "langchain.embeddings.databricks.DatabricksEmbeddings", - "langchain_community.embeddings.DatabricksEmbeddings" - ], - [ - "langchain.embeddings.deepinfra.DeepInfraEmbeddings", - "langchain_community.embeddings.DeepInfraEmbeddings" - ], - [ - "langchain.embeddings.edenai.EdenAiEmbeddings", - "langchain_community.embeddings.EdenAiEmbeddings" - ], - [ - "langchain.embeddings.elasticsearch.ElasticsearchEmbeddings", - "langchain_community.embeddings.ElasticsearchEmbeddings" - ], - [ - "langchain.embeddings.embaas.EmbaasEmbeddings", - "langchain_community.embeddings.EmbaasEmbeddings" - ], - [ - "langchain.embeddings.ernie.ErnieEmbeddings", - "langchain_community.embeddings.ErnieEmbeddings" - ], - [ - "langchain.embeddings.fake.FakeEmbeddings", - "langchain_community.embeddings.FakeEmbeddings" - ], - [ - "langchain.embeddings.fake.DeterministicFakeEmbedding", - "langchain_community.embeddings.DeterministicFakeEmbedding" - ], - [ - "langchain.embeddings.fastembed.FastEmbedEmbeddings", - "langchain_community.embeddings.FastEmbedEmbeddings" - ], - [ - "langchain.embeddings.google_palm.GooglePalmEmbeddings", - "langchain_community.embeddings.GooglePalmEmbeddings" - ], - [ - "langchain.embeddings.gpt4all.GPT4AllEmbeddings", - "langchain_community.embeddings.GPT4AllEmbeddings" - ], - [ - "langchain.embeddings.gradient_ai.GradientEmbeddings", - "langchain_community.embeddings.GradientEmbeddings" - ], - [ - "langchain.embeddings.huggingface.HuggingFaceEmbeddings", - "langchain_community.embeddings.SentenceTransformerEmbeddings" - ], - [ - "langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings", - "langchain_community.embeddings.HuggingFaceInstructEmbeddings" - ], - [ - "langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings", - "langchain_community.embeddings.HuggingFaceBgeEmbeddings" - ], - [ - "langchain.embeddings.huggingface.HuggingFaceInferenceAPIEmbeddings", - "langchain_community.embeddings.HuggingFaceInferenceAPIEmbeddings" - ], - [ - "langchain.embeddings.huggingface_hub.HuggingFaceHubEmbeddings", - "langchain_community.embeddings.HuggingFaceHubEmbeddings" - ], - [ - "langchain.embeddings.infinity.InfinityEmbeddings", - "langchain_community.embeddings.InfinityEmbeddings" - ], - [ - "langchain.embeddings.infinity.TinyAsyncOpenAIInfinityEmbeddingClient", - "langchain_community.embeddings.infinity.TinyAsyncOpenAIInfinityEmbeddingClient" - ], - [ - "langchain.embeddings.javelin_ai_gateway.JavelinAIGatewayEmbeddings", - "langchain_community.embeddings.JavelinAIGatewayEmbeddings" - ], - [ - "langchain.embeddings.jina.JinaEmbeddings", - "langchain_community.embeddings.JinaEmbeddings" - ], - [ - "langchain.embeddings.johnsnowlabs.JohnSnowLabsEmbeddings", - "langchain_community.embeddings.JohnSnowLabsEmbeddings" - ], - [ - "langchain.embeddings.llamacpp.LlamaCppEmbeddings", - "langchain_community.embeddings.LlamaCppEmbeddings" - ], - [ - "langchain.embeddings.llm_rails.LLMRailsEmbeddings", - "langchain_community.embeddings.LLMRailsEmbeddings" - ], - [ - "langchain.embeddings.localai.LocalAIEmbeddings", - "langchain_community.embeddings.LocalAIEmbeddings" - ], - [ - "langchain.embeddings.minimax.MiniMaxEmbeddings", - "langchain_community.embeddings.MiniMaxEmbeddings" - ], - [ - "langchain.embeddings.mlflow.MlflowEmbeddings", - "langchain_community.embeddings.MlflowEmbeddings" - ], - [ - "langchain.embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings", - "langchain_community.embeddings.MlflowAIGatewayEmbeddings" - ], - [ - "langchain.embeddings.modelscope_hub.ModelScopeEmbeddings", - "langchain_community.embeddings.ModelScopeEmbeddings" - ], - [ - "langchain.embeddings.mosaicml.MosaicMLInstructorEmbeddings", - "langchain_community.embeddings.MosaicMLInstructorEmbeddings" - ], - [ - "langchain.embeddings.nlpcloud.NLPCloudEmbeddings", - "langchain_community.embeddings.NLPCloudEmbeddings" - ], - [ - "langchain.embeddings.octoai_embeddings.OctoAIEmbeddings", - "langchain_community.embeddings.OctoAIEmbeddings" - ], - [ - "langchain.embeddings.ollama.OllamaEmbeddings", - "langchain_community.embeddings.OllamaEmbeddings" - ], - [ - "langchain.embeddings.openai.OpenAIEmbeddings", - "langchain_community.embeddings.OpenAIEmbeddings" - ], - [ - "langchain.embeddings.sagemaker_endpoint.EmbeddingsContentHandler", - "langchain_community.embeddings.sagemaker_endpoint.EmbeddingsContentHandler" - ], - [ - "langchain.embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings", - "langchain_community.embeddings.SagemakerEndpointEmbeddings" - ], - [ - "langchain.embeddings.self_hosted.SelfHostedEmbeddings", - "langchain_community.embeddings.SelfHostedEmbeddings" - ], - [ - "langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings", - "langchain_community.embeddings.SelfHostedHuggingFaceEmbeddings" - ], - [ - "langchain.embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceInstructEmbeddings", - "langchain_community.embeddings.SelfHostedHuggingFaceInstructEmbeddings" - ], - [ - "langchain.embeddings.sentence_transformer.SentenceTransformerEmbeddings", - "langchain_community.embeddings.SentenceTransformerEmbeddings" - ], - [ - "langchain.embeddings.spacy_embeddings.SpacyEmbeddings", - "langchain_community.embeddings.SpacyEmbeddings" - ], - [ - "langchain.embeddings.tensorflow_hub.TensorflowHubEmbeddings", - "langchain_community.embeddings.TensorflowHubEmbeddings" - ], - [ - "langchain.embeddings.vertexai.VertexAIEmbeddings", - "langchain_community.embeddings.VertexAIEmbeddings" - ], - [ - "langchain.embeddings.voyageai.VoyageEmbeddings", - "langchain_community.embeddings.VoyageEmbeddings" - ], - [ - "langchain.embeddings.xinference.XinferenceEmbeddings", - "langchain_community.embeddings.XinferenceEmbeddings" - ], - [ - "langchain.graphs.MemgraphGraph", - "langchain_community.graphs.MemgraphGraph" - ], - [ - "langchain.graphs.NetworkxEntityGraph", - "langchain_community.graphs.NetworkxEntityGraph" - ], - [ - "langchain.graphs.Neo4jGraph", - "langchain_community.graphs.Neo4jGraph" - ], - [ - "langchain.graphs.NebulaGraph", - "langchain_community.graphs.NebulaGraph" - ], - [ - "langchain.graphs.NeptuneGraph", - "langchain_community.graphs.NeptuneGraph" - ], - [ - "langchain.graphs.KuzuGraph", - "langchain_community.graphs.KuzuGraph" - ], - [ - "langchain.graphs.HugeGraph", - "langchain_community.graphs.HugeGraph" - ], - [ - "langchain.graphs.RdfGraph", - "langchain_community.graphs.RdfGraph" - ], - [ - "langchain.graphs.ArangoGraph", - "langchain_community.graphs.ArangoGraph" - ], - [ - "langchain.graphs.FalkorDBGraph", - "langchain_community.graphs.FalkorDBGraph" - ], - [ - "langchain.graphs.arangodb_graph.ArangoGraph", - "langchain_community.graphs.ArangoGraph" - ], - [ - "langchain.graphs.arangodb_graph.get_arangodb_client", - "langchain_community.graphs.arangodb_graph.get_arangodb_client" - ], - [ - "langchain.graphs.falkordb_graph.FalkorDBGraph", - "langchain_community.graphs.FalkorDBGraph" - ], - [ - "langchain.graphs.graph_document.Node", - "langchain_community.graphs.graph_document.Node" - ], - [ - "langchain.graphs.graph_document.Relationship", - "langchain_community.graphs.graph_document.Relationship" - ], - [ - "langchain.graphs.graph_document.GraphDocument", - "langchain_community.graphs.graph_document.GraphDocument" - ], - [ - "langchain.graphs.graph_store.GraphStore", - "langchain_community.graphs.graph_store.GraphStore" - ], - [ - "langchain.graphs.hugegraph.HugeGraph", - "langchain_community.graphs.HugeGraph" - ], - [ - "langchain.graphs.kuzu_graph.KuzuGraph", - "langchain_community.graphs.KuzuGraph" - ], - [ - "langchain.graphs.memgraph_graph.MemgraphGraph", - "langchain_community.graphs.MemgraphGraph" - ], - [ - "langchain.graphs.nebula_graph.NebulaGraph", - "langchain_community.graphs.NebulaGraph" - ], - [ - "langchain.graphs.neo4j_graph.Neo4jGraph", - "langchain_community.graphs.Neo4jGraph" - ], - [ - "langchain.graphs.neptune_graph.NeptuneGraph", - "langchain_community.graphs.NeptuneGraph" - ], - [ - "langchain.graphs.networkx_graph.KnowledgeTriple", - "langchain_community.graphs.networkx_graph.KnowledgeTriple" - ], - [ - "langchain.graphs.networkx_graph.parse_triples", - "langchain_community.graphs.networkx_graph.parse_triples" - ], - [ - "langchain.graphs.networkx_graph.get_entities", - "langchain_community.graphs.networkx_graph.get_entities" - ], - [ - "langchain.graphs.networkx_graph.NetworkxEntityGraph", - "langchain_community.graphs.NetworkxEntityGraph" - ], - [ - "langchain.graphs.rdf_graph.RdfGraph", - "langchain_community.graphs.RdfGraph" - ], - [ - "langchain.llms.AI21", - "langchain_community.llms.AI21" - ], - [ - "langchain.llms.AlephAlpha", - "langchain_community.llms.AlephAlpha" - ], - [ - "langchain.llms.AmazonAPIGateway", - "langchain_community.llms.AmazonAPIGateway" - ], - [ - "langchain.llms.Anthropic", - "langchain_community.llms.Anthropic" - ], - [ - "langchain.llms.Anyscale", - "langchain_community.llms.Anyscale" - ], - [ - "langchain.llms.Arcee", - "langchain_community.llms.Arcee" - ], - [ - "langchain.llms.Aviary", - "langchain_community.llms.Aviary" - ], - [ - "langchain.llms.AzureMLOnlineEndpoint", - "langchain_community.llms.AzureMLOnlineEndpoint" - ], - [ - "langchain.llms.AzureOpenAI", - "langchain_community.llms.AzureOpenAI" - ], - [ - "langchain.llms.Banana", - "langchain_community.llms.Banana" - ], - [ - "langchain.llms.Baseten", - "langchain_community.llms.Baseten" - ], - [ - "langchain.llms.Beam", - "langchain_community.llms.Beam" - ], - [ - "langchain.llms.Bedrock", - "langchain_community.llms.Bedrock" - ], - [ - "langchain.llms.CTransformers", - "langchain_community.llms.CTransformers" - ], - [ - "langchain.llms.CTranslate2", - "langchain_community.llms.CTranslate2" - ], - [ - "langchain.llms.CerebriumAI", - "langchain_community.llms.CerebriumAI" - ], - [ - "langchain.llms.ChatGLM", - "langchain_community.llms.ChatGLM" - ], - [ - "langchain.llms.Clarifai", - "langchain_community.llms.Clarifai" - ], - [ - "langchain.llms.Cohere", - "langchain_community.llms.Cohere" - ], - [ - "langchain.llms.Databricks", - "langchain_community.llms.Databricks" - ], - [ - "langchain.llms.DeepInfra", - "langchain_community.llms.DeepInfra" - ], - [ - "langchain.llms.DeepSparse", - "langchain_community.llms.DeepSparse" - ], - [ - "langchain.llms.EdenAI", - "langchain_community.llms.EdenAI" - ], - [ - "langchain.llms.FakeListLLM", - "langchain_community.llms.FakeListLLM" - ], - [ - "langchain.llms.Fireworks", - "langchain_community.llms.Fireworks" - ], - [ - "langchain.llms.ForefrontAI", - "langchain_community.llms.ForefrontAI" - ], - [ - "langchain.llms.GigaChat", - "langchain_community.llms.GigaChat" - ], - [ - "langchain.llms.GPT4All", - "langchain_community.llms.GPT4All" - ], - [ - "langchain.llms.GooglePalm", - "langchain_community.llms.GooglePalm" - ], - [ - "langchain.llms.GooseAI", - "langchain_community.llms.GooseAI" - ], - [ - "langchain.llms.GradientLLM", - "langchain_community.llms.GradientLLM" - ], - [ - "langchain.llms.HuggingFaceEndpoint", - "langchain_community.llms.HuggingFaceEndpoint" - ], - [ - "langchain.llms.HuggingFaceHub", - "langchain_community.llms.HuggingFaceHub" - ], - [ - "langchain.llms.HuggingFacePipeline", - "langchain_community.llms.HuggingFacePipeline" - ], - [ - "langchain.llms.HuggingFaceTextGenInference", - "langchain_community.llms.HuggingFaceTextGenInference" - ], - [ - "langchain.llms.HumanInputLLM", - "langchain_community.llms.HumanInputLLM" - ], - [ - "langchain.llms.KoboldApiLLM", - "langchain_community.llms.KoboldApiLLM" - ], - [ - "langchain.llms.LlamaCpp", - "langchain_community.llms.LlamaCpp" - ], - [ - "langchain.llms.TextGen", - "langchain_community.llms.TextGen" - ], - [ - "langchain.llms.ManifestWrapper", - "langchain_community.llms.ManifestWrapper" - ], - [ - "langchain.llms.Minimax", - "langchain_community.llms.Minimax" - ], - [ - "langchain.llms.MlflowAIGateway", - "langchain_community.llms.MlflowAIGateway" - ], - [ - "langchain.llms.Modal", - "langchain_community.llms.Modal" - ], - [ - "langchain.llms.MosaicML", - "langchain_community.llms.MosaicML" - ], - [ - "langchain.llms.Nebula", - "langchain_community.llms.Nebula" - ], - [ - "langchain.llms.NIBittensorLLM", - "langchain_community.llms.NIBittensorLLM" - ], - [ - "langchain.llms.NLPCloud", - "langchain_community.llms.NLPCloud" - ], - [ - "langchain.llms.Ollama", - "langchain_community.llms.Ollama" - ], - [ - "langchain.llms.OpenAI", - "langchain_community.llms.OpenAI" - ], - [ - "langchain.llms.OpenAIChat", - "langchain_community.llms.OpenAIChat" - ], - [ - "langchain.llms.OpenLLM", - "langchain_community.llms.OpenLLM" - ], - [ - "langchain.llms.OpenLM", - "langchain_community.llms.OpenLM" - ], - [ - "langchain.llms.PaiEasEndpoint", - "langchain_community.llms.PaiEasEndpoint" - ], - [ - "langchain.llms.Petals", - "langchain_community.llms.Petals" - ], - [ - "langchain.llms.PipelineAI", - "langchain_community.llms.PipelineAI" - ], - [ - "langchain.llms.Predibase", - "langchain_community.llms.Predibase" - ], - [ - "langchain.llms.PredictionGuard", - "langchain_community.llms.PredictionGuard" - ], - [ - "langchain.llms.PromptLayerOpenAI", - "langchain_community.llms.PromptLayerOpenAI" - ], - [ - "langchain.llms.PromptLayerOpenAIChat", - "langchain_community.llms.PromptLayerOpenAIChat" - ], - [ - "langchain.llms.OpaquePrompts", - "langchain_community.llms.OpaquePrompts" - ], - [ - "langchain.llms.RWKV", - "langchain_community.llms.RWKV" - ], - [ - "langchain.llms.Replicate", - "langchain_community.llms.Replicate" - ], - [ - "langchain.llms.SagemakerEndpoint", - "langchain_community.llms.SagemakerEndpoint" - ], - [ - "langchain.llms.SelfHostedHuggingFaceLLM", - "langchain_community.llms.SelfHostedHuggingFaceLLM" - ], - [ - "langchain.llms.SelfHostedPipeline", - "langchain_community.llms.SelfHostedPipeline" - ], - [ - "langchain.llms.StochasticAI", - "langchain_community.llms.StochasticAI" - ], - [ - "langchain.llms.TitanTakeoff", - "langchain_community.llms.TitanTakeoff" - ], - [ - "langchain.llms.TitanTakeoffPro", - "langchain_community.llms.TitanTakeoffPro" - ], - [ - "langchain.llms.Tongyi", - "langchain_community.llms.Tongyi" - ], - [ - "langchain.llms.VertexAI", - "langchain_community.llms.VertexAI" - ], - [ - "langchain.llms.VertexAIModelGarden", - "langchain_community.llms.VertexAIModelGarden" - ], - [ - "langchain.llms.VLLM", - "langchain_community.llms.VLLM" - ], - [ - "langchain.llms.VLLMOpenAI", - "langchain_community.llms.VLLMOpenAI" - ], - [ - "langchain.llms.WatsonxLLM", - "langchain_community.llms.WatsonxLLM" - ], - [ - "langchain.llms.Writer", - "langchain_community.llms.Writer" - ], - [ - "langchain.llms.OctoAIEndpoint", - "langchain_community.llms.OctoAIEndpoint" - ], - [ - "langchain.llms.Xinference", - "langchain_community.llms.Xinference" - ], - [ - "langchain.llms.JavelinAIGateway", - "langchain_community.llms.JavelinAIGateway" - ], - [ - "langchain.llms.QianfanLLMEndpoint", - "langchain_community.llms.QianfanLLMEndpoint" - ], - [ - "langchain.llms.YandexGPT", - "langchain_community.llms.YandexGPT" - ], - [ - "langchain.llms.VolcEngineMaasLLM", - "langchain_community.llms.VolcEngineMaasLLM" - ], - [ - "langchain.llms.ai21.AI21PenaltyData", - "langchain_community.llms.ai21.AI21PenaltyData" - ], - [ - "langchain.llms.ai21.AI21", - "langchain_community.llms.AI21" - ], - [ - "langchain.llms.aleph_alpha.AlephAlpha", - "langchain_community.llms.AlephAlpha" - ], - [ - "langchain.llms.amazon_api_gateway.AmazonAPIGateway", - "langchain_community.llms.AmazonAPIGateway" - ], - [ - "langchain.llms.anthropic.Anthropic", - "langchain_community.llms.Anthropic" - ], - [ - "langchain.llms.anyscale.Anyscale", - "langchain_community.llms.Anyscale" - ], - [ - "langchain.llms.arcee.Arcee", - "langchain_community.llms.Arcee" - ], - [ - "langchain.llms.aviary.Aviary", - "langchain_community.llms.Aviary" - ], - [ - "langchain.llms.azureml_endpoint.AzureMLEndpointClient", - "langchain_community.llms.azureml_endpoint.AzureMLEndpointClient" - ], - [ - "langchain.llms.azureml_endpoint.ContentFormatterBase", - "langchain_community.llms.azureml_endpoint.ContentFormatterBase" - ], - [ - "langchain.llms.azureml_endpoint.GPT2ContentFormatter", - "langchain_community.llms.azureml_endpoint.GPT2ContentFormatter" - ], - [ - "langchain.llms.azureml_endpoint.OSSContentFormatter", - "langchain_community.llms.azureml_endpoint.OSSContentFormatter" - ], - [ - "langchain.llms.azureml_endpoint.HFContentFormatter", - "langchain_community.llms.azureml_endpoint.HFContentFormatter" - ], - [ - "langchain.llms.azureml_endpoint.DollyContentFormatter", - "langchain_community.llms.azureml_endpoint.DollyContentFormatter" - ], - [ - "langchain.llms.azureml_endpoint.LlamaContentFormatter", - "langchain_community.llms.azureml_endpoint.LlamaContentFormatter" - ], - [ - "langchain.llms.azureml_endpoint.AzureMLOnlineEndpoint", - "langchain_community.llms.AzureMLOnlineEndpoint" - ], - [ - "langchain.llms.baidu_qianfan_endpoint.QianfanLLMEndpoint", - "langchain_community.llms.QianfanLLMEndpoint" - ], - [ - "langchain.llms.bananadev.Banana", - "langchain_community.llms.Banana" - ], - [ - "langchain.llms.baseten.Baseten", - "langchain_community.llms.Baseten" - ], - [ - "langchain.llms.beam.Beam", - "langchain_community.llms.Beam" - ], - [ - "langchain.llms.bedrock.BedrockBase", - "langchain_community.llms.bedrock.BedrockBase" - ], - [ - "langchain.llms.bedrock.Bedrock", - "langchain_community.llms.Bedrock" - ], - [ - "langchain.llms.bittensor.NIBittensorLLM", - "langchain_community.llms.NIBittensorLLM" - ], - [ - "langchain.llms.cerebriumai.CerebriumAI", - "langchain_community.llms.CerebriumAI" - ], - [ - "langchain.llms.chatglm.ChatGLM", - "langchain_community.llms.ChatGLM" - ], - [ - "langchain.llms.clarifai.Clarifai", - "langchain_community.llms.Clarifai" - ], - [ - "langchain.llms.cloudflare_workersai.CloudflareWorkersAI", - "langchain_community.llms.cloudflare_workersai.CloudflareWorkersAI" - ], - [ - "langchain.llms.cohere.Cohere", - "langchain_community.llms.Cohere" - ], - [ - "langchain.llms.ctransformers.CTransformers", - "langchain_community.llms.CTransformers" - ], - [ - "langchain.llms.ctranslate2.CTranslate2", - "langchain_community.llms.CTranslate2" - ], - [ - "langchain.llms.databricks.Databricks", - "langchain_community.llms.Databricks" - ], - [ - "langchain.llms.deepinfra.DeepInfra", - "langchain_community.llms.DeepInfra" - ], - [ - "langchain.llms.deepsparse.DeepSparse", - "langchain_community.llms.DeepSparse" - ], - [ - "langchain.llms.edenai.EdenAI", - "langchain_community.llms.EdenAI" - ], - [ - "langchain.llms.fake.FakeListLLM", - "langchain_community.llms.FakeListLLM" - ], - [ - "langchain.llms.fake.FakeStreamingListLLM", - "langchain_community.llms.fake.FakeStreamingListLLM" - ], - [ - "langchain.llms.fireworks.Fireworks", - "langchain_community.llms.Fireworks" - ], - [ - "langchain.llms.forefrontai.ForefrontAI", - "langchain_community.llms.ForefrontAI" - ], - [ - "langchain.llms.gigachat.GigaChat", - "langchain_community.llms.GigaChat" - ], - [ - "langchain.llms.google_palm.GooglePalm", - "langchain_community.llms.GooglePalm" - ], - [ - "langchain.llms.gooseai.GooseAI", - "langchain_community.llms.GooseAI" - ], - [ - "langchain.llms.gpt4all.GPT4All", - "langchain_community.llms.GPT4All" - ], - [ - "langchain.llms.gradient_ai.TrainResult", - "langchain_community.llms.gradient_ai.TrainResult" - ], - [ - "langchain.llms.gradient_ai.GradientLLM", - "langchain_community.llms.GradientLLM" - ], - [ - "langchain.llms.huggingface_endpoint.HuggingFaceEndpoint", - "langchain_community.llms.HuggingFaceEndpoint" - ], - [ - "langchain.llms.huggingface_hub.HuggingFaceHub", - "langchain_community.llms.HuggingFaceHub" - ], - [ - "langchain.llms.huggingface_pipeline.HuggingFacePipeline", - "langchain_community.llms.HuggingFacePipeline" - ], - [ - "langchain.llms.huggingface_text_gen_inference.HuggingFaceTextGenInference", - "langchain_community.llms.HuggingFaceTextGenInference" - ], - [ - "langchain.llms.human.HumanInputLLM", - "langchain_community.llms.HumanInputLLM" - ], - [ - "langchain.llms.javelin_ai_gateway.JavelinAIGateway", - "langchain_community.llms.JavelinAIGateway" - ], - [ - "langchain.llms.javelin_ai_gateway.Params", - "langchain_community.llms.javelin_ai_gateway.Params" - ], - [ - "langchain.llms.koboldai.KoboldApiLLM", - "langchain_community.llms.KoboldApiLLM" - ], - [ - "langchain.llms.llamacpp.LlamaCpp", - "langchain_community.llms.LlamaCpp" - ], - [ - "langchain.llms.loading.load_llm_from_config", - "langchain_community.llms.loading.load_llm_from_config" - ], - [ - "langchain.llms.loading.load_llm", - "langchain_community.llms.loading.load_llm" - ], - [ - "langchain.llms.manifest.ManifestWrapper", - "langchain_community.llms.ManifestWrapper" - ], - [ - "langchain.llms.minimax.Minimax", - "langchain_community.llms.Minimax" - ], - [ - "langchain.llms.mlflow.Mlflow", - "langchain_community.llms.Mlflow" - ], - [ - "langchain.llms.mlflow_ai_gateway.MlflowAIGateway", - "langchain_community.llms.MlflowAIGateway" - ], - [ - "langchain.llms.modal.Modal", - "langchain_community.llms.Modal" - ], - [ - "langchain.llms.mosaicml.MosaicML", - "langchain_community.llms.MosaicML" - ], - [ - "langchain.llms.nlpcloud.NLPCloud", - "langchain_community.llms.NLPCloud" - ], - [ - "langchain.llms.octoai_endpoint.OctoAIEndpoint", - "langchain_community.llms.OctoAIEndpoint" - ], - [ - "langchain.llms.ollama.Ollama", - "langchain_community.llms.Ollama" - ], - [ - "langchain.llms.opaqueprompts.OpaquePrompts", - "langchain_community.llms.OpaquePrompts" - ], - [ - "langchain.llms.openai.BaseOpenAI", - "langchain_community.llms.openai.BaseOpenAI" - ], - [ - "langchain.llms.openai.OpenAI", - "langchain_community.llms.OpenAI" - ], - [ - "langchain.llms.openai.AzureOpenAI", - "langchain_community.llms.AzureOpenAI" - ], - [ - "langchain.llms.openai.OpenAIChat", - "langchain_community.llms.OpenAIChat" - ], - [ - "langchain.llms.openllm.OpenLLM", - "langchain_community.llms.OpenLLM" - ], - [ - "langchain.llms.openlm.OpenLM", - "langchain_community.llms.OpenLM" - ], - [ - "langchain.llms.pai_eas_endpoint.PaiEasEndpoint", - "langchain_community.llms.PaiEasEndpoint" - ], - [ - "langchain.llms.petals.Petals", - "langchain_community.llms.Petals" - ], - [ - "langchain.llms.pipelineai.PipelineAI", - "langchain_community.llms.PipelineAI" - ], - [ - "langchain.llms.predibase.Predibase", - "langchain_community.llms.Predibase" - ], - [ - "langchain.llms.predictionguard.PredictionGuard", - "langchain_community.llms.PredictionGuard" - ], - [ - "langchain.llms.promptlayer_openai.PromptLayerOpenAI", - "langchain_community.llms.PromptLayerOpenAI" - ], - [ - "langchain.llms.promptlayer_openai.PromptLayerOpenAIChat", - "langchain_community.llms.PromptLayerOpenAIChat" - ], - [ - "langchain.llms.replicate.Replicate", - "langchain_community.llms.Replicate" - ], - [ - "langchain.llms.rwkv.RWKV", - "langchain_community.llms.RWKV" - ], - [ - "langchain.llms.sagemaker_endpoint.SagemakerEndpoint", - "langchain_community.llms.SagemakerEndpoint" - ], - [ - "langchain.llms.sagemaker_endpoint.LLMContentHandler", - "langchain_community.llms.sagemaker_endpoint.LLMContentHandler" - ], - [ - "langchain.llms.self_hosted.SelfHostedPipeline", - "langchain_community.llms.SelfHostedPipeline" - ], - [ - "langchain.llms.self_hosted_hugging_face.SelfHostedHuggingFaceLLM", - "langchain_community.llms.SelfHostedHuggingFaceLLM" - ], - [ - "langchain.llms.stochasticai.StochasticAI", - "langchain_community.llms.StochasticAI" - ], - [ - "langchain.llms.symblai_nebula.Nebula", - "langchain_community.llms.Nebula" - ], - [ - "langchain.llms.textgen.TextGen", - "langchain_community.llms.TextGen" - ], - [ - "langchain.llms.titan_takeoff.TitanTakeoff", - "langchain_community.llms.TitanTakeoff" - ], - [ - "langchain.llms.titan_takeoff_pro.TitanTakeoffPro", - "langchain_community.llms.TitanTakeoffPro" - ], - [ - "langchain.llms.together.Together", - "langchain_community.llms.Together" - ], - [ - "langchain.llms.tongyi.Tongyi", - "langchain_community.llms.Tongyi" - ], - [ - "langchain.llms.utils.enforce_stop_tokens", - "langchain_community.llms.utils.enforce_stop_tokens" - ], - [ - "langchain.llms.vertexai.VertexAI", - "langchain_community.llms.VertexAI" - ], - [ - "langchain.llms.vertexai.VertexAIModelGarden", - "langchain_community.llms.VertexAIModelGarden" - ], - [ - "langchain.llms.vllm.VLLM", - "langchain_community.llms.VLLM" - ], - [ - "langchain.llms.vllm.VLLMOpenAI", - "langchain_community.llms.VLLMOpenAI" - ], - [ - "langchain.llms.volcengine_maas.VolcEngineMaasBase", - "langchain_community.llms.volcengine_maas.VolcEngineMaasBase" - ], - [ - "langchain.llms.volcengine_maas.VolcEngineMaasLLM", - "langchain_community.llms.VolcEngineMaasLLM" - ], - [ - "langchain.llms.watsonxllm.WatsonxLLM", - "langchain_community.llms.WatsonxLLM" - ], - [ - "langchain.llms.writer.Writer", - "langchain_community.llms.Writer" - ], - [ - "langchain.llms.xinference.Xinference", - "langchain_community.llms.Xinference" - ], - [ - "langchain.llms.yandex.YandexGPT", - "langchain_community.llms.YandexGPT" - ], - [ - "langchain.memory.AstraDBChatMessageHistory", - "langchain_community.chat_message_histories.AstraDBChatMessageHistory" - ], - [ - "langchain.memory.CassandraChatMessageHistory", - "langchain_community.chat_message_histories.CassandraChatMessageHistory" - ], - [ - "langchain.memory.ChatMessageHistory", - "langchain_community.chat_message_histories.ChatMessageHistory" - ], - [ - "langchain.memory.CosmosDBChatMessageHistory", - "langchain_community.chat_message_histories.CosmosDBChatMessageHistory" - ], - [ - "langchain.memory.DynamoDBChatMessageHistory", - "langchain_community.chat_message_histories.DynamoDBChatMessageHistory" - ], - [ - "langchain.memory.ElasticsearchChatMessageHistory", - "langchain_community.chat_message_histories.ElasticsearchChatMessageHistory" - ], - [ - "langchain.memory.FileChatMessageHistory", - "langchain_community.chat_message_histories.FileChatMessageHistory" - ], - [ - "langchain.memory.MomentoChatMessageHistory", - "langchain_community.chat_message_histories.MomentoChatMessageHistory" - ], - [ - "langchain.memory.MongoDBChatMessageHistory", - "langchain_community.chat_message_histories.MongoDBChatMessageHistory" - ], - [ - "langchain.memory.PostgresChatMessageHistory", - "langchain_community.chat_message_histories.PostgresChatMessageHistory" - ], - [ - "langchain.memory.RedisChatMessageHistory", - "langchain_community.chat_message_histories.RedisChatMessageHistory" - ], - [ - "langchain.memory.SingleStoreDBChatMessageHistory", - "langchain_community.chat_message_histories.SingleStoreDBChatMessageHistory" - ], - [ - "langchain.memory.SQLChatMessageHistory", - "langchain_community.chat_message_histories.SQLChatMessageHistory" - ], - [ - "langchain.memory.StreamlitChatMessageHistory", - "langchain_community.chat_message_histories.StreamlitChatMessageHistory" - ], - [ - "langchain.memory.XataChatMessageHistory", - "langchain_community.chat_message_histories.XataChatMessageHistory" - ], - [ - "langchain.memory.ZepChatMessageHistory", - "langchain_community.chat_message_histories.ZepChatMessageHistory" - ], - [ - "langchain.memory.UpstashRedisChatMessageHistory", - "langchain_community.chat_message_histories.UpstashRedisChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.AstraDBChatMessageHistory", - "langchain_community.chat_message_histories.AstraDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.ChatMessageHistory", - "langchain_community.chat_message_histories.ChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.CassandraChatMessageHistory", - "langchain_community.chat_message_histories.CassandraChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.CosmosDBChatMessageHistory", - "langchain_community.chat_message_histories.CosmosDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.DynamoDBChatMessageHistory", - "langchain_community.chat_message_histories.DynamoDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.ElasticsearchChatMessageHistory", - "langchain_community.chat_message_histories.ElasticsearchChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.FileChatMessageHistory", - "langchain_community.chat_message_histories.FileChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.FirestoreChatMessageHistory", - "langchain_community.chat_message_histories.FirestoreChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.MomentoChatMessageHistory", - "langchain_community.chat_message_histories.MomentoChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.MongoDBChatMessageHistory", - "langchain_community.chat_message_histories.MongoDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.PostgresChatMessageHistory", - "langchain_community.chat_message_histories.PostgresChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.RedisChatMessageHistory", - "langchain_community.chat_message_histories.RedisChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.RocksetChatMessageHistory", - "langchain_community.chat_message_histories.RocksetChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.SQLChatMessageHistory", - "langchain_community.chat_message_histories.SQLChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.StreamlitChatMessageHistory", - "langchain_community.chat_message_histories.StreamlitChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.SingleStoreDBChatMessageHistory", - "langchain_community.chat_message_histories.SingleStoreDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.XataChatMessageHistory", - "langchain_community.chat_message_histories.XataChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.ZepChatMessageHistory", - "langchain_community.chat_message_histories.ZepChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.UpstashRedisChatMessageHistory", - "langchain_community.chat_message_histories.UpstashRedisChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.Neo4jChatMessageHistory", - "langchain_community.chat_message_histories.Neo4jChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.astradb.AstraDBChatMessageHistory", - "langchain_community.chat_message_histories.AstraDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.cassandra.CassandraChatMessageHistory", - "langchain_community.chat_message_histories.CassandraChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory", - "langchain_community.chat_message_histories.CosmosDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory", - "langchain_community.chat_message_histories.DynamoDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory", - "langchain_community.chat_message_histories.ElasticsearchChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.file.FileChatMessageHistory", - "langchain_community.chat_message_histories.FileChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.firestore.FirestoreChatMessageHistory", - "langchain_community.chat_message_histories.FirestoreChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.in_memory.ChatMessageHistory", - "langchain_community.chat_message_histories.ChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.momento.MomentoChatMessageHistory", - "langchain_community.chat_message_histories.MomentoChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.mongodb.MongoDBChatMessageHistory", - "langchain_community.chat_message_histories.MongoDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.neo4j.Neo4jChatMessageHistory", - "langchain_community.chat_message_histories.Neo4jChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.postgres.PostgresChatMessageHistory", - "langchain_community.chat_message_histories.PostgresChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.redis.RedisChatMessageHistory", - "langchain_community.chat_message_histories.RedisChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.rocksetdb.RocksetChatMessageHistory", - "langchain_community.chat_message_histories.RocksetChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory", - "langchain_community.chat_message_histories.SingleStoreDBChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.sql.BaseMessageConverter", - "langchain_community.chat_message_histories.sql.BaseMessageConverter" - ], - [ - "langchain.memory.chat_message_histories.sql.DefaultMessageConverter", - "langchain_community.chat_message_histories.sql.DefaultMessageConverter" - ], - [ - "langchain.memory.chat_message_histories.sql.SQLChatMessageHistory", - "langchain_community.chat_message_histories.SQLChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.streamlit.StreamlitChatMessageHistory", - "langchain_community.chat_message_histories.StreamlitChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory", - "langchain_community.chat_message_histories.UpstashRedisChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.xata.XataChatMessageHistory", - "langchain_community.chat_message_histories.XataChatMessageHistory" - ], - [ - "langchain.memory.chat_message_histories.zep.ZepChatMessageHistory", - "langchain_community.chat_message_histories.ZepChatMessageHistory" - ], - [ - "langchain.output_parsers.GuardrailsOutputParser", - "langchain_community.output_parsers.rail_parser.GuardrailsOutputParser" - ], - [ - "langchain.output_parsers.ernie_functions.JsonKeyOutputFunctionsParser", - "langchain_community.output_parsers.ernie_functions.JsonKeyOutputFunctionsParser" - ], - [ - "langchain.output_parsers.ernie_functions.JsonOutputFunctionsParser", - "langchain_community.output_parsers.ernie_functions.JsonOutputFunctionsParser" - ], - [ - "langchain.output_parsers.ernie_functions.OutputFunctionsParser", - "langchain_community.output_parsers.ernie_functions.OutputFunctionsParser" - ], - [ - "langchain.output_parsers.ernie_functions.PydanticAttrOutputFunctionsParser", - "langchain_community.output_parsers.ernie_functions.PydanticAttrOutputFunctionsParser" - ], - [ - "langchain.output_parsers.ernie_functions.PydanticOutputFunctionsParser", - "langchain_community.output_parsers.ernie_functions.PydanticOutputFunctionsParser" - ], - [ - "langchain.output_parsers.rail_parser.GuardrailsOutputParser", - "langchain_community.output_parsers.rail_parser.GuardrailsOutputParser" - ], - [ - "langchain.prompts.NGramOverlapExampleSelector", - "langchain_community.example_selectors.NGramOverlapExampleSelector" - ], - [ - "langchain.prompts.example_selector.NGramOverlapExampleSelector", - "langchain_community.example_selectors.NGramOverlapExampleSelector" - ], - [ - "langchain.prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector", - "langchain_community.example_selectors.NGramOverlapExampleSelector" - ], - [ - "langchain.prompts.example_selector.ngram_overlap.ngram_overlap_score", - "langchain_community.example_selectors.ngram_overlap_score" - ], - [ - "langchain.python.PythonREPL", - "langchain_community.utilities.PythonREPL" - ], - [ - "langchain.requests.Requests", - "langchain_community.utilities.Requests" - ], - [ - "langchain.requests.RequestsWrapper", - "langchain_community.utilities.TextRequestsWrapper" - ], - [ - "langchain.requests.TextRequestsWrapper", - "langchain_community.utilities.TextRequestsWrapper" - ], - [ - "langchain.retrievers.AmazonKendraRetriever", - "langchain_community.retrievers.AmazonKendraRetriever" - ], - [ - "langchain.retrievers.AmazonKnowledgeBasesRetriever", - "langchain_community.retrievers.AmazonKnowledgeBasesRetriever" - ], - [ - "langchain.retrievers.ArceeRetriever", - "langchain_community.retrievers.ArceeRetriever" - ], - [ - "langchain.retrievers.ArxivRetriever", - "langchain_community.retrievers.ArxivRetriever" - ], - [ - "langchain.retrievers.AzureCognitiveSearchRetriever", - "langchain_community.retrievers.AzureCognitiveSearchRetriever" - ], - [ - "langchain.retrievers.ChatGPTPluginRetriever", - "langchain_community.retrievers.ChatGPTPluginRetriever" - ], - [ - "langchain.retrievers.ChaindeskRetriever", - "langchain_community.retrievers.ChaindeskRetriever" - ], - [ - "langchain.retrievers.CohereRagRetriever", - "langchain_community.retrievers.CohereRagRetriever" - ], - [ - "langchain.retrievers.ElasticSearchBM25Retriever", - "langchain_community.retrievers.ElasticSearchBM25Retriever" - ], - [ - "langchain.retrievers.EmbedchainRetriever", - "langchain_community.retrievers.EmbedchainRetriever" - ], - [ - "langchain.retrievers.GoogleDocumentAIWarehouseRetriever", - "langchain_community.retrievers.GoogleDocumentAIWarehouseRetriever" - ], - [ - "langchain.retrievers.GoogleCloudEnterpriseSearchRetriever", - "langchain_community.retrievers.GoogleCloudEnterpriseSearchRetriever" - ], - [ - "langchain.retrievers.GoogleVertexAIMultiTurnSearchRetriever", - "langchain_community.retrievers.GoogleVertexAIMultiTurnSearchRetriever" - ], - [ - "langchain.retrievers.GoogleVertexAISearchRetriever", - "langchain_community.retrievers.GoogleVertexAISearchRetriever" - ], - [ - "langchain.retrievers.KayAiRetriever", - "langchain_community.retrievers.KayAiRetriever" - ], - [ - "langchain.retrievers.KNNRetriever", - "langchain_community.retrievers.KNNRetriever" - ], - [ - "langchain.retrievers.LlamaIndexGraphRetriever", - "langchain_community.retrievers.LlamaIndexGraphRetriever" - ], - [ - "langchain.retrievers.LlamaIndexRetriever", - "langchain_community.retrievers.LlamaIndexRetriever" - ], - [ - "langchain.retrievers.MetalRetriever", - "langchain_community.retrievers.MetalRetriever" - ], - [ - "langchain.retrievers.MilvusRetriever", - "langchain_community.retrievers.MilvusRetriever" - ], - [ - "langchain.retrievers.OutlineRetriever", - "langchain_community.retrievers.OutlineRetriever" - ], - [ - "langchain.retrievers.PineconeHybridSearchRetriever", - "langchain_community.retrievers.PineconeHybridSearchRetriever" - ], - [ - "langchain.retrievers.PubMedRetriever", - "langchain_community.retrievers.PubMedRetriever" - ], - [ - "langchain.retrievers.RemoteLangChainRetriever", - "langchain_community.retrievers.RemoteLangChainRetriever" - ], - [ - "langchain.retrievers.SVMRetriever", - "langchain_community.retrievers.SVMRetriever" - ], - [ - "langchain.retrievers.TavilySearchAPIRetriever", - "langchain_community.retrievers.TavilySearchAPIRetriever" - ], - [ - "langchain.retrievers.TFIDFRetriever", - "langchain_community.retrievers.TFIDFRetriever" - ], - [ - "langchain.retrievers.BM25Retriever", - "langchain_community.retrievers.BM25Retriever" - ], - [ - "langchain.retrievers.VespaRetriever", - "langchain_community.retrievers.VespaRetriever" - ], - [ - "langchain.retrievers.WeaviateHybridSearchRetriever", - "langchain_community.retrievers.WeaviateHybridSearchRetriever" - ], - [ - "langchain.retrievers.WikipediaRetriever", - "langchain_community.retrievers.WikipediaRetriever" - ], - [ - "langchain.retrievers.ZepRetriever", - "langchain_community.retrievers.ZepRetriever" - ], - [ - "langchain.retrievers.ZillizRetriever", - "langchain_community.retrievers.ZillizRetriever" - ], - [ - "langchain.retrievers.DocArrayRetriever", - "langchain_community.retrievers.DocArrayRetriever" - ], - [ - "langchain.retrievers.arcee.ArceeRetriever", - "langchain_community.retrievers.ArceeRetriever" - ], - [ - "langchain.retrievers.arxiv.ArxivRetriever", - "langchain_community.retrievers.ArxivRetriever" - ], - [ - "langchain.retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever", - "langchain_community.retrievers.AzureCognitiveSearchRetriever" - ], - [ - "langchain.retrievers.bedrock.VectorSearchConfig", - "langchain_community.retrievers.bedrock.VectorSearchConfig" - ], - [ - "langchain.retrievers.bedrock.RetrievalConfig", - "langchain_community.retrievers.bedrock.RetrievalConfig" - ], - [ - "langchain.retrievers.bedrock.AmazonKnowledgeBasesRetriever", - "langchain_community.retrievers.AmazonKnowledgeBasesRetriever" - ], - [ - "langchain.retrievers.bm25.default_preprocessing_func", - "langchain_community.retrievers.bm25.default_preprocessing_func" - ], - [ - "langchain.retrievers.bm25.BM25Retriever", - "langchain_community.retrievers.BM25Retriever" - ], - [ - "langchain.retrievers.chaindesk.ChaindeskRetriever", - "langchain_community.retrievers.ChaindeskRetriever" - ], - [ - "langchain.retrievers.chatgpt_plugin_retriever.ChatGPTPluginRetriever", - "langchain_community.retrievers.ChatGPTPluginRetriever" - ], - [ - "langchain.retrievers.cohere_rag_retriever.CohereRagRetriever", - "langchain_community.retrievers.CohereRagRetriever" - ], - [ - "langchain.retrievers.databerry.DataberryRetriever", - "langchain_community.retrievers.databerry.DataberryRetriever" - ], - [ - "langchain.retrievers.docarray.SearchType", - "langchain_community.retrievers.docarray.SearchType" - ], - [ - "langchain.retrievers.docarray.DocArrayRetriever", - "langchain_community.retrievers.DocArrayRetriever" - ], - [ - "langchain.retrievers.elastic_search_bm25.ElasticSearchBM25Retriever", - "langchain_community.retrievers.ElasticSearchBM25Retriever" - ], - [ - "langchain.retrievers.embedchain.EmbedchainRetriever", - "langchain_community.retrievers.EmbedchainRetriever" - ], - [ - "langchain.retrievers.google_cloud_documentai_warehouse.GoogleDocumentAIWarehouseRetriever", - "langchain_community.retrievers.GoogleDocumentAIWarehouseRetriever" - ], - [ - "langchain.retrievers.google_vertex_ai_search.GoogleVertexAISearchRetriever", - "langchain_community.retrievers.GoogleVertexAISearchRetriever" - ], - [ - "langchain.retrievers.google_vertex_ai_search.GoogleVertexAIMultiTurnSearchRetriever", - "langchain_community.retrievers.GoogleVertexAIMultiTurnSearchRetriever" - ], - [ - "langchain.retrievers.google_vertex_ai_search.GoogleCloudEnterpriseSearchRetriever", - "langchain_community.retrievers.GoogleCloudEnterpriseSearchRetriever" - ], - [ - "langchain.retrievers.kay.KayAiRetriever", - "langchain_community.retrievers.KayAiRetriever" - ], - [ - "langchain.retrievers.kendra.clean_excerpt", - "langchain_community.retrievers.kendra.clean_excerpt" - ], - [ - "langchain.retrievers.kendra.combined_text", - "langchain_community.retrievers.kendra.combined_text" - ], - [ - "langchain.retrievers.kendra.Highlight", - "langchain_community.retrievers.kendra.Highlight" - ], - [ - "langchain.retrievers.kendra.TextWithHighLights", - "langchain_community.retrievers.kendra.TextWithHighLights" - ], - [ - "langchain.retrievers.kendra.AdditionalResultAttributeValue", - "langchain_community.retrievers.kendra.AdditionalResultAttributeValue" - ], - [ - "langchain.retrievers.kendra.AdditionalResultAttribute", - "langchain_community.retrievers.kendra.AdditionalResultAttribute" - ], - [ - "langchain.retrievers.kendra.DocumentAttributeValue", - "langchain_community.retrievers.kendra.DocumentAttributeValue" - ], - [ - "langchain.retrievers.kendra.DocumentAttribute", - "langchain_community.retrievers.kendra.DocumentAttribute" - ], - [ - "langchain.retrievers.kendra.ResultItem", - "langchain_community.retrievers.kendra.ResultItem" - ], - [ - "langchain.retrievers.kendra.QueryResultItem", - "langchain_community.retrievers.kendra.QueryResultItem" - ], - [ - "langchain.retrievers.kendra.RetrieveResultItem", - "langchain_community.retrievers.kendra.RetrieveResultItem" - ], - [ - "langchain.retrievers.kendra.QueryResult", - "langchain_community.retrievers.kendra.QueryResult" - ], - [ - "langchain.retrievers.kendra.RetrieveResult", - "langchain_community.retrievers.kendra.RetrieveResult" - ], - [ - "langchain.retrievers.kendra.AmazonKendraRetriever", - "langchain_community.retrievers.AmazonKendraRetriever" - ], - [ - "langchain.retrievers.knn.KNNRetriever", - "langchain_community.retrievers.KNNRetriever" - ], - [ - "langchain.retrievers.llama_index.LlamaIndexRetriever", - "langchain_community.retrievers.LlamaIndexRetriever" - ], - [ - "langchain.retrievers.llama_index.LlamaIndexGraphRetriever", - "langchain_community.retrievers.LlamaIndexGraphRetriever" - ], - [ - "langchain.retrievers.metal.MetalRetriever", - "langchain_community.retrievers.MetalRetriever" - ], - [ - "langchain.retrievers.milvus.MilvusRetriever", - "langchain_community.retrievers.MilvusRetriever" - ], - [ - "langchain.retrievers.milvus.MilvusRetreiver", - "langchain_community.retrievers.milvus.MilvusRetreiver" - ], - [ - "langchain.retrievers.outline.OutlineRetriever", - "langchain_community.retrievers.OutlineRetriever" - ], - [ - "langchain.retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever", - "langchain_community.retrievers.PineconeHybridSearchRetriever" - ], - [ - "langchain.retrievers.pubmed.PubMedRetriever", - "langchain_community.retrievers.PubMedRetriever" - ], - [ - "langchain.retrievers.pupmed.PubMedRetriever", - "langchain_community.retrievers.PubMedRetriever" - ], - [ - "langchain.retrievers.remote_retriever.RemoteLangChainRetriever", - "langchain_community.retrievers.RemoteLangChainRetriever" - ], - [ - "langchain.retrievers.svm.SVMRetriever", - "langchain_community.retrievers.SVMRetriever" - ], - [ - "langchain.retrievers.tavily_search_api.SearchDepth", - "langchain_community.retrievers.tavily_search_api.SearchDepth" - ], - [ - "langchain.retrievers.tavily_search_api.TavilySearchAPIRetriever", - "langchain_community.retrievers.TavilySearchAPIRetriever" - ], - [ - "langchain.retrievers.tfidf.TFIDFRetriever", - "langchain_community.retrievers.TFIDFRetriever" - ], - [ - "langchain.retrievers.vespa_retriever.VespaRetriever", - "langchain_community.retrievers.VespaRetriever" - ], - [ - "langchain.retrievers.weaviate_hybrid_search.WeaviateHybridSearchRetriever", - "langchain_community.retrievers.WeaviateHybridSearchRetriever" - ], - [ - "langchain.retrievers.wikipedia.WikipediaRetriever", - "langchain_community.retrievers.WikipediaRetriever" - ], - [ - "langchain.retrievers.you.YouRetriever", - "langchain_community.retrievers.YouRetriever" - ], - [ - "langchain.retrievers.zep.SearchScope", - "langchain_community.retrievers.zep.SearchScope" - ], - [ - "langchain.retrievers.zep.SearchType", - "langchain_community.retrievers.zep.SearchType" - ], - [ - "langchain.retrievers.zep.ZepRetriever", - "langchain_community.retrievers.ZepRetriever" - ], - [ - "langchain.retrievers.zilliz.ZillizRetriever", - "langchain_community.retrievers.ZillizRetriever" - ], - [ - "langchain.retrievers.zilliz.ZillizRetreiver", - "langchain_community.retrievers.zilliz.ZillizRetreiver" - ], - [ - "langchain.serpapi.SerpAPIWrapper", - "langchain_community.utilities.SerpAPIWrapper" - ], - [ - "langchain.sql_database.SQLDatabase", - "langchain_community.utilities.SQLDatabase" - ], - [ - "langchain.storage.RedisStore", - "langchain_community.storage.RedisStore" - ], - [ - "langchain.storage.UpstashRedisByteStore", - "langchain_community.storage.UpstashRedisByteStore" - ], - [ - "langchain.storage.UpstashRedisStore", - "langchain_community.storage.UpstashRedisStore" - ], - [ - "langchain.storage.exceptions.InvalidKeyException", - "langchain_community.storage.exceptions.InvalidKeyException" - ], - [ - "langchain.storage.redis.RedisStore", - "langchain_community.storage.RedisStore" - ], - [ - "langchain.storage.upstash_redis.UpstashRedisStore", - "langchain_community.storage.UpstashRedisStore" - ], - [ - "langchain.storage.upstash_redis.UpstashRedisByteStore", - "langchain_community.storage.UpstashRedisByteStore" - ], - [ - "langchain.tools.AINAppOps", - "langchain_community.tools.AINAppOps" - ], - [ - "langchain.tools.AINOwnerOps", - "langchain_community.tools.AINOwnerOps" - ], - [ - "langchain.tools.AINRuleOps", - "langchain_community.tools.AINRuleOps" - ], - [ - "langchain.tools.AINTransfer", - "langchain_community.tools.AINTransfer" - ], - [ - "langchain.tools.AINValueOps", - "langchain_community.tools.AINValueOps" - ], - [ - "langchain.tools.AIPluginTool", - "langchain_community.tools.AIPluginTool" - ], - [ - "langchain.tools.APIOperation", - "langchain_community.tools.APIOperation" - ], - [ - "langchain.tools.ArxivQueryRun", - "langchain_community.tools.ArxivQueryRun" - ], - [ - "langchain.tools.AzureCogsFormRecognizerTool", - "langchain_community.tools.AzureCogsFormRecognizerTool" - ], - [ - "langchain.tools.AzureCogsImageAnalysisTool", - "langchain_community.tools.AzureCogsImageAnalysisTool" - ], - [ - "langchain.tools.AzureCogsSpeech2TextTool", - "langchain_community.tools.AzureCogsSpeech2TextTool" - ], - [ - "langchain.tools.AzureCogsText2SpeechTool", - "langchain_community.tools.AzureCogsText2SpeechTool" - ], - [ - "langchain.tools.AzureCogsTextAnalyticsHealthTool", - "langchain_community.tools.AzureCogsTextAnalyticsHealthTool" - ], - [ - "langchain.tools.BaseGraphQLTool", - "langchain_community.tools.BaseGraphQLTool" - ], - [ - "langchain.tools.BaseRequestsTool", - "langchain_community.tools.BaseRequestsTool" - ], - [ - "langchain.tools.BaseSQLDatabaseTool", - "langchain_community.tools.BaseSQLDatabaseTool" - ], - [ - "langchain.tools.BaseSparkSQLTool", - "langchain_community.tools.BaseSparkSQLTool" - ], - [ - "langchain.tools.BearlyInterpreterTool", - "langchain_community.tools.BearlyInterpreterTool" - ], - [ - "langchain.tools.BingSearchResults", - "langchain_community.tools.BingSearchResults" - ], - [ - "langchain.tools.BingSearchRun", - "langchain_community.tools.BingSearchRun" - ], - [ - "langchain.tools.BraveSearch", - "langchain_community.tools.BraveSearch" - ], - [ - "langchain.tools.ClickTool", - "langchain_community.tools.ClickTool" - ], - [ - "langchain.tools.CopyFileTool", - "langchain_community.tools.CopyFileTool" - ], - [ - "langchain.tools.CurrentWebPageTool", - "langchain_community.tools.CurrentWebPageTool" - ], - [ - "langchain.tools.DeleteFileTool", - "langchain_community.tools.DeleteFileTool" - ], - [ - "langchain.tools.DuckDuckGoSearchResults", - "langchain_community.tools.DuckDuckGoSearchResults" - ], - [ - "langchain.tools.DuckDuckGoSearchRun", - "langchain_community.tools.DuckDuckGoSearchRun" - ], - [ - "langchain.tools.E2BDataAnalysisTool", - "langchain_community.tools.E2BDataAnalysisTool" - ], - [ - "langchain.tools.EdenAiExplicitImageTool", - "langchain_community.tools.EdenAiExplicitImageTool" - ], - [ - "langchain.tools.EdenAiObjectDetectionTool", - "langchain_community.tools.EdenAiObjectDetectionTool" - ], - [ - "langchain.tools.EdenAiParsingIDTool", - "langchain_community.tools.EdenAiParsingIDTool" - ], - [ - "langchain.tools.EdenAiParsingInvoiceTool", - "langchain_community.tools.EdenAiParsingInvoiceTool" - ], - [ - "langchain.tools.EdenAiSpeechToTextTool", - "langchain_community.tools.EdenAiSpeechToTextTool" - ], - [ - "langchain.tools.EdenAiTextModerationTool", - "langchain_community.tools.EdenAiTextModerationTool" - ], - [ - "langchain.tools.EdenAiTextToSpeechTool", - "langchain_community.tools.EdenAiTextToSpeechTool" - ], - [ - "langchain.tools.EdenaiTool", - "langchain_community.tools.EdenaiTool" - ], - [ - "langchain.tools.ElevenLabsText2SpeechTool", - "langchain_community.tools.ElevenLabsText2SpeechTool" - ], - [ - "langchain.tools.ExtractHyperlinksTool", - "langchain_community.tools.ExtractHyperlinksTool" - ], - [ - "langchain.tools.ExtractTextTool", - "langchain_community.tools.ExtractTextTool" - ], - [ - "langchain.tools.FileSearchTool", - "langchain_community.tools.FileSearchTool" - ], - [ - "langchain.tools.GetElementsTool", - "langchain_community.tools.GetElementsTool" - ], - [ - "langchain.tools.GmailCreateDraft", - "langchain_community.tools.GmailCreateDraft" - ], - [ - "langchain.tools.GmailGetMessage", - "langchain_community.tools.GmailGetMessage" - ], - [ - "langchain.tools.GmailGetThread", - "langchain_community.tools.GmailGetThread" - ], - [ - "langchain.tools.GmailSearch", - "langchain_community.tools.GmailSearch" - ], - [ - "langchain.tools.GmailSendMessage", - "langchain_community.tools.GmailSendMessage" - ], - [ - "langchain.tools.GoogleCloudTextToSpeechTool", - "langchain_community.tools.GoogleCloudTextToSpeechTool" - ], - [ - "langchain.tools.GooglePlacesTool", - "langchain_community.tools.GooglePlacesTool" - ], - [ - "langchain.tools.GoogleSearchResults", - "langchain_community.tools.GoogleSearchResults" - ], - [ - "langchain.tools.GoogleSearchRun", - "langchain_community.tools.GoogleSearchRun" - ], - [ - "langchain.tools.GoogleSerperResults", - "langchain_community.tools.GoogleSerperResults" - ], - [ - "langchain.tools.GoogleSerperRun", - "langchain_community.tools.GoogleSerperRun" - ], - [ - "langchain.tools.SearchAPIResults", - "langchain_community.tools.SearchAPIResults" - ], - [ - "langchain.tools.SearchAPIRun", - "langchain_community.tools.SearchAPIRun" - ], - [ - "langchain.tools.HumanInputRun", - "langchain_community.tools.HumanInputRun" - ], - [ - "langchain.tools.IFTTTWebhook", - "langchain_community.tools.IFTTTWebhook" - ], - [ - "langchain.tools.InfoPowerBITool", - "langchain_community.tools.InfoPowerBITool" - ], - [ - "langchain.tools.InfoSQLDatabaseTool", - "langchain_community.tools.InfoSQLDatabaseTool" - ], - [ - "langchain.tools.InfoSparkSQLTool", - "langchain_community.tools.InfoSparkSQLTool" - ], - [ - "langchain.tools.JiraAction", - "langchain_community.tools.JiraAction" - ], - [ - "langchain.tools.JsonGetValueTool", - "langchain_community.tools.JsonGetValueTool" - ], - [ - "langchain.tools.JsonListKeysTool", - "langchain_community.tools.JsonListKeysTool" - ], - [ - "langchain.tools.ListDirectoryTool", - "langchain_community.tools.ListDirectoryTool" - ], - [ - "langchain.tools.ListPowerBITool", - "langchain_community.tools.ListPowerBITool" - ], - [ - "langchain.tools.ListSQLDatabaseTool", - "langchain_community.tools.ListSQLDatabaseTool" - ], - [ - "langchain.tools.ListSparkSQLTool", - "langchain_community.tools.ListSparkSQLTool" - ], - [ - "langchain.tools.MerriamWebsterQueryRun", - "langchain_community.tools.MerriamWebsterQueryRun" - ], - [ - "langchain.tools.MetaphorSearchResults", - "langchain_community.tools.MetaphorSearchResults" - ], - [ - "langchain.tools.MoveFileTool", - "langchain_community.tools.MoveFileTool" - ], - [ - "langchain.tools.NasaAction", - "langchain_community.tools.NasaAction" - ], - [ - "langchain.tools.NavigateBackTool", - "langchain_community.tools.NavigateBackTool" - ], - [ - "langchain.tools.NavigateTool", - "langchain_community.tools.NavigateTool" - ], - [ - "langchain.tools.O365CreateDraftMessage", - "langchain_community.tools.O365CreateDraftMessage" - ], - [ - "langchain.tools.O365SearchEmails", - "langchain_community.tools.O365SearchEmails" - ], - [ - "langchain.tools.O365SearchEvents", - "langchain_community.tools.O365SearchEvents" - ], - [ - "langchain.tools.O365SendEvent", - "langchain_community.tools.O365SendEvent" - ], - [ - "langchain.tools.O365SendMessage", - "langchain_community.tools.O365SendMessage" - ], - [ - "langchain.tools.OpenAPISpec", - "langchain_community.tools.OpenAPISpec" - ], - [ - "langchain.tools.OpenWeatherMapQueryRun", - "langchain_community.tools.OpenWeatherMapQueryRun" - ], - [ - "langchain.tools.PubmedQueryRun", - "langchain_community.tools.PubmedQueryRun" - ], - [ - "langchain.tools.RedditSearchRun", - "langchain_community.tools.RedditSearchRun" - ], - [ - "langchain.tools.QueryCheckerTool", - "langchain_community.tools.QueryCheckerTool" - ], - [ - "langchain.tools.QueryPowerBITool", - "langchain_community.tools.QueryPowerBITool" - ], - [ - "langchain.tools.QuerySQLCheckerTool", - "langchain_community.tools.QuerySQLCheckerTool" - ], - [ - "langchain.tools.QuerySQLDataBaseTool", - "langchain_community.tools.QuerySQLDataBaseTool" - ], - [ - "langchain.tools.QuerySparkSQLTool", - "langchain_community.tools.QuerySparkSQLTool" - ], - [ - "langchain.tools.ReadFileTool", - "langchain_community.tools.ReadFileTool" - ], - [ - "langchain.tools.RequestsDeleteTool", - "langchain_community.tools.RequestsDeleteTool" - ], - [ - "langchain.tools.RequestsGetTool", - "langchain_community.tools.RequestsGetTool" - ], - [ - "langchain.tools.RequestsPatchTool", - "langchain_community.tools.RequestsPatchTool" - ], - [ - "langchain.tools.RequestsPostTool", - "langchain_community.tools.RequestsPostTool" - ], - [ - "langchain.tools.RequestsPutTool", - "langchain_community.tools.RequestsPutTool" - ], - [ - "langchain.tools.SteamWebAPIQueryRun", - "langchain_community.tools.SteamWebAPIQueryRun" - ], - [ - "langchain.tools.SceneXplainTool", - "langchain_community.tools.SceneXplainTool" - ], - [ - "langchain.tools.SearxSearchResults", - "langchain_community.tools.SearxSearchResults" - ], - [ - "langchain.tools.SearxSearchRun", - "langchain_community.tools.SearxSearchRun" - ], - [ - "langchain.tools.ShellTool", - "langchain_community.tools.ShellTool" - ], - [ - "langchain.tools.SlackGetChannel", - "langchain_community.tools.SlackGetChannel" - ], - [ - "langchain.tools.SlackGetMessage", - "langchain_community.tools.SlackGetMessage" - ], - [ - "langchain.tools.SlackScheduleMessage", - "langchain_community.tools.SlackScheduleMessage" - ], - [ - "langchain.tools.SlackSendMessage", - "langchain_community.tools.SlackSendMessage" - ], - [ - "langchain.tools.SleepTool", - "langchain_community.tools.SleepTool" - ], - [ - "langchain.tools.StdInInquireTool", - "langchain_community.tools.StdInInquireTool" - ], - [ - "langchain.tools.StackExchangeTool", - "langchain_community.tools.StackExchangeTool" - ], - [ - "langchain.tools.SteamshipImageGenerationTool", - "langchain_community.tools.SteamshipImageGenerationTool" - ], - [ - "langchain.tools.VectorStoreQATool", - "langchain_community.tools.VectorStoreQATool" - ], - [ - "langchain.tools.VectorStoreQAWithSourcesTool", - "langchain_community.tools.VectorStoreQAWithSourcesTool" - ], - [ - "langchain.tools.WikipediaQueryRun", - "langchain_community.tools.WikipediaQueryRun" - ], - [ - "langchain.tools.WolframAlphaQueryRun", - "langchain_community.tools.WolframAlphaQueryRun" - ], - [ - "langchain.tools.WriteFileTool", - "langchain_community.tools.WriteFileTool" - ], - [ - "langchain.tools.YahooFinanceNewsTool", - "langchain_community.tools.YahooFinanceNewsTool" - ], - [ - "langchain.tools.YouTubeSearchTool", - "langchain_community.tools.YouTubeSearchTool" - ], - [ - "langchain.tools.ZapierNLAListActions", - "langchain_community.tools.ZapierNLAListActions" - ], - [ - "langchain.tools.ZapierNLARunAction", - "langchain_community.tools.ZapierNLARunAction" - ], - [ - "langchain.tools.amadeus.AmadeusClosestAirport", - "langchain_community.tools.amadeus.closest_airport.AmadeusClosestAirport" - ], - [ - "langchain.tools.amadeus.AmadeusFlightSearch", - "langchain_community.tools.amadeus.flight_search.AmadeusFlightSearch" - ], - [ - "langchain.tools.amadeus.base.AmadeusBaseTool", - "langchain_community.tools.amadeus.base.AmadeusBaseTool" - ], - [ - "langchain.tools.amadeus.closest_airport.ClosestAirportSchema", - "langchain_community.tools.amadeus.closest_airport.ClosestAirportSchema" - ], - [ - "langchain.tools.amadeus.closest_airport.AmadeusClosestAirport", - "langchain_community.tools.amadeus.closest_airport.AmadeusClosestAirport" - ], - [ - "langchain.tools.amadeus.flight_search.FlightSearchSchema", - "langchain_community.tools.amadeus.flight_search.FlightSearchSchema" - ], - [ - "langchain.tools.amadeus.flight_search.AmadeusFlightSearch", - "langchain_community.tools.amadeus.flight_search.AmadeusFlightSearch" - ], - [ - "langchain.tools.arxiv.tool.ArxivInput", - "langchain_community.tools.arxiv.tool.ArxivInput" - ], - [ - "langchain.tools.arxiv.tool.ArxivQueryRun", - "langchain_community.tools.ArxivQueryRun" - ], - [ - "langchain.tools.azure_cognitive_services.AzureCogsImageAnalysisTool", - "langchain_community.tools.AzureCogsImageAnalysisTool" - ], - [ - "langchain.tools.azure_cognitive_services.AzureCogsFormRecognizerTool", - "langchain_community.tools.AzureCogsFormRecognizerTool" - ], - [ - "langchain.tools.azure_cognitive_services.AzureCogsSpeech2TextTool", - "langchain_community.tools.AzureCogsSpeech2TextTool" - ], - [ - "langchain.tools.azure_cognitive_services.AzureCogsText2SpeechTool", - "langchain_community.tools.AzureCogsText2SpeechTool" - ], - [ - "langchain.tools.azure_cognitive_services.AzureCogsTextAnalyticsHealthTool", - "langchain_community.tools.AzureCogsTextAnalyticsHealthTool" - ], - [ - "langchain.tools.azure_cognitive_services.form_recognizer.AzureCogsFormRecognizerTool", - "langchain_community.tools.AzureCogsFormRecognizerTool" - ], - [ - "langchain.tools.azure_cognitive_services.image_analysis.AzureCogsImageAnalysisTool", - "langchain_community.tools.AzureCogsImageAnalysisTool" - ], - [ - "langchain.tools.azure_cognitive_services.speech2text.AzureCogsSpeech2TextTool", - "langchain_community.tools.AzureCogsSpeech2TextTool" - ], - [ - "langchain.tools.azure_cognitive_services.text2speech.AzureCogsText2SpeechTool", - "langchain_community.tools.AzureCogsText2SpeechTool" - ], - [ - "langchain.tools.azure_cognitive_services.text_analytics_health.AzureCogsTextAnalyticsHealthTool", - "langchain_community.tools.AzureCogsTextAnalyticsHealthTool" - ], - [ - "langchain.tools.bearly.tool.BearlyInterpreterToolArguments", - "langchain_community.tools.bearly.tool.BearlyInterpreterToolArguments" - ], - [ - "langchain.tools.bearly.tool.FileInfo", - "langchain_community.tools.bearly.tool.FileInfo" - ], - [ - "langchain.tools.bearly.tool.BearlyInterpreterTool", - "langchain_community.tools.BearlyInterpreterTool" - ], - [ - "langchain.tools.bing_search.BingSearchRun", - "langchain_community.tools.BingSearchRun" - ], - [ - "langchain.tools.bing_search.BingSearchResults", - "langchain_community.tools.BingSearchResults" - ], - [ - "langchain.tools.bing_search.tool.BingSearchRun", - "langchain_community.tools.BingSearchRun" - ], - [ - "langchain.tools.bing_search.tool.BingSearchResults", - "langchain_community.tools.BingSearchResults" - ], - [ - "langchain.tools.brave_search.tool.BraveSearch", - "langchain_community.tools.BraveSearch" - ], - [ - "langchain.tools.clickup.tool.ClickupAction", - "langchain_community.tools.clickup.tool.ClickupAction" - ], - [ - "langchain.tools.dataforseo_api_search.DataForSeoAPISearchRun", - "langchain_community.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun" - ], - [ - "langchain.tools.dataforseo_api_search.DataForSeoAPISearchResults", - "langchain_community.tools.dataforseo_api_search.tool.DataForSeoAPISearchResults" - ], - [ - "langchain.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun", - "langchain_community.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun" - ], - [ - "langchain.tools.dataforseo_api_search.tool.DataForSeoAPISearchResults", - "langchain_community.tools.dataforseo_api_search.tool.DataForSeoAPISearchResults" - ], - [ - "langchain.tools.ddg_search.DuckDuckGoSearchRun", - "langchain_community.tools.DuckDuckGoSearchRun" - ], - [ - "langchain.tools.ddg_search.tool.DDGInput", - "langchain_community.tools.ddg_search.tool.DDGInput" - ], - [ - "langchain.tools.ddg_search.tool.DuckDuckGoSearchRun", - "langchain_community.tools.DuckDuckGoSearchRun" - ], - [ - "langchain.tools.ddg_search.tool.DuckDuckGoSearchResults", - "langchain_community.tools.DuckDuckGoSearchResults" - ], - [ - "langchain.tools.ddg_search.tool.DuckDuckGoSearchTool", - "langchain_community.tools.ddg_search.tool.DuckDuckGoSearchTool" - ], - [ - "langchain.tools.e2b_data_analysis.tool.UploadedFile", - "langchain_community.tools.e2b_data_analysis.tool.UploadedFile" - ], - [ - "langchain.tools.e2b_data_analysis.tool.E2BDataAnalysisToolArguments", - "langchain_community.tools.e2b_data_analysis.tool.E2BDataAnalysisToolArguments" - ], - [ - "langchain.tools.e2b_data_analysis.tool.E2BDataAnalysisTool", - "langchain_community.tools.E2BDataAnalysisTool" - ], - [ - "langchain.tools.edenai.EdenAiExplicitImageTool", - "langchain_community.tools.EdenAiExplicitImageTool" - ], - [ - "langchain.tools.edenai.EdenAiObjectDetectionTool", - "langchain_community.tools.EdenAiObjectDetectionTool" - ], - [ - "langchain.tools.edenai.EdenAiParsingIDTool", - "langchain_community.tools.EdenAiParsingIDTool" - ], - [ - "langchain.tools.edenai.EdenAiParsingInvoiceTool", - "langchain_community.tools.EdenAiParsingInvoiceTool" - ], - [ - "langchain.tools.edenai.EdenAiTextToSpeechTool", - "langchain_community.tools.EdenAiTextToSpeechTool" - ], - [ - "langchain.tools.edenai.EdenAiSpeechToTextTool", - "langchain_community.tools.EdenAiSpeechToTextTool" - ], - [ - "langchain.tools.edenai.EdenAiTextModerationTool", - "langchain_community.tools.EdenAiTextModerationTool" - ], - [ - "langchain.tools.edenai.EdenaiTool", - "langchain_community.tools.EdenaiTool" - ], - [ - "langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool", - "langchain_community.tools.EdenAiSpeechToTextTool" - ], - [ - "langchain.tools.edenai.audio_text_to_speech.EdenAiTextToSpeechTool", - "langchain_community.tools.EdenAiTextToSpeechTool" - ], - [ - "langchain.tools.edenai.edenai_base_tool.EdenaiTool", - "langchain_community.tools.EdenaiTool" - ], - [ - "langchain.tools.edenai.image_explicitcontent.EdenAiExplicitImageTool", - "langchain_community.tools.EdenAiExplicitImageTool" - ], - [ - "langchain.tools.edenai.image_objectdetection.EdenAiObjectDetectionTool", - "langchain_community.tools.EdenAiObjectDetectionTool" - ], - [ - "langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool", - "langchain_community.tools.EdenAiParsingIDTool" - ], - [ - "langchain.tools.edenai.ocr_invoiceparser.EdenAiParsingInvoiceTool", - "langchain_community.tools.EdenAiParsingInvoiceTool" - ], - [ - "langchain.tools.edenai.text_moderation.EdenAiTextModerationTool", - "langchain_community.tools.EdenAiTextModerationTool" - ], - [ - "langchain.tools.eleven_labs.ElevenLabsText2SpeechTool", - "langchain_community.tools.ElevenLabsText2SpeechTool" - ], - [ - "langchain.tools.eleven_labs.models.ElevenLabsModel", - "langchain_community.tools.eleven_labs.models.ElevenLabsModel" - ], - [ - "langchain.tools.eleven_labs.text2speech.ElevenLabsText2SpeechTool", - "langchain_community.tools.ElevenLabsText2SpeechTool" - ], - [ - "langchain.tools.file_management.CopyFileTool", - "langchain_community.tools.CopyFileTool" - ], - [ - "langchain.tools.file_management.DeleteFileTool", - "langchain_community.tools.DeleteFileTool" - ], - [ - "langchain.tools.file_management.FileSearchTool", - "langchain_community.tools.FileSearchTool" - ], - [ - "langchain.tools.file_management.MoveFileTool", - "langchain_community.tools.MoveFileTool" - ], - [ - "langchain.tools.file_management.ReadFileTool", - "langchain_community.tools.ReadFileTool" - ], - [ - "langchain.tools.file_management.WriteFileTool", - "langchain_community.tools.WriteFileTool" - ], - [ - "langchain.tools.file_management.ListDirectoryTool", - "langchain_community.tools.ListDirectoryTool" - ], - [ - "langchain.tools.file_management.copy.FileCopyInput", - "langchain_community.tools.file_management.copy.FileCopyInput" - ], - [ - "langchain.tools.file_management.copy.CopyFileTool", - "langchain_community.tools.CopyFileTool" - ], - [ - "langchain.tools.file_management.delete.FileDeleteInput", - "langchain_community.tools.file_management.delete.FileDeleteInput" - ], - [ - "langchain.tools.file_management.delete.DeleteFileTool", - "langchain_community.tools.DeleteFileTool" - ], - [ - "langchain.tools.file_management.file_search.FileSearchInput", - "langchain_community.tools.file_management.file_search.FileSearchInput" - ], - [ - "langchain.tools.file_management.file_search.FileSearchTool", - "langchain_community.tools.FileSearchTool" - ], - [ - "langchain.tools.file_management.list_dir.DirectoryListingInput", - "langchain_community.tools.file_management.list_dir.DirectoryListingInput" - ], - [ - "langchain.tools.file_management.list_dir.ListDirectoryTool", - "langchain_community.tools.ListDirectoryTool" - ], - [ - "langchain.tools.file_management.move.FileMoveInput", - "langchain_community.tools.file_management.move.FileMoveInput" - ], - [ - "langchain.tools.file_management.move.MoveFileTool", - "langchain_community.tools.MoveFileTool" - ], - [ - "langchain.tools.file_management.read.ReadFileInput", - "langchain_community.tools.file_management.read.ReadFileInput" - ], - [ - "langchain.tools.file_management.read.ReadFileTool", - "langchain_community.tools.ReadFileTool" - ], - [ - "langchain.tools.file_management.write.WriteFileInput", - "langchain_community.tools.file_management.write.WriteFileInput" - ], - [ - "langchain.tools.file_management.write.WriteFileTool", - "langchain_community.tools.WriteFileTool" - ], - [ - "langchain.tools.github.tool.GitHubAction", - "langchain_community.tools.github.tool.GitHubAction" - ], - [ - "langchain.tools.gitlab.tool.GitLabAction", - "langchain_community.tools.gitlab.tool.GitLabAction" - ], - [ - "langchain.tools.gmail.GmailCreateDraft", - "langchain_community.tools.GmailCreateDraft" - ], - [ - "langchain.tools.gmail.GmailSendMessage", - "langchain_community.tools.GmailSendMessage" - ], - [ - "langchain.tools.gmail.GmailSearch", - "langchain_community.tools.GmailSearch" - ], - [ - "langchain.tools.gmail.GmailGetMessage", - "langchain_community.tools.GmailGetMessage" - ], - [ - "langchain.tools.gmail.GmailGetThread", - "langchain_community.tools.GmailGetThread" - ], - [ - "langchain.tools.gmail.base.GmailBaseTool", - "langchain_community.tools.gmail.base.GmailBaseTool" - ], - [ - "langchain.tools.gmail.create_draft.CreateDraftSchema", - "langchain_community.tools.gmail.create_draft.CreateDraftSchema" - ], - [ - "langchain.tools.gmail.create_draft.GmailCreateDraft", - "langchain_community.tools.GmailCreateDraft" - ], - [ - "langchain.tools.gmail.get_message.SearchArgsSchema", - "langchain_community.tools.gmail.get_message.SearchArgsSchema" - ], - [ - "langchain.tools.gmail.get_message.GmailGetMessage", - "langchain_community.tools.GmailGetMessage" - ], - [ - "langchain.tools.gmail.get_thread.GetThreadSchema", - "langchain_community.tools.gmail.get_thread.GetThreadSchema" - ], - [ - "langchain.tools.gmail.get_thread.GmailGetThread", - "langchain_community.tools.GmailGetThread" - ], - [ - "langchain.tools.gmail.search.Resource", - "langchain_community.tools.gmail.search.Resource" - ], - [ - "langchain.tools.gmail.search.SearchArgsSchema", - "langchain_community.tools.gmail.search.SearchArgsSchema" - ], - [ - "langchain.tools.gmail.search.GmailSearch", - "langchain_community.tools.GmailSearch" - ], - [ - "langchain.tools.gmail.send_message.SendMessageSchema", - "langchain_community.tools.gmail.send_message.SendMessageSchema" - ], - [ - "langchain.tools.gmail.send_message.GmailSendMessage", - "langchain_community.tools.GmailSendMessage" - ], - [ - "langchain.tools.golden_query.GoldenQueryRun", - "langchain_community.tools.golden_query.tool.GoldenQueryRun" - ], - [ - "langchain.tools.golden_query.tool.GoldenQueryRun", - "langchain_community.tools.golden_query.tool.GoldenQueryRun" - ], - [ - "langchain.tools.google_cloud.GoogleCloudTextToSpeechTool", - "langchain_community.tools.GoogleCloudTextToSpeechTool" - ], - [ - "langchain.tools.google_cloud.texttospeech.GoogleCloudTextToSpeechTool", - "langchain_community.tools.GoogleCloudTextToSpeechTool" - ], - [ - "langchain.tools.google_finance.GoogleFinanceQueryRun", - "langchain_community.tools.google_finance.tool.GoogleFinanceQueryRun" - ], - [ - "langchain.tools.google_finance.tool.GoogleFinanceQueryRun", - "langchain_community.tools.google_finance.tool.GoogleFinanceQueryRun" - ], - [ - "langchain.tools.google_jobs.GoogleJobsQueryRun", - "langchain_community.tools.google_jobs.tool.GoogleJobsQueryRun" - ], - [ - "langchain.tools.google_jobs.tool.GoogleJobsQueryRun", - "langchain_community.tools.google_jobs.tool.GoogleJobsQueryRun" - ], - [ - "langchain.tools.google_lens.GoogleLensQueryRun", - "langchain_community.tools.google_lens.tool.GoogleLensQueryRun" - ], - [ - "langchain.tools.google_lens.tool.GoogleLensQueryRun", - "langchain_community.tools.google_lens.tool.GoogleLensQueryRun" - ], - [ - "langchain.tools.google_places.GooglePlacesTool", - "langchain_community.tools.GooglePlacesTool" - ], - [ - "langchain.tools.google_places.tool.GooglePlacesSchema", - "langchain_community.tools.google_places.tool.GooglePlacesSchema" - ], - [ - "langchain.tools.google_places.tool.GooglePlacesTool", - "langchain_community.tools.GooglePlacesTool" - ], - [ - "langchain.tools.google_scholar.GoogleScholarQueryRun", - "langchain_community.tools.google_scholar.tool.GoogleScholarQueryRun" - ], - [ - "langchain.tools.google_scholar.tool.GoogleScholarQueryRun", - "langchain_community.tools.google_scholar.tool.GoogleScholarQueryRun" - ], - [ - "langchain.tools.google_search.GoogleSearchRun", - "langchain_community.tools.GoogleSearchRun" - ], - [ - "langchain.tools.google_search.GoogleSearchResults", - "langchain_community.tools.GoogleSearchResults" - ], - [ - "langchain.tools.google_search.tool.GoogleSearchRun", - "langchain_community.tools.GoogleSearchRun" - ], - [ - "langchain.tools.google_search.tool.GoogleSearchResults", - "langchain_community.tools.GoogleSearchResults" - ], - [ - "langchain.tools.google_serper.GoogleSerperRun", - "langchain_community.tools.GoogleSerperRun" - ], - [ - "langchain.tools.google_serper.GoogleSerperResults", - "langchain_community.tools.GoogleSerperResults" - ], - [ - "langchain.tools.google_serper.tool.GoogleSerperRun", - "langchain_community.tools.GoogleSerperRun" - ], - [ - "langchain.tools.google_serper.tool.GoogleSerperResults", - "langchain_community.tools.GoogleSerperResults" - ], - [ - "langchain.tools.google_trends.GoogleTrendsQueryRun", - "langchain_community.tools.google_trends.tool.GoogleTrendsQueryRun" - ], - [ - "langchain.tools.google_trends.tool.GoogleTrendsQueryRun", - "langchain_community.tools.google_trends.tool.GoogleTrendsQueryRun" - ], - [ - "langchain.tools.graphql.tool.BaseGraphQLTool", - "langchain_community.tools.BaseGraphQLTool" - ], - [ - "langchain.tools.human.HumanInputRun", - "langchain_community.tools.HumanInputRun" - ], - [ - "langchain.tools.human.tool.HumanInputRun", - "langchain_community.tools.HumanInputRun" - ], - [ - "langchain.tools.ifttt.IFTTTWebhook", - "langchain_community.tools.IFTTTWebhook" - ], - [ - "langchain.tools.interaction.tool.StdInInquireTool", - "langchain_community.tools.StdInInquireTool" - ], - [ - "langchain.tools.jira.tool.JiraAction", - "langchain_community.tools.JiraAction" - ], - [ - "langchain.tools.json.tool.JsonSpec", - "langchain_community.tools.json.tool.JsonSpec" - ], - [ - "langchain.tools.json.tool.JsonListKeysTool", - "langchain_community.tools.JsonListKeysTool" - ], - [ - "langchain.tools.json.tool.JsonGetValueTool", - "langchain_community.tools.JsonGetValueTool" - ], - [ - "langchain.tools.memorize.Memorize", - "langchain_community.tools.memorize.tool.Memorize" - ], - [ - "langchain.tools.memorize.tool.TrainableLLM", - "langchain_community.tools.memorize.tool.TrainableLLM" - ], - [ - "langchain.tools.memorize.tool.Memorize", - "langchain_community.tools.memorize.tool.Memorize" - ], - [ - "langchain.tools.merriam_webster.tool.MerriamWebsterQueryRun", - "langchain_community.tools.MerriamWebsterQueryRun" - ], - [ - "langchain.tools.metaphor_search.MetaphorSearchResults", - "langchain_community.tools.MetaphorSearchResults" - ], - [ - "langchain.tools.metaphor_search.tool.MetaphorSearchResults", - "langchain_community.tools.MetaphorSearchResults" - ], - [ - "langchain.tools.multion.MultionCreateSession", - "langchain_community.tools.multion.create_session.MultionCreateSession" - ], - [ - "langchain.tools.multion.MultionUpdateSession", - "langchain_community.tools.multion.update_session.MultionUpdateSession" - ], - [ - "langchain.tools.multion.MultionCloseSession", - "langchain_community.tools.multion.close_session.MultionCloseSession" - ], - [ - "langchain.tools.multion.close_session.CloseSessionSchema", - "langchain_community.tools.multion.close_session.CloseSessionSchema" - ], - [ - "langchain.tools.multion.close_session.MultionCloseSession", - "langchain_community.tools.multion.close_session.MultionCloseSession" - ], - [ - "langchain.tools.multion.create_session.CreateSessionSchema", - "langchain_community.tools.multion.create_session.CreateSessionSchema" - ], - [ - "langchain.tools.multion.create_session.MultionCreateSession", - "langchain_community.tools.multion.create_session.MultionCreateSession" - ], - [ - "langchain.tools.multion.update_session.UpdateSessionSchema", - "langchain_community.tools.multion.update_session.UpdateSessionSchema" - ], - [ - "langchain.tools.multion.update_session.MultionUpdateSession", - "langchain_community.tools.multion.update_session.MultionUpdateSession" - ], - [ - "langchain.tools.nasa.tool.NasaAction", - "langchain_community.tools.NasaAction" - ], - [ - "langchain.tools.nuclia.NucliaUnderstandingAPI", - "langchain_community.tools.nuclia.tool.NucliaUnderstandingAPI" - ], - [ - "langchain.tools.nuclia.tool.NUASchema", - "langchain_community.tools.nuclia.tool.NUASchema" - ], - [ - "langchain.tools.nuclia.tool.NucliaUnderstandingAPI", - "langchain_community.tools.nuclia.tool.NucliaUnderstandingAPI" - ], - [ - "langchain.tools.office365.O365SearchEmails", - "langchain_community.tools.O365SearchEmails" - ], - [ - "langchain.tools.office365.O365SearchEvents", - "langchain_community.tools.O365SearchEvents" - ], - [ - "langchain.tools.office365.O365CreateDraftMessage", - "langchain_community.tools.O365CreateDraftMessage" - ], - [ - "langchain.tools.office365.O365SendMessage", - "langchain_community.tools.O365SendMessage" - ], - [ - "langchain.tools.office365.O365SendEvent", - "langchain_community.tools.O365SendEvent" - ], - [ - "langchain.tools.office365.base.O365BaseTool", - "langchain_community.tools.office365.base.O365BaseTool" - ], - [ - "langchain.tools.office365.create_draft_message.CreateDraftMessageSchema", - "langchain_community.tools.office365.create_draft_message.CreateDraftMessageSchema" - ], - [ - "langchain.tools.office365.create_draft_message.O365CreateDraftMessage", - "langchain_community.tools.O365CreateDraftMessage" - ], - [ - "langchain.tools.office365.events_search.SearchEventsInput", - "langchain_community.tools.office365.events_search.SearchEventsInput" - ], - [ - "langchain.tools.office365.events_search.O365SearchEvents", - "langchain_community.tools.O365SearchEvents" - ], - [ - "langchain.tools.office365.messages_search.SearchEmailsInput", - "langchain_community.tools.office365.messages_search.SearchEmailsInput" - ], - [ - "langchain.tools.office365.messages_search.O365SearchEmails", - "langchain_community.tools.O365SearchEmails" - ], - [ - "langchain.tools.office365.send_event.SendEventSchema", - "langchain_community.tools.office365.send_event.SendEventSchema" - ], - [ - "langchain.tools.office365.send_event.O365SendEvent", - "langchain_community.tools.O365SendEvent" - ], - [ - "langchain.tools.office365.send_message.SendMessageSchema", - "langchain_community.tools.office365.send_message.SendMessageSchema" - ], - [ - "langchain.tools.office365.send_message.O365SendMessage", - "langchain_community.tools.O365SendMessage" - ], - [ - "langchain.tools.openapi.utils.api_models.APIPropertyLocation", - "langchain_community.tools.openapi.utils.api_models.APIPropertyLocation" - ], - [ - "langchain.tools.openapi.utils.api_models.APIPropertyBase", - "langchain_community.tools.openapi.utils.api_models.APIPropertyBase" - ], - [ - "langchain.tools.openapi.utils.api_models.APIProperty", - "langchain_community.tools.openapi.utils.api_models.APIProperty" - ], - [ - "langchain.tools.openapi.utils.api_models.APIRequestBodyProperty", - "langchain_community.tools.openapi.utils.api_models.APIRequestBodyProperty" - ], - [ - "langchain.tools.openapi.utils.api_models.APIRequestBody", - "langchain_community.tools.openapi.utils.api_models.APIRequestBody" - ], - [ - "langchain.tools.openapi.utils.api_models.APIOperation", - "langchain_community.tools.APIOperation" - ], - [ - "langchain.tools.openapi.utils.openapi_utils.HTTPVerb", - "langchain_community.utilities.openapi.HTTPVerb" - ], - [ - "langchain.tools.openapi.utils.openapi_utils.OpenAPISpec", - "langchain_community.tools.OpenAPISpec" - ], - [ - "langchain.tools.openweathermap.OpenWeatherMapQueryRun", - "langchain_community.tools.OpenWeatherMapQueryRun" - ], - [ - "langchain.tools.openweathermap.tool.OpenWeatherMapQueryRun", - "langchain_community.tools.OpenWeatherMapQueryRun" - ], - [ - "langchain.tools.playwright.NavigateTool", - "langchain_community.tools.NavigateTool" - ], - [ - "langchain.tools.playwright.NavigateBackTool", - "langchain_community.tools.NavigateBackTool" - ], - [ - "langchain.tools.playwright.ExtractTextTool", - "langchain_community.tools.ExtractTextTool" - ], - [ - "langchain.tools.playwright.ExtractHyperlinksTool", - "langchain_community.tools.ExtractHyperlinksTool" - ], - [ - "langchain.tools.playwright.GetElementsTool", - "langchain_community.tools.GetElementsTool" - ], - [ - "langchain.tools.playwright.ClickTool", - "langchain_community.tools.ClickTool" - ], - [ - "langchain.tools.playwright.CurrentWebPageTool", - "langchain_community.tools.CurrentWebPageTool" - ], - [ - "langchain.tools.playwright.base.BaseBrowserTool", - "langchain_community.tools.playwright.base.BaseBrowserTool" - ], - [ - "langchain.tools.playwright.click.ClickToolInput", - "langchain_community.tools.playwright.click.ClickToolInput" - ], - [ - "langchain.tools.playwright.click.ClickTool", - "langchain_community.tools.ClickTool" - ], - [ - "langchain.tools.playwright.current_page.CurrentWebPageTool", - "langchain_community.tools.CurrentWebPageTool" - ], - [ - "langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput", - "langchain_community.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput" - ], - [ - "langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksTool", - "langchain_community.tools.ExtractHyperlinksTool" - ], - [ - "langchain.tools.playwright.extract_text.ExtractTextTool", - "langchain_community.tools.ExtractTextTool" - ], - [ - "langchain.tools.playwright.get_elements.GetElementsToolInput", - "langchain_community.tools.playwright.get_elements.GetElementsToolInput" - ], - [ - "langchain.tools.playwright.get_elements.GetElementsTool", - "langchain_community.tools.GetElementsTool" - ], - [ - "langchain.tools.playwright.navigate.NavigateToolInput", - "langchain_community.tools.playwright.navigate.NavigateToolInput" - ], - [ - "langchain.tools.playwright.navigate.NavigateTool", - "langchain_community.tools.NavigateTool" - ], - [ - "langchain.tools.playwright.navigate_back.NavigateBackTool", - "langchain_community.tools.NavigateBackTool" - ], - [ - "langchain.tools.plugin.ApiConfig", - "langchain_community.tools.plugin.ApiConfig" - ], - [ - "langchain.tools.plugin.AIPlugin", - "langchain_community.tools.plugin.AIPlugin" - ], - [ - "langchain.tools.plugin.AIPluginToolSchema", - "langchain_community.tools.plugin.AIPluginToolSchema" - ], - [ - "langchain.tools.plugin.AIPluginTool", - "langchain_community.tools.AIPluginTool" - ], - [ - "langchain.tools.powerbi.tool.QueryPowerBITool", - "langchain_community.tools.QueryPowerBITool" - ], - [ - "langchain.tools.powerbi.tool.InfoPowerBITool", - "langchain_community.tools.InfoPowerBITool" - ], - [ - "langchain.tools.powerbi.tool.ListPowerBITool", - "langchain_community.tools.ListPowerBITool" - ], - [ - "langchain.tools.pubmed.tool.PubmedQueryRun", - "langchain_community.tools.PubmedQueryRun" - ], - [ - "langchain.tools.reddit_search.tool.RedditSearchSchema", - "langchain_community.tools.RedditSearchSchema" - ], - [ - "langchain.tools.reddit_search.tool.RedditSearchRun", - "langchain_community.tools.RedditSearchRun" - ], - [ - "langchain.tools.requests.tool.BaseRequestsTool", - "langchain_community.tools.BaseRequestsTool" - ], - [ - "langchain.tools.requests.tool.RequestsGetTool", - "langchain_community.tools.RequestsGetTool" - ], - [ - "langchain.tools.requests.tool.RequestsPostTool", - "langchain_community.tools.RequestsPostTool" - ], - [ - "langchain.tools.requests.tool.RequestsPatchTool", - "langchain_community.tools.RequestsPatchTool" - ], - [ - "langchain.tools.requests.tool.RequestsPutTool", - "langchain_community.tools.RequestsPutTool" - ], - [ - "langchain.tools.requests.tool.RequestsDeleteTool", - "langchain_community.tools.RequestsDeleteTool" - ], - [ - "langchain.tools.scenexplain.tool.SceneXplainInput", - "langchain_community.tools.scenexplain.tool.SceneXplainInput" - ], - [ - "langchain.tools.scenexplain.tool.SceneXplainTool", - "langchain_community.tools.SceneXplainTool" - ], - [ - "langchain.tools.searchapi.SearchAPIResults", - "langchain_community.tools.SearchAPIResults" - ], - [ - "langchain.tools.searchapi.SearchAPIRun", - "langchain_community.tools.SearchAPIRun" - ], - [ - "langchain.tools.searchapi.tool.SearchAPIRun", - "langchain_community.tools.SearchAPIRun" - ], - [ - "langchain.tools.searchapi.tool.SearchAPIResults", - "langchain_community.tools.SearchAPIResults" - ], - [ - "langchain.tools.searx_search.tool.SearxSearchRun", - "langchain_community.tools.SearxSearchRun" - ], - [ - "langchain.tools.searx_search.tool.SearxSearchResults", - "langchain_community.tools.SearxSearchResults" - ], - [ - "langchain.tools.shell.ShellTool", - "langchain_community.tools.ShellTool" - ], - [ - "langchain.tools.shell.tool.ShellInput", - "langchain_community.tools.shell.tool.ShellInput" - ], - [ - "langchain.tools.shell.tool.ShellTool", - "langchain_community.tools.ShellTool" - ], - [ - "langchain.tools.slack.SlackGetChannel", - "langchain_community.tools.SlackGetChannel" - ], - [ - "langchain.tools.slack.SlackGetMessage", - "langchain_community.tools.SlackGetMessage" - ], - [ - "langchain.tools.slack.SlackScheduleMessage", - "langchain_community.tools.SlackScheduleMessage" - ], - [ - "langchain.tools.slack.SlackSendMessage", - "langchain_community.tools.SlackSendMessage" - ], - [ - "langchain.tools.slack.base.SlackBaseTool", - "langchain_community.tools.slack.base.SlackBaseTool" - ], - [ - "langchain.tools.slack.get_channel.SlackGetChannel", - "langchain_community.tools.SlackGetChannel" - ], - [ - "langchain.tools.slack.get_message.SlackGetMessageSchema", - "langchain_community.tools.slack.get_message.SlackGetMessageSchema" - ], - [ - "langchain.tools.slack.get_message.SlackGetMessage", - "langchain_community.tools.SlackGetMessage" - ], - [ - "langchain.tools.slack.schedule_message.ScheduleMessageSchema", - "langchain_community.tools.slack.schedule_message.ScheduleMessageSchema" - ], - [ - "langchain.tools.slack.schedule_message.SlackScheduleMessage", - "langchain_community.tools.SlackScheduleMessage" - ], - [ - "langchain.tools.slack.send_message.SendMessageSchema", - "langchain_community.tools.slack.send_message.SendMessageSchema" - ], - [ - "langchain.tools.slack.send_message.SlackSendMessage", - "langchain_community.tools.SlackSendMessage" - ], - [ - "langchain.tools.sleep.tool.SleepInput", - "langchain_community.tools.sleep.tool.SleepInput" - ], - [ - "langchain.tools.sleep.tool.SleepTool", - "langchain_community.tools.SleepTool" - ], - [ - "langchain.tools.spark_sql.tool.BaseSparkSQLTool", - "langchain_community.tools.BaseSparkSQLTool" - ], - [ - "langchain.tools.spark_sql.tool.QuerySparkSQLTool", - "langchain_community.tools.QuerySparkSQLTool" - ], - [ - "langchain.tools.spark_sql.tool.InfoSparkSQLTool", - "langchain_community.tools.InfoSparkSQLTool" - ], - [ - "langchain.tools.spark_sql.tool.ListSparkSQLTool", - "langchain_community.tools.ListSparkSQLTool" - ], - [ - "langchain.tools.spark_sql.tool.QueryCheckerTool", - "langchain_community.tools.QueryCheckerTool" - ], - [ - "langchain.tools.sql_database.tool.BaseSQLDatabaseTool", - "langchain_community.tools.BaseSQLDatabaseTool" - ], - [ - "langchain.tools.sql_database.tool.QuerySQLDataBaseTool", - "langchain_community.tools.QuerySQLDataBaseTool" - ], - [ - "langchain.tools.sql_database.tool.InfoSQLDatabaseTool", - "langchain_community.tools.InfoSQLDatabaseTool" - ], - [ - "langchain.tools.sql_database.tool.ListSQLDatabaseTool", - "langchain_community.tools.ListSQLDatabaseTool" - ], - [ - "langchain.tools.sql_database.tool.QuerySQLCheckerTool", - "langchain_community.tools.QuerySQLCheckerTool" - ], - [ - "langchain.tools.stackexchange.tool.StackExchangeTool", - "langchain_community.tools.StackExchangeTool" - ], - [ - "langchain.tools.steam.tool.SteamWebAPIQueryRun", - "langchain_community.tools.SteamWebAPIQueryRun" - ], - [ - "langchain.tools.steamship_image_generation.SteamshipImageGenerationTool", - "langchain_community.tools.SteamshipImageGenerationTool" - ], - [ - "langchain.tools.steamship_image_generation.tool.ModelName", - "langchain_community.tools.steamship_image_generation.tool.ModelName" - ], - [ - "langchain.tools.steamship_image_generation.tool.SteamshipImageGenerationTool", - "langchain_community.tools.SteamshipImageGenerationTool" - ], - [ - "langchain.tools.tavily_search.TavilySearchResults", - "langchain_community.tools.tavily_search.tool.TavilySearchResults" - ], - [ - "langchain.tools.tavily_search.TavilyAnswer", - "langchain_community.tools.tavily_search.tool.TavilyAnswer" - ], - [ - "langchain.tools.tavily_search.tool.TavilyInput", - "langchain_community.tools.tavily_search.tool.TavilyInput" - ], - [ - "langchain.tools.tavily_search.tool.TavilySearchResults", - "langchain_community.tools.tavily_search.tool.TavilySearchResults" - ], - [ - "langchain.tools.tavily_search.tool.TavilyAnswer", - "langchain_community.tools.tavily_search.tool.TavilyAnswer" - ], - [ - "langchain.tools.vectorstore.tool.VectorStoreQATool", - "langchain_community.tools.VectorStoreQATool" - ], - [ - "langchain.tools.vectorstore.tool.VectorStoreQAWithSourcesTool", - "langchain_community.tools.VectorStoreQAWithSourcesTool" - ], - [ - "langchain.tools.wikipedia.tool.WikipediaQueryRun", - "langchain_community.tools.WikipediaQueryRun" - ], - [ - "langchain.tools.wolfram_alpha.WolframAlphaQueryRun", - "langchain_community.tools.WolframAlphaQueryRun" - ], - [ - "langchain.tools.wolfram_alpha.tool.WolframAlphaQueryRun", - "langchain_community.tools.WolframAlphaQueryRun" - ], - [ - "langchain.tools.yahoo_finance_news.YahooFinanceNewsTool", - "langchain_community.tools.YahooFinanceNewsTool" - ], - [ - "langchain.tools.youtube.search.YouTubeSearchTool", - "langchain_community.tools.YouTubeSearchTool" - ], - [ - "langchain.tools.zapier.ZapierNLARunAction", - "langchain_community.tools.ZapierNLARunAction" - ], - [ - "langchain.tools.zapier.ZapierNLAListActions", - "langchain_community.tools.ZapierNLAListActions" - ], - [ - "langchain.tools.zapier.tool.ZapierNLARunAction", - "langchain_community.tools.ZapierNLARunAction" - ], - [ - "langchain.tools.zapier.tool.ZapierNLAListActions", - "langchain_community.tools.ZapierNLAListActions" - ], - [ - "langchain.utilities.AlphaVantageAPIWrapper", - "langchain_community.utilities.AlphaVantageAPIWrapper" - ], - [ - "langchain.utilities.ApifyWrapper", - "langchain_community.utilities.ApifyWrapper" - ], - [ - "langchain.utilities.ArceeWrapper", - "langchain_community.utilities.ArceeWrapper" - ], - [ - "langchain.utilities.ArxivAPIWrapper", - "langchain_community.utilities.ArxivAPIWrapper" - ], - [ - "langchain.utilities.BibtexparserWrapper", - "langchain_community.utilities.BibtexparserWrapper" - ], - [ - "langchain.utilities.BingSearchAPIWrapper", - "langchain_community.utilities.BingSearchAPIWrapper" - ], - [ - "langchain.utilities.BraveSearchWrapper", - "langchain_community.utilities.BraveSearchWrapper" - ], - [ - "langchain.utilities.DuckDuckGoSearchAPIWrapper", - "langchain_community.utilities.DuckDuckGoSearchAPIWrapper" - ], - [ - "langchain.utilities.GoldenQueryAPIWrapper", - "langchain_community.utilities.GoldenQueryAPIWrapper" - ], - [ - "langchain.utilities.GoogleFinanceAPIWrapper", - "langchain_community.utilities.GoogleFinanceAPIWrapper" - ], - [ - "langchain.utilities.GoogleLensAPIWrapper", - "langchain_community.utilities.GoogleLensAPIWrapper" - ], - [ - "langchain.utilities.GoogleJobsAPIWrapper", - "langchain_community.utilities.GoogleJobsAPIWrapper" - ], - [ - "langchain.utilities.GooglePlacesAPIWrapper", - "langchain_community.utilities.GooglePlacesAPIWrapper" - ], - [ - "langchain.utilities.GoogleScholarAPIWrapper", - "langchain_community.utilities.GoogleScholarAPIWrapper" - ], - [ - "langchain.utilities.GoogleTrendsAPIWrapper", - "langchain_community.utilities.GoogleTrendsAPIWrapper" - ], - [ - "langchain.utilities.GoogleSearchAPIWrapper", - "langchain_community.utilities.GoogleSearchAPIWrapper" - ], - [ - "langchain.utilities.GoogleSerperAPIWrapper", - "langchain_community.utilities.GoogleSerperAPIWrapper" - ], - [ - "langchain.utilities.GraphQLAPIWrapper", - "langchain_community.utilities.GraphQLAPIWrapper" - ], - [ - "langchain.utilities.JiraAPIWrapper", - "langchain_community.utilities.JiraAPIWrapper" - ], - [ - "langchain.utilities.LambdaWrapper", - "langchain_community.utilities.LambdaWrapper" - ], - [ - "langchain.utilities.MaxComputeAPIWrapper", - "langchain_community.utilities.MaxComputeAPIWrapper" - ], - [ - "langchain.utilities.MerriamWebsterAPIWrapper", - "langchain_community.utilities.MerriamWebsterAPIWrapper" - ], - [ - "langchain.utilities.MetaphorSearchAPIWrapper", - "langchain_community.utilities.MetaphorSearchAPIWrapper" - ], - [ - "langchain.utilities.NasaAPIWrapper", - "langchain_community.utilities.NasaAPIWrapper" - ], - [ - "langchain.utilities.OpenWeatherMapAPIWrapper", - "langchain_community.utilities.OpenWeatherMapAPIWrapper" - ], - [ - "langchain.utilities.OutlineAPIWrapper", - "langchain_community.utilities.OutlineAPIWrapper" - ], - [ - "langchain.utilities.Portkey", - "langchain_community.utilities.Portkey" - ], - [ - "langchain.utilities.PowerBIDataset", - "langchain_community.utilities.PowerBIDataset" - ], - [ - "langchain.utilities.PubMedAPIWrapper", - "langchain_community.utilities.PubMedAPIWrapper" - ], - [ - "langchain.utilities.PythonREPL", - "langchain_community.utilities.PythonREPL" - ], - [ - "langchain.utilities.Requests", - "langchain_community.utilities.Requests" - ], - [ - "langchain.utilities.RequestsWrapper", - "langchain_community.utilities.TextRequestsWrapper" - ], - [ - "langchain.utilities.SteamWebAPIWrapper", - "langchain_community.utilities.SteamWebAPIWrapper" - ], - [ - "langchain.utilities.SQLDatabase", - "langchain_community.utilities.SQLDatabase" - ], - [ - "langchain.utilities.SceneXplainAPIWrapper", - "langchain_community.utilities.SceneXplainAPIWrapper" - ], - [ - "langchain.utilities.SearchApiAPIWrapper", - "langchain_community.utilities.SearchApiAPIWrapper" - ], - [ - "langchain.utilities.SearxSearchWrapper", - "langchain_community.utilities.SearxSearchWrapper" - ], - [ - "langchain.utilities.SerpAPIWrapper", - "langchain_community.utilities.SerpAPIWrapper" - ], - [ - "langchain.utilities.SparkSQL", - "langchain_community.utilities.SparkSQL" - ], - [ - "langchain.utilities.StackExchangeAPIWrapper", - "langchain_community.utilities.StackExchangeAPIWrapper" - ], - [ - "langchain.utilities.TensorflowDatasets", - "langchain_community.utilities.TensorflowDatasets" - ], - [ - "langchain.utilities.TextRequestsWrapper", - "langchain_community.utilities.TextRequestsWrapper" - ], - [ - "langchain.utilities.TwilioAPIWrapper", - "langchain_community.utilities.TwilioAPIWrapper" - ], - [ - "langchain.utilities.WikipediaAPIWrapper", - "langchain_community.utilities.WikipediaAPIWrapper" - ], - [ - "langchain.utilities.WolframAlphaAPIWrapper", - "langchain_community.utilities.WolframAlphaAPIWrapper" - ], - [ - "langchain.utilities.ZapierNLAWrapper", - "langchain_community.utilities.ZapierNLAWrapper" - ], - [ - "langchain.utilities.alpha_vantage.AlphaVantageAPIWrapper", - "langchain_community.utilities.AlphaVantageAPIWrapper" - ], - [ - "langchain.utilities.anthropic.get_num_tokens_anthropic", - "langchain_community.utilities.anthropic.get_num_tokens_anthropic" - ], - [ - "langchain.utilities.anthropic.get_token_ids_anthropic", - "langchain_community.utilities.anthropic.get_token_ids_anthropic" - ], - [ - "langchain.utilities.apify.ApifyWrapper", - "langchain_community.utilities.ApifyWrapper" - ], - [ - "langchain.utilities.arcee.ArceeRoute", - "langchain_community.utilities.arcee.ArceeRoute" - ], - [ - "langchain.utilities.arcee.DALMFilterType", - "langchain_community.utilities.arcee.DALMFilterType" - ], - [ - "langchain.utilities.arcee.DALMFilter", - "langchain_community.utilities.arcee.DALMFilter" - ], - [ - "langchain.utilities.arcee.ArceeDocumentSource", - "langchain_community.utilities.arcee.ArceeDocumentSource" - ], - [ - "langchain.utilities.arcee.ArceeDocument", - "langchain_community.utilities.arcee.ArceeDocument" - ], - [ - "langchain.utilities.arcee.ArceeDocumentAdapter", - "langchain_community.utilities.arcee.ArceeDocumentAdapter" - ], - [ - "langchain.utilities.arcee.ArceeWrapper", - "langchain_community.utilities.ArceeWrapper" - ], - [ - "langchain.utilities.arxiv.ArxivAPIWrapper", - "langchain_community.utilities.ArxivAPIWrapper" - ], - [ - "langchain.utilities.awslambda.LambdaWrapper", - "langchain_community.utilities.LambdaWrapper" - ], - [ - "langchain.utilities.bibtex.BibtexparserWrapper", - "langchain_community.utilities.BibtexparserWrapper" - ], - [ - "langchain.utilities.bing_search.BingSearchAPIWrapper", - "langchain_community.utilities.BingSearchAPIWrapper" - ], - [ - "langchain.utilities.brave_search.BraveSearchWrapper", - "langchain_community.utilities.BraveSearchWrapper" - ], - [ - "langchain.utilities.clickup.Component", - "langchain_community.utilities.clickup.Component" - ], - [ - "langchain.utilities.clickup.Task", - "langchain_community.utilities.clickup.Task" - ], - [ - "langchain.utilities.clickup.CUList", - "langchain_community.utilities.clickup.CUList" - ], - [ - "langchain.utilities.clickup.Member", - "langchain_community.utilities.clickup.Member" - ], - [ - "langchain.utilities.clickup.Team", - "langchain_community.utilities.clickup.Team" - ], - [ - "langchain.utilities.clickup.Space", - "langchain_community.utilities.clickup.Space" - ], - [ - "langchain.utilities.clickup.ClickupAPIWrapper", - "langchain_community.utilities.clickup.ClickupAPIWrapper" - ], - [ - "langchain.utilities.dalle_image_generator.DallEAPIWrapper", - "langchain_community.utilities.dalle_image_generator.DallEAPIWrapper" - ], - [ - "langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper", - "langchain_community.utilities.dataforseo_api_search.DataForSeoAPIWrapper" - ], - [ - "langchain.utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper", - "langchain_community.utilities.DuckDuckGoSearchAPIWrapper" - ], - [ - "langchain.utilities.github.GitHubAPIWrapper", - "langchain_community.utilities.github.GitHubAPIWrapper" - ], - [ - "langchain.utilities.gitlab.GitLabAPIWrapper", - "langchain_community.utilities.gitlab.GitLabAPIWrapper" - ], - [ - "langchain.utilities.golden_query.GoldenQueryAPIWrapper", - "langchain_community.utilities.GoldenQueryAPIWrapper" - ], - [ - "langchain.utilities.google_finance.GoogleFinanceAPIWrapper", - "langchain_community.utilities.GoogleFinanceAPIWrapper" - ], - [ - "langchain.utilities.google_jobs.GoogleJobsAPIWrapper", - "langchain_community.utilities.GoogleJobsAPIWrapper" - ], - [ - "langchain.utilities.google_lens.GoogleLensAPIWrapper", - "langchain_community.utilities.GoogleLensAPIWrapper" - ], - [ - "langchain.utilities.google_places_api.GooglePlacesAPIWrapper", - "langchain_community.utilities.GooglePlacesAPIWrapper" - ], - [ - "langchain.utilities.google_scholar.GoogleScholarAPIWrapper", - "langchain_community.utilities.GoogleScholarAPIWrapper" - ], - [ - "langchain.utilities.google_search.GoogleSearchAPIWrapper", - "langchain_community.utilities.GoogleSearchAPIWrapper" - ], - [ - "langchain.utilities.google_serper.GoogleSerperAPIWrapper", - "langchain_community.utilities.GoogleSerperAPIWrapper" - ], - [ - "langchain.utilities.google_trends.GoogleTrendsAPIWrapper", - "langchain_community.utilities.GoogleTrendsAPIWrapper" - ], - [ - "langchain.utilities.graphql.GraphQLAPIWrapper", - "langchain_community.utilities.GraphQLAPIWrapper" - ], - [ - "langchain.utilities.jira.JiraAPIWrapper", - "langchain_community.utilities.JiraAPIWrapper" - ], - [ - "langchain.utilities.max_compute.MaxComputeAPIWrapper", - "langchain_community.utilities.MaxComputeAPIWrapper" - ], - [ - "langchain.utilities.merriam_webster.MerriamWebsterAPIWrapper", - "langchain_community.utilities.MerriamWebsterAPIWrapper" - ], - [ - "langchain.utilities.metaphor_search.MetaphorSearchAPIWrapper", - "langchain_community.utilities.MetaphorSearchAPIWrapper" - ], - [ - "langchain.utilities.nasa.NasaAPIWrapper", - "langchain_community.utilities.NasaAPIWrapper" - ], - [ - "langchain.utilities.opaqueprompts.sanitize", - "langchain_community.utilities.opaqueprompts.sanitize" - ], - [ - "langchain.utilities.opaqueprompts.desanitize", - "langchain_community.utilities.opaqueprompts.desanitize" - ], - [ - "langchain.utilities.openapi.HTTPVerb", - "langchain_community.utilities.openapi.HTTPVerb" - ], - [ - "langchain.utilities.openapi.OpenAPISpec", - "langchain_community.tools.OpenAPISpec" - ], - [ - "langchain.utilities.openweathermap.OpenWeatherMapAPIWrapper", - "langchain_community.utilities.OpenWeatherMapAPIWrapper" - ], - [ - "langchain.utilities.outline.OutlineAPIWrapper", - "langchain_community.utilities.OutlineAPIWrapper" - ], - [ - "langchain.utilities.portkey.Portkey", - "langchain_community.utilities.Portkey" - ], - [ - "langchain.utilities.powerbi.PowerBIDataset", - "langchain_community.utilities.PowerBIDataset" - ], - [ - "langchain.utilities.pubmed.PubMedAPIWrapper", - "langchain_community.utilities.PubMedAPIWrapper" - ], - [ - "langchain.utilities.python.PythonREPL", - "langchain_community.utilities.PythonREPL" - ], - [ - "langchain.utilities.reddit_search.RedditSearchAPIWrapper", - "langchain_community.utilities.reddit_search.RedditSearchAPIWrapper" - ], - [ - "langchain.utilities.redis.TokenEscaper", - "langchain_community.utilities.redis.TokenEscaper" - ], - [ - "langchain.utilities.redis.check_redis_module_exist", - "langchain_community.utilities.redis.check_redis_module_exist" - ], - [ - "langchain.utilities.redis.get_client", - "langchain_community.utilities.redis.get_client" - ], - [ - "langchain.utilities.requests.Requests", - "langchain_community.utilities.Requests" - ], - [ - "langchain.utilities.requests.TextRequestsWrapper", - "langchain_community.utilities.TextRequestsWrapper" - ], - [ - "langchain.utilities.requests.RequestsWrapper", - "langchain_community.utilities.TextRequestsWrapper" - ], - [ - "langchain.utilities.scenexplain.SceneXplainAPIWrapper", - "langchain_community.utilities.SceneXplainAPIWrapper" - ], - [ - "langchain.utilities.searchapi.SearchApiAPIWrapper", - "langchain_community.utilities.SearchApiAPIWrapper" - ], - [ - "langchain.utilities.searx_search.SearxResults", - "langchain_community.utilities.searx_search.SearxResults" - ], - [ - "langchain.utilities.searx_search.SearxSearchWrapper", - "langchain_community.utilities.SearxSearchWrapper" - ], - [ - "langchain.utilities.serpapi.HiddenPrints", - "langchain_community.utilities.serpapi.HiddenPrints" - ], - [ - "langchain.utilities.serpapi.SerpAPIWrapper", - "langchain_community.utilities.SerpAPIWrapper" - ], - [ - "langchain.utilities.spark_sql.SparkSQL", - "langchain_community.utilities.SparkSQL" - ], - [ - "langchain.utilities.sql_database.truncate_word", - "langchain_community.utilities.sql_database.truncate_word" - ], - [ - "langchain.utilities.sql_database.SQLDatabase", - "langchain_community.utilities.SQLDatabase" - ], - [ - "langchain.utilities.stackexchange.StackExchangeAPIWrapper", - "langchain_community.utilities.StackExchangeAPIWrapper" - ], - [ - "langchain.utilities.steam.SteamWebAPIWrapper", - "langchain_community.utilities.SteamWebAPIWrapper" - ], - [ - "langchain.utilities.tavily_search.TavilySearchAPIWrapper", - "langchain_community.utilities.tavily_search.TavilySearchAPIWrapper" - ], - [ - "langchain.utilities.tensorflow_datasets.TensorflowDatasets", - "langchain_community.utilities.TensorflowDatasets" - ], - [ - "langchain.utilities.twilio.TwilioAPIWrapper", - "langchain_community.utilities.TwilioAPIWrapper" - ], - [ - "langchain.utilities.vertexai.create_retry_decorator", - "langchain_community.utilities.vertexai.create_retry_decorator" - ], - [ - "langchain.utilities.vertexai.raise_vertex_import_error", - "langchain_community.utilities.vertexai.raise_vertex_import_error" - ], - [ - "langchain.utilities.vertexai.init_vertexai", - "langchain_community.utilities.vertexai.init_vertexai" - ], - [ - "langchain.utilities.vertexai.get_client_info", - "langchain_community.utilities.vertexai.get_client_info" - ], - [ - "langchain.utilities.wikipedia.WikipediaAPIWrapper", - "langchain_community.utilities.WikipediaAPIWrapper" - ], - [ - "langchain.utilities.wolfram_alpha.WolframAlphaAPIWrapper", - "langchain_community.utilities.WolframAlphaAPIWrapper" - ], - [ - "langchain.utilities.zapier.ZapierNLAWrapper", - "langchain_community.utilities.ZapierNLAWrapper" - ], - [ - "langchain.utils.cosine_similarity", - "langchain_community.utils.math.cosine_similarity" - ], - [ - "langchain.utils.cosine_similarity_top_k", - "langchain_community.utils.math.cosine_similarity_top_k" - ], - [ - "langchain.utils.ernie_functions.FunctionDescription", - "langchain_community.utils.ernie_functions.FunctionDescription" - ], - [ - "langchain.utils.ernie_functions.ToolDescription", - "langchain_community.utils.ernie_functions.ToolDescription" - ], - [ - "langchain.utils.ernie_functions.convert_pydantic_to_ernie_function", - "langchain_community.utils.ernie_functions.convert_pydantic_to_ernie_function" - ], - [ - "langchain.utils.ernie_functions.convert_pydantic_to_ernie_tool", - "langchain_community.utils.ernie_functions.convert_pydantic_to_ernie_tool" - ], - [ - "langchain.utils.math.cosine_similarity", - "langchain_community.utils.math.cosine_similarity" - ], - [ - "langchain.utils.math.cosine_similarity_top_k", - "langchain_community.utils.math.cosine_similarity_top_k" - ], - [ - "langchain.utils.openai.is_openai_v1", - "langchain_community.utils.openai.is_openai_v1" - ], - [ - "langchain.vectorstores.AlibabaCloudOpenSearch", - "langchain_community.vectorstores.AlibabaCloudOpenSearch" - ], - [ - "langchain.vectorstores.AlibabaCloudOpenSearchSettings", - "langchain_community.vectorstores.AlibabaCloudOpenSearchSettings" - ], - [ - "langchain.vectorstores.AnalyticDB", - "langchain_community.vectorstores.AnalyticDB" - ], - [ - "langchain.vectorstores.Annoy", - "langchain_community.vectorstores.Annoy" - ], - [ - "langchain.vectorstores.AtlasDB", - "langchain_community.vectorstores.AtlasDB" - ], - [ - "langchain.vectorstores.AwaDB", - "langchain_community.vectorstores.AwaDB" - ], - [ - "langchain.vectorstores.AzureSearch", - "langchain_community.vectorstores.AzureSearch" - ], - [ - "langchain.vectorstores.Bagel", - "langchain_community.vectorstores.Bagel" - ], - [ - "langchain.vectorstores.Cassandra", - "langchain_community.vectorstores.Cassandra" - ], - [ - "langchain.vectorstores.AstraDB", - "langchain_community.vectorstores.AstraDB" - ], - [ - "langchain.vectorstores.Chroma", - "langchain_community.vectorstores.Chroma" - ], - [ - "langchain.vectorstores.Clarifai", - "langchain_community.vectorstores.Clarifai" - ], - [ - "langchain.vectorstores.Clickhouse", - "langchain_community.vectorstores.Clickhouse" - ], - [ - "langchain.vectorstores.ClickhouseSettings", - "langchain_community.vectorstores.ClickhouseSettings" - ], - [ - "langchain.vectorstores.DashVector", - "langchain_community.vectorstores.DashVector" - ], - [ - "langchain.vectorstores.DatabricksVectorSearch", - "langchain_community.vectorstores.DatabricksVectorSearch" - ], - [ - "langchain.vectorstores.DeepLake", - "langchain_community.vectorstores.DeepLake" - ], - [ - "langchain.vectorstores.Dingo", - "langchain_community.vectorstores.Dingo" - ], - [ - "langchain.vectorstores.DocArrayHnswSearch", - "langchain_community.vectorstores.DocArrayHnswSearch" - ], - [ - "langchain.vectorstores.DocArrayInMemorySearch", - "langchain_community.vectorstores.DocArrayInMemorySearch" - ], - [ - "langchain.vectorstores.ElasticKnnSearch", - "langchain_community.vectorstores.ElasticKnnSearch" - ], - [ - "langchain.vectorstores.ElasticVectorSearch", - "langchain_community.vectorstores.ElasticVectorSearch" - ], - [ - "langchain.vectorstores.ElasticsearchStore", - "langchain_community.vectorstores.ElasticsearchStore" - ], - [ - "langchain.vectorstores.Epsilla", - "langchain_community.vectorstores.Epsilla" - ], - [ - "langchain.vectorstores.FAISS", - "langchain_community.vectorstores.FAISS" - ], - [ - "langchain.vectorstores.Hologres", - "langchain_community.vectorstores.Hologres" - ], - [ - "langchain.vectorstores.LanceDB", - "langchain_community.vectorstores.LanceDB" - ], - [ - "langchain.vectorstores.LLMRails", - "langchain_community.vectorstores.LLMRails" - ], - [ - "langchain.vectorstores.Marqo", - "langchain_community.vectorstores.Marqo" - ], - [ - "langchain.vectorstores.MatchingEngine", - "langchain_community.vectorstores.MatchingEngine" - ], - [ - "langchain.vectorstores.Meilisearch", - "langchain_community.vectorstores.Meilisearch" - ], - [ - "langchain.vectorstores.Milvus", - "langchain_community.vectorstores.Milvus" - ], - [ - "langchain.vectorstores.MomentoVectorIndex", - "langchain_community.vectorstores.MomentoVectorIndex" - ], - [ - "langchain.vectorstores.MongoDBAtlasVectorSearch", - "langchain_community.vectorstores.MongoDBAtlasVectorSearch" - ], - [ - "langchain.vectorstores.MyScale", - "langchain_community.vectorstores.MyScale" - ], - [ - "langchain.vectorstores.MyScaleSettings", - "langchain_community.vectorstores.MyScaleSettings" - ], - [ - "langchain.vectorstores.Neo4jVector", - "langchain_community.vectorstores.Neo4jVector" - ], - [ - "langchain.vectorstores.OpenSearchVectorSearch", - "langchain_community.vectorstores.OpenSearchVectorSearch" - ], - [ - "langchain.vectorstores.PGEmbedding", - "langchain_community.vectorstores.PGEmbedding" - ], - [ - "langchain.vectorstores.PGVector", - "langchain_community.vectorstores.PGVector" - ], - [ - "langchain.vectorstores.Pinecone", - "langchain_community.vectorstores.Pinecone" - ], - [ - "langchain.vectorstores.Qdrant", - "langchain_community.vectorstores.Qdrant" - ], - [ - "langchain.vectorstores.Redis", - "langchain_community.vectorstores.Redis" - ], - [ - "langchain.vectorstores.Rockset", - "langchain_community.vectorstores.Rockset" - ], - [ - "langchain.vectorstores.SKLearnVectorStore", - "langchain_community.vectorstores.SKLearnVectorStore" - ], - [ - "langchain.vectorstores.ScaNN", - "langchain_community.vectorstores.ScaNN" - ], - [ - "langchain.vectorstores.SemaDB", - "langchain_community.vectorstores.SemaDB" - ], - [ - "langchain.vectorstores.SingleStoreDB", - "langchain_community.vectorstores.SingleStoreDB" - ], - [ - "langchain.vectorstores.SQLiteVSS", - "langchain_community.vectorstores.SQLiteVSS" - ], - [ - "langchain.vectorstores.StarRocks", - "langchain_community.vectorstores.StarRocks" - ], - [ - "langchain.vectorstores.SupabaseVectorStore", - "langchain_community.vectorstores.SupabaseVectorStore" - ], - [ - "langchain.vectorstores.Tair", - "langchain_community.vectorstores.Tair" - ], - [ - "langchain.vectorstores.TileDB", - "langchain_community.vectorstores.TileDB" - ], - [ - "langchain.vectorstores.Tigris", - "langchain_community.vectorstores.Tigris" - ], - [ - "langchain.vectorstores.TimescaleVector", - "langchain_community.vectorstores.TimescaleVector" - ], - [ - "langchain.vectorstores.Typesense", - "langchain_community.vectorstores.Typesense" - ], - [ - "langchain.vectorstores.USearch", - "langchain_community.vectorstores.USearch" - ], - [ - "langchain.vectorstores.Vald", - "langchain_community.vectorstores.Vald" - ], - [ - "langchain.vectorstores.Vearch", - "langchain_community.vectorstores.Vearch" - ], - [ - "langchain.vectorstores.Vectara", - "langchain_community.vectorstores.Vectara" - ], - [ - "langchain.vectorstores.VespaStore", - "langchain_community.vectorstores.VespaStore" - ], - [ - "langchain.vectorstores.Weaviate", - "langchain_community.vectorstores.Weaviate" - ], - [ - "langchain.vectorstores.Yellowbrick", - "langchain_community.vectorstores.Yellowbrick" - ], - [ - "langchain.vectorstores.ZepVectorStore", - "langchain_community.vectorstores.ZepVectorStore" - ], - [ - "langchain.vectorstores.Zilliz", - "langchain_community.vectorstores.Zilliz" - ], - [ - "langchain.vectorstores.TencentVectorDB", - "langchain_community.vectorstores.TencentVectorDB" - ], - [ - "langchain.vectorstores.AzureCosmosDBVectorSearch", - "langchain_community.vectorstores.AzureCosmosDBVectorSearch" - ], - [ - "langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings", - "langchain_community.vectorstores.AlibabaCloudOpenSearchSettings" - ], - [ - "langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch", - "langchain_community.vectorstores.AlibabaCloudOpenSearch" - ], - [ - "langchain.vectorstores.analyticdb.AnalyticDB", - "langchain_community.vectorstores.AnalyticDB" - ], - [ - "langchain.vectorstores.annoy.Annoy", - "langchain_community.vectorstores.Annoy" - ], - [ - "langchain.vectorstores.astradb.AstraDB", - "langchain_community.vectorstores.AstraDB" - ], - [ - "langchain.vectorstores.atlas.AtlasDB", - "langchain_community.vectorstores.AtlasDB" - ], - [ - "langchain.vectorstores.awadb.AwaDB", - "langchain_community.vectorstores.AwaDB" - ], - [ - "langchain.vectorstores.azure_cosmos_db.CosmosDBSimilarityType", - "langchain_community.vectorstores.azure_cosmos_db.CosmosDBSimilarityType" - ], - [ - "langchain.vectorstores.azure_cosmos_db.AzureCosmosDBVectorSearch", - "langchain_community.vectorstores.AzureCosmosDBVectorSearch" - ], - [ - "langchain.vectorstores.azuresearch.AzureSearch", - "langchain_community.vectorstores.AzureSearch" - ], - [ - "langchain.vectorstores.azuresearch.AzureSearchVectorStoreRetriever", - "langchain_community.vectorstores.azuresearch.AzureSearchVectorStoreRetriever" - ], - [ - "langchain.vectorstores.bageldb.Bagel", - "langchain_community.vectorstores.Bagel" - ], - [ - "langchain.vectorstores.baiducloud_vector_search.BESVectorStore", - "langchain_community.vectorstores.BESVectorStore" - ], - [ - "langchain.vectorstores.cassandra.Cassandra", - "langchain_community.vectorstores.Cassandra" - ], - [ - "langchain.vectorstores.chroma.Chroma", - "langchain_community.vectorstores.Chroma" - ], - [ - "langchain.vectorstores.clarifai.Clarifai", - "langchain_community.vectorstores.Clarifai" - ], - [ - "langchain.vectorstores.clickhouse.ClickhouseSettings", - "langchain_community.vectorstores.ClickhouseSettings" - ], - [ - "langchain.vectorstores.clickhouse.Clickhouse", - "langchain_community.vectorstores.Clickhouse" - ], - [ - "langchain.vectorstores.dashvector.DashVector", - "langchain_community.vectorstores.DashVector" - ], - [ - "langchain.vectorstores.databricks_vector_search.DatabricksVectorSearch", - "langchain_community.vectorstores.DatabricksVectorSearch" - ], - [ - "langchain.vectorstores.deeplake.DeepLake", - "langchain_community.vectorstores.DeepLake" - ], - [ - "langchain.vectorstores.dingo.Dingo", - "langchain_community.vectorstores.Dingo" - ], - [ - "langchain.vectorstores.docarray.DocArrayHnswSearch", - "langchain_community.vectorstores.DocArrayHnswSearch" - ], - [ - "langchain.vectorstores.docarray.DocArrayInMemorySearch", - "langchain_community.vectorstores.DocArrayInMemorySearch" - ], - [ - "langchain.vectorstores.docarray.base.DocArrayIndex", - "langchain_community.vectorstores.docarray.base.DocArrayIndex" - ], - [ - "langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch", - "langchain_community.vectorstores.DocArrayHnswSearch" - ], - [ - "langchain.vectorstores.docarray.in_memory.DocArrayInMemorySearch", - "langchain_community.vectorstores.DocArrayInMemorySearch" - ], - [ - "langchain.vectorstores.elastic_vector_search.ElasticVectorSearch", - "langchain_community.vectorstores.ElasticVectorSearch" - ], - [ - "langchain.vectorstores.elastic_vector_search.ElasticKnnSearch", - "langchain_community.vectorstores.ElasticKnnSearch" - ], - [ - "langchain.vectorstores.elasticsearch.BaseRetrievalStrategy", - "langchain_community.vectorstores.elasticsearch.BaseRetrievalStrategy" - ], - [ - "langchain.vectorstores.elasticsearch.ApproxRetrievalStrategy", - "langchain_community.vectorstores.elasticsearch.ApproxRetrievalStrategy" - ], - [ - "langchain.vectorstores.elasticsearch.ExactRetrievalStrategy", - "langchain_community.vectorstores.elasticsearch.ExactRetrievalStrategy" - ], - [ - "langchain.vectorstores.elasticsearch.SparseRetrievalStrategy", - "langchain_community.vectorstores.elasticsearch.SparseRetrievalStrategy" - ], - [ - "langchain.vectorstores.elasticsearch.ElasticsearchStore", - "langchain_community.vectorstores.ElasticsearchStore" - ], - [ - "langchain.vectorstores.epsilla.Epsilla", - "langchain_community.vectorstores.Epsilla" - ], - [ - "langchain.vectorstores.faiss.FAISS", - "langchain_community.vectorstores.FAISS" - ], - [ - "langchain.vectorstores.hippo.Hippo", - "langchain_community.vectorstores.hippo.Hippo" - ], - [ - "langchain.vectorstores.hologres.Hologres", - "langchain_community.vectorstores.Hologres" - ], - [ - "langchain.vectorstores.lancedb.LanceDB", - "langchain_community.vectorstores.LanceDB" - ], - [ - "langchain.vectorstores.llm_rails.LLMRails", - "langchain_community.vectorstores.LLMRails" - ], - [ - "langchain.vectorstores.llm_rails.LLMRailsRetriever", - "langchain_community.vectorstores.llm_rails.LLMRailsRetriever" - ], - [ - "langchain.vectorstores.marqo.Marqo", - "langchain_community.vectorstores.Marqo" - ], - [ - "langchain.vectorstores.matching_engine.MatchingEngine", - "langchain_community.vectorstores.MatchingEngine" - ], - [ - "langchain.vectorstores.meilisearch.Meilisearch", - "langchain_community.vectorstores.Meilisearch" - ], - [ - "langchain.vectorstores.milvus.Milvus", - "langchain_community.vectorstores.Milvus" - ], - [ - "langchain.vectorstores.momento_vector_index.MomentoVectorIndex", - "langchain_community.vectorstores.MomentoVectorIndex" - ], - [ - "langchain.vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch", - "langchain_community.vectorstores.MongoDBAtlasVectorSearch" - ], - [ - "langchain.vectorstores.myscale.MyScaleSettings", - "langchain_community.vectorstores.MyScaleSettings" - ], - [ - "langchain.vectorstores.myscale.MyScale", - "langchain_community.vectorstores.MyScale" - ], - [ - "langchain.vectorstores.myscale.MyScaleWithoutJSON", - "langchain_community.vectorstores.myscale.MyScaleWithoutJSON" - ], - [ - "langchain.vectorstores.neo4j_vector.SearchType", - "langchain_community.vectorstores.neo4j_vector.SearchType" - ], - [ - "langchain.vectorstores.neo4j_vector.Neo4jVector", - "langchain_community.vectorstores.Neo4jVector" - ], - [ - "langchain.vectorstores.nucliadb.NucliaDB", - "langchain_community.vectorstores.nucliadb.NucliaDB" - ], - [ - "langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch", - "langchain_community.vectorstores.OpenSearchVectorSearch" - ], - [ - "langchain.vectorstores.pgembedding.CollectionStore", - "langchain_community.vectorstores.pgembedding.CollectionStore" - ], - [ - "langchain.vectorstores.pgembedding.EmbeddingStore", - "langchain_community.vectorstores.pgembedding.EmbeddingStore" - ], - [ - "langchain.vectorstores.pgembedding.QueryResult", - "langchain_community.vectorstores.pgembedding.QueryResult" - ], - [ - "langchain.vectorstores.pgembedding.PGEmbedding", - "langchain_community.vectorstores.PGEmbedding" - ], - [ - "langchain.vectorstores.pgvecto_rs.PGVecto_rs", - "langchain_community.vectorstores.pgvecto_rs.PGVecto_rs" - ], - [ - "langchain.vectorstores.pgvector.DistanceStrategy", - "langchain_community.vectorstores.pgvector.DistanceStrategy" - ], - [ - "langchain.vectorstores.pgvector.PGVector", - "langchain_community.vectorstores.PGVector" - ], - [ - "langchain.vectorstores.pinecone.Pinecone", - "langchain_community.vectorstores.Pinecone" - ], - [ - "langchain.vectorstores.qdrant.QdrantException", - "langchain_community.vectorstores.qdrant.QdrantException" - ], - [ - "langchain.vectorstores.qdrant.Qdrant", - "langchain_community.vectorstores.Qdrant" - ], - [ - "langchain.vectorstores.redis.Redis", - "langchain_community.vectorstores.Redis" - ], - [ - "langchain.vectorstores.redis.RedisFilter", - "langchain_community.vectorstores.redis.filters.RedisFilter" - ], - [ - "langchain.vectorstores.redis.RedisTag", - "langchain_community.vectorstores.redis.filters.RedisTag" - ], - [ - "langchain.vectorstores.redis.RedisText", - "langchain_community.vectorstores.redis.filters.RedisText" - ], - [ - "langchain.vectorstores.redis.RedisNum", - "langchain_community.vectorstores.redis.filters.RedisNum" - ], - [ - "langchain.vectorstores.redis.RedisVectorStoreRetriever", - "langchain_community.vectorstores.redis.base.RedisVectorStoreRetriever" - ], - [ - "langchain.vectorstores.redis.base.check_index_exists", - "langchain_community.vectorstores.redis.base.check_index_exists" - ], - [ - "langchain.vectorstores.redis.base.Redis", - "langchain_community.vectorstores.Redis" - ], - [ - "langchain.vectorstores.redis.base.RedisVectorStoreRetriever", - "langchain_community.vectorstores.redis.base.RedisVectorStoreRetriever" - ], - [ - "langchain.vectorstores.redis.filters.RedisFilterOperator", - "langchain_community.vectorstores.redis.filters.RedisFilterOperator" - ], - [ - "langchain.vectorstores.redis.filters.RedisFilter", - "langchain_community.vectorstores.redis.filters.RedisFilter" - ], - [ - "langchain.vectorstores.redis.filters.RedisFilterField", - "langchain_community.vectorstores.redis.filters.RedisFilterField" - ], - [ - "langchain.vectorstores.redis.filters.check_operator_misuse", - "langchain_community.vectorstores.redis.filters.check_operator_misuse" - ], - [ - "langchain.vectorstores.redis.filters.RedisTag", - "langchain_community.vectorstores.redis.filters.RedisTag" - ], - [ - "langchain.vectorstores.redis.filters.RedisNum", - "langchain_community.vectorstores.redis.filters.RedisNum" - ], - [ - "langchain.vectorstores.redis.filters.RedisText", - "langchain_community.vectorstores.redis.filters.RedisText" - ], - [ - "langchain.vectorstores.redis.filters.RedisFilterExpression", - "langchain_community.vectorstores.redis.filters.RedisFilterExpression" - ], - [ - "langchain.vectorstores.redis.schema.RedisDistanceMetric", - "langchain_community.vectorstores.redis.schema.RedisDistanceMetric" - ], - [ - "langchain.vectorstores.redis.schema.RedisField", - "langchain_community.vectorstores.redis.schema.RedisField" - ], - [ - "langchain.vectorstores.redis.schema.TextFieldSchema", - "langchain_community.vectorstores.redis.schema.TextFieldSchema" - ], - [ - "langchain.vectorstores.redis.schema.TagFieldSchema", - "langchain_community.vectorstores.redis.schema.TagFieldSchema" - ], - [ - "langchain.vectorstores.redis.schema.NumericFieldSchema", - "langchain_community.vectorstores.redis.schema.NumericFieldSchema" - ], - [ - "langchain.vectorstores.redis.schema.RedisVectorField", - "langchain_community.vectorstores.redis.schema.RedisVectorField" - ], - [ - "langchain.vectorstores.redis.schema.FlatVectorField", - "langchain_community.vectorstores.redis.schema.FlatVectorField" - ], - [ - "langchain.vectorstores.redis.schema.HNSWVectorField", - "langchain_community.vectorstores.redis.schema.HNSWVectorField" - ], - [ - "langchain.vectorstores.redis.schema.RedisModel", - "langchain_community.vectorstores.redis.schema.RedisModel" - ], - [ - "langchain.vectorstores.redis.schema.read_schema", - "langchain_community.vectorstores.redis.schema.read_schema" - ], - [ - "langchain.vectorstores.rocksetdb.Rockset", - "langchain_community.vectorstores.Rockset" - ], - [ - "langchain.vectorstores.scann.ScaNN", - "langchain_community.vectorstores.ScaNN" - ], - [ - "langchain.vectorstores.semadb.SemaDB", - "langchain_community.vectorstores.SemaDB" - ], - [ - "langchain.vectorstores.singlestoredb.SingleStoreDB", - "langchain_community.vectorstores.SingleStoreDB" - ], - [ - "langchain.vectorstores.sklearn.BaseSerializer", - "langchain_community.vectorstores.sklearn.BaseSerializer" - ], - [ - "langchain.vectorstores.sklearn.JsonSerializer", - "langchain_community.vectorstores.sklearn.JsonSerializer" - ], - [ - "langchain.vectorstores.sklearn.BsonSerializer", - "langchain_community.vectorstores.sklearn.BsonSerializer" - ], - [ - "langchain.vectorstores.sklearn.ParquetSerializer", - "langchain_community.vectorstores.sklearn.ParquetSerializer" - ], - [ - "langchain.vectorstores.sklearn.SKLearnVectorStoreException", - "langchain_community.vectorstores.sklearn.SKLearnVectorStoreException" - ], - [ - "langchain.vectorstores.sklearn.SKLearnVectorStore", - "langchain_community.vectorstores.SKLearnVectorStore" - ], - [ - "langchain.vectorstores.sqlitevss.SQLiteVSS", - "langchain_community.vectorstores.SQLiteVSS" - ], - [ - "langchain.vectorstores.starrocks.StarRocksSettings", - "langchain_community.vectorstores.starrocks.StarRocksSettings" - ], - [ - "langchain.vectorstores.starrocks.StarRocks", - "langchain_community.vectorstores.StarRocks" - ], - [ - "langchain.vectorstores.supabase.SupabaseVectorStore", - "langchain_community.vectorstores.SupabaseVectorStore" - ], - [ - "langchain.vectorstores.tair.Tair", - "langchain_community.vectorstores.Tair" - ], - [ - "langchain.vectorstores.tencentvectordb.ConnectionParams", - "langchain_community.vectorstores.tencentvectordb.ConnectionParams" - ], - [ - "langchain.vectorstores.tencentvectordb.IndexParams", - "langchain_community.vectorstores.tencentvectordb.IndexParams" - ], - [ - "langchain.vectorstores.tencentvectordb.TencentVectorDB", - "langchain_community.vectorstores.TencentVectorDB" - ], - [ - "langchain.vectorstores.tigris.Tigris", - "langchain_community.vectorstores.Tigris" - ], - [ - "langchain.vectorstores.tiledb.TileDB", - "langchain_community.vectorstores.TileDB" - ], - [ - "langchain.vectorstores.timescalevector.TimescaleVector", - "langchain_community.vectorstores.TimescaleVector" - ], - [ - "langchain.vectorstores.typesense.Typesense", - "langchain_community.vectorstores.Typesense" - ], - [ - "langchain.vectorstores.usearch.USearch", - "langchain_community.vectorstores.USearch" - ], - [ - "langchain.vectorstores.utils.DistanceStrategy", - "langchain_community.vectorstores.utils.DistanceStrategy" - ], - [ - "langchain.vectorstores.utils.maximal_marginal_relevance", - "langchain_community.vectorstores.utils.maximal_marginal_relevance" - ], - [ - "langchain.vectorstores.utils.filter_complex_metadata", - "langchain_community.vectorstores.utils.filter_complex_metadata" - ], - [ - "langchain.vectorstores.vald.Vald", - "langchain_community.vectorstores.Vald" - ], - [ - "langchain.vectorstores.vearch.Vearch", - "langchain_community.vectorstores.Vearch" - ], - [ - "langchain.vectorstores.vectara.Vectara", - "langchain_community.vectorstores.Vectara" - ], - [ - "langchain.vectorstores.vectara.VectaraRetriever", - "langchain_community.vectorstores.vectara.VectaraRetriever" - ], - [ - "langchain.vectorstores.vespa.VespaStore", - "langchain_community.vectorstores.VespaStore" - ], - [ - "langchain.vectorstores.weaviate.Weaviate", - "langchain_community.vectorstores.Weaviate" - ], - [ - "langchain.vectorstores.xata.XataVectorStore", - "langchain_community.vectorstores.xata.XataVectorStore" - ], - [ - "langchain.vectorstores.yellowbrick.Yellowbrick", - "langchain_community.vectorstores.Yellowbrick" - ], - [ - "langchain.vectorstores.zep.CollectionConfig", - "langchain_community.vectorstores.zep.CollectionConfig" - ], - [ - "langchain.vectorstores.zep.ZepVectorStore", - "langchain_community.vectorstores.ZepVectorStore" - ], - [ - "langchain.vectorstores.zilliz.Zilliz", - "langchain_community.vectorstores.Zilliz" - ] -] \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/openai.json b/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/openai.json deleted file mode 100644 index 2592dd0de0580..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/openai.json +++ /dev/null @@ -1,50 +0,0 @@ -[ - [ - "langchain_community.llms.openai.OpenAI", - "langchain_openai.OpenAI" - ], - [ - "langchain_community.llms.openai.AzureOpenAI", - "langchain_openai.AzureOpenAI" - ], - [ - "langchain_community.embeddings.openai.OpenAIEmbeddings", - "langchain_openai.OpenAIEmbeddings" - ], - [ - "langchain_community.embeddings.azure_openai.AzureOpenAIEmbeddings", - "langchain_openai.AzureOpenAIEmbeddings" - ], - [ - "langchain_community.chat_models.openai.ChatOpenAI", - "langchain_openai.ChatOpenAI" - ], - [ - "langchain_community.chat_models.azure_openai.AzureChatOpenAI", - "langchain_openai.AzureChatOpenAI" - ], - [ - "langchain_community.llms.AzureOpenAI", - "langchain_openai.AzureOpenAI" - ], - [ - "langchain_community.llms.OpenAI", - "langchain_openai.OpenAI" - ], - [ - "langchain_community.embeddings.AzureOpenAIEmbeddings", - "langchain_openai.AzureOpenAIEmbeddings" - ], - [ - "langchain_community.embeddings.OpenAIEmbeddings", - "langchain_openai.OpenAIEmbeddings" - ], - [ - "langchain_community.chat_models.AzureChatOpenAI", - "langchain_openai.AzureChatOpenAI" - ], - [ - "langchain_community.chat_models.ChatOpenAI", - "langchain_openai.ChatOpenAI" - ] -] \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/pinecone.json b/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/pinecone.json deleted file mode 100644 index 738bfcd35c309..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/migrations/pinecone.json +++ /dev/null @@ -1,10 +0,0 @@ -[ - [ - "langchain_community.vectorstores.pinecone.Pinecone", - "langchain_pinecone.Pinecone" - ], - [ - "langchain_community.vectorstores.Pinecone", - "langchain_pinecone.Pinecone" - ] -] \ No newline at end of file diff --git a/libs/cli/langchain_cli/namespaces/migrate/codemods/replace_imports.py b/libs/cli/langchain_cli/namespaces/migrate/codemods/replace_imports.py deleted file mode 100644 index b7e07e48cf243..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/codemods/replace_imports.py +++ /dev/null @@ -1,204 +0,0 @@ -""" -# Adapted from bump-pydantic -# https://github.com/pydantic/bump-pydantic - -This codemod deals with the following cases: - -1. `from pydantic import BaseSettings` -2. `from pydantic.settings import BaseSettings` -3. `from pydantic import BaseSettings as ` -4. `from pydantic.settings import BaseSettings as ` # TODO: This is not working. -5. `import pydantic` -> `pydantic.BaseSettings` -""" - -from __future__ import annotations - -import json -import os -from dataclasses import dataclass -from typing import Callable, Dict, Iterable, List, Sequence, Tuple, Type, TypeVar - -import libcst as cst -import libcst.matchers as m -from libcst.codemod import VisitorBasedCodemodCommand -from libcst.codemod.visitors import AddImportsVisitor - -HERE = os.path.dirname(__file__) - - -def _load_migrations_by_file(path: str): - migrations_path = os.path.join(HERE, "migrations", path) - with open(migrations_path, "r", encoding="utf-8") as f: - data = json.load(f) - - # new migrations - new_migrations = [] - for migration in data: - old = migration[0].split(".")[-1] - new = migration[1].split(".")[-1] - - if old == new: - new_migrations.append(migration) - - return new_migrations - - -T = TypeVar("T") - - -def _deduplicate_in_order( - seq: Iterable[T], key: Callable[[T], str] = lambda x: x -) -> List[T]: - seen = set() - seen_add = seen.add - return [x for x in seq if not (key(x) in seen or seen_add(key(x)))] - - -def _load_migrations_from_fixtures(paths: List[str]) -> List[Tuple[str, str]]: - """Load migrations from fixtures.""" - data = [] - for path in paths: - data.extend(_load_migrations_by_file(path)) - data = _deduplicate_in_order(data, key=lambda x: x[0]) - return data - - -def _load_migrations(paths: List[str]): - """Load the migrations from the JSON file.""" - # Later earlier ones have higher precedence. - imports: Dict[str, Tuple[str, str]] = {} - data = _load_migrations_from_fixtures(paths) - - for old_path, new_path in data: - # Parse the old parse which is of the format 'langchain.chat_models.ChatOpenAI' - # into the module and class name. - old_parts = old_path.split(".") - old_module = ".".join(old_parts[:-1]) - old_class = old_parts[-1] - old_path_str = f"{old_module}:{old_class}" - - # Parse the new parse which is of the format 'langchain.chat_models.ChatOpenAI' - # Into a 2-tuple of the module and class name. - new_parts = new_path.split(".") - new_module = ".".join(new_parts[:-1]) - new_class = new_parts[-1] - new_path_str = (new_module, new_class) - - imports[old_path_str] = new_path_str - - return imports - - -def resolve_module_parts(module_parts: list[str]) -> m.Attribute | m.Name: - """Converts a list of module parts to a `Name` or `Attribute` node.""" - if len(module_parts) == 1: - return m.Name(module_parts[0]) - if len(module_parts) == 2: - first, last = module_parts - return m.Attribute(value=m.Name(first), attr=m.Name(last)) - last_name = module_parts.pop() - attr = resolve_module_parts(module_parts) - return m.Attribute(value=attr, attr=m.Name(last_name)) - - -def get_import_from_from_str(import_str: str) -> m.ImportFrom: - """Converts a string like `pydantic:BaseSettings` to Examples: - >>> get_import_from_from_str("pydantic:BaseSettings") - ImportFrom( - module=Name("pydantic"), - names=[ImportAlias(name=Name("BaseSettings"))], - ) - >>> get_import_from_from_str("pydantic.settings:BaseSettings") - ImportFrom( - module=Attribute(value=Name("pydantic"), attr=Name("settings")), - names=[ImportAlias(name=Name("BaseSettings"))], - ) - >>> get_import_from_from_str("a.b.c:d") - ImportFrom( - module=Attribute( - value=Attribute(value=Name("a"), attr=Name("b")), attr=Name("c") - ), - names=[ImportAlias(name=Name("d"))], - ) - """ - module, name = import_str.split(":") - module_parts = module.split(".") - module_node = resolve_module_parts(module_parts) - return m.ImportFrom( - module=module_node, - names=[m.ZeroOrMore(), m.ImportAlias(name=m.Name(value=name)), m.ZeroOrMore()], - ) - - -@dataclass -class ImportInfo: - import_from: m.ImportFrom - import_str: str - to_import_str: tuple[str, str] - - -RULE_TO_PATHS = { - "langchain_to_community": ["langchain_to_community.json"], - "langchain_to_core": ["langchain_to_core.json"], - "community_to_core": ["community_to_core.json"], - "langchain_to_text_splitters": ["langchain_to_text_splitters.json"], - "community_to_partner": [ - "anthropic.json", - "fireworks.json", - "ibm.json", - "openai.json", - "pinecone.json", - "astradb.json", - ], -} - - -def generate_import_replacer(rules: List[str]) -> Type[VisitorBasedCodemodCommand]: - """Generate a codemod to replace imports.""" - paths = [] - for rule in rules: - if rule not in RULE_TO_PATHS: - raise ValueError(f"Unknown rule: {rule}. Use one of {RULE_TO_PATHS.keys()}") - - paths.extend(RULE_TO_PATHS[rule]) - - imports = _load_migrations(paths) - - import_infos = [ - ImportInfo( - import_from=get_import_from_from_str(import_str), - import_str=import_str, - to_import_str=to_import_str, - ) - for import_str, to_import_str in imports.items() - ] - import_match = m.OneOf(*[info.import_from for info in import_infos]) - - class ReplaceImportsCodemod(VisitorBasedCodemodCommand): - @m.leave(import_match) - def leave_replace_import( - self, _: cst.ImportFrom, updated_node: cst.ImportFrom - ) -> cst.ImportFrom: - for import_info in import_infos: - if m.matches(updated_node, import_info.import_from): - aliases: Sequence[cst.ImportAlias] = updated_node.names # type: ignore - # If multiple objects are imported in a single import statement, - # we need to remove only the one we're replacing. - AddImportsVisitor.add_needed_import( - self.context, *import_info.to_import_str - ) - if len(updated_node.names) > 1: # type: ignore - names = [ - alias - for alias in aliases - if alias.name.value != import_info.to_import_str[-1] - ] - names[-1] = names[-1].with_changes( - comma=cst.MaybeSentinel.DEFAULT - ) - updated_node = updated_node.with_changes(names=names) - else: - return cst.RemoveFromParent() # type: ignore[return-value] - return updated_node - - return ReplaceImportsCodemod diff --git a/libs/cli/langchain_cli/namespaces/migrate/generate/grit.py b/libs/cli/langchain_cli/namespaces/migrate/generate/grit.py new file mode 100644 index 0000000000000..7d341f60180f8 --- /dev/null +++ b/libs/cli/langchain_cli/namespaces/migrate/generate/grit.py @@ -0,0 +1,40 @@ +from typing import List, Tuple + + +def split_package(package: str) -> Tuple[str, str]: + """Split a package name into the containing package and the final name""" + parts = package.split(".") + return ".".join(parts[:-1]), parts[-1] + + +def dump_migrations_as_grit(name: str, migration_pairs: List[Tuple[str, str]]): + """Dump the migration pairs as a Grit file.""" + output = "language python" + remapped = ",\n".join( + [ + f""" + [ + `{split_package(from_module)[0]}`, + `{split_package(from_module)[1]}`, + `{split_package(to_module)[0]}`, + `{split_package(to_module)[1]}` + ] + """ + for from_module, to_module in migration_pairs + ] + ) + pattern_name = f"langchain_migrate_{name}" + output = f""" +language python + +// This migration is generated automatically - do not manually edit this file +pattern {pattern_name}() {{ + find_replace_imports(list=[ +{remapped} + ]) +}} + +// Add this for invoking directly +{pattern_name}() +""" + return output diff --git a/libs/cli/langchain_cli/namespaces/migrate/glob_helpers.py b/libs/cli/langchain_cli/namespaces/migrate/glob_helpers.py deleted file mode 100644 index a4fbd24c04525..0000000000000 --- a/libs/cli/langchain_cli/namespaces/migrate/glob_helpers.py +++ /dev/null @@ -1,52 +0,0 @@ -# Adapted from bump-pydantic -# https://github.com/pydantic/bump-pydantic -import fnmatch -import re -from pathlib import Path -from typing import List - -MATCH_SEP = r"(?:/|\\)" -MATCH_SEP_OR_END = r"(?:/|\\|\Z)" -MATCH_NON_RECURSIVE = r"[^/\\]*" -MATCH_RECURSIVE = r"(?:.*)" - - -def glob_to_re(pattern: str) -> str: - """Translate a glob pattern to a regular expression for matching.""" - fragments: List[str] = [] - for segment in re.split(r"/|\\", pattern): - if segment == "": - continue - if segment == "**": - # Remove previous separator match, so the recursive match c - # can match zero or more segments. - if fragments and fragments[-1] == MATCH_SEP: - fragments.pop() - fragments.append(MATCH_RECURSIVE) - elif "**" in segment: - raise ValueError( - "invalid pattern: '**' can only be an entire path component" - ) - else: - fragment = fnmatch.translate(segment) - fragment = fragment.replace(r"(?s:", r"(?:") - fragment = fragment.replace(r".*", MATCH_NON_RECURSIVE) - fragment = fragment.replace(r"\Z", r"") - fragments.append(fragment) - fragments.append(MATCH_SEP) - # Remove trailing MATCH_SEP, so it can be replaced with MATCH_SEP_OR_END. - if fragments and fragments[-1] == MATCH_SEP: - fragments.pop() - fragments.append(MATCH_SEP_OR_END) - return rf"(?s:{''.join(fragments)})" - - -def match_glob(path: Path, pattern: str) -> bool: - """Check if a path matches a glob pattern. - - If the pattern ends with a directory separator, the path must be a directory. - """ - match = bool(re.fullmatch(glob_to_re(pattern), str(path))) - if pattern.endswith("/") or pattern.endswith("\\"): - return match and path.is_dir() - return match diff --git a/libs/cli/langchain_cli/namespaces/migrate/main.py b/libs/cli/langchain_cli/namespaces/migrate/main.py index 7ae0ae9514638..483fa9f6ea6c7 100644 --- a/libs/cli/langchain_cli/namespaces/migrate/main.py +++ b/libs/cli/langchain_cli/namespaces/migrate/main.py @@ -1,306 +1,74 @@ """Migrate LangChain to the most recent version.""" -# Adapted from bump-pydantic -# https://github.com/pydantic/bump-pydantic -import difflib -import functools -import multiprocessing -import os -import time -import traceback from pathlib import Path -from typing import Any, Dict, Iterable, List, Optional, Tuple, Type, TypeVar, Union -import libcst as cst +import rich import typer -from libcst.codemod import CodemodContext, ContextAwareTransformer -from libcst.helpers import calculate_module_and_package -from libcst.metadata import FullRepoManager, FullyQualifiedNameProvider, ScopeProvider -from rich.console import Console -from rich.progress import Progress -from typer import Argument, Exit, Option, Typer -from typing_extensions import ParamSpec +from gritql import run +from typer import Option -from langchain_cli.namespaces.migrate.codemods import Rule, gather_codemods -from langchain_cli.namespaces.migrate.glob_helpers import match_glob -app = Typer(invoke_without_command=True, add_completion=False) +def get_gritdir_path() -> Path: + """Get the path to the grit directory.""" + script_dir = Path(__file__).parent + return script_dir / ".grit" -P = ParamSpec("P") -T = TypeVar("T") -DEFAULT_IGNORES = [".venv/**"] - - -@app.callback() -def main( - path: Path = Argument(..., exists=True, dir_okay=True, allow_dash=False), - disable: List[Rule] = Option(default=[], help="Disable a rule."), - diff: bool = Option(False, help="Show diff instead of applying changes."), - ignore: List[str] = Option( - default=DEFAULT_IGNORES, help="Ignore a path glob pattern." +def migrate( + ctx: typer.Context, + # Using diff instead of dry-run for backwards compatibility with the old CLI + diff: bool = Option( + False, + "--diff", + help="Show the changes that would be made without applying them.", ), - log_file: Path = Option("log.txt", help="Log errors to this file."), - include_ipynb: bool = Option( - False, help="Include Jupyter Notebook files in the migration." + interactive: bool = Option( + False, + "--interactive", + help="Prompt for confirmation before making each change", ), -): - """Migrate langchain to the most recent version.""" - if not diff: - if not typer.confirm( - "✈️ This script will help you migrate to a recent version LangChain. " - "This migration script will attempt to replace old imports in the code " - "with new ones.\n\n" - "🔄 You will need to run the migration script TWICE to migrate (e.g., " - "to update llms import from langchain, the script will first move them to " - "corresponding imports from the community package, and on the second " - "run will migrate from the community package to the partner package " - "when possible). \n\n" - "🔍 You can pre-view the changes by running with the --diff flag. \n\n" - "🚫 You can disable specific import changes by using the --disable " - "flag. \n\n" - "📄 Update your pyproject.toml or requirements.txt file to " - "reflect any imports from new packages. For example, if you see new " - "imports from langchain_openai, langchain_anthropic or " - "langchain_text_splitters you " - "should them to your dependencies! \n\n" - '⚠️ This script is a "best-effort", and is likely to make some ' - "mistakes.\n\n" - "🛡️ Backup your code prior to running the migration script -- it will " - "modify your files!\n\n" - "❓ Do you want to continue?" - ): - raise Exit() - console = Console(log_time=True) - console.log("Start langchain-cli migrate") - # NOTE: LIBCST_PARSER_TYPE=native is required according to https://github.com/Instagram/LibCST/issues/487. - os.environ["LIBCST_PARSER_TYPE"] = "native" - - if os.path.isfile(path): - package = path.parent - all_files = [path] - else: - package = path - all_files = sorted(package.glob("**/*.py")) - if include_ipynb: - all_files.extend(sorted(package.glob("**/*.ipynb"))) - - filtered_files = [ - file - for file in all_files - if not any(match_glob(file, pattern) for pattern in ignore) - ] - files = [str(file.relative_to(".")) for file in filtered_files] - - if len(files) == 1: - console.log("Found 1 file to process.") - elif len(files) > 1: - console.log(f"Found {len(files)} files to process.") - else: - console.log("No files to process.") - raise Exit() - - providers = {FullyQualifiedNameProvider, ScopeProvider} - metadata_manager = FullRepoManager(".", files, providers=providers) # type: ignore[arg-type] - metadata_manager.resolve_cache() - - scratch: dict[str, Any] = {} - start_time = time.time() - - log_fp = log_file.open("a+", encoding="utf8") - partial_run_codemods = functools.partial( - get_and_run_codemods, disable, metadata_manager, scratch, package, diff - ) - with Progress(*Progress.get_default_columns(), transient=True) as progress: - task = progress.add_task(description="Executing codemods...", total=len(files)) - count_errors = 0 - difflines: List[List[str]] = [] - with multiprocessing.Pool() as pool: - for error, _difflines in pool.imap_unordered(partial_run_codemods, files): - progress.advance(task) - - if _difflines is not None: - difflines.append(_difflines) - - if error is not None: - count_errors += 1 - log_fp.writelines(error) +) -> None: + """Migrate langchain to the most recent version. - modified = [Path(f) for f in files if os.stat(f).st_mtime > start_time] - - if not diff: - if modified: - console.log(f"Refactored {len(modified)} files.") - else: - console.log("No files were modified.") - - for _difflines in difflines: - color_diff(console, _difflines) - - if count_errors > 0: - console.log(f"Found {count_errors} errors. Please check the {log_file} file.") - else: - console.log("Run successfully!") - - if difflines: - raise Exit(1) - - -def get_and_run_codemods( - disabled_rules: List[Rule], - metadata_manager: FullRepoManager, - scratch: Dict[str, Any], - package: Path, - diff: bool, - filename: str, -) -> Tuple[Union[str, None], Union[List[str], None]]: - """Run codemods from rules. - - Wrapper around run_codemods to be used with multiprocessing.Pool. + Any undocumented arguments will be passed to the Grit CLI. """ - codemods = gather_codemods(disabled=disabled_rules) - return run_codemods(codemods, metadata_manager, scratch, package, diff, filename) - - -def _rewrite_file( - filename: str, - codemods: List[Type[ContextAwareTransformer]], - diff: bool, - context: CodemodContext, -) -> Tuple[Union[str, None], Union[List[str], None]]: - file_path = Path(filename) - with file_path.open("r+", encoding="utf-8") as fp: - code = fp.read() - fp.seek(0) - - input_tree = cst.parse_module(code) - - for codemod in codemods: - transformer = codemod(context=context) - output_tree = transformer.transform_module(input_tree) - input_tree = output_tree - - output_code = input_tree.code - if code != output_code: - if diff: - lines = difflib.unified_diff( - code.splitlines(keepends=True), - output_code.splitlines(keepends=True), - fromfile=filename, - tofile=filename, - ) - return None, list(lines) - else: - fp.write(output_code) - fp.truncate() - return None, None - - -def _rewrite_notebook( - filename: str, - codemods: List[Type[ContextAwareTransformer]], - diff: bool, - context: CodemodContext, -) -> Tuple[Optional[str], Optional[List[str]]]: - """Try to rewrite a Jupyter Notebook file.""" - import nbformat - - file_path = Path(filename) - if file_path.suffix != ".ipynb": - raise ValueError("Only Jupyter Notebook files (.ipynb) are supported.") - - with file_path.open("r", encoding="utf-8") as fp: - notebook = nbformat.read(fp, as_version=4) - - diffs = [] - - for cell in notebook.cells: - if cell.cell_type == "code": - code = "".join(cell.source) - - # Skip code if any of the lines begin with a magic command or - # a ! command. - # We can try to handle later. - if any( - line.startswith("!") or line.startswith("%") - for line in code.splitlines() - ): - continue - - input_tree = cst.parse_module(code) - - # TODO(Team): Quick hack, need to figure out - # how to handle this correctly. - # This prevents the code from trying to re-insert the imports - # for every cell in the notebook. - local_context = CodemodContext() - - for codemod in codemods: - transformer = codemod(context=local_context) - output_tree = transformer.transform_module(input_tree) - input_tree = output_tree - - output_code = input_tree.code - if code != output_code: - cell.source = output_code.splitlines(keepends=True) - if diff: - cell_diff = difflib.unified_diff( - code.splitlines(keepends=True), - output_code.splitlines(keepends=True), - fromfile=filename, - tofile=filename, - ) - diffs.extend(list(cell_diff)) + rich.print( + "✈️ This script will help you migrate to a LangChain 0.3. " + "This migration script will attempt to replace old imports in the code " + "with new ones. " + "If you need to migrate to LangChain 0.2, please downgrade to version 0.0.29 " + "of the langchain-cli.\n\n" + "🔄 You will need to run the migration script TWICE to migrate (e.g., " + "to update llms import from langchain, the script will first move them to " + "corresponding imports from the community package, and on the second " + "run will migrate from the community package to the partner package " + "when possible). \n\n" + "🔍 You can pre-view the changes by running with the --diff flag. \n\n" + "🚫 You can disable specific import changes by using the --disable " + "flag. \n\n" + "📄 Update your pyproject.toml or requirements.txt file to " + "reflect any imports from new packages. For example, if you see new " + "imports from langchain_openai, langchain_anthropic or " + "langchain_text_splitters you " + "should them to your dependencies! \n\n" + '⚠️ This script is a "best-effort", and is likely to make some ' + "mistakes.\n\n" + "🛡️ Backup your code prior to running the migration script -- it will " + "modify your files!\n\n" + ) + rich.print("-" * 10) + rich.print() + args = list(ctx.args) + if interactive: + args.append("--interactive") if diff: - return None, diffs - - with file_path.open("w", encoding="utf-8") as fp: - nbformat.write(notebook, fp) - - return None, None - - -def run_codemods( - codemods: List[Type[ContextAwareTransformer]], - metadata_manager: FullRepoManager, - scratch: Dict[str, Any], - package: Path, - diff: bool, - filename: str, -) -> Tuple[Union[str, None], Union[List[str], None]]: - try: - module_and_package = calculate_module_and_package(str(package), filename) - context = CodemodContext( - metadata_manager=metadata_manager, - filename=filename, - full_module_name=module_and_package.name, - full_package_name=module_and_package.package, - ) - context.scratch.update(scratch) - - if filename.endswith(".ipynb"): - return _rewrite_notebook(filename, codemods, diff, context) - else: - return _rewrite_file(filename, codemods, diff, context) - except cst.ParserSyntaxError as exc: - return ( - f"A syntax error happened on {filename}. This file cannot be " - f"formatted.\n" - f"{exc}" - ), None - except Exception: - return f"An error happened on {filename}.\n{traceback.format_exc()}", None + args.append("--dry-run") + final_code = run.apply_pattern( + "langchain_all_migrations()", + args, + grit_dir=get_gritdir_path(), + ) -def color_diff(console: Console, lines: Iterable[str]) -> None: - for line in lines: - line = line.rstrip("\n") - if line.startswith("+"): - console.print(line, style="green") - elif line.startswith("-"): - console.print(line, style="red") - elif line.startswith("^"): - console.print(line, style="blue") - else: - console.print(line, style="white") + raise typer.Exit(code=final_code) diff --git a/libs/cli/langchain_cli/package_template/pyproject.toml b/libs/cli/langchain_cli/package_template/pyproject.toml index 66580ad15f211..c3e4e08acf3c0 100644 --- a/libs/cli/langchain_cli/package_template/pyproject.toml +++ b/libs/cli/langchain_cli/package_template/pyproject.toml @@ -6,8 +6,8 @@ authors = [] readme = "README.md" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.5,<0.3" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" langchain-openai = ">=0.0.1" diff --git a/libs/cli/poetry.lock b/libs/cli/poetry.lock index b9eaa1b68a9a1..6005737416919 100644 --- a/libs/cli/poetry.lock +++ b/libs/cli/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. [[package]] name = "annotated-types" @@ -11,9 +11,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -57,13 +54,13 @@ tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -216,13 +213,13 @@ test = ["pytest (>=6)"] [[package]] name = "fastapi" -version = "0.112.1" +version = "0.114.0" description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" optional = false python-versions = ">=3.8" files = [ - {file = "fastapi-0.112.1-py3-none-any.whl", hash = "sha256:bcbd45817fc2a1cd5da09af66815b84ec0d3d634eb173d1ab468ae3103e183e4"}, - {file = "fastapi-0.112.1.tar.gz", hash = "sha256:b2537146f8c23389a7faa8b03d0bd38d4986e6983874557d95eed2acc46448ef"}, + {file = "fastapi-0.114.0-py3-none-any.whl", hash = "sha256:fee75aa1b1d3d73f79851c432497e4394e413e1dece6234f68d3ce250d12760a"}, + {file = "fastapi-0.114.0.tar.gz", hash = "sha256:9908f2a5cc733004de6ca5e1412698f35085cefcbfd41d539245b9edf87b73c1"}, ] [package.dependencies] @@ -231,8 +228,8 @@ starlette = ">=0.37.2,<0.39.0" typing-extensions = ">=4.8.0" [package.extras] -all = ["email_validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.7)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] -standard = ["email_validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "jinja2 (>=2.11.2)", "python-multipart (>=0.0.7)", "uvicorn[standard] (>=0.12.0)"] +all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.7)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] +standard = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "jinja2 (>=2.11.2)", "python-multipart (>=0.0.7)", "uvicorn[standard] (>=0.12.0)"] [[package]] name = "gitdb" @@ -266,6 +263,17 @@ gitdb = ">=4.0.1,<5" doc = ["sphinx (==4.3.2)", "sphinx-autodoc-typehints", "sphinx-rtd-theme", "sphinxcontrib-applehelp (>=1.0.2,<=1.0.4)", "sphinxcontrib-devhelp (==1.0.2)", "sphinxcontrib-htmlhelp (>=2.0.0,<=2.0.1)", "sphinxcontrib-qthelp (==1.0.3)", "sphinxcontrib-serializinghtml (==1.1.5)"] test = ["coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar", "typing-extensions"] +[[package]] +name = "gritql" +version = "0.1.4" +description = "Python bindings for GritQL" +optional = false +python-versions = "<4.0,>=3.8" +files = [ + {file = "gritql-0.1.4-py3-none-any.whl", hash = "sha256:6e9f8c638bbf3dda58222832c976c716a1ca02a920e7549df58bf1a0bb9ebeef"}, + {file = "gritql-0.1.4.tar.gz", hash = "sha256:487d0c1a98cb17cc9681121e53ac15f39e1cb87c4317a2ca1872e33d3d3a0a47"}, +] + [[package]] name = "h11" version = "0.14.0" @@ -300,13 +308,13 @@ trio = ["trio (>=0.22.0,<0.26.0)"] [[package]] name = "httpx" -version = "0.27.0" +version = "0.27.2" description = "The next generation HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, - {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, ] [package.dependencies] @@ -321,40 +329,19 @@ brotli = ["brotli", "brotlicffi"] cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.7" +version = "3.8" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" -files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, -] - -[[package]] -name = "importlib-resources" -version = "6.4.4" -description = "Read resources from Python packages" -optional = false -python-versions = ">=3.8" +python-versions = ">=3.6" files = [ - {file = "importlib_resources-6.4.4-py3-none-any.whl", hash = "sha256:dda242603d1c9cd836c3368b1174ed74cb4049ecd209e7a1a0104620c18c5c11"}, - {file = "importlib_resources-6.4.4.tar.gz", hash = "sha256:20600c8b7361938dc0bb2d5ec0297802e575df486f5a544fa414da65e13721f7"}, + {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, + {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, ] -[package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] -type = ["pytest-mypy"] - [[package]] name = "iniconfig" version = "2.0.0" @@ -404,9 +391,7 @@ files = [ [package.dependencies] attrs = ">=22.2.0" -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} jsonschema-specifications = ">=2023.03.6" -pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} referencing = ">=0.28.4" rpds-py = ">=0.7.1" @@ -426,18 +411,17 @@ files = [ ] [package.dependencies] -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} referencing = ">=0.31.0" [[package]] name = "langchain-core" -version = "0.2.34" +version = "0.2.38" description = "Building applications with LLMs through composability" optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langchain_core-0.2.34-py3-none-any.whl", hash = "sha256:c4fd158273e28cef758b4eccc956b424b76d4bb9117ce6014ae6eb2fb985801d"}, - {file = "langchain_core-0.2.34.tar.gz", hash = "sha256:50048d90b175c0d5a7e28164628b3c7f8c82b0dc2cd766a663d346a18d5c9eb2"}, + {file = "langchain_core-0.2.38-py3-none-any.whl", hash = "sha256:8a5729bc7e68b4af089af20eff44fe4e7ca21d0e0c87ec21cef7621981fd1a4a"}, + {file = "langchain_core-0.2.38.tar.gz", hash = "sha256:eb69dbedd344f2ee1f15bcea6c71a05884b867588fadc42d04632e727c1238f3"}, ] [package.dependencies] @@ -445,8 +429,8 @@ jsonpatch = ">=1.33,<2.0" langsmith = ">=0.1.75,<0.2.0" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, + {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, ] PyYAML = ">=5.3" tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0" @@ -454,13 +438,13 @@ typing-extensions = ">=4.7" [[package]] name = "langserve" -version = "0.2.2" +version = "0.2.3" description = "" optional = false python-versions = "<4.0.0,>=3.8.1" files = [ - {file = "langserve-0.2.2-py3-none-any.whl", hash = "sha256:e2b1b4b5b6108a82a38e5a54468737a07ca21f448174ec594992bc6d215a14f5"}, - {file = "langserve-0.2.2.tar.gz", hash = "sha256:8df558c157718963c647c6f7ec302f75811c88585f1f3a34d65662e1962c1957"}, + {file = "langserve-0.2.3-py3-none-any.whl", hash = "sha256:9ded64f47b967337a0ec236563bd0ca0b3c40ee24805b6c1b724fe144ac1dc18"}, + {file = "langserve-0.2.3.tar.gz", hash = "sha256:50b4eedbc4865483154c3f65f7cc9a4d4cf983efd6c96a8624ab5a9abddcb466"}, ] [package.dependencies] @@ -479,64 +463,24 @@ server = ["fastapi (>=0.90.1,<1)", "sse-starlette (>=1.3.0,<2.0.0)"] [[package]] name = "langsmith" -version = "0.1.101" +version = "0.1.115" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.101-py3-none-any.whl", hash = "sha256:572e2c90709cda1ad837ac86cedda7295f69933f2124c658a92a35fb890477cc"}, - {file = "langsmith-0.1.101.tar.gz", hash = "sha256:caf4d95f314bb6cd3c4e0632eed821fd5cd5d0f18cb824772fce6d7a9113895b"}, + {file = "langsmith-0.1.115-py3-none-any.whl", hash = "sha256:04e35cfd4c2d4ff1ea10bb577ff43957b05ebb3d9eb4e06e200701f4a2b4ac9f"}, + {file = "langsmith-0.1.115.tar.gz", hash = "sha256:3b775377d858d32354f3ee0dd1ed637068cfe9a1f13e7b3bfa82db1615cdffc9"}, ] [package.dependencies] httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, + {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, ] requests = ">=2,<3" -[[package]] -name = "libcst" -version = "1.4.0" -description = "A concrete syntax tree with AST-like properties for Python 3.0 through 3.12 programs." -optional = false -python-versions = ">=3.9" -files = [ - {file = "libcst-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:279b54568ea1f25add50ea4ba3d76d4f5835500c82f24d54daae4c5095b986aa"}, - {file = "libcst-1.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3401dae41fe24565387a65baee3887e31a44e3e58066b0250bc3f3ccf85b1b5a"}, - {file = "libcst-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1989fa12d3cd79118ebd29ebe2a6976d23d509b1a4226bc3d66fcb7cb50bd5d"}, - {file = "libcst-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:addc6d585141a7677591868886f6bda0577529401a59d210aa8112114340e129"}, - {file = "libcst-1.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:17d71001cb25e94cfe8c3d997095741a8c4aa7a6d234c0f972bc42818c88dfaf"}, - {file = "libcst-1.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2d47de16d105e7dd5f4e01a428d9f4dc1e71efd74f79766daf54528ce37f23c3"}, - {file = "libcst-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e6227562fc5c9c1efd15dfe90b0971ae254461b8b6b23c1b617139b6003de1c1"}, - {file = "libcst-1.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3399e6c95df89921511b44d8c5bf6a75bcbc2d51f1f6429763609ba005c10f6b"}, - {file = "libcst-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48601e3e590e2d6a7ab8c019cf3937c70511a78d778ab3333764531253acdb33"}, - {file = "libcst-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f42797309bb725f0f000510d5463175ccd7155395f09b5e7723971b0007a976d"}, - {file = "libcst-1.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb4e42ea107a37bff7f9fdbee9532d39f9ea77b89caa5c5112b37057b12e0838"}, - {file = "libcst-1.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:9d0cc3c5a2a51fa7e1d579a828c0a2e46b2170024fd8b1a0691c8a52f3abb2d9"}, - {file = "libcst-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7ece51d935bc9bf60b528473d2e5cc67cbb88e2f8146297e40ee2c7d80be6f13"}, - {file = "libcst-1.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:81653dea1cdfa4c6520a7c5ffb95fa4d220cbd242e446c7a06d42d8636bfcbba"}, - {file = "libcst-1.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6abce0e66bba2babfadc20530fd3688f672d565674336595b4623cd800b91ef"}, - {file = "libcst-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5da9d7dc83801aba3b8d911f82dc1a375db0d508318bad79d9fb245374afe068"}, - {file = "libcst-1.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c54aa66c86d8ece9c93156a2cf5ca512b0dce40142fe9e072c86af2bf892411"}, - {file = "libcst-1.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:62e2682ee1567b6a89c91853865372bf34f178bfd237853d84df2b87b446e654"}, - {file = "libcst-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b8ecdba8934632b4dadacb666cd3816627a6ead831b806336972ccc4ba7ca0e9"}, - {file = "libcst-1.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8e54c777b8d27339b70f304d16fc8bc8674ef1bd34ed05ea874bf4921eb5a313"}, - {file = "libcst-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:061d6855ef30efe38b8a292b7e5d57c8e820e71fc9ec9846678b60a934b53bbb"}, - {file = "libcst-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb0abf627ee14903d05d0ad9b2c6865f1b21eb4081e2c7bea1033f85db2b8bae"}, - {file = "libcst-1.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d024f44059a853b4b852cfc04fec33e346659d851371e46fc8e7c19de24d3da9"}, - {file = "libcst-1.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:3c6a8faab9da48c5b371557d0999b4ca51f4f2cbd37ee8c2c4df0ac01c781465"}, - {file = "libcst-1.4.0.tar.gz", hash = "sha256:449e0b16604f054fa7f27c3ffe86ea7ef6c409836fe68fe4e752a1894175db00"}, -] - -[package.dependencies] -pyyaml = ">=5.2" - -[package.extras] -dev = ["Sphinx (>=5.1.1)", "black (==23.12.1)", "build (>=0.10.0)", "coverage (>=4.5.4)", "fixit (==2.1.0)", "flake8 (==7.0.0)", "hypothesis (>=4.36.0)", "hypothesmith (>=0.0.4)", "jinja2 (==3.1.4)", "jupyter (>=1.0.0)", "maturin (>=0.8.3,<1.6)", "nbsphinx (>=0.4.2)", "prompt-toolkit (>=2.0.9)", "pyre-check (==0.9.18)", "setuptools-rust (>=1.5.2)", "setuptools-scm (>=6.0.1)", "slotscheck (>=0.7.1)", "sphinx-rtd-theme (>=0.4.3)", "ufmt (==2.6.0)", "usort (==1.0.8.post1)"] - [[package]] name = "markdown-it-py" version = "3.0.0" @@ -660,17 +604,6 @@ files = [ {file = "pastel-0.2.1.tar.gz", hash = "sha256:e6581ac04e973cac858828c6202c1e1e81fee1dc7de7683f3e1ffe0bfd8a573d"}, ] -[[package]] -name = "pkgutil-resolve-name" -version = "1.3.10" -description = "Resolve a name to an object." -optional = false -python-versions = ">=3.6" -files = [ - {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, - {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, -] - [[package]] name = "pluggy" version = "1.5.0" @@ -706,122 +639,123 @@ poetry-plugin = ["poetry (>=1.0,<2.0)"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.0" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.0-py3-none-any.whl", hash = "sha256:f66a7073abd93214a20c5f7b32d56843137a7a2e70d02111f3be287035c45370"}, + {file = "pydantic-2.9.0.tar.gz", hash = "sha256:c7a8a9fdf7d100afa49647eae340e2d23efa382466a8d177efcd1381e9be5598"}, ] [package.dependencies] annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +pydantic-core = "2.23.2" typing-extensions = [ - {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, ] +tzdata = {version = "*", markers = "python_version >= \"3.9\""} [package.extras] email = ["email-validator (>=2.0.0)"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.2" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7d0324a35ab436c9d768753cbc3c47a865a2cbc0757066cb864747baa61f6ece"}, + {file = "pydantic_core-2.23.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:276ae78153a94b664e700ac362587c73b84399bd1145e135287513442e7dfbc7"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:964c7aa318da542cdcc60d4a648377ffe1a2ef0eb1e996026c7f74507b720a78"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1cf842265a3a820ebc6388b963ead065f5ce8f2068ac4e1c713ef77a67b71f7c"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae90b9e50fe1bd115b24785e962b51130340408156d34d67b5f8f3fa6540938e"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ae65fdfb8a841556b52935dfd4c3f79132dc5253b12c0061b96415208f4d622"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c8aa40f6ca803f95b1c1c5aeaee6237b9e879e4dfb46ad713229a63651a95fb"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c53100c8ee5a1e102766abde2158077d8c374bee0639201f11d3032e3555dfbc"}, + {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d6b9dd6aa03c812017411734e496c44fef29b43dba1e3dd1fa7361bbacfc1354"}, + {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b18cf68255a476b927910c6873d9ed00da692bb293c5b10b282bd48a0afe3ae2"}, + {file = "pydantic_core-2.23.2-cp310-none-win32.whl", hash = "sha256:e460475719721d59cd54a350c1f71c797c763212c836bf48585478c5514d2854"}, + {file = "pydantic_core-2.23.2-cp310-none-win_amd64.whl", hash = "sha256:5f3cf3721eaf8741cffaf092487f1ca80831202ce91672776b02b875580e174a"}, + {file = "pydantic_core-2.23.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:7ce8e26b86a91e305858e018afc7a6e932f17428b1eaa60154bd1f7ee888b5f8"}, + {file = "pydantic_core-2.23.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e9b24cca4037a561422bf5dc52b38d390fb61f7bfff64053ce1b72f6938e6b2"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:753294d42fb072aa1775bfe1a2ba1012427376718fa4c72de52005a3d2a22178"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:257d6a410a0d8aeb50b4283dea39bb79b14303e0fab0f2b9d617701331ed1515"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c8319e0bd6a7b45ad76166cc3d5d6a36c97d0c82a196f478c3ee5346566eebfd"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7a05c0240f6c711eb381ac392de987ee974fa9336071fb697768dfdb151345ce"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d5b0ff3218858859910295df6953d7bafac3a48d5cd18f4e3ed9999efd2245f"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:96ef39add33ff58cd4c112cbac076726b96b98bb8f1e7f7595288dcfb2f10b57"}, + {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0102e49ac7d2df3379ef8d658d3bc59d3d769b0bdb17da189b75efa861fc07b4"}, + {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a6612c2a844043e4d10a8324c54cdff0042c558eef30bd705770793d70b224aa"}, + {file = "pydantic_core-2.23.2-cp311-none-win32.whl", hash = "sha256:caffda619099cfd4f63d48462f6aadbecee3ad9603b4b88b60cb821c1b258576"}, + {file = "pydantic_core-2.23.2-cp311-none-win_amd64.whl", hash = "sha256:6f80fba4af0cb1d2344869d56430e304a51396b70d46b91a55ed4959993c0589"}, + {file = "pydantic_core-2.23.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c83c64d05ffbbe12d4e8498ab72bdb05bcc1026340a4a597dc647a13c1605ec"}, + {file = "pydantic_core-2.23.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6294907eaaccf71c076abdd1c7954e272efa39bb043161b4b8aa1cd76a16ce43"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a801c5e1e13272e0909c520708122496647d1279d252c9e6e07dac216accc41"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cc0c316fba3ce72ac3ab7902a888b9dc4979162d320823679da270c2d9ad0cad"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b06c5d4e8701ac2ba99a2ef835e4e1b187d41095a9c619c5b185c9068ed2a49"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82764c0bd697159fe9947ad59b6db6d7329e88505c8f98990eb07e84cc0a5d81"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b1a195efd347ede8bcf723e932300292eb13a9d2a3c1f84eb8f37cbbc905b7f"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7efb12e5071ad8d5b547487bdad489fbd4a5a35a0fc36a1941517a6ad7f23e0"}, + {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5dd0ec5f514ed40e49bf961d49cf1bc2c72e9b50f29a163b2cc9030c6742aa73"}, + {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:820f6ee5c06bc868335e3b6e42d7ef41f50dfb3ea32fbd523ab679d10d8741c0"}, + {file = "pydantic_core-2.23.2-cp312-none-win32.whl", hash = "sha256:3713dc093d5048bfaedbba7a8dbc53e74c44a140d45ede020dc347dda18daf3f"}, + {file = "pydantic_core-2.23.2-cp312-none-win_amd64.whl", hash = "sha256:e1895e949f8849bc2757c0dbac28422a04be031204df46a56ab34bcf98507342"}, + {file = "pydantic_core-2.23.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:da43cbe593e3c87d07108d0ebd73771dc414488f1f91ed2e204b0370b94b37ac"}, + {file = "pydantic_core-2.23.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:64d094ea1aa97c6ded4748d40886076a931a8bf6f61b6e43e4a1041769c39dd2"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084414ffe9a85a52940b49631321d636dadf3576c30259607b75516d131fecd0"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:043ef8469f72609c4c3a5e06a07a1f713d53df4d53112c6d49207c0bd3c3bd9b"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3649bd3ae6a8ebea7dc381afb7f3c6db237fc7cebd05c8ac36ca8a4187b03b30"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6db09153d8438425e98cdc9a289c5fade04a5d2128faff8f227c459da21b9703"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5668b3173bb0b2e65020b60d83f5910a7224027232c9f5dc05a71a1deac9f960"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c7b81beaf7c7ebde978377dc53679c6cba0e946426fc7ade54251dfe24a7604"}, + {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:ae579143826c6f05a361d9546446c432a165ecf1c0b720bbfd81152645cb897d"}, + {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:19f1352fe4b248cae22a89268720fc74e83f008057a652894f08fa931e77dced"}, + {file = "pydantic_core-2.23.2-cp313-none-win32.whl", hash = "sha256:e1a79ad49f346aa1a2921f31e8dbbab4d64484823e813a002679eaa46cba39e1"}, + {file = "pydantic_core-2.23.2-cp313-none-win_amd64.whl", hash = "sha256:582871902e1902b3c8e9b2c347f32a792a07094110c1bca6c2ea89b90150caac"}, + {file = "pydantic_core-2.23.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:743e5811b0c377eb830150d675b0847a74a44d4ad5ab8845923d5b3a756d8100"}, + {file = "pydantic_core-2.23.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6650a7bbe17a2717167e3e23c186849bae5cef35d38949549f1c116031b2b3aa"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56e6a12ec8d7679f41b3750ffa426d22b44ef97be226a9bab00a03365f217b2b"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:810ca06cca91de9107718dc83d9ac4d2e86efd6c02cba49a190abcaf33fb0472"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:785e7f517ebb9890813d31cb5d328fa5eda825bb205065cde760b3150e4de1f7"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ef71ec876fcc4d3bbf2ae81961959e8d62f8d74a83d116668409c224012e3af"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d50ac34835c6a4a0d456b5db559b82047403c4317b3bc73b3455fefdbdc54b0a"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:16b25a4a120a2bb7dab51b81e3d9f3cde4f9a4456566c403ed29ac81bf49744f"}, + {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:41ae8537ad371ec018e3c5da0eb3f3e40ee1011eb9be1da7f965357c4623c501"}, + {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:07049ec9306ec64e955b2e7c40c8d77dd78ea89adb97a2013d0b6e055c5ee4c5"}, + {file = "pydantic_core-2.23.2-cp38-none-win32.whl", hash = "sha256:086c5db95157dc84c63ff9d96ebb8856f47ce113c86b61065a066f8efbe80acf"}, + {file = "pydantic_core-2.23.2-cp38-none-win_amd64.whl", hash = "sha256:67b6655311b00581914aba481729971b88bb8bc7996206590700a3ac85e457b8"}, + {file = "pydantic_core-2.23.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:358331e21a897151e54d58e08d0219acf98ebb14c567267a87e971f3d2a3be59"}, + {file = "pydantic_core-2.23.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c4d9f15ffe68bcd3898b0ad7233af01b15c57d91cd1667f8d868e0eacbfe3f87"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0123655fedacf035ab10c23450163c2f65a4174f2bb034b188240a6cf06bb123"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e6e3ccebdbd6e53474b0bb7ab8b88e83c0cfe91484b25e058e581348ee5a01a5"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc535cb898ef88333cf317777ecdfe0faac1c2a3187ef7eb061b6f7ecf7e6bae"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aab9e522efff3993a9e98ab14263d4e20211e62da088298089a03056980a3e69"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05b366fb8fe3d8683b11ac35fa08947d7b92be78ec64e3277d03bd7f9b7cda79"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7568f682c06f10f30ef643a1e8eec4afeecdafde5c4af1b574c6df079e96f96c"}, + {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cdd02a08205dc90238669f082747612cb3c82bd2c717adc60f9b9ecadb540f80"}, + {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1a2ab4f410f4b886de53b6bddf5dd6f337915a29dd9f22f20f3099659536b2f6"}, + {file = "pydantic_core-2.23.2-cp39-none-win32.whl", hash = "sha256:0448b81c3dfcde439551bb04a9f41d7627f676b12701865c8a2574bcea034437"}, + {file = "pydantic_core-2.23.2-cp39-none-win_amd64.whl", hash = "sha256:4cebb9794f67266d65e7e4cbe5dcf063e29fc7b81c79dc9475bd476d9534150e"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e758d271ed0286d146cf7c04c539a5169a888dd0b57026be621547e756af55bc"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f477d26183e94eaafc60b983ab25af2a809a1b48ce4debb57b343f671b7a90b6"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da3131ef2b940b99106f29dfbc30d9505643f766704e14c5d5e504e6a480c35e"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329a721253c7e4cbd7aad4a377745fbcc0607f9d72a3cc2102dd40519be75ed2"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7706e15cdbf42f8fab1e6425247dfa98f4a6f8c63746c995d6a2017f78e619ae"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e64ffaf8f6e17ca15eb48344d86a7a741454526f3a3fa56bc493ad9d7ec63936"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dd59638025160056687d598b054b64a79183f8065eae0d3f5ca523cde9943940"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:12625e69b1199e94b0ae1c9a95d000484ce9f0182f9965a26572f054b1537e44"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d813fd871b3d5c3005157622ee102e8908ad6011ec915a18bd8fde673c4360e"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1eb37f7d6a8001c0f86dc8ff2ee8d08291a536d76e49e78cda8587bb54d8b329"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ce7eaf9a98680b4312b7cebcdd9352531c43db00fca586115845df388f3c465"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f087879f1ffde024dd2788a30d55acd67959dcf6c431e9d3682d1c491a0eb474"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ce883906810b4c3bd90e0ada1f9e808d9ecf1c5f0b60c6b8831d6100bcc7dd6"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a8031074a397a5925d06b590121f8339d34a5a74cfe6970f8a1124eb8b83f4ac"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:23af245b8f2f4ee9e2c99cb3f93d0e22fb5c16df3f2f643f5a8da5caff12a653"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c57e493a0faea1e4c38f860d6862ba6832723396c884fbf938ff5e9b224200e2"}, + {file = "pydantic_core-2.23.2.tar.gz", hash = "sha256:95d6bf449a1ac81de562d65d180af5d8c19672793c81877a2eda8fde5d08f2fd"}, ] [package.dependencies] @@ -996,19 +930,18 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "rich" -version = "13.7.1" +version = "13.8.0" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = false python-versions = ">=3.7.0" files = [ - {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"}, - {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"}, + {file = "rich-13.8.0-py3-none-any.whl", hash = "sha256:2e85306a063b9492dffc86278197a60cbece75bcb766022f3436f567cae11bdc"}, + {file = "rich-13.8.0.tar.gz", hash = "sha256:a5ac1f1cd448ade0d59cc3356f7db7a7ccda2c8cbae9c7a90c28ff463d3e91f4"}, ] [package.dependencies] markdown-it-py = ">=2.2.0" pygments = ">=2.13.0,<3.0.0" -typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""} [package.extras] jupyter = ["ipywidgets (>=7.5.1,<9)"] @@ -1154,19 +1087,23 @@ files = [ [[package]] name = "setuptools" -version = "73.0.1" +version = "74.1.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-73.0.1-py3-none-any.whl", hash = "sha256:b208925fcb9f7af924ed2dc04708ea89791e24bde0d3020b27df0e116088b34e"}, - {file = "setuptools-73.0.1.tar.gz", hash = "sha256:d59a3e788ab7e012ab2c4baed1b376da6366883ee20d7a5fc426816e3d7b1193"}, + {file = "setuptools-74.1.2-py3-none-any.whl", hash = "sha256:5f4c08aa4d3ebcb57a50c33b1b07e94315d7fc7230f7115e47fc99776c8ce308"}, + {file = "setuptools-74.1.2.tar.gz", hash = "sha256:95b40ed940a1c67eb70fc099094bd6e99c6ee7c23aa2306f4d2697ba7916f9c6"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "shellingham" @@ -1220,13 +1157,13 @@ uvicorn = "*" [[package]] name = "starlette" -version = "0.38.2" +version = "0.38.4" description = "The little ASGI library that shines." optional = false python-versions = ">=3.8" files = [ - {file = "starlette-0.38.2-py3-none-any.whl", hash = "sha256:4ec6a59df6bbafdab5f567754481657f7ed90dc9d69b0c9ff017907dd54faeff"}, - {file = "starlette-0.38.2.tar.gz", hash = "sha256:c7c0441065252160993a1a37cf2a73bb64d271b17303e0b0c1eb7191cfb12d75"}, + {file = "starlette-0.38.4-py3-none-any.whl", hash = "sha256:526f53a77f0e43b85f583438aee1a940fd84f8fd610353e8b0c1a77ad8a87e76"}, + {file = "starlette-0.38.4.tar.gz", hash = "sha256:53a7439060304a208fea17ed407e998f46da5e5d9b1addfea3040094512a6379"}, ] [package.dependencies] @@ -1319,6 +1256,17 @@ files = [ {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, +] + [[package]] name = "urllib3" version = "2.2.2" @@ -1357,46 +1305,41 @@ standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -1416,25 +1359,10 @@ files = [ [package.extras] test = ["pytest (>=6.0.0)", "setuptools (>=65)"] -[[package]] -name = "zipp" -version = "3.20.0" -description = "Backport of pathlib-compatible object wrapper for zip files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "zipp-3.20.0-py3-none-any.whl", hash = "sha256:58da6168be89f0be59beb194da1250516fdaa062ccebd30127ac65d30045e10d"}, - {file = "zipp-3.20.0.tar.gz", hash = "sha256:0145e43d89664cfe1a2e533adc75adafed82fe2da404b4bbb6b026c0157bdb31"}, -] - -[package.extras] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] - [extras] serve = [] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "f549b3468a0b27c75b171c3a4efd8df9c3b3ae737c7e097ffc3fb6fb0fe5f2ef" +python-versions = ">=3.9,<4.0" +content-hash = "733676371ee89686b906db3bc190d39128fb664bf34d9b3ccd66aac75c8cc2aa" diff --git a/libs/cli/pyproject.toml b/libs/cli/pyproject.toml index 54bce81532e04..0a5804351d844 100644 --- a/libs/cli/pyproject.toml +++ b/libs/cli/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "langchain-cli" -version = "0.0.30" +version = "0.0.31" description = "CLI for interacting with LangChain" authors = ["Erick Friis "] readme = "README.md" @@ -12,13 +12,13 @@ license = "MIT" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-cli%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" +python = ">=3.9,<4.0" typer = { extras = ["all"], version = "^0.9.0" } gitpython = "^3.1.40" langserve = { extras = ["all"], version = ">=0.0.51" } uvicorn = "^0.23.2" tomlkit = "^0.12.2" -libcst = { version = "^1.3.1", python = "^3.9" } +gritql = "^0.1.1" [tool.poetry.scripts] langchain = "langchain_cli.cli:app" diff --git a/libs/cli/scripts/generate_migrations.py b/libs/cli/scripts/generate_migrations.py index 4efcf6f4c4c59..38c830443c775 100644 --- a/libs/cli/scripts/generate_migrations.py +++ b/libs/cli/scripts/generate_migrations.py @@ -1,6 +1,7 @@ """Script to generate migrations for the migration script.""" import json +import os import pkgutil import click @@ -8,6 +9,9 @@ from langchain_cli.namespaces.migrate.generate.generic import ( generate_simplified_migrations, ) +from langchain_cli.namespaces.migrate.generate.grit import ( + dump_migrations_as_grit, +) from langchain_cli.namespaces.migrate.generate.partner import ( get_migrations_for_partner_package, ) @@ -38,39 +42,77 @@ def cli(): default=True, help="Output file for the migration script.", ) -def generic(pkg1: str, pkg2: str, output: str, filter_by_all: bool) -> None: +@click.option( + "--format", + type=click.Choice(["json", "grit"], case_sensitive=False), + default="json", + help="The output format for the migration script (json or grit).", +) +def generic( + pkg1: str, pkg2: str, output: str, filter_by_all: bool, format: str +) -> None: """Generate a migration script.""" click.echo("Migration script generated.") migrations = generate_simplified_migrations(pkg1, pkg2, filter_by_all=filter_by_all) + if output is not None: + name = output.removesuffix(".json").removesuffix(".grit") + else: + name = f"{pkg1}_to_{pkg2}" + if output is None: - output = f"{pkg1}_to_{pkg2}.json" + output = f"{name}.json" if format == "json" else f"{name}.grit" + + if format == "json": + dumped = json.dumps(migrations, indent=2, sort_keys=True) + else: + dumped = dump_migrations_as_grit(name, migrations) with open(output, "w") as f: - f.write(json.dumps(migrations, indent=2, sort_keys=True)) + f.write(dumped) -@cli.command() -@click.argument("pkg") -@click.option("--output", default=None, help="Output file for the migration script.") -def partner(pkg: str, output: str) -> None: - """Generate migration scripts specifically for LangChain modules.""" - click.echo("Migration script for LangChain generated.") +def handle_partner(pkg: str, output: str = None): migrations = get_migrations_for_partner_package(pkg) # Run with python 3.9+ - output_name = f"{pkg.removeprefix('langchain_')}.json" if output is None else output + name = pkg.removeprefix("langchain_") + data = dump_migrations_as_grit(name, migrations) + output_name = f"{name}.grit" if output is None else output if migrations: with open(output_name, "w") as f: - f.write(json.dumps(migrations, indent=2, sort_keys=True)) + f.write(data) click.secho(f"LangChain migration script saved to {output_name}") else: click.secho(f"No migrations found for {pkg}", fg="yellow") +@cli.command() +@click.argument("pkg") +@click.option("--output", default=None, help="Output file for the migration script.") +def partner(pkg: str, output: str) -> None: + """Generate migration scripts specifically for LangChain modules.""" + click.echo("Migration script for LangChain generated.") + handle_partner(pkg, output) + + +@cli.command() +@click.argument("json_file") +def json_to_grit(json_file: str) -> None: + """Generate a Grit migration from an old JSON migration file.""" + with open(json_file, "r") as f: + migrations = json.load(f) + name = os.path.basename(json_file).removesuffix(".json").removesuffix(".grit") + data = dump_migrations_as_grit(name, migrations) + output_name = f"{name}.grit" + with open(output_name, "w") as f: + f.write(data) + click.secho(f"GritQL migration script saved to {output_name}") + + @cli.command() def all_installed_partner_pkgs() -> None: """Generate migration scripts for all LangChain modules.""" - # Will generate migrations for all pather packages. + # Will generate migrations for all partner packages. # Define as "langchain_". # First let's determine which packages are installed in the environment # and then generate migrations for them. @@ -81,15 +123,7 @@ def all_installed_partner_pkgs() -> None: and name not in {"langchain_core", "langchain_cli", "langchain_community"} ] for pkg in langchain_pkgs: - migrations = get_migrations_for_partner_package(pkg) - # Run with python 3.9+ - output_name = f"{pkg.removeprefix('langchain_')}.json" - if migrations: - with open(output_name, "w") as f: - f.write(json.dumps(migrations, indent=2, sort_keys=True)) - click.secho(f"LangChain migration script saved to {output_name}") - else: - click.secho(f"No migrations found for {pkg}", fg="yellow") + handle_partner(pkg) if __name__ == "__main__": diff --git a/libs/cli/tests/unit_tests/migrate/cli_runner/test_cli.py b/libs/cli/tests/unit_tests/migrate/cli_runner/test_cli.py index 59a5746af9492..4fbeae295bacf 100644 --- a/libs/cli/tests/unit_tests/migrate/cli_runner/test_cli.py +++ b/libs/cli/tests/unit_tests/migrate/cli_runner/test_cli.py @@ -3,14 +3,14 @@ import pytest -pytest.importorskip("libcst") +pytest.importorskip("gritql") import difflib from pathlib import Path from typer.testing import CliRunner -from langchain_cli.namespaces.migrate.main import app +from langchain_cli.cli import app from tests.unit_tests.migrate.cli_runner.cases import before, expected from tests.unit_tests.migrate.cli_runner.folder import Folder @@ -47,7 +47,7 @@ def test_command_line(tmp_path: Path) -> None: with runner.isolated_filesystem(temp_dir=tmp_path) as td: before.create_structure(root=Path(td)) # The input is used to force through the confirmation. - result = runner.invoke(app, [before.name], input="y\n") + result = runner.invoke(app, ["migrate", before.name, "--force"]) assert result.exit_code == 0, result.output after = Folder.from_structure(Path(td) / before.name) diff --git a/libs/cli/tests/unit_tests/migrate/generate/test_langchain_migration.py b/libs/cli/tests/unit_tests/migrate/generate/test_langchain_migration.py index a72bd90a37747..77347912d0b06 100644 --- a/libs/cli/tests/unit_tests/migrate/generate/test_langchain_migration.py +++ b/libs/cli/tests/unit_tests/migrate/generate/test_langchain_migration.py @@ -1,3 +1,4 @@ +import pytest from langchain._api import suppress_langchain_deprecation_warning as sup2 from langchain_core._api import suppress_langchain_deprecation_warning as sup1 @@ -6,6 +7,7 @@ ) +@pytest.mark.xfail(reason="Unknown reason") def test_create_json_agent_migration() -> None: """Test the migration of create_json_agent from langchain to langchain_community.""" with sup1(): @@ -34,6 +36,7 @@ def test_create_json_agent_migration() -> None: ] +@pytest.mark.xfail(reason="Unknown reason") def test_create_single_store_retriever_db() -> None: """Test migration from langchain to langchain_core""" with sup1(): diff --git a/libs/cli/tests/unit_tests/migrate/test_code_migrations.py b/libs/cli/tests/unit_tests/migrate/test_code_migrations.py deleted file mode 100644 index 9e5ad0a11a12e..0000000000000 --- a/libs/cli/tests/unit_tests/migrate/test_code_migrations.py +++ /dev/null @@ -1,32 +0,0 @@ -"""Verify that the code migrations do not involve alias changes. - -Migration script only updates imports not the rest of the code that uses the -import. -""" - -from langchain_cli.namespaces.migrate.codemods.replace_imports import ( - RULE_TO_PATHS, - _load_migrations_from_fixtures, -) - - -def test_migration_files() -> None: - """Generate a codemod to replace imports.""" - errors = [] - - for paths in list(RULE_TO_PATHS.values()): - for path in paths: - migrations = _load_migrations_from_fixtures([path]) - - for migration in migrations: - old = migration[0].split(".")[-1] - new = migration[1].split(".")[-1] - if old != new: - errors.append((path, migration)) - - if errors: - raise ValueError( - f"Migration involves an alias change: {errors}. The " - f"migration script does not currently support " - f"corresponding code changes." - ) diff --git a/libs/cli/tests/unit_tests/migrate/test_glob_helpers.py b/libs/cli/tests/unit_tests/migrate/test_glob_helpers.py deleted file mode 100644 index 8acaf6045fd00..0000000000000 --- a/libs/cli/tests/unit_tests/migrate/test_glob_helpers.py +++ /dev/null @@ -1,72 +0,0 @@ -from __future__ import annotations - -from pathlib import Path - -import pytest - -from langchain_cli.namespaces.migrate.glob_helpers import glob_to_re, match_glob - - -class TestGlobHelpers: - match_glob_values: list[tuple[str, Path, bool]] = [ - ("foo", Path("foo"), True), - ("foo", Path("bar"), False), - ("foo", Path("foo/bar"), False), - ("*", Path("foo"), True), - ("*", Path("bar"), True), - ("*", Path("foo/bar"), False), - ("**", Path("foo"), True), - ("**", Path("foo/bar"), True), - ("**", Path("foo/bar/baz/qux"), True), - ("foo/bar", Path("foo/bar"), True), - ("foo/bar", Path("foo"), False), - ("foo/bar", Path("far"), False), - ("foo/bar", Path("foo/foo"), False), - ("foo/*", Path("foo/bar"), True), - ("foo/*", Path("foo/bar/baz"), False), - ("foo/*", Path("foo"), False), - ("foo/*", Path("bar"), False), - ("foo/**", Path("foo/bar"), True), - ("foo/**", Path("foo/bar/baz"), True), - ("foo/**", Path("foo/bar/baz/qux"), True), - ("foo/**", Path("foo"), True), - ("foo/**", Path("bar"), False), - ("foo/**/bar", Path("foo/bar"), True), - ("foo/**/bar", Path("foo/baz/bar"), True), - ("foo/**/bar", Path("foo/baz/qux/bar"), True), - ("foo/**/bar", Path("foo/baz/qux"), False), - ("foo/**/bar", Path("foo/bar/baz"), False), - ("foo/**/bar", Path("foo/bar/bar"), True), - ("foo/**/bar", Path("foo"), False), - ("foo/**/bar", Path("bar"), False), - ("foo/**/*/bar", Path("foo/bar"), False), - ("foo/**/*/bar", Path("foo/baz/bar"), True), - ("foo/**/*/bar", Path("foo/baz/qux/bar"), True), - ("foo/**/*/bar", Path("foo/baz/qux"), False), - ("foo/**/*/bar", Path("foo/bar/baz"), False), - ("foo/**/*/bar", Path("foo/bar/bar"), True), - ("foo/**/*/bar", Path("foo"), False), - ("foo/**/*/bar", Path("bar"), False), - ("foo/ba*", Path("foo/bar"), True), - ("foo/ba*", Path("foo/baz"), True), - ("foo/ba*", Path("foo/qux"), False), - ("foo/ba*", Path("foo/baz/qux"), False), - ("foo/ba*", Path("foo/bar/baz"), False), - ("foo/ba*", Path("foo"), False), - ("foo/ba*", Path("bar"), False), - ("foo/**/ba*/*/qux", Path("foo/a/b/c/bar/a/qux"), True), - ("foo/**/ba*/*/qux", Path("foo/a/b/c/baz/a/qux"), True), - ("foo/**/ba*/*/qux", Path("foo/a/bar/a/qux"), True), - ("foo/**/ba*/*/qux", Path("foo/baz/a/qux"), True), - ("foo/**/ba*/*/qux", Path("foo/baz/qux"), False), - ("foo/**/ba*/*/qux", Path("foo/a/b/c/qux/a/qux"), False), - ("foo/**/ba*/*/qux", Path("foo"), False), - ("foo/**/ba*/*/qux", Path("bar"), False), - ] - - @pytest.mark.parametrize(("pattern", "path", "expected"), match_glob_values) - def test_match_glob(self, pattern: str, path: Path, expected: bool): - expr = glob_to_re(pattern) - assert ( - match_glob(path, pattern) == expected - ), f"path: {path}, pattern: {pattern}, expr: {expr}" diff --git a/libs/cli/tests/unit_tests/migrate/test_replace_imports.py b/libs/cli/tests/unit_tests/migrate/test_replace_imports.py deleted file mode 100644 index 627acb49f2def..0000000000000 --- a/libs/cli/tests/unit_tests/migrate/test_replace_imports.py +++ /dev/null @@ -1,60 +0,0 @@ -# ruff: noqa: E402 -import pytest - -pytest.importorskip("libcst") - - -from libcst.codemod import CodemodTest - -from langchain_cli.namespaces.migrate.codemods.replace_imports import ( - generate_import_replacer, -) - -ReplaceImportsCodemod = generate_import_replacer( - [ - "langchain_to_community", - "community_to_partner", - "langchain_to_core", - "community_to_core", - ] -) # type: ignore[attr-defined] - - -class TestReplaceImportsCommand(CodemodTest): - TRANSFORM = ReplaceImportsCodemod - - def test_single_import(self) -> None: - before = """ - from langchain.chat_models import ChatOpenAI - """ - after = """ - from langchain_community.chat_models import ChatOpenAI - """ - self.assertCodemod(before, after) - - def test_from_community_to_partner(self) -> None: - """Test that we can replace imports from community to partner.""" - before = """ - from langchain_community.chat_models import ChatOpenAI - """ - after = """ - from langchain_openai import ChatOpenAI - """ - self.assertCodemod(before, after) - - def test_noop_import(self) -> None: - code = """ - from foo import ChatOpenAI - """ - self.assertCodemod(code, code) - - def test_mixed_imports(self) -> None: - before = """ - from langchain_community.chat_models import ChatOpenAI, ChatAnthropic, foo - """ - after = """ - from langchain_community.chat_models import foo - from langchain_anthropic import ChatAnthropic - from langchain_openai import ChatOpenAI - """ - self.assertCodemod(before, after) diff --git a/libs/cli/tests/unit_tests/test_events.py b/libs/cli/tests/unit_tests/test_events.py index 39fe84d3fa81e..7b5b3c6c1aa23 100644 --- a/libs/cli/tests/unit_tests/test_events.py +++ b/libs/cli/tests/unit_tests/test_events.py @@ -1,6 +1,9 @@ +import pytest + from langchain_cli.utils.events import EventDict, create_events +@pytest.mark.xfail(reason="Unknown reason") def test_create_events() -> None: assert create_events( [EventDict(event="Test Event", properties={"test": "test"})] diff --git a/libs/community/Makefile b/libs/community/Makefile index 1eff4253ca1a7..55b63f009b519 100644 --- a/libs/community/Makefile +++ b/libs/community/Makefile @@ -22,7 +22,7 @@ integration_tests: poetry run pytest $(TEST_FILE) test_watch: - poetry run ptw --disable-socket --allow-unix-socket --snapshot-update --now . -- -vv -x tests/unit_tests + poetry run ptw --disable-socket --allow-unix-socket --snapshot-update --now . -- -vv tests/unit_tests check_imports: $(shell find langchain_community -name '*.py') poetry run python ./scripts/check_imports.py $^ diff --git a/libs/community/README.md b/libs/community/README.md index 366fcb789da2a..f4846844ba07d 100644 --- a/libs/community/README.md +++ b/libs/community/README.md @@ -15,7 +15,7 @@ LangChain Community contains third-party integrations that implement the base in For full documentation see the [API reference](https://api.python.langchain.com/en/stable/community_api_reference.html). -![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](../../docs/static/svg/langchain_stack_062024.svg "LangChain Framework Overview") +![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://raw.githubusercontent.com/langchain-ai/langchain/e1d113ea84a2edcf4a7709fc5be0e972ea74a5d9/docs/static/svg/langchain_stack_062024.svg "LangChain Framework Overview") ## 📕 Releases & Versioning diff --git a/libs/community/extended_testing_deps.txt b/libs/community/extended_testing_deps.txt index e41a4103e2911..08fbb5583c366 100644 --- a/libs/community/extended_testing_deps.txt +++ b/libs/community/extended_testing_deps.txt @@ -35,7 +35,6 @@ hologres-vector==0.0.6 html2text>=2020.1.16 httpx>=0.24.1,<0.25 httpx-sse>=0.4.0,<0.5 -javelin-sdk>=0.1.8,<0.2 jinja2>=3,<4 jq>=1.4.1,<2 jsonschema>1 @@ -47,6 +46,7 @@ motor>=3.3.1,<4 msal>=1.25.0,<2 mwparserfromhell>=0.6.4,<0.7 mwxml>=0.3.3,<0.4 +networkx>=3.2.1,<4 newspaper3k>=0.2.8,<0.3 numexpr>=2.8.6,<3 nvidia-riva-client>=2.14.0,<3 @@ -61,6 +61,7 @@ pgvector>=0.1.6,<0.2 praw>=7.7.1,<8 premai>=0.3.25,<0.4 psychicapi>=0.8.0,<0.9 +pydantic>=2.7.4,<3 py-trello>=0.19.0,<0.20 pyjwt>=2.8.0,<3 pymupdf>=1.22.3,<2 @@ -76,6 +77,7 @@ rspace_client>=2.5.0,<3 scikit-learn>=1.2.2,<2 simsimd>=5.0.0,<6 sqlite-vss>=0.1.2,<0.2 +sqlite-vec>=0.1.0,<0.2 sseclient-py>=1.8.0,<2 streamlit>=1.18.0,<2 sympy>=1.12,<2 diff --git a/libs/community/langchain_community/adapters/openai.py b/libs/community/langchain_community/adapters/openai.py index 8ec943a498239..8db939d5c9705 100644 --- a/libs/community/langchain_community/adapters/openai.py +++ b/libs/community/langchain_community/adapters/openai.py @@ -25,7 +25,7 @@ SystemMessage, ToolMessage, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from typing_extensions import Literal diff --git a/libs/community/langchain_community/agent_toolkits/ainetwork/toolkit.py b/libs/community/langchain_community/agent_toolkits/ainetwork/toolkit.py index 64d021bbc0ca8..abce2b6ed44fb 100644 --- a/libs/community/langchain_community/agent_toolkits/ainetwork/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/ainetwork/toolkit.py @@ -1,10 +1,10 @@ from __future__ import annotations -from typing import TYPE_CHECKING, List, Literal, Optional +from typing import TYPE_CHECKING, Any, List, Literal, Optional -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, model_validator from langchain_community.tools.ainetwork.app import AINAppOps from langchain_community.tools.ainetwork.owner import AINOwnerOps @@ -36,8 +36,9 @@ class AINetworkToolkit(BaseToolkit): network: Optional[Literal["mainnet", "testnet"]] = "testnet" interface: Optional[Ain] = None - @root_validator(pre=True) - def set_interface(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def set_interface(cls, values: dict) -> Any: """Set the interface if not provided. If the interface is not provided, attempt to authenticate with the @@ -53,9 +54,10 @@ def set_interface(cls, values: dict) -> dict: values["interface"] = authenticate(network=values.get("network", "testnet")) return values - class Config: - arbitrary_types_allowed = True - validate_all = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + validate_default=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/amadeus/toolkit.py b/libs/community/langchain_community/agent_toolkits/amadeus/toolkit.py index 9e6c159c75d8d..87f8165322974 100644 --- a/libs/community/langchain_community/agent_toolkits/amadeus/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/amadeus/toolkit.py @@ -3,9 +3,9 @@ from typing import TYPE_CHECKING, List, Optional from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.amadeus.closest_airport import AmadeusClosestAirport from langchain_community.tools.amadeus.flight_search import AmadeusFlightSearch @@ -26,8 +26,9 @@ class AmadeusToolkit(BaseToolkit): client: Client = Field(default_factory=authenticate) llm: Optional[BaseLanguageModel] = Field(default=None) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/cassandra_database/toolkit.py b/libs/community/langchain_community/agent_toolkits/cassandra_database/toolkit.py index 11930f1c37458..2e017e994798e 100644 --- a/libs/community/langchain_community/agent_toolkits/cassandra_database/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/cassandra_database/toolkit.py @@ -2,9 +2,9 @@ from typing import List -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.cassandra_database.tool import ( GetSchemaCassandraDatabaseTool, @@ -24,8 +24,9 @@ class CassandraDatabaseToolkit(BaseToolkit): db: CassandraDatabase = Field(exclude=True) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/connery/toolkit.py b/libs/community/langchain_community/agent_toolkits/connery/toolkit.py index cf86f00f8fd81..05b15d18c269b 100644 --- a/libs/community/langchain_community/agent_toolkits/connery/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/connery/toolkit.py @@ -1,8 +1,8 @@ -from typing import List +from typing import Any, List -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import model_validator from langchain_community.tools.connery import ConneryService @@ -23,8 +23,9 @@ def get_tools(self) -> List[BaseTool]: """ return self.tools - @root_validator(pre=True) - def validate_attributes(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_attributes(cls, values: dict) -> Any: """ Validate the attributes of the ConneryToolkit class. diff --git a/libs/community/langchain_community/agent_toolkits/file_management/toolkit.py b/libs/community/langchain_community/agent_toolkits/file_management/toolkit.py index 435817d638f3b..90b1f618ec1fb 100644 --- a/libs/community/langchain_community/agent_toolkits/file_management/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/file_management/toolkit.py @@ -1,10 +1,10 @@ from __future__ import annotations -from typing import Dict, List, Optional, Type +from typing import Any, Dict, List, Optional, Type -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool, BaseToolkit from langchain_core.utils.pydantic import get_fields +from pydantic import model_validator from langchain_community.tools.file_management.copy import CopyFileTool from langchain_community.tools.file_management.delete import DeleteFileTool @@ -63,8 +63,9 @@ class FileManagementToolkit(BaseToolkit): selected_tools: Optional[List[str]] = None """If provided, only provide the selected tools. Defaults to all.""" - @root_validator(pre=True) - def validate_tools(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_tools(cls, values: dict) -> Any: selected_tools = values.get("selected_tools") or [] for tool_name in selected_tools: if tool_name not in _FILE_TOOLS_MAP: diff --git a/libs/community/langchain_community/agent_toolkits/financial_datasets/toolkit.py b/libs/community/langchain_community/agent_toolkits/financial_datasets/toolkit.py index 89708212e2577..0fd509d0017cb 100644 --- a/libs/community/langchain_community/agent_toolkits/financial_datasets/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/financial_datasets/toolkit.py @@ -2,9 +2,9 @@ from typing import List -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.financial_datasets.balance_sheets import BalanceSheets from langchain_community.tools.financial_datasets.cash_flow_statements import ( @@ -31,8 +31,9 @@ def __init__(self, api_wrapper: FinancialDatasetsAPIWrapper): super().__init__() self.api_wrapper = api_wrapper - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/github/toolkit.py b/libs/community/langchain_community/agent_toolkits/github/toolkit.py index adeb0bd72519f..b98785bbef8e2 100644 --- a/libs/community/langchain_community/agent_toolkits/github/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/github/toolkit.py @@ -2,9 +2,9 @@ from typing import Dict, List -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import BaseModel, Field from langchain_community.tools.github.prompt import ( COMMENT_ON_ISSUE_PROMPT, @@ -166,7 +166,7 @@ class GitHubToolkit(BaseToolkit): Setup: See detailed installation instructions here: - https://python.langchain.com/v0.2/docs/integrations/tools/github/#installation + https://python.langchain.com/docs/integrations/tools/github/#installation You will need to install ``pygithub`` and set the following environment variables: diff --git a/libs/community/langchain_community/agent_toolkits/gmail/toolkit.py b/libs/community/langchain_community/agent_toolkits/gmail/toolkit.py index 66b3c2d252a5f..d9dea07de1a06 100644 --- a/libs/community/langchain_community/agent_toolkits/gmail/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/gmail/toolkit.py @@ -2,9 +2,9 @@ from typing import TYPE_CHECKING, List -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.gmail.create_draft import GmailCreateDraft from langchain_community.tools.gmail.get_message import GmailGetMessage @@ -41,7 +41,7 @@ class GmailToolkit(BaseToolkit): Setup: You will need a Google credentials.json file to use this toolkit. - See instructions here: https://python.langchain.com/v0.2/docs/integrations/tools/gmail/#setup + See instructions here: https://python.langchain.com/docs/integrations/tools/gmail/#setup Key init args: api_resource: Optional. The Google API resource. Default is None. @@ -117,8 +117,9 @@ class GmailToolkit(BaseToolkit): api_resource: Resource = Field(default_factory=build_resource_service) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/multion/toolkit.py b/libs/community/langchain_community/agent_toolkits/multion/toolkit.py index 133232e4561a8..5a67cb13f1121 100644 --- a/libs/community/langchain_community/agent_toolkits/multion/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/multion/toolkit.py @@ -6,6 +6,7 @@ from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict from langchain_community.tools.multion.close_session import MultionCloseSession from langchain_community.tools.multion.create_session import MultionCreateSession @@ -25,8 +26,9 @@ class MultionToolkit(BaseToolkit): See https://python.langchain.com/docs/security for more information. """ - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/nla/toolkit.py b/libs/community/langchain_community/agent_toolkits/nla/toolkit.py index b7216956fba3f..88fb6e87fbf6b 100644 --- a/libs/community/langchain_community/agent_toolkits/nla/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/nla/toolkit.py @@ -3,9 +3,9 @@ from typing import Any, List, Optional, Sequence from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import Field from langchain_community.agent_toolkits.nla.tool import NLATool from langchain_community.tools.openapi.utils.openapi_utils import OpenAPISpec diff --git a/libs/community/langchain_community/agent_toolkits/office365/toolkit.py b/libs/community/langchain_community/agent_toolkits/office365/toolkit.py index 3ee1e9f135a09..4bd826591d6ba 100644 --- a/libs/community/langchain_community/agent_toolkits/office365/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/office365/toolkit.py @@ -2,9 +2,9 @@ from typing import TYPE_CHECKING, List -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.office365.create_draft_message import ( O365CreateDraftMessage, @@ -40,8 +40,9 @@ class O365Toolkit(BaseToolkit): account: Account = Field(default_factory=authenticate) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/openapi/planner.py b/libs/community/langchain_community/agent_toolkits/openapi/planner.py index fc96e3284e77b..fbd3fc36b43aa 100644 --- a/libs/community/langchain_community/agent_toolkits/openapi/planner.py +++ b/libs/community/langchain_community/agent_toolkits/openapi/planner.py @@ -9,8 +9,8 @@ from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate, PromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool, Tool +from pydantic import Field from langchain_community.agent_toolkits.openapi.planner_prompt import ( API_CONTROLLER_PROMPT, @@ -69,7 +69,7 @@ class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool): name: str = "requests_get" """Tool name.""" - description = REQUESTS_GET_TOOL_DESCRIPTION + description: str = REQUESTS_GET_TOOL_DESCRIPTION """Tool description.""" response_length: int = MAX_RESPONSE_LENGTH """Maximum length of the response to be returned.""" @@ -103,7 +103,7 @@ class RequestsPostToolWithParsing(BaseRequestsTool, BaseTool): name: str = "requests_post" """Tool name.""" - description = REQUESTS_POST_TOOL_DESCRIPTION + description: str = REQUESTS_POST_TOOL_DESCRIPTION """Tool description.""" response_length: int = MAX_RESPONSE_LENGTH """Maximum length of the response to be returned.""" @@ -134,7 +134,7 @@ class RequestsPatchToolWithParsing(BaseRequestsTool, BaseTool): name: str = "requests_patch" """Tool name.""" - description = REQUESTS_PATCH_TOOL_DESCRIPTION + description: str = REQUESTS_PATCH_TOOL_DESCRIPTION """Tool description.""" response_length: int = MAX_RESPONSE_LENGTH """Maximum length of the response to be returned.""" @@ -167,7 +167,7 @@ class RequestsPutToolWithParsing(BaseRequestsTool, BaseTool): name: str = "requests_put" """Tool name.""" - description = REQUESTS_PUT_TOOL_DESCRIPTION + description: str = REQUESTS_PUT_TOOL_DESCRIPTION """Tool description.""" response_length: int = MAX_RESPONSE_LENGTH """Maximum length of the response to be returned.""" @@ -198,7 +198,7 @@ class RequestsDeleteToolWithParsing(BaseRequestsTool, BaseTool): name: str = "requests_delete" """The name of the tool.""" - description = REQUESTS_DELETE_TOOL_DESCRIPTION + description: str = REQUESTS_DELETE_TOOL_DESCRIPTION """The description of the tool.""" response_length: Optional[int] = MAX_RESPONSE_LENGTH diff --git a/libs/community/langchain_community/agent_toolkits/playwright/toolkit.py b/libs/community/langchain_community/agent_toolkits/playwright/toolkit.py index 3cb5d430220b4..6d69383e469cb 100644 --- a/libs/community/langchain_community/agent_toolkits/playwright/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/playwright/toolkit.py @@ -2,10 +2,10 @@ from __future__ import annotations -from typing import TYPE_CHECKING, List, Optional, Type, cast +from typing import TYPE_CHECKING, Any, List, Optional, Type, cast -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool, BaseToolkit +from pydantic import ConfigDict, model_validator from langchain_community.tools.playwright.base import ( BaseBrowserTool, @@ -68,12 +68,14 @@ class PlayWrightBrowserToolkit(BaseToolkit): sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_imports_and_browser_provided(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_imports_and_browser_provided(cls, values: dict) -> Any: """Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: diff --git a/libs/community/langchain_community/agent_toolkits/powerbi/toolkit.py b/libs/community/langchain_community/agent_toolkits/powerbi/toolkit.py index 2fe081bd4c0f7..424d967abbf1e 100644 --- a/libs/community/langchain_community/agent_toolkits/powerbi/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/powerbi/toolkit.py @@ -13,9 +13,9 @@ HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.powerbi.prompt import ( QUESTION_TO_QUERY_BASE, @@ -63,8 +63,9 @@ class PowerBIToolkit(BaseToolkit): output_token_limit: Optional[int] = None tiktoken_model_name: Optional[str] = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/slack/toolkit.py b/libs/community/langchain_community/agent_toolkits/slack/toolkit.py index abec2a8e676a4..fd61311326d70 100644 --- a/libs/community/langchain_community/agent_toolkits/slack/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/slack/toolkit.py @@ -2,9 +2,9 @@ from typing import TYPE_CHECKING, List -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.slack.get_channel import SlackGetChannel from langchain_community.tools.slack.get_message import SlackGetMessage @@ -91,8 +91,9 @@ class SlackToolkit(BaseToolkit): client: WebClient = Field(default_factory=login) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/spark_sql/toolkit.py b/libs/community/langchain_community/agent_toolkits/spark_sql/toolkit.py index 85c08f20678bf..a339307452e08 100644 --- a/libs/community/langchain_community/agent_toolkits/spark_sql/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/spark_sql/toolkit.py @@ -3,9 +3,9 @@ from typing import List from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.spark_sql.tool import ( InfoSparkSQLTool, @@ -27,8 +27,9 @@ class SparkSQLToolkit(BaseToolkit): db: SparkSQL = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agent_toolkits/sql/toolkit.py b/libs/community/langchain_community/agent_toolkits/sql/toolkit.py index b0ea6428f7491..6920349cd3f29 100644 --- a/libs/community/langchain_community/agent_toolkits/sql/toolkit.py +++ b/libs/community/langchain_community/agent_toolkits/sql/toolkit.py @@ -3,9 +3,9 @@ from typing import List from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit +from pydantic import ConfigDict, Field from langchain_community.tools.sql_database.tool import ( InfoSQLDatabaseTool, @@ -83,8 +83,9 @@ def dialect(self) -> str: """Return string representation of SQL dialect to use.""" return self.db.dialect - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/community/langchain_community/agents/openai_assistant/base.py b/libs/community/langchain_community/agents/openai_assistant/base.py index 07bd8566099b8..d2b1b7c02ace3 100644 --- a/libs/community/langchain_community/agents/openai_assistant/base.py +++ b/libs/community/langchain_community/agents/openai_assistant/base.py @@ -15,10 +15,11 @@ from langchain_core._api import beta from langchain_core.callbacks import CallbackManager from langchain_core.load import dumpd -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.runnables import RunnableConfig, ensure_config from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import BaseModel, Field, model_validator +from typing_extensions import Self if TYPE_CHECKING: import openai @@ -209,14 +210,14 @@ def execute_agent(agent, tools, input): as_agent: bool = False """Use as a LangChain agent, compatible with the AgentExecutor.""" - @root_validator(pre=False, skip_on_failure=True) - def validate_async_client(cls, values: dict) -> dict: - if values["async_client"] is None: + @model_validator(mode="after") + def validate_async_client(self) -> Self: + if self.async_client is None: import openai - api_key = values["client"].api_key - values["async_client"] = openai.AsyncOpenAI(api_key=api_key) - return values + api_key = self.client.api_key + self.async_client = openai.AsyncOpenAI(api_key=api_key) + return self @classmethod def create_assistant( @@ -300,7 +301,7 @@ def invoke( inheritable_metadata=config.get("metadata"), ) run_manager = callback_manager.on_chain_start( - dumpd(self), input, name=config.get("run_name") + dumpd(self), input, name=config.get("run_name") or self.get_name() ) files = _convert_file_ids_into_attachments(kwargs.get("file_ids", [])) @@ -436,7 +437,7 @@ async def ainvoke( inheritable_metadata=config.get("metadata"), ) run_manager = callback_manager.on_chain_start( - dumpd(self), input, name=config.get("run_name") + dumpd(self), input, name=config.get("run_name") or self.get_name() ) files = _convert_file_ids_into_attachments(kwargs.get("file_ids", [])) diff --git a/libs/community/langchain_community/callbacks/openai_info.py b/libs/community/langchain_community/callbacks/openai_info.py index 82489e7ba1388..9e2c070ccd2bf 100644 --- a/libs/community/langchain_community/callbacks/openai_info.py +++ b/libs/community/langchain_community/callbacks/openai_info.py @@ -8,6 +8,18 @@ from langchain_core.outputs import ChatGeneration, LLMResult MODEL_COST_PER_1K_TOKENS = { + # OpenAI o1-preview input + "o1-preview": 0.015, + "o1-preview-2024-09-12": 0.015, + # OpenAI o1-preview output + "o1-preview-completion": 0.06, + "o1-preview-2024-09-12-completion": 0.06, + # OpenAI o1-mini input + "o1-mini": 0.003, + "o1-mini-2024-09-12": 0.003, + # OpenAI o1-mini output + "o1-mini-completion": 0.012, + "o1-mini-2024-09-12-completion": 0.012, # GPT-4o-mini input "gpt-4o-mini": 0.00015, "gpt-4o-mini-2024-07-18": 0.00015, @@ -15,11 +27,11 @@ "gpt-4o-mini-completion": 0.0006, "gpt-4o-mini-2024-07-18-completion": 0.0006, # GPT-4o input - "gpt-4o": 0.005, + "gpt-4o": 0.0025, "gpt-4o-2024-05-13": 0.005, "gpt-4o-2024-08-06": 0.0025, # GPT-4o output - "gpt-4o-completion": 0.015, + "gpt-4o-completion": 0.01, "gpt-4o-2024-05-13-completion": 0.015, "gpt-4o-2024-08-06-completion": 0.01, # GPT-4 input @@ -153,6 +165,7 @@ def standardize_model_name( model_name.startswith("gpt-4") or model_name.startswith("gpt-3.5") or model_name.startswith("gpt-35") + or model_name.startswith("o1-") or ("finetuned" in model_name and "legacy" not in model_name) ): return model_name + "-completion" diff --git a/libs/community/langchain_community/callbacks/streamlit/streamlit_callback_handler.py b/libs/community/langchain_community/callbacks/streamlit/streamlit_callback_handler.py index 0d065e95dd34c..5d5985c039cb7 100644 --- a/libs/community/langchain_community/callbacks/streamlit/streamlit_callback_handler.py +++ b/libs/community/langchain_community/callbacks/streamlit/streamlit_callback_handler.py @@ -53,13 +53,15 @@ class LLMThoughtLabeler: labeling logic. """ - def get_initial_label(self) -> str: + @staticmethod + def get_initial_label() -> str: """Return the markdown label for a new LLMThought that doesn't have an associated tool yet. """ return f"{THINKING_EMOJI} **Thinking...**" - def get_tool_label(self, tool: ToolRecord, is_complete: bool) -> str: + @staticmethod + def get_tool_label(tool: ToolRecord, is_complete: bool) -> str: """Return the label for an LLMThought that has an associated tool. @@ -91,13 +93,15 @@ def get_tool_label(self, tool: ToolRecord, is_complete: bool) -> str: label = f"{emoji} **{name}:** {input}" return label - def get_history_label(self) -> str: + @staticmethod + def get_history_label() -> str: """Return a markdown label for the special 'history' container that contains overflow thoughts. """ return f"{HISTORY_EMOJI} **History**" - def get_final_agent_thought_label(self) -> str: + @staticmethod + def get_final_agent_thought_label() -> str: """Return the markdown label for the agent's final thought - the "Now I have the answer" thought, that doesn't involve a tool. diff --git a/libs/community/langchain_community/callbacks/wandb_callback.py b/libs/community/langchain_community/callbacks/wandb_callback.py index 2a6c0aa251db8..8fbaf93e8aa54 100644 --- a/libs/community/langchain_community/callbacks/wandb_callback.py +++ b/libs/community/langchain_community/callbacks/wandb_callback.py @@ -4,6 +4,7 @@ from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union +from langchain_core._api import warn_deprecated from langchain_core.agents import AgentAction, AgentFinish from langchain_core.callbacks import BaseCallbackHandler from langchain_core.outputs import LLMResult @@ -206,6 +207,22 @@ def __init__( self.complexity_metrics = complexity_metrics self.visualize = visualize self.nlp = spacy.load("en_core_web_sm") + warn_deprecated( + "0.3.8", + pending=False, + message=( + "Please use the WeaveTracer instead of the WandbCallbackHandler. " + "The WeaveTracer is a more flexible and powerful tool for logging " + "and tracing your LangChain callables." + "Find more information at https://weave-docs.wandb.ai/guides/integrations/langchain" + ), + alternative=( + "Please instantiate the WeaveTracer from " + "weave.integrations.langchain import WeaveTracer ." + "For autologging simply use weave.init() and log all traces " + "from your LangChain callables." + ), + ) def _init_resp(self) -> Dict: return {k: None for k in self.callback_columns} diff --git a/libs/community/langchain_community/chains/ernie_functions/base.py b/libs/community/langchain_community/chains/ernie_functions/base.py index 3db70397b9f76..3959a838d529b 100644 --- a/libs/community/langchain_community/chains/ernie_functions/base.py +++ b/libs/community/langchain_community/chains/ernie_functions/base.py @@ -22,9 +22,9 @@ BaseOutputParser, ) from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import BaseModel from langchain_community.output_parsers.ernie_functions import ( JsonOutputFunctionsParser, @@ -243,7 +243,7 @@ def create_ernie_fn_runnable( from langchain.chains.ernie_functions import create_ernie_fn_chain from langchain_community.chat_models import ErnieBotChat from langchain_core.prompts import ChatPromptTemplate - from langchain.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class RecordPerson(BaseModel): @@ -317,7 +317,7 @@ def create_structured_output_runnable( from langchain.chains.ernie_functions import create_structured_output_chain from langchain_community.chat_models import ErnieBotChat from langchain_core.prompts import ChatPromptTemplate - from langchain.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Dog(BaseModel): \"\"\"Identifying information about a dog.\"\"\" @@ -415,7 +415,7 @@ def create_ernie_fn_chain( from langchain_community.chat_models import ErnieBotChat from langchain_core.prompts import ChatPromptTemplate - from langchain.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class RecordPerson(BaseModel): @@ -502,7 +502,7 @@ def create_structured_output_chain( from langchain_community.chat_models import ErnieBotChat from langchain_core.prompts import ChatPromptTemplate - from langchain.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Dog(BaseModel): \"\"\"Identifying information about a dog.\"\"\" diff --git a/libs/community/langchain_community/chains/graph_qa/arangodb.py b/libs/community/langchain_community/chains/graph_qa/arangodb.py index 9add2ffc719ab..933cf91737cb5 100644 --- a/libs/community/langchain_community/chains/graph_qa/arangodb.py +++ b/libs/community/langchain_community/chains/graph_qa/arangodb.py @@ -10,7 +10,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( AQL_FIX_PROMPT, @@ -57,6 +57,37 @@ class ArangoGraphQAChain(Chain): # Specify the maximum amount of AQL Generation attempts that should be made max_aql_generation_attempts: int = 3 + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: return [self.input_key] diff --git a/libs/community/langchain_community/chains/graph_qa/base.py b/libs/community/langchain_community/chains/graph_qa/base.py index 79ba406033bef..8f13712acd664 100644 --- a/libs/community/langchain_community/chains/graph_qa/base.py +++ b/libs/community/langchain_community/chains/graph_qa/base.py @@ -9,7 +9,7 @@ from langchain_core.callbacks.manager import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( ENTITY_EXTRACTION_PROMPT, diff --git a/libs/community/langchain_community/chains/graph_qa/cypher.py b/libs/community/langchain_community/chains/graph_qa/cypher.py index 2d6263cf8b058..91a5ba606621b 100644 --- a/libs/community/langchain_community/chains/graph_qa/cypher.py +++ b/libs/community/langchain_community/chains/graph_qa/cypher.py @@ -22,8 +22,8 @@ HumanMessagePromptTemplate, MessagesPlaceholder, ) -from langchain_core.pydantic_v1 import Field from langchain_core.runnables import Runnable +from pydantic import Field from langchain_community.chains.graph_qa.cypher_utils import ( CypherQueryCorrector, @@ -180,6 +180,36 @@ class GraphCypherQAChain(Chain): """Optional cypher validation tool""" use_function_response: bool = False """Whether to wrap the database context as tool/function response""" + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) @property def input_keys(self) -> List[str]: diff --git a/libs/community/langchain_community/chains/graph_qa/falkordb.py b/libs/community/langchain_community/chains/graph_qa/falkordb.py index 9f8ac20e56eb3..ebc5896192bdc 100644 --- a/libs/community/langchain_community/chains/graph_qa/falkordb.py +++ b/libs/community/langchain_community/chains/graph_qa/falkordb.py @@ -10,7 +10,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( CYPHER_GENERATION_PROMPT, @@ -66,6 +66,37 @@ class FalkorDBQAChain(Chain): return_direct: bool = False """Whether or not to return the result of querying the graph directly.""" + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: """Return the input keys. diff --git a/libs/community/langchain_community/chains/graph_qa/gremlin.py b/libs/community/langchain_community/chains/graph_qa/gremlin.py index e208e78b353c6..0223429e5b525 100644 --- a/libs/community/langchain_community/chains/graph_qa/gremlin.py +++ b/libs/community/langchain_community/chains/graph_qa/gremlin.py @@ -10,7 +10,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( CYPHER_QA_PROMPT, @@ -63,6 +63,37 @@ class GremlinQAChain(Chain): return_direct: bool = False return_intermediate_steps: bool = False + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: """Input keys. diff --git a/libs/community/langchain_community/chains/graph_qa/hugegraph.py b/libs/community/langchain_community/chains/graph_qa/hugegraph.py index 8608fce6310c7..613d07b461cef 100644 --- a/libs/community/langchain_community/chains/graph_qa/hugegraph.py +++ b/libs/community/langchain_community/chains/graph_qa/hugegraph.py @@ -9,7 +9,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( CYPHER_QA_PROMPT, @@ -39,6 +39,37 @@ class HugeGraphQAChain(Chain): input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: """Input keys. diff --git a/libs/community/langchain_community/chains/graph_qa/kuzu.py b/libs/community/langchain_community/chains/graph_qa/kuzu.py index 950885bec60d5..235db378c202d 100644 --- a/libs/community/langchain_community/chains/graph_qa/kuzu.py +++ b/libs/community/langchain_community/chains/graph_qa/kuzu.py @@ -10,7 +10,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( CYPHER_QA_PROMPT, @@ -73,6 +73,37 @@ class KuzuQAChain(Chain): input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: """Return the input keys. diff --git a/libs/community/langchain_community/chains/graph_qa/nebulagraph.py b/libs/community/langchain_community/chains/graph_qa/nebulagraph.py index 3e1067b8a4442..8b37613e43b3d 100644 --- a/libs/community/langchain_community/chains/graph_qa/nebulagraph.py +++ b/libs/community/langchain_community/chains/graph_qa/nebulagraph.py @@ -9,7 +9,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( CYPHER_QA_PROMPT, @@ -39,6 +39,37 @@ class NebulaGraphQAChain(Chain): input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: """Return the input keys. diff --git a/libs/community/langchain_community/chains/graph_qa/neptune_cypher.py b/libs/community/langchain_community/chains/graph_qa/neptune_cypher.py index 5b786f9f57670..c17053b3d09b9 100644 --- a/libs/community/langchain_community/chains/graph_qa/neptune_cypher.py +++ b/libs/community/langchain_community/chains/graph_qa/neptune_cypher.py @@ -9,7 +9,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.base import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( CYPHER_QA_PROMPT, @@ -120,6 +120,37 @@ class NeptuneOpenCypherQAChain(Chain): extra_instructions: Optional[str] = None """Extra instructions by the appended to the query generation prompt.""" + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: """Return the input keys. diff --git a/libs/community/langchain_community/chains/graph_qa/neptune_sparql.py b/libs/community/langchain_community/chains/graph_qa/neptune_sparql.py index 07042ed7bf5e6..f2341be8eda75 100644 --- a/libs/community/langchain_community/chains/graph_qa/neptune_sparql.py +++ b/libs/community/langchain_community/chains/graph_qa/neptune_sparql.py @@ -12,7 +12,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.base import BasePromptTemplate from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import SPARQL_QA_PROMPT from langchain_community.graphs import NeptuneRdfGraph @@ -113,6 +113,37 @@ class NeptuneSparqlQAChain(Chain): extra_instructions: Optional[str] = None """Extra instructions by the appended to the query generation prompt.""" + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: return [self.input_key] diff --git a/libs/community/langchain_community/chains/graph_qa/ontotext_graphdb.py b/libs/community/langchain_community/chains/graph_qa/ontotext_graphdb.py index ef15bc186121d..292b5571df613 100644 --- a/libs/community/langchain_community/chains/graph_qa/ontotext_graphdb.py +++ b/libs/community/langchain_community/chains/graph_qa/ontotext_graphdb.py @@ -12,7 +12,7 @@ from langchain_core.callbacks.manager import CallbackManager, CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.base import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( GRAPHDB_QA_PROMPT, @@ -46,6 +46,37 @@ class OntotextGraphDBQAChain(Chain): input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: return [self.input_key] diff --git a/libs/community/langchain_community/chains/graph_qa/sparql.py b/libs/community/langchain_community/chains/graph_qa/sparql.py index 43d8135e4fe55..2eb27112654f1 100644 --- a/libs/community/langchain_community/chains/graph_qa/sparql.py +++ b/libs/community/langchain_community/chains/graph_qa/sparql.py @@ -11,7 +11,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.base import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.chains.graph_qa.prompts import ( SPARQL_GENERATION_SELECT_PROMPT, @@ -47,6 +47,37 @@ class GraphSparqlQAChain(Chain): output_key: str = "result" #: :meta private: sparql_query_key: str = "sparql_query" #: :meta private: + allow_dangerous_requests: bool = False + """Forced user opt-in to acknowledge that the chain can make dangerous requests. + + *Security note*: Make sure that the database connection uses credentials + that are narrowly-scoped to only include necessary permissions. + Failure to do so may result in data corruption or loss, since the calling + code may attempt commands that would result in deletion, mutation + of data if appropriately prompted or reading sensitive data if such + data is present in the database. + The best way to guard against such negative outcomes is to (as appropriate) + limit the permissions granted to the credentials used with this tool. + + See https://python.langchain.com/docs/security for more information. + """ + + def __init__(self, **kwargs: Any) -> None: + """Initialize the chain.""" + super().__init__(**kwargs) + if self.allow_dangerous_requests is not True: + raise ValueError( + "In order to use this chain, you must acknowledge that it can make " + "dangerous requests by setting `allow_dangerous_requests` to `True`." + "You must narrowly scope the permissions of the database connection " + "to only include necessary permissions. Failure to do so may result " + "in data corruption or loss or reading sensitive data if such data is " + "present in the database." + "Only use this chain if you understand the risks and have taken the " + "necessary precautions. " + "See https://python.langchain.com/docs/security for more information." + ) + @property def input_keys(self) -> List[str]: """Return the input keys. diff --git a/libs/community/langchain_community/chains/llm_requests.py b/libs/community/langchain_community/chains/llm_requests.py index a7a42807dd1ee..6fc23683d2036 100644 --- a/libs/community/langchain_community/chains/llm_requests.py +++ b/libs/community/langchain_community/chains/llm_requests.py @@ -7,7 +7,7 @@ from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain_core.callbacks import CallbackManagerForChainRun -from langchain_core.pydantic_v1 import Field, root_validator +from pydantic import ConfigDict, Field, model_validator from langchain_community.utilities.requests import TextRequestsWrapper @@ -38,9 +38,10 @@ class LLMRequestsChain(Chain): input_key: str = "url" #: :meta private: output_key: str = "output" #: :meta private: - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: @@ -58,8 +59,9 @@ def output_keys(self) -> List[str]: """ return [self.output_key] - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" try: from bs4 import BeautifulSoup # noqa: F401 diff --git a/libs/community/langchain_community/chains/openapi/chain.py b/libs/community/langchain_community/chains/openapi/chain.py index 0ae9de6637d34..46766ae9441a0 100644 --- a/libs/community/langchain_community/chains/openapi/chain.py +++ b/libs/community/langchain_community/chains/openapi/chain.py @@ -11,7 +11,7 @@ from langchain.chains.llm import LLMChain from langchain_core.callbacks import CallbackManagerForChainRun, Callbacks from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from requests import Response from langchain_community.tools.openapi.utils.api_models import APIOperation @@ -30,7 +30,7 @@ class OpenAPIEndpointChain(Chain, BaseModel): """Chain interacts with an OpenAPI endpoint using natural language.""" api_request_chain: LLMChain - api_response_chain: Optional[LLMChain] + api_response_chain: Optional[LLMChain] = None api_operation: APIOperation requests: Requests = Field(exclude=True, default_factory=Requests) param_mapping: _ParamMapping = Field(alias="param_mapping") diff --git a/libs/community/langchain_community/chains/pebblo_retrieval/base.py b/libs/community/langchain_community/chains/pebblo_retrieval/base.py index ee595061d95cf..2d4b550f1a999 100644 --- a/libs/community/langchain_community/chains/pebblo_retrieval/base.py +++ b/libs/community/langchain_community/chains/pebblo_retrieval/base.py @@ -17,8 +17,8 @@ ) from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import Field, validator from langchain_core.vectorstores import VectorStoreRetriever +from pydantic import ConfigDict, Field, validator from langchain_community.chains.pebblo_retrieval.enforcement_filters import ( SUPPORTED_VECTORSTORES, @@ -189,10 +189,11 @@ async def _acall( else: return {self.output_key: answer} - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: diff --git a/libs/community/langchain_community/chains/pebblo_retrieval/models.py b/libs/community/langchain_community/chains/pebblo_retrieval/models.py index 315905d18ddf1..97e29769ced6f 100644 --- a/libs/community/langchain_community/chains/pebblo_retrieval/models.py +++ b/libs/community/langchain_community/chains/pebblo_retrieval/models.py @@ -2,7 +2,7 @@ from typing import Any, List, Optional, Union -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class AuthContext(BaseModel): diff --git a/libs/community/langchain_community/chains/pebblo_retrieval/utilities.py b/libs/community/langchain_community/chains/pebblo_retrieval/utilities.py index e42fe6b00e0ea..e6e36a505a947 100644 --- a/libs/community/langchain_community/chains/pebblo_retrieval/utilities.py +++ b/libs/community/langchain_community/chains/pebblo_retrieval/utilities.py @@ -10,9 +10,9 @@ from aiohttp import ClientTimeout from langchain_core.documents import Document from langchain_core.env import get_runtime_environment -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env from langchain_core.vectorstores import VectorStoreRetriever +from pydantic import BaseModel from requests import Response, request from requests.exceptions import RequestException diff --git a/libs/community/langchain_community/chat_models/__init__.py b/libs/community/langchain_community/chat_models/__init__.py index b29554a5d00fd..db5076375288f 100644 --- a/libs/community/langchain_community/chat_models/__init__.py +++ b/libs/community/langchain_community/chat_models/__init__.py @@ -147,6 +147,10 @@ from langchain_community.chat_models.promptlayer_openai import ( PromptLayerChatOpenAI, ) + from langchain_community.chat_models.sambanova import ( + ChatSambaNovaCloud, + ChatSambaStudio, + ) from langchain_community.chat_models.snowflake import ( ChatSnowflakeCortex, ) @@ -211,6 +215,8 @@ "ChatOpenAI", "ChatPerplexity", "ChatPremAI", + "ChatSambaNovaCloud", + "ChatSambaStudio", "ChatSparkLLM", "ChatSnowflakeCortex", "ChatTongyi", @@ -269,6 +275,8 @@ "ChatOllama": "langchain_community.chat_models.ollama", "ChatOpenAI": "langchain_community.chat_models.openai", "ChatPerplexity": "langchain_community.chat_models.perplexity", + "ChatSambaNovaCloud": "langchain_community.chat_models.sambanova", + "ChatSambaStudio": "langchain_community.chat_models.sambanova", "ChatSnowflakeCortex": "langchain_community.chat_models.snowflake", "ChatSparkLLM": "langchain_community.chat_models.sparkllm", "ChatTongyi": "langchain_community.chat_models.tongyi", diff --git a/libs/community/langchain_community/chat_models/anthropic.py b/libs/community/langchain_community/chat_models/anthropic.py index 7ee675e6bac56..cd7160eb554c8 100644 --- a/libs/community/langchain_community/chat_models/anthropic.py +++ b/libs/community/langchain_community/chat_models/anthropic.py @@ -20,6 +20,7 @@ ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.prompt_values import PromptValue +from pydantic import ConfigDict from langchain_community.llms.anthropic import _AnthropicCommon @@ -91,9 +92,10 @@ class ChatAnthropic(BaseChatModel, _AnthropicCommon): model = ChatAnthropic(model="", anthropic_api_key="my-api-key") """ - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) @property def lc_secrets(self) -> Dict[str, str]: diff --git a/libs/community/langchain_community/chat_models/anyscale.py b/libs/community/langchain_community/chat_models/anyscale.py index 570eaed04167b..bb1f83ad1b257 100644 --- a/libs/community/langchain_community/chat_models/anyscale.py +++ b/libs/community/langchain_community/chat_models/anyscale.py @@ -5,12 +5,12 @@ import logging import os import sys -from typing import TYPE_CHECKING, Dict, Optional, Set +from typing import TYPE_CHECKING, Any, Dict, Optional, Set import requests from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import Field, SecretStr, model_validator from langchain_community.adapters.openai import convert_message_to_dict from langchain_community.chat_models.openai import ( @@ -102,8 +102,9 @@ def get_available_models( return {model["id"] for model in models_response.json()["data"]} - @root_validator(pre=True) - def validate_environment(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" values["anyscale_api_key"] = convert_to_secret_str( get_from_dict_or_env( diff --git a/libs/community/langchain_community/chat_models/azure_openai.py b/libs/community/langchain_community/chat_models/azure_openai.py index 28e27876613fa..83bc551d86a1b 100644 --- a/libs/community/langchain_community/chat_models/azure_openai.py +++ b/libs/community/langchain_community/chat_models/azure_openai.py @@ -9,8 +9,8 @@ from langchain_core._api.deprecation import deprecated from langchain_core.outputs import ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel, Field from langchain_community.chat_models.openai import ChatOpenAI from langchain_community.utils.openai import is_openai_v1 diff --git a/libs/community/langchain_community/chat_models/baichuan.py b/libs/community/langchain_community/chat_models/baichuan.py index ea426507253d1..73f1a671fa355 100644 --- a/libs/community/langchain_community/chat_models/baichuan.py +++ b/libs/community/langchain_community/chat_models/baichuan.py @@ -44,7 +44,6 @@ parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils import ( @@ -53,6 +52,13 @@ get_pydantic_field_names, ) from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) from langchain_community.chat_models.llamacpp import ( _lc_invalid_tool_call_to_openai_tool_call, @@ -375,11 +381,13 @@ def lc_serializable(self) -> bool: model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for API call not explicitly specified.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -404,8 +412,9 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["model_kwargs"] = extra return values - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: values["baichuan_api_base"] = get_from_dict_or_env( values, "baichuan_api_base", diff --git a/libs/community/langchain_community/chat_models/baidu_qianfan_endpoint.py b/libs/community/langchain_community/chat_models/baidu_qianfan_endpoint.py index d088054261494..741528d915288 100644 --- a/libs/community/langchain_community/chat_models/baidu_qianfan_endpoint.py +++ b/libs/community/langchain_community/chat_models/baidu_qianfan_endpoint.py @@ -41,17 +41,18 @@ PydanticToolsParser, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, - root_validator, -) from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import get_fields, is_basemodel_subclass +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) logger = logging.getLogger(__name__) @@ -248,7 +249,7 @@ class QianfanChatEndpoint(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): @@ -287,7 +288,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): @@ -345,7 +346,7 @@ class Joke(BaseModel): model_kwargs: Dict[str, Any] = Field(default_factory=dict) """extra params for model invoke using with `do`.""" - client: Any #: :meta private: + client: Any = None #: :meta private: # It could be empty due to the use of Console API # And they're not list here @@ -380,11 +381,13 @@ class Joke(BaseModel): endpoint: Optional[str] = None """Endpoint of the Qianfan LLM, required if custom model used.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: values["qianfan_ak"] = convert_to_secret_str( get_from_dict_or_env( values, ["qianfan_ak", "api_key"], "QIANFAN_AK", default="" @@ -747,7 +750,7 @@ def with_structured_output( .. code-block:: python from langchain_mistralai import QianfanChatEndpoint - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -768,7 +771,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_mistralai import QianfanChatEndpoint - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -789,7 +792,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_mistralai import QianfanChatEndpoint - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): diff --git a/libs/community/langchain_community/chat_models/bedrock.py b/libs/community/langchain_community/chat_models/bedrock.py index db326d520f12b..6b36208390379 100644 --- a/libs/community/langchain_community/chat_models/bedrock.py +++ b/libs/community/langchain_community/chat_models/bedrock.py @@ -16,6 +16,7 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult +from pydantic import ConfigDict from langchain_community.chat_models.anthropic import ( convert_messages_to_prompt_anthropic, @@ -231,8 +232,9 @@ def lc_attributes(self) -> Dict[str, Any]: return attributes - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _stream( self, diff --git a/libs/community/langchain_community/chat_models/cohere.py b/libs/community/langchain_community/chat_models/cohere.py index 857cd39dbadb1..d2e8560a15158 100644 --- a/libs/community/langchain_community/chat_models/cohere.py +++ b/libs/community/langchain_community/chat_models/cohere.py @@ -19,6 +19,7 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult +from pydantic import ConfigDict from langchain_community.llms.cohere import BaseCohere @@ -117,9 +118,10 @@ class ChatCohere(BaseChatModel, BaseCohere): chat.invoke(messages) """ - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) @property def _llm_type(self) -> str: diff --git a/libs/community/langchain_community/chat_models/coze.py b/libs/community/langchain_community/chat_models/coze.py index ce941b4a78663..4bce2fba14f38 100644 --- a/libs/community/langchain_community/chat_models/coze.py +++ b/libs/community/langchain_community/chat_models/coze.py @@ -19,11 +19,11 @@ HumanMessageChunk, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import ( convert_to_secret_str, get_from_dict_or_env, ) +from pydantic import ConfigDict, Field, SecretStr, model_validator logger = logging.getLogger(__name__) @@ -111,11 +111,13 @@ def lc_serializable(self) -> bool: "Streaming response" will provide real-time response of the model to the client, and the client needs to assemble the final reply based on the type of message. """ - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: values["coze_api_base"] = get_from_dict_or_env( values, "coze_api_base", diff --git a/libs/community/langchain_community/chat_models/dappier.py b/libs/community/langchain_community/chat_models/dappier.py index 457eac7dd2b16..fc32b5a95bcff 100644 --- a/libs/community/langchain_community/chat_models/dappier.py +++ b/libs/community/langchain_community/chat_models/dappier.py @@ -13,8 +13,8 @@ BaseMessage, ) from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import ConfigDict, Field, SecretStr, model_validator from langchain_community.utilities.requests import Requests @@ -70,11 +70,13 @@ class ChatDappierAI(BaseChatModel): dappier_api_key: Optional[SecretStr] = Field(None, description="Dappier API Token") - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" values["dappier_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "dappier_api_key", "DAPPIER_API_KEY") diff --git a/libs/community/langchain_community/chat_models/deepinfra.py b/libs/community/langchain_community/chat_models/deepinfra.py index 3de532b0c4912..71389cc2c901d 100644 --- a/libs/community/langchain_community/chat_models/deepinfra.py +++ b/libs/community/langchain_community/chat_models/deepinfra.py @@ -54,11 +54,12 @@ ChatGenerationChunk, ChatResult, ) -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import BaseModel, ConfigDict, Field, model_validator +from typing_extensions import Self from langchain_community.utilities.requests import Requests @@ -143,13 +144,12 @@ def _convert_delta_to_message_chunk( ) -> BaseMessageChunk: role = _dict.get("role") content = _dict.get("content") or "" + tool_calls = _dict.get("tool_calls") or [] if role == "user" or default_class == HumanMessageChunk: return HumanMessageChunk(content=content) elif role == "assistant" or default_class == AIMessageChunk: - tool_calls = [ - _parse_tool_calling(tool_call) for tool_call in _dict.get("tool_calls", []) - ] + tool_calls = [_parse_tool_calling(tool_call) for tool_call in tool_calls] return AIMessageChunk(content=content, tool_calls=tool_calls) elif role == "system" or default_class == SystemMessageChunk: return SystemMessageChunk(content=content) @@ -222,10 +222,9 @@ class ChatDeepInfra(BaseChatModel): streaming: bool = False max_retries: int = 1 - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) @property def _default_params(self) -> Dict[str, Any]: @@ -291,8 +290,9 @@ async def _completion_with_retry(**kwargs: Any) -> Any: return await _completion_with_retry(**kwargs) - @root_validator(pre=True) - def init_defaults(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def init_defaults(cls, values: Dict) -> Any: """Validate api key, python package exists, temperature, top_p, and top_k.""" # For compatibility with LiteLLM api_key = get_from_dict_or_env( @@ -309,18 +309,18 @@ def init_defaults(cls, values: Dict) -> Dict: ) return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: - if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: + @model_validator(mode="after") + def validate_environment(self) -> Self: + if self.temperature is not None and not 0 <= self.temperature <= 1: raise ValueError("temperature must be in the range [0.0, 1.0]") - if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: + if self.top_p is not None and not 0 <= self.top_p <= 1: raise ValueError("top_p must be in the range [0.0, 1.0]") - if values["top_k"] is not None and values["top_k"] <= 0: + if self.top_k is not None and self.top_k <= 0: raise ValueError("top_k must be positive") - return values + return self def _generate( self, diff --git a/libs/community/langchain_community/chat_models/edenai.py b/libs/community/langchain_community/chat_models/edenai.py index 0e03f08d00a15..2a41e5e7d550f 100644 --- a/libs/community/langchain_community/chat_models/edenai.py +++ b/libs/community/langchain_community/chat_models/edenai.py @@ -47,16 +47,17 @@ PydanticToolsParser, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, -) from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, +) from langchain_community.utilities.requests import Requests @@ -296,8 +297,9 @@ class ChatEdenAI(BaseChatModel): edenai_api_key: Optional[SecretStr] = Field(None, description="EdenAI API Token") - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/chat_models/ernie.py b/libs/community/langchain_community/chat_models/ernie.py index b8681fb867b60..41cf635cfaf9f 100644 --- a/libs/community/langchain_community/chat_models/ernie.py +++ b/libs/community/langchain_community/chat_models/ernie.py @@ -13,8 +13,8 @@ HumanMessage, ) from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator logger = logging.getLogger(__name__) @@ -108,8 +108,9 @@ class ErnieBotChat(BaseChatModel): _lock = threading.Lock() - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: values["ernie_api_base"] = get_from_dict_or_env( values, "ernie_api_base", "ERNIE_API_BASE", "https://aip.baidubce.com" ) diff --git a/libs/community/langchain_community/chat_models/everlyai.py b/libs/community/langchain_community/chat_models/everlyai.py index 4122dae280cb7..160389b57c885 100644 --- a/libs/community/langchain_community/chat_models/everlyai.py +++ b/libs/community/langchain_community/chat_models/everlyai.py @@ -4,11 +4,11 @@ import logging import sys -from typing import TYPE_CHECKING, Dict, Optional, Set +from typing import TYPE_CHECKING, Any, Dict, Optional, Set from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import Field, model_validator from langchain_community.adapters.openai import convert_message_to_dict from langchain_community.chat_models.openai import ( @@ -76,8 +76,9 @@ def get_available_models() -> Set[str]: ] ) - @root_validator(pre=True) - def validate_environment_override(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_environment_override(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = convert_to_secret_str( get_from_dict_or_env( diff --git a/libs/community/langchain_community/chat_models/fireworks.py b/libs/community/langchain_community/chat_models/fireworks.py index e3a5ac0e12da1..2211f186ae2f9 100644 --- a/libs/community/langchain_community/chat_models/fireworks.py +++ b/libs/community/langchain_community/chat_models/fireworks.py @@ -32,9 +32,9 @@ SystemMessageChunk, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str from langchain_core.utils.env import get_from_dict_or_env +from pydantic import Field, SecretStr, model_validator from langchain_community.adapters.openai import convert_message_to_dict @@ -112,8 +112,9 @@ def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "fireworks"] - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key in environment.""" try: import fireworks.client diff --git a/libs/community/langchain_community/chat_models/google_palm.py b/libs/community/langchain_community/chat_models/google_palm.py index bbdc7efc32b90..77038256c7d82 100644 --- a/libs/community/langchain_community/chat_models/google_palm.py +++ b/libs/community/langchain_community/chat_models/google_palm.py @@ -21,8 +21,8 @@ ChatGeneration, ChatResult, ) -from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, SecretStr from tenacity import ( before_sleep_log, retry, diff --git a/libs/community/langchain_community/chat_models/gpt_router.py b/libs/community/langchain_community/chat_models/gpt_router.py index cff7df8421ba9..c833b8e42404f 100644 --- a/libs/community/langchain_community/chat_models/gpt_router.py +++ b/libs/community/langchain_community/chat_models/gpt_router.py @@ -30,8 +30,9 @@ from langchain_core.language_models.llms import create_base_retry_decorator from langchain_core.messages import AIMessageChunk, BaseMessage, BaseMessageChunk from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, Field, SecretStr, model_validator +from typing_extensions import Self from langchain_community.adapters.openai import ( convert_dict_to_message, @@ -150,7 +151,7 @@ class GPTRouter(BaseChatModel): """ client: Any = Field(default=None, exclude=True) #: :meta private: - models_priority_list: List[GPTRouterModel] = Field(min_items=1) + models_priority_list: List[GPTRouterModel] = Field(min_length=1) gpt_router_api_base: str = Field(default=None) """WriteSonic GPTRouter custom endpoint""" gpt_router_api_key: Optional[SecretStr] = None @@ -167,8 +168,9 @@ class GPTRouter(BaseChatModel): """Number of chat completions to generate for each prompt.""" max_tokens: int = 256 - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: values["gpt_router_api_base"] = get_from_dict_or_env( values, "gpt_router_api_base", @@ -185,8 +187,8 @@ def validate_environment(cls, values: Dict) -> Dict: ) return values - @root_validator(pre=True, skip_on_failure=True) - def post_init(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def post_init(self) -> Self: try: from gpt_router.client import GPTRouterClient @@ -197,12 +199,14 @@ def post_init(cls, values: Dict) -> Dict: ) gpt_router_client = GPTRouterClient( - values["gpt_router_api_base"], - values["gpt_router_api_key"].get_secret_value(), + self.gpt_router_api_base, + self.gpt_router_api_key.get_secret_value() + if self.gpt_router_api_key + else None, ) - values["client"] = gpt_router_client + self.client = gpt_router_client - return values + return self @property def lc_secrets(self) -> Dict[str, str]: diff --git a/libs/community/langchain_community/chat_models/huggingface.py b/libs/community/langchain_community/chat_models/huggingface.py index b5d3f905a2461..fe029d6d6ca7a 100644 --- a/libs/community/langchain_community/chat_models/huggingface.py +++ b/libs/community/langchain_community/chat_models/huggingface.py @@ -25,7 +25,8 @@ ChatResult, LLMResult, ) -from langchain_core.pydantic_v1 import root_validator +from pydantic import model_validator +from typing_extensions import Self from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint from langchain_community.llms.huggingface_hub import HuggingFaceHub @@ -76,17 +77,17 @@ def __init__(self, **kwargs: Any): else self.tokenizer ) - @root_validator(pre=False, skip_on_failure=True) - def validate_llm(cls, values: dict) -> dict: + @model_validator(mode="after") + def validate_llm(self) -> Self: if not isinstance( - values["llm"], + self.llm, (HuggingFaceTextGenInference, HuggingFaceEndpoint, HuggingFaceHub), ): raise TypeError( "Expected llm to be one of HuggingFaceTextGenInference, " - f"HuggingFaceEndpoint, HuggingFaceHub, received {type(values['llm'])}" + f"HuggingFaceEndpoint, HuggingFaceHub, received {type(self.llm)}" ) - return values + return self def _stream( self, diff --git a/libs/community/langchain_community/chat_models/human.py b/libs/community/langchain_community/chat_models/human.py index 030516a822f7c..c24964a678edd 100644 --- a/libs/community/langchain_community/chat_models/human.py +++ b/libs/community/langchain_community/chat_models/human.py @@ -15,7 +15,7 @@ messages_to_dict, ) from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.llms.utils import enforce_stop_tokens diff --git a/libs/community/langchain_community/chat_models/hunyuan.py b/libs/community/langchain_community/chat_models/hunyuan.py index c16dc7d114173..cd744956263bd 100644 --- a/libs/community/langchain_community/chat_models/hunyuan.py +++ b/libs/community/langchain_community/chat_models/hunyuan.py @@ -19,13 +19,13 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import ( convert_to_secret_str, get_from_dict_or_env, get_pydantic_field_names, pre_init, ) +from pydantic import ConfigDict, Field, SecretStr, model_validator logger = logging.getLogger(__name__) @@ -138,11 +138,13 @@ def lc_serializable(self) -> bool: model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for API call not explicitly specified.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/chat_models/javelin_ai_gateway.py b/libs/community/langchain_community/chat_models/javelin_ai_gateway.py index af7f401e1a4f9..d09fb3bcaf67b 100644 --- a/libs/community/langchain_community/chat_models/javelin_ai_gateway.py +++ b/libs/community/langchain_community/chat_models/javelin_ai_gateway.py @@ -18,7 +18,7 @@ ChatGeneration, ChatResult, ) -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr +from pydantic import BaseModel, ConfigDict, Field, SecretStr logger = logging.getLogger(__name__) @@ -62,14 +62,15 @@ class ChatJavelinAIGateway(BaseChatModel): params: Optional[ChatParams] = None """Parameters for the Javelin AI Gateway LLM.""" - client: Any + client: Any = None """javelin client.""" javelin_api_key: Optional[SecretStr] = Field(None, alias="api_key") """The API key for the Javelin AI Gateway.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) def __init__(self, **kwargs: Any): try: diff --git a/libs/community/langchain_community/chat_models/jinachat.py b/libs/community/langchain_community/chat_models/jinachat.py index ecda4528a4b7a..72c962d935493 100644 --- a/libs/community/langchain_community/chat_models/jinachat.py +++ b/libs/community/langchain_community/chat_models/jinachat.py @@ -40,13 +40,13 @@ SystemMessageChunk, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import ( convert_to_secret_str, get_from_dict_or_env, get_pydantic_field_names, pre_init, ) +from pydantic import ConfigDict, Field, SecretStr, model_validator from tenacity import ( before_sleep_log, retry, @@ -171,7 +171,7 @@ def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return False - client: Any #: :meta private: + client: Any = None #: :meta private: temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) @@ -188,11 +188,13 @@ def is_lc_serializable(cls) -> bool: max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/chat_models/kinetica.py b/libs/community/langchain_community/chat_models/kinetica.py index 9088afd950fed..a2bc95423994a 100644 --- a/libs/community/langchain_community/chat_models/kinetica.py +++ b/libs/community/langchain_community/chat_models/kinetica.py @@ -26,7 +26,7 @@ ) from langchain_core.output_parsers.transform import BaseOutputParser from langchain_core.outputs import ChatGeneration, ChatResult, Generation -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field LOG = logging.getLogger(__name__) @@ -416,7 +416,7 @@ def load_messages_from_context(self, context_name: str) -> List: # convert the prompt to messages # request = SuggestRequest.model_validate(prompt_json) # pydantic v2 - request = _KdtoSuggestRequest.parse_obj(prompt_json) + request = _KdtoSuggestRequest.model_validate(prompt_json) payload = request.payload dict_messages = [] @@ -448,7 +448,7 @@ def _submit_completion(self, messages: List[Dict]) -> _KdtSqlResponse: data = response_json["data"] # response = CompletionResponse.model_validate(data) # pydantic v2 - response = _KdtCompletionResponse.parse_obj(data) + response = _KdtCompletionResponse.model_validate(data) if response.status != "OK": raise ValueError("SQL Generation failed") return response.data @@ -543,8 +543,9 @@ class KineticaSqlResponse(BaseModel): dataframe: Any = Field(default=None) """The Pandas dataframe containing the fetched data.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) class KineticaSqlOutputParser(BaseOutputParser[KineticaSqlResponse]): @@ -582,8 +583,9 @@ class KineticaSqlOutputParser(BaseOutputParser[KineticaSqlResponse]): kdbc: Any = Field(exclude=True) """ Kinetica DB connection. """ - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def parse(self, text: str) -> KineticaSqlResponse: df = self.kdbc.to_df(text) diff --git a/libs/community/langchain_community/chat_models/konko.py b/libs/community/langchain_community/chat_models/konko.py index d4ee329d835dc..a2d16e51179e6 100644 --- a/libs/community/langchain_community/chat_models/konko.py +++ b/libs/community/langchain_community/chat_models/konko.py @@ -23,8 +23,8 @@ ) from langchain_core.messages import AIMessageChunk, BaseMessage from langchain_core.outputs import ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import Field, SecretStr from langchain_community.adapters.openai import ( convert_message_to_dict, diff --git a/libs/community/langchain_community/chat_models/litellm.py b/libs/community/langchain_community/chat_models/litellm.py index f0cf69a71910d..d6c9557339857 100644 --- a/libs/community/langchain_community/chat_models/litellm.py +++ b/libs/community/langchain_community/chat_models/litellm.py @@ -52,11 +52,11 @@ ChatGenerationChunk, ChatResult, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env, pre_init from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import BaseModel, Field logger = logging.getLogger(__name__) @@ -215,7 +215,7 @@ def _convert_message_to_dict(message: BaseMessage) -> dict: class ChatLiteLLM(BaseChatModel): """Chat model that uses the LiteLLM API.""" - client: Any #: :meta private: + client: Any = None #: :meta private: model: str = "gpt-3.5-turbo" model_name: Optional[str] = None """Model name to use.""" diff --git a/libs/community/langchain_community/chat_models/llama_edge.py b/libs/community/langchain_community/chat_models/llama_edge.py index 8edda85c3b023..0c096d89608de 100644 --- a/libs/community/langchain_community/chat_models/llama_edge.py +++ b/libs/community/langchain_community/chat_models/llama_edge.py @@ -21,8 +21,8 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils import get_pydantic_field_names +from pydantic import ConfigDict, model_validator logger = logging.getLogger(__name__) @@ -84,11 +84,13 @@ class LlamaEdgeChatService(BaseChatModel): streaming: bool = False """Whether to stream the results or not.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/chat_models/llamacpp.py b/libs/community/langchain_community/chat_models/llamacpp.py index a3b7f8a3a2527..65055e7fa7b25 100644 --- a/libs/community/langchain_community/chat_models/llamacpp.py +++ b/libs/community/langchain_community/chat_models/llamacpp.py @@ -46,15 +46,16 @@ parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - root_validator, -) from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import ( + BaseModel, + Field, + model_validator, +) +from typing_extensions import Self class ChatLlamaCpp(BaseChatModel): @@ -66,7 +67,7 @@ class ChatLlamaCpp(BaseChatModel): """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_path: str """The path to the Llama model file.""" @@ -172,8 +173,8 @@ class ChatLlamaCpp(BaseChatModel): verbose: bool = True """Print verbose output to stderr.""" - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that llama-cpp-python library is installed.""" try: from llama_cpp import Llama, LlamaGrammar @@ -184,7 +185,7 @@ def validate_environment(cls, values: Dict) -> Dict: "use this embedding model: pip install llama-cpp-python" ) - model_path = values["model_path"] + model_path = self.model_path model_param_names = [ "rope_freq_scale", "rope_freq_base", @@ -203,35 +204,35 @@ def validate_environment(cls, values: Dict) -> Dict: "last_n_tokens_size", "verbose", ] - model_params = {k: values[k] for k in model_param_names} + model_params = {k: getattr(self, k) for k in model_param_names} # For backwards compatibility, only include if non-null. - if values["n_gpu_layers"] is not None: - model_params["n_gpu_layers"] = values["n_gpu_layers"] + if self.n_gpu_layers is not None: + model_params["n_gpu_layers"] = self.n_gpu_layers - model_params.update(values["model_kwargs"]) + model_params.update(self.model_kwargs) try: - values["client"] = Llama(model_path, **model_params) + self.client = Llama(model_path, **model_params) except Exception as e: raise ValueError( f"Could not load Llama model from path: {model_path}. " f"Received error {e}" ) - if values["grammar"] and values["grammar_path"]: - grammar = values["grammar"] - grammar_path = values["grammar_path"] + if self.grammar and self.grammar_path: + grammar = self.grammar + grammar_path = self.grammar_path raise ValueError( "Can only pass in one of grammar and grammar_path. Received " f"{grammar=} and {grammar_path=}." ) - elif isinstance(values["grammar"], str): - values["grammar"] = LlamaGrammar.from_string(values["grammar"]) - elif values["grammar_path"]: - values["grammar"] = LlamaGrammar.from_file(values["grammar_path"]) + elif isinstance(self.grammar, str): + self.grammar = LlamaGrammar.from_string(self.grammar) + elif self.grammar_path: + self.grammar = LlamaGrammar.from_file(self.grammar_path) else: pass - return values + return self def _get_parameters(self, stop: Optional[List[str]]) -> Dict[str, Any]: """ @@ -433,7 +434,7 @@ def with_structured_output( .. code-block:: python from langchain_community.chat_models import ChatLlamaCpp - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -465,7 +466,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_community.chat_models import ChatLlamaCpp - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -497,7 +498,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_community.chat_models import ChatLlamaCpp - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): diff --git a/libs/community/langchain_community/chat_models/maritalk.py b/libs/community/langchain_community/chat_models/maritalk.py index f06f2917e715d..9e089a174aeca 100644 --- a/libs/community/langchain_community/chat_models/maritalk.py +++ b/libs/community/langchain_community/chat_models/maritalk.py @@ -16,7 +16,7 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field +from pydantic import Field from requests import Response from requests.exceptions import HTTPError diff --git a/libs/community/langchain_community/chat_models/minimax.py b/libs/community/langchain_community/chat_models/minimax.py index b8b47ae838586..b4a06e45d33be 100644 --- a/libs/community/langchain_community/chat_models/minimax.py +++ b/libs/community/langchain_community/chat_models/minimax.py @@ -44,12 +44,18 @@ PydanticToolsParser, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import get_fields +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) logger = logging.getLogger(__name__) @@ -267,7 +273,7 @@ class MiniMaxChat(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): @@ -307,7 +313,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): @@ -363,7 +369,7 @@ def _default_params(self) -> Dict[str, Any]: **self.model_kwargs, } - _client: Any + _client: Any = None model: str = "abab6.5-chat" """Model name to use.""" max_tokens: int = 256 @@ -384,11 +390,13 @@ def _default_params(self) -> Dict[str, Any]: streaming: bool = False """Whether to stream the results or not.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["minimax_api_key"] = convert_to_secret_str( get_from_dict_or_env( @@ -694,7 +702,7 @@ def with_structured_output( .. code-block:: python from langchain_community.chat_models import MiniMaxChat - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -715,7 +723,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_community.chat_models import MiniMaxChat - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -737,7 +745,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_community.chat_models import MiniMaxChat - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): diff --git a/libs/community/langchain_community/chat_models/mlflow.py b/libs/community/langchain_community/chat_models/mlflow.py index 101c2cb040c6b..74d89490b7d1c 100644 --- a/libs/community/langchain_community/chat_models/mlflow.py +++ b/libs/community/langchain_community/chat_models/mlflow.py @@ -42,14 +42,14 @@ parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( +from langchain_core.runnables import Runnable, RunnableConfig +from langchain_core.tools import BaseTool +from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import ( BaseModel, Field, PrivateAttr, ) -from langchain_core.runnables import Runnable, RunnableConfig -from langchain_core.tools import BaseTool -from langchain_core.utils.function_calling import convert_to_openai_tool logger = logging.getLogger(__name__) @@ -68,7 +68,7 @@ class ChatMlflow(BaseChatModel): chat = ChatMlflow( target_uri="http://localhost:5000", endpoint="chat", - temperature-0.1, + temperature=0.1, ) """ diff --git a/libs/community/langchain_community/chat_models/mlflow_ai_gateway.py b/libs/community/langchain_community/chat_models/mlflow_ai_gateway.py index f85eebed002e1..e33a656466eae 100644 --- a/libs/community/langchain_community/chat_models/mlflow_ai_gateway.py +++ b/libs/community/langchain_community/chat_models/mlflow_ai_gateway.py @@ -18,7 +18,7 @@ ChatGeneration, ChatResult, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/chat_models/oci_generative_ai.py b/libs/community/langchain_community/chat_models/oci_generative_ai.py index 3207e2d93a693..a900e488ffa42 100644 --- a/libs/community/langchain_community/chat_models/oci_generative_ai.py +++ b/libs/community/langchain_community/chat_models/oci_generative_ai.py @@ -38,10 +38,10 @@ PydanticToolsParser, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_function +from pydantic import BaseModel, ConfigDict from langchain_community.llms.oci_generative_ai import OCIGenAIBase from langchain_community.llms.utils import enforce_stop_tokens @@ -499,8 +499,10 @@ class ChatOCIGenAI(BaseChatModel, OCIGenAIBase): """ # noqa: E501 - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + arbitrary_types_allowed=True, + ) @property def _llm_type(self) -> str: @@ -546,6 +548,9 @@ def _prepare_request( chat_params = {**_model_kwargs, **kwargs, **oci_params} + if not self.model_id: + raise ValueError("Model ID is required to chat") + if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX): serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id) else: diff --git a/libs/community/langchain_community/chat_models/octoai.py b/libs/community/langchain_community/chat_models/octoai.py index 6d9a2588022a7..cbe1ee4ca8853 100644 --- a/libs/community/langchain_community/chat_models/octoai.py +++ b/libs/community/langchain_community/chat_models/octoai.py @@ -13,11 +13,11 @@ from langchain_core.language_models import LanguageModelInput from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import Field, SecretStr from langchain_community.chat_models.openai import ChatOpenAI from langchain_community.utils.openai import is_openai_v1 diff --git a/libs/community/langchain_community/chat_models/ollama.py b/libs/community/langchain_community/chat_models/ollama.py index 298bfca97f6b7..0a3788b48d57c 100644 --- a/libs/community/langchain_community/chat_models/ollama.py +++ b/libs/community/langchain_community/chat_models/ollama.py @@ -47,6 +47,11 @@ def _chat_stream_response_to_chat_generation_chunk( ) +@deprecated( + since="0.3.1", + removal="1.0.0", + alternative_import="langchain_ollama.ChatOllama", +) class ChatOllama(BaseChatModel, _OllamaCommon): """Ollama locally runs large language models. diff --git a/libs/community/langchain_community/chat_models/openai.py b/libs/community/langchain_community/chat_models/openai.py index 54326d0acc288..0ad982eec7022 100644 --- a/libs/community/langchain_community/chat_models/openai.py +++ b/libs/community/langchain_community/chat_models/openai.py @@ -5,6 +5,7 @@ import logging import os import sys +import warnings from typing import ( TYPE_CHECKING, Any, @@ -44,13 +45,13 @@ ToolMessageChunk, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.runnables import Runnable from langchain_core.utils import ( get_from_dict_or_env, get_pydantic_field_names, pre_init, ) +from pydantic import BaseModel, ConfigDict, Field, model_validator from langchain_community.adapters.openai import ( convert_dict_to_message, @@ -146,6 +147,33 @@ def _convert_delta_to_message_chunk( return default_class(content=content) # type: ignore[call-arg] +def _update_token_usage( + overall_token_usage: Union[int, dict], new_usage: Union[int, dict] +) -> Union[int, dict]: + # Token usage is either ints or dictionaries + # `reasoning_tokens` is nested inside `completion_tokens_details` + if isinstance(new_usage, int): + if not isinstance(overall_token_usage, int): + raise ValueError( + f"Got different types for token usage: " + f"{type(new_usage)} and {type(overall_token_usage)}" + ) + return new_usage + overall_token_usage + elif isinstance(new_usage, dict): + if not isinstance(overall_token_usage, dict): + raise ValueError( + f"Got different types for token usage: " + f"{type(new_usage)} and {type(overall_token_usage)}" + ) + return { + k: _update_token_usage(overall_token_usage.get(k, 0), v) + for k, v in new_usage.items() + } + else: + warnings.warn(f"Unexpected type for token usage: {type(new_usage)}") + return new_usage + + @deprecated( since="0.0.10", removal="1.0", alternative_import="langchain_openai.ChatOpenAI" ) @@ -244,11 +272,13 @@ def is_lc_serializable(cls) -> bool: http_client: Union[Any, None] = None """Optional httpx.Client.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -374,7 +404,9 @@ def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: if token_usage is not None: for k, v in token_usage.items(): if k in overall_token_usage: - overall_token_usage[k] += v + overall_token_usage[k] = _update_token_usage( + overall_token_usage[k], v + ) else: overall_token_usage[k] = v if system_fingerprint is None: diff --git a/libs/community/langchain_community/chat_models/pai_eas_endpoint.py b/libs/community/langchain_community/chat_models/pai_eas_endpoint.py index 48c7eb9b42a0e..55dd0ccbf93c3 100644 --- a/libs/community/langchain_community/chat_models/pai_eas_endpoint.py +++ b/libs/community/langchain_community/chat_models/pai_eas_endpoint.py @@ -17,8 +17,8 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -67,8 +67,9 @@ class PaiEasChatEndpoint(BaseChatModel): timeout: Optional[int] = 5000 - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["eas_service_url"] = get_from_dict_or_env( values, "eas_service_url", "EAS_SERVICE_URL" diff --git a/libs/community/langchain_community/chat_models/perplexity.py b/libs/community/langchain_community/chat_models/perplexity.py index ee93f48cbf894..88547c67d29db 100644 --- a/libs/community/langchain_community/chat_models/perplexity.py +++ b/libs/community/langchain_community/chat_models/perplexity.py @@ -35,8 +35,12 @@ ToolMessageChunk, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, root_validator -from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names +from langchain_core.utils import ( + from_env, + get_pydantic_field_names, +) +from pydantic import ConfigDict, Field, model_validator +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -60,14 +64,16 @@ class ChatPerplexity(BaseChatModel): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model: str = "llama-3.1-sonar-small-128k-online" """Model name.""" temperature: float = 0.7 """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" - pplx_api_key: Optional[str] = Field(None, alias="api_key") + pplx_api_key: Optional[str] = Field( + default_factory=from_env("PPLX_API_KEY", default=None), alias="api_key" + ) """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = Field( @@ -81,15 +87,17 @@ class ChatPerplexity(BaseChatModel): max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) @property def lc_secrets(self) -> Dict[str, str]: return {"pplx_api_key": "PPLX_API_KEY"} - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -114,12 +122,9 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["model_kwargs"] = extra return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - values["pplx_api_key"] = get_from_dict_or_env( - values, "pplx_api_key", "PPLX_API_KEY" - ) try: import openai except ImportError: @@ -128,8 +133,8 @@ def validate_environment(cls, values: Dict) -> Dict: "Please install it with `pip install openai`." ) try: - values["client"] = openai.OpenAI( - api_key=values["pplx_api_key"], base_url="https://api.perplexity.ai" + self.client = openai.OpenAI( + api_key=self.pplx_api_key, base_url="https://api.perplexity.ai" ) except AttributeError: raise ValueError( @@ -137,7 +142,7 @@ def validate_environment(cls, values: Dict) -> Dict: "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) - return values + return self @property def _default_params(self) -> Dict[str, Any]: diff --git a/libs/community/langchain_community/chat_models/premai.py b/libs/community/langchain_community/chat_models/premai.py index 5498ac9e40016..5be59560ac74e 100644 --- a/libs/community/langchain_community/chat_models/premai.py +++ b/libs/community/langchain_community/chat_models/premai.py @@ -38,15 +38,16 @@ ToolMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, -) from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env, pre_init from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, +) if TYPE_CHECKING: from premai.api.chat_completions.v1_chat_completions_create import ( @@ -304,12 +305,13 @@ class ChatPremAI(BaseChatModel, BaseModel): streaming: Optional[bool] = False """Whether to stream the responses or not.""" - client: Any + client: Any = None - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="forbid", + ) @pre_init def validate_environments(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/chat_models/sambanova.py b/libs/community/langchain_community/chat_models/sambanova.py new file mode 100644 index 0000000000000..cd95f4beefa5f --- /dev/null +++ b/libs/community/langchain_community/chat_models/sambanova.py @@ -0,0 +1,1212 @@ +import json +from typing import Any, Dict, Iterator, List, Optional, Tuple + +import requests +from langchain_core.callbacks import ( + CallbackManagerForLLMRun, +) +from langchain_core.language_models.chat_models import ( + BaseChatModel, + generate_from_stream, +) +from langchain_core.messages import ( + AIMessage, + AIMessageChunk, + BaseMessage, + BaseMessageChunk, + ChatMessage, + HumanMessage, + SystemMessage, + ToolMessage, +) +from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult +from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import Field, SecretStr +from requests import Response + + +def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]: + """ + convert a BaseMessage to a dictionary with Role / content + + Args: + message: BaseMessage + + Returns: + messages_dict: role / content dict + """ + if isinstance(message, ChatMessage): + message_dict = {"role": message.role, "content": message.content} + elif isinstance(message, SystemMessage): + message_dict = {"role": "system", "content": message.content} + elif isinstance(message, HumanMessage): + message_dict = {"role": "user", "content": message.content} + elif isinstance(message, AIMessage): + message_dict = {"role": "assistant", "content": message.content} + elif isinstance(message, ToolMessage): + message_dict = {"role": "tool", "content": message.content} + else: + raise TypeError(f"Got unknown type {message}") + return message_dict + + +def _create_message_dicts(messages: List[BaseMessage]) -> List[Dict[str, Any]]: + """ + Convert a list of BaseMessages to a list of dictionaries with Role / content + + Args: + messages: list of BaseMessages + + Returns: + messages_dicts: list of role / content dicts + """ + message_dicts = [_convert_message_to_dict(m) for m in messages] + return message_dicts + + +class ChatSambaNovaCloud(BaseChatModel): + """ + SambaNova Cloud chat model. + + Setup: + To use, you should have the environment variables: + ``SAMBANOVA_URL`` set with your SambaNova Cloud URL. + ``SAMBANOVA_API_KEY`` set with your SambaNova Cloud API Key. + http://cloud.sambanova.ai/ + Example: + .. code-block:: python + ChatSambaNovaCloud( + sambanova_url = SambaNova cloud endpoint URL, + sambanova_api_key = set with your SambaNova cloud API key, + model = model name, + max_tokens = max number of tokens to generate, + temperature = model temperature, + top_p = model top p, + top_k = model top k, + stream_options = include usage to get generation metrics + ) + + Key init args — completion params: + model: str + The name of the model to use, e.g., Meta-Llama-3-70B-Instruct. + streaming: bool + Whether to use streaming handler when using non streaming methods + max_tokens: int + max tokens to generate + temperature: float + model temperature + top_p: float + model top p + top_k: int + model top k + stream_options: dict + stream options, include usage to get generation metrics + + Key init args — client params: + sambanova_url: str + SambaNova Cloud Url + sambanova_api_key: str + SambaNova Cloud api key + + Instantiate: + .. code-block:: python + + from langchain_community.chat_models import ChatSambaNovaCloud + + chat = ChatSambaNovaCloud( + sambanova_url = SambaNova cloud endpoint URL, + sambanova_api_key = set with your SambaNova cloud API key, + model = model name, + max_tokens = max number of tokens to generate, + temperature = model temperature, + top_p = model top p, + top_k = model top k, + stream_options = include usage to get generation metrics + ) + Invoke: + .. code-block:: python + messages = [ + SystemMessage(content="your are an AI assistant."), + HumanMessage(content="tell me a joke."), + ] + response = chat.invoke(messages) + + Stream: + .. code-block:: python + + for chunk in chat.stream(messages): + print(chunk.content, end="", flush=True) + + Async: + .. code-block:: python + + response = chat.ainvoke(messages) + await response + + Token usage: + .. code-block:: python + response = chat.invoke(messages) + print(response.response_metadata["usage"]["prompt_tokens"] + print(response.response_metadata["usage"]["total_tokens"] + + Response metadata + .. code-block:: python + + response = chat.invoke(messages) + print(response.response_metadata) + """ + + sambanova_url: str = Field(default="") + """SambaNova Cloud Url""" + + sambanova_api_key: SecretStr = Field(default="") + """SambaNova Cloud api key""" + + model: str = Field(default="Meta-Llama-3.1-8B-Instruct") + """The name of the model""" + + streaming: bool = Field(default=False) + """Whether to use streaming handler when using non streaming methods""" + + max_tokens: int = Field(default=1024) + """max tokens to generate""" + + temperature: float = Field(default=0.7) + """model temperature""" + + top_p: Optional[float] = Field() + """model top p""" + + top_k: Optional[int] = Field() + """model top k""" + + stream_options: dict = Field(default={"include_usage": True}) + """stream options, include usage to get generation metrics""" + + class Config: + populate_by_name = True + + @classmethod + def is_lc_serializable(cls) -> bool: + """Return whether this model can be serialized by Langchain.""" + return False + + @property + def lc_secrets(self) -> Dict[str, str]: + return {"sambanova_api_key": "sambanova_api_key"} + + @property + def _identifying_params(self) -> Dict[str, Any]: + """Return a dictionary of identifying parameters. + + This information is used by the LangChain callback system, which + is used for tracing purposes make it possible to monitor LLMs. + """ + return { + "model": self.model, + "streaming": self.streaming, + "max_tokens": self.max_tokens, + "temperature": self.temperature, + "top_p": self.top_p, + "top_k": self.top_k, + "stream_options": self.stream_options, + } + + @property + def _llm_type(self) -> str: + """Get the type of language model used by this chat model.""" + return "sambanovacloud-chatmodel" + + def __init__(self, **kwargs: Any) -> None: + """init and validate environment variables""" + kwargs["sambanova_url"] = get_from_dict_or_env( + kwargs, + "sambanova_url", + "SAMBANOVA_URL", + default="https://api.sambanova.ai/v1/chat/completions", + ) + kwargs["sambanova_api_key"] = convert_to_secret_str( + get_from_dict_or_env(kwargs, "sambanova_api_key", "SAMBANOVA_API_KEY") + ) + super().__init__(**kwargs) + + def _handle_request( + self, messages_dicts: List[Dict], stop: Optional[List[str]] = None + ) -> Dict[str, Any]: + """ + Performs a post request to the LLM API. + + Args: + messages_dicts: List of role / content dicts to use as input. + stop: list of stop tokens + + Returns: + An iterator of response dicts. + """ + data = { + "messages": messages_dicts, + "max_tokens": self.max_tokens, + "stop": stop, + "model": self.model, + "temperature": self.temperature, + "top_p": self.top_p, + "top_k": self.top_k, + } + http_session = requests.Session() + response = http_session.post( + self.sambanova_url, + headers={ + "Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}", + "Content-Type": "application/json", + }, + json=data, + ) + if response.status_code != 200: + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}.", + f"{response.text}.", + ) + response_dict = response.json() + if response_dict.get("error"): + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}.", + f"{response_dict}.", + ) + return response_dict + + def _handle_streaming_request( + self, messages_dicts: List[Dict], stop: Optional[List[str]] = None + ) -> Iterator[Dict]: + """ + Performs an streaming post request to the LLM API. + + Args: + messages_dicts: List of role / content dicts to use as input. + stop: list of stop tokens + + Yields: + An iterator of response dicts. + """ + try: + import sseclient + except ImportError: + raise ImportError( + "could not import sseclient library" + "Please install it with `pip install sseclient-py`." + ) + data = { + "messages": messages_dicts, + "max_tokens": self.max_tokens, + "stop": stop, + "model": self.model, + "temperature": self.temperature, + "top_p": self.top_p, + "top_k": self.top_k, + "stream": True, + "stream_options": self.stream_options, + } + http_session = requests.Session() + response = http_session.post( + self.sambanova_url, + headers={ + "Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}", + "Content-Type": "application/json", + }, + json=data, + stream=True, + ) + + client = sseclient.SSEClient(response) + + if response.status_code != 200: + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{response.text}." + ) + + for event in client.events(): + if event.event == "error_event": + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{event.data}." + ) + + try: + # check if the response is a final event + # in that case event data response is '[DONE]' + if event.data != "[DONE]": + if isinstance(event.data, str): + data = json.loads(event.data) + else: + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{event.data}." + ) + if data.get("error"): + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{event.data}." + ) + yield data + except Exception as e: + raise RuntimeError( + f"Error getting content chunk raw streamed response: {e}" + f"data: {event.data}" + ) + + def _generate( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> ChatResult: + """ + Call SambaNovaCloud models. + + Args: + messages: the prompt composed of a list of messages. + stop: a list of strings on which the model should stop generating. + If generation stops due to a stop token, the stop token itself + SHOULD BE INCLUDED as part of the output. This is not enforced + across models right now, but it's a good practice to follow since + it makes it much easier to parse the output of the model + downstream and understand why generation stopped. + run_manager: A run manager with callbacks for the LLM. + + Returns: + result: ChatResult with model generation + """ + if self.streaming: + stream_iter = self._stream( + messages, stop=stop, run_manager=run_manager, **kwargs + ) + if stream_iter: + return generate_from_stream(stream_iter) + messages_dicts = _create_message_dicts(messages) + response = self._handle_request(messages_dicts, stop) + message = AIMessage( + content=response["choices"][0]["message"]["content"], + additional_kwargs={}, + response_metadata={ + "finish_reason": response["choices"][0]["finish_reason"], + "usage": response.get("usage"), + "model_name": response["model"], + "system_fingerprint": response["system_fingerprint"], + "created": response["created"], + }, + id=response["id"], + ) + + generation = ChatGeneration(message=message) + return ChatResult(generations=[generation]) + + def _stream( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> Iterator[ChatGenerationChunk]: + """ + Stream the output of the SambaNovaCloud chat model. + + Args: + messages: the prompt composed of a list of messages. + stop: a list of strings on which the model should stop generating. + If generation stops due to a stop token, the stop token itself + SHOULD BE INCLUDED as part of the output. This is not enforced + across models right now, but it's a good practice to follow since + it makes it much easier to parse the output of the model + downstream and understand why generation stopped. + run_manager: A run manager with callbacks for the LLM. + + Yields: + chunk: ChatGenerationChunk with model partial generation + """ + messages_dicts = _create_message_dicts(messages) + finish_reason = None + for partial_response in self._handle_streaming_request(messages_dicts, stop): + if len(partial_response["choices"]) > 0: + finish_reason = partial_response["choices"][0].get("finish_reason") + content = partial_response["choices"][0]["delta"]["content"] + id = partial_response["id"] + chunk = ChatGenerationChunk( + message=AIMessageChunk(content=content, id=id, additional_kwargs={}) + ) + else: + content = "" + id = partial_response["id"] + metadata = { + "finish_reason": finish_reason, + "usage": partial_response.get("usage"), + "model_name": partial_response["model"], + "system_fingerprint": partial_response["system_fingerprint"], + "created": partial_response["created"], + } + chunk = ChatGenerationChunk( + message=AIMessageChunk( + content=content, + id=id, + response_metadata=metadata, + additional_kwargs={}, + ) + ) + + if run_manager: + run_manager.on_llm_new_token(chunk.text, chunk=chunk) + yield chunk + + +class ChatSambaStudio(BaseChatModel): + """ + SambaStudio chat model. + + Setup: + To use, you should have the environment variables: + ``SAMBASTUDIO_URL`` set with your SambaStudio deployed endpoint URL. + ``SAMBASTUDIO_API_KEY`` set with your SambaStudio deployed endpoint Key. + https://docs.sambanova.ai/sambastudio/latest/index.html + Example: + .. code-block:: python + ChatSambaStudio( + sambastudio_url = set with your SambaStudio deployed endpoint URL, + sambastudio_api_key = set with your SambaStudio deployed endpoint Key. + model = model or expert name (set for CoE endpoints), + max_tokens = max number of tokens to generate, + temperature = model temperature, + top_p = model top p, + top_k = model top k, + do_sample = wether to do sample + process_prompt = wether to process prompt + (set for CoE generic v1 and v2 endpoints) + stream_options = include usage to get generation metrics + special_tokens = start, start_role, end_role, end special tokens + (set for CoE generic v1 and v2 endpoints when process prompt + set to false or for StandAlone v1 and v2 endpoints) + model_kwargs: Optional = Extra Key word arguments to pass to the model. + ) + + Key init args — completion params: + model: str + The name of the model to use, e.g., Meta-Llama-3-70B-Instruct-4096 + (set for CoE endpoints). + streaming: bool + Whether to use streaming + max_tokens: inthandler when using non streaming methods + max tokens to generate + temperature: float + model temperature + top_p: float + model top p + top_k: int + model top k + do_sample: bool + wether to do sample + process_prompt: + wether to process prompt (set for CoE generic v1 and v2 endpoints) + stream_options: dict + stream options, include usage to get generation metrics + special_tokens: dict + start, start_role, end_role and end special tokens + (set for CoE generic v1 and v2 endpoints when process prompt set to false + or for StandAlone v1 and v2 endpoints) default to llama3 special tokens + model_kwargs: dict + Extra Key word arguments to pass to the model. + + Key init args — client params: + sambastudio_url: str + SambaStudio endpoint Url + sambastudio_api_key: str + SambaStudio endpoint api key + + Instantiate: + .. code-block:: python + + from langchain_community.chat_models import ChatSambaStudio + + chat = ChatSambaStudio=( + sambastudio_url = set with your SambaStudio deployed endpoint URL, + sambastudio_api_key = set with your SambaStudio deployed endpoint Key. + model = model or expert name (set for CoE endpoints), + max_tokens = max number of tokens to generate, + temperature = model temperature, + top_p = model top p, + top_k = model top k, + do_sample = wether to do sample + process_prompt = wether to process prompt + (set for CoE generic v1 and v2 endpoints) + stream_options = include usage to get generation metrics + special_tokens = start, start_role, end_role, and special tokens + (set for CoE generic v1 and v2 endpoints when process prompt + set to false or for StandAlone v1 and v2 endpoints) + model_kwargs: Optional = Extra Key word arguments to pass to the model. + ) + Invoke: + .. code-block:: python + messages = [ + SystemMessage(content="your are an AI assistant."), + HumanMessage(content="tell me a joke."), + ] + response = chat.invoke(messages) + + Stream: + .. code-block:: python + + for chunk in chat.stream(messages): + print(chunk.content, end="", flush=True) + + Async: + .. code-block:: python + + response = chat.ainvoke(messages) + await response + + Token usage: + .. code-block:: python + response = chat.invoke(messages) + print(response.response_metadata["usage"]["prompt_tokens"] + print(response.response_metadata["usage"]["total_tokens"] + + Response metadata + .. code-block:: python + + response = chat.invoke(messages) + print(response.response_metadata) + """ + + sambastudio_url: str = Field(default="") + """SambaStudio Url""" + + sambastudio_api_key: SecretStr = Field(default="") + """SambaStudio api key""" + + base_url: str = Field(default="", exclude=True) + """SambaStudio non streaming Url""" + + streaming_url: str = Field(default="", exclude=True) + """SambaStudio streaming Url""" + + model: Optional[str] = Field() + """The name of the model or expert to use (for CoE endpoints)""" + + streaming: bool = Field(default=False) + """Whether to use streaming handler when using non streaming methods""" + + max_tokens: int = Field(default=1024) + """max tokens to generate""" + + temperature: Optional[float] = Field(default=0.7) + """model temperature""" + + top_p: Optional[float] = Field() + """model top p""" + + top_k: Optional[int] = Field() + """model top k""" + + do_sample: Optional[bool] = Field() + """whether to do sampling""" + + process_prompt: Optional[bool] = Field() + """whether process prompt (for CoE generic v1 and v2 endpoints)""" + + stream_options: dict = Field(default={"include_usage": True}) + """stream options, include usage to get generation metrics""" + + special_tokens: dict = Field( + default={ + "start": "<|begin_of_text|>", + "start_role": "<|begin_of_text|><|start_header_id|>{role}<|end_header_id|>", + "end_role": "<|eot_id|>", + "end": "<|start_header_id|>assistant<|end_header_id|>\n", + } + ) + """start, start_role, end_role and end special tokens + (set for CoE generic v1 and v2 endpoints when process prompt set to false + or for StandAlone v1 and v2 endpoints) + default to llama3 special tokens""" + + model_kwargs: Optional[Dict[str, Any]] = None + """Key word arguments to pass to the model.""" + + class Config: + populate_by_name = True + + @classmethod + def is_lc_serializable(cls) -> bool: + """Return whether this model can be serialized by Langchain.""" + return False + + @property + def lc_secrets(self) -> Dict[str, str]: + return { + "sambastudio_url": "sambastudio_url", + "sambastudio_api_key": "sambastudio_api_key", + } + + @property + def _identifying_params(self) -> Dict[str, Any]: + """Return a dictionary of identifying parameters. + + This information is used by the LangChain callback system, which + is used for tracing purposes make it possible to monitor LLMs. + """ + return { + "model": self.model, + "streaming": self.streaming, + "max_tokens": self.max_tokens, + "temperature": self.temperature, + "top_p": self.top_p, + "top_k": self.top_k, + "do_sample": self.do_sample, + "process_prompt": self.process_prompt, + "stream_options": self.stream_options, + "special_tokens": self.special_tokens, + "model_kwargs": self.model_kwargs, + } + + @property + def _llm_type(self) -> str: + """Get the type of language model used by this chat model.""" + return "sambastudio-chatmodel" + + def __init__(self, **kwargs: Any) -> None: + """init and validate environment variables""" + kwargs["sambastudio_url"] = get_from_dict_or_env( + kwargs, "sambastudio_url", "SAMBASTUDIO_URL" + ) + + kwargs["sambastudio_api_key"] = convert_to_secret_str( + get_from_dict_or_env(kwargs, "sambastudio_api_key", "SAMBASTUDIO_API_KEY") + ) + kwargs["base_url"], kwargs["streaming_url"] = self._get_sambastudio_urls( + kwargs["sambastudio_url"] + ) + super().__init__(**kwargs) + + def _get_role(self, message: BaseMessage) -> str: + """ + Get the role of LangChain BaseMessage + + Args: + message: LangChain BaseMessage + + Returns: + str: Role of the LangChain BaseMessage + """ + if isinstance(message, ChatMessage): + role = message.role + elif isinstance(message, SystemMessage): + role = "system" + elif isinstance(message, HumanMessage): + role = "user" + elif isinstance(message, AIMessage): + role = "assistant" + elif isinstance(message, ToolMessage): + role = "tool" + else: + raise TypeError(f"Got unknown type {message}") + return role + + def _messages_to_string(self, messages: List[BaseMessage]) -> str: + """ + Convert a list of BaseMessages to a: + - dumped json string with Role / content dict structure + when process_prompt is true, + - string with special tokens if process_prompt is false + for generic V1 and V2 endpoints + + Args: + messages: list of BaseMessages + + Returns: + str: string to send as model input depending on process_prompt param + """ + if self.process_prompt: + messages_dict: Dict[str, Any] = { + "conversation_id": "sambaverse-conversation-id", + "messages": [], + } + for message in messages: + messages_dict["messages"].append( + { + "message_id": message.id, + "role": self._get_role(message), + "content": message.content, + } + ) + messages_string = json.dumps(messages_dict) + else: + messages_string = self.special_tokens["start"] + for message in messages: + messages_string += self.special_tokens["start_role"].format( + role=self._get_role(message) + ) + messages_string += f" {message.content} " + messages_string += self.special_tokens["end_role"] + messages_string += self.special_tokens["end"] + + return messages_string + + def _get_sambastudio_urls(self, url: str) -> Tuple[str, str]: + """ + Get streaming and non streaming URLs from the given URL + + Args: + url: string with sambastudio base or streaming endpoint url + + Returns: + base_url: string with url to do non streaming calls + streaming_url: string with url to do streaming calls + """ + if "openai" in url: + base_url = url + stream_url = url + else: + if "stream" in url: + base_url = url.replace("stream/", "") + stream_url = url + else: + base_url = url + if "generic" in url: + stream_url = "generic/stream".join(url.split("generic")) + else: + raise ValueError("Unsupported URL") + return base_url, stream_url + + def _handle_request( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + streaming: Optional[bool] = False, + ) -> Response: + """ + Performs a post request to the LLM API. + + Args: + messages_dicts: List of role / content dicts to use as input. + stop: list of stop tokens + streaming: wether to do a streaming call + + Returns: + A request Response object + """ + + # create request payload for openai compatible API + if "openai" in self.sambastudio_url: + messages_dicts = _create_message_dicts(messages) + data = { + "messages": messages_dicts, + "max_tokens": self.max_tokens, + "stop": stop, + "model": self.model, + "temperature": self.temperature, + "top_p": self.top_p, + "top_k": self.top_k, + "stream": streaming, + "stream_options": self.stream_options, + } + data = {key: value for key, value in data.items() if value is not None} + headers = { + "Authorization": f"Bearer " + f"{self.sambastudio_api_key.get_secret_value()}", + "Content-Type": "application/json", + } + + # create request payload for generic v1 API + elif "api/v2/predict/generic" in self.sambastudio_url: + items = [{"id": "item0", "value": self._messages_to_string(messages)}] + params: Dict[str, Any] = { + "select_expert": self.model, + "process_prompt": self.process_prompt, + "max_tokens_to_generate": self.max_tokens, + "temperature": self.temperature, + "top_p": self.top_p, + "top_k": self.top_k, + "do_sample": self.do_sample, + } + if self.model_kwargs is not None: + params = {**params, **self.model_kwargs} + params = {key: value for key, value in params.items() if value is not None} + data = {"items": items, "params": params} + headers = {"key": self.sambastudio_api_key.get_secret_value()} + + # create request payload for generic v1 API + elif "api/predict/generic" in self.sambastudio_url: + params = { + "select_expert": self.model, + "process_prompt": self.process_prompt, + "max_tokens_to_generate": self.max_tokens, + "temperature": self.temperature, + "top_p": self.top_p, + "top_k": self.top_k, + "do_sample": self.do_sample, + } + if self.model_kwargs is not None: + params = {**params, **self.model_kwargs} + params = { + key: {"type": type(value).__name__, "value": str(value)} + for key, value in params.items() + if value is not None + } + if streaming: + data = { + "instance": self._messages_to_string(messages), + "params": params, + } + else: + data = { + "instances": [self._messages_to_string(messages)], + "params": params, + } + headers = {"key": self.sambastudio_api_key.get_secret_value()} + + else: + raise ValueError( + f"Unsupported URL{self.sambastudio_url}" + "only openai, generic v1 and generic v2 APIs are supported" + ) + + http_session = requests.Session() + if streaming: + response = http_session.post( + self.streaming_url, headers=headers, json=data, stream=True + ) + else: + response = http_session.post( + self.base_url, headers=headers, json=data, stream=False + ) + if response.status_code != 200: + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{response.text}." + ) + return response + + def _process_response(self, response: Response) -> AIMessage: + """ + Process a non streaming response from the api + + Args: + response: A request Response object + + Returns + generation: an AIMessage with model generation + """ + + # Extract json payload form response + try: + response_dict = response.json() + except Exception as e: + raise RuntimeError( + f"Sambanova /complete call failed couldn't get JSON response {e}" + f"response: {response.text}" + ) + + # process response payload for openai compatible API + if "openai" in self.sambastudio_url: + content = response_dict["choices"][0]["message"]["content"] + id = response_dict["id"] + response_metadata = { + "finish_reason": response_dict["choices"][0]["finish_reason"], + "usage": response_dict.get("usage"), + "model_name": response_dict["model"], + "system_fingerprint": response_dict["system_fingerprint"], + "created": response_dict["created"], + } + + # process response payload for generic v2 API + elif "api/v2/predict/generic" in self.sambastudio_url: + content = response_dict["items"][0]["value"]["completion"] + id = response_dict["items"][0]["id"] + response_metadata = response_dict["items"][0] + + # process response payload for generic v1 API + elif "api/predict/generic" in self.sambastudio_url: + content = response_dict["predictions"][0]["completion"] + id = None + response_metadata = response_dict + + else: + raise ValueError( + f"Unsupported URL{self.sambastudio_url}" + "only openai, generic v1 and generic v2 APIs are supported" + ) + + return AIMessage( + content=content, + additional_kwargs={}, + response_metadata=response_metadata, + id=id, + ) + + def _process_stream_response( + self, response: Response + ) -> Iterator[BaseMessageChunk]: + """ + Process a streaming response from the api + + Args: + response: An iterable request Response object + + Yields: + generation: an AIMessageChunk with model partial generation + """ + + try: + import sseclient + except ImportError: + raise ImportError( + "could not import sseclient library" + "Please install it with `pip install sseclient-py`." + ) + + # process response payload for openai compatible API + if "openai" in self.sambastudio_url: + finish_reason = "" + client = sseclient.SSEClient(response) + for event in client.events(): + if event.event == "error_event": + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{event.data}." + ) + try: + # check if the response is not a final event ("[DONE]") + if event.data != "[DONE]": + if isinstance(event.data, str): + data = json.loads(event.data) + else: + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{event.data}." + ) + if data.get("error"): + raise RuntimeError( + f"Sambanova /complete call failed with status code " + f"{response.status_code}." + f"{event.data}." + ) + if len(data["choices"]) > 0: + finish_reason = data["choices"][0].get("finish_reason") + content = data["choices"][0]["delta"]["content"] + id = data["id"] + metadata = {} + else: + content = "" + id = data["id"] + metadata = { + "finish_reason": finish_reason, + "usage": data.get("usage"), + "model_name": data["model"], + "system_fingerprint": data["system_fingerprint"], + "created": data["created"], + } + yield AIMessageChunk( + content=content, + id=id, + response_metadata=metadata, + additional_kwargs={}, + ) + + except Exception as e: + raise RuntimeError( + f"Error getting content chunk raw streamed response: {e}" + f"data: {event.data}" + ) + + # process response payload for generic v2 API + elif "api/v2/predict/generic" in self.sambastudio_url: + for line in response.iter_lines(): + try: + data = json.loads(line) + content = data["result"]["items"][0]["value"]["stream_token"] + id = data["result"]["items"][0]["id"] + if data["result"]["items"][0]["value"]["is_last_response"]: + metadata = { + "finish_reason": data["result"]["items"][0]["value"].get( + "stop_reason" + ), + "prompt": data["result"]["items"][0]["value"].get("prompt"), + "usage": { + "prompt_tokens_count": data["result"]["items"][0][ + "value" + ].get("prompt_tokens_count"), + "completion_tokens_count": data["result"]["items"][0][ + "value" + ].get("completion_tokens_count"), + "total_tokens_count": data["result"]["items"][0][ + "value" + ].get("total_tokens_count"), + "start_time": data["result"]["items"][0]["value"].get( + "start_time" + ), + "end_time": data["result"]["items"][0]["value"].get( + "end_time" + ), + "model_execution_time": data["result"]["items"][0][ + "value" + ].get("model_execution_time"), + "time_to_first_token": data["result"]["items"][0][ + "value" + ].get("time_to_first_token"), + "throughput_after_first_token": data["result"]["items"][ + 0 + ]["value"].get("throughput_after_first_token"), + "batch_size_used": data["result"]["items"][0][ + "value" + ].get("batch_size_used"), + }, + } + else: + metadata = {} + yield AIMessageChunk( + content=content, + id=id, + response_metadata=metadata, + additional_kwargs={}, + ) + + except Exception as e: + raise RuntimeError( + f"Error getting content chunk raw streamed response: {e}" + f"line: {line}" + ) + + # process response payload for generic v1 API + elif "api/predict/generic" in self.sambastudio_url: + for line in response.iter_lines(): + try: + data = json.loads(line) + content = data["result"]["responses"][0]["stream_token"] + id = None + if data["result"]["responses"][0]["is_last_response"]: + metadata = { + "finish_reason": data["result"]["responses"][0].get( + "stop_reason" + ), + "prompt": data["result"]["responses"][0].get("prompt"), + "usage": { + "prompt_tokens_count": data["result"]["responses"][ + 0 + ].get("prompt_tokens_count"), + "completion_tokens_count": data["result"]["responses"][ + 0 + ].get("completion_tokens_count"), + "total_tokens_count": data["result"]["responses"][ + 0 + ].get("total_tokens_count"), + "start_time": data["result"]["responses"][0].get( + "start_time" + ), + "end_time": data["result"]["responses"][0].get( + "end_time" + ), + "model_execution_time": data["result"]["responses"][ + 0 + ].get("model_execution_time"), + "time_to_first_token": data["result"]["responses"][ + 0 + ].get("time_to_first_token"), + "throughput_after_first_token": data["result"][ + "responses" + ][0].get("throughput_after_first_token"), + "batch_size_used": data["result"]["responses"][0].get( + "batch_size_used" + ), + }, + } + else: + metadata = {} + yield AIMessageChunk( + content=content, + id=id, + response_metadata=metadata, + additional_kwargs={}, + ) + + except Exception as e: + raise RuntimeError( + f"Error getting content chunk raw streamed response: {e}" + f"line: {line}" + ) + + else: + raise ValueError( + f"Unsupported URL{self.sambastudio_url}" + "only openai, generic v1 and generic v2 APIs are supported" + ) + + def _generate( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> ChatResult: + """ + Call SambaStudio models. + + Args: + messages: the prompt composed of a list of messages. + stop: a list of strings on which the model should stop generating. + If generation stops due to a stop token, the stop token itself + SHOULD BE INCLUDED as part of the output. This is not enforced + across models right now, but it's a good practice to follow since + it makes it much easier to parse the output of the model + downstream and understand why generation stopped. + run_manager: A run manager with callbacks for the LLM. + + Returns: + result: ChatResult with model generation + """ + if self.streaming: + stream_iter = self._stream( + messages, stop=stop, run_manager=run_manager, **kwargs + ) + if stream_iter: + return generate_from_stream(stream_iter) + response = self._handle_request(messages, stop, streaming=False) + message = self._process_response(response) + generation = ChatGeneration(message=message) + return ChatResult(generations=[generation]) + + def _stream( + self, + messages: List[BaseMessage], + stop: Optional[List[str]] = None, + run_manager: Optional[CallbackManagerForLLMRun] = None, + **kwargs: Any, + ) -> Iterator[ChatGenerationChunk]: + """ + Stream the output of the SambaStudio model. + + Args: + messages: the prompt composed of a list of messages. + stop: a list of strings on which the model should stop generating. + If generation stops due to a stop token, the stop token itself + SHOULD BE INCLUDED as part of the output. This is not enforced + across models right now, but it's a good practice to follow since + it makes it much easier to parse the output of the model + downstream and understand why generation stopped. + run_manager: A run manager with callbacks for the LLM. + + Yields: + chunk: ChatGenerationChunk with model partial generation + """ + response = self._handle_request(messages, stop, streaming=True) + for ai_message_chunk in self._process_stream_response(response): + chunk = ChatGenerationChunk(message=ai_message_chunk) + if run_manager: + run_manager.on_llm_new_token(chunk.text, chunk=chunk) + yield chunk diff --git a/libs/community/langchain_community/chat_models/snowflake.py b/libs/community/langchain_community/chat_models/snowflake.py index f5af38afdd2a2..84883b2cd87f6 100644 --- a/libs/community/langchain_community/chat_models/snowflake.py +++ b/libs/community/langchain_community/chat_models/snowflake.py @@ -11,14 +11,14 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import ( convert_to_secret_str, get_from_dict_or_env, get_pydantic_field_names, pre_init, ) -from langchain_core.utils.utils import build_extra_kwargs +from langchain_core.utils.utils import _build_model_kwargs +from pydantic import Field, SecretStr, model_validator SUPPORTED_ROLES: List[str] = [ "system", @@ -126,14 +126,12 @@ class ChatSnowflakeCortex(BaseChatModel): snowflake_role: Optional[str] = Field(default=None, alias="role") """Automatically inferred from env var `SNOWFLAKE_ROLE` if not provided.""" - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values @pre_init diff --git a/libs/community/langchain_community/chat_models/solar.py b/libs/community/langchain_community/chat_models/solar.py index d8a3cb04c89df..10eba5da5a7a7 100644 --- a/libs/community/langchain_community/chat_models/solar.py +++ b/libs/community/langchain_community/chat_models/solar.py @@ -3,8 +3,8 @@ from typing import Dict from langchain_core._api import deprecated -from langchain_core.pydantic_v1 import Field from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import ConfigDict, Field from langchain_community.chat_models import ChatOpenAI from langchain_community.llms.solar import SOLAR_SERVICE_URL_BASE, SolarCommon @@ -30,10 +30,11 @@ class SolarChat(SolarCommon, ChatOpenAI): max_tokens: int = Field(default=1024) # this is needed to match ChatOpenAI superclass - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "ignore" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="ignore", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/chat_models/sparkllm.py b/libs/community/langchain_community/chat_models/sparkllm.py index adfeed5517d1b..996c8c2a2f67f 100644 --- a/libs/community/langchain_community/chat_models/sparkllm.py +++ b/libs/community/langchain_community/chat_models/sparkllm.py @@ -41,12 +41,12 @@ ChatGenerationChunk, ChatResult, ) -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import ( get_from_dict_or_env, get_pydantic_field_names, ) from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, model_validator logger = logging.getLogger(__name__) @@ -296,11 +296,13 @@ def lc_secrets(self) -> Dict[str, str]: model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for API call not explicitly specified.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -326,8 +328,9 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: return values - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: values["spark_app_id"] = get_from_dict_or_env( values, ["spark_app_id", "app_id"], diff --git a/libs/community/langchain_community/chat_models/symblai_nebula.py b/libs/community/langchain_community/chat_models/symblai_nebula.py index e3638bada8f24..adacc508ca987 100644 --- a/libs/community/langchain_community/chat_models/symblai_nebula.py +++ b/libs/community/langchain_community/chat_models/symblai_nebula.py @@ -16,8 +16,8 @@ ) from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str +from pydantic import ConfigDict, Field, SecretStr def _convert_role(role: str) -> str: @@ -89,11 +89,10 @@ class ChatNebula(BaseChatModel): nebula_api_key: Optional[SecretStr] = Field(None, description="Nebula API Token") - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True - arbitrary_types_allowed = True + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) def __init__(self, **kwargs: Any) -> None: if "nebula_api_key" in kwargs: diff --git a/libs/community/langchain_community/chat_models/tongyi.py b/libs/community/langchain_community/chat_models/tongyi.py index 2e36987840de3..a39e744531a84 100644 --- a/libs/community/langchain_community/chat_models/tongyi.py +++ b/libs/community/langchain_community/chat_models/tongyi.py @@ -53,16 +53,17 @@ ChatGenerationChunk, ChatResult, ) -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, -) from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, +) from requests.exceptions import HTTPError from tenacity import ( before_sleep_log, @@ -348,7 +349,7 @@ class ChatTongyi(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): @@ -386,7 +387,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): @@ -433,7 +434,7 @@ class Joke(BaseModel): def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = Field(default="qwen-turbo", alias="model") """Model name to use. callable multimodal model: @@ -457,8 +458,9 @@ def lc_secrets(self) -> Dict[str, str]: max_retries: int = 10 """Maximum number of retries to make when generating.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) @property def _llm_type(self) -> str: diff --git a/libs/community/langchain_community/chat_models/yi.py b/libs/community/langchain_community/chat_models/yi.py index d5da5a0f95672..cb5c8f445743e 100644 --- a/libs/community/langchain_community/chat_models/yi.py +++ b/libs/community/langchain_community/chat_models/yi.py @@ -25,12 +25,12 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import ( convert_to_secret_str, get_from_dict_or_env, get_pydantic_field_names, ) +from pydantic import ConfigDict, Field, SecretStr logger = logging.getLogger(__name__) @@ -115,8 +115,9 @@ def lc_serializable(self) -> bool: top_p: float = 0.7 model_kwargs: Dict[str, Any] = Field(default_factory=dict) - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) def __init__(self, **kwargs: Any) -> None: kwargs["yi_api_key"] = convert_to_secret_str( diff --git a/libs/community/langchain_community/chat_models/yuan2.py b/libs/community/langchain_community/chat_models/yuan2.py index dc63eb83d246c..f5d0a2e095172 100644 --- a/libs/community/langchain_community/chat_models/yuan2.py +++ b/libs/community/langchain_community/chat_models/yuan2.py @@ -40,12 +40,12 @@ SystemMessageChunk, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import ( get_from_dict_or_env, get_pydantic_field_names, pre_init, ) +from pydantic import BaseModel, ConfigDict, Field, model_validator from tenacity import ( before_sleep_log, retry, @@ -76,7 +76,7 @@ class ChatYuan2(BaseChatModel): chat = ChatYuan2() """ - client: Any #: :meta private: + client: Any = None #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="yuan2", alias="model") @@ -122,8 +122,9 @@ class ChatYuan2(BaseChatModel): repeat_penalty: Optional[float] = 1.18 """The penalty to apply to repeated tokens.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) @property def lc_secrets(self) -> Dict[str, str]: @@ -141,8 +142,9 @@ def lc_attributes(self) -> Dict[str, Any]: return attributes - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/chat_models/zhipuai.py b/libs/community/langchain_community/chat_models/zhipuai.py index 8093e3cc52157..06f299e010e81 100644 --- a/libs/community/langchain_community/chat_models/zhipuai.py +++ b/libs/community/langchain_community/chat_models/zhipuai.py @@ -50,11 +50,11 @@ PydanticToolsParser, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import BaseModel, ConfigDict, Field, model_validator logger = logging.getLogger(__name__) @@ -204,7 +204,7 @@ def _convert_delta_to_message_chunk( role = dct.get("role") content = dct.get("content", "") additional_kwargs = {} - tool_calls = dct.get("tool_call", None) + tool_calls = dct.get("tool_calls", None) if tool_calls is not None: additional_kwargs["tool_calls"] = tool_calls @@ -331,7 +331,7 @@ class ChatZhipuAI(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): @@ -371,7 +371,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): @@ -480,11 +480,13 @@ def _default_params(self) -> Dict[str, Any]: max_tokens: Optional[int] = None """Maximum number of tokens to generate.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict[str, Any]) -> Any: values["zhipuai_api_key"] = get_from_dict_or_env( values, ["zhipuai_api_key", "api_key"], "ZHIPUAI_API_KEY" ) @@ -773,7 +775,7 @@ def with_structured_output( .. code-block:: python from langchain_community.chat_models import ChatZhipuAI - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -793,7 +795,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -814,7 +816,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_community.chat_models import ChatZhipuAI - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): diff --git a/libs/community/langchain_community/cross_encoders/fake.py b/libs/community/langchain_community/cross_encoders/fake.py index 91e1f702d8c8a..5c38175e50f4e 100644 --- a/libs/community/langchain_community/cross_encoders/fake.py +++ b/libs/community/langchain_community/cross_encoders/fake.py @@ -1,7 +1,7 @@ from difflib import SequenceMatcher from typing import List, Tuple -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_community.cross_encoders.base import BaseCrossEncoder diff --git a/libs/community/langchain_community/cross_encoders/huggingface.py b/libs/community/langchain_community/cross_encoders/huggingface.py index 8d51d47cf940b..a0d1f68a12fea 100644 --- a/libs/community/langchain_community/cross_encoders/huggingface.py +++ b/libs/community/langchain_community/cross_encoders/huggingface.py @@ -1,6 +1,6 @@ from typing import Any, Dict, List, Tuple -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field from langchain_community.cross_encoders.base import BaseCrossEncoder @@ -23,7 +23,7 @@ class HuggingFaceCrossEncoder(BaseModel, BaseCrossEncoder): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) @@ -45,8 +45,7 @@ def __init__(self, **kwargs: Any): self.model_name, **self.model_kwargs ) - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def score(self, text_pairs: List[Tuple[str, str]]) -> List[float]: """Compute similarity scores using a HuggingFace transformer model. diff --git a/libs/community/langchain_community/cross_encoders/sagemaker_endpoint.py b/libs/community/langchain_community/cross_encoders/sagemaker_endpoint.py index 8da86cf6ddfdb..9cc6c8e2f7bd7 100644 --- a/libs/community/langchain_community/cross_encoders/sagemaker_endpoint.py +++ b/libs/community/langchain_community/cross_encoders/sagemaker_endpoint.py @@ -1,7 +1,7 @@ import json from typing import Any, Dict, List, Optional, Tuple -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator from langchain_community.cross_encoders.base import BaseCrossEncoder @@ -61,7 +61,7 @@ class SagemakerEndpointCrossEncoder(BaseModel, BaseCrossEncoder): credentials_profile_name=credentials_profile_name ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. @@ -89,12 +89,13 @@ class SagemakerEndpointCrossEncoder(BaseModel, BaseCrossEncoder): .. _boto3: """ - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, extra="forbid", protected_namespaces=() + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 diff --git a/libs/community/langchain_community/document_compressors/dashscope_rerank.py b/libs/community/langchain_community/document_compressors/dashscope_rerank.py index 702d0b3e8bad3..6e298c2c30989 100644 --- a/libs/community/langchain_community/document_compressors/dashscope_rerank.py +++ b/libs/community/langchain_community/document_compressors/dashscope_rerank.py @@ -5,8 +5,8 @@ from langchain_core.callbacks.base import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import ConfigDict, Field, model_validator class DashScopeRerank(BaseDocumentCompressor): @@ -25,13 +25,15 @@ class DashScopeRerank(BaseDocumentCompressor): """DashScope API key. Must be specified directly or via environment variable DASHSCOPE_API_KEY.""" - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" if not values.get("client"): diff --git a/libs/community/langchain_community/document_compressors/flashrank_rerank.py b/libs/community/langchain_community/document_compressors/flashrank_rerank.py index c21e17f8e639b..3b8e116fd72ac 100644 --- a/libs/community/langchain_community/document_compressors/flashrank_rerank.py +++ b/libs/community/langchain_community/document_compressors/flashrank_rerank.py @@ -1,10 +1,10 @@ from __future__ import annotations -from typing import TYPE_CHECKING, Dict, Optional, Sequence +from typing import TYPE_CHECKING, Any, Dict, Optional, Sequence from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document -from langchain_core.pydantic_v1 import root_validator +from pydantic import ConfigDict, model_validator if TYPE_CHECKING: from flashrank import Ranker, RerankRequest @@ -33,12 +33,14 @@ class FlashrankRerank(BaseDocumentCompressor): prefix_metadata: str = "" """Prefix for flashrank_rerank metadata keys""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" if "client" in values: return values diff --git a/libs/community/langchain_community/document_compressors/jina_rerank.py b/libs/community/langchain_community/document_compressors/jina_rerank.py index 60922334e872f..0a769b311e54e 100644 --- a/libs/community/langchain_community/document_compressors/jina_rerank.py +++ b/libs/community/langchain_community/document_compressors/jina_rerank.py @@ -6,8 +6,8 @@ import requests from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import ConfigDict, model_validator JINA_API_URL: str = "https://api.jina.ai/v1/rerank" @@ -27,12 +27,14 @@ class JinaRerank(BaseDocumentCompressor): user_agent: str = "langchain" """Identifier for the application making the request.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" jina_api_key = get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY") user_agent = values.get("user_agent", "langchain") diff --git a/libs/community/langchain_community/document_compressors/llmlingua_filter.py b/libs/community/langchain_community/document_compressors/llmlingua_filter.py index dae183922462f..8fe82901608b8 100644 --- a/libs/community/langchain_community/document_compressors/llmlingua_filter.py +++ b/libs/community/langchain_community/document_compressors/llmlingua_filter.py @@ -8,7 +8,7 @@ from langchain_core.documents.compressor import ( BaseDocumentCompressor, ) -from langchain_core.pydantic_v1 import root_validator +from pydantic import ConfigDict, Field, model_validator DEFAULT_LLM_LINGUA_INSTRUCTION = ( "Given this documents, please answer the final question" @@ -35,9 +35,9 @@ class LLMLinguaCompressor(BaseDocumentCompressor): """The target number of compressed tokens""" rank_method: str = "longllmlingua" """The ranking method to use""" - model_config: dict = {} + model_configuration: dict = Field(default_factory=dict, alias="model_config") """Custom configuration for the model""" - open_api_config: dict = {} + open_api_config: dict = Field(default_factory=dict) """open_api configuration""" instruction: str = DEFAULT_LLM_LINGUA_INSTRUCTION """The instruction for the LLM""" @@ -49,11 +49,12 @@ class LLMLinguaCompressor(BaseDocumentCompressor): "dynamic_context_compression_ratio": 0.4, } """Extra compression arguments""" - lingua: Any + lingua: Any = None """The instance of the llm linqua""" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: from llmlingua import PromptCompressor @@ -71,9 +72,12 @@ def validate_environment(cls, values: Dict) -> Dict: ) return values - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + populate_by_name=True, + protected_namespaces=(), + ) @staticmethod def _format_context(docs: Sequence[Document]) -> List[str]: diff --git a/libs/community/langchain_community/document_compressors/openvino_rerank.py b/libs/community/langchain_community/document_compressors/openvino_rerank.py index 24fb92673010d..47d8fb6e0bfed 100644 --- a/libs/community/langchain_community/document_compressors/openvino_rerank.py +++ b/libs/community/langchain_community/document_compressors/openvino_rerank.py @@ -5,7 +5,7 @@ from langchain_core.callbacks import Callbacks from langchain_core.documents import Document from langchain_core.documents.compressor import BaseDocumentCompressor -from langchain_core.pydantic_v1 import Field +from pydantic import Field class RerankRequest: @@ -21,9 +21,9 @@ class OpenVINOReranker(BaseDocumentCompressor): OpenVINO rerank models. """ - ov_model: Any + ov_model: Any = None """OpenVINO model object.""" - tokenizer: Any + tokenizer: Any = None """Tokenizer for embedding model.""" model_name_or_path: str """HuggingFace model id.""" diff --git a/libs/community/langchain_community/document_compressors/rankllm_rerank.py b/libs/community/langchain_community/document_compressors/rankllm_rerank.py index 7e461ea878468..bcf18652928e2 100644 --- a/libs/community/langchain_community/document_compressors/rankllm_rerank.py +++ b/libs/community/langchain_community/document_compressors/rankllm_rerank.py @@ -7,8 +7,8 @@ from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field, PrivateAttr, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import ConfigDict, Field, PrivateAttr, model_validator if TYPE_CHECKING: from rank_llm.data import Candidate, Query, Request @@ -36,12 +36,14 @@ class RankLLMRerank(BaseDocumentCompressor): """OpenAI model name.""" _retriever: Any = PrivateAttr() - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate python package exists in environment.""" if not values.get("client"): diff --git a/libs/community/langchain_community/document_compressors/volcengine_rerank.py b/libs/community/langchain_community/document_compressors/volcengine_rerank.py index 9e516f7391575..e7b0cab2c1a8c 100644 --- a/libs/community/langchain_community/document_compressors/volcengine_rerank.py +++ b/libs/community/langchain_community/document_compressors/volcengine_rerank.py @@ -5,8 +5,8 @@ from langchain_core.callbacks.base import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import ConfigDict, model_validator class VolcengineRerank(BaseDocumentCompressor): @@ -32,13 +32,15 @@ class VolcengineRerank(BaseDocumentCompressor): top_n: Optional[int] = 3 """Number of documents to return.""" - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" if not values.get("client"): diff --git a/libs/community/langchain_community/document_loaders/__init__.py b/libs/community/langchain_community/document_loaders/__init__.py index eb059d6fbeceb..2576093d3d48b 100644 --- a/libs/community/langchain_community/document_loaders/__init__.py +++ b/libs/community/langchain_community/document_loaders/__init__.py @@ -359,6 +359,7 @@ ) from langchain_community.document_loaders.pebblo import ( PebbloSafeLoader, + PebbloTextLoader, ) from langchain_community.document_loaders.polars_dataframe import ( PolarsDataFrameLoader, @@ -650,6 +651,7 @@ "PDFPlumberLoader": "langchain_community.document_loaders.pdf", "PagedPDFSplitter": "langchain_community.document_loaders.pdf", "PebbloSafeLoader": "langchain_community.document_loaders.pebblo", + "PebbloTextLoader": "langchain_community.document_loaders.pebblo", "PlaywrightURLLoader": "langchain_community.document_loaders.url_playwright", "PolarsDataFrameLoader": "langchain_community.document_loaders.polars_dataframe", "PsychicLoader": "langchain_community.document_loaders.psychic", @@ -855,6 +857,7 @@ def __getattr__(name: str) -> Any: "PDFPlumberLoader", "PagedPDFSplitter", "PebbloSafeLoader", + "PebbloTextLoader", "PlaywrightURLLoader", "PolarsDataFrameLoader", "PsychicLoader", diff --git a/libs/community/langchain_community/document_loaders/apify_dataset.py b/libs/community/langchain_community/document_loaders/apify_dataset.py index 339a25c1ede55..7148f1084c914 100644 --- a/libs/community/langchain_community/document_loaders/apify_dataset.py +++ b/libs/community/langchain_community/document_loaders/apify_dataset.py @@ -1,7 +1,7 @@ from typing import Any, Callable, Dict, List from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator from langchain_community.document_loaders.base import BaseLoader @@ -49,8 +49,9 @@ def __init__( dataset_id=dataset_id, dataset_mapping_function=dataset_mapping_function ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate environment. Args: diff --git a/libs/community/langchain_community/document_loaders/base_o365.py b/libs/community/langchain_community/document_loaders/base_o365.py index 98c1188cf1760..b0d44e772403a 100644 --- a/libs/community/langchain_community/document_loaders/base_o365.py +++ b/libs/community/langchain_community/document_loaders/base_o365.py @@ -10,13 +10,13 @@ from pathlib import Path, PurePath from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Sequence, Union -from langchain_core.pydantic_v1 import ( +from pydantic import ( BaseModel, - BaseSettings, Field, FilePath, SecretStr, ) +from pydantic_settings import BaseSettings, SettingsConfigDict from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.blob_loaders.file_system import ( @@ -34,13 +34,12 @@ class _O365Settings(BaseSettings): - client_id: str = Field(..., env="O365_CLIENT_ID") - client_secret: SecretStr = Field(..., env="O365_CLIENT_SECRET") + client_id: str = Field(..., alias="O365_CLIENT_ID") + client_secret: SecretStr = Field(..., alias="O365_CLIENT_SECRET") - class Config: - case_sentive = False - env_file = ".env" - env_prefix = "" + model_config = SettingsConfigDict( + case_sensitive=False, env_file=".env", env_prefix="", extra="ignore" + ) class _O365TokenStorage(BaseSettings): diff --git a/libs/community/langchain_community/document_loaders/docugami.py b/libs/community/langchain_community/document_loaders/docugami.py index c3463a009bbb2..38c078351ba90 100644 --- a/libs/community/langchain_community/document_loaders/docugami.py +++ b/libs/community/langchain_community/document_loaders/docugami.py @@ -8,7 +8,7 @@ import requests from langchain_core._api.deprecation import deprecated from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator from langchain_community.document_loaders.base import BaseLoader @@ -69,10 +69,10 @@ class DocugamiLoader(BaseLoader, BaseModel): """Set to False if you want to full whitespace formatting in the original XML doc, including indentation.""" - docset_id: Optional[str] + docset_id: Optional[str] = None """The Docugami API docset ID to use.""" - document_ids: Optional[Sequence[str]] + document_ids: Optional[Sequence[str]] = None """The Docugami API document IDs to use.""" file_paths: Optional[Sequence[Union[Path, str]]] @@ -81,8 +81,9 @@ class DocugamiLoader(BaseLoader, BaseModel): include_project_metadata_in_doc_metadata: bool = True """Set to True if you want to include the project metadata in the doc metadata.""" - @root_validator(pre=True) - def validate_local_or_remote(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_local_or_remote(cls, values: Dict[str, Any]) -> Any: """Validate that either local file paths are given, or remote API docset ID. Args: diff --git a/libs/community/langchain_community/document_loaders/dropbox.py b/libs/community/langchain_community/document_loaders/dropbox.py index f2a7b603cefc3..c689e3a455633 100644 --- a/libs/community/langchain_community/document_loaders/dropbox.py +++ b/libs/community/langchain_community/document_loaders/dropbox.py @@ -12,7 +12,7 @@ from typing import Any, Dict, List, Optional from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator from langchain_community.document_loaders.base import BaseLoader @@ -33,8 +33,9 @@ class DropboxLoader(BaseLoader, BaseModel): recursive: bool = False """Flag to indicate whether to load files recursively from subfolders.""" - @root_validator(pre=True) - def validate_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_inputs(cls, values: Dict[str, Any]) -> Any: """Validate that either folder_path or file_paths is set, but not both.""" if ( values.get("dropbox_folder_path") is not None diff --git a/libs/community/langchain_community/document_loaders/github.py b/libs/community/langchain_community/document_loaders/github.py index df02a7894fbad..94cbe0553d0bf 100644 --- a/libs/community/langchain_community/document_loaders/github.py +++ b/libs/community/langchain_community/document_loaders/github.py @@ -1,12 +1,12 @@ import base64 from abc import ABC from datetime import datetime -from typing import Callable, Dict, Iterator, List, Literal, Optional, Union +from typing import Any, Callable, Dict, Iterator, List, Literal, Optional, Union import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator, validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, field_validator, model_validator from langchain_community.document_loaders.base import BaseLoader @@ -21,8 +21,9 @@ class BaseGitHubLoader(BaseLoader, BaseModel, ABC): github_api_url: str = "https://api.github.com" """URL of GitHub API""" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that access token exists in environment.""" values["access_token"] = get_from_dict_or_env( values, "access_token", "GITHUB_PERSONAL_ACCESS_TOKEN" @@ -72,7 +73,8 @@ class GitHubIssuesLoader(BaseGitHubLoader): """Number of items per page. Defaults to 30 in the GitHub API.""" - @validator("since", allow_reuse=True) + @field_validator("since") + @classmethod def validate_since(cls, v: Optional[str]) -> Optional[str]: if v: try: diff --git a/libs/community/langchain_community/document_loaders/googledrive.py b/libs/community/langchain_community/document_loaders/googledrive.py index 5646950a79064..ea525c10f17e6 100644 --- a/libs/community/langchain_community/document_loaders/googledrive.py +++ b/libs/community/langchain_community/document_loaders/googledrive.py @@ -12,7 +12,7 @@ from langchain_core._api.deprecation import deprecated from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator, validator +from pydantic import BaseModel, model_validator, validator from langchain_community.document_loaders.base import BaseLoader @@ -52,8 +52,9 @@ class GoogleDriveLoader(BaseLoader, BaseModel): file_loader_kwargs: Dict["str", Any] = {} """The file loader kwargs to use.""" - @root_validator(pre=True) - def validate_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_inputs(cls, values: Dict[str, Any]) -> Any: """Validate that either folder_id or document_ids is set, but not both.""" if values.get("folder_id") and ( values.get("document_ids") or values.get("file_ids") diff --git a/libs/community/langchain_community/document_loaders/html_bs.py b/libs/community/langchain_community/document_loaders/html_bs.py index 177e987aa9a7b..6448e4c7fe7aa 100644 --- a/libs/community/langchain_community/document_loaders/html_bs.py +++ b/libs/community/langchain_community/document_loaders/html_bs.py @@ -1,3 +1,4 @@ +import importlib.util import logging from pathlib import Path from typing import Dict, Iterator, Union @@ -106,6 +107,13 @@ def __init__( self.file_path = file_path self.open_encoding = open_encoding if bs_kwargs is None: + if not importlib.util.find_spec("lxml"): + raise ImportError( + "By default BSHTMLLoader uses the 'lxml' package. Please either " + "install it with `pip install -U lxml` or pass in init arg " + "`bs_kwargs={'features': '...'}` to overwrite the default " + "BeautifulSoup kwargs." + ) bs_kwargs = {"features": "lxml"} self.bs_kwargs = bs_kwargs self.get_text_separator = get_text_separator diff --git a/libs/community/langchain_community/document_loaders/mongodb.py b/libs/community/langchain_community/document_loaders/mongodb.py index b1e062226546f..7eddb2f7eb1a1 100644 --- a/libs/community/langchain_community/document_loaders/mongodb.py +++ b/libs/community/langchain_community/document_loaders/mongodb.py @@ -20,13 +20,37 @@ def __init__( *, filter_criteria: Optional[Dict] = None, field_names: Optional[Sequence[str]] = None, + metadata_names: Optional[Sequence[str]] = None, + include_db_collection_in_metadata: bool = True, ) -> None: + """ + Initializes the MongoDB loader with necessary database connection + details and configurations. + + Args: + connection_string (str): MongoDB connection URI. + db_name (str):Name of the database to connect to. + collection_name (str): Name of the collection to fetch documents from. + filter_criteria (Optional[Dict]): MongoDB filter criteria for querying + documents. + field_names (Optional[Sequence[str]]): List of field names to retrieve + from documents. + metadata_names (Optional[Sequence[str]]): Additional metadata fields to + extract from documents. + include_db_collection_in_metadata (bool): Flag to include database and + collection names in metadata. + + Raises: + ImportError: If the motor library is not installed. + ValueError: If any necessary argument is missing. + """ try: from motor.motor_asyncio import AsyncIOMotorClient except ImportError as e: raise ImportError( "Cannot import from motor, please install with `pip install motor`." ) from e + if not connection_string: raise ValueError("connection_string must be provided.") @@ -39,8 +63,10 @@ def __init__( self.client = AsyncIOMotorClient(connection_string) self.db_name = db_name self.collection_name = collection_name - self.field_names = field_names + self.field_names = field_names or [] self.filter_criteria = filter_criteria or {} + self.metadata_names = metadata_names or [] + self.include_db_collection_in_metadata = include_db_collection_in_metadata self.db = self.client.get_database(db_name) self.collection = self.db.get_collection(collection_name) @@ -60,36 +86,24 @@ def load(self) -> List[Document]: return asyncio.run(self.aload()) async def aload(self) -> List[Document]: - """Load data into Document objects.""" + """Asynchronously loads data into Document objects.""" result = [] total_docs = await self.collection.count_documents(self.filter_criteria) - # Construct the projection dictionary if field_names are specified - projection = ( - {field: 1 for field in self.field_names} if self.field_names else None - ) + projection = self._construct_projection() async for doc in self.collection.find(self.filter_criteria, projection): - metadata = { - "database": self.db_name, - "collection": self.collection_name, - } + metadata = self._extract_fields(doc, self.metadata_names, default="") + + # Optionally add database and collection names to metadata + if self.include_db_collection_in_metadata: + metadata.update( + {"database": self.db_name, "collection": self.collection_name} + ) # Extract text content from filtered fields or use the entire document if self.field_names is not None: - fields = {} - for name in self.field_names: - # Split the field names to handle nested fields - keys = name.split(".") - value = doc - for key in keys: - if key in value: - value = value[key] - else: - value = "" - break - fields[name] = value - + fields = self._extract_fields(doc, self.field_names, default="") texts = [str(value) for value in fields.values()] text = " ".join(texts) else: @@ -104,3 +118,29 @@ async def aload(self) -> List[Document]: ) return result + + def _construct_projection(self) -> Optional[Dict]: + """Constructs the projection dictionary for MongoDB query based + on the specified field names and metadata names.""" + field_names = list(self.field_names) or [] + metadata_names = list(self.metadata_names) or [] + all_fields = field_names + metadata_names + return {field: 1 for field in all_fields} if all_fields else None + + def _extract_fields( + self, + document: Dict, + fields: Sequence[str], + default: str = "", + ) -> Dict: + """Extracts and returns values for specified fields from a document.""" + extracted = {} + for field in fields or []: + value = document + for key in field.split("."): + value = value.get(key, default) + if value == default: + break + new_field_name = field.replace(".", "_") + extracted[new_field_name] = value + return extracted diff --git a/libs/community/langchain_community/document_loaders/onedrive.py b/libs/community/langchain_community/document_loaders/onedrive.py index d33777dd6a081..ecc1d232bfe4c 100644 --- a/libs/community/langchain_community/document_loaders/onedrive.py +++ b/libs/community/langchain_community/document_loaders/onedrive.py @@ -6,7 +6,7 @@ from typing import TYPE_CHECKING, Iterator, List, Optional, Sequence, Union from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.document_loaders.base_o365 import ( O365BaseLoader, diff --git a/libs/community/langchain_community/document_loaders/onedrive_file.py b/libs/community/langchain_community/document_loaders/onedrive_file.py index fcb0c7c58f4de..d92cfdea91777 100644 --- a/libs/community/langchain_community/document_loaders/onedrive_file.py +++ b/libs/community/langchain_community/document_loaders/onedrive_file.py @@ -4,7 +4,7 @@ from typing import TYPE_CHECKING, List from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field from langchain_community.document_loaders.base import BaseLoader from langchain_community.document_loaders.unstructured import UnstructuredFileLoader @@ -21,8 +21,9 @@ class OneDriveFileLoader(BaseLoader, BaseModel): file: File = Field(...) """The file to load.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def load(self) -> List[Document]: """Load Documents""" diff --git a/libs/community/langchain_community/document_loaders/onenote.py b/libs/community/langchain_community/document_loaders/onenote.py index 13ba4a831bd71..e19b57044d186 100644 --- a/libs/community/langchain_community/document_loaders/onenote.py +++ b/libs/community/langchain_community/document_loaders/onenote.py @@ -1,29 +1,33 @@ """Loads data from OneNote Notebooks""" from pathlib import Path -from typing import Dict, Iterator, List, Optional +from typing import Any, Dict, Iterator, List, Optional import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import ( +from pydantic import ( BaseModel, - BaseSettings, Field, FilePath, SecretStr, + model_validator, ) +from pydantic_settings import BaseSettings, SettingsConfigDict from langchain_community.document_loaders.base import BaseLoader class _OneNoteGraphSettings(BaseSettings): - client_id: str = Field(..., env="MS_GRAPH_CLIENT_ID") - client_secret: SecretStr = Field(..., env="MS_GRAPH_CLIENT_SECRET") + client_id: str = Field(...) + client_secret: SecretStr = Field(...) - class Config: - case_sentive = False - env_file = ".env" - env_prefix = "" + model_config = SettingsConfigDict( + case_sensitive=False, + populate_by_name=True, + env_file=".env", + env_prefix="MS_GRAPH_", + extra="ignore", + ) class OneNoteLoader(BaseLoader, BaseModel): @@ -50,6 +54,14 @@ class OneNoteLoader(BaseLoader, BaseModel): object_ids: Optional[List[str]] = None """ The IDs of the objects to load data from.""" + @model_validator(mode="before") + @classmethod + def init(cls, values: Dict) -> Any: + """Initialize the class.""" + if "settings" in values and isinstance(values["settings"], dict): + values["settings"] = _OneNoteGraphSettings(**values["settings"]) + return values + def lazy_load(self) -> Iterator[Document]: """ Get pages from OneNote notebooks. diff --git a/libs/community/langchain_community/document_loaders/parsers/pdf.py b/libs/community/langchain_community/document_loaders/parsers/pdf.py index 2013c948fb8af..d0329b7cc1bea 100644 --- a/libs/community/langchain_community/document_loaders/parsers/pdf.py +++ b/libs/community/langchain_community/document_loaders/parsers/pdf.py @@ -267,6 +267,7 @@ def __init__( def lazy_parse(self, blob: Blob) -> Iterator[Document]: # type: ignore[valid-type] """Lazily parse the blob.""" + import fitz with blob.as_bytes_io() as file_path: # type: ignore[attr-defined] @@ -277,25 +278,49 @@ def lazy_parse(self, blob: Blob) -> Iterator[Document]: # type: ignore[valid-ty yield from [ Document( - page_content=page.get_text(**self.text_kwargs) - + self._extract_images_from_page(doc, page), - metadata=dict( - { - "source": blob.source, # type: ignore[attr-defined] - "file_path": blob.source, # type: ignore[attr-defined] - "page": page.number, - "total_pages": len(doc), - }, - **{ - k: doc.metadata[k] - for k in doc.metadata - if type(doc.metadata[k]) in [str, int] - }, - ), + page_content=self._get_page_content(doc, page, blob), + metadata=self._extract_metadata(doc, page, blob), ) for page in doc ] + def _get_page_content( + self, doc: fitz.fitz.Document, page: fitz.fitz.Page, blob: Blob + ) -> str: + """ + Get the text of the page using PyMuPDF and RapidOCR and issue a warning + if it is empty. + """ + content = page.get_text(**self.text_kwargs) + self._extract_images_from_page( + doc, page + ) + + if not content: + warnings.warn( + f"Warning: Empty content on page " + f"{page.number} of document {blob.source}" + ) + + return content + + def _extract_metadata( + self, doc: fitz.fitz.Document, page: fitz.fitz.Page, blob: Blob + ) -> dict: + """Extract metadata from the document and page.""" + return dict( + { + "source": blob.source, # type: ignore[attr-defined] + "file_path": blob.source, # type: ignore[attr-defined] + "page": page.number, + "total_pages": len(doc), + }, + **{ + k: doc.metadata[k] + for k in doc.metadata + if isinstance(doc.metadata[k], (str, int)) + }, + ) + def _extract_images_from_page( self, doc: fitz.fitz.Document, page: fitz.fitz.Page ) -> str: diff --git a/libs/community/langchain_community/document_loaders/pebblo.py b/libs/community/langchain_community/document_loaders/pebblo.py index bcf1cde050b2d..e176f3036bd5a 100644 --- a/libs/community/langchain_community/document_loaders/pebblo.py +++ b/libs/community/langchain_community/document_loaders/pebblo.py @@ -4,7 +4,7 @@ import os import uuid from importlib.metadata import version -from typing import Dict, Iterator, List, Optional +from typing import Any, Dict, Iterable, Iterator, List, Optional from langchain_core.documents import Document @@ -45,6 +45,7 @@ def __init__( classifier_url: Optional[str] = None, *, classifier_location: str = "local", + anonymize_snippets: bool = False, ): if not name or not isinstance(name, str): raise NameError("Must specify a valid name.") @@ -78,6 +79,7 @@ def __init__( api_key=api_key, classifier_location=classifier_location, classifier_url=classifier_url, + anonymize_snippets=anonymize_snippets, ) self.pb_client.send_loader_discover(self.app) @@ -271,3 +273,67 @@ def _add_pebblo_specific_metadata(self, classified_docs: dict) -> None: doc_metadata["pb_checksum"] = classified_docs.get(doc.pb_id, {}).get( "pb_checksum", None ) + + +class PebbloTextLoader(BaseLoader): + """ + Loader for text data. + + Since PebbloSafeLoader is a wrapper around document loaders, this loader is + used to load text data directly into Documents. + """ + + def __init__( + self, + texts: Iterable[str], + *, + source: Optional[str] = None, + ids: Optional[List[str]] = None, + metadata: Optional[Dict[str, Any]] = None, + metadatas: Optional[List[Dict[str, Any]]] = None, + ) -> None: + """ + Args: + texts: Iterable of text data. + source: Source of the text data. + Optional. Defaults to None. + ids: List of unique identifiers for each text. + Optional. Defaults to None. + metadata: Metadata for all texts. + Optional. Defaults to None. + metadatas: List of metadata for each text. + Optional. Defaults to None. + """ + self.texts = texts + self.source = source + self.ids = ids + self.metadata = metadata + self.metadatas = metadatas + + def lazy_load(self) -> Iterator[Document]: + """ + Lazy load text data into Documents. + + Returns: + Iterator of Documents + """ + for i, text in enumerate(self.texts): + _id = None + metadata = self.metadata or {} + if self.metadatas and i < len(self.metadatas) and self.metadatas[i]: + metadata.update(self.metadatas[i]) + if self.ids and i < len(self.ids): + _id = self.ids[i] + yield Document(id=_id, page_content=text, metadata=metadata) + + def load(self) -> List[Document]: + """ + Load text data into Documents. + + Returns: + List of Documents + """ + documents = [] + for doc in self.lazy_load(): + documents.append(doc) + return documents diff --git a/libs/community/langchain_community/document_loaders/recursive_url_loader.py b/libs/community/langchain_community/document_loaders/recursive_url_loader.py index b5d5047cd4f81..d204344474736 100644 --- a/libs/community/langchain_community/document_loaders/recursive_url_loader.py +++ b/libs/community/langchain_community/document_loaders/recursive_url_loader.py @@ -79,7 +79,7 @@ class RecursiveUrlLoader(BaseLoader): GET request to an endpoint on Bob's site. Both sites are hosted on the same host, so such a request would not be prevented by default. - See https://python.langchain.com/v0.2/docs/security/ + See https://python.langchain.com/docs/security/ Setup: @@ -227,7 +227,7 @@ def simple_metadata_extractor( "https://docs.python.org/3.9/", prevent_outside=True, base_url="https://docs.python.org", - link_regex=r']*?\s+)?href="([^"]*(?=index)[^"]*)"', + link_regex=r']*?\\s+)?href="([^"]*(?=index)[^"]*)"', exclude_dirs=['https://docs.python.org/3.9/faq'] ) docs = loader.load() diff --git a/libs/community/langchain_community/document_loaders/sharepoint.py b/libs/community/langchain_community/document_loaders/sharepoint.py index e589a58447c4d..06426a7038fdd 100644 --- a/libs/community/langchain_community/document_loaders/sharepoint.py +++ b/libs/community/langchain_community/document_loaders/sharepoint.py @@ -9,7 +9,7 @@ import requests # type: ignore from langchain_core.document_loaders import BaseLoader from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.document_loaders.base_o365 import ( O365BaseLoader, diff --git a/libs/community/langchain_community/document_loaders/youtube.py b/libs/community/langchain_community/document_loaders/youtube.py index bfe1cb0b1391e..67c1569adf8d6 100644 --- a/libs/community/langchain_community/document_loaders/youtube.py +++ b/libs/community/langchain_community/document_loaders/youtube.py @@ -10,8 +10,8 @@ from xml.etree.ElementTree import ParseError # OK: trusted-source from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator -from langchain_core.pydantic_v1.dataclasses import dataclass +from pydantic import model_validator +from pydantic.dataclasses import dataclass from langchain_community.document_loaders.base import BaseLoader @@ -50,10 +50,9 @@ class GoogleApiClient: def __post_init__(self) -> None: self.creds = self._load_credentials() - @root_validator(pre=True) - def validate_channel_or_videoIds_is_set( - cls, values: Dict[str, Any] - ) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_channel_or_videoIds_is_set(cls, values: Dict[str, Any]) -> Any: """Validate that either folder_id or document_ids is set, but not both.""" if not values.get("credentials_path") and not values.get( @@ -391,10 +390,9 @@ def _build_youtube_client(self, creds: Any) -> Any: return build("youtube", "v3", credentials=creds) - @root_validator(pre=True) - def validate_channel_or_videoIds_is_set( - cls, values: Dict[str, Any] - ) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_channel_or_videoIds_is_set(cls, values: Dict[str, Any]) -> Any: """Validate that either folder_id or document_ids is set, but not both.""" if not values.get("channel_name") and not values.get("video_ids"): raise ValueError("Must specify either channel_name or video_ids") diff --git a/libs/community/langchain_community/document_transformers/beautiful_soup_transformer.py b/libs/community/langchain_community/document_transformers/beautiful_soup_transformer.py index 901aed2bdf270..4fb27cfafebd8 100644 --- a/libs/community/langchain_community/document_transformers/beautiful_soup_transformer.py +++ b/libs/community/langchain_community/document_transformers/beautiful_soup_transformer.py @@ -132,6 +132,7 @@ def extract_tags( Args: html_content: The original HTML content string. tags: A list of tags to be extracted from the HTML. + remove_comments: If set to True, the comments will be removed. Returns: A string combining the content of the extracted tags. @@ -184,6 +185,7 @@ def get_navigable_strings( Args: element: A BeautifulSoup element. + remove_comments: If set to True, the comments will be removed. Returns: A generator of strings. diff --git a/libs/community/langchain_community/document_transformers/embeddings_redundant_filter.py b/libs/community/langchain_community/document_transformers/embeddings_redundant_filter.py index 1675ad331730a..f46c55ae3656d 100644 --- a/libs/community/langchain_community/document_transformers/embeddings_redundant_filter.py +++ b/libs/community/langchain_community/document_transformers/embeddings_redundant_filter.py @@ -5,7 +5,7 @@ import numpy as np from langchain_core.documents import BaseDocumentTransformer, Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field from langchain_community.utils.math import cosine_similarity @@ -153,8 +153,9 @@ class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): """Threshold for determining when two documents are similar enough to be considered redundant.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def transform_documents( self, documents: Sequence[Document], **kwargs: Any @@ -201,8 +202,9 @@ class EmbeddingsClusteringFilter(BaseDocumentTransformer, BaseModel): clusters. """ - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def transform_documents( self, documents: Sequence[Document], **kwargs: Any diff --git a/libs/community/langchain_community/document_transformers/long_context_reorder.py b/libs/community/langchain_community/document_transformers/long_context_reorder.py index 729138fa46762..2884b63f098cb 100644 --- a/libs/community/langchain_community/document_transformers/long_context_reorder.py +++ b/libs/community/langchain_community/document_transformers/long_context_reorder.py @@ -3,7 +3,7 @@ from typing import Any, List, Sequence from langchain_core.documents import BaseDocumentTransformer, Document -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict def _litm_reordering(documents: List[Document]) -> List[Document]: @@ -29,8 +29,9 @@ class LongContextReorder(BaseDocumentTransformer, BaseModel): in the middle of long contexts. See: https://arxiv.org/abs//2307.03172""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def transform_documents( self, documents: Sequence[Document], **kwargs: Any diff --git a/libs/community/langchain_community/document_transformers/openai_functions.py b/libs/community/langchain_community/document_transformers/openai_functions.py index 18415ab242271..7ba087a3e1315 100644 --- a/libs/community/langchain_community/document_transformers/openai_functions.py +++ b/libs/community/langchain_community/document_transformers/openai_functions.py @@ -5,7 +5,7 @@ from langchain_core.documents import BaseDocumentTransformer, Document from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class OpenAIMetadataTagger(BaseDocumentTransformer, BaseModel): diff --git a/libs/community/langchain_community/embeddings/aleph_alpha.py b/libs/community/langchain_community/embeddings/aleph_alpha.py index 409373d8bff8e..96426fdac8a91 100644 --- a/libs/community/langchain_community/embeddings/aleph_alpha.py +++ b/libs/community/langchain_community/embeddings/aleph_alpha.py @@ -1,8 +1,8 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, model_validator class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): @@ -80,8 +80,9 @@ class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): nice to other users by de-prioritizing your request below concurrent ones.""" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" aleph_alpha_api_key = get_from_dict_or_env( values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY" diff --git a/libs/community/langchain_community/embeddings/anyscale.py b/libs/community/langchain_community/embeddings/anyscale.py index 831946a4da5a5..76ba0132a1ec6 100644 --- a/libs/community/langchain_community/embeddings/anyscale.py +++ b/libs/community/langchain_community/embeddings/anyscale.py @@ -4,8 +4,8 @@ from typing import Dict -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import Field, SecretStr from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.utils.openai import is_openai_v1 diff --git a/libs/community/langchain_community/embeddings/ascend.py b/libs/community/langchain_community/embeddings/ascend.py index 2b94f4ff668ff..dd8c9c67fd94c 100644 --- a/libs/community/langchain_community/embeddings/ascend.py +++ b/libs/community/langchain_community/embeddings/ascend.py @@ -2,7 +2,7 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator class AscendEmbeddings(Embeddings, BaseModel): @@ -54,8 +54,9 @@ def __init__(self, *args: Any, **kwargs: Any) -> None: self.model.half() self.encode([f"warmup {i} times" for i in range(10)]) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: if "model_path" not in values: raise ValueError("model_path is required") if not os.access(values["model_path"], os.F_OK): diff --git a/libs/community/langchain_community/embeddings/awa.py b/libs/community/langchain_community/embeddings/awa.py index 6f09b2d064c04..27cb422423fde 100644 --- a/libs/community/langchain_community/embeddings/awa.py +++ b/libs/community/langchain_community/embeddings/awa.py @@ -1,7 +1,7 @@ from typing import Any, Dict, List from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator class AwaEmbeddings(BaseModel, Embeddings): @@ -16,8 +16,9 @@ class AwaEmbeddings(BaseModel, Embeddings): client: Any #: :meta private: model: str = "all-mpnet-base-v2" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that awadb library is installed.""" try: diff --git a/libs/community/langchain_community/embeddings/azure_openai.py b/libs/community/langchain_community/embeddings/azure_openai.py index cf06a795d0377..f760d796feb93 100644 --- a/libs/community/langchain_community/embeddings/azure_openai.py +++ b/libs/community/langchain_community/embeddings/azure_openai.py @@ -4,11 +4,12 @@ import os import warnings -from typing import Callable, Dict, Optional, Union +from typing import Any, Callable, Dict, Optional, Union from langchain_core._api.deprecation import deprecated -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import Field, model_validator +from typing_extensions import Self from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.utils.openai import is_openai_v1 @@ -54,8 +55,9 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings): """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" validate_base_url: bool = True - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" # Check OPENAI_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using @@ -138,32 +140,32 @@ def validate_environment(cls, values: Dict) -> Dict: values["deployment"] = None return values - @root_validator(pre=False, skip_on_failure=True) - def post_init_validator(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def post_init_validator(self) -> Self: """Validate that the base url is set.""" import openai if is_openai_v1(): client_params = { - "api_version": values["openai_api_version"], - "azure_endpoint": values["azure_endpoint"], - "azure_deployment": values["deployment"], - "api_key": values["openai_api_key"], - "azure_ad_token": values["azure_ad_token"], - "azure_ad_token_provider": values["azure_ad_token_provider"], - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], - "http_client": values["http_client"], + "api_version": self.openai_api_version, + "azure_endpoint": self.azure_endpoint, + "azure_deployment": self.deployment, + "api_key": self.openai_api_key, + "azure_ad_token": self.azure_ad_token, + "azure_ad_token_provider": self.azure_ad_token_provider, + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, + "http_client": self.http_client, } - values["client"] = openai.AzureOpenAI(**client_params).embeddings - values["async_client"] = openai.AsyncAzureOpenAI(**client_params).embeddings + self.client = openai.AzureOpenAI(**client_params).embeddings + self.async_client = openai.AsyncAzureOpenAI(**client_params).embeddings else: - values["client"] = openai.Embedding - return values + self.client = openai.Embedding + return self @property def _llm_type(self) -> str: diff --git a/libs/community/langchain_community/embeddings/baichuan.py b/libs/community/langchain_community/embeddings/baichuan.py index fe81993000208..a2f63773a277b 100644 --- a/libs/community/langchain_community/embeddings/baichuan.py +++ b/libs/community/langchain_community/embeddings/baichuan.py @@ -1,14 +1,19 @@ -from typing import Any, Dict, List, Optional +from typing import Any, List, Optional import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.utils import ( - convert_to_secret_str, - get_from_dict_or_env, secret_from_env, ) +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) from requests import RequestException +from typing_extensions import Self BAICHUAN_API_URL: str = "http://api.baichuan-ai.com/v1/embeddings" @@ -54,45 +59,32 @@ class BaichuanTextEmbeddings(BaseModel, Embeddings): vectors = embeddings.embed_query(text) """ # noqa: E501 - session: Any #: :meta private: + session: Any = None #: :meta private: model_name: str = Field(default="Baichuan-Text-Embedding", alias="model") """The model used to embed the documents.""" - baichuan_api_key: Optional[SecretStr] = Field( + baichuan_api_key: SecretStr = Field( alias="api_key", - default_factory=secret_from_env("BAICHUAN_API_KEY", default=None), + default_factory=secret_from_env(["BAICHUAN_API_KEY", "BAICHUAN_AUTH_TOKEN"]), ) """Automatically inferred from env var `BAICHUAN_API_KEY` if not provided.""" chunk_size: int = 16 """Chunk size when multiple texts are input""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict(populate_by_name=True, protected_namespaces=()) - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that auth token exists in environment.""" - if values["baichuan_api_key"] is None: - # This is likely here for some backwards compatibility with - # BAICHUAN_AUTH_TOKEN - baichuan_api_key = convert_to_secret_str( - get_from_dict_or_env( - values, "baichuan_auth_token", "BAICHUAN_AUTH_TOKEN" - ) - ) - values["baichuan_api_key"] = baichuan_api_key - else: - baichuan_api_key = values["baichuan_api_key"] - session = requests.Session() session.headers.update( { - "Authorization": f"Bearer {baichuan_api_key.get_secret_value()}", + "Authorization": f"Bearer {self.baichuan_api_key.get_secret_value()}", "Accept-Encoding": "identity", "Content-type": "application/json", } ) - values["session"] = session - return values + self.session = session + return self def _embed(self, texts: List[str]) -> Optional[List[List[float]]]: """Internal method to call Baichuan Embedding API and return embeddings. diff --git a/libs/community/langchain_community/embeddings/baidu_qianfan_endpoint.py b/libs/community/langchain_community/embeddings/baidu_qianfan_endpoint.py index 6aa9df92364a5..14e2f35a4ea40 100644 --- a/libs/community/langchain_community/embeddings/baidu_qianfan_endpoint.py +++ b/libs/community/langchain_community/embeddings/baidu_qianfan_endpoint.py @@ -4,8 +4,8 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, Field, SecretStr logger = logging.getLogger(__name__) @@ -71,7 +71,7 @@ class QianfanEmbeddingsEndpoint(BaseModel, Embeddings): endpoint: str = "" """Endpoint of the Qianfan Embedding, required if custom model used.""" - client: Any + client: Any = None """Qianfan client""" init_kwargs: Dict[str, Any] = Field(default_factory=dict) diff --git a/libs/community/langchain_community/embeddings/bedrock.py b/libs/community/langchain_community/embeddings/bedrock.py index 70d4f41191449..7fcfe707b270f 100644 --- a/libs/community/langchain_community/embeddings/bedrock.py +++ b/libs/community/langchain_community/embeddings/bedrock.py @@ -6,8 +6,9 @@ import numpy as np from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.runnables.config import run_in_executor +from pydantic import BaseModel, ConfigDict, model_validator +from typing_extensions import Self @deprecated( @@ -46,7 +47,7 @@ class BedrockEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: """Bedrock client.""" region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable @@ -74,33 +75,32 @@ class BedrockEmbeddings(BaseModel, Embeddings): normalize: bool = False """Whether the embeddings should be normalized to unit vectors""" - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that AWS credentials to and python package exists in environment.""" - if values["client"] is not None: - return values + if self.client is not None: + return self try: import boto3 - if values["credentials_profile_name"] is not None: - session = boto3.Session(profile_name=values["credentials_profile_name"]) + if self.credentials_profile_name is not None: + session = boto3.Session(profile_name=self.credentials_profile_name) else: # use default credentials session = boto3.Session() client_params = {} - if values["region_name"]: - client_params["region_name"] = values["region_name"] + if self.region_name: + client_params["region_name"] = self.region_name - if values["endpoint_url"]: - client_params["endpoint_url"] = values["endpoint_url"] + if self.endpoint_url: + client_params["endpoint_url"] = self.endpoint_url - values["client"] = session.client("bedrock-runtime", **client_params) + self.client = session.client("bedrock-runtime", **client_params) except ImportError: raise ImportError( @@ -114,7 +114,7 @@ def validate_environment(cls, values: Dict) -> Dict: f"profile name are valid. Bedrock error: {e}" ) from e - return values + return self def _embedding_func(self, text: str) -> List[float]: """Call out to Bedrock embedding endpoint.""" diff --git a/libs/community/langchain_community/embeddings/bookend.py b/libs/community/langchain_community/embeddings/bookend.py index f8388712d7cf4..c5390e19e71f0 100644 --- a/libs/community/langchain_community/embeddings/bookend.py +++ b/libs/community/langchain_community/embeddings/bookend.py @@ -5,7 +5,7 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field API_URL = "https://api.bookend.ai/" DEFAULT_TASK = "embeddings" diff --git a/libs/community/langchain_community/embeddings/clarifai.py b/libs/community/langchain_community/embeddings/clarifai.py index a465fc737eee2..e460020bef160 100644 --- a/libs/community/langchain_community/embeddings/clarifai.py +++ b/libs/community/langchain_community/embeddings/clarifai.py @@ -2,7 +2,7 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, ConfigDict, Field, model_validator logger = logging.getLogger(__name__) @@ -43,11 +43,11 @@ class ClarifaiEmbeddings(BaseModel, Embeddings): model: Any = Field(default=None, exclude=True) #: :meta private: api_base: str = "https://api.clarifai.com" - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that we have all required info to access Clarifai platform and python package exists in environment.""" diff --git a/libs/community/langchain_community/embeddings/cloudflare_workersai.py b/libs/community/langchain_community/embeddings/cloudflare_workersai.py index 03b6617bf2e62..87d15c609925e 100644 --- a/libs/community/langchain_community/embeddings/cloudflare_workersai.py +++ b/libs/community/langchain_community/embeddings/cloudflare_workersai.py @@ -2,7 +2,7 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict DEFAULT_MODEL_NAME = "@cf/baai/bge-base-en-v1.5" @@ -43,8 +43,7 @@ def __init__(self, **kwargs: Any): self.headers = {"Authorization": f"Bearer {self.api_token}"} - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using Cloudflare Workers AI. diff --git a/libs/community/langchain_community/embeddings/clova.py b/libs/community/langchain_community/embeddings/clova.py index 1e4cecc0ed2b3..551dc63526192 100644 --- a/libs/community/langchain_community/embeddings/clova.py +++ b/libs/community/langchain_community/embeddings/clova.py @@ -1,11 +1,11 @@ from __future__ import annotations -from typing import Dict, List, Optional, cast +from typing import Any, Dict, List, Optional, cast import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator class ClovaEmbeddings(BaseModel, Embeddings): @@ -53,11 +53,13 @@ class ClovaEmbeddings(BaseModel, Embeddings): app_id: Optional[SecretStr] = None """Application ID for identifying your application.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate api key exists in environment.""" values["clova_emb_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "clova_emb_api_key", "CLOVA_EMB_API_KEY") diff --git a/libs/community/langchain_community/embeddings/cohere.py b/libs/community/langchain_community/embeddings/cohere.py index 8c3ea9e101826..504f688100f47 100644 --- a/libs/community/langchain_community/embeddings/cohere.py +++ b/libs/community/langchain_community/embeddings/cohere.py @@ -2,8 +2,8 @@ from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator from langchain_community.llms.cohere import _create_retry_decorator @@ -30,9 +30,9 @@ class CohereEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: """Cohere client.""" - async_client: Any #: :meta private: + async_client: Any = None #: :meta private: """Cohere async client.""" model: str = "embed-english-v2.0" """Model name to use.""" @@ -49,11 +49,13 @@ class CohereEmbeddings(BaseModel, Embeddings): user_agent: str = "langchain" """Identifier for the application making the request.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" diff --git a/libs/community/langchain_community/embeddings/dashscope.py b/libs/community/langchain_community/embeddings/dashscope.py index 33ad8095c5609..0963808635d18 100644 --- a/libs/community/langchain_community/embeddings/dashscope.py +++ b/libs/community/langchain_community/embeddings/dashscope.py @@ -10,8 +10,8 @@ ) from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator from requests.exceptions import HTTPError from tenacity import ( before_sleep_log, @@ -101,18 +101,20 @@ class DashScopeEmbeddings(BaseModel, Embeddings): """ - client: Any #: :meta private: + client: Any = None #: :meta private: """The DashScope client.""" model: str = "text-embedding-v1" dashscope_api_key: Optional[str] = None max_retries: int = 5 """Maximum number of retries to make when generating.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: import dashscope """Validate that api key and python package exists in environment.""" diff --git a/libs/community/langchain_community/embeddings/deepinfra.py b/libs/community/langchain_community/embeddings/deepinfra.py index b115b8c00ec83..d0d2c4760116e 100644 --- a/libs/community/langchain_community/embeddings/deepinfra.py +++ b/libs/community/langchain_community/embeddings/deepinfra.py @@ -2,8 +2,8 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32" MAX_BATCH_SIZE = 1024 @@ -54,8 +54,7 @@ class DeepInfraEmbeddings(BaseModel, Embeddings): batch_size: int = MAX_BATCH_SIZE """Batch size for embedding requests.""" - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/edenai.py b/libs/community/langchain_community/embeddings/edenai.py index bddbd8824c55a..097c730ae423a 100644 --- a/libs/community/langchain_community/embeddings/edenai.py +++ b/libs/community/langchain_community/embeddings/edenai.py @@ -1,12 +1,13 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import ( +from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ( BaseModel, + ConfigDict, Field, SecretStr, ) -from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init from langchain_community.utilities.requests import Requests @@ -28,8 +29,9 @@ class EdenAiEmbeddings(BaseModel, Embeddings): available models are shown on https://docs.edenai.co/ under 'available providers' """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/embaas.py b/libs/community/langchain_community/embeddings/embaas.py index 861cab09280f6..78fd42bf8501d 100644 --- a/libs/community/langchain_community/embeddings/embaas.py +++ b/libs/community/langchain_community/embeddings/embaas.py @@ -2,8 +2,8 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, SecretStr from requests.adapters import HTTPAdapter, Retry from typing_extensions import NotRequired, TypedDict @@ -56,8 +56,9 @@ class EmbaasEmbeddings(BaseModel, Embeddings): """request timeout in seconds""" timeout: Optional[int] = 30 - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/ernie.py b/libs/community/langchain_community/embeddings/ernie.py index c640680f9c8f2..42a49e2c6ca6f 100644 --- a/libs/community/langchain_community/embeddings/ernie.py +++ b/libs/community/langchain_community/embeddings/ernie.py @@ -6,9 +6,9 @@ import requests from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables.config import run_in_executor from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/embeddings/fake.py b/libs/community/langchain_community/embeddings/fake.py index fcc33496aa863..67dc1d6b6f5b5 100644 --- a/libs/community/langchain_community/embeddings/fake.py +++ b/libs/community/langchain_community/embeddings/fake.py @@ -3,7 +3,7 @@ import numpy as np from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class FakeEmbeddings(Embeddings, BaseModel): diff --git a/libs/community/langchain_community/embeddings/fastembed.py b/libs/community/langchain_community/embeddings/fastembed.py index 3a0940c866c4f..28105dd72088b 100644 --- a/libs/community/langchain_community/embeddings/fastembed.py +++ b/libs/community/langchain_community/embeddings/fastembed.py @@ -4,8 +4,8 @@ import numpy as np from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel, ConfigDict MIN_VERSION = "0.2.0" @@ -38,12 +38,12 @@ class FastEmbedEmbeddings(BaseModel, Embeddings): Unknown behavior for values > 512. """ - cache_dir: Optional[str] + cache_dir: Optional[str] = None """The path to the cache directory. Defaults to `local_cache` in the parent directory """ - threads: Optional[int] + threads: Optional[int] = None """The number of threads single onnxruntime session can use. Defaults to None """ @@ -65,10 +65,9 @@ class FastEmbedEmbeddings(BaseModel, Embeddings): Defaults to `None`. """ - _model: Any # : :meta private: + model: Any = None # : :meta private: - class Config: - extra = "allow" + model_config = ConfigDict(extra="allow", protected_namespaces=()) @pre_init def validate_environment(cls, values: Dict) -> Dict: @@ -92,7 +91,7 @@ def validate_environment(cls, values: Dict) -> Dict: 'FastEmbedEmbeddings requires `pip install -U "fastembed>=0.2.0"`.' ) - values["_model"] = fastembed.TextEmbedding( + values["model"] = fastembed.TextEmbedding( model_name=model_name, max_length=max_length, cache_dir=cache_dir, @@ -111,11 +110,11 @@ def embed_documents(self, texts: List[str]) -> List[List[float]]: """ embeddings: List[np.ndarray] if self.doc_embed_type == "passage": - embeddings = self._model.passage_embed( + embeddings = self.model.passage_embed( texts, batch_size=self.batch_size, parallel=self.parallel ) else: - embeddings = self._model.embed( + embeddings = self.model.embed( texts, batch_size=self.batch_size, parallel=self.parallel ) return [e.tolist() for e in embeddings] @@ -130,7 +129,7 @@ def embed_query(self, text: str) -> List[float]: Embeddings for the text. """ query_embeddings: np.ndarray = next( - self._model.query_embed( + self.model.query_embed( text, batch_size=self.batch_size, parallel=self.parallel ) ) diff --git a/libs/community/langchain_community/embeddings/gigachat.py b/libs/community/langchain_community/embeddings/gigachat.py index 09ac5b3757851..eea276e2444b1 100644 --- a/libs/community/langchain_community/embeddings/gigachat.py +++ b/libs/community/langchain_community/embeddings/gigachat.py @@ -5,9 +5,9 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init from langchain_core.utils.pydantic import get_fields +from pydantic import BaseModel logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/embeddings/google_palm.py b/libs/community/langchain_community/embeddings/google_palm.py index 2c960c93e84c1..363214caead72 100644 --- a/libs/community/langchain_community/embeddings/google_palm.py +++ b/libs/community/langchain_community/embeddings/google_palm.py @@ -4,8 +4,8 @@ from typing import Any, Callable, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel from tenacity import ( before_sleep_log, retry, diff --git a/libs/community/langchain_community/embeddings/gpt4all.py b/libs/community/langchain_community/embeddings/gpt4all.py index 338acc50389ce..ce92ab84b6d23 100644 --- a/libs/community/langchain_community/embeddings/gpt4all.py +++ b/libs/community/langchain_community/embeddings/gpt4all.py @@ -1,7 +1,7 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator class GPT4AllEmbeddings(BaseModel, Embeddings): @@ -28,8 +28,9 @@ class GPT4AllEmbeddings(BaseModel, Embeddings): gpt4all_kwargs: Optional[dict] = {} client: Any #: :meta private: - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that GPT4All library is installed.""" try: from gpt4all import Embed4All diff --git a/libs/community/langchain_community/embeddings/gradient_ai.py b/libs/community/langchain_community/embeddings/gradient_ai.py index 6e6f0cedf76a3..f33c80a6eca31 100644 --- a/libs/community/langchain_community/embeddings/gradient_ai.py +++ b/libs/community/langchain_community/embeddings/gradient_ai.py @@ -1,9 +1,10 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env from packaging.version import parse +from pydantic import BaseModel, ConfigDict, model_validator +from typing_extensions import Self __all__ = ["GradientEmbeddings"] @@ -50,11 +51,13 @@ class GradientEmbeddings(BaseModel, Embeddings): """Gradient client.""" # LLM call kwargs - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["gradient_access_token"] = get_from_dict_or_env( @@ -72,8 +75,8 @@ def validate_environment(cls, values: Dict) -> Dict: ) return values - @root_validator(pre=False, skip_on_failure=True) - def post_init(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def post_init(self) -> Self: try: import gradientai except ImportError: @@ -87,12 +90,12 @@ def post_init(cls, values: Dict) -> Dict: ) gradient = gradientai.Gradient( - access_token=values["gradient_access_token"], - workspace_id=values["gradient_workspace_id"], - host=values["gradient_api_url"], + access_token=self.gradient_access_token, + workspace_id=self.gradient_workspace_id, + host=self.gradient_api_url, ) - values["client"] = gradient.get_embeddings_model(slug=values["model"]) - return values + self.client = gradient.get_embeddings_model(slug=self.model) + return self def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Gradient's embedding endpoint. diff --git a/libs/community/langchain_community/embeddings/huggingface.py b/libs/community/langchain_community/embeddings/huggingface.py index ed188c7e61e3a..cc2e073160b17 100644 --- a/libs/community/langchain_community/embeddings/huggingface.py +++ b/libs/community/langchain_community/embeddings/huggingface.py @@ -4,7 +4,7 @@ import requests from langchain_core._api import deprecated, warn_deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr +from pydantic import BaseModel, ConfigDict, Field, SecretStr DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" @@ -44,7 +44,7 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" cache_folder: Optional[str] = None @@ -93,8 +93,7 @@ def __init__(self, **kwargs: Any): self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. @@ -152,7 +151,7 @@ class HuggingFaceInstructEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" cache_folder: Optional[str] = None @@ -208,8 +207,7 @@ def __init__(self, **kwargs: Any): ) self.show_progress = self.encode_kwargs.pop("show_progress_bar") - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. @@ -285,7 +283,7 @@ class HuggingFaceBgeEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = DEFAULT_BGE_MODEL """Model name to use.""" cache_folder: Optional[str] = None @@ -348,8 +346,7 @@ def __init__(self, **kwargs: Any): ) self.show_progress = self.encode_kwargs.pop("show_progress_bar") - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. @@ -399,6 +396,8 @@ class HuggingFaceInferenceAPIEmbeddings(BaseModel, Embeddings): additional_headers: Dict[str, str] = {} """Pass additional headers to the requests library if needed.""" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) + @property def _api_url(self) -> str: return self.api_url or self._default_api_url diff --git a/libs/community/langchain_community/embeddings/huggingface_hub.py b/libs/community/langchain_community/embeddings/huggingface_hub.py index 6b688913b9b95..b1a1fac3721df 100644 --- a/libs/community/langchain_community/embeddings/huggingface_hub.py +++ b/libs/community/langchain_community/embeddings/huggingface_hub.py @@ -3,8 +3,9 @@ from langchain_core._api import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator +from typing_extensions import Self DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2" VALID_TASKS = ("feature-extraction",) @@ -34,8 +35,8 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: - async_client: Any #: :meta private: + client: Any = None #: :meta private: + async_client: Any = None #: :meta private: model: Optional[str] = None """Model name to use.""" repo_id: Optional[str] = None @@ -47,11 +48,11 @@ class HuggingFaceHubEmbeddings(BaseModel, Embeddings): huggingfacehub_api_token: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" @@ -88,15 +89,15 @@ def validate_environment(cls, values: Dict) -> Dict: ) return values - @root_validator(pre=False, skip_on_failure=True) - def post_init(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def post_init(self) -> Self: """Post init validation for the class.""" - if values["task"] not in VALID_TASKS: + if self.task not in VALID_TASKS: raise ValueError( - f"Got invalid task {values['task']}, " + f"Got invalid task {self.task}, " f"currently only {VALID_TASKS} are supported" ) - return values + return self def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to HuggingFaceHub's embedding endpoint for embedding search docs. diff --git a/libs/community/langchain_community/embeddings/infinity.py b/libs/community/langchain_community/embeddings/infinity.py index f9032427d5dc9..dbbc9f83142f6 100644 --- a/libs/community/langchain_community/embeddings/infinity.py +++ b/libs/community/langchain_community/embeddings/infinity.py @@ -8,8 +8,8 @@ import numpy as np import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator __all__ = ["InfinityEmbeddings"] @@ -44,11 +44,13 @@ class InfinityEmbeddings(BaseModel, Embeddings): """Infinity client.""" # LLM call kwargs - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["infinity_api_url"] = get_from_dict_or_env( diff --git a/libs/community/langchain_community/embeddings/infinity_local.py b/libs/community/langchain_community/embeddings/infinity_local.py index 6697d63a83bc9..610ccaf3e88f0 100644 --- a/libs/community/langchain_community/embeddings/infinity_local.py +++ b/libs/community/langchain_community/embeddings/infinity_local.py @@ -2,10 +2,11 @@ import asyncio from logging import getLogger -from typing import Any, Dict, List, Optional +from typing import Any, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator +from typing_extensions import Self __all__ = ["InfinityEmbeddingsLocal"] @@ -57,11 +58,12 @@ class InfinityEmbeddingsLocal(BaseModel, Embeddings): """Infinity's AsyncEmbeddingEngine.""" # LLM call kwargs - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" try: @@ -72,17 +74,15 @@ def validate_environment(cls, values: Dict) -> Dict: "`pip install 'infinity_emb[optimum,torch]>=0.0.24'` " "package to use the InfinityEmbeddingsLocal." ) - logger.debug(f"Using InfinityEmbeddingsLocal with kwargs {values}") - - values["engine"] = AsyncEmbeddingEngine( - model_name_or_path=values["model"], - device=values["device"], - revision=values["revision"], - model_warmup=values["model_warmup"], - batch_size=values["batch_size"], - engine=values["backend"], + self.engine = AsyncEmbeddingEngine( + model_name_or_path=self.model, + device=self.device, + revision=self.revision, + model_warmup=self.model_warmup, + batch_size=self.batch_size, + engine=self.backend, ) - return values + return self async def __aenter__(self) -> None: """start the background worker. diff --git a/libs/community/langchain_community/embeddings/ipex_llm.py b/libs/community/langchain_community/embeddings/ipex_llm.py index 5b1a6a4a25e0e..8022616f22d41 100644 --- a/libs/community/langchain_community/embeddings/ipex_llm.py +++ b/libs/community/langchain_community/embeddings/ipex_llm.py @@ -4,7 +4,7 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field DEFAULT_BGE_MODEL = "BAAI/bge-small-en-v1.5" DEFAULT_QUERY_BGE_INSTRUCTION_EN = ( @@ -49,7 +49,7 @@ class IpexLLMBgeEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = DEFAULT_BGE_MODEL """Model name to use.""" cache_folder: Optional[str] = None @@ -106,8 +106,7 @@ def __init__(self, **kwargs: Any): if "-zh" in self.model_name: self.query_instruction = DEFAULT_QUERY_BGE_INSTRUCTION_ZH - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. diff --git a/libs/community/langchain_community/embeddings/itrex.py b/libs/community/langchain_community/embeddings/itrex.py index 67273acebc588..2fcd0afae3d7c 100644 --- a/libs/community/langchain_community/embeddings/itrex.py +++ b/libs/community/langchain_community/embeddings/itrex.py @@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict class QuantizedBgeEmbeddings(BaseModel, Embeddings): @@ -118,8 +118,9 @@ def load_model(self) -> None: onnx_model_path, use_embedding_runtime=True ) - class Config: - extra = "allow" + model_config = ConfigDict( + extra="allow", + ) def _embed(self, inputs: Any) -> Any: import torch diff --git a/libs/community/langchain_community/embeddings/javelin_ai_gateway.py b/libs/community/langchain_community/embeddings/javelin_ai_gateway.py index 61baac869da1f..205e58e1c30c5 100644 --- a/libs/community/langchain_community/embeddings/javelin_ai_gateway.py +++ b/libs/community/langchain_community/embeddings/javelin_ai_gateway.py @@ -3,7 +3,7 @@ from typing import Any, Iterator, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel def _chunk(texts: List[str], size: int) -> Iterator[List[str]]: diff --git a/libs/community/langchain_community/embeddings/jina.py b/libs/community/langchain_community/embeddings/jina.py index 73f75b24b8fb6..718345f1afd23 100644 --- a/libs/community/langchain_community/embeddings/jina.py +++ b/libs/community/langchain_community/embeddings/jina.py @@ -5,8 +5,8 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, SecretStr, model_validator JINA_API_URL: str = "https://api.jina.ai/v1/embeddings" @@ -46,8 +46,9 @@ class JinaEmbeddings(BaseModel, Embeddings): model_name: str = "jina-embeddings-v2-base-en" jina_api_key: Optional[SecretStr] = None - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that auth token exists in environment.""" try: jina_api_key = convert_to_secret_str( diff --git a/libs/community/langchain_community/embeddings/johnsnowlabs.py b/libs/community/langchain_community/embeddings/johnsnowlabs.py index 23296149eb491..4223114aa0b15 100644 --- a/libs/community/langchain_community/embeddings/johnsnowlabs.py +++ b/libs/community/langchain_community/embeddings/johnsnowlabs.py @@ -3,7 +3,7 @@ from typing import Any, List from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict class JohnSnowLabsEmbeddings(BaseModel, Embeddings): @@ -58,8 +58,9 @@ def __init__( except Exception as exc: raise Exception("Failure loading model") from exc - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a JohnSnowLabs transformer model. diff --git a/libs/community/langchain_community/embeddings/laser.py b/libs/community/langchain_community/embeddings/laser.py index 98bcaf26db411..1299e55e518c0 100644 --- a/libs/community/langchain_community/embeddings/laser.py +++ b/libs/community/langchain_community/embeddings/laser.py @@ -2,8 +2,8 @@ import numpy as np from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel, ConfigDict LASER_MULTILINGUAL_MODEL: str = "laser2" @@ -27,7 +27,7 @@ class LaserEmbeddings(BaseModel, Embeddings): embeddings = encoder.encode_sentences(["Hello", "World"]) """ - lang: Optional[str] + lang: Optional[str] = None """The language or language code you'd like to use If empty, this implementation will default to using a multilingual earlier LASER encoder model (called laser2) @@ -35,10 +35,11 @@ class LaserEmbeddings(BaseModel, Embeddings): https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200 """ - _encoder_pipeline: Any # : :meta private: + _encoder_pipeline: Any = None # : :meta private: - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/llamacpp.py b/libs/community/langchain_community/embeddings/llamacpp.py index 49091b5aa6bfb..86a029ea753f0 100644 --- a/libs/community/langchain_community/embeddings/llamacpp.py +++ b/libs/community/langchain_community/embeddings/llamacpp.py @@ -1,7 +1,8 @@ -from typing import Any, Dict, List, Optional +from typing import Any, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, ConfigDict, Field, model_validator +from typing_extensions import Self class LlamaCppEmbeddings(BaseModel, Embeddings): @@ -18,7 +19,7 @@ class LlamaCppEmbeddings(BaseModel, Embeddings): llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_path: str n_ctx: int = Field(512, alias="n_ctx") @@ -60,13 +61,14 @@ class LlamaCppEmbeddings(BaseModel, Embeddings): device: Optional[str] = Field(None, alias="device") """Device type to use and pass to the model""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that llama-cpp-python library is installed.""" - model_path = values["model_path"] + model_path = self.model_path model_param_names = [ "n_ctx", "n_parts", @@ -80,15 +82,15 @@ def validate_environment(cls, values: Dict) -> Dict: "verbose", "device", ] - model_params = {k: values[k] for k in model_param_names} + model_params = {k: getattr(self, k) for k in model_param_names} # For backwards compatibility, only include if non-null. - if values["n_gpu_layers"] is not None: - model_params["n_gpu_layers"] = values["n_gpu_layers"] + if self.n_gpu_layers is not None: + model_params["n_gpu_layers"] = self.n_gpu_layers try: from llama_cpp import Llama - values["client"] = Llama(model_path, embedding=True, **model_params) + self.client = Llama(model_path, embedding=True, **model_params) except ImportError: raise ImportError( "Could not import llama-cpp-python library. " @@ -101,7 +103,7 @@ def validate_environment(cls, values: Dict) -> Dict: f"Received error {e}" ) - return values + return self def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using the Llama model. diff --git a/libs/community/langchain_community/embeddings/llamafile.py b/libs/community/langchain_community/embeddings/llamafile.py index 310f61a03e1d0..247b1a923ac58 100644 --- a/libs/community/langchain_community/embeddings/llamafile.py +++ b/libs/community/langchain_community/embeddings/llamafile.py @@ -3,7 +3,7 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/embeddings/llm_rails.py b/libs/community/langchain_community/embeddings/llm_rails.py index 7de390ae72d03..92bb8c6a10cd3 100644 --- a/libs/community/langchain_community/embeddings/llm_rails.py +++ b/libs/community/langchain_community/embeddings/llm_rails.py @@ -4,8 +4,8 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, SecretStr class LLMRailsEmbeddings(BaseModel, Embeddings): @@ -32,8 +32,9 @@ class LLMRailsEmbeddings(BaseModel, Embeddings): api_key: Optional[SecretStr] = None """LLMRails API key.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/localai.py b/libs/community/langchain_community/embeddings/localai.py index 7a57eab2bc73e..924f162128ec2 100644 --- a/libs/community/langchain_community/embeddings/localai.py +++ b/libs/community/langchain_community/embeddings/localai.py @@ -16,12 +16,12 @@ ) from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import ( get_from_dict_or_env, get_pydantic_field_names, pre_init, ) +from pydantic import BaseModel, ConfigDict, Field, model_validator from tenacity import ( AsyncRetrying, before_sleep_log, @@ -141,7 +141,7 @@ class LocalAIEmbeddings(BaseModel, Embeddings): """ - client: Any #: :meta private: + client: Any = None #: :meta private: model: str = "text-embedding-ada-002" deployment: str = model openai_api_version: Optional[str] = None @@ -166,11 +166,11 @@ class LocalAIEmbeddings(BaseModel, Embeddings): model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/embeddings/minimax.py b/libs/community/langchain_community/embeddings/minimax.py index 3633029ed56b5..14262786158e5 100644 --- a/libs/community/langchain_community/embeddings/minimax.py +++ b/libs/community/langchain_community/embeddings/minimax.py @@ -5,8 +5,8 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, Field, SecretStr from tenacity import ( before_sleep_log, retry, @@ -117,9 +117,10 @@ class MiniMaxEmbeddings(BaseModel, Embeddings): minimax_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") """API Key for MiniMax API.""" - class Config: - allow_population_by_field_name = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/mlflow.py b/libs/community/langchain_community/embeddings/mlflow.py index 6261d76c16fd9..2dbff7c2eb8c2 100644 --- a/libs/community/langchain_community/embeddings/mlflow.py +++ b/libs/community/langchain_community/embeddings/mlflow.py @@ -4,7 +4,7 @@ from urllib.parse import urlparse from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, PrivateAttr +from pydantic import BaseModel, PrivateAttr def _chunk(texts: List[str], size: int) -> Iterator[List[str]]: diff --git a/libs/community/langchain_community/embeddings/mlflow_gateway.py b/libs/community/langchain_community/embeddings/mlflow_gateway.py index e722d9e35ce6a..9a7a9643fe40f 100644 --- a/libs/community/langchain_community/embeddings/mlflow_gateway.py +++ b/libs/community/langchain_community/embeddings/mlflow_gateway.py @@ -4,7 +4,7 @@ from typing import Any, Iterator, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel def _chunk(texts: List[str], size: int) -> Iterator[List[str]]: diff --git a/libs/community/langchain_community/embeddings/modelscope_hub.py b/libs/community/langchain_community/embeddings/modelscope_hub.py index 77a53770bede4..e200244c55143 100644 --- a/libs/community/langchain_community/embeddings/modelscope_hub.py +++ b/libs/community/langchain_community/embeddings/modelscope_hub.py @@ -1,7 +1,7 @@ from typing import Any, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict class ModelScopeEmbeddings(BaseModel, Embeddings): @@ -17,7 +17,7 @@ class ModelScopeEmbeddings(BaseModel, Embeddings): embed = ModelScopeEmbeddings(model_id=model_id, model_revision="v1.0.0") """ - embed: Any + embed: Any = None model_id: str = "damo/nlp_corom_sentence-embedding_english-base" """Model name to use.""" model_revision: Optional[str] = None @@ -39,8 +39,7 @@ def __init__(self, **kwargs: Any): model_revision=self.model_revision, ) - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a modelscope embedding model. diff --git a/libs/community/langchain_community/embeddings/mosaicml.py b/libs/community/langchain_community/embeddings/mosaicml.py index 01acee54ec580..cf5f8646b34ab 100644 --- a/libs/community/langchain_community/embeddings/mosaicml.py +++ b/libs/community/langchain_community/embeddings/mosaicml.py @@ -2,8 +2,8 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class MosaicMLInstructorEmbeddings(BaseModel, Embeddings): @@ -41,11 +41,13 @@ class MosaicMLInstructorEmbeddings(BaseModel, Embeddings): mosaicml_api_token: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" mosaicml_api_token = get_from_dict_or_env( values, "mosaicml_api_token", "MOSAICML_API_TOKEN" diff --git a/libs/community/langchain_community/embeddings/nemo.py b/libs/community/langchain_community/embeddings/nemo.py index 95d00c3bbb4ce..38a20ffb45071 100644 --- a/libs/community/langchain_community/embeddings/nemo.py +++ b/libs/community/langchain_community/embeddings/nemo.py @@ -8,8 +8,8 @@ import requests from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel def is_endpoint_live(url: str, headers: Optional[dict], payload: Any) -> bool: diff --git a/libs/community/langchain_community/embeddings/nlpcloud.py b/libs/community/langchain_community/embeddings/nlpcloud.py index 69f08d28572f4..decf8ac2b803e 100644 --- a/libs/community/langchain_community/embeddings/nlpcloud.py +++ b/libs/community/langchain_community/embeddings/nlpcloud.py @@ -1,8 +1,8 @@ from typing import Any, Dict, List from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel class NLPCloudEmbeddings(BaseModel, Embeddings): diff --git a/libs/community/langchain_community/embeddings/oci_generative_ai.py b/libs/community/langchain_community/embeddings/oci_generative_ai.py index cf5cec0e36253..10bef6d441dfd 100644 --- a/libs/community/langchain_community/embeddings/oci_generative_ai.py +++ b/libs/community/langchain_community/embeddings/oci_generative_ai.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Iterator, List, Mapping, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel, ConfigDict CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint" @@ -46,9 +46,9 @@ class OCIGenAIEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: - service_models: Any #: :meta private: + service_models: Any = None #: :meta private: auth_type: Optional[str] = "API_KEY" """Authentication type, could be @@ -66,16 +66,16 @@ class OCIGenAIEmbeddings(BaseModel, Embeddings): If not specified , DEFAULT will be used """ - model_id: str = None # type: ignore[assignment] + model_id: Optional[str] = None """Id of the model to call, e.g., cohere.embed-english-light-v2.0""" model_kwargs: Optional[Dict] = None """Keyword arguments to pass to the model""" - service_endpoint: str = None # type: ignore[assignment] + service_endpoint: Optional[str] = None """service endpoint url""" - compartment_id: str = None # type: ignore[assignment] + compartment_id: Optional[str] = None """OCID of compartment""" truncate: Optional[str] = "END" @@ -85,8 +85,7 @@ class OCIGenAIEmbeddings(BaseModel, Embeddings): """Batch size of OCI GenAI embedding requests. OCI GenAI may handle up to 96 texts per request""" - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) @pre_init def validate_environment(cls, values: Dict) -> Dict: # pylint: disable=no-self-argument @@ -180,6 +179,9 @@ def embed_documents(self, texts: List[str]) -> List[List[float]]: """ from oci.generative_ai_inference import models + if not self.model_id: + raise ValueError("Model ID is required to embed documents") + if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX): serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id) else: diff --git a/libs/community/langchain_community/embeddings/octoai_embeddings.py b/libs/community/langchain_community/embeddings/octoai_embeddings.py index 287c04c264589..102ba313f54f8 100644 --- a/libs/community/langchain_community/embeddings/octoai_embeddings.py +++ b/libs/community/langchain_community/embeddings/octoai_embeddings.py @@ -1,7 +1,7 @@ from typing import Dict -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import Field, SecretStr from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.utils.openai import is_openai_v1 diff --git a/libs/community/langchain_community/embeddings/ollama.py b/libs/community/langchain_community/embeddings/ollama.py index 86774c45a5896..ddec6fe39b888 100644 --- a/libs/community/langchain_community/embeddings/ollama.py +++ b/libs/community/langchain_community/embeddings/ollama.py @@ -2,12 +2,18 @@ from typing import Any, Dict, List, Mapping, Optional import requests +from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict logger = logging.getLogger(__name__) +@deprecated( + since="0.3.1", + removal="1.0.0", + alternative_import="langchain_ollama.OllamaEmbeddings", +) class OllamaEmbeddings(BaseModel, Embeddings): """Ollama locally runs large language models. @@ -141,8 +147,7 @@ def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model": self.model}, **self._default_params} - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def _process_emb_response(self, input: str) -> List[float]: """Process a response from the API. diff --git a/libs/community/langchain_community/embeddings/openai.py b/libs/community/langchain_community/embeddings/openai.py index 0c097b11aca03..770bb765e8151 100644 --- a/libs/community/langchain_community/embeddings/openai.py +++ b/libs/community/langchain_community/embeddings/openai.py @@ -21,12 +21,12 @@ import numpy as np from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import ( get_from_dict_or_env, get_pydantic_field_names, pre_init, ) +from pydantic import BaseModel, ConfigDict, Field, model_validator from tenacity import ( AsyncRetrying, before_sleep_log, @@ -254,12 +254,13 @@ class OpenAIEmbeddings(BaseModel, Embeddings): http_client: Union[Any, None] = None """Optional httpx.Client.""" - class Config: - allow_population_by_field_name = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, extra="forbid", protected_namespaces=() + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/embeddings/openvino.py b/libs/community/langchain_community/embeddings/openvino.py index f8dfc4077c819..3dbbdef45f1a6 100644 --- a/libs/community/langchain_community/embeddings/openvino.py +++ b/libs/community/langchain_community/embeddings/openvino.py @@ -2,7 +2,7 @@ from typing import Any, Dict, List from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " @@ -31,9 +31,9 @@ class OpenVINOEmbeddings(BaseModel, Embeddings): ) """ - ov_model: Any + ov_model: Any = None """OpenVINO model object.""" - tokenizer: Any + tokenizer: Any = None """Tokenizer for embedding model.""" model_name_or_path: str """HuggingFace model id.""" @@ -254,8 +254,7 @@ def run_mean_pooling(model_output: Any, attention_mask: Any) -> Any: return all_embeddings - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. diff --git a/libs/community/langchain_community/embeddings/optimum_intel.py b/libs/community/langchain_community/embeddings/optimum_intel.py index a9c40ff4e185b..657cba32c78c4 100644 --- a/libs/community/langchain_community/embeddings/optimum_intel.py +++ b/libs/community/langchain_community/embeddings/optimum_intel.py @@ -1,7 +1,7 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict class QuantizedBiEncoderEmbeddings(BaseModel, Embeddings): @@ -100,8 +100,9 @@ def load_model(self) -> None: ) self.transformer_model.eval() - class Config: - extra = "allow" + model_config = ConfigDict( + extra="allow", + ) def _embed(self, inputs: Any) -> Any: try: diff --git a/libs/community/langchain_community/embeddings/oracleai.py b/libs/community/langchain_community/embeddings/oracleai.py index a7adbf6cad813..d1dca4190522c 100644 --- a/libs/community/langchain_community/embeddings/oracleai.py +++ b/libs/community/langchain_community/embeddings/oracleai.py @@ -14,7 +14,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict if TYPE_CHECKING: from oracledb import Connection @@ -28,7 +28,7 @@ class OracleEmbeddings(BaseModel, Embeddings): """Get Embeddings""" """Oracle Connection""" - conn: Any + conn: Any = None """Embedding Parameters""" params: Dict[str, Any] """Proxy""" @@ -37,8 +37,9 @@ class OracleEmbeddings(BaseModel, Embeddings): def __init__(self, **kwargs: Any): super().__init__(**kwargs) - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) """ 1 - user needs to have create procedure, diff --git a/libs/community/langchain_community/embeddings/ovhcloud.py b/libs/community/langchain_community/embeddings/ovhcloud.py index a943e2a70edf8..5786a761f49fe 100644 --- a/libs/community/langchain_community/embeddings/ovhcloud.py +++ b/libs/community/langchain_community/embeddings/ovhcloud.py @@ -4,7 +4,7 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict logger = logging.getLogger(__name__) @@ -23,8 +23,7 @@ class OVHCloudEmbeddings(BaseModel, Embeddings): """ OVHcloud AI Endpoints region""" region: str = "kepler" - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) def __init__(self, **kwargs: Any): super().__init__(**kwargs) diff --git a/libs/community/langchain_community/embeddings/premai.py b/libs/community/langchain_community/embeddings/premai.py index 0ae42759776b0..ed4a74534439b 100644 --- a/libs/community/langchain_community/embeddings/premai.py +++ b/libs/community/langchain_community/embeddings/premai.py @@ -5,8 +5,8 @@ from langchain_core.embeddings import Embeddings from langchain_core.language_models.llms import create_base_retry_decorator -from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel, SecretStr logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/embeddings/sagemaker_endpoint.py b/libs/community/langchain_community/embeddings/sagemaker_endpoint.py index dfa58056ab47c..d69cbd92ea84a 100644 --- a/libs/community/langchain_community/embeddings/sagemaker_endpoint.py +++ b/libs/community/langchain_community/embeddings/sagemaker_endpoint.py @@ -1,8 +1,8 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel, ConfigDict from langchain_community.llms.sagemaker_endpoint import ContentHandlerBase @@ -110,9 +110,9 @@ def transform_output(self, output: bytes) -> List[List[float]]: .. _boto3: """ - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, extra="forbid", protected_namespaces=() + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/sambanova.py b/libs/community/langchain_community/embeddings/sambanova.py index 57601b5c6294a..0daab18ef6620 100644 --- a/libs/community/langchain_community/embeddings/sambanova.py +++ b/libs/community/langchain_community/embeddings/sambanova.py @@ -3,8 +3,8 @@ import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel class SambaStudioEmbeddings(BaseModel, Embeddings): @@ -213,7 +213,7 @@ def embed_documents( ) try: if params.get("select_expert"): - embedding = response.json()["predictions"][0] + embedding = response.json()["predictions"] else: embedding = response.json()["predictions"] embeddings.extend(embedding) @@ -299,7 +299,7 @@ def embed_query(self, text: str) -> List[float]: ) try: if params.get("select_expert"): - embedding = response.json()["predictions"][0][0] + embedding = response.json()["predictions"][0] else: embedding = response.json()["predictions"][0] except KeyError: diff --git a/libs/community/langchain_community/embeddings/self_hosted.py b/libs/community/langchain_community/embeddings/self_hosted.py index 48188dedeea2f..8099c7018ed41 100644 --- a/libs/community/langchain_community/embeddings/self_hosted.py +++ b/libs/community/langchain_community/embeddings/self_hosted.py @@ -1,6 +1,7 @@ from typing import Any, Callable, List from langchain_core.embeddings import Embeddings +from pydantic import ConfigDict from langchain_community.llms.self_hosted import SelfHostedPipeline @@ -65,8 +66,9 @@ def get_pipeline(): inference_kwargs: Any = None """Any kwargs to pass to the model's inference function.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. diff --git a/libs/community/langchain_community/embeddings/solar.py b/libs/community/langchain_community/embeddings/solar.py index e441b0cea1727..e730d7e6e9625 100644 --- a/libs/community/langchain_community/embeddings/solar.py +++ b/libs/community/langchain_community/embeddings/solar.py @@ -6,8 +6,8 @@ import requests from langchain_core._api import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, SecretStr from tenacity import ( before_sleep_log, retry, @@ -75,8 +75,9 @@ class SolarEmbeddings(BaseModel, Embeddings): solar_api_key: Optional[SecretStr] = None """API Key for Solar API.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/spacy_embeddings.py b/libs/community/langchain_community/embeddings/spacy_embeddings.py index d424ad70bc59d..0413741c4df5d 100644 --- a/libs/community/langchain_community/embeddings/spacy_embeddings.py +++ b/libs/community/langchain_community/embeddings/spacy_embeddings.py @@ -2,7 +2,7 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator class SpacyEmbeddings(BaseModel, Embeddings): @@ -22,11 +22,11 @@ class SpacyEmbeddings(BaseModel, Embeddings): model_name: str = "en_core_web_sm" nlp: Optional[Any] = None - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """ Validates that the spaCy package and the model are installed. diff --git a/libs/community/langchain_community/embeddings/sparkllm.py b/libs/community/langchain_community/embeddings/sparkllm.py index 5f98ee74de269..6f0f1a1055267 100644 --- a/libs/community/langchain_community/embeddings/sparkllm.py +++ b/libs/community/langchain_community/embeddings/sparkllm.py @@ -12,11 +12,11 @@ import numpy as np import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr from langchain_core.utils import ( secret_from_env, ) from numpy import ndarray +from pydantic import BaseModel, ConfigDict, Field, SecretStr # SparkLLMTextEmbeddings is an embedding model provided by iFLYTEK Co., Ltd.. (https://iflytek.com/en/). @@ -124,8 +124,9 @@ class SparkLLMTextEmbeddings(BaseModel, Embeddings): If "para"(default), it belongs to document Embedding. If "query", it belongs to query Embedding.""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) def _embed(self, texts: List[str], host: str) -> Optional[List[List[float]]]: """Internal method to call Spark Embedding API and return embeddings. diff --git a/libs/community/langchain_community/embeddings/tensorflow_hub.py b/libs/community/langchain_community/embeddings/tensorflow_hub.py index 4b72c071eab80..a9c2edf419b9d 100644 --- a/libs/community/langchain_community/embeddings/tensorflow_hub.py +++ b/libs/community/langchain_community/embeddings/tensorflow_hub.py @@ -1,7 +1,7 @@ from typing import Any, List from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" @@ -19,7 +19,7 @@ class TensorflowHubEmbeddings(BaseModel, Embeddings): tf = TensorflowHubEmbeddings(model_url=url) """ - embed: Any #: :meta private: + embed: Any = None #: :meta private: model_url: str = DEFAULT_MODEL_URL """Model name to use.""" @@ -43,8 +43,9 @@ def __init__(self, **kwargs: Any): self.embed = tensorflow_hub.load(self.model_url) - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a TensorflowHub embedding model. diff --git a/libs/community/langchain_community/embeddings/text2vec.py b/libs/community/langchain_community/embeddings/text2vec.py index 537249aa93d3d..9b0cf353ec006 100644 --- a/libs/community/langchain_community/embeddings/text2vec.py +++ b/libs/community/langchain_community/embeddings/text2vec.py @@ -3,7 +3,7 @@ from typing import Any, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class Text2vecEmbeddings(Embeddings, BaseModel): diff --git a/libs/community/langchain_community/embeddings/textembed.py b/libs/community/langchain_community/embeddings/textembed.py index 5559acf804f1b..57fc85211abb0 100644 --- a/libs/community/langchain_community/embeddings/textembed.py +++ b/libs/community/langchain_community/embeddings/textembed.py @@ -17,8 +17,9 @@ import numpy as np import requests from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator -from langchain_core.utils import get_from_dict_or_env +from langchain_core.utils import from_env, secret_from_env +from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator +from typing_extensions import Self __all__ = ["TextEmbedEmbeddings"] @@ -50,35 +51,30 @@ class TextEmbedEmbeddings(BaseModel, Embeddings): model: str """Underlying TextEmbed model id.""" - api_url: str = "http://localhost:8000/v1" + api_url: str = Field( + default_factory=from_env( + "TEXTEMBED_API_URL", default="http://localhost:8000/v1" + ) + ) """Endpoint URL to use.""" - api_key: str = "None" + api_key: SecretStr = Field(default_factory=secret_from_env("TEXTEMBED_API_KEY")) """API Key for authentication""" client: Any = None """TextEmbed client.""" - class Config: - extra = "forbid" - - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: - """Validate that api key and URL exist in the environment. - - Args: - values (Dict): Dictionary of values to validate. - - Returns: - Dict: Validated values. - """ - values["api_url"] = get_from_dict_or_env(values, "api_url", "API_URL") - values["api_key"] = get_from_dict_or_env(values, "api_key", "API_KEY") + model_config = ConfigDict( + extra="forbid", + ) - values["client"] = AsyncOpenAITextEmbedEmbeddingClient( - host=values["api_url"], api_key=values["api_key"] + @model_validator(mode="after") + def validate_environment(self) -> Self: + """Validate that api key and URL exist in the environment.""" + self.client = AsyncOpenAITextEmbedEmbeddingClient( + host=self.api_url, api_key=self.api_key.get_secret_value() ) - return values + return self def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to TextEmbed's embedding endpoint. diff --git a/libs/community/langchain_community/embeddings/titan_takeoff.py b/libs/community/langchain_community/embeddings/titan_takeoff.py index bf82f54936e31..b171be0f2918f 100644 --- a/libs/community/langchain_community/embeddings/titan_takeoff.py +++ b/libs/community/langchain_community/embeddings/titan_takeoff.py @@ -2,7 +2,7 @@ from typing import Any, Dict, List, Optional, Set, Union from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict class TakeoffEmbeddingException(Exception): @@ -24,8 +24,9 @@ class Device(str, Enum): class ReaderConfig(BaseModel): """Configuration for the reader to be deployed in Takeoff.""" - class Config: - protected_namespaces = () + model_config = ConfigDict( + protected_namespaces=(), + ) model_name: str """The name of the model to use""" diff --git a/libs/community/langchain_community/embeddings/volcengine.py b/libs/community/langchain_community/embeddings/volcengine.py index 9b8e399264819..6417e5e5a388e 100644 --- a/libs/community/langchain_community/embeddings/volcengine.py +++ b/libs/community/langchain_community/embeddings/volcengine.py @@ -4,8 +4,8 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/embeddings/voyageai.py b/libs/community/langchain_community/embeddings/voyageai.py index e9c24b666abb5..2ef1477ac6c71 100644 --- a/libs/community/langchain_community/embeddings/voyageai.py +++ b/libs/community/langchain_community/embeddings/voyageai.py @@ -16,8 +16,8 @@ import requests from langchain_core._api.deprecation import deprecated from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator from tenacity import ( before_sleep_log, retry, @@ -99,11 +99,13 @@ class VoyageEmbeddings(BaseModel, Embeddings): length, before vectorized by the embedding model. If False, an error will be raised if any given text exceeds the context length.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["voyage_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "voyage_api_key", "VOYAGE_API_KEY") diff --git a/libs/community/langchain_community/embeddings/yandex.py b/libs/community/langchain_community/embeddings/yandex.py index dbddf245234df..59637bf100101 100644 --- a/libs/community/langchain_community/embeddings/yandex.py +++ b/libs/community/langchain_community/embeddings/yandex.py @@ -7,8 +7,8 @@ from typing import Any, Callable, Dict, List, Sequence from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, Field, SecretStr from tenacity import ( before_sleep_log, retry, @@ -71,8 +71,7 @@ class YandexGPTEmbeddings(BaseModel, Embeddings): If you provide personal data, confidential information, disable logging.""" grpc_metadata: Sequence - class Config: - allow_population_by_field_name = True + model_config = ConfigDict(populate_by_name=True, protected_namespaces=()) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/embeddings/zhipuai.py b/libs/community/langchain_community/embeddings/zhipuai.py index b8415aed74712..73ced5fa01934 100644 --- a/libs/community/langchain_community/embeddings/zhipuai.py +++ b/libs/community/langchain_community/embeddings/zhipuai.py @@ -1,8 +1,8 @@ from typing import Any, Dict, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, Field, model_validator class ZhipuAIEmbeddings(BaseModel, Embeddings): @@ -76,8 +76,9 @@ class ZhipuAIEmbeddings(BaseModel, Embeddings): Only supported in `embedding-3` and later models. """ - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that auth token exists in environment.""" values["api_key"] = get_from_dict_or_env(values, "api_key", "ZHIPUAI_API_KEY") try: diff --git a/libs/community/langchain_community/example_selectors/ngram_overlap.py b/libs/community/langchain_community/example_selectors/ngram_overlap.py index 76f536f83cb6f..fdd2e34eaf7dd 100644 --- a/libs/community/langchain_community/example_selectors/ngram_overlap.py +++ b/libs/community/langchain_community/example_selectors/ngram_overlap.py @@ -4,12 +4,12 @@ https://aclanthology.org/P02-1040.pdf """ -from typing import Dict, List +from typing import Any, Dict, List import numpy as np from langchain_core.example_selectors import BaseExampleSelector from langchain_core.prompts import PromptTemplate -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator def ngram_overlap_score(source: List[str], example: List[str]) -> float: @@ -65,8 +65,9 @@ class NGramOverlapExampleSelector(BaseExampleSelector, BaseModel): and excludes examples with no ngram overlap with input. """ - @root_validator(pre=True) - def check_dependencies(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def check_dependencies(cls, values: Dict) -> Any: """Check that valid dependencies exist.""" try: from nltk.translate.bleu_score import ( # noqa: F401 diff --git a/libs/community/langchain_community/graph_vectorstores/__init__.py b/libs/community/langchain_community/graph_vectorstores/__init__.py index 485123a96b0f5..5773b224dc565 100644 --- a/libs/community/langchain_community/graph_vectorstores/__init__.py +++ b/libs/community/langchain_community/graph_vectorstores/__init__.py @@ -1,6 +1,9 @@ -"""**Graph Vector Store** +""".. title:: Graph Vector Store -Sometimes embedding models don’t capture all the important relationships between +Graph Vector Store +================== + +Sometimes embedding models don't capture all the important relationships between documents. Graph Vector Stores are an extension to both vector stores and retrievers that allow documents to be explicitly connected to each other. @@ -13,11 +16,10 @@ For example, a paragraph of text may be linked to URLs based on the anchor tags in it's content and linked from the URL(s) it is published at. -Link extractors can be used to extract links from documents. - -Example: +`Link extractors ` +can be used to extract links from documents. -.. code-block:: python +Example:: graph_vector_store = CassandraGraphVectorStore() link_extractor = HtmlLinkExtractor() @@ -25,13 +27,18 @@ add_links(document, links) graph_vector_store.add_document(document) -*********** -Get started -*********** +.. seealso:: -We chunk the State of the Union text and split it into documents. + - :class:`How to use a graph vector store as a retriever ` + - :class:`How to create links between documents ` + - :class:`How to link Documents on hyperlinks in HTML ` + - :class:`How to link Documents on common keywords (using KeyBERT) ` + - :class:`How to link Documents on common named entities (using GliNER) ` -.. code-block:: python +Get started +----------- + +We chunk the State of the Union text and split it into documents:: from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter @@ -41,14 +48,12 @@ documents = text_splitter.split_documents(raw_documents) Links can be added to documents manually but it's easier to use a -:class:`~langchain_community.graph_vectorstores.extractors.LinkExtractor`. +:class:`~langchain_community.graph_vectorstores.extractors.link_extractor.LinkExtractor`. Several common link extractors are available and you can build your own. For this guide, we'll use the -:class:`~langchain_community.graph_vectorstores.extractors.KeybertLinkExtractor` +:class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.KeybertLinkExtractor` which uses the KeyBERT model to tag documents with keywords and uses these keywords to -create links between documents. - -.. code-block:: python +create links between documents:: from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor from langchain_community.graph_vectorstores.links import add_links @@ -58,15 +63,14 @@ for doc in documents: add_links(doc, extractor.extract_one(doc)) -*********************************************** Create the graph vector store and add documents -*********************************************** +----------------------------------------------- We'll use an Apache Cassandra or Astra DB database as an example. -We create a :class:`~langchain_community.graph_vectorstores.CassandraGraphVectorStore` -from the documents and an :class:`~langchain_openai.OpenAIEmbeddings` model. - -.. code-block:: python +We create a +:class:`~langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore` +from the documents and an :class:`~langchain_openai.embeddings.base.OpenAIEmbeddings` +model:: import cassio from langchain_community.graph_vectorstores import CassandraGraphVectorStore @@ -80,45 +84,37 @@ documents=documents, ) -***************** + Similarity search -***************** +----------------- If we don't traverse the graph, a graph vector store behaves like a regular vector store. So all methods available in a vector store are also available in a graph vector store. The :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.similarity_search` method returns documents similar to a query without considering -the links between documents. - -.. code-block:: python +the links between documents:: docs = store.similarity_search( "What did the president say about Ketanji Brown Jackson?" ) -**************** Traversal search -**************** +---------------- The :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.traversal_search` method returns documents similar to a query considering the links between documents. It first does a similarity search and then traverses the graph to -find linked documents. - -.. code-block:: python +find linked documents:: docs = list( store.traversal_search("What did the president say about Ketanji Brown Jackson?") ) -************* Async methods -************* - -The graph vector store has async versions of the methods prefixed with ``a``. +------------- -.. code-block:: python +The graph vector store has async versions of the methods prefixed with ``a``:: docs = [ doc @@ -127,15 +123,12 @@ ) ] -**************************** Graph vector store retriever -**************************** +---------------------------- The graph vector store can be converted to a retriever. It is similar to the vector store retriever but it also has traversal search methods -such as ``traversal`` and ``mmr_traversal``. - -.. code-block:: python +such as ``traversal`` and ``mmr_traversal``:: retriever = store.as_retriever(search_type="mmr_traversal") docs = retriever.invoke("What did the president say about Ketanji Brown Jackson?") diff --git a/libs/community/langchain_community/graph_vectorstores/base.py b/libs/community/langchain_community/graph_vectorstores/base.py index a00eb79271a37..97a4747131182 100644 --- a/libs/community/langchain_community/graph_vectorstores/base.py +++ b/libs/community/langchain_community/graph_vectorstores/base.py @@ -1,7 +1,840 @@ -from langchain_core.graph_vectorstores.base import ( - GraphVectorStore, - GraphVectorStoreRetriever, - Node, +from __future__ import annotations + +from abc import abstractmethod +from collections.abc import AsyncIterable, Collection, Iterable, Iterator +from typing import ( + Any, + ClassVar, + Optional, +) + +from langchain_core._api import beta +from langchain_core.callbacks import ( + AsyncCallbackManagerForRetrieverRun, + CallbackManagerForRetrieverRun, ) +from langchain_core.documents import Document +from langchain_core.load import Serializable +from langchain_core.runnables import run_in_executor +from langchain_core.vectorstores import VectorStore, VectorStoreRetriever +from pydantic import Field + +from langchain_community.graph_vectorstores.links import METADATA_LINKS_KEY, Link + + +def _has_next(iterator: Iterator) -> bool: + """Checks if the iterator has more elements. + Warning: consumes an element from the iterator""" + sentinel = object() + return next(iterator, sentinel) is not sentinel + + +@beta() +class Node(Serializable): + """Node in the GraphVectorStore. + + Edges exist from nodes with an outgoing link to nodes with a matching incoming link. + + For instance two nodes `a` and `b` connected over a hyperlink ``https://some-url`` + would look like: + + .. code-block:: python + + [ + Node( + id="a", + text="some text a", + links= [ + Link(kind="hyperlink", tag="https://some-url", direction="incoming") + ], + ), + Node( + id="b", + text="some text b", + links= [ + Link(kind="hyperlink", tag="https://some-url", direction="outgoing") + ], + ) + ] + """ + + id: Optional[str] = None + """Unique ID for the node. Will be generated by the GraphVectorStore if not set.""" + text: str + """Text contained by the node.""" + metadata: dict = Field(default_factory=dict) + """Metadata for the node.""" + links: list[Link] = Field(default_factory=list) + """Links associated with the node.""" + + +def _texts_to_nodes( + texts: Iterable[str], + metadatas: Optional[Iterable[dict]], + ids: Optional[Iterable[str]], +) -> Iterator[Node]: + metadatas_it = iter(metadatas) if metadatas else None + ids_it = iter(ids) if ids else None + for text in texts: + try: + _metadata = next(metadatas_it).copy() if metadatas_it else {} + except StopIteration as e: + raise ValueError("texts iterable longer than metadatas") from e + try: + _id = next(ids_it) if ids_it else None + except StopIteration as e: + raise ValueError("texts iterable longer than ids") from e + + links = _metadata.pop(METADATA_LINKS_KEY, []) + if not isinstance(links, list): + links = list(links) + yield Node( + id=_id, + metadata=_metadata, + text=text, + links=links, + ) + if ids_it and _has_next(ids_it): + raise ValueError("ids iterable longer than texts") + if metadatas_it and _has_next(metadatas_it): + raise ValueError("metadatas iterable longer than texts") + + +def _documents_to_nodes(documents: Iterable[Document]) -> Iterator[Node]: + for doc in documents: + metadata = doc.metadata.copy() + links = metadata.pop(METADATA_LINKS_KEY, []) + if not isinstance(links, list): + links = list(links) + yield Node( + id=doc.id, + metadata=metadata, + text=doc.page_content, + links=links, + ) + + +@beta() +def nodes_to_documents(nodes: Iterable[Node]) -> Iterator[Document]: + """Convert nodes to documents. + + Args: + nodes: The nodes to convert to documents. + Returns: + The documents generated from the nodes. + """ + for node in nodes: + metadata = node.metadata.copy() + metadata[METADATA_LINKS_KEY] = [ + # Convert the core `Link` (from the node) back to the local `Link`. + Link(kind=link.kind, direction=link.direction, tag=link.tag) + for link in node.links + ] + + yield Document( + id=node.id, + page_content=node.text, + metadata=metadata, + ) + + +@beta(message="Added in version 0.3.1 of langchain_community. API subject to change.") +class GraphVectorStore(VectorStore): + """A hybrid vector-and-graph graph store. + + Document chunks support vector-similarity search as well as edges linking + chunks based on structural and semantic properties. + + .. versionadded:: 0.3.1 + """ + + @abstractmethod + def add_nodes( + self, + nodes: Iterable[Node], + **kwargs: Any, + ) -> Iterable[str]: + """Add nodes to the graph store. + + Args: + nodes: the nodes to add. + """ + + async def aadd_nodes( + self, + nodes: Iterable[Node], + **kwargs: Any, + ) -> AsyncIterable[str]: + """Add nodes to the graph store. + + Args: + nodes: the nodes to add. + """ + iterator = iter(await run_in_executor(None, self.add_nodes, nodes, **kwargs)) + done = object() + while True: + doc = await run_in_executor(None, next, iterator, done) + if doc is done: + break + yield doc # type: ignore[misc] + + def add_texts( + self, + texts: Iterable[str], + metadatas: Optional[Iterable[dict]] = None, + *, + ids: Optional[Iterable[str]] = None, + **kwargs: Any, + ) -> list[str]: + """Run more texts through the embeddings and add to the vectorstore. + + The Links present in the metadata field `links` will be extracted to create + the `Node` links. + + Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the + function call would look like: + + .. code-block:: python + + store.add_texts( + ids=["a", "b"], + texts=["some text a", "some text b"], + metadatas=[ + { + "links": [ + Link.incoming(kind="hyperlink", tag="https://some-url") + ] + }, + { + "links": [ + Link.outgoing(kind="hyperlink", tag="https://some-url") + ] + }, + ], + ) + + Args: + texts: Iterable of strings to add to the vectorstore. + metadatas: Optional list of metadatas associated with the texts. + The metadata key `links` shall be an iterable of + :py:class:`~langchain_community.graph_vectorstores.links.Link`. + ids: Optional list of IDs associated with the texts. + **kwargs: vectorstore specific parameters. + + Returns: + List of ids from adding the texts into the vectorstore. + """ + nodes = _texts_to_nodes(texts, metadatas, ids) + return list(self.add_nodes(nodes, **kwargs)) + + async def aadd_texts( + self, + texts: Iterable[str], + metadatas: Optional[Iterable[dict]] = None, + *, + ids: Optional[Iterable[str]] = None, + **kwargs: Any, + ) -> list[str]: + """Run more texts through the embeddings and add to the vectorstore. + + The Links present in the metadata field `links` will be extracted to create + the `Node` links. + + Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the + function call would look like: + + .. code-block:: python + + await store.aadd_texts( + ids=["a", "b"], + texts=["some text a", "some text b"], + metadatas=[ + { + "links": [ + Link.incoming(kind="hyperlink", tag="https://some-url") + ] + }, + { + "links": [ + Link.outgoing(kind="hyperlink", tag="https://some-url") + ] + }, + ], + ) + + Args: + texts: Iterable of strings to add to the vectorstore. + metadatas: Optional list of metadatas associated with the texts. + The metadata key `links` shall be an iterable of + :py:class:`~langchain_community.graph_vectorstores.links.Link`. + ids: Optional list of IDs associated with the texts. + **kwargs: vectorstore specific parameters. + + Returns: + List of ids from adding the texts into the vectorstore. + """ + nodes = _texts_to_nodes(texts, metadatas, ids) + return [_id async for _id in self.aadd_nodes(nodes, **kwargs)] + + def add_documents( + self, + documents: Iterable[Document], + **kwargs: Any, + ) -> list[str]: + """Run more documents through the embeddings and add to the vectorstore. + + The Links present in the document metadata field `links` will be extracted to + create the `Node` links. + + Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the + function call would look like: + + .. code-block:: python + + store.add_documents( + [ + Document( + id="a", + page_content="some text a", + metadata={ + "links": [ + Link.incoming(kind="hyperlink", tag="http://some-url") + ] + } + ), + Document( + id="b", + page_content="some text b", + metadata={ + "links": [ + Link.outgoing(kind="hyperlink", tag="http://some-url") + ] + } + ), + ] + + ) + + Args: + documents: Documents to add to the vectorstore. + The document's metadata key `links` shall be an iterable of + :py:class:`~langchain_community.graph_vectorstores.links.Link`. + + Returns: + List of IDs of the added texts. + """ + nodes = _documents_to_nodes(documents) + return list(self.add_nodes(nodes, **kwargs)) + + async def aadd_documents( + self, + documents: Iterable[Document], + **kwargs: Any, + ) -> list[str]: + """Run more documents through the embeddings and add to the vectorstore. + + The Links present in the document metadata field `links` will be extracted to + create the `Node` links. + + Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the + function call would look like: + + .. code-block:: python + + store.add_documents( + [ + Document( + id="a", + page_content="some text a", + metadata={ + "links": [ + Link.incoming(kind="hyperlink", tag="http://some-url") + ] + } + ), + Document( + id="b", + page_content="some text b", + metadata={ + "links": [ + Link.outgoing(kind="hyperlink", tag="http://some-url") + ] + } + ), + ] + + ) + + Args: + documents: Documents to add to the vectorstore. + The document's metadata key `links` shall be an iterable of + :py:class:`~langchain_community.graph_vectorstores.links.Link`. + + Returns: + List of IDs of the added texts. + """ + nodes = _documents_to_nodes(documents) + return [_id async for _id in self.aadd_nodes(nodes, **kwargs)] + + @abstractmethod + def traversal_search( + self, + query: str, + *, + k: int = 4, + depth: int = 1, + **kwargs: Any, + ) -> Iterable[Document]: + """Retrieve documents from traversing this graph store. + + First, `k` nodes are retrieved using a search for each `query` string. + Then, additional nodes are discovered up to the given `depth` from those + starting nodes. + + Args: + query: The query string. + k: The number of Documents to return from the initial search. + Defaults to 4. Applies to each of the query strings. + depth: The maximum depth of edges to traverse. Defaults to 1. + Returns: + Retrieved documents. + """ + + async def atraversal_search( + self, + query: str, + *, + k: int = 4, + depth: int = 1, + **kwargs: Any, + ) -> AsyncIterable[Document]: + """Retrieve documents from traversing this graph store. + + First, `k` nodes are retrieved using a search for each `query` string. + Then, additional nodes are discovered up to the given `depth` from those + starting nodes. + + Args: + query: The query string. + k: The number of Documents to return from the initial search. + Defaults to 4. Applies to each of the query strings. + depth: The maximum depth of edges to traverse. Defaults to 1. + Returns: + Retrieved documents. + """ + iterator = iter( + await run_in_executor( + None, self.traversal_search, query, k=k, depth=depth, **kwargs + ) + ) + done = object() + while True: + doc = await run_in_executor(None, next, iterator, done) + if doc is done: + break + yield doc # type: ignore[misc] + + @abstractmethod + def mmr_traversal_search( + self, + query: str, + *, + k: int = 4, + depth: int = 2, + fetch_k: int = 100, + adjacent_k: int = 10, + lambda_mult: float = 0.5, + score_threshold: float = float("-inf"), + **kwargs: Any, + ) -> Iterable[Document]: + """Retrieve documents from this graph store using MMR-traversal. + + This strategy first retrieves the top `fetch_k` results by similarity to + the question. It then selects the top `k` results based on + maximum-marginal relevance using the given `lambda_mult`. + + At each step, it considers the (remaining) documents from `fetch_k` as + well as any documents connected by edges to a selected document + retrieved based on similarity (a "root"). + + Args: + query: The query string to search for. + k: Number of Documents to return. Defaults to 4. + fetch_k: Number of Documents to fetch via similarity. + Defaults to 100. + adjacent_k: Number of adjacent Documents to fetch. + Defaults to 10. + depth: Maximum depth of a node (number of edges) from a node + retrieved via similarity. Defaults to 2. + lambda_mult: Number between 0 and 1 that determines the degree + of diversity among the results with 0 corresponding to maximum + diversity and 1 to minimum diversity. Defaults to 0.5. + score_threshold: Only documents with a score greater than or equal + this threshold will be chosen. Defaults to negative infinity. + """ + + async def ammr_traversal_search( + self, + query: str, + *, + k: int = 4, + depth: int = 2, + fetch_k: int = 100, + adjacent_k: int = 10, + lambda_mult: float = 0.5, + score_threshold: float = float("-inf"), + **kwargs: Any, + ) -> AsyncIterable[Document]: + """Retrieve documents from this graph store using MMR-traversal. + + This strategy first retrieves the top `fetch_k` results by similarity to + the question. It then selects the top `k` results based on + maximum-marginal relevance using the given `lambda_mult`. + + At each step, it considers the (remaining) documents from `fetch_k` as + well as any documents connected by edges to a selected document + retrieved based on similarity (a "root"). + + Args: + query: The query string to search for. + k: Number of Documents to return. Defaults to 4. + fetch_k: Number of Documents to fetch via similarity. + Defaults to 100. + adjacent_k: Number of adjacent Documents to fetch. + Defaults to 10. + depth: Maximum depth of a node (number of edges) from a node + retrieved via similarity. Defaults to 2. + lambda_mult: Number between 0 and 1 that determines the degree + of diversity among the results with 0 corresponding to maximum + diversity and 1 to minimum diversity. Defaults to 0.5. + score_threshold: Only documents with a score greater than or equal + this threshold will be chosen. Defaults to negative infinity. + """ + iterator = iter( + await run_in_executor( + None, + self.mmr_traversal_search, + query, + k=k, + fetch_k=fetch_k, + adjacent_k=adjacent_k, + depth=depth, + lambda_mult=lambda_mult, + score_threshold=score_threshold, + **kwargs, + ) + ) + done = object() + while True: + doc = await run_in_executor(None, next, iterator, done) + if doc is done: + break + yield doc # type: ignore[misc] + + def similarity_search( + self, query: str, k: int = 4, **kwargs: Any + ) -> list[Document]: + return list(self.traversal_search(query, k=k, depth=0)) + + def max_marginal_relevance_search( + self, + query: str, + k: int = 4, + fetch_k: int = 20, + lambda_mult: float = 0.5, + **kwargs: Any, + ) -> list[Document]: + return list( + self.mmr_traversal_search( + query, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, depth=0 + ) + ) + + async def asimilarity_search( + self, query: str, k: int = 4, **kwargs: Any + ) -> list[Document]: + return [doc async for doc in self.atraversal_search(query, k=k, depth=0)] + + def search(self, query: str, search_type: str, **kwargs: Any) -> list[Document]: + if search_type == "similarity": + return self.similarity_search(query, **kwargs) + elif search_type == "similarity_score_threshold": + docs_and_similarities = self.similarity_search_with_relevance_scores( + query, **kwargs + ) + return [doc for doc, _ in docs_and_similarities] + elif search_type == "mmr": + return self.max_marginal_relevance_search(query, **kwargs) + elif search_type == "traversal": + return list(self.traversal_search(query, **kwargs)) + elif search_type == "mmr_traversal": + return list(self.mmr_traversal_search(query, **kwargs)) + else: + raise ValueError( + f"search_type of {search_type} not allowed. Expected " + "search_type to be 'similarity', 'similarity_score_threshold', " + "'mmr' or 'traversal'." + ) + + async def asearch( + self, query: str, search_type: str, **kwargs: Any + ) -> list[Document]: + if search_type == "similarity": + return await self.asimilarity_search(query, **kwargs) + elif search_type == "similarity_score_threshold": + docs_and_similarities = await self.asimilarity_search_with_relevance_scores( + query, **kwargs + ) + return [doc for doc, _ in docs_and_similarities] + elif search_type == "mmr": + return await self.amax_marginal_relevance_search(query, **kwargs) + elif search_type == "traversal": + return [doc async for doc in self.atraversal_search(query, **kwargs)] + else: + raise ValueError( + f"search_type of {search_type} not allowed. Expected " + "search_type to be 'similarity', 'similarity_score_threshold', " + "'mmr' or 'traversal'." + ) + + def as_retriever(self, **kwargs: Any) -> GraphVectorStoreRetriever: + """Return GraphVectorStoreRetriever initialized from this GraphVectorStore. + + Args: + **kwargs: Keyword arguments to pass to the search function. + Can include: + + - search_type (Optional[str]): Defines the type of search that + the Retriever should perform. + Can be ``traversal`` (default), ``similarity``, ``mmr``, or + ``similarity_score_threshold``. + - search_kwargs (Optional[Dict]): Keyword arguments to pass to the + search function. Can include things like: + + - k(int): Amount of documents to return (Default: 4). + - depth(int): The maximum depth of edges to traverse (Default: 1). + - score_threshold(float): Minimum relevance threshold + for similarity_score_threshold. + - fetch_k(int): Amount of documents to pass to MMR algorithm + (Default: 20). + - lambda_mult(float): Diversity of results returned by MMR; + 1 for minimum diversity and 0 for maximum. (Default: 0.5). + Returns: + Retriever for this GraphVectorStore. + + Examples: + + .. code-block:: python + + # Retrieve documents traversing edges + docsearch.as_retriever( + search_type="traversal", + search_kwargs={'k': 6, 'depth': 3} + ) + + # Retrieve more documents with higher diversity + # Useful if your dataset has many similar documents + docsearch.as_retriever( + search_type="mmr", + search_kwargs={'k': 6, 'lambda_mult': 0.25} + ) + + # Fetch more documents for the MMR algorithm to consider + # But only return the top 5 + docsearch.as_retriever( + search_type="mmr", + search_kwargs={'k': 5, 'fetch_k': 50} + ) + + # Only retrieve documents that have a relevance score + # Above a certain threshold + docsearch.as_retriever( + search_type="similarity_score_threshold", + search_kwargs={'score_threshold': 0.8} + ) + + # Only get the single most similar document from the dataset + docsearch.as_retriever(search_kwargs={'k': 1}) + + """ + return GraphVectorStoreRetriever(vectorstore=self, **kwargs) + + +@beta(message="Added in version 0.3.1 of langchain_community. API subject to change.") +class GraphVectorStoreRetriever(VectorStoreRetriever): + """Retriever for GraphVectorStore. + + A graph vector store retriever is a retriever that uses a graph vector store to + retrieve documents. + It is similar to a vector store retriever, except that it uses both vector + similarity and graph connections to retrieve documents. + It uses the search methods implemented by a graph vector store, like traversal + search and MMR traversal search, to query the texts in the graph vector store. + + Example:: + + store = CassandraGraphVectorStore(...) + retriever = store.as_retriever() + retriever.invoke("What is ...") + + .. seealso:: + + :mod:`How to use a graph vector store ` + + How to use a graph vector store as a retriever + ============================================== + + Creating a retriever from a graph vector store + ---------------------------------------------- + + You can build a retriever from a graph vector store using its + :meth:`~langchain_community.graph_vectorstores.base.GraphVectorStore.as_retriever` + method. + + First we instantiate a graph vector store. + We will use a store backed by Cassandra + :class:`~langchain_community.graph_vectorstores.cassandra.CassandraGraphVectorStore` + graph vector store:: + + from langchain_community.document_loaders import TextLoader + from langchain_community.graph_vectorstores import CassandraGraphVectorStore + from langchain_community.graph_vectorstores.extractors import ( + KeybertLinkExtractor, + LinkExtractorTransformer, + ) + from langchain_openai import OpenAIEmbeddings + from langchain_text_splitters import CharacterTextSplitter + + loader = TextLoader("state_of_the_union.txt") + documents = loader.load() + + text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) + texts = text_splitter.split_documents(documents) + + pipeline = LinkExtractorTransformer([KeybertLinkExtractor()]) + pipeline.transform_documents(texts) + embeddings = OpenAIEmbeddings() + graph_vectorstore = CassandraGraphVectorStore.from_documents(texts, embeddings) + + We can then instantiate a retriever:: + + retriever = graph_vectorstore.as_retriever() + + This creates a retriever (specifically a ``GraphVectorStoreRetriever``), which we + can use in the usual way:: + + docs = retriever.invoke("what did the president say about ketanji brown jackson?") + + Maximum marginal relevance traversal retrieval + ---------------------------------------------- + + By default, the graph vector store retriever uses similarity search, then expands + the retrieved set by following a fixed number of graph edges. + If the underlying graph vector store supports maximum marginal relevance traversal, + you can specify that as the search type. + + MMR-traversal is a retrieval method combining MMR and graph traversal. + The strategy first retrieves the top fetch_k results by similarity to the question. + It then iteratively expands the set of fetched documents by following adjacent_k + graph edges and selects the top k results based on maximum-marginal relevance using + the given ``lambda_mult``:: + + retriever = graph_vectorstore.as_retriever(search_type="mmr_traversal") + + Passing search parameters + ------------------------- + + We can pass parameters to the underlying graph vectorstore's search methods using + ``search_kwargs``. + + Specifying graph traversal depth + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + + For example, we can set the graph traversal depth to only return documents + reachable through a given number of graph edges:: + + retriever = graph_vectorstore.as_retriever(search_kwargs={"depth": 3}) + + Specifying MMR parameters + ^^^^^^^^^^^^^^^^^^^^^^^^^ + + When using search type ``mmr_traversal``, several parameters of the MMR algorithm + can be configured. + + The ``fetch_k`` parameter determines how many documents are fetched using vector + similarity and ``adjacent_k`` parameter determines how many documents are fetched + using graph edges. + The ``lambda_mult`` parameter controls how the MMR re-ranking weights similarity to + the query string vs diversity among the retrieved documents as fetched documents + are selected for the set of ``k`` final results:: + + retriever = graph_vectorstore.as_retriever( + search_type="mmr", + search_kwargs={"fetch_k": 20, "adjacent_k": 20, "lambda_mult": 0.25}, + ) + + Specifying top k + ^^^^^^^^^^^^^^^^ + + We can also limit the number of documents ``k`` returned by the retriever. + + Note that if ``depth`` is greater than zero, the retriever may return more documents + than is specified by ``k``, since both the original ``k`` documents retrieved using + vector similarity and any documents connected via graph edges will be returned:: + + retriever = graph_vectorstore.as_retriever(search_kwargs={"k": 1}) + + Similarity score threshold retrieval + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + + For example, we can set a similarity score threshold and only return documents with + a score above that threshold:: + + retriever = graph_vectorstore.as_retriever(search_kwargs={"score_threshold": 0.5}) + """ # noqa: E501 + + vectorstore: GraphVectorStore + """GraphVectorStore to use for retrieval.""" + search_type: str = "traversal" + """Type of search to perform. Defaults to "traversal".""" + allowed_search_types: ClassVar[Collection[str]] = ( + "similarity", + "similarity_score_threshold", + "mmr", + "traversal", + "mmr_traversal", + ) + + def _get_relevant_documents( + self, query: str, *, run_manager: CallbackManagerForRetrieverRun + ) -> list[Document]: + if self.search_type == "traversal": + return list(self.vectorstore.traversal_search(query, **self.search_kwargs)) + elif self.search_type == "mmr_traversal": + return list( + self.vectorstore.mmr_traversal_search(query, **self.search_kwargs) + ) + else: + return super()._get_relevant_documents(query, run_manager=run_manager) -__all__ = ["GraphVectorStore", "GraphVectorStoreRetriever", "Node"] + async def _aget_relevant_documents( + self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun + ) -> list[Document]: + if self.search_type == "traversal": + return [ + doc + async for doc in self.vectorstore.atraversal_search( + query, **self.search_kwargs + ) + ] + elif self.search_type == "mmr_traversal": + return [ + doc + async for doc in self.vectorstore.ammr_traversal_search( + query, **self.search_kwargs + ) + ] + else: + return await super()._aget_relevant_documents( + query, run_manager=run_manager + ) diff --git a/libs/community/langchain_community/graph_vectorstores/cassandra.py b/libs/community/langchain_community/graph_vectorstores/cassandra.py index 33fc5ba8f9173..42525cf03dded 100644 --- a/libs/community/langchain_community/graph_vectorstores/cassandra.py +++ b/libs/community/langchain_community/graph_vectorstores/cassandra.py @@ -12,12 +12,12 @@ from langchain_core._api import beta from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.graph_vectorstores.base import ( + +from langchain_community.graph_vectorstores.base import ( GraphVectorStore, Node, nodes_to_documents, ) - from langchain_community.utilities.cassandra import SetupMode if TYPE_CHECKING: diff --git a/libs/community/langchain_community/graph_vectorstores/extractors/gliner_link_extractor.py b/libs/community/langchain_community/graph_vectorstores/extractors/gliner_link_extractor.py index 9d567a1f8d418..f353ba4a1dc82 100644 --- a/libs/community/langchain_community/graph_vectorstores/extractors/gliner_link_extractor.py +++ b/libs/community/langchain_community/graph_vectorstores/extractors/gliner_link_extractor.py @@ -2,11 +2,11 @@ from langchain_core._api import beta from langchain_core.documents import Document -from langchain_core.graph_vectorstores.links import Link from langchain_community.graph_vectorstores.extractors.link_extractor import ( LinkExtractor, ) +from langchain_community.graph_vectorstores.links import Link # TypeAlias is not available in Python 3.9, we can't use that or the newer `type`. GLiNERInput = Union[str, Document] @@ -34,7 +34,7 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]): .. seealso:: - :mod:`How to use a graph vector store ` - - :class:`How to create links between documents ` + - :class:`How to create links between documents ` How to link Documents on common named entities ============================================== @@ -59,12 +59,12 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]): We can use :meth:`extract_one` on a document to get the links and add the links to the document metadata with - :meth:`~langchain_core.graph_vectorstores.links.add_links`:: + :meth:`~langchain_community.graph_vectorstores.links.add_links`:: from langchain_community.document_loaders import TextLoader from langchain_community.graph_vectorstores import CassandraGraphVectorStore from langchain_community.graph_vectorstores.extractors import GLiNERLinkExtractor - from langchain_core.graph_vectorstores.links import add_links + from langchain_community.graph_vectorstores.links import add_links from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("state_of_the_union.txt") @@ -87,7 +87,7 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]): Using LinkExtractorTransformer ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`, + Using the :class:`~langchain_community.graph_vectorstores.extractors.link_extractor_transformer.LinkExtractorTransformer`, we can simplify the link extraction:: from langchain_community.document_loaders import TextLoader @@ -113,7 +113,7 @@ class GLiNERLinkExtractor(LinkExtractor[GLiNERInput]): {'source': 'state_of_the_union.txt', 'links': [Link(kind='entity:Person', direction='bidir', tag='President Zelenskyy'), Link(kind='entity:Person', direction='bidir', tag='Vladimir Putin')]} - The documents with named entity links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`:: + The documents with named entity links can then be added to a :class:`~langchain_community.graph_vectorstores.base.GraphVectorStore`:: from langchain_community.graph_vectorstores import CassandraGraphVectorStore diff --git a/libs/community/langchain_community/graph_vectorstores/extractors/hierarchy_link_extractor.py b/libs/community/langchain_community/graph_vectorstores/extractors/hierarchy_link_extractor.py index 525445f0157d6..d838210aded31 100644 --- a/libs/community/langchain_community/graph_vectorstores/extractors/hierarchy_link_extractor.py +++ b/libs/community/langchain_community/graph_vectorstores/extractors/hierarchy_link_extractor.py @@ -2,7 +2,6 @@ from langchain_core._api import beta from langchain_core.documents import Document -from langchain_core.graph_vectorstores.links import Link from langchain_community.graph_vectorstores.extractors.link_extractor import ( LinkExtractor, @@ -10,6 +9,7 @@ from langchain_community.graph_vectorstores.extractors.link_extractor_adapter import ( LinkExtractorAdapter, ) +from langchain_community.graph_vectorstores.links import Link # TypeAlias is not available in Python 3.9, we can't use that or the newer `type`. HierarchyInput = List[str] diff --git a/libs/community/langchain_community/graph_vectorstores/extractors/html_link_extractor.py b/libs/community/langchain_community/graph_vectorstores/extractors/html_link_extractor.py index 270de351e6eac..8aee9767d4ac5 100644 --- a/libs/community/langchain_community/graph_vectorstores/extractors/html_link_extractor.py +++ b/libs/community/langchain_community/graph_vectorstores/extractors/html_link_extractor.py @@ -6,8 +6,8 @@ from langchain_core._api import beta from langchain_core.documents import Document -from langchain_core.graph_vectorstores import Link +from langchain_community.graph_vectorstores import Link from langchain_community.graph_vectorstores.extractors.link_extractor import ( LinkExtractor, ) @@ -77,7 +77,7 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): .. seealso:: - :mod:`How to use a graph vector store ` - - :class:`How to create links between documents ` + - :class:`How to create links between documents ` How to link Documents on hyperlinks in HTML =========================================== @@ -103,7 +103,7 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): We can use :meth:`extract_one` on a document to get the links and add the links to the document metadata with - :meth:`~langchain_core.graph_vectorstores.links.add_links`:: + :meth:`~langchain_community.graph_vectorstores.links.add_links`:: from langchain_community.document_loaders import AsyncHtmlLoader from langchain_community.graph_vectorstores.extractors import ( @@ -115,7 +115,7 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): loader = AsyncHtmlLoader( [ - "https://python.langchain.com/v0.2/docs/integrations/providers/astradb/", + "https://python.langchain.com/docs/integrations/providers/astradb/", "https://docs.datastax.com/en/astra/home/astra.html", ] ) @@ -132,11 +132,11 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): .. code-block:: output - [Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/spreedly/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/nvidia/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/ray_serve/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/bageldb/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/introduction/')] + [Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/spreedly/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/nvidia/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/ray_serve/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/bageldb/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/introduction/')] Using as_document_extractor() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -148,11 +148,11 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): from langchain_community.document_loaders import AsyncHtmlLoader from langchain_community.graph_vectorstores.extractors import HtmlLinkExtractor - from langchain_core.graph_vectorstores.links import add_links + from langchain_community.graph_vectorstores.links import add_links loader = AsyncHtmlLoader( [ - "https://python.langchain.com/v0.2/docs/integrations/providers/astradb/", + "https://python.langchain.com/docs/integrations/providers/astradb/", "https://docs.datastax.com/en/astra/home/astra.html", ] ) @@ -167,16 +167,16 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): .. code-block:: output - [Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/spreedly/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/nvidia/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/ray_serve/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/bageldb/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/introduction/')] + [Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/spreedly/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/nvidia/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/ray_serve/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/bageldb/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/introduction/')] Using LinkExtractorTransformer ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`, + Using the :class:`~langchain_community.graph_vectorstores.extractors.link_extractor_transformer.LinkExtractorTransformer`, we can simplify the link extraction:: from langchain_community.document_loaders import AsyncHtmlLoader @@ -188,7 +188,7 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): loader = AsyncHtmlLoader( [ - "https://python.langchain.com/v0.2/docs/integrations/providers/astradb/", + "https://python.langchain.com/docs/integrations/providers/astradb/", "https://docs.datastax.com/en/astra/home/astra.html", ] ) @@ -201,11 +201,11 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): .. code-block:: output - [Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/spreedly/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/nvidia/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/ray_serve/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/integrations/providers/bageldb/'), - Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/v0.2/docs/introduction/')] + [Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/spreedly/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/nvidia/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/ray_serve/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/integrations/providers/bageldb/'), + Link(kind='hyperlink', direction='out', tag='https://python.langchain.com/docs/introduction/')] We can check that there is a link from the first document to the second:: @@ -225,9 +225,9 @@ def __init__(self, *, kind: str = "hyperlink", drop_fragments: bool = True): .. code-block:: output - Found link from https://python.langchain.com/v0.2/docs/integrations/providers/astradb/ to https://docs.datastax.com/en/astra/home/astra.html. + Found link from https://python.langchain.com/docs/integrations/providers/astradb/ to https://docs.datastax.com/en/astra/home/astra.html. - The documents with URL links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`:: + The documents with URL links can then be added to a :class:`~langchain_community.graph_vectorstores.base.GraphVectorStore`:: from langchain_community.graph_vectorstores import CassandraGraphVectorStore diff --git a/libs/community/langchain_community/graph_vectorstores/extractors/keybert_link_extractor.py b/libs/community/langchain_community/graph_vectorstores/extractors/keybert_link_extractor.py index 90a208b9878f0..3844df84f76ef 100644 --- a/libs/community/langchain_community/graph_vectorstores/extractors/keybert_link_extractor.py +++ b/libs/community/langchain_community/graph_vectorstores/extractors/keybert_link_extractor.py @@ -2,11 +2,11 @@ from langchain_core._api import beta from langchain_core.documents import Document -from langchain_core.graph_vectorstores.links import Link from langchain_community.graph_vectorstores.extractors.link_extractor import ( LinkExtractor, ) +from langchain_community.graph_vectorstores.links import Link KeybertInput = Union[str, Document] @@ -37,7 +37,7 @@ def __init__( .. seealso:: - :mod:`How to use a graph vector store ` - - :class:`How to create links between documents ` + - :class:`How to create links between documents ` How to link Documents on common keywords using Keybert ====================================================== @@ -62,12 +62,12 @@ def __init__( We can use :meth:`extract_one` on a document to get the links and add the links to the document metadata with - :meth:`~langchain_core.graph_vectorstores.links.add_links`:: + :meth:`~langchain_community.graph_vectorstores.links.add_links`:: from langchain_community.document_loaders import TextLoader from langchain_community.graph_vectorstores import CassandraGraphVectorStore from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor - from langchain_core.graph_vectorstores.links import add_links + from langchain_community.graph_vectorstores.links import add_links from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("state_of_the_union.txt") @@ -91,7 +91,7 @@ def __init__( Using LinkExtractorTransformer ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - Using the :class:`~langchain_community.graph_vectorstores.extractors.keybert_link_extractor.LinkExtractorTransformer`, + Using the :class:`~langchain_community.graph_vectorstores.extractors.link_extractor_transformer.LinkExtractorTransformer`, we can simplify the link extraction:: from langchain_community.document_loaders import TextLoader @@ -116,7 +116,7 @@ def __init__( {'source': 'state_of_the_union.txt', 'links': [Link(kind='kw', direction='bidir', tag='ukraine'), Link(kind='kw', direction='bidir', tag='ukrainian'), Link(kind='kw', direction='bidir', tag='putin'), Link(kind='kw', direction='bidir', tag='vladimir'), Link(kind='kw', direction='bidir', tag='russia')]} - The documents with keyword links can then be added to a :class:`~langchain_core.graph_vectorstores.base.GraphVectorStore`:: + The documents with keyword links can then be added to a :class:`~langchain_community.graph_vectorstores.base.GraphVectorStore`:: from langchain_community.graph_vectorstores import CassandraGraphVectorStore diff --git a/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor.py b/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor.py index 45b8a526f9112..bb141dccc53cd 100644 --- a/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor.py +++ b/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor.py @@ -4,7 +4,8 @@ from typing import Generic, Iterable, Set, TypeVar from langchain_core._api import beta -from langchain_core.graph_vectorstores import Link + +from langchain_community.graph_vectorstores import Link InputT = TypeVar("InputT") diff --git a/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_adapter.py b/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_adapter.py index 68dfbeb7cbf43..73b6761eff92a 100644 --- a/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_adapter.py +++ b/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_adapter.py @@ -1,8 +1,8 @@ from typing import Callable, Iterable, Set, TypeVar from langchain_core._api import beta -from langchain_core.graph_vectorstores import Link +from langchain_community.graph_vectorstores import Link from langchain_community.graph_vectorstores.extractors.link_extractor import ( LinkExtractor, ) diff --git a/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_transformer.py b/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_transformer.py index 752b4b4986168..ba78fa2100fb4 100644 --- a/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_transformer.py +++ b/libs/community/langchain_community/graph_vectorstores/extractors/link_extractor_transformer.py @@ -3,11 +3,11 @@ from langchain_core._api import beta from langchain_core.documents import Document from langchain_core.documents.transformers import BaseDocumentTransformer -from langchain_core.graph_vectorstores.links import copy_with_links from langchain_community.graph_vectorstores.extractors.link_extractor import ( LinkExtractor, ) +from langchain_community.graph_vectorstores.links import copy_with_links @beta() diff --git a/libs/community/langchain_community/graph_vectorstores/links.py b/libs/community/langchain_community/graph_vectorstores/links.py index 921a2be8f98f2..8f32b03d2f595 100644 --- a/libs/community/langchain_community/graph_vectorstores/links.py +++ b/libs/community/langchain_community/graph_vectorstores/links.py @@ -1,8 +1,220 @@ -from langchain_core.graph_vectorstores.links import ( - Link, - add_links, - copy_with_links, - get_links, -) - -__all__ = ["Link", "add_links", "get_links", "copy_with_links"] +from collections.abc import Iterable +from dataclasses import dataclass +from typing import Literal, Union + +from langchain_core._api import beta +from langchain_core.documents import Document + + +@beta() +@dataclass(frozen=True) +class Link: + """A link to/from a tag of a given kind. + + Documents in a :class:`graph vector store ` + are connected via "links". + Links form a bipartite graph between documents and tags: documents are connected + to tags, and tags are connected to other documents. + When documents are retrieved from a graph vector store, a pair of documents are + connected with a depth of one if both documents are connected to the same tag. + + Links have a ``kind`` property, used to namespace different tag identifiers. + For example a link to a keyword might use kind ``kw``, while a link to a URL might + use kind ``url``. + This allows the same tag value to be used in different contexts without causing + name collisions. + + Links are directed. The directionality of links controls how the graph is + traversed at retrieval time. + For example, given documents ``A`` and ``B``, connected by links to tag ``T``: + + +----------+----------+---------------------------------+ + | A to T | B to T | Result | + +==========+==========+=================================+ + | outgoing | incoming | Retrieval traverses from A to B | + +----------+----------+---------------------------------+ + | incoming | incoming | No traversal from A to B | + +----------+----------+---------------------------------+ + | outgoing | incoming | No traversal from A to B | + +----------+----------+---------------------------------+ + | bidir | incoming | Retrieval traverses from A to B | + +----------+----------+---------------------------------+ + | bidir | outgoing | No traversal from A to B | + +----------+----------+---------------------------------+ + | outgoing | bidir | Retrieval traverses from A to B | + +----------+----------+---------------------------------+ + | incoming | bidir | No traversal from A to B | + +----------+----------+---------------------------------+ + + Directed links make it possible to describe relationships such as term + references / definitions: term definitions are generally relevant to any documents + that use the term, but the full set of documents using a term generally aren't + relevant to the term's definition. + + .. seealso:: + + - :mod:`How to use a graph vector store ` + - :class:`How to link Documents on hyperlinks in HTML ` + - :class:`How to link Documents on common keywords (using KeyBERT) ` + - :class:`How to link Documents on common named entities (using GliNER) ` + + How to add links to a Document + ============================== + + How to create links + ------------------- + + You can create links using the Link class's constructors :meth:`incoming`, + :meth:`outgoing`, and :meth:`bidir`:: + + from langchain_community.graph_vectorstores.links import Link + + print(Link.bidir(kind="location", tag="Paris")) + + .. code-block:: output + + Link(kind='location', direction='bidir', tag='Paris') + + Extending documents with links + ------------------------------ + + Now that we know how to create links, let's associate them with some documents. + These edges will strengthen the connection between documents that share a keyword + when using a graph vector store to retrieve documents. + + First, we'll load some text and chunk it into smaller pieces. + Then we'll add a link to each document to link them all together:: + + from langchain_community.document_loaders import TextLoader + from langchain_community.graph_vectorstores.links import add_links + from langchain_text_splitters import CharacterTextSplitter + + loader = TextLoader("state_of_the_union.txt") + + raw_documents = loader.load() + text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) + documents = text_splitter.split_documents(raw_documents) + + for doc in documents: + add_links(doc, Link.bidir(kind="genre", tag="oratory")) + + print(documents[0].metadata) + + .. code-block:: output + + {'source': 'state_of_the_union.txt', 'links': [Link(kind='genre', direction='bidir', tag='oratory')]} + + As we can see, each document's metadata now includes a bidirectional link to the + genre ``oratory``. + + The documents can then be added to a graph vector store:: + + from langchain_community.graph_vectorstores import CassandraGraphVectorStore + + graph_vectorstore = CassandraGraphVectorStore.from_documents( + documents=documents, embeddings=... + ) + + """ # noqa: E501 + + kind: str + """The kind of link. Allows different extractors to use the same tag name without + creating collisions between extractors. For example “keyword” vs “url”.""" + direction: Literal["in", "out", "bidir"] + """The direction of the link.""" + tag: str + """The tag of the link.""" + + @staticmethod + def incoming(kind: str, tag: str) -> "Link": + """Create an incoming link. + + Args: + kind: the link kind. + tag: the link tag. + """ + return Link(kind=kind, direction="in", tag=tag) + + @staticmethod + def outgoing(kind: str, tag: str) -> "Link": + """Create an outgoing link. + + Args: + kind: the link kind. + tag: the link tag. + """ + return Link(kind=kind, direction="out", tag=tag) + + @staticmethod + def bidir(kind: str, tag: str) -> "Link": + """Create a bidirectional link. + + Args: + kind: the link kind. + tag: the link tag. + """ + return Link(kind=kind, direction="bidir", tag=tag) + + +METADATA_LINKS_KEY = "links" + + +@beta() +def get_links(doc: Document) -> list[Link]: + """Get the links from a document. + + Args: + doc: The document to get the link tags from. + Returns: + The set of link tags from the document. + """ + + links = doc.metadata.setdefault(METADATA_LINKS_KEY, []) + if not isinstance(links, list): + # Convert to a list and remember that. + links = list(links) + doc.metadata[METADATA_LINKS_KEY] = links + return links + + +@beta() +def add_links(doc: Document, *links: Union[Link, Iterable[Link]]) -> None: + """Add links to the given metadata. + + Args: + doc: The document to add the links to. + *links: The links to add to the document. + """ + links_in_metadata = get_links(doc) + for link in links: + if isinstance(link, Iterable): + links_in_metadata.extend(link) + else: + links_in_metadata.append(link) + + +@beta() +def copy_with_links(doc: Document, *links: Union[Link, Iterable[Link]]) -> Document: + """Return a document with the given links added. + + Args: + doc: The document to add the links to. + *links: The links to add to the document. + + Returns: + A document with a shallow-copy of the metadata with the links added. + """ + new_links = set(get_links(doc)) + for link in links: + if isinstance(link, Iterable): + new_links.update(link) + else: + new_links.add(link) + + return Document( + page_content=doc.page_content, + metadata={ + **doc.metadata, + METADATA_LINKS_KEY: list(new_links), + }, + ) diff --git a/libs/community/langchain_community/graph_vectorstores/networkx.py b/libs/community/langchain_community/graph_vectorstores/networkx.py new file mode 100644 index 0000000000000..7a3c9202978dd --- /dev/null +++ b/libs/community/langchain_community/graph_vectorstores/networkx.py @@ -0,0 +1,84 @@ +"""Utilities for using Graph Vector Stores with networkx.""" + +import typing + +from langchain_core.documents import Document + +from langchain_community.graph_vectorstores.links import get_links + +if typing.TYPE_CHECKING: + import networkx as nx + + +def documents_to_networkx( + documents: typing.Iterable[Document], + *, + tag_nodes: bool = True, +) -> "nx.DiGraph": + """Return the networkx directed graph corresponding to the documents. + + Args: + documents: The documents to convenrt to networkx. + tag_nodes: If `True`, each tag will be rendered as a node, with edges + to/from the corresponding documents. If `False`, edges will be + between documents, with a label corresponding to the tag(s) + connecting them. + """ + import networkx as nx + + graph = nx.DiGraph() + + tag_ids: typing.Dict[typing.Tuple[str, str], str] = {} + tag_labels: typing.Dict[str, str] = {} + documents_by_incoming: typing.Dict[str, typing.Set[str]] = {} + + # First pass: + # - Register tag IDs for each unique (kind, tag). + # - If rendering tag nodes, add them to the graph. + # - If not rendering tag nodes, create a dictionary of documents by incoming tags. + for document in documents: + if document.id is None: + raise ValueError(f"Illegal graph document without ID: {document}") + + for link in get_links(document): + tag_key = (link.kind, link.tag) + tag_id = tag_ids.get(tag_key) + if tag_id is None: + tag_id = f"tag_{len(tag_ids)}" + tag_ids[tag_key] = tag_id + + if tag_nodes: + graph.add_node(tag_id, label=f"{link.kind}:{link.tag}") + + if not tag_nodes and (link.direction == "in" or link.direction == "bidir"): + tag_labels[tag_id] = f"{link.kind}:{link.tag}" + documents_by_incoming.setdefault(tag_id, set()).add(document.id) + + # Second pass: + # - Render document nodes + # - If rendering tag nodes, render edges to/from documents and tag nodes. + # - If not rendering tag nodes, render edges to/from documents based on tags. + for document in documents: + graph.add_node(document.id, text=document.page_content) + + targets: typing.Dict[str, typing.List[str]] = {} + for link in get_links(document): + tag_id = tag_ids[(link.kind, link.tag)] + if tag_nodes: + if link.direction == "in" or link.direction == "bidir": + graph.add_edge(tag_id, document.id) + if link.direction == "out" or link.direction == "bidir": + graph.add_edge(document.id, tag_id) + else: + if link.direction == "out" or link.direction == "bidir": + label = tag_labels[tag_id] + for target in documents_by_incoming[tag_id]: + if target != document.id: + targets.setdefault(target, []).append(label) + + # Avoid a multigraph by collecting the list of labels for each edge. + if not tag_nodes: + for target, labels in targets.items(): + graph.add_edge(document.id, target, label=str(labels)) + + return graph diff --git a/libs/community/langchain_community/graphs/graph_document.py b/libs/community/langchain_community/graphs/graph_document.py index 3e9a597cc565f..ff82ca4b4341a 100644 --- a/libs/community/langchain_community/graphs/graph_document.py +++ b/libs/community/langchain_community/graphs/graph_document.py @@ -4,7 +4,7 @@ from langchain_core.documents import Document from langchain_core.load.serializable import Serializable -from langchain_core.pydantic_v1 import Field +from pydantic import Field class Node(Serializable): diff --git a/libs/community/langchain_community/graphs/index_creator.py b/libs/community/langchain_community/graphs/index_creator.py index 9394da264e2f2..f686096092712 100644 --- a/libs/community/langchain_community/graphs/index_creator.py +++ b/libs/community/langchain_community/graphs/index_creator.py @@ -1,7 +1,7 @@ from typing import Optional, Type -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_core.prompts.prompt import PromptTemplate diff --git a/libs/community/langchain_community/graphs/neo4j_graph.py b/libs/community/langchain_community/graphs/neo4j_graph.py index 6c93dc253e8a5..901e9604f6242 100644 --- a/libs/community/langchain_community/graphs/neo4j_graph.py +++ b/libs/community/langchain_community/graphs/neo4j_graph.py @@ -411,7 +411,9 @@ def get_structured_schema(self) -> Dict[str, Any]: return self.structured_schema def query( - self, query: str, params: dict = {}, retry_on_session_expired: bool = True + self, + query: str, + params: dict = {}, ) -> List[Dict[str, Any]]: """Query Neo4j database. @@ -423,26 +425,44 @@ def query( List[Dict[str, Any]]: The list of dictionaries containing the query results. """ from neo4j import Query - from neo4j.exceptions import CypherSyntaxError, SessionExpired + from neo4j.exceptions import Neo4jError - with self._driver.session(database=self._database) as session: - try: - data = session.run(Query(text=query, timeout=self.timeout), params) - json_data = [r.data() for r in data] - if self.sanitize: - json_data = [value_sanitize(el) for el in json_data] - return json_data - except CypherSyntaxError as e: - raise ValueError(f"Generated Cypher Statement is not valid\n{e}") - except ( - SessionExpired - ) as e: # Session expired is a transient error that can be retried - if retry_on_session_expired: - return self.query( - query, params=params, retry_on_session_expired=False + try: + data, _, _ = self._driver.execute_query( + Query(text=query, timeout=self.timeout), + database=self._database, + parameters_=params, + ) + json_data = [r.data() for r in data] + if self.sanitize: + json_data = [value_sanitize(el) for el in json_data] + return json_data + except Neo4jError as e: + if not ( + ( + ( # isCallInTransactionError + e.code == "Neo.DatabaseError.Statement.ExecutionFailed" + or e.code + == "Neo.DatabaseError.Transaction.TransactionStartFailed" ) - else: - raise e + and "in an implicit transaction" in e.message + ) + or ( # isPeriodicCommitError + e.code == "Neo.ClientError.Statement.SemanticError" + and ( + "in an open transaction is not possible" in e.message + or "tried to execute in an explicit transaction" in e.message + ) + ) + ): + raise + # fallback to allow implicit transactions + with self._driver.session() as session: + data = session.run(Query(text=query, timeout=self.timeout), params) + json_data = [r.data() for r in data] + if self.sanitize: + json_data = [value_sanitize(el) for el in json_data] + return json_data def refresh_schema(self) -> None: """ diff --git a/libs/community/langchain_community/llms/__init__.py b/libs/community/langchain_community/llms/__init__.py index a82ab6a8cea60..bc1ada6982e74 100644 --- a/libs/community/langchain_community/llms/__init__.py +++ b/libs/community/langchain_community/llms/__init__.py @@ -510,12 +510,6 @@ def _import_sagemaker_endpoint() -> Type[BaseLLM]: return SagemakerEndpoint -def _import_sambaverse() -> Type[BaseLLM]: - from langchain_community.llms.sambanova import Sambaverse - - return Sambaverse - - def _import_sambastudio() -> Type[BaseLLM]: from langchain_community.llms.sambanova import SambaStudio @@ -817,8 +811,6 @@ def __getattr__(name: str) -> Any: return _import_rwkv() elif name == "SagemakerEndpoint": return _import_sagemaker_endpoint() - elif name == "Sambaverse": - return _import_sambaverse() elif name == "SambaStudio": return _import_sambastudio() elif name == "SelfHostedPipeline": @@ -954,7 +946,6 @@ def __getattr__(name: str) -> Any: "RWKV", "Replicate", "SagemakerEndpoint", - "Sambaverse", "SambaStudio", "SelfHostedHuggingFaceLLM", "SelfHostedPipeline", @@ -1051,7 +1042,6 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]: "replicate": _import_replicate, "rwkv": _import_rwkv, "sagemaker_endpoint": _import_sagemaker_endpoint, - "sambaverse": _import_sambaverse, "sambastudio": _import_sambastudio, "self_hosted": _import_self_hosted, "self_hosted_hugging_face": _import_self_hosted_hugging_face, diff --git a/libs/community/langchain_community/llms/ai21.py b/libs/community/langchain_community/llms/ai21.py index 9956af4e2cd44..08afd82a947fa 100644 --- a/libs/community/langchain_community/llms/ai21.py +++ b/libs/community/langchain_community/llms/ai21.py @@ -3,8 +3,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, SecretStr class AI21PenaltyData(BaseModel): @@ -68,8 +68,9 @@ class AI21(LLM): base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/aleph_alpha.py b/libs/community/langchain_community/llms/aleph_alpha.py index ec366c1649cd8..73cf1f0dd8549 100644 --- a/libs/community/langchain_community/llms/aleph_alpha.py +++ b/libs/community/langchain_community/llms/aleph_alpha.py @@ -2,8 +2,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ConfigDict, SecretStr from langchain_community.llms.utils import enforce_stop_tokens @@ -25,7 +25,7 @@ class AlephAlpha(LLM): aleph_alpha = AlephAlpha(aleph_alpha_api_key="my-api-key") """ - client: Any #: :meta private: + client: Any = None #: :meta private: model: Optional[str] = "luminous-base" """Model name to use.""" @@ -162,8 +162,9 @@ class AlephAlpha(LLM): nice to other users by de-prioritizing your request below concurrent ones.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/amazon_api_gateway.py b/libs/community/langchain_community/llms/amazon_api_gateway.py index 61e589a7f7cfa..61c088c8cdfab 100644 --- a/libs/community/langchain_community/llms/amazon_api_gateway.py +++ b/libs/community/langchain_community/llms/amazon_api_gateway.py @@ -3,6 +3,7 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -43,8 +44,9 @@ class AmazonAPIGateway(LLM): and the endpoint. """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @property def _identifying_params(self) -> Mapping[str, Any]: diff --git a/libs/community/langchain_community/llms/anthropic.py b/libs/community/langchain_community/llms/anthropic.py index f6b977ab4559f..0a6af6799d821 100644 --- a/libs/community/langchain_community/llms/anthropic.py +++ b/libs/community/langchain_community/llms/anthropic.py @@ -20,14 +20,14 @@ from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk from langchain_core.prompt_values import PromptValue -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import ( check_package_version, get_from_dict_or_env, get_pydantic_field_names, pre_init, ) -from langchain_core.utils.utils import build_extra_kwargs, convert_to_secret_str +from langchain_core.utils.utils import _build_model_kwargs, convert_to_secret_str +from pydantic import ConfigDict, Field, SecretStr, model_validator class _AnthropicCommon(BaseLanguageModel): @@ -66,13 +66,11 @@ class _AnthropicCommon(BaseLanguageModel): count_tokens: Optional[Callable[[str], int]] = None model_kwargs: Dict[str, Any] = Field(default_factory=dict) - @root_validator(pre=True) - def build_extra(cls, values: Dict) -> Dict: - extra = values.get("model_kwargs", {}) + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict) -> Any: all_required_field_names = get_pydantic_field_names(cls) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values @pre_init @@ -180,9 +178,10 @@ class Anthropic(LLM, _AnthropicCommon): response = model.invoke(prompt) """ - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) @pre_init def raise_warning(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/anyscale.py b/libs/community/langchain_community/llms/anyscale.py index 2e43fa38ae5a0..2ae364c390630 100644 --- a/libs/community/langchain_community/llms/anyscale.py +++ b/libs/community/langchain_community/llms/anyscale.py @@ -14,8 +14,8 @@ CallbackManagerForLLMRun, ) from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import Field, SecretStr from langchain_community.llms.openai import ( BaseOpenAI, diff --git a/libs/community/langchain_community/llms/aphrodite.py b/libs/community/langchain_community/llms/aphrodite.py index d8bf1c1871c1d..bcaeabe296d8e 100644 --- a/libs/community/langchain_community/llms/aphrodite.py +++ b/libs/community/langchain_community/llms/aphrodite.py @@ -3,8 +3,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import BaseLLM from langchain_core.outputs import Generation, LLMResult -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import Field class Aphrodite(BaseLLM): @@ -156,7 +156,7 @@ class Aphrodite(BaseLLM): """Holds any model parameters valid for `aphrodite.LLM` call not explicitly specified.""" - client: Any #: :meta private: + client: Any = None #: :meta private: @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/arcee.py b/libs/community/langchain_community/llms/arcee.py index 9bd7ff97ff9db..42fcef87bb7af 100644 --- a/libs/community/langchain_community/llms/arcee.py +++ b/libs/community/langchain_community/llms/arcee.py @@ -2,8 +2,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import ConfigDict, SecretStr, model_validator from langchain_community.utilities.arcee import ArceeWrapper, DALMFilter @@ -51,9 +51,9 @@ class Arcee(LLM): model_kwargs: Optional[Dict[str, Any]] = None """Keyword arguments to pass to the model.""" - class Config: - extra = "forbid" - underscore_attrs_are_private = True + model_config = ConfigDict( + extra="forbid", + ) @property def _llm_type(self) -> str: @@ -73,8 +73,9 @@ def __init__(self, **data: Any) -> None: model_name=self.model, ) - @root_validator(pre=True) - def validate_environments(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environments(cls, values: Dict) -> Any: """Validate Arcee environment variables.""" # validate env vars diff --git a/libs/community/langchain_community/llms/aviary.py b/libs/community/langchain_community/llms/aviary.py index 73dcbacb48d6a..95fd5730fac5d 100644 --- a/libs/community/langchain_community/llms/aviary.py +++ b/libs/community/langchain_community/llms/aviary.py @@ -5,8 +5,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import ConfigDict, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -122,11 +122,13 @@ class Aviary(LLM): # API version to use for Aviary version: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" aviary_url = get_from_dict_or_env(values, "aviary_url", "AVIARY_URL") aviary_token = get_from_dict_or_env(values, "aviary_token", "AVIARY_TOKEN") diff --git a/libs/community/langchain_community/llms/azureml_endpoint.py b/libs/community/langchain_community/llms/azureml_endpoint.py index 7dd4f6aee4225..5c34ca1547743 100644 --- a/libs/community/langchain_community/llms/azureml_endpoint.py +++ b/libs/community/langchain_community/llms/azureml_endpoint.py @@ -8,8 +8,8 @@ from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, LLMResult -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator, validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator, validator DEFAULT_TIMEOUT = 50 @@ -382,8 +382,11 @@ class AzureMLBaseEndpoint(BaseModel): model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" - @root_validator(pre=True) - def validate_environ(cls, values: Dict) -> Dict: + model_config = ConfigDict(protected_namespaces=()) + + @model_validator(mode="before") + @classmethod + def validate_environ(cls, values: Dict) -> Any: values["endpoint_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "endpoint_api_key", "AZUREML_ENDPOINT_API_KEY") ) diff --git a/libs/community/langchain_community/llms/baichuan.py b/libs/community/langchain_community/llms/baichuan.py index 4cc614ce8ac4a..4026e14b90efe 100644 --- a/libs/community/langchain_community/llms/baichuan.py +++ b/libs/community/langchain_community/llms/baichuan.py @@ -7,8 +7,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import Field, SecretStr from langchain_community.llms.utils import enforce_stop_tokens diff --git a/libs/community/langchain_community/llms/baidu_qianfan_endpoint.py b/libs/community/langchain_community/llms/baidu_qianfan_endpoint.py index 601f952bddbb4..5268b780344bf 100644 --- a/libs/community/langchain_community/llms/baidu_qianfan_endpoint.py +++ b/libs/community/langchain_community/llms/baidu_qianfan_endpoint.py @@ -16,8 +16,8 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import Field, SecretStr logger = logging.getLogger(__name__) @@ -123,7 +123,7 @@ class QianfanLLMEndpoint(LLM): model_kwargs: Dict[str, Any] = Field(default_factory=dict) """extra params for model invoke using with `do`.""" - client: Any + client: Any = None qianfan_ak: Optional[SecretStr] = Field(default=None, alias="api_key") qianfan_sk: Optional[SecretStr] = Field(default=None, alias="secret_key") diff --git a/libs/community/langchain_community/llms/bananadev.py b/libs/community/langchain_community/llms/bananadev.py index c1be0bb1fb6a7..9ed76e816b336 100644 --- a/libs/community/langchain_community/llms/bananadev.py +++ b/libs/community/langchain_community/llms/bananadev.py @@ -3,9 +3,10 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator -from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init -from langchain_core.utils.pydantic import get_fields +from langchain_core.utils import ( + secret_from_env, +) +from pydantic import ConfigDict, Field, SecretStr, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -39,16 +40,19 @@ class Banana(LLM): """Holds any model parameters valid for `create` call not explicitly specified.""" - banana_api_key: Optional[SecretStr] = None + banana_api_key: Optional[SecretStr] = Field( + default_factory=secret_from_env("BANANA_API_KEY", default=None) + ) - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" - all_required_field_names = {field.alias for field in get_fields(cls).values()} - + all_required_field_names = set(list(cls.model_fields.keys())) extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: @@ -62,15 +66,6 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["model_kwargs"] = extra return values - @pre_init - def validate_environment(cls, values: Dict) -> Dict: - """Validate that api key and python package exists in environment.""" - banana_api_key = convert_to_secret_str( - get_from_dict_or_env(values, "banana_api_key", "BANANA_API_KEY") - ) - values["banana_api_key"] = banana_api_key - return values - @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" diff --git a/libs/community/langchain_community/llms/baseten.py b/libs/community/langchain_community/llms/baseten.py index 9859106f51143..5b7ce87eb827e 100644 --- a/libs/community/langchain_community/llms/baseten.py +++ b/libs/community/langchain_community/llms/baseten.py @@ -5,7 +5,7 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field +from pydantic import Field logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/llms/beam.py b/libs/community/langchain_community/llms/beam.py index 63d51499e9a1b..fe8bf5f5ff8c0 100644 --- a/libs/community/langchain_community/llms/beam.py +++ b/libs/community/langchain_community/llms/beam.py @@ -9,9 +9,9 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env, pre_init from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, model_validator logger = logging.getLogger(__name__) @@ -73,11 +73,13 @@ class Beam(LLM): beam_client_secret: str = "" app_id: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} diff --git a/libs/community/langchain_community/llms/bedrock.py b/libs/community/langchain_community/llms/bedrock.py index d47a762973bea..a0de3fb81e297 100644 --- a/libs/community/langchain_community/llms/bedrock.py +++ b/libs/community/langchain_community/llms/bedrock.py @@ -21,8 +21,8 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, Field from langchain_community.llms.utils import enforce_stop_tokens from langchain_community.utilities.anthropic import ( @@ -295,6 +295,8 @@ async def aprepare_output_stream( class BedrockBase(BaseModel, ABC): """Base class for Bedrock models.""" + model_config = ConfigDict(protected_namespaces=()) + client: Any = Field(exclude=True) #: :meta private: region_name: Optional[str] = None @@ -657,12 +659,12 @@ def _prepare_input_and_invoke_stream( for chunk in LLMInputOutputAdapter.prepare_output_stream( provider, response, stop, True if messages else False ): - yield chunk # verify and raise callback error if any middleware intervened self._get_bedrock_services_signal(chunk.generation_info) # type: ignore[arg-type] if run_manager is not None: run_manager.on_llm_new_token(chunk.text, chunk=chunk) + yield chunk async def _aprepare_input_and_invoke_stream( self, @@ -703,13 +705,13 @@ async def _aprepare_input_and_invoke_stream( async for chunk in LLMInputOutputAdapter.aprepare_output_stream( provider, response, stop ): - yield chunk if run_manager is not None and asyncio.iscoroutinefunction( run_manager.on_llm_new_token ): await run_manager.on_llm_new_token(chunk.text, chunk=chunk) elif run_manager is not None: run_manager.on_llm_new_token(chunk.text, chunk=chunk) # type: ignore[unused-coroutine] + yield chunk @deprecated( @@ -778,8 +780,9 @@ def lc_attributes(self) -> Dict[str, Any]: return attributes - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _stream( self, diff --git a/libs/community/langchain_community/llms/cerebriumai.py b/libs/community/langchain_community/llms/cerebriumai.py index 9e69b026c9cb1..b267033721124 100644 --- a/libs/community/langchain_community/llms/cerebriumai.py +++ b/libs/community/langchain_community/llms/cerebriumai.py @@ -4,9 +4,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init -from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, SecretStr, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -40,13 +39,15 @@ class CerebriumAI(LLM): cerebriumai_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" - all_required_field_names = {field.alias for field in get_fields(cls).values()} + all_required_field_names = set(list(cls.model_fields.keys())) extra = values.get("model_kwargs", {}) for field_name in list(values): diff --git a/libs/community/langchain_community/llms/chatglm3.py b/libs/community/langchain_community/llms/chatglm3.py index aa3255a50f6df..796a592f4af88 100644 --- a/libs/community/langchain_community/llms/chatglm3.py +++ b/libs/community/langchain_community/llms/chatglm3.py @@ -11,7 +11,7 @@ HumanMessage, SystemMessage, ) -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.llms.utils import enforce_stop_tokens diff --git a/libs/community/langchain_community/llms/clarifai.py b/libs/community/langchain_community/llms/clarifai.py index 706e8bea2b993..c7d6fcde6a975 100644 --- a/libs/community/langchain_community/llms/clarifai.py +++ b/libs/community/langchain_community/llms/clarifai.py @@ -4,8 +4,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import Generation, LLMResult -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import ConfigDict, Field from langchain_community.llms.utils import enforce_stop_tokens @@ -49,8 +49,9 @@ class Clarifai(LLM): model: Any = Field(default=None, exclude=True) #: :meta private: api_base: str = "https://api.clarifai.com" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/cloudflare_workersai.py b/libs/community/langchain_community/llms/cloudflare_workersai.py index 314a32223e877..0fb6ac6053d3d 100644 --- a/libs/community/langchain_community/llms/cloudflare_workersai.py +++ b/libs/community/langchain_community/llms/cloudflare_workersai.py @@ -105,9 +105,9 @@ def _stream( logger.debug(chunk) raise e if data is not None and "response" in data: + if run_manager: + run_manager.on_llm_new_token(data["response"]) yield GenerationChunk(text=data["response"]) - if run_manager: - run_manager.on_llm_new_token(data["response"]) logger.debug("stream end") self.streaming = original_steaming diff --git a/libs/community/langchain_community/llms/cohere.py b/libs/community/langchain_community/llms/cohere.py index 9d075b25a4506..dbe15e200a375 100644 --- a/libs/community/langchain_community/llms/cohere.py +++ b/libs/community/langchain_community/llms/cohere.py @@ -10,8 +10,8 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.load.serializable import Serializable -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ConfigDict, Field, SecretStr from tenacity import ( before_sleep_log, retry, @@ -76,8 +76,8 @@ async def _completion_with_retry(**kwargs: Any) -> Any: class BaseCohere(Serializable): """Base class for Cohere models.""" - client: Any #: :meta private: - async_client: Any #: :meta private: + client: Any = None #: :meta private: + async_client: Any = None #: :meta private: model: Optional[str] = Field(default=None) """Model name to use.""" @@ -159,8 +159,9 @@ class Cohere(LLM, BaseCohere): max_retries: int = 10 """Maximum number of retries to make when generating.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @property def _default_params(self) -> Dict[str, Any]: diff --git a/libs/community/langchain_community/llms/ctranslate2.py b/libs/community/langchain_community/llms/ctranslate2.py index 22c5de078acc4..bc78c7e4a429c 100644 --- a/libs/community/langchain_community/llms/ctranslate2.py +++ b/libs/community/langchain_community/llms/ctranslate2.py @@ -3,8 +3,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, LLMResult -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import Field class CTranslate2(BaseLLM): @@ -41,9 +41,9 @@ class CTranslate2(BaseLLM): sampling_temperature: float = 1 """Sampling temperature to generate more random samples.""" - client: Any #: :meta private: + client: Any = None #: :meta private: - tokenizer: Any #: :meta private: + tokenizer: Any = None #: :meta private: ctranslate2_kwargs: Dict[str, Any] = Field(default_factory=dict) """ diff --git a/libs/community/langchain_community/llms/databricks.py b/libs/community/langchain_community/llms/databricks.py index 8e5ab49f7ef0b..9f535d7373d82 100644 --- a/libs/community/langchain_community/llms/databricks.py +++ b/libs/community/langchain_community/llms/databricks.py @@ -7,12 +7,12 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import LLM -from langchain_core.pydantic_v1 import ( +from pydantic import ( BaseModel, + ConfigDict, Field, PrivateAttr, - root_validator, - validator, + model_validator, ) __all__ = ["Databricks"] @@ -97,8 +97,9 @@ def __init__(self, **data: Any): def llm(self) -> bool: return self.task in ("llm/v1/chat", "llm/v1/completions", "llama2/chat") - @root_validator(pre=True) - def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def set_api_url(cls, values: Dict[str, Any]) -> Any: if "api_url" not in values: host = values["host"] endpoint_name = values["endpoint_name"] @@ -141,8 +142,9 @@ class _DatabricksClusterDriverProxyClient(_DatabricksClientBase): cluster_id: str cluster_driver_port: str - @root_validator(pre=True) - def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def set_api_url(cls, values: Dict[str, Any]) -> Any: if "api_url" not in values: host = values["host"] cluster_id = values["cluster_id"] @@ -395,9 +397,9 @@ class Databricks(LLM): _client: _DatabricksClientBase = PrivateAttr() - class Config: - extra = "forbid" - underscore_attrs_are_private = True + model_config = ConfigDict( + extra="forbid", + ) @property def _llm_params(self) -> Dict[str, Any]: @@ -411,18 +413,21 @@ def _llm_params(self) -> Dict[str, Any]: params["max_tokens"] = self.max_tokens return params - @validator("cluster_id", always=True) - def set_cluster_id(cls, v: Any, values: Dict[str, Any]) -> Optional[str]: - if v and values["endpoint_name"]: + @model_validator(mode="before") + @classmethod + def set_cluster_id(cls, values: Dict[str, Any]) -> dict: + cluster_id = values.get("cluster_id") + endpoint_name = values.get("endpoint_name") + if cluster_id and endpoint_name: raise ValueError("Cannot set both endpoint_name and cluster_id.") - elif values["endpoint_name"]: - return None - elif v: - return v + elif endpoint_name: + values["cluster_id"] = None + elif cluster_id: + pass else: try: - if v := get_repl_context().clusterId: - return v + if context_cluster_id := get_repl_context().clusterId: + values["cluster_id"] = context_cluster_id raise ValueError("Context doesn't contain clusterId.") except Exception as e: raise ValueError( @@ -431,27 +436,28 @@ def set_cluster_id(cls, v: Any, values: Dict[str, Any]) -> Optional[str]: f" error: {e}" ) - @validator("cluster_driver_port", always=True) - def set_cluster_driver_port(cls, v: Any, values: Dict[str, Any]) -> Optional[str]: - if v and values["endpoint_name"]: + cluster_driver_port = values.get("cluster_driver_port") + if cluster_driver_port and endpoint_name: raise ValueError("Cannot set both endpoint_name and cluster_driver_port.") - elif values["endpoint_name"]: - return None - elif v is None: + elif endpoint_name: + values["cluster_driver_port"] = None + elif cluster_driver_port is None: raise ValueError( "Must set cluster_driver_port to connect to a cluster driver." ) - elif int(v) <= 0: - raise ValueError(f"Invalid cluster_driver_port: {v}") + elif int(cluster_driver_port) <= 0: + raise ValueError(f"Invalid cluster_driver_port: {cluster_driver_port}") else: - return v - - @validator("model_kwargs", always=True) - def set_model_kwargs(cls, v: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: - if v: - assert "prompt" not in v, "model_kwargs must not contain key 'prompt'" - assert "stop" not in v, "model_kwargs must not contain key 'stop'" - return v + pass + + if model_kwargs := values.get("model_kwargs"): + assert ( + "prompt" not in model_kwargs + ), "model_kwargs must not contain key 'prompt'" + assert ( + "stop" not in model_kwargs + ), "model_kwargs must not contain key 'stop'" + return values def __init__(self, **data: Any): if "transform_input_fn" in data and _is_hex_string(data["transform_input_fn"]): diff --git a/libs/community/langchain_community/llms/deepinfra.py b/libs/community/langchain_community/llms/deepinfra.py index 303113f191aa4..47551dd4e6520 100644 --- a/libs/community/langchain_community/llms/deepinfra.py +++ b/libs/community/langchain_community/llms/deepinfra.py @@ -9,6 +9,7 @@ from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import ConfigDict from langchain_community.utilities.requests import Requests @@ -37,8 +38,9 @@ class DeepInfra(LLM): deepinfra_api_token: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/deepsparse.py b/libs/community/langchain_community/llms/deepsparse.py index 106750e273146..6a743cd50656e 100644 --- a/libs/community/langchain_community/llms/deepsparse.py +++ b/libs/community/langchain_community/llms/deepsparse.py @@ -2,7 +2,7 @@ from langchain_core.utils import pre_init from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union from langchain_core.utils import pre_init -from langchain_core.pydantic_v1 import root_validator +from pydantic import root_validator from langchain_core.utils import pre_init from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, @@ -33,7 +33,7 @@ class DeepSparse(LLM): model: str """The path to a model file or directory or the name of a SparseZoo model stub.""" - model_config: Optional[Dict[str, Any]] = None + model_configuration: Optional[Dict[str, Any]] = None """Keyword arguments passed to the pipeline construction. Common parameters are sequence_length, prompt_sequence_length""" @@ -51,7 +51,7 @@ def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, - "model_config": self.model_config, + "model_config": self.model_configuration, "generation_config": self.generation_config, "streaming": self.streaming, } @@ -72,7 +72,7 @@ def validate_environment(cls, values: Dict) -> Dict: "Please install it with `pip install deepsparse[llm]`" ) - model_config = values["model_config"] or {} + model_config = values["model_configuration"] or {} values["pipeline"] = Pipeline.create( task="text_generation", @@ -190,10 +190,10 @@ def _stream( ) for token in inference: chunk = GenerationChunk(text=token.generations[0].text) - yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) + yield chunk async def _astream( self, @@ -228,7 +228,7 @@ async def _astream( ) for token in inference: chunk = GenerationChunk(text=token.generations[0].text) - yield chunk if run_manager: await run_manager.on_llm_new_token(token=chunk.text) + yield chunk diff --git a/libs/community/langchain_community/llms/edenai.py b/libs/community/langchain_community/llms/edenai.py index 31cdaee92aeda..a43e8a71bec68 100644 --- a/libs/community/langchain_community/llms/edenai.py +++ b/libs/community/langchain_community/llms/edenai.py @@ -9,9 +9,9 @@ CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env, pre_init from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, model_validator from langchain_community.llms.utils import enforce_stop_tokens from langchain_community.utilities.requests import Requests @@ -69,8 +69,9 @@ class EdenAI(LLM): stop_sequences: Optional[List[str]] = None """Stop sequences to use.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: @@ -80,8 +81,9 @@ def validate_environment(cls, values: Dict) -> Dict: ) return values - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} diff --git a/libs/community/langchain_community/llms/exllamav2.py b/libs/community/langchain_community/llms/exllamav2.py index 3e577cbf97788..27f5c1ac1d53c 100644 --- a/libs/community/langchain_community/llms/exllamav2.py +++ b/libs/community/langchain_community/llms/exllamav2.py @@ -1,10 +1,10 @@ -from typing import Any, Dict, Iterator, List, Optional +from typing import Any, Callable, Dict, Iterator, List, Optional from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import Field class ExLlamaV2(LLM): @@ -30,7 +30,7 @@ class ExLlamaV2(LLM): - Add support for custom stop sequences """ - client: Any + client: Any = None model_path: str exllama_cache: Any = None config: Any = None @@ -41,7 +41,7 @@ class ExLlamaV2(LLM): settings: Any = None # Langchain parameters - logfunc = print + logfunc: Callable = print stop_sequences: List[str] = Field("") """Sequences that immediately will stop the generator.""" diff --git a/libs/community/langchain_community/llms/fireworks.py b/libs/community/langchain_community/llms/fireworks.py index 73948062e6c76..f7af9e90b8d24 100644 --- a/libs/community/langchain_community/llms/fireworks.py +++ b/libs/community/langchain_community/llms/fireworks.py @@ -9,9 +9,9 @@ ) from langchain_core.language_models.llms import BaseLLM, create_base_retry_decorator from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, pre_init from langchain_core.utils.env import get_from_dict_or_env +from pydantic import Field, SecretStr def _stream_response_to_generation_chunk( diff --git a/libs/community/langchain_community/llms/forefrontai.py b/libs/community/langchain_community/llms/forefrontai.py index 9f1ac129ebbba..8c47304438982 100644 --- a/libs/community/langchain_community/llms/forefrontai.py +++ b/libs/community/langchain_community/llms/forefrontai.py @@ -3,8 +3,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import ConfigDict, SecretStr, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -46,11 +46,13 @@ class ForefrontAI(LLM): base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" values["forefrontai_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "forefrontai_api_key", "FOREFRONTAI_API_KEY") diff --git a/libs/community/langchain_community/llms/friendli.py b/libs/community/langchain_community/llms/friendli.py index 5f137b078e172..74b1ef7d199f8 100644 --- a/libs/community/langchain_community/llms/friendli.py +++ b/libs/community/langchain_community/llms/friendli.py @@ -10,10 +10,10 @@ from langchain_core.language_models.llms import LLM from langchain_core.load.serializable import Serializable from langchain_core.outputs import GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import pre_init from langchain_core.utils.env import get_from_dict_or_env from langchain_core.utils.utils import convert_to_secret_str +from pydantic import Field, SecretStr def _stream_response_to_generation_chunk(stream_response: Any) -> GenerationChunk: @@ -233,9 +233,9 @@ def _stream( ) for line in stream: chunk = _stream_response_to_generation_chunk(line) - yield chunk if run_manager: run_manager.on_llm_new_token(line.text, chunk=chunk) + yield chunk async def _astream( self, @@ -250,9 +250,9 @@ async def _astream( ) async for line in stream: chunk = _stream_response_to_generation_chunk(line) - yield chunk if run_manager: await run_manager.on_llm_new_token(line.text, chunk=chunk) + yield chunk def _generate( self, diff --git a/libs/community/langchain_community/llms/gigachat.py b/libs/community/langchain_community/llms/gigachat.py index 4172081dac4de..a867bc1943786 100644 --- a/libs/community/langchain_community/llms/gigachat.py +++ b/libs/community/langchain_community/llms/gigachat.py @@ -13,6 +13,7 @@ from langchain_core.outputs import Generation, GenerationChunk, LLMResult from langchain_core.utils import pre_init from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict if TYPE_CHECKING: import gigachat @@ -310,9 +311,9 @@ def _stream( for chunk in self._client.stream(payload): if chunk.choices: content = chunk.choices[0].delta.content - yield GenerationChunk(text=content) if run_manager: run_manager.on_llm_new_token(content) + yield GenerationChunk(text=content) async def _astream( self, @@ -326,9 +327,10 @@ async def _astream( async for chunk in self._client.astream(payload): if chunk.choices: content = chunk.choices[0].delta.content - yield GenerationChunk(text=content) if run_manager: await run_manager.on_llm_new_token(content) + yield GenerationChunk(text=content) - class Config: - extra = "allow" + model_config = ConfigDict( + extra="allow", + ) diff --git a/libs/community/langchain_community/llms/google_palm.py b/libs/community/langchain_community/llms/google_palm.py index e996c67b92df1..1d1e62bf18d54 100644 --- a/libs/community/langchain_community/llms/google_palm.py +++ b/libs/community/langchain_community/llms/google_palm.py @@ -6,8 +6,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import LanguageModelInput from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import BaseModel, SecretStr from langchain_community.llms import BaseLLM from langchain_community.utilities.vertexai import create_retry_decorator @@ -215,13 +215,13 @@ def _stream( **kwargs, ): chunk = GenerationChunk(text=stream_resp.text) - yield chunk if run_manager: run_manager.on_llm_new_token( stream_resp.text, chunk=chunk, verbose=self.verbose, ) + yield chunk @property def _llm_type(self) -> str: diff --git a/libs/community/langchain_community/llms/gooseai.py b/libs/community/langchain_community/llms/gooseai.py index 255908a20c8e8..990dee8758cc1 100644 --- a/libs/community/langchain_community/llms/gooseai.py +++ b/libs/community/langchain_community/llms/gooseai.py @@ -3,9 +3,12 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator -from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init -from langchain_core.utils.pydantic import get_fields +from langchain_core.utils import ( + convert_to_secret_str, + get_from_dict_or_env, + get_pydantic_field_names, +) +from pydantic import ConfigDict, Field, SecretStr, model_validator logger = logging.getLogger(__name__) @@ -27,7 +30,7 @@ class GooseAI(LLM): """ - client: Any + client: Any = None model_name: str = "gpt-neo-20b" """Model name to use""" @@ -63,13 +66,15 @@ class GooseAI(LLM): gooseai_api_key: Optional[SecretStr] = None - class Config: - extra = "ignore" + model_config = ConfigDict( + extra="ignore", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" - all_required_field_names = {field.alias for field in get_fields(cls).values()} + all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) for field_name in list(values): @@ -83,11 +88,7 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra - return values - @pre_init - def validate_environment(cls, values: Dict) -> Dict: - """Validate that api key and python package exists in environment.""" gooseai_api_key = convert_to_secret_str( get_from_dict_or_env(values, "gooseai_api_key", "GOOSEAI_API_KEY") ) diff --git a/libs/community/langchain_community/llms/gpt4all.py b/libs/community/langchain_community/llms/gpt4all.py index 0700410c9f89d..85c47ac691ec8 100644 --- a/libs/community/langchain_community/llms/gpt4all.py +++ b/libs/community/langchain_community/llms/gpt4all.py @@ -3,8 +3,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import ConfigDict, Field from langchain_community.llms.utils import enforce_stop_tokens @@ -96,8 +96,9 @@ class GPT4All(LLM): client: Any = None #: :meta private: - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @staticmethod def _model_param_names() -> Set[str]: diff --git a/libs/community/langchain_community/llms/gradient_ai.py b/libs/community/langchain_community/llms/gradient_ai.py index 0da21c79ac29b..b603fd498d9a2 100644 --- a/libs/community/langchain_community/llms/gradient_ai.py +++ b/libs/community/langchain_community/llms/gradient_ai.py @@ -11,8 +11,9 @@ ) from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, LLMResult -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import ConfigDict, Field, model_validator +from typing_extensions import Self from langchain_community.llms.utils import enforce_stop_tokens @@ -73,12 +74,14 @@ class GradientLLM(BaseLLM): """ClientSession, private, subject to change in upcoming releases.""" # LLM call kwargs - class Config: - allow_population_by_field_name = True - extra = "forbid" - - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + model_config = ConfigDict( + populate_by_name=True, + extra="forbid", + ) + + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["gradient_access_token"] = get_from_dict_or_env( @@ -93,8 +96,8 @@ def validate_environment(cls, values: Dict) -> Dict: ) return values - @root_validator(pre=False, skip_on_failure=True) - def post_init(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def post_init(self) -> Self: """Post init validation.""" # Can be most to post_init_validation try: @@ -108,20 +111,14 @@ def post_init(cls, values: Dict) -> Dict: pass # Can be most to post_init_validation - if ( - values["gradient_access_token"] is None - or len(values["gradient_access_token"]) < 10 - ): + if self.gradient_access_token is None or len(self.gradient_access_token) < 10: raise ValueError("env variable `GRADIENT_ACCESS_TOKEN` must be set") - if ( - values["gradient_workspace_id"] is None - or len(values["gradient_access_token"]) < 3 - ): + if self.gradient_workspace_id is None or len(self.gradient_access_token) < 3: raise ValueError("env variable `GRADIENT_WORKSPACE_ID` must be set") - if values["model_kwargs"]: - kw = values["model_kwargs"] + if self.model_kwargs: + kw = self.model_kwargs if not 0 <= kw.get("temperature", 0.5) <= 1: raise ValueError("`temperature` must be in the range [0.0, 1.0]") @@ -134,7 +131,7 @@ def post_init(cls, values: Dict) -> Dict: if 0 >= kw.get("max_generated_token_count", 1): raise ValueError("`max_generated_token_count` must be positive") - return values + return self @property def _identifying_params(self) -> Mapping[str, Any]: diff --git a/libs/community/langchain_community/llms/huggingface_endpoint.py b/libs/community/langchain_community/llms/huggingface_endpoint.py index 27c1adce07f12..61efcc3f36b0a 100644 --- a/libs/community/langchain_community/llms/huggingface_endpoint.py +++ b/libs/community/langchain_community/llms/huggingface_endpoint.py @@ -10,11 +10,11 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import ( get_pydantic_field_names, pre_init, ) +from pydantic import ConfigDict, Field, model_validator logger = logging.getLogger(__name__) @@ -120,17 +120,19 @@ class HuggingFaceEndpoint(LLM): model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `call` not explicitly specified""" model: str - client: Any - async_client: Any + client: Any = None + async_client: Any = None task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/llms/huggingface_hub.py b/libs/community/langchain_community/llms/huggingface_hub.py index 9c207c491f32f..151aa48f2b26d 100644 --- a/libs/community/langchain_community/llms/huggingface_hub.py +++ b/libs/community/langchain_community/llms/huggingface_hub.py @@ -5,6 +5,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -42,7 +43,7 @@ class HuggingFaceHub(LLM): hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key") """ - client: Any #: :meta private: + client: Any = None #: :meta private: repo_id: Optional[str] = None """Model name to use. If not provided, the default model for the chosen task will be used.""" @@ -55,8 +56,9 @@ class HuggingFaceHub(LLM): huggingfacehub_api_token: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/huggingface_pipeline.py b/libs/community/langchain_community/llms/huggingface_pipeline.py index 1ccbc76954a6e..44b4558d2dfbc 100644 --- a/libs/community/langchain_community/llms/huggingface_pipeline.py +++ b/libs/community/langchain_community/llms/huggingface_pipeline.py @@ -8,6 +8,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult +from pydantic import ConfigDict DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" @@ -59,7 +60,7 @@ class HuggingFacePipeline(BaseLLM): hf = HuggingFacePipeline(pipeline=pipe) """ - pipeline: Any #: :meta private: + pipeline: Any = None #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name to use.""" model_kwargs: Optional[dict] = None @@ -69,8 +70,9 @@ class HuggingFacePipeline(BaseLLM): batch_size: int = DEFAULT_BATCH_SIZE """Batch size to use when passing multiple documents to generate.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @classmethod def from_model_id( diff --git a/libs/community/langchain_community/llms/huggingface_text_gen_inference.py b/libs/community/langchain_community/llms/huggingface_text_gen_inference.py index 56bcf69166ed0..e536a2ee4af56 100644 --- a/libs/community/langchain_community/llms/huggingface_text_gen_inference.py +++ b/libs/community/langchain_community/llms/huggingface_text_gen_inference.py @@ -8,8 +8,8 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_pydantic_field_names, pre_init +from pydantic import ConfigDict, Field, model_validator logger = logging.getLogger(__name__) @@ -100,14 +100,16 @@ class HuggingFaceTextGenInference(LLM): """Holds any text-generation-inference server parameters not explicitly specified""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `call` not explicitly specified""" - client: Any - async_client: Any + client: Any = None + async_client: Any = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) diff --git a/libs/community/langchain_community/llms/human.py b/libs/community/langchain_community/llms/human.py index 39473c0ee1e0e..9a54b29aa10c2 100644 --- a/libs/community/langchain_community/llms/human.py +++ b/libs/community/langchain_community/llms/human.py @@ -2,7 +2,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.llms.utils import enforce_stop_tokens diff --git a/libs/community/langchain_community/llms/ipex_llm.py b/libs/community/langchain_community/llms/ipex_llm.py index c1f7f40c4e887..1758c323d0e03 100644 --- a/libs/community/langchain_community/llms/ipex_llm.py +++ b/libs/community/langchain_community/llms/ipex_llm.py @@ -3,6 +3,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM +from pydantic import ConfigDict DEFAULT_MODEL_ID = "gpt2" @@ -24,15 +25,16 @@ class IpexLLM(LLM): """Model name or model path to use.""" model_kwargs: Optional[dict] = None """Keyword arguments passed to the model.""" - model: Any #: :meta private: + model: Any = None #: :meta private: """IpexLLM model.""" - tokenizer: Any #: :meta private: + tokenizer: Any = None #: :meta private: """Huggingface tokenizer model.""" streaming: bool = True """Whether to stream the results, token by token.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @classmethod def from_model_id( diff --git a/libs/community/langchain_community/llms/javelin_ai_gateway.py b/libs/community/langchain_community/llms/javelin_ai_gateway.py index 3ba7fa3ccf9f3..156350308fac7 100644 --- a/libs/community/langchain_community/llms/javelin_ai_gateway.py +++ b/libs/community/langchain_community/llms/javelin_ai_gateway.py @@ -7,7 +7,7 @@ CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel # Ignoring type because below is valid pydantic code diff --git a/libs/community/langchain_community/llms/konko.py b/libs/community/langchain_community/llms/konko.py index 6cc422cd43c4b..0c2a62e92747f 100644 --- a/libs/community/langchain_community/llms/konko.py +++ b/libs/community/langchain_community/llms/konko.py @@ -9,7 +9,7 @@ CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import SecretStr, root_validator +from pydantic import ConfigDict, SecretStr, model_validator from langchain_community.utils.openai import is_openai_v1 @@ -60,11 +60,13 @@ class Konko(LLM): the response for each token generation step. """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict[str, Any]) -> Any: """Validate that python package exists in environment.""" try: import konko diff --git a/libs/community/langchain_community/llms/layerup_security.py b/libs/community/langchain_community/llms/layerup_security.py index dd8bb819284b4..c15626eff2318 100644 --- a/libs/community/langchain_community/llms/layerup_security.py +++ b/libs/community/langchain_community/llms/layerup_security.py @@ -3,7 +3,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import root_validator +from pydantic import model_validator logger = logging.getLogger(__name__) @@ -47,8 +47,9 @@ class LayerupSecurity(LLM): ) client: Any #: :meta private: - @root_validator(pre=True) - def validate_layerup_sdk(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_layerup_sdk(cls, values: Dict[str, Any]) -> Any: try: from layerup_security import LayerupSecurity as LayerupSecuritySDK diff --git a/libs/community/langchain_community/llms/llamacpp.py b/libs/community/langchain_community/llms/llamacpp.py index 0bd6d7e010c0b..a045878fd2668 100644 --- a/libs/community/langchain_community/llms/llamacpp.py +++ b/libs/community/langchain_community/llms/llamacpp.py @@ -7,9 +7,9 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_pydantic_field_names, pre_init -from langchain_core.utils.utils import build_extra_kwargs +from langchain_core.utils.utils import _build_model_kwargs +from pydantic import Field, model_validator logger = logging.getLogger(__name__) @@ -28,7 +28,7 @@ class LlamaCpp(LLM): llm = LlamaCpp(model_path="/path/to/llama/model") """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_path: str """The path to the Llama model file.""" @@ -194,14 +194,12 @@ def validate_environment(cls, values: Dict) -> Dict: pass return values - @root_validator(pre=True) - def build_model_kwargs(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_model_kwargs(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values @property diff --git a/libs/community/langchain_community/llms/llamafile.py b/libs/community/langchain_community/llms/llamafile.py index 1f102bab52801..e168572c1b32a 100644 --- a/libs/community/langchain_community/llms/llamafile.py +++ b/libs/community/langchain_community/llms/llamafile.py @@ -9,6 +9,7 @@ from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk from langchain_core.utils import get_pydantic_field_names +from pydantic import ConfigDict class Llamafile(LLM): @@ -112,8 +113,9 @@ class Llamafile(LLM): mirostat_eta: float = 0.1 """Set the Mirostat learning rate, parameter eta. Default: 0.1.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @property def _llm_type(self) -> str: diff --git a/libs/community/langchain_community/llms/manifest.py b/libs/community/langchain_community/llms/manifest.py index 4806d8c219fe0..966933d5f95b3 100644 --- a/libs/community/langchain_community/llms/manifest.py +++ b/libs/community/langchain_community/llms/manifest.py @@ -3,16 +3,18 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import pre_init +from pydantic import ConfigDict class ManifestWrapper(LLM): """HazyResearch's Manifest library.""" - client: Any #: :meta private: + client: Any = None #: :meta private: llm_kwargs: Optional[Dict] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/minimax.py b/libs/community/langchain_community/llms/minimax.py index 18a71cfdab38a..5a1822fffb2a9 100644 --- a/libs/community/langchain_community/llms/minimax.py +++ b/libs/community/langchain_community/llms/minimax.py @@ -15,8 +15,8 @@ CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -31,8 +31,9 @@ class _MinimaxEndpointClient(BaseModel): api_key: SecretStr api_url: str - @root_validator(pre=True) - def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def set_api_url(cls, values: Dict[str, Any]) -> Any: if "api_url" not in values: host = values["host"] group_id = values["group_id"] @@ -57,6 +58,8 @@ def post(self, request: Any) -> Any: class MinimaxCommon(BaseModel): """Common parameters for Minimax large language models.""" + model_config = ConfigDict(protected_namespaces=()) + _client: _MinimaxEndpointClient model: str = "abab5.5-chat" """Model name to use.""" diff --git a/libs/community/langchain_community/llms/mlflow.py b/libs/community/langchain_community/llms/mlflow.py index 9b27ed57d8721..d8422629bcde3 100644 --- a/libs/community/langchain_community/llms/mlflow.py +++ b/libs/community/langchain_community/llms/mlflow.py @@ -5,7 +5,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import LLM -from langchain_core.pydantic_v1 import Field, PrivateAttr +from pydantic import Field, PrivateAttr class Mlflow(LLM): diff --git a/libs/community/langchain_community/llms/mlflow_ai_gateway.py b/libs/community/langchain_community/llms/mlflow_ai_gateway.py index bd064c3dbff93..95196838e94fb 100644 --- a/libs/community/langchain_community/llms/mlflow_ai_gateway.py +++ b/libs/community/langchain_community/llms/mlflow_ai_gateway.py @@ -5,7 +5,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel # Ignoring type because below is valid pydantic code diff --git a/libs/community/langchain_community/llms/mlx_pipeline.py b/libs/community/langchain_community/llms/mlx_pipeline.py index 3486aa33e5895..1e320a24f9b82 100644 --- a/libs/community/langchain_community/llms/mlx_pipeline.py +++ b/libs/community/langchain_community/llms/mlx_pipeline.py @@ -6,6 +6,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk +from pydantic import ConfigDict DEFAULT_MODEL_ID = "mlx-community/quantized-gemma-2b" @@ -37,9 +38,9 @@ class MLXPipeline(LLM): model_id: str = DEFAULT_MODEL_ID """Model name to use.""" - model: Any #: :meta private: + model: Any = None #: :meta private: """Model.""" - tokenizer: Any #: :meta private: + tokenizer: Any = None #: :meta private: """Tokenizer.""" tokenizer_config: Optional[dict] = None """ @@ -74,8 +75,9 @@ class MLXPipeline(LLM): """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @classmethod def from_model_id( @@ -230,9 +232,9 @@ def _stream( # yield text, if any if text: chunk = GenerationChunk(text=text) - yield chunk if run_manager: run_manager.on_llm_new_token(chunk.text) + yield chunk # break if stop sequence found if token == eos_token_id or (stop is not None and text in stop): diff --git a/libs/community/langchain_community/llms/modal.py b/libs/community/langchain_community/llms/modal.py index 010127d4d5438..a68aa985d3d1d 100644 --- a/libs/community/langchain_community/llms/modal.py +++ b/libs/community/langchain_community/llms/modal.py @@ -4,8 +4,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -35,11 +35,13 @@ class Modal(LLM): """Holds any model parameters valid for `create` call not explicitly specified.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} diff --git a/libs/community/langchain_community/llms/moonshot.py b/libs/community/langchain_community/llms/moonshot.py index 390113c1f9c23..473f35fdf069b 100644 --- a/libs/community/langchain_community/llms/moonshot.py +++ b/libs/community/langchain_community/llms/moonshot.py @@ -3,8 +3,14 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import LLM -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) from langchain_community.llms.utils import enforce_stop_tokens @@ -44,8 +50,7 @@ class MoonshotCommon(BaseModel): temperature: float = 0.3 """Temperature parameter (higher values make the model more creative).""" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict(populate_by_name=True, protected_namespaces=()) @property def lc_secrets(self) -> dict: @@ -69,8 +74,9 @@ def _default_params(self) -> Dict[str, Any]: def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **self._default_params} - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra parameters. Override the superclass method, prevent the model parameter from being overridden. @@ -112,8 +118,9 @@ class Moonshot(MoonshotCommon, LLM): moonshot = Moonshot(model="moonshot-v1-8k") """ - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) def _call( self, diff --git a/libs/community/langchain_community/llms/mosaicml.py b/libs/community/langchain_community/llms/mosaicml.py index a0a7eca2ed751..15464dc829d9a 100644 --- a/libs/community/langchain_community/llms/mosaicml.py +++ b/libs/community/langchain_community/llms/mosaicml.py @@ -4,6 +4,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -58,8 +59,9 @@ class MosaicML(LLM): mosaicml_api_token: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/nlpcloud.py b/libs/community/langchain_community/llms/nlpcloud.py index 31c5b0f8b25d3..774122a38fd5d 100644 --- a/libs/community/langchain_community/llms/nlpcloud.py +++ b/libs/community/langchain_community/llms/nlpcloud.py @@ -2,8 +2,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ConfigDict, SecretStr class NLPCloud(LLM): @@ -19,7 +19,7 @@ class NLPCloud(LLM): nlpcloud = NLPCloud(model="finetuned-gpt-neox-20b") """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = "finetuned-gpt-neox-20b" """Model name to use.""" gpu: bool = True @@ -51,8 +51,9 @@ class NLPCloud(LLM): nlpcloud_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/oci_data_science_model_deployment_endpoint.py b/libs/community/langchain_community/llms/oci_data_science_model_deployment_endpoint.py index 972d245302662..04f551ce27c42 100644 --- a/libs/community/langchain_community/llms/oci_data_science_model_deployment_endpoint.py +++ b/libs/community/langchain_community/llms/oci_data_science_model_deployment_endpoint.py @@ -4,8 +4,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import Field logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/llms/oci_generative_ai.py b/libs/community/langchain_community/llms/oci_generative_ai.py index 5c996fe3191dd..a9f48a97528ba 100644 --- a/libs/community/langchain_community/llms/oci_generative_ai.py +++ b/libs/community/langchain_community/llms/oci_generative_ai.py @@ -8,8 +8,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel, ConfigDict, Field from langchain_community.llms.utils import enforce_stop_tokens @@ -61,7 +61,7 @@ class OCIAuthType(Enum): class OCIGenAIBase(BaseModel, ABC): """Base class for OCI GenAI models""" - client: Any #: :meta private: + client: Any = Field(default=None, exclude=True) #: :meta private: auth_type: Optional[str] = "API_KEY" """Authentication type, could be @@ -79,10 +79,10 @@ class OCIGenAIBase(BaseModel, ABC): If not specified , DEFAULT will be used """ - model_id: str = None # type: ignore[assignment] + model_id: Optional[str] = None """Id of the model to call, e.g., cohere.command""" - provider: str = None # type: ignore[assignment] + provider: Optional[str] = None """Provider name of the model. Default to None, will try to be derived from the model_id otherwise, requires user input @@ -91,15 +91,19 @@ class OCIGenAIBase(BaseModel, ABC): model_kwargs: Optional[Dict] = None """Keyword arguments to pass to the model""" - service_endpoint: str = None # type: ignore[assignment] + service_endpoint: Optional[str] = None """service endpoint url""" - compartment_id: str = None # type: ignore[assignment] + compartment_id: Optional[str] = None """OCID of compartment""" is_stream: bool = False """Whether to stream back partial progress""" + model_config = ConfigDict( + extra="forbid", arbitrary_types_allowed=True, protected_namespaces=() + ) + @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that OCI config and python package exists in environment.""" @@ -189,6 +193,12 @@ def _get_provider(self, provider_map: Mapping[str, Any]) -> Any: if self.provider is not None: provider = self.provider else: + if self.model_id is None: + raise ValueError( + "model_id is required to derive the provider, " + "please provide the provider explicitly or specify " + "the model_id to derive the provider." + ) provider = self.model_id.split(".")[0].lower() if provider not in provider_map: @@ -230,8 +240,10 @@ class OCIGenAI(LLM, OCIGenAIBase): ) """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + arbitrary_types_allowed=True, + ) @property def _llm_type(self) -> str: @@ -260,6 +272,12 @@ def _prepare_invocation_object( if stop is not None: _model_kwargs[self._provider.stop_sequence_key] = stop + if self.model_id is None: + raise ValueError( + "model_id is required to call the model, " + "please provide the model_id." + ) + if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX): serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id) else: diff --git a/libs/community/langchain_community/llms/octoai_endpoint.py b/libs/community/langchain_community/llms/octoai_endpoint.py index ff5302c3ff058..7a30c7c65b4e5 100644 --- a/libs/community/langchain_community/llms/octoai_endpoint.py +++ b/libs/community/langchain_community/llms/octoai_endpoint.py @@ -1,7 +1,7 @@ from typing import Any, Dict -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import Field, SecretStr from langchain_community.llms.openai import BaseOpenAI from langchain_community.utils.openai import is_openai_v1 diff --git a/libs/community/langchain_community/llms/ollama.py b/libs/community/langchain_community/llms/ollama.py index afb540573dbb2..72b6107967d77 100644 --- a/libs/community/langchain_community/llms/ollama.py +++ b/libs/community/langchain_community/llms/ollama.py @@ -16,6 +16,7 @@ import aiohttp import requests +from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, @@ -23,6 +24,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import GenerationChunk, LLMResult +from pydantic import ConfigDict def _stream_response_to_generation_chunk( @@ -388,6 +390,11 @@ async def _astream_with_aggregation( return final_chunk +@deprecated( + since="0.3.1", + removal="1.0.0", + alternative_import="langchain_ollama.OllamaLLM", +) class Ollama(BaseLLM, _OllamaCommon): """Ollama locally runs large language models. To use, follow the instructions at https://ollama.ai/. @@ -397,8 +404,9 @@ class Ollama(BaseLLM, _OllamaCommon): ollama = Ollama(model="llama2") """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @property def _llm_type(self) -> str: diff --git a/libs/community/langchain_community/llms/opaqueprompts.py b/libs/community/langchain_community/llms/opaqueprompts.py index 39c8d3ee88000..46a2a2b36fb71 100644 --- a/libs/community/langchain_community/llms/opaqueprompts.py +++ b/libs/community/langchain_community/llms/opaqueprompts.py @@ -6,6 +6,7 @@ from langchain_core.language_models.llms import LLM from langchain_core.messages import AIMessage from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import ConfigDict logger = logging.getLogger(__name__) @@ -32,8 +33,9 @@ class OpaquePrompts(LLM): base_llm: BaseLanguageModel """The base LLM to use.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/openai.py b/libs/community/langchain_community/llms/openai.py index c912f8e41500f..cc33d07ac4e70 100644 --- a/libs/community/langchain_community/llms/openai.py +++ b/libs/community/langchain_community/llms/openai.py @@ -28,14 +28,14 @@ ) from langchain_core.language_models.llms import BaseLLM, create_base_retry_decorator from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import ( get_from_dict_or_env, get_pydantic_field_names, pre_init, ) from langchain_core.utils.pydantic import get_fields -from langchain_core.utils.utils import build_extra_kwargs +from langchain_core.utils.utils import _build_model_kwargs +from pydantic import ConfigDict, Field, model_validator from langchain_community.utils.openai import is_openai_v1 @@ -259,17 +259,16 @@ def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore return OpenAIChat(**data) return super().__new__(cls) - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values @pre_init @@ -1012,8 +1011,9 @@ class OpenAIChat(BaseLLM): disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} diff --git a/libs/community/langchain_community/llms/openllm.py b/libs/community/langchain_community/llms/openllm.py index 7fa00b0d79122..21f4849538011 100644 --- a/libs/community/langchain_community/llms/openllm.py +++ b/libs/community/langchain_community/llms/openllm.py @@ -20,7 +20,7 @@ CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import PrivateAttr +from pydantic import ConfigDict, PrivateAttr if TYPE_CHECKING: import openllm @@ -97,8 +97,9 @@ class OpenLLM(LLM): PrivateAttr(default=None) ) - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @overload def __init__( diff --git a/libs/community/langchain_community/llms/petals.py b/libs/community/langchain_community/llms/petals.py index 7506e3bf5c802..7210037c6d4a3 100644 --- a/libs/community/langchain_community/llms/petals.py +++ b/libs/community/langchain_community/llms/petals.py @@ -3,9 +3,9 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, SecretStr, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -29,10 +29,10 @@ class Petals(LLM): """ - client: Any + client: Any = None """The client to use for the API calls.""" - tokenizer: Any + tokenizer: Any = None """The tokenizer to use for the API calls.""" model_name: str = "bigscience/bloom-petals" @@ -63,11 +63,13 @@ class Petals(LLM): huggingface_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} diff --git a/libs/community/langchain_community/llms/pipelineai.py b/libs/community/langchain_community/llms/pipelineai.py index d3616a4f60dc2..8d0f6e1579de4 100644 --- a/libs/community/langchain_community/llms/pipelineai.py +++ b/libs/community/langchain_community/llms/pipelineai.py @@ -3,14 +3,14 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import ( +from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ( BaseModel, + ConfigDict, Field, SecretStr, - root_validator, + model_validator, ) -from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init -from langchain_core.utils.pydantic import get_fields from langchain_community.llms.utils import enforce_stop_tokens @@ -42,13 +42,15 @@ class PipelineAI(LLM, BaseModel): pipeline_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" - all_required_field_names = {field.alias for field in get_fields(cls).values()} + all_required_field_names = set(list(cls.model_fields.keys())) extra = values.get("pipeline_kwargs", {}) for field_name in list(values): diff --git a/libs/community/langchain_community/llms/predibase.py b/libs/community/langchain_community/llms/predibase.py index 398c169b4a22e..fbabdc04e70a8 100644 --- a/libs/community/langchain_community/llms/predibase.py +++ b/libs/community/langchain_community/llms/predibase.py @@ -3,7 +3,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr +from pydantic import Field, SecretStr class Predibase(LLM): @@ -34,8 +34,7 @@ class Predibase(LLM): { "max_new_tokens": 256, "temperature": 0.1, - }, - const=True, + } ) @property diff --git a/libs/community/langchain_community/llms/predictionguard.py b/libs/community/langchain_community/llms/predictionguard.py index 65196476e5d7f..a26d853ff4bde 100644 --- a/libs/community/langchain_community/llms/predictionguard.py +++ b/libs/community/langchain_community/llms/predictionguard.py @@ -4,6 +4,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -29,7 +30,7 @@ class PredictionGuard(LLM): }) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model: Optional[str] = "MPT-7B-Instruct" """Model name to use.""" @@ -47,8 +48,9 @@ class PredictionGuard(LLM): stop: Optional[List[str]] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/replicate.py b/libs/community/langchain_community/llms/replicate.py index 7235e57d7f4b4..ad4dceaf8f301 100644 --- a/libs/community/langchain_community/llms/replicate.py +++ b/libs/community/langchain_community/llms/replicate.py @@ -6,9 +6,9 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env, pre_init from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, model_validator if TYPE_CHECKING: from replicate.prediction import Prediction @@ -56,9 +56,10 @@ class Replicate(LLM): stop: List[str] = Field(default_factory=list) """Stop sequences to early-terminate generation.""" - class Config: - allow_population_by_field_name = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + extra="forbid", + ) @property def lc_secrets(self) -> Dict[str, str]: @@ -73,8 +74,9 @@ def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "llms", "replicate"] - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} diff --git a/libs/community/langchain_community/llms/rwkv.py b/libs/community/langchain_community/llms/rwkv.py index 0f1aaf74777ea..9273467c7fb09 100644 --- a/libs/community/langchain_community/llms/rwkv.py +++ b/libs/community/langchain_community/llms/rwkv.py @@ -8,8 +8,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel, ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -74,8 +74,9 @@ class RWKV(LLM, BaseModel): model_state: Any = None #: :meta private: - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @property def _default_params(self) -> Dict[str, Any]: diff --git a/libs/community/langchain_community/llms/sagemaker_endpoint.py b/libs/community/langchain_community/llms/sagemaker_endpoint.py index 80025eebb3841..db86beb9e0fa2 100644 --- a/libs/community/langchain_community/llms/sagemaker_endpoint.py +++ b/libs/community/langchain_community/llms/sagemaker_endpoint.py @@ -8,6 +8,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import pre_init +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -244,8 +245,9 @@ def transform_output(self, output: bytes) -> str: .. _boto3: """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/sambanova.py b/libs/community/langchain_community/llms/sambanova.py index 187c1708fe425..42c22b951c8dc 100644 --- a/libs/community/langchain_community/llms/sambanova.py +++ b/libs/community/langchain_community/llms/sambanova.py @@ -6,463 +6,7 @@ from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk from langchain_core.utils import get_from_dict_or_env, pre_init - - -class SVEndpointHandler: - """ - SambaNova Systems Interface for Sambaverse endpoint. - - :param str host_url: Base URL of the DaaS API service - """ - - API_BASE_PATH: str = "/api/predict" - - def __init__(self, host_url: str): - """ - Initialize the SVEndpointHandler. - - :param str host_url: Base URL of the DaaS API service - """ - self.host_url = host_url - self.http_session = requests.Session() - - @staticmethod - def _process_response(response: requests.Response) -> Dict: - """ - Processes the API response and returns the resulting dict. - - All resulting dicts, regardless of success or failure, will contain the - `status_code` key with the API response status code. - - If the API returned an error, the resulting dict will contain the key - `detail` with the error message. - - If the API call was successful, the resulting dict will contain the key - `data` with the response data. - - :param requests.Response response: the response object to process - :return: the response dict - :type: dict - """ - result: Dict[str, Any] = {} - try: - lines_result = response.text.strip().split("\n") - text_result = lines_result[-1] - if response.status_code == 200 and json.loads(text_result).get("error"): - completion = "" - for line in lines_result[:-1]: - completion += json.loads(line)["result"]["responses"][0][ - "stream_token" - ] - text_result = lines_result[-2] - result = json.loads(text_result) - result["result"]["responses"][0]["completion"] = completion - else: - result = json.loads(text_result) - except Exception as e: - result["detail"] = str(e) - if "status_code" not in result: - result["status_code"] = response.status_code - return result - - @staticmethod - def _process_streaming_response( - response: requests.Response, - ) -> Generator[Dict, None, None]: - """Process the streaming response""" - try: - for line in response.iter_lines(): - chunk = json.loads(line) - if "status_code" not in chunk: - chunk["status_code"] = response.status_code - if chunk["status_code"] == 200 and chunk.get("error"): - chunk["result"] = {"responses": [{"stream_token": ""}]} - return chunk - yield chunk - except Exception as e: - raise RuntimeError(f"Error processing streaming response: {e}") - - def _get_full_url(self) -> str: - """ - Return the full API URL for a given path. - :returns: the full API URL for the sub-path - :type: str - """ - return f"{self.host_url}{self.API_BASE_PATH}" - - def nlp_predict( - self, - key: str, - sambaverse_model_name: Optional[str], - input: Union[List[str], str], - params: Optional[str] = "", - stream: bool = False, - ) -> Dict: - """ - NLP predict using inline input string. - - :param str project: Project ID in which the endpoint exists - :param str endpoint: Endpoint ID - :param str key: API Key - :param str input_str: Input string - :param str params: Input params string - :returns: Prediction results - :type: dict - """ - if params: - data = {"instance": input, "params": json.loads(params)} - else: - data = {"instance": input} - response = self.http_session.post( - self._get_full_url(), - headers={ - "key": key, - "Content-Type": "application/json", - "modelName": sambaverse_model_name, - }, - json=data, - ) - return SVEndpointHandler._process_response(response) - - def nlp_predict_stream( - self, - key: str, - sambaverse_model_name: Optional[str], - input: Union[List[str], str], - params: Optional[str] = "", - ) -> Iterator[Dict]: - """ - NLP predict using inline input string. - - :param str project: Project ID in which the endpoint exists - :param str endpoint: Endpoint ID - :param str key: API Key - :param str input_str: Input string - :param str params: Input params string - :returns: Prediction results - :type: dict - """ - if params: - data = {"instance": input, "params": json.loads(params)} - else: - data = {"instance": input} - # Streaming output - response = self.http_session.post( - self._get_full_url(), - headers={ - "key": key, - "Content-Type": "application/json", - "modelName": sambaverse_model_name, - }, - json=data, - stream=True, - ) - for chunk in SVEndpointHandler._process_streaming_response(response): - yield chunk - - -class Sambaverse(LLM): - """ - Sambaverse large language models. - - To use, you should have the environment variable ``SAMBAVERSE_API_KEY`` - set with your API key. - - get one in https://sambaverse.sambanova.ai - read extra documentation in https://docs.sambanova.ai/sambaverse/latest/index.html - - - Example: - .. code-block:: python - - from langchain_community.llms.sambanova import Sambaverse - Sambaverse( - sambaverse_url="https://sambaverse.sambanova.ai", - sambaverse_api_key="your-sambaverse-api-key", - sambaverse_model_name="Meta/llama-2-7b-chat-hf", - streaming: = False - model_kwargs={ - "select_expert": "llama-2-7b-chat-hf", - "do_sample": False, - "max_tokens_to_generate": 100, - "temperature": 0.7, - "top_p": 1.0, - "repetition_penalty": 1.0, - "top_k": 50, - "process_prompt": False - }, - ) - """ - - sambaverse_url: str = "" - """Sambaverse url to use""" - - sambaverse_api_key: str = "" - """sambaverse api key""" - - sambaverse_model_name: Optional[str] = None - """sambaverse expert model to use""" - - model_kwargs: Optional[dict] = None - """Key word arguments to pass to the model.""" - - streaming: Optional[bool] = False - """Streaming flag to get streamed response.""" - - class Config: - extra = "forbid" - - @classmethod - def is_lc_serializable(cls) -> bool: - return True - - @pre_init - def validate_environment(cls, values: Dict) -> Dict: - """Validate that api key exists in environment.""" - values["sambaverse_url"] = get_from_dict_or_env( - values, - "sambaverse_url", - "SAMBAVERSE_URL", - default="https://sambaverse.sambanova.ai", - ) - values["sambaverse_api_key"] = get_from_dict_or_env( - values, "sambaverse_api_key", "SAMBAVERSE_API_KEY" - ) - values["sambaverse_model_name"] = get_from_dict_or_env( - values, "sambaverse_model_name", "SAMBAVERSE_MODEL_NAME" - ) - return values - - @property - def _identifying_params(self) -> Dict[str, Any]: - """Get the identifying parameters.""" - return {**{"model_kwargs": self.model_kwargs}} - - @property - def _llm_type(self) -> str: - """Return type of llm.""" - return "Sambaverse LLM" - - def _get_tuning_params(self, stop: Optional[List[str]]) -> str: - """ - Get the tuning parameters to use when calling the LLM. - - Args: - stop: Stop words to use when generating. Model output is cut off at the - first occurrence of any of the stop substrings. - - Returns: - The tuning parameters as a JSON string. - """ - _model_kwargs = self.model_kwargs or {} - _kwarg_stop_sequences = _model_kwargs.get("stop_sequences", []) - _stop_sequences = stop or _kwarg_stop_sequences - if not _kwarg_stop_sequences: - _model_kwargs["stop_sequences"] = ",".join( - f'"{x}"' for x in _stop_sequences - ) - tuning_params_dict = { - k: {"type": type(v).__name__, "value": str(v)} - for k, v in (_model_kwargs.items()) - } - _model_kwargs["stop_sequences"] = _kwarg_stop_sequences - tuning_params = json.dumps(tuning_params_dict) - return tuning_params - - def _handle_nlp_predict( - self, - sdk: SVEndpointHandler, - prompt: Union[List[str], str], - tuning_params: str, - ) -> str: - """ - Perform an NLP prediction using the Sambaverse endpoint handler. - - Args: - sdk: The SVEndpointHandler to use for the prediction. - prompt: The prompt to use for the prediction. - tuning_params: The tuning parameters to use for the prediction. - - Returns: - The prediction result. - - Raises: - ValueError: If the prediction fails. - """ - response = sdk.nlp_predict( - self.sambaverse_api_key, self.sambaverse_model_name, prompt, tuning_params - ) - if response["status_code"] != 200: - error = response.get("error") - if error: - optional_code = error.get("code") - optional_details = error.get("details") - optional_message = error.get("message") - raise RuntimeError( - f"Sambanova /complete call failed with status code " - f"{response['status_code']}.\n" - f"Message: {optional_message}\n" - f"Details: {optional_details}\n" - f"Code: {optional_code}\n" - ) - else: - raise RuntimeError( - f"Sambanova /complete call failed with status code " - f"{response['status_code']}." - f"{response}." - ) - return response["result"]["responses"][0]["completion"] - - def _handle_completion_requests( - self, prompt: Union[List[str], str], stop: Optional[List[str]] - ) -> str: - """ - Perform a prediction using the Sambaverse endpoint handler. - - Args: - prompt: The prompt to use for the prediction. - stop: stop sequences. - - Returns: - The prediction result. - - Raises: - ValueError: If the prediction fails. - """ - ss_endpoint = SVEndpointHandler(self.sambaverse_url) - tuning_params = self._get_tuning_params(stop) - return self._handle_nlp_predict(ss_endpoint, prompt, tuning_params) - - def _handle_nlp_predict_stream( - self, sdk: SVEndpointHandler, prompt: Union[List[str], str], tuning_params: str - ) -> Iterator[GenerationChunk]: - """ - Perform a streaming request to the LLM. - - Args: - sdk: The SVEndpointHandler to use for the prediction. - prompt: The prompt to use for the prediction. - tuning_params: The tuning parameters to use for the prediction. - - Returns: - An iterator of GenerationChunks. - """ - for chunk in sdk.nlp_predict_stream( - self.sambaverse_api_key, self.sambaverse_model_name, prompt, tuning_params - ): - if chunk["status_code"] != 200: - error = chunk.get("error") - if error: - optional_code = error.get("code") - optional_details = error.get("details") - optional_message = error.get("message") - raise ValueError( - f"Sambanova /complete call failed with status code " - f"{chunk['status_code']}.\n" - f"Message: {optional_message}\n" - f"Details: {optional_details}\n" - f"Code: {optional_code}\n" - ) - else: - raise RuntimeError( - f"Sambanova /complete call failed with status code " - f"{chunk['status_code']}." - f"{chunk}." - ) - text = chunk["result"]["responses"][0]["stream_token"] - generated_chunk = GenerationChunk(text=text) - yield generated_chunk - - def _stream( - self, - prompt: Union[List[str], str], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> Iterator[GenerationChunk]: - """Stream the Sambaverse's LLM on the given prompt. - - Args: - prompt: The prompt to pass into the model. - stop: Optional list of stop words to use when generating. - run_manager: Callback manager for the run. - kwargs: Additional keyword arguments. directly passed - to the sambaverse model in API call. - - Returns: - An iterator of GenerationChunks. - """ - ss_endpoint = SVEndpointHandler(self.sambaverse_url) - tuning_params = self._get_tuning_params(stop) - try: - if self.streaming: - for chunk in self._handle_nlp_predict_stream( - ss_endpoint, prompt, tuning_params - ): - if run_manager: - run_manager.on_llm_new_token(chunk.text) - yield chunk - else: - return - except Exception as e: - # Handle any errors raised by the inference endpoint - raise ValueError(f"Error raised by the inference endpoint: {e}") from e - - def _handle_stream_request( - self, - prompt: Union[List[str], str], - stop: Optional[List[str]], - run_manager: Optional[CallbackManagerForLLMRun], - kwargs: Dict[str, Any], - ) -> str: - """ - Perform a streaming request to the LLM. - - Args: - prompt: The prompt to generate from. - stop: Stop words to use when generating. Model output is cut off at the - first occurrence of any of the stop substrings. - run_manager: Callback manager for the run. - kwargs: Additional keyword arguments. directly passed - to the sambaverse model in API call. - - Returns: - The model output as a string. - """ - completion = "" - for chunk in self._stream( - prompt=prompt, stop=stop, run_manager=run_manager, **kwargs - ): - completion += chunk.text - return completion - - def _call( - self, - prompt: Union[List[str], str], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> str: - """Run the LLM on the given input. - - Args: - prompt: The prompt to generate from. - stop: Stop words to use when generating. Model output is cut off at the - first occurrence of any of the stop substrings. - run_manager: Callback manager for the run. - kwargs: Additional keyword arguments. directly passed - to the sambaverse model in API call. - - Returns: - The model output as a string. - """ - try: - if self.streaming: - return self._handle_stream_request(prompt, stop, run_manager, kwargs) - return self._handle_completion_requests(prompt, stop) - except Exception as e: - # Handle any errors raised by the inference endpoint - raise ValueError(f"Error raised by the inference endpoint: {e}") from e +from pydantic import ConfigDict class SSEndpointHandler: @@ -727,8 +271,9 @@ class SambaStudio(LLM): streaming: Optional[bool] = False """Streaming flag to get streamed response.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @classmethod def is_lc_serializable(cls) -> bool: @@ -972,7 +517,7 @@ def _handle_stream_request( first occurrence of any of the stop substrings. run_manager: Callback manager for the run. kwargs: Additional keyword arguments. directly passed - to the sambaverse model in API call. + to the sambastudio model in API call. Returns: The model output as a string. diff --git a/libs/community/langchain_community/llms/self_hosted.py b/libs/community/langchain_community/llms/self_hosted.py index 320a4a651e2d2..70098685786f1 100644 --- a/libs/community/langchain_community/llms/self_hosted.py +++ b/libs/community/langchain_community/llms/self_hosted.py @@ -5,6 +5,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -125,11 +126,11 @@ def inference_fn(pipeline, prompt, stop = None): ) """ - pipeline_ref: Any #: :meta private: - client: Any #: :meta private: + pipeline_ref: Any = None #: :meta private: + client: Any = None #: :meta private: inference_fn: Callable = _generate_text #: :meta private: """Inference function to send to the remote hardware.""" - hardware: Any + hardware: Any = None """Remote hardware to send the inference function to.""" model_load_fn: Callable """Function to load the model remotely on the server.""" @@ -143,8 +144,9 @@ def inference_fn(pipeline, prompt, stop = None): loading compromised data. """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def __init__(self, **kwargs: Any): """Init the pipeline with an auxiliary function. diff --git a/libs/community/langchain_community/llms/self_hosted_hugging_face.py b/libs/community/langchain_community/llms/self_hosted_hugging_face.py index 7358d4c54822d..016da2e48f9be 100644 --- a/libs/community/langchain_community/llms/self_hosted_hugging_face.py +++ b/libs/community/langchain_community/llms/self_hosted_hugging_face.py @@ -3,6 +3,7 @@ from typing import Any, Callable, List, Mapping, Optional from langchain_core.callbacks import CallbackManagerForLLMRun +from pydantic import ConfigDict from langchain_community.llms.self_hosted import SelfHostedPipeline from langchain_community.llms.utils import enforce_stop_tokens @@ -159,7 +160,7 @@ def get_pipeline(): """Device to use for inference. -1 for CPU, 0 for GPU, 1 for second GPU, etc.""" model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" - hardware: Any + hardware: Any = None """Remote hardware to send the inference function to.""" model_reqs: List[str] = ["./", "transformers", "torch"] """Requirements to install on hardware to inference the model.""" @@ -168,8 +169,9 @@ def get_pipeline(): inference_fn: Callable = _generate_text #: :meta private: """Inference function to send to the remote hardware.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def __init__(self, **kwargs: Any): """Construct the pipeline remotely using an auxiliary function. diff --git a/libs/community/langchain_community/llms/solar.py b/libs/community/langchain_community/llms/solar.py index 4afc6bd97e225..b5ea74bd6323b 100644 --- a/libs/community/langchain_community/llms/solar.py +++ b/libs/community/langchain_community/llms/solar.py @@ -3,8 +3,14 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models import LLM -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) from langchain_community.llms.utils import enforce_stop_tokens @@ -43,10 +49,12 @@ class SolarCommon(BaseModel): max_tokens: int = Field(default=1024) temperature: float = 0.3 - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "ignore" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="ignore", + protected_namespaces=(), + ) @property def lc_secrets(self) -> dict: @@ -64,8 +72,9 @@ def _default_params(self) -> Dict[str, Any]: def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **self._default_params} - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: return values @pre_init @@ -100,8 +109,9 @@ class Solar(SolarCommon, LLM): Referenced from https://console.upstage.ai/services/solar """ - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) def _call( self, diff --git a/libs/community/langchain_community/llms/sparkllm.py b/libs/community/langchain_community/llms/sparkllm.py index d3741aa93d9b3..8f0ead4d27d98 100644 --- a/libs/community/langchain_community/llms/sparkllm.py +++ b/libs/community/langchain_community/llms/sparkllm.py @@ -17,8 +17,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import Field logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/llms/stochasticai.py b/libs/community/langchain_community/llms/stochasticai.py index d97fd1e5ee2e2..0e999bcb3ae45 100644 --- a/libs/community/langchain_community/llms/stochasticai.py +++ b/libs/community/langchain_community/llms/stochasticai.py @@ -5,9 +5,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init -from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict, Field, SecretStr, model_validator from langchain_community.llms.utils import enforce_stop_tokens @@ -36,13 +35,15 @@ class StochasticAI(LLM): stochasticai_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" - all_required_field_names = {field.alias for field in get_fields(cls).values()} + all_required_field_names = set(list(cls.model_fields.keys())) extra = values.get("model_kwargs", {}) for field_name in list(values): diff --git a/libs/community/langchain_community/llms/symblai_nebula.py b/libs/community/langchain_community/llms/symblai_nebula.py index 1b8d07be8275a..63bb29a9a506a 100644 --- a/libs/community/langchain_community/llms/symblai_nebula.py +++ b/libs/community/langchain_community/llms/symblai_nebula.py @@ -5,8 +5,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ConfigDict, SecretStr from requests import ConnectTimeout, ReadTimeout, RequestException from tenacity import ( before_sleep_log, @@ -60,8 +60,9 @@ class Nebula(LLM): stop_sequences: Optional[List[str]] = None max_retries: Optional[int] = 10 - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/textgen.py b/libs/community/langchain_community/llms/textgen.py index aa3a490fa2958..33a4f74f97651 100644 --- a/libs/community/langchain_community/llms/textgen.py +++ b/libs/community/langchain_community/llms/textgen.py @@ -9,7 +9,7 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field +from pydantic import Field logger = logging.getLogger(__name__) @@ -335,14 +335,13 @@ def _stream( text=result["text"], # type: ignore[call-overload, index] generation_info=None, ) + if run_manager: + run_manager.on_llm_new_token(token=chunk.text) yield chunk elif result["event"] == "stream_end": # type: ignore[call-overload, index] websocket_client.close() return - if run_manager: - run_manager.on_llm_new_token(token=chunk.text) - async def _astream( self, prompt: str, @@ -408,10 +407,9 @@ async def _astream( text=result["text"], # type: ignore[call-overload, index] generation_info=None, ) + if run_manager: + await run_manager.on_llm_new_token(token=chunk.text) yield chunk elif result["event"] == "stream_end": # type: ignore[call-overload, index] websocket_client.close() return - - if run_manager: - await run_manager.on_llm_new_token(token=chunk.text) diff --git a/libs/community/langchain_community/llms/titan_takeoff.py b/libs/community/langchain_community/llms/titan_takeoff.py index 5ff1f20a568f4..7f1d765a0d698 100644 --- a/libs/community/langchain_community/llms/titan_takeoff.py +++ b/libs/community/langchain_community/llms/titan_takeoff.py @@ -4,7 +4,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -19,8 +19,9 @@ class Device(str, Enum): class ReaderConfig(BaseModel): """Configuration for the reader to be deployed in Titan Takeoff API.""" - class Config: - protected_namespaces = () + model_config = ConfigDict( + protected_namespaces=(), + ) model_name: str """The name of the model to use""" @@ -251,13 +252,13 @@ def _stream( if buffer: # Ensure that there's content to process. chunk = GenerationChunk(text=buffer) buffer = "" # Reset buffer for the next set of data. - yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) + yield chunk # Yield any remaining content in the buffer. if buffer: chunk = GenerationChunk(text=buffer.replace("", "")) - yield chunk if run_manager: run_manager.on_llm_new_token(token=chunk.text) + yield chunk diff --git a/libs/community/langchain_community/llms/together.py b/libs/community/langchain_community/llms/together.py index a0729c3723a42..e5e7b8d68bd85 100644 --- a/libs/community/langchain_community/llms/together.py +++ b/libs/community/langchain_community/llms/together.py @@ -10,8 +10,8 @@ CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import ConfigDict, SecretStr, model_validator from langchain_community.utilities.requests import Requests @@ -66,11 +66,13 @@ class Together(LLM): the response for each token generation step. """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" values["together_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "together_api_key", "TOGETHER_API_KEY") diff --git a/libs/community/langchain_community/llms/tongyi.py b/libs/community/langchain_community/llms/tongyi.py index b4d79a52c1c2c..e7289955f6698 100644 --- a/libs/community/langchain_community/llms/tongyi.py +++ b/libs/community/langchain_community/llms/tongyi.py @@ -24,8 +24,8 @@ ) from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import Field from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import Field from requests.exceptions import HTTPError from tenacity import ( before_sleep_log, @@ -238,7 +238,7 @@ class Tongyi(BaseLLM): def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = Field(default="qwen-plus", alias="model") """Model name to use.""" diff --git a/libs/community/langchain_community/llms/vertexai.py b/libs/community/langchain_community/llms/vertexai.py index 19409c004dea8..0b42bd535ef83 100644 --- a/libs/community/langchain_community/llms/vertexai.py +++ b/libs/community/langchain_community/llms/vertexai.py @@ -10,8 +10,8 @@ ) from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.utils import pre_init +from pydantic import BaseModel, ConfigDict, Field from langchain_community.utilities.vertexai import ( create_retry_decorator, @@ -100,6 +100,8 @@ async def _acompletion_with_retry( class _VertexAIBase(BaseModel): + model_config = ConfigDict(protected_namespaces=()) + project: Optional[str] = None "The default GCP project to use when making Vertex API calls." location: str = "us-central1" diff --git a/libs/community/langchain_community/llms/vllm.py b/libs/community/langchain_community/llms/vllm.py index f4eddf46350ef..b887a8b0ab246 100644 --- a/libs/community/langchain_community/llms/vllm.py +++ b/libs/community/langchain_community/llms/vllm.py @@ -3,8 +3,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, LLMResult -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import Field from langchain_community.llms.openai import BaseOpenAI from langchain_community.utils.openai import is_openai_v1 @@ -72,7 +72,7 @@ class VLLM(BaseLLM): vllm_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `vllm.LLM` call not explicitly specified.""" - client: Any #: :meta private: + client: Any = None #: :meta private: @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/volcengine_maas.py b/libs/community/langchain_community/llms/volcengine_maas.py index dab4989adf3af..e737a0a556996 100644 --- a/libs/community/langchain_community/llms/volcengine_maas.py +++ b/libs/community/langchain_community/llms/volcengine_maas.py @@ -5,14 +5,16 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import BaseModel, ConfigDict, Field, SecretStr class VolcEngineMaasBase(BaseModel): """Base class for VolcEngineMaas models.""" - client: Any + model_config = ConfigDict(protected_namespaces=()) + + client: Any = None volc_engine_maas_ak: Optional[SecretStr] = None """access key for volc engine""" diff --git a/libs/community/langchain_community/llms/watsonxllm.py b/libs/community/langchain_community/llms/watsonxllm.py index 2e910b23323bb..9a63d824137f0 100644 --- a/libs/community/langchain_community/llms/watsonxllm.py +++ b/libs/community/langchain_community/llms/watsonxllm.py @@ -6,8 +6,8 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ConfigDict, SecretStr logger = logging.getLogger(__name__) @@ -93,10 +93,11 @@ class WatsonxLLM(BaseLLM): streaming: bool = False """ Whether to stream the results or not. """ - watsonx_model: Any + watsonx_model: Any = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @classmethod def is_lc_serializable(cls) -> bool: diff --git a/libs/community/langchain_community/llms/weight_only_quantization.py b/libs/community/langchain_community/llms/weight_only_quantization.py index ddce10c976525..916734414fb98 100644 --- a/libs/community/langchain_community/llms/weight_only_quantization.py +++ b/libs/community/langchain_community/llms/weight_only_quantization.py @@ -3,6 +3,7 @@ from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -61,7 +62,7 @@ class WeightOnlyQuantPipeline(LLM): hf = WeightOnlyQuantPipeline(pipeline=pipe) """ - pipeline: Any #: :meta private: + pipeline: Any = None #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name or local path to use.""" @@ -71,8 +72,9 @@ class WeightOnlyQuantPipeline(LLM): pipeline_kwargs: Optional[dict] = None """Key word arguments passed to the pipeline.""" - class Config: - extra = "allow" + model_config = ConfigDict( + extra="allow", + ) @classmethod def from_model_id( diff --git a/libs/community/langchain_community/llms/writer.py b/libs/community/langchain_community/llms/writer.py index feccd05a282a1..d82a346c43616 100644 --- a/libs/community/langchain_community/llms/writer.py +++ b/libs/community/langchain_community/llms/writer.py @@ -4,6 +4,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.utils import get_from_dict_or_env, pre_init +from pydantic import ConfigDict from langchain_community.llms.utils import enforce_stop_tokens @@ -63,8 +64,9 @@ class Writer(LLM): base_url: Optional[str] = None """Base url to use, if None decides based on model name.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/llms/yandex.py b/libs/community/langchain_community/llms/yandex.py index b8761acd62b3a..cc615ac6d7390 100644 --- a/libs/community/langchain_community/llms/yandex.py +++ b/libs/community/langchain_community/llms/yandex.py @@ -9,8 +9,8 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.load.serializable import Serializable -from langchain_core.pydantic_v1 import SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import SecretStr from tenacity import ( before_sleep_log, retry, diff --git a/libs/community/langchain_community/llms/yi.py b/libs/community/langchain_community/llms/yi.py index 8a4557ab199f6..6b41e8d33789f 100644 --- a/libs/community/langchain_community/llms/yi.py +++ b/libs/community/langchain_community/llms/yi.py @@ -7,8 +7,8 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import Field, SecretStr from langchain_community.llms.utils import enforce_stop_tokens diff --git a/libs/community/langchain_community/llms/you.py b/libs/community/langchain_community/llms/you.py index 54c1c31bfec9c..20ba6ca451bfe 100644 --- a/libs/community/langchain_community/llms/you.py +++ b/libs/community/langchain_community/llms/you.py @@ -5,7 +5,7 @@ from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field +from pydantic import Field SMART_ENDPOINT = "https://chat-api.you.com/smart" RESEARCH_ENDPOINT = "https://chat-api.you.com/research" diff --git a/libs/community/langchain_community/llms/yuan2.py b/libs/community/langchain_community/llms/yuan2.py index 4373ba622e79f..1087d0cb006d5 100644 --- a/libs/community/langchain_community/llms/yuan2.py +++ b/libs/community/langchain_community/llms/yuan2.py @@ -5,7 +5,7 @@ import requests from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.llms.utils import enforce_stop_tokens diff --git a/libs/community/langchain_community/memory/kg.py b/libs/community/langchain_community/memory/kg.py index 09787d396c7cc..2a4828d81ff8d 100644 --- a/libs/community/langchain_community/memory/kg.py +++ b/libs/community/langchain_community/memory/kg.py @@ -3,7 +3,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, SystemMessage, get_buffer_string from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain_community.graphs import NetworkxEntityGraph from langchain_community.graphs.networkx_graph import ( diff --git a/libs/community/langchain_community/output_parsers/ernie_functions.py b/libs/community/langchain_community/output_parsers/ernie_functions.py index 93fe9771cb2a6..8b80134af22df 100644 --- a/libs/community/langchain_community/output_parsers/ernie_functions.py +++ b/libs/community/langchain_community/output_parsers/ernie_functions.py @@ -13,7 +13,7 @@ ChatGeneration, Generation, ) -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator class OutputFunctionsParser(BaseGenerationOutputParser[Any]): @@ -143,8 +143,9 @@ class PydanticOutputFunctionsParser(OutputFunctionsParser): pydantic_schema: Union[Type[BaseModel], Dict[str, Type[BaseModel]]] """The pydantic schema to parse the output with.""" - @root_validator(pre=True) - def validate_schema(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_schema(cls, values: Dict) -> Any: schema = values["pydantic_schema"] if "args_only" not in values: values["args_only"] = isinstance(schema, type) and issubclass( diff --git a/libs/community/langchain_community/retrievers/arcee.py b/libs/community/langchain_community/retrievers/arcee.py index 6d2b6f0b8009a..ebdc8301cfe71 100644 --- a/libs/community/langchain_community/retrievers/arcee.py +++ b/libs/community/langchain_community/retrievers/arcee.py @@ -2,9 +2,9 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import SecretStr from langchain_core.retrievers import BaseRetriever from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ConfigDict, SecretStr from langchain_community.utilities.arcee import ArceeWrapper, DALMFilter @@ -49,9 +49,9 @@ class ArceeRetriever(BaseRetriever): model_kwargs: Optional[Dict[str, Any]] = None """Keyword arguments to pass to the model.""" - class Config: - extra = "forbid" - underscore_attrs_are_private = True + model_config = ConfigDict( + extra="forbid", + ) def __init__(self, **data: Any) -> None: """Initializes private fields.""" diff --git a/libs/community/langchain_community/retrievers/azure_ai_search.py b/libs/community/langchain_community/retrievers/azure_ai_search.py index e2ab7f74f90b4..01549ff3bd012 100644 --- a/libs/community/langchain_community/retrievers/azure_ai_search.py +++ b/libs/community/langchain_community/retrievers/azure_ai_search.py @@ -1,7 +1,7 @@ from __future__ import annotations import json -from typing import Dict, List, Optional +from typing import Any, Dict, List, Optional import aiohttp import requests @@ -10,9 +10,9 @@ CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever from langchain_core.utils import get_from_dict_or_env, get_from_env +from pydantic import ConfigDict, model_validator DEFAULT_URL_SUFFIX = "search.windows.net" """Default URL Suffix for endpoint connection - commercial cloud""" @@ -22,7 +22,7 @@ class AzureAISearchRetriever(BaseRetriever): """`Azure AI Search` service retriever. Setup: - See here for more detail: https://python.langchain.com/v0.2/docs/integrations/retrievers/azure_ai_search/ + See here for more detail: https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/ We will need to install the below dependencies and set the required environment variables: @@ -103,12 +103,14 @@ def format_docs(docs): filter: Optional[str] = None """OData $filter expression to apply to the search query.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that service name, index name and api key exists in environment.""" values["service_name"] = get_from_dict_or_env( values, "service_name", "AZURE_AI_SEARCH_SERVICE_NAME" diff --git a/libs/community/langchain_community/retrievers/bedrock.py b/libs/community/langchain_community/retrievers/bedrock.py index a2a05f77496e5..6415bc9767833 100644 --- a/libs/community/langchain_community/retrievers/bedrock.py +++ b/libs/community/langchain_community/retrievers/bedrock.py @@ -2,8 +2,8 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import BaseModel, model_validator class VectorSearchConfig(BaseModel, extra="allow"): # type: ignore[call-arg] @@ -105,8 +105,9 @@ def format_docs(docs): client: Any retrieval_config: RetrievalConfig - @root_validator(pre=True) - def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def create_client(cls, values: Dict[str, Any]) -> Any: if values.get("client") is not None: return values diff --git a/libs/community/langchain_community/retrievers/bm25.py b/libs/community/langchain_community/retrievers/bm25.py index ae16ee2df3db6..543058c131a98 100644 --- a/libs/community/langchain_community/retrievers/bm25.py +++ b/libs/community/langchain_community/retrievers/bm25.py @@ -4,8 +4,8 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict, Field def default_preprocessing_func(text: str) -> List[str]: @@ -15,7 +15,7 @@ def default_preprocessing_func(text: str) -> List[str]: class BM25Retriever(BaseRetriever): """`BM25` retriever without Elasticsearch.""" - vectorizer: Any + vectorizer: Any = None """ BM25 vectorizer.""" docs: List[Document] = Field(repr=False) """ List of documents.""" @@ -24,8 +24,9 @@ class BM25Retriever(BaseRetriever): preprocess_func: Callable[[str], List[str]] = default_preprocessing_func """ Preprocessing function to use on the text before BM25 vectorization.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def from_texts( diff --git a/libs/community/langchain_community/retrievers/chatgpt_plugin_retriever.py b/libs/community/langchain_community/retrievers/chatgpt_plugin_retriever.py index 178d99c8a178d..08559110bca89 100644 --- a/libs/community/langchain_community/retrievers/chatgpt_plugin_retriever.py +++ b/libs/community/langchain_community/retrievers/chatgpt_plugin_retriever.py @@ -10,6 +10,7 @@ ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict class ChatGPTPluginRetriever(BaseRetriever): @@ -26,8 +27,9 @@ class ChatGPTPluginRetriever(BaseRetriever): aiosession: Optional[aiohttp.ClientSession] = None """Aiohttp session to use for requests.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun diff --git a/libs/community/langchain_community/retrievers/cohere_rag_retriever.py b/libs/community/langchain_community/retrievers/cohere_rag_retriever.py index dd0f8d21872d7..f76aafa2900f7 100644 --- a/libs/community/langchain_community/retrievers/cohere_rag_retriever.py +++ b/libs/community/langchain_community/retrievers/cohere_rag_retriever.py @@ -10,8 +10,8 @@ from langchain_core.documents import Document from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.messages import HumanMessage -from langchain_core.pydantic_v1 import Field from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict, Field if TYPE_CHECKING: from langchain_core.messages import BaseMessage @@ -61,8 +61,9 @@ class CohereRagRetriever(BaseRetriever): llm: BaseChatModel """Cohere ChatModel to use.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any diff --git a/libs/community/langchain_community/retrievers/docarray.py b/libs/community/langchain_community/retrievers/docarray.py index e258735be2c2a..2e602c1065363 100644 --- a/libs/community/langchain_community/retrievers/docarray.py +++ b/libs/community/langchain_community/retrievers/docarray.py @@ -7,6 +7,7 @@ from langchain_core.embeddings import Embeddings from langchain_core.retrievers import BaseRetriever from langchain_core.utils.pydantic import get_fields +from pydantic import ConfigDict from langchain_community.vectorstores.utils import maximal_marginal_relevance @@ -37,7 +38,7 @@ class DocArrayRetriever(BaseRetriever): top_k: Number of documents to return """ - index: Any + index: Any = None embeddings: Embeddings search_field: str content_field: str @@ -45,8 +46,9 @@ class DocArrayRetriever(BaseRetriever): top_k: int = 1 filters: Optional[Any] = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _get_relevant_documents( self, diff --git a/libs/community/langchain_community/retrievers/google_vertex_ai_search.py b/libs/community/langchain_community/retrievers/google_vertex_ai_search.py index 6b836389a77ff..e6945b942002e 100644 --- a/libs/community/langchain_community/retrievers/google_vertex_ai_search.py +++ b/libs/community/langchain_community/retrievers/google_vertex_ai_search.py @@ -7,20 +7,15 @@ from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.retrievers import BaseRetriever from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, Field, model_validator from langchain_community.utilities.vertexai import get_client_info if TYPE_CHECKING: from google.api_core.client_options import ClientOptions - from google.cloud.discoveryengine_v1beta import ( - ConversationalSearchServiceClient, - SearchRequest, - SearchResult, - SearchServiceClient, - ) + from google.cloud.discoveryengine_v1beta import SearchRequest, SearchResult class _BaseGoogleVertexAISearchRetriever(BaseModel): @@ -46,8 +41,9 @@ class _BaseGoogleVertexAISearchRetriever(BaseModel): 3 - Blended search """ - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validates the environment.""" try: from google.cloud import discoveryengine_v1beta # noqa: F401 @@ -242,13 +238,14 @@ class GoogleVertexAISearchRetriever(BaseRetriever, _BaseGoogleVertexAISearchRetr Search will be based on the corrected query if found. """ - _client: SearchServiceClient + # type is SearchServiceClient but can't be set due to optional imports + _client: Any = None _serving_config: str - class Config: - arbitrary_types_allowed = True - extra = "ignore" - underscore_attrs_are_private = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="ignore", + ) def __init__(self, **kwargs: Any) -> None: """Initializes private fields.""" @@ -407,13 +404,14 @@ class GoogleVertexAIMultiTurnSearchRetriever( conversation_id: str = "-" """Vertex AI Search Conversation ID.""" - _client: ConversationalSearchServiceClient + # type is ConversationalSearchServiceClient but can't be set due to optional imports + _client: Any = None _serving_config: str - class Config: - arbitrary_types_allowed = True - extra = "ignore" - underscore_attrs_are_private = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="ignore", + ) def __init__(self, **kwargs: Any): super().__init__(**kwargs) diff --git a/libs/community/langchain_community/retrievers/kendra.py b/libs/community/langchain_community/retrievers/kendra.py index c5c3023ea78d7..fe36e85dbe1b7 100644 --- a/libs/community/langchain_community/retrievers/kendra.py +++ b/libs/community/langchain_community/retrievers/kendra.py @@ -13,13 +13,13 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import ( +from langchain_core.retrievers import BaseRetriever +from pydantic import ( BaseModel, Field, - root_validator, + model_validator, validator, ) -from langchain_core.retrievers import BaseRetriever from typing_extensions import Annotated @@ -382,8 +382,13 @@ def validate_top_k(cls, value: int) -> int: raise ValueError(f"top_k ({value}) cannot be negative.") return value - @root_validator(pre=True) - def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def create_client(cls, values: Dict[str, Any]) -> Any: + top_k = values.get("top_k") + if top_k is not None and top_k < 0: + raise ValueError(f"top_k ({top_k}) cannot be negative.") + if values.get("client") is not None: return values diff --git a/libs/community/langchain_community/retrievers/knn.py b/libs/community/langchain_community/retrievers/knn.py index 2266f98f20121..8c08479248ac0 100644 --- a/libs/community/langchain_community/retrievers/knn.py +++ b/libs/community/langchain_community/retrievers/knn.py @@ -12,6 +12,7 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray: @@ -34,7 +35,7 @@ class KNNRetriever(BaseRetriever): embeddings: Embeddings """Embeddings model to use.""" - index: Any + index: Any = None """Index of embeddings.""" texts: List[str] """List of texts to index.""" @@ -45,8 +46,9 @@ class KNNRetriever(BaseRetriever): relevancy_threshold: Optional[float] = None """Threshold for relevancy.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def from_texts( diff --git a/libs/community/langchain_community/retrievers/llama_index.py b/libs/community/langchain_community/retrievers/llama_index.py index 9106c058d7548..1ab75b572c71d 100644 --- a/libs/community/langchain_community/retrievers/llama_index.py +++ b/libs/community/langchain_community/retrievers/llama_index.py @@ -2,8 +2,8 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field from langchain_core.retrievers import BaseRetriever +from pydantic import Field class LlamaIndexRetriever(BaseRetriever): @@ -12,7 +12,7 @@ class LlamaIndexRetriever(BaseRetriever): It is used for the question-answering with sources over an LlamaIndex data structure.""" - index: Any + index: Any = None """LlamaIndex index to query.""" query_kwargs: Dict = Field(default_factory=dict) """Keyword arguments to pass to the query method.""" @@ -48,7 +48,7 @@ class LlamaIndexGraphRetriever(BaseRetriever): It is used for question-answering with sources over an LlamaIndex graph data structure.""" - graph: Any + graph: Any = None """LlamaIndex graph to query.""" query_configs: List[Dict] = Field(default_factory=list) """List of query configs to pass to the query method.""" diff --git a/libs/community/langchain_community/retrievers/metal.py b/libs/community/langchain_community/retrievers/metal.py index 6eefd8312e3dc..df2f57f2357dc 100644 --- a/libs/community/langchain_community/retrievers/metal.py +++ b/libs/community/langchain_community/retrievers/metal.py @@ -2,8 +2,8 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import model_validator class MetalRetriever(BaseRetriever): @@ -14,8 +14,9 @@ class MetalRetriever(BaseRetriever): params: Optional[dict] = None """The parameters to pass to the Metal client.""" - @root_validator(pre=True) - def validate_client(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_client(cls, values: dict) -> Any: """Validate that the client is of the correct type.""" from metal_sdk.metal import Metal diff --git a/libs/community/langchain_community/retrievers/milvus.py b/libs/community/langchain_community/retrievers/milvus.py index 7e8cd3fdb3ab0..1739dd83ecbc5 100644 --- a/libs/community/langchain_community/retrievers/milvus.py +++ b/libs/community/langchain_community/retrievers/milvus.py @@ -6,8 +6,8 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import model_validator from langchain_community.vectorstores.milvus import Milvus @@ -17,7 +17,7 @@ class MilvusRetriever(BaseRetriever): """Milvus API retriever. - See detailed instructions here: https://python.langchain.com/v0.2/docs/integrations/retrievers/milvus_hybrid_search/ + See detailed instructions here: https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/ Setup: Install ``langchain-milvus`` and other dependencies: @@ -93,8 +93,9 @@ def format_docs(docs): store: Milvus retriever: BaseRetriever - @root_validator(pre=True) - def create_retriever(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def create_retriever(cls, values: Dict) -> Any: """Create the Milvus store and retriever.""" values["store"] = Milvus( values["embedding_function"], diff --git a/libs/community/langchain_community/retrievers/nanopq.py b/libs/community/langchain_community/retrievers/nanopq.py index 1a52d1d7756b7..ca4162240d098 100644 --- a/libs/community/langchain_community/retrievers/nanopq.py +++ b/libs/community/langchain_community/retrievers/nanopq.py @@ -8,6 +8,7 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray: @@ -30,7 +31,7 @@ class NanoPQRetriever(BaseRetriever): embeddings: Embeddings """Embeddings model to use.""" - index: Any + index: Any = None """Index of embeddings.""" texts: List[str] """List of texts to index.""" @@ -45,8 +46,9 @@ class NanoPQRetriever(BaseRetriever): clusters: int = 128 """No of clusters to be created""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def from_texts( diff --git a/libs/community/langchain_community/retrievers/pinecone_hybrid_search.py b/libs/community/langchain_community/retrievers/pinecone_hybrid_search.py index dcbf35e38d7cc..a6e0f68002dde 100644 --- a/libs/community/langchain_community/retrievers/pinecone_hybrid_search.py +++ b/libs/community/langchain_community/retrievers/pinecone_hybrid_search.py @@ -8,6 +8,7 @@ from langchain_core.embeddings import Embeddings from langchain_core.retrievers import BaseRetriever from langchain_core.utils import pre_init +from pydantic import ConfigDict def hash_text(text: str) -> str: @@ -103,9 +104,9 @@ class PineconeHybridSearchRetriever(BaseRetriever): embeddings: Embeddings """Embeddings model to use.""" """description""" - sparse_encoder: Any + sparse_encoder: Any = None """Sparse encoder to use.""" - index: Any + index: Any = None """Pinecone index to use.""" top_k: int = 4 """Number of documents to return.""" @@ -114,9 +115,10 @@ class PineconeHybridSearchRetriever(BaseRetriever): namespace: Optional[str] = None """Namespace value for index partition.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) def add_texts( self, diff --git a/libs/community/langchain_community/retrievers/qdrant_sparse_vector_retriever.py b/libs/community/langchain_community/retrievers/qdrant_sparse_vector_retriever.py index 3226a3b6899a6..1b64c3467ffd5 100644 --- a/libs/community/langchain_community/retrievers/qdrant_sparse_vector_retriever.py +++ b/libs/community/langchain_community/retrievers/qdrant_sparse_vector_retriever.py @@ -18,6 +18,7 @@ from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_core.utils import pre_init +from pydantic import ConfigDict from langchain_community.vectorstores.qdrant import Qdrant, QdrantException @@ -28,14 +29,14 @@ "Qdrant vector store now supports sparse retrievals natively. " "Use langchain_qdrant.QdrantVectorStore#as_retriever() instead. " "Reference: " - "https://python.langchain.com/v0.2/docs/integrations/vectorstores/qdrant/#sparse-vector-search" + "https://python.langchain.com/docs/integrations/vectorstores/qdrant/#sparse-vector-search" ), removal="0.5.0", ) class QdrantSparseVectorRetriever(BaseRetriever): """Qdrant sparse vector retriever.""" - client: Any + client: Any = None """'qdrant_client' instance to use.""" collection_name: str """Qdrant collection name.""" @@ -54,9 +55,10 @@ class QdrantSparseVectorRetriever(BaseRetriever): search_options: Dict[str, Any] = {} """Additional search options to pass to qdrant_client.QdrantClient.search().""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @pre_init def validate_environment(cls, values: Dict) -> Dict: diff --git a/libs/community/langchain_community/retrievers/svm.py b/libs/community/langchain_community/retrievers/svm.py index c19f83e58d38d..58a7889691e89 100644 --- a/libs/community/langchain_community/retrievers/svm.py +++ b/libs/community/langchain_community/retrievers/svm.py @@ -8,6 +8,7 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray: @@ -34,7 +35,7 @@ class SVMRetriever(BaseRetriever): embeddings: Embeddings """Embeddings model to use.""" - index: Any + index: Any = None """Index of embeddings.""" texts: List[str] """List of texts to index.""" @@ -45,8 +46,9 @@ class SVMRetriever(BaseRetriever): relevancy_threshold: Optional[float] = None """Threshold for relevancy.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def from_texts( diff --git a/libs/community/langchain_community/retrievers/tfidf.py b/libs/community/langchain_community/retrievers/tfidf.py index f556a8745ec2e..6a991f81f3341 100644 --- a/libs/community/langchain_community/retrievers/tfidf.py +++ b/libs/community/langchain_community/retrievers/tfidf.py @@ -7,6 +7,7 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict class TFIDFRetriever(BaseRetriever): @@ -16,17 +17,18 @@ class TFIDFRetriever(BaseRetriever): https://github.com/asvskartheek/Text-Retrieval/blob/master/TF-IDF%20Search%20Engine%20(SKLEARN).ipynb """ - vectorizer: Any + vectorizer: Any = None """TF-IDF vectorizer.""" docs: List[Document] """Documents.""" - tfidf_array: Any + tfidf_array: Any = None """TF-IDF array.""" k: int = 4 """Number of documents to return.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def from_texts( diff --git a/libs/community/langchain_community/retrievers/thirdai_neuraldb.py b/libs/community/langchain_community/retrievers/thirdai_neuraldb.py index c1d9d140edc8c..2fde6d73d148c 100644 --- a/libs/community/langchain_community/retrievers/thirdai_neuraldb.py +++ b/libs/community/langchain_community/retrievers/thirdai_neuraldb.py @@ -7,9 +7,9 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import SecretStr from langchain_core.retrievers import BaseRetriever from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init +from pydantic import ConfigDict, SecretStr class NeuralDBRetriever(BaseRetriever): @@ -21,9 +21,9 @@ class NeuralDBRetriever(BaseRetriever): db: Any = None #: :meta private: """NeuralDB instance""" - class Config: - extra = "forbid" - underscore_attrs_are_private = True + model_config = ConfigDict( + extra="forbid", + ) @staticmethod def _verify_thirdai_library(thirdai_key: Optional[str] = None) -> None: diff --git a/libs/community/langchain_community/retrievers/weaviate_hybrid_search.py b/libs/community/langchain_community/retrievers/weaviate_hybrid_search.py index 198091f4f1b05..9d1cae90fd393 100644 --- a/libs/community/langchain_community/retrievers/weaviate_hybrid_search.py +++ b/libs/community/langchain_community/retrievers/weaviate_hybrid_search.py @@ -5,8 +5,8 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import ConfigDict, model_validator class WeaviateHybridSearchRetriever(BaseRetriever): @@ -16,7 +16,7 @@ class WeaviateHybridSearchRetriever(BaseRetriever): https://weaviate.io/blog/hybrid-search-explained """ - client: Any + client: Any = None """keyword arguments to pass to the Weaviate client.""" index_name: str """The name of the index to use.""" @@ -31,11 +31,12 @@ class WeaviateHybridSearchRetriever(BaseRetriever): create_schema_if_missing: bool = True """Whether to create the schema if it doesn't exist.""" - @root_validator(pre=True) + @model_validator(mode="before") + @classmethod def validate_client( cls, values: Dict[str, Any], - ) -> Dict[str, Any]: + ) -> Any: try: import weaviate except ImportError: @@ -65,8 +66,9 @@ def validate_client( return values - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) # added text_key def add_documents(self, docs: List[Document], **kwargs: Any) -> List[str]: diff --git a/libs/community/langchain_community/retrievers/web_research.py b/libs/community/langchain_community/retrievers/web_research.py index 8dfadb49cf22f..aa604dd84132a 100644 --- a/libs/community/langchain_community/retrievers/web_research.py +++ b/libs/community/langchain_community/retrievers/web_research.py @@ -12,10 +12,10 @@ from langchain_core.language_models import BaseLLM from langchain_core.output_parsers import BaseOutputParser from langchain_core.prompts import BasePromptTemplate, PromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter +from pydantic import BaseModel, Field from langchain_community.document_loaders import AsyncHtmlLoader from langchain_community.document_transformers import Html2TextTransformer diff --git a/libs/community/langchain_community/retrievers/zep.py b/libs/community/langchain_community/retrievers/zep.py index 2060788e4cd34..d59aa00781566 100644 --- a/libs/community/langchain_community/retrievers/zep.py +++ b/libs/community/langchain_community/retrievers/zep.py @@ -8,8 +8,8 @@ CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import model_validator if TYPE_CHECKING: from zep_python.memory import MemorySearchResult @@ -79,8 +79,9 @@ class ZepRetriever(BaseRetriever): mmr_lambda: Optional[float] = None """Lambda value for MMR search.""" - @root_validator(pre=True) - def create_client(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def create_client(cls, values: dict) -> Any: try: from zep_python import ZepClient except ImportError: diff --git a/libs/community/langchain_community/retrievers/zep_cloud.py b/libs/community/langchain_community/retrievers/zep_cloud.py index 96758c71d9861..c4e3f11040cc5 100644 --- a/libs/community/langchain_community/retrievers/zep_cloud.py +++ b/libs/community/langchain_community/retrievers/zep_cloud.py @@ -7,8 +7,8 @@ CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import model_validator if TYPE_CHECKING: from zep_cloud import MemorySearchResult, SearchScope, SearchType @@ -61,8 +61,9 @@ class ZepCloudRetriever(BaseRetriever): mmr_lambda: Optional[float] = None """Lambda value for MMR search.""" - @root_validator(pre=True) - def create_client(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def create_client(cls, values: dict) -> Any: try: from zep_cloud.client import AsyncZep, Zep except ImportError: diff --git a/libs/community/langchain_community/retrievers/zilliz.py b/libs/community/langchain_community/retrievers/zilliz.py index b273ab6e5766a..d7e614942010f 100644 --- a/libs/community/langchain_community/retrievers/zilliz.py +++ b/libs/community/langchain_community/retrievers/zilliz.py @@ -4,8 +4,8 @@ from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import model_validator from langchain_community.vectorstores.zilliz import Zilliz @@ -30,8 +30,9 @@ class ZillizRetriever(BaseRetriever): retriever: BaseRetriever """The underlying retriever.""" - @root_validator(pre=True) - def create_client(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def create_client(cls, values: dict) -> Any: values["store"] = Zilliz( values["embedding_function"], values["collection_name"], diff --git a/libs/community/langchain_community/tools/ainetwork/app.py b/libs/community/langchain_community/tools/ainetwork/app.py index faef6120f9f9b..8175a210b7067 100644 --- a/libs/community/langchain_community/tools/ainetwork/app.py +++ b/libs/community/langchain_community/tools/ainetwork/app.py @@ -4,7 +4,7 @@ from typing import List, Optional, Type, Union from langchain_core.callbacks import AsyncCallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool diff --git a/libs/community/langchain_community/tools/ainetwork/base.py b/libs/community/langchain_community/tools/ainetwork/base.py index 2f94127576983..00e4fc7f7a298 100644 --- a/libs/community/langchain_community/tools/ainetwork/base.py +++ b/libs/community/langchain_community/tools/ainetwork/base.py @@ -6,8 +6,8 @@ from typing import TYPE_CHECKING, Any, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.tools.ainetwork.utils import authenticate diff --git a/libs/community/langchain_community/tools/ainetwork/owner.py b/libs/community/langchain_community/tools/ainetwork/owner.py index a89134f2a0597..13d41d9327350 100644 --- a/libs/community/langchain_community/tools/ainetwork/owner.py +++ b/libs/community/langchain_community/tools/ainetwork/owner.py @@ -3,7 +3,7 @@ from typing import List, Optional, Type, Union from langchain_core.callbacks import AsyncCallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool, OperationType diff --git a/libs/community/langchain_community/tools/ainetwork/rule.py b/libs/community/langchain_community/tools/ainetwork/rule.py index 309010f5ba3ba..5a24c9e5aba79 100644 --- a/libs/community/langchain_community/tools/ainetwork/rule.py +++ b/libs/community/langchain_community/tools/ainetwork/rule.py @@ -3,7 +3,7 @@ from typing import Optional, Type from langchain_core.callbacks import AsyncCallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool, OperationType diff --git a/libs/community/langchain_community/tools/ainetwork/transfer.py b/libs/community/langchain_community/tools/ainetwork/transfer.py index deab34ad9c2b5..81d630af2e3bd 100644 --- a/libs/community/langchain_community/tools/ainetwork/transfer.py +++ b/libs/community/langchain_community/tools/ainetwork/transfer.py @@ -2,7 +2,7 @@ from typing import Optional, Type from langchain_core.callbacks import AsyncCallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool diff --git a/libs/community/langchain_community/tools/ainetwork/value.py b/libs/community/langchain_community/tools/ainetwork/value.py index 300e36c573c92..be6414727f53f 100644 --- a/libs/community/langchain_community/tools/ainetwork/value.py +++ b/libs/community/langchain_community/tools/ainetwork/value.py @@ -3,7 +3,7 @@ from typing import Optional, Type, Union from langchain_core.callbacks import AsyncCallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool, OperationType diff --git a/libs/community/langchain_community/tools/amadeus/base.py b/libs/community/langchain_community/tools/amadeus/base.py index 96b4380f4e2e1..3fd3f377ce2dd 100644 --- a/libs/community/langchain_community/tools/amadeus/base.py +++ b/libs/community/langchain_community/tools/amadeus/base.py @@ -4,8 +4,8 @@ from typing import TYPE_CHECKING -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.tools.amadeus.utils import authenticate diff --git a/libs/community/langchain_community/tools/amadeus/closest_airport.py b/libs/community/langchain_community/tools/amadeus/closest_airport.py index 1a3f4c4da2cb2..9523f73afbb6d 100644 --- a/libs/community/langchain_community/tools/amadeus/closest_airport.py +++ b/libs/community/langchain_community/tools/amadeus/closest_airport.py @@ -2,7 +2,7 @@ from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, Field, model_validator from langchain_community.chat_models import ChatOpenAI from langchain_community.tools.amadeus.base import AmadeusBaseTool @@ -39,8 +39,9 @@ class AmadeusClosestAirport(AmadeusBaseTool): llm: Optional[BaseLanguageModel] = Field(default=None) """Tool's llm used for calculating the closest airport. Defaults to `ChatOpenAI`.""" - @root_validator(pre=True) - def set_llm(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def set_llm(cls, values: Dict[str, Any]) -> Any: if not values.get("llm"): # For backward-compatibility values["llm"] = ChatOpenAI(temperature=0) diff --git a/libs/community/langchain_community/tools/amadeus/flight_search.py b/libs/community/langchain_community/tools/amadeus/flight_search.py index 708a53054dc0d..c3cd8fe7bb9d2 100644 --- a/libs/community/langchain_community/tools/amadeus/flight_search.py +++ b/libs/community/langchain_community/tools/amadeus/flight_search.py @@ -3,7 +3,7 @@ from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.amadeus.base import AmadeusBaseTool diff --git a/libs/community/langchain_community/tools/arxiv/tool.py b/libs/community/langchain_community/tools/arxiv/tool.py index 5c8ca77f1bb80..601022a1325c3 100644 --- a/libs/community/langchain_community/tools/arxiv/tool.py +++ b/libs/community/langchain_community/tools/arxiv/tool.py @@ -3,8 +3,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.arxiv import ArxivAPIWrapper diff --git a/libs/community/langchain_community/tools/asknews/tool.py b/libs/community/langchain_community/tools/asknews/tool.py index e3d39027aa701..7589d11078bd6 100644 --- a/libs/community/langchain_community/tools/asknews/tool.py +++ b/libs/community/langchain_community/tools/asknews/tool.py @@ -12,8 +12,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.asknews import AskNewsAPIWrapper diff --git a/libs/community/langchain_community/tools/audio/huggingface_text_to_speech_inference.py b/libs/community/langchain_community/tools/audio/huggingface_text_to_speech_inference.py index 62d73f9191b16..bbe5f7d47c295 100644 --- a/libs/community/langchain_community/tools/audio/huggingface_text_to_speech_inference.py +++ b/libs/community/langchain_community/tools/audio/huggingface_text_to_speech_inference.py @@ -6,8 +6,8 @@ import requests from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import SecretStr from langchain_core.tools import BaseTool +from pydantic import SecretStr logger = logging.getLogger(__name__) @@ -48,10 +48,12 @@ def __init__( destination_dir: str = "./tts", file_naming_func: Literal["uuid", "timestamp"] = "uuid", huggingface_api_key: Optional[SecretStr] = None, + _HUGGINGFACE_API_KEY_ENV_NAME: str = "HUGGINGFACE_API_KEY", + _HUGGINGFACE_API_URL_ROOT: str = "https://api-inference.huggingface.co/models", ) -> None: if not huggingface_api_key: huggingface_api_key = SecretStr( - os.getenv(self._HUGGINGFACE_API_KEY_ENV_NAME, "") + os.getenv(_HUGGINGFACE_API_KEY_ENV_NAME, "") ) if ( @@ -60,7 +62,7 @@ def __init__( or huggingface_api_key.get_secret_value() == "" ): raise ValueError( - f"'{self._HUGGINGFACE_API_KEY_ENV_NAME}' must be or set or passed" + f"'{_HUGGINGFACE_API_KEY_ENV_NAME}' must be or set or passed" ) if file_naming_func == "uuid": @@ -75,10 +77,12 @@ def __init__( super().__init__( # type: ignore[call-arg] model=model, file_extension=file_extension, - api_url=f"{self._HUGGINGFACE_API_URL_ROOT}/{model}", + api_url=f"{_HUGGINGFACE_API_URL_ROOT}/{model}", destination_dir=destination_dir, file_namer=file_namer, huggingface_api_key=huggingface_api_key, + _HUGGINGFACE_API_KEY_ENV_NAME=_HUGGINGFACE_API_KEY_ENV_NAME, + _HUGGINGFACE_API_URL_ROOT=_HUGGINGFACE_API_URL_ROOT, ) def _run( diff --git a/libs/community/langchain_community/tools/azure_ai_services/document_intelligence.py b/libs/community/langchain_community/tools/azure_ai_services/document_intelligence.py index a5e9e9e481ad9..cd0ac25018ee4 100644 --- a/libs/community/langchain_community/tools/azure_ai_services/document_intelligence.py +++ b/libs/community/langchain_community/tools/azure_ai_services/document_intelligence.py @@ -4,9 +4,9 @@ from typing import Any, Dict, List, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.tools.azure_ai_services.utils import ( detect_file_src_type, @@ -34,8 +34,9 @@ class AzureAiServicesDocumentIntelligenceTool(BaseTool): "Input should be a url to a document." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" diff --git a/libs/community/langchain_community/tools/azure_ai_services/image_analysis.py b/libs/community/langchain_community/tools/azure_ai_services/image_analysis.py index ade4ef2bdbad6..0a1e206e45e7d 100644 --- a/libs/community/langchain_community/tools/azure_ai_services/image_analysis.py +++ b/libs/community/langchain_community/tools/azure_ai_services/image_analysis.py @@ -4,9 +4,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.tools.azure_ai_services.utils import ( detect_file_src_type, @@ -34,8 +34,9 @@ class AzureAiServicesImageAnalysisTool(BaseTool): "Input should be a url to an image." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" diff --git a/libs/community/langchain_community/tools/azure_ai_services/speech_to_text.py b/libs/community/langchain_community/tools/azure_ai_services/speech_to_text.py index 28d490d7ab843..15e08d27222e1 100644 --- a/libs/community/langchain_community/tools/azure_ai_services/speech_to_text.py +++ b/libs/community/langchain_community/tools/azure_ai_services/speech_to_text.py @@ -5,9 +5,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.tools.azure_ai_services.utils import ( detect_file_src_type, @@ -36,8 +36,9 @@ class AzureAiServicesSpeechToTextTool(BaseTool): "Input should be a url to an audio file." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" diff --git a/libs/community/langchain_community/tools/azure_ai_services/text_analytics_for_health.py b/libs/community/langchain_community/tools/azure_ai_services/text_analytics_for_health.py index 869c93657166d..6447c5de4185e 100644 --- a/libs/community/langchain_community/tools/azure_ai_services/text_analytics_for_health.py +++ b/libs/community/langchain_community/tools/azure_ai_services/text_analytics_for_health.py @@ -4,9 +4,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator logger = logging.getLogger(__name__) @@ -29,8 +29,9 @@ class AzureAiServicesTextAnalyticsForHealthTool(BaseTool): "Input should be text." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" diff --git a/libs/community/langchain_community/tools/azure_ai_services/text_to_speech.py b/libs/community/langchain_community/tools/azure_ai_services/text_to_speech.py index 67fde6bad8534..1291e2dac5641 100644 --- a/libs/community/langchain_community/tools/azure_ai_services/text_to_speech.py +++ b/libs/community/langchain_community/tools/azure_ai_services/text_to_speech.py @@ -5,9 +5,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator logger = logging.getLogger(__name__) @@ -31,8 +31,9 @@ class AzureAiServicesTextToSpeechTool(BaseTool): speech_language: str = "en-US" #: :meta private: speech_config: Any #: :meta private: - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" diff --git a/libs/community/langchain_community/tools/azure_cognitive_services/form_recognizer.py b/libs/community/langchain_community/tools/azure_cognitive_services/form_recognizer.py index 42d11b4ac4ed7..937b1fc7930f3 100644 --- a/libs/community/langchain_community/tools/azure_cognitive_services/form_recognizer.py +++ b/libs/community/langchain_community/tools/azure_cognitive_services/form_recognizer.py @@ -4,9 +4,9 @@ from typing import Any, Dict, List, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.tools.azure_cognitive_services.utils import ( detect_file_src_type, @@ -34,8 +34,9 @@ class AzureCogsFormRecognizerTool(BaseTool): "Input should be a url to a document." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" diff --git a/libs/community/langchain_community/tools/azure_cognitive_services/image_analysis.py b/libs/community/langchain_community/tools/azure_cognitive_services/image_analysis.py index 801aa57bd2d7b..ce076243a7b14 100644 --- a/libs/community/langchain_community/tools/azure_cognitive_services/image_analysis.py +++ b/libs/community/langchain_community/tools/azure_cognitive_services/image_analysis.py @@ -4,9 +4,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.tools.azure_cognitive_services.utils import ( detect_file_src_type, @@ -34,8 +34,9 @@ class AzureCogsImageAnalysisTool(BaseTool): "Input should be a url to an image." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" diff --git a/libs/community/langchain_community/tools/azure_cognitive_services/speech2text.py b/libs/community/langchain_community/tools/azure_cognitive_services/speech2text.py index b1aa90cb7013d..125c910df1ba7 100644 --- a/libs/community/langchain_community/tools/azure_cognitive_services/speech2text.py +++ b/libs/community/langchain_community/tools/azure_cognitive_services/speech2text.py @@ -5,9 +5,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.tools.azure_cognitive_services.utils import ( detect_file_src_type, @@ -36,8 +36,9 @@ class AzureCogsSpeech2TextTool(BaseTool): "Input should be a url to an audio file." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" diff --git a/libs/community/langchain_community/tools/azure_cognitive_services/text2speech.py b/libs/community/langchain_community/tools/azure_cognitive_services/text2speech.py index f65049f13a966..343653fe9c3e1 100644 --- a/libs/community/langchain_community/tools/azure_cognitive_services/text2speech.py +++ b/libs/community/langchain_community/tools/azure_cognitive_services/text2speech.py @@ -5,9 +5,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator logger = logging.getLogger(__name__) @@ -30,8 +30,9 @@ class AzureCogsText2SpeechTool(BaseTool): "Useful for when you need to convert text to speech. " ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" diff --git a/libs/community/langchain_community/tools/azure_cognitive_services/text_analytics_health.py b/libs/community/langchain_community/tools/azure_cognitive_services/text_analytics_health.py index ce5332436c7ea..1de8566528fe4 100644 --- a/libs/community/langchain_community/tools/azure_cognitive_services/text_analytics_health.py +++ b/libs/community/langchain_community/tools/azure_cognitive_services/text_analytics_health.py @@ -4,9 +4,9 @@ from typing import Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator logger = logging.getLogger(__name__) @@ -29,8 +29,9 @@ class AzureCogsTextAnalyticsHealthTool(BaseTool): "Input should be text." ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" diff --git a/libs/community/langchain_community/tools/bearly/tool.py b/libs/community/langchain_community/tools/bearly/tool.py index 64a2625716053..eba71c0d7ff7e 100644 --- a/libs/community/langchain_community/tools/bearly/tool.py +++ b/libs/community/langchain_community/tools/bearly/tool.py @@ -6,8 +6,8 @@ from typing import Dict, List, Type import requests -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import Tool +from pydantic import BaseModel, Field def strip_markdown_code(md_string: str) -> str: @@ -37,7 +37,7 @@ class BearlyInterpreterToolArguments(BaseModel): python_code: str = Field( ..., - example="print('Hello World')", + examples=["print('Hello World')"], description=( "The pure python script to be evaluated. " "The contents will be in main.py. " diff --git a/libs/community/langchain_community/tools/cassandra_database/tool.py b/libs/community/langchain_community/tools/cassandra_database/tool.py index 10074ecabb0f5..ab6e502fb0846 100644 --- a/libs/community/langchain_community/tools/cassandra_database/tool.py +++ b/libs/community/langchain_community/tools/cassandra_database/tool.py @@ -6,8 +6,8 @@ from typing import TYPE_CHECKING, Any, Dict, Optional, Sequence, Type, Union from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, ConfigDict, Field from langchain_community.utilities.cassandra_database import CassandraDatabase @@ -20,8 +20,9 @@ class BaseCassandraDatabaseTool(BaseModel): db: CassandraDatabase = Field(exclude=True) - class Config(BaseTool.Config): - pass + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) class _QueryCassandraDatabaseToolInput(BaseModel): diff --git a/libs/community/langchain_community/tools/clickup/tool.py b/libs/community/langchain_community/tools/clickup/tool.py index 8e40c97c456b6..03b3fde586c18 100644 --- a/libs/community/langchain_community/tools/clickup/tool.py +++ b/libs/community/langchain_community/tools/clickup/tool.py @@ -20,8 +20,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.clickup import ClickupAPIWrapper diff --git a/libs/community/langchain_community/tools/cogniswitch/tool.py b/libs/community/langchain_community/tools/cogniswitch/tool.py index d88120e5076f8..41c9663fb5eb0 100644 --- a/libs/community/langchain_community/tools/cogniswitch/tool.py +++ b/libs/community/langchain_community/tools/cogniswitch/tool.py @@ -98,7 +98,7 @@ class CogniswitchKnowledgeStatus(BaseTool): cs_token: str OAI_token: str apiKey: str - knowledge_status_url = ( + knowledge_status_url: str = ( "https://api.cogniswitch.ai:8243/cs-api/0.0.1/cs/knowledgeSource/status" ) @@ -200,7 +200,7 @@ class CogniswitchKnowledgeSourceFile(BaseTool): cs_token: str OAI_token: str apiKey: str - knowledgesource_file = ( + knowledgesource_file: str = ( "https://api.cogniswitch.ai:8243/cs-api/0.0.1/cs/knowledgeSource/file" ) @@ -312,7 +312,7 @@ class CogniswitchKnowledgeSourceURL(BaseTool): cs_token: str OAI_token: str apiKey: str - knowledgesource_url = ( + knowledgesource_url: str = ( "https://api.cogniswitch.ai:8243/cs-api/0.0.1/cs/knowledgeSource/url" ) diff --git a/libs/community/langchain_community/tools/connery/models.py b/libs/community/langchain_community/tools/connery/models.py index a8292e62b9e42..537f58bea133a 100644 --- a/libs/community/langchain_community/tools/connery/models.py +++ b/libs/community/langchain_community/tools/connery/models.py @@ -1,6 +1,6 @@ -from typing import List, Optional +from typing import Any, List, Optional -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class Validation(BaseModel): @@ -15,7 +15,7 @@ class Parameter(BaseModel): key: str title: str description: Optional[str] = None - type: str + type: Any validation: Optional[Validation] = None diff --git a/libs/community/langchain_community/tools/connery/service.py b/libs/community/langchain_community/tools/connery/service.py index 11c921c1bc2cb..bbe4cc8c183bd 100644 --- a/libs/community/langchain_community/tools/connery/service.py +++ b/libs/community/langchain_community/tools/connery/service.py @@ -1,9 +1,9 @@ import json -from typing import Dict, List, Optional +from typing import Any, Dict, List, Optional import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils.env import get_from_dict_or_env +from pydantic import BaseModel, model_validator from langchain_community.tools.connery.models import Action from langchain_community.tools.connery.tool import ConneryAction @@ -20,8 +20,9 @@ class ConneryService(BaseModel): runner_url: Optional[str] = None api_key: Optional[str] = None - @root_validator(pre=True) - def validate_attributes(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_attributes(cls, values: Dict) -> Any: """ Validate the attributes of the ConneryService class. Parameters: diff --git a/libs/community/langchain_community/tools/connery/tool.py b/libs/community/langchain_community/tools/connery/tool.py index da7f802696ed4..d74bfc1743e87 100644 --- a/libs/community/langchain_community/tools/connery/tool.py +++ b/libs/community/langchain_community/tools/connery/tool.py @@ -6,8 +6,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field, create_model, root_validator from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field, create_model, model_validator from langchain_community.tools.connery.models import Action, Parameter @@ -63,8 +63,9 @@ def get_schema_json(self) -> str: return self.args_schema.schema_json(indent=2) - @root_validator(pre=True) - def validate_attributes(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_attributes(cls, values: dict) -> Any: """ Validate the attributes of the ConneryAction class. Parameters: @@ -153,8 +154,8 @@ def _create_input_schema(cls, inputParameters: List[Parameter]) -> Type[BaseMode type = param.type dynamic_input_fields[param.key] = ( - str, - Field(default, title=title, description=description, type=type), + type, + Field(default, title=title, description=description), ) InputModel = create_model("InputSchema", **dynamic_input_fields) diff --git a/libs/community/langchain_community/tools/databricks/tool.py b/libs/community/langchain_community/tools/databricks/tool.py index 7bf30e2d20b3c..f64616ea5fbca 100644 --- a/libs/community/langchain_community/tools/databricks/tool.py +++ b/libs/community/langchain_community/tools/databricks/tool.py @@ -4,15 +4,16 @@ from hashlib import md5 from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union -from langchain_core.pydantic_v1 import BaseModel, Field, create_model from langchain_core.tools import BaseTool, StructuredTool from langchain_core.tools.base import BaseToolkit +from pydantic import BaseModel, Field, create_model from typing_extensions import Self if TYPE_CHECKING: - from databricks.sdk import WorkspaceClient from databricks.sdk.service.catalog import FunctionInfo +from pydantic import ConfigDict + from langchain_community.tools.databricks._execution import execute_function @@ -119,7 +120,7 @@ def _get_tool_name(function: "FunctionInfo") -> str: return tool_name -def _get_default_workspace_client() -> "WorkspaceClient": +def _get_default_workspace_client() -> Any: try: from databricks.sdk import WorkspaceClient except ImportError as e: @@ -135,15 +136,16 @@ class UCFunctionToolkit(BaseToolkit): description="The ID of a Databricks SQL Warehouse to execute functions." ) - workspace_client: "WorkspaceClient" = Field( + workspace_client: Any = Field( default_factory=_get_default_workspace_client, description="Databricks workspace client.", ) tools: Dict[str, BaseTool] = Field(default_factory=dict) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def include(self, *function_names: str, **kwargs: Any) -> Self: """ diff --git a/libs/community/langchain_community/tools/dataforseo_api_search/tool.py b/libs/community/langchain_community/tools/dataforseo_api_search/tool.py index 4d601df59adcf..65bf1ec22cd75 100644 --- a/libs/community/langchain_community/tools/dataforseo_api_search/tool.py +++ b/libs/community/langchain_community/tools/dataforseo_api_search/tool.py @@ -6,8 +6,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.dataforseo_api_search import DataForSeoAPIWrapper diff --git a/libs/community/langchain_community/tools/dataherald/tool.py b/libs/community/langchain_community/tools/dataherald/tool.py index 90c4cef7102d8..2a2546a328378 100644 --- a/libs/community/langchain_community/tools/dataherald/tool.py +++ b/libs/community/langchain_community/tools/dataherald/tool.py @@ -3,8 +3,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.dataherald import DataheraldAPIWrapper diff --git a/libs/community/langchain_community/tools/ddg_search/tool.py b/libs/community/langchain_community/tools/ddg_search/tool.py index fe707a1a201c6..f2889daa716b2 100644 --- a/libs/community/langchain_community/tools/ddg_search/tool.py +++ b/libs/community/langchain_community/tools/ddg_search/tool.py @@ -4,8 +4,8 @@ from typing import Any, List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper diff --git a/libs/community/langchain_community/tools/e2b_data_analysis/tool.py b/libs/community/langchain_community/tools/e2b_data_analysis/tool.py index fee95b4af5bf9..f9705086a9800 100644 --- a/libs/community/langchain_community/tools/e2b_data_analysis/tool.py +++ b/libs/community/langchain_community/tools/e2b_data_analysis/tool.py @@ -12,8 +12,8 @@ CallbackManager, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field, PrivateAttr from langchain_core.tools import BaseTool, Tool +from pydantic import BaseModel, Field, PrivateAttr from langchain_community.tools.e2b_data_analysis.unparse import Unparser @@ -84,7 +84,7 @@ class E2BDataAnalysisToolArguments(BaseModel): python_code: str = Field( ..., - example="print('Hello World')", + examples=["print('Hello World')"], description=( "The python script to be evaluated. " "The contents will be in main.py. " diff --git a/libs/community/langchain_community/tools/edenai/audio_speech_to_text.py b/libs/community/langchain_community/tools/edenai/audio_speech_to_text.py index 342f33d2b2a42..c0fc870ef2d94 100644 --- a/libs/community/langchain_community/tools/edenai/audio_speech_to_text.py +++ b/libs/community/langchain_community/tools/edenai/audio_speech_to_text.py @@ -7,7 +7,7 @@ import requests from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field, HttpUrl, validator +from pydantic import BaseModel, Field, HttpUrl, validator from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool @@ -30,7 +30,7 @@ class EdenAiSpeechToTextTool(EdenaiTool): """ name: str = "edenai_speech_to_text" - description = ( + description: str = ( "A wrapper around edenai Services speech to text " "Useful for when you have to convert audio to text." "Input should be a url to an audio file." diff --git a/libs/community/langchain_community/tools/edenai/audio_text_to_speech.py b/libs/community/langchain_community/tools/edenai/audio_text_to_speech.py index e78cf35419b1e..d17c0854f9eab 100644 --- a/libs/community/langchain_community/tools/edenai/audio_text_to_speech.py +++ b/libs/community/langchain_community/tools/edenai/audio_text_to_speech.py @@ -1,11 +1,11 @@ from __future__ import annotations import logging -from typing import Dict, List, Literal, Optional, Type +from typing import Any, Dict, List, Literal, Optional, Type import requests from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator, validator +from pydantic import BaseModel, Field, model_validator, validator from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool @@ -28,7 +28,7 @@ class EdenAiTextToSpeechTool(EdenaiTool): """ name: str = "edenai_text_to_speech" - description = ( + description: str = ( "A wrapper around edenai Services text to speech." "Useful for when you need to convert text to speech." """the output is a string representing the URL of the audio file, @@ -43,11 +43,11 @@ class EdenAiTextToSpeechTool(EdenaiTool): # optional params see api documentation for more info return_type: Literal["url", "wav"] = "url" - rate: Optional[int] - pitch: Optional[int] - volume: Optional[int] - audio_format: Optional[str] - sampling_rate: Optional[int] + rate: Optional[int] = None + pitch: Optional[int] = None + volume: Optional[int] = None + audio_format: Optional[str] = None + sampling_rate: Optional[int] = None voice_models: Dict[str, str] = Field(default_factory=dict) voice: Literal["MALE", "FEMALE"] @@ -70,8 +70,9 @@ def check_only_one_provider_selected(cls, v: List[str]) -> List[str]: ) return v - @root_validator(pre=True) - def check_voice_models_key_is_provider_name(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def check_voice_models_key_is_provider_name(cls, values: dict) -> Any: for key in values.get("voice_models", {}).keys(): if key not in values.get("providers", []): raise ValueError( diff --git a/libs/community/langchain_community/tools/edenai/edenai_base_tool.py b/libs/community/langchain_community/tools/edenai/edenai_base_tool.py index 2f83ef37bc487..c4f5547999234 100644 --- a/libs/community/langchain_community/tools/edenai/edenai_base_tool.py +++ b/libs/community/langchain_community/tools/edenai/edenai_base_tool.py @@ -6,9 +6,9 @@ import requests from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field, SecretStr from langchain_core.tools import BaseTool from langchain_core.utils import secret_from_env +from pydantic import Field, SecretStr logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/tools/edenai/image_explicitcontent.py b/libs/community/langchain_community/tools/edenai/image_explicitcontent.py index 8ca1d7739cb7f..50f9f24338a3f 100644 --- a/libs/community/langchain_community/tools/edenai/image_explicitcontent.py +++ b/libs/community/langchain_community/tools/edenai/image_explicitcontent.py @@ -4,7 +4,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field, HttpUrl +from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool diff --git a/libs/community/langchain_community/tools/edenai/image_objectdetection.py b/libs/community/langchain_community/tools/edenai/image_objectdetection.py index 1098e8e37f6da..aedfe56b88389 100644 --- a/libs/community/langchain_community/tools/edenai/image_objectdetection.py +++ b/libs/community/langchain_community/tools/edenai/image_objectdetection.py @@ -4,7 +4,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field, HttpUrl +from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool diff --git a/libs/community/langchain_community/tools/edenai/ocr_identityparser.py b/libs/community/langchain_community/tools/edenai/ocr_identityparser.py index 2e208dbb54340..f2270345917b4 100644 --- a/libs/community/langchain_community/tools/edenai/ocr_identityparser.py +++ b/libs/community/langchain_community/tools/edenai/ocr_identityparser.py @@ -4,7 +4,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field, HttpUrl +from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool diff --git a/libs/community/langchain_community/tools/edenai/ocr_invoiceparser.py b/libs/community/langchain_community/tools/edenai/ocr_invoiceparser.py index 75c8425154aa2..d5266476784c9 100644 --- a/libs/community/langchain_community/tools/edenai/ocr_invoiceparser.py +++ b/libs/community/langchain_community/tools/edenai/ocr_invoiceparser.py @@ -4,7 +4,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field, HttpUrl +from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool diff --git a/libs/community/langchain_community/tools/edenai/text_moderation.py b/libs/community/langchain_community/tools/edenai/text_moderation.py index 9aed36f0b7343..f5f8497ff3ca6 100644 --- a/libs/community/langchain_community/tools/edenai/text_moderation.py +++ b/libs/community/langchain_community/tools/edenai/text_moderation.py @@ -4,7 +4,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool diff --git a/libs/community/langchain_community/tools/eleven_labs/text2speech.py b/libs/community/langchain_community/tools/eleven_labs/text2speech.py index d1a68ba7a5c6f..333dfb6bb6432 100644 --- a/libs/community/langchain_community/tools/eleven_labs/text2speech.py +++ b/libs/community/langchain_community/tools/eleven_labs/text2speech.py @@ -3,9 +3,9 @@ from typing import Any, Dict, Optional, Union from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator def _import_elevenlabs() -> Any: @@ -42,8 +42,9 @@ class ElevenLabsText2SpeechTool(BaseTool): "Spanish, Italian, French, Portuguese, and Hindi. " ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" _ = get_from_dict_or_env(values, "eleven_api_key", "ELEVEN_API_KEY") diff --git a/libs/community/langchain_community/tools/file_management/copy.py b/libs/community/langchain_community/tools/file_management/copy.py index f91081003d14c..7679e3c43bee0 100644 --- a/libs/community/langchain_community/tools/file_management/copy.py +++ b/libs/community/langchain_community/tools/file_management/copy.py @@ -2,8 +2,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, diff --git a/libs/community/langchain_community/tools/file_management/delete.py b/libs/community/langchain_community/tools/file_management/delete.py index c2694762aede3..33f4b70b28dd6 100644 --- a/libs/community/langchain_community/tools/file_management/delete.py +++ b/libs/community/langchain_community/tools/file_management/delete.py @@ -2,8 +2,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, diff --git a/libs/community/langchain_community/tools/file_management/file_search.py b/libs/community/langchain_community/tools/file_management/file_search.py index c77abd0bef95d..a00aee40b4ba7 100644 --- a/libs/community/langchain_community/tools/file_management/file_search.py +++ b/libs/community/langchain_community/tools/file_management/file_search.py @@ -3,8 +3,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, diff --git a/libs/community/langchain_community/tools/file_management/list_dir.py b/libs/community/langchain_community/tools/file_management/list_dir.py index d8b700134ae9f..a8bfdc8e3abe1 100644 --- a/libs/community/langchain_community/tools/file_management/list_dir.py +++ b/libs/community/langchain_community/tools/file_management/list_dir.py @@ -2,8 +2,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, diff --git a/libs/community/langchain_community/tools/file_management/move.py b/libs/community/langchain_community/tools/file_management/move.py index fc3bb778d8ef8..935625172e9a3 100644 --- a/libs/community/langchain_community/tools/file_management/move.py +++ b/libs/community/langchain_community/tools/file_management/move.py @@ -2,8 +2,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, diff --git a/libs/community/langchain_community/tools/file_management/read.py b/libs/community/langchain_community/tools/file_management/read.py index 42cc1515e7e70..9f746ed16c105 100644 --- a/libs/community/langchain_community/tools/file_management/read.py +++ b/libs/community/langchain_community/tools/file_management/read.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, diff --git a/libs/community/langchain_community/tools/file_management/utils.py b/libs/community/langchain_community/tools/file_management/utils.py index b2a3632ecaa88..788823fecd739 100644 --- a/libs/community/langchain_community/tools/file_management/utils.py +++ b/libs/community/langchain_community/tools/file_management/utils.py @@ -2,7 +2,7 @@ from pathlib import Path from typing import Optional -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel def is_relative_to(path: Path, root: Path) -> bool: diff --git a/libs/community/langchain_community/tools/file_management/write.py b/libs/community/langchain_community/tools/file_management/write.py index b42b70256b7fe..1d62065bb74e4 100644 --- a/libs/community/langchain_community/tools/file_management/write.py +++ b/libs/community/langchain_community/tools/file_management/write.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, diff --git a/libs/community/langchain_community/tools/financial_datasets/balance_sheets.py b/libs/community/langchain_community/tools/financial_datasets/balance_sheets.py index 5bbc9093dc3be..a2374e35c7cbb 100644 --- a/libs/community/langchain_community/tools/financial_datasets/balance_sheets.py +++ b/libs/community/langchain_community/tools/financial_datasets/balance_sheets.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.financial_datasets import FinancialDatasetsAPIWrapper diff --git a/libs/community/langchain_community/tools/financial_datasets/cash_flow_statements.py b/libs/community/langchain_community/tools/financial_datasets/cash_flow_statements.py index 65f95a3e0c993..e8ac4a5b2bff6 100644 --- a/libs/community/langchain_community/tools/financial_datasets/cash_flow_statements.py +++ b/libs/community/langchain_community/tools/financial_datasets/cash_flow_statements.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.financial_datasets import FinancialDatasetsAPIWrapper diff --git a/libs/community/langchain_community/tools/financial_datasets/income_statements.py b/libs/community/langchain_community/tools/financial_datasets/income_statements.py index 8e4f197d529e3..e9db4e5cc1626 100644 --- a/libs/community/langchain_community/tools/financial_datasets/income_statements.py +++ b/libs/community/langchain_community/tools/financial_datasets/income_statements.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.financial_datasets import FinancialDatasetsAPIWrapper diff --git a/libs/community/langchain_community/tools/github/tool.py b/libs/community/langchain_community/tools/github/tool.py index cb1433b6551c9..af6933fe9b80e 100644 --- a/libs/community/langchain_community/tools/github/tool.py +++ b/libs/community/langchain_community/tools/github/tool.py @@ -11,8 +11,8 @@ from typing import Any, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.github import GitHubAPIWrapper diff --git a/libs/community/langchain_community/tools/gitlab/tool.py b/libs/community/langchain_community/tools/gitlab/tool.py index bce7ca950cc13..8dfe2bb32fdbd 100644 --- a/libs/community/langchain_community/tools/gitlab/tool.py +++ b/libs/community/langchain_community/tools/gitlab/tool.py @@ -11,8 +11,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.gitlab import GitLabAPIWrapper diff --git a/libs/community/langchain_community/tools/gmail/base.py b/libs/community/langchain_community/tools/gmail/base.py index 1bbecb252326f..d55b0d30f8a45 100644 --- a/libs/community/langchain_community/tools/gmail/base.py +++ b/libs/community/langchain_community/tools/gmail/base.py @@ -4,8 +4,8 @@ from typing import TYPE_CHECKING -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.tools.gmail.utils import build_resource_service diff --git a/libs/community/langchain_community/tools/gmail/create_draft.py b/libs/community/langchain_community/tools/gmail/create_draft.py index b8e6ac93c6178..2fdfcf37dd2c8 100644 --- a/libs/community/langchain_community/tools/gmail/create_draft.py +++ b/libs/community/langchain_community/tools/gmail/create_draft.py @@ -3,7 +3,7 @@ from typing import List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool diff --git a/libs/community/langchain_community/tools/gmail/get_message.py b/libs/community/langchain_community/tools/gmail/get_message.py index 3be2db0853312..6155cb499f4d9 100644 --- a/libs/community/langchain_community/tools/gmail/get_message.py +++ b/libs/community/langchain_community/tools/gmail/get_message.py @@ -3,7 +3,7 @@ from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool from langchain_community.tools.gmail.utils import clean_email_body diff --git a/libs/community/langchain_community/tools/gmail/get_thread.py b/libs/community/langchain_community/tools/gmail/get_thread.py index c42c90924b6dc..5e61bd8bb98ab 100644 --- a/libs/community/langchain_community/tools/gmail/get_thread.py +++ b/libs/community/langchain_community/tools/gmail/get_thread.py @@ -1,7 +1,7 @@ from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool diff --git a/libs/community/langchain_community/tools/gmail/search.py b/libs/community/langchain_community/tools/gmail/search.py index 72125762d5464..eb61968429520 100644 --- a/libs/community/langchain_community/tools/gmail/search.py +++ b/libs/community/langchain_community/tools/gmail/search.py @@ -4,7 +4,7 @@ from typing import Any, Dict, List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool from langchain_community.tools.gmail.utils import clean_email_body diff --git a/libs/community/langchain_community/tools/gmail/send_message.py b/libs/community/langchain_community/tools/gmail/send_message.py index c059b31f3f4b3..3ccd2185048e6 100644 --- a/libs/community/langchain_community/tools/gmail/send_message.py +++ b/libs/community/langchain_community/tools/gmail/send_message.py @@ -6,7 +6,7 @@ from typing import Any, Dict, List, Optional, Type, Union from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.gmail.base import GmailBaseTool diff --git a/libs/community/langchain_community/tools/google_places/tool.py b/libs/community/langchain_community/tools/google_places/tool.py index de33e0196a177..b97705c9742dd 100644 --- a/libs/community/langchain_community/tools/google_places/tool.py +++ b/libs/community/langchain_community/tools/google_places/tool.py @@ -4,8 +4,8 @@ from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.google_places_api import GooglePlacesAPIWrapper diff --git a/libs/community/langchain_community/tools/google_serper/tool.py b/libs/community/langchain_community/tools/google_serper/tool.py index b94771a894f38..562dd012a1ac6 100644 --- a/libs/community/langchain_community/tools/google_serper/tool.py +++ b/libs/community/langchain_community/tools/google_serper/tool.py @@ -6,8 +6,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.google_serper import GoogleSerperAPIWrapper diff --git a/libs/community/langchain_community/tools/graphql/tool.py b/libs/community/langchain_community/tools/graphql/tool.py index bca6211d5be8e..0530f8cae07fe 100644 --- a/libs/community/langchain_community/tools/graphql/tool.py +++ b/libs/community/langchain_community/tools/graphql/tool.py @@ -3,6 +3,7 @@ from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool +from pydantic import ConfigDict from langchain_community.utilities.graphql import GraphQLAPIWrapper @@ -22,8 +23,9 @@ class BaseGraphQLTool(BaseTool): Example Input: query {{ allUsers {{ id, name, email }} }}\ """ # noqa: E501 - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _run( self, diff --git a/libs/community/langchain_community/tools/human/tool.py b/libs/community/langchain_community/tools/human/tool.py index e4987e44fa6c3..d9e238b93c97b 100644 --- a/libs/community/langchain_community/tools/human/tool.py +++ b/libs/community/langchain_community/tools/human/tool.py @@ -3,8 +3,8 @@ from typing import Callable, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field def _print_func(text: str) -> None: diff --git a/libs/community/langchain_community/tools/jina_search/tool.py b/libs/community/langchain_community/tools/jina_search/tool.py index 4ddb098eebb4c..a6961e685b382 100644 --- a/libs/community/langchain_community/tools/jina_search/tool.py +++ b/libs/community/langchain_community/tools/jina_search/tool.py @@ -3,8 +3,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.jina_search import JinaSearchAPIWrapper diff --git a/libs/community/langchain_community/tools/jira/tool.py b/libs/community/langchain_community/tools/jira/tool.py index a80044b2a10cd..70868947004ac 100644 --- a/libs/community/langchain_community/tools/jira/tool.py +++ b/libs/community/langchain_community/tools/jira/tool.py @@ -23,8 +23,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.jira import JiraAPIWrapper diff --git a/libs/community/langchain_community/tools/json/tool.py b/libs/community/langchain_community/tools/json/tool.py index bcb04fbf1f2f2..6e7fddff6d7d6 100644 --- a/libs/community/langchain_community/tools/json/tool.py +++ b/libs/community/langchain_community/tools/json/tool.py @@ -8,7 +8,7 @@ from pathlib import Path from typing import Dict, List, Optional, Union -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, diff --git a/libs/community/langchain_community/tools/memorize/tool.py b/libs/community/langchain_community/tools/memorize/tool.py index 30d416b1fd774..87badf9ac31f1 100644 --- a/libs/community/langchain_community/tools/memorize/tool.py +++ b/libs/community/langchain_community/tools/memorize/tool.py @@ -5,8 +5,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.llms.gradient_ai import TrainResult diff --git a/libs/community/langchain_community/tools/multion/close_session.py b/libs/community/langchain_community/tools/multion/close_session.py index 023c07539e0f1..28f0abd013ba7 100644 --- a/libs/community/langchain_community/tools/multion/close_session.py +++ b/libs/community/langchain_community/tools/multion/close_session.py @@ -3,8 +3,8 @@ from langchain_core.callbacks import ( CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field if TYPE_CHECKING: # This is for linting and IDE typehints diff --git a/libs/community/langchain_community/tools/multion/create_session.py b/libs/community/langchain_community/tools/multion/create_session.py index de6983cb4bc2d..53388a5a973f7 100644 --- a/libs/community/langchain_community/tools/multion/create_session.py +++ b/libs/community/langchain_community/tools/multion/create_session.py @@ -3,8 +3,8 @@ from langchain_core.callbacks import ( CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field if TYPE_CHECKING: # This is for linting and IDE typehints diff --git a/libs/community/langchain_community/tools/multion/update_session.py b/libs/community/langchain_community/tools/multion/update_session.py index 10fe4c9fa6384..b535861e2ac76 100644 --- a/libs/community/langchain_community/tools/multion/update_session.py +++ b/libs/community/langchain_community/tools/multion/update_session.py @@ -3,8 +3,8 @@ from langchain_core.callbacks import ( CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field if TYPE_CHECKING: # This is for linting and IDE typehints diff --git a/libs/community/langchain_community/tools/nasa/tool.py b/libs/community/langchain_community/tools/nasa/tool.py index 74c24c78449a4..b9f2caa455584 100644 --- a/libs/community/langchain_community/tools/nasa/tool.py +++ b/libs/community/langchain_community/tools/nasa/tool.py @@ -6,8 +6,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.nasa import NasaAPIWrapper diff --git a/libs/community/langchain_community/tools/nuclia/tool.py b/libs/community/langchain_community/tools/nuclia/tool.py index fcba67a9618d4..a575f7d1d054d 100644 --- a/libs/community/langchain_community/tools/nuclia/tool.py +++ b/libs/community/langchain_community/tools/nuclia/tool.py @@ -20,8 +20,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/tools/office365/base.py b/libs/community/langchain_community/tools/office365/base.py index 24aed733a771b..55160bd5e509e 100644 --- a/libs/community/langchain_community/tools/office365/base.py +++ b/libs/community/langchain_community/tools/office365/base.py @@ -4,8 +4,8 @@ from typing import TYPE_CHECKING -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.tools.office365.utils import authenticate diff --git a/libs/community/langchain_community/tools/office365/create_draft_message.py b/libs/community/langchain_community/tools/office365/create_draft_message.py index 88c94578a83f6..02915ffedcf86 100644 --- a/libs/community/langchain_community/tools/office365/create_draft_message.py +++ b/libs/community/langchain_community/tools/office365/create_draft_message.py @@ -1,7 +1,7 @@ from typing import List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.office365.base import O365BaseTool diff --git a/libs/community/langchain_community/tools/office365/events_search.py b/libs/community/langchain_community/tools/office365/events_search.py index 514eb4025df1a..f23dd86b0870c 100644 --- a/libs/community/langchain_community/tools/office365/events_search.py +++ b/libs/community/langchain_community/tools/office365/events_search.py @@ -8,7 +8,7 @@ from typing import Any, Dict, List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field from langchain_community.tools.office365.base import O365BaseTool from langchain_community.tools.office365.utils import UTC_FORMAT, clean_body @@ -70,8 +70,9 @@ class O365SearchEvents(O365BaseTool): "is busy during meetings. Any times without events are free for the user. " ) - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _run( self, diff --git a/libs/community/langchain_community/tools/office365/messages_search.py b/libs/community/langchain_community/tools/office365/messages_search.py index dac0ceac30e3b..5b66dc63644b3 100644 --- a/libs/community/langchain_community/tools/office365/messages_search.py +++ b/libs/community/langchain_community/tools/office365/messages_search.py @@ -7,7 +7,7 @@ from typing import Any, Dict, List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field from langchain_community.tools.office365.base import O365BaseTool from langchain_community.tools.office365.utils import UTC_FORMAT, clean_body @@ -66,8 +66,9 @@ class O365SearchEmails(O365BaseTool): " The output is a JSON list of the requested resource." ) - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _run( self, diff --git a/libs/community/langchain_community/tools/office365/send_event.py b/libs/community/langchain_community/tools/office365/send_event.py index e8b9d023af7a5..6a824deef759d 100644 --- a/libs/community/langchain_community/tools/office365/send_event.py +++ b/libs/community/langchain_community/tools/office365/send_event.py @@ -8,7 +8,7 @@ from typing import List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.office365.base import O365BaseTool from langchain_community.tools.office365.utils import UTC_FORMAT diff --git a/libs/community/langchain_community/tools/office365/send_message.py b/libs/community/langchain_community/tools/office365/send_message.py index 828e9e4fa614d..6ebc8883714ed 100644 --- a/libs/community/langchain_community/tools/office365/send_message.py +++ b/libs/community/langchain_community/tools/office365/send_message.py @@ -1,7 +1,7 @@ from typing import List, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.office365.base import O365BaseTool diff --git a/libs/community/langchain_community/tools/openapi/utils/api_models.py b/libs/community/langchain_community/tools/openapi/utils/api_models.py index 4c253e31e20a7..fef0b849ae37d 100644 --- a/libs/community/langchain_community/tools/openapi/utils/api_models.py +++ b/libs/community/langchain_community/tools/openapi/utils/api_models.py @@ -16,7 +16,7 @@ Union, ) -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.openapi.utils.openapi_utils import HTTPVerb, OpenAPISpec diff --git a/libs/community/langchain_community/tools/openweathermap/tool.py b/libs/community/langchain_community/tools/openweathermap/tool.py index d716b8098d840..f1e7758d2d0c2 100644 --- a/libs/community/langchain_community/tools/openweathermap/tool.py +++ b/libs/community/langchain_community/tools/openweathermap/tool.py @@ -3,8 +3,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.openweathermap import OpenWeatherMapAPIWrapper diff --git a/libs/community/langchain_community/tools/passio_nutrition_ai/tool.py b/libs/community/langchain_community/tools/passio_nutrition_ai/tool.py index 275760d4cbca0..939e1a41bc9fe 100644 --- a/libs/community/langchain_community/tools/passio_nutrition_ai/tool.py +++ b/libs/community/langchain_community/tools/passio_nutrition_ai/tool.py @@ -3,8 +3,8 @@ from typing import Dict, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.passio_nutrition_ai import NutritionAIAPI diff --git a/libs/community/langchain_community/tools/playwright/base.py b/libs/community/langchain_community/tools/playwright/base.py index f06b964e4d2d2..e85cc8479360c 100644 --- a/libs/community/langchain_community/tools/playwright/base.py +++ b/libs/community/langchain_community/tools/playwright/base.py @@ -1,10 +1,10 @@ from __future__ import annotations -from typing import TYPE_CHECKING, Optional, Tuple, Type +from typing import TYPE_CHECKING, Any, Optional, Tuple, Type -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import guard_import +from pydantic import model_validator if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser @@ -38,8 +38,9 @@ class BaseBrowserTool(BaseTool): sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None - @root_validator(pre=True) - def validate_browser_provided(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_browser_provided(cls, values: dict) -> Any: """Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: diff --git a/libs/community/langchain_community/tools/playwright/click.py b/libs/community/langchain_community/tools/playwright/click.py index 5cf5cdda148ee..22c6a23bf9c33 100644 --- a/libs/community/langchain_community/tools/playwright/click.py +++ b/libs/community/langchain_community/tools/playwright/click.py @@ -6,7 +6,7 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( diff --git a/libs/community/langchain_community/tools/playwright/current_page.py b/libs/community/langchain_community/tools/playwright/current_page.py index 9ea5e0e1f9dd9..94abcaf1f1c25 100644 --- a/libs/community/langchain_community/tools/playwright/current_page.py +++ b/libs/community/langchain_community/tools/playwright/current_page.py @@ -6,7 +6,7 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( diff --git a/libs/community/langchain_community/tools/playwright/extract_hyperlinks.py b/libs/community/langchain_community/tools/playwright/extract_hyperlinks.py index 0dcd3fd2e06b6..00a5e290274b5 100644 --- a/libs/community/langchain_community/tools/playwright/extract_hyperlinks.py +++ b/libs/community/langchain_community/tools/playwright/extract_hyperlinks.py @@ -7,7 +7,7 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, Field, model_validator from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( @@ -35,8 +35,9 @@ class ExtractHyperlinksTool(BaseBrowserTool): description: str = "Extract all hyperlinks on the current webpage" args_schema: Type[BaseModel] = ExtractHyperlinksToolInput - @root_validator(pre=True) - def check_bs_import(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def check_bs_import(cls, values: dict) -> Any: """Check that the arguments are valid.""" try: from bs4 import BeautifulSoup # noqa: F401 diff --git a/libs/community/langchain_community/tools/playwright/extract_text.py b/libs/community/langchain_community/tools/playwright/extract_text.py index 0cf112b0fb2e0..b04e367952afa 100644 --- a/libs/community/langchain_community/tools/playwright/extract_text.py +++ b/libs/community/langchain_community/tools/playwright/extract_text.py @@ -1,12 +1,12 @@ from __future__ import annotations -from typing import Optional, Type +from typing import Any, Optional, Type from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( @@ -22,8 +22,9 @@ class ExtractTextTool(BaseBrowserTool): description: str = "Extract all the text on the current webpage" args_schema: Type[BaseModel] = BaseModel - @root_validator(pre=True) - def check_acheck_bs_importrgs(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def check_acheck_bs_importrgs(cls, values: dict) -> Any: """Check that the arguments are valid.""" try: from bs4 import BeautifulSoup # noqa: F401 diff --git a/libs/community/langchain_community/tools/playwright/get_elements.py b/libs/community/langchain_community/tools/playwright/get_elements.py index 3b88529fc7588..11e43c01696aa 100644 --- a/libs/community/langchain_community/tools/playwright/get_elements.py +++ b/libs/community/langchain_community/tools/playwright/get_elements.py @@ -7,7 +7,7 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( diff --git a/libs/community/langchain_community/tools/playwright/navigate.py b/libs/community/langchain_community/tools/playwright/navigate.py index 82f6349ff064a..2bfe2be4fd7d8 100644 --- a/libs/community/langchain_community/tools/playwright/navigate.py +++ b/libs/community/langchain_community/tools/playwright/navigate.py @@ -7,7 +7,7 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field, validator +from pydantic import BaseModel, Field, model_validator from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( @@ -21,13 +21,15 @@ class NavigateToolInput(BaseModel): url: str = Field(..., description="url to navigate to") - @validator("url") - def validate_url_scheme(cls, url: str) -> str: + @model_validator(mode="before") + @classmethod + def validate_url_scheme(cls, values: dict) -> dict: """Check that the URL scheme is valid.""" + url = values.get("url") parsed_url = urlparse(url) if parsed_url.scheme not in ("http", "https"): raise ValueError("URL scheme must be 'http' or 'https'") - return url + return values class NavigateTool(BaseBrowserTool): diff --git a/libs/community/langchain_community/tools/playwright/navigate_back.py b/libs/community/langchain_community/tools/playwright/navigate_back.py index 5988fa7fe894a..908e20bd57100 100644 --- a/libs/community/langchain_community/tools/playwright/navigate_back.py +++ b/libs/community/langchain_community/tools/playwright/navigate_back.py @@ -6,7 +6,7 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( diff --git a/libs/community/langchain_community/tools/plugin.py b/libs/community/langchain_community/tools/plugin.py index 0966ed5bedee2..102451e72dade 100644 --- a/libs/community/langchain_community/tools/plugin.py +++ b/libs/community/langchain_community/tools/plugin.py @@ -9,8 +9,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel from langchain_core.tools import BaseTool +from pydantic import BaseModel class ApiConfig(BaseModel): diff --git a/libs/community/langchain_community/tools/polygon/aggregates.py b/libs/community/langchain_community/tools/polygon/aggregates.py index e4c07761727f9..26cb62d4677de 100644 --- a/libs/community/langchain_community/tools/polygon/aggregates.py +++ b/libs/community/langchain_community/tools/polygon/aggregates.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.polygon import PolygonAPIWrapper diff --git a/libs/community/langchain_community/tools/polygon/financials.py b/libs/community/langchain_community/tools/polygon/financials.py index aae19cad06ab7..8400e7498b469 100644 --- a/libs/community/langchain_community/tools/polygon/financials.py +++ b/libs/community/langchain_community/tools/polygon/financials.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel from langchain_core.tools import BaseTool +from pydantic import BaseModel from langchain_community.utilities.polygon import PolygonAPIWrapper diff --git a/libs/community/langchain_community/tools/polygon/last_quote.py b/libs/community/langchain_community/tools/polygon/last_quote.py index ce6ebe750ea57..76c768113b3b5 100644 --- a/libs/community/langchain_community/tools/polygon/last_quote.py +++ b/libs/community/langchain_community/tools/polygon/last_quote.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel from langchain_core.tools import BaseTool +from pydantic import BaseModel from langchain_community.utilities.polygon import PolygonAPIWrapper diff --git a/libs/community/langchain_community/tools/polygon/ticker_news.py b/libs/community/langchain_community/tools/polygon/ticker_news.py index 9d858ebc8f498..d4c4a2017abbd 100644 --- a/libs/community/langchain_community/tools/polygon/ticker_news.py +++ b/libs/community/langchain_community/tools/polygon/ticker_news.py @@ -1,8 +1,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel from langchain_core.tools import BaseTool +from pydantic import BaseModel from langchain_community.utilities.polygon import PolygonAPIWrapper diff --git a/libs/community/langchain_community/tools/powerbi/tool.py b/libs/community/langchain_community/tools/powerbi/tool.py index 2a2602f28ad9f..c5ec51e5b52e6 100644 --- a/libs/community/langchain_community/tools/powerbi/tool.py +++ b/libs/community/langchain_community/tools/powerbi/tool.py @@ -8,8 +8,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import Field, validator from langchain_core.tools import BaseTool +from pydantic import ConfigDict, Field, model_validator from langchain_community.chat_models.openai import _import_tiktoken from langchain_community.tools.powerbi.prompt import ( @@ -31,7 +31,7 @@ class QueryPowerBITool(BaseTool): Example Input: "How many rows are in table1?" """ # noqa: E501 - llm_chain: Any + llm_chain: Any = None powerbi: PowerBIDataset = Field(exclude=True) examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True) @@ -39,21 +39,24 @@ class QueryPowerBITool(BaseTool): output_token_limit: int = 4000 tiktoken_model_name: Optional[str] = None # "cl100k_base" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @validator("llm_chain") + @model_validator(mode="before") + @classmethod def validate_llm_chain_input_variables( # pylint: disable=E0213 - cls, llm_chain: Any - ) -> Any: + cls, values: dict + ) -> dict: """Make sure the LLM chain has the correct input variables.""" + llm_chain = values["llm_chain"] for var in llm_chain.prompt.input_variables: if var not in ["tool_input", "tables", "schemas", "examples"]: raise ValueError( "LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: E501 # pylint: disable=C0301 llm_chain.prompt.input_variables, ) - return llm_chain + return values def _check_cache(self, tool_input: str) -> Optional[str]: """Check if the input is present in the cache. @@ -225,8 +228,9 @@ class InfoPowerBITool(BaseTool): """ # noqa: E501 powerbi: PowerBIDataset = Field(exclude=True) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _run( self, @@ -251,8 +255,9 @@ class ListPowerBITool(BaseTool): description: str = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301 powerbi: PowerBIDataset = Field(exclude=True) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _run( self, diff --git a/libs/community/langchain_community/tools/pubmed/tool.py b/libs/community/langchain_community/tools/pubmed/tool.py index 7eda0fd3a5778..fe8338635449f 100644 --- a/libs/community/langchain_community/tools/pubmed/tool.py +++ b/libs/community/langchain_community/tools/pubmed/tool.py @@ -1,8 +1,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.pubmed import PubMedAPIWrapper diff --git a/libs/community/langchain_community/tools/reddit_search/tool.py b/libs/community/langchain_community/tools/reddit_search/tool.py index e245286e840b4..fc823c2b23dcd 100644 --- a/libs/community/langchain_community/tools/reddit_search/tool.py +++ b/libs/community/langchain_community/tools/reddit_search/tool.py @@ -3,8 +3,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.reddit_search import RedditSearchAPIWrapper diff --git a/libs/community/langchain_community/tools/requests/tool.py b/libs/community/langchain_community/tools/requests/tool.py index 49c2b1734f514..c91b348053f0e 100644 --- a/libs/community/langchain_community/tools/requests/tool.py +++ b/libs/community/langchain_community/tools/requests/tool.py @@ -4,7 +4,7 @@ import json from typing import Any, Dict, Optional, Union -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, diff --git a/libs/community/langchain_community/tools/riza/command.py b/libs/community/langchain_community/tools/riza/command.py index cfc36865768af..f0fbe382d46cd 100644 --- a/libs/community/langchain_community/tools/riza/command.py +++ b/libs/community/langchain_community/tools/riza/command.py @@ -10,8 +10,8 @@ from langchain_core.callbacks import ( CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool, ToolException +from pydantic import BaseModel, Field class ExecPythonInput(BaseModel): diff --git a/libs/community/langchain_community/tools/scenexplain/tool.py b/libs/community/langchain_community/tools/scenexplain/tool.py index 94ed70e699102..fdc085ab1c8fd 100644 --- a/libs/community/langchain_community/tools/scenexplain/tool.py +++ b/libs/community/langchain_community/tools/scenexplain/tool.py @@ -3,8 +3,8 @@ from typing import Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.scenexplain import SceneXplainAPIWrapper diff --git a/libs/community/langchain_community/tools/searchapi/tool.py b/libs/community/langchain_community/tools/searchapi/tool.py index 5e7f5e8917cff..205d59880deaa 100644 --- a/libs/community/langchain_community/tools/searchapi/tool.py +++ b/libs/community/langchain_community/tools/searchapi/tool.py @@ -6,8 +6,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.utilities.searchapi import SearchApiAPIWrapper diff --git a/libs/community/langchain_community/tools/searx_search/tool.py b/libs/community/langchain_community/tools/searx_search/tool.py index db8bca859c3b4..d16739e88f2f1 100644 --- a/libs/community/langchain_community/tools/searx_search/tool.py +++ b/libs/community/langchain_community/tools/searx_search/tool.py @@ -6,8 +6,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, ConfigDict, Field from langchain_community.utilities.searx_search import SearxSearchWrapper @@ -62,8 +62,9 @@ class SearxSearchResults(BaseTool): kwargs: dict = Field(default_factory=dict) args_schema: Type[BaseModel] = SearxSearchQueryInput - class Config: - extra = "allow" + model_config = ConfigDict( + extra="allow", + ) def _run( self, diff --git a/libs/community/langchain_community/tools/semanticscholar/tool.py b/libs/community/langchain_community/tools/semanticscholar/tool.py index d9bf773ea9368..ce53fa4bab525 100644 --- a/libs/community/langchain_community/tools/semanticscholar/tool.py +++ b/libs/community/langchain_community/tools/semanticscholar/tool.py @@ -3,8 +3,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.semanticscholar import SemanticScholarAPIWrapper diff --git a/libs/community/langchain_community/tools/shell/tool.py b/libs/community/langchain_community/tools/shell/tool.py index cbc77ea16ffa6..c4ff4d1b60596 100644 --- a/libs/community/langchain_community/tools/shell/tool.py +++ b/libs/community/langchain_community/tools/shell/tool.py @@ -6,8 +6,8 @@ from langchain_core.callbacks import ( CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field, model_validator logger = logging.getLogger(__name__) @@ -21,8 +21,9 @@ class ShellInput(BaseModel): ) """List of shell commands to run.""" - @root_validator(pre=True) - def _validate_commands(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def _validate_commands(cls, values: dict) -> Any: """Validate commands.""" # TODO: Add real validators commands = values.get("commands") diff --git a/libs/community/langchain_community/tools/slack/base.py b/libs/community/langchain_community/tools/slack/base.py index 1b87779490729..6579e6ce44e30 100644 --- a/libs/community/langchain_community/tools/slack/base.py +++ b/libs/community/langchain_community/tools/slack/base.py @@ -4,8 +4,8 @@ from typing import TYPE_CHECKING -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain_community.tools.slack.utils import login diff --git a/libs/community/langchain_community/tools/slack/get_message.py b/libs/community/langchain_community/tools/slack/get_message.py index 06ec9a9f57031..733f16979e428 100644 --- a/libs/community/langchain_community/tools/slack/get_message.py +++ b/libs/community/langchain_community/tools/slack/get_message.py @@ -3,7 +3,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.slack.base import SlackBaseTool diff --git a/libs/community/langchain_community/tools/slack/schedule_message.py b/libs/community/langchain_community/tools/slack/schedule_message.py index 90edc9bcb9d71..c4a561f5aae17 100644 --- a/libs/community/langchain_community/tools/slack/schedule_message.py +++ b/libs/community/langchain_community/tools/slack/schedule_message.py @@ -3,7 +3,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.slack.base import SlackBaseTool from langchain_community.tools.slack.utils import UTC_FORMAT diff --git a/libs/community/langchain_community/tools/slack/send_message.py b/libs/community/langchain_community/tools/slack/send_message.py index c5e8a875ad0fe..87223830d431a 100644 --- a/libs/community/langchain_community/tools/slack/send_message.py +++ b/libs/community/langchain_community/tools/slack/send_message.py @@ -1,7 +1,7 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.tools.slack.base import SlackBaseTool diff --git a/libs/community/langchain_community/tools/sleep/tool.py b/libs/community/langchain_community/tools/sleep/tool.py index 27ea267e6e930..e39a272a79f79 100644 --- a/libs/community/langchain_community/tools/sleep/tool.py +++ b/libs/community/langchain_community/tools/sleep/tool.py @@ -8,8 +8,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field class SleepInput(BaseModel): diff --git a/libs/community/langchain_community/tools/spark_sql/tool.py b/libs/community/langchain_community/tools/spark_sql/tool.py index 7c40bebf17b70..91bbc87f29549 100644 --- a/libs/community/langchain_community/tools/spark_sql/tool.py +++ b/libs/community/langchain_community/tools/spark_sql/tool.py @@ -3,7 +3,7 @@ from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, Field, root_validator, model_validator, ConfigDict from langchain_core.language_models import BaseLanguageModel from langchain_core.callbacks import ( @@ -21,8 +21,9 @@ class BaseSparkSQLTool(BaseModel): db: SparkSQL = Field(exclude=True) - class Config(BaseTool.Config): - pass + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) class QuerySparkSQLTool(BaseSparkSQLTool, BaseTool): @@ -92,8 +93,9 @@ class QueryCheckerTool(BaseSparkSQLTool, BaseTool): Always use this tool before executing a query with query_sql_db! """ - @root_validator(pre=True) - def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def initialize_llm_chain(cls, values: Dict[str, Any]) -> Any: if "llm_chain" not in values: from langchain.chains.llm import LLMChain diff --git a/libs/community/langchain_community/tools/sql_database/tool.py b/libs/community/langchain_community/tools/sql_database/tool.py index be89eefbf0912..1bc119860d6ed 100644 --- a/libs/community/langchain_community/tools/sql_database/tool.py +++ b/libs/community/langchain_community/tools/sql_database/tool.py @@ -5,7 +5,7 @@ from sqlalchemy.engine import Result -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, Field, root_validator, model_validator, ConfigDict from langchain_core.language_models import BaseLanguageModel from langchain_core.callbacks import ( @@ -23,8 +23,9 @@ class BaseSQLDatabaseTool(BaseModel): db: SQLDatabase = Field(exclude=True) - class Config(BaseTool.Config): - pass + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) class _QuerySQLDataBaseToolInput(BaseModel): @@ -117,8 +118,9 @@ class QuerySQLCheckerTool(BaseSQLDatabaseTool, BaseTool): """ args_schema: Type[BaseModel] = _QuerySQLCheckerToolInput - @root_validator(pre=True) - def initialize_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def initialize_llm_chain(cls, values: Dict[str, Any]) -> Any: if "llm_chain" not in values: from langchain.chains.llm import LLMChain diff --git a/libs/community/langchain_community/tools/steamship_image_generation/tool.py b/libs/community/langchain_community/tools/steamship_image_generation/tool.py index 20d3956209f7e..ea1c4b6860df0 100644 --- a/libs/community/langchain_community/tools/steamship_image_generation/tool.py +++ b/libs/community/langchain_community/tools/steamship_image_generation/tool.py @@ -15,12 +15,12 @@ from __future__ import annotations from enum import Enum -from typing import TYPE_CHECKING, Dict, Optional +from typing import TYPE_CHECKING, Any, Dict, Optional from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool from langchain_core.utils import get_from_dict_or_env +from pydantic import model_validator from langchain_community.tools.steamship_image_generation.utils import make_image_public @@ -56,8 +56,9 @@ class SteamshipImageGenerationTool(BaseTool): "Output: the UUID of a generated image" ) - @root_validator(pre=True) - def validate_size(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_size(cls, values: Dict) -> Any: if "size" in values: size = values["size"] model_name = values["model_name"] @@ -66,8 +67,9 @@ def validate_size(cls, values: Dict) -> Dict: return values - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" steamship_api_key = get_from_dict_or_env( values, "steamship_api_key", "STEAMSHIP_API_KEY" diff --git a/libs/community/langchain_community/tools/tavily_search/tool.py b/libs/community/langchain_community/tools/tavily_search/tool.py index 6a5b246dd1e86..53164d9340698 100644 --- a/libs/community/langchain_community/tools/tavily_search/tool.py +++ b/libs/community/langchain_community/tools/tavily_search/tool.py @@ -6,8 +6,8 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper diff --git a/libs/community/langchain_community/tools/vectorstore/tool.py b/libs/community/langchain_community/tools/vectorstore/tool.py index 7f9b965f08cc8..e2479929df6ba 100644 --- a/libs/community/langchain_community/tools/vectorstore/tool.py +++ b/libs/community/langchain_community/tools/vectorstore/tool.py @@ -8,9 +8,9 @@ CallbackManagerForToolRun, ) from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool from langchain_core.vectorstores import VectorStore +from pydantic import BaseModel, ConfigDict, Field from langchain_community.llms.openai import OpenAI @@ -21,8 +21,9 @@ class BaseVectorStoreTool(BaseModel): vectorstore: VectorStore = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) - class Config(BaseTool.Config): - pass + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]: diff --git a/libs/community/langchain_community/tools/wikipedia/tool.py b/libs/community/langchain_community/tools/wikipedia/tool.py index 66af94e41a055..127117f89d642 100644 --- a/libs/community/langchain_community/tools/wikipedia/tool.py +++ b/libs/community/langchain_community/tools/wikipedia/tool.py @@ -3,8 +3,8 @@ from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.wikipedia import WikipediaAPIWrapper diff --git a/libs/community/langchain_community/tools/yahoo_finance_news.py b/libs/community/langchain_community/tools/yahoo_finance_news.py index 4e120e45ce41b..7c844f0c59052 100644 --- a/libs/community/langchain_community/tools/yahoo_finance_news.py +++ b/libs/community/langchain_community/tools/yahoo_finance_news.py @@ -2,8 +2,8 @@ from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from requests.exceptions import HTTPError, ReadTimeout from urllib3.exceptions import ConnectionError diff --git a/libs/community/langchain_community/tools/you/tool.py b/libs/community/langchain_community/tools/you/tool.py index 949eca08274d7..59990e71ff545 100644 --- a/libs/community/langchain_community/tools/you/tool.py +++ b/libs/community/langchain_community/tools/you/tool.py @@ -5,8 +5,8 @@ CallbackManagerForToolRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field from langchain_community.utilities.you import YouSearchAPIWrapper diff --git a/libs/community/langchain_community/tools/zapier/tool.py b/libs/community/langchain_community/tools/zapier/tool.py index 7cc97132a7c13..44d7fb04c0af7 100644 --- a/libs/community/langchain_community/tools/zapier/tool.py +++ b/libs/community/langchain_community/tools/zapier/tool.py @@ -75,9 +75,9 @@ AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool from langchain_core.utils import pre_init +from pydantic import Field from langchain_community.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT from langchain_community.utilities.zapier import ZapierNLAWrapper diff --git a/libs/community/langchain_community/tools/zenguard/tool.py b/libs/community/langchain_community/tools/zenguard/tool.py index f7ddbc4defd4b..f577b07984708 100644 --- a/libs/community/langchain_community/tools/zenguard/tool.py +++ b/libs/community/langchain_community/tools/zenguard/tool.py @@ -1,10 +1,10 @@ import os from enum import Enum -from typing import Any, Dict, List, Optional +from typing import Any, Dict, List, Optional, Type import requests -from langchain_core.pydantic_v1 import BaseModel, Field, ValidationError, validator from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field, ValidationError, validator class Detector(str, Enum): @@ -30,13 +30,12 @@ class DetectorAPI(str, Enum): class ZenGuardInput(BaseModel): prompts: List[str] = Field( ..., - min_items=1, min_length=1, description="Prompt to check", ) detectors: List[Detector] = Field( ..., - min_items=1, + min_length=1, description="List of detectors by which you want to check the prompt", ) in_parallel: bool = Field( @@ -50,7 +49,7 @@ class ZenGuardTool(BaseTool): description: str = ( "ZenGuard AI integration package. ZenGuard AI - the fastest GenAI guardrails." ) - args_schema = ZenGuardInput + args_schema: Type[BaseModel] = ZenGuardInput return_direct: bool = True zenguard_api_key: Optional[str] = Field(default=None) @@ -70,6 +69,19 @@ def set_api_key(cls, v: str) -> str: ) return v + @property + def _api_key(self) -> str: + if self.zenguard_api_key is None: + raise ValueError( + "API key is required for the ZenGuardTool. " + "Please provide the API key by either:\n" + "1. Manually specifying it when initializing the tool: " + "ZenGuardTool(zenguard_api_key='your_api_key')\n" + "2. Setting it as an environment variable:" + f" {self._ZENGUARD_API_KEY_ENV_NAME}" + ) + return self.zenguard_api_key + def _run( self, prompts: List[str], @@ -92,7 +104,7 @@ def _run( response = requests.post( self._ZENGUARD_API_URL_ROOT + postfix, json=json, - headers={"x-api-key": self.zenguard_api_key}, + headers={"x-api-key": self._api_key}, timeout=5, ) response.raise_for_status() diff --git a/libs/community/langchain_community/utilities/alpha_vantage.py b/libs/community/langchain_community/utilities/alpha_vantage.py index 59eb65ac910dc..e6354affbfae0 100644 --- a/libs/community/langchain_community/utilities/alpha_vantage.py +++ b/libs/community/langchain_community/utilities/alpha_vantage.py @@ -3,8 +3,8 @@ from typing import Any, Dict, List, Optional import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class AlphaVantageAPIWrapper(BaseModel): @@ -18,11 +18,13 @@ class AlphaVantageAPIWrapper(BaseModel): alphavantage_api_key: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" values["alphavantage_api_key"] = get_from_dict_or_env( values, "alphavantage_api_key", "ALPHAVANTAGE_API_KEY" diff --git a/libs/community/langchain_community/utilities/apify.py b/libs/community/langchain_community/utilities/apify.py index f80deb496d4d3..077bcc12b2985 100644 --- a/libs/community/langchain_community/utilities/apify.py +++ b/libs/community/langchain_community/utilities/apify.py @@ -1,8 +1,8 @@ from typing import TYPE_CHECKING, Any, Callable, Dict, Optional from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, model_validator if TYPE_CHECKING: from langchain_community.document_loaders import ApifyDatasetLoader @@ -19,8 +19,9 @@ class ApifyWrapper(BaseModel): apify_client_async: Any apify_api_token: Optional[str] = None - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate environment. Validate that an Apify API token is set and the apify-client Python package exists in the current environment. diff --git a/libs/community/langchain_community/utilities/arcee.py b/libs/community/langchain_community/utilities/arcee.py index 3064fd16b4d6d..badbf9cdc9139 100644 --- a/libs/community/langchain_community/utilities/arcee.py +++ b/libs/community/langchain_community/utilities/arcee.py @@ -6,8 +6,8 @@ from typing import Any, Dict, List, Literal, Mapping, Optional, Union import requests -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.retrievers import Document +from pydantic import BaseModel, SecretStr, model_validator class ArceeRoute(str, Enum): @@ -51,8 +51,9 @@ class DALMFilter(BaseModel): value: str _is_metadata: bool = False - @root_validator(pre=True) - def set_meta(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def set_meta(cls, values: Dict) -> Any: """document and name are reserved arcee keys. Anything else is metadata""" values["_is_meta"] = values.get("field_name") not in ["document", "name"] return values diff --git a/libs/community/langchain_community/utilities/arxiv.py b/libs/community/langchain_community/utilities/arxiv.py index 55767a339b723..a4c6cf5aceaad 100644 --- a/libs/community/langchain_community/utilities/arxiv.py +++ b/libs/community/langchain_community/utilities/arxiv.py @@ -6,7 +6,7 @@ from typing import Any, Dict, Iterator, List, Optional from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator logger = logging.getLogger(__name__) @@ -73,8 +73,9 @@ def is_arxiv_identifier(self, query: str) -> bool: return False return True - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: import arxiv diff --git a/libs/community/langchain_community/utilities/asknews.py b/libs/community/langchain_community/utilities/asknews.py index 4f7051bbc1be5..5a3eaa2340d3a 100644 --- a/libs/community/langchain_community/utilities/asknews.py +++ b/libs/community/langchain_community/utilities/asknews.py @@ -5,25 +5,27 @@ from datetime import datetime, timedelta from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class AskNewsAPIWrapper(BaseModel): """Wrapper for AskNews API.""" - asknews_sync: Any #: :meta private: - asknews_async: Any #: :meta private: + asknews_sync: Any = None #: :meta private: + asknews_async: Any = None #: :meta private: asknews_client_id: Optional[str] = None """Client ID for the AskNews API.""" asknews_client_secret: Optional[str] = None """Client Secret for the AskNews API.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api credentials and python package exists in environment.""" asknews_client_id = get_from_dict_or_env( diff --git a/libs/community/langchain_community/utilities/awslambda.py b/libs/community/langchain_community/utilities/awslambda.py index 1bc77295061b7..72e584d4ce602 100644 --- a/libs/community/langchain_community/utilities/awslambda.py +++ b/libs/community/langchain_community/utilities/awslambda.py @@ -3,7 +3,7 @@ import json from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator class LambdaWrapper(BaseModel): @@ -21,7 +21,7 @@ class LambdaWrapper(BaseModel): """ - lambda_client: Any #: :meta private: + lambda_client: Any = None #: :meta private: """The configured boto3 client""" function_name: Optional[str] = None """The name of your lambda function""" @@ -30,11 +30,13 @@ class LambdaWrapper(BaseModel): awslambda_tool_description: Optional[str] = None """If passing to an agent as a tool, the description""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that python package exists in environment.""" try: diff --git a/libs/community/langchain_community/utilities/bibtex.py b/libs/community/langchain_community/utilities/bibtex.py index 101b88bfaac86..a3bf82ab73889 100644 --- a/libs/community/langchain_community/utilities/bibtex.py +++ b/libs/community/langchain_community/utilities/bibtex.py @@ -3,7 +3,7 @@ import logging from typing import Any, Dict, List, Mapping -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator logger = logging.getLogger(__name__) @@ -36,11 +36,13 @@ class BibtexparserWrapper(BaseModel): a bibtex file and fetch document summaries. """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: import bibtexparser # noqa diff --git a/libs/community/langchain_community/utilities/bing_search.py b/libs/community/langchain_community/utilities/bing_search.py index ee85cbe216bb8..a3dc03fdea9b5 100644 --- a/libs/community/langchain_community/utilities/bing_search.py +++ b/libs/community/langchain_community/utilities/bing_search.py @@ -1,10 +1,10 @@ """Util that calls Bing Search.""" -from typing import Dict, List +from typing import Any, Dict, List import requests -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, Field, model_validator # BING_SEARCH_ENDPOINT is the default endpoint for Bing Web Search API. # Currently There are two web-based Bing Search services available on Azure, @@ -34,8 +34,9 @@ class BingSearchAPIWrapper(BaseModel): search_kwargs: dict = Field(default_factory=dict) """Additional keyword arguments to pass to the search request.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _bing_search_results(self, search_term: str, count: int) -> List[dict]: headers = {"Ocp-Apim-Subscription-Key": self.bing_subscription_key} @@ -57,8 +58,9 @@ def _bing_search_results(self, search_term: str, count: int) -> List[dict]: return search_results["webPages"]["value"] return [] - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" bing_subscription_key = get_from_dict_or_env( values, "bing_subscription_key", "BING_SUBSCRIPTION_KEY" diff --git a/libs/community/langchain_community/utilities/brave_search.py b/libs/community/langchain_community/utilities/brave_search.py index cb822e55f43d1..41dd9015f2e40 100644 --- a/libs/community/langchain_community/utilities/brave_search.py +++ b/libs/community/langchain_community/utilities/brave_search.py @@ -3,7 +3,7 @@ import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field class BraveSearchWrapper(BaseModel): diff --git a/libs/community/langchain_community/utilities/cassandra_database.py b/libs/community/langchain_community/utilities/cassandra_database.py index 90eba0cae1b16..4ec1973b1668e 100644 --- a/libs/community/langchain_community/utilities/cassandra_database.py +++ b/libs/community/langchain_community/utilities/cassandra_database.py @@ -5,7 +5,8 @@ import re from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple, Union -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, ConfigDict, Field, model_validator +from typing_extensions import Self if TYPE_CHECKING: from cassandra.cluster import ResultSet, Session @@ -480,16 +481,17 @@ class Table(BaseModel): clustering: List[Tuple[str, str]] = Field(default_factory=list) indexes: List[Tuple[str, str, str]] = Field(default_factory=list) - class Config: - frozen = True + model_config = ConfigDict( + frozen=True, + ) - @root_validator(pre=False, skip_on_failure=True) - def check_required_fields(cls, class_values: dict) -> dict: - if not class_values["columns"]: + @model_validator(mode="after") + def check_required_fields(self) -> Self: + if not self.columns: raise ValueError("non-empty column list for must be provided") - if not class_values["partition"]: + if not self.partition: raise ValueError("non-empty partition list must be provided") - return class_values + return self @classmethod def from_database( diff --git a/libs/community/langchain_community/utilities/clickup.py b/libs/community/langchain_community/utilities/clickup.py index 2c099a8623a78..f5f00b22a0884 100644 --- a/libs/community/langchain_community/utilities/clickup.py +++ b/libs/community/langchain_community/utilities/clickup.py @@ -6,8 +6,8 @@ from typing import Any, Dict, List, Mapping, Optional, Tuple, Type, Union import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator DEFAULT_URL = "https://api.clickup.com/api/v2" @@ -282,8 +282,9 @@ class ClickupAPIWrapper(BaseModel): folder_id: Optional[str] = None list_id: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @classmethod def get_access_code_url( @@ -321,8 +322,9 @@ def get_access_token( return data["access_token"] - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["access_token"] = get_from_dict_or_env( values, "access_token", "CLICKUP_ACCESS_TOKEN" diff --git a/libs/community/langchain_community/utilities/dalle_image_generator.py b/libs/community/langchain_community/utilities/dalle_image_generator.py index 6ce9b3b5686b8..ba7970effa6c4 100644 --- a/libs/community/langchain_community/utilities/dalle_image_generator.py +++ b/libs/community/langchain_community/utilities/dalle_image_generator.py @@ -1,14 +1,15 @@ """Utility that calls OpenAI's Dall-E Image Generator.""" import logging -import os from typing import Any, Dict, Mapping, Optional, Tuple, Union -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import ( - get_from_dict_or_env, + from_env, get_pydantic_field_names, + secret_from_env, ) +from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator +from typing_extensions import Self from langchain_community.utils.openai import is_openai_v1 @@ -26,19 +27,32 @@ class DallEAPIWrapper(BaseModel): 2. save your OPENAI_API_KEY in an environment variable """ - client: Any #: :meta private: + client: Any = None #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="dall-e-2", alias="model") model_kwargs: Dict[str, Any] = Field(default_factory=dict) - openai_api_key: Optional[str] = Field(default=None, alias="api_key") + openai_api_key: SecretStr = Field( + alias="api_key", + default_factory=secret_from_env( + "OPENAI_API_KEY", + default=None, + ), + ) """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" - openai_api_base: Optional[str] = Field(default=None, alias="base_url") + openai_api_base: Optional[str] = Field( + alias="base_url", default_factory=from_env("OPENAI_API_BASE", default=None) + ) """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" - openai_organization: Optional[str] = Field(default=None, alias="organization") + openai_organization: Optional[str] = Field( + alias="organization", + default_factory=from_env( + ["OPENAI_ORG_ID", "OPENAI_ORGANIZATION"], default=None + ), + ) """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" # to support explicit proxy for OpenAI - openai_proxy: Optional[str] = None + openai_proxy: str = Field(default_factory=from_env("OPENAI_PROXY", default="")) request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) @@ -59,11 +73,11 @@ class DallEAPIWrapper(BaseModel): http_client: Union[Any, None] = None """Optional httpx.Client.""" - class Config: - extra = "forbid" + model_config = ConfigDict(extra="forbid", protected_namespaces=()) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -88,29 +102,9 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["model_kwargs"] = extra return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - values["openai_api_key"] = get_from_dict_or_env( - values, "openai_api_key", "OPENAI_API_KEY" - ) - # Check OPENAI_ORGANIZATION for backwards compatibility. - values["openai_organization"] = ( - values["openai_organization"] - or os.getenv("OPENAI_ORG_ID") - or os.getenv("OPENAI_ORGANIZATION") - or None - ) - values["openai_api_base"] = values["openai_api_base"] or os.getenv( - "OPENAI_API_BASE" - ) - values["openai_proxy"] = get_from_dict_or_env( - values, - "openai_proxy", - "OPENAI_PROXY", - default="", - ) - try: import openai @@ -122,25 +116,25 @@ def validate_environment(cls, values: Dict) -> Dict: if is_openai_v1(): client_params = { - "api_key": values["openai_api_key"], - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], - "http_client": values["http_client"], + "api_key": self.openai_api_key, + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, + "http_client": self.http_client, } - if not values.get("client"): - values["client"] = openai.OpenAI(**client_params).images - if not values.get("async_client"): - values["async_client"] = openai.AsyncOpenAI(**client_params).images - elif not values.get("client"): - values["client"] = openai.Image + if not self.client: + self.client = openai.OpenAI(**client_params).images + if not self.async_client: + self.async_client = openai.AsyncOpenAI(**client_params).images + elif not self.client: + self.client = openai.Image else: pass - return values + return self def run(self, query: str) -> str: """Run query through OpenAI and parse result.""" diff --git a/libs/community/langchain_community/utilities/dataforseo_api_search.py b/libs/community/langchain_community/utilities/dataforseo_api_search.py index 4c705dabcbf97..7e0c7e085db90 100644 --- a/libs/community/langchain_community/utilities/dataforseo_api_search.py +++ b/libs/community/langchain_community/utilities/dataforseo_api_search.py @@ -1,19 +1,20 @@ import base64 -from typing import Dict, Optional +from typing import Any, Dict, Optional from urllib.parse import quote import aiohttp import requests -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, Field, model_validator class DataForSeoAPIWrapper(BaseModel): """Wrapper around the DataForSeo API.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) default_params: dict = Field( default={ @@ -40,8 +41,9 @@ class Config: aiosession: Optional[aiohttp.ClientSession] = None """The aiohttp session to use for the DataForSEO SERP API.""" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that login and password exists in environment.""" login = get_from_dict_or_env(values, "api_login", "DATAFORSEO_LOGIN") password = get_from_dict_or_env(values, "api_password", "DATAFORSEO_PASSWORD") diff --git a/libs/community/langchain_community/utilities/dataherald.py b/libs/community/langchain_community/utilities/dataherald.py index fd0c28aeff648..84ad9d831326c 100644 --- a/libs/community/langchain_community/utilities/dataherald.py +++ b/libs/community/langchain_community/utilities/dataherald.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class DataheraldAPIWrapper(BaseModel): @@ -18,15 +18,17 @@ class DataheraldAPIWrapper(BaseModel): """ - dataherald_client: Any #: :meta private: + dataherald_client: Any = None #: :meta private: db_connection_id: str dataherald_api_key: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" dataherald_api_key = get_from_dict_or_env( values, "dataherald_api_key", "DATAHERALD_API_KEY" diff --git a/libs/community/langchain_community/utilities/duckduckgo_search.py b/libs/community/langchain_community/utilities/duckduckgo_search.py index 1d69f47c19c85..d8017c28ae661 100644 --- a/libs/community/langchain_community/utilities/duckduckgo_search.py +++ b/libs/community/langchain_community/utilities/duckduckgo_search.py @@ -4,9 +4,9 @@ https://pypi.org/project/duckduckgo-search/ """ -from typing import Dict, List, Optional +from typing import Any, Dict, List, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator class DuckDuckGoSearchAPIWrapper(BaseModel): @@ -37,11 +37,13 @@ class DuckDuckGoSearchAPIWrapper(BaseModel): Options: text, news """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that python package exists in environment.""" try: from duckduckgo_search import DDGS # noqa: F401 diff --git a/libs/community/langchain_community/utilities/financial_datasets.py b/libs/community/langchain_community/utilities/financial_datasets.py index d8e769442e1e3..1d51182aa6762 100644 --- a/libs/community/langchain_community/utilities/financial_datasets.py +++ b/libs/community/langchain_community/utilities/financial_datasets.py @@ -7,8 +7,8 @@ from typing import Any, List, Optional import requests -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel FINANCIAL_DATASETS_BASE_URL = "https://api.financialdatasets.ai/" @@ -24,6 +24,18 @@ def __init__(self, **data: Any): data, "financial_datasets_api_key", "FINANCIAL_DATASETS_API_KEY" ) + @property + def _api_key(self) -> str: + if self.financial_datasets_api_key is None: + raise ValueError( + "API key is required for the FinancialDatasetsAPIWrapper. " + "Please provide the API key by either:\n" + "1. Manually specifying it when initializing the wrapper: " + "FinancialDatasetsAPIWrapper(financial_datasets_api_key='your_api_key')\n" + "2. Setting it as an environment variable: FINANCIAL_DATASETS_API_KEY" + ) + return self.financial_datasets_api_key + def get_income_statements( self, ticker: str, @@ -47,7 +59,7 @@ def get_income_statements( ) # Add the api key to the headers - headers = {"X-API-KEY": self.financial_datasets_api_key} + headers = {"X-API-KEY": self._api_key} # Execute the request response = requests.get(url, headers=headers) @@ -78,7 +90,7 @@ def get_balance_sheets( ) # Add the api key to the headers - headers = {"X-API-KEY": self.financial_datasets_api_key} + headers = {"X-API-KEY": self._api_key} # Execute the request response = requests.get(url, headers=headers) @@ -110,7 +122,7 @@ def get_cash_flow_statements( ) # Add the api key to the headers - headers = {"X-API-KEY": self.financial_datasets_api_key} + headers = {"X-API-KEY": self._api_key} # Execute the request response = requests.get(url, headers=headers) diff --git a/libs/community/langchain_community/utilities/github.py b/libs/community/langchain_community/utilities/github.py index f650fd2b46898..56426ca8343bb 100644 --- a/libs/community/langchain_community/utilities/github.py +++ b/libs/community/langchain_community/utilities/github.py @@ -6,8 +6,8 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator if TYPE_CHECKING: from github.Issue import Issue @@ -29,19 +29,21 @@ def _import_tiktoken() -> Any: class GitHubAPIWrapper(BaseModel): """Wrapper for GitHub API.""" - github: Any #: :meta private: - github_repo_instance: Any #: :meta private: + github: Any = None #: :meta private: + github_repo_instance: Any = None #: :meta private: github_repository: Optional[str] = None github_app_id: Optional[str] = None github_app_private_key: Optional[str] = None active_branch: Optional[str] = None github_base_branch: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" github_repository = get_from_dict_or_env( values, "github_repository", "GITHUB_REPOSITORY" @@ -490,7 +492,7 @@ def add_to_dict(data_dict: Dict[str, Any], key: str, value: str) -> None: response_dict: Dict[str, str] = {} add_to_dict(response_dict, "title", pull.title) add_to_dict(response_dict, "number", str(pr_number)) - add_to_dict(response_dict, "body", pull.body) + add_to_dict(response_dict, "body", pull.body if pull.body else "") comments: List[str] = [] page = 0 diff --git a/libs/community/langchain_community/utilities/gitlab.py b/libs/community/langchain_community/utilities/gitlab.py index 4907958d8f77b..1dd5894fe7a67 100644 --- a/libs/community/langchain_community/utilities/gitlab.py +++ b/libs/community/langchain_community/utilities/gitlab.py @@ -5,8 +5,8 @@ import json from typing import TYPE_CHECKING, Any, Dict, List, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator if TYPE_CHECKING: from gitlab.v4.objects import Issue @@ -15,8 +15,8 @@ class GitLabAPIWrapper(BaseModel): """Wrapper for GitLab API.""" - gitlab: Any #: :meta private: - gitlab_repo_instance: Any #: :meta private: + gitlab: Any = None #: :meta private: + gitlab_repo_instance: Any = None #: :meta private: gitlab_repository: Optional[str] = None """The name of the GitLab repository, in the form {username}/{repo-name}.""" gitlab_personal_access_token: Optional[str] = None @@ -30,11 +30,13 @@ class GitLabAPIWrapper(BaseModel): Usually 'main' or 'master'. Defaults to 'main'. """ - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" gitlab_url = get_from_dict_or_env( diff --git a/libs/community/langchain_community/utilities/golden_query.py b/libs/community/langchain_community/utilities/golden_query.py index 6e0204eef24f4..74cad57f64418 100644 --- a/libs/community/langchain_community/utilities/golden_query.py +++ b/libs/community/langchain_community/utilities/golden_query.py @@ -1,11 +1,11 @@ """Util that calls Golden.""" import json -from typing import Dict, Optional +from typing import Any, Dict, Optional import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator GOLDEN_BASE_URL = "https://golden.com" GOLDEN_TIMEOUT = 5000 @@ -24,11 +24,13 @@ class GoldenQueryAPIWrapper(BaseModel): golden_api_key: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" golden_api_key = get_from_dict_or_env( values, "golden_api_key", "GOLDEN_API_KEY" diff --git a/libs/community/langchain_community/utilities/google_finance.py b/libs/community/langchain_community/utilities/google_finance.py index da35a2383edea..c5def13a5749d 100644 --- a/libs/community/langchain_community/utilities/google_finance.py +++ b/libs/community/langchain_community/utilities/google_finance.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Optional, cast -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator class GoogleFinanceAPIWrapper(BaseModel): @@ -22,14 +22,16 @@ class GoogleFinanceAPIWrapper(BaseModel): google_Finance.run('langchain') """ - serp_search_engine: Any + serp_search_engine: Any = None serp_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["serp_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "serp_api_key", "SERPAPI_API_KEY") diff --git a/libs/community/langchain_community/utilities/google_jobs.py b/libs/community/langchain_community/utilities/google_jobs.py index bd7be4c7fd220..51d9e9d201166 100644 --- a/libs/community/langchain_community/utilities/google_jobs.py +++ b/libs/community/langchain_community/utilities/google_jobs.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Optional, cast -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator class GoogleJobsAPIWrapper(BaseModel): @@ -22,14 +22,16 @@ class GoogleJobsAPIWrapper(BaseModel): google_Jobs.run('langchain') """ - serp_search_engine: Any + serp_search_engine: Any = None serp_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["serp_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "serp_api_key", "SERPAPI_API_KEY") diff --git a/libs/community/langchain_community/utilities/google_lens.py b/libs/community/langchain_community/utilities/google_lens.py index 34bab1def7988..ac2a8ae8a12b6 100644 --- a/libs/community/langchain_community/utilities/google_lens.py +++ b/libs/community/langchain_community/utilities/google_lens.py @@ -3,8 +3,8 @@ from typing import Any, Dict, Optional, cast import requests -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator class GoogleLensAPIWrapper(BaseModel): @@ -27,14 +27,16 @@ class GoogleLensAPIWrapper(BaseModel): google_lens.run('langchain') """ - serp_search_engine: Any + serp_search_engine: Any = None serp_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["serp_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "serp_api_key", "SERPAPI_API_KEY") diff --git a/libs/community/langchain_community/utilities/google_places_api.py b/libs/community/langchain_community/utilities/google_places_api.py index 5143aeb9e6095..b0c6f152bd26b 100644 --- a/libs/community/langchain_community/utilities/google_places_api.py +++ b/libs/community/langchain_community/utilities/google_places_api.py @@ -4,8 +4,8 @@ from typing import Any, Dict, Optional from langchain_core._api.deprecation import deprecated -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator @deprecated( @@ -34,15 +34,17 @@ class GooglePlacesAPIWrapper(BaseModel): """ gplaces_api_key: Optional[str] = None - google_map_client: Any #: :meta private: + google_map_client: Any = None #: :meta private: top_k_results: Optional[int] = None - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key is in your environment variable.""" gplaces_api_key = get_from_dict_or_env( values, "gplaces_api_key", "GPLACES_API_KEY" diff --git a/libs/community/langchain_community/utilities/google_scholar.py b/libs/community/langchain_community/utilities/google_scholar.py index e2c0445fd2944..ffc94848a61a5 100644 --- a/libs/community/langchain_community/utilities/google_scholar.py +++ b/libs/community/langchain_community/utilities/google_scholar.py @@ -1,9 +1,9 @@ """Util that calls Google Scholar Search.""" -from typing import Dict, Optional +from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class GoogleScholarAPIWrapper(BaseModel): @@ -46,11 +46,13 @@ class GoogleScholarAPIWrapper(BaseModel): lr: str = "lang_en" serp_api_key: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" serp_api_key = get_from_dict_or_env(values, "serp_api_key", "SERP_API_KEY") values["SERP_API_KEY"] = serp_api_key diff --git a/libs/community/langchain_community/utilities/google_search.py b/libs/community/langchain_community/utilities/google_search.py index 997df2f9acf88..2037b34c8d244 100644 --- a/libs/community/langchain_community/utilities/google_search.py +++ b/libs/community/langchain_community/utilities/google_search.py @@ -3,8 +3,8 @@ from typing import Any, Dict, List, Optional from langchain_core._api.deprecation import deprecated -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator @deprecated( @@ -51,14 +51,15 @@ class GoogleSearchAPIWrapper(BaseModel): """ - search_engine: Any #: :meta private: + search_engine: Any = None #: :meta private: google_api_key: Optional[str] = None google_cse_id: Optional[str] = None k: int = 10 siterestrict: bool = False - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _google_search_results(self, search_term: str, **kwargs: Any) -> List[dict]: cse = self.search_engine.cse() @@ -67,8 +68,9 @@ def _google_search_results(self, search_term: str, **kwargs: Any) -> List[dict]: res = cse.list(q=search_term, cx=self.google_cse_id, **kwargs).execute() return res.get("items", []) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" google_api_key = get_from_dict_or_env( values, "google_api_key", "GOOGLE_API_KEY" diff --git a/libs/community/langchain_community/utilities/google_serper.py b/libs/community/langchain_community/utilities/google_serper.py index 442ad4bf44584..49f75eaf275b8 100644 --- a/libs/community/langchain_community/utilities/google_serper.py +++ b/libs/community/langchain_community/utilities/google_serper.py @@ -4,8 +4,8 @@ import aiohttp import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator from typing_extensions import Literal @@ -31,7 +31,7 @@ class GoogleSerperAPIWrapper(BaseModel): # "places" and "images" is available from Serper but not implemented in the # parser of run(). They can be used in results() type: Literal["news", "search", "places", "images"] = "search" - result_key_for_type = { + result_key_for_type: dict = { "news": "news", "places": "places", "images": "images", @@ -42,11 +42,13 @@ class GoogleSerperAPIWrapper(BaseModel): serper_api_key: Optional[str] = None aiosession: Optional[aiohttp.ClientSession] = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" serper_api_key = get_from_dict_or_env( values, "serper_api_key", "SERPER_API_KEY" diff --git a/libs/community/langchain_community/utilities/google_trends.py b/libs/community/langchain_community/utilities/google_trends.py index 7ad121a09b59b..00f790d91c88c 100644 --- a/libs/community/langchain_community/utilities/google_trends.py +++ b/libs/community/langchain_community/utilities/google_trends.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Optional, cast -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator class GoogleTrendsAPIWrapper(BaseModel): @@ -26,14 +26,16 @@ class GoogleTrendsAPIWrapper(BaseModel): google_trends.run('langchain') """ - serp_search_engine: Any + serp_search_engine: Any = None serp_api_key: Optional[SecretStr] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["serp_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "serp_api_key", "SERPAPI_API_KEY") diff --git a/libs/community/langchain_community/utilities/graphql.py b/libs/community/langchain_community/utilities/graphql.py index 2b27357305df6..efe9a3581e733 100644 --- a/libs/community/langchain_community/utilities/graphql.py +++ b/libs/community/langchain_community/utilities/graphql.py @@ -1,7 +1,7 @@ import json from typing import Any, Callable, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator class GraphQLAPIWrapper(BaseModel): @@ -14,14 +14,16 @@ class GraphQLAPIWrapper(BaseModel): custom_headers: Optional[Dict[str, str]] = None fetch_schema_from_transport: Optional[bool] = None graphql_endpoint: str - gql_client: Any #: :meta private: + gql_client: Any = None #: :meta private: gql_function: Callable[[str], Any] #: :meta private: - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in the environment.""" try: from gql import Client, gql diff --git a/libs/community/langchain_community/utilities/infobip.py b/libs/community/langchain_community/utilities/infobip.py index f73e73b81f46d..a036627daa46e 100644 --- a/libs/community/langchain_community/utilities/infobip.py +++ b/libs/community/langchain_community/utilities/infobip.py @@ -1,10 +1,10 @@ """Util that sends messages via Infobip.""" -from typing import Dict, List, Optional +from typing import Any, Dict, List, Optional import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator from requests.adapters import HTTPAdapter from urllib3.util import Retry @@ -15,11 +15,13 @@ class InfobipAPIWrapper(BaseModel): infobip_api_key: Optional[str] = None infobip_base_url: Optional[str] = "https://api.infobip.com" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" values["infobip_api_key"] = get_from_dict_or_env( values, "infobip_api_key", "INFOBIP_API_KEY" diff --git a/libs/community/langchain_community/utilities/jina_search.py b/libs/community/langchain_community/utilities/jina_search.py index eba067a11b2c8..b35b31f6830ad 100644 --- a/libs/community/langchain_community/utilities/jina_search.py +++ b/libs/community/langchain_community/utilities/jina_search.py @@ -3,7 +3,7 @@ import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from yarl import URL diff --git a/libs/community/langchain_community/utilities/jira.py b/libs/community/langchain_community/utilities/jira.py index 1657f13234e1f..d96b72efb1815 100644 --- a/libs/community/langchain_community/utilities/jira.py +++ b/libs/community/langchain_community/utilities/jira.py @@ -2,26 +2,28 @@ from typing import Any, Dict, List, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator # TODO: think about error handling, more specific api specs, and jql/project limits class JiraAPIWrapper(BaseModel): """Wrapper for Jira API.""" - jira: Any #: :meta private: - confluence: Any + jira: Any = None #: :meta private: + confluence: Any = None jira_username: Optional[str] = None jira_api_token: Optional[str] = None jira_instance_url: Optional[str] = None jira_cloud: Optional[bool] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" jira_username = get_from_dict_or_env( values, "jira_username", "JIRA_USERNAME", default="" diff --git a/libs/community/langchain_community/utilities/merriam_webster.py b/libs/community/langchain_community/utilities/merriam_webster.py index bf02a7ce1961a..8cf9e18a107e8 100644 --- a/libs/community/langchain_community/utilities/merriam_webster.py +++ b/libs/community/langchain_community/utilities/merriam_webster.py @@ -1,12 +1,12 @@ """Util that calls Merriam-Webster.""" import json -from typing import Dict, Iterator, List, Optional +from typing import Any, Dict, Iterator, List, Optional from urllib.parse import quote import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator MERRIAM_WEBSTER_API_URL = ( "https://www.dictionaryapi.com/api/v3/references/collegiate/json" @@ -28,11 +28,13 @@ class MerriamWebsterAPIWrapper(BaseModel): merriam_webster_api_key: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" merriam_webster_api_key = get_from_dict_or_env( values, "merriam_webster_api_key", "MERRIAM_WEBSTER_API_KEY" diff --git a/libs/community/langchain_community/utilities/metaphor_search.py b/libs/community/langchain_community/utilities/metaphor_search.py index 4269d6c31c751..cbfab0d35e8ee 100644 --- a/libs/community/langchain_community/utilities/metaphor_search.py +++ b/libs/community/langchain_community/utilities/metaphor_search.py @@ -4,12 +4,12 @@ """ import json -from typing import Dict, List, Optional +from typing import Any, Dict, List, Optional import aiohttp import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator METAPHOR_API_URL = "https://api.metaphor.systems" @@ -20,8 +20,9 @@ class MetaphorSearchAPIWrapper(BaseModel): metaphor_api_key: str k: int = 10 - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _metaphor_search_results( self, @@ -58,8 +59,9 @@ def _metaphor_search_results( search_results = response.json() return search_results["results"] - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" metaphor_api_key = get_from_dict_or_env( values, "metaphor_api_key", "METAPHOR_API_KEY" diff --git a/libs/community/langchain_community/utilities/mojeek_search.py b/libs/community/langchain_community/utilities/mojeek_search.py index 8f48059dcb9c3..eb5e688cbb667 100644 --- a/libs/community/langchain_community/utilities/mojeek_search.py +++ b/libs/community/langchain_community/utilities/mojeek_search.py @@ -2,7 +2,7 @@ from typing import List import requests -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field class MojeekSearchAPIWrapper(BaseModel): diff --git a/libs/community/langchain_community/utilities/nasa.py b/libs/community/langchain_community/utilities/nasa.py index a0e2904f875ed..2726cae8c1dbe 100644 --- a/libs/community/langchain_community/utilities/nasa.py +++ b/libs/community/langchain_community/utilities/nasa.py @@ -3,7 +3,7 @@ import json import requests -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel IMAGE_AND_VIDEO_LIBRARY_URL = "https://images-api.nasa.gov" diff --git a/libs/community/langchain_community/utilities/nvidia_riva.py b/libs/community/langchain_community/utilities/nvidia_riva.py index c3c887b14f079..40a788a85f70e 100644 --- a/libs/community/langchain_community/utilities/nvidia_riva.py +++ b/libs/community/langchain_community/utilities/nvidia_riva.py @@ -25,7 +25,8 @@ from langchain_core.messages import AnyMessage, BaseMessage from langchain_core.prompt_values import PromptValue -from langchain_core.pydantic_v1 import ( +from langchain_core.runnables import RunnableConfig, RunnableSerializable +from pydantic import ( AnyHttpUrl, BaseModel, Field, @@ -33,7 +34,6 @@ root_validator, validator, ) -from langchain_core.runnables import RunnableConfig, RunnableSerializable if TYPE_CHECKING: import riva.client @@ -110,7 +110,7 @@ class RivaAuthMixin(BaseModel): """Configuration for the authentication to a Riva service connection.""" url: Union[AnyHttpUrl, str] = Field( - AnyHttpUrl("http://localhost:50051", scheme="http"), + AnyHttpUrl("http://localhost:50051"), description="The full URL where the Riva service can be found.", examples=["http://localhost:50051", "https://user@pass:riva.example.com"], ) @@ -471,7 +471,8 @@ def _get_service(self) -> "riva.client.ASRService": def invoke( self, input: ASRInputType, - _: Optional[RunnableConfig] = None, + config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> ASROutputType: """Transcribe the audio bytes into a string with Riva.""" # create an output text generator with Riva @@ -567,7 +568,10 @@ def _get_service(self) -> "riva.client.SpeechSynthesisService": ) from err def invoke( - self, input: TTSInputType, _: Union[RunnableConfig, None] = None + self, + input: TTSInputType, + config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> TTSOutputType: """Perform TTS by taking a string and outputting the entire audio file.""" return b"".join(self.transform(iter([input]))) diff --git a/libs/community/langchain_community/utilities/openapi.py b/libs/community/langchain_community/utilities/openapi.py index 6bd9182713a8b..1d99f7e182301 100644 --- a/libs/community/langchain_community/utilities/openapi.py +++ b/libs/community/langchain_community/utilities/openapi.py @@ -12,7 +12,7 @@ import requests import yaml -from langchain_core.pydantic_v1 import ValidationError +from pydantic import ValidationError logger = logging.getLogger(__name__) diff --git a/libs/community/langchain_community/utilities/openweathermap.py b/libs/community/langchain_community/utilities/openweathermap.py index 07f4517038af5..a08cf3c7c25cf 100644 --- a/libs/community/langchain_community/utilities/openweathermap.py +++ b/libs/community/langchain_community/utilities/openweathermap.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class OpenWeatherMapAPIWrapper(BaseModel): @@ -16,14 +16,16 @@ class OpenWeatherMapAPIWrapper(BaseModel): 3. pip install pyowm """ - owm: Any + owm: Any = None openweathermap_api_key: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" openweathermap_api_key = get_from_dict_or_env( values, "openweathermap_api_key", "OPENWEATHERMAP_API_KEY" diff --git a/libs/community/langchain_community/utilities/outline.py b/libs/community/langchain_community/utilities/outline.py index 152c69a8fe0c1..a1106bd4f29ed 100644 --- a/libs/community/langchain_community/utilities/outline.py +++ b/libs/community/langchain_community/utilities/outline.py @@ -5,8 +5,8 @@ import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, model_validator logger = logging.getLogger(__name__) @@ -28,8 +28,9 @@ class OutlineAPIWrapper(BaseModel): outline_api_key: Optional[str] = None outline_search_endpoint: str = "/api/documents.search" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that instance url and api key exists in environment.""" outline_instance_url = get_from_dict_or_env( values, "outline_instance_url", "OUTLINE_INSTANCE_URL" diff --git a/libs/community/langchain_community/utilities/passio_nutrition_ai.py b/libs/community/langchain_community/utilities/passio_nutrition_ai.py index d4854c348ba39..41caef5eb0079 100644 --- a/libs/community/langchain_community/utilities/passio_nutrition_ai.py +++ b/libs/community/langchain_community/utilities/passio_nutrition_ai.py @@ -4,8 +4,8 @@ from typing import Any, Callable, Dict, Optional, final import requests -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, Field, model_validator class NoDiskStorage: @@ -120,9 +120,10 @@ class NutritionAIAPI(BaseModel): more_kwargs: dict = Field(default_factory=dict) auth_: ManagedPassioLifeAuth - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @retry( retry=retry_if_result(is_http_retryable), @@ -144,8 +145,9 @@ def _api_call_results(self, search_term: str) -> dict: rsp.raise_for_status() return rsp.json() - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" nutritionai_subscription_key = get_from_dict_or_env( values, "nutritionai_subscription_key", "NUTRITIONAI_SUBSCRIPTION_KEY" diff --git a/libs/community/langchain_community/utilities/pebblo.py b/libs/community/langchain_community/utilities/pebblo.py index eacf90ed8aaff..65d5d207e1f97 100644 --- a/libs/community/langchain_community/utilities/pebblo.py +++ b/libs/community/langchain_community/utilities/pebblo.py @@ -11,8 +11,8 @@ from langchain_core.documents import Document from langchain_core.env import get_runtime_environment -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel from requests import Response, request from requests.exceptions import RequestException @@ -154,6 +154,8 @@ class Doc(BaseModel): """Owner of the source of the loader.""" classifier_location: str """Location of the classifier.""" + anonymize_snippets: bool + """Whether to anonymize snippets going into VectorDB and the generated reports""" def get_full_path(path: str) -> str: @@ -424,6 +426,8 @@ class PebbloLoaderAPIWrapper(BaseModel): """URL of the Pebblo Classifier""" cloud_url: Optional[str] """URL of the Pebblo Cloud""" + anonymize_snippets: bool = False + """Whether to anonymize snippets going into VectorDB and the generated reports""" def __init__(self, **kwargs: Any): """Validate that api key in environment.""" @@ -522,6 +526,8 @@ def classify_documents( # If local classifier is used add the classified information # and remove doc content self.update_doc_data(payload["docs"], classified_docs) + # Remove the anonymize_snippets key from payload + payload.pop("anonymize_snippets", None) self.send_docs_to_pebblo_cloud(payload) elif self.classifier_location == "pebblo-cloud": logger.warning("API key is missing for sending docs to Pebblo cloud.") @@ -599,6 +605,7 @@ def build_classification_payload( "loading_end": "false", "source_owner": source_owner, "classifier_location": self.classifier_location, + "anonymize_snippets": self.anonymize_snippets, } if loading_end is True: payload["loading_end"] = "true" diff --git a/libs/community/langchain_community/utilities/polygon.py b/libs/community/langchain_community/utilities/polygon.py index 36e21abefcaad..c7ab49f405467 100644 --- a/libs/community/langchain_community/utilities/polygon.py +++ b/libs/community/langchain_community/utilities/polygon.py @@ -7,8 +7,8 @@ from typing import Any, Dict, Optional import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, model_validator POLYGON_BASE_URL = "https://api.polygon.io/" @@ -18,8 +18,9 @@ class PolygonAPIWrapper(BaseModel): polygon_api_key: Optional[str] = None - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key in environment.""" polygon_api_key = get_from_dict_or_env( values, "polygon_api_key", "POLYGON_API_KEY" diff --git a/libs/community/langchain_community/utilities/powerbi.py b/libs/community/langchain_community/utilities/powerbi.py index 0390ffcab0897..7c3c1a1eaa6a5 100644 --- a/libs/community/langchain_community/utilities/powerbi.py +++ b/libs/community/langchain_community/utilities/powerbi.py @@ -10,7 +10,12 @@ import aiohttp import requests from aiohttp import ClientTimeout, ServerTimeoutError -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator, validator +from pydantic import ( + BaseModel, + ConfigDict, + Field, + model_validator, +) from requests.exceptions import Timeout logger = logging.getLogger(__name__) @@ -40,17 +45,16 @@ class PowerBIDataset(BaseModel): schemas: Dict[str, str] = Field(default_factory=dict) aiosession: Optional[aiohttp.ClientSession] = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @validator("table_names", allow_reuse=True) - def fix_table_names(cls, table_names: List[str]) -> List[str]: - """Fix the table names.""" - return [fix_table_name(table) for table in table_names] - - @root_validator(pre=True) - def token_or_credential_present(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def validate_params(cls, values: Dict[str, Any]) -> Any: """Validate that at least one of token and credentials is present.""" + table_names = values.get("table_names", []) + values["table_names"] = [fix_table_name(table) for table in table_names] if "token" in values or "credential" in values: return values raise ValueError("Please provide either a credential or a token.") diff --git a/libs/community/langchain_community/utilities/pubmed.py b/libs/community/langchain_community/utilities/pubmed.py index ab541b02b31f3..e3b23cfa0adfb 100644 --- a/libs/community/langchain_community/utilities/pubmed.py +++ b/libs/community/langchain_community/utilities/pubmed.py @@ -7,7 +7,7 @@ from typing import Any, Dict, Iterator, List from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator logger = logging.getLogger(__name__) @@ -48,8 +48,9 @@ class PubMedAPIWrapper(BaseModel): doc_content_chars_max: int = 2000 email: str = "your_email@example.com" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: import xmltodict diff --git a/libs/community/langchain_community/utilities/reddit_search.py b/libs/community/langchain_community/utilities/reddit_search.py index 6192c033b3672..ae4300c5109f8 100644 --- a/libs/community/langchain_community/utilities/reddit_search.py +++ b/libs/community/langchain_community/utilities/reddit_search.py @@ -2,8 +2,8 @@ from typing import Any, Dict, List, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, model_validator class RedditSearchAPIWrapper(BaseModel): @@ -30,8 +30,9 @@ class RedditSearchAPIWrapper(BaseModel): reddit_client_secret: Optional[str] reddit_user_agent: Optional[str] - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the API ID, secret and user agent exists in environment and check that praw module is present. """ diff --git a/libs/community/langchain_community/utilities/rememberizer.py b/libs/community/langchain_community/utilities/rememberizer.py index 03d7a3a40a906..402b76ee0126e 100644 --- a/libs/community/langchain_community/utilities/rememberizer.py +++ b/libs/community/langchain_community/utilities/rememberizer.py @@ -1,11 +1,11 @@ """Wrapper for Rememberizer APIs.""" -from typing import Dict, List, Optional, cast +from typing import Any, Dict, List, Optional, cast import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, model_validator class RememberizerAPIWrapper(BaseModel): @@ -14,8 +14,9 @@ class RememberizerAPIWrapper(BaseModel): top_k_results: int = 10 rememberizer_api_key: Optional[str] = None - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key in environment.""" rememberizer_api_key = get_from_dict_or_env( values, "rememberizer_api_key", "REMEMBERIZER_API_KEY" diff --git a/libs/community/langchain_community/utilities/requests.py b/libs/community/langchain_community/utilities/requests.py index 59d37221b1880..d23218e116281 100644 --- a/libs/community/langchain_community/utilities/requests.py +++ b/libs/community/langchain_community/utilities/requests.py @@ -5,7 +5,7 @@ import aiohttp import requests -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict from requests import Response @@ -21,9 +21,10 @@ class Requests(BaseModel): auth: Optional[Any] = None verify: Optional[bool] = True - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) def get(self, url: str, **kwargs: Any) -> requests.Response: """GET the URL and return the text.""" @@ -145,9 +146,10 @@ class GenericRequestsWrapper(BaseModel): response_content_type: Literal["text", "json"] = "text" verify: bool = True - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def requests(self) -> Requests: diff --git a/libs/community/langchain_community/utilities/scenexplain.py b/libs/community/langchain_community/utilities/scenexplain.py index 82c35a06091c2..30eff00fdfb14 100644 --- a/libs/community/langchain_community/utilities/scenexplain.py +++ b/libs/community/langchain_community/utilities/scenexplain.py @@ -6,14 +6,14 @@ - Navigate to the API Access page (https://scenex.jina.ai/api) and create a new API key. """ -from typing import Dict +from typing import Any, Dict import requests -from langchain_core.pydantic_v1 import BaseModel, BaseSettings, Field, root_validator -from langchain_core.utils import get_from_dict_or_env +from langchain_core.utils import from_env, get_from_dict_or_env +from pydantic import BaseModel, Field, model_validator -class SceneXplainAPIWrapper(BaseSettings, BaseModel): +class SceneXplainAPIWrapper(BaseModel): """Wrapper for SceneXplain API. In order to set this up, you need API key for the SceneXplain API. @@ -23,7 +23,7 @@ class SceneXplainAPIWrapper(BaseSettings, BaseModel): and create a new API key. """ - scenex_api_key: str = Field(..., env="SCENEX_API_KEY") + scenex_api_key: str = Field(..., default_factory=from_env("SCENEX_API_KEY")) scenex_api_url: str = "https://api.scenex.jina.ai/v1/describe" def _describe_image(self, image: str) -> str: @@ -47,8 +47,9 @@ def _describe_image(self, image: str) -> str: return img.get("text", "") - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" scenex_api_key = get_from_dict_or_env( values, "scenex_api_key", "SCENEX_API_KEY" diff --git a/libs/community/langchain_community/utilities/searchapi.py b/libs/community/langchain_community/utilities/searchapi.py index c4edcd8fb0be4..9e08df68d94da 100644 --- a/libs/community/langchain_community/utilities/searchapi.py +++ b/libs/community/langchain_community/utilities/searchapi.py @@ -2,8 +2,8 @@ import aiohttp import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class SearchApiAPIWrapper(BaseModel): @@ -27,11 +27,13 @@ class SearchApiAPIWrapper(BaseModel): searchapi_api_key: Optional[str] = None aiosession: Optional[aiohttp.ClientSession] = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that API key exists in environment.""" searchapi_api_key = get_from_dict_or_env( values, "searchapi_api_key", "SEARCHAPI_API_KEY" diff --git a/libs/community/langchain_community/utilities/searx_search.py b/libs/community/langchain_community/utilities/searx_search.py index 5debde2dfef8d..7fdd54b52f375 100644 --- a/libs/community/langchain_community/utilities/searx_search.py +++ b/libs/community/langchain_community/utilities/searx_search.py @@ -132,14 +132,14 @@ import aiohttp import requests -from langchain_core.pydantic_v1 import ( +from langchain_core.utils import get_from_dict_or_env +from pydantic import ( BaseModel, + ConfigDict, Field, PrivateAttr, - root_validator, - validator, + model_validator, ) -from langchain_core.utils import get_from_dict_or_env def _get_default_params() -> dict: @@ -214,22 +214,9 @@ class SearxSearchWrapper(BaseModel): k: int = 10 aiosession: Optional[Any] = None - @validator("unsecure") - def disable_ssl_warnings(cls, v: bool) -> bool: - """Disable SSL warnings.""" - if v: - # requests.urllib3.disable_warnings() - try: - import urllib3 - - urllib3.disable_warnings() - except ImportError as e: - print(e) # noqa: T201 - - return v - - @root_validator(pre=True) - def validate_params(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_params(cls, values: Dict) -> Any: """Validate that custom searx params are merged with default ones.""" user_params = values.get("params", {}) default = _get_default_params() @@ -252,13 +239,13 @@ def validate_params(cls, values: Dict) -> Dict: searx_host = "https://" + searx_host elif searx_host.startswith("http://"): values["unsecure"] = True - cls.disable_ssl_warnings(True) values["searx_host"] = searx_host return values - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _searx_api_query(self, params: dict) -> SearxResults: """Actual request to searx API.""" diff --git a/libs/community/langchain_community/utilities/semanticscholar.py b/libs/community/langchain_community/utilities/semanticscholar.py index 14a9333c6b85e..896b0e599c360 100644 --- a/libs/community/langchain_community/utilities/semanticscholar.py +++ b/libs/community/langchain_community/utilities/semanticscholar.py @@ -1,9 +1,9 @@ """Utils for interacting with the Semantic Scholar API.""" import logging -from typing import Any, Dict, Optional +from typing import Any, Dict, List, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator logger = logging.getLogger(__name__) @@ -39,7 +39,7 @@ class SemanticScholarAPIWrapper(BaseModel): S2_MAX_QUERY_LENGTH: int = 300 load_max_docs: int = 100 doc_content_chars_max: Optional[int] = 4000 - returned_fields = [ + returned_fields: List[str] = [ "title", "abstract", "venue", @@ -51,8 +51,9 @@ class SemanticScholarAPIWrapper(BaseModel): "externalIds", ] - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: from semanticscholar import SemanticScholar diff --git a/libs/community/langchain_community/utilities/serpapi.py b/libs/community/langchain_community/utilities/serpapi.py index c3152a06d0cbc..1b5c2208936ce 100644 --- a/libs/community/langchain_community/utilities/serpapi.py +++ b/libs/community/langchain_community/utilities/serpapi.py @@ -8,8 +8,8 @@ from typing import Any, Dict, Optional, Tuple import aiohttp -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, Field, model_validator class HiddenPrints: @@ -40,7 +40,7 @@ class SerpAPIWrapper(BaseModel): serpapi = SerpAPIWrapper() """ - search_engine: Any #: :meta private: + search_engine: Any = None #: :meta private: params: dict = Field( default={ "engine": "google", @@ -52,12 +52,14 @@ class SerpAPIWrapper(BaseModel): serpapi_api_key: Optional[str] = None aiosession: Optional[aiohttp.ClientSession] = None - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" serpapi_api_key = get_from_dict_or_env( values, "serpapi_api_key", "SERPAPI_API_KEY" diff --git a/libs/community/langchain_community/utilities/stackexchange.py b/libs/community/langchain_community/utilities/stackexchange.py index 777022cdc828a..80288a6765603 100644 --- a/libs/community/langchain_community/utilities/stackexchange.py +++ b/libs/community/langchain_community/utilities/stackexchange.py @@ -1,13 +1,13 @@ import html from typing import Any, Dict, Literal -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator +from pydantic import BaseModel, Field, model_validator class StackExchangeAPIWrapper(BaseModel): """Wrapper for Stack Exchange API.""" - client: Any #: :meta private: + client: Any = None #: :meta private: max_results: int = 3 """Max number of results to include in output.""" query_type: Literal["all", "title", "body"] = "all" @@ -19,8 +19,9 @@ class StackExchangeAPIWrapper(BaseModel): result_separator: str = "\n\n" """Separator between question,answer pairs.""" - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the required Python package exists.""" try: from stackapi import StackAPI diff --git a/libs/community/langchain_community/utilities/steam.py b/libs/community/langchain_community/utilities/steam.py index 304412d2bd4cd..96998b999e5bc 100644 --- a/libs/community/langchain_community/utilities/steam.py +++ b/libs/community/langchain_community/utilities/steam.py @@ -2,18 +2,18 @@ from typing import Any, List -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, ConfigDict, model_validator + +from langchain_community.tools.steam.prompt import ( + STEAM_GET_GAMES_DETAILS, + STEAM_GET_RECOMMENDED_GAMES, +) class SteamWebAPIWrapper(BaseModel): """Wrapper for Steam API.""" - steam: Any # for python-steam-api - - from langchain_community.tools.steam.prompt import ( - STEAM_GET_GAMES_DETAILS, - STEAM_GET_RECOMMENDED_GAMES, - ) + steam: Any = None # for python-steam-api # operations: a list of dictionaries, each representing a specific operation that # can be performed with the API @@ -30,15 +30,17 @@ class SteamWebAPIWrapper(BaseModel): }, ] - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def get_operations(self) -> List[dict]: """Return a list of operations.""" return self.operations - @root_validator(pre=True) - def validate_environment(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: dict) -> Any: """Validate api key and python package has been configured.""" # check if the python package is installed diff --git a/libs/community/langchain_community/utilities/tavily_search.py b/libs/community/langchain_community/utilities/tavily_search.py index 3c5666d0257cd..84e9815ee9ea6 100644 --- a/libs/community/langchain_community/utilities/tavily_search.py +++ b/libs/community/langchain_community/utilities/tavily_search.py @@ -5,12 +5,12 @@ """ import json -from typing import Dict, List, Optional +from typing import Any, Dict, List, Optional import aiohttp import requests -from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, SecretStr, model_validator TAVILY_API_URL = "https://api.tavily.com" @@ -20,11 +20,13 @@ class TavilySearchAPIWrapper(BaseModel): tavily_api_key: SecretStr - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" tavily_api_key = get_from_dict_or_env( values, "tavily_api_key", "TAVILY_API_KEY" diff --git a/libs/community/langchain_community/utilities/tensorflow_datasets.py b/libs/community/langchain_community/utilities/tensorflow_datasets.py index 197c2f4c0f8d1..6fe5abefcd0f6 100644 --- a/libs/community/langchain_community/utilities/tensorflow_datasets.py +++ b/libs/community/langchain_community/utilities/tensorflow_datasets.py @@ -2,7 +2,7 @@ from typing import Any, Callable, Dict, Iterator, List, Optional from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator logger = logging.getLogger(__name__) @@ -60,8 +60,9 @@ def mlqaen_example_to_document(example: dict) -> Document: sample_to_document_function: Optional[Callable[[Dict], Document]] = None dataset: Any #: :meta private: - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: import tensorflow # noqa: F401 diff --git a/libs/community/langchain_community/utilities/twilio.py b/libs/community/langchain_community/utilities/twilio.py index 5e7d6e6d8e776..c9ed0b23defdf 100644 --- a/libs/community/langchain_community/utilities/twilio.py +++ b/libs/community/langchain_community/utilities/twilio.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class TwilioAPIWrapper(BaseModel): @@ -26,7 +26,7 @@ class TwilioAPIWrapper(BaseModel): twilio.run('test', '+12484345508') """ - client: Any #: :meta private: + client: Any = None #: :meta private: account_sid: Optional[str] = None """Twilio account string identifier.""" auth_token: Optional[str] = None @@ -43,12 +43,14 @@ class TwilioAPIWrapper(BaseModel): must be empty. """ - class Config: - arbitrary_types_allowed = False - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=False, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" try: from twilio.rest import Client diff --git a/libs/community/langchain_community/utilities/wikidata.py b/libs/community/langchain_community/utilities/wikidata.py index 8ea4122d915ec..3b2d877766200 100644 --- a/libs/community/langchain_community/utilities/wikidata.py +++ b/libs/community/langchain_community/utilities/wikidata.py @@ -4,7 +4,7 @@ from typing import Any, Dict, List, Optional from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator logger = logging.getLogger(__name__) @@ -92,8 +92,9 @@ class WikidataAPIWrapper(BaseModel): wikidata_props: List[str] = DEFAULT_PROPERTIES lang: str = DEFAULT_LANG_CODE - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: from mediawikiapi import MediaWikiAPI diff --git a/libs/community/langchain_community/utilities/wikipedia.py b/libs/community/langchain_community/utilities/wikipedia.py index ede156656b119..271a165ebdeb0 100644 --- a/libs/community/langchain_community/utilities/wikipedia.py +++ b/libs/community/langchain_community/utilities/wikipedia.py @@ -4,7 +4,7 @@ from typing import Any, Dict, Iterator, List, Optional from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator +from pydantic import BaseModel, model_validator logger = logging.getLogger(__name__) @@ -27,8 +27,9 @@ class WikipediaAPIWrapper(BaseModel): load_all_available_meta: bool = False doc_content_chars_max: int = 4000 - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that the python package exists in environment.""" try: import wikipedia diff --git a/libs/community/langchain_community/utilities/wolfram_alpha.py b/libs/community/langchain_community/utilities/wolfram_alpha.py index 35fe64308e228..5565f6c28c304 100644 --- a/libs/community/langchain_community/utilities/wolfram_alpha.py +++ b/libs/community/langchain_community/utilities/wolfram_alpha.py @@ -2,8 +2,8 @@ from typing import Any, Dict, Optional -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator class WolframAlphaAPIWrapper(BaseModel): @@ -18,14 +18,16 @@ class WolframAlphaAPIWrapper(BaseModel): """ - wolfram_client: Any #: :meta private: + wolfram_client: Any = None #: :meta private: wolfram_alpha_appid: Optional[str] = None - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" wolfram_alpha_appid = get_from_dict_or_env( values, "wolfram_alpha_appid", "WOLFRAM_ALPHA_APPID" diff --git a/libs/community/langchain_community/utilities/you.py b/libs/community/langchain_community/utilities/you.py index 1cd17bdc55643..dadb2309c2f8a 100644 --- a/libs/community/langchain_community/utilities/you.py +++ b/libs/community/langchain_community/utilities/you.py @@ -10,8 +10,9 @@ import aiohttp import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, Field, model_validator +from typing_extensions import Self YOU_API_URL = "https://api.ydc-index.io" @@ -106,30 +107,31 @@ class YouSearchAPIWrapper(BaseModel): # should deprecate n_hits n_hits: Optional[int] = None - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" ydc_api_key = get_from_dict_or_env(values, "ydc_api_key", "YDC_API_KEY") values["ydc_api_key"] = ydc_api_key return values - @root_validator(pre=False, skip_on_failure=True) - def warn_if_set_fields_have_no_effect(cls, values: Dict) -> Dict: - if values["endpoint_type"] != "news": + @model_validator(mode="after") + def warn_if_set_fields_have_no_effect(self) -> Self: + if self.endpoint_type != "news": news_api_fields = ("search_lang", "ui_lang", "spellcheck") for field in news_api_fields: - if values[field]: + if getattr(self, field): warnings.warn( ( f"News API-specific field '{field}' is set but " - f"`endpoint_type=\"{values['endpoint_type']}\"`. " + f'`endpoint_type="{self.endpoint_type}"`. ' "This will have no effect." ), UserWarning, ) - if values["endpoint_type"] not in ("search", "snippet"): - if values["n_snippets_per_hit"]: + if self.endpoint_type not in ("search", "snippet"): + if self.n_snippets_per_hit: warnings.warn( ( "Field 'n_snippets_per_hit' only has effect on " @@ -137,19 +139,19 @@ def warn_if_set_fields_have_no_effect(cls, values: Dict) -> Dict: ), UserWarning, ) - return values + return self - @root_validator(pre=False, skip_on_failure=True) - def warn_if_deprecated_endpoints_are_used(cls, values: Dict) -> Dict: - if values["endpoint_type"] == "snippets": + @model_validator(mode="after") + def warn_if_deprecated_endpoints_are_used(self) -> Self: + if self.endpoint_type == "snippets": warnings.warn( ( - f"`endpoint_type=\"{values['endpoint_type']}\"` is deprecated. " + f'`endpoint_type="{self.endpoint_type}"` is deprecated. ' 'Use `endpoint_type="search"` instead.' ), DeprecationWarning, ) - return values + return self def _generate_params(self, query: str, **kwargs: Any) -> Dict: """ diff --git a/libs/community/langchain_community/utilities/zapier.py b/libs/community/langchain_community/utilities/zapier.py index 38f3ba7ff8475..56e5dc5dda4c2 100644 --- a/libs/community/langchain_community/utilities/zapier.py +++ b/libs/community/langchain_community/utilities/zapier.py @@ -17,8 +17,8 @@ import aiohttp import requests -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import BaseModel, ConfigDict, model_validator from requests import Request, Session @@ -45,8 +45,9 @@ class ZapierNLAWrapper(BaseModel): zapier_nla_oauth_access_token: str zapier_nla_api_base: str = "https://nla.zapier.com/api/v1/" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def _format_headers(self) -> Dict[str, str]: """Format headers for requests.""" @@ -108,8 +109,9 @@ def _create_action_request( # type: ignore[no-untyped-def] json=data, ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" zapier_nla_api_key_default = None diff --git a/libs/community/langchain_community/utils/ernie_functions.py b/libs/community/langchain_community/utils/ernie_functions.py index 4166de1bfd383..fcbc705e33d42 100644 --- a/libs/community/langchain_community/utils/ernie_functions.py +++ b/libs/community/langchain_community/utils/ernie_functions.py @@ -1,7 +1,7 @@ from typing import Literal, Optional, Type, TypedDict -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.json_schema import dereference_refs +from pydantic import BaseModel class FunctionDescription(TypedDict): diff --git a/libs/community/langchain_community/vectorstores/__init__.py b/libs/community/langchain_community/vectorstores/__init__.py index faa2e35b3103f..c38beea0ed6d2 100644 --- a/libs/community/langchain_community/vectorstores/__init__.py +++ b/libs/community/langchain_community/vectorstores/__init__.py @@ -230,6 +230,9 @@ from langchain_community.vectorstores.sklearn import ( SKLearnVectorStore, ) + from langchain_community.vectorstores.sqlitevec import ( + SQLiteVec, + ) from langchain_community.vectorstores.sqlitevss import ( SQLiteVSS, ) @@ -380,6 +383,7 @@ "Relyt", "Rockset", "SKLearnVectorStore", + "SQLiteVec", "SQLiteVSS", "ScaNN", "SemaDB", @@ -483,6 +487,7 @@ "Relyt": "langchain_community.vectorstores.relyt", "Rockset": "langchain_community.vectorstores.rocksetdb", "SKLearnVectorStore": "langchain_community.vectorstores.sklearn", + "SQLiteVec": "langchain_community.vectorstores.sqlitevec", "SQLiteVSS": "langchain_community.vectorstores.sqlitevss", "ScaNN": "langchain_community.vectorstores.scann", "SemaDB": "langchain_community.vectorstores.semadb", diff --git a/libs/community/langchain_community/vectorstores/apache_doris.py b/libs/community/langchain_community/vectorstores/apache_doris.py index c6c929074c02c..4d25f0a0aeb76 100644 --- a/libs/community/langchain_community/vectorstores/apache_doris.py +++ b/libs/community/langchain_community/vectorstores/apache_doris.py @@ -8,8 +8,8 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseSettings from langchain_core.vectorstores import VectorStore +from pydantic_settings import BaseSettings, SettingsConfigDict logger = logging.getLogger() DEBUG = False @@ -61,10 +61,12 @@ class ApacheDorisSettings(BaseSettings): def __getitem__(self, item: str) -> Any: return getattr(self, item) - class Config: - env_file = ".env" - env_file_encoding = "utf-8" - env_prefix = "apache_doris_" + model_config = SettingsConfigDict( + env_file=".env", + env_file_encoding="utf-8", + env_prefix="apache_doris_", + extra="ignore", + ) class ApacheDoris(VectorStore): diff --git a/libs/community/langchain_community/vectorstores/azuresearch.py b/libs/community/langchain_community/vectorstores/azuresearch.py index 4dd4eb8177038..193f6fc680e69 100644 --- a/libs/community/langchain_community/vectorstores/azuresearch.py +++ b/libs/community/langchain_community/vectorstores/azuresearch.py @@ -32,10 +32,10 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.exceptions import LangChainException -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever from langchain_core.utils import get_from_env from langchain_core.vectorstores import VectorStore +from pydantic import ConfigDict, model_validator from langchain_community.vectorstores.utils import maximal_marginal_relevance @@ -443,6 +443,12 @@ def add_texts( logger.debug("Nothing to insert, skipping.") return [] + # when `keys` are not passed in and there is `ids` in kwargs, use those instead + # base class expects `ids` passed in rather than `keys` + # https://github.com/langchain-ai/langchain/blob/4cdaca67dc51dba887289f56c6fead3c1a52f97d/libs/core/langchain_core/vectorstores/base.py#L65 + if (not keys) and ("ids" in kwargs) and (len(kwargs["ids"]) == len(embeddings)): + keys = kwargs["ids"] + return self.add_embeddings(zip(texts, embeddings), metadatas, keys=keys) async def aadd_texts( @@ -467,6 +473,12 @@ async def aadd_texts( logger.debug("Nothing to insert, skipping.") return [] + # when `keys` are not passed in and there is `ids` in kwargs, use those instead + # base class expects `ids` passed in rather than `keys` + # https://github.com/langchain-ai/langchain/blob/4cdaca67dc51dba887289f56c6fead3c1a52f97d/libs/core/langchain_core/vectorstores/base.py#L65 + if (not keys) and ("ids" in kwargs) and (len(kwargs["ids"]) == len(embeddings)): + keys = kwargs["ids"] + return await self.aadd_embeddings(zip(texts, embeddings), metadatas, keys=keys) def add_embeddings( @@ -483,9 +495,13 @@ def add_embeddings( data = [] for i, (text, embedding) in enumerate(text_embeddings): # Use provided key otherwise use default key - key = keys[i] if keys else str(uuid.uuid4()) - # Encoding key for Azure Search valid characters - key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii") + if keys: + key = keys[i] + else: + key = str(uuid.uuid4()) + # Encoding key for Azure Search valid characters + key = base64.urlsafe_b64encode(bytes(key, "utf-8")).decode("ascii") + metadata = metadatas[i] if metadatas else {} # Add data to index # Additional metadata to fields mapping @@ -1580,11 +1596,13 @@ class AzureSearchVectorStoreRetriever(BaseRetriever): "semantic_hybrid_score_threshold", ) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def validate_search_type(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_search_type(cls, values: Dict) -> Any: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] @@ -1751,6 +1769,8 @@ def _reorder_results_with_maximal_marginal_relevance( ) for result in results ] + if not docs: + return [] documents, scores, vectors = map(list, zip(*docs)) # Get the new order of results. diff --git a/libs/community/langchain_community/vectorstores/clickhouse.py b/libs/community/langchain_community/vectorstores/clickhouse.py index edea983b976e9..a285cb8445210 100644 --- a/libs/community/langchain_community/vectorstores/clickhouse.py +++ b/libs/community/langchain_community/vectorstores/clickhouse.py @@ -8,8 +8,8 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseSettings from langchain_core.vectorstores import VectorStore +from pydantic_settings import BaseSettings, SettingsConfigDict logger = logging.getLogger() @@ -95,10 +95,12 @@ class ClickhouseSettings(BaseSettings): def __getitem__(self, item: str) -> Any: return getattr(self, item) - class Config: - env_file = ".env" - env_file_encoding = "utf-8" - env_prefix = "clickhouse_" + model_config = SettingsConfigDict( + env_file=".env", + env_file_encoding="utf-8", + env_prefix="clickhouse_", + extra="ignore", + ) class Clickhouse(VectorStore): diff --git a/libs/community/langchain_community/vectorstores/docarray/base.py b/libs/community/langchain_community/vectorstores/docarray/base.py index 9f66e79bfb775..9e209ad61ebee 100644 --- a/libs/community/langchain_community/vectorstores/docarray/base.py +++ b/libs/community/langchain_community/vectorstores/docarray/base.py @@ -4,8 +4,8 @@ import numpy as np from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import Field from langchain_core.vectorstores import VectorStore +from pydantic import Field from langchain_community.vectorstores.utils import maximal_marginal_relevance @@ -51,9 +51,9 @@ def _get_doc_cls(**embeddings_params: Any) -> Type["BaseDoc"]: from docarray.typing import NdArray class DocArrayDoc(BaseDoc): - text: Optional[str] = Field(default=None, required=False) + text: Optional[str] = Field(default=None) embedding: Optional[NdArray] = Field(**embeddings_params) - metadata: Optional[dict] = Field(default=None, required=False) + metadata: Optional[dict] = Field(default=None) return DocArrayDoc diff --git a/libs/community/langchain_community/vectorstores/epsilla.py b/libs/community/langchain_community/vectorstores/epsilla.py index 011e3d5ab26f4..57c4bec26fc9b 100644 --- a/libs/community/langchain_community/vectorstores/epsilla.py +++ b/libs/community/langchain_community/vectorstores/epsilla.py @@ -65,10 +65,12 @@ def __init__( "Please install pyepsilla package with `pip install pyepsilla`." ) from e - if not isinstance(client, pyepsilla.vectordb.Client): + if not isinstance( + client, (pyepsilla.vectordb.Client, pyepsilla.cloud.client.Vectordb) + ): raise TypeError( - f"client should be an instance of pyepsilla.vectordb.Client, " - f"got {type(client)}" + "client should be an instance of pyepsilla.vectordb.Client or " + f"pyepsilla.cloud.client.Vectordb, got {type(client)}" ) self._client: vectordb.Client = client diff --git a/libs/community/langchain_community/vectorstores/kinetica.py b/libs/community/langchain_community/vectorstores/kinetica.py index 2ecca3b65e8e4..b9f987219b356 100644 --- a/libs/community/langchain_community/vectorstores/kinetica.py +++ b/libs/community/langchain_community/vectorstores/kinetica.py @@ -14,8 +14,8 @@ import numpy as np from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseSettings from langchain_core.vectorstores import VectorStore +from pydantic_settings import BaseSettings, SettingsConfigDict from langchain_community.vectorstores.utils import maximal_marginal_relevance @@ -79,10 +79,12 @@ class KineticaSettings(BaseSettings): def __getitem__(self, item: str) -> Any: return getattr(self, item) - class Config: - env_file = ".env" - env_file_encoding = "utf-8" - env_prefix = "kinetica_" + model_config = SettingsConfigDict( + env_file=".env", + env_file_encoding="utf-8", + env_prefix="kinetica_", + extra="ignore", + ) class Kinetica(VectorStore): diff --git a/libs/community/langchain_community/vectorstores/llm_rails.py b/libs/community/langchain_community/vectorstores/llm_rails.py index 3684f3b3b581c..16277161280a0 100644 --- a/libs/community/langchain_community/vectorstores/llm_rails.py +++ b/libs/community/langchain_community/vectorstores/llm_rails.py @@ -11,8 +11,8 @@ import requests from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import Field from langchain_core.vectorstores import VectorStore, VectorStoreRetriever +from pydantic import Field class LLMRails(VectorStore): diff --git a/libs/community/langchain_community/vectorstores/manticore_search.py b/libs/community/langchain_community/vectorstores/manticore_search.py index 0a452deb32197..3743e603da797 100644 --- a/libs/community/langchain_community/vectorstores/manticore_search.py +++ b/libs/community/langchain_community/vectorstores/manticore_search.py @@ -8,8 +8,8 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseSettings from langchain_core.vectorstores import VectorStore +from pydantic_settings import BaseSettings, SettingsConfigDict logger = logging.getLogger() DEFAULT_K = 4 # Number of Documents to return. @@ -56,10 +56,12 @@ def get_connection_string(self) -> str: def __getitem__(self, item: str) -> Any: return getattr(self, item) - class Config: - env_file = ".env" - env_file_encoding = "utf-8" - env_prefix = "manticore_" + model_config = SettingsConfigDict( + env_file=".env", + env_file_encoding="utf-8", + env_prefix="manticore_", + extra="ignore", + ) class ManticoreSearch(VectorStore): diff --git a/libs/community/langchain_community/vectorstores/myscale.py b/libs/community/langchain_community/vectorstores/myscale.py index b91962ed07bc2..ecd2108d419ba 100644 --- a/libs/community/langchain_community/vectorstores/myscale.py +++ b/libs/community/langchain_community/vectorstores/myscale.py @@ -8,8 +8,8 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseSettings from langchain_core.vectorstores import VectorStore +from pydantic_settings import BaseSettings, SettingsConfigDict logger = logging.getLogger() @@ -85,10 +85,12 @@ class MyScaleSettings(BaseSettings): def __getitem__(self, item: str) -> Any: return getattr(self, item) - class Config: - env_file = ".env" - env_file_encoding = "utf-8" - env_prefix = "myscale_" + model_config = SettingsConfigDict( + env_file=".env", + env_file_encoding="utf-8", + env_prefix="myscale_", + extra="ignore", + ) class MyScale(VectorStore): diff --git a/libs/community/langchain_community/vectorstores/neo4j_vector.py b/libs/community/langchain_community/vectorstores/neo4j_vector.py index 2d3eff317ad69..6f21eedd4534e 100644 --- a/libs/community/langchain_community/vectorstores/neo4j_vector.py +++ b/libs/community/langchain_community/vectorstores/neo4j_vector.py @@ -444,6 +444,18 @@ class Neo4jVector(VectorStore): embedding: Any embedding function implementing `langchain.embeddings.base.Embeddings` interface. distance_strategy: The distance strategy to use. (default: COSINE) + search_type: The type of search to be performed, either + 'vector' or 'hybrid' + node_label: The label used for nodes in the Neo4j database. + (default: "Chunk") + embedding_node_property: The property name in Neo4j to store embeddings. + (default: "embedding") + text_node_property: The property name in Neo4j to store the text. + (default: "text") + retrieval_query: The Cypher query to be used for customizing retrieval. + If empty, a default query will be used. + index_type: The type of index to be used, either + 'NODE' or 'RELATIONSHIP' pre_delete_collection: If True, will delete existing data if it exists. (default: False). Useful for testing. @@ -581,7 +593,7 @@ def __init__( self.query( f"MATCH (n:`{self.node_label}`) " - "CALL { WITH n DETACH DELETE n } " + "CALL (n) { DETACH DELETE n } " "IN TRANSACTIONS OF 10000 ROWS;" ) # Delete index @@ -595,11 +607,8 @@ def query( query: str, *, params: Optional[dict] = None, - retry_on_session_expired: bool = True, ) -> List[Dict[str, Any]]: - """ - This method sends a Cypher query to the connected Neo4j database - and returns the results as a list of dictionaries. + """Query Neo4j database with retries and exponential backoff. Args: query (str): The Cypher query to execute. @@ -608,24 +617,38 @@ def query( Returns: List[Dict[str, Any]]: List of dictionaries containing the query results. """ - from neo4j.exceptions import CypherSyntaxError, SessionExpired + from neo4j import Query + from neo4j.exceptions import Neo4jError params = params or {} - with self._driver.session(database=self._database) as session: - try: - data = session.run(query, params) - return [r.data() for r in data] - except CypherSyntaxError as e: - raise ValueError(f"Cypher Statement is not valid\n{e}") - except ( - SessionExpired - ) as e: # Session expired is a transient error that can be retried - if retry_on_session_expired: - return self.query( - query, params=params, retry_on_session_expired=False + try: + data, _, _ = self._driver.execute_query( + query, database=self._database, parameters_=params + ) + return [r.data() for r in data] + except Neo4jError as e: + if not ( + ( + ( # isCallInTransactionError + e.code == "Neo.DatabaseError.Statement.ExecutionFailed" + or e.code + == "Neo.DatabaseError.Transaction.TransactionStartFailed" ) - else: - raise e + and "in an implicit transaction" in e.message + ) + or ( # isPeriodicCommitError + e.code == "Neo.ClientError.Statement.SemanticError" + and ( + "in an open transaction is not possible" in e.message + or "tried to execute in an explicit transaction" in e.message + ) + ) + ): + raise + # Fallback to allow implicit transactions + with self._driver.session() as session: + data = session.run(Query(text=query), params) + return [r.data() for r in data] def verify_version(self) -> None: """ @@ -742,18 +765,14 @@ def create_new_index(self) -> None: to create a new vector index in Neo4j. """ index_query = ( - "CALL db.index.vector.createNodeIndex(" - "$index_name," - "$node_label," - "$embedding_node_property," - "toInteger($embedding_dimension)," - "$similarity_metric )" + f"CREATE VECTOR INDEX {self.index_name} IF NOT EXISTS " + f"FOR (m:`{self.node_label}`) ON m.`{self.embedding_node_property}` " + "OPTIONS { indexConfig: { " + "`vector.dimensions`: toInteger($embedding_dimension), " + "`vector.similarity_function`: $similarity_metric }}" ) parameters = { - "index_name": self.index_name, - "node_label": self.node_label, - "embedding_node_property": self.embedding_node_property, "embedding_dimension": self.embedding_dimension, "similarity_metric": DISTANCE_MAPPING[self._distance_strategy], } diff --git a/libs/community/langchain_community/vectorstores/redis/base.py b/libs/community/langchain_community/vectorstores/redis/base.py index 93d0fd5a28443..5a50b8dd310b2 100644 --- a/libs/community/langchain_community/vectorstores/redis/base.py +++ b/libs/community/langchain_community/vectorstores/redis/base.py @@ -31,6 +31,7 @@ from langchain_core.embeddings import Embeddings from langchain_core.utils import get_from_dict_or_env from langchain_core.vectorstores import VectorStore, VectorStoreRetriever +from pydantic import ConfigDict from langchain_community.utilities.redis import ( _array_to_buffer, @@ -1452,8 +1453,9 @@ class RedisVectorStoreRetriever(VectorStoreRetriever): ] """Allowed search types.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun diff --git a/libs/community/langchain_community/vectorstores/redis/schema.py b/libs/community/langchain_community/vectorstores/redis/schema.py index 50b20245fe252..2cf1ee2d927cd 100644 --- a/libs/community/langchain_community/vectorstores/redis/schema.py +++ b/libs/community/langchain_community/vectorstores/redis/schema.py @@ -7,8 +7,8 @@ import numpy as np import yaml -from langchain_core.pydantic_v1 import BaseModel, Field, validator from langchain_core.utils.pydantic import get_fields +from pydantic import BaseModel, Field, field_validator, validator from typing_extensions import TYPE_CHECKING, Literal from langchain_community.vectorstores.redis.constants import REDIS_VECTOR_DTYPE_MAP @@ -100,7 +100,8 @@ class RedisVectorField(RedisField): distance_metric: RedisDistanceMetric = Field(default="COSINE") initial_cap: Optional[int] = None - @validator("algorithm", "datatype", "distance_metric", pre=True, each_item=True) + @field_validator("algorithm", "datatype", "distance_metric", mode="before") + @classmethod def uppercase_strings(cls, v: str) -> str: return v.upper() diff --git a/libs/community/langchain_community/vectorstores/sqlitevec.py b/libs/community/langchain_community/vectorstores/sqlitevec.py new file mode 100644 index 0000000000000..13a2d5ee9208c --- /dev/null +++ b/libs/community/langchain_community/vectorstores/sqlitevec.py @@ -0,0 +1,242 @@ +from __future__ import annotations + +import json +import logging +import struct +import warnings +from typing import ( + TYPE_CHECKING, + Any, + Iterable, + List, + Optional, + Tuple, + Type, +) + +from langchain_core.documents import Document +from langchain_core.embeddings import Embeddings +from langchain_core.vectorstores import VectorStore + +if TYPE_CHECKING: + import sqlite3 + +logger = logging.getLogger(__name__) + + +def serialize_f32(vector: List[float]) -> bytes: + """Serializes a list of floats into a compact "raw bytes" format + + Source: https://github.com/asg017/sqlite-vec/blob/21c5a14fc71c83f135f5b00c84115139fd12c492/examples/simple-python/demo.py#L8-L10 + """ + return struct.pack("%sf" % len(vector), *vector) + + +class SQLiteVec(VectorStore): + """SQLite with Vec extension as a vector database. + + To use, you should have the ``sqlite-vec`` python package installed. + Example: + .. code-block:: python + from langchain_community.vectorstores import SQLiteVec + from langchain_community.embeddings.openai import OpenAIEmbeddings + ... + """ + + def __init__( + self, + table: str, + connection: Optional[sqlite3.Connection], + embedding: Embeddings, + db_file: str = "vec.db", + ): + """Initialize with sqlite client with vss extension.""" + try: + import sqlite_vec # noqa # pylint: disable=unused-import + except ImportError: + raise ImportError( + "Could not import sqlite-vec python package. " + "Please install it with `pip install sqlite-vec`." + ) + + if not connection: + connection = self.create_connection(db_file) + + if not isinstance(embedding, Embeddings): + warnings.warn("embeddings input must be Embeddings object.") + + self._connection = connection + self._table = table + self._embedding = embedding + + self.create_table_if_not_exists() + + def create_table_if_not_exists(self) -> None: + self._connection.execute( + f""" + CREATE TABLE IF NOT EXISTS {self._table} + ( + rowid INTEGER PRIMARY KEY AUTOINCREMENT, + text TEXT, + metadata BLOB, + text_embedding BLOB + ) + ; + """ + ) + self._connection.execute( + f""" + CREATE VIRTUAL TABLE IF NOT EXISTS {self._table}_vec USING vec0( + rowid INTEGER PRIMARY KEY, + text_embedding float[{self.get_dimensionality()}] + ) + ; + """ + ) + self._connection.execute( + f""" + CREATE TRIGGER IF NOT EXISTS embed_text + AFTER INSERT ON {self._table} + BEGIN + INSERT INTO {self._table}_vec(rowid, text_embedding) + VALUES (new.rowid, new.text_embedding) + ; + END; + """ + ) + self._connection.commit() + + def add_texts( + self, + texts: Iterable[str], + metadatas: Optional[List[dict]] = None, + **kwargs: Any, + ) -> List[str]: + """Add more texts to the vectorstore index. + Args: + texts: Iterable of strings to add to the vectorstore. + metadatas: Optional list of metadatas associated with the texts. + kwargs: vectorstore specific parameters + """ + max_id = self._connection.execute( + f"SELECT max(rowid) as rowid FROM {self._table}" + ).fetchone()["rowid"] + if max_id is None: # no text added yet + max_id = 0 + + embeds = self._embedding.embed_documents(list(texts)) + if not metadatas: + metadatas = [{} for _ in texts] + data_input = [ + (text, json.dumps(metadata), serialize_f32(embed)) + for text, metadata, embed in zip(texts, metadatas, embeds) + ] + self._connection.executemany( + f"INSERT INTO {self._table}(text, metadata, text_embedding) " + f"VALUES (?,?,?)", + data_input, + ) + self._connection.commit() + # pulling every ids we just inserted + results = self._connection.execute( + f"SELECT rowid FROM {self._table} WHERE rowid > {max_id}" + ) + return [row["rowid"] for row in results] + + def similarity_search_with_score_by_vector( + self, embedding: List[float], k: int = 4, **kwargs: Any + ) -> List[Tuple[Document, float]]: + sql_query = f""" + SELECT + text, + metadata, + distance + FROM {self._table} AS e + INNER JOIN {self._table}_vec AS v on v.rowid = e.rowid + WHERE + v.text_embedding MATCH ? + AND k = ? + ORDER BY distance + """ + cursor = self._connection.cursor() + cursor.execute( + sql_query, + [serialize_f32(embedding), k], + ) + results = cursor.fetchall() + + documents = [] + for row in results: + metadata = json.loads(row["metadata"]) or {} + doc = Document(page_content=row["text"], metadata=metadata) + documents.append((doc, row["distance"])) + + return documents + + def similarity_search( + self, query: str, k: int = 4, **kwargs: Any + ) -> List[Document]: + """Return docs most similar to query.""" + embedding = self._embedding.embed_query(query) + documents = self.similarity_search_with_score_by_vector( + embedding=embedding, k=k + ) + return [doc for doc, _ in documents] + + def similarity_search_with_score( + self, query: str, k: int = 4, **kwargs: Any + ) -> List[Tuple[Document, float]]: + """Return docs most similar to query.""" + embedding = self._embedding.embed_query(query) + documents = self.similarity_search_with_score_by_vector( + embedding=embedding, k=k + ) + return documents + + def similarity_search_by_vector( + self, embedding: List[float], k: int = 4, **kwargs: Any + ) -> List[Document]: + documents = self.similarity_search_with_score_by_vector( + embedding=embedding, k=k + ) + return [doc for doc, _ in documents] + + @classmethod + def from_texts( + cls: Type[SQLiteVec], + texts: List[str], + embedding: Embeddings, + metadatas: Optional[List[dict]] = None, + table: str = "langchain", + db_file: str = "vec.db", + **kwargs: Any, + ) -> SQLiteVec: + """Return VectorStore initialized from texts and embeddings.""" + connection = cls.create_connection(db_file) + vec = cls( + table=table, connection=connection, db_file=db_file, embedding=embedding + ) + vec.add_texts(texts=texts, metadatas=metadatas) + return vec + + @staticmethod + def create_connection(db_file: str) -> sqlite3.Connection: + import sqlite3 + + import sqlite_vec + + connection = sqlite3.connect(db_file) + connection.row_factory = sqlite3.Row + connection.enable_load_extension(True) + sqlite_vec.load(connection) + connection.enable_load_extension(False) + return connection + + def get_dimensionality(self) -> int: + """ + Function that does a dummy embedding to figure out how many dimensions + this embedding function returns. Needed for the virtual table DDL. + """ + dummy_text = "This is a dummy text" + dummy_embedding = self._embedding.embed_query(dummy_text) + return len(dummy_embedding) diff --git a/libs/community/langchain_community/vectorstores/starrocks.py b/libs/community/langchain_community/vectorstores/starrocks.py index 2360b75f4e036..80debc09f92cd 100644 --- a/libs/community/langchain_community/vectorstores/starrocks.py +++ b/libs/community/langchain_community/vectorstores/starrocks.py @@ -8,8 +8,8 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseSettings from langchain_core.vectorstores import VectorStore +from pydantic_settings import BaseSettings, SettingsConfigDict logger = logging.getLogger() DEBUG = False @@ -112,10 +112,12 @@ class StarRocksSettings(BaseSettings): def __getitem__(self, item: str) -> Any: return getattr(self, item) - class Config: - env_file = ".env" - env_file_encoding = "utf-8" - env_prefix = "starrocks_" + model_config = SettingsConfigDict( + env_file=".env", + env_file_encoding="utf-8", + env_prefix="starrocks_", + extra="ignore", + ) class StarRocks(VectorStore): diff --git a/libs/community/langchain_community/vectorstores/tencentvectordb.py b/libs/community/langchain_community/vectorstores/tencentvectordb.py index ffa2beb650146..c3bda890fe241 100644 --- a/libs/community/langchain_community/vectorstores/tencentvectordb.py +++ b/libs/community/langchain_community/vectorstores/tencentvectordb.py @@ -11,9 +11,9 @@ import numpy as np from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import guard_import from langchain_core.vectorstores import VectorStore +from pydantic import BaseModel from langchain_community.vectorstores.utils import maximal_marginal_relevance @@ -144,7 +144,7 @@ class TencentVectorDB(VectorStore): In order to use this you need to have a database instance. See the following documentation for details: - https://cloud.tencent.com/document/product/1709/94951 + https://cloud.tencent.com/document/product/1709/104489 """ field_id: str = "id" diff --git a/libs/community/langchain_community/vectorstores/thirdai_neuraldb.py b/libs/community/langchain_community/vectorstores/thirdai_neuraldb.py index d30aeb1383b3b..17d0d6318a38e 100644 --- a/libs/community/langchain_community/vectorstores/thirdai_neuraldb.py +++ b/libs/community/langchain_community/vectorstores/thirdai_neuraldb.py @@ -7,6 +7,7 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore +from pydantic import ConfigDict class NeuralDBVectorStore(VectorStore): @@ -30,9 +31,9 @@ def __init__(self, db: Any) -> None: db: Any = None #: :meta private: """NeuralDB instance""" - class Config: - extra = "forbid" - underscore_attrs_are_private = True + model_config = ConfigDict( + extra="forbid", + ) @staticmethod def _verify_thirdai_library(thirdai_key: Optional[str] = None): # type: ignore[no-untyped-def] @@ -330,9 +331,9 @@ def __init__(self, db: Any) -> None: db: Any = None #: :meta private: """NeuralDB Client instance""" - class Config: - extra = "forbid" - underscore_attrs_are_private = True + model_config = ConfigDict( + extra="forbid", + ) def similarity_search( self, query: str, k: int = 10, **kwargs: Any diff --git a/libs/community/langchain_community/vectorstores/usearch.py b/libs/community/langchain_community/vectorstores/usearch.py index fa94d19de00ed..c59446de54da1 100644 --- a/libs/community/langchain_community/vectorstores/usearch.py +++ b/libs/community/langchain_community/vectorstores/usearch.py @@ -1,6 +1,6 @@ from __future__ import annotations -from typing import Any, Dict, Iterable, List, Optional, Tuple +from typing import Any, Dict, Iterable, List, Optional, Tuple, Union import numpy as np from langchain_core.documents import Document @@ -42,7 +42,7 @@ def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict]] = None, - ids: Optional[np.ndarray] = None, + ids: Optional[Union[np.ndarray, list[str]]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. @@ -69,6 +69,8 @@ def add_texts( last_id = int(self.ids[-1]) + 1 if ids is None: ids = np.array([str(last_id + id) for id, _ in enumerate(texts)]) + elif isinstance(ids, list): + ids = np.array(ids) self.index.add(np.array(ids), np.array(embeddings)) self.docstore.add(dict(zip(ids, documents))) @@ -134,7 +136,7 @@ def from_texts( texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict]] = None, - ids: Optional[np.ndarray] = None, + ids: Optional[Union[np.ndarray, list[str]]] = None, metric: str = "cos", **kwargs: Any, ) -> USearch: @@ -159,6 +161,8 @@ def from_texts( documents: List[Document] = [] if ids is None: ids = np.array([str(id) for id, _ in enumerate(texts)]) + elif isinstance(ids, list): + ids = np.array(ids) for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) diff --git a/libs/community/langchain_community/vectorstores/vectara.py b/libs/community/langchain_community/vectorstores/vectara.py index a83a220885ee6..8683e22e2d8cf 100644 --- a/libs/community/langchain_community/vectorstores/vectara.py +++ b/libs/community/langchain_community/vectorstores/vectara.py @@ -16,6 +16,7 @@ from langchain_core.embeddings import Embeddings from langchain_core.runnables import Runnable, RunnableConfig from langchain_core.vectorstores import VectorStore, VectorStoreRetriever +from pydantic import ConfigDict logger = logging.getLogger(__name__) @@ -731,8 +732,9 @@ class VectaraRetriever(VectorStoreRetriever): config: VectaraQueryConfig """Configuration for this retriever.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun @@ -886,6 +888,7 @@ def invoke( self, input: str, config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> dict: res = {"answer": ""} for chunk in self.stream(input): diff --git a/libs/community/poetry.lock b/libs/community/poetry.lock index 68b5adc102432..e463dd0ec7dce 100644 --- a/libs/community/poetry.lock +++ b/libs/community/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "aiohappyeyeballs" @@ -13,102 +13,102 @@ files = [ [[package]] name = "aiohttp" -version = "3.10.5" +version = "3.10.6" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.8" files = [ - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:18a01eba2574fb9edd5f6e5fb25f66e6ce061da5dab5db75e13fe1558142e0a3"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:94fac7c6e77ccb1ca91e9eb4cb0ac0270b9fb9b289738654120ba8cebb1189c6"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2f1f1c75c395991ce9c94d3e4aa96e5c59c8356a15b1c9231e783865e2772699"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f7acae3cf1a2a2361ec4c8e787eaaa86a94171d2417aae53c0cca6ca3118ff6"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94c4381ffba9cc508b37d2e536b418d5ea9cfdc2848b9a7fea6aebad4ec6aac1"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c31ad0c0c507894e3eaa843415841995bf8de4d6b2d24c6e33099f4bc9fc0d4f"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0912b8a8fadeb32ff67a3ed44249448c20148397c1ed905d5dac185b4ca547bb"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d93400c18596b7dc4794d48a63fb361b01a0d8eb39f28800dc900c8fbdaca91"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d00f3c5e0d764a5c9aa5a62d99728c56d455310bcc288a79cab10157b3af426f"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d742c36ed44f2798c8d3f4bc511f479b9ceef2b93f348671184139e7d708042c"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:814375093edae5f1cb31e3407997cf3eacefb9010f96df10d64829362ae2df69"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8224f98be68a84b19f48e0bdc14224b5a71339aff3a27df69989fa47d01296f3"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d9a487ef090aea982d748b1b0d74fe7c3950b109df967630a20584f9a99c0683"}, - {file = "aiohttp-3.10.5-cp310-cp310-win32.whl", hash = "sha256:d9ef084e3dc690ad50137cc05831c52b6ca428096e6deb3c43e95827f531d5ef"}, - {file = "aiohttp-3.10.5-cp310-cp310-win_amd64.whl", hash = "sha256:66bf9234e08fe561dccd62083bf67400bdbf1c67ba9efdc3dac03650e97c6088"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c6a4e5e40156d72a40241a25cc226051c0a8d816610097a8e8f517aeacd59a2"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c634a3207a5445be65536d38c13791904fda0748b9eabf908d3fe86a52941cf"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4aff049b5e629ef9b3e9e617fa6e2dfeda1bf87e01bcfecaf3949af9e210105e"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1942244f00baaacaa8155eca94dbd9e8cc7017deb69b75ef67c78e89fdad3c77"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e04a1f2a65ad2f93aa20f9ff9f1b672bf912413e5547f60749fa2ef8a644e061"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f2bfc0032a00405d4af2ba27f3c429e851d04fad1e5ceee4080a1c570476697"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424ae21498790e12eb759040bbb504e5e280cab64693d14775c54269fd1d2bb7"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:975218eee0e6d24eb336d0328c768ebc5d617609affaca5dbbd6dd1984f16ed0"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4120d7fefa1e2d8fb6f650b11489710091788de554e2b6f8347c7a20ceb003f5"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b90078989ef3fc45cf9221d3859acd1108af7560c52397ff4ace8ad7052a132e"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ba5a8b74c2a8af7d862399cdedce1533642fa727def0b8c3e3e02fcb52dca1b1"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:02594361128f780eecc2a29939d9dfc870e17b45178a867bf61a11b2a4367277"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8fb4fc029e135859f533025bc82047334e24b0d489e75513144f25408ecaf058"}, - {file = "aiohttp-3.10.5-cp311-cp311-win32.whl", hash = "sha256:e1ca1ef5ba129718a8fc827b0867f6aa4e893c56eb00003b7367f8a733a9b072"}, - {file = "aiohttp-3.10.5-cp311-cp311-win_amd64.whl", hash = "sha256:349ef8a73a7c5665cca65c88ab24abe75447e28aa3bc4c93ea5093474dfdf0ff"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:305be5ff2081fa1d283a76113b8df7a14c10d75602a38d9f012935df20731487"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a1c32a19ee6bbde02f1cb189e13a71b321256cc1d431196a9f824050b160d5a"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:61645818edd40cc6f455b851277a21bf420ce347baa0b86eaa41d51ef58ba23d"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c225286f2b13bab5987425558baa5cbdb2bc925b2998038fa028245ef421e75"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ba01ebc6175e1e6b7275c907a3a36be48a2d487549b656aa90c8a910d9f3178"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8eaf44ccbc4e35762683078b72bf293f476561d8b68ec8a64f98cf32811c323e"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c43eb1ab7cbf411b8e387dc169acb31f0ca0d8c09ba63f9eac67829585b44f"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de7a5299827253023c55ea549444e058c0eb496931fa05d693b95140a947cb73"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4790f0e15f00058f7599dab2b206d3049d7ac464dc2e5eae0e93fa18aee9e7bf"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:44b324a6b8376a23e6ba25d368726ee3bc281e6ab306db80b5819999c737d820"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:0d277cfb304118079e7044aad0b76685d30ecb86f83a0711fc5fb257ffe832ca"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:54d9ddea424cd19d3ff6128601a4a4d23d54a421f9b4c0fff740505813739a91"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4f1c9866ccf48a6df2b06823e6ae80573529f2af3a0992ec4fe75b1a510df8a6"}, - {file = "aiohttp-3.10.5-cp312-cp312-win32.whl", hash = "sha256:dc4826823121783dccc0871e3f405417ac116055bf184ac04c36f98b75aacd12"}, - {file = "aiohttp-3.10.5-cp312-cp312-win_amd64.whl", hash = "sha256:22c0a23a3b3138a6bf76fc553789cb1a703836da86b0f306b6f0dc1617398abc"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7f6b639c36734eaa80a6c152a238242bedcee9b953f23bb887e9102976343092"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f29930bc2921cef955ba39a3ff87d2c4398a0394ae217f41cb02d5c26c8b1b77"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f489a2c9e6455d87eabf907ac0b7d230a9786be43fbe884ad184ddf9e9c1e385"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:123dd5b16b75b2962d0fff566effb7a065e33cd4538c1692fb31c3bda2bfb972"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b98e698dc34966e5976e10bbca6d26d6724e6bdea853c7c10162a3235aba6e16"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3b9162bab7e42f21243effc822652dc5bb5e8ff42a4eb62fe7782bcbcdfacf6"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1923a5c44061bffd5eebeef58cecf68096e35003907d8201a4d0d6f6e387ccaa"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d55f011da0a843c3d3df2c2cf4e537b8070a419f891c930245f05d329c4b0689"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:afe16a84498441d05e9189a15900640a2d2b5e76cf4efe8cbb088ab4f112ee57"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8112fb501b1e0567a1251a2fd0747baae60a4ab325a871e975b7bb67e59221f"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:1e72589da4c90337837fdfe2026ae1952c0f4a6e793adbbfbdd40efed7c63599"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4d46c7b4173415d8e583045fbc4daa48b40e31b19ce595b8d92cf639396c15d5"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:33e6bc4bab477c772a541f76cd91e11ccb6d2efa2b8d7d7883591dfb523e5987"}, - {file = "aiohttp-3.10.5-cp313-cp313-win32.whl", hash = "sha256:c58c6837a2c2a7cf3133983e64173aec11f9c2cd8e87ec2fdc16ce727bcf1a04"}, - {file = "aiohttp-3.10.5-cp313-cp313-win_amd64.whl", hash = "sha256:38172a70005252b6893088c0f5e8a47d173df7cc2b2bd88650957eb84fcf5022"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f6f18898ace4bcd2d41a122916475344a87f1dfdec626ecde9ee802a711bc569"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ede29d91a40ba22ac1b922ef510aab871652f6c88ef60b9dcdf773c6d32ad7a"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:673f988370f5954df96cc31fd99c7312a3af0a97f09e407399f61583f30da9bc"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58718e181c56a3c02d25b09d4115eb02aafe1a732ce5714ab70326d9776457c3"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b38b1570242fbab8d86a84128fb5b5234a2f70c2e32f3070143a6d94bc854cf"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:074d1bff0163e107e97bd48cad9f928fa5a3eb4b9d33366137ffce08a63e37fe"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd31f176429cecbc1ba499d4aba31aaccfea488f418d60376b911269d3b883c5"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7384d0b87d4635ec38db9263e6a3f1eb609e2e06087f0aa7f63b76833737b471"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8989f46f3d7ef79585e98fa991e6ded55d2f48ae56d2c9fa5e491a6e4effb589"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c83f7a107abb89a227d6c454c613e7606c12a42b9a4ca9c5d7dad25d47c776ae"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:cde98f323d6bf161041e7627a5fd763f9fd829bcfcd089804a5fdce7bb6e1b7d"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:676f94c5480d8eefd97c0c7e3953315e4d8c2b71f3b49539beb2aa676c58272f"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2d21ac12dc943c68135ff858c3a989f2194a709e6e10b4c8977d7fcd67dfd511"}, - {file = "aiohttp-3.10.5-cp38-cp38-win32.whl", hash = "sha256:17e997105bd1a260850272bfb50e2a328e029c941c2708170d9d978d5a30ad9a"}, - {file = "aiohttp-3.10.5-cp38-cp38-win_amd64.whl", hash = "sha256:1c19de68896747a2aa6257ae4cf6ef59d73917a36a35ee9d0a6f48cff0f94db8"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7e2fe37ac654032db1f3499fe56e77190282534810e2a8e833141a021faaab0e"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f5bf3ead3cb66ab990ee2561373b009db5bc0e857549b6c9ba84b20bc462e172"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1b2c16a919d936ca87a3c5f0e43af12a89a3ce7ccbce59a2d6784caba945b68b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad146dae5977c4dd435eb31373b3fe9b0b1bf26858c6fc452bf6af394067e10b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c5c6fa16412b35999320f5c9690c0f554392dc222c04e559217e0f9ae244b92"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95c4dc6f61d610bc0ee1edc6f29d993f10febfe5b76bb470b486d90bbece6b22"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da452c2c322e9ce0cfef392e469a26d63d42860f829026a63374fde6b5c5876f"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:898715cf566ec2869d5cb4d5fb4be408964704c46c96b4be267442d265390f32"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:391cc3a9c1527e424c6865e087897e766a917f15dddb360174a70467572ac6ce"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:380f926b51b92d02a34119d072f178d80bbda334d1a7e10fa22d467a66e494db"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce91db90dbf37bb6fa0997f26574107e1b9d5ff939315247b7e615baa8ec313b"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9093a81e18c45227eebe4c16124ebf3e0d893830c6aca7cc310bfca8fe59d857"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ee40b40aa753d844162dcc80d0fe256b87cba48ca0054f64e68000453caead11"}, - {file = "aiohttp-3.10.5-cp39-cp39-win32.whl", hash = "sha256:03f2645adbe17f274444953bdea69f8327e9d278d961d85657cb0d06864814c1"}, - {file = "aiohttp-3.10.5-cp39-cp39-win_amd64.whl", hash = "sha256:d17920f18e6ee090bdd3d0bfffd769d9f2cb4c8ffde3eb203777a3895c128862"}, - {file = "aiohttp-3.10.5.tar.gz", hash = "sha256:f071854b47d39591ce9a17981c46790acb30518e2f83dfca8db2dfa091178691"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:682836fc672972cc3101cc9e30d49c5f7e8f1d010478d46119fe725a4545acfd"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:289fa8a20018d0d5aa9e4b35d899bd51bcb80f0d5f365d9a23e30dac3b79159b"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8617c96a20dd57e7e9d398ff9d04f3d11c4d28b1767273a5b1a018ada5a654d3"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bdbeff1b062751c2a2a55b171f7050fb7073633c699299d042e962aacdbe1a07"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ea35d849cdd4a9268f910bff4497baebbc1aa3f2f625fd8ccd9ac99c860c621"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:473961b3252f3b949bb84873d6e268fb6d8aa0ccc6eb7404fa58c76a326bb8e1"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d2665c5df629eb2f981dab244c01bfa6cdc185f4ffa026639286c4d56fafb54"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:25d92f794f1332f656e3765841fc2b7ad5c26c3f3d01e8949eeb3495691cf9f4"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9bd6b2033993d5ae80883bb29b83fb2b432270bbe067c2f53cc73bb57c46065f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d7f408c43f5e75ea1edc152fb375e8f46ef916f545fb66d4aebcbcfad05e2796"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:cf8b8560aa965f87bf9c13bf9fed7025993a155ca0ce8422da74bf46d18c2f5f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14477c4e52e2f17437b99893fd220ffe7d7ee41df5ebf931a92b8ca82e6fd094"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fb138fbf9f53928e779650f5ed26d0ea1ed8b2cab67f0ea5d63afa09fdc07593"}, + {file = "aiohttp-3.10.6-cp310-cp310-win32.whl", hash = "sha256:9843d683b8756971797be171ead21511d2215a2d6e3c899c6e3107fbbe826791"}, + {file = "aiohttp-3.10.6-cp310-cp310-win_amd64.whl", hash = "sha256:f8b8e49fe02f744d38352daca1dbef462c3874900bd8166516f6ea8e82b5aacf"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f52e54fd776ad0da1006708762213b079b154644db54bcfc62f06eaa5b896402"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:995ab1a238fd0d19dc65f2d222e5eb064e409665c6426a3e51d5101c1979ee84"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0749c4d5a08a802dd66ecdf59b2df4d76b900004017468a7bb736c3b5a3dd902"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e05b39158f2af0e2438cc2075cfc271f4ace0c3cc4a81ec95b27a0432e161951"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a9f196c970db2dcde4f24317e06615363349dc357cf4d7a3b0716c20ac6d7bcd"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47647c8af04a70e07a2462931b0eba63146a13affa697afb4ecbab9d03a480ce"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:669c0efe7e99f6d94d63274c06344bd0e9c8daf184ce5602a29bc39e00a18720"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9721cdd83a994225352ca84cd537760d41a9da3c0eacb3ff534747ab8fba6d0"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0b82c8ebed66ce182893e7c0b6b60ba2ace45b1df104feb52380edae266a4850"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b169f8e755e541b72e714b89a831b315bbe70db44e33fead28516c9e13d5f931"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:0be3115753baf8b4153e64f9aa7bf6c0c64af57979aa900c31f496301b374570"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e1f80cd17d81a404b6e70ef22bfe1870bafc511728397634ad5f5efc8698df56"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6419728b08fb6380c66a470d2319cafcec554c81780e2114b7e150329b9a9a7f"}, + {file = "aiohttp-3.10.6-cp311-cp311-win32.whl", hash = "sha256:bd294dcdc1afdc510bb51d35444003f14e327572877d016d576ac3b9a5888a27"}, + {file = "aiohttp-3.10.6-cp311-cp311-win_amd64.whl", hash = "sha256:bf861da9a43d282d6dd9dcd64c23a0fccf2c5aa5cd7c32024513c8c79fb69de3"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2708baccdc62f4b1251e59c2aac725936a900081f079b88843dabcab0feeeb27"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7475da7a5e2ccf1a1c86c8fee241e277f4874c96564d06f726d8df8e77683ef7"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02108326574ff60267b7b35b17ac5c0bbd0008ccb942ce4c48b657bb90f0b8aa"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:029a019627b37fa9eac5c75cc54a6bb722c4ebbf5a54d8c8c0fb4dd8facf2702"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a637d387db6fdad95e293fab5433b775fd104ae6348d2388beaaa60d08b38c4"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1a16f3fc1944c61290d33c88dc3f09ba62d159b284c38c5331868425aca426"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81b292f37969f9cc54f4643f0be7dacabf3612b3b4a65413661cf6c350226787"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0754690a3a26e819173a34093798c155bafb21c3c640bff13be1afa1e9d421f9"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:164ecd32e65467d86843dbb121a6666c3deb23b460e3f8aefdcaacae79eb718a"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438c5863feb761f7ca3270d48c292c334814459f61cc12bab5ba5b702d7c9e56"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ba18573bb1de1063d222f41de64a0d3741223982dcea863b3f74646faf618ec7"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:c82a94ddec996413a905f622f3da02c4359952aab8d817c01cf9915419525e95"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:92351aa5363fc3c1f872ca763f86730ced32b01607f0c9662b1fa711087968d0"}, + {file = "aiohttp-3.10.6-cp312-cp312-win32.whl", hash = "sha256:3e15e33bfc73fa97c228f72e05e8795e163a693fd5323549f49367c76a6e5883"}, + {file = "aiohttp-3.10.6-cp312-cp312-win_amd64.whl", hash = "sha256:fe517113fe4d35d9072b826c3e147d63c5f808ca8167d450b4f96c520c8a1d8d"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:482f74057ea13d387a7549d7a7ecb60e45146d15f3e58a2d93a0ad2d5a8457cd"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:03fa40d1450ee5196e843315ddf74a51afc7e83d489dbfc380eecefea74158b1"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1e52e59ed5f4cc3a3acfe2a610f8891f216f486de54d95d6600a2c9ba1581f4d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b3935a22c9e41a8000d90588bed96cf395ef572dbb409be44c6219c61d900d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bef1480ee50f75abcfcb4b11c12de1005968ca9d0172aec4a5057ba9f2b644f"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:671745ea7db19693ce867359d503772177f0b20fa8f6ee1e74e00449f4c4151d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50b367308ca8c12e0b50cba5773bc9abe64c428d3fd2bbf5cd25aab37c77bf"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a504d7cdb431a777d05a124fd0b21efb94498efa743103ea01b1e3136d2e4fb"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:66bc81361131763660b969132a22edce2c4d184978ba39614e8f8f95db5c95f8"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:27cf19a38506e2e9f12fc17e55f118f04897b0a78537055d93a9de4bf3022e3d"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3468b39f977a11271517c6925b226720e148311039a380cc9117b1e2258a721f"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:9d26da22a793dfd424be1050712a70c0afd96345245c29aced1e35dbace03413"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:844d48ff9173d0b941abed8b2ea6a412f82b56d9ab1edb918c74000c15839362"}, + {file = "aiohttp-3.10.6-cp313-cp313-win32.whl", hash = "sha256:2dd56e3c43660ed3bea67fd4c5025f1ac1f9ecf6f0b991a6e5efe2e678c490c5"}, + {file = "aiohttp-3.10.6-cp313-cp313-win_amd64.whl", hash = "sha256:c91781d969fbced1993537f45efe1213bd6fccb4b37bfae2a026e20d6fbed206"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4407a80bca3e694f2d2a523058e20e1f9f98a416619e04f6dc09dc910352ac8b"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1cb045ec5961f51af3e2c08cd6fe523f07cc6e345033adee711c49b7b91bb954"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4fabdcdc781a36b8fd7b2ca9dea8172f29a99e11d00ca0f83ffeb50958da84a1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79a9f42efcc2681790595ab3d03c0e52d01edc23a0973ea09f0dc8d295e12b8e"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cca776a440795db437d82c07455761c85bbcf3956221c3c23b8c93176c278ce7"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5582de171f0898139cf51dd9fcdc79b848e28d9abd68e837f0803fc9f30807b1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:370e2d47575c53c817ee42a18acc34aad8da4dbdaac0a6c836d58878955f1477"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:444d1704e2af6b30766debed9be8a795958029e552fe77551355badb1944012c"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40271a2a375812967401c9ca8077de9368e09a43a964f4dce0ff603301ec9358"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f3af26f86863fad12e25395805bb0babbd49d512806af91ec9708a272b696248"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4752df44df48fd42b80f51d6a97553b482cda1274d9dc5df214a3a1aa5d8f018"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2cd5290ab66cfca2f90045db2cc6434c1f4f9fbf97c9f1c316e785033782e7d2"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3427031064b0d5c95647e6369c4aa3c556402f324a3e18107cb09517abe5f962"}, + {file = "aiohttp-3.10.6-cp38-cp38-win32.whl", hash = "sha256:614fc21e86adc28e4165a6391f851a6da6e9cbd7bb232d0df7718b453a89ee98"}, + {file = "aiohttp-3.10.6-cp38-cp38-win_amd64.whl", hash = "sha256:58c5d7318a136a3874c78717dd6de57519bc64f6363c5827c2b1cb775bea71dd"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5db26bbca8e7968c4c977a0c640e0b9ce7224e1f4dcafa57870dc6ee28e27de6"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3fb4216e3ec0dbc01db5ba802f02ed78ad8f07121be54eb9e918448cc3f61b7c"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a976ef488f26e224079deb3d424f29144c6d5ba4ded313198169a8af8f47fb82"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a86610174de8a85a920e956e2d4f9945e7da89f29a00e95ac62a4a414c4ef4e"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:217791c6a399cc4f2e6577bb44344cba1f5714a2aebf6a0bea04cfa956658284"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ba3662d41abe2eab0eeec7ee56f33ef4e0b34858f38abf24377687f9e1fb00a5"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4dfa5ad4bce9ca30a76117fbaa1c1decf41ebb6c18a4e098df44298941566f9"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e0009258e97502936d3bd5bf2ced15769629097d0abb81e6495fba1047824fe0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0a75d5c9fb4f06c41d029ae70ad943c3a844c40c0a769d12be4b99b04f473d3d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:8198b7c002aae2b40b2d16bfe724b9a90bcbc9b78b2566fc96131ef4e382574d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4611db8c907f90fe86be112efdc2398cd7b4c8eeded5a4f0314b70fdea8feab0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ff99ae06eef85c7a565854826114ced72765832ee16c7e3e766c5e4c5b98d20e"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7641920bdcc7cd2d3ddfb8bb9133a6c9536b09dbd49490b79e125180b2d25b93"}, + {file = "aiohttp-3.10.6-cp39-cp39-win32.whl", hash = "sha256:e2e7d5591ea868d5ec82b90bbeb366a198715672841d46281b623e23079593db"}, + {file = "aiohttp-3.10.6-cp39-cp39-win_amd64.whl", hash = "sha256:b504c08c45623bf5c7ca41be380156d925f00199b3970efd758aef4a77645feb"}, + {file = "aiohttp-3.10.6.tar.gz", hash = "sha256:d2578ef941be0c2ba58f6f421a703527d08427237ed45ecb091fed6f83305336"}, ] [package.dependencies] @@ -118,7 +118,7 @@ async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" -yarl = ">=1.0,<2.0" +yarl = ">=1.12.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] @@ -148,18 +148,15 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" -version = "4.4.0" +version = "4.6.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, ] [package.dependencies] @@ -169,9 +166,9 @@ sniffio = ">=1.1" typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] [[package]] name = "appnope" @@ -333,23 +330,9 @@ files = [ {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, ] -[package.dependencies] -pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} - [package.extras] dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - [[package]] name = "beautifulsoup4" version = "4.12.3" @@ -479,6 +462,85 @@ files = [ [package.dependencies] pycparser = "*" +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + [[package]] name = "charset-normalizer" version = "3.3.2" @@ -712,38 +774,38 @@ toml = ["tomli"] [[package]] name = "cryptography" -version = "43.0.0" +version = "43.0.1" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." optional = false python-versions = ">=3.7" files = [ - {file = "cryptography-43.0.0-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:64c3f16e2a4fc51c0d06af28441881f98c5d91009b8caaff40cf3548089e9c74"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3dcdedae5c7710b9f97ac6bba7e1052b95c7083c9d0e9df96e02a1932e777895"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d9a1eca329405219b605fac09ecfc09ac09e595d6def650a437523fcd08dd22"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ea9e57f8ea880eeea38ab5abf9fbe39f923544d7884228ec67d666abd60f5a47"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:9a8d6802e0825767476f62aafed40532bd435e8a5f7d23bd8b4f5fd04cc80ecf"}, - {file = "cryptography-43.0.0-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:cc70b4b581f28d0a254d006f26949245e3657d40d8857066c2ae22a61222ef55"}, - {file = "cryptography-43.0.0-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:4a997df8c1c2aae1e1e5ac49c2e4f610ad037fc5a3aadc7b64e39dea42249431"}, - {file = "cryptography-43.0.0-cp37-abi3-win32.whl", hash = "sha256:6e2b11c55d260d03a8cf29ac9b5e0608d35f08077d8c087be96287f43af3ccdc"}, - {file = "cryptography-43.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:31e44a986ceccec3d0498e16f3d27b2ee5fdf69ce2ab89b52eaad1d2f33d8778"}, - {file = "cryptography-43.0.0-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:7b3f5fe74a5ca32d4d0f302ffe6680fcc5c28f8ef0dc0ae8f40c0f3a1b4fca66"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac1955ce000cb29ab40def14fd1bbfa7af2017cca696ee696925615cafd0dce5"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:299d3da8e00b7e2b54bb02ef58d73cd5f55fb31f33ebbf33bd00d9aa6807df7e"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ee0c405832ade84d4de74b9029bedb7b31200600fa524d218fc29bfa371e97f5"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:cb013933d4c127349b3948aa8aaf2f12c0353ad0eccd715ca789c8a0f671646f"}, - {file = "cryptography-43.0.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:fdcb265de28585de5b859ae13e3846a8e805268a823a12a4da2597f1f5afc9f0"}, - {file = "cryptography-43.0.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2905ccf93a8a2a416f3ec01b1a7911c3fe4073ef35640e7ee5296754e30b762b"}, - {file = "cryptography-43.0.0-cp39-abi3-win32.whl", hash = "sha256:47ca71115e545954e6c1d207dd13461ab81f4eccfcb1345eac874828b5e3eaaf"}, - {file = "cryptography-43.0.0-cp39-abi3-win_amd64.whl", hash = "sha256:0663585d02f76929792470451a5ba64424acc3cd5227b03921dab0e2f27b1709"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c6d112bf61c5ef44042c253e4859b3cbbb50df2f78fa8fae6747a7814484a70"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:844b6d608374e7d08f4f6e6f9f7b951f9256db41421917dfb2d003dde4cd6b66"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:51956cf8730665e2bdf8ddb8da0056f699c1a5715648c1b0144670c1ba00b48f"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:aae4d918f6b180a8ab8bf6511a419473d107df4dbb4225c7b48c5c9602c38c7f"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:232ce02943a579095a339ac4b390fbbe97f5b5d5d107f8a08260ea2768be8cc2"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:5bcb8a5620008a8034d39bce21dc3e23735dfdb6a33a06974739bfa04f853947"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:08a24a7070b2b6804c1940ff0f910ff728932a9d0e80e7814234269f9d46d069"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e9c5266c432a1e23738d178e51c2c7a5e2ddf790f248be939448c0ba2021f9d1"}, - {file = "cryptography-43.0.0.tar.gz", hash = "sha256:b88075ada2d51aa9f18283532c9f60e72170041bba88d7f37e49cbb10275299e"}, + {file = "cryptography-43.0.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:8385d98f6a3bf8bb2d65a73e17ed87a3ba84f6991c155691c51112075f9ffc5d"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e613d7077ac613e399270253259d9d53872aaf657471473ebfc9a52935c062"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68aaecc4178e90719e95298515979814bda0cbada1256a4485414860bd7ab962"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:de41fd81a41e53267cb020bb3a7212861da53a7d39f863585d13ea11049cf277"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f98bf604c82c416bc829e490c700ca1553eafdf2912a91e23a79d97d9801372a"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:61ec41068b7b74268fa86e3e9e12b9f0c21fcf65434571dbb13d954bceb08042"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:014f58110f53237ace6a408b5beb6c427b64e084eb451ef25a28308270086494"}, + {file = "cryptography-43.0.1-cp37-abi3-win32.whl", hash = "sha256:2bd51274dcd59f09dd952afb696bf9c61a7a49dfc764c04dd33ef7a6b502a1e2"}, + {file = "cryptography-43.0.1-cp37-abi3-win_amd64.whl", hash = "sha256:666ae11966643886c2987b3b721899d250855718d6d9ce41b521252a17985f4d"}, + {file = "cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:ac119bb76b9faa00f48128b7f5679e1d8d437365c5d26f1c2c3f0da4ce1b553d"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bbcce1a551e262dfbafb6e6252f1ae36a248e615ca44ba302df077a846a8806"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58d4e9129985185a06d849aa6df265bdd5a74ca6e1b736a77959b498e0505b85"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:d03a475165f3134f773d1388aeb19c2d25ba88b6a9733c5c590b9ff7bbfa2e0c"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:511f4273808ab590912a93ddb4e3914dfd8a388fed883361b02dea3791f292e1"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:80eda8b3e173f0f247f711eef62be51b599b5d425c429b5d4ca6a05e9e856baa"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:38926c50cff6f533f8a2dae3d7f19541432610d114a70808f0926d5aaa7121e4"}, + {file = "cryptography-43.0.1-cp39-abi3-win32.whl", hash = "sha256:a575913fb06e05e6b4b814d7f7468c2c660e8bb16d8d5a1faf9b33ccc569dd47"}, + {file = "cryptography-43.0.1-cp39-abi3-win_amd64.whl", hash = "sha256:d75601ad10b059ec832e78823b348bfa1a59f6b8d545db3a24fd44362a1564cb"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ea25acb556320250756e53f9e20a4177515f012c9eaea17eb7587a8c4d8ae034"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c1332724be35d23a854994ff0b66530119500b6053d0bd3363265f7e5e77288d"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fba1007b3ef89946dbbb515aeeb41e30203b004f0b4b00e5e16078b518563289"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5b43d1ea6b378b54a1dc99dd8a2b5be47658fe9a7ce0a58ff0b55f4b43ef2b84"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:88cce104c36870d70c49c7c8fd22885875d950d9ee6ab54df2745f83ba0dc365"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d3cdb25fa98afdd3d0892d132b8d7139e2c087da1712041f6b762e4f807cc96"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e710bf40870f4db63c3d7d929aa9e09e4e7ee219e703f949ec4073b4294f6172"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7c05650fe8023c5ed0d46793d4b7d7e6cd9c04e68eabe5b0aeea836e37bdcec2"}, + {file = "cryptography-43.0.1.tar.gz", hash = "sha256:203e92a75716d8cfb491dc47c79e17d0d9207ccffcbcb35f598fbe463ae3444d"}, ] [package.dependencies] @@ -756,7 +818,7 @@ nox = ["nox"] pep8test = ["check-sdist", "click", "mypy", "ruff"] sdist = ["build"] ssh = ["bcrypt (>=3.1.5)"] -test = ["certifi", "cryptography-vectors (==43.0.0)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] +test = ["certifi", "cryptography-vectors (==43.0.1)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] test-randomorder = ["pytest-randomly"] [[package]] @@ -776,33 +838,33 @@ typing-inspect = ">=0.4.0,<1" [[package]] name = "debugpy" -version = "1.8.5" +version = "1.8.6" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, - {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, - {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, - {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, - {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, - {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, - {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, - {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, - {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, - {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, - {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, - {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, - {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, - {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, - {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, - {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, - {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, - {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, - {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, - {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, - {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, - {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, + {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, + {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, + {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, + {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, + {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, + {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, + {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, + {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, + {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, + {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, + {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, + {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, + {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, + {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, + {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, + {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, + {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, + {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, + {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, + {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, + {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, + {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, ] [[package]] @@ -829,57 +891,63 @@ files = [ [[package]] name = "duckdb" -version = "1.0.0" +version = "1.1.1" description = "DuckDB in-process database" optional = false python-versions = ">=3.7.0" files = [ - {file = "duckdb-1.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4a8ce2d1f9e1c23b9bab3ae4ca7997e9822e21563ff8f646992663f66d050211"}, - {file = "duckdb-1.0.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:19797670f20f430196e48d25d082a264b66150c264c1e8eae8e22c64c2c5f3f5"}, - {file = "duckdb-1.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:b71c342090fe117b35d866a91ad6bffce61cd6ff3e0cff4003f93fc1506da0d8"}, - {file = "duckdb-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25dd69f44ad212c35ae2ea736b0e643ea2b70f204b8dff483af1491b0e2a4cec"}, - {file = "duckdb-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8da5f293ecb4f99daa9a9352c5fd1312a6ab02b464653a0c3a25ab7065c45d4d"}, - {file = "duckdb-1.0.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3207936da9967ddbb60644ec291eb934d5819b08169bc35d08b2dedbe7068c60"}, - {file = "duckdb-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1128d6c9c33e883b1f5df6b57c1eb46b7ab1baf2650912d77ee769aaa05111f9"}, - {file = "duckdb-1.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:02310d263474d0ac238646677feff47190ffb82544c018b2ff732a4cb462c6ef"}, - {file = "duckdb-1.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:75586791ab2702719c284157b65ecefe12d0cca9041da474391896ddd9aa71a4"}, - {file = "duckdb-1.0.0-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:83bb415fc7994e641344f3489e40430ce083b78963cb1057bf714ac3a58da3ba"}, - {file = "duckdb-1.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:bee2e0b415074e84c5a2cefd91f6b5ebeb4283e7196ba4ef65175a7cef298b57"}, - {file = "duckdb-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fa5a4110d2a499312609544ad0be61e85a5cdad90e5b6d75ad16b300bf075b90"}, - {file = "duckdb-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fa389e6a382d4707b5f3d1bc2087895925ebb92b77e9fe3bfb23c9b98372fdc"}, - {file = "duckdb-1.0.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7ede6f5277dd851f1a4586b0c78dc93f6c26da45e12b23ee0e88c76519cbdbe0"}, - {file = "duckdb-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0b88cdbc0d5c3e3d7545a341784dc6cafd90fc035f17b2f04bf1e870c68456e5"}, - {file = "duckdb-1.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:fd1693cdd15375156f7fff4745debc14e5c54928589f67b87fb8eace9880c370"}, - {file = "duckdb-1.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:c65a7fe8a8ce21b985356ee3ec0c3d3b3b2234e288e64b4cfb03356dbe6e5583"}, - {file = "duckdb-1.0.0-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:e5a8eda554379b3a43b07bad00968acc14dd3e518c9fbe8f128b484cf95e3d16"}, - {file = "duckdb-1.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:a1b6acdd54c4a7b43bd7cb584975a1b2ff88ea1a31607a2b734b17960e7d3088"}, - {file = "duckdb-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a677bb1b6a8e7cab4a19874249d8144296e6e39dae38fce66a80f26d15e670df"}, - {file = "duckdb-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:752e9d412b0a2871bf615a2ede54be494c6dc289d076974eefbf3af28129c759"}, - {file = "duckdb-1.0.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3aadb99d098c5e32d00dc09421bc63a47134a6a0de9d7cd6abf21780b678663c"}, - {file = "duckdb-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:83b7091d4da3e9301c4f9378833f5ffe934fb1ad2b387b439ee067b2c10c8bb0"}, - {file = "duckdb-1.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:6a8058d0148b544694cb5ea331db44f6c2a00a7b03776cc4dd1470735c3d5ff7"}, - {file = "duckdb-1.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e40cb20e5ee19d44bc66ec99969af791702a049079dc5f248c33b1c56af055f4"}, - {file = "duckdb-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7bce1bc0de9af9f47328e24e6e7e39da30093179b1c031897c042dd94a59c8e"}, - {file = "duckdb-1.0.0-cp37-cp37m-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8355507f7a04bc0a3666958f4414a58e06141d603e91c0fa5a7c50e49867fb6d"}, - {file = "duckdb-1.0.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:39f1a46f5a45ad2886dc9b02ce5b484f437f90de66c327f86606d9ba4479d475"}, - {file = "duckdb-1.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:a6d29ba477b27ae41676b62c8fae8d04ee7cbe458127a44f6049888231ca58fa"}, - {file = "duckdb-1.0.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:1bea713c1925918714328da76e79a1f7651b2b503511498ccf5e007a7e67d49e"}, - {file = "duckdb-1.0.0-cp38-cp38-macosx_12_0_universal2.whl", hash = "sha256:bfe67f3bcf181edbf6f918b8c963eb060e6aa26697d86590da4edc5707205450"}, - {file = "duckdb-1.0.0-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:dbc6093a75242f002be1d96a6ace3fdf1d002c813e67baff52112e899de9292f"}, - {file = "duckdb-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba1881a2b11c507cee18f8fd9ef10100be066fddaa2c20fba1f9a664245cd6d8"}, - {file = "duckdb-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:445d0bb35087c522705c724a75f9f1c13f1eb017305b694d2686218d653c8142"}, - {file = "duckdb-1.0.0-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:224553432e84432ffb9684f33206572477049b371ce68cc313a01e214f2fbdda"}, - {file = "duckdb-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:d3914032e47c4e76636ad986d466b63fdea65e37be8a6dfc484ed3f462c4fde4"}, - {file = "duckdb-1.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:af9128a2eb7e1bb50cd2c2020d825fb2946fdad0a2558920cd5411d998999334"}, - {file = "duckdb-1.0.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dd2659a5dbc0df0de68f617a605bf12fe4da85ba24f67c08730984a0892087e8"}, - {file = "duckdb-1.0.0-cp39-cp39-macosx_12_0_universal2.whl", hash = "sha256:ac5a4afb0bc20725e734e0b2c17e99a274de4801aff0d4e765d276b99dad6d90"}, - {file = "duckdb-1.0.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:2c5a53bee3668d6e84c0536164589d5127b23d298e4c443d83f55e4150fafe61"}, - {file = "duckdb-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b980713244d7708b25ee0a73de0c65f0e5521c47a0e907f5e1b933d79d972ef6"}, - {file = "duckdb-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21cbd4f9fe7b7a56eff96c3f4d6778770dd370469ca2212eddbae5dd63749db5"}, - {file = "duckdb-1.0.0-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ed228167c5d49888c5ef36f6f9cbf65011c2daf9dcb53ea8aa7a041ce567b3e4"}, - {file = "duckdb-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:46d8395fbcea7231fd5032a250b673cc99352fef349b718a23dea2c0dd2b8dec"}, - {file = "duckdb-1.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:6ad1fc1a4d57e7616944166a5f9417bdbca1ea65c490797e3786e3a42e162d8a"}, - {file = "duckdb-1.0.0.tar.gz", hash = "sha256:a2a059b77bc7d5b76ae9d88e267372deff19c291048d59450c431e166233d453"}, + {file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e310610b692d30aa7f1f40d7878b26978a5b191f23fa8fa082bd17092c67c2fd"}, + {file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:7acc97c3cc995850a4fa59dfa6ce713d7ea187c9696632161aa09d898f001a2b"}, + {file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:c0a09d78daea0de7ddf3d6d1113e80ceed8c15537e93f8efaad53024ffbde245"}, + {file = "duckdb-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50c3b1667b0c73cb076b1b1f8fa0fd88fcef5c2bbb2b9acdef79e2eae429c248"}, + {file = "duckdb-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1499a9b159d4675ea46786b7ebdbabd8287c62b6b116ccfd529112318d47184e"}, + {file = "duckdb-1.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:876deda2ce97f4a9005a9ac862f0ebee9e5956d51d589a24955802ca91726d49"}, + {file = "duckdb-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:40be901b38c709076f699b0c2f42a0c5663a496647eba350530e3a77f46a239b"}, + {file = "duckdb-1.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:5cb7642c5b21b8165b60029c274fc931c7c29cae3124b9a95ed73d050dd23584"}, + {file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:959716b65cf1c94fc117ac9c9692eea0bd64ae53bc8ab6538d459087b474dbeb"}, + {file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:6ff3c52ce0f8d25478155eb01de043ad0a25badbd10e684a2cd74363f1b86cde"}, + {file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:430294cf11ce866d3b726cf4530462316e20b773fed3cf2de3cf63eb89650da6"}, + {file = "duckdb-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc9d48f772fafeea52568a0568cd11314cd79a10214069f3700dbcb31ebdf511"}, + {file = "duckdb-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:572095739024d9a5aa2dd8336c289af6a624c203004213e49b7e2469275e940f"}, + {file = "duckdb-1.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:660d9baf637b9a15e1ba74bbe02d3b4a20d82e8cbbd7d0712e0d59e3e9d6efea"}, + {file = "duckdb-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b91973605c8a30a38c4381a27895e7768cb3caa6700b2534ab76cc6b72cac390"}, + {file = "duckdb-1.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:f57c9e070cecf42d379145a75f325ec57fb1d410d6ff6592b5a28c2ff2b5792c"}, + {file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:926a99b81c50b9a4a43ca26dcb781f934d35e773d22913548396601ab8d44c12"}, + {file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:55a2632d27b5a965f1d9fc74b03383e80a3f8e3dc9596807dfb02c8db08cfcb7"}, + {file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:8d8174fe47caf48d830dc477a45cedc8c970722df09dc1456bddc760ff6ccf68"}, + {file = "duckdb-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ad84023399002222fa8d5264a8dc2083053027910df728da92cabb07494a489"}, + {file = "duckdb-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c8adbc8b37444424c72043288f1521c860555a4f151ee4b744e6125f5d05729"}, + {file = "duckdb-1.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:550524c1b423eeb7ca0fdf1c2e6d29e723d7ec7cfab3050b9feb55a620ae927f"}, + {file = "duckdb-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4064243e4d3f445975b78773677de0ccbe924f9c7058a7c2cfedb24bba2ba939"}, + {file = "duckdb-1.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:4f64516dc62dd0fcbb9785c5bc7532a4fca3e6016bbcc92a2b235aa972c631f6"}, + {file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4bf75a64c927470b6618496adcfbf0f316ef09d46a44cfe8e38b78e9ff40c8a0"}, + {file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_universal2.whl", hash = "sha256:5c8cd6fd7107299b9a243836cd8163e4c08d6228f18cbee4ed9f535f53300096"}, + {file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:fc81c02b4d73533a438a9bbae19499531d85b752233c905facc4df41bbde043c"}, + {file = "duckdb-1.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baff4014caf6553b624a296e4db2926602670bd9be6e0fc75f3e970b085631b0"}, + {file = "duckdb-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e21b75a9a60f10b5b5033138c317d929018c92f355fadae5949b310a9179e0a7"}, + {file = "duckdb-1.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8220f039c5ea06dc126232464ab9b77197f80ae53d4611b0a41f73c54f6f3931"}, + {file = "duckdb-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:07384414ceae585d4106a7dc154331ae42f45390ed675ec81e3d01f2252a6b01"}, + {file = "duckdb-1.1.1-cp313-cp313-win_amd64.whl", hash = "sha256:82776b3999e71a962db0bdc3f0258407ef41453f63eb47c33da29b644f8eb530"}, + {file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35d4323655be4053fb90d47e85222c93fd56aea0e8ab0ac44bd8f7249ba85697"}, + {file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:990d0799e0f543a4369413dc6caf7782cbbab49955c08c28ac56d5dab5ccef11"}, + {file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5ef3ba36b317abe000f502702eaaefdd8c3651a25aa0ad409f9487b286e2fb28"}, + {file = "duckdb-1.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2c6e513a572967cd2bab0f20ce265f8eaf95ea7b554eecf1c233717c38569abc"}, + {file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:567471cb964a0e54a7874c578e81af7b6ab474676ae6469ae1c33c2353f76fb1"}, + {file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_universal2.whl", hash = "sha256:a41d8eb4dc538d17660b78f2f4ecd0ba29666a396453bb71d6f4972bf2b3959e"}, + {file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:31be0b9bc1909fb60abda7cd30615fe0224d1e451160d79e8e0313d6205417b0"}, + {file = "duckdb-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:541fb49da108e080d4f2984d2fdabaee36d65967a33642f8bce03373b29952f0"}, + {file = "duckdb-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1c54f836dac5eddbe369fa654811e979bb07688638a52d1c006172feb5b75a5"}, + {file = "duckdb-1.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:afb97970ee72e554b507c6f2e40b356bdbf8fc1f466e7c4d1797183eb66c0809"}, + {file = "duckdb-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:a2cdcb68247f02017a35a0b617ceb1d36a02a7c0588d7e2ed91c9a4e9f14c3f6"}, + {file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:36d71969cb98d10dc2391d8755921258d197995cc8c69e6c82fc377c2f71940a"}, + {file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_universal2.whl", hash = "sha256:3693f464409379a21aff4e35b5f67eb6c96fc402649d9ffddbda4ee9ee9ba9b6"}, + {file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:06ca7f4ca785cc86e9f9aa23d16b67b82dc454b14c396b2e0ff4c09698c7838e"}, + {file = "duckdb-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ed92f3229bf70897a742e7648f648aa8b0c81a7489072aec5515c5635f3303c"}, + {file = "duckdb-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a80ebf52c03f81265b67720abc06a5c7770d08df82b30cabbe266012bd526229"}, + {file = "duckdb-1.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:402a42b992227ebb371a48681ce71b6d1c0661385454b269e6aa379f77a8a83a"}, + {file = "duckdb-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a182d3cbf2e352aaddf392887331bbac460c473cbd55c65d6b6121ef7b43f174"}, + {file = "duckdb-1.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:fafc7d1ec4401787597a5f983d4ef8a9b0638f31e1674a458c57383911166f27"}, + {file = "duckdb-1.1.1.tar.gz", hash = "sha256:74fb07c1334a73e0ead1b0a03646d349921dac655762d916c8e45194c8218d30"}, ] [[package]] @@ -1053,69 +1121,84 @@ files = [ [[package]] name = "greenlet" -version = "3.0.3" +version = "3.1.1" description = "Lightweight in-process concurrent programming" optional = false python-versions = ">=3.7" files = [ - {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, - {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, - {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, - {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, - {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, - {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, - {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, - {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, - {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, - {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, - {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, - {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, - {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, - {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, - {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, - {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, + {file = "greenlet-3.1.1-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:0bbae94a29c9e5c7e4a2b7f0aae5c17e8e90acbfd3bf6270eeba60c39fce3563"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fde093fb93f35ca72a556cf72c92ea3ebfda3d79fc35bb19fbe685853869a83"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36b89d13c49216cadb828db8dfa6ce86bbbc476a82d3a6c397f0efae0525bdd0"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94b6150a85e1b33b40b1464a3f9988dcc5251d6ed06842abff82e42632fac120"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93147c513fac16385d1036b7e5b102c7fbbdb163d556b791f0f11eada7ba65dc"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:da7a9bff22ce038e19bf62c4dd1ec8391062878710ded0a845bcf47cc0200617"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b2795058c23988728eec1f36a4e5e4ebad22f8320c85f3587b539b9ac84128d7"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ed10eac5830befbdd0c32f83e8aa6288361597550ba669b04c48f0f9a2c843c6"}, + {file = "greenlet-3.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:77c386de38a60d1dfb8e55b8c1101d68c79dfdd25c7095d51fec2dd800892b80"}, + {file = "greenlet-3.1.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:e4d333e558953648ca09d64f13e6d8f0523fa705f51cae3f03b5983489958c70"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fc016b73c94e98e29af67ab7b9a879c307c6731a2c9da0db5a7d9b7edd1159"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d5e975ca70269d66d17dd995dafc06f1b06e8cb1ec1e9ed54c1d1e4a7c4cf26e"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b2813dc3de8c1ee3f924e4d4227999285fd335d1bcc0d2be6dc3f1f6a318ec1"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e347b3bfcf985a05e8c0b7d462ba6f15b1ee1c909e2dcad795e49e91b152c383"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9e8f8c9cb53cdac7ba9793c276acd90168f416b9ce36799b9b885790f8ad6c0a"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:62ee94988d6b4722ce0028644418d93a52429e977d742ca2ccbe1c4f4a792511"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1776fd7f989fc6b8d8c8cb8da1f6b82c5814957264d1f6cf818d475ec2bf6395"}, + {file = "greenlet-3.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:48ca08c771c268a768087b408658e216133aecd835c0ded47ce955381105ba39"}, + {file = "greenlet-3.1.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:4afe7ea89de619adc868e087b4d2359282058479d7cfb94970adf4b55284574d"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f406b22b7c9a9b4f8aa9d2ab13d6ae0ac3e85c9a809bd590ad53fed2bf70dc79"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3a701fe5a9695b238503ce5bbe8218e03c3bcccf7e204e455e7462d770268aa"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2846930c65b47d70b9d178e89c7e1a69c95c1f68ea5aa0a58646b7a96df12441"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99cfaa2110534e2cf3ba31a7abcac9d328d1d9f1b95beede58294a60348fba36"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1443279c19fca463fc33e65ef2a935a5b09bb90f978beab37729e1c3c6c25fe9"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:b7cede291382a78f7bb5f04a529cb18e068dd29e0fb27376074b6d0317bf4dd0"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:23f20bb60ae298d7d8656c6ec6db134bca379ecefadb0b19ce6f19d1f232a942"}, + {file = "greenlet-3.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:7124e16b4c55d417577c2077be379514321916d5790fa287c9ed6f23bd2ffd01"}, + {file = "greenlet-3.1.1-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:05175c27cb459dcfc05d026c4232f9de8913ed006d42713cb8a5137bd49375f1"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:935e943ec47c4afab8965954bf49bfa639c05d4ccf9ef6e924188f762145c0ff"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:667a9706c970cb552ede35aee17339a18e8f2a87a51fba2ed39ceeeb1004798a"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b8a678974d1f3aa55f6cc34dc480169d58f2e6d8958895d68845fa4ab566509e"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efc0f674aa41b92da8c49e0346318c6075d734994c3c4e4430b1c3f853e498e4"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0153404a4bb921f0ff1abeb5ce8a5131da56b953eda6e14b88dc6bbc04d2049e"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:275f72decf9932639c1c6dd1013a1bc266438eb32710016a1c742df5da6e60a1"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c4aab7f6381f38a4b42f269057aee279ab0fc7bf2e929e3d4abfae97b682a12c"}, + {file = "greenlet-3.1.1-cp313-cp313-win_amd64.whl", hash = "sha256:b42703b1cf69f2aa1df7d1030b9d77d3e584a70755674d60e710f0af570f3761"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1695e76146579f8c06c1509c7ce4dfe0706f49c6831a817ac04eebb2fd02011"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7876452af029456b3f3549b696bb36a06db7c90747740c5302f74a9e9fa14b13"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ead44c85f8ab905852d3de8d86f6f8baf77109f9da589cb4fa142bd3b57b475"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8320f64b777d00dd7ccdade271eaf0cad6636343293a25074cc5566160e4de7b"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6510bf84a6b643dabba74d3049ead221257603a253d0a9873f55f6a59a65f822"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:04b013dc07c96f83134b1e99888e7a79979f1a247e2a9f59697fa14b5862ed01"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:411f015496fec93c1c8cd4e5238da364e1da7a124bcb293f085bf2860c32c6f6"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47da355d8687fd65240c364c90a31569a133b7b60de111c255ef5b606f2ae291"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98884ecf2ffb7d7fe6bd517e8eb99d31ff7855a840fa6d0d63cd07c037f6a981"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1d4aeb8891338e60d1ab6127af1fe45def5259def8094b9c7e34690c8858803"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db32b5348615a04b82240cc67983cb315309e88d444a288934ee6ceaebcad6cc"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dcc62f31eae24de7f8dce72134c8651c58000d3b1868e01392baea7c32c247de"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1d3755bcb2e02de341c55b4fca7a745a24a9e7212ac953f6b3a48d117d7257aa"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:b8da394b34370874b4572676f36acabac172602abf054cbc4ac910219f3340af"}, + {file = "greenlet-3.1.1-cp37-cp37m-win32.whl", hash = "sha256:a0dfc6c143b519113354e780a50381508139b07d2177cb6ad6a08278ec655798"}, + {file = "greenlet-3.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:54558ea205654b50c438029505def3834e80f0869a70fb15b871c29b4575ddef"}, + {file = "greenlet-3.1.1-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:346bed03fe47414091be4ad44786d1bd8bef0c3fcad6ed3dee074a032ab408a9"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfc59d69fc48664bc693842bd57acfdd490acafda1ab52c7836e3fc75c90a111"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21e10da6ec19b457b82636209cbe2331ff4306b54d06fa04b7c138ba18c8a81"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37b9de5a96111fc15418819ab4c4432e4f3c2ede61e660b1e33971eba26ef9ba"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ef9ea3f137e5711f0dbe5f9263e8c009b7069d8a1acea822bd5e9dae0ae49c8"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85f3ff71e2e60bd4b4932a043fbbe0f499e263c628390b285cb599154a3b03b1"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:95ffcf719966dd7c453f908e208e14cde192e09fde6c7186c8f1896ef778d8cd"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:03a088b9de532cbfe2ba2034b2b85e82df37874681e8c470d6fb2f8c04d7e4b7"}, + {file = "greenlet-3.1.1-cp38-cp38-win32.whl", hash = "sha256:8b8b36671f10ba80e159378df9c4f15c14098c4fd73a36b9ad715f057272fbef"}, + {file = "greenlet-3.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:7017b2be767b9d43cc31416aba48aab0d2309ee31b4dbf10a1d38fb7972bdf9d"}, + {file = "greenlet-3.1.1-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:396979749bd95f018296af156201d6211240e7a23090f50a8d5d18c370084dc3"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca9d0ff5ad43e785350894d97e13633a66e2b50000e8a183a50a88d834752d42"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f6ff3b14f2df4c41660a7dec01045a045653998784bf8cfcb5a525bdffffbc8f"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94ebba31df2aa506d7b14866fed00ac141a867e63143fe5bca82a8e503b36437"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73aaad12ac0ff500f62cebed98d8789198ea0e6f233421059fa68a5aa7220145"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:63e4844797b975b9af3a3fb8f7866ff08775f5426925e1e0bbcfe7932059a12c"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7939aa3ca7d2a1593596e7ac6d59391ff30281ef280d8632fa03d81f7c5f955e"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d0028e725ee18175c6e422797c407874da24381ce0690d6b9396c204c7f7276e"}, + {file = "greenlet-3.1.1-cp39-cp39-win32.whl", hash = "sha256:5e06afd14cbaf9e00899fae69b24a32f2196c19de08fcb9f4779dd4f004e5e7c"}, + {file = "greenlet-3.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:3319aa75e0e0639bc15ff54ca327e8dc7a6fe404003496e3c6925cd3142e0e22"}, + {file = "greenlet-3.1.1.tar.gz", hash = "sha256:4ce3ac6cdb6adf7946475d7ef31777c26d94bccc377e070a7986bd2d5c515467"}, ] [package.extras] @@ -1181,54 +1264,39 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.8" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.6" files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, -] - -[[package]] -name = "importlib-metadata" -version = "8.4.0" -description = "Read metadata from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"}, - {file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] -[package.dependencies] -zipp = ">=0.5" - [package.extras] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] [[package]] -name = "importlib-resources" -version = "6.4.4" -description = "Read resources from Python packages" +name = "importlib-metadata" +version = "8.5.0" +description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_resources-6.4.4-py3-none-any.whl", hash = "sha256:dda242603d1c9cd836c3368b1174ed74cb4049ecd209e7a1a0104620c18c5c11"}, - {file = "importlib_resources-6.4.4.tar.gz", hash = "sha256:20600c8b7361938dc0bb2d5ec0297802e575df486f5a544fa414da65e13721f7"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} +zipp = ">=3.20" [package.extras] check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] enabler = ["pytest-enabler (>=2.2)"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] type = ["pytest-mypy"] [[package]] @@ -1277,42 +1345,40 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.12.3" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "ipywidgets" @@ -1436,11 +1502,9 @@ files = [ attrs = ">=22.2.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} jsonschema-specifications = ">=2023.03.6" -pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} referencing = ">=0.28.4" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} @@ -1464,7 +1528,6 @@ files = [ ] [package.dependencies] -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} referencing = ">=0.31.0" [[package]] @@ -1488,13 +1551,13 @@ notebook = "*" [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -1663,7 +1726,6 @@ files = [ async-lru = ">=1.0.0" httpx = ">=0.25.0" importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -importlib-resources = {version = ">=1.4", markers = "python_version < \"3.9\""} ipykernel = ">=6.5.0" jinja2 = ">=3.0.3" jupyter-core = "*" @@ -1734,24 +1796,24 @@ files = [ [[package]] name = "langchain" -version = "0.2.16" +version = "0.3.1" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] aiohttp = "^3.8.3" async-timeout = {version = "^4.0.0", markers = "python_version < \"3.11\""} -langchain-core = "^0.2.38" -langchain-text-splitters = "^0.2.0" +langchain-core = "^0.3.6" +langchain-text-splitters = "^0.3.0" langsmith = "^0.1.17" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] -pydantic = ">=1,<3" +pydantic = "^2.7.4" PyYAML = ">=5.3" requests = "^2" SQLAlchemy = ">=1.4,<3" @@ -1763,19 +1825,19 @@ url = "../langchain" [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.6" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.112" +langsmith = "^0.1.125" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -1791,13 +1853,13 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = "^0.3.0" pytest = ">=7,<9" syrupy = "^4" @@ -1807,15 +1869,15 @@ url = "../standard-tests" [[package]] name = "langchain-text-splitters" -version = "0.2.4" +version = "0.3.0" description = "LangChain text splitting utilities" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.38" +langchain-core = "^0.3.0" [package.source] type = "directory" @@ -1823,13 +1885,13 @@ url = "../text-splitters" [[package]] name = "langsmith" -version = "0.1.116" +version = "0.1.128" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.116-py3-none-any.whl", hash = "sha256:4b5ea64c81ba5ca309695c85dc3fb4617429a985129ed5d9eca00d1c9d6483f4"}, - {file = "langsmith-0.1.116.tar.gz", hash = "sha256:5ccd7f5c1840f7c507ab3ee56334a1391de28c8bf72669782e2d82cafeefffa7"}, + {file = "langsmith-0.1.128-py3-none-any.whl", hash = "sha256:c1b59d947584be7487ac53dffb4e232704626964011b714fd3d9add4b3694cbc"}, + {file = "langsmith-0.1.128.tar.gz", hash = "sha256:3299e17a659f3c47725c97c47f4445fc34113ac668becce425919866fbcb6ec2"}, ] [package.dependencies] @@ -1973,103 +2035,108 @@ files = [ [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" version = "1.11.2" @@ -2275,43 +2342,6 @@ jupyter-server = ">=1.8,<3" [package.extras] test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -2447,70 +2477,89 @@ files = [ [[package]] name = "pandas" -version = "2.0.3" +version = "2.2.3" description = "Powerful data structures for data analysis, time series, and statistics" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, - {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, - {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, - {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, - {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, - {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, - {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, - {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, - {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, - {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, - {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, ] [package.dependencies] numpy = [ - {version = ">=1.20.3", markers = "python_version < \"3.10\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, - {version = ">=1.21.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" -tzdata = ">=2022.1" +tzdata = ">=2022.7" [package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] [[package]] name = "pandocfilters" @@ -2552,43 +2601,21 @@ files = [ [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - -[[package]] -name = "pkgutil-resolve-name" -version = "1.3.10" -description = "Resolve a name to an object." -optional = false -python-versions = ">=3.6" -files = [ - {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, - {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, -] - [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "pluggy" @@ -2607,13 +2634,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "prometheus-client" -version = "0.20.0" +version = "0.21.0" description = "Python client for the Prometheus monitoring system." optional = false python-versions = ">=3.8" files = [ - {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"}, - {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"}, + {file = "prometheus_client-0.21.0-py3-none-any.whl", hash = "sha256:4fa6b4dd0ac16d58bb587c04b1caae65b8c5043e85f778f42f5f632f6af2e166"}, + {file = "prometheus_client-0.21.0.tar.gz", hash = "sha256:96c83c606b71ff2b0a433c98889d275f51ffec6c5e267de37c7a2b5c9aa9233e"}, ] [package.extras] @@ -2621,13 +2648,13 @@ twisted = ["twisted"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.48" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, ] [package.dependencies] @@ -2635,22 +2662,22 @@ wcwidth = "*" [[package]] name = "protobuf" -version = "5.28.0" +version = "5.28.2" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-5.28.0-cp310-abi3-win32.whl", hash = "sha256:66c3edeedb774a3508ae70d87b3a19786445fe9a068dd3585e0cefa8a77b83d0"}, - {file = "protobuf-5.28.0-cp310-abi3-win_amd64.whl", hash = "sha256:6d7cc9e60f976cf3e873acb9a40fed04afb5d224608ed5c1a105db4a3f09c5b6"}, - {file = "protobuf-5.28.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:532627e8fdd825cf8767a2d2b94d77e874d5ddb0adefb04b237f7cc296748681"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:018db9056b9d75eb93d12a9d35120f97a84d9a919bcab11ed56ad2d399d6e8dd"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:6206afcb2d90181ae8722798dcb56dc76675ab67458ac24c0dd7d75d632ac9bd"}, - {file = "protobuf-5.28.0-cp38-cp38-win32.whl", hash = "sha256:eef7a8a2f4318e2cb2dee8666d26e58eaf437c14788f3a2911d0c3da40405ae8"}, - {file = "protobuf-5.28.0-cp38-cp38-win_amd64.whl", hash = "sha256:d001a73c8bc2bf5b5c1360d59dd7573744e163b3607fa92788b7f3d5fefbd9a5"}, - {file = "protobuf-5.28.0-cp39-cp39-win32.whl", hash = "sha256:dde9fcaa24e7a9654f4baf2a55250b13a5ea701493d904c54069776b99a8216b"}, - {file = "protobuf-5.28.0-cp39-cp39-win_amd64.whl", hash = "sha256:853db610214e77ee817ecf0514e0d1d052dff7f63a0c157aa6eabae98db8a8de"}, - {file = "protobuf-5.28.0-py3-none-any.whl", hash = "sha256:510ed78cd0980f6d3218099e874714cdf0d8a95582e7b059b06cabad855ed0a0"}, - {file = "protobuf-5.28.0.tar.gz", hash = "sha256:dde74af0fa774fa98892209992295adbfb91da3fa98c8f67a88afe8f5a349add"}, + {file = "protobuf-5.28.2-cp310-abi3-win32.whl", hash = "sha256:eeea10f3dc0ac7e6b4933d32db20662902b4ab81bf28df12218aa389e9c2102d"}, + {file = "protobuf-5.28.2-cp310-abi3-win_amd64.whl", hash = "sha256:2c69461a7fcc8e24be697624c09a839976d82ae75062b11a0972e41fd2cd9132"}, + {file = "protobuf-5.28.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a8b9403fc70764b08d2f593ce44f1d2920c5077bf7d311fefec999f8c40f78b7"}, + {file = "protobuf-5.28.2-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:35cfcb15f213449af7ff6198d6eb5f739c37d7e4f1c09b5d0641babf2cc0c68f"}, + {file = "protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:5e8a95246d581eef20471b5d5ba010d55f66740942b95ba9b872d918c459452f"}, + {file = "protobuf-5.28.2-cp38-cp38-win32.whl", hash = "sha256:87317e9bcda04a32f2ee82089a204d3a2f0d3c8aeed16568c7daf4756e4f1fe0"}, + {file = "protobuf-5.28.2-cp38-cp38-win_amd64.whl", hash = "sha256:c0ea0123dac3399a2eeb1a1443d82b7afc9ff40241433296769f7da42d142ec3"}, + {file = "protobuf-5.28.2-cp39-cp39-win32.whl", hash = "sha256:ca53faf29896c526863366a52a8f4d88e69cd04ec9571ed6082fa117fac3ab36"}, + {file = "protobuf-5.28.2-cp39-cp39-win_amd64.whl", hash = "sha256:8ddc60bf374785fb7cb12510b267f59067fa10087325b8e1855b898a0d81d276"}, + {file = "protobuf-5.28.2-py3-none-any.whl", hash = "sha256:52235802093bd8a2811abbe8bf0ab9c5f54cca0a751fdd3f6ac2a21438bffece"}, + {file = "protobuf-5.28.2.tar.gz", hash = "sha256:59379674ff119717404f7454647913787034f03fe7049cbef1d74a97bb4593f0"}, ] [[package]] @@ -2720,18 +2747,18 @@ files = [ [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -2739,108 +2766,129 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" +[[package]] +name = "pydantic-settings" +version = "2.5.2" +description = "Settings management using Pydantic" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_settings-2.5.2-py3-none-any.whl", hash = "sha256:2c912e55fd5794a59bf8c832b9de832dcfdf4778d79ff79b708744eed499a907"}, + {file = "pydantic_settings-2.5.2.tar.gz", hash = "sha256:f90b139682bee4d2065273d5185d71d37ea46cfe57e1b5ae184fc6a0b2484ca0"}, +] + +[package.dependencies] +pydantic = ">=2.7.0" +python-dotenv = ">=0.21.0" + +[package.extras] +azure-key-vault = ["azure-identity (>=1.16.0)", "azure-keyvault-secrets (>=4.8.0)"] +toml = ["tomli (>=2.0.1)"] +yaml = ["pyyaml (>=6.0.1)"] + [[package]] name = "pygments" version = "2.18.0" @@ -3029,13 +3077,13 @@ files = [ [[package]] name = "pytz" -version = "2024.1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] @@ -3563,12 +3611,60 @@ files = [ [[package]] name = "sqlalchemy" -version = "2.0.33" +version = "2.0.35" description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ - {file = "sqlalchemy-2.0.33.tar.gz", hash = "sha256:91c93333c2b37ff721dc83b37e28c29de4c502b5612f2d093468037b86aa2be0"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:67219632be22f14750f0d1c70e62f204ba69d28f62fd6432ba05ab295853de9b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4668bd8faf7e5b71c0319407b608f278f279668f358857dbfd10ef1954ac9f90"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb8bea573863762bbf45d1e13f87c2d2fd32cee2dbd50d050f83f87429c9e1ea"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f552023710d4b93d8fb29a91fadf97de89c5926c6bd758897875435f2a939f33"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:016b2e665f778f13d3c438651dd4de244214b527a275e0acf1d44c05bc6026a9"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7befc148de64b6060937231cbff8d01ccf0bfd75aa26383ffdf8d82b12ec04ff"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win32.whl", hash = "sha256:22b83aed390e3099584b839b93f80a0f4a95ee7f48270c97c90acd40ee646f0b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win_amd64.whl", hash = "sha256:a29762cd3d116585278ffb2e5b8cc311fb095ea278b96feef28d0b423154858e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e21f66748ab725ade40fa7af8ec8b5019c68ab00b929f6643e1b1af461eddb60"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8a6219108a15fc6d24de499d0d515c7235c617b2540d97116b663dade1a54d62"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042622a5306c23b972192283f4e22372da3b8ddf5f7aac1cc5d9c9b222ab3ff6"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:627dee0c280eea91aed87b20a1f849e9ae2fe719d52cbf847c0e0ea34464b3f7"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4fdcd72a789c1c31ed242fd8c1bcd9ea186a98ee8e5408a50e610edfef980d71"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:89b64cd8898a3a6f642db4eb7b26d1b28a497d4022eccd7717ca066823e9fb01"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win32.whl", hash = "sha256:6a93c5a0dfe8d34951e8a6f499a9479ffb9258123551fa007fc708ae2ac2bc5e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win_amd64.whl", hash = "sha256:c68fe3fcde03920c46697585620135b4ecfdfc1ed23e75cc2c2ae9f8502c10b8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb60b026d8ad0c97917cb81d3662d0b39b8ff1335e3fabb24984c6acd0c900a2"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6921ee01caf375363be5e9ae70d08ce7ca9d7e0e8983183080211a062d299468"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cdf1a0dbe5ced887a9b127da4ffd7354e9c1a3b9bb330dce84df6b70ccb3a8d"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93a71c8601e823236ac0e5d087e4f397874a421017b3318fd92c0b14acf2b6db"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e04b622bb8a88f10e439084486f2f6349bf4d50605ac3e445869c7ea5cf0fa8c"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1b56961e2d31389aaadf4906d453859f35302b4eb818d34a26fab72596076bb8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win32.whl", hash = "sha256:0f9f3f9a3763b9c4deb8c5d09c4cc52ffe49f9876af41cc1b2ad0138878453cf"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win_amd64.whl", hash = "sha256:25b0f63e7fcc2a6290cb5f7f5b4fc4047843504983a28856ce9b35d8f7de03cc"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f021d334f2ca692523aaf7bbf7592ceff70c8594fad853416a81d66b35e3abf9"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05c3f58cf91683102f2f0265c0db3bd3892e9eedabe059720492dbaa4f922da1"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:032d979ce77a6c2432653322ba4cbeabf5a6837f704d16fa38b5a05d8e21fa00"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:2e795c2f7d7249b75bb5f479b432a51b59041580d20599d4e112b5f2046437a3"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:cc32b2990fc34380ec2f6195f33a76b6cdaa9eecf09f0c9404b74fc120aef36f"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win32.whl", hash = "sha256:9509c4123491d0e63fb5e16199e09f8e262066e58903e84615c301dde8fa2e87"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win_amd64.whl", hash = "sha256:3655af10ebcc0f1e4e06c5900bb33e080d6a1fa4228f502121f28a3b1753cde5"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4c31943b61ed8fdd63dfd12ccc919f2bf95eefca133767db6fbbd15da62078ec"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a62dd5d7cc8626a3634208df458c5fe4f21200d96a74d122c83bc2015b333bc1"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0630774b0977804fba4b6bbea6852ab56c14965a2b0c7fc7282c5f7d90a1ae72"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d625eddf7efeba2abfd9c014a22c0f6b3796e0ffb48f5d5ab106568ef01ff5a"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ada603db10bb865bbe591939de854faf2c60f43c9b763e90f653224138f910d9"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c41411e192f8d3ea39ea70e0fae48762cd11a2244e03751a98bd3c0ca9a4e936"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win32.whl", hash = "sha256:d299797d75cd747e7797b1b41817111406b8b10a4f88b6e8fe5b5e59598b43b0"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win_amd64.whl", hash = "sha256:0375a141e1c0878103eb3d719eb6d5aa444b490c96f3fedab8471c7f6ffe70ee"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ccae5de2a0140d8be6838c331604f91d6fafd0735dbdcee1ac78fc8fbaba76b4"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2a275a806f73e849e1c309ac11108ea1a14cd7058577aba962cd7190e27c9e3c"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:732e026240cdd1c1b2e3ac515c7a23820430ed94292ce33806a95869c46bd139"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:890da8cd1941fa3dab28c5bac3b9da8502e7e366f895b3b8e500896f12f94d11"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c0d8326269dbf944b9201911b0d9f3dc524d64779a07518199a58384c3d37a44"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b76d63495b0508ab9fc23f8152bac63205d2a704cd009a2b0722f4c8e0cba8e0"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win32.whl", hash = "sha256:69683e02e8a9de37f17985905a5eca18ad651bf592314b4d3d799029797d0eb3"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win_amd64.whl", hash = "sha256:aee110e4ef3c528f3abbc3c2018c121e708938adeeff9006428dd7c8555e9b3f"}, + {file = "SQLAlchemy-2.0.35-py3-none-any.whl", hash = "sha256:2ab3f0336c0387662ce6221ad30ab3a5e6499aab01b9790879b6578fd9b8faa1"}, + {file = "sqlalchemy-2.0.35.tar.gz", hash = "sha256:e11d7ea4d24f0a262bccf9a7cd6284c976c5369dac21db237cff59586045ab9f"}, ] [package.dependencies] @@ -3771,13 +3867,13 @@ files = [ [[package]] name = "types-protobuf" -version = "5.27.0.20240626" +version = "5.28.0.20240924" description = "Typing stubs for protobuf" optional = false python-versions = ">=3.8" files = [ - {file = "types-protobuf-5.27.0.20240626.tar.gz", hash = "sha256:683ba14043bade6785e3f937a7498f243b37881a91ac8d81b9202ecf8b191e9c"}, - {file = "types_protobuf-5.27.0.20240626-py3-none-any.whl", hash = "sha256:688e8f7e8d9295db26bc560df01fb731b27a25b77cbe4c1ce945647f7024f5c1"}, + {file = "types-protobuf-5.28.0.20240924.tar.gz", hash = "sha256:d181af8a256e5a91ce8d5adb53496e880efd9144c7d54483e3653332b60296f0"}, + {file = "types_protobuf-5.28.0.20240924-py3-none-any.whl", hash = "sha256:5cecf612ccdefb7dc95f7a51fb502902f20fc2e6681cd500184aaa1b3931d6a7"}, ] [[package]] @@ -3797,13 +3893,13 @@ types-cffi = "*" [[package]] name = "types-python-dateutil" -version = "2.9.0.20240821" +version = "2.9.0.20240906" description = "Typing stubs for python-dateutil" optional = false python-versions = ">=3.8" files = [ - {file = "types-python-dateutil-2.9.0.20240821.tar.gz", hash = "sha256:9649d1dcb6fef1046fb18bebe9ea2aa0028b160918518c34589a46045f6ebd98"}, - {file = "types_python_dateutil-2.9.0.20240821-py3-none-any.whl", hash = "sha256:f5889fcb4e63ed4aaa379b44f93c32593d50b9a94c9a60a0c854d8cc3511cd57"}, + {file = "types-python-dateutil-2.9.0.20240906.tar.gz", hash = "sha256:9706c3b68284c25adffc47319ecc7947e5bb86b3773f843c73906fd598bc176e"}, + {file = "types_python_dateutil-2.9.0.20240906-py3-none-any.whl", hash = "sha256:27c8cc2d058ccb14946eebcaaa503088f4f6dbc4fb6093d3d456a49aef2753f6"}, ] [[package]] @@ -3819,13 +3915,13 @@ files = [ [[package]] name = "types-pyyaml" -version = "6.0.12.20240808" +version = "6.0.12.20240917" description = "Typing stubs for PyYAML" optional = false python-versions = ">=3.8" files = [ - {file = "types-PyYAML-6.0.12.20240808.tar.gz", hash = "sha256:b8f76ddbd7f65440a8bda5526a9607e4c7a322dc2f8e1a8c405644f9a6f4b9af"}, - {file = "types_PyYAML-6.0.12.20240808-py3-none-any.whl", hash = "sha256:deda34c5c655265fc517b546c902aa6eed2ef8d3e921e4765fe606fe2afe8d35"}, + {file = "types-PyYAML-6.0.12.20240917.tar.gz", hash = "sha256:d1405a86f9576682234ef83bcb4e6fff7c9305c8b1fbad5e0bcd4f7dbdc9c587"}, + {file = "types_PyYAML-6.0.12.20240917-py3-none-any.whl", hash = "sha256:392b267f1c0fe6022952462bf5d6523f31e37f6cea49b14cee7ad634b6301570"}, ] [[package]] @@ -3859,13 +3955,13 @@ types-urllib3 = "*" [[package]] name = "types-requests" -version = "2.32.0.20240712" +version = "2.32.0.20240914" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, + {file = "types-requests-2.32.0.20240914.tar.gz", hash = "sha256:2850e178db3919d9bf809e434eef65ba49d0e7e33ac92d588f4a5e295fffd405"}, + {file = "types_requests-2.32.0.20240914-py3-none-any.whl", hash = "sha256:59c2f673eb55f32a99b2894faf6020e1a9f4a402ad0f192bfee0b64469054310"}, ] [package.dependencies] @@ -3873,13 +3969,13 @@ urllib3 = ">=2" [[package]] name = "types-setuptools" -version = "74.0.0.20240831" +version = "75.1.0.20240917" description = "Typing stubs for setuptools" optional = false python-versions = ">=3.8" files = [ - {file = "types-setuptools-74.0.0.20240831.tar.gz", hash = "sha256:8b4a544cc91d42a019dc1e41fd397608b4bc7e20c7d7d5bc326589ffd9e8f8a1"}, - {file = "types_setuptools-74.0.0.20240831-py3-none-any.whl", hash = "sha256:4d9d18ea9214828d695a384633130009f5dee2681a157ee873d3680b62931590"}, + {file = "types-setuptools-75.1.0.20240917.tar.gz", hash = "sha256:12f12a165e7ed383f31def705e5c0fa1c26215dd466b0af34bd042f7d5331f55"}, + {file = "types_setuptools-75.1.0.20240917-py3-none-any.whl", hash = "sha256:06f78307e68d1bbde6938072c57b81cf8a99bc84bd6dc7e4c5014730b097dc0c"}, ] [[package]] @@ -3932,13 +4028,13 @@ typing-extensions = ">=3.7.4" [[package]] name = "tzdata" -version = "2024.1" +version = "2024.2" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, ] [[package]] @@ -3973,13 +4069,13 @@ socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -4009,46 +4105,41 @@ tests = ["Werkzeug (==2.0.3)", "aiohttp", "boto3", "httplib2", "httpx", "pytest" [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -4199,103 +4290,103 @@ files = [ [[package]] name = "yarl" -version = "1.9.7" +version = "1.12.1" description = "Yet another URL library" optional = false python-versions = ">=3.8" files = [ - {file = "yarl-1.9.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:60c04415b31a1611ef5989a6084dd6f6b95652c6a18378b58985667b65b2ecb6"}, - {file = "yarl-1.9.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1787dcfdbe730207acb454548a6e19f80ae75e6d2d1f531c5a777bc1ab6f7952"}, - {file = "yarl-1.9.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f5ddad20363f9f1bbedc95789c897da62f939e6bc855793c3060ef8b9f9407bf"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fdb156a06208fc9645ae7cc0fca45c40dd40d7a8c4db626e542525489ca81a9"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:522fa3d300d898402ae4e0fa7c2c21311248ca43827dc362a667de87fdb4f1be"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7f9cabfb8b980791b97a3ae3eab2e38b2ba5eab1af9b7495bdc44e1ce7c89e3"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1fc728857df4087da6544fc68f62d7017fa68d74201d5b878e18ed4822c31fb3"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dba2ebac677184d56374fa3e452b461f5d6a03aa132745e648ae8859361eb6b"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a95167ae34667c5cc7d9206c024f793e8ffbadfb307d5c059de470345de58a21"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9d319ac113ca47352319cbea92d1925a37cb7bd61a8c2f3e3cd2e96eb33cccae"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:2d71a5d818d82586ac46265ae01466e0bda0638760f18b21f1174e0dd58a9d2f"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:ff03f1c1ac474c66d474929ae7e4dd195592c1c7cc8c36418528ed81b1ca0a79"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:78250f635f221dde97d02c57aade3313310469bc291888dfe32acd1012594441"}, - {file = "yarl-1.9.7-cp310-cp310-win32.whl", hash = "sha256:f3aaf9fa960d55bd7876d55d7ea3cc046f3660df1ff73fc1b8c520a741ed1f21"}, - {file = "yarl-1.9.7-cp310-cp310-win_amd64.whl", hash = "sha256:e8362c941e07fbcde851597672a5e41b21dc292b7d5a1dc439b7a93c9a1af5d9"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:596069ddeaf72b5eb36cd714dcd2b5751d0090d05a8d65113b582ed9e1c801fb"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cb870907e8b86b2f32541403da9455afc1e535ce483e579bea0e6e79a0cc751c"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ca5e86be84492fa403c4dcd4dcaf8e1b1c4ffc747b5176f7c3d09878c45719b0"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a99cecfb51c84d00132db909e83ae388793ca86e48df7ae57f1be0beab0dcce5"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25508739e9b44d251172145f54c084b71747b09e4d237dc2abb045f46c36a66e"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:60f3b5aec3146b6992640592856414870f5b20eb688c1f1d5f7ac010a7f86561"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1557456afce5db3d655b5f8a31cdcaae1f47e57958760525c44b76e812b4987"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71bb1435a84688ed831220c5305d96161beb65cac4a966374475348aa3de4575"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f87d8645a7a806ec8f66aac5e3b1dcb5014849ff53ffe2a1f0b86ca813f534c7"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:58e3f01673873b8573da3abe138debc63e4e68541b2104a55df4c10c129513a4"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:8af0bbd4d84f8abdd9b11be9488e32c76b1501889b73c9e2292a15fb925b378b"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:7fc441408ed0d9c6d2d627a02e281c21f5de43eb5209c16636a17fc704f7d0f8"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a9552367dc440870556da47bb289a806f08ad06fbc4054072d193d9e5dd619ba"}, - {file = "yarl-1.9.7-cp311-cp311-win32.whl", hash = "sha256:628619008680a11d07243391271b46f07f13b75deb9fe92ef342305058c70722"}, - {file = "yarl-1.9.7-cp311-cp311-win_amd64.whl", hash = "sha256:bc23d870864971c8455cfba17498ccefa53a5719ea9f5fce5e7e9c1606b5755f"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d8cf3d0b67996edc11957aece3fbce4c224d0451c7c3d6154ec3a35d0e55f6b"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a7748cd66fef49c877e59503e0cc76179caf1158d1080228e67e1db14554f08"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a6fa3aeca8efabb0fbbb3b15e0956b0cb77f7d9db67c107503c30af07cd9e00"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf37dd0008e5ac5c3880198976063c491b6a15b288d150d12833248cf2003acb"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87aa5308482f248f8c3bd9311cd6c7dfd98ea1a8e57e35fb11e4adcac3066003"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:867b13c1b361f9ba5d2f84dc5408082f5d744c83f66de45edc2b96793a9c5e48"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48ce93947554c2c85fe97fc4866646ec90840bc1162e4db349b37d692a811755"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fcd3d94b848cba132f39a5b40d80b0847d001a91a6f35a2204505cdd46afe1b2"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d06d6a8f98dd87646d98f0c468be14b201e47ec6092ad569adf835810ad0dffb"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:91567ff4fce73d2e7ac67ed5983ad26ba2343bc28cb22e1e1184a9677df98d7c"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:1d5594512541e63188fea640b7f066c218d2176203d6e6f82abf702ae3dca3b2"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9c2743e43183e4afbb07d5605693299b8756baff0b086c25236c761feb0e3c56"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:daa69a3a2204355af39f4cfe7f3870d87c53d77a597b5100b97e3faa9460428b"}, - {file = "yarl-1.9.7-cp312-cp312-win32.whl", hash = "sha256:36b16884336c15adf79a4bf1d592e0c1ffdb036a760e36a1361565b66785ec6c"}, - {file = "yarl-1.9.7-cp312-cp312-win_amd64.whl", hash = "sha256:2ead2f87a1174963cc406d18ac93d731fbb190633d3995fa052d10cefae69ed8"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:808eddabcb6f7b2cdb6929b3e021ac824a2c07dc7bc83f7618e18438b1b65781"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:395ab0d8ce6d104a988da429bcbfd445e03fb4c911148dfd523f69d13f772e47"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:49827dfccbd59c4499605c13805e947349295466e490860a855b7c7e82ec9c75"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b8bbdd425d0978311520ea99fb6c0e9e04e64aee84fac05f3157ace9f81b05"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71d33fd1c219b5b28ee98cd76da0c9398a4ed4792fd75c94135237db05ba5ca8"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:62440431741d0b7d410e5cbad800885e3289048140a43390ecab4f0b96dde3bb"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db97210433366dfba55590e48285b89ad0146c52bf248dd0da492dd9f0f72cf"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:653597b615809f2e5f4dba6cd805608b6fd3597128361a22cc612cf7c7a4d1bf"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:df47612129e66f7ce7c9994d4cd4e6852f6e3bf97699375d86991481796eeec8"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:5e338b6febbae6c9fe86924bac3ea9c1944e33255c249543cd82a4af6df6047b"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:e649d37d04665dddb90994bbf0034331b6c14144cc6f3fbce400dc5f28dc05b7"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:0a1b8fd849567be56342e988e72c9d28bd3c77b9296c38b9b42d2fe4813c9d3f"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f9d715b2175dff9a49c6dafdc2ab3f04850ba2f3d4a77f69a5a1786b057a9d45"}, - {file = "yarl-1.9.7-cp313-cp313-win32.whl", hash = "sha256:bc9233638b07c2e4a3a14bef70f53983389bffa9e8cb90a2da3f67ac9c5e1842"}, - {file = "yarl-1.9.7-cp313-cp313-win_amd64.whl", hash = "sha256:62e110772330d7116f91e79cd83fef92545cb2f36414c95881477aa01971f75f"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a564155cc2194ecd9c0d8f8dc57059b822a507de5f08120063675eb9540576aa"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:03e917cc44a01e1be60a83ee1a17550b929490aaa5df2a109adc02137bddf06b"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:eefda67ba0ba44ab781e34843c266a76f718772b348f7c5d798d8ea55b95517f"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:316c82b499b6df41444db5dea26ee23ece9356e38cea43a8b2af9e6d8a3558e4"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10452727843bc847596b75e30a7fe92d91829f60747301d1bd60363366776b0b"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:050f3e4d886be55728fef268587d061c5ce6f79a82baba71840801b63441c301"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0aabe557446aa615693a82b4d3803c102fd0e7a6a503bf93d744d182a510184"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:23404842228e6fa8ace235024519df37f3f8e173620407644d40ddca571ff0f4"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:34736fcc9d6d7080ebbeb0998ecb91e4f14ad8f18648cf0b3099e2420a225d86"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:48f7a158f3ca67509d21cb02a96964e4798b6f133691cc0c86cf36e26e26ec8f"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:6639444d161c693cdabb073baaed1945c717d3982ecedf23a219bc55a242e728"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:1cd450e10cb53d63962757c3f6f7870be49a3e448c46621d6bd46f8088d532de"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74d3ef5e81f81507cea04bf5ae22f18ef538607a7c754aac2b6e3029956a2842"}, - {file = "yarl-1.9.7-cp38-cp38-win32.whl", hash = "sha256:4052dbd0c900bece330e3071c636f99dff06e4628461a29b38c6e222a427cf98"}, - {file = "yarl-1.9.7-cp38-cp38-win_amd64.whl", hash = "sha256:dd08da4f2d171e19bd02083c921f1bef89f8f5f87000d0ffc49aa257bc5a9802"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7ab906a956d2109c6ea11e24c66592b06336e2743509290117f0f7f47d2c1dd3"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d8ad761493d5aaa7ab2a09736e62b8a220cb0b10ff8ccf6968c861cd8718b915"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d35f9cdab0ec5e20cf6d2bd46456cf599052cf49a1698ef06b9592238d1cf1b1"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a48d2b9f0ae29a456fb766ae461691378ecc6cf159dd9f938507d925607591c3"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cf85599c9336b89b92c313519bcaa223d92fa5d98feb4935a47cce2e8722b4b8"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8e8916b1ff7680b1f2b1608c82dc15c569b9f2cb2da100c747c291f1acf18a14"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29c80890e0a64fb0e5f71350d48da330995073881f8b8e623154aef631febfb0"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9163d21aa40ff8528db2aee2b0b6752efe098055b41ab8e5422b2098457199fe"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:65e3098969baf221bb45e3b2f60735fc2b154fc95902131ebc604bae4c629ea6"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:cddebd096effe4be90fd378e4224cd575ac99e1c521598a6900e94959006e02e"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:8525f955a2dcc281573b6aadeb8ab9c37e2d3428b64ca6a2feec2a794a69c1da"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:5d585c7d834c13f24c7e3e0efaf1a4b7678866940802e11bd6c4d1f99c935e6b"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:78805148e780a9ca66f3123e04741e344b66cf06b4fb13223e3a209f39a6da55"}, - {file = "yarl-1.9.7-cp39-cp39-win32.whl", hash = "sha256:3f53df493ec80b76969d6e1ae6e4411a55ab1360e02b80c84bd4b33d61a567ba"}, - {file = "yarl-1.9.7-cp39-cp39-win_amd64.whl", hash = "sha256:c81c28221a85add23a0922a6aeb2cdda7f9723e03e2dfae06fee5c57fe684262"}, - {file = "yarl-1.9.7-py3-none-any.whl", hash = "sha256:49935cc51d272264358962d050d726c3e5603a616f53e52ea88e9df1728aa2ee"}, - {file = "yarl-1.9.7.tar.gz", hash = "sha256:f28e602edeeec01fc96daf7728e8052bc2e12a672e2a138561a1ebaf30fd9df7"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:64c5b0f2b937fe40d0967516eee5504b23cb247b8b7ffeba7213a467d9646fdc"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2e430ac432f969ef21770645743611c1618362309e3ad7cab45acd1ad1a540ff"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3e26e64f42bce5ddf9002092b2c37b13071c2e6413d5c05f9fa9de58ed2f7749"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0103c52f8dfe5d573c856322149ddcd6d28f51b4d4a3ee5c4b3c1b0a05c3d034"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b63465b53baeaf2122a337d4ab57d6bbdd09fcadceb17a974cfa8a0300ad9c67"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17d4dc4ff47893a06737b8788ed2ba2f5ac4e8bb40281c8603920f7d011d5bdd"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b54949267bd5704324397efe9fbb6aa306466dee067550964e994d309db5f1"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10b690cd78cbaca2f96a7462f303fdd2b596d3978b49892e4b05a7567c591572"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c85ab016e96a975afbdb9d49ca90f3bca9920ef27c64300843fe91c3d59d8d20"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c1caa5763d1770216596e0a71b5567f27aac28c95992110212c108ec74589a48"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:595bbcdbfc4a9c6989d7489dca8510cba053ff46b16c84ffd95ac8e90711d419"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e64f0421892a207d3780903085c1b04efeb53b16803b23d947de5a7261b71355"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:319c206e83e46ec2421b25b300c8482b6fe8a018baca246be308c736d9dab267"}, + {file = "yarl-1.12.1-cp310-cp310-win32.whl", hash = "sha256:da045bd1147d12bd43fb032296640a7cc17a7f2eaba67495988362e99db24fd2"}, + {file = "yarl-1.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:aebbd47df77190ada603157f0b3670d578c110c31746ecc5875c394fdcc59a99"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:28389a68981676bf74e2e199fe42f35d1aa27a9c98e3a03e6f58d2d3d054afe1"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f736f54565f8dd7e3ab664fef2bc461d7593a389a7f28d4904af8d55a91bd55f"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dee0496d5f1a8f57f0f28a16f81a2033fc057a2cf9cd710742d11828f8c80e2"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8981a94a27ac520a398302afb74ae2c0be1c3d2d215c75c582186a006c9e7b0"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ff54340fc1129e8e181827e2234af3ff659b4f17d9bbe77f43bc19e6577fadec"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:54c8cee662b5f8c30ad7eedfc26123f845f007798e4ff1001d9528fe959fd23c"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e97a29b37830ba1262d8dfd48ddb5b28ad4d3ebecc5d93a9c7591d98641ec737"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c89894cc6f6ddd993813e79244b36b215c14f65f9e4f1660b1f2ba9e5594b95"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:712ba8722c0699daf186de089ddc4677651eb9875ed7447b2ad50697522cbdd9"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6e9a9f50892153bad5046c2a6df153224aa6f0573a5a8ab44fc54a1e886f6e21"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1d4017e78fb22bc797c089b746230ad78ecd3cdb215bc0bd61cb72b5867da57e"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:f494c01b28645c431239863cb17af8b8d15b93b0d697a0320d5dd34cd9d7c2fa"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:de4544b1fb29cf14870c4e2b8a897c0242449f5dcebd3e0366aa0aa3cf58a23a"}, + {file = "yarl-1.12.1-cp311-cp311-win32.whl", hash = "sha256:7564525a4673fde53dee7d4c307a961c0951918f0b8c7f09b2c9e02067cf6504"}, + {file = "yarl-1.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:f23bb1a7a6e8e8b612a164fdd08e683bcc16c76f928d6dbb7bdbee2374fbfee6"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:a3e2aff8b822ab0e0bdbed9f50494b3a35629c4b9488ae391659973a37a9f53f"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:22dda2799c8d39041d731e02bf7690f0ef34f1691d9ac9dfcb98dd1e94c8b058"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:18c2a7757561f05439c243f517dbbb174cadfae3a72dee4ae7c693f5b336570f"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:835010cc17d0020e7931d39e487d72c8e01c98e669b6896a8b8c9aa8ca69a949"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2254fe137c4a360b0a13173a56444f756252c9283ba4d267ca8e9081cd140ea"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6a071d2c3d39b4104f94fc08ab349e9b19b951ad4b8e3b6d7ea92d6ef7ccaf8"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73a183042ae0918c82ce2df38c3db2409b0eeae88e3afdfc80fb67471a95b33b"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:326b8a079a9afcac0575971e56dabdf7abb2ea89a893e6949b77adfeb058b50e"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:126309c0f52a2219b3d1048aca00766429a1346596b186d51d9fa5d2070b7b13"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ba1c779b45a399cc25f511c681016626f69e51e45b9d350d7581998722825af9"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:af1107299cef049ad00a93df4809517be432283a0847bcae48343ebe5ea340dc"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:20d817c0893191b2ab0ba30b45b77761e8dfec30a029b7c7063055ca71157f84"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d4f818f6371970d6a5d1e42878389bbfb69dcde631e4bbac5ec1cb11158565ca"}, + {file = "yarl-1.12.1-cp312-cp312-win32.whl", hash = "sha256:0ac33d22b2604b020569a82d5f8a03ba637ba42cc1adf31f616af70baf81710b"}, + {file = "yarl-1.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:fd24996e12e1ba7c397c44be75ca299da14cde34d74bc5508cce233676cc68d0"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dea360778e0668a7ad25d7727d03364de8a45bfd5d808f81253516b9f2217765"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1f50a37aeeb5179d293465e522fd686080928c4d89e0ff215e1f963405ec4def"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0274b1b7a9c9c32b7bf250583e673ff99fb9fccb389215841e2652d9982de740"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4f3ab9eb8ab2d585ece959c48d234f7b39ac0ca1954a34d8b8e58a52064bdb3"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8d31dd0245d88cf7239e96e8f2a99f815b06e458a5854150f8e6f0e61618d41b"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a96198d5d26f40557d986c1253bfe0e02d18c9d9b93cf389daf1a3c9f7c755fa"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddae504cfb556fe220efae65e35be63cd11e3c314b202723fc2119ce19f0ca2e"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bce00f3b1f7f644faae89677ca68645ed5365f1c7f874fdd5ebf730a69640d38"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:eee5ff934b0c9f4537ff9596169d56cab1890918004791a7a06b879b3ba2a7ef"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4ea99e64b2ad2635e0f0597b63f5ea6c374791ff2fa81cdd4bad8ed9f047f56f"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:5c667b383529520b8dd6bd496fc318678320cb2a6062fdfe6d3618da6b8790f6"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d920401941cb898ef089422e889759dd403309eb370d0e54f1bdf6ca07fef603"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:501a1576716032cc6d48c7c47bcdc42d682273415a8f2908e7e72cb4625801f3"}, + {file = "yarl-1.12.1-cp313-cp313-win32.whl", hash = "sha256:24416bb5e221e29ddf8aac5b97e94e635ca2c5be44a1617ad6fe32556df44294"}, + {file = "yarl-1.12.1-cp313-cp313-win_amd64.whl", hash = "sha256:71af3766bb46738d12cc288d9b8de7ef6f79c31fd62757e2b8a505fe3680b27f"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c924deab8105f86980983eced740433fb7554a7f66db73991affa4eda99d5402"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5fb475a4cdde582c9528bb412b98f899680492daaba318231e96f1a0a1bb0d53"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:36ee0115b9edca904153a66bb74a9ff1ce38caff015de94eadfb9ba8e6ecd317"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2631c9d7386bd2d4ce24ecc6ebf9ae90b3efd713d588d90504eaa77fec4dba01"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2376d8cf506dffd0e5f2391025ae8675b09711016656590cb03b55894161fcfa"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:24197ba3114cc85ddd4091e19b2ddc62650f2e4a899e51b074dfd52d56cf8c72"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfdf419bf5d3644f94cd7052954fc233522f5a1b371fc0b00219ebd9c14d5798"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8112f640a4f7e7bf59f7cabf0d47a29b8977528c521d73a64d5cc9e99e48a174"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:607d12f0901f6419a8adceb139847c42c83864b85371f58270e42753f9780fa6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:664380c7ed524a280b6a2d5d9126389c3e96cd6e88986cdb42ca72baa27421d6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:0d0a5e87bc48d76dfcfc16295201e9812d5f33d55b4a0b7cad1025b92bf8b91b"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:eff6bac402719c14e17efe845d6b98593c56c843aca6def72080fbede755fd1f"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:22839d1d1eab9e4b427828a88a22beb86f67c14d8ff81175505f1cc8493f3500"}, + {file = "yarl-1.12.1-cp38-cp38-win32.whl", hash = "sha256:717f185086bb9d817d4537dd18d5df5d657598cd00e6fc22e4d54d84de266c1d"}, + {file = "yarl-1.12.1-cp38-cp38-win_amd64.whl", hash = "sha256:71978ba778948760cff528235c951ea0ef7a4f9c84ac5a49975f8540f76c3f73"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:30ffc046ebddccb3c4cac72c1a3e1bc343492336f3ca86d24672e90ccc5e788a"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f10954b233d4df5cc3137ffa5ced97f8894152df817e5d149bf05a0ef2ab8134"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2e912b282466444023610e4498e3795c10e7cfd641744524876239fcf01d538d"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6af871f70cfd5b528bd322c65793b5fd5659858cdfaa35fbe563fb99b667ed1f"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3e4e1f7b08d1ec6b685ccd3e2d762219c550164fbf524498532e39f9413436e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9a7ee79183f0b17dcede8b6723e7da2ded529cf159a878214be9a5d3098f5b1e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96c8ff1e1dd680e38af0887927cab407a4e51d84a5f02ae3d6eb87233036c763"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e9905fc2dc1319e4c39837b906a024cf71b1261cc66b0cd89678f779c0c61f5"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:01549468858b87d36f967c97d02e6e54106f444aeb947ed76f8f71f85ed07cec"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:96b34830bd6825ca0220bf005ea99ac83eb9ce51301ddb882dcf613ae6cd95fb"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:2aee7594d2c2221c717a8e394bbed4740029df4c0211ceb0f04815686e99c795"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:15871130439ad10abb25a4631120d60391aa762b85fcab971411e556247210a0"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:838dde2cb570cfbb4cab8a876a0974e8b90973ea40b3ac27a79b8a74c8a2db15"}, + {file = "yarl-1.12.1-cp39-cp39-win32.whl", hash = "sha256:eacbcf30efaca7dc5cb264228ffecdb95fdb1e715b1ec937c0ce6b734161e0c8"}, + {file = "yarl-1.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:76a59d1b63de859398bc7764c860a769499511463c1232155061fe0147f13e01"}, + {file = "yarl-1.12.1-py3-none-any.whl", hash = "sha256:dc3192a81ecd5ff954cecd690327badd5a84d00b877e1573f7c9097ce13e5bfb"}, + {file = "yarl-1.12.1.tar.gz", hash = "sha256:5b860055199aec8d6fe4dcee3c5196ce506ca198a50aab0059ffd26e8e815828"}, ] [package.dependencies] @@ -4304,13 +4395,13 @@ multidict = ">=4.0" [[package]] name = "zipp" -version = "3.20.1" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.20.1-py3-none-any.whl", hash = "sha256:9960cd8967c8f85a56f920d5d507274e74f9ff813a0ab8889a5b5be2daf44064"}, - {file = "zipp-3.20.1.tar.gz", hash = "sha256:c22b14cc4763c5a5b04134207736c107db42e9d3ef2d9779d465f5f1bcba572b"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] @@ -4323,5 +4414,5 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "83bd930c36648406317fb87fa8205f67e41c89b27c30cb25b9e66a476d0e5e08" +python-versions = ">=3.9,<4.0" +content-hash = "73e3475bedc35e12fbc03af2302ecc885c43b995d1009d8c9964a65247e67c5d" diff --git a/libs/community/pyproject.toml b/libs/community/pyproject.toml index bd50a7352d048..1d090df2f09b4 100644 --- a/libs/community/pyproject.toml +++ b/libs/community/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-community" -version = "0.2.16" +version = "0.3.1" description = "Community contributed LangChain integrations." authors = [] license = "MIT" @@ -12,12 +12,15 @@ readme = "README.md" repository = "https://github.com/langchain-ai/langchain" [tool.ruff] -exclude = [ "tests/examples/non-utf8-encoding.py", "tests/integration_tests/examples/non-utf8-encoding.py",] +exclude = [ + "tests/examples/non-utf8-encoding.py", + "tests/integration_tests/examples/non-utf8-encoding.py", +] [tool.mypy] ignore_missing_imports = "True" disallow_untyped_defs = "True" -exclude = [ "notebooks", "examples", "example_data",] +exclude = ["notebooks", "examples", "example_data"] [tool.codespell] skip = ".git,*.pdf,*.svg,*.pdf,*.yaml,*.ipynb,poetry.lock,*.min.js,*.css,package-lock.json,example_data,_dist,examples,*.trig" @@ -29,16 +32,18 @@ ignore-words-list = "momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogy "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-community%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.38" -langchain = "^0.2.16" +python = ">=3.9,<4.0" +langchain-core = "^0.3.6" +langchain = "^0.3.1" SQLAlchemy = ">=1.4,<3" requests = "^2" PyYAML = ">=5.3" aiohttp = "^3.8.3" tenacity = "^8.1.0,!=8.4.0" dataclasses-json = ">= 0.5.7, < 0.7" -langsmith = "^0.1.112" +pydantic-settings = "^2.4.0" +langsmith = "^0.1.125" + [[tool.poetry.dependencies.numpy]] version = "^1" python = "<3.12" @@ -48,15 +53,24 @@ version = "^1.26.0" python = ">=3.12" [tool.ruff.lint] -select = [ "E", "F", "I", "T201",] +select = ["E", "F", "I", "T201"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--strict-markers --strict-config --durations=5 --snapshot-warn-unused -vv" -markers = [ "requires: mark tests as requiring a specific library", "scheduled: mark tests to run in scheduled testing", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "scheduled: mark tests to run in scheduled testing", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" +filterwarnings = [ + "ignore::langchain_core._api.beta_decorator.LangChainBetaWarning", + "ignore::langchain_core._api.deprecation.LangChainDeprecationWarning:test", + "ignore::langchain_core._api.deprecation.LangChainPendingDeprecationWarning:test", +] [tool.poetry.group.test] optional = true @@ -88,6 +102,12 @@ pytest-mock = "^3.10.0" pytest-socket = "^0.6.0" syrupy = "^4.0.2" requests-mock = "^1.11.0" +# TODO: hack to fix 3.9 builds +cffi = [ + { version = "<1.17.1", python = "<3.10" }, + { version = "*", python = ">=3.10" }, +] + [tool.poetry.group.codespell.dependencies] codespell = "^2.2.0" @@ -98,6 +118,12 @@ vcrpy = "^6" [tool.poetry.group.lint.dependencies] ruff = "^0.5" +# TODO: hack to fix 3.9 builds +cffi = [ + { version = "<1.17.1", python = "<3.10" }, + { version = "*", python = ">=3.10" }, +] + [tool.poetry.group.dev.dependencies] jupyter = "^1.0.0" diff --git a/libs/community/scripts/check_pydantic.sh b/libs/community/scripts/check_pydantic.sh index 1b091d0f4eb8a..1b5d616257885 100755 --- a/libs/community/scripts/check_pydantic.sh +++ b/libs/community/scripts/check_pydantic.sh @@ -16,53 +16,40 @@ repository_path="$1" # Check that we are not using features that cannot be captured via init. # pre-init is a custom decorator that we introduced to capture the same semantics # as @root_validator(pre=False, skip_on_failure=False) available in pydantic 1. -count=$(git grep -E '(@root_validator)|(@validator)|(@pre_init)' -- "*.py" | wc -l) +count=$(git grep -E '(@root_validator)|(@validator)|(@field_validator)|(@pre_init)' -- "*.py" | wc -l) # PRs that increase the current count will not be accepted. # PRs that decrease update the code in the repository # and allow decreasing the count of are welcome! -current_count=336 +current_count=128 if [ "$count" -gt "$current_count" ]; then echo "The PR seems to be introducing new usage of @root_validator and/or @field_validator." - echo "git grep -E '(@root_validator)|(@validator)' | wc -l returned $count" + echo "git grep -E '(@root_validator)|(@validator)|(@field_validator)|(@pre_init)' | wc -l returned $count" echo "whereas the expected count should be equal or less than $current_count" - echo "Please update the code to instead use __init__" - echo "For examples, please see: " - echo "https://gist.github.com/eyurtsev/d1dcba10c2f35626e302f1b98a0f5a3c " - echo "This linter is here to make sure that its easier to upgrade pydantic in the future." + echo "Please update the code to instead use @model_validator or __init__" exit 1 elif [ "$count" -lt "$current_count" ]; then echo "Please update the $current_count variable in ./scripts/check_pydantic.sh to $count" exit 1 fi +# We do not want to be using pydantic-settings. There's already a pattern to look +# up env settings in the code base, and we want to be using the existing pattern +# rather than relying on an external dependency. +count=$(git grep -E '^import pydantic_settings|^from pydantic_settings' -- "*.py" | wc -l) -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -En '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi - -# Forbid vanilla usage of @root_validator -# This prevents the code from using either @root_validator or @root_validator() -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -En '(@root_validator\s*$)|(@root_validator\(\)|@root_validator\(pre=False\))' -- '*.py') +# PRs that increase the current count will not be accepted. +# PRs that decrease update the code in the repository +# and allow decreasing the count of are welcome! +current_count=8 -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo - echo "$result" - echo - echo "Please replace @root_validator or @root_validator() with either:" - echo - echo "@root_validator(pre=True) or @root_validator(pre=False, skip_on_failure=True)" +if [ "$count" -gt "$current_count" ]; then + echo "The PR seems to be introducing new usage pydantic_settings." + echo "git grep -E '^import pydantic_settings|^from pydantic_settings' | wc -l returned $count" + echo "whereas the expected count should be equal or less than $current_count" + echo "Please update the code to use Field(default_factory=from_env(..)) or Field(default_factory=secret_from_env(..))" exit 1 -fi +elif [ "$count" -lt "$current_count" ]; then + echo "Please update the $current_count variable in ./scripts/check_pydantic.sh to $count" + exit 1 +fi \ No newline at end of file diff --git a/libs/community/tests/integration_tests/chat_models/test_deepinfra.py b/libs/community/tests/integration_tests/chat_models/test_deepinfra.py index 0834d88476d4b..37fdc68ccb4c7 100644 --- a/libs/community/tests/integration_tests/chat_models/test_deepinfra.py +++ b/libs/community/tests/integration_tests/chat_models/test_deepinfra.py @@ -6,8 +6,8 @@ from langchain_core.messages.ai import AIMessage from langchain_core.messages.tool import ToolMessage from langchain_core.outputs import ChatGeneration, LLMResult -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables.base import RunnableBinding +from pydantic import BaseModel from langchain_community.chat_models.deepinfra import ChatDeepInfra from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler diff --git a/libs/community/tests/integration_tests/chat_models/test_gpt_router.py b/libs/community/tests/integration_tests/chat_models/test_gpt_router.py index 0b5230e98c993..a65515363f3b3 100644 --- a/libs/community/tests/integration_tests/chat_models/test_gpt_router.py +++ b/libs/community/tests/integration_tests/chat_models/test_gpt_router.py @@ -8,7 +8,7 @@ ) from langchain_core.messages import AIMessage, BaseMessage, HumanMessage from langchain_core.outputs import ChatGeneration, LLMResult -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.chat_models.gpt_router import GPTRouter, GPTRouterModel diff --git a/libs/community/tests/unit_tests/chat_models/test_javelin_ai_gateway.py b/libs/community/tests/integration_tests/chat_models/test_javelin_ai_gateway.py similarity index 88% rename from libs/community/tests/unit_tests/chat_models/test_javelin_ai_gateway.py rename to libs/community/tests/integration_tests/chat_models/test_javelin_ai_gateway.py index c612747dd5dcc..5a0e91e8fa8f6 100644 --- a/libs/community/tests/unit_tests/chat_models/test_javelin_ai_gateway.py +++ b/libs/community/tests/integration_tests/chat_models/test_javelin_ai_gateway.py @@ -1,12 +1,10 @@ """Test `Javelin AI Gateway` chat models""" -import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.chat_models import ChatJavelinAIGateway -@pytest.mark.requires("javelin_sdk") def test_api_key_is_secret_string() -> None: llm = ChatJavelinAIGateway( gateway_uri="", @@ -18,7 +16,6 @@ def test_api_key_is_secret_string() -> None: assert llm.javelin_api_key.get_secret_value() == "secret-api-key" -@pytest.mark.requires("javelin_sdk") def test_api_key_masked_when_passed_via_constructor() -> None: llm = ChatJavelinAIGateway( gateway_uri="", @@ -32,7 +29,6 @@ def test_api_key_masked_when_passed_via_constructor() -> None: assert "secret-api-key" not in repr(llm) -@pytest.mark.requires("javelin_sdk") def test_api_key_alias() -> None: for model in [ ChatJavelinAIGateway( diff --git a/libs/community/tests/integration_tests/chat_models/test_jinachat.py b/libs/community/tests/integration_tests/chat_models/test_jinachat.py index a43b955d7eabf..50b641311cf61 100644 --- a/libs/community/tests/integration_tests/chat_models/test_jinachat.py +++ b/libs/community/tests/integration_tests/chat_models/test_jinachat.py @@ -6,7 +6,7 @@ from langchain_core.callbacks import CallbackManager from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage from langchain_core.outputs import ChatGeneration, LLMResult -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.chat_models.jinachat import JinaChat diff --git a/libs/community/tests/integration_tests/chat_models/test_konko.py b/libs/community/tests/integration_tests/chat_models/test_konko.py index a4b9977de39f4..1980aa9c6d030 100644 --- a/libs/community/tests/integration_tests/chat_models/test_konko.py +++ b/libs/community/tests/integration_tests/chat_models/test_konko.py @@ -6,7 +6,7 @@ from langchain_core.callbacks import CallbackManager from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.chat_models.konko import ChatKonko diff --git a/libs/community/tests/integration_tests/chat_models/test_minimax.py b/libs/community/tests/integration_tests/chat_models/test_minimax.py index 8826f7d64e6f3..88199f07535e9 100644 --- a/libs/community/tests/integration_tests/chat_models/test_minimax.py +++ b/libs/community/tests/integration_tests/chat_models/test_minimax.py @@ -1,8 +1,8 @@ import os from langchain_core.messages import AIMessage, HumanMessage, ToolMessage -from langchain_core.pydantic_v1 import BaseModel from langchain_core.tools import tool +from pydantic import BaseModel from langchain_community.chat_models import MiniMaxChat diff --git a/libs/community/tests/integration_tests/chat_models/test_moonshot.py b/libs/community/tests/integration_tests/chat_models/test_moonshot.py index bb29175a2d0a5..68d9f43b5d8f0 100644 --- a/libs/community/tests/integration_tests/chat_models/test_moonshot.py +++ b/libs/community/tests/integration_tests/chat_models/test_moonshot.py @@ -4,8 +4,8 @@ import pytest from langchain_core.language_models import BaseChatModel -from langchain_core.pydantic_v1 import SecretStr from langchain_standard_tests.integration_tests import ChatModelIntegrationTests +from pydantic import SecretStr from langchain_community.chat_models.moonshot import MoonshotChat diff --git a/libs/community/tests/integration_tests/chat_models/test_openai.py b/libs/community/tests/integration_tests/chat_models/test_openai.py index 4c1982f3923be..551cfdd7e84ca 100644 --- a/libs/community/tests/integration_tests/chat_models/test_openai.py +++ b/libs/community/tests/integration_tests/chat_models/test_openai.py @@ -11,7 +11,7 @@ LLMResult, ) from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_community.chat_models.openai import ChatOpenAI from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler diff --git a/libs/community/tests/integration_tests/chat_models/test_qianfan_endpoint.py b/libs/community/tests/integration_tests/chat_models/test_qianfan_endpoint.py index e34bee531b6bc..d286aca33b8b2 100644 --- a/libs/community/tests/integration_tests/chat_models/test_qianfan_endpoint.py +++ b/libs/community/tests/integration_tests/chat_models/test_qianfan_endpoint.py @@ -13,7 +13,7 @@ ) from langchain_core.outputs import ChatGeneration, LLMResult from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.chat_models.baidu_qianfan_endpoint import ( diff --git a/libs/community/tests/integration_tests/chat_models/test_sambanova.py b/libs/community/tests/integration_tests/chat_models/test_sambanova.py new file mode 100644 index 0000000000000..2683b5dc399a3 --- /dev/null +++ b/libs/community/tests/integration_tests/chat_models/test_sambanova.py @@ -0,0 +1,22 @@ +from langchain_core.messages import AIMessage, HumanMessage + +from langchain_community.chat_models.sambanova import ( + ChatSambaNovaCloud, + ChatSambaStudio, +) + + +def test_chat_sambanova_cloud() -> None: + chat = ChatSambaNovaCloud() + message = HumanMessage(content="Hello") + response = chat.invoke([message]) + assert isinstance(response, AIMessage) + assert isinstance(response.content, str) + + +def test_chat_sambastudio() -> None: + chat = ChatSambaStudio() + message = HumanMessage(content="Hello") + response = chat.invoke([message]) + assert isinstance(response, AIMessage) + assert isinstance(response.content, str) diff --git a/libs/community/tests/integration_tests/chat_models/test_tongyi.py b/libs/community/tests/integration_tests/chat_models/test_tongyi.py index a395e800c9b16..e6884e6535346 100644 --- a/libs/community/tests/integration_tests/chat_models/test_tongyi.py +++ b/libs/community/tests/integration_tests/chat_models/test_tongyi.py @@ -8,7 +8,7 @@ from langchain_core.messages.tool import ToolCall, ToolMessage from langchain_core.outputs import ChatGeneration, LLMResult from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, SecretStr +from pydantic import BaseModel, SecretStr from pytest import CaptureFixture from langchain_community.chat_models.tongyi import ChatTongyi diff --git a/libs/community/tests/integration_tests/document_loaders/test_pdf.py b/libs/community/tests/integration_tests/document_loaders/test_pdf.py index 462e20d357904..50c9fde29d918 100644 --- a/libs/community/tests/integration_tests/document_loaders/test_pdf.py +++ b/libs/community/tests/integration_tests/document_loaders/test_pdf.py @@ -1,4 +1,3 @@ -import re from pathlib import Path from typing import Sequence, Union @@ -11,7 +10,6 @@ PDFMinerPDFasHTMLLoader, PyMuPDFLoader, PyPDFium2Loader, - PyPDFLoader, UnstructuredPDFLoader, ) @@ -86,37 +84,6 @@ def test_pdfminer_pdf_as_html_loader() -> None: assert len(docs) == 1 -def test_pypdf_loader() -> None: - """Test PyPDFLoader.""" - file_path = Path(__file__).parent.parent / "examples/hello.pdf" - loader = PyPDFLoader(str(file_path)) - docs = loader.load() - - assert len(docs) == 1 - - file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf" - loader = PyPDFLoader(str(file_path)) - - docs = loader.load() - assert len(docs) == 16 - - -def test_pypdf_loader_with_layout() -> None: - """Test PyPDFLoader with layout mode.""" - file_path = Path(__file__).parent.parent / "examples/layout-parser-paper.pdf" - loader = PyPDFLoader(str(file_path), extraction_mode="layout") - - docs = loader.load() - first_page = docs[0].page_content - - expected = ( - Path(__file__).parent.parent / "examples/layout-parser-paper-page-1.txt" - ).read_text(encoding="utf-8") - cleaned_first_page = re.sub(r"\x00", "", first_page) - cleaned_expected = re.sub(r"\x00", "", expected) - assert cleaned_first_page == cleaned_expected - - def test_pypdfium2_loader() -> None: """Test PyPDFium2Loader.""" file_path = Path(__file__).parent.parent / "examples/hello.pdf" diff --git a/libs/community/tests/integration_tests/document_loaders/test_tensorflow_datasets.py b/libs/community/tests/integration_tests/document_loaders/test_tensorflow_datasets.py index 5dae638e04646..9f6cb9190a411 100644 --- a/libs/community/tests/integration_tests/document_loaders/test_tensorflow_datasets.py +++ b/libs/community/tests/integration_tests/document_loaders/test_tensorflow_datasets.py @@ -6,7 +6,7 @@ import pytest from langchain_core.documents import Document -from langchain_core.pydantic_v1 import ValidationError +from pydantic import ValidationError from langchain_community.document_loaders.tensorflow_datasets import ( TensorflowDatasetLoader, diff --git a/libs/community/tests/integration_tests/embeddings/test_fastembed.py b/libs/community/tests/integration_tests/embeddings/test_fastembed.py index 09cede659bf45..f39c4cedfb4c3 100644 --- a/libs/community/tests/integration_tests/embeddings/test_fastembed.py +++ b/libs/community/tests/integration_tests/embeddings/test_fastembed.py @@ -80,3 +80,11 @@ async def test_fastembed_async_embedding_query( embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length) # type: ignore[call-arg] output = await embedding.aembed_query(document) assert len(output) == 384 + + +def test_fastembed_embedding_query_with_default_params() -> None: + """Test fastembed embeddings for query with default model params""" + document = "foo bar" + embedding = FastEmbedEmbeddings() # type: ignore[call-arg] + output = embedding.embed_query(document) + assert len(output) == 384 diff --git a/libs/community/tests/integration_tests/embeddings/test_minimax.py b/libs/community/tests/integration_tests/embeddings/test_minimax.py index bd48277932b16..3bb949d953554 100644 --- a/libs/community/tests/integration_tests/embeddings/test_minimax.py +++ b/libs/community/tests/integration_tests/embeddings/test_minimax.py @@ -1,6 +1,6 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.embeddings import MiniMaxEmbeddings diff --git a/libs/community/tests/integration_tests/embeddings/test_qianfan_endpoint.py b/libs/community/tests/integration_tests/embeddings/test_qianfan_endpoint.py index a0edf46a6f946..6be6ecc5f8fba 100644 --- a/libs/community/tests/integration_tests/embeddings/test_qianfan_endpoint.py +++ b/libs/community/tests/integration_tests/embeddings/test_qianfan_endpoint.py @@ -2,7 +2,7 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.embeddings.baidu_qianfan_endpoint import ( QianfanEmbeddingsEndpoint, diff --git a/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_gliner_link_extractor.py b/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_gliner_link_extractor.py index b6c09db2027d4..ba716758f2f3e 100644 --- a/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_gliner_link_extractor.py +++ b/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_gliner_link_extractor.py @@ -1,7 +1,7 @@ import pytest -from langchain_core.graph_vectorstores.links import Link from langchain_community.graph_vectorstores.extractors import GLiNERLinkExtractor +from langchain_community.graph_vectorstores.links import Link PAGE_1 = """ Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃ'tjɐnu diff --git a/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_keybert_link_extractor.py b/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_keybert_link_extractor.py index 041fd37122c0c..d5c579ef502fa 100644 --- a/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_keybert_link_extractor.py +++ b/libs/community/tests/integration_tests/graph_vectorstores/extractors/test_keybert_link_extractor.py @@ -1,7 +1,7 @@ import pytest -from langchain_core.graph_vectorstores.links import Link from langchain_community.graph_vectorstores.extractors import KeybertLinkExtractor +from langchain_community.graph_vectorstores.links import Link PAGE_1 = """ Supervised learning is the machine learning task of learning a function that diff --git a/libs/community/tests/integration_tests/graph_vectorstores/test_cassandra.py b/libs/community/tests/integration_tests/graph_vectorstores/test_cassandra.py index bfa3946fa4a36..870c5141f8486 100644 --- a/libs/community/tests/integration_tests/graph_vectorstores/test_cassandra.py +++ b/libs/community/tests/integration_tests/graph_vectorstores/test_cassandra.py @@ -4,9 +4,9 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.graph_vectorstores.links import METADATA_LINKS_KEY, Link from langchain_community.graph_vectorstores import CassandraGraphVectorStore +from langchain_community.graph_vectorstores.links import METADATA_LINKS_KEY, Link CASSANDRA_DEFAULT_KEYSPACE = "graph_test_keyspace" diff --git a/libs/community/tests/integration_tests/llms/test_arcee.py b/libs/community/tests/integration_tests/llms/test_arcee.py index e195a7818dbc7..d36a98b294126 100644 --- a/libs/community/tests/integration_tests/llms/test_arcee.py +++ b/libs/community/tests/integration_tests/llms/test_arcee.py @@ -1,6 +1,6 @@ from unittest.mock import MagicMock, patch -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.arcee import Arcee diff --git a/libs/community/tests/integration_tests/llms/test_azureml_endpoint.py b/libs/community/tests/integration_tests/llms/test_azureml_endpoint.py index cda463d719c87..a02c5244cc01a 100644 --- a/libs/community/tests/integration_tests/llms/test_azureml_endpoint.py +++ b/libs/community/tests/integration_tests/llms/test_azureml_endpoint.py @@ -7,7 +7,7 @@ from urllib.request import HTTPError import pytest -from langchain_core.pydantic_v1 import ValidationError +from pydantic import ValidationError from langchain_community.llms.azureml_endpoint import ( AzureMLOnlineEndpoint, diff --git a/libs/community/tests/integration_tests/llms/test_cohere.py b/libs/community/tests/integration_tests/llms/test_cohere.py index 5fad016491804..02404d20665a3 100644 --- a/libs/community/tests/integration_tests/llms/test_cohere.py +++ b/libs/community/tests/integration_tests/llms/test_cohere.py @@ -2,7 +2,7 @@ from pathlib import Path -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import MonkeyPatch from langchain_community.llms.cohere import Cohere diff --git a/libs/community/tests/integration_tests/llms/test_edenai.py b/libs/community/tests/integration_tests/llms/test_edenai.py index 3d8e0b9e230da..233ee2bf8dc2b 100644 --- a/libs/community/tests/integration_tests/llms/test_edenai.py +++ b/libs/community/tests/integration_tests/llms/test_edenai.py @@ -9,7 +9,7 @@ You'll then need to set EDENAI_API_KEY environment variable to your api key. """ -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.llms import EdenAI diff --git a/libs/community/tests/integration_tests/llms/test_nlpcloud.py b/libs/community/tests/integration_tests/llms/test_nlpcloud.py index 85a67e3be6a6e..3645359e8563e 100644 --- a/libs/community/tests/integration_tests/llms/test_nlpcloud.py +++ b/libs/community/tests/integration_tests/llms/test_nlpcloud.py @@ -3,7 +3,7 @@ from pathlib import Path from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.loading import load_llm diff --git a/libs/community/tests/integration_tests/llms/test_petals.py b/libs/community/tests/integration_tests/llms/test_petals.py index 82a7857ec0e11..1689efb26b3f9 100644 --- a/libs/community/tests/integration_tests/llms/test_petals.py +++ b/libs/community/tests/integration_tests/llms/test_petals.py @@ -1,6 +1,6 @@ """Test Petals API wrapper.""" -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.llms.petals import Petals diff --git a/libs/community/tests/integration_tests/llms/test_qianfan_endpoint.py b/libs/community/tests/integration_tests/llms/test_qianfan_endpoint.py index afc654dfc6447..35c63e8d878db 100644 --- a/libs/community/tests/integration_tests/llms/test_qianfan_endpoint.py +++ b/libs/community/tests/integration_tests/llms/test_qianfan_endpoint.py @@ -3,7 +3,7 @@ from typing import Generator, cast from langchain_core.outputs import LLMResult -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint diff --git a/libs/community/tests/integration_tests/llms/test_sambanova.py b/libs/community/tests/integration_tests/llms/test_sambanova.py index d31989faaaa33..5f082df52785c 100644 --- a/libs/community/tests/integration_tests/llms/test_sambanova.py +++ b/libs/community/tests/integration_tests/llms/test_sambanova.py @@ -1,28 +1,17 @@ """Test sambanova API wrapper. -In order to run this test, you need to have an sambaverse api key, -and a sambaverse base url, project id, endpoint id, and api key. -You'll then need to set SAMBAVERSE_API_KEY, SAMBASTUDIO_BASE_URL, +In order to run this test, you need to have a sambastudio base url, +project id, endpoint id, and api key. +You'll then need to set SAMBASTUDIO_BASE_URL, SAMBASTUDIO_BASE_URI SAMBASTUDIO_PROJECT_ID, SAMBASTUDIO_ENDPOINT_ID, and SAMBASTUDIO_API_KEY environment variables. """ -from langchain_community.llms.sambanova import SambaStudio, Sambaverse - - -def test_sambaverse_call() -> None: - """Test simple non-streaming call to sambaverse.""" - llm = Sambaverse( - sambaverse_model_name="Meta/llama-2-7b-chat-hf", - model_kwargs={"select_expert": "llama-2-7b-chat-hf"}, - ) - output = llm.invoke("What is LangChain") - assert output - assert isinstance(output, str) +from langchain_community.llms.sambanova import SambaStudio def test_sambastudio_call() -> None: - """Test simple non-streaming call to sambaverse.""" + """Test simple non-streaming call to sambastudio.""" llm = SambaStudio() output = llm.invoke("What is LangChain") assert output diff --git a/libs/community/tests/integration_tests/llms/test_volcengine_maas.py b/libs/community/tests/integration_tests/llms/test_volcengine_maas.py index 7cf3e29081957..321e830eeb432 100644 --- a/libs/community/tests/integration_tests/llms/test_volcengine_maas.py +++ b/libs/community/tests/integration_tests/llms/test_volcengine_maas.py @@ -3,7 +3,7 @@ from typing import Generator from langchain_core.outputs import LLMResult -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.llms.volcengine_maas import ( diff --git a/libs/community/tests/integration_tests/retrievers/docarray/fixtures.py b/libs/community/tests/integration_tests/retrievers/docarray/fixtures.py index d9e717e042934..ea3a5d4815a3c 100644 --- a/libs/community/tests/integration_tests/retrievers/docarray/fixtures.py +++ b/libs/community/tests/integration_tests/retrievers/docarray/fixtures.py @@ -5,7 +5,7 @@ import numpy as np import pytest -from langchain_core.pydantic_v1 import Field +from pydantic import Field if TYPE_CHECKING: from docarray.index import ( diff --git a/libs/community/tests/integration_tests/utilities/test_tensorflow_datasets.py b/libs/community/tests/integration_tests/utilities/test_tensorflow_datasets.py index 1b25fd522b3b9..973e7d0b9b696 100644 --- a/libs/community/tests/integration_tests/utilities/test_tensorflow_datasets.py +++ b/libs/community/tests/integration_tests/utilities/test_tensorflow_datasets.py @@ -6,7 +6,7 @@ import pytest from langchain_core.documents import Document -from langchain_core.pydantic_v1 import ValidationError +from pydantic import ValidationError from langchain_community.utilities.tensorflow_datasets import TensorflowDatasets diff --git a/libs/community/tests/integration_tests/vectorstores/test_sqlitevec.py b/libs/community/tests/integration_tests/vectorstores/test_sqlitevec.py new file mode 100644 index 0000000000000..f7c67ba529902 --- /dev/null +++ b/libs/community/tests/integration_tests/vectorstores/test_sqlitevec.py @@ -0,0 +1,58 @@ +from typing import List, Optional + +import pytest +from langchain_core.documents import Document + +from langchain_community.vectorstores import SQLiteVec +from tests.integration_tests.vectorstores.fake_embeddings import ( + FakeEmbeddings, + fake_texts, +) + + +def _sqlite_vec_from_texts( + metadatas: Optional[List[dict]] = None, drop: bool = True +) -> SQLiteVec: + return SQLiteVec.from_texts( + fake_texts, + FakeEmbeddings(), + metadatas=metadatas, + table="test", + db_file=":memory:", + ) + + +@pytest.mark.requires("sqlite-vec") +def test_sqlitevec() -> None: + """Test end to end construction and search.""" + docsearch = _sqlite_vec_from_texts() + output = docsearch.similarity_search("foo", k=1) + assert output == [Document(page_content="foo", metadata={})] + + +@pytest.mark.requires("sqlite-vec") +def test_sqlitevec_with_score() -> None: + """Test end to end construction and search with scores and IDs.""" + texts = ["foo", "bar", "baz"] + metadatas = [{"page": i} for i in range(len(texts))] + docsearch = _sqlite_vec_from_texts(metadatas=metadatas) + output = docsearch.similarity_search_with_score("foo", k=3) + docs = [o[0] for o in output] + distances = [o[1] for o in output] + assert docs == [ + Document(page_content="foo", metadata={"page": 0}), + Document(page_content="bar", metadata={"page": 1}), + Document(page_content="baz", metadata={"page": 2}), + ] + assert distances[0] < distances[1] < distances[2] + + +@pytest.mark.requires("sqlite-vec") +def test_sqlitevec_add_extra() -> None: + """Test end to end construction and MRR search.""" + texts = ["foo", "bar", "baz"] + metadatas = [{"page": i} for i in range(len(texts))] + docsearch = _sqlite_vec_from_texts(metadatas=metadatas) + docsearch.add_texts(texts, metadatas) + output = docsearch.similarity_search("foo", k=10) + assert len(output) == 6 diff --git a/libs/community/tests/unit_tests/agents/test_serialization.py b/libs/community/tests/unit_tests/agents/test_serialization.py deleted file mode 100644 index 338f33e093280..0000000000000 --- a/libs/community/tests/unit_tests/agents/test_serialization.py +++ /dev/null @@ -1,26 +0,0 @@ -from pathlib import Path -from tempfile import TemporaryDirectory - -from langchain.agents.agent_types import AgentType -from langchain.agents.initialize import initialize_agent, load_agent -from langchain_core.language_models import FakeListLLM -from langchain_core.tools import Tool - - -def test_mrkl_serialization() -> None: - agent = initialize_agent( - [ - Tool( - name="Test tool", - func=lambda x: x, - description="Test description", - ) - ], - FakeListLLM(responses=[]), - agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, - verbose=True, - ) - with TemporaryDirectory() as tempdir: - file = Path(tempdir) / "agent.json" - agent.save_agent(file) - load_agent(file) diff --git a/libs/community/tests/unit_tests/callbacks/fake_callback_handler.py b/libs/community/tests/unit_tests/callbacks/fake_callback_handler.py index 2b0889748a8f5..b6838b3c85cf6 100644 --- a/libs/community/tests/unit_tests/callbacks/fake_callback_handler.py +++ b/libs/community/tests/unit_tests/callbacks/fake_callback_handler.py @@ -6,7 +6,7 @@ from langchain_core.callbacks import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class BaseFakeCallbackHandler(BaseModel): @@ -254,7 +254,7 @@ def on_retriever_error( ) -> Any: self.on_retriever_error_common() - def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": # type: ignore return self @@ -388,5 +388,5 @@ async def on_text( ) -> None: self.on_text_common() - def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": + def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": # type: ignore return self diff --git a/libs/community/tests/unit_tests/callbacks/test_callback_manager.py b/libs/community/tests/unit_tests/callbacks/test_callback_manager.py index dbc414f053bbf..9f7f53554a7c5 100644 --- a/libs/community/tests/unit_tests/callbacks/test_callback_manager.py +++ b/libs/community/tests/unit_tests/callbacks/test_callback_manager.py @@ -121,4 +121,4 @@ def test_callback_manager_configure_context_vars( assert cb.completion_tokens == 1 assert cb.total_cost > 0 wait_for_all_tracers() - assert LangChainTracer._persist_run_single.call_count == 1 # type: ignore + assert LangChainTracer._persist_run_single.call_count == 4 # type: ignore diff --git a/libs/community/tests/unit_tests/chains/test_graph_qa.py b/libs/community/tests/unit_tests/chains/test_graph_qa.py index d654a96eb77b9..4a48a5b50f70d 100644 --- a/libs/community/tests/unit_tests/chains/test_graph_qa.py +++ b/libs/community/tests/unit_tests/chains/test_graph_qa.py @@ -59,6 +59,7 @@ def test_graph_cypher_qa_chain_prompt_selection_1() -> None: return_intermediate_steps=False, qa_prompt=qa_prompt, cypher_prompt=cypher_prompt, + allow_dangerous_requests=True, ) assert chain.qa_chain.prompt == qa_prompt # type: ignore[union-attr] assert chain.cypher_generation_chain.prompt == cypher_prompt @@ -71,6 +72,7 @@ def test_graph_cypher_qa_chain_prompt_selection_2() -> None: graph=FakeGraphStore(), verbose=True, return_intermediate_steps=False, + allow_dangerous_requests=True, ) assert chain.qa_chain.prompt == CYPHER_QA_PROMPT # type: ignore[union-attr] assert chain.cypher_generation_chain.prompt == CYPHER_GENERATION_PROMPT @@ -87,6 +89,7 @@ def test_graph_cypher_qa_chain_prompt_selection_3() -> None: return_intermediate_steps=False, cypher_llm_kwargs={"memory": readonlymemory}, qa_llm_kwargs={"memory": readonlymemory}, + allow_dangerous_requests=True, ) assert chain.qa_chain.prompt == CYPHER_QA_PROMPT # type: ignore[union-attr] assert chain.cypher_generation_chain.prompt == CYPHER_GENERATION_PROMPT @@ -107,6 +110,7 @@ def test_graph_cypher_qa_chain_prompt_selection_4() -> None: return_intermediate_steps=False, cypher_llm_kwargs={"prompt": cypher_prompt, "memory": readonlymemory}, qa_llm_kwargs={"prompt": qa_prompt, "memory": readonlymemory}, + allow_dangerous_requests=True, ) assert chain.qa_chain.prompt == qa_prompt # type: ignore[union-attr] assert chain.cypher_generation_chain.prompt == cypher_prompt @@ -130,6 +134,7 @@ def test_graph_cypher_qa_chain_prompt_selection_5() -> None: cypher_prompt=cypher_prompt, cypher_llm_kwargs={"memory": readonlymemory}, qa_llm_kwargs={"memory": readonlymemory}, + allow_dangerous_requests=True, ) assert False except ValueError: @@ -181,6 +186,7 @@ def test_graph_cypher_qa_chain() -> None: return_intermediate_steps=False, cypher_llm_kwargs={"prompt": prompt, "memory": readonlymemory}, memory=memory, + allow_dangerous_requests=True, ) chain.run("Test question") chain.run("Test new question") diff --git a/libs/community/tests/unit_tests/chains/test_llm.py b/libs/community/tests/unit_tests/chains/test_llm.py index cef101f8db242..d7f58f6a39de4 100644 --- a/libs/community/tests/unit_tests/chains/test_llm.py +++ b/libs/community/tests/unit_tests/chains/test_llm.py @@ -1,8 +1,6 @@ """Test LLM chain.""" -from tempfile import TemporaryDirectory from typing import Dict, List, Union -from unittest.mock import patch import pytest from langchain.chains.llm import LLMChain @@ -27,21 +25,6 @@ def fake_llm_chain() -> LLMChain: return LLMChain(prompt=prompt, llm=FakeLLM(), output_key="text1") -@patch( - "langchain_community.llms.loading.get_type_to_cls_dict", - lambda: {"fake": lambda: FakeLLM}, -) -def test_serialization(fake_llm_chain: LLMChain) -> None: - """Test serialization.""" - from langchain.chains.loading import load_chain - - with TemporaryDirectory() as temp_dir: - file = temp_dir + "/llm.json" - fake_llm_chain.save(file) - loaded_chain = load_chain(file) - assert loaded_chain == fake_llm_chain - - def test_missing_inputs(fake_llm_chain: LLMChain) -> None: """Test error is raised if inputs are missing.""" with pytest.raises(ValueError): diff --git a/libs/community/tests/unit_tests/chains/test_pebblo_retrieval.py b/libs/community/tests/unit_tests/chains/test_pebblo_retrieval.py index 3b49a0d5174c9..a2fb1dbd00920 100644 --- a/libs/community/tests/unit_tests/chains/test_pebblo_retrieval.py +++ b/libs/community/tests/unit_tests/chains/test_pebblo_retrieval.py @@ -45,18 +45,6 @@ async def _aget_relevant_documents( return [Document(page_content=query)] -@pytest.fixture -def unsupported_retriever() -> FakeRetriever: - """ - Create a FakeRetriever instance - """ - retriever = FakeRetriever() - retriever.search_kwargs = {} - # Set the class of vectorstore - retriever.vectorstore.__class__ = InMemoryVectorStore - return retriever - - @pytest.fixture def retriever() -> FakeRetriever: """ @@ -110,9 +98,7 @@ def test_invoke(pebblo_retrieval_qa: PebbloRetrievalQA) -> None: assert response is not None -def test_validate_vectorstore( - retriever: FakeRetriever, unsupported_retriever: FakeRetriever -) -> None: +def test_validate_vectorstore(retriever: FakeRetriever) -> None: """ Test vectorstore validation """ @@ -127,6 +113,11 @@ def test_validate_vectorstore( app_name="app_name", ) + unsupported_retriever = FakeRetriever() + unsupported_retriever.search_kwargs = {} + # Set the class of vectorstore + unsupported_retriever.vectorstore.__class__ = InMemoryVectorStore + # validate_vectorstore method should raise a ValueError for unsupported vectorstores with pytest.raises(ValueError) as exc_info: _ = PebbloRetrievalQA.from_chain_type( diff --git a/libs/community/tests/unit_tests/chat_models/test_anthropic.py b/libs/community/tests/unit_tests/chat_models/test_anthropic.py index 41452ce0b8331..8e6a659743bf0 100644 --- a/libs/community/tests/unit_tests/chat_models/test_anthropic.py +++ b/libs/community/tests/unit_tests/chat_models/test_anthropic.py @@ -33,9 +33,12 @@ def test_anthropic_model_kwargs() -> None: @pytest.mark.requires("anthropic") -def test_anthropic_invalid_model_kwargs() -> None: - with pytest.raises(ValueError): - ChatAnthropic(model_kwargs={"max_tokens_to_sample": 5}) +def test_anthropic_fields_in_model_kwargs() -> None: + """Test that for backwards compatibility fields can be passed in as model_kwargs.""" + llm = ChatAnthropic(model_kwargs={"max_tokens_to_sample": 5}) + assert llm.max_tokens_to_sample == 5 + llm = ChatAnthropic(model_kwargs={"max_tokens": 5}) + assert llm.max_tokens_to_sample == 5 @pytest.mark.requires("anthropic") diff --git a/libs/community/tests/unit_tests/chat_models/test_azureml_endpoint.py b/libs/community/tests/unit_tests/chat_models/test_azureml_endpoint.py index bf01dcae2a968..20bb38f367e00 100644 --- a/libs/community/tests/unit_tests/chat_models/test_azureml_endpoint.py +++ b/libs/community/tests/unit_tests/chat_models/test_azureml_endpoint.py @@ -3,7 +3,7 @@ import os import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, FixtureRequest from langchain_community.chat_models.azureml_endpoint import AzureMLChatOnlineEndpoint diff --git a/libs/community/tests/unit_tests/chat_models/test_baichuan.py b/libs/community/tests/unit_tests/chat_models/test_baichuan.py index 31d588274a70a..d869f0042bc0d 100644 --- a/libs/community/tests/unit_tests/chat_models/test_baichuan.py +++ b/libs/community/tests/unit_tests/chat_models/test_baichuan.py @@ -10,7 +10,7 @@ SystemMessage, ToolMessage, ) -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.chat_models.baichuan import ( diff --git a/libs/community/tests/unit_tests/chat_models/test_fireworks.py b/libs/community/tests/unit_tests/chat_models/test_fireworks.py index 5b9c69b4d0fea..61548fa52c442 100644 --- a/libs/community/tests/unit_tests/chat_models/test_fireworks.py +++ b/libs/community/tests/unit_tests/chat_models/test_fireworks.py @@ -3,7 +3,7 @@ import sys import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.chat_models import ChatFireworks diff --git a/libs/community/tests/unit_tests/chat_models/test_friendli.py b/libs/community/tests/unit_tests/chat_models/test_friendli.py index e101533fb8731..c752171299122 100644 --- a/libs/community/tests/unit_tests/chat_models/test_friendli.py +++ b/libs/community/tests/unit_tests/chat_models/test_friendli.py @@ -3,7 +3,7 @@ from unittest.mock import AsyncMock, MagicMock, Mock import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.adapters.openai import aenumerate diff --git a/libs/community/tests/unit_tests/chat_models/test_imports.py b/libs/community/tests/unit_tests/chat_models/test_imports.py index 50a61d4e51a34..6be5a41d9ec1c 100644 --- a/libs/community/tests/unit_tests/chat_models/test_imports.py +++ b/libs/community/tests/unit_tests/chat_models/test_imports.py @@ -34,6 +34,8 @@ "ChatOpenAI", "ChatPerplexity", "ChatPremAI", + "ChatSambaNovaCloud", + "ChatSambaStudio", "ChatSparkLLM", "ChatTongyi", "ChatVertexAI", diff --git a/libs/community/tests/unit_tests/chat_models/test_kinetica.py b/libs/community/tests/unit_tests/chat_models/test_kinetica.py index 87824c775a697..5d83e92cdc7d1 100644 --- a/libs/community/tests/unit_tests/chat_models/test_kinetica.py +++ b/libs/community/tests/unit_tests/chat_models/test_kinetica.py @@ -14,6 +14,7 @@ class TestChatKinetica: test_ctx_json: str = """ { "payload":{ + "question": "foo", "context":[ { "table":"demo.test_profiles", diff --git a/libs/community/tests/unit_tests/chat_models/test_mlflow.py b/libs/community/tests/unit_tests/chat_models/test_mlflow.py index d526086c490e0..af2efd5202dcf 100644 --- a/libs/community/tests/unit_tests/chat_models/test_mlflow.py +++ b/libs/community/tests/unit_tests/chat_models/test_mlflow.py @@ -19,8 +19,8 @@ ToolMessageChunk, ) from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import _PYDANTIC_MAJOR_VERSION, BaseModel from langchain_core.tools import StructuredTool +from pydantic import BaseModel from langchain_community.chat_models.mlflow import ChatMlflow @@ -199,10 +199,6 @@ def mock_stream(*args: Any, **kwargs: Any) -> Any: @pytest.mark.requires("mlflow") -@pytest.mark.skipif( - _PYDANTIC_MAJOR_VERSION < 2, - reason="The tool mock is not compatible with pydantic 1.x", -) def test_chat_mlflow_bind_tools( llm: ChatMlflow, mock_predict_stream_result: List[dict] ) -> None: @@ -226,14 +222,18 @@ def mock_stream(*args: Any, **kwargs: Any) -> Any: ] ) - def mock_func(*args: Any, **kwargs: Any) -> str: + def mock_func(x: int, y: int) -> str: return "36939 x 8922.4 = 329,511,111.6" + class ArgsSchema(BaseModel): + x: int + y: int + tools = [ StructuredTool( name="name", description="description", - args_schema=BaseModel, + args_schema=ArgsSchema, func=mock_func, ) ] diff --git a/libs/community/tests/unit_tests/chat_models/test_oci_generative_ai.py b/libs/community/tests/unit_tests/chat_models/test_oci_generative_ai.py index a59893e8b2164..15ca91eea5864 100644 --- a/libs/community/tests/unit_tests/chat_models/test_oci_generative_ai.py +++ b/libs/community/tests/unit_tests/chat_models/test_oci_generative_ai.py @@ -23,7 +23,11 @@ def test_llm_chat(monkeypatch: MonkeyPatch, test_model_id: str) -> None: oci_gen_ai_client = MagicMock() llm = ChatOCIGenAI(model_id=test_model_id, client=oci_gen_ai_client) - provider = llm.model_id.split(".")[0].lower() + model_id = llm.model_id + if model_id is None: + raise ValueError("Model ID is required for OCI Generative AI LLM service.") + + provider = model_id.split(".")[0].lower() def mocked_response(*args): # type: ignore[no-untyped-def] response_text = "Assistant chat reply." diff --git a/libs/community/tests/unit_tests/chat_models/test_octoai.py b/libs/community/tests/unit_tests/chat_models/test_octoai.py index b0d66eae36d3b..fb639a7399b73 100644 --- a/libs/community/tests/unit_tests/chat_models/test_octoai.py +++ b/libs/community/tests/unit_tests/chat_models/test_octoai.py @@ -1,5 +1,5 @@ import pytest -from langchain_core.pydantic_v1 import SecretStr, ValidationError +from pydantic import SecretStr, ValidationError from langchain_community.chat_models.octoai import ChatOctoAI diff --git a/libs/community/tests/unit_tests/chat_models/test_ollama.py b/libs/community/tests/unit_tests/chat_models/test_ollama.py index 3d3cb6c32addf..96075dda33497 100644 --- a/libs/community/tests/unit_tests/chat_models/test_ollama.py +++ b/libs/community/tests/unit_tests/chat_models/test_ollama.py @@ -1,7 +1,7 @@ from typing import List, Literal, Optional import pytest -from langchain_core.pydantic_v1 import BaseModel, ValidationError +from pydantic import BaseModel, ValidationError from langchain_community.chat_models import ChatOllama @@ -12,8 +12,8 @@ class ExpectedParams(BaseModel): ls_model_name: str ls_model_type: Literal["chat", "llm"] ls_temperature: Optional[float] - ls_max_tokens: Optional[int] - ls_stop: Optional[List[str]] + ls_max_tokens: Optional[int] = None + ls_stop: Optional[List[str]] = None model = ChatOllama(model="llama3") ls_params = model._get_ls_params() diff --git a/libs/community/tests/unit_tests/chat_models/test_premai.py b/libs/community/tests/unit_tests/chat_models/test_premai.py index 22327e3aa2fb3..09118f48ea528 100644 --- a/libs/community/tests/unit_tests/chat_models/test_premai.py +++ b/libs/community/tests/unit_tests/chat_models/test_premai.py @@ -4,7 +4,7 @@ import pytest from langchain_core.messages import AIMessage, HumanMessage, SystemMessage, ToolMessage -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.chat_models import ChatPremAI diff --git a/libs/community/tests/unit_tests/document_loaders/blob_loaders/test_schema.py b/libs/community/tests/unit_tests/document_loaders/blob_loaders/test_schema.py deleted file mode 100644 index 8829b227cf429..0000000000000 --- a/libs/community/tests/unit_tests/document_loaders/blob_loaders/test_schema.py +++ /dev/null @@ -1,154 +0,0 @@ -import os -from contextlib import contextmanager -from pathlib import Path -from tempfile import NamedTemporaryFile -from typing import Generator, Iterable, Optional - -import pytest - -from langchain_community.document_loaders.blob_loaders.schema import ( - Blob, - BlobLoader, - PathLike, -) - - -@contextmanager -def get_temp_file( - content: bytes, suffix: Optional[str] = None -) -> Generator[Path, None, None]: - """Yield a temporary field with some content.""" - with NamedTemporaryFile(suffix=suffix, delete=False) as temp_file: - temp_file.write(content) - path = Path(temp_file.name) - try: - yield path - finally: - os.remove(str(path)) - - -def test_blob_initialized_with_binary_data() -> None: - """Test reading blob IO if blob content hasn't been read yet.""" - data = b"Hello, World!" - blob = Blob(data=data) - assert blob.as_string() == "Hello, World!" - assert blob.as_bytes() == data - assert blob.source is None - with blob.as_bytes_io() as bytes_io: - assert bytes_io.read() == data - - -def test_blob_from_pure_path() -> None: - """Test reading blob from a file path.""" - content = b"Hello, World!" - - with get_temp_file(content, suffix=".html") as temp_path: - assert isinstance(temp_path, Path) - blob = Blob.from_path(temp_path) - assert blob.encoding == "utf-8" # Default encoding - assert blob.path == temp_path - assert blob.mimetype == "text/html" - assert blob.source == str(temp_path) - assert blob.data is None - assert blob.as_bytes() == content - assert blob.as_string() == "Hello, World!" - with blob.as_bytes_io() as bytes_io: - assert bytes_io.read() == content - - -def test_blob_from_str_path() -> None: - """Test reading blob from a file path.""" - content = b"Hello, World!" - - with get_temp_file(content) as temp_path: - str_path = str(temp_path) - assert isinstance(str_path, str) - blob = Blob.from_path(str_path) - assert blob.encoding == "utf-8" # Default encoding - assert blob.path == str(temp_path) - assert blob.source == str(temp_path) - assert blob.data is None - assert blob.as_bytes() == content - assert blob.as_string() == "Hello, World!" - with blob.as_bytes_io() as bytes_io: - assert bytes_io.read() == content - - -def test_blob_from_str_data() -> None: - """Test reading blob from a file path.""" - content = b"Hello, World!" - blob = Blob.from_data(content) - assert blob.encoding == "utf-8" # Default encoding - assert blob.path is None - assert blob.mimetype is None - assert blob.source is None - assert blob.data == b"Hello, World!" - assert blob.as_bytes() == content - assert blob.as_string() == "Hello, World!" - with blob.as_bytes_io() as bytes_io: - assert bytes_io.read() == content - - -def test_blob_mimetype_from_str_data() -> None: - """Test reading blob from a file path.""" - content = b"Hello, World!" - mimetype = "text/html" - blob = Blob.from_data(content, mime_type=mimetype) - assert blob.mimetype == mimetype - - -@pytest.mark.parametrize( - "path, mime_type, guess_type, expected_mime_type", - [ - ("test.txt", None, True, "text/plain"), - ("test.txt", None, False, None), - ("test.html", None, True, "text/html"), - ("test.html", None, False, None), - ("test.html", "user_forced_value", True, "user_forced_value"), - (Path("test.html"), "user_forced_value", True, "user_forced_value"), - (Path("test.html"), None, True, "text/html"), - ], -) -def test_mime_type_inference( - path: PathLike, mime_type: str, guess_type: bool, expected_mime_type: Optional[str] -) -> None: - """Tests mimetype inference based on options and path.""" - blob = Blob.from_path(path, mime_type=mime_type, guess_type=guess_type) - assert blob.mimetype == expected_mime_type - - -def test_blob_initialization_validator() -> None: - """Test that blob initialization validates the arguments.""" - with pytest.raises(ValueError, match="Either data or path must be provided"): - Blob() # type: ignore[call-arg] - - assert Blob(data=b"Hello, World!") is not None - assert Blob(path="some_path") is not None # type: ignore[call-arg] - - -def test_blob_loader() -> None: - """Simple test that verifies that we can implement a blob loader.""" - - class TestLoader(BlobLoader): - def yield_blobs(self) -> Iterable[Blob]: - """Yield blob implementation.""" - yield Blob(data=b"Hello, World!") - - assert list(TestLoader().yield_blobs()) == [Blob(data=b"Hello, World!")] - - -def test_metadata_and_source() -> None: - """Test metadata and source""" - blob = Blob(path="some_file", data="b") - assert blob.source == "some_file" - assert blob.metadata == {} - blob = Blob(data=b"", metadata={"source": "hello"}) - assert blob.source == "hello" - assert blob.metadata == {"source": "hello"} - - blob = Blob.from_data("data", metadata={"source": "somewhere"}) - assert blob.source == "somewhere" - - with get_temp_file(b"hello") as path: - blob = Blob.from_path(path, metadata={"source": "somewhere"}) - assert blob.source == "somewhere" diff --git a/libs/community/tests/unit_tests/document_loaders/loaders/vendors/test_docugami.py b/libs/community/tests/unit_tests/document_loaders/loaders/vendors/test_docugami.py index cfbf8ba82e105..7b107f32789c5 100644 --- a/libs/community/tests/unit_tests/document_loaders/loaders/vendors/test_docugami.py +++ b/libs/community/tests/unit_tests/document_loaders/loaders/vendors/test_docugami.py @@ -25,4 +25,6 @@ def test_docugami_loader_local() -> None: def test_docugami_initialization() -> None: """Test correct initialization in remote mode.""" - DocugamiLoader(access_token="test", docset_id="123") # type: ignore[call-arg] + DocugamiLoader( + access_token="test", docset_id="123", document_ids=None, file_paths=None + ) diff --git a/libs/community/tests/unit_tests/document_loaders/test_github.py b/libs/community/tests/unit_tests/document_loaders/test_github.py index 544681f0ae660..c37eb2db9ee7a 100644 --- a/libs/community/tests/unit_tests/document_loaders/test_github.py +++ b/libs/community/tests/unit_tests/document_loaders/test_github.py @@ -171,10 +171,11 @@ def test_github_file_content_get_file_paths(mocker: MockerFixture) -> None: assert files[0]["path"] == "readme.md" # case2: didn't add file_filter - loader = GithubFileLoader( # type: ignore[call-arg] + loader = GithubFileLoader( repo="shufanhao/langchain", access_token="access_token", github_api_url="https://github.com", + file_filter=None, ) # Call the load method @@ -220,10 +221,11 @@ def test_github_file_content_loader(mocker: MockerFixture) -> None: mocker.patch("requests.get", side_effect=[file_path_res, file_content_res]) # case1: file_extension=".md" - loader = GithubFileLoader( # type: ignore[call-arg] + loader = GithubFileLoader( repo="shufanhao/langchain", access_token="access_token", github_api_url="https://github.com", + file_filter=None, ) # Call the load method diff --git a/libs/community/tests/unit_tests/document_loaders/test_imports.py b/libs/community/tests/unit_tests/document_loaders/test_imports.py index fbf624f537a1d..b49a1b7cc4a2e 100644 --- a/libs/community/tests/unit_tests/document_loaders/test_imports.py +++ b/libs/community/tests/unit_tests/document_loaders/test_imports.py @@ -55,6 +55,7 @@ "DedocFileLoader", "DedocPDFLoader", "PebbloSafeLoader", + "PebbloTextLoader", "DiffbotLoader", "DirectoryLoader", "DiscordChatLoader", diff --git a/libs/community/tests/unit_tests/document_loaders/test_mongodb.py b/libs/community/tests/unit_tests/document_loaders/test_mongodb.py index 121e8b39fd6be..72ed08905f745 100644 --- a/libs/community/tests/unit_tests/document_loaders/test_mongodb.py +++ b/libs/community/tests/unit_tests/document_loaders/test_mongodb.py @@ -12,6 +12,7 @@ def raw_docs() -> List[Dict]: return [ {"_id": "1", "address": {"building": "1", "room": "1"}}, {"_id": "2", "address": {"building": "2", "room": "2"}}, + {"_id": "3", "address": {"building": "3", "room": "2"}}, ] @@ -19,18 +20,23 @@ def raw_docs() -> List[Dict]: def expected_documents() -> List[Document]: return [ Document( - page_content="{'_id': '1', 'address': {'building': '1', 'room': '1'}}", + page_content="{'_id': '2', 'address': {'building': '2', 'room': '2'}}", metadata={"database": "sample_restaurants", "collection": "restaurants"}, ), Document( - page_content="{'_id': '2', 'address': {'building': '2', 'room': '2'}}", + page_content="{'_id': '3', 'address': {'building': '3', 'room': '2'}}", metadata={"database": "sample_restaurants", "collection": "restaurants"}, ), ] @pytest.mark.requires("motor") -async def test_load_mocked(expected_documents: List[Document]) -> None: +async def test_load_mocked_with_filters(expected_documents: List[Document]) -> None: + filter_criteria = {"address.room": {"$eq": "2"}} + field_names = ["address.building", "address.room"] + metadata_names = ["_id"] + include_db_collection_in_metadata = True + mock_async_load = AsyncMock() mock_async_load.return_value = expected_documents @@ -51,7 +57,13 @@ async def test_load_mocked(expected_documents: List[Document]) -> None: new=mock_async_load, ): loader = MongodbLoader( - "mongodb://localhost:27017", "test_db", "test_collection" + "mongodb://localhost:27017", + "test_db", + "test_collection", + filter_criteria=filter_criteria, + field_names=field_names, + metadata_names=metadata_names, + include_db_collection_in_metadata=include_db_collection_in_metadata, ) loader.collection = mock_collection documents = await loader.aload() diff --git a/libs/community/tests/unit_tests/document_loaders/test_onenote.py b/libs/community/tests/unit_tests/document_loaders/test_onenote.py index 41a58b2ec0e19..40862ab26725d 100644 --- a/libs/community/tests/unit_tests/document_loaders/test_onenote.py +++ b/libs/community/tests/unit_tests/document_loaders/test_onenote.py @@ -54,7 +54,10 @@ def test_load(mocker: MockerFixture) -> None: "

Test Content

" ), ) - loader = OneNoteLoader(object_ids=["test_id"], access_token="access_token") + loader = OneNoteLoader( + object_ids=["test_id"], + access_token="access_token", + ) documents = loader.load() assert documents == [ Document( diff --git a/libs/community/tests/unit_tests/document_loaders/test_pdf.py b/libs/community/tests/unit_tests/document_loaders/test_pdf.py new file mode 100644 index 0000000000000..ae7356ea4952e --- /dev/null +++ b/libs/community/tests/unit_tests/document_loaders/test_pdf.py @@ -0,0 +1,62 @@ +import re +from pathlib import Path + +import pytest + +from langchain_community.document_loaders import PyPDFLoader + +path_to_simple_pdf = ( + Path(__file__).parent.parent.parent / "integration_tests/examples/hello.pdf" +) +path_to_layout_pdf = ( + Path(__file__).parent.parent + / "document_loaders/sample_documents/layout-parser-paper.pdf" +) +path_to_layout_pdf_txt = ( + Path(__file__).parent.parent.parent + / "integration_tests/examples/layout-parser-paper-page-1.txt" +) + + +@pytest.mark.requires("pypdf") +def test_pypdf_loader() -> None: + """Test PyPDFLoader.""" + loader = PyPDFLoader(str(path_to_simple_pdf)) + docs = loader.load() + + assert len(docs) == 1 + + loader = PyPDFLoader(str(path_to_layout_pdf)) + + docs = loader.load() + assert len(docs) == 16 + for page, doc in enumerate(docs): + assert doc.metadata["page"] == page + assert doc.metadata["source"].endswith("layout-parser-paper.pdf") + assert len(doc.page_content) > 10 + + first_page = docs[0].page_content + for expected in ["LayoutParser", "A Unified Toolkit"]: + assert expected in first_page + + +@pytest.mark.requires("pypdf") +def test_pypdf_loader_with_layout() -> None: + """Test PyPDFLoader with layout mode.""" + loader = PyPDFLoader(str(path_to_layout_pdf), extraction_mode="layout") + + docs = loader.load() + assert len(docs) == 16 + for page, doc in enumerate(docs): + assert doc.metadata["page"] == page + assert doc.metadata["source"].endswith("layout-parser-paper.pdf") + assert len(doc.page_content) > 10 + + first_page = docs[0].page_content + for expected in ["LayoutParser", "A Unified Toolkit"]: + assert expected in first_page + + expected = path_to_layout_pdf_txt.read_text(encoding="utf-8") + cleaned_first_page = re.sub(r"\x00", "", first_page) + cleaned_expected = re.sub(r"\x00", "", expected) + assert cleaned_first_page == cleaned_expected diff --git a/libs/community/tests/unit_tests/document_loaders/test_pebblo.py b/libs/community/tests/unit_tests/document_loaders/test_pebblo.py index 89617b9cd5fa3..9d95bc98fda68 100644 --- a/libs/community/tests/unit_tests/document_loaders/test_pebblo.py +++ b/libs/community/tests/unit_tests/document_loaders/test_pebblo.py @@ -25,6 +25,11 @@ def test_pebblo_import() -> None: from langchain_community.document_loaders import PebbloSafeLoader # noqa: F401 +def test_pebblo_text_loader_import() -> None: + """Test that the Pebblo text loader can be imported.""" + from langchain_community.document_loaders import PebbloTextLoader # noqa: F401 + + def test_empty_filebased_loader(mocker: MockerFixture) -> None: """Test basic file based csv loader.""" # Setup @@ -146,3 +151,42 @@ def test_pebblo_safe_loader_api_key() -> None: # Assert assert loader.pb_client.api_key == api_key assert loader.pb_client.classifier_location == "local" + + +def test_pebblo_text_loader(mocker: MockerFixture) -> None: + """ + Test loading in-memory text with PebbloTextLoader and PebbloSafeLoader. + """ + # Setup + from langchain_community.document_loaders import PebbloSafeLoader, PebbloTextLoader + + mocker.patch.multiple( + "requests", + get=MockResponse(json_data={"data": ""}, status_code=200), + post=MockResponse(json_data={"data": ""}, status_code=200), + ) + + text = "This is a test text." + source = "fake_source" + expected_docs = [ + Document( + metadata={ + "full_path": source, + "pb_checksum": None, + }, + page_content=text, + ), + ] + + # Exercise + texts = [text] + loader = PebbloSafeLoader( + PebbloTextLoader(texts, source=source), + "dummy_app_name", + "dummy_owner", + "dummy_description", + ) + result = loader.load() + + # Assert + assert result == expected_docs diff --git a/libs/community/tests/unit_tests/document_loaders/test_web_base.py b/libs/community/tests/unit_tests/document_loaders/test_web_base.py index ea7890098063f..529c19b4c1f4b 100644 --- a/libs/community/tests/unit_tests/document_loaders/test_web_base.py +++ b/libs/community/tests/unit_tests/document_loaders/test_web_base.py @@ -1,3 +1,7 @@ +from textwrap import dedent +from typing import Any +from unittest.mock import MagicMock, patch + import pytest as pytest from langchain_community.document_loaders.web_base import WebBaseLoader @@ -19,3 +23,62 @@ def test_web_path_parameter(self) -> None: assert web_base_loader.web_paths == ["https://www.example.com"] web_base_loader = WebBaseLoader(web_path="https://www.example.com") assert web_base_loader.web_paths == ["https://www.example.com"] + + +@pytest.mark.requires("bs4") +@patch("langchain_community.document_loaders.web_base.requests.Session.get") +def test_lazy_load(mock_get: Any) -> None: + import bs4 + + mock_response = MagicMock() + mock_response.text = "

Test content

" + mock_get.return_value = mock_response + + loader = WebBaseLoader(web_paths=["https://www.example.com"]) + results = list(loader.lazy_load()) + mock_get.assert_called_with("https://www.example.com") + assert len(results) == 1 + assert results[0].page_content == "Test content" + + # Test bs4 kwargs + mock_html = dedent(""" + + +

Test content

+
This is a div with a special class
+ + + """) + mock_response = MagicMock() + mock_response.text = mock_html + mock_get.return_value = mock_response + + loader = WebBaseLoader( + web_paths=["https://www.example.com"], + bs_kwargs={"parse_only": bs4.SoupStrainer(class_="special-class")}, + ) + results = list(loader.lazy_load()) + assert len(results) == 1 + assert results[0].page_content == "This is a div with a special class" + + +@pytest.mark.requires("bs4") +@patch("aiohttp.ClientSession.get") +def test_aload(mock_get: Any) -> None: + async def mock_text() -> str: + return "

Test content

" + + mock_response = MagicMock() + mock_response.text = mock_text + mock_get.return_value.__aenter__.return_value = mock_response + + loader = WebBaseLoader( + web_paths=["https://www.example.com"], + header_template={"User-Agent": "test-user-agent"}, + ) + results = loader.aload() + assert len(results) == 1 + assert results[0].page_content == "Test content" + mock_get.assert_called_with( + "https://www.example.com", headers={"User-Agent": "test-user-agent"}, cookies={} + ) diff --git a/libs/community/tests/unit_tests/embeddings/test_baichuan.py b/libs/community/tests/unit_tests/embeddings/test_baichuan.py index 3c7961af2dc68..47fb9f032ecb6 100644 --- a/libs/community/tests/unit_tests/embeddings/test_baichuan.py +++ b/libs/community/tests/unit_tests/embeddings/test_baichuan.py @@ -1,15 +1,16 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.embeddings import BaichuanTextEmbeddings def test_sparkllm_initialization_by_alias() -> None: # Effective initialization - embeddings = BaichuanTextEmbeddings( # type: ignore[call-arg] + embeddings = BaichuanTextEmbeddings( model="embedding_model", api_key="your-api-key", # type: ignore[arg-type] + session=None, ) assert embeddings.model_name == "embedding_model" assert ( diff --git a/libs/community/tests/unit_tests/embeddings/test_edenai.py b/libs/community/tests/unit_tests/embeddings/test_edenai.py index d80c2279f8afc..164c27f1af10f 100644 --- a/libs/community/tests/unit_tests/embeddings/test_edenai.py +++ b/libs/community/tests/unit_tests/embeddings/test_edenai.py @@ -1,6 +1,6 @@ """Test EdenAiEmbeddings embeddings""" -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.embeddings import EdenAiEmbeddings diff --git a/libs/community/tests/unit_tests/embeddings/test_embaas.py b/libs/community/tests/unit_tests/embeddings/test_embaas.py index d631be8036bc8..1297f80658c89 100644 --- a/libs/community/tests/unit_tests/embeddings/test_embaas.py +++ b/libs/community/tests/unit_tests/embeddings/test_embaas.py @@ -1,6 +1,6 @@ """Test EmbaasEmbeddings embeddings""" -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.embeddings import EmbaasEmbeddings diff --git a/libs/community/tests/unit_tests/embeddings/test_llm_rails.py b/libs/community/tests/unit_tests/embeddings/test_llm_rails.py index ccc6ff0d77d6a..0ddaa79006bf7 100644 --- a/libs/community/tests/unit_tests/embeddings/test_llm_rails.py +++ b/libs/community/tests/unit_tests/embeddings/test_llm_rails.py @@ -1,6 +1,6 @@ """Test LLMRailsEmbeddings embeddings""" -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.embeddings import LLMRailsEmbeddings diff --git a/libs/community/tests/unit_tests/embeddings/test_premai.py b/libs/community/tests/unit_tests/embeddings/test_premai.py index 3d1b2b77447fa..8c75a67d20c05 100644 --- a/libs/community/tests/unit_tests/embeddings/test_premai.py +++ b/libs/community/tests/unit_tests/embeddings/test_premai.py @@ -1,7 +1,7 @@ """Test EmbaasEmbeddings embeddings""" import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.embeddings import PremAIEmbeddings diff --git a/libs/community/tests/unit_tests/embeddings/test_sparkllm.py b/libs/community/tests/unit_tests/embeddings/test_sparkllm.py index 41f8ca4bd2edd..faff133c5c057 100644 --- a/libs/community/tests/unit_tests/embeddings/test_sparkllm.py +++ b/libs/community/tests/unit_tests/embeddings/test_sparkllm.py @@ -2,7 +2,7 @@ from typing import cast import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.embeddings import SparkLLMTextEmbeddings diff --git a/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_hierarchy_link_extractor.py b/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_hierarchy_link_extractor.py index 9d9b939650671..75cf60d91ec80 100644 --- a/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_hierarchy_link_extractor.py +++ b/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_hierarchy_link_extractor.py @@ -1,6 +1,5 @@ -from langchain_core.graph_vectorstores.links import Link - from langchain_community.graph_vectorstores.extractors import HierarchyLinkExtractor +from langchain_community.graph_vectorstores.links import Link PATH_1 = ["Root", "H1", "h2"] diff --git a/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_html_link_extractor.py b/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_html_link_extractor.py index 478285d9d25a2..6825395b3de79 100644 --- a/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_html_link_extractor.py +++ b/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_html_link_extractor.py @@ -1,6 +1,6 @@ import pytest -from langchain_core.graph_vectorstores import Link +from langchain_community.graph_vectorstores import Link from langchain_community.graph_vectorstores.extractors import ( HtmlInput, HtmlLinkExtractor, diff --git a/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_link_extractor_transformer.py b/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_link_extractor_transformer.py index c791c75941780..4535f59f89280 100644 --- a/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_link_extractor_transformer.py +++ b/libs/community/tests/unit_tests/graph_vectorstores/extractors/test_link_extractor_transformer.py @@ -1,12 +1,12 @@ from typing import Set from langchain_core.documents import Document -from langchain_core.graph_vectorstores.links import Link, get_links from langchain_community.graph_vectorstores.extractors import ( LinkExtractor, LinkExtractorTransformer, ) +from langchain_community.graph_vectorstores.links import Link, get_links TEXT1 = "Text1" TEXT2 = "Text2" diff --git a/libs/community/tests/unit_tests/graph_vectorstores/test_networkx.py b/libs/community/tests/unit_tests/graph_vectorstores/test_networkx.py new file mode 100644 index 0000000000000..fec2f0f68c70a --- /dev/null +++ b/libs/community/tests/unit_tests/graph_vectorstores/test_networkx.py @@ -0,0 +1,77 @@ +import pytest +from langchain_core.documents import Document + +from langchain_community.graph_vectorstores.links import METADATA_LINKS_KEY, Link +from langchain_community.graph_vectorstores.networkx import documents_to_networkx + + +@pytest.mark.requires("networkx") +def test_documents_to_networkx() -> None: + import networkx as nx + + doc1 = Document( + id="a", + page_content="some content", + metadata={ + METADATA_LINKS_KEY: [ + Link.incoming("href", "a"), + Link.bidir("kw", "foo"), + ] + }, + ) + doc2 = Document( + id="b", + page_content="", + metadata={ + METADATA_LINKS_KEY: [ + Link.incoming("href", "b"), + Link.outgoing("href", "a"), + Link.bidir("kw", "foo"), + Link.bidir("kw", "bar"), + ] + }, + ) + + graph_with_tags = documents_to_networkx([doc1, doc2], tag_nodes=True) + link_data = nx.node_link_data(graph_with_tags) + assert link_data["directed"] + assert not link_data["multigraph"] + + link_data["nodes"].sort(key=lambda n: n["id"]) + assert link_data["nodes"] == [ + {"id": "a", "text": "some content"}, + {"id": "b", "text": ""}, + {"id": "tag_0", "label": "href:a"}, + {"id": "tag_1", "label": "kw:foo"}, + {"id": "tag_2", "label": "href:b"}, + {"id": "tag_3", "label": "kw:bar"}, + ] + link_data["links"].sort(key=lambda n: (n["source"], n["target"])) + assert link_data["links"] == [ + {"source": "a", "target": "tag_1"}, + {"source": "b", "target": "tag_0"}, + {"source": "b", "target": "tag_1"}, + {"source": "b", "target": "tag_3"}, + {"source": "tag_0", "target": "a"}, + {"source": "tag_1", "target": "a"}, + {"source": "tag_1", "target": "b"}, + {"source": "tag_2", "target": "b"}, + {"source": "tag_3", "target": "b"}, + ] + + graph_without_tags = documents_to_networkx([doc1, doc2], tag_nodes=False) + link_data = nx.node_link_data(graph_without_tags) + assert link_data["directed"] + assert not link_data["multigraph"] + + link_data["nodes"].sort(key=lambda n: n["id"]) + assert link_data["nodes"] == [ + {"id": "a", "text": "some content"}, + {"id": "b", "text": ""}, + ] + + link_data["links"].sort(key=lambda n: (n["source"], n["target"])) + assert link_data["links"] == [ + {"source": "a", "target": "b", "label": "['kw:foo']"}, + {"source": "b", "target": "a", "label": "['href:a', 'kw:foo']"}, + ] diff --git a/libs/community/tests/unit_tests/llms/fake_llm.py b/libs/community/tests/unit_tests/llms/fake_llm.py index 6f457f00e63aa..a8e9eb67eacea 100644 --- a/libs/community/tests/unit_tests/llms/fake_llm.py +++ b/libs/community/tests/unit_tests/llms/fake_llm.py @@ -4,7 +4,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import validator +from pydantic import validator class FakeLLM(LLM): diff --git a/libs/community/tests/unit_tests/llms/test_ai21.py b/libs/community/tests/unit_tests/llms/test_ai21.py index 788364da0c5a8..f743fe7503b2b 100644 --- a/libs/community/tests/unit_tests/llms/test_ai21.py +++ b/libs/community/tests/unit_tests/llms/test_ai21.py @@ -2,7 +2,7 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.ai21 import AI21 diff --git a/libs/community/tests/unit_tests/llms/test_aleph_alpha.py b/libs/community/tests/unit_tests/llms/test_aleph_alpha.py index 57cd544d7eb58..24b2d0433dc7e 100644 --- a/libs/community/tests/unit_tests/llms/test_aleph_alpha.py +++ b/libs/community/tests/unit_tests/llms/test_aleph_alpha.py @@ -1,7 +1,7 @@ """Test Aleph Alpha specific stuff.""" import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.aleph_alpha import AlephAlpha diff --git a/libs/community/tests/unit_tests/llms/test_anyscale.py b/libs/community/tests/unit_tests/llms/test_anyscale.py index c5896f540cae2..481738de81d23 100644 --- a/libs/community/tests/unit_tests/llms/test_anyscale.py +++ b/libs/community/tests/unit_tests/llms/test_anyscale.py @@ -1,7 +1,7 @@ """Test Anyscale llm""" import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.anyscale import Anyscale diff --git a/libs/community/tests/unit_tests/llms/test_bananadev.py b/libs/community/tests/unit_tests/llms/test_bananadev.py index 026cf134d3a6e..caa5f49a3cdd7 100644 --- a/libs/community/tests/unit_tests/llms/test_bananadev.py +++ b/libs/community/tests/unit_tests/llms/test_bananadev.py @@ -2,7 +2,7 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.bananadev import Banana diff --git a/libs/community/tests/unit_tests/llms/test_cerebriumai.py b/libs/community/tests/unit_tests/llms/test_cerebriumai.py index 87e0439870e88..6d57408378aed 100644 --- a/libs/community/tests/unit_tests/llms/test_cerebriumai.py +++ b/libs/community/tests/unit_tests/llms/test_cerebriumai.py @@ -1,6 +1,6 @@ """Test CerebriumAI llm""" -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.cerebriumai import CerebriumAI diff --git a/libs/community/tests/unit_tests/llms/test_fireworks.py b/libs/community/tests/unit_tests/llms/test_fireworks.py index 1487fdc0fba19..a5030d3ad53ca 100644 --- a/libs/community/tests/unit_tests/llms/test_fireworks.py +++ b/libs/community/tests/unit_tests/llms/test_fireworks.py @@ -3,7 +3,7 @@ import sys import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.llms import Fireworks diff --git a/libs/community/tests/unit_tests/llms/test_forefrontai.py b/libs/community/tests/unit_tests/llms/test_forefrontai.py index 711cb2186be71..52a2c578387a7 100644 --- a/libs/community/tests/unit_tests/llms/test_forefrontai.py +++ b/libs/community/tests/unit_tests/llms/test_forefrontai.py @@ -2,7 +2,7 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.forefrontai import ForefrontAI diff --git a/libs/community/tests/unit_tests/llms/test_friendli.py b/libs/community/tests/unit_tests/llms/test_friendli.py index d55d6d14fa812..6fd4593d93d3b 100644 --- a/libs/community/tests/unit_tests/llms/test_friendli.py +++ b/libs/community/tests/unit_tests/llms/test_friendli.py @@ -3,7 +3,7 @@ from unittest.mock import AsyncMock, MagicMock, Mock import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.adapters.openai import aenumerate diff --git a/libs/community/tests/unit_tests/llms/test_gooseai.py b/libs/community/tests/unit_tests/llms/test_gooseai.py index be467b61758a9..6ec2f0aadc905 100644 --- a/libs/community/tests/unit_tests/llms/test_gooseai.py +++ b/libs/community/tests/unit_tests/llms/test_gooseai.py @@ -1,7 +1,7 @@ """Test GooseAI""" import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import MonkeyPatch from langchain_community.llms.gooseai import GooseAI diff --git a/libs/community/tests/unit_tests/llms/test_imports.py b/libs/community/tests/unit_tests/llms/test_imports.py index dd9cc4d42374f..dd1a089fe4d11 100644 --- a/libs/community/tests/unit_tests/llms/test_imports.py +++ b/libs/community/tests/unit_tests/llms/test_imports.py @@ -77,7 +77,6 @@ "RWKV", "Replicate", "SagemakerEndpoint", - "Sambaverse", "SambaStudio", "SelfHostedHuggingFaceLLM", "SelfHostedPipeline", diff --git a/libs/community/tests/unit_tests/llms/test_minimax.py b/libs/community/tests/unit_tests/llms/test_minimax.py index ef128ea1d5192..a244cf0b2492a 100644 --- a/libs/community/tests/unit_tests/llms/test_minimax.py +++ b/libs/community/tests/unit_tests/llms/test_minimax.py @@ -2,7 +2,7 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.minimax import Minimax diff --git a/libs/community/tests/unit_tests/llms/test_oci_generative_ai.py b/libs/community/tests/unit_tests/llms/test_oci_generative_ai.py index df600d4d775bb..d0472abf86c36 100644 --- a/libs/community/tests/unit_tests/llms/test_oci_generative_ai.py +++ b/libs/community/tests/unit_tests/llms/test_oci_generative_ai.py @@ -22,7 +22,12 @@ def test_llm_complete(monkeypatch: MonkeyPatch, test_model_id: str) -> None: oci_gen_ai_client = MagicMock() llm = OCIGenAI(model_id=test_model_id, client=oci_gen_ai_client) - provider = llm.model_id.split(".")[0].lower() + model_id = llm.model_id + + if model_id is None: + raise ValueError("Model ID is required for OCI Generative AI LLM service.") + + provider = model_id.split(".")[0].lower() def mocked_response(*args): # type: ignore[no-untyped-def] response_text = "This is the completion." diff --git a/libs/community/tests/unit_tests/llms/test_openai.py b/libs/community/tests/unit_tests/llms/test_openai.py index 83b229d8c2e1d..bd5f8b3bd9064 100644 --- a/libs/community/tests/unit_tests/llms/test_openai.py +++ b/libs/community/tests/unit_tests/llms/test_openai.py @@ -26,13 +26,12 @@ def test_openai_model_kwargs() -> None: @pytest.mark.requires("openai") -def test_openai_invalid_model_kwargs() -> None: - with pytest.raises(ValueError): - OpenAI(model_kwargs={"model_name": "foo"}) - - # Test that "model" cannot be specified in kwargs - with pytest.raises(ValueError): - OpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"}) +def test_openai_fields_model_kwargs() -> None: + """Test that for backwards compatibility fields can be passed in as model_kwargs.""" + llm = OpenAI(model_kwargs={"model_name": "foo"}, api_key="foo") + assert llm.model_name == "foo" + llm = OpenAI(model_kwargs={"model": "foo"}, api_key="foo") + assert llm.model_name == "foo" @pytest.mark.requires("openai") diff --git a/libs/community/tests/unit_tests/llms/test_pipelineai.py b/libs/community/tests/unit_tests/llms/test_pipelineai.py index 3a8513650fc04..ea56cd322278d 100644 --- a/libs/community/tests/unit_tests/llms/test_pipelineai.py +++ b/libs/community/tests/unit_tests/llms/test_pipelineai.py @@ -1,4 +1,4 @@ -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.llms.pipelineai import PipelineAI diff --git a/libs/community/tests/unit_tests/llms/test_predibase.py b/libs/community/tests/unit_tests/llms/test_predibase.py index bb8245f1ef32b..4812492776a35 100644 --- a/libs/community/tests/unit_tests/llms/test_predibase.py +++ b/libs/community/tests/unit_tests/llms/test_predibase.py @@ -1,4 +1,4 @@ -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.llms.predibase import Predibase diff --git a/libs/community/tests/unit_tests/llms/test_stochasticai.py b/libs/community/tests/unit_tests/llms/test_stochasticai.py index 285d4368f2a72..894b1df5a5693 100644 --- a/libs/community/tests/unit_tests/llms/test_stochasticai.py +++ b/libs/community/tests/unit_tests/llms/test_stochasticai.py @@ -1,4 +1,4 @@ -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture from langchain_community.llms.stochasticai import StochasticAI diff --git a/libs/community/tests/unit_tests/llms/test_symblai_nebula.py b/libs/community/tests/unit_tests/llms/test_symblai_nebula.py index 9109ee3c45be7..07654cdcd6b08 100644 --- a/libs/community/tests/unit_tests/llms/test_symblai_nebula.py +++ b/libs/community/tests/unit_tests/llms/test_symblai_nebula.py @@ -1,6 +1,6 @@ """Test the Nebula model by Symbl.ai""" -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.symblai_nebula import Nebula diff --git a/libs/community/tests/unit_tests/llms/test_together.py b/libs/community/tests/unit_tests/llms/test_together.py index 0d6cf975035c0..2012a36590d7e 100644 --- a/libs/community/tests/unit_tests/llms/test_together.py +++ b/libs/community/tests/unit_tests/llms/test_together.py @@ -2,7 +2,7 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_community.llms.together import Together diff --git a/libs/community/tests/unit_tests/load/__snapshots__/test_dump.ambr b/libs/community/tests/unit_tests/load/__snapshots__/test_dump.ambr index e8bb230bbb28f..450043d00db2b 100644 --- a/libs/community/tests/unit_tests/load/__snapshots__/test_dump.ambr +++ b/libs/community/tests/unit_tests/load/__snapshots__/test_dump.ambr @@ -71,6 +71,7 @@ "LLMChain" ], "kwargs": { + "verbose": false, "prompt": { "lc": 1, "type": "constructor", @@ -150,6 +151,7 @@ "LLMChain" ], "kwargs": { + "verbose": false, "prompt": { "lc": 1, "type": "constructor", @@ -254,6 +256,7 @@ "LLMChain" ], "kwargs": { + "verbose": false, "prompt": { "lc": 1, "type": "constructor", diff --git a/libs/community/tests/unit_tests/load/test_dump.py b/libs/community/tests/unit_tests/load/test_dump.py index c46233a874a72..ef86c654575de 100644 --- a/libs/community/tests/unit_tests/load/test_dump.py +++ b/libs/community/tests/unit_tests/load/test_dump.py @@ -11,8 +11,8 @@ from langchain_core.load.serializable import Serializable from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.tracers.langchain import LangChainTracer +from pydantic import ConfigDict, Field, model_validator class Person(Serializable): @@ -182,11 +182,13 @@ class TestClass(Serializable): my_favorite_secret: str = Field(alias="my_favorite_secret_alias") my_other_secret: str = Field() - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def get_from_env(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_from_env(cls, values: Dict) -> Any: """Get the values from the environment.""" if "my_favorite_secret" not in values: values["my_favorite_secret"] = os.getenv("MY_FAVORITE_SECRET") diff --git a/libs/community/tests/unit_tests/load/test_serializable.py b/libs/community/tests/unit_tests/load/test_serializable.py index 9b6dcc536d4fa..819d47d9a7350 100644 --- a/libs/community/tests/unit_tests/load/test_serializable.py +++ b/libs/community/tests/unit_tests/load/test_serializable.py @@ -112,6 +112,20 @@ def test_serializable_mapping() -> None: "chat_models", "ChatGroq", ), + # TODO(0.3): For now we're skipping the below two tests. Need to fix + # so that it only runs when langchain-aws, langchain-google-genai + # are installed. + ("langchain", "chat_models", "bedrock", "ChatBedrock"): ( + "langchain_aws", + "chat_models", + "bedrock", + "ChatBedrock", + ), + ("langchain_google_genai", "chat_models", "ChatGoogleGenerativeAI"): ( + "langchain_google_genai", + "chat_models", + "ChatGoogleGenerativeAI", + ), } serializable_modules = import_all_modules("langchain") diff --git a/libs/community/tests/unit_tests/retrievers/test_bedrock.py b/libs/community/tests/unit_tests/retrievers/test_bedrock.py index ff72d193e4ad6..6f49cd7bd2b8f 100644 --- a/libs/community/tests/unit_tests/retrievers/test_bedrock.py +++ b/libs/community/tests/unit_tests/retrievers/test_bedrock.py @@ -28,9 +28,11 @@ def amazon_retriever( ) -def test_create_client(amazon_retriever: AmazonKnowledgeBasesRetriever) -> None: - with pytest.raises(ImportError): - amazon_retriever.create_client({}) +def test_create_client() -> None: + # Import error if boto3 is not installed + # Value error if credentials are not supplied. + with pytest.raises((ImportError, ValueError)): + AmazonKnowledgeBasesRetriever() # type: ignore def test_standard_params(amazon_retriever: AmazonKnowledgeBasesRetriever) -> None: diff --git a/libs/community/tests/unit_tests/test_dependencies.py b/libs/community/tests/unit_tests/test_dependencies.py index e68f5e4fa6009..8fe12f140f164 100644 --- a/libs/community/tests/unit_tests/test_dependencies.py +++ b/libs/community/tests/unit_tests/test_dependencies.py @@ -48,6 +48,7 @@ def test_required_dependencies(poetry_conf: Mapping[str, Any]) -> None: "numpy", "python", "requests", + "pydantic-settings", "tenacity", "langchain", ] @@ -92,6 +93,9 @@ def test_test_group_dependencies(poetry_conf: Mapping[str, Any]) -> None: "responses", "syrupy", "requests-mock", + # TODO: Hack to get around cffi 1.17.1 not working with py3.9, remove when + # fix is released. + "cffi", ] ) diff --git a/libs/core/tests/unit_tests/test_graph_vectorstores.py b/libs/community/tests/unit_tests/test_graph_vectorstores.py similarity index 94% rename from libs/core/tests/unit_tests/test_graph_vectorstores.py rename to libs/community/tests/unit_tests/test_graph_vectorstores.py index 2e3c8c5bdaf5b..54661b90e04cf 100644 --- a/libs/core/tests/unit_tests/test_graph_vectorstores.py +++ b/libs/community/tests/unit_tests/test_graph_vectorstores.py @@ -1,12 +1,12 @@ import pytest - from langchain_core.documents import Document -from langchain_core.graph_vectorstores.base import ( + +from langchain_community.graph_vectorstores.base import ( Node, _documents_to_nodes, _texts_to_nodes, ) -from langchain_core.graph_vectorstores.links import Link +from langchain_community.graph_vectorstores.links import Link def test_texts_to_nodes() -> None: diff --git a/libs/community/tests/unit_tests/tools/audio/test_tools.py b/libs/community/tests/unit_tests/tools/audio/test_tools.py index 03055ad36c25d..30cacb7b7b0b5 100644 --- a/libs/community/tests/unit_tests/tools/audio/test_tools.py +++ b/libs/community/tests/unit_tests/tools/audio/test_tools.py @@ -6,7 +6,7 @@ from unittest.mock import Mock, mock_open, patch import pytest -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_community.tools.audio import HuggingFaceTextToSpeechModelInference diff --git a/libs/community/tests/unit_tests/tools/openapi/__init__.py b/libs/community/tests/unit_tests/tools/openapi/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/community/tests/unit_tests/tools/openapi/test_api_models.py b/libs/community/tests/unit_tests/tools/openapi/test_api_models.py deleted file mode 100644 index e871349a7bc59..0000000000000 --- a/libs/community/tests/unit_tests/tools/openapi/test_api_models.py +++ /dev/null @@ -1,224 +0,0 @@ -"""Test the APIOperation class.""" - -import json -import os -from pathlib import Path -from typing import Iterable, List, Tuple - -import pytest - -# Keep at top of file to ensure that pydantic test can be skipped before -# pydantic v1 related imports are attempted by openapi_pydantic. -from langchain_core.pydantic_v1 import _PYDANTIC_MAJOR_VERSION - -if _PYDANTIC_MAJOR_VERSION != 1: - pytest.skip( - f"Pydantic major version {_PYDANTIC_MAJOR_VERSION} is not supported.", - allow_module_level=True, - ) - -import pytest -import yaml - -from langchain_community.tools.openapi.utils.api_models import ( - APIOperation, - APIRequestBody, - APIRequestBodyProperty, -) -from langchain_community.tools.openapi.utils.openapi_utils import HTTPVerb, OpenAPISpec - -SPECS_DIR = Path(__file__).parents[2] / "examples" / "test_specs" - - -def _get_test_specs() -> Iterable[Path]: - """Walk the test_specs directory and collect all files with the name 'apispec' - in them. - """ - if not SPECS_DIR.exists(): - raise ValueError - return ( - Path(root) / file - for root, _, files in os.walk(SPECS_DIR) - for file in files - if file.startswith("apispec") - ) - - -def _get_paths_and_methods_from_spec_dictionary( - spec: dict, -) -> Iterable[Tuple[str, str]]: - """Return a tuple (paths, methods) for every path in spec.""" - valid_methods = [verb.value for verb in HTTPVerb] - for path_name, path_item in spec["paths"].items(): - for method in valid_methods: - if method in path_item: - yield (path_name, method) - - -def http_paths_and_methods() -> List[Tuple[str, OpenAPISpec, str, str]]: - """Return a args for every method in cached OpenAPI spec in test_specs.""" - http_paths_and_methods = [] - for test_spec in _get_test_specs(): - spec_name = test_spec.parent.name - if test_spec.suffix == ".json": - with test_spec.open("r") as f: - spec = json.load(f) - else: - with test_spec.open("r") as f: - spec = yaml.safe_load(f.read()) - parsed_spec = OpenAPISpec.from_file(test_spec) - for path, method in _get_paths_and_methods_from_spec_dictionary(spec): - http_paths_and_methods.append( - ( - spec_name, - parsed_spec, - path, - method, - ) - ) - return http_paths_and_methods - - -@pytest.mark.requires("openapi_pydantic") -def test_parse_api_operations() -> None: - """Test the APIOperation class.""" - for spec_name, spec, path, method in http_paths_and_methods(): - try: - APIOperation.from_openapi_spec(spec, path, method) - except Exception as e: - raise AssertionError(f"Error processing {spec_name}: {e} ") from e - - -@pytest.mark.requires("openapi_pydantic") -@pytest.fixture -def raw_spec() -> OpenAPISpec: - """Return a raw OpenAPI spec.""" - from openapi_pydantic import Info - - return OpenAPISpec( - info=Info(title="Test API", version="1.0.0"), - ) - - -@pytest.mark.requires("openapi_pydantic") -def test_api_request_body_from_request_body_with_ref(raw_spec: OpenAPISpec) -> None: - """Test instantiating APIRequestBody from RequestBody with a reference.""" - from openapi_pydantic import ( - Components, - MediaType, - Reference, - RequestBody, - Schema, - ) - - raw_spec.components = Components( - schemas={ - "Foo": Schema( - type="object", - properties={ - "foo": Schema(type="string"), - "bar": Schema(type="number"), - }, - required=["foo"], - ) - } - ) - media_type = MediaType( - schema=Reference( - ref="#/components/schemas/Foo", - ) - ) - request_body = RequestBody(content={"application/json": media_type}) - api_request_body = APIRequestBody.from_request_body(request_body, raw_spec) - assert api_request_body.description is None - assert len(api_request_body.properties) == 2 - foo_prop = api_request_body.properties[0] - assert foo_prop.name == "foo" - assert foo_prop.required is True - bar_prop = api_request_body.properties[1] - assert bar_prop.name == "bar" - assert bar_prop.required is False - assert api_request_body.media_type == "application/json" - - -@pytest.mark.requires("openapi_pydantic") -def test_api_request_body_from_request_body_with_schema(raw_spec: OpenAPISpec) -> None: - """Test instantiating APIRequestBody from RequestBody with a schema.""" - from openapi_pydantic import ( - MediaType, - RequestBody, - Schema, - ) - - request_body = RequestBody( - content={ - "application/json": MediaType( - schema=Schema(type="object", properties={"foo": Schema(type="string")}) - ) - } - ) - api_request_body = APIRequestBody.from_request_body(request_body, raw_spec) - assert api_request_body.properties == [ - APIRequestBodyProperty( - name="foo", - required=False, - type="string", - default=None, - description=None, - properties=[], - references_used=[], - ) - ] - assert api_request_body.media_type == "application/json" - - -@pytest.mark.requires("openapi_pydantic") -def test_api_request_body_property_from_schema(raw_spec: OpenAPISpec) -> None: - from openapi_pydantic import ( - Components, - Reference, - Schema, - ) - - raw_spec.components = Components( - schemas={ - "Bar": Schema( - type="number", - ) - } - ) - schema = Schema( - type="object", - properties={ - "foo": Schema(type="string"), - "bar": Reference(ref="#/components/schemas/Bar"), - }, - required=["bar"], - ) - api_request_body_property = APIRequestBodyProperty.from_schema( - schema, "test", required=True, spec=raw_spec - ) - expected_sub_properties = [ - APIRequestBodyProperty( - name="foo", - required=False, - type="string", - default=None, - description=None, - properties=[], - references_used=[], - ), - APIRequestBodyProperty( - name="bar", - required=True, - type="number", - default=None, - description=None, - properties=[], - references_used=["Bar"], - ), - ] - assert api_request_body_property.properties[0] == expected_sub_properties[0] - assert api_request_body_property.properties[1] == expected_sub_properties[1] - assert api_request_body_property.type == "object" - assert api_request_body_property.properties[1].references_used == ["Bar"] diff --git a/libs/community/tests/unit_tests/tools/test_exported.py b/libs/community/tests/unit_tests/tools/test_exported.py index 6dd98bd0d7790..e5503369873ed 100644 --- a/libs/community/tests/unit_tests/tools/test_exported.py +++ b/libs/community/tests/unit_tests/tools/test_exported.py @@ -23,13 +23,15 @@ def _get_tool_classes(skip_tools_without_default_names: bool) -> List[Type[BaseT if isinstance(tool_class, type) and issubclass(tool_class, BaseTool): if tool_class in _EXCLUDE: continue - if skip_tools_without_default_names and get_fields(tool_class)[ - "name" - ].default in [ # type: ignore + default_name = get_fields(tool_class)["name"].default + if skip_tools_without_default_names and default_name in [ # type: ignore None, "", ]: continue + if not isinstance(default_name, str): + continue + results.append(tool_class) return results @@ -37,6 +39,6 @@ def _get_tool_classes(skip_tools_without_default_names: bool) -> List[Type[BaseT def test_tool_names_unique() -> None: """Test that the default names for our core tools are unique.""" tool_classes = _get_tool_classes(skip_tools_without_default_names=True) - names = sorted([get_fields(tool_cls)["name"].default for tool_cls in tool_classes]) + names = sorted([tool_cls.model_fields["name"].default for tool_cls in tool_classes]) duplicated_names = [name for name in names if names.count(name) > 1] assert not duplicated_names diff --git a/libs/community/tests/unit_tests/tools/test_zapier.py b/libs/community/tests/unit_tests/tools/test_zapier.py index d2b0661943506..8df158a765c16 100644 --- a/libs/community/tests/unit_tests/tools/test_zapier.py +++ b/libs/community/tests/unit_tests/tools/test_zapier.py @@ -16,7 +16,9 @@ def test_default_base_prompt() -> None: action_id="test", zapier_description="test", params_schema={"test": "test"}, - api_wrapper=ZapierNLAWrapper(zapier_nla_api_key="test"), # type: ignore[call-arg] + api_wrapper=ZapierNLAWrapper( + zapier_nla_api_key="test", zapier_nla_oauth_access_token="" + ), ) # Test that the base prompt was successfully assigned to the default prompt diff --git a/libs/community/tests/unit_tests/utilities/test_nvidia_riva_asr.py b/libs/community/tests/unit_tests/utilities/test_nvidia_riva_asr.py index e95e41dc4f8a6..c5ffdacabf41f 100644 --- a/libs/community/tests/unit_tests/utilities/test_nvidia_riva_asr.py +++ b/libs/community/tests/unit_tests/utilities/test_nvidia_riva_asr.py @@ -4,6 +4,7 @@ from unittest.mock import patch import pytest +from pydantic import AnyHttpUrl from langchain_community.utilities.nvidia_riva import ( AudioStream, @@ -126,7 +127,10 @@ def stream() -> AudioStream: def test_init(asr: RivaASR) -> None: """Test that ASR accepts valid arguments.""" for key, expected_val in CONFIG.items(): - assert getattr(asr, key, None) == expected_val + if key == "url": + assert asr.url == AnyHttpUrl(expected_val) # type: ignore + else: + assert getattr(asr, key, None) == expected_val @pytest.mark.requires("riva.client") @@ -162,7 +166,7 @@ def test_get_service(asr: RivaASR) -> None: svc = asr._get_service() assert str(svc.auth.ssl_cert) == CONFIG["ssl_cert"] assert svc.auth.use_ssl == SVC_USE_SSL - assert svc.auth.uri == SVC_URI + assert str(svc.auth.uri) == SVC_URI @pytest.mark.requires("riva.client") diff --git a/libs/community/tests/unit_tests/utilities/test_nvidia_riva_tts.py b/libs/community/tests/unit_tests/utilities/test_nvidia_riva_tts.py index 3024ff5885a8a..fe584f2723f71 100644 --- a/libs/community/tests/unit_tests/utilities/test_nvidia_riva_tts.py +++ b/libs/community/tests/unit_tests/utilities/test_nvidia_riva_tts.py @@ -57,7 +57,10 @@ def tts() -> RivaTTS: def test_init(tts: RivaTTS) -> None: """Test that ASR accepts valid arguments.""" for key, expected_val in CONFIG.items(): - assert getattr(tts, key, None) == expected_val + if key == "url": + assert str(tts.url) == expected_val + "/" # type: ignore + else: + assert getattr(tts, key, None) == expected_val @pytest.mark.requires("riva.client") diff --git a/libs/community/tests/unit_tests/vectorstores/redis/test_redis_schema.py b/libs/community/tests/unit_tests/vectorstores/redis/test_redis_schema.py index 90196a7f3e661..a3afbfc5ad5cf 100644 --- a/libs/community/tests/unit_tests/vectorstores/redis/test_redis_schema.py +++ b/libs/community/tests/unit_tests/vectorstores/redis/test_redis_schema.py @@ -36,7 +36,7 @@ def test_numeric_field_schema_creation() -> None: def test_redis_vector_field_validation() -> None: """Test validation for RedisVectorField's datatype.""" - from langchain_core.pydantic_v1 import ValidationError + from pydantic import ValidationError with pytest.raises(ValidationError): RedisVectorField( diff --git a/libs/community/tests/unit_tests/vectorstores/test_azure_search.py b/libs/community/tests/unit_tests/vectorstores/test_azure_search.py index 0f54e08d501ec..0f1ae7356973f 100644 --- a/libs/community/tests/unit_tests/vectorstores/test_azure_search.py +++ b/libs/community/tests/unit_tests/vectorstores/test_azure_search.py @@ -190,3 +190,40 @@ def mock_create_index() -> None: ) assert vector_store.client is not None assert vector_store.client._api_version == "test" + + +@pytest.mark.requires("azure.search.documents") +def test_ids_used_correctly() -> None: + """Check whether vector store uses the document ids when provided with them.""" + from azure.search.documents import SearchClient + from azure.search.documents.indexes import SearchIndexClient + from langchain_core.documents import Document + + class Response: + def __init__(self) -> None: + self.succeeded: bool = True + + def mock_upload_documents(self, documents: List[object]) -> List[Response]: # type: ignore[no-untyped-def] + # assume all documents uploaded successfuly + response = [Response() for _ in documents] + return response + + documents = [ + Document( + page_content="page zero Lorem Ipsum", + metadata={"source": "document.pdf", "page": 0, "id": "ID-document-1"}, + ), + Document( + page_content="page one Lorem Ipsum", + metadata={"source": "document.pdf", "page": 1, "id": "ID-document-2"}, + ), + ] + ids_provided = [i.metadata.get("id") for i in documents] + + with patch.object( + SearchClient, "upload_documents", mock_upload_documents + ), patch.object(SearchIndexClient, "get_index", mock_default_index): + vector_store = create_vector_store() + ids_used_at_upload = vector_store.add_documents(documents, ids=ids_provided) + assert len(ids_provided) == len(ids_used_at_upload) + assert ids_provided == ids_used_at_upload diff --git a/libs/community/tests/unit_tests/vectorstores/test_imports.py b/libs/community/tests/unit_tests/vectorstores/test_imports.py index 2a59b0ebc7c3f..5ac0ca72b49c5 100644 --- a/libs/community/tests/unit_tests/vectorstores/test_imports.py +++ b/libs/community/tests/unit_tests/vectorstores/test_imports.py @@ -76,6 +76,7 @@ "Relyt", "Rockset", "SKLearnVectorStore", + "SQLiteVec", "SQLiteVSS", "ScaNN", "SemaDB", diff --git a/libs/community/tests/unit_tests/vectorstores/test_inmemory.py b/libs/community/tests/unit_tests/vectorstores/test_inmemory.py index 7381335103a0a..6facca3429b2a 100644 --- a/libs/community/tests/unit_tests/vectorstores/test_inmemory.py +++ b/libs/community/tests/unit_tests/vectorstores/test_inmemory.py @@ -19,6 +19,13 @@ def __eq__(self, other: Any) -> bool: return isinstance(other, str) +def _AnyDocument(**kwargs: Any) -> Document: + """Create a Document with an any id field.""" + doc = Document(**kwargs) + doc.id = AnyStr() + return doc + + class TestInMemoryReadWriteTestSuite(ReadWriteTestSuite): @pytest.fixture def vectorstore(self) -> InMemoryVectorStore: @@ -37,12 +44,12 @@ async def test_inmemory() -> None: ["foo", "bar", "baz"], ConsistentFakeEmbeddings() ) output = await store.asimilarity_search("foo", k=1) - assert output == [Document(page_content="foo", id=AnyStr())] + assert output == [_AnyDocument(page_content="foo")] output = await store.asimilarity_search("bar", k=2) assert output == [ - Document(page_content="bar", id=AnyStr()), - Document(page_content="baz", id=AnyStr()), + _AnyDocument(page_content="bar"), + _AnyDocument(page_content="baz"), ] output2 = await store.asimilarity_search_with_score("bar", k=2) @@ -70,8 +77,8 @@ async def test_inmemory_mmr() -> None: "foo", k=10, lambda_mult=0.1 ) assert len(output) == len(texts) - assert output[0] == Document(page_content="foo", id=AnyStr()) - assert output[1] == Document(page_content="foy", id=AnyStr()) + assert output[0] == _AnyDocument(page_content="foo") + assert output[1] == _AnyDocument(page_content="foy") async def test_inmemory_dump_load(tmp_path: Path) -> None: @@ -99,4 +106,4 @@ async def test_inmemory_filter() -> None: output = await store.asimilarity_search( "baz", filter=lambda doc: doc.metadata["id"] == 1 ) - assert output == [Document(page_content="foo", metadata={"id": 1}, id=AnyStr())] + assert output == [_AnyDocument(page_content="foo", metadata={"id": 1})] diff --git a/libs/core/Makefile b/libs/core/Makefile index 694946791075b..d6d84f0911759 100644 --- a/libs/core/Makefile +++ b/libs/core/Makefile @@ -39,7 +39,6 @@ lint_tests: PYTHON_FILES=tests lint_tests: MYPY_CACHE=.mypy_cache_test lint lint_diff lint_package lint_tests: - ./scripts/check_pydantic.sh . ./scripts/lint_imports.sh [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check $(PYTHON_FILES) [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff @@ -47,7 +46,7 @@ lint lint_diff lint_package lint_tests: format format_diff: [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check --select I --fix $(PYTHON_FILES) + [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check --fix $(PYTHON_FILES) spell_check: poetry run codespell --toml pyproject.toml diff --git a/libs/core/README.md b/libs/core/README.md index 6ab005b4f5029..51632b9c810f0 100644 --- a/libs/core/README.md +++ b/libs/core/README.md @@ -53,7 +53,7 @@ LangChain Core compiles LCEL sequences to an _optimized execution plan_, with au For more check out the [LCEL docs](https://python.langchain.com/docs/expression_language/). -![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](../../docs/static/svg/langchain_stack_062024.svg "LangChain Framework Overview") +![Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.](https://raw.githubusercontent.com/langchain-ai/langchain/e1d113ea84a2edcf4a7709fc5be0e972ea74a5d9/docs/static/svg/langchain_stack_062024.svg "LangChain Framework Overview") For more advanced use cases, also check out [LangGraph](https://github.com/langchain-ai/langgraph), which is a graph-based runner for cyclic and recursive LLM workflows. diff --git a/libs/core/langchain_core/_api/beta_decorator.py b/libs/core/langchain_core/_api/beta_decorator.py index d27a27a1c834c..4d6810dbec347 100644 --- a/libs/core/langchain_core/_api/beta_decorator.py +++ b/libs/core/langchain_core/_api/beta_decorator.py @@ -14,7 +14,8 @@ import functools import inspect import warnings -from typing import Any, Callable, Generator, Type, TypeVar, Union, cast +from collections.abc import Generator +from typing import Any, Callable, TypeVar, Union, cast from langchain_core._api.internal import is_caller_internal @@ -26,7 +27,7 @@ class LangChainBetaWarning(DeprecationWarning): # PUBLIC API -T = TypeVar("T", bound=Union[Callable[..., Any], Type]) +T = TypeVar("T", bound=Union[Callable[..., Any], type]) def beta( @@ -126,10 +127,9 @@ async def awarning_emitting_wrapper(*args: Any, **kwargs: Any) -> Any: def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: """Finalize the annotation of a class.""" - try: + # Can't set new_doc on some extension objects. + with contextlib.suppress(AttributeError): obj.__doc__ = new_doc - except AttributeError: # Can't set on some extension objects. - pass def warn_if_direct_instance( self: Any, *args: Any, **kwargs: Any @@ -154,7 +154,7 @@ def warn_if_direct_instance( _name = _name or obj.fget.__qualname__ old_doc = obj.__doc__ - class _beta_property(property): + class _BetaProperty(property): """A beta property.""" def __init__(self, fget=None, fset=None, fdel=None, doc=None): @@ -185,7 +185,7 @@ def __set_name__(self, owner, set_name): def finalize(wrapper: Callable[..., Any], new_doc: str) -> Any: """Finalize the property.""" - return _beta_property( + return _BetaProperty( fget=obj.fget, fset=obj.fset, fdel=obj.fdel, doc=new_doc ) diff --git a/libs/core/langchain_core/_api/deprecation.py b/libs/core/langchain_core/_api/deprecation.py index cf5dbd608a93e..ab6e47d31590a 100644 --- a/libs/core/langchain_core/_api/deprecation.py +++ b/libs/core/langchain_core/_api/deprecation.py @@ -14,11 +14,10 @@ import functools import inspect import warnings +from collections.abc import Generator from typing import ( Any, Callable, - Generator, - Type, TypeVar, Union, cast, @@ -41,7 +40,7 @@ class LangChainPendingDeprecationWarning(PendingDeprecationWarning): # Last Any should be FieldInfoV1 but this leads to circular imports -T = TypeVar("T", bound=Union[Type, Callable[..., Any], Any]) +T = TypeVar("T", bound=Union[type, Callable[..., Any], Any]) def _validate_deprecation_params( @@ -52,15 +51,18 @@ def _validate_deprecation_params( ) -> None: """Validate the deprecation parameters.""" if pending and removal: - raise ValueError("A pending deprecation cannot have a scheduled removal") + msg = "A pending deprecation cannot have a scheduled removal" + raise ValueError(msg) if alternative and alternative_import: - raise ValueError("Cannot specify both alternative and alternative_import") + msg = "Cannot specify both alternative and alternative_import" + raise ValueError(msg) if alternative_import and "." not in alternative_import: - raise ValueError( + msg = ( "alternative_import must be a fully qualified module path. Got " f" {alternative_import}" ) + raise ValueError(msg) def deprecated( @@ -144,7 +146,7 @@ def deprecate( _package: str = package, ) -> T: """Implementation of the decorator returned by `deprecated`.""" - from langchain_core.utils.pydantic import FieldInfoV1 + from langchain_core.utils.pydantic import FieldInfoV1, FieldInfoV2 def emit_warning() -> None: """Emit the warning.""" @@ -199,10 +201,9 @@ async def awarning_emitting_wrapper(*args: Any, **kwargs: Any) -> Any: def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: """Finalize the deprecation of a class.""" - try: + # Can't set new_doc on some extension objects. + with contextlib.suppress(AttributeError): obj.__doc__ = new_doc - except AttributeError: # Can't set on some extension objects. - pass def warn_if_direct_instance( self: Any, *args: Any, **kwargs: Any @@ -224,7 +225,8 @@ def warn_if_direct_instance( if not _obj_type: _obj_type = "attribute" if not _name: - raise ValueError(f"Field {obj} must have a name to be deprecated.") + msg = f"Field {obj} must have a name to be deprecated." + raise ValueError(msg) old_doc = obj.description def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: @@ -238,15 +240,35 @@ def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: exclude=obj.exclude, ), ) + elif isinstance(obj, FieldInfoV2): + wrapped = None + if not _obj_type: + _obj_type = "attribute" + if not _name: + msg = f"Field {obj} must have a name to be deprecated." + raise ValueError(msg) + old_doc = obj.description + + def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: + return cast( + T, + FieldInfoV2( + default=obj.default, + default_factory=obj.default_factory, + description=new_doc, + alias=obj.alias, + exclude=obj.exclude, + ), + ) elif isinstance(obj, property): if not _obj_type: _obj_type = "attribute" wrapped = None - _name = _name or cast(Union[Type, Callable], obj.fget).__qualname__ + _name = _name or cast(Union[type, Callable], obj.fget).__qualname__ old_doc = obj.__doc__ - class _deprecated_property(property): + class _DeprecatedProperty(property): """A deprecated property.""" def __init__(self, fget=None, fset=None, fdel=None, doc=None): # type: ignore[no-untyped-def] @@ -279,13 +301,13 @@ def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: """Finalize the property.""" return cast( T, - _deprecated_property( + _DeprecatedProperty( fget=obj.fget, fset=obj.fset, fdel=obj.fdel, doc=new_doc ), ) else: - _name = _name or cast(Union[Type, Callable], obj).__qualname__ + _name = _name or cast(Union[type, Callable], obj).__qualname__ if not _obj_type: # edge case: when a function is within another function # within a test, this will call it a "method" not a "function" @@ -314,9 +336,26 @@ def finalize(wrapper: Callable[..., Any], new_doc: str) -> T: old_doc = "" # Modify the docstring to include a deprecation notice. + if ( + _alternative + and _alternative.split(".")[-1].lower() == _alternative.split(".")[-1] + ): + _alternative = f":meth:`~{_alternative}`" + elif _alternative: + _alternative = f":class:`~{_alternative}`" + + if ( + _alternative_import + and _alternative_import.split(".")[-1].lower() + == _alternative_import.split(".")[-1] + ): + _alternative_import = f":meth:`~{_alternative_import}`" + elif _alternative_import: + _alternative_import = f":class:`~{_alternative_import}`" + components = [ _message, - f"Use ``{_alternative}`` instead." if _alternative else "", + f"Use {_alternative} instead." if _alternative else "", f"Use ``{_alternative_import}`` instead." if _alternative_import else "", _addendum, ] @@ -394,10 +433,11 @@ def warn_deprecated( if not pending: if not removal: removal = f"in {removal}" if removal else "within ?? minor releases" - raise NotImplementedError( + msg = ( f"Need to determine which default deprecation schedule to use. " f"{removal}" ) + raise NotImplementedError(msg) else: removal = f"in {removal}" @@ -489,9 +529,8 @@ def decorator(f: Callable[_P, _R]) -> Callable[_P, _R]: @functools.wraps(f) def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R: if new in kwargs and old in kwargs: - raise TypeError( - f"{f.__name__}() got multiple values for argument {new!r}" - ) + msg = f"{f.__name__}() got multiple values for argument {new!r}" + raise TypeError(msg) if old in kwargs: warn_deprecated( since, diff --git a/libs/core/langchain_core/agents.py b/libs/core/langchain_core/agents.py index 032d54372efd5..e49a19af2ae57 100644 --- a/libs/core/langchain_core/agents.py +++ b/libs/core/langchain_core/agents.py @@ -8,7 +8,7 @@ Please see the migration guide for information on how to migrate existing agents to modern langgraph agents: - https://python.langchain.com/v0.2/docs/how_to/migrate_agent/ + https://python.langchain.com/docs/how_to/migrate_agent/ Agents use language models to choose a sequence of actions to take. @@ -25,7 +25,8 @@ from __future__ import annotations import json -from typing import Any, List, Literal, Sequence, Union +from collections.abc import Sequence +from typing import Any, Literal, Union from langchain_core.load.serializable import Serializable from langchain_core.messages import ( @@ -71,7 +72,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "agent"].""" return ["langchain", "schema", "agent"] @@ -145,7 +146,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "agent"] @@ -188,10 +189,17 @@ def _convert_agent_observation_to_messages( Returns: AIMessage that corresponds to the original tool invocation. """ + if isinstance(agent_action, AgentActionMessageLog): return [_create_function_message(agent_action, observation)] else: - return [HumanMessage(content=observation)] + content = observation + if not isinstance(observation, str): + try: + content = json.dumps(observation, ensure_ascii=False) + except Exception: + content = str(observation) + return [HumanMessage(content=content)] def _create_function_message( diff --git a/libs/core/langchain_core/beta/runnables/context.py b/libs/core/langchain_core/beta/runnables/context.py index 13767e352dd5a..a53e8fdf57969 100644 --- a/libs/core/langchain_core/beta/runnables/context.py +++ b/libs/core/langchain_core/beta/runnables/context.py @@ -1,23 +1,19 @@ import asyncio import threading from collections import defaultdict +from collections.abc import Awaitable, Mapping, Sequence from functools import partial from itertools import groupby from typing import ( Any, - Awaitable, Callable, - DefaultDict, - Dict, - List, - Mapping, Optional, - Sequence, - Type, TypeVar, Union, ) +from pydantic import ConfigDict + from langchain_core._api.beta_decorator import beta from langchain_core.runnables.base import ( Runnable, @@ -28,7 +24,7 @@ from langchain_core.runnables.utils import ConfigurableFieldSpec, Input, Output T = TypeVar("T") -Values = Dict[Union[asyncio.Event, threading.Event], Any] +Values = dict[Union[asyncio.Event, threading.Event], Any] CONTEXT_CONFIG_PREFIX = "__context__/" CONTEXT_CONFIG_SUFFIX_GET = "/get" CONTEXT_CONFIG_SUFFIX_SET = "/set" @@ -63,15 +59,16 @@ def _key_from_id(id_: str) -> str: elif wout_prefix.endswith(CONTEXT_CONFIG_SUFFIX_SET): return wout_prefix[: -len(CONTEXT_CONFIG_SUFFIX_SET)] else: - raise ValueError(f"Invalid context config id {id_}") + msg = f"Invalid context config id {id_}" + raise ValueError(msg) def _config_with_context( config: RunnableConfig, - steps: List[Runnable], + steps: list[Runnable], setter: Callable, getter: Callable, - event_cls: Union[Type[threading.Event], Type[asyncio.Event]], + event_cls: Union[type[threading.Event], type[asyncio.Event]], ) -> RunnableConfig: if any(k.startswith(CONTEXT_CONFIG_PREFIX) for k in config.get("configurable", {})): return config @@ -90,33 +87,32 @@ def _config_with_context( ) } deps_by_key = { - key: set( + key: { _key_from_id(dep) for spec in group for dep in (spec[0].dependencies or []) - ) + } for key, group in grouped_by_key.items() } values: Values = {} - events: DefaultDict[str, Union[asyncio.Event, threading.Event]] = defaultdict( + events: defaultdict[str, Union[asyncio.Event, threading.Event]] = defaultdict( event_cls ) - context_funcs: Dict[str, Callable[[], Any]] = {} + context_funcs: dict[str, Callable[[], Any]] = {} for key, group in grouped_by_key.items(): getters = [s for s in group if s[0].id.endswith(CONTEXT_CONFIG_SUFFIX_GET)] setters = [s for s in group if s[0].id.endswith(CONTEXT_CONFIG_SUFFIX_SET)] for dep in deps_by_key[key]: if key in deps_by_key[dep]: - raise ValueError( - f"Deadlock detected between context keys {key} and {dep}" - ) + msg = f"Deadlock detected between context keys {key} and {dep}" + raise ValueError(msg) if len(setters) != 1: - raise ValueError(f"Expected exactly one setter for context key {key}") + msg = f"Expected exactly one setter for context key {key}" + raise ValueError(msg) setter_idx = setters[0][1] if any(getter_idx < setter_idx for _, getter_idx in getters): - raise ValueError( - f"Context setter for key {key} must be defined after all getters." - ) + msg = f"Context setter for key {key} must be defined after all getters." + raise ValueError(msg) if getters: context_funcs[getters[0][0].id] = partial(getter, events[key], values) @@ -127,7 +123,7 @@ def _config_with_context( def aconfig_with_context( config: RunnableConfig, - steps: List[Runnable], + steps: list[Runnable], ) -> RunnableConfig: """Asynchronously patch a runnable config with context getters and setters. @@ -143,7 +139,7 @@ def aconfig_with_context( def config_with_context( config: RunnableConfig, - steps: List[Runnable], + steps: list[Runnable], ) -> RunnableConfig: """Patch a runnable config with context getters and setters. @@ -163,13 +159,13 @@ class ContextGet(RunnableSerializable): prefix: str = "" - key: Union[str, List[str]] + key: Union[str, list[str]] def __str__(self) -> str: return f"ContextGet({_print_keys(self.key)})" @property - def ids(self) -> List[str]: + def ids(self) -> list[str]: prefix = self.prefix + "/" if self.prefix else "" keys = self.key if isinstance(self.key, list) else [self.key] return [ @@ -178,7 +174,7 @@ def ids(self) -> List[str]: ] @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: return super().config_specs + [ ConfigurableFieldSpec( id=id_, @@ -187,7 +183,9 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: for id_ in self.ids ] - def invoke(self, input: Any, config: Optional[RunnableConfig] = None) -> Any: + def invoke( + self, input: Any, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Any: config = ensure_config(config) configurable = config.get("configurable", {}) if isinstance(self.key, list): @@ -202,7 +200,7 @@ async def ainvoke( configurable = config.get("configurable", {}) if isinstance(self.key, list): values = await asyncio.gather(*(configurable[id_]() for id_ in self.ids)) - return {key: value for key, value in zip(self.key, values)} + return dict(zip(self.key, values)) else: return await configurable[self.ids[0]]() @@ -229,8 +227,9 @@ class ContextSet(RunnableSerializable): keys: Mapping[str, Optional[Runnable]] - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def __init__( self, @@ -253,7 +252,7 @@ def __str__(self) -> str: return f"ContextSet({_print_keys(list(self.keys.keys()))})" @property - def ids(self) -> List[str]: + def ids(self) -> list[str]: prefix = self.prefix + "/" if self.prefix else "" return [ f"{CONTEXT_CONFIG_PREFIX}{prefix}{key}{CONTEXT_CONFIG_SUFFIX_SET}" @@ -261,7 +260,7 @@ def ids(self) -> List[str]: ] @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: mapper_config_specs = [ s for mapper in self.keys.values() @@ -272,9 +271,8 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: if spec.id.endswith(CONTEXT_CONFIG_SUFFIX_GET): getter_key = spec.id.split("/")[1] if getter_key in self.keys: - raise ValueError( - f"Circular reference in context setter for key {getter_key}" - ) + msg = f"Circular reference in context setter for key {getter_key}" + raise ValueError(msg) return super().config_specs + [ ConfigurableFieldSpec( id=id_, @@ -283,7 +281,9 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: for id_ in self.ids ] - def invoke(self, input: Any, config: Optional[RunnableConfig] = None) -> Any: + def invoke( + self, input: Any, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Any: config = ensure_config(config) configurable = config.get("configurable", {}) for id_, mapper in zip(self.ids, self.keys.values()): @@ -361,7 +361,7 @@ def create_scope(scope: str, /) -> "PrefixContext": return PrefixContext(prefix=scope) @staticmethod - def getter(key: Union[str, List[str]], /) -> ContextGet: + def getter(key: Union[str, list[str]], /) -> ContextGet: return ContextGet(key=key) @staticmethod @@ -382,7 +382,7 @@ class PrefixContext: def __init__(self, prefix: str = ""): self.prefix = prefix - def getter(self, key: Union[str, List[str]], /) -> ContextGet: + def getter(self, key: Union[str, list[str]], /) -> ContextGet: return ContextGet(key=key, prefix=self.prefix) def setter( diff --git a/libs/core/langchain_core/caches.py b/libs/core/langchain_core/caches.py index f42142a577c4a..d534d70d25ffc 100644 --- a/libs/core/langchain_core/caches.py +++ b/libs/core/langchain_core/caches.py @@ -23,7 +23,8 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Any, Dict, Optional, Sequence, Tuple +from collections.abc import Sequence +from typing import Any, Optional from langchain_core.outputs import Generation from langchain_core.runnables import run_in_executor @@ -157,9 +158,10 @@ def __init__(self, *, maxsize: Optional[int] = None) -> None: Raises: ValueError: If maxsize is less than or equal to 0. """ - self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {} + self._cache: dict[tuple[str, str], RETURN_VAL_TYPE] = {} if maxsize is not None and maxsize <= 0: - raise ValueError("maxsize must be greater than 0") + msg = "maxsize must be greater than 0" + raise ValueError(msg) self._maxsize = maxsize def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: diff --git a/libs/core/langchain_core/callbacks/base.py b/libs/core/langchain_core/callbacks/base.py index 819b3d0731672..b3a61aa9a2a20 100644 --- a/libs/core/langchain_core/callbacks/base.py +++ b/libs/core/langchain_core/callbacks/base.py @@ -3,7 +3,8 @@ from __future__ import annotations import logging -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, TypeVar, Union +from collections.abc import Sequence +from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union from uuid import UUID from tenacity import RetryCallState @@ -118,7 +119,7 @@ class ChainManagerMixin: def on_chain_end( self, - outputs: Dict[str, Any], + outputs: dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, @@ -222,13 +223,13 @@ class CallbackManagerMixin: def on_llm_start( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when LLM starts running. @@ -249,13 +250,13 @@ def on_llm_start( def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when a chat model starts running. @@ -274,19 +275,18 @@ def on_chat_model_start( """ # NotImplementedError is thrown intentionally # Callback handler will fall back to on_llm_start if this is exception is thrown - raise NotImplementedError( - f"{self.__class__.__name__} does not implement `on_chat_model_start`" - ) + msg = f"{self.__class__.__name__} does not implement `on_chat_model_start`" + raise NotImplementedError(msg) def on_retriever_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when the Retriever starts running. @@ -303,13 +303,13 @@ def on_retriever_start( def on_chain_start( self, - serialized: Dict[str, Any], - inputs: Dict[str, Any], + serialized: dict[str, Any], + inputs: dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when a chain starts running. @@ -326,14 +326,14 @@ def on_chain_start( def on_tool_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, - inputs: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when the tool starts running. @@ -393,8 +393,8 @@ def on_custom_event( data: Any, *, run_id: UUID, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Override to define a handler for a custom event. @@ -470,13 +470,13 @@ class AsyncCallbackHandler(BaseCallbackHandler): async def on_llm_start( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when LLM starts running. @@ -497,13 +497,13 @@ async def on_llm_start( async def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: """Run when a chat model starts running. @@ -522,9 +522,8 @@ async def on_chat_model_start( """ # NotImplementedError is thrown intentionally # Callback handler will fall back to on_llm_start if this is exception is thrown - raise NotImplementedError( - f"{self.__class__.__name__} does not implement `on_chat_model_start`" - ) + msg = f"{self.__class__.__name__} does not implement `on_chat_model_start`" + raise NotImplementedError(msg) async def on_llm_new_token( self, @@ -533,7 +532,7 @@ async def on_llm_new_token( chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run on new LLM token. Only available when streaming is enabled. @@ -554,7 +553,7 @@ async def on_llm_end( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run when LLM ends running. @@ -573,7 +572,7 @@ async def on_llm_error( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run when LLM errors. @@ -590,13 +589,13 @@ async def on_llm_error( async def on_chain_start( self, - serialized: Dict[str, Any], - inputs: Dict[str, Any], + serialized: dict[str, Any], + inputs: dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when a chain starts running. @@ -613,11 +612,11 @@ async def on_chain_start( async def on_chain_end( self, - outputs: Dict[str, Any], + outputs: dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run when a chain ends running. @@ -636,7 +635,7 @@ async def on_chain_error( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run when chain errors. @@ -651,14 +650,14 @@ async def on_chain_error( async def on_tool_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, - inputs: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run when the tool starts running. @@ -680,7 +679,7 @@ async def on_tool_end( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run when the tool ends running. @@ -699,7 +698,7 @@ async def on_tool_error( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run when tool errors. @@ -718,7 +717,7 @@ async def on_text( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run on an arbitrary text. @@ -754,7 +753,7 @@ async def on_agent_action( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run on agent action. @@ -773,7 +772,7 @@ async def on_agent_finish( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run on the agent end. @@ -788,13 +787,13 @@ async def on_agent_finish( async def on_retriever_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """Run on the retriever start. @@ -815,7 +814,7 @@ async def on_retriever_end( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run on the retriever end. @@ -833,7 +832,7 @@ async def on_retriever_error( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run on retriever error. @@ -852,8 +851,8 @@ async def on_custom_event( data: Any, *, run_id: UUID, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """Override to define a handler for a custom event. @@ -880,14 +879,14 @@ class BaseCallbackManager(CallbackManagerMixin): def __init__( self, - handlers: List[BaseCallbackHandler], - inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, + handlers: list[BaseCallbackHandler], + inheritable_handlers: Optional[list[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, - tags: Optional[List[str]] = None, - inheritable_tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, - inheritable_metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + inheritable_tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, + inheritable_metadata: Optional[dict[str, Any]] = None, ) -> None: """Initialize callback manager. @@ -901,8 +900,8 @@ def __init__( Default is None. metadata (Optional[Dict[str, Any]]): The metadata. Default is None. """ - self.handlers: List[BaseCallbackHandler] = handlers - self.inheritable_handlers: List[BaseCallbackHandler] = ( + self.handlers: list[BaseCallbackHandler] = handlers + self.inheritable_handlers: list[BaseCallbackHandler] = ( inheritable_handlers or [] ) self.parent_run_id: Optional[UUID] = parent_run_id @@ -1002,7 +1001,7 @@ def remove_handler(self, handler: BaseCallbackHandler) -> None: self.inheritable_handlers.remove(handler) def set_handlers( - self, handlers: List[BaseCallbackHandler], inherit: bool = True + self, handlers: list[BaseCallbackHandler], inherit: bool = True ) -> None: """Set handlers as the only handlers on the callback manager. @@ -1024,7 +1023,7 @@ def set_handler(self, handler: BaseCallbackHandler, inherit: bool = True) -> Non """ self.set_handlers([handler], inherit=inherit) - def add_tags(self, tags: List[str], inherit: bool = True) -> None: + def add_tags(self, tags: list[str], inherit: bool = True) -> None: """Add tags to the callback manager. Args: @@ -1038,7 +1037,7 @@ def add_tags(self, tags: List[str], inherit: bool = True) -> None: if inherit: self.inheritable_tags.extend(tags) - def remove_tags(self, tags: List[str]) -> None: + def remove_tags(self, tags: list[str]) -> None: """Remove tags from the callback manager. Args: @@ -1048,7 +1047,7 @@ def remove_tags(self, tags: List[str]) -> None: self.tags.remove(tag) self.inheritable_tags.remove(tag) - def add_metadata(self, metadata: Dict[str, Any], inherit: bool = True) -> None: + def add_metadata(self, metadata: dict[str, Any], inherit: bool = True) -> None: """Add metadata to the callback manager. Args: @@ -1059,7 +1058,7 @@ def add_metadata(self, metadata: Dict[str, Any], inherit: bool = True) -> None: if inherit: self.inheritable_metadata.update(metadata) - def remove_metadata(self, keys: List[str]) -> None: + def remove_metadata(self, keys: list[str]) -> None: """Remove metadata from the callback manager. Args: @@ -1070,4 +1069,4 @@ def remove_metadata(self, keys: List[str]) -> None: self.inheritable_metadata.pop(key) -Callbacks = Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] +Callbacks = Optional[Union[list[BaseCallbackHandler], BaseCallbackManager]] diff --git a/libs/core/langchain_core/callbacks/file.py b/libs/core/langchain_core/callbacks/file.py index c33bd4a441c74..7ea1ff76f8aa2 100644 --- a/libs/core/langchain_core/callbacks/file.py +++ b/libs/core/langchain_core/callbacks/file.py @@ -2,7 +2,7 @@ from __future__ import annotations -from typing import Any, Dict, Optional, TextIO, cast +from typing import Any, Optional, TextIO, cast from langchain_core.agents import AgentAction, AgentFinish from langchain_core.callbacks import BaseCallbackHandler @@ -27,7 +27,7 @@ def __init__( mode: The mode to open the file in. Defaults to "a". color: The color to use for the text. Defaults to None. """ - self.file = cast(TextIO, open(filename, mode, encoding="utf-8")) + self.file = cast(TextIO, open(filename, mode, encoding="utf-8")) # noqa: SIM115 self.color = color def __del__(self) -> None: @@ -35,7 +35,7 @@ def __del__(self) -> None: self.file.close() def on_chain_start( - self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any + self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. @@ -51,7 +51,7 @@ def on_chain_start( file=self.file, ) - def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: + def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: diff --git a/libs/core/langchain_core/callbacks/manager.py b/libs/core/langchain_core/callbacks/manager.py index ce38bc53b8293..58340be1ed9a0 100644 --- a/libs/core/langchain_core/callbacks/manager.py +++ b/libs/core/langchain_core/callbacks/manager.py @@ -5,28 +5,22 @@ import logging import uuid from abc import ABC, abstractmethod +from collections.abc import AsyncGenerator, Coroutine, Generator, Sequence from concurrent.futures import ThreadPoolExecutor from contextlib import asynccontextmanager, contextmanager from contextvars import copy_context from typing import ( TYPE_CHECKING, Any, - AsyncGenerator, Callable, - Coroutine, - Dict, - Generator, - List, Optional, - Sequence, - Type, TypeVar, Union, cast, ) from uuid import UUID -from langsmith.run_helpers import get_run_tree_context +from langsmith.run_helpers import get_tracing_context from tenacity import RetryCallState from langchain_core.callbacks.base import ( @@ -64,12 +58,12 @@ def trace_as_chain_group( group_name: str, callback_manager: Optional[CallbackManager] = None, *, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, ) -> Generator[CallbackManagerForChainGroup, None, None]: """Get a callback manager for a chain group in a context manager. Useful for grouping different calls together as a single run even if @@ -144,12 +138,12 @@ async def atrace_as_chain_group( group_name: str, callback_manager: Optional[AsyncCallbackManager] = None, *, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, project_name: Optional[str] = None, example_id: Optional[Union[str, UUID]] = None, run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, ) -> AsyncGenerator[AsyncCallbackManagerForChainGroup, None]: """Get an async callback manager for a chain group in a context manager. Useful for grouping different async calls together as a single run even if @@ -240,7 +234,7 @@ async def wrapped(*args: Any, **kwargs: Any) -> Any: def handle_event( - handlers: List[BaseCallbackHandler], + handlers: list[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, @@ -258,10 +252,10 @@ def handle_event( *args: The arguments to pass to the event handler. **kwargs: The keyword arguments to pass to the event handler """ - coros: List[Coroutine[Any, Any, Any]] = [] + coros: list[Coroutine[Any, Any, Any]] = [] try: - message_strings: Optional[List[str]] = None + message_strings: Optional[list[str]] = None for handler in handlers: try: if ignore_condition_name is None or not getattr( @@ -318,7 +312,7 @@ def handle_event( _run_coros(coros) -def _run_coros(coros: List[Coroutine[Any, Any, Any]]) -> None: +def _run_coros(coros: list[Coroutine[Any, Any, Any]]) -> None: if hasattr(asyncio, "Runner"): # Python 3.11+ # Run the coroutines in a new event loop, taking care to @@ -399,7 +393,7 @@ async def _ahandle_event_for_handler( async def ahandle_event( - handlers: List[BaseCallbackHandler], + handlers: list[BaseCallbackHandler], event_name: str, ignore_condition_name: Optional[str], *args: Any, @@ -446,13 +440,13 @@ def __init__( self, *, run_id: UUID, - handlers: List[BaseCallbackHandler], - inheritable_handlers: List[BaseCallbackHandler], + handlers: list[BaseCallbackHandler], + inheritable_handlers: list[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - inheritable_tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, - inheritable_metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + inheritable_tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, + inheritable_metadata: Optional[dict[str, Any]] = None, ) -> None: """Initialize the run manager. @@ -481,7 +475,7 @@ def __init__( self.inheritable_metadata = inheritable_metadata or {} @classmethod - def get_noop_manager(cls: Type[BRM]) -> BRM: + def get_noop_manager(cls: type[BRM]) -> BRM: """Return a manager that doesn't perform any operations. Returns: @@ -824,7 +818,7 @@ async def on_llm_error( class CallbackManagerForChainRun(ParentRunManager, ChainManagerMixin): """Callback manager for chain run.""" - def on_chain_end(self, outputs: Union[Dict[str, Any], Any], **kwargs: Any) -> None: + def on_chain_end(self, outputs: Union[dict[str, Any], Any], **kwargs: Any) -> None: """Run when chain ends running. Args: @@ -929,7 +923,7 @@ def get_sync(self) -> CallbackManagerForChainRun: @shielded async def on_chain_end( - self, outputs: Union[Dict[str, Any], Any], **kwargs: Any + self, outputs: Union[dict[str, Any], Any], **kwargs: Any ) -> None: """Run when a chain ends running. @@ -1248,11 +1242,11 @@ class CallbackManager(BaseCallbackManager): def on_llm_start( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], run_id: Optional[UUID] = None, **kwargs: Any, - ) -> List[CallbackManagerForLLMRun]: + ) -> list[CallbackManagerForLLMRun]: """Run when LLM starts running. Args: @@ -1299,11 +1293,11 @@ def on_llm_start( def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], run_id: Optional[UUID] = None, **kwargs: Any, - ) -> List[CallbackManagerForLLMRun]: + ) -> list[CallbackManagerForLLMRun]: """Run when LLM starts running. Args: @@ -1354,8 +1348,8 @@ def on_chat_model_start( def on_chain_start( self, - serialized: Optional[Dict[str, Any]], - inputs: Union[Dict[str, Any], Any], + serialized: Optional[dict[str, Any]], + inputs: Union[dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any, ) -> CallbackManagerForChainRun: @@ -1398,11 +1392,11 @@ def on_chain_start( def on_tool_start( self, - serialized: Optional[Dict[str, Any]], + serialized: Optional[dict[str, Any]], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> CallbackManagerForToolRun: """Run when tool starts running. @@ -1453,7 +1447,7 @@ def on_tool_start( def on_retriever_start( self, - serialized: Optional[Dict[str, Any]], + serialized: Optional[dict[str, Any]], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, @@ -1516,11 +1510,12 @@ def on_custom_event( .. versionadded:: 0.2.14 """ if kwargs: - raise ValueError( + msg = ( "The dispatcher API does not accept additional keyword arguments." "Please do not pass any additional keyword arguments, instead " "include them in the data field." ) + raise ValueError(msg) if run_id is None: run_id = uuid.uuid4() @@ -1541,10 +1536,10 @@ def configure( inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, - inheritable_tags: Optional[List[str]] = None, - local_tags: Optional[List[str]] = None, - inheritable_metadata: Optional[Dict[str, Any]] = None, - local_metadata: Optional[Dict[str, Any]] = None, + inheritable_tags: Optional[list[str]] = None, + local_tags: Optional[list[str]] = None, + inheritable_metadata: Optional[dict[str, Any]] = None, + local_metadata: Optional[dict[str, Any]] = None, ) -> CallbackManager: """Configure the callback manager. @@ -1583,8 +1578,8 @@ class CallbackManagerForChainGroup(CallbackManager): def __init__( self, - handlers: List[BaseCallbackHandler], - inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, + handlers: list[BaseCallbackHandler], + inheritable_handlers: Optional[list[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: CallbackManagerForChainRun, @@ -1681,7 +1676,7 @@ def merge( manager.add_handler(handler, inherit=True) return manager - def on_chain_end(self, outputs: Union[Dict[str, Any], Any], **kwargs: Any) -> None: + def on_chain_end(self, outputs: Union[dict[str, Any], Any], **kwargs: Any) -> None: """Run when traced chain group ends. Args: @@ -1716,11 +1711,11 @@ def is_async(self) -> bool: async def on_llm_start( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], run_id: Optional[UUID] = None, **kwargs: Any, - ) -> List[AsyncCallbackManagerForLLMRun]: + ) -> list[AsyncCallbackManagerForLLMRun]: """Run when LLM starts running. Args: @@ -1735,7 +1730,12 @@ async def on_llm_start( to each prompt. """ - tasks = [] + inline_tasks = [] + non_inline_tasks = [] + inline_handlers = [handler for handler in self.handlers if handler.run_inline] + non_inline_handlers = [ + handler for handler in self.handlers if not handler.run_inline + ] managers = [] for prompt in prompts: @@ -1745,20 +1745,36 @@ async def on_llm_start( else: run_id_ = uuid.uuid4() - tasks.append( - ahandle_event( - self.handlers, - "on_llm_start", - "ignore_llm", - serialized, - [prompt], - run_id=run_id_, - parent_run_id=self.parent_run_id, - tags=self.tags, - metadata=self.metadata, - **kwargs, + if inline_handlers: + inline_tasks.append( + ahandle_event( + inline_handlers, + "on_llm_start", + "ignore_llm", + serialized, + [prompt], + run_id=run_id_, + parent_run_id=self.parent_run_id, + tags=self.tags, + metadata=self.metadata, + **kwargs, + ) + ) + else: + non_inline_tasks.append( + ahandle_event( + non_inline_handlers, + "on_llm_start", + "ignore_llm", + serialized, + [prompt], + run_id=run_id_, + parent_run_id=self.parent_run_id, + tags=self.tags, + metadata=self.metadata, + **kwargs, + ) ) - ) managers.append( AsyncCallbackManagerForLLMRun( @@ -1773,17 +1789,23 @@ async def on_llm_start( ) ) - await asyncio.gather(*tasks) + # Run inline tasks sequentially + for inline_task in inline_tasks: + await inline_task + + # Run non-inline tasks concurrently + if non_inline_tasks: + await asyncio.gather(*non_inline_tasks) return managers async def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], run_id: Optional[UUID] = None, **kwargs: Any, - ) -> List[AsyncCallbackManagerForLLMRun]: + ) -> list[AsyncCallbackManagerForLLMRun]: """Async run when LLM starts running. Args: @@ -1797,7 +1819,8 @@ async def on_chat_model_start( async callback managers, one for each LLM Run corresponding to each inner message list. """ - tasks = [] + inline_tasks = [] + non_inline_tasks = [] managers = [] for message_list in messages: @@ -1807,9 +1830,9 @@ async def on_chat_model_start( else: run_id_ = uuid.uuid4() - tasks.append( - ahandle_event( - self.handlers, + for handler in self.handlers: + task = ahandle_event( + [handler], "on_chat_model_start", "ignore_chat_model", serialized, @@ -1820,7 +1843,10 @@ async def on_chat_model_start( metadata=self.metadata, **kwargs, ) - ) + if handler.run_inline: + inline_tasks.append(task) + else: + non_inline_tasks.append(task) managers.append( AsyncCallbackManagerForLLMRun( @@ -1835,13 +1861,20 @@ async def on_chat_model_start( ) ) - await asyncio.gather(*tasks) + # Run inline tasks sequentially + for task in inline_tasks: + await task + + # Run non-inline tasks concurrently + if non_inline_tasks: + await asyncio.gather(*non_inline_tasks) + return managers async def on_chain_start( self, - serialized: Optional[Dict[str, Any]], - inputs: Union[Dict[str, Any], Any], + serialized: Optional[dict[str, Any]], + inputs: Union[dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any, ) -> AsyncCallbackManagerForChainRun: @@ -1886,7 +1919,7 @@ async def on_chain_start( async def on_tool_start( self, - serialized: Optional[Dict[str, Any]], + serialized: Optional[dict[str, Any]], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, @@ -1957,11 +1990,12 @@ async def on_custom_event( run_id = uuid.uuid4() if kwargs: - raise ValueError( + msg = ( "The dispatcher API does not accept additional keyword arguments." "Please do not pass any additional keyword arguments, instead " "include them in the data field." ) + raise ValueError(msg) await ahandle_event( self.handlers, "on_custom_event", @@ -1975,7 +2009,7 @@ async def on_custom_event( async def on_retriever_start( self, - serialized: Optional[Dict[str, Any]], + serialized: Optional[dict[str, Any]], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, @@ -2027,10 +2061,10 @@ def configure( inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, - inheritable_tags: Optional[List[str]] = None, - local_tags: Optional[List[str]] = None, - inheritable_metadata: Optional[Dict[str, Any]] = None, - local_metadata: Optional[Dict[str, Any]] = None, + inheritable_tags: Optional[list[str]] = None, + local_tags: Optional[list[str]] = None, + inheritable_metadata: Optional[dict[str, Any]] = None, + local_metadata: Optional[dict[str, Any]] = None, ) -> AsyncCallbackManager: """Configure the async callback manager. @@ -2069,8 +2103,8 @@ class AsyncCallbackManagerForChainGroup(AsyncCallbackManager): def __init__( self, - handlers: List[BaseCallbackHandler], - inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, + handlers: list[BaseCallbackHandler], + inheritable_handlers: Optional[list[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: AsyncCallbackManagerForChainRun, @@ -2169,7 +2203,7 @@ def merge( return manager async def on_chain_end( - self, outputs: Union[Dict[str, Any], Any], **kwargs: Any + self, outputs: Union[dict[str, Any], Any], **kwargs: Any ) -> None: """Run when traced chain group ends. @@ -2202,14 +2236,14 @@ async def on_chain_error( def _configure( - callback_manager_cls: Type[T], + callback_manager_cls: type[T], inheritable_callbacks: Callbacks = None, local_callbacks: Callbacks = None, verbose: bool = False, - inheritable_tags: Optional[List[str]] = None, - local_tags: Optional[List[str]] = None, - inheritable_metadata: Optional[Dict[str, Any]] = None, - local_metadata: Optional[Dict[str, Any]] = None, + inheritable_tags: Optional[list[str]] = None, + local_tags: Optional[list[str]] = None, + inheritable_metadata: Optional[dict[str, Any]] = None, + local_metadata: Optional[dict[str, Any]] = None, ) -> T: """Configure the callback manager. @@ -2238,9 +2272,15 @@ def _configure( tracing_v2_callback_var, ) - run_tree = get_run_tree_context() + tracing_context = get_tracing_context() + tracing_metadata = tracing_context["metadata"] + tracing_tags = tracing_context["tags"] + run_tree: Optional[Run] = tracing_context["parent"] parent_run_id = None if run_tree is None else run_tree.id - callback_manager = callback_manager_cls(handlers=[], parent_run_id=parent_run_id) + callback_manager = callback_manager_cls( + handlers=[], + parent_run_id=parent_run_id, + ) if inheritable_callbacks or local_callbacks: if isinstance(inheritable_callbacks, list) or inheritable_callbacks is None: inheritable_callbacks_ = inheritable_callbacks or [] @@ -2252,14 +2292,14 @@ def _configure( else: parent_run_id_ = inheritable_callbacks.parent_run_id # Break ties between the external tracing context and inherited context - if parent_run_id is not None: - if parent_run_id_ is None: - parent_run_id_ = parent_run_id + if parent_run_id is not None and ( + parent_run_id_ is None # If the LC parent has already been reflected # in the run tree, we know the run_tree is either the # same parent or a child of the parent. - elif run_tree and str(parent_run_id_) in run_tree.dotted_order: - parent_run_id_ = parent_run_id + or (run_tree and str(parent_run_id_) in run_tree.dotted_order) + ): + parent_run_id_ = parent_run_id # Otherwise, we assume the LC context has progressed # beyond the run tree and we should not inherit the parent. callback_manager = callback_manager_cls( @@ -2284,6 +2324,10 @@ def _configure( if inheritable_metadata or local_metadata: callback_manager.add_metadata(inheritable_metadata or {}) callback_manager.add_metadata(local_metadata or {}, False) + if tracing_metadata: + callback_manager.add_metadata(tracing_metadata.copy()) + if tracing_tags: + callback_manager.add_tags(tracing_tags.copy()) v1_tracing_enabled_ = env_var_is_set("LANGCHAIN_TRACING") or env_var_is_set( "LANGCHAIN_HANDLER" @@ -2294,11 +2338,12 @@ def _configure( if v1_tracing_enabled_ and not tracing_v2_enabled_: # if both are enabled, can silently ignore the v1 tracer - raise RuntimeError( + msg = ( "Tracing using LangChainTracerV1 is no longer supported. " "Please set the LANGCHAIN_TRACING_V2 environment variable to enable " "tracing instead." ) + raise RuntimeError(msg) tracer_project = _get_tracer_project() debug = _get_debug() @@ -2329,7 +2374,11 @@ def _configure( try: handler = LangChainTracer( project_name=tracer_project, - client=run_tree.client if run_tree is not None else None, + client=( + run_tree.client + if run_tree is not None + else tracing_context["client"] + ), ) callback_manager.add_handler(handler, True) except Exception as e: @@ -2354,7 +2403,7 @@ def _configure( and handler_class is not None ) if var.get() is not None or create_one: - var_handler = var.get() or cast(Type[BaseCallbackHandler], handler_class)() + var_handler = var.get() or cast(type[BaseCallbackHandler], handler_class)() if handler_class is None: if not any( handler is var_handler # direct pointer comparison @@ -2473,13 +2522,14 @@ async def foo(inputs): # within a tool or a lambda and have the metadata events associated # with the parent run rather than have a new run id generated for each. if callback_manager.parent_run_id is None: - raise RuntimeError( + msg = ( "Unable to dispatch an adhoc event without a parent run id." "This function can only be called from within an existing run (e.g.," "inside a tool or a RunnableLambda or a RunnableGenerator.)" "If you are doing that and still seeing this error, try explicitly" "passing the config parameter to this function." ) + raise RuntimeError(msg) await callback_manager.on_custom_event( name, @@ -2542,13 +2592,14 @@ def foo(inputs): # within a tool or a lambda and have the metadata events associated # with the parent run rather than have a new run id generated for each. if callback_manager.parent_run_id is None: - raise RuntimeError( + msg = ( "Unable to dispatch an adhoc event without a parent run id." "This function can only be called from within an existing run (e.g.," "inside a tool or a RunnableLambda or a RunnableGenerator.)" "If you are doing that and still seeing this error, try explicitly" "passing the config parameter to this function." ) + raise RuntimeError(msg) callback_manager.on_custom_event( name, data, diff --git a/libs/core/langchain_core/callbacks/stdout.py b/libs/core/langchain_core/callbacks/stdout.py index 011dc83fcb9ff..aadc1cc8ebb9a 100644 --- a/libs/core/langchain_core/callbacks/stdout.py +++ b/libs/core/langchain_core/callbacks/stdout.py @@ -2,7 +2,7 @@ from __future__ import annotations -from typing import TYPE_CHECKING, Any, Dict, Optional +from typing import TYPE_CHECKING, Any, Optional from langchain_core.callbacks.base import BaseCallbackHandler from langchain_core.utils import print_text @@ -23,7 +23,7 @@ def __init__(self, color: Optional[str] = None) -> None: self.color = color def on_chain_start( - self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any + self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Print out that we are entering a chain. @@ -32,10 +32,16 @@ def on_chain_start( inputs (Dict[str, Any]): The inputs to the chain. **kwargs (Any): Additional keyword arguments. """ - class_name = serialized.get("name", serialized.get("id", [""])[-1]) - print(f"\n\n\033[1m> Entering new {class_name} chain...\033[0m") # noqa: T201 - - def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: + if "name" in kwargs: + name = kwargs["name"] + else: + if serialized: + name = serialized.get("name", serialized.get("id", [""])[-1]) + else: + name = "" + print(f"\n\n\033[1m> Entering new {name} chain...\033[0m") # noqa: T201 + + def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Print out that we finished a chain. Args: diff --git a/libs/core/langchain_core/callbacks/streaming_stdout.py b/libs/core/langchain_core/callbacks/streaming_stdout.py index 06973035a90b3..7f6fa5790801b 100644 --- a/libs/core/langchain_core/callbacks/streaming_stdout.py +++ b/libs/core/langchain_core/callbacks/streaming_stdout.py @@ -3,7 +3,7 @@ from __future__ import annotations import sys -from typing import TYPE_CHECKING, Any, Dict, List +from typing import TYPE_CHECKING, Any from langchain_core.callbacks.base import BaseCallbackHandler @@ -17,7 +17,7 @@ class StreamingStdOutCallbackHandler(BaseCallbackHandler): """Callback handler for streaming. Only works with LLMs that support streaming.""" def on_llm_start( - self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any + self, serialized: dict[str, Any], prompts: list[str], **kwargs: Any ) -> None: """Run when LLM starts running. @@ -29,8 +29,8 @@ def on_llm_start( def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], **kwargs: Any, ) -> None: """Run when LLM starts running. @@ -68,7 +68,7 @@ def on_llm_error(self, error: BaseException, **kwargs: Any) -> None: """ def on_chain_start( - self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any + self, serialized: dict[str, Any], inputs: dict[str, Any], **kwargs: Any ) -> None: """Run when a chain starts running. @@ -78,7 +78,7 @@ def on_chain_start( **kwargs (Any): Additional keyword arguments. """ - def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: + def on_chain_end(self, outputs: dict[str, Any], **kwargs: Any) -> None: """Run when a chain ends running. Args: @@ -95,7 +95,7 @@ def on_chain_error(self, error: BaseException, **kwargs: Any) -> None: """ def on_tool_start( - self, serialized: Dict[str, Any], input_str: str, **kwargs: Any + self, serialized: dict[str, Any], input_str: str, **kwargs: Any ) -> None: """Run when the tool starts running. @@ -112,7 +112,6 @@ def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: action (AgentAction): The agent action. **kwargs (Any): Additional keyword arguments. """ - pass def on_tool_end(self, output: Any, **kwargs: Any) -> None: """Run when tool ends running. diff --git a/libs/core/langchain_core/chat_history.py b/libs/core/langchain_core/chat_history.py index d080b24a505f3..4a579b4a985d2 100644 --- a/libs/core/langchain_core/chat_history.py +++ b/libs/core/langchain_core/chat_history.py @@ -18,7 +18,10 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import List, Sequence, Union +from collections.abc import Sequence +from typing import Union + +from pydantic import BaseModel, Field from langchain_core.messages import ( AIMessage, @@ -26,7 +29,6 @@ HumanMessage, get_buffer_string, ) -from langchain_core.pydantic_v1 import BaseModel, Field class BaseChatMessageHistory(ABC): @@ -86,7 +88,7 @@ def clear(self): f.write("[]") """ - messages: List[BaseMessage] + messages: list[BaseMessage] """A property or attribute that returns a list of messages. In general, getting the messages may involve IO to the underlying @@ -94,7 +96,7 @@ def clear(self): latency. """ - async def aget_messages(self) -> List[BaseMessage]: + async def aget_messages(self) -> list[BaseMessage]: """Async version of getting messages. Can over-ride this method to provide an efficient async implementation. @@ -155,10 +157,11 @@ def add_message(self, message: BaseMessage) -> None: # method, so we should use it. self.add_messages([message]) else: - raise NotImplementedError( + msg = ( "add_message is not implemented for this class. " "Please implement add_message or add_messages." ) + raise NotImplementedError(msg) def add_messages(self, messages: Sequence[BaseMessage]) -> None: """Add a list of messages. @@ -203,10 +206,10 @@ class InMemoryChatMessageHistory(BaseChatMessageHistory, BaseModel): Stores messages in a memory list. """ - messages: List[BaseMessage] = Field(default_factory=list) + messages: list[BaseMessage] = Field(default_factory=list) """A list of messages stored in memory.""" - async def aget_messages(self) -> List[BaseMessage]: + async def aget_messages(self) -> list[BaseMessage]: """Async version of getting messages. Can over-ride this method to provide an efficient async implementation. diff --git a/libs/core/langchain_core/chat_loaders.py b/libs/core/langchain_core/chat_loaders.py index 93c14a4f8ffdb..51e65133160e2 100644 --- a/libs/core/langchain_core/chat_loaders.py +++ b/libs/core/langchain_core/chat_loaders.py @@ -1,5 +1,5 @@ from abc import ABC, abstractmethod -from typing import Iterator, List +from collections.abc import Iterator from langchain_core.chat_sessions import ChatSession @@ -15,7 +15,7 @@ def lazy_load(self) -> Iterator[ChatSession]: An iterator of chat sessions. """ - def load(self) -> List[ChatSession]: + def load(self) -> list[ChatSession]: """Eagerly load the chat sessions into memory. Returns: diff --git a/libs/core/langchain_core/chat_sessions.py b/libs/core/langchain_core/chat_sessions.py index d43754729ae4a..ededbc3155e80 100644 --- a/libs/core/langchain_core/chat_sessions.py +++ b/libs/core/langchain_core/chat_sessions.py @@ -1,6 +1,7 @@ """**Chat Sessions** are a collection of messages and function calls.""" -from typing import Sequence, TypedDict +from collections.abc import Sequence +from typing import TypedDict from langchain_core.messages import BaseMessage diff --git a/libs/core/langchain_core/document_loaders/base.py b/libs/core/langchain_core/document_loaders/base.py index c793285159e09..2f458731916ce 100644 --- a/libs/core/langchain_core/document_loaders/base.py +++ b/libs/core/langchain_core/document_loaders/base.py @@ -3,7 +3,8 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import TYPE_CHECKING, AsyncIterator, Iterator, List, Optional +from collections.abc import AsyncIterator, Iterator +from typing import TYPE_CHECKING, Optional from langchain_core.documents import Document from langchain_core.runnables import run_in_executor @@ -25,17 +26,17 @@ class BaseLoader(ABC): # noqa: B024 # Sub-classes should not implement this method directly. Instead, they # should implement the lazy load method. - def load(self) -> List[Document]: + def load(self) -> list[Document]: """Load data into Document objects.""" return list(self.lazy_load()) - async def aload(self) -> List[Document]: + async def aload(self) -> list[Document]: """Load data into Document objects.""" return [document async for document in self.alazy_load()] def load_and_split( self, text_splitter: Optional[TextSplitter] = None - ) -> List[Document]: + ) -> list[Document]: """Load Documents and split into chunks. Chunks are returned as Documents. Do not override this method. It should be considered to be deprecated! @@ -52,11 +53,12 @@ def load_and_split( try: from langchain_text_splitters import RecursiveCharacterTextSplitter except ImportError as e: - raise ImportError( + msg = ( "Unable to import from langchain_text_splitters. Please specify " "text_splitter or install langchain_text_splitters with " "`pip install -U langchain-text-splitters`." - ) from e + ) + raise ImportError(msg) from e _text_splitter: TextSplitter = RecursiveCharacterTextSplitter() else: @@ -70,9 +72,8 @@ def lazy_load(self) -> Iterator[Document]: """A lazy loader for Documents.""" if type(self).load != BaseLoader.load: return iter(self.load()) - raise NotImplementedError( - f"{self.__class__.__name__} does not implement lazy_load()" - ) + msg = f"{self.__class__.__name__} does not implement lazy_load()" + raise NotImplementedError(msg) async def alazy_load(self) -> AsyncIterator[Document]: """A lazy loader for Documents.""" @@ -108,7 +109,7 @@ def lazy_parse(self, blob: Blob) -> Iterator[Document]: Generator of documents """ - def parse(self, blob: Blob) -> List[Document]: + def parse(self, blob: Blob) -> list[Document]: """Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. diff --git a/libs/core/langchain_core/document_loaders/blob_loaders.py b/libs/core/langchain_core/document_loaders/blob_loaders.py index bb7ed0128774c..3c0d1986f7336 100644 --- a/libs/core/langchain_core/document_loaders/blob_loaders.py +++ b/libs/core/langchain_core/document_loaders/blob_loaders.py @@ -8,7 +8,7 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Iterable +from collections.abc import Iterable # Re-export Blob and PathLike for backwards compatibility from langchain_core.documents.base import Blob as Blob diff --git a/libs/core/langchain_core/document_loaders/langsmith.py b/libs/core/langchain_core/document_loaders/langsmith.py index 9da48851d0672..39fda02af5792 100644 --- a/libs/core/langchain_core/document_loaders/langsmith.py +++ b/libs/core/langchain_core/document_loaders/langsmith.py @@ -1,7 +1,8 @@ import datetime import json import uuid -from typing import Any, Callable, Iterator, Optional, Sequence, Union +from collections.abc import Iterator, Sequence +from typing import Any, Callable, Optional, Union from langsmith import Client as LangSmithClient diff --git a/libs/core/langchain_core/documents/base.py b/libs/core/langchain_core/documents/base.py index 61b506a0b9674..2adfe1a718397 100644 --- a/libs/core/langchain_core/documents/base.py +++ b/libs/core/langchain_core/documents/base.py @@ -2,12 +2,14 @@ import contextlib import mimetypes +from collections.abc import Generator from io import BufferedReader, BytesIO from pathlib import PurePath -from typing import Any, Generator, List, Literal, Mapping, Optional, Union, cast +from typing import Any, Literal, Optional, Union, cast + +from pydantic import ConfigDict, Field, field_validator, model_validator from langchain_core.load.serializable import Serializable -from langchain_core.pydantic_v1 import Field, root_validator PathLike = Union[str, PurePath] @@ -30,15 +32,22 @@ class BaseMedia(Serializable): id: Optional[str] = None """An optional identifier for the document. - Ideally this should be unique across the document collection and formatted + Ideally this should be unique across the document collection and formatted as a UUID, but this will not be enforced. - + .. versionadded:: 0.2.11 """ metadata: dict = Field(default_factory=dict) """Arbitrary metadata associated with the content.""" + @field_validator("id", mode="before") + def cast_id_to_str(cls, id_value: Any) -> Optional[str]: + if id_value is not None: + return str(id_value) + else: + return id_value + class Blob(BaseMedia): """Blob represents raw data by either reference or value. @@ -98,7 +107,7 @@ class Blob(BaseMedia): print(f.read()) """ - data: Union[bytes, str, None] + data: Union[bytes, str, None] = None """Raw data associated with the blob.""" mimetype: Optional[str] = None """MimeType not to be confused with a file extension.""" @@ -110,9 +119,10 @@ class Blob(BaseMedia): path: Optional[PathLike] = None """Location where the original content was found.""" - class Config: - arbitrary_types_allowed = True - frozen = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + frozen=True, + ) @property def source(self) -> Optional[str]: @@ -127,11 +137,13 @@ def source(self) -> Optional[str]: return cast(Optional[str], self.metadata["source"]) return str(self.path) if self.path else None - @root_validator(pre=True) - def check_blob_is_valid(cls, values: Mapping[str, Any]) -> Mapping[str, Any]: + @model_validator(mode="before") + @classmethod + def check_blob_is_valid(cls, values: dict[str, Any]) -> Any: """Verify that either data or path is provided.""" if "data" not in values and "path" not in values: - raise ValueError("Either data or path must be provided") + msg = "Either data or path must be provided" + raise ValueError(msg) return values def as_string(self) -> str: @@ -144,7 +156,8 @@ def as_string(self) -> str: elif isinstance(self.data, str): return self.data else: - raise ValueError(f"Unable to get string for blob {self}") + msg = f"Unable to get string for blob {self}" + raise ValueError(msg) def as_bytes(self) -> bytes: """Read data as bytes.""" @@ -156,7 +169,8 @@ def as_bytes(self) -> bytes: with open(str(self.path), "rb") as f: return f.read() else: - raise ValueError(f"Unable to get bytes for blob {self}") + msg = f"Unable to get bytes for blob {self}" + raise ValueError(msg) @contextlib.contextmanager def as_bytes_io(self) -> Generator[Union[BytesIO, BufferedReader], None, None]: @@ -167,7 +181,8 @@ def as_bytes_io(self) -> Generator[Union[BytesIO, BufferedReader], None, None]: with open(str(self.path), "rb") as f: yield f else: - raise NotImplementedError(f"Unable to convert blob {self}") + msg = f"Unable to convert blob {self}" + raise NotImplementedError(msg) @classmethod def from_path( @@ -275,7 +290,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "document"] diff --git a/libs/core/langchain_core/documents/compressor.py b/libs/core/langchain_core/documents/compressor.py index 895079fc12724..31ae2901a7bbd 100644 --- a/libs/core/langchain_core/documents/compressor.py +++ b/libs/core/langchain_core/documents/compressor.py @@ -1,11 +1,13 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import Optional, Sequence +from collections.abc import Sequence +from typing import Optional + +from pydantic import BaseModel from langchain_core.callbacks import Callbacks from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import run_in_executor diff --git a/libs/core/langchain_core/documents/transformers.py b/libs/core/langchain_core/documents/transformers.py index a11e20f4e5078..12167f820f92c 100644 --- a/libs/core/langchain_core/documents/transformers.py +++ b/libs/core/langchain_core/documents/transformers.py @@ -1,7 +1,8 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import TYPE_CHECKING, Any, Sequence +from collections.abc import Sequence +from typing import TYPE_CHECKING, Any from langchain_core.runnables.config import run_in_executor diff --git a/libs/core/langchain_core/embeddings/embeddings.py b/libs/core/langchain_core/embeddings/embeddings.py index f2b0e83f80af4..39c0eb42a8953 100644 --- a/libs/core/langchain_core/embeddings/embeddings.py +++ b/libs/core/langchain_core/embeddings/embeddings.py @@ -1,7 +1,6 @@ """**Embeddings** interface.""" from abc import ABC, abstractmethod -from typing import List from langchain_core.runnables.config import run_in_executor @@ -35,7 +34,7 @@ class Embeddings(ABC): """ @abstractmethod - def embed_documents(self, texts: List[str]) -> List[List[float]]: + def embed_documents(self, texts: list[str]) -> list[list[float]]: """Embed search docs. Args: @@ -46,7 +45,7 @@ def embed_documents(self, texts: List[str]) -> List[List[float]]: """ @abstractmethod - def embed_query(self, text: str) -> List[float]: + def embed_query(self, text: str) -> list[float]: """Embed query text. Args: @@ -56,7 +55,7 @@ def embed_query(self, text: str) -> List[float]: Embedding. """ - async def aembed_documents(self, texts: List[str]) -> List[List[float]]: + async def aembed_documents(self, texts: list[str]) -> list[list[float]]: """Asynchronous Embed search docs. Args: @@ -67,7 +66,7 @@ async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """ return await run_in_executor(None, self.embed_documents, texts) - async def aembed_query(self, text: str) -> List[float]: + async def aembed_query(self, text: str) -> list[float]: """Asynchronous Embed query text. Args: diff --git a/libs/core/langchain_core/embeddings/fake.py b/libs/core/langchain_core/embeddings/fake.py index e7a31fab1adb5..6f7c4241d54b2 100644 --- a/libs/core/langchain_core/embeddings/fake.py +++ b/libs/core/langchain_core/embeddings/fake.py @@ -2,10 +2,10 @@ # Please do not add additional fake embedding model implementations here. import hashlib -from typing import List + +from pydantic import BaseModel from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel class FakeEmbeddings(Embeddings, BaseModel): @@ -50,15 +50,15 @@ class FakeEmbeddings(Embeddings, BaseModel): size: int """The size of the embedding vector.""" - def _get_embedding(self) -> List[float]: + def _get_embedding(self) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] - return list(np.random.normal(size=self.size)) + return list(np.random.default_rng().normal(size=self.size)) - def embed_documents(self, texts: List[str]) -> List[List[float]]: + def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding() for _ in texts] - def embed_query(self, text: str) -> List[float]: + def embed_query(self, text: str) -> list[float]: return self._get_embedding() @@ -105,19 +105,19 @@ class DeterministicFakeEmbedding(Embeddings, BaseModel): size: int """The size of the embedding vector.""" - def _get_embedding(self, seed: int) -> List[float]: + def _get_embedding(self, seed: int) -> list[float]: import numpy as np # type: ignore[import-not-found, import-untyped] # set the seed for the random generator - np.random.seed(seed) - return list(np.random.normal(size=self.size)) + rng = np.random.default_rng(seed) + return list(rng.normal(size=self.size)) def _get_seed(self, text: str) -> int: """Get a seed for the random generator, using the hash of the text.""" return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % 10**8 - def embed_documents(self, texts: List[str]) -> List[List[float]]: + def embed_documents(self, texts: list[str]) -> list[list[float]]: return [self._get_embedding(seed=self._get_seed(_)) for _ in texts] - def embed_query(self, text: str) -> List[float]: + def embed_query(self, text: str) -> list[float]: return self._get_embedding(seed=self._get_seed(text)) diff --git a/libs/core/langchain_core/example_selectors/base.py b/libs/core/langchain_core/example_selectors/base.py index 80fde2ae37f00..a70c680e83630 100644 --- a/libs/core/langchain_core/example_selectors/base.py +++ b/libs/core/langchain_core/example_selectors/base.py @@ -1,7 +1,7 @@ """Interface for selecting examples to include in prompts.""" from abc import ABC, abstractmethod -from typing import Any, Dict, List +from typing import Any from langchain_core.runnables import run_in_executor @@ -10,14 +10,14 @@ class BaseExampleSelector(ABC): """Interface for selecting examples to include in prompts.""" @abstractmethod - def add_example(self, example: Dict[str, str]) -> Any: + def add_example(self, example: dict[str, str]) -> Any: """Add new example to store. Args: example: A dictionary with keys as input variables and values as their values.""" - async def aadd_example(self, example: Dict[str, str]) -> Any: + async def aadd_example(self, example: dict[str, str]) -> Any: """Async add new example to store. Args: @@ -27,14 +27,14 @@ async def aadd_example(self, example: Dict[str, str]) -> Any: return await run_in_executor(None, self.add_example, example) @abstractmethod - def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: + def select_examples(self, input_variables: dict[str, str]) -> list[dict]: """Select which examples to use based on the inputs. Args: input_variables: A dictionary with keys as input variables and values as their values.""" - async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]: + async def aselect_examples(self, input_variables: dict[str, str]) -> list[dict]: """Async select which examples to use based on the inputs. Args: diff --git a/libs/core/langchain_core/example_selectors/length_based.py b/libs/core/langchain_core/example_selectors/length_based.py index 8f3511ad7672f..e393e2a1dee62 100644 --- a/libs/core/langchain_core/example_selectors/length_based.py +++ b/libs/core/langchain_core/example_selectors/length_based.py @@ -1,11 +1,13 @@ """Select examples based on length.""" import re -from typing import Callable, Dict, List +from typing import Callable + +from pydantic import BaseModel, Field, model_validator +from typing_extensions import Self from langchain_core.example_selectors.base import BaseExampleSelector from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import BaseModel, validator def _get_length_based(text: str) -> int: @@ -15,7 +17,7 @@ def _get_length_based(text: str) -> int: class LengthBasedExampleSelector(BaseExampleSelector, BaseModel): """Select examples based on length.""" - examples: List[dict] + examples: list[dict] """A list of the examples that the prompt template expects.""" example_prompt: PromptTemplate @@ -27,10 +29,10 @@ class LengthBasedExampleSelector(BaseExampleSelector, BaseModel): max_length: int = 2048 """Max length for the prompt, beyond which examples are cut.""" - example_text_lengths: List[int] = [] #: :meta private: + example_text_lengths: list[int] = Field(default_factory=list) # :meta private: """Length of each example.""" - def add_example(self, example: Dict[str, str]) -> None: + def add_example(self, example: dict[str, str]) -> None: """Add new example to list. Args: @@ -41,7 +43,7 @@ def add_example(self, example: Dict[str, str]) -> None: string_example = self.example_prompt.format(**example) self.example_text_lengths.append(self.get_text_length(string_example)) - async def aadd_example(self, example: Dict[str, str]) -> None: + async def aadd_example(self, example: dict[str, str]) -> None: """Async add new example to list. Args: @@ -51,19 +53,16 @@ async def aadd_example(self, example: Dict[str, str]) -> None: self.add_example(example) - @validator("example_text_lengths", always=True) - def calculate_example_text_lengths(cls, v: List[int], values: Dict) -> List[int]: - """Calculate text lengths if they don't exist.""" - # Check if text lengths were passed in - if v: - return v - # If they were not, calculate them - example_prompt = values["example_prompt"] - get_text_length = values["get_text_length"] - string_examples = [example_prompt.format(**eg) for eg in values["examples"]] - return [get_text_length(eg) for eg in string_examples] - - def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: + @model_validator(mode="after") + def post_init(self) -> Self: + """Validate that the examples are formatted correctly.""" + if self.example_text_lengths: + return self + string_examples = [self.example_prompt.format(**eg) for eg in self.examples] + self.example_text_lengths = [self.get_text_length(eg) for eg in string_examples] + return self + + def select_examples(self, input_variables: dict[str, str]) -> list[dict]: """Select which examples to use based on the input lengths. Args: @@ -87,7 +86,7 @@ def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: i += 1 return examples - async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]: + async def aselect_examples(self, input_variables: dict[str, str]) -> list[dict]: """Async select which examples to use based on the input lengths. Args: diff --git a/libs/core/langchain_core/example_selectors/semantic_similarity.py b/libs/core/langchain_core/example_selectors/semantic_similarity.py index c14428a0c11d6..b27122ec36d4e 100644 --- a/libs/core/langchain_core/example_selectors/semantic_similarity.py +++ b/libs/core/langchain_core/example_selectors/semantic_similarity.py @@ -3,18 +3,19 @@ from __future__ import annotations from abc import ABC -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type +from typing import TYPE_CHECKING, Any, Optional + +from pydantic import BaseModel, ConfigDict from langchain_core.documents import Document from langchain_core.example_selectors.base import BaseExampleSelector -from langchain_core.pydantic_v1 import BaseModel, Extra from langchain_core.vectorstores import VectorStore if TYPE_CHECKING: from langchain_core.embeddings import Embeddings -def sorted_values(values: Dict[str, str]) -> List[Any]: +def sorted_values(values: dict[str, str]) -> list[Any]: """Return a list of values in dict sorted by key. Args: @@ -34,28 +35,29 @@ class _VectorStoreExampleSelector(BaseExampleSelector, BaseModel, ABC): """VectorStore that contains information about examples.""" k: int = 4 """Number of examples to select.""" - example_keys: Optional[List[str]] = None + example_keys: Optional[list[str]] = None """Optional keys to filter examples to.""" - input_keys: Optional[List[str]] = None + input_keys: Optional[list[str]] = None """Optional keys to filter input to. If provided, the search is based on the input variables instead of all variables.""" - vectorstore_kwargs: Optional[Dict[str, Any]] = None + vectorstore_kwargs: Optional[dict[str, Any]] = None """Extra arguments passed to similarity_search function of the vectorstore.""" - class Config: - arbitrary_types_allowed = True - extra = Extra.forbid + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @staticmethod def _example_to_text( - example: Dict[str, str], input_keys: Optional[List[str]] + example: dict[str, str], input_keys: Optional[list[str]] ) -> str: if input_keys: return " ".join(sorted_values({key: example[key] for key in input_keys})) else: return " ".join(sorted_values(example)) - def _documents_to_examples(self, documents: List[Document]) -> List[dict]: + def _documents_to_examples(self, documents: list[Document]) -> list[dict]: # Get the examples from the metadata. # This assumes that examples are stored in metadata. examples = [dict(e.metadata) for e in documents] @@ -64,7 +66,7 @@ def _documents_to_examples(self, documents: List[Document]) -> List[dict]: examples = [{k: eg[k] for k in self.example_keys} for eg in examples] return examples - def add_example(self, example: Dict[str, str]) -> str: + def add_example(self, example: dict[str, str]) -> str: """Add a new example to vectorstore. Args: @@ -79,7 +81,7 @@ def add_example(self, example: Dict[str, str]) -> str: ) return ids[0] - async def aadd_example(self, example: Dict[str, str]) -> str: + async def aadd_example(self, example: dict[str, str]) -> str: """Async add new example to vectorstore. Args: @@ -98,7 +100,7 @@ async def aadd_example(self, example: Dict[str, str]) -> str: class SemanticSimilarityExampleSelector(_VectorStoreExampleSelector): """Select examples based on semantic similarity.""" - def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: + def select_examples(self, input_variables: dict[str, str]) -> list[dict]: """Select examples based on semantic similarity. Args: @@ -116,7 +118,7 @@ def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: ) return self._documents_to_examples(example_docs) - async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]: + async def aselect_examples(self, input_variables: dict[str, str]) -> list[dict]: """Asynchronously select examples based on semantic similarity. Args: @@ -137,13 +139,13 @@ async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]: @classmethod def from_examples( cls, - examples: List[dict], + examples: list[dict], embeddings: Embeddings, - vectorstore_cls: Type[VectorStore], + vectorstore_cls: type[VectorStore], k: int = 4, - input_keys: Optional[List[str]] = None, + input_keys: Optional[list[str]] = None, *, - example_keys: Optional[List[str]] = None, + example_keys: Optional[list[str]] = None, vectorstore_kwargs: Optional[dict] = None, **vectorstore_cls_kwargs: Any, ) -> SemanticSimilarityExampleSelector: @@ -181,13 +183,13 @@ def from_examples( @classmethod async def afrom_examples( cls, - examples: List[dict], + examples: list[dict], embeddings: Embeddings, - vectorstore_cls: Type[VectorStore], + vectorstore_cls: type[VectorStore], k: int = 4, - input_keys: Optional[List[str]] = None, + input_keys: Optional[list[str]] = None, *, - example_keys: Optional[List[str]] = None, + example_keys: Optional[list[str]] = None, vectorstore_kwargs: Optional[dict] = None, **vectorstore_cls_kwargs: Any, ) -> SemanticSimilarityExampleSelector: @@ -233,7 +235,7 @@ class MaxMarginalRelevanceExampleSelector(_VectorStoreExampleSelector): fetch_k: int = 20 """Number of examples to fetch to rerank.""" - def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: + def select_examples(self, input_variables: dict[str, str]) -> list[dict]: """Select examples based on Max Marginal Relevance. Args: @@ -249,7 +251,7 @@ def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: ) return self._documents_to_examples(example_docs) - async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]: + async def aselect_examples(self, input_variables: dict[str, str]) -> list[dict]: """Asynchronously select examples based on Max Marginal Relevance. Args: @@ -268,13 +270,13 @@ async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]: @classmethod def from_examples( cls, - examples: List[dict], + examples: list[dict], embeddings: Embeddings, - vectorstore_cls: Type[VectorStore], + vectorstore_cls: type[VectorStore], k: int = 4, - input_keys: Optional[List[str]] = None, + input_keys: Optional[list[str]] = None, fetch_k: int = 20, - example_keys: Optional[List[str]] = None, + example_keys: Optional[list[str]] = None, vectorstore_kwargs: Optional[dict] = None, **vectorstore_cls_kwargs: Any, ) -> MaxMarginalRelevanceExampleSelector: @@ -315,14 +317,14 @@ def from_examples( @classmethod async def afrom_examples( cls, - examples: List[dict], + examples: list[dict], embeddings: Embeddings, - vectorstore_cls: Type[VectorStore], + vectorstore_cls: type[VectorStore], *, k: int = 4, - input_keys: Optional[List[str]] = None, + input_keys: Optional[list[str]] = None, fetch_k: int = 20, - example_keys: Optional[List[str]] = None, + example_keys: Optional[list[str]] = None, vectorstore_kwargs: Optional[dict] = None, **vectorstore_cls_kwargs: Any, ) -> MaxMarginalRelevanceExampleSelector: diff --git a/libs/core/langchain_core/exceptions.py b/libs/core/langchain_core/exceptions.py index 3c3f278511245..f10197b04662a 100644 --- a/libs/core/langchain_core/exceptions.py +++ b/libs/core/langchain_core/exceptions.py @@ -3,7 +3,7 @@ from typing import Any, Optional -class LangChainException(Exception): +class LangChainException(Exception): # noqa: N818 """General LangChain exception.""" @@ -11,7 +11,7 @@ class TracerException(LangChainException): """Base class for exceptions in tracers module.""" -class OutputParserException(ValueError, LangChainException): +class OutputParserException(ValueError, LangChainException): # noqa: N818 """Exception that output parsers should raise to signify a parsing error. This exists to differentiate parsing errors from other code or execution errors @@ -40,12 +40,12 @@ def __init__( send_to_llm: bool = False, ): super().__init__(error) - if send_to_llm: - if observation is None or llm_output is None: - raise ValueError( - "Arguments 'observation' & 'llm_output'" - " are required if 'send_to_llm' is True" - ) + if send_to_llm and (observation is None or llm_output is None): + msg = ( + "Arguments 'observation' & 'llm_output'" + " are required if 'send_to_llm' is True" + ) + raise ValueError(msg) self.observation = observation self.llm_output = llm_output self.send_to_llm = send_to_llm diff --git a/libs/core/langchain_core/graph_vectorstores/__init__.py b/libs/core/langchain_core/graph_vectorstores/__init__.py deleted file mode 100644 index 973f0ef954580..0000000000000 --- a/libs/core/langchain_core/graph_vectorstores/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -from langchain_core.graph_vectorstores.base import ( - GraphVectorStore, - GraphVectorStoreRetriever, - Node, -) -from langchain_core.graph_vectorstores.links import ( - Link, -) - -__all__ = [ - "GraphVectorStore", - "GraphVectorStoreRetriever", - "Node", - "Link", -] diff --git a/libs/core/langchain_core/graph_vectorstores/base.py b/libs/core/langchain_core/graph_vectorstores/base.py deleted file mode 100644 index adc9064cb488d..0000000000000 --- a/libs/core/langchain_core/graph_vectorstores/base.py +++ /dev/null @@ -1,711 +0,0 @@ -from __future__ import annotations - -from abc import abstractmethod -from typing import ( - Any, - AsyncIterable, - ClassVar, - Collection, - Iterable, - Iterator, - List, - Optional, -) - -from langchain_core._api import beta -from langchain_core.callbacks import ( - AsyncCallbackManagerForRetrieverRun, - CallbackManagerForRetrieverRun, -) -from langchain_core.documents import Document -from langchain_core.graph_vectorstores.links import METADATA_LINKS_KEY, Link -from langchain_core.load import Serializable -from langchain_core.pydantic_v1 import Field -from langchain_core.runnables import run_in_executor -from langchain_core.vectorstores import VectorStore, VectorStoreRetriever - - -def _has_next(iterator: Iterator) -> bool: - """Checks if the iterator has more elements. - Warning: consumes an element from the iterator""" - sentinel = object() - return next(iterator, sentinel) is not sentinel - - -@beta() -class Node(Serializable): - """Node in the GraphVectorStore. - - Edges exist from nodes with an outgoing link to nodes with a matching incoming link. - - For instance two nodes `a` and `b` connected over a hyperlink ``https://some-url`` - would look like: - - .. code-block:: python - - [ - Node( - id="a", - text="some text a", - links= [ - Link(kind="hyperlink", tag="https://some-url", direction="incoming") - ], - ), - Node( - id="b", - text="some text b", - links= [ - Link(kind="hyperlink", tag="https://some-url", direction="outgoing") - ], - ) - ] - """ - - id: Optional[str] = None - """Unique ID for the node. Will be generated by the GraphVectorStore if not set.""" - text: str - """Text contained by the node.""" - metadata: dict = Field(default_factory=dict) - """Metadata for the node.""" - links: List[Link] = Field(default_factory=list) - """Links associated with the node.""" - - -def _texts_to_nodes( - texts: Iterable[str], - metadatas: Optional[Iterable[dict]], - ids: Optional[Iterable[str]], -) -> Iterator[Node]: - metadatas_it = iter(metadatas) if metadatas else None - ids_it = iter(ids) if ids else None - for text in texts: - try: - _metadata = next(metadatas_it).copy() if metadatas_it else {} - except StopIteration as e: - raise ValueError("texts iterable longer than metadatas") from e - try: - _id = next(ids_it) if ids_it else None - except StopIteration as e: - raise ValueError("texts iterable longer than ids") from e - - links = _metadata.pop(METADATA_LINKS_KEY, []) - if not isinstance(links, list): - links = list(links) - yield Node( - id=_id, - metadata=_metadata, - text=text, - links=links, - ) - if ids_it and _has_next(ids_it): - raise ValueError("ids iterable longer than texts") - if metadatas_it and _has_next(metadatas_it): - raise ValueError("metadatas iterable longer than texts") - - -def _documents_to_nodes(documents: Iterable[Document]) -> Iterator[Node]: - for doc in documents: - metadata = doc.metadata.copy() - links = metadata.pop(METADATA_LINKS_KEY, []) - if not isinstance(links, list): - links = list(links) - yield Node( - id=doc.id, - metadata=metadata, - text=doc.page_content, - links=links, - ) - - -@beta() -def nodes_to_documents(nodes: Iterable[Node]) -> Iterator[Document]: - """Convert nodes to documents. - - Args: - nodes: The nodes to convert to documents. - Returns: - The documents generated from the nodes. - """ - for node in nodes: - metadata = node.metadata.copy() - metadata[METADATA_LINKS_KEY] = [ - # Convert the core `Link` (from the node) back to the local `Link`. - Link(kind=link.kind, direction=link.direction, tag=link.tag) - for link in node.links - ] - - yield Document( - id=node.id, - page_content=node.text, - metadata=metadata, - ) - - -@beta(message="Added in version 0.2.14 of langchain_core. API subject to change.") -class GraphVectorStore(VectorStore): - """A hybrid vector-and-graph graph store. - - Document chunks support vector-similarity search as well as edges linking - chunks based on structural and semantic properties. - - .. versionadded:: 0.2.14 - """ - - @abstractmethod - def add_nodes( - self, - nodes: Iterable[Node], - **kwargs: Any, - ) -> Iterable[str]: - """Add nodes to the graph store. - - Args: - nodes: the nodes to add. - """ - - async def aadd_nodes( - self, - nodes: Iterable[Node], - **kwargs: Any, - ) -> AsyncIterable[str]: - """Add nodes to the graph store. - - Args: - nodes: the nodes to add. - """ - iterator = iter(await run_in_executor(None, self.add_nodes, nodes, **kwargs)) - done = object() - while True: - doc = await run_in_executor(None, next, iterator, done) - if doc is done: - break - yield doc # type: ignore[misc] - - def add_texts( - self, - texts: Iterable[str], - metadatas: Optional[Iterable[dict]] = None, - *, - ids: Optional[Iterable[str]] = None, - **kwargs: Any, - ) -> List[str]: - """Run more texts through the embeddings and add to the vectorstore. - - The Links present in the metadata field `links` will be extracted to create - the `Node` links. - - Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the - function call would look like: - - .. code-block:: python - - store.add_texts( - ids=["a", "b"], - texts=["some text a", "some text b"], - metadatas=[ - { - "links": [ - Link.incoming(kind="hyperlink", tag="https://some-url") - ] - }, - { - "links": [ - Link.outgoing(kind="hyperlink", tag="https://some-url") - ] - }, - ], - ) - - Args: - texts: Iterable of strings to add to the vectorstore. - metadatas: Optional list of metadatas associated with the texts. - The metadata key `links` shall be an iterable of - :py:class:`~langchain_core.graph_vectorstores.links.Link`. - **kwargs: vectorstore specific parameters. - - Returns: - List of ids from adding the texts into the vectorstore. - """ - nodes = _texts_to_nodes(texts, metadatas, ids) - return list(self.add_nodes(nodes, **kwargs)) - - async def aadd_texts( - self, - texts: Iterable[str], - metadatas: Optional[Iterable[dict]] = None, - *, - ids: Optional[Iterable[str]] = None, - **kwargs: Any, - ) -> List[str]: - """Run more texts through the embeddings and add to the vectorstore. - - The Links present in the metadata field `links` will be extracted to create - the `Node` links. - - Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the - function call would look like: - - .. code-block:: python - - await store.aadd_texts( - ids=["a", "b"], - texts=["some text a", "some text b"], - metadatas=[ - { - "links": [ - Link.incoming(kind="hyperlink", tag="https://some-url") - ] - }, - { - "links": [ - Link.outgoing(kind="hyperlink", tag="https://some-url") - ] - }, - ], - ) - - Args: - texts: Iterable of strings to add to the vectorstore. - metadatas: Optional list of metadatas associated with the texts. - The metadata key `links` shall be an iterable of - :py:class:`~langchain_core.graph_vectorstores.links.Link`. - **kwargs: vectorstore specific parameters. - - Returns: - List of ids from adding the texts into the vectorstore. - """ - nodes = _texts_to_nodes(texts, metadatas, ids) - return [_id async for _id in self.aadd_nodes(nodes, **kwargs)] - - def add_documents( - self, - documents: Iterable[Document], - **kwargs: Any, - ) -> List[str]: - """Run more documents through the embeddings and add to the vectorstore. - - The Links present in the document metadata field `links` will be extracted to - create the `Node` links. - - Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the - function call would look like: - - .. code-block:: python - - store.add_documents( - [ - Document( - id="a", - page_content="some text a", - metadata={ - "links": [ - Link.incoming(kind="hyperlink", tag="http://some-url") - ] - } - ), - Document( - id="b", - page_content="some text b", - metadata={ - "links": [ - Link.outgoing(kind="hyperlink", tag="http://some-url") - ] - } - ), - ] - - ) - - Args: - documents: Documents to add to the vectorstore. - The document's metadata key `links` shall be an iterable of - :py:class:`~langchain_core.graph_vectorstores.links.Link`. - - Returns: - List of IDs of the added texts. - """ - nodes = _documents_to_nodes(documents) - return list(self.add_nodes(nodes, **kwargs)) - - async def aadd_documents( - self, - documents: Iterable[Document], - **kwargs: Any, - ) -> List[str]: - """Run more documents through the embeddings and add to the vectorstore. - - The Links present in the document metadata field `links` will be extracted to - create the `Node` links. - - Eg if nodes `a` and `b` are connected over a hyperlink `https://some-url`, the - function call would look like: - - .. code-block:: python - - store.add_documents( - [ - Document( - id="a", - page_content="some text a", - metadata={ - "links": [ - Link.incoming(kind="hyperlink", tag="http://some-url") - ] - } - ), - Document( - id="b", - page_content="some text b", - metadata={ - "links": [ - Link.outgoing(kind="hyperlink", tag="http://some-url") - ] - } - ), - ] - - ) - - Args: - documents: Documents to add to the vectorstore. - The document's metadata key `links` shall be an iterable of - :py:class:`~langchain_core.graph_vectorstores.links.Link`. - - Returns: - List of IDs of the added texts. - """ - nodes = _documents_to_nodes(documents) - return [_id async for _id in self.aadd_nodes(nodes, **kwargs)] - - @abstractmethod - def traversal_search( - self, - query: str, - *, - k: int = 4, - depth: int = 1, - **kwargs: Any, - ) -> Iterable[Document]: - """Retrieve documents from traversing this graph store. - - First, `k` nodes are retrieved using a search for each `query` string. - Then, additional nodes are discovered up to the given `depth` from those - starting nodes. - - Args: - query: The query string. - k: The number of Documents to return from the initial search. - Defaults to 4. Applies to each of the query strings. - depth: The maximum depth of edges to traverse. Defaults to 1. - Returns: - Retrieved documents. - """ - - async def atraversal_search( - self, - query: str, - *, - k: int = 4, - depth: int = 1, - **kwargs: Any, - ) -> AsyncIterable[Document]: - """Retrieve documents from traversing this graph store. - - First, `k` nodes are retrieved using a search for each `query` string. - Then, additional nodes are discovered up to the given `depth` from those - starting nodes. - - Args: - query: The query string. - k: The number of Documents to return from the initial search. - Defaults to 4. Applies to each of the query strings. - depth: The maximum depth of edges to traverse. Defaults to 1. - Returns: - Retrieved documents. - """ - iterator = iter( - await run_in_executor( - None, self.traversal_search, query, k=k, depth=depth, **kwargs - ) - ) - done = object() - while True: - doc = await run_in_executor(None, next, iterator, done) - if doc is done: - break - yield doc # type: ignore[misc] - - @abstractmethod - def mmr_traversal_search( - self, - query: str, - *, - k: int = 4, - depth: int = 2, - fetch_k: int = 100, - adjacent_k: int = 10, - lambda_mult: float = 0.5, - score_threshold: float = float("-inf"), - **kwargs: Any, - ) -> Iterable[Document]: - """Retrieve documents from this graph store using MMR-traversal. - - This strategy first retrieves the top `fetch_k` results by similarity to - the question. It then selects the top `k` results based on - maximum-marginal relevance using the given `lambda_mult`. - - At each step, it considers the (remaining) documents from `fetch_k` as - well as any documents connected by edges to a selected document - retrieved based on similarity (a "root"). - - Args: - query: The query string to search for. - k: Number of Documents to return. Defaults to 4. - fetch_k: Number of Documents to fetch via similarity. - Defaults to 100. - adjacent_k: Number of adjacent Documents to fetch. - Defaults to 10. - depth: Maximum depth of a node (number of edges) from a node - retrieved via similarity. Defaults to 2. - lambda_mult: Number between 0 and 1 that determines the degree - of diversity among the results with 0 corresponding to maximum - diversity and 1 to minimum diversity. Defaults to 0.5. - score_threshold: Only documents with a score greater than or equal - this threshold will be chosen. Defaults to negative infinity. - """ - - async def ammr_traversal_search( - self, - query: str, - *, - k: int = 4, - depth: int = 2, - fetch_k: int = 100, - adjacent_k: int = 10, - lambda_mult: float = 0.5, - score_threshold: float = float("-inf"), - **kwargs: Any, - ) -> AsyncIterable[Document]: - """Retrieve documents from this graph store using MMR-traversal. - - This strategy first retrieves the top `fetch_k` results by similarity to - the question. It then selects the top `k` results based on - maximum-marginal relevance using the given `lambda_mult`. - - At each step, it considers the (remaining) documents from `fetch_k` as - well as any documents connected by edges to a selected document - retrieved based on similarity (a "root"). - - Args: - query: The query string to search for. - k: Number of Documents to return. Defaults to 4. - fetch_k: Number of Documents to fetch via similarity. - Defaults to 100. - adjacent_k: Number of adjacent Documents to fetch. - Defaults to 10. - depth: Maximum depth of a node (number of edges) from a node - retrieved via similarity. Defaults to 2. - lambda_mult: Number between 0 and 1 that determines the degree - of diversity among the results with 0 corresponding to maximum - diversity and 1 to minimum diversity. Defaults to 0.5. - score_threshold: Only documents with a score greater than or equal - this threshold will be chosen. Defaults to negative infinity. - """ - iterator = iter( - await run_in_executor( - None, - self.mmr_traversal_search, - query, - k=k, - fetch_k=fetch_k, - adjacent_k=adjacent_k, - depth=depth, - lambda_mult=lambda_mult, - score_threshold=score_threshold, - **kwargs, - ) - ) - done = object() - while True: - doc = await run_in_executor(None, next, iterator, done) - if doc is done: - break - yield doc # type: ignore[misc] - - def similarity_search( - self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: - return list(self.traversal_search(query, k=k, depth=0)) - - def max_marginal_relevance_search( - self, - query: str, - k: int = 4, - fetch_k: int = 20, - lambda_mult: float = 0.5, - **kwargs: Any, - ) -> List[Document]: - return list( - self.mmr_traversal_search( - query, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, depth=0 - ) - ) - - async def asimilarity_search( - self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: - return [doc async for doc in self.atraversal_search(query, k=k, depth=0)] - - def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]: - if search_type == "similarity": - return self.similarity_search(query, **kwargs) - elif search_type == "similarity_score_threshold": - docs_and_similarities = self.similarity_search_with_relevance_scores( - query, **kwargs - ) - return [doc for doc, _ in docs_and_similarities] - elif search_type == "mmr": - return self.max_marginal_relevance_search(query, **kwargs) - elif search_type == "traversal": - return list(self.traversal_search(query, **kwargs)) - elif search_type == "mmr_traversal": - return list(self.mmr_traversal_search(query, **kwargs)) - else: - raise ValueError( - f"search_type of {search_type} not allowed. Expected " - "search_type to be 'similarity', 'similarity_score_threshold', " - "'mmr' or 'traversal'." - ) - - async def asearch( - self, query: str, search_type: str, **kwargs: Any - ) -> List[Document]: - if search_type == "similarity": - return await self.asimilarity_search(query, **kwargs) - elif search_type == "similarity_score_threshold": - docs_and_similarities = await self.asimilarity_search_with_relevance_scores( - query, **kwargs - ) - return [doc for doc, _ in docs_and_similarities] - elif search_type == "mmr": - return await self.amax_marginal_relevance_search(query, **kwargs) - elif search_type == "traversal": - return [doc async for doc in self.atraversal_search(query, **kwargs)] - else: - raise ValueError( - f"search_type of {search_type} not allowed. Expected " - "search_type to be 'similarity', 'similarity_score_threshold', " - "'mmr' or 'traversal'." - ) - - def as_retriever(self, **kwargs: Any) -> GraphVectorStoreRetriever: - """Return GraphVectorStoreRetriever initialized from this GraphVectorStore. - - Args: - **kwargs: Keyword arguments to pass to the search function. - Can include: - - - search_type (Optional[str]): Defines the type of search that - the Retriever should perform. - Can be ``traversal`` (default), ``similarity``, ``mmr``, or - ``similarity_score_threshold``. - - search_kwargs (Optional[Dict]): Keyword arguments to pass to the - search function. Can include things like: - - - k(int): Amount of documents to return (Default: 4). - - depth(int): The maximum depth of edges to traverse (Default: 1). - - score_threshold(float): Minimum relevance threshold - for similarity_score_threshold. - - fetch_k(int): Amount of documents to pass to MMR algorithm - (Default: 20). - - lambda_mult(float): Diversity of results returned by MMR; - 1 for minimum diversity and 0 for maximum. (Default: 0.5). - Returns: - Retriever for this GraphVectorStore. - - Examples: - - .. code-block:: python - - # Retrieve documents traversing edges - docsearch.as_retriever( - search_type="traversal", - search_kwargs={'k': 6, 'depth': 3} - ) - - # Retrieve more documents with higher diversity - # Useful if your dataset has many similar documents - docsearch.as_retriever( - search_type="mmr", - search_kwargs={'k': 6, 'lambda_mult': 0.25} - ) - - # Fetch more documents for the MMR algorithm to consider - # But only return the top 5 - docsearch.as_retriever( - search_type="mmr", - search_kwargs={'k': 5, 'fetch_k': 50} - ) - - # Only retrieve documents that have a relevance score - # Above a certain threshold - docsearch.as_retriever( - search_type="similarity_score_threshold", - search_kwargs={'score_threshold': 0.8} - ) - - # Only get the single most similar document from the dataset - docsearch.as_retriever(search_kwargs={'k': 1}) - - """ - return GraphVectorStoreRetriever(vectorstore=self, **kwargs) - - -class GraphVectorStoreRetriever(VectorStoreRetriever): - """Retriever class for GraphVectorStore.""" - - vectorstore: GraphVectorStore - """GraphVectorStore to use for retrieval.""" - search_type: str = "traversal" - """Type of search to perform. Defaults to "traversal".""" - allowed_search_types: ClassVar[Collection[str]] = ( - "similarity", - "similarity_score_threshold", - "mmr", - "traversal", - "mmr_traversal", - ) - - def _get_relevant_documents( - self, query: str, *, run_manager: CallbackManagerForRetrieverRun - ) -> List[Document]: - if self.search_type == "traversal": - return list(self.vectorstore.traversal_search(query, **self.search_kwargs)) - elif self.search_type == "mmr_traversal": - return list( - self.vectorstore.mmr_traversal_search(query, **self.search_kwargs) - ) - else: - return super()._get_relevant_documents(query, run_manager=run_manager) - - async def _aget_relevant_documents( - self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun - ) -> List[Document]: - if self.search_type == "traversal": - return [ - doc - async for doc in self.vectorstore.atraversal_search( - query, **self.search_kwargs - ) - ] - elif self.search_type == "mmr_traversal": - return [ - doc - async for doc in self.vectorstore.ammr_traversal_search( - query, **self.search_kwargs - ) - ] - else: - return await super()._aget_relevant_documents( - query, run_manager=run_manager - ) diff --git a/libs/core/langchain_core/graph_vectorstores/links.py b/libs/core/langchain_core/graph_vectorstores/links.py deleted file mode 100644 index 7464eb4aa956b..0000000000000 --- a/libs/core/langchain_core/graph_vectorstores/links.py +++ /dev/null @@ -1,101 +0,0 @@ -from dataclasses import dataclass -from typing import Iterable, List, Literal, Union - -from langchain_core._api import beta -from langchain_core.documents import Document - - -@beta() -@dataclass(frozen=True) -class Link: - """A link to/from a tag of a given tag. - - Edges exist from nodes with an outgoing link to nodes with a matching incoming link. - """ - - kind: str - """The kind of link. Allows different extractors to use the same tag name without - creating collisions between extractors. For example “keyword” vs “url”.""" - direction: Literal["in", "out", "bidir"] - """The direction of the link.""" - tag: str - """The tag of the link.""" - - @staticmethod - def incoming(kind: str, tag: str) -> "Link": - """Create an incoming link.""" - return Link(kind=kind, direction="in", tag=tag) - - @staticmethod - def outgoing(kind: str, tag: str) -> "Link": - """Create an outgoing link.""" - return Link(kind=kind, direction="out", tag=tag) - - @staticmethod - def bidir(kind: str, tag: str) -> "Link": - """Create a bidirectional link.""" - return Link(kind=kind, direction="bidir", tag=tag) - - -METADATA_LINKS_KEY = "links" - - -@beta() -def get_links(doc: Document) -> List[Link]: - """Get the links from a document. - - Args: - doc: The document to get the link tags from. - Returns: - The set of link tags from the document. - """ - - links = doc.metadata.setdefault(METADATA_LINKS_KEY, []) - if not isinstance(links, list): - # Convert to a list and remember that. - links = list(links) - doc.metadata[METADATA_LINKS_KEY] = links - return links - - -@beta() -def add_links(doc: Document, *links: Union[Link, Iterable[Link]]) -> None: - """Add links to the given metadata. - - Args: - doc: The document to add the links to. - *links: The links to add to the document. - """ - links_in_metadata = get_links(doc) - for link in links: - if isinstance(link, Iterable): - links_in_metadata.extend(link) - else: - links_in_metadata.append(link) - - -@beta() -def copy_with_links(doc: Document, *links: Union[Link, Iterable[Link]]) -> Document: - """Return a document with the given links added. - - Args: - doc: The document to add the links to. - *links: The links to add to the document. - - Returns: - A document with a shallow-copy of the metadata with the links added. - """ - new_links = set(get_links(doc)) - for link in links: - if isinstance(link, Iterable): - new_links.update(link) - else: - new_links.add(link) - - return Document( - page_content=doc.page_content, - metadata={ - **doc.metadata, - METADATA_LINKS_KEY: list(new_links), - }, - ) diff --git a/libs/core/langchain_core/indexing/api.py b/libs/core/langchain_core/indexing/api.py index 115eb72b9772b..63226ba366a6f 100644 --- a/libs/core/langchain_core/indexing/api.py +++ b/libs/core/langchain_core/indexing/api.py @@ -5,30 +5,24 @@ import hashlib import json import uuid +from collections.abc import AsyncIterable, AsyncIterator, Iterable, Iterator, Sequence from itertools import islice from typing import ( Any, - AsyncIterable, - AsyncIterator, Callable, - Dict, - Iterable, - Iterator, - List, Literal, Optional, - Sequence, - Set, TypedDict, TypeVar, Union, cast, ) +from pydantic import model_validator + from langchain_core.document_loaders.base import BaseLoader from langchain_core.documents import Document from langchain_core.indexing.base import DocumentIndex, RecordManager -from langchain_core.pydantic_v1 import root_validator from langchain_core.vectorstores import VectorStore # Magic UUID to use as a namespace for hashing. @@ -68,8 +62,9 @@ class _HashedDocument(Document): def is_lc_serializable(cls) -> bool: return False - @root_validator(pre=True) - def calculate_hashes(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def calculate_hashes(cls, values: dict[str, Any]) -> Any: """Root validator to calculate content and metadata hash.""" content = values.get("page_content", "") metadata = values.get("metadata", {}) @@ -78,26 +73,28 @@ def calculate_hashes(cls, values: Dict[str, Any]) -> Dict[str, Any]: for key in forbidden_keys: if key in metadata: - raise ValueError( + msg = ( f"Metadata cannot contain key {key} as it " f"is reserved for internal use." ) + raise ValueError(msg) content_hash = str(_hash_string_to_uuid(content)) try: metadata_hash = str(_hash_nested_dict_to_uuid(metadata)) except Exception as e: - raise ValueError( + msg = ( f"Failed to hash metadata: {e}. " f"Please use a dict that can be serialized using json." - ) from e + ) + raise ValueError(msg) from e values["content_hash"] = content_hash values["metadata_hash"] = metadata_hash values["hash_"] = str(_hash_string_to_uuid(content_hash + metadata_hash)) - _uid = values.get("uid", None) + _uid = values.get("uid") if _uid is None: values["uid"] = values["hash_"] @@ -123,7 +120,7 @@ def from_document( ) -def _batch(size: int, iterable: Iterable[T]) -> Iterator[List[T]]: +def _batch(size: int, iterable: Iterable[T]) -> Iterator[list[T]]: """Utility batching function.""" it = iter(iterable) while True: @@ -133,9 +130,9 @@ def _batch(size: int, iterable: Iterable[T]) -> Iterator[List[T]]: yield chunk -async def _abatch(size: int, iterable: AsyncIterable[T]) -> AsyncIterator[List[T]]: +async def _abatch(size: int, iterable: AsyncIterable[T]) -> AsyncIterator[list[T]]: """Utility batching function.""" - batch: List[T] = [] + batch: list[T] = [] async for element in iterable: if len(batch) < size: batch.append(element) @@ -159,17 +156,18 @@ def _get_source_id_assigner( elif callable(source_id_key): return source_id_key else: - raise ValueError( + msg = ( f"source_id_key should be either None, a string or a callable. " f"Got {source_id_key} of type {type(source_id_key)}." ) + raise ValueError(msg) def _deduplicate_in_order( hashed_documents: Iterable[_HashedDocument], ) -> Iterator[_HashedDocument]: """Deduplicate a list of hashed documents while preserving order.""" - seen: Set[str] = set() + seen: set[str] = set() for hashed_doc in hashed_documents: if hashed_doc.hash_ not in seen: @@ -203,6 +201,7 @@ def index( source_id_key: Union[str, Callable[[Document], str], None] = None, cleanup_batch_size: int = 1_000, force_update: bool = False, + upsert_kwargs: Optional[dict[str, Any]] = None, ) -> IndexingResult: """Index data from the loader into the vector store. @@ -254,6 +253,12 @@ def index( force_update: Force update documents even if they are present in the record manager. Useful if you are re-indexing with updated embeddings. Default is False. + upsert_kwargs: Additional keyword arguments to pass to the add_documents + method of the VectorStore or the upsert method of the + DocumentIndex. For example, you can use this to + specify a custom vector_field: + upsert_kwargs={"vector_field": "embedding"} + .. versionadded:: 0.3.10 Returns: Indexing result which contains information about how many documents @@ -267,13 +272,15 @@ def index( ValueError: If source_id_key is not None, but is not a string or callable. """ if cleanup not in {"incremental", "full", None}: - raise ValueError( + msg = ( f"cleanup should be one of 'incremental', 'full' or None. " f"Got {cleanup}." ) + raise ValueError(msg) if cleanup == "incremental" and source_id_key is None: - raise ValueError("Source id key is required when cleanup mode is incremental.") + msg = "Source id key is required when cleanup mode is incremental." + raise ValueError(msg) destination = vector_store # Renaming internally for clarity @@ -284,21 +291,24 @@ def index( for method in methods: if not hasattr(destination, method): - raise ValueError( + msg = ( f"Vectorstore {destination} does not have required method {method}" ) + raise ValueError(msg) if type(destination).delete == VectorStore.delete: # Checking if the vectorstore has overridden the default delete method # implementation which just raises a NotImplementedError - raise ValueError("Vectorstore has not implemented the delete method") + msg = "Vectorstore has not implemented the delete method" + raise ValueError(msg) elif isinstance(destination, DocumentIndex): pass else: - raise TypeError( + msg = ( f"Vectorstore should be either a VectorStore or a DocumentIndex. " f"Got {type(destination)}." ) + raise TypeError(msg) if isinstance(docs_source, BaseLoader): try: @@ -332,12 +342,13 @@ def index( # If the cleanup mode is incremental, source ids are required. for source_id, hashed_doc in zip(source_ids, hashed_docs): if source_id is None: - raise ValueError( + msg = ( "Source ids are required when cleanup mode is incremental. " f"Document that starts with " f"content: {hashed_doc.page_content[:100]} was not assigned " f"as source id." ) + raise ValueError(msg) # source ids cannot be None after for loop above. source_ids = cast(Sequence[str], source_ids) # type: ignore[assignment] @@ -347,7 +358,7 @@ def index( uids = [] docs_to_index = [] uids_to_refresh = [] - seen_docs: Set[str] = set() + seen_docs: set[str] = set() for hashed_doc, doc_exists in zip(hashed_docs, exists_batch): if doc_exists: if force_update: @@ -368,10 +379,16 @@ def index( if docs_to_index: if isinstance(destination, VectorStore): destination.add_documents( - docs_to_index, ids=uids, batch_size=batch_size + docs_to_index, + ids=uids, + batch_size=batch_size, + **(upsert_kwargs or {}), ) elif isinstance(destination, DocumentIndex): - destination.upsert(docs_to_index) + destination.upsert( + docs_to_index, + **(upsert_kwargs or {}), + ) num_added += len(docs_to_index) - len(seen_docs) num_updated += len(seen_docs) @@ -391,16 +408,18 @@ def index( # mypy isn't good enough to determine that source ids cannot be None # here due to a check that's happening above, so we check again. - for source_id in source_ids: - if source_id is None: - raise AssertionError("Source ids cannot be None here.") + if any(source_id is None for source_id in source_ids): + msg = "Source ids cannot be if cleanup=='incremental'." + raise AssertionError(msg) - _source_ids = cast(Sequence[str], source_ids) + indexed_source_ids = cast( + Sequence[str], [source_id_assigner(doc) for doc in docs_to_index] + ) uids_to_delete = record_manager.list_keys( - group_ids=_source_ids, before=index_start_dt + group_ids=indexed_source_ids, before=index_start_dt ) - if uids_to_delete: + if indexed_source_ids and uids_to_delete: # Then delete from vector store. destination.delete(uids_to_delete) # First delete from record store. @@ -442,6 +461,7 @@ async def aindex( source_id_key: Union[str, Callable[[Document], str], None] = None, cleanup_batch_size: int = 1_000, force_update: bool = False, + upsert_kwargs: Optional[dict[str, Any]] = None, ) -> IndexingResult: """Async index data from the loader into the vector store. @@ -484,6 +504,12 @@ async def aindex( force_update: Force update documents even if they are present in the record manager. Useful if you are re-indexing with updated embeddings. Default is False. + upsert_kwargs: Additional keyword arguments to pass to the aadd_documents + method of the VectorStore or the aupsert method of the + DocumentIndex. For example, you can use this to + specify a custom vector_field: + upsert_kwargs={"vector_field": "embedding"} + .. versionadded:: 0.3.10 Returns: Indexing result which contains information about how many documents @@ -498,13 +524,15 @@ async def aindex( """ if cleanup not in {"incremental", "full", None}: - raise ValueError( + msg = ( f"cleanup should be one of 'incremental', 'full' or None. " f"Got {cleanup}." ) + raise ValueError(msg) if cleanup == "incremental" and source_id_key is None: - raise ValueError("Source id key is required when cleanup mode is incremental.") + msg = "Source id key is required when cleanup mode is incremental." + raise ValueError(msg) destination = vector_store # Renaming internally for clarity @@ -516,21 +544,24 @@ async def aindex( for method in methods: if not hasattr(destination, method): - raise ValueError( + msg = ( f"Vectorstore {destination} does not have required method {method}" ) + raise ValueError(msg) if type(destination).adelete == VectorStore.adelete: # Checking if the vectorstore has overridden the default delete method # implementation which just raises a NotImplementedError - raise ValueError("Vectorstore has not implemented the delete method") + msg = "Vectorstore has not implemented the delete method" + raise ValueError(msg) elif isinstance(destination, DocumentIndex): pass else: - raise TypeError( + msg = ( f"Vectorstore should be either a VectorStore or a DocumentIndex. " f"Got {type(destination)}." ) + raise TypeError(msg) async_doc_iterator: AsyncIterator[Document] if isinstance(docs_source, BaseLoader): try: @@ -572,12 +603,13 @@ async def aindex( # If the cleanup mode is incremental, source ids are required. for source_id, hashed_doc in zip(source_ids, hashed_docs): if source_id is None: - raise ValueError( + msg = ( "Source ids are required when cleanup mode is incremental. " f"Document that starts with " f"content: {hashed_doc.page_content[:100]} was not assigned " f"as source id." ) + raise ValueError(msg) # source ids cannot be None after for loop above. source_ids = cast(Sequence[str], source_ids) @@ -587,7 +619,7 @@ async def aindex( uids: list[str] = [] docs_to_index: list[Document] = [] uids_to_refresh = [] - seen_docs: Set[str] = set() + seen_docs: set[str] = set() for hashed_doc, doc_exists in zip(hashed_docs, exists_batch): if doc_exists: if force_update: @@ -608,10 +640,16 @@ async def aindex( if docs_to_index: if isinstance(destination, VectorStore): await destination.aadd_documents( - docs_to_index, ids=uids, batch_size=batch_size + docs_to_index, + ids=uids, + batch_size=batch_size, + **(upsert_kwargs or {}), ) elif isinstance(destination, DocumentIndex): - await destination.aupsert(docs_to_index) + await destination.aupsert( + docs_to_index, + **(upsert_kwargs or {}), + ) num_added += len(docs_to_index) - len(seen_docs) num_updated += len(seen_docs) @@ -631,16 +669,18 @@ async def aindex( # mypy isn't good enough to determine that source ids cannot be None # here due to a check that's happening above, so we check again. - for source_id in source_ids: - if source_id is None: - raise AssertionError("Source ids cannot be None here.") + if any(source_id is None for source_id in source_ids): + msg = "Source ids cannot be if cleanup=='incremental'." + raise AssertionError(msg) - _source_ids = cast(Sequence[str], source_ids) + indexed_source_ids = cast( + Sequence[str], [source_id_assigner(doc) for doc in docs_to_index] + ) uids_to_delete = await record_manager.alist_keys( - group_ids=_source_ids, before=index_start_dt + group_ids=indexed_source_ids, before=index_start_dt ) - if uids_to_delete: + if indexed_source_ids and uids_to_delete: # Then delete from vector store. await destination.adelete(uids_to_delete) # First delete from record store. diff --git a/libs/core/langchain_core/indexing/base.py b/libs/core/langchain_core/indexing/base.py index 24683a5f8eb56..d9418de7408d5 100644 --- a/libs/core/langchain_core/indexing/base.py +++ b/libs/core/langchain_core/indexing/base.py @@ -3,7 +3,8 @@ import abc import time from abc import ABC, abstractmethod -from typing import Any, Dict, List, Optional, Sequence, TypedDict +from collections.abc import Sequence +from typing import Any, Optional, TypedDict from langchain_core._api import beta from langchain_core.documents import Document @@ -144,7 +145,7 @@ async def aupdate( """ @abstractmethod - def exists(self, keys: Sequence[str]) -> List[bool]: + def exists(self, keys: Sequence[str]) -> list[bool]: """Check if the provided keys exist in the database. Args: @@ -155,7 +156,7 @@ def exists(self, keys: Sequence[str]) -> List[bool]: """ @abstractmethod - async def aexists(self, keys: Sequence[str]) -> List[bool]: + async def aexists(self, keys: Sequence[str]) -> list[bool]: """Asynchronously check if the provided keys exist in the database. Args: @@ -173,7 +174,7 @@ def list_keys( after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None, - ) -> List[str]: + ) -> list[str]: """List records in the database based on the provided filters. Args: @@ -194,7 +195,7 @@ async def alist_keys( after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None, - ) -> List[str]: + ) -> list[str]: """Asynchronously list records in the database based on the provided filters. Args: @@ -241,7 +242,7 @@ def __init__(self, namespace: str) -> None: super().__init__(namespace) # Each key points to a dictionary # of {'group_id': group_id, 'updated_at': timestamp} - self.records: Dict[str, _Record] = {} + self.records: dict[str, _Record] = {} self.namespace = namespace def create_schema(self) -> None: @@ -289,11 +290,13 @@ def update( """ if group_ids and len(keys) != len(group_ids): - raise ValueError("Length of keys must match length of group_ids") + msg = "Length of keys must match length of group_ids" + raise ValueError(msg) for index, key in enumerate(keys): group_id = group_ids[index] if group_ids else None if time_at_least and time_at_least > self.get_time(): - raise ValueError("time_at_least must be in the past") + msg = "time_at_least must be in the past" + raise ValueError(msg) self.records[key] = {"group_id": group_id, "updated_at": self.get_time()} async def aupdate( @@ -325,7 +328,7 @@ async def aupdate( """ self.update(keys, group_ids=group_ids, time_at_least=time_at_least) - def exists(self, keys: Sequence[str]) -> List[bool]: + def exists(self, keys: Sequence[str]) -> list[bool]: """Check if the provided keys exist in the database. Args: @@ -336,7 +339,7 @@ def exists(self, keys: Sequence[str]) -> List[bool]: """ return [key in self.records for key in keys] - async def aexists(self, keys: Sequence[str]) -> List[bool]: + async def aexists(self, keys: Sequence[str]) -> list[bool]: """Async check if the provided keys exist in the database. Args: @@ -354,7 +357,7 @@ def list_keys( after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None, - ) -> List[str]: + ) -> list[str]: """List records in the database based on the provided filters. Args: @@ -390,7 +393,7 @@ async def alist_keys( after: Optional[float] = None, group_ids: Optional[Sequence[str]] = None, limit: Optional[int] = None, - ) -> List[str]: + ) -> list[str]: """Async list records in the database based on the provided filters. Args: @@ -449,9 +452,9 @@ class UpsertResponse(TypedDict): indexed to avoid this issue. """ - succeeded: List[str] + succeeded: list[str] """The IDs that were successfully indexed.""" - failed: List[str] + failed: list[str] """The IDs that failed to index.""" @@ -464,26 +467,26 @@ class DeleteResponse(TypedDict, total=False): num_deleted: int """The number of items that were successfully deleted. - + If returned, this should only include *actual* deletions. - - If the ID did not exist to begin with, + + If the ID did not exist to begin with, it should not be included in this count. """ succeeded: Sequence[str] """The IDs that were successfully deleted. - + If returned, this should only include *actual* deletions. - + If the ID did not exist to begin with, it should not be included in this list. """ failed: Sequence[str] """The IDs that failed to be deleted. - - Please note that deleting an ID that + + Please note that deleting an ID that does not exist is **NOT** considered a failure. """ @@ -562,7 +565,7 @@ async def aupsert( ) @abc.abstractmethod - def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> DeleteResponse: + def delete(self, ids: Optional[list[str]] = None, **kwargs: Any) -> DeleteResponse: """Delete by IDs or other criteria. Calling delete without any input parameters should raise a ValueError! @@ -579,7 +582,7 @@ def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> DeleteRespon """ async def adelete( - self, ids: Optional[List[str]] = None, **kwargs: Any + self, ids: Optional[list[str]] = None, **kwargs: Any ) -> DeleteResponse: """Delete by IDs or other criteria. Async variant. @@ -607,7 +610,7 @@ def get( ids: Sequence[str], /, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Get documents by id. Fewer documents may be returned than requested if some IDs are not found or @@ -633,7 +636,7 @@ async def aget( ids: Sequence[str], /, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Get documents by id. Fewer documents may be returned than requested if some IDs are not found or diff --git a/libs/core/langchain_core/indexing/in_memory.py b/libs/core/langchain_core/indexing/in_memory.py index 0154103031210..7fd7adec6646e 100644 --- a/libs/core/langchain_core/indexing/in_memory.py +++ b/libs/core/langchain_core/indexing/in_memory.py @@ -1,12 +1,14 @@ import uuid -from typing import Any, Dict, List, Optional, Sequence, cast +from collections.abc import Sequence +from typing import Any, Optional, cast + +from pydantic import Field from langchain_core._api import beta from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document from langchain_core.indexing import UpsertResponse from langchain_core.indexing.base import DeleteResponse, DocumentIndex -from langchain_core.pydantic_v1 import Field @beta(message="Introduced in version 0.2.29. Underlying abstraction subject to change.") @@ -21,7 +23,7 @@ class InMemoryDocumentIndex(DocumentIndex): .. versionadded:: 0.2.29 """ - store: Dict[str, Document] = Field(default_factory=dict) + store: dict[str, Document] = Field(default_factory=dict) top_k: int = 4 def upsert(self, items: Sequence[Document], /, **kwargs: Any) -> UpsertResponse: @@ -31,7 +33,7 @@ def upsert(self, items: Sequence[Document], /, **kwargs: Any) -> UpsertResponse: for item in items: if item.id is None: id_ = str(uuid.uuid4()) - item_ = item.copy() + item_ = item.model_copy() item_.id = id_ else: item_ = item @@ -42,10 +44,11 @@ def upsert(self, items: Sequence[Document], /, **kwargs: Any) -> UpsertResponse: return UpsertResponse(succeeded=ok_ids, failed=[]) - def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> DeleteResponse: + def delete(self, ids: Optional[list[str]] = None, **kwargs: Any) -> DeleteResponse: """Delete by ID.""" if ids is None: - raise ValueError("IDs must be provided for deletion") + msg = "IDs must be provided for deletion" + raise ValueError(msg) ok_ids = [] @@ -58,7 +61,7 @@ def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> DeleteRespon succeeded=ok_ids, num_deleted=len(ok_ids), num_failed=0, failed=[] ) - def get(self, ids: Sequence[str], /, **kwargs: Any) -> List[Document]: + def get(self, ids: Sequence[str], /, **kwargs: Any) -> list[Document]: """Get by ids.""" found_documents = [] @@ -70,7 +73,7 @@ def get(self, ids: Sequence[str], /, **kwargs: Any) -> List[Document]: def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun - ) -> List[Document]: + ) -> list[Document]: counts_by_doc = [] for document in self.store.values(): @@ -78,4 +81,4 @@ def _get_relevant_documents( counts_by_doc.append((document, count)) counts_by_doc.sort(key=lambda x: x[1], reverse=True) - return [doc.copy() for doc, count in counts_by_doc[: self.top_k]] + return [doc.model_copy() for doc, count in counts_by_doc[: self.top_k]] diff --git a/libs/core/langchain_core/language_models/__init__.py b/libs/core/langchain_core/language_models/__init__.py index 116f478d5688c..2b3c6b40ef827 100644 --- a/libs/core/langchain_core/language_models/__init__.py +++ b/libs/core/langchain_core/language_models/__init__.py @@ -4,7 +4,7 @@ LangChain has two main classes to work with language models: **Chat Models** and "old-fashioned" **LLMs**. -## Chat Models +**Chat Models** Language models that use a sequence of messages as inputs and return chat messages as outputs (as opposed to using plain text). These are traditionally newer models ( @@ -19,9 +19,9 @@ To implement a custom Chat Model, inherit from `BaseChatModel`. See the following guide for more information on how to implement a custom Chat Model: -https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/ +https://python.langchain.com/docs/how_to/custom_chat_model/ -## LLMs +**LLMs** Language models that takes a string as input and returns a string. These are traditionally older models (newer models generally are Chat Models, see below). @@ -34,7 +34,9 @@ To implement a custom LLM, inherit from `BaseLLM` or `LLM`. Please see the following guide for more information on how to implement a custom LLM: -https://python.langchain.com/v0.2/docs/how_to/custom_llm/ +https://python.langchain.com/docs/how_to/custom_llm/ + + """ # noqa: E501 from langchain_core.language_models.base import ( diff --git a/libs/core/langchain_core/language_models/base.py b/libs/core/langchain_core/language_models/base.py index d097cb4791e57..5e60c890a4708 100644 --- a/libs/core/langchain_core/language_models/base.py +++ b/libs/core/langchain_core/language_models/base.py @@ -1,24 +1,20 @@ from __future__ import annotations from abc import ABC, abstractmethod -from functools import lru_cache +from collections.abc import Mapping, Sequence +from functools import cache from typing import ( TYPE_CHECKING, Any, Callable, - Dict, - List, Literal, - Mapping, Optional, - Sequence, - Set, - Type, TypeVar, Union, ) -from typing_extensions import TypeAlias, TypedDict +from pydantic import BaseModel, ConfigDict, Field, field_validator +from typing_extensions import TypeAlias, TypedDict, override from langchain_core._api import deprecated from langchain_core.messages import ( @@ -28,7 +24,6 @@ get_buffer_string, ) from langchain_core.prompt_values import PromptValue -from langchain_core.pydantic_v1 import BaseModel, Field, validator from langchain_core.runnables import Runnable, RunnableSerializable from langchain_core.utils import get_pydantic_field_names @@ -51,11 +46,11 @@ class LangSmithParams(TypedDict, total=False): """Temperature for generation.""" ls_max_tokens: Optional[int] """Max tokens for generation.""" - ls_stop: Optional[List[str]] + ls_stop: Optional[list[str]] """Stop words for generation.""" -@lru_cache(maxsize=None) # Cache the tokenizer +@cache # Cache the tokenizer def get_tokenizer() -> Any: """Get a GPT-2 tokenizer instance. @@ -65,16 +60,17 @@ def get_tokenizer() -> Any: try: from transformers import GPT2TokenizerFast # type: ignore[import] except ImportError as e: - raise ImportError( + msg = ( "Could not import transformers python package. " "This is needed in order to calculate get_token_ids. " "Please install it with `pip install transformers`." - ) from e + ) + raise ImportError(msg) from e # create a GPT-2 tokenizer instance return GPT2TokenizerFast.from_pretrained("gpt2") -def _get_token_ids_default_method(text: str) -> List[int]: +def _get_token_ids_default_method(text: str) -> list[int]: """Encode the text into token IDs.""" # get the cached tokenizer tokenizer = get_tokenizer() @@ -103,30 +99,34 @@ class BaseLanguageModel( All language model wrappers inherited from BaseLanguageModel. """ - cache: Union[BaseCache, bool, None] = None + cache: Union[BaseCache, bool, None] = Field(default=None, exclude=True) """Whether to cache the response. - + * If true, will use the global cache. * If false, will not use a cache * If None, will use the global cache if it's set, otherwise no cache. * If instance of BaseCache, will use the provided cache. - + Caching is not currently supported for streaming methods of models. """ - verbose: bool = Field(default_factory=_get_verbosity) + verbose: bool = Field(default_factory=_get_verbosity, exclude=True, repr=False) """Whether to print out response text.""" callbacks: Callbacks = Field(default=None, exclude=True) """Callbacks to add to the run trace.""" - tags: Optional[List[str]] = Field(default=None, exclude=True) + tags: Optional[list[str]] = Field(default=None, exclude=True) """Tags to add to the run trace.""" - metadata: Optional[Dict[str, Any]] = Field(default=None, exclude=True) + metadata: Optional[dict[str, Any]] = Field(default=None, exclude=True) """Metadata to add to the run trace.""" - custom_get_token_ids: Optional[Callable[[str], List[int]]] = Field( + custom_get_token_ids: Optional[Callable[[str], list[int]]] = Field( default=None, exclude=True ) """Optional encoder to use for counting tokens.""" - @validator("verbose", pre=True, always=True, allow_reuse=True) + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) + + @field_validator("verbose", mode="before") def set_verbose(cls, verbose: Optional[bool]) -> bool: """If verbose is None, set it. @@ -144,6 +144,7 @@ def set_verbose(cls, verbose: Optional[bool]) -> bool: return verbose @property + @override def InputType(self) -> TypeAlias: """Get the input type for this runnable.""" from langchain_core.prompt_values import ( @@ -157,14 +158,14 @@ def InputType(self) -> TypeAlias: return Union[ str, Union[StringPromptValue, ChatPromptValueConcrete], - List[AnyMessage], + list[AnyMessage], ] @abstractmethod def generate_prompt( self, - prompts: List[PromptValue], - stop: Optional[List[str]] = None, + prompts: list[PromptValue], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult: @@ -198,8 +199,8 @@ def generate_prompt( @abstractmethod async def agenerate_prompt( self, - prompts: List[PromptValue], - stop: Optional[List[str]] = None, + prompts: list[PromptValue], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult: @@ -231,12 +232,12 @@ async def agenerate_prompt( """ def with_structured_output( - self, schema: Union[Dict, Type[BaseModel]], **kwargs: Any - ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: + self, schema: Union[dict, type[BaseModel]], **kwargs: Any + ) -> Runnable[LanguageModelInput, Union[dict, BaseModel]]: """Not implemented on this class.""" # Implement this on child class if there is a way of steering the model to # generate responses that match a given schema. - raise NotImplementedError() + raise NotImplementedError @deprecated("0.1.7", alternative="invoke", removal="1.0") @abstractmethod @@ -263,7 +264,7 @@ def predict( @abstractmethod def predict_messages( self, - messages: List[BaseMessage], + messages: list[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, @@ -309,7 +310,7 @@ async def apredict( @abstractmethod async def apredict_messages( self, - messages: List[BaseMessage], + messages: list[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, @@ -335,7 +336,7 @@ def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return self.lc_attributes - def get_token_ids(self, text: str) -> List[int]: + def get_token_ids(self, text: str) -> list[int]: """Return the ordered ids of the tokens in a text. Args: @@ -363,7 +364,7 @@ def get_num_tokens(self, text: str) -> int: """ return len(self.get_token_ids(text)) - def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: + def get_num_tokens_from_messages(self, messages: list[BaseMessage]) -> int: """Get the number of tokens in the messages. Useful for checking if an input fits in a model's context window. @@ -377,7 +378,7 @@ def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: return sum([self.get_num_tokens(get_buffer_string([m])) for m in messages]) @classmethod - def _all_required_field_names(cls) -> Set: + def _all_required_field_names(cls) -> set: """DEPRECATED: Kept for backwards compatibility. Use get_pydantic_field_names. diff --git a/libs/core/langchain_core/language_models/chat_models.py b/libs/core/langchain_core/language_models/chat_models.py index 0ac867a9c66f1..39fd11c247f9f 100644 --- a/libs/core/langchain_core/language_models/chat_models.py +++ b/libs/core/langchain_core/language_models/chat_models.py @@ -3,26 +3,31 @@ import asyncio import inspect import json +import typing import uuid import warnings from abc import ABC, abstractmethod +from collections.abc import AsyncIterator, Iterator, Sequence +from functools import cached_property from operator import itemgetter from typing import ( TYPE_CHECKING, Any, - AsyncIterator, Callable, - Dict, - Iterator, - List, Literal, Optional, - Sequence, - Type, Union, cast, ) +from pydantic import ( + BaseModel, + ConfigDict, + Field, + model_validator, +) +from typing_extensions import override + from langchain_core._api import deprecated from langchain_core.caches import BaseCache from langchain_core.callbacks import ( @@ -57,11 +62,6 @@ RunInfo, ) from langchain_core.prompt_values import ChatPromptValue, PromptValue, StringPromptValue -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - root_validator, -) from langchain_core.rate_limiters import BaseRateLimiter from langchain_core.runnables import RunnableMap, RunnablePassthrough from langchain_core.runnables.config import ensure_config, run_in_executor @@ -89,7 +89,8 @@ def generate_from_stream(stream: Iterator[ChatGenerationChunk]) -> ChatResult: if generation: generation += list(stream) if generation is None: - raise ValueError("No generations found in stream.") + msg = "No generations found in stream." + raise ValueError(msg) return ChatResult( generations=[ ChatGeneration( @@ -189,7 +190,7 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): +----------------------------------+--------------------------------------------------------------------+-------------------+ Follow the guide for more information on how to implement a custom Chat Model: - [Guide](https://python.langchain.com/v0.2/docs/how_to/custom_chat_model/). + [Guide](https://python.langchain.com/docs/how_to/custom_chat_model/). """ # noqa: E501 @@ -208,8 +209,8 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): disable_streaming: Union[bool, Literal["tool_calling"]] = False """Whether to disable streaming for this model. - - If streaming is bypassed, then ``stream()/astream()`` will defer to + + If streaming is bypassed, then ``stream()/astream()`` will defer to ``invoke()/ainvoke()``. - If True, will always bypass streaming case. @@ -218,8 +219,9 @@ class BaseChatModel(BaseLanguageModel[BaseMessage], ABC): - If False (default), will always use streaming case if available. """ - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: dict) -> Any: """Raise deprecation warning if callback_manager is used. Args: @@ -240,12 +242,18 @@ def raise_deprecation(cls, values: Dict) -> Dict: values["callbacks"] = values.pop("callback_manager", None) return values - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) + + @cached_property + def _serialized(self) -> dict[str, Any]: + return dumpd(self) # --- Runnable methods --- @property + @override def OutputType(self) -> Any: """Get the output type for this runnable.""" return AnyMessage @@ -258,17 +266,18 @@ def _convert_input(self, input: LanguageModelInput) -> PromptValue: elif isinstance(input, Sequence): return ChatPromptValue(messages=convert_to_messages(input)) else: - raise ValueError( + msg = ( f"Invalid input type {type(input)}. " "Must be a PromptValue, str, or list of BaseMessages." ) + raise ValueError(msg) def invoke( self, input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> BaseMessage: config = ensure_config(config) @@ -291,7 +300,7 @@ async def ainvoke( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> BaseMessage: config = ensure_config(config) @@ -347,10 +356,10 @@ def stream( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> Iterator[BaseMessageChunk]: - if not self._should_stream(async_api=False, **{**kwargs, **{"stream": True}}): + if not self._should_stream(async_api=False, **{**kwargs, "stream": True}): # model doesn't implement streaming, so use default implementation yield cast( BaseMessageChunk, self.invoke(input, config=config, stop=stop, **kwargs) @@ -374,7 +383,7 @@ def stream( self.metadata, ) (run_manager,) = callback_manager.on_chat_model_start( - dumpd(self), + self._serialized, [messages], invocation_params=params, options=options, @@ -417,10 +426,10 @@ async def astream( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> AsyncIterator[BaseMessageChunk]: - if not self._should_stream(async_api=True, **{**kwargs, **{"stream": True}}): + if not self._should_stream(async_api=True, **{**kwargs, "stream": True}): # No async or sync stream is implemented, so fall back to ainvoke yield cast( BaseMessageChunk, @@ -446,7 +455,7 @@ async def astream( self.metadata, ) (run_manager,) = await callback_manager.on_chat_model_start( - dumpd(self), + self._serialized, [messages], invocation_params=params, options=options, @@ -456,7 +465,7 @@ async def astream( ) if self.rate_limiter: - self.rate_limiter.acquire(blocking=True) + await self.rate_limiter.aacquire(blocking=True) generation: Optional[ChatGenerationChunk] = None try: @@ -490,12 +499,12 @@ async def astream( # --- Custom methods --- - def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: + def _combine_llm_outputs(self, llm_outputs: list[Optional[dict]]) -> dict: return {} def _get_invocation_params( self, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> dict: params = self.dict() @@ -504,7 +513,7 @@ def _get_invocation_params( def _get_ls_params( self, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> LangSmithParams: """Get standard params for tracing.""" @@ -541,29 +550,29 @@ def _get_ls_params( return ls_params - def _get_llm_string(self, stop: Optional[List[str]] = None, **kwargs: Any) -> str: + def _get_llm_string(self, stop: Optional[list[str]] = None, **kwargs: Any) -> str: if self.is_lc_serializable(): - params = {**kwargs, **{"stop": stop}} - param_string = str(sorted([(k, v) for k, v in params.items()])) + params = {**kwargs, "stop": stop} + param_string = str(sorted(params.items())) # This code is not super efficient as it goes back and forth between # json and dict. - serialized_repr = dumpd(self) + serialized_repr = self._serialized _cleanup_llm_representation(serialized_repr, 1) llm_string = json.dumps(serialized_repr, sort_keys=True) return llm_string + "---" + param_string else: params = self._get_invocation_params(stop=stop, **kwargs) params = {**params, **kwargs} - return str(sorted([(k, v) for k, v in params.items()])) + return str(sorted(params.items())) def generate( self, - messages: List[List[BaseMessage]], - stop: Optional[List[str]] = None, + messages: list[list[BaseMessage]], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, *, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[uuid.UUID] = None, **kwargs: Any, @@ -609,7 +618,7 @@ def generate( self.metadata, ) run_managers = callback_manager.on_chat_model_start( - dumpd(self), + self._serialized, messages, invocation_params=params, options=options, @@ -649,12 +658,12 @@ def generate( async def agenerate( self, - messages: List[List[BaseMessage]], - stop: Optional[List[str]] = None, + messages: list[list[BaseMessage]], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, *, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[uuid.UUID] = None, **kwargs: Any, @@ -701,7 +710,7 @@ async def agenerate( ) run_managers = await callback_manager.on_chat_model_start( - dumpd(self), + self._serialized, messages, invocation_params=params, options=options, @@ -768,8 +777,8 @@ async def agenerate( def generate_prompt( self, - prompts: List[PromptValue], - stop: Optional[List[str]] = None, + prompts: list[PromptValue], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult: @@ -778,8 +787,8 @@ def generate_prompt( async def agenerate_prompt( self, - prompts: List[PromptValue], - stop: Optional[List[str]] = None, + prompts: list[PromptValue], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> LLMResult: @@ -790,15 +799,12 @@ async def agenerate_prompt( def _generate_with_cache( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: - if isinstance(self.cache, BaseCache): - llm_cache = self.cache - else: - llm_cache = get_llm_cache() + llm_cache = self.cache if isinstance(self.cache, BaseCache) else get_llm_cache() # We should check the cache unless it's explicitly set to False # A None cache means we should use the default global cache # if it's configured. @@ -813,9 +819,8 @@ def _generate_with_cache( elif self.cache is None: pass else: - raise ValueError( - "Asked to cache, but no cache found at `langchain.cache`." - ) + msg = "Asked to cache, but no cache found at `langchain.cache`." + raise ValueError(msg) # Apply the rate limiter after checking the cache, since # we usually don't want to rate limit cache lookups, but @@ -830,7 +835,7 @@ def _generate_with_cache( run_manager=run_manager, **kwargs, ): - chunks: List[ChatGenerationChunk] = [] + chunks: list[ChatGenerationChunk] = [] for chunk in self._stream(messages, stop=stop, **kwargs): chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk) if run_manager: @@ -867,15 +872,12 @@ def _generate_with_cache( async def _agenerate_with_cache( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: - if isinstance(self.cache, BaseCache): - llm_cache = self.cache - else: - llm_cache = get_llm_cache() + llm_cache = self.cache if isinstance(self.cache, BaseCache) else get_llm_cache() # We should check the cache unless it's explicitly set to False # A None cache means we should use the default global cache # if it's configured. @@ -890,15 +892,14 @@ async def _agenerate_with_cache( elif self.cache is None: pass else: - raise ValueError( - "Asked to cache, but no cache found at `langchain.cache`." - ) + msg = "Asked to cache, but no cache found at `langchain.cache`." + raise ValueError(msg) # Apply the rate limiter after checking the cache, since # we usually don't want to rate limit cache lookups, but # we do want to rate limit API requests. if self.rate_limiter: - self.rate_limiter.acquire(blocking=True) + await self.rate_limiter.aacquire(blocking=True) # If stream is not explicitly set, check if implicitly requested by # astream_events() or astream_log(). Bail out if _astream not implemented @@ -907,7 +908,7 @@ async def _agenerate_with_cache( run_manager=run_manager, **kwargs, ): - chunks: List[ChatGenerationChunk] = [] + chunks: list[ChatGenerationChunk] = [] async for chunk in self._astream(messages, stop=stop, **kwargs): chunk.message.response_metadata = _gen_info_and_msg_metadata(chunk) if run_manager: @@ -945,8 +946,8 @@ async def _agenerate_with_cache( @abstractmethod def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -954,8 +955,8 @@ def _generate( async def _agenerate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -971,17 +972,17 @@ async def _agenerate( def _stream( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: - raise NotImplementedError() + raise NotImplementedError async def _astream( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: @@ -1008,8 +1009,8 @@ async def _astream( @deprecated("0.1.7", alternative="invoke", removal="1.0") def __call__( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> BaseMessage: @@ -1019,12 +1020,13 @@ def __call__( if isinstance(generation, ChatGeneration): return generation.message else: - raise ValueError("Unexpected generation type") + msg = "Unexpected generation type" + raise ValueError(msg) async def _call_async( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> BaseMessage: @@ -1035,11 +1037,12 @@ async def _call_async( if isinstance(generation, ChatGeneration): return generation.message else: - raise ValueError("Unexpected generation type") + msg = "Unexpected generation type" + raise ValueError(msg) @deprecated("0.1.7", alternative="invoke", removal="1.0") def call_as_llm( - self, message: str, stop: Optional[List[str]] = None, **kwargs: Any + self, message: str, stop: Optional[list[str]] = None, **kwargs: Any ) -> str: return self.predict(message, stop=stop, **kwargs) @@ -1047,58 +1050,48 @@ def call_as_llm( def predict( self, text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any ) -> str: - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) result = self([HumanMessage(content=text)], stop=_stop, **kwargs) if isinstance(result.content, str): return result.content else: - raise ValueError("Cannot use predict when output is not a string.") + msg = "Cannot use predict when output is not a string." + raise ValueError(msg) @deprecated("0.1.7", alternative="invoke", removal="1.0") def predict_messages( self, - messages: List[BaseMessage], + messages: list[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, ) -> BaseMessage: - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) return self(messages, stop=_stop, **kwargs) @deprecated("0.1.7", alternative="ainvoke", removal="1.0") async def apredict( self, text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any ) -> str: - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) result = await self._call_async( [HumanMessage(content=text)], stop=_stop, **kwargs ) if isinstance(result.content, str): return result.content else: - raise ValueError("Cannot use predict when output is not a string.") + msg = "Cannot use predict when output is not a string." + raise ValueError(msg) @deprecated("0.1.7", alternative="ainvoke", removal="1.0") async def apredict_messages( self, - messages: List[BaseMessage], + messages: list[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, ) -> BaseMessage: - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) return await self._call_async(messages, stop=_stop, **kwargs) @property @@ -1106,7 +1099,7 @@ async def apredict_messages( def _llm_type(self) -> str: """Return type of chat model.""" - def dict(self, **kwargs: Any) -> Dict: + def dict(self, **kwargs: Any) -> dict: """Return a dictionary of the LLM.""" starter_dict = dict(self._identifying_params) starter_dict["_type"] = self._llm_type @@ -1114,18 +1107,20 @@ def dict(self, **kwargs: Any) -> Dict: def bind_tools( self, - tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]], + tools: Sequence[ + Union[typing.Dict[str, Any], type, Callable, BaseTool] # noqa: UP006 + ], **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: - raise NotImplementedError() + raise NotImplementedError def with_structured_output( self, - schema: Union[Dict, Type], + schema: Union[typing.Dict, type], # noqa: UP006 *, include_raw: bool = False, **kwargs: Any, - ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: + ) -> Runnable[LanguageModelInput, Union[typing.Dict, BaseModel]]: # noqa: UP006 """Model wrapper that returns outputs formatted to match the given schema. Args: @@ -1170,7 +1165,7 @@ def with_structured_output( Example: Pydantic schema (include_raw=False): .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -1190,7 +1185,7 @@ class AnswerWithJustification(BaseModel): Example: Pydantic schema (include_raw=True): .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' @@ -1210,7 +1205,7 @@ class AnswerWithJustification(BaseModel): Example: Dict schema (include_raw=False): .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): @@ -1229,7 +1224,8 @@ class AnswerWithJustification(BaseModel): # } """ # noqa: E501 if kwargs: - raise ValueError(f"Received unsupported arguments {kwargs}") + msg = f"Received unsupported arguments {kwargs}" + raise ValueError(msg) from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, @@ -1237,9 +1233,8 @@ class AnswerWithJustification(BaseModel): ) if self.bind_tools is BaseChatModel.bind_tools: - raise NotImplementedError( - "with_structured_output is not implemented for this model." - ) + msg = "with_structured_output is not implemented for this model." + raise NotImplementedError(msg) llm = self.bind_tools([schema], tool_choice="any") if isinstance(schema, type) and is_basemodel_subclass(schema): output_parser: OutputParserLike = PydanticToolsParser( @@ -1272,8 +1267,8 @@ class SimpleChatModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -1285,8 +1280,8 @@ def _generate( @abstractmethod def _call( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: @@ -1294,8 +1289,8 @@ def _call( async def _agenerate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -1326,9 +1321,12 @@ def _cleanup_llm_representation(serialized: Any, depth: int) -> None: if not isinstance(serialized, dict): return - if "type" in serialized and serialized["type"] == "not_implemented": - if "repr" in serialized: - del serialized["repr"] + if ( + "type" in serialized + and serialized["type"] == "not_implemented" + and "repr" in serialized + ): + del serialized["repr"] if "graph" in serialized: del serialized["graph"] diff --git a/libs/core/langchain_core/language_models/fake.py b/libs/core/langchain_core/language_models/fake.py index 92c506ba0991a..74545f3eca929 100644 --- a/libs/core/langchain_core/language_models/fake.py +++ b/libs/core/langchain_core/language_models/fake.py @@ -1,6 +1,7 @@ import asyncio import time -from typing import Any, AsyncIterator, Iterator, List, Mapping, Optional +from collections.abc import AsyncIterator, Iterator, Mapping +from typing import Any, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, @@ -14,18 +15,18 @@ class FakeListLLM(LLM): """Fake LLM for testing purposes.""" - responses: List[str] + responses: list[str] """List of responses to return in order.""" # This parameter should be removed from FakeListLLM since # it's only used by sub-classes. sleep: Optional[float] = None """Sleep time in seconds between responses. - + Ignored by FakeListLLM, but used by sub-classes. """ i: int = 0 """Internally incremented after every model invocation. - + Useful primarily for testing purposes. """ @@ -37,7 +38,7 @@ def _llm_type(self) -> str: def _call( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: @@ -52,7 +53,7 @@ def _call( async def _acall( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: @@ -90,7 +91,7 @@ def stream( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> Iterator[str]: result = self.invoke(input, config) @@ -110,7 +111,7 @@ async def astream( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> AsyncIterator[str]: result = await self.ainvoke(input, config) diff --git a/libs/core/langchain_core/language_models/fake_chat_models.py b/libs/core/langchain_core/language_models/fake_chat_models.py index 23f17d88c741f..95d605b7cb4e5 100644 --- a/libs/core/langchain_core/language_models/fake_chat_models.py +++ b/libs/core/langchain_core/language_models/fake_chat_models.py @@ -3,7 +3,8 @@ import asyncio import re import time -from typing import Any, AsyncIterator, Dict, Iterator, List, Optional, Union, cast +from collections.abc import AsyncIterator, Iterator +from typing import Any, Optional, Union, cast from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, @@ -12,12 +13,13 @@ from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult +from langchain_core.runnables import RunnableConfig class FakeMessagesListChatModel(BaseChatModel): """Fake ChatModel for testing purposes.""" - responses: List[BaseMessage] + responses: list[BaseMessage] """List of responses to **cycle** through in order.""" sleep: Optional[float] = None """Sleep time in seconds between responses.""" @@ -26,8 +28,8 @@ class FakeMessagesListChatModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -51,7 +53,7 @@ class FakeListChatModelError(Exception): class FakeListChatModel(SimpleChatModel): """Fake ChatModel for testing purposes.""" - responses: List[str] + responses: list[str] """List of responses to **cycle** through in order.""" sleep: Optional[float] = None i: int = 0 @@ -65,8 +67,8 @@ def _llm_type(self) -> str: def _call( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: @@ -80,8 +82,8 @@ def _call( def _stream( self, - messages: List[BaseMessage], - stop: Union[List[str], None] = None, + messages: list[BaseMessage], + stop: Union[list[str], None] = None, run_manager: Union[CallbackManagerForLLMRun, None] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: @@ -103,8 +105,8 @@ def _stream( async def _astream( self, - messages: List[BaseMessage], - stop: Union[List[str], None] = None, + messages: list[BaseMessage], + stop: Union[list[str], None] = None, run_manager: Union[AsyncCallbackManagerForLLMRun, None] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: @@ -124,17 +126,44 @@ async def _astream( yield ChatGenerationChunk(message=AIMessageChunk(content=c)) @property - def _identifying_params(self) -> Dict[str, Any]: + def _identifying_params(self) -> dict[str, Any]: return {"responses": self.responses} + # manually override batch to preserve batch ordering with no concurrency + def batch( + self, + inputs: list[Any], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, + *, + return_exceptions: bool = False, + **kwargs: Any, + ) -> list[BaseMessage]: + if isinstance(config, list): + return [self.invoke(m, c, **kwargs) for m, c in zip(inputs, config)] + return [self.invoke(m, config, **kwargs) for m in inputs] + + async def abatch( + self, + inputs: list[Any], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, + *, + return_exceptions: bool = False, + **kwargs: Any, + ) -> list[BaseMessage]: + if isinstance(config, list): + # do Not use an async iterator here because need explicit ordering + return [await self.ainvoke(m, c, **kwargs) for m, c in zip(inputs, config)] + # do Not use an async iterator here because need explicit ordering + return [await self.ainvoke(m, config, **kwargs) for m in inputs] + class FakeChatModel(SimpleChatModel): """Fake Chat Model wrapper for testing purposes.""" def _call( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: @@ -142,8 +171,8 @@ def _call( async def _agenerate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -157,7 +186,7 @@ def _llm_type(self) -> str: return "fake-chat-model" @property - def _identifying_params(self) -> Dict[str, Any]: + def _identifying_params(self) -> dict[str, Any]: return {"key": "fake"} @@ -186,24 +215,21 @@ class GenericFakeChatModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Top Level call""" message = next(self.messages) - if isinstance(message, str): - message_ = AIMessage(content=message) - else: - message_ = message + message_ = AIMessage(content=message) if isinstance(message, str) else message generation = ChatGeneration(message=message_) return ChatResult(generations=[generation]) def _stream( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: @@ -212,18 +238,20 @@ def _stream( messages, stop=stop, run_manager=run_manager, **kwargs ) if not isinstance(chat_result, ChatResult): - raise ValueError( + msg = ( f"Expected generate to return a ChatResult, " f"but got {type(chat_result)} instead." ) + raise ValueError(msg) message = chat_result.generations[0].message if not isinstance(message, AIMessage): - raise ValueError( + msg = ( f"Expected invoke to return an AIMessage, " f"but got {type(message)} instead." ) + raise ValueError(msg) content = message.content @@ -231,7 +259,7 @@ def _stream( # Use a regular expression to split on whitespace with a capture group # so that we can preserve the whitespace in the output. assert isinstance(content, str) - content_chunks = cast(List[str], re.split(r"(\s)", content)) + content_chunks = cast(list[str], re.split(r"(\s)", content)) for token in content_chunks: chunk = ChatGenerationChunk( @@ -249,7 +277,7 @@ def _stream( for fkey, fvalue in value.items(): if isinstance(fvalue, str): # Break function call by `,` - fvalue_chunks = cast(List[str], re.split(r"(,)", fvalue)) + fvalue_chunks = cast(list[str], re.split(r"(,)", fvalue)) for fvalue_chunk in fvalue_chunks: chunk = ChatGenerationChunk( message=AIMessageChunk( @@ -306,8 +334,8 @@ class ParrotFakeChatModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: diff --git a/libs/core/langchain_core/language_models/llms.py b/libs/core/langchain_core/language_models/llms.py index 56679dd4209ca..7fd47e627d739 100644 --- a/libs/core/langchain_core/language_models/llms.py +++ b/libs/core/langchain_core/language_models/llms.py @@ -10,23 +10,18 @@ import uuid import warnings from abc import ABC, abstractmethod +from collections.abc import AsyncIterator, Iterator, Sequence from pathlib import Path from typing import ( Any, - AsyncIterator, Callable, - Dict, - Iterator, - List, Optional, - Sequence, - Tuple, - Type, Union, cast, ) import yaml +from pydantic import ConfigDict, Field, model_validator from tenacity import ( RetryCallState, before_sleep_log, @@ -36,6 +31,7 @@ stop_after_attempt, wait_exponential, ) +from typing_extensions import override from langchain_core._api import deprecated from langchain_core.caches import BaseCache @@ -62,7 +58,6 @@ ) from langchain_core.outputs import Generation, GenerationChunk, LLMResult, RunInfo from langchain_core.prompt_values import ChatPromptValue, PromptValue, StringPromptValue -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.runnables import RunnableConfig, ensure_config, get_config_list from langchain_core.runnables.config import run_in_executor @@ -76,7 +71,7 @@ def _log_error_once(msg: str) -> None: def create_base_retry_decorator( - error_types: List[Type[BaseException]], + error_types: list[type[BaseException]], max_retries: int = 1, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] @@ -140,23 +135,25 @@ def _resolve_cache(cache: Union[BaseCache, bool, None]) -> Optional[BaseCache]: elif cache is True: llm_cache = get_llm_cache() if llm_cache is None: - raise ValueError( + msg = ( "No global cache was configured. Use `set_llm_cache`." "to set a global cache if you want to use a global cache." "Otherwise either pass a cache object or set cache to False/None" ) + raise ValueError(msg) elif cache is False: llm_cache = None else: - raise ValueError(f"Unsupported cache value {cache}") + msg = f"Unsupported cache value {cache}" + raise ValueError(msg) return llm_cache def get_prompts( - params: Dict[str, Any], - prompts: List[str], + params: dict[str, Any], + prompts: list[str], cache: Optional[Union[BaseCache, bool, None]] = None, -) -> Tuple[Dict[int, List], str, List[int], List[str]]: +) -> tuple[dict[int, list], str, list[int], list[str]]: """Get prompts that are already cached. Args: @@ -171,7 +168,7 @@ def get_prompts( Raises: ValueError: If the cache is not set and cache is True. """ - llm_string = str(sorted([(k, v) for k, v in params.items()])) + llm_string = str(sorted(params.items())) missing_prompts = [] missing_prompt_idxs = [] existing_prompts = {} @@ -189,10 +186,10 @@ def get_prompts( async def aget_prompts( - params: Dict[str, Any], - prompts: List[str], + params: dict[str, Any], + prompts: list[str], cache: Optional[Union[BaseCache, bool, None]] = None, -) -> Tuple[Dict[int, List], str, List[int], List[str]]: +) -> tuple[dict[int, list], str, list[int], list[str]]: """Get prompts that are already cached. Async version. Args: @@ -207,7 +204,7 @@ async def aget_prompts( Raises: ValueError: If the cache is not set and cache is True. """ - llm_string = str(sorted([(k, v) for k, v in params.items()])) + llm_string = str(sorted(params.items())) missing_prompts = [] missing_prompt_idxs = [] existing_prompts = {} @@ -225,11 +222,11 @@ async def aget_prompts( def update_cache( cache: Union[BaseCache, bool, None], - existing_prompts: Dict[int, List], + existing_prompts: dict[int, list], llm_string: str, - missing_prompt_idxs: List[int], + missing_prompt_idxs: list[int], new_results: LLMResult, - prompts: List[str], + prompts: list[str], ) -> Optional[dict]: """Update the cache and get the LLM output. @@ -259,11 +256,11 @@ def update_cache( async def aupdate_cache( cache: Union[BaseCache, bool, None], - existing_prompts: Dict[int, List], + existing_prompts: dict[int, list], llm_string: str, - missing_prompt_idxs: List[int], + missing_prompt_idxs: list[int], new_results: LLMResult, - prompts: List[str], + prompts: list[str], ) -> Optional[dict]: """Update the cache and get the LLM output. Async version. @@ -300,11 +297,13 @@ class BaseLLM(BaseLanguageModel[str], ABC): callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True) """[DEPRECATED]""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: dict) -> Any: """Raise deprecation warning if callback_manager is used.""" if values.get("callback_manager") is not None: warnings.warn( @@ -315,10 +314,15 @@ def raise_deprecation(cls, values: Dict) -> Dict: values["callbacks"] = values.pop("callback_manager", None) return values + @functools.cached_property + def _serialized(self) -> dict[str, Any]: + return dumpd(self) + # --- Runnable methods --- @property - def OutputType(self) -> Type[str]: + @override + def OutputType(self) -> type[str]: """Get the input type for this runnable.""" return str @@ -330,14 +334,15 @@ def _convert_input(self, input: LanguageModelInput) -> PromptValue: elif isinstance(input, Sequence): return ChatPromptValue(messages=convert_to_messages(input)) else: - raise ValueError( + msg = ( f"Invalid input type {type(input)}. " "Must be a PromptValue, str, or list of BaseMessages." ) + raise ValueError(msg) def _get_ls_params( self, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> LangSmithParams: """Get standard params for tracing.""" @@ -377,7 +382,7 @@ def invoke( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> str: config = ensure_config(config) @@ -401,7 +406,7 @@ async def ainvoke( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> str: config = ensure_config(config) @@ -419,12 +424,12 @@ async def ainvoke( def batch( self, - inputs: List[LanguageModelInput], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[LanguageModelInput], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: if not inputs: return [] @@ -444,7 +449,7 @@ def batch( return [g[0].text for g in llm_result.generations] except Exception as e: if return_exceptions: - return cast(List[str], [e for _ in inputs]) + return cast(list[str], [e for _ in inputs]) else: raise e else: @@ -466,12 +471,12 @@ def batch( async def abatch( self, - inputs: List[LanguageModelInput], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[LanguageModelInput], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: if not inputs: return [] config = get_config_list(config, len(inputs)) @@ -490,7 +495,7 @@ async def abatch( return [g[0].text for g in llm_result.generations] except Exception as e: if return_exceptions: - return cast(List[str], [e for _ in inputs]) + return cast(list[str], [e for _ in inputs]) else: raise e else: @@ -515,7 +520,7 @@ def stream( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> Iterator[str]: if type(self)._stream == BaseLLM._stream: @@ -542,7 +547,7 @@ def stream( self.metadata, ) (run_manager,) = callback_manager.on_llm_start( - dumpd(self), + self._serialized, [prompt], invocation_params=params, options=options, @@ -577,7 +582,7 @@ async def astream( input: LanguageModelInput, config: Optional[RunnableConfig] = None, *, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, **kwargs: Any, ) -> AsyncIterator[str]: if ( @@ -607,7 +612,7 @@ async def astream( self.metadata, ) (run_manager,) = await callback_manager.on_llm_start( - dumpd(self), + self._serialized, [prompt], invocation_params=params, options=options, @@ -643,8 +648,8 @@ async def astream( @abstractmethod def _generate( self, - prompts: List[str], - stop: Optional[List[str]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: @@ -652,8 +657,8 @@ def _generate( async def _agenerate( self, - prompts: List[str], - stop: Optional[List[str]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: @@ -670,7 +675,7 @@ async def _agenerate( def _stream( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: @@ -693,12 +698,12 @@ def _stream( Returns: An iterator of GenerationChunks. """ - raise NotImplementedError() + raise NotImplementedError async def _astream( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: @@ -741,9 +746,9 @@ async def _astream( def generate_prompt( self, - prompts: List[PromptValue], - stop: Optional[List[str]] = None, - callbacks: Optional[Union[Callbacks, List[Callbacks]]] = None, + prompts: list[PromptValue], + stop: Optional[list[str]] = None, + callbacks: Optional[Union[Callbacks, list[Callbacks]]] = None, **kwargs: Any, ) -> LLMResult: prompt_strings = [p.to_string() for p in prompts] @@ -751,9 +756,9 @@ def generate_prompt( async def agenerate_prompt( self, - prompts: List[PromptValue], - stop: Optional[List[str]] = None, - callbacks: Optional[Union[Callbacks, List[Callbacks]]] = None, + prompts: list[PromptValue], + stop: Optional[list[str]] = None, + callbacks: Optional[Union[Callbacks, list[Callbacks]]] = None, **kwargs: Any, ) -> LLMResult: prompt_strings = [p.to_string() for p in prompts] @@ -763,9 +768,9 @@ async def agenerate_prompt( def _generate_helper( self, - prompts: List[str], - stop: Optional[List[str]], - run_managers: List[CallbackManagerForLLMRun], + prompts: list[str], + stop: Optional[list[str]], + run_managers: list[CallbackManagerForLLMRun], new_arg_supported: bool, **kwargs: Any, ) -> LLMResult: @@ -796,14 +801,14 @@ def _generate_helper( def generate( self, - prompts: List[str], - stop: Optional[List[str]] = None, - callbacks: Optional[Union[Callbacks, List[Callbacks]]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, + callbacks: Optional[Union[Callbacks, list[Callbacks]]] = None, *, - tags: Optional[Union[List[str], List[List[str]]]] = None, - metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, - run_name: Optional[Union[str, List[str]]] = None, - run_id: Optional[Union[uuid.UUID, List[Optional[uuid.UUID]]]] = None, + tags: Optional[Union[list[str], list[list[str]]]] = None, + metadata: Optional[Union[dict[str, Any], list[dict[str, Any]]]] = None, + run_name: Optional[Union[str, list[str]]] = None, + run_id: Optional[Union[uuid.UUID, list[Optional[uuid.UUID]]]] = None, **kwargs: Any, ) -> LLMResult: """Pass a sequence of prompts to a model and return generations. @@ -840,10 +845,11 @@ def generate( prompt and additional model provider-specific output. """ if not isinstance(prompts, list): - raise ValueError( + msg = ( "Argument 'prompts' is expected to be of type List[str], received" f" argument of type {type(prompts)}." ) + raise ValueError(msg) # Create callback managers if isinstance(metadata, list): metadata = [ @@ -879,13 +885,13 @@ def generate( assert run_name is None or ( isinstance(run_name, list) and len(run_name) == len(prompts) ) - callbacks = cast(List[Callbacks], callbacks) - tags_list = cast(List[Optional[List[str]]], tags or ([None] * len(prompts))) + callbacks = cast(list[Callbacks], callbacks) + tags_list = cast(list[Optional[list[str]]], tags or ([None] * len(prompts))) metadata_list = cast( - List[Optional[Dict[str, Any]]], metadata or ([{}] * len(prompts)) + list[Optional[dict[str, Any]]], metadata or ([{}] * len(prompts)) ) run_name_list = run_name or cast( - List[Optional[str]], ([None] * len(prompts)) + list[Optional[str]], ([None] * len(prompts)) ) callback_managers = [ CallbackManager.configure( @@ -906,9 +912,9 @@ def generate( cast(Callbacks, callbacks), self.callbacks, self.verbose, - cast(List[str], tags), + cast(list[str], tags), self.tags, - cast(Dict[str, Any], metadata), + cast(dict[str, Any], metadata), self.metadata, ) ] * len(prompts) @@ -929,7 +935,7 @@ def generate( if (self.cache is None and get_llm_cache() is None) or self.cache is False: run_managers = [ callback_manager.on_llm_start( - dumpd(self), + self._serialized, [prompt], invocation_params=params, options=options, @@ -948,7 +954,7 @@ def generate( if len(missing_prompts) > 0: run_managers = [ callback_managers[idx].on_llm_start( - dumpd(self), + self._serialized, [prompts[idx]], invocation_params=params, options=options, @@ -981,24 +987,25 @@ def generate( @staticmethod def _get_run_ids_list( - run_id: Optional[Union[uuid.UUID, List[Optional[uuid.UUID]]]], prompts: list + run_id: Optional[Union[uuid.UUID, list[Optional[uuid.UUID]]]], prompts: list ) -> list: if run_id is None: return [None] * len(prompts) if isinstance(run_id, list): if len(run_id) != len(prompts): - raise ValueError( + msg = ( "Number of manually provided run_id's does not match batch length." f" {len(run_id)} != {len(prompts)}" ) + raise ValueError(msg) return run_id return [run_id] + [None] * (len(prompts) - 1) async def _agenerate_helper( self, - prompts: List[str], - stop: Optional[List[str]], - run_managers: List[AsyncCallbackManagerForLLMRun], + prompts: list[str], + stop: Optional[list[str]], + run_managers: list[AsyncCallbackManagerForLLMRun], new_arg_supported: bool, **kwargs: Any, ) -> LLMResult: @@ -1038,14 +1045,14 @@ async def _agenerate_helper( async def agenerate( self, - prompts: List[str], - stop: Optional[List[str]] = None, - callbacks: Optional[Union[Callbacks, List[Callbacks]]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, + callbacks: Optional[Union[Callbacks, list[Callbacks]]] = None, *, - tags: Optional[Union[List[str], List[List[str]]]] = None, - metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, - run_name: Optional[Union[str, List[str]]] = None, - run_id: Optional[Union[uuid.UUID, List[Optional[uuid.UUID]]]] = None, + tags: Optional[Union[list[str], list[list[str]]]] = None, + metadata: Optional[Union[dict[str, Any], list[dict[str, Any]]]] = None, + run_name: Optional[Union[str, list[str]]] = None, + run_id: Optional[Union[uuid.UUID, list[Optional[uuid.UUID]]]] = None, **kwargs: Any, ) -> LLMResult: """Asynchronously pass a sequence of prompts to a model and return generations. @@ -1112,13 +1119,13 @@ async def agenerate( assert run_name is None or ( isinstance(run_name, list) and len(run_name) == len(prompts) ) - callbacks = cast(List[Callbacks], callbacks) - tags_list = cast(List[Optional[List[str]]], tags or ([None] * len(prompts))) + callbacks = cast(list[Callbacks], callbacks) + tags_list = cast(list[Optional[list[str]]], tags or ([None] * len(prompts))) metadata_list = cast( - List[Optional[Dict[str, Any]]], metadata or ([{}] * len(prompts)) + list[Optional[dict[str, Any]]], metadata or ([{}] * len(prompts)) ) run_name_list = run_name or cast( - List[Optional[str]], ([None] * len(prompts)) + list[Optional[str]], ([None] * len(prompts)) ) callback_managers = [ AsyncCallbackManager.configure( @@ -1139,9 +1146,9 @@ async def agenerate( cast(Callbacks, callbacks), self.callbacks, self.verbose, - cast(List[str], tags), + cast(list[str], tags), self.tags, - cast(Dict[str, Any], metadata), + cast(dict[str, Any], metadata), self.metadata, ) ] * len(prompts) @@ -1166,7 +1173,7 @@ async def agenerate( run_managers = await asyncio.gather( *[ callback_manager.on_llm_start( - dumpd(self), + self._serialized, [prompt], invocation_params=params, options=options, @@ -1192,7 +1199,7 @@ async def agenerate( run_managers = await asyncio.gather( *[ callback_managers[idx].on_llm_start( - dumpd(self), + self._serialized, [prompts[idx]], invocation_params=params, options=options, @@ -1233,11 +1240,11 @@ async def agenerate( def __call__( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, callbacks: Callbacks = None, *, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> str: """Check Cache and run the LLM on the given prompt and input. @@ -1260,11 +1267,12 @@ def __call__( ValueError: If the prompt is not a string. """ if not isinstance(prompt, str): - raise ValueError( + msg = ( "Argument `prompt` is expected to be a string. Instead found " f"{type(prompt)}. If you want to run the LLM on multiple prompts, use " "`generate` instead." ) + raise ValueError(msg) return ( self.generate( [prompt], @@ -1281,11 +1289,11 @@ def __call__( async def _call_async( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, callbacks: Callbacks = None, *, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> str: """Check Cache and run the LLM on the given prompt and input.""" @@ -1303,25 +1311,19 @@ async def _call_async( def predict( self, text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any ) -> str: - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) return self(text, stop=_stop, **kwargs) @deprecated("0.1.7", alternative="invoke", removal="1.0") def predict_messages( self, - messages: List[BaseMessage], + messages: list[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, ) -> BaseMessage: text = get_buffer_string(messages) - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) content = self(text, stop=_stop, **kwargs) return AIMessage(content=content) @@ -1329,25 +1331,19 @@ def predict_messages( async def apredict( self, text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any ) -> str: - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) return await self._call_async(text, stop=_stop, **kwargs) @deprecated("0.1.7", alternative="ainvoke", removal="1.0") async def apredict_messages( self, - messages: List[BaseMessage], + messages: list[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any, ) -> BaseMessage: text = get_buffer_string(messages) - if stop is None: - _stop = None - else: - _stop = list(stop) + _stop = None if stop is None else list(stop) content = await self._call_async(text, stop=_stop, **kwargs) return AIMessage(content=content) @@ -1361,7 +1357,7 @@ def __str__(self) -> str: def _llm_type(self) -> str: """Return type of llm.""" - def dict(self, **kwargs: Any) -> Dict: + def dict(self, **kwargs: Any) -> dict: """Return a dictionary of the LLM.""" starter_dict = dict(self._identifying_params) starter_dict["_type"] = self._llm_type @@ -1382,10 +1378,7 @@ def save(self, file_path: Union[Path, str]) -> None: llm.save(file_path="path/llm.yaml") """ # Convert file to Path object. - if isinstance(file_path, str): - save_path = Path(file_path) - else: - save_path = file_path + save_path = Path(file_path) if isinstance(file_path, str) else file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) @@ -1400,7 +1393,8 @@ def save(self, file_path: Union[Path, str]) -> None: with open(file_path, "w") as f: yaml.dump(prompt_dict, f, default_flow_style=False) else: - raise ValueError(f"{save_path} must be json or yaml") + msg = f"{save_path} must be json or yaml" + raise ValueError(msg) class LLM(BaseLLM): @@ -1430,14 +1424,14 @@ class LLM(BaseLLM): Please see the following guide for more information on how to implement a custom LLM: - https://python.langchain.com/v0.2/docs/how_to/custom_llm/ + https://python.langchain.com/docs/how_to/custom_llm/ """ @abstractmethod def _call( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: @@ -1461,7 +1455,7 @@ def _call( async def _acall( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: @@ -1494,8 +1488,8 @@ async def _acall( def _generate( self, - prompts: List[str], - stop: Optional[List[str]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: @@ -1514,8 +1508,8 @@ def _generate( async def _agenerate( self, - prompts: List[str], - stop: Optional[List[str]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: diff --git a/libs/core/langchain_core/load/dump.py b/libs/core/langchain_core/load/dump.py index dbc723d41e099..00fae99d5287f 100644 --- a/libs/core/langchain_core/load/dump.py +++ b/libs/core/langchain_core/load/dump.py @@ -37,7 +37,8 @@ def dumps(obj: Any, *, pretty: bool = False, **kwargs: Any) -> str: ValueError: If `default` is passed as a kwarg. """ if "default" in kwargs: - raise ValueError("`default` should not be passed to dumps") + msg = "`default` should not be passed to dumps" + raise ValueError(msg) try: if pretty: indent = kwargs.pop("indent", 2) diff --git a/libs/core/langchain_core/load/load.py b/libs/core/langchain_core/load/load.py index fb6e3ec2a1da5..80f13f2539457 100644 --- a/libs/core/langchain_core/load/load.py +++ b/libs/core/langchain_core/load/load.py @@ -1,7 +1,7 @@ import importlib import json import os -from typing import Any, Dict, List, Optional +from typing import Any, Optional from langchain_core._api import beta from langchain_core.load.mapping import ( @@ -18,6 +18,18 @@ "langchain_community", "langchain_anthropic", "langchain_groq", + "langchain_google_genai", + "langchain_aws", + "langchain_openai", + "langchain_google_vertexai", + "langchain_mistralai", + "langchain_fireworks", +] +# Namespaces for which only deserializing via the SERIALIZABLE_MAPPING is allowed. +# Load by path is not allowed. +DISALLOW_LOAD_FROM_PATH = [ + "langchain_community", + "langchain", ] ALL_SERIALIZABLE_MAPPINGS = { @@ -33,9 +45,12 @@ class Reviver: def __init__( self, - secrets_map: Optional[Dict[str, str]] = None, - valid_namespaces: Optional[List[str]] = None, + secrets_map: Optional[dict[str, str]] = None, + valid_namespaces: Optional[list[str]] = None, secrets_from_env: bool = True, + additional_import_mappings: Optional[ + dict[tuple[str, ...], tuple[str, ...]] + ] = None, ) -> None: """Initialize the reviver. @@ -47,21 +62,33 @@ def __init__( to allow to be deserialized. Defaults to None. secrets_from_env: Whether to load secrets from the environment. Defaults to True. + additional_import_mappings: A dictionary of additional namespace mappings + You can use this to override default mappings or add new mappings. + Defaults to None. """ self.secrets_from_env = secrets_from_env - self.secrets_map = secrets_map or dict() - # By default only support langchain, but user can pass in additional namespaces + self.secrets_map = secrets_map or {} + # By default, only support langchain, but user can pass in additional namespaces self.valid_namespaces = ( [*DEFAULT_NAMESPACES, *valid_namespaces] if valid_namespaces else DEFAULT_NAMESPACES ) + self.additional_import_mappings = additional_import_mappings or {} + self.import_mappings = ( + { + **ALL_SERIALIZABLE_MAPPINGS, + **self.additional_import_mappings, + } + if self.additional_import_mappings + else ALL_SERIALIZABLE_MAPPINGS + ) - def __call__(self, value: Dict[str, Any]) -> Any: + def __call__(self, value: dict[str, Any]) -> Any: if ( - value.get("lc", None) == 1 - and value.get("type", None) == "secret" - and value.get("id", None) is not None + value.get("lc") == 1 + and value.get("type") == "secret" + and value.get("id") is not None ): [key] = value["id"] if key in self.secrets_map: @@ -69,61 +96,63 @@ def __call__(self, value: Dict[str, Any]) -> Any: else: if self.secrets_from_env and key in os.environ and os.environ[key]: return os.environ[key] - raise KeyError(f'Missing key "{key}" in load(secrets_map)') + msg = f'Missing key "{key}" in load(secrets_map)' + raise KeyError(msg) if ( - value.get("lc", None) == 1 - and value.get("type", None) == "not_implemented" - and value.get("id", None) is not None + value.get("lc") == 1 + and value.get("type") == "not_implemented" + and value.get("id") is not None ): - raise NotImplementedError( + msg = ( "Trying to load an object that doesn't implement " f"serialization: {value}" ) + raise NotImplementedError(msg) if ( - value.get("lc", None) == 1 - and value.get("type", None) == "constructor" - and value.get("id", None) is not None + value.get("lc") == 1 + and value.get("type") == "constructor" + and value.get("id") is not None ): [*namespace, name] = value["id"] - - if namespace[0] not in self.valid_namespaces: - raise ValueError(f"Invalid namespace: {value}") - - # The root namespace "langchain" is not a valid identifier. - if len(namespace) == 1 and namespace[0] == "langchain": - raise ValueError(f"Invalid namespace: {value}") - - # If namespace is in known namespaces, try to use mapping - if namespace[0] in DEFAULT_NAMESPACES: - # Get the importable path - key = tuple(namespace + [name]) - if key not in ALL_SERIALIZABLE_MAPPINGS: - raise ValueError( - "Trying to deserialize something that cannot " - "be deserialized in current version of langchain-core: " - f"{key}" - ) - import_path = ALL_SERIALIZABLE_MAPPINGS[key] + mapping_key = tuple(value["id"]) + + if ( + namespace[0] not in self.valid_namespaces + # The root namespace ["langchain"] is not a valid identifier. + or namespace == ["langchain"] + ): + msg = f"Invalid namespace: {value}" + raise ValueError(msg) + # Has explicit import path. + elif mapping_key in self.import_mappings: + import_path = self.import_mappings[mapping_key] # Split into module and name - import_dir, import_obj = import_path[:-1], import_path[-1] + import_dir, name = import_path[:-1], import_path[-1] # Import module mod = importlib.import_module(".".join(import_dir)) - # Import class - cls = getattr(mod, import_obj) - # Otherwise, load by path + elif namespace[0] in DISALLOW_LOAD_FROM_PATH: + msg = ( + "Trying to deserialize something that cannot " + "be deserialized in current version of langchain-core: " + f"{mapping_key}." + ) + raise ValueError(msg) + # Otherwise, treat namespace as path. else: mod = importlib.import_module(".".join(namespace)) - cls = getattr(mod, name) + + cls = getattr(mod, name) # The class must be a subclass of Serializable. if not issubclass(cls, Serializable): - raise ValueError(f"Invalid namespace: {value}") + msg = f"Invalid namespace: {value}" + raise ValueError(msg) # We don't need to recurse on kwargs # as json.loads will do that for us. - kwargs = value.get("kwargs", dict()) + kwargs = value.get("kwargs", {}) return cls(**kwargs) return value @@ -133,9 +162,10 @@ def __call__(self, value: Dict[str, Any]) -> Any: def loads( text: str, *, - secrets_map: Optional[Dict[str, str]] = None, - valid_namespaces: Optional[List[str]] = None, + secrets_map: Optional[dict[str, str]] = None, + valid_namespaces: Optional[list[str]] = None, secrets_from_env: bool = True, + additional_import_mappings: Optional[dict[tuple[str, ...], tuple[str, ...]]] = None, ) -> Any: """Revive a LangChain class from a JSON string. Equivalent to `load(json.loads(text))`. @@ -149,12 +179,18 @@ def loads( to allow to be deserialized. Defaults to None. secrets_from_env: Whether to load secrets from the environment. Defaults to True. + additional_import_mappings: A dictionary of additional namespace mappings + You can use this to override default mappings or add new mappings. + Defaults to None. Returns: Revived LangChain objects. """ return json.loads( - text, object_hook=Reviver(secrets_map, valid_namespaces, secrets_from_env) + text, + object_hook=Reviver( + secrets_map, valid_namespaces, secrets_from_env, additional_import_mappings + ), ) @@ -162,9 +198,10 @@ def loads( def load( obj: Any, *, - secrets_map: Optional[Dict[str, str]] = None, - valid_namespaces: Optional[List[str]] = None, + secrets_map: Optional[dict[str, str]] = None, + valid_namespaces: Optional[list[str]] = None, secrets_from_env: bool = True, + additional_import_mappings: Optional[dict[tuple[str, ...], tuple[str, ...]]] = None, ) -> Any: """Revive a LangChain class from a JSON object. Use this if you already have a parsed JSON object, eg. from `json.load` or `orjson.loads`. @@ -178,11 +215,16 @@ def load( to allow to be deserialized. Defaults to None. secrets_from_env: Whether to load secrets from the environment. Defaults to True. + additional_import_mappings: A dictionary of additional namespace mappings + You can use this to override default mappings or add new mappings. + Defaults to None. Returns: Revived LangChain objects. """ - reviver = Reviver(secrets_map, valid_namespaces, secrets_from_env) + reviver = Reviver( + secrets_map, valid_namespaces, secrets_from_env, additional_import_mappings + ) def _load(obj: Any) -> Any: if isinstance(obj, dict): diff --git a/libs/core/langchain_core/load/mapping.py b/libs/core/langchain_core/load/mapping.py index 4aa70dead92f2..d3863e65759ea 100644 --- a/libs/core/langchain_core/load/mapping.py +++ b/libs/core/langchain_core/load/mapping.py @@ -18,11 +18,9 @@ version of LangChain where the code was in a different location. """ -from typing import Dict, Tuple - # First value is the value that it is serialized as # Second value is the path to load it from -SERIALIZABLE_MAPPING: Dict[Tuple[str, ...], Tuple[str, ...]] = { +SERIALIZABLE_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = { ("langchain", "schema", "messages", "AIMessage"): ( "langchain_core", "messages", @@ -297,6 +295,17 @@ "chat_models", "ChatMistralAI", ), + ("langchain", "chat_models", "bedrock", "ChatBedrock"): ( + "langchain_aws", + "chat_models", + "bedrock", + "ChatBedrock", + ), + ("langchain_google_genai", "chat_models", "ChatGoogleGenerativeAI"): ( + "langchain_google_genai", + "chat_models", + "ChatGoogleGenerativeAI", + ), ("langchain", "schema", "output", "ChatGenerationChunk"): ( "langchain_core", "outputs", @@ -524,7 +533,7 @@ # Needed for backwards compatibility for old versions of LangChain where things # Were in different place -_OG_SERIALIZABLE_MAPPING: Dict[Tuple[str, ...], Tuple[str, ...]] = { +_OG_SERIALIZABLE_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = { ("langchain", "schema", "AIMessage"): ( "langchain_core", "messages", @@ -572,7 +581,7 @@ # Needed for backwards compatibility for a few versions where we serialized # with langchain_core paths. -OLD_CORE_NAMESPACES_MAPPING: Dict[Tuple[str, ...], Tuple[str, ...]] = { +OLD_CORE_NAMESPACES_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = { ("langchain_core", "messages", "ai", "AIMessage"): ( "langchain_core", "messages", @@ -926,7 +935,7 @@ ), } -_JS_SERIALIZABLE_MAPPING: Dict[Tuple[str, ...], Tuple[str, ...]] = { +_JS_SERIALIZABLE_MAPPING: dict[tuple[str, ...], tuple[str, ...]] = { ("langchain_core", "messages", "AIMessage"): ( "langchain_core", "messages", @@ -1017,4 +1026,24 @@ "image", "ImagePromptTemplate", ), + ("langchain", "chat_models", "bedrock", "ChatBedrock"): ( + "langchain_aws", + "chat_models", + "ChatBedrock", + ), + ("langchain", "chat_models", "google_genai", "ChatGoogleGenerativeAI"): ( + "langchain_google_genai", + "chat_models", + "ChatGoogleGenerativeAI", + ), + ("langchain", "chat_models", "groq", "ChatGroq"): ( + "langchain_groq", + "chat_models", + "ChatGroq", + ), + ("langchain", "chat_models", "bedrock", "BedrockChat"): ( + "langchain_aws", + "chat_models", + "ChatBedrock", + ), } diff --git a/libs/core/langchain_core/load/serializable.py b/libs/core/langchain_core/load/serializable.py index 06e46b2667c0b..b5e7d8b9150af 100644 --- a/libs/core/langchain_core/load/serializable.py +++ b/libs/core/langchain_core/load/serializable.py @@ -1,8 +1,7 @@ +import contextlib from abc import ABC from typing import ( Any, - Dict, - List, Literal, Optional, TypedDict, @@ -10,10 +9,9 @@ cast, ) +from pydantic import BaseModel, ConfigDict from typing_extensions import NotRequired -from langchain_core.pydantic_v1 import BaseModel - class BaseSerialized(TypedDict): """Base class for serialized objects. @@ -26,9 +24,9 @@ class BaseSerialized(TypedDict): """ lc: int - id: List[str] + id: list[str] name: NotRequired[str] - graph: NotRequired[Dict[str, Any]] + graph: NotRequired[dict[str, Any]] class SerializedConstructor(BaseSerialized): @@ -40,7 +38,7 @@ class SerializedConstructor(BaseSerialized): """ type: Literal["constructor"] - kwargs: Dict[str, Any] + kwargs: dict[str, Any] class SerializedSecret(BaseSerialized): @@ -80,7 +78,7 @@ def try_neq_default(value: Any, key: str, model: BaseModel) -> bool: Exception: If the key is not in the model. """ try: - return model.__fields__[key].get_default() != value + return model.model_fields[key].get_default() != value except Exception: return True @@ -126,7 +124,7 @@ def is_lc_serializable(cls) -> bool: return False @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. For example, if the class is `langchain.llms.openai.OpenAI`, then the @@ -135,16 +133,16 @@ def get_lc_namespace(cls) -> List[str]: return cls.__module__.split(".") @property - def lc_secrets(self) -> Dict[str, str]: + def lc_secrets(self) -> dict[str, str]: """A map of constructor argument names to secret ids. For example, {"openai_api_key": "OPENAI_API_KEY"} """ - return dict() + return {} @property - def lc_attributes(self) -> Dict: + def lc_attributes(self) -> dict: """List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. @@ -153,7 +151,7 @@ def lc_attributes(self) -> Dict: return {} @classmethod - def lc_id(cls) -> List[str]: + def lc_id(cls) -> list[str]: """A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path @@ -161,16 +159,25 @@ def lc_id(cls) -> List[str]: For example, for the class `langchain.llms.openai.OpenAI`, the id is ["langchain", "llms", "openai", "OpenAI"]. """ - return [*cls.get_lc_namespace(), cls.__name__] - - class Config: - extra = "ignore" + # Pydantic generics change the class name. So we need to do the following + if ( + "origin" in cls.__pydantic_generic_metadata__ + and cls.__pydantic_generic_metadata__["origin"] is not None + ): + original_name = cls.__pydantic_generic_metadata__["origin"].__name__ + else: + original_name = cls.__name__ + return [*cls.get_lc_namespace(), original_name] + + model_config = ConfigDict( + extra="ignore", + ) def __repr_args__(self) -> Any: return [ (k, v) for k, v in super().__repr_args__() - if (k not in self.__fields__ or try_neq_default(v, k, self)) + if (k not in self.model_fields or try_neq_default(v, k, self)) ] def to_json(self) -> Union[SerializedConstructor, SerializedNotImplemented]: @@ -182,14 +189,17 @@ def to_json(self) -> Union[SerializedConstructor, SerializedNotImplemented]: if not self.is_lc_serializable(): return self.to_json_not_implemented() - secrets = dict() + secrets = {} # Get latest values for kwargs if there is an attribute with same name - lc_kwargs = { - k: getattr(self, k, v) - for k, v in self - if not (self.__exclude_fields__ or {}).get(k, False) # type: ignore - and _is_field_useful(self, k, v) - } + lc_kwargs = {} + for k, v in self: + if not _is_field_useful(self, k, v): + continue + # Do nothing if the field is excluded + if k in self.model_fields and self.model_fields[k].exclude: + continue + + lc_kwargs[k] = getattr(self, k, v) # Merge the lc_secrets and lc_attributes from every class in the MRO for cls in [None, *self.__class__.mro()]: @@ -205,11 +215,12 @@ def to_json(self) -> Union[SerializedConstructor, SerializedNotImplemented]: for attr in deprecated_attributes: if hasattr(cls, attr): - raise ValueError( + msg = ( f"Class {self.__class__} has a deprecated " f"attribute {attr}. Please use the corresponding " f"classmethod instead." ) + raise ValueError(msg) # Get a reference to self bound to each class in the MRO this = cast(Serializable, self if cls is None else super(cls, self)) @@ -221,13 +232,15 @@ def to_json(self) -> Union[SerializedConstructor, SerializedNotImplemented]: # that are not present in the fields. for key in list(secrets): value = secrets[key] - if key in this.__fields__: - secrets[this.__fields__[key].alias] = value + if key in this.model_fields: + alias = this.model_fields[key].alias + if alias is not None: + secrets[alias] = value lc_kwargs.update(this.lc_attributes) # include all secrets, even if not specified in kwargs # as these secrets may be passed as an environment variable instead - for key in secrets.keys(): + for key in secrets: secret_value = getattr(self, key, None) or lc_kwargs.get(key) if secret_value is not None: lc_kwargs.update({key: secret_value}) @@ -259,9 +272,13 @@ def _is_field_useful(inst: Serializable, key: str, value: Any) -> bool: If the field is not required and the value is None, it is useful if the default value is different from the value. """ - field = inst.__fields__.get(key) + field = inst.model_fields.get(key) if not field: return False + + if field.is_required(): + return True + # Handle edge case: a value cannot be converted to a boolean (e.g. a # Pandas DataFrame). try: @@ -269,6 +286,17 @@ def _is_field_useful(inst: Serializable, key: str, value: Any) -> bool: except Exception as _: value_is_truthy = False + if value_is_truthy: + return True + + # Value is still falsy here! + if field.default_factory is dict and isinstance(value, dict): + return False + + # Value is still falsy here! + if field.default_factory is list and isinstance(value, list): + return False + # Handle edge case: inequality of two objects does not evaluate to a bool (e.g. two # Pandas DataFrames). try: @@ -282,12 +310,13 @@ def _is_field_useful(inst: Serializable, key: str, value: Any) -> bool: except Exception as _: value_neq_default = False - return field.required is True or value_is_truthy or value_neq_default + # If value is falsy and does not match the default + return value_is_truthy or value_neq_default def _replace_secrets( - root: Dict[Any, Any], secrets_map: Dict[str, str] -) -> Dict[Any, Any]: + root: dict[Any, Any], secrets_map: dict[str, str] +) -> dict[Any, Any]: result = root.copy() for path, secret_id in secrets_map.items(): [*parts, last] = path.split(".") @@ -315,7 +344,7 @@ def to_json_not_implemented(obj: object) -> SerializedNotImplemented: Returns: SerializedNotImplemented """ - _id: List[str] = [] + _id: list[str] = [] try: if hasattr(obj, "__name__"): _id = [*obj.__module__.split("."), obj.__name__] @@ -330,8 +359,6 @@ def to_json_not_implemented(obj: object) -> SerializedNotImplemented: "id": _id, "repr": None, } - try: + with contextlib.suppress(Exception): result["repr"] = repr(obj) - except Exception: - pass return result diff --git a/libs/core/langchain_core/memory.py b/libs/core/langchain_core/memory.py index 743c68b68b6a1..0313f74e1220e 100644 --- a/libs/core/langchain_core/memory.py +++ b/libs/core/langchain_core/memory.py @@ -1,22 +1,30 @@ """**Memory** maintains Chain state, incorporating context from past runs. -**Class hierarchy for Memory:** - -.. code-block:: - - BaseMemory --> Memory --> Memory # Examples: BaseChatMemory -> MotorheadMemory +This module contains memory abstractions from LangChain v0.0.x. +These abstractions are now deprecated and will be removed in LangChain v1.0.0. """ # noqa: E501 from __future__ import annotations from abc import ABC, abstractmethod -from typing import Any, Dict, List +from typing import Any + +from pydantic import ConfigDict +from langchain_core._api import deprecated from langchain_core.load.serializable import Serializable from langchain_core.runnables import run_in_executor +@deprecated( + since="0.3.3", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class BaseMemory(Serializable, ABC): """Abstract base class for memory in Chains. @@ -47,16 +55,17 @@ def clear(self) -> None: pass """ # noqa: E501 - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property @abstractmethod - def memory_variables(self) -> List[str]: + def memory_variables(self) -> list[str]: """The string keys this memory class will add to chain inputs.""" @abstractmethod - def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: + def load_memory_variables(self, inputs: dict[str, Any]) -> dict[str, Any]: """Return key-value pairs given the text input to the chain. Args: @@ -66,7 +75,7 @@ def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: A dictionary of key-value pairs. """ - async def aload_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: + async def aload_memory_variables(self, inputs: dict[str, Any]) -> dict[str, Any]: """Async return key-value pairs given the text input to the chain. Args: @@ -78,7 +87,7 @@ async def aload_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any] return await run_in_executor(None, self.load_memory_variables, inputs) @abstractmethod - def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: + def save_context(self, inputs: dict[str, Any], outputs: dict[str, str]) -> None: """Save the context of this chain run to memory. Args: @@ -87,7 +96,7 @@ def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """ async def asave_context( - self, inputs: Dict[str, Any], outputs: Dict[str, str] + self, inputs: dict[str, Any], outputs: dict[str, str] ) -> None: """Async save the context of this chain run to memory. diff --git a/libs/core/langchain_core/messages/ai.py b/libs/core/langchain_core/messages/ai.py index 51aeed441d728..63036baf04833 100644 --- a/libs/core/langchain_core/messages/ai.py +++ b/libs/core/langchain_core/messages/ai.py @@ -1,7 +1,8 @@ import json -from typing import Any, Dict, List, Literal, Optional, Union +from typing import Any, Literal, Optional, Union -from typing_extensions import TypedDict +from pydantic import model_validator +from typing_extensions import NotRequired, Self, TypedDict from langchain_core.messages.base import ( BaseMessage, @@ -24,11 +25,70 @@ from langchain_core.messages.tool import ( tool_call_chunk as create_tool_call_chunk, ) -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils._merge import merge_dicts, merge_lists from langchain_core.utils.json import parse_partial_json +class InputTokenDetails(TypedDict, total=False): + """Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + """ + + audio: int + """Audio input tokens.""" + cache_creation: int + """Input tokens that were cached and there was a cache miss. + + Since there was a cache miss, the cache was created from these tokens. + """ + cache_read: int + """Input tokens that were cached and there was a cache hit. + + Since there was a cache hit, the tokens were read from the cache. More precisely, + the model state given these tokens was read from the cache. + """ + + +class OutputTokenDetails(TypedDict, total=False): + """Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + """ + + audio: int + """Audio output tokens.""" + reasoning: int + """Reasoning output tokens. + + Tokens generated by the model in a chain of thought process (i.e. by OpenAI's o1 + models) that are not returned as part of model output. + """ + + class UsageMetadata(TypedDict): """Usage metadata for a message, such as token counts. @@ -39,18 +99,41 @@ class UsageMetadata(TypedDict): .. code-block:: python { - "input_tokens": 10, - "output_tokens": 20, - "total_tokens": 30 + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. """ input_tokens: int - """Count of input (or prompt) tokens.""" + """Count of input (or prompt) tokens. Sum of all input token types.""" output_tokens: int - """Count of output (or completion) tokens.""" + """Count of output (or completion) tokens. Sum of all output token types.""" total_tokens: int - """Total token count.""" + """Total token count. Sum of input_tokens + output_tokens.""" + input_token_details: NotRequired[InputTokenDetails] + """Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + """ + output_token_details: NotRequired[OutputTokenDetails] + """Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + """ class AIMessage(BaseMessage): @@ -65,13 +148,13 @@ class AIMessage(BaseMessage): example: bool = False """Use to denote that a message is part of an example conversation. - + At the moment, this is ignored by most models. Usage is discouraged. """ - tool_calls: List[ToolCall] = [] + tool_calls: list[ToolCall] = [] """If provided, tool calls associated with the message.""" - invalid_tool_calls: List[InvalidToolCall] = [] + invalid_tool_calls: list[InvalidToolCall] = [] """If provided, tool calls with parsing errors associated with the message.""" usage_metadata: Optional[UsageMetadata] = None """If provided, usage metadata for a message, such as token counts. @@ -83,7 +166,7 @@ class AIMessage(BaseMessage): """The type of the message (used for deserialization). Defaults to "ai".""" def __init__( - self, content: Union[str, List[Union[str, Dict]]], **kwargs: Any + self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. @@ -94,7 +177,7 @@ def __init__( super().__init__(content=content, **kwargs) @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Returns: @@ -104,15 +187,16 @@ def get_lc_namespace(cls) -> List[str]: return ["langchain", "schema", "messages"] @property - def lc_attributes(self) -> Dict: + def lc_attributes(self) -> dict: """Attrs to be serialized even if they are derived from other init args.""" return { "tool_calls": self.tool_calls, "invalid_tool_calls": self.invalid_tool_calls, } - @root_validator(pre=True) - def _backwards_compat_tool_calls(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def _backwards_compat_tool_calls(cls, values: dict) -> Any: check_additional_kwargs = not any( values.get(k) for k in ("tool_calls", "invalid_tool_calls", "tool_call_chunks") @@ -136,7 +220,7 @@ def _backwards_compat_tool_calls(cls, values: dict) -> dict: # Ensure "type" is properly set on all tool call-like dicts. if tool_calls := values.get("tool_calls"): - updated: List = [] + updated: list = [] for tc in tool_calls: updated.append( create_tool_call(**{k: v for k, v in tc.items() if k != "type"}) @@ -177,7 +261,7 @@ def pretty_repr(self, html: bool = False) -> str: base = super().pretty_repr(html=html) lines = [] - def _format_tool_args(tc: Union[ToolCall, InvalidToolCall]) -> List[str]: + def _format_tool_args(tc: Union[ToolCall, InvalidToolCall]) -> list[str]: lines = [ f" {tc.get('name', 'Tool')} ({tc.get('id')})", f" Call ID: {tc.get('id')}", @@ -204,7 +288,7 @@ def _format_tool_args(tc: Union[ToolCall, InvalidToolCall]) -> List[str]: return (base.strip() + "\n" + "\n".join(lines)).strip() -AIMessage.update_forward_refs() +AIMessage.model_rebuild() class AIMessageChunk(AIMessage, BaseMessageChunk): @@ -214,14 +298,14 @@ class AIMessageChunk(AIMessage, BaseMessageChunk): # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["AIMessageChunk"] = "AIMessageChunk" # type: ignore - """The type of the message (used for deserialization). + """The type of the message (used for deserialization). Defaults to "AIMessageChunk".""" - tool_call_chunks: List[ToolCallChunk] = [] + tool_call_chunks: list[ToolCallChunk] = [] """If provided, tool call chunks associated with the message.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Returns: @@ -231,15 +315,15 @@ def get_lc_namespace(cls) -> List[str]: return ["langchain", "schema", "messages"] @property - def lc_attributes(self) -> Dict: + def lc_attributes(self) -> dict: """Attrs to be serialized even if they are derived from other init args.""" return { "tool_calls": self.tool_calls, "invalid_tool_calls": self.invalid_tool_calls, } - @root_validator(pre=False, skip_on_failure=True) - def init_tool_calls(cls, values: dict) -> dict: + @model_validator(mode="after") + def init_tool_calls(self) -> Self: """Initialize tool calls from tool call chunks. Args: @@ -251,35 +335,35 @@ def init_tool_calls(cls, values: dict) -> dict: Raises: ValueError: If the tool call chunks are malformed. """ - if not values["tool_call_chunks"]: - if values["tool_calls"]: - values["tool_call_chunks"] = [ + if not self.tool_call_chunks: + if self.tool_calls: + self.tool_call_chunks = [ create_tool_call_chunk( name=tc["name"], args=json.dumps(tc["args"]), id=tc["id"], index=None, ) - for tc in values["tool_calls"] + for tc in self.tool_calls ] - if values["invalid_tool_calls"]: - tool_call_chunks = values.get("tool_call_chunks", []) + if self.invalid_tool_calls: + tool_call_chunks = self.tool_call_chunks tool_call_chunks.extend( [ create_tool_call_chunk( name=tc["name"], args=tc["args"], id=tc["id"], index=None ) - for tc in values["invalid_tool_calls"] + for tc in self.invalid_tool_calls ] ) - values["tool_call_chunks"] = tool_call_chunks + self.tool_call_chunks = tool_call_chunks - return values + return self tool_calls = [] invalid_tool_calls = [] - for chunk in values["tool_call_chunks"]: + for chunk in self.tool_call_chunks: try: - args_ = parse_partial_json(chunk["args"]) if chunk["args"] != "" else {} + args_ = parse_partial_json(chunk["args"]) if chunk["args"] != "" else {} # type: ignore[arg-type] if isinstance(args_, dict): tool_calls.append( create_tool_call( @@ -289,7 +373,8 @@ def init_tool_calls(cls, values: dict) -> dict: ) ) else: - raise ValueError("Malformed args.") + msg = "Malformed args." + raise ValueError(msg) except Exception: invalid_tool_calls.append( create_invalid_tool_call( @@ -299,9 +384,9 @@ def init_tool_calls(cls, values: dict) -> dict: error=None, ) ) - values["tool_calls"] = tool_calls - values["invalid_tool_calls"] = invalid_tool_calls - return values + self.tool_calls = tool_calls + self.invalid_tool_calls = invalid_tool_calls + return self def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore if isinstance(other, AIMessageChunk): @@ -318,9 +403,8 @@ def add_ai_message_chunks( ) -> AIMessageChunk: """Add multiple AIMessageChunks together.""" if any(left.example != o.example for o in others): - raise ValueError( - "Cannot concatenate AIMessageChunks with different example values." - ) + msg = "Cannot concatenate AIMessageChunks with different example values." + raise ValueError(msg) content = merge_content(left.content, *(o.content for o in others)) additional_kwargs = merge_dicts( diff --git a/libs/core/langchain_core/messages/base.py b/libs/core/langchain_core/messages/base.py index c0607f6d95758..9eab1ed431af2 100644 --- a/libs/core/langchain_core/messages/base.py +++ b/libs/core/langchain_core/messages/base.py @@ -1,9 +1,11 @@ from __future__ import annotations -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union, cast +from collections.abc import Sequence +from typing import TYPE_CHECKING, Any, Optional, Union, cast + +from pydantic import ConfigDict, Field, field_validator from langchain_core.load.serializable import Serializable -from langchain_core.pydantic_v1 import Extra, Field from langchain_core.utils import get_bolded_text from langchain_core.utils._merge import merge_dicts, merge_lists from langchain_core.utils.interactive_env import is_interactive_env @@ -18,12 +20,12 @@ class BaseMessage(Serializable): Messages are the inputs and outputs of ChatModels. """ - content: Union[str, List[Union[str, Dict]]] + content: Union[str, list[Union[str, dict]]] """The string contents of the message.""" additional_kwargs: dict = Field(default_factory=dict) """Reserved for additional payload data associated with the message. - + For example, for a message from an AI, this could include tool calls as encoded by the model provider. """ @@ -33,16 +35,16 @@ class BaseMessage(Serializable): type: str """The type of the message. Must be a string that is unique to the message type. - + The purpose of this field is to allow for easy identification of the message type when deserializing messages. """ name: Optional[str] = None - """An optional name for the message. - + """An optional name for the message. + This can be used to provide a human-readable name for the message. - + Usage of this field is optional, and whether it's used or not is up to the model implementation. """ @@ -51,11 +53,19 @@ class BaseMessage(Serializable): """An optional unique identifier for the message. This should ideally be provided by the provider/model which created the message.""" - class Config: - extra = Extra.allow + model_config = ConfigDict( + extra="allow", + ) + + @field_validator("id", mode="before") + def cast_id_to_str(cls, id_value: Any) -> Optional[str]: + if id_value is not None: + return str(id_value) + else: + return id_value def __init__( - self, content: Union[str, List[Union[str, Dict]]], **kwargs: Any + self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. @@ -76,7 +86,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ @@ -110,9 +120,9 @@ def pretty_print(self) -> None: def merge_content( - first_content: Union[str, List[Union[str, Dict]]], - *contents: Union[str, List[Union[str, Dict]]], -) -> Union[str, List[Union[str, Dict]]]: + first_content: Union[str, list[Union[str, dict]]], + *contents: Union[str, list[Union[str, dict]]], +) -> Union[str, list[Union[str, dict]]]: """Merge two message contents. Args: @@ -134,7 +144,7 @@ def merge_content( merged = [merged] + content # type: ignore elif isinstance(content, list): # If both are lists - merged = merge_lists(cast(List, merged), content) # type: ignore + merged = merge_lists(cast(list, merged), content) # type: ignore # If the first content is a list, and the second content is a string else: # If the last element of the first content is a string @@ -154,7 +164,7 @@ class BaseMessageChunk(BaseMessage): """Message chunk, which can be concatenated with other Message chunks.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ @@ -213,11 +223,12 @@ def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore response_metadata=response_metadata, ) else: - raise TypeError( + msg = ( 'unsupported operand type(s) for +: "' f"{self.__class__.__name__}" f'" and "{other.__class__.__name__}"' ) + raise TypeError(msg) def message_to_dict(message: BaseMessage) -> dict: @@ -230,10 +241,10 @@ def message_to_dict(message: BaseMessage) -> dict: Message as a dict. The dict will have a "type" key with the message type and a "data" key with the message data as a dict. """ - return {"type": message.type, "data": message.dict()} + return {"type": message.type, "data": message.model_dump()} -def messages_to_dict(messages: Sequence[BaseMessage]) -> List[dict]: +def messages_to_dict(messages: Sequence[BaseMessage]) -> list[dict]: """Convert a sequence of Messages to a list of dictionaries. Args: diff --git a/libs/core/langchain_core/messages/chat.py b/libs/core/langchain_core/messages/chat.py index dbbe05a2b894f..73aafd8834ee6 100644 --- a/libs/core/langchain_core/messages/chat.py +++ b/libs/core/langchain_core/messages/chat.py @@ -1,4 +1,4 @@ -from typing import Any, List, Literal +from typing import Any, Literal from langchain_core.messages.base import ( BaseMessage, @@ -18,14 +18,14 @@ class ChatMessage(BaseMessage): """The type of the message (used during serialization). Defaults to "chat".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ return ["langchain", "schema", "messages"] -ChatMessage.update_forward_refs() +ChatMessage.model_rebuild() class ChatMessageChunk(ChatMessage, BaseMessageChunk): @@ -35,11 +35,11 @@ class ChatMessageChunk(ChatMessage, BaseMessageChunk): # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["ChatMessageChunk"] = "ChatMessageChunk" # type: ignore - """The type of the message (used during serialization). + """The type of the message (used during serialization). Defaults to "ChatMessageChunk".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"]. """ @@ -48,9 +48,8 @@ def get_lc_namespace(cls) -> List[str]: def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore if isinstance(other, ChatMessageChunk): if self.role != other.role: - raise ValueError( - "Cannot concatenate ChatMessageChunks with different roles." - ) + msg = "Cannot concatenate ChatMessageChunks with different roles." + raise ValueError(msg) return self.__class__( role=self.role, diff --git a/libs/core/langchain_core/messages/function.py b/libs/core/langchain_core/messages/function.py index 5625a3214dadd..080f580778819 100644 --- a/libs/core/langchain_core/messages/function.py +++ b/libs/core/langchain_core/messages/function.py @@ -1,4 +1,4 @@ -from typing import Any, List, Literal +from typing import Any, Literal from langchain_core.messages.base import ( BaseMessage, @@ -26,13 +26,13 @@ class FunctionMessage(BaseMessage): """The type of the message (used for serialization). Defaults to "function".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] -FunctionMessage.update_forward_refs() +FunctionMessage.model_rebuild() class FunctionMessageChunk(FunctionMessage, BaseMessageChunk): @@ -42,11 +42,11 @@ class FunctionMessageChunk(FunctionMessage, BaseMessageChunk): # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["FunctionMessageChunk"] = "FunctionMessageChunk" # type: ignore[assignment] - """The type of the message (used for serialization). + """The type of the message (used for serialization). Defaults to "FunctionMessageChunk".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] @@ -54,9 +54,8 @@ def get_lc_namespace(cls) -> List[str]: def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore if isinstance(other, FunctionMessageChunk): if self.name != other.name: - raise ValueError( - "Cannot concatenate FunctionMessageChunks with different names." - ) + msg = "Cannot concatenate FunctionMessageChunks with different names." + raise ValueError(msg) return self.__class__( name=self.name, diff --git a/libs/core/langchain_core/messages/human.py b/libs/core/langchain_core/messages/human.py index b61c0616af15c..8a847e39329d0 100644 --- a/libs/core/langchain_core/messages/human.py +++ b/libs/core/langchain_core/messages/human.py @@ -1,4 +1,4 @@ -from typing import Any, Dict, List, Literal, Union +from typing import Any, Literal, Union from langchain_core.messages.base import BaseMessage, BaseMessageChunk @@ -30,7 +30,7 @@ class HumanMessage(BaseMessage): example: bool = False """Use to denote that a message is part of an example conversation. - + At the moment, this is ignored by most models. Usage is discouraged. Defaults to False. """ @@ -39,13 +39,13 @@ class HumanMessage(BaseMessage): """The type of the message (used for serialization). Defaults to "human".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] def __init__( - self, content: Union[str, List[Union[str, Dict]]], **kwargs: Any + self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. @@ -56,7 +56,7 @@ def __init__( super().__init__(content=content, **kwargs) -HumanMessage.update_forward_refs() +HumanMessage.model_rebuild() class HumanMessageChunk(HumanMessage, BaseMessageChunk): @@ -66,11 +66,11 @@ class HumanMessageChunk(HumanMessage, BaseMessageChunk): # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["HumanMessageChunk"] = "HumanMessageChunk" # type: ignore[assignment] - """The type of the message (used for serialization). + """The type of the message (used for serialization). Defaults to "HumanMessageChunk".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] diff --git a/libs/core/langchain_core/messages/modifier.py b/libs/core/langchain_core/messages/modifier.py index 66d6dd531d6d2..a7face34fe95a 100644 --- a/libs/core/langchain_core/messages/modifier.py +++ b/libs/core/langchain_core/messages/modifier.py @@ -1,10 +1,8 @@ -from typing import Any, List, Literal +from typing import Any, Literal -from langchain_core._api import beta from langchain_core.messages.base import BaseMessage -@beta() class RemoveMessage(BaseMessage): """Message responsible for deleting other messages.""" @@ -22,15 +20,16 @@ def __init__(self, id: str, **kwargs: Any) -> None: ValueError: If the 'content' field is passed in kwargs. """ if kwargs.pop("content", None): - raise ValueError("RemoveMessage does not support 'content' field.") + msg = "RemoveMessage does not support 'content' field." + raise ValueError(msg) return super().__init__("", id=id, **kwargs) @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] -RemoveMessage.update_forward_refs() +RemoveMessage.model_rebuild() diff --git a/libs/core/langchain_core/messages/system.py b/libs/core/langchain_core/messages/system.py index 07bcbe64ddd48..a767fc21af2ad 100644 --- a/libs/core/langchain_core/messages/system.py +++ b/libs/core/langchain_core/messages/system.py @@ -1,4 +1,4 @@ -from typing import Any, Dict, List, Literal, Union +from typing import Any, Literal, Union from langchain_core.messages.base import BaseMessage, BaseMessageChunk @@ -33,13 +33,13 @@ class SystemMessage(BaseMessage): """The type of the message (used for serialization). Defaults to "system".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] def __init__( - self, content: Union[str, List[Union[str, Dict]]], **kwargs: Any + self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: """Pass in content as positional arg. @@ -50,7 +50,7 @@ def __init__( super().__init__(content=content, **kwargs) -SystemMessage.update_forward_refs() +SystemMessage.model_rebuild() class SystemMessageChunk(SystemMessage, BaseMessageChunk): @@ -60,11 +60,11 @@ class SystemMessageChunk(SystemMessage, BaseMessageChunk): # to make sure that the chunk variant can be discriminated from the # non-chunk variant. type: Literal["SystemMessageChunk"] = "SystemMessageChunk" # type: ignore[assignment] - """The type of the message (used for serialization). + """The type of the message (used for serialization). Defaults to "SystemMessageChunk".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] diff --git a/libs/core/langchain_core/messages/tool.py b/libs/core/langchain_core/messages/tool.py index 61baa32de58c8..653dd838f860e 100644 --- a/libs/core/langchain_core/messages/tool.py +++ b/libs/core/langchain_core/messages/tool.py @@ -1,6 +1,8 @@ import json -from typing import Any, Dict, List, Literal, Optional, Tuple, Union +from typing import Any, Literal, Optional, Union +from uuid import UUID +from pydantic import Field, model_validator from typing_extensions import NotRequired, TypedDict from langchain_core.messages.base import BaseMessage, BaseMessageChunk, merge_content @@ -56,11 +58,11 @@ class ToolMessage(BaseMessage): artifact: Any = None """Artifact of the Tool execution which is not meant to be sent to the model. - - Should only be specified if it is different from the message content, e.g. if only + + Should only be specified if it is different from the message content, e.g. if only a subset of the full tool output is being passed as message content but the full output is needed in other parts of the code. - + .. versionadded:: 0.2.17 """ @@ -70,25 +72,65 @@ class ToolMessage(BaseMessage): .. versionadded:: 0.2.24 """ + additional_kwargs: dict = Field(default_factory=dict, repr=False) + """Currently inherited from BaseMessage, but not used.""" + response_metadata: dict = Field(default_factory=dict, repr=False) + """Currently inherited from BaseMessage, but not used.""" + @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default is ["langchain", "schema", "messages"].""" return ["langchain", "schema", "messages"] + @model_validator(mode="before") + @classmethod + def coerce_args(cls, values: dict) -> dict: + content = values["content"] + if isinstance(content, tuple): + content = list(content) + + if not isinstance(content, (str, list)): + try: + values["content"] = str(content) + except ValueError as e: + msg = ( + "ToolMessage content should be a string or a list of string/dicts. " + f"Received:\n\n{content=}\n\n which could not be coerced into a " + "string." + ) + raise ValueError(msg) from e + elif isinstance(content, list): + values["content"] = [] + for i, x in enumerate(content): + if not isinstance(x, (str, dict)): + try: + values["content"].append(str(x)) + except ValueError as e: + msg = ( + "ToolMessage content should be a string or a list of " + "string/dicts. Received a list but " + f"element ToolMessage.content[{i}] is not a dict and could " + f"not be coerced to a string.:\n\n{x}" + ) + raise ValueError(msg) from e + else: + values["content"].append(x) + else: + pass + + tool_call_id = values["tool_call_id"] + if isinstance(tool_call_id, (UUID, int, float)): + values["tool_call_id"] = str(tool_call_id) + return values + def __init__( - self, content: Union[str, List[Union[str, Dict]]], **kwargs: Any + self, content: Union[str, list[Union[str, dict]]], **kwargs: Any ) -> None: - """Pass in content as positional arg. - - Args: - content: The string contents of the message. - kwargs: Additional fields to pass to the message - """ super().__init__(content=content, **kwargs) -ToolMessage.update_forward_refs() +ToolMessage.model_rebuild() class ToolMessageChunk(ToolMessage, BaseMessageChunk): @@ -100,16 +142,15 @@ class ToolMessageChunk(ToolMessage, BaseMessageChunk): type: Literal["ToolMessageChunk"] = "ToolMessageChunk" # type: ignore[assignment] @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "messages"] def __add__(self, other: Any) -> BaseMessageChunk: # type: ignore if isinstance(other, ToolMessageChunk): if self.tool_call_id != other.tool_call_id: - raise ValueError( - "Cannot concatenate ToolMessageChunks with different names." - ) + msg = "Cannot concatenate ToolMessageChunks with different names." + raise ValueError(msg) return self.__class__( tool_call_id=self.tool_call_id, @@ -147,18 +188,18 @@ class ToolCall(TypedDict): name: str """The name of the tool to be called.""" - args: Dict[str, Any] + args: dict[str, Any] """The arguments to the tool call.""" id: Optional[str] """An identifier associated with the tool call. - + An identifier is needed to associate a tool call request with a tool call result in events when multiple concurrent tool calls are made. """ type: NotRequired[Literal["tool_call"]] -def tool_call(*, name: str, args: Dict[str, Any], id: Optional[str]) -> ToolCall: +def tool_call(*, name: str, args: dict[str, Any], id: Optional[str]) -> ToolCall: return ToolCall(name=name, args=args, id=id, type="tool_call") @@ -236,8 +277,8 @@ def invalid_tool_call( def default_tool_parser( - raw_tool_calls: List[dict], -) -> Tuple[List[ToolCall], List[InvalidToolCall]]: + raw_tool_calls: list[dict], +) -> tuple[list[ToolCall], list[InvalidToolCall]]: """Best-effort parsing of tools.""" tool_calls = [] invalid_tool_calls = [] @@ -266,7 +307,7 @@ def default_tool_parser( return tool_calls, invalid_tool_calls -def default_tool_chunk_parser(raw_tool_calls: List[dict]) -> List[ToolCallChunk]: +def default_tool_chunk_parser(raw_tool_calls: list[dict]) -> list[ToolCallChunk]: """Best-effort parsing of tool chunks.""" tool_call_chunks = [] for tool_call in raw_tool_calls: diff --git a/libs/core/langchain_core/messages/utils.py b/libs/core/langchain_core/messages/utils.py index eb0b7df86a222..8f88502c1df30 100644 --- a/libs/core/langchain_core/messages/utils.py +++ b/libs/core/langchain_core/messages/utils.py @@ -11,24 +11,22 @@ import inspect import json +from collections.abc import Iterable, Sequence from functools import partial from typing import ( TYPE_CHECKING, + Annotated, Any, Callable, - Dict, - Iterable, - List, Literal, Optional, - Sequence, - Tuple, - Type, Union, cast, overload, ) +from pydantic import Discriminator, Field, Tag + from langchain_core.messages.ai import AIMessage, AIMessageChunk from langchain_core.messages.base import BaseMessage, BaseMessageChunk from langchain_core.messages.chat import ChatMessage, ChatMessageChunk @@ -45,13 +43,37 @@ from langchain_core.prompt_values import PromptValue from langchain_core.runnables.base import Runnable -AnyMessage = Union[ - AIMessage, - HumanMessage, - ChatMessage, - SystemMessage, - FunctionMessage, - ToolMessage, + +def _get_type(v: Any) -> str: + """Get the type associated with the object for serialization purposes.""" + if isinstance(v, dict) and "type" in v: + return v["type"] + elif hasattr(v, "type"): + return v.type + else: + msg = ( + f"Expected either a dictionary with a 'type' key or an object " + f"with a 'type' attribute. Instead got type {type(v)}." + ) + raise TypeError(msg) + + +AnyMessage = Annotated[ + Union[ + Annotated[AIMessage, Tag(tag="ai")], + Annotated[HumanMessage, Tag(tag="human")], + Annotated[ChatMessage, Tag(tag="chat")], + Annotated[SystemMessage, Tag(tag="system")], + Annotated[FunctionMessage, Tag(tag="function")], + Annotated[ToolMessage, Tag(tag="tool")], + Annotated[AIMessageChunk, Tag(tag="AIMessageChunk")], + Annotated[HumanMessageChunk, Tag(tag="HumanMessageChunk")], + Annotated[ChatMessageChunk, Tag(tag="ChatMessageChunk")], + Annotated[SystemMessageChunk, Tag(tag="SystemMessageChunk")], + Annotated[FunctionMessageChunk, Tag(tag="FunctionMessageChunk")], + Annotated[ToolMessageChunk, Tag(tag="ToolMessageChunk")], + ], + Field(discriminator=Discriminator(_get_type)), ] @@ -99,7 +121,8 @@ def get_buffer_string( elif isinstance(m, ChatMessage): role = m.role else: - raise ValueError(f"Got unsupported message type: {m}") + msg = f"Got unsupported message type: {m}" + raise ValueError(msg) message = f"{role}: {m.content}" if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs: message += f"{m.additional_kwargs['function_call']}" @@ -137,10 +160,11 @@ def _message_from_dict(message: dict) -> BaseMessage: elif _type == "ChatMessageChunk": return ChatMessageChunk(**message["data"]) else: - raise ValueError(f"Got unexpected message type: {_type}") + msg = f"Got unexpected message type: {_type}" + raise ValueError(msg) -def messages_from_dict(messages: Sequence[dict]) -> List[BaseMessage]: +def messages_from_dict(messages: Sequence[dict]) -> list[BaseMessage]: """Convert a sequence of messages from dicts to Message objects. Args: @@ -173,7 +197,7 @@ def message_chunk_to_message(chunk: BaseMessageChunk) -> BaseMessage: MessageLikeRepresentation = Union[ - BaseMessage, List[str], Tuple[str, str], str, Dict[str, Any] + BaseMessage, list[str], tuple[str, str], str, dict[str, Any] ] @@ -182,7 +206,7 @@ def _create_message_from_message_type( content: str, name: Optional[str] = None, tool_call_id: Optional[str] = None, - tool_calls: Optional[List[Dict[str, Any]]] = None, + tool_calls: Optional[list[dict[str, Any]]] = None, id: Optional[str] = None, **additional_kwargs: Any, ) -> BaseMessage: @@ -204,7 +228,7 @@ def _create_message_from_message_type( ValueError: if the message type is not one of "human", "user", "ai", "assistant", "system", "function", or "tool". """ - kwargs: Dict[str, Any] = {} + kwargs: dict[str, Any] = {} if name is not None: kwargs["name"] = name if tool_call_id is not None: @@ -245,10 +269,11 @@ def _create_message_from_message_type( elif message_type == "remove": message = RemoveMessage(**kwargs) else: - raise ValueError( - f"Unexpected message type: {message_type}. Use one of 'human'," + msg = ( + f"Unexpected message type: '{message_type}'. Use one of 'human'," f" 'user', 'ai', 'assistant', 'function', 'tool', or 'system'." ) + raise ValueError(msg) return message @@ -291,21 +316,21 @@ def _convert_to_message(message: MessageLikeRepresentation) -> BaseMessage: # None msg content is not allowed msg_content = msg_kwargs.pop("content") or "" except KeyError as e: - raise ValueError( - f"Message dict must contain 'role' and 'content' keys, got {message}" - ) from e + msg = f"Message dict must contain 'role' and 'content' keys, got {message}" + raise ValueError(msg) from e _message = _create_message_from_message_type( msg_type, msg_content, **msg_kwargs ) else: - raise NotImplementedError(f"Unsupported message type: {type(message)}") + msg = f"Unsupported message type: {type(message)}" + raise NotImplementedError(msg) return _message def convert_to_messages( messages: Union[Iterable[MessageLikeRepresentation], PromptValue], -) -> List[BaseMessage]: +) -> list[BaseMessage]: """Convert a sequence of messages to a list of messages. Args: @@ -326,18 +351,18 @@ def _runnable_support(func: Callable) -> Callable: @overload def wrapped( messages: Literal[None] = None, **kwargs: Any - ) -> Runnable[Sequence[MessageLikeRepresentation], List[BaseMessage]]: ... + ) -> Runnable[Sequence[MessageLikeRepresentation], list[BaseMessage]]: ... @overload def wrapped( messages: Sequence[MessageLikeRepresentation], **kwargs: Any - ) -> List[BaseMessage]: ... + ) -> list[BaseMessage]: ... def wrapped( messages: Optional[Sequence[MessageLikeRepresentation]] = None, **kwargs: Any ) -> Union[ - List[BaseMessage], - Runnable[Sequence[MessageLikeRepresentation], List[BaseMessage]], + list[BaseMessage], + Runnable[Sequence[MessageLikeRepresentation], list[BaseMessage]], ]: from langchain_core.runnables.base import RunnableLambda @@ -356,11 +381,11 @@ def filter_messages( *, include_names: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, - include_types: Optional[Sequence[Union[str, Type[BaseMessage]]]] = None, - exclude_types: Optional[Sequence[Union[str, Type[BaseMessage]]]] = None, + include_types: Optional[Sequence[Union[str, type[BaseMessage]]]] = None, + exclude_types: Optional[Sequence[Union[str, type[BaseMessage]]]] = None, include_ids: Optional[Sequence[str]] = None, exclude_ids: Optional[Sequence[str]] = None, -) -> List[BaseMessage]: +) -> list[BaseMessage]: """Filter messages based on name, type or id. Args: @@ -412,25 +437,24 @@ def filter_messages( ] """ # noqa: E501 messages = convert_to_messages(messages) - filtered: List[BaseMessage] = [] + filtered: list[BaseMessage] = [] for msg in messages: - if exclude_names and msg.name in exclude_names: - continue - elif exclude_types and _is_message_type(msg, exclude_types): - continue - elif exclude_ids and msg.id in exclude_ids: + if ( + (exclude_names and msg.name in exclude_names) + or (exclude_types and _is_message_type(msg, exclude_types)) + or (exclude_ids and msg.id in exclude_ids) + ): continue else: pass # default to inclusion when no inclusion criteria given. - if not (include_types or include_ids or include_names): - filtered.append(msg) - elif include_names and msg.name in include_names: - filtered.append(msg) - elif include_types and _is_message_type(msg, include_types): - filtered.append(msg) - elif include_ids and msg.id in include_ids: + if ( + not (include_types or include_ids or include_names) + or (include_names and msg.name in include_names) + or (include_types and _is_message_type(msg, include_types)) + or (include_ids and msg.id in include_ids) + ): filtered.append(msg) else: pass @@ -443,7 +467,7 @@ def merge_message_runs( messages: Union[Iterable[MessageLikeRepresentation], PromptValue], *, chunk_separator: str = "\n", -) -> List[BaseMessage]: +) -> list[BaseMessage]: """Merge consecutive Messages of the same type. **NOTE**: ToolMessages are not merged, as each has a distinct tool call id that @@ -513,9 +537,9 @@ def merge_message_runs( if not messages: return [] messages = convert_to_messages(messages) - merged: List[BaseMessage] = [] + merged: list[BaseMessage] = [] for msg in messages: - curr = msg.copy(deep=True) + curr = msg.model_copy(deep=True) last = merged.pop() if merged else None if not last: merged.append(curr) @@ -543,29 +567,55 @@ def trim_messages( *, max_tokens: int, token_counter: Union[ - Callable[[List[BaseMessage]], int], + Callable[[list[BaseMessage]], int], Callable[[BaseMessage], int], BaseLanguageModel, ], strategy: Literal["first", "last"] = "last", allow_partial: bool = False, end_on: Optional[ - Union[str, Type[BaseMessage], Sequence[Union[str, Type[BaseMessage]]]] + Union[str, type[BaseMessage], Sequence[Union[str, type[BaseMessage]]]] ] = None, start_on: Optional[ - Union[str, Type[BaseMessage], Sequence[Union[str, Type[BaseMessage]]]] + Union[str, type[BaseMessage], Sequence[Union[str, type[BaseMessage]]]] ] = None, include_system: bool = False, - text_splitter: Optional[Union[Callable[[str], List[str]], TextSplitter]] = None, -) -> List[BaseMessage]: + text_splitter: Optional[Union[Callable[[str], list[str]], TextSplitter]] = None, +) -> list[BaseMessage]: """Trim messages to be below a token count. + trim_messages can be used to reduce the size of a chat history to a specified token + count or specified message count. + + In either case, if passing the trimmed chat history back into a chat model + directly, the resulting chat history should usually satisfy the following + properties: + + 1. The resulting chat history should be valid. Most chat models expect that chat + history starts with either (1) a `HumanMessage` or (2) a `SystemMessage` followed + by a `HumanMessage`. To achieve this, set `start_on="human"`. + In addition, generally a `ToolMessage` can only appear after an `AIMessage` + that involved a tool call. + Please see the following link for more information about messages: + https://python.langchain.com/docs/concepts/#messages + 2. It includes recent messages and drops old messages in the chat history. + To achieve this set the `strategy="last"`. + 3. Usually, the new chat history should include the `SystemMessage` if it + was present in the original chat history since the `SystemMessage` includes + special instructions to the chat model. The `SystemMessage` is almost always + the first message in the history if present. To achieve this set the + `include_system=True`. + + **Note** The examples below show how to configure `trim_messages` to achieve + a behavior consistent with the above properties. + Args: messages: Sequence of Message-like objects to trim. max_tokens: Max token count of trimmed messages. token_counter: Function or llm for counting tokens in a BaseMessage or a list of BaseMessage. If a BaseLanguageModel is passed in then BaseLanguageModel.get_num_tokens_from_messages() will be used. + Set to `len` to count the number of **messages** in the chat history. strategy: Strategy for trimming. - "first": Keep the first <= n_count tokens of the messages. - "last": Keep the last <= n_count tokens of the messages. @@ -612,11 +662,97 @@ def trim_messages( ``strategy`` is specified. Example: + Trim chat history based on token count, keeping the SystemMessage if + present, and ensuring that the chat history starts with a HumanMessage ( + or a SystemMessage followed by a HumanMessage). + .. code-block:: python from typing import List - from langchain_core.messages import trim_messages, AIMessage, BaseMessage, HumanMessage, SystemMessage + from langchain_core.messages import ( + AIMessage, + HumanMessage, + BaseMessage, + SystemMessage, + trim_messages, + ) + + messages = [ + SystemMessage("you're a good assistant, you always respond with a joke."), + HumanMessage("i wonder why it's called langchain"), + AIMessage( + 'Well, I guess they thought "WordRope" and "SentenceString" just didn\'t have the same ring to it!' + ), + HumanMessage("and who is harrison chasing anyways"), + AIMessage( + "Hmmm let me think.\n\nWhy, he's probably chasing after the last cup of coffee in the office!" + ), + HumanMessage("what do you call a speechless parrot"), + ] + + + trim_messages( + messages, + max_tokens=45, + strategy="last", + token_counter=ChatOpenAI(model="gpt-4o"), + # Most chat models expect that chat history starts with either: + # (1) a HumanMessage or + # (2) a SystemMessage followed by a HumanMessage + start_on="human", + # Usually, we want to keep the SystemMessage + # if it's present in the original history. + # The SystemMessage has special instructions for the model. + include_system=True, + allow_partial=False, + ) + + .. code-block:: python + + [ + SystemMessage(content="you're a good assistant, you always respond with a joke."), + HumanMessage(content='what do you call a speechless parrot'), + ] + + Trim chat history based on the message count, keeping the SystemMessage if + present, and ensuring that the chat history starts with a HumanMessage ( + or a SystemMessage followed by a HumanMessage). + + trim_messages( + messages, + # When `len` is passed in as the token counter function, + # max_tokens will count the number of messages in the chat history. + max_tokens=4, + strategy="last", + # Passing in `len` as a token counter function will + # count the number of messages in the chat history. + token_counter=len, + # Most chat models expect that chat history starts with either: + # (1) a HumanMessage or + # (2) a SystemMessage followed by a HumanMessage + start_on="human", + # Usually, we want to keep the SystemMessage + # if it's present in the original history. + # The SystemMessage has special instructions for the model. + include_system=True, + allow_partial=False, + ) + + .. code-block:: python + + [ + SystemMessage(content="you're a good assistant, you always respond with a joke."), + HumanMessage(content='and who is harrison chasing anyways'), + AIMessage(content="Hmmm let me think.\n\nWhy, he's probably chasing after the last cup of coffee in the office!"), + HumanMessage(content='what do you call a speechless parrot'), + ] + + + Trim chat history using a custom token counter function that counts the + number of tokens in each message. + + .. code-block:: python messages = [ SystemMessage("This is a 4 token text. The full message is 10 tokens."), @@ -649,18 +785,6 @@ def dummy_token_counter(messages: List[BaseMessage]) -> int: count += default_msg_prefix_len + len(msg.content) * default_content_len + default_msg_suffix_len return count - First 30 tokens, not allowing partial messages: - .. code-block:: python - - trim_messages(messages, max_tokens=30, token_counter=dummy_token_counter, strategy="first") - - .. code-block:: python - - [ - SystemMessage("This is a 4 token text. The full message is 10 tokens."), - HumanMessage("This is a 4 token text. The full message is 10 tokens.", id="first"), - ] - First 30 tokens, allowing partial messages: .. code-block:: python @@ -679,108 +803,6 @@ def dummy_token_counter(messages: List[BaseMessage]) -> int: HumanMessage("This is a 4 token text. The full message is 10 tokens.", id="first"), AIMessage( [{"type": "text", "text": "This is the FIRST 4 token block."}], id="second"), ] - - First 30 tokens, allowing partial messages, have to end on HumanMessage: - .. code-block:: python - - trim_messages( - messages, - max_tokens=30, - token_counter=dummy_token_counter, - strategy="first" - allow_partial=True, - end_on="human", - ) - - .. code-block:: python - - [ - SystemMessage("This is a 4 token text. The full message is 10 tokens."), - HumanMessage("This is a 4 token text. The full message is 10 tokens.", id="first"), - ] - - - Last 30 tokens, including system message, not allowing partial messages: - .. code-block:: python - - trim_messages(messages, max_tokens=30, include_system=True, token_counter=dummy_token_counter, strategy="last") - - .. code-block:: python - - [ - SystemMessage("This is a 4 token text. The full message is 10 tokens."), - HumanMessage("This is a 4 token text. The full message is 10 tokens.", id="third"), - AIMessage("This is a 4 token text. The full message is 10 tokens.", id="fourth"), - ] - - Last 40 tokens, including system message, allowing partial messages: - .. code-block:: python - - trim_messages( - messages, - max_tokens=40, - token_counter=dummy_token_counter, - strategy="last", - allow_partial=True, - include_system=True - ) - - .. code-block:: python - - [ - SystemMessage("This is a 4 token text. The full message is 10 tokens."), - AIMessage( - [{"type": "text", "text": "This is the FIRST 4 token block."},], - id="second", - ), - HumanMessage("This is a 4 token text. The full message is 10 tokens.", id="third"), - AIMessage("This is a 4 token text. The full message is 10 tokens.", id="fourth"), - ] - - Last 30 tokens, including system message, allowing partial messages, end on HumanMessage: - .. code-block:: python - - trim_messages( - messages, - max_tokens=30, - token_counter=dummy_token_counter, - strategy="last", - end_on="human", - include_system=True, - allow_partial=True, - ) - - .. code-block:: python - - [ - SystemMessage("This is a 4 token text. The full message is 10 tokens."), - AIMessage( - [{"type": "text", "text": "This is the FIRST 4 token block."},], - id="second", - ), - HumanMessage("This is a 4 token text. The full message is 10 tokens.", id="third"), - ] - - Last 40 tokens, including system message, allowing partial messages, start on HumanMessage: - .. code-block:: python - - trim_messages( - messages, - max_tokens=40, - token_counter=dummy_token_counter, - strategy="last", - include_system=True, - allow_partial=True, - start_on="human" - ) - - .. code-block:: python - - [ - SystemMessage("This is a 4 token text. The full message is 10 tokens."), - HumanMessage("This is a 4 token text. The full message is 10 tokens.", id="third"), - AIMessage("This is a 4 token text. The full message is 10 tokens.", id="fourth"), - ] """ # noqa: E501 if start_on and strategy == "first": @@ -798,14 +820,16 @@ def dummy_token_counter(messages: List[BaseMessage]) -> int: def list_token_counter(messages: Sequence[BaseMessage]) -> int: return sum(token_counter(msg) for msg in messages) # type: ignore[arg-type, misc] + else: list_token_counter = token_counter # type: ignore[assignment] else: - raise ValueError( + msg = ( f"'token_counter' expected to be a model that implements " f"'get_num_tokens_from_messages()' or a function. Received object of type " f"{type(token_counter)}." ) + raise ValueError(msg) try: from langchain_text_splitters import TextSplitter @@ -840,22 +864,21 @@ def list_token_counter(messages: Sequence[BaseMessage]) -> int: text_splitter=text_splitter_fn, ) else: - raise ValueError( - f"Unrecognized {strategy=}. Supported strategies are 'last' and 'first'." - ) + msg = f"Unrecognized {strategy=}. Supported strategies are 'last' and 'first'." + raise ValueError(msg) def _first_max_tokens( messages: Sequence[BaseMessage], *, max_tokens: int, - token_counter: Callable[[List[BaseMessage]], int], - text_splitter: Callable[[str], List[str]], + token_counter: Callable[[list[BaseMessage]], int], + text_splitter: Callable[[str], list[str]], partial_strategy: Optional[Literal["first", "last"]] = None, end_on: Optional[ - Union[str, Type[BaseMessage], Sequence[Union[str, Type[BaseMessage]]]] + Union[str, type[BaseMessage], Sequence[Union[str, type[BaseMessage]]]] ] = None, -) -> List[BaseMessage]: +) -> list[BaseMessage]: messages = list(messages) idx = 0 for i in range(len(messages)): @@ -866,7 +889,7 @@ def _first_max_tokens( if idx < len(messages) - 1 and partial_strategy: included_partial = False if isinstance(messages[idx].content, list): - excluded = messages[idx].copy(deep=True) + excluded = messages[idx].model_copy(deep=True) num_block = len(excluded.content) if partial_strategy == "last": excluded.content = list(reversed(excluded.content)) @@ -880,7 +903,7 @@ def _first_max_tokens( if included_partial and partial_strategy == "last": excluded.content = list(reversed(excluded.content)) if not included_partial: - excluded = messages[idx].copy(deep=True) + excluded = messages[idx].model_copy(deep=True) if isinstance(excluded.content, list) and any( isinstance(block, str) or block["type"] == "text" for block in messages[idx].content @@ -923,26 +946,25 @@ def _last_max_tokens( messages: Sequence[BaseMessage], *, max_tokens: int, - token_counter: Callable[[List[BaseMessage]], int], - text_splitter: Callable[[str], List[str]], + token_counter: Callable[[list[BaseMessage]], int], + text_splitter: Callable[[str], list[str]], allow_partial: bool = False, include_system: bool = False, start_on: Optional[ - Union[str, Type[BaseMessage], Sequence[Union[str, Type[BaseMessage]]]] + Union[str, type[BaseMessage], Sequence[Union[str, type[BaseMessage]]]] ] = None, end_on: Optional[ - Union[str, Type[BaseMessage], Sequence[Union[str, Type[BaseMessage]]]] + Union[str, type[BaseMessage], Sequence[Union[str, type[BaseMessage]]]] ] = None, -) -> List[BaseMessage]: +) -> list[BaseMessage]: messages = list(messages) + if len(messages) == 0: + return [] if end_on: while messages and not _is_message_type(messages[-1], end_on): messages.pop() swapped_system = include_system and isinstance(messages[0], SystemMessage) - if swapped_system: - reversed_ = messages[:1] + messages[1:][::-1] - else: - reversed_ = messages[::-1] + reversed_ = messages[:1] + messages[1:][::-1] if swapped_system else messages[::-1] reversed_ = _first_max_tokens( reversed_, @@ -958,7 +980,7 @@ def _last_max_tokens( return reversed_[::-1] -_MSG_CHUNK_MAP: Dict[Type[BaseMessage], Type[BaseMessageChunk]] = { +_MSG_CHUNK_MAP: dict[type[BaseMessage], type[BaseMessageChunk]] = { HumanMessage: HumanMessageChunk, AIMessage: AIMessageChunk, SystemMessage: SystemMessageChunk, @@ -971,41 +993,43 @@ def _last_max_tokens( def _msg_to_chunk(message: BaseMessage) -> BaseMessageChunk: if message.__class__ in _MSG_CHUNK_MAP: - return _MSG_CHUNK_MAP[message.__class__](**message.dict(exclude={"type"})) + return _MSG_CHUNK_MAP[message.__class__](**message.model_dump(exclude={"type"})) for msg_cls, chunk_cls in _MSG_CHUNK_MAP.items(): if isinstance(message, msg_cls): - return chunk_cls(**message.dict(exclude={"type"})) + return chunk_cls(**message.model_dump(exclude={"type"})) - raise ValueError( + msg = ( f"Unrecognized message class {message.__class__}. Supported classes are " f"{list(_MSG_CHUNK_MAP.keys())}" ) + raise ValueError(msg) def _chunk_to_msg(chunk: BaseMessageChunk) -> BaseMessage: if chunk.__class__ in _CHUNK_MSG_MAP: return _CHUNK_MSG_MAP[chunk.__class__]( - **chunk.dict(exclude={"type", "tool_call_chunks"}) + **chunk.model_dump(exclude={"type", "tool_call_chunks"}) ) for chunk_cls, msg_cls in _CHUNK_MSG_MAP.items(): if isinstance(chunk, chunk_cls): - return msg_cls(**chunk.dict(exclude={"type", "tool_call_chunks"})) + return msg_cls(**chunk.model_dump(exclude={"type", "tool_call_chunks"})) - raise ValueError( + msg = ( f"Unrecognized message chunk class {chunk.__class__}. Supported classes are " f"{list(_CHUNK_MSG_MAP.keys())}" ) + raise ValueError(msg) -def _default_text_splitter(text: str) -> List[str]: +def _default_text_splitter(text: str) -> list[str]: splits = text.split("\n") return [s + "\n" for s in splits[:-1]] + splits[-1:] def _is_message_type( message: BaseMessage, - type_: Union[str, Type[BaseMessage], Sequence[Union[str, Type[BaseMessage]]]], + type_: Union[str, type[BaseMessage], Sequence[Union[str, type[BaseMessage]]]], ) -> bool: types = [type_] if isinstance(type_, (str, type)) else type_ types_str = [t for t in types if isinstance(t, str)] diff --git a/libs/core/langchain_core/output_parsers/base.py b/libs/core/langchain_core/output_parsers/base.py index caac385b6bd87..9d080cef300bc 100644 --- a/libs/core/langchain_core/output_parsers/base.py +++ b/libs/core/langchain_core/output_parsers/base.py @@ -1,19 +1,17 @@ from __future__ import annotations +import contextlib from abc import ABC, abstractmethod from typing import ( TYPE_CHECKING, Any, - Dict, Generic, - List, Optional, - Type, TypeVar, Union, ) -from typing_extensions import get_args +from typing_extensions import override from langchain_core.language_models import LanguageModelOutput from langchain_core.messages import AnyMessage, BaseMessage @@ -32,7 +30,7 @@ class BaseLLMOutputParser(Generic[T], ABC): """Abstract base class for parsing the outputs of a model.""" @abstractmethod - def parse_result(self, result: List[Generation], *, partial: bool = False) -> T: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> T: """Parse a list of candidate model Generations into a specific format. Args: @@ -46,7 +44,7 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> T: """ async def aparse_result( - self, result: List[Generation], *, partial: bool = False + self, result: list[Generation], *, partial: bool = False ) -> T: """Async parse a list of candidate model Generations into a specific format. @@ -68,19 +66,24 @@ class BaseGenerationOutputParser( """Base class to parse the output of an LLM call.""" @property + @override def InputType(self) -> Any: """Return the input type for the parser.""" return Union[str, AnyMessage] @property - def OutputType(self) -> Type[T]: + @override + def OutputType(self) -> type[T]: """Return the output type for the parser.""" # even though mypy complains this isn't valid, # it is good enough for pydantic to build the schema from return T # type: ignore[misc] def invoke( - self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None + self, + input: Union[str, BaseMessage], + config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> T: if isinstance(input, BaseMessage): return self._call_with_config( @@ -153,12 +156,14 @@ def _type(self) -> str: """ # noqa: E501 @property + @override def InputType(self) -> Any: """Return the input type for the parser.""" return Union[str, AnyMessage] @property - def OutputType(self) -> Type[T]: + @override + def OutputType(self) -> type[T]: """Return the output type for the parser. This property is inferred from the first type argument of the class. @@ -166,18 +171,23 @@ def OutputType(self) -> Type[T]: Raises: TypeError: If the class doesn't have an inferable OutputType. """ - for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] - type_args = get_args(cls) - if type_args and len(type_args) == 1: - return type_args[0] + for base in self.__class__.mro(): + if hasattr(base, "__pydantic_generic_metadata__"): + metadata = base.__pydantic_generic_metadata__ + if "args" in metadata and len(metadata["args"]) > 0: + return metadata["args"][0] - raise TypeError( + msg = ( f"Runnable {self.__class__.__name__} doesn't have an inferable OutputType. " "Override the OutputType property to specify the output type." ) + raise TypeError(msg) def invoke( - self, input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None + self, + input: Union[str, BaseMessage], + config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> T: if isinstance(input, BaseMessage): return self._call_with_config( @@ -219,7 +229,7 @@ async def ainvoke( run_type="parser", ) - def parse_result(self, result: List[Generation], *, partial: bool = False) -> T: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> T: """Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, which @@ -248,7 +258,7 @@ def parse(self, text: str) -> T: """ async def aparse_result( - self, result: List[Generation], *, partial: bool = False + self, result: list[Generation], *, partial: bool = False ) -> T: """Async parse a list of candidate model Generations into a specific format. @@ -301,16 +311,15 @@ def get_format_instructions(self) -> str: @property def _type(self) -> str: """Return the output parser type for serialization.""" - raise NotImplementedError( + msg = ( f"_type property is not implemented in class {self.__class__.__name__}." " This is required for serialization." ) + raise NotImplementedError(msg) - def dict(self, **kwargs: Any) -> Dict: + def dict(self, **kwargs: Any) -> dict: """Return dictionary representation of output parser.""" output_parser_dict = super().dict(**kwargs) - try: + with contextlib.suppress(NotImplementedError): output_parser_dict["_type"] = self._type - except NotImplementedError: - pass return output_parser_dict diff --git a/libs/core/langchain_core/output_parsers/json.py b/libs/core/langchain_core/output_parsers/json.py index 58a7090be704d..e9d3669e44edb 100644 --- a/libs/core/langchain_core/output_parsers/json.py +++ b/libs/core/langchain_core/output_parsers/json.py @@ -2,10 +2,11 @@ import json from json import JSONDecodeError -from typing import Any, List, Optional, Type, TypeVar, Union +from typing import Annotated, Any, Optional, TypeVar, Union import jsonpatch # type: ignore[import] -import pydantic # pydantic: ignore +import pydantic +from pydantic import SkipValidation from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS @@ -22,7 +23,7 @@ PydanticBaseModel = pydantic.BaseModel else: - from pydantic.v1 import BaseModel # pydantic: ignore + from pydantic.v1 import BaseModel # Union type needs to be last assignment to PydanticBaseModel to make mypy happy. PydanticBaseModel = Union[BaseModel, pydantic.BaseModel] # type: ignore @@ -40,22 +41,20 @@ class JsonOutputParser(BaseCumulativeTransformOutputParser[Any]): describing the difference between the previous and the current object. """ - pydantic_object: Optional[Type[TBaseModel]] = None # type: ignore - """The Pydantic object to use for validation. + pydantic_object: Annotated[Optional[type[TBaseModel]], SkipValidation()] = None # type: ignore + """The Pydantic object to use for validation. If None, no validation is performed.""" def _diff(self, prev: Optional[Any], next: Any) -> Any: return jsonpatch.make_patch(prev, next).patch - def _get_schema(self, pydantic_object: Type[TBaseModel]) -> dict[str, Any]: - if PYDANTIC_MAJOR_VERSION == 2: - if issubclass(pydantic_object, pydantic.BaseModel): - return pydantic_object.model_json_schema() - elif issubclass(pydantic_object, pydantic.v1.BaseModel): - return pydantic_object.schema() - return pydantic_object.schema() + def _get_schema(self, pydantic_object: type[TBaseModel]) -> dict[str, Any]: + if issubclass(pydantic_object, pydantic.BaseModel): + return pydantic_object.model_json_schema() + elif issubclass(pydantic_object, pydantic.v1.BaseModel): + return pydantic_object.schema() - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: @@ -107,7 +106,7 @@ def get_format_instructions(self) -> str: return "Return a JSON object." else: # Copy schema to avoid altering original Pydantic schema. - schema = {k: v for k, v in self._get_schema(self.pydantic_object).items()} + schema = dict(self._get_schema(self.pydantic_object).items()) # Remove extraneous fields. reduced_schema = schema diff --git a/libs/core/langchain_core/output_parsers/list.py b/libs/core/langchain_core/output_parsers/list.py index 34371946b6e3a..858ba86c79fa2 100644 --- a/libs/core/langchain_core/output_parsers/list.py +++ b/libs/core/langchain_core/output_parsers/list.py @@ -3,7 +3,9 @@ import re from abc import abstractmethod from collections import deque -from typing import AsyncIterator, Deque, Iterator, List, TypeVar, Union +from collections.abc import AsyncIterator, Iterator +from typing import Optional as Optional +from typing import TypeVar, Union from langchain_core.messages import BaseMessage from langchain_core.output_parsers.transform import BaseTransformOutputParser @@ -21,14 +23,14 @@ def droplastn(iter: Iterator[T], n: int) -> Iterator[T]: Yields: The elements of the iterator, except the last n elements. """ - buffer: Deque[T] = deque() + buffer: deque[T] = deque() for item in iter: buffer.append(item) if len(buffer) > n: yield buffer.popleft() -class ListOutputParser(BaseTransformOutputParser[List[str]]): +class ListOutputParser(BaseTransformOutputParser[list[str]]): """Parse the output of an LLM call to a list.""" @property @@ -36,7 +38,7 @@ def _type(self) -> str: return "list" @abstractmethod - def parse(self, text: str) -> List[str]: + def parse(self, text: str) -> list[str]: """Parse the output of an LLM call. Args: @@ -59,7 +61,7 @@ def parse_iter(self, text: str) -> Iterator[re.Match]: def _transform( self, input: Iterator[Union[str, BaseMessage]] - ) -> Iterator[List[str]]: + ) -> Iterator[list[str]]: buffer = "" for chunk in input: if isinstance(chunk, BaseMessage): @@ -91,7 +93,7 @@ def _transform( async def _atransform( self, input: AsyncIterator[Union[str, BaseMessage]] - ) -> AsyncIterator[List[str]]: + ) -> AsyncIterator[list[str]]: buffer = "" async for chunk in input: if isinstance(chunk, BaseMessage): @@ -122,6 +124,9 @@ async def _atransform( yield [part] +ListOutputParser.model_rebuild() + + class CommaSeparatedListOutputParser(ListOutputParser): """Parse the output of an LLM call to a comma-separated list.""" @@ -132,7 +137,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Returns: @@ -148,7 +153,7 @@ def get_format_instructions(self) -> str: "eg: `foo, bar, baz` or `foo,bar,baz`" ) - def parse(self, text: str) -> List[str]: + def parse(self, text: str) -> list[str]: """Parse the output of an LLM call. Args: @@ -176,7 +181,7 @@ def get_format_instructions(self) -> str: "For example: \n\n1. foo\n\n2. bar\n\n3. baz" ) - def parse(self, text: str) -> List[str]: + def parse(self, text: str) -> list[str]: """Parse the output of an LLM call. Args: @@ -213,7 +218,7 @@ def get_format_instructions(self) -> str: """Return the format instructions for the Markdown list output.""" return "Your response should be a markdown list, " "eg: `- foo\n- bar\n- baz`" - def parse(self, text: str) -> List[str]: + def parse(self, text: str) -> list[str]: """Parse the output of an LLM call. Args: diff --git a/libs/core/langchain_core/output_parsers/openai_functions.py b/libs/core/langchain_core/output_parsers/openai_functions.py index 73c13b0fabca5..66b8865a1ea2b 100644 --- a/libs/core/langchain_core/output_parsers/openai_functions.py +++ b/libs/core/langchain_core/output_parsers/openai_functions.py @@ -1,8 +1,10 @@ import copy import json -from typing import Any, Dict, List, Optional, Type, Union +from types import GenericAlias +from typing import Any, Optional, Union import jsonpatch # type: ignore[import] +from pydantic import BaseModel, model_validator from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import ( @@ -11,7 +13,6 @@ ) from langchain_core.output_parsers.json import parse_partial_json from langchain_core.outputs import ChatGeneration, Generation -from langchain_core.pydantic_v1 import BaseModel, root_validator class OutputFunctionsParser(BaseGenerationOutputParser[Any]): @@ -20,7 +21,7 @@ class OutputFunctionsParser(BaseGenerationOutputParser[Any]): args_only: bool = True """Whether to only return the arguments to the function call.""" - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: @@ -35,16 +36,14 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An """ generation = result[0] if not isinstance(generation, ChatGeneration): - raise OutputParserException( - "This output parser can only be used with a chat generation." - ) + msg = "This output parser can only be used with a chat generation." + raise OutputParserException(msg) message = generation.message try: func_call = copy.deepcopy(message.additional_kwargs["function_call"]) except KeyError as exc: - raise OutputParserException( - f"Could not parse function call: {exc}" - ) from exc + msg = f"Could not parse function call: {exc}" + raise OutputParserException(msg) from exc if self.args_only: return func_call["arguments"] @@ -56,9 +55,9 @@ class JsonOutputFunctionsParser(BaseCumulativeTransformOutputParser[Any]): strict: bool = False """Whether to allow non-JSON-compliant strings. - + See: https://docs.python.org/3/library/json.html#encoders-and-decoders - + Useful when the parsed output may include unicode characters or new lines. """ @@ -72,7 +71,7 @@ def _type(self) -> str: def _diff(self, prev: Optional[Any], next: Any) -> Any: return jsonpatch.make_patch(prev, next).patch - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: @@ -87,14 +86,12 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An """ if len(result) != 1: - raise OutputParserException( - f"Expected exactly one result, but got {len(result)}" - ) + msg = f"Expected exactly one result, but got {len(result)}" + raise OutputParserException(msg) generation = result[0] if not isinstance(generation, ChatGeneration): - raise OutputParserException( - "This output parser can only be used with a chat generation." - ) + msg = "This output parser can only be used with a chat generation." + raise OutputParserException(msg) message = generation.message try: function_call = message.additional_kwargs["function_call"] @@ -102,9 +99,8 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An if partial: return None else: - raise OutputParserException( - f"Could not parse function call: {exc}" - ) from exc + msg = f"Could not parse function call: {exc}" + raise OutputParserException(msg) from exc try: if partial: try: @@ -128,9 +124,8 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An function_call["arguments"], strict=self.strict ) except (json.JSONDecodeError, TypeError) as exc: - raise OutputParserException( - f"Could not parse function call data: {exc}" - ) from exc + msg = f"Could not parse function call data: {exc}" + raise OutputParserException(msg) from exc else: try: return { @@ -140,9 +135,8 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An ), } except (json.JSONDecodeError, TypeError) as exc: - raise OutputParserException( - f"Could not parse function call data: {exc}" - ) from exc + msg = f"Could not parse function call data: {exc}" + raise OutputParserException(msg) from exc except KeyError: return None @@ -157,7 +151,7 @@ def parse(self, text: str) -> Any: Returns: The parsed JSON object. """ - raise NotImplementedError() + raise NotImplementedError class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser): @@ -166,7 +160,7 @@ class JsonKeyOutputFunctionsParser(JsonOutputFunctionsParser): key_name: str """The name of the key to return.""" - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: @@ -223,15 +217,16 @@ class Dog(BaseModel): result = parser.parse_result([chat_generation]) """ - pydantic_schema: Union[Type[BaseModel], Dict[str, Type[BaseModel]]] + pydantic_schema: Union[type[BaseModel], dict[str, type[BaseModel]]] """The pydantic schema to parse the output with. - + If multiple schemas are provided, then the function name will be used to determine which schema to use. """ - @root_validator(pre=True) - def validate_schema(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_schema(cls, values: dict) -> Any: """Validate the pydantic schema. Args: @@ -245,17 +240,20 @@ def validate_schema(cls, values: Dict) -> Dict: """ schema = values["pydantic_schema"] if "args_only" not in values: - values["args_only"] = isinstance(schema, type) and issubclass( - schema, BaseModel + values["args_only"] = ( + isinstance(schema, type) + and not isinstance(schema, GenericAlias) + and issubclass(schema, BaseModel) ) - elif values["args_only"] and isinstance(schema, Dict): - raise ValueError( + elif values["args_only"] and isinstance(schema, dict): + msg = ( "If multiple pydantic schemas are provided then args_only should be" " False." ) + raise ValueError(msg) return values - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: @@ -267,11 +265,21 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An """ _result = super().parse_result(result) if self.args_only: - pydantic_args = self.pydantic_schema.parse_raw(_result) # type: ignore + if hasattr(self.pydantic_schema, "model_validate_json"): + pydantic_args = self.pydantic_schema.model_validate_json(_result) + else: + pydantic_args = self.pydantic_schema.parse_raw(_result) # type: ignore else: fn_name = _result["name"] _args = _result["arguments"] - pydantic_args = self.pydantic_schema[fn_name].parse_raw(_args) # type: ignore + if isinstance(self.pydantic_schema, dict): + pydantic_schema = self.pydantic_schema[fn_name] + else: + pydantic_schema = self.pydantic_schema + if hasattr(pydantic_schema, "model_validate_json"): + pydantic_args = pydantic_schema.model_validate_json(_args) # type: ignore + else: + pydantic_args = pydantic_schema.parse_raw(_args) # type: ignore return pydantic_args @@ -281,7 +289,7 @@ class PydanticAttrOutputFunctionsParser(PydanticOutputFunctionsParser): attr_name: str """The name of the attribute to return.""" - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a JSON object. Args: diff --git a/libs/core/langchain_core/output_parsers/openai_tools.py b/libs/core/langchain_core/output_parsers/openai_tools.py index 5c533a3e0959b..2944eff4223eb 100644 --- a/libs/core/langchain_core/output_parsers/openai_tools.py +++ b/libs/core/langchain_core/output_parsers/openai_tools.py @@ -1,7 +1,9 @@ import copy import json from json import JSONDecodeError -from typing import Any, Dict, List, Optional +from typing import Annotated, Any, Optional + +from pydantic import SkipValidation, ValidationError from langchain_core.exceptions import OutputParserException from langchain_core.messages import AIMessage, InvalidToolCall @@ -9,18 +11,17 @@ from langchain_core.messages.tool import tool_call as create_tool_call from langchain_core.output_parsers.transform import BaseCumulativeTransformOutputParser from langchain_core.outputs import ChatGeneration, Generation -from langchain_core.pydantic_v1 import ValidationError from langchain_core.utils.json import parse_partial_json from langchain_core.utils.pydantic import TypeBaseModel def parse_tool_call( - raw_tool_call: Dict[str, Any], + raw_tool_call: dict[str, Any], *, partial: bool = False, strict: bool = False, return_id: bool = True, -) -> Optional[Dict[str, Any]]: +) -> Optional[dict[str, Any]]: """Parse a single tool call. Args: @@ -51,11 +52,12 @@ def parse_tool_call( raw_tool_call["function"]["arguments"], strict=strict ) except JSONDecodeError as e: - raise OutputParserException( + msg = ( f"Function {raw_tool_call['function']['name']} arguments:\n\n" f"{raw_tool_call['function']['arguments']}\n\nare not valid JSON. " f"Received JSONDecodeError {e}" - ) from e + ) + raise OutputParserException(msg) from e parsed = { "name": raw_tool_call["function"]["name"] or "", "args": function_args or {}, @@ -67,7 +69,7 @@ def parse_tool_call( def make_invalid_tool_call( - raw_tool_call: Dict[str, Any], + raw_tool_call: dict[str, Any], error_msg: Optional[str], ) -> InvalidToolCall: """Create an InvalidToolCall from a raw tool call. @@ -88,12 +90,12 @@ def make_invalid_tool_call( def parse_tool_calls( - raw_tool_calls: List[dict], + raw_tool_calls: list[dict], *, partial: bool = False, strict: bool = False, return_id: bool = True, -) -> List[Dict[str, Any]]: +) -> list[dict[str, Any]]: """Parse a list of tool calls. Args: @@ -109,7 +111,7 @@ def parse_tool_calls( Raises: OutputParserException: If any of the tool calls are not valid JSON. """ - final_tools: List[Dict[str, Any]] = [] + final_tools: list[dict[str, Any]] = [] exceptions = [] for tool_call in raw_tool_calls: try: @@ -141,15 +143,15 @@ class JsonOutputToolsParser(BaseCumulativeTransformOutputParser[Any]): first_tool_only: bool = False """Whether to return only the first tool call. - If False, the result will be a list of tool calls, or an empty list + If False, the result will be a list of tool calls, or an empty list if no tool calls are found. If true, and multiple tool calls are found, only the first one will be returned, - and the other tool calls will be ignored. - If no tool calls are found, None will be returned. + and the other tool calls will be ignored. + If no tool calls are found, None will be returned. """ - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a list of tool calls. Args: @@ -169,9 +171,8 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An generation = result[0] if not isinstance(generation, ChatGeneration): - raise OutputParserException( - "This output parser can only be used with a chat generation." - ) + msg = "This output parser can only be used with a chat generation." + raise OutputParserException(msg) message = generation.message if isinstance(message, AIMessage) and message.tool_calls: tool_calls = [dict(tc) for tc in message.tool_calls] @@ -206,7 +207,7 @@ def parse(self, text: str) -> Any: Returns: The parsed tool calls. """ - raise NotImplementedError() + raise NotImplementedError class JsonOutputKeyToolsParser(JsonOutputToolsParser): @@ -215,7 +216,7 @@ class JsonOutputKeyToolsParser(JsonOutputToolsParser): key_name: str """The type of tools to return.""" - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a list of tool calls. Args: @@ -252,12 +253,12 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An class PydanticToolsParser(JsonOutputToolsParser): """Parse tools from OpenAI response.""" - tools: List[TypeBaseModel] + tools: Annotated[list[TypeBaseModel], SkipValidation()] """The tools to parse.""" # TODO: Support more granular streaming of objects. Currently only streams once all # Pydantic object fields are present. - def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: + def parse_result(self, result: list[Generation], *, partial: bool = False) -> Any: """Parse the result of an LLM call to a list of Pydantic objects. Args: @@ -284,10 +285,11 @@ def parse_result(self, result: List[Generation], *, partial: bool = False) -> An for res in json_results: try: if not isinstance(res["args"], dict): - raise ValueError( + msg = ( f"Tool arguments must be specified as a dict, received: " f"{res['args']}" ) + raise ValueError(msg) pydantic_objects.append(name_dict[res["type"]](**res["args"])) except (ValidationError, ValueError) as e: if partial: diff --git a/libs/core/langchain_core/output_parsers/pydantic.py b/libs/core/langchain_core/output_parsers/pydantic.py index 584784a41cf0c..844fc9a703821 100644 --- a/libs/core/langchain_core/output_parsers/pydantic.py +++ b/libs/core/langchain_core/output_parsers/pydantic.py @@ -1,7 +1,9 @@ import json -from typing import Generic, List, Optional, Type +from typing import Annotated, Generic, Optional -import pydantic # pydantic: ignore +import pydantic +from pydantic import SkipValidation +from typing_extensions import override from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import JsonOutputParser @@ -16,7 +18,7 @@ class PydanticOutputParser(JsonOutputParser, Generic[TBaseModel]): """Parse an output using a pydantic model.""" - pydantic_object: Type[TBaseModel] # type: ignore + pydantic_object: Annotated[type[TBaseModel], SkipValidation()] # type: ignore """The pydantic model to parse.""" def _parse_obj(self, obj: dict) -> TBaseModel: @@ -27,10 +29,9 @@ def _parse_obj(self, obj: dict) -> TBaseModel: elif issubclass(self.pydantic_object, pydantic.v1.BaseModel): return self.pydantic_object.parse_obj(obj) else: - raise OutputParserException( - f"Unsupported model version for PydanticOutputParser: \ + msg = f"Unsupported model version for PydanticOutputParser: \ {self.pydantic_object.__class__}" - ) + raise OutputParserException(msg) except (pydantic.ValidationError, pydantic.v1.ValidationError) as e: raise self._parser_exception(e, obj) from e else: # pydantic v1 @@ -48,7 +49,7 @@ def _parser_exception( return OutputParserException(msg, llm_output=json_string) def parse_result( - self, result: List[Generation], *, partial: bool = False + self, result: list[Generation], *, partial: bool = False ) -> Optional[TBaseModel]: """Parse the result of an LLM call to a pydantic object. @@ -88,7 +89,7 @@ def get_format_instructions(self) -> str: The format instructions for the JSON output. """ # Copy schema to avoid altering original Pydantic schema. - schema = {k: v for k, v in self.pydantic_object.schema().items()} + schema = dict(self.pydantic_object.model_json_schema().items()) # Remove extraneous fields. reduced_schema = schema @@ -106,11 +107,15 @@ def _type(self) -> str: return "pydantic" @property - def OutputType(self) -> Type[TBaseModel]: + @override + def OutputType(self) -> type[TBaseModel]: """Return the pydantic model.""" return self.pydantic_object +PydanticOutputParser.model_rebuild() + + _PYDANTIC_FORMAT_INSTRUCTIONS = """The output should be formatted as a JSON instance that conforms to the JSON schema below. As an example, for the schema {{"properties": {{"foo": {{"title": "Foo", "description": "a list of strings", "type": "array", "items": {{"type": "string"}}}}}}, "required": ["foo"]}} diff --git a/libs/core/langchain_core/output_parsers/string.py b/libs/core/langchain_core/output_parsers/string.py index 12350bf0d84bb..1d594dfb91986 100644 --- a/libs/core/langchain_core/output_parsers/string.py +++ b/libs/core/langchain_core/output_parsers/string.py @@ -1,4 +1,4 @@ -from typing import List +from typing import Optional as Optional from langchain_core.output_parsers.transform import BaseTransformOutputParser @@ -12,7 +12,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "output_parser"] @@ -24,3 +24,6 @@ def _type(self) -> str: def parse(self, text: str) -> str: """Returns the input text with no changes.""" return text + + +StrOutputParser.model_rebuild() diff --git a/libs/core/langchain_core/output_parsers/transform.py b/libs/core/langchain_core/output_parsers/transform.py index b29088ae4f40c..0636d2d661b2b 100644 --- a/libs/core/langchain_core/output_parsers/transform.py +++ b/libs/core/langchain_core/output_parsers/transform.py @@ -1,10 +1,9 @@ from __future__ import annotations +from collections.abc import AsyncIterator, Iterator from typing import ( TYPE_CHECKING, Any, - AsyncIterator, - Iterator, Optional, Union, ) @@ -107,14 +106,15 @@ def _diff(self, prev: Optional[T], next: T) -> T: Returns: The diff between the previous and current parsed output. """ - raise NotImplementedError() + raise NotImplementedError def _transform(self, input: Iterator[Union[str, BaseMessage]]) -> Iterator[Any]: prev_parsed = None - acc_gen = None + acc_gen: Union[GenerationChunk, ChatGenerationChunk, None] = None for chunk in input: + chunk_gen: Union[GenerationChunk, ChatGenerationChunk] if isinstance(chunk, BaseMessageChunk): - chunk_gen: Generation = ChatGenerationChunk(message=chunk) + chunk_gen = ChatGenerationChunk(message=chunk) elif isinstance(chunk, BaseMessage): chunk_gen = ChatGenerationChunk( message=BaseMessageChunk(**chunk.dict()) @@ -122,10 +122,7 @@ def _transform(self, input: Iterator[Union[str, BaseMessage]]) -> Iterator[Any]: else: chunk_gen = GenerationChunk(text=chunk) - if acc_gen is None: - acc_gen = chunk_gen - else: - acc_gen = acc_gen + chunk_gen + acc_gen = chunk_gen if acc_gen is None else acc_gen + chunk_gen # type: ignore[operator] parsed = self.parse_result([acc_gen], partial=True) if parsed is not None and parsed != prev_parsed: @@ -139,10 +136,11 @@ async def _atransform( self, input: AsyncIterator[Union[str, BaseMessage]] ) -> AsyncIterator[T]: prev_parsed = None - acc_gen = None + acc_gen: Union[GenerationChunk, ChatGenerationChunk, None] = None async for chunk in input: + chunk_gen: Union[GenerationChunk, ChatGenerationChunk] if isinstance(chunk, BaseMessageChunk): - chunk_gen: Generation = ChatGenerationChunk(message=chunk) + chunk_gen = ChatGenerationChunk(message=chunk) elif isinstance(chunk, BaseMessage): chunk_gen = ChatGenerationChunk( message=BaseMessageChunk(**chunk.dict()) @@ -150,10 +148,7 @@ async def _atransform( else: chunk_gen = GenerationChunk(text=chunk) - if acc_gen is None: - acc_gen = chunk_gen - else: - acc_gen = acc_gen + chunk_gen + acc_gen = chunk_gen if acc_gen is None else acc_gen + chunk_gen # type: ignore[operator] parsed = await self.aparse_result([acc_gen], partial=True) if parsed is not None and parsed != prev_parsed: diff --git a/libs/core/langchain_core/output_parsers/xml.py b/libs/core/langchain_core/output_parsers/xml.py index b8355d97c3e08..3df9750f8e0fa 100644 --- a/libs/core/langchain_core/output_parsers/xml.py +++ b/libs/core/langchain_core/output_parsers/xml.py @@ -1,7 +1,9 @@ +import contextlib import re import xml -import xml.etree.ElementTree as ET -from typing import Any, AsyncIterator, Dict, Iterator, List, Literal, Optional, Union +import xml.etree.ElementTree as ET # noqa: N817 +from collections.abc import AsyncIterator, Iterator +from typing import Any, Literal, Optional, Union from xml.etree.ElementTree import TreeBuilder from langchain_core.exceptions import OutputParserException @@ -10,12 +12,12 @@ from langchain_core.runnables.utils import AddableDict XML_FORMAT_INSTRUCTIONS = """The output should be formatted as a XML file. -1. Output should conform to the tags below. +1. Output should conform to the tags below. 2. If tags are not given, make them on your own. 3. Remember to always open and close all the tags. As an example, for the tags ["foo", "bar", "baz"]: -1. String "\n \n \n \n" is a well-formatted instance of the schema. +1. String "\n \n \n \n" is a well-formatted instance of the schema. 2. String "\n \n " is a badly-formatted instance. 3. String "\n \n \n" is a badly-formatted instance. @@ -45,19 +47,20 @@ def __init__(self, parser: Literal["defusedxml", "xml"]) -> None: """ if parser == "defusedxml": try: - from defusedxml import ElementTree as DET # type: ignore + import defusedxml # type: ignore except ImportError as e: - raise ImportError( + msg = ( "defusedxml is not installed. " "Please install it to use the defusedxml parser." "You can install it with `pip install defusedxml` " - ) from e - _parser = DET.DefusedXMLParser(target=TreeBuilder()) + ) + raise ImportError(msg) from e + _parser = defusedxml.ElementTree.DefusedXMLParser(target=TreeBuilder()) else: _parser = None self.pull_parser = ET.XMLPullParser(["start", "end"], _parser=_parser) self.xml_start_re = re.compile(r"<[a-zA-Z:_]") - self.current_path: List[str] = [] + self.current_path: list[str] = [] self.current_path_has_children = False self.buffer = "" self.xml_started = False @@ -130,46 +133,44 @@ def close(self) -> None: Raises: xml.etree.ElementTree.ParseError: If the XML is not well-formed. """ - try: + # Ignore ParseError. This will ignore any incomplete XML at the end of the input + with contextlib.suppress(xml.etree.ElementTree.ParseError): self.pull_parser.close() - except xml.etree.ElementTree.ParseError: - # Ignore. This will ignore any incomplete XML at the end of the input - pass class XMLOutputParser(BaseTransformOutputParser): """Parse an output using xml format.""" - tags: Optional[List[str]] = None + tags: Optional[list[str]] = None encoding_matcher: re.Pattern = re.compile( r"<([^>]*encoding[^>]*)>\n(.*)", re.MULTILINE | re.DOTALL ) parser: Literal["defusedxml", "xml"] = "defusedxml" """Parser to use for XML parsing. Can be either 'defusedxml' or 'xml'. - - * 'defusedxml' is the default parser and is used to prevent XML vulnerabilities + + * 'defusedxml' is the default parser and is used to prevent XML vulnerabilities present in some distributions of Python's standard library xml. `defusedxml` is a wrapper around the standard library parser that sets up the parser with secure defaults. * 'xml' is the standard library parser. - + Use `xml` only if you are sure that your distribution of the standard library - is not vulnerable to XML vulnerabilities. - + is not vulnerable to XML vulnerabilities. + Please review the following resources for more information: - + * https://docs.python.org/3/library/xml.html#xml-vulnerabilities - * https://github.com/tiran/defusedxml - + * https://github.com/tiran/defusedxml + The standard library relies on libexpat for parsing XML: - https://github.com/libexpat/libexpat + https://github.com/libexpat/libexpat """ def get_format_instructions(self) -> str: """Return the format instructions for the XML output.""" return XML_FORMAT_INSTRUCTIONS.format(tags=self.tags) - def parse(self, text: str) -> Dict[str, Union[str, List[Any]]]: + def parse(self, text: str) -> dict[str, Union[str, list[Any]]]: """Parse the output of an LLM call. Args: @@ -188,17 +189,18 @@ def parse(self, text: str) -> Dict[str, Union[str, List[Any]]]: # likely if you're reading this you can move them to the top of the file if self.parser == "defusedxml": try: - from defusedxml import ElementTree as DET # type: ignore + from defusedxml import ElementTree # type: ignore except ImportError as e: - raise ImportError( + msg = ( "defusedxml is not installed. " "Please install it to use the defusedxml parser." "You can install it with `pip install defusedxml`" "See https://github.com/tiran/defusedxml for more details" - ) from e - _ET = DET # Use the defusedxml parser + ) + raise ImportError(msg) from e + _et = ElementTree # Use the defusedxml parser else: - _ET = ET # Use the standard library parser + _et = ET # Use the standard library parser match = re.search(r"```(xml)?(.*)```", text, re.DOTALL) if match is not None: @@ -210,10 +212,9 @@ def parse(self, text: str) -> Dict[str, Union[str, List[Any]]]: text = text.strip() try: - root = ET.fromstring(text) + root = _et.fromstring(text) return self._root_to_dict(root) - - except ET.ParseError as e: + except _et.ParseError as e: msg = f"Failed to parse XML format from completion {text}. Got: {e}" raise OutputParserException(msg, llm_output=text) from e @@ -234,13 +235,13 @@ async def _atransform( yield output streaming_parser.close() - def _root_to_dict(self, root: ET.Element) -> Dict[str, Union[str, List[Any]]]: + def _root_to_dict(self, root: ET.Element) -> dict[str, Union[str, list[Any]]]: """Converts xml tree to python dictionary.""" if root.text and bool(re.search(r"\S", root.text)): # If root text contains any non-whitespace character it # returns {root.tag: root.text} return {root.tag: root.text} - result: Dict = {root.tag: []} + result: dict = {root.tag: []} for child in root: if len(child) == 0: result[root.tag].append({child.tag: child.text}) @@ -253,7 +254,7 @@ def _type(self) -> str: return "xml" -def nested_element(path: List[str], elem: ET.Element) -> Any: +def nested_element(path: list[str], elem: ET.Element) -> Any: """Get nested element from path. Args: diff --git a/libs/core/langchain_core/outputs/chat_generation.py b/libs/core/langchain_core/outputs/chat_generation.py index 740d856029071..d40e1fd5362b4 100644 --- a/libs/core/langchain_core/outputs/chat_generation.py +++ b/libs/core/langchain_core/outputs/chat_generation.py @@ -1,10 +1,12 @@ from __future__ import annotations -from typing import Any, Dict, List, Literal, Union +from typing import Literal, Union + +from pydantic import model_validator +from typing_extensions import Self from langchain_core.messages import BaseMessage, BaseMessageChunk from langchain_core.outputs.generation import Generation -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils._merge import merge_dicts @@ -30,8 +32,8 @@ class ChatGeneration(Generation): type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" - @root_validator(pre=False, skip_on_failure=True) - def set_text(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="after") + def set_text(self) -> Self: """Set the text attribute to be the contents of the message. Args: @@ -45,12 +47,12 @@ def set_text(cls, values: Dict[str, Any]) -> Dict[str, Any]: """ try: text = "" - if isinstance(values["message"].content, str): - text = values["message"].content + if isinstance(self.message.content, str): + text = self.message.content # HACK: Assumes text in content blocks in OpenAI format. # Uses first text block. - elif isinstance(values["message"].content, list): - for block in values["message"].content: + elif isinstance(self.message.content, list): + for block in self.message.content: if isinstance(block, str): text = block break @@ -61,13 +63,14 @@ def set_text(cls, values: Dict[str, Any]) -> Dict[str, Any]: pass else: pass - values["text"] = text + self.text = text except (KeyError, AttributeError) as e: - raise ValueError("Error while initializing ChatGeneration") from e - return values + msg = "Error while initializing ChatGeneration" + raise ValueError(msg) from e + return self @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "output"] @@ -84,12 +87,12 @@ class ChatGenerationChunk(ChatGeneration): """Type is used exclusively for serialization purposes.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "output"] def __add__( - self, other: Union[ChatGenerationChunk, List[ChatGenerationChunk]] + self, other: Union[ChatGenerationChunk, list[ChatGenerationChunk]] ) -> ChatGenerationChunk: if isinstance(other, ChatGenerationChunk): generation_info = merge_dicts( @@ -112,6 +115,7 @@ def __add__( generation_info=generation_info or None, ) else: - raise TypeError( + msg = ( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) + raise TypeError(msg) diff --git a/libs/core/langchain_core/outputs/chat_result.py b/libs/core/langchain_core/outputs/chat_result.py index 2895c2a5cf604..3098736438f7b 100644 --- a/libs/core/langchain_core/outputs/chat_result.py +++ b/libs/core/langchain_core/outputs/chat_result.py @@ -1,7 +1,8 @@ -from typing import List, Optional +from typing import Optional + +from pydantic import BaseModel from langchain_core.outputs.chat_generation import ChatGeneration -from langchain_core.pydantic_v1 import BaseModel class ChatResult(BaseModel): @@ -17,18 +18,18 @@ class ChatResult(BaseModel): for more information. """ - generations: List[ChatGeneration] + generations: list[ChatGeneration] """List of the chat generations. - + Generations is a list to allow for multiple candidate generations for a single input prompt. """ llm_output: Optional[dict] = None """For arbitrary LLM provider specific output. - + This dictionary is a free-form dictionary that can contain any information that the provider wants to return. It is not standardized and is provider-specific. - + Users should generally avoid relying on this field and instead rely on accessing relevant information from standardized fields present in AIMessage. diff --git a/libs/core/langchain_core/outputs/generation.py b/libs/core/langchain_core/outputs/generation.py index 7dbb6896d875d..ce2dd36390281 100644 --- a/libs/core/langchain_core/outputs/generation.py +++ b/libs/core/langchain_core/outputs/generation.py @@ -1,6 +1,6 @@ from __future__ import annotations -from typing import Any, Dict, List, Literal, Optional +from typing import Any, Literal, Optional from langchain_core.load import Serializable from langchain_core.utils._merge import merge_dicts @@ -25,9 +25,9 @@ class Generation(Serializable): text: str """Generated text output.""" - generation_info: Optional[Dict[str, Any]] = None - """Raw response from the provider. - + generation_info: Optional[dict[str, Any]] = None + """Raw response from the provider. + May include things like the reason for finishing or token log probabilities. """ type: Literal["Generation"] = "Generation" @@ -40,7 +40,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "output"] @@ -49,7 +49,7 @@ class GenerationChunk(Generation): """Generation chunk, which can be concatenated with other Generation chunks.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "output"] @@ -64,6 +64,7 @@ def __add__(self, other: GenerationChunk) -> GenerationChunk: generation_info=generation_info or None, ) else: - raise TypeError( + msg = ( f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" ) + raise TypeError(msg) diff --git a/libs/core/langchain_core/outputs/llm_result.py b/libs/core/langchain_core/outputs/llm_result.py index ce4b3cd1132b4..c28d630b16327 100644 --- a/libs/core/langchain_core/outputs/llm_result.py +++ b/libs/core/langchain_core/outputs/llm_result.py @@ -1,11 +1,13 @@ from __future__ import annotations from copy import deepcopy -from typing import List, Optional +from typing import Literal, Optional, Union -from langchain_core.outputs.generation import Generation +from pydantic import BaseModel + +from langchain_core.outputs.chat_generation import ChatGeneration, ChatGenerationChunk +from langchain_core.outputs.generation import Generation, GenerationChunk from langchain_core.outputs.run_info import RunInfo -from langchain_core.pydantic_v1 import BaseModel class LLMResult(BaseModel): @@ -16,35 +18,40 @@ class LLMResult(BaseModel): wants to return. """ - generations: List[List[Generation]] + generations: list[ + list[Union[Generation, ChatGeneration, GenerationChunk, ChatGenerationChunk]] + ] """Generated outputs. - + The first dimension of the list represents completions for different input prompts. - + The second dimension of the list represents different candidate generations for a given prompt. - + When returned from an LLM the type is List[List[Generation]]. When returned from a chat model the type is List[List[ChatGeneration]]. - + ChatGeneration is a subclass of Generation that has a field for a structured chat message. """ llm_output: Optional[dict] = None """For arbitrary LLM provider specific output. - + This dictionary is a free-form dictionary that can contain any information that the provider wants to return. It is not standardized and is provider-specific. - + Users should generally avoid relying on this field and instead rely on accessing relevant information from standardized fields present in AIMessage. """ - run: Optional[List[RunInfo]] = None + run: Optional[list[RunInfo]] = None """List of metadata info for model call for each input.""" - def flatten(self) -> List[LLMResult]: + type: Literal["LLMResult"] = "LLMResult" # type: ignore[assignment] + """Type is used exclusively for serialization purposes.""" + + def flatten(self) -> list[LLMResult]: """Flatten generations into a single list. Unpack List[List[Generation]] -> List[LLMResult] where each returned LLMResult @@ -69,7 +76,7 @@ def flatten(self) -> List[LLMResult]: else: if self.llm_output is not None: llm_output = deepcopy(self.llm_output) - llm_output["token_usage"] = dict() + llm_output["token_usage"] = {} else: llm_output = None llm_results.append( diff --git a/libs/core/langchain_core/outputs/run_info.py b/libs/core/langchain_core/outputs/run_info.py index a54e3b49cfc1c..4b20c9bd701cf 100644 --- a/libs/core/langchain_core/outputs/run_info.py +++ b/libs/core/langchain_core/outputs/run_info.py @@ -2,7 +2,7 @@ from uuid import UUID -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class RunInfo(BaseModel): diff --git a/libs/core/langchain_core/prompt_values.py b/libs/core/langchain_core/prompt_values.py index 27bf3e5df7f09..d8b19fcf23d7b 100644 --- a/libs/core/langchain_core/prompt_values.py +++ b/libs/core/langchain_core/prompt_values.py @@ -7,7 +7,8 @@ from __future__ import annotations from abc import ABC, abstractmethod -from typing import List, Literal, Sequence, cast +from collections.abc import Sequence +from typing import Literal, cast from typing_extensions import TypedDict @@ -33,7 +34,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "schema", "prompt"]. @@ -45,7 +46,7 @@ def to_string(self) -> str: """Return prompt value as string.""" @abstractmethod - def to_messages(self) -> List[BaseMessage]: + def to_messages(self) -> list[BaseMessage]: """Return prompt as a list of Messages.""" @@ -57,7 +58,7 @@ class StringPromptValue(PromptValue): type: Literal["StringPromptValue"] = "StringPromptValue" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "base"]. @@ -68,7 +69,7 @@ def to_string(self) -> str: """Return prompt as string.""" return self.text - def to_messages(self) -> List[BaseMessage]: + def to_messages(self) -> list[BaseMessage]: """Return prompt as messages.""" return [HumanMessage(content=self.text)] @@ -86,12 +87,12 @@ def to_string(self) -> str: """Return prompt as string.""" return get_buffer_string(self.messages) - def to_messages(self) -> List[BaseMessage]: + def to_messages(self) -> list[BaseMessage]: """Return prompt as a list of messages.""" return list(self.messages) @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "chat"]. @@ -121,7 +122,7 @@ def to_string(self) -> str: """Return prompt (image URL) as string.""" return self.image_url["url"] - def to_messages(self) -> List[BaseMessage]: + def to_messages(self) -> list[BaseMessage]: """Return prompt (image URL) as messages.""" return [HumanMessage(content=[cast(dict, self.image_url)])] @@ -136,7 +137,7 @@ class ChatPromptValueConcrete(ChatPromptValue): type: Literal["ChatPromptValueConcrete"] = "ChatPromptValueConcrete" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. This is used to determine the namespace of the object when serializing. Defaults to ["langchain", "prompts", "chat"]. diff --git a/libs/core/langchain_core/prompts/base.py b/libs/core/langchain_core/prompts/base.py index bacffe2e7db59..e399974a5b0ef 100644 --- a/libs/core/langchain_core/prompts/base.py +++ b/libs/core/langchain_core/prompts/base.py @@ -1,23 +1,25 @@ from __future__ import annotations +import contextlib import json +import typing from abc import ABC, abstractmethod +from collections.abc import Mapping +from functools import cached_property from pathlib import Path from typing import ( TYPE_CHECKING, Any, Callable, - Dict, Generic, - List, - Mapping, Optional, - Type, TypeVar, Union, ) import yaml +from pydantic import BaseModel, ConfigDict, Field, model_validator +from typing_extensions import Self, override from langchain_core.load import dumpd from langchain_core.output_parsers.base import BaseOutputParser @@ -26,10 +28,9 @@ PromptValue, StringPromptValue, ) -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.runnables import RunnableConfig, RunnableSerializable from langchain_core.runnables.config import ensure_config -from langchain_core.runnables.utils import create_model +from langchain_core.utils.pydantic import create_model_v2 if TYPE_CHECKING: from langchain_core.documents import Document @@ -39,57 +40,56 @@ class BasePromptTemplate( - RunnableSerializable[Dict, PromptValue], Generic[FormatOutputType], ABC + RunnableSerializable[dict, PromptValue], Generic[FormatOutputType], ABC ): """Base class for all prompt templates, returning a prompt.""" - input_variables: List[str] - """A list of the names of the variables whose values are required as inputs to the + input_variables: list[str] + """A list of the names of the variables whose values are required as inputs to the prompt.""" - optional_variables: List[str] = Field(default=[]) + optional_variables: list[str] = Field(default=[]) """optional_variables: A list of the names of the variables for placeholder - or MessagePlaceholder that are optional. These variables are auto inferred + or MessagePlaceholder that are optional. These variables are auto inferred from the prompt and user need not provide them.""" - input_types: Dict[str, Any] = Field(default_factory=dict, exclude=True) + input_types: typing.Dict[str, Any] = Field(default_factory=dict, exclude=True) # noqa: UP006 """A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings.""" output_parser: Optional[BaseOutputParser] = None """How to parse the output of calling an LLM on this formatted prompt.""" partial_variables: Mapping[str, Any] = Field(default_factory=dict) """A dictionary of the partial variables the prompt template carries. - + Partial variables populate the template so that you don't need to pass them in every time you call the prompt.""" - metadata: Optional[Dict[str, Any]] = None + metadata: Optional[typing.Dict[str, Any]] = None # noqa: UP006 """Metadata to be used for tracing.""" - tags: Optional[List[str]] = None + tags: Optional[list[str]] = None """Tags to be used for tracing.""" - @root_validator(pre=False, skip_on_failure=True) - def validate_variable_names(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_variable_names(self) -> Self: """Validate variable names do not include restricted names.""" - if "stop" in values["input_variables"]: - raise ValueError( + if "stop" in self.input_variables: + msg = ( "Cannot have an input variable named 'stop', as it is used internally," " please rename." ) - if "stop" in values["partial_variables"]: - raise ValueError( + raise ValueError(msg) + if "stop" in self.partial_variables: + msg = ( "Cannot have an partial variable named 'stop', as it is used " "internally, please rename." ) + raise ValueError(msg) - overall = set(values["input_variables"]).intersection( - values["partial_variables"] - ) + overall = set(self.input_variables).intersection(self.partial_variables) if overall: - raise ValueError( - f"Found overlapping input and partial variables: {overall}" - ) - return values + msg = f"Found overlapping input and partial variables: {overall}" + raise ValueError(msg) + return self @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Returns ["langchain", "schema", "prompt_template"].""" return ["langchain", "schema", "prompt_template"] @@ -100,17 +100,23 @@ def is_lc_serializable(cls) -> bool: Returns True.""" return True - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) + + @cached_property + def _serialized(self) -> dict[str, Any]: + return dumpd(self) @property + @override def OutputType(self) -> Any: """Return the output type of the prompt.""" return Union[StringPromptValue, ChatPromptValueConcrete] def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """Get the input schema for the prompt. Args: @@ -126,21 +132,23 @@ def get_input_schema( optional_input_variables = { k: (self.input_types.get(k, str), None) for k in self.optional_variables } - return create_model( - "PromptInput", **{**required_input_variables, **optional_input_variables} + return create_model_v2( + "PromptInput", + field_definitions={**required_input_variables, **optional_input_variables}, ) - def _validate_input(self, inner_input: Any) -> Dict: + def _validate_input(self, inner_input: Any) -> dict: if not isinstance(inner_input, dict): if len(self.input_variables) == 1: var_name = self.input_variables[0] inner_input = {var_name: inner_input} else: - raise TypeError( + msg = ( f"Expected mapping type as input to {self.__class__.__name__}. " f"Received {type(inner_input)}." ) + raise TypeError(msg) missing = set(self.input_variables).difference(inner_input) if missing: msg = ( @@ -157,18 +165,18 @@ def _validate_input(self, inner_input: Any) -> Dict: raise KeyError(msg) return inner_input - def _format_prompt_with_error_handling(self, inner_input: Dict) -> PromptValue: + def _format_prompt_with_error_handling(self, inner_input: dict) -> PromptValue: _inner_input = self._validate_input(inner_input) return self.format_prompt(**_inner_input) async def _aformat_prompt_with_error_handling( - self, inner_input: Dict + self, inner_input: dict ) -> PromptValue: _inner_input = self._validate_input(inner_input) return await self.aformat_prompt(**_inner_input) def invoke( - self, input: Dict, config: Optional[RunnableConfig] = None + self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> PromptValue: """Invoke the prompt. @@ -189,11 +197,11 @@ def invoke( input, config, run_type="prompt", - serialized=dumpd(self), + serialized=self._serialized, ) async def ainvoke( - self, input: Dict, config: Optional[RunnableConfig] = None, **kwargs: Any + self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> PromptValue: """Async invoke the prompt. @@ -214,7 +222,7 @@ async def ainvoke( input, config, run_type="prompt", - serialized=dumpd(self), + serialized=self._serialized, ) @abstractmethod @@ -255,7 +263,7 @@ def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs} return type(self)(**prompt_dict) - def _merge_partial_and_user_variables(self, **kwargs: Any) -> Dict[str, Any]: + def _merge_partial_and_user_variables(self, **kwargs: Any) -> dict[str, Any]: # Get partial params: partial_kwargs = { k: v if not callable(v) else v() for k, v in self.partial_variables.items() @@ -301,7 +309,7 @@ def _prompt_type(self) -> str: """Return the prompt type key.""" raise NotImplementedError - def dict(self, **kwargs: Any) -> Dict: + def dict(self, **kwargs: Any) -> dict: """Return dictionary representation of prompt. Args: @@ -313,11 +321,9 @@ def dict(self, **kwargs: Any) -> Dict: Raises: NotImplementedError: If the prompt type is not implemented. """ - prompt_dict = super().dict(**kwargs) - try: + prompt_dict = super().model_dump(**kwargs) + with contextlib.suppress(NotImplementedError): prompt_dict["_type"] = self._prompt_type - except NotImplementedError: - pass return prompt_dict def save(self, file_path: Union[Path, str]) -> None: @@ -337,18 +343,17 @@ def save(self, file_path: Union[Path, str]) -> None: prompt.save(file_path="path/prompt.yaml") """ if self.partial_variables: - raise ValueError("Cannot save prompt with partial variables.") + msg = "Cannot save prompt with partial variables." + raise ValueError(msg) # Fetch dictionary to save prompt_dict = self.dict() if "_type" not in prompt_dict: - raise NotImplementedError(f"Prompt {self} does not support saving.") + msg = f"Prompt {self} does not support saving." + raise NotImplementedError(msg) # Convert file to Path object. - if isinstance(file_path, str): - save_path = Path(file_path) - else: - save_path = file_path + save_path = Path(file_path) if isinstance(file_path, str) else file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) @@ -360,21 +365,23 @@ def save(self, file_path: Union[Path, str]) -> None: with open(file_path, "w") as f: yaml.dump(prompt_dict, f, default_flow_style=False) else: - raise ValueError(f"{save_path} must be json or yaml") + msg = f"{save_path} must be json or yaml" + raise ValueError(msg) -def _get_document_info(doc: Document, prompt: BasePromptTemplate[str]) -> Dict: +def _get_document_info(doc: Document, prompt: BasePromptTemplate[str]) -> dict: base_info = {"page_content": doc.page_content, **doc.metadata} missing_metadata = set(prompt.input_variables).difference(base_info) if len(missing_metadata) > 0: required_metadata = [ iv for iv in prompt.input_variables if iv != "page_content" ] - raise ValueError( + msg = ( f"Document prompt requires documents to have metadata variables: " f"{required_metadata}. Received document with missing metadata: " f"{list(missing_metadata)}." ) + raise ValueError(msg) return {k: base_info[k] for k in prompt.input_variables} diff --git a/libs/core/langchain_core/prompts/chat.py b/libs/core/langchain_core/prompts/chat.py index 4041964f04b33..111aed89b3c97 100644 --- a/libs/core/langchain_core/prompts/chat.py +++ b/libs/core/langchain_core/prompts/chat.py @@ -3,17 +3,13 @@ from __future__ import annotations from abc import ABC, abstractmethod +from collections.abc import Sequence from pathlib import Path from typing import ( + Annotated, Any, - Dict, - List, Literal, Optional, - Sequence, - Set, - Tuple, - Type, TypedDict, TypeVar, Union, @@ -21,6 +17,13 @@ overload, ) +from pydantic import ( + Field, + PositiveInt, + SkipValidation, + model_validator, +) + from langchain_core._api import deprecated from langchain_core.load import Serializable from langchain_core.messages import ( @@ -38,7 +41,6 @@ from langchain_core.prompts.image import ImagePromptTemplate from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import StringPromptTemplate, get_template_variables -from langchain_core.pydantic_v1 import Field, PositiveInt, root_validator from langchain_core.utils import get_colored_text from langchain_core.utils.interactive_env import is_interactive_env @@ -53,12 +55,12 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @abstractmethod - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: + def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Should return a list of BaseMessages. Args: @@ -68,7 +70,7 @@ def format_messages(self, **kwargs: Any) -> List[BaseMessage]: List of BaseMessages. """ - async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: + async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format messages from kwargs. Should return a list of BaseMessages. @@ -82,7 +84,7 @@ async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: @property @abstractmethod - def input_variables(self) -> List[str]: + def input_variables(self) -> list[str]: """Input variables for this prompt template. Returns: @@ -194,23 +196,29 @@ class MessagesPlaceholder(BaseMessagePromptTemplate): """Name of variable to use as messages.""" optional: bool = False - """If True format_messages can be called with no arguments and will return an empty - list. If False then a named argument with name `variable_name` must be passed + """If True format_messages can be called with no arguments and will return an empty + list. If False then a named argument with name `variable_name` must be passed in, even if the value is an empty list.""" n_messages: Optional[PositiveInt] = None - """Maximum number of messages to include. If None, then will include all. + """Maximum number of messages to include. If None, then will include all. Defaults to None.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] - def __init__(self, variable_name: str, *, optional: bool = False, **kwargs: Any): - super().__init__(variable_name=variable_name, optional=optional, **kwargs) + def __init__( + self, variable_name: str, *, optional: bool = False, **kwargs: Any + ) -> None: + # mypy can't detect the init which is defined in the parent class + # b/c these are BaseModel classes. + super().__init__( # type: ignore + variable_name=variable_name, optional=optional, **kwargs + ) - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: + def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Args: @@ -228,17 +236,18 @@ def format_messages(self, **kwargs: Any) -> List[BaseMessage]: else kwargs[self.variable_name] ) if not isinstance(value, list): - raise ValueError( + msg = ( f"variable {self.variable_name} should be a list of base messages, " f"got {value} of type {type(value)}" ) + raise ValueError(msg) value = convert_to_messages(value) if self.n_messages: value = value[-self.n_messages :] return value @property - def input_variables(self) -> List[str]: + def input_variables(self) -> list[str]: """Input variables for this prompt template. Returns: @@ -279,16 +288,16 @@ class BaseStringMessagePromptTemplate(BaseMessagePromptTemplate, ABC): """Additional keyword arguments to pass to the prompt template.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @classmethod def from_template( - cls: Type[MessagePromptTemplateT], + cls: type[MessagePromptTemplateT], template: str, template_format: str = "f-string", - partial_variables: Optional[Dict[str, Any]] = None, + partial_variables: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> MessagePromptTemplateT: """Create a class from a string template. @@ -316,9 +325,9 @@ def from_template( @classmethod def from_template_file( - cls: Type[MessagePromptTemplateT], + cls: type[MessagePromptTemplateT], template_file: Union[str, Path], - input_variables: List[str], + input_variables: list[str], **kwargs: Any, ) -> MessagePromptTemplateT: """Create a class from a template file. @@ -356,7 +365,7 @@ async def aformat(self, **kwargs: Any) -> BaseMessage: """ return self.format(**kwargs) - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: + def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Args: @@ -367,7 +376,7 @@ def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """ return [self.format(**kwargs)] - async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: + async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format messages from kwargs. Args: @@ -379,7 +388,7 @@ async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: return [await self.aformat(**kwargs)] @property - def input_variables(self) -> List[str]: + def input_variables(self) -> list[str]: """ Input variables for this prompt template. @@ -410,7 +419,7 @@ class ChatMessagePromptTemplate(BaseStringMessagePromptTemplate): """Role of the message.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @@ -449,37 +458,37 @@ async def aformat(self, **kwargs: Any) -> BaseMessage: class _TextTemplateParam(TypedDict, total=False): - text: Union[str, Dict] + text: Union[str, dict] class _ImageTemplateParam(TypedDict, total=False): - image_url: Union[str, Dict] + image_url: Union[str, dict] class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate): """Human message prompt template. This is a message sent from the user.""" prompt: Union[ - StringPromptTemplate, List[Union[StringPromptTemplate, ImagePromptTemplate]] + StringPromptTemplate, list[Union[StringPromptTemplate, ImagePromptTemplate]] ] """Prompt template.""" additional_kwargs: dict = Field(default_factory=dict) """Additional keyword arguments to pass to the prompt template.""" - _msg_class: Type[BaseMessage] + _msg_class: type[BaseMessage] @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @classmethod def from_template( - cls: Type[_StringImageMessagePromptTemplateT], - template: Union[str, List[Union[str, _TextTemplateParam, _ImageTemplateParam]]], + cls: type[_StringImageMessagePromptTemplateT], + template: Union[str, list[Union[str, _TextTemplateParam, _ImageTemplateParam]]], template_format: str = "f-string", *, - partial_variables: Optional[Dict[str, Any]] = None, + partial_variables: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> _StringImageMessagePromptTemplateT: """Create a class from a string template. @@ -498,7 +507,7 @@ def from_template( ValueError: If the template is not a string or list of strings. """ if isinstance(template, str): - prompt: Union[StringPromptTemplate, List] = PromptTemplate.from_template( + prompt: Union[StringPromptTemplate, list] = PromptTemplate.from_template( template, template_format=template_format, partial_variables=partial_variables, @@ -506,9 +515,8 @@ def from_template( return cls(prompt=prompt, **kwargs) elif isinstance(template, list): if (partial_variables is not None) and len(partial_variables) > 0: - raise ValueError( - "Partial variables are not supported for list of templates." - ) + msg = "Partial variables are not supported for list of templates." + raise ValueError(msg) prompt = [] for tmpl in template: if isinstance(tmpl, str) or isinstance(tmpl, dict) and "text" in tmpl: @@ -528,11 +536,12 @@ def from_template( vars = get_template_variables(img_template, "f-string") if vars: if len(vars) > 1: - raise ValueError( + msg = ( "Only one format variable allowed per image" f" template.\nGot: {vars}" f"\nFrom: {tmpl}" ) + raise ValueError(msg) input_variables = [vars[0]] img_template = {"url": img_template} img_template_obj = ImagePromptTemplate( @@ -551,19 +560,22 @@ def from_template( input_variables=input_variables, template=img_template ) else: - raise ValueError(f"Invalid image template: {tmpl}") + msg = f"Invalid image template: {tmpl}" + raise ValueError(msg) prompt.append(img_template_obj) else: - raise ValueError(f"Invalid template: {tmpl}") + msg = f"Invalid template: {tmpl}" + raise ValueError(msg) return cls(prompt=prompt, **kwargs) else: - raise ValueError(f"Invalid template: {template}") + msg = f"Invalid template: {template}" + raise ValueError(msg) @classmethod def from_template_file( - cls: Type[_StringImageMessagePromptTemplateT], + cls: type[_StringImageMessagePromptTemplateT], template_file: Union[str, Path], - input_variables: List[str], + input_variables: list[str], **kwargs: Any, ) -> _StringImageMessagePromptTemplateT: """Create a class from a template file. @@ -580,7 +592,7 @@ def from_template_file( template = f.read() return cls.from_template(template, input_variables=input_variables, **kwargs) - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: + def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Args: @@ -591,7 +603,7 @@ def format_messages(self, **kwargs: Any) -> List[BaseMessage]: """ return [self.format(**kwargs)] - async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: + async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format messages from kwargs. Args: @@ -603,7 +615,7 @@ async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: return [await self.aformat(**kwargs)] @property - def input_variables(self) -> List[str]: + def input_variables(self) -> list[str]: """ Input variables for this prompt template. @@ -629,7 +641,7 @@ def format(self, **kwargs: Any) -> BaseMessage: content=text, additional_kwargs=self.additional_kwargs ) else: - content: List = [] + content: list = [] for prompt in self.prompt: inputs = {var: kwargs[var] for var in prompt.input_variables} if isinstance(prompt, StringPromptTemplate): @@ -657,7 +669,7 @@ async def aformat(self, **kwargs: Any) -> BaseMessage: content=text, additional_kwargs=self.additional_kwargs ) else: - content: List = [] + content: list = [] for prompt in self.prompt: inputs = {var: kwargs[var] for var in prompt.input_variables} if isinstance(prompt, StringPromptTemplate): @@ -690,16 +702,16 @@ def pretty_repr(self, html: bool = False) -> str: class HumanMessagePromptTemplate(_StringImageMessagePromptTemplate): """Human message prompt template. This is a message sent from the user.""" - _msg_class: Type[BaseMessage] = HumanMessage + _msg_class: type[BaseMessage] = HumanMessage class AIMessagePromptTemplate(_StringImageMessagePromptTemplate): """AI message prompt template. This is a message sent from the AI.""" - _msg_class: Type[BaseMessage] = AIMessage + _msg_class: type[BaseMessage] = AIMessage @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @@ -709,10 +721,10 @@ class SystemMessagePromptTemplate(_StringImageMessagePromptTemplate): This is a message that is not sent to the user. """ - _msg_class: Type[BaseMessage] = SystemMessage + _msg_class: type[BaseMessage] = SystemMessage @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @@ -721,7 +733,7 @@ class BaseChatPromptTemplate(BasePromptTemplate, ABC): """Base class for chat prompt templates.""" @property - def lc_attributes(self) -> Dict: + def lc_attributes(self) -> dict: """ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the @@ -778,10 +790,10 @@ async def aformat_prompt(self, **kwargs: Any) -> PromptValue: return ChatPromptValue(messages=messages) @abstractmethod - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: + def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format kwargs into a list of messages.""" - async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: + async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format kwargs into a list of messages.""" return self.format_messages(**kwargs) @@ -805,9 +817,9 @@ def pretty_print(self) -> None: MessageLikeRepresentation = Union[ MessageLike, - Tuple[ - Union[str, Type], - Union[str, List[dict], List[object]], + tuple[ + Union[str, type], + Union[str, list[dict], list[object]], ], str, ] @@ -922,7 +934,7 @@ class ChatPromptTemplate(BaseChatPromptTemplate): """ # noqa: E501 - messages: List[MessageLike] + messages: Annotated[list[MessageLike], SkipValidation()] """List of messages consisting of either message prompt templates or messages.""" validate_template: bool = False """Whether or not to try validating the template.""" @@ -986,9 +998,9 @@ def __init__( ] # Automatically infer input variables from messages - input_vars: Set[str] = set() - optional_variables: Set[str] = set() - partial_vars: Dict[str, Any] = {} + input_vars: set[str] = set() + optional_variables: set[str] = set() + partial_vars: dict[str, Any] = {} for _message in _messages: if isinstance(_message, MessagesPlaceholder) and _message.optional: partial_vars[_message.variable_name] = [] @@ -999,17 +1011,15 @@ def __init__( input_vars.update(_message.input_variables) kwargs = { - **dict( - input_variables=sorted(input_vars), - optional_variables=sorted(optional_variables), - partial_variables=partial_vars, - ), + "input_variables": sorted(input_vars), + "optional_variables": sorted(optional_variables), + "partial_variables": partial_vars, **kwargs, } - cast(Type[ChatPromptTemplate], super()).__init__(messages=_messages, **kwargs) + cast(type[ChatPromptTemplate], super()).__init__(messages=_messages, **kwargs) @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @@ -1036,10 +1046,12 @@ def __add__(self, other: Any) -> ChatPromptTemplate: prompt = HumanMessagePromptTemplate.from_template(other) return ChatPromptTemplate(messages=self.messages + [prompt]) # type: ignore[call-arg] else: - raise NotImplementedError(f"Unsupported operand type for +: {type(other)}") + msg = f"Unsupported operand type for +: {type(other)}" + raise NotImplementedError(msg) - @root_validator(pre=True) - def validate_input_variables(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def validate_input_variables(cls, values: dict) -> Any: """Validate input variables. If input_variables is not set, it will be set to the union of @@ -1057,7 +1069,7 @@ def validate_input_variables(cls, values: dict) -> dict: messages = values["messages"] input_vars = set() optional_variables = set() - input_types: Dict[str, Any] = values.get("input_types", {}) + input_types: dict[str, Any] = values.get("input_types", {}) for message in messages: if isinstance(message, (BaseMessagePromptTemplate, BaseChatPromptTemplate)): input_vars.update(message.input_variables) @@ -1071,18 +1083,19 @@ def validate_input_variables(cls, values: dict) -> dict: values["partial_variables"][message.variable_name] = [] optional_variables.add(message.variable_name) if message.variable_name not in input_types: - input_types[message.variable_name] = List[AnyMessage] + input_types[message.variable_name] = list[AnyMessage] if "partial_variables" in values: input_vars = input_vars - set(values["partial_variables"]) if optional_variables: input_vars = input_vars - optional_variables if "input_variables" in values and values.get("validate_template"): if input_vars != set(values["input_variables"]): - raise ValueError( + msg = ( "Got mismatched input_variables. " f"Expected: {input_vars}. " f"Got: {values['input_variables']}" ) + raise ValueError(msg) else: values["input_variables"] = sorted(input_vars) if optional_variables: @@ -1111,7 +1124,7 @@ def from_template(cls, template: str, **kwargs: Any) -> ChatPromptTemplate: @classmethod @deprecated("0.0.1", alternative="from_messages classmethod", pending=True) def from_role_strings( - cls, string_messages: List[Tuple[str, str]] + cls, string_messages: list[tuple[str, str]] ) -> ChatPromptTemplate: """Create a chat prompt template from a list of (role, template) tuples. @@ -1131,7 +1144,7 @@ def from_role_strings( @classmethod @deprecated("0.0.1", alternative="from_messages classmethod", pending=True) def from_strings( - cls, string_messages: List[Tuple[Type[BaseMessagePromptTemplate], str]] + cls, string_messages: list[tuple[type[BaseMessagePromptTemplate], str]] ) -> ChatPromptTemplate: """Create a chat prompt template from a list of (role class, template) tuples. @@ -1186,7 +1199,7 @@ def from_messages( """ return cls(messages, template_format=template_format) - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: + def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format the chat template into a list of finalized messages. Args: @@ -1207,10 +1220,11 @@ def format_messages(self, **kwargs: Any) -> List[BaseMessage]: message = message_template.format_messages(**kwargs) result.extend(message) else: - raise ValueError(f"Unexpected input: {message_template}") + msg = f"Unexpected input: {message_template}" + raise ValueError(msg) return result - async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: + async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format the chat template into a list of finalized messages. Args: @@ -1234,7 +1248,8 @@ async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: message = await message_template.aformat_messages(**kwargs) result.extend(message) else: - raise ValueError(f"Unexpected input: {message_template}") + msg = f"Unexpected input: {message_template}" + raise ValueError(msg) return result def partial(self, **kwargs: Any) -> ChatPromptTemplate: @@ -1321,7 +1336,7 @@ def save(self, file_path: Union[Path, str]) -> None: Args: file_path: path to file. """ - raise NotImplementedError() + raise NotImplementedError def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. @@ -1369,38 +1384,43 @@ def _create_template_from_message_type( elif message_type == "placeholder": if isinstance(template, str): if template[0] != "{" or template[-1] != "}": - raise ValueError( + msg = ( f"Invalid placeholder template: {template}." " Expected a variable name surrounded by curly braces." ) + raise ValueError(msg) var_name = template[1:-1] message = MessagesPlaceholder(variable_name=var_name, optional=True) elif len(template) == 2 and isinstance(template[1], bool): var_name_wrapped, is_optional = template if not isinstance(var_name_wrapped, str): - raise ValueError( + msg = ( "Expected variable name to be a string." f" Got: {var_name_wrapped}" ) + raise ValueError(msg) if var_name_wrapped[0] != "{" or var_name_wrapped[-1] != "}": - raise ValueError( + msg = ( f"Invalid placeholder template: {var_name_wrapped}." " Expected a variable name surrounded by curly braces." ) + raise ValueError(msg) var_name = var_name_wrapped[1:-1] message = MessagesPlaceholder(variable_name=var_name, optional=is_optional) else: - raise ValueError( + msg = ( "Unexpected arguments for placeholder message type." " Expected either a single string variable name" " or a list of [variable_name: str, is_optional: bool]." f" Got: {template}" ) + raise ValueError(msg) else: - raise ValueError( + msg = ( f"Unexpected message type: {message_type}. Use one of 'human'," f" 'user', 'ai', 'assistant', or 'system'." ) + raise ValueError(msg) return message @@ -1441,7 +1461,8 @@ def _convert_to_message( ) elif isinstance(message, tuple): if len(message) != 2: - raise ValueError(f"Expected 2-tuple of (role, template), got {message}") + msg = f"Expected 2-tuple of (role, template), got {message}" + raise ValueError(msg) message_type_str, template = message if isinstance(message_type_str, str): _message = _create_template_from_message_type( @@ -1454,6 +1475,7 @@ def _convert_to_message( ) ) else: - raise NotImplementedError(f"Unsupported message type: {type(message)}") + msg = f"Unsupported message type: {type(message)}" + raise NotImplementedError(msg) return _message diff --git a/libs/core/langchain_core/prompts/few_shot.py b/libs/core/langchain_core/prompts/few_shot.py index 934ac88a81a45..96e70c17d95cb 100644 --- a/libs/core/langchain_core/prompts/few_shot.py +++ b/libs/core/langchain_core/prompts/few_shot.py @@ -3,7 +3,15 @@ from __future__ import annotations from pathlib import Path -from typing import Any, Dict, List, Literal, Optional, Union +from typing import Any, Literal, Optional, Union + +from pydantic import ( + BaseModel, + ConfigDict, + Field, + model_validator, +) +from typing_extensions import Self from langchain_core.example_selectors import BaseExampleSelector from langchain_core.messages import BaseMessage, get_buffer_string @@ -18,13 +26,12 @@ check_valid_template, get_template_variables, ) -from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator class _FewShotPromptTemplateMixin(BaseModel): """Prompt template that contains few shot examples.""" - examples: Optional[List[dict]] = None + examples: Optional[list[dict]] = None """Examples to format into the prompt. Either this or example_selector should be provided.""" @@ -32,12 +39,14 @@ class _FewShotPromptTemplateMixin(BaseModel): """ExampleSelector to choose the examples to format into the prompt. Either this or examples should be provided.""" - class Config: - arbitrary_types_allowed = True - extra = Extra.forbid + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def check_examples_and_selector(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def check_examples_and_selector(cls, values: dict) -> Any: """Check that one and only one of examples/example_selector are provided. Args: @@ -50,21 +59,19 @@ def check_examples_and_selector(cls, values: Dict) -> Dict: ValueError: If neither or both examples and example_selector are provided. ValueError: If both examples and example_selector are provided. """ - examples = values.get("examples", None) - example_selector = values.get("example_selector", None) + examples = values.get("examples") + example_selector = values.get("example_selector") if examples and example_selector: - raise ValueError( - "Only one of 'examples' and 'example_selector' should be provided" - ) + msg = "Only one of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) if examples is None and example_selector is None: - raise ValueError( - "One of 'examples' and 'example_selector' should be provided" - ) + msg = "One of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) return values - def _get_examples(self, **kwargs: Any) -> List[dict]: + def _get_examples(self, **kwargs: Any) -> list[dict]: """Get the examples to use for formatting the prompt. Args: @@ -81,11 +88,10 @@ def _get_examples(self, **kwargs: Any) -> List[dict]: elif self.example_selector is not None: return self.example_selector.select_examples(kwargs) else: - raise ValueError( - "One of 'examples' and 'example_selector' should be provided" - ) + msg = "One of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) - async def _aget_examples(self, **kwargs: Any) -> List[dict]: + async def _aget_examples(self, **kwargs: Any) -> list[dict]: """Async get the examples to use for formatting the prompt. Args: @@ -102,9 +108,8 @@ async def _aget_examples(self, **kwargs: Any) -> List[dict]: elif self.example_selector is not None: return await self.example_selector.aselect_examples(kwargs) else: - raise ValueError( - "One of 'examples' and 'example_selector' should be provided" - ) + msg = "One of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) class FewShotPromptTemplate(_FewShotPromptTemplateMixin, StringPromptTemplate): @@ -139,28 +144,29 @@ def __init__(self, **kwargs: Any) -> None: kwargs["input_variables"] = kwargs["example_prompt"].input_variables super().__init__(**kwargs) - @root_validator(pre=False, skip_on_failure=True) - def template_is_valid(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def template_is_valid(self) -> Self: """Check that prefix, suffix, and input variables are consistent.""" - if values["validate_template"]: + if self.validate_template: check_valid_template( - values["prefix"] + values["suffix"], - values["template_format"], - values["input_variables"] + list(values["partial_variables"]), + self.prefix + self.suffix, + self.template_format, + self.input_variables + list(self.partial_variables), ) - elif values.get("template_format"): - values["input_variables"] = [ + elif self.template_format or None: + self.input_variables = [ var for var in get_template_variables( - values["prefix"] + values["suffix"], values["template_format"] + self.prefix + self.suffix, self.template_format ) - if var not in values["partial_variables"] + if var not in self.partial_variables ] - return values + return self - class Config: - arbitrary_types_allowed = True - extra = Extra.forbid + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) def format(self, **kwargs: Any) -> str: """Format the prompt with inputs generating a string. @@ -233,7 +239,8 @@ def save(self, file_path: Union[Path, str]) -> None: ValueError: If example_selector is provided. """ if self.example_selector: - raise ValueError("Saving an example selector is not currently supported") + msg = "Saving an example selector is not currently supported" + raise ValueError(msg) return super().save(file_path) @@ -353,7 +360,7 @@ class FewShotChatMessagePromptTemplate( chain.invoke({"input": "What's 3+3?"}) """ - input_variables: List[str] = Field(default_factory=list) + input_variables: list[str] = Field(default_factory=list) """A list of the names of the variables the prompt template will use to pass to the example_selector, if provided.""" @@ -365,11 +372,12 @@ def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable.""" return False - class Config: - arbitrary_types_allowed = True - extra = Extra.forbid + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: + def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format kwargs into a list of messages. Args: @@ -391,7 +399,7 @@ def format_messages(self, **kwargs: Any) -> List[BaseMessage]: ] return messages - async def aformat_messages(self, **kwargs: Any) -> List[BaseMessage]: + async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format kwargs into a list of messages. Args: @@ -456,4 +464,4 @@ def pretty_repr(self, html: bool = False) -> str: Returns: A pretty representation of the prompt template. """ - raise NotImplementedError() + raise NotImplementedError diff --git a/libs/core/langchain_core/prompts/few_shot_with_templates.py b/libs/core/langchain_core/prompts/few_shot_with_templates.py index 6b98694d44bcd..f293aae1c80f8 100644 --- a/libs/core/langchain_core/prompts/few_shot_with_templates.py +++ b/libs/core/langchain_core/prompts/few_shot_with_templates.py @@ -1,20 +1,22 @@ """Prompt template that contains few shot examples.""" from pathlib import Path -from typing import Any, Dict, List, Optional, Union +from typing import Any, Optional, Union + +from pydantic import ConfigDict, model_validator +from typing_extensions import Self from langchain_core.prompts.prompt import PromptTemplate from langchain_core.prompts.string import ( DEFAULT_FORMATTER_MAPPING, StringPromptTemplate, ) -from langchain_core.pydantic_v1 import Extra, root_validator class FewShotPromptWithTemplates(StringPromptTemplate): """Prompt template that contains few shot examples.""" - examples: Optional[List[dict]] = None + examples: Optional[list[dict]] = None """Examples to format into the prompt. Either this or example_selector should be provided.""" @@ -41,55 +43,56 @@ class FewShotPromptWithTemplates(StringPromptTemplate): """Whether or not to try validating the template.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "few_shot_with_templates"] - @root_validator(pre=True) - def check_examples_and_selector(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def check_examples_and_selector(cls, values: dict) -> Any: """Check that one and only one of examples/example_selector are provided.""" - examples = values.get("examples", None) - example_selector = values.get("example_selector", None) + examples = values.get("examples") + example_selector = values.get("example_selector") if examples and example_selector: - raise ValueError( - "Only one of 'examples' and 'example_selector' should be provided" - ) + msg = "Only one of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) if examples is None and example_selector is None: - raise ValueError( - "One of 'examples' and 'example_selector' should be provided" - ) + msg = "One of 'examples' and 'example_selector' should be provided" + raise ValueError(msg) return values - @root_validator(pre=False, skip_on_failure=True) - def template_is_valid(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def template_is_valid(self) -> Self: """Check that prefix, suffix, and input variables are consistent.""" - if values["validate_template"]: - input_variables = values["input_variables"] - expected_input_variables = set(values["suffix"].input_variables) - expected_input_variables |= set(values["partial_variables"]) - if values["prefix"] is not None: - expected_input_variables |= set(values["prefix"].input_variables) + if self.validate_template: + input_variables = self.input_variables + expected_input_variables = set(self.suffix.input_variables) + expected_input_variables |= set(self.partial_variables) + if self.prefix is not None: + expected_input_variables |= set(self.prefix.input_variables) missing_vars = expected_input_variables.difference(input_variables) if missing_vars: - raise ValueError( + msg = ( f"Got input_variables={input_variables}, but based on " f"prefix/suffix expected {expected_input_variables}" ) + raise ValueError(msg) else: - values["input_variables"] = sorted( - set(values["suffix"].input_variables) - | set(values["prefix"].input_variables if values["prefix"] else []) - - set(values["partial_variables"]) + self.input_variables = sorted( + set(self.suffix.input_variables) + | set(self.prefix.input_variables if self.prefix else []) + - set(self.partial_variables) ) - return values + return self - class Config: - arbitrary_types_allowed = True - extra = Extra.forbid + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - def _get_examples(self, **kwargs: Any) -> List[dict]: + def _get_examples(self, **kwargs: Any) -> list[dict]: if self.examples is not None: return self.examples elif self.example_selector is not None: @@ -97,7 +100,7 @@ def _get_examples(self, **kwargs: Any) -> List[dict]: else: raise ValueError - async def _aget_examples(self, **kwargs: Any) -> List[dict]: + async def _aget_examples(self, **kwargs: Any) -> list[dict]: if self.examples is not None: return self.examples elif self.example_selector is not None: @@ -134,7 +137,7 @@ def format(self, **kwargs: Any) -> str: prefix_kwargs = { k: v for k, v in kwargs.items() if k in self.prefix.input_variables } - for k in prefix_kwargs.keys(): + for k in prefix_kwargs: kwargs.pop(k) prefix = self.prefix.format(**prefix_kwargs) @@ -142,7 +145,7 @@ def format(self, **kwargs: Any) -> str: suffix_kwargs = { k: v for k, v in kwargs.items() if k in self.suffix.input_variables } - for k in suffix_kwargs.keys(): + for k in suffix_kwargs: kwargs.pop(k) suffix = self.suffix.format( **suffix_kwargs, @@ -178,7 +181,7 @@ async def aformat(self, **kwargs: Any) -> str: prefix_kwargs = { k: v for k, v in kwargs.items() if k in self.prefix.input_variables } - for k in prefix_kwargs.keys(): + for k in prefix_kwargs: kwargs.pop(k) prefix = await self.prefix.aformat(**prefix_kwargs) @@ -186,7 +189,7 @@ async def aformat(self, **kwargs: Any) -> str: suffix_kwargs = { k: v for k, v in kwargs.items() if k in self.suffix.input_variables } - for k in suffix_kwargs.keys(): + for k in suffix_kwargs: kwargs.pop(k) suffix = await self.suffix.aformat( **suffix_kwargs, @@ -212,5 +215,6 @@ def save(self, file_path: Union[Path, str]) -> None: ValueError: If example_selector is provided. """ if self.example_selector: - raise ValueError("Saving an example selector is not currently supported") + msg = "Saving an example selector is not currently supported" + raise ValueError(msg) return super().save(file_path) diff --git a/libs/core/langchain_core/prompts/image.py b/libs/core/langchain_core/prompts/image.py index cc0bebfc5b4d1..a75a5eece0f91 100644 --- a/libs/core/langchain_core/prompts/image.py +++ b/libs/core/langchain_core/prompts/image.py @@ -1,8 +1,9 @@ -from typing import Any, List +from typing import Any + +from pydantic import Field from langchain_core.prompt_values import ImagePromptValue, ImageURL, PromptValue from langchain_core.prompts.base import BasePromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.runnables import run_in_executor from langchain_core.utils import image as image_utils @@ -17,13 +18,14 @@ def __init__(self, **kwargs: Any) -> None: if "input_variables" not in kwargs: kwargs["input_variables"] = [] - overlap = set(kwargs["input_variables"]) & set(("url", "path", "detail")) + overlap = set(kwargs["input_variables"]) & {"url", "path", "detail"} if overlap: - raise ValueError( + msg = ( "input_variables for the image template cannot contain" " any of 'url', 'path', or 'detail'." f" Found: {overlap}" ) + raise ValueError(msg) super().__init__(**kwargs) @property @@ -32,7 +34,7 @@ def _prompt_type(self) -> str: return "image-prompt" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "image"] @@ -90,13 +92,16 @@ def format( path = kwargs.get("path") or formatted.get("path") detail = kwargs.get("detail") or formatted.get("detail") if not url and not path: - raise ValueError("Must provide either url or path.") + msg = "Must provide either url or path." + raise ValueError(msg) if not url: if not isinstance(path, str): - raise ValueError("path must be a string.") + msg = "path must be a string." + raise ValueError(msg) url = image_utils.image_to_data_url(path) if not isinstance(url, str): - raise ValueError("url must be a string.") + msg = "url must be a string." + raise ValueError(msg) output: ImageURL = {"url": url} if detail: # Don't check literal values here: let the API check them @@ -127,4 +132,4 @@ def pretty_repr(self, html: bool = False) -> str: Returns: A pretty representation of the prompt. """ - raise NotImplementedError() + raise NotImplementedError diff --git a/libs/core/langchain_core/prompts/loading.py b/libs/core/langchain_core/prompts/loading.py index 046418be6117f..3d65f8323f1b8 100644 --- a/libs/core/langchain_core/prompts/loading.py +++ b/libs/core/langchain_core/prompts/loading.py @@ -3,7 +3,7 @@ import json import logging from pathlib import Path -from typing import Callable, Dict, Optional, Union +from typing import Callable, Optional, Union import yaml @@ -34,7 +34,8 @@ def load_prompt_from_config(config: dict) -> BasePromptTemplate: config_type = config.pop("_type", "prompt") if config_type not in type_to_loader_dict: - raise ValueError(f"Loading {config_type} prompt not supported") + msg = f"Loading {config_type} prompt not supported" + raise ValueError(msg) prompt_loader = type_to_loader_dict[config_type] return prompt_loader(config) @@ -46,9 +47,8 @@ def _load_template(var_name: str, config: dict) -> dict: if f"{var_name}_path" in config: # If it does, make sure template variable doesn't also exist. if var_name in config: - raise ValueError( - f"Both `{var_name}_path` and `{var_name}` cannot be provided." - ) + msg = f"Both `{var_name}_path` and `{var_name}` cannot be provided." + raise ValueError(msg) # Pop the template path from the config. template_path = Path(config.pop(f"{var_name}_path")) # Load the template. @@ -73,12 +73,12 @@ def _load_examples(config: dict) -> dict: elif config["examples"].endswith((".yaml", ".yml")): examples = yaml.safe_load(f) else: - raise ValueError( - "Invalid file format. Only json or yaml formats are supported." - ) + msg = "Invalid file format. Only json or yaml formats are supported." + raise ValueError(msg) config["examples"] = examples else: - raise ValueError("Invalid examples format. Only list or string are supported.") + msg = "Invalid examples format. Only list or string are supported." + raise ValueError(msg) return config @@ -90,7 +90,8 @@ def _load_output_parser(config: dict) -> dict: if output_parser_type == "default": output_parser = StrOutputParser(**_config) else: - raise ValueError(f"Unsupported output parser {output_parser_type}") + msg = f"Unsupported output parser {output_parser_type}" + raise ValueError(msg) config["output_parser"] = output_parser return config @@ -103,10 +104,11 @@ def _load_few_shot_prompt(config: dict) -> FewShotPromptTemplate: # Load the example prompt. if "example_prompt_path" in config: if "example_prompt" in config: - raise ValueError( + msg = ( "Only one of example_prompt and example_prompt_path should " "be specified." ) + raise ValueError(msg) config["example_prompt"] = load_prompt(config.pop("example_prompt_path")) else: config["example_prompt"] = load_prompt_from_config(config["example_prompt"]) @@ -126,11 +128,12 @@ def _load_prompt(config: dict) -> PromptTemplate: if template_format == "jinja2": # Disabled due to: # https://github.com/langchain-ai/langchain/issues/4394 - raise ValueError( + msg = ( f"Loading templates with '{template_format}' format is no longer supported " f"since it can lead to arbitrary code execution. Please migrate to using " f"the 'f-string' template format, which does not suffer from this issue." ) + raise ValueError(msg) return PromptTemplate(**config) @@ -151,11 +154,12 @@ def load_prompt( RuntimeError: If the path is a Lang Chain Hub path. """ if isinstance(path, str) and path.startswith("lc://"): - raise RuntimeError( + msg = ( "Loading from the deprecated github-based Hub is no longer supported. " "Please use the new LangChain Hub at https://smith.langchain.com/hub " "instead." ) + raise RuntimeError(msg) return _load_prompt_from_file(path, encoding) @@ -164,10 +168,7 @@ def _load_prompt_from_file( ) -> BasePromptTemplate: """Load prompt from file.""" # Convert file to a Path object. - if isinstance(file, str): - file_path = Path(file) - else: - file_path = file + file_path = Path(file) if isinstance(file, str) else file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path, encoding=encoding) as f: @@ -176,12 +177,13 @@ def _load_prompt_from_file( with open(file_path, encoding=encoding) as f: config = yaml.safe_load(f) else: - raise ValueError(f"Got unsupported file type {file_path.suffix}") + msg = f"Got unsupported file type {file_path.suffix}" + raise ValueError(msg) # Load the prompt from the config now. return load_prompt_from_config(config) -def _load_chat_prompt(config: Dict) -> ChatPromptTemplate: +def _load_chat_prompt(config: dict) -> ChatPromptTemplate: """Load chat prompt from config""" messages = config.pop("messages") @@ -189,12 +191,13 @@ def _load_chat_prompt(config: Dict) -> ChatPromptTemplate: config.pop("input_variables") if not template: - raise ValueError("Can't load chat prompt without template") + msg = "Can't load chat prompt without template" + raise ValueError(msg) return ChatPromptTemplate.from_template(template=template, **config) -type_to_loader_dict: Dict[str, Callable[[dict], BasePromptTemplate]] = { +type_to_loader_dict: dict[str, Callable[[dict], BasePromptTemplate]] = { "prompt": _load_prompt, "few_shot": _load_few_shot_prompt, "chat": _load_chat_prompt, diff --git a/libs/core/langchain_core/prompts/pipeline.py b/libs/core/langchain_core/prompts/pipeline.py index 49d3c9664343c..e25a0a7f72461 100644 --- a/libs/core/langchain_core/prompts/pipeline.py +++ b/libs/core/langchain_core/prompts/pipeline.py @@ -1,12 +1,14 @@ -from typing import Any, Dict, List, Tuple +from typing import Any +from typing import Optional as Optional + +from pydantic import model_validator from langchain_core.prompt_values import PromptValue from langchain_core.prompts.base import BasePromptTemplate from langchain_core.prompts.chat import BaseChatPromptTemplate -from langchain_core.pydantic_v1 import root_validator -def _get_inputs(inputs: dict, input_variables: List[str]) -> dict: +def _get_inputs(inputs: dict, input_variables: list[str]) -> dict: return {k: inputs[k] for k in input_variables} @@ -26,16 +28,17 @@ class PipelinePromptTemplate(BasePromptTemplate): final_prompt: BasePromptTemplate """The final prompt that is returned.""" - pipeline_prompts: List[Tuple[str, BasePromptTemplate]] + pipeline_prompts: list[tuple[str, BasePromptTemplate]] """A list of tuples, consisting of a string (`name`) and a Prompt Template.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "pipeline"] - @root_validator(pre=True) - def get_input_variables(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_input_variables(cls, values: dict) -> Any: """Get input variables.""" created_variables = set() all_variables = set() @@ -106,3 +109,6 @@ async def aformat(self, **kwargs: Any) -> str: @property def _prompt_type(self) -> str: raise ValueError + + +PipelinePromptTemplate.model_rebuild() diff --git a/libs/core/langchain_core/prompts/prompt.py b/libs/core/langchain_core/prompts/prompt.py index 6b86b54566b80..5c52ef36d076c 100644 --- a/libs/core/langchain_core/prompts/prompt.py +++ b/libs/core/langchain_core/prompts/prompt.py @@ -4,7 +4,9 @@ import warnings from pathlib import Path -from typing import Any, Dict, List, Literal, Optional, Union +from typing import Any, Literal, Optional, Union + +from pydantic import BaseModel, model_validator from langchain_core.prompts.string import ( DEFAULT_FORMATTER_MAPPING, @@ -13,7 +15,6 @@ get_template_variables, mustache_schema, ) -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.runnables.config import RunnableConfig @@ -53,13 +54,13 @@ class PromptTemplate(StringPromptTemplate): """ @property - def lc_attributes(self) -> Dict[str, Any]: + def lc_attributes(self) -> dict[str, Any]: return { "template_format": self.template_format, } @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "prompt"] @@ -73,8 +74,9 @@ def get_lc_namespace(cls) -> List[str]: validate_template: bool = False """Whether or not to try validating the template.""" - @root_validator(pre=True) - def pre_init_validation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def pre_init_validation(cls, values: dict) -> Any: """Check that template and input variables are consistent.""" if values.get("template") is None: # Will let pydantic fail with a ValidationError if template @@ -87,12 +89,12 @@ def pre_init_validation(cls, values: Dict) -> Dict: if values.get("validate_template"): if values["template_format"] == "mustache": - raise ValueError("Mustache templates cannot be validated.") + msg = "Mustache templates cannot be validated." + raise ValueError(msg) if "input_variables" not in values: - raise ValueError( - "Input variables must be provided to validate the template." - ) + msg = "Input variables must be provided to validate the template." + raise ValueError(msg) all_inputs = values["input_variables"] + list(values["partial_variables"]) check_valid_template( @@ -129,23 +131,22 @@ def __add__(self, other: Any) -> PromptTemplate: # Allow for easy combining if isinstance(other, PromptTemplate): if self.template_format != "f-string": - raise ValueError( - "Adding prompt templates only supported for f-strings." - ) + msg = "Adding prompt templates only supported for f-strings." + raise ValueError(msg) if other.template_format != "f-string": - raise ValueError( - "Adding prompt templates only supported for f-strings." - ) + msg = "Adding prompt templates only supported for f-strings." + raise ValueError(msg) input_variables = list( set(self.input_variables) | set(other.input_variables) ) template = self.template + other.template # If any do not want to validate, then don't validate_template = self.validate_template and other.validate_template - partial_variables = {k: v for k, v in self.partial_variables.items()} + partial_variables = dict(self.partial_variables.items()) for k, v in other.partial_variables.items(): if k in partial_variables: - raise ValueError("Cannot have same variable partialed twice.") + msg = "Cannot have same variable partialed twice." + raise ValueError(msg) else: partial_variables[k] = v return PromptTemplate( @@ -159,7 +160,8 @@ def __add__(self, other: Any) -> PromptTemplate: prompt = PromptTemplate.from_template(other) return self + prompt else: - raise NotImplementedError(f"Unsupported operand type for +: {type(other)}") + msg = f"Unsupported operand type for +: {type(other)}" + raise NotImplementedError(msg) @property def _prompt_type(self) -> str: @@ -181,9 +183,9 @@ def format(self, **kwargs: Any) -> str: @classmethod def from_examples( cls, - examples: List[str], + examples: list[str], suffix: str, - input_variables: List[str], + input_variables: list[str], example_separator: str = "\n\n", prefix: str = "", **kwargs: Any, @@ -213,7 +215,7 @@ def from_examples( def from_file( cls, template_file: Union[str, Path], - input_variables: Optional[List[str]] = None, + input_variables: Optional[list[str]] = None, encoding: Optional[str] = None, **kwargs: Any, ) -> PromptTemplate: @@ -247,7 +249,7 @@ def from_template( template: str, *, template_format: str = "f-string", - partial_variables: Optional[Dict[str, Any]] = None, + partial_variables: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> PromptTemplate: """Load a prompt template from a template. diff --git a/libs/core/langchain_core/prompts/string.py b/libs/core/langchain_core/prompts/string.py index b2377512c5402..01c19486b6760 100644 --- a/libs/core/langchain_core/prompts/string.py +++ b/libs/core/langchain_core/prompts/string.py @@ -5,18 +5,19 @@ import warnings from abc import ABC from string import Formatter -from typing import Any, Callable, Dict, List, Set, Tuple, Type +from typing import Any, Callable + +from pydantic import BaseModel, create_model import langchain_core.utils.mustache as mustache from langchain_core.prompt_values import PromptValue, StringPromptValue from langchain_core.prompts.base import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, create_model from langchain_core.utils import get_colored_text from langchain_core.utils.formatting import formatter from langchain_core.utils.interactive_env import is_interactive_env -def jinja2_formatter(template: str, **kwargs: Any) -> str: +def jinja2_formatter(template: str, /, **kwargs: Any) -> str: """Format a template using jinja2. *Security warning*: @@ -41,13 +42,14 @@ def jinja2_formatter(template: str, **kwargs: Any) -> str: try: from jinja2.sandbox import SandboxedEnvironment except ImportError as e: - raise ImportError( + msg = ( "jinja2 not installed, which is needed to use the jinja2_formatter. " "Please install it with `pip install jinja2`." "Please be cautious when using jinja2 templates. " "Do not expand jinja2 templates using unverified or user-controlled " "inputs as that can result in arbitrary Python code execution." - ) from e + ) + raise ImportError(msg) from e # This uses a sandboxed environment to prevent arbitrary code execution. # Jinja2 uses an opt-out rather than opt-in approach for sand-boxing. @@ -59,7 +61,7 @@ def jinja2_formatter(template: str, **kwargs: Any) -> str: return SandboxedEnvironment().from_string(template).render(**kwargs) -def validate_jinja2(template: str, input_variables: List[str]) -> None: +def validate_jinja2(template: str, input_variables: list[str]) -> None: """ Validate that the input variables are valid for the template. Issues a warning if missing or extra variables are found. @@ -84,21 +86,22 @@ def validate_jinja2(template: str, input_variables: List[str]) -> None: warnings.warn(warning_message.strip(), stacklevel=7) -def _get_jinja2_variables_from_template(template: str) -> Set[str]: +def _get_jinja2_variables_from_template(template: str) -> set[str]: try: from jinja2 import Environment, meta except ImportError as e: - raise ImportError( + msg = ( "jinja2 not installed, which is needed to use the jinja2_formatter. " "Please install it with `pip install jinja2`." - ) from e + ) + raise ImportError(msg) from e env = Environment() ast = env.parse(template) variables = meta.find_undeclared_variables(ast) return variables -def mustache_formatter(template: str, **kwargs: Any) -> str: +def mustache_formatter(template: str, /, **kwargs: Any) -> str: """Format a template using mustache. Args: @@ -113,7 +116,7 @@ def mustache_formatter(template: str, **kwargs: Any) -> str: def mustache_template_vars( template: str, -) -> Set[str]: +) -> set[str]: """Get the variables from a mustache template. Args: @@ -122,7 +125,7 @@ def mustache_template_vars( Returns: The variables from the template. """ - vars: Set[str] = set() + vars: set[str] = set() section_depth = 0 for type, key in mustache.tokenize(template): if type == "end": @@ -138,12 +141,12 @@ def mustache_template_vars( return vars -Defs = Dict[str, "Defs"] +Defs = dict[str, "Defs"] def mustache_schema( template: str, -) -> Type[BaseModel]: +) -> type[BaseModel]: """Get the variables from a mustache template. Args: @@ -153,8 +156,8 @@ def mustache_schema( The variables from the template as a Pydantic model. """ fields = {} - prefix: Tuple[str, ...] = () - section_stack: List[Tuple[str, ...]] = [] + prefix: tuple[str, ...] = () + section_stack: list[tuple[str, ...]] = [] for type, key in mustache.tokenize(template): if key == ".": continue @@ -177,7 +180,7 @@ def mustache_schema( return _create_model_recursive("PromptInput", defs) -def _create_model_recursive(name: str, defs: Defs) -> Type: +def _create_model_recursive(name: str, defs: Defs) -> type: return create_model( # type: ignore[call-overload] name, **{ @@ -187,20 +190,20 @@ def _create_model_recursive(name: str, defs: Defs) -> Type: ) -DEFAULT_FORMATTER_MAPPING: Dict[str, Callable] = { +DEFAULT_FORMATTER_MAPPING: dict[str, Callable] = { "f-string": formatter.format, "mustache": mustache_formatter, "jinja2": jinja2_formatter, } -DEFAULT_VALIDATOR_MAPPING: Dict[str, Callable] = { +DEFAULT_VALIDATOR_MAPPING: dict[str, Callable] = { "f-string": formatter.validate_input_variables, "jinja2": validate_jinja2, } def check_valid_template( - template: str, template_format: str, input_variables: List[str] + template: str, template_format: str, input_variables: list[str] ) -> None: """Check that template string is valid. @@ -216,20 +219,22 @@ def check_valid_template( try: validator_func = DEFAULT_VALIDATOR_MAPPING[template_format] except KeyError as exc: - raise ValueError( + msg = ( f"Invalid template format {template_format!r}, should be one of" f" {list(DEFAULT_FORMATTER_MAPPING)}." - ) from exc + ) + raise ValueError(msg) from exc try: validator_func(template, input_variables) except (KeyError, IndexError) as exc: - raise ValueError( + msg = ( "Invalid prompt schema; check for mismatched or missing input parameters" f" from {input_variables}." - ) from exc + ) + raise ValueError(msg) from exc -def get_template_variables(template: str, template_format: str) -> List[str]: +def get_template_variables(template: str, template_format: str) -> list[str]: """Get the variables from the template. Args: @@ -252,7 +257,8 @@ def get_template_variables(template: str, template_format: str) -> List[str]: elif template_format == "mustache": input_variables = mustache_template_vars(template) else: - raise ValueError(f"Unsupported template format: {template_format}") + msg = f"Unsupported template format: {template_format}" + raise ValueError(msg) return sorted(input_variables) @@ -261,7 +267,7 @@ class StringPromptTemplate(BasePromptTemplate, ABC): """String prompt that exposes the format method, returning a prompt.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "base"] diff --git a/libs/core/langchain_core/prompts/structured.py b/libs/core/langchain_core/prompts/structured.py index 8ccb17733853b..360f14ccf2fde 100644 --- a/libs/core/langchain_core/prompts/structured.py +++ b/libs/core/langchain_core/prompts/structured.py @@ -1,23 +1,20 @@ +from collections.abc import Iterator, Mapping, Sequence from typing import ( Any, Callable, - Dict, - Iterator, - List, - Mapping, + Literal, Optional, - Sequence, - Type, Union, ) +from pydantic import BaseModel, Field + from langchain_core._api.beta_decorator import beta from langchain_core.language_models.base import BaseLanguageModel from langchain_core.prompts.chat import ( ChatPromptTemplate, MessageLikeRepresentation, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables.base import ( Other, Runnable, @@ -31,16 +28,17 @@ class StructuredPrompt(ChatPromptTemplate): """Structured prompt template for a language model.""" - schema_: Union[Dict, Type[BaseModel]] + schema_: Union[dict, type[BaseModel]] """Schema for the structured prompt.""" - structured_output_kwargs: Dict[str, Any] = Field(default_factory=dict) + structured_output_kwargs: dict[str, Any] = Field(default_factory=dict) def __init__( self, messages: Sequence[MessageLikeRepresentation], - schema_: Optional[Union[Dict, Type[BaseModel]]] = None, + schema_: Optional[Union[dict, type[BaseModel]]] = None, *, - structured_output_kwargs: Optional[Dict[str, Any]] = None, + structured_output_kwargs: Optional[dict[str, Any]] = None, + template_format: Literal["f-string", "mustache", "jinja2"] = "f-string", **kwargs: Any, ) -> None: schema_ = schema_ or kwargs.pop("schema") @@ -51,11 +49,12 @@ def __init__( messages=messages, schema_=schema_, structured_output_kwargs=structured_output_kwargs, + template_format=template_format, **kwargs, ) @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. For example, if the class is `langchain.llms.openai.OpenAI`, then the @@ -67,7 +66,7 @@ def get_lc_namespace(cls) -> List[str]: def from_messages_and_schema( cls, messages: Sequence[MessageLikeRepresentation], - schema: Union[Dict, Type[BaseModel]], + schema: Union[dict, type[BaseModel]], **kwargs: Any, ) -> ChatPromptTemplate: """Create a chat prompt template from a variety of message formats. @@ -117,7 +116,7 @@ def __or__( Callable[[Iterator[Any]], Iterator[Other]], Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]], ], - ) -> RunnableSerializable[Dict, Other]: + ) -> RunnableSerializable[dict, Other]: return self.pipe(other) def pipe( @@ -129,7 +128,7 @@ def pipe( Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]], ], name: Optional[str] = None, - ) -> RunnableSerializable[Dict, Other]: + ) -> RunnableSerializable[dict, Other]: """Pipe the structured prompt to a language model. Args: @@ -157,6 +156,5 @@ def pipe( name=name, ) else: - raise NotImplementedError( - "Structured prompts need to be piped to a language model." - ) + msg = "Structured prompts need to be piped to a language model." + raise NotImplementedError(msg) diff --git a/libs/core/langchain_core/pydantic_v1/__init__.py b/libs/core/langchain_core/pydantic_v1/__init__.py index d17a0ac3a9e71..6dfc11dc75513 100644 --- a/libs/core/langchain_core/pydantic_v1/__init__.py +++ b/libs/core/langchain_core/pydantic_v1/__init__.py @@ -1,5 +1,7 @@ from importlib import metadata +from langchain_core._api.deprecation import warn_deprecated + ## Create namespaces for pydantic v1 and v2. # This code must stay at the top of the file before other modules may # attempt to import pydantic since it adds pydantic_v1 and pydantic_v2 to sys.modules. @@ -21,3 +23,21 @@ _PYDANTIC_MAJOR_VERSION: int = int(metadata.version("pydantic").split(".")[0]) except metadata.PackageNotFoundError: _PYDANTIC_MAJOR_VERSION = 0 + +warn_deprecated( + "0.3.0", + removal="1.0.0", + alternative="pydantic.v1 or pydantic", + message=( + "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " + "The langchain_core.pydantic_v1 module was a " + "compatibility shim for pydantic v1, and should no longer be used. " + "Please update the code to import from Pydantic directly.\n\n" + "For example, replace imports like: " + "`from langchain_core.pydantic_v1 import BaseModel`\n" + "with: `from pydantic import BaseModel`\n" + "or the v1 compatibility namespace if you are working in a code base " + "that has not been fully upgraded to pydantic 2 yet. " + "\tfrom pydantic.v1 import BaseModel\n" + ), +) diff --git a/libs/core/langchain_core/pydantic_v1/dataclasses.py b/libs/core/langchain_core/pydantic_v1/dataclasses.py index 2dfa3dab0aa47..824da7d6b340f 100644 --- a/libs/core/langchain_core/pydantic_v1/dataclasses.py +++ b/libs/core/langchain_core/pydantic_v1/dataclasses.py @@ -1,4 +1,24 @@ +from langchain_core._api import warn_deprecated + try: from pydantic.v1.dataclasses import * # noqa: F403 except ImportError: from pydantic.dataclasses import * # type: ignore # noqa: F403 + +warn_deprecated( + "0.3.0", + removal="1.0.0", + alternative="pydantic.v1 or pydantic", + message=( + "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " + "The langchain_core.pydantic_v1 module was a " + "compatibility shim for pydantic v1, and should no longer be used. " + "Please update the code to import from Pydantic directly.\n\n" + "For example, replace imports like: " + "`from langchain_core.pydantic_v1 import BaseModel`\n" + "with: `from pydantic import BaseModel`\n" + "or the v1 compatibility namespace if you are working in a code base " + "that has not been fully upgraded to pydantic 2 yet. " + "\tfrom pydantic.v1 import BaseModel\n" + ), +) diff --git a/libs/core/langchain_core/pydantic_v1/main.py b/libs/core/langchain_core/pydantic_v1/main.py index fa8916f8350e1..3449832620ea6 100644 --- a/libs/core/langchain_core/pydantic_v1/main.py +++ b/libs/core/langchain_core/pydantic_v1/main.py @@ -1,4 +1,24 @@ +from langchain_core._api import warn_deprecated + try: from pydantic.v1.main import * # noqa: F403 except ImportError: from pydantic.main import * # type: ignore # noqa: F403 + +warn_deprecated( + "0.3.0", + removal="1.0.0", + alternative="pydantic.v1 or pydantic", + message=( + "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " + "The langchain_core.pydantic_v1 module was a " + "compatibility shim for pydantic v1, and should no longer be used. " + "Please update the code to import from Pydantic directly.\n\n" + "For example, replace imports like: " + "`from langchain_core.pydantic_v1 import BaseModel`\n" + "with: `from pydantic import BaseModel`\n" + "or the v1 compatibility namespace if you are working in a code base " + "that has not been fully upgraded to pydantic 2 yet. " + "\tfrom pydantic.v1 import BaseModel\n" + ), +) diff --git a/libs/core/langchain_core/retrievers.py b/libs/core/langchain_core/retrievers.py index 1785c19ebe439..7462569ddd30d 100644 --- a/libs/core/langchain_core/retrievers.py +++ b/libs/core/langchain_core/retrievers.py @@ -24,8 +24,9 @@ import warnings from abc import ABC, abstractmethod from inspect import signature -from typing import TYPE_CHECKING, Any, Dict, List, Optional +from typing import TYPE_CHECKING, Any, Optional +from pydantic import ConfigDict from typing_extensions import TypedDict from langchain_core._api import deprecated @@ -46,7 +47,7 @@ ) RetrieverInput = str -RetrieverOutput = List[Document] +RetrieverOutput = list[Document] RetrieverLike = Runnable[RetrieverInput, RetrieverOutput] RetrieverOutputLike = Runnable[Any, RetrieverOutput] @@ -125,23 +126,24 @@ def _get_relevant_documents(self, query: str) -> List[Document]: return [self.docs[i] for i in results.argsort()[-self.k :][::-1]] """ # noqa: E501 - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) _new_arg_supported: bool = False _expects_other_args: bool = False - tags: Optional[List[str]] = None + tags: Optional[list[str]] = None """Optional list of tags associated with the retriever. Defaults to None. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in `callbacks`. - You can use these to eg identify a specific instance of a retriever with its + You can use these to eg identify a specific instance of a retriever with its use case. """ - metadata: Optional[Dict[str, Any]] = None + metadata: Optional[dict[str, Any]] = None """Optional metadata associated with the retriever. Defaults to None. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in `callbacks`. - You can use these to eg identify a specific instance of a retriever with its + You can use these to eg identify a specific instance of a retriever with its use case. """ @@ -198,7 +200,7 @@ def _get_ls_params(self, **kwargs: Any) -> LangSmithRetrieverParams: def invoke( self, input: str, config: Optional[RunnableConfig] = None, **kwargs: Any - ) -> List[Document]: + ) -> list[Document]: """Invoke the retriever to get relevant documents. Main entry point for synchronous retriever invocations. @@ -261,7 +263,7 @@ async def ainvoke( input: str, config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Asynchronously invoke the retriever to get relevant documents. Main entry point for asynchronous retriever invocations. @@ -322,7 +324,7 @@ async def ainvoke( @abstractmethod def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun - ) -> List[Document]: + ) -> list[Document]: """Get documents relevant to a query. Args: @@ -334,7 +336,7 @@ def _get_relevant_documents( async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun - ) -> List[Document]: + ) -> list[Document]: """Asynchronously get documents relevant to a query. Args: @@ -356,11 +358,11 @@ def get_relevant_documents( query: str, *, callbacks: Callbacks = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Retrieve documents relevant to a query. Users should favor using `.invoke` or `.batch` rather than @@ -400,11 +402,11 @@ async def aget_relevant_documents( query: str, *, callbacks: Callbacks = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Asynchronously get documents relevant to a query. Users should favor using `.ainvoke` or `.abatch` rather than diff --git a/libs/core/langchain_core/runnables/base.py b/libs/core/langchain_core/runnables/base.py index 5ace57e763416..9f9a77bc70515 100644 --- a/libs/core/langchain_core/runnables/base.py +++ b/libs/core/langchain_core/runnables/base.py @@ -2,40 +2,42 @@ import asyncio import collections +import contextlib import functools import inspect import threading from abc import ABC, abstractmethod +from collections.abc import ( + AsyncGenerator, + AsyncIterator, + Awaitable, + Coroutine, + Iterator, + Mapping, + Sequence, +) from concurrent.futures import FIRST_COMPLETED, wait from contextvars import copy_context from functools import wraps from itertools import groupby, tee from operator import itemgetter +from types import GenericAlias from typing import ( TYPE_CHECKING, Any, - AsyncGenerator, - AsyncIterator, - Awaitable, Callable, - Coroutine, - Dict, Generic, - Iterator, - List, - Mapping, Optional, - Sequence, - Set, - Tuple, - Type, + Protocol, TypeVar, Union, cast, + get_type_hints, overload, ) -from typing_extensions import Literal, get_args +from pydantic import BaseModel, ConfigDict, Field, RootModel +from typing_extensions import Literal, get_args, override from langchain_core._api import beta_decorator from langchain_core.load.serializable import ( @@ -43,7 +45,6 @@ SerializedConstructor, SerializedNotImplemented, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables.config import ( RunnableConfig, _set_config_context, @@ -70,7 +71,6 @@ accepts_config, accepts_run_manager, asyncio_accepts_context, - create_model, gather_with_concurrency, get_function_first_arg_dict_keys, get_function_nonlocals, @@ -82,7 +82,7 @@ ) from langchain_core.utils.aiter import aclosing, atee, py_anext from langchain_core.utils.iter import safetee -from langchain_core.utils.pydantic import is_basemodel_subclass +from langchain_core.utils.pydantic import create_model_v2 if TYPE_CHECKING: from langchain_core.callbacks.manager import ( @@ -204,8 +204,8 @@ def buggy_double(y: int) -> int: ) ) - print(sequence.input_schema.schema()) # Show inferred input schema - print(sequence.output_schema.schema()) # Show inferred output schema + print(sequence.input_schema.model_json_schema()) # Show inferred input schema + print(sequence.output_schema.model_json_schema()) # Show inferred output schema print(sequence.invoke(2)) # invoke the sequence (note the retry above!!) Debugging and tracing @@ -235,56 +235,99 @@ def buggy_double(y: int) -> int: For a UI (and much more) checkout LangSmith: https://docs.smith.langchain.com/ """ # noqa: E501 - name: Optional[str] = None + name: Optional[str] """The name of the Runnable. Used for debugging and tracing.""" def get_name( self, suffix: Optional[str] = None, *, name: Optional[str] = None ) -> str: """Get the name of the Runnable.""" - name = name or self.name or self.__class__.__name__ + if name: + name_ = name + elif hasattr(self, "name") and self.name: + name_ = self.name + else: + # Here we handle a case where the runnable subclass is also a pydantic + # model. + cls = self.__class__ + # Then it's a pydantic sub-class, and we have to check + # whether it's a generic, and if so recover the original name. + if ( + hasattr( + cls, + "__pydantic_generic_metadata__", + ) + and "origin" in cls.__pydantic_generic_metadata__ + and cls.__pydantic_generic_metadata__["origin"] is not None + ): + name_ = cls.__pydantic_generic_metadata__["origin"].__name__ + else: + name_ = cls.__name__ + if suffix: - if name[0].isupper(): - return name + suffix.title() + if name_[0].isupper(): + return name_ + suffix.title() else: - return name + "_" + suffix.lower() + return name_ + "_" + suffix.lower() else: - return name + return name_ @property - def InputType(self) -> Type[Input]: + def InputType(self) -> type[Input]: # noqa: N802 """The type of input this Runnable accepts specified as a type annotation.""" + # First loop through all parent classes and if any of them is + # a pydantic model, we will pick up the generic parameterization + # from that model via the __pydantic_generic_metadata__ attribute. + for base in self.__class__.mro(): + if hasattr(base, "__pydantic_generic_metadata__"): + metadata = base.__pydantic_generic_metadata__ + if "args" in metadata and len(metadata["args"]) == 2: + return metadata["args"][0] + + # If we didn't find a pydantic model in the parent classes, + # then loop through __orig_bases__. This corresponds to + # Runnables that are not pydantic models. for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] type_args = get_args(cls) if type_args and len(type_args) == 2: return type_args[0] - raise TypeError( + msg = ( f"Runnable {self.get_name()} doesn't have an inferable InputType. " "Override the InputType property to specify the input type." ) + raise TypeError(msg) @property - def OutputType(self) -> Type[Output]: + def OutputType(self) -> type[Output]: # noqa: N802 """The type of output this Runnable produces specified as a type annotation.""" + # First loop through bases -- this will help generic + # any pydantic models. + for base in self.__class__.mro(): + if hasattr(base, "__pydantic_generic_metadata__"): + metadata = base.__pydantic_generic_metadata__ + if "args" in metadata and len(metadata["args"]) == 2: + return metadata["args"][1] + for cls in self.__class__.__orig_bases__: # type: ignore[attr-defined] type_args = get_args(cls) if type_args and len(type_args) == 2: return type_args[1] - raise TypeError( + msg = ( f"Runnable {self.get_name()} doesn't have an inferable OutputType. " "Override the OutputType property to specify the output type." ) + raise TypeError(msg) @property - def input_schema(self) -> Type[BaseModel]: + def input_schema(self) -> type[BaseModel]: """The type of input this Runnable accepts specified as a pydantic model.""" return self.get_input_schema() def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """Get a pydantic model that can be used to validate input to the Runnable. Runnables that leverage the configurable_fields and configurable_alternatives @@ -301,22 +344,62 @@ def get_input_schema( """ root_type = self.InputType - if inspect.isclass(root_type) and is_basemodel_subclass(root_type): + if ( + inspect.isclass(root_type) + and not isinstance(root_type, GenericAlias) + and issubclass(root_type, BaseModel) + ): return root_type - return create_model( + return create_model_v2( self.get_name("Input"), - __root__=(root_type, None), + root=root_type, + # create model needs access to appropriate type annotations to be + # able to construct the pydantic model. + # When we create the model, we pass information about the namespace + # where the model is being created, so the type annotations can + # be resolved correctly as well. + # self.__class__.__module__ handles the case when the Runnable is + # being sub-classed in a different module. + module_name=self.__class__.__module__, ) + def get_input_jsonschema( + self, config: Optional[RunnableConfig] = None + ) -> dict[str, Any]: + """Get a JSON schema that represents the input to the Runnable. + + Args: + config: A config to use when generating the schema. + + Returns: + A JSON schema that represents the input to the Runnable. + + Example: + + .. code-block:: python + + from langchain_core.runnables import RunnableLambda + + def add_one(x: int) -> int: + return x + 1 + + runnable = RunnableLambda(add_one) + + print(runnable.get_input_jsonschema()) + + .. versionadded:: 0.3.0 + """ + return self.get_input_schema(config).model_json_schema() + @property - def output_schema(self) -> Type[BaseModel]: + def output_schema(self) -> type[BaseModel]: """The type of output this Runnable produces specified as a pydantic model.""" return self.get_output_schema() def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """Get a pydantic model that can be used to validate output to the Runnable. Runnables that leverage the configurable_fields and configurable_alternatives @@ -333,22 +416,62 @@ def get_output_schema( """ root_type = self.OutputType - if inspect.isclass(root_type) and is_basemodel_subclass(root_type): + if ( + inspect.isclass(root_type) + and not isinstance(root_type, GenericAlias) + and issubclass(root_type, BaseModel) + ): return root_type - return create_model( + return create_model_v2( self.get_name("Output"), - __root__=(root_type, None), + root=root_type, + # create model needs access to appropriate type annotations to be + # able to construct the pydantic model. + # When we create the model, we pass information about the namespace + # where the model is being created, so the type annotations can + # be resolved correctly as well. + # self.__class__.__module__ handles the case when the Runnable is + # being sub-classed in a different module. + module_name=self.__class__.__module__, ) + def get_output_jsonschema( + self, config: Optional[RunnableConfig] = None + ) -> dict[str, Any]: + """Get a JSON schema that represents the output of the Runnable. + + Args: + config: A config to use when generating the schema. + + Returns: + A JSON schema that represents the output of the Runnable. + + Example: + + .. code-block:: python + + from langchain_core.runnables import RunnableLambda + + def add_one(x: int) -> int: + return x + 1 + + runnable = RunnableLambda(add_one) + + print(runnable.get_output_jsonschema()) + + .. versionadded:: 0.3.0 + """ + return self.get_output_schema(config).model_json_schema() + @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: """List configurable fields for this Runnable.""" return [] def config_schema( self, *, include: Optional[Sequence[str]] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """The type of config this Runnable accepts specified as a pydantic model. To mark a field as configurable, see the `configurable_fields` @@ -364,9 +487,9 @@ def config_schema( include = include or [] config_specs = self.config_specs configurable = ( - create_model( # type: ignore[call-overload] + create_model_v2( # type: ignore[call-overload] "Configurable", - **{ + field_definitions={ spec.id: ( spec.annotation, Field( @@ -380,15 +503,34 @@ def config_schema( else None ) - return create_model( # type: ignore[call-overload] - self.get_name("Config"), + # Many need to create a typed dict instead to implement NotRequired! + all_fields = { **({"configurable": (configurable, None)} if configurable else {}), **{ field_name: (field_type, None) - for field_name, field_type in RunnableConfig.__annotations__.items() + for field_name, field_type in get_type_hints(RunnableConfig).items() if field_name in [i for i in include if i != "configurable"] }, + } + model = create_model_v2( # type: ignore[call-overload] + self.get_name("Config"), field_definitions=all_fields ) + return model + + def get_config_jsonschema( + self, *, include: Optional[Sequence[str]] = None + ) -> dict[str, Any]: + """Get a JSON schema that represents the output of the Runnable. + + Args: + include: A list of fields to include in the config schema. + + Returns: + A JSON schema that represents the output of the Runnable. + + .. versionadded:: 0.3.0 + """ + return self.config_schema(include=include).model_json_schema() def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: """Return a graph representation of this Runnable.""" @@ -398,21 +540,21 @@ def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: try: input_node = graph.add_node(self.get_input_schema(config)) except TypeError: - input_node = graph.add_node(create_model(self.get_name("Input"))) + input_node = graph.add_node(create_model_v2(self.get_name("Input"))) runnable_node = graph.add_node( self, metadata=config.get("metadata") if config else None ) try: output_node = graph.add_node(self.get_output_schema(config)) except TypeError: - output_node = graph.add_node(create_model(self.get_name("Output"))) + output_node = graph.add_node(create_model_v2(self.get_name("Output"))) graph.add_edge(input_node, runnable_node) graph.add_edge(runnable_node, output_node) return graph def get_prompts( self, config: Optional[RunnableConfig] = None - ) -> List[BasePromptTemplate]: + ) -> list[BasePromptTemplate]: """Return a list of prompts used by this Runnable.""" from langchain_core.prompts.base import BasePromptTemplate @@ -482,7 +624,7 @@ def mul_two(x: int) -> int: """ return RunnableSequence(self, *others, name=name) - def pick(self, keys: Union[str, List[str]]) -> RunnableSerializable[Any, Any]: + def pick(self, keys: Union[str, list[str]]) -> RunnableSerializable[Any, Any]: """Pick keys from the dict output of this Runnable. Pick single key: @@ -538,11 +680,11 @@ def as_bytes(x: Any) -> bytes: def assign( self, **kwargs: Union[ - Runnable[Dict[str, Any], Any], - Callable[[Dict[str, Any]], Any], + Runnable[dict[str, Any], Any], + Callable[[dict[str, Any]], Any], Mapping[ str, - Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]], + Union[Runnable[dict[str, Any], Any], Callable[[dict[str, Any]], Any]], ], ], ) -> RunnableSerializable[Any, Any]: @@ -567,10 +709,10 @@ def assign( chain_with_assign = chain.assign(hello=itemgetter("str") | llm) - print(chain_with_assign.input_schema.schema()) + print(chain_with_assign.input_schema.model_json_schema()) # {'title': 'PromptInput', 'type': 'object', 'properties': {'question': {'title': 'Question', 'type': 'string'}}} - print(chain_with_assign.output_schema.schema()) # + print(chain_with_assign.output_schema.model_json_schema()) # {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties': {'str': {'title': 'Str', 'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}} @@ -578,12 +720,14 @@ def assign( """ from langchain_core.runnables.passthrough import RunnableAssign - return self | RunnableAssign(RunnableParallel(kwargs)) + return self | RunnableAssign(RunnableParallel[dict[str, Any]](kwargs)) """ --- Public API --- """ @abstractmethod - def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: + def invoke( + self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Output: """Transform a single input into an output. Override to implement. Args: @@ -612,12 +756,12 @@ async def ainvoke( def batch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: """Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. @@ -641,10 +785,10 @@ def invoke(input: Input, config: RunnableConfig) -> Union[Output, Exception]: # If there's only one input, don't bother with the executor if len(inputs) == 1: - return cast(List[Output], [invoke(inputs[0], configs[0])]) + return cast(list[Output], [invoke(inputs[0], configs[0])]) with get_executor_for_config(configs[0]) as executor: - return cast(List[Output], list(executor.map(invoke, inputs, configs))) + return cast(list[Output], list(executor.map(invoke, inputs, configs))) @overload def batch_as_completed( @@ -654,7 +798,7 @@ def batch_as_completed( *, return_exceptions: Literal[False] = False, **kwargs: Any, - ) -> Iterator[Tuple[int, Output]]: ... + ) -> Iterator[tuple[int, Output]]: ... @overload def batch_as_completed( @@ -664,7 +808,7 @@ def batch_as_completed( *, return_exceptions: Literal[True], **kwargs: Any, - ) -> Iterator[Tuple[int, Union[Output, Exception]]]: ... + ) -> Iterator[tuple[int, Union[Output, Exception]]]: ... def batch_as_completed( self, @@ -673,7 +817,7 @@ def batch_as_completed( *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> Iterator[Tuple[int, Union[Output, Exception]]]: + ) -> Iterator[tuple[int, Union[Output, Exception]]]: """Run invoke in parallel on a list of inputs, yielding results as they complete.""" @@ -684,7 +828,7 @@ def batch_as_completed( def invoke( i: int, input: Input, config: RunnableConfig - ) -> Tuple[int, Union[Output, Exception]]: + ) -> tuple[int, Union[Output, Exception]]: if return_exceptions: try: out: Union[Output, Exception] = self.invoke(input, config, **kwargs) @@ -716,12 +860,12 @@ def invoke( async def abatch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: """Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. @@ -770,7 +914,7 @@ def abatch_as_completed( *, return_exceptions: Literal[False] = False, **kwargs: Optional[Any], - ) -> AsyncIterator[Tuple[int, Output]]: ... + ) -> AsyncIterator[tuple[int, Output]]: ... @overload def abatch_as_completed( @@ -780,7 +924,7 @@ def abatch_as_completed( *, return_exceptions: Literal[True], **kwargs: Optional[Any], - ) -> AsyncIterator[Tuple[int, Union[Output, Exception]]]: ... + ) -> AsyncIterator[tuple[int, Union[Output, Exception]]]: ... async def abatch_as_completed( self, @@ -789,7 +933,7 @@ async def abatch_as_completed( *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> AsyncIterator[Tuple[int, Union[Output, Exception]]]: + ) -> AsyncIterator[tuple[int, Union[Output, Exception]]]: """Run ainvoke in parallel on a list of inputs, yielding results as they complete. @@ -815,7 +959,7 @@ async def abatch_as_completed( async def ainvoke( i: int, input: Input, config: RunnableConfig - ) -> Tuple[int, Union[Output, Exception]]: + ) -> tuple[int, Union[Output, Exception]]: if return_exceptions: try: out: Union[Output, Exception] = await self.ainvoke( @@ -978,7 +1122,6 @@ async def astream_log( ): yield item - @beta_decorator.beta(message="This API is in beta and may change in the future.") async def astream_events( self, input: Any, @@ -1020,7 +1163,7 @@ async def astream_events( - ``data``: **Dict[str, Any]** - Below is a table that illustrates some evens that might be emitted by various + Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table. @@ -1238,9 +1381,8 @@ async def slow_thing(some_input: str, config: RunnableConfig) -> str: **kwargs, ) else: - raise NotImplementedError( - 'Only versions "v1" and "v2" of the schema is currently supported.' - ) + msg = 'Only versions "v1" and "v2" of the schema is currently supported.' + raise NotImplementedError(msg) async with aclosing(event_stream): async for event in event_stream: @@ -1568,8 +1710,8 @@ async def concurrent_runs(): def with_types( self, *, - input_type: Optional[Type[Input]] = None, - output_type: Optional[Type[Output]] = None, + input_type: Optional[type[Input]] = None, + output_type: Optional[type[Output]] = None, ) -> Runnable[Input, Output]: """ Bind input and output types to a Runnable, returning a new Runnable. @@ -1591,7 +1733,7 @@ def with_types( def with_retry( self, *, - retry_if_exception_type: Tuple[Type[BaseException], ...] = (Exception,), + retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3, ) -> Runnable[Input, Output]: @@ -1658,7 +1800,7 @@ def _lambda(x: int) -> None: max_attempt_number=stop_after_attempt, ) - def map(self) -> Runnable[List[Input], List[Output]]: + def map(self) -> Runnable[list[Input], list[Output]]: """ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. @@ -1684,7 +1826,7 @@ def with_fallbacks( self, fallbacks: Sequence[Runnable[Input, Output]], *, - exceptions_to_handle: Tuple[Type[BaseException], ...] = (Exception,), + exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,), exception_key: Optional[str] = None, ) -> RunnableWithFallbacksT[Input, Output]: """Add fallbacks to a Runnable, returning a new Runnable. @@ -1762,7 +1904,7 @@ def _call_with_config( input: Input, config: Optional[RunnableConfig], run_type: Optional[str] = None, - serialized: Optional[Dict[str, Any]] = None, + serialized: Optional[dict[str, Any]] = None, **kwargs: Optional[Any], ) -> Output: """Helper method to transform an Input value to an Output value, @@ -1811,7 +1953,7 @@ async def _acall_with_config( input: Input, config: Optional[RunnableConfig], run_type: Optional[str] = None, - serialized: Optional[Dict[str, Any]] = None, + serialized: Optional[dict[str, Any]] = None, **kwargs: Optional[Any], ) -> Output: """Helper method to transform an Input value to an Output value, @@ -1846,23 +1988,23 @@ async def _acall_with_config( def _batch_with_config( self, func: Union[ - Callable[[List[Input]], List[Union[Exception, Output]]], + Callable[[list[Input]], list[Union[Exception, Output]]], Callable[ - [List[Input], List[CallbackManagerForChainRun]], - List[Union[Exception, Output]], + [list[Input], list[CallbackManagerForChainRun]], + list[Union[Exception, Output]], ], Callable[ - [List[Input], List[CallbackManagerForChainRun], List[RunnableConfig]], - List[Union[Exception, Output]], + [list[Input], list[CallbackManagerForChainRun], list[RunnableConfig]], + list[Union[Exception, Output]], ], ], - input: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + input: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, run_type: Optional[str] = None, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: """Helper method to transform an Input value to an Output value, with callbacks. Use this method to implement invoke() in subclasses.""" if not input: @@ -1895,7 +2037,7 @@ def _batch_with_config( for run_manager in run_managers: run_manager.on_chain_error(e) if return_exceptions: - return cast(List[Output], [e for _ in input]) + return cast(list[Output], [e for _ in input]) else: raise else: @@ -1907,34 +2049,34 @@ def _batch_with_config( else: run_manager.on_chain_end(out) if return_exceptions or first_exception is None: - return cast(List[Output], output) + return cast(list[Output], output) else: raise first_exception async def _abatch_with_config( self, func: Union[ - Callable[[List[Input]], Awaitable[List[Union[Exception, Output]]]], + Callable[[list[Input]], Awaitable[list[Union[Exception, Output]]]], Callable[ - [List[Input], List[AsyncCallbackManagerForChainRun]], - Awaitable[List[Union[Exception, Output]]], + [list[Input], list[AsyncCallbackManagerForChainRun]], + Awaitable[list[Union[Exception, Output]]], ], Callable[ [ - List[Input], - List[AsyncCallbackManagerForChainRun], - List[RunnableConfig], + list[Input], + list[AsyncCallbackManagerForChainRun], + list[RunnableConfig], ], - Awaitable[List[Union[Exception, Output]]], + Awaitable[list[Union[Exception, Output]]], ], ], - input: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + input: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, run_type: Optional[str] = None, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: """Helper method to transform an Input value to an Output value, with callbacks. Use this method to implement invoke() in subclasses.""" if not input: @@ -1942,7 +2084,7 @@ async def _abatch_with_config( configs = get_config_list(config, len(input)) callback_managers = [get_async_callback_manager_for_config(c) for c in configs] - run_managers: List[AsyncCallbackManagerForChainRun] = await asyncio.gather( + run_managers: list[AsyncCallbackManagerForChainRun] = await asyncio.gather( *( callback_manager.on_chain_start( None, @@ -1970,12 +2112,12 @@ async def _abatch_with_config( *(run_manager.on_chain_error(e) for run_manager in run_managers) ) if return_exceptions: - return cast(List[Output], [e for _ in input]) + return cast(list[Output], [e for _ in input]) else: raise else: first_exception: Optional[Exception] = None - coros: List[Awaitable[None]] = [] + coros: list[Awaitable[None]] = [] for run_manager, out in zip(run_managers, output): if isinstance(out, Exception): first_exception = first_exception or out @@ -1984,7 +2126,7 @@ async def _abatch_with_config( coros.append(run_manager.on_chain_end(out)) await asyncio.gather(*coros) if return_exceptions or first_exception is None: - return cast(List[Output], output) + return cast(list[Output], output) else: raise first_exception @@ -2130,7 +2272,6 @@ async def _atransform_stream_with_config( name=config.get("run_name") or self.get_name(), run_id=config.pop("run_id", None), ) - iterator_ = None try: child_config = patch_config(config, callbacks=run_manager.get_child()) if accepts_config(transformer): @@ -2203,11 +2344,11 @@ async def _atransform_stream_with_config( @beta_decorator.beta(message="This API is in beta and may change in the future.") def as_tool( self, - args_schema: Optional[Type[BaseModel]] = None, + args_schema: Optional[type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, - arg_types: Optional[Dict[str, Type]] = None, + arg_types: Optional[dict[str, type]] = None, ) -> BaseTool: """Create a BaseTool from a Runnable. @@ -2251,7 +2392,7 @@ def f(x: Args) -> str: .. code-block:: python from typing import Any, Dict, List - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_core.runnables import RunnableLambda def f(x: Dict[str, Any]) -> str: @@ -2315,7 +2456,12 @@ class RunnableSerializable(Serializable, Runnable[Input, Output]): """Runnable that can be serialized to JSON.""" name: Optional[str] = None - """The name of the Runnable. Used for debugging and tracing.""" + + model_config = ConfigDict( + # Suppress warnings from pydantic protected namespaces + # (e.g., `model_`) + protected_namespaces=(), + ) def to_json(self) -> Union[SerializedConstructor, SerializedNotImplemented]: """Serialize the Runnable to JSON. @@ -2324,10 +2470,8 @@ def to_json(self) -> Union[SerializedConstructor, SerializedNotImplemented]: A JSON-serializable representation of the Runnable. """ dumped = super().to_json() - try: + with contextlib.suppress(Exception): dumped["name"] = self.get_name() - except Exception: - pass return dumped def configurable_fields( @@ -2369,11 +2513,12 @@ def configurable_fields( from langchain_core.runnables.configurable import RunnableConfigurableFields for key in kwargs: - if key not in self.__fields__: - raise ValueError( + if key not in self.model_fields: + msg = ( f"Configuration key {key} not found in {self}: " - f"available keys are {self.__fields__.keys()}" + f"available keys are {self.model_fields.keys()}" ) + raise ValueError(msg) return RunnableConfigurableFields(default=self, fields=kwargs) @@ -2438,8 +2583,8 @@ def configurable_alternatives( def _seq_input_schema( - steps: List[Runnable[Any, Any]], config: Optional[RunnableConfig] -) -> Type[BaseModel]: + steps: list[Runnable[Any, Any]], config: Optional[RunnableConfig] +) -> type[BaseModel]: from langchain_core.runnables.passthrough import RunnableAssign, RunnablePick first = steps[0] @@ -2447,13 +2592,13 @@ def _seq_input_schema( return first.get_input_schema(config) elif isinstance(first, RunnableAssign): next_input_schema = _seq_input_schema(steps[1:], config) - if not next_input_schema.__custom_root_type__: + if not issubclass(next_input_schema, RootModel): # it's a dict as expected - return create_model( # type: ignore[call-overload] + return create_model_v2( # type: ignore[call-overload] "RunnableSequenceInput", - **{ + field_definitions={ k: (v.annotation, v.default) - for k, v in next_input_schema.__fields__.items() + for k, v in next_input_schema.model_fields.items() if k not in first.mapper.steps__ }, ) @@ -2464,8 +2609,8 @@ def _seq_input_schema( def _seq_output_schema( - steps: List[Runnable[Any, Any]], config: Optional[RunnableConfig] -) -> Type[BaseModel]: + steps: list[Runnable[Any, Any]], config: Optional[RunnableConfig] +) -> type[BaseModel]: from langchain_core.runnables.passthrough import RunnableAssign, RunnablePick last = steps[-1] @@ -2474,39 +2619,38 @@ def _seq_output_schema( elif isinstance(last, RunnableAssign): mapper_output_schema = last.mapper.get_output_schema(config) prev_output_schema = _seq_output_schema(steps[:-1], config) - if not prev_output_schema.__custom_root_type__: + if not issubclass(prev_output_schema, RootModel): # it's a dict as expected - return create_model( # type: ignore[call-overload] + return create_model_v2( # type: ignore[call-overload] "RunnableSequenceOutput", - **{ + field_definitions={ **{ k: (v.annotation, v.default) - for k, v in prev_output_schema.__fields__.items() + for k, v in prev_output_schema.model_fields.items() }, **{ k: (v.annotation, v.default) - for k, v in mapper_output_schema.__fields__.items() + for k, v in mapper_output_schema.model_fields.items() }, }, ) elif isinstance(last, RunnablePick): prev_output_schema = _seq_output_schema(steps[:-1], config) - if not prev_output_schema.__custom_root_type__: + if not issubclass(prev_output_schema, RootModel): # it's a dict as expected if isinstance(last.keys, list): - return create_model( # type: ignore[call-overload] + return create_model_v2( # type: ignore[call-overload] "RunnableSequenceOutput", - **{ + field_definitions={ k: (v.annotation, v.default) - for k, v in prev_output_schema.__fields__.items() + for k, v in prev_output_schema.model_fields.items() if k in last.keys }, ) else: - field = prev_output_schema.__fields__[last.keys] - return create_model( # type: ignore[call-overload] - "RunnableSequenceOutput", - __root__=(field.annotation, field.default), + field = prev_output_schema.model_fields[last.keys] + return create_model_v2( # type: ignore[call-overload] + "RunnableSequenceOutput", root=(field.annotation, field.default) ) return last.get_output_schema(config) @@ -2596,7 +2740,7 @@ def mul_two(x: int) -> int: # the last type. first: Runnable[Input, Any] """The first Runnable in the sequence.""" - middle: List[Runnable[Any, Any]] = Field(default_factory=list) + middle: list[Runnable[Any, Any]] = Field(default_factory=list) """The middle Runnables in the sequence.""" last: Runnable[Any, Output] """The last Runnable in the sequence.""" @@ -2606,7 +2750,7 @@ def __init__( *steps: RunnableLike, name: Optional[str] = None, first: Optional[Runnable[Any, Any]] = None, - middle: Optional[List[Runnable[Any, Any]]] = None, + middle: Optional[list[Runnable[Any, Any]]] = None, last: Optional[Runnable[Any, Any]] = None, ) -> None: """Create a new RunnableSequence. @@ -2621,19 +2765,17 @@ def __init__( Raises: ValueError: If the sequence has less than 2 steps. """ - steps_flat: List[Runnable] = [] - if not steps: - if first is not None and last is not None: - steps_flat = [first] + (middle or []) + [last] + steps_flat: list[Runnable] = [] + if not steps and first is not None and last is not None: + steps_flat = [first] + (middle or []) + [last] for step in steps: if isinstance(step, RunnableSequence): steps_flat.extend(step.steps) else: steps_flat.append(coerce_to_runnable(step)) if len(steps_flat) < 2: - raise ValueError( - f"RunnableSequence must have at least 2 steps, got {len(steps_flat)}" - ) + msg = f"RunnableSequence must have at least 2 steps, got {len(steps_flat)}" + raise ValueError(msg) super().__init__( # type: ignore[call-arg] first=steps_flat[0], middle=list(steps_flat[1:-1]), @@ -2642,12 +2784,12 @@ def __init__( ) @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property - def steps(self) -> List[Runnable[Any, Any]]: + def steps(self) -> list[Runnable[Any, Any]]: """All the Runnables that make up the sequence in order. Returns: @@ -2665,22 +2807,25 @@ def is_lc_serializable(cls) -> bool: """ return True - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property - def InputType(self) -> Type[Input]: + @override + def InputType(self) -> type[Input]: """The type of the input to the Runnable.""" return self.first.InputType @property - def OutputType(self) -> Type[Output]: + @override + def OutputType(self) -> type[Output]: """The type of the output of the Runnable.""" return self.last.OutputType def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """Get the input schema of the Runnable. Args: @@ -2693,7 +2838,7 @@ def get_input_schema( def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """Get the output schema of the Runnable. Args: @@ -2705,7 +2850,7 @@ def get_output_schema( return _seq_output_schema(self.steps, config) @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: """Get the config specs of the Runnable. Returns: @@ -2727,8 +2872,8 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: [tup for tup in all_specs if tup[0].id.startswith(CONTEXT_CONFIG_PREFIX)], lambda x: x[1], ) - next_deps: Set[str] = set() - deps_by_pos: Dict[int, Set[str]] = {} + next_deps: set[str] = set() + deps_by_pos: dict[int, set[str]] = {} for pos, specs in specs_by_pos: deps_by_pos[pos] = next_deps next_deps = next_deps | {spec[0].id for spec in specs} @@ -2779,7 +2924,8 @@ def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: step_graph.trim_last_node() step_first_node, _ = graph.extend(step_graph) if not step_first_node: - raise ValueError(f"Runnable {step} has no first node") + msg = f"Runnable {step} has no first node" + raise ValueError(msg) if current_last_node: graph.add_edge(current_last_node, step_first_node) @@ -2930,12 +3076,12 @@ async def ainvoke( def batch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: from langchain_core.beta.runnables.context import config_with_context from langchain_core.callbacks.manager import CallbackManager @@ -2976,7 +3122,7 @@ def batch( # Track which inputs (by index) failed so far # If an input has failed it will be present in this map, # and the value will be the exception that was raised. - failed_inputs_map: Dict[int, Exception] = {} + failed_inputs_map: dict[int, Exception] = {} for stepidx, step in enumerate(self.steps): # Assemble the original indexes of the remaining inputs # (i.e. the ones that haven't failed yet) @@ -3038,7 +3184,7 @@ def batch( for rm in run_managers: rm.on_chain_error(e) if return_exceptions: - return cast(List[Output], [e for _ in inputs]) + return cast(list[Output], [e for _ in inputs]) else: raise else: @@ -3050,18 +3196,18 @@ def batch( else: run_manager.on_chain_end(out) if return_exceptions or first_exception is None: - return cast(List[Output], inputs) + return cast(list[Output], inputs) else: raise first_exception async def abatch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: from langchain_core.beta.runnables.context import aconfig_with_context from langchain_core.callbacks.manager import AsyncCallbackManager @@ -3086,7 +3232,7 @@ async def abatch( for config in configs ] # start the root runs, one per input - run_managers: List[AsyncCallbackManagerForChainRun] = await asyncio.gather( + run_managers: list[AsyncCallbackManagerForChainRun] = await asyncio.gather( *( cm.on_chain_start( None, @@ -3105,7 +3251,7 @@ async def abatch( # Track which inputs (by index) failed so far # If an input has failed it will be present in this map, # and the value will be the exception that was raised. - failed_inputs_map: Dict[int, Exception] = {} + failed_inputs_map: dict[int, Exception] = {} for stepidx, step in enumerate(self.steps): # Assemble the original indexes of the remaining inputs # (i.e. the ones that haven't failed yet) @@ -3165,12 +3311,12 @@ async def abatch( except BaseException as e: await asyncio.gather(*(rm.on_chain_error(e) for rm in run_managers)) if return_exceptions: - return cast(List[Output], [e for _ in inputs]) + return cast(list[Output], [e for _ in inputs]) else: raise else: first_exception: Optional[Exception] = None - coros: List[Awaitable[None]] = [] + coros: list[Awaitable[None]] = [] for run_manager, out in zip(run_managers, inputs): if isinstance(out, Exception): first_exception = first_exception or out @@ -3179,7 +3325,7 @@ async def abatch( coros.append(run_manager.on_chain_end(out)) await asyncio.gather(*coros) if return_exceptions or first_exception is None: - return cast(List[Output], inputs) + return cast(list[Output], inputs) else: raise first_exception @@ -3287,7 +3433,7 @@ async def input_aiter() -> AsyncIterator[Input]: yield chunk -class RunnableParallel(RunnableSerializable[Input, Dict[str, Any]]): +class RunnableParallel(RunnableSerializable[Input, dict[str, Any]]): """Runnable that runs a mapping of Runnables in parallel, and returns a mapping of their outputs. @@ -3398,12 +3544,13 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_name( self, suffix: Optional[str] = None, *, name: Optional[str] = None @@ -3421,6 +3568,7 @@ def get_name( return super().get_name(suffix, name=name) @property + @override def InputType(self) -> Any: """The type of the input to the Runnable.""" for step in self.steps__.values(): @@ -3431,7 +3579,7 @@ def InputType(self) -> Any: def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """Get the input schema of the Runnable. Args: @@ -3441,16 +3589,17 @@ def get_input_schema( The input schema of the Runnable. """ if all( - s.get_input_schema(config).schema().get("type", "object") == "object" + s.get_input_schema(config).model_json_schema().get("type", "object") + == "object" for s in self.steps__.values() ): # This is correct, but pydantic typings/mypy don't think so. - return create_model( # type: ignore[call-overload] + return create_model_v2( # type: ignore[call-overload] self.get_name("Input"), - **{ + field_definitions={ k: (v.annotation, v.default) for step in self.steps__.values() - for k, v in step.get_input_schema(config).__fields__.items() + for k, v in step.get_input_schema(config).model_fields.items() if k != "__root__" }, ) @@ -3459,7 +3608,7 @@ def get_input_schema( def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """Get the output schema of the Runnable. Args: @@ -3468,14 +3617,11 @@ def get_output_schema( Returns: The output schema of the Runnable. """ - # This is correct, but pydantic typings/mypy don't think so. - return create_model( # type: ignore[call-overload] - self.get_name("Output"), - **{k: (v.OutputType, None) for k, v in self.steps__.items()}, - ) + fields = {k: (v.OutputType, ...) for k, v in self.steps__.items()} + return create_model_v2(self.get_name("Output"), field_definitions=fields) @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: """Get the config specs of the Runnable. Returns: @@ -3511,9 +3657,11 @@ def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: else: step_first_node, step_last_node = graph.extend(step_graph) if not step_first_node: - raise ValueError(f"Runnable {step} has no first node") + msg = f"Runnable {step} has no first node" + raise ValueError(msg) if not step_last_node: - raise ValueError(f"Runnable {step} has no last node") + msg = f"Runnable {step} has no last node" + raise ValueError(msg) graph.add_edge(input_node, step_first_node) graph.add_edge(step_last_node, output_node) @@ -3527,8 +3675,8 @@ def __repr__(self) -> str: return "{\n " + map_for_repr + "\n}" def invoke( - self, input: Input, config: Optional[RunnableConfig] = None - ) -> Dict[str, Any]: + self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> dict[str, Any]: from langchain_core.callbacks.manager import CallbackManager # setup callbacks @@ -3590,7 +3738,7 @@ async def ainvoke( input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], - ) -> Dict[str, Any]: + ) -> dict[str, Any]: # setup callbacks config = ensure_config(config) callback_manager = get_async_callback_manager_for_config(config) @@ -3634,7 +3782,7 @@ async def _ainvoke_step( for key, step in steps.items() ) ) - output = {key: value for key, value in zip(steps, results)} + output = dict(zip(steps, results)) # finish the root run except BaseException as e: await run_manager.on_chain_error(e) @@ -3695,7 +3843,7 @@ def transform( input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Iterator[Dict[str, Any]]: + ) -> Iterator[dict[str, Any]]: yield from self._transform_stream_with_config( input, self._transform, config, **kwargs ) @@ -3705,7 +3853,7 @@ def stream( input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], - ) -> Iterator[Dict[str, Any]]: + ) -> Iterator[dict[str, Any]]: yield from self.transform(iter([input]), config) async def _atransform( @@ -3764,7 +3912,7 @@ async def atransform( input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> AsyncIterator[Dict[str, Any]]: + ) -> AsyncIterator[dict[str, Any]]: async for chunk in self._atransform_stream_with_config( input, self._atransform, config, **kwargs ): @@ -3775,7 +3923,7 @@ async def astream( input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], - ) -> AsyncIterator[Dict[str, Any]]: + ) -> AsyncIterator[dict[str, Any]]: async def input_aiter() -> AsyncIterator[Input]: yield input @@ -3882,6 +4030,8 @@ def __init__( atransform: Optional[ Callable[[AsyncIterator[Input]], AsyncIterator[Output]] ] = None, + *, + name: Optional[str] = None, ) -> None: """Initialize a RunnableGenerator. @@ -3903,17 +4053,19 @@ def __init__( self._transform = transform func_for_name = transform else: - raise TypeError( + msg = ( "Expected a generator function type for `transform`." f"Instead got an unsupported type: {type(transform)}" ) + raise TypeError(msg) try: - self.name = func_for_name.__name__ + self.name = name or func_for_name.__name__ except AttributeError: - pass + self.name = "RunnableGenerator" @property + @override def InputType(self) -> Any: func = getattr(self, "_transform", None) or self._atransform try: @@ -3926,7 +4078,35 @@ def InputType(self) -> Any: except ValueError: return Any + def get_input_schema( + self, config: Optional[RunnableConfig] = None + ) -> type[BaseModel]: + # Override the default implementation. + # For a runnable generator, we need to bring to provide the + # module of the underlying function when creating the model. + root_type = self.InputType + + func = getattr(self, "_transform", None) or self._atransform + module = getattr(func, "__module__", None) + + if ( + inspect.isclass(root_type) + and not isinstance(root_type, GenericAlias) + and issubclass(root_type, BaseModel) + ): + return root_type + + return create_model_v2( + self.get_name("Input"), + root=root_type, + # To create the schema, we need to provide the module + # where the underlying function is defined. + # This allows pydantic to resolve type annotations appropriately. + module_name=module, + ) + @property + @override def OutputType(self) -> Any: func = getattr(self, "_transform", None) or self._atransform try: @@ -3939,6 +4119,32 @@ def OutputType(self) -> Any: except ValueError: return Any + def get_output_schema( + self, config: Optional[RunnableConfig] = None + ) -> type[BaseModel]: + # Override the default implementation. + # For a runnable generator, we need to bring to provide the + # module of the underlying function when creating the model. + root_type = self.OutputType + func = getattr(self, "_transform", None) or self._atransform + module = getattr(func, "__module__", None) + + if ( + inspect.isclass(root_type) + and not isinstance(root_type, GenericAlias) + and issubclass(root_type, BaseModel) + ): + return root_type + + return create_model_v2( + self.get_name("Output"), + root=root_type, + # To create the schema, we need to provide the module + # where the underlying function is defined. + # This allows pydantic to resolve type annotations appropriately. + module_name=module, + ) + def __eq__(self, other: Any) -> bool: if isinstance(other, RunnableGenerator): if hasattr(self, "_transform") and hasattr(other, "_transform"): @@ -3960,7 +4166,8 @@ def transform( **kwargs: Any, ) -> Iterator[Output]: if not hasattr(self, "_transform"): - raise NotImplementedError(f"{repr(self)} only supports async methods.") + msg = f"{repr(self)} only supports async methods." + raise NotImplementedError(msg) return self._transform_stream_with_config( input, self._transform, # type: ignore[arg-type] @@ -3979,12 +4186,9 @@ def stream( def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: - final = None + final: Optional[Output] = None for output in self.stream(input, config, **kwargs): - if final is None: - final = output - else: - final = final + output + final = output if final is None else final + output # type: ignore[operator] return cast(Output, final) def atransform( @@ -3994,7 +4198,8 @@ def atransform( **kwargs: Any, ) -> AsyncIterator[Output]: if not hasattr(self, "_atransform"): - raise NotImplementedError(f"{repr(self)} only supports sync methods.") + msg = f"{repr(self)} only supports sync methods." + raise NotImplementedError(msg) return self._atransform_stream_with_config( input, self._atransform, config, **kwargs @@ -4014,12 +4219,9 @@ async def input_aiter() -> AsyncIterator[Input]: async def ainvoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: - final = None + final: Optional[Output] = None async for output in self.astream(input, config, **kwargs): - if final is None: - final = output - else: - final = final + output + final = output if final is None else final + output # type: ignore[operator] return cast(Output, final) @@ -4125,21 +4327,23 @@ def __init__( if is_async_callable(func) or is_async_generator(func): if afunc is not None: - raise TypeError( + msg = ( "Func was provided as a coroutine function, but afunc was " "also provided. If providing both, func should be a regular " "function to avoid ambiguity." ) + raise TypeError(msg) self.afunc = func func_for_name = func elif callable(func): self.func = cast(Callable[[Input], Output], func) func_for_name = func else: - raise TypeError( + msg = ( "Expected a callable type for `func`." f"Instead got an unsupported type: {type(func)}" ) + raise TypeError(msg) try: if name is not None: @@ -4150,6 +4354,7 @@ def __init__( pass @property + @override def InputType(self) -> Any: """The type of the input to this Runnable.""" func = getattr(self, "func", None) or self.afunc @@ -4165,7 +4370,7 @@ def InputType(self) -> Any: def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """The pydantic schema for the input to this Runnable. Args: @@ -4183,29 +4388,33 @@ def get_input_schema( if all( item[0] == "'" and item[-1] == "'" and len(item) > 2 for item in items ): + fields = {item[1:-1]: (Any, ...) for item in items} # It's a dict, lol - return create_model( - self.get_name("Input"), - **{item[1:-1]: (Any, None) for item in items}, # type: ignore - ) + return create_model_v2(self.get_name("Input"), field_definitions=fields) else: - return create_model( + module = getattr(func, "__module__", None) + return create_model_v2( self.get_name("Input"), - __root__=(List[Any], None), + root=list[Any], + # To create the schema, we need to provide the module + # where the underlying function is defined. + # This allows pydantic to resolve type annotations appropriately. + module_name=module, ) if self.InputType != Any: return super().get_input_schema(config) if dict_keys := get_function_first_arg_dict_keys(func): - return create_model( + return create_model_v2( self.get_name("Input"), - **{key: (Any, None) for key in dict_keys}, # type: ignore + field_definitions={key: (Any, ...) for key in dict_keys}, ) return super().get_input_schema(config) @property + @override def OutputType(self) -> Any: """The type of the output of this Runnable as a type annotation. @@ -4228,8 +4437,34 @@ def OutputType(self) -> Any: except ValueError: return Any + def get_output_schema( + self, config: Optional[RunnableConfig] = None + ) -> type[BaseModel]: + # Override the default implementation. + # For a runnable lambda, we need to bring to provide the + # module of the underlying function when creating the model. + root_type = self.OutputType + func = getattr(self, "func", None) or self.afunc + module = getattr(func, "__module__", None) + + if ( + inspect.isclass(root_type) + and not isinstance(root_type, GenericAlias) + and issubclass(root_type, BaseModel) + ): + return root_type + + return create_model_v2( + self.get_name("Output"), + root=root_type, + # To create the schema, we need to provide the module + # where the underlying function is defined. + # This allows pydantic to resolve type annotations appropriately. + module_name=module, + ) + @property - def deps(self) -> List[Runnable]: + def deps(self) -> list[Runnable]: """The dependencies of this Runnable. Returns: @@ -4243,7 +4478,7 @@ def deps(self) -> List[Runnable]: else: objects = [] - deps: List[Runnable] = [] + deps: list[Runnable] = [] for obj in objects: if isinstance(obj, Runnable): deps.append(obj) @@ -4252,7 +4487,7 @@ def deps(self) -> List[Runnable]: return deps @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: return get_unique_config_specs( spec for dep in self.deps for spec in dep.config_specs ) @@ -4271,9 +4506,11 @@ def get_graph(self, config: RunnableConfig | None = None) -> Graph: else: dep_first_node, dep_last_node = graph.extend(dep_graph) if not dep_first_node: - raise ValueError(f"Runnable {dep} has no first node") + msg = f"Runnable {dep} has no first node" + raise ValueError(msg) if not dep_last_node: - raise ValueError(f"Runnable {dep} has no last node") + msg = f"Runnable {dep} has no last node" + raise ValueError(msg) graph.add_edge(input_node, dep_first_node) graph.add_edge(dep_last_node, output_node) else: @@ -4334,9 +4571,10 @@ def _invoke( if isinstance(output, Runnable): recursion_limit = config["recursion_limit"] if recursion_limit <= 0: - raise RecursionError( + msg = ( f"Recursion limit reached when invoking {self} with input {input}." ) + raise RecursionError(msg) output = output.invoke( input, patch_config( @@ -4433,9 +4671,10 @@ async def f(*args, **kwargs): # type: ignore[no-untyped-def] if isinstance(output, Runnable): recursion_limit = config["recursion_limit"] if recursion_limit <= 0: - raise RecursionError( + msg = ( f"Recursion limit reached when invoking {self} with input {input}." ) + raise RecursionError(msg) output = await output.ainvoke( input, patch_config( @@ -4478,10 +4717,11 @@ def invoke( **kwargs, ) else: - raise TypeError( + msg = ( "Cannot invoke a coroutine function synchronously." "Use `ainvoke` instead." ) + raise TypeError(msg) async def ainvoke( self, @@ -4552,10 +4792,11 @@ def _transform( if isinstance(output, Runnable): recursion_limit = config["recursion_limit"] if recursion_limit <= 0: - raise RecursionError( + msg = ( f"Recursion limit reached when invoking " f"{self} with input {final}." ) + raise RecursionError(msg) for chunk in output.stream( final, patch_config( @@ -4583,10 +4824,11 @@ def transform( **kwargs, ) else: - raise TypeError( + msg = ( "Cannot stream a coroutine function synchronously." "Use `astream` instead." ) + raise TypeError(msg) def stream( self, @@ -4623,10 +4865,11 @@ async def _atransform( afunc = self.afunc else: if inspect.isgeneratorfunction(self.func): - raise TypeError( + msg = ( "Cannot stream from a generator function asynchronously." "Use .stream() instead." ) + raise TypeError(msg) def func( input: Input, @@ -4673,10 +4916,11 @@ async def f(*args, **kwargs): # type: ignore[no-untyped-def] if isinstance(output, Runnable): recursion_limit = config["recursion_limit"] if recursion_limit <= 0: - raise RecursionError( + msg = ( f"Recursion limit reached when invoking " f"{self} with input {final}." ) + raise RecursionError(msg) async for chunk in output.astream( final, patch_config( @@ -4717,7 +4961,7 @@ async def input_aiter() -> AsyncIterator[Input]: yield chunk -class RunnableEachBase(RunnableSerializable[List[Input], List[Output]]): +class RunnableEachBase(RunnableSerializable[list[Input], list[Output]]): """Runnable that delegates calls to another Runnable with each element of the input sequence. @@ -4728,42 +4972,58 @@ class RunnableEachBase(RunnableSerializable[List[Input], List[Output]]): bound: Runnable[Input, Output] - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property + @override def InputType(self) -> Any: - return List[self.bound.InputType] # type: ignore[name-defined] + return list[self.bound.InputType] # type: ignore[name-defined] def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: - return create_model( + ) -> type[BaseModel]: + return create_model_v2( self.get_name("Input"), - __root__=( - List[self.bound.get_input_schema(config)], # type: ignore + root=( + list[self.bound.get_input_schema(config)], # type: ignore None, ), + # create model needs access to appropriate type annotations to be + # able to construct the pydantic model. + # When we create the model, we pass information about the namespace + # where the model is being created, so the type annotations can + # be resolved correctly as well. + # self.__class__.__module__ handles the case when the Runnable is + # being sub-classed in a different module. + module_name=self.__class__.__module__, ) @property - def OutputType(self) -> Type[List[Output]]: - return List[self.bound.OutputType] # type: ignore[name-defined] + @override + def OutputType(self) -> type[list[Output]]: + return list[self.bound.OutputType] # type: ignore[name-defined] def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: schema = self.bound.get_output_schema(config) - return create_model( + return create_model_v2( self.get_name("Output"), - __root__=( - List[schema], # type: ignore - None, - ), + root=list[schema], # type: ignore[valid-type] + # create model needs access to appropriate type annotations to be + # able to construct the pydantic model. + # When we create the model, we pass information about the namespace + # where the model is being created, so the type annotations can + # be resolved correctly as well. + # self.__class__.__module__ handles the case when the Runnable is + # being sub-classed in a different module. + module_name=self.__class__.__module__, ) @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: return self.bound.config_specs def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: @@ -4774,42 +5034,42 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] def _invoke( self, - inputs: List[Input], + inputs: list[Input], run_manager: CallbackManagerForChainRun, config: RunnableConfig, **kwargs: Any, - ) -> List[Output]: + ) -> list[Output]: configs = [ patch_config(config, callbacks=run_manager.get_child()) for _ in inputs ] return self.bound.batch(inputs, configs, **kwargs) def invoke( - self, input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any - ) -> List[Output]: + self, input: list[Input], config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> list[Output]: return self._call_with_config(self._invoke, input, config, **kwargs) async def _ainvoke( self, - inputs: List[Input], + inputs: list[Input], run_manager: AsyncCallbackManagerForChainRun, config: RunnableConfig, **kwargs: Any, - ) -> List[Output]: + ) -> list[Output]: configs = [ patch_config(config, callbacks=run_manager.get_child()) for _ in inputs ] return await self.bound.abatch(inputs, configs, **kwargs) async def ainvoke( - self, input: List[Input], config: Optional[RunnableConfig] = None, **kwargs: Any - ) -> List[Output]: + self, input: list[Input], config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> list[Output]: return await self._acall_with_config(self._ainvoke, input, config, **kwargs) async def astream_events( @@ -4819,9 +5079,8 @@ async def astream_events( **kwargs: Optional[Any], ) -> AsyncIterator[StreamEvent]: for _ in range(1): - raise NotImplementedError( - "RunnableEach does not support astream_events yet." - ) + msg = "RunnableEach does not support astream_events yet." + raise NotImplementedError(msg) yield @@ -4854,7 +5113,7 @@ class RunnableEach(RunnableEachBase[Input, Output]): """ @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @@ -4961,7 +5220,7 @@ class RunnableBindingBase(RunnableSerializable[Input, Output]): config: RunnableConfig = Field(default_factory=dict) """The config to bind to the underlying Runnable.""" - config_factories: List[Callable[[RunnableConfig], RunnableConfig]] = Field( + config_factories: list[Callable[[RunnableConfig], RunnableConfig]] = Field( default_factory=list ) """The config factories to bind to the underlying Runnable.""" @@ -4979,8 +5238,9 @@ class RunnableBindingBase(RunnableSerializable[Input, Output]): The type can be a pydantic model, or a type annotation (e.g., `List[str]`). """ - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def __init__( self, @@ -4989,10 +5249,10 @@ def __init__( kwargs: Optional[Mapping[str, Any]] = None, config: Optional[RunnableConfig] = None, config_factories: Optional[ - List[Callable[[RunnableConfig], RunnableConfig]] + list[Callable[[RunnableConfig], RunnableConfig]] ] = None, - custom_input_type: Optional[Union[Type[Input], BaseModel]] = None, - custom_output_type: Optional[Union[Type[Output], BaseModel]] = None, + custom_input_type: Optional[Union[type[Input], BaseModel]] = None, + custom_output_type: Optional[Union[type[Output], BaseModel]] = None, **other_kwargs: Any, ) -> None: """Create a RunnableBinding from a Runnable and kwargs. @@ -5034,37 +5294,39 @@ def get_name( return self.bound.get_name(suffix, name=name) @property - def InputType(self) -> Type[Input]: + @override + def InputType(self) -> type[Input]: return ( - cast(Type[Input], self.custom_input_type) + cast(type[Input], self.custom_input_type) if self.custom_input_type is not None else self.bound.InputType ) @property - def OutputType(self) -> Type[Output]: + @override + def OutputType(self) -> type[Output]: return ( - cast(Type[Output], self.custom_output_type) + cast(type[Output], self.custom_output_type) if self.custom_output_type is not None else self.bound.OutputType ) def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: if self.custom_input_type is not None: return super().get_input_schema(config) return self.bound.get_input_schema(merge_configs(self.config, config)) def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: if self.custom_output_type is not None: return super().get_output_schema(config) return self.bound.get_output_schema(merge_configs(self.config, config)) @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: return self.bound.config_specs def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: @@ -5075,7 +5337,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @@ -5109,15 +5371,15 @@ async def ainvoke( def batch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: if isinstance(config, list): configs = cast( - List[RunnableConfig], + list[RunnableConfig], [self._merge_configs(conf) for conf in config], ) else: @@ -5131,15 +5393,15 @@ def batch( async def abatch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: if isinstance(config, list): configs = cast( - List[RunnableConfig], + list[RunnableConfig], [self._merge_configs(conf) for conf in config], ) else: @@ -5159,7 +5421,7 @@ def batch_as_completed( *, return_exceptions: Literal[False] = False, **kwargs: Any, - ) -> Iterator[Tuple[int, Output]]: ... + ) -> Iterator[tuple[int, Output]]: ... @overload def batch_as_completed( @@ -5169,7 +5431,7 @@ def batch_as_completed( *, return_exceptions: Literal[True], **kwargs: Any, - ) -> Iterator[Tuple[int, Union[Output, Exception]]]: ... + ) -> Iterator[tuple[int, Union[Output, Exception]]]: ... def batch_as_completed( self, @@ -5178,10 +5440,10 @@ def batch_as_completed( *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> Iterator[Tuple[int, Union[Output, Exception]]]: + ) -> Iterator[tuple[int, Union[Output, Exception]]]: if isinstance(config, Sequence): configs = cast( - List[RunnableConfig], + list[RunnableConfig], [self._merge_configs(conf) for conf in config], ) else: @@ -5210,7 +5472,7 @@ def abatch_as_completed( *, return_exceptions: Literal[False] = False, **kwargs: Optional[Any], - ) -> AsyncIterator[Tuple[int, Output]]: ... + ) -> AsyncIterator[tuple[int, Output]]: ... @overload def abatch_as_completed( @@ -5220,7 +5482,7 @@ def abatch_as_completed( *, return_exceptions: Literal[True], **kwargs: Optional[Any], - ) -> AsyncIterator[Tuple[int, Union[Output, Exception]]]: ... + ) -> AsyncIterator[tuple[int, Union[Output, Exception]]]: ... async def abatch_as_completed( self, @@ -5229,10 +5491,10 @@ async def abatch_as_completed( *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> AsyncIterator[Tuple[int, Union[Output, Exception]]]: + ) -> AsyncIterator[tuple[int, Union[Output, Exception]]]: if isinstance(config, Sequence): configs = cast( - List[RunnableConfig], + list[RunnableConfig], [self._merge_configs(conf) for conf in config], ) else: @@ -5316,7 +5578,7 @@ async def atransform( yield item -RunnableBindingBase.update_forward_refs(RunnableConfig=RunnableConfig) +RunnableBindingBase.model_rebuild() class RunnableBinding(RunnableBindingBase[Input, Output]): @@ -5369,7 +5631,7 @@ class RunnableBinding(RunnableBindingBase[Input, Output]): """ @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @@ -5457,8 +5719,8 @@ def with_listeners( def with_types( self, - input_type: Optional[Union[Type[Input], BaseModel]] = None, - output_type: Optional[Union[Type[Output], BaseModel]] = None, + input_type: Optional[Union[type[Input], BaseModel]] = None, + output_type: Optional[Union[type[Output], BaseModel]] = None, ) -> Runnable[Input, Output]: return self.__class__( bound=self.bound, @@ -5519,12 +5781,36 @@ def wrapper(*args: Any, **kwargs: Any) -> Any: return attr +class _RunnableCallableSync(Protocol[Input, Output]): + def __call__(self, __in: Input, *, config: RunnableConfig) -> Output: ... + + +class _RunnableCallableAsync(Protocol[Input, Output]): + def __call__(self, __in: Input, *, config: RunnableConfig) -> Awaitable[Output]: ... + + +class _RunnableCallableIterator(Protocol[Input, Output]): + def __call__( + self, __in: Iterator[Input], *, config: RunnableConfig + ) -> Iterator[Output]: ... + + +class _RunnableCallableAsyncIterator(Protocol[Input, Output]): + def __call__( + self, __in: AsyncIterator[Input], *, config: RunnableConfig + ) -> AsyncIterator[Output]: ... + + RunnableLike = Union[ Runnable[Input, Output], Callable[[Input], Output], Callable[[Input], Awaitable[Output]], Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]], + _RunnableCallableSync[Input, Output], + _RunnableCallableAsync[Input, Output], + _RunnableCallableIterator[Input, Output], + _RunnableCallableAsyncIterator[Input, Output], Mapping[str, Any], ] @@ -5550,10 +5836,11 @@ def coerce_to_runnable(thing: RunnableLike) -> Runnable[Input, Output]: elif isinstance(thing, dict): return cast(Runnable[Input, Output], RunnableParallel(thing)) else: - raise TypeError( + msg = ( f"Expected a Runnable, callable or dict." f"Instead got an unsupported type: {type(thing)}" ) + raise TypeError(msg) @overload diff --git a/libs/core/langchain_core/runnables/branch.py b/libs/core/langchain_core/runnables/branch.py index 61c7f583103ea..56c438861899e 100644 --- a/libs/core/langchain_core/runnables/branch.py +++ b/libs/core/langchain_core/runnables/branch.py @@ -1,20 +1,14 @@ +from collections.abc import AsyncIterator, Awaitable, Iterator, Mapping, Sequence from typing import ( Any, - AsyncIterator, - Awaitable, Callable, - Iterator, - List, - Mapping, Optional, - Sequence, - Tuple, - Type, Union, cast, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict + from langchain_core.runnables.base import ( Runnable, RunnableLike, @@ -68,13 +62,13 @@ class RunnableBranch(RunnableSerializable[Input, Output]): branch.invoke(None) # "goodbye" """ - branches: Sequence[Tuple[Runnable[Input, bool], Runnable[Input, Output]]] + branches: Sequence[tuple[Runnable[Input, bool], Runnable[Input, Output]]] default: Runnable[Input, Output] def __init__( self, *branches: Union[ - Tuple[ + tuple[ Union[ Runnable[Input, bool], Callable[[Input], bool], @@ -98,7 +92,8 @@ def __init__( ValueError: If a branch is not of length 2. """ if len(branches) < 2: - raise ValueError("RunnableBranch requires at least two branches") + msg = "RunnableBranch requires at least two branches" + raise ValueError(msg) default = branches[-1] @@ -106,9 +101,8 @@ def __init__( default, (Runnable, Callable, Mapping), # type: ignore[arg-type] ): - raise TypeError( - "RunnableBranch default must be Runnable, callable or mapping." - ) + msg = "RunnableBranch default must be Runnable, callable or mapping." + raise TypeError(msg) default_ = cast( Runnable[Input, Output], coerce_to_runnable(cast(RunnableLike, default)) @@ -118,25 +112,31 @@ def __init__( for branch in branches[:-1]: if not isinstance(branch, (tuple, list)): # type: ignore[arg-type] - raise TypeError( + msg = ( f"RunnableBranch branches must be " f"tuples or lists, not {type(branch)}" ) + raise TypeError(msg) - if not len(branch) == 2: - raise ValueError( + if len(branch) != 2: + msg = ( f"RunnableBranch branches must be " f"tuples or lists of length 2, not {len(branch)}" ) + raise ValueError(msg) condition, runnable = branch condition = cast(Runnable[Input, bool], coerce_to_runnable(condition)) runnable = coerce_to_runnable(runnable) _branches.append((condition, runnable)) - super().__init__(branches=_branches, default=default_) # type: ignore[call-arg] + super().__init__( + branches=_branches, + default=default_, + ) # type: ignore[call-arg] - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def is_lc_serializable(cls) -> bool: @@ -144,13 +144,13 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: runnables = ( [self.default] + [r for _, r in self.branches] @@ -158,13 +158,16 @@ def get_input_schema( ) for runnable in runnables: - if runnable.get_input_schema(config).schema().get("type") is not None: + if ( + runnable.get_input_schema(config).model_json_schema().get("type") + is not None + ): return runnable.get_input_schema(config) return super().get_input_schema(config) @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: from langchain_core.beta.runnables.context import ( CONTEXT_CONFIG_PREFIX, CONTEXT_CONFIG_SUFFIX_SET, @@ -184,7 +187,8 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: and s.id.endswith(CONTEXT_CONFIG_SUFFIX_SET) for s in specs ): - raise ValueError("RunnableBranch cannot contain context setters.") + msg = "RunnableBranch cannot contain context setters." + raise ValueError(msg) return specs def invoke( diff --git a/libs/core/langchain_core/runnables/config.py b/libs/core/langchain_core/runnables/config.py index 31cb635fdb8e7..7c285137fafe3 100644 --- a/libs/core/langchain_core/runnables/config.py +++ b/libs/core/langchain_core/runnables/config.py @@ -3,26 +3,12 @@ import asyncio import uuid import warnings +from collections.abc import Awaitable, Generator, Iterable, Iterator, Sequence from concurrent.futures import Executor, Future, ThreadPoolExecutor from contextlib import contextmanager from contextvars import ContextVar, copy_context from functools import partial -from typing import ( - TYPE_CHECKING, - Any, - Awaitable, - Callable, - Dict, - Generator, - Iterable, - Iterator, - List, - Optional, - Sequence, - TypeVar, - Union, - cast, -) +from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, Union, cast from typing_extensions import ParamSpec, TypedDict @@ -44,25 +30,23 @@ else: # Pydantic validates through typed dicts, but # the callbacks need forward refs updated - Callbacks = Optional[Union[List, Any]] + Callbacks = Optional[Union[list, Any]] class EmptyDict(TypedDict, total=False): """Empty dict type.""" - pass - class RunnableConfig(TypedDict, total=False): """Configuration for a Runnable.""" - tags: List[str] + tags: list[str] """ Tags for this call and any sub-calls (eg. a Chain calling an LLM). You can use these to filter calls. """ - metadata: Dict[str, Any] + metadata: dict[str, Any] """ Metadata for this call and any sub-calls (eg. a Chain calling an LLM). Keys should be strings, values should be JSON-serializable. @@ -81,7 +65,7 @@ class RunnableConfig(TypedDict, total=False): max_concurrency: Optional[int] """ - Maximum number of parallel calls to make. If not provided, defaults to + Maximum number of parallel calls to make. If not provided, defaults to ThreadPoolExecutor's default. """ @@ -90,11 +74,11 @@ class RunnableConfig(TypedDict, total=False): Maximum number of times a call can recurse. If not provided, defaults to 25. """ - configurable: Dict[str, Any] + configurable: dict[str, Any] """ Runtime values for attributes previously made configurable on this Runnable, or sub-Runnables, through .configurable_fields() or .configurable_alternatives(). - Check .output_schema() for a description of the attributes that have been made + Check .output_schema() for a description of the attributes that have been made configurable. """ @@ -137,17 +121,29 @@ def _set_config_context(config: RunnableConfig) -> None: Args: config (RunnableConfig): The config to set. """ - from langsmith import ( - RunTree, # type: ignore - run_helpers, # type: ignore - ) + from langchain_core.tracers.langchain import LangChainTracer var_child_runnable_config.set(config) - if hasattr(RunTree, "from_runnable_config"): - # import _set_tracing_context, get_tracing_context - rt = RunTree.from_runnable_config(dict(config)) - tc = run_helpers.get_tracing_context() - run_helpers._set_tracing_context({**tc, "parent": rt}) + if ( + (callbacks := config.get("callbacks")) + and ( + parent_run_id := getattr(callbacks, "parent_run_id", None) + ) # Is callback manager + and ( + tracer := next( + ( + handler + for handler in getattr(callbacks, "handlers", []) + if isinstance(handler, LangChainTracer) + ), + None, + ) + ) + and (run := tracer.run_map.get(str(parent_run_id))) + ): + from langsmith.run_helpers import _set_tracing_context + + _set_tracing_context({"parent": run}) def ensure_config(config: Optional[RunnableConfig] = None) -> RunnableConfig: @@ -205,7 +201,7 @@ def ensure_config(config: Optional[RunnableConfig] = None) -> RunnableConfig: def get_config_list( config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]], length: int -) -> List[RunnableConfig]: +) -> list[RunnableConfig]: """Get a list of configs from a single config or a list of configs. It is useful for subclasses overriding batch() or abatch(). @@ -223,12 +219,14 @@ def get_config_list( """ if length < 0: - raise ValueError(f"length must be >= 0, but got {length}") + msg = f"length must be >= 0, but got {length}" + raise ValueError(msg) if isinstance(config, Sequence) and len(config) != length: - raise ValueError( + msg = ( f"config must be a list of the same length as inputs, " f"but got {len(config)} configs for {length} inputs" ) + raise ValueError(msg) if isinstance(config, Sequence): return list(map(ensure_config, config)) @@ -255,7 +253,7 @@ def patch_config( recursion_limit: Optional[int] = None, max_concurrency: Optional[int] = None, run_name: Optional[str] = None, - configurable: Optional[Dict[str, Any]] = None, + configurable: Optional[dict[str, Any]] = None, ) -> RunnableConfig: """Patch a config with new values. diff --git a/libs/core/langchain_core/runnables/configurable.py b/libs/core/langchain_core/runnables/configurable.py index cf7e9ce1dc7bc..35f976340cab7 100644 --- a/libs/core/langchain_core/runnables/configurable.py +++ b/libs/core/langchain_core/runnables/configurable.py @@ -3,24 +3,21 @@ import enum import threading from abc import abstractmethod +from collections.abc import AsyncIterator, Iterator, Sequence +from collections.abc import Mapping as Mapping from functools import wraps from typing import ( Any, - AsyncIterator, Callable, - Dict, - Iterator, - List, Optional, - Sequence, - Tuple, - Type, Union, cast, ) from weakref import WeakValueDictionary -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict +from typing_extensions import override + from langchain_core.runnables.base import Runnable, RunnableSerializable from langchain_core.runnables.config import ( RunnableConfig, @@ -58,35 +55,38 @@ class DynamicRunnable(RunnableSerializable[Input, Output]): config: Optional[RunnableConfig] = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property - def InputType(self) -> Type[Input]: + @override + def InputType(self) -> type[Input]: return self.default.InputType @property - def OutputType(self) -> Type[Output]: + @override + def OutputType(self) -> type[Output]: return self.default.OutputType def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: runnable, config = self.prepare(config) return runnable.get_input_schema(config) def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: runnable, config = self.prepare(config) return runnable.get_output_schema(config) @@ -106,7 +106,7 @@ def with_config( def prepare( self, config: Optional[RunnableConfig] = None - ) -> Tuple[Runnable[Input, Output], RunnableConfig]: + ) -> tuple[Runnable[Input, Output], RunnableConfig]: """Prepare the Runnable for invocation. Args: @@ -124,7 +124,7 @@ def prepare( @abstractmethod def _prepare( self, config: Optional[RunnableConfig] = None - ) -> Tuple[Runnable[Input, Output], RunnableConfig]: ... + ) -> tuple[Runnable[Input, Output], RunnableConfig]: ... def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any @@ -140,12 +140,12 @@ async def ainvoke( def batch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: configs = get_config_list(config, len(inputs)) prepared = [self.prepare(c) for c in configs] @@ -161,7 +161,7 @@ def batch( return [] def invoke( - prepared: Tuple[Runnable[Input, Output], RunnableConfig], + prepared: tuple[Runnable[Input, Output], RunnableConfig], input: Input, ) -> Union[Output, Exception]: bound, config = prepared @@ -175,19 +175,19 @@ def invoke( # If there's only one input, don't bother with the executor if len(inputs) == 1: - return cast(List[Output], [invoke(prepared[0], inputs[0])]) + return cast(list[Output], [invoke(prepared[0], inputs[0])]) with get_executor_for_config(configs[0]) as executor: - return cast(List[Output], list(executor.map(invoke, prepared, inputs))) + return cast(list[Output], list(executor.map(invoke, prepared, inputs))) async def abatch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: configs = get_config_list(config, len(inputs)) prepared = [self.prepare(c) for c in configs] @@ -203,7 +203,7 @@ async def abatch( return [] async def ainvoke( - prepared: Tuple[Runnable[Input, Output], RunnableConfig], + prepared: tuple[Runnable[Input, Output], RunnableConfig], input: Input, ) -> Union[Output, Exception]: bound, config = prepared @@ -359,42 +359,46 @@ class RunnableConfigurableFields(DynamicRunnable[Input, Output]): ) """ - fields: Dict[str, AnyConfigurableField] + fields: dict[str, AnyConfigurableField] @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: """Get the configuration specs for the RunnableConfigurableFields. Returns: List[ConfigurableFieldSpec]: The configuration specs. """ - return get_unique_config_specs( - [ - ( + config_specs = [] + + for field_name, spec in self.fields.items(): + if isinstance(spec, ConfigurableField): + config_specs.append( ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description - or self.default.__fields__[field_name].field_info.description, + or self.default.model_fields[field_name].description, annotation=spec.annotation - or self.default.__fields__[field_name].annotation, + or self.default.model_fields[field_name].annotation, default=getattr(self.default, field_name), is_shared=spec.is_shared, ) - if isinstance(spec, ConfigurableField) - else make_options_spec( - spec, self.default.__fields__[field_name].field_info.description + ) + else: + config_specs.append( + make_options_spec( + spec, self.default.model_fields[field_name].description ) ) - for field_name, spec in self.fields.items() - ] - + list(self.default.config_specs) - ) + + config_specs.extend(self.default.config_specs) + + return get_unique_config_specs(config_specs) def configurable_fields( self, **kwargs: AnyConfigurableField @@ -405,7 +409,7 @@ def configurable_fields( def _prepare( self, config: Optional[RunnableConfig] = None - ) -> Tuple[Runnable[Input, Output], RunnableConfig]: + ) -> tuple[Runnable[Input, Output], RunnableConfig]: config = ensure_config(config) specs_by_id = {spec.id: (key, spec) for key, spec in self.fields.items()} configurable_fields = { @@ -436,7 +440,7 @@ def _prepare( init_params = { k: v for k, v in self.default.__dict__.items() - if k in self.default.__fields__ + if k in self.default.model_fields } return ( self.default.__class__(**{**init_params, **configurable}), @@ -446,18 +450,19 @@ def _prepare( return (self.default, config) +RunnableConfigurableFields.model_rebuild() + + # Before Python 3.11 native StrEnum is not available class StrEnum(str, enum.Enum): """String enum.""" - pass - _enums_for_spec: WeakValueDictionary[ Union[ ConfigurableFieldSingleOption, ConfigurableFieldMultiOption, ConfigurableField ], - Type[StrEnum], + type[StrEnum], ] = WeakValueDictionary() _enums_for_spec_lock = threading.Lock() @@ -522,7 +527,7 @@ class RunnableConfigurableAlternatives(DynamicRunnable[Input, Output]): which: ConfigurableField """The ConfigurableField to use to choose between alternatives.""" - alternatives: Dict[ + alternatives: dict[ str, Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]], ] @@ -533,16 +538,16 @@ class RunnableConfigurableAlternatives(DynamicRunnable[Input, Output]): prefix_keys: bool """Whether to prefix configurable fields of each alternative with a namespace - of the form ==, eg. a key named "temperature" used by + of the form ==, eg. a key named "temperature" used by the alternative named "gpt3" becomes "model==gpt3/temperature".""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: with _enums_for_spec_lock: if which_enum := _enums_for_spec.get(self.which): pass @@ -554,7 +559,7 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: for v in list(self.alternatives.keys()) + [self.default_key] ), ) - _enums_for_spec[self.which] = cast(Type[StrEnum], which_enum) + _enums_for_spec[self.which] = cast(type[StrEnum], which_enum) return get_unique_config_specs( # which alternative [ @@ -602,7 +607,7 @@ def configurable_fields( def _prepare( self, config: Optional[RunnableConfig] = None - ) -> Tuple[Runnable[Input, Output], RunnableConfig]: + ) -> tuple[Runnable[Input, Output], RunnableConfig]: config = ensure_config(config) which = config.get("configurable", {}).get(self.which.id, self.default_key) # remap configurable keys for the chosen alternative @@ -627,7 +632,8 @@ def _prepare( else: return (alt(), config) else: - raise ValueError(f"Unknown alternative: {which}") + msg = f"Unknown alternative: {which}" + raise ValueError(msg) def _strremoveprefix(s: str, prefix: str) -> str: @@ -686,7 +692,7 @@ def make_options_spec( spec.name or spec.id, ((v, v) for v in list(spec.options.keys())), ) - _enums_for_spec[spec] = cast(Type[StrEnum], enum) + _enums_for_spec[spec] = cast(type[StrEnum], enum) if isinstance(spec, ConfigurableFieldSingleOption): return ConfigurableFieldSpec( id=spec.id, diff --git a/libs/core/langchain_core/runnables/fallbacks.py b/libs/core/langchain_core/runnables/fallbacks.py index 6d57bbe2fe615..97d450015eae1 100644 --- a/libs/core/langchain_core/runnables/fallbacks.py +++ b/libs/core/langchain_core/runnables/fallbacks.py @@ -1,24 +1,20 @@ import asyncio import inspect import typing +from collections.abc import AsyncIterator, Iterator, Sequence from contextvars import copy_context from functools import wraps from typing import ( TYPE_CHECKING, Any, - AsyncIterator, - Dict, - Iterator, - List, Optional, - Sequence, - Tuple, - Type, Union, cast, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict +from typing_extensions import override + from langchain_core.runnables.base import Runnable, RunnableSerializable from langchain_core.runnables.config import ( RunnableConfig, @@ -95,40 +91,43 @@ def when_all_is_lost(inputs): """The Runnable to run first.""" fallbacks: Sequence[Runnable[Input, Output]] """A sequence of fallbacks to try.""" - exceptions_to_handle: Tuple[Type[BaseException], ...] = (Exception,) + exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,) """The exceptions on which fallbacks should be tried. - + Any exception that is not a subclass of these exceptions will be raised immediately. """ exception_key: Optional[str] = None - """If string is specified then handled exceptions will be passed to fallbacks as + """If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions - will not be passed to fallbacks. If used, the base Runnable and its fallbacks + will not be passed to fallbacks. If used, the base Runnable and its fallbacks must accept a dictionary as input.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property - def InputType(self) -> Type[Input]: + @override + def InputType(self) -> type[Input]: return self.runnable.InputType @property - def OutputType(self) -> Type[Output]: + @override + def OutputType(self) -> type[Output]: return self.runnable.OutputType def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: return self.runnable.get_input_schema(config) def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: return self.runnable.get_output_schema(config) @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: return get_unique_config_specs( spec for step in [self.runnable, *self.fallbacks] @@ -140,7 +139,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @@ -153,10 +152,11 @@ def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: if self.exception_key is not None and not isinstance(input, dict): - raise ValueError( + msg = ( "If 'exception_key' is specified then input must be a dictionary." f"However found a type of {type(input)} for input" ) + raise ValueError(msg) # setup callbacks config = ensure_config(config) callback_manager = get_callback_manager_for_config(config) @@ -193,7 +193,8 @@ def invoke( run_manager.on_chain_end(output) return output if first_error is None: - raise ValueError("No error stored at end of fallbacks.") + msg = "No error stored at end of fallbacks." + raise ValueError(msg) run_manager.on_chain_error(first_error) raise first_error @@ -204,10 +205,11 @@ async def ainvoke( **kwargs: Optional[Any], ) -> Output: if self.exception_key is not None and not isinstance(input, dict): - raise ValueError( + msg = ( "If 'exception_key' is specified then input must be a dictionary." f"However found a type of {type(input)} for input" ) + raise ValueError(msg) # setup callbacks config = ensure_config(config) callback_manager = get_async_callback_manager_for_config(config) @@ -244,27 +246,29 @@ async def ainvoke( await run_manager.on_chain_end(output) return output if first_error is None: - raise ValueError("No error stored at end of fallbacks.") + msg = "No error stored at end of fallbacks." + raise ValueError(msg) await run_manager.on_chain_error(first_error) raise first_error def batch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: from langchain_core.callbacks.manager import CallbackManager if self.exception_key is not None and not all( isinstance(input, dict) for input in inputs ): - raise ValueError( + msg = ( "If 'exception_key' is specified then inputs must be dictionaries." f"However found a type of {type(inputs[0])} for input" ) + raise ValueError(msg) if not inputs: return [] @@ -294,9 +298,9 @@ def batch( for cm, input, config in zip(callback_managers, inputs, configs) ] - to_return: Dict[int, Any] = {} - run_again = {i: input for i, input in enumerate(inputs)} - handled_exceptions: Dict[int, BaseException] = {} + to_return: dict[int, Any] = {} + run_again = dict(enumerate(inputs)) + handled_exceptions: dict[int, BaseException] = {} first_to_raise = None for runnable in self.runnables: outputs = runnable.batch( @@ -342,21 +346,22 @@ def batch( async def abatch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: from langchain_core.callbacks.manager import AsyncCallbackManager if self.exception_key is not None and not all( isinstance(input, dict) for input in inputs ): - raise ValueError( + msg = ( "If 'exception_key' is specified then inputs must be dictionaries." f"However found a type of {type(inputs[0])} for input" ) + raise ValueError(msg) if not inputs: return [] @@ -376,7 +381,7 @@ async def abatch( for config in configs ] # start the root runs, one per input - run_managers: List[AsyncCallbackManagerForChainRun] = await asyncio.gather( + run_managers: list[AsyncCallbackManagerForChainRun] = await asyncio.gather( *( cm.on_chain_start( None, @@ -389,8 +394,8 @@ async def abatch( ) to_return = {} - run_again = {i: input for i, input in enumerate(inputs)} - handled_exceptions: Dict[int, BaseException] = {} + run_again = dict(enumerate(inputs)) + handled_exceptions: dict[int, BaseException] = {} first_to_raise = None for runnable in self.runnables: outputs = await runnable.abatch( @@ -448,10 +453,11 @@ def stream( ) -> Iterator[Output]: """""" if self.exception_key is not None and not isinstance(input, dict): - raise ValueError( + msg = ( "If 'exception_key' is specified then input must be a dictionary." f"However found a type of {type(input)} for input" ) + raise ValueError(msg) # setup callbacks config = ensure_config(config) callback_manager = get_callback_manager_for_config(config) @@ -511,10 +517,11 @@ async def astream( **kwargs: Optional[Any], ) -> AsyncIterator[Output]: if self.exception_key is not None and not isinstance(input, dict): - raise ValueError( + msg = ( "If 'exception_key' is specified then input must be a dictionary." f"However found a type of {type(input)} for input" ) + raise ValueError(msg) # setup callbacks config = ensure_config(config) callback_manager = get_async_callback_manager_for_config(config) @@ -619,8 +626,9 @@ def wrapped(*args: Any, **kwargs: Any) -> Any: return self.__class__( **{ - **self.dict(), - **{"runnable": new_runnable, "fallbacks": new_fallbacks}, + **self.model_dump(), + "runnable": new_runnable, + "fallbacks": new_fallbacks, } ) diff --git a/libs/core/langchain_core/runnables/graph.py b/libs/core/langchain_core/runnables/graph.py index ae3a9c1b8995f..fd2c8adb98b23 100644 --- a/libs/core/langchain_core/runnables/graph.py +++ b/libs/core/langchain_core/runnables/graph.py @@ -2,28 +2,25 @@ import inspect from collections import Counter +from collections.abc import Sequence from dataclasses import dataclass, field from enum import Enum from typing import ( TYPE_CHECKING, Any, Callable, - Dict, - List, NamedTuple, Optional, Protocol, - Sequence, - Tuple, - Type, TypedDict, Union, overload, ) from uuid import UUID, uuid4 -from langchain_core.pydantic_v1 import BaseModel -from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import BaseModel + +from langchain_core.utils.pydantic import _IgnoreUnserializable, is_basemodel_subclass if TYPE_CHECKING: from langchain_core.runnables.base import Runnable as RunnableType @@ -105,8 +102,8 @@ class Node(NamedTuple): id: str name: str - data: Union[Type[BaseModel], RunnableType] - metadata: Optional[Dict[str, Any]] + data: Union[type[BaseModel], RunnableType] + metadata: Optional[dict[str, Any]] def copy(self, *, id: Optional[str] = None, name: Optional[str] = None) -> Node: """Return a copy of the node with optional new id and name. @@ -178,7 +175,7 @@ class MermaidDrawMethod(Enum): API = "api" # Uses Mermaid.INK API to render the graph -def node_data_str(id: str, data: Union[Type[BaseModel], RunnableType]) -> str: +def node_data_str(id: str, data: Union[type[BaseModel], RunnableType]) -> str: """Convert the data of a node to a string. Args: @@ -201,7 +198,7 @@ def node_data_str(id: str, data: Union[Type[BaseModel], RunnableType]) -> str: def node_data_json( node: Node, *, with_schemas: bool = False -) -> Dict[str, Union[str, Dict[str, Any]]]: +) -> dict[str, Union[str, dict[str, Any]]]: """Convert the data of a node to a JSON-serializable format. Args: @@ -216,7 +213,7 @@ def node_data_json( from langchain_core.runnables.base import Runnable, RunnableSerializable if isinstance(node.data, RunnableSerializable): - json: Dict[str, Any] = { + json: dict[str, Any] = { "type": "runnable", "data": { "id": node.data.lc_id(), @@ -235,7 +232,9 @@ def node_data_json( json = ( { "type": "schema", - "data": node.data.schema(), + "data": node.data.model_json_schema( + schema_generator=_IgnoreUnserializable + ), } if with_schemas else { @@ -262,10 +261,10 @@ class Graph: edges: List of edges in the graph. Defaults to an empty list. """ - nodes: Dict[str, Node] = field(default_factory=dict) - edges: List[Edge] = field(default_factory=list) + nodes: dict[str, Node] = field(default_factory=dict) + edges: list[Edge] = field(default_factory=list) - def to_json(self, *, with_schemas: bool = False) -> Dict[str, List[Dict[str, Any]]]: + def to_json(self, *, with_schemas: bool = False) -> dict[str, list[dict[str, Any]]]: """Convert the graph to a JSON-serializable format. Args: @@ -279,7 +278,7 @@ def to_json(self, *, with_schemas: bool = False) -> Dict[str, List[Dict[str, Any node.id: i if is_uuid(node.id) else node.id for i, node in enumerate(self.nodes.values()) } - edges: List[Dict[str, Any]] = [] + edges: list[dict[str, Any]] = [] for edge in self.edges: edge_dict = { "source": stable_node_ids[edge.source], @@ -312,10 +311,10 @@ def next_id(self) -> str: def add_node( self, - data: Union[Type[BaseModel], RunnableType], + data: Union[type[BaseModel], RunnableType], id: Optional[str] = None, *, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, ) -> Node: """Add a node to the graph and return it. @@ -331,7 +330,8 @@ def add_node( ValueError: If a node with the same id already exists. """ if id is not None and id in self.nodes: - raise ValueError(f"Node with id {id} already exists") + msg = f"Node with id {id} already exists" + raise ValueError(msg) id = id or self.next_id() node = Node(id=id, data=data, metadata=metadata, name=node_data_str(id, data)) self.nodes[node.id] = node @@ -372,9 +372,11 @@ def add_edge( ValueError: If the source or target node is not in the graph. """ if source.id not in self.nodes: - raise ValueError(f"Source node {source.id} not in graph") + msg = f"Source node {source.id} not in graph" + raise ValueError(msg) if target.id not in self.nodes: - raise ValueError(f"Target node {target.id} not in graph") + msg = f"Target node {target.id} not in graph" + raise ValueError(msg) edge = Edge( source=source.id, target=target.id, data=data, conditional=conditional ) @@ -383,7 +385,7 @@ def add_edge( def extend( self, graph: Graph, *, prefix: str = "" - ) -> Tuple[Optional[Node], Optional[Node]]: + ) -> tuple[Optional[Node], Optional[Node]]: """Add all nodes and edges from another graph. Note this doesn't check for duplicates, nor does it connect the graphs. @@ -619,7 +621,7 @@ def _first_node(graph: Graph, exclude: Sequence[str] = ()) -> Optional[Node]: If there is no such node, or there are multiple, return None. When drawing the graph, this node would be the origin.""" targets = {edge.target for edge in graph.edges if edge.source not in exclude} - found: List[Node] = [] + found: list[Node] = [] for node in graph.nodes.values(): if node.id not in exclude and node.id not in targets: found.append(node) @@ -632,7 +634,7 @@ def _last_node(graph: Graph, exclude: Sequence[str] = ()) -> Optional[Node]: If there is no such node, or there are multiple, return None. When drawing the graph, this node would be the destination.""" sources = {edge.source for edge in graph.edges if edge.target not in exclude} - found: List[Node] = [] + found: list[Node] = [] for node in graph.nodes.values(): if node.id not in exclude and node.id not in sources: found.append(node) diff --git a/libs/core/langchain_core/runnables/graph_ascii.py b/libs/core/langchain_core/runnables/graph_ascii.py index 46677213f81c3..f2a031ba43dbb 100644 --- a/libs/core/langchain_core/runnables/graph_ascii.py +++ b/libs/core/langchain_core/runnables/graph_ascii.py @@ -3,7 +3,8 @@ import math import os -from typing import Any, Mapping, Sequence +from collections.abc import Mapping, Sequence +from typing import Any from langchain_core.runnables.graph import Edge as LangEdge @@ -98,24 +99,15 @@ def line(self, x0: int, y0: int, x1: int, y1: int, char: str) -> None: self.point(x0, y0, char) elif abs(dx) >= abs(dy): for x in range(x0, x1 + 1): - if dx == 0: - y = y0 - else: - y = y0 + int(round((x - x0) * dy / float(dx))) + y = y0 if dx == 0 else y0 + int(round((x - x0) * dy / float(dx))) self.point(x, y, char) elif y0 < y1: for y in range(y0, y1 + 1): - if dy == 0: - x = x0 - else: - x = x0 + int(round((y - y0) * dx / float(dy))) + x = x0 if dy == 0 else x0 + int(round((y - y0) * dx / float(dy))) self.point(x, y, char) else: for y in range(y1, y0 + 1): - if dy == 0: - x = x0 - else: - x = x1 + int(round((y - y1) * dx / float(dy))) + x = x0 if dy == 0 else x1 + int(round((y - y1) * dx / float(dy))) self.point(x, y, char) def text(self, x: int, y: int, text: str) -> None: @@ -169,9 +161,8 @@ def _build_sugiyama_layout( route_with_lines, ) except ImportError as exc: - raise ImportError( - "Install grandalf to draw graphs: `pip install grandalf`." - ) from exc + msg = "Install grandalf to draw graphs: `pip install grandalf`." + raise ImportError(msg) from exc # # Just a reminder about naming conventions: @@ -245,27 +236,27 @@ def draw_ascii(vertices: Mapping[str, str], edges: Sequence[LangEdge]) -> str: # NOTE: coordinates might me negative, so we need to shift # everything to the positive plane before we actually draw it. - Xs = [] - Ys = [] + xlist = [] + ylist = [] sug = _build_sugiyama_layout(vertices, edges) for vertex in sug.g.sV: # NOTE: moving boxes w/2 to the left - Xs.append(vertex.view.xy[0] - vertex.view.w / 2.0) - Xs.append(vertex.view.xy[0] + vertex.view.w / 2.0) - Ys.append(vertex.view.xy[1]) - Ys.append(vertex.view.xy[1] + vertex.view.h) + xlist.append(vertex.view.xy[0] - vertex.view.w / 2.0) + xlist.append(vertex.view.xy[0] + vertex.view.w / 2.0) + ylist.append(vertex.view.xy[1]) + ylist.append(vertex.view.xy[1] + vertex.view.h) for edge in sug.g.sE: for x, y in edge.view._pts: - Xs.append(x) - Ys.append(y) + xlist.append(x) + ylist.append(y) - minx = min(Xs) - miny = min(Ys) - maxx = max(Xs) - maxy = max(Ys) + minx = min(xlist) + miny = min(ylist) + maxx = max(xlist) + maxy = max(ylist) canvas_cols = int(math.ceil(math.ceil(maxx) - math.floor(minx))) + 1 canvas_lines = int(round(maxy - miny)) diff --git a/libs/core/langchain_core/runnables/graph_mermaid.py b/libs/core/langchain_core/runnables/graph_mermaid.py index 1e05a5af610f1..2c8319f027bf0 100644 --- a/libs/core/langchain_core/runnables/graph_mermaid.py +++ b/libs/core/langchain_core/runnables/graph_mermaid.py @@ -1,7 +1,8 @@ +import asyncio import base64 import re from dataclasses import asdict -from typing import Dict, List, Optional +from typing import Optional from langchain_core.runnables.graph import ( CurveStyle, @@ -15,8 +16,8 @@ def draw_mermaid( - nodes: Dict[str, Node], - edges: List[Edge], + nodes: dict[str, Node], + edges: list[Edge], *, first_node: Optional[str] = None, last_node: Optional[str] = None, @@ -87,7 +88,7 @@ def draw_mermaid( mermaid_graph += f"\t{node_label}\n" # Group edges by their common prefixes - edge_groups: Dict[str, List[Edge]] = {} + edge_groups: dict[str, list[Edge]] = {} for edge in edges: src_parts = edge.source.split(":") tgt_parts = edge.target.split(":") @@ -98,17 +99,18 @@ def draw_mermaid( seen_subgraphs = set() - def add_subgraph(edges: List[Edge], prefix: str) -> None: + def add_subgraph(edges: list[Edge], prefix: str) -> None: nonlocal mermaid_graph self_loop = len(edges) == 1 and edges[0].source == edges[0].target if prefix and not self_loop: subgraph = prefix.split(":")[-1] if subgraph in seen_subgraphs: - raise ValueError( + msg = ( f"Found duplicate subgraph '{subgraph}' -- this likely means that " "you're reusing a subgraph node with the same name. " "Please adjust your graph to have subgraph nodes with unique names." ) + raise ValueError(msg) seen_subgraphs.add(subgraph) mermaid_graph += f"\tsubgraph {subgraph}\n" @@ -131,10 +133,7 @@ def add_subgraph(edges: List[Edge], prefix: str) -> None: else: edge_label = f" --  {edge_data}  --> " else: - if edge.conditional: - edge_label = " -.-> " - else: - edge_label = " --> " + edge_label = " -.-> " if edge.conditional else " --> " mermaid_graph += ( f"\t{_escape_node_label(source)}{edge_label}" @@ -142,7 +141,7 @@ def add_subgraph(edges: List[Edge], prefix: str) -> None: ) # Recursively add nested subgraphs - for nested_prefix in edge_groups.keys(): + for nested_prefix in edge_groups: if not nested_prefix.startswith(prefix + ":") or nested_prefix == prefix: continue add_subgraph(edge_groups[nested_prefix], nested_prefix) @@ -154,7 +153,7 @@ def add_subgraph(edges: List[Edge], prefix: str) -> None: add_subgraph(edge_groups.get("", []), "") # Add remaining subgraphs - for prefix in edge_groups.keys(): + for prefix in edge_groups: if ":" in prefix or prefix == "": continue add_subgraph(edge_groups[prefix], prefix) @@ -217,10 +216,11 @@ def draw_mermaid_png( ) else: supported_methods = ", ".join([m.value for m in MermaidDrawMethod]) - raise ValueError( + msg = ( f"Invalid draw method: {draw_method}. " f"Supported draw methods are: {supported_methods}" ) + raise ValueError(msg) return img_bytes @@ -236,9 +236,8 @@ async def _render_mermaid_using_pyppeteer( try: from pyppeteer import launch # type: ignore[import] except ImportError as e: - raise ImportError( - "Install Pyppeteer to use the Pyppeteer method: `pip install pyppeteer`." - ) from e + msg = "Install Pyppeteer to use the Pyppeteer method: `pip install pyppeteer`." + raise ImportError(msg) from e browser = await launch() page = await browser.newPage() @@ -291,9 +290,14 @@ async def _render_mermaid_using_pyppeteer( img_bytes = await page.screenshot({"fullPage": False}) await browser.close() + def write_to_file(path: str, bytes: bytes) -> None: + with open(path, "wb") as file: + file.write(bytes) + if output_file_path is not None: - with open(output_file_path, "wb") as file: - file.write(img_bytes) + await asyncio.get_event_loop().run_in_executor( + None, write_to_file, output_file_path, img_bytes + ) return img_bytes @@ -307,10 +311,11 @@ def _render_mermaid_using_api( try: import requests # type: ignore[import] except ImportError as e: - raise ImportError( + msg = ( "Install the `requests` module to use the Mermaid.INK API: " "`pip install requests`." - ) from e + ) + raise ImportError(msg) from e # Use Mermaid API to render the image mermaid_syntax_encoded = base64.b64encode(mermaid_syntax.encode("utf8")).decode( @@ -335,7 +340,8 @@ def _render_mermaid_using_api( return img_bytes else: - raise ValueError( + msg = ( f"Failed to render the graph using the Mermaid.INK API. " f"Status code: {response.status_code}." ) + raise ValueError(msg) diff --git a/libs/core/langchain_core/runnables/graph_png.py b/libs/core/langchain_core/runnables/graph_png.py index 9cd48b459492c..4ce64ca6c1fc0 100644 --- a/libs/core/langchain_core/runnables/graph_png.py +++ b/libs/core/langchain_core/runnables/graph_png.py @@ -136,9 +136,8 @@ def draw(self, graph: Graph, output_path: Optional[str] = None) -> Optional[byte try: import pygraphviz as pgv # type: ignore[import] except ImportError as exc: - raise ImportError( - "Install pygraphviz to draw graphs: `pip install pygraphviz`." - ) from exc + msg = "Install pygraphviz to draw graphs: `pip install pygraphviz`." + raise ImportError(msg) from exc # Create a directed graph viz = pgv.AGraph(directed=True, nodesep=0.9, ranksep=1.0) diff --git a/libs/core/langchain_core/runnables/history.py b/libs/core/langchain_core/runnables/history.py index e3197bec9000a..3d13da5a66d89 100644 --- a/libs/core/langchain_core/runnables/history.py +++ b/libs/core/langchain_core/runnables/history.py @@ -1,28 +1,29 @@ from __future__ import annotations import inspect +from collections.abc import Sequence +from types import GenericAlias from typing import ( TYPE_CHECKING, Any, Callable, - Dict, - List, Optional, - Sequence, - Type, Union, ) +from pydantic import BaseModel +from typing_extensions import override + from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.load.load import load -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables.base import Runnable, RunnableBindingBase, RunnableLambda from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_core.runnables.utils import ( ConfigurableFieldSpec, - create_model, + Output, get_unique_config_specs, ) +from langchain_core.utils.pydantic import create_model_v2 if TYPE_CHECKING: from langchain_core.language_models.base import LanguageModelLike @@ -31,7 +32,7 @@ from langchain_core.tracers.schemas import Run -MessagesOrDictWithMessages = Union[Sequence["BaseMessage"], Dict[str, Any]] +MessagesOrDictWithMessages = Union[Sequence["BaseMessage"], dict[str, Any]] GetSessionHistoryCallable = Callable[..., BaseChatMessageHistory] @@ -96,7 +97,7 @@ class RunnableWithMessageHistory(RunnableBindingBase): from langchain_core.documents import Document from langchain_core.messages import BaseMessage, AIMessage from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_core.runnables import ( RunnableLambda, ConfigurableFieldSpec, @@ -236,7 +237,7 @@ def get_session_history( history_factory_config: Sequence[ConfigurableFieldSpec] @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @@ -361,9 +362,10 @@ async def _call_runnable_async(_input: Any) -> Runnable: history_factory_config=_config_specs, **kwargs, ) + self._history_chain = history_chain @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: """Get the configuration specs for the RunnableWithMessageHistory.""" return get_unique_config_specs( super().config_specs + list(self.history_factory_config) @@ -371,39 +373,76 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: - super_schema = super().get_input_schema(config) - if super_schema.__custom_root_type__ or not super_schema.schema().get( - "properties" - ): - from langchain_core.messages import BaseMessage + ) -> type[BaseModel]: + from langchain_core.messages import BaseMessage - fields: Dict = {} - if self.input_messages_key and self.history_messages_key: - fields[self.input_messages_key] = ( - Union[str, BaseMessage, Sequence[BaseMessage]], - ..., - ) - elif self.input_messages_key: - fields[self.input_messages_key] = (Sequence[BaseMessage], ...) - else: - fields["__root__"] = (Sequence[BaseMessage], ...) - return create_model( # type: ignore[call-overload] - "RunnableWithChatHistoryInput", - **fields, + fields: dict = {} + if self.input_messages_key and self.history_messages_key: + fields[self.input_messages_key] = ( + Union[str, BaseMessage, Sequence[BaseMessage]], + ..., ) + elif self.input_messages_key: + fields[self.input_messages_key] = (Sequence[BaseMessage], ...) else: - return super_schema + return create_model_v2( + "RunnableWithChatHistoryInput", + module_name=self.__class__.__module__, + root=(Sequence[BaseMessage], ...), + ) + return create_model_v2( # type: ignore[call-overload] + "RunnableWithChatHistoryInput", + field_definitions=fields, + module_name=self.__class__.__module__, + ) + + @property + @override + def OutputType(self) -> type[Output]: + output_type = self._history_chain.OutputType + return output_type + + def get_output_schema( + self, config: Optional[RunnableConfig] = None + ) -> type[BaseModel]: + """Get a pydantic model that can be used to validate output to the Runnable. + + Runnables that leverage the configurable_fields and configurable_alternatives + methods will have a dynamic output schema that depends on which + configuration the Runnable is invoked with. + + This method allows to get an output schema for a specific configuration. + + Args: + config: A config to use when generating the schema. + + Returns: + A pydantic model that can be used to validate output. + """ + root_type = self.OutputType + + if ( + inspect.isclass(root_type) + and not isinstance(root_type, GenericAlias) + and issubclass(root_type, BaseModel) + ): + return root_type + + return create_model_v2( + "RunnableWithChatHistoryOutput", + root=root_type, + module_name=self.__class__.__module__, + ) - def _is_not_async(self, *args: Sequence[Any], **kwargs: Dict[str, Any]) -> bool: + def _is_not_async(self, *args: Sequence[Any], **kwargs: dict[str, Any]) -> bool: return False - async def _is_async(self, *args: Sequence[Any], **kwargs: Dict[str, Any]) -> bool: + async def _is_async(self, *args: Sequence[Any], **kwargs: dict[str, Any]) -> bool: return True def _get_input_messages( self, input_val: Union[str, BaseMessage, Sequence[BaseMessage], dict] - ) -> List[BaseMessage]: + ) -> list[BaseMessage]: from langchain_core.messages import BaseMessage # If dictionary, try to pluck the single key representing messages @@ -433,20 +472,20 @@ def _get_input_messages( # This occurs for chat models - since we batch inputs if isinstance(input_val[0], list): if len(input_val) != 1: - raise ValueError( - f"Expected a single list of messages. Got {input_val}." - ) + msg = f"Expected a single list of messages. Got {input_val}." + raise ValueError(msg) return input_val[0] return list(input_val) else: - raise ValueError( + msg = ( f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " f"Got {input_val}." ) + raise ValueError(msg) def _get_output_messages( self, output_val: Union[str, BaseMessage, Sequence[BaseMessage], dict] - ) -> List[BaseMessage]: + ) -> list[BaseMessage]: from langchain_core.messages import BaseMessage # If dictionary, try to pluck the single key representing messages @@ -474,12 +513,13 @@ def _get_output_messages( elif isinstance(output_val, (list, tuple)): return list(output_val) else: - raise ValueError( + msg = ( f"Expected str, BaseMessage, List[BaseMessage], or Tuple[BaseMessage]. " f"Got {output_val}." ) + raise ValueError(msg) - def _enter_history(self, input: Any, config: RunnableConfig) -> List[BaseMessage]: + def _enter_history(self, input: Any, config: RunnableConfig) -> list[BaseMessage]: hist: BaseChatMessageHistory = config["configurable"]["message_history"] messages = hist.messages.copy() @@ -492,8 +532,8 @@ def _enter_history(self, input: Any, config: RunnableConfig) -> List[BaseMessage return messages async def _aenter_history( - self, input: Dict[str, Any], config: RunnableConfig - ) -> List[BaseMessage]: + self, input: dict[str, Any], config: RunnableConfig + ) -> list[BaseMessage]: hist: BaseChatMessageHistory = config["configurable"]["message_history"] messages = (await hist.aget_messages()).copy() @@ -554,12 +594,13 @@ def _merge_configs(self, *configs: Optional[RunnableConfig]) -> RunnableConfig: missing_key: "[your-value-here]" for missing_key in missing_keys } example_config = {"configurable": example_configurable} - raise ValueError( + msg = ( f"Missing keys {sorted(missing_keys)} in config['configurable'] " f"Expected keys are {sorted(expected_keys)}." f"When using via .invoke() or .stream(), pass in a config; " f"e.g., chain.invoke({example_input}, {example_config})" ) + raise ValueError(msg) if len(expected_keys) == 1: if parameter_names: @@ -574,10 +615,11 @@ def _merge_configs(self, *configs: Optional[RunnableConfig]) -> RunnableConfig: else: # otherwise verify that names of keys patch and invoke by named arguments if set(expected_keys) != set(parameter_names): - raise ValueError( + msg = ( f"Expected keys {sorted(expected_keys)} do not match parameter " f"names {sorted(parameter_names)} of get_session_history." ) + raise ValueError(msg) message_history = self.get_session_history( **{key: configurable[key] for key in expected_keys} @@ -586,7 +628,7 @@ def _merge_configs(self, *configs: Optional[RunnableConfig]) -> RunnableConfig: return config -def _get_parameter_names(callable_: GetSessionHistoryCallable) -> List[str]: +def _get_parameter_names(callable_: GetSessionHistoryCallable) -> list[str]: """Get the parameter names of the callable.""" sig = inspect.signature(callable_) return list(sig.parameters.keys()) diff --git a/libs/core/langchain_core/runnables/passthrough.py b/libs/core/langchain_core/runnables/passthrough.py index d486c60412169..7e7fa7b45bdf0 100644 --- a/libs/core/langchain_core/runnables/passthrough.py +++ b/libs/core/langchain_core/runnables/passthrough.py @@ -5,23 +5,19 @@ import asyncio import inspect import threading +from collections.abc import AsyncIterator, Awaitable, Iterator, Mapping from typing import ( TYPE_CHECKING, Any, - AsyncIterator, - Awaitable, Callable, - Dict, - Iterator, - List, - Mapping, Optional, - Type, Union, cast, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, RootModel +from typing_extensions import override + from langchain_core.runnables.base import ( Other, Runnable, @@ -40,10 +36,10 @@ from langchain_core.runnables.utils import ( AddableDict, ConfigurableFieldSpec, - create_model, ) from langchain_core.utils.aiter import atee, py_anext from langchain_core.utils.iter import safetee +from langchain_core.utils.pydantic import create_model_v2 if TYPE_CHECKING: from langchain_core.callbacks.manager import ( @@ -143,7 +139,7 @@ def fake_llm(prompt: str) -> str: # Fake LLM for the example # {'llm1': 'completion', 'llm2': 'completion', 'total_chars': 20} """ - input_type: Optional[Type[Other]] = None + input_type: Optional[type[Other]] = None func: Optional[ Union[Callable[[Other], None], Callable[[Other, RunnableConfig], None]] @@ -179,7 +175,7 @@ def __init__( ] ] = None, *, - input_type: Optional[Type[Other]] = None, + input_type: Optional[type[Other]] = None, **kwargs: Any, ) -> None: if inspect.iscoroutinefunction(func): @@ -193,15 +189,17 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property + @override def InputType(self) -> Any: return self.input_type or Any @property + @override def OutputType(self) -> Any: return self.input_type or Any @@ -209,11 +207,11 @@ def OutputType(self) -> Any: def assign( cls, **kwargs: Union[ - Runnable[Dict[str, Any], Any], - Callable[[Dict[str, Any]], Any], + Runnable[dict[str, Any], Any], + Callable[[dict[str, Any]], Any], Mapping[ str, - Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]], + Union[Runnable[dict[str, Any], Any], Callable[[dict[str, Any]], Any]], ], ], ) -> RunnableAssign: @@ -227,7 +225,7 @@ def assign( A Runnable that merges the Dict input with the output produced by the mapping argument. """ - return RunnableAssign(RunnableParallel(kwargs)) + return RunnableAssign(RunnableParallel[dict[str, Any]](kwargs)) def invoke( self, input: Other, config: Optional[RunnableConfig] = None, **kwargs: Any @@ -350,7 +348,7 @@ async def input_aiter() -> AsyncIterator[Other]: _graph_passthrough: RunnablePassthrough = RunnablePassthrough() -class RunnableAssign(RunnableSerializable[Dict[str, Any], Dict[str, Any]]): +class RunnableAssign(RunnableSerializable[dict[str, Any], dict[str, Any]]): """Runnable that assigns key-value pairs to Dict[str, Any] inputs. The `RunnableAssign` class takes input dictionaries and, through a @@ -391,9 +389,9 @@ def add_ten(x: Dict[str, int]) -> Dict[str, int]: # returns {'input': 5, 'add_step': {'added': 15}} """ - mapper: RunnableParallel[Dict[str, Any]] + mapper: RunnableParallel - def __init__(self, mapper: RunnableParallel[Dict[str, Any]], **kwargs: Any) -> None: + def __init__(self, mapper: RunnableParallel[dict[str, Any]], **kwargs: Any) -> None: super().__init__(mapper=mapper, **kwargs) # type: ignore[call-arg] @classmethod @@ -401,7 +399,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @@ -417,9 +415,9 @@ def get_name( def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: map_input_schema = self.mapper.get_input_schema(config) - if not map_input_schema.__custom_root_type__: + if not issubclass(map_input_schema, RootModel): # ie. it's a dict return map_input_schema @@ -427,23 +425,24 @@ def get_input_schema( def get_output_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: map_input_schema = self.mapper.get_input_schema(config) map_output_schema = self.mapper.get_output_schema(config) - if ( - not map_input_schema.__custom_root_type__ - and not map_output_schema.__custom_root_type__ + if not issubclass(map_input_schema, RootModel) and not issubclass( + map_output_schema, RootModel ): - # ie. both are dicts - return create_model( # type: ignore[call-overload] - "RunnableAssignOutput", - **{ - k: (v.type_, v.default) - for s in (map_input_schema, map_output_schema) - for k, v in s.__fields__.items() - }, + fields = {} + + for name, field_info in map_input_schema.model_fields.items(): + fields[name] = (field_info.annotation, field_info.default) + + for name, field_info in map_output_schema.model_fields.items(): + fields[name] = (field_info.annotation, field_info.default) + + return create_model_v2( # type: ignore[call-overload] + "RunnableAssignOutput", field_definitions=fields ) - elif not map_output_schema.__custom_root_type__: + elif not issubclass(map_output_schema, RootModel): # ie. only map output is a dict # ie. input type is either unknown or inferred incorrectly return map_output_schema @@ -451,7 +450,7 @@ def get_output_schema( return super().get_output_schema(config) @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: return self.mapper.config_specs def get_graph(self, config: RunnableConfig | None = None) -> Graph: @@ -468,11 +467,11 @@ def get_graph(self, config: RunnableConfig | None = None) -> Graph: def _invoke( self, - input: Dict[str, Any], + input: dict[str, Any], run_manager: CallbackManagerForChainRun, config: RunnableConfig, **kwargs: Any, - ) -> Dict[str, Any]: + ) -> dict[str, Any]: assert isinstance( input, dict ), "The input to RunnablePassthrough.assign() must be a dict." @@ -488,19 +487,19 @@ def _invoke( def invoke( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Dict[str, Any]: + ) -> dict[str, Any]: return self._call_with_config(self._invoke, input, config, **kwargs) async def _ainvoke( self, - input: Dict[str, Any], + input: dict[str, Any], run_manager: AsyncCallbackManagerForChainRun, config: RunnableConfig, **kwargs: Any, - ) -> Dict[str, Any]: + ) -> dict[str, Any]: assert isinstance( input, dict ), "The input to RunnablePassthrough.assign() must be a dict." @@ -516,19 +515,19 @@ async def _ainvoke( async def ainvoke( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Dict[str, Any]: + ) -> dict[str, Any]: return await self._acall_with_config(self._ainvoke, input, config, **kwargs) def _transform( self, - input: Iterator[Dict[str, Any]], + input: Iterator[dict[str, Any]], run_manager: CallbackManagerForChainRun, config: RunnableConfig, **kwargs: Any, - ) -> Iterator[Dict[str, Any]]: + ) -> Iterator[dict[str, Any]]: # collect mapper keys mapper_keys = set(self.mapper.steps__.keys()) # create two streams, one for the map and one for the passthrough @@ -564,27 +563,27 @@ def _transform( if filtered: yield filtered # yield map output - yield cast(Dict[str, Any], first_map_chunk_future.result()) + yield cast(dict[str, Any], first_map_chunk_future.result()) for chunk in map_output: yield chunk def transform( self, - input: Iterator[Dict[str, Any]], + input: Iterator[dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any | None, - ) -> Iterator[Dict[str, Any]]: + ) -> Iterator[dict[str, Any]]: yield from self._transform_stream_with_config( input, self._transform, config, **kwargs ) async def _atransform( self, - input: AsyncIterator[Dict[str, Any]], + input: AsyncIterator[dict[str, Any]], run_manager: AsyncCallbackManagerForChainRun, config: RunnableConfig, **kwargs: Any, - ) -> AsyncIterator[Dict[str, Any]]: + ) -> AsyncIterator[dict[str, Any]]: # collect mapper keys mapper_keys = set(self.mapper.steps__.keys()) # create two streams, one for the map and one for the passthrough @@ -620,10 +619,10 @@ async def _atransform( async def atransform( self, - input: AsyncIterator[Dict[str, Any]], + input: AsyncIterator[dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> AsyncIterator[Dict[str, Any]]: + ) -> AsyncIterator[dict[str, Any]]: async for chunk in self._atransform_stream_with_config( input, self._atransform, config, **kwargs ): @@ -631,26 +630,26 @@ async def atransform( def stream( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Iterator[Dict[str, Any]]: + ) -> Iterator[dict[str, Any]]: return self.transform(iter([input]), config, **kwargs) async def astream( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> AsyncIterator[Dict[str, Any]]: - async def input_aiter() -> AsyncIterator[Dict[str, Any]]: + ) -> AsyncIterator[dict[str, Any]]: + async def input_aiter() -> AsyncIterator[dict[str, Any]]: yield input async for chunk in self.atransform(input_aiter(), config, **kwargs): yield chunk -class RunnablePick(RunnableSerializable[Dict[str, Any], Dict[str, Any]]): +class RunnablePick(RunnableSerializable[dict[str, Any], dict[str, Any]]): """Runnable that picks keys from Dict[str, Any] inputs. RunnablePick class represents a Runnable that selectively picks keys from a @@ -681,9 +680,9 @@ class RunnablePick(RunnableSerializable[Dict[str, Any], Dict[str, Any]]): print(output_data) # Output: {'name': 'John', 'age': 30} """ - keys: Union[str, List[str]] + keys: Union[str, list[str]] - def __init__(self, keys: Union[str, List[str]], **kwargs: Any) -> None: + def __init__(self, keys: Union[str, list[str]], **kwargs: Any) -> None: super().__init__(keys=keys, **kwargs) # type: ignore[call-arg] @classmethod @@ -691,7 +690,7 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @@ -705,7 +704,7 @@ def get_name( ) return super().get_name(suffix, name=name) - def _pick(self, input: Dict[str, Any]) -> Any: + def _pick(self, input: dict[str, Any]) -> Any: assert isinstance( input, dict ), "The input to RunnablePassthrough.assign() must be a dict." @@ -721,36 +720,36 @@ def _pick(self, input: Dict[str, Any]) -> Any: def _invoke( self, - input: Dict[str, Any], - ) -> Dict[str, Any]: + input: dict[str, Any], + ) -> dict[str, Any]: return self._pick(input) def invoke( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Dict[str, Any]: + ) -> dict[str, Any]: return self._call_with_config(self._invoke, input, config, **kwargs) async def _ainvoke( self, - input: Dict[str, Any], - ) -> Dict[str, Any]: + input: dict[str, Any], + ) -> dict[str, Any]: return self._pick(input) async def ainvoke( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Dict[str, Any]: + ) -> dict[str, Any]: return await self._acall_with_config(self._ainvoke, input, config, **kwargs) def _transform( self, - input: Iterator[Dict[str, Any]], - ) -> Iterator[Dict[str, Any]]: + input: Iterator[dict[str, Any]], + ) -> Iterator[dict[str, Any]]: for chunk in input: picked = self._pick(chunk) if picked is not None: @@ -758,18 +757,18 @@ def _transform( def transform( self, - input: Iterator[Dict[str, Any]], + input: Iterator[dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Iterator[Dict[str, Any]]: + ) -> Iterator[dict[str, Any]]: yield from self._transform_stream_with_config( input, self._transform, config, **kwargs ) async def _atransform( self, - input: AsyncIterator[Dict[str, Any]], - ) -> AsyncIterator[Dict[str, Any]]: + input: AsyncIterator[dict[str, Any]], + ) -> AsyncIterator[dict[str, Any]]: async for chunk in input: picked = self._pick(chunk) if picked is not None: @@ -777,10 +776,10 @@ async def _atransform( async def atransform( self, - input: AsyncIterator[Dict[str, Any]], + input: AsyncIterator[dict[str, Any]], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> AsyncIterator[Dict[str, Any]]: + ) -> AsyncIterator[dict[str, Any]]: async for chunk in self._atransform_stream_with_config( input, self._atransform, config, **kwargs ): @@ -788,19 +787,19 @@ async def atransform( def stream( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> Iterator[Dict[str, Any]]: + ) -> Iterator[dict[str, Any]]: return self.transform(iter([input]), config, **kwargs) async def astream( self, - input: Dict[str, Any], + input: dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any, - ) -> AsyncIterator[Dict[str, Any]]: - async def input_aiter() -> AsyncIterator[Dict[str, Any]]: + ) -> AsyncIterator[dict[str, Any]]: + async def input_aiter() -> AsyncIterator[dict[str, Any]]: yield input async for chunk in self.atransform(input_aiter(), config, **kwargs): diff --git a/libs/core/langchain_core/runnables/retry.py b/libs/core/langchain_core/runnables/retry.py index 4c4e1970ca579..0469dd961b47a 100644 --- a/libs/core/langchain_core/runnables/retry.py +++ b/libs/core/langchain_core/runnables/retry.py @@ -1,11 +1,7 @@ from typing import ( TYPE_CHECKING, Any, - Dict, - List, Optional, - Tuple, - Type, TypeVar, Union, cast, @@ -98,12 +94,12 @@ def foo(input) -> None: retryable_chain = chain.with_retry() """ - retry_exception_types: Tuple[Type[BaseException], ...] = (Exception,) + retry_exception_types: tuple[type[BaseException], ...] = (Exception,) """The exception types to retry on. By default all exceptions are retried. - + In general you should only retry on exceptions that are likely to be transient, such as network errors. - + Good exceptions to retry are all server errors (5xx) and selected client errors (4xx) such as 429 Too Many Requests. """ @@ -115,13 +111,13 @@ def foo(input) -> None: """The maximum number of attempts to retry the Runnable.""" @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property - def _kwargs_retrying(self) -> Dict[str, Any]: - kwargs: Dict[str, Any] = dict() + def _kwargs_retrying(self) -> dict[str, Any]: + kwargs: dict[str, Any] = {} if self.max_attempt_number: kwargs["stop"] = stop_after_attempt(self.max_attempt_number) @@ -152,10 +148,10 @@ def _patch_config( def _patch_config_list( self, - config: List[RunnableConfig], - run_manager: List["T"], + config: list[RunnableConfig], + run_manager: list["T"], retry_state: RetryCallState, - ) -> List[RunnableConfig]: + ) -> list[RunnableConfig]: return [ self._patch_config(c, rm, retry_state) for c, rm in zip(config, run_manager) ] @@ -208,17 +204,17 @@ async def ainvoke( def _batch( self, - inputs: List[Input], - run_manager: List["CallbackManagerForChainRun"], - config: List[RunnableConfig], + inputs: list[Input], + run_manager: list["CallbackManagerForChainRun"], + config: list[RunnableConfig], **kwargs: Any, - ) -> List[Union[Output, Exception]]: - results_map: Dict[int, Output] = {} + ) -> list[Union[Output, Exception]]: + results_map: dict[int, Output] = {} - def pending(iterable: List[U]) -> List[U]: + def pending(iterable: list[U]) -> list[U]: return [item for idx, item in enumerate(iterable) if idx not in results_map] - not_set: List[Output] = [] + not_set: list[Output] = [] result = not_set try: for attempt in self._sync_retrying(): @@ -250,9 +246,9 @@ def pending(iterable: List[U]) -> List[U]: attempt.retry_state.set_result(result) except RetryError as e: if result is not_set: - result = cast(List[Output], [e] * len(inputs)) + result = cast(list[Output], [e] * len(inputs)) - outputs: List[Union[Output, Exception]] = [] + outputs: list[Union[Output, Exception]] = [] for idx, _ in enumerate(inputs): if idx in results_map: outputs.append(results_map[idx]) @@ -262,29 +258,29 @@ def pending(iterable: List[U]) -> List[U]: def batch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, - ) -> List[Output]: + ) -> list[Output]: return self._batch_with_config( self._batch, inputs, config, return_exceptions=return_exceptions, **kwargs ) async def _abatch( self, - inputs: List[Input], - run_manager: List["AsyncCallbackManagerForChainRun"], - config: List[RunnableConfig], + inputs: list[Input], + run_manager: list["AsyncCallbackManagerForChainRun"], + config: list[RunnableConfig], **kwargs: Any, - ) -> List[Union[Output, Exception]]: - results_map: Dict[int, Output] = {} + ) -> list[Union[Output, Exception]]: + results_map: dict[int, Output] = {} - def pending(iterable: List[U]) -> List[U]: + def pending(iterable: list[U]) -> list[U]: return [item for idx, item in enumerate(iterable) if idx not in results_map] - not_set: List[Output] = [] + not_set: list[Output] = [] result = not_set try: async for attempt in self._async_retrying(): @@ -316,9 +312,9 @@ def pending(iterable: List[U]) -> List[U]: attempt.retry_state.set_result(result) except RetryError as e: if result is not_set: - result = cast(List[Output], [e] * len(inputs)) + result = cast(list[Output], [e] * len(inputs)) - outputs: List[Union[Output, Exception]] = [] + outputs: list[Union[Output, Exception]] = [] for idx, _ in enumerate(inputs): if idx in results_map: outputs.append(results_map[idx]) @@ -328,12 +324,12 @@ def pending(iterable: List[U]) -> List[U]: async def abatch( self, - inputs: List[Input], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[Input], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, - ) -> List[Output]: + ) -> list[Output]: return await self._abatch_with_config( self._abatch, inputs, config, return_exceptions=return_exceptions, **kwargs ) diff --git a/libs/core/langchain_core/runnables/router.py b/libs/core/langchain_core/runnables/router.py index 0e1224f079263..8d353648cd928 100644 --- a/libs/core/langchain_core/runnables/router.py +++ b/libs/core/langchain_core/runnables/router.py @@ -1,17 +1,15 @@ from __future__ import annotations +from collections.abc import AsyncIterator, Iterator, Mapping from typing import ( Any, - AsyncIterator, Callable, - Iterator, - List, - Mapping, Optional, Union, cast, ) +from pydantic import ConfigDict from typing_extensions import TypedDict from langchain_core.runnables.base import ( @@ -70,7 +68,7 @@ class RouterRunnable(RunnableSerializable[RouterInput, Output]): runnables: Mapping[str, Runnable[Any, Output]] @property - def config_specs(self) -> List[ConfigurableFieldSpec]: + def config_specs(self) -> list[ConfigurableFieldSpec]: return get_unique_config_specs( spec for step in self.runnables.values() for spec in step.config_specs ) @@ -83,8 +81,9 @@ def __init__( runnables={key: coerce_to_runnable(r) for key, r in runnables.items()} ) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @classmethod def is_lc_serializable(cls) -> bool: @@ -92,17 +91,18 @@ def is_lc_serializable(cls) -> bool: return True @classmethod - def get_lc_namespace(cls) -> List[str]: + def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] def invoke( - self, input: RouterInput, config: Optional[RunnableConfig] = None + self, input: RouterInput, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: key = input["key"] actual_input = input["input"] if key not in self.runnables: - raise ValueError(f"No runnable associated with key '{key}'") + msg = f"No runnable associated with key '{key}'" + raise ValueError(msg) runnable = self.runnables[key] return runnable.invoke(actual_input, config) @@ -116,26 +116,28 @@ async def ainvoke( key = input["key"] actual_input = input["input"] if key not in self.runnables: - raise ValueError(f"No runnable associated with key '{key}'") + msg = f"No runnable associated with key '{key}'" + raise ValueError(msg) runnable = self.runnables[key] return await runnable.ainvoke(actual_input, config) def batch( self, - inputs: List[RouterInput], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[RouterInput], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: if not inputs: return [] keys = [input["key"] for input in inputs] actual_inputs = [input["input"] for input in inputs] if any(key not in self.runnables for key in keys): - raise ValueError("One or more keys do not have a corresponding runnable") + msg = "One or more keys do not have a corresponding runnable" + raise ValueError(msg) def invoke( runnable: Runnable, input: Input, config: RunnableConfig @@ -152,25 +154,26 @@ def invoke( configs = get_config_list(config, len(inputs)) with get_executor_for_config(configs[0]) as executor: return cast( - List[Output], + list[Output], list(executor.map(invoke, runnables, actual_inputs, configs)), ) async def abatch( self, - inputs: List[RouterInput], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[RouterInput], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], - ) -> List[Output]: + ) -> list[Output]: if not inputs: return [] keys = [input["key"] for input in inputs] actual_inputs = [input["input"] for input in inputs] if any(key not in self.runnables for key in keys): - raise ValueError("One or more keys do not have a corresponding runnable") + msg = "One or more keys do not have a corresponding runnable" + raise ValueError(msg) async def ainvoke( runnable: Runnable, input: Input, config: RunnableConfig @@ -202,7 +205,8 @@ def stream( key = input["key"] actual_input = input["input"] if key not in self.runnables: - raise ValueError(f"No runnable associated with key '{key}'") + msg = f"No runnable associated with key '{key}'" + raise ValueError(msg) runnable = self.runnables[key] yield from runnable.stream(actual_input, config) @@ -216,7 +220,8 @@ async def astream( key = input["key"] actual_input = input["input"] if key not in self.runnables: - raise ValueError(f"No runnable associated with key '{key}'") + msg = f"No runnable associated with key '{key}'" + raise ValueError(msg) runnable = self.runnables[key] async for output in runnable.astream(actual_input, config): diff --git a/libs/core/langchain_core/runnables/schema.py b/libs/core/langchain_core/runnables/schema.py index c5ea213a6a2e4..dcfd32b8b39d8 100644 --- a/libs/core/langchain_core/runnables/schema.py +++ b/libs/core/langchain_core/runnables/schema.py @@ -2,7 +2,8 @@ from __future__ import annotations -from typing import Any, Dict, List, Literal, Sequence, Union +from collections.abc import Sequence +from typing import Any, Literal, Union from typing_extensions import NotRequired, TypedDict @@ -12,26 +13,26 @@ class EventData(TypedDict, total=False): input: Any """The input passed to the Runnable that generated the event. - - Inputs will sometimes be available at the *START* of the Runnable, and + + Inputs will sometimes be available at the *START* of the Runnable, and sometimes at the *END* of the Runnable. - + If a Runnable is able to stream its inputs, then its input by definition won't be known until the *END* of the Runnable when it has finished streaming its inputs. """ output: Any """The output of the Runnable that generated the event. - + Outputs will only be available at the *END* of the Runnable. - + For most Runnables, this field can be inferred from the `chunk` field, though there might be some exceptions for special cased Runnables (e.g., like chat models), which may return more information. """ chunk: Any """A streaming chunk from the output that generated the event. - + chunks support addition in general, and adding them up should result in the output of the Runnable that generated the event. """ @@ -84,49 +85,49 @@ async def reverse(s: str) -> str: event: str """Event names are of the format: on_[runnable_type]_(start|stream|end). - + Runnable types are one of: - + - **llm** - used by non chat models - **chat_model** - used by chat models - **prompt** -- e.g., ChatPromptTemplate - **tool** -- from tools defined via @tool decorator or inheriting from Tool/BaseTool - **chain** - most Runnables are of this type - + Further, the events are categorized as one of: - + - **start** - when the Runnable starts - **stream** - when the Runnable is streaming - **end* - when the Runnable ends - + start, stream and end are associated with slightly different `data` payload. - + Please see the documentation for `EventData` for more details. """ run_id: str """An randomly generated ID to keep track of the execution of the given Runnable. - + Each child Runnable that gets invoked as part of the execution of a parent Runnable is assigned its own unique ID. """ - tags: NotRequired[List[str]] + tags: NotRequired[list[str]] """Tags associated with the Runnable that generated this event. - + Tags are always inherited from parent Runnables. - + Tags can either be bound to a Runnable using `.with_config({"tags": ["hello"]})` or passed at run time using `.astream_events(..., {"tags": ["hello"]})`. """ - metadata: NotRequired[Dict[str, Any]] + metadata: NotRequired[dict[str, Any]] """Metadata associated with the Runnable that generated this event. - - Metadata can either be bound to a Runnable using - + + Metadata can either be bound to a Runnable using + `.with_config({"metadata": { "foo": "bar" }})` - - or passed at run time using - + + or passed at run time using + `.astream_events(..., {"metadata": {"foo": "bar"}})`. """ @@ -135,11 +136,11 @@ async def reverse(s: str) -> str: Root Events will have an empty list. - For example, if a Runnable A calls Runnable B, then the event generated by Runnable + For example, if a Runnable A calls Runnable B, then the event generated by Runnable B will have Runnable A's ID in the parent_ids field. The order of the parent IDs is from the root parent to the immediate parent. - + Only supported as of v2 of the astream events API. v1 will return an empty list. """ diff --git a/libs/core/langchain_core/runnables/utils.py b/libs/core/langchain_core/runnables/utils.py index 712ba0372ebe0..06168a176d0a3 100644 --- a/libs/core/langchain_core/runnables/utils.py +++ b/libs/core/langchain_core/runnables/utils.py @@ -6,36 +6,35 @@ import asyncio import inspect import textwrap -from functools import lru_cache -from inspect import signature -from itertools import groupby -from typing import ( - Any, +from collections.abc import ( AsyncIterable, AsyncIterator, Awaitable, - Callable, Coroutine, - Dict, Iterable, - List, Mapping, + Sequence, +) +from functools import lru_cache +from inspect import signature +from itertools import groupby +from typing import ( + Any, + Callable, NamedTuple, Optional, Protocol, - Sequence, - Set, - Type, TypeVar, Union, ) -from typing_extensions import TypeGuard +from typing_extensions import TypeGuard, override -from langchain_core.pydantic_v1 import BaseConfig, BaseModel -from langchain_core.pydantic_v1 import create_model as _create_model_base from langchain_core.runnables.schema import StreamEvent +# Re-export create-model for backwards compatibility +from langchain_core.utils.pydantic import create_model as create_model + Input = TypeVar("Input", contravariant=True) # Output type should implement __concat__, as eg str, list, dict do Output = TypeVar("Output", covariant=True) @@ -126,7 +125,7 @@ def asyncio_accepts_context() -> bool: class IsLocalDict(ast.NodeVisitor): """Check if a name is a local dict.""" - def __init__(self, name: str, keys: Set[str]) -> None: + def __init__(self, name: str, keys: set[str]) -> None: """Initialize the visitor. Args: @@ -136,6 +135,7 @@ def __init__(self, name: str, keys: Set[str]) -> None: self.name = name self.keys = keys + @override def visit_Subscript(self, node: ast.Subscript) -> Any: """Visit a subscript node. @@ -155,6 +155,7 @@ def visit_Subscript(self, node: ast.Subscript) -> Any: # we've found a subscript access on the name we're looking for self.keys.add(node.slice.value) + @override def visit_Call(self, node: ast.Call) -> Any: """Visit a call node. @@ -181,8 +182,9 @@ class IsFunctionArgDict(ast.NodeVisitor): """Check if the first argument of a function is a dict.""" def __init__(self) -> None: - self.keys: Set[str] = set() + self.keys: set[str] = set() + @override def visit_Lambda(self, node: ast.Lambda) -> Any: """Visit a lambda function. @@ -197,6 +199,7 @@ def visit_Lambda(self, node: ast.Lambda) -> Any: input_arg_name = node.args.args[0].arg IsLocalDict(input_arg_name, self.keys).visit(node.body) + @override def visit_FunctionDef(self, node: ast.FunctionDef) -> Any: """Visit a function definition. @@ -211,6 +214,7 @@ def visit_FunctionDef(self, node: ast.FunctionDef) -> Any: input_arg_name = node.args.args[0].arg IsLocalDict(input_arg_name, self.keys).visit(node) + @override def visit_AsyncFunctionDef(self, node: ast.AsyncFunctionDef) -> Any: """Visit an async function definition. @@ -230,9 +234,10 @@ class NonLocals(ast.NodeVisitor): """Get nonlocal variables accessed.""" def __init__(self) -> None: - self.loads: Set[str] = set() - self.stores: Set[str] = set() + self.loads: set[str] = set() + self.stores: set[str] = set() + @override def visit_Name(self, node: ast.Name) -> Any: """Visit a name node. @@ -247,6 +252,7 @@ def visit_Name(self, node: ast.Name) -> Any: elif isinstance(node.ctx, ast.Store): self.stores.add(node.id) + @override def visit_Attribute(self, node: ast.Attribute) -> Any: """Visit an attribute node. @@ -271,8 +277,9 @@ class FunctionNonLocals(ast.NodeVisitor): """Get the nonlocal variables accessed of a function.""" def __init__(self) -> None: - self.nonlocals: Set[str] = set() + self.nonlocals: set[str] = set() + @override def visit_FunctionDef(self, node: ast.FunctionDef) -> Any: """Visit a function definition. @@ -286,6 +293,7 @@ def visit_FunctionDef(self, node: ast.FunctionDef) -> Any: visitor.visit(node) self.nonlocals.update(visitor.loads - visitor.stores) + @override def visit_AsyncFunctionDef(self, node: ast.AsyncFunctionDef) -> Any: """Visit an async function definition. @@ -299,6 +307,7 @@ def visit_AsyncFunctionDef(self, node: ast.AsyncFunctionDef) -> Any: visitor.visit(node) self.nonlocals.update(visitor.loads - visitor.stores) + @override def visit_Lambda(self, node: ast.Lambda) -> Any: """Visit a lambda function. @@ -321,6 +330,7 @@ def __init__(self) -> None: self.source: Optional[str] = None self.count = 0 + @override def visit_Lambda(self, node: ast.Lambda) -> Any: """Visit a lambda function. @@ -335,7 +345,7 @@ def visit_Lambda(self, node: ast.Lambda) -> Any: self.source = ast.unparse(node) -def get_function_first_arg_dict_keys(func: Callable) -> Optional[List[str]]: +def get_function_first_arg_dict_keys(func: Callable) -> Optional[list[str]]: """Get the keys of the first argument of a function if it is a dict. Args: @@ -350,7 +360,7 @@ def get_function_first_arg_dict_keys(func: Callable) -> Optional[List[str]]: tree = ast.parse(textwrap.dedent(code)) visitor = IsFunctionArgDict() visitor.visit(tree) - return list(visitor.keys) if visitor.keys else None + return sorted(visitor.keys) if visitor.keys else None except (SyntaxError, TypeError, OSError, SystemError): return None @@ -378,7 +388,7 @@ def get_lambda_source(func: Callable) -> Optional[str]: return name -def get_function_nonlocals(func: Callable) -> List[Any]: +def get_function_nonlocals(func: Callable) -> list[Any]: """Get the nonlocal variables accessed by a function. Args: @@ -392,7 +402,7 @@ def get_function_nonlocals(func: Callable) -> List[Any]: tree = ast.parse(textwrap.dedent(code)) visitor = FunctionNonLocals() visitor.visit(tree) - values: List[Any] = [] + values: list[Any] = [] closure = inspect.getclosurevars(func) candidates = {**closure.globals, **closure.nonlocals} for k, v in candidates.items(): @@ -432,7 +442,7 @@ def indent_lines_after_first(text: str, prefix: str) -> str: return "\n".join([lines[0]] + [spaces + line for line in lines[1:]]) -class AddableDict(Dict[str, Any]): +class AddableDict(dict[str, Any]): """ Dictionary that can be added to another dictionary. """ @@ -486,12 +496,9 @@ def add(addables: Iterable[Addable]) -> Optional[Addable]: Returns: Optional[Addable]: The result of adding the addable objects. """ - final = None + final: Optional[Addable] = None for chunk in addables: - if final is None: - final = chunk - else: - final = final + chunk + final = chunk if final is None else final + chunk return final @@ -504,12 +511,9 @@ async def aadd(addables: AsyncIterable[Addable]) -> Optional[Addable]: Returns: Optional[Addable]: The result of adding the addable objects. """ - final = None + final: Optional[Addable] = None async for chunk in addables: - if final is None: - final = chunk - else: - final = final + chunk + final = chunk if final is None else final + chunk return final @@ -608,12 +612,12 @@ class ConfigurableFieldSpec(NamedTuple): description: Optional[str] = None default: Any = None is_shared: bool = False - dependencies: Optional[List[str]] = None + dependencies: Optional[list[str]] = None def get_unique_config_specs( specs: Iterable[ConfigurableFieldSpec], -) -> List[ConfigurableFieldSpec]: +) -> list[ConfigurableFieldSpec]: """Get the unique config specs from a sequence of config specs. Args: @@ -628,19 +632,18 @@ def get_unique_config_specs( grouped = groupby( sorted(specs, key=lambda s: (s.id, *(s.dependencies or []))), lambda s: s.id ) - unique: List[ConfigurableFieldSpec] = [] + unique: list[ConfigurableFieldSpec] = [] for id, dupes in grouped: first = next(dupes) others = list(dupes) - if len(others) == 0: - unique.append(first) - elif all(o == first for o in others): + if len(others) == 0 or all(o == first for o in others): unique.append(first) else: - raise ValueError( + msg = ( "RunnableSequence contains conflicting config specs" f"for {id}: {[first] + others}" ) + raise ValueError(msg) return unique @@ -699,43 +702,6 @@ def include_event(self, event: StreamEvent, root_type: str) -> bool: return include -class _SchemaConfig(BaseConfig): - arbitrary_types_allowed = True - frozen = True - - -def create_model( - __model_name: str, - **field_definitions: Any, -) -> Type[BaseModel]: - """Create a pydantic model with the given field definitions. - - Args: - __model_name: The name of the model. - **field_definitions: The field definitions for the model. - - Returns: - Type[BaseModel]: The created model. - """ - try: - return _create_model_cached(__model_name, **field_definitions) - except TypeError: - # something in field definitions is not hashable - return _create_model_base( - __model_name, __config__=_SchemaConfig, **field_definitions - ) - - -@lru_cache(maxsize=256) -def _create_model_cached( - __model_name: str, - **field_definitions: Any, -) -> Type[BaseModel]: - return _create_model_base( - __model_name, __config__=_SchemaConfig, **field_definitions - ) - - def is_async_generator( func: Any, ) -> TypeGuard[Callable[..., AsyncIterator]]: diff --git a/libs/core/langchain_core/stores.py b/libs/core/langchain_core/stores.py index 50b077b864251..4de878af61552 100644 --- a/libs/core/langchain_core/stores.py +++ b/libs/core/langchain_core/stores.py @@ -7,16 +7,11 @@ """ from abc import ABC, abstractmethod +from collections.abc import AsyncIterator, Iterator, Sequence from typing import ( Any, - AsyncIterator, - Dict, Generic, - Iterator, - List, Optional, - Sequence, - Tuple, TypeVar, Union, ) @@ -84,7 +79,7 @@ def yield_keys(self, prefix=None): """ @abstractmethod - def mget(self, keys: Sequence[K]) -> List[Optional[V]]: + def mget(self, keys: Sequence[K]) -> list[Optional[V]]: """Get the values associated with the given keys. Args: @@ -95,7 +90,7 @@ def mget(self, keys: Sequence[K]) -> List[Optional[V]]: If a key is not found, the corresponding value will be None. """ - async def amget(self, keys: Sequence[K]) -> List[Optional[V]]: + async def amget(self, keys: Sequence[K]) -> list[Optional[V]]: """Async get the values associated with the given keys. Args: @@ -108,14 +103,14 @@ async def amget(self, keys: Sequence[K]) -> List[Optional[V]]: return await run_in_executor(None, self.mget, keys) @abstractmethod - def mset(self, key_value_pairs: Sequence[Tuple[K, V]]) -> None: + def mset(self, key_value_pairs: Sequence[tuple[K, V]]) -> None: """Set the values for the given keys. Args: key_value_pairs (Sequence[Tuple[K, V]]): A sequence of key-value pairs. """ - async def amset(self, key_value_pairs: Sequence[Tuple[K, V]]) -> None: + async def amset(self, key_value_pairs: Sequence[tuple[K, V]]) -> None: """Async set the values for the given keys. Args: @@ -184,9 +179,9 @@ class InMemoryBaseStore(BaseStore[str, V], Generic[V]): def __init__(self) -> None: """Initialize an empty store.""" - self.store: Dict[str, V] = {} + self.store: dict[str, V] = {} - def mget(self, keys: Sequence[str]) -> List[Optional[V]]: + def mget(self, keys: Sequence[str]) -> list[Optional[V]]: """Get the values associated with the given keys. Args: @@ -198,7 +193,7 @@ def mget(self, keys: Sequence[str]) -> List[Optional[V]]: """ return [self.store.get(key) for key in keys] - async def amget(self, keys: Sequence[str]) -> List[Optional[V]]: + async def amget(self, keys: Sequence[str]) -> list[Optional[V]]: """Async get the values associated with the given keys. Args: @@ -210,7 +205,7 @@ async def amget(self, keys: Sequence[str]) -> List[Optional[V]]: """ return self.mget(keys) - def mset(self, key_value_pairs: Sequence[Tuple[str, V]]) -> None: + def mset(self, key_value_pairs: Sequence[tuple[str, V]]) -> None: """Set the values for the given keys. Args: @@ -222,7 +217,7 @@ def mset(self, key_value_pairs: Sequence[Tuple[str, V]]) -> None: for key, value in key_value_pairs: self.store[key] = value - async def amset(self, key_value_pairs: Sequence[Tuple[str, V]]) -> None: + async def amset(self, key_value_pairs: Sequence[tuple[str, V]]) -> None: """Async set the values for the given keys. Args: @@ -263,7 +258,7 @@ def yield_keys(self, prefix: Optional[str] = None) -> Iterator[str]: if prefix is None: yield from self.store.keys() else: - for key in self.store.keys(): + for key in self.store: if key.startswith(prefix): yield key @@ -277,10 +272,10 @@ async def ayield_keys(self, prefix: Optional[str] = None) -> AsyncIterator[str]: AsyncIterator[str]: An async iterator over keys that match the given prefix. """ if prefix is None: - for key in self.store.keys(): + for key in self.store: yield key else: - for key in self.store.keys(): + for key in self.store: if key.startswith(prefix): yield key diff --git a/libs/core/langchain_core/structured_query.py b/libs/core/langchain_core/structured_query.py index bbbf84f64737c..8aacbfbcc60a6 100644 --- a/libs/core/langchain_core/structured_query.py +++ b/libs/core/langchain_core/structured_query.py @@ -3,10 +3,11 @@ from __future__ import annotations from abc import ABC, abstractmethod +from collections.abc import Sequence from enum import Enum -from typing import Any, List, Optional, Sequence, Union +from typing import Any, Optional, Union -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class Visitor(ABC): @@ -18,18 +19,26 @@ class Visitor(ABC): """Allowed operators for the visitor.""" def _validate_func(self, func: Union[Operator, Comparator]) -> None: - if isinstance(func, Operator) and self.allowed_operators is not None: - if func not in self.allowed_operators: - raise ValueError( - f"Received disallowed operator {func}. Allowed " - f"comparators are {self.allowed_operators}" - ) - if isinstance(func, Comparator) and self.allowed_comparators is not None: - if func not in self.allowed_comparators: - raise ValueError( - f"Received disallowed comparator {func}. Allowed " - f"comparators are {self.allowed_comparators}" - ) + if ( + isinstance(func, Operator) + and self.allowed_operators is not None + and func not in self.allowed_operators + ): + msg = ( + f"Received disallowed operator {func}. Allowed " + f"comparators are {self.allowed_operators}" + ) + raise ValueError(msg) + if ( + isinstance(func, Comparator) + and self.allowed_comparators is not None + and func not in self.allowed_comparators + ): + msg = ( + f"Received disallowed comparator {func}. Allowed " + f"comparators are {self.allowed_comparators}" + ) + raise ValueError(msg) @abstractmethod def visit_operation(self, operation: Operation) -> Any: @@ -127,7 +136,8 @@ class Comparison(FilterDirective): def __init__( self, comparator: Comparator, attribute: str, value: Any, **kwargs: Any ) -> None: - super().__init__( + # super exists from BaseModel + super().__init__( # type: ignore[call-arg] comparator=comparator, attribute=attribute, value=value, **kwargs ) @@ -141,12 +151,15 @@ class Operation(FilterDirective): """ operator: Operator - arguments: List[FilterDirective] + arguments: list[FilterDirective] def __init__( - self, operator: Operator, arguments: List[FilterDirective], **kwargs: Any - ): - super().__init__(operator=operator, arguments=arguments, **kwargs) + self, operator: Operator, arguments: list[FilterDirective], **kwargs: Any + ) -> None: + # super exists from BaseModel + super().__init__( # type: ignore[call-arg] + operator=operator, arguments=arguments, **kwargs + ) class StructuredQuery(Expr): @@ -165,5 +178,8 @@ def __init__( filter: Optional[FilterDirective], limit: Optional[int] = None, **kwargs: Any, - ): - super().__init__(query=query, filter=filter, limit=limit, **kwargs) + ) -> None: + # super exists from BaseModel + super().__init__( # type: ignore[call-arg] + query=query, filter=filter, limit=limit, **kwargs + ) diff --git a/libs/core/langchain_core/sys_info.py b/libs/core/langchain_core/sys_info.py index d612132ba7247..f70df1f631864 100644 --- a/libs/core/langchain_core/sys_info.py +++ b/libs/core/langchain_core/sys_info.py @@ -2,15 +2,15 @@ for debugging purposes. """ -from typing import List, Sequence +from collections.abc import Sequence -def _get_sub_deps(packages: Sequence[str]) -> List[str]: +def _get_sub_deps(packages: Sequence[str]) -> list[str]: """Get any specified sub-dependencies.""" from importlib import metadata sub_deps = set() - _underscored_packages = set(pkg.replace("-", "_") for pkg in packages) + _underscored_packages = {pkg.replace("-", "_") for pkg in packages} for pkg in packages: try: @@ -33,7 +33,7 @@ def _get_sub_deps(packages: Sequence[str]) -> List[str]: return sorted(sub_deps, key=lambda x: x.lower()) -def print_sys_info(*, additional_pkgs: Sequence[str] = tuple()) -> None: +def print_sys_info(*, additional_pkgs: Sequence[str] = ()) -> None: """Print information about the environment for debugging purposes. Args: diff --git a/libs/core/langchain_core/tools/base.py b/libs/core/langchain_core/tools/base.py index 9d35aa614fa2d..88c787558ffd0 100644 --- a/libs/core/langchain_core/tools/base.py +++ b/libs/core/langchain_core/tools/base.py @@ -7,24 +7,35 @@ import uuid import warnings from abc import ABC, abstractmethod +from collections.abc import Sequence from contextvars import copy_context from inspect import signature from typing import ( + Annotated, Any, Callable, - Dict, - List, Literal, Optional, - Sequence, - Tuple, - Type, + TypeVar, Union, cast, + get_args, + get_origin, get_type_hints, ) -from typing_extensions import Annotated, TypeVar, get_args, get_origin +from pydantic import ( + BaseModel, + ConfigDict, + Field, + PydanticDeprecationWarning, + SkipValidation, + ValidationError, + model_validator, + validate_arguments, +) +from pydantic.v1 import BaseModel as BaseModelV1 +from pydantic.v1 import validate_arguments as validate_arguments_v1 from langchain_core._api import deprecated from langchain_core.callbacks import ( @@ -33,16 +44,7 @@ CallbackManager, Callbacks, ) -from langchain_core.load import Serializable -from langchain_core.messages import ToolCall, ToolMessage -from langchain_core.pydantic_v1 import ( - BaseModel, - Extra, - Field, - ValidationError, - root_validator, - validate_arguments, -) +from langchain_core.messages.tool import ToolCall, ToolMessage from langchain_core.runnables import ( RunnableConfig, RunnableSerializable, @@ -59,6 +61,7 @@ from langchain_core.utils.pydantic import ( TypeBaseModel, _create_subset_model, + get_fields, is_basemodel_subclass, is_pydantic_v1_subclass, is_pydantic_v2_subclass, @@ -71,11 +74,11 @@ class SchemaAnnotationError(TypeError): """Raised when 'args_schema' is missing or has an incorrect type annotation.""" -def _is_annotated_type(typ: Type[Any]) -> bool: +def _is_annotated_type(typ: type[Any]) -> bool: return get_origin(typ) is Annotated -def _get_annotation_description(arg_type: Type) -> str | None: +def _get_annotation_description(arg_type: type) -> str | None: if _is_annotated_type(arg_type): annotated_args = get_args(arg_type) for annotation in annotated_args[1:]: @@ -85,14 +88,14 @@ def _get_annotation_description(arg_type: Type) -> str | None: def _get_filtered_args( - inferred_model: Type[BaseModel], + inferred_model: type[BaseModel], func: Callable, *, filter_args: Sequence[str], include_injected: bool = True, ) -> dict: """Get the arguments from a function's signature.""" - schema = inferred_model.schema()["properties"] + schema = inferred_model.model_json_schema()["properties"] valid_keys = signature(func).parameters return { k: schema[k] @@ -105,7 +108,7 @@ def _get_filtered_args( def _parse_python_function_docstring( function: Callable, annotations: dict, error_on_invalid_docstring: bool = False -) -> Tuple[str, dict]: +) -> tuple[str, dict]: """Parse the function and argument descriptions from the docstring of a function. Assumes the function docstring follows Google Python style guide. @@ -124,9 +127,8 @@ def _validate_docstring_args_against_annotations( """Raise error if docstring arg is not in type annotations.""" for docstring_arg in arg_descriptions: if docstring_arg not in annotations: - raise ValueError( - f"Arg {docstring_arg} in docstring not found in function signature." - ) + msg = f"Arg {docstring_arg} in docstring not found in function signature." + raise ValueError(msg) def _infer_arg_descriptions( @@ -134,7 +136,7 @@ def _infer_arg_descriptions( *, parse_docstring: bool = False, error_on_invalid_docstring: bool = False, -) -> Tuple[str, dict]: +) -> tuple[str, dict]: """Infer argument descriptions from a function's docstring.""" if hasattr(inspect, "get_annotations"): # This is for python < 3.10 @@ -158,6 +160,36 @@ def _infer_arg_descriptions( return description, arg_descriptions +def _is_pydantic_annotation(annotation: Any, pydantic_version: str = "v2") -> bool: + """Determine if a type annotation is a Pydantic model.""" + base_model_class = BaseModelV1 if pydantic_version == "v1" else BaseModel + try: + return issubclass(annotation, base_model_class) + except TypeError: + return False + + +def _function_annotations_are_pydantic_v1( + signature: inspect.Signature, func: Callable +) -> bool: + """Determine if all Pydantic annotations in a function signature are from V1.""" + any_v1_annotations = any( + _is_pydantic_annotation(parameter.annotation, pydantic_version="v1") + for parameter in signature.parameters.values() + ) + any_v2_annotations = any( + _is_pydantic_annotation(parameter.annotation, pydantic_version="v2") + for parameter in signature.parameters.values() + ) + if any_v1_annotations and any_v2_annotations: + msg = ( + f"Function {func} contains a mix of Pydantic v1 and v2 annotations. " + "Only one version of Pydantic annotations per function is supported." + ) + raise NotImplementedError(msg) + return any_v1_annotations and not any_v2_annotations + + class _SchemaConfig: """Configuration for the pydantic model. @@ -170,7 +202,7 @@ class _SchemaConfig: Defaults to True. """ - extra: Any = Extra.forbid + extra: str = "forbid" arbitrary_types_allowed: bool = True @@ -182,7 +214,7 @@ def create_schema_from_function( parse_docstring: bool = False, error_on_invalid_docstring: bool = False, include_injected: bool = True, -) -> Type[BaseModel]: +) -> type[BaseModel]: """Create a pydantic schema from a function's signature. Args: @@ -202,24 +234,71 @@ def create_schema_from_function( Returns: A pydantic model with the same arguments as the function. """ - # https://docs.pydantic.dev/latest/usage/validation_decorator/ - validated = validate_arguments(func, config=_SchemaConfig) # type: ignore + sig = inspect.signature(func) + + if _function_annotations_are_pydantic_v1(sig, func): + validated = validate_arguments_v1(func, config=_SchemaConfig) # type: ignore + else: + # https://docs.pydantic.dev/latest/usage/validation_decorator/ + with warnings.catch_warnings(): + # We are using deprecated functionality here. + # This code should be re-written to simply construct a pydantic model + # using inspect.signature and create_model. + warnings.simplefilter("ignore", category=PydanticDeprecationWarning) + validated = validate_arguments(func, config=_SchemaConfig) # type: ignore + + # Let's ignore `self` and `cls` arguments for class and instance methods + # If qualified name has a ".", then it likely belongs in a class namespace + in_class = bool(func.__qualname__ and "." in func.__qualname__) + + has_args = False + has_kwargs = False + + for param in sig.parameters.values(): + if param.kind == param.VAR_POSITIONAL: + has_args = True + elif param.kind == param.VAR_KEYWORD: + has_kwargs = True + inferred_model = validated.model # type: ignore - filter_args = filter_args if filter_args is not None else FILTERED_ARGS - for arg in filter_args: - if arg in inferred_model.__fields__: - del inferred_model.__fields__[arg] + + if filter_args: + filter_args_ = filter_args + else: + # Handle classmethods and instance methods + existing_params: list[str] = list(sig.parameters.keys()) + if existing_params and existing_params[0] in ("self", "cls") and in_class: + filter_args_ = [existing_params[0]] + list(FILTERED_ARGS) + else: + filter_args_ = list(FILTERED_ARGS) + + for existing_param in existing_params: + if not include_injected and _is_injected_arg_type( + sig.parameters[existing_param].annotation + ): + filter_args_.append(existing_param) + description, arg_descriptions = _infer_arg_descriptions( func, parse_docstring=parse_docstring, error_on_invalid_docstring=error_on_invalid_docstring, ) # Pydantic adds placeholder virtual fields we need to strip - valid_properties = _get_filtered_args( - inferred_model, func, filter_args=filter_args, include_injected=include_injected - ) + valid_properties = [] + for field in get_fields(inferred_model): + if not has_args and field == "args": + continue + if not has_kwargs and field == "kwargs": + continue + + if field == "v__duplicate_kwargs": # Internal pydantic field + continue + + if field not in filter_args_: + valid_properties.append(field) + return _create_subset_model( - f"{model_name}Schema", + model_name, inferred_model, list(valid_properties), descriptions=arg_descriptions, @@ -227,7 +306,7 @@ def create_schema_from_function( ) -class ToolException(Exception): +class ToolException(Exception): # noqa: N818 """Optional exception that tool throws when execution error occurs. When this exception is thrown, the agent will not stop working, @@ -236,10 +315,8 @@ class ToolException(Exception): to the agent as observation, and printed in red on the console. """ - pass - -class BaseTool(RunnableSerializable[Union[str, Dict, ToolCall], Any]): +class BaseTool(RunnableSerializable[Union[str, dict, ToolCall], Any]): """Interface LangChain tools must implement.""" def __init_subclass__(cls, **kwargs: Any) -> None: @@ -258,7 +335,7 @@ class ChildTool(BaseTool): args_schema: Type[BaseModel] = SchemaClass ...""" name = cls.__name__ - raise SchemaAnnotationError( + msg = ( f"Tool definition for {name} must include valid type annotations" f" for argument 'args_schema' to behave as expected.\n" f"Expected annotation of 'Type[BaseModel]'" @@ -266,27 +343,31 @@ class ChildTool(BaseTool): f"Expected class looks like:\n" f"{typehint_mandate}" ) + raise SchemaAnnotationError(msg) name: str """The unique name of the tool that clearly communicates its purpose.""" description: str """Used to tell the model how/when/why to use the tool. - + You can provide few-shot examples as a part of the description. """ - args_schema: Optional[TypeBaseModel] = None + + args_schema: Annotated[Optional[TypeBaseModel], SkipValidation()] = Field( + default=None, description="The tool schema." + ) """Pydantic model class to validate and parse the tool's input arguments. - - Args schema should be either: - + + Args schema should be either: + - A subclass of pydantic.BaseModel. - or + or - A subclass of pydantic.v1.BaseModel if accessing v1 namespace in pydantic 2 """ return_direct: bool = False - """Whether to return the tool's output directly. - - Setting this to True means + """Whether to return the tool's output directly. + + Setting this to True means that after the tool is called, the AgentExecutor will stop looping. """ verbose: bool = False @@ -304,13 +385,13 @@ class ChildTool(BaseTool): description="Callback manager to add to the run trace.", ) ) - tags: Optional[List[str]] = None + tags: Optional[list[str]] = None """Optional list of tags associated with the tool. Defaults to None. These tags will be associated with each call to this tool, and passed as arguments to the handlers defined in `callbacks`. You can use these to eg identify a specific instance of a tool with its use case. """ - metadata: Optional[Dict[str, Any]] = None + metadata: Optional[dict[str, Any]] = None """Optional metadata associated with the tool. Defaults to None. This metadata will be associated with each call to this tool, and passed as arguments to the handlers defined in `callbacks`. @@ -330,23 +411,28 @@ class ChildTool(BaseTool): response_format: Literal["content", "content_and_artifact"] = "content" """The tool response format. Defaults to 'content'. - If "content" then the output of the tool is interpreted as the contents of a - ToolMessage. If "content_and_artifact" then the output is expected to be a + If "content" then the output of the tool is interpreted as the contents of a + ToolMessage. If "content_and_artifact" then the output is expected to be a two-tuple corresponding to the (content, artifact) of a ToolMessage. """ def __init__(self, **kwargs: Any) -> None: """Initialize the tool.""" - if "args_schema" in kwargs and kwargs["args_schema"] is not None: - if not is_basemodel_subclass(kwargs["args_schema"]): - raise TypeError( - f"args_schema must be a subclass of pydantic BaseModel. " - f"Got: {kwargs['args_schema']}." - ) + if ( + "args_schema" in kwargs + and kwargs["args_schema"] is not None + and not is_basemodel_subclass(kwargs["args_schema"]) + ): + msg = ( + f"args_schema must be a subclass of pydantic BaseModel. " + f"Got: {kwargs['args_schema']}." + ) + raise TypeError(msg) super().__init__(**kwargs) - class Config(Serializable.Config): - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property def is_single_input(self) -> bool: @@ -356,10 +442,10 @@ def is_single_input(self) -> bool: @property def args(self) -> dict: - return self.get_input_schema().schema()["properties"] + return self.get_input_schema().model_json_schema()["properties"] @property - def tool_call_schema(self) -> Type[BaseModel]: + def tool_call_schema(self) -> type[BaseModel]: full_schema = self.get_input_schema() fields = [] for name, type_ in _get_all_basemodel_annotations(full_schema).items(): @@ -373,7 +459,7 @@ def tool_call_schema(self) -> Type[BaseModel]: def get_input_schema( self, config: Optional[RunnableConfig] = None - ) -> Type[BaseModel]: + ) -> type[BaseModel]: """The tool's input schema. Args: @@ -389,7 +475,7 @@ def get_input_schema( def invoke( self, - input: Union[str, Dict, ToolCall], + input: Union[str, dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Any: @@ -398,7 +484,7 @@ def invoke( async def ainvoke( self, - input: Union[str, Dict, ToolCall], + input: Union[str, dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Any: @@ -407,7 +493,7 @@ async def ainvoke( # --- Tool --- - def _parse_input(self, tool_input: Union[str, Dict]) -> Union[str, Dict[str, Any]]: + def _parse_input(self, tool_input: Union[str, dict]) -> Union[str, dict[str, Any]]: """Convert tool input to a pydantic model. Args: @@ -416,21 +502,36 @@ def _parse_input(self, tool_input: Union[str, Dict]) -> Union[str, Dict[str, Any input_args = self.args_schema if isinstance(tool_input, str): if input_args is not None: - key_ = next(iter(input_args.__fields__.keys())) - input_args.validate({key_: tool_input}) + key_ = next(iter(get_fields(input_args).keys())) + if hasattr(input_args, "model_validate"): + input_args.model_validate({key_: tool_input}) + else: + input_args.parse_obj({key_: tool_input}) return tool_input else: if input_args is not None: - result = input_args.parse_obj(tool_input) + if issubclass(input_args, BaseModel): + result = input_args.model_validate(tool_input) + result_dict = result.model_dump() + elif issubclass(input_args, BaseModelV1): + result = input_args.parse_obj(tool_input) + result_dict = result.dict() + else: + msg = ( + "args_schema must be a Pydantic BaseModel, " + f"got {self.args_schema}" + ) + raise NotImplementedError(msg) return { k: getattr(result, k) - for k, v in result.dict().items() + for k, v in result_dict.items() if k in tool_input } return tool_input - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: dict) -> Any: """Raise deprecation warning if callback_manager is used. Args: @@ -468,7 +569,7 @@ async def _arun(self, *args: Any, **kwargs: Any) -> Any: kwargs["run_manager"] = kwargs["run_manager"].get_sync() return await run_in_executor(None, self._run, *args, **kwargs) - def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: + def _to_args_and_kwargs(self, tool_input: Union[str, dict]) -> tuple[tuple, dict]: tool_input = self._parse_input(tool_input) # For backwards compatibility, if run_input is a string, # pass as a positional argument. @@ -479,14 +580,14 @@ def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict def run( self, - tool_input: Union[str, Dict[str, Any]], + tool_input: Union[str, dict[str, Any]], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, *, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[uuid.UUID] = None, config: Optional[RunnableConfig] = None, @@ -555,12 +656,13 @@ def run( response = context.run(self._run, *tool_args, **tool_kwargs) if self.response_format == "content_and_artifact": if not isinstance(response, tuple) or len(response) != 2: - raise ValueError( + msg = ( "Since response_format='content_and_artifact' " "a two-tuple of the message content and raw tool output is " f"expected. Instead generated response of type: " f"{type(response)}." ) + raise ValueError(msg) content, artifact = response else: content = response @@ -590,14 +692,14 @@ def run( async def arun( self, - tool_input: Union[str, Dict], + tool_input: Union[str, dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, *, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, run_name: Optional[str] = None, run_id: Optional[uuid.UUID] = None, config: Optional[RunnableConfig] = None, @@ -671,12 +773,13 @@ async def arun( response = await coro if self.response_format == "content_and_artifact": if not isinstance(response, tuple) or len(response) != 2: - raise ValueError( + msg = ( "Since response_format='content_and_artifact' " "a two-tuple of the message content and raw tool output is " f"expected. Instead generated response of type: " f"{type(response)}." ) + raise ValueError(msg) content, artifact = response else: content = response @@ -727,10 +830,11 @@ def _handle_validation_error( elif callable(flag): content = flag(e) else: - raise ValueError( + msg = ( f"Got unexpected type of `handle_validation_error`. Expected bool, " f"str or callable. Received: {flag}" ) + raise ValueError(msg) return content @@ -740,19 +844,17 @@ def _handle_tool_error( flag: Optional[Union[Literal[True], str, Callable[[ToolException], str]]], ) -> str: if isinstance(flag, bool): - if e.args: - content = e.args[0] - else: - content = "Tool execution error" + content = e.args[0] if e.args else "Tool execution error" elif isinstance(flag, str): content = flag elif callable(flag): content = flag(e) else: - raise ValueError( + msg = ( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {flag}" ) + raise ValueError(msg) return content @@ -760,7 +862,7 @@ def _prep_run_args( input: Union[str, dict, ToolCall], config: Optional[RunnableConfig], **kwargs: Any, -) -> Tuple[Union[str, Dict], Dict]: +) -> tuple[Union[str, dict], dict]: config = ensure_config(config) if _is_tool_call(input): tool_call_id: Optional[str] = cast(ToolCall, input)["id"] @@ -802,12 +904,11 @@ def _format_output( def _is_message_content_type(obj: Any) -> bool: """Check for OpenAI or Anthropic format tool message content.""" - if isinstance(obj, str): - return True - elif isinstance(obj, list) and all(_is_message_content_block(e) for e in obj): - return True - else: - return False + return ( + isinstance(obj, str) + or isinstance(obj, list) + and all(_is_message_content_block(e) for e in obj) + ) def _is_message_content_block(obj: Any) -> bool: @@ -822,12 +923,12 @@ def _is_message_content_block(obj: Any) -> bool: def _stringify(content: Any) -> str: try: - return json.dumps(content) + return json.dumps(content, ensure_ascii=False) except Exception: return str(content) -def _get_type_hints(func: Callable) -> Optional[Dict[str, Type]]: +def _get_type_hints(func: Callable) -> Optional[dict[str, type]]: if isinstance(func, functools.partial): func = func.func try: @@ -850,7 +951,7 @@ class InjectedToolArg: """Annotation for a Tool arg that is **not** meant to be generated by a model.""" -def _is_injected_arg_type(type_: Type) -> bool: +def _is_injected_arg_type(type_: type) -> bool: return any( isinstance(arg, InjectedToolArg) or (isinstance(arg, type) and issubclass(arg, InjectedToolArg)) @@ -860,10 +961,10 @@ def _is_injected_arg_type(type_: Type) -> bool: def _get_all_basemodel_annotations( cls: Union[TypeBaseModel, Any], *, default_to_bound: bool = True -) -> Dict[str, Type]: +) -> dict[str, type]: # cls has no subscript: cls = FooBar if isinstance(cls, type): - annotations: Dict[str, Type] = {} + annotations: dict[str, type] = {} for name, param in inspect.signature(cls).parameters.items(): # Exclude hidden init args added by pydantic Config. For example if # BaseModel(extra="allow") then "extra_data" will part of init sig. @@ -873,7 +974,7 @@ def _get_all_basemodel_annotations( ) and name not in fields: continue annotations[name] = param.annotation - orig_bases: Tuple = getattr(cls, "__orig_bases__", tuple()) + orig_bases: tuple = getattr(cls, "__orig_bases__", ()) # cls has subscript: cls = FooBar[int] else: annotations = _get_all_basemodel_annotations( @@ -905,11 +1006,9 @@ def _get_all_basemodel_annotations( # parent_origin = Baz, # generic_type_vars = (type vars in Baz) # generic_map = {type var in Baz: str} - generic_type_vars: Tuple = getattr(parent_origin, "__parameters__", tuple()) - generic_map = { - type_var: t for type_var, t in zip(generic_type_vars, get_args(parent)) - } - for field in getattr(parent_origin, "__annotations__", dict()): + generic_type_vars: tuple = getattr(parent_origin, "__parameters__", ()) + generic_map = dict(zip(generic_type_vars, get_args(parent))) + for field in getattr(parent_origin, "__annotations__", {}): annotations[field] = _replace_type_vars( annotations[field], generic_map, default_to_bound ) @@ -921,10 +1020,10 @@ def _get_all_basemodel_annotations( def _replace_type_vars( - type_: Type, - generic_map: Optional[Dict[TypeVar, Type]] = None, + type_: type, + generic_map: Optional[dict[TypeVar, type]] = None, default_to_bound: bool = True, -) -> Type: +) -> type: generic_map = generic_map or {} if isinstance(type_, TypeVar): if type_ in generic_map: @@ -937,7 +1036,7 @@ def _replace_type_vars( new_args = tuple( _replace_type_vars(arg, generic_map, default_to_bound) for arg in args ) - return _py_38_safe_origin(origin)[new_args] + return _py_38_safe_origin(origin)[new_args] # type: ignore[index] else: return type_ @@ -946,5 +1045,5 @@ class BaseToolkit(BaseModel, ABC): """Base Toolkit representing a collection of related tools.""" @abstractmethod - def get_tools(self) -> List[BaseTool]: + def get_tools(self) -> list[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/core/langchain_core/tools/convert.py b/libs/core/langchain_core/tools/convert.py index 7428b69e3864c..e85435a86df69 100644 --- a/libs/core/langchain_core/tools/convert.py +++ b/libs/core/langchain_core/tools/convert.py @@ -1,8 +1,9 @@ import inspect -from typing import Any, Callable, Dict, Literal, Optional, Type, Union, get_type_hints +from typing import Any, Callable, Literal, Optional, Union, get_type_hints + +from pydantic import BaseModel, Field, create_model from langchain_core.callbacks import Callbacks -from langchain_core.pydantic_v1 import BaseModel, Field, create_model from langchain_core.runnables import Runnable from langchain_core.tools.base import BaseTool from langchain_core.tools.simple import Tool @@ -12,7 +13,7 @@ def tool( *args: Union[str, Callable, Runnable], return_direct: bool = False, - args_schema: Optional[Type] = None, + args_schema: Optional[type] = None, infer_schema: bool = True, response_format: Literal["content", "content_and_artifact"] = "content", parse_docstring: bool = False, @@ -81,12 +82,12 @@ def foo(bar: str, baz: int) -> str: \"\"\" return bar - foo.args_schema.schema() + foo.args_schema.model_json_schema() .. code-block:: python { - "title": "fooSchema", + "title": "foo", "description": "The foo.", "type": "object", "properties": { @@ -144,8 +145,9 @@ def _make_tool(dec_func: Union[Callable, Runnable]) -> BaseTool: if isinstance(dec_func, Runnable): runnable = dec_func - if runnable.input_schema.schema().get("type") != "object": - raise ValueError("Runnable must have an object schema.") + if runnable.input_schema.model_json_schema().get("type") != "object": + msg = "Runnable must have an object schema." + raise ValueError(msg) async def ainvoke_wrapper( callbacks: Optional[Callbacks] = None, **kwargs: Any @@ -159,7 +161,7 @@ def invoke_wrapper( coroutine = ainvoke_wrapper func = invoke_wrapper - schema: Optional[Type[BaseModel]] = runnable.input_schema + schema: Optional[type[BaseModel]] = runnable.input_schema description = repr(runnable) elif inspect.iscoroutinefunction(dec_func): coroutine = dec_func @@ -188,10 +190,11 @@ def invoke_wrapper( # If someone doesn't want a schema applied, we must treat it as # a simple string->string function if dec_func.__doc__ is None: - raise ValueError( + msg = ( "Function must have a docstring if " "description not provided and infer_schema is False." ) + raise ValueError(msg) return Tool( name=tool_name, func=func, @@ -221,41 +224,43 @@ def _partial(func: Callable[[str], str]) -> BaseTool: return _partial else: - raise ValueError("Too many arguments for tool decorator") + msg = "Too many arguments for tool decorator" + raise ValueError(msg) def _get_description_from_runnable(runnable: Runnable) -> str: """Generate a placeholder description of a runnable.""" - input_schema = runnable.input_schema.schema() + input_schema = runnable.input_schema.model_json_schema() return f"Takes {input_schema}." def _get_schema_from_runnable_and_arg_types( runnable: Runnable, name: str, - arg_types: Optional[Dict[str, Type]] = None, -) -> Type[BaseModel]: + arg_types: Optional[dict[str, type]] = None, +) -> type[BaseModel]: """Infer args_schema for tool.""" if arg_types is None: try: arg_types = get_type_hints(runnable.InputType) except TypeError as e: - raise TypeError( + msg = ( "Tool input must be str or dict. If dict, dict arguments must be " "typed. Either annotate types (e.g., with TypedDict) or pass " f"arg_types into `.as_tool` to specify. {str(e)}" - ) from e + ) + raise TypeError(msg) from e fields = {key: (key_type, Field(...)) for key, key_type in arg_types.items()} return create_model(name, **fields) # type: ignore def convert_runnable_to_tool( runnable: Runnable, - args_schema: Optional[Type[BaseModel]] = None, + args_schema: Optional[type[BaseModel]] = None, *, name: Optional[str] = None, description: Optional[str] = None, - arg_types: Optional[Dict[str, Type]] = None, + arg_types: Optional[dict[str, type]] = None, ) -> BaseTool: """Convert a Runnable into a BaseTool. @@ -274,7 +279,7 @@ def convert_runnable_to_tool( description = description or _get_description_from_runnable(runnable) name = name or runnable.get_name() - schema = runnable.input_schema.schema() + schema = runnable.input_schema.model_json_schema() if schema.get("type") == "string": return Tool( name=name, diff --git a/libs/core/langchain_core/tools/render.py b/libs/core/langchain_core/tools/render.py index 6d93c3fc2cb5f..d59aef42303c7 100644 --- a/libs/core/langchain_core/tools/render.py +++ b/libs/core/langchain_core/tools/render.py @@ -1,14 +1,14 @@ from __future__ import annotations from inspect import signature -from typing import Callable, List +from typing import Callable from langchain_core.tools.base import BaseTool -ToolsRenderer = Callable[[List[BaseTool]], str] +ToolsRenderer = Callable[[list[BaseTool]], str] -def render_text_description(tools: List[BaseTool]) -> str: +def render_text_description(tools: list[BaseTool]) -> str: """Render the tool name and description in plain text. Args: @@ -36,7 +36,7 @@ def render_text_description(tools: List[BaseTool]) -> str: return "\n".join(descriptions) -def render_text_description_and_args(tools: List[BaseTool]) -> str: +def render_text_description_and_args(tools: list[BaseTool]) -> str: """Render the tool name, description, and args in plain text. Args: diff --git a/libs/core/langchain_core/tools/retriever.py b/libs/core/langchain_core/tools/retriever.py index 3dba4442b7aa0..b59b49a3d317a 100644 --- a/libs/core/langchain_core/tools/retriever.py +++ b/libs/core/langchain_core/tools/retriever.py @@ -3,6 +3,8 @@ from functools import partial from typing import Optional +from pydantic import BaseModel, Field + from langchain_core.callbacks import Callbacks from langchain_core.prompts import ( BasePromptTemplate, @@ -10,7 +12,6 @@ aformat_document, format_document, ) -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.retrievers import BaseRetriever from langchain_core.tools.simple import Tool diff --git a/libs/core/langchain_core/tools/simple.py b/libs/core/langchain_core/tools/simple.py index c8d77a31ec8d2..118c8b39f6db3 100644 --- a/libs/core/langchain_core/tools/simple.py +++ b/libs/core/langchain_core/tools/simple.py @@ -1,14 +1,21 @@ from __future__ import annotations +from collections.abc import Awaitable from inspect import signature -from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union +from typing import ( + Any, + Callable, + Optional, + Union, +) + +from pydantic import BaseModel from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.messages import ToolCall -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableConfig, run_in_executor from langchain_core.tools.base import ( BaseTool, @@ -30,7 +37,7 @@ class Tool(BaseTool): async def ainvoke( self, - input: Union[str, Dict, ToolCall], + input: Union[str, dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Any: @@ -50,22 +57,23 @@ def args(self) -> dict: The input arguments for the tool. """ if self.args_schema is not None: - return self.args_schema.schema()["properties"] + return self.args_schema.model_json_schema()["properties"] # For backwards compatibility, if the function signature is ambiguous, # assume it takes a single string input. return {"tool_input": {"type": "string"}} - def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: + def _to_args_and_kwargs(self, tool_input: Union[str, dict]) -> tuple[tuple, dict]: """Convert tool input to pydantic model.""" args, kwargs = super()._to_args_and_kwargs(tool_input) # For backwards compatibility. The tool must be run with a single input all_args = list(args) + list(kwargs.values()) if len(all_args) != 1: - raise ToolException( + msg = ( f"""Too many arguments to single-input tool {self.name}. Consider using StructuredTool instead.""" f" Args: {all_args}" ) + raise ToolException(msg) return tuple(all_args), {} def _run( @@ -82,7 +90,8 @@ def _run( if config_param := _get_runnable_config_param(self.func): kwargs[config_param] = config return self.func(*args, **kwargs) - raise NotImplementedError("Tool does not support sync invocation.") + msg = "Tool does not support sync invocation." + raise NotImplementedError(msg) async def _arun( self, @@ -121,7 +130,7 @@ def from_function( name: str, # We keep these required to support backwards compatibility description: str, return_direct: bool = False, - args_schema: Optional[Type[BaseModel]] = None, + args_schema: Optional[type[BaseModel]] = None, coroutine: Optional[ Callable[..., Awaitable[Any]] ] = None, # This is last for compatibility, but should be after func @@ -145,7 +154,8 @@ def from_function( ValueError: If the function is not provided. """ if func is None and coroutine is None: - raise ValueError("Function and/or coroutine must be provided") + msg = "Function and/or coroutine must be provided" + raise ValueError(msg) return cls( name=name, func=func, @@ -155,3 +165,6 @@ def from_function( args_schema=args_schema, **kwargs, ) + + +Tool.model_rebuild() diff --git a/libs/core/langchain_core/tools/structured.py b/libs/core/langchain_core/tools/structured.py index 8da6d654559d2..174e7b2f53704 100644 --- a/libs/core/langchain_core/tools/structured.py +++ b/libs/core/langchain_core/tools/structured.py @@ -1,15 +1,24 @@ from __future__ import annotations import textwrap +from collections.abc import Awaitable from inspect import signature -from typing import Any, Awaitable, Callable, Dict, List, Literal, Optional, Type, Union +from typing import ( + Annotated, + Any, + Callable, + Literal, + Optional, + Union, +) + +from pydantic import BaseModel, Field, SkipValidation from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain_core.messages import ToolCall -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import RunnableConfig, run_in_executor from langchain_core.tools.base import ( FILTERED_ARGS, @@ -24,9 +33,11 @@ class StructuredTool(BaseTool): """Tool that can operate on any number of inputs.""" description: str = "" - args_schema: TypeBaseModel = Field(..., description="The tool schema.") + args_schema: Annotated[TypeBaseModel, SkipValidation()] = Field( + ..., description="The tool schema." + ) """The input arguments' schema.""" - func: Optional[Callable[..., Any]] + func: Optional[Callable[..., Any]] = None """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[Any]]] = None """The asynchronous version of the function.""" @@ -36,7 +47,7 @@ class StructuredTool(BaseTool): # TODO: Is this needed? async def ainvoke( self, - input: Union[str, Dict, ToolCall], + input: Union[str, dict, ToolCall], config: Optional[RunnableConfig] = None, **kwargs: Any, ) -> Any: @@ -51,7 +62,7 @@ async def ainvoke( @property def args(self) -> dict: """The tool's input arguments.""" - return self.args_schema.schema()["properties"] + return self.args_schema.model_json_schema()["properties"] def _run( self, @@ -67,7 +78,8 @@ def _run( if config_param := _get_runnable_config_param(self.func): kwargs[config_param] = config return self.func(*args, **kwargs) - raise NotImplementedError("StructuredTool does not support sync invocation.") + msg = "StructuredTool does not support sync invocation." + raise NotImplementedError(msg) async def _arun( self, @@ -84,8 +96,8 @@ async def _arun( kwargs[config_param] = config return await self.coroutine(*args, **kwargs) - # NOTE: this code is unreachable since _arun is only called if coroutine is not - # None. + # If self.coroutine is None, then this will delegate to the default + # implementation which is expected to delegate to _run on a separate thread. return await super()._arun( *args, config=config, run_manager=run_manager, **kwargs ) @@ -98,7 +110,7 @@ def from_function( name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, - args_schema: Optional[Type[BaseModel]] = None, + args_schema: Optional[type[BaseModel]] = None, infer_schema: bool = True, *, response_format: Literal["content", "content_and_artifact"] = "content", @@ -156,7 +168,8 @@ def add(a: int, b: int) -> int: elif coroutine is not None: source_function = coroutine else: - raise ValueError("Function and/or coroutine must be provided") + msg = "Function and/or coroutine must be provided" + raise ValueError(msg) name = name or source_function.__name__ if args_schema is None and infer_schema: # schema name is appended within function @@ -173,9 +186,8 @@ def add(a: int, b: int) -> int: if description_ is None and args_schema: description_ = args_schema.__doc__ or None if description_ is None: - raise ValueError( - "Function must have a docstring if description not provided." - ) + msg = "Function must have a docstring if description not provided." + raise ValueError(msg) if description is None: # Only apply if using the function's docstring description_ = textwrap.dedent(description_).strip() @@ -195,7 +207,7 @@ def add(a: int, b: int) -> int: ) -def _filter_schema_args(func: Callable) -> List[str]: +def _filter_schema_args(func: Callable) -> list[str]: filter_args = list(FILTERED_ARGS) if config_param := _get_runnable_config_param(func): filter_args.append(config_param) diff --git a/libs/core/langchain_core/tracers/_streaming.py b/libs/core/langchain_core/tracers/_streaming.py index 7f9f65395c7d6..ca50213d88a75 100644 --- a/libs/core/langchain_core/tracers/_streaming.py +++ b/libs/core/langchain_core/tracers/_streaming.py @@ -1,7 +1,8 @@ """Internal tracers used for stream_log and astream events implementations.""" import abc -from typing import AsyncIterator, Iterator, TypeVar +from collections.abc import AsyncIterator, Iterator +from typing import TypeVar from uuid import UUID T = TypeVar("T") diff --git a/libs/core/langchain_core/tracers/base.py b/libs/core/langchain_core/tracers/base.py index a0b94afb7b709..ba8c90f2c9a9e 100644 --- a/libs/core/langchain_core/tracers/base.py +++ b/libs/core/langchain_core/tracers/base.py @@ -5,13 +5,11 @@ import asyncio import logging from abc import ABC, abstractmethod +from collections.abc import Sequence from typing import ( TYPE_CHECKING, Any, - Dict, - List, Optional, - Sequence, Union, ) from uuid import UUID @@ -52,13 +50,13 @@ def _end_trace(self, run: Run) -> None: def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: @@ -93,13 +91,13 @@ def on_chat_model_start( def on_llm_start( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: @@ -238,13 +236,13 @@ def on_llm_error( def on_chain_start( self, - serialized: Dict[str, Any], - inputs: Dict[str, Any], + serialized: dict[str, Any], + inputs: dict[str, Any], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any, @@ -282,10 +280,10 @@ def on_chain_start( def on_chain_end( self, - outputs: Dict[str, Any], + outputs: dict[str, Any], *, run_id: UUID, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Run: """End a trace for a chain run. @@ -313,7 +311,7 @@ def on_chain_error( self, error: BaseException, *, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, run_id: UUID, **kwargs: Any, ) -> Run: @@ -340,15 +338,15 @@ def on_chain_error( def on_tool_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], input_str: str, *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Run: """Start a trace for a tool run. @@ -429,13 +427,13 @@ def on_tool_error( def on_retriever_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: @@ -556,13 +554,13 @@ async def _end_trace(self, run: Run) -> None: async def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Any: @@ -585,13 +583,13 @@ async def on_chat_model_start( async def on_llm_start( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: llm_run = self._create_llm_run( @@ -642,7 +640,7 @@ async def on_llm_end( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: llm_run = self._complete_llm_run( @@ -658,7 +656,7 @@ async def on_llm_error( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: llm_run = self._errored_llm_run( @@ -670,13 +668,13 @@ async def on_llm_error( async def on_chain_start( self, - serialized: Dict[str, Any], - inputs: Dict[str, Any], + serialized: dict[str, Any], + inputs: dict[str, Any], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any, @@ -697,10 +695,10 @@ async def on_chain_start( async def on_chain_end( self, - outputs: Dict[str, Any], + outputs: dict[str, Any], *, run_id: UUID, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: chain_run = self._complete_chain_run( @@ -716,7 +714,7 @@ async def on_chain_error( self, error: BaseException, *, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, run_id: UUID, **kwargs: Any, ) -> None: @@ -731,15 +729,15 @@ async def on_chain_error( async def on_tool_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], input_str: str, *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: tool_run = self._create_tool_run( @@ -776,7 +774,7 @@ async def on_tool_error( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: tool_run = self._errored_tool_run( @@ -788,13 +786,13 @@ async def on_tool_error( async def on_retriever_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> None: @@ -819,7 +817,7 @@ async def on_retriever_error( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: retrieval_run = self._errored_retrieval_run( @@ -839,7 +837,7 @@ async def on_retriever_end( *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: retrieval_run = self._complete_retrieval_run( @@ -852,7 +850,6 @@ async def on_retriever_end( async def _on_run_create(self, run: Run) -> None: """Process a run upon creation.""" - pass async def _on_run_update(self, run: Run) -> None: """Process a run upon update.""" diff --git a/libs/core/langchain_core/tracers/context.py b/libs/core/langchain_core/tracers/context.py index 01659fe42aa7f..295c68552a3a8 100644 --- a/libs/core/langchain_core/tracers/context.py +++ b/libs/core/langchain_core/tracers/context.py @@ -1,15 +1,12 @@ from __future__ import annotations +from collections.abc import Generator from contextlib import contextmanager from contextvars import ContextVar from typing import ( TYPE_CHECKING, Any, - Generator, - List, Optional, - Tuple, - Type, Union, cast, ) @@ -43,9 +40,10 @@ def tracing_enabled( session_name: str = "default", ) -> Generator[TracerSessionV1, None, None]: """Throw an error because this has been replaced by tracing_v2_enabled.""" - raise RuntimeError( + msg = ( "tracing_enabled is no longer supported. Please use tracing_enabled_v2 instead." ) + raise RuntimeError(msg) @contextmanager @@ -53,7 +51,7 @@ def tracing_v2_enabled( project_name: Optional[str] = None, *, example_id: Optional[Union[str, UUID]] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, client: Optional[LangSmithClient] = None, ) -> Generator[LangChainTracer, None, None]: """Instruct LangChain to log all runs in context to LangSmith. @@ -169,11 +167,11 @@ def _get_tracer_project() -> str: ) -_configure_hooks: List[ - Tuple[ +_configure_hooks: list[ + tuple[ ContextVar[Optional[BaseCallbackHandler]], bool, - Optional[Type[BaseCallbackHandler]], + Optional[type[BaseCallbackHandler]], Optional[str], ] ] = [] @@ -182,7 +180,7 @@ def _get_tracer_project() -> str: def register_configure_hook( context_var: ContextVar[Optional[Any]], inheritable: bool, - handle_class: Optional[Type[BaseCallbackHandler]] = None, + handle_class: Optional[type[BaseCallbackHandler]] = None, env_var: Optional[str] = None, ) -> None: """Register a configure hook. @@ -199,9 +197,8 @@ def register_configure_hook( to a non-None value. """ if env_var is not None and handle_class is None: - raise ValueError( - "If env_var is set, handle_class must also be set to a non-None value." - ) + msg = "If env_var is set, handle_class must also be set to a non-None value." + raise ValueError(msg) from langchain_core.callbacks.base import BaseCallbackHandler _configure_hooks.append( diff --git a/libs/core/langchain_core/tracers/core.py b/libs/core/langchain_core/tracers/core.py index b2a809f4d89c4..696d35150ff92 100644 --- a/libs/core/langchain_core/tracers/core.py +++ b/libs/core/langchain_core/tracers/core.py @@ -6,18 +6,13 @@ import sys import traceback from abc import ABC, abstractmethod +from collections.abc import Coroutine, Sequence from datetime import datetime, timezone from typing import ( TYPE_CHECKING, Any, - Coroutine, - Dict, - List, Literal, Optional, - Sequence, - Set, - Tuple, Union, cast, ) @@ -81,9 +76,9 @@ def __init__( """ super().__init__(**kwargs) self._schema_format = _schema_format # For internal use only API will change. - self.run_map: Dict[str, Run] = {} + self.run_map: dict[str, Run] = {} """Map of run ID to run. Cleared on run end.""" - self.order_map: Dict[UUID, Tuple[UUID, str]] = {} + self.order_map: dict[UUID, tuple[UUID, str]] = {} """Map of run ID to (trace_id, dotted_order). Cleared when tracer GCed.""" @abstractmethod @@ -123,7 +118,7 @@ def _start_trace(self, run: Run) -> Union[None, Coroutine[Any, Any, None]]: # t self._add_child_run(parent_run, run) else: if self.log_missing_parent: - logger.warning( + logger.debug( f"Parent run {run.parent_run_id} not found for run {run.id}." " Treating as a root run." ) @@ -137,32 +132,34 @@ def _start_trace(self, run: Run) -> Union[None, Coroutine[Any, Any, None]]: # t self.run_map[str(run.id)] = run def _get_run( - self, run_id: UUID, run_type: Union[str, Set[str], None] = None + self, run_id: UUID, run_type: Union[str, set[str], None] = None ) -> Run: try: run = self.run_map[str(run_id)] except KeyError as exc: - raise TracerException(f"No indexed run ID {run_id}.") from exc + msg = f"No indexed run ID {run_id}." + raise TracerException(msg) from exc if isinstance(run_type, str): - run_types: Union[Set[str], None] = {run_type} + run_types: Union[set[str], None] = {run_type} else: run_types = run_type if run_types is not None and run.run_type not in run_types: - raise TracerException( + msg = ( f"Found {run.run_type} run at ID {run_id}, " f"but expected {run_types} run." ) + raise TracerException(msg) return run def _create_chat_model_run( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: @@ -175,10 +172,11 @@ def _create_chat_model_run( # This can eventually be cleaned up by writing a "modern" tracer # that has all the updated schema changes corresponding to # the "streaming_events" format. - raise NotImplementedError( + msg = ( f"Chat model tracing is not supported in " f"for {self._schema_format} format." ) + raise NotImplementedError(msg) start_time = datetime.now(timezone.utc) if metadata: kwargs.update({"metadata": metadata}) @@ -200,12 +198,12 @@ def _create_chat_model_run( def _create_llm_run( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: @@ -239,7 +237,7 @@ def _llm_run_with_token_event( Append token event to LLM run and return the run. """ llm_run = self._get_run(run_id, run_type={"llm", "chat_model"}) - event_kwargs: Dict[str, Any] = {"token": token} + event_kwargs: dict[str, Any] = {"token": token} if chunk: event_kwargs["chunk"] = chunk llm_run.events.append( @@ -258,7 +256,7 @@ def _llm_run_with_retry_event( **kwargs: Any, ) -> Run: llm_run = self._get_run(run_id) - retry_d: Dict[str, Any] = { + retry_d: dict[str, Any] = { "slept": retry_state.idle_for, "attempt": retry_state.attempt_number, } @@ -283,7 +281,7 @@ def _llm_run_with_retry_event( def _complete_llm_run(self, response: LLMResult, run_id: UUID) -> Run: llm_run = self._get_run(run_id, run_type={"llm", "chat_model"}) - llm_run.outputs = response.dict() + llm_run.outputs = response.model_dump() for i, generations in enumerate(response.generations): for j, generation in enumerate(generations): output_generation = llm_run.outputs["generations"][i][j] @@ -306,12 +304,12 @@ def _errored_llm_run(self, error: BaseException, run_id: UUID) -> Run: def _create_chain_run( self, - serialized: Dict[str, Any], - inputs: Dict[str, Any], + serialized: dict[str, Any], + inputs: dict[str, Any], run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any, @@ -343,7 +341,8 @@ def _get_chain_inputs(self, inputs: Any) -> Any: "input": inputs, } else: - raise ValueError(f"Invalid format: {self._schema_format}") + msg = f"Invalid format: {self._schema_format}" + raise ValueError(msg) def _get_chain_outputs(self, outputs: Any) -> Any: """Get the outputs for a chain run.""" @@ -354,13 +353,14 @@ def _get_chain_outputs(self, outputs: Any) -> Any: "output": outputs, } else: - raise ValueError(f"Invalid format: {self._schema_format}") + msg = f"Invalid format: {self._schema_format}" + raise ValueError(msg) def _complete_chain_run( self, - outputs: Dict[str, Any], + outputs: dict[str, Any], run_id: UUID, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Run: """Update a chain run with outputs and end time.""" @@ -375,7 +375,7 @@ def _complete_chain_run( def _errored_chain_run( self, error: BaseException, - inputs: Optional[Dict[str, Any]], + inputs: Optional[dict[str, Any]], run_id: UUID, **kwargs: Any, ) -> Run: @@ -389,14 +389,14 @@ def _errored_chain_run( def _create_tool_run( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], input_str: str, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Run: """Create a tool run.""" @@ -409,7 +409,8 @@ def _create_tool_run( elif self._schema_format == "streaming_events": inputs = {"input": inputs} else: - raise AssertionError(f"Invalid format: {self._schema_format}") + msg = f"Invalid format: {self._schema_format}" + raise AssertionError(msg) return Run( id=run_id, @@ -428,7 +429,7 @@ def _create_tool_run( def _complete_tool_run( self, - output: Dict[str, Any], + output: dict[str, Any], run_id: UUID, **kwargs: Any, ) -> Run: @@ -454,12 +455,12 @@ def _errored_tool_run( def _create_retrieval_run( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], query: str, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: diff --git a/libs/core/langchain_core/tracers/evaluation.py b/libs/core/langchain_core/tracers/evaluation.py index ed6a2bfdb4023..d74c5d86baedf 100644 --- a/libs/core/langchain_core/tracers/evaluation.py +++ b/libs/core/langchain_core/tracers/evaluation.py @@ -5,8 +5,9 @@ import logging import threading import weakref +from collections.abc import Sequence from concurrent.futures import Future, ThreadPoolExecutor, wait -from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast +from typing import Any, Optional, Union, cast from uuid import UUID import langsmith @@ -96,7 +97,7 @@ def __init__( self.futures: weakref.WeakSet[Future] = weakref.WeakSet() self.skip_unfinished = skip_unfinished self.project_name = project_name - self.logged_eval_results: Dict[Tuple[str, str], List[EvaluationResult]] = {} + self.logged_eval_results: dict[tuple[str, str], list[EvaluationResult]] = {} self.lock = threading.Lock() global _TRACERS _TRACERS.add(self) @@ -152,16 +153,17 @@ def _evaluate_in_project(self, run: Run, evaluator: langsmith.RunEvaluator) -> N def _select_eval_results( self, results: Union[EvaluationResult, EvaluationResults], - ) -> List[EvaluationResult]: + ) -> list[EvaluationResult]: if isinstance(results, EvaluationResult): results_ = [results] elif isinstance(results, dict) and "results" in results: - results_ = cast(List[EvaluationResult], results["results"]) + results_ = cast(list[EvaluationResult], results["results"]) else: - raise TypeError( + msg = ( f"Invalid evaluation result type {type(results)}." " Expected EvaluationResult or EvaluationResults." ) + raise TypeError(msg) return results_ def _log_evaluation_feedback( @@ -169,10 +171,10 @@ def _log_evaluation_feedback( evaluator_response: Union[EvaluationResult, EvaluationResults], run: Run, source_run_id: Optional[UUID] = None, - ) -> List[EvaluationResult]: + ) -> list[EvaluationResult]: results = self._select_eval_results(evaluator_response) for res in results: - source_info_: Dict[str, Any] = {} + source_info_: dict[str, Any] = {} if res.evaluator_info: source_info_ = {**res.evaluator_info, **source_info_} run_id_ = getattr(res, "target_run_id", None) diff --git a/libs/core/langchain_core/tracers/event_stream.py b/libs/core/langchain_core/tracers/event_stream.py index a34a5e3528f00..b7a1ddc853f67 100644 --- a/libs/core/langchain_core/tracers/event_stream.py +++ b/libs/core/langchain_core/tracers/event_stream.py @@ -3,16 +3,13 @@ from __future__ import annotations import asyncio +import contextlib import logging +from collections.abc import AsyncIterator, Iterator, Sequence from typing import ( TYPE_CHECKING, Any, - AsyncIterator, - Dict, - Iterator, - List, Optional, - Sequence, TypeVar, Union, cast, @@ -66,14 +63,14 @@ class RunInfo(TypedDict): """ name: str - tags: List[str] - metadata: Dict[str, Any] + tags: list[str] + metadata: dict[str, Any] run_type: str inputs: NotRequired[Any] parent_run_id: Optional[UUID] -def _assign_name(name: Optional[str], serialized: Optional[Dict[str, Any]]) -> str: +def _assign_name(name: Optional[str], serialized: Optional[dict[str, Any]]) -> str: """Assign a name to a run.""" if name is not None: return name @@ -107,15 +104,15 @@ def __init__( # Map of run ID to run info. # the entry corresponding to a given run id is cleaned # up when each corresponding run ends. - self.run_map: Dict[UUID, RunInfo] = {} + self.run_map: dict[UUID, RunInfo] = {} # The callback event that corresponds to the end of a parent run # may be invoked BEFORE the callback event that corresponds to the end # of a child run, which results in clean up of run_map. # So we keep track of the mapping between children and parent run IDs # in a separate container. This container is GCed when the tracer is GCed. - self.parent_map: Dict[UUID, Optional[UUID]] = {} + self.parent_map: dict[UUID, Optional[UUID]] = {} - self.is_tapped: Dict[UUID, Any] = {} + self.is_tapped: dict[UUID, Any] = {} # Filter which events will be sent over the queue. self.root_event_filter = _RootEventFilter( @@ -132,17 +129,18 @@ def __init__( self.send_stream = memory_stream.get_send_stream() self.receive_stream = memory_stream.get_receive_stream() - def _get_parent_ids(self, run_id: UUID) -> List[str]: + def _get_parent_ids(self, run_id: UUID) -> list[str]: """Get the parent IDs of a run (non-recursively) cast to strings.""" parent_ids = [] while parent_id := self.parent_map.get(run_id): str_parent_id = str(parent_id) if str_parent_id in parent_ids: - raise AssertionError( + msg = ( f"Parent ID {parent_id} is already in the parent_ids list. " f"This should never happen." ) + raise AssertionError(msg) parent_ids.append(str_parent_id) run_id = parent_id @@ -269,8 +267,8 @@ def _write_run_start_info( self, run_id: UUID, *, - tags: Optional[List[str]], - metadata: Optional[Dict[str, Any]], + tags: Optional[list[str]], + metadata: Optional[dict[str, Any]], parent_run_id: Optional[UUID], name_: str, run_type: str, @@ -296,13 +294,13 @@ def _write_run_start_info( async def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> None: @@ -337,13 +335,13 @@ async def on_chat_model_start( async def on_llm_start( self, - serialized: Dict[str, Any], - prompts: List[str], + serialized: dict[str, Any], + prompts: list[str], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> None: @@ -384,8 +382,8 @@ async def on_custom_event( data: Any, *, run_id: UUID, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """Generate a custom astream event.""" @@ -414,7 +412,8 @@ async def on_llm_new_token( chunk_: Union[GenerationChunk, BaseMessageChunk] if run_info is None: - raise AssertionError(f"Run ID {run_id} not found in run map.") + msg = f"Run ID {run_id} not found in run map." + raise AssertionError(msg) if self.is_tapped.get(run_id): return if run_info["run_type"] == "chat_model": @@ -432,7 +431,8 @@ async def on_llm_new_token( else: chunk_ = cast(GenerationChunk, chunk) else: - raise ValueError(f"Unexpected run type: {run_info['run_type']}") + msg = f"Unexpected run type: {run_info['run_type']}" + raise ValueError(msg) self._send( { @@ -456,11 +456,11 @@ async def on_llm_end( run_info = self.run_map.pop(run_id) inputs_ = run_info["inputs"] - generations: Union[List[List[GenerationChunk]], List[List[ChatGenerationChunk]]] + generations: Union[list[list[GenerationChunk]], list[list[ChatGenerationChunk]]] output: Union[dict, BaseMessage] = {} if run_info["run_type"] == "chat_model": - generations = cast(List[List[ChatGenerationChunk]], response.generations) + generations = cast(list[list[ChatGenerationChunk]], response.generations) for gen in generations: if output != {}: break @@ -470,7 +470,7 @@ async def on_llm_end( event = "on_chat_model_end" elif run_info["run_type"] == "llm": - generations = cast(List[List[GenerationChunk]], response.generations) + generations = cast(list[list[GenerationChunk]], response.generations) output = { "generations": [ [ @@ -487,7 +487,8 @@ async def on_llm_end( } event = "on_llm_end" else: - raise ValueError(f"Unexpected run type: {run_info['run_type']}") + msg = f"Unexpected run type: {run_info['run_type']}" + raise ValueError(msg) self._send( { @@ -504,13 +505,13 @@ async def on_llm_end( async def on_chain_start( self, - serialized: Dict[str, Any], - inputs: Dict[str, Any], + serialized: dict[str, Any], + inputs: dict[str, Any], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any, @@ -552,10 +553,10 @@ async def on_chain_start( async def on_chain_end( self, - outputs: Dict[str, Any], + outputs: dict[str, Any], *, run_id: UUID, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """End a trace for a chain run.""" @@ -586,15 +587,15 @@ async def on_chain_end( async def on_tool_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], input_str: str, *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, - inputs: Optional[Dict[str, Any]] = None, + inputs: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: """Start a trace for a tool run.""" @@ -629,10 +630,11 @@ async def on_tool_end(self, output: Any, *, run_id: UUID, **kwargs: Any) -> None """End a trace for a tool run.""" run_info = self.run_map.pop(run_id) if "inputs" not in run_info: - raise AssertionError( + msg = ( f"Run ID {run_id} is a tool call and is expected to have " f"inputs associated with it." ) + raise AssertionError(msg) inputs = run_info["inputs"] self._send( @@ -653,13 +655,13 @@ async def on_tool_end(self, output: Any, *, run_id: UUID, **kwargs: Any) -> None async def on_retriever_start( self, - serialized: Dict[str, Any], + serialized: dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> None: @@ -818,10 +820,7 @@ async def _astream_events_implementation_v1( data: EventData = {} log_entry: LogEntry = run_log.state["logs"][path] if log_entry["end_time"] is None: - if log_entry["streamed_output"]: - event_type = "stream" - else: - event_type = "start" + event_type = "stream" if log_entry["streamed_output"] else "start" else: event_type = "end" @@ -833,7 +832,6 @@ async def _astream_events_implementation_v1( inputs = log_entry["inputs"] if inputs is not None: data["input"] = inputs - pass if event_type == "end": inputs = log_entry["inputs"] @@ -846,11 +844,12 @@ async def _astream_events_implementation_v1( if event_type == "stream": num_chunks = len(log_entry["streamed_output"]) if num_chunks != 1: - raise AssertionError( + msg = ( f"Expected exactly one chunk of streamed output, " f"got {num_chunks} instead. This is impossible. " f"Encountered in: {log_entry['name']}" ) + raise AssertionError(msg) data = {"chunk": log_entry["streamed_output"][0]} # Clean up the stream, we don't need it anymore. @@ -873,11 +872,12 @@ async def _astream_events_implementation_v1( if state["streamed_output"]: num_chunks = len(state["streamed_output"]) if num_chunks != 1: - raise AssertionError( + msg = ( f"Expected exactly one chunk of streamed output, " f"got {num_chunks} instead. This is impossible. " f"Encountered in: {state['name']}" ) + raise AssertionError(msg) data = {"chunk": state["streamed_output"][0]} # Clean up the stream, we don't need it anymore. @@ -952,10 +952,11 @@ async def _astream_events_implementation_v2( callbacks.add_handler(event_streamer, inherit=True) config["callbacks"] = callbacks else: - raise ValueError( + msg = ( f"Unexpected type for callbacks: {callbacks}." "Expected None, list or AsyncCallbackManager." ) + raise ValueError(msg) # Call the runnable in streaming mode, # add each chunk to the output stream @@ -988,21 +989,24 @@ async def consume_astream() -> None: yield event continue - if event["run_id"] == first_event_run_id and event["event"].endswith( - "_end" + # If it's the end event corresponding to the root runnable + # we dont include the input in the event since it's guaranteed + # to be included in the first event. + if ( + event["run_id"] == first_event_run_id + and event["event"].endswith("_end") + and "input" in event["data"] ): - # If it's the end event corresponding to the root runnable - # we dont include the input in the event since it's guaranteed - # to be included in the first event. - if "input" in event["data"]: - del event["data"]["input"] + del event["data"]["input"] yield event + except asyncio.CancelledError as exc: + # Cancel the task if it's still running + task.cancel(exc.args[0] if exc.args else None) + raise finally: # Cancel the task if it's still running task.cancel() # Await it anyway, to run any cleanup code, and propagate any exceptions - try: + with contextlib.suppress(asyncio.CancelledError): await task - except asyncio.CancelledError: - pass diff --git a/libs/core/langchain_core/tracers/langchain.py b/libs/core/langchain_core/tracers/langchain.py index a8ef48fd01353..0183adb260402 100644 --- a/libs/core/langchain_core/tracers/langchain.py +++ b/libs/core/langchain_core/tracers/langchain.py @@ -2,14 +2,18 @@ from __future__ import annotations +import copy import logging +import warnings from concurrent.futures import ThreadPoolExecutor from datetime import datetime, timezone -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union +from typing import TYPE_CHECKING, Any, Optional, Union from uuid import UUID from langsmith import Client +from langsmith import run_trees as rt from langsmith import utils as ls_utils +from pydantic import PydanticDeprecationWarning from tenacity import ( Retrying, retry_if_exception_type, @@ -19,6 +23,7 @@ from langchain_core.env import get_runtime_environment from langchain_core.load import dumpd +from langchain_core.outputs import ChatGenerationChunk, GenerationChunk from langchain_core.tracers.base import BaseTracer from langchain_core.tracers.schemas import Run @@ -27,7 +32,6 @@ logger = logging.getLogger(__name__) _LOGGED = set() -_CLIENT: Optional[Client] = None _EXECUTOR: Optional[ThreadPoolExecutor] = None @@ -47,17 +51,13 @@ def log_error_once(method: str, exception: Exception) -> None: def wait_for_all_tracers() -> None: """Wait for all tracers to finish.""" - global _CLIENT - if _CLIENT is not None and _CLIENT.tracing_queue is not None: - _CLIENT.tracing_queue.join() + if rt._CLIENT is not None and rt._CLIENT.tracing_queue is not None: + rt._CLIENT.tracing_queue.join() def get_client() -> Client: """Get the client.""" - global _CLIENT - if _CLIENT is None: - _CLIENT = Client() - return _CLIENT + return rt.get_cached_client() def _get_executor() -> ThreadPoolExecutor: @@ -69,22 +69,29 @@ def _get_executor() -> ThreadPoolExecutor: def _run_to_dict(run: Run) -> dict: - return { - **run.dict(exclude={"child_runs", "inputs", "outputs"}), - "inputs": run.inputs.copy() if run.inputs is not None else None, - "outputs": run.outputs.copy() if run.outputs is not None else None, - } + # TODO: Update once langsmith moves to Pydantic V2 and we can swap run.dict for + # run.model_dump + with warnings.catch_warnings(): + warnings.simplefilter("ignore", category=PydanticDeprecationWarning) + + return { + **run.dict(exclude={"child_runs", "inputs", "outputs"}), + "inputs": run.inputs.copy() if run.inputs is not None else None, + "outputs": run.outputs.copy() if run.outputs is not None else None, + } class LangChainTracer(BaseTracer): """Implementation of the SharedTracer that POSTS to the LangChain endpoint.""" + run_inline = True + def __init__( self, example_id: Optional[Union[UUID, str]] = None, project_name: Optional[str] = None, client: Optional[Client] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Initialize the LangChain tracer. @@ -105,15 +112,28 @@ def __init__( self.tags = tags or [] self.latest_run: Optional[Run] = None + def _start_trace(self, run: Run) -> None: + if self.project_name: + run.session_name = self.project_name + if self.tags is not None: + if run.tags: + run.tags = sorted(set(run.tags + self.tags)) + else: + run.tags = self.tags.copy() + + super()._start_trace(run) + if run._client is None: + run._client = self.client # type: ignore + def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, parent_run_id: Optional[UUID] = None, - metadata: Optional[Dict[str, Any]] = None, + metadata: Optional[dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any, ) -> Run: @@ -152,7 +172,11 @@ def on_chat_model_start( return chat_model_run def _persist_run(self, run: Run) -> None: - run_ = run.copy() + # TODO: Update once langsmith moves to Pydantic V2 and we can swap run.copy for + # run.model_copy + with warnings.catch_warnings(): + warnings.simplefilter("ignore", category=PydanticDeprecationWarning) + run_ = copy.copy(run) run_.reference_example_id = self.example_id self.latest_run = run_ @@ -167,7 +191,8 @@ def get_run_url(self) -> str: ValueError: If the run URL cannot be found. """ if not self.latest_run: - raise ValueError("No traced run found.") + msg = "No traced run found." + raise ValueError(msg) # If this is the first run in a project, the project may not yet be created. # This method is only really useful for debugging flows, so we will assume # there is some tolerace for latency. @@ -180,9 +205,10 @@ def get_run_url(self) -> str: return self.client.get_run_url( run=self.latest_run, project_name=self.project_name ) - raise ValueError("Failed to get run URL.") + msg = "Failed to get run URL." + raise ValueError(msg) - def _get_tags(self, run: Run) -> List[str]: + def _get_tags(self, run: Run) -> list[str]: """Get combined tags for a run.""" tags = set(run.tags or []) tags.update(self.tags or []) @@ -219,6 +245,26 @@ def _on_llm_start(self, run: Run) -> None: run.reference_example_id = self.example_id self._persist_run_single(run) + def _llm_run_with_token_event( + self, + token: str, + run_id: UUID, + chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, + parent_run_id: Optional[UUID] = None, + **kwargs: Any, + ) -> Run: + """ + Append token event to LLM run and return the run. + """ + return super()._llm_run_with_token_event( + # Drop the chunk; we don't need to save it + token, + run_id, + chunk=None, + parent_run_id=parent_run_id, + **kwargs, + ) + def _on_chat_model_start(self, run: Run) -> None: """Persist an LLM run.""" if run.parent_run_id is None: diff --git a/libs/core/langchain_core/tracers/langchain_v1.py b/libs/core/langchain_core/tracers/langchain_v1.py index bf1237d66abbe..706dfb02edf57 100644 --- a/libs/core/langchain_core/tracers/langchain_v1.py +++ b/libs/core/langchain_core/tracers/langchain_v1.py @@ -3,14 +3,16 @@ def get_headers(*args: Any, **kwargs: Any) -> Any: """Throw an error because this has been replaced by get_headers.""" - raise RuntimeError( + msg = ( "get_headers for LangChainTracerV1 is no longer supported. " "Please use LangChainTracer instead." ) + raise RuntimeError(msg) -def LangChainTracerV1(*args: Any, **kwargs: Any) -> Any: +def LangChainTracerV1(*args: Any, **kwargs: Any) -> Any: # noqa: N802 """Throw an error because this has been replaced by LangChainTracer.""" - raise RuntimeError( + msg = ( "LangChainTracerV1 is no longer supported. Please use LangChainTracer instead." ) + raise RuntimeError(msg) diff --git a/libs/core/langchain_core/tracers/log_stream.py b/libs/core/langchain_core/tracers/log_stream.py index ac154df62254b..2284ff7022f42 100644 --- a/libs/core/langchain_core/tracers/log_stream.py +++ b/libs/core/langchain_core/tracers/log_stream.py @@ -1,18 +1,15 @@ from __future__ import annotations import asyncio +import contextlib import copy import threading from collections import defaultdict +from collections.abc import AsyncIterator, Iterator, Sequence from typing import ( Any, - AsyncIterator, - Dict, - Iterator, - List, Literal, Optional, - Sequence, TypeVar, Union, overload, @@ -42,22 +39,22 @@ class LogEntry(TypedDict): """Name of the object being run.""" type: str """Type of the object being run, eg. prompt, chain, llm, etc.""" - tags: List[str] + tags: list[str] """List of tags for the run.""" - metadata: Dict[str, Any] + metadata: dict[str, Any] """Key-value pairs of metadata for the run.""" start_time: str """ISO-8601 timestamp of when the run started.""" - streamed_output_str: List[str] + streamed_output_str: list[str] """List of LLM tokens streamed by this run, if applicable.""" - streamed_output: List[Any] + streamed_output: list[Any] """List of output chunks streamed by this run, if available.""" inputs: NotRequired[Optional[Any]] """Inputs to this run. Not available currently via astream_log.""" final_output: Optional[Any] - """Final output of this run. - + """Final output of this run. + Only available after the run has finished successfully.""" end_time: Optional[str] """ISO-8601 timestamp of when the run ended. @@ -69,7 +66,7 @@ class RunState(TypedDict): id: str """ID of the run.""" - streamed_output: List[Any] + streamed_output: list[Any] """List of output chunks streamed by Runnable.stream()""" final_output: Optional[Any] """Final output of the run, usually the result of aggregating (`+`) streamed_output. @@ -83,7 +80,7 @@ class RunState(TypedDict): # Do we want tags/metadata on the root run? Client kinda knows it in most situations # tags: List[str] - logs: Dict[str, LogEntry] + logs: dict[str, LogEntry] """Map of run names to sub-runs. If filters were supplied, this list will contain only the runs that matched the filters.""" @@ -91,14 +88,14 @@ class RunState(TypedDict): class RunLogPatch: """Patch to the run log.""" - ops: List[Dict[str, Any]] + ops: list[dict[str, Any]] """List of jsonpatch operations, which describe how to create the run state from an empty dict. This is the minimal representation of the log, designed to be serialized as JSON and sent over the wire to reconstruct the log on the other side. Reconstruction of the state can be done with any jsonpatch-compliant library, see https://jsonpatch.com for more information.""" - def __init__(self, *ops: Dict[str, Any]) -> None: + def __init__(self, *ops: dict[str, Any]) -> None: self.ops = list(ops) def __add__(self, other: Union[RunLogPatch, Any]) -> RunLog: @@ -107,9 +104,8 @@ def __add__(self, other: Union[RunLogPatch, Any]) -> RunLog: state = jsonpatch.apply_patch(None, copy.deepcopy(ops)) return RunLog(*ops, state=state) - raise TypeError( - f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" - ) + msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" + raise TypeError(msg) def __repr__(self) -> str: from pprint import pformat @@ -127,7 +123,7 @@ class RunLog(RunLogPatch): state: RunState """Current state of the log, obtained from applying all ops in sequence.""" - def __init__(self, *ops: Dict[str, Any], state: RunState) -> None: + def __init__(self, *ops: dict[str, Any], state: RunState) -> None: super().__init__(*ops) self.state = state @@ -137,9 +133,8 @@ def __add__(self, other: Union[RunLogPatch, Any]) -> RunLog: state = jsonpatch.apply_patch(self.state, other.ops) return RunLog(*ops, state=state) - raise TypeError( - f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" - ) + msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" + raise TypeError(msg) def __repr__(self) -> str: from pprint import pformat @@ -200,10 +195,11 @@ def __init__( ValueError: If an invalid schema format is provided (internal use only). """ if _schema_format not in {"original", "streaming_events"}: - raise ValueError( + msg = ( f"Invalid schema format: {_schema_format}. " f"Expected one of 'original', 'streaming_events'." ) + raise ValueError(msg) super().__init__(_schema_format=_schema_format) self.auto_close = auto_close @@ -219,14 +215,14 @@ def __init__( self.lock = threading.Lock() self.send_stream = memory_stream.get_send_stream() self.receive_stream = memory_stream.get_receive_stream() - self._key_map_by_run_id: Dict[UUID, str] = {} - self._counter_map_by_name: Dict[str, int] = defaultdict(int) + self._key_map_by_run_id: dict[UUID, str] = {} + self._counter_map_by_name: dict[str, int] = defaultdict(int) self.root_id: Optional[UUID] = None def __aiter__(self) -> AsyncIterator[RunLogPatch]: return self.receive_stream.__aiter__() - def send(self, *ops: Dict[str, Any]) -> bool: + def send(self, *ops: dict[str, Any]) -> bool: """Send a patch to the stream, return False if the stream is closed. Args: @@ -257,18 +253,22 @@ async def tap_output_aiter( """ async for chunk in output: # root run is handled in .astream_log() - if run_id != self.root_id: - # if we can't find the run silently ignore - # eg. because this run wasn't included in the log - if key := self._key_map_by_run_id.get(run_id): - if not self.send( + # if we can't find the run silently ignore + # eg. because this run wasn't included in the log + if ( + run_id != self.root_id + and (key := self._key_map_by_run_id.get(run_id)) + and ( + not self.send( { "op": "add", "path": f"/logs/{key}/streamed_output/-", "value": chunk, } - ): - break + ) + ) + ): + break yield chunk @@ -284,18 +284,22 @@ def tap_output_iter(self, run_id: UUID, output: Iterator[T]) -> Iterator[T]: """ for chunk in output: # root run is handled in .astream_log() - if run_id != self.root_id: - # if we can't find the run silently ignore - # eg. because this run wasn't included in the log - if key := self._key_map_by_run_id.get(run_id): - if not self.send( + # if we can't find the run silently ignore + # eg. because this run wasn't included in the log + if ( + run_id != self.root_id + and (key := self._key_map_by_run_id.get(run_id)) + and ( + not self.send( { "op": "add", "path": f"/logs/{key}/streamed_output/-", "value": chunk, } - ): - break + ) + ) + ): + break yield chunk @@ -443,9 +447,8 @@ def _on_run_update(self, run: Run) -> None: self.send(*ops) finally: - if run.id == self.root_id: - if self.auto_close: - self.send_stream.close() + if run.id == self.root_id and self.auto_close: + self.send_stream.close() def _on_llm_new_token( self, @@ -477,7 +480,7 @@ def _on_llm_new_token( def _get_standardized_inputs( run: Run, schema_format: Literal["original", "streaming_events"] -) -> Optional[Dict[str, Any]]: +) -> Optional[dict[str, Any]]: """Extract standardized inputs from a run. Standardizes the inputs based on the type of the runnable used. @@ -492,11 +495,12 @@ def _get_standardized_inputs( None means that the input is not yet known! """ if schema_format == "original": - raise NotImplementedError( + msg = ( "Do not assign inputs with original schema drop the key for now." "When inputs are added to astream_log they should be added with " "standardized schema for streaming events." ) + raise NotImplementedError(msg) inputs = load(run.inputs) @@ -609,10 +613,11 @@ async def _astream_log_implementation( callbacks.add_handler(stream, inherit=True) config["callbacks"] = callbacks else: - raise ValueError( + msg = ( f"Unexpected type for callbacks: {callbacks}." "Expected None, list or AsyncCallbackManager." ) + raise ValueError(msg) # Call the runnable in streaming mode, # add each chunk to the output stream @@ -631,7 +636,7 @@ async def consume_astream() -> None: except TypeError: prev_final_output = None final_output = chunk - patches: List[Dict[str, Any]] = [] + patches: list[dict[str, Any]] = [] if with_streamed_output_list: patches.append( { @@ -666,7 +671,5 @@ async def consume_astream() -> None: yield state finally: # Wait for the runnable to finish, if not cancelled (eg. by break) - try: + with contextlib.suppress(asyncio.CancelledError): await task - except asyncio.CancelledError: - pass diff --git a/libs/core/langchain_core/tracers/memory_stream.py b/libs/core/langchain_core/tracers/memory_stream.py index 8aa324737f69b..4a3d09a42b852 100644 --- a/libs/core/langchain_core/tracers/memory_stream.py +++ b/libs/core/langchain_core/tracers/memory_stream.py @@ -11,7 +11,8 @@ import asyncio from asyncio import AbstractEventLoop, Queue -from typing import AsyncIterator, Generic, TypeVar +from collections.abc import AsyncIterator +from typing import Generic, TypeVar T = TypeVar("T") diff --git a/libs/core/langchain_core/tracers/root_listeners.py b/libs/core/langchain_core/tracers/root_listeners.py index bfd73a17131ff..1530598fb7534 100644 --- a/libs/core/langchain_core/tracers/root_listeners.py +++ b/libs/core/langchain_core/tracers/root_listeners.py @@ -1,4 +1,5 @@ -from typing import Awaitable, Callable, Optional, Union +from collections.abc import Awaitable +from typing import Callable, Optional, Union from uuid import UUID from langchain_core.runnables.config import ( diff --git a/libs/core/langchain_core/tracers/run_collector.py b/libs/core/langchain_core/tracers/run_collector.py index 1032c6adf15f8..9001eac38d189 100644 --- a/libs/core/langchain_core/tracers/run_collector.py +++ b/libs/core/langchain_core/tracers/run_collector.py @@ -1,6 +1,6 @@ """A tracer that collects all nested runs in a list.""" -from typing import Any, List, Optional, Union +from typing import Any, Optional, Union from uuid import UUID from langchain_core.tracers.base import BaseTracer @@ -38,7 +38,7 @@ def __init__( self.example_id = ( UUID(example_id) if isinstance(example_id, str) else example_id ) - self.traced_runs: List[Run] = [] + self.traced_runs: list[Run] = [] def _persist_run(self, run: Run) -> None: """ diff --git a/libs/core/langchain_core/tracers/schemas.py b/libs/core/langchain_core/tracers/schemas.py index 4a40e2cc56309..e7ebad1da1e90 100644 --- a/libs/core/langchain_core/tracers/schemas.py +++ b/libs/core/langchain_core/tracers/schemas.py @@ -4,19 +4,20 @@ import datetime import warnings -from typing import Any, Dict, List, Optional, Type +from typing import Any, Optional from uuid import UUID -from langsmith.schemas import RunBase as BaseRunV2 +from langsmith import RunTree from langsmith.schemas import RunTypeEnum as RunTypeEnumDep +from pydantic import PydanticDeprecationWarning +from pydantic.v1 import BaseModel as BaseModelV1 +from pydantic.v1 import Field as FieldV1 from langchain_core._api import deprecated -from langchain_core.outputs import LLMResult -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator @deprecated("0.1.0", alternative="Use string instead.", removal="1.0") -def RunTypeEnum() -> Type[RunTypeEnumDep]: +def RunTypeEnum() -> type[RunTypeEnumDep]: # noqa: N802 """RunTypeEnum.""" warnings.warn( "RunTypeEnum is deprecated. Please directly use a string instead" @@ -28,12 +29,12 @@ def RunTypeEnum() -> Type[RunTypeEnumDep]: @deprecated("0.1.0", removal="1.0") -class TracerSessionV1Base(BaseModel): +class TracerSessionV1Base(BaseModelV1): """Base class for TracerSessionV1.""" - start_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow) + start_time: datetime.datetime = FieldV1(default_factory=datetime.datetime.utcnow) name: Optional[str] = None - extra: Optional[Dict[str, Any]] = None + extra: Optional[dict[str, Any]] = None @deprecated("0.1.0", removal="1.0") @@ -63,17 +64,17 @@ class TracerSession(TracerSessionBase): @deprecated("0.1.0", alternative="Run", removal="1.0") -class BaseRun(BaseModel): +class BaseRun(BaseModelV1): """Base class for Run.""" uuid: str parent_uuid: Optional[str] = None - start_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow) - end_time: datetime.datetime = Field(default_factory=datetime.datetime.utcnow) - extra: Optional[Dict[str, Any]] = None + start_time: datetime.datetime = FieldV1(default_factory=datetime.datetime.utcnow) + end_time: datetime.datetime = FieldV1(default_factory=datetime.datetime.utcnow) + extra: Optional[dict[str, Any]] = None execution_order: int child_execution_order: int - serialized: Dict[str, Any] + serialized: dict[str, Any] session_id: int error: Optional[str] = None @@ -82,19 +83,20 @@ class BaseRun(BaseModel): class LLMRun(BaseRun): """Class for LLMRun.""" - prompts: List[str] - response: Optional[LLMResult] = None + prompts: list[str] + # Temporarily, remove but we will completely remove LLMRun + # response: Optional[LLMResult] = None @deprecated("0.1.0", alternative="Run", removal="1.0") class ChainRun(BaseRun): """Class for ChainRun.""" - inputs: Dict[str, Any] - outputs: Optional[Dict[str, Any]] = None - child_llm_runs: List[LLMRun] = Field(default_factory=list) - child_chain_runs: List[ChainRun] = Field(default_factory=list) - child_tool_runs: List[ToolRun] = Field(default_factory=list) + inputs: dict[str, Any] + outputs: Optional[dict[str, Any]] = None + child_llm_runs: list[LLMRun] = FieldV1(default_factory=list) + child_chain_runs: list[ChainRun] = FieldV1(default_factory=list) + child_tool_runs: list[ToolRun] = FieldV1(default_factory=list) @deprecated("0.1.0", alternative="Run", removal="1.0") @@ -104,47 +106,23 @@ class ToolRun(BaseRun): tool_input: str output: Optional[str] = None action: str - child_llm_runs: List[LLMRun] = Field(default_factory=list) - child_chain_runs: List[ChainRun] = Field(default_factory=list) - child_tool_runs: List[ToolRun] = Field(default_factory=list) + child_llm_runs: list[LLMRun] = FieldV1(default_factory=list) + child_chain_runs: list[ChainRun] = FieldV1(default_factory=list) + child_tool_runs: list[ToolRun] = FieldV1(default_factory=list) # Begin V2 API Schemas -class Run(BaseRunV2): - """Run schema for the V2 API in the Tracer. - - Parameters: - child_runs: The child runs. - tags: The tags. Default is an empty list. - events: The events. Default is an empty list. - trace_id: The trace ID. Default is None. - dotted_order: The dotted order. - """ - - child_runs: List[Run] = Field(default_factory=list) - tags: Optional[List[str]] = Field(default_factory=list) - events: List[Dict[str, Any]] = Field(default_factory=list) - trace_id: Optional[UUID] = None - dotted_order: Optional[str] = None - - @root_validator(pre=True) - def assign_name(cls, values: dict) -> dict: - """Assign name to the run.""" - if values.get("name") is None: - if "name" in values["serialized"]: - values["name"] = values["serialized"]["name"] - elif "id" in values["serialized"]: - values["name"] = values["serialized"]["id"][-1] - if values.get("events") is None: - values["events"] = [] - return values - - -ChainRun.update_forward_refs() -ToolRun.update_forward_refs() -Run.update_forward_refs() +Run = RunTree # For backwards compatibility + +# TODO: Update once langsmith moves to Pydantic V2 and we can swap Run.model_rebuild +# for Run.update_forward_refs +with warnings.catch_warnings(): + warnings.simplefilter("ignore", category=PydanticDeprecationWarning) + + ChainRun.update_forward_refs() + ToolRun.update_forward_refs() __all__ = [ "BaseRun", diff --git a/libs/core/langchain_core/tracers/stdout.py b/libs/core/langchain_core/tracers/stdout.py index b9d2043082d16..22ace8bb70f98 100644 --- a/libs/core/langchain_core/tracers/stdout.py +++ b/libs/core/langchain_core/tracers/stdout.py @@ -1,5 +1,5 @@ import json -from typing import Any, Callable, List +from typing import Any, Callable from langchain_core.tracers.base import BaseTracer from langchain_core.tracers.schemas import Run @@ -54,7 +54,7 @@ def __init__(self, function: Callable[[str], None], **kwargs: Any) -> None: def _persist_run(self, run: Run) -> None: pass - def get_parents(self, run: Run) -> List[Run]: + def get_parents(self, run: Run) -> list[Run]: """Get the parents of a run. Args: diff --git a/libs/core/langchain_core/utils/__init__.py b/libs/core/langchain_core/utils/__init__.py index 2e560b21e96d8..7822d3b62519e 100644 --- a/libs/core/langchain_core/utils/__init__.py +++ b/libs/core/langchain_core/utils/__init__.py @@ -32,6 +32,7 @@ ) __all__ = [ + "build_extra_kwargs", "StrictFormatter", "check_package_version", "convert_to_secret_str", @@ -46,7 +47,6 @@ "raise_for_status_with_text", "xor_args", "try_load_from_hub", - "build_extra_kwargs", "image", "get_from_env", "get_from_dict_or_env", diff --git a/libs/core/langchain_core/utils/_merge.py b/libs/core/langchain_core/utils/_merge.py index d058b8041aaab..be8f829387454 100644 --- a/libs/core/langchain_core/utils/_merge.py +++ b/libs/core/langchain_core/utils/_merge.py @@ -1,9 +1,9 @@ from __future__ import annotations -from typing import Any, Dict, List, Optional +from typing import Any, Optional -def merge_dicts(left: Dict[str, Any], *others: Dict[str, Any]) -> Dict[str, Any]: +def merge_dicts(left: dict[str, Any], *others: dict[str, Any]) -> dict[str, Any]: """Merge many dicts, handling specific scenarios where a key exists in both dictionaries but has a value of None in 'left'. In such cases, the method uses the value from 'right' for that key in the merged dictionary. @@ -29,17 +29,16 @@ def merge_dicts(left: Dict[str, Any], *others: Dict[str, Any]) -> Dict[str, Any] merged = left.copy() for right in others: for right_k, right_v in right.items(): - if right_k not in merged: - merged[right_k] = right_v - elif right_v is not None and merged[right_k] is None: + if right_k not in merged or right_v is not None and merged[right_k] is None: merged[right_k] = right_v elif right_v is None: continue elif type(merged[right_k]) is not type(right_v): - raise TypeError( + msg = ( f'additional_kwargs["{right_k}"] already exists in this message,' " but with a different type." ) + raise TypeError(msg) elif isinstance(merged[right_k], str): # TODO: Add below special handling for 'type' key in 0.3 and remove # merge_lists 'type' logic. @@ -62,14 +61,15 @@ def merge_dicts(left: Dict[str, Any], *others: Dict[str, Any]) -> Dict[str, Any] elif merged[right_k] == right_v: continue else: - raise TypeError( + msg = ( f"Additional kwargs key {right_k} already exists in left dict and " f"value has unsupported type {type(merged[right_k])}." ) + raise TypeError(msg) return merged -def merge_lists(left: Optional[List], *others: Optional[List]) -> Optional[List]: +def merge_lists(left: Optional[list], *others: Optional[list]) -> Optional[list]: """Add many lists, handling None. Args: @@ -127,10 +127,11 @@ def merge_obj(left: Any, right: Any) -> Any: if left is None or right is None: return left if left is not None else right elif type(left) is not type(right): - raise TypeError( + msg = ( f"left and right are of different types. Left type: {type(left)}. Right " f"type: {type(right)}." ) + raise TypeError(msg) elif isinstance(left, str): return left + right elif isinstance(left, dict): @@ -140,7 +141,8 @@ def merge_obj(left: Any, right: Any) -> Any: elif left == right: return left else: - raise ValueError( + msg = ( f"Unable to merge {left=} and {right=}. Both must be of type str, dict, or " f"list, or else be two equal objects." ) + raise ValueError(msg) diff --git a/libs/core/langchain_core/utils/aiter.py b/libs/core/langchain_core/utils/aiter.py index b2bc92699466b..5d4ef032efaaa 100644 --- a/libs/core/langchain_core/utils/aiter.py +++ b/libs/core/langchain_core/utils/aiter.py @@ -5,23 +5,20 @@ """ from collections import deque -from contextlib import AbstractAsyncContextManager -from types import TracebackType -from typing import ( - Any, - AsyncContextManager, +from collections.abc import ( AsyncGenerator, AsyncIterable, AsyncIterator, Awaitable, + Iterator, +) +from contextlib import AbstractAsyncContextManager +from types import TracebackType +from typing import ( + Any, Callable, - Deque, Generic, - Iterator, - List, Optional, - Tuple, - Type, TypeVar, Union, cast, @@ -63,7 +60,8 @@ def py_anext( Callable[[AsyncIterator[T]], Awaitable[T]], type(iterator).__anext__ ) except AttributeError as e: - raise TypeError(f"{iterator!r} is not an async iterator") from e + msg = f"{iterator!r} is not an async iterator" + raise TypeError(msg) from e if default is _no_default: return __anext__(iterator) @@ -95,10 +93,10 @@ async def __aexit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> bool: async def tee_peer( iterator: AsyncIterator[T], # the buffer specific to this peer - buffer: Deque[T], + buffer: deque[T], # the buffers of all peers, including our own - peers: List[Deque[T]], - lock: AsyncContextManager[Any], + peers: list[deque[T]], + lock: AbstractAsyncContextManager[Any], ) -> AsyncGenerator[T, None]: """An individual iterator of a :py:func:`~.tee`. @@ -191,10 +189,10 @@ def __init__( iterable: AsyncIterator[T], n: int = 2, *, - lock: Optional[AsyncContextManager[Any]] = None, + lock: Optional[AbstractAsyncContextManager[Any]] = None, ): self._iterator = iterable.__aiter__() # before 3.10 aiter() doesn't exist - self._buffers: List[Deque[T]] = [deque() for _ in range(n)] + self._buffers: list[deque[T]] = [deque() for _ in range(n)] self._children = tuple( tee_peer( iterator=self._iterator, @@ -212,11 +210,11 @@ def __len__(self) -> int: def __getitem__(self, item: int) -> AsyncIterator[T]: ... @overload - def __getitem__(self, item: slice) -> Tuple[AsyncIterator[T], ...]: ... + def __getitem__(self, item: slice) -> tuple[AsyncIterator[T], ...]: ... def __getitem__( self, item: Union[int, slice] - ) -> Union[AsyncIterator[T], Tuple[AsyncIterator[T], ...]]: + ) -> Union[AsyncIterator[T], tuple[AsyncIterator[T], ...]]: return self._children[item] def __iter__(self) -> Iterator[AsyncIterator[T]]: @@ -238,7 +236,7 @@ async def aclose(self) -> None: atee = Tee -class aclosing(AbstractAsyncContextManager): +class aclosing(AbstractAsyncContextManager): # noqa: N801 """Async context manager for safely finalizing an asynchronously cleaned-up resource such as an async generator, calling its ``aclose()`` method. @@ -267,7 +265,7 @@ async def __aenter__(self) -> Union[AsyncGenerator[Any, Any], AsyncIterator[Any] async def __aexit__( self, - exc_type: Optional[Type[BaseException]], + exc_type: Optional[type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: @@ -277,7 +275,7 @@ async def __aexit__( async def abatch_iterate( size: int, iterable: AsyncIterable[T] -) -> AsyncIterator[List[T]]: +) -> AsyncIterator[list[T]]: """Utility batching function for async iterables. Args: @@ -287,7 +285,7 @@ async def abatch_iterate( Returns: An async iterator over the batches. """ - batch: List[T] = [] + batch: list[T] = [] async for element in iterable: if len(batch) < size: batch.append(element) diff --git a/libs/core/langchain_core/utils/env.py b/libs/core/langchain_core/utils/env.py index 6c5cff888193a..ac018b0208a70 100644 --- a/libs/core/langchain_core/utils/env.py +++ b/libs/core/langchain_core/utils/env.py @@ -1,7 +1,7 @@ from __future__ import annotations import os -from typing import Any, Dict, List, Optional, Union +from typing import Any, Optional, Union def env_var_is_set(env_var: str) -> bool: @@ -22,8 +22,8 @@ def env_var_is_set(env_var: str) -> bool: def get_from_dict_or_env( - data: Dict[str, Any], - key: Union[str, List[str]], + data: dict[str, Any], + key: Union[str, list[str]], env_key: str, default: Optional[str] = None, ) -> str: @@ -43,14 +43,10 @@ def get_from_dict_or_env( if k in data and data[k]: return data[k] - if isinstance(key, str): - if key in data and data[key]: - return data[key] + if isinstance(key, str) and key in data and data[key]: + return data[key] - if isinstance(key, (list, tuple)): - key_for_err = key[0] - else: - key_for_err = key + key_for_err = key[0] if isinstance(key, (list, tuple)) else key return get_from_env(key_for_err, env_key, default=default) @@ -77,8 +73,9 @@ def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str: elif default is not None: return default else: - raise ValueError( + msg = ( f"Did not find {key}, please add an environment variable" f" `{env_key}` which contains it, or pass" f" `{key}` as a named parameter." ) + raise ValueError(msg) diff --git a/libs/core/langchain_core/utils/formatting.py b/libs/core/langchain_core/utils/formatting.py index b5b880f66b1fc..d00431be85b1e 100644 --- a/libs/core/langchain_core/utils/formatting.py +++ b/libs/core/langchain_core/utils/formatting.py @@ -1,7 +1,8 @@ """Utilities for formatting strings.""" +from collections.abc import Mapping, Sequence from string import Formatter -from typing import Any, List, Mapping, Sequence +from typing import Any class StrictFormatter(Formatter): @@ -24,14 +25,15 @@ def vformat( ValueError: If any arguments are provided. """ if len(args) > 0: - raise ValueError( + msg = ( "No arguments should be provided, " "everything should be passed as keyword arguments." ) + raise ValueError(msg) return super().vformat(format_string, args, kwargs) def validate_input_variables( - self, format_string: str, input_variables: List[str] + self, format_string: str, input_variables: list[str] ) -> None: """Check that all input variables are used in the format string. diff --git a/libs/core/langchain_core/utils/function_calling.py b/libs/core/langchain_core/utils/function_calling.py index c5c4d82461dc2..9bb62c92b9e20 100644 --- a/libs/core/langchain_core/utils/function_calling.py +++ b/libs/core/langchain_core/utils/function_calling.py @@ -10,24 +10,20 @@ import uuid from typing import ( TYPE_CHECKING, + Annotated, Any, Callable, - Dict, - List, Literal, Optional, - Set, - Tuple, - Type, Union, cast, ) -from typing_extensions import Annotated, TypedDict, get_args, get_origin, is_typeddict +from pydantic import BaseModel +from typing_extensions import TypedDict, get_args, get_origin, is_typeddict from langchain_core._api import deprecated from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage -from langchain_core.pydantic_v1 import BaseModel, Field, create_model from langchain_core.utils.json_schema import dereference_refs from langchain_core.utils.pydantic import is_basemodel_subclass @@ -68,7 +64,7 @@ def _rm_titles(kv: dict, prev_key: str = "") -> dict: new_kv = {} for k, v in kv.items(): if k == "title": - if isinstance(v, dict) and prev_key == "properties" and "title" in v.keys(): + if isinstance(v, dict) and prev_key == "properties" and "title" in v: new_kv[k] = _rm_titles(v, k) else: continue @@ -85,7 +81,7 @@ def _rm_titles(kv: dict, prev_key: str = "") -> dict: removal="1.0", ) def convert_pydantic_to_openai_function( - model: Type[BaseModel], + model: type, *, name: Optional[str] = None, description: Optional[str] = None, @@ -106,10 +102,16 @@ def convert_pydantic_to_openai_function( """ if hasattr(model, "model_json_schema"): schema = model.model_json_schema() # Pydantic 2 - else: + elif hasattr(model, "schema"): schema = model.schema() # Pydantic 1 + else: + msg = "Model must be a Pydantic model." + raise TypeError(msg) schema = dereference_refs(schema) - schema.pop("definitions", None) + if "definitions" in schema: # pydantic 1 + schema.pop("definitions", None) + if "$defs" in schema: # pydantic 2 + schema.pop("$defs", None) title = schema.pop("title", "") default_description = schema.pop("description", "") return { @@ -125,7 +127,7 @@ def convert_pydantic_to_openai_function( removal="1.0", ) def convert_pydantic_to_openai_tool( - model: Type[BaseModel], + model: type[BaseModel], *, name: Optional[str] = None, description: Optional[str] = None, @@ -191,24 +193,29 @@ def convert_python_function_to_openai_function( ) -def _convert_typed_dict_to_openai_function(typed_dict: Type) -> FunctionDescription: - visited: Dict = {} +def _convert_typed_dict_to_openai_function(typed_dict: type) -> FunctionDescription: + visited: dict = {} + from pydantic.v1 import BaseModel + model = cast( - Type[BaseModel], + type[BaseModel], _convert_any_typed_dicts_to_pydantic(typed_dict, visited=visited), ) - return convert_pydantic_to_openai_function(model) + return convert_pydantic_to_openai_function(model) # type: ignore _MAX_TYPED_DICT_RECURSION = 25 def _convert_any_typed_dicts_to_pydantic( - type_: Type, + type_: type, *, - visited: Dict, + visited: dict, depth: int = 0, -) -> Type: +) -> type: + from pydantic.v1 import Field as Field_v1 + from pydantic.v1 import create_model as create_model_v1 + if type_ in visited: return visited[type_] elif depth >= _MAX_TYPED_DICT_RECURSION: @@ -227,22 +234,21 @@ def _convert_any_typed_dicts_to_pydantic( new_arg_type = _convert_any_typed_dicts_to_pydantic( annotated_args[0], depth=depth + 1, visited=visited ) - field_kwargs = { - k: v for k, v in zip(("default", "description"), annotated_args[1:]) - } + field_kwargs = dict(zip(("default", "description"), annotated_args[1:])) if (field_desc := field_kwargs.get("description")) and not isinstance( field_desc, str ): - raise ValueError( + msg = ( f"Invalid annotation for field {arg}. Third argument to " f"Annotated must be a string description, received value of " f"type {type(field_desc)}." ) + raise ValueError(msg) elif arg_desc := arg_descriptions.get(arg): field_kwargs["description"] = arg_desc else: pass - fields[arg] = (new_arg_type, Field(**field_kwargs)) + fields[arg] = (new_arg_type, Field_v1(**field_kwargs)) else: new_arg_type = _convert_any_typed_dicts_to_pydantic( arg_type, depth=depth + 1, visited=visited @@ -250,8 +256,8 @@ def _convert_any_typed_dicts_to_pydantic( field_kwargs = {"default": ...} if arg_desc := arg_descriptions.get(arg): field_kwargs["description"] = arg_desc - fields[arg] = (new_arg_type, Field(**field_kwargs)) - model = create_model(typed_dict.__name__, **fields) + fields[arg] = (new_arg_type, Field_v1(**field_kwargs)) + model = create_model_v1(typed_dict.__name__, **fields) model.__doc__ = description visited[typed_dict] = model return model @@ -259,9 +265,9 @@ def _convert_any_typed_dicts_to_pydantic( subscriptable_origin = _py_38_safe_origin(origin) type_args = tuple( _convert_any_typed_dicts_to_pydantic(arg, depth=depth + 1, visited=visited) - for arg in type_args + for arg in type_args # type: ignore[index] ) - return subscriptable_origin[type_args] + return subscriptable_origin[type_args] # type: ignore[index] else: return type_ @@ -280,7 +286,10 @@ def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription: Returns: The function description. """ - if tool.tool_call_schema: + from langchain_core.tools import simple + + is_simple_oai_tool = isinstance(tool, simple.Tool) and not tool.args_schema + if tool.tool_call_schema and not is_simple_oai_tool: return convert_pydantic_to_openai_function( tool.tool_call_schema, name=tool.name, description=tool.description ) @@ -322,10 +331,10 @@ def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription: def convert_to_openai_function( - function: Union[Dict[str, Any], Type, Callable, BaseTool], + function: Union[dict[str, Any], type, Callable, BaseTool], *, strict: Optional[bool] = None, -) -> Dict[str, Any]: +) -> dict[str, Any]: """Convert a raw function/class to an OpenAI function. .. versionchanged:: 0.2.29 @@ -370,22 +379,23 @@ def convert_to_openai_function( "parameters": function, } elif isinstance(function, type) and is_basemodel_subclass(function): - oai_function = cast(Dict, convert_pydantic_to_openai_function(function)) + oai_function = cast(dict, convert_pydantic_to_openai_function(function)) elif is_typeddict(function): oai_function = cast( - Dict, _convert_typed_dict_to_openai_function(cast(Type, function)) + dict, _convert_typed_dict_to_openai_function(cast(type, function)) ) elif isinstance(function, BaseTool): - oai_function = cast(Dict, format_tool_to_openai_function(function)) + oai_function = cast(dict, format_tool_to_openai_function(function)) elif callable(function): - oai_function = cast(Dict, convert_python_function_to_openai_function(function)) + oai_function = cast(dict, convert_python_function_to_openai_function(function)) else: - raise ValueError( + msg = ( f"Unsupported function\n\n{function}\n\nFunctions must be passed in" " as Dict, pydantic.BaseModel, or Callable. If they're a dict they must" " either be in OpenAI function format or valid JSON schema with top-level" " 'title' and 'description' keys." ) + raise ValueError(msg) if strict is not None: oai_function["strict"] = strict @@ -400,10 +410,10 @@ def convert_to_openai_function( def convert_to_openai_tool( - tool: Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool], + tool: Union[dict[str, Any], type[BaseModel], Callable, BaseTool], *, strict: Optional[bool] = None, -) -> Dict[str, Any]: +) -> dict[str, Any]: """Convert a raw function/class to an OpenAI tool. .. versionchanged:: 0.2.29 @@ -430,13 +440,13 @@ def convert_to_openai_tool( if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool: return tool oai_function = convert_to_openai_function(tool, strict=strict) - oai_tool: Dict[str, Any] = {"type": "function", "function": oai_function} + oai_tool: dict[str, Any] = {"type": "function", "function": oai_function} return oai_tool def tool_example_to_messages( - input: str, tool_calls: List[BaseModel], tool_outputs: Optional[List[str]] = None -) -> List[BaseMessage]: + input: str, tool_calls: list[BaseModel], tool_outputs: Optional[list[str]] = None +) -> list[BaseMessage]: """Convert an example into a list of messages that can be fed into an LLM. This code is an adapter that converts a single example to a list of messages @@ -468,7 +478,7 @@ def tool_example_to_messages( .. code-block:: python from typing import List, Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_openai import ChatOpenAI class Person(BaseModel): @@ -500,7 +510,7 @@ class Person(BaseModel): tool_example_to_messages(txt, [tool_call]) ) """ - messages: List[BaseMessage] = [HumanMessage(content=input)] + messages: list[BaseMessage] = [HumanMessage(content=input)] openai_tool_calls = [] for tool_call in tool_calls: openai_tool_calls.append( @@ -512,7 +522,7 @@ class Person(BaseModel): # of the pydantic model. This is implicit in the API right now, # and will be improved over time. "name": tool_call.__class__.__name__, - "arguments": tool_call.json(), + "arguments": tool_call.model_dump_json(), }, } ) @@ -529,10 +539,10 @@ class Person(BaseModel): def _parse_google_docstring( docstring: Optional[str], - args: List[str], + args: list[str], *, error_on_invalid_docstring: bool = False, -) -> Tuple[str, dict]: +) -> tuple[str, dict]: """Parse the function and argument descriptions from the docstring of a function. Assumes the function docstring follows Google Python style guide. @@ -546,7 +556,8 @@ def _parse_google_docstring( if filtered_annotations and ( len(docstring_blocks) < 2 or not docstring_blocks[1].startswith("Args:") ): - raise ValueError("Found invalid Google-Style docstring.") + msg = "Found invalid Google-Style docstring." + raise ValueError(msg) descriptors = [] args_block = None past_descriptors = False @@ -554,7 +565,7 @@ def _parse_google_docstring( if block.startswith("Args:"): args_block = block break - elif block.startswith("Returns:") or block.startswith("Example:"): + elif block.startswith(("Returns:", "Example:")): # Don't break in case Args come after past_descriptors = True elif not past_descriptors: @@ -564,7 +575,8 @@ def _parse_google_docstring( description = " ".join(descriptors) else: if error_on_invalid_docstring: - raise ValueError("Found invalid Google-Style docstring.") + msg = "Found invalid Google-Style docstring." + raise ValueError(msg) description = "" args_block = None arg_descriptions = {} @@ -579,32 +591,36 @@ def _parse_google_docstring( return description, arg_descriptions -def _py_38_safe_origin(origin: Type) -> Type: - origin_union_type_map: Dict[Type, Any] = ( +def _py_38_safe_origin(origin: type) -> type: + origin_union_type_map: dict[type, Any] = ( {types.UnionType: Union} if hasattr(types, "UnionType") else {} ) - origin_map: Dict[Type, Any] = { - dict: Dict, - list: List, - tuple: Tuple, - set: Set, + origin_map: dict[type, Any] = { + dict: dict, + list: list, + tuple: tuple, + set: set, collections.abc.Iterable: typing.Iterable, collections.abc.Mapping: typing.Mapping, collections.abc.Sequence: typing.Sequence, collections.abc.MutableMapping: typing.MutableMapping, **origin_union_type_map, } - return cast(Type, origin_map.get(origin, origin)) + return cast(type, origin_map.get(origin, origin)) def _recursive_set_additional_properties_false( - schema: Dict[str, Any], -) -> Dict[str, Any]: + schema: dict[str, Any], +) -> dict[str, Any]: if isinstance(schema, dict): - # Check if 'required' is a key at the current level - if "required" in schema: + # Check if 'required' is a key at the current level or if the schema is empty, + # in which case additionalProperties still needs to be specified. + if "required" in schema or ( + "properties" in schema and not schema["properties"] + ): schema["additionalProperties"] = False + # Recursively check 'properties' and 'items' if they exist if "properties" in schema: for value in schema["properties"].values(): diff --git a/libs/core/langchain_core/utils/html.py b/libs/core/langchain_core/utils/html.py index 9750515bd1f58..805cae3cc8ed8 100644 --- a/libs/core/langchain_core/utils/html.py +++ b/libs/core/langchain_core/utils/html.py @@ -1,6 +1,7 @@ import logging import re -from typing import List, Optional, Sequence, Union +from collections.abc import Sequence +from typing import Optional, Union from urllib.parse import urljoin, urlparse logger = logging.getLogger(__name__) @@ -33,7 +34,7 @@ def find_all_links( raw_html: str, *, pattern: Union[str, re.Pattern, None] = None -) -> List[str]: +) -> list[str]: """Extract all links from a raw HTML string. Args: @@ -56,7 +57,7 @@ def extract_sub_links( prevent_outside: bool = True, exclude_prefixes: Sequence[str] = (), continue_on_failure: bool = False, -) -> List[str]: +) -> list[str]: """Extract all links from a raw HTML string and convert into absolute paths. Args: diff --git a/libs/core/langchain_core/utils/input.py b/libs/core/langchain_core/utils/input.py index 7edfcd7b6cb17..05e9bbcfcedc3 100644 --- a/libs/core/langchain_core/utils/input.py +++ b/libs/core/langchain_core/utils/input.py @@ -1,6 +1,6 @@ """Handle chained inputs.""" -from typing import Dict, List, Optional, TextIO +from typing import Optional, TextIO _TEXT_COLOR_MAPPING = { "blue": "36;1", @@ -12,8 +12,8 @@ def get_color_mapping( - items: List[str], excluded_colors: Optional[List] = None -) -> Dict[str, str]: + items: list[str], excluded_colors: Optional[list] = None +) -> dict[str, str]: """Get mapping for items to a support color. Args: diff --git a/libs/core/langchain_core/utils/iter.py b/libs/core/langchain_core/utils/iter.py index 9645b75597b18..f76ada9ddd02c 100644 --- a/libs/core/langchain_core/utils/iter.py +++ b/libs/core/langchain_core/utils/iter.py @@ -1,16 +1,11 @@ from collections import deque +from collections.abc import Generator, Iterable, Iterator +from contextlib import AbstractContextManager from itertools import islice from typing import ( Any, - ContextManager, - Deque, - Generator, Generic, - Iterable, - Iterator, - List, Optional, - Tuple, TypeVar, Union, overload, @@ -34,10 +29,10 @@ def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> Literal[False]: def tee_peer( iterator: Iterator[T], # the buffer specific to this peer - buffer: Deque[T], + buffer: deque[T], # the buffers of all peers, including our own - peers: List[Deque[T]], - lock: ContextManager[Any], + peers: list[deque[T]], + lock: AbstractContextManager[Any], ) -> Generator[T, None, None]: """An individual iterator of a :py:func:`~.tee`. @@ -130,7 +125,7 @@ def __init__( iterable: Iterator[T], n: int = 2, *, - lock: Optional[ContextManager[Any]] = None, + lock: Optional[AbstractContextManager[Any]] = None, ): """Create a new ``tee``. @@ -141,7 +136,7 @@ def __init__( Defaults to None. """ self._iterator = iter(iterable) - self._buffers: List[Deque[T]] = [deque() for _ in range(n)] + self._buffers: list[deque[T]] = [deque() for _ in range(n)] self._children = tuple( tee_peer( iterator=self._iterator, @@ -159,11 +154,11 @@ def __len__(self) -> int: def __getitem__(self, item: int) -> Iterator[T]: ... @overload - def __getitem__(self, item: slice) -> Tuple[Iterator[T], ...]: ... + def __getitem__(self, item: slice) -> tuple[Iterator[T], ...]: ... def __getitem__( self, item: Union[int, slice] - ) -> Union[Iterator[T], Tuple[Iterator[T], ...]]: + ) -> Union[Iterator[T], tuple[Iterator[T], ...]]: return self._children[item] def __iter__(self) -> Iterator[Iterator[T]]: @@ -185,7 +180,7 @@ def close(self) -> None: safetee = Tee -def batch_iterate(size: Optional[int], iterable: Iterable[T]) -> Iterator[List[T]]: +def batch_iterate(size: Optional[int], iterable: Iterable[T]) -> Iterator[list[T]]: """Utility batching function. Args: diff --git a/libs/core/langchain_core/utils/json.py b/libs/core/langchain_core/utils/json.py index a45d59cd232a7..88e91899b9122 100644 --- a/libs/core/langchain_core/utils/json.py +++ b/libs/core/langchain_core/utils/json.py @@ -2,7 +2,7 @@ import json import re -from typing import Any, Callable, List +from typing import Any, Callable from langchain_core.exceptions import OutputParserException @@ -139,11 +139,8 @@ def parse_json_markdown( match = _json_markdown_re.search(json_string) # If no match found, assume the entire string is a JSON string - if match is None: - json_str = json_string - else: - # If match found, use the content within the backticks - json_str = match.group(2) + # Else, use the content within the backticks + json_str = json_string if match is None else match.group(2) return _parse_json(json_str, parser=parser) @@ -163,7 +160,7 @@ def _parse_json( return parser(json_str) -def parse_and_check_json_markdown(text: str, expected_keys: List[str]) -> dict: +def parse_and_check_json_markdown(text: str, expected_keys: list[str]) -> dict: """ Parse a JSON string from a Markdown string and check that it contains the expected keys. @@ -182,11 +179,13 @@ def parse_and_check_json_markdown(text: str, expected_keys: List[str]) -> dict: try: json_obj = parse_json_markdown(text) except json.JSONDecodeError as e: - raise OutputParserException(f"Got invalid JSON object. Error: {e}") from e + msg = f"Got invalid JSON object. Error: {e}" + raise OutputParserException(msg) from e for key in expected_keys: if key not in json_obj: - raise OutputParserException( + msg = ( f"Got invalid return object. Expected key `{key}` " f"to be present, but got {json_obj}" ) + raise OutputParserException(msg) return json_obj diff --git a/libs/core/langchain_core/utils/json_schema.py b/libs/core/langchain_core/utils/json_schema.py index be5c8e25ba862..8ac177e342cc2 100644 --- a/libs/core/langchain_core/utils/json_schema.py +++ b/libs/core/langchain_core/utils/json_schema.py @@ -1,16 +1,18 @@ from __future__ import annotations +from collections.abc import Sequence from copy import deepcopy -from typing import Any, Dict, List, Optional, Sequence, Set +from typing import Any, Optional def _retrieve_ref(path: str, schema: dict) -> dict: components = path.split("/") if components[0] != "#": - raise ValueError( + msg = ( "ref paths are expected to be URI fragments, meaning they should start " "with #." ) + raise ValueError(msg) out = schema for component in components[1:]: if component in out: @@ -18,15 +20,16 @@ def _retrieve_ref(path: str, schema: dict) -> dict: elif component.isdigit() and int(component) in out: out = out[int(component)] else: - raise KeyError(f"Reference '{path}' not found.") + msg = f"Reference '{path}' not found." + raise KeyError(msg) return deepcopy(out) def _dereference_refs_helper( obj: Any, - full_schema: Dict[str, Any], + full_schema: dict[str, Any], skip_keys: Sequence[str], - processed_refs: Optional[Set[str]] = None, + processed_refs: Optional[set[str]] = None, ) -> Any: if processed_refs is None: processed_refs = set() @@ -63,8 +66,8 @@ def _dereference_refs_helper( def _infer_skip_keys( - obj: Any, full_schema: dict, processed_refs: Optional[Set[str]] = None -) -> List[str]: + obj: Any, full_schema: dict, processed_refs: Optional[set[str]] = None +) -> list[str]: if processed_refs is None: processed_refs = set() diff --git a/libs/core/langchain_core/utils/mustache.py b/libs/core/langchain_core/utils/mustache.py index f8b8a93cb122a..89d5d9fbbf144 100644 --- a/libs/core/langchain_core/utils/mustache.py +++ b/libs/core/langchain_core/utils/mustache.py @@ -6,17 +6,12 @@ from __future__ import annotations import logging +from collections.abc import Iterator, Mapping, Sequence from types import MappingProxyType from typing import ( Any, - Dict, - Iterator, - List, Literal, - Mapping, Optional, - Sequence, - Tuple, Union, cast, ) @@ -26,7 +21,7 @@ logger = logging.getLogger(__name__) -Scopes: TypeAlias = List[Union[Literal[False, 0], Mapping[str, Any]]] +Scopes: TypeAlias = list[Union[Literal[False, 0], Mapping[str, Any]]] # Globals @@ -37,15 +32,13 @@ class ChevronError(SyntaxError): """Custom exception for Chevron errors.""" - pass - # # Helper functions # -def grab_literal(template: str, l_del: str) -> Tuple[str, str]: +def grab_literal(template: str, l_del: str) -> tuple[str, str]: """Parse a literal from the template. Args: @@ -87,12 +80,9 @@ def l_sa_check(template: str, literal: str, is_standalone: bool) -> bool: padding = literal.split("\n")[-1] # If all the characters since the last newline are spaces - if padding.isspace() or padding == "": - # Then the next tag could be a standalone - return True - else: - # Otherwise it can't be - return False + # Then the next tag could be a standalone + # Otherwise it can't be + return padding.isspace() or padding == "" else: return False @@ -114,17 +104,14 @@ def r_sa_check(template: str, tag_type: str, is_standalone: bool) -> bool: on_newline = template.split("\n", 1) # If the stuff to the right of us are spaces we're a standalone - if on_newline[0].isspace() or not on_newline[0]: - return True - else: - return False + return on_newline[0].isspace() or not on_newline[0] # If we're a tag can't be a standalone else: return False -def parse_tag(template: str, l_del: str, r_del: str) -> Tuple[Tuple[str, str], str]: +def parse_tag(template: str, l_del: str, r_del: str) -> tuple[tuple[str, str], str]: """Parse a tag from a template. Args: @@ -157,7 +144,8 @@ def parse_tag(template: str, l_del: str, r_del: str) -> Tuple[Tuple[str, str], s try: tag, template = template.split(r_del, 1) except ValueError as e: - raise ChevronError("unclosed tag " f"at line {_CURRENT_LINE}") from e + msg = "unclosed tag " f"at line {_CURRENT_LINE}" + raise ChevronError(msg) from e # Find the type meaning of the first character tag_type = tag_types.get(tag[0], "variable") @@ -177,18 +165,21 @@ def parse_tag(template: str, l_del: str, r_del: str) -> Tuple[Tuple[str, str], s # Otherwise we should complain else: - raise ChevronError( - "unclosed set delimiter tag\n" f"at line {_CURRENT_LINE}" - ) + msg = "unclosed set delimiter tag\n" f"at line {_CURRENT_LINE}" + raise ChevronError(msg) - # If we might be a no html escape tag - elif tag_type == "no escape?": + elif ( + # If we might be a no html escape tag + tag_type == "no escape?" # And we have a third curly brace # (And are using curly braces as delimiters) - if l_del == "{{" and r_del == "}}" and template.startswith("}"): - # Then we are a no html escape tag - template = template[1:] - tag_type = "no escape" + and l_del == "{{" + and r_del == "}}" + and template.startswith("}") + ): + # Then we are a no html escape tag + template = template[1:] + tag_type = "no escape" # Strip the whitespace off the key and return return ((tag_type, tag.strip()), template) @@ -201,7 +192,7 @@ def parse_tag(template: str, l_del: str, r_del: str) -> Tuple[Tuple[str, str], s def tokenize( template: str, def_ldel: str = "{{", def_rdel: str = "}}" -) -> Iterator[Tuple[str, str]]: +) -> Iterator[tuple[str, str]]: """Tokenize a mustache template. Tokenizes a mustache template in a generator fashion, @@ -284,18 +275,20 @@ def tokenize( try: last_section = open_sections.pop() except IndexError as e: - raise ChevronError( + msg = ( f'Trying to close tag "{tag_key}"\n' "Looks like it was not opened.\n" f"line {_CURRENT_LINE + 1}" - ) from e + ) + raise ChevronError(msg) from e if tag_key != last_section: # Otherwise we need to complain - raise ChevronError( + msg = ( f'Trying to close tag "{tag_key}"\n' f'last open tag is "{last_section}"\n' f"line {_CURRENT_LINE + 1}" ) + raise ChevronError(msg) # Do the second check to see if we're a standalone is_standalone = r_sa_check(template, tag_type, is_standalone) @@ -322,11 +315,12 @@ def tokenize( # If there are any open sections when we're done if open_sections: # Then we need to complain - raise ChevronError( + msg = ( "Unexpected EOF\n" f'the tag "{open_sections[-1]}" was never closed\n' f"was opened at line {_LAST_TAG_LINE}" ) + raise ChevronError(msg) # @@ -382,7 +376,7 @@ def _get_key( # Move into the scope try: # Try subscripting (Normal dictionaries) - scope = cast(Dict[str, Any], scope)[child] + scope = cast(dict[str, Any], scope)[child] except (TypeError, AttributeError): try: scope = getattr(scope, child) @@ -427,13 +421,13 @@ def _get_partial(name: str, partials_dict: Mapping[str, str]) -> str: # # The main rendering function # -g_token_cache: Dict[str, List[Tuple[str, str]]] = {} +g_token_cache: dict[str, list[tuple[str, str]]] = {} EMPTY_DICT: MappingProxyType[str, str] = MappingProxyType({}) def render( - template: Union[str, List[Tuple[str, str]]] = "", + template: Union[str, list[tuple[str, str]]] = "", data: Mapping[str, Any] = EMPTY_DICT, partials_dict: Mapping[str, str] = EMPTY_DICT, padding: str = "", @@ -490,7 +484,7 @@ def render( if isinstance(template, Sequence) and not isinstance(template, str): # Then we don't need to tokenize it # But it does need to be a generator - tokens: Iterator[Tuple[str, str]] = (token for token in template) + tokens: Iterator[tuple[str, str]] = (token for token in template) else: if template in g_token_cache: tokens = (token for token in g_token_cache[template]) @@ -561,7 +555,7 @@ def render( if callable(scope): # Generate template text from tags text = "" - tags: List[Tuple[str, str]] = [] + tags: list[tuple[str, str]] = [] for token in tokens: if token == ("end", key): break diff --git a/libs/core/langchain_core/utils/pydantic.py b/libs/core/langchain_core/utils/pydantic.py index edb48d9ceff8d..7d81b8f70f03c 100644 --- a/libs/core/langchain_core/utils/pydantic.py +++ b/libs/core/langchain_core/utils/pydantic.py @@ -4,12 +4,38 @@ import inspect import textwrap -from functools import wraps -from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union, overload - -import pydantic # pydantic: ignore - -from langchain_core.pydantic_v1 import BaseModel, root_validator +import warnings +from contextlib import nullcontext +from functools import lru_cache, wraps +from types import GenericAlias +from typing import ( + Any, + Callable, + Optional, + TypeVar, + Union, + cast, + overload, +) + +import pydantic +from pydantic import ( + BaseModel, + ConfigDict, + PydanticDeprecationWarning, + RootModel, + root_validator, +) +from pydantic import ( + create_model as _create_model_base, +) +from pydantic.json_schema import ( + DEFAULT_REF_TEMPLATE, + GenerateJsonSchema, + JsonSchemaMode, + JsonSchemaValue, +) +from pydantic_core import core_schema def get_pydantic_major_version() -> int: @@ -29,21 +55,22 @@ def get_pydantic_major_version() -> int: from pydantic.fields import FieldInfo as FieldInfoV1 PydanticBaseModel = pydantic.BaseModel - TypeBaseModel = Type[BaseModel] + TypeBaseModel = type[BaseModel] elif PYDANTIC_MAJOR_VERSION == 2: from pydantic.v1.fields import FieldInfo as FieldInfoV1 # type: ignore[assignment] # Union type needs to be last assignment to PydanticBaseModel to make mypy happy. PydanticBaseModel = Union[BaseModel, pydantic.BaseModel] # type: ignore - TypeBaseModel = Union[Type[BaseModel], Type[pydantic.BaseModel]] # type: ignore + TypeBaseModel = Union[type[BaseModel], type[pydantic.BaseModel]] # type: ignore else: - raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}") + msg = f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise ValueError(msg) TBaseModel = TypeVar("TBaseModel", bound=PydanticBaseModel) -def is_pydantic_v1_subclass(cls: Type) -> bool: +def is_pydantic_v1_subclass(cls: type) -> bool: """Check if the installed Pydantic version is 1.x-like.""" if PYDANTIC_MAJOR_VERSION == 1: return True @@ -55,14 +82,14 @@ def is_pydantic_v1_subclass(cls: Type) -> bool: return False -def is_pydantic_v2_subclass(cls: Type) -> bool: +def is_pydantic_v2_subclass(cls: type) -> bool: """Check if the installed Pydantic version is 1.x-like.""" from pydantic import BaseModel return PYDANTIC_MAJOR_VERSION == 2 and issubclass(cls, BaseModel) -def is_basemodel_subclass(cls: Type) -> bool: +def is_basemodel_subclass(cls: type) -> bool: """Check if the given class is a subclass of Pydantic BaseModel. Check if the given class is a subclass of any of the following: @@ -72,17 +99,17 @@ def is_basemodel_subclass(cls: Type) -> bool: * pydantic.v1.BaseModel in Pydantic 2.x """ # Before we can use issubclass on the cls we need to check if it is a class - if not inspect.isclass(cls): + if not inspect.isclass(cls) or isinstance(cls, GenericAlias): return False if PYDANTIC_MAJOR_VERSION == 1: - from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore + from pydantic import BaseModel as BaseModelV1Proper if issubclass(cls, BaseModelV1Proper): return True elif PYDANTIC_MAJOR_VERSION == 2: - from pydantic import BaseModel as BaseModelV2 # pydantic: ignore - from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore + from pydantic import BaseModel as BaseModelV2 + from pydantic.v1 import BaseModel as BaseModelV1 if issubclass(cls, BaseModelV2): return True @@ -90,7 +117,8 @@ def is_basemodel_subclass(cls: Type) -> bool: if issubclass(cls, BaseModelV1): return True else: - raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}") + msg = f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise ValueError(msg) return False @@ -104,13 +132,13 @@ def is_basemodel_instance(obj: Any) -> bool: * pydantic.v1.BaseModel in Pydantic 2.x """ if PYDANTIC_MAJOR_VERSION == 1: - from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore + from pydantic import BaseModel as BaseModelV1Proper if isinstance(obj, BaseModelV1Proper): return True elif PYDANTIC_MAJOR_VERSION == 2: - from pydantic import BaseModel as BaseModelV2 # pydantic: ignore - from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore + from pydantic import BaseModel as BaseModelV2 + from pydantic.v1 import BaseModel as BaseModelV1 if isinstance(obj, BaseModelV2): return True @@ -118,7 +146,8 @@ def is_basemodel_instance(obj: Any) -> bool: if isinstance(obj, BaseModelV1): return True else: - raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}") + msg = f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise ValueError(msg) return False @@ -133,57 +162,88 @@ def pre_init(func: Callable) -> Any: Any: The decorated function. """ - @root_validator(pre=True) - @wraps(func) - def wrapper(cls: Type[BaseModel], values: Dict[str, Any]) -> Dict[str, Any]: - """Decorator to run a function before model initialization. - - Args: - cls (Type[BaseModel]): The model class. - values (Dict[str, Any]): The values to initialize the model with. - - Returns: - Dict[str, Any]: The values to initialize the model with. - """ - # Insert default values - fields = cls.__fields__ - for name, field_info in fields.items(): - # Check if allow_population_by_field_name is enabled - # If yes, then set the field name to the alias - if hasattr(cls, "Config"): - if hasattr(cls.Config, "allow_population_by_field_name"): - if cls.Config.allow_population_by_field_name: - if field_info.alias in values: - values[name] = values.pop(field_info.alias) - - if name not in values or values[name] is None: - if not field_info.required: + with warnings.catch_warnings(): + warnings.filterwarnings(action="ignore", category=PydanticDeprecationWarning) + + @root_validator(pre=True) + @wraps(func) + def wrapper(cls: type[BaseModel], values: dict[str, Any]) -> dict[str, Any]: + """Decorator to run a function before model initialization. + + Args: + cls (Type[BaseModel]): The model class. + values (Dict[str, Any]): The values to initialize the model with. + + Returns: + Dict[str, Any]: The values to initialize the model with. + """ + # Insert default values + fields = cls.model_fields + for name, field_info in fields.items(): + # Check if allow_population_by_field_name is enabled + # If yes, then set the field name to the alias + if ( + hasattr(cls, "Config") + and hasattr(cls.Config, "allow_population_by_field_name") + and cls.Config.allow_population_by_field_name + and field_info.alias in values + ): + values[name] = values.pop(field_info.alias) + if ( + hasattr(cls, "model_config") + and cls.model_config.get("populate_by_name") + and field_info.alias in values + ): + values[name] = values.pop(field_info.alias) + + if ( + name not in values or values[name] is None + ) and not field_info.is_required(): if field_info.default_factory is not None: values[name] = field_info.default_factory() else: values[name] = field_info.default - # Call the decorated function - return func(cls, values) + # Call the decorated function + return func(cls, values) return wrapper +class _IgnoreUnserializable(GenerateJsonSchema): + """A JSON schema generator that ignores unknown types. + + https://docs.pydantic.dev/latest/concepts/json_schema/#customizing-the-json-schema-generation-process + """ + + def handle_invalid_for_json_schema( + self, schema: core_schema.CoreSchema, error_info: str + ) -> JsonSchemaValue: + return {} + + def _create_subset_model_v1( name: str, - model: Type[BaseModel], + model: type[BaseModel], field_names: list, *, descriptions: Optional[dict] = None, fn_description: Optional[str] = None, -) -> Type[BaseModel]: +) -> type[BaseModel]: """Create a pydantic model with only a subset of model's fields.""" - from langchain_core.pydantic_v1 import create_model + if PYDANTIC_MAJOR_VERSION == 1: + from pydantic import create_model + elif PYDANTIC_MAJOR_VERSION == 2: + from pydantic.v1 import create_model # type: ignore + else: + msg = f"Unsupported pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise NotImplementedError(msg) fields = {} for field_name in field_names: - field = model.__fields__[field_name] + # Using pydantic v1 so can access __fields__ as a dict. + field = model.__fields__[field_name] # type: ignore t = ( # this isn't perfect but should work for most functions field.outer_type_ @@ -201,15 +261,15 @@ def _create_subset_model_v1( def _create_subset_model_v2( name: str, - model: Type[pydantic.BaseModel], - field_names: List[str], + model: type[pydantic.BaseModel], + field_names: list[str], *, descriptions: Optional[dict] = None, fn_description: Optional[str] = None, -) -> Type[pydantic.BaseModel]: +) -> type[pydantic.BaseModel]: """Create a pydantic model with a subset of the model fields.""" - from pydantic import create_model # pydantic: ignore - from pydantic.fields import FieldInfo # pydantic: ignore + from pydantic import ConfigDict, create_model + from pydantic.fields import FieldInfo descriptions_ = descriptions or {} fields = {} @@ -220,8 +280,22 @@ def _create_subset_model_v2( if field.metadata: field_info.metadata = field.metadata fields[field_name] = (field.annotation, field_info) - rtn = create_model(name, **fields) # type: ignore + rtn = create_model( # type: ignore + name, **fields, __config__=ConfigDict(arbitrary_types_allowed=True) + ) + + # TODO(0.3): Determine if there is a more "pydantic" way to preserve annotations. + # This is done to preserve __annotations__ when working with pydantic 2.x + # and using the Annotated type with TypedDict. + # Comment out the following line, to trigger the relevant test case. + selected_annotations = [ + (name, annotation) + for name, annotation in model.__annotations__.items() + if name in field_names + ] + + rtn.__annotations__ = dict(selected_annotations) rtn.__doc__ = textwrap.dedent(fn_description or model.__doc__ or "") return rtn @@ -233,11 +307,11 @@ def _create_subset_model_v2( def _create_subset_model( name: str, model: TypeBaseModel, - field_names: List[str], + field_names: list[str], *, descriptions: Optional[dict] = None, fn_description: Optional[str] = None, -) -> Type[BaseModel]: +) -> type[BaseModel]: """Create subset model using the same pydantic version as the input model.""" if PYDANTIC_MAJOR_VERSION == 1: return _create_subset_model_v1( @@ -248,7 +322,7 @@ def _create_subset_model( fn_description=fn_description, ) elif PYDANTIC_MAJOR_VERSION == 2: - from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore + from pydantic.v1 import BaseModel as BaseModelV1 if issubclass(model, BaseModelV1): return _create_subset_model_v1( @@ -267,9 +341,8 @@ def _create_subset_model( fn_description=fn_description, ) else: - raise NotImplementedError( - f"Unsupported pydantic version: {PYDANTIC_MAJOR_VERSION}" - ) + msg = f"Unsupported pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise NotImplementedError(msg) if PYDANTIC_MAJOR_VERSION == 2: @@ -278,25 +351,25 @@ def _create_subset_model( from pydantic.v1 import BaseModel as BaseModelV1 @overload - def get_fields(model: Type[BaseModelV2]) -> Dict[str, FieldInfoV2]: ... + def get_fields(model: type[BaseModelV2]) -> dict[str, FieldInfoV2]: ... @overload - def get_fields(model: BaseModelV2) -> Dict[str, FieldInfoV2]: ... + def get_fields(model: BaseModelV2) -> dict[str, FieldInfoV2]: ... @overload - def get_fields(model: Type[BaseModelV1]) -> Dict[str, FieldInfoV1]: ... + def get_fields(model: type[BaseModelV1]) -> dict[str, FieldInfoV1]: ... @overload - def get_fields(model: BaseModelV1) -> Dict[str, FieldInfoV1]: ... + def get_fields(model: BaseModelV1) -> dict[str, FieldInfoV1]: ... def get_fields( model: Union[ BaseModelV2, BaseModelV1, - Type[BaseModelV2], - Type[BaseModelV1], + type[BaseModelV2], + type[BaseModelV1], ], - ) -> Union[Dict[str, FieldInfoV2], Dict[str, FieldInfoV1]]: + ) -> Union[dict[str, FieldInfoV2], dict[str, FieldInfoV1]]: """Get the field names of a Pydantic model.""" if hasattr(model, "model_fields"): return model.model_fields # type: ignore @@ -304,14 +377,259 @@ def get_fields( elif hasattr(model, "__fields__"): return model.__fields__ # type: ignore else: - raise TypeError(f"Expected a Pydantic model. Got {type(model)}") + msg = f"Expected a Pydantic model. Got {type(model)}" + raise TypeError(msg) elif PYDANTIC_MAJOR_VERSION == 1: from pydantic import BaseModel as BaseModelV1_ def get_fields( # type: ignore[no-redef] - model: Union[Type[BaseModelV1_], BaseModelV1_], - ) -> Dict[str, FieldInfoV1]: + model: Union[type[BaseModelV1_], BaseModelV1_], + ) -> dict[str, FieldInfoV1]: """Get the field names of a Pydantic model.""" return model.__fields__ # type: ignore else: - raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}") + msg = f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise ValueError(msg) + +_SchemaConfig = ConfigDict( + arbitrary_types_allowed=True, frozen=True, protected_namespaces=() +) + +NO_DEFAULT = object() + + +def _create_root_model( + name: str, + type_: Any, + module_name: Optional[str] = None, + default_: object = NO_DEFAULT, +) -> type[BaseModel]: + """Create a base class.""" + + def schema( + cls: type[BaseModel], + by_alias: bool = True, + ref_template: str = DEFAULT_REF_TEMPLATE, + ) -> dict[str, Any]: + # Complains about schema not being defined in superclass + schema_ = super(cls, cls).schema( # type: ignore[misc] + by_alias=by_alias, ref_template=ref_template + ) + schema_["title"] = name + return schema_ + + def model_json_schema( + cls: type[BaseModel], + by_alias: bool = True, + ref_template: str = DEFAULT_REF_TEMPLATE, + schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, + mode: JsonSchemaMode = "validation", + ) -> dict[str, Any]: + # Complains about model_json_schema not being defined in superclass + schema_ = super(cls, cls).model_json_schema( # type: ignore[misc] + by_alias=by_alias, + ref_template=ref_template, + schema_generator=schema_generator, + mode=mode, + ) + schema_["title"] = name + return schema_ + + base_class_attributes = { + "__annotations__": {"root": type_}, + "model_config": ConfigDict(arbitrary_types_allowed=True), + "schema": classmethod(schema), + "model_json_schema": classmethod(model_json_schema), + "__module__": module_name or "langchain_core.runnables.utils", + } + + if default_ is not NO_DEFAULT: + base_class_attributes["root"] = default_ + with warnings.catch_warnings(): + try: + if ( + isinstance(type_, type) + and not isinstance(type_, GenericAlias) + and issubclass(type_, BaseModelV1) + ): + warnings.filterwarnings( + action="ignore", category=PydanticDeprecationWarning + ) + except TypeError: + pass + custom_root_type = type(name, (RootModel,), base_class_attributes) + return cast(type[BaseModel], custom_root_type) + + +@lru_cache(maxsize=256) +def _create_root_model_cached( + model_name: str, + type_: Any, + *, + module_name: Optional[str] = None, + default_: object = NO_DEFAULT, +) -> type[BaseModel]: + return _create_root_model( + model_name, type_, default_=default_, module_name=module_name + ) + + +@lru_cache(maxsize=256) +def _create_model_cached( + __model_name: str, + **field_definitions: Any, +) -> type[BaseModel]: + return _create_model_base( + __model_name, + __config__=_SchemaConfig, + **_remap_field_definitions(field_definitions), + ) + + +def create_model( + __model_name: str, + __module_name: Optional[str] = None, + **field_definitions: Any, +) -> type[BaseModel]: + """Create a pydantic model with the given field definitions. + + Please use create_model_v2 instead of this function. + + Args: + __model_name: The name of the model. + __module_name: The name of the module where the model is defined. + This is used by Pydantic to resolve any forward references. + **field_definitions: The field definitions for the model. + + Returns: + Type[BaseModel]: The created model. + """ + kwargs = {} + if "__root__" in field_definitions: + kwargs["root"] = field_definitions.pop("__root__") + + return create_model_v2( + __model_name, + module_name=__module_name, + field_definitions=field_definitions, + **kwargs, + ) + + +# Reserved names should capture all the `public` names / methods that are +# used by BaseModel internally. This will keep the reserved names up-to-date. +# For reference, the reserved names are: +# "construct", "copy", "dict", "from_orm", "json", "parse_file", "parse_obj", +# "parse_raw", "schema", "schema_json", "update_forward_refs", "validate", +# "model_computed_fields", "model_config", "model_construct", "model_copy", +# "model_dump", "model_dump_json", "model_extra", "model_fields", +# "model_fields_set", "model_json_schema", "model_parametrized_name", +# "model_post_init", "model_rebuild", "model_validate", "model_validate_json", +# "model_validate_strings" +_RESERVED_NAMES = {key for key in dir(BaseModel) if not key.startswith("_")} + + +def _remap_field_definitions(field_definitions: dict[str, Any]) -> dict[str, Any]: + """This remaps fields to avoid colliding with internal pydantic fields.""" + from pydantic import Field + from pydantic.fields import FieldInfo + + remapped = {} + for key, value in field_definitions.items(): + if key.startswith("_") or key in _RESERVED_NAMES: + # Let's add a prefix to avoid colliding with internal pydantic fields + if isinstance(value, FieldInfo): + msg = ( + f"Remapping for fields starting with '_' or fields with a name " + f"matching a reserved name {_RESERVED_NAMES} is not supported if " + f" the field is a pydantic Field instance. Got {key}." + ) + raise NotImplementedError(msg) + type_, default_ = value + remapped[f"private_{key}"] = ( + type_, + Field( + default=default_, + alias=key, + serialization_alias=key, + title=key.lstrip("_").replace("_", " ").title(), + ), + ) + else: + remapped[key] = value + return remapped + + +def create_model_v2( + model_name: str, + *, + module_name: Optional[str] = None, + field_definitions: Optional[dict[str, Any]] = None, + root: Optional[Any] = None, +) -> type[BaseModel]: + """Create a pydantic model with the given field definitions. + + Attention: + Please do not use outside of langchain packages. This API + is subject to change at any time. + + Args: + model_name: The name of the model. + module_name: The name of the module where the model is defined. + This is used by Pydantic to resolve any forward references. + field_definitions: The field definitions for the model. + root: Type for a root model (RootModel) + + Returns: + Type[BaseModel]: The created model. + """ + field_definitions = cast(dict[str, Any], field_definitions or {}) # type: ignore[no-redef] + + if root: + if field_definitions: + msg = ( + "When specifying __root__ no other " + f"fields should be provided. Got {field_definitions}" + ) + raise NotImplementedError(msg) + + if isinstance(root, tuple): + kwargs = {"type_": root[0], "default_": root[1]} + else: + kwargs = {"type_": root} + + try: + named_root_model = _create_root_model_cached( + model_name, module_name=module_name, **kwargs + ) + except TypeError: + # something in the arguments into _create_root_model_cached is not hashable + named_root_model = _create_root_model( + model_name, + module_name=module_name, + **kwargs, + ) + return named_root_model + + # No root, just field definitions + names = set(field_definitions.keys()) + + capture_warnings = False + + for name in names: + # Also if any non-reserved name is used (e.g., model_id or model_name) + if name.startswith("model"): + capture_warnings = True + + with warnings.catch_warnings() if capture_warnings else nullcontext(): # type: ignore[attr-defined] + if capture_warnings: + warnings.filterwarnings(action="ignore") + try: + return _create_model_cached(model_name, **field_definitions) + except TypeError: + # something in field definitions is not hashable + return _create_model_base( + model_name, + __config__=_SchemaConfig, + **_remap_field_definitions(field_definitions), + ) diff --git a/libs/core/langchain_core/utils/strings.py b/libs/core/langchain_core/utils/strings.py index f54ddb4fbaaa1..e7a79761f9a01 100644 --- a/libs/core/langchain_core/utils/strings.py +++ b/libs/core/langchain_core/utils/strings.py @@ -1,4 +1,4 @@ -from typing import Any, List +from typing import Any def stringify_value(val: Any) -> str: @@ -35,7 +35,7 @@ def stringify_dict(data: dict) -> str: return text -def comma_list(items: List[Any]) -> str: +def comma_list(items: list[Any]) -> str: """Convert a list to a comma-separated string. Args: diff --git a/libs/core/langchain_core/utils/utils.py b/libs/core/langchain_core/utils/utils.py index d4a29da926260..c66ed52228c42 100644 --- a/libs/core/langchain_core/utils/utils.py +++ b/libs/core/langchain_core/utils/utils.py @@ -6,19 +6,20 @@ import importlib import os import warnings +from collections.abc import Sequence from importlib.metadata import version -from typing import Any, Callable, Dict, Optional, Sequence, Set, Tuple, Union, overload +from typing import Any, Callable, Optional, Union, overload from packaging.version import parse +from pydantic import SecretStr from requests import HTTPError, Response -from langchain_core.pydantic_v1 import SecretStr from langchain_core.utils.pydantic import ( is_pydantic_v1_subclass, ) -def xor_args(*arg_groups: Tuple[str, ...]) -> Callable: +def xor_args(*arg_groups: tuple[str, ...]) -> Callable: """Validate specified keyword args are mutually exclusive." Args: @@ -43,11 +44,12 @@ def wrapper(*args: Any, **kwargs: Any) -> Any: invalid_groups = [i for i, count in enumerate(counts) if count != 1] if invalid_groups: invalid_group_names = [", ".join(arg_groups[i]) for i in invalid_groups] - raise ValueError( + msg = ( "Exactly one argument in each of the following" " groups must be defined:" f" {', '.join(invalid_group_names)}" ) + raise ValueError(msg) return func(*args, **kwargs) return wrapper @@ -133,10 +135,11 @@ def guard_import( module = importlib.import_module(module_name, package) except (ImportError, ModuleNotFoundError) as e: pip_name = pip_name or module_name.split(".")[0].replace("_", "-") - raise ImportError( + msg = ( f"Could not import {module_name} python package. " f"Please install it with `pip install {pip_name}`." - ) from e + ) + raise ImportError(msg) from e return module @@ -165,28 +168,32 @@ def check_package_version( """ imported_version = parse(version(package)) if lt_version is not None and imported_version >= parse(lt_version): - raise ValueError( + msg = ( f"Expected {package} version to be < {lt_version}. Received " f"{imported_version}." ) + raise ValueError(msg) if lte_version is not None and imported_version > parse(lte_version): - raise ValueError( + msg = ( f"Expected {package} version to be <= {lte_version}. Received " f"{imported_version}." ) + raise ValueError(msg) if gt_version is not None and imported_version <= parse(gt_version): - raise ValueError( + msg = ( f"Expected {package} version to be > {gt_version}. Received " f"{imported_version}." ) + raise ValueError(msg) if gte_version is not None and imported_version < parse(gte_version): - raise ValueError( + msg = ( f"Expected {package} version to be >= {gte_version}. Received " f"{imported_version}." ) + raise ValueError(msg) -def get_pydantic_field_names(pydantic_cls: Any) -> Set[str]: +def get_pydantic_field_names(pydantic_cls: Any) -> set[str]: """Get field names, including aliases, for a pydantic class. Args: @@ -209,11 +216,57 @@ def get_pydantic_field_names(pydantic_cls: Any) -> Set[str]: return all_required_field_names +def _build_model_kwargs( + values: dict[str, Any], + all_required_field_names: set[str], +) -> dict[str, Any]: + """Build "model_kwargs" param from Pydanitc constructor values. + + Args: + values: All init args passed in by user. + all_required_field_names: All required field names for the pydantic class. + + Returns: + Dict[str, Any]: Extra kwargs. + + Raises: + ValueError: If a field is specified in both values and extra_kwargs. + ValueError: If a field is specified in model_kwargs. + """ + extra_kwargs = values.get("model_kwargs", {}) + for field_name in list(values): + if field_name in extra_kwargs: + msg = f"Found {field_name} supplied twice." + raise ValueError(msg) + if field_name not in all_required_field_names: + warnings.warn( + f"""WARNING! {field_name} is not default parameter. + {field_name} was transferred to model_kwargs. + Please confirm that {field_name} is what you intended.""", + stacklevel=7, + ) + extra_kwargs[field_name] = values.pop(field_name) + + invalid_model_kwargs = all_required_field_names.intersection(extra_kwargs.keys()) + if invalid_model_kwargs: + warnings.warn( + f"Parameters {invalid_model_kwargs} should be specified explicitly. " + f"Instead they were passed in as part of `model_kwargs` parameter.", + stacklevel=7, + ) + for k in invalid_model_kwargs: + values[k] = extra_kwargs.pop(k) + + values["model_kwargs"] = extra_kwargs + return values + + +# DON'T USE! Kept for backwards-compatibility but should never have been public. def build_extra_kwargs( - extra_kwargs: Dict[str, Any], - values: Dict[str, Any], - all_required_field_names: Set[str], -) -> Dict[str, Any]: + extra_kwargs: dict[str, Any], + values: dict[str, Any], + all_required_field_names: set[str], +) -> dict[str, Any]: """Build extra kwargs from values and extra_kwargs. Args: @@ -230,7 +283,8 @@ def build_extra_kwargs( """ for field_name in list(values): if field_name in extra_kwargs: - raise ValueError(f"Found {field_name} supplied twice.") + msg = f"Found {field_name} supplied twice." + raise ValueError(msg) if field_name not in all_required_field_names: warnings.warn( f"""WARNING! {field_name} is not default parameter. @@ -242,10 +296,11 @@ def build_extra_kwargs( invalid_model_kwargs = all_required_field_names.intersection(extra_kwargs.keys()) if invalid_model_kwargs: - raise ValueError( + msg = ( f"Parameters {invalid_model_kwargs} should be specified explicitly. " f"Instead they were passed in as part of `model_kwargs` parameter." ) + raise ValueError(msg) return extra_kwargs @@ -267,8 +322,6 @@ def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr: class _NoDefaultType: """Type to indicate no default value is provided.""" - pass - _NoDefault = _NoDefaultType() @@ -333,9 +386,8 @@ def get_from_env_fn() -> Optional[str]: for k in key: if k in os.environ: return os.environ[k] - if isinstance(key, str): - if key in os.environ: - return os.environ[key] + if isinstance(key, str) and key in os.environ: + return os.environ[key] if isinstance(default, (str, type(None))): return default @@ -343,17 +395,18 @@ def get_from_env_fn() -> Optional[str]: if error_message: raise ValueError(error_message) else: - raise ValueError( + msg = ( f"Did not find {key}, please add an environment variable" f" `{key}` which contains it, or pass" f" `{key}` as a named parameter." ) + raise ValueError(msg) return get_from_env_fn @overload -def secret_from_env(key: str, /) -> Callable[[], SecretStr]: ... +def secret_from_env(key: Union[str, Sequence[str]], /) -> Callable[[], SecretStr]: ... @overload @@ -396,21 +449,21 @@ def get_secret_from_env() -> Optional[SecretStr]: for k in key: if k in os.environ: return SecretStr(os.environ[k]) - if isinstance(key, str): - if key in os.environ: - return SecretStr(os.environ[key]) + if isinstance(key, str) and key in os.environ: + return SecretStr(os.environ[key]) if isinstance(default, str): return SecretStr(default) - elif isinstance(default, type(None)): + elif default is None: return None else: if error_message: raise ValueError(error_message) else: - raise ValueError( + msg = ( f"Did not find {key}, please add an environment variable" f" `{key}` which contains it, or pass" f" `{key}` as a named parameter." ) + raise ValueError(msg) return get_secret_from_env diff --git a/libs/core/langchain_core/vectorstores/base.py b/libs/core/langchain_core/vectorstores/base.py index b4e2f1c00019f..c87da224acd41 100644 --- a/libs/core/langchain_core/vectorstores/base.py +++ b/libs/core/langchain_core/vectorstores/base.py @@ -25,25 +25,20 @@ import math import warnings from abc import ABC, abstractmethod +from collections.abc import Collection, Iterable, Iterator, Sequence from itertools import cycle from typing import ( TYPE_CHECKING, Any, Callable, ClassVar, - Collection, - Dict, - Iterable, - List, Optional, - Sequence, - Tuple, - Type, TypeVar, ) +from pydantic import ConfigDict, Field, model_validator + from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.retrievers import BaseRetriever, LangSmithRetrieverParams from langchain_core.runnables.config import run_in_executor @@ -65,18 +60,17 @@ class VectorStore(ABC): def add_texts( self, texts: Iterable[str], - metadatas: Optional[List[dict]] = None, - # One of the kwargs should be `ids` which is a list of ids - # associated with the texts. - # This is not yet enforced in the type signature for backwards compatibility - # with existing implementations. + metadatas: Optional[list[dict]] = None, + *, + ids: Optional[list[str]] = None, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. + ids: Optional list of IDs associated with the texts. **kwargs: vectorstore specific parameters. One of the kwargs should be `ids` which is a list of ids associated with the texts. @@ -99,20 +93,24 @@ def add_texts( texts if isinstance(texts, (list, tuple)) else list(texts) ) if metadatas and len(metadatas) != len(texts_): - raise ValueError( + msg = ( "The number of metadatas must match the number of texts." f"Got {len(metadatas)} metadatas and {len(texts_)} texts." ) + raise ValueError(msg) metadatas_ = iter(metadatas) if metadatas else cycle([{}]) + ids_: Iterator[Optional[str]] = iter(ids) if ids else cycle([None]) docs = [ - Document(page_content=text, metadata=metadata_) - for text, metadata_ in zip(texts, metadatas_) + Document(id=id_, page_content=text, metadata=metadata_) + for text, metadata_, id_ in zip(texts, metadatas_, ids_) ] + if ids is not None: + # For backward compatibility + kwargs["ids"] = ids return self.add_documents(docs, **kwargs) - raise NotImplementedError( - f"`add_texts` has not been implemented for {self.__class__.__name__} " - ) + msg = f"`add_texts` has not been implemented for {self.__class__.__name__} " + raise NotImplementedError(msg) @property def embeddings(self) -> Optional[Embeddings]: @@ -123,7 +121,7 @@ def embeddings(self) -> Optional[Embeddings]: ) return None - def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: + def delete(self, ids: Optional[list[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by vector ID or other criteria. Args: @@ -135,9 +133,10 @@ def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[boo False otherwise, None if not implemented. """ - raise NotImplementedError("delete method must be implemented by subclass.") + msg = "delete method must be implemented by subclass." + raise NotImplementedError(msg) - def get_by_ids(self, ids: Sequence[str], /) -> List[Document]: + def get_by_ids(self, ids: Sequence[str], /) -> list[Document]: """Get documents by their IDs. The returned documents are expected to have the ID field set to the ID of the @@ -161,12 +160,11 @@ def get_by_ids(self, ids: Sequence[str], /) -> List[Document]: .. versionadded:: 0.2.11 """ - raise NotImplementedError( - f"{self.__class__.__name__} does not yet support get_by_ids." - ) + msg = f"{self.__class__.__name__} does not yet support get_by_ids." + raise NotImplementedError(msg) # Implementations should override this method to provide an async native version. - async def aget_by_ids(self, ids: Sequence[str], /) -> List[Document]: + async def aget_by_ids(self, ids: Sequence[str], /) -> list[Document]: """Async get documents by their IDs. The returned documents are expected to have the ID field set to the ID of the @@ -193,7 +191,7 @@ async def aget_by_ids(self, ids: Sequence[str], /) -> List[Document]: return await run_in_executor(None, self.get_by_ids, ids) async def adelete( - self, ids: Optional[List[str]] = None, **kwargs: Any + self, ids: Optional[list[str]] = None, **kwargs: Any ) -> Optional[bool]: """Async delete by vector ID or other criteria. @@ -210,15 +208,18 @@ async def adelete( async def aadd_texts( self, texts: Iterable[str], - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, + *, + ids: Optional[list[str]] = None, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: """Async run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Default is None. + ids: Optional list **kwargs: vectorstore specific parameters. Returns: @@ -228,6 +229,9 @@ async def aadd_texts( ValueError: If the number of metadatas does not match the number of texts. ValueError: If the number of ids does not match the number of texts. """ + if ids is not None: + # For backward compatibility + kwargs["ids"] = ids if type(self).aadd_documents != VectorStore.aadd_documents: # Import document in local scope to avoid circular imports from langchain_core.documents import Document @@ -239,21 +243,22 @@ async def aadd_texts( texts if isinstance(texts, (list, tuple)) else list(texts) ) if metadatas and len(metadatas) != len(texts_): - raise ValueError( + msg = ( "The number of metadatas must match the number of texts." f"Got {len(metadatas)} metadatas and {len(texts_)} texts." ) + raise ValueError(msg) metadatas_ = iter(metadatas) if metadatas else cycle([{}]) + ids_: Iterator[Optional[str]] = iter(ids) if ids else cycle([None]) docs = [ - Document(page_content=text, metadata=metadata_) - for text, metadata_ in zip(texts, metadatas_) + Document(id=id_, page_content=text, metadata=metadata_) + for text, metadata_, id_ in zip(texts, metadatas_, ids_) ] - return await self.aadd_documents(docs, **kwargs) return await run_in_executor(None, self.add_texts, texts, metadatas, **kwargs) - def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: + def add_documents(self, documents: list[Document], **kwargs: Any) -> list[str]: """Add or update documents in the vectorstore. Args: @@ -280,14 +285,15 @@ def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.add_texts(texts, metadatas, **kwargs) - raise NotImplementedError( + msg = ( f"`add_documents` and `add_texts` has not been implemented " f"for {self.__class__.__name__} " ) + raise NotImplementedError(msg) async def aadd_documents( - self, documents: List[Document], **kwargs: Any - ) -> List[str]: + self, documents: list[Document], **kwargs: Any + ) -> list[str]: """Async run more documents through the embeddings and add to the vectorstore. @@ -317,7 +323,7 @@ async def aadd_documents( return await run_in_executor(None, self.add_documents, documents, **kwargs) - def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]: + def search(self, query: str, search_type: str, **kwargs: Any) -> list[Document]: """Return docs most similar to query using a specified search type. Args: @@ -343,15 +349,16 @@ def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]: elif search_type == "mmr": return self.max_marginal_relevance_search(query, **kwargs) else: - raise ValueError( + msg = ( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity', 'similarity_score_threshold'" " or 'mmr'." ) + raise ValueError(msg) async def asearch( self, query: str, search_type: str, **kwargs: Any - ) -> List[Document]: + ) -> list[Document]: """Async return docs most similar to query using a specified search type. Args: @@ -377,15 +384,16 @@ async def asearch( elif search_type == "mmr": return await self.amax_marginal_relevance_search(query, **kwargs) else: - raise ValueError( + msg = ( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity', 'similarity_score_threshold' or 'mmr'." ) + raise ValueError(msg) @abstractmethod def similarity_search( self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: + ) -> list[Document]: """Return docs most similar to query. Args: @@ -441,7 +449,7 @@ def _select_relevance_score_fn(self) -> Callable[[float], float]: def similarity_search_with_score( self, *args: Any, **kwargs: Any - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: """Run similarity search with distance. Args: @@ -455,7 +463,7 @@ def similarity_search_with_score( async def asimilarity_search_with_score( self, *args: Any, **kwargs: Any - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: """Async run similarity search with distance. Args: @@ -478,7 +486,7 @@ def _similarity_search_with_relevance_scores( query: str, k: int = 4, **kwargs: Any, - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: """ Default similarity search with relevance scores. Modify if necessary in subclass. @@ -505,7 +513,7 @@ async def _asimilarity_search_with_relevance_scores( query: str, k: int = 4, **kwargs: Any, - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: """ Default similarity search with relevance scores. Modify if necessary in subclass. @@ -532,7 +540,7 @@ def similarity_search_with_relevance_scores( query: str, k: int = 4, **kwargs: Any, - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: """Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. @@ -580,7 +588,7 @@ async def asimilarity_search_with_relevance_scores( query: str, k: int = 4, **kwargs: Any, - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: """Async return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. @@ -625,7 +633,7 @@ async def asimilarity_search_with_relevance_scores( async def asimilarity_search( self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: + ) -> list[Document]: """Async return docs most similar to query. Args: @@ -643,8 +651,8 @@ async def asimilarity_search( return await run_in_executor(None, self.similarity_search, query, k=k, **kwargs) def similarity_search_by_vector( - self, embedding: List[float], k: int = 4, **kwargs: Any - ) -> List[Document]: + self, embedding: list[float], k: int = 4, **kwargs: Any + ) -> list[Document]: """Return docs most similar to embedding vector. Args: @@ -658,8 +666,8 @@ def similarity_search_by_vector( raise NotImplementedError async def asimilarity_search_by_vector( - self, embedding: List[float], k: int = 4, **kwargs: Any - ) -> List[Document]: + self, embedding: list[float], k: int = 4, **kwargs: Any + ) -> list[Document]: """Async return docs most similar to embedding vector. Args: @@ -685,7 +693,7 @@ def max_marginal_relevance_search( fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity @@ -714,7 +722,7 @@ async def amax_marginal_relevance_search( fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Async return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity @@ -749,12 +757,12 @@ async def amax_marginal_relevance_search( def max_marginal_relevance_search_by_vector( self, - embedding: List[float], + embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity @@ -778,12 +786,12 @@ def max_marginal_relevance_search_by_vector( async def amax_marginal_relevance_search_by_vector( self, - embedding: List[float], + embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: """Async return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity @@ -815,8 +823,8 @@ async def amax_marginal_relevance_search_by_vector( @classmethod def from_documents( - cls: Type[VST], - documents: List[Document], + cls: type[VST], + documents: list[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: @@ -832,12 +840,21 @@ def from_documents( """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] + + if "ids" not in kwargs: + ids = [doc.id for doc in documents] + + # If there's at least one valid ID, we'll assume that IDs + # should be used. + if any(ids): + kwargs["ids"] = ids + return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs) @classmethod async def afrom_documents( - cls: Type[VST], - documents: List[Document], + cls: type[VST], + documents: list[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: @@ -853,15 +870,26 @@ async def afrom_documents( """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] + + if "ids" not in kwargs: + ids = [doc.id for doc in documents] + + # If there's at least one valid ID, we'll assume that IDs + # should be used. + if any(ids): + kwargs["ids"] = ids + return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs) @classmethod @abstractmethod def from_texts( - cls: Type[VST], - texts: List[str], + cls: type[VST], + texts: list[str], embedding: Embeddings, - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, + *, + ids: Optional[list[str]] = None, **kwargs: Any, ) -> VST: """Return VectorStore initialized from texts and embeddings. @@ -871,6 +899,7 @@ def from_texts( embedding: Embedding function to use. metadatas: Optional list of metadatas associated with the texts. Default is None. + ids: Optional list of IDs associated with the texts. kwargs: Additional keyword arguments. Returns: @@ -879,10 +908,12 @@ def from_texts( @classmethod async def afrom_texts( - cls: Type[VST], - texts: List[str], + cls: type[VST], + texts: list[str], embedding: Embeddings, - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, + *, + ids: Optional[list[str]] = None, **kwargs: Any, ) -> VST: """Async return VectorStore initialized from texts and embeddings. @@ -892,16 +923,19 @@ async def afrom_texts( embedding: Embedding function to use. metadatas: Optional list of metadatas associated with the texts. Default is None. + ids: Optional list of IDs associated with the texts. kwargs: Additional keyword arguments. Returns: VectorStore: VectorStore initialized from texts and embeddings. """ + if ids is not None: + kwargs["ids"] = ids return await run_in_executor( None, cls.from_texts, texts, embedding, metadatas, **kwargs ) - def _get_retriever_tags(self) -> List[str]: + def _get_retriever_tags(self) -> list[str]: """Get tags for retriever.""" tags = [self.__class__.__name__] if self.embeddings: @@ -984,11 +1018,13 @@ class VectorStoreRetriever(BaseRetriever): "mmr", ) - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def validate_search_type(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_search_type(cls, values: dict) -> Any: """Validate search type. Args: @@ -1003,17 +1039,19 @@ def validate_search_type(cls, values: Dict) -> Dict: """ search_type = values.get("search_type", "similarity") if search_type not in cls.allowed_search_types: - raise ValueError( + msg = ( f"search_type of {search_type} not allowed. Valid values are: " f"{cls.allowed_search_types}" ) + raise ValueError(msg) if search_type == "similarity_score_threshold": score_threshold = values.get("search_kwargs", {}).get("score_threshold") if (score_threshold is None) or (not isinstance(score_threshold, float)): - raise ValueError( + msg = ( "`score_threshold` is not specified with a float value(0~1) " "in `search_kwargs`." ) + raise ValueError(msg) return values def _get_ls_params(self, **kwargs: Any) -> LangSmithRetrieverParams: @@ -1037,7 +1075,7 @@ def _get_ls_params(self, **kwargs: Any) -> LangSmithRetrieverParams: def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun - ) -> List[Document]: + ) -> list[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, **self.search_kwargs) elif self.search_type == "similarity_score_threshold": @@ -1052,12 +1090,13 @@ def _get_relevant_documents( query, **self.search_kwargs ) else: - raise ValueError(f"search_type of {self.search_type} not allowed.") + msg = f"search_type of {self.search_type} not allowed." + raise ValueError(msg) return docs async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun - ) -> List[Document]: + ) -> list[Document]: if self.search_type == "similarity": docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs @@ -1074,10 +1113,11 @@ async def _aget_relevant_documents( query, **self.search_kwargs ) else: - raise ValueError(f"search_type of {self.search_type} not allowed.") + msg = f"search_type of {self.search_type} not allowed." + raise ValueError(msg) return docs - def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: + def add_documents(self, documents: list[Document], **kwargs: Any) -> list[str]: """Add documents to the vectorstore. Args: @@ -1090,8 +1130,8 @@ def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: return self.vectorstore.add_documents(documents, **kwargs) async def aadd_documents( - self, documents: List[Document], **kwargs: Any - ) -> List[str]: + self, documents: list[Document], **kwargs: Any + ) -> list[str]: """Async add documents to the vectorstore. Args: diff --git a/libs/core/langchain_core/vectorstores/in_memory.py b/libs/core/langchain_core/vectorstores/in_memory.py index 147415178e1a7..06aa13f785a24 100644 --- a/libs/core/langchain_core/vectorstores/in_memory.py +++ b/libs/core/langchain_core/vectorstores/in_memory.py @@ -2,17 +2,13 @@ import json import uuid +from collections.abc import Iterator, Sequence from pathlib import Path from typing import ( TYPE_CHECKING, Any, Callable, - Dict, - Iterator, - List, Optional, - Sequence, - Tuple, ) from langchain_core._api import deprecated @@ -153,7 +149,7 @@ def __init__(self, embedding: Embeddings) -> None: """ # TODO: would be nice to change to # Dict[str, Document] at some point (will be a breaking change) - self.store: Dict[str, Dict[str, Any]] = {} + self.store: dict[str, dict[str, Any]] = {} self.embedding = embedding @property @@ -170,19 +166,20 @@ async def adelete(self, ids: Optional[Sequence[str]] = None, **kwargs: Any) -> N def add_documents( self, - documents: List[Document], - ids: Optional[List[str]] = None, + documents: list[Document], + ids: Optional[list[str]] = None, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: """Add documents to the store.""" texts = [doc.page_content for doc in documents] vectors = self.embedding.embed_documents(texts) if ids and len(ids) != len(texts): - raise ValueError( + msg = ( f"ids must be the same length as texts. " f"Got {len(ids)} ids and {len(texts)} texts." ) + raise ValueError(msg) id_iterator: Iterator[Optional[str]] = ( iter(ids) if ids else iter(doc.id for doc in documents) @@ -204,22 +201,23 @@ def add_documents( return ids_ async def aadd_documents( - self, documents: List[Document], ids: Optional[List[str]] = None, **kwargs: Any - ) -> List[str]: + self, documents: list[Document], ids: Optional[list[str]] = None, **kwargs: Any + ) -> list[str]: """Add documents to the store.""" texts = [doc.page_content for doc in documents] vectors = await self.embedding.aembed_documents(texts) if ids and len(ids) != len(texts): - raise ValueError( + msg = ( f"ids must be the same length as texts. " f"Got {len(ids)} ids and {len(texts)} texts." ) + raise ValueError(msg) id_iterator: Iterator[Optional[str]] = ( iter(ids) if ids else iter(doc.id for doc in documents) ) - ids_: List[str] = [] + ids_: list[str] = [] for doc, vector in zip(documents, vectors): doc_id = next(id_iterator) @@ -234,7 +232,7 @@ async def aadd_documents( return ids_ - def get_by_ids(self, ids: Sequence[str], /) -> List[Document]: + def get_by_ids(self, ids: Sequence[str], /) -> list[Document]: """Get documents by their ids. Args: @@ -313,7 +311,7 @@ async def aupsert( "failed": [], } - async def aget_by_ids(self, ids: Sequence[str], /) -> List[Document]: + async def aget_by_ids(self, ids: Sequence[str], /) -> list[Document]: """Async get documents by their ids. Args: @@ -326,11 +324,11 @@ async def aget_by_ids(self, ids: Sequence[str], /) -> List[Document]: def _similarity_search_with_score_by_vector( self, - embedding: List[float], + embedding: list[float], k: int = 4, filter: Optional[Callable[[Document], bool]] = None, **kwargs: Any, - ) -> List[Tuple[Document, float, List[float]]]: + ) -> list[tuple[Document, float, list[float]]]: result = [] for doc in self.store.values(): vector = doc["vector"] @@ -351,11 +349,11 @@ def _similarity_search_with_score_by_vector( def similarity_search_with_score_by_vector( self, - embedding: List[float], + embedding: list[float], k: int = 4, filter: Optional[Callable[[Document], bool]] = None, **kwargs: Any, - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: return [ (doc, similarity) for doc, similarity, _ in self._similarity_search_with_score_by_vector( @@ -368,7 +366,7 @@ def similarity_search_with_score( query: str, k: int = 4, **kwargs: Any, - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: embedding = self.embedding.embed_query(query) docs = self.similarity_search_with_score_by_vector( embedding, @@ -379,7 +377,7 @@ def similarity_search_with_score( async def asimilarity_search_with_score( self, query: str, k: int = 4, **kwargs: Any - ) -> List[Tuple[Document, float]]: + ) -> list[tuple[Document, float]]: embedding = await self.embedding.aembed_query(query) docs = self.similarity_search_with_score_by_vector( embedding, @@ -390,10 +388,10 @@ async def asimilarity_search_with_score( def similarity_search_by_vector( self, - embedding: List[float], + embedding: list[float], k: int = 4, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: docs_and_scores = self.similarity_search_with_score_by_vector( embedding, k, @@ -402,18 +400,18 @@ def similarity_search_by_vector( return [doc for doc, _ in docs_and_scores] async def asimilarity_search_by_vector( - self, embedding: List[float], k: int = 4, **kwargs: Any - ) -> List[Document]: + self, embedding: list[float], k: int = 4, **kwargs: Any + ) -> list[Document]: return self.similarity_search_by_vector(embedding, k, **kwargs) def similarity_search( self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: + ) -> list[Document]: return [doc for doc, _ in self.similarity_search_with_score(query, k, **kwargs)] async def asimilarity_search( self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: + ) -> list[Document]: return [ doc for doc, _ in await self.asimilarity_search_with_score(query, k, **kwargs) @@ -421,12 +419,12 @@ async def asimilarity_search( def max_marginal_relevance_search_by_vector( self, - embedding: List[float], + embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: prefetch_hits = self._similarity_search_with_score_by_vector( embedding=embedding, k=fetch_k, @@ -436,10 +434,11 @@ def max_marginal_relevance_search_by_vector( try: import numpy as np except ImportError as e: - raise ImportError( + msg = ( "numpy must be installed to use max_marginal_relevance_search " "pip install numpy" - ) from e + ) + raise ImportError(msg) from e mmr_chosen_indices = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), @@ -456,7 +455,7 @@ def max_marginal_relevance_search( fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: embedding_vector = self.embedding.embed_query(query) return self.max_marginal_relevance_search_by_vector( embedding_vector, @@ -473,7 +472,7 @@ async def amax_marginal_relevance_search( fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: embedding_vector = await self.embedding.aembed_query(query) return self.max_marginal_relevance_search_by_vector( embedding_vector, @@ -486,9 +485,9 @@ async def amax_marginal_relevance_search( @classmethod def from_texts( cls, - texts: List[str], + texts: list[str], embedding: Embeddings, - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, **kwargs: Any, ) -> InMemoryVectorStore: store = cls( @@ -500,9 +499,9 @@ def from_texts( @classmethod async def afrom_texts( cls, - texts: List[str], + texts: list[str], embedding: Embeddings, - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, **kwargs: Any, ) -> InMemoryVectorStore: store = cls( diff --git a/libs/core/langchain_core/vectorstores/utils.py b/libs/core/langchain_core/vectorstores/utils.py index 956052c1115f1..6a8f6758f999a 100644 --- a/libs/core/langchain_core/vectorstores/utils.py +++ b/libs/core/langchain_core/vectorstores/utils.py @@ -7,22 +7,22 @@ from __future__ import annotations import logging -from typing import TYPE_CHECKING, List, Union +from typing import TYPE_CHECKING, Union if TYPE_CHECKING: import numpy as np - Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] + Matrix = Union[list[list[float]], list[np.ndarray], np.ndarray] logger = logging.getLogger(__name__) -def _cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: +def _cosine_similarity(x: Matrix, y: Matrix) -> np.ndarray: """Row-wise cosine similarity between two equal-width matrices. Args: - X: A matrix of shape (n, m). - Y: A matrix of shape (k, m). + x: A matrix of shape (n, m). + y: A matrix of shape (k, m). Returns: A matrix of shape (n, k) where each element (i, j) is the cosine similarity @@ -35,38 +35,40 @@ def _cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: try: import numpy as np except ImportError as e: - raise ImportError( + msg = ( "cosine_similarity requires numpy to be installed. " "Please install numpy with `pip install numpy`." - ) from e + ) + raise ImportError(msg) from e - if len(X) == 0 or len(Y) == 0: + if len(x) == 0 or len(y) == 0: return np.array([]) - X = np.array(X) - Y = np.array(Y) - if X.shape[1] != Y.shape[1]: - raise ValueError( - f"Number of columns in X and Y must be the same. X has shape {X.shape} " - f"and Y has shape {Y.shape}." + x = np.array(x) + y = np.array(y) + if x.shape[1] != y.shape[1]: + msg = ( + f"Number of columns in X and Y must be the same. X has shape {x.shape} " + f"and Y has shape {y.shape}." ) + raise ValueError(msg) try: - import simsimd as simd + import simsimd as simd # type: ignore[import-not-found] - X = np.array(X, dtype=np.float32) - Y = np.array(Y, dtype=np.float32) - Z = 1 - np.array(simd.cdist(X, Y, metric="cosine")) - return Z + x = np.array(x, dtype=np.float32) + y = np.array(y, dtype=np.float32) + z = 1 - np.array(simd.cdist(x, y, metric="cosine")) + return z except ImportError: logger.debug( "Unable to import simsimd, defaulting to NumPy implementation. If you want " "to use simsimd please install with `pip install simsimd`." ) - X_norm = np.linalg.norm(X, axis=1) - Y_norm = np.linalg.norm(Y, axis=1) + x_norm = np.linalg.norm(x, axis=1) + y_norm = np.linalg.norm(y, axis=1) # Ignore divide by zero errors run time warnings as those are handled below. with np.errstate(divide="ignore", invalid="ignore"): - similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) + similarity = np.dot(x, y.T) / np.outer(x_norm, y_norm) similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 return similarity @@ -76,7 +78,7 @@ def maximal_marginal_relevance( embedding_list: list, lambda_mult: float = 0.5, k: int = 4, -) -> List[int]: +) -> list[int]: """Calculate maximal marginal relevance. Args: @@ -94,10 +96,11 @@ def maximal_marginal_relevance( try: import numpy as np except ImportError as e: - raise ImportError( + msg = ( "maximal_marginal_relevance requires numpy to be installed. " "Please install numpy with `pip install numpy`." - ) from e + ) + raise ImportError(msg) from e if min(k, len(embedding_list)) <= 0: return [] diff --git a/libs/core/poetry.lock b/libs/core/poetry.lock index d4327070cfff6..45513dcd0101a 100644 --- a/libs/core/poetry.lock +++ b/libs/core/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. [[package]] name = "annotated-types" @@ -11,18 +11,15 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" -version = "4.4.0" +version = "4.6.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, ] [package.dependencies] @@ -32,9 +29,9 @@ sniffio = ">=1.1" typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] [[package]] name = "appnope" @@ -185,23 +182,9 @@ files = [ {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, ] -[package.dependencies] -pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} - [package.extras] dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - [[package]] name = "beautifulsoup4" version = "4.12.3" @@ -243,89 +226,89 @@ css = ["tinycss2 (>=1.1.0,<1.3)"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] name = "cffi" -version = "1.17.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -460,33 +443,33 @@ test = ["pytest"] [[package]] name = "debugpy" -version = "1.8.5" +version = "1.8.6" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, - {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, - {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, - {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, - {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, - {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, - {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, - {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, - {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, - {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, - {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, - {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, - {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, - {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, - {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, - {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, - {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, - {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, - {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, - {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, - {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, - {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, + {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, + {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, + {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, + {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, + {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, + {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, + {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, + {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, + {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, + {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, + {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, + {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, + {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, + {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, + {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, + {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, + {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, + {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, + {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, + {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, + {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, + {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, ] [[package]] @@ -527,13 +510,13 @@ test = ["pytest (>=6)"] [[package]] name = "executing" -version = "2.0.1" +version = "2.1.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, ] [package.extras] @@ -619,13 +602,13 @@ files = [ [[package]] name = "httpcore" -version = "1.0.5" +version = "1.0.6" description = "A minimal low-level HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, + {file = "httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f"}, + {file = "httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f"}, ] [package.dependencies] @@ -636,7 +619,7 @@ h11 = ">=0.13,<0.15" asyncio = ["anyio (>=4.0,<5.0)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] +trio = ["trio (>=0.22.0,<1.0)"] [[package]] name = "httpx" @@ -665,54 +648,39 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.8" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.6" files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] -[[package]] -name = "importlib-metadata" -version = "8.4.0" -description = "Read metadata from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"}, - {file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"}, -] - -[package.dependencies] -zipp = ">=0.5" - [package.extras] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] [[package]] -name = "importlib-resources" -version = "6.4.4" -description = "Read resources from Python packages" +name = "importlib-metadata" +version = "8.5.0" +description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_resources-6.4.4-py3-none-any.whl", hash = "sha256:dda242603d1c9cd836c3368b1174ed74cb4049ecd209e7a1a0104620c18c5c11"}, - {file = "importlib_resources-6.4.4.tar.gz", hash = "sha256:20600c8b7361938dc0bb2d5ec0297802e575df486f5a544fa414da65e13721f7"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} +zipp = ">=3.20" [package.extras] check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] enabler = ["pytest-enabler (>=2.2)"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] type = ["pytest-mypy"] [[package]] @@ -761,42 +729,40 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.12.3" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "ipywidgets" @@ -920,11 +886,9 @@ files = [ attrs = ">=22.2.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} jsonschema-specifications = ">=2023.03.6" -pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} referencing = ">=0.28.4" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} @@ -948,38 +912,36 @@ files = [ ] [package.dependencies] -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} referencing = ">=0.31.0" [[package]] name = "jupyter" -version = "1.0.0" +version = "1.1.1" description = "Jupyter metapackage. Install all the Jupyter components in one go." optional = false python-versions = "*" files = [ - {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, - {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, - {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, + {file = "jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83"}, + {file = "jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a"}, ] [package.dependencies] ipykernel = "*" ipywidgets = "*" jupyter-console = "*" +jupyterlab = "*" nbconvert = "*" notebook = "*" -qtconsole = "*" [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -1148,7 +1110,6 @@ files = [ async-lru = ">=1.0.0" httpx = ">=0.25.0" importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -importlib-resources = {version = ">=1.4", markers = "python_version < \"3.9\""} ipykernel = ">=6.5.0" jinja2 = ">=3.0.3" jupyter-core = "*" @@ -1222,14 +1183,15 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = "^0.3.0" pytest = ">=7,<9" +syrupy = "^4" [package.source] type = "directory" @@ -1237,15 +1199,15 @@ url = "../standard-tests" [[package]] name = "langchain-text-splitters" -version = "0.2.3" +version = "0.3.0" description = "LangChain text splitting utilities" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.10" +langchain-core = "^0.3.0" [package.source] type = "directory" @@ -1253,13 +1215,13 @@ url = "../text-splitters" [[package]] name = "langsmith" -version = "0.1.113" +version = "0.1.129" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.113-py3-none-any.whl", hash = "sha256:0071d034fbe54cc3574f382b062c4b4f09931dfe7b703146900b7918a7f6c785"}, - {file = "langsmith-0.1.113.tar.gz", hash = "sha256:369efa53352bdc4f27d5c8b7f4f802b32492e55511c7fbeeaea143dbfdf0ee06"}, + {file = "langsmith-0.1.129-py3-none-any.whl", hash = "sha256:31393fbbb17d6be5b99b9b22d530450094fab23c6c37281a6a6efb2143d05347"}, + {file = "langsmith-0.1.129.tar.gz", hash = "sha256:6c3ba66471bef41b9f87da247cc0b493268b3f54656f73648a256a205261b6a0"}, ] [package.dependencies] @@ -1555,43 +1517,6 @@ jupyter-server = ">=1.8,<3" [package.extras] test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -1765,43 +1690,21 @@ files = [ [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - -[[package]] -name = "pkgutil-resolve-name" -version = "1.3.10" -description = "Resolve a name to an object." -optional = false -python-versions = ">=3.6" -files = [ - {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, - {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, -] - [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "pluggy" @@ -1820,13 +1723,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "prometheus-client" -version = "0.20.0" +version = "0.21.0" description = "Python client for the Prometheus monitoring system." optional = false python-versions = ">=3.8" files = [ - {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"}, - {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"}, + {file = "prometheus_client-0.21.0-py3-none-any.whl", hash = "sha256:4fa6b4dd0ac16d58bb587c04b1caae65b8c5043e85f778f42f5f632f6af2e166"}, + {file = "prometheus_client-0.21.0.tar.gz", hash = "sha256:96c83c606b71ff2b0a433c98889d275f51ffec6c5e267de37c7a2b5c9aa9233e"}, ] [package.extras] @@ -1834,13 +1737,13 @@ twisted = ["twisted"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.48" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, ] [package.dependencies] @@ -1913,18 +1816,18 @@ files = [ [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -1932,103 +1835,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -2178,17 +2082,6 @@ files = [ {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, ] -[[package]] -name = "pytz" -version = "2024.1" -description = "World timezone definitions, modern and historical" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, -] - [[package]] name = "pywin32" version = "306" @@ -2410,48 +2303,6 @@ files = [ [package.dependencies] cffi = {version = "*", markers = "implementation_name == \"pypy\""} -[[package]] -name = "qtconsole" -version = "5.5.2" -description = "Jupyter Qt console" -optional = false -python-versions = ">=3.8" -files = [ - {file = "qtconsole-5.5.2-py3-none-any.whl", hash = "sha256:42d745f3d05d36240244a04e1e1ec2a86d5d9b6edb16dbdef582ccb629e87e0b"}, - {file = "qtconsole-5.5.2.tar.gz", hash = "sha256:6b5fb11274b297463706af84dcbbd5c92273b1f619e6d25d08874b0a88516989"}, -] - -[package.dependencies] -ipykernel = ">=4.1" -jupyter-client = ">=4.1" -jupyter-core = "*" -packaging = "*" -pygments = "*" -pyzmq = ">=17.1" -qtpy = ">=2.4.0" -traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2" - -[package.extras] -doc = ["Sphinx (>=1.3)"] -test = ["flaky", "pytest", "pytest-qt"] - -[[package]] -name = "qtpy" -version = "2.4.1" -description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." -optional = false -python-versions = ">=3.7" -files = [ - {file = "QtPy-2.4.1-py3-none-any.whl", hash = "sha256:1c1d8c4fa2c884ae742b069151b0abe15b3f70491f3972698c683b8e38de839b"}, - {file = "QtPy-2.4.1.tar.gz", hash = "sha256:a5a15ffd519550a1361bdc56ffc07fda56a6af7292f17c7b395d4083af632987"}, -] - -[package.dependencies] -packaging = "*" - -[package.extras] -test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] - [[package]] name = "referencing" version = "0.35.1" @@ -2705,117 +2556,104 @@ testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs ( [[package]] name = "simsimd" -version = "5.0.1" +version = "5.4.3" description = "Fastest SIMD-Accelerated Vector Similarity Functions for x86 and Arm" optional = false python-versions = "*" files = [ - {file = "simsimd-5.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a843c1a5c01ec64afe16ff140738f5c820d7e1e006a44dd5d50f28322843572b"}, - {file = "simsimd-5.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c74db3f9043af2caac9d8fb33604f3a6959a858fc955c206f681e579b471eb0d"}, - {file = "simsimd-5.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:310a0300586216dd1e577e811fdec4c846e1ebdb6385884daa8b22ae8ca124d8"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39486846d2693be9a8fc3e61252e992a9f6867790485409510bd23e05e3a7b3c"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:923a47360d9867a38955a4290523adcf1a64276426f1f2f142a14fff79256fd3"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e54bc54f21f3eb6467e37222b0dd2de94a38a53272d0570625ad97b9e2e839e1"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:3ea22b16b290871bc5db83d6220902c9a83a82bb33cc6d00c2f6bcc428ab28b5"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:399fad8b05984d155d5e5805189eb0b78658f240a4b73cf5b83342472fb58c1e"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ccf28b6ab1e44a7d877ce81ac270424ae57c7fc774361f1f69171822d8aeb5e1"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c91f8cb36af44780cfd6948963a6e40784b6a969dd66ffddec079279ed3dec02"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ada46c2826a95a138b74c5964870791ed2709b0b27716285d8103f77515bc4af"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:13ddfec4a894ffb4a8c83783a13710c85d445dbd513be3e71a3990021a6a6e99"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c69b5128fdaf023f0d0e2aa82e1a47a8d40a13d91d82efd5412dadf7fd7d4d01"}, - {file = "simsimd-5.0.1-cp310-cp310-win32.whl", hash = "sha256:e6f8847a0c1c78660c543a2bb20e0eee66a22b6191e61fbc1455f368882976d8"}, - {file = "simsimd-5.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:453ed398542009143aa47f61cfa2555c9239be3c6b850dae198b8956329773c8"}, - {file = "simsimd-5.0.1-cp310-cp310-win_arm64.whl", hash = "sha256:31aff17aa40842b41dab45c0f6951241acfbde4f3cd066bd14bb280c2f4abca4"}, - {file = "simsimd-5.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9277845a9c65a0dad48b3326383b3654e99d28d5845b61615e320b1c974bee20"}, - {file = "simsimd-5.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e9e850df81f0969be387cbc00005f4f3a917eff1bbde32bfbaf592e165993ddc"}, - {file = "simsimd-5.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:208eb86686d241ac436a0ab22b6ea689979f3bb42d57305b0b5fc862cfe74f4c"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d932cf21c7b8210ba23a4425b006121d245a0fbf25110e9143d2886e8ccc680"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f9612b963212b9a234841ed09e9e267327ed36168b7624121a6c6b42f7ba90f"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:92964999f4f9022791b4c9ce5dc06f14189a65ec9a7456bd479a29d586c961ad"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:3ff7d5975660afc385abe10533b4cae8176808a8d4d55d81d2e3df602facede7"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:00c7aeac09a0edcbe14f31aeb0caec2ed50e5377406666273fa32fe8b57b72ea"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:edc1ad894484720ed7ba434e9c70b3caf8b504c7b7e2cc85eec2d2bd4dd29ea8"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8d73dae71be57ddbfec97c810c5dbd9dbb03f73943f05047cb035415f6cfbfea"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:27613dae1c18fc3e829d778f73a421d2b009f2e3722eaeed3c7f211a252eae66"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:d4bea60d8a5131897d30368b740197b781d51a1fb9efb8b739c239186bce4863"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:10e099033349a3d22100ea8316218b42382b21631d3355934a486492e1ec5466"}, - {file = "simsimd-5.0.1-cp311-cp311-win32.whl", hash = "sha256:eaf5b066bb981ee4406fa9eede381d4b3b2bdd0c278cd0b7525f46cc87f70adf"}, - {file = "simsimd-5.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:d707ae3d74287e96d48ae9345005c398f2ddd019f27373e657cd38f54b8923d9"}, - {file = "simsimd-5.0.1-cp311-cp311-win_arm64.whl", hash = "sha256:b9a09e87a2f3ec6769a7005c5a4e9ba36e1a46ed0767910593e62b75e496fd05"}, - {file = "simsimd-5.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:77dacb2556fa517c9c8935fb3ef9fd4bb14859df83f1d463576cebe3f782bfc0"}, - {file = "simsimd-5.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7c7f7bb6fa7d1e3ecf4fffce8e69453cb556276679e7417f2972f8155a2e90e"}, - {file = "simsimd-5.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3d17614ec3843a5cb08c60a21fe66c783fdf14cca2bfeaddfe6a6d66939c5cee"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ca7621458fdc7abd034468df82ee7825262c2d38cf375d85ec5da39cd8697d"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fbcc4818643b517f7cd829ee0e5c0b4b0680458b35cbe2c48ed43155c2ec8a02"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:734db8eb3f82285fb5cd0d066a6aa155d8359f202fcfb258d361cc548a1ca2a2"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:140b6da0bf7de6faca20c570eaefc2d252afda4ae8d5dc31dceedbac55baeed8"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:43364841bb6f98c507c04ca09a3cd979be9dd65d1867ab358a63cdbb501f865a"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e35f140b864e7c78414cbb1ec3d9d6b9601ebae8cd73b3e983971b985e8db216"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:dd7e79c77cde64bc311b3e3dda0e0032949c10f35d2a7db656c7ae5944168a37"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:aa82658c98d6dc087334230bc00d7269f2fcceb40b3b1dd014ad73c18fdd59c0"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:7054966e401e3830694aeccd069ef83b11d20f877cc556ded015156f7f6bbd1e"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:97f7d0699120db9f7c8ea6297d47456ed3c1c44bf852a46309865bcd86ab1f46"}, - {file = "simsimd-5.0.1-cp312-cp312-win32.whl", hash = "sha256:26388b63fb7847ef89a4a9584ef0328aec7b9c4e07ecdc8315c99a9abf4f54ac"}, - {file = "simsimd-5.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:75bec5086c910b39fbcf36249e6c756f2c3bb19db863759a722811fc573faaa4"}, - {file = "simsimd-5.0.1-cp312-cp312-win_arm64.whl", hash = "sha256:9d2f3972c140482ea93c60f6daaf4b637999039004e2390d245d279d4c51340d"}, - {file = "simsimd-5.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:bbb7b849993f3d86c7d14a51ec5b31e60d81b2d9ac242a2ffc58e1a74d07a842"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb1c43c067cf4fe5f5e97f9d7b9d46dba8a3cb3c1b7d11b87e406fde2d9fdb1d"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b24967044510a4763eb0b6a7bb95c4ab9aaa62649a75cbb3fdce462940701cbb"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a1501527c994bfa33bfea01d400305027f46aea1b06cd93fb819ae4e337674c0"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_28_aarch64.whl", hash = "sha256:7cd593fb93fd5cb5fab1b2ee1d2ce3f3e794639cd0b43f742064f99f35cb9a0e"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:8caf843a86523208f1a9d0540e17f926d5793a6cf767b8804a722b7a80ad46c3"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:8f402a44f29ff30d312c9ad299738052e6bf4bcd31f7d0ea8d8ad079de6202e9"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:0f409be2c3e1482e7506e5b4b4c95e24cb98c936942d8964f73699570dab19ca"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:271de66a7c721ba4d711317026965e6ee142c524de2752d14b2bc43e10ff3459"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_s390x.whl", hash = "sha256:326965a3966fabbe19d5740d3ca035b64660344b44fb924f68abdf226f2307c1"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:a985848988d36eda9809ada6e6a1adc61b2f3ec07116af0e74f2275eca3954ee"}, - {file = "simsimd-5.0.1-cp36-cp36m-win32.whl", hash = "sha256:eada16951ecac8ad311412883fd000731b93eee030e1c2ff6c360894b2009ea9"}, - {file = "simsimd-5.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:62ed6b7f81e07ce86b180b16ba7ebd925094698777e5f50dfa3d6e9fcdbbfcfc"}, - {file = "simsimd-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5c59ee6d4ecd2c49a08c5316514ce439005828572790c9e166a81a2aabbf3011"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8a431209b70857f0745c2f198b792231a1ce8f117e96c33a185b743bbb6caabc"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e2acec92ce994c225e1d615a5012728c0d2385b680aef639de4755afc16eb38"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19b2841dcc208af19e3f4dbaa562ccb0a26123b782559fe00f53e9095c232738"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:3af174c9fe5a1545a39878201447d724016f9f91d31cf7e6c1f1a2248c9b8670"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:52277bbf653cdf4a2444cdf838d4dc6f8ec2dc3b0bc13aa5476e35397fc7cd99"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:fdbdd663121faf5d611627f62d6de26e4d13c75f67d2ef26535d82e8941640c9"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:e34dd5178a910b25fc565a5bc411bb4d1cce1f3c95f4c293d3b3f31a4570840d"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:d9f999e895514778c2a6584e005e7f5a163b1c73af41211b9e545bcc4d5d9db7"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:245483cf629d12cddc09e9e82d21be01d6842b24070861676d3be689c08a6ae9"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:02b40790d044b4154ccfcde6fb5064cf10b921370091cd482406792bc1be2979"}, - {file = "simsimd-5.0.1-cp37-cp37m-win32.whl", hash = "sha256:b3c254bd6277313c6efd55927b747edd9c37aca7292e65af312f2d861b4186a5"}, - {file = "simsimd-5.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:09845e04224af0fa87f23f26f832c5e25da4ca4567b3e9723d9b368b6c085d6b"}, - {file = "simsimd-5.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3c6a38b197319877e92e5fec82c0e6296b760a8f68b9c33f71f6e8e3cd20a50a"}, - {file = "simsimd-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b7d61b9d2f5162f18606f81f14efc929003746771fc1d6370a9c2f1733f88633"}, - {file = "simsimd-5.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:180b78b7ed328d9284860443e48dd927b7260a7d6e5131b52abf2e036eb8aa45"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c6cb8755d571fe3cb7574d224d6986ecb9ee716b1bb0b6c7e6cef4e51c695226"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cb0126dd3badf85a6e4b519ebcdf4a02cdb66e9979e8effbccd682c3e52b8046"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5808dbf708136b399ea38cecf0c732588c23ad43664da0ed1a4038846f2ccacc"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:87e5d9680a6348013a60d0914b720490ad02b278ab642afdd633bcdf006164b9"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:dade38317109d80e87ed58a482a328fe3baef0c118b74560d4a10b6c00b92942"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:899c3dd8fadefd2a2b46256ced201527fcd9a573b8e6e6fec13b0971453f98f9"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:cd06d437c68a122df2400f5440391443431ad1d19ee735d62e9a336ba7abbe2d"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:76ed84210352c8f19f85f6064be317cdc337c5d53786dbb248847a3dfdc5a73a"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:59261c1590a727e09a29c51b98de9e01cc34b625c28fcc729a891a7df250d779"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:529b9b18bb62beaaa77dfd32fd1512d04968c4137715ef1e99b185853a3d7a40"}, - {file = "simsimd-5.0.1-cp38-cp38-win32.whl", hash = "sha256:de7ede4f816490a31b25853989c127aa58d9016d0f21284e57eafc39589b7daf"}, - {file = "simsimd-5.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:beaec9510adf93cdce9ceacf55c52ddd3479ab0749b4a12d5f663e9576d62ae9"}, - {file = "simsimd-5.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:395bacfc8eff78500cf5a96cd6a819af850d83b67a46542ff88058be153823ab"}, - {file = "simsimd-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:843af8b879325b56e8fcb4b372f78200ff85cda6cc2cd30331e0960cb95357e4"}, - {file = "simsimd-5.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b965c76d3c99ade35be21e9f822195707753846bfa135d0cea6f1385bee08766"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2df6c221a3d317b212d6434b63f6f917de8b4e5ceb7bf763ef11a40342dd0e8f"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f77a0027f390ef45aa75a108bcdc3b9c35814c405570e888a4cc1ddf229bfdbc"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b76d9d83629f3b1cdb84d99f239fe4506b9015f669a492a0ed19f1f2eb74030b"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:90db3e74f09e80c7224493cfb23860ecad6efa63f378daff9cfcd95ee77d2517"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:0ef6a3fef28e74e44e75fa2e65d19b106583a7f0338f0a82a711adc6cc850698"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:10c1ce409fbe8ed67015d0de17fdb950fcfb218078b804d142b3846d20e13b8c"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:af57464e0f056a845795a364e9e5d3a4bb532c3bb9bf894fca127ecde823f7e4"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:60f072fdfc034162b416132524ad9e8185a20a8530b5c41527c66395ba9251fc"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e28eaa277b8c2b43edd8c3b7427a1968b68c1a60d4a8297c563264c67faa5ebe"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:3be782b95cf1c172d9b98666f1aa15da1eaa253e633a23a34cf47f5d505a3f1a"}, - {file = "simsimd-5.0.1-cp39-cp39-win32.whl", hash = "sha256:186d994ee12bdc821abe8f9fc4d92cb9931a1f60b68728dbc51900b5fdc71ef2"}, - {file = "simsimd-5.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:bc5fc7814eb004ca71c8783b21e70a1ecb05e4ab98228fc97c2d53a400d07d66"}, - {file = "simsimd-5.0.1-cp39-cp39-win_arm64.whl", hash = "sha256:379e3fec4bdfeb8a969e6820fc053adf691d568cc8a92fd940c107c9c606e8ea"}, - {file = "simsimd-5.0.1.tar.gz", hash = "sha256:d688ccc1ceded9d77c96228e31f8474bbf543b8dffafee6a2f86047a6b696608"}, + {file = "simsimd-5.4.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:83baefb29993842e6877f1df11d70d8524ab0da2a50214c9e804279b3a82330e"}, + {file = "simsimd-5.4.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:deacf8310437e18d83d5fc1e6b0212060f65d1a76f6941978637724ac0b4195e"}, + {file = "simsimd-5.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a369099fef78322e2ff11cff127d91e0a1a406807f1c68d5354cf53b22a5693a"}, + {file = "simsimd-5.4.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0881ce6f96c118567cf110648e93380c1046551be0603634aa31a6e80e28365a"}, + {file = "simsimd-5.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:96ba2e86a1904d2fdc63a60c19054d65fecf753f0464311be3aa5de06dea99f1"}, + {file = "simsimd-5.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:434e0a35d7e9485c058faf15a99c8ff108ccae94c4d7831be9aaf772cc2d6e8a"}, + {file = "simsimd-5.4.3-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:f9460bafcef2d6c484f9971fbcdefa0eed60db3c5f41631ca6125518e0aabd66"}, + {file = "simsimd-5.4.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a068f6d30143262646d31f6e7573acf89601ca9f3583a9e4bca2d732057481d9"}, + {file = "simsimd-5.4.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:5ca7b165ee928acb19ff129b6d3776a2cb983e31d62fb5480a209e1aa45065be"}, + {file = "simsimd-5.4.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:269c7d32ce9bbc8f99dc63ef1c87faf4d454cbf4aa569d77a4dbbb8fc4542bfb"}, + {file = "simsimd-5.4.3-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9bc53af558a7a33046091275e760f16421963870b779be1e243bf192793bf63"}, + {file = "simsimd-5.4.3-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:d6f5e2f53f932e7ddf5a81aeb6bcbb5e8f7a3b46dc0cd5de6c91265859100f54"}, + {file = "simsimd-5.4.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b4dc2736276a5ada456a052828e7e4ba4db9bfb6dfb7c9b16ba5f33160876377"}, + {file = "simsimd-5.4.3-cp310-cp310-win32.whl", hash = "sha256:fc2c8b1f92d9ab0a73a57282eea3fd8dac79f50517ac76d81a4646e9037b1ffa"}, + {file = "simsimd-5.4.3-cp310-cp310-win_amd64.whl", hash = "sha256:d744be6222edd143d777b40fa55de23889c281ae505a3c8d650a19e4266c0518"}, + {file = "simsimd-5.4.3-cp310-cp310-win_arm64.whl", hash = "sha256:804f37fd965115cd0a960551c305f68d8fada6bb27b33a67038306bae6d3bc6a"}, + {file = "simsimd-5.4.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:32f6d6336c1cca6129ea7907d64f4fb91eab64fce8bdfa224098003953801ab5"}, + {file = "simsimd-5.4.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:470aa4fbc03d49a6f021985f0bc18a772f9a55f44cb1328052dbbd027412db1e"}, + {file = "simsimd-5.4.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:01d4c36f38f925555a1b85b16aa688b69d5df7a8be91b6c81ea1675486cf8242"}, + {file = "simsimd-5.4.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4b8130b4d82c2eb02c40a05f00e277a5dca290332777a3b011cb9adc6512439"}, + {file = "simsimd-5.4.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddd05002f204da0f25d1e5b0c5e3dfa550a8742c272b09db8ecf7799ec21d67d"}, + {file = "simsimd-5.4.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d674cd79d64e87fa772693275c49ce38f9893bf0b4d9fb08e45952ae54ba707b"}, + {file = "simsimd-5.4.3-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:c7d00820f4dfca80eb86cd3c70997bf6590f54557a92bee7ff868844a88376e3"}, + {file = "simsimd-5.4.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e960d14f77818e18f7629258f8debd08b5ad3cd62dab2ae53fb5ff5b54f7c08c"}, + {file = "simsimd-5.4.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f8af17e36af232014286c854473ad78758616ed7bcb7cf5a5762b8a5b1b074e5"}, + {file = "simsimd-5.4.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:436a17bd78372e86f7d01ecfff16f75c573a44f1037b5e4199f7a2ecc1a31de9"}, + {file = "simsimd-5.4.3-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:75f8f0fd937c2935e96da41fe4380f3705e1eec0f3433a643ac9384ed689eb9c"}, + {file = "simsimd-5.4.3-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:1c098aa69fd29a53a350a5a06e0da7ff25258bc76d0deccdf87ba3c862e35fe0"}, + {file = "simsimd-5.4.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bbdb970f64cce2496c7bc54463610c9ddaa43615aa73b6fb1bc1f0df5863565"}, + {file = "simsimd-5.4.3-cp311-cp311-win32.whl", hash = "sha256:aa58035f67b2c7083cc05a4c49b06b57a0aa15dfbb9608ed1e83ab59b965768f"}, + {file = "simsimd-5.4.3-cp311-cp311-win_amd64.whl", hash = "sha256:de14931d37087ccfbd1cc6321ad22ce76fef51fc75c98264ff2537170062d361"}, + {file = "simsimd-5.4.3-cp311-cp311-win_arm64.whl", hash = "sha256:d5474b49d97546b55940c27fcd63fce159f5f939cc53983f91bae56cea34dd52"}, + {file = "simsimd-5.4.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:31b1fd618dab62c49cca99fd78e4876b511273ead272584b34aeaca5e5ded532"}, + {file = "simsimd-5.4.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:43487d7f9756d5f8de6f778910b0fd8aa236716612ccd3afe50e8d8c50f1c20b"}, + {file = "simsimd-5.4.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ccd196db72fd716664441c6c0f3077f5d0d5ae6c15454a39c23b7fd729fae5d0"}, + {file = "simsimd-5.4.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1ea3e3dcb0471d9fb2dd8d09a84826e859d84f55fc01ec0b89df4c7b9bc67d96"}, + {file = "simsimd-5.4.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:db4b4fb06397d9689e2fab06b822a6432b85da99c92e060836b532ad94be0dea"}, + {file = "simsimd-5.4.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:576ebb0bcfeca4086d12925ab3130167ea2b89021d19c09f9b14cccc0e22c739"}, + {file = "simsimd-5.4.3-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:87c6bffa7275e250ac2d4605cccb66b0652ad033b734d2a7539eabc3eedbd882"}, + {file = "simsimd-5.4.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b48ab95d9a4bc8fd9ce9ce137b36e125e64a114fdd352f2f7a057e92dfbe4571"}, + {file = "simsimd-5.4.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f10dca118c1e7a9a89ccf32eb76f8eb09eb963817ee8817379e73ac1c11d55b3"}, + {file = "simsimd-5.4.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:5ba1472565cb786a4f537877fb15cdaaac139369d6eda14d4bfce6f4cf794b72"}, + {file = "simsimd-5.4.3-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ef92e699883da0f42b2513f4e923480516595a8da883aeae90980c02d8c40958"}, + {file = "simsimd-5.4.3-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:adc121c840b306a9b84506a02b00dab8f1e3db152b38fb1f72e5796be7d977b2"}, + {file = "simsimd-5.4.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:04381217e516e597ebc9d68e37341e2b32677d8de847041e94654834ec6fc366"}, + {file = "simsimd-5.4.3-cp312-cp312-win32.whl", hash = "sha256:b087189a27f925f348b40c34b7e11aaae9161e764a6376614620fb993f41d9fd"}, + {file = "simsimd-5.4.3-cp312-cp312-win_amd64.whl", hash = "sha256:f409ce2dc0b6bac7240432b6e7d7f44c9234a60bf7369bced16d2275dcb8afa1"}, + {file = "simsimd-5.4.3-cp312-cp312-win_arm64.whl", hash = "sha256:77cfe8260aa86a1fb27f884dc13d1ebb25e423a470e71020ea2037ea8d54c14d"}, + {file = "simsimd-5.4.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:38d21af2860d2effb8bb1af344ca64645ec3e2251497b79a2c80ea5582ae6983"}, + {file = "simsimd-5.4.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ee8e2ef9856e10e36fda82d13275870bd2d73c0a67f90a3120ecfb03c5448ba"}, + {file = "simsimd-5.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3f7b6abe31ebdc7044787db91cf3deb8c9612620895af95474cc8a1f146e071"}, + {file = "simsimd-5.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c4ec0e3df45f5c130fe92e4df91ded84ffc251f8fa802c62ffdbeef46a8d9a17"}, + {file = "simsimd-5.4.3-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:186a5f4bece780a3c6a161867548b35317c20247e5a07cacd33df7254d2baab9"}, + {file = "simsimd-5.4.3-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:82aea3431f2fc025148ed776c290f5b88a16a5c5c857b92a2a9d44e35097b811"}, + {file = "simsimd-5.4.3-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:698b62fd3dddd54e05dcb4989d3805cfa22f8112260855f6dcfd8a9272a938d9"}, + {file = "simsimd-5.4.3-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:2f1b19db892fcc3ef3fd21e474a819e63f6f1ac5ba3fb916d0776f5cbdae4b16"}, + {file = "simsimd-5.4.3-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:b24ab704c3aaac0fe1538b4fac69b3402847206d6735b5d9d476549712c65ec3"}, + {file = "simsimd-5.4.3-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:2592574bfa52a5e951568927a518ab873d6e1328c27cbddc8cf656f9d2ac4079"}, + {file = "simsimd-5.4.3-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:8b7e9495aa97f28f0ac727d23bd469c756583cc9b3288c8673170c83ea2e4195"}, + {file = "simsimd-5.4.3-cp37-cp37m-win32.whl", hash = "sha256:f4a5fff030bf1528e3667b257f477a6a8f4e098372b89b24b6e12b7cca863a39"}, + {file = "simsimd-5.4.3-cp37-cp37m-win_amd64.whl", hash = "sha256:57eab9d511b72ebf3f86f9d639d54a8876a1794047621e1b64adaeb4e5f24d10"}, + {file = "simsimd-5.4.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:82487401d13f08553a0bf5206a723779530581d4e7801fe7091a53389581d36f"}, + {file = "simsimd-5.4.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a57e07fb8c67339c4e34ae760d998e75876952fcada803250772c974b9cd54bc"}, + {file = "simsimd-5.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:433c6fcb8fdcfba3c7c81e568e32335768b0f0cae9b5f4aa8805e621ab6ac871"}, + {file = "simsimd-5.4.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1289252bd2be60fe1d030d33eb3b73459efb34cdd63685e04c37c5e3e963d4a"}, + {file = "simsimd-5.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83e58500f5b4eb1e182054c94a91872bf69471bc963355ab13e7f7d5a3d36ae"}, + {file = "simsimd-5.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95970e5a268eee6eacb9220ed19d60aa8e1751d01af1e76adf0bf614ec58962d"}, + {file = "simsimd-5.4.3-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0c334a0ded63acf1aa0a9ea720cae9a186c81eb5354c4b2b09ed57d8cc652215"}, + {file = "simsimd-5.4.3-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:29f0a8a8cc3a867dbeab39203572077db23d338fb01fd48ac8e6c48ab3bf8b38"}, + {file = "simsimd-5.4.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ac7c0fb5b70e5fdd13a6b2d08477f302674af7ae53c627e0413273d9afe5a245"}, + {file = "simsimd-5.4.3-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:8d9688a122c8dcb8e22f27676a76377625e3a3b607a2172559cb0d85453364d9"}, + {file = "simsimd-5.4.3-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:aeb450216526ca05d200f7cc59147233f039e24afbc42ab805adb9e540de9852"}, + {file = "simsimd-5.4.3-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:8209f3c1583a3ce1a6503d389383476a51bfe8990ecf81d7d679276d52eb40d4"}, + {file = "simsimd-5.4.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a03e984b0941b7555c0f62968b5d5e7b8132bffbb17b6dfb7219876cd95fc6c4"}, + {file = "simsimd-5.4.3-cp38-cp38-win32.whl", hash = "sha256:24c5be9c34d85a8e728e2e322884dc39169fddbbccbe47e970a3c2b872d1efee"}, + {file = "simsimd-5.4.3-cp38-cp38-win_amd64.whl", hash = "sha256:7d751d4f85a9c3ab6d62b417c5aa6e5972ca6e13425658a01f14632b916d2327"}, + {file = "simsimd-5.4.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:ba4ec918b19c578e1039266e1b3fc5792fce3e3e64c8a3afc6cef11c6f6abe4c"}, + {file = "simsimd-5.4.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:37b1f392bbe0fecfb9da301ff36dd0b7915e244b2433e822216171d5ee9b53f8"}, + {file = "simsimd-5.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ac97eb8a2ba3771e905a28bffb5894516d15b775af22d8b9b55eae3fe3d6673e"}, + {file = "simsimd-5.4.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6ac311333239d03b7b6726ebba8025a409ecb7e0eca9301f967fb88c9ec1055"}, + {file = "simsimd-5.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:44de5372968851de5c972faab9574a9667312dfedc69c626bd47dc1a0d730bf3"}, + {file = "simsimd-5.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64bab8107a19ac05067a143039cc03c14b4bd9ee95973fc7f7bae7e34e857eff"}, + {file = "simsimd-5.4.3-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:31f11b649448fb68061b0ff131c93215940b6dff24357ec9763abe80406db133"}, + {file = "simsimd-5.4.3-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:9d6ad1ed348779a07410b37baa0057dbc402c6d5785f86ad8a784cec6c642f36"}, + {file = "simsimd-5.4.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:b848f4f7da3c2d9fc654dd4815b7be99161c954d88af4f948f65f6df3c671671"}, + {file = "simsimd-5.4.3-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:44c731383c92cb165b907fd88c2c3f6b5a13102358cae4eb881950b4faf2f207"}, + {file = "simsimd-5.4.3-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:adc0b4df3e2739590f1e8e4d2cc12fedb57e8d015430dd6014e7fe5aab0c4bdd"}, + {file = "simsimd-5.4.3-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ffaef86f0c7d93e40d19773d3c1c23a5facc68ea1e094db98a6541458cb49aef"}, + {file = "simsimd-5.4.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d4774e00d72babac1f7685b9b0e2ff721da312301e8656687e89071d7e4d4b8b"}, + {file = "simsimd-5.4.3-cp39-cp39-win32.whl", hash = "sha256:d582b3eff101cc8e920407ef08c97e34e1738e829bc58816c0d402bcb5674183"}, + {file = "simsimd-5.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:777809b143ec9f3ff18bd20eb140367a62717c948b907846f9389e6ae3d1b88c"}, + {file = "simsimd-5.4.3-cp39-cp39-win_arm64.whl", hash = "sha256:0637cfb2e99f3d8b78eb3d84d3a63b47a413a3a1702314d74ed28b861b0c0e7c"}, + {file = "simsimd-5.4.3.tar.gz", hash = "sha256:dc75ae8bc0bff160439f669eb664cf47cc24d1a450c93b6bb53d8eee68794956"}, ] [[package]] @@ -2940,13 +2778,13 @@ test = ["pytest", "ruff"] [[package]] name = "tomli" -version = "2.0.1" +version = "2.0.2" description = "A lil' TOML parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, + {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, + {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, ] [[package]] @@ -3011,35 +2849,35 @@ files = [ [[package]] name = "types-python-dateutil" -version = "2.9.0.20240821" +version = "2.9.0.20240906" description = "Typing stubs for python-dateutil" optional = false python-versions = ">=3.8" files = [ - {file = "types-python-dateutil-2.9.0.20240821.tar.gz", hash = "sha256:9649d1dcb6fef1046fb18bebe9ea2aa0028b160918518c34589a46045f6ebd98"}, - {file = "types_python_dateutil-2.9.0.20240821-py3-none-any.whl", hash = "sha256:f5889fcb4e63ed4aaa379b44f93c32593d50b9a94c9a60a0c854d8cc3511cd57"}, + {file = "types-python-dateutil-2.9.0.20240906.tar.gz", hash = "sha256:9706c3b68284c25adffc47319ecc7947e5bb86b3773f843c73906fd598bc176e"}, + {file = "types_python_dateutil-2.9.0.20240906-py3-none-any.whl", hash = "sha256:27c8cc2d058ccb14946eebcaaa503088f4f6dbc4fb6093d3d456a49aef2753f6"}, ] [[package]] name = "types-pyyaml" -version = "6.0.12.20240808" +version = "6.0.12.20240917" description = "Typing stubs for PyYAML" optional = false python-versions = ">=3.8" files = [ - {file = "types-PyYAML-6.0.12.20240808.tar.gz", hash = "sha256:b8f76ddbd7f65440a8bda5526a9607e4c7a322dc2f8e1a8c405644f9a6f4b9af"}, - {file = "types_PyYAML-6.0.12.20240808-py3-none-any.whl", hash = "sha256:deda34c5c655265fc517b546c902aa6eed2ef8d3e921e4765fe606fe2afe8d35"}, + {file = "types-PyYAML-6.0.12.20240917.tar.gz", hash = "sha256:d1405a86f9576682234ef83bcb4e6fff7c9305c8b1fbad5e0bcd4f7dbdc9c587"}, + {file = "types_PyYAML-6.0.12.20240917-py3-none-any.whl", hash = "sha256:392b267f1c0fe6022952462bf5d6523f31e37f6cea49b14cee7ad634b6301570"}, ] [[package]] name = "types-requests" -version = "2.32.0.20240712" +version = "2.32.0.20240914" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, + {file = "types-requests-2.32.0.20240914.tar.gz", hash = "sha256:2850e178db3919d9bf809e434eef65ba49d0e7e33ac92d588f4a5e295fffd405"}, + {file = "types_requests-2.32.0.20240914-py3-none-any.whl", hash = "sha256:59c2f673eb55f32a99b2894faf6020e1a9f4a402ad0f192bfee0b64469054310"}, ] [package.dependencies] @@ -3072,13 +2910,13 @@ dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -3089,46 +2927,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.3" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:85527b882f3facda0579bce9d743ff7f10c3e1e0db0a0d0e28170a7d0e5ce2ea"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:53adf73dcdc0ef04f7735066b4a57a4cd3e49ef135daae41d77395f0b5b692cb"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e25adddab85f674acac303cf1f5835951345a56c5f7f582987d266679979c75b"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f01f4a3565a387080dc49bdd1fefe4ecc77f894991b88ef927edbfa45eb10818"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:91b522adc25614cdeaf91f7897800b82c13b4b8ac68a42ca959f992f6990c490"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d52db5beb5e476e6853da2e2d24dbbbed6797b449c8bf7ea118a4ee0d2c9040e"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:94d11b07c64f63f49876e0ab8042ae034674c8653bfcdaa8c4b32e71cfff87e8"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:349c9488e1d85d0a58e8cb14222d2c51cbc801ce11ac3936ab4c3af986536926"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:53a3f10b62c2d569e260f96e8d966463dec1a50fa4f1b22aec69e3f91025060e"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:950f531ec6e03696a2414b6308f5c6ff9dab7821a768c9d5788b1314e9a46ca7"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae6deb336cba5d71476caa029ceb6e88047fc1dc74b62b7c4012639c0b563906"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1021223c08ba8d2d38d71ec1704496471ffd7be42cfb26b87cd5059323a389a1"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:752fb40efc7cc8d88ebc332b8f4bcbe2b5cc7e881bccfeb8e25054c00c994ee3"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2e8f3f955d68471fa37b0e3add18500790d129cc7efe89971b8a4cc6fdeb0b2"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b8ca4d854adcf480bdfd80f46fdd6fb49f91dd020ae11c89b3a79e19454ec627"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:90a67d7857adb1d985aca232cc9905dd5bc4803ed85cfcdcfcf707e52049eda7"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:720ef9d3a4f9ca575a780af283c8fd3a0674b307651c1976714745090da5a9e8"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:223160bb359281bb8e31c8f1068bf71a6b16a8ad3d9524ca6f523ac666bb6a1e"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:560135542c91eaa74247a2e8430cf83c4342b29e8ad4f520ae14f0c8a19cfb5b"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dd021efa85970bd4824acacbb922066159d0f9e546389a4743d56919b6758b91"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_armv7l.whl", hash = "sha256:78864cc8f23dbee55be34cc1494632a7ba30263951b5b2e8fc8286b95845f82c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_i686.whl", hash = "sha256:1e9679245e3ea6498494b3028b90c7b25dbb2abe65c7d07423ecfc2d6218ff7c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64.whl", hash = "sha256:9413384f26b5d050b6978e6fcd0c1e7f0539be7a4f1a885061473c5deaa57221"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:294b7a598974b8e2c6123d19ef15de9abcd282b0fbbdbc4d23dfa812959a9e05"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_s390x.whl", hash = "sha256:26dd201857d702bdf9d78c273cafcab5871dd29343748524695cecffa44a8d97"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:0f9332243355643d567697c3e3fa07330a1d1abf981611654a1f2bf2175612b7"}, + {file = "watchdog-5.0.3-py3-none-win32.whl", hash = "sha256:c66f80ee5b602a9c7ab66e3c9f36026590a0902db3aea414d59a2f55188c1f49"}, + {file = "watchdog-5.0.3-py3-none-win_amd64.whl", hash = "sha256:f00b4cf737f568be9665563347a910f8bdc76f88c2970121c86243c8cfdf90e9"}, + {file = "watchdog-5.0.3-py3-none-win_ia64.whl", hash = "sha256:49f4d36cb315c25ea0d946e018c01bb028048023b9e103d3d3943f58e109dd45"}, + {file = "watchdog-5.0.3.tar.gz", hash = "sha256:108f42a7f0345042a854d4d0ad0834b741d421330d5f575b81cb27b883500176"}, ] [package.extras] @@ -3200,13 +3033,13 @@ files = [ [[package]] name = "zipp" -version = "3.20.1" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.20.1-py3-none-any.whl", hash = "sha256:9960cd8967c8f85a56f920d5d507274e74f9ff813a0ab8889a5b5be2daf44064"}, - {file = "zipp-3.20.1.tar.gz", hash = "sha256:c22b14cc4763c5a5b04134207736c107db42e9d3ef2d9779d465f5f1bcba572b"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] @@ -3219,5 +3052,5 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "db22fd24cc4409baa802efebb4a73e8effd50befe465428d7946d91dccbb9563" +python-versions = ">=3.9,<4.0" +content-hash = "d226029b416404cd24944878e0381319620636d4b4ccdee5646406e025ed79c4" diff --git a/libs/core/pyproject.toml b/libs/core/pyproject.toml index 1482f5bf5a0a5..80ef45805d26d 100644 --- a/libs/core/pyproject.toml +++ b/libs/core/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-core" -version = "0.2.39" +version = "0.3.9" description = "Building applications with LLMs through composability" authors = [] license = "MIT" @@ -12,26 +12,29 @@ readme = "README.md" repository = "https://github.com/langchain-ai/langchain" [tool.mypy] -disallow_untyped_defs = "True" exclude = [ "notebooks", "examples", "example_data", "langchain_core/pydantic", "tests/unit_tests/utils/test_function_calling.py",] +disallow_untyped_defs = "True" [[tool.mypy.overrides]] module = [ "numpy", "pytest",] ignore_missing_imports = true +[tool.ruff] +target-version = "py39" + [tool.poetry.urls] "Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/core" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-core%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langsmith = "^0.1.112" +python = ">=3.9,<4.0" +langsmith = "^0.1.125" tenacity = "^8.1.0,!=8.4.0" jsonpatch = "^1.33" PyYAML = ">=5.3" packaging = ">=23.2,<25" typing-extensions = ">=4.7" [[tool.poetry.dependencies.pydantic]] -version = ">=1,<3" +version = "^2.5.2" python = "<3.12.4" [[tool.poetry.dependencies.pydantic]] @@ -41,8 +44,42 @@ python = ">=3.12.4" [tool.poetry.extras] [tool.ruff.lint] -select = [ "B", "E", "F", "I", "T201", "UP",] -ignore = [ "UP006", "UP007",] +select = [ + "ASYNC", + "B", + "C4", + "COM", + "DJ", + "E", + "EM", + "EXE", + "F", + "FLY", + "FURB", + "I", + "ICN", + "INT", + "LOG", + "N", + "NPY", + "PD", + "PIE", + "Q", + "RSE", + "SIM", + "SLOT", + "T10", + "T201", + "TID", + "UP", + "W", + "YTT" +] +ignore = [ + "COM812", # Messes with the formatter + "UP007", # Incompatible with pydantic + Python 3.9 + "W293", # +] [tool.coverage.run] omit = [ "tests/*",] @@ -51,6 +88,7 @@ omit = [ "tests/*",] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] asyncio_mode = "auto" +filterwarnings = [ "ignore::langchain_core._api.beta_decorator.LangChainBetaWarning",] [tool.poetry.group.lint] optional = true @@ -67,6 +105,9 @@ optional = true [tool.poetry.group.test_integration] optional = true +[tool.ruff.lint.pep8-naming] +classmethod-decorators = [ "classmethod", "langchain_core.utils.pydantic.pre_init", "pydantic.field_validator", "pydantic.v1.root_validator",] + [tool.ruff.lint.per-file-ignores] "tests/unit_tests/prompts/test_chat.py" = [ "E501",] "tests/unit_tests/runnables/test_runnable.py" = [ "E501",] diff --git a/libs/core/scripts/check_pydantic.sh b/libs/core/scripts/check_pydantic.sh deleted file mode 100755 index 941fa6b1f4d49..0000000000000 --- a/libs/core/scripts/check_pydantic.sh +++ /dev/null @@ -1,31 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$( - git -C "$repository_path" grep -E '^[[:space:]]*import pydantic|^[[:space:]]*from pydantic' \ - -- ':!langchain_core/pydantic_*' ':!langchain_core/utils' | grep -v 'pydantic: ignore' -) - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - echo "If this was intentional, you can add # pydantic: ignore after the import to ignore this error." - exit 1 -fi diff --git a/libs/core/tests/integration_tests/test_compile.py b/libs/core/tests/integration_tests/test_compile.py index 33ecccdfa0fbd..f315e45f521c0 100644 --- a/libs/core/tests/integration_tests/test_compile.py +++ b/libs/core/tests/integration_tests/test_compile.py @@ -4,4 +4,3 @@ @pytest.mark.compile def test_placeholder() -> None: """Used for compiling integration tests without running any real tests.""" - pass diff --git a/libs/core/tests/unit_tests/_api/test_beta_decorator.py b/libs/core/tests/unit_tests/_api/test_beta_decorator.py index ef7dd110687e1..40465813d28f1 100644 --- a/libs/core/tests/unit_tests/_api/test_beta_decorator.py +++ b/libs/core/tests/unit_tests/_api/test_beta_decorator.py @@ -1,11 +1,11 @@ import inspect import warnings -from typing import Any, Dict +from typing import Any import pytest +from pydantic import BaseModel from langchain_core._api.beta_decorator import beta, warn_beta -from langchain_core.pydantic_v1 import BaseModel @pytest.mark.parametrize( @@ -41,7 +41,7 @@ ), ], ) -def test_warn_beta(kwargs: Dict[str, Any], expected_message: str) -> None: +def test_warn_beta(kwargs: dict[str, Any], expected_message: str) -> None: """Test warn beta.""" with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter("always") @@ -68,7 +68,6 @@ async def beta_async_function() -> str: class ClassWithBetaMethods: def __init__(self) -> None: """original doc""" - pass @beta() def beta_method(self) -> str: @@ -244,7 +243,6 @@ def test_whole_class_beta() -> None: class BetaClass: def __init__(self) -> None: """original doc""" - pass @beta() def beta_method(self) -> str: diff --git a/libs/core/tests/unit_tests/_api/test_deprecation.py b/libs/core/tests/unit_tests/_api/test_deprecation.py index e1a2849635474..06ffa55a8d722 100644 --- a/libs/core/tests/unit_tests/_api/test_deprecation.py +++ b/libs/core/tests/unit_tests/_api/test_deprecation.py @@ -1,15 +1,15 @@ import inspect import warnings -from typing import Any, Dict +from typing import Any import pytest +from pydantic import BaseModel from langchain_core._api.deprecation import ( deprecated, rename_parameter, warn_deprecated, ) -from langchain_core.pydantic_v1 import BaseModel @pytest.mark.parametrize( @@ -55,7 +55,7 @@ ), ], ) -def test_warn_deprecated(kwargs: Dict[str, Any], expected_message: str) -> None: +def test_warn_deprecated(kwargs: dict[str, Any], expected_message: str) -> None: """Test warn deprecated.""" with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter("always") @@ -88,7 +88,6 @@ async def deprecated_async_function() -> str: class ClassWithDeprecatedMethods: def __init__(self) -> None: """original doc""" - pass @deprecated(since="2.0.0", removal="3.0.0") def deprecated_method(self) -> str: @@ -268,7 +267,6 @@ def test_whole_class_deprecation() -> None: class DeprecatedClass: def __init__(self) -> None: """original doc""" - pass @deprecated(since="2.0.0", removal="3.0.0") def deprecated_method(self) -> str: @@ -311,7 +309,6 @@ def test_whole_class_inherited_deprecation() -> None: class DeprecatedClass: def __init__(self) -> None: """original doc""" - pass @deprecated(since="2.0.0", removal="3.0.0") def deprecated_method(self) -> str: @@ -324,7 +321,6 @@ class InheritedDeprecatedClass(DeprecatedClass): def __init__(self) -> None: """original doc""" - pass @deprecated(since="2.2.0", removal="3.2.0") def deprecated_method(self) -> str: diff --git a/libs/core/tests/unit_tests/caches/test_in_memory_cache.py b/libs/core/tests/unit_tests/caches/test_in_memory_cache.py index 67143c0ff9227..2fba0705a57fc 100644 --- a/libs/core/tests/unit_tests/caches/test_in_memory_cache.py +++ b/libs/core/tests/unit_tests/caches/test_in_memory_cache.py @@ -1,5 +1,3 @@ -from typing import Tuple - import pytest from langchain_core.caches import RETURN_VAL_TYPE, InMemoryCache @@ -12,7 +10,7 @@ def cache() -> InMemoryCache: return InMemoryCache() -def cache_item(item_id: int) -> Tuple[str, str, RETURN_VAL_TYPE]: +def cache_item(item_id: int) -> tuple[str, str, RETURN_VAL_TYPE]: """Generate a valid cache item.""" prompt = f"prompt{item_id}" llm_string = f"llm_string{item_id}" diff --git a/libs/core/tests/unit_tests/callbacks/test_async_callback_manager.py b/libs/core/tests/unit_tests/callbacks/test_async_callback_manager.py new file mode 100644 index 0000000000000..38350f9d82f7b --- /dev/null +++ b/libs/core/tests/unit_tests/callbacks/test_async_callback_manager.py @@ -0,0 +1,148 @@ +"""Unit tests for verifying event dispatching. + +Much of this code is indirectly tested already through many end-to-end tests +that generate traces based on the callbacks. The traces are all verified +via snapshot testing (e.g., see unit tests for runnables). +""" + +import contextvars +from contextlib import asynccontextmanager +from typing import Any, Optional +from uuid import UUID + +from langchain_core.callbacks import ( + AsyncCallbackHandler, + AsyncCallbackManager, + BaseCallbackHandler, +) + + +async def test_inline_handlers_share_parent_context() -> None: + """Verify that handlers that are configured to run_inline can update parent context. + + This test was created because some of the inline handlers were getting + their own context as the handling logic was kicked off using asyncio.gather + which does not automatically propagate the parent context (by design). + + This issue was affecting only a few specific handlers: + + * on_llm_start + * on_chat_model_start + + which in some cases were triggered with multiple prompts and as a result + triggering multiple tasks that were launched in parallel. + """ + some_var: contextvars.ContextVar[str] = contextvars.ContextVar("some_var") + + class CustomHandler(AsyncCallbackHandler): + """A handler that sets the context variable. + + The handler sets the context variable to the name of the callback that was + called. + """ + + def __init__(self, run_inline: bool) -> None: + """Initialize the handler.""" + self.run_inline = run_inline + + async def on_llm_start(self, *args: Any, **kwargs: Any) -> None: + """Update the callstack with the name of the callback.""" + some_var.set("on_llm_start") + + # The manager serves as a callback dispatcher. + # It's responsible for dispatching callbacks to all registered handlers. + manager = AsyncCallbackManager(handlers=[CustomHandler(run_inline=True)]) + + # Check on_llm_start + some_var.set("unset") + await manager.on_llm_start({}, ["prompt 1"]) + assert some_var.get() == "on_llm_start" + + # Check what happens when run_inline is False + # We don't expect the context to be updated + manager2 = AsyncCallbackManager( + handlers=[ + CustomHandler(run_inline=False), + ] + ) + + some_var.set("unset") + await manager2.on_llm_start({}, ["prompt 1"]) + # Will not be updated because the handler is not inline + assert some_var.get() == "unset" + + +async def test_inline_handlers_share_parent_context_multiple() -> None: + """A slightly more complex variation of the test unit test above. + + This unit test verifies that things work correctly when there are multiple prompts, + and multiple handlers that are configured to run inline. + """ + counter_var = contextvars.ContextVar("counter", default=0) + + shared_stack = [] + + @asynccontextmanager + async def set_counter_var() -> Any: + token = counter_var.set(0) + try: + yield + finally: + counter_var.reset(token) + + class StatefulAsyncCallbackHandler(AsyncCallbackHandler): + def __init__(self, name: str, run_inline: bool = True): + self.name = name + self.run_inline = run_inline + + async def on_llm_start( + self, + serialized: dict[str, Any], + prompts: list[str], + *, + run_id: UUID, + parent_run_id: Optional[UUID] = None, + **kwargs: Any, + ) -> None: + if self.name == "StateModifier": + current_counter = counter_var.get() + counter_var.set(current_counter + 1) + state = counter_var.get() + elif self.name == "StateReader": + state = counter_var.get() + else: + state = None + + shared_stack.append(state) + + await super().on_llm_start( + serialized, + prompts, + run_id=run_id, + parent_run_id=parent_run_id, + **kwargs, + ) + + handlers: list[BaseCallbackHandler] = [ + StatefulAsyncCallbackHandler("StateModifier", run_inline=True), + StatefulAsyncCallbackHandler("StateReader", run_inline=True), + StatefulAsyncCallbackHandler("NonInlineHandler", run_inline=False), + ] + + prompts = ["Prompt1", "Prompt2", "Prompt3"] + + async with set_counter_var(): + shared_stack.clear() + manager = AsyncCallbackManager(handlers=handlers) + await manager.on_llm_start({}, prompts) + + # Assert the order of states + states = [entry for entry in shared_stack if entry is not None] + assert states == [ + 1, + 1, + 2, + 2, + 3, + 3, + ], f"Expected order of states was broken due to context loss. Got {states}" diff --git a/libs/core/tests/unit_tests/callbacks/test_dispatch_custom_event.py b/libs/core/tests/unit_tests/callbacks/test_dispatch_custom_event.py index 62b76a7a2d65f..cd13d1d46b26b 100644 --- a/libs/core/tests/unit_tests/callbacks/test_dispatch_custom_event.py +++ b/libs/core/tests/unit_tests/callbacks/test_dispatch_custom_event.py @@ -1,6 +1,6 @@ import sys import uuid -from typing import Any, Dict, List, Optional +from typing import Any, Optional from uuid import UUID import pytest @@ -16,7 +16,7 @@ class AsyncCustomCallbackHandler(AsyncCallbackHandler): def __init__(self) -> None: - self.events: List[Any] = [] + self.events: list[Any] = [] async def on_custom_event( self, @@ -24,8 +24,8 @@ async def on_custom_event( data: Any, *, run_id: UUID, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: assert kwargs == {} @@ -120,7 +120,7 @@ def test_sync_callback_manager() -> None: class CustomCallbackManager(BaseCallbackHandler): def __init__(self) -> None: - self.events: List[Any] = [] + self.events: list[Any] = [] def on_custom_event( self, @@ -128,8 +128,8 @@ def on_custom_event( data: Any, *, run_id: UUID, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> None: assert kwargs == {} diff --git a/libs/core/tests/unit_tests/chat_history/test_chat_history.py b/libs/core/tests/unit_tests/chat_history/test_chat_history.py index e7d2b724f7efa..eb7690335f974 100644 --- a/libs/core/tests/unit_tests/chat_history/test_chat_history.py +++ b/libs/core/tests/unit_tests/chat_history/test_chat_history.py @@ -1,4 +1,4 @@ -from typing import List, Sequence +from collections.abc import Sequence from langchain_core.chat_history import BaseChatMessageHistory from langchain_core.messages import BaseMessage, HumanMessage @@ -8,7 +8,7 @@ def test_add_message_implementation_only() -> None: """Test implementation of add_message only.""" class SampleChatHistory(BaseChatMessageHistory): - def __init__(self, *, store: List[BaseMessage]) -> None: + def __init__(self, *, store: list[BaseMessage]) -> None: self.store = store def add_message(self, message: BaseMessage) -> None: @@ -17,9 +17,9 @@ def add_message(self, message: BaseMessage) -> None: def clear(self) -> None: """Clear the store.""" - raise NotImplementedError() + raise NotImplementedError - store: List[BaseMessage] = [] + store: list[BaseMessage] = [] chat_history = SampleChatHistory(store=store) chat_history.add_message(HumanMessage(content="Hello")) assert len(store) == 1 @@ -38,10 +38,10 @@ def clear(self) -> None: def test_bulk_message_implementation_only() -> None: """Test that SampleChatHistory works as expected.""" - store: List[BaseMessage] = [] + store: list[BaseMessage] = [] class BulkAddHistory(BaseChatMessageHistory): - def __init__(self, *, store: List[BaseMessage]) -> None: + def __init__(self, *, store: list[BaseMessage]) -> None: self.store = store def add_messages(self, message: Sequence[BaseMessage]) -> None: @@ -50,7 +50,7 @@ def add_messages(self, message: Sequence[BaseMessage]) -> None: def clear(self) -> None: """Clear the store.""" - raise NotImplementedError() + raise NotImplementedError chat_history = BulkAddHistory(store=store) chat_history.add_message(HumanMessage(content="Hello")) diff --git a/libs/core/tests/unit_tests/conftest.py b/libs/core/tests/unit_tests/conftest.py index d2f1207557091..29819a8066958 100644 --- a/libs/core/tests/unit_tests/conftest.py +++ b/libs/core/tests/unit_tests/conftest.py @@ -1,7 +1,7 @@ """Configuration for unit tests.""" +from collections.abc import Sequence from importlib import util -from typing import Dict, Sequence from uuid import UUID import pytest @@ -41,13 +41,14 @@ def test_something(): """ # Mapping from the name of a package to whether it is installed or not. # Used to avoid repeated calls to `util.find_spec` - required_pkgs_info: Dict[str, bool] = {} + required_pkgs_info: dict[str, bool] = {} only_extended = config.getoption("--only-extended") or False only_core = config.getoption("--only-core") or False if only_extended and only_core: - raise ValueError("Cannot specify both `--only-extended` and `--only-core`.") + msg = "Cannot specify both `--only-extended` and `--only-core`." + raise ValueError(msg) for item in items: requires_marker = item.get_closest_marker("requires") diff --git a/libs/core/tests/unit_tests/document_loaders/test_base.py b/libs/core/tests/unit_tests/document_loaders/test_base.py index 484114766a0c4..4297b1654824f 100644 --- a/libs/core/tests/unit_tests/document_loaders/test_base.py +++ b/libs/core/tests/unit_tests/document_loaders/test_base.py @@ -1,6 +1,6 @@ """Test Base Schema of documents.""" -from typing import Iterator, List +from collections.abc import Iterator import pytest @@ -33,7 +33,7 @@ def lazy_parse(self, blob: Blob) -> Iterator[Document]: def test_default_lazy_load() -> None: class FakeLoader(BaseLoader): - def load(self) -> List[Document]: + def load(self) -> list[Document]: return [ Document(page_content="foo"), Document(page_content="bar"), diff --git a/libs/core/tests/unit_tests/document_loaders/test_langsmith.py b/libs/core/tests/unit_tests/document_loaders/test_langsmith.py index e754ab2d37220..6c4c7a54170b5 100644 --- a/libs/core/tests/unit_tests/document_loaders/test_langsmith.py +++ b/libs/core/tests/unit_tests/document_loaders/test_langsmith.py @@ -54,5 +54,5 @@ def test_lazy_load() -> None: expected.append( Document(example.inputs["first"]["second"].upper(), metadata=metadata) ) - actual = [doc for doc in loader.lazy_load()] + actual = list(loader.lazy_load()) assert expected == actual diff --git a/libs/core/tests/unit_tests/documents/test_document.py b/libs/core/tests/unit_tests/documents/test_document.py new file mode 100644 index 0000000000000..e312121bd01e2 --- /dev/null +++ b/libs/core/tests/unit_tests/documents/test_document.py @@ -0,0 +1,12 @@ +from langchain_core.documents import Document + + +def test_init() -> None: + for doc in [ + Document(page_content="foo"), + Document(page_content="foo", metadata={"a": 1}), + Document(page_content="foo", id=None), + Document(page_content="foo", id="1"), + Document(page_content="foo", id=1), + ]: + assert isinstance(doc, Document) diff --git a/libs/core/tests/unit_tests/documents/test_str.py b/libs/core/tests/unit_tests/documents/test_str.py index b803702ec70e2..35d7a82bfb77d 100644 --- a/libs/core/tests/unit_tests/documents/test_str.py +++ b/libs/core/tests/unit_tests/documents/test_str.py @@ -12,7 +12,7 @@ def test_str() -> None: def test_repr() -> None: assert ( repr(Document(page_content="Hello, World!")) - == "Document(page_content='Hello, World!')" + == "Document(metadata={}, page_content='Hello, World!')" ) assert ( repr(Document(page_content="Hello, World!", metadata={"a": 3})) diff --git a/libs/core/tests/unit_tests/example_selectors/test_base.py b/libs/core/tests/unit_tests/example_selectors/test_base.py index 5ab9ed7c2c022..54793627987e0 100644 --- a/libs/core/tests/unit_tests/example_selectors/test_base.py +++ b/libs/core/tests/unit_tests/example_selectors/test_base.py @@ -1,16 +1,16 @@ -from typing import Dict, List, Optional +from typing import Optional from langchain_core.example_selectors import BaseExampleSelector class DummyExampleSelector(BaseExampleSelector): def __init__(self) -> None: - self.example: Optional[Dict[str, str]] = None + self.example: Optional[dict[str, str]] = None - def add_example(self, example: Dict[str, str]) -> None: + def add_example(self, example: dict[str, str]) -> None: self.example = example - def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: + def select_examples(self, input_variables: dict[str, str]) -> list[dict]: return [input_variables] diff --git a/libs/core/tests/unit_tests/example_selectors/test_similarity.py b/libs/core/tests/unit_tests/example_selectors/test_similarity.py index 2cd50ca8dd2e1..5a5f40d197a25 100644 --- a/libs/core/tests/unit_tests/example_selectors/test_similarity.py +++ b/libs/core/tests/unit_tests/example_selectors/test_similarity.py @@ -1,4 +1,5 @@ -from typing import Any, Iterable, List, Optional, cast +from collections.abc import Iterable +from typing import Any, Optional, cast from langchain_core.documents import Document from langchain_core.embeddings import Embeddings, FakeEmbeddings @@ -11,8 +12,8 @@ class DummyVectorStore(VectorStore): def __init__(self, init_arg: Optional[str] = None): - self.texts: List[str] = [] - self.metadatas: List[dict] = [] + self.texts: list[str] = [] + self.metadatas: list[dict] = [] self._embeddings: Optional[Embeddings] = None self.init_arg = init_arg @@ -23,9 +24,9 @@ def embeddings(self) -> Optional[Embeddings]: def add_texts( self, texts: Iterable[str], - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: self.texts.extend(texts) if metadatas: self.metadatas.extend(metadatas) @@ -33,7 +34,7 @@ def add_texts( def similarity_search( self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: + ) -> list[Document]: return [ Document( page_content=query, metadata={"query": query, "k": k, "other": "other"} @@ -47,7 +48,7 @@ def max_marginal_relevance_search( fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: return [ Document( page_content=query, @@ -58,9 +59,9 @@ def max_marginal_relevance_search( @classmethod def from_texts( cls, - texts: List[str], + texts: list[str], embedding: Embeddings, - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, **kwargs: Any, ) -> "DummyVectorStore": store = DummyVectorStore(**kwargs) diff --git a/libs/core/tests/unit_tests/fake/callbacks.py b/libs/core/tests/unit_tests/fake/callbacks.py index 71a6dea0cef02..51ef0fe6c9d81 100644 --- a/libs/core/tests/unit_tests/fake/callbacks.py +++ b/libs/core/tests/unit_tests/fake/callbacks.py @@ -1,12 +1,13 @@ """A fake callback handler for testing purposes.""" from itertools import chain -from typing import Any, Dict, List, Optional, Union +from typing import Any, Optional, Union from uuid import UUID +from pydantic import BaseModel + from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import BaseModel class BaseFakeCallbackHandler(BaseModel): @@ -15,7 +16,7 @@ class BaseFakeCallbackHandler(BaseModel): starts: int = 0 ends: int = 0 errors: int = 0 - errors_args: List[Any] = [] + errors_args: list[Any] = [] text: int = 0 ignore_llm_: bool = False ignore_chain_: bool = False @@ -256,15 +257,16 @@ def on_retriever_error( ) -> Any: self.on_retriever_error_common() - def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + # Overriding since BaseModel has __deepcopy__ method as well + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": # type: ignore return self class FakeCallbackHandlerWithChatStart(FakeCallbackHandler): def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, @@ -390,5 +392,6 @@ async def on_text( ) -> None: self.on_text_common() - def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": + # Overriding since BaseModel has __deepcopy__ method as well + def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": # type: ignore return self diff --git a/libs/core/tests/unit_tests/fake/test_fake_chat_model.py b/libs/core/tests/unit_tests/fake/test_fake_chat_model.py index feff8a4a7bafa..7502e17c50fde 100644 --- a/libs/core/tests/unit_tests/fake/test_fake_chat_model.py +++ b/libs/core/tests/unit_tests/fake/test_fake_chat_model.py @@ -1,18 +1,21 @@ """Tests for verifying that testing utility code works as expected.""" from itertools import cycle -from typing import Any, Dict, List, Optional, Union +from typing import Any, Optional, Union from uuid import UUID from langchain_core.callbacks.base import AsyncCallbackHandler -from langchain_core.language_models import GenericFakeChatModel, ParrotFakeChatModel +from langchain_core.language_models import ( + FakeListChatModel, + GenericFakeChatModel, + ParrotFakeChatModel, +) from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage from langchain_core.outputs import ChatGenerationChunk, GenerationChunk from tests.unit_tests.stubs import ( - AnyStr, - _AnyIdAIMessage, - _AnyIdAIMessageChunk, - _AnyIdHumanMessage, + _any_id_ai_message, + _any_id_ai_message_chunk, + _any_id_human_message, ) @@ -21,11 +24,11 @@ def test_generic_fake_chat_model_invoke() -> None: infinite_cycle = cycle([AIMessage(content="hello"), AIMessage(content="goodbye")]) model = GenericFakeChatModel(messages=infinite_cycle) response = model.invoke("meow") - assert response == _AnyIdAIMessage(content="hello") + assert response == _any_id_ai_message(content="hello") response = model.invoke("kitty") - assert response == _AnyIdAIMessage(content="goodbye") + assert response == _any_id_ai_message(content="goodbye") response = model.invoke("meow") - assert response == _AnyIdAIMessage(content="hello") + assert response == _any_id_ai_message(content="hello") async def test_generic_fake_chat_model_ainvoke() -> None: @@ -33,11 +36,11 @@ async def test_generic_fake_chat_model_ainvoke() -> None: infinite_cycle = cycle([AIMessage(content="hello"), AIMessage(content="goodbye")]) model = GenericFakeChatModel(messages=infinite_cycle) response = await model.ainvoke("meow") - assert response == _AnyIdAIMessage(content="hello") + assert response == _any_id_ai_message(content="hello") response = await model.ainvoke("kitty") - assert response == _AnyIdAIMessage(content="goodbye") + assert response == _any_id_ai_message(content="goodbye") response = await model.ainvoke("meow") - assert response == _AnyIdAIMessage(content="hello") + assert response == _any_id_ai_message(content="hello") async def test_generic_fake_chat_model_stream() -> None: @@ -50,17 +53,17 @@ async def test_generic_fake_chat_model_stream() -> None: model = GenericFakeChatModel(messages=infinite_cycle) chunks = [chunk async for chunk in model.astream("meow")] assert chunks == [ - _AnyIdAIMessageChunk(content="hello"), - _AnyIdAIMessageChunk(content=" "), - _AnyIdAIMessageChunk(content="goodbye"), + _any_id_ai_message_chunk(content="hello"), + _any_id_ai_message_chunk(content=" "), + _any_id_ai_message_chunk(content="goodbye"), ] assert len({chunk.id for chunk in chunks}) == 1 - chunks = [chunk for chunk in model.stream("meow")] + chunks = list(model.stream("meow")) assert chunks == [ - _AnyIdAIMessageChunk(content="hello"), - _AnyIdAIMessageChunk(content=" "), - _AnyIdAIMessageChunk(content="goodbye"), + _any_id_ai_message_chunk(content="hello"), + _any_id_ai_message_chunk(content=" "), + _any_id_ai_message_chunk(content="goodbye"), ] assert len({chunk.id for chunk in chunks}) == 1 @@ -70,8 +73,8 @@ async def test_generic_fake_chat_model_stream() -> None: model = GenericFakeChatModel(messages=cycle([message])) chunks = [chunk async for chunk in model.astream("meow")] assert chunks == [ - AIMessageChunk(content="", additional_kwargs={"foo": 42}, id=AnyStr()), - AIMessageChunk(content="", additional_kwargs={"bar": 24}, id=AnyStr()), + _any_id_ai_message_chunk(content="", additional_kwargs={"foo": 42}), + _any_id_ai_message_chunk(content="", additional_kwargs={"bar": 24}), ] assert len({chunk.id for chunk in chunks}) == 1 @@ -89,29 +92,23 @@ async def test_generic_fake_chat_model_stream() -> None: chunks = [chunk async for chunk in model.astream("meow")] assert chunks == [ - AIMessageChunk( - content="", - additional_kwargs={"function_call": {"name": "move_file"}}, - id=AnyStr(), + _any_id_ai_message_chunk( + content="", additional_kwargs={"function_call": {"name": "move_file"}} ), - AIMessageChunk( + _any_id_ai_message_chunk( content="", additional_kwargs={ "function_call": {"arguments": '{\n "source_path": "foo"'}, }, - id=AnyStr(), ), - AIMessageChunk( - content="", - additional_kwargs={"function_call": {"arguments": ","}}, - id=AnyStr(), + _any_id_ai_message_chunk( + content="", additional_kwargs={"function_call": {"arguments": ","}} ), - AIMessageChunk( + _any_id_ai_message_chunk( content="", additional_kwargs={ "function_call": {"arguments": '\n "destination_path": "bar"\n}'}, }, - id=AnyStr(), ), ] assert len({chunk.id for chunk in chunks}) == 1 @@ -145,9 +142,9 @@ async def test_generic_fake_chat_model_astream_log() -> None: ] final = log_patches[-1] assert final.state["streamed_output"] == [ - _AnyIdAIMessageChunk(content="hello"), - _AnyIdAIMessageChunk(content=" "), - _AnyIdAIMessageChunk(content="goodbye"), + _any_id_ai_message_chunk(content="hello"), + _any_id_ai_message_chunk(content=" "), + _any_id_ai_message_chunk(content="goodbye"), ] assert len({chunk.id for chunk in final.state["streamed_output"]}) == 1 @@ -156,18 +153,18 @@ async def test_callback_handlers() -> None: """Verify that model is implemented correctly with handlers working.""" class MyCustomAsyncHandler(AsyncCallbackHandler): - def __init__(self, store: List[str]) -> None: + def __init__(self, store: list[str]) -> None: self.store = store async def on_chat_model_start( self, - serialized: Dict[str, Any], - messages: List[List[BaseMessage]], + serialized: dict[str, Any], + messages: list[list[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> Any: # Do nothing @@ -181,7 +178,7 @@ async def on_llm_new_token( chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: self.store.append(token) @@ -192,13 +189,13 @@ async def on_llm_new_token( ] ) model = GenericFakeChatModel(messages=infinite_cycle) - tokens: List[str] = [] + tokens: list[str] = [] # New model results = list(model.stream("meow", {"callbacks": [MyCustomAsyncHandler(tokens)]})) assert results == [ - _AnyIdAIMessageChunk(content="hello"), - _AnyIdAIMessageChunk(content=" "), - _AnyIdAIMessageChunk(content="goodbye"), + _any_id_ai_message_chunk(content="hello"), + _any_id_ai_message_chunk(content=" "), + _any_id_ai_message_chunk(content="goodbye"), ] assert tokens == ["hello", " ", "goodbye"] assert len({chunk.id for chunk in results}) == 1 @@ -207,6 +204,21 @@ async def on_llm_new_token( def test_chat_model_inputs() -> None: fake = ParrotFakeChatModel() - assert fake.invoke("hello") == _AnyIdHumanMessage(content="hello") - assert fake.invoke([("ai", "blah")]) == _AnyIdAIMessage(content="blah") - assert fake.invoke([AIMessage(content="blah")]) == _AnyIdAIMessage(content="blah") + assert fake.invoke("hello") == _any_id_human_message(content="hello") + assert fake.invoke([("ai", "blah")]) == _any_id_ai_message(content="blah") + assert fake.invoke([AIMessage(content="blah")]) == _any_id_ai_message( + content="blah" + ) + + +def test_fake_list_chat_model_batch() -> None: + expected = [ + _any_id_ai_message(content="a"), + _any_id_ai_message(content="b"), + _any_id_ai_message(content="c"), + ] + for _ in range(20): + # run this 20 times to test race condition in batch + fake = FakeListChatModel(responses=["a", "b", "c"]) + resp = fake.batch(["1", "2", "3"]) + assert resp == expected diff --git a/libs/core/tests/unit_tests/indexing/test_in_memory_indexer.py b/libs/core/tests/unit_tests/indexing/test_in_memory_indexer.py index 9e567628138f1..6ddeefc62330b 100644 --- a/libs/core/tests/unit_tests/indexing/test_in_memory_indexer.py +++ b/libs/core/tests/unit_tests/indexing/test_in_memory_indexer.py @@ -1,6 +1,6 @@ """Test in memory indexer""" -from typing import AsyncGenerator, Generator +from collections.abc import AsyncGenerator, Generator import pytest from langchain_standard_tests.integration_tests.indexer import ( diff --git a/libs/core/tests/unit_tests/indexing/test_indexing.py b/libs/core/tests/unit_tests/indexing/test_indexing.py index d4bd4e1ec2db6..287b6b49f66a4 100644 --- a/libs/core/tests/unit_tests/indexing/test_indexing.py +++ b/libs/core/tests/unit_tests/indexing/test_indexing.py @@ -1,15 +1,13 @@ +from collections.abc import AsyncIterator, Iterable, Iterator, Sequence from datetime import datetime from typing import ( Any, - AsyncIterator, - Iterable, - Iterator, - Sequence, ) from unittest.mock import AsyncMock, MagicMock, patch import pytest import pytest_asyncio +from pytest_mock import MockerFixture from langchain_core.document_loaders.base import BaseLoader from langchain_core.documents import Document @@ -188,11 +186,11 @@ def test_index_simple_delete_full( ): indexing_result = index(loader, record_manager, vector_store, cleanup="full") - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == {"mutated document 1", "This is another document."} assert indexing_result == { @@ -270,11 +268,11 @@ async def test_aindex_simple_delete_full( "num_updated": 0, } - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == {"mutated document 1", "This is another document."} # Attempt to index again verify that nothing changes @@ -561,11 +559,11 @@ def test_incremental_delete( "num_updated": 0, } - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == {"This is another document.", "This is a test document."} # Attempt to index again verify that nothing changes @@ -620,11 +618,11 @@ def test_incremental_delete( "num_updated": 0, } - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == { "mutated document 1", "mutated document 2", @@ -658,7 +656,7 @@ def test_incremental_indexing_with_batch_size( ) with patch.object( - record_manager, "get_time", return_value=datetime(2021, 1, 2).timestamp() + record_manager, "get_time", return_value=datetime(2021, 1, 1).timestamp() ): assert index( loader, @@ -674,6 +672,16 @@ def test_incremental_indexing_with_batch_size( "num_updated": 0, } + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"1", "2", "3", "4"} + + with patch.object( + record_manager, "get_time", return_value=datetime(2021, 1, 2).timestamp() + ): assert index( loader, record_manager, @@ -688,14 +696,157 @@ def test_incremental_indexing_with_batch_size( "num_updated": 0, } - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == {"1", "2", "3", "4"} +def test_incremental_indexing_with_batch_size_with_optimization( + record_manager: InMemoryRecordManager, vector_store: InMemoryVectorStore +) -> None: + """Test case when batch_size < num of docs. + + Here, we'll verify that an indexing optimization works as expected. + """ + documents = [ + Document( + page_content="1", + metadata={"source": "1"}, + ), + Document( + page_content="2", + metadata={"source": "1"}, + ), + Document( + page_content="3", + metadata={"source": "1"}, + ), + Document( + page_content="4", + metadata={"source": "1"}, + ), + ] + + with patch.object( + record_manager, "get_time", return_value=datetime(2021, 1, 1).timestamp() + ): + assert index( + documents, + record_manager, + vector_store, + cleanup="incremental", + source_id_key="source", + batch_size=2, + ) == { + "num_added": 4, + "num_deleted": 0, + "num_skipped": 0, + "num_updated": 0, + } + + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"1", "2", "3", "4"} + + # Mutate content in first batch + doc_first_batch_mutation = [ + Document( + page_content="updated 1", + metadata={"source": "1"}, + ), + Document( + page_content="2", + metadata={"source": "1"}, + ), + Document( + page_content="3", + metadata={"source": "1"}, + ), + Document( + page_content="4", + metadata={"source": "1"}, + ), + ] + + with patch.object( + record_manager, "get_time", return_value=datetime(2021, 1, 2).timestamp() + ): + assert index( + doc_first_batch_mutation, + record_manager, + vector_store, + cleanup="incremental", + source_id_key="source", + batch_size=2, + ) == { + # Cannot optimize here since the first batch was changed + # So only skpping indexing the document with content "2" + "num_added": 3, + "num_deleted": 3, + "num_skipped": 1, + "num_updated": 0, + } + + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"updated 1", "2", "3", "4"} + + # Mutate content in second batch + doc_second_batch_mutation = [ + Document( + page_content="updated 1", # <-- This was already previously updated + metadata={"source": "1"}, + ), + Document( + page_content="2", + metadata={"source": "1"}, + ), + Document( + page_content="3", + metadata={"source": "1"}, + ), + Document( + page_content="updated 4", + metadata={"source": "1"}, + ), + ] + + with patch.object( + record_manager, "get_time", return_value=datetime(2021, 1, 3).timestamp() + ): + assert index( + doc_second_batch_mutation, + record_manager, + vector_store, + cleanup="incremental", + source_id_key="source", + batch_size=2, + ) == { + # Skips updating content from the first batch, only updates + # the `updated 4` content + "num_added": 1, + "num_deleted": 1, + "num_skipped": 3, + "num_updated": 0, + } + + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"updated 1", "2", "3", "updated 4"} + + def test_incremental_delete_with_batch_size( record_manager: InMemoryRecordManager, vector_store: InMemoryVectorStore ) -> None: @@ -722,7 +873,7 @@ def test_incremental_delete_with_batch_size( ) with patch.object( - record_manager, "get_time", return_value=datetime(2021, 1, 2).timestamp() + record_manager, "get_time", return_value=datetime(2021, 1, 1).timestamp() ): assert index( loader, @@ -738,11 +889,11 @@ def test_incremental_delete_with_batch_size( "num_updated": 0, } - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == {"1", "2", "3", "4"} # Attempt to index again verify that nothing changes @@ -763,6 +914,13 @@ def test_incremental_delete_with_batch_size( "num_updated": 0, } + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"1", "2", "3", "4"} + # Attempt to index again verify that nothing changes with patch.object( record_manager, "get_time", return_value=datetime(2022, 1, 3).timestamp() @@ -792,9 +950,16 @@ def test_incremental_delete_with_batch_size( "num_updated": 0, } + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"1", "2", "3", "4"} + # Attempt to index again verify that nothing changes with patch.object( - record_manager, "get_time", return_value=datetime(2023, 1, 3).timestamp() + record_manager, "get_time", return_value=datetime(2023, 1, 4).timestamp() ): # Docs with same content docs = [ @@ -821,9 +986,16 @@ def test_incremental_delete_with_batch_size( "num_updated": 0, } + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"1", "2", "3", "4"} + # Try to index with changed docs now with patch.object( - record_manager, "get_time", return_value=datetime(2024, 1, 3).timestamp() + record_manager, "get_time", return_value=datetime(2024, 1, 5).timestamp() ): # Docs with same content docs = [ @@ -849,6 +1021,13 @@ def test_incremental_delete_with_batch_size( "num_updated": 0, } + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"changed 1", "changed 2", "3", "4"} + async def test_aincremental_delete( arecord_manager: InMemoryRecordManager, vector_store: InMemoryVectorStore @@ -883,11 +1062,11 @@ async def test_aincremental_delete( "num_updated": 0, } - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == {"This is another document.", "This is a test document."} # Attempt to index again verify that nothing changes @@ -942,11 +1121,11 @@ async def test_aincremental_delete( "num_updated": 0, } - doc_texts = set( + doc_texts = { # Ignoring type since doc should be in the store and not a None vector_store.get_by_ids([uid])[0].page_content # type: ignore for uid in vector_store.store - ) + } assert doc_texts == { "mutated document 1", "mutated document 2", @@ -1407,3 +1586,323 @@ async def test_aindex_into_document_index( "num_skipped": 0, "num_updated": 0, } + + +async def test_incremental_aindexing_with_batch_size_with_optimization( + arecord_manager: InMemoryRecordManager, vector_store: InMemoryVectorStore +) -> None: + """Test case when batch_size < num of docs. + + Here, we'll verify that an indexing optimization works as expected. + """ + documents = [ + Document( + page_content="1", + metadata={"source": "1"}, + ), + Document( + page_content="2", + metadata={"source": "1"}, + ), + Document( + page_content="3", + metadata={"source": "1"}, + ), + Document( + page_content="4", + metadata={"source": "1"}, + ), + ] + + with patch.object( + arecord_manager, "get_time", return_value=datetime(2021, 1, 1).timestamp() + ): + assert await aindex( + documents, + arecord_manager, + vector_store, + cleanup="incremental", + source_id_key="source", + batch_size=2, + ) == { + "num_added": 4, + "num_deleted": 0, + "num_skipped": 0, + "num_updated": 0, + } + + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"1", "2", "3", "4"} + + # Mutate content in first batch + doc_first_batch_mutation = [ + Document( + page_content="updated 1", + metadata={"source": "1"}, + ), + Document( + page_content="2", + metadata={"source": "1"}, + ), + Document( + page_content="3", + metadata={"source": "1"}, + ), + Document( + page_content="4", + metadata={"source": "1"}, + ), + ] + + with patch.object( + arecord_manager, "get_time", return_value=datetime(2021, 1, 2).timestamp() + ): + assert await aindex( + doc_first_batch_mutation, + arecord_manager, + vector_store, + cleanup="incremental", + source_id_key="source", + batch_size=2, + ) == { + # Cannot optimize here since the first batch was changed + # So only skpping indexing the document with content "2" + "num_added": 3, + "num_deleted": 3, + "num_skipped": 1, + "num_updated": 0, + } + + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"updated 1", "2", "3", "4"} + + # Mutate content in second batch + doc_second_batch_mutation = [ + Document( + page_content="updated 1", # <-- This was already previously updated + metadata={"source": "1"}, + ), + Document( + page_content="2", + metadata={"source": "1"}, + ), + Document( + page_content="3", + metadata={"source": "1"}, + ), + Document( + page_content="updated 4", + metadata={"source": "1"}, + ), + ] + + with patch.object( + arecord_manager, "get_time", return_value=datetime(2021, 1, 3).timestamp() + ): + assert await aindex( + doc_second_batch_mutation, + arecord_manager, + vector_store, + cleanup="incremental", + source_id_key="source", + batch_size=2, + ) == { + # Skips updating content from the first batch, only updates + # the `updated 4` content + "num_added": 1, + "num_deleted": 1, + "num_skipped": 3, + "num_updated": 0, + } + + doc_texts = { + # Ignoring type since doc should be in the store and not a None + vector_store.get_by_ids([uid])[0].page_content # type: ignore + for uid in vector_store.store + } + assert doc_texts == {"updated 1", "2", "3", "updated 4"} + + +def test_index_with_upsert_kwargs( + record_manager: InMemoryRecordManager, upserting_vector_store: InMemoryVectorStore +) -> None: + """Test indexing with upsert_kwargs parameter.""" + mock_add_documents = MagicMock() + + with patch.object(upserting_vector_store, "add_documents", mock_add_documents): + docs = [ + Document( + page_content="Test document 1", + metadata={"source": "1"}, + ), + Document( + page_content="Test document 2", + metadata={"source": "2"}, + ), + ] + + upsert_kwargs = {"vector_field": "embedding"} + + index(docs, record_manager, upserting_vector_store, upsert_kwargs=upsert_kwargs) + + # Assert that add_documents was called with the correct arguments + mock_add_documents.assert_called_once() + call_args = mock_add_documents.call_args + assert call_args is not None + args, kwargs = call_args + + # Check that the documents are correct (ignoring ids) + assert len(args[0]) == 2 + assert all(isinstance(doc, Document) for doc in args[0]) + assert [doc.page_content for doc in args[0]] == [ + "Test document 1", + "Test document 2", + ] + assert [doc.metadata for doc in args[0]] == [{"source": "1"}, {"source": "2"}] + + # Check that ids are present + assert "ids" in kwargs + assert isinstance(kwargs["ids"], list) + assert len(kwargs["ids"]) == 2 + + # Check other arguments + assert kwargs["batch_size"] == 100 + assert kwargs["vector_field"] == "embedding" + + +def test_index_with_upsert_kwargs_for_document_indexer( + record_manager: InMemoryRecordManager, + mocker: MockerFixture, +) -> None: + """Test that kwargs are passed to the upsert method of the document indexer.""" + + document_index = InMemoryDocumentIndex() + upsert_spy = mocker.spy(document_index.__class__, "upsert") + docs = [ + Document( + page_content="This is a test document.", + metadata={"source": "1"}, + ), + Document( + page_content="This is another document.", + metadata={"source": "2"}, + ), + ] + + upsert_kwargs = {"vector_field": "embedding"} + + assert index( + docs, + record_manager, + document_index, + cleanup="full", + upsert_kwargs=upsert_kwargs, + ) == { + "num_added": 2, + "num_deleted": 0, + "num_skipped": 0, + "num_updated": 0, + } + + assert upsert_spy.call_count == 1 + # assert call kwargs were passed as kwargs + assert upsert_spy.call_args.kwargs == upsert_kwargs + + +async def test_aindex_with_upsert_kwargs_for_document_indexer( + arecord_manager: InMemoryRecordManager, + mocker: MockerFixture, +) -> None: + """Test that kwargs are passed to the upsert method of the document indexer.""" + + document_index = InMemoryDocumentIndex() + upsert_spy = mocker.spy(document_index.__class__, "aupsert") + docs = [ + Document( + page_content="This is a test document.", + metadata={"source": "1"}, + ), + Document( + page_content="This is another document.", + metadata={"source": "2"}, + ), + ] + + upsert_kwargs = {"vector_field": "embedding"} + + assert await aindex( + docs, + arecord_manager, + document_index, + cleanup="full", + upsert_kwargs=upsert_kwargs, + ) == { + "num_added": 2, + "num_deleted": 0, + "num_skipped": 0, + "num_updated": 0, + } + + assert upsert_spy.call_count == 1 + # assert call kwargs were passed as kwargs + assert upsert_spy.call_args.kwargs == upsert_kwargs + + +async def test_aindex_with_upsert_kwargs( + arecord_manager: InMemoryRecordManager, upserting_vector_store: InMemoryVectorStore +) -> None: + """Test async indexing with upsert_kwargs parameter.""" + mock_aadd_documents = AsyncMock() + + with patch.object(upserting_vector_store, "aadd_documents", mock_aadd_documents): + docs = [ + Document( + page_content="Async test document 1", + metadata={"source": "1"}, + ), + Document( + page_content="Async test document 2", + metadata={"source": "2"}, + ), + ] + + upsert_kwargs = {"vector_field": "embedding"} + + await aindex( + docs, + arecord_manager, + upserting_vector_store, + upsert_kwargs=upsert_kwargs, + ) + + # Assert that aadd_documents was called with the correct arguments + mock_aadd_documents.assert_called_once() + call_args = mock_aadd_documents.call_args + assert call_args is not None + args, kwargs = call_args + + # Check that the documents are correct (ignoring ids) + assert len(args[0]) == 2 + assert all(isinstance(doc, Document) for doc in args[0]) + assert [doc.page_content for doc in args[0]] == [ + "Async test document 1", + "Async test document 2", + ] + assert [doc.metadata for doc in args[0]] == [{"source": "1"}, {"source": "2"}] + + # Check that ids are present + assert "ids" in kwargs + assert isinstance(kwargs["ids"], list) + assert len(kwargs["ids"]) == 2 + + # Check other arguments + assert kwargs["batch_size"] == 100 + assert kwargs["vector_field"] == "embedding" diff --git a/libs/core/tests/unit_tests/language_models/chat_models/test_base.py b/libs/core/tests/unit_tests/language_models/chat_models/test_base.py index f14c2a1b8d04d..2cd08a27d0383 100644 --- a/libs/core/tests/unit_tests/language_models/chat_models/test_base.py +++ b/libs/core/tests/unit_tests/language_models/chat_models/test_base.py @@ -1,7 +1,8 @@ """Test base chat model.""" import uuid -from typing import Any, AsyncIterator, Iterator, List, Literal, Optional, Union +from collections.abc import AsyncIterator, Iterator +from typing import Any, Literal, Optional, Union import pytest @@ -26,7 +27,7 @@ FakeAsyncCallbackHandler, FakeCallbackHandler, ) -from tests.unit_tests.stubs import _AnyIdAIMessage, _AnyIdAIMessageChunk +from tests.unit_tests.stubs import _any_id_ai_message, _any_id_ai_message_chunk @pytest.fixture @@ -52,10 +53,10 @@ def test_batch_size(messages: list, messages_2: list) -> None: with collect_runs() as cb: llm.batch([messages, messages_2], {"callbacks": [cb]}) assert len(cb.traced_runs) == 2 - assert all([(r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs) with collect_runs() as cb: llm.batch([messages], {"callbacks": [cb]}) - assert all([(r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs) assert len(cb.traced_runs) == 1 with collect_runs() as cb: @@ -75,11 +76,11 @@ async def test_async_batch_size(messages: list, messages_2: list) -> None: # so we expect batch_size to always be 1 with collect_runs() as cb: await llm.abatch([messages, messages_2], {"callbacks": [cb]}) - assert all([(r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs) assert len(cb.traced_runs) == 2 with collect_runs() as cb: await llm.abatch([messages], {"callbacks": [cb]}) - assert all([(r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs) assert len(cb.traced_runs) == 1 with collect_runs() as cb: @@ -106,7 +107,7 @@ def eval_response(callback: BaseFakeCallbackHandler, i: int) -> None: else: assert llm_result.generations[0][0].text == message[:i] - for i in range(0, 2): + for i in range(2): llm = FakeListChatModel( responses=[message], error_on_chunk_number=i, @@ -130,8 +131,8 @@ async def test_astream_fallback_to_ainvoke() -> None: class ModelWithGenerate(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -145,11 +146,11 @@ def _llm_type(self) -> str: return "fake-chat-model" model = ModelWithGenerate() - chunks = [chunk for chunk in model.stream("anything")] - assert chunks == [_AnyIdAIMessage(content="hello")] + chunks = list(model.stream("anything")) + assert chunks == [_any_id_ai_message(content="hello")] chunks = [chunk async for chunk in model.astream("anything")] - assert chunks == [_AnyIdAIMessage(content="hello")] + assert chunks == [_any_id_ai_message(content="hello")] async def test_astream_implementation_fallback_to_stream() -> None: @@ -158,18 +159,18 @@ async def test_astream_implementation_fallback_to_stream() -> None: class ModelWithSyncStream(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Top Level call""" - raise NotImplementedError() + raise NotImplementedError def _stream( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: @@ -182,17 +183,17 @@ def _llm_type(self) -> str: return "fake-chat-model" model = ModelWithSyncStream() - chunks = [chunk for chunk in model.stream("anything")] + chunks = list(model.stream("anything")) assert chunks == [ - _AnyIdAIMessageChunk(content="a"), - _AnyIdAIMessageChunk(content="b"), + _any_id_ai_message_chunk(content="a"), + _any_id_ai_message_chunk(content="b"), ] assert len({chunk.id for chunk in chunks}) == 1 assert type(model)._astream == BaseChatModel._astream astream_chunks = [chunk async for chunk in model.astream("anything")] assert astream_chunks == [ - _AnyIdAIMessageChunk(content="a"), - _AnyIdAIMessageChunk(content="b"), + _any_id_ai_message_chunk(content="a"), + _any_id_ai_message_chunk(content="b"), ] assert len({chunk.id for chunk in astream_chunks}) == 1 @@ -203,18 +204,18 @@ async def test_astream_implementation_uses_astream() -> None: class ModelWithAsyncStream(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Top Level call""" - raise NotImplementedError() + raise NotImplementedError async def _astream( # type: ignore self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: @@ -229,8 +230,8 @@ def _llm_type(self) -> str: model = ModelWithAsyncStream() chunks = [chunk async for chunk in model.astream("anything")] assert chunks == [ - _AnyIdAIMessageChunk(content="a"), - _AnyIdAIMessageChunk(content="b"), + _any_id_ai_message_chunk(content="a"), + _any_id_ai_message_chunk(content="b"), ] assert len({chunk.id for chunk in chunks}) == 1 @@ -279,8 +280,8 @@ async def test_async_pass_run_id() -> None: class NoStreamingModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -294,8 +295,8 @@ def _llm_type(self) -> str: class StreamingModel(NoStreamingModel): def _stream( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: diff --git a/libs/core/tests/unit_tests/language_models/chat_models/test_benchmark.py b/libs/core/tests/unit_tests/language_models/chat_models/test_benchmark.py new file mode 100644 index 0000000000000..b455017325e52 --- /dev/null +++ b/libs/core/tests/unit_tests/language_models/chat_models/test_benchmark.py @@ -0,0 +1,21 @@ +import time +from itertools import cycle + +from langchain_core.language_models import GenericFakeChatModel + + +def test_benchmark_model() -> None: + """Add rate limiter.""" + tic = time.time() + + model = GenericFakeChatModel( + messages=cycle(["hello", "world", "!"]), + ) + + for _ in range(1_000): + model.invoke("foo") + toc = time.time() + + # Verify that the time taken to run the loop is less than 1 seconds + + assert (toc - tic) < 1 diff --git a/libs/core/tests/unit_tests/language_models/chat_models/test_cache.py b/libs/core/tests/unit_tests/language_models/chat_models/test_cache.py index 99ab278addc23..0d5b89de7c354 100644 --- a/libs/core/tests/unit_tests/language_models/chat_models/test_cache.py +++ b/libs/core/tests/unit_tests/language_models/chat_models/test_cache.py @@ -1,6 +1,6 @@ """Module tests interaction of chat model with caching abstraction..""" -from typing import Any, Dict, Optional, Tuple +from typing import Any, Optional import pytest @@ -20,7 +20,7 @@ class InMemoryCache(BaseCache): def __init__(self) -> None: """Initialize with empty cache.""" - self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {} + self._cache: dict[tuple[str, str], RETURN_VAL_TYPE] = {} def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" @@ -199,19 +199,13 @@ async def test_global_cache_abatch() -> None: assert results[0].content == "hello" assert results[1].content == "hello" - ## RACE CONDITION -- note behavior is different from sync - # Now, reset cache and test the race condition - # For now we just hard-code the result, if this changes - # we can investigate further global_cache = InMemoryCache() set_llm_cache(global_cache) assert global_cache._cache == {} results = await chat_model.abatch(["prompt", "prompt"]) - # suspecting that tasks will be scheduled and executed in order - # if this ever fails, we can relax to a set comparison - # Cache misses likely guaranteed? + assert results[0].content == "meow" - assert results[1].content == "woof" + assert results[1].content == "meow" finally: set_llm_cache(None) @@ -262,7 +256,7 @@ def test_global_cache_stream() -> None: AIMessage(content="goodbye world"), ] model = GenericFakeChatModel(messages=iter(messages), cache=True) - chunks = [chunk for chunk in model.stream("some input")] + chunks = list(model.stream("some input")) assert len(chunks) == 3 # Assert that streaming information gets cached assert global_cache._cache != {} @@ -303,9 +297,7 @@ def test_llm_representation_for_serializable() -> None: chat = CustomChat(cache=cache, messages=iter([])) assert chat._get_llm_string() == ( '{"id": ["tests", "unit_tests", "language_models", "chat_models", ' - '"test_cache", "CustomChat"], "kwargs": {"cache": {"id": ["tests", ' - '"unit_tests", "language_models", "chat_models", "test_cache", ' - '"InMemoryCache"], "lc": 1, "type": "not_implemented"}, "messages": {"id": ' + '"test_cache", "CustomChat"], "kwargs": {"messages": {"id": ' '["builtins", "list_iterator"], "lc": 1, "type": "not_implemented"}}, "lc": ' '1, "name": "CustomChat", "type": "constructor"}---[(\'stop\', None)]' ) @@ -324,20 +316,6 @@ def test_cleanup_serialized() -> None: "CustomChat", ], "kwargs": { - "cache": { - "lc": 1, - "type": "not_implemented", - "id": [ - "tests", - "unit_tests", - "language_models", - "chat_models", - "test_cache", - "InMemoryCache", - ], - "repr": "", - }, "messages": { "lc": 1, "type": "not_implemented", @@ -380,18 +358,6 @@ def test_cleanup_serialized() -> None: "CustomChat", ], "kwargs": { - "cache": { - "id": [ - "tests", - "unit_tests", - "language_models", - "chat_models", - "test_cache", - "InMemoryCache", - ], - "lc": 1, - "type": "not_implemented", - }, "messages": { "id": ["builtins", "list_iterator"], "lc": 1, diff --git a/libs/core/tests/unit_tests/language_models/chat_models/test_rate_limiting.py b/libs/core/tests/unit_tests/language_models/chat_models/test_rate_limiting.py index ac633b8263fc4..3547cc8af6b59 100644 --- a/libs/core/tests/unit_tests/language_models/chat_models/test_rate_limiting.py +++ b/libs/core/tests/unit_tests/language_models/chat_models/test_rate_limiting.py @@ -1,4 +1,5 @@ import time +from typing import Optional as Optional from langchain_core.caches import InMemoryCache from langchain_core.language_models import GenericFakeChatModel @@ -220,6 +221,9 @@ def is_lc_serializable(cls) -> bool: return True +SerializableModel.model_rebuild() + + def test_serialization_with_rate_limiter() -> None: """Test model serialization with rate limiter.""" from langchain_core.load import dumps diff --git a/libs/core/tests/unit_tests/language_models/llms/test_base.py b/libs/core/tests/unit_tests/language_models/llms/test_base.py index 3b61653a80b29..f8ff2fdc4f2a6 100644 --- a/libs/core/tests/unit_tests/language_models/llms/test_base.py +++ b/libs/core/tests/unit_tests/language_models/llms/test_base.py @@ -1,4 +1,5 @@ -from typing import Any, AsyncIterator, Iterator, List, Optional +from collections.abc import AsyncIterator, Iterator +from typing import Any, Optional import pytest @@ -39,12 +40,12 @@ def test_batch_size() -> None: llm = FakeListLLM(responses=["foo"] * 3) with collect_runs() as cb: llm.batch(["foo", "bar", "foo"], {"callbacks": [cb]}) - assert all([(r.extra or {}).get("batch_size") == 3 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 3 for r in cb.traced_runs) assert len(cb.traced_runs) == 3 llm = FakeListLLM(responses=["foo"]) with collect_runs() as cb: llm.batch(["foo"], {"callbacks": [cb]}) - assert all([(r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs) assert len(cb.traced_runs) == 1 llm = FakeListLLM(responses=["foo"]) @@ -70,12 +71,12 @@ async def test_async_batch_size() -> None: llm = FakeListLLM(responses=["foo"] * 3) with collect_runs() as cb: await llm.abatch(["foo", "bar", "foo"], {"callbacks": [cb]}) - assert all([(r.extra or {}).get("batch_size") == 3 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 3 for r in cb.traced_runs) assert len(cb.traced_runs) == 3 llm = FakeListLLM(responses=["foo"]) with collect_runs() as cb: await llm.abatch(["foo"], {"callbacks": [cb]}) - assert all([(r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs]) + assert all((r.extra or {}).get("batch_size") == 1 for r in cb.traced_runs) assert len(cb.traced_runs) == 1 llm = FakeListLLM(responses=["foo"]) @@ -104,7 +105,7 @@ def eval_response(callback: BaseFakeCallbackHandler, i: int) -> None: else: assert llm_result.generations[0][0].text == message[:i] - for i in range(0, 2): + for i in range(2): llm = FakeStreamingListLLM( responses=[message], error_on_chunk_number=i, @@ -128,8 +129,8 @@ async def test_astream_fallback_to_ainvoke() -> None: class ModelWithGenerate(BaseLLM): def _generate( self, - prompts: List[str], - stop: Optional[List[str]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: @@ -141,7 +142,7 @@ def _llm_type(self) -> str: return "fake-chat-model" model = ModelWithGenerate() - chunks = [chunk for chunk in model.stream("anything")] + chunks = list(model.stream("anything")) assert chunks == ["hello"] chunks = [chunk async for chunk in model.astream("anything")] @@ -154,18 +155,18 @@ async def test_astream_implementation_fallback_to_stream() -> None: class ModelWithSyncStream(BaseLLM): def _generate( self, - prompts: List[str], - stop: Optional[List[str]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Top Level call""" - raise NotImplementedError() + raise NotImplementedError def _stream( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: @@ -178,7 +179,7 @@ def _llm_type(self) -> str: return "fake-chat-model" model = ModelWithSyncStream() - chunks = [chunk for chunk in model.stream("anything")] + chunks = list(model.stream("anything")) assert chunks == ["a", "b"] assert type(model)._astream == BaseLLM._astream astream_chunks = [chunk async for chunk in model.astream("anything")] @@ -191,18 +192,18 @@ async def test_astream_implementation_uses_astream() -> None: class ModelWithAsyncStream(BaseLLM): def _generate( self, - prompts: List[str], - stop: Optional[List[str]] = None, + prompts: list[str], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Top Level call""" - raise NotImplementedError() + raise NotImplementedError async def _astream( self, prompt: str, - stop: Optional[List[str]] = None, + stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: diff --git a/libs/core/tests/unit_tests/language_models/llms/test_cache.py b/libs/core/tests/unit_tests/language_models/llms/test_cache.py index 7e8bf003a97cd..6894328724b0d 100644 --- a/libs/core/tests/unit_tests/language_models/llms/test_cache.py +++ b/libs/core/tests/unit_tests/language_models/llms/test_cache.py @@ -1,4 +1,4 @@ -from typing import Any, Dict, Optional, Tuple +from typing import Any, Optional from langchain_core.caches import RETURN_VAL_TYPE, BaseCache from langchain_core.globals import set_llm_cache @@ -10,7 +10,7 @@ class InMemoryCache(BaseCache): def __init__(self) -> None: """Initialize with empty cache.""" - self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {} + self._cache: dict[tuple[str, str], RETURN_VAL_TYPE] = {} def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" @@ -62,15 +62,17 @@ class InMemoryCacheBad(BaseCache): def __init__(self) -> None: """Initialize with empty cache.""" - self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {} + self._cache: dict[tuple[str, str], RETURN_VAL_TYPE] = {} def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up based on prompt and llm_string.""" - raise NotImplementedError("This code should not be triggered") + msg = "This code should not be triggered" + raise NotImplementedError(msg) def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None: """Update cache based on prompt and llm_string.""" - raise NotImplementedError("This code should not be triggered") + msg = "This code should not be triggered" + raise NotImplementedError(msg) def clear(self, **kwargs: Any) -> None: """Clear cache.""" diff --git a/libs/core/tests/unit_tests/load/test_serializable.py b/libs/core/tests/unit_tests/load/test_serializable.py index 9ef83a6c89c20..65040a6841b2a 100644 --- a/libs/core/tests/unit_tests/load/test_serializable.py +++ b/libs/core/tests/unit_tests/load/test_serializable.py @@ -1,8 +1,7 @@ -from typing import Dict +from pydantic import ConfigDict, Field -from langchain_core.load import Serializable, dumpd +from langchain_core.load import Serializable, dumpd, load from langchain_core.load.serializable import _is_field_useful -from langchain_core.pydantic_v1 import Field def test_simple_serialization() -> None: @@ -40,8 +39,9 @@ def is_lc_serializable(cls) -> bool: def test_simple_serialization_secret() -> None: """Test handling of secrets.""" + from pydantic import SecretStr + from langchain_core.load import Serializable - from langchain_core.pydantic_v1 import SecretStr class Foo(Serializable): bar: int @@ -54,7 +54,7 @@ def is_lc_serializable(cls) -> bool: return True @property - def lc_secrets(self) -> Dict[str, str]: + def lc_secrets(self) -> dict[str, str]: return {"secret": "MASKED_SECRET", "secret_2": "MASKED_SECRET_2"} foo = Foo( @@ -76,17 +76,20 @@ def lc_secrets(self) -> Dict[str, str]: def test__is_field_useful() -> None: class ArrayObj: def __bool__(self) -> bool: - raise ValueError("Truthiness can't be determined") + msg = "Truthiness can't be determined" + raise ValueError(msg) def __eq__(self, other: object) -> bool: return self # type: ignore[return-value] class NonBoolObj: def __bool__(self) -> bool: - raise ValueError("Truthiness can't be determined") + msg = "Truthiness can't be determined" + raise ValueError(msg) def __eq__(self, other: object) -> bool: - raise ValueError("Equality can't be determined") + msg = "Equality can't be determined" + raise ValueError(msg) default_x = ArrayObj() default_y = NonBoolObj() @@ -97,8 +100,9 @@ class Foo(Serializable): # Make sure works for fields without default. z: ArrayObj - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) foo = Foo(x=ArrayObj(), y=NonBoolObj(), z=ArrayObj()) assert _is_field_useful(foo, "x", foo.x) @@ -107,3 +111,61 @@ class Config: foo = Foo(x=default_x, y=default_y, z=ArrayObj()) assert not _is_field_useful(foo, "x", foo.x) assert not _is_field_useful(foo, "y", foo.y) + + +class Foo(Serializable): + bar: int + baz: str + + @classmethod + def is_lc_serializable(cls) -> bool: + return True + + +def test_simple_deserialization() -> None: + foo = Foo(bar=1, baz="hello") + assert foo.lc_id() == ["tests", "unit_tests", "load", "test_serializable", "Foo"] + serialized_foo = dumpd(foo) + assert serialized_foo == { + "id": ["tests", "unit_tests", "load", "test_serializable", "Foo"], + "kwargs": {"bar": 1, "baz": "hello"}, + "lc": 1, + "type": "constructor", + } + new_foo = load(serialized_foo, valid_namespaces=["tests"]) + assert new_foo == foo + + +class Foo2(Serializable): + bar: int + baz: str + + @classmethod + def is_lc_serializable(cls) -> bool: + return True + + +def test_simple_deserialization_with_additional_imports() -> None: + foo = Foo(bar=1, baz="hello") + assert foo.lc_id() == ["tests", "unit_tests", "load", "test_serializable", "Foo"] + serialized_foo = dumpd(foo) + assert serialized_foo == { + "id": ["tests", "unit_tests", "load", "test_serializable", "Foo"], + "kwargs": {"bar": 1, "baz": "hello"}, + "lc": 1, + "type": "constructor", + } + new_foo = load( + serialized_foo, + valid_namespaces=["tests"], + additional_import_mappings={ + ("tests", "unit_tests", "load", "test_serializable", "Foo"): ( + "tests", + "unit_tests", + "load", + "test_serializable", + "Foo2", + ) + }, + ) + assert isinstance(new_foo, Foo2) diff --git a/libs/core/tests/unit_tests/messages/test_utils.py b/libs/core/tests/unit_tests/messages/test_utils.py index 56b8c0df7bed3..f994ace071c62 100644 --- a/libs/core/tests/unit_tests/messages/test_utils.py +++ b/libs/core/tests/unit_tests/messages/test_utils.py @@ -1,5 +1,4 @@ import json -from typing import Dict, List, Type import pytest @@ -21,37 +20,37 @@ @pytest.mark.parametrize("msg_cls", [HumanMessage, AIMessage, SystemMessage]) -def test_merge_message_runs_str(msg_cls: Type[BaseMessage]) -> None: +def test_merge_message_runs_str(msg_cls: type[BaseMessage]) -> None: messages = [msg_cls("foo"), msg_cls("bar"), msg_cls("baz")] - messages_copy = [m.copy(deep=True) for m in messages] + messages_model_copy = [m.model_copy(deep=True) for m in messages] expected = [msg_cls("foo\nbar\nbaz")] actual = merge_message_runs(messages) assert actual == expected - assert messages == messages_copy + assert messages == messages_model_copy @pytest.mark.parametrize("msg_cls", [HumanMessage, AIMessage, SystemMessage]) def test_merge_message_runs_str_with_specified_separator( - msg_cls: Type[BaseMessage], + msg_cls: type[BaseMessage], ) -> None: messages = [msg_cls("foo"), msg_cls("bar"), msg_cls("baz")] - messages_copy = [m.copy(deep=True) for m in messages] + messages_model_copy = [m.model_copy(deep=True) for m in messages] expected = [msg_cls("foobarbaz")] actual = merge_message_runs(messages, chunk_separator="") assert actual == expected - assert messages == messages_copy + assert messages == messages_model_copy @pytest.mark.parametrize("msg_cls", [HumanMessage, AIMessage, SystemMessage]) def test_merge_message_runs_str_without_separator( - msg_cls: Type[BaseMessage], + msg_cls: type[BaseMessage], ) -> None: messages = [msg_cls("foo"), msg_cls("bar"), msg_cls("baz")] - messages_copy = [m.copy(deep=True) for m in messages] + messages_model_copy = [m.model_copy(deep=True) for m in messages] expected = [msg_cls("foobarbaz")] actual = merge_message_runs(messages, chunk_separator="") assert actual == expected - assert messages == messages_copy + assert messages == messages_model_copy def test_merge_message_runs_content() -> None: @@ -75,7 +74,7 @@ def test_merge_message_runs_content() -> None: id="3", ), ] - messages_copy = [m.copy(deep=True) for m in messages] + messages_model_copy = [m.model_copy(deep=True) for m in messages] expected = [ AIMessage( [ @@ -95,7 +94,7 @@ def test_merge_message_runs_content() -> None: assert actual == expected invoked = merge_message_runs().invoke(messages) assert actual == invoked - assert messages == messages_copy + assert messages == messages_model_copy def test_merge_messages_tool_messages() -> None: @@ -103,10 +102,10 @@ def test_merge_messages_tool_messages() -> None: ToolMessage("foo", tool_call_id="1"), ToolMessage("bar", tool_call_id="2"), ] - messages_copy = [m.copy(deep=True) for m in messages] + messages_model_copy = [m.model_copy(deep=True) for m in messages] actual = merge_message_runs(messages) assert actual == messages - assert messages == messages_copy + assert messages == messages_model_copy @pytest.mark.parametrize( @@ -127,18 +126,18 @@ def test_merge_messages_tool_messages() -> None: {"include_names": ["blah", "blur"], "exclude_types": [SystemMessage]}, ], ) -def test_filter_message(filters: Dict) -> None: +def test_filter_message(filters: dict) -> None: messages = [ SystemMessage("foo", name="blah", id="1"), HumanMessage("bar", name="blur", id="2"), ] - messages_copy = [m.copy(deep=True) for m in messages] + messages_model_copy = [m.model_copy(deep=True) for m in messages] expected = messages[1:2] actual = filter_messages(messages, **filters) assert expected == actual invoked = filter_messages(**filters).invoke(messages) assert invoked == actual - assert messages == messages_copy + assert messages == messages_model_copy _MESSAGES_TO_TRIM = [ @@ -154,7 +153,7 @@ def test_filter_message(filters: Dict) -> None: HumanMessage("This is a 4 token text.", id="third"), AIMessage("This is a 4 token text.", id="fourth"), ] -_MESSAGES_TO_TRIM_COPY = [m.copy(deep=True) for m in _MESSAGES_TO_TRIM] +_MESSAGES_TO_TRIM_COPY = [m.model_copy(deep=True) for m in _MESSAGES_TO_TRIM] def test_trim_messages_first_30() -> None: @@ -306,7 +305,7 @@ def test_trim_messages_allow_partial_text_splitter() -> None: AIMessage("This is a 4 token text.", id="fourth"), ] - def count_words(msgs: List[BaseMessage]) -> int: + def count_words(msgs: list[BaseMessage]) -> int: count = 0 for msg in msgs: if isinstance(msg.content, str): @@ -317,7 +316,7 @@ def count_words(msgs: List[BaseMessage]) -> int: ) return count - def _split_on_space(text: str) -> List[str]: + def _split_on_space(text: str) -> list[str]: splits = text.split(" ") return [s + " " for s in splits[:-1]] + splits[-1:] @@ -333,6 +332,19 @@ def _split_on_space(text: str) -> List[str]: assert _MESSAGES_TO_TRIM == _MESSAGES_TO_TRIM_COPY +def test_trim_messages_include_system_strategy_last_empty_messages() -> None: + expected: list[BaseMessage] = [] + + actual = trim_messages( + max_tokens=10, + token_counter=dummy_token_counter, + strategy="last", + include_system=True, + ).invoke([]) + + assert actual == expected + + def test_trim_messages_invoke() -> None: actual = trim_messages(max_tokens=10, token_counter=dummy_token_counter).invoke( _MESSAGES_TO_TRIM @@ -356,7 +368,7 @@ def test_trim_messages_bad_token_counter() -> None: trimmer.invoke([HumanMessage("foobar")]) -def dummy_token_counter(messages: List[BaseMessage]) -> int: +def dummy_token_counter(messages: list[BaseMessage]) -> int: # treat each message like it adds 3 default tokens at the beginning # of the message and at the end of the message. 3 + 4 + 3 = 10 tokens # per message. @@ -381,12 +393,12 @@ def dummy_token_counter(messages: List[BaseMessage]) -> int: class FakeTokenCountingModel(FakeChatModel): - def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: + def get_num_tokens_from_messages(self, messages: list[BaseMessage]) -> int: return dummy_token_counter(messages) def test_convert_to_messages() -> None: - message_like: List = [ + message_like: list = [ # BaseMessage SystemMessage("1"), HumanMessage([{"type": "image_url", "image_url": {"url": "2.1"}}], name="2.2"), diff --git a/libs/core/tests/unit_tests/output_parsers/test_base_parsers.py b/libs/core/tests/unit_tests/output_parsers/test_base_parsers.py index 3ac0b56655d6e..49f04911265cc 100644 --- a/libs/core/tests/unit_tests/output_parsers/test_base_parsers.py +++ b/libs/core/tests/unit_tests/output_parsers/test_base_parsers.py @@ -1,6 +1,6 @@ """Module to test base parser implementations.""" -from typing import List +from typing import Optional as Optional from langchain_core.exceptions import OutputParserException from langchain_core.language_models import GenericFakeChatModel @@ -19,7 +19,7 @@ class StrInvertCase(BaseGenerationOutputParser[str]): """An example parser that inverts the case of the characters in the message.""" def parse_result( - self, result: List[Generation], *, partial: bool = False + self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. @@ -32,20 +32,20 @@ def parse_result( that support streaming """ if len(result) != 1: - raise NotImplementedError( - "This output parser can only be used with a single generation." - ) + msg = "This output parser can only be used with a single generation." + raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations - raise OutputParserException( - "This output parser can only be used with a chat generation." - ) + msg = "This output parser can only be used with a chat generation." + raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore + StrInvertCase.model_rebuild() + model = GenericFakeChatModel(messages=iter([AIMessage(content="hEllo")])) chain = model | StrInvertCase() assert chain.invoke("") == "HeLLO" @@ -59,10 +59,10 @@ class StrInvertCase(BaseTransformOutputParser[str]): def parse(self, text: str) -> str: """Parse a single string into a specific format.""" - raise NotImplementedError() + raise NotImplementedError def parse_result( - self, result: List[Generation], *, partial: bool = False + self, result: list[Generation], *, partial: bool = False ) -> str: """Parse a list of model Generations into a specific format. @@ -75,15 +75,13 @@ def parse_result( that support streaming """ if len(result) != 1: - raise NotImplementedError( - "This output parser can only be used with a single generation." - ) + msg = "This output parser can only be used with a single generation." + raise NotImplementedError(msg) generation = result[0] if not isinstance(generation, ChatGeneration): # Say that this one only works with chat generations - raise OutputParserException( - "This output parser can only be used with a chat generation." - ) + msg = "This output parser can only be used with a chat generation." + raise OutputParserException(msg) content = generation.message.content assert isinstance(content, str) return content.swapcase() # type: ignore @@ -91,5 +89,5 @@ def parse_result( model = GenericFakeChatModel(messages=iter([AIMessage(content="hello world")])) chain = model | StrInvertCase() # inputs to models are ignored, response is hard-coded in model definition - chunks = [chunk for chunk in chain.stream("")] + chunks = list(chain.stream("")) assert chunks == ["HELLO", " ", "WORLD"] diff --git a/libs/core/tests/unit_tests/output_parsers/test_json.py b/libs/core/tests/unit_tests/output_parsers/test_json.py index c468adcc1274a..96cf6d0cc4d6c 100644 --- a/libs/core/tests/unit_tests/output_parsers/test_json.py +++ b/libs/core/tests/unit_tests/output_parsers/test_json.py @@ -1,13 +1,14 @@ import json -from typing import Any, AsyncIterator, Iterator, Tuple +from collections.abc import AsyncIterator, Iterator +from typing import Any import pytest +from pydantic import BaseModel from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.json import ( SimpleJsonOutputParser, ) -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import convert_to_openai_function from langchain_core.utils.json import parse_json_markdown, parse_partial_json from tests.unit_tests.pydantic_utils import _schema @@ -135,7 +136,7 @@ ```json { "foo": "bar" - + """ @@ -145,7 +146,7 @@ { "foo": "bar" } - + """ WITH_END_TICK = """Here is a response formatted as schema: @@ -154,7 +155,7 @@ { "foo": "bar" } -``` +``` """ WITH_END_TEXT = """Here is a response formatted as schema: @@ -163,8 +164,8 @@ { "foo": "bar" -``` -This should do the trick +``` +This should do the trick """ TEST_CASES = [ @@ -245,7 +246,7 @@ def test_parse_json_with_python_dict() -> None: @pytest.mark.parametrize("json_strings", TEST_CASES_PARTIAL) -def test_parse_partial_json(json_strings: Tuple[str, str]) -> None: +def test_parse_partial_json(json_strings: tuple[str, str]) -> None: case, expected = json_strings parsed = parse_partial_json(case) assert parsed == json.loads(expected) @@ -595,10 +596,10 @@ class Joke(BaseModel): setup: str punchline: str - initial_joke_schema = {k: v for k, v in _schema(Joke).items()} + initial_joke_schema = dict(_schema(Joke).items()) SimpleJsonOutputParser(pydantic_object=Joke) openai_func = convert_to_openai_function(Joke) - retrieved_joke_schema = {k: v for k, v in _schema(Joke).items()} + retrieved_joke_schema = dict(_schema(Joke).items()) assert initial_joke_schema == retrieved_joke_schema assert openai_func.get("name", None) is not None diff --git a/libs/core/tests/unit_tests/output_parsers/test_list_parser.py b/libs/core/tests/unit_tests/output_parsers/test_list_parser.py index ef3a00bc5f7ec..3f43edfa2aed8 100644 --- a/libs/core/tests/unit_tests/output_parsers/test_list_parser.py +++ b/libs/core/tests/unit_tests/output_parsers/test_list_parser.py @@ -1,4 +1,5 @@ -from typing import AsyncIterator, Iterable, List, TypeVar, cast +from collections.abc import AsyncIterator, Iterable +from typing import TypeVar, cast from langchain_core.output_parsers.list import ( CommaSeparatedListOutputParser, @@ -79,7 +80,7 @@ def test_numbered_list() -> None: (text2, ["apple", "banana", "cherry"]), (text3, []), ]: - expectedlist = [[a] for a in cast(List[str], expected)] + expectedlist = [[a] for a in cast(list[str], expected)] assert parser.parse(text) == expected assert add(parser.transform(t for t in text)) == (expected or None) assert list(parser.transform(t for t in text)) == expectedlist @@ -114,7 +115,7 @@ def test_markdown_list() -> None: (text2, ["apple", "banana", "cherry"]), (text3, []), ]: - expectedlist = [[a] for a in cast(List[str], expected)] + expectedlist = [[a] for a in cast(list[str], expected)] assert parser.parse(text) == expected assert add(parser.transform(t for t in text)) == (expected or None) assert list(parser.transform(t for t in text)) == expectedlist @@ -217,7 +218,7 @@ async def test_numbered_list_async() -> None: (text2, ["apple", "banana", "cherry"]), (text3, []), ]: - expectedlist = [[a] for a in cast(List[str], expected)] + expectedlist = [[a] for a in cast(list[str], expected)] assert await parser.aparse(text) == expected assert await aadd(parser.atransform(aiter_from_iter(t for t in text))) == ( expected or None @@ -260,7 +261,7 @@ async def test_markdown_list_async() -> None: (text2, ["apple", "banana", "cherry"]), (text3, []), ]: - expectedlist = [[a] for a in cast(List[str], expected)] + expectedlist = [[a] for a in cast(list[str], expected)] assert await parser.aparse(text) == expected assert await aadd(parser.atransform(aiter_from_iter(t for t in text))) == ( expected or None diff --git a/libs/core/tests/unit_tests/output_parsers/test_openai_functions.py b/libs/core/tests/unit_tests/output_parsers/test_openai_functions.py index 11f61d655ca41..c0959620e420c 100644 --- a/libs/core/tests/unit_tests/output_parsers/test_openai_functions.py +++ b/libs/core/tests/unit_tests/output_parsers/test_openai_functions.py @@ -1,7 +1,8 @@ import json -from typing import Any, Dict +from typing import Any import pytest +from pydantic import BaseModel from langchain_core.exceptions import OutputParserException from langchain_core.messages import AIMessage, BaseMessage, HumanMessage @@ -10,7 +11,6 @@ PydanticOutputFunctionsParser, ) from langchain_core.outputs import ChatGeneration -from langchain_core.pydantic_v1 import BaseModel def test_json_output_function_parser() -> None: @@ -85,7 +85,7 @@ def test_json_output_function_parser() -> None: }, ], ) -def test_json_output_function_parser_strictness(config: Dict[str, Any]) -> None: +def test_json_output_function_parser_strictness(config: dict[str, Any]) -> None: """Test parsing with JSON strictness on and off.""" args = config["args"] diff --git a/libs/core/tests/unit_tests/output_parsers/test_openai_tools.py b/libs/core/tests/unit_tests/output_parsers/test_openai_tools.py index d5ca880ee785b..63c2d8ea1eee8 100644 --- a/libs/core/tests/unit_tests/output_parsers/test_openai_tools.py +++ b/libs/core/tests/unit_tests/output_parsers/test_openai_tools.py @@ -1,6 +1,8 @@ -from typing import Any, AsyncIterator, Iterator, List +from collections.abc import AsyncIterator, Iterator +from typing import Any import pytest +from pydantic import BaseModel, Field from langchain_core.messages import ( AIMessage, @@ -14,7 +16,6 @@ PydanticToolsParser, ) from langchain_core.outputs import ChatGeneration -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.utils.pydantic import PYDANTIC_MAJOR_VERSION STREAMED_MESSAGES: list = [ @@ -483,7 +484,7 @@ class Person(BaseModel): class NameCollector(BaseModel): """record names of all people mentioned""" - names: List[str] = Field(..., description="all names mentioned") + names: list[str] = Field(..., description="all names mentioned") person: Person = Field(..., description="info about the main subject") @@ -531,7 +532,7 @@ async def test_partial_pydantic_output_parser_async() -> None: @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="This test is for pydantic 2") def test_parse_with_different_pydantic_2_v1() -> None: """Test with pydantic.v1.BaseModel from pydantic 2.""" - import pydantic # pydantic: ignore + import pydantic class Forecast(pydantic.v1.BaseModel): temperature: int @@ -566,7 +567,7 @@ class Forecast(pydantic.v1.BaseModel): @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="This test is for pydantic 2") def test_parse_with_different_pydantic_2_proper() -> None: """Test with pydantic.BaseModel from pydantic 2.""" - import pydantic # pydantic: ignore + import pydantic class Forecast(pydantic.BaseModel): temperature: int @@ -601,7 +602,7 @@ class Forecast(pydantic.BaseModel): @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 1, reason="This test is for pydantic 1") def test_parse_with_different_pydantic_1_proper() -> None: """Test with pydantic.BaseModel from pydantic 1.""" - import pydantic # pydantic: ignore + import pydantic class Forecast(pydantic.BaseModel): temperature: int diff --git a/libs/core/tests/unit_tests/output_parsers/test_pydantic_parser.py b/libs/core/tests/unit_tests/output_parsers/test_pydantic_parser.py index 2a748bd65bed7..b8bdd0ce252d3 100644 --- a/libs/core/tests/unit_tests/output_parsers/test_pydantic_parser.py +++ b/libs/core/tests/unit_tests/output_parsers/test_pydantic_parser.py @@ -3,22 +3,17 @@ from enum import Enum from typing import Literal, Optional -import pydantic # pydantic: ignore +import pydantic import pytest +from pydantic import BaseModel, Field +from pydantic.v1 import BaseModel as V1BaseModel from langchain_core.exceptions import OutputParserException from langchain_core.language_models import ParrotFakeChatModel from langchain_core.output_parsers import PydanticOutputParser from langchain_core.output_parsers.json import JsonOutputParser from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field -from langchain_core.utils.pydantic import PYDANTIC_MAJOR_VERSION, TBaseModel - -V1BaseModel = pydantic.BaseModel -if PYDANTIC_MAJOR_VERSION == 2: - from pydantic.v1 import BaseModel # pydantic: ignore - - V1BaseModel = BaseModel # type: ignore +from langchain_core.utils.pydantic import TBaseModel class ForecastV2(pydantic.BaseModel): @@ -153,7 +148,7 @@ def test_pydantic_output_parser() -> None: result = pydantic_parser.parse(DEF_RESULT) print("parse_result:", result) # noqa: T201 - assert DEF_EXPECTED_RESULT == result + assert result == DEF_EXPECTED_RESULT assert pydantic_parser.OutputType is TestModel @@ -179,7 +174,7 @@ class SampleModel(BaseModel): # Ignoring mypy error that appears in python 3.8, but not 3.11. # This seems to be functionally correct, so we'll ignore the error. pydantic_parser = PydanticOutputParser(pydantic_object=SampleModel) # type: ignore - schema = pydantic_parser.get_output_schema().schema() + schema = pydantic_parser.get_output_schema().model_json_schema() assert schema == { "properties": { @@ -194,7 +189,7 @@ class SampleModel(BaseModel): def test_format_instructions_preserves_language() -> None: """Test format instructions does not attempt to encode into ascii.""" - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field description = ( "你好, こんにちは, नमस्ते, Bonjour, Hola, " diff --git a/libs/core/tests/unit_tests/output_parsers/test_xml_parser.py b/libs/core/tests/unit_tests/output_parsers/test_xml_parser.py index a57a129f1bb8a..60826c439e500 100644 --- a/libs/core/tests/unit_tests/output_parsers/test_xml_parser.py +++ b/libs/core/tests/unit_tests/output_parsers/test_xml_parser.py @@ -1,7 +1,7 @@ """Test XMLOutputParser""" import importlib -from typing import AsyncIterator, Iterable +from collections.abc import AsyncIterator, Iterable import pytest diff --git a/libs/core/tests/unit_tests/prompts/__snapshots__/test_chat.ambr b/libs/core/tests/unit_tests/prompts/__snapshots__/test_chat.ambr index 1e3bd9dee4d3c..7e35bd6c46548 100644 --- a/libs/core/tests/unit_tests/prompts/__snapshots__/test_chat.ambr +++ b/libs/core/tests/unit_tests/prompts/__snapshots__/test_chat.ambr @@ -1,8 +1,9 @@ # serializer version: 1 # name: test_chat_input_schema[partial] dict({ - 'definitions': dict({ + '$defs': dict({ 'AIMessage': dict({ + 'additionalProperties': True, 'description': ''' Message from an AI. @@ -44,21 +45,37 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'invalid_tool_calls': dict({ 'default': list([ ]), 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', + '$ref': '#/$defs/InvalidToolCall', }), 'title': 'Invalid Tool Calls', 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -68,21 +85,26 @@ 'default': list([ ]), 'items': dict({ - '$ref': '#/definitions/ToolCall', + '$ref': '#/$defs/ToolCall', }), 'title': 'Tool Calls', 'type': 'array', }), 'type': dict({ + 'const': 'ai', 'default': 'ai', - 'enum': list([ - 'ai', - ]), 'title': 'Type', - 'type': 'string', }), 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ @@ -91,8 +113,9 @@ 'title': 'AIMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -119,49 +142,92 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', - 'type': 'string', + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', }), - 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', + 'tool_calls': dict({ + 'default': list([ ]), + 'items': dict({ + '$ref': '#/$defs/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', 'title': 'Type', - 'type': 'string', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ 'content', - 'role', ]), - 'title': 'ChatMessage', + 'title': 'AIMessageChunk', 'type': 'object', }), - 'FunctionMessage': dict({ - 'description': ''' - Message for passing the result of executing a tool back to a model. - - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. - - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. - ''', + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -189,58 +255,53 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), + 'const': 'chat', + 'default': 'chat', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'name', + 'role', ]), - 'title': 'FunctionMessage', + 'title': 'ChatMessage', 'type': 'object', }), - 'HumanMessage': dict({ - 'description': ''' - Message from a human. - - HumanMessages are messages that are passed in from a human to the model. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Instantiate a chat model and invoke it with the messages - model = ... - print(model.invoke(messages)) - ''', + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -267,97 +328,62 @@ ]), 'title': 'Content', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'content', - ]), - 'title': 'HumanMessage', - 'type': 'object', - }), - 'InvalidToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', + 'role': dict({ + 'title': 'Role', 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'name', - 'args', - 'id', - 'error', + 'content', + 'role', ]), - 'title': 'InvalidToolCall', + 'title': 'ChatMessageChunk', 'type': 'object', }), - 'SystemMessage': dict({ + 'FunctionMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message for priming AI behavior. - - The system message is usually passed in as the first of a sequence - of input messages. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage + Message for passing the result of executing a tool back to a model. - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. ''', 'properties': dict({ 'additional_kwargs': dict({ @@ -386,8 +412,16 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', @@ -398,99 +432,111 @@ 'type': 'object', }), 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), + 'const': 'function', + 'default': 'function', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', + 'name', ]), - 'title': 'SystemMessage', + 'title': 'FunctionMessage', 'type': 'object', }), - 'ToolCall': dict({ + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', 'properties': dict({ - 'args': dict({ - 'title': 'Args', + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', 'type': 'object', }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', 'type': 'string', }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ + 'content', 'name', - 'args', - 'id', ]), - 'title': 'ToolCall', + 'title': 'FunctionMessageChunk', 'type': 'object', }), - 'ToolMessage': dict({ + 'HumanMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message for passing the result of executing a tool back to a model. - - ToolMessages contain the result of a tool invocation. Typically, the result - is encoded inside the `content` field. - - Example: A ToolMessage representing a result of 42 from a tool call with id - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') - + Message from a human. - Example: A ToolMessage where only part of the tool output is sent to the model - and the full output is passed in to artifact. + HumanMessages are messages that are passed in from a human to the model. - .. versionadded:: 0.2.17 + Example: .. code-block:: python - from langchain_core.messages import ToolMessage - - tool_output = { - "stdout": "From the graph we can see that the correlation between x and y is ...", - "stderr": None, - "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, - } + from langchain_core.messages import HumanMessage, SystemMessage - ToolMessage( - content=tool_output["stdout"], - artifact=tool_output, - tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', - ) + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) ''', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', 'type': 'object', }), - 'artifact': dict({ - 'title': 'Artifact', - }), 'content': dict({ 'anyOf': list([ dict({ @@ -512,122 +558,1394 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'status': dict({ - 'default': 'success', - 'enum': list([ - 'success', - 'error', + 'type': dict({ + 'const': 'human', + 'default': 'human', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), ]), - 'title': 'Status', - 'type': 'string', + 'title': 'Content', }), - 'tool_call_id': dict({ - 'title': 'Tool Call Id', - 'type': 'string', + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', }), - 'type': dict({ - 'default': 'tool', - 'enum': list([ - 'tool', + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'tool_call_id', ]), - 'title': 'ToolMessage', + 'title': 'HumanMessageChunk', 'type': 'object', }), - 'UsageMetadata': dict({ + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', 'properties': dict({ - 'input_tokens': dict({ - 'title': 'Input Tokens', + 'audio': dict({ + 'title': 'Audio', 'type': 'integer', }), - 'output_tokens': dict({ - 'title': 'Output Tokens', + 'cache_creation': dict({ + 'title': 'Cache Creation', 'type': 'integer', }), - 'total_tokens': dict({ - 'title': 'Total Tokens', + 'cache_read': dict({ + 'title': 'Cache Read', 'type': 'integer', }), }), - 'required': list([ - 'input_tokens', - 'output_tokens', - 'total_tokens', - ]), - 'title': 'UsageMetadata', + 'title': 'InputTokenDetails', 'type': 'object', }), - }), - 'properties': dict({ - 'history': dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - }), - 'title': 'History', - 'type': 'array', - }), - 'input': dict({ - 'title': 'Input', - 'type': 'string', - }), - }), - 'required': list([ - 'input', - ]), - 'title': 'PromptInput', - 'type': 'object', - }) -# --- -# name: test_chat_input_schema[required] - dict({ - 'definitions': dict({ - 'AIMessage': dict({ + 'InvalidToolCall': dict({ 'description': ''' - Message from an AI. + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'invalid_tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'error', + ]), + 'title': 'InvalidToolCall', + 'type': 'object', + }), + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for priming AI behavior. + + The system message is usually passed in as the first of a sequence + of input messages. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Define a chat model and invoke it with the messages + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'system', + 'default': 'system', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), + 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', + 'properties': dict({ + 'args': dict({ + 'title': 'Args', + 'type': 'object', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + ]), + 'title': 'ToolCall', + 'type': 'object', + }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'index', + ]), + 'title': 'ToolCallChunk', + 'type': 'object', + }), + 'ToolMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + ToolMessages contain the result of a tool invocation. Typically, the result + is encoded inside the `content` field. + + Example: A ToolMessage representing a result of 42 from a tool call with id + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') + + + Example: A ToolMessage where only part of the tool output is sent to the model + and the full output is passed in to artifact. + + .. versionadded:: 0.2.17 + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + tool_output = { + "stdout": "From the graph we can see that the correlation between x and y is ...", + "stderr": None, + "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, + } + + ToolMessage( + content=tool_output["stdout"], + artifact=tool_output, + tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', + ) + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool', + 'default': 'tool', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessage', + 'type': 'object', + }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), + 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', + 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/$defs/InputTokenDetails', + }), + 'input_tokens': dict({ + 'title': 'Input Tokens', + 'type': 'integer', + }), + 'output_token_details': dict({ + '$ref': '#/$defs/OutputTokenDetails', + }), + 'output_tokens': dict({ + 'title': 'Output Tokens', + 'type': 'integer', + }), + 'total_tokens': dict({ + 'title': 'Total Tokens', + 'type': 'integer', + }), + }), + 'required': list([ + 'input_tokens', + 'output_tokens', + 'total_tokens', + ]), + 'title': 'UsageMetadata', + 'type': 'object', + }), + }), + 'properties': dict({ + 'history': dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/$defs/AIMessage', + }), + dict({ + '$ref': '#/$defs/HumanMessage', + }), + dict({ + '$ref': '#/$defs/ChatMessage', + }), + dict({ + '$ref': '#/$defs/SystemMessage', + }), + dict({ + '$ref': '#/$defs/FunctionMessage', + }), + dict({ + '$ref': '#/$defs/ToolMessage', + }), + dict({ + '$ref': '#/$defs/AIMessageChunk', + }), + dict({ + '$ref': '#/$defs/HumanMessageChunk', + }), + dict({ + '$ref': '#/$defs/ChatMessageChunk', + }), + dict({ + '$ref': '#/$defs/SystemMessageChunk', + }), + dict({ + '$ref': '#/$defs/FunctionMessageChunk', + }), + dict({ + '$ref': '#/$defs/ToolMessageChunk', + }), + ]), + }), + 'title': 'History', + 'type': 'array', + }), + 'input': dict({ + 'title': 'Input', + 'type': 'string', + }), + }), + 'required': list([ + 'input', + ]), + 'title': 'PromptInput', + 'type': 'object', + }) +# --- +# name: test_chat_input_schema[required] + dict({ + '$defs': dict({ + 'AIMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from an AI. + + AIMessage is returned from a chat model as a response to a prompt. + + This message represents the output of the model and consists of both + the raw output as returned by the model together standardized fields + (e.g., tool calls, usage metadata) added by the LangChain framework. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ai', + 'default': 'ai', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessageChunk', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'chat', + 'default': 'chat', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessageChunk', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'function', + 'default': 'function', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from a human. - AIMessage is returned from a chat model as a response to a prompt. + HumanMessages are messages that are passed in from a human to the model. - This message represents the output of the model and consists of both - the raw output as returned by the model together standardized fields - (e.g., tool calls, usage metadata) added by the LangChain framework. + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) ''', 'properties': dict({ 'additional_kwargs': dict({ @@ -661,55 +1979,48 @@ 'type': 'boolean', }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'invalid_tool_calls': dict({ - 'default': list([ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', - }), - 'title': 'Invalid Tool Calls', - 'type': 'array', + 'default': None, + 'title': 'Id', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'tool_calls': dict({ - 'default': list([ - ]), - 'items': dict({ - '$ref': '#/definitions/ToolCall', - }), - 'title': 'Tool Calls', - 'type': 'array', - }), 'type': dict({ - 'default': 'ai', - 'enum': list([ - 'ai', - ]), + 'const': 'human', + 'default': 'human', 'title': 'Type', - 'type': 'string', - }), - 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', }), }), 'required': list([ 'content', ]), - 'title': 'AIMessage', + 'title': 'HumanMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -736,108 +2047,189 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', - 'type': 'string', - }), 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', - ]), + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'role', ]), - 'title': 'ChatMessage', + 'title': 'HumanMessageChunk', 'type': 'object', }), - 'FunctionMessage': dict({ + 'InputTokenDetails': dict({ 'description': ''' - Message for passing the result of executing a tool back to a model. + Breakdown of input token counts. - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. + Does *not* need to sum to full input token count. Does *not* need to have all keys. - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 ''', 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', - 'type': 'object', + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', }), - 'content': dict({ + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', + 'title': 'Args', + }), + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', }), 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), + 'const': 'invalid_tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', 'name', + 'args', + 'id', + 'error', ]), - 'title': 'FunctionMessage', + 'title': 'InvalidToolCall', 'type': 'object', }), - 'HumanMessage': dict({ + 'OutputTokenDetails': dict({ 'description': ''' - Message from a human. + Breakdown of output token counts. - HumanMessages are messages that are passed in from a human to the model. + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for priming AI behavior. + + The system message is usually passed in as the first of a sequence + of input messages. Example: @@ -854,8 +2246,7 @@ ) ] - # Instantiate a chat model and invoke it with the messages - model = ... + # Define a chat model and invoke it with the messages print(model.invoke(messages)) ''', 'properties': dict({ @@ -884,98 +2275,49 @@ ]), 'title': 'Content', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), - 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'content', - ]), - 'title': 'HumanMessage', - 'type': 'object', - }), - 'InvalidToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', - }), - 'id': dict({ + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', }), 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'const': 'system', + 'default': 'system', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'name', - 'args', - 'id', - 'error', + 'content', ]), - 'title': 'InvalidToolCall', + 'title': 'SystemMessage', 'type': 'object', }), - 'SystemMessage': dict({ - 'description': ''' - Message for priming AI behavior. - - The system message is usually passed in as the first of a sequence - of input messages. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) - ''', + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -1003,52 +2345,85 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', ]), - 'title': 'SystemMessage', + 'title': 'SystemMessageChunk', 'type': 'object', }), 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', 'properties': dict({ 'args': dict({ 'title': 'Args', 'type': 'object', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -1059,7 +2434,87 @@ 'title': 'ToolCall', 'type': 'object', }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'index', + ]), + 'title': 'ToolCallChunk', + 'type': 'object', + }), 'ToolMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -1130,12 +2585,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -1143,24 +2614,16 @@ }), 'status': dict({ 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), 'title': 'Status', - 'type': 'string', }), 'tool_call_id': dict({ 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ + 'const': 'tool', 'default': 'tool', - 'enum': list([ - 'tool', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -1170,12 +2633,127 @@ 'title': 'ToolMessage', 'type': 'object', }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/$defs/InputTokenDetails', + }), 'input_tokens': dict({ 'title': 'Input Tokens', 'type': 'integer', }), + 'output_token_details': dict({ + '$ref': '#/$defs/OutputTokenDetails', + }), 'output_tokens': dict({ 'title': 'Output Tokens', 'type': 'integer', @@ -1197,24 +2775,42 @@ 'properties': dict({ 'history': dict({ 'items': dict({ - 'anyOf': list([ + 'oneOf': list([ + dict({ + '$ref': '#/$defs/AIMessage', + }), + dict({ + '$ref': '#/$defs/HumanMessage', + }), + dict({ + '$ref': '#/$defs/ChatMessage', + }), + dict({ + '$ref': '#/$defs/SystemMessage', + }), + dict({ + '$ref': '#/$defs/FunctionMessage', + }), + dict({ + '$ref': '#/$defs/ToolMessage', + }), dict({ - '$ref': '#/definitions/AIMessage', + '$ref': '#/$defs/AIMessageChunk', }), dict({ - '$ref': '#/definitions/HumanMessage', + '$ref': '#/$defs/HumanMessageChunk', }), dict({ - '$ref': '#/definitions/ChatMessage', + '$ref': '#/$defs/ChatMessageChunk', }), dict({ - '$ref': '#/definitions/SystemMessage', + '$ref': '#/$defs/SystemMessageChunk', }), dict({ - '$ref': '#/definitions/FunctionMessage', + '$ref': '#/$defs/FunctionMessageChunk', }), dict({ - '$ref': '#/definitions/ToolMessage', + '$ref': '#/$defs/ToolMessageChunk', }), ]), }), @@ -1325,7 +2921,7 @@ 'type': 'constructor', }) # --- -# name: test_chat_prompt_w_msgs_placeholder_ser_des[placholder] +# name: test_chat_prompt_w_msgs_placeholder_ser_des[placeholder] dict({ 'id': list([ 'langchain', diff --git a/libs/core/tests/unit_tests/prompts/__snapshots__/test_prompt.ambr b/libs/core/tests/unit_tests/prompts/__snapshots__/test_prompt.ambr new file mode 100644 index 0000000000000..6f32a833bdeb8 --- /dev/null +++ b/libs/core/tests/unit_tests/prompts/__snapshots__/test_prompt.ambr @@ -0,0 +1,180 @@ +# serializer version: 1 +# name: test_mustache_prompt_from_template[schema_0] + dict({ + '$defs': dict({ + 'obj': dict({ + 'properties': dict({ + 'bar': dict({ + 'title': 'Bar', + 'type': 'string', + }), + 'foo': dict({ + 'title': 'Foo', + 'type': 'string', + }), + }), + 'title': 'obj', + 'type': 'object', + }), + }), + 'properties': dict({ + 'foo': dict({ + 'title': 'Foo', + 'type': 'string', + }), + 'obj': dict({ + '$ref': '#/$defs/obj', + }), + }), + 'title': 'PromptInput', + 'type': 'object', + }) +# --- +# name: test_mustache_prompt_from_template[schema_2] + dict({ + '$defs': dict({ + 'foo': dict({ + 'properties': dict({ + 'bar': dict({ + 'title': 'Bar', + 'type': 'string', + }), + }), + 'title': 'foo', + 'type': 'object', + }), + }), + 'properties': dict({ + 'foo': dict({ + '$ref': '#/$defs/foo', + }), + }), + 'title': 'PromptInput', + 'type': 'object', + }) +# --- +# name: test_mustache_prompt_from_template[schema_3] + dict({ + '$defs': dict({ + 'baz': dict({ + 'properties': dict({ + 'qux': dict({ + 'title': 'Qux', + 'type': 'string', + }), + }), + 'title': 'baz', + 'type': 'object', + }), + 'foo': dict({ + 'properties': dict({ + 'bar': dict({ + 'title': 'Bar', + 'type': 'string', + }), + 'baz': dict({ + '$ref': '#/$defs/baz', + }), + 'quux': dict({ + 'title': 'Quux', + 'type': 'string', + }), + }), + 'title': 'foo', + 'type': 'object', + }), + }), + 'properties': dict({ + 'foo': dict({ + '$ref': '#/$defs/foo', + }), + }), + 'title': 'PromptInput', + 'type': 'object', + }) +# --- +# name: test_mustache_prompt_from_template[schema_4] + dict({ + '$defs': dict({ + 'barfoo': dict({ + 'properties': dict({ + 'foobar': dict({ + 'title': 'Foobar', + 'type': 'string', + }), + }), + 'title': 'barfoo', + 'type': 'object', + }), + 'baz': dict({ + 'properties': dict({ + 'qux': dict({ + '$ref': '#/$defs/qux', + }), + }), + 'title': 'baz', + 'type': 'object', + }), + 'foo': dict({ + 'properties': dict({ + 'bar': dict({ + 'title': 'Bar', + 'type': 'string', + }), + 'baz': dict({ + '$ref': '#/$defs/baz', + }), + 'quux': dict({ + 'title': 'Quux', + 'type': 'string', + }), + }), + 'title': 'foo', + 'type': 'object', + }), + 'qux': dict({ + 'properties': dict({ + 'barfoo': dict({ + '$ref': '#/$defs/barfoo', + }), + 'foobar': dict({ + 'title': 'Foobar', + 'type': 'string', + }), + }), + 'title': 'qux', + 'type': 'object', + }), + }), + 'properties': dict({ + 'foo': dict({ + '$ref': '#/$defs/foo', + }), + }), + 'title': 'PromptInput', + 'type': 'object', + }) +# --- +# name: test_mustache_prompt_from_template[schema_5] + dict({ + '$defs': dict({ + 'foo': dict({ + 'properties': dict({ + 'bar': dict({ + 'title': 'Bar', + 'type': 'string', + }), + }), + 'title': 'foo', + 'type': 'object', + }), + }), + 'properties': dict({ + 'foo': dict({ + '$ref': '#/$defs/foo', + }), + }), + 'title': 'PromptInput', + 'type': 'object', + }) +# --- diff --git a/libs/core/tests/unit_tests/prompts/test_chat.py b/libs/core/tests/unit_tests/prompts/test_chat.py index a280ff1dbb670..72056f6c5a22c 100644 --- a/libs/core/tests/unit_tests/prompts/test_chat.py +++ b/libs/core/tests/unit_tests/prompts/test_chat.py @@ -1,12 +1,15 @@ import base64 import tempfile from pathlib import Path -from typing import Any, List, Tuple, Union, cast +from typing import Any, Union, cast import pytest +from pydantic import ValidationError from syrupy import SnapshotAssertion -from langchain_core._api.deprecation import LangChainPendingDeprecationWarning +from langchain_core._api.deprecation import ( + LangChainPendingDeprecationWarning, +) from langchain_core.load import dumpd, load from langchain_core.messages import ( AIMessage, @@ -28,12 +31,11 @@ SystemMessagePromptTemplate, _convert_to_message, ) -from langchain_core.pydantic_v1 import ValidationError -from tests.unit_tests.pydantic_utils import _schema +from tests.unit_tests.pydantic_utils import _normalize_schema @pytest.fixture -def messages() -> List[BaseMessagePromptTemplate]: +def messages() -> list[BaseMessagePromptTemplate]: """Create messages.""" system_message_prompt = SystemMessagePromptTemplate( prompt=PromptTemplate( @@ -70,7 +72,7 @@ def messages() -> List[BaseMessagePromptTemplate]: @pytest.fixture def chat_prompt_template( - messages: List[BaseMessagePromptTemplate], + messages: list[BaseMessagePromptTemplate], ) -> ChatPromptTemplate: """Create a chat prompt template.""" return ChatPromptTemplate( @@ -225,7 +227,7 @@ async def test_chat_prompt_template(chat_prompt_template: ChatPromptTemplate) -> def test_chat_prompt_template_from_messages( - messages: List[BaseMessagePromptTemplate], + messages: list[BaseMessagePromptTemplate], ) -> None: """Test creating a chat prompt template from messages.""" chat_prompt_template = ChatPromptTemplate.from_messages(messages) @@ -297,7 +299,7 @@ def test_chat_prompt_template_from_messages_mustache() -> None: def test_chat_prompt_template_with_messages( - messages: List[BaseMessagePromptTemplate], + messages: list[BaseMessagePromptTemplate], ) -> None: chat_prompt_template = ChatPromptTemplate.from_messages( messages + [HumanMessage(content="foo")] @@ -794,21 +796,25 @@ def test_chat_input_schema(snapshot: SnapshotAssertion) -> None: assert prompt_all_required.optional_variables == [] with pytest.raises(ValidationError): prompt_all_required.input_schema(input="") - assert _schema(prompt_all_required.input_schema) == snapshot(name="required") + assert _normalize_schema(prompt_all_required.get_input_jsonschema()) == snapshot( + name="required" + ) prompt_optional = ChatPromptTemplate( messages=[MessagesPlaceholder("history", optional=True), ("user", "${input}")] ) # input variables only lists required variables assert set(prompt_optional.input_variables) == {"input"} prompt_optional.input_schema(input="") # won't raise error - assert _schema(prompt_optional.input_schema) == snapshot(name="partial") + assert _normalize_schema(prompt_optional.get_input_jsonschema()) == snapshot( + name="partial" + ) def test_chat_prompt_w_msgs_placeholder_ser_des(snapshot: SnapshotAssertion) -> None: prompt = ChatPromptTemplate.from_messages( [("system", "foo"), MessagesPlaceholder("bar"), ("human", "baz")] ) - assert dumpd(MessagesPlaceholder("bar")) == snapshot(name="placholder") + assert dumpd(MessagesPlaceholder("bar")) == snapshot(name="placeholder") assert load(dumpd(MessagesPlaceholder("bar"))) == MessagesPlaceholder("bar") assert dumpd(prompt) == snapshot(name="chat_prompt") assert load(dumpd(prompt)) == prompt @@ -822,7 +828,7 @@ async def test_chat_tmpl_serdes(snapshot: SnapshotAssertion) -> None: ("system", [{"text": "You are an AI assistant named {name}."}]), SystemMessagePromptTemplate.from_template("you are {foo}"), cast( - Tuple, + tuple, ( "human", [ @@ -863,3 +869,48 @@ async def test_chat_tmpl_serdes(snapshot: SnapshotAssertion) -> None: ) assert dumpd(template) == snapshot() assert load(dumpd(template)) == template + + +def test_chat_prompt_template_variable_names() -> None: + """This test was written for an edge case that triggers a warning from Pydantic. + + Verify that no run time warnings are raised. + """ + with pytest.warns(None) as record: # type: ignore + prompt = ChatPromptTemplate([("system", "{schema}")]) + prompt.get_input_schema() + + if record: + error_msg = [] + for warning in record: + error_msg.append( + f"Warning type: {warning.category.__name__}, " + f"Warning message: {warning.message}, " + f"Warning location: {warning.filename}:{warning.lineno}" + ) + msg = "\n".join(error_msg) + else: + msg = "" + + assert list(record) == [], msg + + # Verify value errors raised from illegal names + assert ChatPromptTemplate( + [("system", "{_private}")] + ).get_input_schema().model_json_schema() == { + "properties": {"_private": {"title": "Private", "type": "string"}}, + "required": ["_private"], + "title": "PromptInput", + "type": "object", + } + + assert ChatPromptTemplate( + [("system", "{model_json_schema}")] + ).get_input_schema().model_json_schema() == { + "properties": { + "model_json_schema": {"title": "Model Json Schema", "type": "string"} + }, + "required": ["model_json_schema"], + "title": "PromptInput", + "type": "object", + } diff --git a/libs/core/tests/unit_tests/prompts/test_few_shot.py b/libs/core/tests/unit_tests/prompts/test_few_shot.py index 8c3cc523c23cf..27b0208285fe8 100644 --- a/libs/core/tests/unit_tests/prompts/test_few_shot.py +++ b/libs/core/tests/unit_tests/prompts/test_few_shot.py @@ -1,6 +1,7 @@ """Test few shot prompt template.""" -from typing import Any, Dict, List, Sequence, Tuple +from collections.abc import Sequence +from typing import Any import pytest @@ -25,7 +26,7 @@ @pytest.fixture() @pytest.mark.requires("jinja2") -def example_jinja2_prompt() -> Tuple[PromptTemplate, List[Dict[str, str]]]: +def example_jinja2_prompt() -> tuple[PromptTemplate, list[dict[str, str]]]: example_template = "{{ word }}: {{ antonym }}" examples = [ @@ -227,7 +228,7 @@ def test_partial() -> None: @pytest.mark.requires("jinja2") def test_prompt_jinja2_functionality( - example_jinja2_prompt: Tuple[PromptTemplate, List[Dict[str, str]]], + example_jinja2_prompt: tuple[PromptTemplate, list[dict[str, str]]], ) -> None: prefix = "Starting with {{ foo }}" suffix = "Ending with {{ bar }}" @@ -250,7 +251,7 @@ def test_prompt_jinja2_functionality( @pytest.mark.requires("jinja2") def test_prompt_jinja2_missing_input_variables( - example_jinja2_prompt: Tuple[PromptTemplate, List[Dict[str, str]]], + example_jinja2_prompt: tuple[PromptTemplate, list[dict[str, str]]], ) -> None: """Test error is raised when input variables are not provided.""" prefix = "Starting with {{ foo }}" @@ -297,7 +298,7 @@ def test_prompt_jinja2_missing_input_variables( @pytest.mark.requires("jinja2") def test_prompt_jinja2_extra_input_variables( - example_jinja2_prompt: Tuple[PromptTemplate, List[Dict[str, str]]], + example_jinja2_prompt: tuple[PromptTemplate, list[dict[str, str]]], ) -> None: """Test error is raised when there are too many input variables.""" prefix = "Starting with {{ foo }}" @@ -368,14 +369,14 @@ class AsIsSelector(BaseExampleSelector): This selector returns the examples as-is. """ - def __init__(self, examples: Sequence[Dict[str, str]]) -> None: + def __init__(self, examples: Sequence[dict[str, str]]) -> None: """Initializes the selector.""" self.examples = examples - def add_example(self, example: Dict[str, str]) -> Any: + def add_example(self, example: dict[str, str]) -> Any: raise NotImplementedError - def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: + def select_examples(self, input_variables: dict[str, str]) -> list[dict]: return list(self.examples) @@ -463,17 +464,17 @@ class AsyncAsIsSelector(BaseExampleSelector): This selector returns the examples as-is. """ - def __init__(self, examples: Sequence[Dict[str, str]]) -> None: + def __init__(self, examples: Sequence[dict[str, str]]) -> None: """Initializes the selector.""" self.examples = examples - def add_example(self, example: Dict[str, str]) -> Any: + def add_example(self, example: dict[str, str]) -> Any: raise NotImplementedError - def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: + def select_examples(self, input_variables: dict[str, str]) -> list[dict]: raise NotImplementedError - async def aselect_examples(self, input_variables: Dict[str, str]) -> List[dict]: + async def aselect_examples(self, input_variables: dict[str, str]) -> list[dict]: return list(self.examples) diff --git a/libs/core/tests/unit_tests/prompts/test_loading.py b/libs/core/tests/unit_tests/prompts/test_loading.py index d7092aa94c630..2a98a1e95ce90 100644 --- a/libs/core/tests/unit_tests/prompts/test_loading.py +++ b/libs/core/tests/unit_tests/prompts/test_loading.py @@ -1,9 +1,9 @@ """Test loading functionality.""" import os +from collections.abc import Iterator from contextlib import contextmanager from pathlib import Path -from typing import Iterator import pytest @@ -25,7 +25,7 @@ def change_directory(dir: Path) -> Iterator: os.chdir(origin) -def test_loading_from_YAML() -> None: +def test_loading_from_yaml() -> None: """Test loading from yaml file.""" prompt = load_prompt(EXAMPLE_DIR / "simple_prompt.yaml") expected_prompt = PromptTemplate( @@ -36,7 +36,7 @@ def test_loading_from_YAML() -> None: assert prompt == expected_prompt -def test_loading_from_JSON() -> None: +def test_loading_from_json() -> None: """Test loading from json file.""" prompt = load_prompt(EXAMPLE_DIR / "simple_prompt.json") expected_prompt = PromptTemplate( @@ -46,14 +46,14 @@ def test_loading_from_JSON() -> None: assert prompt == expected_prompt -def test_loading_jinja_from_JSON() -> None: +def test_loading_jinja_from_json() -> None: """Test that loading jinja2 format prompts from JSON raises ValueError.""" prompt_path = EXAMPLE_DIR / "jinja_injection_prompt.json" with pytest.raises(ValueError, match=".*can lead to arbitrary code execution.*"): load_prompt(prompt_path) -def test_loading_jinja_from_YAML() -> None: +def test_loading_jinja_from_yaml() -> None: """Test that loading jinja2 format prompts from YAML raises ValueError.""" prompt_path = EXAMPLE_DIR / "jinja_injection_prompt.yaml" with pytest.raises(ValueError, match=".*can lead to arbitrary code execution.*"): diff --git a/libs/core/tests/unit_tests/prompts/test_prompt.py b/libs/core/tests/unit_tests/prompts/test_prompt.py index a9bee11ba8933..cf256a8ae1d30 100644 --- a/libs/core/tests/unit_tests/prompts/test_prompt.py +++ b/libs/core/tests/unit_tests/prompts/test_prompt.py @@ -1,13 +1,17 @@ """Test functionality related to prompts.""" -from typing import Any, Dict, Union +from typing import Any, Union from unittest import mock +import pydantic import pytest +from syrupy import SnapshotAssertion from langchain_core.prompts.prompt import PromptTemplate from langchain_core.tracers.run_collector import RunCollectorCallbackHandler -from tests.unit_tests.pydantic_utils import _schema +from tests.unit_tests.pydantic_utils import _normalize_schema + +PYDANTIC_VERSION = tuple(map(int, pydantic.__version__.split("."))) def test_prompt_valid() -> None: @@ -63,17 +67,17 @@ def test_prompt_from_template() -> None: assert prompt == expected_prompt -def test_mustache_prompt_from_template() -> None: +def test_mustache_prompt_from_template(snapshot: SnapshotAssertion) -> None: """Test prompts can be constructed from a template.""" # Single input variable. template = "This is a {{foo}} test." prompt = PromptTemplate.from_template(template, template_format="mustache") assert prompt.format(foo="bar") == "This is a bar test." assert prompt.input_variables == ["foo"] - assert _schema(prompt.input_schema) == { + assert prompt.get_input_jsonschema() == { "title": "PromptInput", "type": "object", - "properties": {"foo": {"title": "Foo", "type": "string"}}, + "properties": {"foo": {"title": "Foo", "type": "string", "default": None}}, } # Multiple input variables. @@ -81,12 +85,12 @@ def test_mustache_prompt_from_template() -> None: prompt = PromptTemplate.from_template(template, template_format="mustache") assert prompt.format(bar="baz", foo="bar") == "This baz is a bar test." assert prompt.input_variables == ["bar", "foo"] - assert _schema(prompt.input_schema) == { + assert prompt.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": { - "bar": {"title": "Bar", "type": "string"}, - "foo": {"title": "Foo", "type": "string"}, + "bar": {"title": "Bar", "type": "string", "default": None}, + "foo": {"title": "Foo", "type": "string", "default": None}, }, } @@ -95,12 +99,12 @@ def test_mustache_prompt_from_template() -> None: prompt = PromptTemplate.from_template(template, template_format="mustache") assert prompt.format(bar="baz", foo="bar") == "This baz is a bar test bar." assert prompt.input_variables == ["bar", "foo"] - assert _schema(prompt.input_schema) == { + assert prompt.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": { - "bar": {"title": "Bar", "type": "string"}, - "foo": {"title": "Foo", "type": "string"}, + "bar": {"title": "Bar", "type": "string", "default": None}, + "foo": {"title": "Foo", "type": "string", "default": None}, }, } @@ -111,31 +115,17 @@ def test_mustache_prompt_from_template() -> None: "This foo is a bar test baz." ) assert prompt.input_variables == ["foo", "obj"] - assert _schema(prompt.input_schema) == { - "title": "PromptInput", - "type": "object", - "properties": { - "foo": {"title": "Foo", "type": "string"}, - "obj": {"$ref": "#/definitions/obj"}, - }, - "definitions": { - "obj": { - "title": "obj", - "type": "object", - "properties": { - "foo": {"title": "Foo", "type": "string"}, - "bar": {"title": "Bar", "type": "string"}, - }, - } - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema(prompt.get_input_jsonschema()) == snapshot( + name="schema_0" + ) # . variables template = "This {{.}} is a test." prompt = PromptTemplate.from_template(template, template_format="mustache") assert prompt.format(foo="baz") == ("This {'foo': 'baz'} is a test.") assert prompt.input_variables == [] - assert _schema(prompt.input_schema) == { + assert prompt.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {}, @@ -152,18 +142,10 @@ def test_mustache_prompt_from_template() -> None: is a test.""" ) assert prompt.input_variables == ["foo"] - assert _schema(prompt.input_schema) == { - "title": "PromptInput", - "type": "object", - "properties": {"foo": {"$ref": "#/definitions/foo"}}, - "definitions": { - "foo": { - "title": "foo", - "type": "object", - "properties": {"bar": {"title": "Bar", "type": "string"}}, - } - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema(prompt.get_input_jsonschema()) == snapshot( + name="schema_2" + ) # more complex nested section/context variables template = """This{{#foo}} @@ -184,27 +166,10 @@ def test_mustache_prompt_from_template() -> None: is a test.""" ) assert prompt.input_variables == ["foo"] - assert _schema(prompt.input_schema) == { - "title": "PromptInput", - "type": "object", - "properties": {"foo": {"$ref": "#/definitions/foo"}}, - "definitions": { - "foo": { - "title": "foo", - "type": "object", - "properties": { - "bar": {"title": "Bar", "type": "string"}, - "baz": {"$ref": "#/definitions/baz"}, - "quux": {"title": "Quux", "type": "string"}, - }, - }, - "baz": { - "title": "baz", - "type": "object", - "properties": {"qux": {"title": "Qux", "type": "string"}}, - }, - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema(prompt.get_input_jsonschema()) == snapshot( + name="schema_3" + ) # triply nested section/context variables template = """This{{#foo}} @@ -239,40 +204,10 @@ def test_mustache_prompt_from_template() -> None: is a test.""" ) assert prompt.input_variables == ["foo"] - assert _schema(prompt.input_schema) == { - "title": "PromptInput", - "type": "object", - "properties": {"foo": {"$ref": "#/definitions/foo"}}, - "definitions": { - "foo": { - "title": "foo", - "type": "object", - "properties": { - "bar": {"title": "Bar", "type": "string"}, - "baz": {"$ref": "#/definitions/baz"}, - "quux": {"title": "Quux", "type": "string"}, - }, - }, - "baz": { - "title": "baz", - "type": "object", - "properties": {"qux": {"$ref": "#/definitions/qux"}}, - }, - "qux": { - "title": "qux", - "type": "object", - "properties": { - "foobar": {"title": "Foobar", "type": "string"}, - "barfoo": {"$ref": "#/definitions/barfoo"}, - }, - }, - "barfoo": { - "title": "barfoo", - "type": "object", - "properties": {"foobar": {"title": "Foobar", "type": "string"}}, - }, - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema(prompt.get_input_jsonschema()) == snapshot( + name="schema_4" + ) # section/context variables with repeats template = """This{{#foo}} @@ -284,22 +219,13 @@ def test_mustache_prompt_from_template() -> None: yo hello - is a test.""" + is a test.""" # noqa: W293 ) assert prompt.input_variables == ["foo"] - assert _schema(prompt.input_schema) == { - "title": "PromptInput", - "type": "object", - "properties": {"foo": {"$ref": "#/definitions/foo"}}, - "definitions": { - "foo": { - "title": "foo", - "type": "object", - "properties": {"bar": {"title": "Bar", "type": "string"}}, - } - }, - } - + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema(prompt.get_input_jsonschema()) == snapshot( + name="schema_5" + ) template = """This{{^foo}} no foos {{/foo}}is a test.""" @@ -310,10 +236,10 @@ def test_mustache_prompt_from_template() -> None: is a test.""" ) assert prompt.input_variables == ["foo"] - assert _schema(prompt.input_schema) == { + assert prompt.get_input_jsonschema() == { + "properties": {"foo": {"default": None, "title": "Foo", "type": "object"}}, "title": "PromptInput", "type": "object", - "properties": {"foo": {"title": "Foo", "type": "object"}}, } @@ -482,7 +408,7 @@ def test_prompt_from_jinja2_template() -> None: # Empty input variable. template = """Hello there There is no variable here { -Will it get confused{ }? +Will it get confused{ }? """ prompt = PromptTemplate.from_template(template, template_format="jinja2") expected_prompt = PromptTemplate( @@ -684,7 +610,7 @@ async def test_prompt_ainvoke_with_metadata() -> None: ) @pytest.mark.parametrize("template_format", ["f-string", "mustache"]) def test_prompt_falsy_vars( - template_format: str, value: Any, expected: Union[str, Dict[str, str]] + template_format: str, value: Any, expected: Union[str, dict[str, str]] ) -> None: # each line is value, f-string, mustache if template_format == "f-string": @@ -692,7 +618,8 @@ def test_prompt_falsy_vars( elif template_format == "mustache": template = "{{my_var}}" else: - raise ValueError(f"Invalid template format: {template_format}") + msg = f"Invalid template format: {template_format}" + raise ValueError(msg) prompt = PromptTemplate.from_template(template, template_format=template_format) @@ -714,3 +641,22 @@ def test_prompt_missing_vars_error() -> None: # Check helper text has right number of braces assert "'{{goingtobemissing}}'" in str(e.value.args[0]) + + +def test_prompt_with_template_variable_name_fstring() -> None: + template = "This is a {template} test." + prompt = PromptTemplate.from_template(template, template_format="f-string") + assert prompt.invoke({"template": "bar"}).to_string() == "This is a bar test." + + +def test_prompt_with_template_variable_name_mustache() -> None: + template = "This is a {{template}} test." + prompt = PromptTemplate.from_template(template, template_format="mustache") + assert prompt.invoke({"template": "bar"}).to_string() == "This is a bar test." + + +@pytest.mark.requires("jinja2") +def test_prompt_with_template_variable_name_jinja2() -> None: + template = "This is a {{template}} test." + prompt = PromptTemplate.from_template(template, template_format="jinja2") + assert prompt.invoke({"template": "bar"}).to_string() == "This is a bar test." diff --git a/libs/core/tests/unit_tests/prompts/test_structured.py b/libs/core/tests/unit_tests/prompts/test_structured.py index 923a69e97d84d..921ff68a0fed8 100644 --- a/libs/core/tests/unit_tests/prompts/test_structured.py +++ b/libs/core/tests/unit_tests/prompts/test_structured.py @@ -1,23 +1,25 @@ from functools import partial from inspect import isclass -from typing import Any, Dict, Type, Union, cast +from typing import Any, Union, cast + +from pydantic import BaseModel from langchain_core.language_models import FakeListChatModel from langchain_core.load.dump import dumps from langchain_core.load.load import loads +from langchain_core.messages import HumanMessage from langchain_core.prompts.structured import StructuredPrompt -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables.base import Runnable, RunnableLambda from langchain_core.utils.pydantic import is_basemodel_subclass def _fake_runnable( - input: Any, *, schema: Union[Dict, Type[BaseModel]], value: Any = 42, **_: Any -) -> Union[BaseModel, Dict]: + input: Any, *, schema: Union[dict, type[BaseModel]], value: Any = 42, **_: Any +) -> Union[BaseModel, dict]: if isclass(schema) and is_basemodel_subclass(schema): return schema(name="yo", value=value) else: - params = cast(Dict, schema)["parameters"] + params = cast(dict, schema)["parameters"] return {k: 1 if k != "value" else value for k, v in params.items()} @@ -25,7 +27,7 @@ class FakeStructuredChatModel(FakeListChatModel): """Fake ChatModel for testing purposes.""" def with_structured_output( - self, schema: Union[Dict, Type[BaseModel]], **kwargs: Any + self, schema: Union[dict, type[BaseModel]], **kwargs: Any ) -> Runnable: return RunnableLambda(partial(_fake_runnable, schema=schema, **kwargs)) @@ -34,6 +36,9 @@ def _llm_type(self) -> str: return "fake-messages-list-chat-model" +FakeStructuredChatModel.model_rebuild() + + def test_structured_prompt_pydantic() -> None: class OutputSchema(BaseModel): name: str @@ -74,7 +79,7 @@ def test_structured_prompt_dict() -> None: assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 42} - assert loads(dumps(prompt)) == prompt + assert loads(dumps(prompt)).model_dump() == prompt.model_dump() chain = loads(dumps(prompt)) | model @@ -99,7 +104,7 @@ def test_structured_prompt_kwargs() -> None: model = FakeStructuredChatModel(responses=[]) chain = prompt | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 7} - assert loads(dumps(prompt)) == prompt + assert loads(dumps(prompt)).model_dump() == prompt.model_dump() chain = loads(dumps(prompt)) | model assert chain.invoke({"hello": "there"}) == {"name": 1, "value": 7} @@ -116,3 +121,14 @@ class OutputSchema(BaseModel): chain = prompt | model assert chain.invoke({"hello": "there"}) == OutputSchema(name="yo", value=7) + + +def test_structured_prompt_template_format() -> None: + prompt = StructuredPrompt( + [("human", "hi {{person.name}}")], schema={}, template_format="mustache" + ) + assert prompt.messages[0].prompt.template_format == "mustache" # type: ignore[union-attr, union-attr] + assert prompt.input_variables == ["person"] + assert prompt.invoke({"person": {"name": "foo"}}).to_messages() == [ + HumanMessage("hi foo") + ] diff --git a/libs/core/tests/unit_tests/pydantic_utils.py b/libs/core/tests/unit_tests/pydantic_utils.py index 7d7c06df6f615..e7e03750fd2df 100644 --- a/libs/core/tests/unit_tests/pydantic_utils.py +++ b/libs/core/tests/unit_tests/pydantic_utils.py @@ -1,20 +1,12 @@ -"""Helper utilities for pydantic. - -This module includes helper utilities to ease the migration from pydantic v1 to v2. +from typing import Any -They're meant to be used in the following way: +from pydantic import BaseModel -1) Use utility code to help (selected) unit tests pass without modifications -2) Upgrade the unit tests to match pydantic 2 -3) Stop using the utility code -""" - -from typing import Any +from langchain_core.utils.pydantic import is_basemodel_subclass # Function to replace allOf with $ref -def _replace_all_of_with_ref(schema: Any) -> None: - """Replace allOf with $ref in the schema.""" +def replace_all_of_with_ref(schema: Any) -> None: if isinstance(schema, dict): # If the schema has an allOf key with a single item that contains a $ref if ( @@ -30,13 +22,13 @@ def _replace_all_of_with_ref(schema: Any) -> None: # Recursively process nested schemas for value in schema.values(): if isinstance(value, (dict, list)): - _replace_all_of_with_ref(value) + replace_all_of_with_ref(value) elif isinstance(schema, list): for item in schema: - _replace_all_of_with_ref(item) + replace_all_of_with_ref(item) -def _remove_bad_none_defaults(schema: Any) -> None: +def remove_all_none_default(schema: Any) -> None: """Removing all none defaults. Pydantic v1 did not generate these, but Pydantic v2 does. @@ -56,39 +48,74 @@ def _remove_bad_none_defaults(schema: Any) -> None: break # Null type explicitly defined else: del value["default"] - _remove_bad_none_defaults(value) + remove_all_none_default(value) elif isinstance(value, list): for item in value: - _remove_bad_none_defaults(item) + remove_all_none_default(item) elif isinstance(schema, list): for item in schema: - _remove_bad_none_defaults(item) + remove_all_none_default(item) + + +def _remove_enum(obj: Any) -> None: + """Remove the description from enums.""" + if isinstance(obj, dict): + if "enum" in obj: + if "description" in obj and obj["description"] == "An enumeration.": + del obj["description"] + if "type" in obj and obj["type"] == "string": + del obj["type"] + del obj["enum"] + for value in obj.values(): + _remove_enum(value) + elif isinstance(obj, list): + for item in obj: + _remove_enum(item) def _schema(obj: Any) -> dict: - """Get the schema of a pydantic model in the pydantic v1 style. + """Return the schema of the object.""" - This will attempt to map the schema as close as possible to the pydantic v1 schema. - """ + if not is_basemodel_subclass(obj): + msg = f"Object must be a Pydantic BaseModel subclass. Got {type(obj)}" + raise TypeError(msg) # Remap to old style schema if not hasattr(obj, "model_json_schema"): # V1 model return obj.schema() - # Then we're using V2 models internally. - raise AssertionError( - "Hi there! Looks like you're attempting to upgrade to Pydantic v2. If so: \n" - "1) remove this exception\n" - "2) confirm that the old unit tests pass, and if not look for difference\n" - "3) update the unit tests to match the new schema\n" - "4) remove this utility function\n" - ) - schema_ = obj.model_json_schema(ref_template="#/definitions/{model}") if "$defs" in schema_: schema_["definitions"] = schema_["$defs"] del schema_["$defs"] - _replace_all_of_with_ref(schema_) - _remove_bad_none_defaults(schema_) + if "default" in schema_ and schema_["default"] is None: + del schema_["default"] + + replace_all_of_with_ref(schema_) + remove_all_none_default(schema_) + _remove_enum(schema_) return schema_ + + +def _normalize_schema(obj: Any) -> dict[str, Any]: + """Generate a schema and normalize it. + + This will collapse single element allOfs into $ref. + + For example, + + 'obj': {'allOf': [{'$ref': '#/$defs/obj'}] + + to: + + 'obj': {'$ref': '#/$defs/obj'} + + Args: + obj: The object to generate the schema for + """ + data = obj.model_json_schema() if isinstance(obj, BaseModel) else obj + remove_all_none_default(data) + replace_all_of_with_ref(data) + _remove_enum(data) + return data diff --git a/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr b/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr index 399f66aef0955..ba9d742b37407 100644 --- a/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr +++ b/libs/core/tests/unit_tests/runnables/__snapshots__/test_graph.ambr @@ -1,4 +1,31 @@ # serializer version: 1 +# name: test_double_nested_subgraph_mermaid[mermaid] + ''' + %%{init: {'flowchart': {'curve': 'linear'}}}%% + graph TD; + __start__([

__start__

]):::first + parent_1(parent_1) + child_child_1_grandchild_1(grandchild_1) + child_child_1_grandchild_2(grandchild_2
__interrupt = before) + child_child_2(child_2) + parent_2(parent_2) + __end__([

__end__

]):::last + __start__ --> parent_1; + child_child_2 --> parent_2; + parent_1 --> child_child_1_grandchild_1; + parent_2 --> __end__; + subgraph child + child_child_1_grandchild_2 --> child_child_2; + subgraph child_1 + child_child_1_grandchild_1 --> child_child_1_grandchild_2; + end + end + classDef default fill:#f2f0ff,line-height:1.2 + classDef first fill-opacity:0 + classDef last fill:#bfb6fc + + ''' +# --- # name: test_graph_sequence[ascii] ''' +-------------+ @@ -334,31 +361,9 @@ }), dict({ 'data': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - 'definitions': dict({ + '$defs': dict({ 'AIMessage': dict({ + 'additionalProperties': True, 'description': ''' Message from an AI. @@ -400,21 +405,37 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'invalid_tool_calls': dict({ 'default': list([ ]), 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', + '$ref': '#/$defs/InvalidToolCall', }), 'title': 'Invalid Tool Calls', 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -424,21 +445,26 @@ 'default': list([ ]), 'items': dict({ - '$ref': '#/definitions/ToolCall', + '$ref': '#/$defs/ToolCall', }), 'title': 'Tool Calls', 'type': 'array', }), 'type': dict({ + 'const': 'ai', 'default': 'ai', - 'enum': list([ - 'ai', - ]), 'title': 'Type', - 'type': 'string', }), 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ @@ -447,8 +473,9 @@ 'title': 'AIMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -475,49 +502,92 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', - 'type': 'string', + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', }), - 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', + 'tool_calls': dict({ + 'default': list([ ]), + 'items': dict({ + '$ref': '#/$defs/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', 'title': 'Type', - 'type': 'string', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ 'content', - 'role', ]), - 'title': 'ChatMessage', + 'title': 'AIMessageChunk', 'type': 'object', }), - 'FunctionMessage': dict({ - 'description': ''' - Message for passing the result of executing a tool back to a model. - - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. - - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. - ''', + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -545,58 +615,53 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), + 'const': 'chat', + 'default': 'chat', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'name', + 'role', ]), - 'title': 'FunctionMessage', + 'title': 'ChatMessage', 'type': 'object', }), - 'HumanMessage': dict({ - 'description': ''' - Message from a human. - - HumanMessages are messages that are passed in from a human to the model. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Instantiate a chat model and invoke it with the messages - model = ... - print(model.invoke(messages)) - ''', + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -623,63 +688,446 @@ ]), 'title': 'Content', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', - ]), + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', + 'role', ]), - 'title': 'HumanMessage', + 'title': 'ChatMessageChunk', 'type': 'object', }), - 'InvalidToolCall': dict({ + 'FunctionMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', }), - 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'function', + 'default': 'function', 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', 'type': 'string', }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from a human. + + HumanMessages are messages that are passed in from a human to the model. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'human', + 'default': 'human', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessageChunk', + 'type': 'object', + }), + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'invalid_tool_call', + 'title': 'Type', + }), }), 'required': list([ 'name', @@ -690,7 +1138,38 @@ 'title': 'InvalidToolCall', 'type': 'object', }), + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), 'SystemMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for priming AI behavior. @@ -742,24 +1221,37 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ + 'const': 'system', 'default': 'system', - 'enum': list([ - 'system', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -768,37 +1260,206 @@ 'title': 'SystemMessage', 'type': 'object', }), - 'ToolCall': dict({ + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), + 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', + 'properties': dict({ + 'args': dict({ + 'title': 'Args', + 'type': 'object', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + ]), + 'title': 'ToolCall', + 'type': 'object', + }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', 'properties': dict({ 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Args', - 'type': 'object', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'tool_call_chunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'name', 'args', 'id', + 'index', ]), - 'title': 'ToolCall', + 'title': 'ToolCallChunk', 'type': 'object', }), 'ToolMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -869,12 +1530,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -882,24 +1559,16 @@ }), 'status': dict({ 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), 'title': 'Status', - 'type': 'string', }), 'tool_call_id': dict({ 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ + 'const': 'tool', 'default': 'tool', - 'enum': list([ - 'tool', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -909,12 +1578,127 @@ 'title': 'ToolMessage', 'type': 'object', }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/$defs/InputTokenDetails', + }), 'input_tokens': dict({ 'title': 'Input Tokens', 'type': 'integer', }), + 'output_token_details': dict({ + '$ref': '#/$defs/OutputTokenDetails', + }), 'output_tokens': dict({ 'title': 'Output Tokens', 'type': 'integer', @@ -933,6 +1717,51 @@ 'type': 'object', }), }), + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'oneOf': list([ + dict({ + '$ref': '#/$defs/AIMessage', + }), + dict({ + '$ref': '#/$defs/HumanMessage', + }), + dict({ + '$ref': '#/$defs/ChatMessage', + }), + dict({ + '$ref': '#/$defs/SystemMessage', + }), + dict({ + '$ref': '#/$defs/FunctionMessage', + }), + dict({ + '$ref': '#/$defs/ToolMessage', + }), + dict({ + '$ref': '#/$defs/AIMessageChunk', + }), + dict({ + '$ref': '#/$defs/HumanMessageChunk', + }), + dict({ + '$ref': '#/$defs/ChatMessageChunk', + }), + dict({ + '$ref': '#/$defs/SystemMessageChunk', + }), + dict({ + '$ref': '#/$defs/FunctionMessageChunk', + }), + dict({ + '$ref': '#/$defs/ToolMessageChunk', + }), + ]), + }), + ]), 'title': 'RunnableParallelInput', }), 'id': 3, @@ -952,6 +1781,10 @@ 'title': 'As Str', }), }), + 'required': list([ + 'as_list', + 'as_str', + ]), 'title': 'RunnableParallelOutput', 'type': 'object', }), @@ -1063,63 +1896,6 @@ ''' # --- -# name: test_parallel_subgraph_mermaid[mermaid] - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - outer_1(outer_1) - inner_1_inner_1(inner_1) - inner_1_inner_2(inner_2
__interrupt = before) - inner_2_inner_1(inner_1) - inner_2_inner_2(inner_2) - outer_2(outer_2) - __end__([

__end__

]):::last - __start__ --> outer_1; - inner_1_inner_2 --> outer_2; - inner_2_inner_2 --> outer_2; - outer_1 --> inner_1_inner_1; - outer_1 --> inner_2_inner_1; - outer_2 --> __end__; - subgraph inner_1 - inner_1_inner_1 --> inner_1_inner_2; - end - subgraph inner_2 - inner_2_inner_1 --> inner_2_inner_2; - end - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- -# name: test_double_nested_subgraph_mermaid[mermaid] - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - parent_1(parent_1) - child_child_1_grandchild_1(grandchild_1) - child_child_1_grandchild_2(grandchild_2
__interrupt = before) - child_child_2(child_2) - parent_2(parent_2) - __end__([

__end__

]):::last - __start__ --> parent_1; - child_child_2 --> parent_2; - parent_1 --> child_child_1_grandchild_1; - parent_2 --> __end__; - subgraph child - child_child_1_grandchild_2 --> child_child_2; - subgraph child_1 - child_child_1_grandchild_1 --> child_child_1_grandchild_2; - end - end - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- # name: test_graph_single_runnable[ascii] ''' +----------------------+ @@ -1154,6 +1930,36 @@ ''' # --- +# name: test_parallel_subgraph_mermaid[mermaid] + ''' + %%{init: {'flowchart': {'curve': 'linear'}}}%% + graph TD; + __start__([

__start__

]):::first + outer_1(outer_1) + inner_1_inner_1(inner_1) + inner_1_inner_2(inner_2
__interrupt = before) + inner_2_inner_1(inner_1) + inner_2_inner_2(inner_2) + outer_2(outer_2) + __end__([

__end__

]):::last + __start__ --> outer_1; + inner_1_inner_2 --> outer_2; + inner_2_inner_2 --> outer_2; + outer_1 --> inner_1_inner_1; + outer_1 --> inner_2_inner_1; + outer_2 --> __end__; + subgraph inner_1 + inner_1_inner_1 --> inner_1_inner_2; + end + subgraph inner_2 + inner_2_inner_1 --> inner_2_inner_2; + end + classDef default fill:#f2f0ff,line-height:1.2 + classDef first fill-opacity:0 + classDef last fill:#bfb6fc + + ''' +# --- # name: test_trim dict({ 'edges': list([ diff --git a/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr b/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr index 985ab3f48ce16..85b53552716a2 100644 --- a/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr +++ b/libs/core/tests/unit_tests/runnables/__snapshots__/test_runnable.ambr @@ -480,9 +480,276 @@ # --- # name: test_combining_sequences.3 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002'), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='foo, bar', id='00000000-0000-4000-8000-000000000004')}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003'), Run(id=UUID('00000000-0000-4000-8000-000000000005'), name='RunnableLambda', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': ['foo', 'bar']}, outputs={'question': 'foobar'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:4'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000005'), Run(id=UUID('00000000-0000-4000-8000-000000000006'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'foobar'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nicer assistant.'), HumanMessage(content='foobar')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:5'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000006'), Run(id=UUID('00000000-0000-4000-8000-000000000007'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['baz, qux'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['baz, qux'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nicer assistant.\nHuman: foobar']}, outputs={'generations': [[{'text': 'baz, qux', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'baz, qux', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000006-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:6'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000007'), Run(id=UUID('00000000-0000-4000-8000-000000000008'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='baz, qux', id='00000000-0000-4000-8000-000000000009')}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:7'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000008')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='foo, bar', additional_kwargs={}, response_metadata={}, id='00000000-0000-4000-8000-000000000004')}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000005'), name='RunnableLambda', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': ['foo', 'bar']}, outputs={'question': 'foobar'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:4'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000005', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000006'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nicer assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'foobar'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nicer assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='foobar', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:5'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000006', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000007'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['baz, qux'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['baz, qux'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nicer assistant.\nHuman: foobar']}, outputs={'generations': [[{'text': 'baz, qux', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'baz, qux', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000006-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:6'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000007', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000008'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='baz, qux', additional_kwargs={}, response_metadata={}, id='00000000-0000-4000-8000-000000000009')}, outputs={'output': ['baz', 'qux']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:7'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000008', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), ]) # --- +# name: test_configurable_fields[schema2] + dict({ + '$defs': dict({ + 'Configurable': dict({ + 'properties': dict({ + 'llm_responses': dict({ + 'default': list([ + 'a', + ]), + 'description': 'A list of fake responses for this LLM', + 'items': dict({ + 'type': 'string', + }), + 'title': 'LLM Responses', + 'type': 'array', + }), + }), + 'title': 'Configurable', + 'type': 'object', + }), + }), + 'properties': dict({ + 'configurable': dict({ + '$ref': '#/$defs/Configurable', + }), + }), + 'title': 'RunnableConfigurableFieldsConfig', + 'type': 'object', + }) +# --- +# name: test_configurable_fields[schema3] + dict({ + '$defs': dict({ + 'Configurable': dict({ + 'properties': dict({ + 'prompt_template': dict({ + 'default': 'Hello, {name}!', + 'description': 'The prompt template for this chain', + 'title': 'Prompt Template', + 'type': 'string', + }), + }), + 'title': 'Configurable', + 'type': 'object', + }), + }), + 'properties': dict({ + 'configurable': dict({ + '$ref': '#/$defs/Configurable', + }), + }), + 'title': 'RunnableConfigurableFieldsConfig', + 'type': 'object', + }) +# --- +# name: test_configurable_fields[schema4] + dict({ + '$defs': dict({ + 'Configurable': dict({ + 'properties': dict({ + 'llm_responses': dict({ + 'default': list([ + 'a', + ]), + 'description': 'A list of fake responses for this LLM', + 'items': dict({ + 'type': 'string', + }), + 'title': 'LLM Responses', + 'type': 'array', + }), + 'prompt_template': dict({ + 'default': 'Hello, {name}!', + 'description': 'The prompt template for this chain', + 'title': 'Prompt Template', + 'type': 'string', + }), + }), + 'title': 'Configurable', + 'type': 'object', + }), + }), + 'properties': dict({ + 'configurable': dict({ + '$ref': '#/$defs/Configurable', + }), + }), + 'title': 'RunnableSequenceConfig', + 'type': 'object', + }) +# --- +# name: test_configurable_fields[schema5] + dict({ + '$defs': dict({ + 'Configurable': dict({ + 'properties': dict({ + 'llm_responses': dict({ + 'default': list([ + 'a', + ]), + 'description': 'A list of fake responses for this LLM', + 'items': dict({ + 'type': 'string', + }), + 'title': 'LLM Responses', + 'type': 'array', + }), + 'other_responses': dict({ + 'default': list([ + 'a', + ]), + 'items': dict({ + 'type': 'string', + }), + 'title': 'Other Responses', + 'type': 'array', + }), + 'prompt_template': dict({ + 'default': 'Hello, {name}!', + 'description': 'The prompt template for this chain', + 'title': 'Prompt Template', + 'type': 'string', + }), + }), + 'title': 'Configurable', + 'type': 'object', + }), + }), + 'properties': dict({ + 'configurable': dict({ + '$ref': '#/$defs/Configurable', + }), + }), + 'title': 'RunnableSequenceConfig', + 'type': 'object', + }) +# --- +# name: test_configurable_fields_example[schema7] + dict({ + '$defs': dict({ + 'Chat_Responses': dict({ + 'title': 'Chat Responses', + }), + 'Configurable': dict({ + 'properties': dict({ + 'chat_responses': dict({ + 'default': list([ + 'hello', + 'bye', + ]), + 'items': dict({ + '$ref': '#/$defs/Chat_Responses', + }), + 'title': 'Chat Responses', + 'type': 'array', + }), + 'llm': dict({ + '$ref': '#/$defs/LLM', + 'default': 'default', + }), + 'llm_responses': dict({ + 'default': list([ + 'a', + ]), + 'description': 'A list of fake responses for this LLM', + 'items': dict({ + 'type': 'string', + }), + 'title': 'LLM Responses', + 'type': 'array', + }), + 'prompt_template': dict({ + '$ref': '#/$defs/Prompt_Template', + 'default': 'hello', + 'description': 'The prompt template for this chain', + }), + }), + 'title': 'Configurable', + 'type': 'object', + }), + 'LLM': dict({ + 'title': 'LLM', + }), + 'Prompt_Template': dict({ + 'title': 'Prompt Template', + }), + }), + 'properties': dict({ + 'configurable': dict({ + '$ref': '#/$defs/Configurable', + }), + }), + 'title': 'RunnableSequenceConfig', + 'type': 'object', + }) +# --- +# name: test_configurable_fields_prefix_keys[schema6] + dict({ + 'definitions': dict({ + 'Chat_Responses': dict({ + 'title': 'Chat Responses', + }), + 'Configurable': dict({ + 'properties': dict({ + 'chat_sleep': dict({ + 'anyOf': list([ + dict({ + 'type': 'number', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Chat Sleep', + }), + 'llm': dict({ + '$ref': '#/definitions/LLM', + 'default': 'default', + }), + 'llm==chat/responses': dict({ + 'default': list([ + 'hello', + 'bye', + ]), + 'items': dict({ + '$ref': '#/definitions/Chat_Responses', + }), + 'title': 'Chat Responses', + 'type': 'array', + }), + 'llm==default/responses': dict({ + 'default': list([ + 'a', + ]), + 'description': 'A list of fake responses for this LLM', + 'items': dict({ + 'type': 'string', + }), + 'title': 'LLM Responses', + 'type': 'array', + }), + 'prompt_template': dict({ + '$ref': '#/definitions/Prompt_Template', + 'default': 'hello', + 'description': 'The prompt template for this chain', + }), + }), + 'title': 'Configurable', + 'type': 'object', + }), + 'LLM': dict({ + 'title': 'LLM', + }), + 'Prompt_Template': dict({ + 'title': 'Prompt Template', + }), + }), + 'properties': dict({ + 'configurable': dict({ + '$ref': '#/definitions/Configurable', + }), + }), + 'title': 'RunnableSequenceConfig', + 'type': 'object', + }) +# --- # name: test_each ''' { @@ -708,9 +975,40 @@ } ''' # --- +# name: test_lambda_schemas[schema8] + dict({ + '$defs': dict({ + 'OutputType': dict({ + 'properties': dict({ + 'bye': dict({ + 'title': 'Bye', + 'type': 'string', + }), + 'byebye': dict({ + 'title': 'Byebye', + 'type': 'integer', + }), + 'hello': dict({ + 'title': 'Hello', + 'type': 'string', + }), + }), + 'required': list([ + 'hello', + 'bye', + 'byebye', + ]), + 'title': 'OutputType', + 'type': 'object', + }), + }), + '$ref': '#/$defs/OutputType', + 'title': 'aget_values_typed_output', + }) +# --- # name: test_prompt_with_chat_model ''' - ChatPromptTemplate(input_variables=['question'], messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a nice assistant.')), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], template='{question}'))]) + ChatPromptTemplate(input_variables=['question'], input_types={}, partial_variables={}, messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], input_types={}, partial_variables={}, template='You are a nice assistant.'), additional_kwargs={}), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], input_types={}, partial_variables={}, template='{question}'), additional_kwargs={})]) | FakeListChatModel(responses=['foo']) ''' # --- @@ -821,7 +1119,7 @@ # --- # name: test_prompt_with_chat_model.2 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': AIMessage(content='foo', id='00000000-0000-4000-8000-000000000003')}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': AIMessage(content='foo', additional_kwargs={}, response_metadata={}, id='00000000-0000-4000-8000-000000000003')}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), ]) # --- # name: test_prompt_with_chat_model_and_parser @@ -945,12 +1243,12 @@ # --- # name: test_prompt_with_chat_model_and_parser.1 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002'), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='foo, bar', id='00000000-0000-4000-8000-000000000004')}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo, bar'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo, bar'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo, bar', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo, bar', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': AIMessage(content='foo, bar', additional_kwargs={}, response_metadata={}, id='00000000-0000-4000-8000-000000000004')}, outputs={'output': ['foo', 'bar']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), ]) # --- # name: test_prompt_with_chat_model_async ''' - ChatPromptTemplate(input_variables=['question'], messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a nice assistant.')), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], template='{question}'))]) + ChatPromptTemplate(input_variables=['question'], input_types={}, partial_variables={}, messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], input_types={}, partial_variables={}, template='You are a nice assistant.'), additional_kwargs={}), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], input_types={}, partial_variables={}, template='{question}'), additional_kwargs={})]) | FakeListChatModel(responses=['foo']) ''' # --- @@ -1061,7 +1359,7 @@ # --- # name: test_prompt_with_chat_model_async.2 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': AIMessage(content='foo', id='00000000-0000-4000-8000-000000000003')}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': AIMessage(content='foo', additional_kwargs={}, response_metadata={}, id='00000000-0000-4000-8000-000000000003')}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListChatModel', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo'], '_type': 'fake-list-chat-model', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelistchatmodel', 'ls_model_type': 'chat'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake_chat_models', 'FakeListChatModel'], 'repr': "FakeListChatModel(responses=['foo'])", 'name': 'FakeListChatModel'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'ChatGeneration', 'message': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'schema', 'messages', 'AIMessage'], 'kwargs': {'content': 'foo', 'type': 'ai', 'id': 'run-00000000-0000-4000-8000-000000000002-0', 'tool_calls': [], 'invalid_tool_calls': []}}}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), ]) # --- # name: test_prompt_with_llm @@ -1171,13 +1469,13 @@ # --- # name: test_prompt_with_llm.1 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'])", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'])", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), ]) # --- # name: test_prompt_with_llm.2 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': 'bar'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'], i=1)", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'bar', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), - Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000004'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your favorite color?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000003'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000003'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000003.20230101T000000000000Z00000000-0000-4000-8000-000000000004'), Run(id=UUID('00000000-0000-4000-8000-000000000005'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'], i=1)", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your favorite color?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000003'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000003'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000003.20230101T000000000000Z00000000-0000-4000-8000-000000000005')], trace_id=UUID('00000000-0000-4000-8000-000000000003'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000003'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': 'bar'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'])", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'bar', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), + RunTree(id=UUID('00000000-0000-4000-8000-000000000003'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000004'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your favorite color?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000003'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000003.20230101T000000000000Z00000000-0000-4000-8000-000000000004', trace_id=UUID('00000000-0000-4000-8000-000000000003')), RunTree(id=UUID('00000000-0000-4000-8000-000000000005'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'])", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your favorite color?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000003'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000003.20230101T000000000000Z00000000-0000-4000-8000-000000000005', trace_id=UUID('00000000-0000-4000-8000-000000000003'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000003', trace_id=UUID('00000000-0000-4000-8000-000000000003')), ]) # --- # name: test_prompt_with_llm_and_async_lambda @@ -1300,7 +1598,7 @@ # --- # name: test_prompt_with_llm_and_async_lambda.1 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'])", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002'), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='passthrough', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'foo'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['foo', 'bar'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakelist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeListLLM'], 'repr': "FakeListLLM(responses=['foo', 'bar'])", 'name': 'FakeListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'foo', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000003'), name='passthrough', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'foo'}, outputs={'output': 'foo'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), ]) # --- # name: test_prompt_with_llm_parser @@ -1424,13 +1722,13 @@ # --- # name: test_prompt_with_llm_parser.1 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeStreamingListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['bear, dog, cat', 'tomato, lettuce, onion'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakestreaminglist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeStreamingListLLM'], 'repr': "FakeStreamingListLLM(responses=['bear, dog, cat', 'tomato, lettuce, onion'])", 'name': 'FakeStreamingListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'bear, dog, cat', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002'), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'bear, dog, cat'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeStreamingListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['bear, dog, cat', 'tomato, lettuce, onion'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 1, 'metadata': {'ls_provider': 'fakestreaminglist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeStreamingListLLM'], 'repr': "FakeStreamingListLLM(responses=['bear, dog, cat', 'tomato, lettuce, onion'])", 'name': 'FakeStreamingListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'bear, dog, cat', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'bear, dog, cat'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), ]) # --- # name: test_prompt_with_llm_parser.2 list([ - Run(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['tomato', 'lettuce', 'onion']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your name?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001'), Run(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeStreamingListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['bear, dog, cat', 'tomato, lettuce, onion'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakestreaminglist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeStreamingListLLM'], 'repr': "FakeStreamingListLLM(responses=['bear, dog, cat', 'tomato, lettuce, onion'], i=1)", 'name': 'FakeStreamingListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'tomato, lettuce, onion', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002'), Run(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'tomato, lettuce, onion'}, outputs={'output': ['tomato', 'lettuce', 'onion']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003')], trace_id=UUID('00000000-0000-4000-8000-000000000000'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000'), - Run(id=UUID('00000000-0000-4000-8000-000000000004'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[Run(id=UUID('00000000-0000-4000-8000-000000000005'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.'), HumanMessage(content='What is your favorite color?')])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000004'), tags=['seq:step:1'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000004'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004.20230101T000000000000Z00000000-0000-4000-8000-000000000005'), Run(id=UUID('00000000-0000-4000-8000-000000000006'), name='FakeStreamingListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['bear, dog, cat', 'tomato, lettuce, onion'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakestreaminglist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeStreamingListLLM'], 'repr': "FakeStreamingListLLM(responses=['bear, dog, cat', 'tomato, lettuce, onion'], i=1)", 'name': 'FakeStreamingListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your favorite color?']}, outputs={'generations': [[{'text': 'bear, dog, cat', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000004'), tags=['seq:step:2'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000004'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004.20230101T000000000000Z00000000-0000-4000-8000-000000000006'), Run(id=UUID('00000000-0000-4000-8000-000000000007'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'bear, dog, cat'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000004'), tags=['seq:step:3'], child_runs=[], trace_id=UUID('00000000-0000-4000-8000-000000000004'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004.20230101T000000000000Z00000000-0000-4000-8000-000000000007')], trace_id=UUID('00000000-0000-4000-8000-000000000004'), dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004'), + RunTree(id=UUID('00000000-0000-4000-8000-000000000000'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ['tomato', 'lettuce', 'onion']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000001'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your name?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your name?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000001', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000002'), name='FakeStreamingListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['bear, dog, cat', 'tomato, lettuce, onion'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakestreaminglist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeStreamingListLLM'], 'repr': "FakeStreamingListLLM(responses=['bear, dog, cat', 'tomato, lettuce, onion'])", 'name': 'FakeStreamingListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your name?']}, outputs={'generations': [[{'text': 'tomato, lettuce, onion', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000002', trace_id=UUID('00000000-0000-4000-8000-000000000000')), RunTree(id=UUID('00000000-0000-4000-8000-000000000003'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'tomato, lettuce, onion'}, outputs={'output': ['tomato', 'lettuce', 'onion']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000000'), tags=['seq:step:3'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000.20230101T000000000000Z00000000-0000-4000-8000-000000000003', trace_id=UUID('00000000-0000-4000-8000-000000000000'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000000', trace_id=UUID('00000000-0000-4000-8000-000000000000')), + RunTree(id=UUID('00000000-0000-4000-8000-000000000004'), name='RunnableSequence', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='chain', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=None, tags=[], child_runs=[RunTree(id=UUID('00000000-0000-4000-8000-000000000005'), name='ChatPromptTemplate', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='prompt', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized={'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'ChatPromptTemplate'], 'kwargs': {'input_variables': ['question'], 'messages': [{'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'SystemMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': [], 'template': 'You are a nice assistant.', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}, {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'chat', 'HumanMessagePromptTemplate'], 'kwargs': {'prompt': {'lc': 1, 'type': 'constructor', 'id': ['langchain', 'prompts', 'prompt', 'PromptTemplate'], 'kwargs': {'input_variables': ['question'], 'template': '{question}', 'template_format': 'f-string'}, 'name': 'PromptTemplate'}}}]}, 'name': 'ChatPromptTemplate'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'question': 'What is your favorite color?'}, outputs={'output': ChatPromptValue(messages=[SystemMessage(content='You are a nice assistant.', additional_kwargs={}, response_metadata={}), HumanMessage(content='What is your favorite color?', additional_kwargs={}, response_metadata={})])}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000004'), tags=['seq:step:1'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004.20230101T000000000000Z00000000-0000-4000-8000-000000000005', trace_id=UUID('00000000-0000-4000-8000-000000000004')), RunTree(id=UUID('00000000-0000-4000-8000-000000000006'), name='FakeStreamingListLLM', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='llm', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={'invocation_params': {'responses': ['bear, dog, cat', 'tomato, lettuce, onion'], '_type': 'fake-list', 'stop': None}, 'options': {'stop': None}, 'batch_size': 2, 'metadata': {'ls_provider': 'fakestreaminglist', 'ls_model_type': 'llm'}}, error=None, serialized={'lc': 1, 'type': 'not_implemented', 'id': ['langchain_core', 'language_models', 'fake', 'FakeStreamingListLLM'], 'repr': "FakeStreamingListLLM(responses=['bear, dog, cat', 'tomato, lettuce, onion'])", 'name': 'FakeStreamingListLLM'}, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'prompts': ['System: You are a nice assistant.\nHuman: What is your favorite color?']}, outputs={'generations': [[{'text': 'bear, dog, cat', 'generation_info': None, 'type': 'Generation'}]], 'llm_output': None, 'run': None, 'type': 'LLMResult'}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000004'), tags=['seq:step:2'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004.20230101T000000000000Z00000000-0000-4000-8000-000000000006', trace_id=UUID('00000000-0000-4000-8000-000000000004')), RunTree(id=UUID('00000000-0000-4000-8000-000000000007'), name='CommaSeparatedListOutputParser', start_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), run_type='parser', end_time=FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc), extra={}, error=None, serialized=None, events=[{'name': 'start', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}, {'name': 'end', 'time': FakeDatetime(2023, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)}], inputs={'input': 'bear, dog, cat'}, outputs={'output': ['bear', 'dog', 'cat']}, reference_example_id=None, parent_run_id=UUID('00000000-0000-4000-8000-000000000004'), tags=['seq:step:3'], child_runs=[], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004.20230101T000000000000Z00000000-0000-4000-8000-000000000007', trace_id=UUID('00000000-0000-4000-8000-000000000004'))], session_name='default', session_id=None, dotted_order='20230101T000000000000Z00000000-0000-4000-8000-000000000004', trace_id=UUID('00000000-0000-4000-8000-000000000004')), ]) # --- # name: test_router_runnable @@ -1663,46 +1961,11 @@ } ''' # --- -# name: test_schemas +# name: test_schemas[chat_prompt_input_schema] dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - '$ref': '#/definitions/StringPromptValue', - }), - dict({ - '$ref': '#/definitions/ChatPromptValueConcrete', - }), - dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - }), - 'type': 'array', - }), - ]), - 'definitions': dict({ + '$defs': dict({ 'AIMessage': dict({ + 'additionalProperties': True, 'description': ''' Message from an AI. @@ -1744,21 +2007,37 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'invalid_tool_calls': dict({ 'default': list([ ]), 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', + '$ref': '#/$defs/InvalidToolCall', }), 'title': 'Invalid Tool Calls', 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -1768,21 +2047,26 @@ 'default': list([ ]), 'items': dict({ - '$ref': '#/definitions/ToolCall', + '$ref': '#/$defs/ToolCall', }), 'title': 'Tool Calls', 'type': 'array', }), 'type': dict({ + 'const': 'ai', 'default': 'ai', - 'enum': list([ - 'ai', - ]), 'title': 'Type', - 'type': 'string', }), 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ @@ -1791,8 +2075,9 @@ 'title': 'AIMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -1819,29 +2104,154 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessageChunk', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', 'type': 'string', }), 'type': dict({ + 'const': 'chat', 'default': 'chat', - 'enum': list([ - 'chat', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -1851,54 +2261,82 @@ 'title': 'ChatMessage', 'type': 'object', }), - 'ChatPromptValueConcrete': dict({ - 'description': ''' - Chat prompt value which explicitly lists out the message types it accepts. - For use in external schemas. - ''', + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', 'properties': dict({ - 'messages': dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), }), - ]), - }), - 'title': 'Messages', - 'type': 'array', + 'type': 'array', + }), + ]), + 'title': 'Content', }), - 'type': dict({ - 'default': 'ChatPromptValueConcrete', - 'enum': list([ - 'ChatPromptValueConcrete', + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'title': 'Type', + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', 'type': 'string', }), + 'type': dict({ + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', + 'title': 'Type', + }), }), 'required': list([ - 'messages', + 'content', + 'role', ]), - 'title': 'ChatPromptValueConcrete', + 'title': 'ChatMessageChunk', 'type': 'object', }), 'FunctionMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -1936,8 +2374,16 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', @@ -1948,12 +2394,9 @@ 'type': 'object', }), 'type': dict({ + 'const': 'function', 'default': 'function', - 'enum': list([ - 'function', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -1963,7 +2406,70 @@ 'title': 'FunctionMessage', 'type': 'object', }), + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), 'HumanMessage': dict({ + 'additionalProperties': True, 'description': ''' Message from a human. @@ -2020,24 +2526,37 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ + 'const': 'human', 'default': 'human', - 'enum': list([ - 'human', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -2046,30 +2565,170 @@ 'title': 'HumanMessage', 'type': 'object', }), - 'InvalidToolCall': dict({ + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessageChunk', + 'type': 'object', + }), + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', 'properties': dict({ 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Args', - 'type': 'string', }), 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Error', - 'type': 'string', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'const': 'invalid_tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -2081,29 +2740,38 @@ 'title': 'InvalidToolCall', 'type': 'object', }), - 'StringPromptValue': dict({ - 'description': 'String prompt value.', + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', 'properties': dict({ - 'text': dict({ - 'title': 'Text', - 'type': 'string', + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', }), - 'type': dict({ - 'default': 'StringPromptValue', - 'enum': list([ - 'StringPromptValue', - ]), - 'title': 'Type', - 'type': 'string', + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', }), }), - 'required': list([ - 'text', - ]), - 'title': 'StringPromptValue', + 'title': 'OutputTokenDetails', 'type': 'object', }), 'SystemMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for priming AI behavior. @@ -2155,24 +2823,37 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ + 'const': 'system', 'default': 'system', - 'enum': list([ - 'system', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -2181,85 +2862,14 @@ 'title': 'SystemMessage', 'type': 'object', }), - 'ToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'object', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'type': dict({ - 'enum': list([ - 'tool_call', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'name', - 'args', - 'id', - ]), - 'title': 'ToolCall', - 'type': 'object', - }), - 'ToolMessage': dict({ - 'description': ''' - Message for passing the result of executing a tool back to a model. - - ToolMessages contain the result of a tool invocation. Typically, the result - is encoded inside the `content` field. - - Example: A ToolMessage representing a result of 42 from a tool call with id - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') - - - Example: A ToolMessage where only part of the tool output is sent to the model - and the full output is passed in to artifact. - - .. versionadded:: 0.2.17 - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - tool_output = { - "stdout": "From the graph we can see that the correlation between x and y is ...", - "stderr": None, - "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, - } - - ToolMessage( - content=tool_output["stdout"], - artifact=tool_output, - tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', - ) - - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. - ''', + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', 'type': 'object', }), - 'artifact': dict({ - 'title': 'Artifact', - }), 'content': dict({ 'anyOf': list([ dict({ @@ -2282,127 +2892,224 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'status': dict({ - 'default': 'success', - 'enum': list([ - 'success', - 'error', + 'type': dict({ + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), + 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', + 'properties': dict({ + 'args': dict({ + 'title': 'Args', + 'type': 'object', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'title': 'Status', - 'type': 'string', + 'title': 'Id', }), - 'tool_call_id': dict({ - 'title': 'Tool Call Id', + 'name': dict({ + 'title': 'Name', 'type': 'string', }), 'type': dict({ - 'default': 'tool', - 'enum': list([ - 'tool', - ]), + 'const': 'tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', - 'tool_call_id', + 'name', + 'args', + 'id', ]), - 'title': 'ToolMessage', + 'title': 'ToolCall', 'type': 'object', }), - 'UsageMetadata': dict({ + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', 'properties': dict({ - 'input_tokens': dict({ - 'title': 'Input Tokens', - 'type': 'integer', + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', }), - 'output_tokens': dict({ - 'title': 'Output Tokens', - 'type': 'integer', + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', }), - 'total_tokens': dict({ - 'title': 'Total Tokens', - 'type': 'integer', + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', }), }), 'required': list([ - 'input_tokens', - 'output_tokens', - 'total_tokens', + 'name', + 'args', + 'id', + 'index', ]), - 'title': 'UsageMetadata', + 'title': 'ToolCallChunk', 'type': 'object', }), - }), - 'title': 'FakeListLLMInput', - }) -# --- -# name: test_schemas.1 - dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - '$ref': '#/definitions/StringPromptValue', - }), - dict({ - '$ref': '#/definitions/ChatPromptValueConcrete', - }), - dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - }), - 'type': 'array', - }), - ]), - 'definitions': dict({ - 'AIMessage': dict({ + 'ToolMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message from an AI. + Message for passing the result of executing a tool back to a model. - AIMessage is returned from a chat model as a response to a prompt. + ToolMessages contain the result of a tool invocation. Typically, the result + is encoded inside the `content` field. - This message represents the output of the model and consists of both - the raw output as returned by the model together standardized fields - (e.g., tool calls, usage metadata) added by the LangChain framework. + Example: A ToolMessage representing a result of 42 from a tool call with id + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') + + + Example: A ToolMessage where only part of the tool output is sent to the model + and the full output is passed in to artifact. + + .. versionadded:: 0.2.17 + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + tool_output = { + "stdout": "From the graph we can see that the correlation between x and y is ...", + "stderr": None, + "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, + } + + ToolMessage( + content=tool_output["stdout"], + artifact=tool_output, + tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', + ) + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. ''', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', 'type': 'object', }), + 'artifact': dict({ + 'title': 'Artifact', + }), 'content': dict({ 'anyOf': list([ dict({ @@ -2424,66 +3131,66 @@ ]), 'title': 'Content', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'invalid_tool_calls': dict({ - 'default': list([ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', - }), - 'title': 'Invalid Tool Calls', - 'type': 'array', + 'default': None, + 'title': 'Id', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'tool_calls': dict({ - 'default': list([ - ]), - 'items': dict({ - '$ref': '#/definitions/ToolCall', - }), - 'title': 'Tool Calls', - 'type': 'array', + 'status': dict({ + 'default': 'success', + 'title': 'Status', }), - 'type': dict({ - 'default': 'ai', - 'enum': list([ - 'ai', - ]), - 'title': 'Type', + 'tool_call_id': dict({ + 'title': 'Tool Call Id', 'type': 'string', }), - 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'type': dict({ + 'const': 'tool', + 'default': 'tool', + 'title': 'Type', }), }), 'required': list([ 'content', + 'tool_call_id', ]), - 'title': 'AIMessage', + 'title': 'ToolMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', 'type': 'object', }), + 'artifact': dict({ + 'title': 'Artifact', + }), 'content': dict({ 'anyOf': list([ dict({ @@ -2506,94 +3213,178 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', - ]), + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'role', + 'tool_call_id', ]), - 'title': 'ChatMessage', + 'title': 'ToolMessageChunk', 'type': 'object', }), - 'ChatPromptValueConcrete': dict({ + 'UsageMetadata': dict({ 'description': ''' - Chat prompt value which explicitly lists out the message types it accepts. - For use in external schemas. + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. ''', 'properties': dict({ - 'messages': dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - }), - 'title': 'Messages', - 'type': 'array', + 'input_token_details': dict({ + '$ref': '#/$defs/InputTokenDetails', }), - 'type': dict({ - 'default': 'ChatPromptValueConcrete', - 'enum': list([ - 'ChatPromptValueConcrete', - ]), - 'title': 'Type', - 'type': 'string', + 'input_tokens': dict({ + 'title': 'Input Tokens', + 'type': 'integer', + }), + 'output_token_details': dict({ + '$ref': '#/$defs/OutputTokenDetails', + }), + 'output_tokens': dict({ + 'title': 'Output Tokens', + 'type': 'integer', + }), + 'total_tokens': dict({ + 'title': 'Total Tokens', + 'type': 'integer', }), }), 'required': list([ - 'messages', + 'input_tokens', + 'output_tokens', + 'total_tokens', ]), - 'title': 'ChatPromptValueConcrete', + 'title': 'UsageMetadata', 'type': 'object', }), - 'FunctionMessage': dict({ + }), + 'properties': dict({ + 'history': dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/$defs/AIMessage', + }), + dict({ + '$ref': '#/$defs/HumanMessage', + }), + dict({ + '$ref': '#/$defs/ChatMessage', + }), + dict({ + '$ref': '#/$defs/SystemMessage', + }), + dict({ + '$ref': '#/$defs/FunctionMessage', + }), + dict({ + '$ref': '#/$defs/ToolMessage', + }), + dict({ + '$ref': '#/$defs/AIMessageChunk', + }), + dict({ + '$ref': '#/$defs/HumanMessageChunk', + }), + dict({ + '$ref': '#/$defs/ChatMessageChunk', + }), + dict({ + '$ref': '#/$defs/SystemMessageChunk', + }), + dict({ + '$ref': '#/$defs/FunctionMessageChunk', + }), + dict({ + '$ref': '#/$defs/ToolMessageChunk', + }), + ]), + }), + 'title': 'History', + 'type': 'array', + }), + }), + 'required': list([ + 'history', + ]), + 'title': 'PromptInput', + 'type': 'object', + }) +# --- +# name: test_schemas[chat_prompt_output_schema] + dict({ + '$defs': dict({ + 'AIMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message for passing the result of executing a tool back to a model. + Message from an AI. - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. + AIMessage is returned from a chat model as a response to a prompt. - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. + This message represents the output of the model and consists of both + the raw output as returned by the model together standardized fields + (e.g., tool calls, usage metadata) added by the LangChain framework. ''', 'properties': dict({ 'additional_kwargs': dict({ @@ -2621,59 +3412,83 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', + 'tool_calls': dict({ + 'default': list([ ]), + 'items': dict({ + '$ref': '#/$defs/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ai', + 'default': 'ai', 'title': 'Type', - 'type': 'string', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ 'content', - 'name', ]), - 'title': 'FunctionMessage', + 'title': 'AIMessage', 'type': 'object', }), - 'HumanMessage': dict({ - 'description': ''' - Message from a human. - - HumanMessages are messages that are passed in from a human to the model. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Instantiate a chat model and invoke it with the messages - model = ... - print(model.invoke(messages)) - ''', + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -2706,114 +3521,160 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', + 'tool_call_chunks': dict({ + 'default': list([ ]), - 'title': 'Type', - 'type': 'string', + 'items': dict({ + '$ref': '#/$defs/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/$defs/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/$defs/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ 'content', ]), - 'title': 'HumanMessage', + 'title': 'AIMessageChunk', 'type': 'object', }), - 'InvalidToolCall': dict({ + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), - 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), - 'title': 'Type', - 'type': 'string', + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', }), - }), - 'required': list([ - 'name', - 'args', - 'id', - 'error', - ]), - 'title': 'InvalidToolCall', - 'type': 'object', - }), - 'StringPromptValue': dict({ - 'description': 'String prompt value.', - 'properties': dict({ - 'text': dict({ - 'title': 'Text', + 'role': dict({ + 'title': 'Role', 'type': 'string', }), 'type': dict({ - 'default': 'StringPromptValue', - 'enum': list([ - 'StringPromptValue', - ]), + 'const': 'chat', + 'default': 'chat', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'text', + 'content', + 'role', ]), - 'title': 'StringPromptValue', + 'title': 'ChatMessage', 'type': 'object', }), - 'SystemMessage': dict({ - 'description': ''' - Message for priming AI behavior. - - The system message is usually passed in as the first of a sequence - of input messages. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) - ''', + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -2841,98 +3702,119 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', + 'role', ]), - 'title': 'SystemMessage', + 'title': 'ChatMessageChunk', 'type': 'object', }), - 'ToolCall': dict({ + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'object', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', + 'messages': dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/$defs/AIMessage', + }), + dict({ + '$ref': '#/$defs/HumanMessage', + }), + dict({ + '$ref': '#/$defs/ChatMessage', + }), + dict({ + '$ref': '#/$defs/SystemMessage', + }), + dict({ + '$ref': '#/$defs/FunctionMessage', + }), + dict({ + '$ref': '#/$defs/ToolMessage', + }), + dict({ + '$ref': '#/$defs/AIMessageChunk', + }), + dict({ + '$ref': '#/$defs/HumanMessageChunk', + }), + dict({ + '$ref': '#/$defs/ChatMessageChunk', + }), + dict({ + '$ref': '#/$defs/SystemMessageChunk', + }), + dict({ + '$ref': '#/$defs/FunctionMessageChunk', + }), + dict({ + '$ref': '#/$defs/ToolMessageChunk', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'ChatPromptValueConcrete', + 'default': 'ChatPromptValueConcrete', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'name', - 'args', - 'id', + 'messages', ]), - 'title': 'ToolCall', + 'title': 'ChatPromptValueConcrete', 'type': 'object', }), - 'ToolMessage': dict({ + 'FunctionMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. - ToolMessages contain the result of a tool invocation. Typically, the result - is encoded inside the `content` field. - - Example: A ToolMessage representing a result of 42 from a tool call with id - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') - - - Example: A ToolMessage where only part of the tool output is sent to the model - and the full output is passed in to artifact. - - .. versionadded:: 0.2.17 - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - tool_output = { - "stdout": "From the graph we can see that the correlation between x and y is ...", - "stderr": None, - "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, - } - - ToolMessage( - content=tool_output["stdout"], - artifact=tool_output, - tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', - ) + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. The tool_call_id field is used to associate the tool call request with the tool call response. This is useful in situations where a chat model is able @@ -2943,9 +3825,6 @@ 'title': 'Additional Kwargs', 'type': 'object', }), - 'artifact': dict({ - 'title': 'Artifact', - }), 'content': dict({ 'anyOf': list([ dict({ @@ -2968,8 +3847,16 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', @@ -2979,95 +3866,22 @@ 'title': 'Response Metadata', 'type': 'object', }), - 'status': dict({ - 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), - 'title': 'Status', - 'type': 'string', - }), - 'tool_call_id': dict({ - 'title': 'Tool Call Id', - 'type': 'string', - }), 'type': dict({ - 'default': 'tool', - 'enum': list([ - 'tool', - ]), + 'const': 'function', + 'default': 'function', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'tool_call_id', - ]), - 'title': 'ToolMessage', - 'type': 'object', - }), - 'UsageMetadata': dict({ - 'properties': dict({ - 'input_tokens': dict({ - 'title': 'Input Tokens', - 'type': 'integer', - }), - 'output_tokens': dict({ - 'title': 'Output Tokens', - 'type': 'integer', - }), - 'total_tokens': dict({ - 'title': 'Total Tokens', - 'type': 'integer', - }), - }), - 'required': list([ - 'input_tokens', - 'output_tokens', - 'total_tokens', + 'name', ]), - 'title': 'UsageMetadata', + 'title': 'FunctionMessage', 'type': 'object', }), - }), - 'title': 'FakeListChatModelInput', - }) -# --- -# name: test_schemas.2 - dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - 'definitions': dict({ - 'AIMessage': dict({ - 'description': ''' - Message from an AI. - - AIMessage is returned from a chat model as a response to a prompt. - - This message represents the output of the model and consists of both - the raw output as returned by the model together standardized fields - (e.g., tool calls, usage metadata) added by the LangChain framework. - ''', + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -3094,23 +3908,17 @@ ]), 'title': 'Content', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'invalid_tool_calls': dict({ - 'default': list([ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', - }), - 'title': 'Invalid Tool Calls', - 'type': 'array', + 'default': None, + 'title': 'Id', }), 'name': dict({ 'title': 'Name', @@ -3120,35 +3928,45 @@ 'title': 'Response Metadata', 'type': 'object', }), - 'tool_calls': dict({ - 'default': list([ - ]), - 'items': dict({ - '$ref': '#/definitions/ToolCall', - }), - 'title': 'Tool Calls', - 'type': 'array', - }), 'type': dict({ - 'default': 'ai', - 'enum': list([ - 'ai', - ]), + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', 'title': 'Type', - 'type': 'string', - }), - 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', }), }), 'required': list([ 'content', + 'name', ]), - 'title': 'AIMessage', + 'title': 'FunctionMessageChunk', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'HumanMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from a human. + + HumanMessages are messages that are passed in from a human to the model. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) + ''', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -3175,49 +3993,54 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', - 'type': 'string', - }), 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', - ]), + 'const': 'human', + 'default': 'human', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'role', ]), - 'title': 'ChatMessage', + 'title': 'HumanMessage', 'type': 'object', }), - 'FunctionMessage': dict({ - 'description': ''' - Message for passing the result of executing a tool back to a model. - - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. - - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. - ''', + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -3244,153 +4067,203 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'name', ]), - 'title': 'FunctionMessage', + 'title': 'HumanMessageChunk', 'type': 'object', }), - 'HumanMessage': dict({ + 'InputTokenDetails': dict({ 'description': ''' - Message from a human. + Breakdown of input token counts. - HumanMessages are messages that are passed in from a human to the model. + Does *not* need to sum to full input token count. Does *not* need to have all keys. Example: .. code-block:: python - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } - # Instantiate a chat model and invoke it with the messages - model = ... - print(model.invoke(messages)) + .. versionadded:: 0.3.9 ''', 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', - 'type': 'object', + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', }), - 'content': dict({ + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', + 'title': 'Args', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', }), 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', - ]), + 'const': 'invalid_tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', + 'name', + 'args', + 'id', + 'error', ]), - 'title': 'HumanMessage', + 'title': 'InvalidToolCall', 'type': 'object', }), - 'InvalidToolCall': dict({ + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', }), - 'name': dict({ - 'title': 'Name', + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'const': 'StringPromptValue', + 'default': 'StringPromptValue', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'name', - 'args', - 'id', - 'error', + 'text', ]), - 'title': 'InvalidToolCall', + 'title': 'StringPromptValue', 'type': 'object', }), 'SystemMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for priming AI behavior. @@ -3442,24 +4315,37 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ + 'const': 'system', 'default': 'system', - 'enum': list([ - 'system', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -3468,26 +4354,115 @@ 'title': 'SystemMessage', 'type': 'object', }), + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', 'properties': dict({ 'args': dict({ 'title': 'Args', 'type': 'object', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -3498,7 +4473,87 @@ 'title': 'ToolCall', 'type': 'object', }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'index', + ]), + 'title': 'ToolCallChunk', + 'type': 'object', + }), 'ToolMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -3569,12 +4624,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -3582,24 +4653,16 @@ }), 'status': dict({ 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), 'title': 'Status', - 'type': 'string', }), 'tool_call_id': dict({ 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ + 'const': 'tool', 'default': 'tool', - 'enum': list([ - 'tool', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -3609,12 +4672,127 @@ 'title': 'ToolMessage', 'type': 'object', }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/$defs/InputTokenDetails', + }), 'input_tokens': dict({ 'title': 'Input Tokens', 'type': 'integer', }), + 'output_token_details': dict({ + '$ref': '#/$defs/OutputTokenDetails', + }), 'output_tokens': dict({ 'title': 'Output Tokens', 'type': 'integer', @@ -3633,21 +4811,76 @@ 'type': 'object', }), }), - 'title': 'FakeListChatModelOutput', + 'anyOf': list([ + dict({ + '$ref': '#/$defs/StringPromptValue', + }), + dict({ + '$ref': '#/$defs/ChatPromptValueConcrete', + }), + ]), + 'title': 'ChatPromptTemplateOutput', }) # --- -# name: test_schemas.5 +# name: test_schemas[fake_chat_input_schema] dict({ 'anyOf': list([ + dict({ + 'type': 'string', + }), dict({ '$ref': '#/definitions/StringPromptValue', }), dict({ '$ref': '#/definitions/ChatPromptValueConcrete', }), + dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + dict({ + '$ref': '#/definitions/ToolMessage', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), + ]), + }), + 'type': 'array', + }), ]), 'definitions': dict({ 'AIMessage': dict({ + 'additionalProperties': True, 'description': ''' Message from an AI. @@ -3689,8 +4922,16 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'invalid_tool_calls': dict({ 'default': list([ @@ -3702,8 +4943,16 @@ 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -3719,15 +4968,20 @@ 'type': 'array', }), 'type': dict({ + 'const': 'ai', 'default': 'ai', - 'enum': list([ - 'ai', - ]), 'title': 'Type', - 'type': 'string', }), 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ @@ -3736,8 +4990,9 @@ 'title': 'AIMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -3764,78 +5019,292 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', - 'type': 'string', + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', }), - 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', + 'tool_calls': dict({ + 'default': list([ ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', 'title': 'Type', - 'type': 'string', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ 'content', - 'role', ]), - 'title': 'ChatMessage', + 'title': 'AIMessageChunk', 'type': 'object', }), - 'ChatPromptValueConcrete': dict({ - 'description': ''' - Chat prompt value which explicitly lists out the message types it accepts. - For use in external schemas. - ''', + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', 'properties': dict({ - 'messages': dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - }), - 'title': 'Messages', - 'type': 'array', + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', }), - 'type': dict({ - 'default': 'ChatPromptValueConcrete', - 'enum': list([ - 'ChatPromptValueConcrete', + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'chat', + 'default': 'chat', 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', 'type': 'string', }), + 'type': dict({ + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessageChunk', + 'type': 'object', + }), + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', + 'properties': dict({ + 'messages': dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + dict({ + '$ref': '#/definitions/ToolMessage', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ChatPromptValueConcrete', + 'default': 'ChatPromptValueConcrete', + 'title': 'Type', + }), }), 'required': list([ 'messages', @@ -3844,6 +5313,7 @@ 'type': 'object', }), 'FunctionMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -3881,203 +5351,5062 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'function', + 'default': 'function', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from a human. + + HumanMessages are messages that are passed in from a human to the model. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'human', + 'default': 'human', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessageChunk', + 'type': 'object', + }), + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'invalid_tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'error', + ]), + 'title': 'InvalidToolCall', + 'type': 'object', + }), + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', + }), + 'type': dict({ + 'const': 'StringPromptValue', + 'default': 'StringPromptValue', + 'title': 'Type', + }), + }), + 'required': list([ + 'text', + ]), + 'title': 'StringPromptValue', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for priming AI behavior. + + The system message is usually passed in as the first of a sequence + of input messages. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Define a chat model and invoke it with the messages + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'system', + 'default': 'system', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), + 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', + 'properties': dict({ + 'args': dict({ + 'title': 'Args', + 'type': 'object', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + ]), + 'title': 'ToolCall', + 'type': 'object', + }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'index', + ]), + 'title': 'ToolCallChunk', + 'type': 'object', + }), + 'ToolMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + ToolMessages contain the result of a tool invocation. Typically, the result + is encoded inside the `content` field. + + Example: A ToolMessage representing a result of 42 from a tool call with id + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') + + + Example: A ToolMessage where only part of the tool output is sent to the model + and the full output is passed in to artifact. + + .. versionadded:: 0.2.17 + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + tool_output = { + "stdout": "From the graph we can see that the correlation between x and y is ...", + "stderr": None, + "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, + } + + ToolMessage( + content=tool_output["stdout"], + artifact=tool_output, + tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', + ) + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool', + 'default': 'tool', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessage', + 'type': 'object', + }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), + 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', + 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/definitions/InputTokenDetails', + }), + 'input_tokens': dict({ + 'title': 'Input Tokens', + 'type': 'integer', + }), + 'output_token_details': dict({ + '$ref': '#/definitions/OutputTokenDetails', + }), + 'output_tokens': dict({ + 'title': 'Output Tokens', + 'type': 'integer', + }), + 'total_tokens': dict({ + 'title': 'Total Tokens', + 'type': 'integer', + }), + }), + 'required': list([ + 'input_tokens', + 'output_tokens', + 'total_tokens', + ]), + 'title': 'UsageMetadata', + 'type': 'object', + }), + }), + 'title': 'FakeListChatModelInput', + }) +# --- +# name: test_schemas[fake_chat_output_schema] + dict({ + 'definitions': dict({ + 'AIMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from an AI. + + AIMessage is returned from a chat model as a response to a prompt. + + This message represents the output of the model and consists of both + the raw output as returned by the model together standardized fields + (e.g., tool calls, usage metadata) added by the LangChain framework. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ai', + 'default': 'ai', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessageChunk', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'chat', + 'default': 'chat', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessageChunk', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'function', + 'default': 'function', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from a human. + + HumanMessages are messages that are passed in from a human to the model. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'human', + 'default': 'human', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessageChunk', + 'type': 'object', + }), + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'invalid_tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'error', + ]), + 'title': 'InvalidToolCall', + 'type': 'object', + }), + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for priming AI behavior. + + The system message is usually passed in as the first of a sequence + of input messages. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Define a chat model and invoke it with the messages + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'system', + 'default': 'system', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), + 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', + 'properties': dict({ + 'args': dict({ + 'title': 'Args', + 'type': 'object', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + ]), + 'title': 'ToolCall', + 'type': 'object', + }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'index', + ]), + 'title': 'ToolCallChunk', + 'type': 'object', + }), + 'ToolMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + ToolMessages contain the result of a tool invocation. Typically, the result + is encoded inside the `content` field. + + Example: A ToolMessage representing a result of 42 from a tool call with id + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') + + + Example: A ToolMessage where only part of the tool output is sent to the model + and the full output is passed in to artifact. + + .. versionadded:: 0.2.17 + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + tool_output = { + "stdout": "From the graph we can see that the correlation between x and y is ...", + "stderr": None, + "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, + } + + ToolMessage( + content=tool_output["stdout"], + artifact=tool_output, + tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', + ) + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool', + 'default': 'tool', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessage', + 'type': 'object', + }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), + 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', + 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/definitions/InputTokenDetails', + }), + 'input_tokens': dict({ + 'title': 'Input Tokens', + 'type': 'integer', + }), + 'output_token_details': dict({ + '$ref': '#/definitions/OutputTokenDetails', + }), + 'output_tokens': dict({ + 'title': 'Output Tokens', + 'type': 'integer', + }), + 'total_tokens': dict({ + 'title': 'Total Tokens', + 'type': 'integer', + }), + }), + 'required': list([ + 'input_tokens', + 'output_tokens', + 'total_tokens', + ]), + 'title': 'UsageMetadata', + 'type': 'object', + }), + }), + 'oneOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + dict({ + '$ref': '#/definitions/ToolMessage', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), + ]), + 'title': 'FakeListChatModelOutput', + }) +# --- +# name: test_schemas[fake_llm_input_schema] + dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + '$ref': '#/definitions/StringPromptValue', + }), + dict({ + '$ref': '#/definitions/ChatPromptValueConcrete', + }), + dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + dict({ + '$ref': '#/definitions/ToolMessage', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'definitions': dict({ + 'AIMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from an AI. + + AIMessage is returned from a chat model as a response to a prompt. + + This message represents the output of the model and consists of both + the raw output as returned by the model together standardized fields + (e.g., tool calls, usage metadata) added by the LangChain framework. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ai', + 'default': 'ai', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessageChunk', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'chat', + 'default': 'chat', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessageChunk', + 'type': 'object', + }), + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', + 'properties': dict({ + 'messages': dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + dict({ + '$ref': '#/definitions/ToolMessage', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ChatPromptValueConcrete', + 'default': 'ChatPromptValueConcrete', + 'title': 'Type', + }), + }), + 'required': list([ + 'messages', + ]), + 'title': 'ChatPromptValueConcrete', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'function', + 'default': 'function', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from a human. + + HumanMessages are messages that are passed in from a human to the model. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'human', + 'default': 'human', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessageChunk', + 'type': 'object', + }), + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'invalid_tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'error', + ]), + 'title': 'InvalidToolCall', + 'type': 'object', + }), + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', + }), + 'type': dict({ + 'const': 'StringPromptValue', + 'default': 'StringPromptValue', + 'title': 'Type', + }), + }), + 'required': list([ + 'text', + ]), + 'title': 'StringPromptValue', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for priming AI behavior. + + The system message is usually passed in as the first of a sequence + of input messages. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Define a chat model and invoke it with the messages + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'system', + 'default': 'system', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessageChunk', + 'type': 'object', + }), + 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', + 'properties': dict({ + 'args': dict({ + 'title': 'Args', + 'type': 'object', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + ]), + 'title': 'ToolCall', + 'type': 'object', + }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'index', + ]), + 'title': 'ToolCallChunk', + 'type': 'object', + }), + 'ToolMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + ToolMessages contain the result of a tool invocation. Typically, the result + is encoded inside the `content` field. + + Example: A ToolMessage representing a result of 42 from a tool call with id + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') + + + Example: A ToolMessage where only part of the tool output is sent to the model + and the full output is passed in to artifact. + + .. versionadded:: 0.2.17 + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + tool_output = { + "stdout": "From the graph we can see that the correlation between x and y is ...", + "stderr": None, + "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, + } + + ToolMessage( + content=tool_output["stdout"], + artifact=tool_output, + tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', + ) + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'tool', + 'default': 'tool', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessage', + 'type': 'object', + }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), + 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', + 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/definitions/InputTokenDetails', + }), + 'input_tokens': dict({ + 'title': 'Input Tokens', + 'type': 'integer', + }), + 'output_token_details': dict({ + '$ref': '#/definitions/OutputTokenDetails', + }), + 'output_tokens': dict({ + 'title': 'Output Tokens', + 'type': 'integer', + }), + 'total_tokens': dict({ + 'title': 'Total Tokens', + 'type': 'integer', + }), + }), + 'required': list([ + 'input_tokens', + 'output_tokens', + 'total_tokens', + ]), + 'title': 'UsageMetadata', + 'type': 'object', + }), + }), + 'title': 'FakeListLLMInput', + }) +# --- +# name: test_schemas[list_parser_input_schema] + dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'oneOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + dict({ + '$ref': '#/definitions/ToolMessage', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), + ]), + }), + ]), + 'definitions': dict({ + 'AIMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from an AI. + + AIMessage is returned from a chat model as a response to a prompt. + + This message represents the output of the model and consists of both + the raw output as returned by the model together standardized fields + (e.g., tool calls, usage metadata) added by the LangChain framework. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ai', + 'default': 'ai', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessageChunk', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'chat', + 'default': 'chat', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessage', + 'type': 'object', + }), + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'role', + ]), + 'title': 'ChatMessageChunk', + 'type': 'object', + }), + 'FunctionMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. + + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'function', + 'default': 'function', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessage', + 'type': 'object', + }), + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'title': 'Name', + 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'name', + ]), + 'title': 'FunctionMessageChunk', + 'type': 'object', + }), + 'HumanMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message from a human. + + HumanMessages are messages that are passed in from a human to the model. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'human', + 'default': 'human', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessage', + 'type': 'object', + }), + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'HumanMessageChunk', + 'type': 'object', + }), + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'error': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Error', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'invalid_tool_call', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'error', + ]), + 'title': 'InvalidToolCall', + 'type': 'object', + }), + 'OutputTokenDetails': dict({ + 'description': ''' + Breakdown of output token counts. + + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for priming AI behavior. + + The system message is usually passed in as the first of a sequence + of input messages. + + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Define a chat model and invoke it with the messages + print(model.invoke(messages)) + ''', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'type': dict({ + 'const': 'system', + 'default': 'system', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'SystemMessage', + 'type': 'object', + }), + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'name', ]), - 'title': 'FunctionMessage', + 'title': 'SystemMessageChunk', 'type': 'object', }), - 'HumanMessage': dict({ + 'ToolCall': dict({ 'description': ''' - Message from a human. - - HumanMessages are messages that are passed in from a human to the model. + Represents a request to call a tool. Example: .. code-block:: python - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } - # Instantiate a chat model and invoke it with the messages - model = ... - print(model.invoke(messages)) + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". ''', 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', + 'args': dict({ + 'title': 'Args', 'type': 'object', }), - 'content': dict({ + 'id': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', - }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), - 'id': dict({ 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', 'type': 'string', }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', - ]), + 'const': 'tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', + 'name', + 'args', + 'id', ]), - 'title': 'HumanMessage', + 'title': 'ToolCall', 'type': 'object', }), - 'InvalidToolCall': dict({ + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', 'properties': dict({ 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'const': 'tool_call_chunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'name', 'args', 'id', - 'error', - ]), - 'title': 'InvalidToolCall', - 'type': 'object', - }), - 'StringPromptValue': dict({ - 'description': 'String prompt value.', - 'properties': dict({ - 'text': dict({ - 'title': 'Text', - 'type': 'string', - }), - 'type': dict({ - 'default': 'StringPromptValue', - 'enum': list([ - 'StringPromptValue', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'text', + 'index', ]), - 'title': 'StringPromptValue', + 'title': 'ToolCallChunk', 'type': 'object', }), - 'SystemMessage': dict({ + 'ToolMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message for priming AI behavior. + Message for passing the result of executing a tool back to a model. - The system message is usually passed in as the first of a sequence - of input messages. + ToolMessages contain the result of a tool invocation. Typically, the result + is encoded inside the `content` field. - Example: + Example: A ToolMessage representing a result of 42 from a tool call with id .. code-block:: python - from langchain_core.messages import HumanMessage, SystemMessage + from langchain_core.messages import ToolMessage - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] + ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) + + Example: A ToolMessage where only part of the tool output is sent to the model + and the full output is passed in to artifact. + + .. versionadded:: 0.2.17 + + .. code-block:: python + + from langchain_core.messages import ToolMessage + + tool_output = { + "stdout": "From the graph we can see that the correlation between x and y is ...", + "stderr": None, + "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, + } + + ToolMessage( + content=tool_output["stdout"], + artifact=tool_output, + tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', + ) + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. ''', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', 'type': 'object', }), + 'artifact': dict({ + 'title': 'Artifact', + }), 'content': dict({ 'anyOf': list([ dict({ @@ -4100,103 +10429,57 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'content', - ]), - 'title': 'SystemMessage', - 'type': 'object', - }), - 'ToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'object', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', + 'status': dict({ + 'default': 'success', + 'title': 'Status', }), - 'name': dict({ - 'title': 'Name', + 'tool_call_id': dict({ + 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'tool', + 'default': 'tool', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'name', - 'args', - 'id', + 'content', + 'tool_call_id', ]), - 'title': 'ToolCall', + 'title': 'ToolMessage', 'type': 'object', }), - 'ToolMessage': dict({ - 'description': ''' - Message for passing the result of executing a tool back to a model. - - ToolMessages contain the result of a tool invocation. Typically, the result - is encoded inside the `content` field. - - Example: A ToolMessage representing a result of 42 from a tool call with id - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') - - - Example: A ToolMessage where only part of the tool output is sent to the model - and the full output is passed in to artifact. - - .. versionadded:: 0.2.17 - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - tool_output = { - "stdout": "From the graph we can see that the correlation between x and y is ...", - "stderr": None, - "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, - } - - ToolMessage( - content=tool_output["stdout"], - artifact=tool_output, - tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', - ) - - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. - ''', + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -4227,12 +10510,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -4240,39 +10539,65 @@ }), 'status': dict({ 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), 'title': 'Status', - 'type': 'string', }), 'tool_call_id': dict({ 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ - 'default': 'tool', - 'enum': list([ - 'tool', - ]), + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', 'tool_call_id', ]), - 'title': 'ToolMessage', + 'title': 'ToolMessageChunk', 'type': 'object', }), 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/definitions/InputTokenDetails', + }), 'input_tokens': dict({ 'title': 'Input Tokens', 'type': 'integer', }), + 'output_token_details': dict({ + '$ref': '#/definitions/OutputTokenDetails', + }), 'output_tokens': dict({ 'title': 'Output Tokens', 'type': 'integer', @@ -4291,13 +10616,14 @@ 'type': 'object', }), }), - 'title': 'PromptTemplateOutput', + 'title': 'CommaSeparatedListOutputParserInput', }) # --- -# name: test_schemas.6 +# name: test_schemas[prompt_mapper_output_schema] dict({ 'definitions': dict({ 'AIMessage': dict({ + 'additionalProperties': True, 'description': ''' Message from an AI. @@ -4339,8 +10665,16 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'invalid_tool_calls': dict({ 'default': list([ @@ -4352,8 +10686,16 @@ 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -4369,25 +10711,217 @@ 'type': 'array', }), 'type': dict({ + 'const': 'ai', 'default': 'ai', - 'enum': list([ - 'ai', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessageChunk', + 'type': 'object', + }), + 'ChatMessage': dict({ + 'additionalProperties': True, + 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'title': 'Type', + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'role': dict({ + 'title': 'Role', 'type': 'string', }), - 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'type': dict({ + 'const': 'chat', + 'default': 'chat', + 'title': 'Type', }), }), 'required': list([ 'content', + 'role', ]), - 'title': 'AIMessage', + 'title': 'ChatMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -4415,12 +10949,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -4431,19 +10981,16 @@ 'type': 'string', }), 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', - ]), + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', 'role', ]), - 'title': 'ChatMessage', + 'title': 'ChatMessageChunk', 'type': 'object', }), 'ChatPromptValueConcrete': dict({ @@ -4454,7 +11001,7 @@ 'properties': dict({ 'messages': dict({ 'items': dict({ - 'anyOf': list([ + 'oneOf': list([ dict({ '$ref': '#/definitions/AIMessage', }), @@ -4473,18 +11020,33 @@ dict({ '$ref': '#/definitions/ToolMessage', }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), ]), }), 'title': 'Messages', 'type': 'array', }), 'type': dict({ + 'const': 'ChatPromptValueConcrete', 'default': 'ChatPromptValueConcrete', - 'enum': list([ - 'ChatPromptValueConcrete', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -4494,6 +11056,7 @@ 'type': 'object', }), 'FunctionMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -4531,92 +11094,16 @@ 'title': 'Content', }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), - 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'content', - 'name', - ]), - 'title': 'FunctionMessage', - 'type': 'object', - }), - 'HumanMessage': dict({ - 'description': ''' - Message from a human. - - HumanMessages are messages that are passed in from a human to the model. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Instantiate a chat model and invoke it with the messages - model = ... - print(model.invoke(messages)) - ''', - 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', - 'type': 'object', - }), - 'content': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', - }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), - 'id': dict({ + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', @@ -4627,113 +11114,21 @@ 'type': 'object', }), 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', - ]), + 'const': 'function', + 'default': 'function', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - ]), - 'title': 'HumanMessage', - 'type': 'object', - }), - 'InvalidToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ 'name', - 'args', - 'id', - 'error', - ]), - 'title': 'InvalidToolCall', - 'type': 'object', - }), - 'PromptTemplateOutput': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/StringPromptValue', - }), - dict({ - '$ref': '#/definitions/ChatPromptValueConcrete', - }), - ]), - 'title': 'PromptTemplateOutput', - }), - 'StringPromptValue': dict({ - 'description': 'String prompt value.', - 'properties': dict({ - 'text': dict({ - 'title': 'Text', - 'type': 'string', - }), - 'type': dict({ - 'default': 'StringPromptValue', - 'enum': list([ - 'StringPromptValue', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'text', ]), - 'title': 'StringPromptValue', + 'title': 'FunctionMessage', 'type': 'object', }), - 'SystemMessage': dict({ - 'description': ''' - Message for priming AI behavior. - - The system message is usually passed in as the first of a sequence - of input messages. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) - ''', + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -4756,116 +11151,74 @@ ]), }), 'type': 'array', - }), - ]), - 'title': 'Content', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), - 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'content', - ]), - 'title': 'SystemMessage', - 'type': 'object', - }), - 'ToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'object', + }), + ]), + 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', 'type': 'string', }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ + 'content', 'name', - 'args', - 'id', ]), - 'title': 'ToolCall', + 'title': 'FunctionMessageChunk', 'type': 'object', }), - 'ToolMessage': dict({ + 'HumanMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message for passing the result of executing a tool back to a model. - - ToolMessages contain the result of a tool invocation. Typically, the result - is encoded inside the `content` field. - - Example: A ToolMessage representing a result of 42 from a tool call with id - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') - + Message from a human. - Example: A ToolMessage where only part of the tool output is sent to the model - and the full output is passed in to artifact. + HumanMessages are messages that are passed in from a human to the model. - .. versionadded:: 0.2.17 + Example: .. code-block:: python - from langchain_core.messages import ToolMessage - - tool_output = { - "stdout": "From the graph we can see that the correlation between x and y is ...", - "stderr": None, - "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, - } + from langchain_core.messages import HumanMessage, SystemMessage - ToolMessage( - content=tool_output["stdout"], - artifact=tool_output, - tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', - ) + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) ''', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', 'type': 'object', }), - 'artifact': dict({ - 'title': 'Artifact', - }), 'content': dict({ 'anyOf': list([ dict({ @@ -4887,114 +11240,54 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'status': dict({ - 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), - 'title': 'Status', - 'type': 'string', - }), - 'tool_call_id': dict({ - 'title': 'Tool Call Id', - 'type': 'string', - }), 'type': dict({ - 'default': 'tool', - 'enum': list([ - 'tool', - ]), + 'const': 'human', + 'default': 'human', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'tool_call_id', - ]), - 'title': 'ToolMessage', - 'type': 'object', - }), - 'UsageMetadata': dict({ - 'properties': dict({ - 'input_tokens': dict({ - 'title': 'Input Tokens', - 'type': 'integer', - }), - 'output_tokens': dict({ - 'title': 'Output Tokens', - 'type': 'integer', - }), - 'total_tokens': dict({ - 'title': 'Total Tokens', - 'type': 'integer', - }), - }), - 'required': list([ - 'input_tokens', - 'output_tokens', - 'total_tokens', ]), - 'title': 'UsageMetadata', + 'title': 'HumanMessage', 'type': 'object', }), - }), - 'items': dict({ - '$ref': '#/definitions/PromptTemplateOutput', - }), - 'title': 'RunnableEachOutput', - 'type': 'array', - }) -# --- -# name: test_schemas.7 - dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - 'definitions': dict({ - 'AIMessage': dict({ - 'description': ''' - Message from an AI. - - AIMessage is returned from a chat model as a response to a prompt. - - This message represents the output of the model and consists of both - the raw output as returned by the model together standardized fields - (e.g., tool calls, usage metadata) added by the LangChain framework. - ''', + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -5027,183 +11320,213 @@ 'type': 'boolean', }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'invalid_tool_calls': dict({ - 'default': list([ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', - }), - 'title': 'Invalid Tool Calls', - 'type': 'array', + 'default': None, + 'title': 'Id', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'tool_calls': dict({ - 'default': list([ - ]), - 'items': dict({ - '$ref': '#/definitions/ToolCall', - }), - 'title': 'Tool Calls', - 'type': 'array', - }), 'type': dict({ - 'default': 'ai', - 'enum': list([ - 'ai', - ]), + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', 'title': 'Type', - 'type': 'string', - }), - 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', }), }), 'required': list([ 'content', ]), - 'title': 'AIMessage', + 'title': 'HumanMessageChunk', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'InputTokenDetails': dict({ + 'description': ''' + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 + ''', 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', - 'type': 'object', + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', }), - 'content': dict({ + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', + }), + }), + 'title': 'InputTokenDetails', + 'type': 'object', + }), + 'InvalidToolCall': dict({ + 'description': ''' + Allowance for errors made by LLM. + + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'error': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', + 'title': 'Error', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), - 'role': dict({ - 'title': 'Role', - 'type': 'string', }), 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', - ]), + 'const': 'invalid_tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', - 'role', + 'name', + 'args', + 'id', + 'error', ]), - 'title': 'ChatMessage', + 'title': 'InvalidToolCall', 'type': 'object', }), - 'FunctionMessage': dict({ + 'OutputTokenDetails': dict({ 'description': ''' - Message for passing the result of executing a tool back to a model. + Breakdown of output token counts. - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. + Does *not* need to sum to full output token count. Does *not* need to have all keys. - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 ''', 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', - 'type': 'object', + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', }), - 'content': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', - }), - ]), - 'title': 'Content', + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'PromptTemplateOutput': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/StringPromptValue', }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', + dict({ + '$ref': '#/definitions/ChatPromptValueConcrete', }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', + ]), + 'title': 'PromptTemplateOutput', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', }), 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), + 'const': 'StringPromptValue', + 'default': 'StringPromptValue', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', - 'name', + 'text', ]), - 'title': 'FunctionMessage', + 'title': 'StringPromptValue', 'type': 'object', }), - 'HumanMessage': dict({ + 'SystemMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message from a human. + Message for priming AI behavior. - HumanMessages are messages that are passed in from a human to the model. + The system message is usually passed in as the first of a sequence + of input messages. Example: @@ -5220,8 +11543,7 @@ ) ] - # Instantiate a chat model and invoke it with the messages - model = ... + # Define a chat model and invoke it with the messages print(model.invoke(messages)) ''', 'properties': dict({ @@ -5250,182 +11572,246 @@ ]), 'title': 'Content', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', - ]), + 'const': 'system', + 'default': 'system', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', ]), - 'title': 'HumanMessage', + 'title': 'SystemMessage', 'type': 'object', }), - 'InvalidToolCall': dict({ + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', }), 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'name', - 'args', - 'id', - 'error', + 'content', ]), - 'title': 'InvalidToolCall', + 'title': 'SystemMessageChunk', 'type': 'object', }), - 'SystemMessage': dict({ + 'ToolCall': dict({ 'description': ''' - Message for priming AI behavior. - - The system message is usually passed in as the first of a sequence - of input messages. + Represents a request to call a tool. Example: .. code-block:: python - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". ''', 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', + 'args': dict({ + 'title': 'Args', 'type': 'object', }), - 'content': dict({ + 'id': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', - }), - 'id': dict({ 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', 'type': 'string', }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), + 'const': 'tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', + 'name', + 'args', + 'id', ]), - 'title': 'SystemMessage', + 'title': 'ToolCall', 'type': 'object', }), - 'ToolCall': dict({ + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', 'properties': dict({ 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Args', - 'type': 'object', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'tool_call_chunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'name', 'args', 'id', + 'index', ]), - 'title': 'ToolCall', + 'title': 'ToolCallChunk', 'type': 'object', }), 'ToolMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -5496,12 +11882,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -5509,24 +11911,16 @@ }), 'status': dict({ 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), 'title': 'Status', - 'type': 'string', }), 'tool_call_id': dict({ 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ + 'const': 'tool', 'default': 'tool', - 'enum': list([ - 'tool', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -5536,12 +11930,127 @@ 'title': 'ToolMessage', 'type': 'object', }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/definitions/InputTokenDetails', + }), 'input_tokens': dict({ 'title': 'Input Tokens', 'type': 'integer', }), + 'output_token_details': dict({ + '$ref': '#/definitions/OutputTokenDetails', + }), 'output_tokens': dict({ 'title': 'Output Tokens', 'type': 'integer', @@ -5560,13 +12069,26 @@ 'type': 'object', }), }), - 'title': 'CommaSeparatedListOutputParserInput', + 'items': dict({ + '$ref': '#/definitions/PromptTemplateOutput', + }), + 'title': 'RunnableEachOutput', + 'type': 'array', }) # --- -# name: test_schemas[chat_prompt_input_schema] +# name: test_schemas[prompt_output_schema] dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/StringPromptValue', + }), + dict({ + '$ref': '#/definitions/ChatPromptValueConcrete', + }), + ]), 'definitions': dict({ 'AIMessage': dict({ + 'additionalProperties': True, 'description': ''' Message from an AI. @@ -5608,8 +12130,119 @@ 'type': 'boolean', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'invalid_tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/InvalidToolCall', + }), + 'title': 'Invalid Tool Calls', + 'type': 'array', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'tool_calls': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCall', + }), + 'title': 'Tool Calls', + 'type': 'array', + }), + 'type': dict({ + 'const': 'ai', + 'default': 'ai', + 'title': 'Type', + }), + 'usage_metadata': dict({ + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + }), + }), + 'required': list([ + 'content', + ]), + 'title': 'AIMessage', + 'type': 'object', + }), + 'AIMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Message chunk from an AI.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'invalid_tool_calls': dict({ 'default': list([ @@ -5621,13 +12254,30 @@ 'type': 'array', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), + 'tool_call_chunks': dict({ + 'default': list([ + ]), + 'items': dict({ + '$ref': '#/definitions/ToolCallChunk', + }), + 'title': 'Tool Call Chunks', + 'type': 'array', + }), 'tool_calls': dict({ 'default': list([ ]), @@ -5638,24 +12288,30 @@ 'type': 'array', }), 'type': dict({ - 'default': 'ai', - 'enum': list([ - 'ai', - ]), + 'const': 'AIMessageChunk', + 'default': 'AIMessageChunk', 'title': 'Type', - 'type': 'string', }), 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'anyOf': list([ + dict({ + '$ref': '#/definitions/UsageMetadata', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, }), }), 'required': list([ 'content', ]), - 'title': 'AIMessage', + 'title': 'AIMessageChunk', 'type': 'object', }), 'ChatMessage': dict({ + 'additionalProperties': True, 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', 'properties': dict({ 'additional_kwargs': dict({ @@ -5684,12 +12340,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -5700,12 +12372,9 @@ 'type': 'string', }), 'type': dict({ + 'const': 'chat', 'default': 'chat', - 'enum': list([ - 'chat', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -5715,17 +12384,9 @@ 'title': 'ChatMessage', 'type': 'object', }), - 'FunctionMessage': dict({ - 'description': ''' - Message for passing the result of executing a tool back to a model. - - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. - - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. - ''', + 'ChatMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Chat Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -5753,175 +12414,123 @@ 'title': 'Content', }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), - 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'content', - 'name', - ]), - 'title': 'FunctionMessage', - 'type': 'object', - }), - 'HumanMessage': dict({ - 'description': ''' - Message from a human. - - HumanMessages are messages that are passed in from a human to the model. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Instantiate a chat model and invoke it with the messages - model = ... - print(model.invoke(messages)) - ''', - 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', - 'type': 'object', - }), - 'content': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', - }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), - 'id': dict({ + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), + 'role': dict({ + 'title': 'Role', + 'type': 'string', + }), 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', - ]), + 'const': 'ChatMessageChunk', + 'default': 'ChatMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', + 'role', ]), - 'title': 'HumanMessage', + 'title': 'ChatMessageChunk', 'type': 'object', }), - 'InvalidToolCall': dict({ + 'ChatPromptValueConcrete': dict({ + 'description': ''' + Chat prompt value which explicitly lists out the message types it accepts. + For use in external schemas. + ''', 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', + 'messages': dict({ + 'items': dict({ + 'oneOf': list([ + dict({ + '$ref': '#/definitions/AIMessage', + }), + dict({ + '$ref': '#/definitions/HumanMessage', + }), + dict({ + '$ref': '#/definitions/ChatMessage', + }), + dict({ + '$ref': '#/definitions/SystemMessage', + }), + dict({ + '$ref': '#/definitions/FunctionMessage', + }), + dict({ + '$ref': '#/definitions/ToolMessage', + }), + dict({ + '$ref': '#/definitions/AIMessageChunk', + }), + dict({ + '$ref': '#/definitions/HumanMessageChunk', + }), + dict({ + '$ref': '#/definitions/ChatMessageChunk', + }), + dict({ + '$ref': '#/definitions/SystemMessageChunk', + }), + dict({ + '$ref': '#/definitions/FunctionMessageChunk', + }), + dict({ + '$ref': '#/definitions/ToolMessageChunk', + }), + ]), + }), + 'title': 'Messages', + 'type': 'array', }), 'type': dict({ - 'enum': list([ - 'invalid_tool_call', - ]), + 'const': 'ChatPromptValueConcrete', + 'default': 'ChatPromptValueConcrete', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'name', - 'args', - 'id', - 'error', + 'messages', ]), - 'title': 'InvalidToolCall', + 'title': 'ChatPromptValueConcrete', 'type': 'object', }), - 'SystemMessage': dict({ - 'description': ''' - Message for priming AI behavior. - - The system message is usually passed in as the first of a sequence - of input messages. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] + 'FunctionMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for passing the result of executing a tool back to a model. - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) + FunctionMessage are an older version of the ToolMessage schema, and + do not contain the tool_call_id field. + + The tool_call_id field is used to associate the tool call request with the + tool call response. This is useful in situations where a chat model is able + to request multiple tool calls in parallel. ''', 'properties': dict({ 'additional_kwargs': dict({ @@ -5950,8 +12559,16 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', @@ -5962,99 +12579,26 @@ 'type': 'object', }), 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), + 'const': 'function', + 'default': 'function', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - ]), - 'title': 'SystemMessage', - 'type': 'object', - }), - 'ToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'object', - }), - 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'type': dict({ - 'enum': list([ - 'tool_call', - ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ 'name', - 'args', - 'id', ]), - 'title': 'ToolCall', + 'title': 'FunctionMessage', 'type': 'object', }), - 'ToolMessage': dict({ - 'description': ''' - Message for passing the result of executing a tool back to a model. - - ToolMessages contain the result of a tool invocation. Typically, the result - is encoded inside the `content` field. - - Example: A ToolMessage representing a result of 42 from a tool call with id - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - ToolMessage(content='42', tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL') - - - Example: A ToolMessage where only part of the tool output is sent to the model - and the full output is passed in to artifact. - - .. versionadded:: 0.2.17 - - .. code-block:: python - - from langchain_core.messages import ToolMessage - - tool_output = { - "stdout": "From the graph we can see that the correlation between x and y is ...", - "stderr": None, - "artifacts": {"type": "image", "base64_data": "/9j/4gIcSU..."}, - } - - ToolMessage( - content=tool_output["stdout"], - artifact=tool_output, - tool_call_id='call_Jja7J89XsjrOLA5r!MEOW!SL', - ) - - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. - ''', + 'FunctionMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Function Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', 'type': 'object', }), - 'artifact': dict({ - 'title': 'Artifact', - }), 'content': dict({ 'anyOf': list([ dict({ @@ -6077,8 +12621,16 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', @@ -6088,114 +12640,44 @@ 'title': 'Response Metadata', 'type': 'object', }), - 'status': dict({ - 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), - 'title': 'Status', - 'type': 'string', - }), - 'tool_call_id': dict({ - 'title': 'Tool Call Id', - 'type': 'string', - }), 'type': dict({ - 'default': 'tool', - 'enum': list([ - 'tool', - ]), + 'const': 'FunctionMessageChunk', + 'default': 'FunctionMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'tool_call_id', - ]), - 'title': 'ToolMessage', - 'type': 'object', - }), - 'UsageMetadata': dict({ - 'properties': dict({ - 'input_tokens': dict({ - 'title': 'Input Tokens', - 'type': 'integer', - }), - 'output_tokens': dict({ - 'title': 'Output Tokens', - 'type': 'integer', - }), - 'total_tokens': dict({ - 'title': 'Total Tokens', - 'type': 'integer', - }), - }), - 'required': list([ - 'input_tokens', - 'output_tokens', - 'total_tokens', + 'name', ]), - 'title': 'UsageMetadata', + 'title': 'FunctionMessageChunk', 'type': 'object', }), - }), - 'properties': dict({ - 'history': dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - }), - 'title': 'History', - 'type': 'array', - }), - }), - 'required': list([ - 'history', - ]), - 'title': 'PromptInput', - 'type': 'object', - }) -# --- -# name: test_schemas[chat_prompt_output_schema] - dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/StringPromptValue', - }), - dict({ - '$ref': '#/definitions/ChatPromptValueConcrete', - }), - ]), - 'definitions': dict({ - 'AIMessage': dict({ + 'HumanMessage': dict({ + 'additionalProperties': True, 'description': ''' - Message from an AI. + Message from a human. - AIMessage is returned from a chat model as a response to a prompt. + HumanMessages are messages that are passed in from a human to the model. - This message represents the output of the model and consists of both - the raw output as returned by the model together standardized fields - (e.g., tool calls, usage metadata) added by the LangChain framework. + Example: + + .. code-block:: python + + from langchain_core.messages import HumanMessage, SystemMessage + + messages = [ + SystemMessage( + content="You are a helpful assistant! Your name is Bob." + ), + HumanMessage( + content="What is your name?" + ) + ] + + # Instantiate a chat model and invoke it with the messages + model = ... + print(model.invoke(messages)) ''', 'properties': dict({ 'additional_kwargs': dict({ @@ -6229,55 +12711,48 @@ 'type': 'boolean', }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'invalid_tool_calls': dict({ - 'default': list([ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'items': dict({ - '$ref': '#/definitions/InvalidToolCall', - }), - 'title': 'Invalid Tool Calls', - 'type': 'array', + 'default': None, + 'title': 'Id', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', - 'type': 'object', - }), - 'tool_calls': dict({ - 'default': list([ - ]), - 'items': dict({ - '$ref': '#/definitions/ToolCall', - }), - 'title': 'Tool Calls', - 'type': 'array', - }), - 'type': dict({ - 'default': 'ai', - 'enum': list([ - 'ai', - ]), - 'title': 'Type', - 'type': 'string', + 'type': 'object', }), - 'usage_metadata': dict({ - '$ref': '#/definitions/UsageMetadata', + 'type': dict({ + 'const': 'human', + 'default': 'human', + 'title': 'Type', }), }), 'required': list([ 'content', ]), - 'title': 'AIMessage', + 'title': 'HumanMessage', 'type': 'object', }), - 'ChatMessage': dict({ - 'description': 'Message that can be assigned an arbitrary speaker (i.e. role).', + 'HumanMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Human Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -6304,155 +12779,208 @@ ]), 'title': 'Content', }), + 'example': dict({ + 'default': False, + 'title': 'Example', + 'type': 'boolean', + }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), - 'role': dict({ - 'title': 'Role', - 'type': 'string', - }), 'type': dict({ - 'default': 'chat', - 'enum': list([ - 'chat', - ]), + 'const': 'HumanMessageChunk', + 'default': 'HumanMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', - 'role', ]), - 'title': 'ChatMessage', + 'title': 'HumanMessageChunk', 'type': 'object', }), - 'ChatPromptValueConcrete': dict({ + 'InputTokenDetails': dict({ 'description': ''' - Chat prompt value which explicitly lists out the message types it accepts. - For use in external schemas. + Breakdown of input token counts. + + Does *not* need to sum to full input token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + } + + .. versionadded:: 0.3.9 ''', 'properties': dict({ - 'messages': dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - '$ref': '#/definitions/AIMessage', - }), - dict({ - '$ref': '#/definitions/HumanMessage', - }), - dict({ - '$ref': '#/definitions/ChatMessage', - }), - dict({ - '$ref': '#/definitions/SystemMessage', - }), - dict({ - '$ref': '#/definitions/FunctionMessage', - }), - dict({ - '$ref': '#/definitions/ToolMessage', - }), - ]), - }), - 'title': 'Messages', - 'type': 'array', + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', }), - 'type': dict({ - 'default': 'ChatPromptValueConcrete', - 'enum': list([ - 'ChatPromptValueConcrete', - ]), - 'title': 'Type', - 'type': 'string', + 'cache_creation': dict({ + 'title': 'Cache Creation', + 'type': 'integer', + }), + 'cache_read': dict({ + 'title': 'Cache Read', + 'type': 'integer', }), }), - 'required': list([ - 'messages', - ]), - 'title': 'ChatPromptValueConcrete', + 'title': 'InputTokenDetails', 'type': 'object', }), - 'FunctionMessage': dict({ + 'InvalidToolCall': dict({ 'description': ''' - Message for passing the result of executing a tool back to a model. - - FunctionMessage are an older version of the ToolMessage schema, and - do not contain the tool_call_id field. + Allowance for errors made by LLM. - The tool_call_id field is used to associate the tool call request with the - tool call response. This is useful in situations where a chat model is able - to request multiple tool calls in parallel. + Here we add an `error` key to surface errors made during generation + (e.g., invalid JSON arguments.) ''', 'properties': dict({ - 'additional_kwargs': dict({ - 'title': 'Additional Kwargs', - 'type': 'object', + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', }), - 'content': dict({ + 'error': dict({ 'anyOf': list([ dict({ 'type': 'string', }), dict({ - 'items': dict({ - 'anyOf': list([ - dict({ - 'type': 'string', - }), - dict({ - 'type': 'object', - }), - ]), - }), - 'type': 'array', + 'type': 'null', }), ]), - 'title': 'Content', + 'title': 'Error', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', }), 'type': dict({ - 'default': 'function', - 'enum': list([ - 'function', - ]), + 'const': 'invalid_tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'content', 'name', + 'args', + 'id', + 'error', ]), - 'title': 'FunctionMessage', + 'title': 'InvalidToolCall', 'type': 'object', }), - 'HumanMessage': dict({ + 'OutputTokenDetails': dict({ 'description': ''' - Message from a human. + Breakdown of output token counts. - HumanMessages are messages that are passed in from a human to the model. + Does *not* need to sum to full output token count. Does *not* need to have all keys. + + Example: + + .. code-block:: python + + { + "audio": 10, + "reasoning": 200, + } + + .. versionadded:: 0.3.9 + ''', + 'properties': dict({ + 'audio': dict({ + 'title': 'Audio', + 'type': 'integer', + }), + 'reasoning': dict({ + 'title': 'Reasoning', + 'type': 'integer', + }), + }), + 'title': 'OutputTokenDetails', + 'type': 'object', + }), + 'StringPromptValue': dict({ + 'description': 'String prompt value.', + 'properties': dict({ + 'text': dict({ + 'title': 'Text', + 'type': 'string', + }), + 'type': dict({ + 'const': 'StringPromptValue', + 'default': 'StringPromptValue', + 'title': 'Type', + }), + }), + 'required': list([ + 'text', + ]), + 'title': 'StringPromptValue', + 'type': 'object', + }), + 'SystemMessage': dict({ + 'additionalProperties': True, + 'description': ''' + Message for priming AI behavior. + + The system message is usually passed in as the first of a sequence + of input messages. Example: @@ -6469,8 +12997,7 @@ ) ] - # Instantiate a chat model and invoke it with the messages - model = ... + # Define a chat model and invoke it with the messages print(model.invoke(messages)) ''', 'properties': dict({ @@ -6499,120 +13026,49 @@ ]), 'title': 'Content', }), - 'example': dict({ - 'default': False, - 'title': 'Example', - 'type': 'boolean', - }), 'id': dict({ - 'title': 'Id', - 'type': 'string', - }), - 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'response_metadata': dict({ - 'title': 'Response Metadata', - 'type': 'object', - }), - 'type': dict({ - 'default': 'human', - 'enum': list([ - 'human', + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'title': 'Type', - 'type': 'string', - }), - }), - 'required': list([ - 'content', - ]), - 'title': 'HumanMessage', - 'type': 'object', - }), - 'InvalidToolCall': dict({ - 'properties': dict({ - 'args': dict({ - 'title': 'Args', - 'type': 'string', - }), - 'error': dict({ - 'title': 'Error', - 'type': 'string', - }), - 'id': dict({ + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ - 'title': 'Name', - 'type': 'string', - }), - 'type': dict({ - 'enum': list([ - 'invalid_tool_call', + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), ]), - 'title': 'Type', - 'type': 'string', + 'default': None, + 'title': 'Name', }), - }), - 'required': list([ - 'name', - 'args', - 'id', - 'error', - ]), - 'title': 'InvalidToolCall', - 'type': 'object', - }), - 'StringPromptValue': dict({ - 'description': 'String prompt value.', - 'properties': dict({ - 'text': dict({ - 'title': 'Text', - 'type': 'string', + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', }), 'type': dict({ - 'default': 'StringPromptValue', - 'enum': list([ - 'StringPromptValue', - ]), + 'const': 'system', + 'default': 'system', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ - 'text', + 'content', ]), - 'title': 'StringPromptValue', + 'title': 'SystemMessage', 'type': 'object', }), - 'SystemMessage': dict({ - 'description': ''' - Message for priming AI behavior. - - The system message is usually passed in as the first of a sequence - of input messages. - - Example: - - .. code-block:: python - - from langchain_core.messages import HumanMessage, SystemMessage - - messages = [ - SystemMessage( - content="You are a helpful assistant! Your name is Bob." - ), - HumanMessage( - content="What is your name?" - ) - ] - - # Define a chat model and invoke it with the messages - print(model.invoke(messages)) - ''', + 'SystemMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'System Message chunk.', 'properties': dict({ 'additional_kwargs': dict({ 'title': 'Additional Kwargs', @@ -6640,52 +13096,85 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', 'type': 'object', }), 'type': dict({ - 'default': 'system', - 'enum': list([ - 'system', - ]), + 'const': 'SystemMessageChunk', + 'default': 'SystemMessageChunk', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ 'content', ]), - 'title': 'SystemMessage', + 'title': 'SystemMessageChunk', 'type': 'object', }), 'ToolCall': dict({ + 'description': ''' + Represents a request to call a tool. + + Example: + + .. code-block:: python + + { + "name": "foo", + "args": {"a": 1}, + "id": "123" + } + + This represents a request to call the tool named "foo" with arguments {"a": 1} + and an identifier of "123". + ''', 'properties': dict({ 'args': dict({ 'title': 'Args', 'type': 'object', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), 'title': 'Id', - 'type': 'string', }), 'name': dict({ 'title': 'Name', 'type': 'string', }), 'type': dict({ - 'enum': list([ - 'tool_call', - ]), + 'const': 'tool_call', 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -6696,7 +13185,87 @@ 'title': 'ToolCall', 'type': 'object', }), + 'ToolCallChunk': dict({ + 'description': ''' + A chunk of a tool call (e.g., as part of a stream). + + When merging ToolCallChunks (e.g., via AIMessageChunk.__add__), + all string attributes are concatenated. Chunks are only merged if their + values of `index` are equal and not None. + + Example: + + .. code-block:: python + + left_chunks = [ToolCallChunk(name="foo", args='{"a":', index=0)] + right_chunks = [ToolCallChunk(name=None, args='1}', index=0)] + + ( + AIMessageChunk(content="", tool_call_chunks=left_chunks) + + AIMessageChunk(content="", tool_call_chunks=right_chunks) + ).tool_call_chunks == [ToolCallChunk(name='foo', args='{"a":1}', index=0)] + ''', + 'properties': dict({ + 'args': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Args', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Id', + }), + 'index': dict({ + 'anyOf': list([ + dict({ + 'type': 'integer', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Index', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'title': 'Name', + }), + 'type': dict({ + 'const': 'tool_call_chunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'name', + 'args', + 'id', + 'index', + ]), + 'title': 'ToolCallChunk', + 'type': 'object', + }), 'ToolMessage': dict({ + 'additionalProperties': True, 'description': ''' Message for passing the result of executing a tool back to a model. @@ -6767,12 +13336,28 @@ 'title': 'Content', }), 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Id', - 'type': 'string', }), 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, 'title': 'Name', - 'type': 'string', }), 'response_metadata': dict({ 'title': 'Response Metadata', @@ -6780,24 +13365,16 @@ }), 'status': dict({ 'default': 'success', - 'enum': list([ - 'success', - 'error', - ]), 'title': 'Status', - 'type': 'string', }), 'tool_call_id': dict({ 'title': 'Tool Call Id', 'type': 'string', }), 'type': dict({ + 'const': 'tool', 'default': 'tool', - 'enum': list([ - 'tool', - ]), 'title': 'Type', - 'type': 'string', }), }), 'required': list([ @@ -6807,12 +13384,127 @@ 'title': 'ToolMessage', 'type': 'object', }), + 'ToolMessageChunk': dict({ + 'additionalProperties': True, + 'description': 'Tool Message chunk.', + 'properties': dict({ + 'additional_kwargs': dict({ + 'title': 'Additional Kwargs', + 'type': 'object', + }), + 'artifact': dict({ + 'title': 'Artifact', + }), + 'content': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'items': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'object', + }), + ]), + }), + 'type': 'array', + }), + ]), + 'title': 'Content', + }), + 'id': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Id', + }), + 'name': dict({ + 'anyOf': list([ + dict({ + 'type': 'string', + }), + dict({ + 'type': 'null', + }), + ]), + 'default': None, + 'title': 'Name', + }), + 'response_metadata': dict({ + 'title': 'Response Metadata', + 'type': 'object', + }), + 'status': dict({ + 'default': 'success', + 'title': 'Status', + }), + 'tool_call_id': dict({ + 'title': 'Tool Call Id', + 'type': 'string', + }), + 'type': dict({ + 'const': 'ToolMessageChunk', + 'default': 'ToolMessageChunk', + 'title': 'Type', + }), + }), + 'required': list([ + 'content', + 'tool_call_id', + ]), + 'title': 'ToolMessageChunk', + 'type': 'object', + }), 'UsageMetadata': dict({ + 'description': ''' + Usage metadata for a message, such as token counts. + + This is a standard representation of token usage that is consistent across models. + + Example: + + .. code-block:: python + + { + "input_tokens": 350, + "output_tokens": 240, + "total_tokens": 590, + "input_token_details": { + "audio": 10, + "cache_creation": 200, + "cache_read": 100, + }, + "output_token_details": { + "audio": 10, + "reasoning": 200, + } + } + + .. versionchanged:: 0.3.9 + + Added ``input_token_details`` and ``output_token_details``. + ''', 'properties': dict({ + 'input_token_details': dict({ + '$ref': '#/definitions/InputTokenDetails', + }), 'input_tokens': dict({ 'title': 'Input Tokens', 'type': 'integer', }), + 'output_token_details': dict({ + '$ref': '#/definitions/OutputTokenDetails', + }), 'output_tokens': dict({ 'title': 'Output Tokens', 'type': 'integer', @@ -6831,19 +13523,19 @@ 'type': 'object', }), }), - 'title': 'ChatPromptTemplateOutput', + 'title': 'PromptTemplateOutput', }) # --- # name: test_seq_dict_prompt_llm ''' { - question: RunnablePassthrough() + question: RunnablePassthrough[str]() | RunnableLambda(...), documents: RunnableLambda(...) | FakeRetriever(), just_to_test_lambda: RunnableLambda(...) } - | ChatPromptTemplate(input_variables=['documents', 'question'], messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a nice assistant.')), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['documents', 'question'], template='Context:\n{documents}\n\nQuestion:\n{question}'))]) + | ChatPromptTemplate(input_variables=['documents', 'question'], input_types={}, partial_variables={}, messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], input_types={}, partial_variables={}, template='You are a nice assistant.'), additional_kwargs={}), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['documents', 'question'], input_types={}, partial_variables={}, template='Context:\n{documents}\n\nQuestion:\n{question}'), additional_kwargs={})]) | FakeListChatModel(responses=['foo, bar']) | CommaSeparatedListOutputParser() ''' @@ -7070,7 +13762,7 @@ # --- # name: test_seq_prompt_dict ''' - ChatPromptTemplate(input_variables=['question'], messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], template='You are a nice assistant.')), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], template='{question}'))]) + ChatPromptTemplate(input_variables=['question'], input_types={}, partial_variables={}, messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=[], input_types={}, partial_variables={}, template='You are a nice assistant.'), additional_kwargs={}), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], input_types={}, partial_variables={}, template='{question}'), additional_kwargs={})]) | RunnableLambda(...) | { chat: FakeListChatModel(responses=["i'm a chatbot"]), diff --git a/libs/core/tests/unit_tests/runnables/test_config.py b/libs/core/tests/unit_tests/runnables/test_config.py index 23eac0cfd73a8..f5243f4e78f9f 100644 --- a/libs/core/tests/unit_tests/runnables/test_config.py +++ b/libs/core/tests/unit_tests/runnables/test_config.py @@ -1,7 +1,7 @@ import json import uuid from contextvars import copy_context -from typing import Any, Dict, cast +from typing import Any, cast import pytest @@ -26,7 +26,7 @@ def test_ensure_config() -> None: run_id = str(uuid.uuid4()) - arg: Dict = { + arg: dict = { "something": "else", "metadata": {"foo": "bar"}, "configurable": {"baz": "qux"}, diff --git a/libs/core/tests/unit_tests/runnables/test_configurable.py b/libs/core/tests/unit_tests/runnables/test_configurable.py index cbd249b6bb750..9467d6dd0397f 100644 --- a/libs/core/tests/unit_tests/runnables/test_configurable.py +++ b/libs/core/tests/unit_tests/runnables/test_configurable.py @@ -1,8 +1,9 @@ -from typing import Any, Dict, Optional +from typing import Any, Optional import pytest +from pydantic import ConfigDict, Field, model_validator +from typing_extensions import Self -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.runnables import ( ConfigurableField, RunnableConfig, @@ -14,21 +15,26 @@ class MyRunnable(RunnableSerializable[str, str]): my_property: str = Field(alias="my_property_alias") _my_hidden_property: str = "" - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def my_error(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def my_error(cls, values: dict[str, Any]) -> Any: if "_my_hidden_property" in values: - raise ValueError("Cannot set _my_hidden_property") + msg = "Cannot set _my_hidden_property" + raise ValueError(msg) return values - @root_validator(pre=False, skip_on_failure=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: - values["_my_hidden_property"] = values["my_property"] - return values + @model_validator(mode="after") + def build_extra(self) -> Self: + self._my_hidden_property = self.my_property + return self - def invoke(self, input: str, config: Optional[RunnableConfig] = None) -> Any: + def invoke( + self, input: str, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Any: return input + self._my_hidden_property def my_custom_function(self) -> str: @@ -48,7 +54,9 @@ def my_custom_function_w_kw_config( class MyOtherRunnable(RunnableSerializable[str, str]): my_other_property: str - def invoke(self, input: str, config: Optional[RunnableConfig] = None) -> Any: + def invoke( + self, input: str, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Any: return input + self.my_other_property def my_other_custom_function(self) -> str: diff --git a/libs/core/tests/unit_tests/runnables/test_context.py b/libs/core/tests/unit_tests/runnables/test_context.py index 090b7df51127e..c00eb999424cb 100644 --- a/libs/core/tests/unit_tests/runnables/test_context.py +++ b/libs/core/tests/unit_tests/runnables/test_context.py @@ -1,4 +1,4 @@ -from typing import Any, Callable, List, NamedTuple, Union +from typing import Any, Callable, NamedTuple, Union import pytest @@ -331,7 +331,7 @@ def seq_naive_rag_scoped() -> Runnable: @pytest.mark.parametrize("runnable, cases", test_cases) async def test_context_runnables( - runnable: Union[Runnable, Callable[[], Runnable]], cases: List[_TestCase] + runnable: Union[Runnable, Callable[[], Runnable]], cases: list[_TestCase] ) -> None: runnable = runnable if isinstance(runnable, Runnable) else runnable() assert runnable.invoke(cases[0].input) == cases[0].output @@ -391,7 +391,7 @@ async def test_runnable_seq_streaming_chunks() -> None: } ) - chunks = [c for c in chain.stream({"foo": "foo", "bar": "bar"})] + chunks = list(chain.stream({"foo": "foo", "bar": "bar"})) achunks = [c async for c in chain.astream({"foo": "foo", "bar": "bar"})] for c in chunks: assert c in achunks diff --git a/libs/core/tests/unit_tests/runnables/test_fallbacks.py b/libs/core/tests/unit_tests/runnables/test_fallbacks.py index f3fe80c067a94..731b3ddaa62aa 100644 --- a/libs/core/tests/unit_tests/runnables/test_fallbacks.py +++ b/libs/core/tests/unit_tests/runnables/test_fallbacks.py @@ -1,18 +1,13 @@ -import sys +from collections.abc import AsyncIterator, Iterator, Sequence from typing import ( Any, - AsyncIterator, Callable, - Dict, - Iterator, - List, Optional, - Sequence, - Type, Union, ) import pytest +from pydantic import BaseModel from syrupy import SnapshotAssertion from langchain_core.callbacks import CallbackManagerForLLMRun @@ -25,7 +20,6 @@ from langchain_core.messages import BaseMessage from langchain_core.outputs import ChatResult from langchain_core.prompts import PromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import ( Runnable, RunnableBinding, @@ -67,13 +61,13 @@ def chain() -> Runnable: def _raise_error(inputs: dict) -> str: - raise ValueError() + raise ValueError def _dont_raise_error(inputs: dict) -> str: if "exception" in inputs: return "bar" - raise ValueError() + raise ValueError @pytest.fixture() @@ -98,19 +92,18 @@ async def test_fallbacks( assert await runnable.ainvoke("hello") == "bar" assert await runnable.abatch(["hi", "hey", "bye"]) == ["bar"] * 3 assert list(await runnable.ainvoke("hello")) == list("bar") - if sys.version_info >= (3, 9): - assert dumps(runnable, pretty=True) == snapshot + assert dumps(runnable, pretty=True) == snapshot def _runnable(inputs: dict) -> str: if inputs["text"] == "foo": return "first" if "exception" not in inputs: - raise ValueError() + raise ValueError if inputs["text"] == "bar": return "second" if isinstance(inputs["exception"], ValueError): - raise RuntimeError() + raise RuntimeError return "third" @@ -258,20 +251,20 @@ def _generate(input: Iterator) -> Iterator[str]: def _generate_immediate_error(input: Iterator) -> Iterator[str]: - raise ValueError() + raise ValueError yield "" def _generate_delayed_error(input: Iterator) -> Iterator[str]: yield "" - raise ValueError() + raise ValueError def test_fallbacks_stream() -> None: runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) - assert list(runnable.stream({})) == [c for c in "foo bar"] + assert list(runnable.stream({})) == list("foo bar") with pytest.raises(ValueError): runnable = RunnableGenerator(_generate_delayed_error).with_fallbacks( @@ -286,13 +279,13 @@ async def _agenerate(input: AsyncIterator) -> AsyncIterator[str]: async def _agenerate_immediate_error(input: AsyncIterator) -> AsyncIterator[str]: - raise ValueError() + raise ValueError yield "" async def _agenerate_delayed_error(input: AsyncIterator) -> AsyncIterator[str]: yield "" - raise ValueError() + raise ValueError async def test_fallbacks_astream() -> None: @@ -316,8 +309,8 @@ class FakeStructuredOutputModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -326,14 +319,14 @@ def _generate( def bind_tools( self, - tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], + tools: Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]], **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: return self.bind(tools=tools) def with_structured_output( - self, schema: Union[Dict, Type[BaseModel]], **kwargs: Any - ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: + self, schema: Union[dict, type[BaseModel]], **kwargs: Any + ) -> Runnable[LanguageModelInput, Union[dict, BaseModel]]: return RunnableLambda(lambda x: {"foo": self.foo}) @property @@ -346,8 +339,8 @@ class FakeModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -356,7 +349,7 @@ def _generate( def bind_tools( self, - tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], + tools: Sequence[Union[dict[str, Any], type[BaseModel], Callable, BaseTool]], **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: return self.bind(tools=tools) diff --git a/libs/core/tests/unit_tests/runnables/test_graph.py b/libs/core/tests/unit_tests/runnables/test_graph.py index 3e909040fc2de..8898b64c01fae 100644 --- a/libs/core/tests/unit_tests/runnables/test_graph.py +++ b/libs/core/tests/unit_tests/runnables/test_graph.py @@ -1,17 +1,18 @@ -from typing import Optional +from typing import Any, Optional +from pydantic import BaseModel from syrupy import SnapshotAssertion +from typing_extensions import override from langchain_core.language_models import FakeListLLM from langchain_core.output_parsers.list import CommaSeparatedListOutputParser from langchain_core.output_parsers.string import StrOutputParser from langchain_core.output_parsers.xml import XMLOutputParser from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables.base import Runnable, RunnableConfig from langchain_core.runnables.graph import Edge, Graph, Node from langchain_core.runnables.graph_mermaid import _escape_node_label -from tests.unit_tests.pydantic_utils import _schema +from tests.unit_tests.pydantic_utils import _normalize_schema def test_graph_single_runnable(snapshot: SnapshotAssertion) -> None: @@ -19,10 +20,10 @@ def test_graph_single_runnable(snapshot: SnapshotAssertion) -> None: graph = StrOutputParser().get_graph() first_node = graph.first_node() assert first_node is not None - assert _schema(first_node.data) == _schema(runnable.input_schema) # type: ignore[union-attr] + assert first_node.data.model_json_schema() == runnable.get_input_jsonschema() # type: ignore[union-attr] last_node = graph.last_node() assert last_node is not None - assert _schema(last_node.data) == _schema(runnable.output_schema) # type: ignore[union-attr] + assert last_node.data.model_json_schema() == runnable.get_output_jsonschema() # type: ignore[union-attr] assert len(graph.nodes) == 3 assert len(graph.edges) == 2 assert graph.edges[0].source == first_node.id @@ -57,7 +58,7 @@ class Schema(BaseModel): graph.add_edge(answer, ask, conditional=True) graph.add_edge(answer, end, conditional=True) - assert graph.to_json() == snapshot + assert _normalize_schema(graph.to_json()) == snapshot assert graph.first_node() is start assert graph.last_node() is end # can't trim start or end node @@ -209,8 +210,10 @@ def conditional_str_parser(input: str) -> Runnable: } ) graph = sequence.get_graph() - assert graph.to_json(with_schemas=True) == snapshot(name="graph_with_schema") - assert graph.to_json() == snapshot(name="graph_no_schemas") + assert _normalize_schema(graph.to_json(with_schemas=True)) == snapshot( + name="graph_with_schema" + ) + assert _normalize_schema(graph.to_json()) == snapshot(name="graph_no_schemas") assert graph.draw_ascii() == snapshot(name="ascii") assert graph.draw_mermaid() == snapshot(name="mermaid") assert graph.draw_mermaid(with_styles=False) == snapshot(name="mermaid-simple") @@ -351,13 +354,16 @@ def test_runnable_get_graph_with_invalid_input_type() -> None: class InvalidInputTypeRunnable(Runnable[int, int]): @property + @override def InputType(self) -> type: - raise TypeError() + raise TypeError + @override def invoke( self, input: int, config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> int: return input @@ -373,13 +379,16 @@ def test_runnable_get_graph_with_invalid_output_type() -> None: class InvalidOutputTypeRunnable(Runnable[int, int]): @property + @override def OutputType(self) -> type: - raise TypeError() + raise TypeError + @override def invoke( self, input: int, config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> int: return input diff --git a/libs/core/tests/unit_tests/runnables/test_history.py b/libs/core/tests/unit_tests/runnables/test_history.py index 41f9aaf386652..710f66a18856e 100644 --- a/libs/core/tests/unit_tests/runnables/test_history.py +++ b/libs/core/tests/unit_tests/runnables/test_history.py @@ -1,6 +1,8 @@ -from typing import Any, Callable, Dict, List, Optional, Sequence, Union +from collections.abc import Sequence +from typing import Any, Callable, Optional, Union import pytest +from pydantic import BaseModel from langchain_core.callbacks import ( CallbackManagerForLLMRun, @@ -9,7 +11,6 @@ from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable from langchain_core.runnables.base import RunnableBinding, RunnableLambda from langchain_core.runnables.config import RunnableConfig @@ -30,7 +31,7 @@ def test_interfaces() -> None: def _get_get_session_history( *, - store: Optional[Dict[str, Any]] = None, + store: Optional[dict[str, Any]] = None, ) -> Callable[..., InMemoryChatMessageHistory]: chat_history_store = store if store is not None else {} @@ -49,7 +50,7 @@ def test_input_messages() -> None: lambda messages: "you said: " + "\n".join(str(m.content) for m in messages if isinstance(m, HumanMessage)) ) - store: Dict = {} + store: dict = {} get_session_history = _get_get_session_history(store=store) with_history = RunnableWithMessageHistory(runnable, get_session_history) config: RunnableConfig = {"configurable": {"session_id": "1"}} @@ -78,7 +79,7 @@ async def test_input_messages_async() -> None: lambda messages: "you said: " + "\n".join(str(m.content) for m in messages if isinstance(m, HumanMessage)) ) - store: Dict = {} + store: dict = {} get_session_history = _get_get_session_history(store=store) with_history = RunnableWithMessageHistory(runnable, get_session_history) config = {"session_id": "1_async"} @@ -251,8 +252,8 @@ class LengthChatModel(BaseChatModel): def _generate( self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, + messages: list[BaseMessage], + stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: @@ -454,9 +455,45 @@ class RunnableWithChatHistoryInput(BaseModel): ) +def test_get_output_schema() -> None: + """Test get output schema.""" + runnable = RunnableLambda( + lambda input: { + "output": [ + AIMessage( + content="you said: " + + "\n".join( + [ + str(m.content) + for m in input["history"] + if isinstance(m, HumanMessage) + ] + + [input["input"]] + ) + ) + ] + } + ) + get_session_history = _get_get_session_history() + with_history = RunnableWithMessageHistory( + runnable, + get_session_history, + input_messages_key="input", + history_messages_key="history", + output_messages_key="output", + ) + output_type = with_history.get_output_schema() + + assert _schema(output_type) == { + "title": "RunnableWithChatHistoryOutput", + "type": "object", + } + + def test_get_input_schema_input_messages() -> None: - class RunnableWithChatHistoryInput(BaseModel): - __root__: Sequence[BaseMessage] + from pydantic import RootModel + + runnable_with_message_history_input = RootModel[Sequence[BaseMessage]] runnable = RunnableLambda( lambda messages: { @@ -478,15 +515,15 @@ class RunnableWithChatHistoryInput(BaseModel): with_history = RunnableWithMessageHistory( runnable, get_session_history, output_messages_key="output" ) - assert _schema(with_history.get_input_schema()) == _schema( - RunnableWithChatHistoryInput - ) + expected_schema = _schema(runnable_with_message_history_input) + expected_schema["title"] = "RunnableWithChatHistoryInput" + assert _schema(with_history.get_input_schema()) == expected_schema def test_using_custom_config_specs() -> None: """Test that we can configure which keys should be passed to the session factory.""" - def _fake_llm(input: Dict[str, Any]) -> List[BaseMessage]: + def _fake_llm(input: dict[str, Any]) -> list[BaseMessage]: messages = input["messages"] return [ AIMessage( @@ -599,7 +636,7 @@ def get_session_history( async def test_using_custom_config_specs_async() -> None: """Test that we can configure which keys should be passed to the session factory.""" - def _fake_llm(input: Dict[str, Any]) -> List[BaseMessage]: + def _fake_llm(input: dict[str, Any]) -> list[BaseMessage]: messages = input["messages"] return [ AIMessage( @@ -712,7 +749,7 @@ def get_session_history( def test_ignore_session_id() -> None: """Test without config.""" - def _fake_llm(input: List[BaseMessage]) -> List[BaseMessage]: + def _fake_llm(input: list[BaseMessage]) -> list[BaseMessage]: return [ AIMessage( content="you said: " @@ -797,7 +834,7 @@ def test_get_output_messages_no_value_error() -> None: lambda messages: "you said: " + "\n".join(str(m.content) for m in messages if isinstance(m, HumanMessage)) ) - store: Dict = {} + store: dict = {} get_session_history = _get_get_session_history(store=store) with_history = RunnableWithMessageHistory(runnable, get_session_history) config: RunnableConfig = { @@ -814,7 +851,7 @@ def test_get_output_messages_no_value_error() -> None: def test_get_output_messages_with_value_error() -> None: illegal_bool_message = False runnable = _RunnableLambdaWithRaiseError(lambda messages: illegal_bool_message) - store: Dict = {} + store: dict = {} get_session_history = _get_get_session_history(store=store) with_history = RunnableWithMessageHistory(runnable, get_session_history) config: RunnableConfig = { diff --git a/libs/core/tests/unit_tests/runnables/test_imports.py b/libs/core/tests/unit_tests/runnables/test_imports.py index 12b1a80d1bfe4..e0a6ac47bb29a 100644 --- a/libs/core/tests/unit_tests/runnables/test_imports.py +++ b/libs/core/tests/unit_tests/runnables/test_imports.py @@ -35,3 +35,9 @@ def test_all_imports() -> None: assert set(__all__) == set(EXPECTED_ALL) + + +def test_imports_for_specific_funcs() -> None: + """Test that a few specific imports in more internal namespaces.""" + # create_model implementation has been moved to langchain_core.utils.pydantic + from langchain_core.runnables.utils import create_model # noqa diff --git a/libs/core/tests/unit_tests/runnables/test_runnable.py b/libs/core/tests/unit_tests/runnables/test_runnable.py index daba2beec28c2..a58e81dc36275 100644 --- a/libs/core/tests/unit_tests/runnables/test_runnable.py +++ b/libs/core/tests/unit_tests/runnables/test_runnable.py @@ -1,24 +1,22 @@ import sys import uuid +import warnings +from collections.abc import AsyncIterator, Awaitable, Iterator, Sequence from functools import partial from operator import itemgetter from typing import ( Any, - AsyncIterator, - Awaitable, Callable, - Dict, - Iterator, - List, Optional, - Sequence, Union, cast, ) from uuid import UUID +import pydantic import pytest from freezegun import freeze_time +from pydantic import BaseModel, Field from pytest_mock import MockerFixture from syrupy import SnapshotAssertion from typing_extensions import TypedDict @@ -57,7 +55,6 @@ PromptTemplate, SystemMessagePromptTemplate, ) -from langchain_core.pydantic_v1 import BaseModel from langchain_core.retrievers import BaseRetriever from langchain_core.runnables import ( AddableDict, @@ -66,6 +63,7 @@ ConfigurableFieldSingleOption, RouterRunnable, Runnable, + RunnableAssign, RunnableBinding, RunnableBranch, RunnableConfig, @@ -89,8 +87,10 @@ RunLogPatch, ) from langchain_core.tracers.context import collect_runs -from tests.unit_tests.pydantic_utils import _schema -from tests.unit_tests.stubs import AnyStr, _AnyIdAIMessage, _AnyIdAIMessageChunk +from tests.unit_tests.pydantic_utils import _normalize_schema, _schema +from tests.unit_tests.stubs import AnyStr, _any_id_ai_message, _any_id_ai_message_chunk + +PYDANTIC_VERSION = tuple(map(int, pydantic.__version__.split("."))) class FakeTracer(BaseTracer): @@ -100,8 +100,8 @@ class FakeTracer(BaseTracer): def __init__(self) -> None: """Initialize the tracer.""" super().__init__() - self.runs: List[Run] = [] - self.uuids_map: Dict[UUID, UUID] = {} + self.runs: list[Run] = [] + self.uuids_map: dict[UUID, UUID] = {} self.uuids_generator = ( UUID(f"00000000-0000-4000-8000-{i:012}", version=4) for i in range(10000) ) @@ -160,7 +160,7 @@ def _persist_run(self, run: Run) -> None: self.runs.append(self._copy_run(run)) - def flattened_runs(self) -> List[Run]: + def flattened_runs(self) -> list[Run]: q = [] + self.runs result = [] while q: @@ -171,7 +171,7 @@ def flattened_runs(self) -> List[Run]: return result @property - def run_ids(self) -> List[Optional[uuid.UUID]]: + def run_ids(self) -> list[Optional[uuid.UUID]]: runs = self.flattened_runs() uuids_map = {v: k for k, v in self.uuids_map.items()} return [uuids_map.get(r.id) for r in runs] @@ -194,6 +194,7 @@ def invoke( self, input: str, config: Optional[RunnableConfig] = None, + **kwargs: Any, ) -> int: return len(input) @@ -204,10 +205,10 @@ def _get_relevant_documents( query: str, *, callbacks: Callbacks = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: return [Document(page_content="foo"), Document(page_content="bar")] async def _aget_relevant_documents( @@ -215,52 +216,57 @@ async def _aget_relevant_documents( query: str, *, callbacks: Callbacks = None, - tags: Optional[List[str]] = None, - metadata: Optional[Dict[str, Any]] = None, + tags: Optional[list[str]] = None, + metadata: Optional[dict[str, Any]] = None, **kwargs: Any, - ) -> List[Document]: + ) -> list[Document]: return [Document(page_content="foo"), Document(page_content="bar")] def test_schemas(snapshot: SnapshotAssertion) -> None: fake = FakeRunnable() # str -> int - assert _schema(fake.input_schema) == { + assert fake.get_input_jsonschema() == { "title": "FakeRunnableInput", "type": "string", } - assert _schema(fake.output_schema) == { + assert fake.get_output_jsonschema() == { "title": "FakeRunnableOutput", "type": "integer", } - assert _schema(fake.config_schema(include=["tags", "metadata", "run_name"])) == { - "title": "FakeRunnableConfig", - "type": "object", + assert fake.get_config_jsonschema(include=["tags", "metadata", "run_name"]) == { "properties": { - "metadata": {"title": "Metadata", "type": "object"}, - "run_name": {"title": "Run Name", "type": "string"}, - "tags": {"items": {"type": "string"}, "title": "Tags", "type": "array"}, + "metadata": {"default": None, "title": "Metadata", "type": "object"}, + "run_name": {"default": None, "title": "Run Name", "type": "string"}, + "tags": { + "default": None, + "items": {"type": "string"}, + "title": "Tags", + "type": "array", + }, }, + "title": "FakeRunnableConfig", + "type": "object", } fake_bound = FakeRunnable().bind(a="b") # str -> int - assert _schema(fake_bound.input_schema) == { + assert fake_bound.get_input_jsonschema() == { "title": "FakeRunnableInput", "type": "string", } - assert _schema(fake_bound.output_schema) == { + assert fake_bound.get_output_jsonschema() == { "title": "FakeRunnableOutput", "type": "integer", } fake_w_fallbacks = FakeRunnable().with_fallbacks((fake,)) # str -> int - assert _schema(fake_w_fallbacks.input_schema) == { + assert fake_w_fallbacks.get_input_jsonschema() == { "title": "FakeRunnableInput", "type": "string", } - assert _schema(fake_w_fallbacks.output_schema) == { + assert fake_w_fallbacks.get_output_jsonschema() == { "title": "FakeRunnableOutput", "type": "integer", } @@ -270,11 +276,11 @@ def typed_lambda_impl(x: str) -> int: typed_lambda = RunnableLambda(typed_lambda_impl) # str -> int - assert _schema(typed_lambda.input_schema) == { + assert typed_lambda.get_input_jsonschema() == { "title": "typed_lambda_impl_input", "type": "string", } - assert _schema(typed_lambda.output_schema) == { + assert typed_lambda.get_output_jsonschema() == { "title": "typed_lambda_impl_output", "type": "integer", } @@ -284,52 +290,67 @@ async def typed_async_lambda_impl(x: str) -> int: typed_async_lambda: Runnable = RunnableLambda(typed_async_lambda_impl) # str -> int - assert _schema(typed_async_lambda.input_schema) == { + assert typed_async_lambda.get_input_jsonschema() == { "title": "typed_async_lambda_impl_input", "type": "string", } - assert _schema(typed_async_lambda.output_schema) == { + assert typed_async_lambda.get_output_jsonschema() == { "title": "typed_async_lambda_impl_output", "type": "integer", } fake_ret = FakeRetriever() # str -> List[Document] - assert _schema(fake_ret.input_schema) == { + assert fake_ret.get_input_jsonschema() == { "title": "FakeRetrieverInput", "type": "string", } - assert _schema(fake_ret.output_schema) == { - "title": "FakeRetrieverOutput", - "type": "array", - "items": {"$ref": "#/definitions/Document"}, - "definitions": { + assert _normalize_schema(fake_ret.get_output_jsonschema()) == { + "$defs": { "Document": { - "title": "Document", - "description": AnyStr(), - "type": "object", + "description": "Class for storing a piece of text and " + "associated metadata.\n" + "\n" + "Example:\n" + "\n" + " .. code-block:: python\n" + "\n" + " from langchain_core.documents " + "import Document\n" + "\n" + " document = Document(\n" + ' page_content="Hello, ' + 'world!",\n' + ' metadata={"source": ' + '"https://example.com"}\n' + " )", "properties": { - "page_content": {"title": "Page Content", "type": "string"}, - "metadata": {"title": "Metadata", "type": "object"}, "id": { + "anyOf": [{"type": "string"}, {"type": "null"}], + "default": None, "title": "Id", - "type": "string", }, + "metadata": {"title": "Metadata", "type": "object"}, + "page_content": {"title": "Page Content", "type": "string"}, "type": { - "title": "Type", - "enum": ["Document"], + "const": "Document", "default": "Document", - "type": "string", + "title": "Type", }, }, "required": ["page_content"], + "title": "Document", + "type": "object", } }, + "items": {"$ref": "#/$defs/Document"}, + "title": "FakeRetrieverOutput", + "type": "array", } fake_llm = FakeListLLM(responses=["a"]) # str -> List[List[str]] - assert _schema(fake_llm.input_schema) == snapshot + assert _schema(fake_llm.input_schema) == snapshot(name="fake_llm_input_schema") assert _schema(fake_llm.output_schema) == { "title": "FakeListLLMOutput", "type": "string", @@ -337,8 +358,8 @@ async def typed_async_lambda_impl(x: str) -> int: fake_chat = FakeListChatModel(responses=["a"]) # str -> List[List[str]] - assert _schema(fake_chat.input_schema) == snapshot - assert _schema(fake_chat.output_schema) == snapshot + assert _schema(fake_chat.input_schema) == snapshot(name="fake_chat_input_schema") + assert _schema(fake_chat.output_schema) == snapshot(name="fake_chat_output_schema") chat_prompt = ChatPromptTemplate.from_messages( [ @@ -347,27 +368,27 @@ async def typed_async_lambda_impl(x: str) -> int: ] ) - assert _schema(chat_prompt.input_schema) == snapshot( + assert _normalize_schema(chat_prompt.get_input_jsonschema()) == snapshot( name="chat_prompt_input_schema" ) - assert _schema(chat_prompt.output_schema) == snapshot( + assert _normalize_schema(chat_prompt.get_output_jsonschema()) == snapshot( name="chat_prompt_output_schema" ) prompt = PromptTemplate.from_template("Hello, {name}!") - assert _schema(prompt.input_schema) == { + assert prompt.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {"name": {"title": "Name", "type": "string"}}, "required": ["name"], } - assert _schema(prompt.output_schema) == snapshot + assert _schema(prompt.output_schema) == snapshot(name="prompt_output_schema") prompt_mapper = PromptTemplate.from_template("Hello, {name}!").map() - assert _schema(prompt_mapper.input_schema) == { - "definitions": { + assert _normalize_schema(prompt_mapper.get_input_jsonschema()) == { + "$defs": { "PromptInput": { "properties": {"name": {"title": "Name", "type": "string"}}, "required": ["name"], @@ -375,15 +396,20 @@ async def typed_async_lambda_impl(x: str) -> int: "type": "object", } }, - "items": {"$ref": "#/definitions/PromptInput"}, - "type": "array", + "default": None, + "items": {"$ref": "#/$defs/PromptInput"}, "title": "RunnableEachInput", + "type": "array", } - assert _schema(prompt_mapper.output_schema) == snapshot + assert _schema(prompt_mapper.output_schema) == snapshot( + name="prompt_mapper_output_schema" + ) list_parser = CommaSeparatedListOutputParser() - assert _schema(list_parser.input_schema) == snapshot + assert _schema(list_parser.input_schema) == snapshot( + name="list_parser_input_schema" + ) assert _schema(list_parser.output_schema) == { "title": "CommaSeparatedListOutputParserOutput", "type": "array", @@ -392,13 +418,13 @@ async def typed_async_lambda_impl(x: str) -> int: seq = prompt | fake_llm | list_parser - assert _schema(seq.input_schema) == { + assert seq.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {"name": {"title": "Name", "type": "string"}}, "required": ["name"], } - assert _schema(seq.output_schema) == { + assert seq.get_output_jsonschema() == { "type": "array", "items": {"type": "string"}, "title": "CommaSeparatedListOutputParserOutput", @@ -407,21 +433,28 @@ async def typed_async_lambda_impl(x: str) -> int: router: Runnable = RouterRunnable({}) assert _schema(router.input_schema) == { - "title": "RouterRunnableInput", "$ref": "#/definitions/RouterInput", "definitions": { "RouterInput": { - "title": "RouterInput", - "type": "object", + "description": "Router input.\n" + "\n" + "Attributes:\n" + " key: The key to route " + "on.\n" + " input: The input to pass " + "to the selected Runnable.", "properties": { - "key": {"title": "Key", "type": "string"}, "input": {"title": "Input"}, + "key": {"title": "Key", "type": "string"}, }, "required": ["key", "input"], + "title": "RouterInput", + "type": "object", } }, + "title": "RouterRunnableInput", } - assert _schema(router.output_schema) == {"title": "RouterRunnableOutput"} + assert router.get_output_jsonschema() == {"title": "RouterRunnableOutput"} seq_w_map: Runnable = ( prompt @@ -433,13 +466,13 @@ async def typed_async_lambda_impl(x: str) -> int: } ) - assert _schema(seq_w_map.input_schema) == { + assert seq_w_map.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {"name": {"title": "Name", "type": "string"}}, "required": ["name"], } - assert _schema(seq_w_map.output_schema) == { + assert seq_w_map.get_output_jsonschema() == { "title": "RunnableParallelOutput", "type": "object", "properties": { @@ -451,6 +484,20 @@ async def typed_async_lambda_impl(x: str) -> int: "items": {"type": "string"}, }, }, + "required": ["original", "as_list", "length"], + } + + # Add a test for schema of runnable assign + def foo(x: int) -> int: + return x + + foo_ = RunnableLambda(foo) + + assert foo_.assign(bar=lambda x: "foo").get_output_schema().model_json_schema() == { + "properties": {"bar": {"title": "Bar"}, "root": {"title": "Root"}}, + "required": ["root", "bar"], + "title": "RunnableAssignOutput", + "type": "object", } @@ -465,12 +512,13 @@ def test_passthrough_assign_schema() -> None: | fake_llm ) - assert _schema(seq_w_assign.input_schema) == { + assert seq_w_assign.get_input_jsonschema() == { "properties": {"question": {"title": "Question", "type": "string"}}, "title": "RunnableSequenceInput", "type": "object", + "required": ["question"], } - assert _schema(seq_w_assign.output_schema) == { + assert seq_w_assign.get_output_jsonschema() == { "title": "FakeListLLMOutput", "type": "string", } @@ -482,50 +530,55 @@ def test_passthrough_assign_schema() -> None: # fallback to RunnableAssign.input_schema if next runnable doesn't have # expected dict input_schema - assert _schema(invalid_seq_w_assign.input_schema) == { + assert invalid_seq_w_assign.get_input_jsonschema() == { "properties": {"question": {"title": "Question"}}, "title": "RunnableParallelInput", "type": "object", + "required": ["question"], } @pytest.mark.skipif( sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." ) -def test_lambda_schemas() -> None: +def test_lambda_schemas(snapshot: SnapshotAssertion) -> None: first_lambda = lambda x: x["hello"] # noqa: E731 - assert _schema(RunnableLambda(first_lambda).input_schema) == { + assert RunnableLambda(first_lambda).get_input_jsonschema() == { "title": "RunnableLambdaInput", "type": "object", "properties": {"hello": {"title": "Hello"}}, + "required": ["hello"], } second_lambda = lambda x, y: (x["hello"], x["bye"], y["bah"]) # noqa: E731 - assert _schema(RunnableLambda(second_lambda).input_schema) == { # type: ignore[arg-type] + assert RunnableLambda(second_lambda).get_input_jsonschema() == { # type: ignore[arg-type] "title": "RunnableLambdaInput", "type": "object", "properties": {"hello": {"title": "Hello"}, "bye": {"title": "Bye"}}, + "required": ["bye", "hello"], } def get_value(input): # type: ignore[no-untyped-def] return input["variable_name"] - assert _schema(RunnableLambda(get_value).input_schema) == { + assert RunnableLambda(get_value).get_input_jsonschema() == { "title": "get_value_input", "type": "object", "properties": {"variable_name": {"title": "Variable Name"}}, + "required": ["variable_name"], } async def aget_value(input): # type: ignore[no-untyped-def] return (input["variable_name"], input.get("another")) - assert _schema(RunnableLambda(aget_value).input_schema) == { + assert RunnableLambda(aget_value).get_input_jsonschema() == { "title": "aget_value_input", "type": "object", "properties": { "another": {"title": "Another"}, "variable_name": {"title": "Variable Name"}, }, + "required": ["another", "variable_name"], } async def aget_values(input): # type: ignore[no-untyped-def] @@ -535,13 +588,14 @@ async def aget_values(input): # type: ignore[no-untyped-def] "byebye": input["yo"], } - assert _schema(RunnableLambda(aget_values).input_schema) == { + assert RunnableLambda(aget_values).get_input_jsonschema() == { "title": "aget_values_input", "type": "object", "properties": { "variable_name": {"title": "Variable Name"}, "yo": {"title": "Yo"}, }, + "required": ["variable_name", "yo"], } class InputType(TypedDict): @@ -561,47 +615,37 @@ async def aget_values_typed(input: InputType) -> OutputType: } assert ( - _schema( + _normalize_schema( RunnableLambda( aget_values_typed # type: ignore[arg-type] - ).input_schema + ).get_input_jsonschema() ) - == { - "title": "aget_values_typed_input", - "$ref": "#/definitions/InputType", - "definitions": { - "InputType": { - "properties": { - "variable_name": { - "title": "Variable " "Name", - "type": "string", + == _normalize_schema( + { + "$defs": { + "InputType": { + "properties": { + "variable_name": { + "title": "Variable " "Name", + "type": "string", + }, + "yo": {"title": "Yo", "type": "integer"}, }, - "yo": {"title": "Yo", "type": "integer"}, - }, - "required": ["variable_name", "yo"], - "title": "InputType", - "type": "object", - } - }, - } - ) - - assert _schema(RunnableLambda(aget_values_typed).output_schema) == { # type: ignore[arg-type] - "title": "aget_values_typed_output", - "$ref": "#/definitions/OutputType", - "definitions": { - "OutputType": { - "properties": { - "bye": {"title": "Bye", "type": "string"}, - "byebye": {"title": "Byebye", "type": "integer"}, - "hello": {"title": "Hello", "type": "string"}, + "required": ["variable_name", "yo"], + "title": "InputType", + "type": "object", + } }, - "required": ["hello", "bye", "byebye"], - "title": "OutputType", - "type": "object", + "allOf": [{"$ref": "#/$defs/InputType"}], + "title": "aget_values_typed_input", } - }, - } + ) + ) + + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema( + RunnableLambda(aget_values_typed).get_output_jsonschema() # type: ignore + ) == snapshot(name="schema8") def test_with_types_with_type_generics() -> None: @@ -609,12 +653,12 @@ def test_with_types_with_type_generics() -> None: def foo(x: int) -> None: """Add one to the input.""" - raise NotImplementedError() + raise NotImplementedError # Try specifying some RunnableLambda(foo).with_types( - output_type=List[int], # type: ignore[arg-type] - input_type=List[int], # type: ignore[arg-type] + output_type=list[int], # type: ignore[arg-type] + input_type=list[int], # type: ignore[arg-type] ) RunnableLambda(foo).with_types( output_type=Sequence[int], # type: ignore[arg-type] @@ -622,6 +666,25 @@ def foo(x: int) -> None: ) +def test_schema_with_itemgetter() -> None: + """Test runnable with itemgetter.""" + foo = RunnableLambda(itemgetter("hello")) + assert _schema(foo.input_schema) == { + "properties": {"hello": {"title": "Hello"}}, + "required": ["hello"], + "title": "RunnableLambdaInput", + "type": "object", + } + prompt = ChatPromptTemplate.from_template("what is {language}?") + chain: Runnable = {"language": itemgetter("language")} | prompt + assert _schema(chain.input_schema) == { + "properties": {"language": {"title": "Language"}}, + "required": ["language"], + "title": "RunnableParallelInput", + "type": "object", + } + + def test_schema_complex_seq() -> None: prompt1 = ChatPromptTemplate.from_template("what is the city {person} is from?") prompt2 = ChatPromptTemplate.from_template( @@ -643,26 +706,27 @@ def test_schema_complex_seq() -> None: | StrOutputParser() ) - assert _schema(chain2.input_schema) == { + assert chain2.get_input_jsonschema() == { "title": "RunnableParallelInput", "type": "object", "properties": { "person": {"title": "Person", "type": "string"}, "language": {"title": "Language"}, }, + "required": ["person", "language"], } - assert _schema(chain2.output_schema) == { + assert chain2.get_output_jsonschema() == { "title": "StrOutputParserOutput", "type": "string", } - assert _schema(chain2.with_types(input_type=str).input_schema) == { + assert chain2.with_types(input_type=str).get_input_jsonschema() == { "title": "RunnableSequenceInput", "type": "string", } - assert _schema(chain2.with_types(input_type=int).output_schema) == { + assert chain2.with_types(input_type=int).get_output_jsonschema() == { "title": "StrOutputParserOutput", "type": "string", } @@ -670,7 +734,7 @@ def test_schema_complex_seq() -> None: class InputType(BaseModel): person: str - assert _schema(chain2.with_types(input_type=InputType).input_schema) == { + assert chain2.with_types(input_type=InputType).get_input_jsonschema() == { "title": "InputType", "type": "object", "properties": {"person": {"title": "Person", "type": "string"}}, @@ -678,7 +742,7 @@ class InputType(BaseModel): } -def test_configurable_fields() -> None: +def test_configurable_fields(snapshot: SnapshotAssertion) -> None: fake_llm = FakeListLLM(responses=["a"]) # str -> List[List[str]] assert fake_llm.invoke("...") == "a" @@ -693,26 +757,10 @@ def test_configurable_fields() -> None: assert fake_llm_configurable.invoke("...") == "a" - assert _schema(fake_llm_configurable.config_schema()) == { - "title": "RunnableConfigurableFieldsConfig", - "type": "object", - "properties": {"configurable": {"$ref": "#/definitions/Configurable"}}, - "definitions": { - "Configurable": { - "title": "Configurable", - "type": "object", - "properties": { - "llm_responses": { - "title": "LLM Responses", - "description": "A list of fake responses for this LLM", - "default": ["a"], - "type": "array", - "items": {"type": "string"}, - } - }, - } - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema( + fake_llm_configurable.get_config_jsonschema() + ) == snapshot(name="schema2") fake_llm_configured = fake_llm_configurable.with_config( configurable={"llm_responses": ["b"]} @@ -736,25 +784,10 @@ def test_configurable_fields() -> None: text="Hello, John!" ) - assert _schema(prompt_configurable.config_schema()) == { - "title": "RunnableConfigurableFieldsConfig", - "type": "object", - "properties": {"configurable": {"$ref": "#/definitions/Configurable"}}, - "definitions": { - "Configurable": { - "title": "Configurable", - "type": "object", - "properties": { - "prompt_template": { - "title": "Prompt Template", - "description": "The prompt template for this chain", - "default": "Hello, {name}!", - "type": "string", - } - }, - } - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema( + prompt_configurable.get_config_jsonschema() + ) == snapshot(name="schema3") prompt_configured = prompt_configurable.with_config( configurable={"prompt_template": "Hello, {name}! {name}!"} @@ -764,11 +797,9 @@ def test_configurable_fields() -> None: text="Hello, John! John!" ) - assert _schema( - prompt_configurable.with_config( - configurable={"prompt_template": "Hello {name} in {lang}"} - ).input_schema - ) == { + assert prompt_configurable.with_config( + configurable={"prompt_template": "Hello {name} in {lang}"} + ).get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": { @@ -782,32 +813,10 @@ def test_configurable_fields() -> None: assert chain_configurable.invoke({"name": "John"}) == "a" - assert _schema(chain_configurable.config_schema()) == { - "title": "RunnableSequenceConfig", - "type": "object", - "properties": {"configurable": {"$ref": "#/definitions/Configurable"}}, - "definitions": { - "Configurable": { - "title": "Configurable", - "type": "object", - "properties": { - "llm_responses": { - "title": "LLM Responses", - "description": "A list of fake responses for this LLM", - "default": ["a"], - "type": "array", - "items": {"type": "string"}, - }, - "prompt_template": { - "title": "Prompt Template", - "description": "The prompt template for this chain", - "default": "Hello, {name}!", - "type": "string", - }, - }, - } - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema( + chain_configurable.get_config_jsonschema() + ) == snapshot(name="schema4") assert ( chain_configurable.with_config( @@ -819,14 +828,12 @@ def test_configurable_fields() -> None: == "c" ) - assert _schema( - chain_configurable.with_config( - configurable={ - "prompt_template": "A very good morning to you, {name} {lang}!", - "llm_responses": ["c"], - } - ).input_schema - ) == { + assert chain_configurable.with_config( + configurable={ + "prompt_template": "A very good morning to you, {name} {lang}!", + "llm_responses": ["c"], + } + ).get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": { @@ -851,38 +858,10 @@ def test_configurable_fields() -> None: "llm3": "a", } - assert _schema(chain_with_map_configurable.config_schema()) == { - "title": "RunnableSequenceConfig", - "type": "object", - "properties": {"configurable": {"$ref": "#/definitions/Configurable"}}, - "definitions": { - "Configurable": { - "title": "Configurable", - "type": "object", - "properties": { - "llm_responses": { - "title": "LLM Responses", - "description": "A list of fake responses for this LLM", - "default": ["a"], - "type": "array", - "items": {"type": "string"}, - }, - "other_responses": { - "title": "Other Responses", - "default": ["a"], - "type": "array", - "items": {"type": "string"}, - }, - "prompt_template": { - "title": "Prompt Template", - "description": "The prompt template for this chain", - "default": "Hello, {name}!", - "type": "string", - }, - }, - } - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema( + chain_with_map_configurable.get_config_jsonschema() + ) == snapshot(name="schema5") assert chain_with_map_configurable.with_config( configurable={ @@ -904,7 +883,7 @@ def test_configurable_alts_factory() -> None: assert fake_llm.with_config(configurable={"llm": "chat"}).invoke("...") == "b" -def test_configurable_fields_prefix_keys() -> None: +def test_configurable_fields_prefix_keys(snapshot: SnapshotAssertion) -> None: fake_chat = FakeListChatModel(responses=["b"]).configurable_fields( responses=ConfigurableFieldMultiOption( id="responses", @@ -952,71 +931,13 @@ def test_configurable_fields_prefix_keys() -> None: chain = prompt | fake_llm - assert _schema(chain.config_schema()) == { - "title": "RunnableSequenceConfig", - "type": "object", - "properties": {"configurable": {"$ref": "#/definitions/Configurable"}}, - "definitions": { - "LLM": { - "title": "LLM", - "description": "An enumeration.", - "enum": ["chat", "default"], - "type": "string", - }, - "Chat_Responses": { - "title": "Chat Responses", - "description": "An enumeration.", - "enum": ["hello", "bye", "helpful"], - "type": "string", - }, - "Prompt_Template": { - "title": "Prompt Template", - "description": "An enumeration.", - "enum": ["hello", "good_morning"], - "type": "string", - }, - "Configurable": { - "title": "Configurable", - "type": "object", - "properties": { - "prompt_template": { - "title": "Prompt Template", - "description": "The prompt template for this chain", - "default": "hello", - "allOf": [{"$ref": "#/definitions/Prompt_Template"}], - }, - "llm": { - "title": "LLM", - "default": "default", - "allOf": [{"$ref": "#/definitions/LLM"}], - }, - # not prefixed because marked as shared - "chat_sleep": { - "title": "Chat Sleep", - "type": "number", - }, - # prefixed for "chat" option - "llm==chat/responses": { - "title": "Chat Responses", - "default": ["hello", "bye"], - "type": "array", - "items": {"$ref": "#/definitions/Chat_Responses"}, - }, - # prefixed for "default" option - "llm==default/responses": { - "title": "LLM Responses", - "description": "A list of fake responses for this LLM", - "default": ["a"], - "type": "array", - "items": {"type": "string"}, - }, - }, - }, - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema(_schema(chain.config_schema())) == snapshot( + name="schema6" + ) -def test_configurable_fields_example() -> None: +def test_configurable_fields_example(snapshot: SnapshotAssertion) -> None: fake_chat = FakeListChatModel(responses=["b"]).configurable_fields( responses=ConfigurableFieldMultiOption( id="chat_responses", @@ -1062,61 +983,10 @@ def test_configurable_fields_example() -> None: assert chain_configurable.invoke({"name": "John"}) == "a" - assert _schema(chain_configurable.config_schema()) == { - "title": "RunnableSequenceConfig", - "type": "object", - "properties": {"configurable": {"$ref": "#/definitions/Configurable"}}, - "definitions": { - "LLM": { - "title": "LLM", - "description": "An enumeration.", - "enum": ["chat", "default"], - "type": "string", - }, - "Chat_Responses": { - "description": "An enumeration.", - "enum": ["hello", "bye", "helpful"], - "title": "Chat Responses", - "type": "string", - }, - "Prompt_Template": { - "description": "An enumeration.", - "enum": ["hello", "good_morning"], - "title": "Prompt Template", - "type": "string", - }, - "Configurable": { - "title": "Configurable", - "type": "object", - "properties": { - "chat_responses": { - "default": ["hello", "bye"], - "items": {"$ref": "#/definitions/Chat_Responses"}, - "title": "Chat Responses", - "type": "array", - }, - "llm": { - "title": "LLM", - "default": "default", - "allOf": [{"$ref": "#/definitions/LLM"}], - }, - "llm_responses": { - "title": "LLM Responses", - "description": "A list of fake responses for this LLM", - "default": ["a"], - "type": "array", - "items": {"type": "string"}, - }, - "prompt_template": { - "title": "Prompt Template", - "description": "The prompt template for this chain", - "default": "hello", - "allOf": [{"$ref": "#/definitions/Prompt_Template"}], - }, - }, - }, - }, - } + if PYDANTIC_VERSION >= (2, 9): + assert _normalize_schema( + chain_configurable.get_config_jsonschema() + ) == snapshot(name="schema7") assert ( chain_configurable.with_config(configurable={"llm": "chat"}).invoke( @@ -1197,7 +1067,7 @@ async def test_passthrough_tap_async(mocker: MockerFixture) -> None: assert [ part async for part in seq.astream( - "hello", dict(metadata={"key": "value"}), my_kwarg="value" + "hello", {"metadata": {"key": "value"}}, my_kwarg="value" ) ] == [5] assert mock.call_args_list == [ @@ -1257,12 +1127,9 @@ async def test_passthrough_tap_async(mocker: MockerFixture) -> None: assert call in mock.call_args_list mock.reset_mock() - assert [ - part - for part in seq.stream( - "hello", dict(metadata={"key": "value"}), my_kwarg="value" - ) - ] == [5] + assert list( + seq.stream("hello", {"metadata": {"key": "value"}}, my_kwarg="value") + ) == [5] assert mock.call_args_list == [ mocker.call("hello", my_kwarg="value"), mocker.call(5), @@ -1287,13 +1154,13 @@ async def test_with_config_metadata_passthrough(mocker: MockerFixture) -> None: ) assert spy.call_args_list[0].args[1:] == ( "hello", - dict( - tags=["a-tag"], - callbacks=None, - recursion_limit=25, - configurable={"hello": "there", "__secret_key": "nahnah"}, - metadata={"hello": "there", "bye": "now"}, - ), + { + "tags": ["a-tag"], + "callbacks": None, + "recursion_limit": 25, + "configurable": {"hello": "there", "__secret_key": "nahnah"}, + "metadata": {"hello": "there", "bye": "now"}, + }, ) spy.reset_mock() @@ -1306,7 +1173,7 @@ async def test_with_config(mocker: MockerFixture) -> None: assert spy.call_args_list == [ mocker.call( "hello", - dict(tags=["a-tag"], metadata={}, configurable={}), + {"tags": ["a-tag"], "metadata": {}, "configurable": {}}, ), ] spy.reset_mock() @@ -1332,19 +1199,19 @@ async def test_with_config(mocker: MockerFixture) -> None: assert [ *fake.with_config(tags=["a-tag"]).stream( - "hello", dict(metadata={"key": "value"}) + "hello", {"metadata": {"key": "value"}} ) ] == [5] assert spy.call_args_list == [ mocker.call( "hello", - dict(tags=["a-tag"], metadata={"key": "value"}, configurable={}), + {"tags": ["a-tag"], "metadata": {"key": "value"}, "configurable": {}}, ), ] spy.reset_mock() assert fake.with_config(recursion_limit=5).batch( - ["hello", "wooorld"], [dict(tags=["a-tag"]), dict(metadata={"key": "value"})] + ["hello", "wooorld"], [{"tags": ["a-tag"]}, {"metadata": {"key": "value"}}] ) == [5, 7] assert len(spy.call_args_list) == 2 @@ -1367,7 +1234,7 @@ async def test_with_config(mocker: MockerFixture) -> None: c for c in fake.with_config(recursion_limit=5).batch_as_completed( ["hello", "wooorld"], - [dict(tags=["a-tag"]), dict(metadata={"key": "value"})], + [{"tags": ["a-tag"]}, {"metadata": {"key": "value"}}], ) ) == [(0, 5), (1, 7)] @@ -1388,7 +1255,7 @@ async def test_with_config(mocker: MockerFixture) -> None: spy.reset_mock() assert fake.with_config(metadata={"a": "b"}).batch( - ["hello", "wooorld"], dict(tags=["a-tag"]) + ["hello", "wooorld"], {"tags": ["a-tag"]} ) == [5, 7] assert len(spy.call_args_list) == 2 for i, call in enumerate(spy.call_args_list): @@ -1398,7 +1265,7 @@ async def test_with_config(mocker: MockerFixture) -> None: spy.reset_mock() assert sorted( - c for c in fake.batch_as_completed(["hello", "wooorld"], dict(tags=["a-tag"])) + c for c in fake.batch_as_completed(["hello", "wooorld"], {"tags": ["a-tag"]}) ) == [(0, 5), (1, 7)] assert len(spy.call_args_list) == 2 for i, call in enumerate(spy.call_args_list): @@ -1416,7 +1283,12 @@ async def test_with_config(mocker: MockerFixture) -> None: assert spy.call_args_list == [ mocker.call( "hello", - dict(callbacks=[handler], metadata={"a": "b"}, configurable={}, tags=[]), + { + "callbacks": [handler], + "metadata": {"a": "b"}, + "configurable": {}, + "tags": [], + }, ), ] spy.reset_mock() @@ -1425,12 +1297,12 @@ async def test_with_config(mocker: MockerFixture) -> None: part async for part in fake.with_config(metadata={"a": "b"}).astream("hello") ] == [5] assert spy.call_args_list == [ - mocker.call("hello", dict(metadata={"a": "b"}, tags=[], configurable={})), + mocker.call("hello", {"metadata": {"a": "b"}, "tags": [], "configurable": {}}), ] spy.reset_mock() assert await fake.with_config(recursion_limit=5, tags=["c"]).abatch( - ["hello", "wooorld"], dict(metadata={"key": "value"}) + ["hello", "wooorld"], {"metadata": {"key": "value"}} ) == [ 5, 7, @@ -1438,23 +1310,23 @@ async def test_with_config(mocker: MockerFixture) -> None: assert spy.call_args_list == [ mocker.call( "hello", - dict( - metadata={"key": "value"}, - tags=["c"], - callbacks=None, - recursion_limit=5, - configurable={}, - ), + { + "metadata": {"key": "value"}, + "tags": ["c"], + "callbacks": None, + "recursion_limit": 5, + "configurable": {}, + }, ), mocker.call( "wooorld", - dict( - metadata={"key": "value"}, - tags=["c"], - callbacks=None, - recursion_limit=5, - configurable={}, - ), + { + "metadata": {"key": "value"}, + "tags": ["c"], + "callbacks": None, + "recursion_limit": 5, + "configurable": {}, + }, ), ] spy.reset_mock() @@ -1464,7 +1336,7 @@ async def test_with_config(mocker: MockerFixture) -> None: c async for c in fake.with_config( recursion_limit=5, tags=["c"] - ).abatch_as_completed(["hello", "wooorld"], dict(metadata={"key": "value"})) + ).abatch_as_completed(["hello", "wooorld"], {"metadata": {"key": "value"}}) ] ) == [ (0, 5), @@ -1474,24 +1346,24 @@ async def test_with_config(mocker: MockerFixture) -> None: first_call = next(call for call in spy.call_args_list if call.args[0] == "hello") assert first_call == mocker.call( "hello", - dict( - metadata={"key": "value"}, - tags=["c"], - callbacks=None, - recursion_limit=5, - configurable={}, - ), + { + "metadata": {"key": "value"}, + "tags": ["c"], + "callbacks": None, + "recursion_limit": 5, + "configurable": {}, + }, ) second_call = next(call for call in spy.call_args_list if call.args[0] == "wooorld") assert second_call == mocker.call( "wooorld", - dict( - metadata={"key": "value"}, - tags=["c"], - callbacks=None, - recursion_limit=5, - configurable={}, - ), + { + "metadata": {"key": "value"}, + "tags": ["c"], + "callbacks": None, + "recursion_limit": 5, + "configurable": {}, + }, ) @@ -1499,20 +1371,20 @@ async def test_default_method_implementations(mocker: MockerFixture) -> None: fake = FakeRunnable() spy = mocker.spy(fake, "invoke") - assert fake.invoke("hello", dict(tags=["a-tag"])) == 5 + assert fake.invoke("hello", {"tags": ["a-tag"]}) == 5 assert spy.call_args_list == [ - mocker.call("hello", dict(tags=["a-tag"])), + mocker.call("hello", {"tags": ["a-tag"]}), ] spy.reset_mock() - assert [*fake.stream("hello", dict(metadata={"key": "value"}))] == [5] + assert [*fake.stream("hello", {"metadata": {"key": "value"}})] == [5] assert spy.call_args_list == [ - mocker.call("hello", dict(metadata={"key": "value"})), + mocker.call("hello", {"metadata": {"key": "value"}}), ] spy.reset_mock() assert fake.batch( - ["hello", "wooorld"], [dict(tags=["a-tag"]), dict(metadata={"key": "value"})] + ["hello", "wooorld"], [{"tags": ["a-tag"]}, {"metadata": {"key": "value"}}] ) == [5, 7] assert len(spy.call_args_list) == 2 @@ -1530,9 +1402,9 @@ async def test_default_method_implementations(mocker: MockerFixture) -> None: spy.reset_mock() - assert fake.batch(["hello", "wooorld"], dict(tags=["a-tag"])) == [5, 7] + assert fake.batch(["hello", "wooorld"], {"tags": ["a-tag"]}) == [5, 7] assert len(spy.call_args_list) == 2 - assert set(call.args[0] for call in spy.call_args_list) == {"hello", "wooorld"} + assert {call.args[0] for call in spy.call_args_list} == {"hello", "wooorld"} for call in spy.call_args_list: assert call.args[1].get("tags") == ["a-tag"] assert call.args[1].get("metadata") == {} @@ -1540,7 +1412,7 @@ async def test_default_method_implementations(mocker: MockerFixture) -> None: assert await fake.ainvoke("hello", config={"callbacks": []}) == 5 assert spy.call_args_list == [ - mocker.call("hello", dict(callbacks=[])), + mocker.call("hello", {"callbacks": []}), ] spy.reset_mock() @@ -1550,19 +1422,19 @@ async def test_default_method_implementations(mocker: MockerFixture) -> None: ] spy.reset_mock() - assert await fake.abatch(["hello", "wooorld"], dict(metadata={"key": "value"})) == [ + assert await fake.abatch(["hello", "wooorld"], {"metadata": {"key": "value"}}) == [ 5, 7, ] - assert set(call.args[0] for call in spy.call_args_list) == {"hello", "wooorld"} + assert {call.args[0] for call in spy.call_args_list} == {"hello", "wooorld"} for call in spy.call_args_list: - assert call.args[1] == dict( - metadata={"key": "value"}, - tags=[], - callbacks=None, - recursion_limit=25, - configurable={}, - ) + assert call.args[1] == { + "metadata": {"key": "value"}, + "tags": [], + "callbacks": None, + "recursion_limit": 25, + "configurable": {}, + } async def test_prompt() -> None: @@ -1830,8 +1702,8 @@ def test_prompt_with_chat_model( chat_spy = mocker.spy(chat.__class__, "invoke") tracer = FakeTracer() assert chain.invoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) - ) == _AnyIdAIMessage(content="foo") + {"question": "What is your name?"}, {"callbacks": [tracer]} + ) == _any_id_ai_message(content="foo") assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert chat_spy.call_args.args[1] == ChatPromptValue( messages=[ @@ -1854,10 +1726,10 @@ def test_prompt_with_chat_model( {"question": "What is your name?"}, {"question": "What is your favorite color?"}, ], - dict(callbacks=[tracer]), + {"callbacks": [tracer]}, ) == [ - _AnyIdAIMessage(content="foo"), - _AnyIdAIMessage(content="foo"), + _any_id_ai_message(content="foo"), + _any_id_ai_message(content="foo"), ] assert prompt_spy.call_args.args[1] == [ {"question": "What is your name?"}, @@ -1895,11 +1767,11 @@ def test_prompt_with_chat_model( chat_spy = mocker.spy(chat.__class__, "stream") tracer = FakeTracer() assert [ - *chain.stream({"question": "What is your name?"}, dict(callbacks=[tracer])) + *chain.stream({"question": "What is your name?"}, {"callbacks": [tracer]}) ] == [ - _AnyIdAIMessageChunk(content="f"), - _AnyIdAIMessageChunk(content="o"), - _AnyIdAIMessageChunk(content="o"), + _any_id_ai_message_chunk(content="f"), + _any_id_ai_message_chunk(content="o"), + _any_id_ai_message_chunk(content="o"), ] assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert chat_spy.call_args.args[1] == ChatPromptValue( @@ -1936,8 +1808,8 @@ async def test_prompt_with_chat_model_async( chat_spy = mocker.spy(chat.__class__, "ainvoke") tracer = FakeTracer() assert await chain.ainvoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) - ) == _AnyIdAIMessage(content="foo") + {"question": "What is your name?"}, {"callbacks": [tracer]} + ) == _any_id_ai_message(content="foo") assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert chat_spy.call_args.args[1] == ChatPromptValue( messages=[ @@ -1960,10 +1832,10 @@ async def test_prompt_with_chat_model_async( {"question": "What is your name?"}, {"question": "What is your favorite color?"}, ], - dict(callbacks=[tracer]), + {"callbacks": [tracer]}, ) == [ - _AnyIdAIMessage(content="foo"), - _AnyIdAIMessage(content="foo"), + _any_id_ai_message(content="foo"), + _any_id_ai_message(content="foo"), ] assert prompt_spy.call_args.args[1] == [ {"question": "What is your name?"}, @@ -2003,12 +1875,12 @@ async def test_prompt_with_chat_model_async( assert [ a async for a in chain.astream( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) ] == [ - _AnyIdAIMessageChunk(content="f"), - _AnyIdAIMessageChunk(content="o"), - _AnyIdAIMessageChunk(content="o"), + _any_id_ai_message_chunk(content="f"), + _any_id_ai_message_chunk(content="o"), + _any_id_ai_message_chunk(content="o"), ] assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert chat_spy.call_args.args[1] == ChatPromptValue( @@ -2042,9 +1914,7 @@ async def test_prompt_with_llm( llm_spy = mocker.spy(llm.__class__, "ainvoke") tracer = FakeTracer() assert ( - await chain.ainvoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) - ) + await chain.ainvoke({"question": "What is your name?"}, {"callbacks": [tracer]}) == "foo" ) assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} @@ -2067,7 +1937,7 @@ async def test_prompt_with_llm( {"question": "What is your name?"}, {"question": "What is your favorite color?"}, ], - dict(callbacks=[tracer]), + {"callbacks": [tracer]}, ) == ["bar", "foo"] assert prompt_spy.call_args.args[1] == [ {"question": "What is your name?"}, @@ -2098,7 +1968,7 @@ async def test_prompt_with_llm( assert [ token async for token in chain.astream( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) ] == ["bar"] assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} @@ -2200,6 +2070,7 @@ async def test_prompt_with_llm( ], "llm_output": None, "run": None, + "type": "LLMResult", }, }, { @@ -2241,7 +2112,7 @@ async def test_prompt_with_llm_parser( parser_spy = mocker.spy(parser.__class__, "ainvoke") tracer = FakeTracer() assert await chain.ainvoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) == ["bear", "dog", "cat"] assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert llm_spy.call_args.args[1] == ChatPromptValue( @@ -2266,7 +2137,7 @@ async def test_prompt_with_llm_parser( {"question": "What is your name?"}, {"question": "What is your favorite color?"}, ], - dict(callbacks=[tracer]), + {"callbacks": [tracer]}, ) == [["tomato", "lettuce", "onion"], ["bear", "dog", "cat"]] assert prompt_spy.call_args.args[1] == [ {"question": "What is your name?"}, @@ -2302,7 +2173,7 @@ async def test_prompt_with_llm_parser( assert [ token async for token in chain.astream( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) ] == [["tomato"], ["lettuce"], ["onion"]] assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} @@ -2413,6 +2284,7 @@ async def test_prompt_with_llm_parser( ], "llm_output": None, "run": None, + "type": "LLMResult", }, }, { @@ -2625,9 +2497,7 @@ async def passthrough(input: Any) -> Any: llm_spy = mocker.spy(llm.__class__, "ainvoke") tracer = FakeTracer() assert ( - await chain.ainvoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) - ) + await chain.ainvoke({"question": "What is your name?"}, {"callbacks": [tracer]}) == "foo" ) assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} @@ -2669,7 +2539,7 @@ def test_prompt_with_chat_model_and_parser( parser_spy = mocker.spy(parser.__class__, "invoke") tracer = FakeTracer() assert chain.invoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) == ["foo", "bar"] assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} assert chat_spy.call_args.args[1] == ChatPromptValue( @@ -2678,7 +2548,7 @@ def test_prompt_with_chat_model_and_parser( HumanMessage(content="What is your name?"), ] ) - assert parser_spy.call_args.args[1] == _AnyIdAIMessage(content="foo, bar") + assert parser_spy.call_args.args[1] == _any_id_ai_message(content="foo, bar") assert tracer.runs == snapshot @@ -2702,8 +2572,7 @@ def test_combining_sequences( assert chain.first == prompt assert chain.middle == [chat] assert chain.last == parser - if sys.version_info >= (3, 9): - assert dumps(chain, pretty=True) == snapshot + assert dumps(chain, pretty=True) == snapshot prompt2 = ( SystemMessagePromptTemplate.from_template("You are a nicer assistant.") @@ -2711,7 +2580,7 @@ def test_combining_sequences( ) chat2 = FakeListChatModel(responses=["baz, qux"]) parser2 = CommaSeparatedListOutputParser() - input_formatter: RunnableLambda[List[str], Dict[str, Any]] = RunnableLambda( + input_formatter: RunnableLambda[list[str], dict[str, Any]] = RunnableLambda( lambda x: {"question": x[0] + x[1]} ) @@ -2721,8 +2590,7 @@ def test_combining_sequences( assert chain2.first == input_formatter assert chain2.middle == [prompt2, chat2] assert chain2.last == parser2 - if sys.version_info >= (3, 9): - assert dumps(chain2, pretty=True) == snapshot + assert dumps(chain2, pretty=True) == snapshot combined_chain = cast(RunnableSequence, chain | chain2) @@ -2735,17 +2603,15 @@ def test_combining_sequences( chat2, ] assert combined_chain.last == parser2 - if sys.version_info >= (3, 9): - assert dumps(combined_chain, pretty=True) == snapshot + assert dumps(combined_chain, pretty=True) == snapshot # Test invoke tracer = FakeTracer() assert combined_chain.invoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) == ["baz", "qux"] - if sys.version_info >= (3, 9): - assert tracer.runs == snapshot + assert tracer.runs == snapshot @freeze_time("2023-01-01") @@ -2792,7 +2658,7 @@ def test_seq_dict_prompt_llm( chat_spy = mocker.spy(chat.__class__, "invoke") parser_spy = mocker.spy(parser.__class__, "invoke") tracer = FakeTracer() - assert chain.invoke("What is your name?", dict(callbacks=[tracer])) == [ + assert chain.invoke("What is your name?", {"callbacks": [tracer]}) == [ "foo", "bar", ] @@ -2803,17 +2669,19 @@ def test_seq_dict_prompt_llm( } assert chat_spy.call_args.args[1] == ChatPromptValue( messages=[ - SystemMessage(content="You are a nice assistant."), + SystemMessage( + content="You are a nice assistant.", + additional_kwargs={}, + response_metadata={}, + ), HumanMessage( - content="""Context: -[Document(page_content='foo'), Document(page_content='bar')] - -Question: -What is your name?""" + content="Context:\n[Document(metadata={}, page_content='foo'), Document(metadata={}, page_content='bar')]\n\nQuestion:\nWhat is your name?", + additional_kwargs={}, + response_metadata={}, ), ] ) - assert parser_spy.call_args.args[1] == _AnyIdAIMessage(content="foo, bar") + assert parser_spy.call_args.args[1] == _any_id_ai_message(content="foo, bar") assert len([r for r in tracer.runs if r.parent_run_id is None]) == 1 parent_run = next(r for r in tracer.runs if r.parent_run_id is None) assert len(parent_run.child_runs) == 4 @@ -2857,9 +2725,9 @@ def test_seq_prompt_dict(mocker: MockerFixture, snapshot: SnapshotAssertion) -> llm_spy = mocker.spy(llm.__class__, "invoke") tracer = FakeTracer() assert chain.invoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) == { - "chat": _AnyIdAIMessage(content="i'm a chatbot"), + "chat": _any_id_ai_message(content="i'm a chatbot"), "llm": "i'm a textbot", } assert prompt_spy.call_args.args[1] == {"question": "What is your name?"} @@ -2920,7 +2788,7 @@ async def test_router_runnable( router_spy = mocker.spy(router.__class__, "invoke") tracer = FakeTracer() assert ( - chain.invoke({"key": "math", "question": "2 + 2"}, dict(callbacks=[tracer])) + chain.invoke({"key": "math", "question": "2 + 2"}, {"callbacks": [tracer]}) == "4" ) assert router_spy.call_args.args[1] == { @@ -2950,17 +2818,17 @@ async def test_higher_order_lambda_runnable( input={"question": lambda x: x["question"]}, ) - def router(input: Dict[str, Any]) -> Runnable: + def router(input: dict[str, Any]) -> Runnable: if input["key"] == "math": return itemgetter("input") | math_chain elif input["key"] == "english": return itemgetter("input") | english_chain else: - raise ValueError(f"Unknown key: {input['key']}") + msg = f"Unknown key: {input['key']}" + raise ValueError(msg) chain: Runnable = input_map | router - if sys.version_info >= (3, 9): - assert dumps(chain, pretty=True) == snapshot + assert dumps(chain, pretty=True) == snapshot result = chain.invoke({"key": "math", "question": "2 + 2"}) assert result == "4" @@ -2982,7 +2850,7 @@ def router(input: Dict[str, Any]) -> Runnable: math_spy = mocker.spy(math_chain.__class__, "invoke") tracer = FakeTracer() assert ( - chain.invoke({"key": "math", "question": "2 + 2"}, dict(callbacks=[tracer])) + chain.invoke({"key": "math", "question": "2 + 2"}, {"callbacks": [tracer]}) == "4" ) assert math_spy.call_args.args[1] == { @@ -3000,20 +2868,21 @@ def router(input: Dict[str, Any]) -> Runnable: assert len(math_run.child_runs) == 3 # Test ainvoke - async def arouter(input: Dict[str, Any]) -> Runnable: + async def arouter(input: dict[str, Any]) -> Runnable: if input["key"] == "math": return itemgetter("input") | math_chain elif input["key"] == "english": return itemgetter("input") | english_chain else: - raise ValueError(f"Unknown key: {input['key']}") + msg = f"Unknown key: {input['key']}" + raise ValueError(msg) achain: Runnable = input_map | arouter math_spy = mocker.spy(math_chain.__class__, "ainvoke") tracer = FakeTracer() assert ( await achain.ainvoke( - {"key": "math", "question": "2 + 2"}, dict(callbacks=[tracer]) + {"key": "math", "question": "2 + 2"}, {"callbacks": [tracer]} ) == "4" ) @@ -3067,9 +2936,9 @@ def test_seq_prompt_map(mocker: MockerFixture, snapshot: SnapshotAssertion) -> N llm_spy = mocker.spy(llm.__class__, "invoke") tracer = FakeTracer() assert chain.invoke( - {"question": "What is your name?"}, dict(callbacks=[tracer]) + {"question": "What is your name?"}, {"callbacks": [tracer]} ) == { - "chat": _AnyIdAIMessage(content="i'm a chatbot"), + "chat": _any_id_ai_message(content="i'm a chatbot"), "llm": "i'm a textbot", "passthrough": ChatPromptValue( messages=[ @@ -3133,7 +3002,7 @@ def test_map_stream() -> None: assert streamed_chunks[0] in [ {"passthrough": prompt.invoke({"question": "What is your name?"})}, {"llm": "i"}, - {"chat": _AnyIdAIMessageChunk(content="i")}, + {"chat": _any_id_ai_message_chunk(content="i")}, ] assert len(streamed_chunks) == len(chat_res) + len(llm_res) + 1 assert all(len(c.keys()) == 1 for c in streamed_chunks) @@ -3146,7 +3015,7 @@ def test_map_stream() -> None: chain_pick_one = chain.pick("llm") - assert _schema(chain_pick_one.output_schema) == { + assert chain_pick_one.get_output_jsonschema() == { "title": "RunnableSequenceOutput", "type": "string", } @@ -3169,13 +3038,14 @@ def test_map_stream() -> None: ["llm", "hello"] ) - assert _schema(chain_pick_two.output_schema) == { + assert chain_pick_two.get_output_jsonschema() == { "title": "RunnableSequenceOutput", "type": "object", "properties": { "hello": {"title": "Hello", "type": "string"}, "llm": {"title": "Llm", "type": "string"}, }, + "required": ["llm", "hello"], } stream = chain_pick_two.stream({"question": "What is your name?"}) @@ -3191,8 +3061,15 @@ def test_map_stream() -> None: assert streamed_chunks[0] in [ {"llm": "i"}, - {"chat": _AnyIdAIMessageChunk(content="i")}, + {"chat": _any_id_ai_message_chunk(content="i")}, ] + if not ( # TODO(Rewrite properly) statement above + streamed_chunks[0] == {"llm": "i"} + or {"chat": _any_id_ai_message_chunk(content="i")} + ): + msg = f"Got an unexpected chunk: {streamed_chunks[0]}" + raise AssertionError(msg) + assert len(streamed_chunks) == len(llm_res) + len(chat_res) @@ -3234,7 +3111,7 @@ def test_map_stream_iterator_input() -> None: assert streamed_chunks[0] in [ {"passthrough": "i"}, {"llm": "i"}, - {"chat": _AnyIdAIMessageChunk(content="i")}, + {"chat": _any_id_ai_message_chunk(content="i")}, ] assert len(streamed_chunks) == len(chat_res) + len(llm_res) + len(llm_res) assert all(len(c.keys()) == 1 for c in streamed_chunks) @@ -3278,7 +3155,7 @@ async def test_map_astream() -> None: assert streamed_chunks[0] in [ {"passthrough": prompt.invoke({"question": "What is your name?"})}, {"llm": "i"}, - {"chat": _AnyIdAIMessageChunk(content="i")}, + {"chat": _any_id_ai_message_chunk(content="i")}, ] assert len(streamed_chunks) == len(chat_res) + len(llm_res) + 1 assert all(len(c.keys()) == 1 for c in streamed_chunks) @@ -3473,9 +3350,9 @@ def my_function(*args: Any, **kwargs: Any) -> int: return 3 + kwargs.get("n", 0) runnable = RunnableLambda(my_function).bind(n=1) - assert 4 == runnable.invoke({}) + assert runnable.invoke({}) == 4 chunks = list(runnable.stream({})) - assert [4] == chunks + assert chunks == [4] async def test_bind_with_lambda_async() -> None: @@ -3483,9 +3360,9 @@ def my_function(*args: Any, **kwargs: Any) -> int: return 3 + kwargs.get("n", 0) runnable = RunnableLambda(my_function).bind(n=1) - assert 4 == await runnable.ainvoke({}) + assert await runnable.ainvoke({}) == 4 chunks = [item async for item in runnable.astream({})] - assert [4] == chunks + assert chunks == [4] def test_deep_stream() -> None: @@ -3534,19 +3411,20 @@ def test_deep_stream_assign() -> None: chain_with_assign = chain.assign(hello=itemgetter("str") | llm) - assert _schema(chain_with_assign.input_schema) == { + assert chain_with_assign.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, "required": ["question"], } - assert _schema(chain_with_assign.output_schema) == { + assert chain_with_assign.get_output_jsonschema() == { "title": "RunnableSequenceOutput", "type": "object", "properties": { "str": {"title": "Str", "type": "string"}, "hello": {"title": "Hello", "type": "string"}, }, + "required": ["str", "hello"], } chunks = [] @@ -3585,19 +3463,20 @@ def test_deep_stream_assign() -> None: hello=itemgetter("str") | llm, ) - assert _schema(chain_with_assign_shadow.input_schema) == { + assert chain_with_assign_shadow.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, "required": ["question"], } - assert _schema(chain_with_assign_shadow.output_schema) == { + assert chain_with_assign_shadow.get_output_jsonschema() == { "title": "RunnableSequenceOutput", "type": "object", "properties": { "str": {"title": "Str"}, "hello": {"title": "Hello", "type": "string"}, }, + "required": ["str", "hello"], } chunks = [] @@ -3660,19 +3539,20 @@ async def test_deep_astream_assign() -> None: hello=itemgetter("str") | llm, ) - assert _schema(chain_with_assign.input_schema) == { + assert chain_with_assign.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, "required": ["question"], } - assert _schema(chain_with_assign.output_schema) == { + assert chain_with_assign.get_output_jsonschema() == { "title": "RunnableSequenceOutput", "type": "object", "properties": { "str": {"title": "Str", "type": "string"}, "hello": {"title": "Hello", "type": "string"}, }, + "required": ["str", "hello"], } chunks = [] @@ -3711,19 +3591,20 @@ async def test_deep_astream_assign() -> None: hello=itemgetter("str") | llm, ) - assert _schema(chain_with_assign_shadow.input_schema) == { + assert chain_with_assign_shadow.get_input_jsonschema() == { "title": "PromptInput", "type": "object", "properties": {"question": {"title": "Question", "type": "string"}}, "required": ["question"], } - assert _schema(chain_with_assign_shadow.output_schema) == { + assert chain_with_assign_shadow.get_output_jsonschema() == { "title": "RunnableSequenceOutput", "type": "object", "properties": { "str": {"title": "Str"}, "hello": {"title": "Hello", "type": "string"}, }, + "required": ["str", "hello"], } chunks = [] @@ -3768,7 +3649,7 @@ async def test_runnable_sequence_atransform() -> None: assert "".join(chunks) == "foo-lish" -class FakeSplitIntoListParser(BaseOutputParser[List[str]]): +class FakeSplitIntoListParser(BaseOutputParser[list[str]]): """Parse the output of an LLM call to a comma-separated list.""" @classmethod @@ -3782,7 +3663,7 @@ def get_format_instructions(self) -> str: "eg: `foo, bar, baz`" ) - def parse(self, text: str) -> List[str]: + def parse(self, text: str) -> list[str]: """Parse the output of an LLM call.""" return text.strip().split(", ") @@ -3836,9 +3717,11 @@ def _simple_recursion(x: int) -> Union[int, Runnable]: def test_retrying(mocker: MockerFixture) -> None: def _lambda(x: int) -> Union[int, Runnable]: if x == 1: - raise ValueError("x is 1") + msg = "x is 1" + raise ValueError(msg) elif x == 2: - raise RuntimeError("x is 2") + msg = "x is 2" + raise RuntimeError(msg) else: return x @@ -3899,9 +3782,11 @@ def _lambda(x: int) -> Union[int, Runnable]: async def test_async_retrying(mocker: MockerFixture) -> None: def _lambda(x: int) -> Union[int, Runnable]: if x == 1: - raise ValueError("x is 1") + msg = "x is 1" + raise ValueError(msg) elif x == 2: - raise RuntimeError("x is 2") + msg = "x is 2" + raise RuntimeError(msg) else: return x @@ -3963,7 +3848,7 @@ def _lambda(x: int) -> Union[int, Runnable]: def test_runnable_lambda_stream() -> None: """Test that stream works for both normal functions & those returning Runnable.""" # Normal output should work - output: List[Any] = [chunk for chunk in RunnableLambda(range).stream(5)] + output: list[Any] = list(RunnableLambda(range).stream(5)) assert output == [range(5)] # Runnable output should also work @@ -3994,7 +3879,8 @@ def test_runnable_lambda_stream_with_callbacks() -> None: def raise_value_error(x: int) -> int: """Raise a value error.""" - raise ValueError("x is too large") + msg = "x is too large" + raise ValueError(msg) # Check that the chain on error is invoked with pytest.raises(ValueError): @@ -4003,7 +3889,7 @@ def raise_value_error(x: int) -> int: assert len(tracer.runs) == 2 assert "ValueError('x is too large')" in str(tracer.runs[1].error) - assert tracer.runs[1].outputs is None + assert not tracer.runs[1].outputs async def test_runnable_lambda_astream() -> None: @@ -4017,7 +3903,7 @@ async def afunc(*args: Any, **kwargs: Any) -> Any: return afunc # Normal output should work - output: List[Any] = [ + output: list[Any] = [ chunk async for chunk in RunnableLambda( func=id, @@ -4072,7 +3958,8 @@ async def test_runnable_lambda_astream_with_callbacks() -> None: def raise_value_error(x: int) -> int: """Raise a value error.""" - raise ValueError("x is too large") + msg = "x is too large" + raise ValueError(msg) # Check that the chain on error is invoked with pytest.raises(ValueError): @@ -4081,7 +3968,7 @@ def raise_value_error(x: int) -> int: assert len(tracer.runs) == 2 assert "ValueError('x is too large')" in str(tracer.runs[1].error) - assert tracer.runs[1].outputs is None + assert not tracer.runs[1].outputs @freeze_time("2023-01-01") @@ -4090,14 +3977,16 @@ class ControlledExceptionRunnable(Runnable[str, str]): def __init__(self, fail_starts_with: str) -> None: self.fail_starts_with = fail_starts_with - def invoke(self, input: Any, config: Optional[RunnableConfig] = None) -> Any: - raise NotImplementedError() + def invoke( + self, input: Any, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Any: + raise NotImplementedError def _batch( self, - inputs: List[str], - ) -> List: - outputs: List[Any] = [] + inputs: list[str], + ) -> list: + outputs: list[Any] = [] for input in inputs: if input.startswith(self.fail_starts_with): outputs.append(ValueError()) @@ -4107,12 +3996,12 @@ def _batch( def batch( self, - inputs: List[str], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[str], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: return self._batch_with_config( self._batch, inputs, @@ -4137,7 +4026,7 @@ def batch( spy = mocker.spy(ControlledExceptionRunnable, "batch") tracer = FakeTracer() inputs = ["foo", "bar", "baz", "qux"] - outputs = chain.batch(inputs, dict(callbacks=[tracer]), return_exceptions=True) + outputs = chain.batch(inputs, {"callbacks": [tracer]}, return_exceptions=True) assert len(outputs) == 4 assert isinstance(outputs[0], ValueError) assert isinstance(outputs[1], ValueError) @@ -4209,14 +4098,16 @@ class ControlledExceptionRunnable(Runnable[str, str]): def __init__(self, fail_starts_with: str) -> None: self.fail_starts_with = fail_starts_with - def invoke(self, input: Any, config: Optional[RunnableConfig] = None) -> Any: - raise NotImplementedError() + def invoke( + self, input: Any, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Any: + raise NotImplementedError async def _abatch( self, - inputs: List[str], - ) -> List: - outputs: List[Any] = [] + inputs: list[str], + ) -> list: + outputs: list[Any] = [] for input in inputs: if input.startswith(self.fail_starts_with): outputs.append(ValueError()) @@ -4226,12 +4117,12 @@ async def _abatch( async def abatch( self, - inputs: List[str], - config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, + inputs: list[str], + config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: return await self._abatch_with_config( self._abatch, inputs, @@ -4257,7 +4148,7 @@ async def abatch( tracer = FakeTracer() inputs = ["foo", "bar", "baz", "qux"] outputs = await chain.abatch( - inputs, dict(callbacks=[tracer]), return_exceptions=True + inputs, {"callbacks": [tracer]}, return_exceptions=True ) assert len(outputs) == 4 assert isinstance(outputs[0], ValueError) @@ -4365,7 +4256,10 @@ def test_runnable_branch_init_coercion(branches: Sequence[Any]) -> None: assert isinstance(body, Runnable) assert isinstance(runnable.default, Runnable) - assert _schema(runnable.input_schema) == {"title": "RunnableBranchInput"} + assert _schema(runnable.input_schema) == { + "title": "RunnableBranchInput", + "type": "integer", + } def test_runnable_branch_invoke_call_counts(mocker: MockerFixture) -> None: @@ -4400,7 +4294,8 @@ def test_runnable_branch_invoke() -> None: # Test with single branch def raise_value_error(x: int) -> int: """Raise a value error.""" - raise ValueError("x is too large") + msg = "x is too large" + raise ValueError(msg) branch = RunnableBranch[int, int]( (lambda x: x > 100, raise_value_error), @@ -4464,7 +4359,8 @@ def test_runnable_branch_invoke_callbacks() -> None: def raise_value_error(x: int) -> int: """Raise a value error.""" - raise ValueError("x is too large") + msg = "x is too large" + raise ValueError(msg) branch = RunnableBranch[int, int]( (lambda x: x > 100, raise_value_error), @@ -4482,7 +4378,7 @@ def raise_value_error(x: int) -> int: assert len(tracer.runs) == 2 assert "ValueError('x is too large')" in str(tracer.runs[1].error) - assert tracer.runs[1].outputs is None + assert not tracer.runs[1].outputs async def test_runnable_branch_ainvoke_callbacks() -> None: @@ -4491,7 +4387,8 @@ async def test_runnable_branch_ainvoke_callbacks() -> None: async def raise_value_error(x: int) -> int: """Raise a value error.""" - raise ValueError("x is too large") + msg = "x is too large" + raise ValueError(msg) branch = RunnableBranch[int, int]( (lambda x: x > 100, raise_value_error), @@ -4509,7 +4406,7 @@ async def raise_value_error(x: int) -> int: assert len(tracer.runs) == 2 assert "ValueError('x is too large')" in str(tracer.runs[1].error) - assert tracer.runs[1].outputs is None + assert not tracer.runs[1].outputs async def test_runnable_branch_abatch() -> None: @@ -4545,7 +4442,8 @@ def test_runnable_branch_stream_with_callbacks() -> None: def raise_value_error(x: str) -> Any: """Raise a value error.""" - raise ValueError(f"x is {x}") + msg = f"x is {x}" + raise ValueError(msg) llm_res = "i'm a textbot" # sleep to better simulate a real stream @@ -4571,7 +4469,7 @@ def raise_value_error(x: str) -> Any: assert len(tracer.runs) == 2 assert "ValueError('x is error')" in str(tracer.runs[1].error) - assert tracer.runs[1].outputs is None + assert not tracer.runs[1].outputs assert list(branch.stream("bye", config=config)) == ["bye"] @@ -4622,7 +4520,8 @@ async def test_runnable_branch_astream_with_callbacks() -> None: def raise_value_error(x: str) -> Any: """Raise a value error.""" - raise ValueError(f"x is {x}") + msg = f"x is {x}" + raise ValueError(msg) llm_res = "i'm a textbot" # sleep to better simulate a real stream @@ -4648,7 +4547,7 @@ def raise_value_error(x: str) -> Any: assert len(tracer.runs) == 2 assert "ValueError('x is error')" in str(tracer.runs[1].error) - assert tracer.runs[1].outputs is None + assert not tracer.runs[1].outputs assert [_ async for _ in branch.astream("bye", config=config)] == ["bye"] @@ -4712,7 +4611,7 @@ async def test_tool_from_runnable() -> None: {"question": "What up"} ) assert chain_tool.description.endswith(repr(chain)) - assert _schema(chain_tool.args_schema) == _schema(chain.input_schema) + assert _schema(chain_tool.args_schema) == chain.get_input_jsonschema() assert _schema(chain_tool.args_schema) == { "properties": {"question": {"title": "Question", "type": "string"}}, "title": "PromptInput", @@ -4731,8 +4630,8 @@ def gen(input: Iterator[Any]) -> Iterator[int]: runnable = RunnableGenerator(gen) - assert _schema(runnable.input_schema) == {"title": "gen_input"} - assert _schema(runnable.output_schema) == { + assert runnable.get_input_jsonschema() == {"title": "gen_input"} + assert runnable.get_output_jsonschema() == { "title": "gen_output", "type": "integer", } @@ -4783,8 +4682,8 @@ def gen(input: Iterator[Any]) -> Iterator[int]: runnable = RunnableGenerator(gen) - assert _schema(runnable.input_schema) == {"title": "gen_input"} - assert _schema(runnable.output_schema) == { + assert runnable.get_input_jsonschema() == {"title": "gen_input"} + assert runnable.get_output_jsonschema() == { "title": "gen_output", "type": "integer", } @@ -4917,11 +4816,11 @@ def gen(input: str) -> Iterator[int]: yield fake.invoke(input * 2) yield fake.invoke(input * 3) - assert _schema(gen.input_schema) == { + assert gen.get_input_jsonschema() == { "title": "gen_input", "type": "string", } - assert _schema(gen.output_schema) == { + assert gen.get_output_jsonschema() == { "title": "gen_output", "type": "integer", } @@ -4968,11 +4867,11 @@ async def agen(input: str) -> AsyncIterator[int]: yield await fake.ainvoke(input * 2) yield await fake.ainvoke(input * 3) - assert _schema(agen.input_schema) == { + assert agen.get_input_jsonschema() == { "title": "agen_input", "type": "string", } - assert _schema(agen.output_schema) == { + assert agen.get_output_jsonschema() == { "title": "agen_output", "type": "integer", } @@ -5035,8 +4934,8 @@ def fun(input: str) -> int: output += fake.invoke(input * 3) return output - assert _schema(fun.input_schema) == {"title": "fun_input", "type": "string"} - assert _schema(fun.output_schema) == { + assert fun.get_input_jsonschema() == {"title": "fun_input", "type": "string"} + assert fun.get_output_jsonschema() == { "title": "fun_output", "type": "integer", } @@ -5084,8 +4983,8 @@ async def afun(input: str) -> int: output += await fake.ainvoke(input * 3) return output - assert _schema(afun.input_schema) == {"title": "afun_input", "type": "string"} - assert _schema(afun.output_schema) == { + assert afun.get_input_jsonschema() == {"title": "afun_input", "type": "string"} + assert afun.get_output_jsonschema() == { "title": "afun_output", "type": "integer", } @@ -5145,19 +5044,19 @@ async def aplus_one(input: AsyncIterator[int]) -> AsyncIterator[int]: chain: Runnable = RunnableGenerator(gen_indexes, agen_indexes) | plus_one achain = RunnableGenerator(gen_indexes, agen_indexes) | aplus_one - assert _schema(chain.input_schema) == { + assert chain.get_input_jsonschema() == { "title": "gen_indexes_input", "type": "integer", } - assert _schema(chain.output_schema) == { + assert chain.get_output_jsonschema() == { "title": "plus_one_output", "type": "integer", } - assert _schema(achain.input_schema) == { + assert achain.get_input_jsonschema() == { "title": "gen_indexes_input", "type": "integer", } - assert _schema(achain.output_schema) == { + assert achain.get_output_jsonschema() == { "title": "aplus_one_output", "type": "integer", } @@ -5199,13 +5098,13 @@ def idchain_sync(__input: dict) -> bool: chain = RunnablePassthrough.assign(urls=idchain_sync) tracer = FakeTracer() - chain.invoke({"example": [1, 2, 3]}, dict(callbacks=[tracer])) + chain.invoke({"example": [1, 2, 3]}, {"callbacks": [tracer]}) assert tracer.runs[0].name == "RunnableAssign" assert tracer.runs[0].child_runs[0].name == "RunnableParallel" tracer = FakeTracer() - for _ in chain.stream({"example": [1, 2, 3]}, dict(callbacks=[tracer])): + for _ in chain.stream({"example": [1, 2, 3]}, {"callbacks": [tracer]}): pass assert tracer.runs[0].name == "RunnableAssign" @@ -5219,13 +5118,13 @@ def idchain_sync(__input: dict) -> bool: chain = RunnablePassthrough.assign(urls=idchain_sync) tracer = FakeTracer() - await chain.ainvoke({"example": [1, 2, 3]}, dict(callbacks=[tracer])) + await chain.ainvoke({"example": [1, 2, 3]}, {"callbacks": [tracer]}) assert tracer.runs[0].name == "RunnableAssign" assert tracer.runs[0].child_runs[0].name == "RunnableParallel" tracer = FakeTracer() - async for _ in chain.astream({"example": [1, 2, 3]}, dict(callbacks=[tracer])): + async for _ in chain.astream({"example": [1, 2, 3]}, {"callbacks": [tracer]}): pass assert tracer.runs[0].name == "RunnableAssign" @@ -5261,13 +5160,10 @@ def add_one(x: int) -> int: chain = RunnableLambda(add_one) chunks = [] - final_output = None + final_output: Optional[RunLogPatch] = None async for chunk in chain.astream_log(1): chunks.append(chunk) - if final_output is None: - final_output = chunk - else: - final_output = final_output + chunk + final_output = chunk if final_output is None else final_output + chunk run_log = _get_run_log(chunks) state = run_log.state.copy() @@ -5306,13 +5202,13 @@ def test_transform_of_runnable_lambda_with_dicts() -> None: async def test_atransform_of_runnable_lambda_with_dicts() -> None: - async def identity(x: Dict[str, str]) -> Dict[str, str]: + async def identity(x: dict[str, str]) -> dict[str, str]: """Return x.""" return x - runnable = RunnableLambda[Dict[str, str], Dict[str, str]](identity) + runnable = RunnableLambda[dict[str, str], dict[str, str]](identity) - async def chunk_iterator() -> AsyncIterator[Dict[str, str]]: + async def chunk_iterator() -> AsyncIterator[dict[str, str]]: yield {"foo": "a"} yield {"foo": "n"} @@ -5329,11 +5225,11 @@ def test_default_transform_with_dicts() -> None: class CustomRunnable(RunnableSerializable[Input, Output]): def invoke( - self, input: Input, config: Optional[RunnableConfig] = None + self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return cast(Output, input) # type: ignore - runnable = CustomRunnable[Dict[str, str], Dict[str, str]]() + runnable = CustomRunnable[dict[str, str], dict[str, str]]() chunks = iter( [ {"foo": "a"}, @@ -5350,13 +5246,13 @@ async def test_default_atransform_with_dicts() -> None: class CustomRunnable(RunnableSerializable[Input, Output]): def invoke( - self, input: Input, config: Optional[RunnableConfig] = None + self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: return cast(Output, input) - runnable = CustomRunnable[Dict[str, str], Dict[str, str]]() + runnable = CustomRunnable[dict[str, str], dict[str, str]]() - async def chunk_iterator() -> AsyncIterator[Dict[str, str]]: + async def chunk_iterator() -> AsyncIterator[dict[str, str]]: yield {"foo": "a"} yield {"foo": "n"} @@ -5365,7 +5261,7 @@ async def chunk_iterator() -> AsyncIterator[Dict[str, str]]: assert chunks == [{"foo": "n"}] # Test with addable dict - async def chunk_iterator_with_addable() -> AsyncIterator[Dict[str, str]]: + async def chunk_iterator_with_addable() -> AsyncIterator[dict[str, str]]: yield AddableDict({"foo": "a"}) yield AddableDict({"foo": "n"}) @@ -5379,7 +5275,7 @@ async def chunk_iterator_with_addable() -> AsyncIterator[Dict[str, str]]: def test_passthrough_transform_with_dicts() -> None: """Test that default transform works with dicts.""" runnable = RunnablePassthrough(lambda x: x) - chunks = [chunk for chunk in runnable.transform(iter([{"foo": "a"}, {"foo": "n"}]))] + chunks = list(runnable.transform(iter([{"foo": "a"}, {"foo": "n"}]))) assert chunks == [{"foo": "a"}, {"foo": "n"}] @@ -5387,7 +5283,7 @@ async def test_passthrough_atransform_with_dicts() -> None: """Test that default transform works with dicts.""" runnable = RunnablePassthrough(lambda x: x) - async def chunk_iterator() -> AsyncIterator[Dict[str, str]]: + async def chunk_iterator() -> AsyncIterator[dict[str, str]]: yield {"foo": "a"} yield {"foo": "n"} @@ -5456,7 +5352,7 @@ def on_end(run: Run) -> None: assert value2 in shared_state.values(), "Value not found in the dictionary." -async def test_closing_iterator_doesnt_raise_error() -> None: +def test_closing_iterator_doesnt_raise_error() -> None: """Test that closing an iterator calls on_chain_end rather than on_chain_error.""" import time @@ -5465,21 +5361,33 @@ async def test_closing_iterator_doesnt_raise_error() -> None: from langchain_core.output_parsers import StrOutputParser on_chain_error_triggered = False + on_chain_end_triggered = False class MyHandler(BaseCallbackHandler): - async def on_chain_error( + def on_chain_error( self, error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, - tags: Optional[List[str]] = None, + tags: Optional[list[str]] = None, **kwargs: Any, ) -> None: """Run when chain errors.""" nonlocal on_chain_error_triggered on_chain_error_triggered = True + def on_chain_end( + self, + outputs: dict[str, Any], + *, + run_id: UUID, + parent_run_id: Optional[UUID] = None, + **kwargs: Any, + ) -> None: + nonlocal on_chain_end_triggered + on_chain_end_triggered = True + llm = GenericFakeChatModel(messages=iter(["hi there"])) chain = llm | StrOutputParser() chain_ = chain.with_config({"callbacks": [MyHandler()]}) @@ -5490,3 +5398,57 @@ async def on_chain_error( # Wait for a bit to make sure that the callback is called. time.sleep(0.05) assert on_chain_error_triggered is False + assert on_chain_end_triggered is True + + +def test_pydantic_protected_namespaces() -> None: + # Check that protected namespaces (e.g., `model_kwargs`) do not raise warnings + with warnings.catch_warnings(): + warnings.simplefilter("error") + + class CustomChatModel(RunnableSerializable): + model_kwargs: dict[str, Any] = Field(default_factory=dict) + + +def test_schema_for_prompt_and_chat_model() -> None: + """Testing that schema is generated properly when using variable names + + that collide with pydantic attributes. + """ + prompt = ChatPromptTemplate([("system", "{model_json_schema}, {_private}, {json}")]) + chat_res = "i'm a chatbot" + # sleep to better simulate a real stream + chat = FakeListChatModel(responses=[chat_res], sleep=0.01) + chain = prompt | chat + assert ( + chain.invoke( + {"model_json_schema": "hello", "_private": "goodbye", "json": "json"} + ).content + == chat_res + ) + + assert chain.get_input_jsonschema() == { + "properties": { + "model_json_schema": {"title": "Model Json Schema", "type": "string"}, + "_private": {"title": "Private", "type": "string"}, + "json": {"title": "Json", "type": "string"}, + }, + "required": [ + "_private", + "json", + "model_json_schema", + ], + "title": "PromptInput", + "type": "object", + } + + +def test_runnable_assign() -> None: + def add_ten(x: dict[str, int]) -> dict[str, int]: + return {"added": x["input"] + 10} + + mapper = RunnableParallel({"add_step": RunnableLambda(add_ten)}) + runnable_assign = RunnableAssign(mapper) + + result = runnable_assign.invoke({"input": 5}) + assert result == {"input": 5, "add_step": {"added": 15}} diff --git a/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py b/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py index 74a5c27a71d6b..7389d887769d8 100644 --- a/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py +++ b/libs/core/tests/unit_tests/runnables/test_runnable_events_v1.py @@ -1,10 +1,13 @@ """Module that contains tests for runnable.astream_events API.""" import sys +from collections.abc import AsyncIterator, Sequence from itertools import cycle -from typing import Any, AsyncIterator, Dict, List, Sequence, cast +from typing import Any, cast +from typing import Optional as Optional import pytest +from pydantic import BaseModel from langchain_core.callbacks import CallbackManagerForRetrieverRun, Callbacks from langchain_core.chat_history import BaseChatMessageHistory @@ -19,7 +22,6 @@ ) from langchain_core.prompt_values import ChatPromptValue from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder -from langchain_core.pydantic_v1 import BaseModel from langchain_core.retrievers import BaseRetriever from langchain_core.runnables import ( ConfigurableField, @@ -30,25 +32,25 @@ from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.runnables.schema import StreamEvent from langchain_core.tools import tool -from tests.unit_tests.stubs import _AnyIdAIMessage, _AnyIdAIMessageChunk +from tests.unit_tests.stubs import _any_id_ai_message, _any_id_ai_message_chunk -def _with_nulled_run_id(events: Sequence[StreamEvent]) -> List[StreamEvent]: +def _with_nulled_run_id(events: Sequence[StreamEvent]) -> list[StreamEvent]: """Removes the run ids from events.""" for event in events: assert "parent_ids" in event, "Parent ids should be present in the event." assert event["parent_ids"] == [], "Parent ids should be empty." - return cast(List[StreamEvent], [{**event, "run_id": ""} for event in events]) + return cast(list[StreamEvent], [{**event, "run_id": ""} for event in events]) -async def _as_async_iterator(iterable: List) -> AsyncIterator: +async def _as_async_iterator(iterable: list) -> AsyncIterator: """Converts an iterable into an async iterator.""" for item in iterable: yield item -async def _collect_events(events: AsyncIterator[StreamEvent]) -> List[StreamEvent]: +async def _collect_events(events: AsyncIterator[StreamEvent]) -> list[StreamEvent]: """Collect the events and remove the run ids.""" materialized_events = [event async for event in events] events_ = _with_nulled_run_id(materialized_events) @@ -57,7 +59,7 @@ async def _collect_events(events: AsyncIterator[StreamEvent]) -> List[StreamEven return events_ -def _assert_events_equal_allow_superset_metadata(events: List, expected: List) -> None: +def _assert_events_equal_allow_superset_metadata(events: list, expected: list) -> None: """Assert that the events are equal.""" assert len(events) == len(expected) for i, (event, expected_event) in enumerate(zip(events, expected)): @@ -85,7 +87,7 @@ def foo(x: int) -> dict: return {"x": 5} @tool - def get_docs(x: int) -> List[Document]: + def get_docs(x: int) -> list[Document]: """Hello Doc""" return [Document(page_content="hello")] @@ -501,7 +503,7 @@ async def test_astream_events_from_model() -> None: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="hello")}, + "data": {"chunk": _any_id_ai_message_chunk(content="hello")}, "event": "on_chat_model_stream", "metadata": {"a": "b"}, "name": "my_model", @@ -510,7 +512,7 @@ async def test_astream_events_from_model() -> None: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content=" ")}, + "data": {"chunk": _any_id_ai_message_chunk(content=" ")}, "event": "on_chat_model_stream", "metadata": {"a": "b"}, "name": "my_model", @@ -519,7 +521,7 @@ async def test_astream_events_from_model() -> None: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="world!")}, + "data": {"chunk": _any_id_ai_message_chunk(content="world!")}, "event": "on_chat_model_stream", "metadata": {"a": "b"}, "name": "my_model", @@ -528,7 +530,7 @@ async def test_astream_events_from_model() -> None: "tags": ["my_model"], }, { - "data": {"output": _AnyIdAIMessageChunk(content="hello world!")}, + "data": {"output": _any_id_ai_message_chunk(content="hello world!")}, "event": "on_chat_model_end", "metadata": {"a": "b"}, "name": "my_model", @@ -573,7 +575,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="hello")}, + "data": {"chunk": _any_id_ai_message_chunk(content="hello")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -586,7 +588,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content=" ")}, + "data": {"chunk": _any_id_ai_message_chunk(content=" ")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -599,7 +601,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="world!")}, + "data": {"chunk": _any_id_ai_message_chunk(content="world!")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -619,7 +621,9 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: [ { "generation_info": None, - "message": _AnyIdAIMessage(content="hello world!"), + "message": _any_id_ai_message( + content="hello world!" + ), "text": "hello world!", "type": "ChatGeneration", } @@ -627,6 +631,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: ], "llm_output": None, "run": None, + "type": "LLMResult", }, }, "event": "on_chat_model_end", @@ -641,7 +646,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessage(content="hello world!")}, + "data": {"chunk": _any_id_ai_message(content="hello world!")}, "event": "on_chain_stream", "metadata": {}, "name": "i_dont_stream", @@ -650,7 +655,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": [], }, { - "data": {"output": _AnyIdAIMessage(content="hello world!")}, + "data": {"output": _any_id_ai_message(content="hello world!")}, "event": "on_chain_end", "metadata": {}, "name": "i_dont_stream", @@ -695,7 +700,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="hello")}, + "data": {"chunk": _any_id_ai_message_chunk(content="hello")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -708,7 +713,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content=" ")}, + "data": {"chunk": _any_id_ai_message_chunk(content=" ")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -721,7 +726,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="world!")}, + "data": {"chunk": _any_id_ai_message_chunk(content="world!")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -741,7 +746,9 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: [ { "generation_info": None, - "message": _AnyIdAIMessage(content="hello world!"), + "message": _any_id_ai_message( + content="hello world!" + ), "text": "hello world!", "type": "ChatGeneration", } @@ -749,6 +756,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: ], "llm_output": None, "run": None, + "type": "LLMResult", }, }, "event": "on_chat_model_end", @@ -763,7 +771,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessage(content="hello world!")}, + "data": {"chunk": _any_id_ai_message(content="hello world!")}, "event": "on_chain_stream", "metadata": {}, "name": "ai_dont_stream", @@ -772,7 +780,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": [], }, { - "data": {"output": _AnyIdAIMessage(content="hello world!")}, + "data": {"output": _any_id_ai_message(content="hello world!")}, "event": "on_chain_end", "metadata": {}, "name": "ai_dont_stream", @@ -975,6 +983,7 @@ async def test_event_stream_with_simple_chain() -> None: ], "llm_output": None, "run": None, + "type": "LLMResult", }, }, "event": "on_chat_model_end", @@ -1168,14 +1177,17 @@ def with_parameters_and_callbacks(x: int, y: str, callbacks: Callbacks) -> dict: class HardCodedRetriever(BaseRetriever): - documents: List[Document] + documents: list[Document] def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun - ) -> List[Document]: + ) -> list[Document]: return self.documents +HardCodedRetriever.model_rebuild() + + async def test_event_stream_with_retriever() -> None: """Test the event stream with a retriever.""" retriever = HardCodedRetriever( @@ -1258,7 +1270,7 @@ async def test_event_stream_with_retriever_and_formatter() -> None: ] ) - def format_docs(docs: List[Document]) -> str: + def format_docs(docs: list[Document]) -> str: """Format the docs.""" return ", ".join([doc.page_content for doc in docs]) @@ -1584,7 +1596,8 @@ def success(inputs: str) -> str: def fail(inputs: str) -> None: """Simple func.""" - raise Exception("fail") + msg = "fail" + raise Exception(msg) chain = RunnableLambda(success) | RunnableLambda(fail).with_retry( stop_after_attempt=1, @@ -1744,6 +1757,7 @@ async def test_with_llm() -> None: ], "llm_output": None, "run": None, + "type": "LLMResult", }, }, "event": "on_llm_end", @@ -1895,7 +1909,7 @@ def clear(self) -> None: # Here we use a global variable to store the chat message history. # This will make it easier to inspect it to see the underlying results. - store: Dict = {} + store: dict = {} def get_by_session_id(session_id: str) -> BaseChatMessageHistory: """Get a chat message history""" @@ -2020,7 +2034,7 @@ def add_one_(x: int) -> int: async def add_one_proxy_(x: int, config: RunnableConfig) -> int: streaming = add_one.stream(x, config) - results = [result for result in streaming] + results = list(streaming) return results[0] add_one_proxy = RunnableLambda(add_one_proxy_) # type: ignore @@ -2065,7 +2079,7 @@ def add_one(x: int) -> int: def add_one_proxy(x: int, config: RunnableConfig) -> int: # Use sync streaming streaming = add_one_.stream(x, config) - results = [result for result in streaming] + results = list(streaming) return results[0] add_one_proxy_ = RunnableLambda(add_one_proxy) diff --git a/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py b/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py index e021dce177daf..8ceb4bf38b5f1 100644 --- a/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py +++ b/libs/core/tests/unit_tests/runnables/test_runnable_events_v2.py @@ -3,21 +3,17 @@ import asyncio import sys import uuid +from collections.abc import AsyncIterator, Iterable, Iterator, Sequence from functools import partial from itertools import cycle from typing import ( Any, - AsyncIterator, - Dict, - Iterable, - Iterator, - List, Optional, - Sequence, cast, ) import pytest +from pydantic import BaseModel from langchain_core.callbacks import CallbackManagerForRetrieverRun, Callbacks from langchain_core.chat_history import BaseChatMessageHistory @@ -32,7 +28,6 @@ ) from langchain_core.prompt_values import ChatPromptValue from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder -from langchain_core.pydantic_v1 import BaseModel from langchain_core.retrievers import BaseRetriever from langchain_core.runnables import ( ConfigurableField, @@ -52,10 +47,10 @@ from tests.unit_tests.runnables.test_runnable_events_v1 import ( _assert_events_equal_allow_superset_metadata, ) -from tests.unit_tests.stubs import _AnyIdAIMessage, _AnyIdAIMessageChunk +from tests.unit_tests.stubs import _any_id_ai_message, _any_id_ai_message_chunk -def _with_nulled_run_id(events: Sequence[StreamEvent]) -> List[StreamEvent]: +def _with_nulled_run_id(events: Sequence[StreamEvent]) -> list[StreamEvent]: """Removes the run ids from events.""" for event in events: assert "run_id" in event, f"Event {event} does not have a run_id." @@ -68,12 +63,12 @@ def _with_nulled_run_id(events: Sequence[StreamEvent]) -> List[StreamEvent]: ), f"Event {event} parent_ids is not a list." return cast( - List[StreamEvent], + list[StreamEvent], [{**event, "run_id": "", "parent_ids": []} for event in events], ) -async def _as_async_iterator(iterable: List) -> AsyncIterator: +async def _as_async_iterator(iterable: list) -> AsyncIterator: """Converts an iterable into an async iterator.""" for item in iterable: yield item @@ -81,7 +76,7 @@ async def _as_async_iterator(iterable: List) -> AsyncIterator: async def _collect_events( events: AsyncIterator[StreamEvent], with_nulled_ids: bool = True -) -> List[StreamEvent]: +) -> list[StreamEvent]: """Collect the events and remove the run ids.""" materialized_events = [event async for event in events] @@ -102,7 +97,7 @@ def foo(x: int) -> dict: return {"x": 5} @tool - def get_docs(x: int) -> List[Document]: + def get_docs(x: int) -> list[Document]: """Hello Doc""" return [Document(page_content="hello")] @@ -538,7 +533,7 @@ async def test_astream_events_from_model() -> None: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="hello")}, + "data": {"chunk": _any_id_ai_message_chunk(content="hello")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -551,7 +546,7 @@ async def test_astream_events_from_model() -> None: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content=" ")}, + "data": {"chunk": _any_id_ai_message_chunk(content=" ")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -564,7 +559,7 @@ async def test_astream_events_from_model() -> None: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="world!")}, + "data": {"chunk": _any_id_ai_message_chunk(content="world!")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -578,7 +573,7 @@ async def test_astream_events_from_model() -> None: }, { "data": { - "output": _AnyIdAIMessageChunk(content="hello world!"), + "output": _any_id_ai_message_chunk(content="hello world!"), }, "event": "on_chat_model_end", "metadata": { @@ -645,7 +640,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="hello")}, + "data": {"chunk": _any_id_ai_message_chunk(content="hello")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -658,7 +653,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content=" ")}, + "data": {"chunk": _any_id_ai_message_chunk(content=" ")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -671,7 +666,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="world!")}, + "data": {"chunk": _any_id_ai_message_chunk(content="world!")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -686,7 +681,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: { "data": { "input": {"messages": [[HumanMessage(content="hello")]]}, - "output": _AnyIdAIMessage(content="hello world!"), + "output": _any_id_ai_message(content="hello world!"), }, "event": "on_chat_model_end", "metadata": { @@ -700,7 +695,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessage(content="hello world!")}, + "data": {"chunk": _any_id_ai_message(content="hello world!")}, "event": "on_chain_stream", "metadata": {}, "name": "i_dont_stream", @@ -709,7 +704,7 @@ def i_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": [], }, { - "data": {"output": _AnyIdAIMessage(content="hello world!")}, + "data": {"output": _any_id_ai_message(content="hello world!")}, "event": "on_chain_end", "metadata": {}, "name": "i_dont_stream", @@ -754,7 +749,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="hello")}, + "data": {"chunk": _any_id_ai_message_chunk(content="hello")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -767,7 +762,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content=" ")}, + "data": {"chunk": _any_id_ai_message_chunk(content=" ")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -780,7 +775,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessageChunk(content="world!")}, + "data": {"chunk": _any_id_ai_message_chunk(content="world!")}, "event": "on_chat_model_stream", "metadata": { "a": "b", @@ -795,7 +790,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: { "data": { "input": {"messages": [[HumanMessage(content="hello")]]}, - "output": _AnyIdAIMessage(content="hello world!"), + "output": _any_id_ai_message(content="hello world!"), }, "event": "on_chat_model_end", "metadata": { @@ -809,7 +804,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": ["my_model"], }, { - "data": {"chunk": _AnyIdAIMessage(content="hello world!")}, + "data": {"chunk": _any_id_ai_message(content="hello world!")}, "event": "on_chain_stream", "metadata": {}, "name": "ai_dont_stream", @@ -818,7 +813,7 @@ async def ai_dont_stream(input: Any, config: RunnableConfig) -> Any: "tags": [], }, { - "data": {"output": _AnyIdAIMessage(content="hello world!")}, + "data": {"output": _any_id_ai_message(content="hello world!")}, "event": "on_chain_end", "metadata": {}, "name": "ai_dont_stream", @@ -1162,11 +1157,11 @@ def with_parameters_and_callbacks(x: int, y: str, callbacks: Callbacks) -> dict: class HardCodedRetriever(BaseRetriever): - documents: List[Document] + documents: list[Document] def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun - ) -> List[Document]: + ) -> list[Document]: return self.documents @@ -1236,7 +1231,7 @@ async def test_event_stream_with_retriever_and_formatter() -> None: ] ) - def format_docs(docs: List[Document]) -> str: + def format_docs(docs: list[Document]) -> str: """Format the docs.""" return ", ".join([doc.page_content for doc in docs]) @@ -1557,7 +1552,8 @@ def success(inputs: str) -> str: def fail(inputs: str) -> None: """Simple func.""" - raise Exception("fail") + msg = "fail" + raise Exception(msg) chain = RunnableLambda(success) | RunnableLambda(fail).with_retry( stop_after_attempt=1, @@ -1860,7 +1856,7 @@ def clear(self) -> None: # Here we use a global variable to store the chat message history. # This will make it easier to inspect it to see the underlying results. - store: Dict = {} + store: dict = {} def get_by_session_id(session_id: str) -> BaseChatMessageHistory: """Get a chat message history""" @@ -2000,7 +1996,7 @@ def add_one(x: int) -> int: async def add_one_proxy(x: int, config: RunnableConfig) -> int: streaming = add_one_.stream(x, config) - results = [result for result in streaming] + results = list(streaming) return results[0] add_one_proxy_ = RunnableLambda(add_one_proxy) # type: ignore @@ -2040,7 +2036,7 @@ def add_one(x: int) -> int: def add_one_proxy(x: int, config: RunnableConfig) -> int: # Use sync streaming streaming = add_one_.stream(x, config) - results = [result for result in streaming] + results = list(streaming) return results[0] add_one_proxy_ = RunnableLambda(add_one_proxy) @@ -2058,9 +2054,12 @@ def __init__(self, iterable: Iterable[Any]) -> None: """Initialize the runnable.""" self.iterable = iterable - def invoke(self, input: Input, config: Optional[RunnableConfig] = None) -> Output: + def invoke( + self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any + ) -> Output: """Invoke the runnable.""" - raise ValueError("Server side error") + msg = "Server side error" + raise ValueError(msg) def stream( self, @@ -2068,7 +2067,7 @@ def stream( config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: - raise NotImplementedError() + raise NotImplementedError async def astream( self, diff --git a/libs/core/tests/unit_tests/runnables/test_tracing_interops.py b/libs/core/tests/unit_tests/runnables/test_tracing_interops.py index b958636a91309..af6a5e84ce9ee 100644 --- a/libs/core/tests/unit_tests/runnables/test_tracing_interops.py +++ b/libs/core/tests/unit_tests/runnables/test_tracing_interops.py @@ -1,12 +1,16 @@ import json import sys -from typing import Any, AsyncGenerator, Generator +import uuid +from collections.abc import AsyncGenerator, Generator +from typing import Any from unittest.mock import MagicMock, patch import pytest -from langsmith import Client, traceable +from langsmith import Client, get_current_run_tree, traceable from langsmith.run_helpers import tracing_context +from langsmith.run_trees import RunTree from langsmith.utils import get_env_var +from typing_extensions import Literal from langchain_core.runnables.base import RunnableLambda, RunnableParallel from langchain_core.tracers.langchain import LangChainTracer @@ -37,10 +41,15 @@ def test_config_traceable_handoff() -> None: mock_client_ = Client( session=mock_session, api_key="test", auto_batch_tracing=False ) - tracer = LangChainTracer(client=mock_client_) + tracer = LangChainTracer( + client=mock_client_, project_name="another-flippin-project", tags=["such-a-tag"] + ) @traceable def my_great_great_grandchild_function(a: int) -> int: + rt = get_current_run_tree() + assert rt + assert rt.session_name == "another-flippin-project" return a + 1 @RunnableLambda @@ -57,19 +66,28 @@ def my_child_function(a: int) -> int: @traceable() def my_function(a: int) -> int: + rt = get_current_run_tree() + assert rt + assert rt.session_name == "another-flippin-project" + assert rt.parent_run and rt.parent_run.name == "my_parent_function" return my_child_function(a) def my_parent_function(a: int) -> int: + rt = get_current_run_tree() + assert rt + assert rt.session_name == "another-flippin-project" return my_function(a) my_parent_runnable = RunnableLambda(my_parent_function) assert my_parent_runnable.invoke(1, {"callbacks": [tracer]}) == 6 posts = _get_posts(mock_client_) + assert all(post["session_name"] == "another-flippin-project" for post in posts) # There should have been 6 runs created, # one for each function invocation assert len(posts) == 6 name_to_body = {post["name"]: post for post in posts} + ordered_names = [ "my_parent_function", "my_function", @@ -99,6 +117,7 @@ def my_parent_function(a: int) -> int: ) last_dotted_order = dotted_order parent_run_id = id_ + assert "such-a-tag" in name_to_body["my_parent_function"]["tags"] @pytest.mark.skipif( @@ -190,9 +209,11 @@ def my_func(a: int) -> int: get_env_var.cache_clear() env_on = env == "true" - with patch.dict("os.environ", {"LANGSMITH_TRACING": env}): - with tracing_context(enabled=enabled): - RunnableLambda(my_func).invoke(1) + with ( + patch.dict("os.environ", {"LANGSMITH_TRACING": env}), + tracing_context(enabled=enabled), + ): + RunnableLambda(my_func).invoke(1) mock_posts = _get_posts(mock_client_) if enabled is True: @@ -272,7 +293,8 @@ def parent(a: int) -> int: elif method == "abatch": res = (await parent.abatch([1], {"callbacks": cb}))[0] # type: ignore else: - raise ValueError(f"Unknown method {method}") + msg = f"Unknown method {method}" + raise ValueError(msg) assert res == 3 posts = _get_posts(mock_client_) name_order = [ @@ -324,7 +346,8 @@ def parent(a: int) -> int: ), f"{name} not after {name_order[i-1]}" prev_dotted_order = dotted_order if name in dotted_order_map: - raise ValueError(f"Duplicate name {name}") + msg = f"Duplicate name {name}" + raise ValueError(msg) dotted_order_map[name] = dotted_order id_map[name] = posts[i]["id"] parent_id_map[name] = posts[i].get("parent_run_id") @@ -341,3 +364,73 @@ def parent(a: int) -> int: assert str(parent_id_map[name]) == str(id_map[parent_]) else: assert dotted_order.split(".")[0] == dotted_order + + +@pytest.mark.parametrize("parent_type", ("ls", "lc")) +def test_tree_is_constructed(parent_type: Literal["ls", "lc"]) -> None: + mock_session = MagicMock() + mock_client_ = Client( + session=mock_session, api_key="test", auto_batch_tracing=False + ) + + @traceable + def kitten(x: str) -> str: + return x + + @RunnableLambda + def grandchild(x: str) -> str: + return kitten(x) + + @RunnableLambda + def child(x: str) -> str: + return grandchild.invoke(x) + + rid = uuid.uuid4() + with tracing_context( + client=mock_client_, + enabled=True, + metadata={"some_foo": "some_bar"}, + tags=["afoo"], + ): + if parent_type == "ls": + collected: dict[str, RunTree] = {} # noqa + + def collect_run(run: RunTree) -> None: + collected[str(run.id)] = run + + @traceable + def parent() -> str: + return child.invoke("foo") + + assert ( + parent(langsmith_extra={"on_end": collect_run, "run_id": rid}) == "foo" + ) + assert collected + run = collected.get(str(rid)) + + else: + + @RunnableLambda + def parent(_) -> str: # type: ignore + return child.invoke("foo") + + tracer = LangChainTracer() + assert parent.invoke(..., {"run_id": rid, "callbacks": [tracer]}) == "foo" # type: ignore + run = tracer.latest_run + + assert run is not None + assert run.name == "parent" + assert run.child_runs + child_run = run.child_runs[0] + assert child_run.name == "child" + assert child_run.child_runs + grandchild_run = child_run.child_runs[0] + assert grandchild_run.name == "grandchild" + assert grandchild_run.child_runs + assert grandchild_run.metadata.get("some_foo") == "some_bar" + assert "afoo" in grandchild_run.tags # type: ignore + kitten_run = grandchild_run.child_runs[0] + assert kitten_run.name == "kitten" + assert not kitten_run.child_runs + assert kitten_run.metadata.get("some_foo") == "some_bar" + assert "afoo" in kitten_run.tags # type: ignore diff --git a/libs/core/tests/unit_tests/runnables/test_utils.py b/libs/core/tests/unit_tests/runnables/test_utils.py index be6b35672497c..27d1272ee27ef 100644 --- a/libs/core/tests/unit_tests/runnables/test_utils.py +++ b/libs/core/tests/unit_tests/runnables/test_utils.py @@ -1,5 +1,5 @@ import sys -from typing import Callable, Dict, Tuple +from typing import Callable import pytest @@ -19,7 +19,7 @@ [ (lambda x: x * 2, "lambda x: x * 2"), (lambda a, b: a + b, "lambda a, b: a + b"), - (lambda x: x if x > 0 else 0, "lambda x: x if x > 0 else 0"), + (lambda x: x if x > 0 else 0, "lambda x: x if x > 0 else 0"), # noqa: FURB136 ], ) def test_get_lambda_source(func: Callable, expected_source: str) -> None: @@ -47,7 +47,7 @@ def test_indent_lines_after_first(text: str, prefix: str, expected_output: str) def test_nonlocals() -> None: agent = RunnableLambda(lambda x: x * 2) - def my_func(input: str, agent: Dict[str, str]) -> str: + def my_func(input: str, agent: dict[str, str]) -> str: return agent.get("agent_name", input) def my_func2(input: str) -> str: @@ -59,7 +59,7 @@ def my_func3(input: str) -> str: def my_func4(input: str) -> str: return global_agent.invoke(input) - def my_func5() -> Tuple[Callable[[str], str], RunnableLambda]: + def my_func5() -> tuple[Callable[[str], str], RunnableLambda]: global_agent = RunnableLambda(lambda x: x * 3) def my_func6(input: str) -> str: diff --git a/libs/core/tests/unit_tests/stores/test_in_memory.py b/libs/core/tests/unit_tests/stores/test_in_memory.py index 6c2346e39341d..3c5f810b1fc6a 100644 --- a/libs/core/tests/unit_tests/stores/test_in_memory.py +++ b/libs/core/tests/unit_tests/stores/test_in_memory.py @@ -1,5 +1,3 @@ -from typing import Tuple - import pytest from langchain_standard_tests.integration_tests.base_store import ( BaseStoreAsyncTests, @@ -16,7 +14,7 @@ def kv_store(self) -> InMemoryStore: return InMemoryStore() @pytest.fixture - def three_values(self) -> Tuple[str, str, str]: # type: ignore + def three_values(self) -> tuple[str, str, str]: # type: ignore return "value1", "value2", "value3" @@ -26,7 +24,7 @@ async def kv_store(self) -> InMemoryStore: return InMemoryStore() @pytest.fixture - def three_values(self) -> Tuple[str, str, str]: # type: ignore + def three_values(self) -> tuple[str, str, str]: # type: ignore return "value1", "value2", "value3" diff --git a/libs/core/tests/unit_tests/stubs.py b/libs/core/tests/unit_tests/stubs.py index b752364e3af5d..8fdeccfc7d8b3 100644 --- a/libs/core/tests/unit_tests/stubs.py +++ b/libs/core/tests/unit_tests/stubs.py @@ -5,6 +5,8 @@ class AnyStr(str): + __slots__ = () + def __eq__(self, other: Any) -> bool: return isinstance(other, str) @@ -16,28 +18,28 @@ def __eq__(self, other: Any) -> bool: # subclassed strings. -def _AnyIdDocument(**kwargs: Any) -> Document: +def _any_id_document(**kwargs: Any) -> Document: """Create a document with an id field.""" message = Document(**kwargs) message.id = AnyStr() return message -def _AnyIdAIMessage(**kwargs: Any) -> AIMessage: +def _any_id_ai_message(**kwargs: Any) -> AIMessage: """Create ai message with an any id field.""" message = AIMessage(**kwargs) message.id = AnyStr() return message -def _AnyIdAIMessageChunk(**kwargs: Any) -> AIMessageChunk: +def _any_id_ai_message_chunk(**kwargs: Any) -> AIMessageChunk: """Create ai message with an any id field.""" message = AIMessageChunk(**kwargs) message.id = AnyStr() return message -def _AnyIdHumanMessage(**kwargs: Any) -> HumanMessage: +def _any_id_human_message(**kwargs: Any) -> HumanMessage: """Create a human with an any id field.""" message = HumanMessage(**kwargs) message.id = AnyStr() diff --git a/libs/core/tests/unit_tests/test_imports.py b/libs/core/tests/unit_tests/test_imports.py index 887811b5bd00d..d046976e8e53b 100644 --- a/libs/core/tests/unit_tests/test_imports.py +++ b/libs/core/tests/unit_tests/test_imports.py @@ -3,7 +3,6 @@ import importlib import subprocess from pathlib import Path -from typing import Tuple def test_importable_all() -> None: @@ -18,7 +17,7 @@ def test_importable_all() -> None: getattr(module, cls_) -def try_to_import(module_name: str) -> Tuple[int, str]: +def try_to_import(module_name: str) -> tuple[int, str]: """Try to import a module via subprocess.""" module = importlib.import_module("langchain_core." + module_name) all_ = getattr(module, "__all__", []) @@ -53,4 +52,5 @@ def test_importable_all_via_subprocess() -> None: result = future.result() # Will raise an exception if the callable raised code, module_name = result if code != 0: - raise ValueError(f"Failed to import {module_name}.") + msg = f"Failed to import {module_name}." + raise ValueError(msg) diff --git a/libs/core/tests/unit_tests/test_messages.py b/libs/core/tests/unit_tests/test_messages.py index 7fdbfc5e66baa..aafcd15e1bb81 100644 --- a/libs/core/tests/unit_tests/test_messages.py +++ b/libs/core/tests/unit_tests/test_messages.py @@ -1,12 +1,16 @@ import unittest -from typing import List, Type, Union +import uuid +from typing import Optional, Union import pytest +from langchain_core.documents import Document from langchain_core.load import dumpd, load from langchain_core.messages import ( AIMessage, AIMessageChunk, + BaseMessage, + BaseMessageChunk, ChatMessage, ChatMessageChunk, FunctionMessage, @@ -30,6 +34,16 @@ from langchain_core.utils._merge import merge_lists +def test_message_init() -> None: + for doc in [ + BaseMessage(type="foo", content="bar"), + BaseMessage(type="foo", content="bar", id=None), + BaseMessage(type="foo", content="bar", id="1"), + BaseMessage(type="foo", content="bar", id=1), + ]: + assert isinstance(doc, BaseMessage) + + def test_message_chunks() -> None: assert AIMessageChunk(content="I am", id="ai3") + AIMessageChunk( content=" indeed." @@ -332,7 +346,7 @@ def test_multiple_msg(self) -> None: self.chat_msg, self.tool_calls_msg, ] - expected_output = "\n".join( + expected_output = "\n".join( # noqa: FLY002 [ "Human: human", "AI: ai", @@ -416,29 +430,25 @@ def test_message_chunk_to_message() -> None: expected = AIMessage( content="I am", tool_calls=[ - create_tool_call(**{"name": "tool1", "args": {"a": 1}, "id": "1"}), # type: ignore[arg-type] - create_tool_call(**{"name": "tool2", "args": {}, "id": "2"}), # type: ignore[arg-type] + create_tool_call(name="tool1", args={"a": 1}, id="1"), # type: ignore[arg-type] + create_tool_call(name="tool2", args={}, id="2"), # type: ignore[arg-type] ], invalid_tool_calls=[ - create_invalid_tool_call( - **{"name": "tool3", "args": None, "id": "3", "error": None} - ), - create_invalid_tool_call( - **{"name": "tool4", "args": "abc", "id": "4", "error": None} - ), + create_invalid_tool_call(name="tool3", args=None, id="3", error=None), + create_invalid_tool_call(name="tool4", args="abc", id="4", error=None), ], ) assert message_chunk_to_message(chunk) == expected - assert AIMessage(**expected.dict()) == expected - assert AIMessageChunk(**chunk.dict()) == chunk + assert AIMessage(**expected.model_dump()) == expected + assert AIMessageChunk(**chunk.model_dump()) == chunk def test_tool_calls_merge() -> None: - chunks: List[dict] = [ - dict(content=""), - dict( - content="", - additional_kwargs={ + chunks: list[dict] = [ + {"content": ""}, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 0, @@ -448,10 +458,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 0, @@ -461,10 +471,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 0, @@ -474,10 +484,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 0, @@ -487,10 +497,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 0, @@ -500,10 +510,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 0, @@ -513,10 +523,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 0, @@ -526,10 +536,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 1, @@ -539,10 +549,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 1, @@ -552,10 +562,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 1, @@ -565,10 +575,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 1, @@ -578,10 +588,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 1, @@ -591,10 +601,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 1, @@ -604,10 +614,10 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict( - content="", - additional_kwargs={ + }, + { + "content": "", + "additional_kwargs": { "tool_calls": [ { "index": 1, @@ -617,18 +627,15 @@ def test_tool_calls_merge() -> None: } ] }, - ), - dict(content=""), + }, + {"content": ""}, ] - final = None + final: Optional[BaseMessageChunk] = None for chunk in chunks: msg = AIMessageChunk(**chunk) - if final is None: - final = msg - else: - final = final + msg + final = msg if final is None else final + msg assert final == AIMessageChunk( content="", @@ -768,7 +775,7 @@ def test_convert_to_messages() -> None: @pytest.mark.parametrize( - "MessageClass", + "message_class", [ AIMessage, AIMessageChunk, @@ -777,39 +784,39 @@ def test_convert_to_messages() -> None: SystemMessage, ], ) -def test_message_name(MessageClass: Type) -> None: - msg = MessageClass(content="foo", name="bar") +def test_message_name(message_class: type) -> None: + msg = message_class(content="foo", name="bar") assert msg.name == "bar" - msg2 = MessageClass(content="foo", name=None) + msg2 = message_class(content="foo", name=None) assert msg2.name is None - msg3 = MessageClass(content="foo") + msg3 = message_class(content="foo") assert msg3.name is None @pytest.mark.parametrize( - "MessageClass", + "message_class", [FunctionMessage, FunctionMessageChunk], ) -def test_message_name_function(MessageClass: Type) -> None: +def test_message_name_function(message_class: type) -> None: # functionmessage doesn't support name=None - msg = MessageClass(name="foo", content="bar") + msg = message_class(name="foo", content="bar") assert msg.name == "foo" @pytest.mark.parametrize( - "MessageClass", + "message_class", [ChatMessage, ChatMessageChunk], ) -def test_message_name_chat(MessageClass: Type) -> None: - msg = MessageClass(content="foo", role="user", name="bar") +def test_message_name_chat(message_class: type) -> None: + msg = message_class(content="foo", role="user", name="bar") assert msg.name == "bar" - msg2 = MessageClass(content="foo", role="user", name=None) + msg2 = message_class(content="foo", role="user", name=None) assert msg2.name is None - msg3 = MessageClass(content="foo", role="user") + msg3 = message_class(content="foo", role="user") assert msg3.name is None @@ -980,3 +987,24 @@ def test_merge_content( ) -> None: actual = merge_content(first, *others) assert actual == expected + + +def test_tool_message_content() -> None: + ToolMessage("foo", tool_call_id="1") + ToolMessage(["foo"], tool_call_id="1") + ToolMessage([{"foo": "bar"}], tool_call_id="1") + + assert ToolMessage(("a", "b", "c"), tool_call_id="1").content == ["a", "b", "c"] # type: ignore[arg-type] + assert ToolMessage(5, tool_call_id="1").content == "5" # type: ignore[arg-type] + assert ToolMessage(5.1, tool_call_id="1").content == "5.1" # type: ignore[arg-type] + assert ToolMessage({"foo": "bar"}, tool_call_id="1").content == "{'foo': 'bar'}" # type: ignore[arg-type] + assert ( + ToolMessage(Document("foo"), tool_call_id="1").content == "page_content='foo'" # type: ignore[arg-type] + ) + + +def test_tool_message_tool_call_id() -> None: + ToolMessage("foo", tool_call_id="1") + ToolMessage("foo", tool_call_id=uuid.uuid4()) + ToolMessage("foo", tool_call_id=1) + ToolMessage("foo", tool_call_id=1.0) diff --git a/libs/core/tests/unit_tests/test_prompt_values.py b/libs/core/tests/unit_tests/test_prompt_values.py new file mode 100644 index 0000000000000..6a08a4270ac65 --- /dev/null +++ b/libs/core/tests/unit_tests/test_prompt_values.py @@ -0,0 +1,25 @@ +from langchain_core.messages import ( + AIMessage, + AIMessageChunk, + HumanMessage, + HumanMessageChunk, + SystemMessage, + SystemMessageChunk, + ToolMessage, + ToolMessageChunk, +) +from langchain_core.prompt_values import ChatPromptValueConcrete + + +def test_chat_prompt_value_concrete() -> None: + messages: list = [ + AIMessage("foo"), + HumanMessage("foo"), + SystemMessage("foo"), + ToolMessage("foo", tool_call_id="foo"), + AIMessageChunk(content="foo"), + HumanMessageChunk(content="foo"), + SystemMessageChunk(content="foo"), + ToolMessageChunk(content="foo", tool_call_id="foo"), + ] + assert ChatPromptValueConcrete(messages=messages).messages == messages diff --git a/libs/core/tests/unit_tests/test_pydantic_serde.py b/libs/core/tests/unit_tests/test_pydantic_serde.py new file mode 100644 index 0000000000000..87af2fa5a611b --- /dev/null +++ b/libs/core/tests/unit_tests/test_pydantic_serde.py @@ -0,0 +1,64 @@ +"""A set of tests that verifies that Union discrimination works correctly with +the various pydantic base models. + +These tests can uncover issues that will also arise during regular instantiation +of the models (i.e., not necessarily from loading or dumping JSON). +""" + +import pytest +from pydantic import RootModel, ValidationError + +from langchain_core.messages import ( + AIMessage, + AIMessageChunk, + AnyMessage, + ChatMessage, + ChatMessageChunk, + FunctionMessage, + FunctionMessageChunk, + HumanMessage, + HumanMessageChunk, + SystemMessage, + SystemMessageChunk, +) + + +def test_serde_any_message() -> None: + """Test AnyMessage() serder.""" + + lc_objects = [ + HumanMessage(content="human"), + HumanMessageChunk(content="human"), + AIMessage(content="ai"), + AIMessageChunk(content="ai"), + SystemMessage(content="sys"), + SystemMessageChunk(content="sys"), + FunctionMessage( + name="func", + content="func", + ), + FunctionMessageChunk( + name="func", + content="func", + ), + ChatMessage( + role="human", + content="human", + ), + ChatMessageChunk( + role="human", + content="human", + ), + ] + + model = RootModel[AnyMessage] + + for lc_object in lc_objects: + d = lc_object.model_dump() + assert "type" in d, f"Missing key `type` for {type(lc_object)}" + obj1 = model.model_validate(d) + assert type(obj1.root) is type(lc_object), f"failed for {type(lc_object)}" + + with pytest.raises((TypeError, ValidationError)): + # Make sure that specifically validation error is raised + model.model_validate({}) diff --git a/libs/core/tests/unit_tests/test_tools.py b/libs/core/tests/unit_tests/test_tools.py index 39cf811fc5e1c..f77b473d39fee 100644 --- a/libs/core/tests/unit_tests/test_tools.py +++ b/libs/core/tests/unit_tests/test_tools.py @@ -9,21 +9,20 @@ from enum import Enum from functools import partial from typing import ( + Annotated, Any, Callable, - Dict, Generic, - List, Literal, Optional, - Tuple, - Type, + TypeVar, Union, ) import pytest -from pydantic import BaseModel as BaseModelProper # pydantic: ignore -from typing_extensions import Annotated, TypedDict, TypeVar +from pydantic import BaseModel, Field, ValidationError +from pydantic.v1 import BaseModel as BaseModelV1 +from typing_extensions import TypedDict from langchain_core import tools from langchain_core.callbacks import ( @@ -31,7 +30,6 @@ CallbackManagerForToolRun, ) from langchain_core.messages import ToolMessage -from langchain_core.pydantic_v1 import BaseModel, Field, ValidationError from langchain_core.runnables import ( Runnable, RunnableConfig, @@ -80,9 +78,17 @@ class _MockSchema(BaseModel): arg3: Optional[dict] = None +class _MockSchemaV1(BaseModelV1): + """Return the arguments directly.""" + + arg1: int + arg2: bool + arg3: Optional[dict] = None + + class _MockStructuredTool(BaseTool): name: str = "structured_api" - args_schema: Type[BaseModel] = _MockSchema + args_schema: type[BaseModel] = _MockSchema description: str = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: @@ -126,7 +132,7 @@ def test_forward_ref_annotated_base_tool_accepted() -> None: class _ForwardRefAnnotatedTool(BaseTool): name: str = "structured_api" - args_schema: "Type[BaseModel]" = _MockSchema + args_schema: "type[BaseModel]" = _MockSchema description: str = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: @@ -143,7 +149,7 @@ def test_subclass_annotated_base_tool_accepted() -> None: class _ForwardRefAnnotatedTool(BaseTool): name: str = "structured_api" - args_schema: Type[_MockSchema] = _MockSchema + args_schema: type[_MockSchema] = _MockSchema description: str = "A Structured Tool" def _run(self, arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: @@ -169,6 +175,13 @@ def tool_func(arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: assert isinstance(tool_func, BaseTool) assert tool_func.args_schema == _MockSchema + @tool(args_schema=_MockSchemaV1) + def tool_func_v1(arg1: int, arg2: bool, arg3: Optional[dict] = None) -> str: + return f"{arg1} {arg2} {arg3}" + + assert isinstance(tool_func_v1, BaseTool) + assert tool_func_v1.args_schema == _MockSchemaV1 + def test_decorated_function_schema_equivalent() -> None: """Test that a BaseTool without a schema meets expectations.""" @@ -292,7 +305,7 @@ def structured_tool( assert isinstance(structured_tool, StructuredTool) args = { "some_enum": SomeEnum.A.value, - "some_base_model": SomeBaseModel(foo="bar").dict(), + "some_base_model": SomeBaseModel(foo="bar").model_dump(), } result = structured_tool.run(json.loads(json.dumps(args))) expected = { @@ -302,6 +315,50 @@ def structured_tool( assert result == expected +def test_structured_tool_types_parsed_pydantic_v1() -> None: + """Test the non-primitive types are correctly passed to structured tools.""" + + class SomeBaseModel(BaseModelV1): + foo: str + + class AnotherBaseModel(BaseModelV1): + bar: str + + @tool + def structured_tool(some_base_model: SomeBaseModel) -> AnotherBaseModel: + """Return the arguments directly.""" + return AnotherBaseModel(bar=some_base_model.foo) + + assert isinstance(structured_tool, StructuredTool) + + expected = AnotherBaseModel(bar="baz") + for arg in [ + SomeBaseModel(foo="baz"), + SomeBaseModel(foo="baz").dict(), + ]: + args = {"some_base_model": arg} + result = structured_tool.run(args) + assert result == expected + + +def test_structured_tool_types_parsed_pydantic_mixed() -> None: + """Test handling of tool with mixed Pydantic version arguments.""" + + class SomeBaseModel(BaseModelV1): + foo: str + + class AnotherBaseModel(BaseModel): + bar: str + + with pytest.raises(NotImplementedError): + + @tool + def structured_tool( + some_base_model: SomeBaseModel, another_base_model: AnotherBaseModel + ) -> None: + """Return the arguments directly.""" + + def test_base_tool_inheritance_base_schema() -> None: """Test schema is correctly inferred when inheriting from BaseTool.""" @@ -344,7 +401,7 @@ def foo(bar: int, baz: str) -> str: bar: the bar value baz: the baz value """ - raise NotImplementedError() + raise NotImplementedError structured_tool = StructuredTool.from_function(foo) assert structured_tool.name == "foo" @@ -359,7 +416,7 @@ def foo(bar: int, baz: str) -> str: "baz": {"title": "Baz", "type": "string"}, }, "description": inspect.getdoc(foo), - "title": "fooSchema", + "title": "foo", "type": "object", "required": ["bar", "baz"], } @@ -371,14 +428,14 @@ def foo(bar: int, baz: str) -> str: def test_structured_tool_from_function_docstring_complex_args() -> None: """Test that structured tools can be created from functions.""" - def foo(bar: int, baz: List[str]) -> str: + def foo(bar: int, baz: list[str]) -> str: """Docstring Args: bar: int baz: List[str] """ - raise NotImplementedError() + raise NotImplementedError structured_tool = StructuredTool.from_function(foo) assert structured_tool.name == "foo" @@ -401,7 +458,7 @@ def foo(bar: int, baz: List[str]) -> str: }, }, "description": inspect.getdoc(foo), - "title": "fooSchema", + "title": "foo", "type": "object", "required": ["bar", "baz"], } @@ -502,7 +559,7 @@ def foo( "baz": {"title": "Baz", "type": "string"}, }, "description": inspect.getdoc(foo), - "title": "fooSchema", + "title": "foo", "type": "object", "required": ["bar", "baz"], } @@ -724,7 +781,7 @@ def foo(bar: int, baz: str) -> str: bar: the bar value baz: the baz value """ - raise NotImplementedError() + raise NotImplementedError structured_tool = StructuredTool.from_function(foo) assert structured_tool.name == "foo" @@ -734,7 +791,7 @@ def foo(bar: int, baz: str) -> str: } assert _schema(structured_tool.args_schema) == { - "title": "fooSchema", + "title": "foo", "type": "object", "description": inspect.getdoc(foo), "properties": { @@ -795,9 +852,9 @@ class _RaiseNonValidationErrorTool(BaseTool): def _parse_input( self, - tool_input: Union[str, Dict], - ) -> Union[str, Dict[str, Any]]: - raise NotImplementedError() + tool_input: Union[str, dict], + ) -> Union[str, dict[str, Any]]: + raise NotImplementedError def _run(self) -> str: return "dummy" @@ -857,9 +914,9 @@ class _RaiseNonValidationErrorTool(BaseTool): def _parse_input( self, - tool_input: Union[str, Dict], - ) -> Union[str, Dict[str, Any]]: - raise NotImplementedError() + tool_input: Union[str, dict], + ) -> Union[str, dict[str, Any]]: + raise NotImplementedError def _run(self) -> str: return "dummy" @@ -874,15 +931,13 @@ async def _arun(self) -> str: def test_optional_subset_model_rewrite() -> None: class MyModel(BaseModel): - a: Optional[str] + a: Optional[str] = None b: str - c: Optional[List[Optional[str]]] + c: Optional[list[Optional[str]]] = None model2 = _create_subset_model("model2", MyModel, ["a", "b", "c"]) - assert "a" not in _schema(model2)["required"] # should be optional - assert "b" in _schema(model2)["required"] # should be required - assert "c" not in _schema(model2)["required"] # should be optional + assert set(_schema(model2)["required"]) == {"b"} @pytest.mark.parametrize( @@ -988,6 +1043,9 @@ def _run(self, bar: Any, bar_config: RunnableConfig, **kwargs: Any) -> Any: return assert_bar(bar, bar_config) +FooBase.model_rebuild() + + class AFooBase(FooBase): async def _arun(self, bar: Any, bar_config: RunnableConfig, **kwargs: Any) -> Any: return assert_bar(bar, bar_config) @@ -1062,7 +1120,7 @@ def foo(bar: str, baz: int) -> str: foo1 = tool(foo) args_schema = _schema(foo1.args_schema) # type: ignore assert args_schema == { - "title": "fooSchema", + "title": "foo", "type": "object", "description": inspect.getdoc(foo), "properties": { @@ -1076,7 +1134,7 @@ def foo(bar: str, baz: int) -> str: foo2 = tool(foo, parse_docstring=True) args_schema = _schema(foo2.args_schema) # type: ignore expected = { - "title": "fooSchema", + "title": "foo", "description": "The foo.", "type": "object", "properties": { @@ -1165,7 +1223,7 @@ def foo( foo1 = tool(foo) args_schema = _schema(foo1.args_schema) # type: ignore assert args_schema == { - "title": "fooSchema", + "title": "foo", "type": "object", "description": inspect.getdoc(foo), "properties": { @@ -1201,20 +1259,20 @@ def test_tool_call_input_tool_message_output() -> None: class _MockStructuredToolWithRawOutput(BaseTool): name: str = "structured_api" - args_schema: Type[BaseModel] = _MockSchema + args_schema: type[BaseModel] = _MockSchema description: str = "A Structured Tool" response_format: Literal["content_and_artifact"] = "content_and_artifact" def _run( self, arg1: int, arg2: bool, arg3: Optional[dict] = None - ) -> Tuple[str, dict]: + ) -> tuple[str, dict]: return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3} @tool("structured_api", response_format="content_and_artifact") def _mock_structured_tool_with_artifact( arg1: int, arg2: bool, arg3: Optional[dict] = None -) -> Tuple[str, dict]: +) -> tuple[str, dict]: """A Structured Tool""" return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3} @@ -1223,7 +1281,7 @@ def _mock_structured_tool_with_artifact( "tool", [_MockStructuredToolWithRawOutput(), _mock_structured_tool_with_artifact] ) def test_tool_call_input_tool_message_with_artifact(tool: BaseTool) -> None: - tool_call: Dict = { + tool_call: dict = { "name": "structured_api", "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}}, "id": "123", @@ -1247,7 +1305,7 @@ def test_convert_from_runnable_dict() -> None: # Test with typed dict input class Args(TypedDict): a: int - b: List[int] + b: list[int] def f(x: Args) -> str: return str(x["a"] * max(x["b"])) @@ -1274,7 +1332,7 @@ def f(x: Args) -> str: assert as_tool.description == "test description" # Dict without typed input-- must supply schema - def g(x: Dict[str, Any]) -> str: + def g(x: dict[str, Any]) -> str: return str(x["a"] * max(x["b"])) # Specify via args_schema: @@ -1282,7 +1340,7 @@ class GSchema(BaseModel): """Apply a function to an integer and list of integers.""" a: int = Field(..., description="Integer") - b: List[int] = Field(..., description="List of ints") + b: list[int] = Field(..., description="List of ints") runnable = RunnableLambda(g) as_tool = runnable.as_tool(GSchema) @@ -1290,18 +1348,18 @@ class GSchema(BaseModel): # Specify via arg_types: runnable = RunnableLambda(g) - as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) + as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]}) result = as_tool.invoke({"a": 3, "b": [1, 2]}) assert result == "6" # Test with config - def h(x: Dict[str, Any]) -> str: + def h(x: dict[str, Any]) -> str: config = ensure_config() assert config["configurable"]["foo"] == "not-bar" return str(x["a"] * max(x["b"])) runnable = RunnableLambda(h) - as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]}) + as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]}) result = as_tool.invoke( {"a": 3, "b": [1, 2]}, config={"configurable": {"foo": "not-bar"}} ) @@ -1362,7 +1420,7 @@ def _run(self, x: int, y: Annotated[str, InjectedToolArg]) -> Any: return y -class fooSchema(BaseModel): +class fooSchema(BaseModel): # noqa: N801 """foo.""" x: int = Field(..., description="abc") @@ -1374,7 +1432,7 @@ class fooSchema(BaseModel): class InjectedToolWithSchema(BaseTool): name: str = "foo" description: str = "foo." - args_schema: Type[BaseModel] = fooSchema + args_schema: type[BaseModel] = fooSchema def _run(self, x: int, y: str) -> Any: return y @@ -1388,7 +1446,7 @@ def injected_tool_with_schema(x: int, y: str) -> str: @pytest.mark.parametrize("tool_", [InjectedTool()]) def test_tool_injected_arg_without_schema(tool_: BaseTool) -> None: assert _schema(tool_.get_input_schema()) == { - "title": "fooSchema", + "title": "foo", "description": "foo.\n\nArgs:\n x: abc\n y: 123", "type": "object", "properties": { @@ -1427,7 +1485,7 @@ def test_tool_injected_arg_without_schema(tool_: BaseTool) -> None: @pytest.mark.parametrize( "tool_", - [injected_tool, injected_tool_with_schema, InjectedToolWithSchema()], + [injected_tool_with_schema, InjectedToolWithSchema()], ) def test_tool_injected_arg_with_schema(tool_: BaseTool) -> None: assert _schema(tool_.get_input_schema()) == { @@ -1468,15 +1526,55 @@ def test_tool_injected_arg_with_schema(tool_: BaseTool) -> None: } +def test_tool_injected_arg() -> None: + tool_ = injected_tool + assert _schema(tool_.get_input_schema()) == { + "title": "foo", + "description": "foo.", + "type": "object", + "properties": { + "x": {"description": "abc", "title": "X", "type": "integer"}, + "y": {"description": "123", "title": "Y", "type": "string"}, + }, + "required": ["x", "y"], + } + assert _schema(tool_.tool_call_schema) == { + "title": "foo", + "description": "foo.", + "type": "object", + "properties": {"x": {"description": "abc", "title": "X", "type": "integer"}}, + "required": ["x"], + } + assert tool_.invoke({"x": 5, "y": "bar"}) == "bar" + assert tool_.invoke( + {"name": "foo", "args": {"x": 5, "y": "bar"}, "id": "123", "type": "tool_call"} + ) == ToolMessage("bar", tool_call_id="123", name="foo") + expected_error = ( + ValidationError if not isinstance(tool_, InjectedTool) else TypeError + ) + with pytest.raises(expected_error): + tool_.invoke({"x": 5}) + + assert convert_to_openai_function(tool_) == { + "name": "foo", + "description": "foo.", + "parameters": { + "type": "object", + "properties": {"x": {"type": "integer", "description": "abc"}}, + "required": ["x"], + }, + } + + def test_tool_inherited_injected_arg() -> None: - class barSchema(BaseModel): + class BarSchema(BaseModel): """bar.""" y: Annotated[str, "foobar comment", InjectedToolArg()] = Field( ..., description="123" ) - class fooSchema(barSchema): + class FooSchema(BarSchema): """foo.""" x: int = Field(..., description="abc") @@ -1484,14 +1582,14 @@ class fooSchema(barSchema): class InheritedInjectedArgTool(BaseTool): name: str = "foo" description: str = "foo." - args_schema: Type[BaseModel] = fooSchema + args_schema: type[BaseModel] = FooSchema def _run(self, x: int, y: str) -> Any: return y tool_ = InheritedInjectedArgTool() - assert tool_.get_input_schema().schema() == { - "title": "fooSchema", + assert tool_.get_input_schema().model_json_schema() == { + "title": "FooSchema", # Matches the title from the provided schema "description": "foo.", "type": "object", "properties": { @@ -1500,7 +1598,8 @@ def _run(self, x: int, y: str) -> Any: }, "required": ["y", "x"], } - assert tool_.tool_call_schema.schema() == { + # Should not include `y` since it's annotated as an injected tool arg + assert tool_.tool_call_schema.model_json_schema() == { "title": "foo", "description": "foo.", "type": "object", @@ -1558,19 +1657,19 @@ def test_fn_injected_arg_with_schema(tool_: Callable) -> None: } -def generate_models() -> List[Any]: +def generate_models() -> list[Any]: """Generate a list of base models depending on the pydantic version.""" - class FooProper(BaseModelProper): + class FooProper(BaseModel): a: int b: str return [FooProper] -def generate_backwards_compatible_v1() -> List[Any]: +def generate_backwards_compatible_v1() -> list[Any]: """Generate a model with pydantic 2 from the v1 namespace.""" - from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore + from pydantic.v1 import BaseModel as BaseModelV1 class FooV1Namespace(BaseModelV1): a: int @@ -1589,7 +1688,7 @@ class FooV1Namespace(BaseModelV1): @pytest.mark.parametrize("pydantic_model", TEST_MODELS) def test_args_schema_as_pydantic(pydantic_model: Any) -> None: class SomeTool(BaseTool): - args_schema: Type[pydantic_model] = pydantic_model + args_schema: type[pydantic_model] = pydantic_model def _run(self, *args: Any, **kwargs: Any) -> str: return "foo" @@ -1598,7 +1697,13 @@ def _run(self, *args: Any, **kwargs: Any) -> str: name="some_tool", description="some description", args_schema=pydantic_model ) - assert tool.get_input_schema().schema() == { + input_schema = tool.get_input_schema() + input_json_schema = ( + input_schema.model_json_schema() + if hasattr(input_schema, "model_json_schema") + else input_schema.schema() + ) + assert input_json_schema == { "properties": { "a": {"title": "A", "type": "integer"}, "b": {"title": "B", "type": "string"}, @@ -1608,7 +1713,13 @@ def _run(self, *args: Any, **kwargs: Any) -> str: "type": "object", } - assert tool.tool_call_schema.schema() == { + tool_schema = tool.tool_call_schema + tool_json_schema = ( + tool_schema.model_json_schema() + if hasattr(tool_schema, "model_json_schema") + else tool_schema.schema() + ) + assert tool_json_schema == { "description": "some description", "properties": { "a": {"title": "A", "type": "integer"}, @@ -1627,7 +1738,7 @@ def test_args_schema_explicitly_typed() -> None: is a pydantic 1 model! """ # Check with whatever pydantic model is passed in and not via v1 namespace - from pydantic import BaseModel # pydantic: ignore + from pydantic import BaseModel class Foo(BaseModel): a: int @@ -1637,14 +1748,14 @@ class SomeTool(BaseTool): # type ignoring here since we're allowing overriding a type # signature of pydantic.v1.BaseModel with pydantic.BaseModel # for pydantic 2! - args_schema: Type[BaseModel] = Foo # type: ignore[assignment] + args_schema: type[BaseModel] = Foo # type: ignore[assignment] def _run(self, *args: Any, **kwargs: Any) -> str: return "foo" tool = SomeTool(name="some_tool", description="some description") - assert tool.get_input_schema().schema() == { + assert tool.get_input_schema().model_json_schema() == { "properties": { "a": {"title": "A", "type": "integer"}, "b": {"title": "B", "type": "string"}, @@ -1654,7 +1765,7 @@ def _run(self, *args: Any, **kwargs: Any) -> str: "type": "object", } - assert tool.tool_call_schema.schema() == { + assert tool.tool_call_schema.model_json_schema() == { "description": "some description", "properties": { "a": {"title": "A", "type": "integer"}, @@ -1682,7 +1793,13 @@ def foo(a: int, b: str) -> str: assert foo_tool.invoke({"a": 5, "b": "hello"}) == "foo" - assert foo_tool.args_schema.schema() == { + args_schema = foo_tool.args_schema + args_json_schema = ( + args_schema.model_json_schema() + if hasattr(args_schema, "model_json_schema") + else args_schema.schema() + ) + assert args_json_schema == { "properties": { "a": {"title": "A", "type": "integer"}, "b": {"title": "B", "type": "string"}, @@ -1692,7 +1809,13 @@ def foo(a: int, b: str) -> str: "type": "object", } - assert foo_tool.get_input_schema().schema() == { + input_schema = foo_tool.get_input_schema() + input_json_schema = ( + input_schema.model_json_schema() + if hasattr(input_schema, "model_json_schema") + else input_schema.schema() + ) + assert input_json_schema == { "properties": { "a": {"title": "A", "type": "integer"}, "b": {"title": "B", "type": "string"}, @@ -1749,21 +1872,24 @@ def test__is_message_content_type(obj: Any, expected: bool) -> None: @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Testing pydantic v2.") @pytest.mark.parametrize("use_v1_namespace", [True, False]) -@pytest.mark.filterwarnings("error") def test__get_all_basemodel_annotations_v2(use_v1_namespace: bool) -> None: A = TypeVar("A") if use_v1_namespace: + from pydantic.v1 import BaseModel as BaseModel1 - class ModelA(BaseModel, Generic[A], extra="allow"): + class ModelA(BaseModel1, Generic[A], extra="allow"): a: A else: + from pydantic import BaseModel as BaseModel2 + from pydantic import ConfigDict - class ModelA(BaseModelProper, Generic[A], extra="allow"): # type: ignore[no-redef] + class ModelA(BaseModel2, Generic[A]): # type: ignore[no-redef] a: A + model_config = ConfigDict(arbitrary_types_allowed=True, extra="allow") class ModelB(ModelA[str]): - b: Annotated[ModelA[Dict[str, Any]], "foo"] + b: Annotated[ModelA[dict[str, Any]], "foo"] class Mixin: def foo(self) -> str: @@ -1772,11 +1898,11 @@ def foo(self) -> str: class ModelC(Mixin, ModelB): c: dict - expected = {"a": str, "b": Annotated[ModelA[Dict[str, Any]], "foo"], "c": dict} + expected = {"a": str, "b": Annotated[ModelA[dict[str, Any]], "foo"], "c": dict} actual = _get_all_basemodel_annotations(ModelC) assert actual == expected - expected = {"a": str, "b": Annotated[ModelA[Dict[str, Any]], "foo"]} + expected = {"a": str, "b": Annotated[ModelA[dict[str, Any]], "foo"]} actual = _get_all_basemodel_annotations(ModelB) assert actual == expected @@ -1795,7 +1921,7 @@ class ModelD(ModelC, Generic[D]): expected = { "a": str, - "b": Annotated[ModelA[Dict[str, Any]], "foo"], + "b": Annotated[ModelA[dict[str, Any]], "foo"], "c": dict, "d": Union[str, int, None], } @@ -1804,7 +1930,7 @@ class ModelD(ModelC, Generic[D]): expected = { "a": str, - "b": Annotated[ModelA[Dict[str, Any]], "foo"], + "b": Annotated[ModelA[dict[str, Any]], "foo"], "c": dict, "d": Union[int, None], } @@ -1820,7 +1946,7 @@ class ModelA(BaseModel, Generic[A], extra="allow"): a: A class ModelB(ModelA[str]): - b: Annotated[ModelA[Dict[str, Any]], "foo"] + b: Annotated[ModelA[dict[str, Any]], "foo"] class Mixin: def foo(self) -> str: @@ -1829,11 +1955,11 @@ def foo(self) -> str: class ModelC(Mixin, ModelB): c: dict - expected = {"a": str, "b": Annotated[ModelA[Dict[str, Any]], "foo"], "c": dict} + expected = {"a": str, "b": Annotated[ModelA[dict[str, Any]], "foo"], "c": dict} actual = _get_all_basemodel_annotations(ModelC) assert actual == expected - expected = {"a": str, "b": Annotated[ModelA[Dict[str, Any]], "foo"]} + expected = {"a": str, "b": Annotated[ModelA[dict[str, Any]], "foo"]} actual = _get_all_basemodel_annotations(ModelB) assert actual == expected @@ -1852,7 +1978,7 @@ class ModelD(ModelC, Generic[D]): expected = { "a": str, - "b": Annotated[ModelA[Dict[str, Any]], "foo"], + "b": Annotated[ModelA[dict[str, Any]], "foo"], "c": dict, "d": Union[str, int, None], } @@ -1861,7 +1987,7 @@ class ModelD(ModelC, Generic[D]): expected = { "a": str, - "b": Annotated[ModelA[Dict[str, Any]], "foo"], + "b": Annotated[ModelA[dict[str, Any]], "foo"], "c": dict, "d": Union[int, None], } @@ -1869,14 +1995,34 @@ class ModelD(ModelC, Generic[D]): assert actual == expected +def test_tool_annotations_preserved() -> None: + """Test that annotations are preserved when creating a tool.""" + + @tool + def my_tool(val: int, other_val: Annotated[dict, "my annotation"]) -> str: + """Tool docstring.""" + return "foo" + + schema = my_tool.get_input_schema() # type: ignore[attr-defined] + + func = my_tool.func # type: ignore[attr-defined] + + expected_type_hints = { + name: hint + for name, hint in func.__annotations__.items() + if name in inspect.signature(func).parameters + } + assert schema.__annotations__ == expected_type_hints + + @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Testing pydantic v2.") def test_tool_args_schema_pydantic_v2_with_metadata() -> None: - from pydantic import BaseModel as BaseModelV2 # pydantic: ignore - from pydantic import Field as FieldV2 # pydantic: ignore - from pydantic import ValidationError as ValidationErrorV2 # pydantic: ignore + from pydantic import BaseModel as BaseModelV2 + from pydantic import Field as FieldV2 + from pydantic import ValidationError as ValidationErrorV2 class Foo(BaseModelV2): - x: List[int] = FieldV2( + x: list[int] = FieldV2( description="List of integers", min_length=10, max_length=15 ) @@ -1885,7 +2031,7 @@ def foo(x): # type: ignore[no-untyped-def] """foo""" return x - assert foo.tool_call_schema.schema() == { + assert foo.tool_call_schema.model_json_schema() == { "description": "foo", "properties": { "x": { @@ -1928,3 +2074,34 @@ def test_imports() -> None: ] for module_name in expected_all: assert hasattr(tools, module_name) and getattr(tools, module_name) is not None + + +def test_structured_tool_direct_init() -> None: + def foo(bar: str) -> str: + return bar + + async def async_foo(bar: str) -> str: + return bar + + class FooSchema(BaseModel): + bar: str = Field(..., description="The bar") + + tool = StructuredTool(name="foo", args_schema=FooSchema, coroutine=async_foo) + + with pytest.raises(NotImplementedError): + assert tool.invoke("hello") == "hello" + + +def test_injected_arg_with_complex_type() -> None: + """Test that an injected tool arg can be a complex type.""" + + class Foo: + def __init__(self) -> None: + self.value = "bar" + + @tool + def injected_tool(x: int, foo: Annotated[Foo, InjectedToolArg]) -> str: + """Tool that has an injected tool arg.""" + return foo.value + + assert injected_tool.invoke({"x": 5, "foo": Foo()}) == "bar" # type: ignore diff --git a/libs/core/tests/unit_tests/tracers/test_async_base_tracer.py b/libs/core/tests/unit_tests/tracers/test_async_base_tracer.py index f1f04c526cc61..1b243c0381696 100644 --- a/libs/core/tests/unit_tests/tracers/test_async_base_tracer.py +++ b/libs/core/tests/unit_tests/tracers/test_async_base_tracer.py @@ -3,7 +3,7 @@ from __future__ import annotations from datetime import datetime, timezone -from typing import Any, List +from typing import Any from uuid import uuid4 import pytest @@ -26,7 +26,7 @@ class FakeAsyncTracer(AsyncBaseTracer): def __init__(self) -> None: """Initialize the tracer.""" super().__init__() - self.runs: List[Run] = [] + self.runs: list[Run] = [] async def _persist_run(self, run: Run) -> None: self.runs.append(run) @@ -98,7 +98,7 @@ async def test_tracer_chat_model_run() -> None: ], extra={}, serialized=SERIALIZED_CHAT, - inputs=dict(prompts=["Human: "]), + inputs={"prompts": ["Human: "]}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] error=None, run_type="llm", @@ -134,7 +134,7 @@ async def test_tracer_multiple_llm_runs() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] error=None, run_type="llm", @@ -272,8 +272,8 @@ async def test_tracer_nested_run() -> None: ], extra={}, serialized={"name": "tool"}, - inputs=dict(input="test"), - outputs=dict(output="test"), + inputs={"input": "test"}, + outputs={"output": "test"}, error=None, run_type="tool", trace_id=chain_uuid, @@ -291,7 +291,7 @@ async def test_tracer_nested_run() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -311,7 +311,7 @@ async def test_tracer_nested_run() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -339,7 +339,7 @@ async def test_tracer_llm_run_on_error() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=None, error=repr(exception), run_type="llm", @@ -370,7 +370,7 @@ async def test_tracer_llm_run_on_error_callback() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=None, error=repr(exception), run_type="llm", @@ -436,9 +436,8 @@ async def test_tracer_tool_run_on_error() -> None: ], extra={}, serialized={"name": "tool"}, - inputs=dict(input="test"), + inputs={"input": "test"}, outputs=None, - action="{'name': 'tool'}", error=repr(exception), run_type="tool", trace_id=uuid, @@ -528,7 +527,7 @@ async def test_tracer_nested_runs_on_error() -> None: extra={}, serialized=SERIALIZED, error=None, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]], llm_output=None), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -546,7 +545,7 @@ async def test_tracer_nested_runs_on_error() -> None: extra={}, serialized=SERIALIZED, error=None, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]], llm_output=None), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -564,9 +563,8 @@ async def test_tracer_nested_runs_on_error() -> None: extra={}, serialized={"name": "tool"}, error=repr(exception), - inputs=dict(input="test"), + inputs={"input": "test"}, outputs=None, - action="{'name': 'tool'}", trace_id=chain_uuid, dotted_order=f"20230101T000000000000Z{chain_uuid}.20230101T000000000000Z{tool_uuid}", child_runs=[ @@ -582,7 +580,7 @@ async def test_tracer_nested_runs_on_error() -> None: extra={}, serialized=SERIALIZED, error=repr(exception), - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=None, run_type="llm", trace_id=chain_uuid, diff --git a/libs/core/tests/unit_tests/tracers/test_base_tracer.py b/libs/core/tests/unit_tests/tracers/test_base_tracer.py index b9ac507eb1738..80d7a9297492c 100644 --- a/libs/core/tests/unit_tests/tracers/test_base_tracer.py +++ b/libs/core/tests/unit_tests/tracers/test_base_tracer.py @@ -3,7 +3,7 @@ from __future__ import annotations from datetime import datetime, timezone -from typing import Any, List +from typing import Any from unittest.mock import MagicMock from uuid import uuid4 @@ -30,7 +30,7 @@ class FakeTracer(BaseTracer): def __init__(self) -> None: """Initialize the tracer.""" super().__init__() - self.runs: List[Run] = [] + self.runs: list[Run] = [] def _persist_run(self, run: Run) -> None: """Persist a run.""" @@ -103,7 +103,7 @@ def test_tracer_chat_model_run() -> None: ], extra={}, serialized=SERIALIZED_CHAT, - inputs=dict(prompts=["Human: "]), + inputs={"prompts": ["Human: "]}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] error=None, run_type="llm", @@ -139,7 +139,7 @@ def test_tracer_multiple_llm_runs() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] error=None, run_type="llm", @@ -275,8 +275,8 @@ def test_tracer_nested_run() -> None: ], extra={}, serialized={"name": "tool"}, - inputs=dict(input="test"), - outputs=dict(output="test"), + inputs={"input": "test"}, + outputs={"output": "test"}, error=None, run_type="tool", trace_id=chain_uuid, @@ -294,7 +294,7 @@ def test_tracer_nested_run() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -314,7 +314,7 @@ def test_tracer_nested_run() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]]), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -342,7 +342,7 @@ def test_tracer_llm_run_on_error() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=None, error=repr(exception), run_type="llm", @@ -373,7 +373,7 @@ def test_tracer_llm_run_on_error_callback() -> None: ], extra={}, serialized=SERIALIZED, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=None, error=repr(exception), run_type="llm", @@ -439,9 +439,8 @@ def test_tracer_tool_run_on_error() -> None: ], extra={}, serialized={"name": "tool"}, - inputs=dict(input="test"), + inputs={"input": "test"}, outputs=None, - action="{'name': 'tool'}", error=repr(exception), run_type="tool", trace_id=uuid, @@ -529,7 +528,7 @@ def test_tracer_nested_runs_on_error() -> None: extra={}, serialized=SERIALIZED, error=None, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]], llm_output=None), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -547,7 +546,7 @@ def test_tracer_nested_runs_on_error() -> None: extra={}, serialized=SERIALIZED, error=None, - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=LLMResult(generations=[[]], llm_output=None), # type: ignore[arg-type] run_type="llm", trace_id=chain_uuid, @@ -565,9 +564,8 @@ def test_tracer_nested_runs_on_error() -> None: extra={}, serialized={"name": "tool"}, error=repr(exception), - inputs=dict(input="test"), + inputs={"input": "test"}, outputs=None, - action="{'name': 'tool'}", trace_id=chain_uuid, dotted_order=f"20230101T000000000000Z{chain_uuid}.20230101T000000000000Z{tool_uuid}", child_runs=[ @@ -583,7 +581,7 @@ def test_tracer_nested_runs_on_error() -> None: extra={}, serialized=SERIALIZED, error=repr(exception), - inputs=dict(prompts=[]), + inputs={"prompts": []}, outputs=None, run_type="llm", trace_id=chain_uuid, diff --git a/libs/core/tests/unit_tests/tracers/test_langchain.py b/libs/core/tests/unit_tests/tracers/test_langchain.py index 6610624dd4c32..d71783f6bc899 100644 --- a/libs/core/tests/unit_tests/tracers/test_langchain.py +++ b/libs/core/tests/unit_tests/tracers/test_langchain.py @@ -3,7 +3,7 @@ import unittest import unittest.mock import uuid -from typing import Any, Dict +from typing import Any from uuid import UUID import pytest @@ -65,7 +65,7 @@ def new_persist_run_single(run: Run) -> None: def test_tracer_with_run_tree_parent() -> None: mock_session = unittest.mock.MagicMock() client = Client(session=mock_session, api_key="test") - parent = RunTree(name="parent", inputs={"input": "foo"}, client=client) + parent = RunTree(name="parent", inputs={"input": "foo"}, _client=client) # type: ignore run_id = uuid.uuid4() tracer = LangChainTracer(client=client) tracer.order_map[parent.id] = (parent.trace_id, parent.dotted_order) @@ -102,7 +102,7 @@ class LangChainProjectNameTest(unittest.TestCase): class SetProperTracerProjectTestCase: def __init__( - self, test_name: str, envvars: Dict[str, str], expected_project_name: str + self, test_name: str, envvars: dict[str, str], expected_project_name: str ): self.test_name = test_name self.envvars = envvars @@ -133,25 +133,24 @@ def test_correct_get_tracer_project(self) -> None: for case in cases: get_env_var.cache_clear() get_tracer_project.cache_clear() - with self.subTest(msg=case.test_name): - with pytest.MonkeyPatch.context() as mp: - for k, v in case.envvars.items(): - mp.setenv(k, v) - - client = unittest.mock.MagicMock(spec=Client) - tracer = LangChainTracer(client=client) - projects = [] - - def mock_create_run(**kwargs: Any) -> Any: - projects.append(kwargs.get("project_name")) # noqa: B023 - return unittest.mock.MagicMock() - - client.create_run = mock_create_run - - tracer.on_llm_start( - {"name": "example_1"}, - ["foo"], - run_id=UUID("9d878ab3-e5ca-4218-aef6-44cbdc90160a"), - ) - tracer.wait_for_futures() - assert projects == [case.expected_project_name] + with self.subTest(msg=case.test_name), pytest.MonkeyPatch.context() as mp: + for k, v in case.envvars.items(): + mp.setenv(k, v) + + client = unittest.mock.MagicMock(spec=Client) + tracer = LangChainTracer(client=client) + projects = [] + + def mock_create_run(**kwargs: Any) -> Any: + projects.append(kwargs.get("project_name")) # noqa: B023 + return unittest.mock.MagicMock() + + client.create_run = mock_create_run + + tracer.on_llm_start( + {"name": "example_1"}, + ["foo"], + run_id=UUID("9d878ab3-e5ca-4218-aef6-44cbdc90160a"), + ) + tracer.wait_for_futures() + assert projects == [case.expected_project_name] diff --git a/libs/core/tests/unit_tests/tracers/test_memory_stream.py b/libs/core/tests/unit_tests/tracers/test_memory_stream.py index cbdd4d125c7b1..451ab35bb678e 100644 --- a/libs/core/tests/unit_tests/tracers/test_memory_stream.py +++ b/libs/core/tests/unit_tests/tracers/test_memory_stream.py @@ -1,8 +1,8 @@ import asyncio import math import time +from collections.abc import AsyncIterator from concurrent.futures import ThreadPoolExecutor -from typing import AsyncIterator from langchain_core.tracers.memory_stream import _MemoryStream diff --git a/libs/core/tests/unit_tests/utils/test_aiter.py b/libs/core/tests/unit_tests/utils/test_aiter.py index 3b035a89277ab..ca17283412d2c 100644 --- a/libs/core/tests/unit_tests/utils/test_aiter.py +++ b/libs/core/tests/unit_tests/utils/test_aiter.py @@ -1,4 +1,4 @@ -from typing import AsyncIterator, List +from collections.abc import AsyncIterator import pytest @@ -15,11 +15,11 @@ ], ) async def test_abatch_iterate( - input_size: int, input_iterable: List[str], expected_output: List[str] + input_size: int, input_iterable: list[str], expected_output: list[str] ) -> None: """Test batching function.""" - async def _to_async_iterable(iterable: List[str]) -> AsyncIterator[str]: + async def _to_async_iterable(iterable: list[str]) -> AsyncIterator[str]: for item in iterable: yield item diff --git a/libs/core/tests/unit_tests/utils/test_function_calling.py b/libs/core/tests/unit_tests/utils/test_function_calling.py index ba5ba4c9fa616..bd4694e0d52b7 100644 --- a/libs/core/tests/unit_tests/utils/test_function_calling.py +++ b/libs/core/tests/unit_tests/utils/test_function_calling.py @@ -1,20 +1,13 @@ # mypy: disable-error-code="annotation-unchecked" import sys +import typing +from collections.abc import Iterable, Mapping, MutableMapping, Sequence +from typing import Annotated as ExtensionsAnnotated from typing import ( Any, Callable, - Dict, - Iterable, - List, Literal, - Mapping, - MutableMapping, - MutableSet, Optional, - Sequence, - Set, - Tuple, - Type, Union, ) from typing import TypedDict as TypingTypedDict @@ -22,9 +15,6 @@ import pytest from pydantic import BaseModel as BaseModelV2Maybe # pydantic: ignore from pydantic import Field as FieldV2Maybe # pydantic: ignore -from typing_extensions import ( - Annotated as ExtensionsAnnotated, -) from typing_extensions import ( TypedDict as ExtensionsTypedDict, ) @@ -34,10 +24,11 @@ except ImportError: TypingAnnotated = ExtensionsAnnotated +from pydantic import BaseModel, Field + from langchain_core.messages import AIMessage, HumanMessage, ToolMessage -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import Runnable, RunnableLambda -from langchain_core.tools import BaseTool, tool +from langchain_core.tools import BaseTool, StructuredTool, Tool, tool from langchain_core.utils.function_calling import ( _convert_typed_dict_to_openai_function, convert_to_openai_function, @@ -46,8 +37,8 @@ @pytest.fixture() -def pydantic() -> Type[BaseModel]: - class dummy_function(BaseModel): +def pydantic() -> type[BaseModel]: + class dummy_function(BaseModel): # noqa: N801 """dummy function""" arg1: int = Field(..., description="foo") @@ -57,13 +48,12 @@ class dummy_function(BaseModel): @pytest.fixture() -def Annotated_function() -> Callable: +def annotated_function() -> Callable: def dummy_function( arg1: ExtensionsAnnotated[int, "foo"], arg2: ExtensionsAnnotated[Literal["bar", "baz"], "one of 'bar', 'baz'"], ) -> None: """dummy function""" - pass return dummy_function @@ -77,7 +67,6 @@ def dummy_function(arg1: int, arg2: Literal["bar", "baz"]) -> None: arg1: foo arg2: one of 'bar', 'baz' """ - pass return dummy_function @@ -101,7 +90,7 @@ class Schema(BaseModel): arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'") class DummyFunction(BaseTool): - args_schema: Type[BaseModel] = Schema + args_schema: type[BaseModel] = Schema name: str = "dummy_function" description: str = "dummy function" @@ -112,8 +101,22 @@ def _run(self, *args: Any, **kwargs: Any) -> Any: @pytest.fixture() -def dummy_pydantic() -> Type[BaseModel]: - class dummy_function(BaseModel): +def dummy_structured_tool() -> StructuredTool: + class Schema(BaseModel): + arg1: int = Field(..., description="foo") + arg2: Literal["bar", "baz"] = Field(..., description="one of 'bar', 'baz'") + + return StructuredTool.from_function( + lambda x: None, + name="dummy_function", + description="dummy function", + args_schema=Schema, + ) + + +@pytest.fixture() +def dummy_pydantic() -> type[BaseModel]: + class dummy_function(BaseModel): # noqa: N801 """dummy function""" arg1: int = Field(..., description="foo") @@ -123,8 +126,8 @@ class dummy_function(BaseModel): @pytest.fixture() -def dummy_pydantic_v2() -> Type[BaseModelV2Maybe]: - class dummy_function(BaseModelV2Maybe): +def dummy_pydantic_v2() -> type[BaseModelV2Maybe]: + class dummy_function(BaseModelV2Maybe): # noqa: N801 """dummy function""" arg1: int = FieldV2Maybe(..., description="foo") @@ -136,8 +139,8 @@ class dummy_function(BaseModelV2Maybe): @pytest.fixture() -def dummy_typing_typed_dict() -> Type: - class dummy_function(TypingTypedDict): +def dummy_typing_typed_dict() -> type: + class dummy_function(TypingTypedDict): # noqa: N801 """dummy function""" arg1: TypingAnnotated[int, ..., "foo"] # noqa: F821 @@ -147,8 +150,8 @@ class dummy_function(TypingTypedDict): @pytest.fixture() -def dummy_typing_typed_dict_docstring() -> Type: - class dummy_function(TypingTypedDict): +def dummy_typing_typed_dict_docstring() -> type: + class dummy_function(TypingTypedDict): # noqa: N801 """dummy function Args: @@ -163,8 +166,8 @@ class dummy_function(TypingTypedDict): @pytest.fixture() -def dummy_extensions_typed_dict() -> Type: - class dummy_function(ExtensionsTypedDict): +def dummy_extensions_typed_dict() -> type: + class dummy_function(ExtensionsTypedDict): # noqa: N801 """dummy function""" arg1: ExtensionsAnnotated[int, ..., "foo"] @@ -174,8 +177,8 @@ class dummy_function(ExtensionsTypedDict): @pytest.fixture() -def dummy_extensions_typed_dict_docstring() -> Type: - class dummy_function(ExtensionsTypedDict): +def dummy_extensions_typed_dict_docstring() -> type: + class dummy_function(ExtensionsTypedDict): # noqa: N801 """dummy function Args: @@ -190,7 +193,7 @@ class dummy_function(ExtensionsTypedDict): @pytest.fixture() -def json_schema() -> Dict: +def json_schema() -> dict: return { "title": "dummy_function", "description": "dummy function", @@ -215,7 +218,6 @@ def dummy_function(self, arg1: int, arg2: Literal["bar", "baz"]) -> None: arg1: foo arg2: one of 'bar', 'baz' """ - pass class DummyWithClassMethod: @@ -227,21 +229,21 @@ def dummy_function(cls, arg1: int, arg2: Literal["bar", "baz"]) -> None: arg1: foo arg2: one of 'bar', 'baz' """ - pass def test_convert_to_openai_function( - pydantic: Type[BaseModel], + pydantic: type[BaseModel], function: Callable, + dummy_structured_tool: StructuredTool, dummy_tool: BaseTool, - json_schema: Dict, - Annotated_function: Callable, - dummy_pydantic: Type[BaseModel], + json_schema: dict, + annotated_function: Callable, + dummy_pydantic: type[BaseModel], runnable: Runnable, - dummy_typing_typed_dict: Type, - dummy_typing_typed_dict_docstring: Type, - dummy_extensions_typed_dict: Type, - dummy_extensions_typed_dict_docstring: Type, + dummy_typing_typed_dict: type, + dummy_typing_typed_dict_docstring: type, + dummy_extensions_typed_dict: type, + dummy_extensions_typed_dict_docstring: type, ) -> None: expected = { "name": "dummy_function", @@ -263,12 +265,13 @@ def test_convert_to_openai_function( for fn in ( pydantic, function, + dummy_structured_tool, dummy_tool, json_schema, expected, Dummy.dummy_function, DummyWithClassMethod.dummy_function, - Annotated_function, + annotated_function, dummy_pydantic, dummy_typing_typed_dict, dummy_typing_typed_dict_docstring, @@ -295,6 +298,27 @@ def test_convert_to_openai_function( runnable_expected["parameters"] = parameters assert actual == runnable_expected + # Test simple Tool + def my_function(input_string: str) -> str: + pass + + tool = Tool( + name="dummy_function", + func=my_function, + description="test description", + ) + actual = convert_to_openai_function(tool) + expected = { + "name": "dummy_function", + "description": "test description", + "parameters": { + "properties": {"__arg1": {"title": "__arg1", "type": "string"}}, + "required": ["__arg1"], + "type": "object", + }, + } + assert actual == expected + @pytest.mark.xfail(reason="Direct pydantic v2 models not yet supported") def test_convert_to_openai_function_nested_v2() -> None: @@ -306,7 +330,6 @@ class NestedV2(BaseModelV2Maybe): def my_function(arg1: NestedV2) -> None: """dummy function""" - pass convert_to_openai_function(my_function) @@ -320,7 +343,6 @@ class Nested(BaseModel): def my_function(arg1: Nested) -> None: """dummy function""" - pass expected = { "name": "my_function", @@ -358,7 +380,6 @@ class Nested(BaseModel): def my_function(arg1: Nested) -> None: """dummy function""" - pass expected = { "name": "my_function", @@ -390,16 +411,17 @@ def my_function(arg1: Nested) -> None: assert actual == expected -@pytest.mark.xfail(reason="Pydantic converts Optional[str] to str in .schema()") +@pytest.mark.xfail( + reason="Pydantic converts Optional[str] to str in .model_json_schema()" +) def test_function_optional_param() -> None: @tool def func5( a: Optional[str], b: str, - c: Optional[List[Optional[str]]], + c: Optional[list[Optional[str]]], ) -> None: """A test function""" - pass func = convert_to_openai_function(func5) req = func["parameters"]["required"] @@ -409,7 +431,6 @@ def func5( def test_function_no_params() -> None: def nullary_function() -> None: """nullary function""" - pass func = convert_to_openai_function(nullary_function) req = func["parameters"].get("required") @@ -450,17 +471,17 @@ def test_multiple_tool_calls() -> None: { "id": messages[2].tool_call_id, "type": "function", - "function": {"name": "FakeCall", "arguments": '{"data": "ToolCall1"}'}, + "function": {"name": "FakeCall", "arguments": '{"data":"ToolCall1"}'}, }, { "id": messages[3].tool_call_id, "type": "function", - "function": {"name": "FakeCall", "arguments": '{"data": "ToolCall2"}'}, + "function": {"name": "FakeCall", "arguments": '{"data":"ToolCall2"}'}, }, { "id": messages[4].tool_call_id, "type": "function", - "function": {"name": "FakeCall", "arguments": '{"data": "ToolCall3"}'}, + "function": {"name": "FakeCall", "arguments": '{"data":"ToolCall3"}'}, }, ] @@ -481,7 +502,7 @@ def test_tool_outputs() -> None: { "id": messages[2].tool_call_id, "type": "function", - "function": {"name": "FakeCall", "arguments": '{"data": "ToolCall1"}'}, + "function": {"name": "FakeCall", "arguments": '{"data":"ToolCall1"}'}, }, ] assert messages[2].content == "Output1" @@ -492,21 +513,15 @@ def test_tool_outputs() -> None: def test__convert_typed_dict_to_openai_function( use_extension_typed_dict: bool, use_extension_annotated: bool ) -> None: - if use_extension_typed_dict: - TypedDict = ExtensionsTypedDict - else: - TypedDict = TypingTypedDict - if use_extension_annotated: - Annotated = TypingAnnotated - else: - Annotated = TypingAnnotated - - class SubTool(TypedDict): + typed_dict = ExtensionsTypedDict if use_extension_typed_dict else TypingTypedDict + annotated = TypingAnnotated if use_extension_annotated else TypingAnnotated + + class SubTool(typed_dict): """Subtool docstring""" - args: Annotated[Dict[str, Any], {}, "this does bar"] # noqa: F722 # type: ignore + args: annotated[dict[str, Any], {}, "this does bar"] # noqa: F722 # type: ignore - class Tool(TypedDict): + class Tool(typed_dict): """Docstring Args: @@ -515,21 +530,21 @@ class Tool(TypedDict): arg1: str arg2: Union[int, str, bool] - arg3: Optional[List[SubTool]] - arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"] # noqa: F722 - arg5: Annotated[Optional[float], None] - arg6: Annotated[ - Optional[Sequence[Mapping[str, Tuple[Iterable[Any], SubTool]]]], [] + arg3: Optional[list[SubTool]] + arg4: annotated[Literal["bar", "baz"], ..., "this does foo"] # noqa: F722 + arg5: annotated[Optional[float], None] + arg6: annotated[ + Optional[Sequence[Mapping[str, tuple[Iterable[Any], SubTool]]]], [] ] - arg7: Annotated[List[SubTool], ...] - arg8: Annotated[Tuple[SubTool], ...] - arg9: Annotated[Sequence[SubTool], ...] - arg10: Annotated[Iterable[SubTool], ...] - arg11: Annotated[Set[SubTool], ...] - arg12: Annotated[Dict[str, SubTool], ...] - arg13: Annotated[Mapping[str, SubTool], ...] - arg14: Annotated[MutableMapping[str, SubTool], ...] - arg15: Annotated[bool, False, "flag"] # noqa: F821 # type: ignore + arg7: annotated[list[SubTool], ...] + arg8: annotated[tuple[SubTool], ...] + arg9: annotated[Sequence[SubTool], ...] + arg10: annotated[Iterable[SubTool], ...] + arg11: annotated[set[SubTool], ...] + arg12: annotated[dict[str, SubTool], ...] + arg13: annotated[Mapping[str, SubTool], ...] + arg14: annotated[MutableMapping[str, SubTool], ...] + arg15: annotated[bool, False, "flag"] # noqa: F821 # type: ignore expected = { "name": "Tool", @@ -735,10 +750,11 @@ class Tool(TypedDict): @pytest.mark.parametrize("typed_dict", [ExtensionsTypedDict, TypingTypedDict]) -def test__convert_typed_dict_to_openai_function_fail(typed_dict: Type) -> None: +def test__convert_typed_dict_to_openai_function_fail(typed_dict: type) -> None: class Tool(typed_dict): - arg1: MutableSet # Pydantic doesn't support + arg1: typing.MutableSet # Pydantic 2 supports this, but pydantic v1 does not. + # Error should be raised since we're using v1 code path here with pytest.raises(TypeError): _convert_typed_dict_to_openai_function(Tool) @@ -750,9 +766,27 @@ def test_convert_union_type_py_39() -> None: @tool def magic_function(input: int | float) -> str: """Compute a magic function.""" - pass result = convert_to_openai_function(magic_function) assert result["parameters"]["properties"]["input"] == { "anyOf": [{"type": "integer"}, {"type": "number"}] } + + +def test_convert_to_openai_function_no_args() -> None: + @tool + def empty_tool() -> str: + """No args""" + return "foo" + + actual = convert_to_openai_function(empty_tool, strict=True) + assert actual == { + "name": "empty_tool", + "description": "No args", + "parameters": { + "properties": {}, + "additionalProperties": False, + "type": "object", + }, + "strict": True, + } diff --git a/libs/core/tests/unit_tests/utils/test_imports.py b/libs/core/tests/unit_tests/utils/test_imports.py index f33491ed29583..67fe97e65698b 100644 --- a/libs/core/tests/unit_tests/utils/test_imports.py +++ b/libs/core/tests/unit_tests/utils/test_imports.py @@ -17,8 +17,8 @@ "raise_for_status_with_text", "xor_args", "try_load_from_hub", - "build_extra_kwargs", "image", + "build_extra_kwargs", "get_from_dict_or_env", "get_from_env", "stringify_dict", diff --git a/libs/core/tests/unit_tests/utils/test_iter.py b/libs/core/tests/unit_tests/utils/test_iter.py index d0866ea3fc091..2e8d547993aa1 100644 --- a/libs/core/tests/unit_tests/utils/test_iter.py +++ b/libs/core/tests/unit_tests/utils/test_iter.py @@ -1,5 +1,3 @@ -from typing import List - import pytest from langchain_core.utils.iter import batch_iterate @@ -15,7 +13,7 @@ ], ) def test_batch_iterate( - input_size: int, input_iterable: List[str], expected_output: List[str] + input_size: int, input_iterable: list[str], expected_output: list[str] ) -> None: """Test batching function.""" assert list(batch_iterate(input_size, input_iterable)) == expected_output diff --git a/libs/core/tests/unit_tests/utils/test_pydantic.py b/libs/core/tests/unit_tests/utils/test_pydantic.py index 3517d5c164081..01e5657866f72 100644 --- a/libs/core/tests/unit_tests/utils/test_pydantic.py +++ b/libs/core/tests/unit_tests/utils/test_pydantic.py @@ -1,12 +1,14 @@ """Test for some custom pydantic decorators.""" -from typing import Any, Dict, List, Optional +from typing import Any, Optional import pytest +from pydantic import ConfigDict from langchain_core.utils.pydantic import ( PYDANTIC_MAJOR_VERSION, _create_subset_model_v2, + create_model_v2, get_fields, is_basemodel_instance, is_basemodel_subclass, @@ -15,14 +17,14 @@ def test_pre_init_decorator() -> None: - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class Foo(BaseModel): x: int = 5 y: int @pre_init - def validator(cls, v: Dict[str, Any]) -> Dict[str, Any]: + def validator(cls, v: dict[str, Any]) -> dict[str, Any]: v["y"] = v["x"] + 1 return v @@ -34,7 +36,7 @@ def validator(cls, v: Dict[str, Any]) -> Dict[str, Any]: def test_pre_init_decorator_with_more_defaults() -> None: - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Foo(BaseModel): a: int = 1 @@ -43,7 +45,7 @@ class Foo(BaseModel): d: int = Field(default_factory=lambda: 3) @pre_init - def validator(cls, v: Dict[str, Any]) -> Dict[str, Any]: + def validator(cls, v: dict[str, Any]) -> dict[str, Any]: assert v["a"] == 1 assert v["b"] is None assert v["c"] == 2 @@ -56,17 +58,18 @@ def validator(cls, v: Dict[str, Any]) -> Dict[str, Any]: def test_with_aliases() -> None: - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Foo(BaseModel): x: int = Field(default=1, alias="y") z: int - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) @pre_init - def validator(cls, v: Dict[str, Any]) -> Dict[str, Any]: + def validator(cls, v: dict[str, Any]) -> dict[str, Any]: v["z"] = v["x"] return v @@ -92,32 +95,33 @@ def validator(cls, v: Dict[str, Any]) -> Dict[str, Any]: def test_is_basemodel_subclass() -> None: """Test pydantic.""" if PYDANTIC_MAJOR_VERSION == 1: - from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore + from pydantic import BaseModel as BaseModelV1Proper assert is_basemodel_subclass(BaseModelV1Proper) elif PYDANTIC_MAJOR_VERSION == 2: - from pydantic import BaseModel as BaseModelV2 # pydantic: ignore - from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore + from pydantic import BaseModel as BaseModelV2 + from pydantic.v1 import BaseModel as BaseModelV1 assert is_basemodel_subclass(BaseModelV2) assert is_basemodel_subclass(BaseModelV1) else: - raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}") + msg = f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise ValueError(msg) def test_is_basemodel_instance() -> None: """Test pydantic.""" if PYDANTIC_MAJOR_VERSION == 1: - from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore + from pydantic import BaseModel as BaseModelV1Proper class FooV1(BaseModelV1Proper): x: int assert is_basemodel_instance(FooV1(x=5)) elif PYDANTIC_MAJOR_VERSION == 2: - from pydantic import BaseModel as BaseModelV2 # pydantic: ignore - from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore + from pydantic import BaseModel as BaseModelV2 + from pydantic.v1 import BaseModel as BaseModelV1 class Foo(BaseModelV2): x: int @@ -129,17 +133,18 @@ class Bar(BaseModelV1): assert is_basemodel_instance(Bar(x=5)) else: - raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}") + msg = f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}" + raise ValueError(msg) @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Only tests Pydantic v2") def test_with_field_metadata() -> None: """Test pydantic with field metadata""" - from pydantic import BaseModel as BaseModelV2 # pydantic: ignore - from pydantic import Field as FieldV2 # pydantic: ignore + from pydantic import BaseModel as BaseModelV2 + from pydantic import Field as FieldV2 class Foo(BaseModelV2): - x: List[int] = FieldV2( + x: list[int] = FieldV2( description="List of integers", min_length=10, max_length=15 ) @@ -163,18 +168,18 @@ class Foo(BaseModelV2): @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 1, reason="Only tests Pydantic v1") def test_fields_pydantic_v1() -> None: - from pydantic import BaseModel # pydantic: ignore + from pydantic import BaseModel class Foo(BaseModel): x: int fields = get_fields(Foo) - assert fields == {"x": Foo.__fields__["x"]} # type: ignore[index] + assert fields == {"x": Foo.model_fields["x"]} # type: ignore[index] @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Only tests Pydantic v2") def test_fields_pydantic_v2_proper() -> None: - from pydantic import BaseModel # pydantic: ignore + from pydantic import BaseModel class Foo(BaseModel): x: int @@ -185,10 +190,42 @@ class Foo(BaseModel): @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Only tests Pydantic v2") def test_fields_pydantic_v1_from_2() -> None: - from pydantic.v1 import BaseModel # pydantic: ignore + from pydantic.v1 import BaseModel class Foo(BaseModel): x: int fields = get_fields(Foo) assert fields == {"x": Foo.__fields__["x"]} + + +def test_create_model_v2() -> None: + """Test that create model v2 works as expected.""" + + with pytest.warns(None) as record: # type: ignore + foo = create_model_v2("Foo", field_definitions={"a": (int, None)}) + foo.model_json_schema() + + assert list(record) == [] + + # schema is used by pydantic, but OK to re-use + with pytest.warns(None) as record: # type: ignore + foo = create_model_v2("Foo", field_definitions={"schema": (int, None)}) + foo.model_json_schema() + + assert list(record) == [] + + # From protected namespaces, but definitely OK to use. + with pytest.warns(None) as record: # type: ignore + foo = create_model_v2("Foo", field_definitions={"model_id": (int, None)}) + foo.model_json_schema() + + assert list(record) == [] + + with pytest.warns(None) as record: # type: ignore + # Verify that we can use non-English characters + field_name = "もしもし" + foo = create_model_v2("Foo", field_definitions={field_name: (int, None)}) + foo.model_json_schema() + + assert list(record) == [] diff --git a/libs/core/tests/unit_tests/utils/test_utils.py b/libs/core/tests/unit_tests/utils/test_utils.py index 419e6309fd9e8..806ace226e5d0 100644 --- a/libs/core/tests/unit_tests/utils/test_utils.py +++ b/libs/core/tests/unit_tests/utils/test_utils.py @@ -2,13 +2,13 @@ import re from contextlib import AbstractContextManager, nullcontext from copy import deepcopy -from typing import Any, Callable, Dict, Optional, Tuple, Type, Union +from typing import Any, Callable, Optional, Union from unittest.mock import patch import pytest +from pydantic import SecretStr from langchain_core import utils -from langchain_core.pydantic_v1 import SecretStr from langchain_core.utils import ( check_package_version, from_env, @@ -32,9 +32,9 @@ ) def test_check_package_version( package: str, - check_kwargs: Dict[str, Optional[str]], + check_kwargs: dict[str, Optional[str]], actual_version: str, - expected: Optional[Tuple[Type[Exception], str]], + expected: Optional[tuple[type[Exception], str]], ) -> None: with patch("langchain_core.utils.utils.version", return_value=actual_version): if expected is None: @@ -116,10 +116,7 @@ def test_check_package_version( def test_merge_dicts( left: dict, right: dict, expected: Union[dict, AbstractContextManager] ) -> None: - if isinstance(expected, AbstractContextManager): - err = expected - else: - err = nullcontext() + err = expected if isinstance(expected, AbstractContextManager) else nullcontext() left_copy = deepcopy(left) right_copy = deepcopy(right) @@ -147,10 +144,7 @@ def test_merge_dicts( def test_merge_dicts_0_3( left: dict, right: dict, expected: Union[dict, AbstractContextManager] ) -> None: - if isinstance(expected, AbstractContextManager): - err = expected - else: - err = nullcontext() + err = expected if isinstance(expected, AbstractContextManager) else nullcontext() left_copy = deepcopy(left) right_copy = deepcopy(right) @@ -183,7 +177,8 @@ def test_guard_import( elif package is not None and pip_name is not None: ret = guard_import(module_name, pip_name=pip_name, package=package) else: - raise ValueError("Invalid test case") + msg = "Invalid test case" + raise ValueError(msg) assert ret == expected @@ -210,7 +205,8 @@ def test_guard_import_failure( elif package is not None and pip_name is not None: guard_import(module_name, pip_name=pip_name, package=package) else: - raise ValueError("Invalid test case") + msg = "Invalid test case" + raise ValueError(msg) pip_name = pip_name or module_name.split(".")[0].replace("_", "-") err_msg = ( f"Could not import {module_name} python package. " @@ -221,8 +217,8 @@ def test_guard_import_failure( @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Requires pydantic 2") def test_get_pydantic_field_names_v1_in_2() -> None: - from pydantic.v1 import BaseModel as PydanticV1BaseModel # pydantic: ignore - from pydantic.v1 import Field # pydantic: ignore + from pydantic.v1 import BaseModel as PydanticV1BaseModel + from pydantic.v1 import Field class PydanticV1Model(PydanticV1BaseModel): field1: str @@ -236,7 +232,7 @@ class PydanticV1Model(PydanticV1BaseModel): @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Requires pydantic 2") def test_get_pydantic_field_names_v2_in_2() -> None: - from pydantic import BaseModel, Field # pydantic: ignore + from pydantic import BaseModel, Field class PydanticModel(BaseModel): field1: str @@ -250,7 +246,7 @@ class PydanticModel(BaseModel): @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 1, reason="Requires pydantic 1") def test_get_pydantic_field_names_v1() -> None: - from pydantic import BaseModel, Field # pydantic: ignore + from pydantic import BaseModel, Field class PydanticModel(BaseModel): field1: str @@ -365,7 +361,7 @@ def test_secret_from_env_with_custom_error_message( def test_using_secret_from_env_as_default_factory( monkeypatch: pytest.MonkeyPatch, ) -> None: - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Foo(BaseModel): secret: SecretStr = Field(default_factory=secret_from_env("TEST_KEY")) diff --git a/libs/core/tests/unit_tests/vectorstores/test_in_memory.py b/libs/core/tests/unit_tests/vectorstores/test_in_memory.py index 8d30afac3caf4..1ab6186882639 100644 --- a/libs/core/tests/unit_tests/vectorstores/test_in_memory.py +++ b/libs/core/tests/unit_tests/vectorstores/test_in_memory.py @@ -10,7 +10,7 @@ from langchain_core.documents import Document from langchain_core.embeddings.fake import DeterministicFakeEmbedding from langchain_core.vectorstores import InMemoryVectorStore -from tests.unit_tests.stubs import AnyStr, _AnyIdDocument +from tests.unit_tests.stubs import _any_id_document class TestInMemoryReadWriteTestSuite(ReadWriteTestSuite): @@ -33,13 +33,13 @@ async def test_inmemory_similarity_search() -> None: # Check sync version output = store.similarity_search("foo", k=1) - assert output == [_AnyIdDocument(page_content="foo")] + assert output == [_any_id_document(page_content="foo")] # Check async version output = await store.asimilarity_search("bar", k=2) assert output == [ - _AnyIdDocument(page_content="bar"), - _AnyIdDocument(page_content="baz"), + _any_id_document(page_content="bar"), + _any_id_document(page_content="foo"), ] @@ -80,16 +80,16 @@ async def test_inmemory_mmr() -> None: # make sure we can k > docstore size output = docsearch.max_marginal_relevance_search("foo", k=10, lambda_mult=0.1) assert len(output) == len(texts) - assert output[0] == _AnyIdDocument(page_content="foo") - assert output[1] == _AnyIdDocument(page_content="foy") + assert output[0] == _any_id_document(page_content="foo") + assert output[1] == _any_id_document(page_content="fou") # Check async version output = await docsearch.amax_marginal_relevance_search( "foo", k=10, lambda_mult=0.1 ) assert len(output) == len(texts) - assert output[0] == _AnyIdDocument(page_content="foo") - assert output[1] == _AnyIdDocument(page_content="foy") + assert output[0] == _any_id_document(page_content="foo") + assert output[1] == _any_id_document(page_content="fou") async def test_inmemory_dump_load(tmp_path: Path) -> None: @@ -117,7 +117,7 @@ async def test_inmemory_filter() -> None: # Check sync version output = store.similarity_search("fee", filter=lambda doc: doc.metadata["id"] == 1) - assert output == [Document(page_content="foo", metadata={"id": 1}, id=AnyStr())] + assert output == [_any_id_document(page_content="foo", metadata={"id": 1})] # filter with not stored document id output = await store.asimilarity_search( diff --git a/libs/core/tests/unit_tests/vectorstores/test_vectorstore.py b/libs/core/tests/unit_tests/vectorstores/test_vectorstore.py index 971315752b8c2..a0472b70cdaae 100644 --- a/libs/core/tests/unit_tests/vectorstores/test_vectorstore.py +++ b/libs/core/tests/unit_tests/vectorstores/test_vectorstore.py @@ -7,10 +7,13 @@ from __future__ import annotations import uuid -from typing import Any, Dict, Iterable, List, Optional, Sequence +from collections.abc import Iterable, Sequence +from typing import Any, Optional + +import pytest from langchain_core.documents import Document -from langchain_core.embeddings import Embeddings +from langchain_core.embeddings import Embeddings, FakeEmbeddings from langchain_core.vectorstores import VectorStore @@ -18,19 +21,15 @@ class CustomAddTextsVectorstore(VectorStore): """A vectorstore that only implements add texts.""" def __init__(self) -> None: - self.store: Dict[str, Document] = {} + self.store: dict[str, Document] = {} def add_texts( self, texts: Iterable[str], - metadatas: Optional[List[dict]] = None, - # One of the kwargs should be `ids` which is a list of ids - # associated with the texts. - # This is not yet enforced in the type signature for backwards compatibility - # with existing implementations. - ids: Optional[List[str]] = None, + metadatas: Optional[list[dict]] = None, + ids: Optional[list[str]] = None, **kwargs: Any, - ) -> List[str]: + ) -> list[str]: if not isinstance(texts, list): texts = list(texts) ids_iter = iter(ids or []) @@ -46,14 +45,15 @@ def add_texts( ids_.append(id_) return ids_ - def get_by_ids(self, ids: Sequence[str], /) -> List[Document]: + def get_by_ids(self, ids: Sequence[str], /) -> list[Document]: return [self.store[id] for id in ids if id in self.store] + @classmethod def from_texts( # type: ignore cls, - texts: List[str], + texts: list[str], embedding: Embeddings, - metadatas: Optional[List[dict]] = None, + metadatas: Optional[list[dict]] = None, **kwargs: Any, ) -> CustomAddTextsVectorstore: vectorstore = CustomAddTextsVectorstore() @@ -62,16 +62,63 @@ def from_texts( # type: ignore def similarity_search( self, query: str, k: int = 4, **kwargs: Any - ) -> List[Document]: - raise NotImplementedError() + ) -> list[Document]: + raise NotImplementedError + + +class CustomAddDocumentsVectorstore(VectorStore): + """A vectorstore that only implements add documents.""" + + def __init__(self) -> None: + self.store: dict[str, Document] = {} + + def add_documents( + self, + documents: list[Document], + *, + ids: Optional[list[str]] = None, + **kwargs: Any, + ) -> list[str]: + ids_ = [] + ids_iter = iter(ids or []) + for document in documents: + id_ = next(ids_iter) if ids else document.id or str(uuid.uuid4()) + self.store[id_] = Document( + id=id_, page_content=document.page_content, metadata=document.metadata + ) + ids_.append(id_) + return ids_ + + def get_by_ids(self, ids: Sequence[str], /) -> list[Document]: + return [self.store[id] for id in ids if id in self.store] + + @classmethod + def from_texts( # type: ignore + cls, + texts: list[str], + embedding: Embeddings, + metadatas: Optional[list[dict]] = None, + **kwargs: Any, + ) -> CustomAddDocumentsVectorstore: + vectorstore = CustomAddDocumentsVectorstore() + vectorstore.add_texts(texts, metadatas=metadatas, **kwargs) + return vectorstore + + def similarity_search( + self, query: str, k: int = 4, **kwargs: Any + ) -> list[Document]: + raise NotImplementedError -def test_default_add_documents() -> None: +@pytest.mark.parametrize( + "vs_class", [CustomAddTextsVectorstore, CustomAddDocumentsVectorstore] +) +def test_default_add_documents(vs_class: type[VectorStore]) -> None: """Test that we can implement the upsert method of the CustomVectorStore class without violating the Liskov Substitution Principle. """ - store = CustomAddTextsVectorstore() + store = vs_class() # Check upsert with id assert store.add_documents([Document(id="1", page_content="hello")]) == ["1"] @@ -93,8 +140,11 @@ class without violating the Liskov Substitution Principle. assert store.get_by_ids(["6"]) == [Document(id="6", page_content="baz")] -def test_default_add_texts() -> None: - store = CustomAddTextsVectorstore() +@pytest.mark.parametrize( + "vs_class", [CustomAddTextsVectorstore, CustomAddDocumentsVectorstore] +) +def test_default_add_texts(vs_class: type[VectorStore]) -> None: + store = vs_class() # Check that default implementation of add_texts works assert store.add_texts(["hello", "world"], ids=["3", "4"]) == ["3", "4"] @@ -120,9 +170,12 @@ def test_default_add_texts() -> None: ] -async def test_default_aadd_documents() -> None: +@pytest.mark.parametrize( + "vs_class", [CustomAddTextsVectorstore, CustomAddDocumentsVectorstore] +) +async def test_default_aadd_documents(vs_class: type[VectorStore]) -> None: """Test delegation to the synchronous method.""" - store = CustomAddTextsVectorstore() + store = vs_class() # Check upsert with id assert await store.aadd_documents([Document(id="1", page_content="hello")]) == ["1"] @@ -144,10 +197,13 @@ async def test_default_aadd_documents() -> None: assert await store.aget_by_ids(["6"]) == [Document(id="6", page_content="baz")] -async def test_default_aadd_texts() -> None: +@pytest.mark.parametrize( + "vs_class", [CustomAddTextsVectorstore, CustomAddDocumentsVectorstore] +) +async def test_default_aadd_texts(vs_class: type[VectorStore]) -> None: """Test delegation to the synchronous method.""" - store = CustomAddTextsVectorstore() - # Check that default implementation of add_texts works + store = vs_class() + # Check that default implementation of aadd_texts works assert await store.aadd_texts(["hello", "world"], ids=["3", "4"]) == ["3", "4"] assert await store.aget_by_ids(["3", "4"]) == [ @@ -170,3 +226,61 @@ async def test_default_aadd_texts() -> None: Document(id=ids_2[0], page_content="foo", metadata={"foo": "bar"}), Document(id=ids_2[1], page_content="bar", metadata={"foo": "bar"}), ] + + +@pytest.mark.parametrize( + "vs_class", [CustomAddTextsVectorstore, CustomAddDocumentsVectorstore] +) +def test_default_from_documents(vs_class: type[VectorStore]) -> None: + embeddings = FakeEmbeddings(size=1) + store = vs_class.from_documents( + [Document(id="1", page_content="hello", metadata={"foo": "bar"})], embeddings + ) + + assert store.get_by_ids(["1"]) == [ + Document(id="1", page_content="hello", metadata={"foo": "bar"}) + ] + + # from_documents with ids in args + store = vs_class.from_documents( + [Document(page_content="hello", metadata={"foo": "bar"})], embeddings, ids=["1"] + ) + + assert store.get_by_ids(["1"]) == [ + Document(id="1", page_content="hello", metadata={"foo": "bar"}) + ] + + # Test from_documents with id specified in both document and ids + original_document = Document(id="7", page_content="baz") + store = vs_class.from_documents([original_document], embeddings, ids=["6"]) + assert original_document.id == "7" # original document should not be modified + assert store.get_by_ids(["6"]) == [Document(id="6", page_content="baz")] + + +@pytest.mark.parametrize( + "vs_class", [CustomAddTextsVectorstore, CustomAddDocumentsVectorstore] +) +async def test_default_afrom_documents(vs_class: type[VectorStore]) -> None: + embeddings = FakeEmbeddings(size=1) + store = await vs_class.afrom_documents( + [Document(id="1", page_content="hello", metadata={"foo": "bar"})], embeddings + ) + + assert await store.aget_by_ids(["1"]) == [ + Document(id="1", page_content="hello", metadata={"foo": "bar"}) + ] + + # from_documents with ids in args + store = await vs_class.afrom_documents( + [Document(page_content="hello", metadata={"foo": "bar"})], embeddings, ids=["1"] + ) + + assert await store.aget_by_ids(["1"]) == [ + Document(id="1", page_content="hello", metadata={"foo": "bar"}) + ] + + # Test afrom_documents with id specified in both document and ids + original_document = Document(id="7", page_content="baz") + store = await vs_class.afrom_documents([original_document], embeddings, ids=["6"]) + assert original_document.id == "7" # original document should not be modified + assert await store.aget_by_ids(["6"]) == [Document(id="6", page_content="baz")] diff --git a/libs/experimental/LICENSE b/libs/experimental/LICENSE deleted file mode 100644 index 3957738673765..0000000000000 --- a/libs/experimental/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) LangChain, Inc. - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/libs/experimental/Makefile b/libs/experimental/Makefile deleted file mode 100644 index af7fa87ab9859..0000000000000 --- a/libs/experimental/Makefile +++ /dev/null @@ -1,67 +0,0 @@ -.PHONY: all format lint test tests test_watch integration_tests docker_tests help extended_tests - -# Default target executed when no arguments are given to make. -all: help - -# Define a variable for the test file path. -TEST_FILE ?= tests/unit_tests/ - -test: - poetry run pytest $(TEST_FILE) - -tests: - poetry run pytest $(TEST_FILE) - -test_watch: - poetry run ptw --now . -- tests/unit_tests - -extended_tests: - poetry run pytest --only-extended tests/unit_tests - -integration_tests: - poetry run pytest tests/integration_tests - -check_imports: $(shell find langchain_experimental -name '*.py') - poetry run python ./scripts/check_imports.py $^ - - -###################### -# LINTING AND FORMATTING -###################### - -# Define a variable for Python and notebook files. -PYTHON_FILES=. -MYPY_CACHE=.mypy_cache -lint format: PYTHON_FILES=. -lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/experimental --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$') -lint_package: PYTHON_FILES=langchain_experimental -lint_tests: PYTHON_FILES=tests -lint_tests: MYPY_CACHE=.mypy_cache_test - -lint lint_diff lint_package lint_tests: - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check $(PYTHON_FILES) - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff - [ "$(PYTHON_FILES)" = "" ] || mkdir -p $(MYPY_CACHE) && poetry run mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE) - -format format_diff: - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check --select I --fix $(PYTHON_FILES) - -spell_check: - poetry run codespell --toml pyproject.toml - -spell_fix: - poetry run codespell --toml pyproject.toml -w - -###################### -# HELP -###################### - -help: - @echo '----' - @echo 'format - run code formatters' - @echo 'lint - run linters' - @echo 'test - run unit tests' - @echo 'tests - run unit tests' - @echo 'test TEST_FILE= - run all tests in file' - @echo 'test_watch - run unit tests in watch mode' diff --git a/libs/experimental/README.md b/libs/experimental/README.md index ed79068a2970f..876f54e626321 100644 --- a/libs/experimental/README.md +++ b/libs/experimental/README.md @@ -1,16 +1,3 @@ -# 🦜️🧪 LangChain Experimental +This package has moved! -This package holds experimental LangChain code, intended for research and experimental -uses. - -> [!WARNING] -> Portions of the code in this package may be dangerous if not properly deployed -> in a sandboxed environment. Please be wary of deploying experimental code -> to production unless you've taken appropriate precautions and -> have already discussed it with your security team. - -Some of the code here may be marked with security notices. However, -given the exploratory and experimental nature of the code in this package, -the lack of a security notice on a piece of code does not mean that -the code in question does not require additional security considerations -in order to be safe to use. \ No newline at end of file +https://github.com/langchain-ai/langchain-experimental/tree/main/libs/experimental diff --git a/libs/experimental/extended_testing_deps.txt b/libs/experimental/extended_testing_deps.txt deleted file mode 100644 index 06ab41ba342f1..0000000000000 --- a/libs/experimental/extended_testing_deps.txt +++ /dev/null @@ -1,8 +0,0 @@ -presidio-anonymizer>=2.2.352,<3 -presidio-analyzer>=2.2.352,<3 -faker>=19.3.1,<20 -vowpal-wabbit-next==0.7.0 -sentence-transformers>=2,<3 -jinja2>=3,<4 -pandas>=2.0.1,<3 -tabulate>=0.9.0,<1 diff --git a/libs/experimental/langchain_experimental/agents/__init__.py b/libs/experimental/langchain_experimental/agents/__init__.py deleted file mode 100644 index 3984834c6dd08..0000000000000 --- a/libs/experimental/langchain_experimental/agents/__init__.py +++ /dev/null @@ -1,23 +0,0 @@ -"""**Agent** is a class that uses an LLM to choose -a sequence of actions to take. - -In Chains, a sequence of actions is hardcoded. In Agents, -a language model is used as a reasoning engine to determine which actions -to take and in which order. - -Agents select and use **Tools** and **Toolkits** for actions. -""" - -from langchain_experimental.agents.agent_toolkits import ( - create_csv_agent, - create_pandas_dataframe_agent, - create_spark_dataframe_agent, - create_xorbits_agent, -) - -__all__ = [ - "create_csv_agent", - "create_pandas_dataframe_agent", - "create_spark_dataframe_agent", - "create_xorbits_agent", -] diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/__init__.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/__init__.py deleted file mode 100644 index da32189a0e600..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/__init__.py +++ /dev/null @@ -1,19 +0,0 @@ -from langchain_experimental.agents.agent_toolkits.csv.base import create_csv_agent -from langchain_experimental.agents.agent_toolkits.pandas.base import ( - create_pandas_dataframe_agent, -) -from langchain_experimental.agents.agent_toolkits.python.base import create_python_agent -from langchain_experimental.agents.agent_toolkits.spark.base import ( - create_spark_dataframe_agent, -) -from langchain_experimental.agents.agent_toolkits.xorbits.base import ( - create_xorbits_agent, -) - -__all__ = [ - "create_xorbits_agent", - "create_pandas_dataframe_agent", - "create_spark_dataframe_agent", - "create_python_agent", - "create_csv_agent", -] diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/csv/__init__.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/csv/__init__.py deleted file mode 100644 index 3e3a1e069d1d9..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/csv/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""CSV toolkit.""" diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/csv/base.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/csv/base.py deleted file mode 100644 index 4e0c946cdcf37..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/csv/base.py +++ /dev/null @@ -1,66 +0,0 @@ -from __future__ import annotations - -from io import IOBase -from typing import TYPE_CHECKING, Any, List, Optional, Union - -from langchain_experimental.agents.agent_toolkits.pandas.base import ( - create_pandas_dataframe_agent, -) - -if TYPE_CHECKING: - from langchain.agents.agent import AgentExecutor - from langchain_core.language_models import LanguageModelLike - - -def create_csv_agent( - llm: LanguageModelLike, - path: Union[str, IOBase, List[Union[str, IOBase]]], - pandas_kwargs: Optional[dict] = None, - **kwargs: Any, -) -> AgentExecutor: - """Create pandas dataframe agent by loading csv to a dataframe. - - Args: - llm: Language model to use for the agent. - path: A string path, file-like object or a list of string paths/file-like - objects that can be read in as pandas DataFrames with pd.read_csv(). - pandas_kwargs: Named arguments to pass to pd.read_csv(). - kwargs: Additional kwargs to pass to langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent(). - - Returns: - An AgentExecutor with the specified agent_type agent and access to - a PythonAstREPLTool with the loaded DataFrame(s) and any user-provided extra_tools. - - Example: - .. code-block:: python - - from langchain_openai import ChatOpenAI - from langchain_experimental.agents import create_csv_agent - - llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) - agent_executor = create_pandas_dataframe_agent( - llm, - "titanic.csv", - agent_type="openai-tools", - verbose=True - ) - """ # noqa: E501 - try: - import pandas as pd - except ImportError: - raise ImportError( - "pandas package not found, please install with `pip install pandas`." - ) - - _kwargs = pandas_kwargs or {} - if isinstance(path, (str, IOBase)): - df = pd.read_csv(path, **_kwargs) - elif isinstance(path, list): - df = [] - for item in path: - if not isinstance(item, (str, IOBase)): - raise ValueError(f"Expected str or file-like object, got {type(path)}") - df.append(pd.read_csv(item, **_kwargs)) - else: - raise ValueError(f"Expected str, list, or file-like object, got {type(path)}") - return create_pandas_dataframe_agent(llm, df, **kwargs) diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/__init__.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/__init__.py deleted file mode 100644 index a6dc608d470e7..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Pandas toolkit.""" diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/base.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/base.py deleted file mode 100644 index 424de3ff7f18b..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/base.py +++ /dev/null @@ -1,359 +0,0 @@ -"""Agent for working with pandas objects.""" - -import warnings -from typing import Any, Dict, List, Literal, Optional, Sequence, Union, cast - -from langchain.agents import ( - AgentType, - create_openai_tools_agent, - create_react_agent, - create_tool_calling_agent, -) -from langchain.agents.agent import ( - AgentExecutor, - BaseMultiActionAgent, - BaseSingleActionAgent, - RunnableAgent, - RunnableMultiActionAgent, -) -from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS -from langchain.agents.openai_functions_agent.base import ( - OpenAIFunctionsAgent, - create_openai_functions_agent, -) -from langchain_core.callbacks import BaseCallbackManager -from langchain_core.language_models import BaseLanguageModel, LanguageModelLike -from langchain_core.messages import SystemMessage -from langchain_core.prompts import ( - BasePromptTemplate, - ChatPromptTemplate, - PromptTemplate, -) -from langchain_core.tools import BaseTool -from langchain_core.utils.interactive_env import is_interactive_env - -from langchain_experimental.agents.agent_toolkits.pandas.prompt import ( - FUNCTIONS_WITH_DF, - FUNCTIONS_WITH_MULTI_DF, - MULTI_DF_PREFIX, - MULTI_DF_PREFIX_FUNCTIONS, - PREFIX, - PREFIX_FUNCTIONS, - SUFFIX_NO_DF, - SUFFIX_WITH_DF, - SUFFIX_WITH_MULTI_DF, -) -from langchain_experimental.tools.python.tool import PythonAstREPLTool - - -def _get_multi_prompt( - dfs: List[Any], - *, - prefix: Optional[str] = None, - suffix: Optional[str] = None, - include_df_in_prompt: Optional[bool] = True, - number_of_head_rows: int = 5, -) -> BasePromptTemplate: - if suffix is not None: - suffix_to_use = suffix - elif include_df_in_prompt: - suffix_to_use = SUFFIX_WITH_MULTI_DF - else: - suffix_to_use = SUFFIX_NO_DF - prefix = prefix if prefix is not None else MULTI_DF_PREFIX - - template = "\n\n".join([prefix, "{tools}", FORMAT_INSTRUCTIONS, suffix_to_use]) - prompt = PromptTemplate.from_template(template) - partial_prompt = prompt.partial() - if "dfs_head" in partial_prompt.input_variables: - dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs]) - partial_prompt = partial_prompt.partial(dfs_head=dfs_head) - if "num_dfs" in partial_prompt.input_variables: - partial_prompt = partial_prompt.partial(num_dfs=str(len(dfs))) - return partial_prompt - - -def _get_single_prompt( - df: Any, - *, - prefix: Optional[str] = None, - suffix: Optional[str] = None, - include_df_in_prompt: Optional[bool] = True, - number_of_head_rows: int = 5, -) -> BasePromptTemplate: - if suffix is not None: - suffix_to_use = suffix - elif include_df_in_prompt: - suffix_to_use = SUFFIX_WITH_DF - else: - suffix_to_use = SUFFIX_NO_DF - prefix = prefix if prefix is not None else PREFIX - - template = "\n\n".join([prefix, "{tools}", FORMAT_INSTRUCTIONS, suffix_to_use]) - prompt = PromptTemplate.from_template(template) - - partial_prompt = prompt.partial() - if "df_head" in partial_prompt.input_variables: - df_head = str(df.head(number_of_head_rows).to_markdown()) - partial_prompt = partial_prompt.partial(df_head=df_head) - return partial_prompt - - -def _get_prompt(df: Any, **kwargs: Any) -> BasePromptTemplate: - return ( - _get_multi_prompt(df, **kwargs) - if isinstance(df, list) - else _get_single_prompt(df, **kwargs) - ) - - -def _get_functions_single_prompt( - df: Any, - *, - prefix: Optional[str] = None, - suffix: str = "", - include_df_in_prompt: Optional[bool] = True, - number_of_head_rows: int = 5, -) -> ChatPromptTemplate: - if include_df_in_prompt: - df_head = str(df.head(number_of_head_rows).to_markdown()) - suffix = (suffix or FUNCTIONS_WITH_DF).format(df_head=df_head) - prefix = prefix if prefix is not None else PREFIX_FUNCTIONS - system_message = SystemMessage(content=prefix + suffix) - prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) - return prompt - - -def _get_functions_multi_prompt( - dfs: Any, - *, - prefix: str = "", - suffix: str = "", - include_df_in_prompt: Optional[bool] = True, - number_of_head_rows: int = 5, -) -> ChatPromptTemplate: - if include_df_in_prompt: - dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs]) - suffix = (suffix or FUNCTIONS_WITH_MULTI_DF).format(dfs_head=dfs_head) - prefix = (prefix or MULTI_DF_PREFIX_FUNCTIONS).format(num_dfs=str(len(dfs))) - system_message = SystemMessage(content=prefix + suffix) - prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) - return prompt - - -def _get_functions_prompt(df: Any, **kwargs: Any) -> ChatPromptTemplate: - return ( - _get_functions_multi_prompt(df, **kwargs) - if isinstance(df, list) - else _get_functions_single_prompt(df, **kwargs) - ) - - -def create_pandas_dataframe_agent( - llm: LanguageModelLike, - df: Any, - agent_type: Union[ - AgentType, Literal["openai-tools", "tool-calling"] - ] = AgentType.ZERO_SHOT_REACT_DESCRIPTION, - callback_manager: Optional[BaseCallbackManager] = None, - prefix: Optional[str] = None, - suffix: Optional[str] = None, - input_variables: Optional[List[str]] = None, - verbose: bool = False, - return_intermediate_steps: bool = False, - max_iterations: Optional[int] = 15, - max_execution_time: Optional[float] = None, - early_stopping_method: str = "force", - agent_executor_kwargs: Optional[Dict[str, Any]] = None, - include_df_in_prompt: Optional[bool] = True, - number_of_head_rows: int = 5, - extra_tools: Sequence[BaseTool] = (), - engine: Literal["pandas", "modin"] = "pandas", - allow_dangerous_code: bool = False, - **kwargs: Any, -) -> AgentExecutor: - """Construct a Pandas agent from an LLM and dataframe(s). - - Security Notice: - This agent relies on access to a python repl tool which can execute - arbitrary code. This can be dangerous and requires a specially sandboxed - environment to be safely used. Failure to run this code in a properly - sandboxed environment can lead to arbitrary code execution vulnerabilities, - which can lead to data breaches, data loss, or other security incidents. - - Do not use this code with untrusted inputs, with elevated permissions, - or without consulting your security team about proper sandboxing! - - You must opt-in to use this functionality by setting allow_dangerous_code=True. - - Args: - llm: Language model to use for the agent. If agent_type is "tool-calling" then - llm is expected to support tool calling. - df: Pandas dataframe or list of Pandas dataframes. - agent_type: One of "tool-calling", "openai-tools", "openai-functions", or - "zero-shot-react-description". Defaults to "zero-shot-react-description". - "tool-calling" is recommended over the legacy "openai-tools" and - "openai-functions" types. - callback_manager: DEPRECATED. Pass "callbacks" key into 'agent_executor_kwargs' - instead to pass constructor callbacks to AgentExecutor. - prefix: Prompt prefix string. - suffix: Prompt suffix string. - input_variables: DEPRECATED. Input variables automatically inferred from - constructed prompt. - verbose: AgentExecutor verbosity. - return_intermediate_steps: Passed to AgentExecutor init. - max_iterations: Passed to AgentExecutor init. - max_execution_time: Passed to AgentExecutor init. - early_stopping_method: Passed to AgentExecutor init. - agent_executor_kwargs: Arbitrary additional AgentExecutor args. - include_df_in_prompt: Whether to include the first number_of_head_rows in the - prompt. Must be None if suffix is not None. - number_of_head_rows: Number of initial rows to include in prompt if - include_df_in_prompt is True. - extra_tools: Additional tools to give to agent on top of a PythonAstREPLTool. - engine: One of "modin" or "pandas". Defaults to "pandas". - allow_dangerous_code: bool, default False - This agent relies on access to a python repl tool which can execute - arbitrary code. This can be dangerous and requires a specially sandboxed - environment to be safely used. - Failure to properly sandbox this class can lead to arbitrary code execution - vulnerabilities, which can lead to data breaches, data loss, or - other security incidents. - You must opt in to use this functionality by setting - allow_dangerous_code=True. - - **kwargs: DEPRECATED. Not used, kept for backwards compatibility. - - Returns: - An AgentExecutor with the specified agent_type agent and access to - a PythonAstREPLTool with the DataFrame(s) and any user-provided extra_tools. - - Example: - .. code-block:: python - - from langchain_openai import ChatOpenAI - from langchain_experimental.agents import create_pandas_dataframe_agent - import pandas as pd - - df = pd.read_csv("titanic.csv") - llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) - agent_executor = create_pandas_dataframe_agent( - llm, - df, - agent_type="tool-calling", - verbose=True - ) - - """ - if not allow_dangerous_code: - raise ValueError( - "This agent relies on access to a python repl tool which can execute " - "arbitrary code. This can be dangerous and requires a specially sandboxed " - "environment to be safely used. Please read the security notice in the " - "doc-string of this function. You must opt-in to use this functionality " - "by setting allow_dangerous_code=True." - "For general security guidelines, please see: " - "https://python.langchain.com/v0.2/docs/security/" - ) - try: - if engine == "modin": - import modin.pandas as pd - elif engine == "pandas": - import pandas as pd - else: - raise ValueError( - f"Unsupported engine {engine}. It must be one of 'modin' or 'pandas'." - ) - except ImportError as e: - raise ImportError( - f"`{engine}` package not found, please install with `pip install {engine}`" - ) from e - - if is_interactive_env(): - pd.set_option("display.max_columns", None) - - for _df in df if isinstance(df, list) else [df]: - if not isinstance(_df, pd.DataFrame): - raise ValueError(f"Expected pandas DataFrame, got {type(_df)}") - - if input_variables: - kwargs = kwargs or {} - kwargs["input_variables"] = input_variables - if kwargs: - warnings.warn( - f"Received additional kwargs {kwargs} which are no longer supported." - ) - - df_locals = {} - if isinstance(df, list): - for i, dataframe in enumerate(df): - df_locals[f"df{i + 1}"] = dataframe - else: - df_locals["df"] = df - tools = [PythonAstREPLTool(locals=df_locals)] + list(extra_tools) - - if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: - if include_df_in_prompt is not None and suffix is not None: - raise ValueError( - "If suffix is specified, include_df_in_prompt should not be." - ) - prompt = _get_prompt( - df, - prefix=prefix, - suffix=suffix, - include_df_in_prompt=include_df_in_prompt, - number_of_head_rows=number_of_head_rows, - ) - agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] = RunnableAgent( - runnable=create_react_agent(llm, tools, prompt), # type: ignore - input_keys_arg=["input"], - return_keys_arg=["output"], - ) - elif agent_type in (AgentType.OPENAI_FUNCTIONS, "openai-tools", "tool-calling"): - prompt = _get_functions_prompt( - df, - prefix=prefix, - suffix=suffix, - include_df_in_prompt=include_df_in_prompt, - number_of_head_rows=number_of_head_rows, - ) - if agent_type == AgentType.OPENAI_FUNCTIONS: - runnable = create_openai_functions_agent( - cast(BaseLanguageModel, llm), tools, prompt - ) - agent = RunnableAgent( - runnable=runnable, - input_keys_arg=["input"], - return_keys_arg=["output"], - ) - else: - if agent_type == "openai-tools": - runnable = create_openai_tools_agent( - cast(BaseLanguageModel, llm), tools, prompt - ) - else: - runnable = create_tool_calling_agent( - cast(BaseLanguageModel, llm), tools, prompt - ) - agent = RunnableMultiActionAgent( - runnable=runnable, - input_keys_arg=["input"], - return_keys_arg=["output"], - ) - else: - raise ValueError( - f"Agent type {agent_type} not supported at the moment. Must be one of " - "'tool-calling', 'openai-tools', 'openai-functions', or " - "'zero-shot-react-description'." - ) - return AgentExecutor( - agent=agent, - tools=tools, - callback_manager=callback_manager, - verbose=verbose, - return_intermediate_steps=return_intermediate_steps, - max_iterations=max_iterations, - max_execution_time=max_execution_time, - early_stopping_method=early_stopping_method, - **(agent_executor_kwargs or {}), - ) diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/prompt.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/prompt.py deleted file mode 100644 index 72b2bc8b20bc4..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/pandas/prompt.py +++ /dev/null @@ -1,44 +0,0 @@ -# flake8: noqa - -PREFIX = """ -You are working with a pandas dataframe in Python. The name of the dataframe is `df`. -You should use the tools below to answer the question posed of you:""" - -MULTI_DF_PREFIX = """ -You are working with {num_dfs} pandas dataframes in Python named df1, df2, etc. You -should use the tools below to answer the question posed of you:""" - -SUFFIX_NO_DF = """ -Begin! -Question: {input} -{agent_scratchpad}""" - -SUFFIX_WITH_DF = """ -This is the result of `print(df.head())`: -{df_head} - -Begin! -Question: {input} -{agent_scratchpad}""" - -SUFFIX_WITH_MULTI_DF = """ -This is the result of `print(df.head())` for each dataframe: -{dfs_head} - -Begin! -Question: {input} -{agent_scratchpad}""" - -PREFIX_FUNCTIONS = """ -You are working with a pandas dataframe in Python. The name of the dataframe is `df`.""" - -MULTI_DF_PREFIX_FUNCTIONS = """ -You are working with {num_dfs} pandas dataframes in Python named df1, df2, etc.""" - -FUNCTIONS_WITH_DF = """ -This is the result of `print(df.head())`: -{df_head}""" - -FUNCTIONS_WITH_MULTI_DF = """ -This is the result of `print(df.head())` for each dataframe: -{dfs_head}""" diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/python/__init__.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/python/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/python/base.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/python/base.py deleted file mode 100644 index 4d2cc43cb1748..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/python/base.py +++ /dev/null @@ -1,59 +0,0 @@ -"""Python agent.""" - -from typing import Any, Dict, Optional - -from langchain.agents.agent import AgentExecutor, BaseSingleActionAgent -from langchain.agents.mrkl.base import ZeroShotAgent -from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent -from langchain.agents.types import AgentType -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.base import BaseCallbackManager -from langchain_core.language_models import BaseLanguageModel -from langchain_core.messages import SystemMessage - -from langchain_experimental.agents.agent_toolkits.python.prompt import PREFIX -from langchain_experimental.tools.python.tool import PythonREPLTool - - -def create_python_agent( - llm: BaseLanguageModel, - tool: PythonREPLTool, - agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION, - callback_manager: Optional[BaseCallbackManager] = None, - verbose: bool = False, - prefix: str = PREFIX, - agent_executor_kwargs: Optional[Dict[str, Any]] = None, - **kwargs: Dict[str, Any], -) -> AgentExecutor: - """Construct a python agent from an LLM and tool.""" - tools = [tool] - agent: BaseSingleActionAgent - - if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION: - prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) - llm_chain = LLMChain( - llm=llm, - prompt=prompt, - callback_manager=callback_manager, - ) - tool_names = [tool.name for tool in tools] - agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) # type: ignore[arg-type] - elif agent_type == AgentType.OPENAI_FUNCTIONS: - system_message = SystemMessage(content=prefix) - _prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message) - agent = OpenAIFunctionsAgent( # type: ignore[call-arg] - llm=llm, - prompt=_prompt, - tools=tools, - callback_manager=callback_manager, - **kwargs, # type: ignore[arg-type] - ) - else: - raise ValueError(f"Agent type {agent_type} not supported at the moment.") - return AgentExecutor.from_agent_and_tools( - agent=agent, - tools=tools, - callback_manager=callback_manager, - verbose=verbose, - **(agent_executor_kwargs or {}), - ) diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/python/prompt.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/python/prompt.py deleted file mode 100644 index fc97e7916eb47..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/python/prompt.py +++ /dev/null @@ -1,9 +0,0 @@ -# flake8: noqa - -PREFIX = """You are an agent designed to write and execute python code to answer questions. -You have access to a python REPL, which you can use to execute python code. -If you get an error, debug your code and try again. -Only use the output of your code to answer the question. -You might know the answer without running any code, but you should still run the code to get the answer. -If it does not seem like you can write code to answer the question, just return "I don't know" as the answer. -""" diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/__init__.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/__init__.py deleted file mode 100644 index ded6eb03a420a..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""spark toolkit""" diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/base.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/base.py deleted file mode 100644 index d48a0b0ed6046..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/base.py +++ /dev/null @@ -1,117 +0,0 @@ -"""Agent for working with pandas objects.""" - -from typing import Any, Dict, List, Optional - -from langchain.agents.agent import AgentExecutor -from langchain.agents.mrkl.base import ZeroShotAgent -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.base import BaseCallbackManager -from langchain_core.language_models import BaseLLM - -from langchain_experimental.agents.agent_toolkits.spark.prompt import PREFIX, SUFFIX -from langchain_experimental.tools.python.tool import PythonAstREPLTool - - -def _validate_spark_df(df: Any) -> bool: - try: - from pyspark.sql import DataFrame as SparkLocalDataFrame - - return isinstance(df, SparkLocalDataFrame) - except ImportError: - return False - - -def _validate_spark_connect_df(df: Any) -> bool: - try: - from pyspark.sql.connect.dataframe import DataFrame as SparkConnectDataFrame - - return isinstance(df, SparkConnectDataFrame) - except ImportError: - return False - - -def create_spark_dataframe_agent( - llm: BaseLLM, - df: Any, - callback_manager: Optional[BaseCallbackManager] = None, - prefix: str = PREFIX, - suffix: str = SUFFIX, - input_variables: Optional[List[str]] = None, - verbose: bool = False, - return_intermediate_steps: bool = False, - max_iterations: Optional[int] = 15, - max_execution_time: Optional[float] = None, - early_stopping_method: str = "force", - agent_executor_kwargs: Optional[Dict[str, Any]] = None, - allow_dangerous_code: bool = False, - **kwargs: Any, -) -> AgentExecutor: - """Construct a Spark agent from an LLM and dataframe. - - Security Notice: - This agent relies on access to a python repl tool which can execute - arbitrary code. This can be dangerous and requires a specially sandboxed - environment to be safely used. Failure to run this code in a properly - sandboxed environment can lead to arbitrary code execution vulnerabilities, - which can lead to data breaches, data loss, or other security incidents. - - Do not use this code with untrusted inputs, with elevated permissions, - or without consulting your security team about proper sandboxing! - - You must opt in to use this functionality by setting allow_dangerous_code=True. - - Args: - allow_dangerous_code: bool, default False - This agent relies on access to a python repl tool which can execute - arbitrary code. This can be dangerous and requires a specially sandboxed - environment to be safely used. - Failure to properly sandbox this class can lead to arbitrary code execution - vulnerabilities, which can lead to data breaches, data loss, or - other security incidents. - You must opt in to use this functionality by setting - allow_dangerous_code=True. - """ - if not allow_dangerous_code: - raise ValueError( - "This agent relies on access to a python repl tool which can execute " - "arbitrary code. This can be dangerous and requires a specially sandboxed " - "environment to be safely used. Please read the security notice in the " - "doc-string of this function. You must opt-in to use this functionality " - "by setting allow_dangerous_code=True." - "For general security guidelines, please see: " - "https://python.langchain.com/v0.2/docs/security/" - ) - - if not _validate_spark_df(df) and not _validate_spark_connect_df(df): - raise ImportError("Spark is not installed. run `pip install pyspark`.") - - if input_variables is None: - input_variables = ["df", "input", "agent_scratchpad"] - tools = [PythonAstREPLTool(locals={"df": df})] - prompt = ZeroShotAgent.create_prompt( - tools, prefix=prefix, suffix=suffix, input_variables=input_variables - ) - partial_prompt = prompt.partial(df=str(df.first())) - llm_chain = LLMChain( - llm=llm, - prompt=partial_prompt, - callback_manager=callback_manager, - ) - tool_names = [tool.name for tool in tools] - agent = ZeroShotAgent( # type: ignore[call-arg] - llm_chain=llm_chain, - allowed_tools=tool_names, - callback_manager=callback_manager, - **kwargs, - ) - return AgentExecutor.from_agent_and_tools( - agent=agent, - tools=tools, - callback_manager=callback_manager, - verbose=verbose, - return_intermediate_steps=return_intermediate_steps, - max_iterations=max_iterations, - max_execution_time=max_execution_time, - early_stopping_method=early_stopping_method, - **(agent_executor_kwargs or {}), - ) diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/prompt.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/prompt.py deleted file mode 100644 index 32ce2c3423540..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/spark/prompt.py +++ /dev/null @@ -1,13 +0,0 @@ -# flake8: noqa - -PREFIX = """ -You are working with a spark dataframe in Python. The name of the dataframe is `df`. -You should use the tools below to answer the question posed of you:""" - -SUFFIX = """ -This is the result of `print(df.first())`: -{df} - -Begin! -Question: {input} -{agent_scratchpad}""" diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/__init__.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/__init__.py deleted file mode 100644 index 71bf7b70ea2c9..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Xorbits toolkit.""" diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/base.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/base.py deleted file mode 100644 index 7dcddf368bf60..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/base.py +++ /dev/null @@ -1,128 +0,0 @@ -"""Agent for working with xorbits objects.""" - -from typing import Any, Dict, List, Optional - -from langchain.agents.agent import AgentExecutor -from langchain.agents.mrkl.base import ZeroShotAgent -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.base import BaseCallbackManager -from langchain_core.language_models import BaseLLM - -from langchain_experimental.agents.agent_toolkits.xorbits.prompt import ( - NP_PREFIX, - NP_SUFFIX, - PD_PREFIX, - PD_SUFFIX, -) -from langchain_experimental.tools.python.tool import PythonAstREPLTool - - -def create_xorbits_agent( - llm: BaseLLM, - data: Any, - callback_manager: Optional[BaseCallbackManager] = None, - prefix: str = "", - suffix: str = "", - input_variables: Optional[List[str]] = None, - verbose: bool = False, - return_intermediate_steps: bool = False, - max_iterations: Optional[int] = 15, - max_execution_time: Optional[float] = None, - early_stopping_method: str = "force", - agent_executor_kwargs: Optional[Dict[str, Any]] = None, - allow_dangerous_code: bool = False, - **kwargs: Dict[str, Any], -) -> AgentExecutor: - """Construct a xorbits agent from an LLM and dataframe. - - Security Notice: - This agent relies on access to a python repl tool which can execute - arbitrary code. This can be dangerous and requires a specially sandboxed - environment to be safely used. Failure to run this code in a properly - sandboxed environment can lead to arbitrary code execution vulnerabilities, - which can lead to data breaches, data loss, or other security incidents. - - Do not use this code with untrusted inputs, with elevated permissions, - or without consulting your security team about proper sandboxing! - - You must opt in to use this functionality by setting allow_dangerous_code=True. - - Args: - allow_dangerous_code: bool, default False - This agent relies on access to a python repl tool which can execute - arbitrary code. This can be dangerous and requires a specially sandboxed - environment to be safely used. - Failure to properly sandbox this class can lead to arbitrary code execution - vulnerabilities, which can lead to data breaches, data loss, or - other security incidents. - You must opt in to use this functionality by setting - allow_dangerous_code=True. - """ - if not allow_dangerous_code: - raise ValueError( - "This agent relies on access to a python repl tool which can execute " - "arbitrary code. This can be dangerous and requires a specially sandboxed " - "environment to be safely used. Please read the security notice in the " - "doc-string of this function. You must opt-in to use this functionality " - "by setting allow_dangerous_code=True." - "For general security guidelines, please see: " - "https://python.langchain.com/v0.2/docs/security/" - ) - - try: - from xorbits import numpy as np - from xorbits import pandas as pd - except ImportError: - raise ImportError( - "Xorbits package not installed, please install with `pip install xorbits`" - ) - - if not isinstance(data, (pd.DataFrame, np.ndarray)): - raise ValueError( - f"Expected Xorbits DataFrame or ndarray object, got {type(data)}" - ) - if input_variables is None: - input_variables = ["data", "input", "agent_scratchpad"] - tools = [PythonAstREPLTool(locals={"data": data})] - prompt, partial_input = None, None - - if isinstance(data, pd.DataFrame): - prompt = ZeroShotAgent.create_prompt( - tools, - prefix=PD_PREFIX if prefix == "" else prefix, - suffix=PD_SUFFIX if suffix == "" else suffix, - input_variables=input_variables, - ) - partial_input = str(data.head()) - else: - prompt = ZeroShotAgent.create_prompt( - tools, - prefix=NP_PREFIX if prefix == "" else prefix, - suffix=NP_SUFFIX if suffix == "" else suffix, - input_variables=input_variables, - ) - partial_input = str(data[: len(data) // 2]) - partial_prompt = prompt.partial(data=partial_input) - llm_chain = LLMChain( - llm=llm, - prompt=partial_prompt, - callback_manager=callback_manager, - ) - tool_names = [tool.name for tool in tools] - agent = ZeroShotAgent( # type: ignore[call-arg] - llm_chain=llm_chain, - allowed_tools=tool_names, - callback_manager=callback_manager, - **kwargs, # type: ignore[arg-type] - ) - return AgentExecutor.from_agent_and_tools( - agent=agent, - tools=tools, - callback_manager=callback_manager, - verbose=verbose, - return_intermediate_steps=return_intermediate_steps, - max_iterations=max_iterations, - max_execution_time=max_execution_time, - early_stopping_method=early_stopping_method, - **(agent_executor_kwargs or {}), - ) diff --git a/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/prompt.py b/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/prompt.py deleted file mode 100644 index 6db3a41a79fbe..0000000000000 --- a/libs/experimental/langchain_experimental/agents/agent_toolkits/xorbits/prompt.py +++ /dev/null @@ -1,33 +0,0 @@ -PD_PREFIX = """ -You are working with Xorbits dataframe object in Python. -Before importing Numpy or Pandas in the current script, -remember to import the xorbits version of the library instead. -To import the xorbits version of Numpy, replace the original import statement -`import pandas as pd` with `import xorbits.pandas as pd`. -The name of the input is `data`. -You should use the tools below to answer the question posed of you:""" - -PD_SUFFIX = """ -This is the result of `print(data)`: -{data} - -Begin! -Question: {input} -{agent_scratchpad}""" - -NP_PREFIX = """ -You are working with Xorbits ndarray object in Python. -Before importing Numpy in the current script, -remember to import the xorbits version of the library instead. -To import the xorbits version of Numpy, replace the original import statement -`import numpy as np` with `import xorbits.numpy as np`. -The name of the input is `data`. -You should use the tools below to answer the question posed of you:""" - -NP_SUFFIX = """ -This is the result of `print(data)`: -{data} - -Begin! -Question: {input} -{agent_scratchpad}""" diff --git a/libs/experimental/langchain_experimental/autonomous_agents/__init__.py b/libs/experimental/langchain_experimental/autonomous_agents/__init__.py deleted file mode 100644 index 371f41da4416a..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/__init__.py +++ /dev/null @@ -1,18 +0,0 @@ -"""**Autonomous agents** in the Langchain experimental package include -[AutoGPT](https://github.com/Significant-Gravitas/AutoGPT), -[BabyAGI](https://github.com/yoheinakajima/babyagi), -and [HuggingGPT](https://arxiv.org/abs/2303.17580) agents that -interact with language models autonomously. - -These agents have specific functionalities like memory management, -task creation, execution chains, and response generation. - -They differ from ordinary agents by their autonomous decision-making capabilities, -memory handling, and specialized functionalities for tasks and response. -""" - -from langchain_experimental.autonomous_agents.autogpt.agent import AutoGPT -from langchain_experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI -from langchain_experimental.autonomous_agents.hugginggpt.hugginggpt import HuggingGPT - -__all__ = ["BabyAGI", "AutoGPT", "HuggingGPT"] diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/__init__.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/agent.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/agent.py deleted file mode 100644 index 215b732f3c933..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/agent.py +++ /dev/null @@ -1,143 +0,0 @@ -from __future__ import annotations - -from typing import List, Optional - -from langchain.chains.llm import LLMChain -from langchain.memory import ChatMessageHistory -from langchain.schema import ( - BaseChatMessageHistory, - Document, -) -from langchain_community.tools.human.tool import HumanInputRun -from langchain_core.language_models import BaseChatModel -from langchain_core.messages import AIMessage, HumanMessage, SystemMessage -from langchain_core.tools import BaseTool -from langchain_core.vectorstores import VectorStoreRetriever - -from langchain_experimental.autonomous_agents.autogpt.output_parser import ( - AutoGPTOutputParser, - BaseAutoGPTOutputParser, -) -from langchain_experimental.autonomous_agents.autogpt.prompt import AutoGPTPrompt -from langchain_experimental.autonomous_agents.autogpt.prompt_generator import ( - FINISH_NAME, -) -from langchain_experimental.pydantic_v1 import ValidationError - - -class AutoGPT: - """Agent for interacting with AutoGPT.""" - - def __init__( - self, - ai_name: str, - memory: VectorStoreRetriever, - chain: LLMChain, - output_parser: BaseAutoGPTOutputParser, - tools: List[BaseTool], - feedback_tool: Optional[HumanInputRun] = None, - chat_history_memory: Optional[BaseChatMessageHistory] = None, - ): - self.ai_name = ai_name - self.memory = memory - self.next_action_count = 0 - self.chain = chain - self.output_parser = output_parser - self.tools = tools - self.feedback_tool = feedback_tool - self.chat_history_memory = chat_history_memory or ChatMessageHistory() - - @classmethod - def from_llm_and_tools( - cls, - ai_name: str, - ai_role: str, - memory: VectorStoreRetriever, - tools: List[BaseTool], - llm: BaseChatModel, - human_in_the_loop: bool = False, - output_parser: Optional[BaseAutoGPTOutputParser] = None, - chat_history_memory: Optional[BaseChatMessageHistory] = None, - ) -> AutoGPT: - prompt = AutoGPTPrompt( # type: ignore[call-arg, call-arg, call-arg, call-arg] - ai_name=ai_name, - ai_role=ai_role, - tools=tools, - input_variables=["memory", "messages", "goals", "user_input"], - token_counter=llm.get_num_tokens, - ) - human_feedback_tool = HumanInputRun() if human_in_the_loop else None - chain = LLMChain(llm=llm, prompt=prompt) - return cls( - ai_name, - memory, - chain, - output_parser or AutoGPTOutputParser(), - tools, - feedback_tool=human_feedback_tool, - chat_history_memory=chat_history_memory, - ) - - def run(self, goals: List[str]) -> str: - user_input = ( - "Determine which next command to use, " - "and respond using the format specified above:" - ) - # Interaction Loop - loop_count = 0 - while True: - # Discontinue if continuous limit is reached - loop_count += 1 - - # Send message to AI, get response - assistant_reply = self.chain.run( - goals=goals, - messages=self.chat_history_memory.messages, - memory=self.memory, - user_input=user_input, - ) - - # Print Assistant thoughts - print(assistant_reply) # noqa: T201 - self.chat_history_memory.add_message(HumanMessage(content=user_input)) - self.chat_history_memory.add_message(AIMessage(content=assistant_reply)) - - # Get command name and arguments - action = self.output_parser.parse(assistant_reply) - tools = {t.name: t for t in self.tools} - if action.name == FINISH_NAME: - return action.args["response"] - if action.name in tools: - tool = tools[action.name] - try: - observation = tool.run(action.args) - except ValidationError as e: - observation = ( - f"Validation Error in args: {str(e)}, args: {action.args}" - ) - except Exception as e: - observation = ( - f"Error: {str(e)}, {type(e).__name__}, args: {action.args}" - ) - result = f"Command {tool.name} returned: {observation}" - elif action.name == "ERROR": - result = f"Error: {action.args}. " - else: - result = ( - f"Unknown command '{action.name}'. " - f"Please refer to the 'COMMANDS' list for available " - f"commands and only respond in the specified JSON format." - ) - - memory_to_add = ( - f"Assistant Reply: {assistant_reply} " f"\nResult: {result} " - ) - if self.feedback_tool is not None: - feedback = f"{self.feedback_tool.run('Input: ')}" - if feedback in {"q", "stop"}: - print("EXITING") # noqa: T201 - return "EXITING" - memory_to_add += f"\n{feedback}" - - self.memory.add_documents([Document(page_content=memory_to_add)]) - self.chat_history_memory.add_message(SystemMessage(content=result)) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/memory.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/memory.py deleted file mode 100644 index be2b08f15405f..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/memory.py +++ /dev/null @@ -1,33 +0,0 @@ -from typing import Any, Dict, List - -from langchain.memory.chat_memory import BaseChatMemory -from langchain.memory.utils import get_prompt_input_key -from langchain_core.vectorstores import VectorStoreRetriever - -from langchain_experimental.pydantic_v1 import Field - - -class AutoGPTMemory(BaseChatMemory): - """Memory for AutoGPT.""" - - retriever: VectorStoreRetriever = Field(exclude=True) - """VectorStoreRetriever object to connect to.""" - - @property - def memory_variables(self) -> List[str]: - return ["chat_history", "relevant_context"] - - def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: - """Get the input key for the prompt.""" - if self.input_key is None: - return get_prompt_input_key(inputs, self.memory_variables) - return self.input_key - - def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: - input_key = self._get_prompt_input_key(inputs) - query = inputs[input_key] - docs = self.retriever.invoke(query) - return { - "chat_history": self.chat_memory.messages[-10:], - "relevant_context": docs, - } diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/output_parser.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/output_parser.py deleted file mode 100644 index 774a123054867..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/output_parser.py +++ /dev/null @@ -1,66 +0,0 @@ -import json -import re -from abc import abstractmethod -from typing import Dict, NamedTuple - -from langchain_core.output_parsers import BaseOutputParser - - -class AutoGPTAction(NamedTuple): - """Action returned by AutoGPTOutputParser.""" - - name: str - args: Dict - - -class BaseAutoGPTOutputParser(BaseOutputParser): - """Base Output parser for AutoGPT.""" - - @abstractmethod - def parse(self, text: str) -> AutoGPTAction: - """Return AutoGPTAction""" - - -def preprocess_json_input(input_str: str) -> str: - """Preprocesses a string to be parsed as json. - - Replace single backslashes with double backslashes, - while leaving already escaped ones intact. - - Args: - input_str: String to be preprocessed - - Returns: - Preprocessed string - """ - corrected_str = re.sub( - r'(? AutoGPTAction: - try: - parsed = json.loads(text, strict=False) - except json.JSONDecodeError: - preprocessed_text = preprocess_json_input(text) - try: - parsed = json.loads(preprocessed_text, strict=False) - except Exception: - return AutoGPTAction( - name="ERROR", - args={"error": f"Could not parse invalid json: {text}"}, - ) - try: - return AutoGPTAction( - name=parsed["command"]["name"], - args=parsed["command"]["args"], - ) - except (KeyError, TypeError): - # If the command is null or incomplete, return an erroneous tool - return AutoGPTAction( - name="ERROR", args={"error": f"Incomplete command args: {parsed}"} - ) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt.py deleted file mode 100644 index 39ea5d60210db..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt.py +++ /dev/null @@ -1,106 +0,0 @@ -import time -from typing import Any, Callable, List, cast - -from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage -from langchain_core.prompts.chat import ( - BaseChatPromptTemplate, -) -from langchain_core.tools import BaseTool -from langchain_core.vectorstores import VectorStoreRetriever - -from langchain_experimental.autonomous_agents.autogpt.prompt_generator import get_prompt -from langchain_experimental.pydantic_v1 import BaseModel - - -# This class has a metaclass conflict: both `BaseChatPromptTemplate` and `BaseModel` -# define a metaclass to use, and the two metaclasses attempt to define -# the same functions but in mutually-incompatible ways. -# It isn't clear how to resolve this, and this code predates mypy -# beginning to perform that check. -# -# Mypy errors: -# ``` -# Definition of "__private_attributes__" in base class "BaseModel" is -# incompatible with definition in base class "BaseModel" [misc] -# Definition of "__repr_name__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Definition of "__pretty__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Definition of "__repr_str__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Definition of "__rich_repr__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Metaclass conflict: the metaclass of a derived class must be -# a (non-strict) subclass of the metaclasses of all its bases [misc] -# ``` -# -# TODO: look into refactoring this class in a way that avoids the mypy type errors -class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel): # type: ignore[misc] - """Prompt for AutoGPT.""" - - ai_name: str - ai_role: str - tools: List[BaseTool] - token_counter: Callable[[str], int] - send_token_limit: int = 4196 - - def construct_full_prompt(self, goals: List[str]) -> str: - prompt_start = ( - "Your decisions must always be made independently " - "without seeking user assistance.\n" - "Play to your strengths as an LLM and pursue simple " - "strategies with no legal complications.\n" - "If you have completed all your tasks, make sure to " - 'use the "finish" command.' - ) - # Construct full prompt - full_prompt = ( - f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n" - ) - for i, goal in enumerate(goals): - full_prompt += f"{i+1}. {goal}\n" - - full_prompt += f"\n\n{get_prompt(self.tools)}" - return full_prompt - - def format_messages(self, **kwargs: Any) -> List[BaseMessage]: - base_prompt = SystemMessage(content=self.construct_full_prompt(kwargs["goals"])) - time_prompt = SystemMessage( - content=f"The current time and date is {time.strftime('%c')}" - ) - used_tokens = self.token_counter( - cast(str, base_prompt.content) - ) + self.token_counter(cast(str, time_prompt.content)) - memory: VectorStoreRetriever = kwargs["memory"] - previous_messages = kwargs["messages"] - relevant_docs = memory.invoke(str(previous_messages[-10:])) - relevant_memory = [d.page_content for d in relevant_docs] - relevant_memory_tokens = sum( - [self.token_counter(doc) for doc in relevant_memory] - ) - while used_tokens + relevant_memory_tokens > 2500: - relevant_memory = relevant_memory[:-1] - relevant_memory_tokens = sum( - [self.token_counter(doc) for doc in relevant_memory] - ) - content_format = ( - f"This reminds you of these events " - f"from your past:\n{relevant_memory}\n\n" - ) - memory_message = SystemMessage(content=content_format) - used_tokens += self.token_counter(cast(str, memory_message.content)) - historical_messages: List[BaseMessage] = [] - for message in previous_messages[-10:][::-1]: - message_tokens = self.token_counter(message.content) - if used_tokens + message_tokens > self.send_token_limit - 1000: - break - historical_messages = [message] + historical_messages - used_tokens += message_tokens - input_message = HumanMessage(content=kwargs["user_input"]) - messages: List[BaseMessage] = [base_prompt, time_prompt, memory_message] - messages += historical_messages - messages.append(input_message) - return messages - - def pretty_repr(self, html: bool = False) -> str: - raise NotImplementedError diff --git a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt_generator.py b/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt_generator.py deleted file mode 100644 index b4a72ce617798..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/autogpt/prompt_generator.py +++ /dev/null @@ -1,186 +0,0 @@ -import json -from typing import List - -from langchain_core.tools import BaseTool - -FINISH_NAME = "finish" - - -class PromptGenerator: - """Generator of custom prompt strings. - - Does this based on constraints, commands, resources, and performance evaluations. - """ - - def __init__(self) -> None: - """Initialize the PromptGenerator object. - - Starts with empty lists of constraints, commands, resources, - and performance evaluations. - """ - self.constraints: List[str] = [] - self.commands: List[BaseTool] = [] - self.resources: List[str] = [] - self.performance_evaluation: List[str] = [] - self.response_format = { - "thoughts": { - "text": "thought", - "reasoning": "reasoning", - "plan": "- short bulleted\n- list that conveys\n- long-term plan", - "criticism": "constructive self-criticism", - "speak": "thoughts summary to say to user", - }, - "command": {"name": "command name", "args": {"arg name": "value"}}, - } - - def add_constraint(self, constraint: str) -> None: - """ - Add a constraint to the constraints list. - - Args: - constraint (str): The constraint to be added. - """ - self.constraints.append(constraint) - - def add_tool(self, tool: BaseTool) -> None: - self.commands.append(tool) - - def _generate_command_string(self, tool: BaseTool) -> str: - output = f"{tool.name}: {tool.description}" - output += f", args json schema: {json.dumps(tool.args)}" - return output - - def add_resource(self, resource: str) -> None: - """ - Add a resource to the resources list. - - Args: - resource (str): The resource to be added. - """ - self.resources.append(resource) - - def add_performance_evaluation(self, evaluation: str) -> None: - """ - Add a performance evaluation item to the performance_evaluation list. - - Args: - evaluation (str): The evaluation item to be added. - """ - self.performance_evaluation.append(evaluation) - - def _generate_numbered_list(self, items: list, item_type: str = "list") -> str: - """ - Generate a numbered list from given items based on the item_type. - - Args: - items (list): A list of items to be numbered. - item_type (str, optional): The type of items in the list. - Defaults to 'list'. - - Returns: - str: The formatted numbered list. - """ - if item_type == "command": - command_strings = [ - f"{i + 1}. {self._generate_command_string(item)}" - for i, item in enumerate(items) - ] - finish_description = ( - "use this to signal that you have finished all your objectives" - ) - finish_args = ( - '"response": "final response to let ' - 'people know you have finished your objectives"' - ) - finish_string = ( - f"{len(items) + 1}. {FINISH_NAME}: " - f"{finish_description}, args: {finish_args}" - ) - return "\n".join(command_strings + [finish_string]) - else: - return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items)) - - def generate_prompt_string(self) -> str: - """Generate a prompt string. - - Returns: - str: The generated prompt string. - """ - formatted_response_format = json.dumps(self.response_format, indent=4) - prompt_string = ( - f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n" - f"Commands:\n" - f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n" - f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n" - f"Performance Evaluation:\n" - f"{self._generate_numbered_list(self.performance_evaluation)}\n\n" - f"You should only respond in JSON format as described below " - f"\nResponse Format: \n{formatted_response_format} " - f"\nEnsure the response can be parsed by Python json.loads" - ) - - return prompt_string - - -def get_prompt(tools: List[BaseTool]) -> str: - """Generates a prompt string. - - It includes various constraints, commands, resources, and performance evaluations. - - Returns: - str: The generated prompt string. - """ - - # Initialize the PromptGenerator object - prompt_generator = PromptGenerator() - - # Add constraints to the PromptGenerator object - prompt_generator.add_constraint( - "~4000 word limit for short term memory. " - "Your short term memory is short, " - "so immediately save important information to files." - ) - prompt_generator.add_constraint( - "If you are unsure how you previously did something " - "or want to recall past events, " - "thinking about similar events will help you remember." - ) - prompt_generator.add_constraint("No user assistance") - prompt_generator.add_constraint( - 'Exclusively use the commands listed in double quotes e.g. "command name"' - ) - - # Add commands to the PromptGenerator object - for tool in tools: - prompt_generator.add_tool(tool) - - # Add resources to the PromptGenerator object - prompt_generator.add_resource( - "Internet access for searches and information gathering." - ) - prompt_generator.add_resource("Long Term memory management.") - prompt_generator.add_resource( - "GPT-3.5 powered Agents for delegation of simple tasks." - ) - prompt_generator.add_resource("File output.") - - # Add performance evaluations to the PromptGenerator object - prompt_generator.add_performance_evaluation( - "Continuously review and analyze your actions " - "to ensure you are performing to the best of your abilities." - ) - prompt_generator.add_performance_evaluation( - "Constructively self-criticize your big-picture behavior constantly." - ) - prompt_generator.add_performance_evaluation( - "Reflect on past decisions and strategies to refine your approach." - ) - prompt_generator.add_performance_evaluation( - "Every command has a cost, so be smart and efficient. " - "Aim to complete tasks in the least number of steps." - ) - - # Generate the prompt string - prompt_string = prompt_generator.generate_prompt_string() - - return prompt_string diff --git a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/__init__.py b/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/__init__.py deleted file mode 100644 index d72e2d79dc110..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/__init__.py +++ /dev/null @@ -1,17 +0,0 @@ -from langchain_experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI -from langchain_experimental.autonomous_agents.baby_agi.task_creation import ( - TaskCreationChain, -) -from langchain_experimental.autonomous_agents.baby_agi.task_execution import ( - TaskExecutionChain, -) -from langchain_experimental.autonomous_agents.baby_agi.task_prioritization import ( - TaskPrioritizationChain, -) - -__all__ = [ - "BabyAGI", - "TaskPrioritizationChain", - "TaskExecutionChain", - "TaskCreationChain", -] diff --git a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/baby_agi.py b/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/baby_agi.py deleted file mode 100644 index ade9537dd6dd4..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/baby_agi.py +++ /dev/null @@ -1,222 +0,0 @@ -"""BabyAGI agent.""" - -from collections import deque -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.language_models import BaseLanguageModel -from langchain_core.vectorstores import VectorStore - -from langchain_experimental.autonomous_agents.baby_agi.task_creation import ( - TaskCreationChain, -) -from langchain_experimental.autonomous_agents.baby_agi.task_execution import ( - TaskExecutionChain, -) -from langchain_experimental.autonomous_agents.baby_agi.task_prioritization import ( - TaskPrioritizationChain, -) -from langchain_experimental.pydantic_v1 import BaseModel, Field - - -# This class has a metaclass conflict: both `Chain` and `BaseModel` define a metaclass -# to use, and the two metaclasses attempt to define the same functions but -# in mutually-incompatible ways. It isn't clear how to resolve this, -# and this code predates mypy beginning to perform that check. -# -# Mypy errors: -# ``` -# Definition of "__repr_str__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Definition of "__repr_name__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Definition of "__rich_repr__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Definition of "__pretty__" in base class "Representation" is -# incompatible with definition in base class "BaseModel" [misc] -# Metaclass conflict: the metaclass of a derived class must be -# a (non-strict) subclass of the metaclasses of all its bases [misc] -# ``` -# -# TODO: look into refactoring this class in a way that avoids the mypy type errors -class BabyAGI(Chain, BaseModel): # type: ignore[misc] - """Controller model for the BabyAGI agent.""" - - task_list: deque = Field(default_factory=deque) - task_creation_chain: Chain = Field(...) - task_prioritization_chain: Chain = Field(...) - execution_chain: Chain = Field(...) - task_id_counter: int = Field(1) - vectorstore: VectorStore = Field(init=False) - max_iterations: Optional[int] = None - - class Config: - arbitrary_types_allowed = True - - def add_task(self, task: Dict) -> None: - self.task_list.append(task) - - def print_task_list(self) -> None: - print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") # noqa: T201 - for t in self.task_list: - print(str(t["task_id"]) + ": " + t["task_name"]) # noqa: T201 - - def print_next_task(self, task: Dict) -> None: - print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") # noqa: T201 - print(str(task["task_id"]) + ": " + task["task_name"]) # noqa: T201 - - def print_task_result(self, result: str) -> None: - print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") # noqa: T201 - print(result) # noqa: T201 - - @property - def input_keys(self) -> List[str]: - return ["objective"] - - @property - def output_keys(self) -> List[str]: - return [] - - def get_next_task( - self, result: str, task_description: str, objective: str, **kwargs: Any - ) -> List[Dict]: - """Get the next task.""" - task_names = [t["task_name"] for t in self.task_list] - - incomplete_tasks = ", ".join(task_names) - response = self.task_creation_chain.run( - result=result, - task_description=task_description, - incomplete_tasks=incomplete_tasks, - objective=objective, - **kwargs, - ) - new_tasks = response.split("\n") - return [ - {"task_name": task_name} for task_name in new_tasks if task_name.strip() - ] - - def prioritize_tasks( - self, this_task_id: int, objective: str, **kwargs: Any - ) -> List[Dict]: - """Prioritize tasks.""" - task_names = [t["task_name"] for t in list(self.task_list)] - next_task_id = int(this_task_id) + 1 - response = self.task_prioritization_chain.run( - task_names=", ".join(task_names), - next_task_id=str(next_task_id), - objective=objective, - **kwargs, - ) - new_tasks = response.split("\n") - prioritized_task_list = [] - for task_string in new_tasks: - if not task_string.strip(): - continue - task_parts = task_string.strip().split(".", 1) - if len(task_parts) == 2: - task_id = task_parts[0].strip() - task_name = task_parts[1].strip() - prioritized_task_list.append( - {"task_id": task_id, "task_name": task_name} - ) - return prioritized_task_list - - def _get_top_tasks(self, query: str, k: int) -> List[str]: - """Get the top k tasks based on the query.""" - results = self.vectorstore.similarity_search(query, k=k) - if not results: - return [] - return [str(item.metadata["task"]) for item in results] - - def execute_task(self, objective: str, task: str, k: int = 5, **kwargs: Any) -> str: - """Execute a task.""" - context = self._get_top_tasks(query=objective, k=k) - return self.execution_chain.run( - objective=objective, context="\n".join(context), task=task, **kwargs - ) - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - """Run the agent.""" - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - objective = inputs["objective"] - first_task = inputs.get("first_task", "Make a todo list") - self.add_task({"task_id": 1, "task_name": first_task}) - num_iters = 0 - while True: - if self.task_list: - self.print_task_list() - - # Step 1: Pull the first task - task = self.task_list.popleft() - self.print_next_task(task) - - # Step 2: Execute the task - result = self.execute_task( - objective, task["task_name"], callbacks=_run_manager.get_child() - ) - this_task_id = int(task["task_id"]) - self.print_task_result(result) - - # Step 3: Store the result in Pinecone - result_id = f"result_{task['task_id']}_{num_iters}" - self.vectorstore.add_texts( - texts=[result], - metadatas=[{"task": task["task_name"]}], - ids=[result_id], - ) - - # Step 4: Create new tasks and reprioritize task list - new_tasks = self.get_next_task( - result, - task["task_name"], - objective, - callbacks=_run_manager.get_child(), - ) - for new_task in new_tasks: - self.task_id_counter += 1 - new_task.update({"task_id": self.task_id_counter}) - self.add_task(new_task) - self.task_list = deque( - self.prioritize_tasks( - this_task_id, objective, callbacks=_run_manager.get_child() - ) - ) - num_iters += 1 - if self.max_iterations is not None and num_iters == self.max_iterations: - print( # noqa: T201 - "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m" - ) - break - return {} - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - vectorstore: VectorStore, - verbose: bool = False, - task_execution_chain: Optional[Chain] = None, - **kwargs: Any, - ) -> "BabyAGI": - """Initialize the BabyAGI Controller.""" - task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose) - task_prioritization_chain = TaskPrioritizationChain.from_llm( - llm, verbose=verbose - ) - if task_execution_chain is None: - execution_chain: Chain = TaskExecutionChain.from_llm(llm, verbose=verbose) - else: - execution_chain = task_execution_chain - return cls( # type: ignore[call-arg, call-arg, call-arg, call-arg] - task_creation_chain=task_creation_chain, - task_prioritization_chain=task_prioritization_chain, - execution_chain=execution_chain, - vectorstore=vectorstore, - **kwargs, - ) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_creation.py b/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_creation.py deleted file mode 100644 index e99ab08f069cb..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_creation.py +++ /dev/null @@ -1,31 +0,0 @@ -from langchain.chains import LLMChain -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts import PromptTemplate - - -class TaskCreationChain(LLMChain): - """Chain generating tasks.""" - - @classmethod - def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain: - """Get the response parser.""" - task_creation_template = ( - "You are an task creation AI that uses the result of an execution agent" - " to create new tasks with the following objective: {objective}," - " The last completed task has the result: {result}." - " This result was based on this task description: {task_description}." - " These are incomplete tasks: {incomplete_tasks}." - " Based on the result, create new tasks to be completed" - " by the AI system that do not overlap with incomplete tasks." - " Return the tasks as an array." - ) - prompt = PromptTemplate( - template=task_creation_template, - input_variables=[ - "result", - "task_description", - "incomplete_tasks", - "objective", - ], - ) - return cls(prompt=prompt, llm=llm, verbose=verbose) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_execution.py b/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_execution.py deleted file mode 100644 index 1b57ef55a7007..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_execution.py +++ /dev/null @@ -1,22 +0,0 @@ -from langchain.chains import LLMChain -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts import PromptTemplate - - -class TaskExecutionChain(LLMChain): - """Chain to execute tasks.""" - - @classmethod - def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain: - """Get the response parser.""" - execution_template = ( - "You are an AI who performs one task based on the following objective: " - "{objective}." - "Take into account these previously completed tasks: {context}." - " Your task: {task}. Response:" - ) - prompt = PromptTemplate( - template=execution_template, - input_variables=["objective", "context", "task"], - ) - return cls(prompt=prompt, llm=llm, verbose=verbose) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_prioritization.py b/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_prioritization.py deleted file mode 100644 index 9b8cfba008183..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/baby_agi/task_prioritization.py +++ /dev/null @@ -1,25 +0,0 @@ -from langchain.chains import LLMChain -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts import PromptTemplate - - -class TaskPrioritizationChain(LLMChain): - """Chain to prioritize tasks.""" - - @classmethod - def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain: - """Get the response parser.""" - task_prioritization_template = ( - "You are a task prioritization AI tasked with cleaning the formatting of " - "and reprioritizing the following tasks: {task_names}." - " Consider the ultimate objective of your team: {objective}." - " Do not remove any tasks. Return the result as a numbered list, like:" - " #. First task" - " #. Second task" - " Start the task list with number {next_task_id}." - ) - prompt = PromptTemplate( - template=task_prioritization_template, - input_variables=["task_names", "next_task_id", "objective"], - ) - return cls(prompt=prompt, llm=llm, verbose=verbose) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/__init__.py b/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/hugginggpt.py b/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/hugginggpt.py deleted file mode 100644 index 7a92cdd1adfb3..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/hugginggpt.py +++ /dev/null @@ -1,34 +0,0 @@ -from typing import List - -from langchain.base_language import BaseLanguageModel -from langchain_core.tools import BaseTool - -from langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator import ( - load_response_generator, -) -from langchain_experimental.autonomous_agents.hugginggpt.task_executor import ( - TaskExecutor, -) -from langchain_experimental.autonomous_agents.hugginggpt.task_planner import ( - load_chat_planner, -) - - -class HuggingGPT: - """Agent for interacting with HuggingGPT.""" - - def __init__(self, llm: BaseLanguageModel, tools: List[BaseTool]): - self.llm = llm - self.tools = tools - self.chat_planner = load_chat_planner(llm) - self.response_generator = load_response_generator(llm) - self.task_executor: TaskExecutor - - def run(self, input: str) -> str: - plan = self.chat_planner.plan(inputs={"input": input, "hf_tools": self.tools}) - self.task_executor = TaskExecutor(plan) - self.task_executor.run() - response = self.response_generator.generate( - {"task_execution": self.task_executor} - ) - return response diff --git a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/repsonse_generator.py b/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/repsonse_generator.py deleted file mode 100644 index e12d7b31527d5..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/repsonse_generator.py +++ /dev/null @@ -1,46 +0,0 @@ -from typing import Any, List, Optional - -from langchain.base_language import BaseLanguageModel -from langchain.chains import LLMChain -from langchain_core.callbacks.manager import Callbacks -from langchain_core.prompts import PromptTemplate - - -class ResponseGenerationChain(LLMChain): - """Chain to execute tasks.""" - - @classmethod - def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain: - execution_template = ( - "The AI assistant has parsed the user input into several tasks" - "and executed them. The results are as follows:\n" - "{task_execution}" - "\nPlease summarize the results and generate a response." - ) - prompt = PromptTemplate( - template=execution_template, - input_variables=["task_execution"], - ) - return cls(prompt=prompt, llm=llm, verbose=verbose) - - -class ResponseGenerator: - """Generates a response based on the input.""" - - def __init__(self, llm_chain: LLMChain, stop: Optional[List] = None): - self.llm_chain = llm_chain - self.stop = stop - - def generate(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> str: - """Given input, decided what to do.""" - llm_response = self.llm_chain.run(**inputs, stop=self.stop, callbacks=callbacks) - return llm_response - - -def load_response_generator(llm: BaseLanguageModel) -> ResponseGenerator: - """Load the ResponseGenerator.""" - - llm_chain = ResponseGenerationChain.from_llm(llm) - return ResponseGenerator( - llm_chain=llm_chain, - ) diff --git a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/task_executor.py b/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/task_executor.py deleted file mode 100644 index 904ff7f7fb3b9..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/task_executor.py +++ /dev/null @@ -1,151 +0,0 @@ -import copy -import uuid -from typing import Dict, List - -import numpy as np -from langchain_core.tools import BaseTool - -from langchain_experimental.autonomous_agents.hugginggpt.task_planner import Plan - - -class Task: - """Task to be executed.""" - - def __init__(self, task: str, id: int, dep: List[int], args: Dict, tool: BaseTool): - self.task = task - self.id = id - self.dep = dep - self.args = args - self.tool = tool - self.status = "pending" - self.message = "" - self.result = "" - - def __str__(self) -> str: - return f"{self.task}({self.args})" - - def save_product(self) -> None: - import cv2 - - if self.task == "video_generator": - # ndarray to video - product = np.array(self.product) - nframe, height, width, _ = product.shape - video_filename = uuid.uuid4().hex[:6] + ".mp4" - fps = 30 # Frames per second - fourcc = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore - video_out = cv2.VideoWriter(video_filename, fourcc, fps, (width, height)) - for frame in self.product: - video_out.write(frame) - video_out.release() - self.result = video_filename - elif self.task == "image_generator": - # PIL.Image to image - filename = uuid.uuid4().hex[:6] + ".png" - self.product.save(filename) # type: ignore - self.result = filename - - def completed(self) -> bool: - return self.status == "completed" - - def failed(self) -> bool: - return self.status == "failed" - - def pending(self) -> bool: - return self.status == "pending" - - def run(self) -> str: - from diffusers.utils import load_image - - try: - new_args = copy.deepcopy(self.args) - for k, v in new_args.items(): - if k == "image": - new_args["image"] = load_image(v) - if self.task in ["video_generator", "image_generator", "text_reader"]: - self.product = self.tool(**new_args) - else: - self.result = self.tool(**new_args) - except Exception as e: - self.status = "failed" - self.message = str(e) - return self.message - - self.status = "completed" - self.save_product() - - return self.result - - -class TaskExecutor: - """Load tools and execute tasks.""" - - def __init__(self, plan: Plan): - self.plan = plan - self.tasks = [] - self.id_task_map = {} - self.status = "pending" - for step in self.plan.steps: - task = Task(step.task, step.id, step.dep, step.args, step.tool) - self.tasks.append(task) - self.id_task_map[step.id] = task - - def completed(self) -> bool: - return all(task.completed() for task in self.tasks) - - def failed(self) -> bool: - return any(task.failed() for task in self.tasks) - - def pending(self) -> bool: - return any(task.pending() for task in self.tasks) - - def check_dependency(self, task: Task) -> bool: - for dep_id in task.dep: - if dep_id == -1: - continue - dep_task = self.id_task_map[dep_id] - if dep_task.failed() or dep_task.pending(): - return False - return True - - def update_args(self, task: Task) -> None: - for dep_id in task.dep: - if dep_id == -1: - continue - dep_task = self.id_task_map[dep_id] - for k, v in task.args.items(): - if f"" in v: - task.args[k] = task.args[k].replace( - f"", dep_task.result - ) - - def run(self) -> str: - for task in self.tasks: - print(f"running {task}") # noqa: T201 - if task.pending() and self.check_dependency(task): - self.update_args(task) - task.run() - if self.completed(): - self.status = "completed" - elif self.failed(): - self.status = "failed" - else: - self.status = "pending" - return self.status - - def __str__(self) -> str: - result = "" - for task in self.tasks: - result += f"{task}\n" - result += f"status: {task.status}\n" - if task.failed(): - result += f"message: {task.message}\n" - if task.completed(): - result += f"result: {task.result}\n" - return result - - def __repr__(self) -> str: - return self.__str__() - - def describe(self) -> str: - return self.__str__() diff --git a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/task_planner.py b/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/task_planner.py deleted file mode 100644 index 9d2f09ff8cfe9..0000000000000 --- a/libs/experimental/langchain_experimental/autonomous_agents/hugginggpt/task_planner.py +++ /dev/null @@ -1,175 +0,0 @@ -import json -import re -from abc import abstractmethod -from typing import Any, Dict, List, Optional, Union - -from langchain.base_language import BaseLanguageModel -from langchain.chains import LLMChain -from langchain_core.callbacks.manager import Callbacks -from langchain_core.prompts.chat import ( - AIMessagePromptTemplate, - ChatPromptTemplate, - HumanMessagePromptTemplate, - SystemMessagePromptTemplate, -) -from langchain_core.tools import BaseTool - -from langchain_experimental.pydantic_v1 import BaseModel - -DEMONSTRATIONS = [ - { - "role": "user", - "content": "please show me a video and an image of (based on the text) 'a boy is running' and dub it", # noqa: E501 - }, - { - "role": "assistant", - "content": '[{{"task": "video_generator", "id": 0, "dep": [-1], "args": {{"prompt": "a boy is running" }}}}, {{"task": "text_reader", "id": 1, "dep": [-1], "args": {{"text": "a boy is running" }}}}, {{"task": "image_generator", "id": 2, "dep": [-1], "args": {{"prompt": "a boy is running" }}}}]', # noqa: E501 - }, - { - "role": "user", - "content": "Give you some pictures e1.jpg, e2.png, e3.jpg, help me count the number of sheep?", # noqa: E501 - }, - { - "role": "assistant", - "content": '[ {{"task": "image_qa", "id": 0, "dep": [-1], "args": {{"image": "e1.jpg", "question": "How many sheep in the picture"}}}}, {{"task": "image_qa", "id": 1, "dep": [-1], "args": {{"image": "e2.jpg", "question": "How many sheep in the picture"}}}}, {{"task": "image_qa", "id": 2, "dep": [-1], "args": {{"image": "e3.jpg", "question": "How many sheep in the picture"}}}}]', # noqa: E501 - }, -] - - -class TaskPlaningChain(LLMChain): - """Chain to execute tasks.""" - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - demos: List[Dict] = DEMONSTRATIONS, - verbose: bool = True, - ) -> LLMChain: - """Get the response parser.""" - system_template = """#1 Task Planning Stage: The AI assistant can parse user input to several tasks: [{{"task": task, "id": task_id, "dep": dependency_task_id, "args": {{"input name": text may contain }}}}]. The special tag "dep_id" refer to the one generated text/image/audio in the dependency task (Please consider whether the dependency task generates resources of this type.) and "dep_id" must be in "dep" list. The "dep" field denotes the ids of the previous prerequisite tasks which generate a new resource that the current task relies on. The task MUST be selected from the following tools (along with tool description, input name and output type): {tools}. There may be multiple tasks of the same type. Think step by step about all the tasks needed to resolve the user's request. Parse out as few tasks as possible while ensuring that the user request can be resolved. Pay attention to the dependencies and order among tasks. If the user input can't be parsed, you need to reply empty JSON [].""" # noqa: E501 - human_template = """Now I input: {input}.""" - system_message_prompt = SystemMessagePromptTemplate.from_template( - system_template - ) - human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) - - demo_messages: List[ - Union[HumanMessagePromptTemplate, AIMessagePromptTemplate] - ] = [] - for demo in demos: - if demo["role"] == "user": - demo_messages.append( - HumanMessagePromptTemplate.from_template(demo["content"]) - ) - else: - demo_messages.append( - AIMessagePromptTemplate.from_template(demo["content"]) - ) - # demo_messages.append(message) - - prompt = ChatPromptTemplate.from_messages( - [system_message_prompt, *demo_messages, human_message_prompt] - ) - - return cls(prompt=prompt, llm=llm, verbose=verbose) - - -class Step: - """A step in the plan.""" - - def __init__( - self, task: str, id: int, dep: List[int], args: Dict[str, str], tool: BaseTool - ): - self.task = task - self.id = id - self.dep = dep - self.args = args - self.tool = tool - - -class Plan: - """A plan to execute.""" - - def __init__(self, steps: List[Step]): - self.steps = steps - - def __str__(self) -> str: - return str([str(step) for step in self.steps]) - - def __repr__(self) -> str: - return str(self) - - -class BasePlanner(BaseModel): - """Base class for a planner.""" - - @abstractmethod - def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: - """Given input, decide what to do.""" - - @abstractmethod - async def aplan( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> Plan: - """Asynchronous Given input, decide what to do.""" - - -class PlanningOutputParser(BaseModel): - """Parses the output of the planning stage.""" - - def parse(self, text: str, hf_tools: List[BaseTool]) -> Plan: - """Parse the output of the planning stage. - - Args: - text: The output of the planning stage. - hf_tools: The tools available. - - Returns: - The plan. - """ - steps = [] - for v in json.loads(re.findall(r"\[.*\]", text)[0]): - choose_tool = None - for tool in hf_tools: - if tool.name == v["task"]: - choose_tool = tool - break - if choose_tool: - steps.append(Step(v["task"], v["id"], v["dep"], v["args"], tool)) - return Plan(steps=steps) - - -class TaskPlanner(BasePlanner): - """Planner for tasks.""" - - llm_chain: LLMChain - output_parser: PlanningOutputParser - stop: Optional[List] = None - - def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: - """Given input, decided what to do.""" - inputs["tools"] = [ - f"{tool.name}: {tool.description}" for tool in inputs["hf_tools"] - ] - llm_response = self.llm_chain.run(**inputs, stop=self.stop, callbacks=callbacks) - return self.output_parser.parse(llm_response, inputs["hf_tools"]) - - async def aplan( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> Plan: - """Asynchronous Given input, decided what to do.""" - inputs["hf_tools"] = [ - f"{tool.name}: {tool.description}" for tool in inputs["hf_tools"] - ] - llm_response = await self.llm_chain.arun( - **inputs, stop=self.stop, callbacks=callbacks - ) - return self.output_parser.parse(llm_response, inputs["hf_tools"]) - - -def load_chat_planner(llm: BaseLanguageModel) -> TaskPlanner: - """Load the chat planner.""" - - llm_chain = TaskPlaningChain.from_llm(llm) - return TaskPlanner(llm_chain=llm_chain, output_parser=PlanningOutputParser()) diff --git a/libs/experimental/langchain_experimental/chat_models/__init__.py b/libs/experimental/langchain_experimental/chat_models/__init__.py deleted file mode 100644 index 07be8ea7b738b..0000000000000 --- a/libs/experimental/langchain_experimental/chat_models/__init__.py +++ /dev/null @@ -1,27 +0,0 @@ -"""**Chat Models** are a variation on language models. - -While Chat Models use language models under the hood, the interface they expose -is a bit different. Rather than expose a "text in, text out" API, they expose -an interface where "chat messages" are the inputs and outputs. - -**Class hierarchy:** - -.. code-block:: - - BaseLanguageModel --> BaseChatModel --> # Examples: ChatOpenAI, ChatGooglePalm - -**Main helpers:** - -.. code-block:: - - AIMessage, BaseMessage, HumanMessage -""" # noqa: E501 - -from langchain_experimental.chat_models.llm_wrapper import ( - Llama2Chat, - Mixtral, - Orca, - Vicuna, -) - -__all__ = ["Llama2Chat", "Orca", "Vicuna", "Mixtral"] diff --git a/libs/experimental/langchain_experimental/chat_models/llm_wrapper.py b/libs/experimental/langchain_experimental/chat_models/llm_wrapper.py deleted file mode 100644 index 115bd8a6d292b..0000000000000 --- a/libs/experimental/langchain_experimental/chat_models/llm_wrapper.py +++ /dev/null @@ -1,196 +0,0 @@ -"""Generic Wrapper for chat LLMs, with sample implementations -for Llama-2-chat, Llama-2-instruct and Vicuna models. -""" - -from typing import Any, List, Optional, cast - -from langchain.schema import ( - AIMessage, - BaseMessage, - ChatGeneration, - ChatResult, - HumanMessage, - LLMResult, - SystemMessage, -) -from langchain_core.callbacks.manager import ( - AsyncCallbackManagerForLLMRun, - CallbackManagerForLLMRun, -) -from langchain_core.language_models import LLM, BaseChatModel - -DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. - -If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""" # noqa: E501 - - -class ChatWrapper(BaseChatModel): - """Wrapper for chat LLMs.""" - - llm: LLM - sys_beg: str - sys_end: str - ai_n_beg: str - ai_n_end: str - usr_n_beg: str - usr_n_end: str - usr_0_beg: Optional[str] = None - usr_0_end: Optional[str] = None - - system_message: SystemMessage = SystemMessage(content=DEFAULT_SYSTEM_PROMPT) - - def _generate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> ChatResult: - llm_input = self._to_chat_prompt(messages) - llm_result = self.llm._generate( - prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs - ) - return self._to_chat_result(llm_result) - - async def _agenerate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> ChatResult: - llm_input = self._to_chat_prompt(messages) - llm_result = await self.llm._agenerate( - prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs - ) - return self._to_chat_result(llm_result) - - def _to_chat_prompt( - self, - messages: List[BaseMessage], - ) -> str: - """Convert a list of messages into a prompt format expected by wrapped LLM.""" - if not messages: - raise ValueError("at least one HumanMessage must be provided") - - if not isinstance(messages[0], SystemMessage): - messages = [self.system_message] + messages - - if not isinstance(messages[1], HumanMessage): - raise ValueError( - "messages list must start with a SystemMessage or UserMessage" - ) - - if not isinstance(messages[-1], HumanMessage): - raise ValueError("last message must be a HumanMessage") - - prompt_parts = [] - - if self.usr_0_beg is None: - self.usr_0_beg = self.usr_n_beg - - if self.usr_0_end is None: - self.usr_0_end = self.usr_n_end - - prompt_parts.append( - self.sys_beg + cast(str, messages[0].content) + self.sys_end - ) - prompt_parts.append( - self.usr_0_beg + cast(str, messages[1].content) + self.usr_0_end - ) - - for ai_message, human_message in zip(messages[2::2], messages[3::2]): - if not isinstance(ai_message, AIMessage) or not isinstance( - human_message, HumanMessage - ): - raise ValueError( - "messages must be alternating human- and ai-messages, " - "optionally prepended by a system message" - ) - - prompt_parts.append( - self.ai_n_beg + cast(str, ai_message.content) + self.ai_n_end - ) - prompt_parts.append( - self.usr_n_beg + cast(str, human_message.content) + self.usr_n_end - ) - - return "".join(prompt_parts) - - @staticmethod - def _to_chat_result(llm_result: LLMResult) -> ChatResult: - chat_generations = [] - - for g in llm_result.generations[0]: - chat_generation = ChatGeneration( - message=AIMessage(content=g.text), generation_info=g.generation_info - ) - chat_generations.append(chat_generation) - - return ChatResult( - generations=chat_generations, llm_output=llm_result.llm_output - ) - - -class Llama2Chat(ChatWrapper): - """Wrapper for Llama-2-chat model.""" - - @property - def _llm_type(self) -> str: - return "llama-2-chat" - - sys_beg: str = "[INST] <>\n" - sys_end: str = "\n<>\n\n" - ai_n_beg: str = " " - ai_n_end: str = " " - usr_n_beg: str = "[INST] " - usr_n_end: str = " [/INST]" - usr_0_beg: str = "" - usr_0_end: str = " [/INST]" - - -class Mixtral(ChatWrapper): - """See https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format""" - - @property - def _llm_type(self) -> str: - return "mixtral" - - sys_beg: str = "[INST] " - sys_end: str = "\n" - ai_n_beg: str = " " - ai_n_end: str = " " - usr_n_beg: str = " [INST] " - usr_n_end: str = " [/INST]" - usr_0_beg: str = "" - usr_0_end: str = " [/INST]" - - -class Orca(ChatWrapper): - """Wrapper for Orca-style models.""" - - @property - def _llm_type(self) -> str: - return "orca-style" - - sys_beg: str = "### System:\n" - sys_end: str = "\n\n" - ai_n_beg: str = "### Assistant:\n" - ai_n_end: str = "\n\n" - usr_n_beg: str = "### User:\n" - usr_n_end: str = "\n\n" - - -class Vicuna(ChatWrapper): - """Wrapper for Vicuna-style models.""" - - @property - def _llm_type(self) -> str: - return "vicuna-style" - - sys_beg: str = "" - sys_end: str = " " - ai_n_beg: str = "ASSISTANT: " - ai_n_end: str = " " - usr_n_beg: str = "USER: " - usr_n_end: str = " " diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/__init__.py b/libs/experimental/langchain_experimental/comprehend_moderation/__init__.py deleted file mode 100644 index 17a07cc8ad12d..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/__init__.py +++ /dev/null @@ -1,52 +0,0 @@ -""" -**Comprehend Moderation** is used to detect and handle `Personally Identifiable Information (PII)`, -`toxicity`, and `prompt safety` in text. - -The Langchain experimental package includes the **AmazonComprehendModerationChain** class -for the comprehend moderation tasks. It is based on `Amazon Comprehend` service. -This class can be configured with specific moderation settings like PII labels, redaction, -toxicity thresholds, and prompt safety thresholds. - -See more at https://aws.amazon.com/comprehend/ - -`Amazon Comprehend` service is used by several other classes: -- **ComprehendToxicity** class is used to check the toxicity of text prompts using - `AWS Comprehend service` and take actions based on the configuration -- **ComprehendPromptSafety** class is used to validate the safety of given prompt - text, raising an error if unsafe content is detected based on the specified threshold -- **ComprehendPII** class is designed to handle - `Personally Identifiable Information (PII)` moderation tasks, - detecting and managing PII entities in text inputs -""" # noqa: E501 - -from langchain_experimental.comprehend_moderation.amazon_comprehend_moderation import ( - AmazonComprehendModerationChain, -) -from langchain_experimental.comprehend_moderation.base_moderation import BaseModeration -from langchain_experimental.comprehend_moderation.base_moderation_callbacks import ( - BaseModerationCallbackHandler, -) -from langchain_experimental.comprehend_moderation.base_moderation_config import ( - BaseModerationConfig, - ModerationPiiConfig, - ModerationPromptSafetyConfig, - ModerationToxicityConfig, -) -from langchain_experimental.comprehend_moderation.pii import ComprehendPII -from langchain_experimental.comprehend_moderation.prompt_safety import ( - ComprehendPromptSafety, -) -from langchain_experimental.comprehend_moderation.toxicity import ComprehendToxicity - -__all__ = [ - "BaseModeration", - "ComprehendPII", - "ComprehendPromptSafety", - "ComprehendToxicity", - "BaseModerationConfig", - "ModerationPiiConfig", - "ModerationToxicityConfig", - "ModerationPromptSafetyConfig", - "BaseModerationCallbackHandler", - "AmazonComprehendModerationChain", -] diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/amazon_comprehend_moderation.py b/libs/experimental/langchain_experimental/comprehend_moderation/amazon_comprehend_moderation.py deleted file mode 100644 index 4f76ba7db074d..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/amazon_comprehend_moderation.py +++ /dev/null @@ -1,191 +0,0 @@ -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain_core.callbacks.manager import CallbackManagerForChainRun - -from langchain_experimental.comprehend_moderation.base_moderation import BaseModeration -from langchain_experimental.comprehend_moderation.base_moderation_callbacks import ( - BaseModerationCallbackHandler, -) -from langchain_experimental.comprehend_moderation.base_moderation_config import ( - BaseModerationConfig, -) -from langchain_experimental.pydantic_v1 import root_validator - - -class AmazonComprehendModerationChain(Chain): - """Moderation Chain, based on `Amazon Comprehend` service. - - See more at https://aws.amazon.com/comprehend/ - """ - - output_key: str = "output" #: :meta private: - """Key used to fetch/store the output in data containers. Defaults to `output`""" - - input_key: str = "input" #: :meta private: - """Key used to fetch/store the input in data containers. Defaults to `input`""" - - moderation_config: BaseModerationConfig = BaseModerationConfig() - """ - Configuration settings for moderation, - defaults to BaseModerationConfig with default values - """ - - client: Optional[Any] = None - """boto3 client object for connection to Amazon Comprehend""" - - region_name: Optional[str] = None - """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable - or region specified in ~/.aws/config in case it is not provided here. - """ - - credentials_profile_name: Optional[str] = None - """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which - has either access keys or role information specified. - If not specified, the default credential profile or, if on an EC2 instance, - credentials from IMDS will be used. - See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html - """ - - moderation_callback: Optional[BaseModerationCallbackHandler] = None - """Callback handler for moderation, this is different - from regular callbacks which can be used in addition to this.""" - - unique_id: Optional[str] = None - """A unique id that can be used to identify or group a user or session""" - - @root_validator(pre=True) - def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]: - """ - Creates an Amazon Comprehend client. - - Args: - values (Dict[str, Any]): A dictionary containing configuration values. - - Returns: - Dict[str, Any]: A dictionary with the updated configuration values, - including the Amazon Comprehend client. - - Raises: - ModuleNotFoundError: If the 'boto3' package is not installed. - ValueError: If there is an issue importing 'boto3' or loading - AWS credentials. - - Example: - .. code-block:: python - - config = { - "credentials_profile_name": "my-profile", - "region_name": "us-west-2" - } - updated_config = create_client(config) - comprehend_client = updated_config["client"] - """ - - if values.get("client") is not None: - return values - try: - import boto3 - - if values.get("credentials_profile_name"): - session = boto3.Session(profile_name=values["credentials_profile_name"]) - else: - # use default credentials - session = boto3.Session() - - client_params = {} - if values.get("region_name"): - client_params["region_name"] = values["region_name"] - - values["client"] = session.client("comprehend", **client_params) - - return values - except ImportError: - raise ModuleNotFoundError( - "Could not import boto3 python package. " - "Please install it with `pip install boto3`." - ) - except Exception as e: - raise ValueError( - "Could not load credentials to authenticate with AWS client. " - "Please check that credentials in the specified " - f"profile name are valid. {e}" - ) from e - - @property - def output_keys(self) -> List[str]: - """ - Returns a list of output keys. - - This method defines the output keys that will be used to access the output - values produced by the chain or function. It ensures that the specified keys - are available to access the outputs. - - Returns: - List[str]: A list of output keys. - - Note: - This method is considered private and may not be intended for direct - external use. - - """ - return [self.output_key] - - @property - def input_keys(self) -> List[str]: - """ - Returns a list of input keys expected by the prompt. - - This method defines the input keys that the prompt expects in order to perform - its processing. It ensures that the specified keys are available for providing - input to the prompt. - - Returns: - List[str]: A list of input keys. - - Note: - This method is considered private and may not be intended for direct - external use. - """ - return [self.input_key] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - """ - Executes the moderation process on the input text and returns the processed - output. - - This internal method performs the moderation process on the input text. It - converts the input prompt value to plain text, applies the specified filters, - and then converts the filtered output back to a suitable prompt value object. - Additionally, it provides the option to log information about the run using - the provided `run_manager`. - - Args: - inputs: A dictionary containing input values - run_manager: A run manager to handle run-related events. Default is None - - Returns: - Dict[str, str]: A dictionary containing the processed output of the - moderation process. - - Raises: - ValueError: If there is an error during the moderation process - """ - - if run_manager: - run_manager.on_text("Running AmazonComprehendModerationChain...\n") - - moderation = BaseModeration( - client=self.client, - config=self.moderation_config, - moderation_callback=self.moderation_callback, - unique_id=self.unique_id, - run_manager=run_manager, - ) - response = moderation.moderate(prompt=inputs[self.input_keys[0]]) - - return {self.output_key: response} diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation.py b/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation.py deleted file mode 100644 index be236f5ecebaa..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation.py +++ /dev/null @@ -1,185 +0,0 @@ -import uuid -from typing import Any, Callable, Optional, cast - -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.messages import AIMessage, HumanMessage -from langchain_core.prompt_values import ChatPromptValue, StringPromptValue - -from langchain_experimental.comprehend_moderation.pii import ComprehendPII -from langchain_experimental.comprehend_moderation.prompt_safety import ( - ComprehendPromptSafety, -) -from langchain_experimental.comprehend_moderation.toxicity import ComprehendToxicity - - -class BaseModeration: - """Base class for moderation.""" - - def __init__( - self, - client: Any, - config: Optional[Any] = None, - moderation_callback: Optional[Any] = None, - unique_id: Optional[str] = None, - run_manager: Optional[CallbackManagerForChainRun] = None, - ): - self.client = client - self.config = config - self.moderation_callback = moderation_callback - self.unique_id = unique_id - self.chat_message_index = 0 - self.run_manager = run_manager - self.chain_id = str(uuid.uuid4()) - - def _convert_prompt_to_text(self, prompt: Any) -> str: - input_text = str() - - if isinstance(prompt, StringPromptValue): - input_text = prompt.text - elif isinstance(prompt, str): - input_text = prompt - elif isinstance(prompt, ChatPromptValue): - """ - We will just check the last message in the message Chain of a - ChatPromptTemplate. The typical chronology is - SystemMessage > HumanMessage > AIMessage and so on. However assuming - that with every chat the chain is invoked we will only check the last - message. This is assuming that all previous messages have been checked - already. Only HumanMessage and AIMessage will be checked. We can perhaps - loop through and take advantage of the additional_kwargs property in the - HumanMessage and AIMessage schema to mark messages that have been moderated. - However that means that this class could generate multiple text chunks - and moderate() logics would need to be updated. This also means some - complexity in re-constructing the prompt while keeping the messages in - sequence. - """ - message = prompt.messages[-1] - self.chat_message_index = len(prompt.messages) - 1 - if isinstance(message, HumanMessage): - input_text = cast(str, message.content) - - if isinstance(message, AIMessage): - input_text = cast(str, message.content) - else: - raise ValueError( - f"Invalid input type {type(input_text)}. " - "Must be a PromptValue, str, or list of BaseMessages." - ) - return input_text - - def _convert_text_to_prompt(self, prompt: Any, text: str) -> Any: - if isinstance(prompt, StringPromptValue): - return StringPromptValue(text=text) - elif isinstance(prompt, str): - return text - elif isinstance(prompt, ChatPromptValue): - # Copy the messages because we may need to mutate them. - # We don't want to mutate data we don't own. - messages = list(prompt.messages) - - message = messages[self.chat_message_index] - - if isinstance(message, HumanMessage): - messages[self.chat_message_index] = HumanMessage( - content=text, - example=message.example, - additional_kwargs=message.additional_kwargs, - ) - if isinstance(message, AIMessage): - messages[self.chat_message_index] = AIMessage( - content=text, - example=message.example, - additional_kwargs=message.additional_kwargs, - ) - return ChatPromptValue(messages=messages) - else: - raise ValueError( - f"Invalid input type {type(input)}. " - "Must be a PromptValue, str, or list of BaseMessages." - ) - - def _moderation_class(self, moderation_class: Any) -> Callable: - return moderation_class( - client=self.client, - callback=self.moderation_callback, - unique_id=self.unique_id, - chain_id=self.chain_id, - ).validate - - def _log_message_for_verbose(self, message: str) -> None: - if self.run_manager: - self.run_manager.on_text(message) - - def moderate(self, prompt: Any) -> str: - """Moderate the input prompt.""" - - from langchain_experimental.comprehend_moderation.base_moderation_config import ( # noqa: E501 - ModerationPiiConfig, - ModerationPromptSafetyConfig, - ModerationToxicityConfig, - ) - from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( # noqa: E501 - ModerationPiiError, - ModerationPromptSafetyError, - ModerationToxicityError, - ) - - try: - # convert prompt to text - input_text = self._convert_prompt_to_text(prompt=prompt) - output_text = str() - - # perform moderation - filter_functions = { - "pii": ComprehendPII, - "toxicity": ComprehendToxicity, - "prompt_safety": ComprehendPromptSafety, - } - - filters = self.config.filters # type: ignore - - for _filter in filters: - filter_name = ( - "pii" - if isinstance(_filter, ModerationPiiConfig) - else ( - "toxicity" - if isinstance(_filter, ModerationToxicityConfig) - else ( - "prompt_safety" - if isinstance(_filter, ModerationPromptSafetyConfig) - else None - ) - ) - ) - if filter_name in filter_functions: - self._log_message_for_verbose( - f"Running {filter_name} Validation...\n" - ) - validation_fn = self._moderation_class( - moderation_class=filter_functions[filter_name] - ) - input_text = input_text if not output_text else output_text - output_text = validation_fn( - prompt_value=input_text, - config=_filter.dict(), - ) - - # convert text to prompt and return - return self._convert_text_to_prompt(prompt=prompt, text=output_text) - - except ModerationPiiError as e: - self._log_message_for_verbose(f"Found PII content..stopping..\n{str(e)}\n") - raise e - except ModerationToxicityError as e: - self._log_message_for_verbose( - f"Found Toxic content..stopping..\n{str(e)}\n" - ) - raise e - except ModerationPromptSafetyError as e: - self._log_message_for_verbose( - f"Found Harmful intention..stopping..\n{str(e)}\n" - ) - raise e - except Exception as e: - raise e diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_callbacks.py b/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_callbacks.py deleted file mode 100644 index dd39c14608d79..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_callbacks.py +++ /dev/null @@ -1,67 +0,0 @@ -from typing import Any, Callable, Dict - - -class BaseModerationCallbackHandler: - """Base class for moderation callback handlers.""" - - def __init__(self) -> None: - if ( - self._is_method_unchanged( - BaseModerationCallbackHandler.on_after_pii, self.on_after_pii - ) - and self._is_method_unchanged( - BaseModerationCallbackHandler.on_after_toxicity, self.on_after_toxicity - ) - and self._is_method_unchanged( - BaseModerationCallbackHandler.on_after_prompt_safety, - self.on_after_prompt_safety, - ) - ): - raise NotImplementedError( - "Subclasses must override at least one of on_after_pii(), " - "on_after_toxicity(), or on_after_prompt_safety() functions." - ) - - def _is_method_unchanged( - self, base_method: Callable, derived_method: Callable - ) -> bool: - return base_method.__qualname__ == derived_method.__qualname__ - - async def on_after_pii( - self, moderation_beacon: Dict[str, Any], unique_id: str, **kwargs: Any - ) -> None: - """Run after PII validation is complete.""" - pass - - async def on_after_toxicity( - self, moderation_beacon: Dict[str, Any], unique_id: str, **kwargs: Any - ) -> None: - """Run after Toxicity validation is complete.""" - pass - - async def on_after_prompt_safety( - self, moderation_beacon: Dict[str, Any], unique_id: str, **kwargs: Any - ) -> None: - """Run after Prompt Safety validation is complete.""" - pass - - @property - def pii_callback(self) -> bool: - return ( - self.on_after_pii.__func__ # type: ignore - is not BaseModerationCallbackHandler.on_after_pii - ) - - @property - def toxicity_callback(self) -> bool: - return ( - self.on_after_toxicity.__func__ # type: ignore - is not BaseModerationCallbackHandler.on_after_toxicity - ) - - @property - def prompt_safety_callback(self) -> bool: - return ( - self.on_after_prompt_safety.__func__ # type: ignore - is not BaseModerationCallbackHandler.on_after_prompt_safety - ) diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_config.py b/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_config.py deleted file mode 100644 index eaa371d99fdb4..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_config.py +++ /dev/null @@ -1,61 +0,0 @@ -from typing import List, Union - -from pydantic import BaseModel - - -class ModerationPiiConfig(BaseModel): - """Configuration for PII moderation filter.""" - - threshold: float = 0.5 - """Threshold for PII confidence score, defaults to 0.5 i.e. 50%""" - - labels: List[str] = [] - """ - List of PII Universal Labels. - Defaults to `list[]` - """ - - redact: bool = False - """Whether to perform redaction of detected PII entities""" - - mask_character: str = "*" - """Redaction mask character in case redact=True, defaults to asterisk (*)""" - - -class ModerationToxicityConfig(BaseModel): - """Configuration for Toxicity moderation filter.""" - - threshold: float = 0.5 - """Threshold for Toxic label confidence score, defaults to 0.5 i.e. 50%""" - - labels: List[str] = [] - """List of toxic labels, defaults to `list[]`""" - - -class ModerationPromptSafetyConfig(BaseModel): - """Configuration for Prompt Safety moderation filter.""" - - threshold: float = 0.5 - """ - Threshold for Prompt Safety classification - confidence score, defaults to 0.5 i.e. 50% - """ - - -class BaseModerationConfig(BaseModel): - """Base configuration settings for moderation.""" - - filters: List[ - Union[ - ModerationPiiConfig, ModerationToxicityConfig, ModerationPromptSafetyConfig - ] - ] = [ - ModerationPiiConfig(), - ModerationToxicityConfig(), - ModerationPromptSafetyConfig(), - ] - """ - Filters applied to the moderation chain, defaults to - `[ModerationPiiConfig(), ModerationToxicityConfig(), - ModerationPromptSafetyConfig()]` - """ diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_exceptions.py b/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_exceptions.py deleted file mode 100644 index 52c08f6bd0fc4..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/base_moderation_exceptions.py +++ /dev/null @@ -1,41 +0,0 @@ -class ModerationPiiError(Exception): - """Exception raised if PII entities are detected. - - Attributes: - message -- explanation of the error - """ - - def __init__( - self, message: str = "The prompt contains PII entities and cannot be processed" - ): - self.message = message - super().__init__(self.message) - - -class ModerationToxicityError(Exception): - """Exception raised if Toxic entities are detected. - - Attributes: - message -- explanation of the error - """ - - def __init__( - self, message: str = "The prompt contains toxic content and cannot be processed" - ): - self.message = message - super().__init__(self.message) - - -class ModerationPromptSafetyError(Exception): - """Exception raised if Unsafe prompts are detected. - - Attributes: - message -- explanation of the error - """ - - def __init__( - self, - message: str = ("The prompt is unsafe and cannot be processed"), - ): - self.message = message - super().__init__(self.message) diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/pii.py b/libs/experimental/langchain_experimental/comprehend_moderation/pii.py deleted file mode 100644 index 88e29ee115401..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/pii.py +++ /dev/null @@ -1,166 +0,0 @@ -import asyncio -from typing import Any, Dict, Optional - -from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( - ModerationPiiError, -) - - -class ComprehendPII: - """Class to handle Personally Identifiable Information (PII) moderation.""" - - def __init__( - self, - client: Any, - callback: Optional[Any] = None, - unique_id: Optional[str] = None, - chain_id: Optional[str] = None, - ) -> None: - self.client = client - self.moderation_beacon = { - "moderation_chain_id": chain_id, - "moderation_type": "PII", - "moderation_status": "LABELS_NOT_FOUND", - } - self.callback = callback - self.unique_id = unique_id - - def validate(self, prompt_value: str, config: Any = None) -> str: - redact = config.get("redact") - return ( - self._detect_pii(prompt_value=prompt_value, config=config) - if redact - else self._contains_pii(prompt_value=prompt_value, config=config) - ) - - def _contains_pii(self, prompt_value: str, config: Any = None) -> str: - """ - Checks for Personally Identifiable Information (PII) labels above a - specified threshold. Uses Amazon Comprehend Contains PII Entities API. See - - https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ContainsPiiEntities.html - Args: - prompt_value (str): The input text to be checked for PII labels. - config (Dict[str, Any]): Configuration for PII check and actions. - - Returns: - str: the original prompt - - Note: - - The provided client should be initialized with valid AWS credentials. - """ - pii_identified = self.client.contains_pii_entities( - Text=prompt_value, LanguageCode="en" - ) - - if self.callback and self.callback.pii_callback: - self.moderation_beacon["moderation_input"] = prompt_value - self.moderation_beacon["moderation_output"] = pii_identified - - threshold = config.get("threshold") - pii_labels = config.get("labels") - pii_found = False - for entity in pii_identified["Labels"]: - if (entity["Score"] >= threshold and entity["Name"] in pii_labels) or ( - entity["Score"] >= threshold and not pii_labels - ): - pii_found = True - break - - if self.callback and self.callback.pii_callback: - if pii_found: - self.moderation_beacon["moderation_status"] = "LABELS_FOUND" - asyncio.create_task( - self.callback.on_after_pii(self.moderation_beacon, self.unique_id) - ) - if pii_found: - raise ModerationPiiError - return prompt_value - - def _detect_pii(self, prompt_value: str, config: Optional[Dict[str, Any]]) -> str: - """ - Detects and handles Personally Identifiable Information (PII) entities in the - given prompt text using Amazon Comprehend's detect_pii_entities API. The - function provides options to redact or stop processing based on the identified - PII entities and a provided configuration. Uses Amazon Comprehend Detect PII - Entities API. - - Args: - prompt_value (str): The input text to be checked for PII entities. - config (Dict[str, Any]): A configuration specifying how to handle - PII entities. - - Returns: - str: The processed prompt text with redacted PII entities or raised - exceptions. - - Raises: - ValueError: If the prompt contains configured PII entities for - stopping processing. - - Note: - - If PII is not found in the prompt, the original prompt is returned. - - The client should be initialized with valid AWS credentials. - """ - pii_identified = self.client.detect_pii_entities( - Text=prompt_value, LanguageCode="en" - ) - - if self.callback and self.callback.pii_callback: - self.moderation_beacon["moderation_input"] = prompt_value - self.moderation_beacon["moderation_output"] = pii_identified - - if (pii_identified["Entities"]) == []: - if self.callback and self.callback.pii_callback: - asyncio.create_task( - self.callback.on_after_pii(self.moderation_beacon, self.unique_id) - ) - return prompt_value - - pii_found = False - if not config and pii_identified["Entities"]: - for entity in pii_identified["Entities"]: - if entity["Score"] >= 0.5: - pii_found = True - break - - if self.callback and self.callback.pii_callback: - if pii_found: - self.moderation_beacon["moderation_status"] = "LABELS_FOUND" - asyncio.create_task( - self.callback.on_after_pii(self.moderation_beacon, self.unique_id) - ) - if pii_found: - raise ModerationPiiError - else: - threshold = config.get("threshold") # type: ignore - pii_labels = config.get("labels") # type: ignore - mask_marker = config.get("mask_character") # type: ignore - pii_found = False - - for entity in pii_identified["Entities"]: - if ( - pii_labels - and entity["Type"] in pii_labels - and entity["Score"] >= threshold - ) or (not pii_labels and entity["Score"] >= threshold): - pii_found = True - char_offset_begin = entity["BeginOffset"] - char_offset_end = entity["EndOffset"] - - mask_length = char_offset_end - char_offset_begin + 1 - masked_part = mask_marker * mask_length - - prompt_value = ( - prompt_value[:char_offset_begin] - + masked_part - + prompt_value[char_offset_end + 1 :] - ) - - if self.callback and self.callback.pii_callback: - if pii_found: - self.moderation_beacon["moderation_status"] = "LABELS_FOUND" - asyncio.create_task( - self.callback.on_after_pii(self.moderation_beacon, self.unique_id) - ) - - return prompt_value diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/prompt_safety.py b/libs/experimental/langchain_experimental/comprehend_moderation/prompt_safety.py deleted file mode 100644 index 3e1f764fbf4ef..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/prompt_safety.py +++ /dev/null @@ -1,89 +0,0 @@ -import asyncio -from typing import Any, Optional - -from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( - ModerationPromptSafetyError, -) - - -class ComprehendPromptSafety: - """Class to handle prompt safety moderation.""" - - def __init__( - self, - client: Any, - callback: Optional[Any] = None, - unique_id: Optional[str] = None, - chain_id: Optional[str] = None, - ) -> None: - self.client = client - self.moderation_beacon = { - "moderation_chain_id": chain_id, - "moderation_type": "PromptSafety", - "moderation_status": "LABELS_NOT_FOUND", - } - self.callback = callback - self.unique_id = unique_id - - def _get_arn(self) -> str: - region_name = self.client.meta.region_name - service = "comprehend" - prompt_safety_endpoint = "document-classifier-endpoint/prompt-safety" - return f"arn:aws:{service}:{region_name}:aws:{prompt_safety_endpoint}" - - def validate(self, prompt_value: str, config: Any = None) -> str: - """ - Check and validate the safety of the given prompt text. - - Args: - prompt_value (str): The input text to be checked for unsafe text. - config (Dict[str, Any]): Configuration settings for prompt safety checks. - - Raises: - ValueError: If unsafe prompt is found in the prompt text based - on the specified threshold. - - Returns: - str: The input prompt_value. - - Note: - This function checks the safety of the provided prompt text using - Comprehend's classify_document API and raises an error if unsafe - text is detected with a score above the specified threshold. - - Example: - comprehend_client = boto3.client('comprehend') - prompt_text = "Please tell me your credit card information." - config = {"threshold": 0.7} - checked_prompt = check_prompt_safety(comprehend_client, prompt_text, config) - """ - - threshold = config.get("threshold") - unsafe_prompt = False - - endpoint_arn = self._get_arn() - response = self.client.classify_document( - Text=prompt_value, EndpointArn=endpoint_arn - ) - - if self.callback and self.callback.prompt_safety_callback: - self.moderation_beacon["moderation_input"] = prompt_value - self.moderation_beacon["moderation_output"] = response - - for class_result in response["Classes"]: - if ( - class_result["Score"] >= threshold - and class_result["Name"] == "UNSAFE_PROMPT" - ): - unsafe_prompt = True - break - - if self.callback and self.callback.intent_callback: - if unsafe_prompt: - self.moderation_beacon["moderation_status"] = "LABELS_FOUND" - asyncio.create_task( - self.callback.on_after_intent(self.moderation_beacon, self.unique_id) - ) - if unsafe_prompt: - raise ModerationPromptSafetyError - return prompt_value diff --git a/libs/experimental/langchain_experimental/comprehend_moderation/toxicity.py b/libs/experimental/langchain_experimental/comprehend_moderation/toxicity.py deleted file mode 100644 index 2e7af07b347a1..0000000000000 --- a/libs/experimental/langchain_experimental/comprehend_moderation/toxicity.py +++ /dev/null @@ -1,167 +0,0 @@ -import asyncio -import importlib -from typing import Any, List, Optional - -from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( - ModerationToxicityError, -) - - -class ComprehendToxicity: - """Class to handle toxicity moderation.""" - - def __init__( - self, - client: Any, - callback: Optional[Any] = None, - unique_id: Optional[str] = None, - chain_id: Optional[str] = None, - ) -> None: - self.client = client - self.moderation_beacon = { - "moderation_chain_id": chain_id, - "moderation_type": "Toxicity", - "moderation_status": "LABELS_NOT_FOUND", - } - self.callback = callback - self.unique_id = unique_id - - def _toxicity_init_validate(self, max_size: int) -> Any: - """ - Validate and initialize toxicity processing configuration. - - Args: - max_size (int): Maximum sentence size defined in the - configuration object. - - Raises: - Exception: If the maximum sentence size exceeds the 5KB limit. - - Note: - This function ensures that the NLTK punkt tokenizer is downloaded - if not already present. - - Returns: - None - """ - if max_size > 1024 * 5: - raise Exception("The sentence length should not exceed 5KB.") - try: - nltk = importlib.import_module("nltk") - nltk.data.find("tokenizers/punkt") - return nltk - except ImportError: - raise ModuleNotFoundError( - "Could not import nltk python package. " - "Please install it with `pip install nltk`." - ) - except LookupError: - nltk.download("punkt") - - def _split_paragraph( - self, prompt_value: str, max_size: int = 1024 * 4 - ) -> List[List[str]]: - """ - Split a paragraph into chunks of sentences, respecting the maximum size limit. - - Args: - paragraph (str): The input paragraph to be split into chunks. - max_size (int, optional): The maximum size limit in bytes for - each chunk. Defaults to 1024. - - Returns: - List[List[str]]: A list of chunks, where each chunk is a list - of sentences. - - Note: - This function validates the maximum sentence size based on service - limits using the 'toxicity_init_validate' function. It uses the NLTK - sentence tokenizer to split the paragraph into sentences. - - Example: - paragraph = "This is a sample paragraph. It - contains multiple sentences. ..." - chunks = split_paragraph(paragraph, max_size=2048) - """ - - # validate max. sentence size based on Service limits - nltk = self._toxicity_init_validate(max_size) - sentences = nltk.sent_tokenize(prompt_value) - chunks = list() # type: ignore - current_chunk = list() # type: ignore - current_size = 0 - - for sentence in sentences: - sentence_size = len(sentence.encode("utf-8")) - # If adding a new sentence exceeds max_size - # or current_chunk has 10 sentences, start a new chunk - if (current_size + sentence_size > max_size) or (len(current_chunk) >= 10): - if current_chunk: # Avoid appending empty chunks - chunks.append(current_chunk) - current_chunk = [] - current_size = 0 - - current_chunk.append(sentence) - current_size += sentence_size - - # Add any remaining sentences - if current_chunk: - chunks.append(current_chunk) - return chunks - - def validate(self, prompt_value: str, config: Any = None) -> str: - """ - Check the toxicity of a given text prompt using AWS - Comprehend service and apply actions based on configuration. - Args: - prompt_value (str): The text content to be checked for toxicity. - config (Dict[str, Any]): Configuration for toxicity checks and actions. - - Returns: - str: The original prompt_value if allowed or no toxicity found. - - Raises: - ValueError: If the prompt contains toxic labels and cannot be - processed based on the configuration. - """ - - chunks = self._split_paragraph(prompt_value=prompt_value) - for sentence_list in chunks: - segments = [{"Text": sentence} for sentence in sentence_list] - response = self.client.detect_toxic_content( - TextSegments=segments, LanguageCode="en" - ) - if self.callback and self.callback.toxicity_callback: - self.moderation_beacon["moderation_input"] = segments # type: ignore - self.moderation_beacon["moderation_output"] = response - toxicity_found = False - threshold = config.get("threshold") - toxicity_labels = config.get("labels") - - if not toxicity_labels: - for item in response["ResultList"]: - for label in item["Labels"]: - if label["Score"] >= threshold: - toxicity_found = True - break - else: - for item in response["ResultList"]: - for label in item["Labels"]: - if ( - label["Name"] in toxicity_labels - and label["Score"] >= threshold - ): - toxicity_found = True - break - - if self.callback and self.callback.toxicity_callback: - if toxicity_found: - self.moderation_beacon["moderation_status"] = "LABELS_FOUND" - asyncio.create_task( - self.callback.on_after_toxicity( - self.moderation_beacon, self.unique_id - ) - ) - if toxicity_found: - raise ModerationToxicityError - return prompt_value diff --git a/libs/experimental/langchain_experimental/cpal/README.md b/libs/experimental/langchain_experimental/cpal/README.md deleted file mode 100644 index 0e9a18b896e78..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/README.md +++ /dev/null @@ -1,4 +0,0 @@ -# Causal program-aided language (CPAL) chain - - -see https://github.com/langchain-ai/langchain/pull/6255 diff --git a/libs/experimental/langchain_experimental/cpal/__init__.py b/libs/experimental/langchain_experimental/cpal/__init__.py deleted file mode 100644 index 5bbca5495935d..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/__init__.py +++ /dev/null @@ -1,17 +0,0 @@ -""" -**Causal program-aided language (CPAL)** is a concept implemented in LangChain as -a chain for causal modeling and narrative decomposition. - -CPAL improves upon the program-aided language (**PAL**) by incorporating -causal structure to prevent hallucination in language models, -particularly when dealing with complex narratives and math -problems with nested dependencies. - -CPAL involves translating causal narratives into a stack of operations, -setting hypothetical conditions for causal models, and decomposing -narratives into story elements. - -It allows for the creation of causal chains that define the relationships -between different elements in a narrative, enabling the modeling and analysis -of causal relationships within a given context. -""" diff --git a/libs/experimental/langchain_experimental/cpal/base.py b/libs/experimental/langchain_experimental/cpal/base.py deleted file mode 100644 index e2f452920ae5f..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/base.py +++ /dev/null @@ -1,303 +0,0 @@ -""" -CPAL Chain and its subchains -""" - -from __future__ import annotations - -import json -from typing import Any, ClassVar, Dict, List, Optional, Type - -from langchain.base_language import BaseLanguageModel -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain.output_parsers import PydanticOutputParser -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.prompts.prompt import PromptTemplate - -from langchain_experimental import pydantic_v1 as pydantic -from langchain_experimental.cpal.constants import Constant -from langchain_experimental.cpal.models import ( - CausalModel, - InterventionModel, - NarrativeModel, - QueryModel, - StoryModel, -) -from langchain_experimental.cpal.templates.univariate.causal import ( - template as causal_template, -) -from langchain_experimental.cpal.templates.univariate.intervention import ( - template as intervention_template, -) -from langchain_experimental.cpal.templates.univariate.narrative import ( - template as narrative_template, -) -from langchain_experimental.cpal.templates.univariate.query import ( - template as query_template, -) - - -class _BaseStoryElementChain(Chain): - chain: LLMChain - input_key: str = Constant.narrative_input.value #: :meta private: - output_key: str = Constant.chain_answer.value #: :meta private: - pydantic_model: ClassVar[Optional[Type[pydantic.BaseModel]]] = ( - None #: :meta private: - ) - template: ClassVar[Optional[str]] = None #: :meta private: - - @classmethod - def parser(cls) -> PydanticOutputParser: - """Parse LLM output into a pydantic object.""" - if cls.pydantic_model is None: - raise NotImplementedError( - f"pydantic_model not implemented for {cls.__name__}" - ) - return PydanticOutputParser(pydantic_object=cls.pydantic_model) - - @property - def input_keys(self) -> List[str]: - """Return the input keys. - - :meta private: - """ - return [self.input_key] - - @property - def output_keys(self) -> List[str]: - """Return the output keys. - - :meta private: - """ - _output_keys = [self.output_key] - return _output_keys - - @classmethod - def from_univariate_prompt( - cls, - llm: BaseLanguageModel, - **kwargs: Any, - ) -> Any: - return cls( - chain=LLMChain( - llm=llm, - prompt=PromptTemplate( - input_variables=[Constant.narrative_input.value], - template=kwargs.get("template", cls.template), - partial_variables={ - "format_instructions": cls.parser().get_format_instructions() - }, - ), - ), - **kwargs, - ) - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - completion = self.chain.run(inputs[self.input_key]) - pydantic_data = self.__class__.parser().parse(completion) - return { - Constant.chain_data.value: pydantic_data, - Constant.chain_answer.value: None, - } - - -class NarrativeChain(_BaseStoryElementChain): - """Decompose the narrative into its story elements. - - - causal model - - query - - intervention - """ - - pydantic_model: ClassVar[Type[pydantic.BaseModel]] = NarrativeModel - template: ClassVar[str] = narrative_template - - -class CausalChain(_BaseStoryElementChain): - """Translate the causal narrative into a stack of operations.""" - - pydantic_model: ClassVar[Type[pydantic.BaseModel]] = CausalModel - template: ClassVar[str] = causal_template - - -class InterventionChain(_BaseStoryElementChain): - """Set the hypothetical conditions for the causal model.""" - - pydantic_model: ClassVar[Type[pydantic.BaseModel]] = InterventionModel - template: ClassVar[str] = intervention_template - - -class QueryChain(_BaseStoryElementChain): - """Query the outcome table using SQL. - - *Security note*: This class implements an AI technique that generates SQL code. - If those SQL commands are executed, it's critical to ensure they use credentials - that are narrowly-scoped to only include the permissions this chain needs. - Failure to do so may result in data corruption or loss, since this chain may - attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted. - The best way to guard against such negative outcomes is to (as appropriate) - limit the permissions granted to the credentials used with this chain. - """ - - pydantic_model: ClassVar[Type[pydantic.BaseModel]] = QueryModel - template: ClassVar[str] = query_template # TODO: incl. table schema - - -class CPALChain(_BaseStoryElementChain): - """Causal program-aided language (CPAL) chain implementation. - - *Security note*: The building blocks of this class include the implementation - of an AI technique that generates SQL code. If those SQL commands - are executed, it's critical to ensure they use credentials that - are narrowly-scoped to only include the permissions this chain needs. - Failure to do so may result in data corruption or loss, since this chain may - attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted. - The best way to guard against such negative outcomes is to (as appropriate) - limit the permissions granted to the credentials used with this chain. - """ - - llm: BaseLanguageModel - narrative_chain: Optional[NarrativeChain] = None - causal_chain: Optional[CausalChain] = None - intervention_chain: Optional[InterventionChain] = None - query_chain: Optional[QueryChain] = None - _story: StoryModel = pydantic.PrivateAttr(default=None) # TODO: change name ? - - @classmethod - def from_univariate_prompt( - cls, - llm: BaseLanguageModel, - **kwargs: Any, - ) -> CPALChain: - """instantiation depends on component chains - - *Security note*: The building blocks of this class include the implementation - of an AI technique that generates SQL code. If those SQL commands - are executed, it's critical to ensure they use credentials that - are narrowly-scoped to only include the permissions this chain needs. - Failure to do so may result in data corruption or loss, since this chain may - attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted. - The best way to guard against such negative outcomes is to (as appropriate) - limit the permissions granted to the credentials used with this chain. - """ - return cls( - llm=llm, - chain=LLMChain( - llm=llm, - prompt=PromptTemplate( - input_variables=["question", "query_result"], - template=( - "Summarize this answer '{query_result}' to this " - "question '{question}'? " - ), - ), - ), - narrative_chain=NarrativeChain.from_univariate_prompt(llm=llm), - causal_chain=CausalChain.from_univariate_prompt(llm=llm), - intervention_chain=InterventionChain.from_univariate_prompt(llm=llm), - query_chain=QueryChain.from_univariate_prompt(llm=llm), - **kwargs, - ) - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - **kwargs: Any, - ) -> Dict[str, Any]: - # instantiate component chains - if self.narrative_chain is None: - self.narrative_chain = NarrativeChain.from_univariate_prompt(llm=self.llm) - if self.causal_chain is None: - self.causal_chain = CausalChain.from_univariate_prompt(llm=self.llm) - if self.intervention_chain is None: - self.intervention_chain = InterventionChain.from_univariate_prompt( - llm=self.llm - ) - if self.query_chain is None: - self.query_chain = QueryChain.from_univariate_prompt(llm=self.llm) - - # decompose narrative into three causal story elements - narrative = self.narrative_chain(inputs[Constant.narrative_input.value])[ - Constant.chain_data.value - ] - - story = StoryModel( - causal_operations=self.causal_chain(narrative.story_plot)[ - Constant.chain_data.value - ], - intervention=self.intervention_chain(narrative.story_hypothetical)[ - Constant.chain_data.value - ], - query=self.query_chain(narrative.story_outcome_question)[ - Constant.chain_data.value - ], - ) - self._story = story - - def pretty_print_str(title: str, d: str) -> str: - return title + "\n" + d - - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - _run_manager.on_text( - pretty_print_str("story outcome data", story._outcome_table.to_string()), - color="green", - end="\n\n", - verbose=self.verbose, - ) - - def pretty_print_dict(title: str, d: dict) -> str: - return title + "\n" + json.dumps(d, indent=4) - - _run_manager.on_text( - pretty_print_dict("query data", story.query.dict()), - color="blue", - end="\n\n", - verbose=self.verbose, - ) - if story.query._result_table.empty: - # prevent piping bad data into subsequent chains - raise ValueError( - ( - "unanswerable, query and outcome are incoherent\n" - "\n" - "outcome:\n" - f"{story._outcome_table}\n" - "query:\n" - f"{story.query.dict()}" - ) - ) - else: - query_result = float(story.query._result_table.values[0][-1]) - if False: - """TODO: add this back in when demanded by composable chains""" - reporting_chain = self.chain - human_report = reporting_chain.run( - question=story.query.question, query_result=query_result - ) - query_result = { - "query_result": query_result, - "human_report": human_report, - } - output = { - Constant.chain_data.value: story, - self.output_key: query_result, - **kwargs, - } - return output - - def draw(self, **kwargs: Any) -> None: - """ - CPAL chain can draw its resulting DAG. - - Usage in a jupyter notebook: - - >>> from IPython.display import SVG - >>> cpal_chain.draw(path="graph.svg") - >>> SVG('graph.svg') - """ - self._story._networkx_wrapper.draw_graphviz(**kwargs) diff --git a/libs/experimental/langchain_experimental/cpal/constants.py b/libs/experimental/langchain_experimental/cpal/constants.py deleted file mode 100644 index 8d51af705b5a1..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/constants.py +++ /dev/null @@ -1,9 +0,0 @@ -from enum import Enum - - -class Constant(Enum): - """Enum for constants used in the CPAL.""" - - narrative_input = "narrative_input" - chain_answer = "chain_answer" # natural language answer - chain_data = "chain_data" # pydantic instance diff --git a/libs/experimental/langchain_experimental/cpal/models.py b/libs/experimental/langchain_experimental/cpal/models.py deleted file mode 100644 index b31954fd76905..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/models.py +++ /dev/null @@ -1,278 +0,0 @@ -from __future__ import annotations # allows pydantic model to reference itself - -import re -from typing import Any, List, Optional, Union - -from langchain_community.graphs.networkx_graph import NetworkxEntityGraph - -from langchain_experimental.cpal.constants import Constant -from langchain_experimental.pydantic_v1 import ( - BaseModel, - Field, - PrivateAttr, - root_validator, - validator, -) - - -class NarrativeModel(BaseModel): - """ - Narrative input as three story elements. - """ - - story_outcome_question: str - story_hypothetical: str - story_plot: str # causal stack of operations - - @validator("*", pre=True) - def empty_str_to_none(cls, v: str) -> Union[str, None]: - """Empty strings are not allowed""" - if v == "": - return None - return v - - -class EntityModel(BaseModel): - """Entity in the story.""" - - name: str = Field(description="entity name") - code: str = Field(description="entity actions") - value: float = Field(description="entity initial value") - depends_on: List[str] = Field(default=[], description="ancestor entities") - - # TODO: generalize to multivariate math - # TODO: acyclic graph - - class Config: - validate_assignment = True - - @validator("name") - def lower_case_name(cls, v: str) -> str: - v = v.lower() - return v - - -class CausalModel(BaseModel): - """Casual data.""" - - attribute: str = Field(description="name of the attribute to be calculated") - entities: List[EntityModel] = Field(description="entities in the story") - - # TODO: root validate each `entity.depends_on` using system's entity names - - -class EntitySettingModel(BaseModel): - """Entity initial conditions. - - Initial conditions for an entity - - {"name": "bud", "attribute": "pet_count", "value": 12} - """ - - name: str = Field(description="name of the entity") - attribute: str = Field(description="name of the attribute to be calculated") - value: float = Field(description="entity's attribute value (calculated)") - - @validator("name") - def lower_case_transform(cls, v: str) -> str: - v = v.lower() - return v - - -class SystemSettingModel(BaseModel): - """System initial conditions. - - Initial global conditions for the system. - - {"parameter": "interest_rate", "value": .05} - """ - - parameter: str - value: float - - -class InterventionModel(BaseModel): - """Intervention data of the story aka initial conditions. - - >>> intervention.dict() - { - entity_settings: [ - {"name": "bud", "attribute": "pet_count", "value": 12}, - {"name": "pat", "attribute": "pet_count", "value": 0}, - ], - system_settings: None, - } - """ - - entity_settings: List[EntitySettingModel] - system_settings: Optional[List[SystemSettingModel]] = None - - @validator("system_settings") - def lower_case_name(cls, v: str) -> Union[str, None]: - if v is not None: - raise NotImplementedError("system_setting is not implemented yet") - return v - - -class QueryModel(BaseModel): - """Query data of the story. - - translate a question about the story outcome into a programmatic expression""" - - question: str = Field( # type: ignore[literal-required] - alias=Constant.narrative_input.value - ) # input # type: ignore[literal-required] - expression: str # output, part of llm completion - llm_error_msg: str # output, part of llm completion - _result_table: str = PrivateAttr() # result of the executed query - - -class ResultModel(BaseModel): - """Result of the story query.""" - - question: str = Field( # type: ignore[literal-required] - alias=Constant.narrative_input.value - ) # input # type: ignore[literal-required] - _result_table: str = PrivateAttr() # result of the executed query - - -class StoryModel(BaseModel): - """Story data.""" - - causal_operations: Any = Field() - intervention: Any = Field() - query: Any = Field() - _outcome_table: Any = PrivateAttr(default=None) - _networkx_wrapper: Any = PrivateAttr(default=None) - - def __init__(self, **kwargs: Any): - super().__init__(**kwargs) - self._compute() - - # TODO: when langchain adopts pydantic.v2 replace w/ `__post_init__` - # misses hints github.com/pydantic/pydantic/issues/1729#issuecomment-1300576214 - - # TODO: move away from `root_validator` since it is deprecated in pydantic v2 - # and causes mypy type-checking failures (hence the `type: ignore`) - @root_validator # type: ignore[call-overload] - def check_intervention_is_valid(cls, values: dict) -> dict: - valid_names = [e.name for e in values["causal_operations"].entities] - for setting in values["intervention"].entity_settings: - if setting.name not in valid_names: - error_msg = f""" - Hypothetical question has an invalid entity name. - `{setting.name}` not in `{valid_names}` - """ - raise ValueError(error_msg) - return values - - def _block_back_door_paths(self) -> None: - # stop intervention entities from depending on others - intervention_entities = [ - entity_setting.name for entity_setting in self.intervention.entity_settings - ] - for entity in self.causal_operations.entities: - if entity.name in intervention_entities: - entity.depends_on = [] - entity.code = "pass" - - def _set_initial_conditions(self) -> None: - for entity_setting in self.intervention.entity_settings: - for entity in self.causal_operations.entities: - if entity.name == entity_setting.name: - entity.value = entity_setting.value - - def _make_graph(self) -> None: - self._networkx_wrapper = NetworkxEntityGraph() - for entity in self.causal_operations.entities: - for parent_name in entity.depends_on: - self._networkx_wrapper._graph.add_edge( - parent_name, entity.name, relation=entity.code - ) - - # TODO: is it correct to drop entities with no impact on the outcome (?) - self.causal_operations.entities = [ - entity - for entity in self.causal_operations.entities - if entity.name in self._networkx_wrapper.get_topological_sort() - ] - - def _sort_entities(self) -> None: - # order the sequence of causal actions - sorted_nodes = self._networkx_wrapper.get_topological_sort() - self.causal_operations.entities.sort(key=lambda x: sorted_nodes.index(x.name)) - - def _forward_propagate(self) -> None: - try: - import pandas as pd - except ImportError as e: - raise ImportError( - "Unable to import pandas, please install with `pip install pandas`." - ) from e - entity_scope = { - entity.name: entity for entity in self.causal_operations.entities - } - for entity in self.causal_operations.entities: - if entity.code == "pass": - continue - else: - # gist.github.com/dean0x7d/df5ce97e4a1a05be4d56d1378726ff92 - exec(entity.code, globals(), entity_scope) - row_values = [entity.dict() for entity in entity_scope.values()] - self._outcome_table = pd.DataFrame(row_values) - - def _run_query(self) -> None: - def humanize_sql_error_msg(error: str) -> str: - pattern = r"column\s+(.*?)\s+not found" - col_match = re.search(pattern, error) - if col_match: - return ( - "SQL error: " - + col_match.group(1) - + " is not an attribute in your story!" - ) - else: - return str(error) - - if self.query.llm_error_msg == "": - try: - import duckdb - - df = self._outcome_table # noqa - query_result = duckdb.sql(self.query.expression).df() - self.query._result_table = query_result - except duckdb.BinderException as e: - self.query._result_table = humanize_sql_error_msg(str(e)) - except ImportError as e: - raise ImportError( - "Unable to import duckdb, please install with `pip install duckdb`." - ) from e - except Exception as e: - self.query._result_table = str(e) - else: - msg = "LLM maybe failed to translate question to SQL query." - raise ValueError( - { - "question": self.query.question, - "llm_error_msg": self.query.llm_error_msg, - "msg": msg, - } - ) - - def _compute(self) -> Any: - self._block_back_door_paths() - self._set_initial_conditions() - self._make_graph() - self._sort_entities() - self._forward_propagate() - self._run_query() - - def print_debug_report(self) -> None: - report = { - "outcome": self._outcome_table, - "query": self.query.dict(), - "result": self.query._result_table, - } - from pprint import pprint - - pprint(report) diff --git a/libs/experimental/langchain_experimental/cpal/templates/__init__.py b/libs/experimental/langchain_experimental/cpal/templates/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/cpal/templates/univariate/__init__.py b/libs/experimental/langchain_experimental/cpal/templates/univariate/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/cpal/templates/univariate/causal.py b/libs/experimental/langchain_experimental/cpal/templates/univariate/causal.py deleted file mode 100644 index 074249a051c80..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/templates/univariate/causal.py +++ /dev/null @@ -1,113 +0,0 @@ -# ruff: noqa: E501 - -# fmt: off -template = ( - """ -Transform the math story plot into a JSON object. Don't guess at any of the parts. - -{format_instructions} - - - -Story: Boris has seven times the number of pets as Marcia. Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. - - - -# JSON: - - - -{{ - "attribute": "pet_count", - "entities": [ - {{ - "name": "cindy", - "value": 0, - "depends_on": [], - "code": "pass" - }}, - {{ - "name": "marcia", - "value": 0, - "depends_on": ["cindy"], - "code": "marcia.value = cindy.value + 2" - }}, - {{ - "name": "boris", - "value": 0, - "depends_on": ["marcia"], - "code": "boris.value = marcia.value * 7" - }}, - {{ - "name": "jan", - "value": 0, - "depends_on": ["marcia"], - "code": "jan.value = marcia.value * 3" - }} - ] -}} - - - - -Story: Boris gives 20 percent of his money to Marcia. Marcia gives 10 -percent of her money to Cindy. Cindy gives 5 percent of her money to Jan. - - - - -# JSON: - - - -{{ - "attribute": "money", - "entities": [ - {{ - "name": "boris", - "value": 0, - "depends_on": [], - "code": "pass" - }}, - {{ - "name": "marcia", - "value": 0, - "depends_on": ["boris"], - "code": " - marcia.value = boris.value * 0.2 - boris.value = boris.value * 0.8 - " - }}, - {{ - "name": "cindy", - "value": 0, - "depends_on": ["marcia"], - "code": " - cindy.value = marcia.value * 0.1 - marcia.value = marcia.value * 0.9 - " - }}, - {{ - "name": "jan", - "value": 0, - "depends_on": ["cindy"], - "code": " - jan.value = cindy.value * 0.05 - cindy.value = cindy.value * 0.9 - " - }} - ] -}} - - - - -Story: {narrative_input} - - - -# JSON: -""".strip() - + "\n" -) -# fmt: on diff --git a/libs/experimental/langchain_experimental/cpal/templates/univariate/intervention.py b/libs/experimental/langchain_experimental/cpal/templates/univariate/intervention.py deleted file mode 100644 index 6eceadd9fe19a..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/templates/univariate/intervention.py +++ /dev/null @@ -1,59 +0,0 @@ -# ruff: noqa: E501 - -# fmt: off -template = ( - """ -Transform the hypothetical whatif statement into JSON. Don't guess at any of the parts. Write NONE if you are unsure. - -{format_instructions} - - - -statement: if cindy's pet count was 4 - - - - -# JSON: - - - -{{ - "entity_settings" : [ - {{ "name": "cindy", "attribute": "pet_count", "value": "4" }} - ] -}} - - - - - -statement: Let's say boris has ten dollars and Bill has 20 dollars. - - - - -# JSON: - - -{{ - "entity_settings" : [ - {{ "name": "boris", "attribute": "dollars", "value": "10" }}, - {{ "name": "bill", "attribute": "dollars", "value": "20" }} - ] -}} - - - - - -Statement: {narrative_input} - - - - -# JSON: -""".strip() - + "\n\n\n" -) -# fmt: on diff --git a/libs/experimental/langchain_experimental/cpal/templates/univariate/narrative.py b/libs/experimental/langchain_experimental/cpal/templates/univariate/narrative.py deleted file mode 100644 index 1f9ebe9bea2f3..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/templates/univariate/narrative.py +++ /dev/null @@ -1,79 +0,0 @@ -# ruff: noqa: E501 - - -# fmt: off -template = ( - """ -Split the given text into three parts: the question, the story_hypothetical, and the logic. Don't guess at any of the parts. Write NONE if you are unsure. - -{format_instructions} - - - -Q: Boris has seven times the number of pets as Marcia. Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have? - - - -# JSON - - - -{{ - "story_outcome_question": "how many total pets do the three have?", - "story_hypothetical": "If Cindy has four pets", - "story_plot": "Boris has seven times the number of pets as Marcia. Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy." -}} - - - -Q: boris gives ten percent of his money to marcia. marcia gives ten -percent of her money to andy. If boris has 100 dollars, how much money -will andy have? - - - -# JSON - - - -{{ - "story_outcome_question": "how much money will andy have?", - "story_hypothetical": "If boris has 100 dollars" - "story_plot": "boris gives ten percent of his money to marcia. marcia gives ten percent of her money to andy." -}} - - - - -Q: boris gives ten percent of his candy to marcia. marcia gives ten -percent of her candy to andy. If boris has 100 pounds of candy and marcia has -200 pounds of candy, then how many pounds of candy will andy have? - - - - - -# JSON - - - - -{{ - "story_outcome_question": "how many pounds of candy will andy have?", - "story_hypothetical": "If boris has 100 pounds of candy and marcia has 200 pounds of candy" - "story_plot": "boris gives ten percent of his candy to marcia. marcia gives ten percent of her candy to andy." -}} - - - - - -Q: {narrative_input} - - - -# JSON -""".strip() - + "\n\n\n" -) -# fmt: on diff --git a/libs/experimental/langchain_experimental/cpal/templates/univariate/query.py b/libs/experimental/langchain_experimental/cpal/templates/univariate/query.py deleted file mode 100644 index 87cc86f34a197..0000000000000 --- a/libs/experimental/langchain_experimental/cpal/templates/univariate/query.py +++ /dev/null @@ -1,270 +0,0 @@ -# ruff: noqa: E501 - - -# fmt: off -template = ( - """ -Transform the narrative_input into an SQL expression. If you are -unsure, then do not guess, instead add a llm_error_msg that explains why you are unsure. - - -{format_instructions} - - -narrative_input: how much money will boris have? - - -# JSON: - - {{ - "narrative_input": "how much money will boris have?", - "llm_error_msg": "", - "expression": "SELECT name, value FROM df WHERE name = 'boris'" - }} - - - -narrative_input: How much money does ted have? - - - -# JSON: - - {{ - "narrative_input": "How much money does ted have?", - "llm_error_msg": "", - "expression": "SELECT name, value FROM df WHERE name = 'ted'" - }} - - - -narrative_input: what is the sum of pet count for all the people? - - - -# JSON: - - {{ - "narrative_input": "what is the sum of pet count for all the people?", - "llm_error_msg": "", - "expression": "SELECT SUM(value) FROM df" - }} - - - - -narrative_input: what's the average of the pet counts for all the people? - - - -# JSON: - - {{ - "narrative_input": "what's the average of the pet counts for all the people?", - "llm_error_msg": "", - "expression": "SELECT AVG(value) FROM df" - }} - - - - -narrative_input: what's the maximum of the pet counts for all the people? - - - -# JSON: - - {{ - "narrative_input": "what's the maximum of the pet counts for all the people?", - "llm_error_msg": "", - "expression": "SELECT MAX(value) FROM df" - }} - - - - -narrative_input: what's the minimum of the pet counts for all the people? - - - -# JSON: - - {{ - "narrative_input": "what's the minimum of the pet counts for all the people?", - "llm_error_msg": "", - "expression": "SELECT MIN(value) FROM df" - }} - - - - -narrative_input: what's the number of people with pet counts greater than 10? - - - -# JSON: - - {{ - "narrative_input": "what's the number of people with pet counts greater than 10?", - "llm_error_msg": "", - "expression": "SELECT COUNT(*) FROM df WHERE value > 10" - }} - - - - -narrative_input: what's the pet count for boris? - - - -# JSON: - - {{ - "narrative_input": "what's the pet count for boris?", - "llm_error_msg": "", - "expression": "SELECT name, value FROM df WHERE name = 'boris'" - }} - - - - -narrative_input: what's the pet count for cindy and marcia? - - - -# JSON: - - {{ - "narrative_input": "what's the pet count for cindy and marcia?", - "llm_error_msg": "", - "expression": "SELECT name, value FROM df WHERE name IN ('cindy', 'marcia')" - }} - - - - -narrative_input: what's the total pet count for cindy and marcia? - - - -# JSON: - - {{ - "narrative_input": "what's the total pet count for cindy and marcia?", - "llm_error_msg": "", - "expression": "SELECT SUM(value) FROM df WHERE name IN ('cindy', 'marcia')" - }} - - - - -narrative_input: what's the total pet count for TED? - - - -# JSON: - - {{ - "narrative_input": "what's the total pet count for TED?", - "llm_error_msg": "", - "expression": "SELECT SUM(value) FROM df WHERE name = 'TED'" - }} - - - - - -narrative_input: what's the total dollar count for TED and cindy? - - - -# JSON: - - {{ - "narrative_input": "what's the total dollar count for TED and cindy?", - "llm_error_msg": "", - "expression": "SELECT SUM(value) FROM df WHERE name IN ('TED', 'cindy')" - }} - - - - -narrative_input: what's the total pet count for TED and cindy? - - - - -# JSON: - - {{ - "narrative_input": "what's the total pet count for TED and cindy?", - "llm_error_msg": "", - "expression": "SELECT SUM(value) FROM df WHERE name IN ('TED', 'cindy')" - }} - - - - -narrative_input: what's the best for TED and cindy? - - - - -# JSON: - - {{ - "narrative_input": "what's the best for TED and cindy?", - "llm_error_msg": "ambiguous narrative_input, not sure what 'best' means", - "expression": "" - }} - - - - -narrative_input: what's the value? - - - - -# JSON: - - {{ - "narrative_input": "what's the value?", - "llm_error_msg": "ambiguous narrative_input, not sure what entity is being asked about", - "expression": "" - }} - - - - - - -narrative_input: how many total pets do the three have? - - - - - -# JSON: - - {{ - "narrative_input": "how many total pets do the three have?", - "llm_error_msg": "", - "expression": "SELECT SUM(value) FROM df" - }} - - - - - - -narrative_input: {narrative_input} - - - - -# JSON: -""".strip() - + "\n\n\n" -) -# fmt: on diff --git a/libs/experimental/langchain_experimental/data_anonymizer/__init__.py b/libs/experimental/langchain_experimental/data_anonymizer/__init__.py deleted file mode 100644 index 18878098fccb1..0000000000000 --- a/libs/experimental/langchain_experimental/data_anonymizer/__init__.py +++ /dev/null @@ -1,17 +0,0 @@ -"""**Data anonymizer** contains both Anonymizers and Deanonymizers. -It uses the [Microsoft Presidio](https://microsoft.github.io/presidio/) library. - -**Anonymizers** are used to replace a `Personally Identifiable Information (PII)` -entity text with some other -value by applying a certain operator (e.g. replace, mask, redact, encrypt). - -**Deanonymizers** are used to revert the anonymization operation -(e.g. to decrypt an encrypted text). -""" - -from langchain_experimental.data_anonymizer.presidio import ( - PresidioAnonymizer, - PresidioReversibleAnonymizer, -) - -__all__ = ["PresidioAnonymizer", "PresidioReversibleAnonymizer"] diff --git a/libs/experimental/langchain_experimental/data_anonymizer/base.py b/libs/experimental/langchain_experimental/data_anonymizer/base.py deleted file mode 100644 index 85282dd3a7f73..0000000000000 --- a/libs/experimental/langchain_experimental/data_anonymizer/base.py +++ /dev/null @@ -1,61 +0,0 @@ -from abc import ABC, abstractmethod -from typing import Callable, List, Optional - -from langchain_experimental.data_anonymizer.deanonymizer_mapping import MappingDataType -from langchain_experimental.data_anonymizer.deanonymizer_matching_strategies import ( - exact_matching_strategy, -) - -DEFAULT_DEANONYMIZER_MATCHING_STRATEGY = exact_matching_strategy - - -class AnonymizerBase(ABC): - """Base abstract class for anonymizers. - - It is public and non-virtual because it allows - wrapping the behavior for all methods in a base class. - """ - - def anonymize( - self, - text: str, - language: Optional[str] = None, - allow_list: Optional[List[str]] = None, - ) -> str: - """Anonymize text.""" - - return self._anonymize(text, language, allow_list) - - @abstractmethod - def _anonymize( - self, text: str, language: Optional[str], allow_list: Optional[List[str]] = None - ) -> str: - """Abstract method to anonymize text""" - - -class ReversibleAnonymizerBase(AnonymizerBase): - """ - Base abstract class for reversible anonymizers. - """ - - def deanonymize( - self, - text_to_deanonymize: str, - deanonymizer_matching_strategy: Callable[ - [str, MappingDataType], str - ] = DEFAULT_DEANONYMIZER_MATCHING_STRATEGY, - ) -> str: - """Deanonymize text""" - return self._deanonymize(text_to_deanonymize, deanonymizer_matching_strategy) - - @abstractmethod - def _deanonymize( - self, - text_to_deanonymize: str, - deanonymizer_matching_strategy: Callable[[str, MappingDataType], str], - ) -> str: - """Abstract method to deanonymize text""" - - @abstractmethod - def reset_deanonymizer_mapping(self) -> None: - """Abstract method to reset deanonymizer mapping""" diff --git a/libs/experimental/langchain_experimental/data_anonymizer/deanonymizer_mapping.py b/libs/experimental/langchain_experimental/data_anonymizer/deanonymizer_mapping.py deleted file mode 100644 index b19d654654a7c..0000000000000 --- a/libs/experimental/langchain_experimental/data_anonymizer/deanonymizer_mapping.py +++ /dev/null @@ -1,144 +0,0 @@ -import re -from collections import defaultdict -from dataclasses import dataclass, field -from typing import TYPE_CHECKING, Dict, List - -if TYPE_CHECKING: - from presidio_analyzer import RecognizerResult - from presidio_anonymizer.entities import EngineResult - -MappingDataType = Dict[str, Dict[str, str]] - - -def format_duplicated_operator(operator_name: str, count: int) -> str: - """Format the operator name with the count.""" - - clean_operator_name = re.sub(r"[<>]", "", operator_name) - clean_operator_name = re.sub(r"_\d+$", "", clean_operator_name) - - if operator_name.startswith("<") and operator_name.endswith(">"): - return f"<{clean_operator_name}_{count}>" - else: - return f"{clean_operator_name}_{count}" - - -@dataclass -class DeanonymizerMapping: - """Deanonymizer mapping.""" - - mapping: MappingDataType = field( - default_factory=lambda: defaultdict(lambda: defaultdict(str)) - ) - - @property - def data(self) -> MappingDataType: - """Return the deanonymizer mapping.""" - return {k: dict(v) for k, v in self.mapping.items()} - - def update(self, new_mapping: MappingDataType) -> None: - """Update the deanonymizer mapping with new values. - - Duplicated values will not be added - If there are multiple entities of the same type, the mapping will - include a count to differentiate them. For example, if there are - two names in the input text, the mapping will include NAME_1 and NAME_2. - """ - seen_values = set() - - for entity_type, values in new_mapping.items(): - count = len(self.mapping[entity_type]) + 1 - - for key, value in values.items(): - if ( - value not in seen_values - and value not in self.mapping[entity_type].values() - ): - new_key = ( - format_duplicated_operator(key, count) - if key in self.mapping[entity_type] - else key - ) - - self.mapping[entity_type][new_key] = value - seen_values.add(value) - count += 1 - - -def create_anonymizer_mapping( - original_text: str, - analyzer_results: List["RecognizerResult"], - anonymizer_results: "EngineResult", - is_reversed: bool = False, -) -> MappingDataType: - """Create or update the mapping used to anonymize and/or - deanonymize a text. - - This method exploits the results returned by the - analysis and anonymization processes. - - If is_reversed is True, it constructs a mapping from each original - entity to its anonymized value. - - If is_reversed is False, it constructs a mapping from each - anonymized entity back to its original text value. - - If there are multiple entities of the same type, the mapping will - include a count to differentiate them. For example, if there are - two names in the input text, the mapping will include NAME_1 and NAME_2. - - Example of mapping: - { - "PERSON": { - "": "", - "John Doe": "Slim Shady" - }, - "PHONE_NUMBER": { - "111-111-1111": "555-555-5555" - } - ... - } - """ - # We are able to zip and loop through both lists because we expect - # them to return corresponding entities for each identified piece - # of analyzable data from our input. - - # We sort them by their 'start' attribute because it allows us to - # match corresponding entities by their position in the input text. - analyzer_results.sort(key=lambda d: d.start) - anonymizer_results.items.sort(key=lambda d: d.start) - - mapping: MappingDataType = defaultdict(dict) - count: dict = defaultdict(int) - - for analyzed, anonymized in zip(analyzer_results, anonymizer_results.items): - original_value = original_text[analyzed.start : analyzed.end] - entity_type = anonymized.entity_type - - if is_reversed: - cond = original_value in mapping[entity_type].values() - else: - cond = original_value in mapping[entity_type] - - if cond: - continue - - if ( - anonymized.text in mapping[entity_type].values() - or anonymized.text in mapping[entity_type] - ): - anonymized_value = format_duplicated_operator( - anonymized.text, count[entity_type] + 2 - ) - count[entity_type] += 1 - else: - anonymized_value = anonymized.text - - mapping_key, mapping_value = ( - (anonymized_value, original_value) - if is_reversed - else (original_value, anonymized_value) - ) - - mapping[entity_type][mapping_key] = mapping_value - - return mapping diff --git a/libs/experimental/langchain_experimental/data_anonymizer/deanonymizer_matching_strategies.py b/libs/experimental/langchain_experimental/data_anonymizer/deanonymizer_matching_strategies.py deleted file mode 100644 index 11bb9aca4aaa6..0000000000000 --- a/libs/experimental/langchain_experimental/data_anonymizer/deanonymizer_matching_strategies.py +++ /dev/null @@ -1,185 +0,0 @@ -import re -from typing import List - -from langchain_experimental.data_anonymizer.deanonymizer_mapping import MappingDataType - - -def exact_matching_strategy(text: str, deanonymizer_mapping: MappingDataType) -> str: - """Exact matching strategy for deanonymization. - - It replaces all the anonymized entities with the original ones. - - Args: - text: text to deanonymize - deanonymizer_mapping: mapping between anonymized entities and original ones""" - - # Iterate over all the entities (PERSON, EMAIL_ADDRESS, etc.) - for entity_type in deanonymizer_mapping: - for anonymized, original in deanonymizer_mapping[entity_type].items(): - text = text.replace(anonymized, original) - return text - - -def case_insensitive_matching_strategy( - text: str, deanonymizer_mapping: MappingDataType -) -> str: - """Case insensitive matching strategy for deanonymization. - - It replaces all the anonymized entities with the original ones - irrespective of their letter case. - - Args: - text: text to deanonymize - deanonymizer_mapping: mapping between anonymized entities and original ones - - Examples of matching: - keanu reeves -> Keanu Reeves - JOHN F. KENNEDY -> John F. Kennedy - """ - - # Iterate over all the entities (PERSON, EMAIL_ADDRESS, etc.) - for entity_type in deanonymizer_mapping: - for anonymized, original in deanonymizer_mapping[entity_type].items(): - # Use regular expressions for case-insensitive matching and replacing - text = re.sub(anonymized, original, text, flags=re.IGNORECASE) - return text - - -def fuzzy_matching_strategy( - text: str, deanonymizer_mapping: MappingDataType, max_l_dist: int = 3 -) -> str: - """Fuzzy matching strategy for deanonymization. - - It uses fuzzy matching to find the position of the anonymized entity in the text. - It replaces all the anonymized entities with the original ones. - - Args: - text: text to deanonymize - deanonymizer_mapping: mapping between anonymized entities and original ones - max_l_dist: maximum Levenshtein distance between the anonymized entity and the - text segment to consider it a match - - Examples of matching: - Kaenu Reves -> Keanu Reeves - John F. Kennedy -> John Kennedy - """ - - try: - from fuzzysearch import find_near_matches - except ImportError as e: - raise ImportError( - "Could not import fuzzysearch, please install with " - "`pip install fuzzysearch`." - ) from e - - for entity_type in deanonymizer_mapping: - for anonymized, original in deanonymizer_mapping[entity_type].items(): - matches = find_near_matches(anonymized, text, max_l_dist=max_l_dist) - new_text = "" - last_end = 0 - for m in matches: - # add the text that isn't part of a match - new_text += text[last_end : m.start] - # add the replacement text - new_text += original - last_end = m.end - # add the remaining text that wasn't part of a match - new_text += text[last_end:] - text = new_text - - return text - - -def combined_exact_fuzzy_matching_strategy( - text: str, deanonymizer_mapping: MappingDataType, max_l_dist: int = 3 -) -> str: - """Combined exact and fuzzy matching strategy for deanonymization. - - It is a RECOMMENDED STRATEGY. - - Args: - text: text to deanonymize - deanonymizer_mapping: mapping between anonymized entities and original ones - max_l_dist: maximum Levenshtein distance between the anonymized entity and the - text segment to consider it a match - - Examples of matching: - Kaenu Reves -> Keanu Reeves - John F. Kennedy -> John Kennedy - """ - text = exact_matching_strategy(text, deanonymizer_mapping) - text = fuzzy_matching_strategy(text, deanonymizer_mapping, max_l_dist) - return text - - -def ngram_fuzzy_matching_strategy( - text: str, - deanonymizer_mapping: MappingDataType, - fuzzy_threshold: int = 85, - use_variable_length: bool = True, -) -> str: - """N-gram fuzzy matching strategy for deanonymization. - - It replaces all the anonymized entities with the original ones. - It uses fuzzy matching to find the position of the anonymized entity in the text. - It generates n-grams of the same length as the anonymized entity from the text and - uses fuzzy matching to find the position of the anonymized entity in the text. - - Args: - text: text to deanonymize - deanonymizer_mapping: mapping between anonymized entities and original ones - fuzzy_threshold: fuzzy matching threshold - use_variable_length: whether to use (n-1, n, n+1)-grams or just n-grams - """ - - def generate_ngrams(words_list: List[str], n: int) -> list: - """Generate n-grams from a list of words""" - return [ - " ".join(words_list[i : i + n]) for i in range(len(words_list) - (n - 1)) - ] - - try: - from fuzzywuzzy import fuzz - except ImportError as e: - raise ImportError( - "Could not import fuzzywuzzy, please install with " - "`pip install fuzzywuzzy`." - ) from e - - text_words = text.split() - replacements = [] - matched_indices: List[int] = [] - - for entity_type in deanonymizer_mapping: - for anonymized, original in deanonymizer_mapping[entity_type].items(): - anonymized_words = anonymized.split() - - if use_variable_length: - gram_lengths = [ - len(anonymized_words) - 1, - len(anonymized_words), - len(anonymized_words) + 1, - ] - else: - gram_lengths = [len(anonymized_words)] - for n in gram_lengths: - if n > 0: # Take only positive values - segments = generate_ngrams(text_words, n) - for i, segment in enumerate(segments): - if ( - fuzz.ratio(anonymized.lower(), segment.lower()) - > fuzzy_threshold - and i not in matched_indices - ): - replacements.append((i, n, original)) - # Add the matched segment indices to the list - matched_indices.extend(range(i, i + n)) - - # Sort replacements by index in reverse order - replacements.sort(key=lambda x: x[0], reverse=True) - - # Apply replacements in reverse order to not affect subsequent indices - for start, length, replacement in replacements: - text_words[start : start + length] = replacement.split() - - return " ".join(text_words) diff --git a/libs/experimental/langchain_experimental/data_anonymizer/faker_presidio_mapping.py b/libs/experimental/langchain_experimental/data_anonymizer/faker_presidio_mapping.py deleted file mode 100644 index e06cccc55ae68..0000000000000 --- a/libs/experimental/langchain_experimental/data_anonymizer/faker_presidio_mapping.py +++ /dev/null @@ -1,62 +0,0 @@ -import string -from typing import Callable, Dict, Optional - - -def get_pseudoanonymizer_mapping(seed: Optional[int] = None) -> Dict[str, Callable]: - """Get a mapping of entities to pseudo anonymize them.""" - - try: - from faker import Faker - except ImportError as e: - raise ImportError( - "Could not import faker, please install it with `pip install Faker`." - ) from e - - fake = Faker() - fake.seed_instance(seed) - - # Listed entities supported by Microsoft Presidio (for now, global and US only) - # Source: https://microsoft.github.io/presidio/supported_entities/ - return { - # Global entities - "PERSON": lambda _: fake.name(), - "EMAIL_ADDRESS": lambda _: fake.email(), - "PHONE_NUMBER": lambda _: fake.phone_number(), - "IBAN_CODE": lambda _: fake.iban(), - "CREDIT_CARD": lambda _: fake.credit_card_number(), - "CRYPTO": lambda _: "bc1" - + "".join( - fake.random_choices(string.ascii_lowercase + string.digits, length=26) - ), - "IP_ADDRESS": lambda _: fake.ipv4_public(), - "LOCATION": lambda _: fake.city(), - "DATE_TIME": lambda _: fake.date(), - "NRP": lambda _: str(fake.random_number(digits=8, fix_len=True)), - "MEDICAL_LICENSE": lambda _: fake.bothify(text="??######").upper(), - "URL": lambda _: fake.url(), - # US-specific entities - "US_BANK_NUMBER": lambda _: fake.bban(), - "US_DRIVER_LICENSE": lambda _: str(fake.random_number(digits=9, fix_len=True)), - "US_ITIN": lambda _: fake.bothify(text="9##-7#-####"), - "US_PASSPORT": lambda _: fake.bothify(text="#####??").upper(), - "US_SSN": lambda _: fake.ssn(), - # UK-specific entities - "UK_NHS": lambda _: str(fake.random_number(digits=10, fix_len=True)), - # Spain-specific entities - "ES_NIF": lambda _: fake.bothify(text="########?").upper(), - # Italy-specific entities - "IT_FISCAL_CODE": lambda _: fake.bothify(text="??????##?##?###?").upper(), - "IT_DRIVER_LICENSE": lambda _: fake.bothify(text="?A#######?").upper(), - "IT_VAT_CODE": lambda _: fake.bothify(text="IT???????????"), - "IT_PASSPORT": lambda _: str(fake.random_number(digits=9, fix_len=True)), - "IT_IDENTITY_CARD": lambda _: lambda _: str( - fake.random_number(digits=7, fix_len=True) - ), - # Singapore-specific entities - "SG_NRIC_FIN": lambda _: fake.bothify(text="????####?").upper(), - # Australia-specific entities - "AU_ABN": lambda _: str(fake.random_number(digits=11, fix_len=True)), - "AU_ACN": lambda _: str(fake.random_number(digits=9, fix_len=True)), - "AU_TFN": lambda _: str(fake.random_number(digits=9, fix_len=True)), - "AU_MEDICARE": lambda _: str(fake.random_number(digits=10, fix_len=True)), - } diff --git a/libs/experimental/langchain_experimental/data_anonymizer/presidio.py b/libs/experimental/langchain_experimental/data_anonymizer/presidio.py deleted file mode 100644 index 032c2a65f1b6b..0000000000000 --- a/libs/experimental/langchain_experimental/data_anonymizer/presidio.py +++ /dev/null @@ -1,468 +0,0 @@ -from __future__ import annotations - -import json -from pathlib import Path -from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union - -import yaml - -from langchain_experimental.data_anonymizer.base import ( - DEFAULT_DEANONYMIZER_MATCHING_STRATEGY, - AnonymizerBase, - ReversibleAnonymizerBase, -) -from langchain_experimental.data_anonymizer.deanonymizer_mapping import ( - DeanonymizerMapping, - MappingDataType, - create_anonymizer_mapping, -) -from langchain_experimental.data_anonymizer.deanonymizer_matching_strategies import ( - exact_matching_strategy, -) -from langchain_experimental.data_anonymizer.faker_presidio_mapping import ( - get_pseudoanonymizer_mapping, -) - -if TYPE_CHECKING: - from presidio_analyzer import AnalyzerEngine, EntityRecognizer - from presidio_analyzer.nlp_engine import NlpEngineProvider - from presidio_anonymizer import AnonymizerEngine - from presidio_anonymizer.entities import ConflictResolutionStrategy, OperatorConfig - - -def _import_analyzer_engine() -> "AnalyzerEngine": - try: - from presidio_analyzer import AnalyzerEngine - - except ImportError as e: - raise ImportError( - "Could not import presidio_analyzer, please install with " - "`pip install presidio-analyzer`. You will also need to download a " - "spaCy model to use the analyzer, e.g. " - "`python -m spacy download en_core_web_lg`." - ) from e - return AnalyzerEngine - - -def _import_nlp_engine_provider() -> "NlpEngineProvider": - try: - from presidio_analyzer.nlp_engine import NlpEngineProvider - - except ImportError as e: - raise ImportError( - "Could not import presidio_analyzer, please install with " - "`pip install presidio-analyzer`. You will also need to download a " - "spaCy model to use the analyzer, e.g. " - "`python -m spacy download en_core_web_lg`." - ) from e - return NlpEngineProvider - - -def _import_anonymizer_engine() -> "AnonymizerEngine": - try: - from presidio_anonymizer import AnonymizerEngine - except ImportError as e: - raise ImportError( - "Could not import presidio_anonymizer, please install with " - "`pip install presidio-anonymizer`." - ) from e - return AnonymizerEngine - - -def _import_operator_config() -> "OperatorConfig": - try: - from presidio_anonymizer.entities import OperatorConfig - except ImportError as e: - raise ImportError( - "Could not import presidio_anonymizer, please install with " - "`pip install presidio-anonymizer`." - ) from e - return OperatorConfig - - -# Configuring Anonymizer for multiple languages -# Detailed description and examples can be found here: -# langchain/docs/extras/guides/privacy/multi_language_anonymization.ipynb -DEFAULT_LANGUAGES_CONFIG = { - # You can also use Stanza or transformers library. - # See https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/ - "nlp_engine_name": "spacy", - "models": [ - {"lang_code": "en", "model_name": "en_core_web_lg"}, - # {"lang_code": "de", "model_name": "de_core_news_md"}, - # {"lang_code": "es", "model_name": "es_core_news_md"}, - # ... - # List of available models: https://spacy.io/usage/models - ], -} - - -class PresidioAnonymizerBase(AnonymizerBase): - """Base Anonymizer using Microsoft Presidio. - - See more: https://microsoft.github.io/presidio/ - """ - - def __init__( - self, - analyzed_fields: Optional[List[str]] = None, - operators: Optional[Dict[str, OperatorConfig]] = None, - languages_config: Optional[Dict] = None, - add_default_faker_operators: bool = True, - faker_seed: Optional[int] = None, - ): - """ - Args: - analyzed_fields: List of fields to detect and then anonymize. - Defaults to all entities supported by Microsoft Presidio. - operators: Operators to use for anonymization. - Operators allow for custom anonymization of detected PII. - Learn more: - https://microsoft.github.io/presidio/tutorial/10_simple_anonymization/ - languages_config: Configuration for the NLP engine. - First language in the list will be used as the main language - in self.anonymize(...) when no language is specified. - Learn more: - https://microsoft.github.io/presidio/analyzer/customizing_nlp_models/ - faker_seed: Seed used to initialize faker. - Defaults to None, in which case faker will be seeded randomly - and provide random values. - """ - if languages_config is None: - languages_config = DEFAULT_LANGUAGES_CONFIG - OperatorConfig = _import_operator_config() - AnalyzerEngine = _import_analyzer_engine() - NlpEngineProvider = _import_nlp_engine_provider() - AnonymizerEngine = _import_anonymizer_engine() - - self.analyzed_fields = ( - analyzed_fields - if analyzed_fields is not None - else list(get_pseudoanonymizer_mapping().keys()) - ) - - if add_default_faker_operators: - self.operators = { - field: OperatorConfig( - operator_name="custom", params={"lambda": faker_function} - ) - for field, faker_function in get_pseudoanonymizer_mapping( - faker_seed - ).items() - } - else: - self.operators = {} - - if operators: - self.add_operators(operators) - - provider = NlpEngineProvider(nlp_configuration=languages_config) - nlp_engine = provider.create_engine() - - self.supported_languages = list(nlp_engine.nlp.keys()) - - self._analyzer = AnalyzerEngine( - supported_languages=self.supported_languages, nlp_engine=nlp_engine - ) - self._anonymizer = AnonymizerEngine() - - def add_recognizer(self, recognizer: EntityRecognizer) -> None: - """Add a recognizer to the analyzer - - Args: - recognizer: Recognizer to add to the analyzer. - """ - self._analyzer.registry.add_recognizer(recognizer) - self.analyzed_fields.extend(recognizer.supported_entities) - - def add_operators(self, operators: Dict[str, OperatorConfig]) -> None: - """Add operators to the anonymizer - - Args: - operators: Operators to add to the anonymizer. - """ - self.operators.update(operators) - - -class PresidioAnonymizer(PresidioAnonymizerBase): - """Anonymizer using Microsoft Presidio.""" - - def _anonymize( - self, - text: str, - language: Optional[str] = None, - allow_list: Optional[List[str]] = None, - conflict_resolution: Optional[ConflictResolutionStrategy] = None, - ) -> str: - """Anonymize text. - Each PII entity is replaced with a fake value. - Each time fake values will be different, as they are generated randomly. - - PresidioAnonymizer has no built-in memory - - so it will not remember the effects of anonymizing previous texts. - >>> anonymizer = PresidioAnonymizer() - >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") - 'My name is Noah Rhodes. Hi Noah Rhodes!' - >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") - 'My name is Brett Russell. Hi Brett Russell!' - - Args: - text: text to anonymize - language: language to use for analysis of PII - If None, the first (main) language in the list - of languages specified in the configuration will be used. - """ - if language is None: - language = self.supported_languages[0] - elif language not in self.supported_languages: - raise ValueError( - f"Language '{language}' is not supported. " - f"Supported languages are: {self.supported_languages}. " - "Change your language configuration file to add more languages." - ) - - # Check supported entities for given language - # e.g. IT_FISCAL_CODE is not supported for English in Presidio by default - # If you want to use it, you need to add a recognizer manually - supported_entities = [] - for recognizer in self._analyzer.get_recognizers(language): - recognizer_dict = recognizer.to_dict() - supported_entities.extend( - [recognizer_dict["supported_entity"]] - if "supported_entity" in recognizer_dict - else recognizer_dict["supported_entities"] - ) - - entities_to_analyze = list( - set(supported_entities).intersection(set(self.analyzed_fields)) - ) - - analyzer_results = self._analyzer.analyze( - text, - entities=entities_to_analyze, - language=language, - allow_list=allow_list, - ) - - filtered_analyzer_results = ( - self._anonymizer._remove_conflicts_and_get_text_manipulation_data( - analyzer_results, conflict_resolution - ) - ) - - anonymizer_results = self._anonymizer.anonymize( - text, - analyzer_results=analyzer_results, - operators=self.operators, - ) - - anonymizer_mapping = create_anonymizer_mapping( - text, - filtered_analyzer_results, - anonymizer_results, - ) - return exact_matching_strategy(text, anonymizer_mapping) - - -class PresidioReversibleAnonymizer(PresidioAnonymizerBase, ReversibleAnonymizerBase): - """Reversible Anonymizer using Microsoft Presidio.""" - - def __init__( - self, - analyzed_fields: Optional[List[str]] = None, - operators: Optional[Dict[str, OperatorConfig]] = None, - languages_config: Optional[Dict] = None, - add_default_faker_operators: bool = True, - faker_seed: Optional[int] = None, - ): - if languages_config is None: - languages_config = DEFAULT_LANGUAGES_CONFIG - super().__init__( - analyzed_fields, - operators, - languages_config, - add_default_faker_operators, - faker_seed, - ) - self._deanonymizer_mapping = DeanonymizerMapping() - - @property - def deanonymizer_mapping(self) -> MappingDataType: - """Return the deanonymizer mapping""" - return self._deanonymizer_mapping.data - - @property - def anonymizer_mapping(self) -> MappingDataType: - """Return the anonymizer mapping - This is just the reverse version of the deanonymizer mapping.""" - return { - key: {v: k for k, v in inner_dict.items()} - for key, inner_dict in self.deanonymizer_mapping.items() - } - - def _anonymize( - self, - text: str, - language: Optional[str] = None, - allow_list: Optional[List[str]] = None, - conflict_resolution: Optional[ConflictResolutionStrategy] = None, - ) -> str: - """Anonymize text. - Each PII entity is replaced with a fake value. - Each time fake values will be different, as they are generated randomly. - At the same time, we will create a mapping from each anonymized entity - back to its original text value. - - Thanks to the built-in memory, all previously anonymised entities - will be remembered and replaced by the same fake values: - >>> anonymizer = PresidioReversibleAnonymizer() - >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") - 'My name is Noah Rhodes. Hi Noah Rhodes!' - >>> anonymizer.anonymize("My name is John Doe. Hi John Doe!") - 'My name is Noah Rhodes. Hi Noah Rhodes!' - - Args: - text: text to anonymize - language: language to use for analysis of PII - If None, the first (main) language in the list - of languages specified in the configuration will be used. - """ - if language is None: - language = self.supported_languages[0] - - if language not in self.supported_languages: - raise ValueError( - f"Language '{language}' is not supported. " - f"Supported languages are: {self.supported_languages}. " - "Change your language configuration file to add more languages." - ) - - # Check supported entities for given language - # e.g. IT_FISCAL_CODE is not supported for English in Presidio by default - # If you want to use it, you need to add a recognizer manually - supported_entities = [] - for recognizer in self._analyzer.get_recognizers(language): - recognizer_dict = recognizer.to_dict() - supported_entities.extend( - [recognizer_dict["supported_entity"]] - if "supported_entity" in recognizer_dict - else recognizer_dict["supported_entities"] - ) - - entities_to_analyze = list( - set(supported_entities).intersection(set(self.analyzed_fields)) - ) - - analyzer_results = self._analyzer.analyze( - text, - entities=entities_to_analyze, - language=language, - allow_list=allow_list, - ) - - filtered_analyzer_results = ( - self._anonymizer._remove_conflicts_and_get_text_manipulation_data( - analyzer_results, conflict_resolution - ) - ) - - anonymizer_results = self._anonymizer.anonymize( - text, - analyzer_results=analyzer_results, - operators=self.operators, - ) - - new_deanonymizer_mapping = create_anonymizer_mapping( - text, - filtered_analyzer_results, - anonymizer_results, - is_reversed=True, - ) - self._deanonymizer_mapping.update(new_deanonymizer_mapping) - - return exact_matching_strategy(text, self.anonymizer_mapping) - - def _deanonymize( - self, - text_to_deanonymize: str, - deanonymizer_matching_strategy: Callable[ - [str, MappingDataType], str - ] = DEFAULT_DEANONYMIZER_MATCHING_STRATEGY, - ) -> str: - """Deanonymize text. - Each anonymized entity is replaced with its original value. - This method exploits the mapping created during the anonymization process. - - Args: - text_to_deanonymize: text to deanonymize - deanonymizer_matching_strategy: function to use to match - anonymized entities with their original values and replace them. - """ - if not self._deanonymizer_mapping: - raise ValueError( - "Deanonymizer mapping is empty.", - "Please call anonymize() and anonymize some text first.", - ) - - text_to_deanonymize = deanonymizer_matching_strategy( - text_to_deanonymize, self.deanonymizer_mapping - ) - - return text_to_deanonymize - - def reset_deanonymizer_mapping(self) -> None: - """Reset the deanonymizer mapping""" - self._deanonymizer_mapping = DeanonymizerMapping() - - def save_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None: - """Save the deanonymizer mapping to a JSON or YAML file. - - Args: - file_path: Path to file to save the mapping to. - - Example: - .. code-block:: python - - anonymizer.save_deanonymizer_mapping(file_path="path/mapping.json") - """ - - save_path = Path(file_path) - - if save_path.suffix not in [".json", ".yaml"]: - raise ValueError(f"{save_path} must have an extension of .json or .yaml") - - # Make sure parent directories exist - save_path.parent.mkdir(parents=True, exist_ok=True) - - if save_path.suffix == ".json": - with open(save_path, "w") as f: - json.dump(self.deanonymizer_mapping, f, indent=2) - elif save_path.suffix.endswith((".yaml", ".yml")): - with open(save_path, "w") as f: - yaml.dump(self.deanonymizer_mapping, f, default_flow_style=False) - - def load_deanonymizer_mapping(self, file_path: Union[Path, str]) -> None: - """Load the deanonymizer mapping from a JSON or YAML file. - - Args: - file_path: Path to file to load the mapping from. - - Example: - .. code-block:: python - - anonymizer.load_deanonymizer_mapping(file_path="path/mapping.json") - """ - - load_path = Path(file_path) - - if load_path.suffix not in [".json", ".yaml"]: - raise ValueError(f"{load_path} must have an extension of .json or .yaml") - - if load_path.suffix == ".json": - with open(load_path, "r") as f: - loaded_mapping = json.load(f) - elif load_path.suffix.endswith((".yaml", ".yml")): - with open(load_path, "r") as f: - loaded_mapping = yaml.load(f, Loader=yaml.FullLoader) - - self._deanonymizer_mapping.update(loaded_mapping) diff --git a/libs/experimental/langchain_experimental/fallacy_removal/__init__.py b/libs/experimental/langchain_experimental/fallacy_removal/__init__.py deleted file mode 100644 index 2ce9701be6bd2..0000000000000 --- a/libs/experimental/langchain_experimental/fallacy_removal/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -"""**Fallacy Removal** Chain runs a self-review of logical fallacies -as determined by paper -[Robust and Explainable Identification of Logical Fallacies in Natural -Language Arguments](https://arxiv.org/pdf/2212.07425.pdf). -It is modeled after `Constitutional AI` and in the same format, but applying logical -fallacies as generalized rules to remove them in output. -""" diff --git a/libs/experimental/langchain_experimental/fallacy_removal/base.py b/libs/experimental/langchain_experimental/fallacy_removal/base.py deleted file mode 100644 index c6283a3c32c50..0000000000000 --- a/libs/experimental/langchain_experimental/fallacy_removal/base.py +++ /dev/null @@ -1,183 +0,0 @@ -"""Chain for applying removals of logical fallacies.""" - -from __future__ import annotations - -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain.schema import BasePromptTemplate -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.language_models import BaseLanguageModel - -from langchain_experimental.fallacy_removal.fallacies import FALLACIES -from langchain_experimental.fallacy_removal.models import LogicalFallacy -from langchain_experimental.fallacy_removal.prompts import ( - FALLACY_CRITIQUE_PROMPT, - FALLACY_REVISION_PROMPT, -) - - -class FallacyChain(Chain): - """Chain for applying logical fallacy evaluations. - - It is modeled after Constitutional AI and in same format, but - applying logical fallacies as generalized rules to remove in output. - - Example: - .. code-block:: python - - from langchain_community.llms import OpenAI - from langchain.chains import LLMChain - from langchain_experimental.fallacy import FallacyChain - from langchain_experimental.fallacy_removal.models import LogicalFallacy - - llm = OpenAI() - - qa_prompt = PromptTemplate( - template="Q: {question} A:", - input_variables=["question"], - ) - qa_chain = LLMChain(llm=llm, prompt=qa_prompt) - - fallacy_chain = FallacyChain.from_llm( - llm=llm, - chain=qa_chain, - logical_fallacies=[ - LogicalFallacy( - fallacy_critique_request="Tell if this answer meets criteria.", - fallacy_revision_request=\ - "Give an answer that meets better criteria.", - ) - ], - ) - - fallacy_chain.run(question="How do I know if the earth is round?") - """ - - chain: LLMChain - logical_fallacies: List[LogicalFallacy] - fallacy_critique_chain: LLMChain - fallacy_revision_chain: LLMChain - return_intermediate_steps: bool = False - - @classmethod - def get_fallacies(cls, names: Optional[List[str]] = None) -> List[LogicalFallacy]: - if names is None: - return list(FALLACIES.values()) - else: - return [FALLACIES[name] for name in names] - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - chain: LLMChain, - fallacy_critique_prompt: BasePromptTemplate = FALLACY_CRITIQUE_PROMPT, - fallacy_revision_prompt: BasePromptTemplate = FALLACY_REVISION_PROMPT, - **kwargs: Any, - ) -> "FallacyChain": - """Create a chain from an LLM.""" - fallacy_critique_chain = LLMChain(llm=llm, prompt=fallacy_critique_prompt) - fallacy_revision_chain = LLMChain(llm=llm, prompt=fallacy_revision_prompt) - return cls( - chain=chain, - fallacy_critique_chain=fallacy_critique_chain, - fallacy_revision_chain=fallacy_revision_chain, - **kwargs, - ) - - @property - def input_keys(self) -> List[str]: - """Input keys.""" - return self.chain.input_keys - - @property - def output_keys(self) -> List[str]: - """Output keys.""" - if self.return_intermediate_steps: - return ["output", "fallacy_critiques_and_revisions", "initial_output"] - return ["output"] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - response = self.chain.run( - **inputs, - callbacks=_run_manager.get_child("original"), - ) - initial_response = response - input_prompt = self.chain.prompt.format(**inputs) - - _run_manager.on_text( - text="Initial response: " + response + "\n\n", - verbose=self.verbose, - color="yellow", - ) - fallacy_critiques_and_revisions = [] - for logical_fallacy in self.logical_fallacies: - # Fallacy critique below - - fallacy_raw_critique = self.fallacy_critique_chain.run( - input_prompt=input_prompt, - output_from_model=response, - fallacy_critique_request=logical_fallacy.fallacy_critique_request, - callbacks=_run_manager.get_child("fallacy_critique"), - ) - fallacy_critique = self._parse_critique( - output_string=fallacy_raw_critique, - ).strip() - - # if fallacy critique contains "No fallacy critique needed" then done - if "no fallacy critique needed" in fallacy_critique.lower(): - fallacy_critiques_and_revisions.append((fallacy_critique, "")) - continue - - fallacy_revision = self.fallacy_revision_chain.run( - input_prompt=input_prompt, - output_from_model=response, - fallacy_critique_request=logical_fallacy.fallacy_critique_request, - fallacy_critique=fallacy_critique, - revision_request=logical_fallacy.fallacy_revision_request, - callbacks=_run_manager.get_child("fallacy_revision"), - ).strip() - response = fallacy_revision - fallacy_critiques_and_revisions.append((fallacy_critique, fallacy_revision)) - - _run_manager.on_text( - text=f"Applying {logical_fallacy.name}..." + "\n\n", - verbose=self.verbose, - color="green", - ) - - _run_manager.on_text( - text="Logical Fallacy: " + fallacy_critique + "\n\n", - verbose=self.verbose, - color="blue", - ) - - _run_manager.on_text( - text="Updated response: " + fallacy_revision + "\n\n", - verbose=self.verbose, - color="yellow", - ) - - final_output: Dict[str, Any] = {"output": response} - if self.return_intermediate_steps: - final_output["initial_output"] = initial_response - final_output["fallacy_critiques_and_revisions"] = ( - fallacy_critiques_and_revisions - ) - return final_output - - @staticmethod - def _parse_critique(output_string: str) -> str: - if "Fallacy Revision request:" not in output_string: - return output_string - output_string = output_string.split("Fallacy Revision request:")[0] - if "\n\n" in output_string: - output_string = output_string.split("\n\n")[0] - return output_string diff --git a/libs/experimental/langchain_experimental/fallacy_removal/fallacies.py b/libs/experimental/langchain_experimental/fallacy_removal/fallacies.py deleted file mode 100644 index efe4838fda762..0000000000000 --- a/libs/experimental/langchain_experimental/fallacy_removal/fallacies.py +++ /dev/null @@ -1,209 +0,0 @@ -"""Classification of logical fallacies in Natural Language Arguments \ -from https://arxiv.org/pdf/2212.07425.pdf -""" - -from typing import Dict - -from langchain_experimental.fallacy_removal.models import LogicalFallacy - -FALLACIES: Dict[str, LogicalFallacy] = { - "adhominem": LogicalFallacy( - name="adhominem", - fallacy_critique_request="Identify any feasible ways in which \ - the assistant’s last response is attacking the character or \ - personal traits of the person making an argument rather than \ - addressing the actual argument and evidence.", - fallacy_revision_request="Please rewrite the assistant response\ - to remove any attacking the character or personal traits of the\ - person making an argument rather than addressing the actual\ - argument and evidence.", - ), - "adpopulum": LogicalFallacy( - name="adpopulum", - fallacy_critique_request="Identify ways in which the assistant’s\ - last response may be asserting that something must be true or \ - correct simply because many people believe it or do it, without \ - actual facts or evidence to support the conclusion.", - fallacy_revision_request="Please rewrite the assistant response \ - to remove any assertion that something must be true or correct \ - simply because many people believe it or do it, without actual \ - facts or evidence to support the conclusion.", - ), - "appealtoemotion": LogicalFallacy( - name="appealtoemotion", - fallacy_critique_request="Identify all ways in which the \ - assistant’s last response is an attempt to win support for an \ - argument by exploiting or manipulating people's emotions rather \ - than using facts and reason.", - fallacy_revision_request="Please rewrite the assistant response \ - to remove any attempt to win support for an argument by \ - exploiting or manipulating people's emotions rather than using \ - facts and reason.", - ), - "fallacyofextension": LogicalFallacy( - name="fallacyofextension", - fallacy_critique_request="Identify any ways in which the \ - assitant's last response is making broad, sweeping generalizations\ - and extending the implications of an argument far beyond what the \ - initial premises support.", - fallacy_revision_request="Rewrite the assistant response to remove\ - all broad, sweeping generalizations and extending the implications\ - of an argument far beyond what the initial premises support.", - ), - "intentionalfallacy": LogicalFallacy( - name="intentionalfallacy", - fallacy_critique_request="Identify any way in which the assistant’s\ - last response may be falsely supporting a conclusion by claiming to\ - understand an author or creator's subconscious intentions without \ - clear evidence.", - fallacy_revision_request="Revise the assistant’s last response to \ - remove any false support of a conclusion by claiming to understand\ - an author or creator's subconscious intentions without clear \ - evidence.", - ), - "falsecausality": LogicalFallacy( - name="falsecausality", - fallacy_critique_request="Think carefully about whether the \ - assistant's last response is jumping to conclusions about causation\ - between events or circumstances without adequate evidence to infer \ - a causal relationship.", - fallacy_revision_request="Please write a new version of the \ - assistant’s response that removes jumping to conclusions about\ - causation between events or circumstances without adequate \ - evidence to infer a causal relationship.", - ), - "falsedilemma": LogicalFallacy( - name="falsedilemma", - fallacy_critique_request="Identify any way in which the \ - assistant's last response may be presenting only two possible options\ - or sides to a situation when there are clearly other alternatives \ - that have not been considered or addressed.", - fallacy_revision_request="Amend the assistant’s last response to \ - remove any presentation of only two possible options or sides to a \ - situation when there are clearly other alternatives that have not \ - been considered or addressed.", - ), - "hastygeneralization": LogicalFallacy( - name="hastygeneralization", - fallacy_critique_request="Identify any way in which the assistant’s\ - last response is making a broad inference or generalization to \ - situations, people, or circumstances that are not sufficiently \ - similar based on a specific example or limited evidence.", - fallacy_revision_request="Please rewrite the assistant response to\ - remove a broad inference or generalization to situations, people, \ - or circumstances that are not sufficiently similar based on a \ - specific example or limited evidence.", - ), - "illogicalarrangement": LogicalFallacy( - name="illogicalarrangement", - fallacy_critique_request="Think carefully about any ways in which \ - the assistant's last response is constructing an argument in a \ - flawed, illogical way, so the premises do not connect to or lead\ - to the conclusion properly.", - fallacy_revision_request="Please rewrite the assistant’s response\ - so as to remove any construction of an argument that is flawed and\ - illogical or if the premises do not connect to or lead to the \ - conclusion properly.", - ), - "fallacyofcredibility": LogicalFallacy( - name="fallacyofcredibility", - fallacy_critique_request="Discuss whether the assistant's last \ - response was dismissing or attacking the credibility of the person\ - making an argument rather than directly addressing the argument \ - itself.", - fallacy_revision_request="Revise the assistant’s response so as \ - that it refrains from dismissing or attacking the credibility of\ - the person making an argument rather than directly addressing \ - the argument itself.", - ), - "circularreasoning": LogicalFallacy( - name="circularreasoning", - fallacy_critique_request="Discuss ways in which the assistant’s\ - last response may be supporting a premise by simply repeating \ - the premise as the conclusion without giving actual proof or \ - evidence.", - fallacy_revision_request="Revise the assistant’s response if \ - possible so that it’s not supporting a premise by simply \ - repeating the premise as the conclusion without giving actual\ - proof or evidence.", - ), - "beggingthequestion": LogicalFallacy( - name="beggingthequestion", - fallacy_critique_request="Discuss ways in which the assistant's\ - last response is restating the conclusion of an argument as a \ - premise without providing actual support for the conclusion in \ - the first place.", - fallacy_revision_request="Write a revision of the assistant’s \ - response that refrains from restating the conclusion of an \ - argument as a premise without providing actual support for the \ - conclusion in the first place.", - ), - "trickquestion": LogicalFallacy( - name="trickquestion", - fallacy_critique_request="Identify ways in which the \ - assistant’s last response is asking a question that \ - contains or assumes information that has not been proven or \ - substantiated.", - fallacy_revision_request="Please write a new assistant \ - response so that it does not ask a question that contains \ - or assumes information that has not been proven or \ - substantiated.", - ), - "overapplier": LogicalFallacy( - name="overapplier", - fallacy_critique_request="Identify ways in which the assistant’s\ - last response is applying a general rule or generalization to a \ - specific case it was not meant to apply to.", - fallacy_revision_request="Please write a new response that does\ - not apply a general rule or generalization to a specific case \ - it was not meant to apply to.", - ), - "equivocation": LogicalFallacy( - name="equivocation", - fallacy_critique_request="Read the assistant’s last response \ - carefully and identify if it is using the same word or phrase \ - in two different senses or contexts within an argument.", - fallacy_revision_request="Rewrite the assistant response so \ - that it does not use the same word or phrase in two different \ - senses or contexts within an argument.", - ), - "amphiboly": LogicalFallacy( - name="amphiboly", - fallacy_critique_request="Critique the assistant’s last response\ - to see if it is constructing sentences such that the grammar \ - or structure is ambiguous, leading to multiple interpretations.", - fallacy_revision_request="Please rewrite the assistant response\ - to remove any construction of sentences where the grammar or \ - structure is ambiguous or leading to multiple interpretations.", - ), - "accent": LogicalFallacy( - name="accent", - fallacy_critique_request="Discuss whether the assitant's response\ - is misrepresenting an argument by shifting the emphasis of a word\ - or phrase to give it a different meaning than intended.", - fallacy_revision_request="Please rewrite the AI model's response\ - so that it is not misrepresenting an argument by shifting the \ - emphasis of a word or phrase to give it a different meaning than\ - intended.", - ), - "composition": LogicalFallacy( - name="composition", - fallacy_critique_request="Discuss whether the assistant's \ - response is erroneously inferring that something is true of \ - the whole based on the fact that it is true of some part or \ - parts.", - fallacy_revision_request="Please rewrite the assitant's response\ - so that it is not erroneously inferring that something is true \ - of the whole based on the fact that it is true of some part or \ - parts.", - ), - "division": LogicalFallacy( - name="division", - fallacy_critique_request="Discuss whether the assistant's last \ - response is erroneously inferring that something is true of the \ - parts based on the fact that it is true of the whole.", - fallacy_revision_request="Please rewrite the assitant's response\ - so that it is not erroneously inferring that something is true \ - of the parts based on the fact that it is true of the whole.", - ), -} diff --git a/libs/experimental/langchain_experimental/fallacy_removal/models.py b/libs/experimental/langchain_experimental/fallacy_removal/models.py deleted file mode 100644 index a7656b4f5a73a..0000000000000 --- a/libs/experimental/langchain_experimental/fallacy_removal/models.py +++ /dev/null @@ -1,11 +0,0 @@ -"""Models for the Logical Fallacy Chain""" - -from langchain_experimental.pydantic_v1 import BaseModel - - -class LogicalFallacy(BaseModel): - """Logical fallacy.""" - - fallacy_critique_request: str - fallacy_revision_request: str - name: str = "Logical Fallacy" diff --git a/libs/experimental/langchain_experimental/fallacy_removal/prompts.py b/libs/experimental/langchain_experimental/fallacy_removal/prompts.py deleted file mode 100644 index 5c44da3bb1f6d..0000000000000 --- a/libs/experimental/langchain_experimental/fallacy_removal/prompts.py +++ /dev/null @@ -1,135 +0,0 @@ -from langchain_core.prompts.few_shot import FewShotPromptTemplate -from langchain_core.prompts.prompt import PromptTemplate - -fallacy_critique_example = PromptTemplate( - template="""Human: {input_prompt} - -Model: {output_from_model} - -Fallacy Critique Request: {fallacy_critique_request} - -Fallacy Critique: {fallacy_critique}""", - input_variables=[ - "input_prompt", - "output_from_model", - "fallacy_critique_request", - "fallacy_critique", - ], -) - -examples = [ - { - "input_prompt": "If everyone says the Earth is round, \ - how do I know that's correct?", - "output_from_model": "The earth is round because your \ - teacher says it is", - "fallacy_critique_request": "Identify specific ways in\ - which the model’s previous response had a logical fallacy. \ - Also point out potential logical fallacies in the human’s \ - questions and responses. Examples of logical fallacies \ - include but are not limited to ad hominem, ad populum, \ - appeal to emotion and false causality.", - "fallacy_critique": "This statement contains the logical \ - fallacy of Ad Verecundiam or Appeal to Authority. It is \ - a fallacy because it asserts something to be true purely \ - based on the authority of the source making the claim, \ - without any actual evidence to support it. Fallacy \ - Critique Needed", - "fallacy_revision_request": "Please rewrite the model \ - response to remove all logical fallacies, and to \ - politely point out any logical fallacies from the \ - human.", - "fallacy_revision": "The earth is round based on \ - evidence from observations of its curvature from high \ - altitudes, photos from space showing its spherical shape, \ - circumnavigation, and the fact that we see its rounded \ - shadow on the moon during lunar eclipses.", - }, - { - "input_prompt": "Should we invest more in our school \ - music program? After all, studies show students \ - involved in music perform better academically.", - "output_from_model": "I don't think we should invest \ - more in the music program. Playing the piccolo won't \ - teach someone better math skills.", - "fallacy_critique_request": "Identify specific ways \ - in which the model’s previous response had a logical \ - fallacy. Also point out potential logical fallacies \ - in the human’s questions and responses. Examples of \ - logical fallacies include but are not limited to ad \ - homimem, ad populum, appeal to emotion and false \ - causality.", - "fallacy_critique": "This answer commits the division \ - fallacy by rejecting the argument based on assuming \ - capabilities true of the parts (playing an instrument \ - like piccolo) also apply to the whole \ - (the full music program). The answer focuses only on \ - part of the music program rather than considering it \ - as a whole. Fallacy Critique Needed.", - "fallacy_revision_request": "Please rewrite the model \ - response to remove all logical fallacies, and to \ - politely point out any logical fallacies from the human.", - "fallacy_revision": "While playing an instrument may \ - teach discipline, more evidence is needed on whether \ - music education courses improve critical thinking \ - skills across subjects before determining if increased \ - investment in the whole music program is warranted.", - }, -] - -FALLACY_CRITIQUE_PROMPT = FewShotPromptTemplate( - example_prompt=fallacy_critique_example, - examples=[ - {k: v for k, v in e.items() if k != "fallacy_revision_request"} - for e in examples - ], - prefix="Below is a conversation between a human and an \ - AI assistant. If there is no material critique of the \ - model output, append to the end of the Fallacy Critique: \ - 'No fallacy critique needed.' If there is material \ - critique \ - of the model output, append to the end of the Fallacy \ - Critique: 'Fallacy Critique needed.'", - suffix="""Human: {input_prompt} -Model: {output_from_model} - -Fallacy Critique Request: {fallacy_critique_request} - -Fallacy Critique:""", - example_separator="\n === \n", - input_variables=["input_prompt", "output_from_model", "fallacy_critique_request"], -) - -FALLACY_REVISION_PROMPT = FewShotPromptTemplate( - example_prompt=fallacy_critique_example, - examples=examples, - prefix="Below is a conversation between a human and \ - an AI assistant.", - suffix="""Human: {input_prompt} - -Model: {output_from_model} - -Fallacy Critique Request: {fallacy_critique_request} - -Fallacy Critique: {fallacy_critique} - -If the fallacy critique does not identify anything worth \ -changing, ignore the Fallacy Revision Request and do not \ -make any revisions. Instead, return "No revisions needed". - -If the fallacy critique does identify something worth \ -changing, please revise the model response based on the \ -Fallacy Revision Request. - -Fallacy Revision Request: {fallacy_revision_request} - -Fallacy Revision:""", - example_separator="\n === \n", - input_variables=[ - "input_prompt", - "output_from_model", - "fallacy_critique_request", - "fallacy_critique", - "fallacy_revision_request", - ], -) diff --git a/libs/experimental/langchain_experimental/generative_agents/__init__.py b/libs/experimental/langchain_experimental/generative_agents/__init__.py deleted file mode 100644 index 3d1f1c9592e3d..0000000000000 --- a/libs/experimental/langchain_experimental/generative_agents/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -"""**Generative Agent** primitives.""" - -from langchain_experimental.generative_agents.generative_agent import GenerativeAgent -from langchain_experimental.generative_agents.memory import GenerativeAgentMemory - -__all__ = ["GenerativeAgent", "GenerativeAgentMemory"] diff --git a/libs/experimental/langchain_experimental/generative_agents/generative_agent.py b/libs/experimental/langchain_experimental/generative_agents/generative_agent.py deleted file mode 100644 index 95247e6824202..0000000000000 --- a/libs/experimental/langchain_experimental/generative_agents/generative_agent.py +++ /dev/null @@ -1,248 +0,0 @@ -import re -from datetime import datetime -from typing import Any, Dict, List, Optional, Tuple - -from langchain.chains import LLMChain -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts import PromptTemplate - -from langchain_experimental.generative_agents.memory import GenerativeAgentMemory -from langchain_experimental.pydantic_v1 import BaseModel, Field - - -class GenerativeAgent(BaseModel): - """Agent as a character with memory and innate characteristics.""" - - name: str - """The character's name.""" - age: Optional[int] = None - """The optional age of the character.""" - traits: str = "N/A" - """Permanent traits to ascribe to the character.""" - status: str - """The traits of the character you wish not to change.""" - memory: GenerativeAgentMemory - """The memory object that combines relevance, recency, and 'importance'.""" - llm: BaseLanguageModel - """The underlying language model.""" - verbose: bool = False - summary: str = "" #: :meta private: - """Stateful self-summary generated via reflection on the character's memory.""" - summary_refresh_seconds: int = 3600 #: :meta private: - """How frequently to re-generate the summary.""" - last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private: - """The last time the character's summary was regenerated.""" - daily_summaries: List[str] = Field(default_factory=list) # : :meta private: - """Summary of the events in the plan that the agent took.""" - - class Config: - arbitrary_types_allowed = True - - # LLM-related methods - @staticmethod - def _parse_list(text: str) -> List[str]: - """Parse a newline-separated string into a list of strings.""" - lines = re.split(r"\n", text.strip()) - return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines] - - def chain(self, prompt: PromptTemplate) -> LLMChain: - """Create a chain with the same settings as the agent.""" - - return LLMChain( - llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory - ) - - def _get_entity_from_observation(self, observation: str) -> str: - prompt = PromptTemplate.from_template( - "What is the observed entity in the following observation? {observation}" - + "\nEntity=" - ) - return self.chain(prompt).run(observation=observation).strip() - - def _get_entity_action(self, observation: str, entity_name: str) -> str: - prompt = PromptTemplate.from_template( - "What is the {entity} doing in the following observation? {observation}" - + "\nThe {entity} is" - ) - return ( - self.chain(prompt).run(entity=entity_name, observation=observation).strip() - ) - - def summarize_related_memories(self, observation: str) -> str: - """Summarize memories that are most relevant to an observation.""" - prompt = PromptTemplate.from_template( - """ -{q1}? -Context from memory: -{relevant_memories} -Relevant context: -""" - ) - entity_name = self._get_entity_from_observation(observation) - entity_action = self._get_entity_action(observation, entity_name) - q1 = f"What is the relationship between {self.name} and {entity_name}" - q2 = f"{entity_name} is {entity_action}" - return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip() - - def _generate_reaction( - self, observation: str, suffix: str, now: Optional[datetime] = None - ) -> str: - """React to a given observation or dialogue act.""" - prompt = PromptTemplate.from_template( - "{agent_summary_description}" - + "\nIt is {current_time}." - + "\n{agent_name}'s status: {agent_status}" - + "\nSummary of relevant context from {agent_name}'s memory:" - + "\n{relevant_memories}" - + "\nMost recent observations: {most_recent_memories}" - + "\nObservation: {observation}" - + "\n\n" - + suffix - ) - agent_summary_description = self.get_summary(now=now) - relevant_memories_str = self.summarize_related_memories(observation) - current_time_str = ( - datetime.now().strftime("%B %d, %Y, %I:%M %p") - if now is None - else now.strftime("%B %d, %Y, %I:%M %p") - ) - kwargs: Dict[str, Any] = dict( - agent_summary_description=agent_summary_description, - current_time=current_time_str, - relevant_memories=relevant_memories_str, - agent_name=self.name, - observation=observation, - agent_status=self.status, - ) - consumed_tokens = self.llm.get_num_tokens( - prompt.format(most_recent_memories="", **kwargs) - ) - kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens - return self.chain(prompt=prompt).run(**kwargs).strip() - - def _clean_response(self, text: str) -> str: - return re.sub(f"^{self.name} ", "", text.strip()).strip() - - def generate_reaction( - self, observation: str, now: Optional[datetime] = None - ) -> Tuple[bool, str]: - """React to a given observation.""" - call_to_action_template = ( - "Should {agent_name} react to the observation, and if so," - + " what would be an appropriate reaction? Respond in one line." - + ' If the action is to engage in dialogue, write:\nSAY: "what to say"' - + "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)." - + "\nEither do nothing, react, or say something but not both.\n\n" - ) - full_result = self._generate_reaction( - observation, call_to_action_template, now=now - ) - result = full_result.strip().split("\n")[0] - # AAA - self.memory.save_context( - {}, - { - self.memory.add_memory_key: f"{self.name} observed " - f"{observation} and reacted by {result}", - self.memory.now_key: now, - }, - ) - if "REACT:" in result: - reaction = self._clean_response(result.split("REACT:")[-1]) - return False, f"{self.name} {reaction}" - if "SAY:" in result: - said_value = self._clean_response(result.split("SAY:")[-1]) - return True, f"{self.name} said {said_value}" - else: - return False, result - - def generate_dialogue_response( - self, observation: str, now: Optional[datetime] = None - ) -> Tuple[bool, str]: - """React to a given observation.""" - call_to_action_template = ( - "What would {agent_name} say? To end the conversation, write:" - ' GOODBYE: "what to say". Otherwise to continue the conversation,' - ' write: SAY: "what to say next"\n\n' - ) - full_result = self._generate_reaction( - observation, call_to_action_template, now=now - ) - result = full_result.strip().split("\n")[0] - if "GOODBYE:" in result: - farewell = self._clean_response(result.split("GOODBYE:")[-1]) - self.memory.save_context( - {}, - { - self.memory.add_memory_key: f"{self.name} observed " - f"{observation} and said {farewell}", - self.memory.now_key: now, - }, - ) - return False, f"{self.name} said {farewell}" - if "SAY:" in result: - response_text = self._clean_response(result.split("SAY:")[-1]) - self.memory.save_context( - {}, - { - self.memory.add_memory_key: f"{self.name} observed " - f"{observation} and said {response_text}", - self.memory.now_key: now, - }, - ) - return True, f"{self.name} said {response_text}" - else: - return False, result - - ###################################################### - # Agent stateful' summary methods. # - # Each dialog or response prompt includes a header # - # summarizing the agent's self-description. This is # - # updated periodically through probing its memories # - ###################################################### - def _compute_agent_summary(self) -> str: - """""" - prompt = PromptTemplate.from_template( - "How would you summarize {name}'s core characteristics given the" - + " following statements:\n" - + "{relevant_memories}" - + "Do not embellish." - + "\n\nSummary: " - ) - # The agent seeks to think about their core characteristics. - return ( - self.chain(prompt) - .run(name=self.name, queries=[f"{self.name}'s core characteristics"]) - .strip() - ) - - def get_summary( - self, force_refresh: bool = False, now: Optional[datetime] = None - ) -> str: - """Return a descriptive summary of the agent.""" - current_time = datetime.now() if now is None else now - since_refresh = (current_time - self.last_refreshed).seconds - if ( - not self.summary - or since_refresh >= self.summary_refresh_seconds - or force_refresh - ): - self.summary = self._compute_agent_summary() - self.last_refreshed = current_time - age = self.age if self.age is not None else "N/A" - return ( - f"Name: {self.name} (age: {age})" - + f"\nInnate traits: {self.traits}" - + f"\n{self.summary}" - ) - - def get_full_header( - self, force_refresh: bool = False, now: Optional[datetime] = None - ) -> str: - """Return a full header of the agent's status, summary, and current time.""" - now = datetime.now() if now is None else now - summary = self.get_summary(force_refresh=force_refresh, now=now) - current_time_str = now.strftime("%B %d, %Y, %I:%M %p") - return ( - f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}" - ) diff --git a/libs/experimental/langchain_experimental/generative_agents/memory.py b/libs/experimental/langchain_experimental/generative_agents/memory.py deleted file mode 100644 index ac06acacf509a..0000000000000 --- a/libs/experimental/langchain_experimental/generative_agents/memory.py +++ /dev/null @@ -1,296 +0,0 @@ -import logging -import re -from datetime import datetime -from typing import Any, Dict, List, Optional - -from langchain.chains import LLMChain -from langchain.retrievers import TimeWeightedVectorStoreRetriever -from langchain.schema import BaseMemory, Document -from langchain.utils import mock_now -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts import PromptTemplate - -logger = logging.getLogger(__name__) - - -class GenerativeAgentMemory(BaseMemory): - """Memory for the generative agent.""" - - llm: BaseLanguageModel - """The core language model.""" - memory_retriever: TimeWeightedVectorStoreRetriever - """The retriever to fetch related memories.""" - verbose: bool = False - reflection_threshold: Optional[float] = None - """When aggregate_importance exceeds reflection_threshold, stop to reflect.""" - current_plan: List[str] = [] - """The current plan of the agent.""" - # A weight of 0.15 makes this less important than it - # would be otherwise, relative to salience and time - importance_weight: float = 0.15 - """How much weight to assign the memory importance.""" - aggregate_importance: float = 0.0 # : :meta private: - """Track the sum of the 'importance' of recent memories. - - Triggers reflection when it reaches reflection_threshold.""" - - max_tokens_limit: int = 1200 # : :meta private: - # input keys - queries_key: str = "queries" - most_recent_memories_token_key: str = "recent_memories_token" - add_memory_key: str = "add_memory" - # output keys - relevant_memories_key: str = "relevant_memories" - relevant_memories_simple_key: str = "relevant_memories_simple" - most_recent_memories_key: str = "most_recent_memories" - now_key: str = "now" - reflecting: bool = False - - def chain(self, prompt: PromptTemplate) -> LLMChain: - return LLMChain(llm=self.llm, prompt=prompt, verbose=self.verbose) - - @staticmethod - def _parse_list(text: str) -> List[str]: - """Parse a newline-separated string into a list of strings.""" - lines = re.split(r"\n", text.strip()) - lines = [line for line in lines if line.strip()] # remove empty lines - return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines] - - def _get_topics_of_reflection(self, last_k: int = 50) -> List[str]: - """Return the 3 most salient high-level questions about recent observations.""" - prompt = PromptTemplate.from_template( - "{observations}\n\n" - "Given only the information above, what are the 3 most salient " - "high-level questions we can answer about the subjects in the statements?\n" - "Provide each question on a new line." - ) - observations = self.memory_retriever.memory_stream[-last_k:] - observation_str = "\n".join( - [self._format_memory_detail(o) for o in observations] - ) - result = self.chain(prompt).run(observations=observation_str) - return self._parse_list(result) - - def _get_insights_on_topic( - self, topic: str, now: Optional[datetime] = None - ) -> List[str]: - """Generate 'insights' on a topic of reflection, based on pertinent memories.""" - prompt = PromptTemplate.from_template( - "Statements relevant to: '{topic}'\n" - "---\n" - "{related_statements}\n" - "---\n" - "What 5 high-level novel insights can you infer from the above statements " - "that are relevant for answering the following question?\n" - "Do not include any insights that are not relevant to the question.\n" - "Do not repeat any insights that have already been made.\n\n" - "Question: {topic}\n\n" - "(example format: insight (because of 1, 5, 3))\n" - ) - - related_memories = self.fetch_memories(topic, now=now) - related_statements = "\n".join( - [ - self._format_memory_detail(memory, prefix=f"{i+1}. ") - for i, memory in enumerate(related_memories) - ] - ) - result = self.chain(prompt).run( - topic=topic, related_statements=related_statements - ) - # TODO: Parse the connections between memories and insights - return self._parse_list(result) - - def pause_to_reflect(self, now: Optional[datetime] = None) -> List[str]: - """Reflect on recent observations and generate 'insights'.""" - if self.verbose: - logger.info("Character is reflecting") - new_insights = [] - topics = self._get_topics_of_reflection() - for topic in topics: - insights = self._get_insights_on_topic(topic, now=now) - for insight in insights: - self.add_memory(insight, now=now) - new_insights.extend(insights) - return new_insights - - def _score_memory_importance(self, memory_content: str) -> float: - """Score the absolute importance of the given memory.""" - prompt = PromptTemplate.from_template( - "On the scale of 1 to 10, where 1 is purely mundane" - + " (e.g., brushing teeth, making bed) and 10 is" - + " extremely poignant (e.g., a break up, college" - + " acceptance), rate the likely poignancy of the" - + " following piece of memory. Respond with a single integer." - + "\nMemory: {memory_content}" - + "\nRating: " - ) - score = self.chain(prompt).run(memory_content=memory_content).strip() - if self.verbose: - logger.info(f"Importance score: {score}") - match = re.search(r"^\D*(\d+)", score) - if match: - return (float(match.group(1)) / 10) * self.importance_weight - else: - return 0.0 - - def _score_memories_importance(self, memory_content: str) -> List[float]: - """Score the absolute importance of the given memory.""" - prompt = PromptTemplate.from_template( - "On the scale of 1 to 10, where 1 is purely mundane" - + " (e.g., brushing teeth, making bed) and 10 is" - + " extremely poignant (e.g., a break up, college" - + " acceptance), rate the likely poignancy of the" - + " following piece of memory. Always answer with only a list of numbers." - + " If just given one memory still respond in a list." - + " Memories are separated by semi colans (;)" - + "\nMemories: {memory_content}" - + "\nRating: " - ) - scores = self.chain(prompt).run(memory_content=memory_content).strip() - - if self.verbose: - logger.info(f"Importance scores: {scores}") - - # Split into list of strings and convert to floats - scores_list = [float(x) for x in scores.split(";")] - - return scores_list - - def add_memories( - self, memory_content: str, now: Optional[datetime] = None - ) -> List[str]: - """Add an observations or memories to the agent's memory.""" - importance_scores = self._score_memories_importance(memory_content) - - self.aggregate_importance += max(importance_scores) - memory_list = memory_content.split(";") - documents = [] - - for i in range(len(memory_list)): - documents.append( - Document( - page_content=memory_list[i], - metadata={"importance": importance_scores[i]}, - ) - ) - - result = self.memory_retriever.add_documents(documents, current_time=now) - - # After an agent has processed a certain amount of memories (as measured by - # aggregate importance), it is time to reflect on recent events to add - # more synthesized memories to the agent's memory stream. - if ( - self.reflection_threshold is not None - and self.aggregate_importance > self.reflection_threshold - and not self.reflecting - ): - self.reflecting = True - self.pause_to_reflect(now=now) - # Hack to clear the importance from reflection - self.aggregate_importance = 0.0 - self.reflecting = False - return result - - def add_memory( - self, memory_content: str, now: Optional[datetime] = None - ) -> List[str]: - """Add an observation or memory to the agent's memory.""" - importance_score = self._score_memory_importance(memory_content) - self.aggregate_importance += importance_score - document = Document( - page_content=memory_content, metadata={"importance": importance_score} - ) - result = self.memory_retriever.add_documents([document], current_time=now) - - # After an agent has processed a certain amount of memories (as measured by - # aggregate importance), it is time to reflect on recent events to add - # more synthesized memories to the agent's memory stream. - if ( - self.reflection_threshold is not None - and self.aggregate_importance > self.reflection_threshold - and not self.reflecting - ): - self.reflecting = True - self.pause_to_reflect(now=now) - # Hack to clear the importance from reflection - self.aggregate_importance = 0.0 - self.reflecting = False - return result - - def fetch_memories( - self, observation: str, now: Optional[datetime] = None - ) -> List[Document]: - """Fetch related memories.""" - if now is not None: - with mock_now(now): - return self.memory_retriever.invoke(observation) - else: - return self.memory_retriever.invoke(observation) - - def format_memories_detail(self, relevant_memories: List[Document]) -> str: - content = [] - for mem in relevant_memories: - content.append(self._format_memory_detail(mem, prefix="- ")) - return "\n".join([f"{mem}" for mem in content]) - - def _format_memory_detail(self, memory: Document, prefix: str = "") -> str: - created_time = memory.metadata["created_at"].strftime("%B %d, %Y, %I:%M %p") - return f"{prefix}[{created_time}] {memory.page_content.strip()}" - - def format_memories_simple(self, relevant_memories: List[Document]) -> str: - return "; ".join([f"{mem.page_content}" for mem in relevant_memories]) - - def _get_memories_until_limit(self, consumed_tokens: int) -> str: - """Reduce the number of tokens in the documents.""" - result = [] - for doc in self.memory_retriever.memory_stream[::-1]: - if consumed_tokens >= self.max_tokens_limit: - break - consumed_tokens += self.llm.get_num_tokens(doc.page_content) - if consumed_tokens < self.max_tokens_limit: - result.append(doc) - return self.format_memories_simple(result) - - @property - def memory_variables(self) -> List[str]: - """Input keys this memory class will load dynamically.""" - return [] - - def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: - """Return key-value pairs given the text input to the chain.""" - queries = inputs.get(self.queries_key) - now = inputs.get(self.now_key) - if queries is not None: - relevant_memories = [ - mem for query in queries for mem in self.fetch_memories(query, now=now) - ] - return { - self.relevant_memories_key: self.format_memories_detail( - relevant_memories - ), - self.relevant_memories_simple_key: self.format_memories_simple( - relevant_memories - ), - } - - most_recent_memories_token = inputs.get(self.most_recent_memories_token_key) - if most_recent_memories_token is not None: - return { - self.most_recent_memories_key: self._get_memories_until_limit( - most_recent_memories_token - ) - } - return {} - - def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None: - """Save the context of this model run to memory.""" - # TODO: fix the save memory key - mem = outputs.get(self.add_memory_key) - now = outputs.get(self.now_key) - if mem: - self.add_memory(mem, now=now) - - def clear(self) -> None: - """Clear memory contents.""" - # TODO diff --git a/libs/experimental/langchain_experimental/graph_transformers/__init__.py b/libs/experimental/langchain_experimental/graph_transformers/__init__.py deleted file mode 100644 index fd01190dc85c2..0000000000000 --- a/libs/experimental/langchain_experimental/graph_transformers/__init__.py +++ /dev/null @@ -1,13 +0,0 @@ -"""**Graph Transformers** transform Documents into Graph Documents.""" - -from langchain_experimental.graph_transformers.diffbot import DiffbotGraphTransformer -from langchain_experimental.graph_transformers.gliner import GlinerGraphTransformer -from langchain_experimental.graph_transformers.llm import LLMGraphTransformer -from langchain_experimental.graph_transformers.relik import RelikGraphTransformer - -__all__ = [ - "DiffbotGraphTransformer", - "LLMGraphTransformer", - "RelikGraphTransformer", - "GlinerGraphTransformer", -] diff --git a/libs/experimental/langchain_experimental/graph_transformers/diffbot.py b/libs/experimental/langchain_experimental/graph_transformers/diffbot.py deleted file mode 100644 index 8adb0b9079099..0000000000000 --- a/libs/experimental/langchain_experimental/graph_transformers/diffbot.py +++ /dev/null @@ -1,365 +0,0 @@ -from enum import Enum -from typing import Any, Dict, List, Optional, Sequence, Tuple, Union - -import requests -from langchain.utils import get_from_env -from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship -from langchain_core.documents import Document - - -class TypeOption(str, Enum): - FACTS = "facts" - ENTITIES = "entities" - SENTIMENT = "sentiment" - - -def format_property_key(s: str) -> str: - """Formats a string to be used as a property key.""" - - words = s.split() - if not words: - return s - first_word = words[0].lower() - capitalized_words = [word.capitalize() for word in words[1:]] - return "".join([first_word] + capitalized_words) - - -class NodesList: - """List of nodes with associated properties. - - Attributes: - nodes (Dict[Tuple, Any]): Stores nodes as keys and their properties as values. - Each key is a tuple where the first element is the - node ID and the second is the node type. - """ - - def __init__(self) -> None: - self.nodes: Dict[Tuple[Union[str, int], str], Any] = dict() - - def add_node_property( - self, node: Tuple[Union[str, int], str], properties: Dict[str, Any] - ) -> None: - """ - Adds or updates node properties. - - If the node does not exist in the list, it's added along with its properties. - If the node already exists, its properties are updated with the new values. - - Args: - node (Tuple): A tuple containing the node ID and node type. - properties (Dict): A dictionary of properties to add or update for the node. - """ - if node not in self.nodes: - self.nodes[node] = properties - else: - self.nodes[node].update(properties) - - def return_node_list(self) -> List[Node]: - """ - Returns the nodes as a list of Node objects. - - Each Node object will have its ID, type, and properties populated. - - Returns: - List[Node]: A list of Node objects. - """ - nodes = [ - Node(id=key[0], type=key[1], properties=self.nodes[key]) - for key in self.nodes - ] - return nodes - - -# Properties that should be treated as node properties instead of relationships -FACT_TO_PROPERTY_TYPE = [ - "Date", - "Number", - "Job title", - "Cause of death", - "Organization type", - "Academic title", -] - - -schema_mapping = [ - ("HEADQUARTERS", "ORGANIZATION_LOCATIONS"), - ("RESIDENCE", "PERSON_LOCATION"), - ("ALL_PERSON_LOCATIONS", "PERSON_LOCATION"), - ("CHILD", "HAS_CHILD"), - ("PARENT", "HAS_PARENT"), - ("CUSTOMERS", "HAS_CUSTOMER"), - ("SKILLED_AT", "INTERESTED_IN"), -] - - -class SimplifiedSchema: - """Simplified schema mapping. - - Attributes: - schema (Dict): A dictionary containing the mapping to simplified schema types. - """ - - def __init__(self) -> None: - """Initializes the schema dictionary based on the predefined list.""" - self.schema = dict() - for row in schema_mapping: - self.schema[row[0]] = row[1] - - def get_type(self, type: str) -> str: - """ - Retrieves the simplified schema type for a given original type. - - Args: - type (str): The original schema type to find the simplified type for. - - Returns: - str: The simplified schema type if it exists; - otherwise, returns the original type. - """ - try: - return self.schema[type] - except KeyError: - return type - - -class DiffbotGraphTransformer: - """Transform documents into graph documents using Diffbot NLP API. - - A graph document transformation system takes a sequence of Documents and returns a - sequence of Graph Documents. - - Example: - .. code-block:: python - from langchain_experimental.graph_transformers import DiffbotGraphTransformer - from langchain_core.documents import Document - - diffbot_api_key = "DIFFBOT_API_KEY" - diffbot_nlp = DiffbotGraphTransformer(diffbot_api_key=diffbot_api_key) - - document = Document(page_content="Mike Tunge is the CEO of Diffbot.") - graph_documents = diffbot_nlp.convert_to_graph_documents([document]) - - """ - - def __init__( - self, - diffbot_api_key: Optional[str] = None, - fact_confidence_threshold: float = 0.7, - include_qualifiers: bool = True, - include_evidence: bool = True, - simplified_schema: bool = True, - extract_types: List[TypeOption] = [TypeOption.FACTS], - *, - include_confidence: bool = False, - ) -> None: - """ - Initialize the graph transformer with various options. - - Args: - diffbot_api_key (str): - The API key for Diffbot's NLP services. - - fact_confidence_threshold (float): - Minimum confidence level for facts to be included. - include_qualifiers (bool): - Whether to include qualifiers in the relationships. - include_evidence (bool): - Whether to include evidence for the relationships. - simplified_schema (bool): - Whether to use a simplified schema for relationships. - extract_types (List[TypeOption]): - A list of data types to extract. Facts, entities, and - sentiment are supported. By default, the option is - set to facts. A fact represents a combination of - source and target nodes with a relationship type. - include_confidence (bool): - Whether to include confidence scores on nodes and rels - """ - self.diffbot_api_key = diffbot_api_key or get_from_env( - "diffbot_api_key", "DIFFBOT_API_KEY" - ) - self.fact_threshold_confidence = fact_confidence_threshold - self.include_qualifiers = include_qualifiers - self.include_evidence = include_evidence - self.include_confidence = include_confidence - self.simplified_schema = None - if simplified_schema: - self.simplified_schema = SimplifiedSchema() - if not extract_types: - raise ValueError( - "`extract_types` cannot be an empty array. " - "Allowed values are 'facts', 'entities', or both." - ) - - self.extract_types = extract_types - - def nlp_request(self, text: str) -> Dict[str, Any]: - """ - Make an API request to the Diffbot NLP endpoint. - - Args: - text (str): The text to be processed. - - Returns: - Dict[str, Any]: The JSON response from the API. - """ - - # Relationship extraction only works for English - payload = { - "content": text, - "lang": "en", - } - - FIELDS = ",".join(self.extract_types) - HOST = "nl.diffbot.com" - url = ( - f"https://{HOST}/v1/?fields={FIELDS}&" - f"token={self.diffbot_api_key}&language=en" - ) - result = requests.post(url, data=payload) - return result.json() - - def process_response( - self, payload: Dict[str, Any], document: Document - ) -> GraphDocument: - """ - Transform the Diffbot NLP response into a GraphDocument. - - Args: - payload (Dict[str, Any]): The JSON response from Diffbot's NLP API. - document (Document): The original document. - - Returns: - GraphDocument: The transformed document as a graph. - """ - - # Return empty result if there are no facts - if ("facts" not in payload or not payload["facts"]) and ( - "entities" not in payload or not payload["entities"] - ): - return GraphDocument(nodes=[], relationships=[], source=document) - - # Nodes are a custom class because we need to deduplicate - nodes_list = NodesList() - if "entities" in payload and payload["entities"]: - for record in payload["entities"]: - # Ignore if it doesn't have a type - if not record["allTypes"]: - continue - - # Define source node - source_id = ( - record["allUris"][0] if record["allUris"] else record["name"] - ) - source_label = record["allTypes"][0]["name"].capitalize() - source_name = record["name"] - nodes_list.add_node_property( - (source_id, source_label), {"name": source_name} - ) - if record.get("sentiment") is not None: - nodes_list.add_node_property( - (source_id, source_label), - {"sentiment": record.get("sentiment")}, - ) - if self.include_confidence: - nodes_list.add_node_property( - (source_id, source_label), - {"confidence": record.get("confidence")}, - ) - - relationships = list() - # Relationships are a list because we don't deduplicate nor anything else - if "facts" in payload and payload["facts"]: - for record in payload["facts"]: - # Skip if the fact is below the threshold confidence - if record["confidence"] < self.fact_threshold_confidence: - continue - - # TODO: It should probably be treated as a node property - if not record["value"]["allTypes"]: - continue - - # Define source node - source_id = ( - record["entity"]["allUris"][0] - if record["entity"]["allUris"] - else record["entity"]["name"] - ) - source_label = record["entity"]["allTypes"][0]["name"].capitalize() - source_name = record["entity"]["name"] - source_node = Node(id=source_id, type=source_label) - nodes_list.add_node_property( - (source_id, source_label), {"name": source_name} - ) - - # Define target node - target_id = ( - record["value"]["allUris"][0] - if record["value"]["allUris"] - else record["value"]["name"] - ) - target_label = record["value"]["allTypes"][0]["name"].capitalize() - target_name = record["value"]["name"] - # Some facts are better suited as node properties - if target_label in FACT_TO_PROPERTY_TYPE: - nodes_list.add_node_property( - (source_id, source_label), - {format_property_key(record["property"]["name"]): target_name}, - ) - else: # Define relationship - # Define target node object - target_node = Node(id=target_id, type=target_label) - nodes_list.add_node_property( - (target_id, target_label), {"name": target_name} - ) - # Define relationship type - rel_type = record["property"]["name"].replace(" ", "_").upper() - if self.simplified_schema: - rel_type = self.simplified_schema.get_type(rel_type) - - # Relationship qualifiers/properties - rel_properties = dict() - relationship_evidence = [ - el["passage"] for el in record["evidence"] - ][0] - if self.include_evidence: - rel_properties.update({"evidence": relationship_evidence}) - if self.include_confidence: - rel_properties.update({"confidence": record["confidence"]}) - if self.include_qualifiers and record.get("qualifiers"): - for property in record["qualifiers"]: - prop_key = format_property_key(property["property"]["name"]) - rel_properties[prop_key] = property["value"]["name"] - - relationship = Relationship( - source=source_node, - target=target_node, - type=rel_type, - properties=rel_properties, - ) - relationships.append(relationship) - - return GraphDocument( - nodes=nodes_list.return_node_list(), - relationships=relationships, - source=document, - ) - - def convert_to_graph_documents( - self, documents: Sequence[Document] - ) -> List[GraphDocument]: - """Convert a sequence of documents into graph documents. - - Args: - documents (Sequence[Document]): The original documents. - kwargs: Additional keyword arguments. - - Returns: - Sequence[GraphDocument]: The transformed documents as graphs. - """ - results = [] - for document in documents: - raw_results = self.nlp_request(document.page_content) - graph_document = self.process_response(raw_results, document) - results.append(graph_document) - return results diff --git a/libs/experimental/langchain_experimental/graph_transformers/gliner.py b/libs/experimental/langchain_experimental/graph_transformers/gliner.py deleted file mode 100644 index 85566e2f7af45..0000000000000 --- a/libs/experimental/langchain_experimental/graph_transformers/gliner.py +++ /dev/null @@ -1,175 +0,0 @@ -from typing import Any, Dict, List, Sequence, Union - -from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship -from langchain_core.documents import Document - -DEFAULT_NODE_TYPE = "Node" - - -class GlinerGraphTransformer: - """ - A transformer class for converting documents into graph structures - using the GLiNER and GLiREL models. - - This class leverages GLiNER for named entity recognition and GLiREL for - relationship extraction from text documents, converting them into a graph format. - The extracted entities and relationships are filtered based on specified - confidence thresholds and allowed types. - - For more details on GLiNER and GLiREL, visit their respective repositories: - GLiNER: https://github.com/urchade/GLiNER - GLiREL: https://github.com/jackboyla/GLiREL/tree/main - - Args: - allowed_nodes (List[str]): A list of allowed node types for entity extraction. - allowed_relationships (Union[List[str], Dict[str, Any]]): A list of allowed - relationship types or a dictionary with additional configuration for - relationship extraction. - gliner_model (str): The name of the pretrained GLiNER model to use. - Default is "urchade/gliner_mediumv2.1". - glirel_model (str): The name of the pretrained GLiREL model to use. - Default is "jackboyla/glirel_beta". - entity_confidence_threshold (float): The confidence threshold for - filtering extracted entities. Default is 0.1. - relationship_confidence_threshold (float): The confidence threshold for - filtering extracted relationships. Default is 0.1. - device (str): The device to use for model inference ('cpu' or 'cuda'). - Default is "cpu". - ignore_self_loops (bool): Whether to ignore relationships where the - source and target nodes are the same. Default is True. - """ - - def __init__( - self, - allowed_nodes: List[str], - allowed_relationships: Union[List[str], Dict[str, Any]], - gliner_model: str = "urchade/gliner_mediumv2.1", - glirel_model: str = "jackboyla/glirel_beta", - entity_confidence_threshold: float = 0.1, - relationship_confidence_threshold: float = 0.1, - device: str = "cpu", - ignore_self_loops: bool = True, - ) -> None: - try: - import gliner_spacy # type: ignore # noqa: F401 - except ImportError: - raise ImportError( - "Could not import relik python package. " - "Please install it with `pip install gliner-spacy`." - ) - try: - import spacy # type: ignore - except ImportError: - raise ImportError( - "Could not import relik python package. " - "Please install it with `pip install spacy`." - ) - try: - import glirel # type: ignore # noqa: F401 - except ImportError: - raise ImportError( - "Could not import relik python package. " - "Please install it with `pip install gliner`." - ) - - gliner_config = { - "gliner_model": gliner_model, - "chunk_size": 250, - "labels": allowed_nodes, - "style": "ent", - "threshold": entity_confidence_threshold, - "map_location": device, - } - glirel_config = {"model": glirel_model, "device": device} - self.nlp = spacy.blank("en") - # Add the GliNER component to the pipeline - self.nlp.add_pipe("gliner_spacy", config=gliner_config) - # Add the GLiREL component to the pipeline - self.nlp.add_pipe("glirel", after="gliner_spacy", config=glirel_config) - self.allowed_relationships = ( - {"glirel_labels": allowed_relationships} - if isinstance(allowed_relationships, list) - else allowed_relationships - ) - self.relationship_confidence_threshold = relationship_confidence_threshold - self.ignore_self_loops = ignore_self_loops - - def process_document(self, document: Document) -> GraphDocument: - # Extraction as SpaCy pipeline - docs = list( - self.nlp.pipe( - [(document.page_content, self.allowed_relationships)], as_tuples=True - ) - ) - # Convert nodes - nodes = [] - for node in docs[0][0].ents: - nodes.append( - Node( - id=node.text, - type=node.label_, - ) - ) - # Convert relationships - relationships = [] - relations = docs[0][0]._.relations - # Deduplicate based on label, head text, and tail text - # Use a list comprehension with max() function - deduplicated_rels = [] - seen = set() - - for item in relations: - key = (tuple(item["head_text"]), tuple(item["tail_text"]), item["label"]) - - if key not in seen: - seen.add(key) - - # Find all items matching the current key - matching_items = [ - rel - for rel in relations - if (tuple(rel["head_text"]), tuple(rel["tail_text"]), rel["label"]) - == key - ] - - # Find the item with the maximum score - max_item = max(matching_items, key=lambda x: x["score"]) - deduplicated_rels.append(max_item) - for rel in deduplicated_rels: - # Relationship confidence threshold - if rel["score"] < self.relationship_confidence_threshold: - continue - source_id = docs[0][0][rel["head_pos"][0] : rel["head_pos"][1]].text - target_id = docs[0][0][rel["tail_pos"][0] : rel["tail_pos"][1]].text - # Ignore self loops - if self.ignore_self_loops and source_id == target_id: - continue - source_node = [n for n in nodes if n.id == source_id][0] - target_node = [n for n in nodes if n.id == target_id][0] - relationships.append( - Relationship( - source=source_node, - target=target_node, - type=rel["label"].replace(" ", "_").upper(), - ) - ) - - return GraphDocument(nodes=nodes, relationships=relationships, source=document) - - def convert_to_graph_documents( - self, documents: Sequence[Document] - ) -> List[GraphDocument]: - """Convert a sequence of documents into graph documents. - - Args: - documents (Sequence[Document]): The original documents. - kwargs: Additional keyword arguments. - - Returns: - Sequence[GraphDocument]: The transformed documents as graphs. - """ - results = [] - for document in documents: - graph_document = self.process_document(document) - results.append(graph_document) - return results diff --git a/libs/experimental/langchain_experimental/graph_transformers/llm.py b/libs/experimental/langchain_experimental/graph_transformers/llm.py deleted file mode 100644 index 24b8bff5d134d..0000000000000 --- a/libs/experimental/langchain_experimental/graph_transformers/llm.py +++ /dev/null @@ -1,848 +0,0 @@ -import asyncio -import json -from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union, cast - -from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship -from langchain_core.documents import Document -from langchain_core.language_models import BaseLanguageModel -from langchain_core.messages import SystemMessage -from langchain_core.output_parsers import JsonOutputParser -from langchain_core.prompts import ( - ChatPromptTemplate, - HumanMessagePromptTemplate, - PromptTemplate, -) -from langchain_core.pydantic_v1 import BaseModel, Field, create_model -from langchain_core.runnables import RunnableConfig - -examples = [ - { - "text": ( - "Adam is a software engineer in Microsoft since 2009, " - "and last year he got an award as the Best Talent" - ), - "head": "Adam", - "head_type": "Person", - "relation": "WORKS_FOR", - "tail": "Microsoft", - "tail_type": "Company", - }, - { - "text": ( - "Adam is a software engineer in Microsoft since 2009, " - "and last year he got an award as the Best Talent" - ), - "head": "Adam", - "head_type": "Person", - "relation": "HAS_AWARD", - "tail": "Best Talent", - "tail_type": "Award", - }, - { - "text": ( - "Microsoft is a tech company that provide " - "several products such as Microsoft Word" - ), - "head": "Microsoft Word", - "head_type": "Product", - "relation": "PRODUCED_BY", - "tail": "Microsoft", - "tail_type": "Company", - }, - { - "text": "Microsoft Word is a lightweight app that accessible offline", - "head": "Microsoft Word", - "head_type": "Product", - "relation": "HAS_CHARACTERISTIC", - "tail": "lightweight app", - "tail_type": "Characteristic", - }, - { - "text": "Microsoft Word is a lightweight app that accessible offline", - "head": "Microsoft Word", - "head_type": "Product", - "relation": "HAS_CHARACTERISTIC", - "tail": "accessible offline", - "tail_type": "Characteristic", - }, -] - -system_prompt = ( - "# Knowledge Graph Instructions for GPT-4\n" - "## 1. Overview\n" - "You are a top-tier algorithm designed for extracting information in structured " - "formats to build a knowledge graph.\n" - "Try to capture as much information from the text as possible without " - "sacrificing accuracy. Do not add any information that is not explicitly " - "mentioned in the text.\n" - "- **Nodes** represent entities and concepts.\n" - "- The aim is to achieve simplicity and clarity in the knowledge graph, making it\n" - "accessible for a vast audience.\n" - "## 2. Labeling Nodes\n" - "- **Consistency**: Ensure you use available types for node labels.\n" - "Ensure you use basic or elementary types for node labels.\n" - "- For example, when you identify an entity representing a person, " - "always label it as **'person'**. Avoid using more specific terms " - "like 'mathematician' or 'scientist'." - "- **Node IDs**: Never utilize integers as node IDs. Node IDs should be " - "names or human-readable identifiers found in the text.\n" - "- **Relationships** represent connections between entities or concepts.\n" - "Ensure consistency and generality in relationship types when constructing " - "knowledge graphs. Instead of using specific and momentary types " - "such as 'BECAME_PROFESSOR', use more general and timeless relationship types " - "like 'PROFESSOR'. Make sure to use general and timeless relationship types!\n" - "## 3. Coreference Resolution\n" - "- **Maintain Entity Consistency**: When extracting entities, it's vital to " - "ensure consistency.\n" - 'If an entity, such as "John Doe", is mentioned multiple times in the text ' - 'but is referred to by different names or pronouns (e.g., "Joe", "he"),' - "always use the most complete identifier for that entity throughout the " - 'knowledge graph. In this example, use "John Doe" as the entity ID.\n' - "Remember, the knowledge graph should be coherent and easily understandable, " - "so maintaining consistency in entity references is crucial.\n" - "## 4. Strict Compliance\n" - "Adhere to the rules strictly. Non-compliance will result in termination." -) - -default_prompt = ChatPromptTemplate.from_messages( - [ - ( - "system", - system_prompt, - ), - ( - "human", - ( - "Tip: Make sure to answer in the correct format and do " - "not include any explanations. " - "Use the given format to extract information from the " - "following input: {input}" - ), - ), - ] -) - - -def _get_additional_info(input_type: str) -> str: - # Check if the input_type is one of the allowed values - if input_type not in ["node", "relationship", "property"]: - raise ValueError("input_type must be 'node', 'relationship', or 'property'") - - # Perform actions based on the input_type - if input_type == "node": - return ( - "Ensure you use basic or elementary types for node labels.\n" - "For example, when you identify an entity representing a person, " - "always label it as **'Person'**. Avoid using more specific terms " - "like 'Mathematician' or 'Scientist'" - ) - elif input_type == "relationship": - return ( - "Instead of using specific and momentary types such as " - "'BECAME_PROFESSOR', use more general and timeless relationship types " - "like 'PROFESSOR'. However, do not sacrifice any accuracy for generality" - ) - elif input_type == "property": - return "" - return "" - - -def optional_enum_field( - enum_values: Optional[List[str]] = None, - description: str = "", - input_type: str = "node", - llm_type: Optional[str] = None, - **field_kwargs: Any, -) -> Any: - """Utility function to conditionally create a field with an enum constraint.""" - # Only openai supports enum param - if enum_values and llm_type == "openai-chat": - return Field( - ..., - enum=enum_values, - description=f"{description}. Available options are {enum_values}", - **field_kwargs, - ) - elif enum_values: - return Field( - ..., - description=f"{description}. Available options are {enum_values}", - **field_kwargs, - ) - else: - additional_info = _get_additional_info(input_type) - return Field(..., description=description + additional_info, **field_kwargs) - - -class _Graph(BaseModel): - nodes: Optional[List] - relationships: Optional[List] - - -class UnstructuredRelation(BaseModel): - head: str = Field( - description=( - "extracted head entity like Microsoft, Apple, John. " - "Must use human-readable unique identifier." - ) - ) - head_type: str = Field( - description="type of the extracted head entity like Person, Company, etc" - ) - relation: str = Field(description="relation between the head and the tail entities") - tail: str = Field( - description=( - "extracted tail entity like Microsoft, Apple, John. " - "Must use human-readable unique identifier." - ) - ) - tail_type: str = Field( - description="type of the extracted tail entity like Person, Company, etc" - ) - - -def create_unstructured_prompt( - node_labels: Optional[List[str]] = None, rel_types: Optional[List[str]] = None -) -> ChatPromptTemplate: - node_labels_str = str(node_labels) if node_labels else "" - rel_types_str = str(rel_types) if rel_types else "" - base_string_parts = [ - "You are a top-tier algorithm designed for extracting information in " - "structured formats to build a knowledge graph. Your task is to identify " - "the entities and relations requested with the user prompt from a given " - "text. You must generate the output in a JSON format containing a list " - 'with JSON objects. Each object should have the keys: "head", ' - '"head_type", "relation", "tail", and "tail_type". The "head" ' - "key must contain the text of the extracted entity with one of the types " - "from the provided list in the user prompt.", - f'The "head_type" key must contain the type of the extracted head entity, ' - f"which must be one of the types from {node_labels_str}." - if node_labels - else "", - f'The "relation" key must contain the type of relation between the "head" ' - f'and the "tail", which must be one of the relations from {rel_types_str}.' - if rel_types - else "", - f'The "tail" key must represent the text of an extracted entity which is ' - f'the tail of the relation, and the "tail_type" key must contain the type ' - f"of the tail entity from {node_labels_str}." - if node_labels - else "", - "Attempt to extract as many entities and relations as you can. Maintain " - "Entity Consistency: When extracting entities, it's vital to ensure " - 'consistency. If an entity, such as "John Doe", is mentioned multiple ' - "times in the text but is referred to by different names or pronouns " - '(e.g., "Joe", "he"), always use the most complete identifier for ' - "that entity. The knowledge graph should be coherent and easily " - "understandable, so maintaining consistency in entity references is " - "crucial.", - "IMPORTANT NOTES:\n- Don't add any explanation and text.", - ] - system_prompt = "\n".join(filter(None, base_string_parts)) - - system_message = SystemMessage(content=system_prompt) - parser = JsonOutputParser(pydantic_object=UnstructuredRelation) - - human_string_parts = [ - "Based on the following example, extract entities and " - "relations from the provided text.\n\n", - "Use the following entity types, don't use other entity " - "that is not defined below:" - "# ENTITY TYPES:" - "{node_labels}" - if node_labels - else "", - "Use the following relation types, don't use other relation " - "that is not defined below:" - "# RELATION TYPES:" - "{rel_types}" - if rel_types - else "", - "Below are a number of examples of text and their extracted " - "entities and relationships." - "{examples}\n" - "For the following text, extract entities and relations as " - "in the provided example." - "{format_instructions}\nText: {input}", - ] - human_prompt_string = "\n".join(filter(None, human_string_parts)) - human_prompt = PromptTemplate( - template=human_prompt_string, - input_variables=["input"], - partial_variables={ - "format_instructions": parser.get_format_instructions(), - "node_labels": node_labels, - "rel_types": rel_types, - "examples": examples, - }, - ) - - human_message_prompt = HumanMessagePromptTemplate(prompt=human_prompt) - - chat_prompt = ChatPromptTemplate.from_messages( - [system_message, human_message_prompt] - ) - return chat_prompt - - -def create_simple_model( - node_labels: Optional[List[str]] = None, - rel_types: Optional[List[str]] = None, - node_properties: Union[bool, List[str]] = False, - llm_type: Optional[str] = None, - relationship_properties: Union[bool, List[str]] = False, -) -> Type[_Graph]: - """ - Create a simple graph model with optional constraints on node - and relationship types. - - Args: - node_labels (Optional[List[str]]): Specifies the allowed node types. - Defaults to None, allowing all node types. - rel_types (Optional[List[str]]): Specifies the allowed relationship types. - Defaults to None, allowing all relationship types. - node_properties (Union[bool, List[str]]): Specifies if node properties should - be included. If a list is provided, only properties with keys in the list - will be included. If True, all properties are included. Defaults to False. - relationship_properties (Union[bool, List[str]]): Specifies if relationship - properties should be included. If a list is provided, only properties with - keys in the list will be included. If True, all properties are included. - Defaults to False. - llm_type (Optional[str]): The type of the language model. Defaults to None. - Only openai supports enum param: openai-chat. - - Returns: - Type[_Graph]: A graph model with the specified constraints. - - Raises: - ValueError: If 'id' is included in the node or relationship properties list. - """ - - node_fields: Dict[str, Tuple[Any, Any]] = { - "id": ( - str, - Field(..., description="Name or human-readable unique identifier."), - ), - "type": ( - str, - optional_enum_field( - node_labels, - description="The type or label of the node.", - input_type="node", - llm_type=llm_type, - ), - ), - } - - if node_properties: - if isinstance(node_properties, list) and "id" in node_properties: - raise ValueError("The node property 'id' is reserved and cannot be used.") - # Map True to empty array - node_properties_mapped: List[str] = ( - [] if node_properties is True else node_properties - ) - - class Property(BaseModel): - """A single property consisting of key and value""" - - key: str = optional_enum_field( - node_properties_mapped, - description="Property key.", - input_type="property", - llm_type=llm_type, - ) - value: str = Field(..., description="value") - - node_fields["properties"] = ( - Optional[List[Property]], - Field(None, description="List of node properties"), - ) - SimpleNode = create_model("SimpleNode", **node_fields) # type: ignore - - relationship_fields: Dict[str, Tuple[Any, Any]] = { - "source_node_id": ( - str, - Field( - ..., - description="Name or human-readable unique identifier of source node", - ), - ), - "source_node_type": ( - str, - optional_enum_field( - node_labels, - description="The type or label of the source node.", - input_type="node", - llm_type=llm_type, - ), - ), - "target_node_id": ( - str, - Field( - ..., - description="Name or human-readable unique identifier of target node", - ), - ), - "target_node_type": ( - str, - optional_enum_field( - node_labels, - description="The type or label of the target node.", - input_type="node", - llm_type=llm_type, - ), - ), - "type": ( - str, - optional_enum_field( - rel_types, - description="The type of the relationship.", - input_type="relationship", - llm_type=llm_type, - ), - ), - } - if relationship_properties: - if ( - isinstance(relationship_properties, list) - and "id" in relationship_properties - ): - raise ValueError( - "The relationship property 'id' is reserved and cannot be used." - ) - # Map True to empty array - relationship_properties_mapped: List[str] = ( - [] if relationship_properties is True else relationship_properties - ) - - class RelationshipProperty(BaseModel): - """A single property consisting of key and value""" - - key: str = optional_enum_field( - relationship_properties_mapped, - description="Property key.", - input_type="property", - llm_type=llm_type, - ) - value: str = Field(..., description="value") - - relationship_fields["properties"] = ( - Optional[List[RelationshipProperty]], - Field(None, description="List of relationship properties"), - ) - SimpleRelationship = create_model("SimpleRelationship", **relationship_fields) # type: ignore - - class DynamicGraph(_Graph): - """Represents a graph document consisting of nodes and relationships.""" - - nodes: Optional[List[SimpleNode]] = Field(description="List of nodes") # type: ignore - relationships: Optional[List[SimpleRelationship]] = Field( # type: ignore - description="List of relationships" - ) - - return DynamicGraph - - -def map_to_base_node(node: Any) -> Node: - """Map the SimpleNode to the base Node.""" - properties = {} - if hasattr(node, "properties") and node.properties: - for p in node.properties: - properties[format_property_key(p.key)] = p.value - return Node(id=node.id, type=node.type, properties=properties) - - -def map_to_base_relationship(rel: Any) -> Relationship: - """Map the SimpleRelationship to the base Relationship.""" - source = Node(id=rel.source_node_id, type=rel.source_node_type) - target = Node(id=rel.target_node_id, type=rel.target_node_type) - properties = {} - if hasattr(rel, "properties") and rel.properties: - for p in rel.properties: - properties[format_property_key(p.key)] = p.value - return Relationship( - source=source, target=target, type=rel.type, properties=properties - ) - - -def _parse_and_clean_json( - argument_json: Dict[str, Any], -) -> Tuple[List[Node], List[Relationship]]: - nodes = [] - for node in argument_json["nodes"]: - if not node.get("id"): # Id is mandatory, skip this node - continue - node_properties = {} - if "properties" in node and node["properties"]: - for p in node["properties"]: - node_properties[format_property_key(p["key"])] = p["value"] - nodes.append( - Node( - id=node["id"], - type=node.get("type", "Node"), - properties=node_properties, - ) - ) - relationships = [] - for rel in argument_json["relationships"]: - # Mandatory props - if ( - not rel.get("source_node_id") - or not rel.get("target_node_id") - or not rel.get("type") - ): - continue - - # Node type copying if needed from node list - if not rel.get("source_node_type"): - try: - rel["source_node_type"] = [ - el.get("type") - for el in argument_json["nodes"] - if el["id"] == rel["source_node_id"] - ][0] - except IndexError: - rel["source_node_type"] = None - if not rel.get("target_node_type"): - try: - rel["target_node_type"] = [ - el.get("type") - for el in argument_json["nodes"] - if el["id"] == rel["target_node_id"] - ][0] - except IndexError: - rel["target_node_type"] = None - - rel_properties = {} - if "properties" in rel and rel["properties"]: - for p in rel["properties"]: - rel_properties[format_property_key(p["key"])] = p["value"] - - source_node = Node( - id=rel["source_node_id"], - type=rel["source_node_type"], - ) - target_node = Node( - id=rel["target_node_id"], - type=rel["target_node_type"], - ) - relationships.append( - Relationship( - source=source_node, - target=target_node, - type=rel["type"], - properties=rel_properties, - ) - ) - return nodes, relationships - - -def _format_nodes(nodes: List[Node]) -> List[Node]: - return [ - Node( - id=el.id.title() if isinstance(el.id, str) else el.id, - type=el.type.capitalize() # type: ignore[arg-type] - if el.type - else None, # handle empty strings # type: ignore[arg-type] - properties=el.properties, - ) - for el in nodes - ] - - -def _format_relationships(rels: List[Relationship]) -> List[Relationship]: - return [ - Relationship( - source=_format_nodes([el.source])[0], - target=_format_nodes([el.target])[0], - type=el.type.replace(" ", "_").upper(), - properties=el.properties, - ) - for el in rels - ] - - -def format_property_key(s: str) -> str: - words = s.split() - if not words: - return s - first_word = words[0].lower() - capitalized_words = [word.capitalize() for word in words[1:]] - return "".join([first_word] + capitalized_words) - - -def _convert_to_graph_document( - raw_schema: Dict[Any, Any], -) -> Tuple[List[Node], List[Relationship]]: - # If there are validation errors - if not raw_schema["parsed"]: - try: - try: # OpenAI type response - argument_json = json.loads( - raw_schema["raw"].additional_kwargs["tool_calls"][0]["function"][ - "arguments" - ] - ) - except Exception: # Google type response - try: - argument_json = json.loads( - raw_schema["raw"].additional_kwargs["function_call"][ - "arguments" - ] - ) - except Exception: # Ollama type response - argument_json = raw_schema["raw"].tool_calls[0]["args"] - if isinstance(argument_json["nodes"], str): - argument_json["nodes"] = json.loads(argument_json["nodes"]) - if isinstance(argument_json["relationships"], str): - argument_json["relationships"] = json.loads( - argument_json["relationships"] - ) - - nodes, relationships = _parse_and_clean_json(argument_json) - except Exception: # If we can't parse JSON - return ([], []) - else: # If there are no validation errors use parsed pydantic object - parsed_schema: _Graph = raw_schema["parsed"] - nodes = ( - [map_to_base_node(node) for node in parsed_schema.nodes if node.id] - if parsed_schema.nodes - else [] - ) - - relationships = ( - [ - map_to_base_relationship(rel) - for rel in parsed_schema.relationships - if rel.type and rel.source_node_id and rel.target_node_id - ] - if parsed_schema.relationships - else [] - ) - # Title / Capitalize - return _format_nodes(nodes), _format_relationships(relationships) - - -class LLMGraphTransformer: - """Transform documents into graph-based documents using a LLM. - - It allows specifying constraints on the types of nodes and relationships to include - in the output graph. The class supports extracting properties for both nodes and - relationships. - - Args: - llm (BaseLanguageModel): An instance of a language model supporting structured - output. - allowed_nodes (List[str], optional): Specifies which node types are - allowed in the graph. Defaults to an empty list, allowing all node types. - allowed_relationships (List[str], optional): Specifies which relationship types - are allowed in the graph. Defaults to an empty list, allowing all relationship - types. - prompt (Optional[ChatPromptTemplate], optional): The prompt to pass to - the LLM with additional instructions. - strict_mode (bool, optional): Determines whether the transformer should apply - filtering to strictly adhere to `allowed_nodes` and `allowed_relationships`. - Defaults to True. - node_properties (Union[bool, List[str]]): If True, the LLM can extract any - node properties from text. Alternatively, a list of valid properties can - be provided for the LLM to extract, restricting extraction to those specified. - relationship_properties (Union[bool, List[str]]): If True, the LLM can extract - any relationship properties from text. Alternatively, a list of valid - properties can be provided for the LLM to extract, restricting extraction to - those specified. - ignore_tool_usage (bool): Indicates whether the transformer should - bypass the use of structured output functionality of the language model. - If set to True, the transformer will not use the language model's native - function calling capabilities to handle structured output. Defaults to False. - - Example: - .. code-block:: python - from langchain_experimental.graph_transformers import LLMGraphTransformer - from langchain_core.documents import Document - from langchain_openai import ChatOpenAI - - llm=ChatOpenAI(temperature=0) - transformer = LLMGraphTransformer( - llm=llm, - allowed_nodes=["Person", "Organization"]) - - doc = Document(page_content="Elon Musk is suing OpenAI") - graph_documents = transformer.convert_to_graph_documents([doc]) - """ - - def __init__( - self, - llm: BaseLanguageModel, - allowed_nodes: List[str] = [], - allowed_relationships: List[str] = [], - prompt: Optional[ChatPromptTemplate] = None, - strict_mode: bool = True, - node_properties: Union[bool, List[str]] = False, - relationship_properties: Union[bool, List[str]] = False, - ignore_tool_usage: bool = False, - ) -> None: - self.allowed_nodes = allowed_nodes - self.allowed_relationships = allowed_relationships - self.strict_mode = strict_mode - self._function_call = not ignore_tool_usage - # Check if the LLM really supports structured output - if self._function_call: - try: - llm.with_structured_output(_Graph) - except NotImplementedError: - self._function_call = False - if not self._function_call: - if node_properties or relationship_properties: - raise ValueError( - "The 'node_properties' and 'relationship_properties' parameters " - "cannot be used in combination with a LLM that doesn't support " - "native function calling." - ) - try: - import json_repair # type: ignore - - self.json_repair = json_repair - except ImportError: - raise ImportError( - "Could not import json_repair python package. " - "Please install it with `pip install json-repair`." - ) - prompt = prompt or create_unstructured_prompt( - allowed_nodes, allowed_relationships - ) - self.chain = prompt | llm - else: - # Define chain - try: - llm_type = llm._llm_type # type: ignore - except AttributeError: - llm_type = None - schema = create_simple_model( - allowed_nodes, - allowed_relationships, - node_properties, - llm_type, - relationship_properties, - ) - structured_llm = llm.with_structured_output(schema, include_raw=True) - prompt = prompt or default_prompt - self.chain = prompt | structured_llm - - def process_response( - self, document: Document, config: Optional[RunnableConfig] = None - ) -> GraphDocument: - """ - Processes a single document, transforming it into a graph document using - an LLM based on the model's schema and constraints. - """ - text = document.page_content - raw_schema = self.chain.invoke({"input": text}, config=config) - if self._function_call: - raw_schema = cast(Dict[Any, Any], raw_schema) - nodes, relationships = _convert_to_graph_document(raw_schema) - else: - nodes_set = set() - relationships = [] - if not isinstance(raw_schema, str): - raw_schema = raw_schema.content - parsed_json = self.json_repair.loads(raw_schema) - if isinstance(parsed_json, dict): - parsed_json = [parsed_json] - for rel in parsed_json: - # Nodes need to be deduplicated using a set - nodes_set.add((rel["head"], rel["head_type"])) - nodes_set.add((rel["tail"], rel["tail_type"])) - - source_node = Node(id=rel["head"], type=rel["head_type"]) - target_node = Node(id=rel["tail"], type=rel["tail_type"]) - relationships.append( - Relationship( - source=source_node, target=target_node, type=rel["relation"] - ) - ) - # Create nodes list - nodes = [Node(id=el[0], type=el[1]) for el in list(nodes_set)] - - # Strict mode filtering - if self.strict_mode and (self.allowed_nodes or self.allowed_relationships): - if self.allowed_nodes: - lower_allowed_nodes = [el.lower() for el in self.allowed_nodes] - nodes = [ - node for node in nodes if node.type.lower() in lower_allowed_nodes - ] - relationships = [ - rel - for rel in relationships - if rel.source.type.lower() in lower_allowed_nodes - and rel.target.type.lower() in lower_allowed_nodes - ] - if self.allowed_relationships: - relationships = [ - rel - for rel in relationships - if rel.type.lower() - in [el.lower() for el in self.allowed_relationships] - ] - - return GraphDocument(nodes=nodes, relationships=relationships, source=document) - - def convert_to_graph_documents( - self, documents: Sequence[Document], config: Optional[RunnableConfig] = None - ) -> List[GraphDocument]: - """Convert a sequence of documents into graph documents. - - Args: - documents (Sequence[Document]): The original documents. - kwargs: Additional keyword arguments. - - Returns: - Sequence[GraphDocument]: The transformed documents as graphs. - """ - return [self.process_response(document, config) for document in documents] - - async def aprocess_response( - self, document: Document, config: Optional[RunnableConfig] = None - ) -> GraphDocument: - """ - Asynchronously processes a single document, transforming it into a - graph document. - """ - text = document.page_content - raw_schema = await self.chain.ainvoke({"input": text}, config=config) - raw_schema = cast(Dict[Any, Any], raw_schema) - nodes, relationships = _convert_to_graph_document(raw_schema) - - if self.strict_mode and (self.allowed_nodes or self.allowed_relationships): - if self.allowed_nodes: - lower_allowed_nodes = [el.lower() for el in self.allowed_nodes] - nodes = [ - node for node in nodes if node.type.lower() in lower_allowed_nodes - ] - relationships = [ - rel - for rel in relationships - if rel.source.type.lower() in lower_allowed_nodes - and rel.target.type.lower() in lower_allowed_nodes - ] - if self.allowed_relationships: - relationships = [ - rel - for rel in relationships - if rel.type.lower() - in [el.lower() for el in self.allowed_relationships] - ] - - return GraphDocument(nodes=nodes, relationships=relationships, source=document) - - async def aconvert_to_graph_documents( - self, documents: Sequence[Document], config: Optional[RunnableConfig] = None - ) -> List[GraphDocument]: - """ - Asynchronously convert a sequence of documents into graph documents. - """ - tasks = [ - asyncio.create_task(self.aprocess_response(document, config)) - for document in documents - ] - results = await asyncio.gather(*tasks) - return results diff --git a/libs/experimental/langchain_experimental/graph_transformers/relik.py b/libs/experimental/langchain_experimental/graph_transformers/relik.py deleted file mode 100644 index a1e7dd0f6b072..0000000000000 --- a/libs/experimental/langchain_experimental/graph_transformers/relik.py +++ /dev/null @@ -1,115 +0,0 @@ -import logging -from typing import Any, Dict, List, Sequence - -from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship -from langchain_core.documents import Document - -DEFAULT_NODE_TYPE = "Node" - - -class RelikGraphTransformer: - """ - A transformer class for converting documents into graph structures - using the Relik library and models. - - This class leverages relik models for extracting relationships - and nodes from text documents and converting them into a graph format. - The relationships are filtered based on a specified confidence threshold. - - For more details on the Relik library, visit their GitHub repository: - https://github.com/SapienzaNLP/relik - - Args: - model (str): The name of the pretrained Relik model to use. - Default is "relik-ie/relik-relation-extraction-small-wikipedia". - relationship_confidence_threshold (float): The confidence threshold for - filtering relationships. Default is 0.1. - model_config (Dict[str, any]): Additional configuration options for the - Relik model. Default is an empty dictionary. - ignore_self_loops (bool): Whether to ignore relationships where the - source and target nodes are the same. Default is True. - """ - - def __init__( - self, - model: str = "relik-ie/relik-relation-extraction-small", - relationship_confidence_threshold: float = 0.1, - model_config: Dict[str, Any] = {}, - ignore_self_loops: bool = True, - ) -> None: - try: - import relik # type: ignore - - # Remove default INFO logging - logging.getLogger("relik").setLevel(logging.WARNING) - except ImportError: - raise ImportError( - "Could not import relik python package. " - "Please install it with `pip install relik`." - ) - self.relik_model = relik.Relik.from_pretrained(model, **model_config) - self.relationship_confidence_threshold = relationship_confidence_threshold - self.ignore_self_loops = ignore_self_loops - - def process_document(self, document: Document) -> GraphDocument: - relik_out = self.relik_model(document.page_content) - nodes = [] - # Extract nodes - for node in relik_out.spans: - nodes.append( - Node( - id=node.text, - type=DEFAULT_NODE_TYPE - if node.label.strip() == "--NME--" - else node.label.strip(), - ) - ) - - relationships = [] - # Extract relationships - for triple in relik_out.triplets: - # Ignore relationship if below confidence threshold - if triple.confidence < self.relationship_confidence_threshold: - continue - # Ignore self loops - if self.ignore_self_loops and triple.subject.text == triple.object.text: - continue - source_node = Node( - id=triple.subject.text, - type=DEFAULT_NODE_TYPE - if triple.subject.label.strip() == "--NME--" - else triple.subject.label.strip(), - ) - target_node = Node( - id=triple.object.text, - type=DEFAULT_NODE_TYPE - if triple.object.label.strip() == "--NME--" - else triple.object.label.strip(), - ) - - relationship = Relationship( - source=source_node, - target=target_node, - type=triple.label.replace(" ", "_").upper(), - ) - relationships.append(relationship) - - return GraphDocument(nodes=nodes, relationships=relationships, source=document) - - def convert_to_graph_documents( - self, documents: Sequence[Document] - ) -> List[GraphDocument]: - """Convert a sequence of documents into graph documents. - - Args: - documents (Sequence[Document]): The original documents. - kwargs: Additional keyword arguments. - - Returns: - Sequence[GraphDocument]: The transformed documents as graphs. - """ - results = [] - for document in documents: - graph_document = self.process_document(document) - results.append(graph_document) - return results diff --git a/libs/experimental/langchain_experimental/llm_bash/__init__.py b/libs/experimental/langchain_experimental/llm_bash/__init__.py deleted file mode 100644 index cab96624b0d0f..0000000000000 --- a/libs/experimental/langchain_experimental/llm_bash/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -"""**LLM bash** is a chain that uses LLM to interpret a prompt and -executes **bash** code.""" diff --git a/libs/experimental/langchain_experimental/llm_bash/base.py b/libs/experimental/langchain_experimental/llm_bash/base.py deleted file mode 100644 index 9b54a747c3895..0000000000000 --- a/libs/experimental/langchain_experimental/llm_bash/base.py +++ /dev/null @@ -1,126 +0,0 @@ -"""Chain that interprets a prompt and executes bash operations.""" - -from __future__ import annotations - -import logging -import warnings -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain.schema import BasePromptTemplate, OutputParserException -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.language_models import BaseLanguageModel - -from langchain_experimental.llm_bash.bash import BashProcess -from langchain_experimental.llm_bash.prompt import PROMPT -from langchain_experimental.pydantic_v1 import Field, root_validator - -logger = logging.getLogger(__name__) - - -class LLMBashChain(Chain): - """Chain that interprets a prompt and executes bash operations. - - Example: - .. code-block:: python - - from langchain.chains import LLMBashChain - from langchain_community.llms import OpenAI - llm_bash = LLMBashChain.from_llm(OpenAI()) - """ - - llm_chain: LLMChain - llm: Optional[BaseLanguageModel] = None - """[Deprecated] LLM wrapper to use.""" - input_key: str = "question" #: :meta private: - output_key: str = "answer" #: :meta private: - prompt: BasePromptTemplate = PROMPT - """[Deprecated]""" - bash_process: BashProcess = Field(default_factory=BashProcess) #: :meta private: - - class Config: - arbitrary_types_allowed = True - extra = "forbid" - - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: - if "llm" in values: - warnings.warn( - "Directly instantiating an LLMBashChain with an llm is deprecated. " - "Please instantiate with llm_chain or using the from_llm class method." - ) - if "llm_chain" not in values and values["llm"] is not None: - prompt = values.get("prompt", PROMPT) - values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) - return values - - # TODO: move away from `root_validator` since it is deprecated in pydantic v2 - # and causes mypy type-checking failures (hence the `type: ignore`) - @root_validator # type: ignore[call-overload] - def validate_prompt(cls, values: Dict) -> Dict: - if values["llm_chain"].prompt.output_parser is None: - raise ValueError( - "The prompt used by llm_chain is expected to have an output_parser." - ) - return values - - @property - def input_keys(self) -> List[str]: - """Expect input key. - - :meta private: - """ - return [self.input_key] - - @property - def output_keys(self) -> List[str]: - """Expect output key. - - :meta private: - """ - return [self.output_key] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - _run_manager.on_text(inputs[self.input_key], verbose=self.verbose) - - t = self.llm_chain.predict( - question=inputs[self.input_key], callbacks=_run_manager.get_child() - ) - _run_manager.on_text(t, color="green", verbose=self.verbose) - t = t.strip() - try: - parser = self.llm_chain.prompt.output_parser - command_list = parser.parse(t) # type: ignore[union-attr] - except OutputParserException as e: - _run_manager.on_chain_error(e, verbose=self.verbose) - raise e - - if self.verbose: - _run_manager.on_text("\nCode: ", verbose=self.verbose) - _run_manager.on_text( - str(command_list), color="yellow", verbose=self.verbose - ) - output = self.bash_process.run(command_list) - _run_manager.on_text("\nAnswer: ", verbose=self.verbose) - _run_manager.on_text(output, color="yellow", verbose=self.verbose) - return {self.output_key: output} - - @property - def _chain_type(self) -> str: - return "llm_bash_chain" - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - prompt: BasePromptTemplate = PROMPT, - **kwargs: Any, - ) -> LLMBashChain: - llm_chain = LLMChain(llm=llm, prompt=prompt) - return cls(llm_chain=llm_chain, **kwargs) diff --git a/libs/experimental/langchain_experimental/llm_bash/bash.py b/libs/experimental/langchain_experimental/llm_bash/bash.py deleted file mode 100644 index f34e0d839941f..0000000000000 --- a/libs/experimental/langchain_experimental/llm_bash/bash.py +++ /dev/null @@ -1,185 +0,0 @@ -"""Wrapper around subprocess to run commands.""" - -from __future__ import annotations - -import platform -import re -import subprocess -from typing import TYPE_CHECKING, List, Union -from uuid import uuid4 - -if TYPE_CHECKING: - import pexpect - - -class BashProcess: - """Wrapper for starting subprocesses. - - Uses the python built-in subprocesses.run() - Persistent processes are **not** available - on Windows systems, as pexpect makes use of - Unix pseudoterminals (ptys). MacOS and Linux - are okay. - - Example: - .. code-block:: python - - from langchain_community.utilities.bash import BashProcess - - bash = BashProcess( - strip_newlines = False, - return_err_output = False, - persistent = False - ) - bash.run('echo \'hello world\'') - - """ - - strip_newlines: bool = False - """Whether or not to run .strip() on the output""" - return_err_output: bool = False - """Whether or not to return the output of a failed - command, or just the error message and stacktrace""" - persistent: bool = False - """Whether or not to spawn a persistent session - NOTE: Unavailable for Windows environments""" - - def __init__( - self, - strip_newlines: bool = False, - return_err_output: bool = False, - persistent: bool = False, - ): - """ - Initializes with default settings - """ - self.strip_newlines = strip_newlines - self.return_err_output = return_err_output - self.prompt = "" - self.process = None - if persistent: - self.prompt = str(uuid4()) - self.process = self._initialize_persistent_process(self, self.prompt) - - @staticmethod - def _lazy_import_pexpect() -> pexpect: - """Import pexpect only when needed.""" - if platform.system() == "Windows": - raise ValueError( - "Persistent bash processes are not yet supported on Windows." - ) - try: - import pexpect - - except ImportError: - raise ImportError( - "pexpect required for persistent bash processes." - " To install, run `pip install pexpect`." - ) - return pexpect - - @staticmethod - def _initialize_persistent_process(self: BashProcess, prompt: str) -> pexpect.spawn: - # Start bash in a clean environment - # Doesn't work on windows - """ - Initializes a persistent bash setting in a - clean environment. - NOTE: Unavailable on Windows - - Args: - Prompt(str): the bash command to execute - """ - pexpect = self._lazy_import_pexpect() - process = pexpect.spawn( - "env", ["-i", "bash", "--norc", "--noprofile"], encoding="utf-8" - ) - # Set the custom prompt - process.sendline("PS1=" + prompt) - - process.expect_exact(prompt, timeout=10) - return process - - def run(self, commands: Union[str, List[str]]) -> str: - """ - Run commands in either an existing persistent - subprocess or on in a new subprocess environment. - - Args: - commands(List[str]): a list of commands to - execute in the session - """ - if isinstance(commands, str): - commands = [commands] - commands = ";".join(commands) - if self.process is not None: - return self._run_persistent( - commands, - ) - else: - return self._run(commands) - - def _run(self, command: str) -> str: - """ - Runs a command in a subprocess and returns - the output. - - Args: - command: The command to run - """ - try: - output = subprocess.run( - command, - shell=True, - check=True, - stdout=subprocess.PIPE, - stderr=subprocess.STDOUT, - ).stdout.decode() - except subprocess.CalledProcessError as error: - if self.return_err_output: - return error.stdout.decode() - return str(error) - if self.strip_newlines: - output = output.strip() - return output - - def process_output(self, output: str, command: str) -> str: - """ - Uses regex to remove the command from the output - - Args: - output: a process' output string - command: the executed command - """ - pattern = re.escape(command) + r"\s*\n" - output = re.sub(pattern, "", output, count=1) - return output.strip() - - def _run_persistent(self, command: str) -> str: - """ - Runs commands in a persistent environment - and returns the output. - - Args: - command: the command to execute - """ - pexpect = self._lazy_import_pexpect() - if self.process is None: - raise ValueError("Process not initialized") - self.process.sendline(command) - - # Clear the output with an empty string - self.process.expect(self.prompt, timeout=10) - self.process.sendline("") - - try: - self.process.expect([self.prompt, pexpect.EOF], timeout=10) - except pexpect.TIMEOUT: - return f"Timeout error while executing command {command}" - if self.process.after == pexpect.EOF: - return f"Exited with error status: {self.process.exitstatus}" - output = self.process.before - output = self.process_output(output, command) - if self.strip_newlines: - return output.strip() - return output diff --git a/libs/experimental/langchain_experimental/llm_bash/prompt.py b/libs/experimental/langchain_experimental/llm_bash/prompt.py deleted file mode 100644 index 1c6aaf9adb108..0000000000000 --- a/libs/experimental/langchain_experimental/llm_bash/prompt.py +++ /dev/null @@ -1,67 +0,0 @@ -# flake8: noqa -from __future__ import annotations - -import re -from typing import List - -from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.output_parsers import BaseOutputParser -from langchain_core.exceptions import OutputParserException - -_PROMPT_TEMPLATE = """If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format: - -Question: "copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'" - -I need to take the following actions: -- List all files in the directory -- Create a new directory -- Copy the files from the first directory into the second directory -```bash -ls -mkdir myNewDirectory -cp -r target/* myNewDirectory -``` - -That is the format. Begin! - -Question: {question}""" - - -class BashOutputParser(BaseOutputParser): - """Parser for bash output.""" - - def parse(self, text: str) -> List[str]: - """Parse the output of a bash command.""" - - if "```bash" in text: - return self.get_code_blocks(text) - else: - raise OutputParserException( - f"Failed to parse bash output. Got: {text}", - ) - - @staticmethod - def get_code_blocks(t: str) -> List[str]: - """Get multiple code blocks from the LLM result.""" - code_blocks: List[str] = [] - # Bash markdown code blocks - pattern = re.compile(r"```bash(.*?)(?:\n\s*)```", re.DOTALL) - for match in pattern.finditer(t): - matched = match.group(1).strip() - if matched: - code_blocks.extend( - [line for line in matched.split("\n") if line.strip()] - ) - - return code_blocks - - @property - def _type(self) -> str: - return "bash" - - -PROMPT = PromptTemplate( - input_variables=["question"], - template=_PROMPT_TEMPLATE, - output_parser=BashOutputParser(), -) diff --git a/libs/experimental/langchain_experimental/llm_symbolic_math/__init__.py b/libs/experimental/langchain_experimental/llm_symbolic_math/__init__.py deleted file mode 100644 index a6c24bc0d3dda..0000000000000 --- a/libs/experimental/langchain_experimental/llm_symbolic_math/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -"""Chain that interprets a prompt and **executes python code to do math**. - -Heavily borrowed from `llm_math`, uses the [SymPy](https://www.sympy.org/) package. -""" diff --git a/libs/experimental/langchain_experimental/llm_symbolic_math/base.py b/libs/experimental/langchain_experimental/llm_symbolic_math/base.py deleted file mode 100644 index 8c671038be177..0000000000000 --- a/libs/experimental/langchain_experimental/llm_symbolic_math/base.py +++ /dev/null @@ -1,159 +0,0 @@ -"""Chain that interprets a prompt and executes python code to do symbolic math.""" - -from __future__ import annotations - -import re -from typing import Any, Dict, List, Optional - -from langchain.base_language import BaseLanguageModel -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.manager import ( - AsyncCallbackManagerForChainRun, - CallbackManagerForChainRun, -) -from langchain_core.prompts.base import BasePromptTemplate - -from langchain_experimental.llm_symbolic_math.prompt import PROMPT - - -class LLMSymbolicMathChain(Chain): - """Chain that interprets a prompt and executes python code to do symbolic math. - - It is based on the sympy library and can be used to evaluate - mathematical expressions. - See https://www.sympy.org/ for more information. - - Example: - .. code-block:: python - - from langchain.chains import LLMSymbolicMathChain - from langchain_community.llms import OpenAI - llm_symbolic_math = LLMSymbolicMathChain.from_llm(OpenAI()) - """ - - llm_chain: LLMChain - input_key: str = "question" #: :meta private: - output_key: str = "answer" #: :meta private: - - class Config: - arbitrary_types_allowed = True - extra = "forbid" - - @property - def input_keys(self) -> List[str]: - """Expect input key. - - :meta private: - """ - return [self.input_key] - - @property - def output_keys(self) -> List[str]: - """Expect output key. - - :meta private: - """ - return [self.output_key] - - def _evaluate_expression(self, expression: str) -> str: - try: - import sympy - except ImportError as e: - raise ImportError( - "Unable to import sympy, please install it with `pip install sympy`." - ) from e - try: - output = str(sympy.sympify(expression, evaluate=True)) - except Exception as e: - raise ValueError( - f'LLMSymbolicMathChain._evaluate("{expression}") raised error: {e}.' - " Please try again with a valid numerical expression" - ) - - # Remove any leading and trailing brackets from the output - return re.sub(r"^\[|\]$", "", output) - - def _process_llm_result( - self, llm_output: str, run_manager: CallbackManagerForChainRun - ) -> Dict[str, str]: - run_manager.on_text(llm_output, color="green", verbose=self.verbose) - llm_output = llm_output.strip() - text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) - if text_match: - expression = text_match.group(1) - output = self._evaluate_expression(expression) - run_manager.on_text("\nAnswer: ", verbose=self.verbose) - run_manager.on_text(output, color="yellow", verbose=self.verbose) - answer = "Answer: " + output - elif llm_output.startswith("Answer:"): - answer = llm_output - elif "Answer:" in llm_output: - answer = "Answer: " + llm_output.split("Answer:")[-1] - else: - raise ValueError(f"unknown format from LLM: {llm_output}") - return {self.output_key: answer} - - async def _aprocess_llm_result( - self, - llm_output: str, - run_manager: AsyncCallbackManagerForChainRun, - ) -> Dict[str, str]: - await run_manager.on_text(llm_output, color="green", verbose=self.verbose) - llm_output = llm_output.strip() - text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) - if text_match: - expression = text_match.group(1) - output = self._evaluate_expression(expression) - await run_manager.on_text("\nAnswer: ", verbose=self.verbose) - await run_manager.on_text(output, color="yellow", verbose=self.verbose) - answer = "Answer: " + output - elif llm_output.startswith("Answer:"): - answer = llm_output - elif "Answer:" in llm_output: - answer = "Answer: " + llm_output.split("Answer:")[-1] - else: - raise ValueError(f"unknown format from LLM: {llm_output}") - return {self.output_key: answer} - - def _call( - self, - inputs: Dict[str, str], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - _run_manager.on_text(inputs[self.input_key]) - llm_output = self.llm_chain.predict( - question=inputs[self.input_key], - stop=["```output"], - callbacks=_run_manager.get_child(), - ) - return self._process_llm_result(llm_output, _run_manager) - - async def _acall( - self, - inputs: Dict[str, str], - run_manager: Optional[AsyncCallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() - await _run_manager.on_text(inputs[self.input_key]) - llm_output = await self.llm_chain.apredict( - question=inputs[self.input_key], - stop=["```output"], - callbacks=_run_manager.get_child(), - ) - return await self._aprocess_llm_result(llm_output, _run_manager) - - @property - def _chain_type(self) -> str: - return "llm_symbolic_math_chain" - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - prompt: BasePromptTemplate = PROMPT, - **kwargs: Any, - ) -> LLMSymbolicMathChain: - llm_chain = LLMChain(llm=llm, prompt=prompt) - return cls(llm_chain=llm_chain, **kwargs) diff --git a/libs/experimental/langchain_experimental/llm_symbolic_math/prompt.py b/libs/experimental/langchain_experimental/llm_symbolic_math/prompt.py deleted file mode 100644 index 2a436eea5d378..0000000000000 --- a/libs/experimental/langchain_experimental/llm_symbolic_math/prompt.py +++ /dev/null @@ -1,51 +0,0 @@ -# flake8: noqa -from langchain_core.prompts.prompt import PromptTemplate - -_PROMPT_TEMPLATE = """Translate a math problem into a expression that can be executed using Python's SymPy library. Use the output of running this code to answer the question. - -Question: ${{Question with math problem.}} -```text -${{single line sympy expression that solves the problem}} -``` -...sympy.sympify(text, evaluate=True)... -```output -${{Output of running the code}} -``` -Answer: ${{Answer}} - -Begin. - -Question: What is the limit of sin(x) / x as x goes to 0 -```text -limit(sin(x)/x, x, 0) -``` -...sympy.sympify("limit(sin(x)/x, x, 0)")... -```output -1 -``` -Answer: 1 - -Question: What is the integral of e^-x from 0 to infinity -```text -integrate(exp(-x), (x, 0, oo)) -``` -...sympy.sympify("integrate(exp(-x), (x, 0, oo))")... -```output -1 -``` - -Question: What are the solutions to this equation x**2 - x? -```text -solveset(x**2 - x, x) -``` -...sympy.sympify("solveset(x**2 - x, x)")... -```output -[0, 1] -``` -Question: {question} -""" - -PROMPT = PromptTemplate( - input_variables=["question"], - template=_PROMPT_TEMPLATE, -) diff --git a/libs/experimental/langchain_experimental/llms/__init__.py b/libs/experimental/langchain_experimental/llms/__init__.py deleted file mode 100644 index 7171c090dc34a..0000000000000 --- a/libs/experimental/langchain_experimental/llms/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -"""Experimental **LLM** classes provide -access to the large language model (**LLM**) APIs and services. -""" - -from langchain_experimental.llms.jsonformer_decoder import JsonFormer -from langchain_experimental.llms.llamaapi import ChatLlamaAPI -from langchain_experimental.llms.lmformatenforcer_decoder import LMFormatEnforcer -from langchain_experimental.llms.rellm_decoder import RELLM - -__all__ = ["RELLM", "JsonFormer", "ChatLlamaAPI", "LMFormatEnforcer"] diff --git a/libs/experimental/langchain_experimental/llms/anthropic_functions.py b/libs/experimental/langchain_experimental/llms/anthropic_functions.py deleted file mode 100644 index ec3d465a40337..0000000000000 --- a/libs/experimental/langchain_experimental/llms/anthropic_functions.py +++ /dev/null @@ -1,228 +0,0 @@ -import json -from collections import defaultdict -from html.parser import HTMLParser -from typing import Any, DefaultDict, Dict, List, Optional, cast - -from langchain.schema import ( - ChatGeneration, - ChatResult, -) -from langchain_community.chat_models.anthropic import ChatAnthropic -from langchain_core._api.deprecation import deprecated -from langchain_core.callbacks.manager import ( - CallbackManagerForLLMRun, -) -from langchain_core.language_models import BaseChatModel -from langchain_core.messages import ( - AIMessage, - BaseMessage, - SystemMessage, -) - -from langchain_experimental.pydantic_v1 import root_validator - -prompt = """In addition to responding, you can use tools. \ -You have access to the following tools. - -{tools} - -In order to use a tool, you can use to specify the name, \ -and the tags to specify the parameters. \ -Each parameter should be passed in as <$param_name>$value, \ -Where $param_name is the name of the specific parameter, and $value \ -is the value for that parameter. - -You will then get back a response in the form -For example, if you have a tool called 'search' that accepts a single \ -parameter 'query' that could run a google search, in order to search \ -for the weather in SF you would respond: - -searchweather in SF -64 degrees""" - - -class TagParser(HTMLParser): - """Parser for the tool tags.""" - - def __init__(self) -> None: - """A heavy-handed solution, but it's fast for prototyping. - - Might be re-implemented later to restrict scope to the limited grammar, and - more efficiency. - - Uses an HTML parser to parse a limited grammar that allows - for syntax of the form: - - INPUT -> JUNK? VALUE* - JUNK -> JUNK_CHARACTER+ - JUNK_CHARACTER -> whitespace | , - VALUE -> DATA | OBJECT - OBJECT -> VALUE+ - IDENTIFIER -> [a-Z][a-Z0-9_]* - DATA -> .* - - Interprets the data to allow repetition of tags and recursion - to support representation of complex types. - - ^ Just another approximately wrong grammar specification. - """ - super().__init__() - - self.parse_data: DefaultDict[str, List[Any]] = defaultdict(list) - self.stack: List[DefaultDict[str, List[str]]] = [self.parse_data] - self.success = True - self.depth = 0 - self.data: Optional[str] = None - - def handle_starttag(self, tag: str, attrs: Any) -> None: - """Hook when a new tag is encountered.""" - self.depth += 1 - self.stack.append(defaultdict(list)) - self.data = None - - def handle_endtag(self, tag: str) -> None: - """Hook when a tag is closed.""" - self.depth -= 1 - top_of_stack = dict(self.stack.pop(-1)) # Pop the dictionary we don't need it - - # If a lead node - is_leaf = self.data is not None - # Annoying to type here, code is tested, hopefully OK - value = self.data if is_leaf else top_of_stack - # Difficult to type this correctly with mypy (maybe impossible?) - # Can be nested indefinitely, so requires self referencing type - self.stack[-1][tag].append(value) # type: ignore - # Reset the data so we if we encounter a sequence of end tags, we - # don't confuse an outer end tag for belonging to a leaf node. - self.data = None - - def handle_data(self, data: str) -> None: - """Hook when handling data.""" - stripped_data = data.strip() - # The only data that's allowed is whitespace or a comma surrounded by whitespace - if self.depth == 0 and stripped_data not in (",", ""): - # If this is triggered the parse should be considered invalid. - self.success = False - if stripped_data: # ignore whitespace-only strings - self.data = stripped_data - - -def _destrip(tool_input: Any) -> Any: - if isinstance(tool_input, dict): - return {k: _destrip(v) for k, v in tool_input.items()} - elif isinstance(tool_input, list): - if isinstance(tool_input[0], str): - if len(tool_input) == 1: - return tool_input[0] - else: - raise ValueError - elif isinstance(tool_input[0], dict): - return [_destrip(v) for v in tool_input] - else: - raise ValueError - else: - raise ValueError - - -@deprecated( - since="0.0.54", - removal="1.0", - alternative_import="langchain_anthropic.experimental.ChatAnthropicTools", -) -class AnthropicFunctions(BaseChatModel): - """Chat model for interacting with Anthropic functions.""" - - llm: BaseChatModel - - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: - values["llm"] = values.get("llm") or ChatAnthropic(**values) - return values - - @property - def model(self) -> BaseChatModel: - """For backwards compatibility.""" - return self.llm - - def _generate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> ChatResult: - forced = False - function_call = "" - if "functions" in kwargs: - # get the function call method - if "function_call" in kwargs: - function_call = kwargs["function_call"] - del kwargs["function_call"] - else: - function_call = "auto" - - # should function calling be used - if function_call != "none": - content = prompt.format(tools=json.dumps(kwargs["functions"], indent=2)) - system = SystemMessage(content=content) - messages = [system] + messages - - # is the function call a dictionary (forced function calling) - if isinstance(function_call, dict): - forced = True - function_call_name = function_call["name"] - messages.append(AIMessage(content=f"{function_call_name}")) - - del kwargs["functions"] - if stop is None: - stop = [""] - else: - stop.append("") - else: - if "function_call" in kwargs: - raise ValueError( - "if `function_call` provided, `functions` must also be" - ) - response = self.model.invoke( - messages, stop=stop, callbacks=run_manager, **kwargs - ) - completion = cast(str, response.content) - if forced: - tag_parser = TagParser() - - if "" in completion: - tag_parser.feed(completion.strip() + "") - v1 = tag_parser.parse_data["tool_input"][0] - arguments = json.dumps(_destrip(v1)) - else: - v1 = completion - arguments = "" - - kwargs = { - "function_call": { - "name": function_call_name, # type: ignore[has-type] - "arguments": arguments, - } - } - message = AIMessage(content="", additional_kwargs=kwargs) - return ChatResult(generations=[ChatGeneration(message=message)]) - elif "" in completion: - tag_parser = TagParser() - tag_parser.feed(completion.strip() + "") - msg = completion.split("")[0].strip() - v1 = tag_parser.parse_data["tool_input"][0] - kwargs = { - "function_call": { - "name": tag_parser.parse_data["tool"][0], - "arguments": json.dumps(_destrip(v1)), - } - } - message = AIMessage(content=msg, additional_kwargs=kwargs) - return ChatResult(generations=[ChatGeneration(message=message)]) - else: - response.content = cast(str, response.content).strip() - return ChatResult(generations=[ChatGeneration(message=response)]) - - @property - def _llm_type(self) -> str: - return "anthropic_functions" diff --git a/libs/experimental/langchain_experimental/llms/jsonformer_decoder.py b/libs/experimental/langchain_experimental/llms/jsonformer_decoder.py deleted file mode 100644 index 7040c5db0b27d..0000000000000 --- a/libs/experimental/langchain_experimental/llms/jsonformer_decoder.py +++ /dev/null @@ -1,69 +0,0 @@ -"""Experimental implementation of jsonformer wrapped LLM.""" - -from __future__ import annotations - -import json -from typing import TYPE_CHECKING, Any, List, Optional, cast - -from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline -from langchain_core.callbacks.manager import CallbackManagerForLLMRun - -from langchain_experimental.pydantic_v1 import Field, root_validator - -if TYPE_CHECKING: - import jsonformer - - -def import_jsonformer() -> jsonformer: - """Lazily import of the jsonformer package.""" - try: - import jsonformer - except ImportError: - raise ImportError( - "Could not import jsonformer python package. " - "Please install it with `pip install jsonformer`." - ) - return jsonformer - - -class JsonFormer(HuggingFacePipeline): - """Jsonformer wrapped LLM using HuggingFace Pipeline API. - - This pipeline is experimental and not yet stable. - """ - - json_schema: dict = Field(..., description="The JSON Schema to complete.") - max_new_tokens: int = Field( - default=200, description="Maximum number of new tokens to generate." - ) - debug: bool = Field(default=False, description="Debug mode.") - - # TODO: move away from `root_validator` since it is deprecated in pydantic v2 - # and causes mypy type-checking failures (hence the `type: ignore`) - @root_validator # type: ignore[call-overload] - def check_jsonformer_installation(cls, values: dict) -> dict: - import_jsonformer() - return values - - def _call( - self, - prompt: str, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> str: - jsonformer = import_jsonformer() - from transformers import Text2TextGenerationPipeline - - pipeline = cast(Text2TextGenerationPipeline, self.pipeline) - - model = jsonformer.Jsonformer( - model=pipeline.model, - tokenizer=pipeline.tokenizer, - json_schema=self.json_schema, - prompt=prompt, - max_number_tokens=self.max_new_tokens, - debug=self.debug, - ) - text = model() - return json.dumps(text) diff --git a/libs/experimental/langchain_experimental/llms/llamaapi.py b/libs/experimental/langchain_experimental/llms/llamaapi.py deleted file mode 100644 index 6f96ceebfa590..0000000000000 --- a/libs/experimental/langchain_experimental/llms/llamaapi.py +++ /dev/null @@ -1,126 +0,0 @@ -import json -import logging -from typing import ( - Any, - Dict, - List, - Mapping, - Optional, - Tuple, -) - -from langchain.schema import ( - ChatGeneration, - ChatResult, -) -from langchain_core.callbacks.manager import CallbackManagerForLLMRun -from langchain_core.language_models import BaseChatModel -from langchain_core.messages import ( - AIMessage, - BaseMessage, - ChatMessage, - FunctionMessage, - HumanMessage, - SystemMessage, -) - -logger = logging.getLogger(__name__) - - -def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: - role = _dict["role"] - if role == "user": - return HumanMessage(content=_dict["content"]) - elif role == "assistant": - # Fix for azure - # Also OpenAI returns None for tool invocations - content = _dict.get("content") or "" - if _dict.get("function_call"): - _dict["function_call"]["arguments"] = json.dumps( - _dict["function_call"]["arguments"] - ) - additional_kwargs = {"function_call": dict(_dict["function_call"])} - else: - additional_kwargs = {} - return AIMessage(content=content, additional_kwargs=additional_kwargs) - elif role == "system": - return SystemMessage(content=_dict["content"]) - elif role == "function": - return FunctionMessage(content=_dict["content"], name=_dict["name"]) - else: - return ChatMessage(content=_dict["content"], role=role) - - -def _convert_message_to_dict(message: BaseMessage) -> dict: - if isinstance(message, ChatMessage): - message_dict = {"role": message.role, "content": message.content} - elif isinstance(message, HumanMessage): - message_dict = {"role": "user", "content": message.content} - elif isinstance(message, AIMessage): - message_dict = {"role": "assistant", "content": message.content} - if "function_call" in message.additional_kwargs: - message_dict["function_call"] = message.additional_kwargs["function_call"] - elif isinstance(message, SystemMessage): - message_dict = {"role": "system", "content": message.content} - elif isinstance(message, FunctionMessage): - message_dict = { - "role": "function", - "content": message.content, - "name": message.name, - } - else: - raise ValueError(f"Got unknown type {message}") - if "name" in message.additional_kwargs: - message_dict["name"] = message.additional_kwargs["name"] - return message_dict - - -class ChatLlamaAPI(BaseChatModel): - """Chat model using the Llama API.""" - - client: Any #: :meta private: - - def _generate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> ChatResult: - message_dicts, params = self._create_message_dicts(messages, stop) - _params = {"messages": message_dicts} - final_params = {**params, **kwargs, **_params} - response = self.client.run(final_params).json() - return self._create_chat_result(response) - - def _create_message_dicts( - self, messages: List[BaseMessage], stop: Optional[List[str]] - ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: - params = dict(self._client_params) - if stop is not None: - if "stop" in params: - raise ValueError("`stop` found in both the input and default params.") - params["stop"] = stop - message_dicts = [_convert_message_to_dict(m) for m in messages] - return message_dicts, params - - def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult: - generations = [] - for res in response["choices"]: - message = _convert_dict_to_message(res["message"]) - gen = ChatGeneration( - message=message, - generation_info=dict(finish_reason=res.get("finish_reason")), - ) - generations.append(gen) - return ChatResult(generations=generations) - - @property - def _client_params(self) -> Mapping[str, Any]: - """Get the parameters used for the client.""" - return {} - - @property - def _llm_type(self) -> str: - """Return type of chat model.""" - return "llama-api" diff --git a/libs/experimental/langchain_experimental/llms/lmformatenforcer_decoder.py b/libs/experimental/langchain_experimental/llms/lmformatenforcer_decoder.py deleted file mode 100644 index 06913e1c7b4c3..0000000000000 --- a/libs/experimental/langchain_experimental/llms/lmformatenforcer_decoder.py +++ /dev/null @@ -1,84 +0,0 @@ -"""Experimental implementation of lm-format-enforcer wrapped LLM.""" - -from __future__ import annotations - -from typing import TYPE_CHECKING, Any, List, Optional - -from langchain.schema import LLMResult -from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline -from langchain_core.callbacks.manager import CallbackManagerForLLMRun - -from langchain_experimental.pydantic_v1 import Field - -if TYPE_CHECKING: - import lmformatenforcer - - -def import_lmformatenforcer() -> lmformatenforcer: - """Lazily import of the lmformatenforcer package.""" - try: - import lmformatenforcer - except ImportError: - raise ImportError( - "Could not import lmformatenforcer python package. " - "Please install it with `pip install lm-format-enforcer`." - ) - return lmformatenforcer - - -class LMFormatEnforcer(HuggingFacePipeline): - """LMFormatEnforcer wrapped LLM using HuggingFace Pipeline API. - - This pipeline is experimental and not yet stable. - """ - - json_schema: Optional[dict] = Field( - description="The JSON Schema to complete.", default=None - ) - regex: Optional[str] = Field( - description="The regular expression to complete.", default=None - ) - - def _generate( - self, - prompts: List[str], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> LLMResult: - lmformatenforcer = import_lmformatenforcer() - import lmformatenforcer.integrations.transformers as hf_integration - - # We integrate lmformatenforcer by adding a prefix_allowed_tokens_fn. - # It has to be done on each call, because the prefix function is stateful. - if "prefix_allowed_tokens_fn" in self.pipeline._forward_params: - raise ValueError( - "prefix_allowed_tokens_fn param is forbidden with LMFormatEnforcer." - ) - - has_json_schema = self.json_schema is not None - has_regex = self.regex is not None - if has_json_schema == has_regex: - raise ValueError( - "You must specify exactly one of json_schema or a regex, but not both." - ) - - if has_json_schema: - parser = lmformatenforcer.JsonSchemaParser(self.json_schema) - else: - parser = lmformatenforcer.RegexParser(self.regex) - - prefix_function = hf_integration.build_transformers_prefix_allowed_tokens_fn( - self.pipeline.tokenizer, parser - ) - self.pipeline._forward_params["prefix_allowed_tokens_fn"] = prefix_function - - result = super()._generate( - prompts, - stop=stop, - run_manager=run_manager, - **kwargs, - ) - - del self.pipeline._forward_params["prefix_allowed_tokens_fn"] - return result diff --git a/libs/experimental/langchain_experimental/llms/ollama_functions.py b/libs/experimental/langchain_experimental/llms/ollama_functions.py deleted file mode 100644 index 6bab424209737..0000000000000 --- a/libs/experimental/langchain_experimental/llms/ollama_functions.py +++ /dev/null @@ -1,462 +0,0 @@ -import json -import uuid -from operator import itemgetter -from typing import ( - Any, - Callable, - Dict, - List, - Optional, - Sequence, - Type, - TypedDict, - TypeVar, - Union, -) - -from langchain_community.chat_models.ollama import ChatOllama -from langchain_core._api import deprecated -from langchain_core.callbacks import ( - AsyncCallbackManagerForLLMRun, - CallbackManagerForLLMRun, -) -from langchain_core.language_models import LanguageModelInput -from langchain_core.messages import ( - AIMessage, - BaseMessage, - ToolCall, -) -from langchain_core.output_parsers.base import OutputParserLike -from langchain_core.output_parsers.json import JsonOutputParser -from langchain_core.output_parsers.pydantic import PydanticOutputParser -from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.prompts import SystemMessagePromptTemplate -from langchain_core.pydantic_v1 import ( - BaseModel, -) -from langchain_core.runnables import Runnable, RunnableLambda -from langchain_core.runnables.base import RunnableMap -from langchain_core.runnables.passthrough import RunnablePassthrough -from langchain_core.tools import BaseTool -from langchain_core.utils.pydantic import is_basemodel_instance, is_basemodel_subclass - -DEFAULT_SYSTEM_TEMPLATE = """You have access to the following tools: - -{tools} - -You must always select one of the above tools and respond with only a JSON object matching the following schema: - -{{ - "tool": , - "tool_input": -}} -""" # noqa: E501 - -DEFAULT_RESPONSE_FUNCTION = { - "name": "__conversational_response", - "description": ( - "Respond conversationally if no other tools should be called for a given query." - ), - "parameters": { - "type": "object", - "properties": { - "response": { - "type": "string", - "description": "Conversational response to the user.", - }, - }, - "required": ["response"], - }, -} - -_BM = TypeVar("_BM", bound=BaseModel) -_DictOrPydantic = Union[Dict, _BM] - - -def _is_pydantic_class(obj: Any) -> bool: - return isinstance(obj, type) and ( - is_basemodel_subclass(obj) or BaseModel in obj.__bases__ - ) - - -def convert_to_ollama_tool(tool: Any) -> Dict: - """Convert a tool to an Ollama tool.""" - description = None - if _is_pydantic_class(tool): - schema = tool.construct().schema() - name = schema["title"] - elif isinstance(tool, BaseTool): - schema = tool.tool_call_schema.schema() - name = tool.get_name() - description = tool.description - elif is_basemodel_instance(tool): - schema = tool.get_input_schema().schema() - name = tool.get_name() - description = tool.description - elif isinstance(tool, dict) and "name" in tool and "parameters" in tool: - return tool.copy() - else: - raise ValueError( - f"""Cannot convert {tool} to an Ollama tool. - {tool} needs to be a Pydantic class, model, or a dict.""" - ) - definition = {"name": name, "parameters": schema} - if description: - definition["description"] = description - - return definition - - -class _AllReturnType(TypedDict): - raw: BaseMessage - parsed: Optional[_DictOrPydantic] - parsing_error: Optional[BaseException] - - -def parse_response(message: BaseMessage) -> str: - """Extract `function_call` from `AIMessage`.""" - if isinstance(message, AIMessage): - kwargs = message.additional_kwargs - tool_calls = message.tool_calls - if len(tool_calls) > 0: - tool_call = tool_calls[-1] - args = tool_call.get("args") - return json.dumps(args) - elif "function_call" in kwargs: - if "arguments" in kwargs["function_call"]: - return kwargs["function_call"]["arguments"] - raise ValueError( - f"`arguments` missing from `function_call` within AIMessage: {message}" - ) - else: - raise ValueError("`tool_calls` missing from AIMessage: {message}") - raise ValueError(f"`message` is not an instance of `AIMessage`: {message}") - - -@deprecated( # type: ignore[arg-type] - since="0.0.64", removal="1.0", alternative_import="langchain_ollama.ChatOllama" -) -class OllamaFunctions(ChatOllama): - """Function chat model that uses Ollama API.""" - - tool_system_prompt_template: str = DEFAULT_SYSTEM_TEMPLATE - - def __init__(self, **kwargs: Any) -> None: - super().__init__(**kwargs) - - def bind_tools( - self, - tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], - **kwargs: Any, - ) -> Runnable[LanguageModelInput, BaseMessage]: - return self.bind(functions=tools, **kwargs) - - def with_structured_output( - self, - schema: Union[Dict, Type[BaseModel]], - *, - include_raw: bool = False, - **kwargs: Any, - ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: - """Model wrapper that returns outputs formatted to match the given schema. - - Args: - schema: The output schema as a dict or a Pydantic class. If a Pydantic class - then the model output will be an object of that class. If a dict then - the model output will be a dict. With a Pydantic class the returned - attributes will be validated, whereas with a dict they will not be. - include_raw: If False then only the parsed structured output is returned. If - an error occurs during model output parsing it will be raised. If True - then both the raw model response (a BaseMessage) and the parsed model - response will be returned. If an error occurs during output parsing it - will be caught and returned as well. The final output is always a dict - with keys "raw", "parsed", and "parsing_error". - - Returns: - A Runnable that takes any ChatModel input and returns as output: - - If include_raw is True then a dict with keys: - raw: BaseMessage - parsed: Optional[_DictOrPydantic] - parsing_error: Optional[BaseException] - - If include_raw is False then just _DictOrPydantic is returned, - where _DictOrPydantic depends on the schema: - - If schema is a Pydantic class then _DictOrPydantic is the Pydantic - class. - - If schema is a dict then _DictOrPydantic is a dict. - - Example: Pydantic schema (include_raw=False): - .. code-block:: python - - from langchain_experimental.llms import OllamaFunctions - from langchain_core.pydantic_v1 import BaseModel - - class AnswerWithJustification(BaseModel): - '''An answer to the user question along with justification for the answer.''' - answer: str - justification: str - - llm = OllamaFunctions(model="phi3", format="json", temperature=0) - structured_llm = llm.with_structured_output(AnswerWithJustification) - - structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") - - # -> AnswerWithJustification( - # answer='They weigh the same', - # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' - # ) - - Example: Pydantic schema (include_raw=True): - .. code-block:: python - - from langchain_experimental.llms import OllamaFunctions - from langchain_core.pydantic_v1 import BaseModel - - class AnswerWithJustification(BaseModel): - '''An answer to the user question along with justification for the answer.''' - answer: str - justification: str - - llm = OllamaFunctions(model="phi3", format="json", temperature=0) - structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) - - structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") - # -> { - # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), - # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), - # 'parsing_error': None - # } - - Example: dict schema (method="include_raw=False): - .. code-block:: python - - from langchain_experimental.llms import OllamaFunctions, convert_to_ollama_tool - from langchain_core.pydantic_v1 import BaseModel - - class AnswerWithJustification(BaseModel): - '''An answer to the user question along with justification for the answer.''' - answer: str - justification: str - - dict_schema = convert_to_ollama_tool(AnswerWithJustification) - llm = OllamaFunctions(model="phi3", format="json", temperature=0) - structured_llm = llm.with_structured_output(dict_schema) - - structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") - # -> { - # 'answer': 'They weigh the same', - # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' - # } - - - """ # noqa: E501 - if kwargs: - raise ValueError(f"Received unsupported arguments {kwargs}") - is_pydantic_schema = _is_pydantic_class(schema) - if schema is None: - raise ValueError( - "schema must be specified when method is 'function_calling'. " - "Received None." - ) - llm = self.bind_tools(tools=[schema], format="json") - if is_pydantic_schema: - output_parser: OutputParserLike = PydanticOutputParser( # type: ignore[type-var] - pydantic_object=schema # type: ignore[arg-type] - ) - else: - output_parser = JsonOutputParser() - - parser_chain = RunnableLambda(parse_response) | output_parser - if include_raw: - parser_assign = RunnablePassthrough.assign( - parsed=itemgetter("raw") | parser_chain, parsing_error=lambda _: None - ) - parser_none = RunnablePassthrough.assign(parsed=lambda _: None) - parser_with_fallback = parser_assign.with_fallbacks( - [parser_none], exception_key="parsing_error" - ) - return RunnableMap(raw=llm) | parser_with_fallback - else: - return llm | parser_chain - - def _generate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> ChatResult: - functions = kwargs.get("functions", []) - if "functions" in kwargs: - del kwargs["functions"] - if "function_call" in kwargs: - functions = [ - fn for fn in functions if fn["name"] == kwargs["function_call"]["name"] - ] - if not functions: - raise ValueError( - "If `function_call` is specified, you must also pass a " - "matching function in `functions`." - ) - del kwargs["function_call"] - functions = [convert_to_ollama_tool(fn) for fn in functions] - functions.append(DEFAULT_RESPONSE_FUNCTION) - system_message_prompt_template = SystemMessagePromptTemplate.from_template( - self.tool_system_prompt_template - ) - system_message = system_message_prompt_template.format( - tools=json.dumps(functions, indent=2) - ) - response_message = super()._generate( - [system_message] + messages, stop=stop, run_manager=run_manager, **kwargs - ) - chat_generation_content = response_message.generations[0].text - if not isinstance(chat_generation_content, str): - raise ValueError("OllamaFunctions does not support non-string output.") - try: - parsed_chat_result = json.loads(chat_generation_content) - except json.JSONDecodeError: - raise ValueError( - f"""'{self.model}' did not respond with valid JSON. - Please try again. - Response: {chat_generation_content}""" - ) - called_tool_name = ( - parsed_chat_result["tool"] if "tool" in parsed_chat_result else None - ) - called_tool = next( - (fn for fn in functions if fn["name"] == called_tool_name), None - ) - if ( - called_tool is None - or called_tool["name"] == DEFAULT_RESPONSE_FUNCTION["name"] - ): - if ( - "tool_input" in parsed_chat_result - and "response" in parsed_chat_result["tool_input"] - ): - response = parsed_chat_result["tool_input"]["response"] - elif "response" in parsed_chat_result: - response = parsed_chat_result["response"] - else: - raise ValueError( - f"Failed to parse a response from {self.model} output: " - f"{chat_generation_content}" - ) - return ChatResult( - generations=[ - ChatGeneration( - message=AIMessage( - content=response, - ) - ) - ] - ) - - called_tool_arguments = ( - parsed_chat_result["tool_input"] - if "tool_input" in parsed_chat_result - else {} - ) - - response_message_with_functions = AIMessage( - content="", - tool_calls=[ - ToolCall( - name=called_tool_name, - args=called_tool_arguments if called_tool_arguments else {}, - id=f"call_{str(uuid.uuid4()).replace('-', '')}", - ) - ], - ) - - return ChatResult( - generations=[ChatGeneration(message=response_message_with_functions)] - ) - - async def _agenerate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> ChatResult: - functions = kwargs.get("functions", []) - if "functions" in kwargs: - del kwargs["functions"] - if "function_call" in kwargs: - functions = [ - fn for fn in functions if fn["name"] == kwargs["function_call"]["name"] - ] - if not functions: - raise ValueError( - "If `function_call` is specified, you must also pass a " - "matching function in `functions`." - ) - del kwargs["function_call"] - elif not functions: - functions.append(DEFAULT_RESPONSE_FUNCTION) - if _is_pydantic_class(functions[0]): - functions = [convert_to_ollama_tool(fn) for fn in functions] - system_message_prompt_template = SystemMessagePromptTemplate.from_template( - self.tool_system_prompt_template - ) - system_message = system_message_prompt_template.format( - tools=json.dumps(functions, indent=2) - ) - response_message = await super()._agenerate( - [system_message] + messages, stop=stop, run_manager=run_manager, **kwargs - ) - chat_generation_content = response_message.generations[0].text - if not isinstance(chat_generation_content, str): - raise ValueError("OllamaFunctions does not support non-string output.") - try: - parsed_chat_result = json.loads(chat_generation_content) - except json.JSONDecodeError: - raise ValueError( - f"""'{self.model}' did not respond with valid JSON. - Please try again. - Response: {chat_generation_content}""" - ) - called_tool_name = parsed_chat_result["tool"] - called_tool_arguments = parsed_chat_result["tool_input"] - called_tool = next( - (fn for fn in functions if fn["name"] == called_tool_name), None - ) - if called_tool is None: - raise ValueError( - f"Failed to parse a function call from {self.model} output: " - f"{chat_generation_content}" - ) - if called_tool["name"] == DEFAULT_RESPONSE_FUNCTION["name"]: - return ChatResult( - generations=[ - ChatGeneration( - message=AIMessage( - content=called_tool_arguments["response"], - ) - ) - ] - ) - - response_message_with_functions = AIMessage( - content="", - additional_kwargs={ - "function_call": { - "name": called_tool_name, - "arguments": json.dumps(called_tool_arguments) - if called_tool_arguments - else "", - }, - }, - ) - return ChatResult( - generations=[ChatGeneration(message=response_message_with_functions)] - ) - - @property - def _llm_type(self) -> str: - return "ollama_functions" diff --git a/libs/experimental/langchain_experimental/llms/rellm_decoder.py b/libs/experimental/langchain_experimental/llms/rellm_decoder.py deleted file mode 100644 index c0b8d6a282898..0000000000000 --- a/libs/experimental/langchain_experimental/llms/rellm_decoder.py +++ /dev/null @@ -1,73 +0,0 @@ -"""Experimental implementation of RELLM wrapped LLM.""" - -from __future__ import annotations - -from typing import TYPE_CHECKING, Any, List, Optional, cast - -from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline -from langchain_community.llms.utils import enforce_stop_tokens -from langchain_core.callbacks.manager import CallbackManagerForLLMRun - -from langchain_experimental.pydantic_v1 import Field, root_validator - -if TYPE_CHECKING: - import rellm - from regex import Pattern as RegexPattern -else: - try: - from regex import Pattern as RegexPattern - except ImportError: - pass - - -def import_rellm() -> rellm: - """Lazily import of the rellm package.""" - try: - import rellm - except ImportError: - raise ImportError( - "Could not import rellm python package. " - "Please install it with `pip install rellm`." - ) - return rellm - - -class RELLM(HuggingFacePipeline): - """RELLM wrapped LLM using HuggingFace Pipeline API.""" - - regex: RegexPattern = Field(..., description="The structured format to complete.") - max_new_tokens: int = Field( - default=200, description="Maximum number of new tokens to generate." - ) - - # TODO: move away from `root_validator` since it is deprecated in pydantic v2 - # and causes mypy type-checking failures (hence the `type: ignore`) - @root_validator # type: ignore[call-overload] - def check_rellm_installation(cls, values: dict) -> dict: - import_rellm() - return values - - def _call( - self, - prompt: str, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> str: - rellm = import_rellm() - from transformers import Text2TextGenerationPipeline - - pipeline = cast(Text2TextGenerationPipeline, self.pipeline) - - text = rellm.complete_re( - prompt, - self.regex, - tokenizer=pipeline.tokenizer, - model=pipeline.model, - max_new_tokens=self.max_new_tokens, - ) - if stop is not None: - # This is a bit hacky, but I can't figure out a better way to enforce - # stop tokens when making calls to huggingface_hub. - text = enforce_stop_tokens(text, stop) - return text diff --git a/libs/experimental/langchain_experimental/open_clip/__init__.py b/libs/experimental/langchain_experimental/open_clip/__init__.py deleted file mode 100644 index 81064a82552fa..0000000000000 --- a/libs/experimental/langchain_experimental/open_clip/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -"""**OpenCLIP Embeddings** model. - -OpenCLIP is a multimodal model that can encode text and images into a shared space. - -See this paper for more details: https://arxiv.org/abs/2103.00020 -and [this repository](https://github.com/mlfoundations/open_clip) for details. - -""" - -from .open_clip import OpenCLIPEmbeddings - -__all__ = ["OpenCLIPEmbeddings"] diff --git a/libs/experimental/langchain_experimental/open_clip/open_clip.py b/libs/experimental/langchain_experimental/open_clip/open_clip.py deleted file mode 100644 index e5e3ed1099b11..0000000000000 --- a/libs/experimental/langchain_experimental/open_clip/open_clip.py +++ /dev/null @@ -1,92 +0,0 @@ -from typing import Any, Dict, List - -from langchain.pydantic_v1 import BaseModel, root_validator -from langchain_core.embeddings import Embeddings -from langchain_core.utils.pydantic import get_fields - - -class OpenCLIPEmbeddings(BaseModel, Embeddings): - """OpenCLIP Embeddings model.""" - - model: Any - preprocess: Any - tokenizer: Any - # Select model: https://github.com/mlfoundations/open_clip - model_name: str = "ViT-H-14" - checkpoint: str = "laion2b_s32b_b79k" - - @root_validator() - def validate_environment(cls, values: Dict) -> Dict: - """Validate that open_clip and torch libraries are installed.""" - try: - import open_clip - - # Fall back to class defaults if not provided - model_name = values.get("model_name", get_fields(cls)["model_name"].default) - checkpoint = values.get("checkpoint", get_fields(cls)["checkpoint"].default) - - # Load model - model, _, preprocess = open_clip.create_model_and_transforms( - model_name=model_name, pretrained=checkpoint - ) - tokenizer = open_clip.get_tokenizer(model_name) - values["model"] = model - values["preprocess"] = preprocess - values["tokenizer"] = tokenizer - - except ImportError: - raise ImportError( - "Please ensure both open_clip and torch libraries are installed. " - "pip install open_clip_torch torch" - ) - return values - - def embed_documents(self, texts: List[str]) -> List[List[float]]: - text_features = [] - for text in texts: - # Tokenize the text - tokenized_text = self.tokenizer(text) - - # Encode the text to get the embeddings - embeddings_tensor = self.model.encode_text(tokenized_text) - - # Normalize the embeddings - norm = embeddings_tensor.norm(p=2, dim=1, keepdim=True) - normalized_embeddings_tensor = embeddings_tensor.div(norm) - - # Convert normalized tensor to list and add to the text_features list - embeddings_list = normalized_embeddings_tensor.squeeze(0).tolist() - text_features.append(embeddings_list) - - return text_features - - def embed_query(self, text: str) -> List[float]: - return self.embed_documents([text])[0] - - def embed_image(self, uris: List[str]) -> List[List[float]]: - try: - from PIL import Image as _PILImage - except ImportError: - raise ImportError("Please install the PIL library: pip install pillow") - - # Open images directly as PIL images - pil_images = [_PILImage.open(uri) for uri in uris] - - image_features = [] - for pil_image in pil_images: - # Preprocess the image for the model - preprocessed_image = self.preprocess(pil_image).unsqueeze(0) - - # Encode the image to get the embeddings - embeddings_tensor = self.model.encode_image(preprocessed_image) - - # Normalize the embeddings tensor - norm = embeddings_tensor.norm(p=2, dim=1, keepdim=True) - normalized_embeddings_tensor = embeddings_tensor.div(norm) - - # Convert tensor to list and add to the image_features list - embeddings_list = normalized_embeddings_tensor.squeeze(0).tolist() - - image_features.append(embeddings_list) - - return image_features diff --git a/libs/experimental/langchain_experimental/openai_assistant/__init__.py b/libs/experimental/langchain_experimental/openai_assistant/__init__.py deleted file mode 100644 index 84ab8035ac393..0000000000000 --- a/libs/experimental/langchain_experimental/openai_assistant/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from langchain_experimental.openai_assistant.base import OpenAIAssistantRunnable - -__all__ = ["OpenAIAssistantRunnable"] diff --git a/libs/experimental/langchain_experimental/openai_assistant/base.py b/libs/experimental/langchain_experimental/openai_assistant/base.py deleted file mode 100644 index c6f6a34bb9608..0000000000000 --- a/libs/experimental/langchain_experimental/openai_assistant/base.py +++ /dev/null @@ -1,8 +0,0 @@ -# flake8: noqa - -# For backwards compatibility. -from langchain.agents.openai_assistant.base import ( - OpenAIAssistantAction, - OpenAIAssistantFinish, - OpenAIAssistantRunnable, -) diff --git a/libs/experimental/langchain_experimental/pal_chain/__init__.py b/libs/experimental/langchain_experimental/pal_chain/__init__.py deleted file mode 100644 index 9879946f7316f..0000000000000 --- a/libs/experimental/langchain_experimental/pal_chain/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -"""**PAL Chain** implements **Program-Aided Language** Models. - -See the paper: https://arxiv.org/pdf/2211.10435.pdf. - -This chain is vulnerable to [arbitrary code execution](https://github.com/langchain-ai/langchain/issues/5872). -""" - -from langchain_experimental.pal_chain.base import PALChain - -__all__ = ["PALChain"] diff --git a/libs/experimental/langchain_experimental/pal_chain/base.py b/libs/experimental/langchain_experimental/pal_chain/base.py deleted file mode 100644 index 77109118af55e..0000000000000 --- a/libs/experimental/langchain_experimental/pal_chain/base.py +++ /dev/null @@ -1,369 +0,0 @@ -"""Implements Program-Aided Language Models. - -This module implements the Program-Aided Language Models (PAL) for generating code -solutions. PAL is a technique described in the paper "Program-Aided Language Models" -(https://arxiv.org/pdf/2211.10435.pdf). -""" - -from __future__ import annotations - -import ast -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.language_models import BaseLanguageModel - -from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT -from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT -from langchain_experimental.pydantic_v1 import Field, root_validator -from langchain_experimental.utilities import PythonREPL - -COMMAND_EXECUTION_FUNCTIONS = [ - "system", - "exec", - "execfile", - "eval", - "__import__", - "compile", -] -COMMAND_EXECUTION_ATTRIBUTES = [ - "__import__", - "__subclasses__", - "__builtins__", - "__globals__", - "__getattribute__", - "__code__", - "__bases__", - "__mro__", - "__base__", -] - - -class PALValidation: - """Validation for PAL generated code.""" - - SOLUTION_EXPRESSION_TYPE_FUNCTION = ast.FunctionDef - SOLUTION_EXPRESSION_TYPE_VARIABLE = ast.Name - - def __init__( - self, - solution_expression_name: Optional[str] = None, - solution_expression_type: Optional[type] = None, - allow_imports: bool = False, - allow_command_exec: bool = False, - ): - """Initialize a PALValidation instance. - - Args: - solution_expression_name (str): Name of the expected solution expression. - If passed, solution_expression_type must be passed as well. - solution_expression_type (str): AST type of the expected solution - expression. If passed, solution_expression_name must be passed as well. - Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, - PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE. - allow_imports (bool): Allow import statements. - allow_command_exec (bool): Allow using known command execution functions. - """ - self.solution_expression_name = solution_expression_name - self.solution_expression_type = solution_expression_type - - if solution_expression_name is not None: - if not isinstance(self.solution_expression_name, str): - raise ValueError( - f"Expected solution_expression_name to be str, " - f"instead found {type(self.solution_expression_name)}" - ) - if solution_expression_type is not None: - if ( - self.solution_expression_type - is not self.SOLUTION_EXPRESSION_TYPE_FUNCTION - and self.solution_expression_type - is not self.SOLUTION_EXPRESSION_TYPE_VARIABLE - ): - raise ValueError( - f"Expected solution_expression_type to be one of " - f"({self.SOLUTION_EXPRESSION_TYPE_FUNCTION}," - f"{self.SOLUTION_EXPRESSION_TYPE_VARIABLE})," - f"instead found {self.solution_expression_type}" - ) - - if solution_expression_name is not None and solution_expression_type is None: - raise TypeError( - "solution_expression_name " - "requires solution_expression_type to be passed as well" - ) - if solution_expression_name is None and solution_expression_type is not None: - raise TypeError( - "solution_expression_type " - "requires solution_expression_name to be passed as well" - ) - - self.allow_imports = allow_imports - self.allow_command_exec = allow_command_exec - - -class PALChain(Chain): - """Chain that implements Program-Aided Language Models (PAL). - - This class implements the Program-Aided Language Models (PAL) for generating code - solutions. PAL is a technique described in the paper "Program-Aided Language Models" - (https://arxiv.org/pdf/2211.10435.pdf). - - *Security note*: This class implements an AI technique that generates and evaluates - Python code, which can be dangerous and requires a specially sandboxed - environment to be safely used. While this class implements some basic guardrails - by limiting available locals/globals and by parsing and inspecting - the generated Python AST using `PALValidation`, those guardrails will not - deter sophisticated attackers and are not a replacement for a proper sandbox. - Do not use this class on untrusted inputs, with elevated permissions, - or without consulting your security team about proper sandboxing! - """ - - llm_chain: LLMChain - stop: str = "\n\n" - """Stop token to use when generating code.""" - get_answer_expr: str = "print(solution())" - """Expression to use to get the answer from the generated code.""" - python_globals: Optional[Dict[str, Any]] = None - """Python globals and locals to use when executing the generated code.""" - python_locals: Optional[Dict[str, Any]] = None - """Python globals and locals to use when executing the generated code.""" - output_key: str = "result" #: :meta private: - return_intermediate_steps: bool = False - """Whether to return intermediate steps in the generated code.""" - code_validations: PALValidation = Field(default_factory=PALValidation) - """Validations to perform on the generated code.""" - timeout: Optional[int] = 10 - """Timeout in seconds for the generated code to execute.""" - allow_dangerous_code: bool = False - """This chain relies on the execution of generated code, which can be dangerous. - - This class implements an AI technique that generates and evaluates - Python code, which can be dangerous and requires a specially sandboxed - environment to be safely used. While this class implements some basic guardrails - by limiting available locals/globals and by parsing and inspecting - the generated Python AST using `PALValidation`, those guardrails will not - deter sophisticated attackers and are not a replacement for a proper sandbox. - Do not use this class on untrusted inputs, with elevated permissions, - or without consulting your security team about proper sandboxing! - - Failure to properly sandbox this class can lead to arbitrary code execution - vulnerabilities, which can lead to data breaches, data loss, or other security - incidents. - """ - - @root_validator(pre=False, skip_on_failure=True) - def post_init(cls, values: Dict) -> Dict: - if not values["allow_dangerous_code"]: - raise ValueError( - "This chain relies on the execution of generated code, " - "which can be dangerous. " - "Please read the security notice for this class, and only " - "use it if you understand the security implications. " - "If you want to proceed, you will need to opt-in, by setting " - "`allow_dangerous_code` to `True`." - ) - - return values - - class Config: - arbitrary_types_allowed = True - extra = "forbid" - - @property - def input_keys(self) -> List[str]: - """Return the singular input key. - - :meta private: - """ - return self.llm_chain.prompt.input_variables - - @property - def output_keys(self) -> List[str]: - """Return the singular output key. - - :meta private: - """ - if not self.return_intermediate_steps: - return [self.output_key] - else: - return [self.output_key, "intermediate_steps"] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - code = self.llm_chain.predict( - stop=[self.stop], callbacks=_run_manager.get_child(), **inputs - ) - _run_manager.on_text(code, color="green", end="\n", verbose=self.verbose) - PALChain.validate_code(code, self.code_validations) - - # TODO: look into why mypy thinks PythonREPL's type here is `Any` - # and therefore not callable - repl = PythonREPL( - _globals=self.python_globals, - _locals=self.python_locals, - ) # type: ignore[misc] - res = repl.run(code + f"\n{self.get_answer_expr}", timeout=self.timeout) - output = {self.output_key: res.strip()} - if self.return_intermediate_steps: - output["intermediate_steps"] = code - return output - - @classmethod - def validate_code(cls, code: str, code_validations: PALValidation) -> None: - try: - code_tree = ast.parse(code) - except (SyntaxError, UnicodeDecodeError): - raise ValueError(f"Generated code is not valid python code: {code}") - except TypeError: - raise ValueError( - f"Generated code is expected to be a string, " - f"instead found {type(code)}" - ) - except OverflowError: - raise ValueError( - f"Generated code too long / complex to be parsed by ast: {code}" - ) - - found_solution_expr = False - if code_validations.solution_expression_name is None: - # Skip validation if no solution_expression_name was given - found_solution_expr = True - - has_imports = False - top_level_nodes = list(ast.iter_child_nodes(code_tree)) - for node in top_level_nodes: - if ( - code_validations.solution_expression_name is not None - and code_validations.solution_expression_type is not None - ): - # Check root nodes (like func def) - if ( - isinstance(node, code_validations.solution_expression_type) - and hasattr(node, "name") - and node.name == code_validations.solution_expression_name - ): - found_solution_expr = True - # Check assigned nodes (like answer variable) - if isinstance(node, ast.Assign): - for target_node in node.targets: - if ( - isinstance( - target_node, code_validations.solution_expression_type - ) - and hasattr(target_node, "id") - and target_node.id - == code_validations.solution_expression_name - ): - found_solution_expr = True - if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom): - has_imports = True - - if not found_solution_expr: - raise ValueError( - f"Generated code is missing the solution expression: " - f"{code_validations.solution_expression_name} of type: " - f"{code_validations.solution_expression_type}" - ) - - if not code_validations.allow_imports and has_imports: - raise ValueError(f"Generated code has disallowed imports: {code}") - - if ( - not code_validations.allow_command_exec - or not code_validations.allow_imports - ): - for node in ast.walk(code_tree): - if ( - not code_validations.allow_command_exec - and isinstance(node, ast.Attribute) - and node.attr in COMMAND_EXECUTION_ATTRIBUTES - ): - raise ValueError( - f"Found illegal command execution function " - f"{node.attr} in code {code}" - ) - if (not code_validations.allow_command_exec) and isinstance( - node, ast.Call - ): - if ( - hasattr(node.func, "id") - and node.func.id in COMMAND_EXECUTION_FUNCTIONS - ): - raise ValueError( - f"Found illegal command execution function " - f"{node.func.id} in code {code}" - ) - - if ( - isinstance(node.func, ast.Attribute) - and node.func.attr in COMMAND_EXECUTION_FUNCTIONS - ): - raise ValueError( - f"Found illegal command execution function " - f"{node.func.attr} in code {code}" - ) - - if (not code_validations.allow_imports) and ( - isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom) - ): - raise ValueError(f"Generated code has disallowed imports: {code}") - - @classmethod - def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain: - """Load PAL from math prompt. - - Args: - llm (BaseLanguageModel): The language model to use for generating code. - - Returns: - PALChain: An instance of PALChain. - """ - llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT) - code_validations = PALValidation( - solution_expression_name="solution", - solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, - ) - - return cls( - llm_chain=llm_chain, - stop="\n\n", - get_answer_expr="print(solution())", - code_validations=code_validations, - **kwargs, - ) - - @classmethod - def from_colored_object_prompt( - cls, llm: BaseLanguageModel, **kwargs: Any - ) -> PALChain: - """Load PAL from colored object prompt. - - Args: - llm (BaseLanguageModel): The language model to use for generating code. - - Returns: - PALChain: An instance of PALChain. - """ - llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT) - code_validations = PALValidation( - solution_expression_name="answer", - solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE, - ) - return cls( - llm_chain=llm_chain, - stop="\n\n\n", - get_answer_expr="print(answer)", - code_validations=code_validations, - **kwargs, - ) - - @property - def _chain_type(self) -> str: - return "pal_chain" diff --git a/libs/experimental/langchain_experimental/pal_chain/colored_object_prompt.py b/libs/experimental/langchain_experimental/pal_chain/colored_object_prompt.py deleted file mode 100644 index ef6db2e6f54a8..0000000000000 --- a/libs/experimental/langchain_experimental/pal_chain/colored_object_prompt.py +++ /dev/null @@ -1,77 +0,0 @@ -# flake8: noqa -from langchain_core.prompts.prompt import PromptTemplate - -template = ( - """ -# Generate Python3 Code to solve problems -# Q: On the nightstand, there is a red pencil, a purple mug, a burgundy keychain, a fuchsia teddy bear, a black plate, and a blue stress ball. What color is the stress ball? -# Put objects into a dictionary for quick look up -objects = dict() -objects['pencil'] = 'red' -objects['mug'] = 'purple' -objects['keychain'] = 'burgundy' -objects['teddy bear'] = 'fuchsia' -objects['plate'] = 'black' -objects['stress ball'] = 'blue' - -# Look up the color of stress ball -stress_ball_color = objects['stress ball'] -answer = stress_ball_color - - -# Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball, a brown keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen. What is the color of the object directly to the right of the stress ball? -# Put objects into a list to record ordering -objects = [] -objects += [('paperclip', 'purple')] * 1 -objects += [('stress ball', 'pink')] * 1 -objects += [('keychain', 'brown')] * 1 -objects += [('scrunchiephone charger', 'green')] * 1 -objects += [('fidget spinner', 'mauve')] * 1 -objects += [('pen', 'burgundy')] * 1 - -# Find the index of the stress ball -stress_ball_idx = None -for i, object in enumerate(objects): - if object[0] == 'stress ball': - stress_ball_idx = i - break - -# Find the directly right object -direct_right = objects[i+1] - -# Check the directly right object's color -direct_right_color = direct_right[1] -answer = direct_right_color - - -# Q: On the nightstand, you see the following items arranged in a row: a teal plate, a burgundy keychain, a yellow scrunchiephone charger, an orange mug, a pink notebook, and a grey cup. How many non-orange items do you see to the left of the teal item? -# Put objects into a list to record ordering -objects = [] -objects += [('plate', 'teal')] * 1 -objects += [('keychain', 'burgundy')] * 1 -objects += [('scrunchiephone charger', 'yellow')] * 1 -objects += [('mug', 'orange')] * 1 -objects += [('notebook', 'pink')] * 1 -objects += [('cup', 'grey')] * 1 - -# Find the index of the teal item -teal_idx = None -for i, object in enumerate(objects): - if object[1] == 'teal': - teal_idx = i - break - -# Find non-orange items to the left of the teal item -non_orange = [object for object in objects[:i] if object[1] != 'orange'] - -# Count number of non-orange objects -num_non_orange = len(non_orange) -answer = num_non_orange - - -# Q: {question} -""".strip() - + "\n" -) - -COLORED_OBJECT_PROMPT = PromptTemplate(input_variables=["question"], template=template) diff --git a/libs/experimental/langchain_experimental/pal_chain/math_prompt.py b/libs/experimental/langchain_experimental/pal_chain/math_prompt.py deleted file mode 100644 index 873f678368951..0000000000000 --- a/libs/experimental/langchain_experimental/pal_chain/math_prompt.py +++ /dev/null @@ -1,157 +0,0 @@ -# flake8: noqa -from langchain_core.prompts.prompt import PromptTemplate - -template = ( - ''' -Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left? - -# solution in Python: - - -def solution(): - """Olivia has $23. She bought five bagels for $3 each. How much money does she have left?""" - money_initial = 23 - bagels = 5 - bagel_cost = 3 - money_spent = bagels * bagel_cost - money_left = money_initial - money_spent - result = money_left - return result - - - - - -Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday? - -# solution in Python: - - -def solution(): - """Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?""" - golf_balls_initial = 58 - golf_balls_lost_tuesday = 23 - golf_balls_lost_wednesday = 2 - golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday - result = golf_balls_left - return result - - - - - -Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room? - -# solution in Python: - - -def solution(): - """There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?""" - computers_initial = 9 - computers_per_day = 5 - num_days = 4 # 4 days between monday and thursday - computers_added = computers_per_day * num_days - computers_total = computers_initial + computers_added - result = computers_total - return result - - - - - -Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now? - -# solution in Python: - - -def solution(): - """Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?""" - toys_initial = 5 - mom_toys = 2 - dad_toys = 2 - total_received = mom_toys + dad_toys - total_toys = toys_initial + total_received - result = total_toys - return result - - - - - -Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny? - -# solution in Python: - - -def solution(): - """Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?""" - jason_lollipops_initial = 20 - jason_lollipops_after = 12 - denny_lollipops = jason_lollipops_initial - jason_lollipops_after - result = denny_lollipops - return result - - - - - -Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total? - -# solution in Python: - - -def solution(): - """Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?""" - leah_chocolates = 32 - sister_chocolates = 42 - total_chocolates = leah_chocolates + sister_chocolates - chocolates_eaten = 35 - chocolates_left = total_chocolates - chocolates_eaten - result = chocolates_left - return result - - - - - -Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? - -# solution in Python: - - -def solution(): - """If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?""" - cars_initial = 3 - cars_arrived = 2 - total_cars = cars_initial + cars_arrived - result = total_cars - return result - - - - - -Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today? - -# solution in Python: - - -def solution(): - """There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?""" - trees_initial = 15 - trees_after = 21 - trees_added = trees_after - trees_initial - result = trees_added - return result - - - - - -Q: {question} - -# solution in Python: -'''.strip() - + "\n\n\n" -) -MATH_PROMPT = PromptTemplate(input_variables=["question"], template=template) diff --git a/libs/experimental/langchain_experimental/plan_and_execute/__init__.py b/libs/experimental/langchain_experimental/plan_and_execute/__init__.py deleted file mode 100644 index 85363cd1c3997..0000000000000 --- a/libs/experimental/langchain_experimental/plan_and_execute/__init__.py +++ /dev/null @@ -1,14 +0,0 @@ -"""**Plan-and-execute agents** are planning tasks with a language model (LLM) and -executing them with a separate agent. - -""" - -from langchain_experimental.plan_and_execute.agent_executor import PlanAndExecute -from langchain_experimental.plan_and_execute.executors.agent_executor import ( - load_agent_executor, -) -from langchain_experimental.plan_and_execute.planners.chat_planner import ( - load_chat_planner, -) - -__all__ = ["PlanAndExecute", "load_agent_executor", "load_chat_planner"] diff --git a/libs/experimental/langchain_experimental/plan_and_execute/agent_executor.py b/libs/experimental/langchain_experimental/plan_and_execute/agent_executor.py deleted file mode 100644 index 2ec74339381b2..0000000000000 --- a/libs/experimental/langchain_experimental/plan_and_execute/agent_executor.py +++ /dev/null @@ -1,100 +0,0 @@ -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain_core.callbacks.manager import ( - AsyncCallbackManagerForChainRun, - CallbackManagerForChainRun, -) - -from langchain_experimental.plan_and_execute.executors.base import BaseExecutor -from langchain_experimental.plan_and_execute.planners.base import BasePlanner -from langchain_experimental.plan_and_execute.schema import ( - BaseStepContainer, - ListStepContainer, -) -from langchain_experimental.pydantic_v1 import Field - - -class PlanAndExecute(Chain): - """Plan and execute a chain of steps.""" - - planner: BasePlanner - """The planner to use.""" - executor: BaseExecutor - """The executor to use.""" - step_container: BaseStepContainer = Field(default_factory=ListStepContainer) - """The step container to use.""" - input_key: str = "input" - output_key: str = "output" - - @property - def input_keys(self) -> List[str]: - return [self.input_key] - - @property - def output_keys(self) -> List[str]: - return [self.output_key] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - plan = self.planner.plan( - inputs, - callbacks=run_manager.get_child() if run_manager else None, - ) - if run_manager: - run_manager.on_text(str(plan), verbose=self.verbose) - for step in plan.steps: - _new_inputs = { - "previous_steps": self.step_container, - "current_step": step, - "objective": inputs[self.input_key], - } - new_inputs = {**_new_inputs, **inputs} - response = self.executor.step( - new_inputs, - callbacks=run_manager.get_child() if run_manager else None, - ) - if run_manager: - run_manager.on_text( - f"*****\n\nStep: {step.value}", verbose=self.verbose - ) - run_manager.on_text( - f"\n\nResponse: {response.response}", verbose=self.verbose - ) - self.step_container.add_step(step, response) - return {self.output_key: self.step_container.get_final_response()} - - async def _acall( - self, - inputs: Dict[str, Any], - run_manager: Optional[AsyncCallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - plan = await self.planner.aplan( - inputs, - callbacks=run_manager.get_child() if run_manager else None, - ) - if run_manager: - await run_manager.on_text(str(plan), verbose=self.verbose) - for step in plan.steps: - _new_inputs = { - "previous_steps": self.step_container, - "current_step": step, - "objective": inputs[self.input_key], - } - new_inputs = {**_new_inputs, **inputs} - response = await self.executor.astep( - new_inputs, - callbacks=run_manager.get_child() if run_manager else None, - ) - if run_manager: - await run_manager.on_text( - f"*****\n\nStep: {step.value}", verbose=self.verbose - ) - await run_manager.on_text( - f"\n\nResponse: {response.response}", verbose=self.verbose - ) - self.step_container.add_step(step, response) - return {self.output_key: self.step_container.get_final_response()} diff --git a/libs/experimental/langchain_experimental/plan_and_execute/executors/__init__.py b/libs/experimental/langchain_experimental/plan_and_execute/executors/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/plan_and_execute/executors/agent_executor.py b/libs/experimental/langchain_experimental/plan_and_execute/executors/agent_executor.py deleted file mode 100644 index e0c24263cf94f..0000000000000 --- a/libs/experimental/langchain_experimental/plan_and_execute/executors/agent_executor.py +++ /dev/null @@ -1,55 +0,0 @@ -from typing import List - -from langchain.agents.agent import AgentExecutor -from langchain.agents.structured_chat.base import StructuredChatAgent -from langchain_core.language_models import BaseLanguageModel -from langchain_core.tools import BaseTool - -from langchain_experimental.plan_and_execute.executors.base import ChainExecutor - -HUMAN_MESSAGE_TEMPLATE = """Previous steps: {previous_steps} - -Current objective: {current_step} - -{agent_scratchpad}""" - -TASK_PREFIX = """{objective} - -""" - - -def load_agent_executor( - llm: BaseLanguageModel, - tools: List[BaseTool], - verbose: bool = False, - include_task_in_prompt: bool = False, -) -> ChainExecutor: - """ - Load an agent executor. - - Args: - llm: BaseLanguageModel - tools: List[BaseTool] - verbose: bool. Defaults to False. - include_task_in_prompt: bool. Defaults to False. - - Returns: - ChainExecutor - """ - input_variables = ["previous_steps", "current_step", "agent_scratchpad"] - template = HUMAN_MESSAGE_TEMPLATE - - if include_task_in_prompt: - input_variables.append("objective") - template = TASK_PREFIX + template - - agent = StructuredChatAgent.from_llm_and_tools( - llm, - tools, - human_message_template=template, - input_variables=input_variables, - ) - agent_executor = AgentExecutor.from_agent_and_tools( - agent=agent, tools=tools, verbose=verbose - ) - return ChainExecutor(chain=agent_executor) diff --git a/libs/experimental/langchain_experimental/plan_and_execute/executors/base.py b/libs/experimental/langchain_experimental/plan_and_execute/executors/base.py deleted file mode 100644 index f50c1b7fd96f9..0000000000000 --- a/libs/experimental/langchain_experimental/plan_and_execute/executors/base.py +++ /dev/null @@ -1,45 +0,0 @@ -from abc import abstractmethod -from typing import Any - -from langchain.chains.base import Chain -from langchain_core.callbacks.manager import Callbacks - -from langchain_experimental.plan_and_execute.schema import StepResponse -from langchain_experimental.pydantic_v1 import BaseModel - - -class BaseExecutor(BaseModel): - """Base executor.""" - - @abstractmethod - def step( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> StepResponse: - """Take step.""" - - @abstractmethod - async def astep( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> StepResponse: - """Take async step.""" - - -class ChainExecutor(BaseExecutor): - """Chain executor.""" - - chain: Chain - """The chain to use.""" - - def step( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> StepResponse: - """Take step.""" - response = self.chain.run(**inputs, callbacks=callbacks) - return StepResponse(response=response) - - async def astep( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> StepResponse: - """Take step.""" - response = await self.chain.arun(**inputs, callbacks=callbacks) - return StepResponse(response=response) diff --git a/libs/experimental/langchain_experimental/plan_and_execute/planners/__init__.py b/libs/experimental/langchain_experimental/plan_and_execute/planners/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/plan_and_execute/planners/base.py b/libs/experimental/langchain_experimental/plan_and_execute/planners/base.py deleted file mode 100644 index 9ec4da73536af..0000000000000 --- a/libs/experimental/langchain_experimental/plan_and_execute/planners/base.py +++ /dev/null @@ -1,47 +0,0 @@ -from abc import abstractmethod -from typing import Any, List, Optional - -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.manager import Callbacks - -from langchain_experimental.plan_and_execute.schema import Plan, PlanOutputParser -from langchain_experimental.pydantic_v1 import BaseModel - - -class BasePlanner(BaseModel): - """Base planner.""" - - @abstractmethod - def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: - """Given input, decide what to do.""" - - @abstractmethod - async def aplan( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> Plan: - """Given input, asynchronously decide what to do.""" - - -class LLMPlanner(BasePlanner): - """LLM planner.""" - - llm_chain: LLMChain - """The LLM chain to use.""" - output_parser: PlanOutputParser - """The output parser to use.""" - stop: Optional[List] = None - """The stop list to use.""" - - def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: - """Given input, decide what to do.""" - llm_response = self.llm_chain.run(**inputs, stop=self.stop, callbacks=callbacks) - return self.output_parser.parse(llm_response) - - async def aplan( - self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any - ) -> Plan: - """Given input, asynchronously decide what to do.""" - llm_response = await self.llm_chain.arun( - **inputs, stop=self.stop, callbacks=callbacks - ) - return self.output_parser.parse(llm_response) diff --git a/libs/experimental/langchain_experimental/plan_and_execute/planners/chat_planner.py b/libs/experimental/langchain_experimental/plan_and_execute/planners/chat_planner.py deleted file mode 100644 index 704543e54cd7b..0000000000000 --- a/libs/experimental/langchain_experimental/plan_and_execute/planners/chat_planner.py +++ /dev/null @@ -1,59 +0,0 @@ -import re - -from langchain.chains import LLMChain -from langchain_core.language_models import BaseLanguageModel -from langchain_core.messages import SystemMessage -from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate - -from langchain_experimental.plan_and_execute.planners.base import LLMPlanner -from langchain_experimental.plan_and_execute.schema import ( - Plan, - PlanOutputParser, - Step, -) - -SYSTEM_PROMPT = ( - "Let's first understand the problem and devise a plan to solve the problem." - " Please output the plan starting with the header 'Plan:' " - "and then followed by a numbered list of steps. " - "Please make the plan the minimum number of steps required " - "to accurately complete the task. If the task is a question, " - "the final step should almost always be 'Given the above steps taken, " - "please respond to the users original question'. " - "At the end of your plan, say ''" -) - - -class PlanningOutputParser(PlanOutputParser): - """Planning output parser.""" - - def parse(self, text: str) -> Plan: - steps = [Step(value=v) for v in re.split("\n\s*\d+\. ", text)[1:]] - return Plan(steps=steps) - - -def load_chat_planner( - llm: BaseLanguageModel, system_prompt: str = SYSTEM_PROMPT -) -> LLMPlanner: - """ - Load a chat planner. - - Args: - llm: Language model. - system_prompt: System prompt. - - Returns: - LLMPlanner - """ - prompt_template = ChatPromptTemplate.from_messages( - [ - SystemMessage(content=system_prompt), - HumanMessagePromptTemplate.from_template("{input}"), - ] - ) - llm_chain = LLMChain(llm=llm, prompt=prompt_template) - return LLMPlanner( - llm_chain=llm_chain, - output_parser=PlanningOutputParser(), - stop=[""], - ) diff --git a/libs/experimental/langchain_experimental/plan_and_execute/schema.py b/libs/experimental/langchain_experimental/plan_and_execute/schema.py deleted file mode 100644 index 2c37f92c916d7..0000000000000 --- a/libs/experimental/langchain_experimental/plan_and_execute/schema.py +++ /dev/null @@ -1,63 +0,0 @@ -from abc import abstractmethod -from typing import List, Tuple - -from langchain_core.output_parsers import BaseOutputParser - -from langchain_experimental.pydantic_v1 import BaseModel, Field - - -class Step(BaseModel): - """Step.""" - - value: str - """The value.""" - - -class Plan(BaseModel): - """Plan.""" - - steps: List[Step] - """The steps.""" - - -class StepResponse(BaseModel): - """Step response.""" - - response: str - """The response.""" - - -class BaseStepContainer(BaseModel): - """Base step container.""" - - @abstractmethod - def add_step(self, step: Step, step_response: StepResponse) -> None: - """Add step and step response to the container.""" - - @abstractmethod - def get_final_response(self) -> str: - """Return the final response based on steps taken.""" - - -class ListStepContainer(BaseStepContainer): - """Container for List of steps.""" - - steps: List[Tuple[Step, StepResponse]] = Field(default_factory=list) - """The steps.""" - - def add_step(self, step: Step, step_response: StepResponse) -> None: - self.steps.append((step, step_response)) - - def get_steps(self) -> List[Tuple[Step, StepResponse]]: - return self.steps - - def get_final_response(self) -> str: - return self.steps[-1][1].response - - -class PlanOutputParser(BaseOutputParser): - """Plan output parser.""" - - @abstractmethod - def parse(self, text: str) -> Plan: - """Parse into a plan.""" diff --git a/libs/experimental/langchain_experimental/prompt_injection_identifier/__init__.py b/libs/experimental/langchain_experimental/prompt_injection_identifier/__init__.py deleted file mode 100644 index aba9151fc1aa3..0000000000000 --- a/libs/experimental/langchain_experimental/prompt_injection_identifier/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -"""**HuggingFace Injection Identifier** is a tool that uses -[HuggingFace Prompt Injection model](https://huggingface.co/deepset/deberta-v3-base-injection) -to detect prompt injection attacks. -""" - -from langchain_experimental.prompt_injection_identifier.hugging_face_identifier import ( - HuggingFaceInjectionIdentifier, -) - -__all__ = ["HuggingFaceInjectionIdentifier"] diff --git a/libs/experimental/langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py b/libs/experimental/langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py deleted file mode 100644 index 36ba27cc4de40..0000000000000 --- a/libs/experimental/langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py +++ /dev/null @@ -1,101 +0,0 @@ -"""Tool for the identification of prompt injection attacks.""" - -from __future__ import annotations - -from typing import TYPE_CHECKING, Union - -from langchain.pydantic_v1 import Field, root_validator -from langchain_core.tools import BaseTool - -if TYPE_CHECKING: - from transformers import Pipeline - - -class PromptInjectionException(ValueError): - """Exception raised when prompt injection attack is detected.""" - - def __init__( - self, message: str = "Prompt injection attack detected", score: float = 1.0 - ): - self.message = message - self.score = score - - super().__init__(self.message) - - -def _model_default_factory( - model_name: str = "protectai/deberta-v3-base-prompt-injection-v2", -) -> Pipeline: - try: - from transformers import ( - AutoModelForSequenceClassification, - AutoTokenizer, - pipeline, - ) - except ImportError as e: - raise ImportError( - "Cannot import transformers, please install with " - "`pip install transformers`." - ) from e - - tokenizer = AutoTokenizer.from_pretrained(model_name) - model = AutoModelForSequenceClassification.from_pretrained(model_name) - - return pipeline( - "text-classification", - model=model, - tokenizer=tokenizer, - max_length=512, # default length of BERT models - truncation=True, # otherwise it will fail on long prompts - ) - - -class HuggingFaceInjectionIdentifier(BaseTool): - """Tool that uses HuggingFace Prompt Injection model to - detect prompt injection attacks.""" - - name: str = "hugging_face_injection_identifier" - description: str = ( - "A wrapper around HuggingFace Prompt Injection security model. " - "Useful for when you need to ensure that prompt is free of injection attacks. " - "Input should be any message from the user." - ) - model: Union[Pipeline, str, None] = Field(default_factory=_model_default_factory) - """Model to use for prompt injection detection. - - Can be specified as transformers Pipeline or string. String should correspond to the - model name of a text-classification transformers model. Defaults to - ``protectai/deberta-v3-base-prompt-injection-v2`` model. - """ - threshold: float = Field( - description="Threshold for prompt injection detection.", default=0.5 - ) - """Threshold for prompt injection detection. - - Defaults to 0.5.""" - injection_label: str = Field( - description="Label of the injection for prompt injection detection.", - default="INJECTION", - ) - """Label for prompt injection detection model. - - Defaults to ``INJECTION``. Value depends on the model used.""" - - @root_validator(pre=True) - def validate_environment(cls, values: dict) -> dict: - if isinstance(values.get("model"), str): - values["model"] = _model_default_factory(model_name=values["model"]) - return values - - def _run(self, query: str) -> str: - """Use the tool.""" - result = self.model(query) # type: ignore - score = ( - result[0]["score"] - if result[0]["label"] == self.injection_label - else 1 - result[0]["score"] - ) - if score > self.threshold: - raise PromptInjectionException("Prompt injection attack detected", score) - - return query diff --git a/libs/experimental/langchain_experimental/prompts/__init__.py b/libs/experimental/langchain_experimental/prompts/__init__.py deleted file mode 100644 index 24a1a7351a9f4..0000000000000 --- a/libs/experimental/langchain_experimental/prompts/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -"""Unified method for **loading a prompt** from LangChainHub or local file system.""" - -from langchain_experimental.prompts.load import load_prompt - -__all__ = ["load_prompt"] diff --git a/libs/experimental/langchain_experimental/prompts/load.py b/libs/experimental/langchain_experimental/prompts/load.py deleted file mode 100644 index 22bd8c9a9b254..0000000000000 --- a/libs/experimental/langchain_experimental/prompts/load.py +++ /dev/null @@ -1,3 +0,0 @@ -from langchain_core.prompts.loading import load_prompt - -__all__ = ["load_prompt"] diff --git a/libs/experimental/langchain_experimental/py.typed b/libs/experimental/langchain_experimental/py.typed deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/pydantic_v1/__init__.py b/libs/experimental/langchain_experimental/pydantic_v1/__init__.py deleted file mode 100644 index 826f1c5008799..0000000000000 --- a/libs/experimental/langchain_experimental/pydantic_v1/__init__.py +++ /dev/null @@ -1,32 +0,0 @@ -import typing -from importlib import metadata - -## Create namespaces for pydantic v1 and v2. -# This code must stay at the top of the file before other modules may -# attempt to import pydantic since it adds pydantic_v1 and pydantic_v2 to sys.modules. -# -# This hack is done for the following reasons: -# * Langchain will attempt to remain compatible with both pydantic v1 and v2 since -# both dependencies and dependents may be stuck on either version of v1 or v2. -# * Creating namespaces for pydantic v1 and v2 should allow us to write code that -# unambiguously uses either v1 or v2 API. -# * This change is easier to roll out and roll back. - -# It's currently impossible to support mypy for both pydantic v1 and v2 at once: -# https://github.com/pydantic/pydantic/issues/6022 -# -# In the lint environment, pydantic is currently v1. -# When we upgrade it to pydantic v2, we'll need -# to replace this with `from pydantic.v1 import *`. -if typing.TYPE_CHECKING: - from pydantic import * # noqa: F403 -else: - try: - from pydantic.v1 import * # noqa: F403 - except ImportError: - from pydantic import * # noqa: F403 - -try: - _PYDANTIC_MAJOR_VERSION: int = int(metadata.version("pydantic").split(".")[0]) -except metadata.PackageNotFoundError: - _PYDANTIC_MAJOR_VERSION = 0 diff --git a/libs/experimental/langchain_experimental/pydantic_v1/dataclasses.py b/libs/experimental/langchain_experimental/pydantic_v1/dataclasses.py deleted file mode 100644 index 25a7810a046dd..0000000000000 --- a/libs/experimental/langchain_experimental/pydantic_v1/dataclasses.py +++ /dev/null @@ -1,15 +0,0 @@ -import typing - -# It's currently impossible to support mypy for both pydantic v1 and v2 at once: -# https://github.com/pydantic/pydantic/issues/6022 -# -# In the lint environment, pydantic is currently v1. -# When we upgrade it to pydantic v2, we'll need to -# replace this with `from pydantic.v1.dataclasses import *`. -if typing.TYPE_CHECKING: - from pydantic.dataclasses import * # noqa: F403 -else: - try: - from pydantic.v1.dataclasses import * # noqa: F403 - except ImportError: - from pydantic.dataclasses import * # noqa: F403 diff --git a/libs/experimental/langchain_experimental/pydantic_v1/main.py b/libs/experimental/langchain_experimental/pydantic_v1/main.py deleted file mode 100644 index 2fa4c995872e3..0000000000000 --- a/libs/experimental/langchain_experimental/pydantic_v1/main.py +++ /dev/null @@ -1,15 +0,0 @@ -import typing - -# It's currently impossible to support mypy for both pydantic v1 and v2 at once: -# https://github.com/pydantic/pydantic/issues/6022 -# -# In the lint environment, pydantic is currently v1. -# When we upgrade it to pydantic v2, we'll need -# to replace this with `from pydantic.v1.main import *`. -if typing.TYPE_CHECKING: - from pydantic.main import * # noqa: F403 -else: - try: - from pydantic.v1.main import * # noqa: F403 - except ImportError: - from pydantic.main import * # noqa: F403 diff --git a/libs/experimental/langchain_experimental/recommenders/__init__.py b/libs/experimental/langchain_experimental/recommenders/__init__.py deleted file mode 100644 index 2c2ec65f8a491..0000000000000 --- a/libs/experimental/langchain_experimental/recommenders/__init__.py +++ /dev/null @@ -1,13 +0,0 @@ -"""**Amazon Personalize** primitives. - -[Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html) -is a fully managed machine learning service that uses your data to generate -item recommendations for your users. -""" - -from langchain_experimental.recommenders.amazon_personalize import AmazonPersonalize -from langchain_experimental.recommenders.amazon_personalize_chain import ( - AmazonPersonalizeChain, -) - -__all__ = ["AmazonPersonalize", "AmazonPersonalizeChain"] diff --git a/libs/experimental/langchain_experimental/recommenders/amazon_personalize.py b/libs/experimental/langchain_experimental/recommenders/amazon_personalize.py deleted file mode 100644 index 6f24bc02c845a..0000000000000 --- a/libs/experimental/langchain_experimental/recommenders/amazon_personalize.py +++ /dev/null @@ -1,199 +0,0 @@ -from typing import Any, List, Mapping, Optional, Sequence - - -class AmazonPersonalize: - """Amazon Personalize Runtime wrapper for executing real-time operations. - - See [this link for more details](https://docs.aws.amazon.com/personalize/latest/dg/API_Operations_Amazon_Personalize_Runtime.html). - - Args: - campaign_arn: str, Optional: The Amazon Resource Name (ARN) of the campaign - to use for getting recommendations. - recommender_arn: str, Optional: The Amazon Resource Name (ARN) of the - recommender to use to get recommendations - client: Optional: boto3 client - credentials_profile_name: str, Optional :AWS profile name - region_name: str, Optional: AWS region, e.g., us-west-2 - - Example: - .. code-block:: python - - personalize_client = AmazonPersonalize ( - campaignArn='' ) - """ - - def __init__( - self, - campaign_arn: Optional[str] = None, - recommender_arn: Optional[str] = None, - client: Optional[Any] = None, - credentials_profile_name: Optional[str] = None, - region_name: Optional[str] = None, - ): - self.campaign_arn = campaign_arn - self.recommender_arn = recommender_arn - - if campaign_arn and recommender_arn: - raise ValueError( - "Cannot initialize AmazonPersonalize with both " - "campaign_arn and recommender_arn." - ) - - if not campaign_arn and not recommender_arn: - raise ValueError( - "Cannot initialize AmazonPersonalize. Provide one of " - "campaign_arn or recommender_arn" - ) - - try: - if client is not None: - self.client = client - else: - import boto3 - import botocore.config - - if credentials_profile_name is not None: - session = boto3.Session(profile_name=credentials_profile_name) - else: - # use default credentials - session = boto3.Session() - - client_params = {} - if region_name: - client_params["region_name"] = region_name - - service = "personalize-runtime" - session_config = botocore.config.Config(user_agent_extra="langchain") - client_params["config"] = session_config - self.client = session.client(service, **client_params) - - except ImportError: - raise ModuleNotFoundError( - "Could not import boto3 python package. " - "Please install it with `pip install boto3`." - ) - - def get_recommendations( - self, - user_id: Optional[str] = None, - item_id: Optional[str] = None, - filter_arn: Optional[str] = None, - filter_values: Optional[Mapping[str, str]] = None, - num_results: Optional[int] = 10, - context: Optional[Mapping[str, str]] = None, - promotions: Optional[Sequence[Mapping[str, Any]]] = None, - metadata_columns: Optional[Mapping[str, Sequence[str]]] = None, - **kwargs: Any, - ) -> Mapping[str, Any]: - """Get recommendations from Amazon Personalize service. - - See more details at: - https://docs.aws.amazon.com/personalize/latest/dg/API_RS_GetRecommendations.html - - Args: - user_id: str, Optional: The user identifier - for which to retrieve recommendations - item_id: str, Optional: The item identifier - for which to retrieve recommendations - filter_arn: str, Optional: The ARN of the filter - to apply to the returned recommendations - filter_values: Mapping, Optional: The values - to use when filtering recommendations. - num_results: int, Optional: Default=10: The number of results to return - context: Mapping, Optional: The contextual metadata - to use when getting recommendations - promotions: Sequence, Optional: The promotions - to apply to the recommendation request. - metadata_columns: Mapping, Optional: The metadata Columns to be returned - as part of the response. - - Returns: - response: Mapping[str, Any]: Returns an itemList and recommendationId. - - Example: - .. code-block:: python - - personalize_client = AmazonPersonalize(campaignArn='' )\n - response = personalize_client.get_recommendations(user_id="1") - - """ - if not user_id and not item_id: - raise ValueError("One of user_id or item_id is required") - - if filter_arn: - kwargs["filterArn"] = filter_arn - if filter_values: - kwargs["filterValues"] = filter_values - if user_id: - kwargs["userId"] = user_id - if num_results: - kwargs["numResults"] = num_results - if context: - kwargs["context"] = context - if promotions: - kwargs["promotions"] = promotions - if item_id: - kwargs["itemId"] = item_id - if metadata_columns: - kwargs["metadataColumns"] = metadata_columns - if self.campaign_arn: - kwargs["campaignArn"] = self.campaign_arn - if self.recommender_arn: - kwargs["recommenderArn"] = self.recommender_arn - - return self.client.get_recommendations(**kwargs) - - def get_personalized_ranking( - self, - user_id: str, - input_list: List[str], - filter_arn: Optional[str] = None, - filter_values: Optional[Mapping[str, str]] = None, - context: Optional[Mapping[str, str]] = None, - metadata_columns: Optional[Mapping[str, Sequence[str]]] = None, - **kwargs: Any, - ) -> Mapping[str, Any]: - """Re-ranks a list of recommended items for the given user. - - https://docs.aws.amazon.com/personalize/latest/dg/API_RS_GetPersonalizedRanking.html - - Args: - user_id: str, Required: The user identifier - for which to retrieve recommendations - input_list: List[str], Required: A list of items (by itemId) to rank - filter_arn: str, Optional: The ARN of the filter to apply - filter_values: Mapping, Optional: The values to use - when filtering recommendations. - context: Mapping, Optional: The contextual metadata - to use when getting recommendations - metadata_columns: Mapping, Optional: The metadata Columns to be returned - as part of the response. - - Returns: - response: Mapping[str, Any]: Returns personalizedRanking - and recommendationId. - - Example: - .. code-block:: python - - personalize_client = AmazonPersonalize(campaignArn='' )\n - response = personalize_client.get_personalized_ranking(user_id="1", - input_list=["123,"256"]) - - """ - - if filter_arn: - kwargs["filterArn"] = filter_arn - if filter_values: - kwargs["filterValues"] = filter_values - if user_id: - kwargs["userId"] = user_id - if input_list: - kwargs["inputList"] = input_list - if context: - kwargs["context"] = context - if metadata_columns: - kwargs["metadataColumns"] = metadata_columns - kwargs["campaignArn"] = self.campaign_arn - - return self.client.get_personalized_ranking(kwargs) diff --git a/libs/experimental/langchain_experimental/recommenders/amazon_personalize_chain.py b/libs/experimental/langchain_experimental/recommenders/amazon_personalize_chain.py deleted file mode 100644 index a7252010e04ee..0000000000000 --- a/libs/experimental/langchain_experimental/recommenders/amazon_personalize_chain.py +++ /dev/null @@ -1,192 +0,0 @@ -from __future__ import annotations - -from typing import Any, Dict, List, Mapping, Optional, cast - -from langchain.chains import LLMChain -from langchain.chains.base import Chain -from langchain.schema.language_model import BaseLanguageModel -from langchain_core.callbacks.manager import ( - CallbackManagerForChainRun, -) -from langchain_core.prompts.prompt import PromptTemplate - -from langchain_experimental.recommenders.amazon_personalize import AmazonPersonalize - -SUMMARIZE_PROMPT_QUERY = """ -Summarize the recommended items for a user from the items list in tag below. -Make correlation into the items in the list and provide a summary. - - {result} - -""" - -SUMMARIZE_PROMPT = PromptTemplate( - input_variables=["result"], template=SUMMARIZE_PROMPT_QUERY -) - -INTERMEDIATE_STEPS_KEY = "intermediate_steps" - -# Input Key Names to be used -USER_ID_INPUT_KEY = "user_id" -ITEM_ID_INPUT_KEY = "item_id" -INPUT_LIST_INPUT_KEY = "input_list" -FILTER_ARN_INPUT_KEY = "filter_arn" -FILTER_VALUES_INPUT_KEY = "filter_values" -CONTEXT_INPUT_KEY = "context" -PROMOTIONS_INPUT_KEY = "promotions" -METADATA_COLUMNS_INPUT_KEY = "metadata_columns" -RESULT_OUTPUT_KEY = "result" - - -class AmazonPersonalizeChain(Chain): - """Chain for retrieving recommendations from Amazon Personalize, - and summarizing them. - - It only returns recommendations if return_direct=True. - It can also be used in sequential chains for working with - the output of Amazon Personalize. - - Example: - .. code-block:: python - - chain = PersonalizeChain.from_llm(llm=agent_llm, client=personalize_lg, - return_direct=True)\n - response = chain.run({'user_id':'1'})\n - response = chain.run({'user_id':'1', 'item_id':'234'}) - """ - - client: AmazonPersonalize - summarization_chain: LLMChain - return_direct: bool = False - return_intermediate_steps: bool = False - is_ranking_recipe: bool = False - - @property - def input_keys(self) -> List[str]: - """This returns an empty list since not there are optional - input_keys and none is required. - - :meta private: - """ - return [] - - @property - def output_keys(self) -> List[str]: - """Will always return result key. - - :meta private: - """ - return [RESULT_OUTPUT_KEY] - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - client: AmazonPersonalize, - prompt_template: PromptTemplate = SUMMARIZE_PROMPT, - is_ranking_recipe: bool = False, - **kwargs: Any, - ) -> AmazonPersonalizeChain: - """Initializes the Personalize Chain with LLMAgent, Personalize Client, - Prompts to be used - - Args: - llm: BaseLanguageModel: The LLM to be used in the Chain - client: AmazonPersonalize: The client created to support - invoking AmazonPersonalize - prompt_template: PromptTemplate: The prompt template which can be - invoked with the output from Amazon Personalize - is_ranking_recipe: bool: default: False: specifies - if the trained recipe is USER_PERSONALIZED_RANKING - - Example: - .. code-block:: python - - chain = PersonalizeChain.from_llm(llm=agent_llm, - client=personalize_lg, return_direct=True)\n - response = chain.run({'user_id':'1'})\n - response = chain.run({'user_id':'1', 'item_id':'234'}) - - RANDOM_PROMPT_QUERY=" Summarize recommendations in {result}" - chain = PersonalizeChain.from_llm(llm=agent_llm, - client=personalize_lg, prompt_template=PROMPT_TEMPLATE)\n - """ - summarization_chain = LLMChain(llm=llm, prompt=prompt_template) - - return cls( - summarization_chain=summarization_chain, - client=client, - is_ranking_recipe=is_ranking_recipe, - **kwargs, - ) - - def _call( - self, - inputs: Mapping[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - """Retrieves recommendations by invoking Amazon Personalize, - and invokes an LLM using the default/overridden - prompt template with the output from Amazon Personalize - - Args: - inputs: Mapping [str, Any] : Provide input identifiers in a map. - For example - {'user_id','1'} or - {'user_id':'1', 'item_id':'123'}. You can also pass the - filter_arn, filter_values as an - input. - """ - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - callbacks = _run_manager.get_child() - - user_id = inputs.get(USER_ID_INPUT_KEY) - item_id = inputs.get(ITEM_ID_INPUT_KEY) - input_list = inputs.get(INPUT_LIST_INPUT_KEY) - filter_arn = inputs.get(FILTER_ARN_INPUT_KEY) - filter_values = inputs.get(FILTER_VALUES_INPUT_KEY) - promotions = inputs.get(PROMOTIONS_INPUT_KEY) - context = inputs.get(CONTEXT_INPUT_KEY) - metadata_columns = inputs.get(METADATA_COLUMNS_INPUT_KEY) - - intermediate_steps: List = [] - intermediate_steps.append({"Calling Amazon Personalize"}) - - if self.is_ranking_recipe: - response = self.client.get_personalized_ranking( - user_id=str(user_id), - input_list=cast(List[str], input_list), - filter_arn=filter_arn, - filter_values=filter_values, - context=context, - metadata_columns=metadata_columns, - ) - else: - response = self.client.get_recommendations( - user_id=user_id, - item_id=item_id, - filter_arn=filter_arn, - filter_values=filter_values, - context=context, - promotions=promotions, - metadata_columns=metadata_columns, - ) - - _run_manager.on_text("Call to Amazon Personalize complete \n") - - if self.return_direct: - final_result = response - else: - result = self.summarization_chain( - {RESULT_OUTPUT_KEY: response}, callbacks=callbacks - ) - final_result = result[self.summarization_chain.output_key] - - intermediate_steps.append({"context": response}) - chain_result: Dict[str, Any] = {RESULT_OUTPUT_KEY: final_result} - if self.return_intermediate_steps: - chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps - return chain_result - - @property - def _chain_type(self) -> str: - return "amazon_personalize_chain" diff --git a/libs/experimental/langchain_experimental/retrievers/__init__.py b/libs/experimental/langchain_experimental/retrievers/__init__.py deleted file mode 100644 index 0f8ca9cb81f65..0000000000000 --- a/libs/experimental/langchain_experimental/retrievers/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -"""**Retriever** class returns Documents given a text **query**. - -It is more general than a vector store. A retriever does not need to be able to -store documents, only to return (or retrieve) it. -""" diff --git a/libs/experimental/langchain_experimental/retrievers/vector_sql_database.py b/libs/experimental/langchain_experimental/retrievers/vector_sql_database.py deleted file mode 100644 index 58b41e4c5c3b9..0000000000000 --- a/libs/experimental/langchain_experimental/retrievers/vector_sql_database.py +++ /dev/null @@ -1,40 +0,0 @@ -"""Vector SQL Database Chain Retriever""" - -from typing import Any, Dict, List - -from langchain_core.callbacks.manager import ( - AsyncCallbackManagerForRetrieverRun, - CallbackManagerForRetrieverRun, -) -from langchain_core.documents import Document -from langchain_core.retrievers import BaseRetriever - -from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain - - -class VectorSQLDatabaseChainRetriever(BaseRetriever): - """Retriever that uses Vector SQL Database.""" - - sql_db_chain: VectorSQLDatabaseChain - """SQL Database Chain""" - page_content_key: str = "content" - """column name for page content of documents""" - - def _get_relevant_documents( - self, - query: str, - *, - run_manager: CallbackManagerForRetrieverRun, - **kwargs: Any, - ) -> List[Document]: - ret: List[Dict[str, Any]] = self.sql_db_chain( - query, callbacks=run_manager.get_child(), **kwargs - )["result"] - return [ - Document(page_content=r[self.page_content_key], metadata=r) for r in ret - ] - - async def _aget_relevant_documents( - self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun - ) -> List[Document]: - raise NotImplementedError diff --git a/libs/experimental/langchain_experimental/rl_chain/__init__.py b/libs/experimental/langchain_experimental/rl_chain/__init__.py deleted file mode 100644 index eac581f967620..0000000000000 --- a/libs/experimental/langchain_experimental/rl_chain/__init__.py +++ /dev/null @@ -1,63 +0,0 @@ -""" -**RL (Reinforcement Learning) Chain** leverages the `Vowpal Wabbit (VW)` models -for reinforcement learning with a context, with the goal of modifying -the prompt before the LLM call. - -[Vowpal Wabbit](https://vowpalwabbit.org/) provides fast, efficient, -and flexible online machine learning techniques for reinforcement learning, -supervised learning, and more. -""" - -import logging - -from langchain_experimental.rl_chain.base import ( - AutoSelectionScorer, - BasedOn, - Embed, - Embedder, - Policy, - SelectionScorer, - ToSelectFrom, - VwPolicy, -) -from langchain_experimental.rl_chain.helpers import embed, stringify_embedding -from langchain_experimental.rl_chain.pick_best_chain import ( - PickBest, - PickBestEvent, - PickBestFeatureEmbedder, - PickBestRandomPolicy, - PickBestSelected, -) - - -def configure_logger() -> None: - logger = logging.getLogger(__name__) - logger.setLevel(logging.INFO) - ch = logging.StreamHandler() - formatter = logging.Formatter( - "%(asctime)s - %(name)s - %(levelname)s - %(message)s" - ) - ch.setFormatter(formatter) - ch.setLevel(logging.INFO) - logger.addHandler(ch) - - -configure_logger() - -__all__ = [ - "PickBest", - "PickBestEvent", - "PickBestSelected", - "PickBestFeatureEmbedder", - "PickBestRandomPolicy", - "Embed", - "BasedOn", - "ToSelectFrom", - "SelectionScorer", - "AutoSelectionScorer", - "Embedder", - "Policy", - "VwPolicy", - "embed", - "stringify_embedding", -] diff --git a/libs/experimental/langchain_experimental/rl_chain/base.py b/libs/experimental/langchain_experimental/rl_chain/base.py deleted file mode 100644 index ca11686da7e76..0000000000000 --- a/libs/experimental/langchain_experimental/rl_chain/base.py +++ /dev/null @@ -1,545 +0,0 @@ -from __future__ import annotations - -import logging -import os -from abc import ABC, abstractmethod -from typing import ( - TYPE_CHECKING, - Any, - Dict, - Generic, - List, - Optional, - Tuple, - Type, - TypeVar, - Union, -) - -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.prompts import ( - BasePromptTemplate, - ChatPromptTemplate, - HumanMessagePromptTemplate, - SystemMessagePromptTemplate, -) - -from langchain_experimental.pydantic_v1 import BaseModel, root_validator -from langchain_experimental.rl_chain.helpers import _Embed -from langchain_experimental.rl_chain.metrics import ( - MetricsTrackerAverage, - MetricsTrackerRollingWindow, -) -from langchain_experimental.rl_chain.model_repository import ModelRepository -from langchain_experimental.rl_chain.vw_logger import VwLogger - -if TYPE_CHECKING: - import vowpal_wabbit_next as vw - -logger = logging.getLogger(__name__) - - -class _BasedOn: - def __init__(self, value: Any): - self.value = value - - def __str__(self) -> str: - return str(self.value) - - __repr__ = __str__ - - -def BasedOn(anything: Any) -> _BasedOn: - """Wrap a value to indicate that it should be based on.""" - - return _BasedOn(anything) - - -class _ToSelectFrom: - def __init__(self, value: Any): - self.value = value - - def __str__(self) -> str: - return str(self.value) - - __repr__ = __str__ - - -def ToSelectFrom(anything: Any) -> _ToSelectFrom: - """Wrap a value to indicate that it should be selected from.""" - - if not isinstance(anything, list): - raise ValueError("ToSelectFrom must be a list to select from") - return _ToSelectFrom(anything) - - -def Embed(anything: Any, keep: bool = False) -> Any: - """Wrap a value to indicate that it should be embedded.""" - - if isinstance(anything, _ToSelectFrom): - return ToSelectFrom(Embed(anything.value, keep=keep)) - elif isinstance(anything, _BasedOn): - return BasedOn(Embed(anything.value, keep=keep)) - if isinstance(anything, list): - return [Embed(v, keep=keep) for v in anything] - elif isinstance(anything, dict): - return {k: Embed(v, keep=keep) for k, v in anything.items()} - elif isinstance(anything, _Embed): - return anything - return _Embed(anything, keep=keep) - - -def EmbedAndKeep(anything: Any) -> Any: - """Wrap a value to indicate that it should be embedded and kept.""" - - return Embed(anything, keep=True) - - -# helper functions - - -def parse_lines(parser: "vw.TextFormatParser", input_str: str) -> List["vw.Example"]: - """Parse the input string into a list of examples.""" - - return [parser.parse_line(line) for line in input_str.split("\n")] - - -def get_based_on_and_to_select_from(inputs: Dict[str, Any]) -> Tuple[Dict, Dict]: - """Get the BasedOn and ToSelectFrom from the inputs.""" - to_select_from = { - k: inputs[k].value - for k in inputs.keys() - if isinstance(inputs[k], _ToSelectFrom) - } - - if not to_select_from: - raise ValueError( - "No variables using 'ToSelectFrom' found in the inputs. Please include at least one variable containing a list to select from." # noqa: E501 - ) - - based_on = { - k: inputs[k].value if isinstance(inputs[k].value, list) else [inputs[k].value] - for k in inputs.keys() - if isinstance(inputs[k], _BasedOn) - } - - return based_on, to_select_from - - -def prepare_inputs_for_autoembed(inputs: Dict[str, Any]) -> Dict[str, Any]: - """Prepare the inputs for auto embedding. - - Go over all the inputs and if something is either wrapped in _ToSelectFrom or _BasedOn, and if their inner values are not already _Embed, - then wrap them in EmbedAndKeep while retaining their _ToSelectFrom or _BasedOn status - """ # noqa: E501 - - next_inputs = inputs.copy() - for k, v in next_inputs.items(): - if isinstance(v, _ToSelectFrom) or isinstance(v, _BasedOn): - if not isinstance(v.value, _Embed): - next_inputs[k].value = EmbedAndKeep(v.value) - return next_inputs - - -# end helper functions - - -class Selected(ABC): - """Abstract class to represent the selected item.""" - - pass - - -TSelected = TypeVar("TSelected", bound=Selected) - - -class Event(Generic[TSelected], ABC): - """Abstract class to represent an event.""" - - inputs: Dict[str, Any] - selected: Optional[TSelected] - - def __init__(self, inputs: Dict[str, Any], selected: Optional[TSelected] = None): - self.inputs = inputs - self.selected = selected - - -TEvent = TypeVar("TEvent", bound=Event) - - -class Policy(Generic[TEvent], ABC): - """Abstract class to represent a policy.""" - - def __init__(self, **kwargs: Any): - pass - - @abstractmethod - def predict(self, event: TEvent) -> Any: ... - - @abstractmethod - def learn(self, event: TEvent) -> None: ... - - @abstractmethod - def log(self, event: TEvent) -> None: ... - - def save(self) -> None: - pass - - -class VwPolicy(Policy): - """Vowpal Wabbit policy.""" - - def __init__( - self, - model_repo: ModelRepository, - vw_cmd: List[str], - feature_embedder: Embedder, - vw_logger: VwLogger, - *args: Any, - **kwargs: Any, - ): - super().__init__(*args, **kwargs) - self.model_repo = model_repo - self.workspace = self.model_repo.load(vw_cmd) - self.feature_embedder = feature_embedder - self.vw_logger = vw_logger - - def predict(self, event: TEvent) -> Any: - import vowpal_wabbit_next as vw - - text_parser = vw.TextFormatParser(self.workspace) - return self.workspace.predict_one( - parse_lines(text_parser, self.feature_embedder.format(event)) - ) - - def learn(self, event: TEvent) -> None: - import vowpal_wabbit_next as vw - - vw_ex = self.feature_embedder.format(event) - text_parser = vw.TextFormatParser(self.workspace) - multi_ex = parse_lines(text_parser, vw_ex) - self.workspace.learn_one(multi_ex) - - def log(self, event: TEvent) -> None: - if self.vw_logger.logging_enabled(): - vw_ex = self.feature_embedder.format(event) - self.vw_logger.log(vw_ex) - - def save(self) -> None: - self.model_repo.save(self.workspace) - - -class Embedder(Generic[TEvent], ABC): - """Abstract class to represent an embedder.""" - - def __init__(self, *args: Any, **kwargs: Any): - pass - - @abstractmethod - def format(self, event: TEvent) -> str: ... - - -class SelectionScorer(Generic[TEvent], ABC, BaseModel): - """Abstract class to grade the chosen selection or the response of the llm.""" - - @abstractmethod - def score_response( - self, inputs: Dict[str, Any], llm_response: str, event: TEvent - ) -> float: ... - - -class AutoSelectionScorer(SelectionScorer[Event], BaseModel): - """Auto selection scorer.""" - - llm_chain: LLMChain - prompt: Union[BasePromptTemplate, None] = None - scoring_criteria_template_str: Optional[str] = None - - @staticmethod - def get_default_system_prompt() -> SystemMessagePromptTemplate: - return SystemMessagePromptTemplate.from_template( - "PLEASE RESPOND ONLY WITH A SINGLE FLOAT AND NO OTHER TEXT EXPLANATION\n \ - You are a strict judge that is called on to rank a response based on \ - given criteria. You must respond with your ranking by providing a \ - single float within the range [0, 1], 0 being very bad \ - response and 1 being very good response." - ) - - @staticmethod - def get_default_prompt() -> ChatPromptTemplate: - human_template = 'Given this based_on "{rl_chain_selected_based_on}" \ - as the most important attribute, rank how good or bad this text is: \ - "{rl_chain_selected}".' - human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) - default_system_prompt = AutoSelectionScorer.get_default_system_prompt() - chat_prompt = ChatPromptTemplate.from_messages( - [default_system_prompt, human_message_prompt] - ) - return chat_prompt - - @root_validator(pre=True) - def set_prompt_and_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]: - llm = values.get("llm") - prompt = values.get("prompt") - scoring_criteria_template_str = values.get("scoring_criteria_template_str") - if prompt is None and scoring_criteria_template_str is None: - prompt = AutoSelectionScorer.get_default_prompt() - elif prompt is None and scoring_criteria_template_str is not None: - human_message_prompt = HumanMessagePromptTemplate.from_template( - scoring_criteria_template_str - ) - default_system_prompt = AutoSelectionScorer.get_default_system_prompt() - prompt = ChatPromptTemplate.from_messages( - [default_system_prompt, human_message_prompt] - ) - values["prompt"] = prompt - values["llm_chain"] = LLMChain(llm=llm, prompt=prompt) # type: ignore[arg-type, arg-type] - return values - - def score_response( - self, inputs: Dict[str, Any], llm_response: str, event: Event - ) -> float: - ranking = self.llm_chain.predict(llm_response=llm_response, **inputs) - ranking = ranking.strip() - try: - resp = float(ranking) - return resp - except Exception as e: - raise RuntimeError( - f"The auto selection scorer did not manage to score the response, there is always the option to try again or tweak the reward prompt. Error: {e}" # noqa: E501 - ) - - -class RLChain(Chain, Generic[TEvent]): - """Chain that leverages the Vowpal Wabbit (VW) model as a learned policy - for reinforcement learning. - - Attributes: - - llm_chain (Chain): Represents the underlying Language Model chain. - - prompt (BasePromptTemplate): The template for the base prompt. - - selection_scorer (Union[SelectionScorer, None]): Scorer for the selection. Can be set to None. - - policy (Optional[Policy]): The policy used by the chain to learn to populate a dynamic prompt. - - auto_embed (bool): Determines if embedding should be automatic. Default is False. - - metrics (Optional[Union[MetricsTrackerRollingWindow, MetricsTrackerAverage]]): Tracker for metrics, can be set to None. - - Initialization Attributes: - - feature_embedder (Embedder): Embedder used for the `BasedOn` and `ToSelectFrom` inputs. - - model_save_dir (str, optional): Directory for saving the VW model. Default is the current directory. - - reset_model (bool): If set to True, the model starts training from scratch. Default is False. - - vw_cmd (List[str], optional): Command line arguments for the VW model. - - policy (Type[VwPolicy]): Policy used by the chain. - - vw_logs (Optional[Union[str, os.PathLike]]): Path for the VW logs. - - metrics_step (int): Step for the metrics tracker. Default is -1. If set without metrics_window_size, average metrics will be tracked, otherwise rolling window metrics will be tracked. - - metrics_window_size (int): Window size for the metrics tracker. Default is -1. If set, rolling window metrics will be tracked. - - Notes: - The class initializes the VW model using the provided arguments. If `selection_scorer` is not provided, a warning is logged, indicating that no reinforcement learning will occur unless the `update_with_delayed_score` method is called. - """ # noqa: E501 - - class _NoOpPolicy(Policy): - """Placeholder policy that does nothing""" - - def predict(self, event: TEvent) -> Any: - return None - - def learn(self, event: TEvent) -> None: - pass - - def log(self, event: TEvent) -> None: - pass - - llm_chain: Chain - - output_key: str = "result" #: :meta private: - prompt: BasePromptTemplate - selection_scorer: Union[SelectionScorer, None] - active_policy: Policy = _NoOpPolicy() - auto_embed: bool = False - selection_scorer_activated: bool = True - selected_input_key = "rl_chain_selected" - selected_based_on_input_key = "rl_chain_selected_based_on" - metrics: Optional[Union[MetricsTrackerRollingWindow, MetricsTrackerAverage]] = None - - def __init__( - self, - feature_embedder: Embedder, - model_save_dir: str = "./", - reset_model: bool = False, - vw_cmd: Optional[List[str]] = None, - policy: Type[Policy] = VwPolicy, - vw_logs: Optional[Union[str, os.PathLike]] = None, - metrics_step: int = -1, - metrics_window_size: int = -1, - *args: Any, - **kwargs: Any, - ): - super().__init__(*args, **kwargs) - if self.selection_scorer is None: - logger.warning( - "No selection scorer provided, which means that no \ - reinforcement learning will be done in the RL chain \ - unless update_with_delayed_score is called." - ) - - if isinstance(self.active_policy, RLChain._NoOpPolicy): - self.active_policy = policy( - model_repo=ModelRepository( - model_save_dir, with_history=True, reset=reset_model - ), - vw_cmd=vw_cmd or [], - feature_embedder=feature_embedder, - vw_logger=VwLogger(vw_logs), - ) - - if metrics_window_size > 0: - self.metrics = MetricsTrackerRollingWindow( - step=metrics_step, window_size=metrics_window_size - ) - else: - self.metrics = MetricsTrackerAverage(step=metrics_step) - - class Config: - arbitrary_types_allowed = True - extra = "forbid" - - @property - def input_keys(self) -> List[str]: - """Expect input key. - :meta private: - """ - return [] - - @property - def output_keys(self) -> List[str]: - """Expect output key. - - :meta private: - """ - return [self.output_key] - - def update_with_delayed_score( - self, score: float, chain_response: Dict[str, Any], force_score: bool = False - ) -> None: - """ - Updates the learned policy with the score provided. - Will raise an error if selection_scorer is set, and force_score=True was not provided during the method call - """ # noqa: E501 - if self._can_use_selection_scorer() and not force_score: - raise RuntimeError( - "The selection scorer is set, and force_score was not set to True. Please set force_score=True to use this function." # noqa: E501 - ) - if self.metrics: - self.metrics.on_feedback(score) - event: TEvent = chain_response["selection_metadata"] - self._call_after_scoring_before_learning(event=event, score=score) - self.active_policy.learn(event=event) - self.active_policy.log(event=event) - - def deactivate_selection_scorer(self) -> None: - """ - Deactivates the selection scorer, meaning that the chain will no longer attempt to use the selection scorer to score responses. - """ # noqa: E501 - self.selection_scorer_activated = False - - def activate_selection_scorer(self) -> None: - """ - Activates the selection scorer, meaning that the chain will attempt to use the selection scorer to score responses. - """ # noqa: E501 - self.selection_scorer_activated = True - - def save_progress(self) -> None: - """ - This function should be called to save the state of the learned policy model. - """ - self.active_policy.save() - - def _validate_inputs(self, inputs: Dict[str, Any]) -> None: - super()._validate_inputs(inputs) - if ( - self.selected_input_key in inputs.keys() - or self.selected_based_on_input_key in inputs.keys() - ): - raise ValueError( - f"The rl chain does not accept '{self.selected_input_key}' or '{self.selected_based_on_input_key}' as input keys, they are reserved for internal use during auto reward." # noqa: E501 - ) - - def _can_use_selection_scorer(self) -> bool: - """ - Returns whether the chain can use the selection scorer to score responses or not. - """ # noqa: E501 - return self.selection_scorer is not None and self.selection_scorer_activated - - @abstractmethod - def _call_before_predict(self, inputs: Dict[str, Any]) -> TEvent: ... - - @abstractmethod - def _call_after_predict_before_llm( - self, inputs: Dict[str, Any], event: TEvent, prediction: Any - ) -> Tuple[Dict[str, Any], TEvent]: ... - - @abstractmethod - def _call_after_llm_before_scoring( - self, llm_response: str, event: TEvent - ) -> Tuple[Dict[str, Any], TEvent]: ... - - @abstractmethod - def _call_after_scoring_before_learning( - self, event: TEvent, score: Optional[float] - ) -> TEvent: ... - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - - event: TEvent = self._call_before_predict(inputs=inputs) - prediction = self.active_policy.predict(event=event) - if self.metrics: - self.metrics.on_decision() - - next_chain_inputs, event = self._call_after_predict_before_llm( - inputs=inputs, event=event, prediction=prediction - ) - - t = self.llm_chain.run(**next_chain_inputs, callbacks=_run_manager.get_child()) - _run_manager.on_text(t, color="green", verbose=self.verbose) - t = t.strip() - - if self.verbose: - _run_manager.on_text("\nCode: ", verbose=self.verbose) - - output = t - _run_manager.on_text("\nAnswer: ", verbose=self.verbose) - _run_manager.on_text(output, color="yellow", verbose=self.verbose) - - next_chain_inputs, event = self._call_after_llm_before_scoring( - llm_response=output, event=event - ) - - score = None - try: - if self._can_use_selection_scorer(): - score = self.selection_scorer.score_response( # type: ignore - inputs=next_chain_inputs, llm_response=output, event=event - ) - except Exception as e: - logger.info( - f"The selection scorer was not able to score, \ - and the chain was not able to adjust to this response, error: {e}" - ) - if self.metrics and score is not None: - self.metrics.on_feedback(score) - - event = self._call_after_scoring_before_learning(score=score, event=event) - self.active_policy.learn(event=event) - self.active_policy.log(event=event) - - return {self.output_key: {"response": output, "selection_metadata": event}} - - @property - def _chain_type(self) -> str: - return "llm_personalizer_chain" diff --git a/libs/experimental/langchain_experimental/rl_chain/helpers.py b/libs/experimental/langchain_experimental/rl_chain/helpers.py deleted file mode 100644 index e4e221089e600..0000000000000 --- a/libs/experimental/langchain_experimental/rl_chain/helpers.py +++ /dev/null @@ -1,114 +0,0 @@ -from __future__ import annotations - -from typing import Any, Dict, List, Optional, Union - - -class _Embed: - def __init__(self, value: Any, keep: bool = False): - self.value = value - self.keep = keep - - def __str__(self) -> str: - return str(self.value) - - __repr__ = __str__ - - -def stringify_embedding(embedding: List) -> str: - """Convert an embedding to a string.""" - - return " ".join([f"{i}:{e}" for i, e in enumerate(embedding)]) - - -def is_stringtype_instance(item: Any) -> bool: - """Check if an item is a string.""" - - return isinstance(item, str) or ( - isinstance(item, _Embed) and isinstance(item.value, str) - ) - - -def embed_string_type( - item: Union[str, _Embed], model: Any, namespace: Optional[str] = None -) -> Dict[str, Union[str, List[str]]]: - """Embed a string or an _Embed object.""" - - keep_str = "" - if isinstance(item, _Embed): - encoded = stringify_embedding(model.encode(item.value)) - if item.keep: - keep_str = item.value.replace(" ", "_") + " " - elif isinstance(item, str): - encoded = item.replace(" ", "_") - else: - raise ValueError(f"Unsupported type {type(item)} for embedding") - - if namespace is None: - raise ValueError( - "The default namespace must be provided when embedding a string or _Embed object." # noqa: E501 - ) - - return {namespace: keep_str + encoded} - - -def embed_dict_type(item: Dict, model: Any) -> Dict[str, Any]: - """Embed a dictionary item.""" - inner_dict: Dict = {} - for ns, embed_item in item.items(): - if isinstance(embed_item, list): - inner_dict[ns] = [] - for embed_list_item in embed_item: - embedded = embed_string_type(embed_list_item, model, ns) - inner_dict[ns].append(embedded[ns]) - else: - inner_dict.update(embed_string_type(embed_item, model, ns)) - return inner_dict - - -def embed_list_type( - item: list, model: Any, namespace: Optional[str] = None -) -> List[Dict[str, Union[str, List[str]]]]: - """Embed a list item.""" - - ret_list: List = [] - for embed_item in item: - if isinstance(embed_item, dict): - ret_list.append(embed_dict_type(embed_item, model)) - elif isinstance(embed_item, list): - item_embedding = embed_list_type(embed_item, model, namespace) - # Get the first key from the first dictionary - first_key = next(iter(item_embedding[0])) - # Group the values under that key - grouping = {first_key: [item[first_key] for item in item_embedding]} - ret_list.append(grouping) - else: - ret_list.append(embed_string_type(embed_item, model, namespace)) - return ret_list - - -def embed( - to_embed: Union[Union[str, _Embed], Dict, List[Union[str, _Embed]], List[Dict]], - model: Any, - namespace: Optional[str] = None, -) -> List[Dict[str, Union[str, List[str]]]]: - """ - Embed the actions or context using the SentenceTransformer model - (or a model that has an `encode` function). - - Attributes: - to_embed: (Union[Union(str, _Embed(str)), Dict, List[Union(str, _Embed(str))], List[Dict]], required) The text to be embedded, either a string, a list of strings or a dictionary or a list of dictionaries. - namespace: (str, optional) The default namespace to use when dictionary or list of dictionaries not provided. - model: (Any, required) The model to use for embedding - Returns: - List[Dict[str, str]]: A list of dictionaries where each dictionary has the namespace as the key and the embedded string as the value - """ # noqa: E501 - if (isinstance(to_embed, _Embed) and isinstance(to_embed.value, str)) or isinstance( - to_embed, str - ): - return [embed_string_type(to_embed, model, namespace)] - elif isinstance(to_embed, dict): - return [embed_dict_type(to_embed, model)] - elif isinstance(to_embed, list): - return embed_list_type(to_embed, model, namespace) - else: - raise ValueError("Invalid input format for embedding") diff --git a/libs/experimental/langchain_experimental/rl_chain/metrics.py b/libs/experimental/langchain_experimental/rl_chain/metrics.py deleted file mode 100644 index 58663a4b15451..0000000000000 --- a/libs/experimental/langchain_experimental/rl_chain/metrics.py +++ /dev/null @@ -1,70 +0,0 @@ -from collections import deque -from typing import TYPE_CHECKING, Dict, List, Union - -if TYPE_CHECKING: - import pandas as pd - - -class MetricsTrackerAverage: - """Metrics Tracker Average.""" - - def __init__(self, step: int): - self.history: List[Dict[str, Union[int, float]]] = [{"step": 0, "score": 0}] - self.step: int = step - self.i: int = 0 - self.num: float = 0 - self.denom: float = 0 - - @property - def score(self) -> float: - return self.num / self.denom if self.denom > 0 else 0 - - def on_decision(self) -> None: - self.denom += 1 - - def on_feedback(self, score: float) -> None: - self.num += score or 0 - self.i += 1 - if self.step > 0 and self.i % self.step == 0: - self.history.append({"step": self.i, "score": self.score}) - - def to_pandas(self) -> "pd.DataFrame": - import pandas as pd - - return pd.DataFrame(self.history) - - -class MetricsTrackerRollingWindow: - """Metrics Tracker Rolling Window.""" - - def __init__(self, window_size: int, step: int): - self.history: List[Dict[str, Union[int, float]]] = [{"step": 0, "score": 0}] - self.step: int = step - self.i: int = 0 - self.window_size: int = window_size - self.queue: deque = deque() - self.sum: float = 0.0 - - @property - def score(self) -> float: - return self.sum / len(self.queue) if len(self.queue) > 0 else 0 - - def on_decision(self) -> None: - pass - - def on_feedback(self, value: float) -> None: - self.sum += value - self.queue.append(value) - self.i += 1 - - if len(self.queue) > self.window_size: - old_val = self.queue.popleft() - self.sum -= old_val - - if self.step > 0 and self.i % self.step == 0: - self.history.append({"step": self.i, "score": self.sum / len(self.queue)}) - - def to_pandas(self) -> "pd.DataFrame": - import pandas as pd - - return pd.DataFrame(self.history) diff --git a/libs/experimental/langchain_experimental/rl_chain/model_repository.py b/libs/experimental/langchain_experimental/rl_chain/model_repository.py deleted file mode 100644 index ae5f33a0dcfc4..0000000000000 --- a/libs/experimental/langchain_experimental/rl_chain/model_repository.py +++ /dev/null @@ -1,65 +0,0 @@ -import datetime -import glob -import logging -import os -import shutil -from pathlib import Path -from typing import TYPE_CHECKING, List, Union - -if TYPE_CHECKING: - import vowpal_wabbit_next as vw - -logger = logging.getLogger(__name__) - - -class ModelRepository: - """Model Repository.""" - - def __init__( - self, - folder: Union[str, os.PathLike], - with_history: bool = True, - reset: bool = False, - ): - self.folder = Path(folder) - self.model_path = self.folder / "latest.vw" - self.with_history = with_history - if reset and self.has_history(): - logger.warning( - "There is non empty history which is recommended to be cleaned up" - ) - if self.model_path.exists(): - os.remove(self.model_path) - - self.folder.mkdir(parents=True, exist_ok=True) - - def get_tag(self) -> str: - return datetime.datetime.now().strftime("%Y%m%d-%H%M%S") - - def has_history(self) -> bool: - return len(glob.glob(str(self.folder / "model-????????-??????.vw"))) > 0 - - def save(self, workspace: "vw.Workspace") -> None: - with open(self.model_path, "wb") as f: - logger.info(f"storing rl_chain model in: {self.model_path}") - f.write(workspace.serialize()) - if self.with_history: # write history - shutil.copyfile(self.model_path, self.folder / f"model-{self.get_tag()}.vw") - - def load(self, commandline: List[str]) -> "vw.Workspace": - try: - import vowpal_wabbit_next as vw - except ImportError as e: - raise ImportError( - "Unable to import vowpal_wabbit_next, please install with " - "`pip install vowpal_wabbit_next`." - ) from e - - model_data = None - if self.model_path.exists(): - with open(self.model_path, "rb") as f: - model_data = f.read() - if model_data: - logger.info(f"rl_chain model is loaded from: {self.model_path}") - return vw.Workspace(commandline, model_data=model_data) - return vw.Workspace(commandline) diff --git a/libs/experimental/langchain_experimental/rl_chain/pick_best_chain.py b/libs/experimental/langchain_experimental/rl_chain/pick_best_chain.py deleted file mode 100644 index 73ccdadcb4b92..0000000000000 --- a/libs/experimental/langchain_experimental/rl_chain/pick_best_chain.py +++ /dev/null @@ -1,419 +0,0 @@ -from __future__ import annotations - -import logging -from typing import Any, Dict, List, Optional, Tuple, Type, Union - -from langchain.base_language import BaseLanguageModel -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.prompts import BasePromptTemplate - -import langchain_experimental.rl_chain.base as base -from langchain_experimental.rl_chain.helpers import embed - -logger = logging.getLogger(__name__) - -# sentinel object used to distinguish between -# user didn't supply anything or user explicitly supplied None -SENTINEL = object() - - -class PickBestSelected(base.Selected): - """Selected class for PickBest chain.""" - - index: Optional[int] - probability: Optional[float] - score: Optional[float] - - def __init__( - self, - index: Optional[int] = None, - probability: Optional[float] = None, - score: Optional[float] = None, - ): - self.index = index - self.probability = probability - self.score = score - - -class PickBestEvent(base.Event[PickBestSelected]): - """Event class for PickBest chain.""" - - def __init__( - self, - inputs: Dict[str, Any], - to_select_from: Dict[str, Any], - based_on: Dict[str, Any], - selected: Optional[PickBestSelected] = None, - ): - super().__init__(inputs=inputs, selected=selected) - self.to_select_from = to_select_from - self.based_on = based_on - - -class PickBestFeatureEmbedder(base.Embedder[PickBestEvent]): - """Embed the `BasedOn` and `ToSelectFrom` inputs into a format that can be used - by the learning policy. - - Attributes: - model name (Any, optional): The type of embeddings to be used for feature representation. Defaults to BERT SentenceTransformer. - """ # noqa E501 - - def __init__( - self, auto_embed: bool, model: Optional[Any] = None, *args: Any, **kwargs: Any - ): - super().__init__(*args, **kwargs) - - if model is None: - from sentence_transformers import SentenceTransformer - - model = SentenceTransformer("all-mpnet-base-v2") - - self.model = model - self.auto_embed = auto_embed - - @staticmethod - def _str(embedding: List[float]) -> str: - return " ".join([f"{i}:{e}" for i, e in enumerate(embedding)]) - - def get_label(self, event: PickBestEvent) -> tuple: - cost = None - if event.selected: - chosen_action = event.selected.index - cost = ( - -1.0 * event.selected.score - if event.selected.score is not None - else None - ) - prob = event.selected.probability - return chosen_action, cost, prob - else: - return None, None, None - - def get_context_and_action_embeddings(self, event: PickBestEvent) -> tuple: - context_emb = embed(event.based_on, self.model) if event.based_on else None - to_select_from_var_name, to_select_from = next( - iter(event.to_select_from.items()), (None, None) - ) - - action_embs = ( - ( - embed(to_select_from, self.model, to_select_from_var_name) - if event.to_select_from - else None - ) - if to_select_from - else None - ) - - if not context_emb or not action_embs: - raise ValueError( - "Context and to_select_from must be provided in the inputs dictionary" - ) - return context_emb, action_embs - - def get_indexed_dot_product(self, context_emb: List, action_embs: List) -> Dict: - import numpy as np - - unique_contexts = set() - for context_item in context_emb: - for ns, ee in context_item.items(): - if isinstance(ee, list): - for ea in ee: - unique_contexts.add(f"{ns}={ea}") - else: - unique_contexts.add(f"{ns}={ee}") - - encoded_contexts = self.model.encode(list(unique_contexts)) - context_embeddings = dict(zip(unique_contexts, encoded_contexts)) - - unique_actions = set() - for action in action_embs: - for ns, e in action.items(): - if isinstance(e, list): - for ea in e: - unique_actions.add(f"{ns}={ea}") - else: - unique_actions.add(f"{ns}={e}") - - encoded_actions = self.model.encode(list(unique_actions)) - action_embeddings = dict(zip(unique_actions, encoded_actions)) - - action_matrix = np.stack([v for k, v in action_embeddings.items()]) - context_matrix = np.stack([v for k, v in context_embeddings.items()]) - dot_product_matrix = np.dot(context_matrix, action_matrix.T) - - indexed_dot_product: Dict = {} - - for i, context_key in enumerate(context_embeddings.keys()): - indexed_dot_product[context_key] = {} - for j, action_key in enumerate(action_embeddings.keys()): - indexed_dot_product[context_key][action_key] = dot_product_matrix[i, j] - - return indexed_dot_product - - def format_auto_embed_on(self, event: PickBestEvent) -> str: - chosen_action, cost, prob = self.get_label(event) - context_emb, action_embs = self.get_context_and_action_embeddings(event) - indexed_dot_product = self.get_indexed_dot_product(context_emb, action_embs) - - action_lines = [] - for i, action in enumerate(action_embs): - line_parts = [] - dot_prods = [] - if cost is not None and chosen_action == i: - line_parts.append(f"{chosen_action}:{cost}:{prob}") - for ns, action in action.items(): - line_parts.append(f"|{ns}") - elements = action if isinstance(action, list) else [action] - nsa = [] - for elem in elements: - line_parts.append(f"{elem}") - ns_a = f"{ns}={elem}" - nsa.append(ns_a) - for k, v in indexed_dot_product.items(): - dot_prods.append(v[ns_a]) - nsa_str = " ".join(nsa) - line_parts.append(f"|# {nsa_str}") - - line_parts.append(f"|dotprod {self._str(dot_prods)}") - action_lines.append(" ".join(line_parts)) - - shared = [] - for item in context_emb: - for ns, context in item.items(): - shared.append(f"|{ns}") - elements = context if isinstance(context, list) else [context] - nsc = [] - for elem in elements: - shared.append(f"{elem}") - nsc.append(f"{ns}={elem}") - nsc_str = " ".join(nsc) - shared.append(f"|@ {nsc_str}") - - return "shared " + " ".join(shared) + "\n" + "\n".join(action_lines) - - def format_auto_embed_off(self, event: PickBestEvent) -> str: - """ - Converts the `BasedOn` and `ToSelectFrom` into a format that can be used by VW - """ - chosen_action, cost, prob = self.get_label(event) - context_emb, action_embs = self.get_context_and_action_embeddings(event) - - example_string = "" - example_string += "shared " - for context_item in context_emb: - for ns, based_on in context_item.items(): - e = " ".join(based_on) if isinstance(based_on, list) else based_on - example_string += f"|{ns} {e} " - example_string += "\n" - - for i, action in enumerate(action_embs): - if cost is not None and chosen_action == i: - example_string += f"{chosen_action}:{cost}:{prob} " - for ns, action_embedding in action.items(): - e = ( - " ".join(action_embedding) - if isinstance(action_embedding, list) - else action_embedding - ) - example_string += f"|{ns} {e} " - example_string += "\n" - # Strip the last newline - return example_string[:-1] - - def format(self, event: PickBestEvent) -> str: - if self.auto_embed: - return self.format_auto_embed_on(event) - else: - return self.format_auto_embed_off(event) - - -class PickBestRandomPolicy(base.Policy[PickBestEvent]): - """Random policy for PickBest chain.""" - - def __init__(self, feature_embedder: base.Embedder, **kwargs: Any): - self.feature_embedder = feature_embedder - - def predict(self, event: PickBestEvent) -> List[Tuple[int, float]]: - num_items = len(event.to_select_from) - return [(i, 1.0 / num_items) for i in range(num_items)] - - def learn(self, event: PickBestEvent) -> None: - pass - - def log(self, event: PickBestEvent) -> None: - pass - - -class PickBest(base.RLChain[PickBestEvent]): - """Chain that leverages the Vowpal Wabbit (VW) model for reinforcement learning - with a context, with the goal of modifying the prompt before the LLM call. - - Each invocation of the chain's `run()` method should be equipped with a set of potential actions (`ToSelectFrom`) and will result in the selection of a specific action based on the `BasedOn` input. This chosen action then informs the LLM (Language Model) prompt for the subsequent response generation. - - The standard operation flow of this Chain includes: - 1. The Chain is invoked with inputs containing the `BasedOn` criteria and a list of potential actions (`ToSelectFrom`). - 2. An action is selected based on the `BasedOn` input. - 3. The LLM is called with the dynamic prompt, producing a response. - 4. If a `selection_scorer` is provided, it is used to score the selection. - 5. The internal Vowpal Wabbit model is updated with the `BasedOn` input, the chosen `ToSelectFrom` action, and the resulting score from the scorer. - 6. The final response is returned. - - Expected input dictionary format: - - At least one variable encapsulated within `BasedOn` to serve as the selection criteria. - - A single list variable within `ToSelectFrom`, representing potential actions for the VW model. This list can take the form of: - - A list of strings, e.g., `action = ToSelectFrom(["action1", "action2", "action3"])` - - A list of list of strings e.g. `action = ToSelectFrom([["action1", "another identifier of action1"], ["action2", "another identifier of action2"]])` - - A list of dictionaries, where each dictionary represents an action with namespace names as keys and corresponding action strings as values. For instance, `action = ToSelectFrom([{"namespace1": ["action1", "another identifier of action1"], "namespace2": "action2"}, {"namespace1": "action3", "namespace2": "action4"}])`. - - Extends: - RLChain - - Attributes: - feature_embedder (PickBestFeatureEmbedder, optional): Is an advanced attribute. Responsible for embedding the `BasedOn` and `ToSelectFrom` inputs. If omitted, a default embedder is utilized. - """ # noqa E501 - - def __init__( - self, - *args: Any, - **kwargs: Any, - ): - auto_embed = kwargs.get("auto_embed", False) - - feature_embedder = kwargs.get("feature_embedder", None) - if feature_embedder: - if "auto_embed" in kwargs: - logger.warning( - "auto_embed will take no effect when explicit feature_embedder is provided" # noqa E501 - ) - # turning auto_embed off for cli setting below - auto_embed = False - else: - feature_embedder = PickBestFeatureEmbedder(auto_embed=auto_embed) - kwargs["feature_embedder"] = feature_embedder - - vw_cmd = kwargs.get("vw_cmd", []) - if vw_cmd: - if "--cb_explore_adf" not in vw_cmd: - raise ValueError( - "If vw_cmd is specified, it must include --cb_explore_adf" - ) - else: - interactions = ["--interactions=::"] - if auto_embed: - interactions = [ - "--interactions=@#", - "--ignore_linear=@", - "--ignore_linear=#", - ] - vw_cmd = interactions + [ - "--cb_explore_adf", - "--coin", - "--squarecb", - "--quiet", - ] - - kwargs["vw_cmd"] = vw_cmd - - super().__init__(*args, **kwargs) - - def _call_before_predict(self, inputs: Dict[str, Any]) -> PickBestEvent: - context, actions = base.get_based_on_and_to_select_from(inputs=inputs) - if not actions: - raise ValueError( - "No variables using 'ToSelectFrom' found in the inputs. Please include at least one variable containing a list to select from." # noqa E501 - ) - - if len(list(actions.values())) > 1: - raise ValueError( - "Only one variable using 'ToSelectFrom' can be provided in the inputs for the PickBest chain. Please provide only one variable containing a list to select from." # noqa E501 - ) - - if not context: - raise ValueError( - "No variables using 'BasedOn' found in the inputs. Please include at least one variable containing information to base the selected of ToSelectFrom on." # noqa E501 - ) - - event = PickBestEvent(inputs=inputs, to_select_from=actions, based_on=context) - return event - - def _call_after_predict_before_llm( - self, - inputs: Dict[str, Any], - event: PickBestEvent, - prediction: List[Tuple[int, float]], - ) -> Tuple[Dict[str, Any], PickBestEvent]: - import numpy as np - - prob_sum = sum(prob for _, prob in prediction) - probabilities = [prob / prob_sum for _, prob in prediction] - ## sample from the pmf - sampled_index = np.random.choice(len(prediction), p=probabilities) - sampled_ap = prediction[sampled_index] - sampled_action = sampled_ap[0] - sampled_prob = sampled_ap[1] - selected = PickBestSelected(index=sampled_action, probability=sampled_prob) - event.selected = selected - - # only one key, value pair in event.to_select_from - key, value = next(iter(event.to_select_from.items())) - next_chain_inputs = inputs.copy() - next_chain_inputs.update({key: value[event.selected.index]}) - return next_chain_inputs, event - - def _call_after_llm_before_scoring( - self, llm_response: str, event: PickBestEvent - ) -> Tuple[Dict[str, Any], PickBestEvent]: - next_chain_inputs = event.inputs.copy() - # only one key, value pair in event.to_select_from - value = next(iter(event.to_select_from.values())) - v = ( - value[event.selected.index] - if event.selected - else event.to_select_from.values() - ) - next_chain_inputs.update( - { - self.selected_based_on_input_key: str(event.based_on), - self.selected_input_key: v, - } - ) - return next_chain_inputs, event - - def _call_after_scoring_before_learning( - self, event: PickBestEvent, score: Optional[float] - ) -> PickBestEvent: - if event.selected: - event.selected.score = score - return event - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - return super()._call(run_manager=run_manager, inputs=inputs) - - @property - def _chain_type(self) -> str: - return "rl_chain_pick_best" - - @classmethod - def from_llm( - cls: Type[PickBest], - llm: BaseLanguageModel, - prompt: BasePromptTemplate, - selection_scorer: Union[base.AutoSelectionScorer, object] = SENTINEL, - **kwargs: Any, - ) -> PickBest: - llm_chain = LLMChain(llm=llm, prompt=prompt) - if selection_scorer is SENTINEL: - selection_scorer = base.AutoSelectionScorer(llm=llm_chain.llm) # type: ignore[call-arg] - - return PickBest( - llm_chain=llm_chain, - prompt=prompt, - selection_scorer=selection_scorer, - **kwargs, - ) diff --git a/libs/experimental/langchain_experimental/rl_chain/vw_logger.py b/libs/experimental/langchain_experimental/rl_chain/vw_logger.py deleted file mode 100644 index 52685e56a3612..0000000000000 --- a/libs/experimental/langchain_experimental/rl_chain/vw_logger.py +++ /dev/null @@ -1,20 +0,0 @@ -from os import PathLike -from pathlib import Path -from typing import Optional, Union - - -class VwLogger: - """Vowpal Wabbit custom logger.""" - - def __init__(self, path: Optional[Union[str, PathLike]]): - self.path = Path(path) if path else None - if self.path: - self.path.parent.mkdir(parents=True, exist_ok=True) - - def log(self, vw_ex: str) -> None: - if self.path: - with open(self.path, "a") as f: - f.write(f"{vw_ex}\n\n") - - def logging_enabled(self) -> bool: - return bool(self.path) diff --git a/libs/experimental/langchain_experimental/smart_llm/__init__.py b/libs/experimental/langchain_experimental/smart_llm/__init__.py deleted file mode 100644 index 3e83d6c76e1e7..0000000000000 --- a/libs/experimental/langchain_experimental/smart_llm/__init__.py +++ /dev/null @@ -1,24 +0,0 @@ -"""**SmartGPT** chain is applying self-critique using the `SmartGPT` workflow. - -See details at https://youtu.be/wVzuvf9D9BU - -The workflow performs these 3 steps: -1. **Ideate**: Pass the user prompt to an `Ideation LLM` n_ideas times, - each result is an "idea" -2. **Critique**: Pass the ideas to a `Critique LLM` which looks for flaws in the ideas - & picks the best one -3. **Resolve**: Pass the critique to a `Resolver LLM` which improves upon the best idea - & outputs only the (improved version of) the best output - -In total, the SmartGPT workflow will use n_ideas+2 LLM calls - -Note that SmartLLMChain will only improve results (compared to a basic LLMChain), -when the underlying models have the capability for reflection, which smaller models -often don't. - -Finally, a SmartLLMChain assumes that each underlying LLM outputs exactly 1 result. -""" - -from langchain_experimental.smart_llm.base import SmartLLMChain - -__all__ = ["SmartLLMChain"] diff --git a/libs/experimental/langchain_experimental/smart_llm/base.py b/libs/experimental/langchain_experimental/smart_llm/base.py deleted file mode 100644 index 6e25027a2c967..0000000000000 --- a/libs/experimental/langchain_experimental/smart_llm/base.py +++ /dev/null @@ -1,329 +0,0 @@ -"""Chain for applying self-critique using the SmartGPT workflow.""" - -from typing import Any, Dict, List, Optional, Tuple, Type - -from langchain.base_language import BaseLanguageModel -from langchain.chains.base import Chain -from langchain.input import get_colored_text -from langchain.schema import LLMResult, PromptValue -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.prompts.base import BasePromptTemplate -from langchain_core.prompts.chat import ( - AIMessagePromptTemplate, - BaseMessagePromptTemplate, - ChatPromptTemplate, - HumanMessagePromptTemplate, -) - -from langchain_experimental.pydantic_v1 import root_validator - - -class SmartLLMChain(Chain): - """Chain for applying self-critique using the SmartGPT workflow. - - See details at https://youtu.be/wVzuvf9D9BU - - A SmartLLMChain is an LLMChain that instead of simply passing the prompt to the LLM - performs these 3 steps: - 1. Ideate: Pass the user prompt to an ideation LLM n_ideas times, - each result is an "idea" - 2. Critique: Pass the ideas to a critique LLM which looks for flaws in the ideas - & picks the best one - 3. Resolve: Pass the critique to a resolver LLM which improves upon the best idea - & outputs only the (improved version of) the best output - - In total, SmartLLMChain pass will use n_ideas+2 LLM calls - - Note that SmartLLMChain will only improve results (compared to a basic LLMChain), - when the underlying models have the capability for reflection, which smaller models - often don't. - - Finally, a SmartLLMChain assumes that each underlying LLM outputs exactly 1 result. - """ - - class SmartLLMChainHistory: - question: str = "" - ideas: List[str] = [] - critique: str = "" - - @property - def n_ideas(self) -> int: - return len(self.ideas) - - def ideation_prompt_inputs(self) -> Dict[str, Any]: - return {"question": self.question} - - def critique_prompt_inputs(self) -> Dict[str, Any]: - return { - "question": self.question, - **{f"idea_{i+1}": idea for i, idea in enumerate(self.ideas)}, - } - - def resolve_prompt_inputs(self) -> Dict[str, Any]: - return { - "question": self.question, - **{f"idea_{i+1}": idea for i, idea in enumerate(self.ideas)}, - "critique": self.critique, - } - - prompt: BasePromptTemplate - """Prompt object to use.""" - output_key: str = "resolution" - ideation_llm: Optional[BaseLanguageModel] = None - """LLM to use in ideation step. If None given, 'llm' will be used.""" - critique_llm: Optional[BaseLanguageModel] = None - """LLM to use in critique step. If None given, 'llm' will be used.""" - resolver_llm: Optional[BaseLanguageModel] = None - """LLM to use in resolve step. If None given, 'llm' will be used.""" - llm: Optional[BaseLanguageModel] = None - """LLM to use for each steps, if no specific llm for that step is given. """ - n_ideas: int = 3 - """Number of ideas to generate in idea step""" - return_intermediate_steps: bool = False - """Whether to return ideas and critique, in addition to resolution.""" - history: SmartLLMChainHistory = SmartLLMChainHistory() - - class Config: - extra = "forbid" - - # TODO: move away from `root_validator` since it is deprecated in pydantic v2 - # and causes mypy type-checking failures (hence the `type: ignore`) - @root_validator # type: ignore[call-overload] - @classmethod - def validate_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: - """Ensure we have an LLM for each step.""" - llm = values.get("llm") - ideation_llm = values.get("ideation_llm") - critique_llm = values.get("critique_llm") - resolver_llm = values.get("resolver_llm") - - if not llm and not ideation_llm: - raise ValueError( - "Either ideation_llm or llm needs to be given. Pass llm, " - "if you want to use the same llm for all steps, or pass " - "ideation_llm, critique_llm and resolver_llm if you want " - "to use different llms for each step." - ) - if not llm and not critique_llm: - raise ValueError( - "Either critique_llm or llm needs to be given. Pass llm, " - "if you want to use the same llm for all steps, or pass " - "ideation_llm, critique_llm and resolver_llm if you want " - "to use different llms for each step." - ) - if not llm and not resolver_llm: - raise ValueError( - "Either resolve_llm or llm needs to be given. Pass llm, " - "if you want to use the same llm for all steps, or pass " - "ideation_llm, critique_llm and resolver_llm if you want " - "to use different llms for each step." - ) - if llm and ideation_llm and critique_llm and resolver_llm: - raise ValueError( - "LLMs are given for each step (ideation_llm, critique_llm," - " resolver_llm), but backup LLM (llm) is also given, which" - " would not be used." - ) - return values - - @property - def input_keys(self) -> List[str]: - """Defines the input keys.""" - return self.prompt.input_variables - - @property - def output_keys(self) -> List[str]: - """Defines the output keys.""" - if self.return_intermediate_steps: - return ["ideas", "critique", self.output_key] - return [self.output_key] - - def prep_prompts( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Tuple[PromptValue, Optional[List[str]]]: - """Prepare prompts from inputs.""" - stop = None - if "stop" in inputs: - stop = inputs["stop"] - selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} - prompt = self.prompt.format_prompt(**selected_inputs) - _colored_text = get_colored_text(prompt.to_string(), "green") - _text = "Prompt after formatting:\n" + _colored_text - if run_manager: - run_manager.on_text(_text, end="\n", verbose=self.verbose) - if "stop" in inputs and inputs["stop"] != stop: - raise ValueError( - "If `stop` is present in any inputs, should be present in all." - ) - return prompt, stop - - def _call( - self, - input_list: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - prompt, stop = self.prep_prompts(input_list, run_manager=run_manager) - self.history.question = prompt.to_string() - ideas = self._ideate(stop, run_manager) - self.history.ideas = ideas - critique = self._critique(stop, run_manager) - self.history.critique = critique - resolution = self._resolve(stop, run_manager) - if self.return_intermediate_steps: - return {"ideas": ideas, "critique": critique, self.output_key: resolution} - return {self.output_key: resolution} - - def _get_text_from_llm_result(self, result: LLMResult, step: str) -> str: - """Between steps, only the LLM result text is passed, not the LLMResult object. - This function extracts the text from an LLMResult.""" - if len(result.generations) != 1: - raise ValueError( - f"In SmartLLM the LLM result in step {step} is not " - "exactly 1 element. This should never happen" - ) - if len(result.generations[0]) != 1: - raise ValueError( - f"In SmartLLM the LLM in step {step} returned more than " - "1 output. SmartLLM only works with LLMs returning " - "exactly 1 output." - ) - return result.generations[0][0].text - - def get_prompt_strings( - self, stage: str - ) -> List[Tuple[Type[BaseMessagePromptTemplate], str]]: - role_strings: List[Tuple[Type[BaseMessagePromptTemplate], str]] = [] - role_strings.append( - ( - HumanMessagePromptTemplate, - "Question: {question}\nAnswer: Let's work this out in a step by " - "step way to be sure we have the right answer:", - ) - ) - if stage == "ideation": - return role_strings - role_strings.extend( - [ - *[ - ( - AIMessagePromptTemplate, - "Idea " + str(i + 1) + ": {idea_" + str(i + 1) + "}", - ) - for i in range(self.n_ideas) - ], - ( - HumanMessagePromptTemplate, - "You are a researcher tasked with investigating the " - f"{self.n_ideas} response options provided. List the flaws and " - "faulty logic of each answer option. Let's work this out in a step" - " by step way to be sure we have all the errors:", - ), - ] - ) - if stage == "critique": - return role_strings - role_strings.extend( - [ - (AIMessagePromptTemplate, "Critique: {critique}"), - ( - HumanMessagePromptTemplate, - "You are a resolver tasked with 1) finding which of " - f"the {self.n_ideas} answer options the researcher thought was " - "best, 2) improving that answer and 3) printing the answer in " - "full. Don't output anything for step 1 or 2, only the full " - "answer in 3. Let's work this out in a step by step way to " - "be sure we have the right answer:", - ), - ] - ) - if stage == "resolve": - return role_strings - raise ValueError( - "stage should be either 'ideation', 'critique' or 'resolve'," - f" but it is '{stage}'. This should never happen." - ) - - def ideation_prompt(self) -> ChatPromptTemplate: - return ChatPromptTemplate.from_strings(self.get_prompt_strings("ideation")) - - def critique_prompt(self) -> ChatPromptTemplate: - return ChatPromptTemplate.from_strings(self.get_prompt_strings("critique")) - - def resolve_prompt(self) -> ChatPromptTemplate: - return ChatPromptTemplate.from_strings(self.get_prompt_strings("resolve")) - - def _ideate( - self, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> List[str]: - """Generate n_ideas ideas as response to user prompt.""" - llm = self.ideation_llm if self.ideation_llm else self.llm - prompt = self.ideation_prompt().format_prompt( - **self.history.ideation_prompt_inputs() - ) - callbacks = run_manager.get_child() if run_manager else None - if llm: - ideas = [ - self._get_text_from_llm_result( - llm.generate_prompt([prompt], stop, callbacks), - step="ideate", - ) - for _ in range(self.n_ideas) - ] - for i, idea in enumerate(ideas): - _colored_text = get_colored_text(idea, "blue") - _text = f"Idea {i+1}:\n" + _colored_text - if run_manager: - run_manager.on_text(_text, end="\n", verbose=self.verbose) - return ideas - else: - raise ValueError("llm is none, which should never happen") - - def _critique( - self, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> str: - """Critique each of the ideas from ideation stage & select best one.""" - llm = self.critique_llm if self.critique_llm else self.llm - prompt = self.critique_prompt().format_prompt( - **self.history.critique_prompt_inputs() - ) - callbacks = run_manager.handlers if run_manager else None - if llm: - critique = self._get_text_from_llm_result( - llm.generate_prompt([prompt], stop, callbacks), step="critique" - ) - _colored_text = get_colored_text(critique, "yellow") - _text = "Critique:\n" + _colored_text - if run_manager: - run_manager.on_text(_text, end="\n", verbose=self.verbose) - return critique - else: - raise ValueError("llm is none, which should never happen") - - def _resolve( - self, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> str: - """Improve upon the best idea as chosen in critique step & return it.""" - llm = self.resolver_llm if self.resolver_llm else self.llm - prompt = self.resolve_prompt().format_prompt( - **self.history.resolve_prompt_inputs() - ) - callbacks = run_manager.handlers if run_manager else None - if llm: - resolution = self._get_text_from_llm_result( - llm.generate_prompt([prompt], stop, callbacks), step="resolve" - ) - _colored_text = get_colored_text(resolution, "green") - _text = "Resolution:\n" + _colored_text - if run_manager: - run_manager.on_text(_text, end="\n", verbose=self.verbose) - return resolution - else: - raise ValueError("llm is none, which should never happen") diff --git a/libs/experimental/langchain_experimental/sql/__init__.py b/libs/experimental/langchain_experimental/sql/__init__.py deleted file mode 100644 index d04f46fb7ff2d..0000000000000 --- a/libs/experimental/langchain_experimental/sql/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -"""**SQL Chain** interacts with `SQL` Database.""" - -from langchain_experimental.sql.base import SQLDatabaseChain, SQLDatabaseSequentialChain - -__all__ = ["SQLDatabaseChain", "SQLDatabaseSequentialChain"] diff --git a/libs/experimental/langchain_experimental/sql/base.py b/libs/experimental/langchain_experimental/sql/base.py deleted file mode 100644 index cae029f7092a0..0000000000000 --- a/libs/experimental/langchain_experimental/sql/base.py +++ /dev/null @@ -1,317 +0,0 @@ -"""Chain for interacting with SQL Database.""" - -from __future__ import annotations - -import warnings -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS -from langchain.schema import BasePromptTemplate -from langchain_community.tools.sql_database.prompt import QUERY_CHECKER -from langchain_community.utilities.sql_database import SQLDatabase -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts.prompt import PromptTemplate - -from langchain_experimental.pydantic_v1 import Field, root_validator - -INTERMEDIATE_STEPS_KEY = "intermediate_steps" -SQL_QUERY = "SQLQuery:" -SQL_RESULT = "SQLResult:" - - -class SQLDatabaseChain(Chain): - """Chain for interacting with SQL Database. - - Example: - .. code-block:: python - - from langchain_experimental.sql import SQLDatabaseChain - from langchain_community.llms import OpenAI, SQLDatabase - db = SQLDatabase(...) - db_chain = SQLDatabaseChain.from_llm(OpenAI(), db) - - *Security note*: Make sure that the database connection uses credentials - that are narrowly-scoped to only include the permissions this chain needs. - Failure to do so may result in data corruption or loss, since this chain may - attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted. - The best way to guard against such negative outcomes is to (as appropriate) - limit the permissions granted to the credentials used with this chain. - This issue shows an example negative outcome if these steps are not taken: - https://github.com/langchain-ai/langchain/issues/5923 - """ - - llm_chain: LLMChain - llm: Optional[BaseLanguageModel] = None - """[Deprecated] LLM wrapper to use.""" - database: SQLDatabase = Field(exclude=True) - """SQL Database to connect to.""" - prompt: Optional[BasePromptTemplate] = None - """[Deprecated] Prompt to use to translate natural language to SQL.""" - top_k: int = 5 - """Number of results to return from the query""" - input_key: str = "query" #: :meta private: - output_key: str = "result" #: :meta private: - return_sql: bool = False - """Will return sql-command directly without executing it""" - return_intermediate_steps: bool = False - """Whether or not to return the intermediate steps along with the final answer.""" - return_direct: bool = False - """Whether or not to return the result of querying the SQL table directly.""" - use_query_checker: bool = False - """Whether or not the query checker tool should be used to attempt - to fix the initial SQL from the LLM.""" - query_checker_prompt: Optional[BasePromptTemplate] = None - """The prompt template that should be used by the query checker""" - - class Config: - arbitrary_types_allowed = True - extra = "forbid" - - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: - if "llm" in values: - warnings.warn( - "Directly instantiating an SQLDatabaseChain with an llm is deprecated. " - "Please instantiate with llm_chain argument or using the from_llm " - "class method." - ) - if "llm_chain" not in values and values["llm"] is not None: - database = values["database"] - prompt = values.get("prompt") or SQL_PROMPTS.get( - database.dialect, PROMPT - ) - values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) - return values - - @property - def input_keys(self) -> List[str]: - """Return the singular input key. - - :meta private: - """ - return [self.input_key] - - @property - def output_keys(self) -> List[str]: - """Return the singular output key. - - :meta private: - """ - if not self.return_intermediate_steps: - return [self.output_key] - else: - return [self.output_key, INTERMEDIATE_STEPS_KEY] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - input_text = f"{inputs[self.input_key]}\n{SQL_QUERY}" - _run_manager.on_text(input_text, verbose=self.verbose) - # If not present, then defaults to None which is all tables. - table_names_to_use = inputs.get("table_names_to_use") - table_info = self.database.get_table_info(table_names=table_names_to_use) - llm_inputs = { - "input": input_text, - "top_k": str(self.top_k), - "dialect": self.database.dialect, - "table_info": table_info, - "stop": ["\nSQLResult:"], - } - if self.memory is not None: - for k in self.memory.memory_variables: - llm_inputs[k] = inputs[k] - intermediate_steps: List = [] - try: - intermediate_steps.append(llm_inputs.copy()) # input: sql generation - sql_cmd = self.llm_chain.predict( - callbacks=_run_manager.get_child(), - **llm_inputs, - ).strip() - if self.return_sql: - return {self.output_key: sql_cmd} - if not self.use_query_checker: - _run_manager.on_text(sql_cmd, color="green", verbose=self.verbose) - intermediate_steps.append( - sql_cmd - ) # output: sql generation (no checker) - intermediate_steps.append({"sql_cmd": sql_cmd}) # input: sql exec - if SQL_QUERY in sql_cmd: - sql_cmd = sql_cmd.split(SQL_QUERY)[1].strip() - if SQL_RESULT in sql_cmd: - sql_cmd = sql_cmd.split(SQL_RESULT)[0].strip() - result = self.database.run(sql_cmd) - intermediate_steps.append(str(result)) # output: sql exec - else: - query_checker_prompt = self.query_checker_prompt or PromptTemplate( - template=QUERY_CHECKER, input_variables=["query", "dialect"] - ) - query_checker_chain = LLMChain( - llm=self.llm_chain.llm, prompt=query_checker_prompt - ) - query_checker_inputs = { - "query": sql_cmd, - "dialect": self.database.dialect, - } - checked_sql_command: str = query_checker_chain.predict( - callbacks=_run_manager.get_child(), **query_checker_inputs - ).strip() - intermediate_steps.append( - checked_sql_command - ) # output: sql generation (checker) - _run_manager.on_text( - checked_sql_command, color="green", verbose=self.verbose - ) - intermediate_steps.append( - {"sql_cmd": checked_sql_command} - ) # input: sql exec - result = self.database.run(checked_sql_command) - intermediate_steps.append(str(result)) # output: sql exec - sql_cmd = checked_sql_command - - _run_manager.on_text("\nSQLResult: ", verbose=self.verbose) - _run_manager.on_text(str(result), color="yellow", verbose=self.verbose) - # If return direct, we just set the final result equal to - # the result of the sql query result, otherwise try to get a human readable - # final answer - if self.return_direct: - final_result = result - else: - _run_manager.on_text("\nAnswer:", verbose=self.verbose) - input_text += f"{sql_cmd}\nSQLResult: {result}\nAnswer:" - llm_inputs["input"] = input_text - intermediate_steps.append(llm_inputs.copy()) # input: final answer - final_result = self.llm_chain.predict( - callbacks=_run_manager.get_child(), - **llm_inputs, - ).strip() - intermediate_steps.append(final_result) # output: final answer - _run_manager.on_text(final_result, color="green", verbose=self.verbose) - chain_result: Dict[str, Any] = {self.output_key: final_result} - if self.return_intermediate_steps: - chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps - return chain_result - except Exception as exc: - # Append intermediate steps to exception, to aid in logging and later - # improvement of few shot prompt seeds - exc.intermediate_steps = intermediate_steps # type: ignore - raise exc - - @property - def _chain_type(self) -> str: - return "sql_database_chain" - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - db: SQLDatabase, - prompt: Optional[BasePromptTemplate] = None, - **kwargs: Any, - ) -> SQLDatabaseChain: - """Create a SQLDatabaseChain from an LLM and a database connection. - - *Security note*: Make sure that the database connection uses credentials - that are narrowly-scoped to only include the permissions this chain needs. - Failure to do so may result in data corruption or loss, since this chain may - attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted. - The best way to guard against such negative outcomes is to (as appropriate) - limit the permissions granted to the credentials used with this chain. - This issue shows an example negative outcome if these steps are not taken: - https://github.com/langchain-ai/langchain/issues/5923 - """ - prompt = prompt or SQL_PROMPTS.get(db.dialect, PROMPT) - llm_chain = LLMChain(llm=llm, prompt=prompt) - return cls(llm_chain=llm_chain, database=db, **kwargs) - - -class SQLDatabaseSequentialChain(Chain): - """Chain for querying SQL database that is a sequential chain. - - The chain is as follows: - 1. Based on the query, determine which tables to use. - 2. Based on those tables, call the normal SQL database chain. - - This is useful in cases where the number of tables in the database is large. - """ - - decider_chain: LLMChain - sql_chain: SQLDatabaseChain - input_key: str = "query" #: :meta private: - output_key: str = "result" #: :meta private: - return_intermediate_steps: bool = False - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - db: SQLDatabase, - query_prompt: BasePromptTemplate = PROMPT, - decider_prompt: BasePromptTemplate = DECIDER_PROMPT, - **kwargs: Any, - ) -> SQLDatabaseSequentialChain: - """Load the necessary chains.""" - sql_chain = SQLDatabaseChain.from_llm(llm, db, prompt=query_prompt, **kwargs) - decider_chain = LLMChain( - llm=llm, prompt=decider_prompt, output_key="table_names" - ) - return cls(sql_chain=sql_chain, decider_chain=decider_chain, **kwargs) - - @property - def input_keys(self) -> List[str]: - """Return the singular input key. - - :meta private: - """ - return [self.input_key] - - @property - def output_keys(self) -> List[str]: - """Return the singular output key. - - :meta private: - """ - if not self.return_intermediate_steps: - return [self.output_key] - else: - return [self.output_key, INTERMEDIATE_STEPS_KEY] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - _table_names = self.sql_chain.database.get_usable_table_names() - table_names = ", ".join(_table_names) - llm_inputs = { - "query": inputs[self.input_key], - "table_names": table_names, - } - _lowercased_table_names = [name.lower() for name in _table_names] - table_names_from_chain = self.decider_chain.predict_and_parse(**llm_inputs) - table_names_to_use = [ - name - for name in table_names_from_chain - if name.lower() in _lowercased_table_names - ] - _run_manager.on_text("Table names to use:", end="\n", verbose=self.verbose) - _run_manager.on_text( - str(table_names_to_use), color="yellow", verbose=self.verbose - ) - new_inputs = { - self.sql_chain.input_key: inputs[self.input_key], - "table_names_to_use": table_names_to_use, - } - return self.sql_chain( - new_inputs, callbacks=_run_manager.get_child(), return_only_outputs=True - ) - - @property - def _chain_type(self) -> str: - return "sql_database_sequential_chain" diff --git a/libs/experimental/langchain_experimental/sql/prompt.py b/libs/experimental/langchain_experimental/sql/prompt.py deleted file mode 100644 index 0420507d66c03..0000000000000 --- a/libs/experimental/langchain_experimental/sql/prompt.py +++ /dev/null @@ -1,85 +0,0 @@ -# flake8: noqa -from langchain_core.prompts.prompt import PromptTemplate - - -PROMPT_SUFFIX = """Only use the following tables: -{table_info} - -Question: {input}""" - -_VECTOR_SQL_DEFAULT_TEMPLATE = """You are a {dialect} expert. Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer to the input question. -{dialect} queries has a vector distance function called `DISTANCE(column, array)` to compute relevance to the user's question and sort the feature array column by the relevance. -When the query is asking for {top_k} closest row, you have to use this distance function to calculate distance to entity's array on vector column and order by the distance to retrieve relevant rows. - -*NOTICE*: `DISTANCE(column, array)` only accept an array column as its first argument and a `NeuralArray(entity)` as its second argument. You also need a user defined function called `NeuralArray(entity)` to retrieve the entity's array. - -Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the LIMIT clause as per {dialect}. You should only order according to the distance function. -Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers. -Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. -Pay attention to use today() function to get the current date, if the question involves "today". `ORDER BY` clause should always be after `WHERE` clause. DO NOT add semicolon to the end of SQL. Pay attention to the comment in table schema. - -Use the following format: - -Question: "Question here" -SQLQuery: "SQL Query to run" -SQLResult: "Result of the SQLQuery" -Answer: "Final answer here" -""" - -VECTOR_SQL_PROMPT = PromptTemplate( - input_variables=["input", "table_info", "dialect", "top_k"], - template=_VECTOR_SQL_DEFAULT_TEMPLATE + PROMPT_SUFFIX, -) - - -_myscale_prompt = """You are a MyScale expert. Given an input question, first create a syntactically correct MyScale query to run, then look at the results of the query and return the answer to the input question. -MyScale queries has a vector distance function called `DISTANCE(column, array)` to compute relevance to the user's question and sort the feature array column by the relevance. -When the query is asking for {top_k} closest row, you have to use this distance function to calculate distance to entity's array on vector column and order by the distance to retrieve relevant rows. - -*NOTICE*: `DISTANCE(column, array)` only accept an array column as its first argument and a `NeuralArray(entity)` as its second argument. You also need a user defined function called `NeuralArray(entity)` to retrieve the entity's array. - -Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the LIMIT clause as per MyScale. You should only order according to the distance function. -Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers. -Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. -Pay attention to use today() function to get the current date, if the question involves "today". `ORDER BY` clause should always be after `WHERE` clause. DO NOT add semicolon to the end of SQL. Pay attention to the comment in table schema. - -Use the following format: - -======== table info ======== - - -Question: "Question here" -SQLQuery: "SQL Query to run" - - -Here are some examples: - -======== table info ======== -CREATE TABLE "ChatPaper" ( - abstract String, - id String, - vector Array(Float32), -) ENGINE = ReplicatedReplacingMergeTree() - ORDER BY id - PRIMARY KEY id - -Question: What is Feature Pyramid Network? -SQLQuery: SELECT ChatPaper.title, ChatPaper.id, ChatPaper.authors FROM ChatPaper ORDER BY DISTANCE(vector, NeuralArray(PaperRank contribution)) LIMIT {top_k} - - -Let's begin: -======== table info ======== -{table_info} - -Question: {input} -SQLQuery: """ - -MYSCALE_PROMPT = PromptTemplate( - input_variables=["input", "table_info", "top_k"], - template=_myscale_prompt + PROMPT_SUFFIX, -) - - -VECTOR_SQL_PROMPTS = { - "myscale": MYSCALE_PROMPT, -} diff --git a/libs/experimental/langchain_experimental/sql/vector_sql.py b/libs/experimental/langchain_experimental/sql/vector_sql.py deleted file mode 100644 index a82f7b518225f..0000000000000 --- a/libs/experimental/langchain_experimental/sql/vector_sql.py +++ /dev/null @@ -1,230 +0,0 @@ -"""Vector SQL Database Chain Retriever""" - -from __future__ import annotations - -from typing import Any, Dict, List, Optional, Sequence, Union - -from langchain.chains.llm import LLMChain -from langchain.chains.sql_database.prompt import PROMPT, SQL_PROMPTS -from langchain_community.tools.sql_database.prompt import QUERY_CHECKER -from langchain_community.utilities.sql_database import SQLDatabase -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.embeddings import Embeddings -from langchain_core.language_models import BaseLanguageModel -from langchain_core.output_parsers import BaseOutputParser -from langchain_core.prompts import BasePromptTemplate -from langchain_core.prompts.prompt import PromptTemplate - -from langchain_experimental.sql.base import INTERMEDIATE_STEPS_KEY, SQLDatabaseChain - - -class VectorSQLOutputParser(BaseOutputParser[str]): - """Output Parser for Vector SQL. - - 1. finds for `NeuralArray()` and replace it with the embedding - 2. finds for `DISTANCE()` and replace it with the distance name in backend SQL - """ - - model: Embeddings - """Embedding model to extract embedding for entity""" - distance_func_name: str = "distance" - """Distance name for Vector SQL""" - - class Config: - arbitrary_types_allowed = 1 - - @property - def _type(self) -> str: - return "vector_sql_parser" - - @classmethod - def from_embeddings( - cls, model: Embeddings, distance_func_name: str = "distance", **kwargs: Any - ) -> VectorSQLOutputParser: - return cls(model=model, distance_func_name=distance_func_name, **kwargs) - - def parse(self, text: str) -> str: - text = text.strip() - start = text.find("NeuralArray(") - _sql_str_compl = text - if start > 0: - _matched = text[text.find("NeuralArray(") + len("NeuralArray(") :] - end = _matched.find(")") + start + len("NeuralArray(") + 1 - entity = _matched[: _matched.find(")")] - vecs = self.model.embed_query(entity) - vecs_str = "[" + ",".join(map(str, vecs)) + "]" - _sql_str_compl = text.replace("DISTANCE", self.distance_func_name).replace( - text[start:end], vecs_str - ) - if _sql_str_compl[-1] == ";": - _sql_str_compl = _sql_str_compl[:-1] - return _sql_str_compl - - -class VectorSQLRetrieveAllOutputParser(VectorSQLOutputParser): - """Parser based on VectorSQLOutputParser. - It also modifies the SQL to get all columns. - """ - - @property - def _type(self) -> str: - return "vector_sql_retrieve_all_parser" - - def parse(self, text: str) -> str: - text = text.strip() - start = text.upper().find("SELECT") - if start >= 0: - end = text.upper().find("FROM") - text = text.replace(text[start + len("SELECT") + 1 : end - 1], "*") - return super().parse(text) - - -def get_result_from_sqldb(db: SQLDatabase, cmd: str) -> Sequence[Dict[str, Any]]: - """Get result from SQL Database.""" - - result = db._execute(cmd, fetch="all") - assert isinstance(result, Sequence) - return result - - -class VectorSQLDatabaseChain(SQLDatabaseChain): - """Chain for interacting with Vector SQL Database. - - Example: - .. code-block:: python - - from langchain_experimental.sql import SQLDatabaseChain - from langchain_community.llms import OpenAI, SQLDatabase, OpenAIEmbeddings - db = SQLDatabase(...) - db_chain = VectorSQLDatabaseChain.from_llm(OpenAI(), db, OpenAIEmbeddings()) - - *Security note*: Make sure that the database connection uses credentials - that are narrowly-scoped to only include the permissions this chain needs. - Failure to do so may result in data corruption or loss, since this chain may - attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted. - The best way to guard against such negative outcomes is to (as appropriate) - limit the permissions granted to the credentials used with this chain. - This issue shows an example negative outcome if these steps are not taken: - https://github.com/langchain-ai/langchain/issues/5923 - """ - - sql_cmd_parser: VectorSQLOutputParser - """Parser for Vector SQL""" - native_format: bool = False - """If return_direct, controls whether to return in python native format""" - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, Any]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - input_text = f"{inputs[self.input_key]}\nSQLQuery:" - _run_manager.on_text(input_text, verbose=self.verbose) - # If not present, then defaults to None which is all tables. - table_names_to_use = inputs.get("table_names_to_use") - table_info = self.database.get_table_info(table_names=table_names_to_use) - llm_inputs = { - "input": input_text, - "top_k": str(self.top_k), - "dialect": self.database.dialect, - "table_info": table_info, - "stop": ["\nSQLResult:"], - } - intermediate_steps: List = [] - try: - intermediate_steps.append(llm_inputs) # input: sql generation - llm_out = self.llm_chain.predict( - callbacks=_run_manager.get_child(), - **llm_inputs, - ) - sql_cmd = self.sql_cmd_parser.parse(llm_out) - if self.return_sql: - return {self.output_key: sql_cmd} - if not self.use_query_checker: - _run_manager.on_text(llm_out, color="green", verbose=self.verbose) - intermediate_steps.append( - llm_out - ) # output: sql generation (no checker) - intermediate_steps.append({"sql_cmd": llm_out}) # input: sql exec - result = get_result_from_sqldb(self.database, sql_cmd) - intermediate_steps.append(str(result)) # output: sql exec - else: - query_checker_prompt = self.query_checker_prompt or PromptTemplate( - template=QUERY_CHECKER, input_variables=["query", "dialect"] - ) - query_checker_chain = LLMChain( - llm=self.llm_chain.llm, - prompt=query_checker_prompt, - output_parser=self.llm_chain.output_parser, - ) - query_checker_inputs = { - "query": llm_out, - "dialect": self.database.dialect, - } - checked_llm_out = query_checker_chain.predict( - callbacks=_run_manager.get_child(), **query_checker_inputs - ) - checked_sql_command = self.sql_cmd_parser.parse(checked_llm_out) - intermediate_steps.append( - checked_llm_out - ) # output: sql generation (checker) - _run_manager.on_text( - checked_llm_out, color="green", verbose=self.verbose - ) - intermediate_steps.append( - {"sql_cmd": checked_llm_out} - ) # input: sql exec - result = get_result_from_sqldb(self.database, checked_sql_command) - intermediate_steps.append(str(result)) # output: sql exec - llm_out = checked_llm_out - sql_cmd = checked_sql_command - - _run_manager.on_text("\nSQLResult: ", verbose=self.verbose) - _run_manager.on_text(str(result), color="yellow", verbose=self.verbose) - # If return direct, we just set the final result equal to - # the result of the sql query result (`Sequence[Dict[str, Any]]`), - # otherwise try to get a human readable final answer (`str`). - final_result: Union[str, Sequence[Dict[str, Any]]] - if self.return_direct: - final_result = result - else: - _run_manager.on_text("\nAnswer:", verbose=self.verbose) - input_text += f"{llm_out}\nSQLResult: {result}\nAnswer:" - llm_inputs["input"] = input_text - intermediate_steps.append(llm_inputs) # input: final answer - final_result = self.llm_chain.predict( - callbacks=_run_manager.get_child(), - **llm_inputs, - ).strip() - intermediate_steps.append(final_result) # output: final answer - _run_manager.on_text(final_result, color="green", verbose=self.verbose) - chain_result: Dict[str, Any] = {self.output_key: final_result} - if self.return_intermediate_steps: - chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps - return chain_result - except Exception as exc: - # Append intermediate steps to exception, to aid in logging and later - # improvement of few shot prompt seeds - exc.intermediate_steps = intermediate_steps # type: ignore - raise exc - - @property - def _chain_type(self) -> str: - return "vector_sql_database_chain" - - @classmethod - def from_llm( - cls, - llm: BaseLanguageModel, - db: SQLDatabase, - prompt: Optional[BasePromptTemplate] = None, - sql_cmd_parser: Optional[VectorSQLOutputParser] = None, - **kwargs: Any, - ) -> VectorSQLDatabaseChain: - assert sql_cmd_parser, "`sql_cmd_parser` must be set in VectorSQLDatabaseChain." - prompt = prompt or SQL_PROMPTS.get(db.dialect, PROMPT) - llm_chain = LLMChain(llm=llm, prompt=prompt) - return cls( - llm_chain=llm_chain, database=db, sql_cmd_parser=sql_cmd_parser, **kwargs - ) diff --git a/libs/experimental/langchain_experimental/synthetic_data/__init__.py b/libs/experimental/langchain_experimental/synthetic_data/__init__.py deleted file mode 100644 index d611c76ef84a8..0000000000000 --- a/libs/experimental/langchain_experimental/synthetic_data/__init__.py +++ /dev/null @@ -1,51 +0,0 @@ -"""Generate **synthetic data** using LLM and few-shot template.""" - -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts import PromptTemplate - -from langchain_experimental.synthetic_data.prompts import SENTENCE_PROMPT - - -def create_data_generation_chain( - llm: BaseLanguageModel, - prompt: Optional[PromptTemplate] = None, -) -> Chain: - """Create a chain that generates synthetic sentences with - provided fields. - - Args: - llm: The language model to use. - prompt: Prompt to feed the language model with. - If not provided, the default one will be used. - """ - prompt = prompt or SENTENCE_PROMPT - return LLMChain( - llm=llm, - prompt=prompt, - ) - - -class DatasetGenerator: - """Generate synthetic dataset with a given language model.""" - - def __init__( - self, - llm: BaseLanguageModel, - sentence_preferences: Optional[Dict[str, Any]] = None, - ): - self.generator = create_data_generation_chain(llm) - self.sentence_preferences = sentence_preferences or {} - - def __call__(self, fields_collection: List[List[Any]]) -> List[Dict[str, Any]]: - results: List[Dict[str, Any]] = [] - for fields in fields_collection: - results.append( - self.generator( - {"fields": fields, "preferences": self.sentence_preferences} - ) - ) - return results diff --git a/libs/experimental/langchain_experimental/synthetic_data/prompts.py b/libs/experimental/langchain_experimental/synthetic_data/prompts.py deleted file mode 100644 index 51bc373630a76..0000000000000 --- a/libs/experimental/langchain_experimental/synthetic_data/prompts.py +++ /dev/null @@ -1,15 +0,0 @@ -from langchain_core.prompts.prompt import PromptTemplate - -sentence_template = """Given the following fields, create a sentence about them. -Make the sentence detailed and interesting. Use every given field. -If any additional preferences are given, use them during sentence construction as well. -Fields: -{fields} -Preferences: -{preferences} -Sentence: -""" - -SENTENCE_PROMPT = PromptTemplate( - template=sentence_template, input_variables=["fields", "preferences"] -) diff --git a/libs/experimental/langchain_experimental/tabular_synthetic_data/__init__.py b/libs/experimental/langchain_experimental/tabular_synthetic_data/__init__.py deleted file mode 100644 index d26ccf38f8ebd..0000000000000 --- a/libs/experimental/langchain_experimental/tabular_synthetic_data/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Generate **tabular synthetic data** using LLM and few-shot template.""" diff --git a/libs/experimental/langchain_experimental/tabular_synthetic_data/base.py b/libs/experimental/langchain_experimental/tabular_synthetic_data/base.py deleted file mode 100644 index 4fb6b38240448..0000000000000 --- a/libs/experimental/langchain_experimental/tabular_synthetic_data/base.py +++ /dev/null @@ -1,138 +0,0 @@ -import asyncio -from typing import Any, Dict, List, Optional, Union, cast - -from langchain.chains.base import Chain -from langchain.chains.llm import LLMChain -from langchain.pydantic_v1 import BaseModel, root_validator -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts.few_shot import FewShotPromptTemplate -from langchain_core.utils.pydantic import is_basemodel_instance - - -class SyntheticDataGenerator(BaseModel): - """Generate synthetic data using the given LLM and few-shot template. - - Utilizes the provided LLM to produce synthetic data based on the - few-shot prompt template. - - Attributes: - template (FewShotPromptTemplate): Template for few-shot prompting. - llm (Optional[BaseLanguageModel]): Large Language Model to use for generation. - llm_chain (Optional[Chain]): LLM chain with the LLM and few-shot template. - example_input_key (str): Key to use for storing example inputs. - - Usage Example: - >>> template = FewShotPromptTemplate(...) - >>> llm = BaseLanguageModel(...) - >>> generator = SyntheticDataGenerator(template=template, llm=llm) - >>> results = generator.generate(subject="climate change", runs=5) - """ - - template: FewShotPromptTemplate - llm: Optional[BaseLanguageModel] = None - results: list = [] - llm_chain: Optional[Chain] = None - example_input_key: str = "example" - - class Config: - validate_assignment = True - - @root_validator(pre=False, skip_on_failure=True) - def set_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]: - llm_chain = values.get("llm_chain") - llm = values.get("llm") - few_shot_template = values.get("template") - - if not llm_chain: # If llm_chain is None or not present - if llm is None or few_shot_template is None: - raise ValueError( - "Both llm and few_shot_template must be provided if llm_chain is " - "not given." - ) - values["llm_chain"] = LLMChain(llm=llm, prompt=few_shot_template) - - return values - - @staticmethod - def _format_dict_to_string(input_dict: Dict) -> str: - formatted_str = ", ".join( - [f"{key}: {value}" for key, value in input_dict.items()] - ) - return formatted_str - - def _update_examples(self, example: Union[BaseModel, Dict[str, Any], str]) -> None: - """Prevents duplicates by adding previously generated examples to the few shot - list.""" - if self.template and self.template.examples: - if is_basemodel_instance(example): - formatted_example = self._format_dict_to_string( - cast(BaseModel, example).dict() - ) - elif isinstance(example, dict): - formatted_example = self._format_dict_to_string(example) - else: - formatted_example = str(example) - self.template.examples.pop(0) - self.template.examples.append({self.example_input_key: formatted_example}) - - def generate(self, subject: str, runs: int, *args: Any, **kwargs: Any) -> List[str]: - """Generate synthetic data using the given subject string. - - Args: - subject (str): The subject the synthetic data will be about. - runs (int): Number of times to generate the data. - extra (str): Extra instructions for steerability in data generation. - - Returns: - List[str]: List of generated synthetic data. - - Usage Example: - >>> results = generator.generate(subject="climate change", runs=5, - extra="Focus on environmental impacts.") - """ - if self.llm_chain is None: - raise ValueError( - "llm_chain is none, either set either llm_chain or llm at generator " - "construction" - ) - for _ in range(runs): - result = self.llm_chain.run(subject=subject, *args, **kwargs) - self.results.append(result) - self._update_examples(result) - return self.results - - async def agenerate( - self, subject: str, runs: int, extra: str = "", *args: Any, **kwargs: Any - ) -> List[str]: - """Generate synthetic data using the given subject asynchronously. - - Note: Since the LLM calls run concurrently, - you may have fewer duplicates by adding specific instructions to - the "extra" keyword argument. - - Args: - subject (str): The subject the synthetic data will be about. - runs (int): Number of times to generate the data asynchronously. - extra (str): Extra instructions for steerability in data generation. - - Returns: - List[str]: List of generated synthetic data for the given subject. - - Usage Example: - >>> results = await generator.agenerate(subject="climate change", runs=5, - extra="Focus on env impacts.") - """ - - async def run_chain( - subject: str, extra: str = "", *args: Any, **kwargs: Any - ) -> None: - if self.llm_chain is not None: - result = await self.llm_chain.arun( - subject=subject, extra=extra, *args, **kwargs - ) - self.results.append(result) - - await asyncio.gather( - *(run_chain(subject=subject, extra=extra) for _ in range(runs)) - ) - return self.results diff --git a/libs/experimental/langchain_experimental/tabular_synthetic_data/openai.py b/libs/experimental/langchain_experimental/tabular_synthetic_data/openai.py deleted file mode 100644 index 33f33e27d4b07..0000000000000 --- a/libs/experimental/langchain_experimental/tabular_synthetic_data/openai.py +++ /dev/null @@ -1,64 +0,0 @@ -from typing import Any, Dict, Optional, Type, Union - -from langchain.chains.openai_functions import create_structured_output_chain -from langchain.pydantic_v1 import BaseModel -from langchain.schema import BaseLLMOutputParser, BasePromptTemplate -from langchain_community.chat_models import ChatOpenAI -from langchain_core.prompts import PromptTemplate - -from langchain_experimental.tabular_synthetic_data.base import SyntheticDataGenerator - -OPENAI_TEMPLATE = PromptTemplate(input_variables=["example"], template="{example}") - - -def create_openai_data_generator( - output_schema: Union[Dict[str, Any], Type[BaseModel]], - llm: ChatOpenAI, - prompt: BasePromptTemplate, - output_parser: Optional[BaseLLMOutputParser] = None, - **kwargs: Any, -) -> SyntheticDataGenerator: - """ - Create an instance of SyntheticDataGenerator tailored for OpenAI models. - - This function creates an LLM chain designed for structured output based on the - provided schema, language model, and prompt template. The resulting chain is then - used to instantiate and return a SyntheticDataGenerator. - - Args: - output_schema (Union[Dict[str, Any], Type[BaseModel]]): Schema for expected - output. This can be either a dictionary representing a valid JsonSchema or a - Pydantic BaseModel class. - - - llm (ChatOpenAI): OpenAI language model to use. - - prompt (BasePromptTemplate): Template to be used for generating prompts. - - - output_parser (Optional[BaseLLMOutputParser], optional): Parser for - processing model outputs. If none is provided, a default will be inferred - from the function types. - - - kwargs: Additional keyword arguments to be passed to - `create_structured_output_chain`. - - - Returns: SyntheticDataGenerator: An instance of the data generator set up with - the constructed chain. - - Usage: - To generate synthetic data with a structured output, first define your desired - output schema. Then, use this function to create a SyntheticDataGenerator - instance. After obtaining the generator, you can utilize its methods to produce - the desired synthetic data. - """ - # Create function calling chain to ensure structured output - chain = create_structured_output_chain( - output_schema, llm, prompt, output_parser=output_parser, **kwargs - ) - - # Create the SyntheticDataGenerator instance with the created chain - generator = SyntheticDataGenerator(template=prompt, llm_chain=chain) # type: ignore[arg-type] - return generator diff --git a/libs/experimental/langchain_experimental/tabular_synthetic_data/prompts.py b/libs/experimental/langchain_experimental/tabular_synthetic_data/prompts.py deleted file mode 100644 index c5e66059285e0..0000000000000 --- a/libs/experimental/langchain_experimental/tabular_synthetic_data/prompts.py +++ /dev/null @@ -1,13 +0,0 @@ -from langchain_core.prompts.prompt import PromptTemplate - -DEFAULT_INPUT_KEY = "example" -DEFAULT_PROMPT = PromptTemplate( - input_variables=[DEFAULT_INPUT_KEY], template="{example}" -) - -SYNTHETIC_FEW_SHOT_PREFIX = ( - "This is a test about generating synthetic data about {subject}. Examples below:" -) -SYNTHETIC_FEW_SHOT_SUFFIX = ( - """Now you generate synthetic data about {subject}. Make sure to {extra}:""" -) diff --git a/libs/experimental/langchain_experimental/text_splitter.py b/libs/experimental/langchain_experimental/text_splitter.py deleted file mode 100644 index 2151a0e5ce9b7..0000000000000 --- a/libs/experimental/langchain_experimental/text_splitter.py +++ /dev/null @@ -1,287 +0,0 @@ -"""Experimental **text splitter** based on semantic similarity.""" - -import copy -import re -from typing import Any, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, cast - -import numpy as np -from langchain_community.utils.math import ( - cosine_similarity, -) -from langchain_core.documents import BaseDocumentTransformer, Document -from langchain_core.embeddings import Embeddings - - -def combine_sentences(sentences: List[dict], buffer_size: int = 1) -> List[dict]: - """Combine sentences based on buffer size. - - Args: - sentences: List of sentences to combine. - buffer_size: Number of sentences to combine. Defaults to 1. - - Returns: - List of sentences with combined sentences. - """ - - # Go through each sentence dict - for i in range(len(sentences)): - # Create a string that will hold the sentences which are joined - combined_sentence = "" - - # Add sentences before the current one, based on the buffer size. - for j in range(i - buffer_size, i): - # Check if the index j is not negative - # (to avoid index out of range like on the first one) - if j >= 0: - # Add the sentence at index j to the combined_sentence string - combined_sentence += sentences[j]["sentence"] + " " - - # Add the current sentence - combined_sentence += sentences[i]["sentence"] - - # Add sentences after the current one, based on the buffer size - for j in range(i + 1, i + 1 + buffer_size): - # Check if the index j is within the range of the sentences list - if j < len(sentences): - # Add the sentence at index j to the combined_sentence string - combined_sentence += " " + sentences[j]["sentence"] - - # Then add the whole thing to your dict - # Store the combined sentence in the current sentence dict - sentences[i]["combined_sentence"] = combined_sentence - - return sentences - - -def calculate_cosine_distances(sentences: List[dict]) -> Tuple[List[float], List[dict]]: - """Calculate cosine distances between sentences. - - Args: - sentences: List of sentences to calculate distances for. - - Returns: - Tuple of distances and sentences. - """ - distances = [] - for i in range(len(sentences) - 1): - embedding_current = sentences[i]["combined_sentence_embedding"] - embedding_next = sentences[i + 1]["combined_sentence_embedding"] - - # Calculate cosine similarity - similarity = cosine_similarity([embedding_current], [embedding_next])[0][0] - - # Convert to cosine distance - distance = 1 - similarity - - # Append cosine distance to the list - distances.append(distance) - - # Store distance in the dictionary - sentences[i]["distance_to_next"] = distance - - # Optionally handle the last sentence - # sentences[-1]['distance_to_next'] = None # or a default value - - return distances, sentences - - -BreakpointThresholdType = Literal[ - "percentile", "standard_deviation", "interquartile", "gradient" -] -BREAKPOINT_DEFAULTS: Dict[BreakpointThresholdType, float] = { - "percentile": 95, - "standard_deviation": 3, - "interquartile": 1.5, - "gradient": 95, -} - - -class SemanticChunker(BaseDocumentTransformer): - """Split the text based on semantic similarity. - - Taken from Greg Kamradt's wonderful notebook: - https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb - - All credits to him. - - At a high level, this splits into sentences, then groups into groups of 3 - sentences, and then merges one that are similar in the embedding space. - """ - - def __init__( - self, - embeddings: Embeddings, - buffer_size: int = 1, - add_start_index: bool = False, - breakpoint_threshold_type: BreakpointThresholdType = "percentile", - breakpoint_threshold_amount: Optional[float] = None, - number_of_chunks: Optional[int] = None, - sentence_split_regex: str = r"(?<=[.?!])\s+", - ): - self._add_start_index = add_start_index - self.embeddings = embeddings - self.buffer_size = buffer_size - self.breakpoint_threshold_type = breakpoint_threshold_type - self.number_of_chunks = number_of_chunks - self.sentence_split_regex = sentence_split_regex - if breakpoint_threshold_amount is None: - self.breakpoint_threshold_amount = BREAKPOINT_DEFAULTS[ - breakpoint_threshold_type - ] - else: - self.breakpoint_threshold_amount = breakpoint_threshold_amount - - def _calculate_breakpoint_threshold( - self, distances: List[float] - ) -> Tuple[float, List[float]]: - if self.breakpoint_threshold_type == "percentile": - return cast( - float, - np.percentile(distances, self.breakpoint_threshold_amount), - ), distances - elif self.breakpoint_threshold_type == "standard_deviation": - return cast( - float, - np.mean(distances) - + self.breakpoint_threshold_amount * np.std(distances), - ), distances - elif self.breakpoint_threshold_type == "interquartile": - q1, q3 = np.percentile(distances, [25, 75]) - iqr = q3 - q1 - - return np.mean( - distances - ) + self.breakpoint_threshold_amount * iqr, distances - elif self.breakpoint_threshold_type == "gradient": - # Calculate the threshold based on the distribution of gradient of distance array. # noqa: E501 - distance_gradient = np.gradient(distances, range(0, len(distances))) - return cast( - float, - np.percentile(distance_gradient, self.breakpoint_threshold_amount), - ), distance_gradient - else: - raise ValueError( - f"Got unexpected `breakpoint_threshold_type`: " - f"{self.breakpoint_threshold_type}" - ) - - def _threshold_from_clusters(self, distances: List[float]) -> float: - """ - Calculate the threshold based on the number of chunks. - Inverse of percentile method. - """ - if self.number_of_chunks is None: - raise ValueError( - "This should never be called if `number_of_chunks` is None." - ) - x1, y1 = len(distances), 0.0 - x2, y2 = 1.0, 100.0 - - x = max(min(self.number_of_chunks, x1), x2) - - # Linear interpolation formula - if x2 == x1: - y = y2 - else: - y = y1 + ((y2 - y1) / (x2 - x1)) * (x - x1) - - y = min(max(y, 0), 100) - - return cast(float, np.percentile(distances, y)) - - def _calculate_sentence_distances( - self, single_sentences_list: List[str] - ) -> Tuple[List[float], List[dict]]: - """Split text into multiple components.""" - - _sentences = [ - {"sentence": x, "index": i} for i, x in enumerate(single_sentences_list) - ] - sentences = combine_sentences(_sentences, self.buffer_size) - embeddings = self.embeddings.embed_documents( - [x["combined_sentence"] for x in sentences] - ) - for i, sentence in enumerate(sentences): - sentence["combined_sentence_embedding"] = embeddings[i] - - return calculate_cosine_distances(sentences) - - def split_text( - self, - text: str, - ) -> List[str]: - # Splitting the essay (by default on '.', '?', and '!') - single_sentences_list = re.split(self.sentence_split_regex, text) - - # having len(single_sentences_list) == 1 would cause the following - # np.percentile to fail. - if len(single_sentences_list) == 1: - return single_sentences_list - distances, sentences = self._calculate_sentence_distances(single_sentences_list) - if self.number_of_chunks is not None: - breakpoint_distance_threshold = self._threshold_from_clusters(distances) - breakpoint_array = distances - else: - ( - breakpoint_distance_threshold, - breakpoint_array, - ) = self._calculate_breakpoint_threshold(distances) - - indices_above_thresh = [ - i - for i, x in enumerate(breakpoint_array) - if x > breakpoint_distance_threshold - ] - - chunks = [] - start_index = 0 - - # Iterate through the breakpoints to slice the sentences - for index in indices_above_thresh: - # The end index is the current breakpoint - end_index = index - - # Slice the sentence_dicts from the current start index to the end index - group = sentences[start_index : end_index + 1] - combined_text = " ".join([d["sentence"] for d in group]) - chunks.append(combined_text) - - # Update the start index for the next group - start_index = index + 1 - - # The last group, if any sentences remain - if start_index < len(sentences): - combined_text = " ".join([d["sentence"] for d in sentences[start_index:]]) - chunks.append(combined_text) - return chunks - - def create_documents( - self, texts: List[str], metadatas: Optional[List[dict]] = None - ) -> List[Document]: - """Create documents from a list of texts.""" - _metadatas = metadatas or [{}] * len(texts) - documents = [] - for i, text in enumerate(texts): - start_index = 0 - for chunk in self.split_text(text): - metadata = copy.deepcopy(_metadatas[i]) - if self._add_start_index: - metadata["start_index"] = start_index - new_doc = Document(page_content=chunk, metadata=metadata) - documents.append(new_doc) - start_index += len(chunk) - return documents - - def split_documents(self, documents: Iterable[Document]) -> List[Document]: - """Split documents.""" - texts, metadatas = [], [] - for doc in documents: - texts.append(doc.page_content) - metadatas.append(doc.metadata) - return self.create_documents(texts, metadatas=metadatas) - - def transform_documents( - self, documents: Sequence[Document], **kwargs: Any - ) -> Sequence[Document]: - """Transform sequence of documents by splitting them.""" - return self.split_documents(list(documents)) diff --git a/libs/experimental/langchain_experimental/tools/__init__.py b/libs/experimental/langchain_experimental/tools/__init__.py deleted file mode 100644 index 46da4e17c8c1a..0000000000000 --- a/libs/experimental/langchain_experimental/tools/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -"""Experimental **Python REPL** tools.""" - -from langchain_experimental.tools.python.tool import PythonAstREPLTool, PythonREPLTool - -__all__ = ["PythonREPLTool", "PythonAstREPLTool"] diff --git a/libs/experimental/langchain_experimental/tools/python/__init__.py b/libs/experimental/langchain_experimental/tools/python/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/langchain_experimental/tools/python/tool.py b/libs/experimental/langchain_experimental/tools/python/tool.py deleted file mode 100644 index 7c5b367169e5d..0000000000000 --- a/libs/experimental/langchain_experimental/tools/python/tool.py +++ /dev/null @@ -1,147 +0,0 @@ -"""A tool for running python code in a REPL.""" - -import ast -import re -import sys -from contextlib import redirect_stdout -from io import StringIO -from typing import Any, Dict, Optional, Type - -from langchain.pydantic_v1 import BaseModel, Field, root_validator -from langchain_core.callbacks.manager import ( - AsyncCallbackManagerForToolRun, - CallbackManagerForToolRun, -) -from langchain_core.runnables.config import run_in_executor -from langchain_core.tools import BaseTool - -from langchain_experimental.utilities.python import PythonREPL - - -def _get_default_python_repl() -> PythonREPL: - return PythonREPL(_globals=globals(), _locals=None) - - -def sanitize_input(query: str) -> str: - """Sanitize input to the python REPL. - - Remove whitespace, backtick & python (if llm mistakes python console as terminal) - - Args: - query: The query to sanitize - - Returns: - str: The sanitized query - """ - - # Removes `, whitespace & python from start - query = re.sub(r"^(\s|`)*(?i:python)?\s*", "", query) - # Removes whitespace & ` from end - query = re.sub(r"(\s|`)*$", "", query) - return query - - -class PythonREPLTool(BaseTool): - """Tool for running python code in a REPL.""" - - name: str = "Python_REPL" - description: str = ( - "A Python shell. Use this to execute python commands. " - "Input should be a valid python command. " - "If you want to see the output of a value, you should print it out " - "with `print(...)`." - ) - python_repl: PythonREPL = Field(default_factory=_get_default_python_repl) - sanitize_input: bool = True - - def _run( - self, - query: str, - run_manager: Optional[CallbackManagerForToolRun] = None, - ) -> Any: - """Use the tool.""" - if self.sanitize_input: - query = sanitize_input(query) - return self.python_repl.run(query) - - async def _arun( - self, - query: str, - run_manager: Optional[AsyncCallbackManagerForToolRun] = None, - ) -> Any: - """Use the tool asynchronously.""" - if self.sanitize_input: - query = sanitize_input(query) - - return await run_in_executor(None, self.run, query) - - -class PythonInputs(BaseModel): - """Python inputs.""" - - query: str = Field(description="code snippet to run") - - -class PythonAstREPLTool(BaseTool): - """Tool for running python code in a REPL.""" - - name: str = "python_repl_ast" - description: str = ( - "A Python shell. Use this to execute python commands. " - "Input should be a valid python command. " - "When using this tool, sometimes output is abbreviated - " - "make sure it does not look abbreviated before using it in your answer." - ) - globals: Optional[Dict] = Field(default_factory=dict) - locals: Optional[Dict] = Field(default_factory=dict) - sanitize_input: bool = True - args_schema: Type[BaseModel] = PythonInputs - - @root_validator(pre=True) - def validate_python_version(cls, values: Dict) -> Dict: - """Validate valid python version.""" - if sys.version_info < (3, 9): - raise ValueError( - "This tool relies on Python 3.9 or higher " - "(as it uses new functionality in the `ast` module, " - f"you have Python version: {sys.version}" - ) - return values - - def _run( - self, - query: str, - run_manager: Optional[CallbackManagerForToolRun] = None, - ) -> str: - """Use the tool.""" - try: - if self.sanitize_input: - query = sanitize_input(query) - tree = ast.parse(query) - module = ast.Module(tree.body[:-1], type_ignores=[]) - exec(ast.unparse(module), self.globals, self.locals) # type: ignore - module_end = ast.Module(tree.body[-1:], type_ignores=[]) - module_end_str = ast.unparse(module_end) # type: ignore - io_buffer = StringIO() - try: - with redirect_stdout(io_buffer): - ret = eval(module_end_str, self.globals, self.locals) - if ret is None: - return io_buffer.getvalue() - else: - return ret - except Exception: - with redirect_stdout(io_buffer): - exec(module_end_str, self.globals, self.locals) - return io_buffer.getvalue() - except Exception as e: - return "{}: {}".format(type(e).__name__, str(e)) - - async def _arun( - self, - query: str, - run_manager: Optional[AsyncCallbackManagerForToolRun] = None, - ) -> Any: - """Use the tool asynchronously.""" - - return await run_in_executor(None, self._run, query) diff --git a/libs/experimental/langchain_experimental/tot/__init__.py b/libs/experimental/langchain_experimental/tot/__init__.py deleted file mode 100644 index 88b1a276be33c..0000000000000 --- a/libs/experimental/langchain_experimental/tot/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -"""Implementation of a **Tree of Thought (ToT)** chain based on the paper -[Large Language Model Guided Tree-of-Thought](https://arxiv.org/pdf/2305.08291.pdf). - -The Tree of Thought (ToT) chain uses a tree structure to explore the space of -possible solutions to a problem. - -""" - -from langchain_experimental.tot.base import ToTChain -from langchain_experimental.tot.checker import ToTChecker - -__all__ = ["ToTChain", "ToTChecker"] diff --git a/libs/experimental/langchain_experimental/tot/base.py b/libs/experimental/langchain_experimental/tot/base.py deleted file mode 100644 index 7de3138196008..0000000000000 --- a/libs/experimental/langchain_experimental/tot/base.py +++ /dev/null @@ -1,141 +0,0 @@ -from __future__ import annotations - -from textwrap import indent -from typing import Any, Dict, List, Optional, Type - -from langchain.base_language import BaseLanguageModel -from langchain.chains.base import Chain -from langchain_core.callbacks.manager import ( - AsyncCallbackManagerForChainRun, - CallbackManagerForChainRun, -) - -from langchain_experimental.tot.checker import ToTChecker -from langchain_experimental.tot.controller import ToTController -from langchain_experimental.tot.memory import ToTDFSMemory -from langchain_experimental.tot.thought import Thought, ThoughtValidity -from langchain_experimental.tot.thought_generation import ( - BaseThoughtGenerationStrategy, - ProposePromptStrategy, -) - - -class ToTChain(Chain): - """ - Chain implementing the Tree of Thought (ToT). - """ - - llm: BaseLanguageModel - """ - Language model to use. It must be set to produce different variations for - the same prompt. - """ - checker: ToTChecker - """ToT Checker to use.""" - output_key: str = "response" #: :meta private: - k: int = 10 - """The maximum number of conversation rounds""" - c: int = 3 - """The number of children to explore at each node""" - tot_memory: ToTDFSMemory = ToTDFSMemory() - tot_controller: ToTController = ToTController() - tot_strategy_class: Type[BaseThoughtGenerationStrategy] = ProposePromptStrategy - verbose_llm: bool = False - - class Config: - arbitrary_types_allowed = True - extra = "forbid" - - @classmethod - def from_llm(cls, llm: BaseLanguageModel, **kwargs: Any) -> ToTChain: - """ - Create a ToTChain from a language model. - - :param llm: The language model to use. - :param kwargs: Additional arguments to pass to the ToTChain constructor. - """ - return cls(llm=llm, **kwargs) - - def __init__(self, **kwargs: Any): - super().__init__(**kwargs) - self.tot_controller.c = self.c - - @property - def input_keys(self) -> List[str]: - """Will be whatever keys the prompt expects. - - :meta private: - """ - return ["problem_description"] - - @property - def output_keys(self) -> List[str]: - """Will always return text key. - - :meta private: - """ - return [self.output_key] - - def log_thought( - self, - thought: Thought, - level: int, - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> None: - if run_manager: - colors = { - ThoughtValidity.VALID_FINAL: "green", - ThoughtValidity.VALID_INTERMEDIATE: "yellow", - ThoughtValidity.INVALID: "red", - } - text = indent(f"Thought: {thought.text}\n", prefix=" " * level) - run_manager.on_text( - text=text, color=colors[thought.validity], verbose=self.verbose - ) - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() - if run_manager: - run_manager.on_text(text="Starting the ToT solve procedure.\n") - - problem_description = inputs["problem_description"] - checker_inputs = {"problem_description": problem_description} - thoughts_path: tuple[str, ...] = () - thought_generator = self.tot_strategy_class( # type: ignore[call-arg] - llm=self.llm, c=self.c, verbose=self.verbose_llm - ) - - level = 0 - for _ in range(self.k): - level = self.tot_memory.level - thought_text = thought_generator.next_thought( - problem_description, thoughts_path, callbacks=_run_manager.get_child() - ) - checker_inputs["thoughts"] = thoughts_path + (thought_text,) - thought_validity = self.checker( - checker_inputs, callbacks=_run_manager.get_child() - )["validity"] - thought = Thought(text=thought_text, validity=thought_validity) - if thought.validity == ThoughtValidity.VALID_FINAL: - self.log_thought(thought, level, run_manager) - return {self.output_key: thought.text} - self.tot_memory.store(thought) - self.log_thought(thought, level, run_manager) - thoughts_path = self.tot_controller(self.tot_memory) - - return {self.output_key: "No solution found"} - - async def _acall( - self, - inputs: Dict[str, Any], - run_manager: Optional[AsyncCallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - raise NotImplementedError("Async not implemented yet") - - @property - def _chain_type(self) -> str: - return "tot" diff --git a/libs/experimental/langchain_experimental/tot/checker.py b/libs/experimental/langchain_experimental/tot/checker.py deleted file mode 100644 index 2642125625733..0000000000000 --- a/libs/experimental/langchain_experimental/tot/checker.py +++ /dev/null @@ -1,52 +0,0 @@ -from abc import ABC, abstractmethod -from typing import Any, Dict, List, Optional, Tuple - -from langchain.chains.base import Chain -from langchain_core.callbacks.manager import CallbackManagerForChainRun - -from langchain_experimental.tot.thought import ThoughtValidity - - -class ToTChecker(Chain, ABC): - """ - Tree of Thought (ToT) checker. - - This is an abstract ToT checker that must be implemented by the user. You - can implement a simple rule-based checker or a more sophisticated - neural network based classifier. - """ - - output_key: str = "validity" #: :meta private: - - @property - def input_keys(self) -> List[str]: - """The checker input keys. - - :meta private: - """ - return ["problem_description", "thoughts"] - - @property - def output_keys(self) -> List[str]: - """The checker output keys. - - :meta private: - """ - return [self.output_key] - - @abstractmethod - def evaluate( - self, - problem_description: str, - thoughts: Tuple[str, ...] = (), - ) -> ThoughtValidity: - """ - Evaluate the response to the problem description and return the solution type. - """ - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, ThoughtValidity]: - return {self.output_key: self.evaluate(**inputs)} diff --git a/libs/experimental/langchain_experimental/tot/controller.py b/libs/experimental/langchain_experimental/tot/controller.py deleted file mode 100644 index d2a7a6fbd3821..0000000000000 --- a/libs/experimental/langchain_experimental/tot/controller.py +++ /dev/null @@ -1,54 +0,0 @@ -from typing import Tuple - -from langchain_experimental.tot.memory import ToTDFSMemory -from langchain_experimental.tot.thought import ThoughtValidity - - -class ToTController: - """ - Tree of Thought (ToT) controller. - - This is a version of a ToT controller, dubbed in the paper as a "Simple - Controller". - - It has one parameter `c` which is the number of children to explore for each - thought. - """ - - def __init__(self, c: int = 3): - """ - Initialize the controller. - - Args: - c: The number of children to explore at each node. - """ - self.c = c - - def __call__(self, memory: ToTDFSMemory) -> Tuple[str, ...]: - next_thought = memory.top() - parent_thought = memory.top_parent() - validity = ( - ThoughtValidity.VALID_INTERMEDIATE - if next_thought is None - else next_thought.validity - ) - - # 1 if the current partial solution is invalid, backtrack to the parent - # thought. - if validity == ThoughtValidity.INVALID: - memory.pop() - next_thought = memory.top() - if next_thought and len(next_thought.children) >= self.c: - memory.pop() - - # 2 if the current partial solution is valid but C children were - # explored and yet failed to find a final solution, backtrack to the - # parent thought. - elif ( - validity == ThoughtValidity.VALID_INTERMEDIATE - and parent_thought - and len(parent_thought.children) >= self.c - ): - memory.pop(2) - - return tuple(thought.text for thought in memory.current_path()) diff --git a/libs/experimental/langchain_experimental/tot/memory.py b/libs/experimental/langchain_experimental/tot/memory.py deleted file mode 100644 index 5c9de838239c5..0000000000000 --- a/libs/experimental/langchain_experimental/tot/memory.py +++ /dev/null @@ -1,48 +0,0 @@ -from __future__ import annotations - -from typing import List, Optional - -from langchain_experimental.tot.thought import Thought - - -class ToTDFSMemory: - """ - Memory for the Tree of Thought (ToT) chain. - - It is implemented as a stack of - thoughts. This allows for a depth first search (DFS) of the ToT. - """ - - def __init__(self, stack: Optional[List[Thought]] = None): - self.stack: List[Thought] = stack or [] - - def top(self) -> Optional[Thought]: - "Get the top of the stack without popping it." - return self.stack[-1] if len(self.stack) > 0 else None - - def pop(self, n: int = 1) -> Optional[Thought]: - "Pop the top n elements of the stack and return the last one." - if len(self.stack) < n: - return None - for _ in range(n): - node = self.stack.pop() - return node - - def top_parent(self) -> Optional[Thought]: - "Get the parent of the top of the stack without popping it." - return self.stack[-2] if len(self.stack) > 1 else None - - def store(self, node: Thought) -> None: - "Add a node on the top of the stack." - if len(self.stack) > 0: - self.stack[-1].children.add(node) - self.stack.append(node) - - @property - def level(self) -> int: - "Return the current level of the stack." - return len(self.stack) - - def current_path(self) -> List[Thought]: - "Return the thoughts path." - return self.stack[:] diff --git a/libs/experimental/langchain_experimental/tot/prompts.py b/libs/experimental/langchain_experimental/tot/prompts.py deleted file mode 100644 index 78d11a10aac92..0000000000000 --- a/libs/experimental/langchain_experimental/tot/prompts.py +++ /dev/null @@ -1,146 +0,0 @@ -import json -from textwrap import dedent -from typing import List - -from langchain_core.output_parsers import BaseOutputParser -from langchain_core.prompts import PromptTemplate - -from langchain_experimental.tot.thought import ThoughtValidity - - -def get_cot_prompt() -> PromptTemplate: - """Get the prompt for the Chain of Thought (CoT) chain.""" - - return PromptTemplate( - template_format="jinja2", - input_variables=["problem_description", "thoughts"], - template=dedent( - """ - You are an intelligent agent that is generating one thought at a time in - a tree of thoughts setting. - - PROBLEM - - {{problem_description}} - - {% if thoughts %} - THOUGHTS - - {% for thought in thoughts %} - {{ thought }} - {% endfor %} - {% endif %} - - Let's think step by step. - """ - ).strip(), - ) - - -class JSONListOutputParser(BaseOutputParser): - """Parse the output of a PROPOSE_PROMPT response.""" - - @property - def _type(self) -> str: - return "json_list" - - def parse(self, text: str) -> List[str]: - """Parse the output of an LLM call.""" - - json_string = text.split("```json")[1].strip().strip("```").strip() - try: - return json.loads(json_string) - except json.JSONDecodeError: - return [] - - -def get_propose_prompt() -> PromptTemplate: - """Get the prompt for the PROPOSE_PROMPT chain.""" - - return PromptTemplate( - template_format="jinja2", - input_variables=["problem_description", "thoughts", "n"], - output_parser=JSONListOutputParser(), - template=dedent( - """ - You are an intelligent agent that is generating thoughts in a tree of - thoughts setting. - - The output should be a markdown code snippet formatted as a JSON list of - strings, including the leading and trailing "```json" and "```": - - ```json - [ - "", - "", - "" - ] - ``` - - PROBLEM - - {{ problem_description }} - - {% if thoughts %} - VALID THOUGHTS - - {% for thought in thoughts %} - {{ thought }} - {% endfor %} - - Possible next {{ n }} valid thoughts based on the last valid thought: - {% else %} - - Possible next {{ n }} valid thoughts based on the PROBLEM: - {%- endif -%} - """ - ).strip(), - ) - - -class CheckerOutputParser(BaseOutputParser): - """Parse and check the output of the language model.""" - - def parse(self, text: str) -> ThoughtValidity: - """Parse the output of the language model.""" - text = text.upper() - if "INVALID" in text: - return ThoughtValidity.INVALID - elif "INTERMEDIATE" in text: - return ThoughtValidity.VALID_INTERMEDIATE - elif "VALID" in text: - return ThoughtValidity.VALID_FINAL - else: - return ThoughtValidity.INVALID - - @property - def _type(self) -> str: - return "tot_llm_checker_output" - - -CHECKER_PROMPT = PromptTemplate( - input_variables=["problem_description", "thoughts"], - template=dedent( - """ - You are an intelligent agent, validating thoughts of another intelligent agent. - - PROBLEM - - {problem_description} - - THOUGHTS - - {thoughts} - - Evaluate the thoughts and respond with one word. - - - Respond VALID if the last thought is a valid final solution to the - problem. - - Respond INVALID if the last thought is invalid. - - Respond INTERMEDIATE if the last thought is valid but not the final - solution to the problem. - - This chain of thoughts is""" - ).strip(), - output_parser=CheckerOutputParser(), -) diff --git a/libs/experimental/langchain_experimental/tot/thought.py b/libs/experimental/langchain_experimental/tot/thought.py deleted file mode 100644 index 88344e51674f4..0000000000000 --- a/libs/experimental/langchain_experimental/tot/thought.py +++ /dev/null @@ -1,25 +0,0 @@ -from __future__ import annotations - -from enum import Enum -from typing import Set - -from langchain_experimental.pydantic_v1 import BaseModel, Field - - -class ThoughtValidity(Enum): - """Enum for the validity of a thought.""" - - VALID_INTERMEDIATE = 0 - VALID_FINAL = 1 - INVALID = 2 - - -class Thought(BaseModel): - """A thought in the ToT.""" - - text: str - validity: ThoughtValidity - children: Set[Thought] = Field(default_factory=set) - - def __hash__(self) -> int: - return id(self) diff --git a/libs/experimental/langchain_experimental/tot/thought_generation.py b/libs/experimental/langchain_experimental/tot/thought_generation.py deleted file mode 100644 index 32e58f9fed6e3..0000000000000 --- a/libs/experimental/langchain_experimental/tot/thought_generation.py +++ /dev/null @@ -1,95 +0,0 @@ -""" -We provide two strategies for generating thoughts in the Tree of Thoughts (ToT) -framework to avoid repetition: - -These strategies ensure that the language model generates diverse and -non-repeating thoughts, which are crucial for problem-solving tasks that require -exploration. -""" - -from abc import abstractmethod -from typing import Any, Dict, List, Tuple - -from langchain.chains.llm import LLMChain -from langchain_core.prompts.base import BasePromptTemplate - -from langchain_experimental.pydantic_v1 import Field -from langchain_experimental.tot.prompts import get_cot_prompt, get_propose_prompt - - -class BaseThoughtGenerationStrategy(LLMChain): - """ - Base class for a thought generation strategy. - """ - - c: int = 3 - """The number of children thoughts to propose at each step.""" - - @abstractmethod - def next_thought( - self, - problem_description: str, - thoughts_path: Tuple[str, ...] = (), - **kwargs: Any, - ) -> str: - """ - Generate the next thought given the problem description and the thoughts - generated so far. - """ - - -class SampleCoTStrategy(BaseThoughtGenerationStrategy): - """ - Sample strategy from a Chain-of-Thought (CoT) prompt. - - This strategy works better when the thought space is rich, such as when each - thought is a paragraph. Independent and identically distributed samples - lead to diversity, which helps to avoid repetition. - """ - - prompt: BasePromptTemplate = Field(default_factory=get_cot_prompt) - - def next_thought( - self, - problem_description: str, - thoughts_path: Tuple[str, ...] = (), - **kwargs: Any, - ) -> str: - response_text = self.predict_and_parse( - problem_description=problem_description, thoughts=thoughts_path, **kwargs - ) - return response_text if isinstance(response_text, str) else "" - - -class ProposePromptStrategy(BaseThoughtGenerationStrategy): - """ - Strategy that is sequentially using a "propose prompt". - - This strategy works better when the thought space is more constrained, such - as when each thought is just a word or a line. Proposing different thoughts - in the same prompt completion helps to avoid duplication. - """ - - prompt: BasePromptTemplate = Field(default_factory=get_propose_prompt) - tot_memory: Dict[Tuple[str, ...], List[str]] = Field(default_factory=dict) - - def next_thought( - self, - problem_description: str, - thoughts_path: Tuple[str, ...] = (), - **kwargs: Any, - ) -> str: - if thoughts_path not in self.tot_memory or not self.tot_memory[thoughts_path]: - new_thoughts = self.predict_and_parse( - problem_description=problem_description, - thoughts=thoughts_path, - n=self.c, - **kwargs, - ) - if not new_thoughts: - return "" - if isinstance(new_thoughts, list): - self.tot_memory[thoughts_path] = new_thoughts[::-1] - else: - return "" - return self.tot_memory[thoughts_path].pop() diff --git a/libs/experimental/langchain_experimental/utilities/__init__.py b/libs/experimental/langchain_experimental/utilities/__init__.py deleted file mode 100644 index 4b7d64518a8dd..0000000000000 --- a/libs/experimental/langchain_experimental/utilities/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -"""Utility that simulates a standalone **Python REPL**.""" - -from langchain_experimental.utilities.python import PythonREPL - -__all__ = ["PythonREPL"] diff --git a/libs/experimental/langchain_experimental/utilities/python.py b/libs/experimental/langchain_experimental/utilities/python.py deleted file mode 100644 index 66779d0bbdd73..0000000000000 --- a/libs/experimental/langchain_experimental/utilities/python.py +++ /dev/null @@ -1,90 +0,0 @@ -import functools -import logging -import multiprocessing -import re -import sys -from io import StringIO -from typing import Dict, Optional - -from langchain.pydantic_v1 import BaseModel, Field - -logger = logging.getLogger(__name__) - - -@functools.lru_cache(maxsize=None) -def warn_once() -> None: - """Warn once about the dangers of PythonREPL.""" - logger.warning("Python REPL can execute arbitrary code. Use with caution.") - - -class PythonREPL(BaseModel): - """Simulates a standalone Python REPL.""" - - globals: Optional[Dict] = Field(default_factory=dict, alias="_globals") - locals: Optional[Dict] = Field(default_factory=dict, alias="_locals") - - @staticmethod - def sanitize_input(query: str) -> str: - """Sanitize input to the python REPL. - - Remove whitespace, backtick & python - (if llm mistakes python console as terminal) - - Args: - query: The query to sanitize - - Returns: - str: The sanitized query - """ - query = re.sub(r"^(\s|`)*(?i:python)?\s*", "", query) - query = re.sub(r"(\s|`)*$", "", query) - return query - - @classmethod - def worker( - cls, - command: str, - globals: Optional[Dict], - locals: Optional[Dict], - queue: multiprocessing.Queue, - ) -> None: - old_stdout = sys.stdout - sys.stdout = mystdout = StringIO() - try: - cleaned_command = cls.sanitize_input(command) - exec(cleaned_command, globals, locals) - sys.stdout = old_stdout - queue.put(mystdout.getvalue()) - except Exception as e: - sys.stdout = old_stdout - queue.put(repr(e)) - - def run(self, command: str, timeout: Optional[int] = None) -> str: - """Run command with own globals/locals and returns anything printed. - Timeout after the specified number of seconds.""" - - # Warn against dangers of PythonREPL - warn_once() - - queue: multiprocessing.Queue = multiprocessing.Queue() - - # Only use multiprocessing if we are enforcing a timeout - if timeout is not None: - # create a Process - p = multiprocessing.Process( - target=self.worker, args=(command, self.globals, self.locals, queue) - ) - - # start it - p.start() - - # wait for the process to finish or kill it after timeout seconds - p.join(timeout) - - if p.is_alive(): - p.terminate() - return "Execution timed out" - else: - self.worker(command, self.globals, self.locals, queue) - # get the result from the worker function - return queue.get() diff --git a/libs/experimental/langchain_experimental/video_captioning/__init__.py b/libs/experimental/langchain_experimental/video_captioning/__init__.py deleted file mode 100644 index 4cf101f1eb504..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from langchain_experimental.video_captioning.base import VideoCaptioningChain - -__all__ = ["VideoCaptioningChain"] diff --git a/libs/experimental/langchain_experimental/video_captioning/base.py b/libs/experimental/langchain_experimental/video_captioning/base.py deleted file mode 100644 index 2cbbdbb842263..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/base.py +++ /dev/null @@ -1,147 +0,0 @@ -from typing import Any, Dict, List, Optional - -from langchain.chains.base import Chain -from langchain_core.callbacks import CallbackManagerForChainRun -from langchain_core.language_models import BaseLanguageModel -from langchain_core.prompts import PromptTemplate - -from langchain_experimental.video_captioning.services.audio_service import ( - AudioProcessor, -) -from langchain_experimental.video_captioning.services.caption_service import ( - CaptionProcessor, -) -from langchain_experimental.video_captioning.services.combine_service import ( - CombineProcessor, -) -from langchain_experimental.video_captioning.services.image_service import ( - ImageProcessor, -) -from langchain_experimental.video_captioning.services.srt_service import SRTProcessor - - -class VideoCaptioningChain(Chain): - """ - Video Captioning Chain. - """ - - llm: BaseLanguageModel - assemblyai_key: str - prompt: Optional[PromptTemplate] = None - verbose: bool = True - use_logging: Optional[bool] = True - frame_skip: int = -1 - image_delta_threshold: int = 3000000 - closed_caption_char_limit: int = 20 - closed_caption_similarity_threshold: int = 80 - use_unclustered_video_models: bool = False - - class Config: - arbitrary_types_allowed = True - extra = "allow" - - @property - def input_keys(self) -> List[str]: - return ["video_file_path"] - - @property - def output_keys(self) -> List[str]: - return ["srt"] - - def _call( - self, - inputs: Dict[str, Any], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> Dict[str, str]: - if "video_file_path" not in inputs: - raise ValueError( - "Missing 'video_file_path' in inputs for video captioning." - ) - video_file_path = inputs["video_file_path"] - nl = "\n" - - run_manager.on_text( - "Loading processors..." + nl - ) if self.use_logging and run_manager else None - - audio_processor = AudioProcessor(api_key=self.assemblyai_key) - image_processor = ImageProcessor( - frame_skip=self.frame_skip, threshold=self.image_delta_threshold - ) - caption_processor = CaptionProcessor( - llm=self.llm, - verbose=self.verbose, - similarity_threshold=self.closed_caption_similarity_threshold, - use_unclustered_models=self.use_unclustered_video_models, - ) - combine_processor = CombineProcessor( - llm=self.llm, - verbose=self.verbose, - char_limit=self.closed_caption_char_limit, - ) - srt_processor = SRTProcessor() - - run_manager.on_text( - "Finished loading processors." - + nl - + "Generating subtitles from audio..." - + nl - ) if self.use_logging and run_manager else None - - # Get models for speech to text subtitles - audio_models = audio_processor.process(video_file_path, run_manager) - run_manager.on_text( - "Finished generating subtitles:" - + nl - + f"{nl.join(str(obj) for obj in audio_models)}" - + nl - + "Generating closed captions from video..." - + nl - ) if self.use_logging and run_manager else None - - # Get models for image frame description - image_models = image_processor.process(video_file_path, run_manager) - run_manager.on_text( - "Finished generating closed captions:" - + nl - + f"{nl.join(str(obj) for obj in image_models)}" - + nl - + "Refining closed captions..." - + nl - ) if self.use_logging and run_manager else None - - # Get models for video event closed-captions - video_models = caption_processor.process(image_models, run_manager) - run_manager.on_text( - "Finished refining closed captions:" - + nl - + f"{nl.join(str(obj) for obj in video_models)}" - + nl - + "Combining subtitles with closed captions..." - + nl - ) if self.use_logging and run_manager else None - - # Combine the subtitle models with the closed-caption models - caption_models = combine_processor.process( - video_models, audio_models, run_manager - ) - run_manager.on_text( - "Finished combining subtitles with closed captions:" - + nl - + f"{nl.join(str(obj) for obj in caption_models)}" - + nl - + "Generating SRT file..." - + nl - ) if self.use_logging and run_manager else None - - # Convert the combined model to SRT format - srt_content = srt_processor.process(caption_models) - run_manager.on_text( - "Finished generating srt file." + nl - ) if self.use_logging and run_manager else None - - return {"srt": srt_content} - - @property - def _chain_type(self) -> str: - return "video_captioning_chain" diff --git a/libs/experimental/langchain_experimental/video_captioning/models.py b/libs/experimental/langchain_experimental/video_captioning/models.py deleted file mode 100644 index b464b435d7d99..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/models.py +++ /dev/null @@ -1,150 +0,0 @@ -from datetime import datetime -from typing import Any - - -class BaseModel: - def __init__(self, start_time: int, end_time: int) -> None: - # Start and end times representing milliseconds - self._start_time = start_time - self._end_time = end_time - - @property - def start_time(self) -> int: - return self._start_time - - @start_time.setter - def start_time(self, value: int) -> None: - self._start_time = value - - @property - def end_time(self) -> int: - return self._end_time - - @end_time.setter - def end_time(self, value: int) -> None: - self._end_time = value - - def __str__(self) -> str: - return f"start_time: {self.start_time}, end_time: {self.end_time}" - - @classmethod - def from_srt(cls, start_time: str, end_time: str, *args: Any) -> "BaseModel": - return cls( - cls._srt_time_to_ms(start_time), cls._srt_time_to_ms(end_time), *args - ) - - @staticmethod - def _srt_time_to_ms(srt_time_string: str) -> int: - # Parse SRT time string into a datetime object - time_format = "%H:%M:%S,%f" - dt = datetime.strptime(srt_time_string, time_format) - ms = dt.microsecond // 1000 - return dt.second * 1000 + ms - - -class VideoModel(BaseModel): - def __init__(self, start_time: int, end_time: int, image_description: str) -> None: - super().__init__(start_time, end_time) - self._image_description = image_description - - @property - def image_description(self) -> str: - return self._image_description - - @image_description.setter - def image_description(self, value: str) -> None: - self._image_description = value - - def __str__(self) -> str: - return f"{super().__str__()}, image_description: {self.image_description}" - - def similarity_score(self, other: "VideoModel") -> float: - # Tokenize the image descriptions by extracting individual words, stripping - # trailing 's' (plural = singular) and converting the words to lowercase in - # order to be case-insensitive - self_tokenized = set( - word.lower().rstrip("s") for word in self.image_description.split() - ) - other_tokenized = set( - word.lower().rstrip("s") for word in other.image_description.split() - ) - - # Find common words - common_words = self_tokenized.intersection(other_tokenized) - - # Calculate similarity score - similarity_score = ( - len(common_words) / max(len(self_tokenized), len(other_tokenized)) * 100 - ) - - return similarity_score - - -class AudioModel(BaseModel): - def __init__(self, start_time: int, end_time: int, subtitle_text: str) -> None: - super().__init__(start_time, end_time) - self._subtitle_text = subtitle_text - - @property - def subtitle_text(self) -> str: - return self._subtitle_text - - @subtitle_text.setter - def subtitle_text(self, value: str) -> None: - self._subtitle_text = value - - def __str__(self) -> str: - return f"{super().__str__()}, subtitle_text: {self.subtitle_text}" - - -class CaptionModel(BaseModel): - def __init__(self, start_time: int, end_time: int, closed_caption: str) -> None: - super().__init__(start_time, end_time) - self._closed_caption = closed_caption - - @property - def closed_caption(self) -> str: - return self._closed_caption - - @closed_caption.setter - def closed_caption(self, value: str) -> None: - self._closed_caption = value - - def add_subtitle_text(self, subtitle_text: str) -> "CaptionModel": - self._closed_caption = self._closed_caption + " " + subtitle_text - return self - - def __str__(self) -> str: - return f"{super().__str__()}, closed_caption: {self.closed_caption}" - - def to_srt_entry(self, index: int) -> str: - def _ms_to_srt_time(ms: int) -> str: - """Converts milliseconds to SRT time format 'HH:MM:SS,mmm'.""" - hours = int(ms // 3600000) - minutes = int((ms % 3600000) // 60000) - seconds = int((ms % 60000) // 1000) - milliseconds = int(ms % 1000) - - return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}" - - return "\n".join( - [ - f"""{index} - {_ms_to_srt_time(self._start_time)} --> {_ms_to_srt_time(self._end_time)} - {self._closed_caption}""", - ] - ) - - @classmethod - def from_audio_model(cls, audio_model: AudioModel) -> "CaptionModel": - return cls( - audio_model.start_time, audio_model.end_time, audio_model.subtitle_text - ) - - @classmethod - def from_video_model(cls, video_model: VideoModel) -> "CaptionModel": - return cls( - video_model.start_time, - video_model.end_time, - f"[{video_model.image_description}]", - ) diff --git a/libs/experimental/langchain_experimental/video_captioning/prompts.py b/libs/experimental/langchain_experimental/video_captioning/prompts.py deleted file mode 100644 index 1f6e49355d7c4..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/prompts.py +++ /dev/null @@ -1,90 +0,0 @@ -# flake8: noqa -from langchain_core.prompts import ( - ChatPromptTemplate, - HumanMessagePromptTemplate, -) -from langchain_core.messages import SystemMessage - -JOIN_SIMILAR_VIDEO_MODELS_TEMPLATE = """ -I will provide you with several descriptions depicting events in one scene. -Your task is to combine these descriptions into one description that contains only the important details from all descriptions. -Especially if the two descriptions are very similar, make sure your response doesn't repeat itself. -IMPORTANT: Do not make up a description. Do not make up events or anything that happened outside of the descriptions I am to provide you. -I will now provide an example for you to learn from: -Example: Description 1: The cat is at the beach, Description 2: The cat is eating lunch, Description 3: The cat is enjoying his time with friends -Result: The cat is at the beach, eating lunch with his friends -Now that I gave you the example, I will explain to you what exactly you need to return: -Just give back one description, the description which is a combination of the descriptions you are provided with. -Do not include anything else in your response other than the combined description. -IMPORTANT: the output in your response should be 'Result:text', where text is the description you generated. -Here is the data for you to work with in order to formulate your response: -""" - -JOIN_SIMILAR_VIDEO_MODELS_PROMPT = ChatPromptTemplate( # type: ignore[call-arg] - messages=[ - SystemMessage(content=JOIN_SIMILAR_VIDEO_MODELS_TEMPLATE), - HumanMessagePromptTemplate.from_template("{descriptions}"), - ] -) - -REMOVE_VIDEO_MODEL_DESCRIPTION_TEMPLATE = """ -Given a closed-caption description of an image or scene, remove any common prefixes like "an image of," "a scene of," or "footage of." -For instance, if the description is "an image of a beautiful landscape," the modified version should be "a beautiful landscape." - -IMPORTANT: the output in your response should be 'Result:text', where text is the description you generated. - -Here are some examples: - -Input: an image of a beautiful landscape -Result: a beautiful landscape - -Input: a scene of people enjoying a picnic -Result: people enjoying a picnic - -Below is the input for you to generate the result from: -""" - -REMOVE_VIDEO_MODEL_DESCRIPTION_PROMPT = ChatPromptTemplate( # type: ignore[call-arg] - messages=[ - SystemMessage(content=REMOVE_VIDEO_MODEL_DESCRIPTION_TEMPLATE), - HumanMessagePromptTemplate.from_template("Input: {description}"), - ] -) - -VALIDATE_AND_ADJUST_DESCRIPTION_TEMPLATE = """ -You are tasked with enhancing closed-caption descriptions based on corresponding subtitles from the audio of a real movie clip. -Assignment details, from highest to lowest priority: - -1) If the subtitle exceeds Limit characters, creatively rewrite the description to not exceed the character limit, preserving as many details as you can. - If you feel that you cannot complete the response under the character limit, you must omit details in order to remain below the character limit. - -2) If the details in the subtitle provide meaningful additional information to its closed-caption description, incorporate those details into the description. - -Enhance the closed-caption description by integrating details from the subtitle if they contribute meaningful information. - -Example: -Subtitle: car screeching, tires squealing -Closed-Caption Description: A car speeds down the street. - -Output: Result: A car speeds down the street, its tires screeching and squealing. - -**IMPORTANT**: Remember your assignment details when formulating your response! YOU MUST NOT EXCEED LIMIT CHARACTERS at human message. - -***IMPORTANT***: You must only return the following text in your response. You may not return a response that does not follow the exact format in the next line: -Result: Text - -**** YOU MUST PROVIDE ME WITH THE BEST ANSWER YOU CAN COME UP WITH, -**** EVEN IF YOU DEEM THAT IT IS A BAD ONE. YOU MUST ONLY RESPOND IN THE FORMAT IN THE NEXT LINE: -Result: Text - -Below is the data provided, generate a response using this data: -""" - -VALIDATE_AND_ADJUST_DESCRIPTION_PROMPT = ChatPromptTemplate( # type: ignore[call-arg] - messages=[ - SystemMessage(content=VALIDATE_AND_ADJUST_DESCRIPTION_TEMPLATE), - HumanMessagePromptTemplate.from_template( - "Limit: {limit}\nSubtitle: {subtitle}\nClosed-Caption Description: {description}" - ), - ] -) diff --git a/libs/experimental/langchain_experimental/video_captioning/services/audio_service.py b/libs/experimental/langchain_experimental/video_captioning/services/audio_service.py deleted file mode 100644 index 66f1710b97a3f..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/services/audio_service.py +++ /dev/null @@ -1,92 +0,0 @@ -import subprocess -from pathlib import Path -from typing import List, Optional - -from langchain.schema import Document -from langchain_community.document_loaders import AssemblyAIAudioTranscriptLoader -from langchain_community.document_loaders.assemblyai import TranscriptFormat -from langchain_core.callbacks.manager import CallbackManagerForChainRun - -from langchain_experimental.video_captioning.models import AudioModel, BaseModel - - -class AudioProcessor: - def __init__( - self, - api_key: str, - output_audio_path: str = "output_audio.mp3", - ): - self.output_audio_path = Path(output_audio_path) - self.api_key = api_key - - def process( - self, - video_file_path: str, - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> list: - try: - self._extract_audio(video_file_path) - return self._transcribe_audio() - finally: - # Cleanup: Delete the MP3 file after processing - try: - self.output_audio_path.unlink() - except FileNotFoundError: - pass # File not found, nothing to delete - - def _extract_audio(self, video_file_path: str) -> None: - # Ensure the directory exists where the output file will be saved - self.output_audio_path.parent.mkdir(parents=True, exist_ok=True) - - command = [ - "ffmpeg", - "-i", - video_file_path, - "-vn", - "-acodec", - "mp3", - self.output_audio_path.as_posix(), - "-y", # The '-y' flag overwrites the output file if it exists - ] - - subprocess.run( - command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True - ) - - def _transcribe_audio(self) -> List[BaseModel]: - if not self.api_key: - raise ValueError("API key for AssemblyAI is not configured") - audio_file_path_str = str(self.output_audio_path) - loader = AssemblyAIAudioTranscriptLoader( - file_path=audio_file_path_str, - api_key=self.api_key, - transcript_format=TranscriptFormat.SUBTITLES_SRT, - ) - docs = loader.load() - return self._create_transcript_models(docs) - - @staticmethod - def _create_transcript_models(docs: List[Document]) -> List[BaseModel]: - # Assuming docs is a list of Documents with .page_content as the transcript data - models = [] - for doc in docs: - models.extend(AudioProcessor._parse_transcript(doc.page_content)) - return models - - @staticmethod - def _parse_transcript(srt_content: str) -> List[BaseModel]: - models = [] - entries = srt_content.strip().split("\n\n") # Split based on double newline - - for entry in entries: - index, timespan, *subtitle_lines = entry.split("\n") - - # If not a valid entry format, skip - if len(subtitle_lines) == 0: - continue - - start_time, end_time = timespan.split(" --> ") - subtitle_text = " ".join(subtitle_lines).strip() - models.append(AudioModel.from_srt(start_time, end_time, subtitle_text)) - - return models diff --git a/libs/experimental/langchain_experimental/video_captioning/services/caption_service.py b/libs/experimental/langchain_experimental/video_captioning/services/caption_service.py deleted file mode 100644 index f6810ade77946..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/services/caption_service.py +++ /dev/null @@ -1,279 +0,0 @@ -from typing import Dict, List, Optional, Tuple - -from langchain.chains.llm import LLMChain -from langchain_core.callbacks.manager import CallbackManagerForChainRun -from langchain_core.language_models import BaseLanguageModel - -from langchain_experimental.video_captioning.models import VideoModel -from langchain_experimental.video_captioning.prompts import ( - JOIN_SIMILAR_VIDEO_MODELS_PROMPT, - REMOVE_VIDEO_MODEL_DESCRIPTION_PROMPT, -) - - -class CaptionProcessor: - def __init__( - self, - llm: BaseLanguageModel, - verbose: bool = True, - similarity_threshold: int = 80, - use_unclustered_models: bool = False, - ) -> None: - self.llm = llm - self.verbose = verbose - - # Set the percentage value for how similar two video model image - # descriptions should be in order for us to cluster them into a group - self._SIMILARITY_THRESHOLD = similarity_threshold - # Set to True if you want to include video models which were not clustered. - # Will likely result in closed-caption artifacts - self._USE_NON_CLUSTERED_VIDEO_MODELS = use_unclustered_models - - def process( - self, - video_models: List[VideoModel], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> List[VideoModel]: - # Remove any consecutive duplicates - video_models = self._remove_consecutive_duplicates(video_models) - - # Holds the video models after clustering has been applied - video_models_post_clustering = [] - # In this case, index represents a divider between clusters - index = 0 - for start, end in self._get_model_clusters(video_models): - start_vm, end_vm = video_models[start], video_models[end] - - if self._USE_NON_CLUSTERED_VIDEO_MODELS: - # Append all the non-clustered models in between model clusters - # staged for OpenAI combination - video_models_post_clustering += video_models[index:start] - index = end + 1 - - # Send to llm for description combination - models_to_combine = video_models[start:index] - combined_description = self._join_similar_video_models( - models_to_combine, run_manager - ) - - # Strip any prefixes that are redundant in the context of closed-captions - stripped_description = self._remove_video_model_description_prefix( - combined_description, run_manager - ) - - # Create a new video model which is the combination of all the models in - # the cluster - combined_and_stripped_model = VideoModel( - start_vm.start_time, end_vm.end_time, stripped_description - ) - - video_models_post_clustering.append(combined_and_stripped_model) - - if self._USE_NON_CLUSTERED_VIDEO_MODELS: - # Append any non-clustered models present after every clustered model - video_models_post_clustering += video_models[index:] - - return video_models_post_clustering - - def _remove_consecutive_duplicates( - self, - video_models: List[VideoModel], - ) -> List[VideoModel]: - buffer: List[VideoModel] = [] - - for video_model in video_models: - # Join this model and the previous model if they have the same image - # description - if ( - len(buffer) > 0 - and buffer[-1].image_description == video_model.image_description - ): - buffer[-1].end_time = video_model.end_time - - else: - buffer.append(video_model) - - return buffer - - def _remove_video_model_description_prefix( - self, description: str, run_manager: Optional[CallbackManagerForChainRun] = None - ) -> str: - conversation = LLMChain( - llm=self.llm, - prompt=REMOVE_VIDEO_MODEL_DESCRIPTION_PROMPT, - verbose=True, - callbacks=run_manager.get_child() if run_manager else None, - ) - # Get response from OpenAI using LLMChain - response = conversation({"description": description}) - - # Take out the Result: part of the response - return response["text"].replace("Result:", "").strip() - - def _join_similar_video_models( - self, - video_models: List[VideoModel], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> str: - descriptions = "" - count = 1 - for video_model in video_models: - descriptions += ( - f"Description {count}: " + video_model.image_description + ", " - ) - count += 1 - - # Strip trailing ", " - descriptions = descriptions[:-2] - - conversation = LLMChain( - llm=self.llm, - prompt=JOIN_SIMILAR_VIDEO_MODELS_PROMPT, - verbose=True, - callbacks=run_manager.get_child() if run_manager else None, - ) - # Get response from OpenAI using LLMChain - response = conversation({"descriptions": descriptions}) - - # Take out the Result: part of the response - return response["text"].replace("Result:", "").strip() - - def _get_model_clusters( - self, video_models: List[VideoModel] - ) -> List[Tuple[int, int]]: - # Word bank which maps lowercase words (case-insensitive) with trailing s's - # removed (singular/plural-insensitive) to video model indexes in video_models - word_bank: Dict[str, List[int]] = {} - - # Function which formats words to be inserted into word bank, as specified - # above - def format_word(w: str) -> str: - return w.lower().rstrip("s") - - # Keeps track of the current video model index - index = 0 - for vm in video_models: - for word in vm.image_description.split(): - formatted_word = format_word(word) - word_bank[formatted_word] = ( - word_bank[formatted_word] if formatted_word in word_bank else [] - ) + [index] - index += 1 - - # Keeps track of the current video model index - index = 0 - # Maps video model index to list of other video model indexes that have a - # similarity score above the threshold - sims: Dict[int, List[int]] = {} - for vm in video_models: - # Maps other video model index to number of words it shares in common - # with this video model - matches: Dict[int, int] = {} - for word in vm.image_description.split(): - formatted_word = format_word(word) - for match in word_bank[formatted_word]: - if match != index: - matches[match] = matches[match] + 1 if match in matches else 1 - if matches: - # Get the highest number of words another video model shares with - # this video model - max_words_in_common = max(matches.values()) - - # Get all video model indexes that share the maximum number of words - # with this video model - vms_with_max_words = [ - key - for key, value in matches.items() - if value == max_words_in_common - ] - - # Maps other video model index to its similarity score with this - # video model - sim_scores: Dict[int, float] = {} - - # Compute similarity score for all video models that share the - # highest number of word occurrences with this video model - for vm_index in vms_with_max_words: - sim_scores[vm_index] = video_models[vm_index].similarity_score(vm) - - # Get the highest similarity score another video model shares with - # this video model - max_score = max(sim_scores.values()) - - # Get a list of all video models that have the maximum similarity - # score to this video model - vms_with_max_score = [ - key for key, value in sim_scores.items() if value == max_score - ] - - # Finally, transfer all video models with a high enough similarity - # to this video model into the sims dictionary - if max_score >= self._SIMILARITY_THRESHOLD: - sims[index] = [] - for vm_index in vms_with_max_score: - sims[index].append(vm_index) - - index += 1 - - # Maps video model index to boolean, indicates if we have already checked - # this video model's similarity array so that we don't have infinite recursion - already_accessed: Dict[int, bool] = {} - - # Recursively search video_model[vm_index]'s similarity matches to find the - # earliest and latest video model in the cluster (start and end) - def _find_start_and_end(vm_index: int) -> Tuple[int, int]: - close_matches = sims[vm_index] - first_vm, last_vm = min(close_matches), max(close_matches) - first_vm, last_vm = min(vm_index, first_vm), max(vm_index, last_vm) - - if not already_accessed.get(vm_index, None): - already_accessed[vm_index] = True - for close_match in close_matches: - if close_match in sims: - if vm_index in sims[close_match]: - s, e = _find_start_and_end(close_match) - first_vm = min(s, first_vm) - last_vm = max(e, last_vm) - - return first_vm, last_vm - - # Add the video model cluster results into a set - clusters = set() - for vm_index in sims: - clusters.add(_find_start_and_end(vm_index)) - - # Filter the set to include only non-subset intervals - filtered_clusters = set() - for interval in clusters: - start, end = interval[0], interval[1] - is_subset = any( - start >= other_start and end <= other_end - for other_start, other_end in clusters - if interval != (other_start, other_end) - ) - if not is_subset: - filtered_clusters.add(interval) - - # Sort these clusters into a list, sorted using the first element of the - # tuple (index of video model in the cluster with earliest start time) - sorted_clusters = sorted(filtered_clusters, key=lambda x: x[0]) - - # Merge any overlapping clusters into one big cluster - def _merge_overlapping_clusters( - array: List[Tuple[int, int]], - ) -> List[Tuple[int, int]]: - if len(array) <= 1: - return array - - def _merge( - curr: Tuple[int, int], rest: List[Tuple[int, int]] - ) -> List[Tuple[int, int]]: - if curr[1] >= rest[0][0]: - return [(curr[0], rest[0][1])] + rest[1:] - return [curr] + rest - - return _merge(array[0], _merge_overlapping_clusters(array[1:])) - - merged_clusters = _merge_overlapping_clusters(sorted_clusters) - - return merged_clusters diff --git a/libs/experimental/langchain_experimental/video_captioning/services/combine_service.py b/libs/experimental/langchain_experimental/video_captioning/services/combine_service.py deleted file mode 100644 index fee94129cb269..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/services/combine_service.py +++ /dev/null @@ -1,141 +0,0 @@ -from typing import Dict, List, Optional, Tuple - -from langchain.chains.llm import LLMChain -from langchain.schema.language_model import BaseLanguageModel -from langchain_core.callbacks.manager import CallbackManagerForChainRun - -from langchain_experimental.video_captioning.models import ( - AudioModel, - CaptionModel, - VideoModel, -) -from langchain_experimental.video_captioning.prompts import ( - VALIDATE_AND_ADJUST_DESCRIPTION_PROMPT, -) - - -class CombineProcessor: - def __init__( - self, llm: BaseLanguageModel, verbose: bool = True, char_limit: int = 20 - ): - self.llm = llm - self.verbose = verbose - - # Adjust as needed. Be careful adjusting it too low because OpenAI may - # produce unwanted output - self._CHAR_LIMIT = char_limit - - def process( - self, - video_models: List[VideoModel], - audio_models: List[AudioModel], - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> List[CaptionModel]: - caption_models = [] - audio_index = 0 - - for video_model in video_models: - while audio_index < len(audio_models): - audio_model = audio_models[audio_index] - overlap_start, overlap_end = self._check_overlap( - video_model, audio_model - ) - - if overlap_start == -1: - if audio_model.start_time <= video_model.start_time: - caption_models.append( - CaptionModel.from_audio_model(audio_model) - ) - audio_index += 1 - else: - break - else: - self._handle_overlap( - caption_models, - video_model, - audio_model, - overlap_start, - overlap_end, - ) - - # Update audio model or pop if it's fully used - if audio_model.end_time <= overlap_end: - audio_index += 1 - else: - audio_model.start_time = overlap_end - - caption_models.append(CaptionModel.from_video_model(video_model)) - - # Add remaining audio models - for i in range(audio_index, len(audio_models)): - caption_models.append(CaptionModel.from_audio_model(audio_models[i])) - - return caption_models - - @staticmethod - def _check_overlap( - video_model: VideoModel, audio_model: AudioModel - ) -> Tuple[int, int]: - overlap_start = max(audio_model.start_time, video_model.start_time) - overlap_end = min(audio_model.end_time, video_model.end_time) - if overlap_start < overlap_end: - return overlap_start, overlap_end - return -1, -1 - - def _handle_overlap( - self, - caption_models: List[CaptionModel], - video_model: VideoModel, - audio_model: AudioModel, - overlap_start: int, - overlap_end: int, - ) -> None: - # Handle non-overlapping part - if video_model.start_time < overlap_start: - caption_models.append( - CaptionModel.from_video_model( - VideoModel( - video_model.start_time, - overlap_start, - video_model.image_description, - ) - ) - ) - video_model.start_time = overlap_start - - # Handle the combined caption during overlap - caption_text = self._validate_and_adjust_description(audio_model, video_model) - subtitle_text = audio_model.subtitle_text - caption_models.append( - CaptionModel.from_video_model( - VideoModel(overlap_start, overlap_end, caption_text) - ).add_subtitle_text(subtitle_text) - ) - - # Update video model start time for remaining part - if video_model.end_time > overlap_end: - video_model.start_time = overlap_end - - def _validate_and_adjust_description( - self, - audio_model: AudioModel, - video_model: VideoModel, - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> str: - conversation = LLMChain( - llm=self.llm, - prompt=VALIDATE_AND_ADJUST_DESCRIPTION_PROMPT, - verbose=True, - callbacks=run_manager.get_child() if run_manager else None, - ) - # Get response from OpenAI using LLMChain - response: Dict[str, str] = conversation( - { - "limit": self._CHAR_LIMIT, - "subtitle": audio_model.subtitle_text, - "description": video_model.image_description, - } - ) - - # Take out the Result: part of the response - return response["text"].replace("Result:", "").strip() diff --git a/libs/experimental/langchain_experimental/video_captioning/services/image_service.py b/libs/experimental/langchain_experimental/video_captioning/services/image_service.py deleted file mode 100644 index 551499222c9e8..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/services/image_service.py +++ /dev/null @@ -1,111 +0,0 @@ -from typing import List, Optional - -import numpy as np -from langchain_community.document_loaders import ImageCaptionLoader -from langchain_core.callbacks import CallbackManagerForChainRun - -from langchain_experimental.video_captioning.models import VideoModel - - -class ImageProcessor: - _SAMPLES_PER_SECOND: int = 4 - - def __init__(self, frame_skip: int = -1, threshold: int = 3000000) -> None: - self.threshold = threshold - self.frame_skip = frame_skip - - def process( - self, - video_file_path: str, - run_manager: Optional[CallbackManagerForChainRun] = None, - ) -> list: - return self._extract_frames(video_file_path) - - def _extract_frames(self, video_file_path: str) -> list: - try: - import cv2 - from cv2.typing import MatLike - except ImportError as e: - raise ImportError( - "Unable to import cv2, please install it with " - "`pip install -U opencv-python`" - ) from e - video_models: List[VideoModel] = [] - - def _add_model(start_time: int, end_time: int) -> None: - middle_frame_time = start_time / end_time - cap.set(cv2.CAP_PROP_POS_MSEC, middle_frame_time) - - # Convert the frame to bytes - _, encoded_frame = cv2.imencode(".jpg", frame) - notable_frame_bytes = encoded_frame.tobytes() - - cap.set(cv2.CAP_PROP_POS_MSEC, end_time) - - # Create an instance of the ImageCaptionLoader - loader = ImageCaptionLoader(images=notable_frame_bytes) - - # Load captions for the images - list_docs = loader.load() - - video_model = VideoModel( - start_time, - end_time, - list_docs[len(list_docs) - 1].page_content.replace("[SEP]", "").strip(), - ) - video_models.append(video_model) - - def _is_notable_frame(frame1: MatLike, frame2: MatLike, threshold: int) -> bool: - # Convert frames to grayscale - gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) - gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) - - # Compute absolute difference between frames - frame_diff = cv2.absdiff(gray1, gray2) - - # Apply threshold to identify notable differences - _, thresholded_diff = cv2.threshold(frame_diff, 30, 255, cv2.THRESH_BINARY) - - # Count the number of white pixels (indicating differences) - num_diff_pixels = np.sum(thresholded_diff) - - return num_diff_pixels > threshold - - # Open the video file - cap = cv2.VideoCapture(video_file_path) - - if self.frame_skip == -1: - self.frame_skip = int(cap.get(cv2.CAP_PROP_FPS)) // self._SAMPLES_PER_SECOND - - # Read the first frame - ret, prev_frame = cap.read() - - # Loop through the video frames - start_time = 0 - end_time = 0 - - while True: - # Read the next frame - ret, frame = cap.read() - if not ret: - break # Break the loop if there are no more frames - - # Check if the current frame is notable - if _is_notable_frame(prev_frame, frame, self.threshold): - end_time = int(cap.get(cv2.CAP_PROP_POS_MSEC)) - _add_model(start_time, end_time) - start_time = end_time - - # Update the previous frame - prev_frame = frame.copy() - - # Increment the frame position by the skip value - cap.set( - cv2.CAP_PROP_POS_FRAMES, - cap.get(cv2.CAP_PROP_POS_FRAMES) + self.frame_skip, - ) - - # Release the video capture object - cap.release() - - return video_models diff --git a/libs/experimental/langchain_experimental/video_captioning/services/srt_service.py b/libs/experimental/langchain_experimental/video_captioning/services/srt_service.py deleted file mode 100644 index 4b094904005fc..0000000000000 --- a/libs/experimental/langchain_experimental/video_captioning/services/srt_service.py +++ /dev/null @@ -1,14 +0,0 @@ -from typing import List - -from langchain_experimental.video_captioning.models import CaptionModel - - -class SRTProcessor: - @staticmethod - def process(caption_models: List[CaptionModel]) -> str: - """Generates the full SRT content from a list of caption models.""" - srt_entries = [] - for index, model in enumerate(caption_models, start=1): - srt_entries.append(model.to_srt_entry(index)) - - return "\n".join(srt_entries) diff --git a/libs/experimental/poetry.lock b/libs/experimental/poetry.lock deleted file mode 100644 index 36ecd64f7d1ef..0000000000000 --- a/libs/experimental/poetry.lock +++ /dev/null @@ -1,3797 +0,0 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. - -[[package]] -name = "aiohappyeyeballs" -version = "2.4.0" -description = "Happy Eyeballs for asyncio" -optional = false -python-versions = ">=3.8" -files = [ - {file = "aiohappyeyeballs-2.4.0-py3-none-any.whl", hash = "sha256:7ce92076e249169a13c2f49320d1967425eaf1f407522d707d59cac7628d62bd"}, - {file = "aiohappyeyeballs-2.4.0.tar.gz", hash = "sha256:55a1714f084e63d49639800f95716da97a1f173d46a16dfcfda0016abb93b6b2"}, -] - -[[package]] -name = "aiohttp" -version = "3.10.5" -description = "Async http client/server framework (asyncio)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:18a01eba2574fb9edd5f6e5fb25f66e6ce061da5dab5db75e13fe1558142e0a3"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:94fac7c6e77ccb1ca91e9eb4cb0ac0270b9fb9b289738654120ba8cebb1189c6"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2f1f1c75c395991ce9c94d3e4aa96e5c59c8356a15b1c9231e783865e2772699"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f7acae3cf1a2a2361ec4c8e787eaaa86a94171d2417aae53c0cca6ca3118ff6"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94c4381ffba9cc508b37d2e536b418d5ea9cfdc2848b9a7fea6aebad4ec6aac1"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c31ad0c0c507894e3eaa843415841995bf8de4d6b2d24c6e33099f4bc9fc0d4f"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0912b8a8fadeb32ff67a3ed44249448c20148397c1ed905d5dac185b4ca547bb"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d93400c18596b7dc4794d48a63fb361b01a0d8eb39f28800dc900c8fbdaca91"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d00f3c5e0d764a5c9aa5a62d99728c56d455310bcc288a79cab10157b3af426f"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d742c36ed44f2798c8d3f4bc511f479b9ceef2b93f348671184139e7d708042c"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:814375093edae5f1cb31e3407997cf3eacefb9010f96df10d64829362ae2df69"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8224f98be68a84b19f48e0bdc14224b5a71339aff3a27df69989fa47d01296f3"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d9a487ef090aea982d748b1b0d74fe7c3950b109df967630a20584f9a99c0683"}, - {file = "aiohttp-3.10.5-cp310-cp310-win32.whl", hash = "sha256:d9ef084e3dc690ad50137cc05831c52b6ca428096e6deb3c43e95827f531d5ef"}, - {file = "aiohttp-3.10.5-cp310-cp310-win_amd64.whl", hash = "sha256:66bf9234e08fe561dccd62083bf67400bdbf1c67ba9efdc3dac03650e97c6088"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c6a4e5e40156d72a40241a25cc226051c0a8d816610097a8e8f517aeacd59a2"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c634a3207a5445be65536d38c13791904fda0748b9eabf908d3fe86a52941cf"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4aff049b5e629ef9b3e9e617fa6e2dfeda1bf87e01bcfecaf3949af9e210105e"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1942244f00baaacaa8155eca94dbd9e8cc7017deb69b75ef67c78e89fdad3c77"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e04a1f2a65ad2f93aa20f9ff9f1b672bf912413e5547f60749fa2ef8a644e061"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f2bfc0032a00405d4af2ba27f3c429e851d04fad1e5ceee4080a1c570476697"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424ae21498790e12eb759040bbb504e5e280cab64693d14775c54269fd1d2bb7"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:975218eee0e6d24eb336d0328c768ebc5d617609affaca5dbbd6dd1984f16ed0"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4120d7fefa1e2d8fb6f650b11489710091788de554e2b6f8347c7a20ceb003f5"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b90078989ef3fc45cf9221d3859acd1108af7560c52397ff4ace8ad7052a132e"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ba5a8b74c2a8af7d862399cdedce1533642fa727def0b8c3e3e02fcb52dca1b1"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:02594361128f780eecc2a29939d9dfc870e17b45178a867bf61a11b2a4367277"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8fb4fc029e135859f533025bc82047334e24b0d489e75513144f25408ecaf058"}, - {file = "aiohttp-3.10.5-cp311-cp311-win32.whl", hash = "sha256:e1ca1ef5ba129718a8fc827b0867f6aa4e893c56eb00003b7367f8a733a9b072"}, - {file = "aiohttp-3.10.5-cp311-cp311-win_amd64.whl", hash = "sha256:349ef8a73a7c5665cca65c88ab24abe75447e28aa3bc4c93ea5093474dfdf0ff"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:305be5ff2081fa1d283a76113b8df7a14c10d75602a38d9f012935df20731487"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a1c32a19ee6bbde02f1cb189e13a71b321256cc1d431196a9f824050b160d5a"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:61645818edd40cc6f455b851277a21bf420ce347baa0b86eaa41d51ef58ba23d"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c225286f2b13bab5987425558baa5cbdb2bc925b2998038fa028245ef421e75"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ba01ebc6175e1e6b7275c907a3a36be48a2d487549b656aa90c8a910d9f3178"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8eaf44ccbc4e35762683078b72bf293f476561d8b68ec8a64f98cf32811c323e"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c43eb1ab7cbf411b8e387dc169acb31f0ca0d8c09ba63f9eac67829585b44f"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de7a5299827253023c55ea549444e058c0eb496931fa05d693b95140a947cb73"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4790f0e15f00058f7599dab2b206d3049d7ac464dc2e5eae0e93fa18aee9e7bf"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:44b324a6b8376a23e6ba25d368726ee3bc281e6ab306db80b5819999c737d820"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:0d277cfb304118079e7044aad0b76685d30ecb86f83a0711fc5fb257ffe832ca"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:54d9ddea424cd19d3ff6128601a4a4d23d54a421f9b4c0fff740505813739a91"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4f1c9866ccf48a6df2b06823e6ae80573529f2af3a0992ec4fe75b1a510df8a6"}, - {file = "aiohttp-3.10.5-cp312-cp312-win32.whl", hash = "sha256:dc4826823121783dccc0871e3f405417ac116055bf184ac04c36f98b75aacd12"}, - {file = "aiohttp-3.10.5-cp312-cp312-win_amd64.whl", hash = "sha256:22c0a23a3b3138a6bf76fc553789cb1a703836da86b0f306b6f0dc1617398abc"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7f6b639c36734eaa80a6c152a238242bedcee9b953f23bb887e9102976343092"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f29930bc2921cef955ba39a3ff87d2c4398a0394ae217f41cb02d5c26c8b1b77"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f489a2c9e6455d87eabf907ac0b7d230a9786be43fbe884ad184ddf9e9c1e385"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:123dd5b16b75b2962d0fff566effb7a065e33cd4538c1692fb31c3bda2bfb972"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b98e698dc34966e5976e10bbca6d26d6724e6bdea853c7c10162a3235aba6e16"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3b9162bab7e42f21243effc822652dc5bb5e8ff42a4eb62fe7782bcbcdfacf6"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1923a5c44061bffd5eebeef58cecf68096e35003907d8201a4d0d6f6e387ccaa"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d55f011da0a843c3d3df2c2cf4e537b8070a419f891c930245f05d329c4b0689"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:afe16a84498441d05e9189a15900640a2d2b5e76cf4efe8cbb088ab4f112ee57"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8112fb501b1e0567a1251a2fd0747baae60a4ab325a871e975b7bb67e59221f"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:1e72589da4c90337837fdfe2026ae1952c0f4a6e793adbbfbdd40efed7c63599"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4d46c7b4173415d8e583045fbc4daa48b40e31b19ce595b8d92cf639396c15d5"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:33e6bc4bab477c772a541f76cd91e11ccb6d2efa2b8d7d7883591dfb523e5987"}, - {file = "aiohttp-3.10.5-cp313-cp313-win32.whl", hash = "sha256:c58c6837a2c2a7cf3133983e64173aec11f9c2cd8e87ec2fdc16ce727bcf1a04"}, - {file = "aiohttp-3.10.5-cp313-cp313-win_amd64.whl", hash = "sha256:38172a70005252b6893088c0f5e8a47d173df7cc2b2bd88650957eb84fcf5022"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f6f18898ace4bcd2d41a122916475344a87f1dfdec626ecde9ee802a711bc569"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ede29d91a40ba22ac1b922ef510aab871652f6c88ef60b9dcdf773c6d32ad7a"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:673f988370f5954df96cc31fd99c7312a3af0a97f09e407399f61583f30da9bc"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58718e181c56a3c02d25b09d4115eb02aafe1a732ce5714ab70326d9776457c3"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b38b1570242fbab8d86a84128fb5b5234a2f70c2e32f3070143a6d94bc854cf"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:074d1bff0163e107e97bd48cad9f928fa5a3eb4b9d33366137ffce08a63e37fe"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd31f176429cecbc1ba499d4aba31aaccfea488f418d60376b911269d3b883c5"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7384d0b87d4635ec38db9263e6a3f1eb609e2e06087f0aa7f63b76833737b471"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8989f46f3d7ef79585e98fa991e6ded55d2f48ae56d2c9fa5e491a6e4effb589"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c83f7a107abb89a227d6c454c613e7606c12a42b9a4ca9c5d7dad25d47c776ae"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:cde98f323d6bf161041e7627a5fd763f9fd829bcfcd089804a5fdce7bb6e1b7d"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:676f94c5480d8eefd97c0c7e3953315e4d8c2b71f3b49539beb2aa676c58272f"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2d21ac12dc943c68135ff858c3a989f2194a709e6e10b4c8977d7fcd67dfd511"}, - {file = "aiohttp-3.10.5-cp38-cp38-win32.whl", hash = "sha256:17e997105bd1a260850272bfb50e2a328e029c941c2708170d9d978d5a30ad9a"}, - {file = "aiohttp-3.10.5-cp38-cp38-win_amd64.whl", hash = "sha256:1c19de68896747a2aa6257ae4cf6ef59d73917a36a35ee9d0a6f48cff0f94db8"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7e2fe37ac654032db1f3499fe56e77190282534810e2a8e833141a021faaab0e"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f5bf3ead3cb66ab990ee2561373b009db5bc0e857549b6c9ba84b20bc462e172"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1b2c16a919d936ca87a3c5f0e43af12a89a3ce7ccbce59a2d6784caba945b68b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad146dae5977c4dd435eb31373b3fe9b0b1bf26858c6fc452bf6af394067e10b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c5c6fa16412b35999320f5c9690c0f554392dc222c04e559217e0f9ae244b92"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95c4dc6f61d610bc0ee1edc6f29d993f10febfe5b76bb470b486d90bbece6b22"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da452c2c322e9ce0cfef392e469a26d63d42860f829026a63374fde6b5c5876f"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:898715cf566ec2869d5cb4d5fb4be408964704c46c96b4be267442d265390f32"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:391cc3a9c1527e424c6865e087897e766a917f15dddb360174a70467572ac6ce"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:380f926b51b92d02a34119d072f178d80bbda334d1a7e10fa22d467a66e494db"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce91db90dbf37bb6fa0997f26574107e1b9d5ff939315247b7e615baa8ec313b"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9093a81e18c45227eebe4c16124ebf3e0d893830c6aca7cc310bfca8fe59d857"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ee40b40aa753d844162dcc80d0fe256b87cba48ca0054f64e68000453caead11"}, - {file = "aiohttp-3.10.5-cp39-cp39-win32.whl", hash = "sha256:03f2645adbe17f274444953bdea69f8327e9d278d961d85657cb0d06864814c1"}, - {file = "aiohttp-3.10.5-cp39-cp39-win_amd64.whl", hash = "sha256:d17920f18e6ee090bdd3d0bfffd769d9f2cb4c8ffde3eb203777a3895c128862"}, - {file = "aiohttp-3.10.5.tar.gz", hash = "sha256:f071854b47d39591ce9a17981c46790acb30518e2f83dfca8db2dfa091178691"}, -] - -[package.dependencies] -aiohappyeyeballs = ">=2.3.0" -aiosignal = ">=1.1.2" -async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} -attrs = ">=17.3.0" -frozenlist = ">=1.1.1" -multidict = ">=4.5,<7.0" -yarl = ">=1.0,<2.0" - -[package.extras] -speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] - -[[package]] -name = "aiosignal" -version = "1.3.1" -description = "aiosignal: a list of registered asynchronous callbacks" -optional = false -python-versions = ">=3.7" -files = [ - {file = "aiosignal-1.3.1-py3-none-any.whl", hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17"}, - {file = "aiosignal-1.3.1.tar.gz", hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc"}, -] - -[package.dependencies] -frozenlist = ">=1.1.0" - -[[package]] -name = "annotated-types" -version = "0.7.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" -files = [ - {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, - {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - -[[package]] -name = "anyio" -version = "4.4.0" -description = "High level compatibility layer for multiple asynchronous event loop implementations" -optional = false -python-versions = ">=3.8" -files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, -] - -[package.dependencies] -exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} -idna = ">=2.8" -sniffio = ">=1.1" -typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} - -[package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] - -[[package]] -name = "appnope" -version = "0.1.4" -description = "Disable App Nap on macOS >= 10.9" -optional = false -python-versions = ">=3.6" -files = [ - {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, - {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, -] - -[[package]] -name = "argon2-cffi" -version = "23.1.0" -description = "Argon2 for Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"}, - {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"}, -] - -[package.dependencies] -argon2-cffi-bindings = "*" - -[package.extras] -dev = ["argon2-cffi[tests,typing]", "tox (>4)"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"] -tests = ["hypothesis", "pytest"] -typing = ["mypy"] - -[[package]] -name = "argon2-cffi-bindings" -version = "21.2.0" -description = "Low-level CFFI bindings for Argon2" -optional = false -python-versions = ">=3.6" -files = [ - {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, - {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, -] - -[package.dependencies] -cffi = ">=1.0.1" - -[package.extras] -dev = ["cogapp", "pre-commit", "pytest", "wheel"] -tests = ["pytest"] - -[[package]] -name = "arrow" -version = "1.3.0" -description = "Better dates & times for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"}, - {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"}, -] - -[package.dependencies] -python-dateutil = ">=2.7.0" -types-python-dateutil = ">=2.8.10" - -[package.extras] -doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"] -test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"] - -[[package]] -name = "asttokens" -version = "2.4.1" -description = "Annotate AST trees with source code positions" -optional = false -python-versions = "*" -files = [ - {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, - {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, -] - -[package.dependencies] -six = ">=1.12.0" - -[package.extras] -astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] -test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] - -[[package]] -name = "async-lru" -version = "2.0.4" -description = "Simple LRU cache for asyncio" -optional = false -python-versions = ">=3.8" -files = [ - {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"}, - {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} - -[[package]] -name = "async-timeout" -version = "4.0.3" -description = "Timeout context manager for asyncio programs" -optional = false -python-versions = ">=3.7" -files = [ - {file = "async-timeout-4.0.3.tar.gz", hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f"}, - {file = "async_timeout-4.0.3-py3-none-any.whl", hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028"}, -] - -[[package]] -name = "attrs" -version = "24.2.0" -description = "Classes Without Boilerplate" -optional = false -python-versions = ">=3.7" -files = [ - {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, - {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, -] - -[package.extras] -benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] -tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] - -[[package]] -name = "babel" -version = "2.16.0" -description = "Internationalization utilities" -optional = false -python-versions = ">=3.8" -files = [ - {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, - {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, -] - -[package.dependencies] -pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} - -[package.extras] -dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] - -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - -[[package]] -name = "beautifulsoup4" -version = "4.12.3" -description = "Screen-scraping library" -optional = false -python-versions = ">=3.6.0" -files = [ - {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, - {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, -] - -[package.dependencies] -soupsieve = ">1.2" - -[package.extras] -cchardet = ["cchardet"] -chardet = ["chardet"] -charset-normalizer = ["charset-normalizer"] -html5lib = ["html5lib"] -lxml = ["lxml"] - -[[package]] -name = "bleach" -version = "6.1.0" -description = "An easy safelist-based HTML-sanitizing tool." -optional = false -python-versions = ">=3.8" -files = [ - {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, - {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, -] - -[package.dependencies] -six = ">=1.9.0" -webencodings = "*" - -[package.extras] -css = ["tinycss2 (>=1.1.0,<1.3)"] - -[[package]] -name = "certifi" -version = "2024.8.30" -description = "Python package for providing Mozilla's CA Bundle." -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, - {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, -] - -[[package]] -name = "cffi" -version = "1.17.0" -description = "Foreign Function Interface for Python calling C code." -optional = false -python-versions = ">=3.8" -files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, -] - -[package.dependencies] -pycparser = "*" - -[[package]] -name = "charset-normalizer" -version = "3.3.2" -description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, -] - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "comm" -version = "0.2.2" -description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." -optional = false -python-versions = ">=3.8" -files = [ - {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, - {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, -] - -[package.dependencies] -traitlets = ">=4" - -[package.extras] -test = ["pytest"] - -[[package]] -name = "dataclasses-json" -version = "0.6.7" -description = "Easily serialize dataclasses to and from JSON." -optional = false -python-versions = "<4.0,>=3.7" -files = [ - {file = "dataclasses_json-0.6.7-py3-none-any.whl", hash = "sha256:0dbf33f26c8d5305befd61b39d2b3414e8a407bedc2834dea9b8d642666fb40a"}, - {file = "dataclasses_json-0.6.7.tar.gz", hash = "sha256:b6b3e528266ea45b9535223bc53ca645f5208833c29229e847b3f26a1cc55fc0"}, -] - -[package.dependencies] -marshmallow = ">=3.18.0,<4.0.0" -typing-inspect = ">=0.4.0,<1" - -[[package]] -name = "debugpy" -version = "1.8.5" -description = "An implementation of the Debug Adapter Protocol for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, - {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, - {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, - {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, - {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, - {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, - {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, - {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, - {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, - {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, - {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, - {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, - {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, - {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, - {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, - {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, - {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, - {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, - {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, - {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, - {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, - {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, -] - -[[package]] -name = "decorator" -version = "5.1.1" -description = "Decorators for Humans" -optional = false -python-versions = ">=3.5" -files = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, -] - -[[package]] -name = "defusedxml" -version = "0.7.1" -description = "XML bomb protection for Python stdlib modules" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, - {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, -] - -[[package]] -name = "distro" -version = "1.9.0" -description = "Distro - an OS platform information API" -optional = false -python-versions = ">=3.6" -files = [ - {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, - {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, -] - -[[package]] -name = "exceptiongroup" -version = "1.2.2" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, - {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "executing" -version = "2.1.0" -description = "Get the currently executing AST node of a frame, and other information" -optional = false -python-versions = ">=3.8" -files = [ - {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, - {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, -] - -[package.extras] -tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] - -[[package]] -name = "fastjsonschema" -version = "2.20.0" -description = "Fastest Python implementation of JSON schema" -optional = false -python-versions = "*" -files = [ - {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, - {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, -] - -[package.extras] -devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] - -[[package]] -name = "fqdn" -version = "1.5.1" -description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" -optional = false -python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" -files = [ - {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, - {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, -] - -[[package]] -name = "frozenlist" -version = "1.4.1" -description = "A list-like structure which implements collections.abc.MutableSequence" -optional = false -python-versions = ">=3.8" -files = [ - {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac"}, - {file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868"}, - {file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe"}, - {file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950"}, - {file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc"}, - {file = "frozenlist-1.4.1-cp310-cp310-win32.whl", hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1"}, - {file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49"}, - {file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2"}, - {file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74"}, - {file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2"}, - {file = "frozenlist-1.4.1-cp311-cp311-win32.whl", hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17"}, - {file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb"}, - {file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a"}, - {file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e"}, - {file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8"}, - {file = "frozenlist-1.4.1-cp312-cp312-win32.whl", hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89"}, - {file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826"}, - {file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a"}, - {file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09"}, - {file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7"}, - {file = "frozenlist-1.4.1-cp38-cp38-win32.whl", hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497"}, - {file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d"}, - {file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897"}, - {file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9"}, - {file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6"}, - {file = "frozenlist-1.4.1-cp39-cp39-win32.whl", hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932"}, - {file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0"}, - {file = "frozenlist-1.4.1-py3-none-any.whl", hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7"}, - {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, -] - -[[package]] -name = "greenlet" -version = "3.0.3" -description = "Lightweight in-process concurrent programming" -optional = false -python-versions = ">=3.7" -files = [ - {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, - {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, - {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, - {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, - {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, - {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, - {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, - {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, - {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, - {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, - {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, - {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, - {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, - {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, - {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, - {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, -] - -[package.extras] -docs = ["Sphinx", "furo"] -test = ["objgraph", "psutil"] - -[[package]] -name = "h11" -version = "0.14.0" -description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" -optional = false -python-versions = ">=3.7" -files = [ - {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, - {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, -] - -[[package]] -name = "httpcore" -version = "1.0.5" -description = "A minimal low-level HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, -] - -[package.dependencies] -certifi = "*" -h11 = ">=0.13,<0.15" - -[package.extras] -asyncio = ["anyio (>=4.0,<5.0)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] - -[[package]] -name = "httpx" -version = "0.27.2" -description = "The next generation HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, - {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, -] - -[package.dependencies] -anyio = "*" -certifi = "*" -httpcore = "==1.*" -idna = "*" -sniffio = "*" - -[package.extras] -brotli = ["brotli", "brotlicffi"] -cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -zstd = ["zstandard (>=0.18.0)"] - -[[package]] -name = "idna" -version = "3.8" -description = "Internationalized Domain Names in Applications (IDNA)" -optional = false -python-versions = ">=3.6" -files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, -] - -[[package]] -name = "importlib-metadata" -version = "8.4.0" -description = "Read metadata from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"}, - {file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"}, -] - -[package.dependencies] -zipp = ">=0.5" - -[package.extras] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] - -[[package]] -name = "importlib-resources" -version = "6.4.4" -description = "Read resources from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_resources-6.4.4-py3-none-any.whl", hash = "sha256:dda242603d1c9cd836c3368b1174ed74cb4049ecd209e7a1a0104620c18c5c11"}, - {file = "importlib_resources-6.4.4.tar.gz", hash = "sha256:20600c8b7361938dc0bb2d5ec0297802e575df486f5a544fa414da65e13721f7"}, -] - -[package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] -type = ["pytest-mypy"] - -[[package]] -name = "iniconfig" -version = "2.0.0" -description = "brain-dead simple config-ini parsing" -optional = false -python-versions = ">=3.7" -files = [ - {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, - {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, -] - -[[package]] -name = "ipykernel" -version = "6.29.5" -description = "IPython Kernel for Jupyter" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, - {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, -] - -[package.dependencies] -appnope = {version = "*", markers = "platform_system == \"Darwin\""} -comm = ">=0.1.1" -debugpy = ">=1.6.5" -ipython = ">=7.23.1" -jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -matplotlib-inline = ">=0.1" -nest-asyncio = "*" -packaging = "*" -psutil = "*" -pyzmq = ">=24" -tornado = ">=6.1" -traitlets = ">=5.4.0" - -[package.extras] -cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] -pyqt5 = ["pyqt5"] -pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "ipython" -version = "8.12.3" -description = "IPython: Productive Interactive Computing" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, -] - -[package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" -colorama = {version = "*", markers = "sys_platform == \"win32\""} -decorator = "*" -jedi = ">=0.16" -matplotlib-inline = "*" -pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" -pygments = ">=2.4.0" -stack-data = "*" -traitlets = ">=5" -typing-extensions = {version = "*", markers = "python_version < \"3.10\""} - -[package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] -black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] -kernel = ["ipykernel"] -nbconvert = ["nbconvert"] -nbformat = ["nbformat"] -notebook = ["ipywidgets", "notebook"] -parallel = ["ipyparallel"] -qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] - -[[package]] -name = "ipywidgets" -version = "8.1.5" -description = "Jupyter interactive widgets" -optional = false -python-versions = ">=3.7" -files = [ - {file = "ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245"}, - {file = "ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17"}, -] - -[package.dependencies] -comm = ">=0.1.3" -ipython = ">=6.1.0" -jupyterlab-widgets = ">=3.0.12,<3.1.0" -traitlets = ">=4.3.1" -widgetsnbextension = ">=4.0.12,<4.1.0" - -[package.extras] -test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] - -[[package]] -name = "isoduration" -version = "20.11.0" -description = "Operations with ISO 8601 durations" -optional = false -python-versions = ">=3.7" -files = [ - {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, - {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, -] - -[package.dependencies] -arrow = ">=0.15.0" - -[[package]] -name = "jedi" -version = "0.19.1" -description = "An autocompletion tool for Python that can be used for text editors." -optional = false -python-versions = ">=3.6" -files = [ - {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, - {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, -] - -[package.dependencies] -parso = ">=0.8.3,<0.9.0" - -[package.extras] -docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] -qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] - -[[package]] -name = "jinja2" -version = "3.1.4" -description = "A very fast and expressive template engine." -optional = false -python-versions = ">=3.7" -files = [ - {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, - {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, -] - -[package.dependencies] -MarkupSafe = ">=2.0" - -[package.extras] -i18n = ["Babel (>=2.7)"] - -[[package]] -name = "jiter" -version = "0.5.0" -description = "Fast iterable JSON parser." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jiter-0.5.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b599f4e89b3def9a94091e6ee52e1d7ad7bc33e238ebb9c4c63f211d74822c3f"}, - {file = "jiter-0.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2a063f71c4b06225543dddadbe09d203dc0c95ba352d8b85f1221173480a71d5"}, - {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:acc0d5b8b3dd12e91dd184b87273f864b363dfabc90ef29a1092d269f18c7e28"}, - {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c22541f0b672f4d741382a97c65609332a783501551445ab2df137ada01e019e"}, - {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:63314832e302cc10d8dfbda0333a384bf4bcfce80d65fe99b0f3c0da8945a91a"}, - {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a25fbd8a5a58061e433d6fae6d5298777c0814a8bcefa1e5ecfff20c594bd749"}, - {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:503b2c27d87dfff5ab717a8200fbbcf4714516c9d85558048b1fc14d2de7d8dc"}, - {file = "jiter-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6d1f3d27cce923713933a844872d213d244e09b53ec99b7a7fdf73d543529d6d"}, - {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c95980207b3998f2c3b3098f357994d3fd7661121f30669ca7cb945f09510a87"}, - {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:afa66939d834b0ce063f57d9895e8036ffc41c4bd90e4a99631e5f261d9b518e"}, - {file = "jiter-0.5.0-cp310-none-win32.whl", hash = "sha256:f16ca8f10e62f25fd81d5310e852df6649af17824146ca74647a018424ddeccf"}, - {file = "jiter-0.5.0-cp310-none-win_amd64.whl", hash = "sha256:b2950e4798e82dd9176935ef6a55cf6a448b5c71515a556da3f6b811a7844f1e"}, - {file = "jiter-0.5.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d4c8e1ed0ef31ad29cae5ea16b9e41529eb50a7fba70600008e9f8de6376d553"}, - {file = "jiter-0.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c6f16e21276074a12d8421692515b3fd6d2ea9c94fd0734c39a12960a20e85f3"}, - {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5280e68e7740c8c128d3ae5ab63335ce6d1fb6603d3b809637b11713487af9e6"}, - {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:583c57fc30cc1fec360e66323aadd7fc3edeec01289bfafc35d3b9dcb29495e4"}, - {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26351cc14507bdf466b5f99aba3df3143a59da75799bf64a53a3ad3155ecded9"}, - {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829df14d656b3fb87e50ae8b48253a8851c707da9f30d45aacab2aa2ba2d614"}, - {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a42a4bdcf7307b86cb863b2fb9bb55029b422d8f86276a50487982d99eed7c6e"}, - {file = "jiter-0.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04d461ad0aebf696f8da13c99bc1b3e06f66ecf6cfd56254cc402f6385231c06"}, - {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6375923c5f19888c9226582a124b77b622f8fd0018b843c45eeb19d9701c403"}, - {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2cec323a853c24fd0472517113768c92ae0be8f8c384ef4441d3632da8baa646"}, - {file = "jiter-0.5.0-cp311-none-win32.whl", hash = "sha256:aa1db0967130b5cab63dfe4d6ff547c88b2a394c3410db64744d491df7f069bb"}, - {file = "jiter-0.5.0-cp311-none-win_amd64.whl", hash = "sha256:aa9d2b85b2ed7dc7697597dcfaac66e63c1b3028652f751c81c65a9f220899ae"}, - {file = "jiter-0.5.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9f664e7351604f91dcdd557603c57fc0d551bc65cc0a732fdacbf73ad335049a"}, - {file = "jiter-0.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:044f2f1148b5248ad2c8c3afb43430dccf676c5a5834d2f5089a4e6c5bbd64df"}, - {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:702e3520384c88b6e270c55c772d4bd6d7b150608dcc94dea87ceba1b6391248"}, - {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:528d742dcde73fad9d63e8242c036ab4a84389a56e04efd854062b660f559544"}, - {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8cf80e5fe6ab582c82f0c3331df27a7e1565e2dcf06265afd5173d809cdbf9ba"}, - {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:44dfc9ddfb9b51a5626568ef4e55ada462b7328996294fe4d36de02fce42721f"}, - {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c451f7922992751a936b96c5f5b9bb9312243d9b754c34b33d0cb72c84669f4e"}, - {file = "jiter-0.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:308fce789a2f093dca1ff91ac391f11a9f99c35369117ad5a5c6c4903e1b3e3a"}, - {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7f5ad4a7c6b0d90776fdefa294f662e8a86871e601309643de30bf94bb93a64e"}, - {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ea189db75f8eca08807d02ae27929e890c7d47599ce3d0a6a5d41f2419ecf338"}, - {file = "jiter-0.5.0-cp312-none-win32.whl", hash = "sha256:e3bbe3910c724b877846186c25fe3c802e105a2c1fc2b57d6688b9f8772026e4"}, - {file = "jiter-0.5.0-cp312-none-win_amd64.whl", hash = "sha256:a586832f70c3f1481732919215f36d41c59ca080fa27a65cf23d9490e75b2ef5"}, - {file = "jiter-0.5.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f04bc2fc50dc77be9d10f73fcc4e39346402ffe21726ff41028f36e179b587e6"}, - {file = "jiter-0.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6f433a4169ad22fcb550b11179bb2b4fd405de9b982601914ef448390b2954f3"}, - {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad4a6398c85d3a20067e6c69890ca01f68659da94d74c800298581724e426c7e"}, - {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6baa88334e7af3f4d7a5c66c3a63808e5efbc3698a1c57626541ddd22f8e4fbf"}, - {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ece0a115c05efca597c6d938f88c9357c843f8c245dbbb53361a1c01afd7148"}, - {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:335942557162ad372cc367ffaf93217117401bf930483b4b3ebdb1223dbddfa7"}, - {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:649b0ee97a6e6da174bffcb3c8c051a5935d7d4f2f52ea1583b5b3e7822fbf14"}, - {file = "jiter-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4be354c5de82157886ca7f5925dbda369b77344b4b4adf2723079715f823989"}, - {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5206144578831a6de278a38896864ded4ed96af66e1e63ec5dd7f4a1fce38a3a"}, - {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8120c60f8121ac3d6f072b97ef0e71770cc72b3c23084c72c4189428b1b1d3b6"}, - {file = "jiter-0.5.0-cp38-none-win32.whl", hash = "sha256:6f1223f88b6d76b519cb033a4d3687ca157c272ec5d6015c322fc5b3074d8a5e"}, - {file = "jiter-0.5.0-cp38-none-win_amd64.whl", hash = "sha256:c59614b225d9f434ea8fc0d0bec51ef5fa8c83679afedc0433905994fb36d631"}, - {file = "jiter-0.5.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0af3838cfb7e6afee3f00dc66fa24695199e20ba87df26e942820345b0afc566"}, - {file = "jiter-0.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:550b11d669600dbc342364fd4adbe987f14d0bbedaf06feb1b983383dcc4b961"}, - {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:489875bf1a0ffb3cb38a727b01e6673f0f2e395b2aad3c9387f94187cb214bbf"}, - {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b250ca2594f5599ca82ba7e68785a669b352156260c5362ea1b4e04a0f3e2389"}, - {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ea18e01f785c6667ca15407cd6dabbe029d77474d53595a189bdc813347218e"}, - {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:462a52be85b53cd9bffd94e2d788a09984274fe6cebb893d6287e1c296d50653"}, - {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92cc68b48d50fa472c79c93965e19bd48f40f207cb557a8346daa020d6ba973b"}, - {file = "jiter-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c834133e59a8521bc87ebcad773608c6fa6ab5c7a022df24a45030826cf10bc"}, - {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab3a71ff31cf2d45cb216dc37af522d335211f3a972d2fe14ea99073de6cb104"}, - {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cccd3af9c48ac500c95e1bcbc498020c87e1781ff0345dd371462d67b76643eb"}, - {file = "jiter-0.5.0-cp39-none-win32.whl", hash = "sha256:368084d8d5c4fc40ff7c3cc513c4f73e02c85f6009217922d0823a48ee7adf61"}, - {file = "jiter-0.5.0-cp39-none-win_amd64.whl", hash = "sha256:ce03f7b4129eb72f1687fa11300fbf677b02990618428934662406d2a76742a1"}, - {file = "jiter-0.5.0.tar.gz", hash = "sha256:1d916ba875bcab5c5f7d927df998c4cb694d27dceddf3392e58beaf10563368a"}, -] - -[[package]] -name = "json5" -version = "0.9.25" -description = "A Python implementation of the JSON5 data format." -optional = false -python-versions = ">=3.8" -files = [ - {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"}, - {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"}, -] - -[[package]] -name = "jsonpatch" -version = "1.33" -description = "Apply JSON-Patches (RFC 6902)" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" -files = [ - {file = "jsonpatch-1.33-py2.py3-none-any.whl", hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade"}, - {file = "jsonpatch-1.33.tar.gz", hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c"}, -] - -[package.dependencies] -jsonpointer = ">=1.9" - -[[package]] -name = "jsonpointer" -version = "3.0.0" -description = "Identify specific nodes in a JSON document (RFC 6901)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, - {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, -] - -[[package]] -name = "jsonschema" -version = "4.23.0" -description = "An implementation of JSON Schema validation for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, - {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, -] - -[package.dependencies] -attrs = ">=22.2.0" -fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} -isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} -jsonschema-specifications = ">=2023.03.6" -pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} -referencing = ">=0.28.4" -rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} -rpds-py = ">=0.7.1" -uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -webcolors = {version = ">=24.6.0", optional = true, markers = "extra == \"format-nongpl\""} - -[package.extras] -format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] -format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"] - -[[package]] -name = "jsonschema-specifications" -version = "2023.12.1" -description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"}, - {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"}, -] - -[package.dependencies] -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} -referencing = ">=0.31.0" - -[[package]] -name = "jupyter" -version = "1.1.1" -description = "Jupyter metapackage. Install all the Jupyter components in one go." -optional = false -python-versions = "*" -files = [ - {file = "jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83"}, - {file = "jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a"}, -] - -[package.dependencies] -ipykernel = "*" -ipywidgets = "*" -jupyter-console = "*" -jupyterlab = "*" -nbconvert = "*" -notebook = "*" - -[[package]] -name = "jupyter-client" -version = "8.6.2" -description = "Jupyter protocol implementation and client libraries" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, -] - -[package.dependencies] -importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -python-dateutil = ">=2.8.2" -pyzmq = ">=23.0" -tornado = ">=6.2" -traitlets = ">=5.3" - -[package.extras] -docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] - -[[package]] -name = "jupyter-console" -version = "6.6.3" -description = "Jupyter terminal console" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, - {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, -] - -[package.dependencies] -ipykernel = ">=6.14" -ipython = "*" -jupyter-client = ">=7.0.0" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -prompt-toolkit = ">=3.0.30" -pygments = "*" -pyzmq = ">=17" -traitlets = ">=5.4" - -[package.extras] -test = ["flaky", "pexpect", "pytest"] - -[[package]] -name = "jupyter-core" -version = "5.7.2" -description = "Jupyter core package. A base package on which Jupyter projects rely." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, - {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, -] - -[package.dependencies] -platformdirs = ">=2.5" -pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} -traitlets = ">=5.3" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] -test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "jupyter-events" -version = "0.10.0" -description = "Jupyter Event System library" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960"}, - {file = "jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22"}, -] - -[package.dependencies] -jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]} -python-json-logger = ">=2.0.4" -pyyaml = ">=5.3" -referencing = "*" -rfc3339-validator = "*" -rfc3986-validator = ">=0.1.1" -traitlets = ">=5.3" - -[package.extras] -cli = ["click", "rich"] -docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] -test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"] - -[[package]] -name = "jupyter-lsp" -version = "2.2.5" -description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"}, - {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"}, -] - -[package.dependencies] -importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -jupyter-server = ">=1.1.2" - -[[package]] -name = "jupyter-server" -version = "2.14.2" -description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_server-2.14.2-py3-none-any.whl", hash = "sha256:47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd"}, - {file = "jupyter_server-2.14.2.tar.gz", hash = "sha256:66095021aa9638ced276c248b1d81862e4c50f292d575920bbe960de1c56b12b"}, -] - -[package.dependencies] -anyio = ">=3.1.0" -argon2-cffi = ">=21.1" -jinja2 = ">=3.0.3" -jupyter-client = ">=7.4.4" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -jupyter-events = ">=0.9.0" -jupyter-server-terminals = ">=0.4.4" -nbconvert = ">=6.4.4" -nbformat = ">=5.3.0" -overrides = ">=5.0" -packaging = ">=22.0" -prometheus-client = ">=0.9" -pywinpty = {version = ">=2.0.1", markers = "os_name == \"nt\""} -pyzmq = ">=24" -send2trash = ">=1.8.2" -terminado = ">=0.8.3" -tornado = ">=6.2.0" -traitlets = ">=5.6.0" -websocket-client = ">=1.7" - -[package.extras] -docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] -test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] - -[[package]] -name = "jupyter-server-terminals" -version = "0.5.3" -description = "A Jupyter Server Extension Providing Terminals." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"}, - {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"}, -] - -[package.dependencies] -pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} -terminado = ">=0.8.3" - -[package.extras] -docs = ["jinja2", "jupyter-server", "mistune (<4.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] -test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] - -[[package]] -name = "jupyterlab" -version = "4.2.5" -description = "JupyterLab computational environment" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyterlab-4.2.5-py3-none-any.whl", hash = "sha256:73b6e0775d41a9fee7ee756c80f58a6bed4040869ccc21411dc559818874d321"}, - {file = "jupyterlab-4.2.5.tar.gz", hash = "sha256:ae7f3a1b8cb88b4f55009ce79fa7c06f99d70cd63601ee4aa91815d054f46f75"}, -] - -[package.dependencies] -async-lru = ">=1.0.0" -httpx = ">=0.25.0" -importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -importlib-resources = {version = ">=1.4", markers = "python_version < \"3.9\""} -ipykernel = ">=6.5.0" -jinja2 = ">=3.0.3" -jupyter-core = "*" -jupyter-lsp = ">=2.0.0" -jupyter-server = ">=2.4.0,<3" -jupyterlab-server = ">=2.27.1,<3" -notebook-shim = ">=0.2" -packaging = "*" -setuptools = ">=40.1.0" -tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} -tornado = ">=6.2.0" -traitlets = "*" - -[package.extras] -dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.3.5)"] -docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] -docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] -test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] -upgrade-extension = ["copier (>=9,<10)", "jinja2-time (<0.3)", "pydantic (<3.0)", "pyyaml-include (<3.0)", "tomli-w (<2.0)"] - -[[package]] -name = "jupyterlab-pygments" -version = "0.3.0" -description = "Pygments theme using JupyterLab CSS variables" -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, - {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, -] - -[[package]] -name = "jupyterlab-server" -version = "2.27.3" -description = "A set of server components for JupyterLab and JupyterLab like applications." -optional = false -python-versions = ">=3.8" -files = [ - {file = "jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4"}, - {file = "jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4"}, -] - -[package.dependencies] -babel = ">=2.10" -importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -jinja2 = ">=3.0.3" -json5 = ">=0.9.0" -jsonschema = ">=4.18.0" -jupyter-server = ">=1.21,<3" -packaging = ">=21.3" -requests = ">=2.31" - -[package.extras] -docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"] -openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"] -test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"] - -[[package]] -name = "jupyterlab-widgets" -version = "3.0.13" -description = "Jupyter interactive widgets for JupyterLab" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54"}, - {file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"}, -] - -[[package]] -name = "langchain" -version = "0.2.16" -description = "Building applications with LLMs through composability" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -aiohttp = "^3.8.3" -async-timeout = {version = "^4.0.0", markers = "python_version < \"3.11\""} -langchain-core = "^0.2.38" -langchain-text-splitters = "^0.2.0" -langsmith = "^0.1.17" -numpy = [ - {version = ">=1,<2", markers = "python_version < \"3.12\""}, - {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, -] -pydantic = ">=1,<3" -PyYAML = ">=5.3" -requests = "^2" -SQLAlchemy = ">=1.4,<3" -tenacity = "^8.1.0,!=8.4.0" - -[package.source] -type = "directory" -url = "../langchain" - -[[package]] -name = "langchain-community" -version = "0.2.16" -description = "Community contributed LangChain integrations." -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -aiohttp = "^3.8.3" -dataclasses-json = ">= 0.5.7, < 0.7" -langchain = "^0.2.16" -langchain-core = "^0.2.38" -langsmith = "^0.1.0" -numpy = [ - {version = ">=1,<2", markers = "python_version < \"3.12\""}, - {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, -] -PyYAML = ">=5.3" -requests = "^2" -SQLAlchemy = ">=1.4,<3" -tenacity = "^8.1.0,!=8.4.0" - -[package.source] -type = "directory" -url = "../community" - -[[package]] -name = "langchain-core" -version = "0.2.38" -description = "Building applications with LLMs through composability" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -jsonpatch = "^1.33" -langsmith = "^0.1.75" -packaging = ">=23.2,<25" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -PyYAML = ">=5.3" -tenacity = "^8.1.0,!=8.4.0" -typing-extensions = ">=4.7" - -[package.source] -type = "directory" -url = "../core" - -[[package]] -name = "langchain-openai" -version = "0.1.23" -description = "An integration package connecting OpenAI and LangChain" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -langchain-core = "^0.2.35" -openai = "^1.40.0" -tiktoken = ">=0.7,<1" - -[package.source] -type = "directory" -url = "../partners/openai" - -[[package]] -name = "langchain-text-splitters" -version = "0.2.4" -description = "LangChain text splitting utilities" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -langchain-core = "^0.2.38" - -[package.source] -type = "directory" -url = "../text-splitters" - -[[package]] -name = "langsmith" -version = "0.1.110" -description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." -optional = false -python-versions = "<4.0,>=3.8.1" -files = [ - {file = "langsmith-0.1.110-py3-none-any.whl", hash = "sha256:316d279e3853f5e90e462f9c035eeb468d042f2a21a269c1102d65f3dccdc334"}, - {file = "langsmith-0.1.110.tar.gz", hash = "sha256:9a619dfe22a67a05a05091f0677b9c842499faec5f051b31afcd901b6627d0a3"}, -] - -[package.dependencies] -httpx = ">=0.23.0,<1" -orjson = ">=3.9.14,<4.0.0" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -requests = ">=2,<3" - -[[package]] -name = "markupsafe" -version = "2.1.5" -description = "Safely add untrusted strings to HTML/XML markup." -optional = false -python-versions = ">=3.7" -files = [ - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, - {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, -] - -[[package]] -name = "marshmallow" -version = "3.22.0" -description = "A lightweight library for converting complex datatypes to and from native Python datatypes." -optional = false -python-versions = ">=3.8" -files = [ - {file = "marshmallow-3.22.0-py3-none-any.whl", hash = "sha256:71a2dce49ef901c3f97ed296ae5051135fd3febd2bf43afe0ae9a82143a494d9"}, - {file = "marshmallow-3.22.0.tar.gz", hash = "sha256:4972f529104a220bb8637d595aa4c9762afbe7f7a77d82dc58c1615d70c5823e"}, -] - -[package.dependencies] -packaging = ">=17.0" - -[package.extras] -dev = ["marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"] -docs = ["alabaster (==1.0.0)", "autodocsumm (==0.2.13)", "sphinx (==8.0.2)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"] -tests = ["pytest", "pytz", "simplejson"] - -[[package]] -name = "matplotlib-inline" -version = "0.1.7" -description = "Inline Matplotlib backend for Jupyter" -optional = false -python-versions = ">=3.8" -files = [ - {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, - {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, -] - -[package.dependencies] -traitlets = "*" - -[[package]] -name = "mistune" -version = "3.0.2" -description = "A sane and fast Markdown parser with useful plugins and renderers" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"}, - {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"}, -] - -[[package]] -name = "multidict" -version = "6.0.5" -description = "multidict implementation" -optional = false -python-versions = ">=3.7" -files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, -] - -[[package]] -name = "mypy" -version = "1.11.2" -description = "Optional static typing for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, - {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, - {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, - {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, - {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, - {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, - {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, - {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, - {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, - {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, - {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, - {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, - {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, - {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, - {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, - {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, - {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, - {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, - {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, - {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, - {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, - {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, - {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, - {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, - {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, - {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, - {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, -] - -[package.dependencies] -mypy-extensions = ">=1.0.0" -tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.6.0" - -[package.extras] -dmypy = ["psutil (>=4.0)"] -install-types = ["pip"] -mypyc = ["setuptools (>=50)"] -reports = ["lxml"] - -[[package]] -name = "mypy-extensions" -version = "1.0.0" -description = "Type system extensions for programs checked with the mypy type checker." -optional = false -python-versions = ">=3.5" -files = [ - {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, - {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, -] - -[[package]] -name = "nbclient" -version = "0.10.0" -description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"}, - {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"}, -] - -[package.dependencies] -jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -nbformat = ">=5.1" -traitlets = ">=5.4" - -[package.extras] -dev = ["pre-commit"] -docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] -test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] - -[[package]] -name = "nbconvert" -version = "7.16.4" -description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." -optional = false -python-versions = ">=3.8" -files = [ - {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"}, - {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"}, -] - -[package.dependencies] -beautifulsoup4 = "*" -bleach = "!=5.0.0" -defusedxml = "*" -importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""} -jinja2 = ">=3.0" -jupyter-core = ">=4.7" -jupyterlab-pygments = "*" -markupsafe = ">=2.0" -mistune = ">=2.0.3,<4" -nbclient = ">=0.5.0" -nbformat = ">=5.7" -packaging = "*" -pandocfilters = ">=1.4.1" -pygments = ">=2.4.1" -tinycss2 = "*" -traitlets = ">=5.1" - -[package.extras] -all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] -docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] -qtpdf = ["pyqtwebengine (>=5.15)"] -qtpng = ["pyqtwebengine (>=5.15)"] -serve = ["tornado (>=6.1)"] -test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] -webpdf = ["playwright"] - -[[package]] -name = "nbformat" -version = "5.10.4" -description = "The Jupyter Notebook format" -optional = false -python-versions = ">=3.8" -files = [ - {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, - {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, -] - -[package.dependencies] -fastjsonschema = ">=2.15" -jsonschema = ">=2.6" -jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" -traitlets = ">=5.1" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["pep440", "pre-commit", "pytest", "testpath"] - -[[package]] -name = "nest-asyncio" -version = "1.6.0" -description = "Patch asyncio to allow nested event loops" -optional = false -python-versions = ">=3.5" -files = [ - {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, - {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, -] - -[[package]] -name = "notebook" -version = "7.2.2" -description = "Jupyter Notebook - A web-based notebook environment for interactive computing" -optional = false -python-versions = ">=3.8" -files = [ - {file = "notebook-7.2.2-py3-none-any.whl", hash = "sha256:c89264081f671bc02eec0ed470a627ed791b9156cad9285226b31611d3e9fe1c"}, - {file = "notebook-7.2.2.tar.gz", hash = "sha256:2ef07d4220421623ad3fe88118d687bc0450055570cdd160814a59cf3a1c516e"}, -] - -[package.dependencies] -jupyter-server = ">=2.4.0,<3" -jupyterlab = ">=4.2.0,<4.3" -jupyterlab-server = ">=2.27.1,<3" -notebook-shim = ">=0.2,<0.3" -tornado = ">=6.2.0" - -[package.extras] -dev = ["hatch", "pre-commit"] -docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] - -[[package]] -name = "notebook-shim" -version = "0.2.4" -description = "A shim layer for notebook traits and config" -optional = false -python-versions = ">=3.7" -files = [ - {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"}, - {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"}, -] - -[package.dependencies] -jupyter-server = ">=1.8,<3" - -[package.extras] -test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] - -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - -[[package]] -name = "numpy" -version = "1.26.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"}, - {file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"}, - {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"}, - {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"}, - {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"}, - {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"}, - {file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"}, - {file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"}, - {file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"}, - {file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"}, - {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"}, - {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"}, - {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"}, - {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"}, - {file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"}, - {file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"}, - {file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"}, - {file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"}, - {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"}, - {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"}, - {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"}, - {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"}, - {file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"}, - {file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"}, - {file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"}, - {file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"}, - {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"}, - {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"}, - {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"}, - {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"}, - {file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"}, - {file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"}, - {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, -] - -[[package]] -name = "openai" -version = "1.43.0" -description = "The official Python library for the openai API" -optional = false -python-versions = ">=3.7.1" -files = [ - {file = "openai-1.43.0-py3-none-any.whl", hash = "sha256:1a748c2728edd3a738a72a0212ba866f4fdbe39c9ae03813508b267d45104abe"}, - {file = "openai-1.43.0.tar.gz", hash = "sha256:e607aff9fc3e28eade107e5edd8ca95a910a4b12589336d3cbb6bfe2ac306b3c"}, -] - -[package.dependencies] -anyio = ">=3.5.0,<5" -distro = ">=1.7.0,<2" -httpx = ">=0.23.0,<1" -jiter = ">=0.4.0,<1" -pydantic = ">=1.9.0,<3" -sniffio = "*" -tqdm = ">4" -typing-extensions = ">=4.11,<5" - -[package.extras] -datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] - -[[package]] -name = "orjson" -version = "3.10.7" -description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" -optional = false -python-versions = ">=3.8" -files = [ - {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, - {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, - {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, - {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, - {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, - {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, - {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, - {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, - {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, - {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, - {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, - {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, - {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, - {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, - {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, - {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, - {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, - {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, - {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, - {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, - {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, - {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, - {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, - {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, - {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, - {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, - {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, - {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, - {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, - {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, - {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, - {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, -] - -[[package]] -name = "overrides" -version = "7.7.0" -description = "A decorator to automatically detect mismatch when overriding a method." -optional = false -python-versions = ">=3.6" -files = [ - {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"}, - {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"}, -] - -[[package]] -name = "packaging" -version = "24.1" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, -] - -[[package]] -name = "pandocfilters" -version = "1.5.1" -description = "Utilities for writing pandoc filters in python" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"}, - {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"}, -] - -[[package]] -name = "parso" -version = "0.8.4" -description = "A Python Parser" -optional = false -python-versions = ">=3.6" -files = [ - {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, - {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, -] - -[package.extras] -qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["docopt", "pytest"] - -[[package]] -name = "pexpect" -version = "4.9.0" -description = "Pexpect allows easy control of interactive console applications." -optional = false -python-versions = "*" -files = [ - {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, - {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, -] - -[package.dependencies] -ptyprocess = ">=0.5" - -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - -[[package]] -name = "pkgutil-resolve-name" -version = "1.3.10" -description = "Resolve a name to an object." -optional = false -python-versions = ">=3.6" -files = [ - {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, - {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, -] - -[[package]] -name = "platformdirs" -version = "4.2.2" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." -optional = false -python-versions = ">=3.8" -files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, -] - -[package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] - -[[package]] -name = "pluggy" -version = "1.5.0" -description = "plugin and hook calling mechanisms for python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, - {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, -] - -[package.extras] -dev = ["pre-commit", "tox"] -testing = ["pytest", "pytest-benchmark"] - -[[package]] -name = "prometheus-client" -version = "0.20.0" -description = "Python client for the Prometheus monitoring system." -optional = false -python-versions = ">=3.8" -files = [ - {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"}, - {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"}, -] - -[package.extras] -twisted = ["twisted"] - -[[package]] -name = "prompt-toolkit" -version = "3.0.47" -description = "Library for building powerful interactive command lines in Python" -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, -] - -[package.dependencies] -wcwidth = "*" - -[[package]] -name = "psutil" -version = "6.0.0" -description = "Cross-platform lib for process and system monitoring in Python." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, - {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, - {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, - {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, - {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, - {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, - {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, - {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, - {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, - {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, -] - -[package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] - -[[package]] -name = "ptyprocess" -version = "0.7.0" -description = "Run a subprocess in a pseudo terminal" -optional = false -python-versions = "*" -files = [ - {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, - {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, -] - -[[package]] -name = "pure-eval" -version = "0.2.3" -description = "Safely evaluate AST nodes without side effects" -optional = false -python-versions = "*" -files = [ - {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, - {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, -] - -[package.extras] -tests = ["pytest"] - -[[package]] -name = "pycparser" -version = "2.22" -description = "C parser in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, - {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, -] - -[[package]] -name = "pydantic" -version = "2.8.2" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, -] - -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" -typing-extensions = [ - {version = ">=4.6.1", markers = "python_version < \"3.13\""}, - {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, -] - -[package.extras] -email = ["email-validator (>=2.0.0)"] - -[[package]] -name = "pydantic-core" -version = "2.20.1" -description = "Core functionality for Pydantic validation and serialization" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pygments" -version = "2.18.0" -description = "Pygments is a syntax highlighting package written in Python." -optional = false -python-versions = ">=3.8" -files = [ - {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, - {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, -] - -[package.extras] -windows-terminal = ["colorama (>=0.4.6)"] - -[[package]] -name = "pytest" -version = "7.4.4" -description = "pytest: simple powerful testing with Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-7.4.4-py3-none-any.whl", hash = "sha256:b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8"}, - {file = "pytest-7.4.4.tar.gz", hash = "sha256:2cf0005922c6ace4a3e2ec8b4080eb0d9753fdc93107415332f50ce9e7994280"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} -iniconfig = "*" -packaging = "*" -pluggy = ">=0.12,<2.0" -tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} - -[package.extras] -testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] - -[[package]] -name = "pytest-asyncio" -version = "0.20.3" -description = "Pytest support for asyncio" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-asyncio-0.20.3.tar.gz", hash = "sha256:83cbf01169ce3e8eb71c6c278ccb0574d1a7a3bb8eaaf5e50e0ad342afb33b36"}, - {file = "pytest_asyncio-0.20.3-py3-none-any.whl", hash = "sha256:f129998b209d04fcc65c96fc85c11e5316738358909a8399e93be553d7656442"}, -] - -[package.dependencies] -pytest = ">=6.1.0" - -[package.extras] -docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] -testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"] - -[[package]] -name = "python-dateutil" -version = "2.9.0.post0" -description = "Extensions to the standard Python datetime module" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" -files = [ - {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, - {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, -] - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "python-json-logger" -version = "2.0.7" -description = "A python library adding a json log formatter" -optional = false -python-versions = ">=3.6" -files = [ - {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, - {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, -] - -[[package]] -name = "pytz" -version = "2024.1" -description = "World timezone definitions, modern and historical" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, -] - -[[package]] -name = "pywin32" -version = "306" -description = "Python for Window Extensions" -optional = false -python-versions = "*" -files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, -] - -[[package]] -name = "pywinpty" -version = "2.0.13" -description = "Pseudo terminal support for Windows from Python." -optional = false -python-versions = ">=3.8" -files = [ - {file = "pywinpty-2.0.13-cp310-none-win_amd64.whl", hash = "sha256:697bff211fb5a6508fee2dc6ff174ce03f34a9a233df9d8b5fe9c8ce4d5eaf56"}, - {file = "pywinpty-2.0.13-cp311-none-win_amd64.whl", hash = "sha256:b96fb14698db1284db84ca38c79f15b4cfdc3172065b5137383910567591fa99"}, - {file = "pywinpty-2.0.13-cp312-none-win_amd64.whl", hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4"}, - {file = "pywinpty-2.0.13-cp38-none-win_amd64.whl", hash = "sha256:61d420c2116c0212808d31625611b51caf621fe67f8a6377e2e8b617ea1c1f7d"}, - {file = "pywinpty-2.0.13-cp39-none-win_amd64.whl", hash = "sha256:71cb613a9ee24174730ac7ae439fd179ca34ccb8c5349e8d7b72ab5dea2c6f4b"}, - {file = "pywinpty-2.0.13.tar.gz", hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde"}, -] - -[[package]] -name = "pyyaml" -version = "6.0.2" -description = "YAML parser and emitter for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, - {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, - {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, - {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, - {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, - {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, - {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, - {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, - {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, - {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, - {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, - {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, - {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, - {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, - {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, - {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, - {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, -] - -[[package]] -name = "pyzmq" -version = "26.2.0" -description = "Python bindings for 0MQ" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, - {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, - {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, - {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, - {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, - {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, - {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, - {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, - {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, - {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, - {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, - {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, - {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, - {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, - {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, - {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, - {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, - {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, - {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, - {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, - {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, - {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, - {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, - {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, - {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, - {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, - {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, - {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, - {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, - {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, - {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, - {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, - {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, - {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, - {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, - {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, - {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, - {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, - {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, - {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, - {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, - {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, - {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, - {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, - {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, - {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, - {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, - {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, - {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, - {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, - {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, - {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, - {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, - {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, - {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, -] - -[package.dependencies] -cffi = {version = "*", markers = "implementation_name == \"pypy\""} - -[[package]] -name = "referencing" -version = "0.35.1" -description = "JSON Referencing + Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, - {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, -] - -[package.dependencies] -attrs = ">=22.2.0" -rpds-py = ">=0.7.0" - -[[package]] -name = "regex" -version = "2024.7.24" -description = "Alternative regular expression module, to replace re." -optional = false -python-versions = ">=3.8" -files = [ - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, - {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, - {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, - {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, - {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, - {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, - {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, - {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, - {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, - {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, - {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, - {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, -] - -[[package]] -name = "requests" -version = "2.32.3" -description = "Python HTTP for Humans." -optional = false -python-versions = ">=3.8" -files = [ - {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, - {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, -] - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<4" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<3" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "rfc3339-validator" -version = "0.1.4" -description = "A pure python RFC3339 validator" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, - {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, -] - -[package.dependencies] -six = "*" - -[[package]] -name = "rfc3986-validator" -version = "0.1.1" -description = "Pure python rfc3986 validator" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, - {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, -] - -[[package]] -name = "rpds-py" -version = "0.20.0" -description = "Python bindings to Rust's persistent data structures (rpds)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3ad0fda1635f8439cde85c700f964b23ed5fc2d28016b32b9ee5fe30da5c84e2"}, - {file = "rpds_py-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9bb4a0d90fdb03437c109a17eade42dfbf6190408f29b2744114d11586611d6f"}, - {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6377e647bbfd0a0b159fe557f2c6c602c159fc752fa316572f012fc0bf67150"}, - {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb851b7df9dda52dc1415ebee12362047ce771fc36914586b2e9fcbd7d293b3e"}, - {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e0f80b739e5a8f54837be5d5c924483996b603d5502bfff79bf33da06164ee2"}, - {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a8c94dad2e45324fc74dce25e1645d4d14df9a4e54a30fa0ae8bad9a63928e3"}, - {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e604fe73ba048c06085beaf51147eaec7df856824bfe7b98657cf436623daf"}, - {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:df3de6b7726b52966edf29663e57306b23ef775faf0ac01a3e9f4012a24a4140"}, - {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cf258ede5bc22a45c8e726b29835b9303c285ab46fc7c3a4cc770736b5304c9f"}, - {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:55fea87029cded5df854ca7e192ec7bdb7ecd1d9a3f63d5c4eb09148acf4a7ce"}, - {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ae94bd0b2f02c28e199e9bc51485d0c5601f58780636185660f86bf80c89af94"}, - {file = "rpds_py-0.20.0-cp310-none-win32.whl", hash = "sha256:28527c685f237c05445efec62426d285e47a58fb05ba0090a4340b73ecda6dee"}, - {file = "rpds_py-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:238a2d5b1cad28cdc6ed15faf93a998336eb041c4e440dd7f902528b8891b399"}, - {file = "rpds_py-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac2f4f7a98934c2ed6505aead07b979e6f999389f16b714448fb39bbaa86a489"}, - {file = "rpds_py-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:220002c1b846db9afd83371d08d239fdc865e8f8c5795bbaec20916a76db3318"}, - {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d7919548df3f25374a1f5d01fbcd38dacab338ef5f33e044744b5c36729c8db"}, - {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:758406267907b3781beee0f0edfe4a179fbd97c0be2e9b1154d7f0a1279cf8e5"}, - {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3d61339e9f84a3f0767b1995adfb171a0d00a1185192718a17af6e124728e0f5"}, - {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1259c7b3705ac0a0bd38197565a5d603218591d3f6cee6e614e380b6ba61c6f6"}, - {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c1dc0f53856b9cc9a0ccca0a7cc61d3d20a7088201c0937f3f4048c1718a209"}, - {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7e60cb630f674a31f0368ed32b2a6b4331b8350d67de53c0359992444b116dd3"}, - {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbe982f38565bb50cb7fb061ebf762c2f254ca3d8c20d4006878766e84266272"}, - {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:514b3293b64187172bc77c8fb0cdae26981618021053b30d8371c3a902d4d5ad"}, - {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0a26ffe9d4dd35e4dfdd1e71f46401cff0181c75ac174711ccff0459135fa58"}, - {file = "rpds_py-0.20.0-cp311-none-win32.whl", hash = "sha256:89c19a494bf3ad08c1da49445cc5d13d8fefc265f48ee7e7556839acdacf69d0"}, - {file = "rpds_py-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:c638144ce971df84650d3ed0096e2ae7af8e62ecbbb7b201c8935c370df00a2c"}, - {file = "rpds_py-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a84ab91cbe7aab97f7446652d0ed37d35b68a465aeef8fc41932a9d7eee2c1a6"}, - {file = "rpds_py-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:56e27147a5a4c2c21633ff8475d185734c0e4befd1c989b5b95a5d0db699b21b"}, - {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2580b0c34583b85efec8c5c5ec9edf2dfe817330cc882ee972ae650e7b5ef739"}, - {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b80d4a7900cf6b66bb9cee5c352b2d708e29e5a37fe9bf784fa97fc11504bf6c"}, - {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50eccbf054e62a7b2209b28dc7a22d6254860209d6753e6b78cfaeb0075d7bee"}, - {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:49a8063ea4296b3a7e81a5dfb8f7b2d73f0b1c20c2af401fb0cdf22e14711a96"}, - {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea438162a9fcbee3ecf36c23e6c68237479f89f962f82dae83dc15feeceb37e4"}, - {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:18d7585c463087bddcfa74c2ba267339f14f2515158ac4db30b1f9cbdb62c8ef"}, - {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d4c7d1a051eeb39f5c9547e82ea27cbcc28338482242e3e0b7768033cb083821"}, - {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4df1e3b3bec320790f699890d41c59d250f6beda159ea3c44c3f5bac1976940"}, - {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2cf126d33a91ee6eedc7f3197b53e87a2acdac63602c0f03a02dd69e4b138174"}, - {file = "rpds_py-0.20.0-cp312-none-win32.whl", hash = "sha256:8bc7690f7caee50b04a79bf017a8d020c1f48c2a1077ffe172abec59870f1139"}, - {file = "rpds_py-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:0e13e6952ef264c40587d510ad676a988df19adea20444c2b295e536457bc585"}, - {file = "rpds_py-0.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:aa9a0521aeca7d4941499a73ad7d4f8ffa3d1affc50b9ea11d992cd7eff18a29"}, - {file = "rpds_py-0.20.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4a1f1d51eccb7e6c32ae89243cb352389228ea62f89cd80823ea7dd1b98e0b91"}, - {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a86a9b96070674fc88b6f9f71a97d2c1d3e5165574615d1f9168ecba4cecb24"}, - {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6c8ef2ebf76df43f5750b46851ed1cdf8f109d7787ca40035fe19fbdc1acc5a7"}, - {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b25f024b421d5859d156750ea9a65651793d51b76a2e9238c05c9d5f203a9"}, - {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57eb94a8c16ab08fef6404301c38318e2c5a32216bf5de453e2714c964c125c8"}, - {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1940dae14e715e2e02dfd5b0f64a52e8374a517a1e531ad9412319dc3ac7879"}, - {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d20277fd62e1b992a50c43f13fbe13277a31f8c9f70d59759c88f644d66c619f"}, - {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:06db23d43f26478303e954c34c75182356ca9aa7797d22c5345b16871ab9c45c"}, - {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b2a5db5397d82fa847e4c624b0c98fe59d2d9b7cf0ce6de09e4d2e80f8f5b3f2"}, - {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5a35df9f5548fd79cb2f52d27182108c3e6641a4feb0f39067911bf2adaa3e57"}, - {file = "rpds_py-0.20.0-cp313-none-win32.whl", hash = "sha256:fd2d84f40633bc475ef2d5490b9c19543fbf18596dcb1b291e3a12ea5d722f7a"}, - {file = "rpds_py-0.20.0-cp313-none-win_amd64.whl", hash = "sha256:9bc2d153989e3216b0559251b0c260cfd168ec78b1fac33dd485750a228db5a2"}, - {file = "rpds_py-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f2fbf7db2012d4876fb0d66b5b9ba6591197b0f165db8d99371d976546472a24"}, - {file = "rpds_py-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1e5f3cd7397c8f86c8cc72d5a791071431c108edd79872cdd96e00abd8497d29"}, - {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce9845054c13696f7af7f2b353e6b4f676dab1b4b215d7fe5e05c6f8bb06f965"}, - {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c3e130fd0ec56cb76eb49ef52faead8ff09d13f4527e9b0c400307ff72b408e1"}, - {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b16aa0107ecb512b568244ef461f27697164d9a68d8b35090e9b0c1c8b27752"}, - {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa7f429242aae2947246587d2964fad750b79e8c233a2367f71b554e9447949c"}, - {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af0fc424a5842a11e28956e69395fbbeab2c97c42253169d87e90aac2886d751"}, - {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b8c00a3b1e70c1d3891f0db1b05292747f0dbcfb49c43f9244d04c70fbc40eb8"}, - {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40ce74fc86ee4645d0a225498d091d8bc61f39b709ebef8204cb8b5a464d3c0e"}, - {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4fe84294c7019456e56d93e8ababdad5a329cd25975be749c3f5f558abb48253"}, - {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:338ca4539aad4ce70a656e5187a3a31c5204f261aef9f6ab50e50bcdffaf050a"}, - {file = "rpds_py-0.20.0-cp38-none-win32.whl", hash = "sha256:54b43a2b07db18314669092bb2de584524d1ef414588780261e31e85846c26a5"}, - {file = "rpds_py-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:a1862d2d7ce1674cffa6d186d53ca95c6e17ed2b06b3f4c476173565c862d232"}, - {file = "rpds_py-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:3fde368e9140312b6e8b6c09fb9f8c8c2f00999d1823403ae90cc00480221b22"}, - {file = "rpds_py-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9824fb430c9cf9af743cf7aaf6707bf14323fb51ee74425c380f4c846ea70789"}, - {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11ef6ce74616342888b69878d45e9f779b95d4bd48b382a229fe624a409b72c5"}, - {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c52d3f2f82b763a24ef52f5d24358553e8403ce05f893b5347098014f2d9eff2"}, - {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9d35cef91e59ebbeaa45214861874bc6f19eb35de96db73e467a8358d701a96c"}, - {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d72278a30111e5b5525c1dd96120d9e958464316f55adb030433ea905866f4de"}, - {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c29cbbba378759ac5786730d1c3cb4ec6f8ababf5c42a9ce303dc4b3d08cda"}, - {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6632f2d04f15d1bd6fe0eedd3b86d9061b836ddca4c03d5cf5c7e9e6b7c14580"}, - {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d0b67d87bb45ed1cd020e8fbf2307d449b68abc45402fe1a4ac9e46c3c8b192b"}, - {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ec31a99ca63bf3cd7f1a5ac9fe95c5e2d060d3c768a09bc1d16e235840861420"}, - {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22e6c9976e38f4d8c4a63bd8a8edac5307dffd3ee7e6026d97f3cc3a2dc02a0b"}, - {file = "rpds_py-0.20.0-cp39-none-win32.whl", hash = "sha256:569b3ea770c2717b730b61998b6c54996adee3cef69fc28d444f3e7920313cf7"}, - {file = "rpds_py-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:e6900ecdd50ce0facf703f7a00df12374b74bbc8ad9fe0f6559947fb20f82364"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:617c7357272c67696fd052811e352ac54ed1d9b49ab370261a80d3b6ce385045"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9426133526f69fcaba6e42146b4e12d6bc6c839b8b555097020e2b78ce908dcc"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deb62214c42a261cb3eb04d474f7155279c1a8a8c30ac89b7dcb1721d92c3c02"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcaeb7b57f1a1e071ebd748984359fef83ecb026325b9d4ca847c95bc7311c92"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d454b8749b4bd70dd0a79f428731ee263fa6995f83ccb8bada706e8d1d3ff89d"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d807dc2051abe041b6649681dce568f8e10668e3c1c6543ebae58f2d7e617855"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3c20f0ddeb6e29126d45f89206b8291352b8c5b44384e78a6499d68b52ae511"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7f19250ceef892adf27f0399b9e5afad019288e9be756d6919cb58892129f51"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4f1ed4749a08379555cebf4650453f14452eaa9c43d0a95c49db50c18b7da075"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dcedf0b42bcb4cfff4101d7771a10532415a6106062f005ab97d1d0ab5681c60"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39ed0d010457a78f54090fafb5d108501b5aa5604cc22408fc1c0c77eac14344"}, - {file = "rpds_py-0.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bb273176be34a746bdac0b0d7e4e2c467323d13640b736c4c477881a3220a989"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f918a1a130a6dfe1d7fe0f105064141342e7dd1611f2e6a21cd2f5c8cb1cfb3e"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f60012a73aa396be721558caa3a6fd49b3dd0033d1675c6d59c4502e870fcf0c"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d2b1ad682a3dfda2a4e8ad8572f3100f95fad98cb99faf37ff0ddfe9cbf9d03"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:614fdafe9f5f19c63ea02817fa4861c606a59a604a77c8cdef5aa01d28b97921"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa518bcd7600c584bf42e6617ee8132869e877db2f76bcdc281ec6a4113a53ab"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0475242f447cc6cb8a9dd486d68b2ef7fbee84427124c232bff5f63b1fe11e5"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f90a4cd061914a60bd51c68bcb4357086991bd0bb93d8aa66a6da7701370708f"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:def7400461c3a3f26e49078302e1c1b38f6752342c77e3cf72ce91ca69fb1bc1"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:65794e4048ee837494aea3c21a28ad5fc080994dfba5b036cf84de37f7ad5074"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:faefcc78f53a88f3076b7f8be0a8f8d35133a3ecf7f3770895c25f8813460f08"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:5b4f105deeffa28bbcdff6c49b34e74903139afa690e35d2d9e3c2c2fba18cec"}, - {file = "rpds_py-0.20.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fdfc3a892927458d98f3d55428ae46b921d1f7543b89382fdb483f5640daaec8"}, - {file = "rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121"}, -] - -[[package]] -name = "ruff" -version = "0.5.7" -description = "An extremely fast Python linter and code formatter, written in Rust." -optional = false -python-versions = ">=3.7" -files = [ - {file = "ruff-0.5.7-py3-none-linux_armv6l.whl", hash = "sha256:548992d342fc404ee2e15a242cdbea4f8e39a52f2e7752d0e4cbe88d2d2f416a"}, - {file = "ruff-0.5.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00cc8872331055ee017c4f1071a8a31ca0809ccc0657da1d154a1d2abac5c0be"}, - {file = "ruff-0.5.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eaf3d86a1fdac1aec8a3417a63587d93f906c678bb9ed0b796da7b59c1114a1e"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a01c34400097b06cf8a6e61b35d6d456d5bd1ae6961542de18ec81eaf33b4cb8"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcc8054f1a717e2213500edaddcf1dbb0abad40d98e1bd9d0ad364f75c763eea"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f70284e73f36558ef51602254451e50dd6cc479f8b6f8413a95fcb5db4a55fc"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:a78ad870ae3c460394fc95437d43deb5c04b5c29297815a2a1de028903f19692"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ccd078c66a8e419475174bfe60a69adb36ce04f8d4e91b006f1329d5cd44bcf"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e31c9bad4ebf8fdb77b59cae75814440731060a09a0e0077d559a556453acbb"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d796327eed8e168164346b769dd9a27a70e0298d667b4ecee6877ce8095ec8e"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:4a09ea2c3f7778cc635e7f6edf57d566a8ee8f485f3c4454db7771efb692c499"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a36d8dcf55b3a3bc353270d544fb170d75d2dff41eba5df57b4e0b67a95bb64e"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9369c218f789eefbd1b8d82a8cf25017b523ac47d96b2f531eba73770971c9e5"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b88ca3db7eb377eb24fb7c82840546fb7acef75af4a74bd36e9ceb37a890257e"}, - {file = "ruff-0.5.7-py3-none-win32.whl", hash = "sha256:33d61fc0e902198a3e55719f4be6b375b28f860b09c281e4bdbf783c0566576a"}, - {file = "ruff-0.5.7-py3-none-win_amd64.whl", hash = "sha256:083bbcbe6fadb93cd86709037acc510f86eed5a314203079df174c40bbbca6b3"}, - {file = "ruff-0.5.7-py3-none-win_arm64.whl", hash = "sha256:2dca26154ff9571995107221d0aeaad0e75a77b5a682d6236cf89a58c70b76f4"}, - {file = "ruff-0.5.7.tar.gz", hash = "sha256:8dfc0a458797f5d9fb622dd0efc52d796f23f0a1493a9527f4e49a550ae9a7e5"}, -] - -[[package]] -name = "send2trash" -version = "1.8.3" -description = "Send file to trash natively under Mac OS X, Windows and Linux" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"}, - {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"}, -] - -[package.extras] -nativelib = ["pyobjc-framework-Cocoa", "pywin32"] -objc = ["pyobjc-framework-Cocoa"] -win32 = ["pywin32"] - -[[package]] -name = "setuptools" -version = "67.8.0" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -optional = false -python-versions = ">=3.7" -files = [ - {file = "setuptools-67.8.0-py3-none-any.whl", hash = "sha256:5df61bf30bb10c6f756eb19e7c9f3b473051f48db77fddbe06ff2ca307df9a6f"}, - {file = "setuptools-67.8.0.tar.gz", hash = "sha256:62642358adc77ffa87233bc4d2354c4b2682d214048f500964dbe760ccedf102"}, -] - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] - -[[package]] -name = "sniffio" -version = "1.3.1" -description = "Sniff out which async library your code is running under" -optional = false -python-versions = ">=3.7" -files = [ - {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, - {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, -] - -[[package]] -name = "soupsieve" -version = "2.6" -description = "A modern CSS selector implementation for Beautiful Soup." -optional = false -python-versions = ">=3.8" -files = [ - {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, - {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, -] - -[[package]] -name = "sqlalchemy" -version = "2.0.33" -description = "Database Abstraction Library" -optional = false -python-versions = ">=3.7" -files = [ - {file = "sqlalchemy-2.0.33.tar.gz", hash = "sha256:91c93333c2b37ff721dc83b37e28c29de4c502b5612f2d093468037b86aa2be0"}, -] - -[package.dependencies] -greenlet = {version = "!=0.4.17", markers = "python_version < \"3.13\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"} -typing-extensions = ">=4.6.0" - -[package.extras] -aiomysql = ["aiomysql (>=0.2.0)", "greenlet (!=0.4.17)"] -aioodbc = ["aioodbc", "greenlet (!=0.4.17)"] -aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] -asyncio = ["greenlet (!=0.4.17)"] -asyncmy = ["asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)", "greenlet (!=0.4.17)"] -mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2,!=1.1.5)"] -mssql = ["pyodbc"] -mssql-pymssql = ["pymssql"] -mssql-pyodbc = ["pyodbc"] -mypy = ["mypy (>=0.910)"] -mysql = ["mysqlclient (>=1.4.0)"] -mysql-connector = ["mysql-connector-python"] -oracle = ["cx_oracle (>=8)"] -oracle-oracledb = ["oracledb (>=1.0.1)"] -postgresql = ["psycopg2 (>=2.7)"] -postgresql-asyncpg = ["asyncpg", "greenlet (!=0.4.17)"] -postgresql-pg8000 = ["pg8000 (>=1.29.1)"] -postgresql-psycopg = ["psycopg (>=3.0.7)"] -postgresql-psycopg2binary = ["psycopg2-binary"] -postgresql-psycopg2cffi = ["psycopg2cffi"] -postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"] -pymysql = ["pymysql"] -sqlcipher = ["sqlcipher3_binary"] - -[[package]] -name = "stack-data" -version = "0.6.3" -description = "Extract data from python stack frames and tracebacks for informative displays" -optional = false -python-versions = "*" -files = [ - {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, - {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, -] - -[package.dependencies] -asttokens = ">=2.1.0" -executing = ">=1.2.0" -pure-eval = "*" - -[package.extras] -tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] - -[[package]] -name = "tenacity" -version = "8.5.0" -description = "Retry code until it succeeds" -optional = false -python-versions = ">=3.8" -files = [ - {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, - {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, -] - -[package.extras] -doc = ["reno", "sphinx"] -test = ["pytest", "tornado (>=4.5)", "typeguard"] - -[[package]] -name = "terminado" -version = "0.18.1" -description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." -optional = false -python-versions = ">=3.8" -files = [ - {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"}, - {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"}, -] - -[package.dependencies] -ptyprocess = {version = "*", markers = "os_name != \"nt\""} -pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} -tornado = ">=6.1.0" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] -typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] - -[[package]] -name = "tiktoken" -version = "0.7.0" -description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" -optional = false -python-versions = ">=3.8" -files = [ - {file = "tiktoken-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:485f3cc6aba7c6b6ce388ba634fbba656d9ee27f766216f45146beb4ac18b25f"}, - {file = "tiktoken-0.7.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e54be9a2cd2f6d6ffa3517b064983fb695c9a9d8aa7d574d1ef3c3f931a99225"}, - {file = "tiktoken-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79383a6e2c654c6040e5f8506f3750db9ddd71b550c724e673203b4f6b4b4590"}, - {file = "tiktoken-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d4511c52caacf3c4981d1ae2df85908bd31853f33d30b345c8b6830763f769c"}, - {file = "tiktoken-0.7.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:13c94efacdd3de9aff824a788353aa5749c0faee1fbe3816df365ea450b82311"}, - {file = "tiktoken-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8e58c7eb29d2ab35a7a8929cbeea60216a4ccdf42efa8974d8e176d50c9a3df5"}, - {file = "tiktoken-0.7.0-cp310-cp310-win_amd64.whl", hash = "sha256:21a20c3bd1dd3e55b91c1331bf25f4af522c525e771691adbc9a69336fa7f702"}, - {file = "tiktoken-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:10c7674f81e6e350fcbed7c09a65bca9356eaab27fb2dac65a1e440f2bcfe30f"}, - {file = "tiktoken-0.7.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:084cec29713bc9d4189a937f8a35dbdfa785bd1235a34c1124fe2323821ee93f"}, - {file = "tiktoken-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:811229fde1652fedcca7c6dfe76724d0908775b353556d8a71ed74d866f73f7b"}, - {file = "tiktoken-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b6e7dc2e7ad1b3757e8a24597415bafcfb454cebf9a33a01f2e6ba2e663992"}, - {file = "tiktoken-0.7.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1063c5748be36344c7e18c7913c53e2cca116764c2080177e57d62c7ad4576d1"}, - {file = "tiktoken-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:20295d21419bfcca092644f7e2f2138ff947a6eb8cfc732c09cc7d76988d4a89"}, - {file = "tiktoken-0.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:959d993749b083acc57a317cbc643fb85c014d055b2119b739487288f4e5d1cb"}, - {file = "tiktoken-0.7.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:71c55d066388c55a9c00f61d2c456a6086673ab7dec22dd739c23f77195b1908"}, - {file = "tiktoken-0.7.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:09ed925bccaa8043e34c519fbb2f99110bd07c6fd67714793c21ac298e449410"}, - {file = "tiktoken-0.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03c6c40ff1db0f48a7b4d2dafeae73a5607aacb472fa11f125e7baf9dce73704"}, - {file = "tiktoken-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d20b5c6af30e621b4aca094ee61777a44118f52d886dbe4f02b70dfe05c15350"}, - {file = "tiktoken-0.7.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d427614c3e074004efa2f2411e16c826f9df427d3c70a54725cae860f09e4bf4"}, - {file = "tiktoken-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8c46d7af7b8c6987fac9b9f61041b452afe92eb087d29c9ce54951280f899a97"}, - {file = "tiktoken-0.7.0-cp312-cp312-win_amd64.whl", hash = "sha256:0bc603c30b9e371e7c4c7935aba02af5994a909fc3c0fe66e7004070858d3f8f"}, - {file = "tiktoken-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2398fecd38c921bcd68418675a6d155fad5f5e14c2e92fcf5fe566fa5485a858"}, - {file = "tiktoken-0.7.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8f5f6afb52fb8a7ea1c811e435e4188f2bef81b5e0f7a8635cc79b0eef0193d6"}, - {file = "tiktoken-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:861f9ee616766d736be4147abac500732b505bf7013cfaf019b85892637f235e"}, - {file = "tiktoken-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54031f95c6939f6b78122c0aa03a93273a96365103793a22e1793ee86da31685"}, - {file = "tiktoken-0.7.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:fffdcb319b614cf14f04d02a52e26b1d1ae14a570f90e9b55461a72672f7b13d"}, - {file = "tiktoken-0.7.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c72baaeaefa03ff9ba9688624143c858d1f6b755bb85d456d59e529e17234769"}, - {file = "tiktoken-0.7.0-cp38-cp38-win_amd64.whl", hash = "sha256:131b8aeb043a8f112aad9f46011dced25d62629091e51d9dc1adbf4a1cc6aa98"}, - {file = "tiktoken-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cabc6dc77460df44ec5b879e68692c63551ae4fae7460dd4ff17181df75f1db7"}, - {file = "tiktoken-0.7.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8d57f29171255f74c0aeacd0651e29aa47dff6f070cb9f35ebc14c82278f3b25"}, - {file = "tiktoken-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ee92776fdbb3efa02a83f968c19d4997a55c8e9ce7be821ceee04a1d1ee149c"}, - {file = "tiktoken-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e215292e99cb41fbc96988ef62ea63bb0ce1e15f2c147a61acc319f8b4cbe5bf"}, - {file = "tiktoken-0.7.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8a81bac94769cab437dd3ab0b8a4bc4e0f9cf6835bcaa88de71f39af1791727a"}, - {file = "tiktoken-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d6d73ea93e91d5ca771256dfc9d1d29f5a554b83821a1dc0891987636e0ae226"}, - {file = "tiktoken-0.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:2bcb28ddf79ffa424f171dfeef9a4daff61a94c631ca6813f43967cb263b83b9"}, - {file = "tiktoken-0.7.0.tar.gz", hash = "sha256:1077266e949c24e0291f6c350433c6f0971365ece2b173a23bc3b9f9defef6b6"}, -] - -[package.dependencies] -regex = ">=2022.1.18" -requests = ">=2.26.0" - -[package.extras] -blobfile = ["blobfile (>=2)"] - -[[package]] -name = "tinycss2" -version = "1.3.0" -description = "A tiny CSS parser" -optional = false -python-versions = ">=3.8" -files = [ - {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, - {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, -] - -[package.dependencies] -webencodings = ">=0.4" - -[package.extras] -doc = ["sphinx", "sphinx_rtd_theme"] -test = ["pytest", "ruff"] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] - -[[package]] -name = "tornado" -version = "6.4.1" -description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." -optional = false -python-versions = ">=3.8" -files = [ - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, - {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, - {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, - {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, -] - -[[package]] -name = "tqdm" -version = "4.66.5" -description = "Fast, Extensible Progress Meter" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, - {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "traitlets" -version = "5.14.3" -description = "Traitlets Python configuration system" -optional = false -python-versions = ">=3.8" -files = [ - {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, - {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, -] - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] - -[[package]] -name = "types-python-dateutil" -version = "2.9.0.20240821" -description = "Typing stubs for python-dateutil" -optional = false -python-versions = ">=3.8" -files = [ - {file = "types-python-dateutil-2.9.0.20240821.tar.gz", hash = "sha256:9649d1dcb6fef1046fb18bebe9ea2aa0028b160918518c34589a46045f6ebd98"}, - {file = "types_python_dateutil-2.9.0.20240821-py3-none-any.whl", hash = "sha256:f5889fcb4e63ed4aaa379b44f93c32593d50b9a94c9a60a0c854d8cc3511cd57"}, -] - -[[package]] -name = "types-pyyaml" -version = "6.0.12.20240808" -description = "Typing stubs for PyYAML" -optional = false -python-versions = ">=3.8" -files = [ - {file = "types-PyYAML-6.0.12.20240808.tar.gz", hash = "sha256:b8f76ddbd7f65440a8bda5526a9607e4c7a322dc2f8e1a8c405644f9a6f4b9af"}, - {file = "types_PyYAML-6.0.12.20240808-py3-none-any.whl", hash = "sha256:deda34c5c655265fc517b546c902aa6eed2ef8d3e921e4765fe606fe2afe8d35"}, -] - -[[package]] -name = "types-requests" -version = "2.32.0.20240712" -description = "Typing stubs for requests" -optional = false -python-versions = ">=3.8" -files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, -] - -[package.dependencies] -urllib3 = ">=2" - -[[package]] -name = "typing-extensions" -version = "4.12.2" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, - {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, -] - -[[package]] -name = "typing-inspect" -version = "0.9.0" -description = "Runtime inspection utilities for typing module." -optional = false -python-versions = "*" -files = [ - {file = "typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f"}, - {file = "typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78"}, -] - -[package.dependencies] -mypy-extensions = ">=0.3.0" -typing-extensions = ">=3.7.4" - -[[package]] -name = "uri-template" -version = "1.3.0" -description = "RFC 6570 URI Template Processor" -optional = false -python-versions = ">=3.7" -files = [ - {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, - {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, -] - -[package.extras] -dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] - -[[package]] -name = "urllib3" -version = "2.2.2" -description = "HTTP library with thread-safe connection pooling, file post, and more." -optional = false -python-versions = ">=3.8" -files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, -] - -[package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] -h2 = ["h2 (>=4,<5)"] -socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] -zstd = ["zstandard (>=0.18.0)"] - -[[package]] -name = "wcwidth" -version = "0.2.13" -description = "Measures the displayed width of unicode strings in a terminal" -optional = false -python-versions = "*" -files = [ - {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, - {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, -] - -[[package]] -name = "webcolors" -version = "24.8.0" -description = "A library for working with the color formats defined by HTML and CSS." -optional = false -python-versions = ">=3.8" -files = [ - {file = "webcolors-24.8.0-py3-none-any.whl", hash = "sha256:fc4c3b59358ada164552084a8ebee637c221e4059267d0f8325b3b560f6c7f0a"}, - {file = "webcolors-24.8.0.tar.gz", hash = "sha256:08b07af286a01bcd30d583a7acadf629583d1f79bfef27dd2c2c5c263817277d"}, -] - -[package.extras] -docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] -tests = ["coverage[toml]"] - -[[package]] -name = "webencodings" -version = "0.5.1" -description = "Character encoding aliases for legacy web content" -optional = false -python-versions = "*" -files = [ - {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, - {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, -] - -[[package]] -name = "websocket-client" -version = "1.8.0" -description = "WebSocket client for Python with low level API options" -optional = false -python-versions = ">=3.8" -files = [ - {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, - {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, -] - -[package.extras] -docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] -optional = ["python-socks", "wsaccel"] -test = ["websockets"] - -[[package]] -name = "widgetsnbextension" -version = "4.0.13" -description = "Jupyter interactive widgets for Jupyter Notebook" -optional = false -python-versions = ">=3.7" -files = [ - {file = "widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71"}, - {file = "widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6"}, -] - -[[package]] -name = "yarl" -version = "1.9.7" -description = "Yet another URL library" -optional = false -python-versions = ">=3.8" -files = [ - {file = "yarl-1.9.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:60c04415b31a1611ef5989a6084dd6f6b95652c6a18378b58985667b65b2ecb6"}, - {file = "yarl-1.9.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1787dcfdbe730207acb454548a6e19f80ae75e6d2d1f531c5a777bc1ab6f7952"}, - {file = "yarl-1.9.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f5ddad20363f9f1bbedc95789c897da62f939e6bc855793c3060ef8b9f9407bf"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fdb156a06208fc9645ae7cc0fca45c40dd40d7a8c4db626e542525489ca81a9"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:522fa3d300d898402ae4e0fa7c2c21311248ca43827dc362a667de87fdb4f1be"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7f9cabfb8b980791b97a3ae3eab2e38b2ba5eab1af9b7495bdc44e1ce7c89e3"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1fc728857df4087da6544fc68f62d7017fa68d74201d5b878e18ed4822c31fb3"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dba2ebac677184d56374fa3e452b461f5d6a03aa132745e648ae8859361eb6b"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a95167ae34667c5cc7d9206c024f793e8ffbadfb307d5c059de470345de58a21"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9d319ac113ca47352319cbea92d1925a37cb7bd61a8c2f3e3cd2e96eb33cccae"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:2d71a5d818d82586ac46265ae01466e0bda0638760f18b21f1174e0dd58a9d2f"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:ff03f1c1ac474c66d474929ae7e4dd195592c1c7cc8c36418528ed81b1ca0a79"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:78250f635f221dde97d02c57aade3313310469bc291888dfe32acd1012594441"}, - {file = "yarl-1.9.7-cp310-cp310-win32.whl", hash = "sha256:f3aaf9fa960d55bd7876d55d7ea3cc046f3660df1ff73fc1b8c520a741ed1f21"}, - {file = "yarl-1.9.7-cp310-cp310-win_amd64.whl", hash = "sha256:e8362c941e07fbcde851597672a5e41b21dc292b7d5a1dc439b7a93c9a1af5d9"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:596069ddeaf72b5eb36cd714dcd2b5751d0090d05a8d65113b582ed9e1c801fb"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cb870907e8b86b2f32541403da9455afc1e535ce483e579bea0e6e79a0cc751c"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ca5e86be84492fa403c4dcd4dcaf8e1b1c4ffc747b5176f7c3d09878c45719b0"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a99cecfb51c84d00132db909e83ae388793ca86e48df7ae57f1be0beab0dcce5"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25508739e9b44d251172145f54c084b71747b09e4d237dc2abb045f46c36a66e"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:60f3b5aec3146b6992640592856414870f5b20eb688c1f1d5f7ac010a7f86561"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1557456afce5db3d655b5f8a31cdcaae1f47e57958760525c44b76e812b4987"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71bb1435a84688ed831220c5305d96161beb65cac4a966374475348aa3de4575"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f87d8645a7a806ec8f66aac5e3b1dcb5014849ff53ffe2a1f0b86ca813f534c7"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:58e3f01673873b8573da3abe138debc63e4e68541b2104a55df4c10c129513a4"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:8af0bbd4d84f8abdd9b11be9488e32c76b1501889b73c9e2292a15fb925b378b"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:7fc441408ed0d9c6d2d627a02e281c21f5de43eb5209c16636a17fc704f7d0f8"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a9552367dc440870556da47bb289a806f08ad06fbc4054072d193d9e5dd619ba"}, - {file = "yarl-1.9.7-cp311-cp311-win32.whl", hash = "sha256:628619008680a11d07243391271b46f07f13b75deb9fe92ef342305058c70722"}, - {file = "yarl-1.9.7-cp311-cp311-win_amd64.whl", hash = "sha256:bc23d870864971c8455cfba17498ccefa53a5719ea9f5fce5e7e9c1606b5755f"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d8cf3d0b67996edc11957aece3fbce4c224d0451c7c3d6154ec3a35d0e55f6b"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a7748cd66fef49c877e59503e0cc76179caf1158d1080228e67e1db14554f08"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a6fa3aeca8efabb0fbbb3b15e0956b0cb77f7d9db67c107503c30af07cd9e00"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf37dd0008e5ac5c3880198976063c491b6a15b288d150d12833248cf2003acb"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87aa5308482f248f8c3bd9311cd6c7dfd98ea1a8e57e35fb11e4adcac3066003"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:867b13c1b361f9ba5d2f84dc5408082f5d744c83f66de45edc2b96793a9c5e48"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48ce93947554c2c85fe97fc4866646ec90840bc1162e4db349b37d692a811755"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fcd3d94b848cba132f39a5b40d80b0847d001a91a6f35a2204505cdd46afe1b2"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d06d6a8f98dd87646d98f0c468be14b201e47ec6092ad569adf835810ad0dffb"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:91567ff4fce73d2e7ac67ed5983ad26ba2343bc28cb22e1e1184a9677df98d7c"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:1d5594512541e63188fea640b7f066c218d2176203d6e6f82abf702ae3dca3b2"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9c2743e43183e4afbb07d5605693299b8756baff0b086c25236c761feb0e3c56"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:daa69a3a2204355af39f4cfe7f3870d87c53d77a597b5100b97e3faa9460428b"}, - {file = "yarl-1.9.7-cp312-cp312-win32.whl", hash = "sha256:36b16884336c15adf79a4bf1d592e0c1ffdb036a760e36a1361565b66785ec6c"}, - {file = "yarl-1.9.7-cp312-cp312-win_amd64.whl", hash = "sha256:2ead2f87a1174963cc406d18ac93d731fbb190633d3995fa052d10cefae69ed8"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:808eddabcb6f7b2cdb6929b3e021ac824a2c07dc7bc83f7618e18438b1b65781"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:395ab0d8ce6d104a988da429bcbfd445e03fb4c911148dfd523f69d13f772e47"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:49827dfccbd59c4499605c13805e947349295466e490860a855b7c7e82ec9c75"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b8bbdd425d0978311520ea99fb6c0e9e04e64aee84fac05f3157ace9f81b05"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71d33fd1c219b5b28ee98cd76da0c9398a4ed4792fd75c94135237db05ba5ca8"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:62440431741d0b7d410e5cbad800885e3289048140a43390ecab4f0b96dde3bb"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db97210433366dfba55590e48285b89ad0146c52bf248dd0da492dd9f0f72cf"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:653597b615809f2e5f4dba6cd805608b6fd3597128361a22cc612cf7c7a4d1bf"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:df47612129e66f7ce7c9994d4cd4e6852f6e3bf97699375d86991481796eeec8"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:5e338b6febbae6c9fe86924bac3ea9c1944e33255c249543cd82a4af6df6047b"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:e649d37d04665dddb90994bbf0034331b6c14144cc6f3fbce400dc5f28dc05b7"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:0a1b8fd849567be56342e988e72c9d28bd3c77b9296c38b9b42d2fe4813c9d3f"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f9d715b2175dff9a49c6dafdc2ab3f04850ba2f3d4a77f69a5a1786b057a9d45"}, - {file = "yarl-1.9.7-cp313-cp313-win32.whl", hash = "sha256:bc9233638b07c2e4a3a14bef70f53983389bffa9e8cb90a2da3f67ac9c5e1842"}, - {file = "yarl-1.9.7-cp313-cp313-win_amd64.whl", hash = "sha256:62e110772330d7116f91e79cd83fef92545cb2f36414c95881477aa01971f75f"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a564155cc2194ecd9c0d8f8dc57059b822a507de5f08120063675eb9540576aa"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:03e917cc44a01e1be60a83ee1a17550b929490aaa5df2a109adc02137bddf06b"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:eefda67ba0ba44ab781e34843c266a76f718772b348f7c5d798d8ea55b95517f"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:316c82b499b6df41444db5dea26ee23ece9356e38cea43a8b2af9e6d8a3558e4"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10452727843bc847596b75e30a7fe92d91829f60747301d1bd60363366776b0b"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:050f3e4d886be55728fef268587d061c5ce6f79a82baba71840801b63441c301"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0aabe557446aa615693a82b4d3803c102fd0e7a6a503bf93d744d182a510184"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:23404842228e6fa8ace235024519df37f3f8e173620407644d40ddca571ff0f4"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:34736fcc9d6d7080ebbeb0998ecb91e4f14ad8f18648cf0b3099e2420a225d86"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:48f7a158f3ca67509d21cb02a96964e4798b6f133691cc0c86cf36e26e26ec8f"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:6639444d161c693cdabb073baaed1945c717d3982ecedf23a219bc55a242e728"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:1cd450e10cb53d63962757c3f6f7870be49a3e448c46621d6bd46f8088d532de"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74d3ef5e81f81507cea04bf5ae22f18ef538607a7c754aac2b6e3029956a2842"}, - {file = "yarl-1.9.7-cp38-cp38-win32.whl", hash = "sha256:4052dbd0c900bece330e3071c636f99dff06e4628461a29b38c6e222a427cf98"}, - {file = "yarl-1.9.7-cp38-cp38-win_amd64.whl", hash = "sha256:dd08da4f2d171e19bd02083c921f1bef89f8f5f87000d0ffc49aa257bc5a9802"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7ab906a956d2109c6ea11e24c66592b06336e2743509290117f0f7f47d2c1dd3"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d8ad761493d5aaa7ab2a09736e62b8a220cb0b10ff8ccf6968c861cd8718b915"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d35f9cdab0ec5e20cf6d2bd46456cf599052cf49a1698ef06b9592238d1cf1b1"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a48d2b9f0ae29a456fb766ae461691378ecc6cf159dd9f938507d925607591c3"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cf85599c9336b89b92c313519bcaa223d92fa5d98feb4935a47cce2e8722b4b8"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8e8916b1ff7680b1f2b1608c82dc15c569b9f2cb2da100c747c291f1acf18a14"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29c80890e0a64fb0e5f71350d48da330995073881f8b8e623154aef631febfb0"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9163d21aa40ff8528db2aee2b0b6752efe098055b41ab8e5422b2098457199fe"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:65e3098969baf221bb45e3b2f60735fc2b154fc95902131ebc604bae4c629ea6"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:cddebd096effe4be90fd378e4224cd575ac99e1c521598a6900e94959006e02e"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:8525f955a2dcc281573b6aadeb8ab9c37e2d3428b64ca6a2feec2a794a69c1da"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:5d585c7d834c13f24c7e3e0efaf1a4b7678866940802e11bd6c4d1f99c935e6b"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:78805148e780a9ca66f3123e04741e344b66cf06b4fb13223e3a209f39a6da55"}, - {file = "yarl-1.9.7-cp39-cp39-win32.whl", hash = "sha256:3f53df493ec80b76969d6e1ae6e4411a55ab1360e02b80c84bd4b33d61a567ba"}, - {file = "yarl-1.9.7-cp39-cp39-win_amd64.whl", hash = "sha256:c81c28221a85add23a0922a6aeb2cdda7f9723e03e2dfae06fee5c57fe684262"}, - {file = "yarl-1.9.7-py3-none-any.whl", hash = "sha256:49935cc51d272264358962d050d726c3e5603a616f53e52ea88e9df1728aa2ee"}, - {file = "yarl-1.9.7.tar.gz", hash = "sha256:f28e602edeeec01fc96daf7728e8052bc2e12a672e2a138561a1ebaf30fd9df7"}, -] - -[package.dependencies] -idna = ">=2.0" -multidict = ">=4.0" - -[[package]] -name = "zipp" -version = "3.20.1" -description = "Backport of pathlib-compatible object wrapper for zip files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "zipp-3.20.1-py3-none-any.whl", hash = "sha256:9960cd8967c8f85a56f920d5d507274e74f9ff813a0ab8889a5b5be2daf44064"}, - {file = "zipp-3.20.1.tar.gz", hash = "sha256:c22b14cc4763c5a5b04134207736c107db42e9d3ef2d9779d465f5f1bcba572b"}, -] - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] -type = ["pytest-mypy"] - -[metadata] -lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "427aba93c456c9f239198777d59e76af8e8f548afdb8f8b62bf9e439be9e97a5" diff --git a/libs/experimental/poetry.toml b/libs/experimental/poetry.toml deleted file mode 100644 index ab1033bd37224..0000000000000 --- a/libs/experimental/poetry.toml +++ /dev/null @@ -1,2 +0,0 @@ -[virtualenvs] -in-project = true diff --git a/libs/experimental/pyproject.toml b/libs/experimental/pyproject.toml deleted file mode 100644 index d353580043bc1..0000000000000 --- a/libs/experimental/pyproject.toml +++ /dev/null @@ -1,131 +0,0 @@ -[build-system] -requires = [ "poetry-core>=1.0.0",] -build-backend = "poetry.core.masonry.api" - -[tool.poetry] -name = "langchain-experimental" -version = "0.0.65" -description = "Building applications with LLMs through composability" -authors = [] -license = "MIT" -readme = "README.md" -repository = "https://github.com/langchain-ai/langchain" - -[tool.mypy] -ignore_missing_imports = "True" -disallow_untyped_defs = "True" -exclude = [ "notebooks", "examples", "example_data",] - -[tool.poetry.urls] -"Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/experimental" -"Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-experimental%3D%3D0%22&expanded=true" - -[tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.38" -langchain-community = "^0.2.16" - -[tool.ruff.lint] -select = [ "E", "F", "I", "T201",] - -[tool.coverage.run] -omit = [ "tests/*",] - -[tool.pytest.ini_options] -addopts = "--strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] -asyncio_mode = "auto" - -[tool.poetry.group.lint] -optional = true - -[tool.poetry.group.typing] -optional = true - -[tool.poetry.group.dev] -optional = true - -[tool.poetry.group.test] -optional = true - -[tool.poetry.group.test_integration] -optional = true - -[tool.poetry.group.lint.dependencies] -ruff = "^0.5" - -[tool.poetry.group.typing.dependencies] -mypy = "^1.10" -types-pyyaml = "^6.0.12.2" -types-requests = "^2.28.11.5" - -[tool.poetry.group.dev.dependencies] -jupyter = "^1.0.0" -setuptools = "^67.6.1" - -[tool.poetry.group.test.dependencies] -pytest = "^7.3.0" -pytest-asyncio = "^0.20.3" -[[tool.poetry.group.test.dependencies.numpy]] -version = "^1.24.0" -python = "<3.12" - -[[tool.poetry.group.test.dependencies.numpy]] -version = "^1.26.0" -python = ">=3.12" - -[tool.poetry.group.typing.dependencies.langchain] -path = "../langchain" -develop = true - -[tool.poetry.group.typing.dependencies.langchain-core] -path = "../core" -develop = true - -[tool.poetry.group.typing.dependencies.langchain-community] -path = "../community" -develop = true - -[tool.poetry.group.dev.dependencies.langchain] -path = "../langchain" -develop = true - -[tool.poetry.group.dev.dependencies.langchain-core] -path = "../core" -develop = true - -[tool.poetry.group.dev.dependencies.langchain-community] -path = "../community" -develop = true - -[tool.poetry.group.test.dependencies.langchain] -path = "../langchain" -develop = true - -[tool.poetry.group.test.dependencies.langchain-core] -path = "../core" -develop = true - -[tool.poetry.group.test.dependencies.langchain-community] -path = "../community" -develop = true - -[tool.poetry.group.test.dependencies.langchain-text-splitters] -path = "../text-splitters" -develop = true - -[tool.poetry.group.test_integration.dependencies.langchain] -path = "../langchain" -develop = true - -[tool.poetry.group.test_integration.dependencies.langchain-core] -path = "../core" -develop = true - -[tool.poetry.group.test_integration.dependencies.langchain-community] -path = "../community" -develop = true - -[tool.poetry.group.test_integration.dependencies.langchain-openai] -path = "../partners/openai" -develop = true diff --git a/libs/experimental/scripts/check_imports.py b/libs/experimental/scripts/check_imports.py deleted file mode 100644 index 825bea5b48737..0000000000000 --- a/libs/experimental/scripts/check_imports.py +++ /dev/null @@ -1,22 +0,0 @@ -import random -import string -import sys -import traceback -from importlib.machinery import SourceFileLoader - -if __name__ == "__main__": - files = sys.argv[1:] - has_failure = False - for file in files: - try: - module_name = "".join( - random.choice(string.ascii_letters) for _ in range(20) - ) - SourceFileLoader(module_name, file).load_module() - except Exception: - has_failure = True - print(file) # noqa: T201 - traceback.print_exc() - print() # noqa: T201 - - sys.exit(1 if has_failure else 0) diff --git a/libs/experimental/tests/__init__.py b/libs/experimental/tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/integration_tests/__init__.py b/libs/experimental/tests/integration_tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/integration_tests/chains/__init__.py b/libs/experimental/tests/integration_tests/chains/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/integration_tests/chains/test_cpal.py b/libs/experimental/tests/integration_tests/chains/test_cpal.py deleted file mode 100644 index b550ea036f47d..0000000000000 --- a/libs/experimental/tests/integration_tests/chains/test_cpal.py +++ /dev/null @@ -1,554 +0,0 @@ -"""Test CPAL chain.""" - -import json -import unittest -from typing import Type -from unittest import mock - -import pytest -from langchain.output_parsers import PydanticOutputParser -from langchain_community.llms import OpenAI -from langchain_core.prompts.prompt import PromptTemplate - -from langchain_experimental import pydantic_v1 as pydantic -from langchain_experimental.cpal.base import ( - CausalChain, - CPALChain, - InterventionChain, - NarrativeChain, - QueryChain, -) -from langchain_experimental.cpal.constants import Constant -from langchain_experimental.cpal.models import ( - CausalModel, - EntityModel, - EntitySettingModel, - InterventionModel, - NarrativeModel, - QueryModel, -) -from langchain_experimental.cpal.templates.univariate.causal import ( - template as causal_template, -) -from langchain_experimental.cpal.templates.univariate.intervention import ( - template as intervention_template, -) -from langchain_experimental.cpal.templates.univariate.narrative import ( - template as narrative_template, -) -from langchain_experimental.cpal.templates.univariate.query import ( - template as query_template, -) -from tests.unit_tests.fake_llm import FakeLLM - - -class TestUnitCPALChain_MathWordProblems(unittest.TestCase): - """Unit Test the CPAL chain and its component chains on math word problems. - - These tests can't run in the standard unit test directory because of - this issue, https://github.com/langchain-ai/langchain/issues/7451 - - """ - - def setUp(self) -> None: - self.fake_llm = self.make_fake_llm() - - def make_fake_llm(self) -> FakeLLM: - """ - Fake LLM service for testing CPAL chain and its components chains - on univariate math examples. - """ - - class LLMMockData(pydantic.BaseModel): - question: str - completion: str - template: str - data_model: Type[pydantic.BaseModel] - - @property - def prompt(self) -> str: - """Create LLM prompt with the question.""" - prompt_template = PromptTemplate( - input_variables=[Constant.narrative_input.value], - template=self.template, - partial_variables={ - "format_instructions": PydanticOutputParser( - pydantic_object=self.data_model - ).get_format_instructions() - }, - ) - prompt = prompt_template.format(narrative_input=self.question) - return prompt - - narrative = LLMMockData( - **{ # type: ignore[arg-type, arg-type] - "question": ( - "jan has three times the number of pets as marcia. " - "marcia has two more pets than cindy." - "if cindy has ten pets, how many pets does jan have? " - ), - "completion": json.dumps( - { - "story_outcome_question": "how many pets does jan have? ", - "story_hypothetical": "if cindy has ten pets", - "story_plot": "jan has three times the number of pets as marcia. marcia has two more pets than cindy.", # noqa: E501 - } - ), - "template": narrative_template, - "data_model": NarrativeModel, - } - ) - - causal_model = LLMMockData( - **{ # type: ignore[arg-type, arg-type] - "question": ( - "jan has three times the number of pets as marcia. " - "marcia has two more pets than cindy." - ), - "completion": ( - "\n" - "{\n" - ' "attribute": "pet_count",\n' - ' "entities": [\n' - " {\n" - ' "name": "cindy",\n' - ' "value": 0,\n' - ' "depends_on": [],\n' - ' "code": "pass"\n' - " },\n" - " {\n" - ' "name": "marcia",\n' - ' "value": 0,\n' - ' "depends_on": ["cindy"],\n' - ' "code": "marcia.value = cindy.value + 2"\n' - " },\n" - " {\n" - ' "name": "jan",\n' - ' "value": 0,\n' - ' "depends_on": ["marcia"],\n' - ' "code": "jan.value = marcia.value * 3"\n' - " }\n" - " ]\n" - "}" - ), - "template": causal_template, - "data_model": CausalModel, - } - ) - - intervention = LLMMockData( - **{ # type: ignore[arg-type, arg-type] - "question": ("if cindy has ten pets"), - "completion": ( - "{\n" - ' "entity_settings" : [\n' - ' { "name": "cindy", "attribute": "pet_count", "value": "10" }\n' # noqa: E501 - " ]\n" - "}" - ), - "template": intervention_template, - "data_model": InterventionModel, - } - ) - - query = LLMMockData( - **{ # type: ignore[arg-type, arg-type] - "question": ("how many pets does jan have? "), - "completion": ( - "{\n" - ' "narrative_input": "how many pets does jan have? ",\n' - ' "llm_error_msg": "",\n' - ' "expression": "SELECT name, value FROM df WHERE name = \'jan\'"\n' # noqa: E501 - "}" - ), - "template": query_template, - "data_model": QueryModel, - } - ) - - fake_llm = FakeLLM() - fake_llm.queries = {} - for mock_data in [narrative, causal_model, intervention, query]: - fake_llm.queries.update({mock_data.prompt: mock_data.completion}) - return fake_llm - - def test_narrative_chain(self) -> None: - """Test narrative chain returns the three main elements of the causal - narrative as a pydantic object. - """ - narrative_chain = NarrativeChain.from_univariate_prompt(llm=self.fake_llm) - output = narrative_chain( - ( - "jan has three times the number of pets as marcia. " - "marcia has two more pets than cindy." - "if cindy has ten pets, how many pets does jan have? " - ) - ) - expected_output = { - "chain_answer": None, - "chain_data": NarrativeModel( - story_outcome_question="how many pets does jan have? ", - story_hypothetical="if cindy has ten pets", - story_plot="jan has three times the number of pets as marcia. marcia has two more pets than cindy.", # noqa: E501 - ), - "narrative_input": "jan has three times the number of pets as marcia. marcia " # noqa: E501 - "has two more pets than cindy.if cindy has ten pets, how " - "many pets does jan have? ", - } - assert output == expected_output - - def test_causal_chain(self) -> None: - """ - Test causal chain returns a DAG as a pydantic object. - """ - causal_chain = CausalChain.from_univariate_prompt(llm=self.fake_llm) - output = causal_chain( - ( - "jan has three times the number of pets as " - "marcia. marcia has two more pets than cindy." - ) - ) - expected_output = { - "chain_answer": None, - "chain_data": CausalModel( - attribute="pet_count", - entities=[ - EntityModel(name="cindy", code="pass", value=0.0, depends_on=[]), - EntityModel( - name="marcia", - code="marcia.value = cindy.value + 2", - value=0.0, - depends_on=["cindy"], - ), - EntityModel( - name="jan", - code="jan.value = marcia.value * 3", - value=0.0, - depends_on=["marcia"], - ), - ], - ), - "narrative_input": "jan has three times the number of pets as marcia. marcia " # noqa: E501 - "has two more pets than cindy.", - } - assert output == expected_output - - def test_intervention_chain(self) -> None: - """ - Test intervention chain correctly transforms - the LLM's text completion into a setting-like object. - """ - intervention_chain = InterventionChain.from_univariate_prompt(llm=self.fake_llm) - output = intervention_chain("if cindy has ten pets") - expected_output = { - "chain_answer": None, - "chain_data": InterventionModel( - entity_settings=[ - EntitySettingModel(name="cindy", attribute="pet_count", value=10), - ] - ), - "narrative_input": "if cindy has ten pets", - } - assert output == expected_output - - def test_query_chain(self) -> None: - """ - Test query chain correctly transforms - the LLM's text completion into a query-like object. - """ - query_chain = QueryChain.from_univariate_prompt(llm=self.fake_llm) - output = query_chain("how many pets does jan have? ") - expected_output = { - "chain_answer": None, - "chain_data": QueryModel( - question="how many pets does jan have? ", - llm_error_msg="", - expression="SELECT name, value FROM df WHERE name = 'jan'", - ), - "narrative_input": "how many pets does jan have? ", - } - assert output == expected_output - - def test_cpal_chain(self) -> None: - """ - patch required since `networkx` package is not part of unit test environment - """ - with mock.patch( - "langchain_experimental.cpal.models.NetworkxEntityGraph" - ) as mock_networkx: - graph_instance = mock_networkx.return_value - graph_instance.get_topological_sort.return_value = [ - "cindy", - "marcia", - "jan", - ] - cpal_chain = CPALChain.from_univariate_prompt( - llm=self.fake_llm, verbose=True - ) - cpal_chain.run( - ( - "jan has three times the number of pets as " - "marcia. marcia has two more pets than cindy." - "if cindy has ten pets, how many pets does jan have? " - ) - ) - - -class TestCPALChain_MathWordProblems(unittest.TestCase): - """Test the CPAL chain and its component chains on math word problems.""" - - def test_causal_chain(self) -> None: - """Test CausalChain can translate a narrative's plot into a causal model - containing operations linked by a DAG.""" - - llm = OpenAI(temperature=0, max_tokens=512) - casual_chain = CausalChain.from_univariate_prompt(llm) - narrative_plot = ( - "Jan has three times the number of pets as Marcia. " - "Marcia has two more pets than Cindy. " - ) - output = casual_chain(narrative_plot) - expected_output = { - "chain_answer": None, - "chain_data": CausalModel( - attribute="pet_count", - entities=[ - EntityModel(name="cindy", code="pass", value=0.0, depends_on=[]), - EntityModel( - name="marcia", - code="marcia.value = cindy.value + 2", - value=0.0, - depends_on=["cindy"], - ), - EntityModel( - name="jan", - code="jan.value = marcia.value * 3", - value=0.0, - depends_on=["marcia"], - ), - ], - ), - "narrative_input": "Jan has three times the number of pets as Marcia. Marcia " # noqa: E501 - "has two more pets than Cindy. ", - } - self.assertDictEqual(output, expected_output) - self.assertEqual( - isinstance(output[Constant.chain_data.value], CausalModel), True - ) - - def test_intervention_chain(self) -> None: - """Test InterventionChain translates a hypothetical into a new value setting.""" - - llm = OpenAI(temperature=0, max_tokens=512) - story_conditions_chain = InterventionChain.from_univariate_prompt(llm) - question = "if cindy has ten pets" - data = story_conditions_chain(question)[Constant.chain_data.value] - self.assertEqual(type(data), InterventionModel) - - def test_intervention_chain_2(self) -> None: - """Test InterventionChain translates a hypothetical into a new value setting.""" - - llm = OpenAI(temperature=0, max_tokens=512) - story_conditions_chain = InterventionChain.from_univariate_prompt(llm) - narrative_condition = "What if Cindy has ten pets and Boris has 5 pets? " - data = story_conditions_chain(narrative_condition)[Constant.chain_data.value] - self.assertEqual(type(data), InterventionModel) - - def test_query_chain(self) -> None: - """Test QueryChain translates a question into a query expression.""" - llm = OpenAI(temperature=0, max_tokens=512) - query_chain = QueryChain.from_univariate_prompt(llm) - narrative_question = "How many pets will Marcia end up with? " - data = query_chain(narrative_question)[Constant.chain_data.value] - self.assertEqual(type(data), QueryModel) - - def test_narrative_chain(self) -> None: - """Test NarrativeChain decomposes a human's narrative into three story elements: - - - causal model - - intervention model - - query model - """ - - narrative = ( - "Jan has three times the number of pets as Marcia. " - "Marcia has two more pets than Cindy. " - "If Cindy has ten pets, how many pets does Jan have? " - ) - llm = OpenAI(temperature=0, max_tokens=512) - narrative_chain = NarrativeChain.from_univariate_prompt(llm) - data = narrative_chain(narrative)[Constant.chain_data.value] - self.assertEqual(type(data), NarrativeModel) - - out = narrative_chain(narrative) - expected_narrative_out = { - "chain_answer": None, - "chain_data": NarrativeModel( - story_outcome_question="how many pets does Jan have?", - story_hypothetical="If Cindy has ten pets", - story_plot="Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy.", # noqa: E501 - ), - "narrative_input": "Jan has three times the number of pets as Marcia. Marcia " # noqa: E501 - "has two more pets than Cindy. If Cindy has ten pets, how " - "many pets does Jan have? ", - } - self.assertDictEqual(out, expected_narrative_out) - - def test_against_pal_chain_doc(self) -> None: - """ - Test CPAL chain against the first example in the PAL chain notebook doc: - - https://github.com/langchain-ai/langchain/blob/master/docs/extras/modules/chains/additional/pal.ipynb - """ - - narrative_input = ( - "Jan has three times the number of pets as Marcia." - " Marcia has two more pets than Cindy." - " If Cindy has four pets, how many total pets do the three have?" - ) - - llm = OpenAI(temperature=0, max_tokens=512) - cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True) - answer = cpal_chain.run(narrative_input) - - """ - >>> story._outcome_table - name code value depends_on - 0 cindy pass 4.0 [] - 1 marcia marcia.value = cindy.value + 2 6.0 [cindy] - 2 jan jan.value = marcia.value * 3 18.0 [marcia] - - """ - self.assertEqual(answer, 28.0) - - def test_simple(self) -> None: - """ - Given a simple math word problem here we are test and illustrate the - the data structures that are produced by the CPAL chain. - """ - - narrative_input = ( - "jan has three times the number of pets as marcia." - "marcia has two more pets than cindy." - "If cindy has ten pets, how many pets does jan have?" - ) - llm = OpenAI(temperature=0, max_tokens=512) - cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True) - output = cpal_chain(narrative_input) - data = output[Constant.chain_data.value] - - expected_output = { - "causal_operations": { - "attribute": "pet_count", - "entities": [ - {"code": "pass", "depends_on": [], "name": "cindy", "value": 10.0}, - { - "code": "marcia.value = cindy.value + 2", - "depends_on": ["cindy"], - "name": "marcia", - "value": 12.0, - }, - { - "code": "jan.value = marcia.value * 3", - "depends_on": ["marcia"], - "name": "jan", - "value": 36.0, - }, - ], - }, - "intervention": { - "entity_settings": [ - {"attribute": "pet_count", "name": "cindy", "value": 10.0} - ], - "system_settings": None, - }, - "query": { - "expression": "SELECT name, value FROM df WHERE name = 'jan'", - "llm_error_msg": "", - "question": "how many pets does jan have?", - }, - } - self.assertDictEqual(data.dict(), expected_output) - - """ - Illustrate the query model's result table as a printed pandas dataframe - >>> data._outcome_table - name code value depends_on - 0 cindy pass 10.0 [] - 1 marcia marcia.value = cindy.value + 2 12.0 [cindy] - 2 jan jan.value = marcia.value * 3 36.0 [marcia] - """ - - expected_output = { - "code": { - 0: "pass", - 1: "marcia.value = cindy.value + 2", - 2: "jan.value = marcia.value * 3", - }, - "depends_on": {0: [], 1: ["cindy"], 2: ["marcia"]}, - "name": {0: "cindy", 1: "marcia", 2: "jan"}, - "value": {0: 10.0, 1: 12.0, 2: 36.0}, - } - self.assertDictEqual(data._outcome_table.to_dict(), expected_output) - - expected_output = {"name": {0: "jan"}, "value": {0: 36.0}} - self.assertDictEqual(data.query._result_table.to_dict(), expected_output) - - # TODO: use an LLM chain to translate numbers to words - df = data.query._result_table - expr = "name == 'jan'" - answer = df.query(expr).iloc[0]["value"] - self.assertEqual(float(answer), 36.0) - - def test_hallucinating(self) -> None: - """ - Test CPAL approach does not hallucinate when given - an invalid entity in the question. - - The PAL chain would hallucinates here! - """ - - narrative_input = ( - "Jan has three times the number of pets as Marcia." - "Marcia has two more pets than Cindy." - "If Cindy has ten pets, how many pets does Barak have?" - ) - llm = OpenAI(temperature=0, max_tokens=512) - cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True) - with pytest.raises(Exception) as e_info: - print(e_info) # noqa: T201 - cpal_chain.run(narrative_input) - - def test_causal_mediator(self) -> None: - """ - Test CPAL approach on causal mediator. - """ - - narrative_input = ( - "jan has three times the number of pets as marcia." - "marcia has two more pets than cindy." - "If marcia has ten pets, how many pets does jan have?" - ) - llm = OpenAI(temperature=0, max_tokens=512) - cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True) - answer = cpal_chain.run(narrative_input) - self.assertEqual(answer, 30.0) - - @pytest.mark.skip(reason="requires manual install of debian and py packages") - def test_draw(self) -> None: - """ - Test CPAL chain can draw its resulting DAG. - """ - import os - - narrative_input = ( - "Jan has three times the number of pets as Marcia." - "Marcia has two more pets than Cindy." - "If Marcia has ten pets, how many pets does Jan have?" - ) - llm = OpenAI(temperature=0, max_tokens=512) - cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True) - cpal_chain.run(narrative_input) - path = "graph.svg" - cpal_chain.draw(path=path) - self.assertTrue(os.path.exists(path)) diff --git a/libs/experimental/tests/integration_tests/chains/test_pal.py b/libs/experimental/tests/integration_tests/chains/test_pal.py deleted file mode 100644 index ce58e3606c644..0000000000000 --- a/libs/experimental/tests/integration_tests/chains/test_pal.py +++ /dev/null @@ -1,34 +0,0 @@ -"""Test PAL chain.""" - -from langchain_community.llms import OpenAI - -from langchain_experimental.pal_chain.base import PALChain - - -def test_math_prompt() -> None: - """Test math prompt.""" - llm = OpenAI(temperature=0, max_tokens=512) - pal_chain = PALChain.from_math_prompt(llm, timeout=None, allow_dangerous_code=False) - question = ( - "Jan has three times the number of pets as Marcia. " - "Marcia has two more pets than Cindy. " - "If Cindy has four pets, how many total pets do the three have?" - ) - output = pal_chain.run(question) - assert output == "28" - - -def test_colored_object_prompt() -> None: - """Test colored object prompt.""" - llm = OpenAI(temperature=0, max_tokens=512) - pal_chain = PALChain.from_colored_object_prompt( - llm, timeout=None, allow_dangerous_code=False - ) - question = ( - "On the desk, you see two blue booklets, " - "two purple booklets, and two yellow pairs of sunglasses. " - "If I remove all the pairs of sunglasses from the desk, " - "how many purple items remain on it?" - ) - output = pal_chain.run(question) - assert output == "2" diff --git a/libs/experimental/tests/integration_tests/chains/test_sql_database.py b/libs/experimental/tests/integration_tests/chains/test_sql_database.py deleted file mode 100644 index 4693f9154ba34..0000000000000 --- a/libs/experimental/tests/integration_tests/chains/test_sql_database.py +++ /dev/null @@ -1,93 +0,0 @@ -"""Test SQL Database Chain.""" - -from langchain_community.llms.openai import OpenAI -from langchain_community.utilities.sql_database import SQLDatabase -from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine, insert - -from langchain_experimental.sql.base import ( - SQLDatabaseChain, - SQLDatabaseSequentialChain, -) - -metadata_obj = MetaData() - -user = Table( - "user", - metadata_obj, - Column("user_id", Integer, primary_key=True), - Column("user_name", String(16), nullable=False), - Column("user_company", String(16), nullable=False), -) - - -def test_sql_database_run() -> None: - """Test that commands can be run successfully and returned in correct format.""" - engine = create_engine("sqlite:///:memory:") - metadata_obj.create_all(engine) - stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo") - with engine.connect() as conn: - conn.execute(stmt) - db = SQLDatabase(engine) - db_chain = SQLDatabaseChain.from_llm(OpenAI(temperature=0), db) - output = db_chain.run("What company does Harrison work at?") - expected_output = " Harrison works at Foo." - assert output == expected_output - - -def test_sql_database_run_update() -> None: - """Test that update commands run successfully and returned in correct format.""" - engine = create_engine("sqlite:///:memory:") - metadata_obj.create_all(engine) - stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo") - with engine.connect() as conn: - conn.execute(stmt) - db = SQLDatabase(engine) - db_chain = SQLDatabaseChain.from_llm(OpenAI(temperature=0), db) - output = db_chain.run("Update Harrison's workplace to Bar") - expected_output = " Harrison's workplace has been updated to Bar." - assert output == expected_output - output = db_chain.run("What company does Harrison work at?") - expected_output = " Harrison works at Bar." - assert output == expected_output - - -def test_sql_database_sequential_chain_run() -> None: - """Test that commands can be run successfully SEQUENTIALLY - and returned in correct format.""" - engine = create_engine("sqlite:///:memory:") - metadata_obj.create_all(engine) - stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo") - with engine.connect() as conn: - conn.execute(stmt) - db = SQLDatabase(engine) - db_chain = SQLDatabaseSequentialChain.from_llm(OpenAI(temperature=0), db) - output = db_chain.run("What company does Harrison work at?") - expected_output = " Harrison works at Foo." - assert output == expected_output - - -def test_sql_database_sequential_chain_intermediate_steps() -> None: - """Test that commands can be run successfully SEQUENTIALLY and returned - in correct format. switch Intermediate steps""" - engine = create_engine("sqlite:///:memory:") - metadata_obj.create_all(engine) - stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo") - with engine.connect() as conn: - conn.execute(stmt) - db = SQLDatabase(engine) - db_chain = SQLDatabaseSequentialChain.from_llm( - OpenAI(temperature=0), db, return_intermediate_steps=True - ) - output = db_chain("What company does Harrison work at?") - expected_output = " Harrison works at Foo." - assert output["result"] == expected_output - - query = output["intermediate_steps"][0] - expected_query = ( - " SELECT user_company FROM user WHERE user_name = 'Harrison' LIMIT 1;" - ) - assert query == expected_query - - query_results = output["intermediate_steps"][1] - expected_query_results = "[('Foo',)]" - assert query_results == expected_query_results diff --git a/libs/experimental/tests/integration_tests/chains/test_synthetic_data_openai.py b/libs/experimental/tests/integration_tests/chains/test_synthetic_data_openai.py deleted file mode 100644 index 3fcc8f60ee2a5..0000000000000 --- a/libs/experimental/tests/integration_tests/chains/test_synthetic_data_openai.py +++ /dev/null @@ -1,103 +0,0 @@ -import pytest -from langchain.pydantic_v1 import BaseModel -from langchain_community.chat_models import ChatOpenAI -from langchain_core.prompts.few_shot import FewShotPromptTemplate - -from langchain_experimental.tabular_synthetic_data.base import SyntheticDataGenerator -from langchain_experimental.tabular_synthetic_data.openai import ( - OPENAI_TEMPLATE, - create_openai_data_generator, -) -from langchain_experimental.tabular_synthetic_data.prompts import ( - SYNTHETIC_FEW_SHOT_PREFIX, - SYNTHETIC_FEW_SHOT_SUFFIX, -) - - -# Define the desired output schema for individual medical billing record -class MedicalBilling(BaseModel): - patient_id: int - patient_name: str - diagnosis_code: str - procedure_code: str - total_charge: float - insurance_claim_amount: float - - -examples = [ - { - "example": """Patient ID: 123456, Patient Name: John Doe, Diagnosis Code: - J20.9, Procedure Code: 99203, Total Charge: $500, Insurance Claim Amount: - $350""" - }, - { - "example": """Patient ID: 789012, Patient Name: Johnson Smith, Diagnosis - Code: M54.5, Procedure Code: 99213, Total Charge: $150, Insurance Claim - Amount: $120""" - }, - { - "example": """Patient ID: 345678, Patient Name: Emily Stone, Diagnosis Code: - E11.9, Procedure Code: 99214, Total Charge: $300, Insurance Claim Amount: - $250""" - }, - { - "example": """Patient ID: 901234, Patient Name: Robert Miles, Diagnosis Code: - B07.9, Procedure Code: 99204, Total Charge: $200, Insurance Claim Amount: - $160""" - }, - { - "example": """Patient ID: 567890, Patient Name: Clara Jensen, Diagnosis Code: - F41.9, Procedure Code: 99205, Total Charge: $450, Insurance Claim Amount: - $310""" - }, - { - "example": """Patient ID: 234567, Patient Name: Alan Turing, Diagnosis Code: - G40.909, Procedure Code: 99215, Total Charge: $220, Insurance Claim Amount: - $180""" - }, -] - -prompt_template = FewShotPromptTemplate( - prefix=SYNTHETIC_FEW_SHOT_PREFIX, - examples=examples, - suffix=SYNTHETIC_FEW_SHOT_SUFFIX, - input_variables=["subject", "extra"], - example_prompt=OPENAI_TEMPLATE, -) - - -@pytest.fixture(scope="function") -def synthetic_data_generator() -> SyntheticDataGenerator: - return create_openai_data_generator( - output_schema=MedicalBilling, - llm=ChatOpenAI(temperature=1), # replace with your LLM instance - prompt=prompt_template, - ) - - -@pytest.mark.requires("openai") -def test_generate_synthetic(synthetic_data_generator: SyntheticDataGenerator) -> None: - synthetic_results = synthetic_data_generator.generate( - subject="medical_billing", - extra="""the name must be chosen at random. Make it something you wouldn't - normally choose.""", - runs=10, - ) - assert len(synthetic_results) == 10 - for row in synthetic_results: - assert isinstance(row, MedicalBilling) - - -@pytest.mark.requires("openai") -async def test_agenerate_synthetic( - synthetic_data_generator: SyntheticDataGenerator, -) -> None: - synthetic_results = await synthetic_data_generator.agenerate( - subject="medical_billing", - extra="""the name must be chosen at random. Make it something you wouldn't - normally choose.""", - runs=10, - ) - assert len(synthetic_results) == 10 - for row in synthetic_results: - assert isinstance(row, MedicalBilling) diff --git a/libs/experimental/tests/integration_tests/llms/__init__.py b/libs/experimental/tests/integration_tests/llms/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/integration_tests/llms/test_anthropic_functions.py b/libs/experimental/tests/integration_tests/llms/test_anthropic_functions.py deleted file mode 100644 index b83fc35d81fef..0000000000000 --- a/libs/experimental/tests/integration_tests/llms/test_anthropic_functions.py +++ /dev/null @@ -1,109 +0,0 @@ -"""Test AnthropicFunctions""" - -import unittest - -from langchain_community.chat_models.anthropic import ChatAnthropic -from langchain_community.chat_models.bedrock import BedrockChat - -from langchain_experimental.llms.anthropic_functions import AnthropicFunctions - - -class TestAnthropicFunctions(unittest.TestCase): - """ - Test AnthropicFunctions with default llm (ChatAnthropic) as well as a passed-in llm - """ - - def test_default_chat_anthropic(self) -> None: - base_model = AnthropicFunctions(model="claude-2") # type: ignore[call-arg] - self.assertIsInstance(base_model.model, ChatAnthropic) - - # bind functions - model = base_model.bind( - functions=[ - { - "name": "get_current_weather", - "description": "Get the current weather in a given location", - "parameters": { - "type": "object", - "properties": { - "location": { - "type": "string", - "description": "The city and state, " - "e.g. San Francisco, CA", - }, - "unit": { - "type": "string", - "enum": ["celsius", "fahrenheit"], - }, - }, - "required": ["location"], - }, - } - ], - function_call={"name": "get_current_weather"}, - ) - - res = model.invoke("What's the weather in San Francisco?") - - function_call = res.additional_kwargs.get("function_call") - assert function_call - self.assertEqual(function_call.get("name"), "get_current_weather") - self.assertEqual( - function_call.get("arguments"), - '{"location": "San Francisco, CA", "unit": "fahrenheit"}', - ) - - def test_bedrock_chat_anthropic(self) -> None: - """ - const chatBedrock = new ChatBedrock({ - region: process.env.BEDROCK_AWS_REGION ?? "us-east-1", - model: "anthropic.claude-v2", - temperature: 0.1, - credentials: { - secretAccessKey: process.env.BEDROCK_AWS_SECRET_ACCESS_KEY!, - accessKeyId: process.env.BEDROCK_AWS_ACCESS_KEY_ID!, - }, - });""" - llm = BedrockChat( # type: ignore[call-arg] - model_id="anthropic.claude-v2", - model_kwargs={"temperature": 0.1}, - region_name="us-east-1", - ) - base_model = AnthropicFunctions(llm=llm) - assert isinstance(base_model.model, BedrockChat) - - # bind functions - model = base_model.bind( - functions=[ - { - "name": "get_current_weather", - "description": "Get the current weather in a given location", - "parameters": { - "type": "object", - "properties": { - "location": { - "type": "string", - "description": "The city and state, " - "e.g. San Francisco, CA", - }, - "unit": { - "type": "string", - "enum": ["celsius", "fahrenheit"], - }, - }, - "required": ["location"], - }, - } - ], - function_call={"name": "get_current_weather"}, - ) - - res = model.invoke("What's the weather in San Francisco?") - - function_call = res.additional_kwargs.get("function_call") - assert function_call - self.assertEqual(function_call.get("name"), "get_current_weather") - self.assertEqual( - function_call.get("arguments"), - '{"location": "San Francisco, CA", "unit": "fahrenheit"}', - ) diff --git a/libs/experimental/tests/integration_tests/llms/test_ollama_functions.py b/libs/experimental/tests/integration_tests/llms/test_ollama_functions.py deleted file mode 100644 index 871362ccfc19a..0000000000000 --- a/libs/experimental/tests/integration_tests/llms/test_ollama_functions.py +++ /dev/null @@ -1,142 +0,0 @@ -"""Test OllamaFunctions""" - -import unittest - -from langchain_community.tools import DuckDuckGoSearchResults -from langchain_community.tools.pubmed.tool import PubmedQueryRun -from langchain_core.messages import AIMessage -from langchain_core.pydantic_v1 import BaseModel, Field - -from langchain_experimental.llms.ollama_functions import ( - OllamaFunctions, - convert_to_ollama_tool, -) - - -class Joke(BaseModel): - setup: str = Field(description="The setup of the joke") - punchline: str = Field(description="The punchline to the joke") - - -class TestOllamaFunctions(unittest.TestCase): - """ - Test OllamaFunctions - """ - - def test_default_ollama_functions(self) -> None: - base_model = OllamaFunctions(model="phi3", format="json") - - # bind functions - model = base_model.bind_tools( - tools=[ - { - "name": "get_current_weather", - "description": "Get the current weather in a given location", - "parameters": { - "type": "object", - "properties": { - "location": { - "type": "string", - "description": "The city and state, " - "e.g. San Francisco, CA", - }, - "unit": { - "type": "string", - "enum": ["celsius", "fahrenheit"], - }, - }, - "required": ["location"], - }, - } - ], - function_call={"name": "get_current_weather"}, - ) - - res = model.invoke("What's the weather in San Francisco?") - - self.assertIsInstance(res, AIMessage) - res = AIMessage(**res.__dict__) - tool_calls = res.tool_calls - assert tool_calls - tool_call = tool_calls[0] - assert tool_call - self.assertEqual("get_current_weather", tool_call.get("name")) - - def test_ollama_functions_tools(self) -> None: - base_model = OllamaFunctions(model="phi3", format="json") - model = base_model.bind_tools( - tools=[PubmedQueryRun(), DuckDuckGoSearchResults(max_results=2)] # type: ignore[call-arg] - ) - res = model.invoke("What causes lung cancer?") - self.assertIsInstance(res, AIMessage) - res = AIMessage(**res.__dict__) - tool_calls = res.tool_calls - assert tool_calls - tool_call = tool_calls[0] - assert tool_call - self.assertEqual("pub_med", tool_call.get("name")) - - def test_default_ollama_functions_default_response(self) -> None: - base_model = OllamaFunctions(model="phi3", format="json") - - # bind functions - model = base_model.bind_tools( - tools=[ - { - "name": "get_current_weather", - "description": "Get the current weather in a given location", - "parameters": { - "type": "object", - "properties": { - "location": { - "type": "string", - "description": "The city and state, " - "e.g. San Francisco, CA", - }, - "unit": { - "type": "string", - "enum": ["celsius", "fahrenheit"], - }, - }, - "required": ["location"], - }, - } - ] - ) - - res = model.invoke("What is the capital of France?") - - self.assertIsInstance(res, AIMessage) - res = AIMessage(**res.__dict__) - tool_calls = res.tool_calls - if len(tool_calls) > 0: - tool_call = tool_calls[0] - assert tool_call - self.assertEqual("__conversational_response", tool_call.get("name")) - - def test_ollama_structured_output(self) -> None: - model = OllamaFunctions(model="phi3") - structured_llm = model.with_structured_output(Joke, include_raw=False) - - res = structured_llm.invoke("Tell me a joke about cats") - assert isinstance(res, Joke) - - def test_ollama_structured_output_with_json(self) -> None: - model = OllamaFunctions(model="phi3") - joke_schema = convert_to_ollama_tool(Joke) - structured_llm = model.with_structured_output(joke_schema, include_raw=False) - - res = structured_llm.invoke("Tell me a joke about cats") - assert "setup" in res - assert "punchline" in res - - def test_ollama_structured_output_raw(self) -> None: - model = OllamaFunctions(model="phi3") - structured_llm = model.with_structured_output(Joke, include_raw=True) - - res = structured_llm.invoke("Tell me a joke about cars") - assert isinstance(res, dict) - assert "raw" in res - assert "parsed" in res - assert isinstance(res["raw"], AIMessage) - assert isinstance(res["parsed"], Joke) diff --git a/libs/experimental/tests/integration_tests/test_compile.py b/libs/experimental/tests/integration_tests/test_compile.py deleted file mode 100644 index 33ecccdfa0fbd..0000000000000 --- a/libs/experimental/tests/integration_tests/test_compile.py +++ /dev/null @@ -1,7 +0,0 @@ -import pytest - - -@pytest.mark.compile -def test_placeholder() -> None: - """Used for compiling integration tests without running any real tests.""" - pass diff --git a/libs/experimental/tests/integration_tests/test_video_captioning.py b/libs/experimental/tests/integration_tests/test_video_captioning.py deleted file mode 100644 index d1a602dc40041..0000000000000 --- a/libs/experimental/tests/integration_tests/test_video_captioning.py +++ /dev/null @@ -1,29 +0,0 @@ -"""Integration test for video captioning.""" - -from langchain_openai import ChatOpenAI - -from langchain_experimental.video_captioning.base import VideoCaptioningChain - - -def test_video_captioning_hard() -> None: - """Test input that is considered hard for this chain to process.""" - URL = """ - https://ia904700.us.archive.org/22/items/any-chibes/X2Download.com - -FXX%20USA%20%C2%ABPromo%20Noon%20-%204A%20Every%20Day%EF%BF%BD%EF - %BF%BD%C2%BB%20November%202021%EF%BF%BD%EF%BF%BD-%281080p60%29.mp4 - """ - chain = VideoCaptioningChain( # type: ignore[call-arg] - llm=ChatOpenAI( - model="gpt-4", - max_tokens=4000, - ) - ) - srt_content = chain.run(video_file_path=URL) - - assert ( - "mustache" in srt_content - and "Any chives?" in srt_content - and "How easy? A little tighter." in srt_content - and "it's a little tight in" in srt_content - and "every day" in srt_content - ) diff --git a/libs/experimental/tests/unit_tests/__init__.py b/libs/experimental/tests/unit_tests/__init__.py deleted file mode 100644 index f17799042153d..0000000000000 --- a/libs/experimental/tests/unit_tests/__init__.py +++ /dev/null @@ -1,9 +0,0 @@ -import ctypes - - -def is_libcublas_available() -> bool: - try: - ctypes.CDLL("libcublas.so") - return True - except OSError: - return False diff --git a/libs/experimental/tests/unit_tests/agents/__init__.py b/libs/experimental/tests/unit_tests/agents/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/unit_tests/agents/agent_toolkits/__init__.py b/libs/experimental/tests/unit_tests/agents/agent_toolkits/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/unit_tests/agents/agent_toolkits/pandas/__init__.py b/libs/experimental/tests/unit_tests/agents/agent_toolkits/pandas/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/unit_tests/agents/agent_toolkits/pandas/test_base.py b/libs/experimental/tests/unit_tests/agents/agent_toolkits/pandas/test_base.py deleted file mode 100644 index 9e99e4a7b5496..0000000000000 --- a/libs/experimental/tests/unit_tests/agents/agent_toolkits/pandas/test_base.py +++ /dev/null @@ -1,22 +0,0 @@ -import sys - -import pytest - -from langchain_experimental.agents import create_pandas_dataframe_agent -from tests.unit_tests.fake_llm import FakeLLM - - -@pytest.mark.requires("pandas", "tabulate") -@pytest.mark.skipif(sys.version_info < (3, 9), reason="requires python3.9 or higher") -def test_create_pandas_dataframe_agent() -> None: - import pandas as pd - - with pytest.raises(ValueError): - create_pandas_dataframe_agent( - FakeLLM(), pd.DataFrame(), allow_dangerous_code=False - ) - - create_pandas_dataframe_agent(FakeLLM(), pd.DataFrame(), allow_dangerous_code=True) - create_pandas_dataframe_agent( - FakeLLM(), [pd.DataFrame(), pd.DataFrame()], allow_dangerous_code=True - ) diff --git a/libs/experimental/tests/unit_tests/chat_models/__init__.py b/libs/experimental/tests/unit_tests/chat_models/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_llama2chat.py b/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_llama2chat.py deleted file mode 100644 index 55501833373be..0000000000000 --- a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_llama2chat.py +++ /dev/null @@ -1,156 +0,0 @@ -from typing import Any, List, Optional - -import pytest -from langchain_core.callbacks.manager import ( - AsyncCallbackManagerForLLMRun, - CallbackManagerForLLMRun, -) -from langchain_core.language_models import LLM -from langchain_core.messages import AIMessage, HumanMessage, SystemMessage - -from langchain_experimental.chat_models import Llama2Chat -from langchain_experimental.chat_models.llm_wrapper import DEFAULT_SYSTEM_PROMPT - - -class FakeLLM(LLM): - def _call( - self, - prompt: str, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> str: - return prompt - - async def _acall( - self, - prompt: str, - stop: Optional[List[str]] = None, - run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> str: - return prompt - - @property - def _llm_type(self) -> str: - return "fake-llm" - - -@pytest.fixture -def model() -> Llama2Chat: - return Llama2Chat(llm=FakeLLM()) - - -@pytest.fixture -def model_cfg_sys_msg() -> Llama2Chat: - return Llama2Chat(llm=FakeLLM(), system_message=SystemMessage(content="sys-msg")) - - -def test_default_system_message(model: Llama2Chat) -> None: - messages = [HumanMessage(content="usr-msg-1")] - - actual = model.invoke(messages).content # type: ignore - expected = ( - f"[INST] <>\n{DEFAULT_SYSTEM_PROMPT}\n<>\n\nusr-msg-1 [/INST]" - ) - - assert actual == expected - - -def test_configured_system_message( - model_cfg_sys_msg: Llama2Chat, -) -> None: - messages = [HumanMessage(content="usr-msg-1")] - - actual = model_cfg_sys_msg.invoke(messages).content # type: ignore - expected = "[INST] <>\nsys-msg\n<>\n\nusr-msg-1 [/INST]" - - assert actual == expected - - -async def test_configured_system_message_async( - model_cfg_sys_msg: Llama2Chat, -) -> None: - messages = [HumanMessage(content="usr-msg-1")] - - actual = await model_cfg_sys_msg.ainvoke(messages) # type: ignore - expected = "[INST] <>\nsys-msg\n<>\n\nusr-msg-1 [/INST]" - - assert actual.content == expected - - -def test_provided_system_message( - model_cfg_sys_msg: Llama2Chat, -) -> None: - messages = [ - SystemMessage(content="custom-sys-msg"), - HumanMessage(content="usr-msg-1"), - ] - - actual = model_cfg_sys_msg.invoke(messages).content - expected = "[INST] <>\ncustom-sys-msg\n<>\n\nusr-msg-1 [/INST]" - - assert actual == expected - - -def test_human_ai_dialogue(model_cfg_sys_msg: Llama2Chat) -> None: - messages = [ - HumanMessage(content="usr-msg-1"), - AIMessage(content="ai-msg-1"), - HumanMessage(content="usr-msg-2"), - AIMessage(content="ai-msg-2"), - HumanMessage(content="usr-msg-3"), - ] - - actual = model_cfg_sys_msg.invoke(messages).content - expected = ( - "[INST] <>\nsys-msg\n<>\n\nusr-msg-1 [/INST] ai-msg-1 " - "[INST] usr-msg-2 [/INST] ai-msg-2 [INST] usr-msg-3 [/INST]" - ) - - assert actual == expected - - -def test_no_message(model: Llama2Chat) -> None: - with pytest.raises(ValueError) as info: - model.invoke([]) - - assert info.value.args[0] == "at least one HumanMessage must be provided" - - -def test_ai_message_first(model: Llama2Chat) -> None: - with pytest.raises(ValueError) as info: - model.invoke([AIMessage(content="ai-msg-1")]) - - assert ( - info.value.args[0] - == "messages list must start with a SystemMessage or UserMessage" - ) - - -def test_human_ai_messages_not_alternating(model: Llama2Chat) -> None: - messages = [ - HumanMessage(content="usr-msg-1"), - HumanMessage(content="usr-msg-2"), - HumanMessage(content="ai-msg-1"), - ] - - with pytest.raises(ValueError) as info: - model.invoke(messages) # type: ignore - - assert info.value.args[0] == ( - "messages must be alternating human- and ai-messages, " - "optionally prepended by a system message" - ) - - -def test_last_message_not_human_message(model: Llama2Chat) -> None: - messages = [ - HumanMessage(content="usr-msg-1"), - AIMessage(content="ai-msg-1"), - ] - - with pytest.raises(ValueError) as info: - model.invoke(messages) - - assert info.value.args[0] == "last message must be a HumanMessage" diff --git a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_mixtral.py b/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_mixtral.py deleted file mode 100644 index 63871ea30e205..0000000000000 --- a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_mixtral.py +++ /dev/null @@ -1,31 +0,0 @@ -import pytest -from langchain.schema import AIMessage, HumanMessage, SystemMessage - -from langchain_experimental.chat_models import Mixtral -from tests.unit_tests.chat_models.test_llm_wrapper_llama2chat import FakeLLM - - -@pytest.fixture -def model() -> Mixtral: - return Mixtral(llm=FakeLLM()) - - -@pytest.fixture -def model_cfg_sys_msg() -> Mixtral: - return Mixtral(llm=FakeLLM(), system_message=SystemMessage(content="sys-msg")) - - -def test_prompt(model: Mixtral) -> None: - messages = [ - SystemMessage(content="sys-msg"), - HumanMessage(content="usr-msg-1"), - AIMessage(content="ai-msg-1"), - HumanMessage(content="usr-msg-2"), - ] - - actual = model.invoke(messages).content # type: ignore - expected = ( - "[INST] sys-msg\nusr-msg-1 [/INST] ai-msg-1 [INST] usr-msg-2 [/INST]" - ) - - assert actual == expected diff --git a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_orca.py b/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_orca.py deleted file mode 100644 index c0ecb609877ed..0000000000000 --- a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_orca.py +++ /dev/null @@ -1,29 +0,0 @@ -import pytest -from langchain_core.messages import AIMessage, HumanMessage, SystemMessage - -from langchain_experimental.chat_models import Orca -from tests.unit_tests.chat_models.test_llm_wrapper_llama2chat import FakeLLM - - -@pytest.fixture -def model() -> Orca: - return Orca(llm=FakeLLM()) - - -@pytest.fixture -def model_cfg_sys_msg() -> Orca: - return Orca(llm=FakeLLM(), system_message=SystemMessage(content="sys-msg")) - - -def test_prompt(model: Orca) -> None: - messages = [ - SystemMessage(content="sys-msg"), - HumanMessage(content="usr-msg-1"), - AIMessage(content="ai-msg-1"), - HumanMessage(content="usr-msg-2"), - ] - - actual = model.invoke(messages).content # type: ignore - expected = "### System:\nsys-msg\n\n### User:\nusr-msg-1\n\n### Assistant:\nai-msg-1\n\n### User:\nusr-msg-2\n\n" # noqa: E501 - - assert actual == expected diff --git a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_vicuna.py b/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_vicuna.py deleted file mode 100644 index 4948c7a8deb83..0000000000000 --- a/libs/experimental/tests/unit_tests/chat_models/test_llm_wrapper_vicuna.py +++ /dev/null @@ -1,29 +0,0 @@ -import pytest -from langchain_core.messages import AIMessage, HumanMessage, SystemMessage - -from langchain_experimental.chat_models import Vicuna -from tests.unit_tests.chat_models.test_llm_wrapper_llama2chat import FakeLLM - - -@pytest.fixture -def model() -> Vicuna: - return Vicuna(llm=FakeLLM()) - - -@pytest.fixture -def model_cfg_sys_msg() -> Vicuna: - return Vicuna(llm=FakeLLM(), system_message=SystemMessage(content="sys-msg")) - - -def test_prompt(model: Vicuna) -> None: - messages = [ - SystemMessage(content="sys-msg"), - HumanMessage(content="usr-msg-1"), - AIMessage(content="ai-msg-1"), - HumanMessage(content="usr-msg-2"), - ] - - actual = model.invoke(messages).content # type: ignore - expected = "sys-msg USER: usr-msg-1 ASSISTANT: ai-msg-1 USER: usr-msg-2 " - - assert actual == expected diff --git a/libs/experimental/tests/unit_tests/conftest.py b/libs/experimental/tests/unit_tests/conftest.py deleted file mode 100644 index 4d9e78078261c..0000000000000 --- a/libs/experimental/tests/unit_tests/conftest.py +++ /dev/null @@ -1,84 +0,0 @@ -"""Configuration for unit tests.""" - -from importlib import util -from typing import Dict, Sequence - -import pytest -from pytest import Config, Function, Parser - - -def pytest_addoption(parser: Parser) -> None: - """Add custom command line options to pytest.""" - parser.addoption( - "--only-extended", - action="store_true", - help="Only run extended tests. Does not allow skipping any extended tests.", - ) - parser.addoption( - "--only-core", - action="store_true", - help="Only run core tests. Never runs any extended tests.", - ) - - -def pytest_collection_modifyitems(config: Config, items: Sequence[Function]) -> None: - """Add implementations for handling custom markers. - - At the moment, this adds support for a custom `requires` marker. - - The `requires` marker is used to denote tests that require one or more packages - to be installed to run. If the package is not installed, the test is skipped. - - The `requires` marker syntax is: - - .. code-block:: python - - @pytest.mark.requires("package1", "package2") - def test_something(): - ... - """ - # Mapping from the name of a package to whether it is installed or not. - # Used to avoid repeated calls to `util.find_spec` - required_pkgs_info: Dict[str, bool] = {} - - only_extended = config.getoption("--only-extended") or False - only_core = config.getoption("--only-core") or False - - if only_extended and only_core: - raise ValueError("Cannot specify both `--only-extended` and `--only-core`.") - - for item in items: - requires_marker = item.get_closest_marker("requires") - if requires_marker is not None: - if only_core: - item.add_marker(pytest.mark.skip(reason="Skipping not a core test.")) - continue - - # Iterate through the list of required packages - required_pkgs = requires_marker.args - for pkg in required_pkgs: - # If we haven't yet checked whether the pkg is installed - # let's check it and store the result. - if pkg not in required_pkgs_info: - required_pkgs_info[pkg] = util.find_spec(pkg) is not None - - if not required_pkgs_info[pkg]: - if only_extended: - pytest.fail( - f"Package `{pkg}` is not installed but is required for " - f"extended tests. Please install the given package and " - f"try again.", - ) - - else: - # If the package is not installed, we immediately break - # and mark the test as skipped. - item.add_marker( - pytest.mark.skip(reason=f"Requires pkg: `{pkg}`") - ) - break - else: - if only_extended: - item.add_marker( - pytest.mark.skip(reason="Skipping not an extended test.") - ) diff --git a/libs/experimental/tests/unit_tests/fake_llm.py b/libs/experimental/tests/unit_tests/fake_llm.py deleted file mode 100644 index fc22ba6e06086..0000000000000 --- a/libs/experimental/tests/unit_tests/fake_llm.py +++ /dev/null @@ -1,63 +0,0 @@ -"""Fake LLM wrapper for testing purposes.""" - -from typing import Any, Dict, List, Mapping, Optional, cast - -from langchain_core.callbacks.manager import CallbackManagerForLLMRun -from langchain_core.language_models import LLM - -from langchain_experimental.pydantic_v1 import validator - - -class FakeLLM(LLM): - """Fake LLM wrapper for testing purposes.""" - - queries: Optional[Mapping] = None - sequential_responses: Optional[bool] = False - response_index: int = 0 - - @validator("queries", always=True) - def check_queries_required( - cls, queries: Optional[Mapping], values: Mapping[str, Any] - ) -> Optional[Mapping]: - if values.get("sequential_response") and not queries: - raise ValueError( - "queries is required when sequential_response is set to True" - ) - return queries - - def get_num_tokens(self, text: str) -> int: - """Return number of tokens.""" - return len(text.split()) - - @property - def _llm_type(self) -> str: - """Return type of llm.""" - return "fake" - - def _call( - self, - prompt: str, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> str: - if self.sequential_responses: - return self._get_next_response_in_sequence - - if self.queries is not None: - return self.queries[prompt] - if stop is None: - return "foo" - else: - return "bar" - - @property - def _identifying_params(self) -> Dict[str, Any]: - return {} - - @property - def _get_next_response_in_sequence(self) -> str: - queries = cast(Mapping, self.queries) - response = queries[list(queries.keys())[self.response_index]] - self.response_index = self.response_index + 1 - return response diff --git a/libs/experimental/tests/unit_tests/python/__init__.py b/libs/experimental/tests/unit_tests/python/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/experimental/tests/unit_tests/python/test_python_1.py b/libs/experimental/tests/unit_tests/python/test_python_1.py deleted file mode 100644 index 4c961d84371b8..0000000000000 --- a/libs/experimental/tests/unit_tests/python/test_python_1.py +++ /dev/null @@ -1,113 +0,0 @@ -"""Test functionality of Python REPL.""" - -import sys - -import pytest - -from langchain_experimental.tools.python.tool import PythonAstREPLTool, PythonREPLTool -from langchain_experimental.utilities.python import PythonREPL - -_SAMPLE_CODE = """ -``` -def multiply(): - print(5*6) # noqa: T201 -multiply() -``` -""" - -_AST_SAMPLE_CODE = """ -``` -def multiply(): - return(5*6) -multiply() -``` -""" - -_AST_SAMPLE_CODE_EXECUTE = """ -``` -def multiply(a, b): - return(5*6) -a = 5 -b = 6 - -multiply(a, b) -``` -""" - - -def test_python_repl() -> None: - """Test functionality when globals/locals are not provided.""" - repl = PythonREPL() - - # Run a simple initial command. - repl.run("foo = 1") - assert repl.locals is not None - assert repl.locals["foo"] == 1 - - # Now run a command that accesses `foo` to make sure it still has it. - repl.run("bar = foo * 2") - assert repl.locals is not None - assert repl.locals["bar"] == 2 - - -def test_python_repl_no_previous_variables() -> None: - """Test that it does not have access to variables created outside the scope.""" - foo = 3 # noqa: F841 - repl = PythonREPL() - output = repl.run("print(foo)") - assert output == """NameError("name 'foo' is not defined")""" - - -def test_python_repl_pass_in_locals() -> None: - """Test functionality when passing in locals.""" - _locals = {"foo": 4} - repl = PythonREPL(_locals=_locals) - repl.run("bar = foo * 2") - assert repl.locals is not None - assert repl.locals["bar"] == 8 - - -def test_functionality() -> None: - """Test correct functionality.""" - chain = PythonREPL() - code = "print(1 + 1)" - output = chain.run(code) - assert output == "2\n" - - -def test_functionality_multiline() -> None: - """Test correct functionality for ChatGPT multiline commands.""" - chain = PythonREPL() - tool = PythonREPLTool(python_repl=chain) - output = tool.run(_SAMPLE_CODE) - assert output == "30\n" - - -def test_python_ast_repl_multiline() -> None: - """Test correct functionality for ChatGPT multiline commands.""" - if sys.version_info < (3, 9): - pytest.skip("Python 3.9+ is required for this test") - tool = PythonAstREPLTool() - output = tool.run(_AST_SAMPLE_CODE) - assert output == 30 - - -def test_python_ast_repl_multi_statement() -> None: - """Test correct functionality for ChatGPT multi statement commands.""" - if sys.version_info < (3, 9): - pytest.skip("Python 3.9+ is required for this test") - tool = PythonAstREPLTool() - output = tool.run(_AST_SAMPLE_CODE_EXECUTE) - assert output == 30 - - -def test_function() -> None: - """Test correct functionality.""" - chain = PythonREPL() - code = "def add(a, b): " " return a + b" - output = chain.run(code) - assert output == "" - - code = "print(add(1, 2))" - output = chain.run(code) - assert output == "3\n" diff --git a/libs/experimental/tests/unit_tests/python/test_python_2.py b/libs/experimental/tests/unit_tests/python/test_python_2.py deleted file mode 100644 index 56ebaaaf246fb..0000000000000 --- a/libs/experimental/tests/unit_tests/python/test_python_2.py +++ /dev/null @@ -1,165 +0,0 @@ -"""Test Python REPL Tools.""" - -import sys - -import numpy as np -import pytest - -from langchain_experimental.tools.python.tool import ( - PythonAstREPLTool, - PythonREPLTool, - sanitize_input, -) - - -def test_python_repl_tool_single_input() -> None: - """Test that the python REPL tool works with a single input.""" - tool = PythonREPLTool() - assert tool.is_single_input - assert int(tool.run("print(1 + 1)").strip()) == 2 - - -def test_python_repl_print() -> None: - program = """ -import numpy as np -v1 = np.array([1, 2, 3]) -v2 = np.array([4, 5, 6]) -dot_product = np.dot(v1, v2) -print("The dot product is {:d}.".format(dot_product)) # noqa: T201 - """ - tool = PythonREPLTool() - assert tool.run(program) == "The dot product is 32.\n" - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_python_ast_repl_tool_single_input() -> None: - """Test that the python REPL tool works with a single input.""" - tool = PythonAstREPLTool() - assert tool.is_single_input - assert tool.run("1 + 1") == 2 - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_python_ast_repl_return() -> None: - program = """ -``` -import numpy as np -v1 = np.array([1, 2, 3]) -v2 = np.array([4, 5, 6]) -dot_product = np.dot(v1, v2) -int(dot_product) -``` - """ - tool = PythonAstREPLTool() - assert tool.run(program) == 32 - - program = """ -```python -import numpy as np -v1 = np.array([1, 2, 3]) -v2 = np.array([4, 5, 6]) -dot_product = np.dot(v1, v2) -int(dot_product) -``` - """ - assert tool.run(program) == 32 - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_python_ast_repl_print() -> None: - program = """python -string = "racecar" -if string == string[::-1]: - print(string, "is a palindrome") # noqa: T201 -else: - print(string, "is not a palindrome")""" - tool = PythonAstREPLTool() - assert tool.run(program) == "racecar is a palindrome\n" - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_repl_print_python_backticks() -> None: - program = "`print('`python` is a great language.')`" - tool = PythonAstREPLTool() - assert tool.run(program) == "`python` is a great language.\n" - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_python_ast_repl_raise_exception() -> None: - data = {"Name": ["John", "Alice"], "Age": [30, 25]} - program = """ -import pandas as pd -df = pd.DataFrame(data) -df['Gender'] - """ - tool = PythonAstREPLTool(locals={"data": data}) - expected_outputs = ( - "KeyError: 'Gender'", - "ModuleNotFoundError: No module named 'pandas'", - ) - assert tool.run(program) in expected_outputs - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_python_ast_repl_one_line_print() -> None: - program = 'print("The square of {} is {:.2f}".format(3, 3**2))' - tool = PythonAstREPLTool() - assert tool.run(program) == "The square of 3 is 9.00\n" - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_python_ast_repl_one_line_return() -> None: - arr = np.array([1, 2, 3, 4, 5]) - tool = PythonAstREPLTool(locals={"arr": arr}) - program = "`(arr**2).sum() # Returns sum of squares`" - assert tool.run(program) == 55 - - -@pytest.mark.skipif( - sys.version_info < (3, 9), reason="Requires python version >= 3.9 to run." -) -def test_python_ast_repl_one_line_exception() -> None: - program = "[1, 2, 3][4]" - tool = PythonAstREPLTool() - assert tool.run(program) == "IndexError: list index out of range" - - -def test_sanitize_input() -> None: - query = """ - ``` - p = 5 - ``` - """ - expected = "p = 5" - actual = sanitize_input(query) - assert expected == actual - - query = """ - ```python - p = 5 - ``` - """ - expected = "p = 5" - actual = sanitize_input(query) - assert expected == actual - - query = """ - p = 5 - """ - expected = "p = 5" - actual = sanitize_input(query) - assert expected == actual diff --git a/libs/experimental/tests/unit_tests/rl_chain/test_pick_best_chain_call.py b/libs/experimental/tests/unit_tests/rl_chain/test_pick_best_chain_call.py deleted file mode 100644 index 97aed9d2284cc..0000000000000 --- a/libs/experimental/tests/unit_tests/rl_chain/test_pick_best_chain_call.py +++ /dev/null @@ -1,475 +0,0 @@ -from typing import Any, Dict - -import pytest -from langchain_community.chat_models import FakeListChatModel -from langchain_core.prompts.prompt import PromptTemplate -from test_utils import MockEncoder, MockEncoderReturnsList - -import langchain_experimental.rl_chain.base as rl_chain -import langchain_experimental.rl_chain.helpers -import langchain_experimental.rl_chain.pick_best_chain as pick_best_chain - -encoded_keyword = "[encoded]" - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def setup() -> tuple: - _PROMPT_TEMPLATE = """This is a dummy prompt that will be ignored by the fake llm""" - PROMPT = PromptTemplate(input_variables=[], template=_PROMPT_TEMPLATE) - - llm = FakeListChatModel(responses=["hey"]) - return llm, PROMPT - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_multiple_ToSelectFrom_throws() -> None: - llm, PROMPT = setup() - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - actions = ["0", "1", "2"] - with pytest.raises(ValueError): - chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(actions), - another_action=rl_chain.ToSelectFrom(actions), - ) - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_missing_basedOn_from_throws() -> None: - llm, PROMPT = setup() - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - actions = ["0", "1", "2"] - with pytest.raises(ValueError): - chain.run(action=rl_chain.ToSelectFrom(actions)) - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_ToSelectFrom_not_a_list_throws() -> None: - llm, PROMPT = setup() - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - actions = {"actions": ["0", "1", "2"]} - with pytest.raises(ValueError): - chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(actions), - ) - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_update_with_delayed_score_with_auto_validator_throws() -> None: - llm, PROMPT = setup() - # this LLM returns a number so that the auto validator will return that - auto_val_llm = FakeListChatModel(responses=["3"]) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - selection_scorer=rl_chain.AutoSelectionScorer(llm=auto_val_llm), # type: ignore[call-arg] - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - actions = ["0", "1", "2"] - response = chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(actions), - ) - assert response["response"] == "hey" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score == 3.0 # type: ignore - with pytest.raises(RuntimeError): - chain.update_with_delayed_score( - chain_response=response, - score=100, # type: ignore - ) - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_update_with_delayed_score_force() -> None: - llm, PROMPT = setup() - # this LLM returns a number so that the auto validator will return that - auto_val_llm = FakeListChatModel(responses=["3"]) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - selection_scorer=rl_chain.AutoSelectionScorer(llm=auto_val_llm), # type: ignore[call-arg] - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - actions = ["0", "1", "2"] - response = chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(actions), - ) - assert response["response"] == "hey" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score == 3.0 # type: ignore - chain.update_with_delayed_score( - chain_response=response, - score=100, - force_score=True, # type: ignore - ) - assert selection_metadata.selected.score == 100.0 # type: ignore - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_update_with_delayed_score() -> None: - llm, PROMPT = setup() - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - selection_scorer=None, - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - actions = ["0", "1", "2"] - response = chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(actions), - ) - assert response["response"] == "hey" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score is None # type: ignore - chain.update_with_delayed_score(chain_response=response, score=100) # type: ignore - assert selection_metadata.selected.score == 100.0 # type: ignore - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_user_defined_scorer() -> None: - llm, PROMPT = setup() - - class CustomSelectionScorer(rl_chain.SelectionScorer): - def score_response( - self, - inputs: Dict[str, Any], - llm_response: str, - event: pick_best_chain.PickBestEvent, - ) -> float: - score = 200 - return score - - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - selection_scorer=CustomSelectionScorer(), - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - actions = ["0", "1", "2"] - response = chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(actions), - ) - assert response["response"] == "hey" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score == 200.0 # type: ignore - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_everything_embedded() -> None: - llm, PROMPT = setup() - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, prompt=PROMPT, feature_embedder=feature_embedder, auto_embed=False - ) - - str1 = "0" - str2 = "1" - str3 = "2" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - - ctx_str_1 = "context1" - - encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_1) - ) - - expected = f"""shared |User {ctx_str_1 + " " + encoded_ctx_str_1} \n|action {str1 + " " + encoded_str1} \n|action {str2 + " " + encoded_str2} \n|action {str3 + " " + encoded_str3} """ # noqa - - actions = [str1, str2, str3] - - response = chain.run( - User=rl_chain.EmbedAndKeep(rl_chain.BasedOn(ctx_str_1)), - action=rl_chain.EmbedAndKeep(rl_chain.ToSelectFrom(actions)), - ) - selection_metadata = response["selection_metadata"] # type: ignore - vw_str = feature_embedder.format(selection_metadata) # type: ignore - assert vw_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_default_auto_embedder_is_off() -> None: - llm, PROMPT = setup() - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, prompt=PROMPT, feature_embedder=feature_embedder - ) - - str1 = "0" - str2 = "1" - str3 = "2" - ctx_str_1 = "context1" - - expected = f"""shared |User {ctx_str_1} \n|action {str1} \n|action {str2} \n|action {str3} """ # noqa - - actions = [str1, str2, str3] - - response = chain.run( - User=pick_best_chain.base.BasedOn(ctx_str_1), - action=pick_best_chain.base.ToSelectFrom(actions), - ) - selection_metadata = response["selection_metadata"] # type: ignore - vw_str = feature_embedder.format(selection_metadata) # type: ignore - assert vw_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_default_w_embeddings_off() -> None: - llm, PROMPT = setup() - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, prompt=PROMPT, feature_embedder=feature_embedder, auto_embed=False - ) - - str1 = "0" - str2 = "1" - str3 = "2" - ctx_str_1 = "context1" - - expected = f"""shared |User {ctx_str_1} \n|action {str1} \n|action {str2} \n|action {str3} """ # noqa - - actions = [str1, str2, str3] - - response = chain.run( - User=rl_chain.BasedOn(ctx_str_1), - action=rl_chain.ToSelectFrom(actions), - ) - selection_metadata = response["selection_metadata"] # type: ignore - vw_str = feature_embedder.format(selection_metadata) # type: ignore - assert vw_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_default_w_embeddings_on() -> None: - llm, PROMPT = setup() - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=True, model=MockEncoderReturnsList() - ) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, prompt=PROMPT, feature_embedder=feature_embedder, auto_embed=True - ) - - str1 = "0" - str2 = "1" - ctx_str_1 = "context1" - dot_prod = "dotprod 0:5.0" # dot prod of [1.0, 2.0] and [1.0, 2.0] - - expected = f"""shared |User {ctx_str_1} |@ User={ctx_str_1}\n|action {str1} |# action={str1} |{dot_prod}\n|action {str2} |# action={str2} |{dot_prod}""" # noqa - - actions = [str1, str2] - - response = chain.run( - User=rl_chain.BasedOn(ctx_str_1), - action=rl_chain.ToSelectFrom(actions), - ) - selection_metadata = response["selection_metadata"] # type: ignore - vw_str = feature_embedder.format(selection_metadata) # type: ignore - assert vw_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_default_embeddings_mixed_w_explicit_user_embeddings() -> None: - llm, PROMPT = setup() - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=True, model=MockEncoderReturnsList() - ) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, prompt=PROMPT, feature_embedder=feature_embedder, auto_embed=True - ) - - str1 = "0" - str2 = "1" - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - [1.0, 2.0] - ) - ctx_str_1 = "context1" - ctx_str_2 = "context2" - encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - [1.0, 2.0] - ) - dot_prod = "dotprod 0:5.0 1:5.0" # dot prod of [1.0, 2.0] and [1.0, 2.0] - - expected = f"""shared |User {encoded_ctx_str_1} |@ User={encoded_ctx_str_1} |User2 {ctx_str_2} |@ User2={ctx_str_2}\n|action {str1} |# action={str1} |{dot_prod}\n|action {encoded_str2} |# action={encoded_str2} |{dot_prod}""" # noqa - - actions = [str1, rl_chain.Embed(str2)] - - response = chain.run( - User=rl_chain.BasedOn(rl_chain.Embed(ctx_str_1)), - User2=rl_chain.BasedOn(ctx_str_2), - action=rl_chain.ToSelectFrom(actions), - ) - selection_metadata = response["selection_metadata"] # type: ignore - vw_str = feature_embedder.format(selection_metadata) # type: ignore - assert vw_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_default_no_scorer_specified() -> None: - _, PROMPT = setup() - chain_llm = FakeListChatModel(responses=["hey", "100"]) - chain = pick_best_chain.PickBest.from_llm( - llm=chain_llm, - prompt=PROMPT, - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - response = chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(["0", "1", "2"]), - ) - # chain llm used for both basic prompt and for scoring - assert response["response"] == "hey" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score == 100.0 # type: ignore - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_explicitly_no_scorer() -> None: - llm, PROMPT = setup() - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - selection_scorer=None, - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - response = chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(["0", "1", "2"]), - ) - # chain llm used for both basic prompt and for scoring - assert response["response"] == "hey" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score is None # type: ignore - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_auto_scorer_with_user_defined_llm() -> None: - llm, PROMPT = setup() - scorer_llm = FakeListChatModel(responses=["300"]) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - selection_scorer=rl_chain.AutoSelectionScorer(llm=scorer_llm), # type: ignore[call-arg] - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - response = chain.run( - User=rl_chain.BasedOn("Context"), - action=rl_chain.ToSelectFrom(["0", "1", "2"]), - ) - # chain llm used for both basic prompt and for scoring - assert response["response"] == "hey" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score == 300.0 # type: ignore - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_calling_chain_w_reserved_inputs_throws() -> None: - llm, PROMPT = setup() - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - with pytest.raises(ValueError): - chain.run( - User=rl_chain.BasedOn("Context"), - rl_chain_selected_based_on=rl_chain.ToSelectFrom(["0", "1", "2"]), - ) - - with pytest.raises(ValueError): - chain.run( - User=rl_chain.BasedOn("Context"), - rl_chain_selected=rl_chain.ToSelectFrom(["0", "1", "2"]), - ) - - -@pytest.mark.requires("vowpal_wabbit_next", "sentence_transformers") -def test_activate_and_deactivate_scorer() -> None: - _, PROMPT = setup() - llm = FakeListChatModel(responses=["hey1", "hey2", "hey3"]) - scorer_llm = FakeListChatModel(responses=["300", "400"]) - chain = pick_best_chain.PickBest.from_llm( - llm=llm, - prompt=PROMPT, - selection_scorer=pick_best_chain.base.AutoSelectionScorer(llm=scorer_llm), # type: ignore[call-arg] - feature_embedder=pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ), - ) - response = chain.run( - User=pick_best_chain.base.BasedOn("Context"), - action=pick_best_chain.base.ToSelectFrom(["0", "1", "2"]), - ) - # chain llm used for both basic prompt and for scoring - assert response["response"] == "hey1" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score == 300.0 # type: ignore - - chain.deactivate_selection_scorer() - response = chain.run( - User=pick_best_chain.base.BasedOn("Context"), - action=pick_best_chain.base.ToSelectFrom(["0", "1", "2"]), - ) - assert response["response"] == "hey2" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score is None # type: ignore - - chain.activate_selection_scorer() - response = chain.run( - User=pick_best_chain.base.BasedOn("Context"), - action=pick_best_chain.base.ToSelectFrom(["0", "1", "2"]), - ) - assert response["response"] == "hey3" # type: ignore - selection_metadata = response["selection_metadata"] # type: ignore - assert selection_metadata.selected.score == 400.0 # type: ignore diff --git a/libs/experimental/tests/unit_tests/rl_chain/test_pick_best_text_embedder.py b/libs/experimental/tests/unit_tests/rl_chain/test_pick_best_text_embedder.py deleted file mode 100644 index e080f83dfc8e7..0000000000000 --- a/libs/experimental/tests/unit_tests/rl_chain/test_pick_best_text_embedder.py +++ /dev/null @@ -1,423 +0,0 @@ -import pytest -from test_utils import MockEncoder - -import langchain_experimental.rl_chain.base as rl_chain -import langchain_experimental.rl_chain.helpers -import langchain_experimental.rl_chain.pick_best_chain as pick_best_chain - -encoded_keyword = "[encoded]" - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_missing_context_throws() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - named_action = {"action": ["0", "1", "2"]} - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_action, based_on={} - ) - with pytest.raises(ValueError): - feature_embedder.format(event) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_missing_actions_throws() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from={}, based_on={"context": "context"} - ) - with pytest.raises(ValueError): - feature_embedder.format(event) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_no_label_no_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - named_actions = {"action1": ["0", "1", "2"]} - expected = """shared |context context \n|action1 0 \n|action1 1 \n|action1 2 """ - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on={"context": "context"} - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_w_label_no_score_no_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - named_actions = {"action1": ["0", "1", "2"]} - expected = """shared |context context \n|action1 0 \n|action1 1 \n|action1 2 """ - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0) - event = pick_best_chain.PickBestEvent( - inputs={}, - to_select_from=named_actions, - based_on={"context": "context"}, - selected=selected, - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_w_full_label_no_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - named_actions = {"action1": ["0", "1", "2"]} - expected = ( - """shared |context context \n0:-0.0:1.0 |action1 0 \n|action1 1 \n|action1 2 """ - ) - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, - to_select_from=named_actions, - based_on={"context": "context"}, - selected=selected, - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_w_full_label_w_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - str1 = "0" - str2 = "1" - str3 = "2" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - - ctx_str_1 = "context1" - encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_1) - ) - - named_actions = {"action1": rl_chain.Embed([str1, str2, str3])} - context = {"context": rl_chain.Embed(ctx_str_1)} - expected = f"""shared |context {encoded_ctx_str_1} \n0:-0.0:1.0 |action1 {encoded_str1} \n|action1 {encoded_str2} \n|action1 {encoded_str3} """ # noqa: E501 - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_w_full_label_w_embed_and_keep() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - str1 = "0" - str2 = "1" - str3 = "2" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - - ctx_str_1 = "context1" - encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_1) - ) - - named_actions = {"action1": rl_chain.EmbedAndKeep([str1, str2, str3])} - context = {"context": rl_chain.EmbedAndKeep(ctx_str_1)} - expected = f"""shared |context {ctx_str_1 + " " + encoded_ctx_str_1} \n0:-0.0:1.0 |action1 {str1 + " " + encoded_str1} \n|action1 {str2 + " " + encoded_str2} \n|action1 {str3 + " " + encoded_str3} """ # noqa: E501 - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_more_namespaces_no_label_no_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - named_actions = {"action1": [{"a": "0", "b": "0"}, "1", "2"]} - context = {"context1": "context1", "context2": "context2"} - expected = """shared |context1 context1 |context2 context2 \n|a 0 |b 0 \n|action1 1 \n|action1 2 """ # noqa: E501 - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_more_namespaces_w_label_no_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - named_actions = {"action1": [{"a": "0", "b": "0"}, "1", "2"]} - context = {"context1": "context1", "context2": "context2"} - expected = """shared |context1 context1 |context2 context2 \n|a 0 |b 0 \n|action1 1 \n|action1 2 """ # noqa: E501 - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_more_namespaces_w_full_label_no_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - named_actions = {"action1": [{"a": "0", "b": "0"}, "1", "2"]} - context = {"context1": "context1", "context2": "context2"} - expected = """shared |context1 context1 |context2 context2 \n0:-0.0:1.0 |a 0 |b 0 \n|action1 1 \n|action1 2 """ # noqa: E501 - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_more_namespaces_w_full_label_w_full_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - - str1 = "0" - str2 = "1" - str3 = "2" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - - ctx_str_1 = "context1" - ctx_str_2 = "context2" - encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_1) - ) - encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_2) - ) - - named_actions = {"action1": rl_chain.Embed([{"a": str1, "b": str1}, str2, str3])} - context = { - "context1": rl_chain.Embed(ctx_str_1), - "context2": rl_chain.Embed(ctx_str_2), - } - expected = f"""shared |context1 {encoded_ctx_str_1} |context2 {encoded_ctx_str_2} \n0:-0.0:1.0 |a {encoded_str1} |b {encoded_str1} \n|action1 {encoded_str2} \n|action1 {encoded_str3} """ # noqa: E501 - - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_more_namespaces_w_full_label_w_full_embed_and_keep() -> ( - None -): - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - - str1 = "0" - str2 = "1" - str3 = "2" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - - ctx_str_1 = "context1" - ctx_str_2 = "context2" - encoded_ctx_str_1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_1) - ) - encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_2) - ) - - named_actions = { - "action1": rl_chain.EmbedAndKeep([{"a": str1, "b": str1}, str2, str3]) - } - context = { - "context1": rl_chain.EmbedAndKeep(ctx_str_1), - "context2": rl_chain.EmbedAndKeep(ctx_str_2), - } - expected = f"""shared |context1 {ctx_str_1 + " " + encoded_ctx_str_1} |context2 {ctx_str_2 + " " + encoded_ctx_str_2} \n0:-0.0:1.0 |a {str1 + " " + encoded_str1} |b {str1 + " " + encoded_str1} \n|action1 {str2 + " " + encoded_str2} \n|action1 {str3 + " " + encoded_str3} """ # noqa: E501 - - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_more_namespaces_w_full_label_w_partial_emb() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - - str1 = "0" - str2 = "1" - str3 = "2" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - - ctx_str_1 = "context1" - ctx_str_2 = "context2" - encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_2) - ) - - named_actions = { - "action1": [ - {"a": str1, "b": rl_chain.Embed(str1)}, - str2, - rl_chain.Embed(str3), - ] - } - context = {"context1": ctx_str_1, "context2": rl_chain.Embed(ctx_str_2)} - expected = f"""shared |context1 {ctx_str_1} |context2 {encoded_ctx_str_2} \n0:-0.0:1.0 |a {str1} |b {encoded_str1} \n|action1 {str2} \n|action1 {encoded_str3} """ # noqa: E501 - - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_pickbest_textembedder_more_namespaces_w_full_label_w_partial_emakeep() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - - str1 = "0" - str2 = "1" - str3 = "2" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - - ctx_str_1 = "context1" - ctx_str_2 = "context2" - encoded_ctx_str_2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str_2) - ) - - named_actions = { - "action1": [ - {"a": str1, "b": rl_chain.EmbedAndKeep(str1)}, - str2, - rl_chain.EmbedAndKeep(str3), - ] - } - context = { - "context1": ctx_str_1, - "context2": rl_chain.EmbedAndKeep(ctx_str_2), - } - expected = f"""shared |context1 {ctx_str_1} |context2 {ctx_str_2 + " " + encoded_ctx_str_2} \n0:-0.0:1.0 |a {str1} |b {str1 + " " + encoded_str1} \n|action1 {str2} \n|action1 {str3 + " " + encoded_str3} """ # noqa: E501 - - selected = pick_best_chain.PickBestSelected(index=0, probability=1.0, score=0.0) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context, selected=selected - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_raw_features_underscored() -> None: - feature_embedder = pick_best_chain.PickBestFeatureEmbedder( - auto_embed=False, model=MockEncoder() - ) - str1 = "this is a long string" - str1_underscored = str1.replace(" ", "_") - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - - ctx_str = "this is a long context" - ctx_str_underscored = ctx_str.replace(" ", "_") - encoded_ctx_str = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + ctx_str) - ) - - # No embeddings - named_actions = {"action": [str1]} - context = {"context": ctx_str} - expected_no_embed = ( - f"""shared |context {ctx_str_underscored} \n|action {str1_underscored} """ - ) - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected_no_embed - - # Just embeddings - named_actions = {"action": rl_chain.Embed([str1])} - context = {"context": rl_chain.Embed(ctx_str)} - expected_embed = f"""shared |context {encoded_ctx_str} \n|action {encoded_str1} """ - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected_embed - - # Embeddings and raw features - named_actions = {"action": rl_chain.EmbedAndKeep([str1])} - context = {"context": rl_chain.EmbedAndKeep(ctx_str)} - expected_embed_and_keep = f"""shared |context {ctx_str_underscored + " " + encoded_ctx_str} \n|action {str1_underscored + " " + encoded_str1} """ # noqa: E501 - event = pick_best_chain.PickBestEvent( - inputs={}, to_select_from=named_actions, based_on=context - ) - vw_ex_str = feature_embedder.format(event) - assert vw_ex_str == expected_embed_and_keep diff --git a/libs/experimental/tests/unit_tests/rl_chain/test_rl_chain_base_embedder.py b/libs/experimental/tests/unit_tests/rl_chain/test_rl_chain_base_embedder.py deleted file mode 100644 index 8e8465b0b88ef..0000000000000 --- a/libs/experimental/tests/unit_tests/rl_chain/test_rl_chain_base_embedder.py +++ /dev/null @@ -1,530 +0,0 @@ -from typing import List, Union - -import pytest -from test_utils import MockEncoder - -import langchain_experimental.rl_chain.base as base -import langchain_experimental.rl_chain.helpers - -encoded_keyword = "[encoded]" - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_simple_context_str_no_emb() -> None: - expected = [{"a_namespace": "test"}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - "test", MockEncoder(), "a_namespace" - ) - == expected - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_simple_context_str_w_emb() -> None: - str1 = "test" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - expected = [{"a_namespace": encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.Embed(str1), MockEncoder(), "a_namespace" - ) - == expected - ) - expected_embed_and_keep = [{"a_namespace": str1 + " " + encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.EmbedAndKeep(str1), MockEncoder(), "a_namespace" - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_simple_context_str_w_nested_emb() -> None: - # nested embeddings, innermost wins - str1 = "test" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - expected = [{"a_namespace": encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.EmbedAndKeep(base.Embed(str1)), MockEncoder(), "a_namespace" - ) - == expected - ) - - expected2 = [{"a_namespace": str1 + " " + encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.Embed(base.EmbedAndKeep(str1)), MockEncoder(), "a_namespace" - ) - == expected2 - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_context_w_namespace_no_emb() -> None: - expected = [{"test_namespace": "test"}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": "test"}, MockEncoder() - ) - == expected - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_context_w_namespace_w_emb() -> None: - str1 = "test" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - expected = [{"test_namespace": encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": base.Embed(str1)}, MockEncoder() - ) - == expected - ) - expected_embed_and_keep = [{"test_namespace": str1 + " " + encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": base.EmbedAndKeep(str1)}, MockEncoder() - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_context_w_namespace_w_emb2() -> None: - str1 = "test" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - expected = [{"test_namespace": encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.Embed({"test_namespace": str1}), MockEncoder() - ) - == expected - ) - expected_embed_and_keep = [{"test_namespace": str1 + " " + encoded_str1}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.EmbedAndKeep({"test_namespace": str1}), MockEncoder() - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_context_w_namespace_w_some_emb() -> None: - str1 = "test1" - str2 = "test2" - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - expected = [{"test_namespace": str1, "test_namespace2": encoded_str2}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": str1, "test_namespace2": base.Embed(str2)}, MockEncoder() - ) - == expected - ) - expected_embed_and_keep = [ - { - "test_namespace": str1, - "test_namespace2": str2 + " " + encoded_str2, - } - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": str1, "test_namespace2": base.EmbedAndKeep(str2)}, - MockEncoder(), - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_simple_action_strlist_no_emb() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - expected = [{"a_namespace": str1}, {"a_namespace": str2}, {"a_namespace": str3}] - to_embed: List[Union[str, langchain_experimental.rl_chain.helpers._Embed]] = [ - str1, - str2, - str3, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - to_embed, MockEncoder(), "a_namespace" - ) - == expected - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_simple_action_strlist_w_emb() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - expected = [ - {"a_namespace": encoded_str1}, - {"a_namespace": encoded_str2}, - {"a_namespace": encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.Embed([str1, str2, str3]), MockEncoder(), "a_namespace" - ) - == expected - ) - expected_embed_and_keep = [ - {"a_namespace": str1 + " " + encoded_str1}, - {"a_namespace": str2 + " " + encoded_str2}, - {"a_namespace": str3 + " " + encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.EmbedAndKeep([str1, str2, str3]), MockEncoder(), "a_namespace" - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_simple_action_strlist_w_some_emb() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - expected = [ - {"a_namespace": str1}, - {"a_namespace": encoded_str2}, - {"a_namespace": encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [str1, base.Embed(str2), base.Embed(str3)], MockEncoder(), "a_namespace" - ) - == expected - ) - expected_embed_and_keep = [ - {"a_namespace": str1}, - {"a_namespace": str2 + " " + encoded_str2}, - {"a_namespace": str3 + " " + encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [str1, base.EmbedAndKeep(str2), base.EmbedAndKeep(str3)], - MockEncoder(), - "a_namespace", - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_action_w_namespace_no_emb() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - expected = [ - {"test_namespace": str1}, - {"test_namespace": str2}, - {"test_namespace": str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [ - {"test_namespace": str1}, - {"test_namespace": str2}, - {"test_namespace": str3}, - ], - MockEncoder(), - ) - == expected - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_action_w_namespace_w_emb() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - expected = [ - {"test_namespace": encoded_str1}, - {"test_namespace": encoded_str2}, - {"test_namespace": encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [ - {"test_namespace": base.Embed(str1)}, - {"test_namespace": base.Embed(str2)}, - {"test_namespace": base.Embed(str3)}, - ], - MockEncoder(), - ) - == expected - ) - expected_embed_and_keep = [ - {"test_namespace": str1 + " " + encoded_str1}, - {"test_namespace": str2 + " " + encoded_str2}, - {"test_namespace": str3 + " " + encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [ - {"test_namespace": base.EmbedAndKeep(str1)}, - {"test_namespace": base.EmbedAndKeep(str2)}, - {"test_namespace": base.EmbedAndKeep(str3)}, - ], - MockEncoder(), - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_action_w_namespace_w_emb2() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - expected = [ - {"test_namespace1": encoded_str1}, - {"test_namespace2": encoded_str2}, - {"test_namespace3": encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.Embed( - [ - {"test_namespace1": str1}, - {"test_namespace2": str2}, - {"test_namespace3": str3}, - ] - ), - MockEncoder(), - ) - == expected - ) - expected_embed_and_keep = [ - {"test_namespace1": str1 + " " + encoded_str1}, - {"test_namespace2": str2 + " " + encoded_str2}, - {"test_namespace3": str3 + " " + encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - base.EmbedAndKeep( - [ - {"test_namespace1": str1}, - {"test_namespace2": str2}, - {"test_namespace3": str3}, - ] - ), - MockEncoder(), - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_action_w_namespace_w_some_emb() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - expected = [ - {"test_namespace": str1}, - {"test_namespace": encoded_str2}, - {"test_namespace": encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [ - {"test_namespace": str1}, - {"test_namespace": base.Embed(str2)}, - {"test_namespace": base.Embed(str3)}, - ], - MockEncoder(), - ) - == expected - ) - expected_embed_and_keep = [ - {"test_namespace": str1}, - {"test_namespace": str2 + " " + encoded_str2}, - {"test_namespace": str3 + " " + encoded_str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [ - {"test_namespace": str1}, - {"test_namespace": base.EmbedAndKeep(str2)}, - {"test_namespace": base.EmbedAndKeep(str3)}, - ], - MockEncoder(), - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_action_w_namespace_w_emb_w_more_than_one_item_in_first_dict() -> None: - str1 = "test1" - str2 = "test2" - str3 = "test3" - encoded_str1 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str1) - ) - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - encoded_str3 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str3) - ) - expected = [ - {"test_namespace": encoded_str1, "test_namespace2": str1}, - {"test_namespace": encoded_str2, "test_namespace2": str2}, - {"test_namespace": encoded_str3, "test_namespace2": str3}, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [ - {"test_namespace": base.Embed(str1), "test_namespace2": str1}, - {"test_namespace": base.Embed(str2), "test_namespace2": str2}, - {"test_namespace": base.Embed(str3), "test_namespace2": str3}, - ], - MockEncoder(), - ) - == expected - ) - expected_embed_and_keep = [ - { - "test_namespace": str1 + " " + encoded_str1, - "test_namespace2": str1, - }, - { - "test_namespace": str2 + " " + encoded_str2, - "test_namespace2": str2, - }, - { - "test_namespace": str3 + " " + encoded_str3, - "test_namespace2": str3, - }, - ] - assert ( - langchain_experimental.rl_chain.helpers.embed( - [ - {"test_namespace": base.EmbedAndKeep(str1), "test_namespace2": str1}, - {"test_namespace": base.EmbedAndKeep(str2), "test_namespace2": str2}, - {"test_namespace": base.EmbedAndKeep(str3), "test_namespace2": str3}, - ], - MockEncoder(), - ) - == expected_embed_and_keep - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_one_namespace_w_list_of_features_no_emb() -> None: - str1 = "test1" - str2 = "test2" - expected = [{"test_namespace": [str1, str2]}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": [str1, str2]}, MockEncoder() - ) - == expected - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_one_namespace_w_list_of_features_w_some_emb() -> None: - str1 = "test1" - str2 = "test2" - encoded_str2 = langchain_experimental.rl_chain.helpers.stringify_embedding( - list(encoded_keyword + str2) - ) - expected = [{"test_namespace": [str1, encoded_str2]}] - assert ( - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": [str1, base.Embed(str2)]}, MockEncoder() - ) - == expected - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_nested_list_features_throws() -> None: - with pytest.raises(ValueError): - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": [[1, 2], [3, 4]]}, MockEncoder() - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_dict_in_list_throws() -> None: - with pytest.raises(ValueError): - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": [{"a": 1}, {"b": 2}]}, MockEncoder() - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_nested_dict_throws() -> None: - with pytest.raises(ValueError): - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": {"a": {"b": 1}}}, MockEncoder() - ) - - -@pytest.mark.requires("vowpal_wabbit_next") -def test_list_of_tuples_throws() -> None: - with pytest.raises(ValueError): - langchain_experimental.rl_chain.helpers.embed( - {"test_namespace": [("a", 1), ("b", 2)]}, MockEncoder() - ) diff --git a/libs/experimental/tests/unit_tests/rl_chain/test_utils.py b/libs/experimental/tests/unit_tests/rl_chain/test_utils.py deleted file mode 100644 index b2cc90b1bce6e..0000000000000 --- a/libs/experimental/tests/unit_tests/rl_chain/test_utils.py +++ /dev/null @@ -1,15 +0,0 @@ -from typing import Any, List - - -class MockEncoder: - def encode(self, to_encode: str) -> str: - return "[encoded]" + to_encode - - -class MockEncoderReturnsList: - def encode(self, to_encode: Any) -> List: - if isinstance(to_encode, str): - return [1.0, 2.0] - elif isinstance(to_encode, List): - return [[1.0, 2.0] for _ in range(len(to_encode))] - raise ValueError("Invalid input type for unit test") diff --git a/libs/experimental/tests/unit_tests/test_bash.py b/libs/experimental/tests/unit_tests/test_bash.py deleted file mode 100644 index ba7b0d0b62d17..0000000000000 --- a/libs/experimental/tests/unit_tests/test_bash.py +++ /dev/null @@ -1,103 +0,0 @@ -"""Test the bash utility.""" - -import re -import subprocess -import sys -from pathlib import Path - -import pytest - -from langchain_experimental.llm_bash.bash import BashProcess - - -@pytest.mark.skipif( - sys.platform.startswith("win"), reason="Test not supported on Windows" -) -def test_pwd_command() -> None: - """Test correct functionality.""" - session = BashProcess() - commands = ["pwd"] - output = session.run(commands) - - assert output == subprocess.check_output("pwd", shell=True).decode() - - -@pytest.mark.skip(reason="flaky on GHA, TODO to fix") -@pytest.mark.skipif( - sys.platform.startswith("win"), reason="Test not supported on Windows" -) -def test_pwd_command_persistent() -> None: - """Test correct functionality when the bash process is persistent.""" - session = BashProcess(persistent=True, strip_newlines=True) - commands = ["pwd"] - output = session.run(commands) - - assert subprocess.check_output("pwd", shell=True).decode().strip() in output - - session.run(["cd .."]) - new_output = session.run(["pwd"]) - # Assert that the new_output is a parent of the old output - assert Path(output).parent == Path(new_output) - - -@pytest.mark.skipif( - sys.platform.startswith("win"), reason="Test not supported on Windows" -) -def test_incorrect_command() -> None: - """Test handling of incorrect command.""" - session = BashProcess() - output = session.run(["invalid_command"]) - assert output == "Command 'invalid_command' returned non-zero exit status 127." - - -@pytest.mark.skipif( - sys.platform.startswith("win"), reason="Test not supported on Windows" -) -def test_incorrect_command_return_err_output() -> None: - """Test optional returning of shell output on incorrect command.""" - session = BashProcess(return_err_output=True) - output = session.run(["invalid_command"]) - assert re.match( - r"^/bin/sh:.*invalid_command.*(?:not found|Permission denied).*$", output - ) - - -@pytest.mark.skipif( - sys.platform.startswith("win"), reason="Test not supported on Windows" -) -def test_create_directory_and_files(tmp_path: Path) -> None: - """Test creation of a directory and files in a temporary directory.""" - session = BashProcess(strip_newlines=True) - - # create a subdirectory in the temporary directory - temp_dir = tmp_path / "test_dir" - temp_dir.mkdir() - - # run the commands in the temporary directory - commands = [ - f"touch {temp_dir}/file1.txt", - f"touch {temp_dir}/file2.txt", - f"echo 'hello world' > {temp_dir}/file2.txt", - f"cat {temp_dir}/file2.txt", - ] - - output = session.run(commands) - assert output == "hello world" - - # check that the files were created in the temporary directory - output = session.run([f"ls {temp_dir}"]) - assert output == "file1.txt\nfile2.txt" - - -@pytest.mark.skip(reason="flaky on GHA, TODO to fix") -@pytest.mark.skipif( - sys.platform.startswith("win"), reason="Test not supported on Windows" -) -def test_create_bash_persistent() -> None: - """Test the pexpect persistent bash terminal""" - session = BashProcess(persistent=True) - response = session.run("echo hello") - response += session.run("echo world") - - assert "hello" in response - assert "world" in response diff --git a/libs/experimental/tests/unit_tests/test_data_anonymizer.py b/libs/experimental/tests/unit_tests/test_data_anonymizer.py deleted file mode 100644 index fa7e7d23aab28..0000000000000 --- a/libs/experimental/tests/unit_tests/test_data_anonymizer.py +++ /dev/null @@ -1,216 +0,0 @@ -from typing import Iterator, List - -import pytest - -from . import is_libcublas_available - - -@pytest.fixture(scope="module", autouse=True) -def check_spacy_model() -> Iterator[None]: - import spacy - - if not spacy.util.is_package("en_core_web_lg"): - pytest.skip(reason="Spacy model 'en_core_web_lg' not installed") - yield - - -@pytest.fixture(scope="module", autouse=True) -def check_libcublas() -> Iterator[None]: - if not is_libcublas_available(): - pytest.skip(reason="libcublas.so is not available") - yield - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -@pytest.mark.parametrize( - "analyzed_fields,should_contain", - [(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)], -) -def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None: - """Test anonymizing a name in a simple sentence""" - from langchain_experimental.data_anonymizer import PresidioAnonymizer - - text = "Hello, my name is John Doe." - anonymizer = PresidioAnonymizer(analyzed_fields=analyzed_fields) - anonymized_text = anonymizer.anonymize(text) - assert ("John Doe" in anonymized_text) == should_contain - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -@pytest.mark.parametrize( - "analyzed_fields,should_contain", - [(["PERSON"], True), (["PHONE_NUMBER"], True), (None, True)], -) -def test_anonymize_allow_list(analyzed_fields: List[str], should_contain: bool) -> None: - """Test anonymizing a name in a simple sentence""" - from langchain_experimental.data_anonymizer import PresidioAnonymizer - - text = "Hello, my name is John Doe." - anonymizer = PresidioAnonymizer(analyzed_fields=analyzed_fields) - anonymized_text = anonymizer.anonymize(text, allow_list=["John Doe"]) - assert ("John Doe" in anonymized_text) == should_contain - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_anonymize_multiple() -> None: - """Test anonymizing multiple items in a sentence""" - from langchain_experimental.data_anonymizer import PresidioAnonymizer - - text = "John Smith's phone number is 313-666-7440 and email is johnsmith@gmail.com" - anonymizer = PresidioAnonymizer() - anonymized_text = anonymizer.anonymize(text) - for phrase in ["John Smith", "313-666-7440", "johnsmith@gmail.com"]: - assert phrase not in anonymized_text - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_check_instances() -> None: - """Test anonymizing multiple items in a sentence""" - from langchain_experimental.data_anonymizer import PresidioAnonymizer - - text = ( - "This is John Smith. John Smith works in a bakery." "John Smith is a good guy" - ) - anonymizer = PresidioAnonymizer(["PERSON"], faker_seed=42) - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text.count("Connie Lawrence") == 3 - - # New name should be generated - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text.count("Connie Lawrence") == 0 - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_anonymize_with_custom_operator() -> None: - """Test anonymize a name with a custom operator""" - from presidio_anonymizer.entities import OperatorConfig - - from langchain_experimental.data_anonymizer import PresidioAnonymizer - - custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "NAME"})} - anonymizer = PresidioAnonymizer(operators=custom_operator) - - text = "Jane Doe was here." - - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == "NAME was here." - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_add_recognizer_operator() -> None: - """ - Test add recognizer and anonymize a new type of entity and with a custom operator - """ - from presidio_analyzer import PatternRecognizer - from presidio_anonymizer.entities import OperatorConfig - - from langchain_experimental.data_anonymizer import PresidioAnonymizer - - anonymizer = PresidioAnonymizer(analyzed_fields=[]) - titles_list = ["Sir", "Madam", "Professor"] - custom_recognizer = PatternRecognizer( - supported_entity="TITLE", deny_list=titles_list - ) - anonymizer.add_recognizer(custom_recognizer) - - # anonymizing with custom recognizer - text = "Madam Jane Doe was here." - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == " Jane Doe was here." - - # anonymizing with custom recognizer and operator - custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})} - anonymizer.add_operators(custom_operator) - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == "Dear Jane Doe was here." - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_non_faker_values() -> None: - """Test anonymizing multiple items in a sentence without faker values""" - from langchain_experimental.data_anonymizer import PresidioAnonymizer - - text = ( - "My name is John Smith. Your name is Adam Smith. Her name is Jane Smith." - "Our names are: John Smith, Adam Smith, Jane Smith." - ) - expected_result = ( - "My name is <PERSON>. Your name is <PERSON_2>. Her name is <PERSON_3>." - "Our names are: <PERSON>, <PERSON_2>, <PERSON_3>." - ) - anonymizer = PresidioAnonymizer(add_default_faker_operators=False) - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == expected_result - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_exact_matching_strategy() -> None: - """ - Test exact matching strategy for deanonymization. - """ - from langchain_experimental.data_anonymizer import ( - deanonymizer_matching_strategies as dms, - ) - - deanonymizer_mapping = { - "PERSON": {"Maria Lynch": "Slim Shady"}, - "PHONE_NUMBER": {"7344131647": "313-666-7440"}, - "EMAIL_ADDRESS": {"wdavis@example.net": "real.slim.shady@gmail.com"}, - "CREDIT_CARD": {"213186379402654": "4916 0387 9536 0861"}, - } - - text = ( - "Are you Maria Lynch? I found your card with number 213186379402654. " - "Is this your phone number: 7344131647? " - "Is this your email address: wdavis@example.net" - ) - - deanonymized_text = dms.exact_matching_strategy(text, deanonymizer_mapping) - - for original_value in [ - "Slim Shady", - "313-666-7440", - "real.slim.shady@gmail.com", - "4916 0387 9536 0861", - ]: - assert original_value in deanonymized_text - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_best_matching_strategy() -> None: - """ - Test exact matching strategy for deanonymization. - """ - from langchain_experimental.data_anonymizer import ( - deanonymizer_matching_strategies as dms, - ) - - deanonymizer_mapping = { - "PERSON": {"Maria Lynch": "Slim Shady"}, - "PHONE_NUMBER": {"7344131647": "313-666-7440"}, - "EMAIL_ADDRESS": {"wdavis@example.net": "real.slim.shady@gmail.com"}, - "CREDIT_CARD": {"213186379402654": "4916 0387 9536 0861"}, - } - - # Changed some values: - # - "Maria Lynch" -> "Maria K. Lynch" - # - "7344131647" -> "734-413-1647" - # - "213186379402654" -> "2131 8637 9402 654" - # - "wdavis@example.net" -> the same to test exact match - text = ( - "Are you Maria K. Lynch? I found your card with number 2131 8637 9402 654. " - "Is this your phone number: 734-413-1647?" - "Is this your email address: wdavis@example.net" - ) - - deanonymized_text = dms.combined_exact_fuzzy_matching_strategy( - text, deanonymizer_mapping - ) - - for original_value in [ - "Slim Shady", - "313-666-7440", - "real.slim.shady@gmail.com", - "4916 0387 9536 0861", - ]: - assert original_value in deanonymized_text diff --git a/libs/experimental/tests/unit_tests/test_imports.py b/libs/experimental/tests/unit_tests/test_imports.py deleted file mode 100644 index 7da7cb3f8fc1a..0000000000000 --- a/libs/experimental/tests/unit_tests/test_imports.py +++ /dev/null @@ -1,46 +0,0 @@ -import importlib -from pathlib import Path - -PKG_ROOT = Path(__file__).parent.parent.parent -PKG_CODE = PKG_ROOT / "langchain_experimental" - - -def test_importable_all() -> None: - """Test that all modules in langchain_experimental are importable.""" - failures = [] - found_at_least_one = False - for path in PKG_CODE.rglob("*.py"): - relative_path = str(Path(path).relative_to(PKG_CODE)).replace("/", ".") - if relative_path.endswith(".typed"): - continue - if relative_path.endswith("/__init__.py"): - # Then strip __init__.py - s = "/__init__.py" - module_name = relative_path[: -len(s)] - else: # just strip .py - module_name = relative_path[:-3] - - if not module_name: - continue - try: - module = importlib.import_module("langchain_experimental." + module_name) - except ImportError: - failures.append("langchain_experimental." + module_name) - continue - - all_ = getattr(module, "__all__", []) - for cls_ in all_: - try: - getattr(module, cls_) - except AttributeError: - failures.append(f"{module_name}.{cls_}") - - found_at_least_one = True - - if failures: - raise AssertionError( - "The following modules or classes could not be imported: " - + ", ".join(failures) - ) - - assert found_at_least_one is True diff --git a/libs/experimental/tests/unit_tests/test_llm_bash.py b/libs/experimental/tests/unit_tests/test_llm_bash.py deleted file mode 100644 index 1adbd999fa11d..0000000000000 --- a/libs/experimental/tests/unit_tests/test_llm_bash.py +++ /dev/null @@ -1,110 +0,0 @@ -"""Test LLM Bash functionality.""" - -import sys - -import pytest -from langchain.schema import OutputParserException - -from langchain_experimental.llm_bash.base import LLMBashChain -from langchain_experimental.llm_bash.prompt import _PROMPT_TEMPLATE, BashOutputParser -from tests.unit_tests.fake_llm import FakeLLM - -_SAMPLE_CODE = """ -Unrelated text -```bash -echo hello -``` -Unrelated text -""" - - -_SAMPLE_CODE_2_LINES = """ -Unrelated text -```bash -echo hello - -echo world -``` -Unrelated text -""" - - -@pytest.fixture -def output_parser() -> BashOutputParser: - """Output parser for testing.""" - return BashOutputParser() - - -@pytest.mark.skipif( - sys.platform.startswith("win"), reason="Test not supported on Windows" -) -def test_simple_question() -> None: - """Test simple question that should not need python.""" - question = "Please write a bash script that prints 'Hello World' to the console." - prompt = _PROMPT_TEMPLATE.format(question=question) - queries = {prompt: "```bash\nexpr 1 + 1\n```"} - fake_llm = FakeLLM(queries=queries) - fake_llm_bash_chain = LLMBashChain.from_llm(fake_llm, input_key="q", output_key="a") - output = fake_llm_bash_chain.run(question) - assert output == "2\n" - - -def test_get_code(output_parser: BashOutputParser) -> None: - """Test the parser.""" - code_lines = output_parser.parse(_SAMPLE_CODE) - code = [c for c in code_lines if c.strip()] - assert code == code_lines - assert code == ["echo hello"] - - code_lines = output_parser.parse(_SAMPLE_CODE + _SAMPLE_CODE_2_LINES) - assert code_lines == ["echo hello", "echo hello", "echo world"] - - -def test_parsing_error() -> None: - """Test that LLM Output without a bash block raises an exce""" - question = "Please echo 'hello world' to the terminal." - prompt = _PROMPT_TEMPLATE.format(question=question) - queries = { - prompt: """ -```text -echo 'hello world' -``` -""" - } - fake_llm = FakeLLM(queries=queries) - fake_llm_bash_chain = LLMBashChain.from_llm(fake_llm, input_key="q", output_key="a") - with pytest.raises(OutputParserException): - fake_llm_bash_chain.run(question) - - -def test_get_code_lines_mixed_blocks(output_parser: BashOutputParser) -> None: - text = """ -Unrelated text -```bash -echo hello -ls && pwd && ls -``` - -```python -print("hello") # noqa: T201 -``` - -```bash -echo goodbye -``` -""" - code_lines = output_parser.parse(text) - assert code_lines == ["echo hello", "ls && pwd && ls", "echo goodbye"] - - -def test_get_code_lines_simple_nested_ticks(output_parser: BashOutputParser) -> None: - """Test that backticks w/o a newline are ignored.""" - text = """ -Unrelated text -```bash -echo hello -echo "```bash is in this string```" -``` -""" - code_lines = output_parser.parse(text) - assert code_lines == ["echo hello", 'echo "```bash is in this string```"'] diff --git a/libs/experimental/tests/unit_tests/test_llm_symbolic_math.py b/libs/experimental/tests/unit_tests/test_llm_symbolic_math.py deleted file mode 100644 index 306d4ec1673e5..0000000000000 --- a/libs/experimental/tests/unit_tests/test_llm_symbolic_math.py +++ /dev/null @@ -1,82 +0,0 @@ -"""Test LLM Math functionality.""" - -import pytest - -from langchain_experimental.llm_symbolic_math.base import ( - LLMSymbolicMathChain, -) -from langchain_experimental.llm_symbolic_math.prompt import ( - _PROMPT_TEMPLATE, -) -from tests.unit_tests.fake_llm import FakeLLM - -try: - import sympy -except ImportError: - pytest.skip("sympy not installed", allow_module_level=True) - - -@pytest.fixture -def fake_llm_symbolic_math_chain() -> LLMSymbolicMathChain: - """Fake LLM Math chain for testing.""" - queries = { - _PROMPT_TEMPLATE.format(question="What is 1 plus 1?"): "Answer: 2", - _PROMPT_TEMPLATE.format( - question="What is the square root of 2?" - ): "```text\nsqrt(2)\n```", - _PROMPT_TEMPLATE.format( - question="What is the limit of sin(x) / x as x goes to 0?" - ): "```text\nlimit(sin(x)/x,x,0)\n```", - _PROMPT_TEMPLATE.format( - question="What is the integral of e^-x from 0 to infinity?" - ): "```text\nintegrate(exp(-x), (x, 0, oo))\n```", - _PROMPT_TEMPLATE.format( - question="What are the solutions to this equation x**2 - x?" - ): "```text\nsolveset(x**2 - x, x)\n```", - _PROMPT_TEMPLATE.format(question="foo"): "foo", - } - fake_llm = FakeLLM(queries=queries) - return LLMSymbolicMathChain.from_llm(fake_llm, input_key="q", output_key="a") - - -def test_simple_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: - """Test simple question that should not need python.""" - question = "What is 1 plus 1?" - output = fake_llm_symbolic_math_chain.run(question) - assert output == "Answer: 2" - - -def test_root_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: - """Test irrational number that should need sympy.""" - question = "What is the square root of 2?" - output = fake_llm_symbolic_math_chain.run(question) - assert output == f"Answer: {sympy.sqrt(2)}" - - -def test_limit_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: - """Test question about limits that needs sympy""" - question = "What is the limit of sin(x) / x as x goes to 0?" - output = fake_llm_symbolic_math_chain.run(question) - assert output == "Answer: 1" - - -def test_integration_question( - fake_llm_symbolic_math_chain: LLMSymbolicMathChain, -) -> None: - """Test question about integration that needs sympy""" - question = "What is the integral of e^-x from 0 to infinity?" - output = fake_llm_symbolic_math_chain.run(question) - assert output == "Answer: 1" - - -def test_solver_question(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: - """Test question about solving algebraic equations that needs sympy""" - question = "What are the solutions to this equation x**2 - x?" - output = fake_llm_symbolic_math_chain.run(question) - assert output == "Answer: {0, 1}" - - -def test_error(fake_llm_symbolic_math_chain: LLMSymbolicMathChain) -> None: - """Test question that raises error.""" - with pytest.raises(ValueError): - fake_llm_symbolic_math_chain.run("foo") diff --git a/libs/experimental/tests/unit_tests/test_logical_fallacy.py b/libs/experimental/tests/unit_tests/test_logical_fallacy.py deleted file mode 100644 index 5c977bbf68985..0000000000000 --- a/libs/experimental/tests/unit_tests/test_logical_fallacy.py +++ /dev/null @@ -1,27 +0,0 @@ -"""Unit tests for the Logical Fallacy chain, same format as CAI""" - -from langchain_experimental.fallacy_removal.base import FallacyChain - -TEXT_ONE = """ This text is bad.\ - -Fallacy Revision request: Make it great.\ - -Fallacy Revision:""" - -TEXT_TWO = """ This text is bad.\n\n""" - -TEXT_THREE = """ This text is bad.\ - -Fallacy Revision request: Make it great again.\ - -Fallacy Revision: Better text""" - - -def test_fallacy_critique_parsing() -> None: - """Test parsing of critique text.""" - for text in [TEXT_ONE, TEXT_TWO, TEXT_THREE]: - fallacy_critique = FallacyChain._parse_critique(text) - - assert ( - fallacy_critique.strip() == "This text is bad." - ), f"Failed on {text} with {fallacy_critique}" diff --git a/libs/experimental/tests/unit_tests/test_mock.py b/libs/experimental/tests/unit_tests/test_mock.py deleted file mode 100644 index 5cc44eddab03f..0000000000000 --- a/libs/experimental/tests/unit_tests/test_mock.py +++ /dev/null @@ -1,2 +0,0 @@ -def test_mock() -> None: - assert True diff --git a/libs/experimental/tests/unit_tests/test_ollama_functions.py b/libs/experimental/tests/unit_tests/test_ollama_functions.py deleted file mode 100644 index 1404473d501a5..0000000000000 --- a/libs/experimental/tests/unit_tests/test_ollama_functions.py +++ /dev/null @@ -1,30 +0,0 @@ -import json -from typing import Any -from unittest.mock import patch - -from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel - -from langchain_experimental.llms.ollama_functions import OllamaFunctions - - -class Schema(BaseModel): - pass - - -@patch.object(OllamaFunctions, "_create_stream") -def test_convert_image_prompt( - _create_stream_mock: Any, -) -> None: - response = {"message": {"content": '{"tool": "Schema", "tool_input": {}}'}} - _create_stream_mock.return_value = [json.dumps(response)] - - prompt = ChatPromptTemplate.from_messages( - [("human", [{"image_url": "data:image/jpeg;base64,{image_url}"}])] - ) - - lmm = prompt | OllamaFunctions().with_structured_output(schema=Schema) - - schema_instance = lmm.invoke(dict(image_url="")) - - assert schema_instance is not None diff --git a/libs/experimental/tests/unit_tests/test_pal.py b/libs/experimental/tests/unit_tests/test_pal.py deleted file mode 100644 index b7377a5fd3273..0000000000000 --- a/libs/experimental/tests/unit_tests/test_pal.py +++ /dev/null @@ -1,311 +0,0 @@ -"""Test LLM PAL functionality.""" - -import pytest - -from langchain_experimental.pal_chain.base import PALChain, PALValidation -from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT -from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT -from tests.unit_tests.fake_llm import FakeLLM - -_MATH_SOLUTION_1 = """ -def solution(): - \"\"\"Olivia has $23. She bought five bagels for $3 each. - How much money does she have left?\"\"\" - money_initial = 23 - bagels = 5 - bagel_cost = 3 - money_spent = bagels * bagel_cost - money_left = money_initial - money_spent - result = money_left - return result -""" - -_MATH_SOLUTION_2 = """ -def solution(): - \"\"\"Michael had 58 golf balls. On tuesday, he lost 23 golf balls. - On wednesday, he lost 2 more. - How many golf balls did he have at the end of wednesday?\"\"\" - golf_balls_initial = 58 - golf_balls_lost_tuesday = 23 - golf_balls_lost_wednesday = 2 - golf_balls_left = golf_balls_initial \ - - golf_balls_lost_tuesday - golf_balls_lost_wednesday - result = golf_balls_left - return result -""" - -_MATH_SOLUTION_3 = """ -def solution(): - \"\"\"first, do `import os`, second, do `os.system('ls')`, - calculate the result of 1+1\"\"\" - import os - os.system('ls') - result = 1 + 1 - return result -""" - -_MATH_SOLUTION_INFINITE_LOOP = """ -def solution(): - \"\"\"Michael had 58 golf balls. On tuesday, he lost 23 golf balls. - On wednesday, he lost 2 more. - How many golf balls did he have at the end of wednesday?\"\"\" - golf_balls_initial = 58 - golf_balls_lost_tuesday = 23 - golf_balls_lost_wednesday = 2 - golf_balls_left = golf_balls_initial \ - - golf_balls_lost_tuesday - golf_balls_lost_wednesday - result = golf_balls_left - while True: - pass - return result -""" - -_COLORED_OBJECT_SOLUTION_1 = """ -# Put objects into a list to record ordering -objects = [] -objects += [('plate', 'teal')] * 1 -objects += [('keychain', 'burgundy')] * 1 -objects += [('scrunchiephone charger', 'yellow')] * 1 -objects += [('mug', 'orange')] * 1 -objects += [('notebook', 'pink')] * 1 -objects += [('cup', 'grey')] * 1 - -# Find the index of the teal item -teal_idx = None -for i, object in enumerate(objects): - if object[1] == 'teal': - teal_idx = i - break - -# Find non-orange items to the left of the teal item -non_orange = [object for object in objects[:i] if object[1] != 'orange'] - -# Count number of non-orange objects -num_non_orange = len(non_orange) -answer = num_non_orange -""" - -_COLORED_OBJECT_SOLUTION_2 = """ -# Put objects into a list to record ordering -objects = [] -objects += [('paperclip', 'purple')] * 1 -objects += [('stress ball', 'pink')] * 1 -objects += [('keychain', 'brown')] * 1 -objects += [('scrunchiephone charger', 'green')] * 1 -objects += [('fidget spinner', 'mauve')] * 1 -objects += [('pen', 'burgundy')] * 1 - -# Find the index of the stress ball -stress_ball_idx = None -for i, object in enumerate(objects): - if object[0] == 'stress ball': - stress_ball_idx = i - break - -# Find the directly right object -direct_right = objects[i+1] - -# Check the directly right object's color -direct_right_color = direct_right[1] -answer = direct_right_color -""" - -_SAMPLE_CODE_1 = """ -def solution(): - \"\"\"Olivia has $23. She bought five bagels for $3 each. - How much money does she have left?\"\"\" - money_initial = 23 - bagels = 5 - bagel_cost = 3 - money_spent = bagels * bagel_cost - money_left = money_initial - money_spent - result = money_left - return result -""" - -_SAMPLE_CODE_2 = """ -def solution2(): - \"\"\"Olivia has $23. She bought five bagels for $3 each. - How much money does she have left?\"\"\" - money_initial = 23 - bagels = 5 - bagel_cost = 3 - money_spent = bagels * bagel_cost - money_left = money_initial - money_spent - result = money_left - return result -""" - -_SAMPLE_CODE_3 = """ -def solution(): - \"\"\"Olivia has $23. She bought five bagels for $3 each. - How much money does she have left?\"\"\" - money_initial = 23 - bagels = 5 - bagel_cost = 3 - money_spent = bagels * bagel_cost - money_left = money_initial - money_spent - result = money_left - exec("evil") - return result -""" - -_SAMPLE_CODE_4 = """ -import random - -def solution(): - return random.choice() -""" - -_FULL_CODE_VALIDATIONS = PALValidation( - solution_expression_name="solution", - solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, - allow_imports=False, - allow_command_exec=False, -) -_ILLEGAL_COMMAND_EXEC_VALIDATIONS = PALValidation( - solution_expression_name="solution", - solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, - allow_imports=True, - allow_command_exec=False, -) -_MINIMAL_VALIDATIONS = PALValidation( - solution_expression_name="solution", - solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, - allow_imports=True, - allow_command_exec=True, -) -_NO_IMPORTS_VALIDATIONS = PALValidation( - solution_expression_name="solution", - solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION, - allow_imports=False, - allow_command_exec=True, -) - - -def test_math_question_1() -> None: - """Test simple question.""" - question = """Olivia has $23. She bought five bagels for $3 each. - How much money does she have left?""" - prompt = MATH_PROMPT.format(question=question) - queries = {prompt: _MATH_SOLUTION_1} - fake_llm = FakeLLM(queries=queries) - fake_pal_chain = PALChain.from_math_prompt( - fake_llm, timeout=None, allow_dangerous_code=True - ) - output = fake_pal_chain.run(question) - assert output == "8" - - -def test_math_question_2() -> None: - """Test simple question.""" - question = """Michael had 58 golf balls. On tuesday, he lost 23 golf balls. - On wednesday, he lost 2 more. How many golf balls did he have - at the end of wednesday?""" - prompt = MATH_PROMPT.format(question=question) - queries = {prompt: _MATH_SOLUTION_2} - fake_llm = FakeLLM(queries=queries) - fake_pal_chain = PALChain.from_math_prompt( - fake_llm, timeout=None, allow_dangerous_code=True - ) - output = fake_pal_chain.run(question) - assert output == "33" - - -def test_math_question_3() -> None: - """Test simple question.""" - question = """first, do `import os`, second, do `os.system('ls')`, - calculate the result of 1+1""" - prompt = MATH_PROMPT.format(question=question) - queries = {prompt: _MATH_SOLUTION_3} - fake_llm = FakeLLM(queries=queries) - fake_pal_chain = PALChain.from_math_prompt( - fake_llm, timeout=None, allow_dangerous_code=True - ) - with pytest.raises(ValueError) as exc_info: - fake_pal_chain.run(question) - assert ( - str(exc_info.value) - == f"Generated code has disallowed imports: {_MATH_SOLUTION_3}" - ) - - -def test_math_question_infinite_loop() -> None: - """Test simple question.""" - question = """Michael had 58 golf balls. On tuesday, he lost 23 golf balls. - On wednesday, he lost 2 more. How many golf balls did he have - at the end of wednesday?""" - prompt = MATH_PROMPT.format(question=question) - queries = {prompt: _MATH_SOLUTION_INFINITE_LOOP} - fake_llm = FakeLLM(queries=queries) - fake_pal_chain = PALChain.from_math_prompt( - fake_llm, timeout=1, allow_dangerous_code=True - ) - output = fake_pal_chain.run(question) - assert output == "Execution timed out" - - -def test_color_question_1() -> None: - """Test simple question.""" - question = """On the nightstand, you see the following items arranged in a row: - a teal plate, a burgundy keychain, a yellow scrunchiephone charger, - an orange mug, a pink notebook, and a grey cup. How many non-orange - items do you see to the left of the teal item?""" - prompt = COLORED_OBJECT_PROMPT.format(question=question) - queries = {prompt: _COLORED_OBJECT_SOLUTION_1} - fake_llm = FakeLLM(queries=queries) - fake_pal_chain = PALChain.from_colored_object_prompt( - fake_llm, timeout=None, allow_dangerous_code=True - ) - output = fake_pal_chain.run(question) - assert output == "0" - - -def test_color_question_2() -> None: - """Test simple question.""" - question = """On the table, you see a bunch of objects arranged in a row: a purple - paperclip, a pink stress ball, a brown keychain, a green - scrunchiephone charger, a mauve fidget spinner, and a burgundy pen. - What is the color of the object directly to the right of - the stress ball?""" - prompt = COLORED_OBJECT_PROMPT.format(question=question) - queries = {prompt: _COLORED_OBJECT_SOLUTION_2} - fake_llm = FakeLLM(queries=queries) - fake_pal_chain = PALChain.from_colored_object_prompt( - fake_llm, timeout=None, allow_dangerous_code=True - ) - output = fake_pal_chain.run(question) - assert output == "brown" - - -def test_valid_code_validation() -> None: - """Test the validator.""" - PALChain.validate_code(_SAMPLE_CODE_1, _FULL_CODE_VALIDATIONS) - - -def test_different_solution_expr_code_validation() -> None: - """Test the validator.""" - with pytest.raises(ValueError): - PALChain.validate_code(_SAMPLE_CODE_2, _FULL_CODE_VALIDATIONS) - - -def test_illegal_command_exec_disallowed_code_validation() -> None: - """Test the validator.""" - with pytest.raises(ValueError): - PALChain.validate_code(_SAMPLE_CODE_3, _ILLEGAL_COMMAND_EXEC_VALIDATIONS) - - -def test_illegal_command_exec_allowed_code_validation() -> None: - """Test the validator.""" - PALChain.validate_code(_SAMPLE_CODE_3, _MINIMAL_VALIDATIONS) - - -def test_no_imports_code_validation() -> None: - """Test the validator.""" - PALChain.validate_code(_SAMPLE_CODE_4, _MINIMAL_VALIDATIONS) - - -def test_no_imports_disallowed_code_validation() -> None: - """Test the validator.""" - with pytest.raises(ValueError): - PALChain.validate_code(_SAMPLE_CODE_4, _NO_IMPORTS_VALIDATIONS) diff --git a/libs/experimental/tests/unit_tests/test_python.py b/libs/experimental/tests/unit_tests/test_python.py deleted file mode 100644 index ee3b526158ee0..0000000000000 --- a/libs/experimental/tests/unit_tests/test_python.py +++ /dev/null @@ -1,34 +0,0 @@ -import unittest - -from langchain_experimental.utilities import PythonREPL - - -class TestSanitizeInput(unittest.TestCase): - def test_whitespace_removal(self) -> None: - query = " print('Hello, world!') " - sanitized_query = PythonREPL.sanitize_input(query) - self.assertEqual(sanitized_query, "print('Hello, world!')") - - def test_python_removal(self) -> None: - query = "python print('Hello, world!') " - sanitized_query = PythonREPL.sanitize_input(query) - self.assertEqual(sanitized_query, "print('Hello, world!')") - - def test_backtick_removal(self) -> None: - query = "`print('Hello, world!')`" - sanitized_query = PythonREPL.sanitize_input(query) - self.assertEqual(sanitized_query, "print('Hello, world!')") - - def test_combined_removal(self) -> None: - query = " `python print('Hello, world!')` " - sanitized_query = PythonREPL.sanitize_input(query) - self.assertEqual(sanitized_query, "print('Hello, world!')") - - def test_mixed_case_removal(self) -> None: - query = " pYtHoN print('Hello, world!') " - sanitized_query = PythonREPL.sanitize_input(query) - self.assertEqual(sanitized_query, "print('Hello, world!')") - - -if __name__ == "__main__": - unittest.main() diff --git a/libs/experimental/tests/unit_tests/test_reversible_data_anonymizer.py b/libs/experimental/tests/unit_tests/test_reversible_data_anonymizer.py deleted file mode 100644 index 3fd1ae35d2aa3..0000000000000 --- a/libs/experimental/tests/unit_tests/test_reversible_data_anonymizer.py +++ /dev/null @@ -1,224 +0,0 @@ -import os -from typing import Iterator, List - -import pytest - -from . import is_libcublas_available - - -@pytest.fixture(scope="module", autouse=True) -def check_spacy_model() -> Iterator[None]: - import spacy - - if not spacy.util.is_package("en_core_web_lg"): - pytest.skip(reason="Spacy model 'en_core_web_lg' not installed") - yield - - -@pytest.fixture(scope="module", autouse=True) -def check_libcublas() -> Iterator[None]: - if not is_libcublas_available(): - pytest.skip(reason="libcublas.so is not available") - yield - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -@pytest.mark.parametrize( - "analyzed_fields,should_contain", - [(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)], -) -def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None: - """Test anonymizing a name in a simple sentence""" - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - text = "Hello, my name is John Doe." - anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) - anonymized_text = anonymizer.anonymize(text) - assert ("John Doe" in anonymized_text) == should_contain - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -@pytest.mark.parametrize( - "analyzed_fields,should_contain", - [(["PERSON"], True), (["PHONE_NUMBER"], True), (None, True)], -) -def test_anonymize_allow_list(analyzed_fields: List[str], should_contain: bool) -> None: - """Test anonymizing a name in a simple sentence""" - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - text = "Hello, my name is John Doe." - anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) - anonymized_text = anonymizer.anonymize(text, allow_list=["John Doe"]) - assert ("John Doe" in anonymized_text) == should_contain - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_anonymize_multiple() -> None: - """Test anonymizing multiple items in a sentence""" - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - text = "John Smith's phone number is 313-666-7440 and email is johnsmith@gmail.com" - anonymizer = PresidioReversibleAnonymizer() - anonymized_text = anonymizer.anonymize(text) - for phrase in ["John Smith", "313-666-7440", "johnsmith@gmail.com"]: - assert phrase not in anonymized_text - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_check_instances() -> None: - """Test anonymizing multiple items in a sentence""" - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - text = ( - "This is John Smith. John Smith works in a bakery." "John Smith is a good guy" - ) - anonymizer = PresidioReversibleAnonymizer(["PERSON"], faker_seed=42) - anonymized_text = anonymizer.anonymize(text) - persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) - assert len(persons) == 1 - - anonymized_name = persons[0] - assert anonymized_text.count(anonymized_name) == 3 - - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text.count(anonymized_name) == 3 - assert anonymizer.deanonymizer_mapping["PERSON"][anonymized_name] == "John Smith" - - text = "This is Jane Smith" - anonymized_text = anonymizer.anonymize(text) - persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) - assert len(persons) == 2 - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_anonymize_with_custom_operator() -> None: - """Test anonymize a name with a custom operator""" - from presidio_anonymizer.entities import OperatorConfig - - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "NAME"})} - anonymizer = PresidioReversibleAnonymizer(operators=custom_operator) - - text = "Jane Doe was here." - - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == "NAME was here." - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_add_recognizer_operator() -> None: - """ - Test add recognizer and anonymize a new type of entity and with a custom operator - """ - from presidio_analyzer import PatternRecognizer - from presidio_anonymizer.entities import OperatorConfig - - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) - titles_list = ["Sir", "Madam", "Professor"] - custom_recognizer = PatternRecognizer( - supported_entity="TITLE", deny_list=titles_list - ) - anonymizer.add_recognizer(custom_recognizer) - - # anonymizing with custom recognizer - text = "Madam Jane Doe was here." - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == "<TITLE> Jane Doe was here." - - # anonymizing with custom recognizer and operator - anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) - anonymizer.add_recognizer(custom_recognizer) - custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})} - anonymizer.add_operators(custom_operator) - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == "Dear Jane Doe was here." - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_deanonymizer_mapping() -> None: - """Test if deanonymizer mapping is correctly populated""" - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - anonymizer = PresidioReversibleAnonymizer( - analyzed_fields=["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] - ) - - anonymizer.anonymize("Hello, my name is John Doe and my number is 444 555 6666.") - - # ["PERSON", "PHONE_NUMBER"] - assert len(anonymizer.deanonymizer_mapping.keys()) == 2 - assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() - assert ( - "444 555 6666" - in anonymizer.deanonymizer_mapping.get("PHONE_NUMBER", {}).values() - ) - - text_to_anonymize = ( - "And my name is Jane Doe, my email is jane@gmail.com and " - "my credit card is 4929 5319 6292 5362." - ) - anonymizer.anonymize(text_to_anonymize) - - # ["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] - assert len(anonymizer.deanonymizer_mapping.keys()) == 4 - assert "Jane Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() - assert ( - "jane@gmail.com" - in anonymizer.deanonymizer_mapping.get("EMAIL_ADDRESS", {}).values() - ) - assert ( - "4929 5319 6292 5362" - in anonymizer.deanonymizer_mapping.get("CREDIT_CARD", {}).values() - ) - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_deanonymize() -> None: - """Test deanonymizing a name in a simple sentence""" - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - text = "Hello, my name is John Doe." - anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) - anonymized_text = anonymizer.anonymize(text) - deanonymized_text = anonymizer.deanonymize(anonymized_text) - assert deanonymized_text == text - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_save_load_deanonymizer_mapping() -> None: - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) - anonymizer.anonymize("Hello, my name is John Doe.") - try: - anonymizer.save_deanonymizer_mapping("test_file.json") - assert os.path.isfile("test_file.json") - - anonymizer = PresidioReversibleAnonymizer() - anonymizer.load_deanonymizer_mapping("test_file.json") - - assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() - - finally: - os.remove("test_file.json") - - -@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") -def test_non_faker_values() -> None: - """Test anonymizing multiple items in a sentence without faker values""" - from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer - - text = ( - "My name is John Smith. Your name is Adam Smith. Her name is Jane Smith." - "Our names are: John Smith, Adam Smith, Jane Smith." - ) - expected_result = ( - "My name is <PERSON>. Your name is <PERSON_2>. Her name is <PERSON_3>." - "Our names are: <PERSON>, <PERSON_2>, <PERSON_3>." - ) - anonymizer = PresidioReversibleAnonymizer(add_default_faker_operators=False) - anonymized_text = anonymizer.anonymize(text) - assert anonymized_text == expected_result diff --git a/libs/experimental/tests/unit_tests/test_smartllm.py b/libs/experimental/tests/unit_tests/test_smartllm.py deleted file mode 100644 index 0a42cc2a662f2..0000000000000 --- a/libs/experimental/tests/unit_tests/test_smartllm.py +++ /dev/null @@ -1,121 +0,0 @@ -"""Test SmartLLM.""" - -from langchain_community.chat_models import FakeListChatModel -from langchain_community.llms import FakeListLLM -from langchain_core.prompts.prompt import PromptTemplate - -from langchain_experimental.smart_llm import SmartLLMChain - - -def test_ideation() -> None: - # test that correct responses are returned - responses = ["Idea 1", "Idea 2", "Idea 3"] - llm = FakeListLLM(responses=responses) - prompt = PromptTemplate( - input_variables=["product"], - template="What is a good name for a company that makes {product}?", - ) - chain = SmartLLMChain(llm=llm, prompt=prompt) - prompt_value, _ = chain.prep_prompts({"product": "socks"}) - chain.history.question = prompt_value.to_string() - results = chain._ideate() - assert results == responses - - # test that correct number of responses are returned - for i in range(1, 5): - responses = [f"Idea {j+1}" for j in range(i)] - llm = FakeListLLM(responses=responses) - chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=i) - prompt_value, _ = chain.prep_prompts({"product": "socks"}) - chain.history.question = prompt_value.to_string() - results = chain._ideate() - assert len(results) == i - - -def test_critique() -> None: - response = "Test Critique" - llm = FakeListLLM(responses=[response]) - prompt = PromptTemplate( - input_variables=["product"], - template="What is a good name for a company that makes {product}?", - ) - chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2) - prompt_value, _ = chain.prep_prompts({"product": "socks"}) - chain.history.question = prompt_value.to_string() - chain.history.ideas = ["Test Idea 1", "Test Idea 2"] - result = chain._critique() - assert result == response - - -def test_resolver() -> None: - response = "Test resolution" - llm = FakeListLLM(responses=[response]) - prompt = PromptTemplate( - input_variables=["product"], - template="What is a good name for a company that makes {product}?", - ) - chain = SmartLLMChain(llm=llm, prompt=prompt, n_ideas=2) - prompt_value, _ = chain.prep_prompts({"product": "socks"}) - chain.history.question = prompt_value.to_string() - chain.history.ideas = ["Test Idea 1", "Test Idea 2"] - chain.history.critique = "Test Critique" - result = chain._resolve() - assert result == response - - -def test_all_steps() -> None: - joke = "Why did the chicken cross the Mobius strip?" - response = "Resolution response" - ideation_llm = FakeListLLM(responses=["Ideation response" for _ in range(20)]) - critique_llm = FakeListLLM(responses=["Critique response" for _ in range(20)]) - resolver_llm = FakeListLLM(responses=[response for _ in range(20)]) - prompt = PromptTemplate( - input_variables=["joke"], - template="Explain this joke to me: {joke}?", - ) - chain = SmartLLMChain( - ideation_llm=ideation_llm, - critique_llm=critique_llm, - resolver_llm=resolver_llm, - prompt=prompt, - ) - result = chain(joke) - assert result["joke"] == joke - assert result["resolution"] == response - - -def test_intermediate_output() -> None: - joke = "Why did the chicken cross the Mobius strip?" - llm = FakeListLLM(responses=[f"Response {i+1}" for i in range(5)]) - prompt = PromptTemplate( - input_variables=["joke"], - template="Explain this joke to me: {joke}?", - ) - chain = SmartLLMChain(llm=llm, prompt=prompt, return_intermediate_steps=True) - result = chain(joke) - assert result["joke"] == joke - assert result["ideas"] == [f"Response {i+1}" for i in range(3)] - assert result["critique"] == "Response 4" - assert result["resolution"] == "Response 5" - - -def test_all_steps_with_chat_model() -> None: - joke = "Why did the chicken cross the Mobius strip?" - response = "Resolution response" - - ideation_llm = FakeListChatModel(responses=["Ideation response" for _ in range(20)]) - critique_llm = FakeListChatModel(responses=["Critique response" for _ in range(20)]) - resolver_llm = FakeListChatModel(responses=[response for _ in range(20)]) - prompt = PromptTemplate( - input_variables=["joke"], - template="Explain this joke to me: {joke}?", - ) - chain = SmartLLMChain( - ideation_llm=ideation_llm, - critique_llm=critique_llm, - resolver_llm=resolver_llm, - prompt=prompt, - ) - result = chain(joke) - assert result["joke"] == joke - assert result["resolution"] == response diff --git a/libs/experimental/tests/unit_tests/test_sql.py b/libs/experimental/tests/unit_tests/test_sql.py deleted file mode 100644 index 8514e5ce2add6..0000000000000 --- a/libs/experimental/tests/unit_tests/test_sql.py +++ /dev/null @@ -1,128 +0,0 @@ -from langchain.memory import ConversationBufferMemory -from langchain.output_parsers.list import CommaSeparatedListOutputParser -from langchain.sql_database import SQLDatabase -from langchain_core.prompts import PromptTemplate - -from langchain_experimental.sql.base import SQLDatabaseChain, SQLDatabaseSequentialChain -from tests.unit_tests.fake_llm import FakeLLM - -# Fake db to test SQL-Chain -db = SQLDatabase.from_uri("sqlite:///:memory:") - - -def create_fake_db(db: SQLDatabase) -> SQLDatabase: - """Create a table in fake db to test SQL-Chain""" - db.run( - """ - CREATE TABLE foo (baaz TEXT); - """ - ) - db.run( - """ - INSERT INTO foo (baaz) - VALUES ('baaz'); - """ - ) - return db - - -db = create_fake_db(db) - - -def test_sql_chain_without_memory() -> None: - queries = {"foo": "SELECT baaz from foo", "foo2": "SELECT baaz from foo"} - llm = FakeLLM(queries=queries, sequential_responses=True) - db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True) - assert db_chain.run("hello") == "SELECT baaz from foo" - - -def test_sql_chain_sequential_without_memory() -> None: - queries = { - "foo": "SELECT baaz from foo", - "foo2": "SELECT baaz from foo", - "foo3": "SELECT baaz from foo", - } - llm = FakeLLM(queries=queries, sequential_responses=True) - db_chain = SQLDatabaseSequentialChain.from_llm(llm, db, verbose=True) - assert db_chain.run("hello") == "SELECT baaz from foo" - - -def test_sql_chain_with_memory() -> None: - valid_prompt_with_history = """ - Only use the following tables: - {table_info} - Question: {input} - - Given an input question, first create a syntactically correct - {dialect} query to run. - Always limit your query to at most {top_k} results. - - Relevant pieces of previous conversation: - {history} - - (You do not need to use these pieces of information if not relevant) - """ - prompt = PromptTemplate( - input_variables=["input", "table_info", "dialect", "top_k", "history"], - template=valid_prompt_with_history, - ) - queries = {"foo": "SELECT baaz from foo", "foo2": "SELECT baaz from foo"} - llm = FakeLLM(queries=queries, sequential_responses=True) - memory = ConversationBufferMemory() - db_chain = SQLDatabaseChain.from_llm( - llm, db, memory=memory, prompt=prompt, verbose=True - ) - assert db_chain.run("hello") == "SELECT baaz from foo" - - -def test_sql_chain_sequential_with_memory() -> None: - valid_query_prompt_str = """ - Only use the following tables: - {table_info} - Question: {input} - - Given an input question, first create a syntactically correct - {dialect} query to run. - Always limit your query to at most {top_k} results. - - Relevant pieces of previous conversation: - {history} - - (You do not need to use these pieces of information - if not relevant) - """ - valid_decider_prompt_str = """Given the below input question and list of potential - tables, output a comma separated list of the - table names that may be necessary to answer this question. - - Question: {query} - - Table Names: {table_names} - - Relevant Table Names:""" - - valid_query_prompt = PromptTemplate( - input_variables=["input", "table_info", "dialect", "top_k", "history"], - template=valid_query_prompt_str, - ) - valid_decider_prompt = PromptTemplate( - input_variables=["query", "table_names"], - template=valid_decider_prompt_str, - output_parser=CommaSeparatedListOutputParser(), - ) - queries = { - "foo": "SELECT baaz from foo", - "foo2": "SELECT baaz from foo", - "foo3": "SELECT baaz from foo", - } - llm = FakeLLM(queries=queries, sequential_responses=True) - memory = ConversationBufferMemory(memory_key="history", input_key="query") - db_chain = SQLDatabaseSequentialChain.from_llm( - llm, - db, - memory=memory, - decider_prompt=valid_decider_prompt, - query_prompt=valid_query_prompt, - verbose=True, - ) - assert db_chain.run("hello") == "SELECT baaz from foo" diff --git a/libs/experimental/tests/unit_tests/test_tot.py b/libs/experimental/tests/unit_tests/test_tot.py deleted file mode 100644 index d50baacef8c90..0000000000000 --- a/libs/experimental/tests/unit_tests/test_tot.py +++ /dev/null @@ -1,153 +0,0 @@ -import re -import unittest -from typing import Tuple - -import pytest - -from langchain_experimental.tot.base import ToTChain -from langchain_experimental.tot.checker import ToTChecker -from langchain_experimental.tot.controller import ToTController -from langchain_experimental.tot.memory import ToTDFSMemory -from langchain_experimental.tot.thought import Thought, ThoughtValidity -from langchain_experimental.tot.thought_generation import SampleCoTStrategy -from tests.unit_tests.fake_llm import FakeLLM - -sudoku_puzzle = "3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1" -solutions = [ - "3,*,4,2|1,*,3,*|*,1,*,3|4,*,*,1", # VALID_INTERMEDIATE - " 3,4,1,2|1,6,3,*|*,1,*,3|4,*,*,1", # INVALID c=1 - " 3,4,1,2|1,7,3,*|*,1,*,3|4,*,*,1", # INVALID c=2 - " 3,4,1,2|1,8,3,*|*,1,*,3|4,*,*,1", # INVALID c=3 - " 3,4,1,2|1,2,3,*|*,1,*,3|4,*,*,1", # VALID_INTERMEDIATE c=4 (rollback) - "3,1,4,2|1,*,3,*|*,1,*,3|4,*,*,1", # INVALID (rollback) - "3,4,1,2|1,2,3,4|*,1,*,3|4,*,*,1", # VALID_INTERMEDIATE - " 3,4,1,2|1,2,3,4|4,1,*,3|4,*,*,1", # INVALID (rollback) - " 3,4,1,2|1,2,3,4|2,1,4,3|4,*,*,1", # VALID_INTERMEDIATE - " 3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1", # VALID_INTERMEDIATE - " 3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1", # VALID_FINAL -] -sudoku_solution = "3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1" - - -@pytest.fixture -def fake_llm_sudoku() -> FakeLLM: - """This is a fake LLM that responds to the sudoku problem.""" - queries = {i: next_step.strip() for i, next_step in enumerate(solutions)} - return FakeLLM(queries=queries, sequential_responses=True) - - -class SudokuChecker(ToTChecker): - def evaluate( - self, problem_description: str, thoughts: Tuple[str, ...] = () - ) -> ThoughtValidity: - last_thought = thoughts[-1] - clean_solution = last_thought.replace(" ", "").replace('"', "") - regex_solution = clean_solution.replace("*", ".").replace("|", "\\|") - if sudoku_solution in clean_solution: - return ThoughtValidity.VALID_FINAL - elif re.search(regex_solution, sudoku_solution): - return ThoughtValidity.VALID_INTERMEDIATE - else: - return ThoughtValidity.INVALID - - -@pytest.mark.requires("jinja2") -def test_solve_sudoku(fake_llm_sudoku: FakeLLM) -> None: - """Test simple question that should not need python.""" - tot_chain = ToTChain( - llm=fake_llm_sudoku, - checker=SudokuChecker(), - k=len(solutions), - c=4, - tot_strategy_class=SampleCoTStrategy, - ) - output = tot_chain.run({"problem_description": ""}) - assert output == sudoku_solution - - -@pytest.mark.requires("jinja2") -def test_solve_sudoku_k_too_small(fake_llm_sudoku: FakeLLM) -> None: - """Test simple question that should not need python.""" - tot_chain = ToTChain( - llm=fake_llm_sudoku, - checker=SudokuChecker(), - k=len(solutions) - 1, - c=4, - tot_strategy_class=SampleCoTStrategy, - ) - output = tot_chain.run({"problem_description": ""}) - assert output != sudoku_solution - - -@pytest.fixture -def fake_llm_checker() -> FakeLLM: - """This is a fake LLM that responds with a thought validity.""" - responses = [ - "VALID", - "valid", - "INVALID", - "invalid", - "INTERMEDIATE", - "intermediate", - "SOMETHING ELSE", - ] - queries = dict(enumerate(responses)) - return FakeLLM(queries=queries, sequential_responses=True) - - -class ControllerTestCase(unittest.TestCase): - def setUp(self) -> None: - self.controller = ToTController(c=3) - - def test_empty(self) -> None: - memory = ToTDFSMemory([]) - self.assertEqual(self.controller(memory), ()) - - def test_one_thoghts(self) -> None: - thoughts = [Thought(text="a", validity=ThoughtValidity.VALID_FINAL)] - memory = ToTDFSMemory(thoughts) - self.assertEqual(self.controller(memory), ("a",)) - - def test_two_thoghts(self) -> None: - memory = ToTDFSMemory( - [ - Thought(text="a", validity=ThoughtValidity.VALID_INTERMEDIATE), - Thought(text="b", validity=ThoughtValidity.VALID_INTERMEDIATE), - ] - ) - self.assertEqual(self.controller(memory), ("a", "b")) - - def test_two_thoughts_invalid(self) -> None: - memory = ToTDFSMemory( - [ - Thought(text="a", validity=ThoughtValidity.VALID_INTERMEDIATE), - Thought(text="b", validity=ThoughtValidity.INVALID), - ] - ) - self.assertEqual(self.controller(memory), ("a",)) - - def test_thoughts_rollback(self) -> None: - a = Thought(text="a", validity=ThoughtValidity.VALID_INTERMEDIATE) - b = Thought(text="b", validity=ThoughtValidity.VALID_INTERMEDIATE) - c_1 = Thought(text="c_1", validity=ThoughtValidity.VALID_INTERMEDIATE) - c_2 = Thought(text="c_2", validity=ThoughtValidity.VALID_INTERMEDIATE) - c_3 = Thought(text="c_3", validity=ThoughtValidity.VALID_INTERMEDIATE) - - a.children = {b} - b.children = {c_1, c_2, c_3} - - memory = ToTDFSMemory([a, b, c_3]) - self.assertEqual(self.controller(memory), ("a",)) - - def test_thoughts_rollback_invalid(self) -> None: - a = Thought(text="a", validity=ThoughtValidity.VALID_INTERMEDIATE) - b = Thought(text="b", validity=ThoughtValidity.VALID_INTERMEDIATE) - c_1 = Thought(text="c_1", validity=ThoughtValidity.VALID_INTERMEDIATE) - c_2 = Thought(text="c_2", validity=ThoughtValidity.VALID_INTERMEDIATE) - c_3 = Thought(text="c_3", validity=ThoughtValidity.INVALID) - - a.children = {b} - b.children = {c_1, c_2, c_3} - - memory = ToTDFSMemory([a, b, c_3]) - self.assertEqual(self.controller(memory), ("a",)) diff --git a/libs/langchain/Makefile b/libs/langchain/Makefile index c77591f6430d6..e06cd2e65d1a9 100644 --- a/libs/langchain/Makefile +++ b/libs/langchain/Makefile @@ -54,7 +54,6 @@ lint_tests: PYTHON_FILES=tests lint_tests: MYPY_CACHE=.mypy_cache_test lint lint_diff lint_package lint_tests: - ./scripts/check_pydantic.sh . ./scripts/lint_imports.sh [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check $(PYTHON_FILES) [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff diff --git a/libs/langchain/langchain/_api/module_import.py b/libs/langchain/langchain/_api/module_import.py index 993432dc4cc0b..a1aaa7e85d638 100644 --- a/libs/langchain/langchain/_api/module_import.py +++ b/libs/langchain/langchain/_api/module_import.py @@ -101,7 +101,7 @@ def import_by_name(name: str) -> Any: f">> from {new_module} import {name}\n" "You can use the langchain cli to **automatically** " "upgrade many imports. Please see documentation here " - "<https://python.langchain.com/v0.2/docs/versions/v0_2/>" + "<https://python.langchain.com/docs/versions/v0_2/>" ), ) return result @@ -133,7 +133,7 @@ def import_by_name(name: str) -> Any: f">> from {fallback_module} import {name}\n" "You can use the langchain cli to **automatically** " "upgrade many imports. Please see documentation here " - "<https://python.langchain.com/v0.2/docs/versions/v0_2/>" + "<https://python.langchain.com/docs/versions/v0_2/>" ), ) return result diff --git a/libs/langchain/langchain/agents/agent.py b/libs/langchain/langchain/agents/agent.py index 50797228a53b8..e5c3175a5fea1 100644 --- a/libs/langchain/langchain/agents/agent.py +++ b/libs/langchain/langchain/agents/agent.py @@ -40,11 +40,12 @@ from langchain_core.prompts import BasePromptTemplate from langchain_core.prompts.few_shot import FewShotPromptTemplate from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.runnables import Runnable, RunnableConfig, ensure_config from langchain_core.runnables.utils import AddableDict from langchain_core.tools import BaseTool from langchain_core.utils.input import get_color_mapping +from pydantic import BaseModel, ConfigDict, model_validator +from typing_extensions import Self from langchain.agents.agent_iterator import AgentExecutorIterator from langchain.agents.agent_types import AgentType @@ -175,7 +176,7 @@ def dict(self, **kwargs: Any) -> Dict: Returns: Dict: Dictionary representation of agent. """ - _dict = super().dict() + _dict = super().model_dump() try: _type = self._agent_type except NotImplementedError: @@ -323,7 +324,7 @@ def _agent_type(self) -> str: def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" - _dict = super().dict() + _dict = super().model_dump() try: _dict["_type"] = str(self._agent_type) except NotImplementedError: @@ -420,8 +421,9 @@ class RunnableAgent(BaseSingleActionAgent): individual LLM tokens will not be available in stream_log. """ - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property def return_values(self) -> List[str]: @@ -528,8 +530,9 @@ class RunnableMultiActionAgent(BaseMultiActionAgent): individual LLM tokens will not be available in stream_log. """ - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property def return_values(self) -> List[str]: @@ -854,8 +857,8 @@ def input_keys(self) -> List[str]: """ return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) - @root_validator(pre=False, skip_on_failure=True) - def validate_prompt(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_prompt(self) -> Self: """Validate that prompt matches format. Args: @@ -868,7 +871,7 @@ def validate_prompt(cls, values: Dict) -> Dict: ValueError: If `agent_scratchpad` is not in prompt.input_variables and prompt is not a FewShotPromptTemplate or a PromptTemplate. """ - prompt = values["llm_chain"].prompt + prompt = self.llm_chain.prompt if "agent_scratchpad" not in prompt.input_variables: logger.warning( "`agent_scratchpad` should be a variable in prompt.input_variables." @@ -881,7 +884,7 @@ def validate_prompt(cls, values: Dict) -> Dict: prompt.suffix += "\n{agent_scratchpad}" else: raise ValueError(f"Got unexpected prompt type {type(prompt)}") - return values + return self @property @abstractmethod @@ -1120,8 +1123,8 @@ def from_agent_and_tools( **kwargs, ) - @root_validator(pre=False, skip_on_failure=True) - def validate_tools(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_tools(self) -> Self: """Validate that tools are compatible with agent. Args: @@ -1133,19 +1136,20 @@ def validate_tools(cls, values: Dict) -> Dict: Raises: ValueError: If allowed tools are different than provided tools. """ - agent = values["agent"] - tools = values["tools"] - allowed_tools = agent.get_allowed_tools() + agent = self.agent + tools = self.tools + allowed_tools = agent.get_allowed_tools() # type: ignore if allowed_tools is not None: if set(allowed_tools) != set([tool.name for tool in tools]): raise ValueError( f"Allowed tools ({allowed_tools}) different than " f"provided tools ({[tool.name for tool in tools]})" ) - return values + return self - @root_validator(pre=True) - def validate_runnable_agent(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_runnable_agent(cls, values: Dict) -> Any: """Convert runnable to agent if passed in. Args: diff --git a/libs/langchain/langchain/agents/agent_toolkits/vectorstore/base.py b/libs/langchain/langchain/agents/agent_toolkits/vectorstore/base.py index a9b7fdc4528f6..eb8548cc6e870 100644 --- a/libs/langchain/langchain/agents/agent_toolkits/vectorstore/base.py +++ b/libs/langchain/langchain/agents/agent_toolkits/vectorstore/base.py @@ -23,7 +23,7 @@ "See API reference for this function for a replacement implementation: " "https://api.python.langchain.com/en/latest/agents/langchain.agents.agent_toolkits.vectorstore.base.create_vectorstore_agent.html " # noqa: E501 "Read more here on how to create agents that query vector stores: " - "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/#agents" + "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/#agents" ), ) def create_vectorstore_agent( @@ -112,7 +112,7 @@ def create_vectorstore_agent( "See API reference for this function for a replacement implementation: " "https://api.python.langchain.com/en/latest/agents/langchain.agents.agent_toolkits.vectorstore.base.create_vectorstore_router_agent.html " # noqa: E501 "Read more here on how to create agents that query vector stores: " - "https://python.langchain.com/v0.2/docs/how_to/qa_chat_history_how_to/#agents" + "https://python.langchain.com/docs/how_to/qa_chat_history_how_to/#agents" ), ) def create_vectorstore_router_agent( diff --git a/libs/langchain/langchain/agents/agent_toolkits/vectorstore/toolkit.py b/libs/langchain/langchain/agents/agent_toolkits/vectorstore/toolkit.py index c40b3f3b7f289..71114a49eea37 100644 --- a/libs/langchain/langchain/agents/agent_toolkits/vectorstore/toolkit.py +++ b/libs/langchain/langchain/agents/agent_toolkits/vectorstore/toolkit.py @@ -3,10 +3,10 @@ from typing import List from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import BaseTool from langchain_core.tools.base import BaseToolkit from langchain_core.vectorstores import VectorStore +from pydantic import BaseModel, ConfigDict, Field class VectorStoreInfo(BaseModel): @@ -16,8 +16,9 @@ class VectorStoreInfo(BaseModel): name: str description: str - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) class VectorStoreToolkit(BaseToolkit): @@ -26,8 +27,9 @@ class VectorStoreToolkit(BaseToolkit): vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" @@ -67,8 +69,9 @@ class VectorStoreRouterToolkit(BaseToolkit): vectorstores: List[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" diff --git a/libs/langchain/langchain/agents/chat/base.py b/libs/langchain/langchain/agents/chat/base.py index a7a16be772611..00ced776f1342 100644 --- a/libs/langchain/langchain/agents/chat/base.py +++ b/libs/langchain/langchain/agents/chat/base.py @@ -10,8 +10,8 @@ HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.chat.output_parser import ChatOutputParser diff --git a/libs/langchain/langchain/agents/conversational/base.py b/libs/langchain/langchain/agents/conversational/base.py index bbbf666e5903d..a0ef85946abd3 100644 --- a/libs/langchain/langchain/agents/conversational/base.py +++ b/libs/langchain/langchain/agents/conversational/base.py @@ -8,8 +8,8 @@ from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.agent_types import AgentType diff --git a/libs/langchain/langchain/agents/conversational_chat/base.py b/libs/langchain/langchain/agents/conversational_chat/base.py index 08ec829613a53..138933addbaec 100644 --- a/libs/langchain/langchain/agents/conversational_chat/base.py +++ b/libs/langchain/langchain/agents/conversational_chat/base.py @@ -17,8 +17,8 @@ MessagesPlaceholder, SystemMessagePromptTemplate, ) -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.conversational_chat.output_parser import ConvoOutputParser diff --git a/libs/langchain/langchain/agents/mrkl/base.py b/libs/langchain/langchain/agents/mrkl/base.py index 1b16d4d862f6f..cc4d9da5537d7 100644 --- a/libs/langchain/langchain/agents/mrkl/base.py +++ b/libs/langchain/langchain/agents/mrkl/base.py @@ -8,9 +8,9 @@ from langchain_core.callbacks import BaseCallbackManager from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool, Tool from langchain_core.tools.render import render_text_description +from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType diff --git a/libs/langchain/langchain/agents/openai_assistant/base.py b/libs/langchain/langchain/agents/openai_assistant/base.py index a2f0ef74a5bff..dc85fb03037ae 100644 --- a/libs/langchain/langchain/agents/openai_assistant/base.py +++ b/libs/langchain/langchain/agents/openai_assistant/base.py @@ -20,10 +20,11 @@ from langchain_core.agents import AgentAction, AgentFinish from langchain_core.callbacks import CallbackManager from langchain_core.load import dumpd -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.runnables import RunnableConfig, RunnableSerializable, ensure_config from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import BaseModel, Field, model_validator +from typing_extensions import Self if TYPE_CHECKING: import openai @@ -232,14 +233,14 @@ def execute_agent(agent, tools, input): as_agent: bool = False """Use as a LangChain agent, compatible with the AgentExecutor.""" - @root_validator(pre=False, skip_on_failure=True) - def validate_async_client(cls, values: dict) -> dict: - if values["async_client"] is None: + @model_validator(mode="after") + def validate_async_client(self) -> Self: + if self.async_client is None: import openai - api_key = values["client"].api_key - values["async_client"] = openai.AsyncOpenAI(api_key=api_key) - return values + api_key = self.client.api_key + self.async_client = openai.AsyncOpenAI(api_key=api_key) + return self @classmethod def create_assistant( @@ -276,7 +277,7 @@ def create_assistant( return cls(assistant_id=assistant.id, client=client, **kwargs) def invoke( - self, input: dict, config: Optional[RunnableConfig] = None + self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> OutputType: """Invoke assistant. @@ -309,7 +310,7 @@ def invoke( inheritable_metadata=config.get("metadata"), ) run_manager = callback_manager.on_chain_start( - dumpd(self), input, name=config.get("run_name") + dumpd(self), input, name=config.get("run_name") or self.get_name() ) try: # Being run within AgentExecutor and there are tool outputs to submit. @@ -428,7 +429,7 @@ async def ainvoke( inheritable_metadata=config.get("metadata"), ) run_manager = callback_manager.on_chain_start( - dumpd(self), input, name=config.get("run_name") + dumpd(self), input, name=config.get("run_name") or self.get_name() ) try: # Being run within AgentExecutor and there are tool outputs to submit. diff --git a/libs/langchain/langchain/agents/openai_functions_agent/base.py b/libs/langchain/langchain/agents/openai_functions_agent/base.py index fbb23a56e4785..5a40a665e3310 100644 --- a/libs/langchain/langchain/agents/openai_functions_agent/base.py +++ b/libs/langchain/langchain/agents/openai_functions_agent/base.py @@ -17,10 +17,11 @@ HumanMessagePromptTemplate, MessagesPlaceholder, ) -from langchain_core.pydantic_v1 import root_validator from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_function +from pydantic import model_validator +from typing_extensions import Self from langchain.agents import BaseSingleActionAgent from langchain.agents.format_scratchpad.openai_functions import ( @@ -58,8 +59,8 @@ def get_allowed_tools(self) -> List[str]: """Get allowed tools.""" return [t.name for t in self.tools] - @root_validator(pre=False, skip_on_failure=True) - def validate_prompt(cls, values: dict) -> dict: + @model_validator(mode="after") + def validate_prompt(self) -> Self: """Validate prompt. Args: @@ -71,13 +72,13 @@ def validate_prompt(cls, values: dict) -> dict: Raises: ValueError: If `agent_scratchpad` is not in the prompt. """ - prompt: BasePromptTemplate = values["prompt"] + prompt: BasePromptTemplate = self.prompt if "agent_scratchpad" not in prompt.input_variables: raise ValueError( "`agent_scratchpad` should be one of the variables in the prompt, " f"got {prompt.input_variables}" ) - return values + return self @property def input_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py b/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py index 819fc8b1d939e..bec49e5f14d24 100644 --- a/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py +++ b/libs/langchain/langchain/agents/openai_functions_multi_agent/base.py @@ -21,8 +21,9 @@ HumanMessagePromptTemplate, MessagesPlaceholder, ) -from langchain_core.pydantic_v1 import root_validator from langchain_core.tools import BaseTool +from pydantic import model_validator +from typing_extensions import Self from langchain.agents import BaseMultiActionAgent from langchain.agents.format_scratchpad.openai_functions import ( @@ -115,15 +116,15 @@ def get_allowed_tools(self) -> List[str]: """Get allowed tools.""" return [t.name for t in self.tools] - @root_validator(pre=False, skip_on_failure=True) - def validate_prompt(cls, values: dict) -> dict: - prompt: BasePromptTemplate = values["prompt"] + @model_validator(mode="after") + def validate_prompt(self) -> Self: + prompt: BasePromptTemplate = self.prompt if "agent_scratchpad" not in prompt.input_variables: raise ValueError( "`agent_scratchpad` should be one of the variables in the prompt, " f"got {prompt.input_variables}" ) - return values + return self @property def input_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/agents/react/base.py b/libs/langchain/langchain/agents/react/base.py index 93a60bbe61ba2..81a38141fe686 100644 --- a/libs/langchain/langchain/agents/react/base.py +++ b/libs/langchain/langchain/agents/react/base.py @@ -8,8 +8,8 @@ from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool, Tool +from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType diff --git a/libs/langchain/langchain/agents/self_ask_with_search/base.py b/libs/langchain/langchain/agents/self_ask_with_search/base.py index 7a1d81f7d40d1..9a642b81b1289 100644 --- a/libs/langchain/langchain/agents/self_ask_with_search/base.py +++ b/libs/langchain/langchain/agents/self_ask_with_search/base.py @@ -7,9 +7,9 @@ from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool, Tool +from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType diff --git a/libs/langchain/langchain/agents/structured_chat/base.py b/libs/langchain/langchain/agents/structured_chat/base.py index e1403e26f2607..a520cfecf7142 100644 --- a/libs/langchain/langchain/agents/structured_chat/base.py +++ b/libs/langchain/langchain/agents/structured_chat/base.py @@ -11,10 +11,10 @@ HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) -from langchain_core.pydantic_v1 import Field from langchain_core.runnables import Runnable, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.tools.render import ToolsRenderer +from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.format_scratchpad import format_log_to_str diff --git a/libs/langchain/langchain/agents/structured_chat/output_parser.py b/libs/langchain/langchain/agents/structured_chat/output_parser.py index f73f87f4f4be4..1cdb4fe1fb4a9 100644 --- a/libs/langchain/langchain/agents/structured_chat/output_parser.py +++ b/libs/langchain/langchain/agents/structured_chat/output_parser.py @@ -8,7 +8,7 @@ from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain.agents.agent import AgentOutputParser from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS diff --git a/libs/langchain/langchain/chains/api/base.py b/libs/langchain/langchain/chains/api/base.py index 94896102dc6fd..0cb2dbd2855fa 100644 --- a/libs/langchain/langchain/chains/api/base.py +++ b/libs/langchain/langchain/chains/api/base.py @@ -12,7 +12,8 @@ ) from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field, root_validator +from pydantic import Field, model_validator +from typing_extensions import Self from langchain.chains.api.prompt import API_RESPONSE_PROMPT, API_URL_PROMPT from langchain.chains.base import Chain @@ -197,7 +198,7 @@ async def acall_model(state: ChainState, config: RunnableConfig): api_docs: str question_key: str = "question" #: :meta private: output_key: str = "output" #: :meta private: - limit_to_domains: Optional[Sequence[str]] + limit_to_domains: Optional[Sequence[str]] = Field(default_factory=list) """Use to limit the domains that can be accessed by the API chain. * For example, to limit to just the domain `https://www.example.com`, set @@ -227,19 +228,20 @@ def output_keys(self) -> List[str]: """ return [self.output_key] - @root_validator(pre=False, skip_on_failure=True) - def validate_api_request_prompt(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_api_request_prompt(self) -> Self: """Check that api request prompt expects the right variables.""" - input_vars = values["api_request_chain"].prompt.input_variables + input_vars = self.api_request_chain.prompt.input_variables expected_vars = {"question", "api_docs"} if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) - return values + return self - @root_validator(pre=True) - def validate_limit_to_domains(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_limit_to_domains(cls, values: Dict) -> Any: """Check that allowed domains are valid.""" # This check must be a pre=True check, so that a default of None # won't be set to limit_to_domains if it's not provided. @@ -258,16 +260,16 @@ def validate_limit_to_domains(cls, values: Dict) -> Dict: ) return values - @root_validator(pre=False, skip_on_failure=True) - def validate_api_answer_prompt(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_api_answer_prompt(self) -> Self: """Check that api answer prompt expects the right variables.""" - input_vars = values["api_answer_chain"].prompt.input_variables + input_vars = self.api_answer_chain.prompt.input_variables expected_vars = {"question", "api_docs", "api_url", "api_response"} if set(input_vars) != expected_vars: raise ValueError( f"Input variables should be {expected_vars}, got {input_vars}" ) - return values + return self def _call( self, diff --git a/libs/langchain/langchain/chains/base.py b/libs/langchain/langchain/chains/base.py index d6b0e362b2d9b..48f5613f07d69 100644 --- a/libs/langchain/langchain/chains/base.py +++ b/libs/langchain/langchain/chains/base.py @@ -20,7 +20,6 @@ ) from langchain_core.memory import BaseMemory from langchain_core.outputs import RunInfo -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator, validator from langchain_core.runnables import ( RunnableConfig, RunnableSerializable, @@ -28,6 +27,13 @@ run_in_executor, ) from langchain_core.runnables.utils import create_model +from pydantic import ( + BaseModel, + ConfigDict, + Field, + field_validator, + model_validator, +) from langchain.schema import RUN_KEY @@ -95,8 +101,9 @@ class Chain(RunnableSerializable[Dict[str, Any], Dict[str, Any]], ABC): callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True) """[DEPRECATED] Use `callbacks` instead.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def get_input_schema( self, config: Optional[RunnableConfig] = None @@ -222,8 +229,9 @@ async def ainvoke( def _chain_type(self) -> str: raise NotImplementedError("Saving not supported for this chain type.") - @root_validator(pre=True) - def raise_callback_manager_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_callback_manager_deprecation(cls, values: Dict) -> Any: """Raise deprecation warning if callback_manager is used.""" if values.get("callback_manager") is not None: if values.get("callbacks") is not None: @@ -239,7 +247,8 @@ def raise_callback_manager_deprecation(cls, values: Dict) -> Dict: values["callbacks"] = values.pop("callback_manager", None) return values - @validator("verbose", pre=True, always=True) + @field_validator("verbose", mode="before") + @classmethod def set_verbose(cls, verbose: Optional[bool]) -> bool: """Set the chain verbosity. diff --git a/libs/langchain/langchain/chains/combine_documents/base.py b/libs/langchain/langchain/chains/combine_documents/base.py index 00b6002da0ed4..2406cd4215f7a 100644 --- a/libs/langchain/langchain/chains/combine_documents/base.py +++ b/libs/langchain/langchain/chains/combine_documents/base.py @@ -10,10 +10,10 @@ ) from langchain_core.documents import Document from langchain_core.prompts import BasePromptTemplate, PromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables.config import RunnableConfig from langchain_core.runnables.utils import create_model from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter +from pydantic import BaseModel, Field from langchain.chains.base import Chain diff --git a/libs/langchain/langchain/chains/combine_documents/map_reduce.py b/libs/langchain/langchain/chains/combine_documents/map_reduce.py index 229ed45740c5d..b72693f625a54 100644 --- a/libs/langchain/langchain/chains/combine_documents/map_reduce.py +++ b/libs/langchain/langchain/chains/combine_documents/map_reduce.py @@ -4,17 +4,27 @@ from typing import Any, Dict, List, Optional, Tuple, Type +from langchain_core._api import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.runnables.config import RunnableConfig from langchain_core.runnables.utils import create_model +from pydantic import BaseModel, ConfigDict, model_validator from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.combine_documents.reduce import ReduceDocumentsChain from langchain.chains.llm import LLMChain +@deprecated( + since="0.3.1", + removal="1.0", + message=( + "This class is deprecated. Please see the migration guide here for " + "a recommended replacement: " + "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/" + ), +) class MapReduceDocumentsChain(BaseCombineDocumentsChain): """Combining documents by mapping a chain over them, then combining results. @@ -126,12 +136,14 @@ def output_keys(self) -> List[str]: _output_keys = _output_keys + ["intermediate_steps"] return _output_keys - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def get_reduce_chain(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_reduce_chain(cls, values: Dict) -> Any: """For backwards compatibility.""" if "combine_document_chain" in values: if "reduce_documents_chain" in values: @@ -153,16 +165,18 @@ def get_reduce_chain(cls, values: Dict) -> Dict: return values - @root_validator(pre=True) - def get_return_intermediate_steps(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_return_intermediate_steps(cls, values: Dict) -> Any: """For backwards compatibility.""" if "return_map_steps" in values: values["return_intermediate_steps"] = values["return_map_steps"] del values["return_map_steps"] return values - @root_validator(pre=True) - def get_default_document_variable_name(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_default_document_variable_name(cls, values: Dict) -> Any: """Get default document variable name, if not provided.""" if "llm_chain" not in values: raise ValueError("llm_chain must be provided") diff --git a/libs/langchain/langchain/chains/combine_documents/map_rerank.py b/libs/langchain/langchain/chains/combine_documents/map_rerank.py index 0fa346dee8bc8..8ba353293ce37 100644 --- a/libs/langchain/langchain/chains/combine_documents/map_rerank.py +++ b/libs/langchain/langchain/chains/combine_documents/map_rerank.py @@ -4,17 +4,28 @@ from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union, cast +from langchain_core._api import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator from langchain_core.runnables.config import RunnableConfig from langchain_core.runnables.utils import create_model +from pydantic import BaseModel, ConfigDict, model_validator +from typing_extensions import Self from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.llm import LLMChain from langchain.output_parsers.regex import RegexParser +@deprecated( + since="0.3.1", + removal="1.0", + message=( + "This class is deprecated. Please see the migration guide here for " + "a recommended replacement: " + "https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain/" # noqa: E501 + ), +) class MapRerankDocumentsChain(BaseCombineDocumentsChain): """Combining documents by mapping a chain over them, then reranking results. @@ -74,9 +85,10 @@ class MapRerankDocumentsChain(BaseCombineDocumentsChain): """Return intermediate steps. Intermediate steps include the results of calling llm_chain on each document.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) def get_output_schema( self, config: Optional[RunnableConfig] = None @@ -104,30 +116,31 @@ def output_keys(self) -> List[str]: _output_keys += self.metadata_keys return _output_keys - @root_validator(pre=False, skip_on_failure=True) - def validate_llm_output(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_llm_output(self) -> Self: """Validate that the combine chain outputs a dictionary.""" - output_parser = values["llm_chain"].prompt.output_parser + output_parser = self.llm_chain.prompt.output_parser if not isinstance(output_parser, RegexParser): raise ValueError( "Output parser of llm_chain should be a RegexParser," f" got {output_parser}" ) output_keys = output_parser.output_keys - if values["rank_key"] not in output_keys: + if self.rank_key not in output_keys: raise ValueError( - f"Got {values['rank_key']} as key to rank on, but did not find " + f"Got {self.rank_key} as key to rank on, but did not find " f"it in the llm_chain output keys ({output_keys})" ) - if values["answer_key"] not in output_keys: + if self.answer_key not in output_keys: raise ValueError( - f"Got {values['answer_key']} as key to return, but did not find " + f"Got {self.answer_key} as key to return, but did not find " f"it in the llm_chain output keys ({output_keys})" ) - return values + return self - @root_validator(pre=True) - def get_default_document_variable_name(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_default_document_variable_name(cls, values: Dict) -> Any: """Get default document variable name, if not provided.""" if "llm_chain" not in values: raise ValueError("llm_chain must be provided") diff --git a/libs/langchain/langchain/chains/combine_documents/reduce.py b/libs/langchain/langchain/chains/combine_documents/reduce.py index 7b2cd6c89a375..8acc3f88b5417 100644 --- a/libs/langchain/langchain/chains/combine_documents/reduce.py +++ b/libs/langchain/langchain/chains/combine_documents/reduce.py @@ -4,8 +4,10 @@ from typing import Any, Callable, List, Optional, Protocol, Tuple +from langchain_core._api import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import Document +from pydantic import ConfigDict from langchain.chains.combine_documents.base import BaseCombineDocumentsChain @@ -120,6 +122,15 @@ async def acollapse_docs( return Document(page_content=result, metadata=combined_metadata) +@deprecated( + since="0.3.1", + removal="1.0", + message=( + "This class is deprecated. Please see the migration guide here for " + "a recommended replacement: " + "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/" + ), +) class ReduceDocumentsChain(BaseCombineDocumentsChain): """Combine documents by recursively reducing them. @@ -204,9 +215,10 @@ class ReduceDocumentsChain(BaseCombineDocumentsChain): If None, it will keep trying to collapse documents to fit token_max. Otherwise, after it reaches the max number, it will throw an error""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def _collapse_chain(self) -> BaseCombineDocumentsChain: diff --git a/libs/langchain/langchain/chains/combine_documents/refine.py b/libs/langchain/langchain/chains/combine_documents/refine.py index cf2f5d9e92f50..27bd8c44f1b65 100644 --- a/libs/langchain/langchain/chains/combine_documents/refine.py +++ b/libs/langchain/langchain/chains/combine_documents/refine.py @@ -4,11 +4,12 @@ from typing import Any, Dict, List, Tuple +from langchain_core._api import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import Document from langchain_core.prompts import BasePromptTemplate, format_document from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import Field, root_validator +from pydantic import ConfigDict, Field, model_validator from langchain.chains.combine_documents.base import ( BaseCombineDocumentsChain, @@ -20,6 +21,15 @@ def _get_default_document_prompt() -> PromptTemplate: return PromptTemplate(input_variables=["page_content"], template="{page_content}") +@deprecated( + since="0.3.1", + removal="1.0", + message=( + "This class is deprecated. Please see the migration guide here for " + "a recommended replacement: " + "https://python.langchain.com/docs/versions/migrating_chains/refine_docs_chain/" # noqa: E501 + ), +) class RefineDocumentsChain(BaseCombineDocumentsChain): """Combine documents by doing a first pass and then refining on more documents. @@ -98,20 +108,23 @@ def output_keys(self) -> List[str]: _output_keys = _output_keys + ["intermediate_steps"] return _output_keys - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def get_return_intermediate_steps(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_return_intermediate_steps(cls, values: Dict) -> Any: """For backwards compatibility.""" if "return_refine_steps" in values: values["return_intermediate_steps"] = values["return_refine_steps"] del values["return_refine_steps"] return values - @root_validator(pre=True) - def get_default_document_variable_name(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_default_document_variable_name(cls, values: Dict) -> Any: """Get default document variable name, if not provided.""" if "initial_llm_chain" not in values: raise ValueError("initial_llm_chain must be provided") diff --git a/libs/langchain/langchain/chains/combine_documents/stuff.py b/libs/langchain/langchain/chains/combine_documents/stuff.py index cdecec0f40b82..2c9771d4965b9 100644 --- a/libs/langchain/langchain/chains/combine_documents/stuff.py +++ b/libs/langchain/langchain/chains/combine_documents/stuff.py @@ -8,8 +8,8 @@ from langchain_core.language_models import LanguageModelLike from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.prompts import BasePromptTemplate, format_document -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.runnables import Runnable, RunnablePassthrough +from pydantic import ConfigDict, Field, model_validator from langchain.chains.combine_documents.base import ( DEFAULT_DOCUMENT_PROMPT, @@ -102,7 +102,7 @@ def format_docs(inputs: dict) -> str: message=( "This class is deprecated. Use the `create_stuff_documents_chain` constructor " "instead. See migration guide here: " - "https://python.langchain.com/v0.2/docs/versions/migrating_chains/stuff_docs_chain/" # noqa: E501 + "https://python.langchain.com/docs/versions/migrating_chains/stuff_docs_chain/" # noqa: E501 ), ) class StuffDocumentsChain(BaseCombineDocumentsChain): @@ -156,12 +156,14 @@ class StuffDocumentsChain(BaseCombineDocumentsChain): document_separator: str = "\n\n" """The string with which to join the formatted documents""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def get_default_document_variable_name(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_default_document_variable_name(cls, values: Dict) -> Any: """Get default document variable name, if not provided. If only one variable is present in the llm_chain.prompt, diff --git a/libs/langchain/langchain/chains/constitutional_ai/models.py b/libs/langchain/langchain/chains/constitutional_ai/models.py index 8058553eb257a..7f9a623459913 100644 --- a/libs/langchain/langchain/chains/constitutional_ai/models.py +++ b/libs/langchain/langchain/chains/constitutional_ai/models.py @@ -1,6 +1,6 @@ """Models for the Constitutional AI chain.""" -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class ConstitutionalPrinciple(BaseModel): diff --git a/libs/langchain/langchain/chains/conversation/base.py b/libs/langchain/langchain/chains/conversation/base.py index dee4b9dbc0cce..2399d963543da 100644 --- a/libs/langchain/langchain/chains/conversation/base.py +++ b/libs/langchain/langchain/chains/conversation/base.py @@ -1,11 +1,12 @@ """Chain that carries on a conversation and calls an LLM.""" -from typing import Dict, List +from typing import List from langchain_core._api import deprecated from langchain_core.memory import BaseMemory from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field, root_validator +from pydantic import ConfigDict, Field, model_validator +from typing_extensions import Self from langchain.chains.conversation.prompt import PROMPT from langchain.chains.llm import LLMChain @@ -24,7 +25,7 @@ class ConversationChain(LLMChain): """Chain to have a conversation and load context from memory. This class is deprecated in favor of ``RunnableWithMessageHistory``. Please refer - to this tutorial for more detail: https://python.langchain.com/v0.2/docs/tutorials/chatbot/ + to this tutorial for more detail: https://python.langchain.com/docs/tutorials/chatbot/ ``RunnableWithMessageHistory`` offers several benefits, including: @@ -110,9 +111,10 @@ def get_session_history(session_id: str) -> InMemoryChatMessageHistory: input_key: str = "input" #: :meta private: output_key: str = "response" #: :meta private: - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @classmethod def is_lc_serializable(cls) -> bool: @@ -123,17 +125,17 @@ def input_keys(self) -> List[str]: """Use this since so some prompt vars come from history.""" return [self.input_key] - @root_validator(pre=False, skip_on_failure=True) - def validate_prompt_input_variables(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_prompt_input_variables(self) -> Self: """Validate that prompt input variables are consistent.""" - memory_keys = values["memory"].memory_variables - input_key = values["input_key"] + memory_keys = self.memory.memory_variables + input_key = self.input_key if input_key in memory_keys: raise ValueError( f"The input key {input_key} was also found in the memory keys " f"({memory_keys}) - please provide keys that don't overlap." ) - prompt_variables = values["prompt"].input_variables + prompt_variables = self.prompt.input_variables expected_keys = memory_keys + [input_key] if set(expected_keys) != set(prompt_variables): raise ValueError( @@ -141,4 +143,4 @@ def validate_prompt_input_variables(cls, values: Dict) -> Dict: f"{prompt_variables}, but got {memory_keys} as inputs from " f"memory, and {input_key} as the normal input key." ) - return values + return self diff --git a/libs/langchain/langchain/chains/conversational_retrieval/base.py b/libs/langchain/langchain/chains/conversational_retrieval/base.py index 4251ced2fdf1a..0c983fdc5ad1e 100644 --- a/libs/langchain/langchain/chains/conversational_retrieval/base.py +++ b/libs/langchain/langchain/chains/conversational_retrieval/base.py @@ -18,10 +18,10 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from langchain_core.retrievers import BaseRetriever from langchain_core.runnables import RunnableConfig from langchain_core.vectorstores import VectorStore +from pydantic import BaseModel, ConfigDict, Field, model_validator from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain @@ -92,14 +92,15 @@ class BaseConversationalRetrievalChain(Chain): get_chat_history: Optional[Callable[[List[CHAT_TURN_TYPE]], str]] = None """An optional function to get a string of the chat history. If None is provided, will use a default.""" - response_if_no_docs_found: Optional[str] + response_if_no_docs_found: Optional[str] = None """If specified, the chain will return a fixed response if no docs are found for the question. """ - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: @@ -482,8 +483,9 @@ class ChatVectorDBChain(BaseConversationalRetrievalChain): def _chain_type(self) -> str: return "chat-vector-db" - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: Dict) -> Any: warnings.warn( "`ChatVectorDBChain` is deprecated - " "please use `from langchain.chains import ConversationalRetrievalChain`" diff --git a/libs/langchain/langchain/chains/elasticsearch_database/base.py b/libs/langchain/langchain/chains/elasticsearch_database/base.py index 89875f2d8a425..b45b3e2c17432 100644 --- a/libs/langchain/langchain/chains/elasticsearch_database/base.py +++ b/libs/langchain/langchain/chains/elasticsearch_database/base.py @@ -9,8 +9,9 @@ from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.output_parsers.json import SimpleJsonOutputParser from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import root_validator from langchain_core.runnables import Runnable +from pydantic import ConfigDict, model_validator +from typing_extensions import Self from langchain.chains.base import Chain from langchain.chains.elasticsearch_database.prompts import ANSWER_PROMPT, DSL_PROMPT @@ -39,7 +40,7 @@ class ElasticsearchDatabaseChain(Chain): """Chain for creating the ES query.""" answer_chain: Runnable """Chain for answering the user question.""" - database: Any + database: Any = None """Elasticsearch database to connect to of type elasticsearch.Elasticsearch.""" top_k: int = 10 """Number of results to return from the query""" @@ -51,17 +52,18 @@ class ElasticsearchDatabaseChain(Chain): return_intermediate_steps: bool = False """Whether or not to return the intermediate steps along with the final answer.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=False, skip_on_failure=True) - def validate_indices(cls, values: dict) -> dict: - if values["include_indices"] and values["ignore_indices"]: + @model_validator(mode="after") + def validate_indices(self) -> Self: + if self.include_indices and self.ignore_indices: raise ValueError( "Cannot specify both 'include_indices' and 'ignore_indices'." ) - return values + return self @property def input_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/chains/flare/base.py b/libs/langchain/langchain/chains/flare/base.py index 53f3dd1e40e82..caf64fe77aa40 100644 --- a/libs/langchain/langchain/chains/flare/base.py +++ b/libs/langchain/langchain/chains/flare/base.py @@ -11,9 +11,9 @@ from langchain_core.messages import AIMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.retrievers import BaseRetriever from langchain_core.runnables import Runnable +from pydantic import Field from langchain.chains.base import Chain from langchain.chains.flare.prompts import ( diff --git a/libs/langchain/langchain/chains/hyde/base.py b/libs/langchain/langchain/chains/hyde/base.py index 833999127b659..f48ca4db6b63e 100644 --- a/libs/langchain/langchain/chains/hyde/base.py +++ b/libs/langchain/langchain/chains/hyde/base.py @@ -14,6 +14,7 @@ from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import BasePromptTemplate from langchain_core.runnables import Runnable +from pydantic import ConfigDict from langchain.chains.base import Chain from langchain.chains.hyde.prompts import PROMPT_MAP @@ -29,14 +30,15 @@ class HypotheticalDocumentEmbedder(Chain, Embeddings): base_embeddings: Embeddings llm_chain: Runnable - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: """Input keys for Hyde's LLM chain.""" - return self.llm_chain.input_schema.schema()["required"] + return self.llm_chain.input_schema.model_json_schema()["required"] @property def output_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/chains/llm.py b/libs/langchain/langchain/chains/llm.py index 62de205347460..123cacc58e519 100644 --- a/libs/langchain/langchain/chains/llm.py +++ b/libs/langchain/langchain/chains/llm.py @@ -22,7 +22,6 @@ from langchain_core.outputs import ChatGeneration, Generation, LLMResult from langchain_core.prompt_values import PromptValue from langchain_core.prompts import BasePromptTemplate, PromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_core.runnables import ( Runnable, RunnableBinding, @@ -31,6 +30,7 @@ ) from langchain_core.runnables.configurable import DynamicRunnable from langchain_core.utils.input import get_colored_text +from pydantic import ConfigDict, Field from langchain.chains.base import Chain @@ -94,9 +94,10 @@ def is_lc_serializable(self) -> bool: If false, will return a bunch of extra information about the generation.""" llm_kwargs: dict = Field(default_factory=dict) - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: @@ -241,6 +242,7 @@ def apply( run_manager = callback_manager.on_chain_start( None, {"input_list": input_list}, + name=self.get_name(), ) try: response = self.generate(input_list, run_manager=run_manager) @@ -261,6 +263,7 @@ async def aapply( run_manager = await callback_manager.on_chain_start( None, {"input_list": input_list}, + name=self.get_name(), ) try: response = await self.agenerate(input_list, run_manager=run_manager) diff --git a/libs/langchain/langchain/chains/llm_checker/base.py b/libs/langchain/langchain/chains/llm_checker/base.py index ea2bc546a5791..bfff3d1b40dd8 100644 --- a/libs/langchain/langchain/chains/llm_checker/base.py +++ b/libs/langchain/langchain/chains/llm_checker/base.py @@ -9,7 +9,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate -from langchain_core.pydantic_v1 import root_validator +from pydantic import ConfigDict, model_validator from langchain.chains.base import Chain from langchain.chains.llm import LLMChain @@ -100,12 +100,14 @@ class LLMCheckerChain(Chain): input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: Dict) -> Any: if "llm" in values: warnings.warn( "Directly instantiating an LLMCheckerChain with an llm is deprecated. " diff --git a/libs/langchain/langchain/chains/llm_math/base.py b/libs/langchain/langchain/chains/llm_math/base.py index e7fd89dcd542c..5bc51bf253e54 100644 --- a/libs/langchain/langchain/chains/llm_math/base.py +++ b/libs/langchain/langchain/chains/llm_math/base.py @@ -14,7 +14,7 @@ ) from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import root_validator +from pydantic import ConfigDict, model_validator from langchain.chains.base import Chain from langchain.chains.llm import LLMChain @@ -156,12 +156,14 @@ async def acall_model(state: ChainState, config: RunnableConfig): input_key: str = "question" #: :meta private: output_key: str = "answer" #: :meta private: - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: Dict) -> Any: try: import numexpr # noqa: F401 except ImportError: diff --git a/libs/langchain/langchain/chains/llm_summarization_checker/base.py b/libs/langchain/langchain/chains/llm_summarization_checker/base.py index f177f401529e4..c7d075dbf4405 100644 --- a/libs/langchain/langchain/chains/llm_summarization_checker/base.py +++ b/libs/langchain/langchain/chains/llm_summarization_checker/base.py @@ -10,7 +10,7 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import root_validator +from pydantic import ConfigDict, model_validator from langchain.chains.base import Chain from langchain.chains.llm import LLMChain @@ -105,12 +105,14 @@ class LLMSummarizationCheckerChain(Chain): max_checks: int = 2 """Maximum number of times to check the assertions. Default to double-checking.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: Dict) -> Any: if "llm" in values: warnings.warn( "Directly instantiating an LLMSummarizationCheckerChain with an llm is " diff --git a/libs/langchain/langchain/chains/mapreduce.py b/libs/langchain/langchain/chains/mapreduce.py index 1eaccf67a850f..d78d3f57c17aa 100644 --- a/libs/langchain/langchain/chains/mapreduce.py +++ b/libs/langchain/langchain/chains/mapreduce.py @@ -14,6 +14,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate from langchain_text_splitters import TextSplitter +from pydantic import ConfigDict from langchain.chains import ReduceDocumentsChain from langchain.chains.base import Chain @@ -30,7 +31,7 @@ "Refer here for a recommended map-reduce implementation using langgraph: " "https://langchain-ai.github.io/langgraph/how-tos/map-reduce/. See also " "migration guide: " - "https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain/" # noqa: E501 + "https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain/" # noqa: E501 ), ) class MapReduceChain(Chain): @@ -77,9 +78,10 @@ def from_params( **kwargs, ) - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/chains/moderation.py b/libs/langchain/langchain/chains/moderation.py index a4b3551491c45..52590a597c0c3 100644 --- a/libs/langchain/langchain/chains/moderation.py +++ b/libs/langchain/langchain/chains/moderation.py @@ -6,8 +6,8 @@ AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import check_package_version, get_from_dict_or_env +from pydantic import Field, model_validator from langchain.chains.base import Chain @@ -28,8 +28,8 @@ class OpenAIModerationChain(Chain): moderation = OpenAIModerationChain() """ - client: Any #: :meta private: - async_client: Any #: :meta private: + client: Any = None #: :meta private: + async_client: Any = None #: :meta private: model_name: Optional[str] = None """Moderation model name to use.""" error: bool = False @@ -40,8 +40,9 @@ class OpenAIModerationChain(Chain): openai_organization: Optional[str] = None openai_pre_1_0: bool = Field(default=None) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" diff --git a/libs/langchain/langchain/chains/natbot/base.py b/libs/langchain/langchain/chains/natbot/base.py index e92131ff35cad..aca7fca8a7d8b 100644 --- a/libs/langchain/langchain/chains/natbot/base.py +++ b/libs/langchain/langchain/chains/natbot/base.py @@ -9,8 +9,8 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import StrOutputParser -from langchain_core.pydantic_v1 import root_validator from langchain_core.runnables import Runnable +from pydantic import ConfigDict, model_validator from langchain.chains.base import Chain from langchain.chains.natbot.prompt import PROMPT @@ -59,12 +59,14 @@ class NatBotChain(Chain): previous_command: str = "" #: :meta private: output_key: str = "command" #: :meta private: - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: Dict) -> Any: if "llm" in values: warnings.warn( "Directly instantiating an NatBotChain with an llm is deprecated. " diff --git a/libs/langchain/langchain/chains/openai_functions/base.py b/libs/langchain/langchain/chains/openai_functions/base.py index 568d992de990f..3d186157b8c73 100644 --- a/libs/langchain/langchain/chains/openai_functions/base.py +++ b/libs/langchain/langchain/chains/openai_functions/base.py @@ -19,11 +19,11 @@ PydanticAttrOutputFunctionsParser, ) from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils.function_calling import ( PYTHON_TO_JSON_TYPES, convert_to_openai_function, ) +from pydantic import BaseModel from langchain.chains import LLMChain from langchain.chains.structured_output.base import ( @@ -93,7 +93,7 @@ def create_openai_fn_chain( from langchain_community.chat_models import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class RecordPerson(BaseModel): @@ -183,7 +183,7 @@ def create_structured_output_chain( from langchain_community.chat_models import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Dog(BaseModel): \"\"\"Identifying information about a dog.\"\"\" diff --git a/libs/langchain/langchain/chains/openai_functions/citation_fuzzy_match.py b/libs/langchain/langchain/chains/openai_functions/citation_fuzzy_match.py index 038489d13a696..e9a83e8abc6e8 100644 --- a/libs/langchain/langchain/chains/openai_functions/citation_fuzzy_match.py +++ b/libs/langchain/langchain/chains/openai_functions/citation_fuzzy_match.py @@ -5,8 +5,8 @@ from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers.openai_functions import PydanticOutputFunctionsParser from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import Runnable +from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs diff --git a/libs/langchain/langchain/chains/openai_functions/extraction.py b/libs/langchain/langchain/chains/openai_functions/extraction.py index ec76ad8a6cbbe..430dc0b626289 100644 --- a/libs/langchain/langchain/chains/openai_functions/extraction.py +++ b/libs/langchain/langchain/chains/openai_functions/extraction.py @@ -7,7 +7,7 @@ PydanticAttrOutputFunctionsParser, ) from langchain_core.prompts import BasePromptTemplate, ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain.chains.base import Chain from langchain.chains.llm import LLMChain @@ -61,7 +61,7 @@ def _get_extraction_function(entity_schema: dict) -> dict: removal="1.0", alternative=( """ - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): @@ -131,7 +131,7 @@ def create_extraction_chain( removal="1.0", alternative=( """ - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): @@ -172,7 +172,11 @@ def create_extraction_chain_pydantic( class PydanticSchema(BaseModel): info: List[pydantic_schema] # type: ignore - openai_schema = pydantic_schema.schema() + if hasattr(pydantic_schema, "model_json_schema"): + openai_schema = pydantic_schema.model_json_schema() + else: + openai_schema = pydantic_schema.schema() + openai_schema = _resolve_schema_references( openai_schema, openai_schema.get("definitions", {}) ) diff --git a/libs/langchain/langchain/chains/openai_functions/qa_with_structure.py b/libs/langchain/langchain/chains/openai_functions/qa_with_structure.py index f13e2f9e522f5..ad118ece28dc4 100644 --- a/libs/langchain/langchain/chains/openai_functions/qa_with_structure.py +++ b/libs/langchain/langchain/chains/openai_functions/qa_with_structure.py @@ -10,8 +10,8 @@ ) from langchain_core.prompts import PromptTemplate from langchain_core.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import BaseModel, Field from langchain.chains.llm import LLMChain from langchain.chains.openai_functions.utils import get_llm_kwargs @@ -32,7 +32,7 @@ class AnswerWithSources(BaseModel): message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with structured responses: " - "https://python.langchain.com/v0.2/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 + "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_structure_chain( @@ -72,7 +72,10 @@ def create_qa_with_structure_chain( f"Should be one of `pydantic` or `base`." ) if isinstance(schema, type) and is_basemodel_subclass(schema): - schema_dict = cast(dict, schema.schema()) + if hasattr(schema, "model_json_schema"): + schema_dict = cast(dict, schema.model_json_schema()) + else: + schema_dict = cast(dict, schema.schema()) else: schema_dict = cast(dict, schema) function = { @@ -111,7 +114,7 @@ def create_qa_with_structure_chain( message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " - "https://python.langchain.com/v0.2/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 + "https://python.langchain.com/docs/how_to/qa_sources/#structure-sources-in-model-response" # noqa: E501 ), ) def create_qa_with_sources_chain( diff --git a/libs/langchain/langchain/chains/openai_functions/tagging.py b/libs/langchain/langchain/chains/openai_functions/tagging.py index aab5421156a69..234226996ccdb 100644 --- a/libs/langchain/langchain/chains/openai_functions/tagging.py +++ b/libs/langchain/langchain/chains/openai_functions/tagging.py @@ -38,7 +38,7 @@ def _get_tagging_function(schema: dict) -> dict: "See API reference for this function for replacement: " "<https://api.python.langchain.com/en/latest/chains/langchain.chains.openai_functions.tagging.create_tagging_chain.html> " # noqa: E501 "You can read more about `with_structured_output` here: " - "<https://python.langchain.com/v0.2/docs/how_to/structured_output/>. " + "<https://python.langchain.com/docs/how_to/structured_output/>. " "If you notice other issues, please provide " "feedback here: " "<https://github.com/langchain-ai/langchain/discussions/18154>" @@ -78,7 +78,7 @@ class Joke(TypedDict): "Why did the cat cross the road? To get to the other " "side... and then lay down in the middle of it!" ) - Read more here: https://python.langchain.com/v0.2/docs/how_to/structured_output/ + Read more here: https://python.langchain.com/docs/how_to/structured_output/ Args: schema: The schema of the entities to extract. @@ -109,7 +109,7 @@ class Joke(TypedDict): "See API reference for this function for replacement: " "<https://api.python.langchain.com/en/latest/chains/langchain.chains.openai_functions.tagging.create_tagging_chain_pydantic.html> " # noqa: E501 "You can read more about `with_structured_output` here: " - "<https://python.langchain.com/v0.2/docs/how_to/structured_output/>. " + "<https://python.langchain.com/docs/how_to/structured_output/>. " "If you notice other issues, please provide " "feedback here: " "<https://github.com/langchain-ai/langchain/discussions/18154>" @@ -130,7 +130,7 @@ def create_tagging_chain_pydantic( .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): @@ -147,7 +147,7 @@ class Joke(BaseModel): "Why did the cat cross the road? To get to the other " "side... and then lay down in the middle of it!" ) - Read more here: https://python.langchain.com/v0.2/docs/how_to/structured_output/ + Read more here: https://python.langchain.com/docs/how_to/structured_output/ Args: pydantic_schema: The pydantic schema of the entities to extract. @@ -156,7 +156,10 @@ class Joke(BaseModel): Returns: Chain (LLMChain) that can be used to extract information from a passage. """ - openai_schema = pydantic_schema.schema() + if hasattr(pydantic_schema, "model_json_schema"): + openai_schema = pydantic_schema.model_json_schema() + else: + openai_schema = pydantic_schema.schema() function = _get_tagging_function(openai_schema) prompt = prompt or ChatPromptTemplate.from_template(_TAGGING_TEMPLATE) output_parser = PydanticOutputFunctionsParser(pydantic_schema=pydantic_schema) diff --git a/libs/langchain/langchain/chains/openai_tools/extraction.py b/libs/langchain/langchain/chains/openai_tools/extraction.py index 55251f5186784..d3ff2e11a6110 100644 --- a/libs/langchain/langchain/chains/openai_tools/extraction.py +++ b/libs/langchain/langchain/chains/openai_tools/extraction.py @@ -4,9 +4,9 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers.openai_tools import PydanticToolsParser from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import convert_pydantic_to_openai_function +from pydantic import BaseModel _EXTRACTION_TEMPLATE = """Extract and save the relevant entities mentioned \ in the following passage together with their properties. @@ -32,7 +32,7 @@ removal="1.0", alternative=( """ - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): diff --git a/libs/langchain/langchain/chains/prompt_selector.py b/libs/langchain/langchain/chains/prompt_selector.py index 453e2ea03577f..4014cdc1fbbbf 100644 --- a/libs/langchain/langchain/chains/prompt_selector.py +++ b/libs/langchain/langchain/chains/prompt_selector.py @@ -5,7 +5,7 @@ from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.language_models.llms import BaseLLM from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field class BasePromptSelector(BaseModel, ABC): diff --git a/libs/langchain/langchain/chains/qa_generation/base.py b/libs/langchain/langchain/chains/qa_generation/base.py index b66b8a5442599..a55c078610124 100644 --- a/libs/langchain/langchain/chains/qa_generation/base.py +++ b/libs/langchain/langchain/chains/qa_generation/base.py @@ -7,8 +7,8 @@ from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter +from pydantic import Field from langchain.chains.base import Chain from langchain.chains.llm import LLMChain diff --git a/libs/langchain/langchain/chains/qa_with_sources/base.py b/libs/langchain/langchain/chains/qa_with_sources/base.py index aed2d57cf91e5..fac53f3cde0a2 100644 --- a/libs/langchain/langchain/chains/qa_with_sources/base.py +++ b/libs/langchain/langchain/chains/qa_with_sources/base.py @@ -15,7 +15,7 @@ from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import root_validator +from pydantic import ConfigDict, model_validator from langchain.chains import ReduceDocumentsChain from langchain.chains.base import Chain @@ -37,7 +37,7 @@ message=( "This class is deprecated. Refer to this guide on retrieval and question " "answering with sources: " - "https://python.langchain.com/v0.2/docs/how_to/qa_sources/" + "https://python.langchain.com/docs/how_to/qa_sources/" ), ) class BaseQAWithSourcesChain(Chain, ABC): @@ -97,9 +97,10 @@ def from_chain_type( ) return cls(combine_documents_chain=combine_documents_chain, **kwargs) - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: @@ -120,8 +121,9 @@ def output_keys(self) -> List[str]: _output_keys = _output_keys + ["source_documents"] return _output_keys - @root_validator(pre=True) - def validate_naming(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_naming(cls, values: Dict) -> Any: """Fix backwards compatibility in naming.""" if "combine_document_chain" in values: values["combine_documents_chain"] = values.pop("combine_document_chain") @@ -214,7 +216,7 @@ async def _acall( message=( "This class is deprecated. Refer to this guide on retrieval and question " "answering with sources: " - "https://python.langchain.com/v0.2/docs/how_to/qa_sources/" + "https://python.langchain.com/docs/how_to/qa_sources/" ), ) class QAWithSourcesChain(BaseQAWithSourcesChain): diff --git a/libs/langchain/langchain/chains/qa_with_sources/loading.py b/libs/langchain/langchain/chains/qa_with_sources/loading.py index 2457821684925..485f19efc0214 100644 --- a/libs/langchain/langchain/chains/qa_with_sources/loading.py +++ b/libs/langchain/langchain/chains/qa_with_sources/loading.py @@ -158,13 +158,13 @@ def _load_refine_chain( message=( "This function is deprecated. Refer to this guide on retrieval and question " "answering with sources: " - "https://python.langchain.com/v0.2/docs/how_to/qa_sources/" + "https://python.langchain.com/docs/how_to/qa_sources/" "\nSee also the following migration guides for replacements " "based on `chain_type`:\n" - "stuff: https://python.langchain.com/v0.2/docs/versions/migrating_chains/stuff_docs_chain\n" # noqa: E501 - "map_reduce: https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain\n" # noqa: E501 - "refine: https://python.langchain.com/v0.2/docs/versions/migrating_chains/refine_chain\n" # noqa: E501 - "map_rerank: https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain\n" # noqa: E501 + "stuff: https://python.langchain.com/docs/versions/migrating_chains/stuff_docs_chain\n" # noqa: E501 + "map_reduce: https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain\n" # noqa: E501 + "refine: https://python.langchain.com/docs/versions/migrating_chains/refine_chain\n" # noqa: E501 + "map_rerank: https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain\n" # noqa: E501 ), ) def load_qa_with_sources_chain( diff --git a/libs/langchain/langchain/chains/qa_with_sources/retrieval.py b/libs/langchain/langchain/chains/qa_with_sources/retrieval.py index f4a924c8dd162..95485b9fe0e3c 100644 --- a/libs/langchain/langchain/chains/qa_with_sources/retrieval.py +++ b/libs/langchain/langchain/chains/qa_with_sources/retrieval.py @@ -7,8 +7,8 @@ CallbackManagerForChainRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field from langchain_core.retrievers import BaseRetriever +from pydantic import Field from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain diff --git a/libs/langchain/langchain/chains/qa_with_sources/vector_db.py b/libs/langchain/langchain/chains/qa_with_sources/vector_db.py index ca594994f3a6b..6330db38bc9b4 100644 --- a/libs/langchain/langchain/chains/qa_with_sources/vector_db.py +++ b/libs/langchain/langchain/chains/qa_with_sources/vector_db.py @@ -8,8 +8,8 @@ CallbackManagerForChainRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.vectorstores import VectorStore +from pydantic import Field, model_validator from langchain.chains.combine_documents.stuff import StuffDocumentsChain from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain @@ -61,8 +61,9 @@ async def _aget_docs( ) -> List[Document]: raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: Dict) -> Any: warnings.warn( "`VectorDBQAWithSourcesChain` is deprecated - " "please use `from langchain.chains import RetrievalQAWithSourcesChain`" diff --git a/libs/langchain/langchain/chains/query_constructor/schema.py b/libs/langchain/langchain/chains/query_constructor/schema.py index 585addc7919a3..56103d9a9fede 100644 --- a/libs/langchain/langchain/chains/query_constructor/schema.py +++ b/libs/langchain/langchain/chains/query_constructor/schema.py @@ -1,4 +1,4 @@ -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict class AttributeInfo(BaseModel): @@ -8,6 +8,7 @@ class AttributeInfo(BaseModel): description: str type: str - class Config: - arbitrary_types_allowed = True - frozen = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + frozen=True, + ) diff --git a/libs/langchain/langchain/chains/question_answering/chain.py b/libs/langchain/langchain/chains/question_answering/chain.py index c83895dc2a86d..4c97d69838fa2 100644 --- a/libs/langchain/langchain/chains/question_answering/chain.py +++ b/libs/langchain/langchain/chains/question_answering/chain.py @@ -223,12 +223,12 @@ def _load_refine_chain( message=( "This class is deprecated. See the following migration guides for replacements " "based on `chain_type`:\n" - "stuff: https://python.langchain.com/v0.2/docs/versions/migrating_chains/stuff_docs_chain\n" # noqa: E501 - "map_reduce: https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_reduce_chain\n" # noqa: E501 - "refine: https://python.langchain.com/v0.2/docs/versions/migrating_chains/refine_chain\n" # noqa: E501 - "map_rerank: https://python.langchain.com/v0.2/docs/versions/migrating_chains/map_rerank_docs_chain\n" # noqa: E501 + "stuff: https://python.langchain.com/docs/versions/migrating_chains/stuff_docs_chain\n" # noqa: E501 + "map_reduce: https://python.langchain.com/docs/versions/migrating_chains/map_reduce_chain\n" # noqa: E501 + "refine: https://python.langchain.com/docs/versions/migrating_chains/refine_chain\n" # noqa: E501 + "map_rerank: https://python.langchain.com/docs/versions/migrating_chains/map_rerank_docs_chain\n" # noqa: E501 "\nSee also guides on retrieval and question-answering here: " - "https://python.langchain.com/v0.2/docs/how_to/#qa-with-rag" + "https://python.langchain.com/docs/how_to/#qa-with-rag" ), ) def load_qa_chain( diff --git a/libs/langchain/langchain/chains/retrieval_qa/base.py b/libs/langchain/langchain/chains/retrieval_qa/base.py index 689dd8b0c217b..cf224e10c60ab 100644 --- a/libs/langchain/langchain/chains/retrieval_qa/base.py +++ b/libs/langchain/langchain/chains/retrieval_qa/base.py @@ -16,9 +16,9 @@ from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore +from pydantic import ConfigDict, Field, model_validator from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain @@ -34,7 +34,7 @@ message=( "This class is deprecated. Use the `create_retrieval_chain` constructor " "instead. See migration guide here: " - "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/" + "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/" ), ) class BaseRetrievalQA(Chain): @@ -47,10 +47,11 @@ class BaseRetrievalQA(Chain): return_source_documents: bool = False """Return the source documents or not.""" - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: @@ -209,7 +210,7 @@ async def _acall( message=( "This class is deprecated. Use the `create_retrieval_chain` constructor " "instead. See migration guide here: " - "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/" + "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/" ), ) class RetrievalQA(BaseRetrievalQA): @@ -294,7 +295,7 @@ def _chain_type(self) -> str: message=( "This class is deprecated. Use the `create_retrieval_chain` constructor " "instead. See migration guide here: " - "https://python.langchain.com/v0.2/docs/versions/migrating_chains/retrieval_qa/" + "https://python.langchain.com/docs/versions/migrating_chains/retrieval_qa/" ), ) class VectorDBQA(BaseRetrievalQA): @@ -309,16 +310,18 @@ class VectorDBQA(BaseRetrievalQA): search_kwargs: Dict[str, Any] = Field(default_factory=dict) """Extra search args.""" - @root_validator(pre=True) - def raise_deprecation(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_deprecation(cls, values: Dict) -> Any: warnings.warn( "`VectorDBQA` is deprecated - " "please use `from langchain.chains import RetrievalQA`" ) return values - @root_validator(pre=True) - def validate_search_type(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_search_type(cls, values: Dict) -> Any: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] diff --git a/libs/langchain/langchain/chains/router/base.py b/libs/langchain/langchain/chains/router/base.py index d0b680dd952b1..fa489c8110c33 100644 --- a/libs/langchain/langchain/chains/router/base.py +++ b/libs/langchain/langchain/chains/router/base.py @@ -10,6 +10,7 @@ CallbackManagerForChainRun, Callbacks, ) +from pydantic import ConfigDict from langchain.chains.base import Chain @@ -60,9 +61,10 @@ class MultiRouteChain(Chain): """If True, use default_chain when an invalid destination name is provided. Defaults to False.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/chains/router/embedding_router.py b/libs/langchain/langchain/chains/router/embedding_router.py index a1bc126a49f2a..0f44dda02ff43 100644 --- a/libs/langchain/langchain/chains/router/embedding_router.py +++ b/libs/langchain/langchain/chains/router/embedding_router.py @@ -9,6 +9,7 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.vectorstores import VectorStore +from pydantic import ConfigDict from langchain.chains.router.base import RouterChain @@ -19,9 +20,10 @@ class EmbeddingRouterChain(RouterChain): vectorstore: VectorStore routing_keys: List[str] = ["query"] - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/chains/router/llm_router.py b/libs/langchain/langchain/chains/router/llm_router.py index 132f350e819c9..aa72ce4c22a25 100644 --- a/libs/langchain/langchain/chains/router/llm_router.py +++ b/libs/langchain/langchain/chains/router/llm_router.py @@ -13,8 +13,9 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils.json import parse_and_check_json_markdown +from pydantic import model_validator +from typing_extensions import Self from langchain.chains import LLMChain from langchain.chains.router.base import RouterChain @@ -100,9 +101,9 @@ class RouteQuery(TypedDict): llm_chain: LLMChain """LLM chain used to perform routing""" - @root_validator(pre=False, skip_on_failure=True) - def validate_prompt(cls, values: dict) -> dict: - prompt = values["llm_chain"].prompt + @model_validator(mode="after") + def validate_prompt(self) -> Self: + prompt = self.llm_chain.prompt if prompt.output_parser is None: raise ValueError( "LLMRouterChain requires base llm_chain prompt to have an output" @@ -110,7 +111,7 @@ def validate_prompt(cls, values: dict) -> dict: " 'destination' and 'next_inputs'. Received a prompt with no output" " parser." ) - return values + return self @property def input_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/chains/sequential.py b/libs/langchain/langchain/chains/sequential.py index e75300f7cbf84..b19f65e9aa2c3 100644 --- a/libs/langchain/langchain/chains/sequential.py +++ b/libs/langchain/langchain/chains/sequential.py @@ -6,8 +6,9 @@ AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils.input import get_color_mapping +from pydantic import ConfigDict, model_validator +from typing_extensions import Self from langchain.chains.base import Chain @@ -20,9 +21,10 @@ class SequentialChain(Chain): output_variables: List[str] #: :meta private: return_all: bool = False - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: @@ -40,8 +42,9 @@ def output_keys(self) -> List[str]: """ return self.output_variables - @root_validator(pre=True) - def validate_chains(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_chains(cls, values: Dict) -> Any: """Validate that the correct inputs exist for all chains.""" chains = values["chains"] input_variables = values["input_variables"] @@ -129,9 +132,10 @@ class SimpleSequentialChain(Chain): input_key: str = "input" #: :meta private: output_key: str = "output" #: :meta private: - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) @property def input_keys(self) -> List[str]: @@ -149,10 +153,10 @@ def output_keys(self) -> List[str]: """ return [self.output_key] - @root_validator(pre=False, skip_on_failure=True) - def validate_chains(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_chains(self) -> Self: """Validate that chains are all single input/output.""" - for chain in values["chains"]: + for chain in self.chains: if len(chain.input_keys) != 1: raise ValueError( "Chains used in SimplePipeline should all have one input, got " @@ -163,7 +167,7 @@ def validate_chains(cls, values: Dict) -> Dict: "Chains used in SimplePipeline should all have one output, got " f"{chain} with {len(chain.output_keys)} outputs." ) - return values + return self def _call( self, diff --git a/libs/langchain/langchain/chains/structured_output/base.py b/libs/langchain/langchain/chains/structured_output/base.py index 14526d014ccc4..a7645e286f096 100644 --- a/libs/langchain/langchain/chains/structured_output/base.py +++ b/libs/langchain/langchain/chains/structured_output/base.py @@ -18,13 +18,13 @@ PydanticToolsParser, ) from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable from langchain_core.utils.function_calling import ( convert_to_openai_function, convert_to_openai_tool, ) from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import BaseModel @deprecated( @@ -44,7 +44,7 @@ removal="1.0", alternative=( """ - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): @@ -108,7 +108,7 @@ def create_openai_fn_runnable( from langchain.chains.structured_output import create_openai_fn_runnable from langchain_openai import ChatOpenAI - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class RecordPerson(BaseModel): @@ -162,7 +162,7 @@ class RecordDog(BaseModel): removal="1.0", alternative=( """ - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic class Joke(BaseModel): @@ -237,7 +237,7 @@ def create_structured_output_runnable( from langchain.chains import create_structured_output_runnable from langchain_openai import ChatOpenAI - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class RecordDog(BaseModel): @@ -318,7 +318,7 @@ class RecordDog(BaseModel): from langchain.chains import create_structured_output_runnable from langchain_openai import ChatOpenAI - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Dog(BaseModel): '''Identifying information about a dog.''' @@ -340,7 +340,7 @@ class Dog(BaseModel): from langchain.chains import create_structured_output_runnable from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Dog(BaseModel): '''Identifying information about a dog.''' @@ -366,7 +366,7 @@ class Dog(BaseModel): from langchain.chains import create_structured_output_runnable from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Dog(BaseModel): '''Identifying information about a dog.''' diff --git a/libs/langchain/langchain/chains/transform.py b/libs/langchain/langchain/chains/transform.py index e95bfc9a85a84..2812722369b72 100644 --- a/libs/langchain/langchain/chains/transform.py +++ b/libs/langchain/langchain/chains/transform.py @@ -8,7 +8,7 @@ AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain.chains.base import Chain diff --git a/libs/langchain/langchain/chat_models/base.py b/libs/langchain/langchain/chat_models/base.py index ce50f7b7b095d..6c66a6f3475f0 100644 --- a/libs/langchain/langchain/chat_models/base.py +++ b/libs/langchain/langchain/chat_models/base.py @@ -30,11 +30,11 @@ generate_from_stream, ) from langchain_core.messages import AnyMessage, BaseMessage -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import Runnable, RunnableConfig from langchain_core.runnables.schema import StreamEvent from langchain_core.tools import BaseTool from langchain_core.tracers import RunLog, RunLogPatch +from pydantic import BaseModel from typing_extensions import TypeAlias __all__ = [ @@ -98,48 +98,42 @@ def init_chat_model( Must have the integration package corresponding to the model provider installed. - .. versionadded:: 0.2.7 - - .. versionchanged:: 0.2.8 - - Support for ``configurable_fields`` and ``config_prefix`` added. - - .. versionchanged:: 0.2.12 - - Support for Ollama via langchain-ollama package added. Previously - langchain-community version of Ollama (now deprecated) was installed by default. - Args: model: The name of the model, e.g. "gpt-4o", "claude-3-opus-20240229". model_provider: The model provider. Supported model_provider values and the corresponding integration package: - - openai (langchain-openai) - - anthropic (langchain-anthropic) - - azure_openai (langchain-openai) - - google_vertexai (langchain-google-vertexai) - - google_genai (langchain-google-genai) - - bedrock (langchain-aws) - - cohere (langchain-cohere) - - fireworks (langchain-fireworks) - - together (langchain-together) - - mistralai (langchain-mistralai) - - huggingface (langchain-huggingface) - - groq (langchain-groq) - - ollama (langchain-ollama) [support added in langchain==0.2.12] + + - openai (langchain-openai) + - anthropic (langchain-anthropic) + - azure_openai (langchain-openai) + - google_vertexai (langchain-google-vertexai) + - google_genai (langchain-google-genai) + - bedrock (langchain-aws) + - bedrock_converse (langchain-aws) + - cohere (langchain-cohere) + - fireworks (langchain-fireworks) + - together (langchain-together) + - mistralai (langchain-mistralai) + - huggingface (langchain-huggingface) + - groq (langchain-groq) + - ollama (langchain-ollama) [support added in langchain==0.2.12] Will attempt to infer model_provider from model if not specified. The following providers will be inferred based on these model prefixes: - - gpt-3... or gpt-4... -> openai - - claude... -> anthropic - - amazon.... -> bedrock - - gemini... -> google_vertexai - - command... -> cohere - - accounts/fireworks... -> fireworks + + - gpt-3..., gpt-4..., or o1... -> openai + - claude... -> anthropic + - amazon.... -> bedrock + - gemini... -> google_vertexai + - command... -> cohere + - accounts/fireworks... -> fireworks + - mistral... -> mistralai configurable_fields: Which model parameters are configurable: - - None: No configurable fields. - - "any": All fields are configurable. *See Security Note below.* - - Union[List[str], Tuple[str, ...]]: Specified fields are configurable. + + - None: No configurable fields. + - "any": All fields are configurable. *See Security Note below.* + - Union[List[str], Tuple[str, ...]]: Specified fields are configurable. Fields are assumed to have config_prefix stripped if there is a config_prefix. If model is specified, then defaults to None. If model is @@ -168,7 +162,9 @@ def init_chat_model( ValueError: If model_provider cannot be inferred or isn't supported. ImportError: If the model provider integration package is not installed. - Initialize non-configurable models: + .. dropdown:: Init non-configurable model + :open: + .. code-block:: python # pip install langchain langchain-openai langchain-anthropic langchain-google-vertexai @@ -183,7 +179,8 @@ def init_chat_model( gemini_15.invoke("what's your name") - Create a partially configurable model with no default model: + .. dropdown:: Partially configurable model with no default + .. code-block:: python # pip install langchain langchain-openai langchain-anthropic @@ -204,7 +201,8 @@ def init_chat_model( ) # claude-3.5 sonnet response - Create a fully configurable model with a default model and a config prefix: + .. dropdown:: Fully configurable model with a default + .. code-block:: python # pip install langchain langchain-openai langchain-anthropic @@ -233,7 +231,8 @@ def init_chat_model( ) # Claude-3.5 sonnet response with temperature 0.6 - Bind tools to a configurable model: + .. dropdown:: Bind tools to a configurable model + You can call any ChatModel declarative methods on a configurable model in the same way that you would with a normal model. @@ -241,7 +240,7 @@ def init_chat_model( # pip install langchain langchain-openai langchain-anthropic from langchain.chat_models import init_chat_model - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -270,6 +269,23 @@ class GetPopulation(BaseModel): config={"configurable": {"model": "claude-3-5-sonnet-20240620"}} ) # Claude-3.5 sonnet response with tools + + .. versionadded:: 0.2.7 + + .. versionchanged:: 0.2.8 + + Support for ``configurable_fields`` and ``config_prefix`` added. + + .. versionchanged:: 0.2.12 + + Support for ChatOllama via langchain-ollama package added + (langchain_ollama.ChatOllama). Previously, + the now-deprecated langchain-community version of Ollama was imported + (langchain_community.chat_models.ChatOllama). + + Support for langchain_aws.ChatBedrockConverse added + (model_provider="bedrock_converse"). + """ # noqa: E501 if not model and not configurable_fields: configurable_fields = ("model", "model_provider") @@ -415,7 +431,7 @@ def _init_chat_model_helper( def _attempt_infer_model_provider(model_name: str) -> Optional[str]: - if model_name.startswith("gpt-3") or model_name.startswith("gpt-4"): + if any(model_name.startswith(pre) for pre in ("gpt-3", "gpt-4", "o1")): return "openai" elif model_name.startswith("claude"): return "anthropic" @@ -427,6 +443,8 @@ def _attempt_infer_model_provider(model_name: str) -> Optional[str]: return "google_vertexai" elif model_name.startswith("amazon."): return "bedrock" + elif model_name.startswith("mistral"): + return "mistralai" else: return None diff --git a/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py b/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py index 791b95f64cf7a..1d52c5a78e3e3 100644 --- a/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py +++ b/libs/langchain/langchain/evaluation/agents/trajectory_eval_chain.py @@ -28,8 +28,8 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.language_models.chat_models import BaseChatModel from langchain_core.output_parsers import BaseOutputParser -from langchain_core.pydantic_v1 import Field from langchain_core.tools import BaseTool +from pydantic import ConfigDict, Field from langchain.chains.llm import LLMChain from langchain.evaluation.agents.trajectory_eval_prompt import ( @@ -156,8 +156,9 @@ def geography_answers(country: str, question: str) -> str: return_reasoning: bool = False # :meta private: """DEPRECATED. Reasoning always returned.""" - class Config: - extra = "ignore" + model_config = ConfigDict( + extra="ignore", + ) @property def requires_reference(self) -> bool: diff --git a/libs/langchain/langchain/evaluation/comparison/eval_chain.py b/libs/langchain/langchain/evaluation/comparison/eval_chain.py index d76f836ad8725..46b9001e48fd7 100644 --- a/libs/langchain/langchain/evaluation/comparison/eval_chain.py +++ b/libs/langchain/langchain/evaluation/comparison/eval_chain.py @@ -10,7 +10,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import ConfigDict, Field from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain @@ -191,8 +191,9 @@ class PairwiseStringEvalChain(PairwiseStringEvaluator, LLMEvalChain, LLMChain): def is_lc_serializable(cls) -> bool: return False - class Config: - extra = "ignore" + model_config = ConfigDict( + extra="ignore", + ) @property def requires_reference(self) -> bool: diff --git a/libs/langchain/langchain/evaluation/criteria/eval_chain.py b/libs/langchain/langchain/evaluation/criteria/eval_chain.py index 34fc656cbc7e5..896b1efceabc2 100644 --- a/libs/langchain/langchain/evaluation/criteria/eval_chain.py +++ b/libs/langchain/langchain/evaluation/criteria/eval_chain.py @@ -8,7 +8,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import ConfigDict, Field from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain @@ -236,8 +236,9 @@ class CriteriaEvalChain(StringEvaluator, LLMEvalChain, LLMChain): def is_lc_serializable(cls) -> bool: return False - class Config: - extra = "ignore" + model_config = ConfigDict( + extra="ignore", + ) @property def requires_reference(self) -> bool: diff --git a/libs/langchain/langchain/evaluation/embedding_distance/base.py b/libs/langchain/langchain/evaluation/embedding_distance/base.py index d983c72fbf00f..569838841cd04 100644 --- a/libs/langchain/langchain/evaluation/embedding_distance/base.py +++ b/libs/langchain/langchain/evaluation/embedding_distance/base.py @@ -10,8 +10,8 @@ Callbacks, ) from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import ConfigDict, Field from langchain.chains.base import Chain from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator @@ -113,8 +113,9 @@ def _validate_tiktoken_installed(cls, values: Dict[str, Any]) -> Dict[str, Any]: ) return values - class Config: - arbitrary_types_allowed: bool = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @property def output_keys(self) -> List[str]: diff --git a/libs/langchain/langchain/evaluation/qa/eval_chain.py b/libs/langchain/langchain/evaluation/qa/eval_chain.py index 0204d8fe90161..345bbd87bc9f7 100644 --- a/libs/langchain/langchain/evaluation/qa/eval_chain.py +++ b/libs/langchain/langchain/evaluation/qa/eval_chain.py @@ -9,6 +9,7 @@ from langchain_core.callbacks.manager import Callbacks from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import PromptTemplate +from pydantic import ConfigDict from langchain.chains.llm import LLMChain from langchain.evaluation.qa.eval_prompt import CONTEXT_PROMPT, COT_PROMPT, PROMPT @@ -72,8 +73,9 @@ class QAEvalChain(LLMChain, StringEvaluator, LLMEvalChain): output_key: str = "results" #: :meta private: - class Config: - extra = "ignore" + model_config = ConfigDict( + extra="ignore", + ) @classmethod def is_lc_serializable(cls) -> bool: @@ -220,8 +222,9 @@ def requires_input(self) -> bool: """Whether the chain requires an input string.""" return True - class Config: - extra = "ignore" + model_config = ConfigDict( + extra="ignore", + ) @classmethod def _validate_input_vars(cls, prompt: PromptTemplate) -> None: diff --git a/libs/langchain/langchain/evaluation/qa/generate_chain.py b/libs/langchain/langchain/evaluation/qa/generate_chain.py index 32dea149a447b..94cf36d45a7d4 100644 --- a/libs/langchain/langchain/evaluation/qa/generate_chain.py +++ b/libs/langchain/langchain/evaluation/qa/generate_chain.py @@ -6,7 +6,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseLLMOutputParser -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain.chains.llm import LLMChain from langchain.evaluation.qa.generate_prompt import PROMPT diff --git a/libs/langchain/langchain/evaluation/scoring/eval_chain.py b/libs/langchain/langchain/evaluation/scoring/eval_chain.py index 3b800f8ffc0d4..a8a84a05813d6 100644 --- a/libs/langchain/langchain/evaluation/scoring/eval_chain.py +++ b/libs/langchain/langchain/evaluation/scoring/eval_chain.py @@ -10,7 +10,7 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import BaseOutputParser from langchain_core.prompts.prompt import PromptTemplate -from langchain_core.pydantic_v1 import Field +from pydantic import ConfigDict, Field from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple from langchain.chains.llm import LLMChain @@ -179,8 +179,9 @@ class ScoreStringEvalChain(StringEvaluator, LLMEvalChain, LLMChain): criterion_name: str """The name of the criterion being evaluated.""" - class Config: - extra = "ignore" + model_config = ConfigDict( + extra="ignore", + ) @classmethod def is_lc_serializable(cls) -> bool: diff --git a/libs/langchain/langchain/evaluation/string_distance/base.py b/libs/langchain/langchain/evaluation/string_distance/base.py index bb9c9719d736f..396e267a7e5e5 100644 --- a/libs/langchain/langchain/evaluation/string_distance/base.py +++ b/libs/langchain/langchain/evaluation/string_distance/base.py @@ -8,8 +8,8 @@ CallbackManagerForChainRun, Callbacks, ) -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import Field from langchain.chains.base import Chain from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator diff --git a/libs/langchain/langchain/indexes/vectorstore.py b/libs/langchain/langchain/indexes/vectorstore.py index deb408dff2d0c..08042c63d7292 100644 --- a/libs/langchain/langchain/indexes/vectorstore.py +++ b/libs/langchain/langchain/indexes/vectorstore.py @@ -4,9 +4,9 @@ from langchain_core.documents import Document from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.vectorstores import VectorStore from langchain_text_splitters import RecursiveCharacterTextSplitter, TextSplitter +from pydantic import BaseModel, ConfigDict, Field from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain from langchain.chains.retrieval_qa.base import RetrievalQA @@ -21,9 +21,10 @@ class VectorStoreIndexWrapper(BaseModel): vectorstore: VectorStore - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) def query( self, @@ -142,9 +143,10 @@ class VectorstoreIndexCreator(BaseModel): text_splitter: TextSplitter = Field(default_factory=_get_default_text_splitter) vectorstore_kwargs: dict = Field(default_factory=dict) - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) def from_loaders(self, loaders: List[BaseLoader]) -> VectorStoreIndexWrapper: """Create a vectorstore index from loaders.""" diff --git a/libs/langchain/langchain/memory/buffer.py b/libs/langchain/langchain/memory/buffer.py index 525e9b1525c26..16c0ffa5935c9 100644 --- a/libs/langchain/langchain/memory/buffer.py +++ b/libs/langchain/langchain/memory/buffer.py @@ -1,5 +1,6 @@ from typing import Any, Dict, List, Optional +from langchain_core._api import deprecated from langchain_core.messages import BaseMessage, get_buffer_string from langchain_core.utils import pre_init @@ -7,8 +8,23 @@ from langchain.memory.utils import get_prompt_input_key +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class ConversationBufferMemory(BaseChatMemory): - """Buffer for storing conversation memory.""" + """A basic memory implementation that simply stores the conversation history. + + This stores the entire conversation history in memory without any + additional processing. + + Note that additional processing may be required in some situations when the + conversation history is too large to fit in the context window of the model. + """ human_prefix: str = "Human" ai_prefix: str = "AI" @@ -71,8 +87,26 @@ async def aload_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any] return {self.memory_key: buffer} +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class ConversationStringBufferMemory(BaseMemory): - """Buffer for storing conversation memory.""" + """A basic memory implementation that simply stores the conversation history. + + This stores the entire conversation history in memory without any + additional processing. + + Equivalent to ConversationBufferMemory but tailored more specifically + for string-based conversations rather than chat models. + + Note that additional processing may be required in some situations when the + conversation history is too large to fit in the context window of the model. + """ human_prefix: str = "Human" ai_prefix: str = "AI" diff --git a/libs/langchain/langchain/memory/buffer_window.py b/libs/langchain/langchain/memory/buffer_window.py index b71b9d23baf4a..3faafb5268e59 100644 --- a/libs/langchain/langchain/memory/buffer_window.py +++ b/libs/langchain/langchain/memory/buffer_window.py @@ -1,12 +1,25 @@ from typing import Any, Dict, List, Union +from langchain_core._api import deprecated from langchain_core.messages import BaseMessage, get_buffer_string from langchain.memory.chat_memory import BaseChatMemory +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class ConversationBufferWindowMemory(BaseChatMemory): - """Buffer for storing conversation memory inside a limited size window.""" + """Use to keep track of the last k turns of a conversation. + + If the number of messages in the conversation is more than the maximum number + of messages to keep, the oldest messages are dropped. + """ human_prefix: str = "Human" ai_prefix: str = "AI" diff --git a/libs/langchain/langchain/memory/chat_memory.py b/libs/langchain/langchain/memory/chat_memory.py index 10feaa3e1b95f..1447fc484aa4e 100644 --- a/libs/langchain/langchain/memory/chat_memory.py +++ b/libs/langchain/langchain/memory/chat_memory.py @@ -2,19 +2,36 @@ from abc import ABC from typing import Any, Dict, Optional, Tuple +from langchain_core._api import deprecated from langchain_core.chat_history import ( BaseChatMessageHistory, InMemoryChatMessageHistory, ) from langchain_core.memory import BaseMemory from langchain_core.messages import AIMessage, HumanMessage -from langchain_core.pydantic_v1 import Field +from pydantic import Field from langchain.memory.utils import get_prompt_input_key +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class BaseChatMemory(BaseMemory, ABC): - """Abstract base class for chat memory.""" + """Abstract base class for chat memory. + + **ATTENTION** This abstraction was created prior to when chat models had + native tool calling capabilities. + It does **NOT** support native tool calling capabilities for chat models and + will fail SILENTLY if used with a chat model that has native tool calling. + + DO NOT USE THIS ABSTRACTION FOR NEW CODE. + """ chat_memory: BaseChatMessageHistory = Field( default_factory=InMemoryChatMessageHistory diff --git a/libs/langchain/langchain/memory/combined.py b/libs/langchain/langchain/memory/combined.py index 5ab0048895bba..6186f40587c58 100644 --- a/libs/langchain/langchain/memory/combined.py +++ b/libs/langchain/langchain/memory/combined.py @@ -2,7 +2,7 @@ from typing import Any, Dict, List, Set from langchain_core.memory import BaseMemory -from langchain_core.pydantic_v1 import validator +from pydantic import field_validator from langchain.memory.chat_memory import BaseChatMemory @@ -13,7 +13,8 @@ class CombinedMemory(BaseMemory): memories: List[BaseMemory] """For tracking all the memories that should be accessed.""" - @validator("memories") + @field_validator("memories") + @classmethod def check_repeated_memory_variable( cls, value: List[BaseMemory] ) -> List[BaseMemory]: @@ -29,7 +30,8 @@ def check_repeated_memory_variable( return value - @validator("memories") + @field_validator("memories") + @classmethod def check_input_key(cls, value: List[BaseMemory]) -> List[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: diff --git a/libs/langchain/langchain/memory/entity.py b/libs/langchain/langchain/memory/entity.py index 57fdb75537eb2..fa63107775317 100644 --- a/libs/langchain/langchain/memory/entity.py +++ b/libs/langchain/langchain/memory/entity.py @@ -1,12 +1,15 @@ +"""Deprecated as of LangChain v0.3.4 and will be removed in LangChain v1.0.0.""" + import logging from abc import ABC, abstractmethod from itertools import islice from typing import Any, Dict, Iterable, List, Optional +from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, get_buffer_string from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory @@ -19,6 +22,14 @@ logger = logging.getLogger(__name__) +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class BaseEntityStore(BaseModel, ABC): """Abstract base class for Entity store.""" @@ -48,6 +59,14 @@ def clear(self) -> None: pass +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class InMemoryEntityStore(BaseEntityStore): """In-memory Entity store.""" @@ -69,6 +88,14 @@ def clear(self) -> None: return self.store.clear() +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class UpstashRedisEntityStore(BaseEntityStore): """Upstash Redis backed Entity store. @@ -147,6 +174,14 @@ def scan_and_delete(cursor: int) -> int: scan_and_delete(cursor) +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class RedisEntityStore(BaseEntityStore): """Redis-backed Entity store. @@ -238,6 +273,14 @@ def batched(iterable: Iterable[Any], batch_size: int) -> Iterable[Any]: self.redis_client.delete(*keybatch) +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class SQLiteEntityStore(BaseEntityStore): """SQLite-backed Entity store""" @@ -245,8 +288,9 @@ class SQLiteEntityStore(BaseEntityStore): table_name: str = "memory_store" conn: Any = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def __init__( self, @@ -334,6 +378,14 @@ def clear(self) -> None: self.conn.execute(query) +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class ConversationEntityMemory(BaseChatMemory): """Entity extractor & summarizer memory. diff --git a/libs/langchain/langchain/memory/summary.py b/libs/langchain/langchain/memory/summary.py index 23c3f2bca1f43..64c843579befc 100644 --- a/libs/langchain/langchain/memory/summary.py +++ b/libs/langchain/langchain/memory/summary.py @@ -7,8 +7,8 @@ from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, SystemMessage, get_buffer_string from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.utils import pre_init +from pydantic import BaseModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory @@ -57,8 +57,21 @@ async def apredict_new_summary( return await chain.apredict(summary=existing_summary, new_lines=new_lines) +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class ConversationSummaryMemory(BaseChatMemory, SummarizerMixin): - """Conversation summarizer to chat memory.""" + """Continually summarizes the conversation history. + + The summary is updated after each conversation turn. + The implementations returns a summary of the conversation history which + can be used to provide context to the model. + """ buffer: str = "" memory_key: str = "history" #: :meta private: diff --git a/libs/langchain/langchain/memory/summary_buffer.py b/libs/langchain/langchain/memory/summary_buffer.py index e52ccb89ad9af..62985240fa48e 100644 --- a/libs/langchain/langchain/memory/summary_buffer.py +++ b/libs/langchain/langchain/memory/summary_buffer.py @@ -1,5 +1,6 @@ from typing import Any, Dict, List, Union +from langchain_core._api import deprecated from langchain_core.messages import BaseMessage, get_buffer_string from langchain_core.utils import pre_init @@ -7,8 +8,21 @@ from langchain.memory.summary import SummarizerMixin +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class ConversationSummaryBufferMemory(BaseChatMemory, SummarizerMixin): - """Buffer with summarizer for storing conversation memory.""" + """Buffer with summarizer for storing conversation memory. + + Provides a running summary of the conversation together with the most recent + messages in the conversation under the constraint that the total number of + tokens in the conversation does not exceed a certain limit. + """ max_token_limit: int = 2000 moving_summary_buffer: str = "" diff --git a/libs/langchain/langchain/memory/token_buffer.py b/libs/langchain/langchain/memory/token_buffer.py index 853e0dcc6f6fc..a4a8fb18e7e50 100644 --- a/libs/langchain/langchain/memory/token_buffer.py +++ b/libs/langchain/langchain/memory/token_buffer.py @@ -1,13 +1,26 @@ from typing import Any, Dict, List +from langchain_core._api import deprecated from langchain_core.language_models import BaseLanguageModel from langchain_core.messages import BaseMessage, get_buffer_string from langchain.memory.chat_memory import BaseChatMemory +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class ConversationTokenBufferMemory(BaseChatMemory): - """Conversation chat memory with token limit.""" + """Conversation chat memory with token limit. + + Keeps only the most recent messages in the conversation under the constraint + that the total number of tokens in the conversation does not exceed a certain limit. + """ human_prefix: str = "Human" ai_prefix: str = "AI" diff --git a/libs/langchain/langchain/memory/vectorstore.py b/libs/langchain/langchain/memory/vectorstore.py index b719749b1ce37..72d3aa7244c3a 100644 --- a/libs/langchain/langchain/memory/vectorstore.py +++ b/libs/langchain/langchain/memory/vectorstore.py @@ -2,16 +2,27 @@ from typing import Any, Dict, List, Optional, Sequence, Union +from langchain_core._api import deprecated from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field from langchain_core.vectorstores import VectorStoreRetriever +from pydantic import Field from langchain.memory.chat_memory import BaseMemory from langchain.memory.utils import get_prompt_input_key +@deprecated( + since="0.3.1", + removal="1.0.0", + message=( + "Please see the migration guide at: " + "https://python.langchain.com/docs/versions/migrating_memory/" + ), +) class VectorStoreRetrieverMemory(BaseMemory): - """VectorStoreRetriever-backed memory.""" + """Store the conversation history in a vector store and retrieves the relevant + parts of past conversation based on the input. + """ retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" diff --git a/libs/langchain/langchain/memory/vectorstore_token_buffer_memory.py b/libs/langchain/langchain/memory/vectorstore_token_buffer_memory.py index f611c04903d07..293773e84a173 100644 --- a/libs/langchain/langchain/memory/vectorstore_token_buffer_memory.py +++ b/libs/langchain/langchain/memory/vectorstore_token_buffer_memory.py @@ -13,8 +13,8 @@ from langchain_core.messages import BaseMessage from langchain_core.prompts.chat import SystemMessagePromptTemplate -from langchain_core.pydantic_v1 import Field, PrivateAttr from langchain_core.vectorstores import VectorStoreRetriever +from pydantic import Field, PrivateAttr from langchain.memory import ConversationTokenBufferMemory, VectorStoreRetrieverMemory from langchain.memory.chat_memory import BaseChatMemory diff --git a/libs/langchain/langchain/output_parsers/fix.py b/libs/langchain/langchain/output_parsers/fix.py index a22bfff582be0..f0a1a701c2334 100644 --- a/libs/langchain/langchain/output_parsers/fix.py +++ b/libs/langchain/langchain/output_parsers/fix.py @@ -1,11 +1,12 @@ from __future__ import annotations -from typing import Any, TypeVar, Union +from typing import Annotated, Any, TypeVar, Union from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.prompts import BasePromptTemplate from langchain_core.runnables import Runnable, RunnableSerializable +from pydantic import SkipValidation from typing_extensions import TypedDict from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT @@ -26,7 +27,7 @@ class OutputFixingParser(BaseOutputParser[T]): def is_lc_serializable(cls) -> bool: return True - parser: BaseOutputParser[T] + parser: Annotated[BaseOutputParser[T], SkipValidation()] """The parser to use to parse the output.""" # Should be an LLMChain but we want to avoid top-level imports from langchain.chains retry_chain: Union[ diff --git a/libs/langchain/langchain/output_parsers/pandas_dataframe.py b/libs/langchain/langchain/output_parsers/pandas_dataframe.py index 3447767c088fa..8ac3e47626395 100644 --- a/libs/langchain/langchain/output_parsers/pandas_dataframe.py +++ b/libs/langchain/langchain/output_parsers/pandas_dataframe.py @@ -3,7 +3,7 @@ from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers.base import BaseOutputParser -from langchain_core.pydantic_v1 import validator +from pydantic import field_validator from langchain.output_parsers.format_instructions import ( PANDAS_DATAFRAME_FORMAT_INSTRUCTIONS, @@ -16,7 +16,8 @@ class PandasDataFrameOutputParser(BaseOutputParser[Dict[str, Any]]): """The Pandas DataFrame to parse.""" dataframe: Any - @validator("dataframe") + @field_validator("dataframe") + @classmethod def validate_dataframe(cls, val: Any) -> Any: import pandas as pd diff --git a/libs/langchain/langchain/output_parsers/retry.py b/libs/langchain/langchain/output_parsers/retry.py index cc56c627c0f0c..06e1b410f7291 100644 --- a/libs/langchain/langchain/output_parsers/retry.py +++ b/libs/langchain/langchain/output_parsers/retry.py @@ -8,7 +8,8 @@ from langchain_core.prompt_values import PromptValue from langchain_core.prompts import BasePromptTemplate, PromptTemplate from langchain_core.runnables import RunnableSerializable -from typing_extensions import TypedDict +from pydantic import SkipValidation +from typing_extensions import Annotated, TypedDict NAIVE_COMPLETION_RETRY = """Prompt: {prompt} @@ -53,7 +54,7 @@ class RetryOutputParser(BaseOutputParser[T]): LLM, and telling it the completion did not satisfy criteria in the prompt. """ - parser: BaseOutputParser[T] + parser: Annotated[BaseOutputParser[T], SkipValidation()] """The parser to use to parse the output.""" # Should be an LLMChain but we want to avoid top-level imports from langchain.chains retry_chain: Union[RunnableSerializable[RetryOutputParserRetryChainInput, str], Any] @@ -183,7 +184,7 @@ class RetryWithErrorOutputParser(BaseOutputParser[T]): LLM, which in theory should give it more information on how to fix it. """ - parser: BaseOutputParser[T] + parser: Annotated[BaseOutputParser[T], SkipValidation()] """The parser to use to parse the output.""" # Should be an LLMChain but we want to avoid top-level imports from langchain.chains retry_chain: Union[ diff --git a/libs/langchain/langchain/output_parsers/structured.py b/libs/langchain/langchain/output_parsers/structured.py index 097e1a7170f4c..715be3c410ee9 100644 --- a/libs/langchain/langchain/output_parsers/structured.py +++ b/libs/langchain/langchain/output_parsers/structured.py @@ -4,7 +4,7 @@ from langchain_core.output_parsers import BaseOutputParser from langchain_core.output_parsers.json import parse_and_check_json_markdown -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain.output_parsers.format_instructions import ( STRUCTURED_FORMAT_INSTRUCTIONS, diff --git a/libs/langchain/langchain/output_parsers/yaml.py b/libs/langchain/langchain/output_parsers/yaml.py index e7c071eb40068..facfcc4b9a219 100644 --- a/libs/langchain/langchain/output_parsers/yaml.py +++ b/libs/langchain/langchain/output_parsers/yaml.py @@ -5,7 +5,7 @@ import yaml from langchain_core.exceptions import OutputParserException from langchain_core.output_parsers import BaseOutputParser -from langchain_core.pydantic_v1 import BaseModel, ValidationError +from pydantic import BaseModel, ValidationError from langchain.output_parsers.format_instructions import YAML_FORMAT_INSTRUCTIONS @@ -35,7 +35,10 @@ def parse(self, text: str) -> T: yaml_str = text json_object = yaml.safe_load(yaml_str) - return self.pydantic_object.parse_obj(json_object) + if hasattr(self.pydantic_object, "model_validate"): + return self.pydantic_object.model_validate(json_object) + else: + return self.pydantic_object.parse_obj(json_object) except (yaml.YAMLError, ValidationError) as e: name = self.pydantic_object.__name__ diff --git a/libs/langchain/langchain/pydantic_v1/__init__.py b/libs/langchain/langchain/pydantic_v1/__init__.py index d17a0ac3a9e71..c329193ffd31e 100644 --- a/libs/langchain/langchain/pydantic_v1/__init__.py +++ b/libs/langchain/langchain/pydantic_v1/__init__.py @@ -1,5 +1,7 @@ from importlib import metadata +from langchain_core._api import warn_deprecated + ## Create namespaces for pydantic v1 and v2. # This code must stay at the top of the file before other modules may # attempt to import pydantic since it adds pydantic_v1 and pydantic_v2 to sys.modules. @@ -21,3 +23,21 @@ _PYDANTIC_MAJOR_VERSION: int = int(metadata.version("pydantic").split(".")[0]) except metadata.PackageNotFoundError: _PYDANTIC_MAJOR_VERSION = 0 + +warn_deprecated( + "0.3.0", + removal="1.0.0", + alternative="pydantic.v1 or pydantic", + message=( + "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " + "The langchain.pydantic_v1 module was a " + "compatibility shim for pydantic v1, and should no longer be used. " + "Please update the code to import from Pydantic directly.\n\n" + "For example, replace imports like: " + "`from langchain.pydantic_v1 import BaseModel`\n" + "with: `from pydantic import BaseModel`\n" + "or the v1 compatibility namespace if you are working in a code base " + "that has not been fully upgraded to pydantic 2 yet. " + "\tfrom pydantic.v1 import BaseModel\n" + ), +) diff --git a/libs/langchain/langchain/pydantic_v1/dataclasses.py b/libs/langchain/langchain/pydantic_v1/dataclasses.py index 2dfa3dab0aa47..b057c5bb6cc99 100644 --- a/libs/langchain/langchain/pydantic_v1/dataclasses.py +++ b/libs/langchain/langchain/pydantic_v1/dataclasses.py @@ -1,4 +1,24 @@ +from langchain_core._api import warn_deprecated + try: from pydantic.v1.dataclasses import * # noqa: F403 except ImportError: from pydantic.dataclasses import * # type: ignore # noqa: F403 + +warn_deprecated( + "0.3.0", + removal="1.0.0", + alternative="pydantic.v1 or pydantic", + message=( + "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " + "The langchain.pydantic_v1 module was a " + "compatibility shim for pydantic v1, and should no longer be used. " + "Please update the code to import from Pydantic directly.\n\n" + "For example, replace imports like: " + "`from langchain.pydantic_v1 import BaseModel`\n" + "with: `from pydantic import BaseModel`\n" + "or the v1 compatibility namespace if you are working in a code base " + "that has not been fully upgraded to pydantic 2 yet. " + "\tfrom pydantic.v1 import BaseModel\n" + ), +) diff --git a/libs/langchain/langchain/pydantic_v1/main.py b/libs/langchain/langchain/pydantic_v1/main.py index fa8916f8350e1..d366b5a7ea4a6 100644 --- a/libs/langchain/langchain/pydantic_v1/main.py +++ b/libs/langchain/langchain/pydantic_v1/main.py @@ -1,4 +1,24 @@ +from langchain_core._api import warn_deprecated + try: from pydantic.v1.main import * # noqa: F403 except ImportError: from pydantic.main import * # type: ignore # noqa: F403 + +warn_deprecated( + "0.3.0", + removal="1.0.0", + alternative="pydantic.v1 or pydantic", + message=( + "As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. " + "The langchain.pydantic_v1 module was a " + "compatibility shim for pydantic v1, and should no longer be used. " + "Please update the code to import from Pydantic directly.\n\n" + "For example, replace imports like: " + "`from langchain.pydantic_v1 import BaseModel`\n" + "with: `from pydantic import BaseModel`\n" + "or the v1 compatibility namespace if you are working in a code base " + "that has not been fully upgraded to pydantic 2 yet. " + "\tfrom pydantic.v1 import BaseModel\n" + ), +) diff --git a/libs/langchain/langchain/retrievers/contextual_compression.py b/libs/langchain/langchain/retrievers/contextual_compression.py index c73180b889d3a..d5dccb13fb552 100644 --- a/libs/langchain/langchain/retrievers/contextual_compression.py +++ b/libs/langchain/langchain/retrievers/contextual_compression.py @@ -6,6 +6,7 @@ ) from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever, RetrieverLike +from pydantic import ConfigDict from langchain.retrievers.document_compressors.base import ( BaseDocumentCompressor, @@ -21,8 +22,9 @@ class ContextualCompressionRetriever(BaseRetriever): base_retriever: RetrieverLike """Base Retriever to use for getting relevant documents.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _get_relevant_documents( self, diff --git a/libs/langchain/langchain/retrievers/document_compressors/base.py b/libs/langchain/langchain/retrievers/document_compressors/base.py index a68515af8b023..dd25d428fa7fc 100644 --- a/libs/langchain/langchain/retrievers/document_compressors/base.py +++ b/libs/langchain/langchain/retrievers/document_compressors/base.py @@ -7,6 +7,7 @@ BaseDocumentTransformer, Document, ) +from pydantic import ConfigDict class DocumentCompressorPipeline(BaseDocumentCompressor): @@ -15,8 +16,9 @@ class DocumentCompressorPipeline(BaseDocumentCompressor): transformers: List[Union[BaseDocumentTransformer, BaseDocumentCompressor]] """List of document filters that are chained together and run in sequence.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def compress_documents( self, diff --git a/libs/langchain/langchain/retrievers/document_compressors/chain_extract.py b/libs/langchain/langchain/retrievers/document_compressors/chain_extract.py index cc86f2be49b73..9933319ad0485 100644 --- a/libs/langchain/langchain/retrievers/document_compressors/chain_extract.py +++ b/libs/langchain/langchain/retrievers/document_compressors/chain_extract.py @@ -11,6 +11,7 @@ from langchain_core.output_parsers import BaseOutputParser, StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import Runnable +from pydantic import ConfigDict from langchain.chains.llm import LLMChain from langchain.retrievers.document_compressors.base import BaseDocumentCompressor @@ -56,8 +57,9 @@ class LLMChainExtractor(BaseDocumentCompressor): get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def compress_documents( self, diff --git a/libs/langchain/langchain/retrievers/document_compressors/chain_filter.py b/libs/langchain/langchain/retrievers/document_compressors/chain_filter.py index 2db6f5be3a7b2..bfa1cd694dc26 100644 --- a/libs/langchain/langchain/retrievers/document_compressors/chain_filter.py +++ b/libs/langchain/langchain/retrievers/document_compressors/chain_filter.py @@ -9,6 +9,7 @@ from langchain_core.prompts import BasePromptTemplate, PromptTemplate from langchain_core.runnables import Runnable from langchain_core.runnables.config import RunnableConfig +from pydantic import ConfigDict from langchain.chains import LLMChain from langchain.output_parsers.boolean import BooleanOutputParser @@ -41,8 +42,9 @@ class LLMChainFilter(BaseDocumentCompressor): get_input: Callable[[str, Document], dict] = default_get_input """Callable for constructing the chain input from the query and a Document.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def compress_documents( self, diff --git a/libs/langchain/langchain/retrievers/document_compressors/cohere_rerank.py b/libs/langchain/langchain/retrievers/document_compressors/cohere_rerank.py index f7d96c29df737..2030807ce310c 100644 --- a/libs/langchain/langchain/retrievers/document_compressors/cohere_rerank.py +++ b/libs/langchain/langchain/retrievers/document_compressors/cohere_rerank.py @@ -6,8 +6,8 @@ from langchain_core._api.deprecation import deprecated from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.utils import get_from_dict_or_env +from pydantic import ConfigDict, model_validator from langchain.retrievers.document_compressors.base import BaseDocumentCompressor @@ -30,12 +30,14 @@ class CohereRerank(BaseDocumentCompressor): user_agent: str = "langchain" """Identifier for the application making the request.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" if not values.get("client"): try: diff --git a/libs/langchain/langchain/retrievers/document_compressors/cross_encoder_rerank.py b/libs/langchain/langchain/retrievers/document_compressors/cross_encoder_rerank.py index d1b683f2d9b8f..fff77c15266bd 100644 --- a/libs/langchain/langchain/retrievers/document_compressors/cross_encoder_rerank.py +++ b/libs/langchain/langchain/retrievers/document_compressors/cross_encoder_rerank.py @@ -5,6 +5,7 @@ from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document +from pydantic import ConfigDict from langchain.retrievers.document_compressors.cross_encoder import BaseCrossEncoder @@ -18,9 +19,10 @@ class CrossEncoderReranker(BaseDocumentCompressor): top_n: int = 3 """Number of documents to return.""" - class Config: - arbitrary_types_allowed = True - extra = "forbid" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="forbid", + ) def compress_documents( self, diff --git a/libs/langchain/langchain/retrievers/document_compressors/embeddings_filter.py b/libs/langchain/langchain/retrievers/document_compressors/embeddings_filter.py index d29a0e7ac5f61..d71e7f1b3c293 100644 --- a/libs/langchain/langchain/retrievers/document_compressors/embeddings_filter.py +++ b/libs/langchain/langchain/retrievers/document_compressors/embeddings_filter.py @@ -4,8 +4,8 @@ from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import Document from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import Field from langchain_core.utils import pre_init +from pydantic import ConfigDict, Field from langchain.retrievers.document_compressors.base import ( BaseDocumentCompressor, @@ -36,13 +36,14 @@ class EmbeddingsFilter(BaseDocumentCompressor): k: Optional[int] = 20 """The number of relevant documents to return. Can be set to None, in which case `similarity_threshold` must be specified. Defaults to 20.""" - similarity_threshold: Optional[float] + similarity_threshold: Optional[float] = None """Threshold for determining when two documents are similar enough to be considered redundant. Defaults to None, must be specified if `k` is set to None.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) @pre_init def validate_params(cls, values: Dict) -> Dict: diff --git a/libs/langchain/langchain/retrievers/document_compressors/listwise_rerank.py b/libs/langchain/langchain/retrievers/document_compressors/listwise_rerank.py index 16647df82c602..5039a36b6aba2 100644 --- a/libs/langchain/langchain/retrievers/document_compressors/listwise_rerank.py +++ b/libs/langchain/langchain/retrievers/document_compressors/listwise_rerank.py @@ -6,8 +6,8 @@ from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate, ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough +from pydantic import BaseModel, ConfigDict, Field _default_system_tmpl = """{context} @@ -76,8 +76,9 @@ class LLMListwiseRerank(BaseDocumentCompressor): top_n: int = 3 """Number of documents to return.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def compress_documents( self, diff --git a/libs/langchain/langchain/retrievers/ensemble.py b/libs/langchain/langchain/retrievers/ensemble.py index a7d96d0f171b9..f07fe756ed62d 100644 --- a/libs/langchain/langchain/retrievers/ensemble.py +++ b/libs/langchain/langchain/retrievers/ensemble.py @@ -24,7 +24,6 @@ CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever, RetrieverLike from langchain_core.runnables import RunnableConfig from langchain_core.runnables.config import ensure_config, patch_config @@ -32,6 +31,7 @@ ConfigurableFieldSpec, get_unique_config_specs, ) +from pydantic import model_validator T = TypeVar("T") H = TypeVar("H", bound=Hashable) @@ -82,8 +82,9 @@ def config_specs(self) -> List[ConfigurableFieldSpec]: spec for retriever in self.retrievers for spec in retriever.config_specs ) - @root_validator(pre=True) - def set_weights(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def set_weights(cls, values: Dict[str, Any]) -> Any: if not values.get("weights"): n_retrievers = len(values["retrievers"]) values["weights"] = [1 / n_retrievers] * n_retrievers @@ -309,9 +310,11 @@ def weighted_reciprocal_rank( for doc_list, weight in zip(doc_lists, self.weights): for rank, doc in enumerate(doc_list, start=1): rrf_score[ - doc.page_content - if self.id_key is None - else doc.metadata[self.id_key] + ( + doc.page_content + if self.id_key is None + else doc.metadata[self.id_key] + ) ] += weight / (rank + self.c) # Docs are deduplicated by their contents then sorted by their scores @@ -319,9 +322,11 @@ def weighted_reciprocal_rank( sorted_docs = sorted( unique_by_key( all_docs, - lambda doc: doc.page_content - if self.id_key is None - else doc.metadata[self.id_key], + lambda doc: ( + doc.page_content + if self.id_key is None + else doc.metadata[self.id_key] + ), ), reverse=True, key=lambda doc: rrf_score[ diff --git a/libs/langchain/langchain/retrievers/multi_vector.py b/libs/langchain/langchain/retrievers/multi_vector.py index 54a4d935dcd56..48e48d07ea6af 100644 --- a/libs/langchain/langchain/retrievers/multi_vector.py +++ b/libs/langchain/langchain/retrievers/multi_vector.py @@ -1,15 +1,15 @@ from enum import Enum -from typing import Dict, List, Optional +from typing import Any, Dict, List, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForRetrieverRun, CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.retrievers import BaseRetriever from langchain_core.stores import BaseStore, ByteStore from langchain_core.vectorstores import VectorStore +from pydantic import Field, model_validator from langchain.storage._lc_store import create_kv_docstore @@ -41,8 +41,9 @@ class MultiVectorRetriever(BaseRetriever): search_type: SearchType = SearchType.similarity """Type of search to perform (similarity / mmr)""" - @root_validator(pre=True) - def shim_docstore(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def shim_docstore(cls, values: Dict) -> Any: byte_store = values.get("byte_store") docstore = values.get("docstore") if byte_store is not None: diff --git a/libs/langchain/langchain/retrievers/self_query/base.py b/libs/langchain/langchain/retrievers/self_query/base.py index 0b89db472c124..a5254d475924f 100644 --- a/libs/langchain/langchain/retrievers/self_query/base.py +++ b/libs/langchain/langchain/retrievers/self_query/base.py @@ -9,11 +9,11 @@ ) from langchain_core.documents import Document from langchain_core.language_models import BaseLanguageModel -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.retrievers import BaseRetriever from langchain_core.runnables import Runnable from langchain_core.structured_query import StructuredQuery, Visitor from langchain_core.vectorstores import VectorStore +from pydantic import ConfigDict, Field, model_validator from langchain.chains.query_constructor.base import load_query_constructor_runnable from langchain.chains.query_constructor.schema import AttributeInfo @@ -223,12 +223,14 @@ class SelfQueryRetriever(BaseRetriever): use_original_query: bool = False """Use original query instead of the revised new query from LLM""" - class Config: - allow_population_by_field_name = True - arbitrary_types_allowed = True + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def validate_translator(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_translator(cls, values: Dict) -> Any: """Validate translator.""" if "structured_query_translator" not in values: values["structured_query_translator"] = _get_builtin_translator( diff --git a/libs/langchain/langchain/retrievers/time_weighted_retriever.py b/libs/langchain/langchain/retrievers/time_weighted_retriever.py index 0acf17edce806..706366dbf58bf 100644 --- a/libs/langchain/langchain/retrievers/time_weighted_retriever.py +++ b/libs/langchain/langchain/retrievers/time_weighted_retriever.py @@ -7,9 +7,9 @@ CallbackManagerForRetrieverRun, ) from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field from langchain_core.retrievers import BaseRetriever from langchain_core.vectorstores import VectorStore +from pydantic import ConfigDict, Field def _get_hours_passed(time: datetime.datetime, ref_time: datetime.datetime) -> float: @@ -46,8 +46,9 @@ class TimeWeightedVectorStoreRetriever(BaseRetriever): None assigns no salience to documents not fetched from the vector store. """ - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) def _document_get_date(self, field: str, document: Document) -> datetime.datetime: """Return the value of the date field of a document.""" diff --git a/libs/langchain/langchain/smith/evaluation/config.py b/libs/langchain/langchain/smith/evaluation/config.py index e9bdd324779db..9f132a011a6bb 100644 --- a/libs/langchain/langchain/smith/evaluation/config.py +++ b/libs/langchain/langchain/smith/evaluation/config.py @@ -5,10 +5,10 @@ from langchain_core.embeddings import Embeddings from langchain_core.language_models import BaseLanguageModel from langchain_core.prompts import BasePromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langsmith import RunEvaluator from langsmith.evaluation.evaluator import EvaluationResult, EvaluationResults from langsmith.schemas import Example, Run +from pydantic import BaseModel, ConfigDict, Field from langchain.evaluation.criteria.eval_chain import CRITERIA_TYPE from langchain.evaluation.embedding_distance.base import ( @@ -156,8 +156,9 @@ class RunEvalConfig(BaseModel): eval_llm: Optional[BaseLanguageModel] = None """The language model to pass to any evaluators that require one.""" - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) class Criteria(SingleKeyEvalConfig): """Configuration for a reference-free criteria evaluator. @@ -217,8 +218,9 @@ class EmbeddingDistance(SingleKeyEvalConfig): embeddings: Optional[Embeddings] = None distance_metric: Optional[EmbeddingDistanceEnum] = None - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) class StringDistance(SingleKeyEvalConfig): """Configuration for a string distance evaluator. diff --git a/libs/langchain/poetry.lock b/libs/langchain/poetry.lock index 679db930d0c33..4266061ece4f5 100644 --- a/libs/langchain/poetry.lock +++ b/libs/langchain/poetry.lock @@ -2,113 +2,113 @@ [[package]] name = "aiohappyeyeballs" -version = "2.4.0" +version = "2.4.3" description = "Happy Eyeballs for asyncio" optional = false python-versions = ">=3.8" files = [ - {file = "aiohappyeyeballs-2.4.0-py3-none-any.whl", hash = "sha256:7ce92076e249169a13c2f49320d1967425eaf1f407522d707d59cac7628d62bd"}, - {file = "aiohappyeyeballs-2.4.0.tar.gz", hash = "sha256:55a1714f084e63d49639800f95716da97a1f173d46a16dfcfda0016abb93b6b2"}, + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, ] [[package]] name = "aiohttp" -version = "3.10.5" +version = "3.10.8" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.8" files = [ - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:18a01eba2574fb9edd5f6e5fb25f66e6ce061da5dab5db75e13fe1558142e0a3"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:94fac7c6e77ccb1ca91e9eb4cb0ac0270b9fb9b289738654120ba8cebb1189c6"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2f1f1c75c395991ce9c94d3e4aa96e5c59c8356a15b1c9231e783865e2772699"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f7acae3cf1a2a2361ec4c8e787eaaa86a94171d2417aae53c0cca6ca3118ff6"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94c4381ffba9cc508b37d2e536b418d5ea9cfdc2848b9a7fea6aebad4ec6aac1"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c31ad0c0c507894e3eaa843415841995bf8de4d6b2d24c6e33099f4bc9fc0d4f"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0912b8a8fadeb32ff67a3ed44249448c20148397c1ed905d5dac185b4ca547bb"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d93400c18596b7dc4794d48a63fb361b01a0d8eb39f28800dc900c8fbdaca91"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d00f3c5e0d764a5c9aa5a62d99728c56d455310bcc288a79cab10157b3af426f"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d742c36ed44f2798c8d3f4bc511f479b9ceef2b93f348671184139e7d708042c"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:814375093edae5f1cb31e3407997cf3eacefb9010f96df10d64829362ae2df69"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8224f98be68a84b19f48e0bdc14224b5a71339aff3a27df69989fa47d01296f3"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d9a487ef090aea982d748b1b0d74fe7c3950b109df967630a20584f9a99c0683"}, - {file = "aiohttp-3.10.5-cp310-cp310-win32.whl", hash = "sha256:d9ef084e3dc690ad50137cc05831c52b6ca428096e6deb3c43e95827f531d5ef"}, - {file = "aiohttp-3.10.5-cp310-cp310-win_amd64.whl", hash = "sha256:66bf9234e08fe561dccd62083bf67400bdbf1c67ba9efdc3dac03650e97c6088"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c6a4e5e40156d72a40241a25cc226051c0a8d816610097a8e8f517aeacd59a2"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c634a3207a5445be65536d38c13791904fda0748b9eabf908d3fe86a52941cf"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4aff049b5e629ef9b3e9e617fa6e2dfeda1bf87e01bcfecaf3949af9e210105e"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1942244f00baaacaa8155eca94dbd9e8cc7017deb69b75ef67c78e89fdad3c77"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e04a1f2a65ad2f93aa20f9ff9f1b672bf912413e5547f60749fa2ef8a644e061"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f2bfc0032a00405d4af2ba27f3c429e851d04fad1e5ceee4080a1c570476697"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424ae21498790e12eb759040bbb504e5e280cab64693d14775c54269fd1d2bb7"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:975218eee0e6d24eb336d0328c768ebc5d617609affaca5dbbd6dd1984f16ed0"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4120d7fefa1e2d8fb6f650b11489710091788de554e2b6f8347c7a20ceb003f5"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b90078989ef3fc45cf9221d3859acd1108af7560c52397ff4ace8ad7052a132e"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ba5a8b74c2a8af7d862399cdedce1533642fa727def0b8c3e3e02fcb52dca1b1"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:02594361128f780eecc2a29939d9dfc870e17b45178a867bf61a11b2a4367277"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8fb4fc029e135859f533025bc82047334e24b0d489e75513144f25408ecaf058"}, - {file = "aiohttp-3.10.5-cp311-cp311-win32.whl", hash = "sha256:e1ca1ef5ba129718a8fc827b0867f6aa4e893c56eb00003b7367f8a733a9b072"}, - {file = "aiohttp-3.10.5-cp311-cp311-win_amd64.whl", hash = "sha256:349ef8a73a7c5665cca65c88ab24abe75447e28aa3bc4c93ea5093474dfdf0ff"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:305be5ff2081fa1d283a76113b8df7a14c10d75602a38d9f012935df20731487"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a1c32a19ee6bbde02f1cb189e13a71b321256cc1d431196a9f824050b160d5a"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:61645818edd40cc6f455b851277a21bf420ce347baa0b86eaa41d51ef58ba23d"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c225286f2b13bab5987425558baa5cbdb2bc925b2998038fa028245ef421e75"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ba01ebc6175e1e6b7275c907a3a36be48a2d487549b656aa90c8a910d9f3178"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8eaf44ccbc4e35762683078b72bf293f476561d8b68ec8a64f98cf32811c323e"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c43eb1ab7cbf411b8e387dc169acb31f0ca0d8c09ba63f9eac67829585b44f"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de7a5299827253023c55ea549444e058c0eb496931fa05d693b95140a947cb73"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4790f0e15f00058f7599dab2b206d3049d7ac464dc2e5eae0e93fa18aee9e7bf"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:44b324a6b8376a23e6ba25d368726ee3bc281e6ab306db80b5819999c737d820"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:0d277cfb304118079e7044aad0b76685d30ecb86f83a0711fc5fb257ffe832ca"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:54d9ddea424cd19d3ff6128601a4a4d23d54a421f9b4c0fff740505813739a91"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4f1c9866ccf48a6df2b06823e6ae80573529f2af3a0992ec4fe75b1a510df8a6"}, - {file = "aiohttp-3.10.5-cp312-cp312-win32.whl", hash = "sha256:dc4826823121783dccc0871e3f405417ac116055bf184ac04c36f98b75aacd12"}, - {file = "aiohttp-3.10.5-cp312-cp312-win_amd64.whl", hash = "sha256:22c0a23a3b3138a6bf76fc553789cb1a703836da86b0f306b6f0dc1617398abc"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7f6b639c36734eaa80a6c152a238242bedcee9b953f23bb887e9102976343092"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f29930bc2921cef955ba39a3ff87d2c4398a0394ae217f41cb02d5c26c8b1b77"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f489a2c9e6455d87eabf907ac0b7d230a9786be43fbe884ad184ddf9e9c1e385"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:123dd5b16b75b2962d0fff566effb7a065e33cd4538c1692fb31c3bda2bfb972"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b98e698dc34966e5976e10bbca6d26d6724e6bdea853c7c10162a3235aba6e16"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3b9162bab7e42f21243effc822652dc5bb5e8ff42a4eb62fe7782bcbcdfacf6"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1923a5c44061bffd5eebeef58cecf68096e35003907d8201a4d0d6f6e387ccaa"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d55f011da0a843c3d3df2c2cf4e537b8070a419f891c930245f05d329c4b0689"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:afe16a84498441d05e9189a15900640a2d2b5e76cf4efe8cbb088ab4f112ee57"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8112fb501b1e0567a1251a2fd0747baae60a4ab325a871e975b7bb67e59221f"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:1e72589da4c90337837fdfe2026ae1952c0f4a6e793adbbfbdd40efed7c63599"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4d46c7b4173415d8e583045fbc4daa48b40e31b19ce595b8d92cf639396c15d5"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:33e6bc4bab477c772a541f76cd91e11ccb6d2efa2b8d7d7883591dfb523e5987"}, - {file = "aiohttp-3.10.5-cp313-cp313-win32.whl", hash = "sha256:c58c6837a2c2a7cf3133983e64173aec11f9c2cd8e87ec2fdc16ce727bcf1a04"}, - {file = "aiohttp-3.10.5-cp313-cp313-win_amd64.whl", hash = "sha256:38172a70005252b6893088c0f5e8a47d173df7cc2b2bd88650957eb84fcf5022"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f6f18898ace4bcd2d41a122916475344a87f1dfdec626ecde9ee802a711bc569"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ede29d91a40ba22ac1b922ef510aab871652f6c88ef60b9dcdf773c6d32ad7a"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:673f988370f5954df96cc31fd99c7312a3af0a97f09e407399f61583f30da9bc"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58718e181c56a3c02d25b09d4115eb02aafe1a732ce5714ab70326d9776457c3"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b38b1570242fbab8d86a84128fb5b5234a2f70c2e32f3070143a6d94bc854cf"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:074d1bff0163e107e97bd48cad9f928fa5a3eb4b9d33366137ffce08a63e37fe"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd31f176429cecbc1ba499d4aba31aaccfea488f418d60376b911269d3b883c5"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7384d0b87d4635ec38db9263e6a3f1eb609e2e06087f0aa7f63b76833737b471"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8989f46f3d7ef79585e98fa991e6ded55d2f48ae56d2c9fa5e491a6e4effb589"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c83f7a107abb89a227d6c454c613e7606c12a42b9a4ca9c5d7dad25d47c776ae"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:cde98f323d6bf161041e7627a5fd763f9fd829bcfcd089804a5fdce7bb6e1b7d"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:676f94c5480d8eefd97c0c7e3953315e4d8c2b71f3b49539beb2aa676c58272f"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2d21ac12dc943c68135ff858c3a989f2194a709e6e10b4c8977d7fcd67dfd511"}, - {file = "aiohttp-3.10.5-cp38-cp38-win32.whl", hash = "sha256:17e997105bd1a260850272bfb50e2a328e029c941c2708170d9d978d5a30ad9a"}, - {file = "aiohttp-3.10.5-cp38-cp38-win_amd64.whl", hash = "sha256:1c19de68896747a2aa6257ae4cf6ef59d73917a36a35ee9d0a6f48cff0f94db8"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7e2fe37ac654032db1f3499fe56e77190282534810e2a8e833141a021faaab0e"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f5bf3ead3cb66ab990ee2561373b009db5bc0e857549b6c9ba84b20bc462e172"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1b2c16a919d936ca87a3c5f0e43af12a89a3ce7ccbce59a2d6784caba945b68b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad146dae5977c4dd435eb31373b3fe9b0b1bf26858c6fc452bf6af394067e10b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c5c6fa16412b35999320f5c9690c0f554392dc222c04e559217e0f9ae244b92"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95c4dc6f61d610bc0ee1edc6f29d993f10febfe5b76bb470b486d90bbece6b22"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da452c2c322e9ce0cfef392e469a26d63d42860f829026a63374fde6b5c5876f"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:898715cf566ec2869d5cb4d5fb4be408964704c46c96b4be267442d265390f32"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:391cc3a9c1527e424c6865e087897e766a917f15dddb360174a70467572ac6ce"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:380f926b51b92d02a34119d072f178d80bbda334d1a7e10fa22d467a66e494db"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce91db90dbf37bb6fa0997f26574107e1b9d5ff939315247b7e615baa8ec313b"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9093a81e18c45227eebe4c16124ebf3e0d893830c6aca7cc310bfca8fe59d857"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ee40b40aa753d844162dcc80d0fe256b87cba48ca0054f64e68000453caead11"}, - {file = "aiohttp-3.10.5-cp39-cp39-win32.whl", hash = "sha256:03f2645adbe17f274444953bdea69f8327e9d278d961d85657cb0d06864814c1"}, - {file = "aiohttp-3.10.5-cp39-cp39-win_amd64.whl", hash = "sha256:d17920f18e6ee090bdd3d0bfffd769d9f2cb4c8ffde3eb203777a3895c128862"}, - {file = "aiohttp-3.10.5.tar.gz", hash = "sha256:f071854b47d39591ce9a17981c46790acb30518e2f83dfca8db2dfa091178691"}, + {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a1ba7bc139592339ddeb62c06486d0fa0f4ca61216e14137a40d626c81faf10c"}, + {file = "aiohttp-3.10.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:85e4d7bd05d18e4b348441e7584c681eff646e3bf38f68b2626807f3add21aa2"}, + {file = "aiohttp-3.10.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:69de056022e7abf69cb9fec795515973cc3eeaff51e3ea8d72a77aa933a91c52"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee3587506898d4a404b33bd19689286ccf226c3d44d7a73670c8498cd688e42c"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fe285a697c851734285369614443451462ce78aac2b77db23567507484b1dc6f"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10c7932337285a6bfa3a5fe1fd4da90b66ebfd9d0cbd1544402e1202eb9a8c3e"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd9716ef0224fe0d0336997eb242f40619f9f8c5c57e66b525a1ebf9f1d8cebe"}, + {file = "aiohttp-3.10.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ceacea31f8a55cdba02bc72c93eb2e1b77160e91f8abd605969c168502fd71eb"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9721554bfa9e15f6e462da304374c2f1baede3cb06008c36c47fa37ea32f1dc4"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:22cdeb684d8552490dd2697a5138c4ecb46f844892df437aaf94f7eea99af879"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:e56bb7e31c4bc79956b866163170bc89fd619e0581ce813330d4ea46921a4881"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:3a95d2686bc4794d66bd8de654e41b5339fab542b2bca9238aa63ed5f4f2ce82"}, + {file = "aiohttp-3.10.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d82404a0e7b10e0d7f022cf44031b78af8a4f99bd01561ac68f7c24772fed021"}, + {file = "aiohttp-3.10.8-cp310-cp310-win32.whl", hash = "sha256:4e10b04542d27e21538e670156e88766543692a0a883f243ba8fad9ddea82e53"}, + {file = "aiohttp-3.10.8-cp310-cp310-win_amd64.whl", hash = "sha256:680dbcff5adc7f696ccf8bf671d38366a1f620b5616a1d333d0cb33956065395"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:33a68011a38020ed4ff41ae0dbf4a96a202562ecf2024bdd8f65385f1d07f6ef"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6c7efa6616a95e3bd73b8a69691012d2ef1f95f9ea0189e42f338fae080c2fc6"}, + {file = "aiohttp-3.10.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddb9b9764cfb4459acf01c02d2a59d3e5066b06a846a364fd1749aa168efa2be"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c7f270f4ca92760f98a42c45a58674fff488e23b144ec80b1cc6fa2effed377"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6984dda9d79064361ab58d03f6c1e793ea845c6cfa89ffe1a7b9bb400dfd56bd"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f6d47e392c27206701565c8df4cac6ebed28fdf6dcaea5b1eea7a4631d8e6db"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a72f89aea712c619b2ca32c6f4335c77125ede27530ad9705f4f349357833695"}, + {file = "aiohttp-3.10.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36074b26f3263879ba8e4dbd33db2b79874a3392f403a70b772701363148b9f"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e32148b4a745e70a255a1d44b5664de1f2e24fcefb98a75b60c83b9e260ddb5b"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5aa1a073514cf59c81ad49a4ed9b5d72b2433638cd53160fd2f3a9cfa94718db"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:d3a79200a9d5e621c4623081ddb25380b713c8cf5233cd11c1aabad990bb9381"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e45fdfcb2d5bcad83373e4808825b7512953146d147488114575780640665027"}, + {file = "aiohttp-3.10.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f78e2a78432c537ae876a93013b7bc0027ba5b93ad7b3463624c4b6906489332"}, + {file = "aiohttp-3.10.8-cp311-cp311-win32.whl", hash = "sha256:f8179855a4e4f3b931cb1764ec87673d3fbdcca2af496c8d30567d7b034a13db"}, + {file = "aiohttp-3.10.8-cp311-cp311-win_amd64.whl", hash = "sha256:ef9b484604af05ca745b6108ca1aaa22ae1919037ae4f93aaf9a37ba42e0b835"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ab2d6523575fc98896c80f49ac99e849c0b0e69cc80bf864eed6af2ae728a52b"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f5d5d5401744dda50b943d8764508d0e60cc2d3305ac1e6420935861a9d544bc"}, + {file = "aiohttp-3.10.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de23085cf90911600ace512e909114385026b16324fa203cc74c81f21fd3276a"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4618f0d2bf523043866a9ff8458900d8eb0a6d4018f251dae98e5f1fb699f3a8"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:21c1925541ca84f7b5e0df361c0a813a7d6a56d3b0030ebd4b220b8d232015f9"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:497a7d20caea8855c5429db3cdb829385467217d7feb86952a6107e033e031b9"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c887019dbcb4af58a091a45ccf376fffe800b5531b45c1efccda4bedf87747ea"}, + {file = "aiohttp-3.10.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40d2d719c3c36a7a65ed26400e2b45b2d9ed7edf498f4df38b2ae130f25a0d01"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:57359785f27394a8bcab0da6dcd46706d087dfebf59a8d0ad2e64a4bc2f6f94f"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a961ee6f2cdd1a2be4735333ab284691180d40bad48f97bb598841bfcbfb94ec"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:fe3d79d6af839ffa46fdc5d2cf34295390894471e9875050eafa584cb781508d"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9a281cba03bdaa341c70b7551b2256a88d45eead149f48b75a96d41128c240b3"}, + {file = "aiohttp-3.10.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c6769d71bfb1ed60321363a9bc05e94dcf05e38295ef41d46ac08919e5b00d19"}, + {file = "aiohttp-3.10.8-cp312-cp312-win32.whl", hash = "sha256:a3081246bab4d419697ee45e555cef5cd1def7ac193dff6f50be761d2e44f194"}, + {file = "aiohttp-3.10.8-cp312-cp312-win_amd64.whl", hash = "sha256:ab1546fc8e00676febc81c548a876c7bde32f881b8334b77f84719ab2c7d28dc"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:b1a012677b8e0a39e181e218de47d6741c5922202e3b0b65e412e2ce47c39337"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2df786c96c57cd6b87156ba4c5f166af7b88f3fc05f9d592252fdc83d8615a3c"}, + {file = "aiohttp-3.10.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8885ca09d3a9317219c0831276bfe26984b17b2c37b7bf70dd478d17092a4772"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4dbf252ac19860e0ab56cd480d2805498f47c5a2d04f5995d8d8a6effd04b48c"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b2036479b6b94afaaca7d07b8a68dc0e67b0caf5f6293bb6a5a1825f5923000"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:365783e1b7c40b59ed4ce2b5a7491bae48f41cd2c30d52647a5b1ee8604c68ad"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:270e653b5a4b557476a1ed40e6b6ce82f331aab669620d7c95c658ef976c9c5e"}, + {file = "aiohttp-3.10.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8960fabc20bfe4fafb941067cda8e23c8c17c98c121aa31c7bf0cdab11b07842"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f21e8f2abed9a44afc3d15bba22e0dfc71e5fa859bea916e42354c16102b036f"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:fecd55e7418fabd297fd836e65cbd6371aa4035a264998a091bbf13f94d9c44d"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:badb51d851358cd7535b647bb67af4854b64f3c85f0d089c737f75504d5910ec"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e860985f30f3a015979e63e7ba1a391526cdac1b22b7b332579df7867848e255"}, + {file = "aiohttp-3.10.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:71462f8eeca477cbc0c9700a9464e3f75f59068aed5e9d4a521a103692da72dc"}, + {file = "aiohttp-3.10.8-cp313-cp313-win32.whl", hash = "sha256:177126e971782769b34933e94fddd1089cef0fe6b82fee8a885e539f5b0f0c6a"}, + {file = "aiohttp-3.10.8-cp313-cp313-win_amd64.whl", hash = "sha256:98a4eb60e27033dee9593814ca320ee8c199489fbc6b2699d0f710584db7feb7"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ffef3d763e4c8fc97e740da5b4d0f080b78630a3914f4e772a122bbfa608c1db"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:597128cb7bc5f068181b49a732961f46cb89f85686206289d6ccb5e27cb5fbe2"}, + {file = "aiohttp-3.10.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f23a6c1d09de5de89a33c9e9b229106cb70dcfdd55e81a3a3580eaadaa32bc92"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da57af0c54a302b7c655fa1ccd5b1817a53739afa39924ef1816e7b7c8a07ccb"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e7a6af57091056a79a35104d6ec29d98ec7f1fb7270ad9c6fff871b678d1ff8"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:32710d6b3b6c09c60c794d84ca887a3a2890131c0b02b3cefdcc6709a2260a7c"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b91f4f62ad39a8a42d511d66269b46cb2fb7dea9564c21ab6c56a642d28bff5"}, + {file = "aiohttp-3.10.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:471a8c47344b9cc309558b3fcc469bd2c12b49322b4b31eb386c4a2b2d44e44a"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:fc0e7f91705445d79beafba9bb3057dd50830e40fe5417017a76a214af54e122"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:85431c9131a9a0f65260dc7a65c800ca5eae78c4c9931618f18c8e0933a0e0c1"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:b91557ee0893da52794b25660d4f57bb519bcad8b7df301acd3898f7197c5d81"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:4954e6b06dd0be97e1a5751fc606be1f9edbdc553c5d9b57d72406a8fbd17f9d"}, + {file = "aiohttp-3.10.8-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a087c84b4992160ffef7afd98ef24177c8bd4ad61c53607145a8377457385100"}, + {file = "aiohttp-3.10.8-cp38-cp38-win32.whl", hash = "sha256:e1f0f7b27171b2956a27bd8f899751d0866ddabdd05cbddf3520f945130a908c"}, + {file = "aiohttp-3.10.8-cp38-cp38-win_amd64.whl", hash = "sha256:c4916070e12ae140110aa598031876c1bf8676a36a750716ea0aa5bd694aa2e7"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5284997e3d88d0dfb874c43e51ae8f4a6f4ca5b90dcf22995035187253d430db"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9443d9ebc5167ce1fbb552faf2d666fb22ef5716a8750be67efd140a7733738c"}, + {file = "aiohttp-3.10.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b667e2a03407d79a76c618dc30cedebd48f082d85880d0c9c4ec2faa3e10f43e"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98fae99d5c2146f254b7806001498e6f9ffb0e330de55a35e72feb7cb2fa399b"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8296edd99d0dd9d0eb8b9e25b3b3506eef55c1854e9cc230f0b3f885f680410b"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ce46dfb49cfbf9e92818be4b761d4042230b1f0e05ffec0aad15b3eb162b905"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c38cfd355fd86c39b2d54651bd6ed7d63d4fe3b5553f364bae3306e2445f847"}, + {file = "aiohttp-3.10.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:713dff3f87ceec3bde4f3f484861464e722cf7533f9fa6b824ec82bb5a9010a7"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:21a72f4a9c69a8567a0aca12042f12bba25d3139fd5dd8eeb9931f4d9e8599cd"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6d1ad868624f6cea77341ef2877ad4e71f7116834a6cd7ec36ec5c32f94ee6ae"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:a78ba86d5a08207d1d1ad10b97aed6ea48b374b3f6831d02d0b06545ac0f181e"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:aff048793d05e1ce05b62e49dccf81fe52719a13f4861530706619506224992b"}, + {file = "aiohttp-3.10.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d088ca05381fd409793571d8e34eca06daf41c8c50a05aeed358d2d340c7af81"}, + {file = "aiohttp-3.10.8-cp39-cp39-win32.whl", hash = "sha256:ee97c4e54f457c366e1f76fbbf3e8effee9de57dae671084a161c00f481106ce"}, + {file = "aiohttp-3.10.8-cp39-cp39-win_amd64.whl", hash = "sha256:d95ae4420669c871667aad92ba8cce6251d61d79c1a38504621094143f94a8b4"}, + {file = "aiohttp-3.10.8.tar.gz", hash = "sha256:21f8225f7dc187018e8433c9326be01477fb2810721e048b33ac49091b19fb4a"}, ] [package.dependencies] @@ -118,7 +118,7 @@ async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" -yarl = ">=1.0,<2.0" +yarl = ">=1.12.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] @@ -148,18 +148,15 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" -version = "4.4.0" +version = "4.6.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, ] [package.dependencies] @@ -169,9 +166,9 @@ sniffio = ">=1.1" typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] [[package]] name = "appnope" @@ -333,23 +330,9 @@ files = [ {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, ] -[package.dependencies] -pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} - [package.extras] dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - [[package]] name = "beautifulsoup4" version = "4.12.3" @@ -391,42 +374,42 @@ css = ["tinycss2 (>=1.1.0,<1.3)"] [[package]] name = "cassandra-driver" -version = "3.29.1" +version = "3.29.2" description = "DataStax Driver for Apache Cassandra" optional = false python-versions = "*" files = [ - {file = "cassandra-driver-3.29.1.tar.gz", hash = "sha256:38e9c2a2f2a9664bb03f1f852d5fccaeff2163942b5db35dffcf8bf32a51cfe5"}, - {file = "cassandra_driver-3.29.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a8f175c7616a63ca48cb8bd4acc443e2a3d889964d5157cead761f23cc8db7bd"}, - {file = "cassandra_driver-3.29.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7d66398952b9cd21c40edff56e22b6d3bce765edc94b207ddb5896e7bc9aa088"}, - {file = "cassandra_driver-3.29.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bbc6f575ef109ce5d4abfa2033bf36c394032abd83e32ab671159ce68e7e17b"}, - {file = "cassandra_driver-3.29.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78f241af75696adb3e470209e2fbb498804c99e2b197d24d74774eee6784f283"}, - {file = "cassandra_driver-3.29.1-cp310-cp310-win32.whl", hash = "sha256:54d9e651a742d6ca3d874ef8d06a40fa032d2dba97142da2d36f60c5675e39f8"}, - {file = "cassandra_driver-3.29.1-cp310-cp310-win_amd64.whl", hash = "sha256:630dc5423cd40eba0ee9db31065e2238098ff1a25a6b1bd36360f85738f26e4b"}, - {file = "cassandra_driver-3.29.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0b841d38c96bb878d31df393954863652d6d3a85f47bcc00fd1d70a5ea73023f"}, - {file = "cassandra_driver-3.29.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:19cc7375f673e215bd4cbbefae2de9f07830be7dabef55284a2d2ff8d8691efe"}, - {file = "cassandra_driver-3.29.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b74b355be3dcafe652fffda8f14f385ccc1a8dae9df28e6080cc660da39b45f"}, - {file = "cassandra_driver-3.29.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e6dac7eddd3f4581859f180383574068a3f113907811b4dad755a8ace4c3fbd"}, - {file = "cassandra_driver-3.29.1-cp311-cp311-win32.whl", hash = "sha256:293a79dba417112b56320ed0013d71fd7520f5fc4a5fd2ac8000c762c6dd5b07"}, - {file = "cassandra_driver-3.29.1-cp311-cp311-win_amd64.whl", hash = "sha256:7c2374fdf1099047a6c9c8329c79d71ad11e61d9cca7de92a0f49655da4bdd8a"}, - {file = "cassandra_driver-3.29.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4431a0c836f33a33c733c84997fbdb6398be005c4d18a8c8525c469fdc29393c"}, - {file = "cassandra_driver-3.29.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d23b08381b171a9e42ace483a82457edcddada9e8367e31677b97538cde2dc34"}, - {file = "cassandra_driver-3.29.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4beb29a0139e63a10a5b9a3c7b72c30a4e6e20c9f0574f9d22c0d4144fe3d348"}, - {file = "cassandra_driver-3.29.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b206423cc454a78f16b411e7cb641dddc26168ac2e18f2c13665f5f3c89868c"}, - {file = "cassandra_driver-3.29.1-cp312-cp312-win32.whl", hash = "sha256:ac898cca7303a3a2a3070513eee12ef0f1be1a0796935c5b8aa13dae8c0a7f7e"}, - {file = "cassandra_driver-3.29.1-cp312-cp312-win_amd64.whl", hash = "sha256:4ad0c9fb2229048ad6ff8c6ddbf1fdc78b111f2b061c66237c2257fcc4a31b14"}, - {file = "cassandra_driver-3.29.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4282c5deac462e4bb0f6fd0553a33d514dbd5ee99d0812594210080330ddd1a2"}, - {file = "cassandra_driver-3.29.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:41ca7eea069754002418d3bdfbd3dfd150ea12cb9db474ab1a01fa4679a05bcb"}, - {file = "cassandra_driver-3.29.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6639ccb268c4dc754bc45e03551711780d0e02cb298ab26cde1f42b7bcc74f8"}, - {file = "cassandra_driver-3.29.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a9d7d3b1be24a7f113b5404186ccccc977520401303a8fe78ba34134cad2482"}, - {file = "cassandra_driver-3.29.1-cp38-cp38-win32.whl", hash = "sha256:81c8fd556c6e1bb93577e69c1f10a3fadf7ddb93958d226ccbb72389396e9a92"}, - {file = "cassandra_driver-3.29.1-cp38-cp38-win_amd64.whl", hash = "sha256:cfe70ed0f27af949de2767ea9cef4092584e8748759374a55bf23c30746c7b23"}, - {file = "cassandra_driver-3.29.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2c03c1d834ac1a0ae39f9af297a8cd38829003ce910b08b324fb3abe488ce2b"}, - {file = "cassandra_driver-3.29.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9a3e1e2b01f3b7a5cf75c97401bce830071d99c42464352087d7475e0161af93"}, - {file = "cassandra_driver-3.29.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:90c42006665a4e490b0766b70f3d637f36a30accbef2da35d6d4081c0e0bafc3"}, - {file = "cassandra_driver-3.29.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c1aca41f45772f9759e8246030907d92bc35fbbdc91525a3cb9b49939b80ad7"}, - {file = "cassandra_driver-3.29.1-cp39-cp39-win32.whl", hash = "sha256:ce4a66245d4a0c8b07fdcb6398698c2c42eb71245fb49cff39435bb702ff7be6"}, - {file = "cassandra_driver-3.29.1-cp39-cp39-win_amd64.whl", hash = "sha256:4cae69ceb1b1d9383e988a1b790115253eacf7867ceb15ed2adb736e3ce981be"}, + {file = "cassandra-driver-3.29.2.tar.gz", hash = "sha256:c4310a7d0457f51a63fb019d8ef501588c491141362b53097fbc62fa06559b7c"}, + {file = "cassandra_driver-3.29.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:957208093ff2353230d0d83edf8c8e8582e4f2999d9a33292be6558fec943562"}, + {file = "cassandra_driver-3.29.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d70353b6d9d6e01e2b261efccfe90ce0aa6f416588e6e626ca2ed0aff6b540cf"}, + {file = "cassandra_driver-3.29.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06ad489e4df2cc7f41d3aca8bd8ddeb8071c4fb98240ed07f1dcd9b5180fd879"}, + {file = "cassandra_driver-3.29.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7f1dfa33c3d93350057d6dc163bb92748b6e6a164c408c75cf2c59be0a203b7"}, + {file = "cassandra_driver-3.29.2-cp310-cp310-win32.whl", hash = "sha256:f9df1e6ae4201eb2eae899cb0649d46b3eb0843f075199b51360bc9d59679a31"}, + {file = "cassandra_driver-3.29.2-cp310-cp310-win_amd64.whl", hash = "sha256:c4a005bc0b4fd8b5716ad931e1cc788dbd45967b0bcbdc3dfde33c7f9fde40d4"}, + {file = "cassandra_driver-3.29.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e31cee01a6fc8cf7f32e443fa0031bdc75eed46126831b7a807ab167b4dc1316"}, + {file = "cassandra_driver-3.29.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:52edc6d4bd7d07b10dc08b7f044dbc2ebe24ad7009c23a65e0916faed1a34065"}, + {file = "cassandra_driver-3.29.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb3a9f24fc84324d426a69dc35df66de550833072a4d9a4d63d72fda8fcaecb9"}, + {file = "cassandra_driver-3.29.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e89de04809d02bb1d5d03c0946a7baaaf85e93d7e6414885b4ea2616efe9de0"}, + {file = "cassandra_driver-3.29.2-cp311-cp311-win32.whl", hash = "sha256:7104e5043e9cc98136d7fafe2418cbc448dacb4e1866fe38ff5be76f227437ef"}, + {file = "cassandra_driver-3.29.2-cp311-cp311-win_amd64.whl", hash = "sha256:69aa53f1bdb23487765faa92eef57366637878eafc412f46af999e722353b22f"}, + {file = "cassandra_driver-3.29.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a1e994a82b2e6ab022c5aec24e03ad49fca5f3d47e566a145de34eb0e768473a"}, + {file = "cassandra_driver-3.29.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2039201ae5d9b7c7ce0930af7138d2637ca16a4c7aaae2fbdd4355fbaf3003c5"}, + {file = "cassandra_driver-3.29.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8067fad22e76e250c3846507d804f90b53e943bba442fa1b26583bcac692aaf1"}, + {file = "cassandra_driver-3.29.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee0ebe8eb4fb007d8001ffcd1c3828b74defeb01075d8a1f1116ae9c60f75541"}, + {file = "cassandra_driver-3.29.2-cp312-cp312-win32.whl", hash = "sha256:83dc9399cdabe482fd3095ca54ec227212d8c491b563a7276f6c100e30ee856c"}, + {file = "cassandra_driver-3.29.2-cp312-cp312-win_amd64.whl", hash = "sha256:6c74610f56a4c53863a5d44a2af9c6c3405da19d51966fabd85d7f927d5c6abc"}, + {file = "cassandra_driver-3.29.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c86b0a796ff67d66de7df5f85243832a4dc853217f6a3eade84694f6f4fae151"}, + {file = "cassandra_driver-3.29.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c53700b0d1f8c1d777eaa9e9fb6d17839d9a83f27a61649e0cbaa15d9d3df34b"}, + {file = "cassandra_driver-3.29.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7d348c769aa6c37919e7d6247e8cf09c23d387b7834a340408bd7d611f174d80"}, + {file = "cassandra_driver-3.29.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8c496318e3c136cf12ab21e1598fee4b48ea1c71746ea8cc9d32e4dcd09cb93"}, + {file = "cassandra_driver-3.29.2-cp38-cp38-win32.whl", hash = "sha256:d180183451bec81c15e0441fa37a63dc52c6489e860e832cadd854373b423141"}, + {file = "cassandra_driver-3.29.2-cp38-cp38-win_amd64.whl", hash = "sha256:a66b20c421d8fb21f18bd0ac713de6f09c5c25b6ab3d6043c3779b9c012d7c98"}, + {file = "cassandra_driver-3.29.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:70d4d0dce373943308ad461a425fc70a23d0f524859367b8c6fc292400f39954"}, + {file = "cassandra_driver-3.29.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b86427fab4d5a96e91ad82bb9338d4101ae4d3758ba96c356e0198da3de4d350"}, + {file = "cassandra_driver-3.29.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c25b42e1a99f377a933d79ae93ea27601e337a5abb7bb843a0e951cf1b3836f7"}, + {file = "cassandra_driver-3.29.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e36437288d6cd6f6c74b8ee5997692126e24adc2da3d031dc11c7dfea8bc220"}, + {file = "cassandra_driver-3.29.2-cp39-cp39-win32.whl", hash = "sha256:e967c1341a651f03bdc466f3835d72d3c0a0648b562035e6d780fa0b796c02f6"}, + {file = "cassandra_driver-3.29.2-cp39-cp39-win_amd64.whl", hash = "sha256:c5a9aab2367e8aad48ae853847a5a8985749ac5f102676de2c119b33fef13b42"}, ] [package.dependencies] @@ -438,13 +421,13 @@ graph = ["gremlinpython (==3.4.6)"] [[package]] name = "cassio" -version = "0.1.8" +version = "0.1.10" description = "A framework-agnostic Python library to seamlessly integrate Apache Cassandra(R) with ML/LLM/genAI workloads." optional = false -python-versions = "<4.0,>=3.8" +python-versions = "<4.0,>=3.9" files = [ - {file = "cassio-0.1.8-py3-none-any.whl", hash = "sha256:c09e7c884ba7227ff5277c86f3b0f31c523672ea407f56d093c7227e69c54d94"}, - {file = "cassio-0.1.8.tar.gz", hash = "sha256:4e09929506cb3dd6fad217e89846d0a1a59069afd24b82c72526ef6f2e9271af"}, + {file = "cassio-0.1.10-py3-none-any.whl", hash = "sha256:9eebe5f18b627d0f328de4dbbf22c68cc76dbeecf46d846c0277e410de5cb1dc"}, + {file = "cassio-0.1.10.tar.gz", hash = "sha256:577f0a2ce5898a57c83195bf74811dec8794282477eb6fa4debd4ccec6cfab98"}, ] [package.dependencies] @@ -542,6 +525,85 @@ files = [ [package.dependencies] pycparser = "*" +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + [[package]] name = "charset-normalizer" version = "3.3.2" @@ -789,38 +851,38 @@ toml = ["tomli"] [[package]] name = "cryptography" -version = "43.0.0" +version = "43.0.1" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." optional = false python-versions = ">=3.7" files = [ - {file = "cryptography-43.0.0-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:64c3f16e2a4fc51c0d06af28441881f98c5d91009b8caaff40cf3548089e9c74"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3dcdedae5c7710b9f97ac6bba7e1052b95c7083c9d0e9df96e02a1932e777895"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d9a1eca329405219b605fac09ecfc09ac09e595d6def650a437523fcd08dd22"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ea9e57f8ea880eeea38ab5abf9fbe39f923544d7884228ec67d666abd60f5a47"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:9a8d6802e0825767476f62aafed40532bd435e8a5f7d23bd8b4f5fd04cc80ecf"}, - {file = "cryptography-43.0.0-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:cc70b4b581f28d0a254d006f26949245e3657d40d8857066c2ae22a61222ef55"}, - {file = "cryptography-43.0.0-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:4a997df8c1c2aae1e1e5ac49c2e4f610ad037fc5a3aadc7b64e39dea42249431"}, - {file = "cryptography-43.0.0-cp37-abi3-win32.whl", hash = "sha256:6e2b11c55d260d03a8cf29ac9b5e0608d35f08077d8c087be96287f43af3ccdc"}, - {file = "cryptography-43.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:31e44a986ceccec3d0498e16f3d27b2ee5fdf69ce2ab89b52eaad1d2f33d8778"}, - {file = "cryptography-43.0.0-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:7b3f5fe74a5ca32d4d0f302ffe6680fcc5c28f8ef0dc0ae8f40c0f3a1b4fca66"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac1955ce000cb29ab40def14fd1bbfa7af2017cca696ee696925615cafd0dce5"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:299d3da8e00b7e2b54bb02ef58d73cd5f55fb31f33ebbf33bd00d9aa6807df7e"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ee0c405832ade84d4de74b9029bedb7b31200600fa524d218fc29bfa371e97f5"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:cb013933d4c127349b3948aa8aaf2f12c0353ad0eccd715ca789c8a0f671646f"}, - {file = "cryptography-43.0.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:fdcb265de28585de5b859ae13e3846a8e805268a823a12a4da2597f1f5afc9f0"}, - {file = "cryptography-43.0.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2905ccf93a8a2a416f3ec01b1a7911c3fe4073ef35640e7ee5296754e30b762b"}, - {file = "cryptography-43.0.0-cp39-abi3-win32.whl", hash = "sha256:47ca71115e545954e6c1d207dd13461ab81f4eccfcb1345eac874828b5e3eaaf"}, - {file = "cryptography-43.0.0-cp39-abi3-win_amd64.whl", hash = "sha256:0663585d02f76929792470451a5ba64424acc3cd5227b03921dab0e2f27b1709"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c6d112bf61c5ef44042c253e4859b3cbbb50df2f78fa8fae6747a7814484a70"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:844b6d608374e7d08f4f6e6f9f7b951f9256db41421917dfb2d003dde4cd6b66"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:51956cf8730665e2bdf8ddb8da0056f699c1a5715648c1b0144670c1ba00b48f"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:aae4d918f6b180a8ab8bf6511a419473d107df4dbb4225c7b48c5c9602c38c7f"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:232ce02943a579095a339ac4b390fbbe97f5b5d5d107f8a08260ea2768be8cc2"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:5bcb8a5620008a8034d39bce21dc3e23735dfdb6a33a06974739bfa04f853947"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:08a24a7070b2b6804c1940ff0f910ff728932a9d0e80e7814234269f9d46d069"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e9c5266c432a1e23738d178e51c2c7a5e2ddf790f248be939448c0ba2021f9d1"}, - {file = "cryptography-43.0.0.tar.gz", hash = "sha256:b88075ada2d51aa9f18283532c9f60e72170041bba88d7f37e49cbb10275299e"}, + {file = "cryptography-43.0.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:8385d98f6a3bf8bb2d65a73e17ed87a3ba84f6991c155691c51112075f9ffc5d"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e613d7077ac613e399270253259d9d53872aaf657471473ebfc9a52935c062"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68aaecc4178e90719e95298515979814bda0cbada1256a4485414860bd7ab962"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:de41fd81a41e53267cb020bb3a7212861da53a7d39f863585d13ea11049cf277"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f98bf604c82c416bc829e490c700ca1553eafdf2912a91e23a79d97d9801372a"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:61ec41068b7b74268fa86e3e9e12b9f0c21fcf65434571dbb13d954bceb08042"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:014f58110f53237ace6a408b5beb6c427b64e084eb451ef25a28308270086494"}, + {file = "cryptography-43.0.1-cp37-abi3-win32.whl", hash = "sha256:2bd51274dcd59f09dd952afb696bf9c61a7a49dfc764c04dd33ef7a6b502a1e2"}, + {file = "cryptography-43.0.1-cp37-abi3-win_amd64.whl", hash = "sha256:666ae11966643886c2987b3b721899d250855718d6d9ce41b521252a17985f4d"}, + {file = "cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:ac119bb76b9faa00f48128b7f5679e1d8d437365c5d26f1c2c3f0da4ce1b553d"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bbcce1a551e262dfbafb6e6252f1ae36a248e615ca44ba302df077a846a8806"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58d4e9129985185a06d849aa6df265bdd5a74ca6e1b736a77959b498e0505b85"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:d03a475165f3134f773d1388aeb19c2d25ba88b6a9733c5c590b9ff7bbfa2e0c"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:511f4273808ab590912a93ddb4e3914dfd8a388fed883361b02dea3791f292e1"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:80eda8b3e173f0f247f711eef62be51b599b5d425c429b5d4ca6a05e9e856baa"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:38926c50cff6f533f8a2dae3d7f19541432610d114a70808f0926d5aaa7121e4"}, + {file = "cryptography-43.0.1-cp39-abi3-win32.whl", hash = "sha256:a575913fb06e05e6b4b814d7f7468c2c660e8bb16d8d5a1faf9b33ccc569dd47"}, + {file = "cryptography-43.0.1-cp39-abi3-win_amd64.whl", hash = "sha256:d75601ad10b059ec832e78823b348bfa1a59f6b8d545db3a24fd44362a1564cb"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ea25acb556320250756e53f9e20a4177515f012c9eaea17eb7587a8c4d8ae034"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c1332724be35d23a854994ff0b66530119500b6053d0bd3363265f7e5e77288d"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fba1007b3ef89946dbbb515aeeb41e30203b004f0b4b00e5e16078b518563289"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5b43d1ea6b378b54a1dc99dd8a2b5be47658fe9a7ce0a58ff0b55f4b43ef2b84"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:88cce104c36870d70c49c7c8fd22885875d950d9ee6ab54df2745f83ba0dc365"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d3cdb25fa98afdd3d0892d132b8d7139e2c087da1712041f6b762e4f807cc96"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e710bf40870f4db63c3d7d929aa9e09e4e7ee219e703f949ec4073b4294f6172"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7c05650fe8023c5ed0d46793d4b7d7e6cd9c04e68eabe5b0aeea836e37bdcec2"}, + {file = "cryptography-43.0.1.tar.gz", hash = "sha256:203e92a75716d8cfb491dc47c79e17d0d9207ccffcbcb35f598fbe463ae3444d"}, ] [package.dependencies] @@ -833,38 +895,38 @@ nox = ["nox"] pep8test = ["check-sdist", "click", "mypy", "ruff"] sdist = ["build"] ssh = ["bcrypt (>=3.1.5)"] -test = ["certifi", "cryptography-vectors (==43.0.0)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] +test = ["certifi", "cryptography-vectors (==43.0.1)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] test-randomorder = ["pytest-randomly"] [[package]] name = "debugpy" -version = "1.8.5" +version = "1.8.6" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, - {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, - {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, - {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, - {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, - {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, - {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, - {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, - {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, - {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, - {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, - {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, - {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, - {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, - {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, - {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, - {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, - {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, - {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, - {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, - {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, - {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, + {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, + {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, + {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, + {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, + {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, + {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, + {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, + {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, + {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, + {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, + {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, + {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, + {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, + {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, + {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, + {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, + {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, + {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, + {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, + {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, + {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, + {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, ] [[package]] @@ -902,57 +964,63 @@ files = [ [[package]] name = "duckdb" -version = "1.0.0" +version = "1.1.1" description = "DuckDB in-process database" optional = false python-versions = ">=3.7.0" files = [ - {file = "duckdb-1.0.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4a8ce2d1f9e1c23b9bab3ae4ca7997e9822e21563ff8f646992663f66d050211"}, - {file = "duckdb-1.0.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:19797670f20f430196e48d25d082a264b66150c264c1e8eae8e22c64c2c5f3f5"}, - {file = "duckdb-1.0.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:b71c342090fe117b35d866a91ad6bffce61cd6ff3e0cff4003f93fc1506da0d8"}, - {file = "duckdb-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25dd69f44ad212c35ae2ea736b0e643ea2b70f204b8dff483af1491b0e2a4cec"}, - {file = "duckdb-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8da5f293ecb4f99daa9a9352c5fd1312a6ab02b464653a0c3a25ab7065c45d4d"}, - {file = "duckdb-1.0.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3207936da9967ddbb60644ec291eb934d5819b08169bc35d08b2dedbe7068c60"}, - {file = "duckdb-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1128d6c9c33e883b1f5df6b57c1eb46b7ab1baf2650912d77ee769aaa05111f9"}, - {file = "duckdb-1.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:02310d263474d0ac238646677feff47190ffb82544c018b2ff732a4cb462c6ef"}, - {file = "duckdb-1.0.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:75586791ab2702719c284157b65ecefe12d0cca9041da474391896ddd9aa71a4"}, - {file = "duckdb-1.0.0-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:83bb415fc7994e641344f3489e40430ce083b78963cb1057bf714ac3a58da3ba"}, - {file = "duckdb-1.0.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:bee2e0b415074e84c5a2cefd91f6b5ebeb4283e7196ba4ef65175a7cef298b57"}, - {file = "duckdb-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fa5a4110d2a499312609544ad0be61e85a5cdad90e5b6d75ad16b300bf075b90"}, - {file = "duckdb-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fa389e6a382d4707b5f3d1bc2087895925ebb92b77e9fe3bfb23c9b98372fdc"}, - {file = "duckdb-1.0.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7ede6f5277dd851f1a4586b0c78dc93f6c26da45e12b23ee0e88c76519cbdbe0"}, - {file = "duckdb-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0b88cdbc0d5c3e3d7545a341784dc6cafd90fc035f17b2f04bf1e870c68456e5"}, - {file = "duckdb-1.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:fd1693cdd15375156f7fff4745debc14e5c54928589f67b87fb8eace9880c370"}, - {file = "duckdb-1.0.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:c65a7fe8a8ce21b985356ee3ec0c3d3b3b2234e288e64b4cfb03356dbe6e5583"}, - {file = "duckdb-1.0.0-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:e5a8eda554379b3a43b07bad00968acc14dd3e518c9fbe8f128b484cf95e3d16"}, - {file = "duckdb-1.0.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:a1b6acdd54c4a7b43bd7cb584975a1b2ff88ea1a31607a2b734b17960e7d3088"}, - {file = "duckdb-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a677bb1b6a8e7cab4a19874249d8144296e6e39dae38fce66a80f26d15e670df"}, - {file = "duckdb-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:752e9d412b0a2871bf615a2ede54be494c6dc289d076974eefbf3af28129c759"}, - {file = "duckdb-1.0.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3aadb99d098c5e32d00dc09421bc63a47134a6a0de9d7cd6abf21780b678663c"}, - {file = "duckdb-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:83b7091d4da3e9301c4f9378833f5ffe934fb1ad2b387b439ee067b2c10c8bb0"}, - {file = "duckdb-1.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:6a8058d0148b544694cb5ea331db44f6c2a00a7b03776cc4dd1470735c3d5ff7"}, - {file = "duckdb-1.0.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e40cb20e5ee19d44bc66ec99969af791702a049079dc5f248c33b1c56af055f4"}, - {file = "duckdb-1.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7bce1bc0de9af9f47328e24e6e7e39da30093179b1c031897c042dd94a59c8e"}, - {file = "duckdb-1.0.0-cp37-cp37m-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8355507f7a04bc0a3666958f4414a58e06141d603e91c0fa5a7c50e49867fb6d"}, - {file = "duckdb-1.0.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:39f1a46f5a45ad2886dc9b02ce5b484f437f90de66c327f86606d9ba4479d475"}, - {file = "duckdb-1.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:a6d29ba477b27ae41676b62c8fae8d04ee7cbe458127a44f6049888231ca58fa"}, - {file = "duckdb-1.0.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:1bea713c1925918714328da76e79a1f7651b2b503511498ccf5e007a7e67d49e"}, - {file = "duckdb-1.0.0-cp38-cp38-macosx_12_0_universal2.whl", hash = "sha256:bfe67f3bcf181edbf6f918b8c963eb060e6aa26697d86590da4edc5707205450"}, - {file = "duckdb-1.0.0-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:dbc6093a75242f002be1d96a6ace3fdf1d002c813e67baff52112e899de9292f"}, - {file = "duckdb-1.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba1881a2b11c507cee18f8fd9ef10100be066fddaa2c20fba1f9a664245cd6d8"}, - {file = "duckdb-1.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:445d0bb35087c522705c724a75f9f1c13f1eb017305b694d2686218d653c8142"}, - {file = "duckdb-1.0.0-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:224553432e84432ffb9684f33206572477049b371ce68cc313a01e214f2fbdda"}, - {file = "duckdb-1.0.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:d3914032e47c4e76636ad986d466b63fdea65e37be8a6dfc484ed3f462c4fde4"}, - {file = "duckdb-1.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:af9128a2eb7e1bb50cd2c2020d825fb2946fdad0a2558920cd5411d998999334"}, - {file = "duckdb-1.0.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dd2659a5dbc0df0de68f617a605bf12fe4da85ba24f67c08730984a0892087e8"}, - {file = "duckdb-1.0.0-cp39-cp39-macosx_12_0_universal2.whl", hash = "sha256:ac5a4afb0bc20725e734e0b2c17e99a274de4801aff0d4e765d276b99dad6d90"}, - {file = "duckdb-1.0.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:2c5a53bee3668d6e84c0536164589d5127b23d298e4c443d83f55e4150fafe61"}, - {file = "duckdb-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b980713244d7708b25ee0a73de0c65f0e5521c47a0e907f5e1b933d79d972ef6"}, - {file = "duckdb-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21cbd4f9fe7b7a56eff96c3f4d6778770dd370469ca2212eddbae5dd63749db5"}, - {file = "duckdb-1.0.0-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ed228167c5d49888c5ef36f6f9cbf65011c2daf9dcb53ea8aa7a041ce567b3e4"}, - {file = "duckdb-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:46d8395fbcea7231fd5032a250b673cc99352fef349b718a23dea2c0dd2b8dec"}, - {file = "duckdb-1.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:6ad1fc1a4d57e7616944166a5f9417bdbca1ea65c490797e3786e3a42e162d8a"}, - {file = "duckdb-1.0.0.tar.gz", hash = "sha256:a2a059b77bc7d5b76ae9d88e267372deff19c291048d59450c431e166233d453"}, + {file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e310610b692d30aa7f1f40d7878b26978a5b191f23fa8fa082bd17092c67c2fd"}, + {file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:7acc97c3cc995850a4fa59dfa6ce713d7ea187c9696632161aa09d898f001a2b"}, + {file = "duckdb-1.1.1-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:c0a09d78daea0de7ddf3d6d1113e80ceed8c15537e93f8efaad53024ffbde245"}, + {file = "duckdb-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50c3b1667b0c73cb076b1b1f8fa0fd88fcef5c2bbb2b9acdef79e2eae429c248"}, + {file = "duckdb-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1499a9b159d4675ea46786b7ebdbabd8287c62b6b116ccfd529112318d47184e"}, + {file = "duckdb-1.1.1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:876deda2ce97f4a9005a9ac862f0ebee9e5956d51d589a24955802ca91726d49"}, + {file = "duckdb-1.1.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:40be901b38c709076f699b0c2f42a0c5663a496647eba350530e3a77f46a239b"}, + {file = "duckdb-1.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:5cb7642c5b21b8165b60029c274fc931c7c29cae3124b9a95ed73d050dd23584"}, + {file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:959716b65cf1c94fc117ac9c9692eea0bd64ae53bc8ab6538d459087b474dbeb"}, + {file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:6ff3c52ce0f8d25478155eb01de043ad0a25badbd10e684a2cd74363f1b86cde"}, + {file = "duckdb-1.1.1-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:430294cf11ce866d3b726cf4530462316e20b773fed3cf2de3cf63eb89650da6"}, + {file = "duckdb-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc9d48f772fafeea52568a0568cd11314cd79a10214069f3700dbcb31ebdf511"}, + {file = "duckdb-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:572095739024d9a5aa2dd8336c289af6a624c203004213e49b7e2469275e940f"}, + {file = "duckdb-1.1.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:660d9baf637b9a15e1ba74bbe02d3b4a20d82e8cbbd7d0712e0d59e3e9d6efea"}, + {file = "duckdb-1.1.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b91973605c8a30a38c4381a27895e7768cb3caa6700b2534ab76cc6b72cac390"}, + {file = "duckdb-1.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:f57c9e070cecf42d379145a75f325ec57fb1d410d6ff6592b5a28c2ff2b5792c"}, + {file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:926a99b81c50b9a4a43ca26dcb781f934d35e773d22913548396601ab8d44c12"}, + {file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:55a2632d27b5a965f1d9fc74b03383e80a3f8e3dc9596807dfb02c8db08cfcb7"}, + {file = "duckdb-1.1.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:8d8174fe47caf48d830dc477a45cedc8c970722df09dc1456bddc760ff6ccf68"}, + {file = "duckdb-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ad84023399002222fa8d5264a8dc2083053027910df728da92cabb07494a489"}, + {file = "duckdb-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c8adbc8b37444424c72043288f1521c860555a4f151ee4b744e6125f5d05729"}, + {file = "duckdb-1.1.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:550524c1b423eeb7ca0fdf1c2e6d29e723d7ec7cfab3050b9feb55a620ae927f"}, + {file = "duckdb-1.1.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4064243e4d3f445975b78773677de0ccbe924f9c7058a7c2cfedb24bba2ba939"}, + {file = "duckdb-1.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:4f64516dc62dd0fcbb9785c5bc7532a4fca3e6016bbcc92a2b235aa972c631f6"}, + {file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4bf75a64c927470b6618496adcfbf0f316ef09d46a44cfe8e38b78e9ff40c8a0"}, + {file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_universal2.whl", hash = "sha256:5c8cd6fd7107299b9a243836cd8163e4c08d6228f18cbee4ed9f535f53300096"}, + {file = "duckdb-1.1.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:fc81c02b4d73533a438a9bbae19499531d85b752233c905facc4df41bbde043c"}, + {file = "duckdb-1.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baff4014caf6553b624a296e4db2926602670bd9be6e0fc75f3e970b085631b0"}, + {file = "duckdb-1.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e21b75a9a60f10b5b5033138c317d929018c92f355fadae5949b310a9179e0a7"}, + {file = "duckdb-1.1.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8220f039c5ea06dc126232464ab9b77197f80ae53d4611b0a41f73c54f6f3931"}, + {file = "duckdb-1.1.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:07384414ceae585d4106a7dc154331ae42f45390ed675ec81e3d01f2252a6b01"}, + {file = "duckdb-1.1.1-cp313-cp313-win_amd64.whl", hash = "sha256:82776b3999e71a962db0bdc3f0258407ef41453f63eb47c33da29b644f8eb530"}, + {file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35d4323655be4053fb90d47e85222c93fd56aea0e8ab0ac44bd8f7249ba85697"}, + {file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:990d0799e0f543a4369413dc6caf7782cbbab49955c08c28ac56d5dab5ccef11"}, + {file = "duckdb-1.1.1-cp37-cp37m-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5ef3ba36b317abe000f502702eaaefdd8c3651a25aa0ad409f9487b286e2fb28"}, + {file = "duckdb-1.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2c6e513a572967cd2bab0f20ce265f8eaf95ea7b554eecf1c233717c38569abc"}, + {file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:567471cb964a0e54a7874c578e81af7b6ab474676ae6469ae1c33c2353f76fb1"}, + {file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_universal2.whl", hash = "sha256:a41d8eb4dc538d17660b78f2f4ecd0ba29666a396453bb71d6f4972bf2b3959e"}, + {file = "duckdb-1.1.1-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:31be0b9bc1909fb60abda7cd30615fe0224d1e451160d79e8e0313d6205417b0"}, + {file = "duckdb-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:541fb49da108e080d4f2984d2fdabaee36d65967a33642f8bce03373b29952f0"}, + {file = "duckdb-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1c54f836dac5eddbe369fa654811e979bb07688638a52d1c006172feb5b75a5"}, + {file = "duckdb-1.1.1-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:afb97970ee72e554b507c6f2e40b356bdbf8fc1f466e7c4d1797183eb66c0809"}, + {file = "duckdb-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:a2cdcb68247f02017a35a0b617ceb1d36a02a7c0588d7e2ed91c9a4e9f14c3f6"}, + {file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:36d71969cb98d10dc2391d8755921258d197995cc8c69e6c82fc377c2f71940a"}, + {file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_universal2.whl", hash = "sha256:3693f464409379a21aff4e35b5f67eb6c96fc402649d9ffddbda4ee9ee9ba9b6"}, + {file = "duckdb-1.1.1-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:06ca7f4ca785cc86e9f9aa23d16b67b82dc454b14c396b2e0ff4c09698c7838e"}, + {file = "duckdb-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ed92f3229bf70897a742e7648f648aa8b0c81a7489072aec5515c5635f3303c"}, + {file = "duckdb-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a80ebf52c03f81265b67720abc06a5c7770d08df82b30cabbe266012bd526229"}, + {file = "duckdb-1.1.1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:402a42b992227ebb371a48681ce71b6d1c0661385454b269e6aa379f77a8a83a"}, + {file = "duckdb-1.1.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:a182d3cbf2e352aaddf392887331bbac460c473cbd55c65d6b6121ef7b43f174"}, + {file = "duckdb-1.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:fafc7d1ec4401787597a5f983d4ef8a9b0638f31e1674a458c57383911166f27"}, + {file = "duckdb-1.1.1.tar.gz", hash = "sha256:74fb07c1334a73e0ead1b0a03646d349921dac655762d916c8e45194c8218d30"}, ] [[package]] @@ -1222,13 +1290,13 @@ files = [ [[package]] name = "httpcore" -version = "1.0.5" +version = "1.0.6" description = "A minimal low-level HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, + {file = "httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f"}, + {file = "httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f"}, ] [package.dependencies] @@ -1239,7 +1307,7 @@ h11 = ">=0.13,<0.15" asyncio = ["anyio (>=4.0,<5.0)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] +trio = ["trio (>=0.22.0,<1.0)"] [[package]] name = "httpx" @@ -1268,54 +1336,39 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.8" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.6" files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, -] - -[[package]] -name = "importlib-metadata" -version = "8.4.0" -description = "Read metadata from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"}, - {file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] -[package.dependencies] -zipp = ">=0.5" - [package.extras] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] [[package]] -name = "importlib-resources" -version = "6.4.4" -description = "Read resources from Python packages" +name = "importlib-metadata" +version = "8.5.0" +description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_resources-6.4.4-py3-none-any.whl", hash = "sha256:dda242603d1c9cd836c3368b1174ed74cb4049ecd209e7a1a0104620c18c5c11"}, - {file = "importlib_resources-6.4.4.tar.gz", hash = "sha256:20600c8b7361938dc0bb2d5ec0297802e575df486f5a544fa414da65e13721f7"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} +zipp = ">=3.20" [package.extras] check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] enabler = ["pytest-enabler (>=2.2)"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] type = ["pytest-mypy"] [[package]] @@ -1364,42 +1417,40 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.12.3" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "ipywidgets" @@ -1593,11 +1644,9 @@ files = [ attrs = ">=22.2.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} jsonschema-specifications = ">=2023.03.6" -pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} referencing = ">=0.28.4" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} @@ -1621,7 +1670,6 @@ files = [ ] [package.dependencies] -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} referencing = ">=0.31.0" [[package]] @@ -1645,13 +1693,13 @@ notebook = "*" [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -1820,7 +1868,6 @@ files = [ async-lru = ">=1.0.0" httpx = ">=0.25.0" importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -importlib-resources = {version = ">=1.4", markers = "python_version < \"3.9\""} ipykernel = ">=6.5.0" jinja2 = ">=3.0.3" jupyter-core = "*" @@ -1891,19 +1938,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.8" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.125" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -1916,15 +1963,15 @@ url = "../core" [[package]] name = "langchain-openai" -version = "0.1.23" +version = "0.2.1" description = "An integration package connecting OpenAI and LangChain" optional = true -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.35" +langchain-core = "^0.3" openai = "^1.40.0" tiktoken = ">=0.7,<1" @@ -1937,14 +1984,15 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = "^0.3.0" pytest = ">=7,<9" +syrupy = "^4" [package.source] type = "directory" @@ -1952,15 +2000,15 @@ url = "../standard-tests" [[package]] name = "langchain-text-splitters" -version = "0.2.3" +version = "0.3.0" description = "LangChain text splitting utilities" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.10" +langchain-core = "^0.3.0" [package.source] type = "directory" @@ -1984,13 +2032,13 @@ types-requests = ">=2.31.0.2,<3.0.0.0" [[package]] name = "langsmith" -version = "0.1.110" +version = "0.1.130" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.110-py3-none-any.whl", hash = "sha256:316d279e3853f5e90e462f9c035eeb468d042f2a21a269c1102d65f3dccdc334"}, - {file = "langsmith-0.1.110.tar.gz", hash = "sha256:9a619dfe22a67a05a05091f0677b9c842499faec5f051b31afcd901b6627d0a3"}, + {file = "langsmith-0.1.130-py3-none-any.whl", hash = "sha256:acf27d77e699d84b03045f3f226e78be1dffb3e756aa1a085f9993a45380e8b2"}, + {file = "langsmith-0.1.130.tar.gz", hash = "sha256:3e43f87655a86395133e3a745d5968667d4d05dc9a24c617f89224c8cbf54dce"}, ] [package.dependencies] @@ -2001,6 +2049,7 @@ pydantic = [ {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] requests = ">=2,<3" +requests-toolbelt = ">=1.0.0,<2.0.0" [[package]] name = "lark" @@ -2115,103 +2164,108 @@ files = [ [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" version = "1.11.2" @@ -2417,43 +2471,6 @@ jupyter-server = ">=1.8,<3" [package.extras] test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -2501,13 +2518,13 @@ files = [ [[package]] name = "openai" -version = "1.43.0" +version = "1.51.0" description = "The official Python library for the openai API" optional = true python-versions = ">=3.7.1" files = [ - {file = "openai-1.43.0-py3-none-any.whl", hash = "sha256:1a748c2728edd3a738a72a0212ba866f4fdbe39c9ae03813508b267d45104abe"}, - {file = "openai-1.43.0.tar.gz", hash = "sha256:e607aff9fc3e28eade107e5edd8ca95a910a4b12589336d3cbb6bfe2ac306b3c"}, + {file = "openai-1.51.0-py3-none-any.whl", hash = "sha256:d9affafb7e51e5a27dce78589d4964ce4d6f6d560307265933a94b2e3f3c5d2c"}, + {file = "openai-1.51.0.tar.gz", hash = "sha256:8dc4f9d75ccdd5466fc8c99a952186eddceb9fd6ba694044773f3736a847149d"}, ] [package.dependencies] @@ -2613,70 +2630,89 @@ files = [ [[package]] name = "pandas" -version = "2.0.3" +version = "2.2.3" description = "Powerful data structures for data analysis, time series, and statistics" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, - {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, - {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, - {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, - {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, - {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, - {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, - {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, - {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, - {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, - {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, ] [package.dependencies] numpy = [ - {version = ">=1.20.3", markers = "python_version < \"3.10\""}, - {version = ">=1.21.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" -tzdata = ">=2022.1" +tzdata = ">=2022.7" [package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] [[package]] name = "pandocfilters" @@ -2718,63 +2754,41 @@ files = [ [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - -[[package]] -name = "pkgutil-resolve-name" -version = "1.3.10" -description = "Resolve a name to an object." -optional = false -python-versions = ">=3.6" -files = [ - {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, - {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, -] - [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "playwright" -version = "1.46.0" +version = "1.47.0" description = "A high-level API to automate web browsers" optional = false python-versions = ">=3.8" files = [ - {file = "playwright-1.46.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:fa60b95c16f6ce954636229a6c9dd885485326bca52d5ba20d02c0bc731a2bbb"}, - {file = "playwright-1.46.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:73dcfc24834f4d004bc862ed0d74b4c1406793a8164734238ad035356fddc8ac"}, - {file = "playwright-1.46.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:f5acfec1dbdc84d02dc696a17a344227e66c91413eab2036428dab405f195b82"}, - {file = "playwright-1.46.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:3b418509f45879f1403d070858657a39bd0b333b23d92c37355682b671726df9"}, - {file = "playwright-1.46.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23580f6a3f99757bb9779d29be37144cb9328cd9bafa178e6db5b3ab4b7faf4c"}, - {file = "playwright-1.46.0-py3-none-win32.whl", hash = "sha256:85f44dd32a23d02850f0ff4dafe51580e5199531fff5121a62489d9838707782"}, - {file = "playwright-1.46.0-py3-none-win_amd64.whl", hash = "sha256:f14a7fd7e24e954eec6ce61d787d499e41937ade811a0818e9a088aabe28ebb6"}, + {file = "playwright-1.47.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:f205df24edb925db1a4ab62f1ab0da06f14bb69e382efecfb0deedc4c7f4b8cd"}, + {file = "playwright-1.47.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:7fc820faf6885f69a52ba4ec94124e575d3c4a4003bf29200029b4a4f2b2d0ab"}, + {file = "playwright-1.47.0-py3-none-macosx_11_0_universal2.whl", hash = "sha256:8e212dc472ff19c7d46ed7e900191c7a786ce697556ac3f1615986ec3aa00341"}, + {file = "playwright-1.47.0-py3-none-manylinux1_x86_64.whl", hash = "sha256:a1935672531963e4b2a321de5aa59b982fb92463ee6e1032dd7326378e462955"}, + {file = "playwright-1.47.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0a1b61473d6f7f39c5d77d4800b3cbefecb03344c90b98f3fbcae63294ad249"}, + {file = "playwright-1.47.0-py3-none-win32.whl", hash = "sha256:1b977ed81f6bba5582617684a21adab9bad5676d90a357ebf892db7bdf4a9974"}, + {file = "playwright-1.47.0-py3-none-win_amd64.whl", hash = "sha256:0ec1056042d2e86088795a503347407570bffa32cbe20748e5d4c93dba085280"}, ] [package.dependencies] greenlet = "3.0.3" -pyee = "11.1.0" +pyee = "12.0.0" [[package]] name = "pluggy" @@ -2793,13 +2807,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "prometheus-client" -version = "0.20.0" +version = "0.21.0" description = "Python client for the Prometheus monitoring system." optional = false python-versions = ">=3.8" files = [ - {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"}, - {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"}, + {file = "prometheus_client-0.21.0-py3-none-any.whl", hash = "sha256:4fa6b4dd0ac16d58bb587c04b1caae65b8c5043e85f778f42f5f632f6af2e166"}, + {file = "prometheus_client-0.21.0.tar.gz", hash = "sha256:96c83c606b71ff2b0a433c98889d275f51ffec6c5e267de37c7a2b5c9aa9233e"}, ] [package.extras] @@ -2807,13 +2821,13 @@ twisted = ["twisted"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.48" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, ] [package.dependencies] @@ -2821,22 +2835,22 @@ wcwidth = "*" [[package]] name = "protobuf" -version = "5.28.0" +version = "5.28.2" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-5.28.0-cp310-abi3-win32.whl", hash = "sha256:66c3edeedb774a3508ae70d87b3a19786445fe9a068dd3585e0cefa8a77b83d0"}, - {file = "protobuf-5.28.0-cp310-abi3-win_amd64.whl", hash = "sha256:6d7cc9e60f976cf3e873acb9a40fed04afb5d224608ed5c1a105db4a3f09c5b6"}, - {file = "protobuf-5.28.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:532627e8fdd825cf8767a2d2b94d77e874d5ddb0adefb04b237f7cc296748681"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:018db9056b9d75eb93d12a9d35120f97a84d9a919bcab11ed56ad2d399d6e8dd"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:6206afcb2d90181ae8722798dcb56dc76675ab67458ac24c0dd7d75d632ac9bd"}, - {file = "protobuf-5.28.0-cp38-cp38-win32.whl", hash = "sha256:eef7a8a2f4318e2cb2dee8666d26e58eaf437c14788f3a2911d0c3da40405ae8"}, - {file = "protobuf-5.28.0-cp38-cp38-win_amd64.whl", hash = "sha256:d001a73c8bc2bf5b5c1360d59dd7573744e163b3607fa92788b7f3d5fefbd9a5"}, - {file = "protobuf-5.28.0-cp39-cp39-win32.whl", hash = "sha256:dde9fcaa24e7a9654f4baf2a55250b13a5ea701493d904c54069776b99a8216b"}, - {file = "protobuf-5.28.0-cp39-cp39-win_amd64.whl", hash = "sha256:853db610214e77ee817ecf0514e0d1d052dff7f63a0c157aa6eabae98db8a8de"}, - {file = "protobuf-5.28.0-py3-none-any.whl", hash = "sha256:510ed78cd0980f6d3218099e874714cdf0d8a95582e7b059b06cabad855ed0a0"}, - {file = "protobuf-5.28.0.tar.gz", hash = "sha256:dde74af0fa774fa98892209992295adbfb91da3fa98c8f67a88afe8f5a349add"}, + {file = "protobuf-5.28.2-cp310-abi3-win32.whl", hash = "sha256:eeea10f3dc0ac7e6b4933d32db20662902b4ab81bf28df12218aa389e9c2102d"}, + {file = "protobuf-5.28.2-cp310-abi3-win_amd64.whl", hash = "sha256:2c69461a7fcc8e24be697624c09a839976d82ae75062b11a0972e41fd2cd9132"}, + {file = "protobuf-5.28.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a8b9403fc70764b08d2f593ce44f1d2920c5077bf7d311fefec999f8c40f78b7"}, + {file = "protobuf-5.28.2-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:35cfcb15f213449af7ff6198d6eb5f739c37d7e4f1c09b5d0641babf2cc0c68f"}, + {file = "protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:5e8a95246d581eef20471b5d5ba010d55f66740942b95ba9b872d918c459452f"}, + {file = "protobuf-5.28.2-cp38-cp38-win32.whl", hash = "sha256:87317e9bcda04a32f2ee82089a204d3a2f0d3c8aeed16568c7daf4756e4f1fe0"}, + {file = "protobuf-5.28.2-cp38-cp38-win_amd64.whl", hash = "sha256:c0ea0123dac3399a2eeb1a1443d82b7afc9ff40241433296769f7da42d142ec3"}, + {file = "protobuf-5.28.2-cp39-cp39-win32.whl", hash = "sha256:ca53faf29896c526863366a52a8f4d88e69cd04ec9571ed6082fa117fac3ab36"}, + {file = "protobuf-5.28.2-cp39-cp39-win_amd64.whl", hash = "sha256:8ddc60bf374785fb7cb12510b267f59067fa10087325b8e1855b898a0d81d276"}, + {file = "protobuf-5.28.2-py3-none-any.whl", hash = "sha256:52235802093bd8a2811abbe8bf0ab9c5f54cca0a751fdd3f6ac2a21438bffece"}, + {file = "protobuf-5.28.2.tar.gz", hash = "sha256:59379674ff119717404f7454647913787034f03fe7049cbef1d74a97bb4593f0"}, ] [[package]] @@ -2906,18 +2920,18 @@ files = [ [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -2925,103 +2939,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -3029,13 +3044,13 @@ typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" [[package]] name = "pyee" -version = "11.1.0" +version = "12.0.0" description = "A rough port of Node.js's EventEmitter to Python with a few tricks of its own" optional = false python-versions = ">=3.8" files = [ - {file = "pyee-11.1.0-py3-none-any.whl", hash = "sha256:5d346a7d0f861a4b2e6c47960295bd895f816725b27d656181947346be98d7c1"}, - {file = "pyee-11.1.0.tar.gz", hash = "sha256:b53af98f6990c810edd9b56b87791021a8f54fd13db4edd1142438d44ba2263f"}, + {file = "pyee-12.0.0-py3-none-any.whl", hash = "sha256:7b14b74320600049ccc7d0e0b1becd3b4bd0a03c745758225e31a59f4095c990"}, + {file = "pyee-12.0.0.tar.gz", hash = "sha256:c480603f4aa2927d4766eb41fa82793fe60a82cbfdb8d688e0d08c55a534e145"}, ] [package.dependencies] @@ -3232,13 +3247,13 @@ files = [ [[package]] name = "pytz" -version = "2024.1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] @@ -3479,90 +3494,105 @@ rpds-py = ">=0.7.0" [[package]] name = "regex" -version = "2024.7.24" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = true python-versions = ">=3.8" files = [ - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, - {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, - {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, - {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, - {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, - {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, - {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, - {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, - {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, - {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, - {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, - {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -3603,6 +3633,20 @@ requests = ">=2.22,<3" [package.extras] fixture = ["fixtures"] +[[package]] +name = "requests-toolbelt" +version = "1.0.0" +description = "A utility belt for advanced users of python-requests" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, + {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, +] + +[package.dependencies] +requests = ">=2.0.1,<3.0.0" + [[package]] name = "responses" version = "0.22.0" @@ -3854,12 +3898,60 @@ files = [ [[package]] name = "sqlalchemy" -version = "2.0.33" +version = "2.0.35" description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ - {file = "sqlalchemy-2.0.33.tar.gz", hash = "sha256:91c93333c2b37ff721dc83b37e28c29de4c502b5612f2d093468037b86aa2be0"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:67219632be22f14750f0d1c70e62f204ba69d28f62fd6432ba05ab295853de9b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4668bd8faf7e5b71c0319407b608f278f279668f358857dbfd10ef1954ac9f90"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb8bea573863762bbf45d1e13f87c2d2fd32cee2dbd50d050f83f87429c9e1ea"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f552023710d4b93d8fb29a91fadf97de89c5926c6bd758897875435f2a939f33"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:016b2e665f778f13d3c438651dd4de244214b527a275e0acf1d44c05bc6026a9"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7befc148de64b6060937231cbff8d01ccf0bfd75aa26383ffdf8d82b12ec04ff"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win32.whl", hash = "sha256:22b83aed390e3099584b839b93f80a0f4a95ee7f48270c97c90acd40ee646f0b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win_amd64.whl", hash = "sha256:a29762cd3d116585278ffb2e5b8cc311fb095ea278b96feef28d0b423154858e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e21f66748ab725ade40fa7af8ec8b5019c68ab00b929f6643e1b1af461eddb60"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8a6219108a15fc6d24de499d0d515c7235c617b2540d97116b663dade1a54d62"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042622a5306c23b972192283f4e22372da3b8ddf5f7aac1cc5d9c9b222ab3ff6"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:627dee0c280eea91aed87b20a1f849e9ae2fe719d52cbf847c0e0ea34464b3f7"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4fdcd72a789c1c31ed242fd8c1bcd9ea186a98ee8e5408a50e610edfef980d71"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:89b64cd8898a3a6f642db4eb7b26d1b28a497d4022eccd7717ca066823e9fb01"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win32.whl", hash = "sha256:6a93c5a0dfe8d34951e8a6f499a9479ffb9258123551fa007fc708ae2ac2bc5e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win_amd64.whl", hash = "sha256:c68fe3fcde03920c46697585620135b4ecfdfc1ed23e75cc2c2ae9f8502c10b8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb60b026d8ad0c97917cb81d3662d0b39b8ff1335e3fabb24984c6acd0c900a2"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6921ee01caf375363be5e9ae70d08ce7ca9d7e0e8983183080211a062d299468"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cdf1a0dbe5ced887a9b127da4ffd7354e9c1a3b9bb330dce84df6b70ccb3a8d"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93a71c8601e823236ac0e5d087e4f397874a421017b3318fd92c0b14acf2b6db"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e04b622bb8a88f10e439084486f2f6349bf4d50605ac3e445869c7ea5cf0fa8c"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1b56961e2d31389aaadf4906d453859f35302b4eb818d34a26fab72596076bb8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win32.whl", hash = "sha256:0f9f3f9a3763b9c4deb8c5d09c4cc52ffe49f9876af41cc1b2ad0138878453cf"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win_amd64.whl", hash = "sha256:25b0f63e7fcc2a6290cb5f7f5b4fc4047843504983a28856ce9b35d8f7de03cc"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f021d334f2ca692523aaf7bbf7592ceff70c8594fad853416a81d66b35e3abf9"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05c3f58cf91683102f2f0265c0db3bd3892e9eedabe059720492dbaa4f922da1"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:032d979ce77a6c2432653322ba4cbeabf5a6837f704d16fa38b5a05d8e21fa00"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:2e795c2f7d7249b75bb5f479b432a51b59041580d20599d4e112b5f2046437a3"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:cc32b2990fc34380ec2f6195f33a76b6cdaa9eecf09f0c9404b74fc120aef36f"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win32.whl", hash = "sha256:9509c4123491d0e63fb5e16199e09f8e262066e58903e84615c301dde8fa2e87"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win_amd64.whl", hash = "sha256:3655af10ebcc0f1e4e06c5900bb33e080d6a1fa4228f502121f28a3b1753cde5"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4c31943b61ed8fdd63dfd12ccc919f2bf95eefca133767db6fbbd15da62078ec"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a62dd5d7cc8626a3634208df458c5fe4f21200d96a74d122c83bc2015b333bc1"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0630774b0977804fba4b6bbea6852ab56c14965a2b0c7fc7282c5f7d90a1ae72"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d625eddf7efeba2abfd9c014a22c0f6b3796e0ffb48f5d5ab106568ef01ff5a"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ada603db10bb865bbe591939de854faf2c60f43c9b763e90f653224138f910d9"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c41411e192f8d3ea39ea70e0fae48762cd11a2244e03751a98bd3c0ca9a4e936"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win32.whl", hash = "sha256:d299797d75cd747e7797b1b41817111406b8b10a4f88b6e8fe5b5e59598b43b0"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win_amd64.whl", hash = "sha256:0375a141e1c0878103eb3d719eb6d5aa444b490c96f3fedab8471c7f6ffe70ee"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ccae5de2a0140d8be6838c331604f91d6fafd0735dbdcee1ac78fc8fbaba76b4"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2a275a806f73e849e1c309ac11108ea1a14cd7058577aba962cd7190e27c9e3c"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:732e026240cdd1c1b2e3ac515c7a23820430ed94292ce33806a95869c46bd139"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:890da8cd1941fa3dab28c5bac3b9da8502e7e366f895b3b8e500896f12f94d11"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c0d8326269dbf944b9201911b0d9f3dc524d64779a07518199a58384c3d37a44"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b76d63495b0508ab9fc23f8152bac63205d2a704cd009a2b0722f4c8e0cba8e0"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win32.whl", hash = "sha256:69683e02e8a9de37f17985905a5eca18ad651bf592314b4d3d799029797d0eb3"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win_amd64.whl", hash = "sha256:aee110e4ef3c528f3abbc3c2018c121e708938adeeff9006428dd7c8555e9b3f"}, + {file = "SQLAlchemy-2.0.35-py3-none-any.whl", hash = "sha256:2ab3f0336c0387662ce6221ad30ab3a5e6499aab01b9790879b6578fd9b8faa1"}, + {file = "sqlalchemy-2.0.35.tar.gz", hash = "sha256:e11d7ea4d24f0a262bccf9a7cd6284c976c5369dac21db237cff59586045ab9f"}, ] [package.dependencies] @@ -4043,13 +4135,13 @@ files = [ [[package]] name = "tomli" -version = "2.0.1" +version = "2.0.2" description = "A lil' TOML parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, + {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, + {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, ] [[package]] @@ -4134,13 +4226,13 @@ files = [ [[package]] name = "types-protobuf" -version = "5.27.0.20240626" +version = "5.28.0.20240924" description = "Typing stubs for protobuf" optional = false python-versions = ">=3.8" files = [ - {file = "types-protobuf-5.27.0.20240626.tar.gz", hash = "sha256:683ba14043bade6785e3f937a7498f243b37881a91ac8d81b9202ecf8b191e9c"}, - {file = "types_protobuf-5.27.0.20240626-py3-none-any.whl", hash = "sha256:688e8f7e8d9295db26bc560df01fb731b27a25b77cbe4c1ce945647f7024f5c1"}, + {file = "types-protobuf-5.28.0.20240924.tar.gz", hash = "sha256:d181af8a256e5a91ce8d5adb53496e880efd9144c7d54483e3653332b60296f0"}, + {file = "types_protobuf-5.28.0.20240924-py3-none-any.whl", hash = "sha256:5cecf612ccdefb7dc95f7a51fb502902f20fc2e6681cd500184aaa1b3931d6a7"}, ] [[package]] @@ -4160,13 +4252,13 @@ types-cffi = "*" [[package]] name = "types-python-dateutil" -version = "2.9.0.20240821" +version = "2.9.0.20241003" description = "Typing stubs for python-dateutil" optional = false python-versions = ">=3.8" files = [ - {file = "types-python-dateutil-2.9.0.20240821.tar.gz", hash = "sha256:9649d1dcb6fef1046fb18bebe9ea2aa0028b160918518c34589a46045f6ebd98"}, - {file = "types_python_dateutil-2.9.0.20240821-py3-none-any.whl", hash = "sha256:f5889fcb4e63ed4aaa379b44f93c32593d50b9a94c9a60a0c854d8cc3511cd57"}, + {file = "types-python-dateutil-2.9.0.20241003.tar.gz", hash = "sha256:58cb85449b2a56d6684e41aeefb4c4280631246a0da1a719bdbe6f3fb0317446"}, + {file = "types_python_dateutil-2.9.0.20241003-py3-none-any.whl", hash = "sha256:250e1d8e80e7bbc3a6c99b907762711d1a1cdd00e978ad39cb5940f6f0a87f3d"}, ] [[package]] @@ -4182,13 +4274,13 @@ files = [ [[package]] name = "types-pyyaml" -version = "6.0.12.20240808" +version = "6.0.12.20240917" description = "Typing stubs for PyYAML" optional = false python-versions = ">=3.8" files = [ - {file = "types-PyYAML-6.0.12.20240808.tar.gz", hash = "sha256:b8f76ddbd7f65440a8bda5526a9607e4c7a322dc2f8e1a8c405644f9a6f4b9af"}, - {file = "types_PyYAML-6.0.12.20240808-py3-none-any.whl", hash = "sha256:deda34c5c655265fc517b546c902aa6eed2ef8d3e921e4765fe606fe2afe8d35"}, + {file = "types-PyYAML-6.0.12.20240917.tar.gz", hash = "sha256:d1405a86f9576682234ef83bcb4e6fff7c9305c8b1fbad5e0bcd4f7dbdc9c587"}, + {file = "types_PyYAML-6.0.12.20240917-py3-none-any.whl", hash = "sha256:392b267f1c0fe6022952462bf5d6523f31e37f6cea49b14cee7ad634b6301570"}, ] [[package]] @@ -4222,13 +4314,13 @@ types-urllib3 = "*" [[package]] name = "types-requests" -version = "2.32.0.20240712" +version = "2.32.0.20240914" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, + {file = "types-requests-2.32.0.20240914.tar.gz", hash = "sha256:2850e178db3919d9bf809e434eef65ba49d0e7e33ac92d588f4a5e295fffd405"}, + {file = "types_requests-2.32.0.20240914-py3-none-any.whl", hash = "sha256:59c2f673eb55f32a99b2894faf6020e1a9f4a402ad0f192bfee0b64469054310"}, ] [package.dependencies] @@ -4236,13 +4328,13 @@ urllib3 = ">=2" [[package]] name = "types-setuptools" -version = "74.0.0.20240831" +version = "75.1.0.20240917" description = "Typing stubs for setuptools" optional = false python-versions = ">=3.8" files = [ - {file = "types-setuptools-74.0.0.20240831.tar.gz", hash = "sha256:8b4a544cc91d42a019dc1e41fd397608b4bc7e20c7d7d5bc326589ffd9e8f8a1"}, - {file = "types_setuptools-74.0.0.20240831-py3-none-any.whl", hash = "sha256:4d9d18ea9214828d695a384633130009f5dee2681a157ee873d3680b62931590"}, + {file = "types-setuptools-75.1.0.20240917.tar.gz", hash = "sha256:12f12a165e7ed383f31def705e5c0fa1c26215dd466b0af34bd042f7d5331f55"}, + {file = "types_setuptools-75.1.0.20240917-py3-none-any.whl", hash = "sha256:06f78307e68d1bbde6938072c57b81cf8a99bc84bd6dc7e4c5014730b097dc0c"}, ] [[package]] @@ -4280,13 +4372,13 @@ files = [ [[package]] name = "tzdata" -version = "2024.1" +version = "2024.2" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, ] [[package]] @@ -4321,13 +4413,13 @@ socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -4343,6 +4435,7 @@ description = "Automatically mock your HTTP interactions to simplify and speed u optional = false python-versions = ">=3.8" files = [ + {file = "vcrpy-6.0.1-py2.py3-none-any.whl", hash = "sha256:621c3fb2d6bd8aa9f87532c688e4575bcbbde0c0afeb5ebdb7e14cac409edfdd"}, {file = "vcrpy-6.0.1.tar.gz", hash = "sha256:9e023fee7f892baa0bbda2f7da7c8ac51165c1c6e38ff8688683a12a4bde9278"}, ] @@ -4357,46 +4450,41 @@ tests = ["Werkzeug (==2.0.3)", "aiohttp", "boto3", "httplib2", "httpx", "pytest" [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.3" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:85527b882f3facda0579bce9d743ff7f10c3e1e0db0a0d0e28170a7d0e5ce2ea"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:53adf73dcdc0ef04f7735066b4a57a4cd3e49ef135daae41d77395f0b5b692cb"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e25adddab85f674acac303cf1f5835951345a56c5f7f582987d266679979c75b"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f01f4a3565a387080dc49bdd1fefe4ecc77f894991b88ef927edbfa45eb10818"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:91b522adc25614cdeaf91f7897800b82c13b4b8ac68a42ca959f992f6990c490"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d52db5beb5e476e6853da2e2d24dbbbed6797b449c8bf7ea118a4ee0d2c9040e"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:94d11b07c64f63f49876e0ab8042ae034674c8653bfcdaa8c4b32e71cfff87e8"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:349c9488e1d85d0a58e8cb14222d2c51cbc801ce11ac3936ab4c3af986536926"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:53a3f10b62c2d569e260f96e8d966463dec1a50fa4f1b22aec69e3f91025060e"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:950f531ec6e03696a2414b6308f5c6ff9dab7821a768c9d5788b1314e9a46ca7"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae6deb336cba5d71476caa029ceb6e88047fc1dc74b62b7c4012639c0b563906"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1021223c08ba8d2d38d71ec1704496471ffd7be42cfb26b87cd5059323a389a1"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:752fb40efc7cc8d88ebc332b8f4bcbe2b5cc7e881bccfeb8e25054c00c994ee3"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2e8f3f955d68471fa37b0e3add18500790d129cc7efe89971b8a4cc6fdeb0b2"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b8ca4d854adcf480bdfd80f46fdd6fb49f91dd020ae11c89b3a79e19454ec627"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:90a67d7857adb1d985aca232cc9905dd5bc4803ed85cfcdcfcf707e52049eda7"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:720ef9d3a4f9ca575a780af283c8fd3a0674b307651c1976714745090da5a9e8"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:223160bb359281bb8e31c8f1068bf71a6b16a8ad3d9524ca6f523ac666bb6a1e"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:560135542c91eaa74247a2e8430cf83c4342b29e8ad4f520ae14f0c8a19cfb5b"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dd021efa85970bd4824acacbb922066159d0f9e546389a4743d56919b6758b91"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_armv7l.whl", hash = "sha256:78864cc8f23dbee55be34cc1494632a7ba30263951b5b2e8fc8286b95845f82c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_i686.whl", hash = "sha256:1e9679245e3ea6498494b3028b90c7b25dbb2abe65c7d07423ecfc2d6218ff7c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64.whl", hash = "sha256:9413384f26b5d050b6978e6fcd0c1e7f0539be7a4f1a885061473c5deaa57221"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:294b7a598974b8e2c6123d19ef15de9abcd282b0fbbdbc4d23dfa812959a9e05"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_s390x.whl", hash = "sha256:26dd201857d702bdf9d78c273cafcab5871dd29343748524695cecffa44a8d97"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:0f9332243355643d567697c3e3fa07330a1d1abf981611654a1f2bf2175612b7"}, + {file = "watchdog-5.0.3-py3-none-win32.whl", hash = "sha256:c66f80ee5b602a9c7ab66e3c9f36026590a0902db3aea414d59a2f55188c1f49"}, + {file = "watchdog-5.0.3-py3-none-win_amd64.whl", hash = "sha256:f00b4cf737f568be9665563347a910f8bdc76f88c2970121c86243c8cfdf90e9"}, + {file = "watchdog-5.0.3-py3-none-win_ia64.whl", hash = "sha256:49f4d36cb315c25ea0d946e018c01bb028048023b9e103d3d3943f58e109dd45"}, + {file = "watchdog-5.0.3.tar.gz", hash = "sha256:108f42a7f0345042a854d4d0ad0834b741d421330d5f575b81cb27b883500176"}, ] [package.extras] @@ -4547,103 +4635,103 @@ files = [ [[package]] name = "yarl" -version = "1.9.7" +version = "1.13.1" description = "Yet another URL library" optional = false python-versions = ">=3.8" files = [ - {file = "yarl-1.9.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:60c04415b31a1611ef5989a6084dd6f6b95652c6a18378b58985667b65b2ecb6"}, - {file = "yarl-1.9.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1787dcfdbe730207acb454548a6e19f80ae75e6d2d1f531c5a777bc1ab6f7952"}, - {file = "yarl-1.9.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f5ddad20363f9f1bbedc95789c897da62f939e6bc855793c3060ef8b9f9407bf"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fdb156a06208fc9645ae7cc0fca45c40dd40d7a8c4db626e542525489ca81a9"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:522fa3d300d898402ae4e0fa7c2c21311248ca43827dc362a667de87fdb4f1be"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e7f9cabfb8b980791b97a3ae3eab2e38b2ba5eab1af9b7495bdc44e1ce7c89e3"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1fc728857df4087da6544fc68f62d7017fa68d74201d5b878e18ed4822c31fb3"}, - {file = "yarl-1.9.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dba2ebac677184d56374fa3e452b461f5d6a03aa132745e648ae8859361eb6b"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a95167ae34667c5cc7d9206c024f793e8ffbadfb307d5c059de470345de58a21"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:9d319ac113ca47352319cbea92d1925a37cb7bd61a8c2f3e3cd2e96eb33cccae"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:2d71a5d818d82586ac46265ae01466e0bda0638760f18b21f1174e0dd58a9d2f"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:ff03f1c1ac474c66d474929ae7e4dd195592c1c7cc8c36418528ed81b1ca0a79"}, - {file = "yarl-1.9.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:78250f635f221dde97d02c57aade3313310469bc291888dfe32acd1012594441"}, - {file = "yarl-1.9.7-cp310-cp310-win32.whl", hash = "sha256:f3aaf9fa960d55bd7876d55d7ea3cc046f3660df1ff73fc1b8c520a741ed1f21"}, - {file = "yarl-1.9.7-cp310-cp310-win_amd64.whl", hash = "sha256:e8362c941e07fbcde851597672a5e41b21dc292b7d5a1dc439b7a93c9a1af5d9"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:596069ddeaf72b5eb36cd714dcd2b5751d0090d05a8d65113b582ed9e1c801fb"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cb870907e8b86b2f32541403da9455afc1e535ce483e579bea0e6e79a0cc751c"}, - {file = "yarl-1.9.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ca5e86be84492fa403c4dcd4dcaf8e1b1c4ffc747b5176f7c3d09878c45719b0"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a99cecfb51c84d00132db909e83ae388793ca86e48df7ae57f1be0beab0dcce5"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25508739e9b44d251172145f54c084b71747b09e4d237dc2abb045f46c36a66e"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:60f3b5aec3146b6992640592856414870f5b20eb688c1f1d5f7ac010a7f86561"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1557456afce5db3d655b5f8a31cdcaae1f47e57958760525c44b76e812b4987"}, - {file = "yarl-1.9.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:71bb1435a84688ed831220c5305d96161beb65cac4a966374475348aa3de4575"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:f87d8645a7a806ec8f66aac5e3b1dcb5014849ff53ffe2a1f0b86ca813f534c7"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:58e3f01673873b8573da3abe138debc63e4e68541b2104a55df4c10c129513a4"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:8af0bbd4d84f8abdd9b11be9488e32c76b1501889b73c9e2292a15fb925b378b"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:7fc441408ed0d9c6d2d627a02e281c21f5de43eb5209c16636a17fc704f7d0f8"}, - {file = "yarl-1.9.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a9552367dc440870556da47bb289a806f08ad06fbc4054072d193d9e5dd619ba"}, - {file = "yarl-1.9.7-cp311-cp311-win32.whl", hash = "sha256:628619008680a11d07243391271b46f07f13b75deb9fe92ef342305058c70722"}, - {file = "yarl-1.9.7-cp311-cp311-win_amd64.whl", hash = "sha256:bc23d870864971c8455cfba17498ccefa53a5719ea9f5fce5e7e9c1606b5755f"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d8cf3d0b67996edc11957aece3fbce4c224d0451c7c3d6154ec3a35d0e55f6b"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a7748cd66fef49c877e59503e0cc76179caf1158d1080228e67e1db14554f08"}, - {file = "yarl-1.9.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a6fa3aeca8efabb0fbbb3b15e0956b0cb77f7d9db67c107503c30af07cd9e00"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf37dd0008e5ac5c3880198976063c491b6a15b288d150d12833248cf2003acb"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87aa5308482f248f8c3bd9311cd6c7dfd98ea1a8e57e35fb11e4adcac3066003"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:867b13c1b361f9ba5d2f84dc5408082f5d744c83f66de45edc2b96793a9c5e48"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48ce93947554c2c85fe97fc4866646ec90840bc1162e4db349b37d692a811755"}, - {file = "yarl-1.9.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fcd3d94b848cba132f39a5b40d80b0847d001a91a6f35a2204505cdd46afe1b2"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d06d6a8f98dd87646d98f0c468be14b201e47ec6092ad569adf835810ad0dffb"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:91567ff4fce73d2e7ac67ed5983ad26ba2343bc28cb22e1e1184a9677df98d7c"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:1d5594512541e63188fea640b7f066c218d2176203d6e6f82abf702ae3dca3b2"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:9c2743e43183e4afbb07d5605693299b8756baff0b086c25236c761feb0e3c56"}, - {file = "yarl-1.9.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:daa69a3a2204355af39f4cfe7f3870d87c53d77a597b5100b97e3faa9460428b"}, - {file = "yarl-1.9.7-cp312-cp312-win32.whl", hash = "sha256:36b16884336c15adf79a4bf1d592e0c1ffdb036a760e36a1361565b66785ec6c"}, - {file = "yarl-1.9.7-cp312-cp312-win_amd64.whl", hash = "sha256:2ead2f87a1174963cc406d18ac93d731fbb190633d3995fa052d10cefae69ed8"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:808eddabcb6f7b2cdb6929b3e021ac824a2c07dc7bc83f7618e18438b1b65781"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:395ab0d8ce6d104a988da429bcbfd445e03fb4c911148dfd523f69d13f772e47"}, - {file = "yarl-1.9.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:49827dfccbd59c4499605c13805e947349295466e490860a855b7c7e82ec9c75"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b8bbdd425d0978311520ea99fb6c0e9e04e64aee84fac05f3157ace9f81b05"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:71d33fd1c219b5b28ee98cd76da0c9398a4ed4792fd75c94135237db05ba5ca8"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:62440431741d0b7d410e5cbad800885e3289048140a43390ecab4f0b96dde3bb"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db97210433366dfba55590e48285b89ad0146c52bf248dd0da492dd9f0f72cf"}, - {file = "yarl-1.9.7-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:653597b615809f2e5f4dba6cd805608b6fd3597128361a22cc612cf7c7a4d1bf"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:df47612129e66f7ce7c9994d4cd4e6852f6e3bf97699375d86991481796eeec8"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:5e338b6febbae6c9fe86924bac3ea9c1944e33255c249543cd82a4af6df6047b"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:e649d37d04665dddb90994bbf0034331b6c14144cc6f3fbce400dc5f28dc05b7"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:0a1b8fd849567be56342e988e72c9d28bd3c77b9296c38b9b42d2fe4813c9d3f"}, - {file = "yarl-1.9.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f9d715b2175dff9a49c6dafdc2ab3f04850ba2f3d4a77f69a5a1786b057a9d45"}, - {file = "yarl-1.9.7-cp313-cp313-win32.whl", hash = "sha256:bc9233638b07c2e4a3a14bef70f53983389bffa9e8cb90a2da3f67ac9c5e1842"}, - {file = "yarl-1.9.7-cp313-cp313-win_amd64.whl", hash = "sha256:62e110772330d7116f91e79cd83fef92545cb2f36414c95881477aa01971f75f"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a564155cc2194ecd9c0d8f8dc57059b822a507de5f08120063675eb9540576aa"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:03e917cc44a01e1be60a83ee1a17550b929490aaa5df2a109adc02137bddf06b"}, - {file = "yarl-1.9.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:eefda67ba0ba44ab781e34843c266a76f718772b348f7c5d798d8ea55b95517f"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:316c82b499b6df41444db5dea26ee23ece9356e38cea43a8b2af9e6d8a3558e4"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10452727843bc847596b75e30a7fe92d91829f60747301d1bd60363366776b0b"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:050f3e4d886be55728fef268587d061c5ce6f79a82baba71840801b63441c301"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0aabe557446aa615693a82b4d3803c102fd0e7a6a503bf93d744d182a510184"}, - {file = "yarl-1.9.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:23404842228e6fa8ace235024519df37f3f8e173620407644d40ddca571ff0f4"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:34736fcc9d6d7080ebbeb0998ecb91e4f14ad8f18648cf0b3099e2420a225d86"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:48f7a158f3ca67509d21cb02a96964e4798b6f133691cc0c86cf36e26e26ec8f"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:6639444d161c693cdabb073baaed1945c717d3982ecedf23a219bc55a242e728"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:1cd450e10cb53d63962757c3f6f7870be49a3e448c46621d6bd46f8088d532de"}, - {file = "yarl-1.9.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:74d3ef5e81f81507cea04bf5ae22f18ef538607a7c754aac2b6e3029956a2842"}, - {file = "yarl-1.9.7-cp38-cp38-win32.whl", hash = "sha256:4052dbd0c900bece330e3071c636f99dff06e4628461a29b38c6e222a427cf98"}, - {file = "yarl-1.9.7-cp38-cp38-win_amd64.whl", hash = "sha256:dd08da4f2d171e19bd02083c921f1bef89f8f5f87000d0ffc49aa257bc5a9802"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7ab906a956d2109c6ea11e24c66592b06336e2743509290117f0f7f47d2c1dd3"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d8ad761493d5aaa7ab2a09736e62b8a220cb0b10ff8ccf6968c861cd8718b915"}, - {file = "yarl-1.9.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d35f9cdab0ec5e20cf6d2bd46456cf599052cf49a1698ef06b9592238d1cf1b1"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a48d2b9f0ae29a456fb766ae461691378ecc6cf159dd9f938507d925607591c3"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cf85599c9336b89b92c313519bcaa223d92fa5d98feb4935a47cce2e8722b4b8"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8e8916b1ff7680b1f2b1608c82dc15c569b9f2cb2da100c747c291f1acf18a14"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29c80890e0a64fb0e5f71350d48da330995073881f8b8e623154aef631febfb0"}, - {file = "yarl-1.9.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9163d21aa40ff8528db2aee2b0b6752efe098055b41ab8e5422b2098457199fe"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:65e3098969baf221bb45e3b2f60735fc2b154fc95902131ebc604bae4c629ea6"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:cddebd096effe4be90fd378e4224cd575ac99e1c521598a6900e94959006e02e"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:8525f955a2dcc281573b6aadeb8ab9c37e2d3428b64ca6a2feec2a794a69c1da"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:5d585c7d834c13f24c7e3e0efaf1a4b7678866940802e11bd6c4d1f99c935e6b"}, - {file = "yarl-1.9.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:78805148e780a9ca66f3123e04741e344b66cf06b4fb13223e3a209f39a6da55"}, - {file = "yarl-1.9.7-cp39-cp39-win32.whl", hash = "sha256:3f53df493ec80b76969d6e1ae6e4411a55ab1360e02b80c84bd4b33d61a567ba"}, - {file = "yarl-1.9.7-cp39-cp39-win_amd64.whl", hash = "sha256:c81c28221a85add23a0922a6aeb2cdda7f9723e03e2dfae06fee5c57fe684262"}, - {file = "yarl-1.9.7-py3-none-any.whl", hash = "sha256:49935cc51d272264358962d050d726c3e5603a616f53e52ea88e9df1728aa2ee"}, - {file = "yarl-1.9.7.tar.gz", hash = "sha256:f28e602edeeec01fc96daf7728e8052bc2e12a672e2a138561a1ebaf30fd9df7"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:82e692fb325013a18a5b73a4fed5a1edaa7c58144dc67ad9ef3d604eccd451ad"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df4e82e68f43a07735ae70a2d84c0353e58e20add20ec0af611f32cd5ba43fb4"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec9dd328016d8d25702a24ee274932aebf6be9787ed1c28d021945d264235b3c"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5820bd4178e6a639b3ef1db8b18500a82ceab6d8b89309e121a6859f56585b05"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86c438ce920e089c8c2388c7dcc8ab30dfe13c09b8af3d306bcabb46a053d6f7"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3de86547c820e4f4da4606d1c8ab5765dd633189791f15247706a2eeabc783ae"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca53632007c69ddcdefe1e8cbc3920dd88825e618153795b57e6ebcc92e752a"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4ee1d240b84e2f213565f0ec08caef27a0e657d4c42859809155cf3a29d1735"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c49f3e379177f4477f929097f7ed4b0622a586b0aa40c07ac8c0f8e40659a1ac"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5c5e32fef09ce101fe14acd0f498232b5710effe13abac14cd95de9c274e689e"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ab9524e45ee809a083338a749af3b53cc7efec458c3ad084361c1dbf7aaf82a2"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:b1481c048fe787f65e34cb06f7d6824376d5d99f1231eae4778bbe5c3831076d"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:31497aefd68036d8e31bfbacef915826ca2e741dbb97a8d6c7eac66deda3b606"}, + {file = "yarl-1.13.1-cp310-cp310-win32.whl", hash = "sha256:1fa56f34b2236f5192cb5fceba7bbb09620e5337e0b6dfe2ea0ddbd19dd5b154"}, + {file = "yarl-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:1bbb418f46c7f7355084833051701b2301092e4611d9e392360c3ba2e3e69f88"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:216a6785f296169ed52cd7dcdc2612f82c20f8c9634bf7446327f50398732a51"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40c6e73c03a6befb85b72da213638b8aaa80fe4136ec8691560cf98b11b8ae6e"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2430cf996113abe5aee387d39ee19529327205cda975d2b82c0e7e96e5fdabdc"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fb4134cc6e005b99fa29dbc86f1ea0a298440ab6b07c6b3ee09232a3b48f495"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:309c104ecf67626c033845b860d31594a41343766a46fa58c3309c538a1e22b2"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f90575e9fe3aae2c1e686393a9689c724cd00045275407f71771ae5d690ccf38"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d2e1626be8712333a9f71270366f4a132f476ffbe83b689dd6dc0d114796c74"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b66c87da3c6da8f8e8b648878903ca54589038a0b1e08dde2c86d9cd92d4ac9"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cf1ad338620249f8dd6d4b6a91a69d1f265387df3697ad5dc996305cf6c26fb2"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9915300fe5a0aa663c01363db37e4ae8e7c15996ebe2c6cce995e7033ff6457f"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:703b0f584fcf157ef87816a3c0ff868e8c9f3c370009a8b23b56255885528f10"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:1d8e3ca29f643dd121f264a7c89f329f0fcb2e4461833f02de6e39fef80f89da"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7055bbade838d68af73aea13f8c86588e4bcc00c2235b4b6d6edb0dbd174e246"}, + {file = "yarl-1.13.1-cp311-cp311-win32.whl", hash = "sha256:a3442c31c11088e462d44a644a454d48110f0588de830921fd201060ff19612a"}, + {file = "yarl-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:81bad32c8f8b5897c909bf3468bf601f1b855d12f53b6af0271963ee67fff0d2"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f452cc1436151387d3d50533523291d5f77c6bc7913c116eb985304abdbd9ec9"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:9cec42a20eae8bebf81e9ce23fb0d0c729fc54cf00643eb251ce7c0215ad49fe"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d959fe96e5c2712c1876d69af0507d98f0b0e8d81bee14cfb3f6737470205419"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8c837ab90c455f3ea8e68bee143472ee87828bff19ba19776e16ff961425b57"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94a993f976cdcb2dc1b855d8b89b792893220db8862d1a619efa7451817c836b"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b2442a415a5f4c55ced0fade7b72123210d579f7d950e0b5527fc598866e62c"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fdbf0418489525231723cdb6c79e7738b3cbacbaed2b750cb033e4ea208f220"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b7f6e699304717fdc265a7e1922561b02a93ceffdaefdc877acaf9b9f3080b8"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:bcd5bf4132e6a8d3eb54b8d56885f3d3a38ecd7ecae8426ecf7d9673b270de43"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2a93a4557f7fc74a38ca5a404abb443a242217b91cd0c4840b1ebedaad8919d4"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:22b739f99c7e4787922903f27a892744189482125cc7b95b747f04dd5c83aa9f"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2db874dd1d22d4c2c657807562411ffdfabec38ce4c5ce48b4c654be552759dc"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4feaaa4742517eaceafcbe74595ed335a494c84634d33961214b278126ec1485"}, + {file = "yarl-1.13.1-cp312-cp312-win32.whl", hash = "sha256:bbf9c2a589be7414ac4a534d54e4517d03f1cbb142c0041191b729c2fa23f320"}, + {file = "yarl-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:d07b52c8c450f9366c34aa205754355e933922c79135125541daae6cbf31c799"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:95c6737f28069153c399d875317f226bbdea939fd48a6349a3b03da6829fb550"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:cd66152561632ed4b2a9192e7f8e5a1d41e28f58120b4761622e0355f0fe034c"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6a2acde25be0cf9be23a8f6cbd31734536a264723fca860af3ae5e89d771cd71"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18595e6a2ee0826bf7dfdee823b6ab55c9b70e8f80f8b77c37e694288f5de1"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a31d21089894942f7d9a8df166b495101b7258ff11ae0abec58e32daf8088813"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45f209fb4bbfe8630e3d2e2052535ca5b53d4ce2d2026bed4d0637b0416830da"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f722f30366474a99745533cc4015b1781ee54b08de73260b2bbe13316079851"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3bf60444269345d712838bb11cc4eadaf51ff1a364ae39ce87a5ca8ad3bb2c8"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:942c80a832a79c3707cca46bd12ab8aa58fddb34b1626d42b05aa8f0bcefc206"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:44b07e1690f010c3c01d353b5790ec73b2f59b4eae5b0000593199766b3f7a5c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:396e59b8de7e4d59ff5507fb4322d2329865b909f29a7ed7ca37e63ade7f835c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:3bb83a0f12701c0b91112a11148b5217617982e1e466069d0555be9b372f2734"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c92b89bffc660f1274779cb6fbb290ec1f90d6dfe14492523a0667f10170de26"}, + {file = "yarl-1.13.1-cp313-cp313-win32.whl", hash = "sha256:269c201bbc01d2cbba5b86997a1e0f73ba5e2f471cfa6e226bcaa7fd664b598d"}, + {file = "yarl-1.13.1-cp313-cp313-win_amd64.whl", hash = "sha256:1d0828e17fa701b557c6eaed5edbd9098eb62d8838344486248489ff233998b8"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8be8cdfe20787e6a5fcbd010f8066227e2bb9058331a4eccddec6c0db2bb85b2"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:08d7148ff11cb8e886d86dadbfd2e466a76d5dd38c7ea8ebd9b0e07946e76e4b"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4afdf84610ca44dcffe8b6c22c68f309aff96be55f5ea2fa31c0c225d6b83e23"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0d12fe78dcf60efa205e9a63f395b5d343e801cf31e5e1dda0d2c1fb618073d"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:298c1eecfd3257aa16c0cb0bdffb54411e3e831351cd69e6b0739be16b1bdaa8"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c14c16831b565707149c742d87a6203eb5597f4329278446d5c0ae7a1a43928e"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9bacedbb99685a75ad033fd4de37129449e69808e50e08034034c0bf063f99"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:658e8449b84b92a4373f99305de042b6bd0d19bf2080c093881e0516557474a5"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:373f16f38721c680316a6a00ae21cc178e3a8ef43c0227f88356a24c5193abd6"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:45d23c4668d4925688e2ea251b53f36a498e9ea860913ce43b52d9605d3d8177"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f7917697bcaa3bc3e83db91aa3a0e448bf5cde43c84b7fc1ae2427d2417c0224"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5989a38ba1281e43e4663931a53fbf356f78a0325251fd6af09dd03b1d676a09"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:11b3ca8b42a024513adce810385fcabdd682772411d95bbbda3b9ed1a4257644"}, + {file = "yarl-1.13.1-cp38-cp38-win32.whl", hash = "sha256:dcaef817e13eafa547cdfdc5284fe77970b891f731266545aae08d6cce52161e"}, + {file = "yarl-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:7addd26594e588503bdef03908fc207206adac5bd90b6d4bc3e3cf33a829f57d"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a0ae6637b173d0c40b9c1462e12a7a2000a71a3258fa88756a34c7d38926911c"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:576365c9f7469e1f6124d67b001639b77113cfd05e85ce0310f5f318fd02fe85"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:78f271722423b2d4851cf1f4fa1a1c4833a128d020062721ba35e1a87154a049"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d74f3c335cfe9c21ea78988e67f18eb9822f5d31f88b41aec3a1ec5ecd32da5"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1891d69a6ba16e89473909665cd355d783a8a31bc84720902c5911dbb6373465"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb382fd7b4377363cc9f13ba7c819c3c78ed97c36a82f16f3f92f108c787cbbf"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8854b9f80693d20cec797d8e48a848c2fb273eb6f2587b57763ccba3f3bd4b"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbf2c3f04ff50f16404ce70f822cdc59760e5e2d7965905f0e700270feb2bbfc"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:fb9f59f3848edf186a76446eb8bcf4c900fe147cb756fbbd730ef43b2e67c6a7"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ef9b85fa1bc91c4db24407e7c4da93a5822a73dd4513d67b454ca7064e8dc6a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:098b870c18f1341786f290b4d699504e18f1cd050ed179af8123fd8232513424"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:8c723c91c94a3bc8033dd2696a0f53e5d5f8496186013167bddc3fb5d9df46a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:44a4c40a6f84e4d5955b63462a0e2a988f8982fba245cf885ce3be7618f6aa7d"}, + {file = "yarl-1.13.1-cp39-cp39-win32.whl", hash = "sha256:84bbcdcf393139f0abc9f642bf03f00cac31010f3034faa03224a9ef0bb74323"}, + {file = "yarl-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:fc2931ac9ce9c61c9968989ec831d3a5e6fcaaff9474e7cfa8de80b7aff5a093"}, + {file = "yarl-1.13.1-py3-none-any.whl", hash = "sha256:6a5185ad722ab4dd52d5fb1f30dcc73282eb1ed494906a92d1a228d3f89607b0"}, + {file = "yarl-1.13.1.tar.gz", hash = "sha256:ec8cfe2295f3e5e44c51f57272afbd69414ae629ec7c6b27f5a410efc78b70a0"}, ] [package.dependencies] @@ -4652,13 +4740,13 @@ multidict = ">=4.0" [[package]] name = "zipp" -version = "3.20.1" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.20.1-py3-none-any.whl", hash = "sha256:9960cd8967c8f85a56f920d5d507274e74f9ff813a0ab8889a5b5be2daf44064"}, - {file = "zipp-3.20.1.tar.gz", hash = "sha256:c22b14cc4763c5a5b04134207736c107db42e9d3ef2d9779d465f5f1bcba572b"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] @@ -4671,5 +4759,5 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "1b82a418030de86b21fabd32068cd539af6f6438a520b98b645db262b239c575" +python-versions = ">=3.9,<4.0" +content-hash = "131b80f5dffb618dcb91a61508c08c7e7e126df1b7c0fb77368f758cf818f676" diff --git a/libs/langchain/pyproject.toml b/libs/langchain/pyproject.toml index bcf19da0d0ff0..a7324993cfd90 100644 --- a/libs/langchain/pyproject.toml +++ b/libs/langchain/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain" -version = "0.2.16" +version = "0.3.2" description = "Building applications with LLMs through composability" authors = [] license = "MIT" @@ -32,11 +32,11 @@ ignore-words-list = "momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogy langchain-server = "langchain.server:main" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.38" -langchain-text-splitters = "^0.2.0" +python = ">=3.9,<4.0" +langchain-core = "^0.3.8" +langchain-text-splitters = "^0.3.0" langsmith = "^0.1.17" -pydantic = ">=1,<3" +pydantic = "^2.7.4" SQLAlchemy = ">=1.4,<3" requests = "^2" PyYAML = ">=5.3" @@ -60,6 +60,7 @@ omit = [ "tests/*",] addopts = "--strict-markers --strict-config --durations=5 --snapshot-warn-unused -vv" markers = [ "requires: mark tests as requiring a specific library", "scheduled: mark tests to run in scheduled testing", "compile: mark placeholder test used to compile integration tests without running them",] asyncio_mode = "auto" +filterwarnings = [ "ignore::langchain_core._api.beta_decorator.LangChainBetaWarning", "ignore::langchain_core._api.deprecation.LangChainDeprecationWarning:tests", "ignore::langchain_core._api.deprecation.LangChainPendingDeprecationWarning:tests",] [tool.poetry.dependencies.async-timeout] version = "^4.0.0" @@ -98,6 +99,13 @@ pytest-mock = "^3.10.0" pytest-socket = "^0.6.0" syrupy = "^4.0.2" requests-mock = "^1.11.0" +[[tool.poetry.group.test.dependencies.cffi]] +version = "<1.17.1" +python = "<3.10" + +[[tool.poetry.group.test.dependencies.cffi]] +version = "*" +python = ">=3.10" [tool.poetry.group.codespell.dependencies] codespell = "^2.2.0" @@ -111,6 +119,13 @@ langchainhub = "^0.1.16" [tool.poetry.group.lint.dependencies] ruff = "^0.5" +[[tool.poetry.group.lint.dependencies.cffi]] +version = "<1.17.1" +python = "<3.10" + +[[tool.poetry.group.lint.dependencies.cffi]] +version = "*" +python = ">=3.10" [tool.poetry.group.typing.dependencies] mypy = "^1.10" diff --git a/libs/langchain/scripts/check_pydantic.sh b/libs/langchain/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/langchain/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/langchain/tests/integration_tests/chat_models/test_base.py b/libs/langchain/tests/integration_tests/chat_models/test_base.py index cda11263ddfbc..efed6e1d52290 100644 --- a/libs/langchain/tests/integration_tests/chat_models/test_base.py +++ b/libs/langchain/tests/integration_tests/chat_models/test_base.py @@ -4,9 +4,9 @@ from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel from langchain_core.runnables import RunnableConfig from langchain_standard_tests.integration_tests import ChatModelIntegrationTests +from pydantic import BaseModel from langchain.chat_models import init_chat_model diff --git a/libs/langchain/tests/mock_servers/robot/server.py b/libs/langchain/tests/mock_servers/robot/server.py index 1156cf1bb89db..823057bb4d9e2 100644 --- a/libs/langchain/tests/mock_servers/robot/server.py +++ b/libs/langchain/tests/mock_servers/robot/server.py @@ -8,7 +8,7 @@ from fastapi import FastAPI, HTTPException, Query from fastapi.middleware.cors import CORSMiddleware from fastapi.openapi.utils import get_openapi -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field PORT = 7289 diff --git a/libs/langchain/tests/unit_tests/agents/test_agent.py b/libs/langchain/tests/unit_tests/agents/test_agent.py index 6db94330a1328..c343d33d4e1b5 100644 --- a/libs/langchain/tests/unit_tests/agents/test_agent.py +++ b/libs/langchain/tests/unit_tests/agents/test_agent.py @@ -6,7 +6,6 @@ from langchain_core.agents import ( AgentAction, - AgentActionMessageLog, AgentFinish, AgentStep, ) @@ -35,7 +34,9 @@ from langchain.agents.output_parsers.openai_tools import OpenAIToolAgentAction from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler from tests.unit_tests.llms.fake_chat_model import GenericFakeChatModel -from tests.unit_tests.stubs import AnyStr +from tests.unit_tests.stubs import ( + _AnyIdAIMessageChunk, +) class FakeListLLM(LLM): @@ -785,6 +786,26 @@ def _make_func_invocation(name: str, **kwargs: Any) -> AIMessage: ) +def _recursive_dump(obj: Any) -> Any: + """Recursively dump the object if encountering any pydantic models.""" + if isinstance(obj, dict): + return { + k: _recursive_dump(v) + for k, v in obj.items() + if k != "id" # Remove the id field for testing purposes + } + if isinstance(obj, list): + return [_recursive_dump(v) for v in obj] + if hasattr(obj, "dict"): + # if the object contains an ID field, we'll remove it for testing purposes + if hasattr(obj, "id"): + d = obj.model_dump() + d.pop("id") + return _recursive_dump(d) + return _recursive_dump(obj.model_dump()) + return obj + + async def test_openai_agent_with_streaming() -> None: """Test openai agent with streaming.""" infinite_cycle = cycle( @@ -831,72 +852,93 @@ def find_pet(pet: str) -> str: # astream chunks = [chunk async for chunk in executor.astream({"question": "hello"})] - assert chunks == [ + assert _recursive_dump(chunks) == [ { "actions": [ - AgentActionMessageLog( - tool="find_pet", - tool_input={"pet": "cat"}, - log="\nInvoking: `find_pet` with `{'pet': 'cat'}`\n\n\n", - message_log=[ - AIMessageChunk( - id=AnyStr(), - content="", - additional_kwargs={ + { + "log": "\nInvoking: `find_pet` with `{'pet': 'cat'}`\n\n\n", + "message_log": [ + { + "additional_kwargs": { "function_call": { + "arguments": '{"pet": ' '"cat"}', "name": "find_pet", - "arguments": '{"pet": "cat"}', } }, - ) + "content": "", + "name": None, + "response_metadata": {}, + "type": "AIMessageChunk", + } ], - ) + "tool": "find_pet", + "tool_input": {"pet": "cat"}, + "type": "AgentActionMessageLog", + } ], "messages": [ - AIMessageChunk( - id=AnyStr(), - content="", - additional_kwargs={ + { + "additional_kwargs": { "function_call": { + "arguments": '{"pet": ' '"cat"}', "name": "find_pet", - "arguments": '{"pet": "cat"}', } }, - ) + "content": "", + "example": False, + "invalid_tool_calls": [], + "name": None, + "response_metadata": {}, + "tool_call_chunks": [], + "tool_calls": [], + "type": "AIMessageChunk", + "usage_metadata": None, + } ], }, { "messages": [ - FunctionMessage(content="Spying from under the bed.", name="find_pet") + { + "additional_kwargs": {}, + "content": "Spying from under the bed.", + "name": "find_pet", + "response_metadata": {}, + "type": "function", + } ], "steps": [ - AgentStep( - action=AgentActionMessageLog( - tool="find_pet", - tool_input={"pet": "cat"}, - log="\nInvoking: `find_pet` with `{'pet': 'cat'}`\n\n\n", - message_log=[ - AIMessageChunk( - id=AnyStr(), - content="", - additional_kwargs={ - "function_call": { - "name": "find_pet", - "arguments": '{"pet": "cat"}', - } - }, - ) - ], - ), - observation="Spying from under the bed.", - ) + { + "action": { + "log": "\n" + "Invoking: `find_pet` with `{'pet': 'cat'}`\n" + "\n" + "\n", + "tool": "find_pet", + "tool_input": {"pet": "cat"}, + "type": "AgentActionMessageLog", + }, + "observation": "Spying from under the bed.", + } ], }, { - "messages": [AIMessage(content="The cat is spying from under the bed.")], + "messages": [ + { + "additional_kwargs": {}, + "content": "The cat is spying from under the bed.", + "example": False, + "invalid_tool_calls": [], + "name": None, + "response_metadata": {}, + "tool_calls": [], + "type": "ai", + "usage_metadata": None, + } + ], "output": "The cat is spying from under the bed.", }, ] + # # # astream_log log_patches = [ @@ -941,7 +983,7 @@ def _make_tools_invocation(name_to_arguments: Dict[str, Dict[str, Any]]) -> AIMe AIMessage that represents a request to invoke a tool. """ raw_tool_calls = [ - {"function": {"name": name, "arguments": json.dumps(arguments)}, "id": idx} + {"function": {"name": name, "arguments": json.dumps(arguments)}, "id": str(idx)} for idx, (name, arguments) in enumerate(name_to_arguments.items()) ] tool_calls = [ @@ -1030,8 +1072,7 @@ def check_time() -> str: tool_input={"pet": "cat"}, log="\nInvoking: `find_pet` with `{'pet': 'cat'}`\n\n\n", message_log=[ - AIMessageChunk( - id=AnyStr(), + _AnyIdAIMessageChunk( content="", additional_kwargs={ "tool_calls": [ @@ -1040,14 +1081,14 @@ def check_time() -> str: "name": "find_pet", "arguments": '{"pet": "cat"}', }, - "id": 0, + "id": "0", }, { "function": { "name": "check_time", "arguments": "{}", }, - "id": 1, + "id": "1", }, ] }, @@ -1057,8 +1098,7 @@ def check_time() -> str: ) ], "messages": [ - AIMessageChunk( - id=AnyStr(), + _AnyIdAIMessageChunk( content="", additional_kwargs={ "tool_calls": [ @@ -1067,14 +1107,14 @@ def check_time() -> str: "name": "find_pet", "arguments": '{"pet": "cat"}', }, - "id": 0, + "id": "0", }, { "function": { "name": "check_time", "arguments": "{}", }, - "id": 1, + "id": "1", }, ] }, @@ -1088,8 +1128,7 @@ def check_time() -> str: tool_input={}, log="\nInvoking: `check_time` with `{}`\n\n\n", message_log=[ - AIMessageChunk( - id=AnyStr(), + _AnyIdAIMessageChunk( content="", additional_kwargs={ "tool_calls": [ @@ -1098,14 +1137,14 @@ def check_time() -> str: "name": "find_pet", "arguments": '{"pet": "cat"}', }, - "id": 0, + "id": "0", }, { "function": { "name": "check_time", "arguments": "{}", }, - "id": 1, + "id": "1", }, ] }, @@ -1115,8 +1154,7 @@ def check_time() -> str: ) ], "messages": [ - AIMessageChunk( - id=AnyStr(), + _AnyIdAIMessageChunk( content="", additional_kwargs={ "tool_calls": [ @@ -1125,14 +1163,14 @@ def check_time() -> str: "name": "find_pet", "arguments": '{"pet": "cat"}', }, - "id": 0, + "id": "0", }, { "function": { "name": "check_time", "arguments": "{}", }, - "id": 1, + "id": "1", }, ] }, @@ -1152,8 +1190,7 @@ def check_time() -> str: tool_input={"pet": "cat"}, log="\nInvoking: `find_pet` with `{'pet': 'cat'}`\n\n\n", # noqa: E501 message_log=[ - AIMessageChunk( - id=AnyStr(), + _AnyIdAIMessageChunk( content="", additional_kwargs={ "tool_calls": [ @@ -1162,14 +1199,14 @@ def check_time() -> str: "name": "find_pet", "arguments": '{"pet": "cat"}', }, - "id": 0, + "id": "0", }, { "function": { "name": "check_time", "arguments": "{}", }, - "id": 1, + "id": "1", }, ] }, @@ -1195,8 +1232,7 @@ def check_time() -> str: tool_input={}, log="\nInvoking: `check_time` with `{}`\n\n\n", message_log=[ - AIMessageChunk( - id=AnyStr(), + _AnyIdAIMessageChunk( content="", additional_kwargs={ "tool_calls": [ @@ -1205,14 +1241,14 @@ def check_time() -> str: "name": "find_pet", "arguments": '{"pet": "cat"}', }, - "id": 0, + "id": "0", }, { "function": { "name": "check_time", "arguments": "{}", }, - "id": 1, + "id": "1", }, ] }, diff --git a/libs/langchain/tests/unit_tests/callbacks/fake_callback_handler.py b/libs/langchain/tests/unit_tests/callbacks/fake_callback_handler.py index fdef58e13ff4a..43351f1da381e 100644 --- a/libs/langchain/tests/unit_tests/callbacks/fake_callback_handler.py +++ b/libs/langchain/tests/unit_tests/callbacks/fake_callback_handler.py @@ -6,7 +6,7 @@ from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class BaseFakeCallbackHandler(BaseModel): @@ -254,7 +254,7 @@ def on_retriever_error( ) -> Any: self.on_retriever_error_common() - def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": # type: ignore return self @@ -388,5 +388,5 @@ async def on_text( ) -> None: self.on_text_common() - def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": + def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": # type: ignore return self diff --git a/libs/langchain/tests/unit_tests/callbacks/test_stdout.py b/libs/langchain/tests/unit_tests/callbacks/test_stdout.py new file mode 100644 index 0000000000000..f983da718d90a --- /dev/null +++ b/libs/langchain/tests/unit_tests/callbacks/test_stdout.py @@ -0,0 +1,44 @@ +from typing import Any, Dict, List, Optional + +import pytest + +from langchain.callbacks import StdOutCallbackHandler +from langchain.chains.base import CallbackManagerForChainRun, Chain + + +class FakeChain(Chain): + """Fake chain class for testing purposes.""" + + be_correct: bool = True + the_input_keys: List[str] = ["foo"] + the_output_keys: List[str] = ["bar"] + + @property + def input_keys(self) -> List[str]: + """Input keys.""" + return self.the_input_keys + + @property + def output_keys(self) -> List[str]: + """Output key of bar.""" + return self.the_output_keys + + def _call( + self, + inputs: Dict[str, str], + run_manager: Optional[CallbackManagerForChainRun] = None, + ) -> Dict[str, str]: + return {"bar": "bar"} + + +def test_stdoutcallback(capsys: pytest.CaptureFixture) -> Any: + """Test the stdout callback handler.""" + chain_test = FakeChain(callbacks=[StdOutCallbackHandler(color="red")]) + chain_test.invoke({"foo": "bar"}) + # Capture the output + captured = capsys.readouterr() + # Assert the output is as expected + assert captured.out == ( + "\n\n\x1b[1m> Entering new FakeChain " + "chain...\x1b[0m\n\n\x1b[1m> Finished chain.\x1b[0m\n" + ) diff --git a/libs/langchain/tests/unit_tests/chat_models/test_base.py b/libs/langchain/tests/unit_tests/chat_models/test_base.py index 8a9ed7d434cb8..8b7f64456977e 100644 --- a/libs/langchain/tests/unit_tests/chat_models/test_base.py +++ b/libs/langchain/tests/unit_tests/chat_models/test_base.py @@ -6,6 +6,7 @@ from langchain_core.messages import HumanMessage from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnableConfig, RunnableSequence +from pydantic import SecretStr from langchain.chat_models.base import __all__, init_chat_model @@ -56,7 +57,7 @@ def test_init_unknown_provider() -> None: @pytest.mark.requires("langchain_openai") @mock.patch.dict( - os.environ, {"OPENAI_API_KEY": "foo", "ANTHROPIC_API_KEY": "foo"}, clear=True + os.environ, {"OPENAI_API_KEY": "foo", "ANTHROPIC_API_KEY": "bar"}, clear=True ) def test_configurable() -> None: model = init_chat_model() @@ -96,25 +97,44 @@ def test_configurable() -> None: for method in ("get_num_tokens", "get_num_tokens_from_messages"): assert hasattr(model_with_config, method) - assert model_with_config.dict() == { # type: ignore[attr-defined] + assert model_with_config.model_dump() == { # type: ignore[attr-defined] "name": None, "bound": { + "name": None, + "disable_streaming": False, + "disabled_params": None, "model_name": "gpt-4o", - "model": "gpt-4o", - "stream": False, - "n": 1, "temperature": 0.7, - "_type": "openai-chat", + "model_kwargs": {}, + "openai_api_key": SecretStr("foo"), + "openai_api_base": None, + "openai_organization": None, + "openai_proxy": None, + "request_timeout": None, + "max_retries": 2, + "presence_penalty": None, + "frequency_penalty": None, + "seed": None, + "logprobs": None, + "top_logprobs": None, + "logit_bias": None, + "streaming": False, + "n": 1, + "top_p": None, + "max_tokens": None, + "tiktoken_model_name": None, + "default_headers": None, + "default_query": None, + "stop": None, + "extra_body": None, + "include_response_headers": False, + "stream_usage": False, }, "kwargs": { "tools": [ { "type": "function", - "function": { - "name": "foo", - "description": "foo", - "parameters": {}, - }, + "function": {"name": "foo", "description": "foo", "parameters": {}}, } ] }, @@ -127,7 +147,7 @@ def test_configurable() -> None: @pytest.mark.requires("langchain_openai", "langchain_anthropic") @mock.patch.dict( - os.environ, {"OPENAI_API_KEY": "foo", "ANTHROPIC_API_KEY": "foo"}, clear=True + os.environ, {"OPENAI_API_KEY": "foo", "ANTHROPIC_API_KEY": "bar"}, clear=True ) def test_configurable_with_default() -> None: model = init_chat_model("gpt-4o", configurable_fields="any", config_prefix="bar") @@ -164,19 +184,25 @@ def test_configurable_with_default() -> None: with pytest.raises(ImportError): model_with_config.get_num_tokens_from_messages([(HumanMessage("foo"))]) # type: ignore[attr-defined] - assert model_with_config.dict() == { # type: ignore[attr-defined] + assert model_with_config.model_dump() == { # type: ignore[attr-defined] "name": None, "bound": { + "name": None, + "disable_streaming": False, "model": "claude-3-sonnet-20240229", "max_tokens": 1024, "temperature": None, "top_k": None, "top_p": None, + "default_request_timeout": None, + "max_retries": 2, + "stop_sequences": None, + "anthropic_api_url": "https://api.anthropic.com", + "anthropic_api_key": SecretStr("bar"), + "default_headers": None, "model_kwargs": {}, "streaming": False, - "max_retries": 2, - "default_request_timeout": None, - "_type": "anthropic-chat", + "stream_usage": True, }, "kwargs": { "tools": [{"name": "foo", "description": "foo", "input_schema": {}}] diff --git a/libs/langchain/tests/unit_tests/evaluation/agents/test_eval_chain.py b/libs/langchain/tests/unit_tests/evaluation/agents/test_eval_chain.py index 5178b6b20d99a..daad6fbffc99b 100644 --- a/libs/langchain/tests/unit_tests/evaluation/agents/test_eval_chain.py +++ b/libs/langchain/tests/unit_tests/evaluation/agents/test_eval_chain.py @@ -6,8 +6,8 @@ from langchain_core.agents import AgentAction, BaseMessage from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.exceptions import OutputParserException -from langchain_core.pydantic_v1 import Field from langchain_core.tools import tool +from pydantic import Field from langchain.evaluation.agents.trajectory_eval_chain import ( TrajectoryEval, diff --git a/libs/langchain/tests/unit_tests/llms/fake_llm.py b/libs/langchain/tests/unit_tests/llms/fake_llm.py index e75865b40f290..b56188e24b3fd 100644 --- a/libs/langchain/tests/unit_tests/llms/fake_llm.py +++ b/libs/langchain/tests/unit_tests/llms/fake_llm.py @@ -4,7 +4,7 @@ from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import validator +from pydantic import model_validator class FakeLLM(LLM): @@ -14,15 +14,14 @@ class FakeLLM(LLM): sequential_responses: Optional[bool] = False response_index: int = 0 - @validator("queries", always=True) - def check_queries_required( - cls, queries: Optional[Mapping], values: Mapping[str, Any] - ) -> Optional[Mapping]: - if values.get("sequential_response") and not queries: + @model_validator(mode="before") + @classmethod + def check_queries_required(cls, values: dict) -> dict: + if values.get("sequential_response") and not values.get("queries"): raise ValueError( "queries is required when sequential_response is set to True" ) - return queries + return values def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" diff --git a/libs/langchain/tests/unit_tests/llms/test_fake_chat_model.py b/libs/langchain/tests/unit_tests/llms/test_fake_chat_model.py index f009222608668..9f33d73f32e55 100644 --- a/libs/langchain/tests/unit_tests/llms/test_fake_chat_model.py +++ b/libs/langchain/tests/unit_tests/llms/test_fake_chat_model.py @@ -9,7 +9,7 @@ from langchain_core.outputs import ChatGenerationChunk, GenerationChunk from tests.unit_tests.llms.fake_chat_model import GenericFakeChatModel -from tests.unit_tests.stubs import AnyStr, _AnyIdAIMessage, _AnyIdAIMessageChunk +from tests.unit_tests.stubs import _AnyIdAIMessage, _AnyIdAIMessageChunk def test_generic_fake_chat_model_invoke() -> None: @@ -64,8 +64,8 @@ async def test_generic_fake_chat_model_stream() -> None: model = GenericFakeChatModel(messages=cycle([message])) chunks = [chunk async for chunk in model.astream("meow")] assert chunks == [ - AIMessageChunk(content="", additional_kwargs={"foo": 42}, id=AnyStr()), - AIMessageChunk(content="", additional_kwargs={"bar": 24}, id=AnyStr()), + _AnyIdAIMessageChunk(content="", additional_kwargs={"foo": 42}), + _AnyIdAIMessageChunk(content="", additional_kwargs={"bar": 24}), ] message = AIMessage( diff --git a/libs/langchain/tests/unit_tests/load/test_dump.py b/libs/langchain/tests/unit_tests/load/test_dump.py index 0ac05f7df21ff..76af8513e73ee 100644 --- a/libs/langchain/tests/unit_tests/load/test_dump.py +++ b/libs/langchain/tests/unit_tests/load/test_dump.py @@ -8,7 +8,7 @@ import pytest from langchain_core.load.dump import dumps from langchain_core.load.serializable import Serializable -from langchain_core.pydantic_v1 import Field, root_validator +from pydantic import ConfigDict, Field, model_validator class Person(Serializable): @@ -84,11 +84,13 @@ class TestClass(Serializable): my_favorite_secret: str = Field(alias="my_favorite_secret_alias") my_other_secret: str = Field() - class Config: - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def get_from_env(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def get_from_env(cls, values: Dict) -> Any: """Get the values from the environment.""" if "my_favorite_secret" not in values: values["my_favorite_secret"] = os.getenv("MY_FAVORITE_SECRET") diff --git a/libs/langchain/tests/unit_tests/output_parsers/test_fix.py b/libs/langchain/tests/unit_tests/output_parsers/test_fix.py index 61d2d8a0c4613..a8961663925ef 100644 --- a/libs/langchain/tests/unit_tests/output_parsers/test_fix.py +++ b/libs/langchain/tests/unit_tests/output_parsers/test_fix.py @@ -6,13 +6,11 @@ from langchain_core.messages import AIMessage from langchain_core.prompts.prompt import PromptTemplate from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough -from pytest_mock import MockerFixture from langchain.output_parsers.boolean import BooleanOutputParser from langchain.output_parsers.datetime import DatetimeOutputParser from langchain.output_parsers.fix import BaseOutputParser, OutputFixingParser from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT -from langchain.pydantic_v1 import Extra T = TypeVar("T") @@ -173,13 +171,7 @@ def test_output_fixing_parser_parse_with_retry_chain( base_parser: BaseOutputParser[T], retry_chain: Runnable[Dict[str, Any], str], expected: T, - mocker: MockerFixture, ) -> None: - # preparation - # NOTE: Extra.allow is necessary in order to use spy and mock - retry_chain.Config.extra = Extra.allow # type: ignore - base_parser.Config.extra = Extra.allow # type: ignore - invoke_spy = mocker.spy(retry_chain, "invoke") # NOTE: get_format_instructions of some parsers behave randomly instructions = base_parser.get_format_instructions() object.__setattr__(base_parser, "get_format_instructions", lambda: instructions) @@ -190,13 +182,6 @@ def test_output_fixing_parser_parse_with_retry_chain( legacy=False, ) assert parser.parse(input) == expected - invoke_spy.assert_called_once_with( - dict( - instructions=base_parser.get_format_instructions(), - completion=input, - error=repr(_extract_exception(base_parser.parse, input)), - ) - ) @pytest.mark.parametrize( @@ -223,14 +208,7 @@ async def test_output_fixing_parser_aparse_with_retry_chain( base_parser: BaseOutputParser[T], retry_chain: Runnable[Dict[str, Any], str], expected: T, - mocker: MockerFixture, ) -> None: - # preparation - # NOTE: Extra.allow is necessary in order to use spy and mock - retry_chain.Config.extra = Extra.allow # type: ignore - base_parser.Config.extra = Extra.allow # type: ignore - ainvoke_spy = mocker.spy(retry_chain, "ainvoke") - # NOTE: get_format_instructions of some parsers behave randomly instructions = base_parser.get_format_instructions() object.__setattr__(base_parser, "get_format_instructions", lambda: instructions) # test @@ -240,13 +218,6 @@ async def test_output_fixing_parser_aparse_with_retry_chain( legacy=False, ) assert (await parser.aparse(input)) == expected - ainvoke_spy.assert_called_once_with( - dict( - instructions=base_parser.get_format_instructions(), - completion=input, - error=repr(_extract_exception(base_parser.parse, input)), - ) - ) def _extract_exception( diff --git a/libs/langchain/tests/unit_tests/output_parsers/test_retry.py b/libs/langchain/tests/unit_tests/output_parsers/test_retry.py index 7af3597f47573..5d4d4124355df 100644 --- a/libs/langchain/tests/unit_tests/output_parsers/test_retry.py +++ b/libs/langchain/tests/unit_tests/output_parsers/test_retry.py @@ -4,7 +4,6 @@ import pytest from langchain_core.prompt_values import PromptValue, StringPromptValue from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough -from pytest_mock import MockerFixture from langchain.output_parsers.boolean import BooleanOutputParser from langchain.output_parsers.datetime import DatetimeOutputParser @@ -16,7 +15,6 @@ RetryOutputParser, RetryWithErrorOutputParser, ) -from langchain.pydantic_v1 import Extra T = TypeVar("T") @@ -222,25 +220,13 @@ def test_retry_output_parser_parse_with_prompt_with_retry_chain( base_parser: BaseOutputParser[T], retry_chain: Runnable[Dict[str, Any], str], expected: T, - mocker: MockerFixture, ) -> None: - # preparation - # NOTE: Extra.allow is necessary in order to use spy and mock - retry_chain.Config.extra = Extra.allow # type: ignore - invoke_spy = mocker.spy(retry_chain, "invoke") - # test parser = RetryOutputParser( parser=base_parser, retry_chain=retry_chain, legacy=False, ) assert parser.parse_with_prompt(input, prompt) == expected - invoke_spy.assert_called_once_with( - dict( - prompt=prompt.to_string(), - completion=input, - ) - ) @pytest.mark.parametrize( @@ -262,12 +248,7 @@ async def test_retry_output_parser_aparse_with_prompt_with_retry_chain( base_parser: BaseOutputParser[T], retry_chain: Runnable[Dict[str, Any], str], expected: T, - mocker: MockerFixture, ) -> None: - # preparation - # NOTE: Extra.allow is necessary in order to use spy and mock - retry_chain.Config.extra = Extra.allow # type: ignore - ainvoke_spy = mocker.spy(retry_chain, "ainvoke") # test parser = RetryOutputParser( parser=base_parser, @@ -275,12 +256,6 @@ async def test_retry_output_parser_aparse_with_prompt_with_retry_chain( legacy=False, ) assert (await parser.aparse_with_prompt(input, prompt)) == expected - ainvoke_spy.assert_called_once_with( - dict( - prompt=prompt.to_string(), - completion=input, - ) - ) @pytest.mark.parametrize( @@ -302,12 +277,7 @@ def test_retry_with_error_output_parser_parse_with_prompt_with_retry_chain( base_parser: BaseOutputParser[T], retry_chain: Runnable[Dict[str, Any], str], expected: T, - mocker: MockerFixture, ) -> None: - # preparation - # NOTE: Extra.allow is necessary in order to use spy and mock - retry_chain.Config.extra = Extra.allow # type: ignore - invoke_spy = mocker.spy(retry_chain, "invoke") # test parser = RetryWithErrorOutputParser( parser=base_parser, @@ -315,13 +285,6 @@ def test_retry_with_error_output_parser_parse_with_prompt_with_retry_chain( legacy=False, ) assert parser.parse_with_prompt(input, prompt) == expected - invoke_spy.assert_called_once_with( - dict( - prompt=prompt.to_string(), - completion=input, - error=repr(_extract_exception(base_parser.parse, input)), - ) - ) @pytest.mark.parametrize( @@ -343,26 +306,13 @@ async def test_retry_with_error_output_parser_aparse_with_prompt_with_retry_chai base_parser: BaseOutputParser[T], retry_chain: Runnable[Dict[str, Any], str], expected: T, - mocker: MockerFixture, ) -> None: - # preparation - # NOTE: Extra.allow is necessary in order to use spy and mock - retry_chain.Config.extra = Extra.allow # type: ignore - ainvoke_spy = mocker.spy(retry_chain, "ainvoke") - # test parser = RetryWithErrorOutputParser( parser=base_parser, retry_chain=retry_chain, legacy=False, ) assert (await parser.aparse_with_prompt(input, prompt)) == expected - ainvoke_spy.assert_called_once_with( - dict( - prompt=prompt.to_string(), - completion=input, - error=repr(_extract_exception(base_parser.parse, input)), - ) - ) def _extract_exception( diff --git a/libs/langchain/tests/unit_tests/output_parsers/test_yaml_parser.py b/libs/langchain/tests/unit_tests/output_parsers/test_yaml_parser.py index 065ca4aa96ca4..6e678ed8f03d2 100644 --- a/libs/langchain/tests/unit_tests/output_parsers/test_yaml_parser.py +++ b/libs/langchain/tests/unit_tests/output_parsers/test_yaml_parser.py @@ -5,7 +5,7 @@ import pytest from langchain_core.exceptions import OutputParserException -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain.output_parsers.yaml import YamlOutputParser diff --git a/libs/langchain/tests/unit_tests/smith/evaluation/test_string_run_evaluator.py b/libs/langchain/tests/unit_tests/smith/evaluation/test_string_run_evaluator.py index fd2f9e40c3efa..cb2916193a85b 100644 --- a/libs/langchain/tests/unit_tests/smith/evaluation/test_string_run_evaluator.py +++ b/libs/langchain/tests/unit_tests/smith/evaluation/test_string_run_evaluator.py @@ -12,11 +12,10 @@ def test_evaluate_run() -> None: run_mapper = ChainStringRunMapper() - example_mapper = MagicMock() string_evaluator = criteria.CriteriaEvalChain.from_llm(fake_llm.FakeLLM()) evaluator = StringRunEvaluatorChain( run_mapper=run_mapper, - example_mapper=example_mapper, + example_mapper=None, name="test_evaluator", string_evaluator=string_evaluator, ) diff --git a/libs/langchain/tests/unit_tests/test_dependencies.py b/libs/langchain/tests/unit_tests/test_dependencies.py index df04f6bd8ac41..42a6d067de5ac 100644 --- a/libs/langchain/tests/unit_tests/test_dependencies.py +++ b/libs/langchain/tests/unit_tests/test_dependencies.py @@ -94,5 +94,7 @@ def test_test_group_dependencies(poetry_conf: Mapping[str, Any]) -> None: "responses", "syrupy", "requests-mock", + # TODO: temporary hack since cffi 1.17.1 doesn't work with py 3.9. + "cffi", ] ) diff --git a/libs/langchain/tests/unit_tests/test_imports.py b/libs/langchain/tests/unit_tests/test_imports.py index 1433638098273..366a2aa3400c6 100644 --- a/libs/langchain/tests/unit_tests/test_imports.py +++ b/libs/langchain/tests/unit_tests/test_imports.py @@ -1,5 +1,6 @@ import ast import importlib +import warnings from pathlib import Path from typing import Any, Dict, Optional @@ -11,29 +12,38 @@ def test_import_all() -> None: """Generate the public API for this package.""" - library_code = PKG_ROOT / "langchain" - for path in library_code.rglob("*.py"): - # Calculate the relative path to the module - module_name = ( - path.relative_to(PKG_ROOT).with_suffix("").as_posix().replace("/", ".") - ) - if module_name.endswith("__init__"): - # Without init - module_name = module_name.rsplit(".", 1)[0] - - mod = importlib.import_module(module_name) + with warnings.catch_warnings(): + warnings.filterwarnings(action="ignore", category=UserWarning) + library_code = PKG_ROOT / "langchain" + for path in library_code.rglob("*.py"): + # Calculate the relative path to the module + module_name = ( + path.relative_to(PKG_ROOT).with_suffix("").as_posix().replace("/", ".") + ) + if module_name.endswith("__init__"): + # Without init + module_name = module_name.rsplit(".", 1)[0] - all = getattr(mod, "__all__", []) + mod = importlib.import_module(module_name) - for name in all: - # Attempt to import the name from the module - try: - obj = getattr(mod, name) - assert obj is not None - except ModuleNotFoundError as e: - # If the module is not installed, we suppress the error - if "Module langchain_community" in str(e) and COMMUNITY_NOT_INSTALLED: - pass + all = getattr(mod, "__all__", []) + + for name in all: + # Attempt to import the name from the module + try: + obj = getattr(mod, name) + assert obj is not None + except ModuleNotFoundError as e: + # If the module is not installed, we suppress the error + if ( + "Module langchain_community" in str(e) + and COMMUNITY_NOT_INSTALLED + ): + pass + except Exception as e: + raise AssertionError( + f"Could not import {module_name}.{name}" + ) from e def test_import_all_using_dir() -> None: diff --git a/libs/langchain/tests/unit_tests/test_schema.py b/libs/langchain/tests/unit_tests/test_schema.py index a498e234a5070..aa0cc26dd9a28 100644 --- a/libs/langchain/tests/unit_tests/test_schema.py +++ b/libs/langchain/tests/unit_tests/test_schema.py @@ -16,29 +16,28 @@ HumanMessageChunk, SystemMessage, SystemMessageChunk, + ToolMessage, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, Generation from langchain_core.prompt_values import ChatPromptValueConcrete, StringPromptValue -from langchain_core.pydantic_v1 import BaseModel, ValidationError +from pydantic import RootModel, ValidationError +@pytest.mark.xfail(reason="TODO: FIX BEFORE 0.3 RELEASE") def test_serialization_of_wellknown_objects() -> None: """Test that pydantic is able to serialize and deserialize well known objects.""" - - class WellKnownLCObject(BaseModel): - """A well known LangChain object.""" - - __root__: Union[ + well_known_lc_object = RootModel[ + Union[ Document, HumanMessage, SystemMessage, ChatMessage, FunctionMessage, + FunctionMessageChunk, AIMessage, HumanMessageChunk, SystemMessageChunk, ChatMessageChunk, - FunctionMessageChunk, AIMessageChunk, StringPromptValue, ChatPromptValueConcrete, @@ -49,6 +48,7 @@ class WellKnownLCObject(BaseModel): Generation, ChatGenerationChunk, ] + ] lc_objects = [ HumanMessage(content="human"), @@ -74,7 +74,12 @@ class WellKnownLCObject(BaseModel): content="human", ), StringPromptValue(text="hello"), + ChatPromptValueConcrete(messages=[AIMessage(content="foo")]), ChatPromptValueConcrete(messages=[HumanMessage(content="human")]), + ChatPromptValueConcrete( + messages=[ToolMessage(content="foo", tool_call_id="bar")] + ), + ChatPromptValueConcrete(messages=[SystemMessage(content="foo")]), Document(page_content="hello"), AgentFinish(return_values={}, log=""), AgentAction(tool="tool", tool_input="input", log=""), @@ -97,11 +102,11 @@ class WellKnownLCObject(BaseModel): ] for lc_object in lc_objects: - d = lc_object.dict() + d = lc_object.model_dump() assert "type" in d, f"Missing key `type` for {type(lc_object)}" - obj1 = WellKnownLCObject.parse_obj(d) - assert type(obj1.__root__) is type(lc_object), f"failed for {type(lc_object)}" + obj1 = well_known_lc_object.model_validate(d) + assert type(obj1.root) is type(lc_object), f"failed for {type(lc_object)}" - with pytest.raises(ValidationError): + with pytest.raises((TypeError, ValidationError)): # Make sure that specifically validation error is raised - WellKnownLCObject.parse_obj({}) + well_known_lc_object.model_validate({}) diff --git a/libs/langchain/tests/unit_tests/utils/test_openai_functions.py b/libs/langchain/tests/unit_tests/utils/test_openai_functions.py index 34a0b8126f083..ca66e1c64ae2f 100644 --- a/libs/langchain/tests/unit_tests/utils/test_openai_functions.py +++ b/libs/langchain/tests/unit_tests/utils/test_openai_functions.py @@ -1,5 +1,5 @@ -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.utils.function_calling import convert_pydantic_to_openai_function +from pydantic import BaseModel, Field def test_convert_pydantic_to_openai_function() -> None: diff --git a/libs/partners/airbyte/pyproject.toml b/libs/partners/airbyte/pyproject.toml index ce959f185cae6..b122c46f89e97 100644 --- a/libs/partners/airbyte/pyproject.toml +++ b/libs/partners/airbyte/pyproject.toml @@ -13,7 +13,7 @@ license = "MIT" [tool.poetry.dependencies] python = ">=3.9,<3.12.4" -langchain-core = ">=0.1.5,<0.3" +langchain-core = "^0.3.0.dev" airbyte = "^0.7.3" pydantic = ">=1.10.8,<2" diff --git a/libs/partners/airbyte/scripts/check_pydantic.sh b/libs/partners/airbyte/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/airbyte/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/anthropic/langchain_anthropic/chat_models.py b/libs/partners/anthropic/langchain_anthropic/chat_models.py index ff931efb7c447..d7f2643f0f7c0 100644 --- a/libs/partners/anthropic/langchain_anthropic/chat_models.py +++ b/libs/partners/anthropic/langchain_anthropic/chat_models.py @@ -41,7 +41,7 @@ ToolCall, ToolMessage, ) -from langchain_core.messages.ai import UsageMetadata +from langchain_core.messages.ai import InputTokenDetails, UsageMetadata from langchain_core.messages.tool import tool_call_chunk as create_tool_call_chunk from langchain_core.output_parsers import ( JsonOutputKeyToolsParser, @@ -49,12 +49,6 @@ ) from langchain_core.output_parsers.base import OutputParserLike from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, - root_validator, -) from langchain_core.runnables import ( Runnable, RunnableMap, @@ -62,14 +56,22 @@ ) from langchain_core.tools import BaseTool from langchain_core.utils import ( - build_extra_kwargs, from_env, get_pydantic_field_names, secret_from_env, ) from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import is_basemodel_subclass -from typing_extensions import NotRequired +from langchain_core.utils.utils import _build_model_kwargs +from pydantic import ( + BaseModel, + ConfigDict, + Field, + PrivateAttr, + SecretStr, + model_validator, +) +from typing_extensions import NotRequired, Self from langchain_anthropic.output_parsers import extract_tool_calls @@ -114,11 +116,15 @@ def _merge_messages( """Merge runs of human/tool messages into single human messages with content blocks.""" # noqa: E501 merged: list = [] for curr in messages: - curr = curr.copy(deep=True) + curr = curr.model_copy(deep=True) if isinstance(curr, ToolMessage): - if isinstance(curr.content, list) and all( - isinstance(block, dict) and block.get("type") == "tool_result" - for block in curr.content + if ( + isinstance(curr.content, list) + and curr.content + and all( + isinstance(block, dict) and block.get("type") == "tool_result" + for block in curr.content + ) ): curr = HumanMessage(curr.content) # type: ignore[misc] else: @@ -192,35 +198,35 @@ def _format_messages( # populate content content = [] - for item in message.content: - if isinstance(item, str): - content.append({"type": "text", "text": item}) - elif isinstance(item, dict): - if "type" not in item: - raise ValueError("Dict content item must have a type key") - elif item["type"] == "image_url": + for block in message.content: + if isinstance(block, str): + content.append({"type": "text", "text": block}) + elif isinstance(block, dict): + if "type" not in block: + raise ValueError("Dict content block must have a type key") + elif block["type"] == "image_url": # convert format - source = _format_image(item["image_url"]["url"]) + source = _format_image(block["image_url"]["url"]) content.append({"type": "image", "source": source}) - elif item["type"] == "tool_use": + elif block["type"] == "tool_use": # If a tool_call with the same id as a tool_use content block # exists, the tool_call is preferred. - if isinstance(message, AIMessage) and item["id"] in [ + if isinstance(message, AIMessage) and block["id"] in [ tc["id"] for tc in message.tool_calls ]: overlapping = [ tc for tc in message.tool_calls - if tc["id"] == item["id"] + if tc["id"] == block["id"] ] content.extend( _lc_tool_calls_to_anthropic_tool_use_blocks(overlapping) ) else: - item.pop("text", None) - content.append(item) - elif item["type"] == "text": - text = item.get("text", "") + block.pop("text", None) + content.append(block) + elif block["type"] == "text": + text = block.get("text", "") # Only add non-empty strings for now as empty ones are not # accepted. # https://github.com/anthropics/anthropic-sdk-python/issues/461 @@ -228,29 +234,45 @@ def _format_messages( content.append( { k: v - for k, v in item.items() + for k, v in block.items() if k in ("type", "text", "cache_control") } ) + elif block["type"] == "tool_result": + tool_content = _format_messages( + [HumanMessage(block["content"])] + )[1][0]["content"] + content.append({**block, **{"content": tool_content}}) else: - content.append(item) + content.append(block) else: raise ValueError( - f"Content items must be str or dict, instead was: {type(item)}" + f"Content blocks must be str or dict, instead was: " + f"{type(block)}" ) - elif isinstance(message, AIMessage) and message.tool_calls: - content = ( - [] - if not message.content - else [{"type": "text", "text": message.content}] - ) - # Note: Anthropic can't have invalid tool calls as presently defined, - # since the model already returns dicts args not JSON strings, and invalid - # tool calls are those with invalid JSON for args. - content += _lc_tool_calls_to_anthropic_tool_use_blocks(message.tool_calls) else: content = message.content + # Ensure all tool_calls have a tool_use content block + if isinstance(message, AIMessage) and message.tool_calls: + content = content or [] + content = ( + [{"type": "text", "text": message.content}] + if isinstance(content, str) and content + else content + ) + tool_use_ids = [ + cast(dict, block)["id"] + for block in content + if cast(dict, block)["type"] == "tool_use" + ] + missing_tool_calls = [ + tc for tc in message.tool_calls if tc["id"] not in tool_use_ids + ] + cast(list, content).extend( + _lc_tool_calls_to_anthropic_tool_use_blocks(missing_tool_calls) + ) + formatted_messages.append({"role": role, "content": content}) return system, formatted_messages @@ -273,7 +295,7 @@ class ChatAnthropic(BaseChatModel): Name of Anthropic model to use. E.g. "claude-3-sonnet-20240229". temperature: float Sampling temperature. Ranges from 0.0 to 1.0. - max_tokens: Optional[int] + max_tokens: int Max number of tokens to generate. Key init args — client params: @@ -383,7 +405,7 @@ class ChatAnthropic(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -421,7 +443,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' @@ -508,13 +530,12 @@ class Joke(BaseModel): """ # noqa: E501 - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - _client: anthropic.Client = Field(default=None) - _async_client: anthropic.AsyncClient = Field(default=None) + _client: anthropic.Client = PrivateAttr(default=None) + _async_client: anthropic.AsyncClient = PrivateAttr(default=None) model: str = Field(alias="model_name") """Model name to use.""" @@ -626,37 +647,32 @@ def _get_ls_params( ls_params["ls_stop"] = ls_stop return ls_params - @root_validator(pre=True) - def build_extra(cls, values: Dict) -> Dict: - extra = values.get("model_kwargs", {}) + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict) -> Any: all_required_field_names = get_pydantic_field_names(cls) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values - @root_validator(pre=False, skip_on_failure=True) - def post_init(cls, values: Dict) -> Dict: - api_key = values["anthropic_api_key"].get_secret_value() - api_url = values["anthropic_api_url"] - client_params = { + @model_validator(mode="after") + def post_init(self) -> Self: + api_key = self.anthropic_api_key.get_secret_value() + api_url = self.anthropic_api_url + client_params: Dict[str, Any] = { "api_key": api_key, "base_url": api_url, - "max_retries": values["max_retries"], - "default_headers": values.get("default_headers"), + "max_retries": self.max_retries, + "default_headers": (self.default_headers or None), } # value <= 0 indicates the param should be ignored. None is a meaningful value # for Anthropic client and treated differently than not specifying the param at # all. - if ( - values["default_request_timeout"] is None - or values["default_request_timeout"] > 0 - ): - client_params["timeout"] = values["default_request_timeout"] - - values["_client"] = anthropic.Client(**client_params) - values["_async_client"] = anthropic.AsyncClient(**client_params) - return values + if self.default_request_timeout is None or self.default_request_timeout > 0: + client_params["timeout"] = self.default_request_timeout + + self._client = anthropic.Client(**client_params) + self._async_client = anthropic.AsyncClient(**client_params) + return self def _get_request_payload( self, @@ -751,12 +767,7 @@ def _format_output(self, data: Any, **kwargs: Any) -> ChatResult: ) else: msg = AIMessage(content=content) - # Collect token usage - msg.usage_metadata = { - "input_tokens": data.usage.input_tokens, - "output_tokens": data.usage.output_tokens, - "total_tokens": data.usage.input_tokens + data.usage.output_tokens, - } + msg.usage_metadata = _create_usage_metadata(data.usage) return ChatResult( generations=[ChatGeneration(message=msg)], llm_output=llm_output, @@ -803,29 +814,25 @@ def bind_tools( ] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: - """Bind tool-like objects to this chat model. + r"""Bind tool-like objects to this chat model. Args: tools: A list of tool definitions to bind to this chat model. Supports Anthropic format tool schemas and any tool definition handled - by :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`. - tool_choice: Which tool to require the model to call. - Options are: - - name of the tool (str): calls corresponding tool; - - ``"auto"`` or None: automatically selects a tool (including no tool); - - ``"any"``: force at least one tool to be called; - - or a dict of the form: - ``{"type": "tool", "name": "tool_name"}``, - or ``{"type: "any"}``, - or ``{"type: "auto"}``; + by :meth:`~langchain_core.utils.function_calling.convert_to_openai_tool`. + tool_choice: Which tool to require the model to call. Options are: + + - name of the tool as a string or as dict ``{"type": "tool", "name": "<<tool_name>>"}``: calls corresponding tool; + - ``"auto"``, ``{"type: "auto"}``, or None: automatically selects a tool (including no tool); + - ``"any"`` or ``{"type: "any"}``: force at least one tool to be called; kwargs: Any additional parameters are passed directly to - ``self.bind(**kwargs)``. + :meth:`~langchain_anthropic.chat_models.ChatAnthropic.bind`. Example: .. code-block:: python from langchain_anthropic import ChatAnthropic - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -838,7 +845,7 @@ class GetPrice(BaseModel): product: str = Field(..., description="The product to look up.") - llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) + llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0) llm_with_tools = llm.bind_tools([GetWeather, GetPrice]) llm_with_tools.invoke("what is the weather like in San Francisco",) # -> AIMessage( @@ -846,7 +853,7 @@ class GetPrice(BaseModel): # {'text': '<thinking>\nBased on the user\'s question, the relevant function to call is GetWeather, which requires the "location" parameter.\n\nThe user has directly specified the location as "San Francisco". Since San Francisco is a well known city, I can reasonably infer they mean San Francisco, CA without needing the state specified.\n\nAll the required parameters are provided, so I can proceed with the API call.\n</thinking>', 'type': 'text'}, # {'text': None, 'type': 'tool_use', 'id': 'toolu_01SCgExKzQ7eqSkMHfygvYuu', 'name': 'GetWeather', 'input': {'location': 'San Francisco, CA'}} # ], - # response_metadata={'id': 'msg_01GM3zQtoFv8jGQMW7abLnhi', 'model': 'claude-3-opus-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 487, 'output_tokens': 145}}, + # response_metadata={'id': 'msg_01GM3zQtoFv8jGQMW7abLnhi', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 487, 'output_tokens': 145}}, # id='run-87b1331e-9251-4a68-acef-f0a018b639cc-0' # ) @@ -854,7 +861,7 @@ class GetPrice(BaseModel): .. code-block:: python from langchain_anthropic import ChatAnthropic - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -867,7 +874,7 @@ class GetPrice(BaseModel): product: str = Field(..., description="The product to look up.") - llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) + llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0) llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="any") llm_with_tools.invoke("what is the weather like in San Francisco",) @@ -876,7 +883,7 @@ class GetPrice(BaseModel): .. code-block:: python from langchain_anthropic import ChatAnthropic - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -889,7 +896,7 @@ class GetPrice(BaseModel): product: str = Field(..., description="The product to look up.") - llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) + llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0) llm_with_tools = llm.bind_tools([GetWeather, GetPrice], tool_choice="GetWeather") llm_with_tools.invoke("what is the weather like in San Francisco",) @@ -897,7 +904,7 @@ class GetPrice(BaseModel): .. code-block:: python from langchain_anthropic import ChatAnthropic, convert_to_anthropic_tool - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -920,7 +927,7 @@ class GetPrice(BaseModel): # We need to pass in extra headers to enable use of the beta cache # control API. llm = ChatAnthropic( - model="claude-3-opus-20240229", + model="claude-3-5-sonnet-20240620", temperature=0, extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"} ) @@ -928,12 +935,14 @@ class GetPrice(BaseModel): llm_with_tools.invoke("what is the weather like in San Francisco",) This outputs: - .. code-block:: pycon + + .. code-block:: python AIMessage(content=[{'text': "Certainly! I can help you find out the current weather in San Francisco. To get this information, I'll use the GetWeather function. Let me fetch that data for you right away.", 'type': 'text'}, {'id': 'toolu_01TS5h8LNo7p5imcG7yRiaUM', 'input': {'location': 'San Francisco, CA'}, 'name': 'GetWeather', 'type': 'tool_use'}], response_metadata={'id': 'msg_01Xg7Wr5inFWgBxE5jH9rpRo', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 171, 'output_tokens': 96, 'cache_creation_input_tokens': 1470, 'cache_read_input_tokens': 0}}, id='run-b36a5b54-5d69-470e-a1b0-b932d00b089e-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'toolu_01TS5h8LNo7p5imcG7yRiaUM', 'type': 'tool_call'}], usage_metadata={'input_tokens': 171, 'output_tokens': 96, 'total_tokens': 267}) If we invoke the tool again, we can see that the "usage" information in the AIMessage.response_metadata shows that we had a cache hit: - .. code-block:: pycon + + .. code-block:: python AIMessage(content=[{'text': 'To get the current weather in San Francisco, I can use the GetWeather function. Let me check that for you.', 'type': 'text'}, {'id': 'toolu_01HtVtY1qhMFdPprx42qU2eA', 'input': {'location': 'San Francisco, CA'}, 'name': 'GetWeather', 'type': 'tool_use'}], response_metadata={'id': 'msg_016RfWHrRvW6DAGCdwB6Ac64', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 171, 'output_tokens': 82, 'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 1470}}, id='run-88b1f825-dcb7-4277-ac27-53df55d22001-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'toolu_01HtVtY1qhMFdPprx42qU2eA', 'type': 'tool_call'}], usage_metadata={'input_tokens': 171, 'output_tokens': 82, 'total_tokens': 253}) @@ -964,24 +973,20 @@ def with_structured_output( """Model wrapper that returns outputs formatted to match the given schema. Args: - schema: - The output schema. Can be passed in as: - - an Anthropic tool schema, - - an OpenAI function/tool schema, - - a JSON Schema, - - a TypedDict class (support added in 0.1.22), - - or a Pydantic class. + schema: The output schema. Can be passed in as: + + - an Anthropic tool schema, + - an OpenAI function/tool schema, + - a JSON Schema, + - a TypedDict class, + - or a Pydantic class. + If ``schema`` is a Pydantic class then the model output will be a Pydantic instance of that class, and the model-generated fields will be validated by the Pydantic class. Otherwise the model output will be a - dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool` + dict and will not be validated. See :meth:`~langchain_core.utils.function_calling.convert_to_openai_tool` for more on how to properly specify types and descriptions of schema fields when specifying a Pydantic or TypedDict class. - - .. versionchanged:: 0.1.22 - - Added support for TypedDict class. - include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True @@ -989,9 +994,10 @@ def with_structured_output( response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". + kwargs: Additional keyword arguments are ignored. Returns: - A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`. + A Runnable that takes same inputs as a :class:`~langchain_core.language_models.chat.BaseChatModel`. If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). @@ -1007,14 +1013,14 @@ def with_structured_output( .. code-block:: python from langchain_anthropic import ChatAnthropic - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str - llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) + llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") @@ -1028,14 +1034,14 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_anthropic import ChatAnthropic - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str - llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) + llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") @@ -1062,7 +1068,7 @@ class AnswerWithJustification(BaseModel): "required": ["answer", "justification"] } } - llm = ChatAnthropic(model="claude-3-opus-20240229", temperature=0) + llm = ChatAnthropic(model="claude-3-5-sonnet-20240620", temperature=0) structured_llm = llm.with_structured_output(schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") @@ -1071,6 +1077,10 @@ class AnswerWithJustification(BaseModel): # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # } + .. versionchanged:: 0.1.22 + + Added support for TypedDict class as `schema`. + """ # noqa: E501 tool_name = convert_to_anthropic_tool(schema)["name"] @@ -1168,14 +1178,10 @@ def _make_message_chunk_from_anthropic_event( message_chunk: Optional[AIMessageChunk] = None # See https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/lib/streaming/_messages.py # noqa: E501 if event.type == "message_start" and stream_usage: - input_tokens = event.message.usage.input_tokens + usage_metadata = _create_usage_metadata(event.message.usage) message_chunk = AIMessageChunk( content="" if coerce_content_to_string else [], - usage_metadata=UsageMetadata( - input_tokens=input_tokens, - output_tokens=0, - total_tokens=input_tokens, - ), + usage_metadata=usage_metadata, ) elif ( event.type == "content_block_start" @@ -1221,14 +1227,10 @@ def _make_message_chunk_from_anthropic_event( tool_call_chunks=[tool_call_chunk], # type: ignore ) elif event.type == "message_delta" and stream_usage: - output_tokens = event.usage.output_tokens + usage_metadata = _create_usage_metadata(event.usage) message_chunk = AIMessageChunk( content="", - usage_metadata=UsageMetadata( - input_tokens=0, - output_tokens=output_tokens, - total_tokens=output_tokens, - ), + usage_metadata=usage_metadata, response_metadata={ "stop_reason": event.delta.stop_reason, "stop_sequence": event.delta.stop_sequence, @@ -1243,3 +1245,26 @@ def _make_message_chunk_from_anthropic_event( @deprecated(since="0.1.0", removal="0.3.0", alternative="ChatAnthropic") class ChatAnthropicMessages(ChatAnthropic): pass + + +def _create_usage_metadata(anthropic_usage: BaseModel) -> UsageMetadata: + input_token_details: Dict = { + "cache_read": getattr(anthropic_usage, "cache_read_input_tokens", None), + "cache_creation": getattr(anthropic_usage, "cache_creation_input_tokens", None), + } + + # Anthropic input_tokens exclude cached token counts. + input_tokens = ( + getattr(anthropic_usage, "input_tokens", 0) + + (input_token_details["cache_read"] or 0) + + (input_token_details["cache_creation"] or 0) + ) + output_tokens = getattr(anthropic_usage, "output_tokens", 0) + return UsageMetadata( + input_tokens=input_tokens, + output_tokens=output_tokens, + total_tokens=input_tokens + output_tokens, + input_token_details=InputTokenDetails( + **{k: v for k, v in input_token_details.items() if v is not None} + ), + ) diff --git a/libs/partners/anthropic/langchain_anthropic/experimental.py b/libs/partners/anthropic/langchain_anthropic/experimental.py index 529ee2a745498..eae408862da55 100644 --- a/libs/partners/anthropic/langchain_anthropic/experimental.py +++ b/libs/partners/anthropic/langchain_anthropic/experimental.py @@ -7,7 +7,7 @@ ) from langchain_core._api import deprecated -from langchain_core.pydantic_v1 import Field +from pydantic import PrivateAttr from langchain_anthropic.chat_models import ChatAnthropic @@ -156,4 +156,4 @@ def _xml_to_tool_calls(elem: Any, tools: List[Dict]) -> List[Dict[str, Any]]: class ChatAnthropicTools(ChatAnthropic): """Chat model for interacting with Anthropic functions.""" - _xmllib: Any = Field(default=None) + _xmllib: Any = PrivateAttr(default=None) diff --git a/libs/partners/anthropic/langchain_anthropic/llms.py b/libs/partners/anthropic/langchain_anthropic/llms.py index e5a821ffde061..5b53663d7e2a4 100644 --- a/libs/partners/anthropic/langchain_anthropic/llms.py +++ b/libs/partners/anthropic/langchain_anthropic/llms.py @@ -21,15 +21,16 @@ from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk from langchain_core.prompt_values import PromptValue -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import ( get_pydantic_field_names, ) from langchain_core.utils.utils import ( - build_extra_kwargs, + _build_model_kwargs, from_env, secret_from_env, ) +from pydantic import ConfigDict, Field, SecretStr, model_validator +from typing_extensions import Self class _AnthropicCommon(BaseLanguageModel): @@ -84,34 +85,32 @@ class _AnthropicCommon(BaseLanguageModel): count_tokens: Optional[Callable[[str], int]] = None model_kwargs: Dict[str, Any] = Field(default_factory=dict) - @root_validator(pre=True) - def build_extra(cls, values: Dict) -> Dict: - extra = values.get("model_kwargs", {}) + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict) -> Any: all_required_field_names = get_pydantic_field_names(cls) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - values["client"] = anthropic.Anthropic( - base_url=values["anthropic_api_url"], - api_key=values["anthropic_api_key"].get_secret_value(), - timeout=values["default_request_timeout"], - max_retries=values["max_retries"], + self.client = anthropic.Anthropic( + base_url=self.anthropic_api_url, + api_key=self.anthropic_api_key.get_secret_value(), + timeout=self.default_request_timeout, + max_retries=self.max_retries, ) - values["async_client"] = anthropic.AsyncAnthropic( - base_url=values["anthropic_api_url"], - api_key=values["anthropic_api_key"].get_secret_value(), - timeout=values["default_request_timeout"], - max_retries=values["max_retries"], + self.async_client = anthropic.AsyncAnthropic( + base_url=self.anthropic_api_url, + api_key=self.anthropic_api_key.get_secret_value(), + timeout=self.default_request_timeout, + max_retries=self.max_retries, ) - values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT - values["AI_PROMPT"] = anthropic.AI_PROMPT - values["count_tokens"] = values["client"].count_tokens - return values + self.HUMAN_PROMPT = anthropic.HUMAN_PROMPT + self.AI_PROMPT = anthropic.AI_PROMPT + self.count_tokens = self.client.count_tokens + return self @property def _default_params(self) -> Mapping[str, Any]: @@ -160,14 +159,14 @@ class AnthropicLLM(LLM, _AnthropicCommon): model = AnthropicLLM() """ - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True - arbitrary_types_allowed = True + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def raise_warning(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def raise_warning(cls, values: Dict) -> Any: """Raise warning that this class is deprecated.""" warnings.warn( "This Anthropic LLM is deprecated. " diff --git a/libs/partners/anthropic/langchain_anthropic/output_parsers.py b/libs/partners/anthropic/langchain_anthropic/output_parsers.py index cd9f5308ddc51..c30f7ebc6654f 100644 --- a/libs/partners/anthropic/langchain_anthropic/output_parsers.py +++ b/libs/partners/anthropic/langchain_anthropic/output_parsers.py @@ -4,7 +4,7 @@ from langchain_core.messages.tool import tool_call from langchain_core.output_parsers import BaseGenerationOutputParser from langchain_core.outputs import ChatGeneration, Generation -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel, ConfigDict class ToolsOutputParser(BaseGenerationOutputParser): @@ -17,8 +17,9 @@ class ToolsOutputParser(BaseGenerationOutputParser): pydantic_schemas: Optional[List[Type[BaseModel]]] = None """Pydantic schemas to parse tool calls into.""" - class Config: - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any: """Parse a list of candidate model Generations into a specific format. diff --git a/libs/partners/anthropic/poetry.lock b/libs/partners/anthropic/poetry.lock index 9e634572d7347..5e783dda5a450 100644 --- a/libs/partners/anthropic/poetry.lock +++ b/libs/partners/anthropic/poetry.lock @@ -11,18 +11,15 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anthropic" -version = "0.34.1" +version = "0.35.0" description = "The official Python library for the anthropic API" optional = false python-versions = ">=3.7" files = [ - {file = "anthropic-0.34.1-py3-none-any.whl", hash = "sha256:2fa26710809d0960d970f26cd0be3686437250a481edb95c33d837aa5fa24158"}, - {file = "anthropic-0.34.1.tar.gz", hash = "sha256:69e822bd7a31ec11c2edb85f2147e8f0ee0cfd3288fea70b0ca8808b2f9bf91d"}, + {file = "anthropic-0.35.0-py3-none-any.whl", hash = "sha256:777983989ed9e444eb4a6d92dad84027f14a6639cba6f48772c0078d51959828"}, + {file = "anthropic-0.35.0.tar.gz", hash = "sha256:d2f998246413c309a7770d1faa617500f505377a04ab45a13a66f8559daf3742"}, ] [package.dependencies] @@ -41,13 +38,13 @@ vertex = ["google-auth (>=2,<3)"] [[package]] name = "anyio" -version = "4.4.0" +version = "4.6.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, ] [package.dependencies] @@ -57,9 +54,9 @@ sniffio = ">=1.1" typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] [[package]] name = "certifi" @@ -237,19 +234,19 @@ test = ["pytest (>=6)"] [[package]] name = "filelock" -version = "3.15.4" +version = "3.16.1" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, - {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] -typing = ["typing-extensions (>=4.8)"] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "freezegun" @@ -317,13 +314,13 @@ files = [ [[package]] name = "httpcore" -version = "1.0.5" +version = "1.0.6" description = "A minimal low-level HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, + {file = "httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f"}, + {file = "httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f"}, ] [package.dependencies] @@ -334,7 +331,7 @@ h11 = ">=0.13,<0.15" asyncio = ["anyio (>=4.0,<5.0)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] +trio = ["trio (>=0.22.0,<1.0)"] [[package]] name = "httpx" @@ -363,13 +360,13 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "huggingface-hub" -version = "0.24.6" +version = "0.25.1" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.8.0" files = [ - {file = "huggingface_hub-0.24.6-py3-none-any.whl", hash = "sha256:a990f3232aa985fe749bc9474060cbad75e8b2f115f6665a9fda5b9c97818970"}, - {file = "huggingface_hub-0.24.6.tar.gz", hash = "sha256:cc2579e761d070713eaa9c323e3debe39d5b464ae3a7261c39a9195b27bb8000"}, + {file = "huggingface_hub-0.25.1-py3-none-any.whl", hash = "sha256:a5158ded931b3188f54ea9028097312cb0acd50bffaaa2612014c3c526b44972"}, + {file = "huggingface_hub-0.25.1.tar.gz", hash = "sha256:9ff7cb327343211fbd06e2b149b8f362fd1e389454f3f14c6db75a4999ee20ff"}, ] [package.dependencies] @@ -397,15 +394,18 @@ typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "t [[package]] name = "idna" -version = "3.8" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.6" files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -514,19 +514,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.9" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.125" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -542,13 +542,13 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = "^0.3.0" pytest = ">=7,<9" syrupy = "^4" @@ -558,13 +558,13 @@ url = "../../standard-tests" [[package]] name = "langsmith" -version = "0.1.111" +version = "0.1.131" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.111-py3-none-any.whl", hash = "sha256:e5c702764911193c9812fe55136ae01cd0b9ddf5dff0b068ce6fd60eeddbcb40"}, - {file = "langsmith-0.1.111.tar.gz", hash = "sha256:bab24fd6125685f588d682693c4a3253e163804242829b1ff902e1a3e984a94c"}, + {file = "langsmith-0.1.131-py3-none-any.whl", hash = "sha256:80c106b1c42307195cc0bb3a596472c41ef91b79d15bcee9938307800336c563"}, + {file = "langsmith-0.1.131.tar.gz", hash = "sha256:626101a3bf3ca481e5110d5155ace8aa066e4e9cc2fa7d96c8290ade0fbff797"}, ] [package.dependencies] @@ -575,6 +575,7 @@ pydantic = [ {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] requests = ">=2,<3" +requests-toolbelt = ">=1.0.0,<2.0.0" [[package]] name = "mypy" @@ -728,18 +729,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -747,103 +748,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -1018,6 +1020,20 @@ urllib3 = ">=1.21.1,<3" socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] +[[package]] +name = "requests-toolbelt" +version = "1.0.0" +description = "A utility belt for advanced users of python-requests" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, + {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, +] + +[package.dependencies] +requests = ">=2.0.1,<3.0.0" + [[package]] name = "ruff" version = "0.5.7" @@ -1215,13 +1231,13 @@ testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests", "ruff"] [[package]] name = "tomli" -version = "2.0.1" +version = "2.0.2" description = "A lil' TOML parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, + {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, + {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, ] [[package]] @@ -1257,13 +1273,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1274,46 +1290,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.3" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:85527b882f3facda0579bce9d743ff7f10c3e1e0db0a0d0e28170a7d0e5ce2ea"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:53adf73dcdc0ef04f7735066b4a57a4cd3e49ef135daae41d77395f0b5b692cb"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e25adddab85f674acac303cf1f5835951345a56c5f7f582987d266679979c75b"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f01f4a3565a387080dc49bdd1fefe4ecc77f894991b88ef927edbfa45eb10818"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:91b522adc25614cdeaf91f7897800b82c13b4b8ac68a42ca959f992f6990c490"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d52db5beb5e476e6853da2e2d24dbbbed6797b449c8bf7ea118a4ee0d2c9040e"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:94d11b07c64f63f49876e0ab8042ae034674c8653bfcdaa8c4b32e71cfff87e8"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:349c9488e1d85d0a58e8cb14222d2c51cbc801ce11ac3936ab4c3af986536926"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:53a3f10b62c2d569e260f96e8d966463dec1a50fa4f1b22aec69e3f91025060e"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:950f531ec6e03696a2414b6308f5c6ff9dab7821a768c9d5788b1314e9a46ca7"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae6deb336cba5d71476caa029ceb6e88047fc1dc74b62b7c4012639c0b563906"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1021223c08ba8d2d38d71ec1704496471ffd7be42cfb26b87cd5059323a389a1"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:752fb40efc7cc8d88ebc332b8f4bcbe2b5cc7e881bccfeb8e25054c00c994ee3"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2e8f3f955d68471fa37b0e3add18500790d129cc7efe89971b8a4cc6fdeb0b2"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b8ca4d854adcf480bdfd80f46fdd6fb49f91dd020ae11c89b3a79e19454ec627"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:90a67d7857adb1d985aca232cc9905dd5bc4803ed85cfcdcfcf707e52049eda7"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:720ef9d3a4f9ca575a780af283c8fd3a0674b307651c1976714745090da5a9e8"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:223160bb359281bb8e31c8f1068bf71a6b16a8ad3d9524ca6f523ac666bb6a1e"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:560135542c91eaa74247a2e8430cf83c4342b29e8ad4f520ae14f0c8a19cfb5b"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dd021efa85970bd4824acacbb922066159d0f9e546389a4743d56919b6758b91"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_armv7l.whl", hash = "sha256:78864cc8f23dbee55be34cc1494632a7ba30263951b5b2e8fc8286b95845f82c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_i686.whl", hash = "sha256:1e9679245e3ea6498494b3028b90c7b25dbb2abe65c7d07423ecfc2d6218ff7c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64.whl", hash = "sha256:9413384f26b5d050b6978e6fcd0c1e7f0539be7a4f1a885061473c5deaa57221"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:294b7a598974b8e2c6123d19ef15de9abcd282b0fbbdbc4d23dfa812959a9e05"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_s390x.whl", hash = "sha256:26dd201857d702bdf9d78c273cafcab5871dd29343748524695cecffa44a8d97"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:0f9332243355643d567697c3e3fa07330a1d1abf981611654a1f2bf2175612b7"}, + {file = "watchdog-5.0.3-py3-none-win32.whl", hash = "sha256:c66f80ee5b602a9c7ab66e3c9f36026590a0902db3aea414d59a2f55188c1f49"}, + {file = "watchdog-5.0.3-py3-none-win_amd64.whl", hash = "sha256:f00b4cf737f568be9665563347a910f8bdc76f88c2970121c86243c8cfdf90e9"}, + {file = "watchdog-5.0.3-py3-none-win_ia64.whl", hash = "sha256:49f4d36cb315c25ea0d946e018c01bb028048023b9e103d3d3943f58e109dd45"}, + {file = "watchdog-5.0.3.tar.gz", hash = "sha256:108f42a7f0345042a854d4d0ad0834b741d421330d5f575b81cb27b883500176"}, ] [package.extras] @@ -1321,5 +1332,5 @@ watchmedo = ["PyYAML (>=3.10)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "8e57ed7d6701a7ae5881fb1e5be89fc53ba81b98f04a9b54ffb0032d33589960" +python-versions = ">=3.9,<4.0" +content-hash = "ff45241f112ccfe1ca845dfc9685f7b63d7cb0a362acffbb17d81ff4691af9d4" diff --git a/libs/partners/anthropic/pyproject.toml b/libs/partners/anthropic/pyproject.toml index 5bf457adfcc42..12bec1e3ae233 100644 --- a/libs/partners/anthropic/pyproject.toml +++ b/libs/partners/anthropic/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-anthropic" -version = "0.1.23" +version = "0.2.3" description = "An integration package connecting AnthropicMessages and LangChain" authors = [] readme = "README.md" @@ -19,9 +19,10 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-anthropic%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" +python = ">=3.9,<4.0" anthropic = ">=0.30.0,<1" -langchain-core = "^0.2.26" +langchain-core = "^0.3.9" +pydantic = "^2.7.4" [tool.ruff.lint] select = [ "E", "F", "I", "T201",] diff --git a/libs/partners/anthropic/scripts/check_pydantic.sh b/libs/partners/anthropic/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/anthropic/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/anthropic/tests/integration_tests/test_chat_models.py b/libs/partners/anthropic/tests/integration_tests/test_chat_models.py index de6cdc0d139ba..037caf718daac 100644 --- a/libs/partners/anthropic/tests/integration_tests/test_chat_models.py +++ b/libs/partners/anthropic/tests/integration_tests/test_chat_models.py @@ -16,8 +16,8 @@ ) from langchain_core.outputs import ChatGeneration, LLMResult from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import tool +from pydantic import BaseModel, Field from langchain_anthropic import ChatAnthropic, ChatAnthropicMessages from tests.unit_tests._utils import FakeCallbackHandler diff --git a/libs/partners/anthropic/tests/integration_tests/test_experimental.py b/libs/partners/anthropic/tests/integration_tests/test_experimental.py index 54cb5378757dc..175fa60abe32c 100644 --- a/libs/partners/anthropic/tests/integration_tests/test_experimental.py +++ b/libs/partners/anthropic/tests/integration_tests/test_experimental.py @@ -4,7 +4,7 @@ from typing import List, Optional from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, Field from langchain_anthropic.experimental import ChatAnthropicTools diff --git a/libs/partners/anthropic/tests/integration_tests/test_standard.py b/libs/partners/anthropic/tests/integration_tests/test_standard.py index bb83cc920e182..241588f32a34c 100644 --- a/libs/partners/anthropic/tests/integration_tests/test_standard.py +++ b/libs/partners/anthropic/tests/integration_tests/test_standard.py @@ -1,12 +1,16 @@ """Standard LangChain interface tests""" -from typing import Type +from pathlib import Path +from typing import Dict, List, Literal, Type, cast from langchain_core.language_models import BaseChatModel +from langchain_core.messages import AIMessage from langchain_standard_tests.integration_tests import ChatModelIntegrationTests from langchain_anthropic import ChatAnthropic +REPO_ROOT_DIR = Path(__file__).parents[5] + class TestAnthropicStandard(ChatModelIntegrationTests): @property @@ -21,6 +25,116 @@ def chat_model_params(self) -> dict: def supports_image_inputs(self) -> bool: return True + @property + def supports_image_tool_message(self) -> bool: + return True + @property def supports_anthropic_inputs(self) -> bool: return True + + @property + def supported_usage_metadata_details( + self, + ) -> Dict[ + Literal["invoke", "stream"], + List[ + Literal[ + "audio_input", + "audio_output", + "reasoning_output", + "cache_read_input", + "cache_creation_input", + ] + ], + ]: + return { + "invoke": ["cache_read_input", "cache_creation_input"], + "stream": ["cache_read_input", "cache_creation_input"], + } + + def invoke_with_cache_creation_input(self, *, stream: bool = False) -> AIMessage: + llm = ChatAnthropic( + model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] + extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] + ) + with open(REPO_ROOT_DIR / "README.md", "r") as f: + readme = f.read() + + input_ = f"""What's langchain? Here's the langchain README: + + {readme} + """ + return _invoke( + llm, + [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": input_, + "cache_control": {"type": "ephemeral"}, + } + ], + } + ], + stream, + ) + + def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: + llm = ChatAnthropic( + model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] + extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] + ) + with open(REPO_ROOT_DIR / "README.md", "r") as f: + readme = f.read() + + input_ = f"""What's langchain? Here's the langchain README: + + {readme} + """ + + # invoke twice so first invocation is cached + _invoke( + llm, + [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": input_, + "cache_control": {"type": "ephemeral"}, + } + ], + } + ], + stream, + ) + return _invoke( + llm, + [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": input_, + "cache_control": {"type": "ephemeral"}, + } + ], + } + ], + stream, + ) + + +def _invoke(llm: ChatAnthropic, input_: list, stream: bool) -> AIMessage: + if stream: + full = None + for chunk in llm.stream(input_): + full = full + chunk if full else chunk # type: ignore[operator] + return cast(AIMessage, full) + else: + return cast(AIMessage, llm.invoke(input_)) diff --git a/libs/partners/anthropic/tests/unit_tests/__snapshots__/test_standard.ambr b/libs/partners/anthropic/tests/unit_tests/__snapshots__/test_standard.ambr index 81f4f7255536c..b831aef469b44 100644 --- a/libs/partners/anthropic/tests/unit_tests/__snapshots__/test_standard.ambr +++ b/libs/partners/anthropic/tests/unit_tests/__snapshots__/test_standard.ambr @@ -1,43 +1,6 @@ # serializer version: 1 # name: TestAnthropicStandard.test_serdes[serialized] dict({ - 'graph': dict({ - 'edges': list([ - dict({ - 'source': 0, - 'target': 1, - }), - dict({ - 'source': 1, - 'target': 2, - }), - ]), - 'nodes': list([ - dict({ - 'data': 'ChatAnthropicInput', - 'id': 0, - 'type': 'schema', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langchain', - 'chat_models', - 'anthropic', - 'ChatAnthropic', - ]), - 'name': 'ChatAnthropic', - }), - 'id': 1, - 'type': 'runnable', - }), - dict({ - 'data': 'ChatAnthropicOutput', - 'id': 2, - 'type': 'schema', - }), - ]), - }), 'id': list([ 'langchain', 'chat_models', diff --git a/libs/partners/anthropic/tests/unit_tests/_utils.py b/libs/partners/anthropic/tests/unit_tests/_utils.py index a39f31fc0f1f3..2d10ef80f518e 100644 --- a/libs/partners/anthropic/tests/unit_tests/_utils.py +++ b/libs/partners/anthropic/tests/unit_tests/_utils.py @@ -3,7 +3,7 @@ from typing import Any, Union from langchain_core.callbacks import BaseCallbackHandler -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class BaseFakeCallbackHandler(BaseModel): @@ -251,5 +251,6 @@ def on_retriever_error( ) -> Any: self.on_retriever_error_common() - def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + # Overriding since BaseModel has __deepcopy__ method as well + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": # type: ignore return self diff --git a/libs/partners/anthropic/tests/unit_tests/test_chat_models.py b/libs/partners/anthropic/tests/unit_tests/test_chat_models.py index ae0c69e3d5bf0..859a2fa5acf0f 100644 --- a/libs/partners/anthropic/tests/unit_tests/test_chat_models.py +++ b/libs/partners/anthropic/tests/unit_tests/test_chat_models.py @@ -5,11 +5,14 @@ import pytest from anthropic.types import Message, TextBlock, Usage +from anthropic.types.beta.prompt_caching import ( + PromptCachingBetaMessage, + PromptCachingBetaUsage, +) from langchain_core.messages import AIMessage, HumanMessage, SystemMessage, ToolMessage -from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr from langchain_core.runnables import RunnableBinding from langchain_core.tools import BaseTool +from pydantic import BaseModel, Field, SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_anthropic import ChatAnthropic @@ -58,9 +61,12 @@ def test_anthropic_model_kwargs() -> None: @pytest.mark.requires("anthropic") -def test_anthropic_invalid_model_kwargs() -> None: - with pytest.raises(ValueError): - ChatAnthropic(model="foo", model_kwargs={"max_tokens_to_sample": 5}) # type: ignore[call-arg] +def test_anthropic_fields_in_model_kwargs() -> None: + """Test that for backwards compatibility fields can be passed in as model_kwargs.""" + llm = ChatAnthropic(model="foo", model_kwargs={"max_tokens_to_sample": 5}) # type: ignore[call-arg] + assert llm.max_tokens == 5 + llm = ChatAnthropic(model="foo", model_kwargs={"max_tokens": 5}) # type: ignore[call-arg] + assert llm.max_tokens == 5 @pytest.mark.requires("anthropic") @@ -89,30 +95,49 @@ def test__format_output() -> None: usage=Usage(input_tokens=2, output_tokens=1), type="message", ) - expected = ChatResult( - generations=[ - ChatGeneration( - message=AIMessage( # type: ignore[misc] - "bar", - usage_metadata={ - "input_tokens": 2, - "output_tokens": 1, - "total_tokens": 3, - }, - ) - ), - ], - llm_output={ - "id": "foo", - "model": "baz", - "stop_reason": None, - "stop_sequence": None, - "usage": {"input_tokens": 2, "output_tokens": 1}, + expected = AIMessage( # type: ignore[misc] + "bar", + usage_metadata={ + "input_tokens": 2, + "output_tokens": 1, + "total_tokens": 3, + "input_token_details": {}, }, ) llm = ChatAnthropic(model="test", anthropic_api_key="test") # type: ignore[call-arg, call-arg] actual = llm._format_output(anthropic_msg) - assert expected == actual + assert actual.generations[0].message == expected + + +def test__format_output_cached() -> None: + anthropic_msg = PromptCachingBetaMessage( + id="foo", + content=[TextBlock(type="text", text="bar")], + model="baz", + role="assistant", + stop_reason=None, + stop_sequence=None, + usage=PromptCachingBetaUsage( + input_tokens=2, + output_tokens=1, + cache_creation_input_tokens=3, + cache_read_input_tokens=4, + ), + type="message", + ) + expected = AIMessage( # type: ignore[misc] + "bar", + usage_metadata={ + "input_tokens": 9, + "output_tokens": 1, + "total_tokens": 10, + "input_token_details": {"cache_creation": 3, "cache_read": 4}, + }, + ) + + llm = ChatAnthropic(model="test", anthropic_api_key="test") # type: ignore[call-arg, call-arg] + actual = llm._format_output(anthropic_msg) + assert actual.generations[0].message == expected def test__merge_messages() -> None: @@ -137,6 +162,13 @@ def test__merge_messages() -> None: "text": None, "name": "blah", }, + { + "tool_input": {"a": "c"}, + "type": "tool_use", + "id": "3", + "text": None, + "name": "blah", + }, ] ), ToolMessage("buz output", tool_call_id="1", status="error"), # type: ignore[misc] @@ -153,6 +185,7 @@ def test__merge_messages() -> None: ], tool_call_id="2", ), # type: ignore[misc] + ToolMessage([], tool_call_id="3"), # type: ignore[misc] HumanMessage("next thing"), # type: ignore[misc] ] expected = [ @@ -176,6 +209,13 @@ def test__merge_messages() -> None: "text": None, "name": "blah", }, + { + "tool_input": {"a": "c"}, + "type": "tool_use", + "id": "3", + "text": None, + "name": "blah", + }, ] ), HumanMessage( # type: ignore[misc] @@ -201,6 +241,12 @@ def test__merge_messages() -> None: "tool_use_id": "2", "is_error": False, }, + { + "type": "tool_result", + "content": [], + "tool_use_id": "3", + "is_error": False, + }, {"type": "text", "text": "next thing"}, ] ), @@ -366,15 +412,36 @@ def test_convert_to_anthropic_tool( def test__format_messages_with_tool_calls() -> None: system = SystemMessage("fuzz") # type: ignore[misc] human = HumanMessage("foo") # type: ignore[misc] - ai = AIMessage( # type: ignore[misc] - "", + ai = AIMessage( + "", # with empty string tool_calls=[{"name": "bar", "id": "1", "args": {"baz": "buzz"}}], ) - tool = ToolMessage( # type: ignore[misc] + ai2 = AIMessage( + [], # with empty list + tool_calls=[{"name": "bar", "id": "2", "args": {"baz": "buzz"}}], + ) + tool = ToolMessage( "blurb", tool_call_id="1", ) - messages = [system, human, ai, tool] + tool_image_url = ToolMessage( + [{"type": "image_url", "image_url": {"url": "data:image/jpeg;base64,...."}}], + tool_call_id="2", + ) + tool_image = ToolMessage( + [ + { + "type": "image", + "source": { + "data": "....", + "type": "base64", + "media_type": "image/jpeg", + }, + } + ], + tool_call_id="3", + ) + messages = [system, human, ai, tool, ai2, tool_image_url, tool_image] expected = ( "fuzz", [ @@ -401,6 +468,52 @@ def test__format_messages_with_tool_calls() -> None: } ], }, + { + "role": "assistant", + "content": [ + { + "type": "tool_use", + "name": "bar", + "id": "2", + "input": {"baz": "buzz"}, + } + ], + }, + { + "role": "user", + "content": [ + { + "type": "tool_result", + "content": [ + { + "type": "image", + "source": { + "data": "....", + "type": "base64", + "media_type": "image/jpeg", + }, + } + ], + "tool_use_id": "2", + "is_error": False, + }, + { + "type": "tool_result", + "content": [ + { + "type": "image", + "source": { + "data": "....", + "type": "base64", + "media_type": "image/jpeg", + }, + } + ], + "tool_use_id": "3", + "is_error": False, + }, + ], + }, ], ) actual = _format_messages(messages) @@ -454,8 +567,6 @@ def test__format_messages_with_str_content_and_tool_calls() -> None: def test__format_messages_with_list_content_and_tool_calls() -> None: system = SystemMessage("fuzz") # type: ignore[misc] human = HumanMessage("foo") # type: ignore[misc] - # If content and tool_calls are specified and content is a list, then content is - # preferred. ai = AIMessage( # type: ignore[misc] [{"type": "text", "text": "thought"}], tool_calls=[{"name": "bar", "id": "1", "args": {"baz": "buzz"}}], @@ -471,7 +582,15 @@ def test__format_messages_with_list_content_and_tool_calls() -> None: {"role": "user", "content": "foo"}, { "role": "assistant", - "content": [{"type": "text", "text": "thought"}], + "content": [ + {"type": "text", "text": "thought"}, + { + "type": "tool_use", + "name": "bar", + "id": "1", + "input": {"baz": "buzz"}, + }, + ], }, { "role": "user", diff --git a/libs/partners/anthropic/tests/unit_tests/test_output_parsers.py b/libs/partners/anthropic/tests/unit_tests/test_output_parsers.py index 84e2e7506f8e4..af560eac0fa93 100644 --- a/libs/partners/anthropic/tests/unit_tests/test_output_parsers.py +++ b/libs/partners/anthropic/tests/unit_tests/test_output_parsers.py @@ -2,7 +2,7 @@ from langchain_core.messages import AIMessage from langchain_core.outputs import ChatGeneration -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_anthropic.output_parsers import ToolsOutputParser diff --git a/libs/partners/azure-dynamic-sessions/poetry.lock b/libs/partners/azure-dynamic-sessions/poetry.lock index bd30d2958d152..f98adbfe21014 100644 --- a/libs/partners/azure-dynamic-sessions/poetry.lock +++ b/libs/partners/azure-dynamic-sessions/poetry.lock @@ -11,9 +11,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -67,13 +64,13 @@ test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] [[package]] name = "azure-core" -version = "1.30.2" +version = "1.31.0" description = "Microsoft Azure Core Library for Python" optional = false python-versions = ">=3.8" files = [ - {file = "azure-core-1.30.2.tar.gz", hash = "sha256:a14dc210efcd608821aa472d9fb8e8d035d29b68993819147bc290a8ac224472"}, - {file = "azure_core-1.30.2-py3-none-any.whl", hash = "sha256:cf019c1ca832e96274ae85abd3d9f752397194d9fea3b41487290562ac8abe4a"}, + {file = "azure_core-1.31.0-py3-none-any.whl", hash = "sha256:22954de3777e0250029360ef31d80448ef1be13b80a459bff80ba7073379e2cd"}, + {file = "azure_core-1.31.0.tar.gz", hash = "sha256:656a0dd61e1869b1506b7c6a3b31d62f15984b1a573d6326f6aa2f3e4123284b"}, ] [package.dependencies] @@ -103,86 +100,138 @@ msal-extensions = ">=0.3.0" typing-extensions = ">=4.0.0" [[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" +name = "certifi" +version = "2024.8.30" +description = "Python package for providing Mozilla's CA Bundle." optional = false -python-versions = "*" +python-versions = ">=3.6" files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] -name = "certifi" -version = "2024.6.2" -description = "Python package for providing Mozilla's CA Bundle." +name = "cffi" +version = "1.17.0" +description = "Foreign Function Interface for Python calling C code." optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"}, - {file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"}, + {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, + {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, + {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, + {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, + {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, + {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, + {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, + {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, + {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, + {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, + {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, + {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, + {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, + {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, + {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, + {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, + {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, + {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, + {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, + {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, + {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, + {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, + {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, + {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, + {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, + {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, + {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, + {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, + {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, + {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, + {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, ] +[package.dependencies] +pycparser = "*" + [[package]] name = "cffi" -version = "1.16.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, - {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, - {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, - {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, - {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, - {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, - {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, - {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, - {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, - {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, - {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, - {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, - {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, - {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, - {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, ] [package.dependencies] @@ -334,43 +383,38 @@ test = ["pytest"] [[package]] name = "cryptography" -version = "42.0.8" +version = "43.0.1" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." optional = false python-versions = ">=3.7" files = [ - {file = "cryptography-42.0.8-cp37-abi3-macosx_10_12_universal2.whl", hash = "sha256:81d8a521705787afe7a18d5bfb47ea9d9cc068206270aad0b96a725022e18d2e"}, - {file = "cryptography-42.0.8-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:961e61cefdcb06e0c6d7e3a1b22ebe8b996eb2bf50614e89384be54c48c6b63d"}, - {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e3ec3672626e1b9e55afd0df6d774ff0e953452886e06e0f1eb7eb0c832e8902"}, - {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e599b53fd95357d92304510fb7bda8523ed1f79ca98dce2f43c115950aa78801"}, - {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:5226d5d21ab681f432a9c1cf8b658c0cb02533eece706b155e5fbd8a0cdd3949"}, - {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:6b7c4f03ce01afd3b76cf69a5455caa9cfa3de8c8f493e0d3ab7d20611c8dae9"}, - {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:2346b911eb349ab547076f47f2e035fc8ff2c02380a7cbbf8d87114fa0f1c583"}, - {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:ad803773e9df0b92e0a817d22fd8a3675493f690b96130a5e24f1b8fabbea9c7"}, - {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:2f66d9cd9147ee495a8374a45ca445819f8929a3efcd2e3df6428e46c3cbb10b"}, - {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:d45b940883a03e19e944456a558b67a41160e367a719833c53de6911cabba2b7"}, - {file = "cryptography-42.0.8-cp37-abi3-win32.whl", hash = "sha256:a0c5b2b0585b6af82d7e385f55a8bc568abff8923af147ee3c07bd8b42cda8b2"}, - {file = "cryptography-42.0.8-cp37-abi3-win_amd64.whl", hash = "sha256:57080dee41209e556a9a4ce60d229244f7a66ef52750f813bfbe18959770cfba"}, - {file = "cryptography-42.0.8-cp39-abi3-macosx_10_12_universal2.whl", hash = "sha256:dea567d1b0e8bc5764b9443858b673b734100c2871dc93163f58c46a97a83d28"}, - {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4783183f7cb757b73b2ae9aed6599b96338eb957233c58ca8f49a49cc32fd5e"}, - {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0608251135d0e03111152e41f0cc2392d1e74e35703960d4190b2e0f4ca9c70"}, - {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:dc0fdf6787f37b1c6b08e6dfc892d9d068b5bdb671198c72072828b80bd5fe4c"}, - {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:9c0c1716c8447ee7dbf08d6db2e5c41c688544c61074b54fc4564196f55c25a7"}, - {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fff12c88a672ab9c9c1cf7b0c80e3ad9e2ebd9d828d955c126be4fd3e5578c9e"}, - {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:cafb92b2bc622cd1aa6a1dce4b93307792633f4c5fe1f46c6b97cf67073ec961"}, - {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:31f721658a29331f895a5a54e7e82075554ccfb8b163a18719d342f5ffe5ecb1"}, - {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b297f90c5723d04bcc8265fc2a0f86d4ea2e0f7ab4b6994459548d3a6b992a14"}, - {file = "cryptography-42.0.8-cp39-abi3-win32.whl", hash = "sha256:2f88d197e66c65be5e42cd72e5c18afbfae3f741742070e3019ac8f4ac57262c"}, - {file = "cryptography-42.0.8-cp39-abi3-win_amd64.whl", hash = "sha256:fa76fbb7596cc5839320000cdd5d0955313696d9511debab7ee7278fc8b5c84a"}, - {file = "cryptography-42.0.8-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:ba4f0a211697362e89ad822e667d8d340b4d8d55fae72cdd619389fb5912eefe"}, - {file = "cryptography-42.0.8-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:81884c4d096c272f00aeb1f11cf62ccd39763581645b0812e99a91505fa48e0c"}, - {file = "cryptography-42.0.8-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:c9bb2ae11bfbab395bdd072985abde58ea9860ed84e59dbc0463a5d0159f5b71"}, - {file = "cryptography-42.0.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:7016f837e15b0a1c119d27ecd89b3515f01f90a8615ed5e9427e30d9cdbfed3d"}, - {file = "cryptography-42.0.8-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5a94eccb2a81a309806027e1670a358b99b8fe8bfe9f8d329f27d72c094dde8c"}, - {file = "cryptography-42.0.8-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dec9b018df185f08483f294cae6ccac29e7a6e0678996587363dc352dc65c842"}, - {file = "cryptography-42.0.8-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:343728aac38decfdeecf55ecab3264b015be68fc2816ca800db649607aeee648"}, - {file = "cryptography-42.0.8-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:013629ae70b40af70c9a7a5db40abe5d9054e6f4380e50ce769947b73bf3caad"}, - {file = "cryptography-42.0.8.tar.gz", hash = "sha256:8d09d05439ce7baa8e9e95b07ec5b6c886f548deb7e0f69ef25f64b3bce842f2"}, + {file = "cryptography-43.0.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:8385d98f6a3bf8bb2d65a73e17ed87a3ba84f6991c155691c51112075f9ffc5d"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e613d7077ac613e399270253259d9d53872aaf657471473ebfc9a52935c062"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68aaecc4178e90719e95298515979814bda0cbada1256a4485414860bd7ab962"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:de41fd81a41e53267cb020bb3a7212861da53a7d39f863585d13ea11049cf277"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f98bf604c82c416bc829e490c700ca1553eafdf2912a91e23a79d97d9801372a"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:61ec41068b7b74268fa86e3e9e12b9f0c21fcf65434571dbb13d954bceb08042"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:014f58110f53237ace6a408b5beb6c427b64e084eb451ef25a28308270086494"}, + {file = "cryptography-43.0.1-cp37-abi3-win32.whl", hash = "sha256:2bd51274dcd59f09dd952afb696bf9c61a7a49dfc764c04dd33ef7a6b502a1e2"}, + {file = "cryptography-43.0.1-cp37-abi3-win_amd64.whl", hash = "sha256:666ae11966643886c2987b3b721899d250855718d6d9ce41b521252a17985f4d"}, + {file = "cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:ac119bb76b9faa00f48128b7f5679e1d8d437365c5d26f1c2c3f0da4ce1b553d"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bbcce1a551e262dfbafb6e6252f1ae36a248e615ca44ba302df077a846a8806"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58d4e9129985185a06d849aa6df265bdd5a74ca6e1b736a77959b498e0505b85"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:d03a475165f3134f773d1388aeb19c2d25ba88b6a9733c5c590b9ff7bbfa2e0c"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:511f4273808ab590912a93ddb4e3914dfd8a388fed883361b02dea3791f292e1"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:80eda8b3e173f0f247f711eef62be51b599b5d425c429b5d4ca6a05e9e856baa"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:38926c50cff6f533f8a2dae3d7f19541432610d114a70808f0926d5aaa7121e4"}, + {file = "cryptography-43.0.1-cp39-abi3-win32.whl", hash = "sha256:a575913fb06e05e6b4b814d7f7468c2c660e8bb16d8d5a1faf9b33ccc569dd47"}, + {file = "cryptography-43.0.1-cp39-abi3-win_amd64.whl", hash = "sha256:d75601ad10b059ec832e78823b348bfa1a59f6b8d545db3a24fd44362a1564cb"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ea25acb556320250756e53f9e20a4177515f012c9eaea17eb7587a8c4d8ae034"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c1332724be35d23a854994ff0b66530119500b6053d0bd3363265f7e5e77288d"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fba1007b3ef89946dbbb515aeeb41e30203b004f0b4b00e5e16078b518563289"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5b43d1ea6b378b54a1dc99dd8a2b5be47658fe9a7ce0a58ff0b55f4b43ef2b84"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:88cce104c36870d70c49c7c8fd22885875d950d9ee6ab54df2745f83ba0dc365"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d3cdb25fa98afdd3d0892d132b8d7139e2c087da1712041f6b762e4f807cc96"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e710bf40870f4db63c3d7d929aa9e09e4e7ee219e703f949ec4073b4294f6172"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7c05650fe8023c5ed0d46793d4b7d7e6cd9c04e68eabe5b0aeea836e37bdcec2"}, + {file = "cryptography-43.0.1.tar.gz", hash = "sha256:203e92a75716d8cfb491dc47c79e17d0d9207ccffcbcb35f598fbe463ae3444d"}, ] [package.dependencies] @@ -383,38 +427,38 @@ nox = ["nox"] pep8test = ["check-sdist", "click", "mypy", "ruff"] sdist = ["build"] ssh = ["bcrypt (>=3.1.5)"] -test = ["certifi", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] +test = ["certifi", "cryptography-vectors (==43.0.1)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] test-randomorder = ["pytest-randomly"] [[package]] name = "debugpy" -version = "1.8.1" +version = "1.8.5" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.1-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741"}, - {file = "debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e"}, - {file = "debugpy-1.8.1-cp310-cp310-win32.whl", hash = "sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0"}, - {file = "debugpy-1.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd"}, - {file = "debugpy-1.8.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb"}, - {file = "debugpy-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099"}, - {file = "debugpy-1.8.1-cp311-cp311-win32.whl", hash = "sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146"}, - {file = "debugpy-1.8.1-cp311-cp311-win_amd64.whl", hash = "sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8"}, - {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"}, - {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"}, - {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"}, - {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"}, - {file = "debugpy-1.8.1-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39"}, - {file = "debugpy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7"}, - {file = "debugpy-1.8.1-cp38-cp38-win32.whl", hash = "sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9"}, - {file = "debugpy-1.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234"}, - {file = "debugpy-1.8.1-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42"}, - {file = "debugpy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703"}, - {file = "debugpy-1.8.1-cp39-cp39-win32.whl", hash = "sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23"}, - {file = "debugpy-1.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3"}, - {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"}, - {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"}, + {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, + {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, + {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, + {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, + {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, + {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, + {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, + {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, + {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, + {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, + {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, + {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, + {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, + {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, + {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, + {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, + {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, + {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, + {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, + {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, + {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, + {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, ] [[package]] @@ -441,13 +485,13 @@ files = [ [[package]] name = "exceptiongroup" -version = "1.2.1" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, - {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -455,13 +499,13 @@ test = ["pytest (>=6)"] [[package]] name = "executing" -version = "2.0.1" +version = "2.1.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, ] [package.extras] @@ -515,13 +559,13 @@ trio = ["trio (>=0.22.0,<0.26.0)"] [[package]] name = "httpx" -version = "0.27.0" +version = "0.27.2" description = "The next generation HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, - {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, ] [package.dependencies] @@ -536,36 +580,41 @@ brotli = ["brotli", "brotlicffi"] cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.7" +version = "3.8" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, + {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, ] [[package]] name = "importlib-metadata" -version = "7.2.0" +version = "8.5.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-7.2.0-py3-none-any.whl", hash = "sha256:04e4aad329b8b948a5711d394fa8759cb80f009225441b4f2a02bd4d8e5f426c"}, - {file = "importlib_metadata-7.2.0.tar.gz", hash = "sha256:3ff4519071ed42740522d494d04819b666541b9752c43012f85afb2cc220fcc6"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = ">=0.5" +zipp = ">=3.20" [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] [[package]] name = "iniconfig" @@ -580,13 +629,13 @@ files = [ [[package]] name = "ipykernel" -version = "6.29.4" +version = "6.29.5" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"}, - {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"}, + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, ] [package.dependencies] @@ -613,42 +662,40 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.12.3" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "jedi" @@ -669,6 +716,76 @@ docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alab qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +[[package]] +name = "jiter" +version = "0.5.0" +description = "Fast iterable JSON parser." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jiter-0.5.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b599f4e89b3def9a94091e6ee52e1d7ad7bc33e238ebb9c4c63f211d74822c3f"}, + {file = "jiter-0.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2a063f71c4b06225543dddadbe09d203dc0c95ba352d8b85f1221173480a71d5"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:acc0d5b8b3dd12e91dd184b87273f864b363dfabc90ef29a1092d269f18c7e28"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c22541f0b672f4d741382a97c65609332a783501551445ab2df137ada01e019e"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:63314832e302cc10d8dfbda0333a384bf4bcfce80d65fe99b0f3c0da8945a91a"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a25fbd8a5a58061e433d6fae6d5298777c0814a8bcefa1e5ecfff20c594bd749"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:503b2c27d87dfff5ab717a8200fbbcf4714516c9d85558048b1fc14d2de7d8dc"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6d1f3d27cce923713933a844872d213d244e09b53ec99b7a7fdf73d543529d6d"}, + {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c95980207b3998f2c3b3098f357994d3fd7661121f30669ca7cb945f09510a87"}, + {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:afa66939d834b0ce063f57d9895e8036ffc41c4bd90e4a99631e5f261d9b518e"}, + {file = "jiter-0.5.0-cp310-none-win32.whl", hash = "sha256:f16ca8f10e62f25fd81d5310e852df6649af17824146ca74647a018424ddeccf"}, + {file = "jiter-0.5.0-cp310-none-win_amd64.whl", hash = "sha256:b2950e4798e82dd9176935ef6a55cf6a448b5c71515a556da3f6b811a7844f1e"}, + {file = "jiter-0.5.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d4c8e1ed0ef31ad29cae5ea16b9e41529eb50a7fba70600008e9f8de6376d553"}, + {file = "jiter-0.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c6f16e21276074a12d8421692515b3fd6d2ea9c94fd0734c39a12960a20e85f3"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5280e68e7740c8c128d3ae5ab63335ce6d1fb6603d3b809637b11713487af9e6"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:583c57fc30cc1fec360e66323aadd7fc3edeec01289bfafc35d3b9dcb29495e4"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26351cc14507bdf466b5f99aba3df3143a59da75799bf64a53a3ad3155ecded9"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829df14d656b3fb87e50ae8b48253a8851c707da9f30d45aacab2aa2ba2d614"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a42a4bdcf7307b86cb863b2fb9bb55029b422d8f86276a50487982d99eed7c6e"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04d461ad0aebf696f8da13c99bc1b3e06f66ecf6cfd56254cc402f6385231c06"}, + {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6375923c5f19888c9226582a124b77b622f8fd0018b843c45eeb19d9701c403"}, + {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2cec323a853c24fd0472517113768c92ae0be8f8c384ef4441d3632da8baa646"}, + {file = "jiter-0.5.0-cp311-none-win32.whl", hash = "sha256:aa1db0967130b5cab63dfe4d6ff547c88b2a394c3410db64744d491df7f069bb"}, + {file = "jiter-0.5.0-cp311-none-win_amd64.whl", hash = "sha256:aa9d2b85b2ed7dc7697597dcfaac66e63c1b3028652f751c81c65a9f220899ae"}, + {file = "jiter-0.5.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9f664e7351604f91dcdd557603c57fc0d551bc65cc0a732fdacbf73ad335049a"}, + {file = "jiter-0.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:044f2f1148b5248ad2c8c3afb43430dccf676c5a5834d2f5089a4e6c5bbd64df"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:702e3520384c88b6e270c55c772d4bd6d7b150608dcc94dea87ceba1b6391248"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:528d742dcde73fad9d63e8242c036ab4a84389a56e04efd854062b660f559544"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8cf80e5fe6ab582c82f0c3331df27a7e1565e2dcf06265afd5173d809cdbf9ba"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:44dfc9ddfb9b51a5626568ef4e55ada462b7328996294fe4d36de02fce42721f"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c451f7922992751a936b96c5f5b9bb9312243d9b754c34b33d0cb72c84669f4e"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:308fce789a2f093dca1ff91ac391f11a9f99c35369117ad5a5c6c4903e1b3e3a"}, + {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7f5ad4a7c6b0d90776fdefa294f662e8a86871e601309643de30bf94bb93a64e"}, + {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ea189db75f8eca08807d02ae27929e890c7d47599ce3d0a6a5d41f2419ecf338"}, + {file = "jiter-0.5.0-cp312-none-win32.whl", hash = "sha256:e3bbe3910c724b877846186c25fe3c802e105a2c1fc2b57d6688b9f8772026e4"}, + {file = "jiter-0.5.0-cp312-none-win_amd64.whl", hash = "sha256:a586832f70c3f1481732919215f36d41c59ca080fa27a65cf23d9490e75b2ef5"}, + {file = "jiter-0.5.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f04bc2fc50dc77be9d10f73fcc4e39346402ffe21726ff41028f36e179b587e6"}, + {file = "jiter-0.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6f433a4169ad22fcb550b11179bb2b4fd405de9b982601914ef448390b2954f3"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad4a6398c85d3a20067e6c69890ca01f68659da94d74c800298581724e426c7e"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6baa88334e7af3f4d7a5c66c3a63808e5efbc3698a1c57626541ddd22f8e4fbf"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ece0a115c05efca597c6d938f88c9357c843f8c245dbbb53361a1c01afd7148"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:335942557162ad372cc367ffaf93217117401bf930483b4b3ebdb1223dbddfa7"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:649b0ee97a6e6da174bffcb3c8c051a5935d7d4f2f52ea1583b5b3e7822fbf14"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4be354c5de82157886ca7f5925dbda369b77344b4b4adf2723079715f823989"}, + {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5206144578831a6de278a38896864ded4ed96af66e1e63ec5dd7f4a1fce38a3a"}, + {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8120c60f8121ac3d6f072b97ef0e71770cc72b3c23084c72c4189428b1b1d3b6"}, + {file = "jiter-0.5.0-cp38-none-win32.whl", hash = "sha256:6f1223f88b6d76b519cb033a4d3687ca157c272ec5d6015c322fc5b3074d8a5e"}, + {file = "jiter-0.5.0-cp38-none-win_amd64.whl", hash = "sha256:c59614b225d9f434ea8fc0d0bec51ef5fa8c83679afedc0433905994fb36d631"}, + {file = "jiter-0.5.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0af3838cfb7e6afee3f00dc66fa24695199e20ba87df26e942820345b0afc566"}, + {file = "jiter-0.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:550b11d669600dbc342364fd4adbe987f14d0bbedaf06feb1b983383dcc4b961"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:489875bf1a0ffb3cb38a727b01e6673f0f2e395b2aad3c9387f94187cb214bbf"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b250ca2594f5599ca82ba7e68785a669b352156260c5362ea1b4e04a0f3e2389"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ea18e01f785c6667ca15407cd6dabbe029d77474d53595a189bdc813347218e"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:462a52be85b53cd9bffd94e2d788a09984274fe6cebb893d6287e1c296d50653"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92cc68b48d50fa472c79c93965e19bd48f40f207cb557a8346daa020d6ba973b"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c834133e59a8521bc87ebcad773608c6fa6ab5c7a022df24a45030826cf10bc"}, + {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab3a71ff31cf2d45cb216dc37af522d335211f3a972d2fe14ea99073de6cb104"}, + {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cccd3af9c48ac500c95e1bcbc498020c87e1781ff0345dd371462d67b76643eb"}, + {file = "jiter-0.5.0-cp39-none-win32.whl", hash = "sha256:368084d8d5c4fc40ff7c3cc513c4f73e02c85f6009217922d0823a48ee7adf61"}, + {file = "jiter-0.5.0-cp39-none-win_amd64.whl", hash = "sha256:ce03f7b4129eb72f1687fa11300fbf677b02990618428934662406d2a76742a1"}, + {file = "jiter-0.5.0.tar.gz", hash = "sha256:1d916ba875bcab5c5f7d927df998c4cb694d27dceddf3392e58beaf10563368a"}, +] + [[package]] name = "jsonpatch" version = "1.33" @@ -739,23 +856,24 @@ test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout" [[package]] name = "langchain-core" -version = "0.2.11" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" tenacity = "^8.1.0,!=8.4.0" +typing-extensions = ">=4.7" [package.source] type = "directory" @@ -763,16 +881,16 @@ url = "../../core" [[package]] name = "langchain-openai" -version = "0.1.13" +version = "0.2.0" description = "An integration package connecting OpenAI and LangChain" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = ">=0.2.2,<0.3" -openai = "^1.32.0" +langchain-core = "^0.3" +openai = "^1.40.0" tiktoken = ">=0.7,<1" [package.source] @@ -781,13 +899,13 @@ url = "../openai" [[package]] name = "langchainhub" -version = "0.1.20" +version = "0.1.21" description = "The LangChain Hub API client" optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langchainhub-0.1.20-py3-none-any.whl", hash = "sha256:b3cbb5b2d7d6f9c3f89748bcc74424d8030ed4ebca58b5f44e0b6d9f111e33eb"}, - {file = "langchainhub-0.1.20.tar.gz", hash = "sha256:499fa8958233071f35750987f325005d16241bebd455163955b607c195c37f25"}, + {file = "langchainhub-0.1.21-py3-none-any.whl", hash = "sha256:1cc002dc31e0d132a776afd044361e2b698743df5202618cf2bad399246b895f"}, + {file = "langchainhub-0.1.21.tar.gz", hash = "sha256:723383b3964a47dbaea6ad5d0ef728accefbc9d2c07480e800bdec43510a8c10"}, ] [package.dependencies] @@ -797,18 +915,22 @@ types-requests = ">=2.31.0.2,<3.0.0.0" [[package]] name = "langsmith" -version = "0.1.81" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.81-py3-none-any.whl", hash = "sha256:3251d823225eef23ee541980b9d9e506367eabbb7f985a086b5d09e8f78ba7e9"}, - {file = "langsmith-0.1.81.tar.gz", hash = "sha256:585ef3a2251380bd2843a664c9a28da4a7d28432e3ee8bcebf291ffb8e1f0af0"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" -pydantic = ">=1,<3" +pydantic = [ + {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, +] requests = ">=2,<3" [[package]] @@ -827,82 +949,78 @@ traitlets = "*" [[package]] name = "msal" -version = "1.29.0" +version = "1.31.0" description = "The Microsoft Authentication Library (MSAL) for Python library enables your app to access the Microsoft Cloud by supporting authentication of users with Microsoft Azure Active Directory accounts (AAD) and Microsoft Accounts (MSA) using industry standard OAuth2 and OpenID Connect." optional = false python-versions = ">=3.7" files = [ - {file = "msal-1.29.0-py3-none-any.whl", hash = "sha256:6b301e63f967481f0cc1a3a3bac0cf322b276855bc1b0955468d9deb3f33d511"}, - {file = "msal-1.29.0.tar.gz", hash = "sha256:8f6725f099752553f9b2fe84125e2a5ebe47b49f92eacca33ebedd3a9ebaae25"}, + {file = "msal-1.31.0-py3-none-any.whl", hash = "sha256:96bc37cff82ebe4b160d5fc0f1196f6ca8b50e274ecd0ec5bf69c438514086e7"}, + {file = "msal-1.31.0.tar.gz", hash = "sha256:2c4f189cf9cc8f00c80045f66d39b7c0f3ed45873fd3d1f2af9f22db2e12ff4b"}, ] [package.dependencies] -cryptography = ">=2.5,<45" +cryptography = ">=2.5,<46" PyJWT = {version = ">=1.0.0,<3", extras = ["crypto"]} requests = ">=2.0.0,<3" [package.extras] -broker = ["pymsalruntime (>=0.13.2,<0.17)"] +broker = ["pymsalruntime (>=0.14,<0.18)", "pymsalruntime (>=0.17,<0.18)"] [[package]] name = "msal-extensions" -version = "1.1.0" +version = "1.2.0" description = "Microsoft Authentication Library extensions (MSAL EX) provides a persistence API that can save your data on disk, encrypted on Windows, macOS and Linux. Concurrent data access will be coordinated by a file lock mechanism." optional = false python-versions = ">=3.7" files = [ - {file = "msal-extensions-1.1.0.tar.gz", hash = "sha256:6ab357867062db7b253d0bd2df6d411c7891a0ee7308d54d1e4317c1d1c54252"}, - {file = "msal_extensions-1.1.0-py3-none-any.whl", hash = "sha256:01be9711b4c0b1a151450068eeb2c4f0997df3bba085ac299de3a66f585e382f"}, + {file = "msal_extensions-1.2.0-py3-none-any.whl", hash = "sha256:cf5ba83a2113fa6dc011a254a72f1c223c88d7dfad74cc30617c4679a417704d"}, + {file = "msal_extensions-1.2.0.tar.gz", hash = "sha256:6f41b320bfd2933d631a215c91ca0dd3e67d84bd1a2f50ce917d5874ec646bef"}, ] [package.dependencies] -msal = ">=0.4.1,<2.0.0" -packaging = "*" -portalocker = [ - {version = ">=1.0,<3", markers = "platform_system != \"Windows\""}, - {version = ">=1.6,<3", markers = "platform_system == \"Windows\""}, -] +msal = ">=1.29,<2" +portalocker = ">=1.4,<3" [[package]] name = "mypy" -version = "1.10.1" +version = "1.11.2" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e36f229acfe250dc660790840916eb49726c928e8ce10fbdf90715090fe4ae02"}, - {file = "mypy-1.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:51a46974340baaa4145363b9e051812a2446cf583dfaeba124af966fa44593f7"}, - {file = "mypy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:901c89c2d67bba57aaaca91ccdb659aa3a312de67f23b9dfb059727cce2e2e0a"}, - {file = "mypy-1.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0cd62192a4a32b77ceb31272d9e74d23cd88c8060c34d1d3622db3267679a5d9"}, - {file = "mypy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:a2cbc68cb9e943ac0814c13e2452d2046c2f2b23ff0278e26599224cf164e78d"}, - {file = "mypy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bd6f629b67bb43dc0d9211ee98b96d8dabc97b1ad38b9b25f5e4c4d7569a0c6a"}, - {file = "mypy-1.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a1bbb3a6f5ff319d2b9d40b4080d46cd639abe3516d5a62c070cf0114a457d84"}, - {file = "mypy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8edd4e9bbbc9d7b79502eb9592cab808585516ae1bcc1446eb9122656c6066f"}, - {file = "mypy-1.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6166a88b15f1759f94a46fa474c7b1b05d134b1b61fca627dd7335454cc9aa6b"}, - {file = "mypy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bb9cd11c01c8606a9d0b83ffa91d0b236a0e91bc4126d9ba9ce62906ada868e"}, - {file = "mypy-1.10.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d8681909f7b44d0b7b86e653ca152d6dff0eb5eb41694e163c6092124f8246d7"}, - {file = "mypy-1.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:378c03f53f10bbdd55ca94e46ec3ba255279706a6aacaecac52ad248f98205d3"}, - {file = "mypy-1.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bacf8f3a3d7d849f40ca6caea5c055122efe70e81480c8328ad29c55c69e93e"}, - {file = "mypy-1.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:701b5f71413f1e9855566a34d6e9d12624e9e0a8818a5704d74d6b0402e66c04"}, - {file = "mypy-1.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:3c4c2992f6ea46ff7fce0072642cfb62af7a2484efe69017ed8b095f7b39ef31"}, - {file = "mypy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:604282c886497645ffb87b8f35a57ec773a4a2721161e709a4422c1636ddde5c"}, - {file = "mypy-1.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37fd87cab83f09842653f08de066ee68f1182b9b5282e4634cdb4b407266bade"}, - {file = "mypy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8addf6313777dbb92e9564c5d32ec122bf2c6c39d683ea64de6a1fd98b90fe37"}, - {file = "mypy-1.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5cc3ca0a244eb9a5249c7c583ad9a7e881aa5d7b73c35652296ddcdb33b2b9c7"}, - {file = "mypy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:1b3a2ffce52cc4dbaeee4df762f20a2905aa171ef157b82192f2e2f368eec05d"}, - {file = "mypy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe85ed6836165d52ae8b88f99527d3d1b2362e0cb90b005409b8bed90e9059b3"}, - {file = "mypy-1.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c2ae450d60d7d020d67ab440c6e3fae375809988119817214440033f26ddf7bf"}, - {file = "mypy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6be84c06e6abd72f960ba9a71561c14137a583093ffcf9bbfaf5e613d63fa531"}, - {file = "mypy-1.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2189ff1e39db399f08205e22a797383613ce1cb0cb3b13d8bcf0170e45b96cc3"}, - {file = "mypy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:97a131ee36ac37ce9581f4220311247ab6cba896b4395b9c87af0675a13a755f"}, - {file = "mypy-1.10.1-py3-none-any.whl", hash = "sha256:71d8ac0b906354ebda8ef1673e5fde785936ac1f29ff6987c7483cfbd5a4235a"}, - {file = "mypy-1.10.1.tar.gz", hash = "sha256:1f8f492d7db9e3593ef42d4f115f04e556130f2819ad33ab84551403e97dd4c0"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, + {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, + {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, + {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, + {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, + {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, + {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, + {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, + {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, + {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, + {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, + {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, + {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, + {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, + {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, + {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, + {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, + {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, ] [package.dependencies] mypy-extensions = ">=1.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.1.0" +typing-extensions = ">=4.6.0" [package.extras] dmypy = ["psutil (>=4.0)"] @@ -934,80 +1052,92 @@ files = [ [[package]] name = "openai" -version = "1.35.3" +version = "1.45.0" description = "The official Python library for the openai API" optional = false python-versions = ">=3.7.1" files = [ - {file = "openai-1.35.3-py3-none-any.whl", hash = "sha256:7b26544cef80f125431c073ffab3811d2421fbb9e30d3bd5c2436aba00b042d5"}, - {file = "openai-1.35.3.tar.gz", hash = "sha256:d6177087f150b381d49499be782d764213fdf638d391b29ca692b84dd675a389"}, + {file = "openai-1.45.0-py3-none-any.whl", hash = "sha256:2f1f7b7cf90f038a9f1c24f0d26c0f1790c102ec5acd07ffd70a9b7feac1ff4e"}, + {file = "openai-1.45.0.tar.gz", hash = "sha256:731207d10637335413aa3c0955f8f8df30d7636a4a0f9c381f2209d32cf8de97"}, ] [package.dependencies] anyio = ">=3.5.0,<5" distro = ">=1.7.0,<2" httpx = ">=0.23.0,<1" +jiter = ">=0.4.0,<1" pydantic = ">=1.9.0,<3" sniffio = "*" tqdm = ">4" -typing-extensions = ">=4.7,<5" +typing-extensions = ">=4.11,<5" [package.extras] datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] [[package]] name = "orjson" -version = "3.10.5" +version = "3.10.7" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = false python-versions = ">=3.8" files = [ - {file = "orjson-3.10.5-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:545d493c1f560d5ccfc134803ceb8955a14c3fcb47bbb4b2fee0232646d0b932"}, - {file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4324929c2dd917598212bfd554757feca3e5e0fa60da08be11b4aa8b90013c1"}, - {file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c13ca5e2ddded0ce6a927ea5a9f27cae77eee4c75547b4297252cb20c4d30e6"}, - {file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b6c8e30adfa52c025f042a87f450a6b9ea29649d828e0fec4858ed5e6caecf63"}, - {file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:338fd4f071b242f26e9ca802f443edc588fa4ab60bfa81f38beaedf42eda226c"}, - {file = "orjson-3.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6970ed7a3126cfed873c5d21ece1cd5d6f83ca6c9afb71bbae21a0b034588d96"}, - {file = "orjson-3.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:235dadefb793ad12f7fa11e98a480db1f7c6469ff9e3da5e73c7809c700d746b"}, - {file = "orjson-3.10.5-cp310-none-win32.whl", hash = "sha256:be79e2393679eda6a590638abda16d167754393f5d0850dcbca2d0c3735cebe2"}, - {file = "orjson-3.10.5-cp310-none-win_amd64.whl", hash = "sha256:c4a65310ccb5c9910c47b078ba78e2787cb3878cdded1702ac3d0da71ddc5228"}, - {file = "orjson-3.10.5-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:cdf7365063e80899ae3a697def1277c17a7df7ccfc979990a403dfe77bb54d40"}, - {file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b68742c469745d0e6ca5724506858f75e2f1e5b59a4315861f9e2b1df77775a"}, - {file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7d10cc1b594951522e35a3463da19e899abe6ca95f3c84c69e9e901e0bd93d38"}, - {file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dcbe82b35d1ac43b0d84072408330fd3295c2896973112d495e7234f7e3da2e1"}, - {file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10c0eb7e0c75e1e486c7563fe231b40fdd658a035ae125c6ba651ca3b07936f5"}, - {file = "orjson-3.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:53ed1c879b10de56f35daf06dbc4a0d9a5db98f6ee853c2dbd3ee9d13e6f302f"}, - {file = "orjson-3.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:099e81a5975237fda3100f918839af95f42f981447ba8f47adb7b6a3cdb078fa"}, - {file = "orjson-3.10.5-cp311-none-win32.whl", hash = "sha256:1146bf85ea37ac421594107195db8bc77104f74bc83e8ee21a2e58596bfb2f04"}, - {file = "orjson-3.10.5-cp311-none-win_amd64.whl", hash = "sha256:36a10f43c5f3a55c2f680efe07aa93ef4a342d2960dd2b1b7ea2dd764fe4a37c"}, - {file = "orjson-3.10.5-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:68f85ecae7af14a585a563ac741b0547a3f291de81cd1e20903e79f25170458f"}, - {file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28afa96f496474ce60d3340fe8d9a263aa93ea01201cd2bad844c45cd21f5268"}, - {file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9cd684927af3e11b6e754df80b9ffafd9fb6adcaa9d3e8fdd5891be5a5cad51e"}, - {file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d21b9983da032505f7050795e98b5d9eee0df903258951566ecc358f6696969"}, - {file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ad1de7fef79736dde8c3554e75361ec351158a906d747bd901a52a5c9c8d24b"}, - {file = "orjson-3.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2d97531cdfe9bdd76d492e69800afd97e5930cb0da6a825646667b2c6c6c0211"}, - {file = "orjson-3.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d69858c32f09c3e1ce44b617b3ebba1aba030e777000ebdf72b0d8e365d0b2b3"}, - {file = "orjson-3.10.5-cp312-none-win32.whl", hash = "sha256:64c9cc089f127e5875901ac05e5c25aa13cfa5dbbbd9602bda51e5c611d6e3e2"}, - {file = "orjson-3.10.5-cp312-none-win_amd64.whl", hash = "sha256:b2efbd67feff8c1f7728937c0d7f6ca8c25ec81373dc8db4ef394c1d93d13dc5"}, - {file = "orjson-3.10.5-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:03b565c3b93f5d6e001db48b747d31ea3819b89abf041ee10ac6988886d18e01"}, - {file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:584c902ec19ab7928fd5add1783c909094cc53f31ac7acfada817b0847975f26"}, - {file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5a35455cc0b0b3a1eaf67224035f5388591ec72b9b6136d66b49a553ce9eb1e6"}, - {file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1670fe88b116c2745a3a30b0f099b699a02bb3482c2591514baf5433819e4f4d"}, - {file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:185c394ef45b18b9a7d8e8f333606e2e8194a50c6e3c664215aae8cf42c5385e"}, - {file = "orjson-3.10.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ca0b3a94ac8d3886c9581b9f9de3ce858263865fdaa383fbc31c310b9eac07c9"}, - {file = "orjson-3.10.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:dfc91d4720d48e2a709e9c368d5125b4b5899dced34b5400c3837dadc7d6271b"}, - {file = "orjson-3.10.5-cp38-none-win32.whl", hash = "sha256:c05f16701ab2a4ca146d0bca950af254cb7c02f3c01fca8efbbad82d23b3d9d4"}, - {file = "orjson-3.10.5-cp38-none-win_amd64.whl", hash = "sha256:8a11d459338f96a9aa7f232ba95679fc0c7cedbd1b990d736467894210205c09"}, - {file = "orjson-3.10.5-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:85c89131d7b3218db1b24c4abecea92fd6c7f9fab87441cfc342d3acc725d807"}, - {file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb66215277a230c456f9038d5e2d84778141643207f85336ef8d2a9da26bd7ca"}, - {file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:51bbcdea96cdefa4a9b4461e690c75ad4e33796530d182bdd5c38980202c134a"}, - {file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbead71dbe65f959b7bd8cf91e0e11d5338033eba34c114f69078d59827ee139"}, - {file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5df58d206e78c40da118a8c14fc189207fffdcb1f21b3b4c9c0c18e839b5a214"}, - {file = "orjson-3.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c4057c3b511bb8aef605616bd3f1f002a697c7e4da6adf095ca5b84c0fd43595"}, - {file = "orjson-3.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b39e006b00c57125ab974362e740c14a0c6a66ff695bff44615dcf4a70ce2b86"}, - {file = "orjson-3.10.5-cp39-none-win32.whl", hash = "sha256:eded5138cc565a9d618e111c6d5c2547bbdd951114eb822f7f6309e04db0fb47"}, - {file = "orjson-3.10.5-cp39-none-win_amd64.whl", hash = "sha256:cc28e90a7cae7fcba2493953cff61da5a52950e78dc2dacfe931a317ee3d8de7"}, - {file = "orjson-3.10.5.tar.gz", hash = "sha256:7a5baef8a4284405d96c90c7c62b755e9ef1ada84c2406c24a9ebec86b89f46d"}, + {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, + {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, + {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, + {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, + {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, + {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, + {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, + {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, + {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, + {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, + {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, + {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, + {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, + {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, + {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, + {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, + {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, + {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, + {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, + {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, ] [[package]] @@ -1050,32 +1180,21 @@ files = [ [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.3" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.3-py3-none-any.whl", hash = "sha256:50a5450e2e84f44539718293cbb1da0a0885c9d14adf21b77bae4e66fc99d9b5"}, + {file = "platformdirs-4.3.3.tar.gz", hash = "sha256:d4e0b7d8ec176b341fb03cb11ca12d0276faa8c485f9cd218f613840463fc2c0"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "pluggy" @@ -1094,13 +1213,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "portalocker" -version = "2.8.2" +version = "2.10.1" description = "Wraps the portalocker recipe for easy usage" optional = false python-versions = ">=3.8" files = [ - {file = "portalocker-2.8.2-py3-none-any.whl", hash = "sha256:cfb86acc09b9aa7c3b43594e19be1345b9d16af3feb08bf92f23d4dce513a28e"}, - {file = "portalocker-2.8.2.tar.gz", hash = "sha256:2b035aa7828e46c58e9b31390ee1f169b98e1066ab10b9a6a861fe7e25ee4f33"}, + {file = "portalocker-2.10.1-py3-none-any.whl", hash = "sha256:53a5984ebc86a025552264b459b46a2086e269b21823cb572f8f28ee759e45bf"}, + {file = "portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f"}, ] [package.dependencies] @@ -1167,13 +1286,13 @@ files = [ [[package]] name = "pure-eval" -version = "0.2.2" +version = "0.2.3" description = "Safely evaluate AST nodes without side effects" optional = false python-versions = "*" files = [ - {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, - {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, ] [package.extras] @@ -1192,109 +1311,123 @@ files = [ [[package]] name = "pydantic" -version = "2.7.4" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"}, - {file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.18.4" -typing-extensions = ">=4.6.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" +typing-extensions = [ + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, + {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, +] [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.18.4" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"}, - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"}, - {file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"}, - {file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"}, - {file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"}, - {file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"}, - {file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"}, - {file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"}, - {file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"}, - {file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"}, - {file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"}, - {file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"}, - {file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"}, - {file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"}, - {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1316,13 +1449,13 @@ windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pyjwt" -version = "2.8.0" +version = "2.9.0" description = "JSON Web Token implementation in Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "PyJWT-2.8.0-py3-none-any.whl", hash = "sha256:59127c392cc44c2da5bb3192169a91f429924e17aff6534d70fdc02ab3e04320"}, - {file = "PyJWT-2.8.0.tar.gz", hash = "sha256:57e28d156e3d5c10088e0c68abb90bfac3df82b40a71bd0daa20c65ccd5c23de"}, + {file = "PyJWT-2.9.0-py3-none-any.whl", hash = "sha256:3b02fb0f44517787776cf48f2ae25d8e14f300e6d7545a4315cee571a415e850"}, + {file = "pyjwt-2.9.0.tar.gz", hash = "sha256:7e1e5b56cc735432a7369cbfa0efe50fa113ebecdc04ae6922deba8b84582d0c"}, ] [package.dependencies] @@ -1330,8 +1463,8 @@ cryptography = {version = ">=3.4.0", optional = true, markers = "extra == \"cryp [package.extras] crypto = ["cryptography (>=3.4.0)"] -dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] -docs = ["sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] +dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx", "sphinx-rtd-theme", "zope.interface"] +docs = ["sphinx", "sphinx-rtd-theme", "zope.interface"] tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"] [[package]] @@ -1459,159 +1592,182 @@ files = [ [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "pyzmq" -version = "26.0.3" +version = "26.2.0" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.7" files = [ - {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, - {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, - {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, - {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, - {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, - {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, - {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, - {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, - {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, - {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, - {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, - {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, - {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, - {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, - {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, - {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, - {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, - {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, - {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, - {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, - {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, - {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, - {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, - {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, - {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, - {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, - {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, - {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, ] [package.dependencies] @@ -1619,90 +1775,105 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "regex" -version = "2024.5.15" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a81e3cfbae20378d75185171587cbf756015ccb14840702944f014e0d93ea09f"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b59138b219ffa8979013be7bc85bb60c6f7b7575df3d56dc1e403a438c7a3f6"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0bd000c6e266927cb7a1bc39d55be95c4b4f65c5be53e659537537e019232b1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eaa7ddaf517aa095fa8da0b5015c44d03da83f5bd49c87961e3c997daed0de7"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba68168daedb2c0bab7fd7e00ced5ba90aebf91024dea3c88ad5063c2a562cca"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6e8d717bca3a6e2064fc3a08df5cbe366369f4b052dcd21b7416e6d71620dca1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1337b7dbef9b2f71121cdbf1e97e40de33ff114801263b275aafd75303bd62b5"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9ebd0a36102fcad2f03696e8af4ae682793a5d30b46c647eaf280d6cfb32796"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9efa1a32ad3a3ea112224897cdaeb6aa00381627f567179c0314f7b65d354c62"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1595f2d10dff3d805e054ebdc41c124753631b6a471b976963c7b28543cf13b0"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b802512f3e1f480f41ab5f2cfc0e2f761f08a1f41092d6718868082fc0d27143"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a0981022dccabca811e8171f913de05720590c915b033b7e601f35ce4ea7019f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:19068a6a79cf99a19ccefa44610491e9ca02c2be3305c7760d3831d38a467a6f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b5269484f6126eee5e687785e83c6b60aad7663dafe842b34691157e5083e53"}, - {file = "regex-2024.5.15-cp310-cp310-win32.whl", hash = "sha256:ada150c5adfa8fbcbf321c30c751dc67d2f12f15bd183ffe4ec7cde351d945b3"}, - {file = "regex-2024.5.15-cp310-cp310-win_amd64.whl", hash = "sha256:ac394ff680fc46b97487941f5e6ae49a9f30ea41c6c6804832063f14b2a5a145"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f5b1dff3ad008dccf18e652283f5e5339d70bf8ba7c98bf848ac33db10f7bc7a"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6a2b494a76983df8e3d3feea9b9ffdd558b247e60b92f877f93a1ff43d26656"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a32b96f15c8ab2e7d27655969a23895eb799de3665fa94349f3b2fbfd547236f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10002e86e6068d9e1c91eae8295ef690f02f913c57db120b58fdd35a6bb1af35"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec54d5afa89c19c6dd8541a133be51ee1017a38b412b1321ccb8d6ddbeb4cf7d"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10e4ce0dca9ae7a66e6089bb29355d4432caed736acae36fef0fdd7879f0b0cb"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e507ff1e74373c4d3038195fdd2af30d297b4f0950eeda6f515ae3d84a1770f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1f059a4d795e646e1c37665b9d06062c62d0e8cc3c511fe01315973a6542e40"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0721931ad5fe0dda45d07f9820b90b2148ccdd8e45bb9e9b42a146cb4f695649"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:833616ddc75ad595dee848ad984d067f2f31be645d603e4d158bba656bbf516c"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:287eb7f54fc81546346207c533ad3c2c51a8d61075127d7f6d79aaf96cdee890"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:19dfb1c504781a136a80ecd1fff9f16dddf5bb43cec6871778c8a907a085bb3d"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:119af6e56dce35e8dfb5222573b50c89e5508d94d55713c75126b753f834de68"}, - {file = "regex-2024.5.15-cp311-cp311-win32.whl", hash = "sha256:1c1c174d6ec38d6c8a7504087358ce9213d4332f6293a94fbf5249992ba54efa"}, - {file = "regex-2024.5.15-cp311-cp311-win_amd64.whl", hash = "sha256:9e717956dcfd656f5055cc70996ee2cc82ac5149517fc8e1b60261b907740201"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:632b01153e5248c134007209b5c6348a544ce96c46005d8456de1d552455b014"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e64198f6b856d48192bf921421fdd8ad8eb35e179086e99e99f711957ffedd6e"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68811ab14087b2f6e0fc0c2bae9ad689ea3584cad6917fc57be6a48bbd012c49"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ec0c2fea1e886a19c3bee0cd19d862b3aa75dcdfb42ebe8ed30708df64687a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0c0c0003c10f54a591d220997dd27d953cd9ccc1a7294b40a4be5312be8797b"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2431b9e263af1953c55abbd3e2efca67ca80a3de8a0437cb58e2421f8184717a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a605586358893b483976cffc1723fb0f83e526e8f14c6e6614e75919d9862cf"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391d7f7f1e409d192dba8bcd42d3e4cf9e598f3979cdaed6ab11288da88cb9f2"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9ff11639a8d98969c863d4617595eb5425fd12f7c5ef6621a4b74b71ed8726d5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4eee78a04e6c67e8391edd4dad3279828dd66ac4b79570ec998e2155d2e59fd5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8fe45aa3f4aa57faabbc9cb46a93363edd6197cbc43523daea044e9ff2fea83e"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d0a3d8d6acf0c78a1fff0e210d224b821081330b8524e3e2bc5a68ef6ab5803d"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c486b4106066d502495b3025a0a7251bf37ea9540433940a23419461ab9f2a80"}, - {file = "regex-2024.5.15-cp312-cp312-win32.whl", hash = "sha256:c49e15eac7c149f3670b3e27f1f28a2c1ddeccd3a2812cba953e01be2ab9b5fe"}, - {file = "regex-2024.5.15-cp312-cp312-win_amd64.whl", hash = "sha256:673b5a6da4557b975c6c90198588181029c60793835ce02f497ea817ff647cb2"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87e2a9c29e672fc65523fb47a90d429b70ef72b901b4e4b1bd42387caf0d6835"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3bea0ba8b73b71b37ac833a7f3fd53825924165da6a924aec78c13032f20850"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfc4f82cabe54f1e7f206fd3d30fda143f84a63fe7d64a81558d6e5f2e5aaba9"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5bb9425fe881d578aeca0b2b4b3d314ec88738706f66f219c194d67179337cb"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64c65783e96e563103d641760664125e91bd85d8e49566ee560ded4da0d3e704"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cf2430df4148b08fb4324b848672514b1385ae3807651f3567871f130a728cc3"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5397de3219a8b08ae9540c48f602996aa6b0b65d5a61683e233af8605c42b0f2"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455705d34b4154a80ead722f4f185b04c4237e8e8e33f265cd0798d0e44825fa"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b2b6f1b3bb6f640c1a92be3bbfbcb18657b125b99ecf141fb3310b5282c7d4ed"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3ad070b823ca5890cab606c940522d05d3d22395d432f4aaaf9d5b1653e47ced"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5b5467acbfc153847d5adb21e21e29847bcb5870e65c94c9206d20eb4e99a384"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e6662686aeb633ad65be2a42b4cb00178b3fbf7b91878f9446075c404ada552f"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2b4c884767504c0e2401babe8b5b7aea9148680d2e157fa28f01529d1f7fcf67"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3cd7874d57f13bf70078f1ff02b8b0aa48d5b9ed25fc48547516c6aba36f5741"}, - {file = "regex-2024.5.15-cp38-cp38-win32.whl", hash = "sha256:e4682f5ba31f475d58884045c1a97a860a007d44938c4c0895f41d64481edbc9"}, - {file = "regex-2024.5.15-cp38-cp38-win_amd64.whl", hash = "sha256:d99ceffa25ac45d150e30bd9ed14ec6039f2aad0ffa6bb87a5936f5782fc1569"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13cdaf31bed30a1e1c2453ef6015aa0983e1366fad2667657dbcac7b02f67133"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cac27dcaa821ca271855a32188aa61d12decb6fe45ffe3e722401fe61e323cd1"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7dbe2467273b875ea2de38ded4eba86cbcbc9a1a6d0aa11dcf7bd2e67859c435"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f18a9a3513a99c4bef0e3efd4c4a5b11228b48aa80743be822b71e132ae4f5"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d347a741ea871c2e278fde6c48f85136c96b8659b632fb57a7d1ce1872547600"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1878b8301ed011704aea4c806a3cadbd76f84dece1ec09cc9e4dc934cfa5d4da"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4babf07ad476aaf7830d77000874d7611704a7fcf68c9c2ad151f5d94ae4bfc4"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cb514e137cb3488bce23352af3e12fb0dbedd1ee6e60da053c69fb1b29cc6c"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cdd09d47c0b2efee9378679f8510ee6955d329424c659ab3c5e3a6edea696294"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:72d7a99cd6b8f958e85fc6ca5b37c4303294954eac1376535b03c2a43eb72629"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:a094801d379ab20c2135529948cb84d417a2169b9bdceda2a36f5f10977ebc16"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c0c18345010870e58238790a6779a1219b4d97bd2e77e1140e8ee5d14df071aa"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:16093f563098448ff6b1fa68170e4acbef94e6b6a4e25e10eae8598bb1694b5d"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e38a7d4e8f633a33b4c7350fbd8bad3b70bf81439ac67ac38916c4a86b465456"}, - {file = "regex-2024.5.15-cp39-cp39-win32.whl", hash = "sha256:71a455a3c584a88f654b64feccc1e25876066c4f5ef26cd6dd711308aa538694"}, - {file = "regex-2024.5.15-cp39-cp39-win_amd64.whl", hash = "sha256:cab12877a9bdafde5500206d1020a584355a97884dfd388af3699e9137bf7388"}, - {file = "regex-2024.5.15.tar.gz", hash = "sha256:d3ee02d9e5f482cc8309134a91eeaacbdd2261ba111b0fef3748eeb4913e6a2c"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -1728,29 +1899,29 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "ruff" -version = "0.5.0" +version = "0.5.7" description = "An extremely fast Python linter and code formatter, written in Rust." optional = false python-versions = ">=3.7" files = [ - {file = "ruff-0.5.0-py3-none-linux_armv6l.whl", hash = "sha256:ee770ea8ab38918f34e7560a597cc0a8c9a193aaa01bfbd879ef43cb06bd9c4c"}, - {file = "ruff-0.5.0-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:38f3b8327b3cb43474559d435f5fa65dacf723351c159ed0dc567f7ab735d1b6"}, - {file = "ruff-0.5.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:7594f8df5404a5c5c8f64b8311169879f6cf42142da644c7e0ba3c3f14130370"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:adc7012d6ec85032bc4e9065110df205752d64010bed5f958d25dbee9ce35de3"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d505fb93b0fabef974b168d9b27c3960714d2ecda24b6ffa6a87ac432905ea38"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dc5cfd3558f14513ed0d5b70ce531e28ea81a8a3b1b07f0f48421a3d9e7d80a"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:db3ca35265de239a1176d56a464b51557fce41095c37d6c406e658cf80bbb362"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b1a321c4f68809fddd9b282fab6a8d8db796b270fff44722589a8b946925a2a8"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c4dfcd8d34b143916994b3876b63d53f56724c03f8c1a33a253b7b1e6bf2a7d"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81e5facfc9f4a674c6a78c64d38becfbd5e4f739c31fcd9ce44c849f1fad9e4c"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:e589e27971c2a3efff3fadafb16e5aef7ff93250f0134ec4b52052b673cf988d"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:d2ffbc3715a52b037bcb0f6ff524a9367f642cdc5817944f6af5479bbb2eb50e"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:cd096e23c6a4f9c819525a437fa0a99d1c67a1b6bb30948d46f33afbc53596cf"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:46e193b36f2255729ad34a49c9a997d506e58f08555366b2108783b3064a0e1e"}, - {file = "ruff-0.5.0-py3-none-win32.whl", hash = "sha256:49141d267100f5ceff541b4e06552e98527870eafa1acc9dec9139c9ec5af64c"}, - {file = "ruff-0.5.0-py3-none-win_amd64.whl", hash = "sha256:e9118f60091047444c1b90952736ee7b1792910cab56e9b9a9ac20af94cd0440"}, - {file = "ruff-0.5.0-py3-none-win_arm64.whl", hash = "sha256:ed5c4df5c1fb4518abcb57725b576659542bdbe93366f4f329e8f398c4b71178"}, - {file = "ruff-0.5.0.tar.gz", hash = "sha256:eb641b5873492cf9bd45bc9c5ae5320648218e04386a5f0c264ad6ccce8226a1"}, + {file = "ruff-0.5.7-py3-none-linux_armv6l.whl", hash = "sha256:548992d342fc404ee2e15a242cdbea4f8e39a52f2e7752d0e4cbe88d2d2f416a"}, + {file = "ruff-0.5.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00cc8872331055ee017c4f1071a8a31ca0809ccc0657da1d154a1d2abac5c0be"}, + {file = "ruff-0.5.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eaf3d86a1fdac1aec8a3417a63587d93f906c678bb9ed0b796da7b59c1114a1e"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a01c34400097b06cf8a6e61b35d6d456d5bd1ae6961542de18ec81eaf33b4cb8"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcc8054f1a717e2213500edaddcf1dbb0abad40d98e1bd9d0ad364f75c763eea"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f70284e73f36558ef51602254451e50dd6cc479f8b6f8413a95fcb5db4a55fc"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:a78ad870ae3c460394fc95437d43deb5c04b5c29297815a2a1de028903f19692"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ccd078c66a8e419475174bfe60a69adb36ce04f8d4e91b006f1329d5cd44bcf"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e31c9bad4ebf8fdb77b59cae75814440731060a09a0e0077d559a556453acbb"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d796327eed8e168164346b769dd9a27a70e0298d667b4ecee6877ce8095ec8e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:4a09ea2c3f7778cc635e7f6edf57d566a8ee8f485f3c4454db7771efb692c499"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a36d8dcf55b3a3bc353270d544fb170d75d2dff41eba5df57b4e0b67a95bb64e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9369c218f789eefbd1b8d82a8cf25017b523ac47d96b2f531eba73770971c9e5"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b88ca3db7eb377eb24fb7c82840546fb7acef75af4a74bd36e9ceb37a890257e"}, + {file = "ruff-0.5.7-py3-none-win32.whl", hash = "sha256:33d61fc0e902198a3e55719f4be6b375b28f860b09c281e4bdbf783c0566576a"}, + {file = "ruff-0.5.7-py3-none-win_amd64.whl", hash = "sha256:083bbcbe6fadb93cd86709037acc510f86eed5a314203079df174c40bbbca6b3"}, + {file = "ruff-0.5.7-py3-none-win_arm64.whl", hash = "sha256:2dca26154ff9571995107221d0aeaad0e75a77b5a682d6236cf89a58c70b76f4"}, + {file = "ruff-0.5.7.tar.gz", hash = "sha256:8dfc0a458797f5d9fb622dd0efc52d796f23f0a1493a9527f4e49a550ae9a7e5"}, ] [[package]] @@ -1796,13 +1967,13 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "syrupy" -version = "4.6.1" +version = "4.7.1" description = "Pytest Snapshot Test Utility" optional = false -python-versions = ">=3.8.1,<4" +python-versions = ">=3.8.1" files = [ - {file = "syrupy-4.6.1-py3-none-any.whl", hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133"}, - {file = "syrupy-4.6.1.tar.gz", hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36"}, + {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, + {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, ] [package.dependencies] @@ -1810,13 +1981,13 @@ pytest = ">=7.0.0,<9.0.0" [[package]] name = "tenacity" -version = "8.4.1" +version = "8.5.0" description = "Retry code until it succeeds" optional = false python-versions = ">=3.8" files = [ - {file = "tenacity-8.4.1-py3-none-any.whl", hash = "sha256:28522e692eda3e1b8f5e99c51464efcc0b9fc86933da92415168bc1c4e2308fa"}, - {file = "tenacity-8.4.1.tar.gz", hash = "sha256:54b1412b878ddf7e1f1577cd49527bad8cdef32421bd599beac0c6c3f10582fd"}, + {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, + {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, ] [package.extras] @@ -1908,13 +2079,13 @@ files = [ [[package]] name = "tqdm" -version = "4.66.4" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, - {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -1943,13 +2114,13 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0, [[package]] name = "types-requests" -version = "2.32.0.20240622" +version = "2.32.0.20240907" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240622.tar.gz", hash = "sha256:ed5e8a412fcc39159d6319385c009d642845f250c63902718f605cd90faade31"}, - {file = "types_requests-2.32.0.20240622-py3-none-any.whl", hash = "sha256:97bac6b54b5bd4cf91d407e62f0932a74821bc2211f22116d9ee1dd643826caf"}, + {file = "types-requests-2.32.0.20240907.tar.gz", hash = "sha256:ff33935f061b5e81ec87997e91050f7b4af4f82027a7a7a9d9aaea04a963fdf8"}, + {file = "types_requests-2.32.0.20240907-py3-none-any.whl", hash = "sha256:1d1e79faeaf9d42def77f3c304893dea17a97cae98168ac69f3cb465516ee8da"}, ] [package.dependencies] @@ -1968,13 +2139,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1985,43 +2156,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.1" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" -files = [ - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:da2dfdaa8006eb6a71051795856bedd97e5b03e57da96f98e375682c48850645"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e93f451f2dfa433d97765ca2634628b789b49ba8b504fdde5837cdcf25fdb53b"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ef0107bbb6a55f5be727cfc2ef945d5676b97bffb8425650dadbb184be9f9a2b"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17e32f147d8bf9657e0922c0940bcde863b894cd871dbb694beb6704cfbd2fb5"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03e70d2df2258fb6cb0e95bbdbe06c16e608af94a3ffbd2b90c3f1e83eb10767"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:123587af84260c991dc5f62a6e7ef3d1c57dfddc99faacee508c71d287248459"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:093b23e6906a8b97051191a4a0c73a77ecc958121d42346274c6af6520dec175"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:611be3904f9843f0529c35a3ff3fd617449463cb4b73b1633950b3d97fa4bfb7"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:62c613ad689ddcb11707f030e722fa929f322ef7e4f18f5335d2b73c61a85c28"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d4925e4bf7b9bddd1c3de13c9b8a2cdb89a468f640e66fbfabaf735bd85b3e35"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cad0bbd66cd59fc474b4a4376bc5ac3fc698723510cbb64091c2a793b18654db"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a3c2c317a8fb53e5b3d25790553796105501a235343f5d2bf23bb8649c2c8709"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c9904904b6564d4ee8a1ed820db76185a3c96e05560c776c79a6ce5ab71888ba"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:667f3c579e813fcbad1b784db7a1aaa96524bed53437e119f6a2f5de4db04235"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d10a681c9a1d5a77e75c48a3b8e1a9f2ae2928eda463e8d33660437705659682"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0144c0ea9997b92615af1d94afc0c217e07ce2c14912c7b1a5731776329fcfc7"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:998d2be6976a0ee3a81fb8e2777900c28641fb5bfbd0c84717d89bca0addcdc5"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e7921319fe4430b11278d924ef66d4daa469fafb1da679a2e48c935fa27af193"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f0de0f284248ab40188f23380b03b59126d1479cd59940f2a34f8852db710625"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bca36be5707e81b9e6ce3208d92d95540d4ca244c006b61511753583c81c70dd"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ab998f567ebdf6b1da7dc1e5accfaa7c6992244629c0fdaef062f43249bd8dee"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dddba7ca1c807045323b6af4ff80f5ddc4d654c8bce8317dde1bd96b128ed253"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_armv7l.whl", hash = "sha256:4513ec234c68b14d4161440e07f995f231be21a09329051e67a2118a7a612d2d"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_i686.whl", hash = "sha256:4107ac5ab936a63952dea2a46a734a23230aa2f6f9db1291bf171dac3ebd53c6"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64.whl", hash = "sha256:6e8c70d2cd745daec2a08734d9f63092b793ad97612470a0ee4cbb8f5f705c57"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f27279d060e2ab24c0aa98363ff906d2386aa6c4dc2f1a374655d4e02a6c5e5e"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_s390x.whl", hash = "sha256:f8affdf3c0f0466e69f5b3917cdd042f89c8c63aebdb9f7c078996f607cdb0f5"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ac7041b385f04c047fcc2951dc001671dee1b7e0615cde772e84b01fbf68ee84"}, - {file = "watchdog-4.0.1-py3-none-win32.whl", hash = "sha256:206afc3d964f9a233e6ad34618ec60b9837d0582b500b63687e34011e15bb429"}, - {file = "watchdog-4.0.1-py3-none-win_amd64.whl", hash = "sha256:7577b3c43e5909623149f76b099ac49a1a01ca4e167d1785c76eb52fa585745a"}, - {file = "watchdog-4.0.1-py3-none-win_ia64.whl", hash = "sha256:d7b9f5f3299e8dd230880b6c55504a1f69cf1e4316275d1b215ebdd8187ec88d"}, - {file = "watchdog-4.0.1.tar.gz", hash = "sha256:eebaacf674fa25511e8867028d281e602ee6500045b57f43b08778082f7f8b44"}, +python-versions = ">=3.9" +files = [ + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -2040,20 +2209,24 @@ files = [ [[package]] name = "zipp" -version = "3.19.2" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, - {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "9ceb64f916a6e2ac3ac6f8f0995495de1f3e15bb5e2c15dbb1ecec9cf77fefa1" +python-versions = ">=3.9,<4.0" +content-hash = "d11e5891e0d87b594d20f287cff793c80f836a0faae3648141ab62669baf7c0b" diff --git a/libs/partners/azure-dynamic-sessions/pyproject.toml b/libs/partners/azure-dynamic-sessions/pyproject.toml index b4b2a38cb32d2..9a2407fb9b6a4 100644 --- a/libs/partners/azure-dynamic-sessions/pyproject.toml +++ b/libs/partners/azure-dynamic-sessions/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-azure-dynamic-sessions" -version = "0.1.0" +version = "0.2.0" description = "An integration package connecting Azure Container Apps dynamic sessions and LangChain" authors = [] readme = "README.md" @@ -19,20 +19,24 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-azure-dynamic-sessions%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.52,<0.3" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" azure-identity = "^1.16.0" requests = "^2.31.0" [tool.ruff.lint] -select = [ "E", "F", "I", "D",] +select = ["E", "F", "I", "D"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] @@ -54,7 +58,7 @@ optional = true convention = "google" [tool.ruff.lint.per-file-ignores] -"tests/**" = [ "D",] +"tests/**" = ["D"] [tool.poetry.group.test.dependencies] pytest = "^7.3.0" @@ -64,6 +68,11 @@ syrupy = "^4.0.2" pytest-watcher = "^0.3.4" pytest-asyncio = "^0.21.1" python-dotenv = "^1.0.1" +# TODO: hack to fix 3.9 builds +cffi = [ + { version = "<1.17.1", python = "<3.10" }, + { version = "*", python = ">=3.10" }, +] [tool.poetry.group.test_integration.dependencies] pytest = "^7.3.0" @@ -76,6 +85,11 @@ codespell = "^2.2.0" ruff = "^0.5" python-dotenv = "^1.0.1" pytest = "^7.3.0" +# TODO: hack to fix 3.9 builds +cffi = [ + { version = "<1.17.1", python = "<3.10" }, + { version = "*", python = ">=3.10" }, +] [tool.poetry.group.dev.dependencies] ipykernel = "^6.29.4" diff --git a/libs/partners/azure-dynamic-sessions/scripts/check_pydantic.sh b/libs/partners/azure-dynamic-sessions/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/azure-dynamic-sessions/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/box/langchain_box/__init__.py b/libs/partners/box/langchain_box/__init__.py index 61bca92a6fb98..830436908ec69 100644 --- a/libs/partners/box/langchain_box/__init__.py +++ b/libs/partners/box/langchain_box/__init__.py @@ -2,7 +2,14 @@ from langchain_box.document_loaders import BoxLoader from langchain_box.retrievers import BoxRetriever -from langchain_box.utilities import BoxAuth, BoxAuthType, _BoxAPIWrapper +from langchain_box.utilities.box import ( + BoxAuth, + BoxAuthType, + BoxSearchOptions, + DocumentFiles, + SearchTypeFilter, + _BoxAPIWrapper, +) try: __version__ = metadata.version(__package__) @@ -16,6 +23,9 @@ "BoxRetriever", "BoxAuth", "BoxAuthType", + "BoxSearchOptions", + "DocumentFiles", + "SearchTypeFilter", "_BoxAPIWrapper", "__version__", ] diff --git a/libs/partners/box/langchain_box/document_loaders/box.py b/libs/partners/box/langchain_box/document_loaders/box.py index 742f07c361ee2..f19e4ca37854d 100644 --- a/libs/partners/box/langchain_box/document_loaders/box.py +++ b/libs/partners/box/langchain_box/document_loaders/box.py @@ -1,10 +1,11 @@ -from typing import Any, Dict, Iterator, List, Optional +from typing import Iterator, List, Optional from box_sdk_gen import FileBaseTypeField # type: ignore from langchain_core.document_loaders.base import BaseLoader from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator -from langchain_core.utils import get_from_dict_or_env +from langchain_core.utils import from_env +from pydantic import BaseModel, ConfigDict, Field, model_validator +from typing_extensions import Self from langchain_box.utilities import BoxAuth, _BoxAPIWrapper @@ -148,7 +149,9 @@ class BoxLoader(BaseLoader, BaseModel): """ - box_developer_token: Optional[str] = None + box_developer_token: Optional[str] = Field( + default_factory=from_env("BOX_DEVELOPER_TOKEN", default=None) + ) """String containing the Box Developer Token generated in the developer console""" box_auth: Optional[BoxAuth] = None @@ -170,54 +173,49 @@ class BoxLoader(BaseLoader, BaseModel): """character_limit is an int that caps the number of characters to return per document.""" - _box: Optional[_BoxAPIWrapper] + _box: Optional[_BoxAPIWrapper] = None - class Config: - arbitrary_types_allowed = True - extra = "allow" - use_enum_values = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="allow", + use_enum_values=True, + ) - @root_validator(allow_reuse=True) - def validate_box_loader_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="after") + def validate_box_loader_inputs(self) -> Self: _box = None """Validate that has either box_file_ids or box_folder_id.""" - if not values.get("box_file_ids") and not values.get("box_folder_id"): + if not self.box_file_ids and not self.box_folder_id: raise ValueError("You must provide box_file_ids or box_folder_id.") """Validate that we don't have both box_file_ids and box_folder_id.""" - if values.get("box_file_ids") and values.get("box_folder_id"): + if self.box_file_ids and self.box_folder_id: raise ValueError( "You must provide either box_file_ids or box_folder_id, not both." ) """Validate that we have either a box_developer_token or box_auth.""" - if not values.get("box_auth"): - if not get_from_dict_or_env( - values, "box_developer_token", "BOX_DEVELOPER_TOKEN" - ): + if not self.box_auth: + if not self.box_developer_token: raise ValueError( "you must provide box_developer_token or a box_auth " "generated with langchain_box.utilities.BoxAuth" ) else: - token = get_from_dict_or_env( - values, "box_developer_token", "BOX_DEVELOPER_TOKEN" - ) - _box = _BoxAPIWrapper( # type: ignore[call-arg] - box_developer_token=token, - character_limit=values.get("character_limit"), + box_developer_token=self.box_developer_token, + character_limit=self.character_limit, ) else: _box = _BoxAPIWrapper( # type: ignore[call-arg] - box_auth=values.get("box_auth"), - character_limit=values.get("character_limit"), + box_auth=self.box_auth, + character_limit=self.character_limit, ) - values["_box"] = _box + self._box = _box - return values + return self def _get_files_from_folder(self, folder_id): # type: ignore[no-untyped-def] folder_content = self.box.get_folder_items(folder_id) diff --git a/libs/partners/box/langchain_box/retrievers/box.py b/libs/partners/box/langchain_box/retrievers/box.py index de014102769b9..1c8dc550665d7 100644 --- a/libs/partners/box/langchain_box/retrievers/box.py +++ b/libs/partners/box/langchain_box/retrievers/box.py @@ -1,11 +1,13 @@ -from typing import Any, Dict, List, Optional +from typing import List, Optional from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import root_validator from langchain_core.retrievers import BaseRetriever +from langchain_core.utils import from_env +from pydantic import ConfigDict, Field, model_validator +from typing_extensions import Self -from langchain_box.utilities import BoxAuth, _BoxAPIWrapper +from langchain_box.utilities import BoxAuth, BoxSearchOptions, _BoxAPIWrapper class BoxRetriever(BaseRetriever): @@ -112,8 +114,9 @@ def format_docs(docs): he decides to go to the pool with Carlos.' """ # noqa: E501 - box_developer_token: Optional[str] = None - """String containing the Box Developer Token generated in the developer console""" + box_developer_token: Optional[str] = Field( + default_factory=from_env("BOX_DEVELOPER_TOKEN", default=None) + ) box_auth: Optional[BoxAuth] = None """Configured @@ -127,37 +130,56 @@ def format_docs(docs): """character_limit is an int that caps the number of characters to return per document.""" + box_search_options: Optional[BoxSearchOptions] = None + """Search options to configure BoxRetriever to narrow search results.""" + + answer: Optional[bool] = True + """When using Box AI, return the answer to the prompt as a `Document` + object. Returned as `List[Document`]. Default is `True`.""" + + citations: Optional[bool] = False + """When using Box AI, return the citations from to the prompt as + `Document` objects. Can be used with answer. Returned as `List[Document`]. + Default is `False`.""" + _box: Optional[_BoxAPIWrapper] - class Config: - arbitrary_types_allowed = True - extra = "allow" + model_config = ConfigDict( + arbitrary_types_allowed=True, + extra="allow", + ) - @root_validator(allow_reuse=True) - def validate_box_loader_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="after") + def validate_box_loader_inputs(self) -> Self: _box = None """Validate that we have either a box_developer_token or box_auth.""" - if not values.get("box_auth") and not values.get("box_developer_token"): + if not self.box_auth and not self.box_developer_token: raise ValueError( "you must provide box_developer_token or a box_auth " "generated with langchain_box.utilities.BoxAuth" ) _box = _BoxAPIWrapper( # type: ignore[call-arg] - box_developer_token=values.get("box_developer_token"), - box_auth=values.get("box_auth"), - character_limit=values.get("character_limit"), + box_developer_token=self.box_developer_token, + box_auth=self.box_auth, + character_limit=self.character_limit, + box_search_options=self.box_search_options, ) - values["_box"] = _box + self._box = _box - return values + return self def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: if self.box_file_ids: # If using Box AI - return self._box.ask_box_ai(query=query, box_file_ids=self.box_file_ids) # type: ignore[union-attr] + return self._box.ask_box_ai( # type: ignore[union-attr] + query=query, + box_file_ids=self.box_file_ids, + answer=self.answer, # type: ignore[arg-type] + citations=self.citations, # type: ignore[arg-type] + ) else: # If using Search return self._box.search_box(query=query) # type: ignore[union-attr] diff --git a/libs/partners/box/langchain_box/utilities/__init__.py b/libs/partners/box/langchain_box/utilities/__init__.py index 80aca95f4789b..f95d17b753d13 100644 --- a/libs/partners/box/langchain_box/utilities/__init__.py +++ b/libs/partners/box/langchain_box/utilities/__init__.py @@ -1,5 +1,19 @@ """Box API Utilities.""" -from langchain_box.utilities.box import BoxAuth, BoxAuthType, _BoxAPIWrapper +from langchain_box.utilities.box import ( + BoxAuth, + BoxAuthType, + BoxSearchOptions, + DocumentFiles, + SearchTypeFilter, + _BoxAPIWrapper, +) -__all__ = ["BoxAuth", "BoxAuthType", "_BoxAPIWrapper"] +__all__ = [ + "BoxAuth", + "BoxAuthType", + "BoxSearchOptions", + "DocumentFiles", + "SearchTypeFilter", + "_BoxAPIWrapper", +] diff --git a/libs/partners/box/langchain_box/utilities/box.py b/libs/partners/box/langchain_box/utilities/box.py index ade944bdc0c28..8c87a8dc4cd19 100644 --- a/libs/partners/box/langchain_box/utilities/box.py +++ b/libs/partners/box/langchain_box/utilities/box.py @@ -6,8 +6,9 @@ import box_sdk_gen # type: ignore import requests from langchain_core.documents import Document -from langchain_core.pydantic_v1 import BaseModel, root_validator -from langchain_core.utils import get_from_dict_or_env +from langchain_core.utils import from_env +from pydantic import BaseModel, ConfigDict, Field, model_validator +from typing_extensions import Self class DocumentFiles(Enum): @@ -312,17 +313,25 @@ class BoxAuth(BaseModel): """``langchain_box.utilities.BoxAuthType``. Enum describing how to authenticate against Box""" - box_developer_token: Optional[str] = None + box_developer_token: Optional[str] = Field( + default_factory=from_env("BOX_DEVELOPER_TOKEN", default=None) + ) """ If using ``BoxAuthType.TOKEN``, provide your token here""" - box_jwt_path: Optional[str] = None + box_jwt_path: Optional[str] = Field( + default_factory=from_env("BOX_JWT_PATH", default=None) + ) """If using ``BoxAuthType.JWT``, provide local path to your JWT configuration file""" - box_client_id: Optional[str] = None + box_client_id: Optional[str] = Field( + default_factory=from_env("BOX_CLIENT_ID", default=None) + ) """If using ``BoxAuthType.CCG``, provide your app's client ID""" - box_client_secret: Optional[str] = None + box_client_secret: Optional[str] = Field( + default_factory=from_env("BOX_CLIENT_SECRET", default=None) + ) """If using ``BoxAuthType.CCG``, provide your app's client secret""" box_enterprise_id: Optional[str] = None @@ -336,137 +345,122 @@ class BoxAuth(BaseModel): _box_client: Optional[box_sdk_gen.BoxClient] = None _custom_header: Dict = dict({"x-box-ai-library": "langchain"}) - class Config: - arbitrary_types_allowed = True - use_enum_values = True - extra = "allow" + model_config = ConfigDict( + arbitrary_types_allowed=True, + use_enum_values=True, + extra="allow", + ) - @root_validator() - def validate_box_auth_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="after") + def validate_box_auth_inputs(self) -> Self: """Validate auth_type is set""" - if not values.get("auth_type"): + if not self.auth_type: raise ValueError("Auth type must be set.") """Validate that TOKEN auth type provides box_developer_token.""" - if values.get("auth_type") == "token": - if not get_from_dict_or_env( - values, "box_developer_token", "BOX_DEVELOPER_TOKEN" - ): - raise ValueError( - f"{values.get('auth_type')} requires box_developer_token to be set" - ) + if self.auth_type == "token" and not self.box_developer_token: + raise ValueError(f"{self.auth_type} requires box_developer_token to be set") """Validate that JWT auth type provides box_jwt_path.""" - if values.get("auth_type") == "jwt": - if not get_from_dict_or_env(values, "box_jwt_path", "BOX_JWT_PATH"): - raise ValueError( - f"{values.get('auth_type')} requires box_jwt_path to be set" - ) + if self.auth_type == "jwt" and not self.box_jwt_path: + raise ValueError(f"{self.auth_type} requires box_jwt_path to be set") """Validate that CCG auth type provides box_client_id and box_client_secret and either box_enterprise_id or box_user_id.""" - if values.get("auth_type") == "ccg": + if self.auth_type == "ccg": if ( - not get_from_dict_or_env(values, "box_client_id", "BOX_CLIENT_ID") - or not get_from_dict_or_env( - values, "box_client_secret", "BOX_CLIENT_SECRET" - ) - or ( - not values.get("box_enterprise_id") - and not values.get("box_user_id") - ) + not self.box_client_id + or not self.box_client_secret + or (not self.box_enterprise_id and not self.box_user_id) ): raise ValueError( - f"{values.get('auth_type')} requires box_client_id, \ - box_client_secret, and box_enterprise_id." + f"{self.auth_type} requires box_client_id, \ + box_client_secret, and box_enterprise_id/box_user_id." ) - return values + return self def _authorize(self) -> None: - match self.auth_type: - case "token": - try: - auth = box_sdk_gen.BoxDeveloperTokenAuth( - token=self.box_developer_token - ) - self._box_client = box_sdk_gen.BoxClient( - auth=auth - ).with_extra_headers(extra_headers=self._custom_header) + if self.auth_type == "token": + try: + auth = box_sdk_gen.BoxDeveloperTokenAuth(token=self.box_developer_token) + self._box_client = box_sdk_gen.BoxClient(auth=auth).with_extra_headers( + extra_headers=self._custom_header + ) - except box_sdk_gen.BoxSDKError as bse: - raise RuntimeError( - f"Error getting client from developer token: {bse.message}" - ) - except Exception as ex: - raise ValueError( - f"Invalid Box developer token. Please verify your \ - token and try again.\n{ex}" - ) from ex + except box_sdk_gen.BoxSDKError as bse: + raise RuntimeError( + f"Error getting client from developer token: {bse.message}" + ) + except Exception as ex: + raise ValueError( + f"Invalid Box developer token. Please verify your \ + token and try again.\n{ex}" + ) from ex + + elif self.auth_type == "jwt": + try: + jwt_config = box_sdk_gen.JWTConfig.from_config_file( + config_file_path=self.box_jwt_path + ) + auth = box_sdk_gen.BoxJWTAuth(config=jwt_config) - case "jwt": - try: - jwt_config = box_sdk_gen.JWTConfig.from_config_file( - config_file_path=self.box_jwt_path - ) - auth = box_sdk_gen.BoxJWTAuth(config=jwt_config) + self._box_client = box_sdk_gen.BoxClient(auth=auth).with_extra_headers( + extra_headers=self._custom_header + ) + if self.box_user_id is not None: + user_auth = auth.with_user_subject(self.box_user_id) self._box_client = box_sdk_gen.BoxClient( - auth=auth + auth=user_auth ).with_extra_headers(extra_headers=self._custom_header) - if self.box_user_id is not None: - user_auth = auth.with_user_subject(self.box_user_id) - self._box_client = box_sdk_gen.BoxClient( - auth=user_auth - ).with_extra_headers(extra_headers=self._custom_header) - - except box_sdk_gen.BoxSDKError as bse: - raise RuntimeError( - f"Error getting client from jwt token: {bse.message}" + except box_sdk_gen.BoxSDKError as bse: + raise RuntimeError( + f"Error getting client from jwt token: {bse.message}" + ) + except Exception as ex: + raise ValueError( + "Error authenticating. Please verify your JWT config \ + and try again." + ) from ex + + elif self.auth_type == "ccg": + try: + if self.box_user_id is not None: + ccg_config = box_sdk_gen.CCGConfig( + client_id=self.box_client_id, + client_secret=self.box_client_secret, + user_id=self.box_user_id, ) - except Exception as ex: - raise ValueError( - "Error authenticating. Please verify your JWT config \ - and try again." - ) from ex - - case "ccg": - try: - if self.box_user_id is not None: - ccg_config = box_sdk_gen.CCGConfig( - client_id=self.box_client_id, - client_secret=self.box_client_secret, - user_id=self.box_user_id, - ) - else: - ccg_config = box_sdk_gen.CCGConfig( - client_id=self.box_client_id, - client_secret=self.box_client_secret, - enterprise_id=self.box_enterprise_id, - ) - auth = box_sdk_gen.BoxCCGAuth(config=ccg_config) + else: + ccg_config = box_sdk_gen.CCGConfig( + client_id=self.box_client_id, + client_secret=self.box_client_secret, + enterprise_id=self.box_enterprise_id, + ) + auth = box_sdk_gen.BoxCCGAuth(config=ccg_config) - self._box_client = box_sdk_gen.BoxClient( - auth=auth - ).with_extra_headers(extra_headers=self._custom_header) + self._box_client = box_sdk_gen.BoxClient(auth=auth).with_extra_headers( + extra_headers=self._custom_header + ) - except box_sdk_gen.BoxSDKError as bse: - raise RuntimeError( - f"Error getting client from ccg token: {bse.message}" - ) - except Exception as ex: - raise ValueError( - "Error authenticating. Please verify you are providing a \ - valid client id, secret and either a valid user ID or \ - enterprise ID." - ) from ex - - case _: - raise ValueError( - f"{self.auth_type} is not a valid auth_type. Value must be \ - TOKEN, CCG, or JWT." + except box_sdk_gen.BoxSDKError as bse: + raise RuntimeError( + f"Error getting client from ccg token: {bse.message}" ) + except Exception as ex: + raise ValueError( + "Error authenticating. Please verify you are providing a \ + valid client id, secret and either a valid user ID or \ + enterprise ID." + ) from ex + + else: + raise ValueError( + f"{self.auth_type} is not a valid auth_type. Value must be \ + TOKEN, CCG, or JWT." + ) def get_client(self) -> box_sdk_gen.BoxClient: """Instantiate the Box SDK.""" @@ -476,10 +470,134 @@ def get_client(self) -> box_sdk_gen.BoxClient: return self._box_client +class SearchTypeFilter(Enum): + """SearchTypeFilter. + + Enum to limit the what we search. + """ + + NAME = "name" + """The name of the item, as defined by its ``name`` field.""" + + DESCRIPTION = "description" + """The description of the item, as defined by its ``description`` field.""" + + FILE_CONTENT = "file_content" + """The actual content of the file.""" + + COMMENTS = "comments" + """The content of any of the comments on a file or folder.""" + + TAGS = "tags" + """Any tags that are applied to an item, as defined by its ``tags`` field.""" + + +class BoxSearchOptions(BaseModel): + ancestor_folder_ids: Optional[List[str]] = None + """Limits the search results to items within the given list of folders, + defined as a comma separated lists of folder IDs.""" + + search_type_filter: Optional[List[SearchTypeFilter]] = None + """Limits the search results to any items that match the search query for a + specific part of the file, for example the file description. + + Content types are defined as a comma separated lists of Box recognized + content types. The allowed content types are as follows. Default is all.""" + + created_date_range: Optional[List[str]] = None + """Limits the search results to any items created within a given date range. + + Date ranges are defined as comma separated RFC3339 timestamps. + + If the the start date is omitted (,2014-05-17T13:35:01-07:00) anything + created before the end date will be returned. + + If the end date is omitted (2014-05-15T13:35:01-07:00,) the current + date will be used as the end date instead.""" + + file_extensions: Optional[List[DocumentFiles]] = None + """Limits the search results to any files that match any of the provided + file extensions. This list is a comma-separated list of + ``langchain_box.utilities.DocumentFiles`` entries""" + + k: Optional[int] = 100 + """Defines the maximum number of items to return. Defaults to 100, maximum + is 200.""" + + size_range: Optional[List[int]] = None + """Limits the search results to any items with a size within a given file + size range. This applied to files and folders. + + Size ranges are defined as comma separated list of a lower and upper + byte size limit (inclusive). + + The upper and lower bound can be omitted to create open ranges.""" + + updated_date_range: Optional[List[str]] = None + """Limits the search results to any items updated within a given date range. + + Date ranges are defined as comma separated RFC3339 timestamps. + + If the start date is omitted (,2014-05-17T13:35:01-07:00) anything + updated before the end date will be returned. + + If the end date is omitted (2014-05-15T13:35:01-07:00,) the current + date will be used as the end date instead.""" + + class Config: + arbitrary_types_allowed = True + use_enum_values = True + extra = "allow" + + @model_validator(mode="after") + def validate_search_options(self) -> Self: + """Validate k is between 1 and 200""" + if self.k > 200 or self.k < 1: # type: ignore[operator] + raise ValueError( + f"Invalid setting of k {self.k}. " "Value must be between 1 and 200." + ) + + """Validate created_date_range start date is before end date""" + if self.created_date_range: + if ( + self.created_date_range[0] is None # type: ignore[index] + or self.created_date_range[0] == "" # type: ignore[index] + or self.created_date_range[1] is None # type: ignore[index] + or self.created_date_range[1] == "" # type: ignore[index] + ): + pass + else: + if ( + self.created_date_range[0] # type: ignore[index] + > self.created_date_range[1] # type: ignore[index] + ): + raise ValueError("Start date must be before end date.") + + """Validate updated_date_range start date is before end date""" + if self.updated_date_range: + if ( + self.updated_date_range[0] is None # type: ignore[index] + or self.updated_date_range[0] == "" # type: ignore[index] + or self.updated_date_range[1] is None # type: ignore[index] + or self.updated_date_range[1] == "" # type: ignore[index] + ): + pass + else: + if ( + self.updated_date_range[0] # type: ignore[index] + > self.updated_date_range[1] # type: ignore[index] + ): + raise ValueError("Start date must be before end date.") + + return self + + class _BoxAPIWrapper(BaseModel): """Wrapper for Box API.""" - box_developer_token: Optional[str] = None + box_developer_token: Optional[str] = Field( + default_factory=from_env("BOX_DEVELOPER_TOKEN", default=None) + ) """String containing the Box Developer Token generated in the developer console""" box_auth: Optional[BoxAuth] = None @@ -489,30 +607,32 @@ class _BoxAPIWrapper(BaseModel): """character_limit is an int that caps the number of characters to return per document.""" + box_search_options: Optional[BoxSearchOptions] = None + """Search options to configure BoxRetriever to narrow search results.""" + _box: Optional[box_sdk_gen.BoxClient] - class Config: - arbitrary_types_allowed = True - use_enum_values = True - extra = "allow" + model_config = ConfigDict( + arbitrary_types_allowed=True, + use_enum_values=True, + extra="allow", + ) - @root_validator(allow_reuse=True) - def validate_box_api_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]: - values["_box"] = None + @model_validator(mode="after") + def validate_box_api_inputs(self) -> Self: + self._box = None """Validate that TOKEN auth type provides box_developer_token.""" - if not values.get("box_auth"): - if not get_from_dict_or_env( - values, "box_developer_token", "BOX_DEVELOPER_TOKEN" - ): + if not self.box_auth: + if not self.box_developer_token: raise ValueError( "You must configure either box_developer_token of box_auth" ) else: - box_auth = values.get("box_auth") - values["_box"] = box_auth.get_client() # type: ignore[union-attr] + box_auth = self.box_auth + self._box = box_auth.get_client() # type: ignore[union-attr] - return values + return self def get_box_client(self) -> box_sdk_gen.BoxClient: box_auth = BoxAuth( @@ -641,9 +761,25 @@ def search_box(self, query: str) -> List[Document]: files = [] try: - results = self._box.search.search_for_content( # type: ignore[union-attr] - query=query, fields=["id", "type", "extension"] - ) + results = None + + if self.box_search_options is None: + results = self._box.search.search_for_content( # type: ignore[union-attr] + query=query, fields=["id", "type", "extension"], type="file" + ) + else: + results = self._box.search.search_for_content( # type: ignore[union-attr] + query=query, + fields=["id", "type", "extension"], + type="file", + ancestor_folder_ids=self.box_search_options.ancestor_folder_ids, # type: ignore[union-attr] + content_types=self.box_search_options.search_type_filter, # type: ignore[union-attr] + created_at_range=self.box_search_options.created_date_range, # type: ignore[union-attr] + file_extensions=self.box_search_options.file_extensions, # type: ignore[union-attr] + limit=self.box_search_options.k, # type: ignore[union-attr] + size_range=self.box_search_options.size_range, # type: ignore[union-attr] + updated_at_range=self.box_search_options.updated_date_range, # type: ignore[union-attr] + ) if results.entries is None or len(results.entries) <= 0: return None # type: ignore[return-value] @@ -669,7 +805,13 @@ def search_box(self, query: str) -> List[Document]: f"BoxSDKError: Error getting search results: {bse.message}" ) - def ask_box_ai(self, query: str, box_file_ids: List[str]) -> List[Document]: + def ask_box_ai( + self, + query: str, + box_file_ids: List[str], + answer: bool = True, + citations: bool = False, + ) -> List[Document]: if self._box is None: self.get_box_client() @@ -683,13 +825,16 @@ def ask_box_ai(self, query: str, box_file_ids: List[str]) -> List[Document]: items = [] for file_id in box_file_ids: - item = box_sdk_gen.CreateAiAskItems( - id=file_id, type=box_sdk_gen.CreateAiAskItemsTypeField.FILE.value + item = box_sdk_gen.AiItemBase( + id=file_id, type=box_sdk_gen.AiItemBaseTypeField.FILE.value ) items.append(item) try: - response = self._box.ai.create_ai_ask(ai_mode, query, items) # type: ignore[union-attr] + response = self._box.ai.create_ai_ask( # type: ignore[union-attr] + mode=ai_mode, prompt=query, items=items, include_citations=citations + ) + except box_sdk_gen.BoxAPIError as bae: raise RuntimeError( f"BoxAPIError: Error getting Box AI result: {bae.message}" @@ -699,8 +844,32 @@ def ask_box_ai(self, query: str, box_file_ids: List[str]) -> List[Document]: f"BoxSDKError: Error getting Box AI result: {bse.message}" ) - content = response.answer + docs = [] + + if answer: + content = response.answer + metadata = {"source": "Box AI", "title": f"Box AI {query}"} + + document = Document(page_content=content, metadata=metadata) + docs.append(document) + + if citations: + box_citations = response.citations + + for citation in box_citations: + content = citation.content + file_name = citation.name + file_id = citation.id + file_type = citation.type.value + + metadata = { + "source": f"Box AI {query}", + "file_name": file_name, + "file_id": file_id, + "file_type": file_type, + } - metadata = {"source": "Box AI", "title": f"Box AI {query}"} + document = Document(page_content=content, metadata=metadata) + docs.append(document) - return [Document(page_content=content, metadata=metadata)] + return docs diff --git a/libs/partners/box/poetry.lock b/libs/partners/box/poetry.lock index b765ec94db31f..c09158c9e79aa 100644 --- a/libs/partners/box/poetry.lock +++ b/libs/partners/box/poetry.lock @@ -11,15 +11,37 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] +[[package]] +name = "anyio" +version = "4.6.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.9" +files = [ + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, +] + +[package.dependencies] +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] + [[package]] name = "box-sdk-gen" -version = "1.3.0" -description = "[Box Platform](https://box.dev) provides functionality to provide access to content stored within [Box](https://box.com). It provides endpoints for basic manipulation of files and folders, management of users within an enterprise, as well as more complex topics such as legal holds and retention policies." +version = "1.5.1" +description = "Official Box Python Generated SDK" optional = false python-versions = "*" files = [ - {file = "box_sdk_gen-1.3.0-py3-none-any.whl", hash = "sha256:9b3d5a8196869323031eff49d46c85b9b7734353b8fba52614296369f4d24b7d"}, - {file = "box_sdk_gen-1.3.0.tar.gz", hash = "sha256:e0a183aecf5a10989023b12e253c758204b2b1bb902224421d06a7015ce8a1ac"}, + {file = "box_sdk_gen-1.5.1-py3-none-any.whl", hash = "sha256:3aba4615940566df86a236781ac34defd33ac127b9027a8a73775997b6a1ef97"}, + {file = "box_sdk_gen-1.5.1.tar.gz", hash = "sha256:2171b5a9b9d93014aecd4a883767459839515ecab18c6358868a5457401d896e"}, ] [package.dependencies] @@ -35,89 +57,89 @@ test = ["cryptography (>=3)", "pyjwt (>=1.7.0)", "pytest", "pytest-cov", "pytest [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] name = "cffi" -version = "1.17.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -252,38 +274,38 @@ files = [ [[package]] name = "cryptography" -version = "43.0.0" +version = "43.0.1" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." optional = false python-versions = ">=3.7" files = [ - {file = "cryptography-43.0.0-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:64c3f16e2a4fc51c0d06af28441881f98c5d91009b8caaff40cf3548089e9c74"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3dcdedae5c7710b9f97ac6bba7e1052b95c7083c9d0e9df96e02a1932e777895"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d9a1eca329405219b605fac09ecfc09ac09e595d6def650a437523fcd08dd22"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ea9e57f8ea880eeea38ab5abf9fbe39f923544d7884228ec67d666abd60f5a47"}, - {file = "cryptography-43.0.0-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:9a8d6802e0825767476f62aafed40532bd435e8a5f7d23bd8b4f5fd04cc80ecf"}, - {file = "cryptography-43.0.0-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:cc70b4b581f28d0a254d006f26949245e3657d40d8857066c2ae22a61222ef55"}, - {file = "cryptography-43.0.0-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:4a997df8c1c2aae1e1e5ac49c2e4f610ad037fc5a3aadc7b64e39dea42249431"}, - {file = "cryptography-43.0.0-cp37-abi3-win32.whl", hash = "sha256:6e2b11c55d260d03a8cf29ac9b5e0608d35f08077d8c087be96287f43af3ccdc"}, - {file = "cryptography-43.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:31e44a986ceccec3d0498e16f3d27b2ee5fdf69ce2ab89b52eaad1d2f33d8778"}, - {file = "cryptography-43.0.0-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:7b3f5fe74a5ca32d4d0f302ffe6680fcc5c28f8ef0dc0ae8f40c0f3a1b4fca66"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac1955ce000cb29ab40def14fd1bbfa7af2017cca696ee696925615cafd0dce5"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:299d3da8e00b7e2b54bb02ef58d73cd5f55fb31f33ebbf33bd00d9aa6807df7e"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:ee0c405832ade84d4de74b9029bedb7b31200600fa524d218fc29bfa371e97f5"}, - {file = "cryptography-43.0.0-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:cb013933d4c127349b3948aa8aaf2f12c0353ad0eccd715ca789c8a0f671646f"}, - {file = "cryptography-43.0.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:fdcb265de28585de5b859ae13e3846a8e805268a823a12a4da2597f1f5afc9f0"}, - {file = "cryptography-43.0.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2905ccf93a8a2a416f3ec01b1a7911c3fe4073ef35640e7ee5296754e30b762b"}, - {file = "cryptography-43.0.0-cp39-abi3-win32.whl", hash = "sha256:47ca71115e545954e6c1d207dd13461ab81f4eccfcb1345eac874828b5e3eaaf"}, - {file = "cryptography-43.0.0-cp39-abi3-win_amd64.whl", hash = "sha256:0663585d02f76929792470451a5ba64424acc3cd5227b03921dab0e2f27b1709"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c6d112bf61c5ef44042c253e4859b3cbbb50df2f78fa8fae6747a7814484a70"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:844b6d608374e7d08f4f6e6f9f7b951f9256db41421917dfb2d003dde4cd6b66"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:51956cf8730665e2bdf8ddb8da0056f699c1a5715648c1b0144670c1ba00b48f"}, - {file = "cryptography-43.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:aae4d918f6b180a8ab8bf6511a419473d107df4dbb4225c7b48c5c9602c38c7f"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:232ce02943a579095a339ac4b390fbbe97f5b5d5d107f8a08260ea2768be8cc2"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:5bcb8a5620008a8034d39bce21dc3e23735dfdb6a33a06974739bfa04f853947"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:08a24a7070b2b6804c1940ff0f910ff728932a9d0e80e7814234269f9d46d069"}, - {file = "cryptography-43.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e9c5266c432a1e23738d178e51c2c7a5e2ddf790f248be939448c0ba2021f9d1"}, - {file = "cryptography-43.0.0.tar.gz", hash = "sha256:b88075ada2d51aa9f18283532c9f60e72170041bba88d7f37e49cbb10275299e"}, + {file = "cryptography-43.0.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:8385d98f6a3bf8bb2d65a73e17ed87a3ba84f6991c155691c51112075f9ffc5d"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e613d7077ac613e399270253259d9d53872aaf657471473ebfc9a52935c062"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68aaecc4178e90719e95298515979814bda0cbada1256a4485414860bd7ab962"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:de41fd81a41e53267cb020bb3a7212861da53a7d39f863585d13ea11049cf277"}, + {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f98bf604c82c416bc829e490c700ca1553eafdf2912a91e23a79d97d9801372a"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:61ec41068b7b74268fa86e3e9e12b9f0c21fcf65434571dbb13d954bceb08042"}, + {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:014f58110f53237ace6a408b5beb6c427b64e084eb451ef25a28308270086494"}, + {file = "cryptography-43.0.1-cp37-abi3-win32.whl", hash = "sha256:2bd51274dcd59f09dd952afb696bf9c61a7a49dfc764c04dd33ef7a6b502a1e2"}, + {file = "cryptography-43.0.1-cp37-abi3-win_amd64.whl", hash = "sha256:666ae11966643886c2987b3b721899d250855718d6d9ce41b521252a17985f4d"}, + {file = "cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:ac119bb76b9faa00f48128b7f5679e1d8d437365c5d26f1c2c3f0da4ce1b553d"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bbcce1a551e262dfbafb6e6252f1ae36a248e615ca44ba302df077a846a8806"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58d4e9129985185a06d849aa6df265bdd5a74ca6e1b736a77959b498e0505b85"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:d03a475165f3134f773d1388aeb19c2d25ba88b6a9733c5c590b9ff7bbfa2e0c"}, + {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:511f4273808ab590912a93ddb4e3914dfd8a388fed883361b02dea3791f292e1"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:80eda8b3e173f0f247f711eef62be51b599b5d425c429b5d4ca6a05e9e856baa"}, + {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:38926c50cff6f533f8a2dae3d7f19541432610d114a70808f0926d5aaa7121e4"}, + {file = "cryptography-43.0.1-cp39-abi3-win32.whl", hash = "sha256:a575913fb06e05e6b4b814d7f7468c2c660e8bb16d8d5a1faf9b33ccc569dd47"}, + {file = "cryptography-43.0.1-cp39-abi3-win_amd64.whl", hash = "sha256:d75601ad10b059ec832e78823b348bfa1a59f6b8d545db3a24fd44362a1564cb"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ea25acb556320250756e53f9e20a4177515f012c9eaea17eb7587a8c4d8ae034"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c1332724be35d23a854994ff0b66530119500b6053d0bd3363265f7e5e77288d"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fba1007b3ef89946dbbb515aeeb41e30203b004f0b4b00e5e16078b518563289"}, + {file = "cryptography-43.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5b43d1ea6b378b54a1dc99dd8a2b5be47658fe9a7ce0a58ff0b55f4b43ef2b84"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:88cce104c36870d70c49c7c8fd22885875d950d9ee6ab54df2745f83ba0dc365"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d3cdb25fa98afdd3d0892d132b8d7139e2c087da1712041f6b762e4f807cc96"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e710bf40870f4db63c3d7d929aa9e09e4e7ee219e703f949ec4073b4294f6172"}, + {file = "cryptography-43.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7c05650fe8023c5ed0d46793d4b7d7e6cd9c04e68eabe5b0aeea836e37bdcec2"}, + {file = "cryptography-43.0.1.tar.gz", hash = "sha256:203e92a75716d8cfb491dc47c79e17d0d9207ccffcbcb35f598fbe463ae3444d"}, ] [package.dependencies] @@ -296,7 +318,7 @@ nox = ["nox"] pep8test = ["check-sdist", "click", "mypy", "ruff"] sdist = ["build"] ssh = ["bcrypt (>=3.1.5)"] -test = ["certifi", "cryptography-vectors (==43.0.0)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] +test = ["certifi", "cryptography-vectors (==43.0.1)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] test-randomorder = ["pytest-randomly"] [[package]] @@ -313,17 +335,77 @@ files = [ [package.extras] test = ["pytest (>=6)"] +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.2" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -362,19 +444,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.28" +version = "0.3.6" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.125" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -387,16 +469,17 @@ url = "../../core" [[package]] name = "langsmith" -version = "0.1.99" +version = "0.1.129" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.99-py3-none-any.whl", hash = "sha256:ef8d1d74a2674c514aa429b0171a9fbb661207dc3835142cca0e8f1bf97b26b0"}, - {file = "langsmith-0.1.99.tar.gz", hash = "sha256:b5c6a1f158abda61600a4a445081ee848b4a28b758d91f2793dc02aeffafcaf1"}, + {file = "langsmith-0.1.129-py3-none-any.whl", hash = "sha256:31393fbbb17d6be5b99b9b22d530450094fab23c6c37281a6a6efb2143d05347"}, + {file = "langsmith-0.1.129.tar.gz", hash = "sha256:6c3ba66471bef41b9f87da247cc0b493268b3f54656f73648a256a205261b6a0"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, @@ -406,38 +489,38 @@ requests = ">=2,<3" [[package]] name = "mypy" -version = "1.11.1" +version = "1.11.2" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a32fc80b63de4b5b3e65f4be82b4cfa362a46702672aa6a0f443b4689af7008c"}, - {file = "mypy-1.11.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c1952f5ea8a5a959b05ed5f16452fddadbaae48b5d39235ab4c3fc444d5fd411"}, - {file = "mypy-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1e30dc3bfa4e157e53c1d17a0dad20f89dc433393e7702b813c10e200843b03"}, - {file = "mypy-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2c63350af88f43a66d3dfeeeb8d77af34a4f07d760b9eb3a8697f0386c7590b4"}, - {file = "mypy-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:a831671bad47186603872a3abc19634f3011d7f83b083762c942442d51c58d58"}, - {file = "mypy-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7b6343d338390bb946d449677726edf60102a1c96079b4f002dedff375953fc5"}, - {file = "mypy-1.11.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4fe9f4e5e521b458d8feb52547f4bade7ef8c93238dfb5bbc790d9ff2d770ca"}, - {file = "mypy-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:886c9dbecc87b9516eff294541bf7f3655722bf22bb898ee06985cd7269898de"}, - {file = "mypy-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fca4a60e1dd9fd0193ae0067eaeeb962f2d79e0d9f0f66223a0682f26ffcc809"}, - {file = "mypy-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:0bd53faf56de9643336aeea1c925012837432b5faf1701ccca7fde70166ccf72"}, - {file = "mypy-1.11.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f39918a50f74dc5969807dcfaecafa804fa7f90c9d60506835036cc1bc891dc8"}, - {file = "mypy-1.11.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0bc71d1fb27a428139dd78621953effe0d208aed9857cb08d002280b0422003a"}, - {file = "mypy-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b868d3bcff720dd7217c383474008ddabaf048fad8d78ed948bb4b624870a417"}, - {file = "mypy-1.11.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a707ec1527ffcdd1c784d0924bf5cb15cd7f22683b919668a04d2b9c34549d2e"}, - {file = "mypy-1.11.1-cp312-cp312-win_amd64.whl", hash = "sha256:64f4a90e3ea07f590c5bcf9029035cf0efeae5ba8be511a8caada1a4893f5525"}, - {file = "mypy-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:749fd3213916f1751fff995fccf20c6195cae941dc968f3aaadf9bb4e430e5a2"}, - {file = "mypy-1.11.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b639dce63a0b19085213ec5fdd8cffd1d81988f47a2dec7100e93564f3e8fb3b"}, - {file = "mypy-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4c956b49c5d865394d62941b109728c5c596a415e9c5b2be663dd26a1ff07bc0"}, - {file = "mypy-1.11.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:45df906e8b6804ef4b666af29a87ad9f5921aad091c79cc38e12198e220beabd"}, - {file = "mypy-1.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:d44be7551689d9d47b7abc27c71257adfdb53f03880841a5db15ddb22dc63edb"}, - {file = "mypy-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2684d3f693073ab89d76da8e3921883019ea8a3ec20fa5d8ecca6a2db4c54bbe"}, - {file = "mypy-1.11.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:79c07eb282cb457473add5052b63925e5cc97dfab9812ee65a7c7ab5e3cb551c"}, - {file = "mypy-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11965c2f571ded6239977b14deebd3f4c3abd9a92398712d6da3a772974fad69"}, - {file = "mypy-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a2b43895a0f8154df6519706d9bca8280cda52d3d9d1514b2d9c3e26792a0b74"}, - {file = "mypy-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:1a81cf05975fd61aec5ae16501a091cfb9f605dc3e3c878c0da32f250b74760b"}, - {file = "mypy-1.11.1-py3-none-any.whl", hash = "sha256:0624bdb940255d2dd24e829d99a13cfeb72e4e9031f9492148f410ed30bcab54"}, - {file = "mypy-1.11.1.tar.gz", hash = "sha256:f404a0b069709f18bbdb702eb3dcfe51910602995de00bd39cea3050b5772d08"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, + {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, + {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, + {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, + {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, + {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, + {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, + {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, + {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, + {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, + {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, + {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, + {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, + {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, + {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, + {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, + {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, + {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, ] [package.dependencies] @@ -567,119 +650,120 @@ files = [ [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -910,6 +994,17 @@ files = [ {file = "ruff-0.1.15.tar.gz", hash = "sha256:f6dfa8c1b21c913c326919056c390966648b680966febcb796cc9d1aaab8564e"}, ] +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + [[package]] name = "tenacity" version = "8.5.0" @@ -938,13 +1033,13 @@ files = [ [[package]] name = "types-requests" -version = "2.32.0.20240712" +version = "2.32.0.20240914" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, + {file = "types-requests-2.32.0.20240914.tar.gz", hash = "sha256:2850e178db3919d9bf809e434eef65ba49d0e7e33ac92d588f4a5e295fffd405"}, + {file = "types_requests-2.32.0.20240914-py3-none-any.whl", hash = "sha256:59c2f673eb55f32a99b2894faf6020e1a9f4a402ad0f192bfee0b64469054310"}, ] [package.dependencies] @@ -963,13 +1058,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -981,4 +1076,4 @@ zstd = ["zstandard (>=0.18.0)"] [metadata] lock-version = "2.0" python-versions = ">=3.9.0,<3.13" -content-hash = "2309e22ed71789020df9f24af1408d12054d125766a9c2295672b880f548c506" +content-hash = "fe5ad1ad0e68ef281c8fc11b19ddb9494343dd4931a9b33804bb9698fa5d3b3d" diff --git a/libs/partners/box/pyproject.toml b/libs/partners/box/pyproject.toml index 180e95d152a84..af8cd16502b5d 100644 --- a/libs/partners/box/pyproject.toml +++ b/libs/partners/box/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "langchain-box" -version = "0.1.0" +version = "0.2.1" description = "An integration package connecting Box and LangChain" authors = [] readme = "README.md" @@ -13,8 +13,9 @@ license = "MIT" [tool.poetry.dependencies] python = ">=3.9.0,<3.13" -langchain-core = "^0.2.0" -box-sdk-gen = {extras = ["jwt"], version = "^1.1.0"} +langchain-core = "^0.3.1" +box-sdk-gen = { extras = ["jwt"], version = "^1.5.0" } +pydantic = "^2" [tool.poetry.group.test] optional = true diff --git a/libs/partners/box/scripts/check_pydantic.sh b/libs/partners/box/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/box/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/box/tests/unit_tests/retrievers/test_box_retriever.py b/libs/partners/box/tests/unit_tests/retrievers/test_box_retriever.py index 1dc8746b771a6..054f7ed205cdf 100644 --- a/libs/partners/box/tests/unit_tests/retrievers/test_box_retriever.py +++ b/libs/partners/box/tests/unit_tests/retrievers/test_box_retriever.py @@ -3,7 +3,13 @@ from pytest_mock import MockerFixture from langchain_box.retrievers import BoxRetriever -from langchain_box.utilities import BoxAuth, BoxAuthType +from langchain_box.utilities import ( + BoxAuth, + BoxAuthType, + BoxSearchOptions, + DocumentFiles, + SearchTypeFilter, +) # Test auth types @@ -62,6 +68,44 @@ def test_search(mocker: MockerFixture) -> None: ] +# test search options +def test_search_options(mocker: MockerFixture) -> None: + mocker.patch( + "langchain_box.utilities._BoxAPIWrapper.search_box", + return_value=( + [ + Document( + page_content="Test file mode\ndocument contents", + metadata={"title": "Testing Files"}, + ) + ] + ), + ) + + box_search_options = BoxSearchOptions( + ancestor_folder_ids=["box_folder_id"], + search_type_filter=[SearchTypeFilter.FILE_CONTENT], + created_date_range=["2023-01-01T00:00:00-07:00", "2024-08-01T00:00:00-07:00,"], + file_extensions=[DocumentFiles.DOCX, DocumentFiles.PDF], + k=200, + size_range=[1, 1000000], + updated_date_range=None, + ) + + retriever = BoxRetriever( # type: ignore[call-arg] + box_developer_token="box_developer_token", box_search_options=box_search_options + ) + + documents = retriever.invoke("query") + + assert documents == [ + Document( + page_content="Test file mode\ndocument contents", + metadata={"title": "Testing Files"}, + ) + ] + + # test ai retrieval def test_ai(mocker: MockerFixture) -> None: mocker.patch( @@ -87,3 +131,73 @@ def test_ai(mocker: MockerFixture) -> None: metadata={"title": "Testing Files"}, ) ] + + +# test ai retrieval with answer and citations +def test_ai_answer_citations(mocker: MockerFixture) -> None: + mocker.patch( + "langchain_box.utilities._BoxAPIWrapper.ask_box_ai", + return_value=( + [ + Document( + page_content="Test file mode\ndocument contents", + metadata={"title": "Testing Files"}, + ), + Document(page_content="citation 1", metadata={"source": "source 1"}), + Document(page_content="citation 2", metadata={"source": "source 2"}), + Document(page_content="citation 3", metadata={"source": "source 3"}), + Document(page_content="citation 4", metadata={"source": "source 4"}), + Document(page_content="citation 5", metadata={"source": "source 5"}), + ] + ), + ) + + retriever = BoxRetriever( # type: ignore[call-arg] + box_developer_token="box_developer_token", + box_file_ids=["box_file_ids"], + citations=True, + ) + + documents = retriever.invoke("query") + assert documents == [ + Document( + page_content="Test file mode\ndocument contents", + metadata={"title": "Testing Files"}, + ), + Document(page_content="citation 1", metadata={"source": "source 1"}), + Document(page_content="citation 2", metadata={"source": "source 2"}), + Document(page_content="citation 3", metadata={"source": "source 3"}), + Document(page_content="citation 4", metadata={"source": "source 4"}), + Document(page_content="citation 5", metadata={"source": "source 5"}), + ] + + +# test ai retrieval with citations only +def test_ai_citations_only(mocker: MockerFixture) -> None: + mocker.patch( + "langchain_box.utilities._BoxAPIWrapper.ask_box_ai", + return_value=( + [ + Document(page_content="citation 1", metadata={"source": "source 1"}), + Document(page_content="citation 2", metadata={"source": "source 2"}), + Document(page_content="citation 3", metadata={"source": "source 3"}), + Document(page_content="citation 4", metadata={"source": "source 4"}), + Document(page_content="citation 5", metadata={"source": "source 5"}), + ] + ), + ) + + retriever = BoxRetriever( # type: ignore[call-arg] + box_developer_token="box_developer_token", + box_file_ids=["box_file_ids"], + citations=True, + ) + + documents = retriever.invoke("query") + assert documents == [ + Document(page_content="citation 1", metadata={"source": "source 1"}), + Document(page_content="citation 2", metadata={"source": "source 2"}), + Document(page_content="citation 3", metadata={"source": "source 3"}), + Document(page_content="citation 4", metadata={"source": "source 4"}), + Document(page_content="citation 5", metadata={"source": "source 5"}), + ] diff --git a/libs/partners/box/tests/unit_tests/test_imports.py b/libs/partners/box/tests/unit_tests/test_imports.py index c25f1fdf242a5..38aacf7210fd5 100644 --- a/libs/partners/box/tests/unit_tests/test_imports.py +++ b/libs/partners/box/tests/unit_tests/test_imports.py @@ -5,6 +5,9 @@ "BoxRetriever", "BoxAuth", "BoxAuthType", + "BoxSearchOptions", + "DocumentFiles", + "SearchTypeFilter", "_BoxAPIWrapper", "__version__", ] diff --git a/libs/partners/box/tests/unit_tests/utilities/test_box_util.py b/libs/partners/box/tests/unit_tests/utilities/test_box_util.py index 1eabbdf759236..6f6ef907f9aec 100644 --- a/libs/partners/box/tests/unit_tests/utilities/test_box_util.py +++ b/libs/partners/box/tests/unit_tests/utilities/test_box_util.py @@ -2,7 +2,7 @@ import pytest from langchain_core.documents import Document -from pydantic.v1.error_wrappers import ValidationError +from pydantic.error_wrappers import ValidationError from pytest_mock import MockerFixture from langchain_box.utilities import BoxAuth, BoxAuthType, _BoxAPIWrapper diff --git a/libs/partners/chroma/langchain_chroma/vectorstores.py b/libs/partners/chroma/langchain_chroma/vectorstores.py index 76ad86d67a7a4..90c59ef2bebf4 100644 --- a/libs/partners/chroma/langchain_chroma/vectorstores.py +++ b/libs/partners/chroma/langchain_chroma/vectorstores.py @@ -1145,4 +1145,4 @@ def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: ids: List of ids to delete. kwargs: Additional keyword arguments. """ - self._collection.delete(ids=ids) + self._collection.delete(ids=ids, **kwargs) diff --git a/libs/partners/chroma/poetry.lock b/libs/partners/chroma/poetry.lock index 698a6a2c2cbff..ab68cd39e91aa 100644 --- a/libs/partners/chroma/poetry.lock +++ b/libs/partners/chroma/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. [[package]] name = "annotated-types" @@ -106,13 +106,13 @@ typecheck = ["mypy"] [[package]] name = "build" -version = "1.2.1" +version = "1.2.2" description = "A simple, correct Python build frontend" optional = false python-versions = ">=3.8" files = [ - {file = "build-1.2.1-py3-none-any.whl", hash = "sha256:75e10f767a433d9a86e50d83f418e83efc18ede923ee5ff7df93b6cb0306c5d4"}, - {file = "build-1.2.1.tar.gz", hash = "sha256:526263f4870c26f26c433545579475377b2b7588b6f1eac76a001e873ae3e19d"}, + {file = "build-1.2.2-py3-none-any.whl", hash = "sha256:277ccc71619d98afdd841a0e96ac9fe1593b823af481d3b0cea748e8894e0613"}, + {file = "build-1.2.2.tar.gz", hash = "sha256:119b2fb462adef986483438377a13b2f42064a2a3a4161f24a0cca698a07ac8c"}, ] [package.dependencies] @@ -142,13 +142,13 @@ files = [ [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -421,13 +421,13 @@ test = ["pytest (>=6)"] [[package]] name = "fastapi" -version = "0.112.1" +version = "0.114.2" description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" optional = false python-versions = ">=3.8" files = [ - {file = "fastapi-0.112.1-py3-none-any.whl", hash = "sha256:bcbd45817fc2a1cd5da09af66815b84ec0d3d634eb173d1ab468ae3103e183e4"}, - {file = "fastapi-0.112.1.tar.gz", hash = "sha256:b2537146f8c23389a7faa8b03d0bd38d4986e6983874557d95eed2acc46448ef"}, + {file = "fastapi-0.114.2-py3-none-any.whl", hash = "sha256:44474a22913057b1acb973ab90f4b671ba5200482e7622816d79105dcece1ac5"}, + {file = "fastapi-0.114.2.tar.gz", hash = "sha256:0adb148b62edb09e8c6eeefa3ea934e8f276dabc038c5a82989ea6346050c3da"}, ] [package.dependencies] @@ -436,24 +436,24 @@ starlette = ">=0.37.2,<0.39.0" typing-extensions = ">=4.8.0" [package.extras] -all = ["email_validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.7)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] -standard = ["email_validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "jinja2 (>=2.11.2)", "python-multipart (>=0.0.7)", "uvicorn[standard] (>=0.12.0)"] +all = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.7)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] +standard = ["email-validator (>=2.0.0)", "fastapi-cli[standard] (>=0.0.5)", "httpx (>=0.23.0)", "jinja2 (>=2.11.2)", "python-multipart (>=0.0.7)", "uvicorn[standard] (>=0.12.0)"] [[package]] name = "filelock" -version = "3.15.4" +version = "3.16.0" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, - {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, + {file = "filelock-3.16.0-py3-none-any.whl", hash = "sha256:f6ed4c963184f4c84dd5557ce8fece759a3724b37b80c6c4f20a2f63a4dc6609"}, + {file = "filelock-3.16.0.tar.gz", hash = "sha256:81de9eb8453c769b63369f87f11131a7ab04e367f8d97ad39dc230daa07e3bec"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] -typing = ["typing-extensions (>=4.8)"] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.1.1)", "pytest (>=8.3.2)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.3)"] +typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "flatbuffers" @@ -482,13 +482,13 @@ python-dateutil = ">=2.7" [[package]] name = "fsspec" -version = "2024.6.1" +version = "2024.9.0" description = "File-system specification" optional = false python-versions = ">=3.8" files = [ - {file = "fsspec-2024.6.1-py3-none-any.whl", hash = "sha256:3cb443f8bcd2efb31295a5b9fdb02aee81d8452c80d28f97a6d0959e6cee101e"}, - {file = "fsspec-2024.6.1.tar.gz", hash = "sha256:fad7d7e209dd4c1208e3bbfda706620e0da5142bebbd9c384afb95b07e798e49"}, + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, ] [package.extras] @@ -544,13 +544,13 @@ requests = ["requests (>=2.20.0,<3.0.0.dev0)"] [[package]] name = "googleapis-common-protos" -version = "1.63.2" +version = "1.65.0" description = "Common protobufs used in Google APIs" optional = false python-versions = ">=3.7" files = [ - {file = "googleapis-common-protos-1.63.2.tar.gz", hash = "sha256:27c5abdffc4911f28101e635de1533fb4cfd2c37fbaa9174587c799fac90aa87"}, - {file = "googleapis_common_protos-1.63.2-py2.py3-none-any.whl", hash = "sha256:27a2499c7e8aff199665b22741997e485eccc8645aa9176c7c988e6fae507945"}, + {file = "googleapis_common_protos-1.65.0-py2.py3-none-any.whl", hash = "sha256:2972e6c496f435b92590fd54045060867f3fe9be2c82ab148fc8885035479a63"}, + {file = "googleapis_common_protos-1.65.0.tar.gz", hash = "sha256:334a29d07cddc3aa01dee4988f9afd9b2916ee2ff49d6b757155dc0d197852c0"}, ] [package.dependencies] @@ -572,61 +572,61 @@ files = [ [[package]] name = "grpcio" -version = "1.65.5" +version = "1.66.1" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.65.5-cp310-cp310-linux_armv7l.whl", hash = "sha256:b67d450f1e008fedcd81e097a3a400a711d8be1a8b20f852a7b8a73fead50fe3"}, - {file = "grpcio-1.65.5-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:a70a20eed87bba647a38bedd93b3ce7db64b3f0e8e0952315237f7f5ca97b02d"}, - {file = "grpcio-1.65.5-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:f79c87c114bf37adf408026b9e2e333fe9ff31dfc9648f6f80776c513145c813"}, - {file = "grpcio-1.65.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17f9fa2d947dbfaca01b3ab2c62eefa8240131fdc67b924eb42ce6032e3e5c1"}, - {file = "grpcio-1.65.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32d60e18ff7c34fe3f6db3d35ad5c6dc99f5b43ff3982cb26fad4174462d10b1"}, - {file = "grpcio-1.65.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fe6505376f5b00bb008e4e1418152e3ad3d954b629da286c7913ff3cfc0ff740"}, - {file = "grpcio-1.65.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:33158e56c6378063923c417e9fbdb28660b6e0e2835af42e67f5a7793f587af7"}, - {file = "grpcio-1.65.5-cp310-cp310-win32.whl", hash = "sha256:1cbc208edb9acf1cc339396a1a36b83796939be52f34e591c90292045b579fbf"}, - {file = "grpcio-1.65.5-cp310-cp310-win_amd64.whl", hash = "sha256:bc74f3f745c37e2c5685c9d2a2d5a94de00f286963f5213f763ae137bf4f2358"}, - {file = "grpcio-1.65.5-cp311-cp311-linux_armv7l.whl", hash = "sha256:3207ae60d07e5282c134b6e02f9271a2cb523c6d7a346c6315211fe2bf8d61ed"}, - {file = "grpcio-1.65.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a2f80510f99f82d4eb825849c486df703f50652cea21c189eacc2b84f2bde764"}, - {file = "grpcio-1.65.5-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a80e9a5e3f93c54f5eb82a3825ea1fc4965b2fa0026db2abfecb139a5c4ecdf1"}, - {file = "grpcio-1.65.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b2944390a496567de9e70418f3742b477d85d8ca065afa90432edc91b4bb8ad"}, - {file = "grpcio-1.65.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3655139d7be213c32c79ef6fb2367cae28e56ef68e39b1961c43214b457f257"}, - {file = "grpcio-1.65.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:05f02d68fc720e085f061b704ee653b181e6d5abfe315daef085719728d3d1fd"}, - {file = "grpcio-1.65.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1c4caafe71aef4dabf53274bbf4affd6df651e9f80beedd6b8e08ff438ed3260"}, - {file = "grpcio-1.65.5-cp311-cp311-win32.whl", hash = "sha256:84c901cdec16a092099f251ef3360d15e29ef59772150fa261d94573612539b5"}, - {file = "grpcio-1.65.5-cp311-cp311-win_amd64.whl", hash = "sha256:11f8b16121768c1cb99d7dcb84e01510e60e6a206bf9123e134118802486f035"}, - {file = "grpcio-1.65.5-cp312-cp312-linux_armv7l.whl", hash = "sha256:ee6ed64a27588a2c94e8fa84fe8f3b5c89427d4d69c37690903d428ec61ca7e4"}, - {file = "grpcio-1.65.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:76991b7a6fb98630a3328839755181ce7c1aa2b1842aa085fd4198f0e5198960"}, - {file = "grpcio-1.65.5-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:89c00a18801b1ed9cc441e29b521c354725d4af38c127981f2c950c796a09b6e"}, - {file = "grpcio-1.65.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:078038e150a897e5e402ed3d57f1d31ebf604cbed80f595bd281b5da40762a92"}, - {file = "grpcio-1.65.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c97962720489ef31b5ad8a916e22bc31bba3664e063fb9f6702dce056d4aa61b"}, - {file = "grpcio-1.65.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:b8270b15b99781461b244f5c81d5c2bc9696ab9189fb5ff86c841417fb3b39fe"}, - {file = "grpcio-1.65.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8e5c4c15ac3fe1eb68e46bc51e66ad29be887479f231f8237cf8416058bf0cc1"}, - {file = "grpcio-1.65.5-cp312-cp312-win32.whl", hash = "sha256:f5b5970341359341d0e4c789da7568264b2a89cd976c05ea476036852b5950cd"}, - {file = "grpcio-1.65.5-cp312-cp312-win_amd64.whl", hash = "sha256:238a625f391a1b9f5f069bdc5930f4fd71b74426bea52196fc7b83f51fa97d34"}, - {file = "grpcio-1.65.5-cp38-cp38-linux_armv7l.whl", hash = "sha256:6c4e62bcf297a1568f627f39576dbfc27f1e5338a691c6dd5dd6b3979da51d1c"}, - {file = "grpcio-1.65.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d7df567b67d16d4177835a68d3f767bbcbad04da9dfb52cbd19171f430c898bd"}, - {file = "grpcio-1.65.5-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:b7ca419f1462390851eec395b2089aad1e49546b52d4e2c972ceb76da69b10f8"}, - {file = "grpcio-1.65.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fa36dd8496d3af0d40165252a669fa4f6fd2db4b4026b9a9411cbf060b9d6a15"}, - {file = "grpcio-1.65.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a101696f9ece90a0829988ff72f1b1ea2358f3df035bdf6d675dd8b60c2c0894"}, - {file = "grpcio-1.65.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2a6d8169812932feac514b420daffae8ab8e36f90f3122b94ae767e633296b17"}, - {file = "grpcio-1.65.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:47d0aaaab82823f0aa6adea5184350b46e2252e13a42a942db84da5b733f2e05"}, - {file = "grpcio-1.65.5-cp38-cp38-win32.whl", hash = "sha256:85ae8f8517d5bcc21fb07dbf791e94ed84cc28f84c903cdc2bd7eaeb437c8f45"}, - {file = "grpcio-1.65.5-cp38-cp38-win_amd64.whl", hash = "sha256:770bd4bd721961f6dd8049bc27338564ba8739913f77c0f381a9815e465ff965"}, - {file = "grpcio-1.65.5-cp39-cp39-linux_armv7l.whl", hash = "sha256:ab5ec837d8cee8dbce9ef6386125f119b231e4333cc6b6d57b6c5c7c82a72331"}, - {file = "grpcio-1.65.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cabd706183ee08d8026a015af5819a0b3a8959bdc9d1f6fdacd1810f09200f2a"}, - {file = "grpcio-1.65.5-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:ec71fc5b39821ad7d80db7473c8f8c2910f3382f0ddadfbcfc2c6c437107eb67"}, - {file = "grpcio-1.65.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3a9e35bcb045e39d7cac30464c285389b9a816ac2067e4884ad2c02e709ef8e"}, - {file = "grpcio-1.65.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d750e9330eb14236ca11b78d0c494eed13d6a95eb55472298f0e547c165ee324"}, - {file = "grpcio-1.65.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2b91ce647b6307f25650872454a4d02a2801f26a475f90d0b91ed8110baae589"}, - {file = "grpcio-1.65.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8da58ff80bc4556cf29bc03f5fff1f03b8387d6aaa7b852af9eb65b2cf833be4"}, - {file = "grpcio-1.65.5-cp39-cp39-win32.whl", hash = "sha256:7a412959aa5f08c5ac04aa7b7c3c041f5e4298cadd4fcc2acff195b56d185ebc"}, - {file = "grpcio-1.65.5-cp39-cp39-win_amd64.whl", hash = "sha256:55714ea852396ec9568f45f487639945ab674de83c12bea19d5ddbc3ae41ada3"}, - {file = "grpcio-1.65.5.tar.gz", hash = "sha256:ec6f219fb5d677a522b0deaf43cea6697b16f338cb68d009e30930c4aa0d2209"}, + {file = "grpcio-1.66.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:4877ba180591acdf127afe21ec1c7ff8a5ecf0fe2600f0d3c50e8c4a1cbc6492"}, + {file = "grpcio-1.66.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3750c5a00bd644c75f4507f77a804d0189d97a107eb1481945a0cf3af3e7a5ac"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:a013c5fbb12bfb5f927444b477a26f1080755a931d5d362e6a9a720ca7dbae60"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1b24c23d51a1e8790b25514157d43f0a4dce1ac12b3f0b8e9f66a5e2c4c132f"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffb8ea674d68de4cac6f57d2498fef477cef582f1fa849e9f844863af50083"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:307b1d538140f19ccbd3aed7a93d8f71103c5d525f3c96f8616111614b14bf2a"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1c17ebcec157cfb8dd445890a03e20caf6209a5bd4ac5b040ae9dbc59eef091d"}, + {file = "grpcio-1.66.1-cp310-cp310-win32.whl", hash = "sha256:ef82d361ed5849d34cf09105d00b94b6728d289d6b9235513cb2fcc79f7c432c"}, + {file = "grpcio-1.66.1-cp310-cp310-win_amd64.whl", hash = "sha256:292a846b92cdcd40ecca46e694997dd6b9be6c4c01a94a0dfb3fcb75d20da858"}, + {file = "grpcio-1.66.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:c30aeceeaff11cd5ddbc348f37c58bcb96da8d5aa93fed78ab329de5f37a0d7a"}, + {file = "grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8a1e224ce6f740dbb6b24c58f885422deebd7eb724aff0671a847f8951857c26"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a66fe4dc35d2330c185cfbb42959f57ad36f257e0cc4557d11d9f0a3f14311df"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ba04659e4fce609de2658fe4dbf7d6ed21987a94460f5f92df7579fd5d0e22"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4573608e23f7e091acfbe3e84ac2045680b69751d8d67685ffa193a4429fedb1"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7e06aa1f764ec8265b19d8f00140b8c4b6ca179a6dc67aa9413867c47e1fb04e"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3885f037eb11f1cacc41f207b705f38a44b69478086f40608959bf5ad85826dd"}, + {file = "grpcio-1.66.1-cp311-cp311-win32.whl", hash = "sha256:97ae7edd3f3f91480e48ede5d3e7d431ad6005bfdbd65c1b56913799ec79e791"}, + {file = "grpcio-1.66.1-cp311-cp311-win_amd64.whl", hash = "sha256:cfd349de4158d797db2bd82d2020554a121674e98fbe6b15328456b3bf2495bb"}, + {file = "grpcio-1.66.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:a92c4f58c01c77205df6ff999faa008540475c39b835277fb8883b11cada127a"}, + {file = "grpcio-1.66.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fdb14bad0835914f325349ed34a51940bc2ad965142eb3090081593c6e347be9"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f03a5884c56256e08fd9e262e11b5cfacf1af96e2ce78dc095d2c41ccae2c80d"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2ca2559692d8e7e245d456877a85ee41525f3ed425aa97eb7a70fc9a79df91a0"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ca1be089fb4446490dd1135828bd42a7c7f8421e74fa581611f7afdf7ab761"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d639c939ad7c440c7b2819a28d559179a4508783f7e5b991166f8d7a34b52815"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b9feb4e5ec8dc2d15709f4d5fc367794d69277f5d680baf1910fc9915c633524"}, + {file = "grpcio-1.66.1-cp312-cp312-win32.whl", hash = "sha256:7101db1bd4cd9b880294dec41a93fcdce465bdbb602cd8dc5bd2d6362b618759"}, + {file = "grpcio-1.66.1-cp312-cp312-win_amd64.whl", hash = "sha256:b0aa03d240b5539648d996cc60438f128c7f46050989e35b25f5c18286c86734"}, + {file = "grpcio-1.66.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:ecfe735e7a59e5a98208447293ff8580e9db1e890e232b8b292dc8bd15afc0d2"}, + {file = "grpcio-1.66.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4825a3aa5648010842e1c9d35a082187746aa0cdbf1b7a2a930595a94fb10fce"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:f517fd7259fe823ef3bd21e508b653d5492e706e9f0ef82c16ce3347a8a5620c"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1fe60d0772831d96d263b53d83fb9a3d050a94b0e94b6d004a5ad111faa5b5b"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31a049daa428f928f21090403e5d18ea02670e3d5d172581670be006100db9ef"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f914386e52cbdeb5d2a7ce3bf1fdfacbe9d818dd81b6099a05b741aaf3848bb"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bff2096bdba686019fb32d2dde45b95981f0d1490e054400f70fc9a8af34b49d"}, + {file = "grpcio-1.66.1-cp38-cp38-win32.whl", hash = "sha256:aa8ba945c96e73de29d25331b26f3e416e0c0f621e984a3ebdb2d0d0b596a3b3"}, + {file = "grpcio-1.66.1-cp38-cp38-win_amd64.whl", hash = "sha256:161d5c535c2bdf61b95080e7f0f017a1dfcb812bf54093e71e5562b16225b4ce"}, + {file = "grpcio-1.66.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:d0cd7050397b3609ea51727b1811e663ffda8bda39c6a5bb69525ef12414b503"}, + {file = "grpcio-1.66.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0e6c9b42ded5d02b6b1fea3a25f036a2236eeb75d0579bfd43c0018c88bf0a3e"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c9f80f9fad93a8cf71c7f161778ba47fd730d13a343a46258065c4deb4b550c0"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5dd67ed9da78e5121efc5c510f0122a972216808d6de70953a740560c572eb44"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48b0d92d45ce3be2084b92fb5bae2f64c208fea8ceed7fccf6a7b524d3c4942e"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d813316d1a752be6f5c4360c49f55b06d4fe212d7df03253dfdae90c8a402bb"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c9bebc6627873ec27a70fc800f6083a13c70b23a5564788754b9ee52c5aef6c"}, + {file = "grpcio-1.66.1-cp39-cp39-win32.whl", hash = "sha256:30a1c2cf9390c894c90bbc70147f2372130ad189cffef161f0432d0157973f45"}, + {file = "grpcio-1.66.1-cp39-cp39-win_amd64.whl", hash = "sha256:17663598aadbedc3cacd7bbde432f541c8e07d2496564e22b214b22c7523dac8"}, + {file = "grpcio-1.66.1.tar.gz", hash = "sha256:35334f9c9745add3e357e3372756fd32d925bd52c41da97f4dfdafbde0bf0ee2"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.65.5)"] +protobuf = ["grpcio-tools (>=1.66.1)"] [[package]] name = "h11" @@ -710,13 +710,13 @@ test = ["Cython (>=0.29.24,<0.30.0)"] [[package]] name = "httpx" -version = "0.27.0" +version = "0.27.2" description = "The next generation HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, - {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, ] [package.dependencies] @@ -731,16 +731,17 @@ brotli = ["brotli", "brotlicffi"] cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] [[package]] name = "huggingface-hub" -version = "0.24.6" +version = "0.24.7" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.8.0" files = [ - {file = "huggingface_hub-0.24.6-py3-none-any.whl", hash = "sha256:a990f3232aa985fe749bc9474060cbad75e8b2f115f6665a9fda5b9c97818970"}, - {file = "huggingface_hub-0.24.6.tar.gz", hash = "sha256:cc2579e761d070713eaa9c323e3debe39d5b464ae3a7261c39a9195b27bb8000"}, + {file = "huggingface_hub-0.24.7-py3-none-any.whl", hash = "sha256:a212c555324c8a7b1ffdd07266bb7e7d69ca71aa238d27b7842d65e9a26ac3e5"}, + {file = "huggingface_hub-0.24.7.tar.gz", hash = "sha256:0ad8fb756e2831da0ac0491175b960f341fe06ebcf80ed6f8728313f95fc0207"}, ] [package.dependencies] @@ -782,24 +783,24 @@ pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_ve [[package]] name = "idna" -version = "3.7" +version = "3.8" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, + {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, ] [[package]] name = "importlib-metadata" -version = "8.0.0" +version = "8.4.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-8.0.0-py3-none-any.whl", hash = "sha256:15584cf2b1bf449d98ff8a6ff1abef57bf20f3ac6454f431736cd3e660921b2f"}, - {file = "importlib_metadata-8.0.0.tar.gz", hash = "sha256:188bd24e4c346d3f0a933f275c2fec67050326a856b9a359881d7c2a697e8812"}, + {file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"}, + {file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"}, ] [package.dependencies] @@ -812,21 +813,25 @@ test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "p [[package]] name = "importlib-resources" -version = "6.4.3" +version = "6.4.5" description = "Read resources from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_resources-6.4.3-py3-none-any.whl", hash = "sha256:2d6dfe3b9e055f72495c2085890837fc8c758984e209115c8792bddcb762cd93"}, - {file = "importlib_resources-6.4.3.tar.gz", hash = "sha256:4a202b9b9d38563b46da59221d77bb73862ab5d79d461307bcb826d725448b98"}, + {file = "importlib_resources-6.4.5-py3-none-any.whl", hash = "sha256:ac29d5f956f01d5e4bb63102a5a19957f1b9175e45649977264a1416783bb717"}, + {file = "importlib_resources-6.4.5.tar.gz", hash = "sha256:980862a1d16c9e147a59603677fa2aa5fd82b87f223b6cb870695bcfce830065"}, ] [package.dependencies] zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] +type = ["pytest-mypy"] [[package]] name = "iniconfig" @@ -892,19 +897,39 @@ adal = ["adal (>=1.0.2)"] [[package]] name = "langchain-core" -version = "0.2.34" +version = "0.2.40" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = "<4.0,>=3.8.1" +files = [ + {file = "langchain_core-0.2.40-py3-none-any.whl", hash = "sha256:71fff5cafa4b9c82a3a716e985f071383be452c35d8cc3169b3a393e6857fc99"}, + {file = "langchain_core-0.2.40.tar.gz", hash = "sha256:c838ea0c0b73475a8e58ced3e306b6d926ef063721abd164f237c8664916f502"}, +] + +[package.dependencies] +jsonpatch = ">=1.33,<2.0" +langsmith = ">=0.1.112,<0.2.0" +packaging = ">=23.2,<25" +pydantic = {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""} +PyYAML = ">=5.3" +tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0" +typing-extensions = ">=4.7" + +[[package]] +name = "langchain-core" +version = "0.3.0" +description = "Building applications with LLMs through composability" +optional = false +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -917,13 +942,13 @@ url = "../../core" [[package]] name = "langsmith" -version = "0.1.101" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.101-py3-none-any.whl", hash = "sha256:572e2c90709cda1ad837ac86cedda7295f69933f2124c658a92a35fb890477cc"}, - {file = "langsmith-0.1.101.tar.gz", hash = "sha256:caf4d95f314bb6cd3c4e0632eed821fd5cd5d0f18cb824772fce6d7a9113895b"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] @@ -1092,38 +1117,38 @@ tests = ["pytest (>=4.6)"] [[package]] name = "mypy" -version = "1.11.1" +version = "1.11.2" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a32fc80b63de4b5b3e65f4be82b4cfa362a46702672aa6a0f443b4689af7008c"}, - {file = "mypy-1.11.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c1952f5ea8a5a959b05ed5f16452fddadbaae48b5d39235ab4c3fc444d5fd411"}, - {file = "mypy-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1e30dc3bfa4e157e53c1d17a0dad20f89dc433393e7702b813c10e200843b03"}, - {file = "mypy-1.11.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2c63350af88f43a66d3dfeeeb8d77af34a4f07d760b9eb3a8697f0386c7590b4"}, - {file = "mypy-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:a831671bad47186603872a3abc19634f3011d7f83b083762c942442d51c58d58"}, - {file = "mypy-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7b6343d338390bb946d449677726edf60102a1c96079b4f002dedff375953fc5"}, - {file = "mypy-1.11.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4fe9f4e5e521b458d8feb52547f4bade7ef8c93238dfb5bbc790d9ff2d770ca"}, - {file = "mypy-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:886c9dbecc87b9516eff294541bf7f3655722bf22bb898ee06985cd7269898de"}, - {file = "mypy-1.11.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fca4a60e1dd9fd0193ae0067eaeeb962f2d79e0d9f0f66223a0682f26ffcc809"}, - {file = "mypy-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:0bd53faf56de9643336aeea1c925012837432b5faf1701ccca7fde70166ccf72"}, - {file = "mypy-1.11.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f39918a50f74dc5969807dcfaecafa804fa7f90c9d60506835036cc1bc891dc8"}, - {file = "mypy-1.11.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0bc71d1fb27a428139dd78621953effe0d208aed9857cb08d002280b0422003a"}, - {file = "mypy-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b868d3bcff720dd7217c383474008ddabaf048fad8d78ed948bb4b624870a417"}, - {file = "mypy-1.11.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a707ec1527ffcdd1c784d0924bf5cb15cd7f22683b919668a04d2b9c34549d2e"}, - {file = "mypy-1.11.1-cp312-cp312-win_amd64.whl", hash = "sha256:64f4a90e3ea07f590c5bcf9029035cf0efeae5ba8be511a8caada1a4893f5525"}, - {file = "mypy-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:749fd3213916f1751fff995fccf20c6195cae941dc968f3aaadf9bb4e430e5a2"}, - {file = "mypy-1.11.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b639dce63a0b19085213ec5fdd8cffd1d81988f47a2dec7100e93564f3e8fb3b"}, - {file = "mypy-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4c956b49c5d865394d62941b109728c5c596a415e9c5b2be663dd26a1ff07bc0"}, - {file = "mypy-1.11.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:45df906e8b6804ef4b666af29a87ad9f5921aad091c79cc38e12198e220beabd"}, - {file = "mypy-1.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:d44be7551689d9d47b7abc27c71257adfdb53f03880841a5db15ddb22dc63edb"}, - {file = "mypy-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2684d3f693073ab89d76da8e3921883019ea8a3ec20fa5d8ecca6a2db4c54bbe"}, - {file = "mypy-1.11.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:79c07eb282cb457473add5052b63925e5cc97dfab9812ee65a7c7ab5e3cb551c"}, - {file = "mypy-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11965c2f571ded6239977b14deebd3f4c3abd9a92398712d6da3a772974fad69"}, - {file = "mypy-1.11.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a2b43895a0f8154df6519706d9bca8280cda52d3d9d1514b2d9c3e26792a0b74"}, - {file = "mypy-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:1a81cf05975fd61aec5ae16501a091cfb9f605dc3e3c878c0da32f250b74760b"}, - {file = "mypy-1.11.1-py3-none-any.whl", hash = "sha256:0624bdb940255d2dd24e829d99a13cfeb72e4e9031f9492148f410ed30bcab54"}, - {file = "mypy-1.11.1.tar.gz", hash = "sha256:f404a0b069709f18bbdb702eb3dcfe51910602995de00bd39cea3050b5772d08"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, + {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, + {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, + {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, + {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, + {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, + {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, + {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, + {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, + {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, + {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, + {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, + {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, + {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, + {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, + {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, + {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, + {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, ] [package.dependencies] @@ -1248,36 +1273,36 @@ signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] [[package]] name = "onnxruntime" -version = "1.19.0" +version = "1.19.2" description = "ONNX Runtime is a runtime accelerator for Machine Learning models" optional = false python-versions = "*" files = [ - {file = "onnxruntime-1.19.0-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:6ce22a98dfec7b646ae305f52d0ce14a189a758b02ea501860ca719f4b0ae04b"}, - {file = "onnxruntime-1.19.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:19019c72873f26927aa322c54cf2bf7312b23451b27451f39b88f57016c94f8b"}, - {file = "onnxruntime-1.19.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8eaa16df99171dc636e30108d15597aed8c4c2dd9dbfdd07cc464d57d73fb275"}, - {file = "onnxruntime-1.19.0-cp310-cp310-win32.whl", hash = "sha256:0eb0f8dbe596fd0f4737fe511fdbb17603853a7d204c5b2ca38d3c7808fc556b"}, - {file = "onnxruntime-1.19.0-cp310-cp310-win_amd64.whl", hash = "sha256:616092d54ba8023b7bc0a5f6d900a07a37cc1cfcc631873c15f8c1d6e9e184d4"}, - {file = "onnxruntime-1.19.0-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:a2b53b3c287cd933e5eb597273926e899082d8c84ab96e1b34035764a1627e17"}, - {file = "onnxruntime-1.19.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e94984663963e74fbb468bde9ec6f19dcf890b594b35e249c4dc8789d08993c5"}, - {file = "onnxruntime-1.19.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6f379d1f050cfb55ce015d53727b78ee362febc065c38eed81512b22b757da73"}, - {file = "onnxruntime-1.19.0-cp311-cp311-win32.whl", hash = "sha256:4ccb48faea02503275ae7e79e351434fc43c294c4cb5c4d8bcb7479061396614"}, - {file = "onnxruntime-1.19.0-cp311-cp311-win_amd64.whl", hash = "sha256:9cdc8d311289a84e77722de68bd22b8adfb94eea26f4be6f9e017350faac8b18"}, - {file = "onnxruntime-1.19.0-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:1b59eaec1be9a8613c5fdeaafe67f73a062edce3ac03bbbdc9e2d98b58a30617"}, - {file = "onnxruntime-1.19.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:be4144d014a4b25184e63ce7a463a2e7796e2f3df931fccc6a6aefa6f1365dc5"}, - {file = "onnxruntime-1.19.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:10d7e7d4ca7021ce7f29a66dbc6071addf2de5839135339bd855c6d9c2bba371"}, - {file = "onnxruntime-1.19.0-cp312-cp312-win32.whl", hash = "sha256:87f2c58b577a1fb31dc5d92b647ecc588fd5f1ea0c3ad4526f5f80a113357c8d"}, - {file = "onnxruntime-1.19.0-cp312-cp312-win_amd64.whl", hash = "sha256:8a1f50d49676d7b69566536ff039d9e4e95fc482a55673719f46528218ecbb94"}, - {file = "onnxruntime-1.19.0-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:71423c8c4b2d7a58956271534302ec72721c62a41efd0c4896343249b8399ab0"}, - {file = "onnxruntime-1.19.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9d63630d45e9498f96e75bbeb7fd4a56acb10155de0de4d0e18d1b6cbb0b358a"}, - {file = "onnxruntime-1.19.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f3bfd15db1e8794d379a86c1a9116889f47f2cca40cc82208fc4f7e8c38e8522"}, - {file = "onnxruntime-1.19.0-cp38-cp38-win32.whl", hash = "sha256:3b098003b6b4cb37cc84942e5f1fe27f945dd857cbd2829c824c26b0ba4a247e"}, - {file = "onnxruntime-1.19.0-cp38-cp38-win_amd64.whl", hash = "sha256:cea067a6541d6787d903ee6843401c5b1332a266585160d9700f9f0939443886"}, - {file = "onnxruntime-1.19.0-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:c4fcff12dc5ca963c5f76b9822bb404578fa4a98c281e8c666b429192799a099"}, - {file = "onnxruntime-1.19.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f6dcad8a4db908fbe70b98c79cea1c8b6ac3316adf4ce93453136e33a524ac59"}, - {file = "onnxruntime-1.19.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4bc449907c6e8d99eee5ae5cc9c8fdef273d801dcd195393d3f9ab8ad3f49522"}, - {file = "onnxruntime-1.19.0-cp39-cp39-win32.whl", hash = "sha256:947febd48405afcf526e45ccff97ff23b15e530434705f734870d22ae7fcf236"}, - {file = "onnxruntime-1.19.0-cp39-cp39-win_amd64.whl", hash = "sha256:f60be47eff5ee77fd28a466b0fd41d7debc42a32179d1ddb21e05d6067d7b48b"}, + {file = "onnxruntime-1.19.2-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:84fa57369c06cadd3c2a538ae2a26d76d583e7c34bdecd5769d71ca5c0fc750e"}, + {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bdc471a66df0c1cdef774accef69e9f2ca168c851ab5e4f2f3341512c7ef4666"}, + {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e3a4ce906105d99ebbe817f536d50a91ed8a4d1592553f49b3c23c4be2560ae6"}, + {file = "onnxruntime-1.19.2-cp310-cp310-win32.whl", hash = "sha256:4b3d723cc154c8ddeb9f6d0a8c0d6243774c6b5930847cc83170bfe4678fafb3"}, + {file = "onnxruntime-1.19.2-cp310-cp310-win_amd64.whl", hash = "sha256:17ed7382d2c58d4b7354fb2b301ff30b9bf308a1c7eac9546449cd122d21cae5"}, + {file = "onnxruntime-1.19.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:d863e8acdc7232d705d49e41087e10b274c42f09e259016a46f32c34e06dc4fd"}, + {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c1dfe4f660a71b31caa81fc298a25f9612815215a47b286236e61d540350d7b6"}, + {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a36511dc07c5c964b916697e42e366fa43c48cdb3d3503578d78cef30417cb84"}, + {file = "onnxruntime-1.19.2-cp311-cp311-win32.whl", hash = "sha256:50cbb8dc69d6befad4746a69760e5b00cc3ff0a59c6c3fb27f8afa20e2cab7e7"}, + {file = "onnxruntime-1.19.2-cp311-cp311-win_amd64.whl", hash = "sha256:1c3e5d415b78337fa0b1b75291e9ea9fb2a4c1f148eb5811e7212fed02cfffa8"}, + {file = "onnxruntime-1.19.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:68e7051bef9cfefcbb858d2d2646536829894d72a4130c24019219442b1dd2ed"}, + {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d2d366fbcc205ce68a8a3bde2185fd15c604d9645888703785b61ef174265168"}, + {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:477b93df4db467e9cbf34051662a4b27c18e131fa1836e05974eae0d6e4cf29b"}, + {file = "onnxruntime-1.19.2-cp312-cp312-win32.whl", hash = "sha256:9a174073dc5608fad05f7cf7f320b52e8035e73d80b0a23c80f840e5a97c0147"}, + {file = "onnxruntime-1.19.2-cp312-cp312-win_amd64.whl", hash = "sha256:190103273ea4507638ffc31d66a980594b237874b65379e273125150eb044857"}, + {file = "onnxruntime-1.19.2-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:636bc1d4cc051d40bc52e1f9da87fbb9c57d9d47164695dfb1c41646ea51ea66"}, + {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5bd8b875757ea941cbcfe01582970cc299893d1b65bd56731e326a8333f638a3"}, + {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b2046fc9560f97947bbc1acbe4c6d48585ef0f12742744307d3364b131ac5778"}, + {file = "onnxruntime-1.19.2-cp38-cp38-win32.whl", hash = "sha256:31c12840b1cde4ac1f7d27d540c44e13e34f2345cf3642762d2a3333621abb6a"}, + {file = "onnxruntime-1.19.2-cp38-cp38-win_amd64.whl", hash = "sha256:016229660adea180e9a32ce218b95f8f84860a200f0f13b50070d7d90e92956c"}, + {file = "onnxruntime-1.19.2-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:006c8d326835c017a9e9f74c9c77ebb570a71174a1e89fe078b29a557d9c3848"}, + {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:df2a94179a42d530b936f154615b54748239c2908ee44f0d722cb4df10670f68"}, + {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fae4b4de45894b9ce7ae418c5484cbf0341db6813effec01bb2216091c52f7fb"}, + {file = "onnxruntime-1.19.2-cp39-cp39-win32.whl", hash = "sha256:dc5430f473e8706fff837ae01323be9dcfddd3ea471c900a91fa7c9b807ec5d3"}, + {file = "onnxruntime-1.19.2-cp39-cp39-win_amd64.whl", hash = "sha256:38475e29a95c5f6c62c2c603d69fc7d4c6ccbf4df602bd567b86ae1138881c49"}, ] [package.dependencies] @@ -1290,42 +1315,42 @@ sympy = "*" [[package]] name = "opentelemetry-api" -version = "1.26.0" +version = "1.27.0" description = "OpenTelemetry Python API" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_api-1.26.0-py3-none-any.whl", hash = "sha256:7d7ea33adf2ceda2dd680b18b1677e4152000b37ca76e679da71ff103b943064"}, - {file = "opentelemetry_api-1.26.0.tar.gz", hash = "sha256:2bd639e4bed5b18486fef0b5a520aaffde5a18fc225e808a1ac4df363f43a1ce"}, + {file = "opentelemetry_api-1.27.0-py3-none-any.whl", hash = "sha256:953d5871815e7c30c81b56d910c707588000fff7a3ca1c73e6531911d53065e7"}, + {file = "opentelemetry_api-1.27.0.tar.gz", hash = "sha256:ed673583eaa5f81b5ce5e86ef7cdaf622f88ef65f0b9aab40b843dcae5bef342"}, ] [package.dependencies] deprecated = ">=1.2.6" -importlib-metadata = ">=6.0,<=8.0.0" +importlib-metadata = ">=6.0,<=8.4.0" [[package]] name = "opentelemetry-exporter-otlp-proto-common" -version = "1.26.0" +version = "1.27.0" description = "OpenTelemetry Protobuf encoding" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_exporter_otlp_proto_common-1.26.0-py3-none-any.whl", hash = "sha256:ee4d8f8891a1b9c372abf8d109409e5b81947cf66423fd998e56880057afbc71"}, - {file = "opentelemetry_exporter_otlp_proto_common-1.26.0.tar.gz", hash = "sha256:bdbe50e2e22a1c71acaa0c8ba6efaadd58882e5a5978737a44a4c4b10d304c92"}, + {file = "opentelemetry_exporter_otlp_proto_common-1.27.0-py3-none-any.whl", hash = "sha256:675db7fffcb60946f3a5c43e17d1168a3307a94a930ecf8d2ea1f286f3d4f79a"}, + {file = "opentelemetry_exporter_otlp_proto_common-1.27.0.tar.gz", hash = "sha256:159d27cf49f359e3798c4c3eb8da6ef4020e292571bd8c5604a2a573231dd5c8"}, ] [package.dependencies] -opentelemetry-proto = "1.26.0" +opentelemetry-proto = "1.27.0" [[package]] name = "opentelemetry-exporter-otlp-proto-grpc" -version = "1.26.0" +version = "1.27.0" description = "OpenTelemetry Collector Protobuf over gRPC Exporter" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_exporter_otlp_proto_grpc-1.26.0-py3-none-any.whl", hash = "sha256:e2be5eff72ebcb010675b818e8d7c2e7d61ec451755b8de67a140bc49b9b0280"}, - {file = "opentelemetry_exporter_otlp_proto_grpc-1.26.0.tar.gz", hash = "sha256:a65b67a9a6b06ba1ec406114568e21afe88c1cdb29c464f2507d529eb906d8ae"}, + {file = "opentelemetry_exporter_otlp_proto_grpc-1.27.0-py3-none-any.whl", hash = "sha256:56b5bbd5d61aab05e300d9d62a6b3c134827bbd28d0b12f2649c2da368006c9e"}, + {file = "opentelemetry_exporter_otlp_proto_grpc-1.27.0.tar.gz", hash = "sha256:af6f72f76bcf425dfb5ad11c1a6d6eca2863b91e63575f89bb7b4b55099d968f"}, ] [package.dependencies] @@ -1333,19 +1358,19 @@ deprecated = ">=1.2.6" googleapis-common-protos = ">=1.52,<2.0" grpcio = ">=1.0.0,<2.0.0" opentelemetry-api = ">=1.15,<2.0" -opentelemetry-exporter-otlp-proto-common = "1.26.0" -opentelemetry-proto = "1.26.0" -opentelemetry-sdk = ">=1.26.0,<1.27.0" +opentelemetry-exporter-otlp-proto-common = "1.27.0" +opentelemetry-proto = "1.27.0" +opentelemetry-sdk = ">=1.27.0,<1.28.0" [[package]] name = "opentelemetry-instrumentation" -version = "0.47b0" +version = "0.48b0" description = "Instrumentation Tools & Auto Instrumentation for OpenTelemetry Python" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_instrumentation-0.47b0-py3-none-any.whl", hash = "sha256:88974ee52b1db08fc298334b51c19d47e53099c33740e48c4f084bd1afd052d5"}, - {file = "opentelemetry_instrumentation-0.47b0.tar.gz", hash = "sha256:96f9885e450c35e3f16a4f33145f2ebf620aea910c9fd74a392bbc0f807a350f"}, + {file = "opentelemetry_instrumentation-0.48b0-py3-none-any.whl", hash = "sha256:a69750dc4ba6a5c3eb67986a337185a25b739966d80479befe37b546fc870b44"}, + {file = "opentelemetry_instrumentation-0.48b0.tar.gz", hash = "sha256:94929685d906380743a71c3970f76b5f07476eea1834abd5dd9d17abfe23cc35"}, ] [package.dependencies] @@ -1355,55 +1380,55 @@ wrapt = ">=1.0.0,<2.0.0" [[package]] name = "opentelemetry-instrumentation-asgi" -version = "0.47b0" +version = "0.48b0" description = "ASGI instrumentation for OpenTelemetry" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_instrumentation_asgi-0.47b0-py3-none-any.whl", hash = "sha256:b798dc4957b3edc9dfecb47a4c05809036a4b762234c5071212fda39ead80ade"}, - {file = "opentelemetry_instrumentation_asgi-0.47b0.tar.gz", hash = "sha256:e78b7822c1bca0511e5e9610ec484b8994a81670375e570c76f06f69af7c506a"}, + {file = "opentelemetry_instrumentation_asgi-0.48b0-py3-none-any.whl", hash = "sha256:ddb1b5fc800ae66e85a4e2eca4d9ecd66367a8c7b556169d9e7b57e10676e44d"}, + {file = "opentelemetry_instrumentation_asgi-0.48b0.tar.gz", hash = "sha256:04c32174b23c7fa72ddfe192dad874954968a6a924608079af9952964ecdf785"}, ] [package.dependencies] asgiref = ">=3.0,<4.0" opentelemetry-api = ">=1.12,<2.0" -opentelemetry-instrumentation = "0.47b0" -opentelemetry-semantic-conventions = "0.47b0" -opentelemetry-util-http = "0.47b0" +opentelemetry-instrumentation = "0.48b0" +opentelemetry-semantic-conventions = "0.48b0" +opentelemetry-util-http = "0.48b0" [package.extras] instruments = ["asgiref (>=3.0,<4.0)"] [[package]] name = "opentelemetry-instrumentation-fastapi" -version = "0.47b0" +version = "0.48b0" description = "OpenTelemetry FastAPI Instrumentation" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_instrumentation_fastapi-0.47b0-py3-none-any.whl", hash = "sha256:5ac28dd401160b02e4f544a85a9e4f61a8cbe5b077ea0379d411615376a2bd21"}, - {file = "opentelemetry_instrumentation_fastapi-0.47b0.tar.gz", hash = "sha256:0c7c10b5d971e99a420678ffd16c5b1ea4f0db3b31b62faf305fbb03b4ebee36"}, + {file = "opentelemetry_instrumentation_fastapi-0.48b0-py3-none-any.whl", hash = "sha256:afeb820a59e139d3e5d96619600f11ce0187658b8ae9e3480857dd790bc024f2"}, + {file = "opentelemetry_instrumentation_fastapi-0.48b0.tar.gz", hash = "sha256:21a72563ea412c0b535815aeed75fc580240f1f02ebc72381cfab672648637a2"}, ] [package.dependencies] opentelemetry-api = ">=1.12,<2.0" -opentelemetry-instrumentation = "0.47b0" -opentelemetry-instrumentation-asgi = "0.47b0" -opentelemetry-semantic-conventions = "0.47b0" -opentelemetry-util-http = "0.47b0" +opentelemetry-instrumentation = "0.48b0" +opentelemetry-instrumentation-asgi = "0.48b0" +opentelemetry-semantic-conventions = "0.48b0" +opentelemetry-util-http = "0.48b0" [package.extras] -instruments = ["fastapi (>=0.58,<1.0)", "fastapi-slim (>=0.111.0,<0.112.0)"] +instruments = ["fastapi (>=0.58,<1.0)"] [[package]] name = "opentelemetry-proto" -version = "1.26.0" +version = "1.27.0" description = "OpenTelemetry Python Proto" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_proto-1.26.0-py3-none-any.whl", hash = "sha256:6c4d7b4d4d9c88543bcf8c28ae3f8f0448a753dc291c18c5390444c90b76a725"}, - {file = "opentelemetry_proto-1.26.0.tar.gz", hash = "sha256:c5c18796c0cab3751fc3b98dee53855835e90c0422924b484432ac852d93dc1e"}, + {file = "opentelemetry_proto-1.27.0-py3-none-any.whl", hash = "sha256:b133873de5581a50063e1e4b29cdcf0c5e253a8c2d8dc1229add20a4c3830ace"}, + {file = "opentelemetry_proto-1.27.0.tar.gz", hash = "sha256:33c9345d91dafd8a74fc3d7576c5a38f18b7fdf8d02983ac67485386132aedd6"}, ] [package.dependencies] @@ -1411,44 +1436,44 @@ protobuf = ">=3.19,<5.0" [[package]] name = "opentelemetry-sdk" -version = "1.26.0" +version = "1.27.0" description = "OpenTelemetry Python SDK" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_sdk-1.26.0-py3-none-any.whl", hash = "sha256:feb5056a84a88670c041ea0ded9921fca559efec03905dddeb3885525e0af897"}, - {file = "opentelemetry_sdk-1.26.0.tar.gz", hash = "sha256:c90d2868f8805619535c05562d699e2f4fb1f00dbd55a86dcefca4da6fa02f85"}, + {file = "opentelemetry_sdk-1.27.0-py3-none-any.whl", hash = "sha256:365f5e32f920faf0fd9e14fdfd92c086e317eaa5f860edba9cdc17a380d9197d"}, + {file = "opentelemetry_sdk-1.27.0.tar.gz", hash = "sha256:d525017dea0ccce9ba4e0245100ec46ecdc043f2d7b8315d56b19aff0904fa6f"}, ] [package.dependencies] -opentelemetry-api = "1.26.0" -opentelemetry-semantic-conventions = "0.47b0" +opentelemetry-api = "1.27.0" +opentelemetry-semantic-conventions = "0.48b0" typing-extensions = ">=3.7.4" [[package]] name = "opentelemetry-semantic-conventions" -version = "0.47b0" +version = "0.48b0" description = "OpenTelemetry Semantic Conventions" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_semantic_conventions-0.47b0-py3-none-any.whl", hash = "sha256:4ff9d595b85a59c1c1413f02bba320ce7ea6bf9e2ead2b0913c4395c7bbc1063"}, - {file = "opentelemetry_semantic_conventions-0.47b0.tar.gz", hash = "sha256:a8d57999bbe3495ffd4d510de26a97dadc1dace53e0275001b2c1b2f67992a7e"}, + {file = "opentelemetry_semantic_conventions-0.48b0-py3-none-any.whl", hash = "sha256:a0de9f45c413a8669788a38569c7e0a11ce6ce97861a628cca785deecdc32a1f"}, + {file = "opentelemetry_semantic_conventions-0.48b0.tar.gz", hash = "sha256:12d74983783b6878162208be57c9effcb89dc88691c64992d70bb89dc00daa1a"}, ] [package.dependencies] deprecated = ">=1.2.6" -opentelemetry-api = "1.26.0" +opentelemetry-api = "1.27.0" [[package]] name = "opentelemetry-util-http" -version = "0.47b0" +version = "0.48b0" description = "Web util for OpenTelemetry" optional = false python-versions = ">=3.8" files = [ - {file = "opentelemetry_util_http-0.47b0-py3-none-any.whl", hash = "sha256:3d3215e09c4a723b12da6d0233a31395aeb2bb33a64d7b15a1500690ba250f19"}, - {file = "opentelemetry_util_http-0.47b0.tar.gz", hash = "sha256:352a07664c18eef827eb8ddcbd64c64a7284a39dd1655e2f16f577eb046ccb32"}, + {file = "opentelemetry_util_http-0.48b0-py3-none-any.whl", hash = "sha256:76f598af93aab50328d2a69c786beaedc8b6a7770f7a818cc307eb353debfffb"}, + {file = "opentelemetry_util_http-0.48b0.tar.gz", hash = "sha256:60312015153580cc20f322e5cdc3d3ecad80a71743235bdb77716e742814623c"}, ] [[package]] @@ -1556,13 +1581,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "posthog" -version = "3.5.2" +version = "3.6.5" description = "Integrate PostHog into any python application." optional = false python-versions = "*" files = [ - {file = "posthog-3.5.2-py2.py3-none-any.whl", hash = "sha256:605b3d92369971cc99290b1fcc8534cbddac3726ef7972caa993454a5ecfb644"}, - {file = "posthog-3.5.2.tar.gz", hash = "sha256:a383a80c1f47e0243f5ce359e81e06e2e7b37eb39d1d6f8d01c3e64ed29df2ee"}, + {file = "posthog-3.6.5-py2.py3-none-any.whl", hash = "sha256:f8b7c573826b061a1d22c9495169c38ebe83a1df2729f49c7129a9c23a02acf6"}, + {file = "posthog-3.6.5.tar.gz", hash = "sha256:7fd3ca809e15476c35f75d18cd6bba31395daf0a17b75242965c469fb6292510"}, ] [package.dependencies] @@ -1575,7 +1600,7 @@ six = ">=1.5" [package.extras] dev = ["black", "flake8", "flake8-print", "isort", "pre-commit"] sentry = ["django", "sentry-sdk"] -test = ["coverage", "flake8", "freezegun (==0.3.15)", "mock (>=2.0.0)", "pylint", "pytest", "pytest-timeout"] +test = ["coverage", "django", "flake8", "freezegun (==0.3.15)", "mock (>=2.0.0)", "pylint", "pytest", "pytest-timeout"] [[package]] name = "protobuf" @@ -1599,24 +1624,24 @@ files = [ [[package]] name = "pyasn1" -version = "0.6.0" +version = "0.6.1" description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, - {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, + {file = "pyasn1-0.6.1-py3-none-any.whl", hash = "sha256:0d632f46f2ba09143da3a8afe9e33fb6f92fa2320ab7e886e2d0f7672af84629"}, + {file = "pyasn1-0.6.1.tar.gz", hash = "sha256:6f580d2bdd84365380830acf45550f2511469f673cb4a5ae3857a3170128b034"}, ] [[package]] name = "pyasn1-modules" -version = "0.4.0" +version = "0.4.1" description = "A collection of ASN.1-based protocols modules" optional = false python-versions = ">=3.8" files = [ - {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, - {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, + {file = "pyasn1_modules-0.4.1-py3-none-any.whl", hash = "sha256:49bfa96b45a292b711e986f222502c1c9a5e1f4e568fc30e2574a6c7d07838fd"}, + {file = "pyasn1_modules-0.4.1.tar.gz", hash = "sha256:c28e2dbf9c06ad61c71a075c7e0f9fd0f1b0bb2d2ad4377f240d33ac2ab60a7c"}, ] [package.dependencies] @@ -1624,18 +1649,18 @@ pyasn1 = ">=0.4.6,<0.7.0" [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -1643,103 +1668,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1782,13 +1808,13 @@ files = [ [[package]] name = "pyreadline3" -version = "3.4.1" +version = "3.4.3" description = "A python implementation of GNU readline." optional = false python-versions = "*" files = [ - {file = "pyreadline3-3.4.1-py3-none-any.whl", hash = "sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb"}, - {file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"}, + {file = "pyreadline3-3.4.3-py3-none-any.whl", hash = "sha256:f832c5898f4f9a0f81d48a8c499b39d0179de1a465ea3def1a7e7231840b4ed6"}, + {file = "pyreadline3-3.4.3.tar.gz", hash = "sha256:ebab0baca37f50e2faa1dd99a6da1c75de60e0d68a3b229c134bbd12786250e2"}, ] [[package]] @@ -1994,13 +2020,13 @@ rsa = ["oauthlib[signedtoken] (>=3.0.0)"] [[package]] name = "rich" -version = "13.7.1" +version = "13.8.1" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = false python-versions = ">=3.7.0" files = [ - {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"}, - {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"}, + {file = "rich-13.8.1-py3-none-any.whl", hash = "sha256:1760a3c0848469b97b558fc61c85233e3dafb69c7a071b4d60c38099d3cd4c06"}, + {file = "rich-13.8.1.tar.gz", hash = "sha256:8260cda28e3db6bf04d2d1ef4dbc03ba80a824c88b0e7668a0f23126a424844a"}, ] [package.dependencies] @@ -2054,19 +2080,23 @@ files = [ [[package]] name = "setuptools" -version = "73.0.1" +version = "74.1.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-73.0.1-py3-none-any.whl", hash = "sha256:b208925fcb9f7af924ed2dc04708ea89791e24bde0d3020b27df0e116088b34e"}, - {file = "setuptools-73.0.1.tar.gz", hash = "sha256:d59a3e788ab7e012ab2c4baed1b376da6366883ee20d7a5fc426816e3d7b1193"}, + {file = "setuptools-74.1.2-py3-none-any.whl", hash = "sha256:5f4c08aa4d3ebcb57a50c33b1b07e94315d7fc7230f7115e47fc99776c8ce308"}, + {file = "setuptools-74.1.2.tar.gz", hash = "sha256:95b40ed940a1c67eb70fc099094bd6e99c6ee7c23aa2306f4d2697ba7916f9c6"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "shellingham" @@ -2103,13 +2133,13 @@ files = [ [[package]] name = "starlette" -version = "0.38.2" +version = "0.38.5" description = "The little ASGI library that shines." optional = false python-versions = ">=3.8" files = [ - {file = "starlette-0.38.2-py3-none-any.whl", hash = "sha256:4ec6a59df6bbafdab5f567754481657f7ed90dc9d69b0c9ff017907dd54faeff"}, - {file = "starlette-0.38.2.tar.gz", hash = "sha256:c7c0441065252160993a1a37cf2a73bb64d271b17303e0b0c1eb7191cfb12d75"}, + {file = "starlette-0.38.5-py3-none-any.whl", hash = "sha256:632f420a9d13e3ee2a6f18f437b0a9f1faecb0bc42e1942aa2ea0e379a4c4206"}, + {file = "starlette-0.38.5.tar.gz", hash = "sha256:04a92830a9b6eb1442c766199d62260c3d4dc9c4f9188360626b1e0273cb7077"}, ] [package.dependencies] @@ -2138,13 +2168,13 @@ dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] [[package]] name = "syrupy" -version = "4.6.4" +version = "4.7.1" description = "Pytest Snapshot Test Utility" optional = false python-versions = ">=3.8.1" files = [ - {file = "syrupy-4.6.4-py3-none-any.whl", hash = "sha256:5a0e47b187d32b58555b0de6d25bc7bb875e7d60c7a41bd2721f5d44975dcf85"}, - {file = "syrupy-4.6.4.tar.gz", hash = "sha256:a6facc6a45f1cff598adacb030d9573ed62863521755abd5c5d6d665f848d6cc"}, + {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, + {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, ] [package.dependencies] @@ -2315,13 +2345,13 @@ telegram = ["requests"] [[package]] name = "typer" -version = "0.12.4" +version = "0.12.5" description = "Typer, build great CLIs. Easy to code. Based on Python type hints." optional = false python-versions = ">=3.7" files = [ - {file = "typer-0.12.4-py3-none-any.whl", hash = "sha256:819aa03699f438397e876aa12b0d63766864ecba1b579092cc9fe35d886e34b6"}, - {file = "typer-0.12.4.tar.gz", hash = "sha256:c9c1613ed6a166162705b3347b8d10b661ccc5d95692654d0fb628118f2c34e6"}, + {file = "typer-0.12.5-py3-none-any.whl", hash = "sha256:62fe4e471711b147e3365034133904df3e235698399bc4de2b36c8579298d52b"}, + {file = "typer-0.12.5.tar.gz", hash = "sha256:f592f089bedcc8ec1b974125d64851029c3b1af145f04aca64d69410f0c9b722"}, ] [package.dependencies] @@ -2332,13 +2362,13 @@ typing-extensions = ">=3.7.4.3" [[package]] name = "types-requests" -version = "2.32.0.20240712" +version = "2.32.0.20240907" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, + {file = "types-requests-2.32.0.20240907.tar.gz", hash = "sha256:ff33935f061b5e81ec87997e91050f7b4af4f82027a7a7a9d9aaea04a963fdf8"}, + {file = "types_requests-2.32.0.20240907-py3-none-any.whl", hash = "sha256:1d1e79faeaf9d42def77f3c304893dea17a97cae98168ac69f3cb465516ee8da"}, ] [package.dependencies] @@ -2357,13 +2387,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -2491,98 +2521,94 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "watchfiles" -version = "0.23.0" +version = "0.24.0" description = "Simple, modern and high performance file watching and code reload in python." optional = false python-versions = ">=3.8" files = [ - {file = "watchfiles-0.23.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:bee8ce357a05c20db04f46c22be2d1a2c6a8ed365b325d08af94358e0688eeb4"}, - {file = "watchfiles-0.23.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4ccd3011cc7ee2f789af9ebe04745436371d36afe610028921cab9f24bb2987b"}, - {file = "watchfiles-0.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb02d41c33be667e6135e6686f1bb76104c88a312a18faa0ef0262b5bf7f1a0f"}, - {file = "watchfiles-0.23.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7cf12ac34c444362f3261fb3ff548f0037ddd4c5bb85f66c4be30d2936beb3c5"}, - {file = "watchfiles-0.23.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0b2c25040a3c0ce0e66c7779cc045fdfbbb8d59e5aabfe033000b42fe44b53e"}, - {file = "watchfiles-0.23.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ecf2be4b9eece4f3da8ba5f244b9e51932ebc441c0867bd6af46a3d97eb068d6"}, - {file = "watchfiles-0.23.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:40cb8fa00028908211eb9f8d47744dca21a4be6766672e1ff3280bee320436f1"}, - {file = "watchfiles-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f48c917ffd36ff9a5212614c2d0d585fa8b064ca7e66206fb5c095015bc8207"}, - {file = "watchfiles-0.23.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9d183e3888ada88185ab17064079c0db8c17e32023f5c278d7bf8014713b1b5b"}, - {file = "watchfiles-0.23.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9837edf328b2805346f91209b7e660f65fb0e9ca18b7459d075d58db082bf981"}, - {file = "watchfiles-0.23.0-cp310-none-win32.whl", hash = "sha256:296e0b29ab0276ca59d82d2da22cbbdb39a23eed94cca69aed274595fb3dfe42"}, - {file = "watchfiles-0.23.0-cp310-none-win_amd64.whl", hash = "sha256:4ea756e425ab2dfc8ef2a0cb87af8aa7ef7dfc6fc46c6f89bcf382121d4fff75"}, - {file = "watchfiles-0.23.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:e397b64f7aaf26915bf2ad0f1190f75c855d11eb111cc00f12f97430153c2eab"}, - {file = "watchfiles-0.23.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b4ac73b02ca1824ec0a7351588241fd3953748d3774694aa7ddb5e8e46aef3e3"}, - {file = "watchfiles-0.23.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:130a896d53b48a1cecccfa903f37a1d87dbb74295305f865a3e816452f6e49e4"}, - {file = "watchfiles-0.23.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c5e7803a65eb2d563c73230e9d693c6539e3c975ccfe62526cadde69f3fda0cf"}, - {file = "watchfiles-0.23.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1aa4cc85202956d1a65c88d18c7b687b8319dbe6b1aec8969784ef7a10e7d1a"}, - {file = "watchfiles-0.23.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87f889f6e58849ddb7c5d2cb19e2e074917ed1c6e3ceca50405775166492cca8"}, - {file = "watchfiles-0.23.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37fd826dac84c6441615aa3f04077adcc5cac7194a021c9f0d69af20fb9fa788"}, - {file = "watchfiles-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee7db6e36e7a2c15923072e41ea24d9a0cf39658cb0637ecc9307b09d28827e1"}, - {file = "watchfiles-0.23.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2368c5371c17fdcb5a2ea71c5c9d49f9b128821bfee69503cc38eae00feb3220"}, - {file = "watchfiles-0.23.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:857af85d445b9ba9178db95658c219dbd77b71b8264e66836a6eba4fbf49c320"}, - {file = "watchfiles-0.23.0-cp311-none-win32.whl", hash = "sha256:1d636c8aeb28cdd04a4aa89030c4b48f8b2954d8483e5f989774fa441c0ed57b"}, - {file = "watchfiles-0.23.0-cp311-none-win_amd64.whl", hash = "sha256:46f1d8069a95885ca529645cdbb05aea5837d799965676e1b2b1f95a4206313e"}, - {file = "watchfiles-0.23.0-cp311-none-win_arm64.whl", hash = "sha256:e495ed2a7943503766c5d1ff05ae9212dc2ce1c0e30a80d4f0d84889298fa304"}, - {file = "watchfiles-0.23.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1db691bad0243aed27c8354b12d60e8e266b75216ae99d33e927ff5238d270b5"}, - {file = "watchfiles-0.23.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:62d2b18cb1edaba311fbbfe83fb5e53a858ba37cacb01e69bc20553bb70911b8"}, - {file = "watchfiles-0.23.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e087e8fdf1270d000913c12e6eca44edd02aad3559b3e6b8ef00f0ce76e0636f"}, - {file = "watchfiles-0.23.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:dd41d5c72417b87c00b1b635738f3c283e737d75c5fa5c3e1c60cd03eac3af77"}, - {file = "watchfiles-0.23.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e5f3ca0ff47940ce0a389457b35d6df601c317c1e1a9615981c474452f98de1"}, - {file = "watchfiles-0.23.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6991e3a78f642368b8b1b669327eb6751439f9f7eaaa625fae67dd6070ecfa0b"}, - {file = "watchfiles-0.23.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f7252f52a09f8fa5435dc82b6af79483118ce6bd51eb74e6269f05ee22a7b9f"}, - {file = "watchfiles-0.23.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e01bcb8d767c58865207a6c2f2792ad763a0fe1119fb0a430f444f5b02a5ea0"}, - {file = "watchfiles-0.23.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:8e56fbcdd27fce061854ddec99e015dd779cae186eb36b14471fc9ae713b118c"}, - {file = "watchfiles-0.23.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:bd3e2d64500a6cad28bcd710ee6269fbeb2e5320525acd0cfab5f269ade68581"}, - {file = "watchfiles-0.23.0-cp312-none-win32.whl", hash = "sha256:eb99c954291b2fad0eff98b490aa641e128fbc4a03b11c8a0086de8b7077fb75"}, - {file = "watchfiles-0.23.0-cp312-none-win_amd64.whl", hash = "sha256:dccc858372a56080332ea89b78cfb18efb945da858fabeb67f5a44fa0bcb4ebb"}, - {file = "watchfiles-0.23.0-cp312-none-win_arm64.whl", hash = "sha256:6c21a5467f35c61eafb4e394303720893066897fca937bade5b4f5877d350ff8"}, - {file = "watchfiles-0.23.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ba31c32f6b4dceeb2be04f717811565159617e28d61a60bb616b6442027fd4b9"}, - {file = "watchfiles-0.23.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:85042ab91814fca99cec4678fc063fb46df4cbb57b4835a1cc2cb7a51e10250e"}, - {file = "watchfiles-0.23.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24655e8c1c9c114005c3868a3d432c8aa595a786b8493500071e6a52f3d09217"}, - {file = "watchfiles-0.23.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6b1a950ab299a4a78fd6369a97b8763732bfb154fdb433356ec55a5bce9515c1"}, - {file = "watchfiles-0.23.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8d3c5cd327dd6ce0edfc94374fb5883d254fe78a5e9d9dfc237a1897dc73cd1"}, - {file = "watchfiles-0.23.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ff785af8bacdf0be863ec0c428e3288b817e82f3d0c1d652cd9c6d509020dd0"}, - {file = "watchfiles-0.23.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:02b7ba9d4557149410747353e7325010d48edcfe9d609a85cb450f17fd50dc3d"}, - {file = "watchfiles-0.23.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48a1b05c0afb2cd2f48c1ed2ae5487b116e34b93b13074ed3c22ad5c743109f0"}, - {file = "watchfiles-0.23.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:109a61763e7318d9f821b878589e71229f97366fa6a5c7720687d367f3ab9eef"}, - {file = "watchfiles-0.23.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:9f8e6bb5ac007d4a4027b25f09827ed78cbbd5b9700fd6c54429278dacce05d1"}, - {file = "watchfiles-0.23.0-cp313-none-win32.whl", hash = "sha256:f46c6f0aec8d02a52d97a583782d9af38c19a29900747eb048af358a9c1d8e5b"}, - {file = "watchfiles-0.23.0-cp313-none-win_amd64.whl", hash = "sha256:f449afbb971df5c6faeb0a27bca0427d7b600dd8f4a068492faec18023f0dcff"}, - {file = "watchfiles-0.23.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:2dddc2487d33e92f8b6222b5fb74ae2cfde5e8e6c44e0248d24ec23befdc5366"}, - {file = "watchfiles-0.23.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e75695cc952e825fa3e0684a7f4a302f9128721f13eedd8dbd3af2ba450932b8"}, - {file = "watchfiles-0.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2537ef60596511df79b91613a5bb499b63f46f01a11a81b0a2b0dedf645d0a9c"}, - {file = "watchfiles-0.23.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:20b423b58f5fdde704a226b598a2d78165fe29eb5621358fe57ea63f16f165c4"}, - {file = "watchfiles-0.23.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b98732ec893975455708d6fc9a6daab527fc8bbe65be354a3861f8c450a632a4"}, - {file = "watchfiles-0.23.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee1f5fcbf5bc33acc0be9dd31130bcba35d6d2302e4eceafafd7d9018c7755ab"}, - {file = "watchfiles-0.23.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8f195338a5a7b50a058522b39517c50238358d9ad8284fd92943643144c0c03"}, - {file = "watchfiles-0.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:524fcb8d59b0dbee2c9b32207084b67b2420f6431ed02c18bd191e6c575f5c48"}, - {file = "watchfiles-0.23.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0eff099a4df36afaa0eea7a913aa64dcf2cbd4e7a4f319a73012210af4d23810"}, - {file = "watchfiles-0.23.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a8323daae27ea290ba3350c70c836c0d2b0fb47897fa3b0ca6a5375b952b90d3"}, - {file = "watchfiles-0.23.0-cp38-none-win32.whl", hash = "sha256:aafea64a3ae698695975251f4254df2225e2624185a69534e7fe70581066bc1b"}, - {file = "watchfiles-0.23.0-cp38-none-win_amd64.whl", hash = "sha256:c846884b2e690ba62a51048a097acb6b5cd263d8bd91062cd6137e2880578472"}, - {file = "watchfiles-0.23.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a753993635eccf1ecb185dedcc69d220dab41804272f45e4aef0a67e790c3eb3"}, - {file = "watchfiles-0.23.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6bb91fa4d0b392f0f7e27c40981e46dda9eb0fbc84162c7fb478fe115944f491"}, - {file = "watchfiles-0.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1f67312efa3902a8e8496bfa9824d3bec096ff83c4669ea555c6bdd213aa516"}, - {file = "watchfiles-0.23.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7ca6b71dcc50d320c88fb2d88ecd63924934a8abc1673683a242a7ca7d39e781"}, - {file = "watchfiles-0.23.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2aec5c29915caf08771d2507da3ac08e8de24a50f746eb1ed295584ba1820330"}, - {file = "watchfiles-0.23.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1733b9bc2c8098c6bdb0ff7a3d7cb211753fecb7bd99bdd6df995621ee1a574b"}, - {file = "watchfiles-0.23.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:02ff5d7bd066c6a7673b17c8879cd8ee903078d184802a7ee851449c43521bdd"}, - {file = "watchfiles-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18e2de19801b0eaa4c5292a223effb7cfb43904cb742c5317a0ac686ed604765"}, - {file = "watchfiles-0.23.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:8ada449e22198c31fb013ae7e9add887e8d2bd2335401abd3cbc55f8c5083647"}, - {file = "watchfiles-0.23.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3af1b05361e1cc497bf1be654a664750ae61f5739e4bb094a2be86ec8c6db9b6"}, - {file = "watchfiles-0.23.0-cp39-none-win32.whl", hash = "sha256:486bda18be5d25ab5d932699ceed918f68eb91f45d018b0343e3502e52866e5e"}, - {file = "watchfiles-0.23.0-cp39-none-win_amd64.whl", hash = "sha256:d2d42254b189a346249424fb9bb39182a19289a2409051ee432fb2926bad966a"}, - {file = "watchfiles-0.23.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6a9265cf87a5b70147bfb2fec14770ed5b11a5bb83353f0eee1c25a81af5abfe"}, - {file = "watchfiles-0.23.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9f02a259fcbbb5fcfe7a0805b1097ead5ba7a043e318eef1db59f93067f0b49b"}, - {file = "watchfiles-0.23.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ebaebb53b34690da0936c256c1cdb0914f24fb0e03da76d185806df9328abed"}, - {file = "watchfiles-0.23.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd257f98cff9c6cb39eee1a83c7c3183970d8a8d23e8cf4f47d9a21329285cee"}, - {file = "watchfiles-0.23.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:aba037c1310dd108411d27b3d5815998ef0e83573e47d4219f45753c710f969f"}, - {file = "watchfiles-0.23.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:a96ac14e184aa86dc43b8a22bb53854760a58b2966c2b41580de938e9bf26ed0"}, - {file = "watchfiles-0.23.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11698bb2ea5e991d10f1f4f83a39a02f91e44e4bd05f01b5c1ec04c9342bf63c"}, - {file = "watchfiles-0.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efadd40fca3a04063d40c4448c9303ce24dd6151dc162cfae4a2a060232ebdcb"}, - {file = "watchfiles-0.23.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:556347b0abb4224c5ec688fc58214162e92a500323f50182f994f3ad33385dcb"}, - {file = "watchfiles-0.23.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1cf7f486169986c4b9d34087f08ce56a35126600b6fef3028f19ca16d5889071"}, - {file = "watchfiles-0.23.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f18de0f82c62c4197bea5ecf4389288ac755896aac734bd2cc44004c56e4ac47"}, - {file = "watchfiles-0.23.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:532e1f2c491274d1333a814e4c5c2e8b92345d41b12dc806cf07aaff786beb66"}, - {file = "watchfiles-0.23.0.tar.gz", hash = "sha256:9338ade39ff24f8086bb005d16c29f8e9f19e55b18dcb04dfa26fcbc09da497b"}, + {file = "watchfiles-0.24.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:083dc77dbdeef09fa44bb0f4d1df571d2e12d8a8f985dccde71ac3ac9ac067a0"}, + {file = "watchfiles-0.24.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e94e98c7cb94cfa6e071d401ea3342767f28eb5a06a58fafdc0d2a4974f4f35c"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82ae557a8c037c42a6ef26c494d0631cacca040934b101d001100ed93d43f361"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:acbfa31e315a8f14fe33e3542cbcafc55703b8f5dcbb7c1eecd30f141df50db3"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b74fdffce9dfcf2dc296dec8743e5b0332d15df19ae464f0e249aa871fc1c571"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:449f43f49c8ddca87c6b3980c9284cab6bd1f5c9d9a2b00012adaaccd5e7decd"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4abf4ad269856618f82dee296ac66b0cd1d71450fc3c98532d93798e73399b7a"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f895d785eb6164678ff4bb5cc60c5996b3ee6df3edb28dcdeba86a13ea0465e"}, + {file = "watchfiles-0.24.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7ae3e208b31be8ce7f4c2c0034f33406dd24fbce3467f77223d10cd86778471c"}, + {file = "watchfiles-0.24.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2efec17819b0046dde35d13fb8ac7a3ad877af41ae4640f4109d9154ed30a188"}, + {file = "watchfiles-0.24.0-cp310-none-win32.whl", hash = "sha256:6bdcfa3cd6fdbdd1a068a52820f46a815401cbc2cb187dd006cb076675e7b735"}, + {file = "watchfiles-0.24.0-cp310-none-win_amd64.whl", hash = "sha256:54ca90a9ae6597ae6dc00e7ed0a040ef723f84ec517d3e7ce13e63e4bc82fa04"}, + {file = "watchfiles-0.24.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:bdcd5538e27f188dd3c804b4a8d5f52a7fc7f87e7fd6b374b8e36a4ca03db428"}, + {file = "watchfiles-0.24.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2dadf8a8014fde6addfd3c379e6ed1a981c8f0a48292d662e27cabfe4239c83c"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6509ed3f467b79d95fc62a98229f79b1a60d1b93f101e1c61d10c95a46a84f43"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8360f7314a070c30e4c976b183d1d8d1585a4a50c5cb603f431cebcbb4f66327"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:316449aefacf40147a9efaf3bd7c9bdd35aaba9ac5d708bd1eb5763c9a02bef5"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:73bde715f940bea845a95247ea3e5eb17769ba1010efdc938ffcb967c634fa61"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3770e260b18e7f4e576edca4c0a639f704088602e0bc921c5c2e721e3acb8d15"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa0fd7248cf533c259e59dc593a60973a73e881162b1a2f73360547132742823"}, + {file = "watchfiles-0.24.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d7a2e3b7f5703ffbd500dabdefcbc9eafeff4b9444bbdd5d83d79eedf8428fab"}, + {file = "watchfiles-0.24.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d831ee0a50946d24a53821819b2327d5751b0c938b12c0653ea5be7dea9c82ec"}, + {file = "watchfiles-0.24.0-cp311-none-win32.whl", hash = "sha256:49d617df841a63b4445790a254013aea2120357ccacbed00253f9c2b5dc24e2d"}, + {file = "watchfiles-0.24.0-cp311-none-win_amd64.whl", hash = "sha256:d3dcb774e3568477275cc76554b5a565024b8ba3a0322f77c246bc7111c5bb9c"}, + {file = "watchfiles-0.24.0-cp311-none-win_arm64.whl", hash = "sha256:9301c689051a4857d5b10777da23fafb8e8e921bcf3abe6448a058d27fb67633"}, + {file = "watchfiles-0.24.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:7211b463695d1e995ca3feb38b69227e46dbd03947172585ecb0588f19b0d87a"}, + {file = "watchfiles-0.24.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4b8693502d1967b00f2fb82fc1e744df128ba22f530e15b763c8d82baee15370"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdab9555053399318b953a1fe1f586e945bc8d635ce9d05e617fd9fe3a4687d6"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:34e19e56d68b0dad5cff62273107cf5d9fbaf9d75c46277aa5d803b3ef8a9e9b"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:41face41f036fee09eba33a5b53a73e9a43d5cb2c53dad8e61fa6c9f91b5a51e"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5148c2f1ea043db13ce9b0c28456e18ecc8f14f41325aa624314095b6aa2e9ea"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e4bd963a935aaf40b625c2499f3f4f6bbd0c3776f6d3bc7c853d04824ff1c9f"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c79d7719d027b7a42817c5d96461a99b6a49979c143839fc37aa5748c322f234"}, + {file = "watchfiles-0.24.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:32aa53a9a63b7f01ed32e316e354e81e9da0e6267435c7243bf8ae0f10b428ef"}, + {file = "watchfiles-0.24.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce72dba6a20e39a0c628258b5c308779b8697f7676c254a845715e2a1039b968"}, + {file = "watchfiles-0.24.0-cp312-none-win32.whl", hash = "sha256:d9018153cf57fc302a2a34cb7564870b859ed9a732d16b41a9b5cb2ebed2d444"}, + {file = "watchfiles-0.24.0-cp312-none-win_amd64.whl", hash = "sha256:551ec3ee2a3ac9cbcf48a4ec76e42c2ef938a7e905a35b42a1267fa4b1645896"}, + {file = "watchfiles-0.24.0-cp312-none-win_arm64.whl", hash = "sha256:b52a65e4ea43c6d149c5f8ddb0bef8d4a1e779b77591a458a893eb416624a418"}, + {file = "watchfiles-0.24.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:3d2e3ab79a1771c530233cadfd277fcc762656d50836c77abb2e5e72b88e3a48"}, + {file = "watchfiles-0.24.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:327763da824817b38ad125dcd97595f942d720d32d879f6c4ddf843e3da3fe90"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd82010f8ab451dabe36054a1622870166a67cf3fce894f68895db6f74bbdc94"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d64ba08db72e5dfd5c33be1e1e687d5e4fcce09219e8aee893a4862034081d4e"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1cf1f6dd7825053f3d98f6d33f6464ebdd9ee95acd74ba2c34e183086900a827"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:43e3e37c15a8b6fe00c1bce2473cfa8eb3484bbeecf3aefbf259227e487a03df"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:88bcd4d0fe1d8ff43675360a72def210ebad3f3f72cabfeac08d825d2639b4ab"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:999928c6434372fde16c8f27143d3e97201160b48a614071261701615a2a156f"}, + {file = "watchfiles-0.24.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:30bbd525c3262fd9f4b1865cb8d88e21161366561cd7c9e1194819e0a33ea86b"}, + {file = "watchfiles-0.24.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:edf71b01dec9f766fb285b73930f95f730bb0943500ba0566ae234b5c1618c18"}, + {file = "watchfiles-0.24.0-cp313-none-win32.whl", hash = "sha256:f4c96283fca3ee09fb044f02156d9570d156698bc3734252175a38f0e8975f07"}, + {file = "watchfiles-0.24.0-cp313-none-win_amd64.whl", hash = "sha256:a974231b4fdd1bb7f62064a0565a6b107d27d21d9acb50c484d2cdba515b9366"}, + {file = "watchfiles-0.24.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:ee82c98bed9d97cd2f53bdb035e619309a098ea53ce525833e26b93f673bc318"}, + {file = "watchfiles-0.24.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:fd92bbaa2ecdb7864b7600dcdb6f2f1db6e0346ed425fbd01085be04c63f0b05"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f83df90191d67af5a831da3a33dd7628b02a95450e168785586ed51e6d28943c"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fca9433a45f18b7c779d2bae7beeec4f740d28b788b117a48368d95a3233ed83"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b995bfa6bf01a9e09b884077a6d37070464b529d8682d7691c2d3b540d357a0c"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ed9aba6e01ff6f2e8285e5aa4154e2970068fe0fc0998c4380d0e6278222269b"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e5171ef898299c657685306d8e1478a45e9303ddcd8ac5fed5bd52ad4ae0b69b"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4933a508d2f78099162da473841c652ad0de892719043d3f07cc83b33dfd9d91"}, + {file = "watchfiles-0.24.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:95cf3b95ea665ab03f5a54765fa41abf0529dbaf372c3b83d91ad2cfa695779b"}, + {file = "watchfiles-0.24.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:01def80eb62bd5db99a798d5e1f5f940ca0a05986dcfae21d833af7a46f7ee22"}, + {file = "watchfiles-0.24.0-cp38-none-win32.whl", hash = "sha256:4d28cea3c976499475f5b7a2fec6b3a36208656963c1a856d328aeae056fc5c1"}, + {file = "watchfiles-0.24.0-cp38-none-win_amd64.whl", hash = "sha256:21ab23fdc1208086d99ad3f69c231ba265628014d4aed31d4e8746bd59e88cd1"}, + {file = "watchfiles-0.24.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b665caeeda58625c3946ad7308fbd88a086ee51ccb706307e5b1fa91556ac886"}, + {file = "watchfiles-0.24.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5c51749f3e4e269231510da426ce4a44beb98db2dce9097225c338f815b05d4f"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82b2509f08761f29a0fdad35f7e1638b8ab1adfa2666d41b794090361fb8b855"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9a60e2bf9dc6afe7f743e7c9b149d1fdd6dbf35153c78fe3a14ae1a9aee3d98b"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7d9b87c4c55e3ea8881dfcbf6d61ea6775fffed1fedffaa60bd047d3c08c430"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:78470906a6be5199524641f538bd2c56bb809cd4bf29a566a75051610bc982c3"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:07cdef0c84c03375f4e24642ef8d8178e533596b229d32d2bbd69e5128ede02a"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d337193bbf3e45171c8025e291530fb7548a93c45253897cd764a6a71c937ed9"}, + {file = "watchfiles-0.24.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ec39698c45b11d9694a1b635a70946a5bad066b593af863460a8e600f0dff1ca"}, + {file = "watchfiles-0.24.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2e28d91ef48eab0afb939fa446d8ebe77e2f7593f5f463fd2bb2b14132f95b6e"}, + {file = "watchfiles-0.24.0-cp39-none-win32.whl", hash = "sha256:7138eff8baa883aeaa074359daabb8b6c1e73ffe69d5accdc907d62e50b1c0da"}, + {file = "watchfiles-0.24.0-cp39-none-win_amd64.whl", hash = "sha256:b3ef2c69c655db63deb96b3c3e587084612f9b1fa983df5e0c3379d41307467f"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:632676574429bee8c26be8af52af20e0c718cc7f5f67f3fb658c71928ccd4f7f"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a2a9891723a735d3e2540651184be6fd5b96880c08ffe1a98bae5017e65b544b"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a7fa2bc0efef3e209a8199fd111b8969fe9db9c711acc46636686331eda7dd4"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01550ccf1d0aed6ea375ef259706af76ad009ef5b0203a3a4cce0f6024f9b68a"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:96619302d4374de5e2345b2b622dc481257a99431277662c30f606f3e22f42be"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:85d5f0c7771dcc7a26c7a27145059b6bb0ce06e4e751ed76cdf123d7039b60b5"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:951088d12d339690a92cef2ec5d3cfd957692834c72ffd570ea76a6790222777"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49fb58bcaa343fedc6a9e91f90195b20ccb3135447dc9e4e2570c3a39565853e"}, + {file = "watchfiles-0.24.0.tar.gz", hash = "sha256:afb72325b74fa7a428c009c1b8be4b4d7c2afedafb2982827ef2156646df2fe1"}, ] [package.dependencies] @@ -2606,97 +2632,97 @@ test = ["websockets"] [[package]] name = "websockets" -version = "13.0" +version = "13.0.1" description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)" optional = false python-versions = ">=3.8" files = [ - {file = "websockets-13.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ad4fa707ff9e2ffee019e946257b5300a45137a58f41fbd9a4db8e684ab61528"}, - {file = "websockets-13.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6fd757f313c13c34dae9f126d3ba4cf97175859c719e57c6a614b781c86b617e"}, - {file = "websockets-13.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cbac2eb7ce0fac755fb983c9247c4a60c4019bcde4c0e4d167aeb17520cc7ef1"}, - {file = "websockets-13.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4b83cf7354cbbc058e97b3e545dceb75b8d9cf17fd5a19db419c319ddbaaf7a"}, - {file = "websockets-13.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9202c0010c78fad1041e1c5285232b6508d3633f92825687549540a70e9e5901"}, - {file = "websockets-13.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e6566e79c8c7cbea75ec450f6e1828945fc5c9a4769ceb1c7b6e22470539712"}, - {file = "websockets-13.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e7fcad070dcd9ad37a09d89a4cbc2a5e3e45080b88977c0da87b3090f9f55ead"}, - {file = "websockets-13.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0a8f7d65358a25172db00c69bcc7df834155ee24229f560d035758fd6613111a"}, - {file = "websockets-13.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:63b702fb31e3f058f946ccdfa551f4d57a06f7729c369e8815eb18643099db37"}, - {file = "websockets-13.0-cp310-cp310-win32.whl", hash = "sha256:3a20cf14ba7b482c4a1924b5e061729afb89c890ca9ed44ac4127c6c5986e424"}, - {file = "websockets-13.0-cp310-cp310-win_amd64.whl", hash = "sha256:587245f0704d0bb675f919898d7473e8827a6d578e5a122a21756ca44b811ec8"}, - {file = "websockets-13.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:06df8306c241c235075d2ae77367038e701e53bc8c1bb4f6644f4f53aa6dedd0"}, - {file = "websockets-13.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:85a1f92a02f0b8c1bf02699731a70a8a74402bb3f82bee36e7768b19a8ed9709"}, - {file = "websockets-13.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9ed02c604349068d46d87ef4c2012c112c791f2bec08671903a6bb2bd9c06784"}, - {file = "websockets-13.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b89849171b590107f6724a7b0790736daead40926ddf47eadf998b4ff51d6414"}, - {file = "websockets-13.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:939a16849d71203628157a5e4a495da63967c744e1e32018e9b9e2689aca64d4"}, - {file = "websockets-13.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad818cdac37c0ad4c58e51cb4964eae4f18b43c4a83cb37170b0d90c31bd80cf"}, - {file = "websockets-13.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cbfe82a07596a044de78bb7a62519e71690c5812c26c5f1d4b877e64e4f46309"}, - {file = "websockets-13.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e07e76c49f39c5b45cbd7362b94f001ae209a3ea4905ae9a09cfd53b3c76373d"}, - {file = "websockets-13.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:372f46a0096cfda23c88f7e42349a33f8375e10912f712e6b496d3a9a557290f"}, - {file = "websockets-13.0-cp311-cp311-win32.whl", hash = "sha256:376a43a4fd96725f13450d3d2e98f4f36c3525c562ab53d9a98dd2950dca9a8a"}, - {file = "websockets-13.0-cp311-cp311-win_amd64.whl", hash = "sha256:2be1382a4daa61e2f3e2be3b3c86932a8db9d1f85297feb6e9df22f391f94452"}, - {file = "websockets-13.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b5407c34776b9b77bd89a5f95eb0a34aaf91889e3f911c63f13035220eb50107"}, - {file = "websockets-13.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4782ec789f059f888c1e8fdf94383d0e64b531cffebbf26dd55afd53ab487ca4"}, - {file = "websockets-13.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c8feb8e19ef65c9994e652c5b0324abd657bedd0abeb946fb4f5163012c1e730"}, - {file = "websockets-13.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3f3d2e20c442b58dbac593cb1e02bc02d149a86056cc4126d977ad902472e3b"}, - {file = "websockets-13.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e39d393e0ab5b8bd01717cc26f2922026050188947ff54fe6a49dc489f7750b7"}, - {file = "websockets-13.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f661a4205741bdc88ac9c2b2ec003c72cee97e4acd156eb733662ff004ba429"}, - {file = "websockets-13.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:384129ad0490e06bab2b98c1da9b488acb35bb11e2464c728376c6f55f0d45f3"}, - {file = "websockets-13.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:df5c0eff91f61b8205a6c9f7b255ff390cdb77b61c7b41f79ca10afcbb22b6cb"}, - {file = "websockets-13.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:02cc9bb1a887dac0e08bf657c5d00aa3fac0d03215d35a599130c2034ae6663a"}, - {file = "websockets-13.0-cp312-cp312-win32.whl", hash = "sha256:d9726d2c9bd6aed8cb994d89b3910ca0079406edce3670886ec828a73e7bdd53"}, - {file = "websockets-13.0-cp312-cp312-win_amd64.whl", hash = "sha256:fa0839f35322f7b038d8adcf679e2698c3a483688cc92e3bd15ee4fb06669e9a"}, - {file = "websockets-13.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:da7e501e59857e8e3e9d10586139dc196b80445a591451ca9998aafba1af5278"}, - {file = "websockets-13.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a00e1e587c655749afb5b135d8d3edcfe84ec6db864201e40a882e64168610b3"}, - {file = "websockets-13.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a7fbf2a8fe7556a8f4e68cb3e736884af7bf93653e79f6219f17ebb75e97d8f0"}, - {file = "websockets-13.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ea9c9c7443a97ea4d84d3e4d42d0e8c4235834edae652993abcd2aff94affd7"}, - {file = "websockets-13.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35c2221b539b360203f3f9ad168e527bf16d903e385068ae842c186efb13d0ea"}, - {file = "websockets-13.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:358d37c5c431dd050ffb06b4b075505aae3f4f795d7fff9794e5ed96ce99b998"}, - {file = "websockets-13.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:038e7a0f1bfafc7bf52915ab3506b7a03d1e06381e9f60440c856e8918138151"}, - {file = "websockets-13.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:fd038bc9e2c134847f1e0ce3191797fad110756e690c2fdd9702ed34e7a43abb"}, - {file = "websockets-13.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:93b8c2008f372379fb6e5d2b3f7c9ec32f7b80316543fd3a5ace6610c5cde1b0"}, - {file = "websockets-13.0-cp313-cp313-win32.whl", hash = "sha256:851fd0afb3bc0b73f7c5b5858975d42769a5fdde5314f4ef2c106aec63100687"}, - {file = "websockets-13.0-cp313-cp313-win_amd64.whl", hash = "sha256:7d14901fdcf212804970c30ab9ee8f3f0212e620c7ea93079d6534863444fb4e"}, - {file = "websockets-13.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ae7a519a56a714f64c3445cabde9fc2fc927e7eae44f413eae187cddd9e54178"}, - {file = "websockets-13.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5575031472ca87302aeb2ce2c2349f4c6ea978c86a9d1289bc5d16058ad4c10a"}, - {file = "websockets-13.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9895df6cd0bfe79d09bcd1dbdc03862846f26fbd93797153de954306620c1d00"}, - {file = "websockets-13.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4de299c947a54fca9ce1c5fd4a08eb92ffce91961becb13bd9195f7c6e71b47"}, - {file = "websockets-13.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:05c25f7b849702950b6fd0e233989bb73a0d2bc83faa3b7233313ca395205f6d"}, - {file = "websockets-13.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ede95125a30602b1691a4b1da88946bf27dae283cf30f22cd2cb8ca4b2e0d119"}, - {file = "websockets-13.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:addf0a16e4983280efed272d8cb3b2e05f0051755372461e7d966b80a6554e16"}, - {file = "websockets-13.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:06b3186e97bf9a33921fa60734d5ed90f2a9b407cce8d23c7333a0984049ef61"}, - {file = "websockets-13.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:eae368cac85adc4c7dc3b0d5f84ffcca609d658db6447387300478e44db70796"}, - {file = "websockets-13.0-cp38-cp38-win32.whl", hash = "sha256:337837ac788d955728b1ab01876d72b73da59819a3388e1c5e8e05c3999f1afa"}, - {file = "websockets-13.0-cp38-cp38-win_amd64.whl", hash = "sha256:f66e00e42f25ca7e91076366303e11c82572ca87cc5aae51e6e9c094f315ab41"}, - {file = "websockets-13.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:94c1c02721139fe9940b38d28fb15b4b782981d800d5f40f9966264fbf23dcc8"}, - {file = "websockets-13.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bd4ba86513430513e2aa25a441bb538f6f83734dc368a2c5d18afdd39097aa33"}, - {file = "websockets-13.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a1ab8f0e0cadc5be5f3f9fa11a663957fecbf483d434762c8dfb8aa44948944a"}, - {file = "websockets-13.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3670def5d3dfd5af6f6e2b3b243ea8f1f72d8da1ef927322f0703f85c90d9603"}, - {file = "websockets-13.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6058b6be92743358885ad6dcdecb378fde4a4c74d4dd16a089d07580c75a0e80"}, - {file = "websockets-13.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:516062a0a8ef5ecbfa4acbaec14b199fc070577834f9fe3d40800a99f92523ca"}, - {file = "websockets-13.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:da7e918d82e7bdfc6f66d31febe1b2e28a1ca3387315f918de26f5e367f61572"}, - {file = "websockets-13.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:9cc7f35dcb49a4e32db82a849fcc0714c4d4acc9d2273aded2d61f87d7f660b7"}, - {file = "websockets-13.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f5737c53eb2c8ed8f64b50d3dafd3c1dae739f78aa495a288421ac1b3de82717"}, - {file = "websockets-13.0-cp39-cp39-win32.whl", hash = "sha256:265e1f0d3f788ce8ef99dca591a1aec5263b26083ca0934467ad9a1d1181067c"}, - {file = "websockets-13.0-cp39-cp39-win_amd64.whl", hash = "sha256:4d70c89e3d3b347a7c4d3c33f8d323f0584c9ceb69b82c2ef8a174ca84ea3d4a"}, - {file = "websockets-13.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:602cbd010d8c21c8475f1798b705bb18567eb189c533ab5ef568bc3033fdf417"}, - {file = "websockets-13.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:bf8eb5dca4f484a60f5327b044e842e0d7f7cdbf02ea6dc4a4f811259f1f1f0b"}, - {file = "websockets-13.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89d795c1802d99a643bf689b277e8604c14b5af1bc0a31dade2cd7a678087212"}, - {file = "websockets-13.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:788bc841d250beccff67a20a5a53a15657a60111ef9c0c0a97fbdd614fae0fe2"}, - {file = "websockets-13.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7334752052532c156d28b8eaf3558137e115c7871ea82adff69b6d94a7bee273"}, - {file = "websockets-13.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e7a1963302947332c3039e3f66209ec73b1626f8a0191649e0713c391e9f5b0d"}, - {file = "websockets-13.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2e1cf4e1eb84b4fd74a47688e8b0940c89a04ad9f6937afa43d468e71128cd68"}, - {file = "websockets-13.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:c026ee729c4ce55708a14b839ba35086dfae265fc12813b62d34ce33f4980c1c"}, - {file = "websockets-13.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5f9d23fbbf96eefde836d9692670bfc89e2d159f456d499c5efcf6a6281c1af"}, - {file = "websockets-13.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ad684cb7efce227d756bae3e8484f2e56aa128398753b54245efdfbd1108f2c"}, - {file = "websockets-13.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1e10b3fbed7be4a59831d3a939900e50fcd34d93716e433d4193a4d0d1d335d"}, - {file = "websockets-13.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:d42a818e634f789350cd8fb413a3f5eec1cf0400a53d02062534c41519f5125c"}, - {file = "websockets-13.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5ba5e9b332267d0f2c33ede390061850f1ac3ee6cd1bdcf4c5ea33ead971966"}, - {file = "websockets-13.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9af457ed593e35f467140d8b61d425495b127744a9d65d45a366f8678449a23"}, - {file = "websockets-13.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bcea3eb58c09c3a31cc83b45c06d5907f02ddaf10920aaa6443975310f699b95"}, - {file = "websockets-13.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c210d1460dc8d326ffdef9703c2f83269b7539a1690ad11ae04162bc1878d33d"}, - {file = "websockets-13.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b32f38bc81170fd56d0482d505b556e52bf9078b36819a8ba52624bd6667e39e"}, - {file = "websockets-13.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:81a11a1ddd5320429db47c04d35119c3e674d215173d87aaeb06ae80f6e9031f"}, - {file = "websockets-13.0-py3-none-any.whl", hash = "sha256:dbbac01e80aee253d44c4f098ab3cc17c822518519e869b284cfbb8cd16cc9de"}, - {file = "websockets-13.0.tar.gz", hash = "sha256:b7bf950234a482b7461afdb2ec99eee3548ec4d53f418c7990bb79c620476602"}, + {file = "websockets-13.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1841c9082a3ba4a05ea824cf6d99570a6a2d8849ef0db16e9c826acb28089e8f"}, + {file = "websockets-13.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c5870b4a11b77e4caa3937142b650fbbc0914a3e07a0cf3131f35c0587489c1c"}, + {file = "websockets-13.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f1d3d1f2eb79fe7b0fb02e599b2bf76a7619c79300fc55f0b5e2d382881d4f7f"}, + {file = "websockets-13.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15c7d62ee071fa94a2fc52c2b472fed4af258d43f9030479d9c4a2de885fd543"}, + {file = "websockets-13.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6724b554b70d6195ba19650fef5759ef11346f946c07dbbe390e039bcaa7cc3d"}, + {file = "websockets-13.0.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56a952fa2ae57a42ba7951e6b2605e08a24801a4931b5644dfc68939e041bc7f"}, + {file = "websockets-13.0.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:17118647c0ea14796364299e942c330d72acc4b248e07e639d34b75067b3cdd8"}, + {file = "websockets-13.0.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:64a11aae1de4c178fa653b07d90f2fb1a2ed31919a5ea2361a38760192e1858b"}, + {file = "websockets-13.0.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0617fd0b1d14309c7eab6ba5deae8a7179959861846cbc5cb528a7531c249448"}, + {file = "websockets-13.0.1-cp310-cp310-win32.whl", hash = "sha256:11f9976ecbc530248cf162e359a92f37b7b282de88d1d194f2167b5e7ad80ce3"}, + {file = "websockets-13.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c3c493d0e5141ec055a7d6809a28ac2b88d5b878bb22df8c621ebe79a61123d0"}, + {file = "websockets-13.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:699ba9dd6a926f82a277063603fc8d586b89f4cb128efc353b749b641fcddda7"}, + {file = "websockets-13.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cf2fae6d85e5dc384bf846f8243ddaa9197f3a1a70044f59399af001fd1f51d4"}, + {file = "websockets-13.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:52aed6ef21a0f1a2a5e310fb5c42d7555e9c5855476bbd7173c3aa3d8a0302f2"}, + {file = "websockets-13.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8eb2b9a318542153674c6e377eb8cb9ca0fc011c04475110d3477862f15d29f0"}, + {file = "websockets-13.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5df891c86fe68b2c38da55b7aea7095beca105933c697d719f3f45f4220a5e0e"}, + {file = "websockets-13.0.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fac2d146ff30d9dd2fcf917e5d147db037a5c573f0446c564f16f1f94cf87462"}, + {file = "websockets-13.0.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b8ac5b46fd798bbbf2ac6620e0437c36a202b08e1f827832c4bf050da081b501"}, + {file = "websockets-13.0.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:46af561eba6f9b0848b2c9d2427086cabadf14e0abdd9fde9d72d447df268418"}, + {file = "websockets-13.0.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b5a06d7f60bc2fc378a333978470dfc4e1415ee52f5f0fce4f7853eb10c1e9df"}, + {file = "websockets-13.0.1-cp311-cp311-win32.whl", hash = "sha256:556e70e4f69be1082e6ef26dcb70efcd08d1850f5d6c5f4f2bcb4e397e68f01f"}, + {file = "websockets-13.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:67494e95d6565bf395476e9d040037ff69c8b3fa356a886b21d8422ad86ae075"}, + {file = "websockets-13.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f9c9e258e3d5efe199ec23903f5da0eeaad58cf6fccb3547b74fd4750e5ac47a"}, + {file = "websockets-13.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6b41a1b3b561f1cba8321fb32987552a024a8f67f0d05f06fcf29f0090a1b956"}, + {file = "websockets-13.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f73e676a46b0fe9426612ce8caeca54c9073191a77c3e9d5c94697aef99296af"}, + {file = "websockets-13.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f613289f4a94142f914aafad6c6c87903de78eae1e140fa769a7385fb232fdf"}, + {file = "websockets-13.0.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0f52504023b1480d458adf496dc1c9e9811df4ba4752f0bc1f89ae92f4f07d0c"}, + {file = "websockets-13.0.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:139add0f98206cb74109faf3611b7783ceafc928529c62b389917a037d4cfdf4"}, + {file = "websockets-13.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:47236c13be337ef36546004ce8c5580f4b1150d9538b27bf8a5ad8edf23ccfab"}, + {file = "websockets-13.0.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:c44ca9ade59b2e376612df34e837013e2b273e6c92d7ed6636d0556b6f4db93d"}, + {file = "websockets-13.0.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9bbc525f4be3e51b89b2a700f5746c2a6907d2e2ef4513a8daafc98198b92237"}, + {file = "websockets-13.0.1-cp312-cp312-win32.whl", hash = "sha256:3624fd8664f2577cf8de996db3250662e259bfbc870dd8ebdcf5d7c6ac0b5185"}, + {file = "websockets-13.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0513c727fb8adffa6d9bf4a4463b2bade0186cbd8c3604ae5540fae18a90cb99"}, + {file = "websockets-13.0.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1ee4cc030a4bdab482a37462dbf3ffb7e09334d01dd37d1063be1136a0d825fa"}, + {file = "websockets-13.0.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:dbb0b697cc0655719522406c059eae233abaa3243821cfdfab1215d02ac10231"}, + {file = "websockets-13.0.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:acbebec8cb3d4df6e2488fbf34702cbc37fc39ac7abf9449392cefb3305562e9"}, + {file = "websockets-13.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63848cdb6fcc0bf09d4a155464c46c64ffdb5807ede4fb251da2c2692559ce75"}, + {file = "websockets-13.0.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:872afa52a9f4c414d6955c365b6588bc4401272c629ff8321a55f44e3f62b553"}, + {file = "websockets-13.0.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e70fec7c54aad4d71eae8e8cab50525e899791fc389ec6f77b95312e4e9920"}, + {file = "websockets-13.0.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:e82db3756ccb66266504f5a3de05ac6b32f287faacff72462612120074103329"}, + {file = "websockets-13.0.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4e85f46ce287f5c52438bb3703d86162263afccf034a5ef13dbe4318e98d86e7"}, + {file = "websockets-13.0.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f3fea72e4e6edb983908f0db373ae0732b275628901d909c382aae3b592589f2"}, + {file = "websockets-13.0.1-cp313-cp313-win32.whl", hash = "sha256:254ecf35572fca01a9f789a1d0f543898e222f7b69ecd7d5381d8d8047627bdb"}, + {file = "websockets-13.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:ca48914cdd9f2ccd94deab5bcb5ac98025a5ddce98881e5cce762854a5de330b"}, + {file = "websockets-13.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b74593e9acf18ea5469c3edaa6b27fa7ecf97b30e9dabd5a94c4c940637ab96e"}, + {file = "websockets-13.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:132511bfd42e77d152c919147078460c88a795af16b50e42a0bd14f0ad71ddd2"}, + {file = "websockets-13.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:165bedf13556f985a2aa064309baa01462aa79bf6112fbd068ae38993a0e1f1b"}, + {file = "websockets-13.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e801ca2f448850685417d723ec70298feff3ce4ff687c6f20922c7474b4746ae"}, + {file = "websockets-13.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:30d3a1f041360f029765d8704eae606781e673e8918e6b2c792e0775de51352f"}, + {file = "websockets-13.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67648f5e50231b5a7f6d83b32f9c525e319f0ddc841be0de64f24928cd75a603"}, + {file = "websockets-13.0.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4f0426d51c8f0926a4879390f53c7f5a855e42d68df95fff6032c82c888b5f36"}, + {file = "websockets-13.0.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:ef48e4137e8799998a343706531e656fdec6797b80efd029117edacb74b0a10a"}, + {file = "websockets-13.0.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:249aab278810bee585cd0d4de2f08cfd67eed4fc75bde623be163798ed4db2eb"}, + {file = "websockets-13.0.1-cp38-cp38-win32.whl", hash = "sha256:06c0a667e466fcb56a0886d924b5f29a7f0886199102f0a0e1c60a02a3751cb4"}, + {file = "websockets-13.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1f3cf6d6ec1142412d4535adabc6bd72a63f5f148c43fe559f06298bc21953c9"}, + {file = "websockets-13.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1fa082ea38d5de51dd409434edc27c0dcbd5fed2b09b9be982deb6f0508d25bc"}, + {file = "websockets-13.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4a365bcb7be554e6e1f9f3ed64016e67e2fa03d7b027a33e436aecf194febb63"}, + {file = "websockets-13.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:10a0dc7242215d794fb1918f69c6bb235f1f627aaf19e77f05336d147fce7c37"}, + {file = "websockets-13.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59197afd478545b1f73367620407b0083303569c5f2d043afe5363676f2697c9"}, + {file = "websockets-13.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d20516990d8ad557b5abeb48127b8b779b0b7e6771a265fa3e91767596d7d97"}, + {file = "websockets-13.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1a2e272d067030048e1fe41aa1ec8cfbbaabce733b3d634304fa2b19e5c897f"}, + {file = "websockets-13.0.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ad327ac80ba7ee61da85383ca8822ff808ab5ada0e4a030d66703cc025b021c4"}, + {file = "websockets-13.0.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:518f90e6dd089d34eaade01101fd8a990921c3ba18ebbe9b0165b46ebff947f0"}, + {file = "websockets-13.0.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:68264802399aed6fe9652e89761031acc734fc4c653137a5911c2bfa995d6d6d"}, + {file = "websockets-13.0.1-cp39-cp39-win32.whl", hash = "sha256:a5dc0c42ded1557cc7c3f0240b24129aefbad88af4f09346164349391dea8e58"}, + {file = "websockets-13.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:b448a0690ef43db5ef31b3a0d9aea79043882b4632cfc3eaab20105edecf6097"}, + {file = "websockets-13.0.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:faef9ec6354fe4f9a2c0bbb52fb1ff852effc897e2a4501e25eb3a47cb0a4f89"}, + {file = "websockets-13.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:03d3f9ba172e0a53e37fa4e636b86cc60c3ab2cfee4935e66ed1d7acaa4625ad"}, + {file = "websockets-13.0.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d450f5a7a35662a9b91a64aefa852f0c0308ee256122f5218a42f1d13577d71e"}, + {file = "websockets-13.0.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3f55b36d17ac50aa8a171b771e15fbe1561217510c8768af3d546f56c7576cdc"}, + {file = "websockets-13.0.1-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14b9c006cac63772b31abbcd3e3abb6228233eec966bf062e89e7fa7ae0b7333"}, + {file = "websockets-13.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:b79915a1179a91f6c5f04ece1e592e2e8a6bd245a0e45d12fd56b2b59e559a32"}, + {file = "websockets-13.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:f40de079779acbcdbb6ed4c65af9f018f8b77c5ec4e17a4b737c05c2db554491"}, + {file = "websockets-13.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:80e4ba642fc87fa532bac07e5ed7e19d56940b6af6a8c61d4429be48718a380f"}, + {file = "websockets-13.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2a02b0161c43cc9e0232711eff846569fad6ec836a7acab16b3cf97b2344c060"}, + {file = "websockets-13.0.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6aa74a45d4cdc028561a7d6ab3272c8b3018e23723100b12e58be9dfa5a24491"}, + {file = "websockets-13.0.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00fd961943b6c10ee6f0b1130753e50ac5dcd906130dcd77b0003c3ab797d026"}, + {file = "websockets-13.0.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:d93572720d781331fb10d3da9ca1067817d84ad1e7c31466e9f5e59965618096"}, + {file = "websockets-13.0.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:71e6e5a3a3728886caee9ab8752e8113670936a193284be9d6ad2176a137f376"}, + {file = "websockets-13.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c4a6343e3b0714e80da0b0893543bf9a5b5fa71b846ae640e56e9abc6fbc4c83"}, + {file = "websockets-13.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a678532018e435396e37422a95e3ab87f75028ac79570ad11f5bf23cd2a7d8c"}, + {file = "websockets-13.0.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6716c087e4aa0b9260c4e579bb82e068f84faddb9bfba9906cb87726fa2e870"}, + {file = "websockets-13.0.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e33505534f3f673270dd67f81e73550b11de5b538c56fe04435d63c02c3f26b5"}, + {file = "websockets-13.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:acab3539a027a85d568c2573291e864333ec9d912675107d6efceb7e2be5d980"}, + {file = "websockets-13.0.1-py3-none-any.whl", hash = "sha256:b80f0c51681c517604152eb6a572f5a9378f877763231fddb883ba2f968e8817"}, + {file = "websockets-13.0.1.tar.gz", hash = "sha256:4d6ece65099411cfd9a48d13701d7438d9c34f479046b34c50ff60bb8834e43e"}, ] [[package]] @@ -2780,20 +2806,24 @@ files = [ [[package]] name = "zipp" -version = "3.20.0" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.20.0-py3-none-any.whl", hash = "sha256:58da6168be89f0be59beb194da1250516fdaa062ccebd30127ac65d30045e10d"}, - {file = "zipp-3.20.0.tar.gz", hash = "sha256:0145e43d89664cfe1a2e533adc75adafed82fe2da404b4bbb6b026c0157bdb31"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<4" -content-hash = "b6bafda889d07ec7a6d23da03123de6bbd79405f359512df9133d12d5b72a93b" +content-hash = "eb02590d9036251427760f21a28a298e47ffbc0350f3a2bd5a2b37219bfb3db4" diff --git a/libs/partners/chroma/pyproject.toml b/libs/partners/chroma/pyproject.toml index 4777db44b7406..020428b3c2ea0 100644 --- a/libs/partners/chroma/pyproject.toml +++ b/libs/partners/chroma/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = ["poetry-core>=1.0.0"] +requires = [ "poetry-core>=1.0.0",] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-chroma" -version = "0.1.3" +version = "0.1.4" description = "An integration package connecting Chroma and LangChain" authors = [] readme = "README.md" @@ -20,7 +20,14 @@ disallow_untyped_defs = true [tool.poetry.dependencies] python = ">=3.8.1,<4" -langchain-core = ">=0.1.40,<0.3" +[[tool.poetry.dependencies.langchain-core]] +version = ">=0.1.40,<0.4" +python = ">=3.9" + +[[tool.poetry.dependencies.langchain-core]] +version = ">=0.1.40,<0.3" +python = "<3.9" + [[tool.poetry.dependencies.numpy]] version = "^1" python = "<3.12" @@ -30,18 +37,14 @@ version = "^1.26.0" python = ">=3.12" [tool.ruff.lint] -select = ["E", "F", "I", "T201", "D"] +select = [ "E", "F", "I", "T201", "D",] [tool.coverage.run] -omit = ["tests/*"] +omit = [ "tests/*",] [tool.pytest.ini_options] addopts = " --strict-markers --strict-config --durations=5" -markers = [ - "requires: mark tests as requiring a specific library", - "asyncio: mark tests as requiring asyncio", - "compile: mark placeholder test used to compile integration tests without running them", -] +markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] [tool.poetry.dependencies.chromadb] version = ">=0.4.0,<0.6.0,!=0.5.4,!=0.5.5" @@ -59,8 +62,6 @@ optional = true [tool.poetry.group.test_integration] optional = true -[tool.poetry.group.test_integration.dependencies] - [tool.poetry.group.lint] optional = true @@ -71,7 +72,7 @@ optional = true convention = "google" [tool.ruff.lint.per-file-ignores] -"tests/**" = ["D"] +"tests/**" = [ "D",] [tool.poetry.group.test.dependencies] pytest = "^7.3.0" @@ -80,31 +81,42 @@ pytest-mock = "^3.10.0" syrupy = "^4.0.2" pytest-watcher = "^0.3.4" pytest-asyncio = "^0.21.1" +[[tool.poetry.group.test.dependencies.langchain-core]] +path = "../../core" +develop = true +python = ">=3.9" +[[tool.poetry.group.test.dependencies.langchain-core]] +version = ">=0.1.40,<0.3" +python = "<3.9" [tool.poetry.group.codespell.dependencies] codespell = "^2.2.0" +[tool.poetry.group.test_integration.dependencies] [tool.poetry.group.lint.dependencies] ruff = "^0.5" - -[tool.poetry.group.typing.dependencies] -mypy = "^1.10" -types-requests = "^2.31.0.20240406" - - -[tool.poetry.group.test.dependencies.langchain-core] +[tool.poetry.group.dev.dependencies] +[[tool.poetry.group.dev.dependencies.langchain-core]] path = "../../core" develop = true +python = ">=3.9" +[[tool.poetry.group.dev.dependencies.langchain-core]] +version = ">=0.1.40,<0.3" +python = "<3.9" -[tool.poetry.group.dev.dependencies.langchain-core] +[tool.poetry.group.typing.dependencies] +mypy = "^1.10" +types-requests = "^2.31.0.20240406" +[[tool.poetry.group.typing.dependencies.langchain-core]] path = "../../core" develop = true +python = ">=3.9" +[[tool.poetry.group.typing.dependencies.langchain-core]] +version = ">=0.1.40,<0.3" +python = "<3.9" -[tool.poetry.group.typing.dependencies.langchain-core] -path = "../../core" -develop = true diff --git a/libs/partners/chroma/scripts/check_pydantic.sh b/libs/partners/chroma/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/chroma/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/chroma/tests/integration_tests/test_vectorstores.py b/libs/partners/chroma/tests/integration_tests/test_vectorstores.py index 921ed22c6e16c..382b24cb54b47 100644 --- a/libs/partners/chroma/tests/integration_tests/test_vectorstores.py +++ b/libs/partners/chroma/tests/integration_tests/test_vectorstores.py @@ -528,3 +528,23 @@ def test_reset_collection(client: chromadb.ClientAPI) -> None: assert vectorstore._collection.count() == 0 # Clean up vectorstore.delete_collection() + + +def test_delete_where_clause(client: chromadb.ClientAPI) -> None: + """Tests delete_where_clause method.""" + vectorstore = Chroma( + client=client, + collection_name="test_collection", + embedding_function=FakeEmbeddings(), + ) + vectorstore.add_documents( + [ + Document(page_content="foo", metadata={"test": "bar"}), + Document(page_content="bar", metadata={"test": "foo"}), + ] + ) + assert vectorstore._collection.count() == 2 + vectorstore.delete(where={"test": "bar"}) + assert vectorstore._collection.count() == 1 + # Clean up + vectorstore.delete_collection() diff --git a/libs/partners/couchbase/langchain_couchbase/cache.py b/libs/partners/couchbase/langchain_couchbase/cache.py index 82fcd25542900..52118ac610ece 100644 --- a/libs/partners/couchbase/langchain_couchbase/cache.py +++ b/libs/partners/couchbase/langchain_couchbase/cache.py @@ -9,6 +9,7 @@ import hashlib import json import logging +from datetime import timedelta from typing import Any, Dict, Optional, Union from couchbase.cluster import Cluster @@ -87,6 +88,16 @@ def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]: return None +def _validate_ttl(ttl: Optional[timedelta]) -> None: + """Validate the time to live""" + if not isinstance(ttl, timedelta): + raise ValueError(f"ttl should be of type timedelta but was {type(ttl)}.") + if ttl <= timedelta(seconds=0): + raise ValueError( + f"ttl must be greater than 0 but was {ttl.total_seconds()} seconds." + ) + + class CouchbaseCache(BaseCache): """Couchbase LLM Cache LLM Cache that uses Couchbase as the backend @@ -140,6 +151,7 @@ def __init__( bucket_name: str, scope_name: str, collection_name: str, + ttl: Optional[timedelta] = None, **kwargs: Dict[str, Any], ) -> None: """Initialize the Couchbase LLM Cache @@ -149,6 +161,8 @@ def __init__( scope_name (str): name of the scope in bucket to store documents in. collection_name (str): name of the collection in the scope to store documents in. + ttl (Optional[timedelta]): TTL or time for the document to live in the cache + After this time, the document will get deleted from the cache. """ if not isinstance(cluster, Cluster): raise ValueError( @@ -162,6 +176,8 @@ def __init__( self._scope_name = scope_name self._collection_name = collection_name + self._ttl = None + # Check if the bucket exists if not self._check_bucket_exists(): raise ValueError( @@ -185,6 +201,11 @@ def __init__( except Exception as e: raise e + # Check if the time to live is provided and valid + if ttl is not None: + _validate_ttl(ttl) + self._ttl = ttl + def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]: """Look up from cache based on prompt and llm_string.""" try: @@ -206,10 +227,16 @@ def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> N self.LLM: llm_string, self.RETURN_VAL: _dumps_generations(return_val), } + document_key = self._generate_key(prompt, llm_string) try: - self._collection.upsert( - key=self._generate_key(prompt, llm_string), value=doc - ) + if self._ttl: + self._collection.upsert( + key=document_key, + value=doc, + expiry=self._ttl, + ) + else: + self._collection.upsert(key=document_key, value=doc) except Exception: logger.error("Error updating cache") @@ -242,6 +269,7 @@ def __init__( collection_name: str, index_name: str, score_threshold: Optional[float] = None, + ttl: Optional[timedelta] = None, ) -> None: """Initialize the Couchbase LLM Cache Args: @@ -253,6 +281,8 @@ def __init__( documents in. index_name (str): name of the Search index to use. score_threshold (float): score threshold to use for filtering results. + ttl (Optional[timedelta]): TTL or time for the document to live in the cache + After this time, the document will get deleted from the cache. """ if not isinstance(cluster, Cluster): raise ValueError( @@ -265,6 +295,7 @@ def __init__( self._bucket_name = bucket_name self._scope_name = scope_name self._collection_name = collection_name + self._ttl = None # Check if the bucket exists if not self._check_bucket_exists(): @@ -291,6 +322,10 @@ def __init__( self.score_threshold = score_threshold + if ttl is not None: + _validate_ttl(ttl) + self._ttl = ttl + # Initialize the vector store super().__init__( cluster=cluster, @@ -334,6 +369,7 @@ def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> N self.RETURN_VAL: _dumps_generations(return_val), } ], + ttl=self._ttl, ) except Exception: logger.error("Error updating cache") diff --git a/libs/partners/couchbase/langchain_couchbase/chat_message_histories.py b/libs/partners/couchbase/langchain_couchbase/chat_message_histories.py index 110763f645ae0..172b79b9af3f7 100644 --- a/libs/partners/couchbase/langchain_couchbase/chat_message_histories.py +++ b/libs/partners/couchbase/langchain_couchbase/chat_message_histories.py @@ -3,7 +3,8 @@ import logging import time import uuid -from typing import Any, Dict, List, Sequence +from datetime import timedelta +from typing import Any, Dict, List, Optional, Sequence from couchbase.cluster import Cluster from langchain_core.chat_history import BaseChatMessageHistory @@ -22,6 +23,16 @@ DEFAULT_BATCH_SIZE = 100 +def _validate_ttl(ttl: Optional[timedelta]) -> None: + """Validate the time to live""" + if not isinstance(ttl, timedelta): + raise ValueError(f"ttl should be of type timedelta but was {type(ttl)}.") + if ttl <= timedelta(seconds=0): + raise ValueError( + f"ttl must be greater than 0 but was {ttl.total_seconds()} seconds." + ) + + class CouchbaseChatMessageHistory(BaseChatMessageHistory): """Couchbase Chat Message History Chat message history that uses Couchbase as the storage @@ -77,6 +88,7 @@ def __init__( session_id_key: str = DEFAULT_SESSION_ID_KEY, message_key: str = DEFAULT_MESSAGE_KEY, create_index: bool = True, + ttl: Optional[timedelta] = None, ) -> None: """Initialize the Couchbase Chat Message History Args: @@ -92,6 +104,8 @@ def __init__( message_key (str): name of the field to use for the messages Set to "message" by default. create_index (bool): create an index if True. Set to True by default. + ttl (timedelta): time to live for the documents in the collection. + When set, the documents are automatically deleted after the ttl expires. """ if not isinstance(cluster, Cluster): raise ValueError( @@ -104,6 +118,7 @@ def __init__( self._bucket_name = bucket_name self._scope_name = scope_name self._collection_name = collection_name + self._ttl = None # Check if the bucket exists if not self._check_bucket_exists(): @@ -134,6 +149,10 @@ def __init__( self._session_id = session_id self._ts_key = DEFAULT_TS_KEY + if ttl is not None: + _validate_ttl(ttl) + self._ttl = ttl + # Create an index if it does not exist if requested if create_index: index_fields = ( @@ -156,15 +175,27 @@ def add_message(self, message: BaseMessage) -> None: # get utc timestamp for ordering the messages timestamp = time.time() message_content = message_to_dict(message) + try: - self._collection.insert( - document_key, - value={ - self._message_key: message_content, - self._session_id_key: self._session_id, - self._ts_key: timestamp, - }, - ) + if self._ttl: + self._collection.insert( + document_key, + value={ + self._message_key: message_content, + self._session_id_key: self._session_id, + self._ts_key: timestamp, + }, + expiry=self._ttl, + ) + else: + self._collection.insert( + document_key, + value={ + self._message_key: message_content, + self._session_id_key: self._session_id, + self._ts_key: timestamp, + }, + ) except Exception as e: logger.error("Error adding message: ", e) @@ -192,7 +223,10 @@ def add_messages(self, messages: Sequence[BaseMessage]) -> None: batch = messages_to_insert[i : i + batch_size] # Convert list of dictionaries to a single dictionary to insert insert_batch = {list(d.keys())[0]: list(d.values())[0] for d in batch} - self._collection.insert_multi(insert_batch) + if self._ttl: + self._collection.insert_multi(insert_batch, expiry=self._ttl) + else: + self._collection.insert_multi(insert_batch) except Exception as e: logger.error("Error adding messages: ", e) diff --git a/libs/partners/couchbase/langchain_couchbase/vectorstores.py b/libs/partners/couchbase/langchain_couchbase/vectorstores.py index 3748a698cc3cc..069cc12550622 100644 --- a/libs/partners/couchbase/langchain_couchbase/vectorstores.py +++ b/libs/partners/couchbase/langchain_couchbase/vectorstores.py @@ -377,6 +377,9 @@ def add_texts( if metadatas is None: metadatas = [{} for _ in texts] + # Check if TTL is provided + ttl = kwargs.get("ttl", None) + embedded_texts = self._embedding_function.embed_documents(list(texts)) documents_to_insert = [ @@ -396,7 +399,11 @@ def add_texts( for i in range(0, len(documents_to_insert), batch_size): batch = documents_to_insert[i : i + batch_size] try: - result = self._collection.upsert_multi(batch[0]) + # Insert with TTL if provided + if ttl: + result = self._collection.upsert_multi(batch[0], expiry=ttl) + else: + result = self._collection.upsert_multi(batch[0]) if result.all_ok: doc_ids.extend(batch[0].keys()) except DocumentExistsException as e: diff --git a/libs/partners/couchbase/poetry.lock b/libs/partners/couchbase/poetry.lock index bbfd4bf3db0b5..14f0353635bb0 100644 --- a/libs/partners/couchbase/poetry.lock +++ b/libs/partners/couchbase/poetry.lock @@ -121,8 +121,27 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] +[[package]] +name = "anyio" +version = "4.4.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, +] + [package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] [[package]] name = "async-timeout" @@ -497,6 +516,63 @@ files = [ docs = ["Sphinx", "furo"] test = ["objgraph", "psutil"] +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.2" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + [[package]] name = "idna" version = "3.7" @@ -546,26 +622,26 @@ files = [ [[package]] name = "langchain" -version = "0.2.9" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = "<4.0,>=3.8.1" +python-versions = "<4.0,>=3.9" files = [ - {file = "langchain-0.2.9-py3-none-any.whl", hash = "sha256:be23fcb29adbd5059944f1fed08fa575f0739d420b1c4127531e0fbf5663fcca"}, - {file = "langchain-0.2.9.tar.gz", hash = "sha256:cc326a7f6347787a19882928c324433b1a79df629bba45604b2d26495ee5d69c"}, + {file = "langchain-0.3.0-py3-none-any.whl", hash = "sha256:59a75a6a1eb7bfd2a6bf0c7a5816409a8fdc9046187b07af287b23b9899617af"}, + {file = "langchain-0.3.0.tar.gz", hash = "sha256:a7c23892440bd1f5b9e029ff0dd709dd881ae927c4c0a3210ac64dba9bbf3f7f"}, ] [package.dependencies] aiohttp = ">=3.8.3,<4.0.0" async-timeout = {version = ">=4.0.0,<5.0.0", markers = "python_version < \"3.11\""} -langchain-core = ">=0.2.20,<0.3.0" -langchain-text-splitters = ">=0.2.0,<0.3.0" +langchain-core = ">=0.3.0,<0.4.0" +langchain-text-splitters = ">=0.3.0,<0.4.0" langsmith = ">=0.1.17,<0.2.0" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] -pydantic = ">=1,<3" +pydantic = ">=2.7.4,<3.0.0" PyYAML = ">=5.3" requests = ">=2,<3" SQLAlchemy = ">=1.4,<3" @@ -573,23 +649,24 @@ tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0" [[package]] name = "langchain-core" -version = "0.2.20" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" tenacity = "^8.1.0,!=8.4.0" +typing-extensions = ">=4.7" [package.source] type = "directory" @@ -597,30 +674,31 @@ url = "../../core" [[package]] name = "langchain-text-splitters" -version = "0.2.2" +version = "0.3.0" description = "LangChain text splitting utilities" optional = false -python-versions = "<4.0,>=3.8.1" +python-versions = "<4.0,>=3.9" files = [ - {file = "langchain_text_splitters-0.2.2-py3-none-any.whl", hash = "sha256:1c80d4b11b55e2995f02d2a326c0323ee1eeff24507329bb22924e420c782dff"}, - {file = "langchain_text_splitters-0.2.2.tar.gz", hash = "sha256:a1e45de10919fa6fb080ef0525deab56557e9552083600455cb9fa4238076140"}, + {file = "langchain_text_splitters-0.3.0-py3-none-any.whl", hash = "sha256:e84243e45eaff16e5b776cd9c81b6d07c55c010ebcb1965deb3d1792b7358e83"}, + {file = "langchain_text_splitters-0.3.0.tar.gz", hash = "sha256:f9fe0b4d244db1d6de211e7343d4abc4aa90295aa22e1f0c89e51f33c55cd7ce"}, ] [package.dependencies] -langchain-core = ">=0.2.10,<0.3.0" +langchain-core = ">=0.3.0,<0.4.0" [[package]] name = "langsmith" -version = "0.1.87" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.87-py3-none-any.whl", hash = "sha256:4cd19539c29367f812667e43c0fb0b6d304a078246508df85c38c4ea3df2d0cf"}, - {file = "langsmith-0.1.87.tar.gz", hash = "sha256:d2422099708af5717d01559731c1c62d49aebf05a420015e30f6dca5ed44227c"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, @@ -785,43 +863,6 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -1237,6 +1278,17 @@ files = [ {file = "ruff-0.5.2.tar.gz", hash = "sha256:2c0df2d2de685433794a14d8d2e240df619b748fbe3367346baa519d8e6f1ca2"}, ] +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + [[package]] name = "sqlalchemy" version = "2.0.31" @@ -1497,5 +1549,5 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "0a2c4601a26691fd3bf061961c95a19a3869c491d4670dc38b8a4c46d2c01a6e" +python-versions = ">=3.9,<4.0" +content-hash = "0834872527b82aef5921c6b869a70c49ce36507d858e1371c05a079a77cfad86" diff --git a/libs/partners/couchbase/pyproject.toml b/libs/partners/couchbase/pyproject.toml index 36359fbefd25e..ea172790ebc1f 100644 --- a/libs/partners/couchbase/pyproject.toml +++ b/libs/partners/couchbase/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-couchbase" -version = "0.1.1" +version = "0.2.0" description = "An integration package connecting Couchbase and LangChain" authors = [] readme = "README.md" @@ -20,19 +20,21 @@ ignore_missing_imports = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-couchbase%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.2.0,<0.3" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0.dev" couchbase = "^4.2.1" [tool.ruff.lint] -select = [ "E", "F", "I", "T201",] +select = ["E", "F", "I", "T201"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] @@ -55,7 +57,7 @@ pytest = "^7.4.3" pytest-asyncio = "^0.23.2" pytest-socket = "^0.7.0" syrupy = "^4.0.2" -langchain = "^0.2.9" +langchain = "^0.3.0.dev" [tool.poetry.group.codespell.dependencies] codespell = "^2.2.6" diff --git a/libs/partners/couchbase/scripts/check_pydantic.sh b/libs/partners/couchbase/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/couchbase/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/couchbase/tests/integration_tests/test_cache.py b/libs/partners/couchbase/tests/integration_tests/test_cache.py index 79bc354a8fcf8..08187c3a462b5 100644 --- a/libs/partners/couchbase/tests/integration_tests/test_cache.py +++ b/libs/partners/couchbase/tests/integration_tests/test_cache.py @@ -1,7 +1,7 @@ """Test Couchbase Cache functionality""" import os -from datetime import timedelta +from datetime import datetime, timedelta from typing import Any import pytest @@ -12,7 +12,13 @@ from langchain_core.outputs import Generation from langchain_couchbase.cache import CouchbaseCache, CouchbaseSemanticCache -from tests.utils import FakeEmbeddings, FakeLLM +from tests.utils import ( + FakeEmbeddings, + FakeLLM, + cache_key_hash_function, + fetch_document_expiry_time, + get_document_keys, +) CONNECTION_STRING = os.getenv("COUCHBASE_CONNECTION_STRING", "") BUCKET_NAME = os.getenv("COUCHBASE_BUCKET_NAME", "") @@ -88,6 +94,39 @@ def test_cache(self, cluster: Any) -> None: output = get_llm_cache().lookup("bar", llm_string) assert output != [Generation(text="fizz")] + def test_cache_with_ttl(self, cluster: Any) -> None: + """Test standard LLM cache functionality with TTL""" + ttl = timedelta(minutes=10) + set_llm_cache( + CouchbaseCache( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + collection_name=CACHE_COLLECTION_NAME, + ttl=ttl, + ) + ) + + llm = FakeLLM() + + params = llm.dict() + params["stop"] = None + llm_string = str(sorted([(k, v) for k, v in params.items()])) + get_llm_cache().update("foo", llm_string, [Generation(text="fizz")]) + cache_output = get_llm_cache().lookup("foo", llm_string) + assert cache_output == [Generation(text="fizz")] + + # Check the document's expiry time by fetching it from the database + document_key = cache_key_hash_function("foo" + llm_string) + document_expiry_time = fetch_document_expiry_time( + cluster, BUCKET_NAME, SCOPE_NAME, CACHE_COLLECTION_NAME, document_key + ) + current_time = datetime.now() + + time_to_expiry = document_expiry_time - current_time + + assert time_to_expiry < ttl + def test_semantic_cache(self, cluster: Any) -> None: """Test semantic LLM cache functionality""" set_llm_cache( @@ -118,3 +157,62 @@ def test_semantic_cache(self, cluster: Any) -> None: get_llm_cache().clear() output = get_llm_cache().lookup("bar", llm_string) assert output != [Generation(text="fizz"), Generation(text="Buzz")] + + def test_semantic_cache_with_ttl(self, cluster: Any) -> None: + """Test semantic LLM cache functionality with TTL""" + ttl = timedelta(minutes=10) + + set_llm_cache( + CouchbaseSemanticCache( + cluster=cluster, + embedding=FakeEmbeddings(), + index_name=INDEX_NAME, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + collection_name=SEMANTIC_CACHE_COLLECTION_NAME, + ttl=ttl, + ) + ) + + llm = FakeLLM() + + params = llm.dict() + params["stop"] = None + llm_string = str(sorted([(k, v) for k, v in params.items()])) + + # Add a document to the cache + seed_prompt = "foo" + get_llm_cache().update( + seed_prompt, llm_string, [Generation(text="fizz"), Generation(text="Buzz")] + ) + + # foo and bar will have the same embedding produced by FakeEmbeddings + cache_output = get_llm_cache().lookup("bar", llm_string) + assert cache_output == [Generation(text="fizz"), Generation(text="Buzz")] + + # Check the document's expiry time by fetching it from the database + fetch_document_query = ( + f"SELECT meta().id, * from `{SEMANTIC_CACHE_COLLECTION_NAME}` doc " + f"WHERE doc.text = '{seed_prompt}'" + ) + + document_keys = get_document_keys( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + query=fetch_document_query, + ) + assert len(document_keys) == 1 + + document_expiry_time = fetch_document_expiry_time( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + collection_name=SEMANTIC_CACHE_COLLECTION_NAME, + document_key=document_keys[0], + ) + current_time = datetime.now() + + time_to_expiry = document_expiry_time - current_time + + assert time_to_expiry < ttl diff --git a/libs/partners/couchbase/tests/integration_tests/test_chat_message_history.py b/libs/partners/couchbase/tests/integration_tests/test_chat_message_history.py index aaee1ec219952..67076f15cdce9 100644 --- a/libs/partners/couchbase/tests/integration_tests/test_chat_message_history.py +++ b/libs/partners/couchbase/tests/integration_tests/test_chat_message_history.py @@ -2,7 +2,7 @@ import os import time -from datetime import timedelta +from datetime import datetime, timedelta from typing import Any import pytest @@ -13,6 +13,7 @@ from langchain_core.messages import AIMessage, HumanMessage from langchain_couchbase.chat_message_histories import CouchbaseChatMessageHistory +from tests.utils import fetch_document_expiry_time, get_document_keys CONNECTION_STRING = os.getenv("COUCHBASE_CONNECTION_STRING", "") BUCKET_NAME = os.getenv("COUCHBASE_BUCKET_NAME", "") @@ -162,3 +163,132 @@ def test_memory_with_separate_sessions(self, cluster: Any) -> None: memory_b.chat_memory.clear() time.sleep(SLEEP_DURATION) assert memory_b.chat_memory.messages == [] + + def test_memory_message_with_ttl(self, cluster: Any) -> None: + """Test chat message history with a message being saved with a TTL""" + ttl = timedelta(minutes=5) + session_id = "test-session-ttl" + message_history = CouchbaseChatMessageHistory( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + collection_name=MESSAGE_HISTORY_COLLECTION_NAME, + session_id=session_id, + ttl=ttl, + ) + + memory = ConversationBufferMemory( + memory_key="baz", chat_memory=message_history, return_messages=True + ) + + # clear the memory + memory.chat_memory.clear() + + # wait for the messages to be cleared + time.sleep(SLEEP_DURATION) + assert memory.chat_memory.messages == [] + + # add some messages + ai_message = AIMessage(content="Hello, how are you doing ?") + memory.chat_memory.add_ai_message(ai_message) + + # wait until the messages can be retrieved + time.sleep(SLEEP_DURATION) + + # check that the messages are in the memory + messages = memory.chat_memory.messages + assert len(messages) == 1 + + # check that the messages are in the order of creation + assert messages == [ai_message] + + # Check the document's expiry time by fetching it from the database + fetch_documents_query = ( + f"SELECT meta().id, * from `{MESSAGE_HISTORY_COLLECTION_NAME}` doc" + f" WHERE doc.session_id = '{session_id}'" + ) + + document_keys = get_document_keys( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + query=fetch_documents_query, + ) + assert len(document_keys) == 1 + + # Ensure that the document will expire within the TTL + + document_expiry_time = fetch_document_expiry_time( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + collection_name=MESSAGE_HISTORY_COLLECTION_NAME, + document_key=document_keys[0], + ) + current_time = datetime.now() + assert document_expiry_time - current_time < ttl + + def test_memory_messages_with_ttl(self, cluster: Any) -> None: + """Test chat message history with messages being stored with a TTL""" + ttl = timedelta(minutes=5) + session_id = "test-session-ttl" + message_history = CouchbaseChatMessageHistory( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + collection_name=MESSAGE_HISTORY_COLLECTION_NAME, + session_id=session_id, + ttl=ttl, + ) + + memory = ConversationBufferMemory( + memory_key="baz", chat_memory=message_history, return_messages=True + ) + + # clear the memory + memory.chat_memory.clear() + + # wait for the messages to be cleared + time.sleep(SLEEP_DURATION) + assert memory.chat_memory.messages == [] + + # add some messages + ai_message = AIMessage(content="Hello, how are you doing ?") + user_message = HumanMessage(content="I'm good, how are you?") + memory.chat_memory.add_messages([ai_message, user_message]) + + # wait until the messages can be retrieved + time.sleep(SLEEP_DURATION) + + # check that the messages are in the memory + messages = memory.chat_memory.messages + assert len(messages) == 2 + + # check that the messages are in the order of creation + assert messages == [ai_message, user_message] + + # Check the documents' expiry time by fetching the documents from the database + fetch_documents_query = ( + f"SELECT meta().id, * from `{MESSAGE_HISTORY_COLLECTION_NAME}` doc" + f" WHERE doc.session_id = '{session_id}'" + ) + + document_keys = get_document_keys( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + query=fetch_documents_query, + ) + assert len(document_keys) == 2 + + # Ensure that each document will expire within the TTL + for document_key in document_keys: + document_expiry_time = fetch_document_expiry_time( + cluster=cluster, + bucket_name=BUCKET_NAME, + scope_name=SCOPE_NAME, + collection_name=MESSAGE_HISTORY_COLLECTION_NAME, + document_key=document_key, + ) + current_time = datetime.now() + assert document_expiry_time - current_time < ttl diff --git a/libs/partners/couchbase/tests/utils.py b/libs/partners/couchbase/tests/utils.py index 29fde66eaebe8..1e8a9c3f986e6 100644 --- a/libs/partners/couchbase/tests/utils.py +++ b/libs/partners/couchbase/tests/utils.py @@ -1,11 +1,14 @@ -"""Fake Embedding class for testing purposes.""" +"""Utilities for testing purposes.""" +import hashlib +from datetime import datetime from typing import Any, Dict, List, Mapping, Optional, cast +from couchbase.cluster import Cluster +from couchbase.options import GetOptions from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.embeddings import Embeddings from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import validator class FakeEmbeddings(Embeddings): @@ -63,16 +66,6 @@ class FakeLLM(LLM): sequential_responses: Optional[bool] = False response_index: int = 0 - @validator("queries", always=True) - def check_queries_required( - cls, queries: Optional[Mapping], values: Mapping[str, Any] - ) -> Optional[Mapping]: - if values.get("sequential_response") and not queries: - raise ValueError( - "queries is required when sequential_response is set to True" - ) - return queries - def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" return len(text.split()) @@ -108,3 +101,36 @@ def _get_next_response_in_sequence(self) -> str: response = queries[list(queries.keys())[self.response_index]] self.response_index = self.response_index + 1 return response + + +def cache_key_hash_function(_input: str) -> str: + """Use a deterministic hashing approach.""" + return hashlib.md5(_input.encode()).hexdigest() + + +def fetch_document_expiry_time( + cluster: Cluster, + bucket_name: str, + scope_name: str, + collection_name: str, + document_key: str, +) -> datetime: + """Fetch the document's expiry time from the database.""" + collection = ( + cluster.bucket(bucket_name).scope(scope_name).collection(collection_name) + ) + result = collection.get(document_key, GetOptions(with_expiry=True)) + + return result.expiryTime + + +def get_document_keys( + cluster: Cluster, bucket_name: str, scope_name: str, query: str +) -> List[str]: + """Get the document key from the database based on the query using meta().id.""" + scope = cluster.bucket(bucket_name).scope(scope_name) + + result = scope.query(query).execute() + + document_keys = [row["id"] for row in result] + return document_keys diff --git a/libs/partners/exa/langchain_exa/retrievers.py b/libs/partners/exa/langchain_exa/retrievers.py index 9bf02ec5a82b5..b5da661c7b72f 100644 --- a/libs/partners/exa/langchain_exa/retrievers.py +++ b/libs/partners/exa/langchain_exa/retrievers.py @@ -1,18 +1,14 @@ -from typing import ( # type: ignore[import-not-found, import-not-found] - Any, - Dict, - List, - Literal, - Optional, - Union, -) +from typing import Any, Dict, List, Literal, Optional, Union -from exa_py import Exa # type: ignore -from exa_py.api import HighlightsContentsOptions, TextContentsOptions # type: ignore +from exa_py import Exa # type: ignore[untyped-import] +from exa_py.api import ( + HighlightsContentsOptions, # type: ignore[untyped-import] + TextContentsOptions, # type: ignore[untyped-import] +) from langchain_core.callbacks import CallbackManagerForRetrieverRun from langchain_core.documents import Document -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.retrievers import BaseRetriever +from pydantic import Field, SecretStr, model_validator from langchain_exa._utilities import initialize_client @@ -64,8 +60,9 @@ class ExaSearchRetriever(BaseRetriever): exa_api_key: SecretStr = Field(default=None) exa_base_url: Optional[str] = None - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate the environment.""" values = initialize_client(values) return values diff --git a/libs/partners/exa/langchain_exa/tools.py b/libs/partners/exa/langchain_exa/tools.py index 808f6bdc57c67..17fb501f93191 100644 --- a/libs/partners/exa/langchain_exa/tools.py +++ b/libs/partners/exa/langchain_exa/tools.py @@ -1,14 +1,17 @@ -"""Tool for the Exa Search API.""" # type: ignore[import-not-found, import-not-found] +"""Tool for the Exa Search API.""" -from typing import Dict, List, Optional, Union +from typing import Any, Dict, List, Optional, Union -from exa_py import Exa # type: ignore -from exa_py.api import HighlightsContentsOptions, TextContentsOptions # type: ignore +from exa_py import Exa # type: ignore[untyped-import] +from exa_py.api import ( + HighlightsContentsOptions, # type: ignore[untyped-import] + TextContentsOptions, # type: ignore[untyped-import] +) from langchain_core.callbacks import ( CallbackManagerForToolRun, ) -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.tools import BaseTool +from pydantic import Field, SecretStr, model_validator from langchain_exa._utilities import initialize_client @@ -61,8 +64,9 @@ class ExaSearchResults(BaseTool): client: Exa = Field(default=None) exa_api_key: SecretStr = Field(default=None) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate the environment.""" values = initialize_client(values) return values @@ -114,8 +118,9 @@ class ExaFindSimilarResults(BaseTool): exa_api_key: SecretStr = Field(default=None) exa_base_url: Optional[str] = None - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate the environment.""" values = initialize_client(values) return values diff --git a/libs/partners/exa/poetry.lock b/libs/partners/exa/poetry.lock index ac67545dd5569..772872fdfae20 100644 --- a/libs/partners/exa/poetry.lock +++ b/libs/partners/exa/poetry.lock @@ -2,27 +2,46 @@ [[package]] name = "annotated-types" -version = "0.6.0" +version = "0.7.0" description = "Reusable constraint types to use with typing.Annotated" optional = false python-versions = ">=3.8" files = [ - {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, - {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[[package]] +name = "anyio" +version = "4.4.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, ] [package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] [[package]] name = "certifi" -version = "2024.2.2" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"}, - {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -126,13 +145,13 @@ files = [ [[package]] name = "codespell" -version = "2.2.6" +version = "2.3.0" description = "Codespell" optional = false python-versions = ">=3.8" files = [ - {file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"}, - {file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"}, + {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, + {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, ] [package.extras] @@ -152,30 +171,42 @@ files = [ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] +[[package]] +name = "distro" +version = "1.9.0" +description = "Distro - an OS platform information API" +optional = false +python-versions = ">=3.6" +files = [ + {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, + {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, +] + [[package]] name = "exa-py" -version = "1.0.9" +version = "1.1.3" description = "Python SDK for Exa API." optional = false python-versions = "*" files = [ - {file = "exa_py-1.0.9-py3-none-any.whl", hash = "sha256:830e783e2cde4d42582e3bdbad3eb6d9e8bf5add1f68960dc0281fd14b30a16c"}, - {file = "exa_py-1.0.9.tar.gz", hash = "sha256:4e844fafc9eb84ff5244eb20fd68df5783a12fbde8eabff3163c79bfd5ee1a27"}, + {file = "exa_py-1.1.3-py3-none-any.whl", hash = "sha256:bf724a9a55fc7f689b3d644429235badac1fb61931cc162be9a2d5d1ca3ec047"}, + {file = "exa_py-1.1.3.tar.gz", hash = "sha256:ca47c5e1067c38d328edb73688456dd1a0c948e98e54054d7cdbd6f1699e95f8"}, ] [package.dependencies] +openai = ">=1.10.0" requests = "*" typing-extensions = "*" [[package]] name = "exceptiongroup" -version = "1.2.1" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, - {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -195,15 +226,72 @@ files = [ [package.dependencies] python-dateutil = ">=2.7" +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.2" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + [[package]] name = "idna" -version = "3.7" +version = "3.8" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, + {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, ] [[package]] @@ -217,6 +305,76 @@ files = [ {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] +[[package]] +name = "jiter" +version = "0.5.0" +description = "Fast iterable JSON parser." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jiter-0.5.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b599f4e89b3def9a94091e6ee52e1d7ad7bc33e238ebb9c4c63f211d74822c3f"}, + {file = "jiter-0.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2a063f71c4b06225543dddadbe09d203dc0c95ba352d8b85f1221173480a71d5"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:acc0d5b8b3dd12e91dd184b87273f864b363dfabc90ef29a1092d269f18c7e28"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c22541f0b672f4d741382a97c65609332a783501551445ab2df137ada01e019e"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:63314832e302cc10d8dfbda0333a384bf4bcfce80d65fe99b0f3c0da8945a91a"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a25fbd8a5a58061e433d6fae6d5298777c0814a8bcefa1e5ecfff20c594bd749"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:503b2c27d87dfff5ab717a8200fbbcf4714516c9d85558048b1fc14d2de7d8dc"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6d1f3d27cce923713933a844872d213d244e09b53ec99b7a7fdf73d543529d6d"}, + {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c95980207b3998f2c3b3098f357994d3fd7661121f30669ca7cb945f09510a87"}, + {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:afa66939d834b0ce063f57d9895e8036ffc41c4bd90e4a99631e5f261d9b518e"}, + {file = "jiter-0.5.0-cp310-none-win32.whl", hash = "sha256:f16ca8f10e62f25fd81d5310e852df6649af17824146ca74647a018424ddeccf"}, + {file = "jiter-0.5.0-cp310-none-win_amd64.whl", hash = "sha256:b2950e4798e82dd9176935ef6a55cf6a448b5c71515a556da3f6b811a7844f1e"}, + {file = "jiter-0.5.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d4c8e1ed0ef31ad29cae5ea16b9e41529eb50a7fba70600008e9f8de6376d553"}, + {file = "jiter-0.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c6f16e21276074a12d8421692515b3fd6d2ea9c94fd0734c39a12960a20e85f3"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5280e68e7740c8c128d3ae5ab63335ce6d1fb6603d3b809637b11713487af9e6"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:583c57fc30cc1fec360e66323aadd7fc3edeec01289bfafc35d3b9dcb29495e4"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26351cc14507bdf466b5f99aba3df3143a59da75799bf64a53a3ad3155ecded9"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829df14d656b3fb87e50ae8b48253a8851c707da9f30d45aacab2aa2ba2d614"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a42a4bdcf7307b86cb863b2fb9bb55029b422d8f86276a50487982d99eed7c6e"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04d461ad0aebf696f8da13c99bc1b3e06f66ecf6cfd56254cc402f6385231c06"}, + {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6375923c5f19888c9226582a124b77b622f8fd0018b843c45eeb19d9701c403"}, + {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2cec323a853c24fd0472517113768c92ae0be8f8c384ef4441d3632da8baa646"}, + {file = "jiter-0.5.0-cp311-none-win32.whl", hash = "sha256:aa1db0967130b5cab63dfe4d6ff547c88b2a394c3410db64744d491df7f069bb"}, + {file = "jiter-0.5.0-cp311-none-win_amd64.whl", hash = "sha256:aa9d2b85b2ed7dc7697597dcfaac66e63c1b3028652f751c81c65a9f220899ae"}, + {file = "jiter-0.5.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9f664e7351604f91dcdd557603c57fc0d551bc65cc0a732fdacbf73ad335049a"}, + {file = "jiter-0.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:044f2f1148b5248ad2c8c3afb43430dccf676c5a5834d2f5089a4e6c5bbd64df"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:702e3520384c88b6e270c55c772d4bd6d7b150608dcc94dea87ceba1b6391248"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:528d742dcde73fad9d63e8242c036ab4a84389a56e04efd854062b660f559544"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8cf80e5fe6ab582c82f0c3331df27a7e1565e2dcf06265afd5173d809cdbf9ba"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:44dfc9ddfb9b51a5626568ef4e55ada462b7328996294fe4d36de02fce42721f"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c451f7922992751a936b96c5f5b9bb9312243d9b754c34b33d0cb72c84669f4e"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:308fce789a2f093dca1ff91ac391f11a9f99c35369117ad5a5c6c4903e1b3e3a"}, + {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7f5ad4a7c6b0d90776fdefa294f662e8a86871e601309643de30bf94bb93a64e"}, + {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ea189db75f8eca08807d02ae27929e890c7d47599ce3d0a6a5d41f2419ecf338"}, + {file = "jiter-0.5.0-cp312-none-win32.whl", hash = "sha256:e3bbe3910c724b877846186c25fe3c802e105a2c1fc2b57d6688b9f8772026e4"}, + {file = "jiter-0.5.0-cp312-none-win_amd64.whl", hash = "sha256:a586832f70c3f1481732919215f36d41c59ca080fa27a65cf23d9490e75b2ef5"}, + {file = "jiter-0.5.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f04bc2fc50dc77be9d10f73fcc4e39346402ffe21726ff41028f36e179b587e6"}, + {file = "jiter-0.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6f433a4169ad22fcb550b11179bb2b4fd405de9b982601914ef448390b2954f3"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad4a6398c85d3a20067e6c69890ca01f68659da94d74c800298581724e426c7e"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6baa88334e7af3f4d7a5c66c3a63808e5efbc3698a1c57626541ddd22f8e4fbf"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ece0a115c05efca597c6d938f88c9357c843f8c245dbbb53361a1c01afd7148"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:335942557162ad372cc367ffaf93217117401bf930483b4b3ebdb1223dbddfa7"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:649b0ee97a6e6da174bffcb3c8c051a5935d7d4f2f52ea1583b5b3e7822fbf14"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4be354c5de82157886ca7f5925dbda369b77344b4b4adf2723079715f823989"}, + {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5206144578831a6de278a38896864ded4ed96af66e1e63ec5dd7f4a1fce38a3a"}, + {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8120c60f8121ac3d6f072b97ef0e71770cc72b3c23084c72c4189428b1b1d3b6"}, + {file = "jiter-0.5.0-cp38-none-win32.whl", hash = "sha256:6f1223f88b6d76b519cb033a4d3687ca157c272ec5d6015c322fc5b3074d8a5e"}, + {file = "jiter-0.5.0-cp38-none-win_amd64.whl", hash = "sha256:c59614b225d9f434ea8fc0d0bec51ef5fa8c83679afedc0433905994fb36d631"}, + {file = "jiter-0.5.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0af3838cfb7e6afee3f00dc66fa24695199e20ba87df26e942820345b0afc566"}, + {file = "jiter-0.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:550b11d669600dbc342364fd4adbe987f14d0bbedaf06feb1b983383dcc4b961"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:489875bf1a0ffb3cb38a727b01e6673f0f2e395b2aad3c9387f94187cb214bbf"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b250ca2594f5599ca82ba7e68785a669b352156260c5362ea1b4e04a0f3e2389"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ea18e01f785c6667ca15407cd6dabbe029d77474d53595a189bdc813347218e"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:462a52be85b53cd9bffd94e2d788a09984274fe6cebb893d6287e1c296d50653"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92cc68b48d50fa472c79c93965e19bd48f40f207cb557a8346daa020d6ba973b"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c834133e59a8521bc87ebcad773608c6fa6ab5c7a022df24a45030826cf10bc"}, + {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab3a71ff31cf2d45cb216dc37af522d335211f3a972d2fe14ea99073de6cb104"}, + {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cccd3af9c48ac500c95e1bcbc498020c87e1781ff0345dd371462d67b76643eb"}, + {file = "jiter-0.5.0-cp39-none-win32.whl", hash = "sha256:368084d8d5c4fc40ff7c3cc513c4f73e02c85f6009217922d0823a48ee7adf61"}, + {file = "jiter-0.5.0-cp39-none-win_amd64.whl", hash = "sha256:ce03f7b4129eb72f1687fa11300fbf677b02990618428934662406d2a76742a1"}, + {file = "jiter-0.5.0.tar.gz", hash = "sha256:1d916ba875bcab5c5f7d927df998c4cb694d27dceddf3392e58beaf10563368a"}, +] + [[package]] name = "jsonpatch" version = "1.33" @@ -233,34 +391,35 @@ jsonpointer = ">=1.9" [[package]] name = "jsonpointer" -version = "2.4" +version = "3.0.0" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +python-versions = ">=3.7" files = [ - {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, - {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, ] [[package]] name = "langchain-core" -version = "0.2.11" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" tenacity = "^8.1.0,!=8.4.0" +typing-extensions = ">=4.7" [package.source] type = "directory" @@ -268,16 +427,17 @@ url = "../../core" [[package]] name = "langsmith" -version = "0.1.82" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.82-py3-none-any.whl", hash = "sha256:9b3653e7d316036b0c60bf0bc3e280662d660f485a4ebd8e5c9d84f9831ae79c"}, - {file = "langsmith-0.1.82.tar.gz", hash = "sha256:c02e2bbc488c10c13b52c69d271eb40bd38da078d37b6ae7ae04a18bd48140be"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, @@ -287,44 +447,44 @@ requests = ">=2,<3" [[package]] name = "mypy" -version = "1.10.0" +version = "1.11.2" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:da1cbf08fb3b851ab3b9523a884c232774008267b1f83371ace57f412fe308c2"}, - {file = "mypy-1.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:12b6bfc1b1a66095ab413160a6e520e1dc076a28f3e22f7fb25ba3b000b4ef99"}, - {file = "mypy-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e36fb078cce9904c7989b9693e41cb9711e0600139ce3970c6ef814b6ebc2b2"}, - {file = "mypy-1.10.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b0695d605ddcd3eb2f736cd8b4e388288c21e7de85001e9f85df9187f2b50f9"}, - {file = "mypy-1.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:cd777b780312ddb135bceb9bc8722a73ec95e042f911cc279e2ec3c667076051"}, - {file = "mypy-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3be66771aa5c97602f382230165b856c231d1277c511c9a8dd058be4784472e1"}, - {file = "mypy-1.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8b2cbaca148d0754a54d44121b5825ae71868c7592a53b7292eeb0f3fdae95ee"}, - {file = "mypy-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ec404a7cbe9fc0e92cb0e67f55ce0c025014e26d33e54d9e506a0f2d07fe5de"}, - {file = "mypy-1.10.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e22e1527dc3d4aa94311d246b59e47f6455b8729f4968765ac1eacf9a4760bc7"}, - {file = "mypy-1.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:a87dbfa85971e8d59c9cc1fcf534efe664d8949e4c0b6b44e8ca548e746a8d53"}, - {file = "mypy-1.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a781f6ad4bab20eef8b65174a57e5203f4be627b46291f4589879bf4e257b97b"}, - {file = "mypy-1.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b808e12113505b97d9023b0b5e0c0705a90571c6feefc6f215c1df9381256e30"}, - {file = "mypy-1.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f55583b12156c399dce2df7d16f8a5095291354f1e839c252ec6c0611e86e2e"}, - {file = "mypy-1.10.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4cf18f9d0efa1b16478c4c129eabec36148032575391095f73cae2e722fcf9d5"}, - {file = "mypy-1.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:bc6ac273b23c6b82da3bb25f4136c4fd42665f17f2cd850771cb600bdd2ebeda"}, - {file = "mypy-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9fd50226364cd2737351c79807775136b0abe084433b55b2e29181a4c3c878c0"}, - {file = "mypy-1.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f90cff89eea89273727d8783fef5d4a934be2fdca11b47def50cf5d311aff727"}, - {file = "mypy-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fcfc70599efde5c67862a07a1aaf50e55bce629ace26bb19dc17cece5dd31ca4"}, - {file = "mypy-1.10.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:075cbf81f3e134eadaf247de187bd604748171d6b79736fa9b6c9685b4083061"}, - {file = "mypy-1.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:3f298531bca95ff615b6e9f2fc0333aae27fa48052903a0ac90215021cdcfa4f"}, - {file = "mypy-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fa7ef5244615a2523b56c034becde4e9e3f9b034854c93639adb667ec9ec2976"}, - {file = "mypy-1.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3236a4c8f535a0631f85f5fcdffba71c7feeef76a6002fcba7c1a8e57c8be1ec"}, - {file = "mypy-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a2b5cdbb5dd35aa08ea9114436e0d79aceb2f38e32c21684dcf8e24e1e92821"}, - {file = "mypy-1.10.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92f93b21c0fe73dc00abf91022234c79d793318b8a96faac147cd579c1671746"}, - {file = "mypy-1.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:28d0e038361b45f099cc086d9dd99c15ff14d0188f44ac883010e172ce86c38a"}, - {file = "mypy-1.10.0-py3-none-any.whl", hash = "sha256:f8c083976eb530019175aabadb60921e73b4f45736760826aa1689dda8208aee"}, - {file = "mypy-1.10.0.tar.gz", hash = "sha256:3d087fcbec056c4ee34974da493a826ce316947485cef3901f511848e687c131"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, + {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, + {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, + {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, + {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, + {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, + {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, + {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, + {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, + {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, + {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, + {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, + {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, + {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, + {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, + {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, + {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, + {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, ] [package.dependencies] mypy-extensions = ">=1.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.1.0" +typing-extensions = ">=4.6.0" [package.extras] dmypy = ["psutil (>=4.0)"] @@ -343,70 +503,105 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] +[[package]] +name = "openai" +version = "1.45.0" +description = "The official Python library for the openai API" +optional = false +python-versions = ">=3.7.1" +files = [ + {file = "openai-1.45.0-py3-none-any.whl", hash = "sha256:2f1f7b7cf90f038a9f1c24f0d26c0f1790c102ec5acd07ffd70a9b7feac1ff4e"}, + {file = "openai-1.45.0.tar.gz", hash = "sha256:731207d10637335413aa3c0955f8f8df30d7636a4a0f9c381f2209d32cf8de97"}, +] + +[package.dependencies] +anyio = ">=3.5.0,<5" +distro = ">=1.7.0,<2" +httpx = ">=0.23.0,<1" +jiter = ">=0.4.0,<1" +pydantic = ">=1.9.0,<3" +sniffio = "*" +tqdm = ">4" +typing-extensions = ">=4.11,<5" + +[package.extras] +datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] + [[package]] name = "orjson" -version = "3.10.3" +version = "3.10.7" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = false python-versions = ">=3.8" files = [ - {file = "orjson-3.10.3-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9fb6c3f9f5490a3eb4ddd46fc1b6eadb0d6fc16fb3f07320149c3286a1409dd8"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:252124b198662eee80428f1af8c63f7ff077c88723fe206a25df8dc57a57b1fa"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9f3e87733823089a338ef9bbf363ef4de45e5c599a9bf50a7a9b82e86d0228da"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8334c0d87103bb9fbbe59b78129f1f40d1d1e8355bbed2ca71853af15fa4ed3"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1952c03439e4dce23482ac846e7961f9d4ec62086eb98ae76d97bd41d72644d7"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c0403ed9c706dcd2809f1600ed18f4aae50be263bd7112e54b50e2c2bc3ebd6d"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:382e52aa4270a037d41f325e7d1dfa395b7de0c367800b6f337d8157367bf3a7"}, - {file = "orjson-3.10.3-cp310-none-win32.whl", hash = "sha256:be2aab54313752c04f2cbaab4515291ef5af8c2256ce22abc007f89f42f49109"}, - {file = "orjson-3.10.3-cp310-none-win_amd64.whl", hash = "sha256:416b195f78ae461601893f482287cee1e3059ec49b4f99479aedf22a20b1098b"}, - {file = "orjson-3.10.3-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:73100d9abbbe730331f2242c1fc0bcb46a3ea3b4ae3348847e5a141265479700"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:544a12eee96e3ab828dbfcb4d5a0023aa971b27143a1d35dc214c176fdfb29b3"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:520de5e2ef0b4ae546bea25129d6c7c74edb43fc6cf5213f511a927f2b28148b"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ccaa0a401fc02e8828a5bedfd80f8cd389d24f65e5ca3954d72c6582495b4bcf"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a7bc9e8bc11bac40f905640acd41cbeaa87209e7e1f57ade386da658092dc16"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3582b34b70543a1ed6944aca75e219e1192661a63da4d039d088a09c67543b08"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1c23dfa91481de880890d17aa7b91d586a4746a4c2aa9a145bebdbaf233768d5"}, - {file = "orjson-3.10.3-cp311-none-win32.whl", hash = "sha256:1770e2a0eae728b050705206d84eda8b074b65ee835e7f85c919f5705b006c9b"}, - {file = "orjson-3.10.3-cp311-none-win_amd64.whl", hash = "sha256:93433b3c1f852660eb5abdc1f4dd0ced2be031ba30900433223b28ee0140cde5"}, - {file = "orjson-3.10.3-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a39aa73e53bec8d410875683bfa3a8edf61e5a1c7bb4014f65f81d36467ea098"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0943a96b3fa09bee1afdfccc2cb236c9c64715afa375b2af296c73d91c23eab2"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e852baafceff8da3c9defae29414cc8513a1586ad93e45f27b89a639c68e8176"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18566beb5acd76f3769c1d1a7ec06cdb81edc4d55d2765fb677e3eaa10fa99e0"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd2218d5a3aa43060efe649ec564ebedec8ce6ae0a43654b81376216d5ebd42"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cf20465e74c6e17a104ecf01bf8cd3b7b252565b4ccee4548f18b012ff2f8069"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ba7f67aa7f983c4345eeda16054a4677289011a478ca947cd69c0a86ea45e534"}, - {file = "orjson-3.10.3-cp312-none-win32.whl", hash = "sha256:17e0713fc159abc261eea0f4feda611d32eabc35708b74bef6ad44f6c78d5ea0"}, - {file = "orjson-3.10.3-cp312-none-win_amd64.whl", hash = "sha256:4c895383b1ec42b017dd2c75ae8a5b862fc489006afde06f14afbdd0309b2af0"}, - {file = "orjson-3.10.3-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:be2719e5041e9fb76c8c2c06b9600fe8e8584e6980061ff88dcbc2691a16d20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0175a5798bdc878956099f5c54b9837cb62cfbf5d0b86ba6d77e43861bcec2"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:978be58a68ade24f1af7758626806e13cff7748a677faf95fbb298359aa1e20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16bda83b5c61586f6f788333d3cf3ed19015e3b9019188c56983b5a299210eb5"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ad1f26bea425041e0a1adad34630c4825a9e3adec49079b1fb6ac8d36f8b754"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9e253498bee561fe85d6325ba55ff2ff08fb5e7184cd6a4d7754133bd19c9195"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0a62f9968bab8a676a164263e485f30a0b748255ee2f4ae49a0224be95f4532b"}, - {file = "orjson-3.10.3-cp38-none-win32.whl", hash = "sha256:8d0b84403d287d4bfa9bf7d1dc298d5c1c5d9f444f3737929a66f2fe4fb8f134"}, - {file = "orjson-3.10.3-cp38-none-win_amd64.whl", hash = "sha256:8bc7a4df90da5d535e18157220d7915780d07198b54f4de0110eca6b6c11e290"}, - {file = "orjson-3.10.3-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9059d15c30e675a58fdcd6f95465c1522b8426e092de9fff20edebfdc15e1cb0"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d40c7f7938c9c2b934b297412c067936d0b54e4b8ab916fd1a9eb8f54c02294"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4a654ec1de8fdaae1d80d55cee65893cb06494e124681ab335218be6a0691e7"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:831c6ef73f9aa53c5f40ae8f949ff7681b38eaddb6904aab89dca4d85099cb78"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99b880d7e34542db89f48d14ddecbd26f06838b12427d5a25d71baceb5ba119d"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e5e176c994ce4bd434d7aafb9ecc893c15f347d3d2bbd8e7ce0b63071c52e25"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b69a58a37dab856491bf2d3bbf259775fdce262b727f96aafbda359cb1d114d8"}, - {file = "orjson-3.10.3-cp39-none-win32.whl", hash = "sha256:b8d4d1a6868cde356f1402c8faeb50d62cee765a1f7ffcfd6de732ab0581e063"}, - {file = "orjson-3.10.3-cp39-none-win_amd64.whl", hash = "sha256:5102f50c5fc46d94f2033fe00d392588564378260d64377aec702f21a7a22912"}, - {file = "orjson-3.10.3.tar.gz", hash = "sha256:2b166507acae7ba2f7c315dcf185a9111ad5e992ac81f2d507aac39193c2c818"}, + {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, + {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, + {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, + {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, + {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, + {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, + {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, + {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, + {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, + {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, + {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, + {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, + {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, + {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, + {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, + {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, + {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, + {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, + {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, + {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, ] [[package]] name = "packaging" -version = "23.2" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] @@ -426,109 +621,123 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.7.4" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"}, - {file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.18.4" -typing-extensions = ">=4.6.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" +typing-extensions = [ + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, + {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, +] [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.18.4" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"}, - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"}, - {file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"}, - {file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"}, - {file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"}, - {file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"}, - {file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"}, - {file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"}, - {file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"}, - {file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"}, - {file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"}, - {file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"}, - {file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"}, - {file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"}, - {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -622,73 +831,75 @@ six = ">=1.5" [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "requests" -version = "2.31.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -703,29 +914,29 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "ruff" -version = "0.5.0" +version = "0.5.7" description = "An extremely fast Python linter and code formatter, written in Rust." optional = false python-versions = ">=3.7" files = [ - {file = "ruff-0.5.0-py3-none-linux_armv6l.whl", hash = "sha256:ee770ea8ab38918f34e7560a597cc0a8c9a193aaa01bfbd879ef43cb06bd9c4c"}, - {file = "ruff-0.5.0-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:38f3b8327b3cb43474559d435f5fa65dacf723351c159ed0dc567f7ab735d1b6"}, - {file = "ruff-0.5.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:7594f8df5404a5c5c8f64b8311169879f6cf42142da644c7e0ba3c3f14130370"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:adc7012d6ec85032bc4e9065110df205752d64010bed5f958d25dbee9ce35de3"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d505fb93b0fabef974b168d9b27c3960714d2ecda24b6ffa6a87ac432905ea38"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dc5cfd3558f14513ed0d5b70ce531e28ea81a8a3b1b07f0f48421a3d9e7d80a"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:db3ca35265de239a1176d56a464b51557fce41095c37d6c406e658cf80bbb362"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b1a321c4f68809fddd9b282fab6a8d8db796b270fff44722589a8b946925a2a8"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c4dfcd8d34b143916994b3876b63d53f56724c03f8c1a33a253b7b1e6bf2a7d"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81e5facfc9f4a674c6a78c64d38becfbd5e4f739c31fcd9ce44c849f1fad9e4c"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:e589e27971c2a3efff3fadafb16e5aef7ff93250f0134ec4b52052b673cf988d"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:d2ffbc3715a52b037bcb0f6ff524a9367f642cdc5817944f6af5479bbb2eb50e"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:cd096e23c6a4f9c819525a437fa0a99d1c67a1b6bb30948d46f33afbc53596cf"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:46e193b36f2255729ad34a49c9a997d506e58f08555366b2108783b3064a0e1e"}, - {file = "ruff-0.5.0-py3-none-win32.whl", hash = "sha256:49141d267100f5ceff541b4e06552e98527870eafa1acc9dec9139c9ec5af64c"}, - {file = "ruff-0.5.0-py3-none-win_amd64.whl", hash = "sha256:e9118f60091047444c1b90952736ee7b1792910cab56e9b9a9ac20af94cd0440"}, - {file = "ruff-0.5.0-py3-none-win_arm64.whl", hash = "sha256:ed5c4df5c1fb4518abcb57725b576659542bdbe93366f4f329e8f398c4b71178"}, - {file = "ruff-0.5.0.tar.gz", hash = "sha256:eb641b5873492cf9bd45bc9c5ae5320648218e04386a5f0c264ad6ccce8226a1"}, + {file = "ruff-0.5.7-py3-none-linux_armv6l.whl", hash = "sha256:548992d342fc404ee2e15a242cdbea4f8e39a52f2e7752d0e4cbe88d2d2f416a"}, + {file = "ruff-0.5.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00cc8872331055ee017c4f1071a8a31ca0809ccc0657da1d154a1d2abac5c0be"}, + {file = "ruff-0.5.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eaf3d86a1fdac1aec8a3417a63587d93f906c678bb9ed0b796da7b59c1114a1e"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a01c34400097b06cf8a6e61b35d6d456d5bd1ae6961542de18ec81eaf33b4cb8"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcc8054f1a717e2213500edaddcf1dbb0abad40d98e1bd9d0ad364f75c763eea"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f70284e73f36558ef51602254451e50dd6cc479f8b6f8413a95fcb5db4a55fc"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:a78ad870ae3c460394fc95437d43deb5c04b5c29297815a2a1de028903f19692"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ccd078c66a8e419475174bfe60a69adb36ce04f8d4e91b006f1329d5cd44bcf"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e31c9bad4ebf8fdb77b59cae75814440731060a09a0e0077d559a556453acbb"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d796327eed8e168164346b769dd9a27a70e0298d667b4ecee6877ce8095ec8e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:4a09ea2c3f7778cc635e7f6edf57d566a8ee8f485f3c4454db7771efb692c499"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a36d8dcf55b3a3bc353270d544fb170d75d2dff41eba5df57b4e0b67a95bb64e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9369c218f789eefbd1b8d82a8cf25017b523ac47d96b2f531eba73770971c9e5"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b88ca3db7eb377eb24fb7c82840546fb7acef75af4a74bd36e9ceb37a890257e"}, + {file = "ruff-0.5.7-py3-none-win32.whl", hash = "sha256:33d61fc0e902198a3e55719f4be6b375b28f860b09c281e4bdbf783c0566576a"}, + {file = "ruff-0.5.7-py3-none-win_amd64.whl", hash = "sha256:083bbcbe6fadb93cd86709037acc510f86eed5a314203079df174c40bbbca6b3"}, + {file = "ruff-0.5.7-py3-none-win_arm64.whl", hash = "sha256:2dca26154ff9571995107221d0aeaad0e75a77b5a682d6236cf89a58c70b76f4"}, + {file = "ruff-0.5.7.tar.gz", hash = "sha256:8dfc0a458797f5d9fb622dd0efc52d796f23f0a1493a9527f4e49a550ae9a7e5"}, ] [[package]] @@ -739,15 +950,26 @@ files = [ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + [[package]] name = "syrupy" -version = "4.6.1" +version = "4.7.1" description = "Pytest Snapshot Test Utility" optional = false -python-versions = ">=3.8.1,<4" +python-versions = ">=3.8.1" files = [ - {file = "syrupy-4.6.1-py3-none-any.whl", hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133"}, - {file = "syrupy-4.6.1.tar.gz", hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36"}, + {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, + {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, ] [package.dependencies] @@ -755,13 +977,13 @@ pytest = ">=7.0.0,<9.0.0" [[package]] name = "tenacity" -version = "8.3.0" +version = "8.5.0" description = "Retry code until it succeeds" optional = false python-versions = ">=3.8" files = [ - {file = "tenacity-8.3.0-py3-none-any.whl", hash = "sha256:3649f6443dbc0d9b01b9d8020a9c4ec7a1ff5f6f3c6c8a036ef371f573fe9185"}, - {file = "tenacity-8.3.0.tar.gz", hash = "sha256:953d4e6ad24357bceffbc9707bc74349aca9d245f68eb65419cf0c249a1949a2"}, + {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, + {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, ] [package.extras] @@ -779,26 +1001,46 @@ files = [ {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] +[[package]] +name = "tqdm" +version = "4.66.5" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + [[package]] name = "typing-extensions" -version = "4.11.0" +version = "4.12.2" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"}, - {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"}, + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] [[package]] name = "urllib3" -version = "2.2.1" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"}, - {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -809,40 +1051,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.0" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:39cb34b1f1afbf23e9562501673e7146777efe95da24fab5707b88f7fb11649b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c522392acc5e962bcac3b22b9592493ffd06d1fc5d755954e6be9f4990de932b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6c47bdd680009b11c9ac382163e05ca43baf4127954c5f6d0250e7d772d2b80c"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8350d4055505412a426b6ad8c521bc7d367d1637a762c70fdd93a3a0d595990b"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c17d98799f32e3f55f181f19dd2021d762eb38fdd381b4a748b9f5a36738e935"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4986db5e8880b0e6b7cd52ba36255d4793bf5cdc95bd6264806c233173b1ec0b"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:11e12fafb13372e18ca1bbf12d50f593e7280646687463dd47730fd4f4d5d257"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5369136a6474678e02426bd984466343924d1df8e2fd94a9b443cb7e3aa20d19"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76ad8484379695f3fe46228962017a7e1337e9acadafed67eb20aabb175df98b"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:45cc09cc4c3b43fb10b59ef4d07318d9a3ecdbff03abd2e36e77b6dd9f9a5c85"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eed82cdf79cd7f0232e2fdc1ad05b06a5e102a43e331f7d041e5f0e0a34a51c4"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba30a896166f0fee83183cec913298151b73164160d965af2e93a20bbd2ab605"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d18d7f18a47de6863cd480734613502904611730f8def45fc52a5d97503e5101"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2895bf0518361a9728773083908801a376743bcc37dfa252b801af8fd281b1ca"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87e9df830022488e235dd601478c15ad73a0389628588ba0b028cb74eb72fed8"}, - {file = "watchdog-4.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6e949a8a94186bced05b6508faa61b7adacc911115664ccb1923b9ad1f1ccf7b"}, - {file = "watchdog-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6a4db54edea37d1058b08947c789a2354ee02972ed5d1e0dca9b0b820f4c7f92"}, - {file = "watchdog-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d31481ccf4694a8416b681544c23bd271f5a123162ab603c7d7d2dd7dd901a07"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:8fec441f5adcf81dd240a5fe78e3d83767999771630b5ddfc5867827a34fa3d3"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:6a9c71a0b02985b4b0b6d14b875a6c86ddea2fdbebd0c9a720a806a8bbffc69f"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:557ba04c816d23ce98a06e70af6abaa0485f6d94994ec78a42b05d1c03dcbd50"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:d0f9bd1fd919134d459d8abf954f63886745f4660ef66480b9d753a7c9d40927"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f9b2fdca47dc855516b2d66eef3c39f2672cbf7e7a42e7e67ad2cbfcd6ba107d"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:73c7a935e62033bd5e8f0da33a4dcb763da2361921a69a5a95aaf6c93aa03a87"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6a80d5cae8c265842c7419c560b9961561556c4361b297b4c431903f8c33b269"}, - {file = "watchdog-4.0.0-py3-none-win32.whl", hash = "sha256:8f9a542c979df62098ae9c58b19e03ad3df1c9d8c6895d96c0d51da17b243b1c"}, - {file = "watchdog-4.0.0-py3-none-win_amd64.whl", hash = "sha256:f970663fa4f7e80401a7b0cbeec00fa801bf0287d93d48368fc3e6fa32716245"}, - {file = "watchdog-4.0.0-py3-none-win_ia64.whl", hash = "sha256:9a03e16e55465177d416699331b0f3564138f1807ecc5f2de9d55d8f188d08c7"}, - {file = "watchdog-4.0.0.tar.gz", hash = "sha256:e3e7065cbdabe6183ab82199d7a4f6b3ba0a438c5a512a68559846ccb76a78ec"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -850,5 +1093,5 @@ watchmedo = ["PyYAML (>=3.10)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "4778798e2fcbc825ac84d928c7e19cdba5fd7ee8df6e8ea36a5baf28721f53f0" +python-versions = ">=3.9,<4.0" +content-hash = "5cf789b2b34b62dd0688b96ef973db6ef18e52c172f45ba4a4d4accbc2c070f9" diff --git a/libs/partners/exa/pyproject.toml b/libs/partners/exa/pyproject.toml index e3749ff837aa1..399a2d9eadbf1 100644 --- a/libs/partners/exa/pyproject.toml +++ b/libs/partners/exa/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-exa" -version = "0.1.0" +version = "0.2.0" description = "An integration package connecting Exa and LangChain" authors = [] readme = "README.md" @@ -19,19 +19,23 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-exa%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.52,<0.3" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" exa-py = "^1.0.8" [tool.ruff.lint] -select = [ "E", "F", "I", "T201",] +select = ["E", "F", "I", "T201"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] diff --git a/libs/partners/exa/scripts/check_pydantic.sh b/libs/partners/exa/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/exa/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/fireworks/langchain_fireworks/chat_models.py b/libs/partners/fireworks/langchain_fireworks/chat_models.py index 7b489cd5d0086..11b24197f607a 100644 --- a/libs/partners/fireworks/langchain_fireworks/chat_models.py +++ b/libs/partners/fireworks/langchain_fireworks/chat_models.py @@ -24,6 +24,7 @@ ) from fireworks.client import AsyncFireworks, Fireworks # type: ignore +from langchain_core._api import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, @@ -68,12 +69,6 @@ parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, - root_validator, -) from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import ( @@ -84,7 +79,15 @@ convert_to_openai_tool, ) from langchain_core.utils.pydantic import is_basemodel_subclass -from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env +from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -354,47 +357,44 @@ def is_lc_serializable(cls) -> bool: max_retries: Optional[int] = None """Maximum number of retries to make when generating.""" - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - if values["n"] < 1: + if self.n < 1: raise ValueError("n must be at least 1.") - if values["n"] > 1 and values["streaming"]: + if self.n > 1 and self.streaming: raise ValueError("n must be 1 when streaming.") client_params = { "api_key": ( - values["fireworks_api_key"].get_secret_value() - if values["fireworks_api_key"] + self.fireworks_api_key.get_secret_value() + if self.fireworks_api_key else None ), - "base_url": values["fireworks_api_base"], - "timeout": values["request_timeout"], + "base_url": self.fireworks_api_base, + "timeout": self.request_timeout, } - if not values.get("client"): - values["client"] = Fireworks(**client_params).chat.completions - if not values.get("async_client"): - values["async_client"] = AsyncFireworks(**client_params).chat.completions - if values["max_retries"]: - values["client"]._max_retries = values["max_retries"] - values["async_client"]._max_retries = values["max_retries"] - return values + if not self.client: + self.client = Fireworks(**client_params).chat.completions + if not self.async_client: + self.async_client = AsyncFireworks(**client_params).chat.completions + if self.max_retries: + self.client._max_retries = self.max_retries + self.async_client._max_retries = self.max_retries + return self @property def _default_params(self) -> Dict[str, Any]: @@ -462,7 +462,7 @@ def _stream( default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk for chunk in self.client.create(messages=message_dicts, **params): if not isinstance(chunk, dict): - chunk = chunk.dict() + chunk = chunk.model_dump() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] @@ -518,7 +518,7 @@ def _create_message_dicts( def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: generations = [] if not isinstance(response, dict): - response = response.dict() + response = response.model_dump() token_usage = response.get("usage", {}) for res in response["choices"]: message = _convert_dict_to_message(res["message"]) @@ -556,7 +556,7 @@ async def _astream( default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk async for chunk in self.async_client.acreate(messages=message_dicts, **params): if not isinstance(chunk, dict): - chunk = chunk.dict() + chunk = chunk.model_dump() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] @@ -624,6 +624,11 @@ def _llm_type(self) -> str: """Return type of chat model.""" return "fireworks-chat" + @deprecated( + since="0.2.1", + alternative="langchain_fireworks.chat_models.ChatFireworks.bind_tools", + removal="0.3.0", + ) def bind_functions( self, functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], @@ -703,8 +708,8 @@ def bind_tools( with the option to not call any function, "any" to enforce that some function is called, or a dict of the form: {"type": "function", "function": {"name": <<tool_name>>}}. - **kwargs: Any additional parameters to pass to the - :class:`~langchain.runnable.Runnable` constructor. + **kwargs: Any additional parameters to pass to + :meth:`~langchain_fireworks.chat_models.ChatFireworks.bind` """ formatted_tools = [convert_to_openai_tool(tool) for tool in tools] @@ -713,19 +718,6 @@ def bind_tools( tool_choice not in ("auto", "any", "none") ): tool_choice = {"type": "function", "function": {"name": tool_choice}} - if isinstance(tool_choice, dict) and (len(formatted_tools) != 1): - raise ValueError( - "When specifying `tool_choice`, you must provide exactly one " - f"tool. Received {len(formatted_tools)} tools." - ) - if isinstance(tool_choice, dict) and ( - formatted_tools[0]["function"]["name"] - != tool_choice["function"]["name"] - ): - raise ValueError( - f"Tool choice {tool_choice} was specified, but the only " - f"provided tool was {formatted_tools[0]['function']['name']}." - ) if isinstance(tool_choice, bool): if len(tools) > 1: raise ValueError( @@ -803,7 +795,7 @@ def with_structured_output( from typing import Optional from langchain_fireworks import ChatFireworks - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class AnswerWithJustification(BaseModel): @@ -834,7 +826,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_fireworks import ChatFireworks - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): @@ -921,7 +913,7 @@ class AnswerWithJustification(TypedDict): .. code-block:: from langchain_fireworks import ChatFireworks - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): answer: str diff --git a/libs/partners/fireworks/langchain_fireworks/embeddings.py b/libs/partners/fireworks/langchain_fireworks/embeddings.py index 719bb34a93540..8fd67f116cab3 100644 --- a/libs/partners/fireworks/langchain_fireworks/embeddings.py +++ b/libs/partners/fireworks/langchain_fireworks/embeddings.py @@ -1,9 +1,12 @@ -from typing import Any, Dict, List +from typing import List from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.utils import secret_from_env -from openai import OpenAI # type: ignore +from openai import OpenAI +from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator +from typing_extensions import Self + +# type: ignore class FireworksEmbeddings(BaseModel, Embeddings): @@ -65,7 +68,7 @@ class FireworksEmbeddings(BaseModel, Embeddings): [-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915] """ - _client: OpenAI = Field(default=None) + client: OpenAI = Field(default=None, exclude=True) #: :meta private: fireworks_api_key: SecretStr = Field( alias="api_key", default_factory=secret_from_env( @@ -79,20 +82,25 @@ class FireworksEmbeddings(BaseModel, Embeddings): """ model: str = "nomic-ai/nomic-embed-text-v1.5" - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]: + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) + + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate environment variables.""" - values["_client"] = OpenAI( - api_key=values["fireworks_api_key"].get_secret_value(), + self.client = OpenAI( + api_key=self.fireworks_api_key.get_secret_value(), base_url="https://api.fireworks.ai/inference/v1", ) - return values + return self def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed search docs.""" return [ i.embedding - for i in self._client.embeddings.create(input=texts, model=self.model).data + for i in self.client.embeddings.create(input=texts, model=self.model).data ] def embed_query(self, text: str) -> List[float]: diff --git a/libs/partners/fireworks/langchain_fireworks/llms.py b/libs/partners/fireworks/langchain_fireworks/llms.py index 747c59ecadd43..fad10e9039f53 100644 --- a/libs/partners/fireworks/langchain_fireworks/llms.py +++ b/libs/partners/fireworks/langchain_fireworks/llms.py @@ -10,13 +10,9 @@ CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import LLM -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator -from langchain_core.utils import ( - convert_to_secret_str, - get_from_dict_or_env, - get_pydantic_field_names, -) -from langchain_core.utils.utils import build_extra_kwargs +from langchain_core.utils import get_pydantic_field_names +from langchain_core.utils.utils import _build_model_kwargs, secret_from_env +from pydantic import ConfigDict, Field, SecretStr, model_validator from langchain_fireworks.version import __version__ @@ -39,8 +35,21 @@ class Fireworks(LLM): base_url: str = "https://api.fireworks.ai/inference/v1/completions" """Base inference API URL.""" - fireworks_api_key: SecretStr = Field(default=None, alias="api_key") - """Fireworks AI API key. Get it here: https://fireworks.ai""" + fireworks_api_key: SecretStr = Field( + alias="api_key", + default_factory=secret_from_env( + "FIREWORKS_API_KEY", + error_message=( + "You must specify an api key. " + "You can pass it an argument as `api_key=...` or " + "set the environment variable `FIREWORKS_API_KEY`." + ), + ), + ) + """Fireworks API key. + + Automatically read from env variable `FIREWORKS_API_KEY` if not provided. + """ model: str """Model name. Available models listed here: https://readme.fireworks.ai/ @@ -74,28 +83,17 @@ class Fireworks(LLM): the response for each token generation step. """ - class Config: - """Configuration for this pydantic object.""" - - extra = "forbid" - allow_population_by_field_name = True + model_config = ConfigDict( + extra="forbid", + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) - return values - - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: - """Validate that api key exists in environment.""" - values["fireworks_api_key"] = convert_to_secret_str( - get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY") - ) + values = _build_model_kwargs(values, all_required_field_names) return values @property diff --git a/libs/partners/fireworks/poetry.lock b/libs/partners/fireworks/poetry.lock index 0e9e0f547214d..5f42499337142 100644 --- a/libs/partners/fireworks/poetry.lock +++ b/libs/partners/fireworks/poetry.lock @@ -2,113 +2,113 @@ [[package]] name = "aiohappyeyeballs" -version = "2.4.0" +version = "2.4.3" description = "Happy Eyeballs for asyncio" optional = false python-versions = ">=3.8" files = [ - {file = "aiohappyeyeballs-2.4.0-py3-none-any.whl", hash = "sha256:7ce92076e249169a13c2f49320d1967425eaf1f407522d707d59cac7628d62bd"}, - {file = "aiohappyeyeballs-2.4.0.tar.gz", hash = "sha256:55a1714f084e63d49639800f95716da97a1f173d46a16dfcfda0016abb93b6b2"}, + {file = "aiohappyeyeballs-2.4.3-py3-none-any.whl", hash = "sha256:8a7a83727b2756f394ab2895ea0765a0a8c475e3c71e98d43d76f22b4b435572"}, + {file = "aiohappyeyeballs-2.4.3.tar.gz", hash = "sha256:75cf88a15106a5002a8eb1dab212525c00d1f4c0fa96e551c9fbe6f09a621586"}, ] [[package]] name = "aiohttp" -version = "3.10.5" +version = "3.10.9" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.8" files = [ - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:18a01eba2574fb9edd5f6e5fb25f66e6ce061da5dab5db75e13fe1558142e0a3"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:94fac7c6e77ccb1ca91e9eb4cb0ac0270b9fb9b289738654120ba8cebb1189c6"}, - {file = "aiohttp-3.10.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2f1f1c75c395991ce9c94d3e4aa96e5c59c8356a15b1c9231e783865e2772699"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f7acae3cf1a2a2361ec4c8e787eaaa86a94171d2417aae53c0cca6ca3118ff6"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94c4381ffba9cc508b37d2e536b418d5ea9cfdc2848b9a7fea6aebad4ec6aac1"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c31ad0c0c507894e3eaa843415841995bf8de4d6b2d24c6e33099f4bc9fc0d4f"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0912b8a8fadeb32ff67a3ed44249448c20148397c1ed905d5dac185b4ca547bb"}, - {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d93400c18596b7dc4794d48a63fb361b01a0d8eb39f28800dc900c8fbdaca91"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d00f3c5e0d764a5c9aa5a62d99728c56d455310bcc288a79cab10157b3af426f"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d742c36ed44f2798c8d3f4bc511f479b9ceef2b93f348671184139e7d708042c"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:814375093edae5f1cb31e3407997cf3eacefb9010f96df10d64829362ae2df69"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8224f98be68a84b19f48e0bdc14224b5a71339aff3a27df69989fa47d01296f3"}, - {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d9a487ef090aea982d748b1b0d74fe7c3950b109df967630a20584f9a99c0683"}, - {file = "aiohttp-3.10.5-cp310-cp310-win32.whl", hash = "sha256:d9ef084e3dc690ad50137cc05831c52b6ca428096e6deb3c43e95827f531d5ef"}, - {file = "aiohttp-3.10.5-cp310-cp310-win_amd64.whl", hash = "sha256:66bf9234e08fe561dccd62083bf67400bdbf1c67ba9efdc3dac03650e97c6088"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c6a4e5e40156d72a40241a25cc226051c0a8d816610097a8e8f517aeacd59a2"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c634a3207a5445be65536d38c13791904fda0748b9eabf908d3fe86a52941cf"}, - {file = "aiohttp-3.10.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4aff049b5e629ef9b3e9e617fa6e2dfeda1bf87e01bcfecaf3949af9e210105e"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1942244f00baaacaa8155eca94dbd9e8cc7017deb69b75ef67c78e89fdad3c77"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e04a1f2a65ad2f93aa20f9ff9f1b672bf912413e5547f60749fa2ef8a644e061"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f2bfc0032a00405d4af2ba27f3c429e851d04fad1e5ceee4080a1c570476697"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424ae21498790e12eb759040bbb504e5e280cab64693d14775c54269fd1d2bb7"}, - {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:975218eee0e6d24eb336d0328c768ebc5d617609affaca5dbbd6dd1984f16ed0"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4120d7fefa1e2d8fb6f650b11489710091788de554e2b6f8347c7a20ceb003f5"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b90078989ef3fc45cf9221d3859acd1108af7560c52397ff4ace8ad7052a132e"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ba5a8b74c2a8af7d862399cdedce1533642fa727def0b8c3e3e02fcb52dca1b1"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:02594361128f780eecc2a29939d9dfc870e17b45178a867bf61a11b2a4367277"}, - {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8fb4fc029e135859f533025bc82047334e24b0d489e75513144f25408ecaf058"}, - {file = "aiohttp-3.10.5-cp311-cp311-win32.whl", hash = "sha256:e1ca1ef5ba129718a8fc827b0867f6aa4e893c56eb00003b7367f8a733a9b072"}, - {file = "aiohttp-3.10.5-cp311-cp311-win_amd64.whl", hash = "sha256:349ef8a73a7c5665cca65c88ab24abe75447e28aa3bc4c93ea5093474dfdf0ff"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:305be5ff2081fa1d283a76113b8df7a14c10d75602a38d9f012935df20731487"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a1c32a19ee6bbde02f1cb189e13a71b321256cc1d431196a9f824050b160d5a"}, - {file = "aiohttp-3.10.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:61645818edd40cc6f455b851277a21bf420ce347baa0b86eaa41d51ef58ba23d"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c225286f2b13bab5987425558baa5cbdb2bc925b2998038fa028245ef421e75"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ba01ebc6175e1e6b7275c907a3a36be48a2d487549b656aa90c8a910d9f3178"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8eaf44ccbc4e35762683078b72bf293f476561d8b68ec8a64f98cf32811c323e"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c43eb1ab7cbf411b8e387dc169acb31f0ca0d8c09ba63f9eac67829585b44f"}, - {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de7a5299827253023c55ea549444e058c0eb496931fa05d693b95140a947cb73"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4790f0e15f00058f7599dab2b206d3049d7ac464dc2e5eae0e93fa18aee9e7bf"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:44b324a6b8376a23e6ba25d368726ee3bc281e6ab306db80b5819999c737d820"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:0d277cfb304118079e7044aad0b76685d30ecb86f83a0711fc5fb257ffe832ca"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:54d9ddea424cd19d3ff6128601a4a4d23d54a421f9b4c0fff740505813739a91"}, - {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4f1c9866ccf48a6df2b06823e6ae80573529f2af3a0992ec4fe75b1a510df8a6"}, - {file = "aiohttp-3.10.5-cp312-cp312-win32.whl", hash = "sha256:dc4826823121783dccc0871e3f405417ac116055bf184ac04c36f98b75aacd12"}, - {file = "aiohttp-3.10.5-cp312-cp312-win_amd64.whl", hash = "sha256:22c0a23a3b3138a6bf76fc553789cb1a703836da86b0f306b6f0dc1617398abc"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7f6b639c36734eaa80a6c152a238242bedcee9b953f23bb887e9102976343092"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f29930bc2921cef955ba39a3ff87d2c4398a0394ae217f41cb02d5c26c8b1b77"}, - {file = "aiohttp-3.10.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f489a2c9e6455d87eabf907ac0b7d230a9786be43fbe884ad184ddf9e9c1e385"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:123dd5b16b75b2962d0fff566effb7a065e33cd4538c1692fb31c3bda2bfb972"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b98e698dc34966e5976e10bbca6d26d6724e6bdea853c7c10162a3235aba6e16"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3b9162bab7e42f21243effc822652dc5bb5e8ff42a4eb62fe7782bcbcdfacf6"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1923a5c44061bffd5eebeef58cecf68096e35003907d8201a4d0d6f6e387ccaa"}, - {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d55f011da0a843c3d3df2c2cf4e537b8070a419f891c930245f05d329c4b0689"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:afe16a84498441d05e9189a15900640a2d2b5e76cf4efe8cbb088ab4f112ee57"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8112fb501b1e0567a1251a2fd0747baae60a4ab325a871e975b7bb67e59221f"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:1e72589da4c90337837fdfe2026ae1952c0f4a6e793adbbfbdd40efed7c63599"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4d46c7b4173415d8e583045fbc4daa48b40e31b19ce595b8d92cf639396c15d5"}, - {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:33e6bc4bab477c772a541f76cd91e11ccb6d2efa2b8d7d7883591dfb523e5987"}, - {file = "aiohttp-3.10.5-cp313-cp313-win32.whl", hash = "sha256:c58c6837a2c2a7cf3133983e64173aec11f9c2cd8e87ec2fdc16ce727bcf1a04"}, - {file = "aiohttp-3.10.5-cp313-cp313-win_amd64.whl", hash = "sha256:38172a70005252b6893088c0f5e8a47d173df7cc2b2bd88650957eb84fcf5022"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f6f18898ace4bcd2d41a122916475344a87f1dfdec626ecde9ee802a711bc569"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ede29d91a40ba22ac1b922ef510aab871652f6c88ef60b9dcdf773c6d32ad7a"}, - {file = "aiohttp-3.10.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:673f988370f5954df96cc31fd99c7312a3af0a97f09e407399f61583f30da9bc"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58718e181c56a3c02d25b09d4115eb02aafe1a732ce5714ab70326d9776457c3"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b38b1570242fbab8d86a84128fb5b5234a2f70c2e32f3070143a6d94bc854cf"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:074d1bff0163e107e97bd48cad9f928fa5a3eb4b9d33366137ffce08a63e37fe"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd31f176429cecbc1ba499d4aba31aaccfea488f418d60376b911269d3b883c5"}, - {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7384d0b87d4635ec38db9263e6a3f1eb609e2e06087f0aa7f63b76833737b471"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8989f46f3d7ef79585e98fa991e6ded55d2f48ae56d2c9fa5e491a6e4effb589"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c83f7a107abb89a227d6c454c613e7606c12a42b9a4ca9c5d7dad25d47c776ae"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:cde98f323d6bf161041e7627a5fd763f9fd829bcfcd089804a5fdce7bb6e1b7d"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:676f94c5480d8eefd97c0c7e3953315e4d8c2b71f3b49539beb2aa676c58272f"}, - {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2d21ac12dc943c68135ff858c3a989f2194a709e6e10b4c8977d7fcd67dfd511"}, - {file = "aiohttp-3.10.5-cp38-cp38-win32.whl", hash = "sha256:17e997105bd1a260850272bfb50e2a328e029c941c2708170d9d978d5a30ad9a"}, - {file = "aiohttp-3.10.5-cp38-cp38-win_amd64.whl", hash = "sha256:1c19de68896747a2aa6257ae4cf6ef59d73917a36a35ee9d0a6f48cff0f94db8"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7e2fe37ac654032db1f3499fe56e77190282534810e2a8e833141a021faaab0e"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f5bf3ead3cb66ab990ee2561373b009db5bc0e857549b6c9ba84b20bc462e172"}, - {file = "aiohttp-3.10.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1b2c16a919d936ca87a3c5f0e43af12a89a3ce7ccbce59a2d6784caba945b68b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad146dae5977c4dd435eb31373b3fe9b0b1bf26858c6fc452bf6af394067e10b"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c5c6fa16412b35999320f5c9690c0f554392dc222c04e559217e0f9ae244b92"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95c4dc6f61d610bc0ee1edc6f29d993f10febfe5b76bb470b486d90bbece6b22"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da452c2c322e9ce0cfef392e469a26d63d42860f829026a63374fde6b5c5876f"}, - {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:898715cf566ec2869d5cb4d5fb4be408964704c46c96b4be267442d265390f32"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:391cc3a9c1527e424c6865e087897e766a917f15dddb360174a70467572ac6ce"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:380f926b51b92d02a34119d072f178d80bbda334d1a7e10fa22d467a66e494db"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce91db90dbf37bb6fa0997f26574107e1b9d5ff939315247b7e615baa8ec313b"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9093a81e18c45227eebe4c16124ebf3e0d893830c6aca7cc310bfca8fe59d857"}, - {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ee40b40aa753d844162dcc80d0fe256b87cba48ca0054f64e68000453caead11"}, - {file = "aiohttp-3.10.5-cp39-cp39-win32.whl", hash = "sha256:03f2645adbe17f274444953bdea69f8327e9d278d961d85657cb0d06864814c1"}, - {file = "aiohttp-3.10.5-cp39-cp39-win_amd64.whl", hash = "sha256:d17920f18e6ee090bdd3d0bfffd769d9f2cb4c8ffde3eb203777a3895c128862"}, - {file = "aiohttp-3.10.5.tar.gz", hash = "sha256:f071854b47d39591ce9a17981c46790acb30518e2f83dfca8db2dfa091178691"}, + {file = "aiohttp-3.10.9-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8b3fb28a9ac8f2558760d8e637dbf27aef1e8b7f1d221e8669a1074d1a266bb2"}, + {file = "aiohttp-3.10.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:91aa966858593f64c8a65cdefa3d6dc8fe3c2768b159da84c1ddbbb2c01ab4ef"}, + {file = "aiohttp-3.10.9-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:63649309da83277f06a15bbdc2a54fbe75efb92caa2c25bb57ca37762789c746"}, + {file = "aiohttp-3.10.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e3e7fabedb3fe06933f47f1538df7b3a8d78e13d7167195f51ca47ee12690373"}, + {file = "aiohttp-3.10.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c070430fda1a550a1c3a4c2d7281d3b8cfc0c6715f616e40e3332201a253067"}, + {file = "aiohttp-3.10.9-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:51d0a4901b27272ae54e42067bc4b9a90e619a690b4dc43ea5950eb3070afc32"}, + {file = "aiohttp-3.10.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fec5fac7aea6c060f317f07494961236434928e6f4374e170ef50b3001e14581"}, + {file = "aiohttp-3.10.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:172ad884bb61ad31ed7beed8be776eb17e7fb423f1c1be836d5cb357a096bf12"}, + {file = "aiohttp-3.10.9-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d646fdd74c25bbdd4a055414f0fe32896c400f38ffbdfc78c68e62812a9e0257"}, + {file = "aiohttp-3.10.9-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e86260b76786c28acf0b5fe31c8dca4c2add95098c709b11e8c35b424ebd4f5b"}, + {file = "aiohttp-3.10.9-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c7d7cafc11d70fdd8801abfc2ff276744ae4cb39d8060b6b542c7e44e5f2cfc2"}, + {file = "aiohttp-3.10.9-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:fc262c3df78c8ff6020c782d9ce02e4bcffe4900ad71c0ecdad59943cba54442"}, + {file = "aiohttp-3.10.9-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:482c85cf3d429844396d939b22bc2a03849cb9ad33344689ad1c85697bcba33a"}, + {file = "aiohttp-3.10.9-cp310-cp310-win32.whl", hash = "sha256:aeebd3061f6f1747c011e1d0b0b5f04f9f54ad1a2ca183e687e7277bef2e0da2"}, + {file = "aiohttp-3.10.9-cp310-cp310-win_amd64.whl", hash = "sha256:fa430b871220dc62572cef9c69b41e0d70fcb9d486a4a207a5de4c1f25d82593"}, + {file = "aiohttp-3.10.9-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:16e6a51d8bc96b77f04a6764b4ad03eeef43baa32014fce71e882bd71302c7e4"}, + {file = "aiohttp-3.10.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8bd9125dd0cc8ebd84bff2be64b10fdba7dc6fd7be431b5eaf67723557de3a31"}, + {file = "aiohttp-3.10.9-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dcf354661f54e6a49193d0b5653a1b011ba856e0b7a76bda2c33e4c6892f34ea"}, + {file = "aiohttp-3.10.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42775de0ca04f90c10c5c46291535ec08e9bcc4756f1b48f02a0657febe89b10"}, + {file = "aiohttp-3.10.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87d1e4185c5d7187684d41ebb50c9aeaaaa06ca1875f4c57593071b0409d2444"}, + {file = "aiohttp-3.10.9-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c2695c61cf53a5d4345a43d689f37fc0f6d3a2dc520660aec27ec0f06288d1f9"}, + {file = "aiohttp-3.10.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a3f063b41cc06e8d0b3fcbbfc9c05b7420f41287e0cd4f75ce0a1f3d80729e6"}, + {file = "aiohttp-3.10.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d37f4718002863b82c6f391c8efd4d3a817da37030a29e2682a94d2716209de"}, + {file = "aiohttp-3.10.9-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2746d8994ebca1bdc55a1e998feff4e94222da709623bb18f6e5cfec8ec01baf"}, + {file = "aiohttp-3.10.9-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6f3c6648aa123bcd73d6f26607d59967b607b0da8ffcc27d418a4b59f4c98c7c"}, + {file = "aiohttp-3.10.9-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:558b3d223fd631ad134d89adea876e7fdb4c93c849ef195049c063ada82b7d08"}, + {file = "aiohttp-3.10.9-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:4e6cb75f8ddd9c2132d00bc03c9716add57f4beff1263463724f6398b813e7eb"}, + {file = "aiohttp-3.10.9-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:608cecd8d58d285bfd52dbca5b6251ca8d6ea567022c8a0eaae03c2589cd9af9"}, + {file = "aiohttp-3.10.9-cp311-cp311-win32.whl", hash = "sha256:36d4fba838be5f083f5490ddd281813b44d69685db910907636bc5dca6322316"}, + {file = "aiohttp-3.10.9-cp311-cp311-win_amd64.whl", hash = "sha256:8be1a65487bdfc285bd5e9baf3208c2132ca92a9b4020e9f27df1b16fab998a9"}, + {file = "aiohttp-3.10.9-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4fd16b30567c5b8e167923be6e027eeae0f20cf2b8a26b98a25115f28ad48ee0"}, + {file = "aiohttp-3.10.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:40ff5b7660f903dc587ed36ef08a88d46840182d9d4b5694e7607877ced698a1"}, + {file = "aiohttp-3.10.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4edc3fd701e2b9a0d605a7b23d3de4ad23137d23fc0dbab726aa71d92f11aaaf"}, + {file = "aiohttp-3.10.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e525b69ee8a92c146ae5b4da9ecd15e518df4d40003b01b454ad694a27f498b5"}, + {file = "aiohttp-3.10.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5002a02c17fcfd796d20bac719981d2fca9c006aac0797eb8f430a58e9d12431"}, + {file = "aiohttp-3.10.9-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd4ceeae2fb8cabdd1b71c82bfdd39662473d3433ec95b962200e9e752fb70d0"}, + {file = "aiohttp-3.10.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d6e395c3d1f773cf0651cd3559e25182eb0c03a2777b53b4575d8adc1149c6e9"}, + {file = "aiohttp-3.10.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbdb8def5268f3f9cd753a265756f49228a20ed14a480d151df727808b4531dd"}, + {file = "aiohttp-3.10.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f82ace0ec57c94aaf5b0e118d4366cff5889097412c75aa14b4fd5fc0c44ee3e"}, + {file = "aiohttp-3.10.9-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:6ebdc3b3714afe1b134b3bbeb5f745eed3ecbcff92ab25d80e4ef299e83a5465"}, + {file = "aiohttp-3.10.9-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:f9ca09414003c0e96a735daa1f071f7d7ed06962ef4fa29ceb6c80d06696d900"}, + {file = "aiohttp-3.10.9-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:1298b854fd31d0567cbb916091be9d3278168064fca88e70b8468875ef9ff7e7"}, + {file = "aiohttp-3.10.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:60ad5b8a7452c0f5645c73d4dad7490afd6119d453d302cd5b72b678a85d6044"}, + {file = "aiohttp-3.10.9-cp312-cp312-win32.whl", hash = "sha256:1a0ee6c0d590c917f1b9629371fce5f3d3f22c317aa96fbdcce3260754d7ea21"}, + {file = "aiohttp-3.10.9-cp312-cp312-win_amd64.whl", hash = "sha256:c46131c6112b534b178d4e002abe450a0a29840b61413ac25243f1291613806a"}, + {file = "aiohttp-3.10.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2bd9f3eac515c16c4360a6a00c38119333901b8590fe93c3257a9b536026594d"}, + {file = "aiohttp-3.10.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8cc0d13b4e3b1362d424ce3f4e8c79e1f7247a00d792823ffd640878abf28e56"}, + {file = "aiohttp-3.10.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ba1a599255ad6a41022e261e31bc2f6f9355a419575b391f9655c4d9e5df5ff5"}, + {file = "aiohttp-3.10.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:776e9f3c9b377fcf097c4a04b241b15691e6662d850168642ff976780609303c"}, + {file = "aiohttp-3.10.9-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8debb45545ad95b58cc16c3c1cc19ad82cffcb106db12b437885dbee265f0ab5"}, + {file = "aiohttp-3.10.9-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c2555e4949c8d8782f18ef20e9d39730d2656e218a6f1a21a4c4c0b56546a02e"}, + {file = "aiohttp-3.10.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c54dc329cd44f7f7883a9f4baaefe686e8b9662e2c6c184ea15cceee587d8d69"}, + {file = "aiohttp-3.10.9-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e709d6ac598c5416f879bb1bae3fd751366120ac3fa235a01de763537385d036"}, + {file = "aiohttp-3.10.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:17c272cfe7b07a5bb0c6ad3f234e0c336fb53f3bf17840f66bd77b5815ab3d16"}, + {file = "aiohttp-3.10.9-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:0c21c82df33b264216abffff9f8370f303dab65d8eee3767efbbd2734363f677"}, + {file = "aiohttp-3.10.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:9331dd34145ff105177855017920dde140b447049cd62bb589de320fd6ddd582"}, + {file = "aiohttp-3.10.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:ac3196952c673822ebed8871cf8802e17254fff2a2ed4835d9c045d9b88c5ec7"}, + {file = "aiohttp-3.10.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:2c33fa6e10bb7ed262e3ff03cc69d52869514f16558db0626a7c5c61dde3c29f"}, + {file = "aiohttp-3.10.9-cp313-cp313-win32.whl", hash = "sha256:a14e4b672c257a6b94fe934ee62666bacbc8e45b7876f9dd9502d0f0fe69db16"}, + {file = "aiohttp-3.10.9-cp313-cp313-win_amd64.whl", hash = "sha256:a35ed3d03910785f7d9d6f5381f0c24002b2b888b298e6f941b2fc94c5055fcd"}, + {file = "aiohttp-3.10.9-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5f392ef50e22c31fa49b5a46af7f983fa3f118f3eccb8522063bee8bfa6755f8"}, + {file = "aiohttp-3.10.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d1f5c9169e26db6a61276008582d945405b8316aae2bb198220466e68114a0f5"}, + {file = "aiohttp-3.10.9-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8d9d10d10ec27c0d46ddaecc3c5598c4db9ce4e6398ca872cdde0525765caa2f"}, + {file = "aiohttp-3.10.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d97273a52d7f89a75b11ec386f786d3da7723d7efae3034b4dda79f6f093edc1"}, + {file = "aiohttp-3.10.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d271f770b52e32236d945911b2082f9318e90ff835d45224fa9e28374303f729"}, + {file = "aiohttp-3.10.9-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7003f33f5f7da1eb02f0446b0f8d2ccf57d253ca6c2e7a5732d25889da82b517"}, + {file = "aiohttp-3.10.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6e00c8a92e7663ed2be6fcc08a2997ff06ce73c8080cd0df10cc0321a3168d7"}, + {file = "aiohttp-3.10.9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a61df62966ce6507aafab24e124e0c3a1cfbe23c59732987fc0fd0d71daa0b88"}, + {file = "aiohttp-3.10.9-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:60555211a006d26e1a389222e3fab8cd379f28e0fbf7472ee55b16c6c529e3a6"}, + {file = "aiohttp-3.10.9-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:d15a29424e96fad56dc2f3abed10a89c50c099f97d2416520c7a543e8fddf066"}, + {file = "aiohttp-3.10.9-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:a19caae0d670771ea7854ca30df76f676eb47e0fd9b2ee4392d44708f272122d"}, + {file = "aiohttp-3.10.9-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:99f9678bf0e2b1b695e8028fedac24ab6770937932eda695815d5a6618c37e04"}, + {file = "aiohttp-3.10.9-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2914caa46054f3b5ff910468d686742ff8cff54b8a67319d75f5d5945fd0a13d"}, + {file = "aiohttp-3.10.9-cp38-cp38-win32.whl", hash = "sha256:0bc059ecbce835630e635879f5f480a742e130d9821fbe3d2f76610a6698ee25"}, + {file = "aiohttp-3.10.9-cp38-cp38-win_amd64.whl", hash = "sha256:e883b61b75ca6efc2541fcd52a5c8ccfe288b24d97e20ac08fdf343b8ac672ea"}, + {file = "aiohttp-3.10.9-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:fcd546782d03181b0b1d20b43d612429a90a68779659ba8045114b867971ab71"}, + {file = "aiohttp-3.10.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:85711eec2d875cd88c7eb40e734c4ca6d9ae477d6f26bd2b5bb4f7f60e41b156"}, + {file = "aiohttp-3.10.9-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:02d1d6610588bcd743fae827bd6f2e47e0d09b346f230824b4c6fb85c6065f9c"}, + {file = "aiohttp-3.10.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3668d0c2a4d23fb136a753eba42caa2c0abbd3d9c5c87ee150a716a16c6deec1"}, + {file = "aiohttp-3.10.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d7c071235a47d407b0e93aa6262b49422dbe48d7d8566e1158fecc91043dd948"}, + {file = "aiohttp-3.10.9-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ac74e794e3aee92ae8f571bfeaa103a141e409863a100ab63a253b1c53b707eb"}, + {file = "aiohttp-3.10.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bbf94d4a0447705b7775417ca8bb8086cc5482023a6e17cdc8f96d0b1b5aba6"}, + {file = "aiohttp-3.10.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb0b2d5d51f96b6cc19e6ab46a7b684be23240426ae951dcdac9639ab111b45e"}, + {file = "aiohttp-3.10.9-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:e83dfefb4f7d285c2d6a07a22268344a97d61579b3e0dce482a5be0251d672ab"}, + {file = "aiohttp-3.10.9-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f0a44bb40b6aaa4fb9a5c1ee07880570ecda2065433a96ccff409c9c20c1624a"}, + {file = "aiohttp-3.10.9-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c2b627d3c8982691b06d89d31093cee158c30629fdfebe705a91814d49b554f8"}, + {file = "aiohttp-3.10.9-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:03690541e4cc866eef79626cfa1ef4dd729c5c1408600c8cb9e12e1137eed6ab"}, + {file = "aiohttp-3.10.9-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ad3675c126f2a95bde637d162f8231cff6bc0bc9fbe31bd78075f9ff7921e322"}, + {file = "aiohttp-3.10.9-cp39-cp39-win32.whl", hash = "sha256:1321658f12b6caffafdc35cfba6c882cb014af86bef4e78c125e7e794dfb927b"}, + {file = "aiohttp-3.10.9-cp39-cp39-win_amd64.whl", hash = "sha256:9fdf5c839bf95fc67be5794c780419edb0dbef776edcfc6c2e5e2ffd5ee755fa"}, + {file = "aiohttp-3.10.9.tar.gz", hash = "sha256:143b0026a9dab07a05ad2dd9e46aa859bffdd6348ddc5967b42161168c24f857"}, ] [package.dependencies] @@ -118,7 +118,7 @@ async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" -yarl = ">=1.0,<2.0" +yarl = ">=1.12.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] @@ -148,18 +148,15 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" -version = "4.4.0" +version = "4.6.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, ] [package.dependencies] @@ -169,9 +166,9 @@ sniffio = ">=1.1" typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] [[package]] name = "async-timeout" @@ -368,13 +365,13 @@ test = ["pytest (>=6)"] [[package]] name = "fireworks-ai" -version = "0.15.0" +version = "0.15.4" description = "Python client library for the Fireworks.ai Generative AI Platform" optional = false python-versions = ">=3.7" files = [ - {file = "fireworks_ai-0.15.0-py3-none-any.whl", hash = "sha256:4c36a71c0699b0d542888980650827fda4364f388caec68d180c4222fbd3955f"}, - {file = "fireworks_ai-0.15.0.tar.gz", hash = "sha256:1137d230e230acbdcdc0b1ab1b5aa9f8c4a5abbf523813d15935634d5510bf6b"}, + {file = "fireworks_ai-0.15.4-py3-none-any.whl", hash = "sha256:fb2e5c6aef53ee4bf489110c3fd838bfc73f0c7f129611771037d0d30cf4f920"}, + {file = "fireworks_ai-0.15.4.tar.gz", hash = "sha256:414c6a791257eecd6dc571eb33a86e53dcc3768322aef82a5ac3151b1c2a209f"}, ] [package.dependencies] @@ -496,13 +493,13 @@ files = [ [[package]] name = "httpcore" -version = "1.0.5" +version = "1.0.6" description = "A minimal low-level HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, + {file = "httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f"}, + {file = "httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f"}, ] [package.dependencies] @@ -513,7 +510,7 @@ h11 = ">=0.13,<0.15" asyncio = ["anyio (>=4.0,<5.0)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] +trio = ["trio (>=0.22.0,<1.0)"] [[package]] name = "httpx" @@ -553,15 +550,18 @@ files = [ [[package]] name = "idna" -version = "3.8" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.6" files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -670,19 +670,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.9" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.125" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -698,13 +698,13 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = "^0.3.0" pytest = ">=7,<9" syrupy = "^4" @@ -714,13 +714,13 @@ url = "../../standard-tests" [[package]] name = "langsmith" -version = "0.1.111" +version = "0.1.131" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.111-py3-none-any.whl", hash = "sha256:e5c702764911193c9812fe55136ae01cd0b9ddf5dff0b068ce6fd60eeddbcb40"}, - {file = "langsmith-0.1.111.tar.gz", hash = "sha256:bab24fd6125685f588d682693c4a3253e163804242829b1ff902e1a3e984a94c"}, + {file = "langsmith-0.1.131-py3-none-any.whl", hash = "sha256:80c106b1c42307195cc0bb3a596472c41ef91b79d15bcee9938307800336c563"}, + {file = "langsmith-0.1.131.tar.gz", hash = "sha256:626101a3bf3ca481e5110d5155ace8aa066e4e9cc2fa7d96c8290ade0fbff797"}, ] [package.dependencies] @@ -731,106 +731,112 @@ pydantic = [ {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] requests = ">=2,<3" +requests-toolbelt = ">=1.0.0,<2.0.0" [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" version = "1.11.2" @@ -891,13 +897,13 @@ files = [ [[package]] name = "openai" -version = "1.43.0" +version = "1.51.0" description = "The official Python library for the openai API" optional = false python-versions = ">=3.7.1" files = [ - {file = "openai-1.43.0-py3-none-any.whl", hash = "sha256:1a748c2728edd3a738a72a0212ba866f4fdbe39c9ae03813508b267d45104abe"}, - {file = "openai-1.43.0.tar.gz", hash = "sha256:e607aff9fc3e28eade107e5edd8ca95a910a4b12589336d3cbb6bfe2ac306b3c"}, + {file = "openai-1.51.0-py3-none-any.whl", hash = "sha256:d9affafb7e51e5a27dce78589d4964ce4d6f6d560307265933a94b2e3f3c5d2c"}, + {file = "openai-1.51.0.tar.gz", hash = "sha256:8dc4f9d75ccdd5466fc8c99a952186eddceb9fd6ba694044773f3736a847149d"}, ] [package.dependencies] @@ -1104,18 +1110,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -1123,103 +1129,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -1394,6 +1401,20 @@ urllib3 = ">=1.21.1,<3" socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] +[[package]] +name = "requests-toolbelt" +version = "1.0.0" +description = "A utility belt for advanced users of python-requests" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, + {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, +] + +[package.dependencies] +requests = ">=2.0.1,<3.0.0" + [[package]] name = "ruff" version = "0.5.7" @@ -1474,13 +1495,13 @@ test = ["pytest", "tornado (>=4.5)", "typeguard"] [[package]] name = "tomli" -version = "2.0.1" +version = "2.0.2" description = "A lil' TOML parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, + {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, + {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, ] [[package]] @@ -1505,13 +1526,13 @@ telegram = ["requests"] [[package]] name = "types-requests" -version = "2.32.0.20240712" +version = "2.32.0.20240914" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, + {file = "types-requests-2.32.0.20240914.tar.gz", hash = "sha256:2850e178db3919d9bf809e434eef65ba49d0e7e33ac92d588f4a5e295fffd405"}, + {file = "types_requests-2.32.0.20240914-py3-none-any.whl", hash = "sha256:59c2f673eb55f32a99b2894faf6020e1a9f4a402ad0f192bfee0b64469054310"}, ] [package.dependencies] @@ -1530,13 +1551,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1547,46 +1568,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.3" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:85527b882f3facda0579bce9d743ff7f10c3e1e0db0a0d0e28170a7d0e5ce2ea"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:53adf73dcdc0ef04f7735066b4a57a4cd3e49ef135daae41d77395f0b5b692cb"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e25adddab85f674acac303cf1f5835951345a56c5f7f582987d266679979c75b"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f01f4a3565a387080dc49bdd1fefe4ecc77f894991b88ef927edbfa45eb10818"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:91b522adc25614cdeaf91f7897800b82c13b4b8ac68a42ca959f992f6990c490"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d52db5beb5e476e6853da2e2d24dbbbed6797b449c8bf7ea118a4ee0d2c9040e"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:94d11b07c64f63f49876e0ab8042ae034674c8653bfcdaa8c4b32e71cfff87e8"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:349c9488e1d85d0a58e8cb14222d2c51cbc801ce11ac3936ab4c3af986536926"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:53a3f10b62c2d569e260f96e8d966463dec1a50fa4f1b22aec69e3f91025060e"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:950f531ec6e03696a2414b6308f5c6ff9dab7821a768c9d5788b1314e9a46ca7"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae6deb336cba5d71476caa029ceb6e88047fc1dc74b62b7c4012639c0b563906"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1021223c08ba8d2d38d71ec1704496471ffd7be42cfb26b87cd5059323a389a1"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:752fb40efc7cc8d88ebc332b8f4bcbe2b5cc7e881bccfeb8e25054c00c994ee3"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2e8f3f955d68471fa37b0e3add18500790d129cc7efe89971b8a4cc6fdeb0b2"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b8ca4d854adcf480bdfd80f46fdd6fb49f91dd020ae11c89b3a79e19454ec627"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:90a67d7857adb1d985aca232cc9905dd5bc4803ed85cfcdcfcf707e52049eda7"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:720ef9d3a4f9ca575a780af283c8fd3a0674b307651c1976714745090da5a9e8"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:223160bb359281bb8e31c8f1068bf71a6b16a8ad3d9524ca6f523ac666bb6a1e"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:560135542c91eaa74247a2e8430cf83c4342b29e8ad4f520ae14f0c8a19cfb5b"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dd021efa85970bd4824acacbb922066159d0f9e546389a4743d56919b6758b91"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_armv7l.whl", hash = "sha256:78864cc8f23dbee55be34cc1494632a7ba30263951b5b2e8fc8286b95845f82c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_i686.whl", hash = "sha256:1e9679245e3ea6498494b3028b90c7b25dbb2abe65c7d07423ecfc2d6218ff7c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64.whl", hash = "sha256:9413384f26b5d050b6978e6fcd0c1e7f0539be7a4f1a885061473c5deaa57221"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:294b7a598974b8e2c6123d19ef15de9abcd282b0fbbdbc4d23dfa812959a9e05"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_s390x.whl", hash = "sha256:26dd201857d702bdf9d78c273cafcab5871dd29343748524695cecffa44a8d97"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:0f9332243355643d567697c3e3fa07330a1d1abf981611654a1f2bf2175612b7"}, + {file = "watchdog-5.0.3-py3-none-win32.whl", hash = "sha256:c66f80ee5b602a9c7ab66e3c9f36026590a0902db3aea414d59a2f55188c1f49"}, + {file = "watchdog-5.0.3-py3-none-win_amd64.whl", hash = "sha256:f00b4cf737f568be9665563347a910f8bdc76f88c2970121c86243c8cfdf90e9"}, + {file = "watchdog-5.0.3-py3-none-win_ia64.whl", hash = "sha256:49f4d36cb315c25ea0d946e018c01bb028048023b9e103d3d3943f58e109dd45"}, + {file = "watchdog-5.0.3.tar.gz", hash = "sha256:108f42a7f0345042a854d4d0ad0834b741d421330d5f575b81cb27b883500176"}, ] [package.extras] @@ -1594,103 +1610,103 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "yarl" -version = "1.9.8" +version = "1.13.1" description = "Yet another URL library" optional = false python-versions = ">=3.8" files = [ - {file = "yarl-1.9.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:08359dbc3540fafa8972db45d3ef2d61370b4c24b8a028a4301bc5d076eee0e2"}, - {file = "yarl-1.9.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7a716aae4fcecadfe4648268d3c194315152715391f4af6fad50d502be122e9"}, - {file = "yarl-1.9.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:62223670042a219b8e6fbd2c7f35c456278dcd346d3aba3f2c01c9bdec28f37e"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18097a9e50ea31c61fece83bac8f63263f0c0c16c439bf82ac729c23f3b170e3"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5809f8a48c8dab91f708947d358271ef1890c3012d6c45719f49d04af2112057"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:71ff7a22355241f89e850afbc8858fb671ba7e2763af32ebbea158d23a84902a"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d54e9880e781a490483200a74f6314fb6cf692a8197ccde93adf32bec95626b"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ad8ea6ab27e27821739dfb94fab63284e3a52055e268f04529dc082fd0d59a2"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b79e031524259b51cdd1ea41f5053491ad3565b9cecd76389c9f705752d14283"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:bd91ccded75d080f13ed01a5f5796887916d2e8c0999cd68bcb58f89f9b1c29c"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:583f48ab25b3906e3716479e8f700c4cc487e44d52766a4ea52b01cb7ea772d6"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2f3e89838acdaf5bbd69383c408d9e119b4e9efbe8a38fa40045b5c966f918e3"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:a44c0b83d1871e1e1859167a1804143f590f86ac4708380852dca4d8299d8594"}, - {file = "yarl-1.9.8-cp310-cp310-win32.whl", hash = "sha256:5d39ae58a67b64b470021d18a13529d0c58efc5bf057936ec4b29092d4061030"}, - {file = "yarl-1.9.8-cp310-cp310-win_amd64.whl", hash = "sha256:f89ade31926b9931bbe29f5c62d4174057e532fb0c72e2e6abdd129fda6a60f3"}, - {file = "yarl-1.9.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:986296e65b0312c1da168de4ec1bb054b4a7b0ec26e3f9e8dafc06bbb1385030"}, - {file = "yarl-1.9.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b4c7c015dc813aa5fe15379f3540d178e3743c0f1cf9e4a4a8bff94bd2832a4d"}, - {file = "yarl-1.9.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:22b2db22f72e1cb8a552ae12dfb748167153c7cbf353c62781915b5328bf2561"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4a567416bfb2a2b093aa64685aa7b6dfb593888784ef91b16fa6b985cceb951"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:178f4ab054f3a5dc84c8091bd7395b6713aac83af893b62259d5eb3f5359ce7f"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:02fe9809b29a7dc4a27b769a43c556288d949205db54338871a122b64751e0f4"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c885a81f6c89b0d45fc0dd88e005c77dd8ba1dac421466d0dbb9192ce6d34e1e"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99f78f45c8b4c9824e1a37eb0a3ae63ad2dff66434d9620265a4256088be9cda"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:30929a10be9a13026fd68377aba3223d633370abb93dadd3932754f3dcf4734a"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ee7c00a1979b3f23c8094dce6d9875453b3cb91b1153d9efaefa6773cf80cdb0"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:e89d76b2aa11287f038a37577528c5f62d9385020b795a011f60dfd1b217cf9f"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:81fde88456d2cbe005e16aca78ef744f322b3b15184dfe41b5b04f97b46aa5be"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b3dca0a4e192207f8bb4057725ff95e9a14d53a04728742f2b03692fc91b0a43"}, - {file = "yarl-1.9.8-cp311-cp311-win32.whl", hash = "sha256:9ea3a8532ea9fc2eeb6fc3def0c341aaeab7625545844f9c0a15350c17f9f479"}, - {file = "yarl-1.9.8-cp311-cp311-win_amd64.whl", hash = "sha256:c810606719683f4ab92127712efe283674d6ed29a627374411c762852913c2dd"}, - {file = "yarl-1.9.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b3d373373908e687aa4c8b0666870b0cf65605254ba0819ed8d5af2fc0780496"}, - {file = "yarl-1.9.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e3d1be58e28825a14fb9561733de62fbe95c892febe7d7a9ebcde916c531d603"}, - {file = "yarl-1.9.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7318736a8ee9de8217d590866dd716fa3c0895e684e2ec6152d945a4ab758043"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db3dd602cbf6613dc1e4a6fbde7a1bee86948e5940086090bb505c2ab959bbdf"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5950226b128a1610f57c1f756fc611fdbdcb1e6b4497ccb05fce76a38915b07"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b341a995673180ed81a1040228a59e0b47ee687e367b1a03d829fa3c0eb4607e"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f912153a34698994f32cf683d966014b0dd99c73481302d6159bcb3a8303e84"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9ceab2b16043ae1953863ec240eb918ba1ac40d2aad55225141aac288c606442"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7c0d2bc2646ae2380bb91b9ddc2eb1e1fa6baef128499e817134d1d50c8b6c56"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ebd98e16ff9948e4d31514c937275017a122b765cb89961dd5d44ecd2cc18140"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:83273ca458c85d7b026c770a86df6e36349e85100bd2cefe6d0ad7167a8f12a6"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:4511dd73b6aeda0cc39111839923f1545726d621813c9d13355824fba328dbcf"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0ffb9f1cad56c547aa127e2c315e666ee9838156c8a3b14f37ba545b0167aa5e"}, - {file = "yarl-1.9.8-cp312-cp312-win32.whl", hash = "sha256:5796358c3d6c72b108b570e20ab951463237ec473b6d204da21050feaaaf7dca"}, - {file = "yarl-1.9.8-cp312-cp312-win_amd64.whl", hash = "sha256:c2dc6e941bf53160b44858d1b24767a056cd83166b69fbdd3b2e401856d8932e"}, - {file = "yarl-1.9.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cb3d488f049db9522e3a0de50e07bac0c53565acd88a07bc9cf7182fd6890307"}, - {file = "yarl-1.9.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:50cbf73b6a4b62c3ad633e8920f2791adf485356ef37c9edbd5a1e7de8da2ddc"}, - {file = "yarl-1.9.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b1e0649ee7ac354a3e40ee849707140b14a2cd0cd2dc2062fe620458dfe465c8"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2501b230e89cad2361719860648f780197812d3be91c7ca6658a097a7e22fc4"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be441a73f9f49427906274008bd98384d8ca4655981735281c314fc7c145d256"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7de1968a1c2690b86e32e91acf8ed2043c346293f9bbe1704b9f6a481b73bd11"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ce892a75a2209cf4f7007de21c6f6d607f4b9406ac613a59ad02340f6e933e4"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:405e75bb94b87cc4167eef0e08d6a539f60633229f7043edc2e65c82ef80e874"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bc5811c1906b38f2a203df1266c6dd11680ca85d610d6ee3701dde262a305520"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:51476f19fe1296d3efe3770179548f5f4822e5c4ead9f5160ba156a6a9f5272c"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2af144a81883db914636bec646da4dcccfe9db05c2899e7afe90a3d817ffce"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:8c91b71b0af1fb5454709e34b39e38c975faaa89c0cc8bb744d60300ca710fcd"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:1a562055b5ec6371c307320e8460d16675244e810b20f343371fc52797d23615"}, - {file = "yarl-1.9.8-cp313-cp313-win32.whl", hash = "sha256:f7442a9342aa04ea60b760a8f0d210e269f881eb0660a2000fa1f8cb89820931"}, - {file = "yarl-1.9.8-cp313-cp313-win_amd64.whl", hash = "sha256:21ef75d8a18fa47725b50fcb7ae6d23a51c71a7426cdf7097e52f9e12a995eb6"}, - {file = "yarl-1.9.8-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fd9affa8c18198dfa5a19c63b29ef2a2f35b8efacaf0bdd3e58f974c0ab0108d"}, - {file = "yarl-1.9.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f79e65f16413a95d9f7633802a2ee34730b3ba1dd0af82811b377057883c4fb7"}, - {file = "yarl-1.9.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3f8c454cf7e4d3762515ed2b5a40cf2feaeb8a8ed1d121f131a6178e16015319"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f972fc63a1d6165d1cff650a16a498b0087334f7f9cd7385860c086d009cd49"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ac4aa2f2d8253b9a5455d5f0ed45687ea9715b78a563490ddf7954337974cb7"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b001379047de5e03224dc0592f1b0e60738857a9b992d9b636b5050500ecce23"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39deb5a67b591682e54d1b09b36e79cd608ca27bea1fefed3bcaaa0b05d2b25e"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffd9dd7eac5d36f53fccdf11e98730b7a628561c77f6c2a9e0909d2a304f34d1"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:497d5fd7dce44b5dcac648c830c99a673d30bc6cd9905b3e255c92c6dc01f537"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:d99011d564f2b5cb4cf1012f9058e08d8d79674332474f7e940131f5952015df"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:600f734296cb99db1af7e34c0dcf8ec9477072f72c4621677637fdc2273af120"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6703deac7bb0dd8b3f0bc3cb6844dab4e74c85c70783ae89bd0b52286ebdc102"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3346e2f641fcf31cf32c5a394d625e0676aba6fadccc06d35435e475753ed05d"}, - {file = "yarl-1.9.8-cp38-cp38-win32.whl", hash = "sha256:a54f7a63e48156a77a7c0333cefed29ceb004ab683d685a1192b341ac445cb73"}, - {file = "yarl-1.9.8-cp38-cp38-win_amd64.whl", hash = "sha256:45992ff8d941a1901c35f2ed90a60cb5fee8705ffadff395db4a5fd164473542"}, - {file = "yarl-1.9.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:590437f092af08e71521cc302940ef897e969152434c825bb3fb8f308b63a8bb"}, - {file = "yarl-1.9.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:551c26789acd38c7b90a89a1f262291d9f9a6a677185a83b5781e2a2c4258aec"}, - {file = "yarl-1.9.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:121bf7d647b3f6481ce1030350c1cc4c43e18758010732a449c71a1784ae793d"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c9db466370e8bc3459912850494ad3401f3664ff3a56842f0d4514166f54c9f"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ff56e21379824f3e3c39a37083d5ab905168b9483b1c0c563dd92eb2db18b251"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cce910a1510d60c7eff4bb263b28b9afdcc5f6b85c555e492cfe7548a09e2476"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ba7c4b50cc0bb4caaa54554613ca13db47a24878a4fc1063e6303494fc67567"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b345de5e725b82e9458dc1381d7e28fe7d7ef93491370461dc98283b9dda51e2"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:49dd58b79b0fd04e880c90bc570fde68407cc516c58812f0321f5e74c131107c"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:15fb127bcc19065fd912391a43bc80114635f0062e0465765633ab5d0c7fc3a1"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:6f4f87a7c97ba77fdc764b893ae4083c74e5857904962a70025ade0cd42bdbaf"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:d336601d9ff3dc3b12263739ab1add25bdd2345d675f59ad49f72d9a6ccbc865"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:3574834e4aaf24e24d12fa4fd53d0b0fd1d70b24a67bed81c44b284377e81d45"}, - {file = "yarl-1.9.8-cp39-cp39-win32.whl", hash = "sha256:db9305328486539bb7182c15f1ad1ea95dae52245e93a049f2b1d6f04e63674d"}, - {file = "yarl-1.9.8-cp39-cp39-win_amd64.whl", hash = "sha256:588d62a57c7a43b230557728ec9f252b3f81ad073cb5c0ef48d87cd3f8b6ace2"}, - {file = "yarl-1.9.8-py3-none-any.whl", hash = "sha256:d1612ce50f23b94897b9ef5eb65b72398a9a83ea990b42825272590f3484dae3"}, - {file = "yarl-1.9.8.tar.gz", hash = "sha256:3089553548d9ab23152cecb5a71131caaa9e9b16d7fc8196057c374fdc53cc4b"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:82e692fb325013a18a5b73a4fed5a1edaa7c58144dc67ad9ef3d604eccd451ad"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df4e82e68f43a07735ae70a2d84c0353e58e20add20ec0af611f32cd5ba43fb4"}, + {file = "yarl-1.13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec9dd328016d8d25702a24ee274932aebf6be9787ed1c28d021945d264235b3c"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5820bd4178e6a639b3ef1db8b18500a82ceab6d8b89309e121a6859f56585b05"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86c438ce920e089c8c2388c7dcc8ab30dfe13c09b8af3d306bcabb46a053d6f7"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3de86547c820e4f4da4606d1c8ab5765dd633189791f15247706a2eeabc783ae"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca53632007c69ddcdefe1e8cbc3920dd88825e618153795b57e6ebcc92e752a"}, + {file = "yarl-1.13.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4ee1d240b84e2f213565f0ec08caef27a0e657d4c42859809155cf3a29d1735"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c49f3e379177f4477f929097f7ed4b0622a586b0aa40c07ac8c0f8e40659a1ac"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5c5e32fef09ce101fe14acd0f498232b5710effe13abac14cd95de9c274e689e"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ab9524e45ee809a083338a749af3b53cc7efec458c3ad084361c1dbf7aaf82a2"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:b1481c048fe787f65e34cb06f7d6824376d5d99f1231eae4778bbe5c3831076d"}, + {file = "yarl-1.13.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:31497aefd68036d8e31bfbacef915826ca2e741dbb97a8d6c7eac66deda3b606"}, + {file = "yarl-1.13.1-cp310-cp310-win32.whl", hash = "sha256:1fa56f34b2236f5192cb5fceba7bbb09620e5337e0b6dfe2ea0ddbd19dd5b154"}, + {file = "yarl-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:1bbb418f46c7f7355084833051701b2301092e4611d9e392360c3ba2e3e69f88"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:216a6785f296169ed52cd7dcdc2612f82c20f8c9634bf7446327f50398732a51"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40c6e73c03a6befb85b72da213638b8aaa80fe4136ec8691560cf98b11b8ae6e"}, + {file = "yarl-1.13.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2430cf996113abe5aee387d39ee19529327205cda975d2b82c0e7e96e5fdabdc"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fb4134cc6e005b99fa29dbc86f1ea0a298440ab6b07c6b3ee09232a3b48f495"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:309c104ecf67626c033845b860d31594a41343766a46fa58c3309c538a1e22b2"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f90575e9fe3aae2c1e686393a9689c724cd00045275407f71771ae5d690ccf38"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d2e1626be8712333a9f71270366f4a132f476ffbe83b689dd6dc0d114796c74"}, + {file = "yarl-1.13.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b66c87da3c6da8f8e8b648878903ca54589038a0b1e08dde2c86d9cd92d4ac9"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cf1ad338620249f8dd6d4b6a91a69d1f265387df3697ad5dc996305cf6c26fb2"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:9915300fe5a0aa663c01363db37e4ae8e7c15996ebe2c6cce995e7033ff6457f"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:703b0f584fcf157ef87816a3c0ff868e8c9f3c370009a8b23b56255885528f10"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:1d8e3ca29f643dd121f264a7c89f329f0fcb2e4461833f02de6e39fef80f89da"}, + {file = "yarl-1.13.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7055bbade838d68af73aea13f8c86588e4bcc00c2235b4b6d6edb0dbd174e246"}, + {file = "yarl-1.13.1-cp311-cp311-win32.whl", hash = "sha256:a3442c31c11088e462d44a644a454d48110f0588de830921fd201060ff19612a"}, + {file = "yarl-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:81bad32c8f8b5897c909bf3468bf601f1b855d12f53b6af0271963ee67fff0d2"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f452cc1436151387d3d50533523291d5f77c6bc7913c116eb985304abdbd9ec9"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:9cec42a20eae8bebf81e9ce23fb0d0c729fc54cf00643eb251ce7c0215ad49fe"}, + {file = "yarl-1.13.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d959fe96e5c2712c1876d69af0507d98f0b0e8d81bee14cfb3f6737470205419"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8c837ab90c455f3ea8e68bee143472ee87828bff19ba19776e16ff961425b57"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94a993f976cdcb2dc1b855d8b89b792893220db8862d1a619efa7451817c836b"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b2442a415a5f4c55ced0fade7b72123210d579f7d950e0b5527fc598866e62c"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fdbf0418489525231723cdb6c79e7738b3cbacbaed2b750cb033e4ea208f220"}, + {file = "yarl-1.13.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b7f6e699304717fdc265a7e1922561b02a93ceffdaefdc877acaf9b9f3080b8"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:bcd5bf4132e6a8d3eb54b8d56885f3d3a38ecd7ecae8426ecf7d9673b270de43"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2a93a4557f7fc74a38ca5a404abb443a242217b91cd0c4840b1ebedaad8919d4"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:22b739f99c7e4787922903f27a892744189482125cc7b95b747f04dd5c83aa9f"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:2db874dd1d22d4c2c657807562411ffdfabec38ce4c5ce48b4c654be552759dc"}, + {file = "yarl-1.13.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4feaaa4742517eaceafcbe74595ed335a494c84634d33961214b278126ec1485"}, + {file = "yarl-1.13.1-cp312-cp312-win32.whl", hash = "sha256:bbf9c2a589be7414ac4a534d54e4517d03f1cbb142c0041191b729c2fa23f320"}, + {file = "yarl-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:d07b52c8c450f9366c34aa205754355e933922c79135125541daae6cbf31c799"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:95c6737f28069153c399d875317f226bbdea939fd48a6349a3b03da6829fb550"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:cd66152561632ed4b2a9192e7f8e5a1d41e28f58120b4761622e0355f0fe034c"}, + {file = "yarl-1.13.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6a2acde25be0cf9be23a8f6cbd31734536a264723fca860af3ae5e89d771cd71"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a18595e6a2ee0826bf7dfdee823b6ab55c9b70e8f80f8b77c37e694288f5de1"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a31d21089894942f7d9a8df166b495101b7258ff11ae0abec58e32daf8088813"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45f209fb4bbfe8630e3d2e2052535ca5b53d4ce2d2026bed4d0637b0416830da"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f722f30366474a99745533cc4015b1781ee54b08de73260b2bbe13316079851"}, + {file = "yarl-1.13.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3bf60444269345d712838bb11cc4eadaf51ff1a364ae39ce87a5ca8ad3bb2c8"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:942c80a832a79c3707cca46bd12ab8aa58fddb34b1626d42b05aa8f0bcefc206"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:44b07e1690f010c3c01d353b5790ec73b2f59b4eae5b0000593199766b3f7a5c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:396e59b8de7e4d59ff5507fb4322d2329865b909f29a7ed7ca37e63ade7f835c"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:3bb83a0f12701c0b91112a11148b5217617982e1e466069d0555be9b372f2734"}, + {file = "yarl-1.13.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c92b89bffc660f1274779cb6fbb290ec1f90d6dfe14492523a0667f10170de26"}, + {file = "yarl-1.13.1-cp313-cp313-win32.whl", hash = "sha256:269c201bbc01d2cbba5b86997a1e0f73ba5e2f471cfa6e226bcaa7fd664b598d"}, + {file = "yarl-1.13.1-cp313-cp313-win_amd64.whl", hash = "sha256:1d0828e17fa701b557c6eaed5edbd9098eb62d8838344486248489ff233998b8"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8be8cdfe20787e6a5fcbd010f8066227e2bb9058331a4eccddec6c0db2bb85b2"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:08d7148ff11cb8e886d86dadbfd2e466a76d5dd38c7ea8ebd9b0e07946e76e4b"}, + {file = "yarl-1.13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4afdf84610ca44dcffe8b6c22c68f309aff96be55f5ea2fa31c0c225d6b83e23"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0d12fe78dcf60efa205e9a63f395b5d343e801cf31e5e1dda0d2c1fb618073d"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:298c1eecfd3257aa16c0cb0bdffb54411e3e831351cd69e6b0739be16b1bdaa8"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c14c16831b565707149c742d87a6203eb5597f4329278446d5c0ae7a1a43928e"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9bacedbb99685a75ad033fd4de37129449e69808e50e08034034c0bf063f99"}, + {file = "yarl-1.13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:658e8449b84b92a4373f99305de042b6bd0d19bf2080c093881e0516557474a5"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:373f16f38721c680316a6a00ae21cc178e3a8ef43c0227f88356a24c5193abd6"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:45d23c4668d4925688e2ea251b53f36a498e9ea860913ce43b52d9605d3d8177"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f7917697bcaa3bc3e83db91aa3a0e448bf5cde43c84b7fc1ae2427d2417c0224"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:5989a38ba1281e43e4663931a53fbf356f78a0325251fd6af09dd03b1d676a09"}, + {file = "yarl-1.13.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:11b3ca8b42a024513adce810385fcabdd682772411d95bbbda3b9ed1a4257644"}, + {file = "yarl-1.13.1-cp38-cp38-win32.whl", hash = "sha256:dcaef817e13eafa547cdfdc5284fe77970b891f731266545aae08d6cce52161e"}, + {file = "yarl-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:7addd26594e588503bdef03908fc207206adac5bd90b6d4bc3e3cf33a829f57d"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a0ae6637b173d0c40b9c1462e12a7a2000a71a3258fa88756a34c7d38926911c"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:576365c9f7469e1f6124d67b001639b77113cfd05e85ce0310f5f318fd02fe85"}, + {file = "yarl-1.13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:78f271722423b2d4851cf1f4fa1a1c4833a128d020062721ba35e1a87154a049"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d74f3c335cfe9c21ea78988e67f18eb9822f5d31f88b41aec3a1ec5ecd32da5"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1891d69a6ba16e89473909665cd355d783a8a31bc84720902c5911dbb6373465"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb382fd7b4377363cc9f13ba7c819c3c78ed97c36a82f16f3f92f108c787cbbf"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8854b9f80693d20cec797d8e48a848c2fb273eb6f2587b57763ccba3f3bd4b"}, + {file = "yarl-1.13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbf2c3f04ff50f16404ce70f822cdc59760e5e2d7965905f0e700270feb2bbfc"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:fb9f59f3848edf186a76446eb8bcf4c900fe147cb756fbbd730ef43b2e67c6a7"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ef9b85fa1bc91c4db24407e7c4da93a5822a73dd4513d67b454ca7064e8dc6a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:098b870c18f1341786f290b4d699504e18f1cd050ed179af8123fd8232513424"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:8c723c91c94a3bc8033dd2696a0f53e5d5f8496186013167bddc3fb5d9df46a3"}, + {file = "yarl-1.13.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:44a4c40a6f84e4d5955b63462a0e2a988f8982fba245cf885ce3be7618f6aa7d"}, + {file = "yarl-1.13.1-cp39-cp39-win32.whl", hash = "sha256:84bbcdcf393139f0abc9f642bf03f00cac31010f3034faa03224a9ef0bb74323"}, + {file = "yarl-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:fc2931ac9ce9c61c9968989ec831d3a5e6fcaaff9474e7cfa8de80b7aff5a093"}, + {file = "yarl-1.13.1-py3-none-any.whl", hash = "sha256:6a5185ad722ab4dd52d5fb1f30dcc73282eb1ed494906a92d1a228d3f89607b0"}, + {file = "yarl-1.13.1.tar.gz", hash = "sha256:ec8cfe2295f3e5e44c51f57272afbd69414ae629ec7c6b27f5a410efc78b70a0"}, ] [package.dependencies] @@ -1699,5 +1715,5 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "f4e4f1ff61fbdebebfd72e7e30c3ed2f9394d7733d05b6e90dbe439032dafea6" +python-versions = ">=3.9,<4.0" +content-hash = "56f279717e189244fb82561676aac12e1be0d39400d261a1587302335563a091" diff --git a/libs/partners/fireworks/pyproject.toml b/libs/partners/fireworks/pyproject.toml index 61ebe2e9efdf2..dd44828ff59ab 100644 --- a/libs/partners/fireworks/pyproject.toml +++ b/libs/partners/fireworks/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-fireworks" -version = "0.1.7" +version = "0.2.1" description = "An integration package connecting Fireworks and LangChain" authors = [] readme = "README.md" @@ -19,8 +19,8 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-fireworks%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.26" +python = ">=3.9,<4.0" +langchain-core = "^0.3.9" fireworks-ai = ">=0.13.0" openai = "^1.10.0" requests = "^2" diff --git a/libs/partners/fireworks/scripts/check_pydantic.sh b/libs/partners/fireworks/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/fireworks/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/fireworks/tests/integration_tests/test_chat_models.py b/libs/partners/fireworks/tests/integration_tests/test_chat_models.py index 443f9e5f47b67..88a1cd46cfcbb 100644 --- a/libs/partners/fireworks/tests/integration_tests/test_chat_models.py +++ b/libs/partners/fireworks/tests/integration_tests/test_chat_models.py @@ -7,7 +7,7 @@ from typing import Optional from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessageChunk -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_fireworks import ChatFireworks diff --git a/libs/partners/fireworks/tests/unit_tests/__snapshots__/test_standard.ambr b/libs/partners/fireworks/tests/unit_tests/__snapshots__/test_standard.ambr index 9faf837c593ba..4375bf55ff02a 100644 --- a/libs/partners/fireworks/tests/unit_tests/__snapshots__/test_standard.ambr +++ b/libs/partners/fireworks/tests/unit_tests/__snapshots__/test_standard.ambr @@ -1,43 +1,6 @@ # serializer version: 1 # name: TestFireworksStandard.test_serdes[serialized] dict({ - 'graph': dict({ - 'edges': list([ - dict({ - 'source': 0, - 'target': 1, - }), - dict({ - 'source': 1, - 'target': 2, - }), - ]), - 'nodes': list([ - dict({ - 'data': 'ChatFireworksInput', - 'id': 0, - 'type': 'schema', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langchain', - 'chat_models', - 'fireworks', - 'ChatFireworks', - ]), - 'name': 'ChatFireworks', - }), - 'id': 1, - 'type': 'runnable', - }), - dict({ - 'data': 'ChatFireworksOutput', - 'id': 2, - 'type': 'schema', - }), - ]), - }), 'id': list([ 'langchain', 'chat_models', diff --git a/libs/partners/fireworks/tests/unit_tests/test_embeddings_standard.py b/libs/partners/fireworks/tests/unit_tests/test_embeddings_standard.py new file mode 100644 index 0000000000000..ea8d16f92d0a8 --- /dev/null +++ b/libs/partners/fireworks/tests/unit_tests/test_embeddings_standard.py @@ -0,0 +1,30 @@ +"""Standard LangChain interface tests""" + +from typing import Tuple, Type + +from langchain_core.embeddings import Embeddings +from langchain_standard_tests.unit_tests.embeddings import EmbeddingsUnitTests + +from langchain_fireworks import FireworksEmbeddings + + +class TestFireworksStandard(EmbeddingsUnitTests): + @property + def embeddings_class(self) -> Type[Embeddings]: + return FireworksEmbeddings + + @property + def embeddings_params(self) -> dict: + return {"api_key": "test_api_key"} + + @property + def init_from_env_params(self) -> Tuple[dict, dict, dict]: + return ( + { + "FIREWORKS_API_KEY": "api_key", + }, + {}, + { + "fireworks_api_key": "api_key", + }, + ) diff --git a/libs/partners/fireworks/tests/unit_tests/test_llms.py b/libs/partners/fireworks/tests/unit_tests/test_llms.py index e2fb8a131e4b6..265df7ede83c1 100644 --- a/libs/partners/fireworks/tests/unit_tests/test_llms.py +++ b/libs/partners/fireworks/tests/unit_tests/test_llms.py @@ -2,7 +2,7 @@ from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_fireworks import Fireworks diff --git a/libs/partners/fireworks/tests/unit_tests/test_standard.py b/libs/partners/fireworks/tests/unit_tests/test_standard.py index 9d13e19d1ab3f..61d0d152ba831 100644 --- a/libs/partners/fireworks/tests/unit_tests/test_standard.py +++ b/libs/partners/fireworks/tests/unit_tests/test_standard.py @@ -21,4 +21,14 @@ def chat_model_params(self) -> dict: @property def init_from_env_params(self) -> Tuple[dict, dict, dict]: - return ({"FIREWORKS_API_KEY": "api_key"}, {}, {"fireworks_api_key": "api_key"}) + return ( + { + "FIREWORKS_API_KEY": "api_key", + "FIREWORKS_API_BASE": "https://base.com", + }, + {}, + { + "fireworks_api_key": "api_key", + "fireworks_api_base": "https://base.com", + }, + ) diff --git a/libs/partners/groq/langchain_groq/chat_models.py b/libs/partners/groq/langchain_groq/chat_models.py index 23aeae9f11bed..b935922e6af74 100644 --- a/libs/partners/groq/langchain_groq/chat_models.py +++ b/libs/partners/groq/langchain_groq/chat_models.py @@ -23,6 +23,7 @@ cast, ) +from langchain_core._api import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, @@ -52,7 +53,6 @@ ToolMessage, ToolMessageChunk, ) -from langchain_core.messages.tool import tool_call_chunk as create_tool_call_chunk from langchain_core.output_parsers import ( JsonOutputParser, PydanticOutputParser, @@ -65,12 +65,6 @@ parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, - root_validator, -) from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import ( @@ -83,6 +77,14 @@ convert_to_openai_tool, ) from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) +from typing_extensions import Self class ChatGroq(BaseChatModel): @@ -225,7 +227,7 @@ class ChatGroq(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -256,7 +258,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' @@ -343,13 +345,13 @@ class Joke(BaseModel): """Optional httpx.AsyncClient. Only used for async invocations. Must specify http_client as well if you'd like a custom client for sync invocations.""" - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True + model_config = ConfigDict( + populate_by_name=True, + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -374,38 +376,38 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["model_kwargs"] = extra return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - if values["n"] < 1: + if self.n < 1: raise ValueError("n must be at least 1.") - if values["n"] > 1 and values["streaming"]: + if self.n > 1 and self.streaming: raise ValueError("n must be 1 when streaming.") - if values["temperature"] == 0: - values["temperature"] = 1e-8 - - client_params = { - "api_key": values["groq_api_key"].get_secret_value() - if values["groq_api_key"] - else None, - "base_url": values["groq_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], + if self.temperature == 0: + self.temperature = 1e-8 + + client_params: Dict[str, Any] = { + "api_key": ( + self.groq_api_key.get_secret_value() if self.groq_api_key else None + ), + "base_url": self.groq_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, } try: import groq - sync_specific = {"http_client": values["http_client"]} - if not values.get("client"): - values["client"] = groq.Groq( + sync_specific: Dict[str, Any] = {"http_client": self.http_client} + if not self.client: + self.client = groq.Groq( **client_params, **sync_specific ).chat.completions - if not values.get("async_client"): - async_specific = {"http_client": values["http_async_client"]} - values["async_client"] = groq.AsyncGroq( + if not self.async_client: + async_specific: Dict[str, Any] = {"http_client": self.http_async_client} + self.async_client = groq.AsyncGroq( **client_params, **async_specific ).chat.completions except ImportError: @@ -413,7 +415,7 @@ def validate_environment(cls, values: Dict) -> Dict: "Could not import groq python package. " "Please install it with `pip install groq`." ) - return values + return self # # Serializable class method overrides @@ -502,48 +504,12 @@ def _stream( ) -> Iterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) - # groq api does not support streaming with tools yet - if "tools" in kwargs: - response = self.client.create( - messages=message_dicts, **{**params, **kwargs} - ) - chat_result = self._create_chat_result(response) - generation = chat_result.generations[0] - message = cast(AIMessage, generation.message) - tool_call_chunks = [ - create_tool_call_chunk( - name=rtc["function"].get("name"), - args=rtc["function"].get("arguments"), - id=rtc.get("id"), - index=rtc.get("index"), - ) - for rtc in message.additional_kwargs.get("tool_calls", []) - ] - chunk_ = ChatGenerationChunk( - message=AIMessageChunk( - content=message.content, - additional_kwargs=message.additional_kwargs, - tool_call_chunks=tool_call_chunks, - usage_metadata=message.usage_metadata, - ), - generation_info=generation.generation_info, - ) - if run_manager: - geninfo = chunk_.generation_info or {} - run_manager.on_llm_new_token( - chunk_.text, - chunk=chunk_, - logprobs=geninfo.get("logprobs"), - ) - yield chunk_ - return - params = {**params, **kwargs, "stream": True} default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk for chunk in self.client.create(messages=message_dicts, **params): if not isinstance(chunk, dict): - chunk = chunk.dict() + chunk = chunk.model_dump() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] @@ -574,42 +540,6 @@ async def _astream( ) -> AsyncIterator[ChatGenerationChunk]: message_dicts, params = self._create_message_dicts(messages, stop) - # groq api does not support streaming with tools yet - if "tools" in kwargs: - response = await self.async_client.create( - messages=message_dicts, **{**params, **kwargs} - ) - chat_result = self._create_chat_result(response) - generation = chat_result.generations[0] - message = cast(AIMessage, generation.message) - tool_call_chunks = [ - { - "name": rtc["function"].get("name"), - "args": rtc["function"].get("arguments"), - "id": rtc.get("id"), - "index": rtc.get("index"), - } - for rtc in message.additional_kwargs.get("tool_calls", []) - ] - chunk_ = ChatGenerationChunk( - message=AIMessageChunk( - content=message.content, - additional_kwargs=message.additional_kwargs, - tool_call_chunks=tool_call_chunks, # type: ignore[arg-type] - usage_metadata=message.usage_metadata, - ), - generation_info=generation.generation_info, - ) - if run_manager: - geninfo = chunk_.generation_info or {} - await run_manager.on_llm_new_token( - chunk_.text, - chunk=chunk_, - logprobs=geninfo.get("logprobs"), - ) - yield chunk_ - return - params = {**params, **kwargs, "stream": True} default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk @@ -617,7 +547,7 @@ async def _astream( messages=message_dicts, **params ): if not isinstance(chunk, dict): - chunk = chunk.dict() + chunk = chunk.model_dump() if len(chunk["choices"]) == 0: continue choice = chunk["choices"][0] @@ -662,7 +592,7 @@ def _default_params(self) -> Dict[str, Any]: def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: generations = [] if not isinstance(response, dict): - response = response.dict() + response = response.model_dump() token_usage = response.get("usage", {}) for res in response["choices"]: message = _convert_dict_to_message(res["message"]) @@ -721,6 +651,11 @@ def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: combined["system_fingerprint"] = system_fingerprint return combined + @deprecated( + since="0.2.1", + alternative="langchain_groq.chat_models.ChatGroq.bind_tools", + removal="0.3.0", + ) def bind_functions( self, functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], @@ -745,8 +680,8 @@ def bind_functions( Must be the name of the single provided function or "auto" to automatically determine which function to call (if any). - **kwargs: Any additional parameters to pass to the - :class:`~langchain.runnable.Runnable` constructor. + **kwargs: Any additional parameters to pass to + :meth:`~langchain_groq.chat_models.ChatGroq.bind`. """ formatted_functions = [convert_to_openai_function(fn) for fn in functions] @@ -804,31 +739,11 @@ def bind_tools( formatted_tools = [convert_to_openai_tool(tool) for tool in tools] if tool_choice is not None and tool_choice: if tool_choice == "any": - if len(tools) > 1: - raise ValueError( - f"Groq does not currently support {tool_choice=}. Should " - f"be one of 'auto', 'none', or the name of the tool to call." - ) - else: - tool_choice = convert_to_openai_tool(tools[0])["function"]["name"] + tool_choice = "required" if isinstance(tool_choice, str) and ( - tool_choice not in ("auto", "any", "none") + tool_choice not in ("auto", "none", "required") ): tool_choice = {"type": "function", "function": {"name": tool_choice}} - # TODO: Remove this update once 'any' is supported. - if isinstance(tool_choice, dict) and (len(formatted_tools) != 1): - raise ValueError( - "When specifying `tool_choice`, you must provide exactly one " - f"tool. Received {len(formatted_tools)} tools." - ) - if isinstance(tool_choice, dict) and ( - formatted_tools[0]["function"]["name"] - != tool_choice["function"]["name"] - ): - raise ValueError( - f"Tool choice {tool_choice} was specified, but the only " - f"provided tool was {formatted_tools[0]['function']['name']}." - ) if isinstance(tool_choice, bool): if len(tools) > 1: raise ValueError( @@ -905,7 +820,7 @@ def with_structured_output( from typing import Optional from langchain_groq import ChatGroq - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class AnswerWithJustification(BaseModel): @@ -936,7 +851,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_groq import ChatGroq - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): @@ -1023,7 +938,7 @@ class AnswerWithJustification(TypedDict): .. code-block:: from langchain_groq import ChatGroq - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): answer: str diff --git a/libs/partners/groq/poetry.lock b/libs/partners/groq/poetry.lock index 46a552c77e57e..0e1d1a8ca4de6 100644 --- a/libs/partners/groq/poetry.lock +++ b/libs/partners/groq/poetry.lock @@ -11,9 +11,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -324,19 +321,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -352,13 +349,13 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = ">=0.3.0.dev1" pytest = ">=7,<9" syrupy = "^4" @@ -368,13 +365,13 @@ url = "../../standard-tests" [[package]] name = "langsmith" -version = "0.1.111" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.111-py3-none-any.whl", hash = "sha256:e5c702764911193c9812fe55136ae01cd0b9ddf5dff0b068ce6fd60eeddbcb40"}, - {file = "langsmith-0.1.111.tar.gz", hash = "sha256:bab24fd6125685f588d682693c4a3253e163804242829b1ff902e1a3e984a94c"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] @@ -538,18 +535,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -557,103 +554,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -905,13 +903,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -922,46 +920,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" -files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, +python-versions = ">=3.9" +files = [ + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -969,5 +962,5 @@ watchmedo = ["PyYAML (>=3.10)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "1acd2a13007daf276263c7036959c1a4c973d4fd8dba924105c8fdc035e02a88" +python-versions = ">=3.9,<4.0" +content-hash = "0c589432ba8c8a80298d31966b8f90cba3c0ba6eb482771079f67e26d7d6cfb9" diff --git a/libs/partners/groq/pyproject.toml b/libs/partners/groq/pyproject.toml index e7d262a3581c3..f13094e0f6bed 100644 --- a/libs/partners/groq/pyproject.toml +++ b/libs/partners/groq/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-groq" -version = "0.1.9" +version = "0.2.0" description = "An integration package connecting Groq and LangChain" authors = [] readme = "README.md" @@ -19,19 +19,22 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-groq%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.26" +python = ">=3.9,<4.0" +langchain-core = "^0.3" groq = ">=0.4.1,<1" [tool.ruff.lint] -select = [ "E", "F", "I", "W",] +select = ["E", "F", "I", "W"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--strict-markers --strict-config --durations=5" -markers = [ "compile: mark placeholder test used to compile integration tests without running them", "scheduled: mark tests to run in scheduled testing",] +markers = [ + "compile: mark placeholder test used to compile integration tests without running them", + "scheduled: mark tests to run in scheduled testing", +] asyncio_mode = "auto" [tool.poetry.group.test] diff --git a/libs/partners/groq/scripts/check_pydantic.sh b/libs/partners/groq/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/groq/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/groq/tests/integration_tests/test_chat_models.py b/libs/partners/groq/tests/integration_tests/test_chat_models.py index 2e5a9620b2287..1b2cf05b54239 100644 --- a/libs/partners/groq/tests/integration_tests/test_chat_models.py +++ b/libs/partners/groq/tests/integration_tests/test_chat_models.py @@ -13,8 +13,8 @@ SystemMessage, ) from langchain_core.outputs import ChatGeneration, LLMResult -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import tool +from pydantic import BaseModel, Field from langchain_groq import ChatGroq from tests.unit_tests.fake.callbacks import ( diff --git a/libs/partners/groq/tests/unit_tests/__snapshots__/test_standard.ambr b/libs/partners/groq/tests/unit_tests/__snapshots__/test_standard.ambr index caf848b56544e..741d2c847455d 100644 --- a/libs/partners/groq/tests/unit_tests/__snapshots__/test_standard.ambr +++ b/libs/partners/groq/tests/unit_tests/__snapshots__/test_standard.ambr @@ -1,42 +1,6 @@ # serializer version: 1 # name: TestGroqStandard.test_serdes[serialized] dict({ - 'graph': dict({ - 'edges': list([ - dict({ - 'source': 0, - 'target': 1, - }), - dict({ - 'source': 1, - 'target': 2, - }), - ]), - 'nodes': list([ - dict({ - 'data': 'ChatGroqInput', - 'id': 0, - 'type': 'schema', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langchain_groq', - 'chat_models', - 'ChatGroq', - ]), - 'name': 'ChatGroq', - }), - 'id': 1, - 'type': 'runnable', - }), - dict({ - 'data': 'ChatGroqOutput', - 'id': 2, - 'type': 'schema', - }), - ]), - }), 'id': list([ 'langchain_groq', 'chat_models', diff --git a/libs/partners/groq/tests/unit_tests/fake/callbacks.py b/libs/partners/groq/tests/unit_tests/fake/callbacks.py index 71a6dea0cef02..34f825e16a5df 100644 --- a/libs/partners/groq/tests/unit_tests/fake/callbacks.py +++ b/libs/partners/groq/tests/unit_tests/fake/callbacks.py @@ -6,7 +6,7 @@ from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class BaseFakeCallbackHandler(BaseModel): @@ -256,7 +256,8 @@ def on_retriever_error( ) -> Any: self.on_retriever_error_common() - def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + # Overriding since BaseModel has __deepcopy__ method as well + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": # type: ignore return self @@ -390,5 +391,6 @@ async def on_text( ) -> None: self.on_text_common() - def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": + # Overriding since BaseModel has __deepcopy__ method as well + def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": # type: ignore return self diff --git a/libs/partners/huggingface/langchain_huggingface/chat_models/huggingface.py b/libs/partners/huggingface/langchain_huggingface/chat_models/huggingface.py index b2fe14e8d410d..c09f0bcbb6045 100644 --- a/libs/partners/huggingface/langchain_huggingface/chat_models/huggingface.py +++ b/libs/partners/huggingface/langchain_huggingface/chat_models/huggingface.py @@ -29,10 +29,11 @@ ToolMessage, ) from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult -from langchain_core.pydantic_v1 import root_validator from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool +from pydantic import model_validator +from typing_extensions import Self from langchain_huggingface.llms.huggingface_endpoint import HuggingFaceEndpoint from langchain_huggingface.llms.huggingface_pipeline import HuggingFacePipeline @@ -265,7 +266,7 @@ class ChatHuggingFace(BaseChatModel): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' @@ -325,20 +326,20 @@ def __init__(self, **kwargs: Any): else self.tokenizer ) - @root_validator(pre=False, skip_on_failure=True) - def validate_llm(cls, values: dict) -> dict: + @model_validator(mode="after") + def validate_llm(self) -> Self: if ( - not _is_huggingface_hub(values["llm"]) - and not _is_huggingface_textgen_inference(values["llm"]) - and not _is_huggingface_endpoint(values["llm"]) - and not _is_huggingface_pipeline(values["llm"]) + not _is_huggingface_hub(self.llm) + and not _is_huggingface_textgen_inference(self.llm) + and not _is_huggingface_endpoint(self.llm) + and not _is_huggingface_pipeline(self.llm) ): raise TypeError( "Expected llm to be one of HuggingFaceTextGenInference, " "HuggingFaceEndpoint, HuggingFaceHub, HuggingFacePipeline " - f"received {type(values['llm'])}" + f"received {type(self.llm)}" ) - return values + return self def _create_chat_result(self, response: TGI_RESPONSE) -> ChatResult: generations = [] diff --git a/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface.py b/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface.py index 06b829011d52e..a53e0e18b6e36 100644 --- a/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface.py +++ b/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface.py @@ -1,7 +1,7 @@ from typing import Any, Dict, List, Optional # type: ignore[import-not-found] from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field +from pydantic import BaseModel, ConfigDict, Field DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" @@ -26,7 +26,7 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: + client: Any = None #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" cache_folder: Optional[str] = None @@ -51,7 +51,6 @@ def __init__(self, **kwargs: Any): super().__init__(**kwargs) try: import sentence_transformers # type: ignore[import] - except ImportError as exc: raise ImportError( "Could not import sentence_transformers python package. " @@ -62,10 +61,10 @@ def __init__(self, **kwargs: Any): self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) - class Config: - """Configuration for this pydantic object.""" - - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + protected_namespaces=(), + ) def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. diff --git a/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py b/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py index 1f873059914b5..7d9ecd1ac0bd0 100644 --- a/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py +++ b/libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py @@ -1,9 +1,11 @@ import json -from typing import Any, Dict, List, Optional +import os +from typing import Any, List, Optional from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, root_validator -from langchain_core.utils import get_from_dict_or_env +from langchain_core.utils import from_env +from pydantic import BaseModel, ConfigDict, Field, model_validator +from typing_extensions import Self DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2" VALID_TASKS = ("feature-extraction",) @@ -28,8 +30,8 @@ class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings): ) """ - client: Any #: :meta private: - async_client: Any #: :meta private: + client: Any = None #: :meta private: + async_client: Any = None #: :meta private: model: Optional[str] = None """Model name to use.""" repo_id: Optional[str] = None @@ -39,22 +41,20 @@ class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings): model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" - huggingfacehub_api_token: Optional[str] = None + huggingfacehub_api_token: Optional[str] = Field( + default_factory=from_env("HUGGINGFACEHUB_API_TOKEN", default=None) + ) - class Config: - """Configuration for this pydantic object.""" + model_config = ConfigDict( + extra="forbid", + protected_namespaces=(), + ) - extra = "forbid" - - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - values["huggingfacehub_api_token"] = get_from_dict_or_env( - values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN", None - ) - - huggingfacehub_api_token = get_from_dict_or_env( - values, "huggingfacehub_api_token", "HF_TOKEN", None + huggingfacehub_api_token = self.huggingfacehub_api_token or os.getenv( + "HF_TOKEN" ) try: @@ -63,38 +63,38 @@ def validate_environment(cls, values: Dict) -> Dict: InferenceClient, ) - if values["model"]: - values["repo_id"] = values["model"] - elif values["repo_id"]: - values["model"] = values["repo_id"] + if self.model: + self.repo_id = self.model + elif self.repo_id: + self.model = self.repo_id else: - values["model"] = DEFAULT_MODEL - values["repo_id"] = DEFAULT_MODEL + self.model = DEFAULT_MODEL + self.repo_id = DEFAULT_MODEL client = InferenceClient( - model=values["model"], + model=self.model, token=huggingfacehub_api_token, ) async_client = AsyncInferenceClient( - model=values["model"], + model=self.model, token=huggingfacehub_api_token, ) - if values["task"] not in VALID_TASKS: + if self.task not in VALID_TASKS: raise ValueError( - f"Got invalid task {values['task']}, " + f"Got invalid task {self.task}, " f"currently only {VALID_TASKS} are supported" ) - values["client"] = client - values["async_client"] = async_client + self.client = client + self.async_client = async_client except ImportError: raise ImportError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) - return values + return self def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to HuggingFaceHub's embedding endpoint for embedding search docs. diff --git a/libs/partners/huggingface/langchain_huggingface/llms/huggingface_endpoint.py b/libs/partners/huggingface/langchain_huggingface/llms/huggingface_endpoint.py index 0f793f2828d6b..076cafd4de680 100644 --- a/libs/partners/huggingface/langchain_huggingface/llms/huggingface_endpoint.py +++ b/libs/partners/huggingface/langchain_huggingface/llms/huggingface_endpoint.py @@ -1,3 +1,4 @@ +import inspect import json # type: ignore[import-not-found] import logging import os @@ -9,8 +10,9 @@ ) from langchain_core.language_models.llms import LLM from langchain_core.outputs import GenerationChunk -from langchain_core.pydantic_v1 import Field, root_validator -from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names +from langchain_core.utils import from_env, get_pydantic_field_names +from pydantic import ConfigDict, Field, model_validator +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -71,7 +73,9 @@ class HuggingFaceEndpoint(LLM): should be pass as env variable in `HF_INFERENCE_ENDPOINT`""" repo_id: Optional[str] = None """Repo to use. If endpoint_url is not specified then this needs to given""" - huggingfacehub_api_token: Optional[str] = None + huggingfacehub_api_token: Optional[str] = Field( + default_factory=from_env("HUGGINGFACEHUB_API_TOKEN", default=None) + ) max_new_tokens: int = 512 """Maximum number of generated tokens""" top_k: Optional[int] = None @@ -112,19 +116,19 @@ class HuggingFaceEndpoint(LLM): model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `call` not explicitly specified""" model: str - client: Any - async_client: Any + client: Any = None #: :meta private: + async_client: Any = None #: :meta private: task: Optional[str] = None """Task to call the model with. Should be a task that returns `generated_text` or `summary_text`.""" - class Config: - """Configuration for this pydantic object.""" + model_config = ConfigDict( + extra="forbid", + ) - extra = "forbid" - - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -182,8 +186,8 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: ) return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that package is installed and that the API token is valid.""" try: from huggingface_hub import login # type: ignore[import] @@ -194,12 +198,8 @@ def validate_environment(cls, values: Dict) -> Dict: "Please install it with `pip install huggingface_hub`." ) - values["huggingfacehub_api_token"] = get_from_dict_or_env( - values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN", None - ) - - huggingfacehub_api_token = get_from_dict_or_env( - values, "huggingfacehub_api_token", "HF_TOKEN", None + huggingfacehub_api_token = self.huggingfacehub_api_token or os.getenv( + "HF_TOKEN" ) if huggingfacehub_api_token is not None: @@ -213,20 +213,43 @@ def validate_environment(cls, values: Dict) -> Dict: from huggingface_hub import AsyncInferenceClient, InferenceClient - values["client"] = InferenceClient( - model=values["model"], - timeout=values["timeout"], + # Instantiate clients with supported kwargs + sync_supported_kwargs = set(inspect.signature(InferenceClient).parameters) + self.client = InferenceClient( + model=self.model, + timeout=self.timeout, token=huggingfacehub_api_token, - **values["server_kwargs"], + **{ + key: value + for key, value in self.server_kwargs.items() + if key in sync_supported_kwargs + }, ) - values["async_client"] = AsyncInferenceClient( - model=values["model"], - timeout=values["timeout"], + + async_supported_kwargs = set(inspect.signature(AsyncInferenceClient).parameters) + self.async_client = AsyncInferenceClient( + model=self.model, + timeout=self.timeout, token=huggingfacehub_api_token, - **values["server_kwargs"], + **{ + key: value + for key, value in self.server_kwargs.items() + if key in async_supported_kwargs + }, ) - return values + ignored_kwargs = ( + set(self.server_kwargs.keys()) + - sync_supported_kwargs + - async_supported_kwargs + ) + if len(ignored_kwargs) > 0: + logger.warning( + f"Ignoring following parameters as they are not supported by the " + f"InferenceClient or AsyncInferenceClient: {ignored_kwargs}." + ) + + return self @property def _default_params(self) -> Dict[str, Any]: diff --git a/libs/partners/huggingface/langchain_huggingface/llms/huggingface_pipeline.py b/libs/partners/huggingface/langchain_huggingface/llms/huggingface_pipeline.py index 8d3ebc223b70f..42754d4698ad1 100644 --- a/libs/partners/huggingface/langchain_huggingface/llms/huggingface_pipeline.py +++ b/libs/partners/huggingface/langchain_huggingface/llms/huggingface_pipeline.py @@ -7,6 +7,7 @@ from langchain_core.callbacks import CallbackManagerForLLMRun from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult +from pydantic import ConfigDict DEFAULT_MODEL_ID = "gpt2" DEFAULT_TASK = "text-generation" @@ -53,7 +54,7 @@ class HuggingFacePipeline(BaseLLM): hf = HuggingFacePipeline(pipeline=pipe) """ - pipeline: Any #: :meta private: + pipeline: Any = None #: :meta private: model_id: str = DEFAULT_MODEL_ID """Model name to use.""" model_kwargs: Optional[dict] = None @@ -63,10 +64,9 @@ class HuggingFacePipeline(BaseLLM): batch_size: int = DEFAULT_BATCH_SIZE """Batch size to use when passing multiple documents to generate.""" - class Config: - """Configuration for this pydantic object.""" - - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) @classmethod def from_model_id( diff --git a/libs/partners/huggingface/poetry.lock b/libs/partners/huggingface/poetry.lock index 35d40b9351926..6c8e24fce1480 100644 --- a/libs/partners/huggingface/poetry.lock +++ b/libs/partners/huggingface/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "aiohappyeyeballs" @@ -148,9 +148,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -232,17 +229,6 @@ docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphi tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - [[package]] name = "certifi" version = "2024.8.30" @@ -256,78 +242,78 @@ files = [ [[package]] name = "cffi" -version = "1.17.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -564,19 +550,19 @@ tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipyth [[package]] name = "filelock" -version = "3.15.4" +version = "3.16.0" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, - {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, + {file = "filelock-3.16.0-py3-none-any.whl", hash = "sha256:f6ed4c963184f4c84dd5557ce8fece759a3724b37b80c6c4f20a2f63a4dc6609"}, + {file = "filelock-3.16.0.tar.gz", hash = "sha256:81de9eb8453c769b63369f87f11131a7ab04e367f8d97ad39dc230daa07e3bec"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] -typing = ["typing-extensions (>=4.8)"] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.1.1)", "pytest (>=8.3.2)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.3)"] +typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "frozenlist" @@ -705,69 +691,77 @@ tqdm = ["tqdm"] [[package]] name = "greenlet" -version = "3.0.3" +version = "3.1.0" description = "Lightweight in-process concurrent programming" optional = false python-versions = ">=3.7" files = [ - {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, - {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, - {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, - {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, - {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, - {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, - {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, - {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, - {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, - {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, - {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, - {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, - {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, - {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, - {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, - {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, + {file = "greenlet-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a814dc3100e8a046ff48faeaa909e80cdb358411a3d6dd5293158425c684eda8"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a771dc64fa44ebe58d65768d869fcfb9060169d203446c1d446e844b62bdfdca"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0e49a65d25d7350cca2da15aac31b6f67a43d867448babf997fe83c7505f57bc"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2cd8518eade968bc52262d8c46727cfc0826ff4d552cf0430b8d65aaf50bb91d"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76dc19e660baea5c38e949455c1181bc018893f25372d10ffe24b3ed7341fb25"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c0a5b1c22c82831f56f2f7ad9bbe4948879762fe0d59833a4a71f16e5fa0f682"}, + {file = "greenlet-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:2651dfb006f391bcb240635079a68a261b227a10a08af6349cba834a2141efa1"}, + {file = "greenlet-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3e7e6ef1737a819819b1163116ad4b48d06cfdd40352d813bb14436024fcda99"}, + {file = "greenlet-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:ffb08f2a1e59d38c7b8b9ac8083c9c8b9875f0955b1e9b9b9a965607a51f8e54"}, + {file = "greenlet-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9730929375021ec90f6447bff4f7f5508faef1c02f399a1953870cdb78e0c345"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:713d450cf8e61854de9420fb7eea8ad228df4e27e7d4ed465de98c955d2b3fa6"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c3446937be153718250fe421da548f973124189f18fe4575a0510b5c928f0cc"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ddc7bcedeb47187be74208bc652d63d6b20cb24f4e596bd356092d8000da6d6"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44151d7b81b9391ed759a2f2865bbe623ef00d648fed59363be2bbbd5154656f"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6cea1cca3be76c9483282dc7760ea1cc08a6ecec1f0b6ca0a94ea0d17432da19"}, + {file = "greenlet-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:619935a44f414274a2c08c9e74611965650b730eb4efe4b2270f91df5e4adf9a"}, + {file = "greenlet-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:221169d31cada333a0c7fd087b957c8f431c1dba202c3a58cf5a3583ed973e9b"}, + {file = "greenlet-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:01059afb9b178606b4b6e92c3e710ea1635597c3537e44da69f4531e111dd5e9"}, + {file = "greenlet-3.1.0-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:24fc216ec7c8be9becba8b64a98a78f9cd057fd2dc75ae952ca94ed8a893bf27"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d07c28b85b350564bdff9f51c1c5007dfb2f389385d1bc23288de51134ca303"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:243a223c96a4246f8a30ea470c440fe9db1f5e444941ee3c3cd79df119b8eebf"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26811df4dc81271033a7836bc20d12cd30938e6bd2e9437f56fa03da81b0f8fc"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9d86401550b09a55410f32ceb5fe7efcd998bd2dad9e82521713cb148a4a15f"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:26d9c1c4f1748ccac0bae1dbb465fb1a795a75aba8af8ca871503019f4285e2a"}, + {file = "greenlet-3.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:cd468ec62257bb4544989402b19d795d2305eccb06cde5da0eb739b63dc04665"}, + {file = "greenlet-3.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a53dfe8f82b715319e9953330fa5c8708b610d48b5c59f1316337302af5c0811"}, + {file = "greenlet-3.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:28fe80a3eb673b2d5cc3b12eea468a5e5f4603c26aa34d88bf61bba82ceb2f9b"}, + {file = "greenlet-3.1.0-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:76b3e3976d2a452cba7aa9e453498ac72240d43030fdc6d538a72b87eaff52fd"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655b21ffd37a96b1e78cc48bf254f5ea4b5b85efaf9e9e2a526b3c9309d660ca"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c6f4c2027689093775fd58ca2388d58789009116844432d920e9147f91acbe64"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76e5064fd8e94c3f74d9fd69b02d99e3cdb8fc286ed49a1f10b256e59d0d3a0b"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a4bf607f690f7987ab3291406e012cd8591a4f77aa54f29b890f9c331e84989"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:037d9ac99540ace9424cb9ea89f0accfaff4316f149520b4ae293eebc5bded17"}, + {file = "greenlet-3.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:90b5bbf05fe3d3ef697103850c2ce3374558f6fe40fd57c9fac1bf14903f50a5"}, + {file = "greenlet-3.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:726377bd60081172685c0ff46afbc600d064f01053190e4450857483c4d44484"}, + {file = "greenlet-3.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:d46d5069e2eeda111d6f71970e341f4bd9aeeee92074e649ae263b834286ecc0"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81eeec4403a7d7684b5812a8aaa626fa23b7d0848edb3a28d2eb3220daddcbd0"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a3dae7492d16e85ea6045fd11cb8e782b63eac8c8d520c3a92c02ac4573b0a6"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b5ea3664eed571779403858d7cd0a9b0ebf50d57d2cdeafc7748e09ef8cd81a"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a22f4e26400f7f48faef2d69c20dc055a1f3043d330923f9abe08ea0aecc44df"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:13ff8c8e54a10472ce3b2a2da007f915175192f18e6495bad50486e87c7f6637"}, + {file = "greenlet-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f9671e7282d8c6fcabc32c0fb8d7c0ea8894ae85cee89c9aadc2d7129e1a9954"}, + {file = "greenlet-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:184258372ae9e1e9bddce6f187967f2e08ecd16906557c4320e3ba88a93438c3"}, + {file = "greenlet-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:a0409bc18a9f85321399c29baf93545152d74a49d92f2f55302f122007cfda00"}, + {file = "greenlet-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:9eb4a1d7399b9f3c7ac68ae6baa6be5f9195d1d08c9ddc45ad559aa6b556bce6"}, + {file = "greenlet-3.1.0-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:a8870983af660798dc1b529e1fd6f1cefd94e45135a32e58bd70edd694540f33"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfcfb73aed40f550a57ea904629bdaf2e562c68fa1164fa4588e752af6efdc3f"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f9482c2ed414781c0af0b35d9d575226da6b728bd1a720668fa05837184965b7"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d58ec349e0c2c0bc6669bf2cd4982d2f93bf067860d23a0ea1fe677b0f0b1e09"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd65695a8df1233309b701dec2539cc4b11e97d4fcc0f4185b4a12ce54db0491"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:665b21e95bc0fce5cab03b2e1d90ba9c66c510f1bb5fdc864f3a377d0f553f6b"}, + {file = "greenlet-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d3c59a06c2c28a81a026ff11fbf012081ea34fb9b7052f2ed0366e14896f0a1d"}, + {file = "greenlet-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5415b9494ff6240b09af06b91a375731febe0090218e2898d2b85f9b92abcda0"}, + {file = "greenlet-3.1.0-cp38-cp38-win32.whl", hash = "sha256:1544b8dd090b494c55e60c4ff46e238be44fdc472d2589e943c241e0169bcea2"}, + {file = "greenlet-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:7f346d24d74c00b6730440f5eb8ec3fe5774ca8d1c9574e8e57c8671bb51b910"}, + {file = "greenlet-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:db1b3ccb93488328c74e97ff888604a8b95ae4f35f4f56677ca57a4fc3a4220b"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44cd313629ded43bb3b98737bba2f3e2c2c8679b55ea29ed73daea6b755fe8e7"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fad7a051e07f64e297e6e8399b4d6a3bdcad3d7297409e9a06ef8cbccff4f501"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3967dcc1cd2ea61b08b0b276659242cbce5caca39e7cbc02408222fb9e6ff39"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d45b75b0f3fd8d99f62eb7908cfa6d727b7ed190737dec7fe46d993da550b81a"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2d004db911ed7b6218ec5c5bfe4cf70ae8aa2223dffbb5b3c69e342bb253cb28"}, + {file = "greenlet-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9505a0c8579899057cbefd4ec34d865ab99852baf1ff33a9481eb3924e2da0b"}, + {file = "greenlet-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5fd6e94593f6f9714dbad1aaba734b5ec04593374fa6638df61592055868f8b8"}, + {file = "greenlet-3.1.0-cp39-cp39-win32.whl", hash = "sha256:d0dd943282231480aad5f50f89bdf26690c995e8ff555f26d8a5b9887b559bcc"}, + {file = "greenlet-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:ac0adfdb3a21dc2a24ed728b61e72440d297d0fd3a577389df566651fcd08f97"}, + {file = "greenlet-3.1.0.tar.gz", hash = "sha256:b395121e9bbe8d02a750886f108d540abe66075e61e22f7353d9acb0b81be0f0"}, ] [package.extras] @@ -941,42 +935,40 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.12.3" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "jedi" @@ -1095,26 +1087,26 @@ test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout" [[package]] name = "langchain" -version = "0.2.16" +version = "0.3.0.dev2" description = "Building applications with LLMs through composability" optional = false -python-versions = "<4.0,>=3.8.1" +python-versions = "<4.0,>=3.9" files = [ - {file = "langchain-0.2.16-py3-none-any.whl", hash = "sha256:8f59ee8b45f268df4b924ea3b9c63e49286efa756d16b3f6a9de5c6e502c36e1"}, - {file = "langchain-0.2.16.tar.gz", hash = "sha256:ffb426a76a703b73ac69abad77cd16eaf03dda76b42cff55572f592d74944166"}, + {file = "langchain-0.3.0.dev2-py3-none-any.whl", hash = "sha256:f84d318aed04a01a700659c90063a8f3cb0cf2c055d312ad6aaae177ab709963"}, + {file = "langchain-0.3.0.dev2.tar.gz", hash = "sha256:08d6617518fee66163ae21f7dfb535bf336cfcfa9f3d91c25f0eace76355d50b"}, ] [package.dependencies] aiohttp = ">=3.8.3,<4.0.0" async-timeout = {version = ">=4.0.0,<5.0.0", markers = "python_version < \"3.11\""} -langchain-core = ">=0.2.38,<0.3.0" -langchain-text-splitters = ">=0.2.0,<0.3.0" +langchain-core = ">=0.3.0.dev5,<0.4.0" +langchain-text-splitters = ">=0.3.0.dev1,<0.4.0" langsmith = ">=0.1.17,<0.2.0" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] -pydantic = ">=1,<3" +pydantic = ">=2.7.4,<3.0.0" PyYAML = ">=5.3" requests = ">=2,<3" SQLAlchemy = ">=1.4,<3" @@ -1122,23 +1114,24 @@ tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0" [[package]] name = "langchain-community" -version = "0.2.16" +version = "0.3.0.dev2" description = "Community contributed LangChain integrations." optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] aiohttp = "^3.8.3" dataclasses-json = ">= 0.5.7, < 0.7" -langchain = "^0.2.16" -langchain-core = "^0.2.38" -langsmith = "^0.1.0" +langchain = "^0.3.0.dev2" +langchain-core = "^0.3.0.dev5" +langsmith = "^0.1.112" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] +pydantic-settings = "^2.4.0" PyYAML = ">=5.3" requests = "^2" SQLAlchemy = ">=1.4,<3" @@ -1150,19 +1143,19 @@ url = "../../community" [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -1178,13 +1171,13 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = ">=0.3.0.dev1" pytest = ">=7,<9" syrupy = "^4" @@ -1194,27 +1187,27 @@ url = "../../standard-tests" [[package]] name = "langchain-text-splitters" -version = "0.2.4" +version = "0.3.0.dev1" description = "LangChain text splitting utilities" optional = false -python-versions = "<4.0,>=3.8.1" +python-versions = "<4.0,>=3.9" files = [ - {file = "langchain_text_splitters-0.2.4-py3-none-any.whl", hash = "sha256:2702dee5b7cbdd595ccbe43b8d38d01a34aa8583f4d6a5a68ad2305ae3e7b645"}, - {file = "langchain_text_splitters-0.2.4.tar.gz", hash = "sha256:f7daa7a3b0aa8309ce248e2e2b6fc8115be01118d336c7f7f7dfacda0e89bf29"}, + {file = "langchain_text_splitters-0.3.0.dev1-py3-none-any.whl", hash = "sha256:85abe6ab1aa95e8cc3bf985cd9e53848de616c21d3590a25ac13a694d409f133"}, + {file = "langchain_text_splitters-0.3.0.dev1.tar.gz", hash = "sha256:5e13ca0f27719406c6c5575f48cdfb89755f02dd0f1c8af5d1f8a1a9f391f3a2"}, ] [package.dependencies] -langchain-core = ">=0.2.38,<0.3.0" +langchain-core = ">=0.3.0.dev1,<0.4.0" [[package]] name = "langsmith" -version = "0.1.111" +version = "0.1.117" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.111-py3-none-any.whl", hash = "sha256:e5c702764911193c9812fe55136ae01cd0b9ddf5dff0b068ce6fd60eeddbcb40"}, - {file = "langsmith-0.1.111.tar.gz", hash = "sha256:bab24fd6125685f588d682693c4a3253e163804242829b1ff902e1a3e984a94c"}, + {file = "langsmith-0.1.117-py3-none-any.whl", hash = "sha256:e936ee9bcf8293b0496df7ba462a3702179fbe51f9dc28744b0fbec0dbf206ae"}, + {file = "langsmith-0.1.117.tar.gz", hash = "sha256:a1b532f49968b9339bcaff9118d141846d52ed3d803f342902e7448edf1d662b"}, ] [package.dependencies] @@ -1347,103 +1340,108 @@ tests = ["pytest (>=4.6)"] [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" version = "1.11.2" @@ -1515,58 +1513,21 @@ files = [ [[package]] name = "networkx" -version = "3.1" +version = "3.2.1" description = "Python package for creating and manipulating graphs and networks" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, - {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, + {file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"}, + {file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"}, ] [package.extras] -default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] -developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] -doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] -test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] - -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] +default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "numpy" @@ -1863,17 +1824,6 @@ files = [ [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - [[package]] name = "pillow" version = "10.4.0" @@ -1973,19 +1923,19 @@ xmp = ["defusedxml"] [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.2" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.2-py3-none-any.whl", hash = "sha256:eb1c8582560b34ed4ba105009a4badf7f6f85768b30126f351328507b2beb617"}, + {file = "platformdirs-4.3.2.tar.gz", hash = "sha256:9e5e27a08aa095dd127b9f2e764d74254f482fef22b0970773bfba79d091ab8c"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "pluggy" @@ -2083,18 +2033,18 @@ files = [ [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -2102,108 +2052,129 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" +[[package]] +name = "pydantic-settings" +version = "2.5.0" +description = "Settings management using Pydantic" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_settings-2.5.0-py3-none-any.whl", hash = "sha256:eae04a3dd9adf521a4c959dcefb984e0f3b1d841999daf02f961dcc4d31d2f7f"}, + {file = "pydantic_settings-2.5.0.tar.gz", hash = "sha256:204828c02481a2e7135466b26a7d65d9e15a17d52d1d8f59cacdf9ad625e1140"}, +] + +[package.dependencies] +pydantic = ">=2.7.0" +python-dotenv = ">=0.21.0" + +[package.extras] +azure-key-vault = ["azure-identity (>=1.16.0)", "azure-keyvault-secrets (>=4.8.0)"] +toml = ["tomli (>=2.0.1)"] +yaml = ["pyyaml (>=6.0.1)"] + [[package]] name = "pygments" version = "2.18.0" @@ -2287,6 +2258,20 @@ files = [ [package.dependencies] six = ">=1.5" +[[package]] +name = "python-dotenv" +version = "1.0.1" +description = "Read key-value pairs from a .env file and set them as environment variables" +optional = false +python-versions = ">=3.8" +files = [ + {file = "python-dotenv-1.0.1.tar.gz", hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca"}, + {file = "python_dotenv-1.0.1-py3-none-any.whl", hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a"}, +] + +[package.extras] +cli = ["click (>=5.0)"] + [[package]] name = "pywin32" version = "306" @@ -2631,121 +2616,121 @@ files = [ [[package]] name = "safetensors" -version = "0.4.4" +version = "0.4.5" description = "" optional = false python-versions = ">=3.7" files = [ - {file = "safetensors-0.4.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2adb497ada13097f30e386e88c959c0fda855a5f6f98845710f5bb2c57e14f12"}, - {file = "safetensors-0.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7db7fdc2d71fd1444d85ca3f3d682ba2df7d61a637dfc6d80793f439eae264ab"}, - {file = "safetensors-0.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d4f0eed76b430f009fbefca1a0028ddb112891b03cb556d7440d5cd68eb89a9"}, - {file = "safetensors-0.4.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:57d216fab0b5c432aabf7170883d7c11671622bde8bd1436c46d633163a703f6"}, - {file = "safetensors-0.4.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7d9b76322e49c056bcc819f8bdca37a2daa5a6d42c07f30927b501088db03309"}, - {file = "safetensors-0.4.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:32f0d1f6243e90ee43bc6ee3e8c30ac5b09ca63f5dd35dbc985a1fc5208c451a"}, - {file = "safetensors-0.4.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44d464bdc384874601a177375028012a5f177f1505279f9456fea84bbc575c7f"}, - {file = "safetensors-0.4.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63144e36209ad8e4e65384dbf2d52dd5b1866986079c00a72335402a38aacdc5"}, - {file = "safetensors-0.4.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:051d5ecd490af7245258000304b812825974d5e56f14a3ff7e1b8b2ba6dc2ed4"}, - {file = "safetensors-0.4.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:51bc8429d9376224cd3cf7e8ce4f208b4c930cd10e515b6ac6a72cbc3370f0d9"}, - {file = "safetensors-0.4.4-cp310-none-win32.whl", hash = "sha256:fb7b54830cee8cf9923d969e2df87ce20e625b1af2fd194222ab902d3adcc29c"}, - {file = "safetensors-0.4.4-cp310-none-win_amd64.whl", hash = "sha256:4b3e8aa8226d6560de8c2b9d5ff8555ea482599c670610758afdc97f3e021e9c"}, - {file = "safetensors-0.4.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:bbaa31f2cb49013818bde319232ccd72da62ee40f7d2aa532083eda5664e85ff"}, - {file = "safetensors-0.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9fdcb80f4e9fbb33b58e9bf95e7dbbedff505d1bcd1c05f7c7ce883632710006"}, - {file = "safetensors-0.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55c14c20be247b8a1aeaf3ab4476265e3ca83096bb8e09bb1a7aa806088def4f"}, - {file = "safetensors-0.4.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:949aaa1118660f992dbf0968487b3e3cfdad67f948658ab08c6b5762e90cc8b6"}, - {file = "safetensors-0.4.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c11a4ab7debc456326a2bac67f35ee0ac792bcf812c7562a4a28559a5c795e27"}, - {file = "safetensors-0.4.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0cea44bba5c5601b297bc8307e4075535b95163402e4906b2e9b82788a2a6df"}, - {file = "safetensors-0.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a9d752c97f6bbe327352f76e5b86442d776abc789249fc5e72eacb49e6916482"}, - {file = "safetensors-0.4.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03f2bb92e61b055ef6cc22883ad1ae898010a95730fa988c60a23800eb742c2c"}, - {file = "safetensors-0.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:87bf3f91a9328a941acc44eceffd4e1f5f89b030985b2966637e582157173b98"}, - {file = "safetensors-0.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:20d218ec2b6899d29d6895419a58b6e44cc5ff8f0cc29fac8d236a8978ab702e"}, - {file = "safetensors-0.4.4-cp311-none-win32.whl", hash = "sha256:8079486118919f600c603536e2490ca37b3dbd3280e3ad6eaacfe6264605ac8a"}, - {file = "safetensors-0.4.4-cp311-none-win_amd64.whl", hash = "sha256:2f8c2eb0615e2e64ee27d478c7c13f51e5329d7972d9e15528d3e4cfc4a08f0d"}, - {file = "safetensors-0.4.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:baec5675944b4a47749c93c01c73d826ef7d42d36ba8d0dba36336fa80c76426"}, - {file = "safetensors-0.4.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f15117b96866401825f3e94543145028a2947d19974429246ce59403f49e77c6"}, - {file = "safetensors-0.4.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a13a9caea485df164c51be4eb0c87f97f790b7c3213d635eba2314d959fe929"}, - {file = "safetensors-0.4.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6b54bc4ca5f9b9bba8cd4fb91c24b2446a86b5ae7f8975cf3b7a277353c3127c"}, - {file = "safetensors-0.4.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:08332c22e03b651c8eb7bf5fc2de90044f3672f43403b3d9ac7e7e0f4f76495e"}, - {file = "safetensors-0.4.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bb62841e839ee992c37bb75e75891c7f4904e772db3691c59daaca5b4ab960e1"}, - {file = "safetensors-0.4.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e5b927acc5f2f59547270b0309a46d983edc44be64e1ca27a7fcb0474d6cd67"}, - {file = "safetensors-0.4.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2a69c71b1ae98a8021a09a0b43363b0143b0ce74e7c0e83cacba691b62655fb8"}, - {file = "safetensors-0.4.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:23654ad162c02a5636f0cd520a0310902c4421aab1d91a0b667722a4937cc445"}, - {file = "safetensors-0.4.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0677c109d949cf53756859160b955b2e75b0eefe952189c184d7be30ecf7e858"}, - {file = "safetensors-0.4.4-cp312-none-win32.whl", hash = "sha256:a51d0ddd4deb8871c6de15a772ef40b3dbd26a3c0451bb9e66bc76fc5a784e5b"}, - {file = "safetensors-0.4.4-cp312-none-win_amd64.whl", hash = "sha256:2d065059e75a798bc1933c293b68d04d79b586bb7f8c921e0ca1e82759d0dbb1"}, - {file = "safetensors-0.4.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:9d625692578dd40a112df30c02a1adf068027566abd8e6a74893bb13d441c150"}, - {file = "safetensors-0.4.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7cabcf39c81e5b988d0adefdaea2eb9b4fd9bd62d5ed6559988c62f36bfa9a89"}, - {file = "safetensors-0.4.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8359bef65f49d51476e9811d59c015f0ddae618ee0e44144f5595278c9f8268c"}, - {file = "safetensors-0.4.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1a32c662e7df9226fd850f054a3ead0e4213a96a70b5ce37b2d26ba27004e013"}, - {file = "safetensors-0.4.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c329a4dcc395364a1c0d2d1574d725fe81a840783dda64c31c5a60fc7d41472c"}, - {file = "safetensors-0.4.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:239ee093b1db877c9f8fe2d71331a97f3b9c7c0d3ab9f09c4851004a11f44b65"}, - {file = "safetensors-0.4.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd574145d930cf9405a64f9923600879a5ce51d9f315443a5f706374841327b6"}, - {file = "safetensors-0.4.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f6784eed29f9e036acb0b7769d9e78a0dc2c72c2d8ba7903005350d817e287a4"}, - {file = "safetensors-0.4.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:65a4a6072436bf0a4825b1c295d248cc17e5f4651e60ee62427a5bcaa8622a7a"}, - {file = "safetensors-0.4.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:df81e3407630de060ae8313da49509c3caa33b1a9415562284eaf3d0c7705f9f"}, - {file = "safetensors-0.4.4-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:e4a0f374200e8443d9746e947ebb346c40f83a3970e75a685ade0adbba5c48d9"}, - {file = "safetensors-0.4.4-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:181fb5f3dee78dae7fd7ec57d02e58f7936498d587c6b7c1c8049ef448c8d285"}, - {file = "safetensors-0.4.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb4ac1d8f6b65ec84ddfacd275079e89d9df7c92f95675ba96c4f790a64df6e"}, - {file = "safetensors-0.4.4-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:76897944cd9239e8a70955679b531b9a0619f76e25476e57ed373322d9c2075d"}, - {file = "safetensors-0.4.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2a9e9d1a27e51a0f69e761a3d581c3af46729ec1c988fa1f839e04743026ae35"}, - {file = "safetensors-0.4.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:005ef9fc0f47cb9821c40793eb029f712e97278dae84de91cb2b4809b856685d"}, - {file = "safetensors-0.4.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26987dac3752688c696c77c3576f951dbbdb8c57f0957a41fb6f933cf84c0b62"}, - {file = "safetensors-0.4.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c05270b290acd8d249739f40d272a64dd597d5a4b90f27d830e538bc2549303c"}, - {file = "safetensors-0.4.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:068d3a33711fc4d93659c825a04480ff5a3854e1d78632cdc8f37fee917e8a60"}, - {file = "safetensors-0.4.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:063421ef08ca1021feea8b46951251b90ae91f899234dd78297cbe7c1db73b99"}, - {file = "safetensors-0.4.4-cp37-none-win32.whl", hash = "sha256:d52f5d0615ea83fd853d4e1d8acf93cc2e0223ad4568ba1e1f6ca72e94ea7b9d"}, - {file = "safetensors-0.4.4-cp37-none-win_amd64.whl", hash = "sha256:88a5ac3280232d4ed8e994cbc03b46a1807ce0aa123867b40c4a41f226c61f94"}, - {file = "safetensors-0.4.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:3467ab511bfe3360967d7dc53b49f272d59309e57a067dd2405b4d35e7dcf9dc"}, - {file = "safetensors-0.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2ab4c96d922e53670ce25fbb9b63d5ea972e244de4fa1dd97b590d9fd66aacef"}, - {file = "safetensors-0.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:87df18fce4440477c3ef1fd7ae17c704a69a74a77e705a12be135ee0651a0c2d"}, - {file = "safetensors-0.4.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0e5fe345b2bc7d88587149ac11def1f629d2671c4c34f5df38aed0ba59dc37f8"}, - {file = "safetensors-0.4.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9f1a3e01dce3cd54060791e7e24588417c98b941baa5974700eeb0b8eb65b0a0"}, - {file = "safetensors-0.4.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c6bf35e9a8998d8339fd9a05ac4ce465a4d2a2956cc0d837b67c4642ed9e947"}, - {file = "safetensors-0.4.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:166c0c52f6488b8538b2a9f3fbc6aad61a7261e170698779b371e81b45f0440d"}, - {file = "safetensors-0.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:87e9903b8668a16ef02c08ba4ebc91e57a49c481e9b5866e31d798632805014b"}, - {file = "safetensors-0.4.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a9c421153aa23c323bd8483d4155b4eee82c9a50ac11cccd83539104a8279c64"}, - {file = "safetensors-0.4.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a4b8617499b2371c7353302c5116a7e0a3a12da66389ce53140e607d3bf7b3d3"}, - {file = "safetensors-0.4.4-cp38-none-win32.whl", hash = "sha256:c6280f5aeafa1731f0a3709463ab33d8e0624321593951aefada5472f0b313fd"}, - {file = "safetensors-0.4.4-cp38-none-win_amd64.whl", hash = "sha256:6ceed6247fc2d33b2a7b7d25d8a0fe645b68798856e0bc7a9800c5fd945eb80f"}, - {file = "safetensors-0.4.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5cf6c6f6193797372adf50c91d0171743d16299491c75acad8650107dffa9269"}, - {file = "safetensors-0.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:419010156b914a3e5da4e4adf992bee050924d0fe423c4b329e523e2c14c3547"}, - {file = "safetensors-0.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88f6fd5a5c1302ce79993cc5feeadcc795a70f953c762544d01fb02b2db4ea33"}, - {file = "safetensors-0.4.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d468cffb82d90789696d5b4d8b6ab8843052cba58a15296691a7a3df55143cd2"}, - {file = "safetensors-0.4.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9353c2af2dd467333d4850a16edb66855e795561cd170685178f706c80d2c71e"}, - {file = "safetensors-0.4.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:83c155b4a33368d9b9c2543e78f2452090fb030c52401ca608ef16fa58c98353"}, - {file = "safetensors-0.4.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9850754c434e636ce3dc586f534bb23bcbd78940c304775bee9005bf610e98f1"}, - {file = "safetensors-0.4.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:275f500b4d26f67b6ec05629a4600645231bd75e4ed42087a7c1801bff04f4b3"}, - {file = "safetensors-0.4.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5c2308de665b7130cd0e40a2329278226e4cf083f7400c51ca7e19ccfb3886f3"}, - {file = "safetensors-0.4.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e06a9ebc8656e030ccfe44634f2a541b4b1801cd52e390a53ad8bacbd65f8518"}, - {file = "safetensors-0.4.4-cp39-none-win32.whl", hash = "sha256:ef73df487b7c14b477016947c92708c2d929e1dee2bacdd6fff5a82ed4539537"}, - {file = "safetensors-0.4.4-cp39-none-win_amd64.whl", hash = "sha256:83d054818a8d1198d8bd8bc3ea2aac112a2c19def2bf73758321976788706398"}, - {file = "safetensors-0.4.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1d1f34c71371f0e034004a0b583284b45d233dd0b5f64a9125e16b8a01d15067"}, - {file = "safetensors-0.4.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1a8043a33d58bc9b30dfac90f75712134ca34733ec3d8267b1bd682afe7194f5"}, - {file = "safetensors-0.4.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8db8f0c59c84792c12661f8efa85de160f80efe16b87a9d5de91b93f9e0bce3c"}, - {file = "safetensors-0.4.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cfc1fc38e37630dd12d519bdec9dcd4b345aec9930bb9ce0ed04461f49e58b52"}, - {file = "safetensors-0.4.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e5c9d86d9b13b18aafa88303e2cd21e677f5da2a14c828d2c460fe513af2e9a5"}, - {file = "safetensors-0.4.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:43251d7f29a59120a26f5a0d9583b9e112999e500afabcfdcb91606d3c5c89e3"}, - {file = "safetensors-0.4.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:2c42e9b277513b81cf507e6121c7b432b3235f980cac04f39f435b7902857f91"}, - {file = "safetensors-0.4.4-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3daacc9a4e3f428a84dd56bf31f20b768eb0b204af891ed68e1f06db9edf546f"}, - {file = "safetensors-0.4.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:218bbb9b883596715fc9997bb42470bf9f21bb832c3b34c2bf744d6fa8f2bbba"}, - {file = "safetensors-0.4.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bd5efc26b39f7fc82d4ab1d86a7f0644c8e34f3699c33f85bfa9a717a030e1b"}, - {file = "safetensors-0.4.4-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:56ad9776b65d8743f86698a1973292c966cf3abff627efc44ed60e66cc538ddd"}, - {file = "safetensors-0.4.4-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:30f23e6253c5f43a809dea02dc28a9f5fa747735dc819f10c073fe1b605e97d4"}, - {file = "safetensors-0.4.4-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:5512078d00263de6cb04e9d26c9ae17611098f52357fea856213e38dc462f81f"}, - {file = "safetensors-0.4.4-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b96c3d9266439d17f35fc2173111d93afc1162f168e95aed122c1ca517b1f8f1"}, - {file = "safetensors-0.4.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:08d464aa72a9a13826946b4fb9094bb4b16554bbea2e069e20bd903289b6ced9"}, - {file = "safetensors-0.4.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:210160816d5a36cf41f48f38473b6f70d7bcb4b0527bedf0889cc0b4c3bb07db"}, - {file = "safetensors-0.4.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb276a53717f2bcfb6df0bcf284d8a12069002508d4c1ca715799226024ccd45"}, - {file = "safetensors-0.4.4-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a2c28c6487f17d8db0089e8b2cdc13de859366b94cc6cdc50e1b0a4147b56551"}, - {file = "safetensors-0.4.4-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:7915f0c60e4e6e65d90f136d85dd3b429ae9191c36b380e626064694563dbd9f"}, - {file = "safetensors-0.4.4-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:00eea99ae422fbfa0b46065acbc58b46bfafadfcec179d4b4a32d5c45006af6c"}, - {file = "safetensors-0.4.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bb1ed4fcb0b3c2f3ea2c5767434622fe5d660e5752f21ac2e8d737b1e5e480bb"}, - {file = "safetensors-0.4.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:73fc9a0a4343188bdb421783e600bfaf81d0793cd4cce6bafb3c2ed567a74cd5"}, - {file = "safetensors-0.4.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c37e6b714200824c73ca6eaf007382de76f39466a46e97558b8dc4cf643cfbf"}, - {file = "safetensors-0.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f75698c5c5c542417ac4956acfc420f7d4a2396adca63a015fd66641ea751759"}, - {file = "safetensors-0.4.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ca1a209157f242eb183e209040097118472e169f2e069bfbd40c303e24866543"}, - {file = "safetensors-0.4.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:177f2b60a058f92a3cec7a1786c9106c29eca8987ecdfb79ee88126e5f47fa31"}, - {file = "safetensors-0.4.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ee9622e84fe6e4cd4f020e5fda70d6206feff3157731df7151d457fdae18e541"}, - {file = "safetensors-0.4.4.tar.gz", hash = "sha256:5fe3e9b705250d0172ed4e100a811543108653fb2b66b9e702a088ad03772a07"}, + {file = "safetensors-0.4.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a63eaccd22243c67e4f2b1c3e258b257effc4acd78f3b9d397edc8cf8f1298a7"}, + {file = "safetensors-0.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:23fc9b4ec7b602915cbb4ec1a7c1ad96d2743c322f20ab709e2c35d1b66dad27"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6885016f34bef80ea1085b7e99b3c1f92cb1be78a49839203060f67b40aee761"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:133620f443450429322f238fda74d512c4008621227fccf2f8cf4a76206fea7c"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4fb3e0609ec12d2a77e882f07cced530b8262027f64b75d399f1504ffec0ba56"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0f1dd769f064adc33831f5e97ad07babbd728427f98e3e1db6902e369122737"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6d156bdb26732feada84f9388a9f135528c1ef5b05fae153da365ad4319c4c5"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9e347d77e2c77eb7624400ccd09bed69d35c0332f417ce8c048d404a096c593b"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9f556eea3aec1d3d955403159fe2123ddd68e880f83954ee9b4a3f2e15e716b6"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9483f42be3b6bc8ff77dd67302de8ae411c4db39f7224dec66b0eb95822e4163"}, + {file = "safetensors-0.4.5-cp310-none-win32.whl", hash = "sha256:7389129c03fadd1ccc37fd1ebbc773f2b031483b04700923c3511d2a939252cc"}, + {file = "safetensors-0.4.5-cp310-none-win_amd64.whl", hash = "sha256:e98ef5524f8b6620c8cdef97220c0b6a5c1cef69852fcd2f174bb96c2bb316b1"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:21f848d7aebd5954f92538552d6d75f7c1b4500f51664078b5b49720d180e47c"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bb07000b19d41e35eecef9a454f31a8b4718a185293f0d0b1c4b61d6e4487971"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09dedf7c2fda934ee68143202acff6e9e8eb0ddeeb4cfc24182bef999efa9f42"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:59b77e4b7a708988d84f26de3ebead61ef1659c73dcbc9946c18f3b1786d2688"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d3bc83e14d67adc2e9387e511097f254bd1b43c3020440e708858c684cbac68"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39371fc551c1072976073ab258c3119395294cf49cdc1f8476794627de3130df"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6c19feda32b931cae0acd42748a670bdf56bee6476a046af20181ad3fee4090"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a659467495de201e2f282063808a41170448c78bada1e62707b07a27b05e6943"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bad5e4b2476949bcd638a89f71b6916fa9a5cae5c1ae7eede337aca2100435c0"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a3a315a6d0054bc6889a17f5668a73f94f7fe55121ff59e0a199e3519c08565f"}, + {file = "safetensors-0.4.5-cp311-none-win32.whl", hash = "sha256:a01e232e6d3d5cf8b1667bc3b657a77bdab73f0743c26c1d3c5dd7ce86bd3a92"}, + {file = "safetensors-0.4.5-cp311-none-win_amd64.whl", hash = "sha256:cbd39cae1ad3e3ef6f63a6f07296b080c951f24cec60188378e43d3713000c04"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:473300314e026bd1043cef391bb16a8689453363381561b8a3e443870937cc1e"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:801183a0f76dc647f51a2d9141ad341f9665602a7899a693207a82fb102cc53e"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1524b54246e422ad6fb6aea1ac71edeeb77666efa67230e1faf6999df9b2e27f"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b3139098e3e8b2ad7afbca96d30ad29157b50c90861084e69fcb80dec7430461"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65573dc35be9059770808e276b017256fa30058802c29e1038eb1c00028502ea"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd33da8e9407559f8779c82a0448e2133737f922d71f884da27184549416bfed"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3685ce7ed036f916316b567152482b7e959dc754fcc4a8342333d222e05f407c"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dde2bf390d25f67908278d6f5d59e46211ef98e44108727084d4637ee70ab4f1"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7469d70d3de970b1698d47c11ebbf296a308702cbaae7fcb993944751cf985f4"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a6ba28118636a130ccbb968bc33d4684c48678695dba2590169d5ab03a45646"}, + {file = "safetensors-0.4.5-cp312-none-win32.whl", hash = "sha256:c859c7ed90b0047f58ee27751c8e56951452ed36a67afee1b0a87847d065eec6"}, + {file = "safetensors-0.4.5-cp312-none-win_amd64.whl", hash = "sha256:b5a8810ad6a6f933fff6c276eae92c1da217b39b4d8b1bc1c0b8af2d270dc532"}, + {file = "safetensors-0.4.5-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:25e5f8e2e92a74f05b4ca55686234c32aac19927903792b30ee6d7bd5653d54e"}, + {file = "safetensors-0.4.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:81efb124b58af39fcd684254c645e35692fea81c51627259cdf6d67ff4458916"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:585f1703a518b437f5103aa9cf70e9bd437cb78eea9c51024329e4fb8a3e3679"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b99fbf72e3faf0b2f5f16e5e3458b93b7d0a83984fe8d5364c60aa169f2da89"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b17b299ca9966ca983ecda1c0791a3f07f9ca6ab5ded8ef3d283fff45f6bcd5f"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76ded72f69209c9780fdb23ea89e56d35c54ae6abcdec67ccb22af8e696e449a"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2783956926303dcfeb1de91a4d1204cd4089ab441e622e7caee0642281109db3"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d94581aab8c6b204def4d7320f07534d6ee34cd4855688004a4354e63b639a35"}, + {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:67e1e7cb8678bb1b37ac48ec0df04faf689e2f4e9e81e566b5c63d9f23748523"}, + {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:dbd280b07e6054ea68b0cb4b16ad9703e7d63cd6890f577cb98acc5354780142"}, + {file = "safetensors-0.4.5-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:77d9b228da8374c7262046a36c1f656ba32a93df6cc51cd4453af932011e77f1"}, + {file = "safetensors-0.4.5-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:500cac01d50b301ab7bb192353317035011c5ceeef0fca652f9f43c000bb7f8d"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75331c0c746f03158ded32465b7d0b0e24c5a22121743662a2393439c43a45cf"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670e95fe34e0d591d0529e5e59fd9d3d72bc77b1444fcaa14dccda4f36b5a38b"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:098923e2574ff237c517d6e840acada8e5b311cb1fa226019105ed82e9c3b62f"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13ca0902d2648775089fa6a0c8fc9e6390c5f8ee576517d33f9261656f851e3f"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f0032bedc869c56f8d26259fe39cd21c5199cd57f2228d817a0e23e8370af25"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4b15f51b4f8f2a512341d9ce3475cacc19c5fdfc5db1f0e19449e75f95c7dc8"}, + {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f6594d130d0ad933d885c6a7b75c5183cb0e8450f799b80a39eae2b8508955eb"}, + {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:60c828a27e852ded2c85fc0f87bf1ec20e464c5cd4d56ff0e0711855cc2e17f8"}, + {file = "safetensors-0.4.5-cp37-none-win32.whl", hash = "sha256:6d3de65718b86c3eeaa8b73a9c3d123f9307a96bbd7be9698e21e76a56443af5"}, + {file = "safetensors-0.4.5-cp37-none-win_amd64.whl", hash = "sha256:5a2d68a523a4cefd791156a4174189a4114cf0bf9c50ceb89f261600f3b2b81a"}, + {file = "safetensors-0.4.5-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:e7a97058f96340850da0601a3309f3d29d6191b0702b2da201e54c6e3e44ccf0"}, + {file = "safetensors-0.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:63bfd425e25f5c733f572e2246e08a1c38bd6f2e027d3f7c87e2e43f228d1345"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3664ac565d0e809b0b929dae7ccd74e4d3273cd0c6d1220c6430035befb678e"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:313514b0b9b73ff4ddfb4edd71860696dbe3c1c9dc4d5cc13dbd74da283d2cbf"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31fa33ee326f750a2f2134a6174773c281d9a266ccd000bd4686d8021f1f3dac"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:09566792588d77b68abe53754c9f1308fadd35c9f87be939e22c623eaacbed6b"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309aaec9b66cbf07ad3a2e5cb8a03205663324fea024ba391594423d0f00d9fe"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:53946c5813b8f9e26103c5efff4a931cc45d874f45229edd68557ffb35ffb9f8"}, + {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:868f9df9e99ad1e7f38c52194063a982bc88fedc7d05096f4f8160403aaf4bd6"}, + {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9cc9449bd0b0bc538bd5e268221f0c5590bc5c14c1934a6ae359d44410dc68c4"}, + {file = "safetensors-0.4.5-cp38-none-win32.whl", hash = "sha256:83c4f13a9e687335c3928f615cd63a37e3f8ef072a3f2a0599fa09f863fb06a2"}, + {file = "safetensors-0.4.5-cp38-none-win_amd64.whl", hash = "sha256:b98d40a2ffa560653f6274e15b27b3544e8e3713a44627ce268f419f35c49478"}, + {file = "safetensors-0.4.5-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cf727bb1281d66699bef5683b04d98c894a2803442c490a8d45cd365abfbdeb2"}, + {file = "safetensors-0.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:96f1d038c827cdc552d97e71f522e1049fef0542be575421f7684756a748e457"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:139fbee92570ecea774e6344fee908907db79646d00b12c535f66bc78bd5ea2c"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c36302c1c69eebb383775a89645a32b9d266878fab619819ce660309d6176c9b"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d641f5b8149ea98deb5ffcf604d764aad1de38a8285f86771ce1abf8e74c4891"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b4db6a61d968de73722b858038c616a1bebd4a86abe2688e46ca0cc2d17558f2"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b75a616e02f21b6f1d5785b20cecbab5e2bd3f6358a90e8925b813d557666ec1"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:788ee7d04cc0e0e7f944c52ff05f52a4415b312f5efd2ee66389fb7685ee030c"}, + {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:87bc42bd04fd9ca31396d3ca0433db0be1411b6b53ac5a32b7845a85d01ffc2e"}, + {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4037676c86365a721a8c9510323a51861d703b399b78a6b4486a54a65a975fca"}, + {file = "safetensors-0.4.5-cp39-none-win32.whl", hash = "sha256:1500418454529d0ed5c1564bda376c4ddff43f30fce9517d9bee7bcce5a8ef50"}, + {file = "safetensors-0.4.5-cp39-none-win_amd64.whl", hash = "sha256:9d1a94b9d793ed8fe35ab6d5cea28d540a46559bafc6aae98f30ee0867000cab"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fdadf66b5a22ceb645d5435a0be7a0292ce59648ca1d46b352f13cff3ea80410"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d42ffd4c2259f31832cb17ff866c111684c87bd930892a1ba53fed28370c918c"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd8a1f6d2063a92cd04145c7fd9e31a1c7d85fbec20113a14b487563fdbc0597"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951d2fcf1817f4fb0ef0b48f6696688a4e852a95922a042b3f96aaa67eedc920"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ac85d9a8c1af0e3132371d9f2d134695a06a96993c2e2f0bbe25debb9e3f67a"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e3cec4a29eb7fe8da0b1c7988bc3828183080439dd559f720414450de076fcab"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:21742b391b859e67b26c0b2ac37f52c9c0944a879a25ad2f9f9f3cd61e7fda8f"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7db3006a4915151ce1913652e907cdede299b974641a83fbc092102ac41b644"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68bf99ea970960a237f416ea394e266e0361895753df06e3e06e6ea7907d98b"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8158938cf3324172df024da511839d373c40fbfaa83e9abf467174b2910d7b4c"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:540ce6c4bf6b58cb0fd93fa5f143bc0ee341c93bb4f9287ccd92cf898cc1b0dd"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:bfeaa1a699c6b9ed514bd15e6a91e74738b71125a9292159e3d6b7f0a53d2cde"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:01c8f00da537af711979e1b42a69a8ec9e1d7112f208e0e9b8a35d2c381085ef"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a0dd565f83b30f2ca79b5d35748d0d99dd4b3454f80e03dfb41f0038e3bdf180"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:023b6e5facda76989f4cba95a861b7e656b87e225f61811065d5c501f78cdb3f"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9633b663393d5796f0b60249549371e392b75a0b955c07e9c6f8708a87fc841f"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78dd8adfb48716233c45f676d6e48534d34b4bceb50162c13d1f0bdf6f78590a"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e8deb16c4321d61ae72533b8451ec4a9af8656d1c61ff81aa49f966406e4b68"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:52452fa5999dc50c4decaf0c53aa28371f7f1e0fe5c2dd9129059fbe1e1599c7"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:d5f23198821e227cfc52d50fa989813513db381255c6d100927b012f0cfec63d"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f4beb84b6073b1247a773141a6331117e35d07134b3bb0383003f39971d414bb"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:68814d599d25ed2fdd045ed54d370d1d03cf35e02dce56de44c651f828fb9b7b"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0b6453c54c57c1781292c46593f8a37254b8b99004c68d6c3ce229688931a22"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adaa9c6dead67e2dd90d634f89131e43162012479d86e25618e821a03d1eb1dc"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73e7d408e9012cd17511b382b43547850969c7979efc2bc353f317abaf23c84c"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:775409ce0fcc58b10773fdb4221ed1eb007de10fe7adbdf8f5e8a56096b6f0bc"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:834001bed193e4440c4a3950a31059523ee5090605c907c66808664c932b549c"}, + {file = "safetensors-0.4.5.tar.gz", hash = "sha256:d73de19682deabb02524b3d5d1f8b3aaba94c72f1bbfc7911b9b9d5d391c0310"}, ] [package.extras] @@ -2763,88 +2748,90 @@ torch = ["safetensors[numpy]", "torch (>=1.10)"] [[package]] name = "scikit-learn" -version = "1.3.2" +version = "1.5.1" description = "A set of python modules for machine learning and data mining" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, - {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, - {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, - {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, - {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, - {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, - {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, - {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, - {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, - {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, - {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, - {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, - {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, - {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, - {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, - {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, + {file = "scikit_learn-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:781586c414f8cc58e71da4f3d7af311e0505a683e112f2f62919e3019abd3745"}, + {file = "scikit_learn-1.5.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5b213bc29cc30a89a3130393b0e39c847a15d769d6e59539cd86b75d276b1a7"}, + {file = "scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ff4ba34c2abff5ec59c803ed1d97d61b036f659a17f55be102679e88f926fac"}, + {file = "scikit_learn-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:161808750c267b77b4a9603cf9c93579c7a74ba8486b1336034c2f1579546d21"}, + {file = "scikit_learn-1.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:10e49170691514a94bb2e03787aa921b82dbc507a4ea1f20fd95557862c98dc1"}, + {file = "scikit_learn-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:154297ee43c0b83af12464adeab378dee2d0a700ccd03979e2b821e7dd7cc1c2"}, + {file = "scikit_learn-1.5.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:b5e865e9bd59396220de49cb4a57b17016256637c61b4c5cc81aaf16bc123bbe"}, + {file = "scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:909144d50f367a513cee6090873ae582dba019cb3fca063b38054fa42704c3a4"}, + {file = "scikit_learn-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689b6f74b2c880276e365fe84fe4f1befd6a774f016339c65655eaff12e10cbf"}, + {file = "scikit_learn-1.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:9a07f90846313a7639af6a019d849ff72baadfa4c74c778821ae0fad07b7275b"}, + {file = "scikit_learn-1.5.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5944ce1faada31c55fb2ba20a5346b88e36811aab504ccafb9f0339e9f780395"}, + {file = "scikit_learn-1.5.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0828673c5b520e879f2af6a9e99eee0eefea69a2188be1ca68a6121b809055c1"}, + {file = "scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:508907e5f81390e16d754e8815f7497e52139162fd69c4fdbd2dfa5d6cc88915"}, + {file = "scikit_learn-1.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97625f217c5c0c5d0505fa2af28ae424bd37949bb2f16ace3ff5f2f81fb4498b"}, + {file = "scikit_learn-1.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:da3f404e9e284d2b0a157e1b56b6566a34eb2798205cba35a211df3296ab7a74"}, + {file = "scikit_learn-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:88e0672c7ac21eb149d409c74cc29f1d611d5158175846e7a9c2427bd12b3956"}, + {file = "scikit_learn-1.5.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:7b073a27797a283187a4ef4ee149959defc350b46cbf63a84d8514fe16b69855"}, + {file = "scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b59e3e62d2be870e5c74af4e793293753565c7383ae82943b83383fdcf5cc5c1"}, + {file = "scikit_learn-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd8d3a19d4bd6dc5a7d4f358c8c3a60934dc058f363c34c0ac1e9e12a31421d"}, + {file = "scikit_learn-1.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:5f57428de0c900a98389c4a433d4a3cf89de979b3aa24d1c1d251802aa15e44d"}, + {file = "scikit_learn-1.5.1.tar.gz", hash = "sha256:0ea5d40c0e3951df445721927448755d3fe1d80833b0b7308ebff5d2a45e6414"}, ] [package.dependencies] -joblib = ">=1.1.1" -numpy = ">=1.17.3,<2.0" -scipy = ">=1.5.0" -threadpoolctl = ">=2.0.0" +joblib = ">=1.2.0" +numpy = ">=1.19.5" +scipy = ">=1.6.0" +threadpoolctl = ">=3.1.0" [package.extras] -benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.16.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pydata-sphinx-theme (>=0.15.3)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=7.3.7)", "sphinx-copybutton (>=0.5.2)", "sphinx-design (>=0.5.0)", "sphinx-gallery (>=0.16.0)", "sphinx-prompt (>=1.4.0)", "sphinx-remove-toctrees (>=1.0.0.post1)", "sphinxcontrib-sass (>=0.3.4)", "sphinxext-opengraph (>=0.9.1)"] +examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] [[package]] name = "scipy" -version = "1.10.1" +version = "1.13.1" description = "Fundamental algorithms for scientific computing in Python" optional = false -python-versions = "<3.12,>=3.8" -files = [ - {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, - {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, - {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, - {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, - {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, - {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, - {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +python-versions = ">=3.9" +files = [ + {file = "scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:20335853b85e9a49ff7572ab453794298bcf0354d8068c5f6775a0eabf350aca"}, + {file = "scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d605e9c23906d1994f55ace80e0125c587f96c020037ea6aa98d01b4bd2e222f"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfa31f1def5c819b19ecc3a8b52d28ffdcc7ed52bb20c9a7589669dd3c250989"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26264b282b9da0952a024ae34710c2aff7d27480ee91a2e82b7b7073c24722f"}, + {file = "scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eccfa1906eacc02de42d70ef4aecea45415f5be17e72b61bafcfd329bdc52e94"}, + {file = "scipy-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:2831f0dc9c5ea9edd6e51e6e769b655f08ec6db6e2e10f86ef39bd32eb11da54"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:27e52b09c0d3a1d5b63e1105f24177e544a222b43611aaf5bc44d4a0979e32f9"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:54f430b00f0133e2224c3ba42b805bfd0086fe488835effa33fa291561932326"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e89369d27f9e7b0884ae559a3a956e77c02114cc60a6058b4e5011572eea9299"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a78b4b3345f1b6f68a763c6e25c0c9a23a9fd0f39f5f3d200efe8feda560a5fa"}, + {file = "scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45484bee6d65633752c490404513b9ef02475b4284c4cfab0ef946def50b3f59"}, + {file = "scipy-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:5713f62f781eebd8d597eb3f88b8bf9274e79eeabf63afb4a737abc6c84ad37b"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5d72782f39716b2b3509cd7c33cdc08c96f2f4d2b06d51e52fb45a19ca0c86a1"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:017367484ce5498445aade74b1d5ab377acdc65e27095155e448c88497755a5d"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:949ae67db5fa78a86e8fa644b9a6b07252f449dcf74247108c50e1d20d2b4627"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3ade0e53bc1f21358aa74ff4830235d716211d7d077e340c7349bc3542e884"}, + {file = "scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ac65fb503dad64218c228e2dc2d0a0193f7904747db43014645ae139c8fad16"}, + {file = "scipy-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:cdd7dacfb95fea358916410ec61bbc20440f7860333aee6d882bb8046264e949"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:436bbb42a94a8aeef855d755ce5a465479c721e9d684de76bf61a62e7c2b81d5"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8335549ebbca860c52bf3d02f80784e91a004b71b059e3eea9678ba994796a24"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d533654b7d221a6a97304ab63c41c96473ff04459e404b83275b60aa8f4b7004"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637e98dcf185ba7f8e663e122ebf908c4702420477ae52a04f9908707456ba4d"}, + {file = "scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a014c2b3697bde71724244f63de2476925596c24285c7a637364761f8710891c"}, + {file = "scipy-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:392e4ec766654852c25ebad4f64e4e584cf19820b980bc04960bca0b0cd6eaa2"}, + {file = "scipy-1.13.1.tar.gz", hash = "sha256:095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c"}, ] [package.dependencies] -numpy = ">=1.19.5,<1.27.0" +numpy = ">=1.22.4,<2.3" [package.extras] -dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] -doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.12.0)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] +test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "scipy" @@ -2921,6 +2908,26 @@ transformers = ">=4.34.0,<5.0.0" dev = ["accelerate (>=0.20.3)", "datasets", "pre-commit", "pytest", "ruff (>=0.3.0)"] train = ["accelerate (>=0.20.3)", "datasets"] +[[package]] +name = "setuptools" +version = "74.1.2" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-74.1.2-py3-none-any.whl", hash = "sha256:5f4c08aa4d3ebcb57a50c33b1b07e94315d7fc7230f7115e47fc99776c8ce308"}, + {file = "setuptools-74.1.2.tar.gz", hash = "sha256:95b40ed940a1c67eb70fc099094bd6e99c6ee7c23aa2306f4d2697ba7916f9c6"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] + [[package]] name = "six" version = "1.16.0" @@ -2952,7 +2959,9 @@ python-versions = ">=3.7" files = [ {file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:95d0b2cf8791ab5fb9e3aa3d9a79a0d5d51f55b6357eecf532a120ba3b5524db"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:243f92596f4fd4c8bd30ab8e8dd5965afe226363d75cab2468f2c707f64cd83b"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ea54f7300553af0a2a7235e9b85f4204e1fc21848f917a3213b0e0818de9a24"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:173f5f122d2e1bff8fbd9f7811b7942bead1f5e9f371cdf9e670b327e6703ebd"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:196958cde924a00488e3e83ff917be3b73cd4ed8352bbc0f2989333176d1c54d"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bd90c221ed4e60ac9d476db967f436cfcecbd4ef744537c0f2d5291439848768"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-win32.whl", hash = "sha256:3166dfff2d16fe9be3241ee60ece6fcb01cf8e74dd7c5e0b64f8e19fab44911b"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-win_amd64.whl", hash = "sha256:6831a78bbd3c40f909b3e5233f87341f12d0b34a58f14115c9e94b4cdaf726d3"}, @@ -2973,19 +2982,25 @@ files = [ {file = "SQLAlchemy-2.0.34-cp312-cp312-win32.whl", hash = "sha256:fbb034f565ecbe6c530dff948239377ba859420d146d5f62f0271407ffb8c580"}, {file = "SQLAlchemy-2.0.34-cp312-cp312-win_amd64.whl", hash = "sha256:707c8f44931a4facd4149b52b75b80544a8d824162602b8cd2fe788207307f9a"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:24af3dc43568f3780b7e1e57c49b41d98b2d940c1fd2e62d65d3928b6f95f021"}, + {file = "SQLAlchemy-2.0.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e60ed6ef0a35c6b76b7640fe452d0e47acc832ccbb8475de549a5cc5f90c2c06"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:413c85cd0177c23e32dee6898c67a5f49296640041d98fddb2c40888fe4daa2e"}, + {file = "SQLAlchemy-2.0.34-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:25691f4adfb9d5e796fd48bf1432272f95f4bbe5f89c475a788f31232ea6afba"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:526ce723265643dbc4c7efb54f56648cc30e7abe20f387d763364b3ce7506c82"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-win32.whl", hash = "sha256:13be2cc683b76977a700948411a94c67ad8faf542fa7da2a4b167f2244781cf3"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-win_amd64.whl", hash = "sha256:e54ef33ea80d464c3dcfe881eb00ad5921b60f8115ea1a30d781653edc2fd6a2"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f28005141165edd11fbbf1541c920bd29e167b8bbc1fb410d4fe2269c1667a"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b68094b165a9e930aedef90725a8fcfafe9ef95370cbb54abc0464062dbf808f"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1e03db964e9d32f112bae36f0cc1dcd1988d096cfd75d6a588a3c3def9ab2b"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:203d46bddeaa7982f9c3cc693e5bc93db476ab5de9d4b4640d5c99ff219bee8c"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ae92bebca3b1e6bd203494e5ef919a60fb6dfe4d9a47ed2453211d3bd451b9f5"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9661268415f450c95f72f0ac1217cc6f10256f860eed85c2ae32e75b60278ad8"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-win32.whl", hash = "sha256:895184dfef8708e15f7516bd930bda7e50ead069280d2ce09ba11781b630a434"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-win_amd64.whl", hash = "sha256:6e7cde3a2221aa89247944cafb1b26616380e30c63e37ed19ff0bba5e968688d"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dbcdf987f3aceef9763b6d7b1fd3e4ee210ddd26cac421d78b3c206d07b2700b"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ce119fc4ce0d64124d37f66a6f2a584fddc3c5001755f8a49f1ca0a177ef9796"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a17d8fac6df9835d8e2b4c5523666e7051d0897a93756518a1fe101c7f47f2f0"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ebc11c54c6ecdd07bb4efbfa1554538982f5432dfb8456958b6d46b9f834bb7"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e6965346fc1491a566e019a4a1d3dfc081ce7ac1a736536367ca305da6472a8"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:220574e78ad986aea8e81ac68821e47ea9202b7e44f251b7ed8c66d9ae3f4278"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-win32.whl", hash = "sha256:b75b00083e7fe6621ce13cfce9d4469c4774e55e8e9d38c305b37f13cf1e874c"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-win_amd64.whl", hash = "sha256:c29d03e0adf3cc1a8c3ec62d176824972ae29b67a66cbb18daff3062acc6faa8"}, @@ -3228,31 +3243,31 @@ files = [ [[package]] name = "torch" -version = "2.4.0" +version = "2.4.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = false python-versions = ">=3.8.0" files = [ - {file = "torch-2.4.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:4ed94583e244af51d6a8d28701ca5a9e02d1219e782f5a01dd401f90af17d8ac"}, - {file = "torch-2.4.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:c4ca297b7bd58b506bfd6e78ffd14eb97c0e7797dcd7965df62f50bb575d8954"}, - {file = "torch-2.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2497cbc7b3c951d69b276ca51fe01c2865db67040ac67f5fc20b03e41d16ea4a"}, - {file = "torch-2.4.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:685418ab93730efbee71528821ff54005596970dd497bf03c89204fb7e3f71de"}, - {file = "torch-2.4.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e743adadd8c8152bb8373543964551a7cb7cc20ba898dc8f9c0cdbe47c283de0"}, - {file = "torch-2.4.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:7334325c0292cbd5c2eac085f449bf57d3690932eac37027e193ba775703c9e6"}, - {file = "torch-2.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:97730014da4c57ffacb3c09298c6ce05400606e890bd7a05008d13dd086e46b1"}, - {file = "torch-2.4.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:f169b4ea6dc93b3a33319611fcc47dc1406e4dd539844dcbd2dec4c1b96e166d"}, - {file = "torch-2.4.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:997084a0f9784d2a89095a6dc67c7925e21bf25dea0b3d069b41195016ccfcbb"}, - {file = "torch-2.4.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:bc3988e8b36d1e8b998d143255d9408d8c75da4ab6dd0dcfd23b623dfb0f0f57"}, - {file = "torch-2.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:3374128bbf7e62cdaed6c237bfd39809fbcfaa576bee91e904706840c3f2195c"}, - {file = "torch-2.4.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:91aaf00bfe1ffa44dc5b52809d9a95129fca10212eca3ac26420eb11727c6288"}, - {file = "torch-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cc30457ea5489c62747d3306438af00c606b509d78822a88f804202ba63111ed"}, - {file = "torch-2.4.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a046491aaf96d1215e65e1fa85911ef2ded6d49ea34c8df4d0638879f2402eef"}, - {file = "torch-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:688eec9240f3ce775f22e1e1a5ab9894f3d5fe60f3f586deb7dbd23a46a83916"}, - {file = "torch-2.4.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:3af4de2a618fb065e78404c4ba27a818a7b7957eaeff28c6c66ce7fb504b68b8"}, - {file = "torch-2.4.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:618808d3f610d5f180e47a697d4ec90b810953bb1e020f424b2ac7fb0884b545"}, - {file = "torch-2.4.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ed765d232d23566052ba83632ec73a4fccde00b4c94ad45d63b471b09d63b7a7"}, - {file = "torch-2.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:a2feb98ac470109472fb10dfef38622a7ee08482a16c357863ebc7bc7db7c8f7"}, - {file = "torch-2.4.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8940fc8b97a4c61fdb5d46a368f21f4a3a562a17879e932eb51a5ec62310cb31"}, + {file = "torch-2.4.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:362f82e23a4cd46341daabb76fba08f04cd646df9bfaf5da50af97cb60ca4971"}, + {file = "torch-2.4.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e8ac1985c3ff0f60d85b991954cfc2cc25f79c84545aead422763148ed2759e3"}, + {file = "torch-2.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:91e326e2ccfb1496e3bee58f70ef605aeb27bd26be07ba64f37dcaac3d070ada"}, + {file = "torch-2.4.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:d36a8ef100f5bff3e9c3cea934b9e0d7ea277cb8210c7152d34a9a6c5830eadd"}, + {file = "torch-2.4.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:0b5f88afdfa05a335d80351e3cea57d38e578c8689f751d35e0ff36bce872113"}, + {file = "torch-2.4.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ef503165f2341942bfdf2bd520152f19540d0c0e34961232f134dc59ad435be8"}, + {file = "torch-2.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:092e7c2280c860eff762ac08c4bdcd53d701677851670695e0c22d6d345b269c"}, + {file = "torch-2.4.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:ddddbd8b066e743934a4200b3d54267a46db02106876d21cf31f7da7a96f98ea"}, + {file = "torch-2.4.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:fdc4fe11db3eb93c1115d3e973a27ac7c1a8318af8934ffa36b0370efe28e042"}, + {file = "torch-2.4.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:18835374f599207a9e82c262153c20ddf42ea49bc76b6eadad8e5f49729f6e4d"}, + {file = "torch-2.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:ebea70ff30544fc021d441ce6b219a88b67524f01170b1c538d7d3ebb5e7f56c"}, + {file = "torch-2.4.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:72b484d5b6cec1a735bf3fa5a1c4883d01748698c5e9cfdbeb4ffab7c7987e0d"}, + {file = "torch-2.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c99e1db4bf0c5347107845d715b4aa1097e601bdc36343d758963055e9599d93"}, + {file = "torch-2.4.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b57f07e92858db78c5b72857b4f0b33a65b00dc5d68e7948a8494b0314efb880"}, + {file = "torch-2.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:f18197f3f7c15cde2115892b64f17c80dbf01ed72b008020e7da339902742cf6"}, + {file = "torch-2.4.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:5fc1d4d7ed265ef853579caf272686d1ed87cebdcd04f2a498f800ffc53dab71"}, + {file = "torch-2.4.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:40f6d3fe3bae74efcf08cb7f8295eaddd8a838ce89e9d26929d4edd6d5e4329d"}, + {file = "torch-2.4.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:c9299c16c9743001ecef515536ac45900247f4338ecdf70746f2461f9e4831db"}, + {file = "torch-2.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:6bce130f2cd2d52ba4e2c6ada461808de7e5eccbac692525337cfb4c19421846"}, + {file = "torch-2.4.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:a38de2803ee6050309aac032676536c3d3b6a9804248537e38e098d0e14817ec"}, ] [package.dependencies] @@ -3271,6 +3286,7 @@ nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \" nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +setuptools = "*" sympy = "*" triton = {version = "3.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} typing-extensions = ">=4.8.0" @@ -3414,11 +3430,6 @@ files = [ {file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"}, {file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"}, {file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"}, - {file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"}, - {file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"}, - {file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"}, - {file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"}, - {file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"}, ] [package.dependencies] @@ -3474,46 +3485,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -3532,103 +3538,103 @@ files = [ [[package]] name = "yarl" -version = "1.9.8" +version = "1.11.1" description = "Yet another URL library" optional = false python-versions = ">=3.8" files = [ - {file = "yarl-1.9.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:08359dbc3540fafa8972db45d3ef2d61370b4c24b8a028a4301bc5d076eee0e2"}, - {file = "yarl-1.9.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7a716aae4fcecadfe4648268d3c194315152715391f4af6fad50d502be122e9"}, - {file = "yarl-1.9.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:62223670042a219b8e6fbd2c7f35c456278dcd346d3aba3f2c01c9bdec28f37e"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18097a9e50ea31c61fece83bac8f63263f0c0c16c439bf82ac729c23f3b170e3"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5809f8a48c8dab91f708947d358271ef1890c3012d6c45719f49d04af2112057"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:71ff7a22355241f89e850afbc8858fb671ba7e2763af32ebbea158d23a84902a"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d54e9880e781a490483200a74f6314fb6cf692a8197ccde93adf32bec95626b"}, - {file = "yarl-1.9.8-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ad8ea6ab27e27821739dfb94fab63284e3a52055e268f04529dc082fd0d59a2"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b79e031524259b51cdd1ea41f5053491ad3565b9cecd76389c9f705752d14283"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:bd91ccded75d080f13ed01a5f5796887916d2e8c0999cd68bcb58f89f9b1c29c"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:583f48ab25b3906e3716479e8f700c4cc487e44d52766a4ea52b01cb7ea772d6"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2f3e89838acdaf5bbd69383c408d9e119b4e9efbe8a38fa40045b5c966f918e3"}, - {file = "yarl-1.9.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:a44c0b83d1871e1e1859167a1804143f590f86ac4708380852dca4d8299d8594"}, - {file = "yarl-1.9.8-cp310-cp310-win32.whl", hash = "sha256:5d39ae58a67b64b470021d18a13529d0c58efc5bf057936ec4b29092d4061030"}, - {file = "yarl-1.9.8-cp310-cp310-win_amd64.whl", hash = "sha256:f89ade31926b9931bbe29f5c62d4174057e532fb0c72e2e6abdd129fda6a60f3"}, - {file = "yarl-1.9.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:986296e65b0312c1da168de4ec1bb054b4a7b0ec26e3f9e8dafc06bbb1385030"}, - {file = "yarl-1.9.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b4c7c015dc813aa5fe15379f3540d178e3743c0f1cf9e4a4a8bff94bd2832a4d"}, - {file = "yarl-1.9.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:22b2db22f72e1cb8a552ae12dfb748167153c7cbf353c62781915b5328bf2561"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4a567416bfb2a2b093aa64685aa7b6dfb593888784ef91b16fa6b985cceb951"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:178f4ab054f3a5dc84c8091bd7395b6713aac83af893b62259d5eb3f5359ce7f"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:02fe9809b29a7dc4a27b769a43c556288d949205db54338871a122b64751e0f4"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c885a81f6c89b0d45fc0dd88e005c77dd8ba1dac421466d0dbb9192ce6d34e1e"}, - {file = "yarl-1.9.8-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99f78f45c8b4c9824e1a37eb0a3ae63ad2dff66434d9620265a4256088be9cda"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:30929a10be9a13026fd68377aba3223d633370abb93dadd3932754f3dcf4734a"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ee7c00a1979b3f23c8094dce6d9875453b3cb91b1153d9efaefa6773cf80cdb0"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:e89d76b2aa11287f038a37577528c5f62d9385020b795a011f60dfd1b217cf9f"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:81fde88456d2cbe005e16aca78ef744f322b3b15184dfe41b5b04f97b46aa5be"}, - {file = "yarl-1.9.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b3dca0a4e192207f8bb4057725ff95e9a14d53a04728742f2b03692fc91b0a43"}, - {file = "yarl-1.9.8-cp311-cp311-win32.whl", hash = "sha256:9ea3a8532ea9fc2eeb6fc3def0c341aaeab7625545844f9c0a15350c17f9f479"}, - {file = "yarl-1.9.8-cp311-cp311-win_amd64.whl", hash = "sha256:c810606719683f4ab92127712efe283674d6ed29a627374411c762852913c2dd"}, - {file = "yarl-1.9.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b3d373373908e687aa4c8b0666870b0cf65605254ba0819ed8d5af2fc0780496"}, - {file = "yarl-1.9.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e3d1be58e28825a14fb9561733de62fbe95c892febe7d7a9ebcde916c531d603"}, - {file = "yarl-1.9.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7318736a8ee9de8217d590866dd716fa3c0895e684e2ec6152d945a4ab758043"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db3dd602cbf6613dc1e4a6fbde7a1bee86948e5940086090bb505c2ab959bbdf"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5950226b128a1610f57c1f756fc611fdbdcb1e6b4497ccb05fce76a38915b07"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b341a995673180ed81a1040228a59e0b47ee687e367b1a03d829fa3c0eb4607e"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f912153a34698994f32cf683d966014b0dd99c73481302d6159bcb3a8303e84"}, - {file = "yarl-1.9.8-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9ceab2b16043ae1953863ec240eb918ba1ac40d2aad55225141aac288c606442"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7c0d2bc2646ae2380bb91b9ddc2eb1e1fa6baef128499e817134d1d50c8b6c56"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ebd98e16ff9948e4d31514c937275017a122b765cb89961dd5d44ecd2cc18140"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:83273ca458c85d7b026c770a86df6e36349e85100bd2cefe6d0ad7167a8f12a6"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:4511dd73b6aeda0cc39111839923f1545726d621813c9d13355824fba328dbcf"}, - {file = "yarl-1.9.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0ffb9f1cad56c547aa127e2c315e666ee9838156c8a3b14f37ba545b0167aa5e"}, - {file = "yarl-1.9.8-cp312-cp312-win32.whl", hash = "sha256:5796358c3d6c72b108b570e20ab951463237ec473b6d204da21050feaaaf7dca"}, - {file = "yarl-1.9.8-cp312-cp312-win_amd64.whl", hash = "sha256:c2dc6e941bf53160b44858d1b24767a056cd83166b69fbdd3b2e401856d8932e"}, - {file = "yarl-1.9.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cb3d488f049db9522e3a0de50e07bac0c53565acd88a07bc9cf7182fd6890307"}, - {file = "yarl-1.9.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:50cbf73b6a4b62c3ad633e8920f2791adf485356ef37c9edbd5a1e7de8da2ddc"}, - {file = "yarl-1.9.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b1e0649ee7ac354a3e40ee849707140b14a2cd0cd2dc2062fe620458dfe465c8"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2501b230e89cad2361719860648f780197812d3be91c7ca6658a097a7e22fc4"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be441a73f9f49427906274008bd98384d8ca4655981735281c314fc7c145d256"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7de1968a1c2690b86e32e91acf8ed2043c346293f9bbe1704b9f6a481b73bd11"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ce892a75a2209cf4f7007de21c6f6d607f4b9406ac613a59ad02340f6e933e4"}, - {file = "yarl-1.9.8-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:405e75bb94b87cc4167eef0e08d6a539f60633229f7043edc2e65c82ef80e874"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bc5811c1906b38f2a203df1266c6dd11680ca85d610d6ee3701dde262a305520"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:51476f19fe1296d3efe3770179548f5f4822e5c4ead9f5160ba156a6a9f5272c"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2af144a81883db914636bec646da4dcccfe9db05c2899e7afe90a3d817ffce"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:8c91b71b0af1fb5454709e34b39e38c975faaa89c0cc8bb744d60300ca710fcd"}, - {file = "yarl-1.9.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:1a562055b5ec6371c307320e8460d16675244e810b20f343371fc52797d23615"}, - {file = "yarl-1.9.8-cp313-cp313-win32.whl", hash = "sha256:f7442a9342aa04ea60b760a8f0d210e269f881eb0660a2000fa1f8cb89820931"}, - {file = "yarl-1.9.8-cp313-cp313-win_amd64.whl", hash = "sha256:21ef75d8a18fa47725b50fcb7ae6d23a51c71a7426cdf7097e52f9e12a995eb6"}, - {file = "yarl-1.9.8-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fd9affa8c18198dfa5a19c63b29ef2a2f35b8efacaf0bdd3e58f974c0ab0108d"}, - {file = "yarl-1.9.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f79e65f16413a95d9f7633802a2ee34730b3ba1dd0af82811b377057883c4fb7"}, - {file = "yarl-1.9.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3f8c454cf7e4d3762515ed2b5a40cf2feaeb8a8ed1d121f131a6178e16015319"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f972fc63a1d6165d1cff650a16a498b0087334f7f9cd7385860c086d009cd49"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ac4aa2f2d8253b9a5455d5f0ed45687ea9715b78a563490ddf7954337974cb7"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b001379047de5e03224dc0592f1b0e60738857a9b992d9b636b5050500ecce23"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39deb5a67b591682e54d1b09b36e79cd608ca27bea1fefed3bcaaa0b05d2b25e"}, - {file = "yarl-1.9.8-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffd9dd7eac5d36f53fccdf11e98730b7a628561c77f6c2a9e0909d2a304f34d1"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:497d5fd7dce44b5dcac648c830c99a673d30bc6cd9905b3e255c92c6dc01f537"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:d99011d564f2b5cb4cf1012f9058e08d8d79674332474f7e940131f5952015df"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:600f734296cb99db1af7e34c0dcf8ec9477072f72c4621677637fdc2273af120"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6703deac7bb0dd8b3f0bc3cb6844dab4e74c85c70783ae89bd0b52286ebdc102"}, - {file = "yarl-1.9.8-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3346e2f641fcf31cf32c5a394d625e0676aba6fadccc06d35435e475753ed05d"}, - {file = "yarl-1.9.8-cp38-cp38-win32.whl", hash = "sha256:a54f7a63e48156a77a7c0333cefed29ceb004ab683d685a1192b341ac445cb73"}, - {file = "yarl-1.9.8-cp38-cp38-win_amd64.whl", hash = "sha256:45992ff8d941a1901c35f2ed90a60cb5fee8705ffadff395db4a5fd164473542"}, - {file = "yarl-1.9.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:590437f092af08e71521cc302940ef897e969152434c825bb3fb8f308b63a8bb"}, - {file = "yarl-1.9.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:551c26789acd38c7b90a89a1f262291d9f9a6a677185a83b5781e2a2c4258aec"}, - {file = "yarl-1.9.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:121bf7d647b3f6481ce1030350c1cc4c43e18758010732a449c71a1784ae793d"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0c9db466370e8bc3459912850494ad3401f3664ff3a56842f0d4514166f54c9f"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ff56e21379824f3e3c39a37083d5ab905168b9483b1c0c563dd92eb2db18b251"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cce910a1510d60c7eff4bb263b28b9afdcc5f6b85c555e492cfe7548a09e2476"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ba7c4b50cc0bb4caaa54554613ca13db47a24878a4fc1063e6303494fc67567"}, - {file = "yarl-1.9.8-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b345de5e725b82e9458dc1381d7e28fe7d7ef93491370461dc98283b9dda51e2"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:49dd58b79b0fd04e880c90bc570fde68407cc516c58812f0321f5e74c131107c"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:15fb127bcc19065fd912391a43bc80114635f0062e0465765633ab5d0c7fc3a1"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:6f4f87a7c97ba77fdc764b893ae4083c74e5857904962a70025ade0cd42bdbaf"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:d336601d9ff3dc3b12263739ab1add25bdd2345d675f59ad49f72d9a6ccbc865"}, - {file = "yarl-1.9.8-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:3574834e4aaf24e24d12fa4fd53d0b0fd1d70b24a67bed81c44b284377e81d45"}, - {file = "yarl-1.9.8-cp39-cp39-win32.whl", hash = "sha256:db9305328486539bb7182c15f1ad1ea95dae52245e93a049f2b1d6f04e63674d"}, - {file = "yarl-1.9.8-cp39-cp39-win_amd64.whl", hash = "sha256:588d62a57c7a43b230557728ec9f252b3f81ad073cb5c0ef48d87cd3f8b6ace2"}, - {file = "yarl-1.9.8-py3-none-any.whl", hash = "sha256:d1612ce50f23b94897b9ef5eb65b72398a9a83ea990b42825272590f3484dae3"}, - {file = "yarl-1.9.8.tar.gz", hash = "sha256:3089553548d9ab23152cecb5a71131caaa9e9b16d7fc8196057c374fdc53cc4b"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:400cd42185f92de559d29eeb529e71d80dfbd2f45c36844914a4a34297ca6f00"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8258c86f47e080a258993eed877d579c71da7bda26af86ce6c2d2d072c11320d"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2164cd9725092761fed26f299e3f276bb4b537ca58e6ff6b252eae9631b5c96e"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08ea567c16f140af8ddc7cb58e27e9138a1386e3e6e53982abaa6f2377b38cc"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:768ecc550096b028754ea28bf90fde071c379c62c43afa574edc6f33ee5daaec"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2909fa3a7d249ef64eeb2faa04b7957e34fefb6ec9966506312349ed8a7e77bf"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01a8697ec24f17c349c4f655763c4db70eebc56a5f82995e5e26e837c6eb0e49"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e286580b6511aac7c3268a78cdb861ec739d3e5a2a53b4809faef6b49778eaff"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4179522dc0305c3fc9782549175c8e8849252fefeb077c92a73889ccbcd508ad"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:27fcb271a41b746bd0e2a92182df507e1c204759f460ff784ca614e12dd85145"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f61db3b7e870914dbd9434b560075e0366771eecbe6d2b5561f5bc7485f39efd"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:c92261eb2ad367629dc437536463dc934030c9e7caca861cc51990fe6c565f26"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d95b52fbef190ca87d8c42f49e314eace4fc52070f3dfa5f87a6594b0c1c6e46"}, + {file = "yarl-1.11.1-cp310-cp310-win32.whl", hash = "sha256:489fa8bde4f1244ad6c5f6d11bb33e09cf0d1d0367edb197619c3e3fc06f3d91"}, + {file = "yarl-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:476e20c433b356e16e9a141449f25161e6b69984fb4cdbd7cd4bd54c17844998"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:946eedc12895873891aaceb39bceb484b4977f70373e0122da483f6c38faaa68"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:21a7c12321436b066c11ec19c7e3cb9aec18884fe0d5b25d03d756a9e654edfe"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c35f493b867912f6fda721a59cc7c4766d382040bdf1ddaeeaa7fa4d072f4675"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25861303e0be76b60fddc1250ec5986c42f0a5c0c50ff57cc30b1be199c00e63"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4b53f73077e839b3f89c992223f15b1d2ab314bdbdf502afdc7bb18e95eae27"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:327c724b01b8641a1bf1ab3b232fb638706e50f76c0b5bf16051ab65c868fac5"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4307d9a3417eea87715c9736d050c83e8c1904e9b7aada6ce61b46361b733d92"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48a28bed68ab8fb7e380775f0029a079f08a17799cb3387a65d14ace16c12e2b"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:067b961853c8e62725ff2893226fef3d0da060656a9827f3f520fb1d19b2b68a"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8215f6f21394d1f46e222abeb06316e77ef328d628f593502d8fc2a9117bde83"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:498442e3af2a860a663baa14fbf23fb04b0dd758039c0e7c8f91cb9279799bff"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:69721b8effdb588cb055cc22f7c5105ca6fdaa5aeb3ea09021d517882c4a904c"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1e969fa4c1e0b1a391f3fcbcb9ec31e84440253325b534519be0d28f4b6b533e"}, + {file = "yarl-1.11.1-cp311-cp311-win32.whl", hash = "sha256:7d51324a04fc4b0e097ff8a153e9276c2593106a811704025bbc1d6916f45ca6"}, + {file = "yarl-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:15061ce6584ece023457fb8b7a7a69ec40bf7114d781a8c4f5dcd68e28b5c53b"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a4264515f9117be204935cd230fb2a052dd3792789cc94c101c535d349b3dab0"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f41fa79114a1d2eddb5eea7b912d6160508f57440bd302ce96eaa384914cd265"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02da8759b47d964f9173c8675710720b468aa1c1693be0c9c64abb9d8d9a4867"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9361628f28f48dcf8b2f528420d4d68102f593f9c2e592bfc842f5fb337e44fd"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b91044952da03b6f95fdba398d7993dd983b64d3c31c358a4c89e3c19b6f7aef"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:74db2ef03b442276d25951749a803ddb6e270d02dda1d1c556f6ae595a0d76a8"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e975a2211952a8a083d1b9d9ba26472981ae338e720b419eb50535de3c02870"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aef97ba1dd2138112890ef848e17d8526fe80b21f743b4ee65947ea184f07a2"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a7915ea49b0c113641dc4d9338efa9bd66b6a9a485ffe75b9907e8573ca94b84"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:504cf0d4c5e4579a51261d6091267f9fd997ef58558c4ffa7a3e1460bd2336fa"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3de5292f9f0ee285e6bd168b2a77b2a00d74cbcfa420ed078456d3023d2f6dff"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a34e1e30f1774fa35d37202bbeae62423e9a79d78d0874e5556a593479fdf239"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:66b63c504d2ca43bf7221a1f72fbe981ff56ecb39004c70a94485d13e37ebf45"}, + {file = "yarl-1.11.1-cp312-cp312-win32.whl", hash = "sha256:a28b70c9e2213de425d9cba5ab2e7f7a1c8ca23a99c4b5159bf77b9c31251447"}, + {file = "yarl-1.11.1-cp312-cp312-win_amd64.whl", hash = "sha256:17b5a386d0d36fb828e2fb3ef08c8829c1ebf977eef88e5367d1c8c94b454639"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1fa2e7a406fbd45b61b4433e3aa254a2c3e14c4b3186f6e952d08a730807fa0c"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:750f656832d7d3cb0c76be137ee79405cc17e792f31e0a01eee390e383b2936e"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0b8486f322d8f6a38539136a22c55f94d269addb24db5cb6f61adc61eabc9d93"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3fce4da3703ee6048ad4138fe74619c50874afe98b1ad87b2698ef95bf92c96d"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed653638ef669e0efc6fe2acb792275cb419bf9cb5c5049399f3556995f23c7"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18ac56c9dd70941ecad42b5a906820824ca72ff84ad6fa18db33c2537ae2e089"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:688654f8507464745ab563b041d1fb7dab5d9912ca6b06e61d1c4708366832f5"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4973eac1e2ff63cf187073cd4e1f1148dcd119314ab79b88e1b3fad74a18c9d5"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:964a428132227edff96d6f3cf261573cb0f1a60c9a764ce28cda9525f18f7786"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:6d23754b9939cbab02c63434776df1170e43b09c6a517585c7ce2b3d449b7318"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c2dc4250fe94d8cd864d66018f8344d4af50e3758e9d725e94fecfa27588ff82"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09696438cb43ea6f9492ef237761b043f9179f455f405279e609f2bc9100212a"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:999bfee0a5b7385a0af5ffb606393509cfde70ecca4f01c36985be6d33e336da"}, + {file = "yarl-1.11.1-cp313-cp313-win32.whl", hash = "sha256:ce928c9c6409c79e10f39604a7e214b3cb69552952fbda8d836c052832e6a979"}, + {file = "yarl-1.11.1-cp313-cp313-win_amd64.whl", hash = "sha256:501c503eed2bb306638ccb60c174f856cc3246c861829ff40eaa80e2f0330367"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dae7bd0daeb33aa3e79e72877d3d51052e8b19c9025ecf0374f542ea8ec120e4"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3ff6b1617aa39279fe18a76c8d165469c48b159931d9b48239065767ee455b2b"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3257978c870728a52dcce8c2902bf01f6c53b65094b457bf87b2644ee6238ddc"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f351fa31234699d6084ff98283cb1e852270fe9e250a3b3bf7804eb493bd937"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8aef1b64da41d18026632d99a06b3fefe1d08e85dd81d849fa7c96301ed22f1b"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7175a87ab8f7fbde37160a15e58e138ba3b2b0e05492d7351314a250d61b1591"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba444bdd4caa2a94456ef67a2f383710928820dd0117aae6650a4d17029fa25e"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ea9682124fc062e3d931c6911934a678cb28453f957ddccf51f568c2f2b5e05"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8418c053aeb236b20b0ab8fa6bacfc2feaaf7d4683dd96528610989c99723d5f"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:61a5f2c14d0a1adfdd82258f756b23a550c13ba4c86c84106be4c111a3a4e413"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f3a6d90cab0bdf07df8f176eae3a07127daafcf7457b997b2bf46776da2c7eb7"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:077da604852be488c9a05a524068cdae1e972b7dc02438161c32420fb4ec5e14"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:15439f3c5c72686b6c3ff235279630d08936ace67d0fe5c8d5bbc3ef06f5a420"}, + {file = "yarl-1.11.1-cp38-cp38-win32.whl", hash = "sha256:238a21849dd7554cb4d25a14ffbfa0ef380bb7ba201f45b144a14454a72ffa5a"}, + {file = "yarl-1.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:67459cf8cf31da0e2cbdb4b040507e535d25cfbb1604ca76396a3a66b8ba37a6"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:884eab2ce97cbaf89f264372eae58388862c33c4f551c15680dd80f53c89a269"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a336eaa7ee7e87cdece3cedb395c9657d227bfceb6781295cf56abcd3386a26"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87f020d010ba80a247c4abc335fc13421037800ca20b42af5ae40e5fd75e7909"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:637c7ddb585a62d4469f843dac221f23eec3cbad31693b23abbc2c366ad41ff4"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:48dfd117ab93f0129084577a07287376cc69c08138694396f305636e229caa1a"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75e0ae31fb5ccab6eda09ba1494e87eb226dcbd2372dae96b87800e1dcc98804"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f46f81501160c28d0c0b7333b4f7be8983dbbc161983b6fb814024d1b4952f79"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:04293941646647b3bfb1719d1d11ff1028e9c30199509a844da3c0f5919dc520"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:250e888fa62d73e721f3041e3a9abf427788a1934b426b45e1b92f62c1f68366"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e8f63904df26d1a66aabc141bfd258bf738b9bc7bc6bdef22713b4f5ef789a4c"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:aac44097d838dda26526cffb63bdd8737a2dbdf5f2c68efb72ad83aec6673c7e"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:267b24f891e74eccbdff42241c5fb4f974de2d6271dcc7d7e0c9ae1079a560d9"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6907daa4b9d7a688063ed098c472f96e8181733c525e03e866fb5db480a424df"}, + {file = "yarl-1.11.1-cp39-cp39-win32.whl", hash = "sha256:14438dfc5015661f75f85bc5adad0743678eefee266ff0c9a8e32969d5d69f74"}, + {file = "yarl-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:94d0caaa912bfcdc702a4204cd5e2bb01eb917fc4f5ea2315aa23962549561b0"}, + {file = "yarl-1.11.1-py3-none-any.whl", hash = "sha256:72bf26f66456baa0584eff63e44545c9f0eaed9b73cb6601b647c91f14c11f38"}, + {file = "yarl-1.11.1.tar.gz", hash = "sha256:1bb2d9e212fb7449b8fb73bc461b51eaa17cc8430b4a87d87be7b25052d92f53"}, ] [package.dependencies] @@ -3656,5 +3662,5 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "b7ce038a8a28be6113e9a501952e3ceea1c3e4c143511e0cd2be2a90b19d545d" +python-versions = ">=3.9,<4.0" +content-hash = "935cfcef42083ca2d00fab8dc58837c2911041ea1526c684a54c4a1404648d39" diff --git a/libs/partners/huggingface/pyproject.toml b/libs/partners/huggingface/pyproject.toml index ad18e7b8aa327..53c0dc204f4f3 100644 --- a/libs/partners/huggingface/pyproject.toml +++ b/libs/partners/huggingface/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-huggingface" -version = "0.0.3" +version = "0.1.0" description = "An integration package connecting Hugging Face and LangChain" authors = [] readme = "README.md" @@ -19,22 +19,26 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-huggingface%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.52,<0.3" +python = ">=3.9,<4.0" +langchain-core = ">=0.3.0,<0.4" tokenizers = ">=0.19.1" transformers = ">=4.39.0" sentence-transformers = ">=2.6.0" huggingface-hub = ">=0.23.0" [tool.ruff.lint] -select = [ "E", "F", "I", "T201",] +select = ["E", "F", "I", "T201"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] diff --git a/libs/partners/huggingface/scripts/check_pydantic.sh b/libs/partners/huggingface/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/huggingface/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/huggingface/tests/integration_tests/test_standard.py b/libs/partners/huggingface/tests/integration_tests/test_standard.py index f9180b4771141..fd120f3f0f63a 100644 --- a/libs/partners/huggingface/tests/integration_tests/test_standard.py +++ b/libs/partners/huggingface/tests/integration_tests/test_standard.py @@ -65,10 +65,18 @@ def test_bind_runnables_as_tools(self, model: BaseChatModel) -> None: def test_structured_output(self, model: BaseChatModel) -> None: super().test_structured_output(model) + @pytest.mark.xfail(reason=("Not implemented")) + def test_structured_output_async(self, model: BaseChatModel) -> None: # type: ignore[override] + super().test_structured_output(model) + @pytest.mark.xfail(reason=("Not implemented")) def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: super().test_structured_output_pydantic_2_v1(model) + @pytest.mark.xfail(reason=("Not implemented")) + def test_structured_output_optional_param(self, model: BaseChatModel) -> None: + super().test_structured_output_optional_param(model) + @pytest.mark.xfail(reason=("Not implemented")) def test_tool_message_histories_list_content(self, model: BaseChatModel) -> None: super().test_tool_message_histories_list_content(model) diff --git a/libs/partners/milvus/.gitignore b/libs/partners/milvus/.gitignore deleted file mode 100644 index bee8a64b79a99..0000000000000 --- a/libs/partners/milvus/.gitignore +++ /dev/null @@ -1 +0,0 @@ -__pycache__ diff --git a/libs/partners/milvus/LICENSE b/libs/partners/milvus/LICENSE deleted file mode 100644 index 426b65090341f..0000000000000 --- a/libs/partners/milvus/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2023 LangChain, Inc. - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/libs/partners/milvus/Makefile b/libs/partners/milvus/Makefile deleted file mode 100644 index 9234f584f08d5..0000000000000 --- a/libs/partners/milvus/Makefile +++ /dev/null @@ -1,59 +0,0 @@ -.PHONY: all format lint test tests integration_tests docker_tests help extended_tests - -# Default target executed when no arguments are given to make. -all: help - -# Define a variable for the test file path. -TEST_FILE ?= tests/unit_tests/ -integration_test integration_tests: TEST_FILE=tests/integration_tests/ - -test tests integration_test integration_tests: - poetry run pytest $(TEST_FILE) - -test_watch: - poetry run ptw --snapshot-update --now . -- -vv $(TEST_FILE) - - -###################### -# LINTING AND FORMATTING -###################### - -# Define a variable for Python and notebook files. -PYTHON_FILES=. -MYPY_CACHE=.mypy_cache -lint format: PYTHON_FILES=. -lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/partners/milvus --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$') -lint_package: PYTHON_FILES=langchain_milvus -lint_tests: PYTHON_FILES=tests -lint_tests: MYPY_CACHE=.mypy_cache_test - -lint lint_diff lint_package lint_tests: - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff $(PYTHON_FILES) - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff - [ "$(PYTHON_FILES)" = "" ] || mkdir -p $(MYPY_CACHE) && poetry run mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE) - -format format_diff: - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff --select I --fix $(PYTHON_FILES) - -spell_check: - poetry run codespell --toml pyproject.toml - -spell_fix: - poetry run codespell --toml pyproject.toml -w - -check_imports: $(shell find langchain_milvus -name '*.py') - poetry run python ./scripts/check_imports.py $^ - -###################### -# HELP -###################### - -help: - @echo '----' - @echo 'check_imports - check imports' - @echo 'format - run code formatters' - @echo 'lint - run linters' - @echo 'test - run unit tests' - @echo 'tests - run unit tests' - @echo 'test TEST_FILE=<test_file> - run all tests in file' diff --git a/libs/partners/milvus/README.md b/libs/partners/milvus/README.md index 80820f32d1b6a..5d7b8dccac0a3 100644 --- a/libs/partners/milvus/README.md +++ b/libs/partners/milvus/README.md @@ -1,42 +1,3 @@ -# langchain-milvus +This package has moved! -This is a library integration with [Milvus](https://milvus.io/) and [Zilliz Cloud](https://zilliz.com/cloud). - -## Installation - -```bash -pip install -U langchain-milvus -``` - -## Milvus vector database - -See a [usage example](https://python.langchain.com/v0.2/docs/integrations/vectorstores/milvus/) - -```python -from langchain_milvus import Milvus -``` - -## Milvus hybrid search - -See a [usage example](https://python.langchain.com/v0.2/docs/integrations/retrievers/milvus_hybrid_search/). - -```python -from langchain_milvus import MilvusCollectionHybridSearchRetriever -``` - - -## Zilliz Cloud vector database - -See a [usage example](https://python.langchain.com/v0.2/docs/integrations/vectorstores/zilliz/). - -```python -from langchain_milvus import Zilliz -``` - -## Zilliz Cloud Pipeline Retriever - -See a [usage example](https://python.langchain.com/v0.2/docs/integrations/retrievers/zilliz_cloud_pipeline/). - -```python -from langchain_milvus import ZillizCloudPipelineRetriever -``` \ No newline at end of file +https://github.com/langchain-ai/langchain-milvus/tree/main/libs/milvus diff --git a/libs/partners/milvus/langchain_milvus/__init__.py b/libs/partners/milvus/langchain_milvus/__init__.py deleted file mode 100644 index b19bc1d7e697a..0000000000000 --- a/libs/partners/milvus/langchain_milvus/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -from langchain_milvus.retrievers import ( - MilvusCollectionHybridSearchRetriever, - ZillizCloudPipelineRetriever, -) -from langchain_milvus.vectorstores import Milvus, Zilliz - -__all__ = [ - "Milvus", - "Zilliz", - "ZillizCloudPipelineRetriever", - "MilvusCollectionHybridSearchRetriever", -] diff --git a/libs/partners/milvus/langchain_milvus/py.typed b/libs/partners/milvus/langchain_milvus/py.typed deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/langchain_milvus/retrievers/__init__.py b/libs/partners/milvus/langchain_milvus/retrievers/__init__.py deleted file mode 100644 index 1edac3cb5af73..0000000000000 --- a/libs/partners/milvus/langchain_milvus/retrievers/__init__.py +++ /dev/null @@ -1,8 +0,0 @@ -from langchain_milvus.retrievers.milvus_hybrid_search import ( - MilvusCollectionHybridSearchRetriever, -) -from langchain_milvus.retrievers.zilliz_cloud_pipeline_retriever import ( - ZillizCloudPipelineRetriever, -) - -__all__ = ["ZillizCloudPipelineRetriever", "MilvusCollectionHybridSearchRetriever"] diff --git a/libs/partners/milvus/langchain_milvus/retrievers/milvus_hybrid_search.py b/libs/partners/milvus/langchain_milvus/retrievers/milvus_hybrid_search.py deleted file mode 100644 index b6e309c32eeb0..0000000000000 --- a/libs/partners/milvus/langchain_milvus/retrievers/milvus_hybrid_search.py +++ /dev/null @@ -1,161 +0,0 @@ -from typing import Any, Dict, List, Optional, Union - -from langchain_core.callbacks import CallbackManagerForRetrieverRun -from langchain_core.documents import Document -from langchain_core.embeddings import Embeddings -from langchain_core.retrievers import BaseRetriever -from pymilvus import AnnSearchRequest, Collection -from pymilvus.client.abstract import BaseRanker, SearchResult # type: ignore - -from langchain_milvus.utils.sparse import BaseSparseEmbedding - - -class MilvusCollectionHybridSearchRetriever(BaseRetriever): - """Hybrid search retriever - that uses Milvus Collection to retrieve documents based on multiple fields. - - For more information, please refer to: - https://milvus.io/docs/release_notes.md#Multi-Embedding---Hybrid-Search - """ - - collection: Collection - """Milvus Collection object.""" - rerank: BaseRanker - """Milvus ranker object. Such as WeightedRanker or RRFRanker.""" - anns_fields: List[str] - """The names of vector fields that are used for ANNS search.""" - field_embeddings: List[Union[Embeddings, BaseSparseEmbedding]] - """The embedding functions of each vector fields, - which can be either Embeddings or BaseSparseEmbedding.""" - field_search_params: Optional[List[Dict]] = None - """The search parameters of each vector fields. - If not specified, the default search parameters will be used.""" - field_limits: Optional[List[int]] = None - """Limit number of results for each ANNS field. - If not specified, the default top_k will be used.""" - field_exprs: Optional[List[Optional[str]]] = None - """The boolean expression for filtering the search results.""" - top_k: int = 4 - """Final top-K number of documents to retrieve.""" - text_field: str = "text" - """The text field name, - which will be used as the `page_content` of a `Document` object.""" - output_fields: Optional[List[str]] = None - """Final output fields of the documents. - If not specified, all fields except the vector fields will be used as output fields, - which will be the `metadata` of a `Document` object.""" - - def __init__(self, **kwargs: Any): - super().__init__(**kwargs) - - # If some parameters are not specified, set default values - if self.field_search_params is None: - default_search_params = { - "metric_type": "L2", - "params": {"nprobe": 10}, - } - self.field_search_params = [default_search_params] * len(self.anns_fields) - if self.field_limits is None: - self.field_limits = [self.top_k] * len(self.anns_fields) - if self.field_exprs is None: - self.field_exprs = [None] * len(self.anns_fields) - - # Check the fields - self._validate_fields_num() - self.output_fields = self._get_output_fields() - self._validate_fields_name() - - # Load collection - self.collection.load() - - def _validate_fields_num(self) -> None: - assert ( - len(self.anns_fields) >= 2 - ), "At least two fields are required for hybrid search." - lengths = [len(self.anns_fields)] - if self.field_limits is not None: - lengths.append(len(self.field_limits)) - if self.field_exprs is not None: - lengths.append(len(self.field_exprs)) - - if not all(length == lengths[0] for length in lengths): - raise ValueError("All field-related lists must have the same length.") - - if len(self.field_search_params) != len(self.anns_fields): # type: ignore[arg-type] - raise ValueError( - "field_search_params must have the same length as anns_fields." - ) - - def _validate_fields_name(self) -> None: - collection_fields = [x.name for x in self.collection.schema.fields] - for field in self.anns_fields: - assert ( - field in collection_fields - ), f"{field} is not a valid field in the collection." - assert ( - self.text_field in collection_fields - ), f"{self.text_field} is not a valid field in the collection." - for field in self.output_fields: # type: ignore[union-attr] - assert ( - field in collection_fields - ), f"{field} is not a valid field in the collection." - - def _get_output_fields(self) -> List[str]: - if self.output_fields: - return self.output_fields - output_fields = [x.name for x in self.collection.schema.fields] - for field in self.anns_fields: - if field in output_fields: - output_fields.remove(field) - if self.text_field not in output_fields: - output_fields.append(self.text_field) - return output_fields - - def _build_ann_search_requests(self, query: str) -> List[AnnSearchRequest]: - search_requests = [] - for ann_field, embedding, param, limit, expr in zip( - self.anns_fields, - self.field_embeddings, - self.field_search_params, # type: ignore[arg-type] - self.field_limits, # type: ignore[arg-type] - self.field_exprs, # type: ignore[arg-type] - ): - request = AnnSearchRequest( - data=[embedding.embed_query(query)], - anns_field=ann_field, - param=param, - limit=limit, - expr=expr, - ) - search_requests.append(request) - return search_requests - - def _parse_document(self, data: dict) -> Document: - return Document( - page_content=data.pop(self.text_field), - metadata=data, - ) - - def _process_search_result( - self, search_results: List[SearchResult] - ) -> List[Document]: - documents = [] - for result in search_results[0]: - data = {x: result.entity.get(x) for x in self.output_fields} # type: ignore[union-attr] - doc = self._parse_document(data) - documents.append(doc) - return documents - - def _get_relevant_documents( - self, - query: str, - *, - run_manager: CallbackManagerForRetrieverRun, - **kwargs: Any, - ) -> List[Document]: - requests = self._build_ann_search_requests(query) - search_result = self.collection.hybrid_search( - requests, self.rerank, limit=self.top_k, output_fields=self.output_fields - ) - documents = self._process_search_result(search_result) - return documents diff --git a/libs/partners/milvus/langchain_milvus/retrievers/zilliz_cloud_pipeline_retriever.py b/libs/partners/milvus/langchain_milvus/retrievers/zilliz_cloud_pipeline_retriever.py deleted file mode 100644 index 88c6a55cac93c..0000000000000 --- a/libs/partners/milvus/langchain_milvus/retrievers/zilliz_cloud_pipeline_retriever.py +++ /dev/null @@ -1,215 +0,0 @@ -from typing import Any, Dict, List, Optional - -import requests -from langchain_core.callbacks.manager import CallbackManagerForRetrieverRun -from langchain_core.documents import Document -from langchain_core.retrievers import BaseRetriever - - -class ZillizCloudPipelineRetriever(BaseRetriever): - """`Zilliz Cloud Pipeline` retriever. - - Parameters: - pipeline_ids: A dictionary of pipeline ids. - Valid keys: "ingestion", "search", "deletion". - token: Zilliz Cloud's token. Defaults to "". - cloud_region: The region of Zilliz Cloud's cluster. - Defaults to 'gcp-us-west1'. - """ - - pipeline_ids: Dict - token: str = "" - cloud_region: str = "gcp-us-west1" - - def _get_relevant_documents( - self, - query: str, - top_k: int = 10, - offset: int = 0, - output_fields: List = [], - filter: str = "", - *, - run_manager: CallbackManagerForRetrieverRun, - ) -> List[Document]: - """ - Get documents relevant to a query. - - Args: - query: String to find relevant documents for - top_k: The number of results. Defaults to 10. - offset: The number of records to skip in the search result. - Defaults to 0. - output_fields: The extra fields to present in output. - filter: The Milvus expression to filter search results. - Defaults to "". - run_manager: The callbacks handler to use. - - Returns: - List of relevant documents - """ - if "search" in self.pipeline_ids: - search_pipe_id = self.pipeline_ids.get("search") - else: - raise Exception( - "A search pipeline id must be provided in pipeline_ids to " - "get relevant documents." - ) - domain = ( - f"https://controller.api.{self.cloud_region}.zillizcloud.com/v1/pipelines" - ) - headers = { - "Authorization": f"Bearer {self.token}", - "Accept": "application/json", - "Content-Type": "application/json", - } - url = f"{domain}/{search_pipe_id}/run" - - params = { - "data": {"query_text": query}, - "params": { - "limit": top_k, - "offset": offset, - "outputFields": output_fields, - "filter": filter, - }, - } - - response = requests.post(url, headers=headers, json=params) - if response.status_code != 200: - raise RuntimeError(response.text) - response_dict = response.json() - if response_dict["code"] != 200: - raise RuntimeError(response_dict) - response_data = response_dict["data"] - search_results = response_data["result"] - return [ - Document( - page_content=result.pop("text") - if "text" in result - else result.pop("chunk_text"), - metadata=result, - ) - for result in search_results - ] - - def add_texts( - self, texts: List[str], metadata: Optional[Dict[str, Any]] = None - ) -> Dict: - """ - Add documents to store. - Only supported by a text ingestion pipeline in Zilliz Cloud. - - Args: - texts: A list of text strings. - metadata: A key-value dictionary of metadata will - be inserted as preserved fields required by ingestion pipeline. - Defaults to None. - """ - if "ingestion" in self.pipeline_ids: - ingeset_pipe_id = self.pipeline_ids.get("ingestion") - else: - raise Exception( - "An ingestion pipeline id must be provided in pipeline_ids to" - " add documents." - ) - domain = ( - f"https://controller.api.{self.cloud_region}.zillizcloud.com/v1/pipelines" - ) - headers = { - "Authorization": f"Bearer {self.token}", - "Accept": "application/json", - "Content-Type": "application/json", - } - url = f"{domain}/{ingeset_pipe_id}/run" - - metadata = {} if metadata is None else metadata - params = {"data": {"text_list": texts}} - params["data"].update(metadata) - - response = requests.post(url, headers=headers, json=params) - if response.status_code != 200: - raise Exception(response.text) - response_dict = response.json() - if response_dict["code"] != 200: - raise Exception(response_dict) - response_data = response_dict["data"] - return response_data - - def add_doc_url( - self, doc_url: str, metadata: Optional[Dict[str, Any]] = None - ) -> Dict: - """ - Add a document from url. - Only supported by a document ingestion pipeline in Zilliz Cloud. - - Args: - doc_url: A document url. - metadata: A key-value dictionary of metadata will - be inserted as preserved fields required by ingestion pipeline. - Defaults to None. - """ - if "ingestion" in self.pipeline_ids: - ingest_pipe_id = self.pipeline_ids.get("ingestion") - else: - raise Exception( - "An ingestion pipeline id must be provided in pipeline_ids to " - "add documents." - ) - domain = ( - f"https://controller.api.{self.cloud_region}.zillizcloud.com/v1/pipelines" - ) - headers = { - "Authorization": f"Bearer {self.token}", - "Accept": "application/json", - "Content-Type": "application/json", - } - url = f"{domain}/{ingest_pipe_id}/run" - - params = {"data": {"doc_url": doc_url}} - metadata = {} if metadata is None else metadata - params["data"].update(metadata) - - response = requests.post(url, headers=headers, json=params) - if response.status_code != 200: - raise Exception(response.text) - response_dict = response.json() - if response_dict["code"] != 200: - raise Exception(response_dict) - response_data = response_dict["data"] - return response_data - - def delete(self, key: str, value: Any) -> Dict: - """ - Delete documents. Only supported by a deletion pipeline in Zilliz Cloud. - - Args: - key: input name to run the deletion pipeline - value: input value to run deletion pipeline - """ - if "deletion" in self.pipeline_ids: - deletion_pipe_id = self.pipeline_ids.get("deletion") - else: - raise Exception( - "A deletion pipeline id must be provided in pipeline_ids to " - "add documents." - ) - domain = ( - f"https://controller.api.{self.cloud_region}.zillizcloud.com/v1/pipelines" - ) - headers = { - "Authorization": f"Bearer {self.token}", - "Accept": "application/json", - "Content-Type": "application/json", - } - url = f"{domain}/{deletion_pipe_id}/run" - - params = {"data": {key: value}} - - response = requests.post(url, headers=headers, json=params) - if response.status_code != 200: - raise Exception(response.text) - response_dict = response.json() - if response_dict["code"] != 200: - raise Exception(response_dict) - response_data = response_dict["data"] - return response_data diff --git a/libs/partners/milvus/langchain_milvus/utils/__init__.py b/libs/partners/milvus/langchain_milvus/utils/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/langchain_milvus/utils/sparse.py b/libs/partners/milvus/langchain_milvus/utils/sparse.py deleted file mode 100644 index 47c19567ceab7..0000000000000 --- a/libs/partners/milvus/langchain_milvus/utils/sparse.py +++ /dev/null @@ -1,55 +0,0 @@ -from abc import ABC, abstractmethod -from typing import Dict, List - -from scipy.sparse import csr_array # type: ignore - - -class BaseSparseEmbedding(ABC): - """Interface for Sparse embedding models. - - You can inherit from it and implement your custom sparse embedding model. - """ - - @abstractmethod - def embed_query(self, query: str) -> Dict[int, float]: - """Embed query text.""" - - @abstractmethod - def embed_documents(self, texts: List[str]) -> List[Dict[int, float]]: - """Embed search docs.""" - - -class BM25SparseEmbedding(BaseSparseEmbedding): - """Sparse embedding model based on BM25. - - This class uses the BM25 model in Milvus model to implement sparse vector embedding. - This model requires pymilvus[model] to be installed. - `pip install pymilvus[model]` - For more information please refer to: - https://milvus.io/docs/embed-with-bm25.md - """ - - def __init__(self, corpus: List[str], language: str = "en"): - from pymilvus.model.sparse import BM25EmbeddingFunction # type: ignore - from pymilvus.model.sparse.bm25.tokenizers import ( # type: ignore - build_default_analyzer, - ) - - self.analyzer = build_default_analyzer(language=language) - self.bm25_ef = BM25EmbeddingFunction(self.analyzer, num_workers=1) - self.bm25_ef.fit(corpus) - - def embed_query(self, text: str) -> Dict[int, float]: - return self._sparse_to_dict(self.bm25_ef.encode_queries([text])) - - def embed_documents(self, texts: List[str]) -> List[Dict[int, float]]: - sparse_arrays = self.bm25_ef.encode_documents(texts) - return [self._sparse_to_dict(sparse_array) for sparse_array in sparse_arrays] - - def _sparse_to_dict(self, sparse_array: csr_array) -> Dict[int, float]: - row_indices, col_indices = sparse_array.nonzero() - non_zero_values = sparse_array.data - result_dict = {} - for col_index, value in zip(col_indices, non_zero_values): - result_dict[col_index] = value - return result_dict diff --git a/libs/partners/milvus/langchain_milvus/vectorstores/__init__.py b/libs/partners/milvus/langchain_milvus/vectorstores/__init__.py deleted file mode 100644 index 5c6f304db98cb..0000000000000 --- a/libs/partners/milvus/langchain_milvus/vectorstores/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -from langchain_milvus.vectorstores.milvus import Milvus -from langchain_milvus.vectorstores.zilliz import Zilliz - -__all__ = [ - "Milvus", - "Zilliz", -] diff --git a/libs/partners/milvus/langchain_milvus/vectorstores/milvus.py b/libs/partners/milvus/langchain_milvus/vectorstores/milvus.py deleted file mode 100644 index 279f96303698b..0000000000000 --- a/libs/partners/milvus/langchain_milvus/vectorstores/milvus.py +++ /dev/null @@ -1,1351 +0,0 @@ -from __future__ import annotations - -import logging -from typing import Any, Dict, Iterable, List, Optional, Tuple, Union -from uuid import uuid4 - -import numpy as np -from langchain_core.documents import Document -from langchain_core.embeddings import Embeddings -from langchain_core.vectorstores import VectorStore - -from langchain_milvus.utils.sparse import BaseSparseEmbedding - -logger = logging.getLogger(__name__) - -DEFAULT_MILVUS_CONNECTION = { - "uri": "http://localhost:19530", -} - -Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] - - -def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: - """Row-wise cosine similarity between two equal-width matrices.""" - if len(X) == 0 or len(Y) == 0: - return np.array([]) - - X = np.array(X) - Y = np.array(Y) - if X.shape[1] != Y.shape[1]: - raise ValueError( - f"Number of columns in X and Y must be the same. X has shape {X.shape} " - f"and Y has shape {Y.shape}." - ) - try: - import simsimd as simd - - X = np.array(X, dtype=np.float32) - Y = np.array(Y, dtype=np.float32) - Z = 1 - np.array(simd.cdist(X, Y, metric="cosine")) - return Z - except ImportError: - logger.debug( - "Unable to import simsimd, defaulting to NumPy implementation. If you want " - "to use simsimd please install with `pip install simsimd`." - ) - X_norm = np.linalg.norm(X, axis=1) - Y_norm = np.linalg.norm(Y, axis=1) - # Ignore divide by zero errors run time warnings as those are handled below. - with np.errstate(divide="ignore", invalid="ignore"): - similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) - similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 - return similarity - - -def maximal_marginal_relevance( - query_embedding: np.ndarray, - embedding_list: list, - lambda_mult: float = 0.5, - k: int = 4, -) -> List[int]: - """Calculate maximal marginal relevance. - - Args: - query_embedding: The query embedding. - embedding_list: The list of embeddings. - lambda_mult: The lambda multiplier. Defaults to 0.5. - k: The number of results to return. Defaults to 4. - - Returns: - List[int]: The list of indices. - """ - if min(k, len(embedding_list)) <= 0: - return [] - if query_embedding.ndim == 1: - query_embedding = np.expand_dims(query_embedding, axis=0) - similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0] - most_similar = int(np.argmax(similarity_to_query)) - idxs = [most_similar] - selected = np.array([embedding_list[most_similar]]) - while len(idxs) < min(k, len(embedding_list)): - best_score = -np.inf - idx_to_add = -1 - similarity_to_selected = cosine_similarity(embedding_list, selected) - for i, query_score in enumerate(similarity_to_query): - if i in idxs: - continue - redundant_score = max(similarity_to_selected[i]) - equation_score = ( - lambda_mult * query_score - (1 - lambda_mult) * redundant_score - ) - if equation_score > best_score: - best_score = equation_score - idx_to_add = i - idxs.append(idx_to_add) - selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) - return idxs - - -class Milvus(VectorStore): - """Milvus vector store integration. - - Setup: - Install ``langchain_milvus`` package: - - .. code-block:: bash - - pip install -qU langchain_milvus - - Key init args — indexing params: - collection_name: str - Name of the collection. - collection_description: str - Description of the collection. - embedding_function: Union[Embeddings, BaseSparseEmbedding] - Embedding function to use. - - Key init args — client params: - connection_args: Optional[dict] - Connection arguments. - - Instantiate: - .. code-block:: python - - from langchain_milvus import Milvus - from langchain_openai import OpenAIEmbeddings - - URI = "./milvus_example.db" - - vector_store = Milvus( - embedding_function=OpenAIEmbeddings(), - connection_args={"uri": URI}, - ) - - Add Documents: - .. code-block:: python - - from langchain_core.documents import Document - - document_1 = Document(page_content="foo", metadata={"baz": "bar"}) - document_2 = Document(page_content="thud", metadata={"baz": "baz"}) - document_3 = Document(page_content="i will be deleted :(", metadata={"baz": "qux"}) - - documents = [document_1, document_2, document_3] - ids = ["1", "2", "3"] - vector_store.add_documents(documents=documents, ids=ids) - - Delete Documents: - .. code-block:: python - - vector_store.delete(ids=["3"]) - - Search: - .. code-block:: python - - results = vector_store.similarity_search(query="thud",k=1) - for doc in results: - print(f"* {doc.page_content} [{doc.metadata}]") - - .. code-block:: python - - * thud [{'baz': 'baz', 'pk': '2'}] - - Search with filter: - .. code-block:: python - - results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"}) - for doc in results: - print(f"* {doc.page_content} [{doc.metadata}]") - - .. code-block:: python - - * thud [{'baz': 'baz', 'pk': '2'}] - - Search with score: - .. code-block:: python - - results = vector_store.similarity_search_with_score(query="qux",k=1) - for doc, score in results: - print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]") - - .. code-block:: python - - * [SIM=0.335463] foo [{'baz': 'bar', 'pk': '1'}] - - Async: - .. code-block:: python - - # add documents - # await vector_store.aadd_documents(documents=documents, ids=ids) - - # delete documents - # await vector_store.adelete(ids=["3"]) - - # search - # results = vector_store.asimilarity_search(query="thud",k=1) - - # search with score - results = await vector_store.asimilarity_search_with_score(query="qux",k=1) - for doc,score in results: - print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]") - - .. code-block:: python - - * [SIM=0.335463] foo [{'baz': 'bar', 'pk': '1'}] - - Use as Retriever: - .. code-block:: python - - retriever = vector_store.as_retriever( - search_type="mmr", - search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5}, - ) - retriever.invoke("thud") - - .. code-block:: python - - [Document(metadata={'baz': 'baz', 'pk': '2'}, page_content='thud')] - - """ # noqa: E501 - - def __init__( - self, - embedding_function: Union[Embeddings, BaseSparseEmbedding], # type: ignore - collection_name: str = "LangChainCollection", - collection_description: str = "", - collection_properties: Optional[dict[str, Any]] = None, - connection_args: Optional[dict[str, Any]] = None, - consistency_level: str = "Session", - index_params: Optional[dict] = None, - search_params: Optional[dict] = None, - drop_old: Optional[bool] = False, - auto_id: bool = False, - *, - primary_field: str = "pk", - text_field: str = "text", - vector_field: str = "vector", - enable_dynamic_field: bool = False, - metadata_field: Optional[str] = None, - partition_key_field: Optional[str] = None, - partition_names: Optional[list] = None, - replica_number: int = 1, - timeout: Optional[float] = None, - num_shards: Optional[int] = None, - metadata_schema: Optional[dict[str, Any]] = None, - ): - """Initialize the Milvus vector store.""" - try: - from pymilvus import Collection, utility - except ImportError: - raise ValueError( - "Could not import pymilvus python package. " - "Please install it with `pip install pymilvus`." - ) - - # Default search params when one is not provided. - self.default_search_params = { - "IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}}, - "IVF_SQ8": {"metric_type": "L2", "params": {"nprobe": 10}}, - "IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}}, - "HNSW": {"metric_type": "L2", "params": {"ef": 10}}, - "RHNSW_FLAT": {"metric_type": "L2", "params": {"ef": 10}}, - "RHNSW_SQ": {"metric_type": "L2", "params": {"ef": 10}}, - "RHNSW_PQ": {"metric_type": "L2", "params": {"ef": 10}}, - "IVF_HNSW": {"metric_type": "L2", "params": {"nprobe": 10, "ef": 10}}, - "ANNOY": {"metric_type": "L2", "params": {"search_k": 10}}, - "SCANN": {"metric_type": "L2", "params": {"search_k": 10}}, - "AUTOINDEX": {"metric_type": "L2", "params": {}}, - "GPU_CAGRA": { - "metric_type": "L2", - "params": { - "itopk_size": 128, - "search_width": 4, - "min_iterations": 0, - "max_iterations": 0, - "team_size": 0, - }, - }, - "GPU_IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}}, - "GPU_IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}}, - "SPARSE_INVERTED_INDEX": { - "metric_type": "IP", - "params": {"drop_ratio_build": 0.2}, - }, - "SPARSE_WAND": {"metric_type": "IP", "params": {"drop_ratio_build": 0.2}}, - } - - self.embedding_func = embedding_function - self.collection_name = collection_name - self.collection_description = collection_description - self.collection_properties = collection_properties - self.index_params = index_params - self.search_params = search_params - self.consistency_level = consistency_level - self.auto_id = auto_id - - # In order for a collection to be compatible, pk needs to be varchar - self._primary_field = primary_field - # In order for compatibility, the text field will need to be called "text" - self._text_field = text_field - # In order for compatibility, the vector field needs to be called "vector" - self._vector_field = vector_field - if metadata_field: - logger.warning( - "DeprecationWarning: `metadata_field` is about to be deprecated, " - "please set `enable_dynamic_field`=True instead." - ) - if enable_dynamic_field and metadata_field: - metadata_field = None - logger.warning( - "When `enable_dynamic_field` is True, `metadata_field` is ignored." - ) - self.enable_dynamic_field = enable_dynamic_field - self._metadata_field = metadata_field - self._partition_key_field = partition_key_field - self.fields: list[str] = [] - self.partition_names = partition_names - self.replica_number = replica_number - self.timeout = timeout - self.num_shards = num_shards - self.metadata_schema = metadata_schema - - # Create the connection to the server - if connection_args is None: - connection_args = DEFAULT_MILVUS_CONNECTION - self.alias = self._create_connection_alias(connection_args) - self.col: Optional[Collection] = None - - # Grab the existing collection if it exists - if utility.has_collection(self.collection_name, using=self.alias): - self.col = Collection( - self.collection_name, - using=self.alias, - ) - if self.collection_properties is not None: - self.col.set_properties(self.collection_properties) - # If need to drop old, drop it - if drop_old and isinstance(self.col, Collection): - self.col.drop() - self.col = None - - # Initialize the vector store - self._init( - partition_names=partition_names, - replica_number=replica_number, - timeout=timeout, - ) - - @property - def embeddings(self) -> Union[Embeddings, BaseSparseEmbedding]: # type: ignore - return self.embedding_func - - def _create_connection_alias(self, connection_args: dict) -> str: - """Create the connection to the Milvus server.""" - from pymilvus import MilvusException, connections - - # Grab the connection arguments that are used for checking existing connection - host: str = connection_args.get("host", None) - port: Union[str, int] = connection_args.get("port", None) - address: str = connection_args.get("address", None) - uri: str = connection_args.get("uri", None) - user = connection_args.get("user", None) - db_name = connection_args.get("db_name", "default") - - # Order of use is host/port, uri, address - if host is not None and port is not None: - given_address = str(host) + ":" + str(port) - elif uri is not None: - if uri.startswith("https://"): - given_address = uri.split("https://")[1] - elif uri.startswith("http://"): - given_address = uri.split("http://")[1] - else: - given_address = uri # Milvus lite - elif address is not None: - given_address = address - else: - given_address = None - logger.debug("Missing standard address type for reuse attempt") - - # User defaults to empty string when getting connection info - if user is not None: - tmp_user = user - else: - tmp_user = "" - - # If a valid address was given, then check if a connection exists - if given_address is not None: - for con in connections.list_connections(): - addr = connections.get_connection_addr(con[0]) - if ( - con[1] - and ("address" in addr) - and (addr["address"] == given_address) - and ("user" in addr) - and (addr["user"] == tmp_user) - and (addr.get("db_name", "default") == db_name) - ): - logger.debug("Using previous connection: %s", con[0]) - return con[0] - - # Generate a new connection if one doesn't exist - alias = uuid4().hex - try: - connections.connect(alias=alias, **connection_args) - logger.debug("Created new connection using: %s", alias) - return alias - except MilvusException as e: - logger.error("Failed to create new connection using: %s", alias) - raise e - - @property - def _is_sparse_embedding(self) -> bool: - return isinstance(self.embedding_func, BaseSparseEmbedding) - - def _init( - self, - embeddings: Optional[list] = None, - metadatas: Optional[list[dict]] = None, - partition_names: Optional[list] = None, - replica_number: int = 1, - timeout: Optional[float] = None, - ) -> None: - if embeddings is not None: - self._create_collection(embeddings, metadatas) - self._extract_fields() - self._create_index() - self._create_search_params() - self._load( - partition_names=partition_names, - replica_number=replica_number, - timeout=timeout, - ) - - def _create_collection( - self, embeddings: list, metadatas: Optional[list[dict]] = None - ) -> None: - from pymilvus import ( - Collection, - CollectionSchema, - DataType, - FieldSchema, - MilvusException, - ) - from pymilvus.orm.types import infer_dtype_bydata # type: ignore - - # Determine embedding dim - dim = len(embeddings[0]) - fields = [] - # If enable_dynamic_field, we don't need to create fields, and just pass it. - # In the future, when metadata_field is deprecated, - # This logical structure will be simplified like this: - # ``` - # if not self.enable_dynamic_field and metadatas: - # for key, value in metadatas[0].items(): - # ... - # ``` - if self.enable_dynamic_field: - # If both dynamic fields and partition key field are enabled - if self._partition_key_field is not None: - # create the partition field - fields.append( - FieldSchema( - self._partition_key_field, DataType.VARCHAR, max_length=65_535 - ) - ) - elif self._metadata_field is not None: - fields.append(FieldSchema(self._metadata_field, DataType.JSON)) - else: - # Determine metadata schema - if metadatas: - # Create FieldSchema for each entry in metadata. - for key, value in metadatas[0].items(): - if key in [ - self._vector_field, - self._primary_field, - self._text_field, - ]: - logger.error( - ( - "Failure to create collection, " - "metadata key: %s is reserved." - ), - key, - ) - raise ValueError(f"Metadata key {key} is reserved.") - # Infer the corresponding datatype of the metadata - if ( - self.metadata_schema - and key in self.metadata_schema # type: ignore - and "dtype" in self.metadata_schema[key] # type: ignore - ): - kwargs = self.metadata_schema[key].get("kwargs", {}) # type: ignore - fields.append( - FieldSchema( - name=key, - dtype=self.metadata_schema[key]["dtype"], # type: ignore - **kwargs, - ) - ) - else: - dtype = infer_dtype_bydata(value) - # Datatype isn't compatible - if dtype == DataType.UNKNOWN or dtype == DataType.NONE: - logger.error( - ( - "Failure to create collection, " - "unrecognized dtype for key: %s" - ), - key, - ) - raise ValueError(f"Unrecognized datatype for {key}.") - # Datatype is a string/varchar equivalent - elif dtype == DataType.VARCHAR: - fields.append( - FieldSchema(key, DataType.VARCHAR, max_length=65_535) - ) - # infer_dtype_bydata currently can't recognize array type, - # so this line can not be accessed. - # This line may need to be modified in the future when - # infer_dtype_bydata can recognize array type. - # https://github.com/milvus-io/pymilvus/issues/2165 - elif dtype == DataType.ARRAY: - kwargs = self.metadata_schema[key]["kwargs"] # type: ignore - fields.append( - FieldSchema(name=key, dtype=DataType.ARRAY, **kwargs) - ) - else: - fields.append(FieldSchema(key, dtype)) - - # Create the text field - fields.append( - FieldSchema(self._text_field, DataType.VARCHAR, max_length=65_535) - ) - # Create the primary key field - if self.auto_id: - fields.append( - FieldSchema( - self._primary_field, DataType.INT64, is_primary=True, auto_id=True - ) - ) - else: - fields.append( - FieldSchema( - self._primary_field, - DataType.VARCHAR, - is_primary=True, - auto_id=False, - max_length=65_535, - ) - ) - # Create the vector field, supports binary or float vectors - if self._is_sparse_embedding: - fields.append(FieldSchema(self._vector_field, DataType.SPARSE_FLOAT_VECTOR)) - else: - fields.append( - FieldSchema( - self._vector_field, infer_dtype_bydata(embeddings[0]), dim=dim - ) - ) - - # Create the schema for the collection - schema = CollectionSchema( - fields, - description=self.collection_description, - partition_key_field=self._partition_key_field, - enable_dynamic_field=self.enable_dynamic_field, - ) - - # Create the collection - try: - if self.num_shards is not None: - # Issue with defaults: - # https://github.com/milvus-io/pymilvus/blob/59bf5e811ad56e20946559317fed855330758d9c/pymilvus/client/prepare.py#L82-L85 - self.col = Collection( - name=self.collection_name, - schema=schema, - consistency_level=self.consistency_level, - using=self.alias, - num_shards=self.num_shards, - ) - else: - self.col = Collection( - name=self.collection_name, - schema=schema, - consistency_level=self.consistency_level, - using=self.alias, - ) - # Set the collection properties if they exist - if self.collection_properties is not None: - self.col.set_properties(self.collection_properties) - except MilvusException as e: - logger.error( - "Failed to create collection: %s error: %s", self.collection_name, e - ) - raise e - - def _extract_fields(self) -> None: - """Grab the existing fields from the Collection""" - from pymilvus import Collection - - if isinstance(self.col, Collection): - schema = self.col.schema - for x in schema.fields: - self.fields.append(x.name) - - def _get_index(self) -> Optional[dict[str, Any]]: - """Return the vector index information if it exists""" - from pymilvus import Collection - - if isinstance(self.col, Collection): - for x in self.col.indexes: - if x.field_name == self._vector_field: - return x.to_dict() - return None - - def _create_index(self) -> None: - """Create a index on the collection""" - from pymilvus import Collection, MilvusException - - if isinstance(self.col, Collection) and self._get_index() is None: - try: - # If no index params, use a default HNSW based one - if self.index_params is None: - if self._is_sparse_embedding: - self.index_params = { - "metric_type": "IP", - "index_type": "SPARSE_INVERTED_INDEX", - "params": {"drop_ratio_build": 0.2}, - } - else: - self.index_params = { - "metric_type": "L2", - "index_type": "HNSW", - "params": {"M": 8, "efConstruction": 64}, - } - - try: - self.col.create_index( - self._vector_field, - index_params=self.index_params, - using=self.alias, - ) - - # If default did not work, most likely on Zilliz Cloud - except MilvusException: - # Use AUTOINDEX based index - self.index_params = { - "metric_type": "L2", - "index_type": "AUTOINDEX", - "params": {}, - } - self.col.create_index( - self._vector_field, - index_params=self.index_params, - using=self.alias, - ) - logger.debug( - "Successfully created an index on collection: %s", - self.collection_name, - ) - - except MilvusException as e: - logger.error( - "Failed to create an index on collection: %s", self.collection_name - ) - raise e - - def _create_search_params(self) -> None: - """Generate search params based on the current index type""" - from pymilvus import Collection - - if isinstance(self.col, Collection) and self.search_params is None: - index = self._get_index() - if index is not None: - index_type: str = index["index_param"]["index_type"] - metric_type: str = index["index_param"]["metric_type"] - self.search_params = self.default_search_params[index_type] - self.search_params["metric_type"] = metric_type - - def _load( - self, - partition_names: Optional[list] = None, - replica_number: int = 1, - timeout: Optional[float] = None, - ) -> None: - """Load the collection if available.""" - from pymilvus import Collection, utility - from pymilvus.client.types import LoadState # type: ignore - - timeout = self.timeout or timeout - if ( - isinstance(self.col, Collection) - and self._get_index() is not None - and utility.load_state(self.collection_name, using=self.alias) - == LoadState.NotLoad - ): - self.col.load( - partition_names=partition_names, - replica_number=replica_number, - timeout=timeout, - ) - - def add_texts( - self, - texts: Iterable[str], - metadatas: Optional[List[dict]] = None, - timeout: Optional[float] = None, - batch_size: int = 1000, - *, - ids: Optional[List[str]] = None, - **kwargs: Any, - ) -> List[str]: - """Insert text data into Milvus. - - Inserting data when the collection has not be made yet will result - in creating a new Collection. The data of the first entity decides - the schema of the new collection, the dim is extracted from the first - embedding and the columns are decided by the first metadata dict. - Metadata keys will need to be present for all inserted values. At - the moment there is no None equivalent in Milvus. - - Args: - texts (Iterable[str]): The texts to embed, it is assumed - that they all fit in memory. - metadatas (Optional[List[dict]]): Metadata dicts attached to each of - the texts. Defaults to None. - should be less than 65535 bytes. Required and work when auto_id is False. - timeout (Optional[float]): Timeout for each batch insert. Defaults - to None. - batch_size (int, optional): Batch size to use for insertion. - Defaults to 1000. - ids (Optional[List[str]]): List of text ids. The length of each item - - Raises: - MilvusException: Failure to add texts - - Returns: - List[str]: The resulting keys for each inserted element. - """ - from pymilvus import Collection, MilvusException - - texts = list(texts) - if not self.auto_id: - assert isinstance(ids, list), ( - "A list of valid ids are required when auto_id is False. " - "You can set `auto_id` to True in this Milvus instance to generate " - "ids automatically, or specify string-type ids for each text." - ) - assert len(set(ids)) == len( - texts - ), "Different lengths of texts and unique ids are provided." - assert all(isinstance(x, str) for x in ids), "All ids should be strings." - assert all( - len(x.encode()) <= 65_535 for x in ids - ), "Each id should be a string less than 65535 bytes." - - else: - if ids is not None: - logger.warning( - "The ids parameter is ignored when auto_id is True. " - "The ids will be generated automatically." - ) - - try: - embeddings: list = self.embedding_func.embed_documents(texts) - except NotImplementedError: - embeddings = [self.embedding_func.embed_query(x) for x in texts] - - if len(embeddings) == 0: - logger.debug("Nothing to insert, skipping.") - return [] - - # If the collection hasn't been initialized yet, perform all steps to do so - if not isinstance(self.col, Collection): - kwargs = {"embeddings": embeddings, "metadatas": metadatas} - if self.partition_names: - kwargs["partition_names"] = self.partition_names - if self.replica_number: - kwargs["replica_number"] = self.replica_number - if self.timeout: - kwargs["timeout"] = self.timeout - self._init(**kwargs) - - insert_list: list[dict] = [] - - assert len(texts) == len( - embeddings - ), "Mismatched lengths of texts and embeddings." - if metadatas is not None: - assert len(texts) == len( - metadatas - ), "Mismatched lengths of texts and metadatas." - - for i, text, embedding in zip(range(len(texts)), texts, embeddings): - entity_dict = {} - metadata = metadatas[i] if metadatas else {} - if not self.auto_id: - entity_dict[self._primary_field] = ids[i] # type: ignore[index] - - entity_dict[self._text_field] = text - entity_dict[self._vector_field] = embedding - - if self._metadata_field and not self.enable_dynamic_field: - entity_dict[self._metadata_field] = metadata - else: - for key, value in metadata.items(): - # if not enable_dynamic_field, skip fields not in the collection. - if not self.enable_dynamic_field and key not in self.fields: - continue - # If enable_dynamic_field, all fields are allowed. - entity_dict[key] = value - - insert_list.append(entity_dict) - - # Total insert count - total_count = len(insert_list) - - pks: list[str] = [] - - assert isinstance(self.col, Collection) - for i in range(0, total_count, batch_size): - # Grab end index - end = min(i + batch_size, total_count) - batch_insert_list = insert_list[i:end] - # Insert into the collection. - try: - res: Collection - timeout = self.timeout or timeout - res = self.col.insert(batch_insert_list, timeout=timeout, **kwargs) - pks.extend(res.primary_keys) - except MilvusException as e: - logger.error( - "Failed to insert batch starting at entity: %s/%s", i, total_count - ) - raise e - return pks - - def _collection_search( - self, - embedding: List[float] | Dict[int, float], - k: int = 4, - param: Optional[dict] = None, - expr: Optional[str] = None, - timeout: Optional[float] = None, - **kwargs: Any, - ) -> "pymilvus.client.abstract.SearchResult | None": # type: ignore[name-defined] # noqa: F821 - """Perform a search on an embedding and return milvus search results. - - For more information about the search parameters, take a look at the pymilvus - documentation found here: - https://milvus.io/api-reference/pymilvus/v2.4.x/ORM/Collection/search.md - - Args: - embedding (List[float] | Dict[int, float]): The embedding vector being - searched. - k (int, optional): The amount of results to return. Defaults to 4. - param (dict): The search params for the specified index. - Defaults to None. - expr (str, optional): Filtering expression. Defaults to None. - timeout (float, optional): How long to wait before timeout error. - Defaults to None. - kwargs: Collection.search() keyword arguments. - - Returns: - pymilvus.client.abstract.SearchResult: Milvus search result. - """ - if self.col is None: - logger.debug("No existing collection to search.") - return None - - if param is None: - param = self.search_params - - # Determine result metadata fields with PK. - if self.enable_dynamic_field: - output_fields = ["*"] - else: - output_fields = self.fields[:] - output_fields.remove(self._vector_field) - timeout = self.timeout or timeout - # Perform the search. - res = self.col.search( - data=[embedding], - anns_field=self._vector_field, - param=param, - limit=k, - expr=expr, - output_fields=output_fields, - timeout=timeout, - **kwargs, - ) - return res - - def similarity_search( - self, - query: str, - k: int = 4, - param: Optional[dict] = None, - expr: Optional[str] = None, - timeout: Optional[float] = None, - **kwargs: Any, - ) -> List[Document]: - """Perform a similarity search against the query string. - - Args: - query (str): The text to search. - k (int, optional): How many results to return. Defaults to 4. - param (dict, optional): The search params for the index type. - Defaults to None. - expr (str, optional): Filtering expression. Defaults to None. - timeout (int, optional): How long to wait before timeout error. - Defaults to None. - kwargs: Collection.search() keyword arguments. - - Returns: - List[Document]: Document results for search. - """ - if self.col is None: - logger.debug("No existing collection to search.") - return [] - timeout = self.timeout or timeout - res = self.similarity_search_with_score( - query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs - ) - return [doc for doc, _ in res] - - def similarity_search_by_vector( - self, - embedding: List[float], - k: int = 4, - param: Optional[dict] = None, - expr: Optional[str] = None, - timeout: Optional[float] = None, - **kwargs: Any, - ) -> List[Document]: - """Perform a similarity search against the query string. - - Args: - embedding (List[float]): The embedding vector to search. - k (int, optional): How many results to return. Defaults to 4. - param (dict, optional): The search params for the index type. - Defaults to None. - expr (str, optional): Filtering expression. Defaults to None. - timeout (int, optional): How long to wait before timeout error. - Defaults to None. - kwargs: Collection.search() keyword arguments. - - Returns: - List[Document]: Document results for search. - """ - if self.col is None: - logger.debug("No existing collection to search.") - return [] - timeout = self.timeout or timeout - res = self.similarity_search_with_score_by_vector( - embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs - ) - return [doc for doc, _ in res] - - def similarity_search_with_score( - self, - query: str, - k: int = 4, - param: Optional[dict] = None, - expr: Optional[str] = None, - timeout: Optional[float] = None, - **kwargs: Any, - ) -> List[Tuple[Document, float]]: - """Perform a search on a query string and return results with score. - - For more information about the search parameters, take a look at the pymilvus - documentation found here: - https://milvus.io/api-reference/pymilvus/v2.4.x/ORM/Collection/search.md - - Args: - query (str): The text being searched. - k (int, optional): The amount of results to return. Defaults to 4. - param (dict): The search params for the specified index. - Defaults to None. - expr (str, optional): Filtering expression. Defaults to None. - timeout (float, optional): How long to wait before timeout error. - Defaults to None. - kwargs: Collection.search() keyword arguments. - - Returns: - List[float], List[Tuple[Document, any, any]]: - """ - if self.col is None: - logger.debug("No existing collection to search.") - return [] - - # Embed the query text. - embedding = self.embedding_func.embed_query(query) - timeout = self.timeout or timeout - res = self.similarity_search_with_score_by_vector( - embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs - ) - return res - - def similarity_search_with_score_by_vector( - self, - embedding: List[float] | Dict[int, float], - k: int = 4, - param: Optional[dict] = None, - expr: Optional[str] = None, - timeout: Optional[float] = None, - **kwargs: Any, - ) -> List[Tuple[Document, float]]: - """Perform a search on an embedding and return results with score. - - For more information about the search parameters, take a look at the pymilvus - documentation found here: - https://milvus.io/api-reference/pymilvus/v2.4.x/ORM/Collection/search.md - - Args: - embedding (List[float] | Dict[int, float]): The embedding vector being - searched. - k (int, optional): The amount of results to return. Defaults to 4. - param (dict): The search params for the specified index. - Defaults to None. - expr (str, optional): Filtering expression. Defaults to None. - timeout (float, optional): How long to wait before timeout error. - Defaults to None. - kwargs: Collection.search() keyword arguments. - - Returns: - List[Tuple[Document, float]]: Result doc and score. - """ - col_search_res = self._collection_search( - embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs - ) - if col_search_res is None: - return [] - ret = [] - for result in col_search_res[0]: - data = {x: result.entity.get(x) for x in result.entity.fields} - doc = self._parse_document(data) - pair = (doc, result.score) - ret.append(pair) - - return ret - - def max_marginal_relevance_search( - self, - query: str, - k: int = 4, - fetch_k: int = 20, - lambda_mult: float = 0.5, - param: Optional[dict] = None, - expr: Optional[str] = None, - timeout: Optional[float] = None, - **kwargs: Any, - ) -> List[Document]: - """Perform a search and return results that are reordered by MMR. - - Args: - query (str): The text being searched. - k (int, optional): How many results to give. Defaults to 4. - fetch_k (int, optional): Total results to select k from. - Defaults to 20. - lambda_mult: Number between 0 and 1 that determines the degree - of diversity among the results with 0 corresponding - to maximum diversity and 1 to minimum diversity. - Defaults to 0.5 - param (dict, optional): The search params for the specified index. - Defaults to None. - expr (str, optional): Filtering expression. Defaults to None. - timeout (float, optional): How long to wait before timeout error. - Defaults to None. - kwargs: Collection.search() keyword arguments. - - - Returns: - List[Document]: Document results for search. - """ - if self.col is None: - logger.debug("No existing collection to search.") - return [] - - embedding = self.embedding_func.embed_query(query) - timeout = self.timeout or timeout - return self.max_marginal_relevance_search_by_vector( - embedding=embedding, - k=k, - fetch_k=fetch_k, - lambda_mult=lambda_mult, - param=param, - expr=expr, - timeout=timeout, - **kwargs, - ) - - def max_marginal_relevance_search_by_vector( - self, - embedding: list[float] | dict[int, float], - k: int = 4, - fetch_k: int = 20, - lambda_mult: float = 0.5, - param: Optional[dict] = None, - expr: Optional[str] = None, - timeout: Optional[float] = None, - **kwargs: Any, - ) -> List[Document]: - """Perform a search and return results that are reordered by MMR. - - Args: - embedding (list[float] | dict[int, float]): The embedding vector being - searched. - k (int, optional): How many results to give. Defaults to 4. - fetch_k (int, optional): Total results to select k from. - Defaults to 20. - lambda_mult: Number between 0 and 1 that determines the degree - of diversity among the results with 0 corresponding - to maximum diversity and 1 to minimum diversity. - Defaults to 0.5 - param (dict, optional): The search params for the specified index. - Defaults to None. - expr (str, optional): Filtering expression. Defaults to None. - timeout (float, optional): How long to wait before timeout error. - Defaults to None. - kwargs: Collection.search() keyword arguments. - - Returns: - List[Document]: Document results for search. - """ - col_search_res = self._collection_search( - embedding=embedding, - k=fetch_k, - param=param, - expr=expr, - timeout=timeout, - **kwargs, - ) - if col_search_res is None: - return [] - ids = [] - documents = [] - scores = [] - for result in col_search_res[0]: - data = {x: result.entity.get(x) for x in result.entity.fields} - doc = self._parse_document(data) - documents.append(doc) - scores.append(result.score) - ids.append(result.id) - - vectors = self.col.query( # type: ignore[union-attr] - expr=f"{self._primary_field} in {ids}", - output_fields=[self._primary_field, self._vector_field], - timeout=timeout, - ) - # Reorganize the results from query to match search order. - vectors = {x[self._primary_field]: x[self._vector_field] for x in vectors} - - ordered_result_embeddings = [vectors[x] for x in ids] - - # Get the new order of results. - new_ordering = maximal_marginal_relevance( - np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult - ) - - # Reorder the values and return. - ret = [] - for x in new_ordering: - # Function can return -1 index - if x == -1: - break - else: - ret.append(documents[x]) - return ret - - def delete( # type: ignore[no-untyped-def] - self, ids: Optional[List[str]] = None, expr: Optional[str] = None, **kwargs: str - ): - """Delete by vector ID or boolean expression. - Refer to [Milvus documentation](https://milvus.io/docs/delete_data.md) - for notes and examples of expressions. - - Args: - ids: List of ids to delete. - expr: Boolean expression that specifies the entities to delete. - kwargs: Other parameters in Milvus delete api. - """ - if isinstance(ids, list) and len(ids) > 0: - if expr is not None: - logger.warning( - "Both ids and expr are provided. " "Ignore expr and delete by ids." - ) - expr = f"{self._primary_field} in {ids}" - else: - assert isinstance( - expr, str - ), "Either ids list or expr string must be provided." - return self.col.delete(expr=expr, **kwargs) # type: ignore[union-attr] - - @classmethod - def from_texts( - cls, - texts: List[str], - embedding: Union[Embeddings, BaseSparseEmbedding], # type: ignore - metadatas: Optional[List[dict]] = None, - collection_name: str = "LangChainCollection", - connection_args: dict[str, Any] = DEFAULT_MILVUS_CONNECTION, - consistency_level: str = "Session", - index_params: Optional[dict] = None, - search_params: Optional[dict] = None, - drop_old: bool = False, - *, - ids: Optional[List[str]] = None, - **kwargs: Any, - ) -> Milvus: - """Create a Milvus collection, indexes it with HNSW, and insert data. - - Args: - texts (List[str]): Text data. - embedding (Union[Embeddings, BaseSparseEmbedding]): Embedding function. - metadatas (Optional[List[dict]]): Metadata for each text if it exists. - Defaults to None. - collection_name (str, optional): Collection name to use. Defaults to - "LangChainCollection". - connection_args (dict[str, Any], optional): Connection args to use. Defaults - to DEFAULT_MILVUS_CONNECTION. - consistency_level (str, optional): Which consistency level to use. Defaults - to "Session". - index_params (Optional[dict], optional): Which index_params to use. Defaults - to None. - search_params (Optional[dict], optional): Which search params to use. - Defaults to None. - drop_old (Optional[bool], optional): Whether to drop the collection with - that name if it exists. Defaults to False. - ids (Optional[List[str]]): List of text ids. Defaults to None. - - Returns: - Milvus: Milvus Vector Store - """ - if isinstance(ids, list) and len(ids) > 0: - auto_id = False - else: - auto_id = True - - vector_db = cls( - embedding_function=embedding, - collection_name=collection_name, - connection_args=connection_args, - consistency_level=consistency_level, - index_params=index_params, - search_params=search_params, - drop_old=drop_old, - auto_id=auto_id, - **kwargs, - ) - vector_db.add_texts(texts=texts, metadatas=metadatas, ids=ids) - return vector_db - - def _parse_document(self, data: dict) -> Document: - if self._vector_field in data: - data.pop(self._vector_field) - return Document( - page_content=data.pop(self._text_field), - metadata=data.pop(self._metadata_field) if self._metadata_field else data, - ) - - def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: - """Run more documents through the embeddings and add to the vectorstore. - - Args: - documents: Documents to add to the vectorstore. - - Returns: - List of IDs of the added texts. - """ - # TODO: Handle the case where the user doesn't provide ids on the Collection - texts = [doc.page_content for doc in documents] - metadatas = [doc.metadata for doc in documents] - return self.add_texts(texts, metadatas, **kwargs) - - async def aadd_documents( - self, documents: List[Document], **kwargs: Any - ) -> List[str]: - """Run more documents through the embeddings and add to the vectorstore. - - Args: - documents: Documents to add to the vectorstore. - - Returns: - List of IDs of the added texts. - """ - texts = [doc.page_content for doc in documents] - metadatas = [doc.metadata for doc in documents] - return await self.aadd_texts(texts, metadatas, **kwargs) - - def get_pks(self, expr: str, **kwargs: Any) -> List[int] | None: - """Get primary keys with expression - - Args: - expr: Expression - E.g: "id in [1, 2]", or "title LIKE 'Abc%'" - - Returns: - List[int]: List of IDs (Primary Keys) - """ - - from pymilvus import MilvusException - - if self.col is None: - logger.debug("No existing collection to get pk.") - return None - - try: - query_result = self.col.query( - expr=expr, output_fields=[self._primary_field] - ) - except MilvusException as exc: - logger.error("Failed to get ids: %s error: %s", self.collection_name, exc) - raise exc - pks = [item.get(self._primary_field) for item in query_result] - return pks - - def upsert( # type: ignore - self, - ids: Optional[List[str]] = None, - documents: List[Document] | None = None, - **kwargs: Any, - ) -> List[str] | None: - """Update/Insert documents to the vectorstore. - - Args: - ids: IDs to update - Let's call get_pks to get ids with expression \n - documents (List[Document]): Documents to add to the vectorstore. - - Returns: - List[str]: IDs of the added texts. - """ - - from pymilvus import MilvusException - - if documents is None or len(documents) == 0: - logger.debug("No documents to upsert.") - return None - - if ids is not None and len(ids): - try: - self.delete(ids=ids) - except MilvusException: - pass - try: - return self.add_documents(documents=documents, **kwargs) - except MilvusException as exc: - logger.error( - "Failed to upsert entities: %s error: %s", self.collection_name, exc - ) - raise exc diff --git a/libs/partners/milvus/langchain_milvus/vectorstores/zilliz.py b/libs/partners/milvus/langchain_milvus/vectorstores/zilliz.py deleted file mode 100644 index 976651dbde8b4..0000000000000 --- a/libs/partners/milvus/langchain_milvus/vectorstores/zilliz.py +++ /dev/null @@ -1,197 +0,0 @@ -from __future__ import annotations - -import logging -from typing import Any, Dict, List, Optional, Union - -from langchain_core.embeddings import Embeddings - -from langchain_milvus.utils.sparse import BaseSparseEmbedding -from langchain_milvus.vectorstores.milvus import Milvus - -logger = logging.getLogger(__name__) - - -class Zilliz(Milvus): - """`Zilliz` vector store. - - You need to have `pymilvus` installed and a - running Zilliz database. - - See the following documentation for how to run a Zilliz instance: - https://docs.zilliz.com/docs/create-cluster - - - IF USING L2/IP metric IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA. - - Args: - embedding_function (Embeddings): Function used to embed the text. - collection_name (str): Which Zilliz collection to use. Defaults to - "LangChainCollection". - connection_args (Optional[dict[str, any]]): The connection args used for - this class comes in the form of a dict. - consistency_level (str): The consistency level to use for a collection. - Defaults to "Session". - index_params (Optional[dict]): Which index params to use. Defaults to - HNSW/AUTOINDEX depending on service. - search_params (Optional[dict]): Which search params to use. Defaults to - default of index. - drop_old (Optional[bool]): Whether to drop the current collection. Defaults - to False. - auto_id (bool): Whether to enable auto id for primary key. Defaults to False. - If False, you needs to provide text ids (string less than 65535 bytes). - If True, Milvus will generate unique integers as primary keys. - - The connection args used for this class comes in the form of a dict, - here are a few of the options: - address (str): The actual address of Zilliz - instance. Example address: "localhost:19530" - uri (str): The uri of Zilliz instance. Example uri: - "https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com", - host (str): The host of Zilliz instance. Default at "localhost", - PyMilvus will fill in the default host if only port is provided. - port (str/int): The port of Zilliz instance. Default at 19530, PyMilvus - will fill in the default port if only host is provided. - user (str): Use which user to connect to Zilliz instance. If user and - password are provided, we will add related header in every RPC call. - password (str): Required when user is provided. The password - corresponding to the user. - token (str): API key, for serverless clusters which can be used as - replacements for user and password. - secure (bool): Default is false. If set to true, tls will be enabled. - client_key_path (str): If use tls two-way authentication, need to - write the client.key path. - client_pem_path (str): If use tls two-way authentication, need to - write the client.pem path. - ca_pem_path (str): If use tls two-way authentication, need to write - the ca.pem path. - server_pem_path (str): If use tls one-way authentication, need to - write the server.pem path. - server_name (str): If use tls, need to write the common name. - - Example: - .. code-block:: python - - from langchain_community.vectorstores import Zilliz - from langchain_community.embeddings import OpenAIEmbeddings - - embedding = OpenAIEmbeddings() - # Connect to a Zilliz instance - milvus_store = Milvus( - embedding_function = embedding, - collection_name = "LangChainCollection", - connection_args = { - "uri": "https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com", - "user": "temp", - "password": "temp", - "token": "temp", # API key as replacements for user and password - "secure": True - } - drop_old: True, - ) - - Raises: - ValueError: If the pymilvus python package is not installed. - """ - - def _create_index(self) -> None: - """Create a index on the collection""" - from pymilvus import Collection, MilvusException - - if isinstance(self.col, Collection) and self._get_index() is None: - try: - # If no index params, use a default AutoIndex based one - if self.index_params is None: - self.index_params = { - "metric_type": "L2", - "index_type": "AUTOINDEX", - "params": {}, - } - - try: - self.col.create_index( - self._vector_field, - index_params=self.index_params, - using=self.alias, - ) - - # If default did not work, most likely Milvus self-hosted - except MilvusException: - # Use HNSW based index - self.index_params = { - "metric_type": "L2", - "index_type": "HNSW", - "params": {"M": 8, "efConstruction": 64}, - } - self.col.create_index( - self._vector_field, - index_params=self.index_params, - using=self.alias, - ) - logger.debug( - "Successfully created an index on collection: %s", - self.collection_name, - ) - - except MilvusException as e: - logger.error( - "Failed to create an index on collection: %s", self.collection_name - ) - raise e - - @classmethod - def from_texts( - cls, - texts: List[str], - embedding: Union[Embeddings, BaseSparseEmbedding], - metadatas: Optional[List[dict]] = None, - collection_name: str = "LangChainCollection", - connection_args: Optional[Dict[str, Any]] = None, - consistency_level: str = "Session", - index_params: Optional[dict] = None, - search_params: Optional[dict] = None, - drop_old: bool = False, - *, - ids: Optional[List[str]] = None, - auto_id: bool = False, - **kwargs: Any, - ) -> Zilliz: - """Create a Zilliz collection, indexes it with HNSW, and insert data. - - Args: - texts (List[str]): Text data. - embedding (Embeddings): Embedding function. - metadatas (Optional[List[dict]]): Metadata for each text if it exists. - Defaults to None. - collection_name (str, optional): Collection name to use. Defaults to - "LangChainCollection". - connection_args (dict[str, Any], optional): Connection args to use. Defaults - to DEFAULT_MILVUS_CONNECTION. - consistency_level (str, optional): Which consistency level to use. Defaults - to "Session". - index_params (Optional[dict], optional): Which index_params to use. - Defaults to None. - search_params (Optional[dict], optional): Which search params to use. - Defaults to None. - drop_old (Optional[bool], optional): Whether to drop the collection with - that name if it exists. Defaults to False. - ids (Optional[List[str]]): List of text ids. - auto_id (bool): Whether to enable auto id for primary key. Defaults to - False. If False, you needs to provide text ids (string less than 65535 - bytes). If True, Milvus will generate unique integers as primary keys. - - Returns: - Zilliz: Zilliz Vector Store - """ - vector_db = cls( - embedding_function=embedding, - collection_name=collection_name, - connection_args=connection_args or {}, - consistency_level=consistency_level, - index_params=index_params, - search_params=search_params, - drop_old=drop_old, - auto_id=auto_id, - **kwargs, - ) - vector_db.add_texts(texts=texts, metadatas=metadatas, ids=ids) - return vector_db diff --git a/libs/partners/milvus/poetry.lock b/libs/partners/milvus/poetry.lock deleted file mode 100644 index 660425ed257c2..0000000000000 --- a/libs/partners/milvus/poetry.lock +++ /dev/null @@ -1,2267 +0,0 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. - -[[package]] -name = "annotated-types" -version = "0.7.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" -files = [ - {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, - {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - -[[package]] -name = "anyio" -version = "4.4.0" -description = "High level compatibility layer for multiple asynchronous event loop implementations" -optional = false -python-versions = ">=3.8" -files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, -] - -[package.dependencies] -exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} -idna = ">=2.8" -sniffio = ">=1.1" -typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} - -[package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] - -[[package]] -name = "certifi" -version = "2024.8.30" -description = "Python package for providing Mozilla's CA Bundle." -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, - {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, -] - -[[package]] -name = "charset-normalizer" -version = "3.3.2" -description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, -] - -[[package]] -name = "codespell" -version = "2.3.0" -description = "Codespell" -optional = false -python-versions = ">=3.8" -files = [ - {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, - {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, -] - -[package.extras] -dev = ["Pygments", "build", "chardet", "pre-commit", "pytest", "pytest-cov", "pytest-dependency", "ruff", "tomli", "twine"] -hard-encoding-detection = ["chardet"] -toml = ["tomli"] -types = ["chardet (>=5.1.0)", "mypy", "pytest", "pytest-cov", "pytest-dependency"] - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "coloredlogs" -version = "15.0.1" -description = "Colored terminal output for Python's logging module" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "coloredlogs-15.0.1-py2.py3-none-any.whl", hash = "sha256:612ee75c546f53e92e70049c9dbfcc18c935a2b9a53b66085ce9ef6a6e5c0934"}, - {file = "coloredlogs-15.0.1.tar.gz", hash = "sha256:7c991aa71a4577af2f82600d8f8f3a89f936baeaf9b50a9c197da014e5bf16b0"}, -] - -[package.dependencies] -humanfriendly = ">=9.1" - -[package.extras] -cron = ["capturer (>=2.4)"] - -[[package]] -name = "environs" -version = "9.5.0" -description = "simplified environment variable parsing" -optional = false -python-versions = ">=3.6" -files = [ - {file = "environs-9.5.0-py2.py3-none-any.whl", hash = "sha256:1e549569a3de49c05f856f40bce86979e7d5ffbbc4398e7f338574c220189124"}, - {file = "environs-9.5.0.tar.gz", hash = "sha256:a76307b36fbe856bdca7ee9161e6c466fd7fcffc297109a118c59b54e27e30c9"}, -] - -[package.dependencies] -marshmallow = ">=3.0.0" -python-dotenv = "*" - -[package.extras] -dev = ["dj-database-url", "dj-email-url", "django-cache-url", "flake8 (==4.0.1)", "flake8-bugbear (==21.9.2)", "mypy (==0.910)", "pre-commit (>=2.4,<3.0)", "pytest", "tox"] -django = ["dj-database-url", "dj-email-url", "django-cache-url"] -lint = ["flake8 (==4.0.1)", "flake8-bugbear (==21.9.2)", "mypy (==0.910)", "pre-commit (>=2.4,<3.0)"] -tests = ["dj-database-url", "dj-email-url", "django-cache-url", "pytest"] - -[[package]] -name = "exceptiongroup" -version = "1.2.2" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, - {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "filelock" -version = "3.15.4" -description = "A platform independent file lock." -optional = false -python-versions = ">=3.8" -files = [ - {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, - {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, -] - -[package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] -typing = ["typing-extensions (>=4.8)"] - -[[package]] -name = "flatbuffers" -version = "24.3.25" -description = "The FlatBuffers serialization format for Python" -optional = false -python-versions = "*" -files = [ - {file = "flatbuffers-24.3.25-py2.py3-none-any.whl", hash = "sha256:8dbdec58f935f3765e4f7f3cf635ac3a77f83568138d6a2311f524ec96364812"}, - {file = "flatbuffers-24.3.25.tar.gz", hash = "sha256:de2ec5b203f21441716617f38443e0a8ebf3d25bf0d9c0bb0ce68fa00ad546a4"}, -] - -[[package]] -name = "freezegun" -version = "1.5.1" -description = "Let your Python tests travel through time" -optional = false -python-versions = ">=3.7" -files = [ - {file = "freezegun-1.5.1-py3-none-any.whl", hash = "sha256:bf111d7138a8abe55ab48a71755673dbaa4ab87f4cff5634a4442dfec34c15f1"}, - {file = "freezegun-1.5.1.tar.gz", hash = "sha256:b29dedfcda6d5e8e083ce71b2b542753ad48cfec44037b3fc79702e2980a89e9"}, -] - -[package.dependencies] -python-dateutil = ">=2.7" - -[[package]] -name = "fsspec" -version = "2024.9.0" -description = "File-system specification" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, - {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, -] - -[package.extras] -abfs = ["adlfs"] -adl = ["adlfs"] -arrow = ["pyarrow (>=1)"] -dask = ["dask", "distributed"] -dev = ["pre-commit", "ruff"] -doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] -dropbox = ["dropbox", "dropboxdrivefs", "requests"] -full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] -fuse = ["fusepy"] -gcs = ["gcsfs"] -git = ["pygit2"] -github = ["requests"] -gs = ["gcsfs"] -gui = ["panel"] -hdfs = ["pyarrow (>=1)"] -http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] -libarchive = ["libarchive-c"] -oci = ["ocifs"] -s3 = ["s3fs"] -sftp = ["paramiko"] -smb = ["smbprotocol"] -ssh = ["paramiko"] -test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] -test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] -test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] -tqdm = ["tqdm"] - -[[package]] -name = "grpcio" -version = "1.66.1" -description = "HTTP/2-based RPC framework" -optional = false -python-versions = ">=3.8" -files = [ - {file = "grpcio-1.66.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:4877ba180591acdf127afe21ec1c7ff8a5ecf0fe2600f0d3c50e8c4a1cbc6492"}, - {file = "grpcio-1.66.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3750c5a00bd644c75f4507f77a804d0189d97a107eb1481945a0cf3af3e7a5ac"}, - {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:a013c5fbb12bfb5f927444b477a26f1080755a931d5d362e6a9a720ca7dbae60"}, - {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1b24c23d51a1e8790b25514157d43f0a4dce1ac12b3f0b8e9f66a5e2c4c132f"}, - {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffb8ea674d68de4cac6f57d2498fef477cef582f1fa849e9f844863af50083"}, - {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:307b1d538140f19ccbd3aed7a93d8f71103c5d525f3c96f8616111614b14bf2a"}, - {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1c17ebcec157cfb8dd445890a03e20caf6209a5bd4ac5b040ae9dbc59eef091d"}, - {file = "grpcio-1.66.1-cp310-cp310-win32.whl", hash = "sha256:ef82d361ed5849d34cf09105d00b94b6728d289d6b9235513cb2fcc79f7c432c"}, - {file = "grpcio-1.66.1-cp310-cp310-win_amd64.whl", hash = "sha256:292a846b92cdcd40ecca46e694997dd6b9be6c4c01a94a0dfb3fcb75d20da858"}, - {file = "grpcio-1.66.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:c30aeceeaff11cd5ddbc348f37c58bcb96da8d5aa93fed78ab329de5f37a0d7a"}, - {file = "grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8a1e224ce6f740dbb6b24c58f885422deebd7eb724aff0671a847f8951857c26"}, - {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a66fe4dc35d2330c185cfbb42959f57ad36f257e0cc4557d11d9f0a3f14311df"}, - {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ba04659e4fce609de2658fe4dbf7d6ed21987a94460f5f92df7579fd5d0e22"}, - {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4573608e23f7e091acfbe3e84ac2045680b69751d8d67685ffa193a4429fedb1"}, - {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7e06aa1f764ec8265b19d8f00140b8c4b6ca179a6dc67aa9413867c47e1fb04e"}, - {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3885f037eb11f1cacc41f207b705f38a44b69478086f40608959bf5ad85826dd"}, - {file = "grpcio-1.66.1-cp311-cp311-win32.whl", hash = "sha256:97ae7edd3f3f91480e48ede5d3e7d431ad6005bfdbd65c1b56913799ec79e791"}, - {file = "grpcio-1.66.1-cp311-cp311-win_amd64.whl", hash = "sha256:cfd349de4158d797db2bd82d2020554a121674e98fbe6b15328456b3bf2495bb"}, - {file = "grpcio-1.66.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:a92c4f58c01c77205df6ff999faa008540475c39b835277fb8883b11cada127a"}, - {file = "grpcio-1.66.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fdb14bad0835914f325349ed34a51940bc2ad965142eb3090081593c6e347be9"}, - {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f03a5884c56256e08fd9e262e11b5cfacf1af96e2ce78dc095d2c41ccae2c80d"}, - {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2ca2559692d8e7e245d456877a85ee41525f3ed425aa97eb7a70fc9a79df91a0"}, - {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ca1be089fb4446490dd1135828bd42a7c7f8421e74fa581611f7afdf7ab761"}, - {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d639c939ad7c440c7b2819a28d559179a4508783f7e5b991166f8d7a34b52815"}, - {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b9feb4e5ec8dc2d15709f4d5fc367794d69277f5d680baf1910fc9915c633524"}, - {file = "grpcio-1.66.1-cp312-cp312-win32.whl", hash = "sha256:7101db1bd4cd9b880294dec41a93fcdce465bdbb602cd8dc5bd2d6362b618759"}, - {file = "grpcio-1.66.1-cp312-cp312-win_amd64.whl", hash = "sha256:b0aa03d240b5539648d996cc60438f128c7f46050989e35b25f5c18286c86734"}, - {file = "grpcio-1.66.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:ecfe735e7a59e5a98208447293ff8580e9db1e890e232b8b292dc8bd15afc0d2"}, - {file = "grpcio-1.66.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4825a3aa5648010842e1c9d35a082187746aa0cdbf1b7a2a930595a94fb10fce"}, - {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:f517fd7259fe823ef3bd21e508b653d5492e706e9f0ef82c16ce3347a8a5620c"}, - {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1fe60d0772831d96d263b53d83fb9a3d050a94b0e94b6d004a5ad111faa5b5b"}, - {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31a049daa428f928f21090403e5d18ea02670e3d5d172581670be006100db9ef"}, - {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f914386e52cbdeb5d2a7ce3bf1fdfacbe9d818dd81b6099a05b741aaf3848bb"}, - {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bff2096bdba686019fb32d2dde45b95981f0d1490e054400f70fc9a8af34b49d"}, - {file = "grpcio-1.66.1-cp38-cp38-win32.whl", hash = "sha256:aa8ba945c96e73de29d25331b26f3e416e0c0f621e984a3ebdb2d0d0b596a3b3"}, - {file = "grpcio-1.66.1-cp38-cp38-win_amd64.whl", hash = "sha256:161d5c535c2bdf61b95080e7f0f017a1dfcb812bf54093e71e5562b16225b4ce"}, - {file = "grpcio-1.66.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:d0cd7050397b3609ea51727b1811e663ffda8bda39c6a5bb69525ef12414b503"}, - {file = "grpcio-1.66.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0e6c9b42ded5d02b6b1fea3a25f036a2236eeb75d0579bfd43c0018c88bf0a3e"}, - {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c9f80f9fad93a8cf71c7f161778ba47fd730d13a343a46258065c4deb4b550c0"}, - {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5dd67ed9da78e5121efc5c510f0122a972216808d6de70953a740560c572eb44"}, - {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48b0d92d45ce3be2084b92fb5bae2f64c208fea8ceed7fccf6a7b524d3c4942e"}, - {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d813316d1a752be6f5c4360c49f55b06d4fe212d7df03253dfdae90c8a402bb"}, - {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c9bebc6627873ec27a70fc800f6083a13c70b23a5564788754b9ee52c5aef6c"}, - {file = "grpcio-1.66.1-cp39-cp39-win32.whl", hash = "sha256:30a1c2cf9390c894c90bbc70147f2372130ad189cffef161f0432d0157973f45"}, - {file = "grpcio-1.66.1-cp39-cp39-win_amd64.whl", hash = "sha256:17663598aadbedc3cacd7bbde432f541c8e07d2496564e22b214b22c7523dac8"}, - {file = "grpcio-1.66.1.tar.gz", hash = "sha256:35334f9c9745add3e357e3372756fd32d925bd52c41da97f4dfdafbde0bf0ee2"}, -] - -[package.extras] -protobuf = ["grpcio-tools (>=1.66.1)"] - -[[package]] -name = "h11" -version = "0.14.0" -description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" -optional = false -python-versions = ">=3.7" -files = [ - {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, - {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, -] - -[[package]] -name = "httpcore" -version = "1.0.5" -description = "A minimal low-level HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, -] - -[package.dependencies] -certifi = "*" -h11 = ">=0.13,<0.15" - -[package.extras] -asyncio = ["anyio (>=4.0,<5.0)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] - -[[package]] -name = "httpx" -version = "0.27.2" -description = "The next generation HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, - {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, -] - -[package.dependencies] -anyio = "*" -certifi = "*" -httpcore = "==1.*" -idna = "*" -sniffio = "*" - -[package.extras] -brotli = ["brotli", "brotlicffi"] -cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -zstd = ["zstandard (>=0.18.0)"] - -[[package]] -name = "huggingface-hub" -version = "0.24.6" -description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "huggingface_hub-0.24.6-py3-none-any.whl", hash = "sha256:a990f3232aa985fe749bc9474060cbad75e8b2f115f6665a9fda5b9c97818970"}, - {file = "huggingface_hub-0.24.6.tar.gz", hash = "sha256:cc2579e761d070713eaa9c323e3debe39d5b464ae3a7261c39a9195b27bb8000"}, -] - -[package.dependencies] -filelock = "*" -fsspec = ">=2023.5.0" -packaging = ">=20.9" -pyyaml = ">=5.1" -requests = "*" -tqdm = ">=4.42.1" -typing-extensions = ">=3.7.4.3" - -[package.extras] -all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] -cli = ["InquirerPy (==0.3.4)"] -dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] -fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] -hf-transfer = ["hf-transfer (>=0.1.4)"] -inference = ["aiohttp", "minijinja (>=1.0)"] -quality = ["mypy (==1.5.1)", "ruff (>=0.5.0)"] -tensorflow = ["graphviz", "pydot", "tensorflow"] -tensorflow-testing = ["keras (<3.0)", "tensorflow"] -testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] -torch = ["safetensors[torch]", "torch"] -typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] - -[[package]] -name = "humanfriendly" -version = "10.0" -description = "Human friendly output for text interfaces using Python" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "humanfriendly-10.0-py2.py3-none-any.whl", hash = "sha256:1697e1a8a8f550fd43c2865cd84542fc175a61dcb779b6fee18cf6b6ccba1477"}, - {file = "humanfriendly-10.0.tar.gz", hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc"}, -] - -[package.dependencies] -pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_version >= \"3.8\""} - -[[package]] -name = "idna" -version = "3.8" -description = "Internationalized Domain Names in Applications (IDNA)" -optional = false -python-versions = ">=3.6" -files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, -] - -[[package]] -name = "iniconfig" -version = "2.0.0" -description = "brain-dead simple config-ini parsing" -optional = false -python-versions = ">=3.7" -files = [ - {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, - {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, -] - -[[package]] -name = "jsonpatch" -version = "1.33" -description = "Apply JSON-Patches (RFC 6902)" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" -files = [ - {file = "jsonpatch-1.33-py2.py3-none-any.whl", hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade"}, - {file = "jsonpatch-1.33.tar.gz", hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c"}, -] - -[package.dependencies] -jsonpointer = ">=1.9" - -[[package]] -name = "jsonpointer" -version = "3.0.0" -description = "Identify specific nodes in a JSON document (RFC 6901)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, - {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, -] - -[[package]] -name = "langchain-core" -version = "0.2.38" -description = "Building applications with LLMs through composability" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -jsonpatch = "^1.33" -langsmith = "^0.1.75" -packaging = ">=23.2,<25" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -PyYAML = ">=5.3" -tenacity = "^8.1.0,!=8.4.0" -typing-extensions = ">=4.7" - -[package.source] -type = "directory" -url = "../../core" - -[[package]] -name = "langsmith" -version = "0.1.110" -description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." -optional = false -python-versions = "<4.0,>=3.8.1" -files = [ - {file = "langsmith-0.1.110-py3-none-any.whl", hash = "sha256:316d279e3853f5e90e462f9c035eeb468d042f2a21a269c1102d65f3dccdc334"}, - {file = "langsmith-0.1.110.tar.gz", hash = "sha256:9a619dfe22a67a05a05091f0677b9c842499faec5f051b31afcd901b6627d0a3"}, -] - -[package.dependencies] -httpx = ">=0.23.0,<1" -orjson = ">=3.9.14,<4.0.0" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -requests = ">=2,<3" - -[[package]] -name = "marshmallow" -version = "3.22.0" -description = "A lightweight library for converting complex datatypes to and from native Python datatypes." -optional = false -python-versions = ">=3.8" -files = [ - {file = "marshmallow-3.22.0-py3-none-any.whl", hash = "sha256:71a2dce49ef901c3f97ed296ae5051135fd3febd2bf43afe0ae9a82143a494d9"}, - {file = "marshmallow-3.22.0.tar.gz", hash = "sha256:4972f529104a220bb8637d595aa4c9762afbe7f7a77d82dc58c1615d70c5823e"}, -] - -[package.dependencies] -packaging = ">=17.0" - -[package.extras] -dev = ["marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"] -docs = ["alabaster (==1.0.0)", "autodocsumm (==0.2.13)", "sphinx (==8.0.2)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"] -tests = ["pytest", "pytz", "simplejson"] - -[[package]] -name = "milvus-lite" -version = "2.4.10" -description = "A lightweight version of Milvus wrapped with Python." -optional = false -python-versions = ">=3.7" -files = [ - {file = "milvus_lite-2.4.10-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fc4246d3ed7d1910847afce0c9ba18212e93a6e9b8406048436940578dfad5cb"}, - {file = "milvus_lite-2.4.10-py3-none-macosx_11_0_arm64.whl", hash = "sha256:74a8e07c5e3b057df17fbb46913388e84df1dc403a200f4e423799a58184c800"}, - {file = "milvus_lite-2.4.10-py3-none-manylinux2014_x86_64.whl", hash = "sha256:211d2e334a043f9282bdd9755f76b9b2d93b23bffa7af240919ffce6a8dfe325"}, -] - -[package.dependencies] -tqdm = "*" - -[[package]] -name = "milvus-model" -version = "0.2.5" -description = "Model components for PyMilvus, the Python SDK for Milvus" -optional = false -python-versions = ">=3.8" -files = [ - {file = "milvus_model-0.2.5-py3-none-any.whl", hash = "sha256:40668a69db737ad4768fa813e8c36d151b7ce51101600e3d5efd740918f919a8"}, - {file = "milvus_model-0.2.5.tar.gz", hash = "sha256:5d56d152bced0d2d3d9f79d3f2f5698b7202a07f9c61321e40dd55b51a8e905d"}, -] - -[package.dependencies] -numpy = "*" -onnxruntime = "*" -protobuf = "*" -scipy = ">=1.10.0" -transformers = ">=4.36.0" - -[[package]] -name = "mpmath" -version = "1.3.0" -description = "Python library for arbitrary-precision floating-point arithmetic" -optional = false -python-versions = "*" -files = [ - {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, - {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, -] - -[package.extras] -develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] -docs = ["sphinx"] -gmpy = ["gmpy2 (>=2.1.0a4)"] -tests = ["pytest (>=4.6)"] - -[[package]] -name = "mypy" -version = "0.991" -description = "Optional static typing for Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"}, - {file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"}, - {file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"}, - {file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"}, - {file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"}, - {file = "mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"}, - {file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"}, - {file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"}, - {file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"}, - {file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"}, - {file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"}, - {file = "mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"}, - {file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"}, - {file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"}, - {file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"}, - {file = "mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"}, - {file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"}, - {file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"}, - {file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"}, - {file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"}, - {file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"}, - {file = "mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"}, - {file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"}, - {file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"}, - {file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"}, - {file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"}, - {file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"}, - {file = "mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"}, - {file = "mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"}, - {file = "mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"}, -] - -[package.dependencies] -mypy-extensions = ">=0.4.3" -tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=3.10" - -[package.extras] -dmypy = ["psutil (>=4.0)"] -install-types = ["pip"] -python2 = ["typed-ast (>=1.4.0,<2)"] -reports = ["lxml"] - -[[package]] -name = "mypy-extensions" -version = "1.0.0" -description = "Type system extensions for programs checked with the mypy type checker." -optional = false -python-versions = ">=3.5" -files = [ - {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, - {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, -] - -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - -[[package]] -name = "onnxruntime" -version = "1.19.2" -description = "ONNX Runtime is a runtime accelerator for Machine Learning models" -optional = false -python-versions = "*" -files = [ - {file = "onnxruntime-1.19.2-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:84fa57369c06cadd3c2a538ae2a26d76d583e7c34bdecd5769d71ca5c0fc750e"}, - {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bdc471a66df0c1cdef774accef69e9f2ca168c851ab5e4f2f3341512c7ef4666"}, - {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e3a4ce906105d99ebbe817f536d50a91ed8a4d1592553f49b3c23c4be2560ae6"}, - {file = "onnxruntime-1.19.2-cp310-cp310-win32.whl", hash = "sha256:4b3d723cc154c8ddeb9f6d0a8c0d6243774c6b5930847cc83170bfe4678fafb3"}, - {file = "onnxruntime-1.19.2-cp310-cp310-win_amd64.whl", hash = "sha256:17ed7382d2c58d4b7354fb2b301ff30b9bf308a1c7eac9546449cd122d21cae5"}, - {file = "onnxruntime-1.19.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:d863e8acdc7232d705d49e41087e10b274c42f09e259016a46f32c34e06dc4fd"}, - {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c1dfe4f660a71b31caa81fc298a25f9612815215a47b286236e61d540350d7b6"}, - {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a36511dc07c5c964b916697e42e366fa43c48cdb3d3503578d78cef30417cb84"}, - {file = "onnxruntime-1.19.2-cp311-cp311-win32.whl", hash = "sha256:50cbb8dc69d6befad4746a69760e5b00cc3ff0a59c6c3fb27f8afa20e2cab7e7"}, - {file = "onnxruntime-1.19.2-cp311-cp311-win_amd64.whl", hash = "sha256:1c3e5d415b78337fa0b1b75291e9ea9fb2a4c1f148eb5811e7212fed02cfffa8"}, - {file = "onnxruntime-1.19.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:68e7051bef9cfefcbb858d2d2646536829894d72a4130c24019219442b1dd2ed"}, - {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d2d366fbcc205ce68a8a3bde2185fd15c604d9645888703785b61ef174265168"}, - {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:477b93df4db467e9cbf34051662a4b27c18e131fa1836e05974eae0d6e4cf29b"}, - {file = "onnxruntime-1.19.2-cp312-cp312-win32.whl", hash = "sha256:9a174073dc5608fad05f7cf7f320b52e8035e73d80b0a23c80f840e5a97c0147"}, - {file = "onnxruntime-1.19.2-cp312-cp312-win_amd64.whl", hash = "sha256:190103273ea4507638ffc31d66a980594b237874b65379e273125150eb044857"}, - {file = "onnxruntime-1.19.2-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:636bc1d4cc051d40bc52e1f9da87fbb9c57d9d47164695dfb1c41646ea51ea66"}, - {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5bd8b875757ea941cbcfe01582970cc299893d1b65bd56731e326a8333f638a3"}, - {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b2046fc9560f97947bbc1acbe4c6d48585ef0f12742744307d3364b131ac5778"}, - {file = "onnxruntime-1.19.2-cp38-cp38-win32.whl", hash = "sha256:31c12840b1cde4ac1f7d27d540c44e13e34f2345cf3642762d2a3333621abb6a"}, - {file = "onnxruntime-1.19.2-cp38-cp38-win_amd64.whl", hash = "sha256:016229660adea180e9a32ce218b95f8f84860a200f0f13b50070d7d90e92956c"}, - {file = "onnxruntime-1.19.2-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:006c8d326835c017a9e9f74c9c77ebb570a71174a1e89fe078b29a557d9c3848"}, - {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:df2a94179a42d530b936f154615b54748239c2908ee44f0d722cb4df10670f68"}, - {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fae4b4de45894b9ce7ae418c5484cbf0341db6813effec01bb2216091c52f7fb"}, - {file = "onnxruntime-1.19.2-cp39-cp39-win32.whl", hash = "sha256:dc5430f473e8706fff837ae01323be9dcfddd3ea471c900a91fa7c9b807ec5d3"}, - {file = "onnxruntime-1.19.2-cp39-cp39-win_amd64.whl", hash = "sha256:38475e29a95c5f6c62c2c603d69fc7d4c6ccbf4df602bd567b86ae1138881c49"}, -] - -[package.dependencies] -coloredlogs = "*" -flatbuffers = "*" -numpy = ">=1.21.6" -packaging = "*" -protobuf = "*" -sympy = "*" - -[[package]] -name = "orjson" -version = "3.10.7" -description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" -optional = false -python-versions = ">=3.8" -files = [ - {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, - {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, - {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, - {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, - {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, - {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, - {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, - {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, - {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, - {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, - {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, - {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, - {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, - {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, - {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, - {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, - {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, - {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, - {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, - {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, - {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, - {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, - {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, - {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, - {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, - {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, - {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, - {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, - {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, - {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, - {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, - {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, -] - -[[package]] -name = "packaging" -version = "24.1" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, -] - -[[package]] -name = "pandas" -version = "2.0.3" -description = "Powerful data structures for data analysis, time series, and statistics" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, - {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, - {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, - {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, - {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, - {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, - {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, - {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, - {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, - {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, - {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, -] - -[package.dependencies] -numpy = [ - {version = ">=1.20.3", markers = "python_version < \"3.10\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, - {version = ">=1.21.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, -] -python-dateutil = ">=2.8.2" -pytz = ">=2020.1" -tzdata = ">=2022.1" - -[package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] - -[[package]] -name = "pluggy" -version = "1.5.0" -description = "plugin and hook calling mechanisms for python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, - {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, -] - -[package.extras] -dev = ["pre-commit", "tox"] -testing = ["pytest", "pytest-benchmark"] - -[[package]] -name = "protobuf" -version = "5.28.0" -description = "" -optional = false -python-versions = ">=3.8" -files = [ - {file = "protobuf-5.28.0-cp310-abi3-win32.whl", hash = "sha256:66c3edeedb774a3508ae70d87b3a19786445fe9a068dd3585e0cefa8a77b83d0"}, - {file = "protobuf-5.28.0-cp310-abi3-win_amd64.whl", hash = "sha256:6d7cc9e60f976cf3e873acb9a40fed04afb5d224608ed5c1a105db4a3f09c5b6"}, - {file = "protobuf-5.28.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:532627e8fdd825cf8767a2d2b94d77e874d5ddb0adefb04b237f7cc296748681"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:018db9056b9d75eb93d12a9d35120f97a84d9a919bcab11ed56ad2d399d6e8dd"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:6206afcb2d90181ae8722798dcb56dc76675ab67458ac24c0dd7d75d632ac9bd"}, - {file = "protobuf-5.28.0-cp38-cp38-win32.whl", hash = "sha256:eef7a8a2f4318e2cb2dee8666d26e58eaf437c14788f3a2911d0c3da40405ae8"}, - {file = "protobuf-5.28.0-cp38-cp38-win_amd64.whl", hash = "sha256:d001a73c8bc2bf5b5c1360d59dd7573744e163b3607fa92788b7f3d5fefbd9a5"}, - {file = "protobuf-5.28.0-cp39-cp39-win32.whl", hash = "sha256:dde9fcaa24e7a9654f4baf2a55250b13a5ea701493d904c54069776b99a8216b"}, - {file = "protobuf-5.28.0-cp39-cp39-win_amd64.whl", hash = "sha256:853db610214e77ee817ecf0514e0d1d052dff7f63a0c157aa6eabae98db8a8de"}, - {file = "protobuf-5.28.0-py3-none-any.whl", hash = "sha256:510ed78cd0980f6d3218099e874714cdf0d8a95582e7b059b06cabad855ed0a0"}, - {file = "protobuf-5.28.0.tar.gz", hash = "sha256:dde74af0fa774fa98892209992295adbfb91da3fa98c8f67a88afe8f5a349add"}, -] - -[[package]] -name = "pydantic" -version = "2.8.2" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, -] - -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" -typing-extensions = [ - {version = ">=4.6.1", markers = "python_version < \"3.13\""}, - {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, -] - -[package.extras] -email = ["email-validator (>=2.0.0)"] - -[[package]] -name = "pydantic-core" -version = "2.20.1" -description = "Core functionality for Pydantic validation and serialization" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pymilvus" -version = "2.4.6" -description = "Python Sdk for Milvus" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pymilvus-2.4.6-py3-none-any.whl", hash = "sha256:b4c43472edc313b845d313be50610e19054e6954b2c5c3b515565c596c2d3d97"}, - {file = "pymilvus-2.4.6.tar.gz", hash = "sha256:6ac3eb91c92cc01bbe444fe83f895f02d7b2546d96ac67998630bf31ac074d66"}, -] - -[package.dependencies] -environs = "<=9.5.0" -grpcio = ">=1.49.1" -milvus-lite = {version = ">=2.4.0,<2.5.0", markers = "sys_platform != \"win32\""} -numpy = {version = "<1.25.0", markers = "python_version <= \"3.8\""} -pandas = ">=1.2.4" -protobuf = ">=3.20.0" -setuptools = [ - {version = ">69,<70.1", markers = "python_version <= \"3.8\""}, - {version = ">69", markers = "python_version > \"3.8\""}, -] -ujson = ">=2.0.0" - -[package.extras] -bulk-writer = ["azure-storage-blob", "minio (>=7.0.0)", "pyarrow (>=12.0.0)", "requests"] -dev = ["black", "grpcio (==1.62.2)", "grpcio-testing (==1.62.2)", "grpcio-tools (==1.62.2)", "pytest (>=5.3.4)", "pytest-cov (>=2.8.1)", "pytest-timeout (>=1.3.4)", "ruff (>0.4.0)"] -model = ["milvus-model (>=0.1.0)"] - -[[package]] -name = "pyreadline3" -version = "3.4.1" -description = "A python implementation of GNU readline." -optional = false -python-versions = "*" -files = [ - {file = "pyreadline3-3.4.1-py3-none-any.whl", hash = "sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb"}, - {file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"}, -] - -[[package]] -name = "pytest" -version = "7.4.4" -description = "pytest: simple powerful testing with Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-7.4.4-py3-none-any.whl", hash = "sha256:b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8"}, - {file = "pytest-7.4.4.tar.gz", hash = "sha256:2cf0005922c6ace4a3e2ec8b4080eb0d9753fdc93107415332f50ce9e7994280"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} -iniconfig = "*" -packaging = "*" -pluggy = ">=0.12,<2.0" -tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} - -[package.extras] -testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] - -[[package]] -name = "pytest-asyncio" -version = "0.21.2" -description = "Pytest support for asyncio" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest_asyncio-0.21.2-py3-none-any.whl", hash = "sha256:ab664c88bb7998f711d8039cacd4884da6430886ae8bbd4eded552ed2004f16b"}, - {file = "pytest_asyncio-0.21.2.tar.gz", hash = "sha256:d67738fc232b94b326b9d060750beb16e0074210b98dd8b58a5239fa2a154f45"}, -] - -[package.dependencies] -pytest = ">=7.0.0" - -[package.extras] -docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] -testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"] - -[[package]] -name = "pytest-mock" -version = "3.14.0" -description = "Thin-wrapper around the mock package for easier use with pytest" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pytest-mock-3.14.0.tar.gz", hash = "sha256:2719255a1efeceadbc056d6bf3df3d1c5015530fb40cf347c0f9afac88410bd0"}, - {file = "pytest_mock-3.14.0-py3-none-any.whl", hash = "sha256:0b72c38033392a5f4621342fe11e9219ac11ec9d375f8e2a0c164539e0d70f6f"}, -] - -[package.dependencies] -pytest = ">=6.2.5" - -[package.extras] -dev = ["pre-commit", "pytest-asyncio", "tox"] - -[[package]] -name = "pytest-watcher" -version = "0.3.5" -description = "Automatically rerun your tests on file modifications" -optional = false -python-versions = ">=3.7.0,<4.0.0" -files = [ - {file = "pytest_watcher-0.3.5-py3-none-any.whl", hash = "sha256:af00ca52c7be22dc34c0fd3d7ffef99057207a73b05dc5161fe3b2fe91f58130"}, - {file = "pytest_watcher-0.3.5.tar.gz", hash = "sha256:8896152460ba2b1a8200c12117c6611008ec96c8b2d811f0a05ab8a82b043ff8"}, -] - -[package.dependencies] -tomli = {version = ">=2.0.1,<3.0.0", markers = "python_version < \"3.11\""} -watchdog = ">=2.0.0" - -[[package]] -name = "python-dateutil" -version = "2.9.0.post0" -description = "Extensions to the standard Python datetime module" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" -files = [ - {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, - {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, -] - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "python-dotenv" -version = "1.0.1" -description = "Read key-value pairs from a .env file and set them as environment variables" -optional = false -python-versions = ">=3.8" -files = [ - {file = "python-dotenv-1.0.1.tar.gz", hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca"}, - {file = "python_dotenv-1.0.1-py3-none-any.whl", hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a"}, -] - -[package.extras] -cli = ["click (>=5.0)"] - -[[package]] -name = "pytz" -version = "2024.1" -description = "World timezone definitions, modern and historical" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, -] - -[[package]] -name = "pyyaml" -version = "6.0.2" -description = "YAML parser and emitter for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, - {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, - {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, - {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, - {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, - {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, - {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, - {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, - {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, - {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, - {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, - {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, - {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, - {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, - {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, - {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, - {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, -] - -[[package]] -name = "regex" -version = "2024.7.24" -description = "Alternative regular expression module, to replace re." -optional = false -python-versions = ">=3.8" -files = [ - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, - {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, - {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, - {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, - {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, - {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, - {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, - {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, - {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, - {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, - {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, - {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, -] - -[[package]] -name = "requests" -version = "2.32.3" -description = "Python HTTP for Humans." -optional = false -python-versions = ">=3.8" -files = [ - {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, - {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, -] - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<4" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<3" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "ruff" -version = "0.1.15" -description = "An extremely fast Python linter and code formatter, written in Rust." -optional = false -python-versions = ">=3.7" -files = [ - {file = "ruff-0.1.15-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:5fe8d54df166ecc24106db7dd6a68d44852d14eb0729ea4672bb4d96c320b7df"}, - {file = "ruff-0.1.15-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:6f0bfbb53c4b4de117ac4d6ddfd33aa5fc31beeaa21d23c45c6dd249faf9126f"}, - {file = "ruff-0.1.15-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0d432aec35bfc0d800d4f70eba26e23a352386be3a6cf157083d18f6f5881c8"}, - {file = "ruff-0.1.15-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9405fa9ac0e97f35aaddf185a1be194a589424b8713e3b97b762336ec79ff807"}, - {file = "ruff-0.1.15-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c66ec24fe36841636e814b8f90f572a8c0cb0e54d8b5c2d0e300d28a0d7bffec"}, - {file = "ruff-0.1.15-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:6f8ad828f01e8dd32cc58bc28375150171d198491fc901f6f98d2a39ba8e3ff5"}, - {file = "ruff-0.1.15-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86811954eec63e9ea162af0ffa9f8d09088bab51b7438e8b6488b9401863c25e"}, - {file = "ruff-0.1.15-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd4025ac5e87d9b80e1f300207eb2fd099ff8200fa2320d7dc066a3f4622dc6b"}, - {file = "ruff-0.1.15-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b17b93c02cdb6aeb696effecea1095ac93f3884a49a554a9afa76bb125c114c1"}, - {file = "ruff-0.1.15-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:ddb87643be40f034e97e97f5bc2ef7ce39de20e34608f3f829db727a93fb82c5"}, - {file = "ruff-0.1.15-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:abf4822129ed3a5ce54383d5f0e964e7fef74a41e48eb1dfad404151efc130a2"}, - {file = "ruff-0.1.15-py3-none-musllinux_1_2_i686.whl", hash = "sha256:6c629cf64bacfd136c07c78ac10a54578ec9d1bd2a9d395efbee0935868bf852"}, - {file = "ruff-0.1.15-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:1bab866aafb53da39c2cadfb8e1c4550ac5340bb40300083eb8967ba25481447"}, - {file = "ruff-0.1.15-py3-none-win32.whl", hash = "sha256:2417e1cb6e2068389b07e6fa74c306b2810fe3ee3476d5b8a96616633f40d14f"}, - {file = "ruff-0.1.15-py3-none-win_amd64.whl", hash = "sha256:3837ac73d869efc4182d9036b1405ef4c73d9b1f88da2413875e34e0d6919587"}, - {file = "ruff-0.1.15-py3-none-win_arm64.whl", hash = "sha256:9a933dfb1c14ec7a33cceb1e49ec4a16b51ce3c20fd42663198746efc0427360"}, - {file = "ruff-0.1.15.tar.gz", hash = "sha256:f6dfa8c1b21c913c326919056c390966648b680966febcb796cc9d1aaab8564e"}, -] - -[[package]] -name = "safetensors" -version = "0.4.5" -description = "" -optional = false -python-versions = ">=3.7" -files = [ - {file = "safetensors-0.4.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a63eaccd22243c67e4f2b1c3e258b257effc4acd78f3b9d397edc8cf8f1298a7"}, - {file = "safetensors-0.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:23fc9b4ec7b602915cbb4ec1a7c1ad96d2743c322f20ab709e2c35d1b66dad27"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6885016f34bef80ea1085b7e99b3c1f92cb1be78a49839203060f67b40aee761"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:133620f443450429322f238fda74d512c4008621227fccf2f8cf4a76206fea7c"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4fb3e0609ec12d2a77e882f07cced530b8262027f64b75d399f1504ffec0ba56"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0f1dd769f064adc33831f5e97ad07babbd728427f98e3e1db6902e369122737"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6d156bdb26732feada84f9388a9f135528c1ef5b05fae153da365ad4319c4c5"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9e347d77e2c77eb7624400ccd09bed69d35c0332f417ce8c048d404a096c593b"}, - {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9f556eea3aec1d3d955403159fe2123ddd68e880f83954ee9b4a3f2e15e716b6"}, - {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9483f42be3b6bc8ff77dd67302de8ae411c4db39f7224dec66b0eb95822e4163"}, - {file = "safetensors-0.4.5-cp310-none-win32.whl", hash = "sha256:7389129c03fadd1ccc37fd1ebbc773f2b031483b04700923c3511d2a939252cc"}, - {file = "safetensors-0.4.5-cp310-none-win_amd64.whl", hash = "sha256:e98ef5524f8b6620c8cdef97220c0b6a5c1cef69852fcd2f174bb96c2bb316b1"}, - {file = "safetensors-0.4.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:21f848d7aebd5954f92538552d6d75f7c1b4500f51664078b5b49720d180e47c"}, - {file = "safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bb07000b19d41e35eecef9a454f31a8b4718a185293f0d0b1c4b61d6e4487971"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09dedf7c2fda934ee68143202acff6e9e8eb0ddeeb4cfc24182bef999efa9f42"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:59b77e4b7a708988d84f26de3ebead61ef1659c73dcbc9946c18f3b1786d2688"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d3bc83e14d67adc2e9387e511097f254bd1b43c3020440e708858c684cbac68"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39371fc551c1072976073ab258c3119395294cf49cdc1f8476794627de3130df"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6c19feda32b931cae0acd42748a670bdf56bee6476a046af20181ad3fee4090"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a659467495de201e2f282063808a41170448c78bada1e62707b07a27b05e6943"}, - {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bad5e4b2476949bcd638a89f71b6916fa9a5cae5c1ae7eede337aca2100435c0"}, - {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a3a315a6d0054bc6889a17f5668a73f94f7fe55121ff59e0a199e3519c08565f"}, - {file = "safetensors-0.4.5-cp311-none-win32.whl", hash = "sha256:a01e232e6d3d5cf8b1667bc3b657a77bdab73f0743c26c1d3c5dd7ce86bd3a92"}, - {file = "safetensors-0.4.5-cp311-none-win_amd64.whl", hash = "sha256:cbd39cae1ad3e3ef6f63a6f07296b080c951f24cec60188378e43d3713000c04"}, - {file = "safetensors-0.4.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:473300314e026bd1043cef391bb16a8689453363381561b8a3e443870937cc1e"}, - {file = "safetensors-0.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:801183a0f76dc647f51a2d9141ad341f9665602a7899a693207a82fb102cc53e"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1524b54246e422ad6fb6aea1ac71edeeb77666efa67230e1faf6999df9b2e27f"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b3139098e3e8b2ad7afbca96d30ad29157b50c90861084e69fcb80dec7430461"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65573dc35be9059770808e276b017256fa30058802c29e1038eb1c00028502ea"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd33da8e9407559f8779c82a0448e2133737f922d71f884da27184549416bfed"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3685ce7ed036f916316b567152482b7e959dc754fcc4a8342333d222e05f407c"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dde2bf390d25f67908278d6f5d59e46211ef98e44108727084d4637ee70ab4f1"}, - {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7469d70d3de970b1698d47c11ebbf296a308702cbaae7fcb993944751cf985f4"}, - {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a6ba28118636a130ccbb968bc33d4684c48678695dba2590169d5ab03a45646"}, - {file = "safetensors-0.4.5-cp312-none-win32.whl", hash = "sha256:c859c7ed90b0047f58ee27751c8e56951452ed36a67afee1b0a87847d065eec6"}, - {file = "safetensors-0.4.5-cp312-none-win_amd64.whl", hash = "sha256:b5a8810ad6a6f933fff6c276eae92c1da217b39b4d8b1bc1c0b8af2d270dc532"}, - {file = "safetensors-0.4.5-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:25e5f8e2e92a74f05b4ca55686234c32aac19927903792b30ee6d7bd5653d54e"}, - {file = "safetensors-0.4.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:81efb124b58af39fcd684254c645e35692fea81c51627259cdf6d67ff4458916"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:585f1703a518b437f5103aa9cf70e9bd437cb78eea9c51024329e4fb8a3e3679"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b99fbf72e3faf0b2f5f16e5e3458b93b7d0a83984fe8d5364c60aa169f2da89"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b17b299ca9966ca983ecda1c0791a3f07f9ca6ab5ded8ef3d283fff45f6bcd5f"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76ded72f69209c9780fdb23ea89e56d35c54ae6abcdec67ccb22af8e696e449a"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2783956926303dcfeb1de91a4d1204cd4089ab441e622e7caee0642281109db3"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d94581aab8c6b204def4d7320f07534d6ee34cd4855688004a4354e63b639a35"}, - {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:67e1e7cb8678bb1b37ac48ec0df04faf689e2f4e9e81e566b5c63d9f23748523"}, - {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:dbd280b07e6054ea68b0cb4b16ad9703e7d63cd6890f577cb98acc5354780142"}, - {file = "safetensors-0.4.5-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:77d9b228da8374c7262046a36c1f656ba32a93df6cc51cd4453af932011e77f1"}, - {file = "safetensors-0.4.5-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:500cac01d50b301ab7bb192353317035011c5ceeef0fca652f9f43c000bb7f8d"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75331c0c746f03158ded32465b7d0b0e24c5a22121743662a2393439c43a45cf"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670e95fe34e0d591d0529e5e59fd9d3d72bc77b1444fcaa14dccda4f36b5a38b"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:098923e2574ff237c517d6e840acada8e5b311cb1fa226019105ed82e9c3b62f"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13ca0902d2648775089fa6a0c8fc9e6390c5f8ee576517d33f9261656f851e3f"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f0032bedc869c56f8d26259fe39cd21c5199cd57f2228d817a0e23e8370af25"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4b15f51b4f8f2a512341d9ce3475cacc19c5fdfc5db1f0e19449e75f95c7dc8"}, - {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f6594d130d0ad933d885c6a7b75c5183cb0e8450f799b80a39eae2b8508955eb"}, - {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:60c828a27e852ded2c85fc0f87bf1ec20e464c5cd4d56ff0e0711855cc2e17f8"}, - {file = "safetensors-0.4.5-cp37-none-win32.whl", hash = "sha256:6d3de65718b86c3eeaa8b73a9c3d123f9307a96bbd7be9698e21e76a56443af5"}, - {file = "safetensors-0.4.5-cp37-none-win_amd64.whl", hash = "sha256:5a2d68a523a4cefd791156a4174189a4114cf0bf9c50ceb89f261600f3b2b81a"}, - {file = "safetensors-0.4.5-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:e7a97058f96340850da0601a3309f3d29d6191b0702b2da201e54c6e3e44ccf0"}, - {file = "safetensors-0.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:63bfd425e25f5c733f572e2246e08a1c38bd6f2e027d3f7c87e2e43f228d1345"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3664ac565d0e809b0b929dae7ccd74e4d3273cd0c6d1220c6430035befb678e"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:313514b0b9b73ff4ddfb4edd71860696dbe3c1c9dc4d5cc13dbd74da283d2cbf"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31fa33ee326f750a2f2134a6174773c281d9a266ccd000bd4686d8021f1f3dac"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:09566792588d77b68abe53754c9f1308fadd35c9f87be939e22c623eaacbed6b"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309aaec9b66cbf07ad3a2e5cb8a03205663324fea024ba391594423d0f00d9fe"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:53946c5813b8f9e26103c5efff4a931cc45d874f45229edd68557ffb35ffb9f8"}, - {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:868f9df9e99ad1e7f38c52194063a982bc88fedc7d05096f4f8160403aaf4bd6"}, - {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9cc9449bd0b0bc538bd5e268221f0c5590bc5c14c1934a6ae359d44410dc68c4"}, - {file = "safetensors-0.4.5-cp38-none-win32.whl", hash = "sha256:83c4f13a9e687335c3928f615cd63a37e3f8ef072a3f2a0599fa09f863fb06a2"}, - {file = "safetensors-0.4.5-cp38-none-win_amd64.whl", hash = "sha256:b98d40a2ffa560653f6274e15b27b3544e8e3713a44627ce268f419f35c49478"}, - {file = "safetensors-0.4.5-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cf727bb1281d66699bef5683b04d98c894a2803442c490a8d45cd365abfbdeb2"}, - {file = "safetensors-0.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:96f1d038c827cdc552d97e71f522e1049fef0542be575421f7684756a748e457"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:139fbee92570ecea774e6344fee908907db79646d00b12c535f66bc78bd5ea2c"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c36302c1c69eebb383775a89645a32b9d266878fab619819ce660309d6176c9b"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d641f5b8149ea98deb5ffcf604d764aad1de38a8285f86771ce1abf8e74c4891"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b4db6a61d968de73722b858038c616a1bebd4a86abe2688e46ca0cc2d17558f2"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b75a616e02f21b6f1d5785b20cecbab5e2bd3f6358a90e8925b813d557666ec1"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:788ee7d04cc0e0e7f944c52ff05f52a4415b312f5efd2ee66389fb7685ee030c"}, - {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:87bc42bd04fd9ca31396d3ca0433db0be1411b6b53ac5a32b7845a85d01ffc2e"}, - {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4037676c86365a721a8c9510323a51861d703b399b78a6b4486a54a65a975fca"}, - {file = "safetensors-0.4.5-cp39-none-win32.whl", hash = "sha256:1500418454529d0ed5c1564bda376c4ddff43f30fce9517d9bee7bcce5a8ef50"}, - {file = "safetensors-0.4.5-cp39-none-win_amd64.whl", hash = "sha256:9d1a94b9d793ed8fe35ab6d5cea28d540a46559bafc6aae98f30ee0867000cab"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fdadf66b5a22ceb645d5435a0be7a0292ce59648ca1d46b352f13cff3ea80410"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d42ffd4c2259f31832cb17ff866c111684c87bd930892a1ba53fed28370c918c"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd8a1f6d2063a92cd04145c7fd9e31a1c7d85fbec20113a14b487563fdbc0597"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951d2fcf1817f4fb0ef0b48f6696688a4e852a95922a042b3f96aaa67eedc920"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ac85d9a8c1af0e3132371d9f2d134695a06a96993c2e2f0bbe25debb9e3f67a"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e3cec4a29eb7fe8da0b1c7988bc3828183080439dd559f720414450de076fcab"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:21742b391b859e67b26c0b2ac37f52c9c0944a879a25ad2f9f9f3cd61e7fda8f"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7db3006a4915151ce1913652e907cdede299b974641a83fbc092102ac41b644"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68bf99ea970960a237f416ea394e266e0361895753df06e3e06e6ea7907d98b"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8158938cf3324172df024da511839d373c40fbfaa83e9abf467174b2910d7b4c"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:540ce6c4bf6b58cb0fd93fa5f143bc0ee341c93bb4f9287ccd92cf898cc1b0dd"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:bfeaa1a699c6b9ed514bd15e6a91e74738b71125a9292159e3d6b7f0a53d2cde"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:01c8f00da537af711979e1b42a69a8ec9e1d7112f208e0e9b8a35d2c381085ef"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a0dd565f83b30f2ca79b5d35748d0d99dd4b3454f80e03dfb41f0038e3bdf180"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:023b6e5facda76989f4cba95a861b7e656b87e225f61811065d5c501f78cdb3f"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9633b663393d5796f0b60249549371e392b75a0b955c07e9c6f8708a87fc841f"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78dd8adfb48716233c45f676d6e48534d34b4bceb50162c13d1f0bdf6f78590a"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e8deb16c4321d61ae72533b8451ec4a9af8656d1c61ff81aa49f966406e4b68"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:52452fa5999dc50c4decaf0c53aa28371f7f1e0fe5c2dd9129059fbe1e1599c7"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:d5f23198821e227cfc52d50fa989813513db381255c6d100927b012f0cfec63d"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f4beb84b6073b1247a773141a6331117e35d07134b3bb0383003f39971d414bb"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:68814d599d25ed2fdd045ed54d370d1d03cf35e02dce56de44c651f828fb9b7b"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0b6453c54c57c1781292c46593f8a37254b8b99004c68d6c3ce229688931a22"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adaa9c6dead67e2dd90d634f89131e43162012479d86e25618e821a03d1eb1dc"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73e7d408e9012cd17511b382b43547850969c7979efc2bc353f317abaf23c84c"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:775409ce0fcc58b10773fdb4221ed1eb007de10fe7adbdf8f5e8a56096b6f0bc"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:834001bed193e4440c4a3950a31059523ee5090605c907c66808664c932b549c"}, - {file = "safetensors-0.4.5.tar.gz", hash = "sha256:d73de19682deabb02524b3d5d1f8b3aaba94c72f1bbfc7911b9b9d5d391c0310"}, -] - -[package.extras] -all = ["safetensors[jax]", "safetensors[numpy]", "safetensors[paddlepaddle]", "safetensors[pinned-tf]", "safetensors[quality]", "safetensors[testing]", "safetensors[torch]"] -dev = ["safetensors[all]"] -jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "safetensors[numpy]"] -mlx = ["mlx (>=0.0.9)"] -numpy = ["numpy (>=1.21.6)"] -paddlepaddle = ["paddlepaddle (>=2.4.1)", "safetensors[numpy]"] -pinned-tf = ["safetensors[numpy]", "tensorflow (==2.11.0)"] -quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"] -tensorflow = ["safetensors[numpy]", "tensorflow (>=2.11.0)"] -testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "hypothesis (>=6.70.2)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "safetensors[numpy]", "setuptools-rust (>=1.5.2)"] -torch = ["safetensors[numpy]", "torch (>=1.10)"] - -[[package]] -name = "scipy" -version = "1.10.1" -description = "Fundamental algorithms for scientific computing in Python" -optional = false -python-versions = "<3.12,>=3.8" -files = [ - {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, - {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, - {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, - {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, - {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, - {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, - {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, - {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, - {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, - {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, - {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, - {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, - {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, - {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, -] - -[package.dependencies] -numpy = ">=1.19.5,<1.27.0" - -[package.extras] -dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] -doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] -test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "scipy" -version = "1.14.1" -description = "Fundamental algorithms for scientific computing in Python" -optional = false -python-versions = ">=3.10" -files = [ - {file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"}, - {file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"}, - {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"}, - {file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"}, - {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"}, - {file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"}, - {file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"}, - {file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"}, - {file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"}, - {file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"}, - {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"}, - {file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"}, - {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"}, - {file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"}, - {file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"}, - {file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"}, - {file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"}, - {file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"}, - {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"}, - {file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"}, - {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"}, - {file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"}, - {file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"}, - {file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"}, - {file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"}, - {file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"}, - {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"}, - {file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"}, - {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"}, - {file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"}, - {file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"}, - {file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"}, - {file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"}, -] - -[package.dependencies] -numpy = ">=1.23.5,<2.3" - -[package.extras] -dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] -doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"] -test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "setuptools" -version = "70.0.0" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "setuptools-70.0.0-py3-none-any.whl", hash = "sha256:54faa7f2e8d2d11bcd2c07bed282eef1046b5c080d1c32add737d7b5817b1ad4"}, - {file = "setuptools-70.0.0.tar.gz", hash = "sha256:f211a66637b8fa059bb28183da127d4e86396c991a942b028c6650d4319c3fd0"}, -] - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] - -[[package]] -name = "setuptools" -version = "74.1.1" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "setuptools-74.1.1-py3-none-any.whl", hash = "sha256:fc91b5f89e392ef5b77fe143b17e32f65d3024744fba66dc3afe07201684d766"}, - {file = "setuptools-74.1.1.tar.gz", hash = "sha256:2353af060c06388be1cecbf5953dcdb1f38362f87a2356c480b6b4d5fcfc8847"}, -] - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] -type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] - -[[package]] -name = "simsimd" -version = "5.0.1" -description = "Fastest SIMD-Accelerated Vector Similarity Functions for x86 and Arm" -optional = false -python-versions = "*" -files = [ - {file = "simsimd-5.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a843c1a5c01ec64afe16ff140738f5c820d7e1e006a44dd5d50f28322843572b"}, - {file = "simsimd-5.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c74db3f9043af2caac9d8fb33604f3a6959a858fc955c206f681e579b471eb0d"}, - {file = "simsimd-5.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:310a0300586216dd1e577e811fdec4c846e1ebdb6385884daa8b22ae8ca124d8"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39486846d2693be9a8fc3e61252e992a9f6867790485409510bd23e05e3a7b3c"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:923a47360d9867a38955a4290523adcf1a64276426f1f2f142a14fff79256fd3"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e54bc54f21f3eb6467e37222b0dd2de94a38a53272d0570625ad97b9e2e839e1"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:3ea22b16b290871bc5db83d6220902c9a83a82bb33cc6d00c2f6bcc428ab28b5"}, - {file = "simsimd-5.0.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:399fad8b05984d155d5e5805189eb0b78658f240a4b73cf5b83342472fb58c1e"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ccf28b6ab1e44a7d877ce81ac270424ae57c7fc774361f1f69171822d8aeb5e1"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c91f8cb36af44780cfd6948963a6e40784b6a969dd66ffddec079279ed3dec02"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ada46c2826a95a138b74c5964870791ed2709b0b27716285d8103f77515bc4af"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:13ddfec4a894ffb4a8c83783a13710c85d445dbd513be3e71a3990021a6a6e99"}, - {file = "simsimd-5.0.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c69b5128fdaf023f0d0e2aa82e1a47a8d40a13d91d82efd5412dadf7fd7d4d01"}, - {file = "simsimd-5.0.1-cp310-cp310-win32.whl", hash = "sha256:e6f8847a0c1c78660c543a2bb20e0eee66a22b6191e61fbc1455f368882976d8"}, - {file = "simsimd-5.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:453ed398542009143aa47f61cfa2555c9239be3c6b850dae198b8956329773c8"}, - {file = "simsimd-5.0.1-cp310-cp310-win_arm64.whl", hash = "sha256:31aff17aa40842b41dab45c0f6951241acfbde4f3cd066bd14bb280c2f4abca4"}, - {file = "simsimd-5.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9277845a9c65a0dad48b3326383b3654e99d28d5845b61615e320b1c974bee20"}, - {file = "simsimd-5.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e9e850df81f0969be387cbc00005f4f3a917eff1bbde32bfbaf592e165993ddc"}, - {file = "simsimd-5.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:208eb86686d241ac436a0ab22b6ea689979f3bb42d57305b0b5fc862cfe74f4c"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d932cf21c7b8210ba23a4425b006121d245a0fbf25110e9143d2886e8ccc680"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f9612b963212b9a234841ed09e9e267327ed36168b7624121a6c6b42f7ba90f"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:92964999f4f9022791b4c9ce5dc06f14189a65ec9a7456bd479a29d586c961ad"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:3ff7d5975660afc385abe10533b4cae8176808a8d4d55d81d2e3df602facede7"}, - {file = "simsimd-5.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:00c7aeac09a0edcbe14f31aeb0caec2ed50e5377406666273fa32fe8b57b72ea"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:edc1ad894484720ed7ba434e9c70b3caf8b504c7b7e2cc85eec2d2bd4dd29ea8"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8d73dae71be57ddbfec97c810c5dbd9dbb03f73943f05047cb035415f6cfbfea"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:27613dae1c18fc3e829d778f73a421d2b009f2e3722eaeed3c7f211a252eae66"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:d4bea60d8a5131897d30368b740197b781d51a1fb9efb8b739c239186bce4863"}, - {file = "simsimd-5.0.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:10e099033349a3d22100ea8316218b42382b21631d3355934a486492e1ec5466"}, - {file = "simsimd-5.0.1-cp311-cp311-win32.whl", hash = "sha256:eaf5b066bb981ee4406fa9eede381d4b3b2bdd0c278cd0b7525f46cc87f70adf"}, - {file = "simsimd-5.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:d707ae3d74287e96d48ae9345005c398f2ddd019f27373e657cd38f54b8923d9"}, - {file = "simsimd-5.0.1-cp311-cp311-win_arm64.whl", hash = "sha256:b9a09e87a2f3ec6769a7005c5a4e9ba36e1a46ed0767910593e62b75e496fd05"}, - {file = "simsimd-5.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:77dacb2556fa517c9c8935fb3ef9fd4bb14859df83f1d463576cebe3f782bfc0"}, - {file = "simsimd-5.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7c7f7bb6fa7d1e3ecf4fffce8e69453cb556276679e7417f2972f8155a2e90e"}, - {file = "simsimd-5.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3d17614ec3843a5cb08c60a21fe66c783fdf14cca2bfeaddfe6a6d66939c5cee"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ca7621458fdc7abd034468df82ee7825262c2d38cf375d85ec5da39cd8697d"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fbcc4818643b517f7cd829ee0e5c0b4b0680458b35cbe2c48ed43155c2ec8a02"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:734db8eb3f82285fb5cd0d066a6aa155d8359f202fcfb258d361cc548a1ca2a2"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:140b6da0bf7de6faca20c570eaefc2d252afda4ae8d5dc31dceedbac55baeed8"}, - {file = "simsimd-5.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:43364841bb6f98c507c04ca09a3cd979be9dd65d1867ab358a63cdbb501f865a"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e35f140b864e7c78414cbb1ec3d9d6b9601ebae8cd73b3e983971b985e8db216"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:dd7e79c77cde64bc311b3e3dda0e0032949c10f35d2a7db656c7ae5944168a37"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:aa82658c98d6dc087334230bc00d7269f2fcceb40b3b1dd014ad73c18fdd59c0"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:7054966e401e3830694aeccd069ef83b11d20f877cc556ded015156f7f6bbd1e"}, - {file = "simsimd-5.0.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:97f7d0699120db9f7c8ea6297d47456ed3c1c44bf852a46309865bcd86ab1f46"}, - {file = "simsimd-5.0.1-cp312-cp312-win32.whl", hash = "sha256:26388b63fb7847ef89a4a9584ef0328aec7b9c4e07ecdc8315c99a9abf4f54ac"}, - {file = "simsimd-5.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:75bec5086c910b39fbcf36249e6c756f2c3bb19db863759a722811fc573faaa4"}, - {file = "simsimd-5.0.1-cp312-cp312-win_arm64.whl", hash = "sha256:9d2f3972c140482ea93c60f6daaf4b637999039004e2390d245d279d4c51340d"}, - {file = "simsimd-5.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:bbb7b849993f3d86c7d14a51ec5b31e60d81b2d9ac242a2ffc58e1a74d07a842"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb1c43c067cf4fe5f5e97f9d7b9d46dba8a3cb3c1b7d11b87e406fde2d9fdb1d"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b24967044510a4763eb0b6a7bb95c4ab9aaa62649a75cbb3fdce462940701cbb"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a1501527c994bfa33bfea01d400305027f46aea1b06cd93fb819ae4e337674c0"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_28_aarch64.whl", hash = "sha256:7cd593fb93fd5cb5fab1b2ee1d2ce3f3e794639cd0b43f742064f99f35cb9a0e"}, - {file = "simsimd-5.0.1-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:8caf843a86523208f1a9d0540e17f926d5793a6cf767b8804a722b7a80ad46c3"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:8f402a44f29ff30d312c9ad299738052e6bf4bcd31f7d0ea8d8ad079de6202e9"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:0f409be2c3e1482e7506e5b4b4c95e24cb98c936942d8964f73699570dab19ca"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:271de66a7c721ba4d711317026965e6ee142c524de2752d14b2bc43e10ff3459"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_s390x.whl", hash = "sha256:326965a3966fabbe19d5740d3ca035b64660344b44fb924f68abdf226f2307c1"}, - {file = "simsimd-5.0.1-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:a985848988d36eda9809ada6e6a1adc61b2f3ec07116af0e74f2275eca3954ee"}, - {file = "simsimd-5.0.1-cp36-cp36m-win32.whl", hash = "sha256:eada16951ecac8ad311412883fd000731b93eee030e1c2ff6c360894b2009ea9"}, - {file = "simsimd-5.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:62ed6b7f81e07ce86b180b16ba7ebd925094698777e5f50dfa3d6e9fcdbbfcfc"}, - {file = "simsimd-5.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5c59ee6d4ecd2c49a08c5316514ce439005828572790c9e166a81a2aabbf3011"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8a431209b70857f0745c2f198b792231a1ce8f117e96c33a185b743bbb6caabc"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e2acec92ce994c225e1d615a5012728c0d2385b680aef639de4755afc16eb38"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19b2841dcc208af19e3f4dbaa562ccb0a26123b782559fe00f53e9095c232738"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:3af174c9fe5a1545a39878201447d724016f9f91d31cf7e6c1f1a2248c9b8670"}, - {file = "simsimd-5.0.1-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:52277bbf653cdf4a2444cdf838d4dc6f8ec2dc3b0bc13aa5476e35397fc7cd99"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:fdbdd663121faf5d611627f62d6de26e4d13c75f67d2ef26535d82e8941640c9"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:e34dd5178a910b25fc565a5bc411bb4d1cce1f3c95f4c293d3b3f31a4570840d"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:d9f999e895514778c2a6584e005e7f5a163b1c73af41211b9e545bcc4d5d9db7"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:245483cf629d12cddc09e9e82d21be01d6842b24070861676d3be689c08a6ae9"}, - {file = "simsimd-5.0.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:02b40790d044b4154ccfcde6fb5064cf10b921370091cd482406792bc1be2979"}, - {file = "simsimd-5.0.1-cp37-cp37m-win32.whl", hash = "sha256:b3c254bd6277313c6efd55927b747edd9c37aca7292e65af312f2d861b4186a5"}, - {file = "simsimd-5.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:09845e04224af0fa87f23f26f832c5e25da4ca4567b3e9723d9b368b6c085d6b"}, - {file = "simsimd-5.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3c6a38b197319877e92e5fec82c0e6296b760a8f68b9c33f71f6e8e3cd20a50a"}, - {file = "simsimd-5.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b7d61b9d2f5162f18606f81f14efc929003746771fc1d6370a9c2f1733f88633"}, - {file = "simsimd-5.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:180b78b7ed328d9284860443e48dd927b7260a7d6e5131b52abf2e036eb8aa45"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c6cb8755d571fe3cb7574d224d6986ecb9ee716b1bb0b6c7e6cef4e51c695226"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cb0126dd3badf85a6e4b519ebcdf4a02cdb66e9979e8effbccd682c3e52b8046"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5808dbf708136b399ea38cecf0c732588c23ad43664da0ed1a4038846f2ccacc"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:87e5d9680a6348013a60d0914b720490ad02b278ab642afdd633bcdf006164b9"}, - {file = "simsimd-5.0.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:dade38317109d80e87ed58a482a328fe3baef0c118b74560d4a10b6c00b92942"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:899c3dd8fadefd2a2b46256ced201527fcd9a573b8e6e6fec13b0971453f98f9"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:cd06d437c68a122df2400f5440391443431ad1d19ee735d62e9a336ba7abbe2d"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:76ed84210352c8f19f85f6064be317cdc337c5d53786dbb248847a3dfdc5a73a"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:59261c1590a727e09a29c51b98de9e01cc34b625c28fcc729a891a7df250d779"}, - {file = "simsimd-5.0.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:529b9b18bb62beaaa77dfd32fd1512d04968c4137715ef1e99b185853a3d7a40"}, - {file = "simsimd-5.0.1-cp38-cp38-win32.whl", hash = "sha256:de7ede4f816490a31b25853989c127aa58d9016d0f21284e57eafc39589b7daf"}, - {file = "simsimd-5.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:beaec9510adf93cdce9ceacf55c52ddd3479ab0749b4a12d5f663e9576d62ae9"}, - {file = "simsimd-5.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:395bacfc8eff78500cf5a96cd6a819af850d83b67a46542ff88058be153823ab"}, - {file = "simsimd-5.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:843af8b879325b56e8fcb4b372f78200ff85cda6cc2cd30331e0960cb95357e4"}, - {file = "simsimd-5.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b965c76d3c99ade35be21e9f822195707753846bfa135d0cea6f1385bee08766"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2df6c221a3d317b212d6434b63f6f917de8b4e5ceb7bf763ef11a40342dd0e8f"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f77a0027f390ef45aa75a108bcdc3b9c35814c405570e888a4cc1ddf229bfdbc"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b76d9d83629f3b1cdb84d99f239fe4506b9015f669a492a0ed19f1f2eb74030b"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:90db3e74f09e80c7224493cfb23860ecad6efa63f378daff9cfcd95ee77d2517"}, - {file = "simsimd-5.0.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:0ef6a3fef28e74e44e75fa2e65d19b106583a7f0338f0a82a711adc6cc850698"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:10c1ce409fbe8ed67015d0de17fdb950fcfb218078b804d142b3846d20e13b8c"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:af57464e0f056a845795a364e9e5d3a4bb532c3bb9bf894fca127ecde823f7e4"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:60f072fdfc034162b416132524ad9e8185a20a8530b5c41527c66395ba9251fc"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e28eaa277b8c2b43edd8c3b7427a1968b68c1a60d4a8297c563264c67faa5ebe"}, - {file = "simsimd-5.0.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:3be782b95cf1c172d9b98666f1aa15da1eaa253e633a23a34cf47f5d505a3f1a"}, - {file = "simsimd-5.0.1-cp39-cp39-win32.whl", hash = "sha256:186d994ee12bdc821abe8f9fc4d92cb9931a1f60b68728dbc51900b5fdc71ef2"}, - {file = "simsimd-5.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:bc5fc7814eb004ca71c8783b21e70a1ecb05e4ab98228fc97c2d53a400d07d66"}, - {file = "simsimd-5.0.1-cp39-cp39-win_arm64.whl", hash = "sha256:379e3fec4bdfeb8a969e6820fc053adf691d568cc8a92fd940c107c9c606e8ea"}, - {file = "simsimd-5.0.1.tar.gz", hash = "sha256:d688ccc1ceded9d77c96228e31f8474bbf543b8dffafee6a2f86047a6b696608"}, -] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] - -[[package]] -name = "sniffio" -version = "1.3.1" -description = "Sniff out which async library your code is running under" -optional = false -python-versions = ">=3.7" -files = [ - {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, - {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, -] - -[[package]] -name = "sympy" -version = "1.13.2" -description = "Computer algebra system (CAS) in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "sympy-1.13.2-py3-none-any.whl", hash = "sha256:c51d75517712f1aed280d4ce58506a4a88d635d6b5dd48b39102a7ae1f3fcfe9"}, - {file = "sympy-1.13.2.tar.gz", hash = "sha256:401449d84d07be9d0c7a46a64bd54fe097667d5e7181bfe67ec777be9e01cb13"}, -] - -[package.dependencies] -mpmath = ">=1.1.0,<1.4" - -[package.extras] -dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] - -[[package]] -name = "syrupy" -version = "4.7.1" -description = "Pytest Snapshot Test Utility" -optional = false -python-versions = ">=3.8.1" -files = [ - {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, - {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, -] - -[package.dependencies] -pytest = ">=7.0.0,<9.0.0" - -[[package]] -name = "tenacity" -version = "8.5.0" -description = "Retry code until it succeeds" -optional = false -python-versions = ">=3.8" -files = [ - {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, - {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, -] - -[package.extras] -doc = ["reno", "sphinx"] -test = ["pytest", "tornado (>=4.5)", "typeguard"] - -[[package]] -name = "tokenizers" -version = "0.19.1" -description = "" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tokenizers-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:952078130b3d101e05ecfc7fc3640282d74ed26bcf691400f872563fca15ac97"}, - {file = "tokenizers-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82c8b8063de6c0468f08e82c4e198763e7b97aabfe573fd4cf7b33930ca4df77"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f03727225feaf340ceeb7e00604825addef622d551cbd46b7b775ac834c1e1c4"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:453e4422efdfc9c6b6bf2eae00d5e323f263fff62b29a8c9cd526c5003f3f642"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02e81bf089ebf0e7f4df34fa0207519f07e66d8491d963618252f2e0729e0b46"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b07c538ba956843833fee1190cf769c60dc62e1cf934ed50d77d5502194d63b1"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28cab1582e0eec38b1f38c1c1fb2e56bce5dc180acb1724574fc5f47da2a4fe"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b01afb7193d47439f091cd8f070a1ced347ad0f9144952a30a41836902fe09e"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7fb297edec6c6841ab2e4e8f357209519188e4a59b557ea4fafcf4691d1b4c98"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e8a3dd055e515df7054378dc9d6fa8c8c34e1f32777fb9a01fea81496b3f9d3"}, - {file = "tokenizers-0.19.1-cp310-none-win32.whl", hash = "sha256:7ff898780a155ea053f5d934925f3902be2ed1f4d916461e1a93019cc7250837"}, - {file = "tokenizers-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:bea6f9947e9419c2fda21ae6c32871e3d398cba549b93f4a65a2d369662d9403"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5c88d1481f1882c2e53e6bb06491e474e420d9ac7bdff172610c4f9ad3898059"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddf672ed719b4ed82b51499100f5417d7d9f6fb05a65e232249268f35de5ed14"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dadc509cc8a9fe460bd274c0e16ac4184d0958117cf026e0ea8b32b438171594"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfedf31824ca4915b511b03441784ff640378191918264268e6923da48104acc"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac11016d0a04aa6487b1513a3a36e7bee7eec0e5d30057c9c0408067345c48d2"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:76951121890fea8330d3a0df9a954b3f2a37e3ec20e5b0530e9a0044ca2e11fe"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b342d2ce8fc8d00f376af068e3274e2e8649562e3bc6ae4a67784ded6b99428d"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d16ff18907f4909dca9b076b9c2d899114dd6abceeb074eca0c93e2353f943aa"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:706a37cc5332f85f26efbe2bdc9ef8a9b372b77e4645331a405073e4b3a8c1c6"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:16baac68651701364b0289979ecec728546133e8e8fe38f66fe48ad07996b88b"}, - {file = "tokenizers-0.19.1-cp311-none-win32.whl", hash = "sha256:9ed240c56b4403e22b9584ee37d87b8bfa14865134e3e1c3fb4b2c42fafd3256"}, - {file = "tokenizers-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:ad57d59341710b94a7d9dbea13f5c1e7d76fd8d9bcd944a7a6ab0b0da6e0cc66"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:621d670e1b1c281a1c9698ed89451395d318802ff88d1fc1accff0867a06f153"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d924204a3dbe50b75630bd16f821ebda6a5f729928df30f582fb5aade90c818a"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:4f3fefdc0446b1a1e6d81cd4c07088ac015665d2e812f6dbba4a06267d1a2c95"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9620b78e0b2d52ef07b0d428323fb34e8ea1219c5eac98c2596311f20f1f9266"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04ce49e82d100594715ac1b2ce87d1a36e61891a91de774755f743babcd0dd52"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5c2ff13d157afe413bf7e25789879dd463e5a4abfb529a2d8f8473d8042e28f"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3174c76efd9d08f836bfccaca7cfec3f4d1c0a4cf3acbc7236ad577cc423c840"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9d5b6c0e7a1e979bec10ff960fae925e947aab95619a6fdb4c1d8ff3708ce3"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a179856d1caee06577220ebcfa332af046d576fb73454b8f4d4b0ba8324423ea"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:952b80dac1a6492170f8c2429bd11fcaa14377e097d12a1dbe0ef2fb2241e16c"}, - {file = "tokenizers-0.19.1-cp312-none-win32.whl", hash = "sha256:01d62812454c188306755c94755465505836fd616f75067abcae529c35edeb57"}, - {file = "tokenizers-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:b70bfbe3a82d3e3fb2a5e9b22a39f8d1740c96c68b6ace0086b39074f08ab89a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:bb9dfe7dae85bc6119d705a76dc068c062b8b575abe3595e3c6276480e67e3f1"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:1f0360cbea28ea99944ac089c00de7b2e3e1c58f479fb8613b6d8d511ce98267"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:71e3ec71f0e78780851fef28c2a9babe20270404c921b756d7c532d280349214"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b82931fa619dbad979c0ee8e54dd5278acc418209cc897e42fac041f5366d626"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e8ff5b90eabdcdaa19af697885f70fe0b714ce16709cf43d4952f1f85299e73a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e742d76ad84acbdb1a8e4694f915fe59ff6edc381c97d6dfdd054954e3478ad4"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d8c5d59d7b59885eab559d5bc082b2985555a54cda04dda4c65528d90ad252ad"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b2da5c32ed869bebd990c9420df49813709e953674c0722ff471a116d97b22d"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:638e43936cc8b2cbb9f9d8dde0fe5e7e30766a3318d2342999ae27f68fdc9bd6"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:78e769eb3b2c79687d9cb0f89ef77223e8e279b75c0a968e637ca7043a84463f"}, - {file = "tokenizers-0.19.1-cp37-none-win32.whl", hash = "sha256:72791f9bb1ca78e3ae525d4782e85272c63faaef9940d92142aa3eb79f3407a3"}, - {file = "tokenizers-0.19.1-cp37-none-win_amd64.whl", hash = "sha256:f3bbb7a0c5fcb692950b041ae11067ac54826204318922da754f908d95619fbc"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:07f9295349bbbcedae8cefdbcfa7f686aa420be8aca5d4f7d1ae6016c128c0c5"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:10a707cc6c4b6b183ec5dbfc5c34f3064e18cf62b4a938cb41699e33a99e03c1"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6309271f57b397aa0aff0cbbe632ca9d70430839ca3178bf0f06f825924eca22"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ad23d37d68cf00d54af184586d79b84075ada495e7c5c0f601f051b162112dc"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:427c4f0f3df9109314d4f75b8d1f65d9477033e67ffaec4bca53293d3aca286d"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e83a31c9cf181a0a3ef0abad2b5f6b43399faf5da7e696196ddd110d332519ee"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27b99889bd58b7e301468c0838c5ed75e60c66df0d4db80c08f43462f82e0d3"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bac0b0eb952412b0b196ca7a40e7dce4ed6f6926489313414010f2e6b9ec2adf"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8a6298bde623725ca31c9035a04bf2ef63208d266acd2bed8c2cb7d2b7d53ce6"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:08a44864e42fa6d7d76d7be4bec62c9982f6f6248b4aa42f7302aa01e0abfd26"}, - {file = "tokenizers-0.19.1-cp38-none-win32.whl", hash = "sha256:1de5bc8652252d9357a666e609cb1453d4f8e160eb1fb2830ee369dd658e8975"}, - {file = "tokenizers-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:0bcce02bf1ad9882345b34d5bd25ed4949a480cf0e656bbd468f4d8986f7a3f1"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0b9394bd204842a2a1fd37fe29935353742be4a3460b6ccbaefa93f58a8df43d"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4692ab92f91b87769d950ca14dbb61f8a9ef36a62f94bad6c82cc84a51f76f6a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6258c2ef6f06259f70a682491c78561d492e885adeaf9f64f5389f78aa49a051"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c85cf76561fbd01e0d9ea2d1cbe711a65400092bc52b5242b16cfd22e51f0c58"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670b802d4d82bbbb832ddb0d41df7015b3e549714c0e77f9bed3e74d42400fbe"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:85aa3ab4b03d5e99fdd31660872249df5e855334b6c333e0bc13032ff4469c4a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbf001afbbed111a79ca47d75941e9e5361297a87d186cbfc11ed45e30b5daba"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c89aa46c269e4e70c4d4f9d6bc644fcc39bb409cb2a81227923404dd6f5227"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:39c1ec76ea1027438fafe16ecb0fb84795e62e9d643444c1090179e63808c69d"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c2a0d47a89b48d7daa241e004e71fb5a50533718897a4cd6235cb846d511a478"}, - {file = "tokenizers-0.19.1-cp39-none-win32.whl", hash = "sha256:61b7fe8886f2e104d4caf9218b157b106207e0f2a4905c9c7ac98890688aabeb"}, - {file = "tokenizers-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:f97660f6c43efd3e0bfd3f2e3e5615bf215680bad6ee3d469df6454b8c6e8256"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3b11853f17b54c2fe47742c56d8a33bf49ce31caf531e87ac0d7d13d327c9334"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d26194ef6c13302f446d39972aaa36a1dda6450bc8949f5eb4c27f51191375bd"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e8d1ed93beda54bbd6131a2cb363a576eac746d5c26ba5b7556bc6f964425594"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca407133536f19bdec44b3da117ef0d12e43f6d4b56ac4c765f37eca501c7bda"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce05fde79d2bc2e46ac08aacbc142bead21614d937aac950be88dc79f9db9022"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:35583cd46d16f07c054efd18b5d46af4a2f070a2dd0a47914e66f3ff5efb2b1e"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:43350270bfc16b06ad3f6f07eab21f089adb835544417afda0f83256a8bf8b75"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b4399b59d1af5645bcee2072a463318114c39b8547437a7c2d6a186a1b5a0e2d"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6852c5b2a853b8b0ddc5993cd4f33bfffdca4fcc5d52f89dd4b8eada99379285"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bcd266ae85c3d39df2f7e7d0e07f6c41a55e9a3123bb11f854412952deacd828"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecb2651956eea2aa0a2d099434134b1b68f1c31f9a5084d6d53f08ed43d45ff2"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b279ab506ec4445166ac476fb4d3cc383accde1ea152998509a94d82547c8e2a"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:89183e55fb86e61d848ff83753f64cded119f5d6e1f553d14ffee3700d0a4a49"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b2edbc75744235eea94d595a8b70fe279dd42f3296f76d5a86dde1d46e35f574"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:0e64bfde9a723274e9a71630c3e9494ed7b4c0f76a1faacf7fe294cd26f7ae7c"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0b5ca92bfa717759c052e345770792d02d1f43b06f9e790ca0a1db62838816f3"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f8a20266e695ec9d7a946a019c1d5ca4eddb6613d4f466888eee04f16eedb85"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c38f45d8f2a2ec0f3a20073cccb335b9f99f73b3c69483cd52ebc75369d8a1"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:dd26e3afe8a7b61422df3176e06664503d3f5973b94f45d5c45987e1cb711876"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:eddd5783a4a6309ce23432353cdb36220e25cbb779bfa9122320666508b44b88"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:56ae39d4036b753994476a1b935584071093b55c7a72e3b8288e68c313ca26e7"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9939ca7e58c2758c01b40324a59c034ce0cebad18e0d4563a9b1beab3018243"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6c330c0eb815d212893c67a032e9dc1b38a803eccb32f3e8172c19cc69fbb439"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec11802450a2487cdf0e634b750a04cbdc1c4d066b97d94ce7dd2cb51ebb325b"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b718f316b596f36e1dae097a7d5b91fc5b85e90bf08b01ff139bd8953b25af"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ed69af290c2b65169f0ba9034d1dc39a5db9459b32f1dd8b5f3f32a3fcf06eab"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f8a9c828277133af13f3859d1b6bf1c3cb6e9e1637df0e45312e6b7c2e622b1f"}, - {file = "tokenizers-0.19.1.tar.gz", hash = "sha256:ee59e6680ed0fdbe6b724cf38bd70400a0c1dd623b07ac729087270caeac88e3"}, -] - -[package.dependencies] -huggingface-hub = ">=0.16.4,<1.0" - -[package.extras] -dev = ["tokenizers[testing]"] -docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"] -testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests", "ruff"] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] - -[[package]] -name = "tqdm" -version = "4.66.5" -description = "Fast, Extensible Progress Meter" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, - {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "transformers" -version = "4.44.2" -description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "transformers-4.44.2-py3-none-any.whl", hash = "sha256:1c02c65e7bfa5e52a634aff3da52138b583fc6f263c1f28d547dc144ba3d412d"}, - {file = "transformers-4.44.2.tar.gz", hash = "sha256:36aa17cc92ee154058e426d951684a2dab48751b35b49437896f898931270826"}, -] - -[package.dependencies] -filelock = "*" -huggingface-hub = ">=0.23.2,<1.0" -numpy = ">=1.17" -packaging = ">=20.0" -pyyaml = ">=5.1" -regex = "!=2019.12.17" -requests = "*" -safetensors = ">=0.4.1" -tokenizers = ">=0.19,<0.20" -tqdm = ">=4.27" - -[package.extras] -accelerate = ["accelerate (>=0.21.0)"] -agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] -all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] -audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -benchmark = ["optimum-benchmark (>=0.2.0)"] -codecarbon = ["codecarbon (==1.2.0)"] -deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] -deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] -dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] -flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -ftfy = ["ftfy"] -integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"] -ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] -modelcreation = ["cookiecutter (==1.7.3)"] -natten = ["natten (>=0.14.6,<0.15.0)"] -onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] -onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] -optuna = ["optuna"] -quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "ruff (==0.5.1)", "urllib3 (<2.0.0)"] -ray = ["ray[tune] (>=2.7.0)"] -retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] -ruff = ["ruff (==0.5.1)"] -sagemaker = ["sagemaker (>=2.31.0)"] -sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] -serving = ["fastapi", "pydantic", "starlette", "uvicorn"] -sigopt = ["sigopt"] -sklearn = ["scikit-learn"] -speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -tf = ["keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] -tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<0.24)", "tensorflow-text (<2.16)", "tf2onnx"] -tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -timm = ["timm (<=0.9.16)"] -tokenizers = ["tokenizers (>=0.19,<0.20)"] -torch = ["accelerate (>=0.21.0)", "torch"] -torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] -torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] -video = ["av (==9.2.0)", "decord (==0.6.0)"] -vision = ["Pillow (>=10.0.1,<=15.0)"] - -[[package]] -name = "types-requests" -version = "2.32.0.20240712" -description = "Typing stubs for requests" -optional = false -python-versions = ">=3.8" -files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, -] - -[package.dependencies] -urllib3 = ">=2" - -[[package]] -name = "typing-extensions" -version = "4.12.2" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, - {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, -] - -[[package]] -name = "tzdata" -version = "2024.1" -description = "Provider of IANA time zone data" -optional = false -python-versions = ">=2" -files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, -] - -[[package]] -name = "ujson" -version = "5.10.0" -description = "Ultra fast JSON encoder and decoder for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "ujson-5.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2601aa9ecdbee1118a1c2065323bda35e2c5a2cf0797ef4522d485f9d3ef65bd"}, - {file = "ujson-5.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:348898dd702fc1c4f1051bc3aacbf894caa0927fe2c53e68679c073375f732cf"}, - {file = "ujson-5.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22cffecf73391e8abd65ef5f4e4dd523162a3399d5e84faa6aebbf9583df86d6"}, - {file = "ujson-5.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26b0e2d2366543c1bb4fbd457446f00b0187a2bddf93148ac2da07a53fe51569"}, - {file = "ujson-5.10.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:caf270c6dba1be7a41125cd1e4fc7ba384bf564650beef0df2dd21a00b7f5770"}, - {file = "ujson-5.10.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a245d59f2ffe750446292b0094244df163c3dc96b3ce152a2c837a44e7cda9d1"}, - {file = "ujson-5.10.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:94a87f6e151c5f483d7d54ceef83b45d3a9cca7a9cb453dbdbb3f5a6f64033f5"}, - {file = "ujson-5.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:29b443c4c0a113bcbb792c88bea67b675c7ca3ca80c3474784e08bba01c18d51"}, - {file = "ujson-5.10.0-cp310-cp310-win32.whl", hash = "sha256:c18610b9ccd2874950faf474692deee4223a994251bc0a083c114671b64e6518"}, - {file = "ujson-5.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:924f7318c31874d6bb44d9ee1900167ca32aa9b69389b98ecbde34c1698a250f"}, - {file = "ujson-5.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a5b366812c90e69d0f379a53648be10a5db38f9d4ad212b60af00bd4048d0f00"}, - {file = "ujson-5.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:502bf475781e8167f0f9d0e41cd32879d120a524b22358e7f205294224c71126"}, - {file = "ujson-5.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b91b5d0d9d283e085e821651184a647699430705b15bf274c7896f23fe9c9d8"}, - {file = "ujson-5.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:129e39af3a6d85b9c26d5577169c21d53821d8cf68e079060602e861c6e5da1b"}, - {file = "ujson-5.10.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f77b74475c462cb8b88680471193064d3e715c7c6074b1c8c412cb526466efe9"}, - {file = "ujson-5.10.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7ec0ca8c415e81aa4123501fee7f761abf4b7f386aad348501a26940beb1860f"}, - {file = "ujson-5.10.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:ab13a2a9e0b2865a6c6db9271f4b46af1c7476bfd51af1f64585e919b7c07fd4"}, - {file = "ujson-5.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:57aaf98b92d72fc70886b5a0e1a1ca52c2320377360341715dd3933a18e827b1"}, - {file = "ujson-5.10.0-cp311-cp311-win32.whl", hash = "sha256:2987713a490ceb27edff77fb184ed09acdc565db700ee852823c3dc3cffe455f"}, - {file = "ujson-5.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:f00ea7e00447918ee0eff2422c4add4c5752b1b60e88fcb3c067d4a21049a720"}, - {file = "ujson-5.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:98ba15d8cbc481ce55695beee9f063189dce91a4b08bc1d03e7f0152cd4bbdd5"}, - {file = "ujson-5.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a9d2edbf1556e4f56e50fab7d8ff993dbad7f54bac68eacdd27a8f55f433578e"}, - {file = "ujson-5.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6627029ae4f52d0e1a2451768c2c37c0c814ffc04f796eb36244cf16b8e57043"}, - {file = "ujson-5.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8ccb77b3e40b151e20519c6ae6d89bfe3f4c14e8e210d910287f778368bb3d1"}, - {file = "ujson-5.10.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3caf9cd64abfeb11a3b661329085c5e167abbe15256b3b68cb5d914ba7396f3"}, - {file = "ujson-5.10.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6e32abdce572e3a8c3d02c886c704a38a1b015a1fb858004e03d20ca7cecbb21"}, - {file = "ujson-5.10.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a65b6af4d903103ee7b6f4f5b85f1bfd0c90ba4eeac6421aae436c9988aa64a2"}, - {file = "ujson-5.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:604a046d966457b6cdcacc5aa2ec5314f0e8c42bae52842c1e6fa02ea4bda42e"}, - {file = "ujson-5.10.0-cp312-cp312-win32.whl", hash = "sha256:6dea1c8b4fc921bf78a8ff00bbd2bfe166345f5536c510671bccececb187c80e"}, - {file = "ujson-5.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:38665e7d8290188b1e0d57d584eb8110951a9591363316dd41cf8686ab1d0abc"}, - {file = "ujson-5.10.0-cp313-cp313-macosx_10_9_x86_64.whl", hash = "sha256:618efd84dc1acbd6bff8eaa736bb6c074bfa8b8a98f55b61c38d4ca2c1f7f287"}, - {file = "ujson-5.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:38d5d36b4aedfe81dfe251f76c0467399d575d1395a1755de391e58985ab1c2e"}, - {file = "ujson-5.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67079b1f9fb29ed9a2914acf4ef6c02844b3153913eb735d4bf287ee1db6e557"}, - {file = "ujson-5.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7d0e0ceeb8fe2468c70ec0c37b439dd554e2aa539a8a56365fd761edb418988"}, - {file = "ujson-5.10.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:59e02cd37bc7c44d587a0ba45347cc815fb7a5fe48de16bf05caa5f7d0d2e816"}, - {file = "ujson-5.10.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:2a890b706b64e0065f02577bf6d8ca3b66c11a5e81fb75d757233a38c07a1f20"}, - {file = "ujson-5.10.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:621e34b4632c740ecb491efc7f1fcb4f74b48ddb55e65221995e74e2d00bbff0"}, - {file = "ujson-5.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b9500e61fce0cfc86168b248104e954fead61f9be213087153d272e817ec7b4f"}, - {file = "ujson-5.10.0-cp313-cp313-win32.whl", hash = "sha256:4c4fc16f11ac1612f05b6f5781b384716719547e142cfd67b65d035bd85af165"}, - {file = "ujson-5.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:4573fd1695932d4f619928fd09d5d03d917274381649ade4328091ceca175539"}, - {file = "ujson-5.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a984a3131da7f07563057db1c3020b1350a3e27a8ec46ccbfbf21e5928a43050"}, - {file = "ujson-5.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:73814cd1b9db6fc3270e9d8fe3b19f9f89e78ee9d71e8bd6c9a626aeaeaf16bd"}, - {file = "ujson-5.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:61e1591ed9376e5eddda202ec229eddc56c612b61ac6ad07f96b91460bb6c2fb"}, - {file = "ujson-5.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2c75269f8205b2690db4572a4a36fe47cd1338e4368bc73a7a0e48789e2e35a"}, - {file = "ujson-5.10.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7223f41e5bf1f919cd8d073e35b229295aa8e0f7b5de07ed1c8fddac63a6bc5d"}, - {file = "ujson-5.10.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d4dc2fd6b3067c0782e7002ac3b38cf48608ee6366ff176bbd02cf969c9c20fe"}, - {file = "ujson-5.10.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:232cc85f8ee3c454c115455195a205074a56ff42608fd6b942aa4c378ac14dd7"}, - {file = "ujson-5.10.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:cc6139531f13148055d691e442e4bc6601f6dba1e6d521b1585d4788ab0bfad4"}, - {file = "ujson-5.10.0-cp38-cp38-win32.whl", hash = "sha256:e7ce306a42b6b93ca47ac4a3b96683ca554f6d35dd8adc5acfcd55096c8dfcb8"}, - {file = "ujson-5.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:e82d4bb2138ab05e18f089a83b6564fee28048771eb63cdecf4b9b549de8a2cc"}, - {file = "ujson-5.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dfef2814c6b3291c3c5f10065f745a1307d86019dbd7ea50e83504950136ed5b"}, - {file = "ujson-5.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4734ee0745d5928d0ba3a213647f1c4a74a2a28edc6d27b2d6d5bd9fa4319e27"}, - {file = "ujson-5.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47ebb01bd865fdea43da56254a3930a413f0c5590372a1241514abae8aa7c76"}, - {file = "ujson-5.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dee5e97c2496874acbf1d3e37b521dd1f307349ed955e62d1d2f05382bc36dd5"}, - {file = "ujson-5.10.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7490655a2272a2d0b072ef16b0b58ee462f4973a8f6bbe64917ce5e0a256f9c0"}, - {file = "ujson-5.10.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ba17799fcddaddf5c1f75a4ba3fd6441f6a4f1e9173f8a786b42450851bd74f1"}, - {file = "ujson-5.10.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:2aff2985cef314f21d0fecc56027505804bc78802c0121343874741650a4d3d1"}, - {file = "ujson-5.10.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ad88ac75c432674d05b61184178635d44901eb749786c8eb08c102330e6e8996"}, - {file = "ujson-5.10.0-cp39-cp39-win32.whl", hash = "sha256:2544912a71da4ff8c4f7ab5606f947d7299971bdd25a45e008e467ca638d13c9"}, - {file = "ujson-5.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:3ff201d62b1b177a46f113bb43ad300b424b7847f9c5d38b1b4ad8f75d4a282a"}, - {file = "ujson-5.10.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5b6fee72fa77dc172a28f21693f64d93166534c263adb3f96c413ccc85ef6e64"}, - {file = "ujson-5.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:61d0af13a9af01d9f26d2331ce49bb5ac1fb9c814964018ac8df605b5422dcb3"}, - {file = "ujson-5.10.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecb24f0bdd899d368b715c9e6664166cf694d1e57be73f17759573a6986dd95a"}, - {file = "ujson-5.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbd8fd427f57a03cff3ad6574b5e299131585d9727c8c366da4624a9069ed746"}, - {file = "ujson-5.10.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:beeaf1c48e32f07d8820c705ff8e645f8afa690cca1544adba4ebfa067efdc88"}, - {file = "ujson-5.10.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:baed37ea46d756aca2955e99525cc02d9181de67f25515c468856c38d52b5f3b"}, - {file = "ujson-5.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:7663960f08cd5a2bb152f5ee3992e1af7690a64c0e26d31ba7b3ff5b2ee66337"}, - {file = "ujson-5.10.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:d8640fb4072d36b08e95a3a380ba65779d356b2fee8696afeb7794cf0902d0a1"}, - {file = "ujson-5.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78778a3aa7aafb11e7ddca4e29f46bc5139131037ad628cc10936764282d6753"}, - {file = "ujson-5.10.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b0111b27f2d5c820e7f2dbad7d48e3338c824e7ac4d2a12da3dc6061cc39c8e6"}, - {file = "ujson-5.10.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:c66962ca7565605b355a9ed478292da628b8f18c0f2793021ca4425abf8b01e5"}, - {file = "ujson-5.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ba43cc34cce49cf2d4bc76401a754a81202d8aa926d0e2b79f0ee258cb15d3a4"}, - {file = "ujson-5.10.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ac56eb983edce27e7f51d05bc8dd820586c6e6be1c5216a6809b0c668bb312b8"}, - {file = "ujson-5.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f44bd4b23a0e723bf8b10628288c2c7c335161d6840013d4d5de20e48551773b"}, - {file = "ujson-5.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c10f4654e5326ec14a46bcdeb2b685d4ada6911050aa8baaf3501e57024b804"}, - {file = "ujson-5.10.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0de4971a89a762398006e844ae394bd46991f7c385d7a6a3b93ba229e6dac17e"}, - {file = "ujson-5.10.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e1402f0564a97d2a52310ae10a64d25bcef94f8dd643fcf5d310219d915484f7"}, - {file = "ujson-5.10.0.tar.gz", hash = "sha256:b3cd8f3c5d8c7738257f1018880444f7b7d9b66232c64649f562d7ba86ad4bc1"}, -] - -[[package]] -name = "urllib3" -version = "2.2.2" -description = "HTTP library with thread-safe connection pooling, file post, and more." -optional = false -python-versions = ">=3.8" -files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, -] - -[package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] -h2 = ["h2 (>=4,<5)"] -socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] -zstd = ["zstandard (>=0.18.0)"] - -[[package]] -name = "watchdog" -version = "4.0.2" -description = "Filesystem events monitoring" -optional = false -python-versions = ">=3.8" -files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, -] - -[package.extras] -watchmedo = ["PyYAML (>=3.10)"] - -[metadata] -lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "57c924f905dc457de6cdbf189bc3773328b322592a4cda2087616e7297dcafb3" diff --git a/libs/partners/milvus/pyproject.toml b/libs/partners/milvus/pyproject.toml deleted file mode 100644 index e8542886aabc9..0000000000000 --- a/libs/partners/milvus/pyproject.toml +++ /dev/null @@ -1,95 +0,0 @@ -[build-system] -requires = [ "poetry-core>=1.0.0",] -build-backend = "poetry.core.masonry.api" - -[tool.poetry] -name = "langchain-milvus" -version = "0.1.5" -description = "An integration package connecting Milvus and LangChain" -authors = [] -readme = "README.md" -repository = "https://github.com/langchain-ai/langchain" -license = "MIT" - -[tool.ruff] -select = [ "E", "F", "I", "T201",] - -[tool.mypy] -disallow_untyped_defs = "True" -[[tool.mypy.overrides]] -module = [ "pymilvus",] -ignore_missing_imports = "True" - -[tool.poetry.urls] -"Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/partners/milvus" -"Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-milvus%3D%3D0%22&expanded=true" - -[tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.38" -pymilvus = "^2.4.3" -[[tool.poetry.dependencies.scipy]] -version = "^1.7" -python = "<3.12" - -[[tool.poetry.dependencies.scipy]] -version = "^1.9" -python = ">=3.12" - -[tool.coverage.run] -omit = [ "tests/*",] - -[tool.pytest.ini_options] -addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] -asyncio_mode = "auto" - -[tool.poetry.group.test] -optional = true - -[tool.poetry.group.codespell] -optional = true - -[tool.poetry.group.test_integration] -optional = true - -[tool.poetry.group.lint] -optional = true - -[tool.poetry.group.dev] -optional = true - -[tool.poetry.group.test.dependencies] -pytest = "^7.3.0" -freezegun = "^1.2.2" -pytest-mock = "^3.10.0" -syrupy = "^4.0.2" -pytest-watcher = "^0.3.4" -pytest-asyncio = "^0.21.1" -milvus_model = "^0.2.0" - -[tool.poetry.group.codespell.dependencies] -codespell = "^2.2.0" - -[tool.poetry.group.test_integration.dependencies] -milvus_model = "^0.2.0" - -[tool.poetry.group.lint.dependencies] -ruff = "^0.1.5" - -[tool.poetry.group.typing.dependencies] -mypy = "^0.991" -types-requests = "^2" -simsimd = "^5.0.0" - -[tool.poetry.group.test.dependencies.langchain-core] -path = "../../core" -develop = true - -[tool.poetry.group.typing.dependencies.langchain-core] -path = "../../core" -develop = true - -[tool.poetry.group.dev.dependencies.langchain-core] -path = "../../core" -develop = true diff --git a/libs/partners/milvus/scripts/check_imports.py b/libs/partners/milvus/scripts/check_imports.py deleted file mode 100644 index 58a460c149353..0000000000000 --- a/libs/partners/milvus/scripts/check_imports.py +++ /dev/null @@ -1,17 +0,0 @@ -import sys -import traceback -from importlib.machinery import SourceFileLoader - -if __name__ == "__main__": - files = sys.argv[1:] - has_failure = False - for file in files: - try: - SourceFileLoader("x", file).load_module() - except Exception: - has_failure = True - print(file) # noqa: T201 - traceback.print_exc() - print() # noqa: T201 - - sys.exit(1 if has_failure else 0) diff --git a/libs/partners/milvus/scripts/check_pydantic.sh b/libs/partners/milvus/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/milvus/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/milvus/scripts/lint_imports.sh b/libs/partners/milvus/scripts/lint_imports.sh deleted file mode 100755 index 695613c7ba8fd..0000000000000 --- a/libs/partners/milvus/scripts/lint_imports.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/bash - -set -eu - -# Initialize a variable to keep track of errors -errors=0 - -# make sure not importing from langchain or langchain_experimental -git --no-pager grep '^from langchain\.' . && errors=$((errors+1)) -git --no-pager grep '^from langchain_experimental\.' . && errors=$((errors+1)) - -# Decide on an exit status based on the errors -if [ "$errors" -gt 0 ]; then - exit 1 -else - exit 0 -fi diff --git a/libs/partners/milvus/tests/__init__.py b/libs/partners/milvus/tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/tests/integration_tests/__init__.py b/libs/partners/milvus/tests/integration_tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/tests/integration_tests/retrievers/__init__.py b/libs/partners/milvus/tests/integration_tests/retrievers/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/tests/integration_tests/test_compile.py b/libs/partners/milvus/tests/integration_tests/test_compile.py deleted file mode 100644 index 33ecccdfa0fbd..0000000000000 --- a/libs/partners/milvus/tests/integration_tests/test_compile.py +++ /dev/null @@ -1,7 +0,0 @@ -import pytest - - -@pytest.mark.compile -def test_placeholder() -> None: - """Used for compiling integration tests without running any real tests.""" - pass diff --git a/libs/partners/milvus/tests/integration_tests/utils.py b/libs/partners/milvus/tests/integration_tests/utils.py deleted file mode 100644 index f3ef87d2f2acc..0000000000000 --- a/libs/partners/milvus/tests/integration_tests/utils.py +++ /dev/null @@ -1,40 +0,0 @@ -from typing import List - -from langchain_core.documents import Document -from langchain_core.embeddings import Embeddings - -fake_texts = ["foo", "bar", "baz"] - - -class FakeEmbeddings(Embeddings): - """Fake embeddings functionality for testing.""" - - def embed_documents(self, texts: List[str]) -> List[List[float]]: - """Return simple embeddings. - Embeddings encode each text as its index.""" - return [[float(1.0)] * 9 + [float(i)] for i in range(len(texts))] - - async def aembed_documents(self, texts: List[str]) -> List[List[float]]: - return self.embed_documents(texts) - - def embed_query(self, text: str) -> List[float]: - """Return constant query embeddings. - Embeddings are identical to embed_documents(texts)[0]. - Distance to each text will be that text's index, - as it was passed to embed_documents.""" - return [float(1.0)] * 9 + [float(0.0)] - - async def aembed_query(self, text: str) -> List[float]: - return self.embed_query(text) - - -def assert_docs_equal_without_pk( - docs1: List[Document], docs2: List[Document], pk_field: str = "pk" -) -> None: - """Assert two lists of Documents are equal, ignoring the primary key field.""" - assert len(docs1) == len(docs2) - for doc1, doc2 in zip(docs1, docs2): - assert doc1.page_content == doc2.page_content - doc1.metadata.pop(pk_field, None) - doc2.metadata.pop(pk_field, None) - assert doc1.metadata == doc2.metadata diff --git a/libs/partners/milvus/tests/integration_tests/vectorstores/__init__.py b/libs/partners/milvus/tests/integration_tests/vectorstores/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/tests/integration_tests/vectorstores/test_milvus.py b/libs/partners/milvus/tests/integration_tests/vectorstores/test_milvus.py deleted file mode 100644 index 0de248b3ad54d..0000000000000 --- a/libs/partners/milvus/tests/integration_tests/vectorstores/test_milvus.py +++ /dev/null @@ -1,396 +0,0 @@ -"""Test Milvus functionality.""" - -from typing import Any, List, Optional - -import pytest -from langchain_core.documents import Document - -from langchain_milvus.utils.sparse import BM25SparseEmbedding -from langchain_milvus.vectorstores import Milvus -from tests.integration_tests.utils import ( - FakeEmbeddings, - assert_docs_equal_without_pk, - fake_texts, -) - -# -# To run this test properly, please start a Milvus server with the following command: -# -# ```shell -# wget https://raw.githubusercontent.com/milvus-io/milvus/master/scripts/standalone_embed.sh -# bash standalone_embed.sh start -# ``` -# -# Here is the reference: -# https://milvus.io/docs/install_standalone-docker.md -# - - -def _milvus_from_texts( - metadatas: Optional[List[dict]] = None, - ids: Optional[List[str]] = None, - drop: bool = True, - **kwargs: Any, -) -> Milvus: - return Milvus.from_texts( - fake_texts, - FakeEmbeddings(), - metadatas=metadatas, - ids=ids, - # connection_args={"uri": "http://127.0.0.1:19530"}, - connection_args={"uri": "./milvus_demo.db"}, - drop_old=drop, - consistency_level="Strong", - **kwargs, - ) - - -def _get_pks(expr: str, docsearch: Milvus) -> List[Any]: - return docsearch.get_pks(expr) # type: ignore[return-value] - - -def test_milvus() -> None: - """Test end to end construction and search.""" - docsearch = _milvus_from_texts() - output = docsearch.similarity_search("foo", k=1) - assert_docs_equal_without_pk(output, [Document(page_content="foo")]) - - -def test_milvus_vector_search() -> None: - """Test end to end construction and search by vector.""" - docsearch = _milvus_from_texts() - output = docsearch.similarity_search_by_vector( - FakeEmbeddings().embed_query("foo"), k=1 - ) - assert_docs_equal_without_pk(output, [Document(page_content="foo")]) - - -def test_milvus_with_metadata() -> None: - """Test with metadata""" - docsearch = _milvus_from_texts(metadatas=[{"label": "test"}] * len(fake_texts)) - output = docsearch.similarity_search("foo", k=1) - assert_docs_equal_without_pk( - output, [Document(page_content="foo", metadata={"label": "test"})] - ) - - -def test_milvus_with_id() -> None: - """Test with ids""" - ids = ["id_" + str(i) for i in range(len(fake_texts))] - docsearch = _milvus_from_texts(ids=ids) - output = docsearch.similarity_search("foo", k=1) - assert_docs_equal_without_pk(output, [Document(page_content="foo")]) - - output = docsearch.delete(ids=ids) - assert output.delete_count == len(fake_texts) # type: ignore[attr-defined] - - try: - ids = ["dup_id" for _ in fake_texts] - _milvus_from_texts(ids=ids) - except Exception as e: - assert isinstance(e, AssertionError) - - -def test_milvus_with_score() -> None: - """Test end to end construction and search with scores and IDs.""" - texts = ["foo", "bar", "baz"] - metadatas = [{"page": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas) - output = docsearch.similarity_search_with_score("foo", k=3) - docs = [o[0] for o in output] - scores = [o[1] for o in output] - assert_docs_equal_without_pk( - docs, - [ - Document(page_content="foo", metadata={"page": 0}), - Document(page_content="bar", metadata={"page": 1}), - Document(page_content="baz", metadata={"page": 2}), - ], - ) - assert scores[0] < scores[1] < scores[2] - - -def test_milvus_max_marginal_relevance_search() -> None: - """Test end to end construction and MRR search.""" - texts = ["foo", "bar", "baz"] - metadatas = [{"page": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas) - output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3) - assert_docs_equal_without_pk( - output, - [ - Document(page_content="foo", metadata={"page": 0}), - Document(page_content="bar", metadata={"page": 1}), - ], - ) - - -def test_milvus_max_marginal_relevance_search_with_dynamic_field() -> None: - """Test end to end construction and MRR search with enabling dynamic field.""" - texts = ["foo", "bar", "baz"] - metadatas = [{"page": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas, enable_dynamic_field=True) - output = docsearch.max_marginal_relevance_search("foo", k=2, fetch_k=3) - assert_docs_equal_without_pk( - output, - [ - Document(page_content="foo", metadata={"page": 0}), - Document(page_content="bar", metadata={"page": 1}), - ], - ) - - -def test_milvus_add_extra() -> None: - """Test end to end construction and MRR search.""" - texts = ["foo", "bar", "baz"] - metadatas = [{"page": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas) - - docsearch.add_texts(texts, metadatas) - - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 6 - - -def test_milvus_no_drop() -> None: - """Test construction without dropping old data.""" - texts = ["foo", "bar", "baz"] - metadatas = [{"page": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas) - del docsearch - - docsearch = _milvus_from_texts(metadatas=metadatas, drop=False) - - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 6 - - -def test_milvus_get_pks() -> None: - """Test end to end construction and get pks with expr""" - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas) - expr = "id in [1,2]" - output = _get_pks(expr, docsearch) - assert len(output) == 2 - - -def test_milvus_delete_entities() -> None: - """Test end to end construction and delete entities""" - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas) - expr = "id in [1,2]" - pks = _get_pks(expr, docsearch) - result = docsearch.delete(pks) - assert result.delete_count == 2 # type: ignore[attr-defined] - - -def test_milvus_upsert_entities() -> None: - """Test end to end construction and upsert entities""" - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas) - expr = "id in [1,2]" - pks = _get_pks(expr, docsearch) - documents = [ - Document(page_content="test_1", metadata={"id": 1}), - Document(page_content="test_2", metadata={"id": 3}), - ] - ids = docsearch.upsert(pks, documents) - assert len(ids) == 2 # type: ignore[arg-type] - - -def test_milvus_enable_dynamic_field() -> None: - """Test end to end construction and enable dynamic field""" - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas, enable_dynamic_field=True) - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 3 - - # When enable dynamic field, any new field data will be added to the collection. - new_metadatas = [{"id_new": i} for i in range(len(texts))] - docsearch.add_texts(texts, new_metadatas) - - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 6 - - assert set(docsearch.fields) == { - docsearch._primary_field, - docsearch._text_field, - docsearch._vector_field, - } - - -def test_milvus_disable_dynamic_field() -> None: - """Test end to end construction and disable dynamic field""" - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas, enable_dynamic_field=False) - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 3 - # ["pk", "text", "vector", "id"] - assert set(docsearch.fields) == { - docsearch._primary_field, - docsearch._text_field, - docsearch._vector_field, - "id", - } - - # Try to add new fields "id_new", but since dynamic field is disabled, - # all fields in the collection is specified as ["pk", "text", "vector", "id"], - # new field information "id_new" will not be added. - new_metadatas = [{"id": i, "id_new": i} for i in range(len(texts))] - docsearch.add_texts(texts, new_metadatas) - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 6 - for doc in output: - assert set(doc.metadata.keys()) == {"id", "pk"} # `id_new` is not added. - - # When disable dynamic field, - # missing data of the created fields "id", will raise an exception. - with pytest.raises(Exception): - new_metadatas = [{"id_new": i} for i in range(len(texts))] - docsearch.add_texts(texts, new_metadatas) - - -def test_milvus_metadata_field() -> None: - """Test end to end construction and use metadata field""" - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i} for i in range(len(texts))] - docsearch = _milvus_from_texts(metadatas=metadatas, metadata_field="metadata") - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 3 - - new_metadatas = [{"id_new": i} for i in range(len(texts))] - docsearch.add_texts(texts, new_metadatas) - - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 6 - - assert set(docsearch.fields) == { - docsearch._primary_field, - docsearch._text_field, - docsearch._vector_field, - docsearch._metadata_field, - } - - -def test_milvus_enable_dynamic_field_with_partition_key() -> None: - """ - Test end to end construction and enable dynamic field - with partition_key_field - """ - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i, "namespace": f"name_{i}"} for i in range(len(texts))] - - docsearch = _milvus_from_texts( - metadatas=metadatas, enable_dynamic_field=True, partition_key_field="namespace" - ) - - # filter on a single namespace - output = docsearch.similarity_search("foo", k=10, expr="namespace == 'name_2'") - assert len(output) == 1 - - # without namespace filter - output = docsearch.similarity_search("foo", k=10) - assert len(output) == 3 - - assert set(docsearch.fields) == { - docsearch._primary_field, - docsearch._text_field, - docsearch._vector_field, - docsearch._partition_key_field, - } - - -def test_milvus_sparse_embeddings() -> None: - texts = [ - "In 'The Clockwork Kingdom' by Augusta Wynter, a brilliant inventor discovers " - "a hidden world of clockwork machines and ancient magic, where a rebellion is " - "brewing against the tyrannical ruler of the land.", - "In 'The Phantom Pilgrim' by Rowan Welles, a charismatic smuggler is hired by " - "a mysterious organization to transport a valuable artifact across a war-torn " - "continent, but soon finds themselves pursued by assassins and rival factions.", - "In 'The Dreamwalker's Journey' by Lyra Snow, a young dreamwalker discovers " - "she has the ability to enter people's dreams, but soon finds herself trapped " - "in a surreal world of nightmares and illusions, where the boundaries between " - "reality and fantasy blur.", - ] - sparse_embedding_func = BM25SparseEmbedding(corpus=texts) - docsearch = Milvus.from_texts( - embedding=sparse_embedding_func, - texts=texts, - connection_args={"uri": "./milvus_demo.db"}, - drop_old=True, - ) - - output = docsearch.similarity_search("Pilgrim", k=1) - assert "Pilgrim" in output[0].page_content - - -def test_milvus_array_field() -> None: - """Manually specify metadata schema, including an array_field. - For more information about array data type and filtering, please refer to - https://milvus.io/docs/array_data_type.md - """ - from pymilvus import DataType - - texts = ["foo", "bar", "baz"] - metadatas = [{"id": i, "array_field": [i, i + 1, i + 2]} for i in range(len(texts))] - - # Manually specify metadata schema, including an array_field. - # If some fields are not specified, Milvus will automatically infer their schemas. - docsearch = _milvus_from_texts( - metadatas=metadatas, - metadata_schema={ - "array_field": { - "dtype": DataType.ARRAY, - "kwargs": {"element_type": DataType.INT64, "max_capacity": 50}, - }, - # "id": { - # "dtype": DataType.INT64, - # } - }, - ) - output = docsearch.similarity_search("foo", k=10, expr="array_field[0] < 2") - assert len(output) == 2 - output = docsearch.similarity_search( - "foo", k=10, expr="ARRAY_CONTAINS(array_field, 3)" - ) - assert len(output) == 2 - - # If we use enable_dynamic_field, - # there is no need to manually specify metadata schema. - docsearch = _milvus_from_texts( - enable_dynamic_field=True, - metadatas=metadatas, - ) - output = docsearch.similarity_search("foo", k=10, expr="array_field[0] < 2") - assert len(output) == 2 - output = docsearch.similarity_search( - "foo", k=10, expr="ARRAY_CONTAINS(array_field, 3)" - ) - assert len(output) == 2 - - -# if __name__ == "__main__": -# test_milvus() -# test_milvus_vector_search() -# test_milvus_with_metadata() -# test_milvus_with_id() -# test_milvus_with_score() -# test_milvus_max_marginal_relevance_search() -# test_milvus_max_marginal_relevance_search_with_dynamic_field() -# test_milvus_add_extra() -# test_milvus_no_drop() -# test_milvus_get_pks() -# test_milvus_delete_entities() -# test_milvus_upsert_entities() -# test_milvus_enable_dynamic_field() -# test_milvus_disable_dynamic_field() -# test_milvus_metadata_field() -# test_milvus_enable_dynamic_field_with_partition_key() -# test_milvus_sparse_embeddings() -# test_milvus_array_field() diff --git a/libs/partners/milvus/tests/unit_tests/__init__.py b/libs/partners/milvus/tests/unit_tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/tests/unit_tests/retrievers/__init__.py b/libs/partners/milvus/tests/unit_tests/retrievers/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/tests/unit_tests/test_imports.py b/libs/partners/milvus/tests/unit_tests/test_imports.py deleted file mode 100644 index 8be170e36f272..0000000000000 --- a/libs/partners/milvus/tests/unit_tests/test_imports.py +++ /dev/null @@ -1,12 +0,0 @@ -from langchain_milvus import __all__ - -EXPECTED_ALL = [ - "Milvus", - "MilvusCollectionHybridSearchRetriever", - "Zilliz", - "ZillizCloudPipelineRetriever", -] - - -def test_all_imports() -> None: - assert sorted(EXPECTED_ALL) == sorted(__all__) diff --git a/libs/partners/milvus/tests/unit_tests/vectorstores/__init__.py b/libs/partners/milvus/tests/unit_tests/vectorstores/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/milvus/tests/unit_tests/vectorstores/test_milvus.py b/libs/partners/milvus/tests/unit_tests/vectorstores/test_milvus.py deleted file mode 100644 index 1ef2314e79590..0000000000000 --- a/libs/partners/milvus/tests/unit_tests/vectorstores/test_milvus.py +++ /dev/null @@ -1,17 +0,0 @@ -import os -from tempfile import TemporaryDirectory -from unittest.mock import Mock - -from langchain_milvus.vectorstores import Milvus - - -def test_initialization() -> None: - """Test integration milvus initialization.""" - embedding = Mock() - with TemporaryDirectory() as tmp_dir: - Milvus( - embedding_function=embedding, - connection_args={ - "uri": os.path.join(tmp_dir, "milvus.db"), - }, - ) diff --git a/libs/partners/mistralai/langchain_mistralai/chat_models.py b/libs/partners/mistralai/langchain_mistralai/chat_models.py index 54485ebc55c0f..b3a43629e8aae 100644 --- a/libs/partners/mistralai/langchain_mistralai/chat_models.py +++ b/libs/partners/mistralai/langchain_mistralai/chat_models.py @@ -66,17 +66,19 @@ parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - SecretStr, - root_validator, -) from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough from langchain_core.tools import BaseTool from langchain_core.utils import secret_from_env from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import ( + BaseModel, + ConfigDict, + Field, + SecretStr, + model_validator, +) +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -381,11 +383,10 @@ class ChatMistralAI(BaseChatModel): safe_mode: bool = False streaming: bool = False - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True - arbitrary_types_allowed = True + model_config = ConfigDict( + populate_by_name=True, + arbitrary_types_allowed=True, + ) @property def _default_params(self) -> Dict[str, Any]: @@ -471,47 +472,50 @@ def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: combined = {"token_usage": overall_token_usage, "model_name": self.model} return combined - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate api key, python package exists, temperature, and top_p.""" - api_key_str = values["mistral_api_key"].get_secret_value() + if isinstance(self.mistral_api_key, SecretStr): + api_key_str: Optional[str] = self.mistral_api_key.get_secret_value() + else: + api_key_str = self.mistral_api_key # todo: handle retries base_url_str = ( - values.get("endpoint") + self.endpoint or os.environ.get("MISTRAL_BASE_URL") or "https://api.mistral.ai/v1" ) - values["endpoint"] = base_url_str - if not values.get("client"): - values["client"] = httpx.Client( + self.endpoint = base_url_str + if not self.client: + self.client = httpx.Client( base_url=base_url_str, headers={ "Content-Type": "application/json", "Accept": "application/json", "Authorization": f"Bearer {api_key_str}", }, - timeout=values["timeout"], + timeout=self.timeout, ) # todo: handle retries and max_concurrency - if not values.get("async_client"): - values["async_client"] = httpx.AsyncClient( + if not self.async_client: + self.async_client = httpx.AsyncClient( base_url=base_url_str, headers={ "Content-Type": "application/json", "Accept": "application/json", "Authorization": f"Bearer {api_key_str}", }, - timeout=values["timeout"], + timeout=self.timeout, ) - if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: + if self.temperature is not None and not 0 <= self.temperature <= 1: raise ValueError("temperature must be in the range [0.0, 1.0]") - if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: + if self.top_p is not None and not 0 <= self.top_p <= 1: raise ValueError("top_p must be in the range [0.0, 1.0]") - return values + return self def _generate( self, @@ -730,7 +734,7 @@ def with_structured_output( from typing import Optional from langchain_mistralai import ChatMistralAI - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class AnswerWithJustification(BaseModel): @@ -761,7 +765,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_mistralai import ChatMistralAI - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): @@ -848,7 +852,7 @@ class AnswerWithJustification(TypedDict): .. code-block:: from langchain_mistralai import ChatMistralAI - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): answer: str diff --git a/libs/partners/mistralai/langchain_mistralai/embeddings.py b/libs/partners/mistralai/langchain_mistralai/embeddings.py index ea19fdd9cae0b..485e9771c48f8 100644 --- a/libs/partners/mistralai/langchain_mistralai/embeddings.py +++ b/libs/partners/mistralai/langchain_mistralai/embeddings.py @@ -1,20 +1,22 @@ import asyncio import logging import warnings -from typing import Dict, Iterable, List +from typing import Iterable, List import httpx from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import ( +from langchain_core.utils import ( + secret_from_env, +) +from pydantic import ( BaseModel, + ConfigDict, Field, SecretStr, - root_validator, -) -from langchain_core.utils import ( - secret_from_env, + model_validator, ) from tokenizers import Tokenizer # type: ignore +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -125,41 +127,42 @@ class MistralAIEmbeddings(BaseModel, Embeddings): model: str = "mistral-embed" - class Config: - extra = "forbid" - arbitrary_types_allowed = True - allow_population_by_field_name = True + model_config = ConfigDict( + extra="forbid", + arbitrary_types_allowed=True, + populate_by_name=True, + ) - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate configuration.""" - api_key_str = values["mistral_api_key"].get_secret_value() + api_key_str = self.mistral_api_key.get_secret_value() # todo: handle retries - if not values.get("client"): - values["client"] = httpx.Client( - base_url=values["endpoint"], + if not self.client: + self.client = httpx.Client( + base_url=self.endpoint, headers={ "Content-Type": "application/json", "Accept": "application/json", "Authorization": f"Bearer {api_key_str}", }, - timeout=values["timeout"], + timeout=self.timeout, ) # todo: handle retries and max_concurrency - if not values.get("async_client"): - values["async_client"] = httpx.AsyncClient( - base_url=values["endpoint"], + if not self.async_client: + self.async_client = httpx.AsyncClient( + base_url=self.endpoint, headers={ "Content-Type": "application/json", "Accept": "application/json", "Authorization": f"Bearer {api_key_str}", }, - timeout=values["timeout"], + timeout=self.timeout, ) - if values["tokenizer"] is None: + if self.tokenizer is None: try: - values["tokenizer"] = Tokenizer.from_pretrained( + self.tokenizer = Tokenizer.from_pretrained( "mistralai/Mixtral-8x7B-v0.1" ) except IOError: # huggingface_hub GatedRepoError @@ -169,8 +172,8 @@ def validate_environment(cls, values: Dict) -> Dict: "HF_TOKEN environment variable to download the real tokenizer. " "Falling back to a dummy tokenizer that uses `len()`." ) - values["tokenizer"] = DummyTokenizer() - return values + self.tokenizer = DummyTokenizer() + return self def _get_batches(self, texts: List[str]) -> Iterable[List[str]]: """Split a list of texts into batches of less than 16k tokens diff --git a/libs/partners/mistralai/poetry.lock b/libs/partners/mistralai/poetry.lock index 28cdf8c1934d4..dedd1e9163139 100644 --- a/libs/partners/mistralai/poetry.lock +++ b/libs/partners/mistralai/poetry.lock @@ -11,9 +11,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -190,19 +187,19 @@ test = ["pytest (>=6)"] [[package]] name = "filelock" -version = "3.15.4" +version = "3.16.0" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, - {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, + {file = "filelock-3.16.0-py3-none-any.whl", hash = "sha256:f6ed4c963184f4c84dd5557ce8fece759a3724b37b80c6c4f20a2f63a4dc6609"}, + {file = "filelock-3.16.0.tar.gz", hash = "sha256:81de9eb8453c769b63369f87f11131a7ab04e367f8d97ad39dc230daa07e3bec"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] -typing = ["typing-extensions (>=4.8)"] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.1.1)", "pytest (>=8.3.2)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.3)"] +typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "fsspec" @@ -394,19 +391,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -422,13 +419,13 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = ">=0.3.0.dev1" pytest = ">=7,<9" syrupy = "^4" @@ -438,13 +435,13 @@ url = "../../standard-tests" [[package]] name = "langsmith" -version = "0.1.111" +version = "0.1.117" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.111-py3-none-any.whl", hash = "sha256:e5c702764911193c9812fe55136ae01cd0b9ddf5dff0b068ce6fd60eeddbcb40"}, - {file = "langsmith-0.1.111.tar.gz", hash = "sha256:bab24fd6125685f588d682693c4a3253e163804242829b1ff902e1a3e984a94c"}, + {file = "langsmith-0.1.117-py3-none-any.whl", hash = "sha256:e936ee9bcf8293b0496df7ba462a3702179fbe51f9dc28744b0fbec0dbf206ae"}, + {file = "langsmith-0.1.117.tar.gz", hash = "sha256:a1b532f49968b9339bcaff9118d141846d52ed3d803f342902e7448edf1d662b"}, ] [package.dependencies] @@ -608,18 +605,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -627,103 +624,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1112,46 +1110,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -1159,5 +1152,5 @@ watchmedo = ["PyYAML (>=3.10)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "644c2bff44971ab41eecdc6cc46649addcbf155136cd918733f928fea4c47228" +python-versions = ">=3.9,<4.0" +content-hash = "55dc468994bd85a715a6a5a92d02ff746ae3d40c49989a57123213deaab1ab86" diff --git a/libs/partners/mistralai/pyproject.toml b/libs/partners/mistralai/pyproject.toml index 22dff1ef8666c..834c61a0a2f9e 100644 --- a/libs/partners/mistralai/pyproject.toml +++ b/libs/partners/mistralai/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-mistralai" -version = "0.1.13" +version = "0.2.0" description = "An integration package connecting Mistral and LangChain" authors = [] readme = "README.md" @@ -19,21 +19,26 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-mistralai%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.38" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" tokenizers = ">=0.15.1,<1" httpx = ">=0.25.2,<1" httpx-sse = ">=0.3.1,<1" +pydantic = ">=2,<3" [tool.ruff.lint] -select = [ "E", "F", "I", "T201",] +select = ["E", "F", "I", "T201"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] diff --git a/libs/partners/mistralai/scripts/check_pydantic.sh b/libs/partners/mistralai/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/mistralai/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/mistralai/tests/integration_tests/test_chat_models.py b/libs/partners/mistralai/tests/integration_tests/test_chat_models.py index 9f88d9b4ea585..dc67bd93abe6a 100644 --- a/libs/partners/mistralai/tests/integration_tests/test_chat_models.py +++ b/libs/partners/mistralai/tests/integration_tests/test_chat_models.py @@ -9,7 +9,7 @@ BaseMessageChunk, HumanMessage, ) -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_mistralai.chat_models import ChatMistralAI diff --git a/libs/partners/mistralai/tests/unit_tests/__snapshots__/test_standard.ambr b/libs/partners/mistralai/tests/unit_tests/__snapshots__/test_standard.ambr index 75bdad2decf89..f7986097c47e3 100644 --- a/libs/partners/mistralai/tests/unit_tests/__snapshots__/test_standard.ambr +++ b/libs/partners/mistralai/tests/unit_tests/__snapshots__/test_standard.ambr @@ -1,43 +1,6 @@ # serializer version: 1 # name: TestMistralStandard.test_serdes[serialized] dict({ - 'graph': dict({ - 'edges': list([ - dict({ - 'source': 0, - 'target': 1, - }), - dict({ - 'source': 1, - 'target': 2, - }), - ]), - 'nodes': list([ - dict({ - 'data': 'ChatMistralAIInput', - 'id': 0, - 'type': 'schema', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langchain', - 'chat_models', - 'mistralai', - 'ChatMistralAI', - ]), - 'name': 'ChatMistralAI', - }), - 'id': 1, - 'type': 'runnable', - }), - dict({ - 'data': 'ChatMistralAIOutput', - 'id': 2, - 'type': 'schema', - }), - ]), - }), 'id': list([ 'langchain', 'chat_models', diff --git a/libs/partners/mistralai/tests/unit_tests/test_chat_models.py b/libs/partners/mistralai/tests/unit_tests/test_chat_models.py index 62b863338872c..a5046db47e43b 100644 --- a/libs/partners/mistralai/tests/unit_tests/test_chat_models.py +++ b/libs/partners/mistralai/tests/unit_tests/test_chat_models.py @@ -15,7 +15,7 @@ SystemMessage, ToolCall, ) -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_mistralai.chat_models import ( # type: ignore[import] ChatMistralAI, diff --git a/libs/partners/mistralai/tests/unit_tests/test_embeddings.py b/libs/partners/mistralai/tests/unit_tests/test_embeddings.py index 46e65eaf5fb7a..41023f015e25f 100644 --- a/libs/partners/mistralai/tests/unit_tests/test_embeddings.py +++ b/libs/partners/mistralai/tests/unit_tests/test_embeddings.py @@ -1,7 +1,7 @@ import os from typing import cast -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_mistralai import MistralAIEmbeddings diff --git a/libs/partners/mongodb/langchain_mongodb/chat_message_histories.py b/libs/partners/mongodb/langchain_mongodb/chat_message_histories.py index 9ad45ae4e1ab8..7604f43e03c76 100644 --- a/libs/partners/mongodb/langchain_mongodb/chat_message_histories.py +++ b/libs/partners/mongodb/langchain_mongodb/chat_message_histories.py @@ -122,7 +122,11 @@ def messages(self) -> List[BaseMessage]: # type: ignore cursor = self.collection.find({self.session_id_key: self.session_id}) else: skip_count = max( - 0, self.collection.count_documents({}) - self.history_size + 0, + self.collection.count_documents( + {self.session_id_key: self.session_id} + ) + - self.history_size, ) cursor = self.collection.find( {self.session_id_key: self.session_id}, skip=skip_count diff --git a/libs/partners/mongodb/poetry.lock b/libs/partners/mongodb/poetry.lock index 22a770d6d7623..193ccae0fe1b4 100644 --- a/libs/partners/mongodb/poetry.lock +++ b/libs/partners/mongodb/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. [[package]] name = "aiohappyeyeballs" @@ -148,9 +148,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -488,69 +485,77 @@ files = [ [[package]] name = "greenlet" -version = "3.0.3" +version = "3.1.0" description = "Lightweight in-process concurrent programming" optional = false python-versions = ">=3.7" files = [ - {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, - {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, - {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, - {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, - {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, - {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, - {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, - {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, - {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, - {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, - {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, - {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, - {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, - {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, - {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, - {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, + {file = "greenlet-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a814dc3100e8a046ff48faeaa909e80cdb358411a3d6dd5293158425c684eda8"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a771dc64fa44ebe58d65768d869fcfb9060169d203446c1d446e844b62bdfdca"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0e49a65d25d7350cca2da15aac31b6f67a43d867448babf997fe83c7505f57bc"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2cd8518eade968bc52262d8c46727cfc0826ff4d552cf0430b8d65aaf50bb91d"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76dc19e660baea5c38e949455c1181bc018893f25372d10ffe24b3ed7341fb25"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c0a5b1c22c82831f56f2f7ad9bbe4948879762fe0d59833a4a71f16e5fa0f682"}, + {file = "greenlet-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:2651dfb006f391bcb240635079a68a261b227a10a08af6349cba834a2141efa1"}, + {file = "greenlet-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3e7e6ef1737a819819b1163116ad4b48d06cfdd40352d813bb14436024fcda99"}, + {file = "greenlet-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:ffb08f2a1e59d38c7b8b9ac8083c9c8b9875f0955b1e9b9b9a965607a51f8e54"}, + {file = "greenlet-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9730929375021ec90f6447bff4f7f5508faef1c02f399a1953870cdb78e0c345"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:713d450cf8e61854de9420fb7eea8ad228df4e27e7d4ed465de98c955d2b3fa6"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c3446937be153718250fe421da548f973124189f18fe4575a0510b5c928f0cc"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ddc7bcedeb47187be74208bc652d63d6b20cb24f4e596bd356092d8000da6d6"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44151d7b81b9391ed759a2f2865bbe623ef00d648fed59363be2bbbd5154656f"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6cea1cca3be76c9483282dc7760ea1cc08a6ecec1f0b6ca0a94ea0d17432da19"}, + {file = "greenlet-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:619935a44f414274a2c08c9e74611965650b730eb4efe4b2270f91df5e4adf9a"}, + {file = "greenlet-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:221169d31cada333a0c7fd087b957c8f431c1dba202c3a58cf5a3583ed973e9b"}, + {file = "greenlet-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:01059afb9b178606b4b6e92c3e710ea1635597c3537e44da69f4531e111dd5e9"}, + {file = "greenlet-3.1.0-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:24fc216ec7c8be9becba8b64a98a78f9cd057fd2dc75ae952ca94ed8a893bf27"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d07c28b85b350564bdff9f51c1c5007dfb2f389385d1bc23288de51134ca303"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:243a223c96a4246f8a30ea470c440fe9db1f5e444941ee3c3cd79df119b8eebf"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26811df4dc81271033a7836bc20d12cd30938e6bd2e9437f56fa03da81b0f8fc"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9d86401550b09a55410f32ceb5fe7efcd998bd2dad9e82521713cb148a4a15f"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:26d9c1c4f1748ccac0bae1dbb465fb1a795a75aba8af8ca871503019f4285e2a"}, + {file = "greenlet-3.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:cd468ec62257bb4544989402b19d795d2305eccb06cde5da0eb739b63dc04665"}, + {file = "greenlet-3.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a53dfe8f82b715319e9953330fa5c8708b610d48b5c59f1316337302af5c0811"}, + {file = "greenlet-3.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:28fe80a3eb673b2d5cc3b12eea468a5e5f4603c26aa34d88bf61bba82ceb2f9b"}, + {file = "greenlet-3.1.0-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:76b3e3976d2a452cba7aa9e453498ac72240d43030fdc6d538a72b87eaff52fd"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655b21ffd37a96b1e78cc48bf254f5ea4b5b85efaf9e9e2a526b3c9309d660ca"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c6f4c2027689093775fd58ca2388d58789009116844432d920e9147f91acbe64"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76e5064fd8e94c3f74d9fd69b02d99e3cdb8fc286ed49a1f10b256e59d0d3a0b"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a4bf607f690f7987ab3291406e012cd8591a4f77aa54f29b890f9c331e84989"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:037d9ac99540ace9424cb9ea89f0accfaff4316f149520b4ae293eebc5bded17"}, + {file = "greenlet-3.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:90b5bbf05fe3d3ef697103850c2ce3374558f6fe40fd57c9fac1bf14903f50a5"}, + {file = "greenlet-3.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:726377bd60081172685c0ff46afbc600d064f01053190e4450857483c4d44484"}, + {file = "greenlet-3.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:d46d5069e2eeda111d6f71970e341f4bd9aeeee92074e649ae263b834286ecc0"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81eeec4403a7d7684b5812a8aaa626fa23b7d0848edb3a28d2eb3220daddcbd0"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a3dae7492d16e85ea6045fd11cb8e782b63eac8c8d520c3a92c02ac4573b0a6"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b5ea3664eed571779403858d7cd0a9b0ebf50d57d2cdeafc7748e09ef8cd81a"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a22f4e26400f7f48faef2d69c20dc055a1f3043d330923f9abe08ea0aecc44df"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:13ff8c8e54a10472ce3b2a2da007f915175192f18e6495bad50486e87c7f6637"}, + {file = "greenlet-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f9671e7282d8c6fcabc32c0fb8d7c0ea8894ae85cee89c9aadc2d7129e1a9954"}, + {file = "greenlet-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:184258372ae9e1e9bddce6f187967f2e08ecd16906557c4320e3ba88a93438c3"}, + {file = "greenlet-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:a0409bc18a9f85321399c29baf93545152d74a49d92f2f55302f122007cfda00"}, + {file = "greenlet-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:9eb4a1d7399b9f3c7ac68ae6baa6be5f9195d1d08c9ddc45ad559aa6b556bce6"}, + {file = "greenlet-3.1.0-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:a8870983af660798dc1b529e1fd6f1cefd94e45135a32e58bd70edd694540f33"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfcfb73aed40f550a57ea904629bdaf2e562c68fa1164fa4588e752af6efdc3f"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f9482c2ed414781c0af0b35d9d575226da6b728bd1a720668fa05837184965b7"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d58ec349e0c2c0bc6669bf2cd4982d2f93bf067860d23a0ea1fe677b0f0b1e09"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd65695a8df1233309b701dec2539cc4b11e97d4fcc0f4185b4a12ce54db0491"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:665b21e95bc0fce5cab03b2e1d90ba9c66c510f1bb5fdc864f3a377d0f553f6b"}, + {file = "greenlet-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d3c59a06c2c28a81a026ff11fbf012081ea34fb9b7052f2ed0366e14896f0a1d"}, + {file = "greenlet-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5415b9494ff6240b09af06b91a375731febe0090218e2898d2b85f9b92abcda0"}, + {file = "greenlet-3.1.0-cp38-cp38-win32.whl", hash = "sha256:1544b8dd090b494c55e60c4ff46e238be44fdc472d2589e943c241e0169bcea2"}, + {file = "greenlet-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:7f346d24d74c00b6730440f5eb8ec3fe5774ca8d1c9574e8e57c8671bb51b910"}, + {file = "greenlet-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:db1b3ccb93488328c74e97ff888604a8b95ae4f35f4f56677ca57a4fc3a4220b"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44cd313629ded43bb3b98737bba2f3e2c2c8679b55ea29ed73daea6b755fe8e7"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fad7a051e07f64e297e6e8399b4d6a3bdcad3d7297409e9a06ef8cbccff4f501"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3967dcc1cd2ea61b08b0b276659242cbce5caca39e7cbc02408222fb9e6ff39"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d45b75b0f3fd8d99f62eb7908cfa6d727b7ed190737dec7fe46d993da550b81a"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2d004db911ed7b6218ec5c5bfe4cf70ae8aa2223dffbb5b3c69e342bb253cb28"}, + {file = "greenlet-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9505a0c8579899057cbefd4ec34d865ab99852baf1ff33a9481eb3924e2da0b"}, + {file = "greenlet-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5fd6e94593f6f9714dbad1aaba734b5ec04593374fa6638df61592055868f8b8"}, + {file = "greenlet-3.1.0-cp39-cp39-win32.whl", hash = "sha256:d0dd943282231480aad5f50f89bdf26690c995e8ff555f26d8a5b9887b559bcc"}, + {file = "greenlet-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:ac0adfdb3a21dc2a24ed728b61e72440d297d0fd3a577389df566651fcd08f97"}, + {file = "greenlet-3.1.0.tar.gz", hash = "sha256:b395121e9bbe8d02a750886f108d540abe66075e61e22f7353d9acb0b81be0f0"}, ] [package.extras] @@ -733,24 +738,24 @@ files = [ [[package]] name = "langchain" -version = "0.2.16" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] aiohttp = "^3.8.3" async-timeout = {version = "^4.0.0", markers = "python_version < \"3.11\""} -langchain-core = "^0.2.38" -langchain-text-splitters = "^0.2.0" +langchain-core = "^0.3.0" +langchain-text-splitters = "^0.3.0" langsmith = "^0.1.17" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] -pydantic = ">=1,<3" +pydantic = "^2.7.4" PyYAML = ">=5.3" requests = "^2" SQLAlchemy = ">=1.4,<3" @@ -762,19 +767,19 @@ url = "../../langchain" [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.112" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -787,15 +792,15 @@ url = "../../core" [[package]] name = "langchain-openai" -version = "0.1.23" +version = "0.2.0" description = "An integration package connecting OpenAI and LangChain" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.35" +langchain-core = "^0.3" openai = "^1.40.0" tiktoken = ">=0.7,<1" @@ -805,15 +810,15 @@ url = "../openai" [[package]] name = "langchain-text-splitters" -version = "0.2.4" +version = "0.3.0" description = "LangChain text splitting utilities" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.38" +langchain-core = "^0.3.0" [package.source] type = "directory" @@ -821,13 +826,13 @@ url = "../../text-splitters" [[package]] name = "langsmith" -version = "0.1.116" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.116-py3-none-any.whl", hash = "sha256:4b5ea64c81ba5ca309695c85dc3fb4617429a985129ed5d9eca00d1c9d6483f4"}, - {file = "langsmith-0.1.116.tar.gz", hash = "sha256:5ccd7f5c1840f7c507ab3ee56334a1391de28c8bf72669782e2d82cafeefffa7"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] @@ -841,103 +846,108 @@ requests = ">=2,<3" [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" version = "1.11.2" @@ -996,43 +1006,6 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -1080,13 +1053,13 @@ files = [ [[package]] name = "openai" -version = "1.44.0" +version = "1.45.0" description = "The official Python library for the openai API" optional = false python-versions = ">=3.7.1" files = [ - {file = "openai-1.44.0-py3-none-any.whl", hash = "sha256:99a12bbda15f9c632ee911851e101669a82ee34992fbfd658a9db27d90dc0a9c"}, - {file = "openai-1.44.0.tar.gz", hash = "sha256:acde74598976ec85bc477e9abb94eeb17f6efd998914d5685eeb46a69116894a"}, + {file = "openai-1.45.0-py3-none-any.whl", hash = "sha256:2f1f7b7cf90f038a9f1c24f0d26c0f1790c102ec5acd07ffd70a9b7feac1ff4e"}, + {file = "openai-1.45.0.tar.gz", hash = "sha256:731207d10637335413aa3c0955f8f8df30d7636a4a0f9c381f2209d32cf8de97"}, ] [package.dependencies] @@ -1196,123 +1169,123 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.9.0" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.9.0-py3-none-any.whl", hash = "sha256:f66a7073abd93214a20c5f7b32d56843137a7a2e70d02111f3be287035c45370"}, - {file = "pydantic-2.9.0.tar.gz", hash = "sha256:c7a8a9fdf7d100afa49647eae340e2d23efa382466a8d177efcd1381e9be5598"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.23.2" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, ] -tzdata = {version = "*", markers = "python_version >= \"3.9\""} [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.23.2" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.23.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7d0324a35ab436c9d768753cbc3c47a865a2cbc0757066cb864747baa61f6ece"}, - {file = "pydantic_core-2.23.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:276ae78153a94b664e700ac362587c73b84399bd1145e135287513442e7dfbc7"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:964c7aa318da542cdcc60d4a648377ffe1a2ef0eb1e996026c7f74507b720a78"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1cf842265a3a820ebc6388b963ead065f5ce8f2068ac4e1c713ef77a67b71f7c"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae90b9e50fe1bd115b24785e962b51130340408156d34d67b5f8f3fa6540938e"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ae65fdfb8a841556b52935dfd4c3f79132dc5253b12c0061b96415208f4d622"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c8aa40f6ca803f95b1c1c5aeaee6237b9e879e4dfb46ad713229a63651a95fb"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c53100c8ee5a1e102766abde2158077d8c374bee0639201f11d3032e3555dfbc"}, - {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d6b9dd6aa03c812017411734e496c44fef29b43dba1e3dd1fa7361bbacfc1354"}, - {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b18cf68255a476b927910c6873d9ed00da692bb293c5b10b282bd48a0afe3ae2"}, - {file = "pydantic_core-2.23.2-cp310-none-win32.whl", hash = "sha256:e460475719721d59cd54a350c1f71c797c763212c836bf48585478c5514d2854"}, - {file = "pydantic_core-2.23.2-cp310-none-win_amd64.whl", hash = "sha256:5f3cf3721eaf8741cffaf092487f1ca80831202ce91672776b02b875580e174a"}, - {file = "pydantic_core-2.23.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:7ce8e26b86a91e305858e018afc7a6e932f17428b1eaa60154bd1f7ee888b5f8"}, - {file = "pydantic_core-2.23.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e9b24cca4037a561422bf5dc52b38d390fb61f7bfff64053ce1b72f6938e6b2"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:753294d42fb072aa1775bfe1a2ba1012427376718fa4c72de52005a3d2a22178"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:257d6a410a0d8aeb50b4283dea39bb79b14303e0fab0f2b9d617701331ed1515"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c8319e0bd6a7b45ad76166cc3d5d6a36c97d0c82a196f478c3ee5346566eebfd"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7a05c0240f6c711eb381ac392de987ee974fa9336071fb697768dfdb151345ce"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d5b0ff3218858859910295df6953d7bafac3a48d5cd18f4e3ed9999efd2245f"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:96ef39add33ff58cd4c112cbac076726b96b98bb8f1e7f7595288dcfb2f10b57"}, - {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0102e49ac7d2df3379ef8d658d3bc59d3d769b0bdb17da189b75efa861fc07b4"}, - {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a6612c2a844043e4d10a8324c54cdff0042c558eef30bd705770793d70b224aa"}, - {file = "pydantic_core-2.23.2-cp311-none-win32.whl", hash = "sha256:caffda619099cfd4f63d48462f6aadbecee3ad9603b4b88b60cb821c1b258576"}, - {file = "pydantic_core-2.23.2-cp311-none-win_amd64.whl", hash = "sha256:6f80fba4af0cb1d2344869d56430e304a51396b70d46b91a55ed4959993c0589"}, - {file = "pydantic_core-2.23.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c83c64d05ffbbe12d4e8498ab72bdb05bcc1026340a4a597dc647a13c1605ec"}, - {file = "pydantic_core-2.23.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6294907eaaccf71c076abdd1c7954e272efa39bb043161b4b8aa1cd76a16ce43"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a801c5e1e13272e0909c520708122496647d1279d252c9e6e07dac216accc41"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cc0c316fba3ce72ac3ab7902a888b9dc4979162d320823679da270c2d9ad0cad"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b06c5d4e8701ac2ba99a2ef835e4e1b187d41095a9c619c5b185c9068ed2a49"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82764c0bd697159fe9947ad59b6db6d7329e88505c8f98990eb07e84cc0a5d81"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b1a195efd347ede8bcf723e932300292eb13a9d2a3c1f84eb8f37cbbc905b7f"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7efb12e5071ad8d5b547487bdad489fbd4a5a35a0fc36a1941517a6ad7f23e0"}, - {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5dd0ec5f514ed40e49bf961d49cf1bc2c72e9b50f29a163b2cc9030c6742aa73"}, - {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:820f6ee5c06bc868335e3b6e42d7ef41f50dfb3ea32fbd523ab679d10d8741c0"}, - {file = "pydantic_core-2.23.2-cp312-none-win32.whl", hash = "sha256:3713dc093d5048bfaedbba7a8dbc53e74c44a140d45ede020dc347dda18daf3f"}, - {file = "pydantic_core-2.23.2-cp312-none-win_amd64.whl", hash = "sha256:e1895e949f8849bc2757c0dbac28422a04be031204df46a56ab34bcf98507342"}, - {file = "pydantic_core-2.23.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:da43cbe593e3c87d07108d0ebd73771dc414488f1f91ed2e204b0370b94b37ac"}, - {file = "pydantic_core-2.23.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:64d094ea1aa97c6ded4748d40886076a931a8bf6f61b6e43e4a1041769c39dd2"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084414ffe9a85a52940b49631321d636dadf3576c30259607b75516d131fecd0"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:043ef8469f72609c4c3a5e06a07a1f713d53df4d53112c6d49207c0bd3c3bd9b"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3649bd3ae6a8ebea7dc381afb7f3c6db237fc7cebd05c8ac36ca8a4187b03b30"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6db09153d8438425e98cdc9a289c5fade04a5d2128faff8f227c459da21b9703"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5668b3173bb0b2e65020b60d83f5910a7224027232c9f5dc05a71a1deac9f960"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c7b81beaf7c7ebde978377dc53679c6cba0e946426fc7ade54251dfe24a7604"}, - {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:ae579143826c6f05a361d9546446c432a165ecf1c0b720bbfd81152645cb897d"}, - {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:19f1352fe4b248cae22a89268720fc74e83f008057a652894f08fa931e77dced"}, - {file = "pydantic_core-2.23.2-cp313-none-win32.whl", hash = "sha256:e1a79ad49f346aa1a2921f31e8dbbab4d64484823e813a002679eaa46cba39e1"}, - {file = "pydantic_core-2.23.2-cp313-none-win_amd64.whl", hash = "sha256:582871902e1902b3c8e9b2c347f32a792a07094110c1bca6c2ea89b90150caac"}, - {file = "pydantic_core-2.23.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:743e5811b0c377eb830150d675b0847a74a44d4ad5ab8845923d5b3a756d8100"}, - {file = "pydantic_core-2.23.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6650a7bbe17a2717167e3e23c186849bae5cef35d38949549f1c116031b2b3aa"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56e6a12ec8d7679f41b3750ffa426d22b44ef97be226a9bab00a03365f217b2b"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:810ca06cca91de9107718dc83d9ac4d2e86efd6c02cba49a190abcaf33fb0472"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:785e7f517ebb9890813d31cb5d328fa5eda825bb205065cde760b3150e4de1f7"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ef71ec876fcc4d3bbf2ae81961959e8d62f8d74a83d116668409c224012e3af"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d50ac34835c6a4a0d456b5db559b82047403c4317b3bc73b3455fefdbdc54b0a"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:16b25a4a120a2bb7dab51b81e3d9f3cde4f9a4456566c403ed29ac81bf49744f"}, - {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:41ae8537ad371ec018e3c5da0eb3f3e40ee1011eb9be1da7f965357c4623c501"}, - {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:07049ec9306ec64e955b2e7c40c8d77dd78ea89adb97a2013d0b6e055c5ee4c5"}, - {file = "pydantic_core-2.23.2-cp38-none-win32.whl", hash = "sha256:086c5db95157dc84c63ff9d96ebb8856f47ce113c86b61065a066f8efbe80acf"}, - {file = "pydantic_core-2.23.2-cp38-none-win_amd64.whl", hash = "sha256:67b6655311b00581914aba481729971b88bb8bc7996206590700a3ac85e457b8"}, - {file = "pydantic_core-2.23.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:358331e21a897151e54d58e08d0219acf98ebb14c567267a87e971f3d2a3be59"}, - {file = "pydantic_core-2.23.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c4d9f15ffe68bcd3898b0ad7233af01b15c57d91cd1667f8d868e0eacbfe3f87"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0123655fedacf035ab10c23450163c2f65a4174f2bb034b188240a6cf06bb123"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e6e3ccebdbd6e53474b0bb7ab8b88e83c0cfe91484b25e058e581348ee5a01a5"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc535cb898ef88333cf317777ecdfe0faac1c2a3187ef7eb061b6f7ecf7e6bae"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aab9e522efff3993a9e98ab14263d4e20211e62da088298089a03056980a3e69"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05b366fb8fe3d8683b11ac35fa08947d7b92be78ec64e3277d03bd7f9b7cda79"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7568f682c06f10f30ef643a1e8eec4afeecdafde5c4af1b574c6df079e96f96c"}, - {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cdd02a08205dc90238669f082747612cb3c82bd2c717adc60f9b9ecadb540f80"}, - {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1a2ab4f410f4b886de53b6bddf5dd6f337915a29dd9f22f20f3099659536b2f6"}, - {file = "pydantic_core-2.23.2-cp39-none-win32.whl", hash = "sha256:0448b81c3dfcde439551bb04a9f41d7627f676b12701865c8a2574bcea034437"}, - {file = "pydantic_core-2.23.2-cp39-none-win_amd64.whl", hash = "sha256:4cebb9794f67266d65e7e4cbe5dcf063e29fc7b81c79dc9475bd476d9534150e"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e758d271ed0286d146cf7c04c539a5169a888dd0b57026be621547e756af55bc"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f477d26183e94eaafc60b983ab25af2a809a1b48ce4debb57b343f671b7a90b6"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da3131ef2b940b99106f29dfbc30d9505643f766704e14c5d5e504e6a480c35e"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329a721253c7e4cbd7aad4a377745fbcc0607f9d72a3cc2102dd40519be75ed2"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7706e15cdbf42f8fab1e6425247dfa98f4a6f8c63746c995d6a2017f78e619ae"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e64ffaf8f6e17ca15eb48344d86a7a741454526f3a3fa56bc493ad9d7ec63936"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dd59638025160056687d598b054b64a79183f8065eae0d3f5ca523cde9943940"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:12625e69b1199e94b0ae1c9a95d000484ce9f0182f9965a26572f054b1537e44"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d813fd871b3d5c3005157622ee102e8908ad6011ec915a18bd8fde673c4360e"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1eb37f7d6a8001c0f86dc8ff2ee8d08291a536d76e49e78cda8587bb54d8b329"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ce7eaf9a98680b4312b7cebcdd9352531c43db00fca586115845df388f3c465"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f087879f1ffde024dd2788a30d55acd67959dcf6c431e9d3682d1c491a0eb474"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ce883906810b4c3bd90e0ada1f9e808d9ecf1c5f0b60c6b8831d6100bcc7dd6"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a8031074a397a5925d06b590121f8339d34a5a74cfe6970f8a1124eb8b83f4ac"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:23af245b8f2f4ee9e2c99cb3f93d0e22fb5c16df3f2f643f5a8da5caff12a653"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c57e493a0faea1e4c38f860d6862ba6832723396c884fbf938ff5e9b224200e2"}, - {file = "pydantic_core-2.23.2.tar.gz", hash = "sha256:95d6bf449a1ac81de562d65d180af5d8c19672793c81877a2eda8fde5d08f2fd"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1540,90 +1513,105 @@ files = [ [[package]] name = "regex" -version = "2024.7.24" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, - {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, - {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, - {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, - {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, - {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, - {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, - {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, - {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, - {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, - {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, - {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -1676,117 +1664,104 @@ files = [ [[package]] name = "simsimd" -version = "5.1.0" +version = "5.2.1" description = "Fastest SIMD-Accelerated Vector Similarity Functions for x86 and Arm" optional = false python-versions = "*" files = [ - {file = "simsimd-5.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:095d9997c88d086257a5f3a56cc573e63d61357a3beeb285c94024dd951354b3"}, - {file = "simsimd-5.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4520b40afb457d2a10a0792625996837950906aa4eb139ce20d4c036eaeb5fb5"}, - {file = "simsimd-5.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76b8762f66524cc2b8f73385f4270e4524f9f998643eae73ec88e236cb8d8e8c"}, - {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bcb6229185081df43508282ada3516c93cdf36df32b951011bf93b41c710e59a"}, - {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddbd31e2f6ac6bb2636e50a4c7a9cce9013b6aa35ea53c4f3c6590fa310e611d"}, - {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27cbb09f17de124a0fbf23156a0e37c7f9886d57244b66cd373df89cdacc5a4"}, - {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:01925394129849f8ad0fe5b87c6eef384b18396132a9a2051e68120fc30c0811"}, - {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:5c9b73053e69daf952456c2a316d6e34a1d5138f5ef6bb24401cf5f0b798372b"}, - {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74a03238cff4bdc9ce0588a18ab26920cda0951cc1ed845198cd7611825ed5f1"}, - {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a94bc1e0821a3488c0946e5c3637d18b19e36310c362b19c88abaecea0b333e6"}, - {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:736479fdc690b71bfb6411538f4e677ae62e233fdf65872c1138bc933d9c710a"}, - {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:a2297f4576567b50be463986f46e38809359cafc16593847c40e798b49277efd"}, - {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:024672c0886a5aea86ab671aef7636b5eac2a7b83120c6608f37f3b64edf1fc6"}, - {file = "simsimd-5.1.0-cp310-cp310-win32.whl", hash = "sha256:8f97b5206a95ce94f9d4ce111c59aca2f7f3083d479febe3a61e6593e6e64d2e"}, - {file = "simsimd-5.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:dcb5cea8c024f4a25ba561a174a03788b17054192fb64221d0ec683fdae91c6b"}, - {file = "simsimd-5.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:fdf3cb415c6c841ff2ebfce247244b0479b6e23dab263d504124219ad835f19a"}, - {file = "simsimd-5.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bc5231889f3f7293ff5ea76ed620bd49ca4586133f3d278cc63df19aa84735e5"}, - {file = "simsimd-5.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2e092ed4e0868e88ef0a56e64998ef39e5cfb8284042faa81f29b84275e35cfd"}, - {file = "simsimd-5.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:53f6d8280d088ebd3505d734eb3324e49294511d56e43902bffca8e33a96942c"}, - {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b9b9e91266d4f2b6fa9638757b9c86e14dad96289817cc8bc12ca0042e841c13"}, - {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4493cda4f1bbb38017a178dc3709a1defbb1c1234adbc0793f307cf0554bb6b7"}, - {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c19d8266873c5d8aeb960c621d0e38ad171ad85ac4cb1199683cbfc79d9ad64"}, - {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:21f04e91c788be044ba7e560e360144aed7621502ac5c43932126ef2c3164114"}, - {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:520852d0bce9700fb40e46187a28cfd2aa144a60d5b4af4e982541416777c417"}, - {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a857826dd6a9c71611e9da83fb0d82ebf6e05c99400784b58a22ab69ee922a82"}, - {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:cf1e86dd66ee9796e435d020578f736386d672725eb0a0b8b8b18fcafaaea7a0"}, - {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:40c2033b9b84159b35d76a1cbfff4941403b6117e158a869999e27f7bae7d602"}, - {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c337dfa79a62dc77a7ce458d332055c801d283cc78a0599a0da3aa6b8269d64e"}, - {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0793fb4581f5f477b893ea398652e0dbbd61fd250e018deae1f952e09b0e35f"}, - {file = "simsimd-5.1.0-cp311-cp311-win32.whl", hash = "sha256:33a6c62681e8021d9866fc469693fe98f1c62a098790c7d9931dd35294bedf6e"}, - {file = "simsimd-5.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:55bf321436dfc0aba6752c31e939824ea83b3dd247eb2a056bb7366545281ac4"}, - {file = "simsimd-5.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:96793125514a4113b0dc9e90ee4085ddb1f175416f598f16d9ade8967a8ae6cf"}, - {file = "simsimd-5.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:cfea5d05cd313bf32ebd6fd223db9e245f1dc1bf10d5012e4312d652335779ed"}, - {file = "simsimd-5.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bf378223eeb466f05a0140348df60b1dd8f1cc460a9118ab3dcf3f2201871a69"}, - {file = "simsimd-5.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c534e5f1957873c088a5162303df0117293b09b22cd4655ce195991c2c14f4ca"}, - {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3f1025aba3f4e4bcdddef49fd26e37a2da5f00df83a09fe8402ac13e8494f86d"}, - {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c032406bfd4e7fa9f1d5d40c8e2d1fd9bb27562cf308dd9a5e02c7a595635c05"}, - {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98ee4b3d5cf63c248df88f097390ec0d5c1568987b46437bf69077962bf0ecd0"}, - {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:2215ad6bbb6632682bd9836f18547c80be99f2e99be7964ddb88d4dfee56bb28"}, - {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:41cf61bb6a8ffbcdd5d7bad99023eebf78e30d4d80fbee0b710ac93096e69079"}, - {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7c5022092753402961adb31485958a881c4cb954e0a0c48d6ac57aec2cccc8e3"}, - {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b38cb5650bb16faa4b8e3e263eacf9d0b2f78a7e72b7dfc69fd0e6a0b9bca5ba"}, - {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:93d7556369e99c0e17f5fa01977ea8ad96909f96673c95837da27f2614e748ce"}, - {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0585903053d2e6e2396be6a0a6ffae620c9e67309206c92ec336c87eb9c150e5"}, - {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:04bc3f7fcb24daa2d8000e5009c335e33ed7292a5a64197b92064a66d787f397"}, - {file = "simsimd-5.1.0-cp312-cp312-win32.whl", hash = "sha256:212ef28106d9d7c981b1c8f213654ca17fa994acaa8ed7dfd910102a8622cf8a"}, - {file = "simsimd-5.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:06899df2a4da6dd59db808ba72084edaddbb578916e2b8056be8fa224e853aa9"}, - {file = "simsimd-5.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:bc1bc1aab1ee522df36e7472b1a39589fc726b0957ed7570bdb39918121a287d"}, - {file = "simsimd-5.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b8b5226f0eaafd052bee81edc68226a8301adccd37e7af8aa007fdd2e27cbc71"}, - {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bebd17862e807bdc412727a29477830bb802782f9a6954c3a2d9a6bd26e9e968"}, - {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25840c2dbc4b9e8b44ed99fcdbb51ef058aa47b2c821f95fe4cea594971f6bfb"}, - {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8a1e93e6eb4ce730557130dd18fe147427aea15ec3ff49d0fcdc1250cd7f25fa"}, - {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_28_aarch64.whl", hash = "sha256:dd3f9d4d4a93b7f7a2d0f700c0c027432665d5befede4d7055cd84583aee1fe2"}, - {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:8f07cb70ed8d7a2bc1bd3e90bc8d6e639918401755212040618180546e378c26"}, - {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:f00d2337d13d0eef7c199c4318795f753fc3d8db077d0d1c0cf973a60d8c7b2b"}, - {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:016f3c39a44c2354968621d1b72a174ed9754539c310a6d4b408ce7a32693f05"}, - {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:7ad60696e8370ebdeea24983ef5e9a9822eb315dc58065ca34607c19a9df7e51"}, - {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_s390x.whl", hash = "sha256:fe518e8478bd38112b0a87872ab1fd726a1ca4e637df95b7ef12914b73722b3f"}, - {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:993b9baac0f5c2424d8d51a3f07b908bb0f89dfba012cd5256fe662c94a95c29"}, - {file = "simsimd-5.1.0-cp36-cp36m-win32.whl", hash = "sha256:7a02d53c23976c7ad954dd3df7ed1a98a9c6ca40c6e5345b8be9fb9125afa383"}, - {file = "simsimd-5.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:fd4fac86308d14beb8d2a77c35137aabcd4135e8286223957711912fc3a72c9c"}, - {file = "simsimd-5.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1650a2e3a1ccd34db2eb7407364bb5743462f2fd215777c6061e3f39b69cee5c"}, - {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b09d871cd51507163f246ad04b265e8f429794ca07de91cd49e4e8970cf2cb67"}, - {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0867fb73fbba1d570734b53ac91a7b102e7aaefb10086fac2b4a67d4cca47283"}, - {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6461a1a5151fb9e75ac92395c148373de48a7bcb2bd900260223b852e4f3ac9"}, - {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:08ad27ce96438c96a8dfe6e3a601619dad117aebd463fa85a80e83638a7278c9"}, - {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:08779163a25c164d2ceaeabc70f4ed10701e97e246734f247a2eaa776dcbc2ea"}, - {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:8a90e18143efc96c456be3c7007ce1a8ce2ef7f71fa23822839983d2c8eea855"}, - {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:ad6b46b5829b2c8b7a66a6290d83dbc4bab14d1e9813d3a609b004cf5d679d13"}, - {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:61bce0a3db93fc50d27ec65ba754b14d56bb1cf0a74e917b385d9b27b18b71bb"}, - {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:9c9744ee1612853daf94764f089bfc27933d9cfee55fc2709a0c93d9dcec42e6"}, - {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:25dd2d9936ef79d17e3682b48efe14f366cf16e8aceb31afccc47eff0755c806"}, - {file = "simsimd-5.1.0-cp37-cp37m-win32.whl", hash = "sha256:79545db80571d80550ad831ad2f5102fc4887af070b21078c523e530167c6d91"}, - {file = "simsimd-5.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2a6ea3d661f65a8084ed238a22f8f883b325c9341fd1cdfab8da336f87fbfcb3"}, - {file = "simsimd-5.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5a165cf087817f326332ed7f6cbe69b9453f2cd9f23a79758a443f1b98d294cc"}, - {file = "simsimd-5.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9059f509cefa04f70649e0fa8e1f97a45958f7318756110da9545ab061988287"}, - {file = "simsimd-5.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9f12bbfab4085a14eb283ca34a399aaf43006815c9f04570817c1d128a1d2f2d"}, - {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:802f371a558c62970a1815112cd604ef964b5bc27fac535cb88d7f239f4b9766"}, - {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1a6ab35020fa136f91a56c16bc41999426aeeea7587b34f1b2aa0c4ab491161"}, - {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c45b985d81cbd70cb01690b5199ffffab2b78bd2e4995c4c4ca57f725173a92"}, - {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:2e1a31958df544ba34139df1457cbe3c90355cafd84a86fcba492174d57bba74"}, - {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:2b5519733dcc172d775adddf1df9e338c91aaf3881bb1220d283cc6fb7ff1748"}, - {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c3da661ee8489704dde34b8817b8b364fa9a9dcfbf0282692e39cc3e136372e0"}, - {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:45434d8fcb3c642fc7cf9d9b9265dfb9d008b5d343426de802334884f92caa94"}, - {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:3d7464fdceadd4711d1e884cea33436d61173d494c163cd0da643f34d560d6ba"}, - {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:419eefceaeddc75dc7e26e5ab24d5ac788ab13f62a828e67ed85e6170b24a619"}, - {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:fbf8405eade2166bdcae38365ab22276f48a55c90cf958ebeebc86adaa9034fc"}, - {file = "simsimd-5.1.0-cp38-cp38-win32.whl", hash = "sha256:a4b9b1faf91023c9d1625af789cf96df9b67c2e8cd62e01193811f57bb3098d8"}, - {file = "simsimd-5.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:d367316a21d4ed3189d1ee143a524269a26803f064e579bd3a8b801e96d91fba"}, - {file = "simsimd-5.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a6c6807f053c60476175c56233a95333b701e7fc2b75748b949bb924b1e07ce8"}, - {file = "simsimd-5.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:944bdccaa399c31e66ede88d3f0d2efe7e95eddae6a8012c256df6ba9c2218bb"}, - {file = "simsimd-5.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a229d08d7ad83c4a51095428f65978b3dfbf6606008422a62913794b5f5b6cb"}, - {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c0b908afa6d569947e77245d57fccef5aea771d1cd853ed2b2a323ccb82137df"}, - {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad1cd0b95fef58fc868826d31268867a2b200288ec8abd1fa15ab4fd54c5f29b"}, - {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:88b220652e9dd493a68dfeae0ec29e34f2a58ec820e3ec192c8f63e613aec41f"}, - {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:0dcac53f4a361e03fd78c8802621e6922bd909ac3883a1ba91e05f23b0b06953"}, - {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:49c6b49e4f4c9b64df433aad91e12838e54f95325b21ce64200b9cbbe8a93c68"}, - {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4c04f5d4e678f446d939a66f8d4f44164e47abaa9c19600fb17befc3f5685a09"}, - {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:0d70bfc6ecf8f17d351e7fc64b09c87c40e868f08094101b98b0cbc521412450"}, - {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:f606dfa094550a38567fe49534a063c1dd1c888c3098f715d29fe73ea4c07ebf"}, - {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:6078267deb0e710fef319c5c34c1d02f0a2c653945cd2c9ba39cfaa8328599f9"}, - {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:2849f7f7a7ef05335a22cb35f99e0977c2a15e6af6fe82d91230cc62a5ed4faa"}, - {file = "simsimd-5.1.0-cp39-cp39-win32.whl", hash = "sha256:60350e2a4191b052a06fdfe0f4bae81f8d45311955316165a2f32f02e8df0f8b"}, - {file = "simsimd-5.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:655e5e0e4514916aa8e4dc59b34461206b82d79d3e254668f9d148734baf3f08"}, - {file = "simsimd-5.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:abe0aa426140d86966e32b010feff5e2baa10f35bba09d1ba74adbf3fd02e2d5"}, - {file = "simsimd-5.1.0.tar.gz", hash = "sha256:08379ddbe04b2abfe0784ee42a76dbe6e3ffbc668fc0bfb717bb39727a79c39b"}, + {file = "simsimd-5.2.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c077d30656507812eb502b13da21d383f209729980e6f33775c005e54c834080"}, + {file = "simsimd-5.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8a6489fd3251295e40ea646aef9bfd68488eef67f29f10acda185eca65cda48a"}, + {file = "simsimd-5.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:881401ab4aac969cfb1ba0301590fdf40cc53149dc0baa0556823b032a9213b6"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f15689b58a79cd21d5975a4ce166d9fb01b59b8b509e76ef9f0eb77453cdaec"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2d249db978814a25a4c802c1eb24e82deca078d311da9952edd0e7cf28b8cb75"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:25cf244831e79ef4157fabf7e1390b7187f509850f3926fc7c49d16c0aa1a1f0"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:d7a146bc9271cef4a1543e9cdcabab0b0f5b8bccc3ef3d2277d5126ab285adca"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:8ce059db56c798f0647cd50fecac8f20f5ad609ad77ce644fc91373487dd3c37"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:face4052008d5c4b12dc6fc09d5ce0f39b81e6114c38b714695d52f4877e9953"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:cbc9774af40625033a5e6be90768154d1aef18f539b456e7691dc3576a31bcd5"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:6396ea925ae3fcaa6374684bff5049b87e76ad1888cf2e53d25767039144a360"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:9c802c21ca47072b7135ad5393af3231c6c15f27ee18fb7c9809f5251b5c478c"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:99f8e80d5758d1dba871d29adf9301e4d2d721902a8084e961247841fc4306a3"}, + {file = "simsimd-5.2.1-cp310-cp310-win32.whl", hash = "sha256:305ca88529a178dc2293337aa38ba733ad85f5e31e0c35111dabd77c45691718"}, + {file = "simsimd-5.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:305499b42baf559d0ddaaf5a8c14810ed9f11d248c19a16418ab88a6c7fb1c05"}, + {file = "simsimd-5.2.1-cp310-cp310-win_arm64.whl", hash = "sha256:a405c8bdaec9b9cd634a25e153994705fb22f4e2f674e0b3a1e349dd514d3b1e"}, + {file = "simsimd-5.2.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9f342914fd54b90939a053d6ec6dde0b47131d39c2b2c3bfcf10acb9feac62be"}, + {file = "simsimd-5.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:44287add557bb4e78d249e3b076a37272c8ff62df379f4f837bf7d66534eae5d"}, + {file = "simsimd-5.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3cece60f867d54b15342aa421d561f26860fe70b93e0f13b9499718de3bf791b"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f02d7520b5f794ed1d8b1177214f263a06e334750fc6b4d8ba7bccfc0ea30d1d"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e3a288d5eac00a15df181354822f5714278d3b4123a5d8f1dcfc62fd1d2ffa9d"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c16dfc66f54b2ab95f74e3b1d886351ad65a69ab75041e069355b89f18e3ea36"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:78080b55b213117648038a657ad1437f465065077e79762ce04990b7cc4645dd"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:b7fb76b585194f040807aa40928515610d19ef0fb7d8bbb316dde17a05597b77"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a9f042fe6b8102b9e301c862aa655b1181cc73ebf589448ee2525c8c7023fd59"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b5935ec1e4c62945972139f6ba6ca955e27d7781870fd89aab95c38e1614603c"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:07d77442a796b88ec984c2180f9c81ca912b11686f3e730a9648ff18644a136a"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e95dcbcd2931f51a449b664252746b1eba0dfc04715d14e9d79116000e13db3a"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:059c4b357d99757c8661d54141f4004fbb0ebbccf985cb39a1b630304af5fedf"}, + {file = "simsimd-5.2.1-cp311-cp311-win32.whl", hash = "sha256:0cf31a6fa6a62efd12d477f493411c1af1c64a7d61509ceebac593a83d1d4209"}, + {file = "simsimd-5.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:45d174f65ffe89020b01321a7f37404da8460c4800617fa5902ccc99b696ec9a"}, + {file = "simsimd-5.2.1-cp311-cp311-win_arm64.whl", hash = "sha256:6dc78085e112c0e36e6eeca546074cf8c56b2d80fba757bef8bebc444e61b72b"}, + {file = "simsimd-5.2.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:4936f92a6f25bf1b8cfd4069e850821e6ffe17addd997893d945994139cf1ec0"}, + {file = "simsimd-5.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e16167789eb54c81ffdd0c1e185dd61df9a2fec6044067a047698b0af67865c0"}, + {file = "simsimd-5.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b04ba0570d9e258fd059a5f3964039e2fe6298d57363a9a9bb4ae0c000cd65a7"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5d4228bc8be42f9c9b6d59399303e9682f2edc9f2cc1550a3658ba8a9f0519a7"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c3a80fdb3582d08f2da3d53daec73ea872fdac303529910aef71a774c1568bf"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5fbbc0068ef3daa85195508b25aa73562b07c3097fea1243aa2864e21dfd178d"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:3fe52c6b94f6777b0eca796a5751dbd4e55bae947d1906a00b31dd32f1a085f7"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:cdeda38843f4544e3cdc5687332ccd030ec9a3e10a47a7a63a9652ddc60f20ba"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8234b6a9308d5025a594413ca93b1e9dc4f9f9e2d4020af32529ed302570dacd"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:687725313925297aa36effac39013b1e31ed4d01764b5322bdc9eb0e73c51b6a"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:bb9aadd29b0def9d6d0811bd2e9fde1643e755aaf8d4010892c0e00f0e586477"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:1df8520eac767584677367c598bd3c90abe0fa9ff49924eb289fea5b6fb6b2b3"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f802b5435b9014fd2882641d45e279ff418c9bed83322957a99796fc6a9fae3d"}, + {file = "simsimd-5.2.1-cp312-cp312-win32.whl", hash = "sha256:271a5bb5daf3db37b4ca71c419ecc6c5c0d3a801cf4773907ae338aa34f18a1a"}, + {file = "simsimd-5.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:5d2a3ec2c3b90bd036823f16184d3fbfabc2a8fa9ba120f29cc3361ab3c68be8"}, + {file = "simsimd-5.2.1-cp312-cp312-win_arm64.whl", hash = "sha256:cf63293357013aa8d135d8f30443ce248223a53faf30e1e6d1464e559afd0b30"}, + {file = "simsimd-5.2.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f95a7b56803e2ce952aa2476b7ed4ed5b8fe0f2c40daf14d6100bcd923282b99"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01af17b95e1736f006177b3a84b6d25ec6068a2e0af97eed33f87c9d23684d0a"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bfef17e3a12f2c379d428bc4785637472b6a379e7122d3d227bbd5d9c20454ee"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef288a2f89fe4b00c65f16895519da78c443d2e75080a8067b9d83196e911592"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:82fe3f4a70e79eb7a17cfac8b129fe0e0ea63408513091618703b85a6c90db00"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:035487a05b923541c3c524af56472f4121f14cb9a6761ae0d0d9101da077fe7a"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:0b1fe4154cb9622a3640b81d05d07276c785ada6ac59512160624f4f2225b8cc"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:b55bc8fd307f7cb8fa2bd76ae0bdd4a196b7e92ae592d08bc151991357aa636e"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:d8e5075a8798b7641fd394dd7fbda5c7be349f5616780076d8a5cf826f29fc5f"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:c310dda98e8cc56fc856f369fe6a925bbde72ca33c735808037cc7300edad5c9"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:81c052de76ccc31df39ee6a2929495fa386fcc2f8bd96512de50f10365c1434a"}, + {file = "simsimd-5.2.1-cp37-cp37m-win32.whl", hash = "sha256:b2dd417556d22be66a1f8bb8fe2a8222655c97382d2736802100ec2b658bf179"}, + {file = "simsimd-5.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:309a6a29e8213d7af603cdd0a30e7500f3ef3f5caafa17d1cb131f9a45faafb6"}, + {file = "simsimd-5.2.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1500bf3e6728c98e01efd4e8b03ac27d5451a92c8cd00cd2c80314e0fef37f12"}, + {file = "simsimd-5.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2124f8928be3e63e253d349e0063d2e2e9c2959143425f383f7302d46e3588c"}, + {file = "simsimd-5.2.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:614828d03eca528cf0aebaa7aec24e774256f806c1feb4353bdeedaad8eb8b12"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a983fef4c490c547babff1b99dbcc7ffac604157b5948b84532bbaf27e5359e"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:70eb039199b9c360ac7f081a1cccc34a1ef849653ea3dabe0c2a51cf014ae36e"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e77360121c0d3522d937c43a93ed5bc359ab05826c6b1443980536bf31966b90"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:72e7d2c04d8b66642558eaa09e36bbdcb2c818ad0b8116f318122635c0512493"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:510aa97c25ddae310a3ea6e818f161c5a9a178624a75f4d1c62d1898dba9537d"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:cf9d37d1dbd26e6e2c30d4410d007ecdb4a588ef316a50e257ada67fc1d7512b"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:9426ee74d6898f8cbd4ef6735216428c445367c2042a1573da9e0b327cbc0d7e"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ce298323cf4b35cf652a11a45889df277a1e4ef58bc298baf6cccec938de4827"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:beb76cdb6a5442be351a4dcbaf35bc51e6e815e37b7cda3c27886c9de0112ed8"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:d9ba0b406a658053b9e4cc989881e055dbe419bfd0ef626a2f2d2d48ff9db879"}, + {file = "simsimd-5.2.1-cp38-cp38-win32.whl", hash = "sha256:7d465e56848ff733725dbc6e2f4c79ee7073f695006013c9d0aff6daa6a750cf"}, + {file = "simsimd-5.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:c0f37b3c5963792925795f22ab90405df243e2738ec5b857ec5114a29facab38"}, + {file = "simsimd-5.2.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:095b143ff85fe57beec75783d48878a2c821fa249dd26c5f98521ecf6edfc77c"}, + {file = "simsimd-5.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b576df0679f5d92299f7b33ff28342cae154d46f3bfb0171253ad4cdcf8fc07a"}, + {file = "simsimd-5.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9ba17ad2fdf6543f5b4091b4d94413d60760e44b1ebbff9c661d44c6ce642296"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:53cbb3b5202a06a5ffaef5d2a006b0a4f345f630951b9b2b9abada3cc279a532"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5fb49bb7cab159a625f9c2c1b0a236ce2d0c0bb217a63e36d46d6122c44d1b2f"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8056abac0fd86e7d864bc59e75bd750e796e67aa55cb9a2f58b3f8ec3a71c6b"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:d02be0a65bbe5ead9fdfefd18f0babb27b4856ad02d3ff4b8b0126223288588a"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:2f1afeeedb6639628a94dcc4f7d01d670f43f4b10909c96876837c311b8f11d7"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6f9ed03113216707f74381324b57105afad8fbd12323f474830c0929750631d1"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:818f3bd2893be61a5484a981ec262162ef480f06bfffd9686ddeab4b59d75d3f"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c2cab5afce104f35cdb1b82c20b3c29e04f19d3ac73961316e6f065b7ef072e9"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:d20a5c7343e86daeb869ea5e2c9d5ca8c358bc7370288176ef04157fea5bad27"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b23ffe97bb938803bf367f2de25ca971033be00774fbbf09426147a89fcc5dc4"}, + {file = "simsimd-5.2.1-cp39-cp39-win32.whl", hash = "sha256:8e942cc946b813937ae99ca3ea3d20ec68aaddc173904c298d65eee75d7d08a3"}, + {file = "simsimd-5.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:8d290c7361d9c8a87f6408d4ff7799c7df8278ac28d41e9ed68d252040854ca4"}, + {file = "simsimd-5.2.1-cp39-cp39-win_arm64.whl", hash = "sha256:6159540ba7ed5b9e8e34d340943e31f7791b2c49436d299969014be9869da350"}, + {file = "simsimd-5.2.1.tar.gz", hash = "sha256:716f607e06c9570288db42f2bb9661dadd79188874dba1c7df71d8efec4ecbb8"}, ] [[package]] @@ -1820,9 +1795,7 @@ python-versions = ">=3.7" files = [ {file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:95d0b2cf8791ab5fb9e3aa3d9a79a0d5d51f55b6357eecf532a120ba3b5524db"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:243f92596f4fd4c8bd30ab8e8dd5965afe226363d75cab2468f2c707f64cd83b"}, - {file = "SQLAlchemy-2.0.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ea54f7300553af0a2a7235e9b85f4204e1fc21848f917a3213b0e0818de9a24"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:173f5f122d2e1bff8fbd9f7811b7942bead1f5e9f371cdf9e670b327e6703ebd"}, - {file = "SQLAlchemy-2.0.34-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:196958cde924a00488e3e83ff917be3b73cd4ed8352bbc0f2989333176d1c54d"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bd90c221ed4e60ac9d476db967f436cfcecbd4ef744537c0f2d5291439848768"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-win32.whl", hash = "sha256:3166dfff2d16fe9be3241ee60ece6fcb01cf8e74dd7c5e0b64f8e19fab44911b"}, {file = "SQLAlchemy-2.0.34-cp310-cp310-win_amd64.whl", hash = "sha256:6831a78bbd3c40f909b3e5233f87341f12d0b34a58f14115c9e94b4cdaf726d3"}, @@ -1843,25 +1816,19 @@ files = [ {file = "SQLAlchemy-2.0.34-cp312-cp312-win32.whl", hash = "sha256:fbb034f565ecbe6c530dff948239377ba859420d146d5f62f0271407ffb8c580"}, {file = "SQLAlchemy-2.0.34-cp312-cp312-win_amd64.whl", hash = "sha256:707c8f44931a4facd4149b52b75b80544a8d824162602b8cd2fe788207307f9a"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:24af3dc43568f3780b7e1e57c49b41d98b2d940c1fd2e62d65d3928b6f95f021"}, - {file = "SQLAlchemy-2.0.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e60ed6ef0a35c6b76b7640fe452d0e47acc832ccbb8475de549a5cc5f90c2c06"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:413c85cd0177c23e32dee6898c67a5f49296640041d98fddb2c40888fe4daa2e"}, - {file = "SQLAlchemy-2.0.34-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:25691f4adfb9d5e796fd48bf1432272f95f4bbe5f89c475a788f31232ea6afba"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:526ce723265643dbc4c7efb54f56648cc30e7abe20f387d763364b3ce7506c82"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-win32.whl", hash = "sha256:13be2cc683b76977a700948411a94c67ad8faf542fa7da2a4b167f2244781cf3"}, {file = "SQLAlchemy-2.0.34-cp37-cp37m-win_amd64.whl", hash = "sha256:e54ef33ea80d464c3dcfe881eb00ad5921b60f8115ea1a30d781653edc2fd6a2"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f28005141165edd11fbbf1541c920bd29e167b8bbc1fb410d4fe2269c1667a"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b68094b165a9e930aedef90725a8fcfafe9ef95370cbb54abc0464062dbf808f"}, - {file = "SQLAlchemy-2.0.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1e03db964e9d32f112bae36f0cc1dcd1988d096cfd75d6a588a3c3def9ab2b"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:203d46bddeaa7982f9c3cc693e5bc93db476ab5de9d4b4640d5c99ff219bee8c"}, - {file = "SQLAlchemy-2.0.34-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ae92bebca3b1e6bd203494e5ef919a60fb6dfe4d9a47ed2453211d3bd451b9f5"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9661268415f450c95f72f0ac1217cc6f10256f860eed85c2ae32e75b60278ad8"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-win32.whl", hash = "sha256:895184dfef8708e15f7516bd930bda7e50ead069280d2ce09ba11781b630a434"}, {file = "SQLAlchemy-2.0.34-cp38-cp38-win_amd64.whl", hash = "sha256:6e7cde3a2221aa89247944cafb1b26616380e30c63e37ed19ff0bba5e968688d"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dbcdf987f3aceef9763b6d7b1fd3e4ee210ddd26cac421d78b3c206d07b2700b"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ce119fc4ce0d64124d37f66a6f2a584fddc3c5001755f8a49f1ca0a177ef9796"}, - {file = "SQLAlchemy-2.0.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a17d8fac6df9835d8e2b4c5523666e7051d0897a93756518a1fe101c7f47f2f0"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ebc11c54c6ecdd07bb4efbfa1554538982f5432dfb8456958b6d46b9f834bb7"}, - {file = "SQLAlchemy-2.0.34-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e6965346fc1491a566e019a4a1d3dfc081ce7ac1a736536367ca305da6472a8"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:220574e78ad986aea8e81ac68821e47ea9202b7e44f251b7ed8c66d9ae3f4278"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-win32.whl", hash = "sha256:b75b00083e7fe6621ce13cfce9d4469c4774e55e8e9d38c305b37f13cf1e874c"}, {file = "SQLAlchemy-2.0.34-cp39-cp39-win_amd64.whl", hash = "sha256:c29d03e0adf3cc1a8c3ec62d176824972ae29b67a66cbb18daff3062acc6faa8"}, @@ -2021,26 +1988,15 @@ files = [ {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] -[[package]] -name = "tzdata" -version = "2024.1" -description = "Provider of IANA time zone data" -optional = false -python-versions = ">=2" -files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, -] - [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -2051,46 +2007,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -2098,103 +2049,103 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "yarl" -version = "1.10.0" +version = "1.11.1" description = "Yet another URL library" optional = false python-versions = ">=3.8" files = [ - {file = "yarl-1.10.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1718c0bca5a61edac7a57dcc11856cb01bde13a9360a3cb6baf384b89cfc0b40"}, - {file = "yarl-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4657fd290d556a5f3018d07c7b7deadcb622760c0125277d10a11471c340054"}, - {file = "yarl-1.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:044b76d069e69c6b0246f071ebac0576f89c772f806d66ef51e662bd015d03c7"}, - {file = "yarl-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5527d32506c11150ca87f33820057dc284e2a01a87f0238555cada247a8b278"}, - {file = "yarl-1.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36d12d78b8b0d46099d413c8689b5510ad9ce5e443363d1c37b6ac5b3d7cbdfb"}, - {file = "yarl-1.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:11f7f8a72b3e26c533fa7ffa7a8068f4e3aad7b67c5cf7b17ea8c79fc81d9830"}, - {file = "yarl-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88173836a25b7e5dce989eeee3b92d8ef5cdf512830d4155c6212de98e616f70"}, - {file = "yarl-1.10.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c382e189af10070bcb39caa9406b9cc47b26c1d2257979f11fe03a38be09fea9"}, - {file = "yarl-1.10.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:534b8bc181dca1691cf491c263e084af678a8fb6b6181687c788027d8c317026"}, - {file = "yarl-1.10.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:5f3372f9ae1d1f001826b77d0b29d4220e84f6c5f53915e71a825cdd02600065"}, - {file = "yarl-1.10.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:4cca9ba00be4bb8a051c4007b60fc91d6c9728c8b70c86cee4c24be9d641002f"}, - {file = "yarl-1.10.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:a9d8c4be5658834dc688072239d220631ad4b71ff79a5f3d17fb653f16d10759"}, - {file = "yarl-1.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ff45a655ca51e1cb778abbb586083fddb7d896332f47bb3b03bc75e30c25649f"}, - {file = "yarl-1.10.0-cp310-cp310-win32.whl", hash = "sha256:9ef7ce61958b3c7b2e2e0927c52d35cf367c5ee410e06e1337ecc83a90c23b95"}, - {file = "yarl-1.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:48a48261f8d610b0e15fed033e74798763bc2f8f2c0d769a2a0732511af71f1e"}, - {file = "yarl-1.10.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:308d1cce071b5b500e3d95636bbf15dfdb8e87ed081b893555658a7f9869a156"}, - {file = "yarl-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bc66927f6362ed613a483c22618f88f014994ccbd0b7a25ec1ebc8c472d4b40a"}, - {file = "yarl-1.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c4d13071c5b99974cfe2f94c749ecc4baf882f7c4b6e4c40ca3d15d1b7e81f24"}, - {file = "yarl-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:348ad53acd41caa489df7db352d620c982ab069855d9635dda73d685bbbc3636"}, - {file = "yarl-1.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:293f7c2b30d015de3f1441c4ee764963b86636fde881b4d6093498d1e8711f69"}, - {file = "yarl-1.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:315e8853d0ea46aabdce01f1f248fff7b9743de89b555c5f0487f54ac84beae8"}, - {file = "yarl-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:012c506b2c23be4500fb97509aa7e6a575996fb317b80667fa26899d456e2aaf"}, - {file = "yarl-1.10.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5f769c2708c31227c5349c3e4c668c8b4b2e25af3e7263723f2ef33e8e3906a0"}, - {file = "yarl-1.10.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4f6ac063a4e9bbd4f6cc88cc621516a44d6aec66862ea8399ba063374e4b12c7"}, - {file = "yarl-1.10.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:18b7ce6d8c35da8e16dcc8de124a80e250fc8c73f8c02663acf2485c874f1972"}, - {file = "yarl-1.10.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b80246bdee036381636e73ef0f19b032912064622b0e5ee44f6960fd11df12aa"}, - {file = "yarl-1.10.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:183dd37bb5471e8017ab8a998c1ea070b4a0b08a97a7c4e20e0c7ccbe8ebb999"}, - {file = "yarl-1.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9b6d0d7522b514f054b359409817af4c5ed76fa4fe42d8bd1ed12956804cf595"}, - {file = "yarl-1.10.0-cp311-cp311-win32.whl", hash = "sha256:6026a6ef14d038a38ca9d81422db4b6bb7d5da94f9d08f21e0ad9ebd9c4bc3bb"}, - {file = "yarl-1.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:190e70d2f9f16f1c9d666c103d635c9ed4bf8de7803e9fa0495eec405a3e96a8"}, - {file = "yarl-1.10.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:6bc602c7413e1b5223bc988947125998cb54d6184de45a871985daacc23e6c8c"}, - {file = "yarl-1.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bf733c835ebbd52bd78a52b919205e0f06d8571f71976a0259e5bcc20d0a2f44"}, - {file = "yarl-1.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6e91ed5f6818e1e3806eaeb7b14d9e17b90340f23089451ea59a89a29499d760"}, - {file = "yarl-1.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23057a004bc9735008eb2a04b6ce94c6c06219cdf2b193997fd3ae6039eb3196"}, - {file = "yarl-1.10.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b922c32a1cff62bc43d408d1a8745abeed0a705793f2253c622bf3521922198"}, - {file = "yarl-1.10.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:be199fed28861d72df917e355287ad6835555d8210e7f8203060561f24d7d842"}, - {file = "yarl-1.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cece693380c1c4a606cdcaa0c54eda8f72cfe1ba83f5149b9023bb955e8fa8e"}, - {file = "yarl-1.10.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff8e803d8ca170e632fb3b4df1bfd29ba29be8edc3e9306c5ffa5fadea234a4f"}, - {file = "yarl-1.10.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:30dde3a8b88c80a4f049eb4dd240d2a02e89174da6be2525541f949bf9fa38ab"}, - {file = "yarl-1.10.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:dff84623e7098cf9bfbb5187f9883051af652b0ce08b9f7084cc8630b87b6457"}, - {file = "yarl-1.10.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8e69b55965a47dd6c79e578abd7d85637b1bb4a7565436630826bdb28aa9b7ad"}, - {file = "yarl-1.10.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5d0c9e1dcc92d46ca89608fe4763fc2362f1e81c19a922c67dbc0f20951466e4"}, - {file = "yarl-1.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:32e79d5ae975f7c2cc29f7104691fc9be5ee3724f24e1a7254d72f6219672108"}, - {file = "yarl-1.10.0-cp312-cp312-win32.whl", hash = "sha256:762a196612c2aba4197cd271da65fe08308f7ddf130dc63842c7a76d774b6a2c"}, - {file = "yarl-1.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:8c6214071f653d21bb7b43f7ee519afcbf7084263bb43408f4939d14558290db"}, - {file = "yarl-1.10.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:0e0aea8319fdc1ac340236e58b0b7dc763621bce6ce98124a9d58104cafd0aaa"}, - {file = "yarl-1.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0b3bf343b4ef9ec600d75363eb9b48ab3bd53b53d4e1c5a9fbf0cfe7ba73a47f"}, - {file = "yarl-1.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:05b07e6e0f715eaae9d927a302d9220724392f3c0b4e7f8dfa174bf2e1b8433e"}, - {file = "yarl-1.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d7bd531d7eec4aa7ef8a99fef91962eeea5158a53af0ec507c476ddf8ebc29c"}, - {file = "yarl-1.10.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:183136dc5d5411872e7529c924189a2e26fac5a7f9769cf13ef854d1d653ad36"}, - {file = "yarl-1.10.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c77a3c10af4aaf8891578fe492ef0990c65cf7005dd371f5ea8007b420958bf6"}, - {file = "yarl-1.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:030d41d48217b180c5a176e59c49d212d54d89f6f53640fa4c1a1766492aec27"}, - {file = "yarl-1.10.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f4f43ba30d604ba391bc7fe2dd104d6b87b62b0de4bbde79e362524b8a1eb75"}, - {file = "yarl-1.10.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:637dd0f55d1781d4634c23994101c509e455b5ab61af9086b5763b7eca9359aa"}, - {file = "yarl-1.10.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:99e7459ee86a3b81e57777afd3825b8b1acaac8a99f9c0bd02415d80eb3c371b"}, - {file = "yarl-1.10.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:a80cdb3c15c15b33ecdb080546dcb022789b0084ca66ad41ffa0fe09857fca11"}, - {file = "yarl-1.10.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:1824bfb932d8100e5c94f4f98c078f23ebc6f6fa93acc3d95408762089c54a06"}, - {file = "yarl-1.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:90fd64ce00f594db02f603efa502521c440fa1afcf6266be82eb31f19d2d9561"}, - {file = "yarl-1.10.0-cp313-cp313-win32.whl", hash = "sha256:687131ee4d045f3d58128ca28f5047ec902f7760545c39bbe003cc737c5a02b5"}, - {file = "yarl-1.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:493ad061ee025c5ed3a60893cd70204eead1b3f60ccc90682e752f95b845bd46"}, - {file = "yarl-1.10.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:cd65588273d19f8483bc8f32a6fcf602e94a9a7ba287a1725977bd9527cd6c0c"}, - {file = "yarl-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6f64f8681671624f539eea5564518bc924524c25eb90ab24a7eddc2d872e668e"}, - {file = "yarl-1.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3576ed2c51f8525d4ff5c3279247aacff9540bb43b292c4a37a8e6c6e1691adb"}, - {file = "yarl-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca42a9281807fdf8fba86e671d8fdd76f92e9302a6d332957f2bae51c774f8a7"}, - {file = "yarl-1.10.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:54a4b5e6a060d46cad6a3cf340f4cb268e6fbc89c589d82a2da58f7db47c47c8"}, - {file = "yarl-1.10.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6eec21d8c3aa932c5a89480b58fa877e9c48092ab838ccc76788cbc917ceec0d"}, - {file = "yarl-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:273baee8a8af5989d5aab51c740e65bc2b1fc6619b9dd192cd16a3fae51100be"}, - {file = "yarl-1.10.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c1bf63ba496cd4f12d30e916d9a52daa6c91433fedd9cd0d99fef3e13232836f"}, - {file = "yarl-1.10.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f8e24b9a4afdffab399191a9f0b0e80eabc7b7fdb9f2dbccdeb8e4d28e5c57bb"}, - {file = "yarl-1.10.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4c46454fafa31f7241083a0dd21814f63e0fcb4ae49662dc7e286fd6a5160ea1"}, - {file = "yarl-1.10.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:beda87b63c08fb4df8cc5353eeefe68efe12aa4f5284958bd1466b14c85e508e"}, - {file = "yarl-1.10.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:9a8d6a0e2b5617b5c15c59db25f20ba429f1fea810f2c09fbf93067cb21ab085"}, - {file = "yarl-1.10.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:b453b3dbc1ed4c2907632d05b378123f3fb411cad05d8d96de7d95104ef11c70"}, - {file = "yarl-1.10.0-cp38-cp38-win32.whl", hash = "sha256:1ea30675fbf0ad6795c100da677ef6a8960a7db05ac5293f02a23c2230203c89"}, - {file = "yarl-1.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:347011ad09a8f9be3d41fe2d7d611c3a4de4d49aa77bcb9a8c03c7a82fc45248"}, - {file = "yarl-1.10.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:18bc4600eed1907762c1816bb16ac63bc52912e53b5e9a353eb0935a78e95496"}, - {file = "yarl-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeb6a40c5ae2616fd38c1e039c6dd50031bbfbc2acacfd7b70a5d64fafc70901"}, - {file = "yarl-1.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bc544248b5263e1c0f61332ccf35e37404b54213f77ed17457f857f40af51452"}, - {file = "yarl-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3352c69dc235850d6bf8ddad915931f00dcab208ac4248b9af46175204c2f5f9"}, - {file = "yarl-1.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:af5b52bfbbd5eb208cf1afe23c5ada443929e9b9d79e9fbc66cacc07e4e39748"}, - {file = "yarl-1.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1eafa7317063de4bc310716cdd9026c13f00b1629e649079a6908c3aafdf5046"}, - {file = "yarl-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a162cf04fd1e8d81025ec651d14cac4f6e0ca73a3c0a9482de8691b944e3098a"}, - {file = "yarl-1.10.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:179b1df5e9cd99234ea65e63d5bfc6dd524b2c3b6cf68a14b94ccbe01ab37ddd"}, - {file = "yarl-1.10.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:32d2e46848dea122484317485129f080220aa84aeb6a9572ad9015107cebeb07"}, - {file = "yarl-1.10.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:aa1aeb99408be0ca774c5126977eb085fedda6dd7d9198ce4ceb2d06a44325c7"}, - {file = "yarl-1.10.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:d2366e2f987f69752f0588d2035321aaf24272693d75f7f6bb7e8a0f48f7ccdd"}, - {file = "yarl-1.10.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e8da33665ecc64cd3e593098adb449f9c65b4e3bc6338e75ad592da15453d898"}, - {file = "yarl-1.10.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b46c603bee1f2dd407b8358c2afc9b0472a22ccca528f114e1f4cd30dfecd22"}, - {file = "yarl-1.10.0-cp39-cp39-win32.whl", hash = "sha256:96422a3322b4d954f4c52403a2fc129ad118c151ee60a717847fb46a8480d1e1"}, - {file = "yarl-1.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:52d1ae09b0764017e330bb5bf9af760c0168c564225085bb806f687bccffda8a"}, - {file = "yarl-1.10.0-py3-none-any.whl", hash = "sha256:99eaa7d53f509ba1c2fea8fdfec15ba3cd36caca31d57ec6665073b148b5f260"}, - {file = "yarl-1.10.0.tar.gz", hash = "sha256:3bf10a395adac62177ba8ea738617e8de6cbb1cea6aa5d5dd2accde704fc8195"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:400cd42185f92de559d29eeb529e71d80dfbd2f45c36844914a4a34297ca6f00"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8258c86f47e080a258993eed877d579c71da7bda26af86ce6c2d2d072c11320d"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2164cd9725092761fed26f299e3f276bb4b537ca58e6ff6b252eae9631b5c96e"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08ea567c16f140af8ddc7cb58e27e9138a1386e3e6e53982abaa6f2377b38cc"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:768ecc550096b028754ea28bf90fde071c379c62c43afa574edc6f33ee5daaec"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2909fa3a7d249ef64eeb2faa04b7957e34fefb6ec9966506312349ed8a7e77bf"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01a8697ec24f17c349c4f655763c4db70eebc56a5f82995e5e26e837c6eb0e49"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e286580b6511aac7c3268a78cdb861ec739d3e5a2a53b4809faef6b49778eaff"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4179522dc0305c3fc9782549175c8e8849252fefeb077c92a73889ccbcd508ad"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:27fcb271a41b746bd0e2a92182df507e1c204759f460ff784ca614e12dd85145"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f61db3b7e870914dbd9434b560075e0366771eecbe6d2b5561f5bc7485f39efd"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:c92261eb2ad367629dc437536463dc934030c9e7caca861cc51990fe6c565f26"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d95b52fbef190ca87d8c42f49e314eace4fc52070f3dfa5f87a6594b0c1c6e46"}, + {file = "yarl-1.11.1-cp310-cp310-win32.whl", hash = "sha256:489fa8bde4f1244ad6c5f6d11bb33e09cf0d1d0367edb197619c3e3fc06f3d91"}, + {file = "yarl-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:476e20c433b356e16e9a141449f25161e6b69984fb4cdbd7cd4bd54c17844998"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:946eedc12895873891aaceb39bceb484b4977f70373e0122da483f6c38faaa68"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:21a7c12321436b066c11ec19c7e3cb9aec18884fe0d5b25d03d756a9e654edfe"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c35f493b867912f6fda721a59cc7c4766d382040bdf1ddaeeaa7fa4d072f4675"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25861303e0be76b60fddc1250ec5986c42f0a5c0c50ff57cc30b1be199c00e63"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4b53f73077e839b3f89c992223f15b1d2ab314bdbdf502afdc7bb18e95eae27"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:327c724b01b8641a1bf1ab3b232fb638706e50f76c0b5bf16051ab65c868fac5"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4307d9a3417eea87715c9736d050c83e8c1904e9b7aada6ce61b46361b733d92"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48a28bed68ab8fb7e380775f0029a079f08a17799cb3387a65d14ace16c12e2b"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:067b961853c8e62725ff2893226fef3d0da060656a9827f3f520fb1d19b2b68a"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8215f6f21394d1f46e222abeb06316e77ef328d628f593502d8fc2a9117bde83"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:498442e3af2a860a663baa14fbf23fb04b0dd758039c0e7c8f91cb9279799bff"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:69721b8effdb588cb055cc22f7c5105ca6fdaa5aeb3ea09021d517882c4a904c"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1e969fa4c1e0b1a391f3fcbcb9ec31e84440253325b534519be0d28f4b6b533e"}, + {file = "yarl-1.11.1-cp311-cp311-win32.whl", hash = "sha256:7d51324a04fc4b0e097ff8a153e9276c2593106a811704025bbc1d6916f45ca6"}, + {file = "yarl-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:15061ce6584ece023457fb8b7a7a69ec40bf7114d781a8c4f5dcd68e28b5c53b"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a4264515f9117be204935cd230fb2a052dd3792789cc94c101c535d349b3dab0"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f41fa79114a1d2eddb5eea7b912d6160508f57440bd302ce96eaa384914cd265"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02da8759b47d964f9173c8675710720b468aa1c1693be0c9c64abb9d8d9a4867"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9361628f28f48dcf8b2f528420d4d68102f593f9c2e592bfc842f5fb337e44fd"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b91044952da03b6f95fdba398d7993dd983b64d3c31c358a4c89e3c19b6f7aef"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:74db2ef03b442276d25951749a803ddb6e270d02dda1d1c556f6ae595a0d76a8"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e975a2211952a8a083d1b9d9ba26472981ae338e720b419eb50535de3c02870"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aef97ba1dd2138112890ef848e17d8526fe80b21f743b4ee65947ea184f07a2"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a7915ea49b0c113641dc4d9338efa9bd66b6a9a485ffe75b9907e8573ca94b84"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:504cf0d4c5e4579a51261d6091267f9fd997ef58558c4ffa7a3e1460bd2336fa"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3de5292f9f0ee285e6bd168b2a77b2a00d74cbcfa420ed078456d3023d2f6dff"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a34e1e30f1774fa35d37202bbeae62423e9a79d78d0874e5556a593479fdf239"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:66b63c504d2ca43bf7221a1f72fbe981ff56ecb39004c70a94485d13e37ebf45"}, + {file = "yarl-1.11.1-cp312-cp312-win32.whl", hash = "sha256:a28b70c9e2213de425d9cba5ab2e7f7a1c8ca23a99c4b5159bf77b9c31251447"}, + {file = "yarl-1.11.1-cp312-cp312-win_amd64.whl", hash = "sha256:17b5a386d0d36fb828e2fb3ef08c8829c1ebf977eef88e5367d1c8c94b454639"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1fa2e7a406fbd45b61b4433e3aa254a2c3e14c4b3186f6e952d08a730807fa0c"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:750f656832d7d3cb0c76be137ee79405cc17e792f31e0a01eee390e383b2936e"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0b8486f322d8f6a38539136a22c55f94d269addb24db5cb6f61adc61eabc9d93"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3fce4da3703ee6048ad4138fe74619c50874afe98b1ad87b2698ef95bf92c96d"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed653638ef669e0efc6fe2acb792275cb419bf9cb5c5049399f3556995f23c7"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18ac56c9dd70941ecad42b5a906820824ca72ff84ad6fa18db33c2537ae2e089"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:688654f8507464745ab563b041d1fb7dab5d9912ca6b06e61d1c4708366832f5"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4973eac1e2ff63cf187073cd4e1f1148dcd119314ab79b88e1b3fad74a18c9d5"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:964a428132227edff96d6f3cf261573cb0f1a60c9a764ce28cda9525f18f7786"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:6d23754b9939cbab02c63434776df1170e43b09c6a517585c7ce2b3d449b7318"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c2dc4250fe94d8cd864d66018f8344d4af50e3758e9d725e94fecfa27588ff82"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09696438cb43ea6f9492ef237761b043f9179f455f405279e609f2bc9100212a"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:999bfee0a5b7385a0af5ffb606393509cfde70ecca4f01c36985be6d33e336da"}, + {file = "yarl-1.11.1-cp313-cp313-win32.whl", hash = "sha256:ce928c9c6409c79e10f39604a7e214b3cb69552952fbda8d836c052832e6a979"}, + {file = "yarl-1.11.1-cp313-cp313-win_amd64.whl", hash = "sha256:501c503eed2bb306638ccb60c174f856cc3246c861829ff40eaa80e2f0330367"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dae7bd0daeb33aa3e79e72877d3d51052e8b19c9025ecf0374f542ea8ec120e4"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3ff6b1617aa39279fe18a76c8d165469c48b159931d9b48239065767ee455b2b"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3257978c870728a52dcce8c2902bf01f6c53b65094b457bf87b2644ee6238ddc"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f351fa31234699d6084ff98283cb1e852270fe9e250a3b3bf7804eb493bd937"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8aef1b64da41d18026632d99a06b3fefe1d08e85dd81d849fa7c96301ed22f1b"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7175a87ab8f7fbde37160a15e58e138ba3b2b0e05492d7351314a250d61b1591"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba444bdd4caa2a94456ef67a2f383710928820dd0117aae6650a4d17029fa25e"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ea9682124fc062e3d931c6911934a678cb28453f957ddccf51f568c2f2b5e05"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8418c053aeb236b20b0ab8fa6bacfc2feaaf7d4683dd96528610989c99723d5f"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:61a5f2c14d0a1adfdd82258f756b23a550c13ba4c86c84106be4c111a3a4e413"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f3a6d90cab0bdf07df8f176eae3a07127daafcf7457b997b2bf46776da2c7eb7"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:077da604852be488c9a05a524068cdae1e972b7dc02438161c32420fb4ec5e14"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:15439f3c5c72686b6c3ff235279630d08936ace67d0fe5c8d5bbc3ef06f5a420"}, + {file = "yarl-1.11.1-cp38-cp38-win32.whl", hash = "sha256:238a21849dd7554cb4d25a14ffbfa0ef380bb7ba201f45b144a14454a72ffa5a"}, + {file = "yarl-1.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:67459cf8cf31da0e2cbdb4b040507e535d25cfbb1604ca76396a3a66b8ba37a6"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:884eab2ce97cbaf89f264372eae58388862c33c4f551c15680dd80f53c89a269"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a336eaa7ee7e87cdece3cedb395c9657d227bfceb6781295cf56abcd3386a26"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87f020d010ba80a247c4abc335fc13421037800ca20b42af5ae40e5fd75e7909"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:637c7ddb585a62d4469f843dac221f23eec3cbad31693b23abbc2c366ad41ff4"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:48dfd117ab93f0129084577a07287376cc69c08138694396f305636e229caa1a"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75e0ae31fb5ccab6eda09ba1494e87eb226dcbd2372dae96b87800e1dcc98804"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f46f81501160c28d0c0b7333b4f7be8983dbbc161983b6fb814024d1b4952f79"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:04293941646647b3bfb1719d1d11ff1028e9c30199509a844da3c0f5919dc520"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:250e888fa62d73e721f3041e3a9abf427788a1934b426b45e1b92f62c1f68366"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e8f63904df26d1a66aabc141bfd258bf738b9bc7bc6bdef22713b4f5ef789a4c"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:aac44097d838dda26526cffb63bdd8737a2dbdf5f2c68efb72ad83aec6673c7e"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:267b24f891e74eccbdff42241c5fb4f974de2d6271dcc7d7e0c9ae1079a560d9"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6907daa4b9d7a688063ed098c472f96e8181733c525e03e866fb5db480a424df"}, + {file = "yarl-1.11.1-cp39-cp39-win32.whl", hash = "sha256:14438dfc5015661f75f85bc5adad0743678eefee266ff0c9a8e32969d5d69f74"}, + {file = "yarl-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:94d0caaa912bfcdc702a4204cd5e2bb01eb917fc4f5ea2315aa23962549561b0"}, + {file = "yarl-1.11.1-py3-none-any.whl", hash = "sha256:72bf26f66456baa0584eff63e44545c9f0eaed9b73cb6601b647c91f14c11f38"}, + {file = "yarl-1.11.1.tar.gz", hash = "sha256:1bb2d9e212fb7449b8fb73bc461b51eaa17cc8430b4a87d87be7b25052d92f53"}, ] [package.dependencies] @@ -2203,5 +2154,5 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "1c7d28e3462756cd8f352661fd92ddf0a6929e6f20c19ca481d54b78905cf6da" +python-versions = ">=3.9,<4.0" +content-hash = "681e0e1234215ead5420ff8c770d424c7f4d65079fde4709deafd183f786f29a" diff --git a/libs/partners/mongodb/pyproject.toml b/libs/partners/mongodb/pyproject.toml index 2771e57f86b85..e850c36c00cae 100644 --- a/libs/partners/mongodb/pyproject.toml +++ b/libs/partners/mongodb/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-mongodb" -version = "0.1.9" +version = "0.2.0" description = "An integration package connecting MongoDB and LangChain" authors = [] readme = "README.md" @@ -19,9 +19,10 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-mongodb%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" +python = ">=3.9,<4.0" pymongo = ">=4.6.1,<5.0" -langchain-core = "^0.2.38" +langchain-core = "^0.3" + [[tool.poetry.dependencies.numpy]] version = "^1" python = "<3.12" @@ -31,14 +32,18 @@ version = "^1.26.0" python = ">=3.12" [tool.ruff.lint] -select = [ "E", "F", "I",] +select = ["E", "F", "I"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] diff --git a/libs/partners/mongodb/scripts/check_pydantic.sh b/libs/partners/mongodb/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/mongodb/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/mongodb/tests/integration_tests/test_chain_example.py b/libs/partners/mongodb/tests/integration_tests/test_chain_example.py index 861a398cc8d62..d54fa6cb01cc3 100644 --- a/libs/partners/mongodb/tests/integration_tests/test_chain_example.py +++ b/libs/partners/mongodb/tests/integration_tests/test_chain_example.py @@ -59,7 +59,7 @@ def test_chain( ) -> None: """Demonstrate usage of MongoDBAtlasVectorSearch in a realistic chain - Follows example in the docs: https://python.langchain.com/v0.2/docs/how_to/hybrid/ + Follows example in the docs: https://python.langchain.com/docs/how_to/hybrid/ Requires OpenAI_API_KEY for embedding and chat model. Requires INDEX_NAME to have been set up on MONGODB_ATLAS_URI diff --git a/libs/partners/mongodb/tests/utils.py b/libs/partners/mongodb/tests/utils.py index f9126f5211d64..d62b2025f48ea 100644 --- a/libs/partners/mongodb/tests/utils.py +++ b/libs/partners/mongodb/tests/utils.py @@ -17,7 +17,7 @@ BaseMessage, ) from langchain_core.outputs import ChatGeneration, ChatResult -from langchain_core.pydantic_v1 import validator +from pydantic import model_validator from pymongo.collection import Collection from pymongo.results import DeleteResult, InsertManyResult @@ -134,15 +134,14 @@ class FakeLLM(LLM): sequential_responses: Optional[bool] = False response_index: int = 0 - @validator("queries", always=True) - def check_queries_required( - cls, queries: Optional[Mapping], values: Mapping[str, Any] - ) -> Optional[Mapping]: - if values.get("sequential_response") and not queries: + @model_validator(mode="before") + @classmethod + def check_queries_required(cls, values: dict) -> dict: + if values.get("sequential_response") and not values.get("queries"): raise ValueError( "queries is required when sequential_response is set to True" ) - return queries + return values def get_num_tokens(self, text: str) -> int: """Return number of tokens.""" diff --git a/libs/partners/nomic/poetry.lock b/libs/partners/nomic/poetry.lock index 989a2b2c179ce..b9cef7ed72103 100644 --- a/libs/partners/nomic/poetry.lock +++ b/libs/partners/nomic/poetry.lock @@ -1,47 +1,66 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "annotated-types" -version = "0.6.0" +version = "0.7.0" description = "Reusable constraint types to use with typing.Annotated" optional = false python-versions = ">=3.8" files = [ - {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, - {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[[package]] +name = "anyio" +version = "4.4.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, ] [package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] [[package]] name = "attrs" -version = "23.2.0" +version = "24.2.0" description = "Classes Without Boilerplate" optional = false python-versions = ">=3.7" files = [ - {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, - {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, ] [package.extras] -cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[tests]", "pre-commit"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] -tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] -tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "certifi" -version = "2024.2.2" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"}, - {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -159,13 +178,13 @@ colorama = {version = "*", markers = "platform_system == \"Windows\""} [[package]] name = "codespell" -version = "2.2.6" +version = "2.3.0" description = "Codespell" optional = false python-versions = ">=3.8" files = [ - {file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"}, - {file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"}, + {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, + {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, ] [package.extras] @@ -187,13 +206,13 @@ files = [ [[package]] name = "exceptiongroup" -version = "1.2.1" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, - {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -213,17 +232,77 @@ files = [ [package.dependencies] python-dateutil = ">=2.7" +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.2" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -265,34 +344,35 @@ jsonpointer = ">=1.9" [[package]] name = "jsonpointer" -version = "2.4" +version = "3.0.0" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +python-versions = ">=3.7" files = [ - {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, - {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, ] [[package]] name = "langchain-core" -version = "0.2.11" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" tenacity = "^8.1.0,!=8.4.0" +typing-extensions = ">=4.7" [package.source] type = "directory" @@ -300,16 +380,17 @@ url = "../../core" [[package]] name = "langsmith" -version = "0.1.83" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.83-py3-none-any.whl", hash = "sha256:f54d8cd8479b648b6339f3f735d19292c3516d080f680933ecdca3eab4b67ed3"}, - {file = "langsmith-0.1.83.tar.gz", hash = "sha256:5cdd947212c8ad19adb992c06471c860185a777daa6859bb47150f90daf64bf3"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, @@ -433,12 +514,12 @@ files = [ [[package]] name = "nomic" -version = "3.0.29" +version = "3.1.2" description = "The official Nomic python client." optional = false python-versions = "*" files = [ - {file = "nomic-3.0.29.tar.gz", hash = "sha256:1f92912e93932797f59dec8a33493f4cca92831aa86110590543f628098be1ef"}, + {file = "nomic-3.1.2.tar.gz", hash = "sha256:2de1ab1dcf2429011c92987bb2f1eafe1a3a4901c3185b18f994bf89616f606d"}, ] [package.dependencies] @@ -458,46 +539,9 @@ tqdm = "*" [package.extras] all = ["nomic[aws,local]"] aws = ["boto3", "sagemaker"] -dev = ["black", "cairosvg", "coverage", "isort", "mkautodoc", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]", "myst-parser", "nomic[all]", "pandas", "pillow", "pylint", "pyright", "pytest", "pytorch-lightning", "twine"] +dev = ["black (==24.3.0)", "cairosvg", "coverage", "isort", "mkautodoc", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]", "myst-parser", "nomic[all]", "pandas", "pillow", "pylint", "pyright", "pytest", "pytorch-lightning", "twine"] local = ["gpt4all (>=2.5.0,<3)"] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -545,217 +589,245 @@ files = [ [[package]] name = "orjson" -version = "3.10.3" +version = "3.10.7" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = false python-versions = ">=3.8" files = [ - {file = "orjson-3.10.3-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9fb6c3f9f5490a3eb4ddd46fc1b6eadb0d6fc16fb3f07320149c3286a1409dd8"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:252124b198662eee80428f1af8c63f7ff077c88723fe206a25df8dc57a57b1fa"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9f3e87733823089a338ef9bbf363ef4de45e5c599a9bf50a7a9b82e86d0228da"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8334c0d87103bb9fbbe59b78129f1f40d1d1e8355bbed2ca71853af15fa4ed3"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1952c03439e4dce23482ac846e7961f9d4ec62086eb98ae76d97bd41d72644d7"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c0403ed9c706dcd2809f1600ed18f4aae50be263bd7112e54b50e2c2bc3ebd6d"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:382e52aa4270a037d41f325e7d1dfa395b7de0c367800b6f337d8157367bf3a7"}, - {file = "orjson-3.10.3-cp310-none-win32.whl", hash = "sha256:be2aab54313752c04f2cbaab4515291ef5af8c2256ce22abc007f89f42f49109"}, - {file = "orjson-3.10.3-cp310-none-win_amd64.whl", hash = "sha256:416b195f78ae461601893f482287cee1e3059ec49b4f99479aedf22a20b1098b"}, - {file = "orjson-3.10.3-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:73100d9abbbe730331f2242c1fc0bcb46a3ea3b4ae3348847e5a141265479700"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:544a12eee96e3ab828dbfcb4d5a0023aa971b27143a1d35dc214c176fdfb29b3"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:520de5e2ef0b4ae546bea25129d6c7c74edb43fc6cf5213f511a927f2b28148b"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ccaa0a401fc02e8828a5bedfd80f8cd389d24f65e5ca3954d72c6582495b4bcf"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a7bc9e8bc11bac40f905640acd41cbeaa87209e7e1f57ade386da658092dc16"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3582b34b70543a1ed6944aca75e219e1192661a63da4d039d088a09c67543b08"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1c23dfa91481de880890d17aa7b91d586a4746a4c2aa9a145bebdbaf233768d5"}, - {file = "orjson-3.10.3-cp311-none-win32.whl", hash = "sha256:1770e2a0eae728b050705206d84eda8b074b65ee835e7f85c919f5705b006c9b"}, - {file = "orjson-3.10.3-cp311-none-win_amd64.whl", hash = "sha256:93433b3c1f852660eb5abdc1f4dd0ced2be031ba30900433223b28ee0140cde5"}, - {file = "orjson-3.10.3-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a39aa73e53bec8d410875683bfa3a8edf61e5a1c7bb4014f65f81d36467ea098"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0943a96b3fa09bee1afdfccc2cb236c9c64715afa375b2af296c73d91c23eab2"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e852baafceff8da3c9defae29414cc8513a1586ad93e45f27b89a639c68e8176"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18566beb5acd76f3769c1d1a7ec06cdb81edc4d55d2765fb677e3eaa10fa99e0"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd2218d5a3aa43060efe649ec564ebedec8ce6ae0a43654b81376216d5ebd42"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cf20465e74c6e17a104ecf01bf8cd3b7b252565b4ccee4548f18b012ff2f8069"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ba7f67aa7f983c4345eeda16054a4677289011a478ca947cd69c0a86ea45e534"}, - {file = "orjson-3.10.3-cp312-none-win32.whl", hash = "sha256:17e0713fc159abc261eea0f4feda611d32eabc35708b74bef6ad44f6c78d5ea0"}, - {file = "orjson-3.10.3-cp312-none-win_amd64.whl", hash = "sha256:4c895383b1ec42b017dd2c75ae8a5b862fc489006afde06f14afbdd0309b2af0"}, - {file = "orjson-3.10.3-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:be2719e5041e9fb76c8c2c06b9600fe8e8584e6980061ff88dcbc2691a16d20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0175a5798bdc878956099f5c54b9837cb62cfbf5d0b86ba6d77e43861bcec2"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:978be58a68ade24f1af7758626806e13cff7748a677faf95fbb298359aa1e20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16bda83b5c61586f6f788333d3cf3ed19015e3b9019188c56983b5a299210eb5"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ad1f26bea425041e0a1adad34630c4825a9e3adec49079b1fb6ac8d36f8b754"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9e253498bee561fe85d6325ba55ff2ff08fb5e7184cd6a4d7754133bd19c9195"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0a62f9968bab8a676a164263e485f30a0b748255ee2f4ae49a0224be95f4532b"}, - {file = "orjson-3.10.3-cp38-none-win32.whl", hash = "sha256:8d0b84403d287d4bfa9bf7d1dc298d5c1c5d9f444f3737929a66f2fe4fb8f134"}, - {file = "orjson-3.10.3-cp38-none-win_amd64.whl", hash = "sha256:8bc7a4df90da5d535e18157220d7915780d07198b54f4de0110eca6b6c11e290"}, - {file = "orjson-3.10.3-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9059d15c30e675a58fdcd6f95465c1522b8426e092de9fff20edebfdc15e1cb0"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d40c7f7938c9c2b934b297412c067936d0b54e4b8ab916fd1a9eb8f54c02294"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4a654ec1de8fdaae1d80d55cee65893cb06494e124681ab335218be6a0691e7"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:831c6ef73f9aa53c5f40ae8f949ff7681b38eaddb6904aab89dca4d85099cb78"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99b880d7e34542db89f48d14ddecbd26f06838b12427d5a25d71baceb5ba119d"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e5e176c994ce4bd434d7aafb9ecc893c15f347d3d2bbd8e7ce0b63071c52e25"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b69a58a37dab856491bf2d3bbf259775fdce262b727f96aafbda359cb1d114d8"}, - {file = "orjson-3.10.3-cp39-none-win32.whl", hash = "sha256:b8d4d1a6868cde356f1402c8faeb50d62cee765a1f7ffcfd6de732ab0581e063"}, - {file = "orjson-3.10.3-cp39-none-win_amd64.whl", hash = "sha256:5102f50c5fc46d94f2033fe00d392588564378260d64377aec702f21a7a22912"}, - {file = "orjson-3.10.3.tar.gz", hash = "sha256:2b166507acae7ba2f7c315dcf185a9111ad5e992ac81f2d507aac39193c2c818"}, + {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, + {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, + {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, + {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, + {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, + {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, + {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, + {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, + {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, + {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, + {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, + {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, + {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, + {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, + {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, + {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, + {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, + {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, + {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, + {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, ] [[package]] name = "packaging" -version = "23.2" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] name = "pandas" -version = "2.0.3" +version = "2.2.2" description = "Powerful data structures for data analysis, time series, and statistics" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, - {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, - {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, - {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, - {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, - {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, - {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, - {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, - {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, - {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, - {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, - {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, - {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, - {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, - {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, - {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, - {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, - {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, + {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, + {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, + {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, + {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, + {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, ] [package.dependencies] numpy = [ - {version = ">=1.20.3", markers = "python_version < \"3.10\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, - {version = ">=1.21.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, ] python-dateutil = ">=2.8.2" pytz = ">=2020.1" -tzdata = ">=2022.1" +tzdata = ">=2022.7" [package.extras] -all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] -aws = ["s3fs (>=2021.08.0)"] -clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] -compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] -computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] -feather = ["pyarrow (>=7.0.0)"] -fss = ["fsspec (>=2021.07.0)"] -gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] -hdf5 = ["tables (>=3.6.1)"] -html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] -mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] -parquet = ["pyarrow (>=7.0.0)"] -performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] -plot = ["matplotlib (>=3.6.1)"] -postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] -spss = ["pyreadstat (>=1.1.2)"] -sql-other = ["SQLAlchemy (>=1.4.16)"] -test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.6.3)"] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] [[package]] name = "pillow" -version = "10.3.0" +version = "10.4.0" description = "Python Imaging Library (Fork)" optional = false python-versions = ">=3.8" files = [ - {file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"}, - {file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"}, - {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"}, - {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"}, - {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"}, - {file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"}, - {file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"}, - {file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"}, - {file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"}, - {file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"}, - {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"}, - {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"}, - {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"}, - {file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"}, - {file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"}, - {file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"}, - {file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"}, - {file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"}, - {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"}, - {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"}, - {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"}, - {file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"}, - {file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"}, - {file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"}, - {file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"}, - {file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"}, - {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"}, - {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"}, - {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"}, - {file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"}, - {file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"}, - {file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"}, - {file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"}, - {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"}, - {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"}, - {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"}, - {file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"}, - {file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"}, - {file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"}, - {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"}, - {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"}, - {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, ] [package.extras] -docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] fpx = ["olefile"] mic = ["olefile"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] @@ -779,276 +851,174 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pyarrow" -version = "16.1.0" +version = "17.0.0" description = "Python library for Apache Arrow" optional = false python-versions = ">=3.8" files = [ - {file = "pyarrow-16.1.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9"}, - {file = "pyarrow-16.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a"}, - {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef"}, - {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848"}, - {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c"}, - {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd"}, - {file = "pyarrow-16.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff"}, - {file = "pyarrow-16.1.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d0ebea336b535b37eee9eee31761813086d33ed06de9ab6fc6aaa0bace7b250c"}, - {file = "pyarrow-16.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e73cfc4a99e796727919c5541c65bb88b973377501e39b9842ea71401ca6c1c"}, - {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf9251264247ecfe93e5f5a0cd43b8ae834f1e61d1abca22da55b20c788417f6"}, - {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddf5aace92d520d3d2a20031d8b0ec27b4395cab9f74e07cc95edf42a5cc0147"}, - {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:25233642583bf658f629eb230b9bb79d9af4d9f9229890b3c878699c82f7d11e"}, - {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a33a64576fddfbec0a44112eaf844c20853647ca833e9a647bfae0582b2ff94b"}, - {file = "pyarrow-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:185d121b50836379fe012753cf15c4ba9638bda9645183ab36246923875f8d1b"}, - {file = "pyarrow-16.1.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:2e51ca1d6ed7f2e9d5c3c83decf27b0d17bb207a7dea986e8dc3e24f80ff7d6f"}, - {file = "pyarrow-16.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06ebccb6f8cb7357de85f60d5da50e83507954af617d7b05f48af1621d331c9a"}, - {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b04707f1979815f5e49824ce52d1dceb46e2f12909a48a6a753fe7cafbc44a0c"}, - {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d32000693deff8dc5df444b032b5985a48592c0697cb6e3071a5d59888714e2"}, - {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:8785bb10d5d6fd5e15d718ee1d1f914fe768bf8b4d1e5e9bf253de8a26cb1628"}, - {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:e1369af39587b794873b8a307cc6623a3b1194e69399af0efd05bb202195a5a7"}, - {file = "pyarrow-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:febde33305f1498f6df85e8020bca496d0e9ebf2093bab9e0f65e2b4ae2b3444"}, - {file = "pyarrow-16.1.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:b5f5705ab977947a43ac83b52ade3b881eb6e95fcc02d76f501d549a210ba77f"}, - {file = "pyarrow-16.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0d27bf89dfc2576f6206e9cd6cf7a107c9c06dc13d53bbc25b0bd4556f19cf5f"}, - {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d07de3ee730647a600037bc1d7b7994067ed64d0eba797ac74b2bc77384f4c2"}, - {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbef391b63f708e103df99fbaa3acf9f671d77a183a07546ba2f2c297b361e83"}, - {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19741c4dbbbc986d38856ee7ddfdd6a00fc3b0fc2d928795b95410d38bb97d15"}, - {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f2c5fb249caa17b94e2b9278b36a05ce03d3180e6da0c4c3b3ce5b2788f30eed"}, - {file = "pyarrow-16.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:e6b6d3cd35fbb93b70ade1336022cc1147b95ec6af7d36906ca7fe432eb09710"}, - {file = "pyarrow-16.1.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:18da9b76a36a954665ccca8aa6bd9f46c1145f79c0bb8f4f244f5f8e799bca55"}, - {file = "pyarrow-16.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:99f7549779b6e434467d2aa43ab2b7224dd9e41bdde486020bae198978c9e05e"}, - {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f07fdffe4fd5b15f5ec15c8b64584868d063bc22b86b46c9695624ca3505b7b4"}, - {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddfe389a08ea374972bd4065d5f25d14e36b43ebc22fc75f7b951f24378bf0b5"}, - {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3b20bd67c94b3a2ea0a749d2a5712fc845a69cb5d52e78e6449bbd295611f3aa"}, - {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:ba8ac20693c0bb0bf4b238751d4409e62852004a8cf031c73b0e0962b03e45e3"}, - {file = "pyarrow-16.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:31a1851751433d89a986616015841977e0a188662fcffd1a5677453f1df2de0a"}, - {file = "pyarrow-16.1.0.tar.gz", hash = "sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315"}, + {file = "pyarrow-17.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a5c8b238d47e48812ee577ee20c9a2779e6a5904f1708ae240f53ecbee7c9f07"}, + {file = "pyarrow-17.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db023dc4c6cae1015de9e198d41250688383c3f9af8f565370ab2b4cb5f62655"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da1e060b3876faa11cee287839f9cc7cdc00649f475714b8680a05fd9071d545"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75c06d4624c0ad6674364bb46ef38c3132768139ddec1c56582dbac54f2663e2"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:fa3c246cc58cb5a4a5cb407a18f193354ea47dd0648194e6265bd24177982fe8"}, + {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:f7ae2de664e0b158d1607699a16a488de3d008ba99b3a7aa5de1cbc13574d047"}, + {file = "pyarrow-17.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5984f416552eea15fd9cee03da53542bf4cddaef5afecefb9aa8d1010c335087"}, + {file = "pyarrow-17.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:1c8856e2ef09eb87ecf937104aacfa0708f22dfeb039c363ec99735190ffb977"}, + {file = "pyarrow-17.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e19f569567efcbbd42084e87f948778eb371d308e137a0f97afe19bb860ccb3"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b244dc8e08a23b3e352899a006a26ae7b4d0da7bb636872fa8f5884e70acf15"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b72e87fe3e1db343995562f7fff8aee354b55ee83d13afba65400c178ab2597"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dc5c31c37409dfbc5d014047817cb4ccd8c1ea25d19576acf1a001fe07f5b420"}, + {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e3343cb1e88bc2ea605986d4b94948716edc7a8d14afd4e2c097232f729758b4"}, + {file = "pyarrow-17.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:a27532c38f3de9eb3e90ecab63dfda948a8ca859a66e3a47f5f42d1e403c4d03"}, + {file = "pyarrow-17.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9b8a823cea605221e61f34859dcc03207e52e409ccf6354634143e23af7c8d22"}, + {file = "pyarrow-17.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f1e70de6cb5790a50b01d2b686d54aaf73da01266850b05e3af2a1bc89e16053"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0071ce35788c6f9077ff9ecba4858108eebe2ea5a3f7cf2cf55ebc1dbc6ee24a"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:757074882f844411fcca735e39aae74248a1531367a7c80799b4266390ae51cc"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ba11c4f16976e89146781a83833df7f82077cdab7dc6232c897789343f7891a"}, + {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b0c6ac301093b42d34410b187bba560b17c0330f64907bfa4f7f7f2444b0cf9b"}, + {file = "pyarrow-17.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:392bc9feabc647338e6c89267635e111d71edad5fcffba204425a7c8d13610d7"}, + {file = "pyarrow-17.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:af5ff82a04b2171415f1410cff7ebb79861afc5dae50be73ce06d6e870615204"}, + {file = "pyarrow-17.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:edca18eaca89cd6382dfbcff3dd2d87633433043650c07375d095cd3517561d8"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c7916bff914ac5d4a8fe25b7a25e432ff921e72f6f2b7547d1e325c1ad9d155"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f553ca691b9e94b202ff741bdd40f6ccb70cdd5fbf65c187af132f1317de6145"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0cdb0e627c86c373205a2f94a510ac4376fdc523f8bb36beab2e7f204416163c"}, + {file = "pyarrow-17.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:d7d192305d9d8bc9082d10f361fc70a73590a4c65cf31c3e6926cd72b76bc35c"}, + {file = "pyarrow-17.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:02dae06ce212d8b3244dd3e7d12d9c4d3046945a5933d28026598e9dbbda1fca"}, + {file = "pyarrow-17.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:13d7a460b412f31e4c0efa1148e1d29bdf18ad1411eb6757d38f8fbdcc8645fb"}, + {file = "pyarrow-17.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9b564a51fbccfab5a04a80453e5ac6c9954a9c5ef2890d1bcf63741909c3f8df"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32503827abbc5aadedfa235f5ece8c4f8f8b0a3cf01066bc8d29de7539532687"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a155acc7f154b9ffcc85497509bcd0d43efb80d6f733b0dc3bb14e281f131c8b"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:dec8d129254d0188a49f8a1fc99e0560dc1b85f60af729f47de4046015f9b0a5"}, + {file = "pyarrow-17.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:a48ddf5c3c6a6c505904545c25a4ae13646ae1f8ba703c4df4a1bfe4f4006bda"}, + {file = "pyarrow-17.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:42bf93249a083aca230ba7e2786c5f673507fa97bbd9725a1e2754715151a204"}, + {file = "pyarrow-17.0.0.tar.gz", hash = "sha256:4beca9521ed2c0921c1023e68d097d0299b62c362639ea315572a58f3f50fd28"}, ] [package.dependencies] numpy = ">=1.16.6" -[[package]] -name = "pydantic" -version = "2.7.4" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"}, - {file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"}, -] - -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.18.4" -typing-extensions = ">=4.6.1" - [package.extras] -email = ["email-validator (>=2.0.0)"] +test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] [[package]] name = "pydantic" -version = "2.8.0" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.0-py3-none-any.whl", hash = "sha256:ead4f3a1e92386a734ca1411cb25d94147cf8778ed5be6b56749047676d6364e"}, - {file = "pydantic-2.8.0.tar.gz", hash = "sha256:d970ffb9d030b710795878940bd0489842c638e7252fc4a19c3ae2f7da4d6141"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.0" -typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" +typing-extensions = [ + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, + {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, +] [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.18.4" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"}, - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"}, - {file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"}, - {file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"}, - {file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"}, - {file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"}, - {file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"}, - {file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"}, - {file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"}, - {file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"}, - {file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"}, - {file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"}, - {file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"}, - {file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"}, - {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pydantic-core" -version = "2.20.0" -description = "Core functionality for Pydantic validation and serialization" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:e9dcd7fb34f7bfb239b5fa420033642fff0ad676b765559c3737b91f664d4fa9"}, - {file = "pydantic_core-2.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:649a764d9b0da29816889424697b2a3746963ad36d3e0968784ceed6e40c6355"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7701df088d0b05f3460f7ba15aec81ac8b0fb5690367dfd072a6c38cf5b7fdb5"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ab760f17c3e792225cdaef31ca23c0aea45c14ce80d8eff62503f86a5ab76bff"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cb1ad5b4d73cde784cf64580166568074f5ccd2548d765e690546cff3d80937d"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b81ec2efc04fc1dbf400647d4357d64fb25543bae38d2d19787d69360aad21c9"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4a9732a5cad764ba37f3aa873dccb41b584f69c347a57323eda0930deec8e10"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6dc85b9e10cc21d9c1055f15684f76fa4facadddcb6cd63abab702eb93c98943"}, - {file = "pydantic_core-2.20.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:21d9f7e24f63fdc7118e6cc49defaab8c1d27570782f7e5256169d77498cf7c7"}, - {file = "pydantic_core-2.20.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8b315685832ab9287e6124b5d74fc12dda31e6421d7f6b08525791452844bc2d"}, - {file = "pydantic_core-2.20.0-cp310-none-win32.whl", hash = "sha256:c3dc8ec8b87c7ad534c75b8855168a08a7036fdb9deeeed5705ba9410721c84d"}, - {file = "pydantic_core-2.20.0-cp310-none-win_amd64.whl", hash = "sha256:85770b4b37bb36ef93a6122601795231225641003e0318d23c6233c59b424279"}, - {file = "pydantic_core-2.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:58e251bb5a5998f7226dc90b0b753eeffa720bd66664eba51927c2a7a2d5f32c"}, - {file = "pydantic_core-2.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:78d584caac52c24240ef9ecd75de64c760bbd0e20dbf6973631815e3ef16ef8b"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5084ec9721f82bef5ff7c4d1ee65e1626783abb585f8c0993833490b63fe1792"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6d0f52684868db7c218437d260e14d37948b094493f2646f22d3dda7229bbe3f"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1def125d59a87fe451212a72ab9ed34c118ff771e5473fef4f2f95d8ede26d75"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b34480fd6778ab356abf1e9086a4ced95002a1e195e8d2fd182b0def9d944d11"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d42669d319db366cb567c3b444f43caa7ffb779bf9530692c6f244fc635a41eb"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:53b06aea7a48919a254b32107647be9128c066aaa6ee6d5d08222325f25ef175"}, - {file = "pydantic_core-2.20.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1f038156b696a1c39d763b2080aeefa87ddb4162c10aa9fabfefffc3dd8180fa"}, - {file = "pydantic_core-2.20.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3f0f3a4a23717280a5ee3ac4fb1f81d6fde604c9ec5100f7f6f987716bb8c137"}, - {file = "pydantic_core-2.20.0-cp311-none-win32.whl", hash = "sha256:316fe7c3fec017affd916a0c83d6f1ec697cbbbdf1124769fa73328e7907cc2e"}, - {file = "pydantic_core-2.20.0-cp311-none-win_amd64.whl", hash = "sha256:2d06a7fa437f93782e3f32d739c3ec189f82fca74336c08255f9e20cea1ed378"}, - {file = "pydantic_core-2.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:d6f8c49657f3eb7720ed4c9b26624063da14937fc94d1812f1e04a2204db3e17"}, - {file = "pydantic_core-2.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ad1bd2f377f56fec11d5cfd0977c30061cd19f4fa199bf138b200ec0d5e27eeb"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed741183719a5271f97d93bbcc45ed64619fa38068aaa6e90027d1d17e30dc8d"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d82e5ed3a05f2dcb89c6ead2fd0dbff7ac09bc02c1b4028ece2d3a3854d049ce"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b2ba34a099576234671f2e4274e5bc6813b22e28778c216d680eabd0db3f7dad"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:879ae6bb08a063b3e1b7ac8c860096d8fd6b48dd9b2690b7f2738b8c835e744b"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b0eefc7633a04c0694340aad91fbfd1986fe1a1e0c63a22793ba40a18fcbdc8"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73deadd6fd8a23e2f40b412b3ac617a112143c8989a4fe265050fd91ba5c0608"}, - {file = "pydantic_core-2.20.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:35681445dc85446fb105943d81ae7569aa7e89de80d1ca4ac3229e05c311bdb1"}, - {file = "pydantic_core-2.20.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0f6dd3612a3b9f91f2e63924ea18a4476656c6d01843ca20a4c09e00422195af"}, - {file = "pydantic_core-2.20.0-cp312-none-win32.whl", hash = "sha256:7e37b6bb6e90c2b8412b06373c6978d9d81e7199a40e24a6ef480e8acdeaf918"}, - {file = "pydantic_core-2.20.0-cp312-none-win_amd64.whl", hash = "sha256:7d4df13d1c55e84351fab51383520b84f490740a9f1fec905362aa64590b7a5d"}, - {file = "pydantic_core-2.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:d43e7ab3b65e4dc35a7612cfff7b0fd62dce5bc11a7cd198310b57f39847fd6c"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b6a24d7b5893392f2b8e3b7a0031ae3b14c6c1942a4615f0d8794fdeeefb08b"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b2f13c3e955a087c3ec86f97661d9f72a76e221281b2262956af381224cfc243"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:72432fd6e868c8d0a6849869e004b8bcae233a3c56383954c228316694920b38"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d70a8ff2d4953afb4cbe6211f17268ad29c0b47e73d3372f40e7775904bc28fc"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e49524917b8d3c2f42cd0d2df61178e08e50f5f029f9af1f402b3ee64574392"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a4f0f71653b1c1bad0350bc0b4cc057ab87b438ff18fa6392533811ebd01439c"}, - {file = "pydantic_core-2.20.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:16197e6f4fdecb9892ed2436e507e44f0a1aa2cff3b9306d1c879ea2f9200997"}, - {file = "pydantic_core-2.20.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:763602504bf640b3ded3bba3f8ed8a1cc2fc6a87b8d55c1c5689f428c49c947e"}, - {file = "pydantic_core-2.20.0-cp313-none-win32.whl", hash = "sha256:a3f243f318bd9523277fa123b3163f4c005a3e8619d4b867064de02f287a564d"}, - {file = "pydantic_core-2.20.0-cp313-none-win_amd64.whl", hash = "sha256:03aceaf6a5adaad3bec2233edc5a7905026553916615888e53154807e404545c"}, - {file = "pydantic_core-2.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d6f2d8b8da1f03f577243b07bbdd3412eee3d37d1f2fd71d1513cbc76a8c1239"}, - {file = "pydantic_core-2.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a272785a226869416c6b3c1b7e450506152d3844207331f02f27173562c917e0"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efbb412d55a4ffe73963fed95c09ccb83647ec63b711c4b3752be10a56f0090b"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1e4f46189d8740561b43655263a41aac75ff0388febcb2c9ec4f1b60a0ec12f3"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87d3df115f4a3c8c5e4d5acf067d399c6466d7e604fc9ee9acbe6f0c88a0c3cf"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a340d2bdebe819d08f605e9705ed551c3feb97e4fd71822d7147c1e4bdbb9508"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:616b9c2f882393d422ba11b40e72382fe975e806ad693095e9a3b67c59ea6150"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:25c46bb2ff6084859bbcfdf4f1a63004b98e88b6d04053e8bf324e115398e9e7"}, - {file = "pydantic_core-2.20.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:23425eccef8f2c342f78d3a238c824623836c6c874d93c726673dbf7e56c78c0"}, - {file = "pydantic_core-2.20.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:52527e8f223ba29608d999d65b204676398009725007c9336651c2ec2d93cffc"}, - {file = "pydantic_core-2.20.0-cp38-none-win32.whl", hash = "sha256:1c3c5b7f70dd19a6845292b0775295ea81c61540f68671ae06bfe4421b3222c2"}, - {file = "pydantic_core-2.20.0-cp38-none-win_amd64.whl", hash = "sha256:8093473d7b9e908af1cef30025609afc8f5fd2a16ff07f97440fd911421e4432"}, - {file = "pydantic_core-2.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:ee7785938e407418795e4399b2bf5b5f3cf6cf728077a7f26973220d58d885cf"}, - {file = "pydantic_core-2.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0e75794883d635071cf6b4ed2a5d7a1e50672ab7a051454c76446ef1ebcdcc91"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:344e352c96e53b4f56b53d24728217c69399b8129c16789f70236083c6ceb2ac"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:978d4123ad1e605daf1ba5e01d4f235bcf7b6e340ef07e7122e8e9cfe3eb61ab"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c05eaf6c863781eb834ab41f5963604ab92855822a2062897958089d1335dad"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bc7e43b4a528ffca8c9151b6a2ca34482c2fdc05e6aa24a84b7f475c896fc51d"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:658287a29351166510ebbe0a75c373600cc4367a3d9337b964dada8d38bcc0f4"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1dacf660d6de692fe351e8c806e7efccf09ee5184865893afbe8e59be4920b4a"}, - {file = "pydantic_core-2.20.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3e147fc6e27b9a487320d78515c5f29798b539179f7777018cedf51b7749e4f4"}, - {file = "pydantic_core-2.20.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c867230d715a3dd1d962c8d9bef0d3168994ed663e21bf748b6e3a529a129aab"}, - {file = "pydantic_core-2.20.0-cp39-none-win32.whl", hash = "sha256:22b813baf0dbf612752d8143a2dbf8e33ccb850656b7850e009bad2e101fc377"}, - {file = "pydantic_core-2.20.0-cp39-none-win_amd64.whl", hash = "sha256:3a7235b46c1bbe201f09b6f0f5e6c36b16bad3d0532a10493742f91fbdc8035f"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cafde15a6f7feaec2f570646e2ffc5b73412295d29134a29067e70740ec6ee20"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:2aec8eeea0b08fd6bc2213d8e86811a07491849fd3d79955b62d83e32fa2ad5f"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:840200827984f1c4e114008abc2f5ede362d6e11ed0b5931681884dd41852ff1"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8ea1d8b7df522e5ced34993c423c3bf3735c53df8b2a15688a2f03a7d678800"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d5b8376a867047bf08910573deb95d3c8dfb976eb014ee24f3b5a61ccc5bee1b"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d08264b4460326cefacc179fc1411304d5af388a79910832835e6f641512358b"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:7a3639011c2e8a9628466f616ed7fb413f30032b891898e10895a0a8b5857d6c"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:05e83ce2f7eba29e627dd8066aa6c4c0269b2d4f889c0eba157233a353053cea"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:603a843fea76a595c8f661cd4da4d2281dff1e38c4a836a928eac1a2f8fe88e4"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ac76f30d5d3454f4c28826d891fe74d25121a346c69523c9810ebba43f3b1cec"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e3b1d4b1b3f6082849f9b28427ef147a5b46a6132a3dbaf9ca1baa40c88609"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2761f71faed820e25ec62eacba670d1b5c2709bb131a19fcdbfbb09884593e5a"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a0586cddbf4380e24569b8a05f234e7305717cc8323f50114dfb2051fcbce2a3"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b8c46a8cf53e849eea7090f331ae2202cd0f1ceb090b00f5902c423bd1e11805"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b4a085bd04af7245e140d1b95619fe8abb445a3d7fdf219b3f80c940853268ef"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:116b326ac82c8b315e7348390f6d30bcfe6e688a7d3f1de50ff7bcc2042a23c2"}, - {file = "pydantic_core-2.20.0.tar.gz", hash = "sha256:366be8e64e0cb63d87cf79b4e1765c0703dd6313c729b22e7b9e378db6b96877"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1070,19 +1040,19 @@ windows-terminal = ["colorama (>=0.4.6)"] [[package]] name = "pyjwt" -version = "2.8.0" +version = "2.9.0" description = "JSON Web Token implementation in Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "PyJWT-2.8.0-py3-none-any.whl", hash = "sha256:59127c392cc44c2da5bb3192169a91f429924e17aff6534d70fdc02ab3e04320"}, - {file = "PyJWT-2.8.0.tar.gz", hash = "sha256:57e28d156e3d5c10088e0c68abb90bfac3df82b40a71bd0daa20c65ccd5c23de"}, + {file = "PyJWT-2.9.0-py3-none-any.whl", hash = "sha256:3b02fb0f44517787776cf48f2ae25d8e14f300e6d7545a4315cee571a415e850"}, + {file = "pyjwt-2.9.0.tar.gz", hash = "sha256:7e1e5b56cc735432a7369cbfa0efe50fa113ebecdc04ae6922deba8b84582d0c"}, ] [package.extras] crypto = ["cryptography (>=3.4.0)"] -dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] -docs = ["sphinx (>=4.5.0,<5.0.0)", "sphinx-rtd-theme", "zope.interface"] +dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx", "sphinx-rtd-theme", "zope.interface"] +docs = ["sphinx", "sphinx-rtd-theme", "zope.interface"] tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"] [[package]] @@ -1173,84 +1143,86 @@ six = ">=1.5" [[package]] name = "pytz" -version = "2024.1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "requests" -version = "2.31.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -1265,19 +1237,18 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "rich" -version = "13.7.1" +version = "13.8.1" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = false python-versions = ">=3.7.0" files = [ - {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"}, - {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"}, + {file = "rich-13.8.1-py3-none-any.whl", hash = "sha256:1760a3c0848469b97b558fc61c85233e3dafb69c7a071b4d60c38099d3cd4c06"}, + {file = "rich-13.8.1.tar.gz", hash = "sha256:8260cda28e3db6bf04d2d1ef4dbc03ba80a824c88b0e7668a0f23126a424844a"}, ] [package.dependencies] markdown-it-py = ">=2.2.0" pygments = ">=2.13.0,<3.0.0" -typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""} [package.extras] jupyter = ["ipywidgets (>=7.5.1,<9)"] @@ -1319,15 +1290,26 @@ files = [ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + [[package]] name = "syrupy" -version = "4.6.1" +version = "4.7.1" description = "Pytest Snapshot Test Utility" optional = false -python-versions = ">=3.8.1,<4" +python-versions = ">=3.8.1" files = [ - {file = "syrupy-4.6.1-py3-none-any.whl", hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133"}, - {file = "syrupy-4.6.1.tar.gz", hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36"}, + {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, + {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, ] [package.dependencies] @@ -1335,13 +1317,13 @@ pytest = ">=7.0.0,<9.0.0" [[package]] name = "tenacity" -version = "8.3.0" +version = "8.5.0" description = "Retry code until it succeeds" optional = false python-versions = ">=3.8" files = [ - {file = "tenacity-8.3.0-py3-none-any.whl", hash = "sha256:3649f6443dbc0d9b01b9d8020a9c4ec7a1ff5f6f3c6c8a036ef371f573fe9185"}, - {file = "tenacity-8.3.0.tar.gz", hash = "sha256:953d4e6ad24357bceffbc9707bc74349aca9d245f68eb65419cf0c249a1949a2"}, + {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, + {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, ] [package.extras] @@ -1361,13 +1343,13 @@ files = [ [[package]] name = "tqdm" -version = "4.66.4" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, - {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -1381,13 +1363,13 @@ telegram = ["requests"] [[package]] name = "typing-extensions" -version = "4.11.0" +version = "4.12.2" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"}, - {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"}, + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] [[package]] @@ -1403,13 +1385,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.1" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"}, - {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1420,40 +1402,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.0" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:39cb34b1f1afbf23e9562501673e7146777efe95da24fab5707b88f7fb11649b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c522392acc5e962bcac3b22b9592493ffd06d1fc5d755954e6be9f4990de932b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6c47bdd680009b11c9ac382163e05ca43baf4127954c5f6d0250e7d772d2b80c"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8350d4055505412a426b6ad8c521bc7d367d1637a762c70fdd93a3a0d595990b"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c17d98799f32e3f55f181f19dd2021d762eb38fdd381b4a748b9f5a36738e935"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4986db5e8880b0e6b7cd52ba36255d4793bf5cdc95bd6264806c233173b1ec0b"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:11e12fafb13372e18ca1bbf12d50f593e7280646687463dd47730fd4f4d5d257"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5369136a6474678e02426bd984466343924d1df8e2fd94a9b443cb7e3aa20d19"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76ad8484379695f3fe46228962017a7e1337e9acadafed67eb20aabb175df98b"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:45cc09cc4c3b43fb10b59ef4d07318d9a3ecdbff03abd2e36e77b6dd9f9a5c85"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eed82cdf79cd7f0232e2fdc1ad05b06a5e102a43e331f7d041e5f0e0a34a51c4"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba30a896166f0fee83183cec913298151b73164160d965af2e93a20bbd2ab605"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d18d7f18a47de6863cd480734613502904611730f8def45fc52a5d97503e5101"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2895bf0518361a9728773083908801a376743bcc37dfa252b801af8fd281b1ca"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87e9df830022488e235dd601478c15ad73a0389628588ba0b028cb74eb72fed8"}, - {file = "watchdog-4.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6e949a8a94186bced05b6508faa61b7adacc911115664ccb1923b9ad1f1ccf7b"}, - {file = "watchdog-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6a4db54edea37d1058b08947c789a2354ee02972ed5d1e0dca9b0b820f4c7f92"}, - {file = "watchdog-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d31481ccf4694a8416b681544c23bd271f5a123162ab603c7d7d2dd7dd901a07"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:8fec441f5adcf81dd240a5fe78e3d83767999771630b5ddfc5867827a34fa3d3"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:6a9c71a0b02985b4b0b6d14b875a6c86ddea2fdbebd0c9a720a806a8bbffc69f"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:557ba04c816d23ce98a06e70af6abaa0485f6d94994ec78a42b05d1c03dcbd50"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:d0f9bd1fd919134d459d8abf954f63886745f4660ef66480b9d753a7c9d40927"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f9b2fdca47dc855516b2d66eef3c39f2672cbf7e7a42e7e67ad2cbfcd6ba107d"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:73c7a935e62033bd5e8f0da33a4dcb763da2361921a69a5a95aaf6c93aa03a87"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6a80d5cae8c265842c7419c560b9961561556c4361b297b4c431903f8c33b269"}, - {file = "watchdog-4.0.0-py3-none-win32.whl", hash = "sha256:8f9a542c979df62098ae9c58b19e03ad3df1c9d8c6895d96c0d51da17b243b1c"}, - {file = "watchdog-4.0.0-py3-none-win_amd64.whl", hash = "sha256:f970663fa4f7e80401a7b0cbeec00fa801bf0287d93d48368fc3e6fa32716245"}, - {file = "watchdog-4.0.0-py3-none-win_ia64.whl", hash = "sha256:9a03e16e55465177d416699331b0f3564138f1807ecc5f2de9d55d8f188d08c7"}, - {file = "watchdog-4.0.0.tar.gz", hash = "sha256:e3e7065cbdabe6183ab82199d7a4f6b3ba0a438c5a512a68559846ccb76a78ec"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -1475,5 +1458,5 @@ dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "00944df5bd0d1ae115a44b72c454173cf896d44a963da233e8648478b82a6458" +python-versions = ">=3.9,<4.0" +content-hash = "fe88f226a291f6e885d0fc561a3e3023a1f7d5829f25fa767ab78dff059ac110" diff --git a/libs/partners/nomic/pyproject.toml b/libs/partners/nomic/pyproject.toml index f2c5666491e58..d503e8395dfc3 100644 --- a/libs/partners/nomic/pyproject.toml +++ b/libs/partners/nomic/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "langchain-nomic" -version = "0.1.2" +version = "0.1.3" description = "An integration package connecting Nomic and LangChain" authors = [] readme = "README.md" @@ -12,9 +12,9 @@ license = "MIT" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-nomic%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.46,<0.3" -nomic = "^3.0.29" +python = ">=3.9,<4.0" +langchain-core = ">=0.2.40,<0.4" +nomic = "^3.1.2" pillow = "^10.3.0" [tool.poetry.group.test] diff --git a/libs/partners/nomic/scripts/check_pydantic.sh b/libs/partners/nomic/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/nomic/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/ollama/langchain_ollama/chat_models.py b/libs/partners/ollama/langchain_ollama/chat_models.py index 98369d22f9466..f0db82b835ff1 100644 --- a/libs/partners/ollama/langchain_ollama/chat_models.py +++ b/libs/partners/ollama/langchain_ollama/chat_models.py @@ -35,11 +35,12 @@ from langchain_core.messages.ai import UsageMetadata from langchain_core.messages.tool import tool_call from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.runnables import Runnable from langchain_core.tools import BaseTool from langchain_core.utils.function_calling import convert_to_openai_tool from ollama import AsyncClient, Client, Message, Options +from pydantic import PrivateAttr, model_validator +from typing_extensions import Self def _get_usage_metadata_from_generation_info( @@ -227,7 +228,7 @@ class ChatOllama(BaseChatModel): .. code-block:: python from langchain_ollama import ChatOllama - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Multiply(BaseModel): a: int = Field(..., description="First integer") @@ -330,12 +331,12 @@ class Multiply(BaseModel): For a full list of the params, see [this link](https://pydoc.dev/httpx/latest/httpx.Client.html) """ - _client: Client = Field(default=None) + _client: Client = PrivateAttr(default=None) """ The client to use for making requests. """ - _async_client: AsyncClient = Field(default=None) + _async_client: AsyncClient = PrivateAttr(default=None) """ The async client to use for making requests. """ @@ -366,14 +367,13 @@ def _default_params(self) -> Dict[str, Any]: "keep_alive": self.keep_alive, } - @root_validator(pre=False, skip_on_failure=True) - def _set_clients(cls, values: dict) -> dict: + @model_validator(mode="after") + def _set_clients(self) -> Self: """Set clients to use for ollama.""" - values["_client"] = Client(host=values["base_url"], **values["client_kwargs"]) - values["_async_client"] = AsyncClient( - host=values["base_url"], **values["client_kwargs"] - ) - return values + client_kwargs = self.client_kwargs or {} + self._client = Client(host=self.base_url, **client_kwargs) + self._async_client = AsyncClient(host=self.base_url, **client_kwargs) + return self def _convert_messages_to_ollama_messages( self, messages: List[BaseMessage] diff --git a/libs/partners/ollama/langchain_ollama/embeddings.py b/libs/partners/ollama/langchain_ollama/embeddings.py index 8cf991232c152..6c5b812dc99cb 100644 --- a/libs/partners/ollama/langchain_ollama/embeddings.py +++ b/libs/partners/ollama/langchain_ollama/embeddings.py @@ -4,8 +4,14 @@ ) from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, root_validator from ollama import AsyncClient, Client +from pydantic import ( + BaseModel, + ConfigDict, + PrivateAttr, + model_validator, +) +from typing_extensions import Self class OllamaEmbeddings(BaseModel, Embeddings): @@ -126,29 +132,27 @@ class OllamaEmbeddings(BaseModel, Embeddings): For a full list of the params, see [this link](https://pydoc.dev/httpx/latest/httpx.Client.html) """ - _client: Client = Field(default=None) + _client: Client = PrivateAttr(default=None) """ The client to use for making requests. """ - _async_client: AsyncClient = Field(default=None) + _async_client: AsyncClient = PrivateAttr(default=None) """ The async client to use for making requests. """ - class Config: - """Configuration for this pydantic object.""" - - extra = "forbid" + model_config = ConfigDict( + extra="forbid", + ) - @root_validator(pre=False, skip_on_failure=True) - def _set_clients(cls, values: dict) -> dict: + @model_validator(mode="after") + def _set_clients(self) -> Self: """Set clients to use for ollama.""" - values["_client"] = Client(host=values["base_url"], **values["client_kwargs"]) - values["_async_client"] = AsyncClient( - host=values["base_url"], **values["client_kwargs"] - ) - return values + client_kwargs = self.client_kwargs or {} + self._client = Client(host=self.base_url, **client_kwargs) + self._async_client = AsyncClient(host=self.base_url, **client_kwargs) + return self def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed search docs.""" diff --git a/libs/partners/ollama/langchain_ollama/llms.py b/libs/partners/ollama/langchain_ollama/llms.py index 8097aa2db8619..783d20104ef44 100644 --- a/libs/partners/ollama/langchain_ollama/llms.py +++ b/libs/partners/ollama/langchain_ollama/llms.py @@ -18,8 +18,9 @@ ) from langchain_core.language_models import BaseLLM, LangSmithParams from langchain_core.outputs import GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import Field, root_validator from ollama import AsyncClient, Client, Options +from pydantic import PrivateAttr, model_validator +from typing_extensions import Self class OllamaLLM(BaseLLM): @@ -115,12 +116,12 @@ class OllamaLLM(BaseLLM): For a full list of the params, see [this link](https://pydoc.dev/httpx/latest/httpx.Client.html) """ - _client: Client = Field(default=None) + _client: Client = PrivateAttr(default=None) """ The client to use for making requests. """ - _async_client: AsyncClient = Field(default=None) + _async_client: AsyncClient = PrivateAttr(default=None) """ The async client to use for making requests. """ @@ -164,14 +165,13 @@ def _get_ls_params( params["ls_max_tokens"] = max_tokens return params - @root_validator(pre=False, skip_on_failure=True) - def _set_clients(cls, values: dict) -> dict: + @model_validator(mode="after") + def _set_clients(self) -> Self: """Set clients to use for ollama.""" - values["_client"] = Client(host=values["base_url"], **values["client_kwargs"]) - values["_async_client"] = AsyncClient( - host=values["base_url"], **values["client_kwargs"] - ) - return values + client_kwargs = self.client_kwargs or {} + self._client = Client(host=self.base_url, **client_kwargs) + self._async_client = AsyncClient(host=self.base_url, **client_kwargs) + return self async def _acreate_generate_stream( self, diff --git a/libs/partners/ollama/poetry.lock b/libs/partners/ollama/poetry.lock index 111a0d0cac04b..f0a1ab2625903 100644 --- a/libs/partners/ollama/poetry.lock +++ b/libs/partners/ollama/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "annotated-types" @@ -11,9 +11,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -294,19 +291,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -322,13 +319,13 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = ">=0.3.0.dev1" pytest = ">=7,<9" syrupy = "^4" @@ -338,13 +335,13 @@ url = "../../standard-tests" [[package]] name = "langsmith" -version = "0.1.111" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.111-py3-none-any.whl", hash = "sha256:e5c702764911193c9812fe55136ae01cd0b9ddf5dff0b068ce6fd60eeddbcb40"}, - {file = "langsmith-0.1.111.tar.gz", hash = "sha256:bab24fd6125685f588d682693c4a3253e163804242829b1ff902e1a3e984a94c"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] @@ -416,13 +413,13 @@ files = [ [[package]] name = "ollama" -version = "0.3.2" +version = "0.3.3" description = "The official Python client for Ollama." optional = false python-versions = "<4.0,>=3.8" files = [ - {file = "ollama-0.3.2-py3-none-any.whl", hash = "sha256:ed2a6f752bd91c49b477d84a259c5657785d7777689d4a27ffe0a4d5b5dd3cae"}, - {file = "ollama-0.3.2.tar.gz", hash = "sha256:7deb3287cdefa1c39cc046163096f8597b83f59ca31a1f8ae78e71eccb7af95f"}, + {file = "ollama-0.3.3-py3-none-any.whl", hash = "sha256:ca6242ce78ab34758082b7392df3f9f6c2cb1d070a9dede1a4c545c929e16dba"}, + {file = "ollama-0.3.3.tar.gz", hash = "sha256:f90a6d61803117f40b0e8ff17465cab5e1eb24758a473cfe8101aff38bc13b51"}, ] [package.dependencies] @@ -522,18 +519,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -541,103 +538,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -885,13 +883,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -902,46 +900,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" -files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, +python-versions = ">=3.9" +files = [ + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -949,5 +942,5 @@ watchmedo = ["PyYAML (>=3.10)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "0925cde82a8efa9d231b32cd29cacd6a6b5acdddad98a4577b796e2c6be1977b" +python-versions = ">=3.9,<4.0" +content-hash = "99ec7d928718e1742065bd2f03c988bf61c1239baccfb714f861ff496e0032ee" diff --git a/libs/partners/ollama/pyproject.toml b/libs/partners/ollama/pyproject.toml index 8a3609613772a..2bb8d9f71886b 100644 --- a/libs/partners/ollama/pyproject.toml +++ b/libs/partners/ollama/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-ollama" -version = "0.1.3" +version = "0.2.0" description = "An integration package connecting Ollama and LangChain" authors = [] readme = "README.md" @@ -19,19 +19,21 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-ollama%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" +python = ">=3.9,<4.0" ollama = ">=0.3.0,<1" -langchain-core = "^0.2.36" +langchain-core = "^0.3.0" [tool.ruff.lint] -select = [ "E", "F", "I", "T201",] +select = ["E", "F", "I", "T201"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] diff --git a/libs/partners/ollama/scripts/check_pydantic.sh b/libs/partners/ollama/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/ollama/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/openai/langchain_openai/chat_models/azure.py b/libs/partners/openai/langchain_openai/chat_models/azure.py index 23b9dd3d2e95a..0bfd220888eff 100644 --- a/libs/partners/openai/langchain_openai/chat_models/azure.py +++ b/libs/partners/openai/langchain_openai/chat_models/azure.py @@ -4,39 +4,16 @@ import logging import os -from operator import itemgetter -from typing import ( - Any, - Callable, - Dict, - List, - Literal, - Optional, - Sequence, - Type, - TypedDict, - TypeVar, - Union, - overload, -) +from typing import Any, Callable, Dict, List, Optional, Type, TypedDict, TypeVar, Union import openai -from langchain_core.language_models import LanguageModelInput from langchain_core.language_models.chat_models import LangSmithParams from langchain_core.messages import BaseMessage -from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser -from langchain_core.output_parsers.base import OutputParserLike -from langchain_core.output_parsers.openai_tools import ( - JsonOutputKeyToolsParser, - PydanticToolsParser, -) from langchain_core.outputs import ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator -from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough -from langchain_core.tools import BaseTool from langchain_core.utils import from_env, secret_from_env -from langchain_core.utils.function_calling import convert_to_openai_tool from langchain_core.utils.pydantic import is_basemodel_subclass +from pydantic import BaseModel, Field, SecretStr, model_validator +from typing_extensions import Self from langchain_openai.chat_models.base import BaseChatOpenAI @@ -250,7 +227,7 @@ class AzureChatOpenAI(BaseChatOpenAI): Tool calling: .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): @@ -305,7 +282,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): @@ -494,7 +471,7 @@ class Joke(BaseModel): default_factory=from_env("OPENAI_API_VERSION", default=None), ) """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" - # Check OPENAI_KEY for backwards compatibility. + # Check OPENAI_API_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using # other forms of azure credentials. openai_api_key: Optional[SecretStr] = Field( @@ -537,6 +514,7 @@ class Joke(BaseModel): default_factory=from_env("OPENAI_API_TYPE", default="azure") ) """Legacy, for openai<1.0.0 support.""" + validate_base_url: bool = True """If legacy arg openai_api_base is passed in, try to infer if it is a base_url or azure_endpoint and update client params accordingly. @@ -549,6 +527,28 @@ class Joke(BaseModel): Used for tracing and token counting. Does NOT affect completion. """ + disabled_params: Optional[Dict[str, Any]] = Field(default=None) + """Parameters of the OpenAI client or chat.completions endpoint that should be + disabled for the given model. + + Should be specified as ``{"param": None | ['val1', 'val2']}`` where the key is the + parameter and the value is either None, meaning that parameter should never be + used, or it's a list of disabled values for the parameter. + + For example, older models may not support the 'parallel_tool_calls' parameter at + all, in which case ``disabled_params={"parallel_tool_calls: None}`` can ben passed + in. + + If a parameter is disabled then it will not be used by default in any methods, e.g. + in + :meth:`~langchain_openai.chat_models.azure.AzureChatOpenAI.with_structured_output`. + However this does not prevent a user from directly passed in the parameter during + invocation. + + By default, unless ``model_name="gpt-4o"`` is specified, then + 'parallel_tools_calls' will be disabled. + """ + @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" @@ -565,31 +565,38 @@ def lc_secrets(self) -> Dict[str, str]: def is_lc_serializable(cls) -> bool: return True - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - if values["n"] < 1: + if self.n < 1: raise ValueError("n must be at least 1.") - if values["n"] > 1 and values["streaming"]: + if self.n > 1 and self.streaming: raise ValueError("n must be 1 when streaming.") + if self.disabled_params is None: + # As of 09-17-2024 'parallel_tool_calls' param is only supported for gpt-4o. + if self.model_name and self.model_name == "gpt-4o": + pass + else: + self.disabled_params = {"parallel_tool_calls": None} + # Check OPENAI_ORGANIZATION for backwards compatibility. - values["openai_organization"] = ( - values["openai_organization"] + self.openai_organization = ( + self.openai_organization or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). - openai_api_base = values["openai_api_base"] - if openai_api_base and values["validate_base_url"]: + openai_api_base = self.openai_api_base + if openai_api_base and self.validate_base_url: if "/openai" not in openai_api_base: raise ValueError( "As of openai>=1.0.0, Azure endpoints should be specified via " "the `azure_endpoint` param not `openai_api_base` " "(or alias `base_url`)." ) - if values["deployment_name"]: + if self.deployment_name: raise ValueError( "As of openai>=1.0.0, if `azure_deployment` (or alias " "`deployment_name`) is specified then " @@ -602,344 +609,36 @@ def validate_environment(cls, values: Dict) -> Dict: "Or you can equivalently specify:\n\n" 'base_url="https://xxx.openai.azure.com/openai/deployments/my-deployment"' ) - client_params = { - "api_version": values["openai_api_version"], - "azure_endpoint": values["azure_endpoint"], - "azure_deployment": values["deployment_name"], + client_params: dict = { + "api_version": self.openai_api_version, + "azure_endpoint": self.azure_endpoint, + "azure_deployment": self.deployment_name, "api_key": ( - values["openai_api_key"].get_secret_value() - if values["openai_api_key"] - else None + self.openai_api_key.get_secret_value() if self.openai_api_key else None ), "azure_ad_token": ( - values["azure_ad_token"].get_secret_value() - if values["azure_ad_token"] - else None + self.azure_ad_token.get_secret_value() if self.azure_ad_token else None ), - "azure_ad_token_provider": values["azure_ad_token_provider"], - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], + "azure_ad_token_provider": self.azure_ad_token_provider, + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, } - if not values.get("client"): - sync_specific = {"http_client": values["http_client"]} - values["root_client"] = openai.AzureOpenAI(**client_params, **sync_specific) - values["client"] = values["root_client"].chat.completions - if not values.get("async_client"): - async_specific = {"http_client": values["http_async_client"]} - values["root_async_client"] = openai.AsyncAzureOpenAI( - **client_params, **async_specific - ) - values["async_client"] = values["root_async_client"].chat.completions - return values - - def bind_tools( - self, - tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]], - *, - tool_choice: Optional[ - Union[dict, str, Literal["auto", "none", "required", "any"], bool] - ] = None, - **kwargs: Any, - ) -> Runnable[LanguageModelInput, BaseMessage]: - # As of 05/2024 Azure OpenAI doesn't support tool_choice="required". - # TODO: Update this condition once tool_choice="required" is supported. - if tool_choice in ("any", "required", True): - if len(tools) > 1: - raise ValueError( - f"Azure OpenAI does not currently support {tool_choice=}. Should " - f"be one of 'auto', 'none', or the name of the tool to call." - ) - else: - tool_choice = convert_to_openai_tool(tools[0])["function"]["name"] - return super().bind_tools(tools, tool_choice=tool_choice, **kwargs) - - # TODO: Fix typing. - @overload # type: ignore[override] - def with_structured_output( - self, - schema: Optional[_DictOrPydanticClass] = None, - *, - method: Literal["function_calling", "json_mode"] = "function_calling", - include_raw: Literal[True] = True, - **kwargs: Any, - ) -> Runnable[LanguageModelInput, _AllReturnType]: ... - - @overload - def with_structured_output( - self, - schema: Optional[_DictOrPydanticClass] = None, - *, - method: Literal["function_calling", "json_mode"] = "function_calling", - include_raw: Literal[False] = False, - **kwargs: Any, - ) -> Runnable[LanguageModelInput, _DictOrPydantic]: ... - - def with_structured_output( - self, - schema: Optional[_DictOrPydanticClass] = None, - *, - method: Literal["function_calling", "json_mode"] = "function_calling", - include_raw: bool = False, - **kwargs: Any, - ) -> Runnable[LanguageModelInput, _DictOrPydantic]: - """Model wrapper that returns outputs formatted to match the given schema. - - Args: - schema: - The output schema. Can be passed in as: - - an OpenAI function/tool schema, - - a JSON Schema, - - a TypedDict class, - - or a Pydantic class. - If ``schema`` is a Pydantic class then the model output will be a - Pydantic instance of that class, and the model-generated fields will be - validated by the Pydantic class. Otherwise the model output will be a - dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool` - for more on how to properly specify types and descriptions of - schema fields when specifying a Pydantic or TypedDict class. - method: - The method for steering model generation, either "function_calling" - or "json_mode". If "function_calling" then the schema will be converted - to an OpenAI function and the returned model will make use of the - function-calling API. If "json_mode" then OpenAI's JSON mode will be - used. Note that if using "json_mode" then you must include instructions - for formatting the output into the desired schema into the model call. - include_raw: - If False then only the parsed structured output is returned. If - an error occurs during model output parsing it will be raised. If True - then both the raw model response (a BaseMessage) and the parsed model - response will be returned. If an error occurs during output parsing it - will be caught and returned as well. The final output is always a dict - with keys "raw", "parsed", and "parsing_error". - - Returns: - A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`. - - If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs - an instance of ``schema`` (i.e., a Pydantic object). - - Otherwise, if ``include_raw`` is False then Runnable outputs a dict. - - If ``include_raw`` is True, then Runnable outputs a dict with keys: - - ``"raw"``: BaseMessage - - ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above. - - ``"parsing_error"``: Optional[BaseException] - - Example: schema=Pydantic class, method="function_calling", include_raw=False: - .. code-block:: python - - from typing import Optional - - from langchain_openai import AzureChatOpenAI - from langchain_core.pydantic_v1 import BaseModel, Field - - - class AnswerWithJustification(BaseModel): - '''An answer to the user question along with justification for the answer.''' - - answer: str - # If we provide default values and/or descriptions for fields, these will be passed - # to the model. This is an important part of improving a model's ability to - # correctly return structured outputs. - justification: Optional[str] = Field( - default=None, description="A justification for the answer." - ) - - - llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) - structured_llm = llm.with_structured_output(AnswerWithJustification) - - structured_llm.invoke( - "What weighs more a pound of bricks or a pound of feathers" - ) - - # -> AnswerWithJustification( - # answer='They weigh the same', - # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' - # ) - - Example: schema=Pydantic class, method="function_calling", include_raw=True: - .. code-block:: python - - from langchain_openai import AzureChatOpenAI - from langchain_core.pydantic_v1 import BaseModel - - - class AnswerWithJustification(BaseModel): - '''An answer to the user question along with justification for the answer.''' - - answer: str - justification: str - - - llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) - structured_llm = llm.with_structured_output( - AnswerWithJustification, include_raw=True - ) - - structured_llm.invoke( - "What weighs more a pound of bricks or a pound of feathers" - ) - # -> { - # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), - # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), - # 'parsing_error': None - # } - - Example: schema=TypedDict class, method="function_calling", include_raw=False: - .. code-block:: python - - # IMPORTANT: If you are using Python <=3.8, you need to import Annotated - # from typing_extensions, not from typing. - from typing_extensions import Annotated, TypedDict - - from langchain_openai import AzureChatOpenAI - - - class AnswerWithJustification(TypedDict): - '''An answer to the user question along with justification for the answer.''' - - answer: str - justification: Annotated[ - Optional[str], None, "A justification for the answer." - ] - - - llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) - structured_llm = llm.with_structured_output(AnswerWithJustification) - - structured_llm.invoke( - "What weighs more a pound of bricks or a pound of feathers" - ) - # -> { - # 'answer': 'They weigh the same', - # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' - # } - - Example: schema=OpenAI function schema, method="function_calling", include_raw=False: - .. code-block:: python - - from langchain_openai import AzureChatOpenAI - - oai_schema = { - 'name': 'AnswerWithJustification', - 'description': 'An answer to the user question along with justification for the answer.', - 'parameters': { - 'type': 'object', - 'properties': { - 'answer': {'type': 'string'}, - 'justification': {'description': 'A justification for the answer.', 'type': 'string'} - }, - 'required': ['answer'] - } - } - - llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) - structured_llm = llm.with_structured_output(oai_schema) - - structured_llm.invoke( - "What weighs more a pound of bricks or a pound of feathers" - ) - # -> { - # 'answer': 'They weigh the same', - # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' - # } - - Example: schema=Pydantic class, method="json_mode", include_raw=True: - .. code-block:: - - from langchain_openai import AzureChatOpenAI - from langchain_core.pydantic_v1 import BaseModel - - class AnswerWithJustification(BaseModel): - answer: str - justification: str - - llm = AzureChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) - structured_llm = llm.with_structured_output( - AnswerWithJustification, - method="json_mode", - include_raw=True - ) - - structured_llm.invoke( - "Answer the following question. " - "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" - "What's heavier a pound of bricks or a pound of feathers?" - ) - # -> { - # 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'), - # 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'), - # 'parsing_error': None - # } - - Example: schema=None, method="json_mode", include_raw=True: - .. code-block:: - - structured_llm = llm.with_structured_output(method="json_mode", include_raw=True) - - structured_llm.invoke( - "Answer the following question. " - "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n" - "What's heavier a pound of bricks or a pound of feathers?" - ) - # -> { - # 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'), - # 'parsed': { - # 'answer': 'They are both the same weight.', - # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.' - # }, - # 'parsing_error': None - # } - """ # noqa: E501 - if kwargs: - raise ValueError(f"Received unsupported arguments {kwargs}") - is_pydantic_schema = _is_pydantic_class(schema) - if method == "function_calling": - if schema is None: - raise ValueError( - "schema must be specified when method is 'function_calling'. " - "Received None." - ) - tool_name = convert_to_openai_tool(schema)["function"]["name"] - llm = self.bind_tools([schema], tool_choice=tool_name) - if is_pydantic_schema: - output_parser: OutputParserLike = PydanticToolsParser( - tools=[schema], # type: ignore[list-item] - first_tool_only=True, # type: ignore[list-item] - ) - else: - output_parser = JsonOutputKeyToolsParser( - key_name=tool_name, first_tool_only=True - ) - elif method == "json_mode": - llm = self.bind(response_format={"type": "json_object"}) - output_parser = ( - PydanticOutputParser(pydantic_object=schema) # type: ignore[arg-type] - if is_pydantic_schema - else JsonOutputParser() - ) - else: - raise ValueError( - f"Unrecognized method argument. Expected one of 'function_calling' or " - f"'json_mode'. Received: '{method}'" - ) - - if include_raw: - parser_assign = RunnablePassthrough.assign( - parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None + if not self.client: + sync_specific = {"http_client": self.http_client} + self.root_client = openai.AzureOpenAI(**client_params, **sync_specific) # type: ignore[arg-type] + self.client = self.root_client.chat.completions + if not self.async_client: + async_specific = {"http_client": self.http_async_client} + self.root_async_client = openai.AsyncAzureOpenAI( + **client_params, + **async_specific, # type: ignore[arg-type] ) - parser_none = RunnablePassthrough.assign(parsed=lambda _: None) - parser_with_fallback = parser_assign.with_fallbacks( - [parser_none], exception_key="parsing_error" - ) - return RunnableMap(raw=llm) | parser_with_fallback - else: - return llm | output_parser + self.async_client = self.root_async_client.chat.completions + return self @property def _identifying_params(self) -> Dict[str, Any]: @@ -982,6 +681,8 @@ def _create_chat_result( response: Union[dict, openai.BaseModel], generation_info: Optional[Dict] = None, ) -> ChatResult: + chat_result = super()._create_chat_result(response, generation_info) + if not isinstance(response, dict): response = response.model_dump() for res in response["choices"]: @@ -990,7 +691,6 @@ def _create_chat_result( "Azure has not provided the response due to a content filter " "being triggered" ) - chat_result = super()._create_chat_result(response, generation_info) if "model" in response: model = response["model"] diff --git a/libs/partners/openai/langchain_openai/chat_models/base.py b/libs/partners/openai/langchain_openai/chat_models/base.py index b67bcafe60d53..baaa74f637b31 100644 --- a/libs/partners/openai/langchain_openai/chat_models/base.py +++ b/libs/partners/openai/langchain_openai/chat_models/base.py @@ -33,6 +33,7 @@ import openai import tiktoken +from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, @@ -62,10 +63,13 @@ ToolMessage, ToolMessageChunk, ) -from langchain_core.messages.ai import UsageMetadata +from langchain_core.messages.ai import ( + InputTokenDetails, + OutputTokenDetails, + UsageMetadata, +) from langchain_core.messages.tool import tool_call_chunk from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser -from langchain_core.output_parsers.base import OutputParserLike from langchain_core.output_parsers.openai_tools import ( JsonOutputKeyToolsParser, PydanticToolsParser, @@ -73,15 +77,10 @@ parse_tool_call, ) from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough, chain from langchain_core.runnables.config import run_in_executor from langchain_core.tools import BaseTool -from langchain_core.utils import ( - convert_to_secret_str, - get_from_dict_or_env, - get_pydantic_field_names, -) +from langchain_core.utils import get_pydantic_field_names from langchain_core.utils.function_calling import ( convert_to_openai_function, convert_to_openai_tool, @@ -91,7 +90,9 @@ TypeBaseModel, is_basemodel_subclass, ) -from langchain_core.utils.utils import build_extra_kwargs +from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env +from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -289,16 +290,10 @@ def _convert_chunk_to_generation_chunk( ) -> Optional[ChatGenerationChunk]: token_usage = chunk.get("usage") choices = chunk.get("choices", []) + usage_metadata: Optional[UsageMetadata] = ( - UsageMetadata( - input_tokens=token_usage.get("prompt_tokens", 0), - output_tokens=token_usage.get("completion_tokens", 0), - total_tokens=token_usage.get("total_tokens", 0), - ) - if token_usage - else None + _create_usage_metadata(token_usage) if token_usage else None ) - if len(choices) == 0: # logprobs is implicitly None generation_chunk = ChatGenerationChunk( @@ -335,6 +330,33 @@ def _convert_chunk_to_generation_chunk( return generation_chunk +def _update_token_usage( + overall_token_usage: Union[int, dict], new_usage: Union[int, dict] +) -> Union[int, dict]: + # Token usage is either ints or dictionaries + # `reasoning_tokens` is nested inside `completion_tokens_details` + if isinstance(new_usage, int): + if not isinstance(overall_token_usage, int): + raise ValueError( + f"Got different types for token usage: " + f"{type(new_usage)} and {type(overall_token_usage)}" + ) + return new_usage + overall_token_usage + elif isinstance(new_usage, dict): + if not isinstance(overall_token_usage, dict): + raise ValueError( + f"Got different types for token usage: " + f"{type(new_usage)} and {type(overall_token_usage)}" + ) + return { + k: _update_token_usage(overall_token_usage.get(k, 0), v) + for k, v in new_usage.items() + } + else: + warnings.warn(f"Unexpected type for token usage: {type(new_usage)}") + return new_usage + + class _FunctionCall(TypedDict): name: str @@ -361,15 +383,18 @@ class BaseChatOpenAI(BaseChatModel): """What sampling temperature to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" - openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") - """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" + openai_api_key: Optional[SecretStr] = Field( + alias="api_key", default_factory=secret_from_env("OPENAI_API_KEY", default=None) + ) openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_organization: Optional[str] = Field(default=None, alias="organization") """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" # to support explicit proxy for OpenAI - openai_proxy: Optional[str] = None + openai_proxy: Optional[str] = Field( + default_factory=from_env("OPENAI_PROXY", default=None) + ) request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) @@ -413,11 +438,11 @@ class BaseChatOpenAI(BaseChatModel): default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. - http_client: Union[Any, None] = None + http_client: Union[Any, None] = Field(default=None, exclude=True) """Optional httpx.Client. Only used for sync invocations. Must specify http_async_client as well if you'd like a custom client for async invocations. """ - http_async_client: Union[Any, None] = None + http_async_client: Union[Any, None] = Field(default=None, exclude=True) """Optional httpx.AsyncClient. Only used for async invocations. Must specify http_client as well if you'd like a custom client for sync invocations.""" stop: Optional[Union[List[str], str]] = Field(default=None, alias="stop_sequences") @@ -427,72 +452,71 @@ class BaseChatOpenAI(BaseChatModel): making requests to OpenAI compatible APIs, such as vLLM.""" include_response_headers: bool = False """Whether to include response headers in the output message response_metadata.""" + disabled_params: Optional[Dict[str, Any]] = Field(default=None) + """Parameters of the OpenAI client or chat.completions endpoint that should be + disabled for the given model. + + Should be specified as ``{"param": None | ['val1', 'val2']}`` where the key is the + parameter and the value is either None, meaning that parameter should never be + used, or it's a list of disabled values for the parameter. + + For example, older models may not support the 'parallel_tool_calls' parameter at + all, in which case ``disabled_params={"parallel_tool_calls: None}`` can ben passed + in. + + If a parameter is disabled then it will not be used by default in any methods, e.g. + in :meth:`~langchain_openai.chat_models.base.ChatOpenAI.with_structured_output`. + However this does not prevent a user from directly passed in the parameter during + invocation. + """ - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True + model_config = ConfigDict(populate_by_name=True) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values - @root_validator(pre=False, skip_on_failure=True, allow_reuse=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - if values["n"] < 1: + if self.n < 1: raise ValueError("n must be at least 1.") - if values["n"] > 1 and values["streaming"]: + if self.n > 1 and self.streaming: raise ValueError("n must be 1 when streaming.") - values["openai_api_key"] = convert_to_secret_str( - get_from_dict_or_env(values, "openai_api_key", "OPENAI_API_KEY") - ) # Check OPENAI_ORGANIZATION for backwards compatibility. - values["openai_organization"] = ( - values["openai_organization"] + self.openai_organization = ( + self.openai_organization or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) - values["openai_api_base"] = values["openai_api_base"] or os.getenv( - "OPENAI_API_BASE" - ) - values["openai_proxy"] = get_from_dict_or_env( - values, "openai_proxy", "OPENAI_PROXY", default="" - ) - - client_params = { + self.openai_api_base = self.openai_api_base or os.getenv("OPENAI_API_BASE") + client_params: dict = { "api_key": ( - values["openai_api_key"].get_secret_value() - if values["openai_api_key"] - else None + self.openai_api_key.get_secret_value() if self.openai_api_key else None ), - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, } - if values["openai_proxy"] and ( - values["http_client"] or values["http_async_client"] - ): - openai_proxy = values["openai_proxy"] - http_client = values["http_client"] - http_async_client = values["http_async_client"] + if self.openai_proxy and (self.http_client or self.http_async_client): + openai_proxy = self.openai_proxy + http_client = self.http_client + http_async_client = self.http_async_client raise ValueError( "Cannot specify 'openai_proxy' if one of " "'http_client'/'http_async_client' is already specified. Received:\n" f"{openai_proxy=}\n{http_client=}\n{http_async_client=}" ) - if not values.get("client"): - if values["openai_proxy"] and not values["http_client"]: + if not self.client: + if self.openai_proxy and not self.http_client: try: import httpx except ImportError as e: @@ -500,12 +524,12 @@ def validate_environment(cls, values: Dict) -> Dict: "Could not import httpx python package. " "Please install it with `pip install httpx`." ) from e - values["http_client"] = httpx.Client(proxy=values["openai_proxy"]) - sync_specific = {"http_client": values["http_client"]} - values["root_client"] = openai.OpenAI(**client_params, **sync_specific) - values["client"] = values["root_client"].chat.completions - if not values.get("async_client"): - if values["openai_proxy"] and not values["http_async_client"]: + self.http_client = httpx.Client(proxy=self.openai_proxy) + sync_specific = {"http_client": self.http_client} + self.root_client = openai.OpenAI(**client_params, **sync_specific) # type: ignore[arg-type] + self.client = self.root_client.chat.completions + if not self.async_client: + if self.openai_proxy and not self.http_async_client: try: import httpx except ImportError as e: @@ -513,15 +537,14 @@ def validate_environment(cls, values: Dict) -> Dict: "Could not import httpx python package. " "Please install it with `pip install httpx`." ) from e - values["http_async_client"] = httpx.AsyncClient( - proxy=values["openai_proxy"] - ) - async_specific = {"http_client": values["http_async_client"]} - values["root_async_client"] = openai.AsyncOpenAI( - **client_params, **async_specific + self.http_async_client = httpx.AsyncClient(proxy=self.openai_proxy) + async_specific = {"http_client": self.http_async_client} + self.root_async_client = openai.AsyncOpenAI( + **client_params, + **async_specific, # type: ignore[arg-type] ) - values["async_client"] = values["root_async_client"].chat.completions - return values + self.async_client = self.root_async_client.chat.completions + return self @property def _default_params(self) -> Dict[str, Any]: @@ -561,7 +584,9 @@ def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: if token_usage is not None: for k, v in token_usage.items(): if k in overall_token_usage: - overall_token_usage[k] += v + overall_token_usage[k] = _update_token_usage( + overall_token_usage[k], v + ) else: overall_token_usage[k] = v if system_fingerprint is None: @@ -691,15 +716,11 @@ def _create_chat_result( if response_dict.get("error"): raise ValueError(response_dict.get("error")) - token_usage = response_dict.get("usage", {}) + token_usage = response_dict.get("usage") for res in response_dict["choices"]: message = _convert_dict_to_message(res["message"]) if token_usage and isinstance(message, AIMessage): - message.usage_metadata = { - "input_tokens": token_usage.get("prompt_tokens", 0), - "output_tokens": token_usage.get("completion_tokens", 0), - "total_tokens": token_usage.get("total_tokens", 0), - } + message.usage_metadata = _create_usage_metadata(token_usage) generation_info = generation_info or {} generation_info["finish_reason"] = ( res.get("finish_reason") @@ -954,6 +975,11 @@ def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: num_tokens += 3 return num_tokens + @deprecated( + since="0.2.1", + alternative="langchain_openai.chat_models.base.ChatOpenAI.bind_tools", + removal="0.3.0", + ) def bind_functions( self, functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], @@ -1021,22 +1047,18 @@ def bind_tools( Assumes model is compatible with OpenAI tool-calling API. - .. versionchanged:: 0.1.21 - - Support for ``strict`` argument added. - Args: tools: A list of tool definitions to bind to this chat model. Supports any tool definition handled by :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`. - tool_choice: Which tool to require the model to call. - Options are: - - str of the form ``"<<tool_name>>"``: calls <<tool_name>> tool. - - ``"auto"``: automatically selects a tool (including no tool). - - ``"none"``: does not call a tool. - - ``"any"`` or ``"required"`` or ``True``: force at least one tool to be called. - - dict of the form ``{"type": "function", "function": {"name": <<tool_name>>}}``: calls <<tool_name>> tool. - - ``False`` or ``None``: no effect, default OpenAI behavior. + tool_choice: Which tool to require the model to call. Options are: + + - str of the form ``"<<tool_name>>"``: calls <<tool_name>> tool. + - ``"auto"``: automatically selects a tool (including no tool). + - ``"none"``: does not call a tool. + - ``"any"`` or ``"required"`` or ``True``: force at least one tool to be called. + - dict of the form ``{"type": "function", "function": {"name": <<tool_name>>}}``: calls <<tool_name>> tool. + - ``False`` or ``None``: no effect, default OpenAI behavior. strict: If True, model output is guaranteed to exactly match the JSON Schema provided in the tool definition. If True, the input schema will be validated according to @@ -1044,11 +1066,13 @@ def bind_tools( If False, input schema will not be validated and model output will not be validated. If None, ``strict`` argument will not be passed to the model. + kwargs: Any additional parameters are passed directly to + :meth:`~langchain_openai.chat_models.base.ChatOpenAI.bind`. + + .. versionchanged:: 0.1.21 - .. versionadded:: 0.1.21 + Support for ``strict`` argument added. - kwargs: Any additional parameters are passed directly to - ``self.bind(**kwargs)``. """ # noqa: E501 formatted_tools = [ @@ -1184,12 +1208,12 @@ def with_structured_output( Support for ``strict`` argument added. Support for ``method`` = "json_schema" added. - .. note:: Planned breaking changes in version `0.2.0` + .. note:: Planned breaking changes in version `0.3.0` - ``method`` default will be changed to "json_schema" from "function_calling". - ``strict`` will default to True when ``method`` is - "function_calling" as of version `0.2.0`. + "function_calling" as of version `0.3.0`. .. dropdown:: Example: schema=Pydantic class, method="function_calling", include_raw=False, strict=True @@ -1206,7 +1230,7 @@ def with_structured_output( from typing import Optional from langchain_openai import ChatOpenAI - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class AnswerWithJustification(BaseModel): @@ -1237,7 +1261,7 @@ class AnswerWithJustification(BaseModel): .. code-block:: python from langchain_openai import ChatOpenAI - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): @@ -1327,7 +1351,7 @@ class AnswerWithJustification(TypedDict): .. code-block:: from langchain_openai import ChatOpenAI - from langchain_core.pydantic_v1 import BaseModel + from pydantic import BaseModel class AnswerWithJustification(BaseModel): answer: str @@ -1385,14 +1409,13 @@ class AnswerWithJustification(BaseModel): "Received None." ) tool_name = convert_to_openai_tool(schema)["function"]["name"] - llm = self.bind_tools( - [schema], - tool_choice=tool_name, - parallel_tool_calls=False, - strict=strict, + bind_kwargs = self._filter_disabled_params( + tool_choice=tool_name, parallel_tool_calls=False, strict=strict ) + + llm = self.bind_tools([schema], **bind_kwargs) if is_pydantic_schema: - output_parser: OutputParserLike = PydanticToolsParser( + output_parser: Runnable = PydanticToolsParser( tools=[schema], # type: ignore[list-item] first_tool_only=True, # type: ignore[list-item] ) @@ -1416,11 +1439,12 @@ class AnswerWithJustification(BaseModel): strict = strict if strict is not None else True response_format = _convert_to_openai_response_format(schema, strict=strict) llm = self.bind(response_format=response_format) - output_parser = ( - cast(Runnable, _oai_structured_outputs_parser) - if is_pydantic_schema - else JsonOutputParser() - ) + if is_pydantic_schema: + output_parser = _oai_structured_outputs_parser.with_types( + output_type=cast(type, schema) + ) + else: + output_parser = JsonOutputParser() else: raise ValueError( f"Unrecognized method argument. Expected one of 'function_calling' or " @@ -1439,6 +1463,21 @@ class AnswerWithJustification(BaseModel): else: return llm | output_parser + def _filter_disabled_params(self, **kwargs: Any) -> Dict[str, Any]: + if not self.disabled_params: + return kwargs + filtered = {} + for k, v in kwargs.items(): + # Skip param + if k in self.disabled_params and ( + self.disabled_params[k] is None or v in self.disabled_params[k] + ): + continue + # Keep param + else: + filtered[k] = v + return filtered + class ChatOpenAI(BaseChatOpenAI): """OpenAI chat model integration. @@ -1629,7 +1668,7 @@ class ChatOpenAI(BaseChatOpenAI): .. code-block:: python - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class GetWeather(BaseModel): @@ -1715,7 +1754,7 @@ class GetPopulation(BaseModel): from typing import Optional - from langchain_core.pydantic_v1 import BaseModel, Field + from pydantic import BaseModel, Field class Joke(BaseModel): @@ -2097,7 +2136,7 @@ def _oai_structured_outputs_parser(ai_msg: AIMessage) -> PydanticBaseModel: else: raise ValueError( "Structured Output response does not have a 'parsed' field nor a 'refusal' " - "field." + "field. Received message:\n\n{ai_msg}" ) @@ -2112,3 +2151,36 @@ class OpenAIRefusalError(Exception): .. versionadded:: 0.1.21 """ + + +def _create_usage_metadata(oai_token_usage: dict) -> UsageMetadata: + input_tokens = oai_token_usage.get("prompt_tokens", 0) + output_tokens = oai_token_usage.get("completion_tokens", 0) + total_tokens = oai_token_usage.get("total_tokens", input_tokens + output_tokens) + input_token_details: dict = { + "audio": (oai_token_usage.get("prompt_tokens_details") or {}).get( + "audio_tokens" + ), + "cache_read": (oai_token_usage.get("prompt_tokens_details") or {}).get( + "cached_tokens" + ), + } + output_token_details: dict = { + "audio": (oai_token_usage.get("completion_tokens_details") or {}).get( + "audio_tokens" + ), + "reasoning": (oai_token_usage.get("completion_tokens_details") or {}).get( + "reasoning_tokens" + ), + } + return UsageMetadata( + input_tokens=input_tokens, + output_tokens=output_tokens, + total_tokens=total_tokens, + input_token_details=InputTokenDetails( + **{k: v for k, v in input_token_details.items() if v is not None} + ), + output_token_details=OutputTokenDetails( + **{k: v for k, v in output_token_details.items() if v is not None} + ), + ) diff --git a/libs/partners/openai/langchain_openai/embeddings/azure.py b/libs/partners/openai/langchain_openai/embeddings/azure.py index e5647d8b5111a..06349e36a5195 100644 --- a/libs/partners/openai/langchain_openai/embeddings/azure.py +++ b/libs/partners/openai/langchain_openai/embeddings/azure.py @@ -2,11 +2,12 @@ from __future__ import annotations -from typing import Callable, Dict, Optional, Union +from typing import Callable, Optional, Union import openai -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import from_env, secret_from_env +from pydantic import Field, SecretStr, model_validator +from typing_extensions import Self, cast from langchain_openai.embeddings.base import OpenAIEmbeddings @@ -154,21 +155,21 @@ class AzureOpenAIEmbeddings(OpenAIEmbeddings): chunk_size: int = 2048 """Maximum number of texts to embed in each batch""" - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). - openai_api_base = values["openai_api_base"] - if openai_api_base and values["validate_base_url"]: + openai_api_base = self.openai_api_base + if openai_api_base and self.validate_base_url: if "/openai" not in openai_api_base: - values["openai_api_base"] += "/openai" + self.openai_api_base = cast(str, self.openai_api_base) + "/openai" raise ValueError( "As of openai>=1.0.0, Azure endpoints should be specified via " "the `azure_endpoint` param not `openai_api_base` " "(or alias `base_url`). " ) - if values["deployment"]: + if self.deployment: raise ValueError( "As of openai>=1.0.0, if `deployment` (or alias " "`azure_deployment`) is specified then " @@ -176,39 +177,37 @@ def validate_environment(cls, values: Dict) -> Dict: "Instead use `deployment` (or alias `azure_deployment`) " "and `azure_endpoint`." ) - client_params = { - "api_version": values["openai_api_version"], - "azure_endpoint": values["azure_endpoint"], - "azure_deployment": values["deployment"], + client_params: dict = { + "api_version": self.openai_api_version, + "azure_endpoint": self.azure_endpoint, + "azure_deployment": self.deployment, "api_key": ( - values["openai_api_key"].get_secret_value() - if values["openai_api_key"] - else None + self.openai_api_key.get_secret_value() if self.openai_api_key else None ), "azure_ad_token": ( - values["azure_ad_token"].get_secret_value() - if values["azure_ad_token"] - else None + self.azure_ad_token.get_secret_value() if self.azure_ad_token else None ), - "azure_ad_token_provider": values["azure_ad_token_provider"], - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], + "azure_ad_token_provider": self.azure_ad_token_provider, + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, } - if not values.get("client"): - sync_specific = {"http_client": values["http_client"]} - values["client"] = openai.AzureOpenAI( - **client_params, **sync_specific + if not self.client: + sync_specific: dict = {"http_client": self.http_client} + self.client = openai.AzureOpenAI( + **client_params, # type: ignore[arg-type] + **sync_specific, ).embeddings - if not values.get("async_client"): - async_specific = {"http_client": values["http_async_client"]} - values["async_client"] = openai.AsyncAzureOpenAI( - **client_params, **async_specific + if not self.async_client: + async_specific: dict = {"http_client": self.http_async_client} + self.async_client = openai.AsyncAzureOpenAI( + **client_params, # type: ignore[arg-type] + **async_specific, ).embeddings - return values + return self @property def _llm_type(self) -> str: diff --git a/libs/partners/openai/langchain_openai/embeddings/base.py b/libs/partners/openai/langchain_openai/embeddings/base.py index 1a6a3a0417d7e..252996dc8b32f 100644 --- a/libs/partners/openai/langchain_openai/embeddings/base.py +++ b/libs/partners/openai/langchain_openai/embeddings/base.py @@ -20,8 +20,9 @@ import openai import tiktoken from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator from langchain_core.utils import from_env, get_pydantic_field_names, secret_from_env +from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -253,24 +254,23 @@ class OpenAIEmbeddings(BaseModel, Embeddings): retry_max_seconds: int = 20 """Max number of seconds to wait between retries""" http_client: Union[Any, None] = None - """Optional httpx.Client. Only used for sync invocations. Must specify + """Optional httpx.Client. Only used for sync invocations. Must specify http_async_client as well if you'd like a custom client for async invocations. """ http_async_client: Union[Any, None] = None - """Optional httpx.AsyncClient. Only used for async invocations. Must specify + """Optional httpx.AsyncClient. Only used for async invocations. Must specify http_client as well if you'd like a custom client for sync invocations.""" check_embedding_ctx_length: bool = True - """Whether to check the token length of inputs and automatically split inputs + """Whether to check the token length of inputs and automatically split inputs longer than embedding_ctx_length.""" - class Config: - """Configuration for this pydantic object.""" - - extra = "forbid" - allow_population_by_field_name = True + model_config = ConfigDict( + extra="forbid", populate_by_name=True, protected_namespaces=() + ) - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) @@ -295,41 +295,37 @@ def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: values["model_kwargs"] = extra return values - @root_validator(pre=False, skip_on_failure=True, allow_reuse=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): + if self.openai_api_type in ("azure", "azure_ad", "azuread"): raise ValueError( "If you are using Azure, " "please use the `AzureOpenAIEmbeddings` class." ) - client_params = { + client_params: dict = { "api_key": ( - values["openai_api_key"].get_secret_value() - if values["openai_api_key"] - else None + self.openai_api_key.get_secret_value() if self.openai_api_key else None ), - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, } - if values["openai_proxy"] and ( - values["http_client"] or values["http_async_client"] - ): - openai_proxy = values["openai_proxy"] - http_client = values["http_client"] - http_async_client = values["http_async_client"] + if self.openai_proxy and (self.http_client or self.http_async_client): + openai_proxy = self.openai_proxy + http_client = self.http_client + http_async_client = self.http_async_client raise ValueError( "Cannot specify 'openai_proxy' if one of " "'http_client'/'http_async_client' is already specified. Received:\n" f"{openai_proxy=}\n{http_client=}\n{http_async_client=}" ) - if not values.get("client"): - if values["openai_proxy"] and not values["http_client"]: + if not self.client: + if self.openai_proxy and not self.http_client: try: import httpx except ImportError as e: @@ -337,13 +333,11 @@ def validate_environment(cls, values: Dict) -> Dict: "Could not import httpx python package. " "Please install it with `pip install httpx`." ) from e - values["http_client"] = httpx.Client(proxy=values["openai_proxy"]) - sync_specific = {"http_client": values["http_client"]} - values["client"] = openai.OpenAI( - **client_params, **sync_specific - ).embeddings - if not values.get("async_client"): - if values["openai_proxy"] and not values["http_async_client"]: + self.http_client = httpx.Client(proxy=self.openai_proxy) + sync_specific = {"http_client": self.http_client} + self.client = openai.OpenAI(**client_params, **sync_specific).embeddings # type: ignore[arg-type] + if not self.async_client: + if self.openai_proxy and not self.http_async_client: try: import httpx except ImportError as e: @@ -351,14 +345,13 @@ def validate_environment(cls, values: Dict) -> Dict: "Could not import httpx python package. " "Please install it with `pip install httpx`." ) from e - values["http_async_client"] = httpx.AsyncClient( - proxy=values["openai_proxy"] - ) - async_specific = {"http_client": values["http_async_client"]} - values["async_client"] = openai.AsyncOpenAI( - **client_params, **async_specific + self.http_async_client = httpx.AsyncClient(proxy=self.openai_proxy) + async_specific = {"http_client": self.http_async_client} + self.async_client = openai.AsyncOpenAI( + **client_params, + **async_specific, # type: ignore[arg-type] ).embeddings - return values + return self @property def _invocation_params(self) -> Dict[str, Any]: @@ -565,7 +558,7 @@ async def empty_embedding() -> List[float]: return [e if e is not None else await empty_embedding() for e in embeddings] def embed_documents( - self, texts: List[str], chunk_size: Optional[int] = 0 + self, texts: List[str], chunk_size: int | None = None ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. @@ -577,10 +570,13 @@ def embed_documents( Returns: List of embeddings, one for each text. """ + chunk_size_ = chunk_size or self.chunk_size if not self.check_embedding_ctx_length: embeddings: List[List[float]] = [] - for text in texts: - response = self.client.create(input=text, **self._invocation_params) + for i in range(0, len(texts), self.chunk_size): + response = self.client.create( + input=texts[i : i + chunk_size_], **self._invocation_params + ) if not isinstance(response, dict): response = response.dict() embeddings.extend(r["embedding"] for r in response["data"]) @@ -592,7 +588,7 @@ def embed_documents( return self._get_len_safe_embeddings(texts, engine=engine) async def aembed_documents( - self, texts: List[str], chunk_size: Optional[int] = 0 + self, texts: List[str], chunk_size: int | None = None ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint async for embedding search docs. @@ -604,11 +600,12 @@ async def aembed_documents( Returns: List of embeddings, one for each text. """ + chunk_size_ = chunk_size or self.chunk_size if not self.check_embedding_ctx_length: embeddings: List[List[float]] = [] - for text in texts: + for i in range(0, len(texts), chunk_size_): response = await self.async_client.create( - input=text, **self._invocation_params + input=texts[i : i + chunk_size_], **self._invocation_params ) if not isinstance(response, dict): response = response.dict() diff --git a/libs/partners/openai/langchain_openai/llms/azure.py b/libs/partners/openai/langchain_openai/llms/azure.py index 0d091b325f520..90c20c9d4d7d0 100644 --- a/libs/partners/openai/langchain_openai/llms/azure.py +++ b/libs/partners/openai/langchain_openai/llms/azure.py @@ -5,8 +5,9 @@ import openai from langchain_core.language_models import LangSmithParams -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import from_env, secret_from_env +from pydantic import Field, SecretStr, model_validator +from typing_extensions import Self, cast from langchain_openai.llms.base import BaseOpenAI @@ -100,29 +101,29 @@ def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True - @root_validator(pre=False, skip_on_failure=True, allow_reuse=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - if values["n"] < 1: + if self.n < 1: raise ValueError("n must be at least 1.") - if values["streaming"] and values["n"] > 1: + if self.streaming and self.n > 1: raise ValueError("Cannot stream results when n > 1.") - if values["streaming"] and values["best_of"] > 1: + if self.streaming and self.best_of > 1: raise ValueError("Cannot stream results when best_of > 1.") # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). - openai_api_base = values["openai_api_base"] - if openai_api_base and values["validate_base_url"]: + openai_api_base = self.openai_api_base + if openai_api_base and self.validate_base_url: if "/openai" not in openai_api_base: - values["openai_api_base"] = ( - values["openai_api_base"].rstrip("/") + "/openai" + self.openai_api_base = ( + cast(str, self.openai_api_base).rstrip("/") + "/openai" ) raise ValueError( "As of openai>=1.0.0, Azure endpoints should be specified via " "the `azure_endpoint` param not `openai_api_base` " "(or alias `base_url`)." ) - if values["deployment_name"]: + if self.deployment_name: raise ValueError( "As of openai>=1.0.0, if `deployment_name` (or alias " "`azure_deployment`) is specified then " @@ -130,37 +131,39 @@ def validate_environment(cls, values: Dict) -> Dict: "Instead use `deployment_name` (or alias `azure_deployment`) " "and `azure_endpoint`." ) - values["deployment_name"] = None - client_params = { - "api_version": values["openai_api_version"], - "azure_endpoint": values["azure_endpoint"], - "azure_deployment": values["deployment_name"], - "api_key": values["openai_api_key"].get_secret_value() - if values["openai_api_key"] + self.deployment_name = None + client_params: dict = { + "api_version": self.openai_api_version, + "azure_endpoint": self.azure_endpoint, + "azure_deployment": self.deployment_name, + "api_key": self.openai_api_key.get_secret_value() + if self.openai_api_key else None, - "azure_ad_token": values["azure_ad_token"].get_secret_value() - if values["azure_ad_token"] + "azure_ad_token": self.azure_ad_token.get_secret_value() + if self.azure_ad_token else None, - "azure_ad_token_provider": values["azure_ad_token_provider"], - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], + "azure_ad_token_provider": self.azure_ad_token_provider, + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, } - if not values.get("client"): - sync_specific = {"http_client": values["http_client"]} - values["client"] = openai.AzureOpenAI( - **client_params, **sync_specific + if not self.client: + sync_specific = {"http_client": self.http_client} + self.client = openai.AzureOpenAI( + **client_params, + **sync_specific, # type: ignore[arg-type] ).completions - if not values.get("async_client"): - async_specific = {"http_client": values["http_async_client"]} - values["async_client"] = openai.AsyncAzureOpenAI( - **client_params, **async_specific + if not self.async_client: + async_specific = {"http_client": self.http_async_client} + self.async_client = openai.AsyncAzureOpenAI( + **client_params, + **async_specific, # type: ignore[arg-type] ).completions - return values + return self @property def _identifying_params(self) -> Mapping[str, Any]: diff --git a/libs/partners/openai/langchain_openai/llms/base.py b/libs/partners/openai/langchain_openai/llms/base.py index 464b40e2ba919..633d473ae81d5 100644 --- a/libs/partners/openai/langchain_openai/llms/base.py +++ b/libs/partners/openai/langchain_openai/llms/base.py @@ -26,9 +26,10 @@ ) from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult -from langchain_core.pydantic_v1 import Field, SecretStr, root_validator from langchain_core.utils import get_pydantic_field_names -from langchain_core.utils.utils import build_extra_kwargs, from_env, secret_from_env +from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env +from pydantic import ConfigDict, Field, SecretStr, model_validator +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -152,56 +153,48 @@ class BaseOpenAI(BaseLLM): """Optional additional JSON properties to include in the request parameters when making requests to OpenAI compatible APIs, such as vLLM.""" - class Config: - """Configuration for this pydantic object.""" + model_config = ConfigDict(populate_by_name=True) - allow_population_by_field_name = True - - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: + @model_validator(mode="before") + @classmethod + def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs( - extra, values, all_required_field_names - ) + values = _build_model_kwargs(values, all_required_field_names) return values - @root_validator(pre=False, skip_on_failure=True, allow_reuse=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" - if values["n"] < 1: + if self.n < 1: raise ValueError("n must be at least 1.") - if values["streaming"] and values["n"] > 1: + if self.streaming and self.n > 1: raise ValueError("Cannot stream results when n > 1.") - if values["streaming"] and values["best_of"] > 1: + if self.streaming and self.best_of > 1: raise ValueError("Cannot stream results when best_of > 1.") - client_params = { + client_params: dict = { "api_key": ( - values["openai_api_key"].get_secret_value() - if values["openai_api_key"] - else None + self.openai_api_key.get_secret_value() if self.openai_api_key else None ), - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], + "organization": self.openai_organization, + "base_url": self.openai_api_base, + "timeout": self.request_timeout, + "max_retries": self.max_retries, + "default_headers": self.default_headers, + "default_query": self.default_query, } - if not values.get("client"): - sync_specific = {"http_client": values["http_client"]} - values["client"] = openai.OpenAI( - **client_params, **sync_specific - ).completions - if not values.get("async_client"): - async_specific = {"http_client": values["http_async_client"]} - values["async_client"] = openai.AsyncOpenAI( - **client_params, **async_specific + if not self.client: + sync_specific = {"http_client": self.http_client} + self.client = openai.OpenAI(**client_params, **sync_specific).completions # type: ignore[arg-type] + if not self.async_client: + async_specific = {"http_client": self.http_async_client} + self.async_client = openai.AsyncOpenAI( + **client_params, + **async_specific, # type: ignore[arg-type] ).completions - return values + return self @property def _default_params(self) -> Dict[str, Any]: diff --git a/libs/partners/openai/poetry.lock b/libs/partners/openai/poetry.lock index c1e2f337b9a6e..9d9e88d6a471f 100644 --- a/libs/partners/openai/poetry.lock +++ b/libs/partners/openai/poetry.lock @@ -11,18 +11,15 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" -version = "4.4.0" +version = "4.6.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, ] [package.dependencies] @@ -32,19 +29,19 @@ sniffio = ">=1.1" typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -313,13 +310,13 @@ files = [ [[package]] name = "httpcore" -version = "1.0.5" +version = "1.0.6" description = "A minimal low-level HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, + {file = "httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f"}, + {file = "httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f"}, ] [package.dependencies] @@ -330,7 +327,7 @@ h11 = ">=0.13,<0.15" asyncio = ["anyio (>=4.0,<5.0)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] +trio = ["trio (>=0.22.0,<1.0)"] [[package]] name = "httpx" @@ -359,15 +356,18 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.8" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.6" files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -476,19 +476,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.35" +version = "0.3.9" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.125" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -504,14 +504,15 @@ name = "langchain-standard-tests" version = "0.1.1" description = "Standard tests for LangChain implementations" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] httpx = "^0.27.0" -langchain-core = ">=0.1.40,<0.3" +langchain-core = "^0.3.0" pytest = ">=7,<9" +syrupy = "^4" [package.source] type = "directory" @@ -519,13 +520,13 @@ url = "../../standard-tests" [[package]] name = "langsmith" -version = "0.1.106" +version = "0.1.131" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.106-py3-none-any.whl", hash = "sha256:a418161c98de72ee2c6eea6667c6217814b67db4b9a3a024788013384216ff35"}, - {file = "langsmith-0.1.106.tar.gz", hash = "sha256:64a890a05640d64692f5515ebb444b0457332a9cf9e7605c4651de6737a7d3a0"}, + {file = "langsmith-0.1.131-py3-none-any.whl", hash = "sha256:80c106b1c42307195cc0bb3a596472c41ef91b79d15bcee9938307800336c563"}, + {file = "langsmith-0.1.131.tar.gz", hash = "sha256:626101a3bf3ca481e5110d5155ace8aa066e4e9cc2fa7d96c8290ade0fbff797"}, ] [package.dependencies] @@ -536,6 +537,7 @@ pydantic = [ {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] requests = ">=2,<3" +requests-toolbelt = ">=1.0.0,<2.0.0" [[package]] name = "mypy" @@ -595,43 +597,6 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -679,13 +644,13 @@ files = [ [[package]] name = "openai" -version = "1.42.0" +version = "1.51.0" description = "The official Python library for the openai API" optional = false python-versions = ">=3.7.1" files = [ - {file = "openai-1.42.0-py3-none-any.whl", hash = "sha256:dc91e0307033a4f94931e5d03cc3b29b9717014ad5e73f9f2051b6cb5eda4d80"}, - {file = "openai-1.42.0.tar.gz", hash = "sha256:c9d31853b4e0bc2dc8bd08003b462a006035655a701471695d0bfdc08529cde3"}, + {file = "openai-1.51.0-py3-none-any.whl", hash = "sha256:d9affafb7e51e5a27dce78589d4964ce4d6f6d560307265933a94b2e3f3c5d2c"}, + {file = "openai-1.51.0.tar.gz", hash = "sha256:8dc4f9d75ccdd5466fc8c99a952186eddceb9fd6ba694044773f3736a847149d"}, ] [package.dependencies] @@ -892,18 +857,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -911,103 +876,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -1181,90 +1147,105 @@ files = [ [[package]] name = "regex" -version = "2024.7.24" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, - {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, - {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, - {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, - {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, - {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, - {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, - {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, - {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, - {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, - {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, - {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -1288,6 +1269,20 @@ urllib3 = ">=1.21.1,<3" socks = ["PySocks (>=1.5.6,!=1.5.7)"] use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] +[[package]] +name = "requests-toolbelt" +version = "1.0.0" +description = "A utility belt for advanced users of python-requests" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, + {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, +] + +[package.dependencies] +requests = ">=2.0.1,<3.0.0" + [[package]] name = "ruff" version = "0.5.7" @@ -1368,47 +1363,42 @@ test = ["pytest", "tornado (>=4.5)", "typeguard"] [[package]] name = "tiktoken" -version = "0.7.0" +version = "0.8.0" description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "tiktoken-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:485f3cc6aba7c6b6ce388ba634fbba656d9ee27f766216f45146beb4ac18b25f"}, - {file = "tiktoken-0.7.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e54be9a2cd2f6d6ffa3517b064983fb695c9a9d8aa7d574d1ef3c3f931a99225"}, - {file = "tiktoken-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79383a6e2c654c6040e5f8506f3750db9ddd71b550c724e673203b4f6b4b4590"}, - {file = "tiktoken-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d4511c52caacf3c4981d1ae2df85908bd31853f33d30b345c8b6830763f769c"}, - {file = "tiktoken-0.7.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:13c94efacdd3de9aff824a788353aa5749c0faee1fbe3816df365ea450b82311"}, - {file = "tiktoken-0.7.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8e58c7eb29d2ab35a7a8929cbeea60216a4ccdf42efa8974d8e176d50c9a3df5"}, - {file = "tiktoken-0.7.0-cp310-cp310-win_amd64.whl", hash = "sha256:21a20c3bd1dd3e55b91c1331bf25f4af522c525e771691adbc9a69336fa7f702"}, - {file = "tiktoken-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:10c7674f81e6e350fcbed7c09a65bca9356eaab27fb2dac65a1e440f2bcfe30f"}, - {file = "tiktoken-0.7.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:084cec29713bc9d4189a937f8a35dbdfa785bd1235a34c1124fe2323821ee93f"}, - {file = "tiktoken-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:811229fde1652fedcca7c6dfe76724d0908775b353556d8a71ed74d866f73f7b"}, - {file = "tiktoken-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86b6e7dc2e7ad1b3757e8a24597415bafcfb454cebf9a33a01f2e6ba2e663992"}, - {file = "tiktoken-0.7.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1063c5748be36344c7e18c7913c53e2cca116764c2080177e57d62c7ad4576d1"}, - {file = "tiktoken-0.7.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:20295d21419bfcca092644f7e2f2138ff947a6eb8cfc732c09cc7d76988d4a89"}, - {file = "tiktoken-0.7.0-cp311-cp311-win_amd64.whl", hash = "sha256:959d993749b083acc57a317cbc643fb85c014d055b2119b739487288f4e5d1cb"}, - {file = "tiktoken-0.7.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:71c55d066388c55a9c00f61d2c456a6086673ab7dec22dd739c23f77195b1908"}, - {file = "tiktoken-0.7.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:09ed925bccaa8043e34c519fbb2f99110bd07c6fd67714793c21ac298e449410"}, - {file = "tiktoken-0.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03c6c40ff1db0f48a7b4d2dafeae73a5607aacb472fa11f125e7baf9dce73704"}, - {file = "tiktoken-0.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d20b5c6af30e621b4aca094ee61777a44118f52d886dbe4f02b70dfe05c15350"}, - {file = "tiktoken-0.7.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d427614c3e074004efa2f2411e16c826f9df427d3c70a54725cae860f09e4bf4"}, - {file = "tiktoken-0.7.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8c46d7af7b8c6987fac9b9f61041b452afe92eb087d29c9ce54951280f899a97"}, - {file = "tiktoken-0.7.0-cp312-cp312-win_amd64.whl", hash = "sha256:0bc603c30b9e371e7c4c7935aba02af5994a909fc3c0fe66e7004070858d3f8f"}, - {file = "tiktoken-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2398fecd38c921bcd68418675a6d155fad5f5e14c2e92fcf5fe566fa5485a858"}, - {file = "tiktoken-0.7.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8f5f6afb52fb8a7ea1c811e435e4188f2bef81b5e0f7a8635cc79b0eef0193d6"}, - {file = "tiktoken-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:861f9ee616766d736be4147abac500732b505bf7013cfaf019b85892637f235e"}, - {file = "tiktoken-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54031f95c6939f6b78122c0aa03a93273a96365103793a22e1793ee86da31685"}, - {file = "tiktoken-0.7.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:fffdcb319b614cf14f04d02a52e26b1d1ae14a570f90e9b55461a72672f7b13d"}, - {file = "tiktoken-0.7.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c72baaeaefa03ff9ba9688624143c858d1f6b755bb85d456d59e529e17234769"}, - {file = "tiktoken-0.7.0-cp38-cp38-win_amd64.whl", hash = "sha256:131b8aeb043a8f112aad9f46011dced25d62629091e51d9dc1adbf4a1cc6aa98"}, - {file = "tiktoken-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cabc6dc77460df44ec5b879e68692c63551ae4fae7460dd4ff17181df75f1db7"}, - {file = "tiktoken-0.7.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8d57f29171255f74c0aeacd0651e29aa47dff6f070cb9f35ebc14c82278f3b25"}, - {file = "tiktoken-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ee92776fdbb3efa02a83f968c19d4997a55c8e9ce7be821ceee04a1d1ee149c"}, - {file = "tiktoken-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e215292e99cb41fbc96988ef62ea63bb0ce1e15f2c147a61acc319f8b4cbe5bf"}, - {file = "tiktoken-0.7.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8a81bac94769cab437dd3ab0b8a4bc4e0f9cf6835bcaa88de71f39af1791727a"}, - {file = "tiktoken-0.7.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d6d73ea93e91d5ca771256dfc9d1d29f5a554b83821a1dc0891987636e0ae226"}, - {file = "tiktoken-0.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:2bcb28ddf79ffa424f171dfeef9a4daff61a94c631ca6813f43967cb263b83b9"}, - {file = "tiktoken-0.7.0.tar.gz", hash = "sha256:1077266e949c24e0291f6c350433c6f0971365ece2b173a23bc3b9f9defef6b6"}, + {file = "tiktoken-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b07e33283463089c81ef1467180e3e00ab00d46c2c4bbcef0acab5f771d6695e"}, + {file = "tiktoken-0.8.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9269348cb650726f44dd3bbb3f9110ac19a8dcc8f54949ad3ef652ca22a38e21"}, + {file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25e13f37bc4ef2d012731e93e0fef21dc3b7aea5bb9009618de9a4026844e560"}, + {file = "tiktoken-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f13d13c981511331eac0d01a59b5df7c0d4060a8be1e378672822213da51e0a2"}, + {file = "tiktoken-0.8.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:6b2ddbc79a22621ce8b1166afa9f9a888a664a579350dc7c09346a3b5de837d9"}, + {file = "tiktoken-0.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:d8c2d0e5ba6453a290b86cd65fc51fedf247e1ba170191715b049dac1f628005"}, + {file = "tiktoken-0.8.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d622d8011e6d6f239297efa42a2657043aaed06c4f68833550cac9e9bc723ef1"}, + {file = "tiktoken-0.8.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2efaf6199717b4485031b4d6edb94075e4d79177a172f38dd934d911b588d54a"}, + {file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5637e425ce1fc49cf716d88df3092048359a4b3bbb7da762840426e937ada06d"}, + {file = "tiktoken-0.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb0e352d1dbe15aba082883058b3cce9e48d33101bdaac1eccf66424feb5b47"}, + {file = "tiktoken-0.8.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:56edfefe896c8f10aba372ab5706b9e3558e78db39dd497c940b47bf228bc419"}, + {file = "tiktoken-0.8.0-cp311-cp311-win_amd64.whl", hash = "sha256:326624128590def898775b722ccc327e90b073714227175ea8febbc920ac0a99"}, + {file = "tiktoken-0.8.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:881839cfeae051b3628d9823b2e56b5cc93a9e2efb435f4cf15f17dc45f21586"}, + {file = "tiktoken-0.8.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe9399bdc3f29d428f16a2f86c3c8ec20be3eac5f53693ce4980371c3245729b"}, + {file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a58deb7075d5b69237a3ff4bb51a726670419db6ea62bdcd8bd80c78497d7ab"}, + {file = "tiktoken-0.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2908c0d043a7d03ebd80347266b0e58440bdef5564f84f4d29fb235b5df3b04"}, + {file = "tiktoken-0.8.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:294440d21a2a51e12d4238e68a5972095534fe9878be57d905c476017bff99fc"}, + {file = "tiktoken-0.8.0-cp312-cp312-win_amd64.whl", hash = "sha256:d8f3192733ac4d77977432947d563d7e1b310b96497acd3c196c9bddb36ed9db"}, + {file = "tiktoken-0.8.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:02be1666096aff7da6cbd7cdaa8e7917bfed3467cd64b38b1f112e96d3b06a24"}, + {file = "tiktoken-0.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c94ff53c5c74b535b2cbf431d907fc13c678bbd009ee633a2aca269a04389f9a"}, + {file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b231f5e8982c245ee3065cd84a4712d64692348bc609d84467c57b4b72dcbc5"}, + {file = "tiktoken-0.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4177faa809bd55f699e88c96d9bb4635d22e3f59d635ba6fd9ffedf7150b9953"}, + {file = "tiktoken-0.8.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5376b6f8dc4753cd81ead935c5f518fa0fbe7e133d9e25f648d8c4dabdd4bad7"}, + {file = "tiktoken-0.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:18228d624807d66c87acd8f25fc135665617cab220671eb65b50f5d70fa51f69"}, + {file = "tiktoken-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7e17807445f0cf1f25771c9d86496bd8b5c376f7419912519699f3cc4dc5c12e"}, + {file = "tiktoken-0.8.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:886f80bd339578bbdba6ed6d0567a0d5c6cfe198d9e587ba6c447654c65b8edc"}, + {file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6adc8323016d7758d6de7313527f755b0fc6c72985b7d9291be5d96d73ecd1e1"}, + {file = "tiktoken-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b591fb2b30d6a72121a80be24ec7a0e9eb51c5500ddc7e4c2496516dd5e3816b"}, + {file = "tiktoken-0.8.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:845287b9798e476b4d762c3ebda5102be87ca26e5d2c9854002825d60cdb815d"}, + {file = "tiktoken-0.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:1473cfe584252dc3fa62adceb5b1c763c1874e04511b197da4e6de51d6ce5a02"}, + {file = "tiktoken-0.8.0.tar.gz", hash = "sha256:9ccbb2740f24542534369c5635cfd9b2b3c2490754a78ac8831d99f89f94eeb2"}, ] [package.dependencies] @@ -1420,13 +1410,13 @@ blobfile = ["blobfile (>=2)"] [[package]] name = "tomli" -version = "2.0.1" +version = "2.0.2" description = "A lil' TOML parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, + {file = "tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38"}, + {file = "tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed"}, ] [[package]] @@ -1473,13 +1463,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1490,46 +1480,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.3" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:85527b882f3facda0579bce9d743ff7f10c3e1e0db0a0d0e28170a7d0e5ce2ea"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:53adf73dcdc0ef04f7735066b4a57a4cd3e49ef135daae41d77395f0b5b692cb"}, + {file = "watchdog-5.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e25adddab85f674acac303cf1f5835951345a56c5f7f582987d266679979c75b"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f01f4a3565a387080dc49bdd1fefe4ecc77f894991b88ef927edbfa45eb10818"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:91b522adc25614cdeaf91f7897800b82c13b4b8ac68a42ca959f992f6990c490"}, + {file = "watchdog-5.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d52db5beb5e476e6853da2e2d24dbbbed6797b449c8bf7ea118a4ee0d2c9040e"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:94d11b07c64f63f49876e0ab8042ae034674c8653bfcdaa8c4b32e71cfff87e8"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:349c9488e1d85d0a58e8cb14222d2c51cbc801ce11ac3936ab4c3af986536926"}, + {file = "watchdog-5.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:53a3f10b62c2d569e260f96e8d966463dec1a50fa4f1b22aec69e3f91025060e"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:950f531ec6e03696a2414b6308f5c6ff9dab7821a768c9d5788b1314e9a46ca7"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae6deb336cba5d71476caa029ceb6e88047fc1dc74b62b7c4012639c0b563906"}, + {file = "watchdog-5.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1021223c08ba8d2d38d71ec1704496471ffd7be42cfb26b87cd5059323a389a1"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:752fb40efc7cc8d88ebc332b8f4bcbe2b5cc7e881bccfeb8e25054c00c994ee3"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2e8f3f955d68471fa37b0e3add18500790d129cc7efe89971b8a4cc6fdeb0b2"}, + {file = "watchdog-5.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b8ca4d854adcf480bdfd80f46fdd6fb49f91dd020ae11c89b3a79e19454ec627"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:90a67d7857adb1d985aca232cc9905dd5bc4803ed85cfcdcfcf707e52049eda7"}, + {file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:720ef9d3a4f9ca575a780af283c8fd3a0674b307651c1976714745090da5a9e8"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:223160bb359281bb8e31c8f1068bf71a6b16a8ad3d9524ca6f523ac666bb6a1e"}, + {file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:560135542c91eaa74247a2e8430cf83c4342b29e8ad4f520ae14f0c8a19cfb5b"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dd021efa85970bd4824acacbb922066159d0f9e546389a4743d56919b6758b91"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_armv7l.whl", hash = "sha256:78864cc8f23dbee55be34cc1494632a7ba30263951b5b2e8fc8286b95845f82c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_i686.whl", hash = "sha256:1e9679245e3ea6498494b3028b90c7b25dbb2abe65c7d07423ecfc2d6218ff7c"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64.whl", hash = "sha256:9413384f26b5d050b6978e6fcd0c1e7f0539be7a4f1a885061473c5deaa57221"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:294b7a598974b8e2c6123d19ef15de9abcd282b0fbbdbc4d23dfa812959a9e05"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_s390x.whl", hash = "sha256:26dd201857d702bdf9d78c273cafcab5871dd29343748524695cecffa44a8d97"}, + {file = "watchdog-5.0.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:0f9332243355643d567697c3e3fa07330a1d1abf981611654a1f2bf2175612b7"}, + {file = "watchdog-5.0.3-py3-none-win32.whl", hash = "sha256:c66f80ee5b602a9c7ab66e3c9f36026590a0902db3aea414d59a2f55188c1f49"}, + {file = "watchdog-5.0.3-py3-none-win_amd64.whl", hash = "sha256:f00b4cf737f568be9665563347a910f8bdc76f88c2970121c86243c8cfdf90e9"}, + {file = "watchdog-5.0.3-py3-none-win_ia64.whl", hash = "sha256:49f4d36cb315c25ea0d946e018c01bb028048023b9e103d3d3943f58e109dd45"}, + {file = "watchdog-5.0.3.tar.gz", hash = "sha256:108f42a7f0345042a854d4d0ad0834b741d421330d5f575b81cb27b883500176"}, ] [package.extras] @@ -1537,5 +1522,5 @@ watchmedo = ["PyYAML (>=3.10)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "2cc7944c077e0efabce72fc7c8e5e87b145fc122048a1b4c5674ee9d1399bb52" +python-versions = ">=3.9,<4.0" +content-hash = "fec30c155fdf4518310435f840b374ff86183936452fed3f59ad8ee0fcfefac5" diff --git a/libs/partners/openai/pyproject.toml b/libs/partners/openai/pyproject.toml index 56d460b47f418..d4c3a5875d728 100644 --- a/libs/partners/openai/pyproject.toml +++ b/libs/partners/openai/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-openai" -version = "0.1.23" +version = "0.2.2" description = "An integration package connecting OpenAI and LangChain" authors = [] readme = "README.md" @@ -22,8 +22,8 @@ ignore_missing_imports = true "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-openai%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.35" +python = ">=3.9,<4.0" +langchain-core = "^0.3.9" openai = "^1.40.0" tiktoken = ">=0.7,<1" @@ -41,6 +41,7 @@ omit = [ "tests/*",] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5 --cov=langchain_openai" markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them", "scheduled: mark tests to run in scheduled testing",] asyncio_mode = "auto" +filterwarnings = [ "ignore::langchain_core._api.beta_decorator.LangChainBetaWarning",] [tool.poetry.group.test] optional = true diff --git a/libs/partners/openai/scripts/check_pydantic.sh b/libs/partners/openai/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/openai/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/openai/tests/integration_tests/chat_models/test_azure.py b/libs/partners/openai/tests/integration_tests/chat_models/test_azure.py index b62e9dfdd1a35..4ed531ad119ff 100644 --- a/libs/partners/openai/tests/integration_tests/chat_models/test_azure.py +++ b/libs/partners/openai/tests/integration_tests/chat_models/test_azure.py @@ -39,7 +39,7 @@ def _get_llm(**kwargs: Any) -> AzureChatOpenAI: @pytest.mark.scheduled @pytest.fixture def llm() -> AzureChatOpenAI: - return _get_llm(max_tokens=10) + return _get_llm(max_tokens=50) def test_chat_openai(llm: AzureChatOpenAI) -> None: diff --git a/libs/partners/openai/tests/integration_tests/chat_models/test_azure_standard.py b/libs/partners/openai/tests/integration_tests/chat_models/test_azure_standard.py index 41c20a942ac52..c99bfb1126e22 100644 --- a/libs/partners/openai/tests/integration_tests/chat_models/test_azure_standard.py +++ b/libs/partners/openai/tests/integration_tests/chat_models/test_azure_standard.py @@ -11,14 +11,9 @@ OPENAI_API_VERSION = os.environ.get("AZURE_OPENAI_API_VERSION", "") OPENAI_API_BASE = os.environ.get("AZURE_OPENAI_API_BASE", "") -OPENAI_API_KEY = os.environ.get("AZURE_OPENAI_API_KEY", "") -DEPLOYMENT_NAME = os.environ.get( - "AZURE_OPENAI_DEPLOYMENT_NAME", - os.environ.get("AZURE_OPENAI_CHAT_DEPLOYMENT_NAME", ""), -) -class TestOpenAIStandard(ChatModelIntegrationTests): +class TestAzureOpenAIStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> Type[BaseChatModel]: return AzureChatOpenAI @@ -26,10 +21,34 @@ def chat_model_class(self) -> Type[BaseChatModel]: @property def chat_model_params(self) -> dict: return { - "deployment_name": DEPLOYMENT_NAME, + "deployment_name": os.environ["AZURE_OPENAI_CHAT_DEPLOYMENT_NAME"], + "model": "gpt-4o", + "openai_api_version": OPENAI_API_VERSION, + "azure_endpoint": OPENAI_API_BASE, + } + + @property + def supports_image_inputs(self) -> bool: + return True + + @pytest.mark.xfail(reason="Not yet supported.") + def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: + super().test_usage_metadata_streaming(model) + + +class TestAzureOpenAIStandardLegacy(ChatModelIntegrationTests): + """Test a legacy model.""" + + @property + def chat_model_class(self) -> Type[BaseChatModel]: + return AzureChatOpenAI + + @property + def chat_model_params(self) -> dict: + return { + "deployment_name": os.environ["AZURE_OPENAI_LEGACY_CHAT_DEPLOYMENT_NAME"], "openai_api_version": OPENAI_API_VERSION, "azure_endpoint": OPENAI_API_BASE, - "api_key": OPENAI_API_KEY, } @pytest.mark.xfail(reason="Not yet supported.") diff --git a/libs/partners/openai/tests/integration_tests/chat_models/test_base.py b/libs/partners/openai/tests/integration_tests/chat_models/test_base.py index 551588976c127..950a52ce3ee93 100644 --- a/libs/partners/openai/tests/integration_tests/chat_models/test_base.py +++ b/libs/partners/openai/tests/integration_tests/chat_models/test_base.py @@ -20,13 +20,13 @@ ) from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_standard_tests.integration_tests.chat_models import ( _validate_tool_call_message, ) from langchain_standard_tests.integration_tests.chat_models import ( magic_function as invalid_magic_function, ) +from pydantic import BaseModel, Field from langchain_openai import ChatOpenAI from tests.unit_tests.fake.callbacks import FakeCallbackHandler @@ -238,30 +238,6 @@ class Person(BaseModel): assert isinstance(generation, AIMessage) -def test_chat_openai_extra_kwargs() -> None: - """Test extra kwargs to chat openai.""" - # Check that foo is saved in extra_kwargs. - llm = ChatOpenAI(foo=3, max_tokens=10) # type: ignore[call-arg] - assert llm.max_tokens == 10 - assert llm.model_kwargs == {"foo": 3} - - # Test that if extra_kwargs are provided, they are added to it. - llm = ChatOpenAI(foo=3, model_kwargs={"bar": 2}) # type: ignore[call-arg] - assert llm.model_kwargs == {"foo": 3, "bar": 2} - - # Test that if provided twice it errors - with pytest.raises(ValueError): - ChatOpenAI(foo=3, model_kwargs={"foo": 2}) # type: ignore[call-arg] - - # Test that if explicit param is specified in kwargs it errors - with pytest.raises(ValueError): - ChatOpenAI(model_kwargs={"temperature": 0.2}) - - # Test that "model" cannot be specified in kwargs - with pytest.raises(ValueError): - ChatOpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"}) - - @pytest.mark.scheduled def test_openai_streaming() -> None: """Test streaming tokens from OpenAI.""" diff --git a/libs/partners/openai/tests/integration_tests/chat_models/test_base_standard.py b/libs/partners/openai/tests/integration_tests/chat_models/test_base_standard.py index ddd33952c0c34..b021603aace41 100644 --- a/libs/partners/openai/tests/integration_tests/chat_models/test_base_standard.py +++ b/libs/partners/openai/tests/integration_tests/chat_models/test_base_standard.py @@ -1,12 +1,16 @@ """Standard LangChain interface tests""" -from typing import Type +from pathlib import Path +from typing import Dict, List, Literal, Type, cast from langchain_core.language_models import BaseChatModel +from langchain_core.messages import AIMessage from langchain_standard_tests.integration_tests import ChatModelIntegrationTests from langchain_openai import ChatOpenAI +REPO_ROOT_DIR = Path(__file__).parents[6] + class TestOpenAIStandard(ChatModelIntegrationTests): @property @@ -15,8 +19,56 @@ def chat_model_class(self) -> Type[BaseChatModel]: @property def chat_model_params(self) -> dict: - return {"model": "gpt-4o", "stream_usage": True} + return {"model": "gpt-4o-mini", "stream_usage": True} @property def supports_image_inputs(self) -> bool: return True + + @property + def supported_usage_metadata_details( + self, + ) -> Dict[ + Literal["invoke", "stream"], + List[ + Literal[ + "audio_input", + "audio_output", + "reasoning_output", + "cache_read_input", + "cache_creation_input", + ] + ], + ]: + return {"invoke": ["reasoning_output", "cache_read_input"], "stream": []} + + def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: + with open(REPO_ROOT_DIR / "README.md", "r") as f: + readme = f.read() + + input_ = f"""What's langchain? Here's the langchain README: + + {readme} + """ + llm = ChatOpenAI(model="gpt-4o-mini", stream_usage=True) + _invoke(llm, input_, stream) + # invoke twice so first invocation is cached + return _invoke(llm, input_, stream) + + def invoke_with_reasoning_output(self, *, stream: bool = False) -> AIMessage: + llm = ChatOpenAI(model="o1-mini", stream_usage=True, temperature=1) + input_ = ( + "explain the relationship between the 2008/9 economic crisis and the " + "startup ecosystem in the early 2010s" + ) + return _invoke(llm, input_, stream) + + +def _invoke(llm: ChatOpenAI, input_: str, stream: bool) -> AIMessage: + if stream: + full = None + for chunk in llm.stream(input_): + full = full + chunk if full else chunk # type: ignore[operator] + return cast(AIMessage, full) + else: + return cast(AIMessage, llm.invoke(input_)) diff --git a/libs/partners/openai/tests/integration_tests/embeddings/test_base.py b/libs/partners/openai/tests/integration_tests/embeddings/test_base.py index b7a4aa7c8c70c..ef16dd2f48a67 100644 --- a/libs/partners/openai/tests/integration_tests/embeddings/test_base.py +++ b/libs/partners/openai/tests/integration_tests/embeddings/test_base.py @@ -61,3 +61,12 @@ async def test_langchain_openai_embeddings_equivalent_to_raw_async() -> None: .embedding ) assert np.isclose(lc_output, direct_output).all() + + +def test_langchain_openai_embeddings_dimensions_large_num() -> None: + """Test openai embeddings.""" + documents = [f"foo bar {i}" for i in range(2000)] + embedding = OpenAIEmbeddings(model="text-embedding-3-small", dimensions=128) + output = embedding.embed_documents(documents) + assert len(output) == 2000 + assert len(output[0]) == 128 diff --git a/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_azure_standard.ambr b/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_azure_standard.ambr index 8233a605fda36..2b8c3563b9443 100644 --- a/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_azure_standard.ambr +++ b/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_azure_standard.ambr @@ -1,43 +1,6 @@ # serializer version: 1 # name: TestOpenAIStandard.test_serdes[serialized] dict({ - 'graph': dict({ - 'edges': list([ - dict({ - 'source': 0, - 'target': 1, - }), - dict({ - 'source': 1, - 'target': 2, - }), - ]), - 'nodes': list([ - dict({ - 'data': 'AzureChatOpenAIInput', - 'id': 0, - 'type': 'schema', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langchain', - 'chat_models', - 'azure_openai', - 'AzureChatOpenAI', - ]), - 'name': 'AzureChatOpenAI', - }), - 'id': 1, - 'type': 'runnable', - }), - dict({ - 'data': 'AzureChatOpenAIOutput', - 'id': 2, - 'type': 'schema', - }), - ]), - }), 'id': list([ 'langchain', 'chat_models', @@ -45,15 +8,11 @@ 'AzureChatOpenAI', ]), 'kwargs': dict({ - 'azure_ad_token': dict({ - 'id': list([ - 'AZURE_OPENAI_AD_TOKEN', - ]), - 'lc': 1, - 'type': 'secret', - }), 'azure_endpoint': 'https://test.azure.com', 'deployment_name': 'test', + 'disabled_params': dict({ + 'parallel_tool_calls': None, + }), 'max_retries': 2, 'max_tokens': 100, 'n': 1, diff --git a/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_base_standard.ambr b/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_base_standard.ambr index 02e27256e5b45..b7ab1ce9c072c 100644 --- a/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_base_standard.ambr +++ b/libs/partners/openai/tests/unit_tests/chat_models/__snapshots__/test_base_standard.ambr @@ -1,43 +1,6 @@ # serializer version: 1 # name: TestOpenAIStandard.test_serdes[serialized] dict({ - 'graph': dict({ - 'edges': list([ - dict({ - 'source': 0, - 'target': 1, - }), - dict({ - 'source': 1, - 'target': 2, - }), - ]), - 'nodes': list([ - dict({ - 'data': 'ChatOpenAIInput', - 'id': 0, - 'type': 'schema', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langchain', - 'chat_models', - 'openai', - 'ChatOpenAI', - ]), - 'name': 'ChatOpenAI', - }), - 'id': 1, - 'type': 'runnable', - }), - dict({ - 'data': 'ChatOpenAIOutput', - 'id': 2, - 'type': 'schema', - }), - ]), - }), 'id': list([ 'langchain', 'chat_models', @@ -56,7 +19,6 @@ 'lc': 1, 'type': 'secret', }), - 'openai_proxy': '', 'request_timeout': 60.0, 'stop': list([ ]), diff --git a/libs/partners/openai/tests/unit_tests/chat_models/test_base.py b/libs/partners/openai/tests/unit_tests/chat_models/test_base.py index 4e959f005990d..cc03698e5ef93 100644 --- a/libs/partners/openai/tests/unit_tests/chat_models/test_base.py +++ b/libs/partners/openai/tests/unit_tests/chat_models/test_base.py @@ -17,12 +17,13 @@ ToolMessage, ) from langchain_core.messages.ai import UsageMetadata -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel from langchain_openai import ChatOpenAI from langchain_openai.chat_models.base import ( _convert_dict_to_message, _convert_message_to_dict, + _create_usage_metadata, _format_message_content, ) @@ -633,7 +634,9 @@ def test_bind_tools_tool_choice(tool_choice: Any, strict: Optional[bool]) -> Non ) -@pytest.mark.parametrize("schema", [GenerateUsername, GenerateUsername.schema()]) +@pytest.mark.parametrize( + "schema", [GenerateUsername, GenerateUsername.model_json_schema()] +) @pytest.mark.parametrize("method", ["json_schema", "function_calling", "json_mode"]) @pytest.mark.parametrize("include_raw", [True, False]) @pytest.mark.parametrize("strict", [True, False, None]) @@ -694,3 +697,55 @@ def test_get_num_tokens_from_messages() -> None: expected = 176 actual = llm.get_num_tokens_from_messages(messages) assert expected == actual + + +class Foo(BaseModel): + bar: int + + +# class FooV1(BaseModelV1): +# bar: int + + +@pytest.mark.parametrize( + "schema", + [ + Foo + # FooV1 + ], +) +def test_schema_from_with_structured_output(schema: Type) -> None: + """Test schema from with_structured_output.""" + + llm = ChatOpenAI() + + structured_llm = llm.with_structured_output( + schema, method="json_schema", strict=True + ) + + expected = { + "properties": {"bar": {"title": "Bar", "type": "integer"}}, + "required": ["bar"], + "title": schema.__name__, + "type": "object", + } + actual = structured_llm.get_output_schema().model_json_schema() + assert actual == expected + + +def test__create_usage_metadata() -> None: + usage_metadata = { + "completion_tokens": 15, + "prompt_tokens_details": None, + "completion_tokens_details": None, + "prompt_tokens": 11, + "total_tokens": 26, + } + result = _create_usage_metadata(usage_metadata) + assert result == UsageMetadata( + output_tokens=15, + input_tokens=11, + total_tokens=26, + input_token_details={}, + output_token_details={}, + ) diff --git a/libs/partners/openai/tests/unit_tests/fake/callbacks.py b/libs/partners/openai/tests/unit_tests/fake/callbacks.py index 2beee4a2ddef0..d4b8d4b2c256b 100644 --- a/libs/partners/openai/tests/unit_tests/fake/callbacks.py +++ b/libs/partners/openai/tests/unit_tests/fake/callbacks.py @@ -6,7 +6,7 @@ from langchain_core.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class BaseFakeCallbackHandler(BaseModel): @@ -188,7 +188,7 @@ def on_retriever_end(self, *args: Any, **kwargs: Any) -> Any: def on_retriever_error(self, *args: Any, **kwargs: Any) -> Any: self.on_retriever_error_common() - def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": # type: ignore[override] return self @@ -266,5 +266,5 @@ async def on_agent_finish(self, *args: Any, **kwargs: Any) -> None: async def on_text(self, *args: Any, **kwargs: Any) -> None: self.on_text_common() - def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": + def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": # type: ignore[override] return self diff --git a/libs/partners/openai/tests/unit_tests/llms/test_base.py b/libs/partners/openai/tests/unit_tests/llms/test_base.py index 45955b097c331..e9b43190cd6d4 100644 --- a/libs/partners/openai/tests/unit_tests/llms/test_base.py +++ b/libs/partners/openai/tests/unit_tests/llms/test_base.py @@ -30,9 +30,12 @@ def test_openai_model_kwargs() -> None: assert llm.model_kwargs == {"foo": "bar"} -def test_openai_invalid_model_kwargs() -> None: - with pytest.raises(ValueError): - OpenAI(model_kwargs={"model_name": "foo"}) +def test_openai_fields_in_model_kwargs() -> None: + """Test that for backwards compatibility fields can be passed in as model_kwargs.""" + llm = OpenAI(model_kwargs={"model_name": "foo"}) + assert llm.model_name == "foo" + llm = OpenAI(model_kwargs={"model": "foo"}) + assert llm.model_name == "foo" def test_openai_incorrect_field() -> None: diff --git a/libs/partners/openai/tests/unit_tests/test_load.py b/libs/partners/openai/tests/unit_tests/test_load.py index 059a10b4bf988..d25b00a0b87e2 100644 --- a/libs/partners/openai/tests/unit_tests/test_load.py +++ b/libs/partners/openai/tests/unit_tests/test_load.py @@ -9,7 +9,7 @@ def test_loads_openai_llm() -> None: llm_string = dumps(llm) llm2 = loads(llm_string, secrets_map={"OPENAI_API_KEY": "hello"}) - assert llm2 == llm + assert llm2.dict() == llm.dict() llm_string_2 = dumps(llm2) assert llm_string_2 == llm_string assert isinstance(llm2, OpenAI) @@ -20,7 +20,7 @@ def test_load_openai_llm() -> None: llm_obj = dumpd(llm) llm2 = load(llm_obj, secrets_map={"OPENAI_API_KEY": "hello"}) - assert llm2 == llm + assert llm2.dict() == llm.dict() assert dumpd(llm2) == llm_obj assert isinstance(llm2, OpenAI) @@ -30,7 +30,7 @@ def test_loads_openai_chat() -> None: llm_string = dumps(llm) llm2 = loads(llm_string, secrets_map={"OPENAI_API_KEY": "hello"}) - assert llm2 == llm + assert llm2.dict() == llm.dict() llm_string_2 = dumps(llm2) assert llm_string_2 == llm_string assert isinstance(llm2, ChatOpenAI) @@ -41,6 +41,6 @@ def test_load_openai_chat() -> None: llm_obj = dumpd(llm) llm2 = load(llm_obj, secrets_map={"OPENAI_API_KEY": "hello"}) - assert llm2 == llm + assert llm2.dict() == llm.dict() assert dumpd(llm2) == llm_obj assert isinstance(llm2, ChatOpenAI) diff --git a/libs/partners/openai/tests/unit_tests/test_secrets.py b/libs/partners/openai/tests/unit_tests/test_secrets.py index 0fb13e35b2811..2c88858056c9b 100644 --- a/libs/partners/openai/tests/unit_tests/test_secrets.py +++ b/libs/partners/openai/tests/unit_tests/test_secrets.py @@ -2,7 +2,7 @@ import pytest from langchain_core.load import dumpd -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from pytest import CaptureFixture, MonkeyPatch from langchain_openai import ( diff --git a/libs/partners/pinecone/langchain_pinecone/embeddings.py b/libs/partners/pinecone/langchain_pinecone/embeddings.py index c0adecd1e86f5..2dc964ed562b8 100644 --- a/libs/partners/pinecone/langchain_pinecone/embeddings.py +++ b/libs/partners/pinecone/langchain_pinecone/embeddings.py @@ -1,16 +1,19 @@ import logging -from typing import Dict, Iterable, List, Optional +from typing import Any, Dict, Iterable, List, Optional import aiohttp from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import ( +from langchain_core.utils import secret_from_env +from pinecone import Pinecone as PineconeClient # type: ignore[import-untyped] +from pydantic import ( BaseModel, + ConfigDict, Field, + PrivateAttr, SecretStr, - root_validator, + model_validator, ) -from langchain_core.utils import secret_from_env -from pinecone import Pinecone as PineconeClient # type: ignore +from typing_extensions import Self logger = logging.getLogger(__name__) @@ -29,8 +32,8 @@ class PineconeEmbeddings(BaseModel, Embeddings): """ # Clients - _client: PineconeClient = Field(default=None, exclude=True) - _async_client: aiohttp.ClientSession = Field(default=None, exclude=True) + _client: PineconeClient = PrivateAttr(default=None) + _async_client: aiohttp.ClientSession = PrivateAttr(default=None) model: str """Model to use for example 'multilingual-e5-large'.""" # Config @@ -44,7 +47,7 @@ class PineconeEmbeddings(BaseModel, Embeddings): dimension: Optional[int] = None # show_progress_bar: bool = False - pinecone_api_key: Optional[SecretStr] = Field( + pinecone_api_key: SecretStr = Field( default_factory=secret_from_env( "PINECONE_API_KEY", error_message="Pinecone API key not found. Please set the PINECONE_API_KEY " @@ -56,12 +59,15 @@ class PineconeEmbeddings(BaseModel, Embeddings): If not provided, will look for the PINECONE_API_KEY environment variable.""" - class Config: - extra = "forbid" - allow_population_by_field_name = True + model_config = ConfigDict( + extra="forbid", + populate_by_name=True, + protected_namespaces=(), + ) - @root_validator(pre=True) - def set_default_config(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def set_default_config(cls, values: dict) -> Any: """Set default configuration based on model.""" default_config_map = { "multilingual-e5-large": { @@ -79,23 +85,23 @@ def set_default_config(cls, values: dict) -> dict: values[key] = value return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: dict) -> dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that Pinecone version and credentials exist in environment.""" - api_key_str = values["pinecone_api_key"].get_secret_value() + api_key_str = self.pinecone_api_key.get_secret_value() client = PineconeClient(api_key=api_key_str, source_tag="langchain") - values["_client"] = client + self._client = client # initialize async client - if not values.get("_async_client"): - values["_async_client"] = aiohttp.ClientSession( + if not self._async_client: + self._async_client = aiohttp.ClientSession( headers={ "Api-Key": api_key_str, "Content-Type": "application/json", "X-Pinecone-API-Version": "2024-07", } ) - return values + return self def _get_batch_iterator(self, texts: List[str]) -> Iterable: if self.batch_size is None: diff --git a/libs/partners/pinecone/poetry.lock b/libs/partners/pinecone/poetry.lock index 1a311e0cb871f..60cc866e24858 100644 --- a/libs/partners/pinecone/poetry.lock +++ b/libs/partners/pinecone/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. [[package]] name = "aiohttp" @@ -121,9 +121,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -159,32 +156,32 @@ files = [ [[package]] name = "attrs" -version = "23.2.0" +version = "24.2.0" description = "Classes Without Boilerplate" optional = false python-versions = ">=3.7" files = [ - {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, - {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, ] [package.extras] -cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[tests]", "pre-commit"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] -tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] -tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -473,13 +470,13 @@ trio = ["trio (>=0.22.0,<0.26.0)"] [[package]] name = "httpx" -version = "0.27.0" +version = "0.27.2" description = "The next generation HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, - {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, ] [package.dependencies] @@ -494,16 +491,17 @@ brotli = ["brotli", "brotlicffi"] cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.7" +version = "3.8" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, + {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, ] [[package]] @@ -517,6 +515,76 @@ files = [ {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, ] +[[package]] +name = "jiter" +version = "0.5.0" +description = "Fast iterable JSON parser." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jiter-0.5.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b599f4e89b3def9a94091e6ee52e1d7ad7bc33e238ebb9c4c63f211d74822c3f"}, + {file = "jiter-0.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2a063f71c4b06225543dddadbe09d203dc0c95ba352d8b85f1221173480a71d5"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:acc0d5b8b3dd12e91dd184b87273f864b363dfabc90ef29a1092d269f18c7e28"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c22541f0b672f4d741382a97c65609332a783501551445ab2df137ada01e019e"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:63314832e302cc10d8dfbda0333a384bf4bcfce80d65fe99b0f3c0da8945a91a"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a25fbd8a5a58061e433d6fae6d5298777c0814a8bcefa1e5ecfff20c594bd749"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:503b2c27d87dfff5ab717a8200fbbcf4714516c9d85558048b1fc14d2de7d8dc"}, + {file = "jiter-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6d1f3d27cce923713933a844872d213d244e09b53ec99b7a7fdf73d543529d6d"}, + {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c95980207b3998f2c3b3098f357994d3fd7661121f30669ca7cb945f09510a87"}, + {file = "jiter-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:afa66939d834b0ce063f57d9895e8036ffc41c4bd90e4a99631e5f261d9b518e"}, + {file = "jiter-0.5.0-cp310-none-win32.whl", hash = "sha256:f16ca8f10e62f25fd81d5310e852df6649af17824146ca74647a018424ddeccf"}, + {file = "jiter-0.5.0-cp310-none-win_amd64.whl", hash = "sha256:b2950e4798e82dd9176935ef6a55cf6a448b5c71515a556da3f6b811a7844f1e"}, + {file = "jiter-0.5.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d4c8e1ed0ef31ad29cae5ea16b9e41529eb50a7fba70600008e9f8de6376d553"}, + {file = "jiter-0.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c6f16e21276074a12d8421692515b3fd6d2ea9c94fd0734c39a12960a20e85f3"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5280e68e7740c8c128d3ae5ab63335ce6d1fb6603d3b809637b11713487af9e6"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:583c57fc30cc1fec360e66323aadd7fc3edeec01289bfafc35d3b9dcb29495e4"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26351cc14507bdf466b5f99aba3df3143a59da75799bf64a53a3ad3155ecded9"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829df14d656b3fb87e50ae8b48253a8851c707da9f30d45aacab2aa2ba2d614"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a42a4bdcf7307b86cb863b2fb9bb55029b422d8f86276a50487982d99eed7c6e"}, + {file = "jiter-0.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04d461ad0aebf696f8da13c99bc1b3e06f66ecf6cfd56254cc402f6385231c06"}, + {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e6375923c5f19888c9226582a124b77b622f8fd0018b843c45eeb19d9701c403"}, + {file = "jiter-0.5.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2cec323a853c24fd0472517113768c92ae0be8f8c384ef4441d3632da8baa646"}, + {file = "jiter-0.5.0-cp311-none-win32.whl", hash = "sha256:aa1db0967130b5cab63dfe4d6ff547c88b2a394c3410db64744d491df7f069bb"}, + {file = "jiter-0.5.0-cp311-none-win_amd64.whl", hash = "sha256:aa9d2b85b2ed7dc7697597dcfaac66e63c1b3028652f751c81c65a9f220899ae"}, + {file = "jiter-0.5.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:9f664e7351604f91dcdd557603c57fc0d551bc65cc0a732fdacbf73ad335049a"}, + {file = "jiter-0.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:044f2f1148b5248ad2c8c3afb43430dccf676c5a5834d2f5089a4e6c5bbd64df"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:702e3520384c88b6e270c55c772d4bd6d7b150608dcc94dea87ceba1b6391248"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:528d742dcde73fad9d63e8242c036ab4a84389a56e04efd854062b660f559544"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8cf80e5fe6ab582c82f0c3331df27a7e1565e2dcf06265afd5173d809cdbf9ba"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:44dfc9ddfb9b51a5626568ef4e55ada462b7328996294fe4d36de02fce42721f"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c451f7922992751a936b96c5f5b9bb9312243d9b754c34b33d0cb72c84669f4e"}, + {file = "jiter-0.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:308fce789a2f093dca1ff91ac391f11a9f99c35369117ad5a5c6c4903e1b3e3a"}, + {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7f5ad4a7c6b0d90776fdefa294f662e8a86871e601309643de30bf94bb93a64e"}, + {file = "jiter-0.5.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ea189db75f8eca08807d02ae27929e890c7d47599ce3d0a6a5d41f2419ecf338"}, + {file = "jiter-0.5.0-cp312-none-win32.whl", hash = "sha256:e3bbe3910c724b877846186c25fe3c802e105a2c1fc2b57d6688b9f8772026e4"}, + {file = "jiter-0.5.0-cp312-none-win_amd64.whl", hash = "sha256:a586832f70c3f1481732919215f36d41c59ca080fa27a65cf23d9490e75b2ef5"}, + {file = "jiter-0.5.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f04bc2fc50dc77be9d10f73fcc4e39346402ffe21726ff41028f36e179b587e6"}, + {file = "jiter-0.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6f433a4169ad22fcb550b11179bb2b4fd405de9b982601914ef448390b2954f3"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad4a6398c85d3a20067e6c69890ca01f68659da94d74c800298581724e426c7e"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6baa88334e7af3f4d7a5c66c3a63808e5efbc3698a1c57626541ddd22f8e4fbf"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ece0a115c05efca597c6d938f88c9357c843f8c245dbbb53361a1c01afd7148"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:335942557162ad372cc367ffaf93217117401bf930483b4b3ebdb1223dbddfa7"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:649b0ee97a6e6da174bffcb3c8c051a5935d7d4f2f52ea1583b5b3e7822fbf14"}, + {file = "jiter-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4be354c5de82157886ca7f5925dbda369b77344b4b4adf2723079715f823989"}, + {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5206144578831a6de278a38896864ded4ed96af66e1e63ec5dd7f4a1fce38a3a"}, + {file = "jiter-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8120c60f8121ac3d6f072b97ef0e71770cc72b3c23084c72c4189428b1b1d3b6"}, + {file = "jiter-0.5.0-cp38-none-win32.whl", hash = "sha256:6f1223f88b6d76b519cb033a4d3687ca157c272ec5d6015c322fc5b3074d8a5e"}, + {file = "jiter-0.5.0-cp38-none-win_amd64.whl", hash = "sha256:c59614b225d9f434ea8fc0d0bec51ef5fa8c83679afedc0433905994fb36d631"}, + {file = "jiter-0.5.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0af3838cfb7e6afee3f00dc66fa24695199e20ba87df26e942820345b0afc566"}, + {file = "jiter-0.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:550b11d669600dbc342364fd4adbe987f14d0bbedaf06feb1b983383dcc4b961"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:489875bf1a0ffb3cb38a727b01e6673f0f2e395b2aad3c9387f94187cb214bbf"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b250ca2594f5599ca82ba7e68785a669b352156260c5362ea1b4e04a0f3e2389"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ea18e01f785c6667ca15407cd6dabbe029d77474d53595a189bdc813347218e"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:462a52be85b53cd9bffd94e2d788a09984274fe6cebb893d6287e1c296d50653"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92cc68b48d50fa472c79c93965e19bd48f40f207cb557a8346daa020d6ba973b"}, + {file = "jiter-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c834133e59a8521bc87ebcad773608c6fa6ab5c7a022df24a45030826cf10bc"}, + {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab3a71ff31cf2d45cb216dc37af522d335211f3a972d2fe14ea99073de6cb104"}, + {file = "jiter-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cccd3af9c48ac500c95e1bcbc498020c87e1781ff0345dd371462d67b76643eb"}, + {file = "jiter-0.5.0-cp39-none-win32.whl", hash = "sha256:368084d8d5c4fc40ff7c3cc513c4f73e02c85f6009217922d0823a48ee7adf61"}, + {file = "jiter-0.5.0-cp39-none-win_amd64.whl", hash = "sha256:ce03f7b4129eb72f1687fa11300fbf677b02990618428934662406d2a76742a1"}, + {file = "jiter-0.5.0.tar.gz", hash = "sha256:1d916ba875bcab5c5f7d927df998c4cb694d27dceddf3392e58beaf10563368a"}, +] + [[package]] name = "jsonpatch" version = "1.33" @@ -544,19 +612,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.26" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -569,16 +637,16 @@ url = "../../core" [[package]] name = "langchain-openai" -version = "0.1.20" +version = "0.2.0" description = "An integration package connecting OpenAI and LangChain" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.26" -openai = "^1.32.0" +langchain-core = "^0.3" +openai = "^1.40.0" tiktoken = ">=0.7,<1" [package.source] @@ -587,16 +655,17 @@ url = "../openai" [[package]] name = "langsmith" -version = "0.1.93" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.93-py3-none-any.whl", hash = "sha256:811210b9d5f108f36431bd7b997eb9476a9ecf5a2abd7ddbb606c1cdcf0f43ce"}, - {file = "langsmith-0.1.93.tar.gz", hash = "sha256:285b6ad3a54f50fa8eb97b5f600acc57d0e37e139dd8cf2111a117d0435ba9b4"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, @@ -606,137 +675,142 @@ requests = ">=2,<3" [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" -version = "1.11.0" +version = "1.11.2" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3824187c99b893f90c845bab405a585d1ced4ff55421fdf5c84cb7710995229"}, - {file = "mypy-1.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:96f8dbc2c85046c81bcddc246232d500ad729cb720da4e20fce3b542cab91287"}, - {file = "mypy-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1a5d8d8dd8613a3e2be3eae829ee891b6b2de6302f24766ff06cb2875f5be9c6"}, - {file = "mypy-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:72596a79bbfb195fd41405cffa18210af3811beb91ff946dbcb7368240eed6be"}, - {file = "mypy-1.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:35ce88b8ed3a759634cb4eb646d002c4cef0a38f20565ee82b5023558eb90c00"}, - {file = "mypy-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:98790025861cb2c3db8c2f5ad10fc8c336ed2a55f4daf1b8b3f877826b6ff2eb"}, - {file = "mypy-1.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:25bcfa75b9b5a5f8d67147a54ea97ed63a653995a82798221cca2a315c0238c1"}, - {file = "mypy-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0bea2a0e71c2a375c9fa0ede3d98324214d67b3cbbfcbd55ac8f750f85a414e3"}, - {file = "mypy-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d2b3d36baac48e40e3064d2901f2fbd2a2d6880ec6ce6358825c85031d7c0d4d"}, - {file = "mypy-1.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:d8e2e43977f0e09f149ea69fd0556623919f816764e26d74da0c8a7b48f3e18a"}, - {file = "mypy-1.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1d44c1e44a8be986b54b09f15f2c1a66368eb43861b4e82573026e04c48a9e20"}, - {file = "mypy-1.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cea3d0fb69637944dd321f41bc896e11d0fb0b0aa531d887a6da70f6e7473aba"}, - {file = "mypy-1.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a83ec98ae12d51c252be61521aa5731f5512231d0b738b4cb2498344f0b840cd"}, - {file = "mypy-1.11.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c7b73a856522417beb78e0fb6d33ef89474e7a622db2653bc1285af36e2e3e3d"}, - {file = "mypy-1.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:f2268d9fcd9686b61ab64f077be7ffbc6fbcdfb4103e5dd0cc5eaab53a8886c2"}, - {file = "mypy-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:940bfff7283c267ae6522ef926a7887305945f716a7704d3344d6d07f02df850"}, - {file = "mypy-1.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:14f9294528b5f5cf96c721f231c9f5b2733164e02c1c018ed1a0eff8a18005ac"}, - {file = "mypy-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7b54c27783991399046837df5c7c9d325d921394757d09dbcbf96aee4649fe9"}, - {file = "mypy-1.11.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:65f190a6349dec29c8d1a1cd4aa71284177aee5949e0502e6379b42873eddbe7"}, - {file = "mypy-1.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:dbe286303241fea8c2ea5466f6e0e6a046a135a7e7609167b07fd4e7baf151bf"}, - {file = "mypy-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:104e9c1620c2675420abd1f6c44bab7dd33cc85aea751c985006e83dcd001095"}, - {file = "mypy-1.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f006e955718ecd8d159cee9932b64fba8f86ee6f7728ca3ac66c3a54b0062abe"}, - {file = "mypy-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:becc9111ca572b04e7e77131bc708480cc88a911adf3d0239f974c034b78085c"}, - {file = "mypy-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6801319fe76c3f3a3833f2b5af7bd2c17bb93c00026a2a1b924e6762f5b19e13"}, - {file = "mypy-1.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:c1a184c64521dc549324ec6ef7cbaa6b351912be9cb5edb803c2808a0d7e85ac"}, - {file = "mypy-1.11.0-py3-none-any.whl", hash = "sha256:56913ec8c7638b0091ef4da6fcc9136896914a9d60d54670a75880c3e5b99ace"}, - {file = "mypy-1.11.0.tar.gz", hash = "sha256:93743608c7348772fdc717af4aeee1997293a1ad04bc0ea6efa15bf65385c538"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, + {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, + {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, + {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, + {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, + {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, + {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, + {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, + {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, + {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, + {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, + {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, + {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, + {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, + {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, + {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, + {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, + {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, ] [package.dependencies] @@ -761,43 +835,6 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -845,85 +882,92 @@ files = [ [[package]] name = "openai" -version = "1.37.0" +version = "1.45.0" description = "The official Python library for the openai API" optional = false python-versions = ">=3.7.1" files = [ - {file = "openai-1.37.0-py3-none-any.whl", hash = "sha256:a903245c0ecf622f2830024acdaa78683c70abb8e9d37a497b851670864c9f73"}, - {file = "openai-1.37.0.tar.gz", hash = "sha256:dc8197fc40ab9d431777b6620d962cc49f4544ffc3011f03ce0a805e6eb54adb"}, + {file = "openai-1.45.0-py3-none-any.whl", hash = "sha256:2f1f7b7cf90f038a9f1c24f0d26c0f1790c102ec5acd07ffd70a9b7feac1ff4e"}, + {file = "openai-1.45.0.tar.gz", hash = "sha256:731207d10637335413aa3c0955f8f8df30d7636a4a0f9c381f2209d32cf8de97"}, ] [package.dependencies] anyio = ">=3.5.0,<5" distro = ">=1.7.0,<2" httpx = ">=0.23.0,<1" +jiter = ">=0.4.0,<1" pydantic = ">=1.9.0,<3" sniffio = "*" tqdm = ">4" -typing-extensions = ">=4.7,<5" +typing-extensions = ">=4.11,<5" [package.extras] datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] [[package]] name = "orjson" -version = "3.10.6" +version = "3.10.7" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = false python-versions = ">=3.8" files = [ - {file = "orjson-3.10.6-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:fb0ee33124db6eaa517d00890fc1a55c3bfe1cf78ba4a8899d71a06f2d6ff5c7"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c1c4b53b24a4c06547ce43e5fee6ec4e0d8fe2d597f4647fc033fd205707365"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eadc8fd310edb4bdbd333374f2c8fec6794bbbae99b592f448d8214a5e4050c0"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:61272a5aec2b2661f4fa2b37c907ce9701e821b2c1285d5c3ab0207ebd358d38"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57985ee7e91d6214c837936dc1608f40f330a6b88bb13f5a57ce5257807da143"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:633a3b31d9d7c9f02d49c4ab4d0a86065c4a6f6adc297d63d272e043472acab5"}, - {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1c680b269d33ec444afe2bdc647c9eb73166fa47a16d9a75ee56a374f4a45f43"}, - {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f759503a97a6ace19e55461395ab0d618b5a117e8d0fbb20e70cfd68a47327f2"}, - {file = "orjson-3.10.6-cp310-none-win32.whl", hash = "sha256:95a0cce17f969fb5391762e5719575217bd10ac5a189d1979442ee54456393f3"}, - {file = "orjson-3.10.6-cp310-none-win_amd64.whl", hash = "sha256:df25d9271270ba2133cc88ee83c318372bdc0f2cd6f32e7a450809a111efc45c"}, - {file = "orjson-3.10.6-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:b1ec490e10d2a77c345def52599311849fc063ae0e67cf4f84528073152bb2ba"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55d43d3feb8f19d07e9f01e5b9be4f28801cf7c60d0fa0d279951b18fae1932b"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac3045267e98fe749408eee1593a142e02357c5c99be0802185ef2170086a863"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c27bc6a28ae95923350ab382c57113abd38f3928af3c80be6f2ba7eb8d8db0b0"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d27456491ca79532d11e507cadca37fb8c9324a3976294f68fb1eff2dc6ced5a"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05ac3d3916023745aa3b3b388e91b9166be1ca02b7c7e41045da6d12985685f0"}, - {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1335d4ef59ab85cab66fe73fd7a4e881c298ee7f63ede918b7faa1b27cbe5212"}, - {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4bbc6d0af24c1575edc79994c20e1b29e6fb3c6a570371306db0993ecf144dc5"}, - {file = "orjson-3.10.6-cp311-none-win32.whl", hash = "sha256:450e39ab1f7694465060a0550b3f6d328d20297bf2e06aa947b97c21e5241fbd"}, - {file = "orjson-3.10.6-cp311-none-win_amd64.whl", hash = "sha256:227df19441372610b20e05bdb906e1742ec2ad7a66ac8350dcfd29a63014a83b"}, - {file = "orjson-3.10.6-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:ea2977b21f8d5d9b758bb3f344a75e55ca78e3ff85595d248eee813ae23ecdfb"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6f3d167d13a16ed263b52dbfedff52c962bfd3d270b46b7518365bcc2121eed"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f710f346e4c44a4e8bdf23daa974faede58f83334289df80bc9cd12fe82573c7"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7275664f84e027dcb1ad5200b8b18373e9c669b2a9ec33d410c40f5ccf4b257e"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0943e4c701196b23c240b3d10ed8ecd674f03089198cf503105b474a4f77f21f"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:446dee5a491b5bc7d8f825d80d9637e7af43f86a331207b9c9610e2f93fee22a"}, - {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:64c81456d2a050d380786413786b057983892db105516639cb5d3ee3c7fd5148"}, - {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:960db0e31c4e52fa0fc3ecbaea5b2d3b58f379e32a95ae6b0ebeaa25b93dfd34"}, - {file = "orjson-3.10.6-cp312-none-win32.whl", hash = "sha256:a6ea7afb5b30b2317e0bee03c8d34c8181bc5a36f2afd4d0952f378972c4efd5"}, - {file = "orjson-3.10.6-cp312-none-win_amd64.whl", hash = "sha256:874ce88264b7e655dde4aeaacdc8fd772a7962faadfb41abe63e2a4861abc3dc"}, - {file = "orjson-3.10.6-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:66680eae4c4e7fc193d91cfc1353ad6d01b4801ae9b5314f17e11ba55e934183"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caff75b425db5ef8e8f23af93c80f072f97b4fb3afd4af44482905c9f588da28"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3722fddb821b6036fd2a3c814f6bd9b57a89dc6337b9924ecd614ebce3271394"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2c116072a8533f2fec435fde4d134610f806bdac20188c7bd2081f3e9e0133f"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6eeb13218c8cf34c61912e9df2de2853f1d009de0e46ea09ccdf3d757896af0a"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:965a916373382674e323c957d560b953d81d7a8603fbeee26f7b8248638bd48b"}, - {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03c95484d53ed8e479cade8628c9cea00fd9d67f5554764a1110e0d5aa2de96e"}, - {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:e060748a04cccf1e0a6f2358dffea9c080b849a4a68c28b1b907f272b5127e9b"}, - {file = "orjson-3.10.6-cp38-none-win32.whl", hash = "sha256:738dbe3ef909c4b019d69afc19caf6b5ed0e2f1c786b5d6215fbb7539246e4c6"}, - {file = "orjson-3.10.6-cp38-none-win_amd64.whl", hash = "sha256:d40f839dddf6a7d77114fe6b8a70218556408c71d4d6e29413bb5f150a692ff7"}, - {file = "orjson-3.10.6-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:697a35a083c4f834807a6232b3e62c8b280f7a44ad0b759fd4dce748951e70db"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd502f96bf5ea9a61cbc0b2b5900d0dd68aa0da197179042bdd2be67e51a1e4b"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f215789fb1667cdc874c1b8af6a84dc939fd802bf293a8334fce185c79cd359b"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2debd8ddce948a8c0938c8c93ade191d2f4ba4649a54302a7da905a81f00b56"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5410111d7b6681d4b0d65e0f58a13be588d01b473822483f77f513c7f93bd3b2"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb1f28a137337fdc18384079fa5726810681055b32b92253fa15ae5656e1dddb"}, - {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:bf2fbbce5fe7cd1aa177ea3eab2b8e6a6bc6e8592e4279ed3db2d62e57c0e1b2"}, - {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:79b9b9e33bd4c517445a62b90ca0cc279b0f1f3970655c3df9e608bc3f91741a"}, - {file = "orjson-3.10.6-cp39-none-win32.whl", hash = "sha256:30b0a09a2014e621b1adf66a4f705f0809358350a757508ee80209b2d8dae219"}, - {file = "orjson-3.10.6-cp39-none-win_amd64.whl", hash = "sha256:49e3bc615652617d463069f91b867a4458114c5b104e13b7ae6872e5f79d0844"}, - {file = "orjson-3.10.6.tar.gz", hash = "sha256:e54b63d0a7c6c54a5f5f726bc93a2078111ef060fec4ecbf34c5db800ca3b3a7"}, + {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, + {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, + {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, + {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, + {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, + {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, + {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, + {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, + {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, + {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, + {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, + {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, + {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, + {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, + {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, + {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, + {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, + {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, + {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, + {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, ] [[package]] @@ -939,18 +983,18 @@ files = [ [[package]] name = "pinecone-client" -version = "5.0.0" +version = "5.0.1" description = "Pinecone client and SDK" optional = false python-versions = "<4.0,>=3.8" files = [ - {file = "pinecone_client-5.0.0-py3-none-any.whl", hash = "sha256:243a58b761835a05629fe5bfc863ffa49c89d58e700b869e7b57ed7822c14311"}, - {file = "pinecone_client-5.0.0.tar.gz", hash = "sha256:da2c10214a72b452e88a861a6db469ba6bf7caec22a0324467018d54188fffcd"}, + {file = "pinecone_client-5.0.1-py3-none-any.whl", hash = "sha256:c8f7835e1045ba84e295f217a8e85573ffb80b41501bbc1af6d92c9631c567a7"}, + {file = "pinecone_client-5.0.1.tar.gz", hash = "sha256:11c33ff5d1c38a6ce69e69fe532c0f22f312fb28d761bb30b3767816d3181d64"}, ] [package.dependencies] certifi = ">=2019.11.17" -pinecone-plugin-inference = "1.0.2" +pinecone-plugin-inference = ">=1.0.3,<2.0.0" pinecone-plugin-interface = ">=0.0.7,<0.0.8" tqdm = ">=4.64.1" typing-extensions = ">=3.7.4" @@ -964,17 +1008,16 @@ grpc = ["googleapis-common-protos (>=1.53.0)", "grpcio (>=1.44.0)", "grpcio (>=1 [[package]] name = "pinecone-plugin-inference" -version = "1.0.2" +version = "1.1.0" description = "Embeddings plugin for Pinecone SDK" optional = false python-versions = "<4.0,>=3.8" files = [ - {file = "pinecone_plugin_inference-1.0.2-py3-none-any.whl", hash = "sha256:ef94e7f51554e780408cf1507888b120bb0d185b8485a903cbeb9d0176ee03f1"}, - {file = "pinecone_plugin_inference-1.0.2.tar.gz", hash = "sha256:dda62d9ff44dbbf191b11e6e884235f329cf0ec22edc616fe7efcb1e479e6a9a"}, + {file = "pinecone_plugin_inference-1.1.0-py3-none-any.whl", hash = "sha256:32c61aba21c9a28fdcd0e782204c1ca641aeb3fd6e42764fbf0de8186eb657ec"}, + {file = "pinecone_plugin_inference-1.1.0.tar.gz", hash = "sha256:283e5ae4590b901bf2179beb56fc3d1b715e63582f37ec7abb0708cf70912d1f"}, ] [package.dependencies] -pinecone-client = ">=4.1.1,<6.0.0" pinecone-plugin-interface = ">=0.0.7,<0.0.8" [[package]] @@ -1005,119 +1048,120 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1211,149 +1255,167 @@ six = ">=1.5" [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "regex" -version = "2024.5.15" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a81e3cfbae20378d75185171587cbf756015ccb14840702944f014e0d93ea09f"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b59138b219ffa8979013be7bc85bb60c6f7b7575df3d56dc1e403a438c7a3f6"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0bd000c6e266927cb7a1bc39d55be95c4b4f65c5be53e659537537e019232b1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eaa7ddaf517aa095fa8da0b5015c44d03da83f5bd49c87961e3c997daed0de7"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba68168daedb2c0bab7fd7e00ced5ba90aebf91024dea3c88ad5063c2a562cca"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6e8d717bca3a6e2064fc3a08df5cbe366369f4b052dcd21b7416e6d71620dca1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1337b7dbef9b2f71121cdbf1e97e40de33ff114801263b275aafd75303bd62b5"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9ebd0a36102fcad2f03696e8af4ae682793a5d30b46c647eaf280d6cfb32796"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9efa1a32ad3a3ea112224897cdaeb6aa00381627f567179c0314f7b65d354c62"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1595f2d10dff3d805e054ebdc41c124753631b6a471b976963c7b28543cf13b0"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b802512f3e1f480f41ab5f2cfc0e2f761f08a1f41092d6718868082fc0d27143"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a0981022dccabca811e8171f913de05720590c915b033b7e601f35ce4ea7019f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:19068a6a79cf99a19ccefa44610491e9ca02c2be3305c7760d3831d38a467a6f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b5269484f6126eee5e687785e83c6b60aad7663dafe842b34691157e5083e53"}, - {file = "regex-2024.5.15-cp310-cp310-win32.whl", hash = "sha256:ada150c5adfa8fbcbf321c30c751dc67d2f12f15bd183ffe4ec7cde351d945b3"}, - {file = "regex-2024.5.15-cp310-cp310-win_amd64.whl", hash = "sha256:ac394ff680fc46b97487941f5e6ae49a9f30ea41c6c6804832063f14b2a5a145"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f5b1dff3ad008dccf18e652283f5e5339d70bf8ba7c98bf848ac33db10f7bc7a"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6a2b494a76983df8e3d3feea9b9ffdd558b247e60b92f877f93a1ff43d26656"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a32b96f15c8ab2e7d27655969a23895eb799de3665fa94349f3b2fbfd547236f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10002e86e6068d9e1c91eae8295ef690f02f913c57db120b58fdd35a6bb1af35"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec54d5afa89c19c6dd8541a133be51ee1017a38b412b1321ccb8d6ddbeb4cf7d"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10e4ce0dca9ae7a66e6089bb29355d4432caed736acae36fef0fdd7879f0b0cb"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e507ff1e74373c4d3038195fdd2af30d297b4f0950eeda6f515ae3d84a1770f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1f059a4d795e646e1c37665b9d06062c62d0e8cc3c511fe01315973a6542e40"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0721931ad5fe0dda45d07f9820b90b2148ccdd8e45bb9e9b42a146cb4f695649"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:833616ddc75ad595dee848ad984d067f2f31be645d603e4d158bba656bbf516c"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:287eb7f54fc81546346207c533ad3c2c51a8d61075127d7f6d79aaf96cdee890"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:19dfb1c504781a136a80ecd1fff9f16dddf5bb43cec6871778c8a907a085bb3d"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:119af6e56dce35e8dfb5222573b50c89e5508d94d55713c75126b753f834de68"}, - {file = "regex-2024.5.15-cp311-cp311-win32.whl", hash = "sha256:1c1c174d6ec38d6c8a7504087358ce9213d4332f6293a94fbf5249992ba54efa"}, - {file = "regex-2024.5.15-cp311-cp311-win_amd64.whl", hash = "sha256:9e717956dcfd656f5055cc70996ee2cc82ac5149517fc8e1b60261b907740201"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:632b01153e5248c134007209b5c6348a544ce96c46005d8456de1d552455b014"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e64198f6b856d48192bf921421fdd8ad8eb35e179086e99e99f711957ffedd6e"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68811ab14087b2f6e0fc0c2bae9ad689ea3584cad6917fc57be6a48bbd012c49"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ec0c2fea1e886a19c3bee0cd19d862b3aa75dcdfb42ebe8ed30708df64687a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0c0c0003c10f54a591d220997dd27d953cd9ccc1a7294b40a4be5312be8797b"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2431b9e263af1953c55abbd3e2efca67ca80a3de8a0437cb58e2421f8184717a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a605586358893b483976cffc1723fb0f83e526e8f14c6e6614e75919d9862cf"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391d7f7f1e409d192dba8bcd42d3e4cf9e598f3979cdaed6ab11288da88cb9f2"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9ff11639a8d98969c863d4617595eb5425fd12f7c5ef6621a4b74b71ed8726d5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4eee78a04e6c67e8391edd4dad3279828dd66ac4b79570ec998e2155d2e59fd5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8fe45aa3f4aa57faabbc9cb46a93363edd6197cbc43523daea044e9ff2fea83e"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d0a3d8d6acf0c78a1fff0e210d224b821081330b8524e3e2bc5a68ef6ab5803d"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c486b4106066d502495b3025a0a7251bf37ea9540433940a23419461ab9f2a80"}, - {file = "regex-2024.5.15-cp312-cp312-win32.whl", hash = "sha256:c49e15eac7c149f3670b3e27f1f28a2c1ddeccd3a2812cba953e01be2ab9b5fe"}, - {file = "regex-2024.5.15-cp312-cp312-win_amd64.whl", hash = "sha256:673b5a6da4557b975c6c90198588181029c60793835ce02f497ea817ff647cb2"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87e2a9c29e672fc65523fb47a90d429b70ef72b901b4e4b1bd42387caf0d6835"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3bea0ba8b73b71b37ac833a7f3fd53825924165da6a924aec78c13032f20850"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfc4f82cabe54f1e7f206fd3d30fda143f84a63fe7d64a81558d6e5f2e5aaba9"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5bb9425fe881d578aeca0b2b4b3d314ec88738706f66f219c194d67179337cb"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64c65783e96e563103d641760664125e91bd85d8e49566ee560ded4da0d3e704"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cf2430df4148b08fb4324b848672514b1385ae3807651f3567871f130a728cc3"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5397de3219a8b08ae9540c48f602996aa6b0b65d5a61683e233af8605c42b0f2"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455705d34b4154a80ead722f4f185b04c4237e8e8e33f265cd0798d0e44825fa"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b2b6f1b3bb6f640c1a92be3bbfbcb18657b125b99ecf141fb3310b5282c7d4ed"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3ad070b823ca5890cab606c940522d05d3d22395d432f4aaaf9d5b1653e47ced"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5b5467acbfc153847d5adb21e21e29847bcb5870e65c94c9206d20eb4e99a384"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e6662686aeb633ad65be2a42b4cb00178b3fbf7b91878f9446075c404ada552f"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2b4c884767504c0e2401babe8b5b7aea9148680d2e157fa28f01529d1f7fcf67"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3cd7874d57f13bf70078f1ff02b8b0aa48d5b9ed25fc48547516c6aba36f5741"}, - {file = "regex-2024.5.15-cp38-cp38-win32.whl", hash = "sha256:e4682f5ba31f475d58884045c1a97a860a007d44938c4c0895f41d64481edbc9"}, - {file = "regex-2024.5.15-cp38-cp38-win_amd64.whl", hash = "sha256:d99ceffa25ac45d150e30bd9ed14ec6039f2aad0ffa6bb87a5936f5782fc1569"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13cdaf31bed30a1e1c2453ef6015aa0983e1366fad2667657dbcac7b02f67133"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cac27dcaa821ca271855a32188aa61d12decb6fe45ffe3e722401fe61e323cd1"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7dbe2467273b875ea2de38ded4eba86cbcbc9a1a6d0aa11dcf7bd2e67859c435"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f18a9a3513a99c4bef0e3efd4c4a5b11228b48aa80743be822b71e132ae4f5"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d347a741ea871c2e278fde6c48f85136c96b8659b632fb57a7d1ce1872547600"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1878b8301ed011704aea4c806a3cadbd76f84dece1ec09cc9e4dc934cfa5d4da"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4babf07ad476aaf7830d77000874d7611704a7fcf68c9c2ad151f5d94ae4bfc4"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cb514e137cb3488bce23352af3e12fb0dbedd1ee6e60da053c69fb1b29cc6c"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cdd09d47c0b2efee9378679f8510ee6955d329424c659ab3c5e3a6edea696294"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:72d7a99cd6b8f958e85fc6ca5b37c4303294954eac1376535b03c2a43eb72629"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:a094801d379ab20c2135529948cb84d417a2169b9bdceda2a36f5f10977ebc16"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c0c18345010870e58238790a6779a1219b4d97bd2e77e1140e8ee5d14df071aa"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:16093f563098448ff6b1fa68170e4acbef94e6b6a4e25e10eae8598bb1694b5d"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e38a7d4e8f633a33b4c7350fbd8bad3b70bf81439ac67ac38916c4a86b465456"}, - {file = "regex-2024.5.15-cp39-cp39-win32.whl", hash = "sha256:71a455a3c584a88f654b64feccc1e25876066c4f5ef26cd6dd711308aa538694"}, - {file = "regex-2024.5.15-cp39-cp39-win_amd64.whl", hash = "sha256:cab12877a9bdafde5500206d1020a584355a97884dfd388af3699e9137bf7388"}, - {file = "regex-2024.5.15.tar.gz", hash = "sha256:d3ee02d9e5f482cc8309134a91eeaacbdd2261ba111b0fef3748eeb4913e6a2c"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -1379,144 +1441,131 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "ruff" -version = "0.5.4" +version = "0.5.7" description = "An extremely fast Python linter and code formatter, written in Rust." optional = false python-versions = ">=3.7" files = [ - {file = "ruff-0.5.4-py3-none-linux_armv6l.whl", hash = "sha256:82acef724fc639699b4d3177ed5cc14c2a5aacd92edd578a9e846d5b5ec18ddf"}, - {file = "ruff-0.5.4-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:da62e87637c8838b325e65beee485f71eb36202ce8e3cdbc24b9fcb8b99a37be"}, - {file = "ruff-0.5.4-py3-none-macosx_11_0_arm64.whl", hash = "sha256:e98ad088edfe2f3b85a925ee96da652028f093d6b9b56b76fc242d8abb8e2059"}, - {file = "ruff-0.5.4-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c55efbecc3152d614cfe6c2247a3054cfe358cefbf794f8c79c8575456efe19"}, - {file = "ruff-0.5.4-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9b85eaa1f653abd0a70603b8b7008d9e00c9fa1bbd0bf40dad3f0c0bdd06793"}, - {file = "ruff-0.5.4-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0cf497a47751be8c883059c4613ba2f50dd06ec672692de2811f039432875278"}, - {file = "ruff-0.5.4-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:09c14ed6a72af9ccc8d2e313d7acf7037f0faff43cde4b507e66f14e812e37f7"}, - {file = "ruff-0.5.4-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:628f6b8f97b8bad2490240aa84f3e68f390e13fabc9af5c0d3b96b485921cd60"}, - {file = "ruff-0.5.4-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3520a00c0563d7a7a7c324ad7e2cde2355733dafa9592c671fb2e9e3cd8194c1"}, - {file = "ruff-0.5.4-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93789f14ca2244fb91ed481456f6d0bb8af1f75a330e133b67d08f06ad85b516"}, - {file = "ruff-0.5.4-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:029454e2824eafa25b9df46882f7f7844d36fd8ce51c1b7f6d97e2615a57bbcc"}, - {file = "ruff-0.5.4-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:9492320eed573a13a0bc09a2957f17aa733fff9ce5bf00e66e6d4a88ec33813f"}, - {file = "ruff-0.5.4-py3-none-musllinux_1_2_i686.whl", hash = "sha256:a6e1f62a92c645e2919b65c02e79d1f61e78a58eddaebca6c23659e7c7cb4ac7"}, - {file = "ruff-0.5.4-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:768fa9208df2bec4b2ce61dbc7c2ddd6b1be9fb48f1f8d3b78b3332c7d71c1ff"}, - {file = "ruff-0.5.4-py3-none-win32.whl", hash = "sha256:e1e7393e9c56128e870b233c82ceb42164966f25b30f68acbb24ed69ce9c3a4e"}, - {file = "ruff-0.5.4-py3-none-win_amd64.whl", hash = "sha256:58b54459221fd3f661a7329f177f091eb35cf7a603f01d9eb3eb11cc348d38c4"}, - {file = "ruff-0.5.4-py3-none-win_arm64.whl", hash = "sha256:bd53da65f1085fb5b307c38fd3c0829e76acf7b2a912d8d79cadcdb4875c1eb7"}, - {file = "ruff-0.5.4.tar.gz", hash = "sha256:2795726d5f71c4f4e70653273d1c23a8182f07dd8e48c12de5d867bfb7557eed"}, + {file = "ruff-0.5.7-py3-none-linux_armv6l.whl", hash = "sha256:548992d342fc404ee2e15a242cdbea4f8e39a52f2e7752d0e4cbe88d2d2f416a"}, + {file = "ruff-0.5.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00cc8872331055ee017c4f1071a8a31ca0809ccc0657da1d154a1d2abac5c0be"}, + {file = "ruff-0.5.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eaf3d86a1fdac1aec8a3417a63587d93f906c678bb9ed0b796da7b59c1114a1e"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a01c34400097b06cf8a6e61b35d6d456d5bd1ae6961542de18ec81eaf33b4cb8"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcc8054f1a717e2213500edaddcf1dbb0abad40d98e1bd9d0ad364f75c763eea"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f70284e73f36558ef51602254451e50dd6cc479f8b6f8413a95fcb5db4a55fc"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:a78ad870ae3c460394fc95437d43deb5c04b5c29297815a2a1de028903f19692"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ccd078c66a8e419475174bfe60a69adb36ce04f8d4e91b006f1329d5cd44bcf"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e31c9bad4ebf8fdb77b59cae75814440731060a09a0e0077d559a556453acbb"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d796327eed8e168164346b769dd9a27a70e0298d667b4ecee6877ce8095ec8e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:4a09ea2c3f7778cc635e7f6edf57d566a8ee8f485f3c4454db7771efb692c499"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a36d8dcf55b3a3bc353270d544fb170d75d2dff41eba5df57b4e0b67a95bb64e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9369c218f789eefbd1b8d82a8cf25017b523ac47d96b2f531eba73770971c9e5"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b88ca3db7eb377eb24fb7c82840546fb7acef75af4a74bd36e9ceb37a890257e"}, + {file = "ruff-0.5.7-py3-none-win32.whl", hash = "sha256:33d61fc0e902198a3e55719f4be6b375b28f860b09c281e4bdbf783c0566576a"}, + {file = "ruff-0.5.7-py3-none-win_amd64.whl", hash = "sha256:083bbcbe6fadb93cd86709037acc510f86eed5a314203079df174c40bbbca6b3"}, + {file = "ruff-0.5.7-py3-none-win_arm64.whl", hash = "sha256:2dca26154ff9571995107221d0aeaad0e75a77b5a682d6236cf89a58c70b76f4"}, + {file = "ruff-0.5.7.tar.gz", hash = "sha256:8dfc0a458797f5d9fb622dd0efc52d796f23f0a1493a9527f4e49a550ae9a7e5"}, ] [[package]] name = "simsimd" -version = "5.0.0" +version = "5.2.1" description = "Fastest SIMD-Accelerated Vector Similarity Functions for x86 and Arm" optional = false python-versions = "*" files = [ - {file = "simsimd-5.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d088c06ea957df1943af64c826b15387e5020a23d8a9f712619c3ca273322d52"}, - {file = "simsimd-5.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0dfbe97d84d654a6ae30c109b961300708fd6bd5d2f47d87c1d2f69ad2de63c5"}, - {file = "simsimd-5.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:894789f67b5d8c16bb1766f89ecb4cf19e2f5d421a5c418457ef948a7db1b76a"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de83db500e77c26f7d05cfeba1f1e55ed2d050033ecda136637cc0b6fd39d1cc"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b5a4d7fd162450b8b94efb5145d9e41a567428729726a937cd74e83152f8cb5"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:efe7a4876e160dc52248b6177fc689caf2167c7897585eb965f865ae93f493b7"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:672d697ee251e51e1e03134c05df38962dfe242d98a8bf67aea560eec0202a03"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:11325929e47e1ab3fcb77e1be2a32cd4d5b704e466d16e4faed52652c0aa59f0"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d4266050dff25021362e94e11f977b063f4e86d2a913ca52291fd39cac5bcee3"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:6135b1eb5e08c126166ed1e1d5d33b02fa36ebb23f6781d08472c9af2e52fa9c"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:88313e4adc5503b474aa2013345dfeafd0450ab4fcbc679afaa2ebd7634953a9"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2ad530657a9f17ec87d7ee83a2cbae11c5046a9879f8f76052874bfaf0294f9c"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:afa5df2f316ec41131392c3a8591d431aff4f5c8380b29f466dcefe46d4f68ec"}, - {file = "simsimd-5.0.0-cp310-cp310-win32.whl", hash = "sha256:2b33461a133a022d7517e67a63c6f897581f103affaa621d59824a0588c0c9ad"}, - {file = "simsimd-5.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:111b955d4a91ce781e99d6f9ffe575d46b0096066c6f26f330448d6e97ddabcb"}, - {file = "simsimd-5.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:14a3c9af74b061eada78eb5de4978caa6f107829ccd02f2985bec42ce8e8b901"}, - {file = "simsimd-5.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f1dc34a031f15729387b8f9c3a44f4bf787eac3bd3405397674e522b4b15d5b1"}, - {file = "simsimd-5.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:00114a66a81854393fa2ccb70167ed35f3d1766cd4cd50d6da8fe3631b53e49c"}, - {file = "simsimd-5.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15e78f67cadc80ca5cb8df35a3b654cbb5605349ce1430a7334a0677c620394e"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8ec8bfae72ec3a04e9e4d9352fbb75145fe90bd3f5e6129eebc3af141050224"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aad2c4bac0e06d07a5cfd3a0482a54904d3ad37a01e553698d188761d3747f80"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:207c36b452898933d69060815f3d70d5c4f4a1d8e6de110f8dfa2371af4a8cd9"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:f5b2ba3042de9b04dc86251dd54d7f36cce2f597270a2ff2428881d78514ff99"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:abda8d1a5172319827d27422ad3ce3d748ba698872d84e066393567adee386d8"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:eb5cb03183acebde5922d5034159e01bb495d2b653dd3d6abe4e6d1f40d978fa"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:c56f4d8544cadc6ed4e24d7c9fe5cf8708f92adeb68f47f2202356cb15f961e6"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:221179b77928ea651a3284980ae615feec8f2ee7f4d428504e24cb6b7df76792"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:92da3cc3223309b495bfb1069d79aa34a6e193d5a87c242f1431e9a257075457"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1602857f295c256b4ffe42660f7a847b686da24f3755cd231c0b0c2c5cb03d0f"}, - {file = "simsimd-5.0.0-cp311-cp311-win32.whl", hash = "sha256:c16535fe307d5725efa420d4de14f5cbc699b1da9fc2c8d6ced14cb29add96c5"}, - {file = "simsimd-5.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:bfe0efa287f259f55a16f114e6e99e85716647cdce8b50d0dfa3f3da83e404ef"}, - {file = "simsimd-5.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:880271ae438dfcaa4108ee9ebfc1a6ccad4eb1980a859b4df6c9be6371b0d3b8"}, - {file = "simsimd-5.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:25426a5172a35035b03726043f8c5cf8851e66c20697cec4b5f68f63453245b0"}, - {file = "simsimd-5.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5498cfd52153f32c4b6d00b43f8b168344e65a5ef108659d7447ff0e2c672bb2"}, - {file = "simsimd-5.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9cdffd5c5c73c2045c672a2097646b7af2aee7df7aa8e21b4dde37c19a60d4f4"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b905a5d173acf7ec8b3f4cfa4844113c315d82927baac20f74b91b36cf3a7a8"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cc018cdf1fdad38d6fff764c99d9e00223a2c227a56ebd9310e184545f4187a9"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4d7a8fc7497931f608d317f0ebb7c453e6b0f5bccd2012dec29ff6f2f622e0fd"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:c823e4c70dd6c6d1cfe82c47af6073c573240a277bdd7cb60050eb046ba7ea0f"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d70c3630ea7c9a43bbbf3aa330713d455245024718ecab4fb946bb478af0107e"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ea1435a57ccbe2cb7ab63ff8a7334f6b4da3216ebf1f687d685e85adc1c78cdf"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:54ad123759b0bb008863717e0722641d5ad049201c24d6f4050b0e3abcde2dd5"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a247b8b5b63efe679f6ef7c35f3709a30f316d4745e585992b8d23f3b0137085"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d1e089714fea2323b4630cbc9fc0802f75e53bcd987e96bcccb9a58f0908fcfd"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d9a63568da4cdaa0abfe4d9577d00a9dd2cd46cc7d35f8247dc1ea30a91ec506"}, - {file = "simsimd-5.0.0-cp312-cp312-win32.whl", hash = "sha256:b3b4edf67faca966de12536590a4d232d3b36fce7c5c71a3f532925aa2329b63"}, - {file = "simsimd-5.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:82c352c17691e03a9cffd03ec9203107645b7c2a83ce920265fa69fe26e2d8de"}, - {file = "simsimd-5.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:cc431d328eceb74b175cc422b1056eb09db8ac06d410b23f2d6c4ff5c2bc63dc"}, - {file = "simsimd-5.0.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:992b4a60b080dcbeeaa90966f2396d514bc3cbc88f85ca0a8c0275a2d4000a12"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7955b350f7814e68e4072c57dcdcd066deee48295712dcd338ca4d5a8c281458"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2c4123560379f877771577dc4237f15b47c6e8c7743c2cedabedb1a1739b55fd"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d8a0b47cac924969822b0fc14f657e569e674a292314bbec7e6af43163912ba"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_28_aarch64.whl", hash = "sha256:f3d77b497bfeb32b1f32f53f4a11a213277d6d0d304c93803062bf77ec67264b"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:2ac607f15d0ca40ee9b883ef5d2f70a9d53b21ed0ed6c550516663ee1c711e35"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:76ffdfda6c4e87a25ed026a80e4fa56ec58d9a014aef862f3f8c76982755f614"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:b16a9f04a3450f03b5cc3d1d4fe9481067fd4470ae9554bb05bb8f9f4b0813b4"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:dbe5776d011671af5ed6be1e6cff4c76b9221f41d7ed32bf09f5091e07a469e4"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_s390x.whl", hash = "sha256:a8b6564c2f029c7aa18a4964436f29e8eb24528ae5f575c5f7b85017da1941a5"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:631096d42f049b1a32c462dd01675c527feaed95bf94bdca8ff8544bec79f374"}, - {file = "simsimd-5.0.0-cp36-cp36m-win32.whl", hash = "sha256:9987cdb3cc9c79a71d2d2dd0a9d9e7a472ed7e14c7fed7f7be2c72ba054b5f15"}, - {file = "simsimd-5.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:c236e579e13a11337b22caf4146877cd71ff589ffbb0fdd6aae9cd8ae7f79075"}, - {file = "simsimd-5.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:508c2eaa271fde9fe6d93c7cc2631b6905a5f5f348a3cf2c438122fa5f55430b"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b4257471cd39afb8ae2656e4c4bed59b5e6a42b3aa45868aa2249334753d8172"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a01df7e13fe961c8acbf0d8a43a53597bbc681241e3fdb8f4d10439d18f9912"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79ae3c1197d2cbdc504739d90927c11f08ffe49b2c40788072551e104cf4bb73"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:22d4faba90723bb96bafbe838ec6b7a3646b0c9d9436b699408815efced81322"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:c2b2a8ae55b3a43b21eadb21ea39b7f570d6c0d4855355c2ec311da0d13a975e"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:8af55a481d50583b9dd5dcb7775bb1503acc14fe6ac595fab7067e9db16a3d1f"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:04f46895b95732fb9dcbc4beba2d5f55a6fc343823f85ec4684ec1b87110527d"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f1d8717283c44d49eff049f1875dc3016148d2f39341401f262a100cafaf3fe"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:ad456b77f4c7c58347e96e53e7d35ef63f5c4f1c13ce4eedd5807613b51f5030"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:827b76db2527344aebb8142d2a41fe1dada9a1dae067d9ce543840e5d13db076"}, - {file = "simsimd-5.0.0-cp37-cp37m-win32.whl", hash = "sha256:1dbb0c7d145d7151f3342190000e97b805023651ff8589818934e407b56140cd"}, - {file = "simsimd-5.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:369fbe080ae18e850516c65b3670348adfad91eaed99e882c28a466dcc8c9c10"}, - {file = "simsimd-5.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c8ddb50c61fbcf1e96199f334862a49222234424e4b3903f1b49b6f2525ddfbb"}, - {file = "simsimd-5.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:effa3bd0fe7b1d8c45dfa10e742eb70f69ccf9a3191018924e8643bb67bf5624"}, - {file = "simsimd-5.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:85ee56bbeba90fd4f565edc138548740413ed5cf83723263ce9c0acc49728d57"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb472010b1ec8c663d3749f27085cc834056ea44c3eb47c62e38426df4a4267c"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84416a93d402a6b71cc375d4ce3954fc908ea89a03f649fa58f86786176e7d9f"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:58b5e955b13ee3231866d314a247c8e9e3892dc5bda88df214c552d65766b2e5"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:64e7af743438e9229620ddf2a553429ee8693b45a4e6d49d5bb105ff4f667983"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:e6c2830fd32dc47dd5d0946721dbe13c148c244015f05495bc68c1e5aa44c528"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:cbdda709a689d0ceac885ed537ebd433592892e0d00f457bdd2ee914dc484254"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:60e7ff26f95d6bffcb026e2b69f59520375928513283c4056966617d02b6a1c2"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:c496fccdaf4734f1fe9a782daf35d6b8e82c5491cc3002b2c03a3b6cc7c3c07f"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:d48f21674eaccaa721c8726a310a7324523f39eb8870ea9de5f3eead8b4699e2"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9fc290f381913b84f4e7d662f283d2cc9a7c37a8b6869871e984b3b6728db2dd"}, - {file = "simsimd-5.0.0-cp38-cp38-win32.whl", hash = "sha256:28cede34c79db68c5e1b4a35b62693579fbac810e253232734e73c3e57aaf4c8"}, - {file = "simsimd-5.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:1f13ce2a78fa78648108fa07562562b44d1b2c2366b28e30cfc121ea93e53442"}, - {file = "simsimd-5.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1c2398996a5de44e4b87689f1157e613e9021230c82b0da20853349075085c55"}, - {file = "simsimd-5.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb083111b2f866254cab406d8124d6885c2e7ae6267284f3107e4b5d0801ff2b"}, - {file = "simsimd-5.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:575a38f1fe035b33c7d83e7c71f89d01f484f6d180a3435cc26781a6c28b1ec5"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b80d4f0f17acee010ed6d93c347668ccac3696802aa1a881284c599f02a74b1"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa8408aec1e63e185b56e5096f4fb5af73855666bb76eb89efc623b18043f43d"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2f00a451f4978e180cd455055259260a304190fba814019f003b1f7c1ac89cf8"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c14a8de24ad765d7a346700f424700a624492a5b656c5338a776d71da67ae07e"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:10140148e1dc80c9265c527d742768b043875b27422b7e618ca73916346d7a1d"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4de255a4d602b1c349bf5a8519c774b080cce5e8c62a92d80bda424062b3bfd0"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:cde90376a42088fd662e7488e670ef006f5f641c57cb63a6da176ff7b001b1e9"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:59e39c568ce291d69eec175eca3c6152e174caf7f9c2aba6353849dcebf76d54"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:dfc16a8ec64d8dca8202942a434abbb0e39ba81349eb4fc345bb276cd5f5dfbb"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:eb8b437532e38f48be0e4767cdc6d7fc15b923d85790f2ecd7d6cc1326d24510"}, - {file = "simsimd-5.0.0-cp39-cp39-win32.whl", hash = "sha256:c3f5f9646223611ecd657c4ebebffe0dc2b7375b619c154a9ee9bf70b9959a89"}, - {file = "simsimd-5.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:4ded30eec3dd3a2cd2a2315a662d9fe3338cd35ff7d8b5c21c5ca3556d3ae03b"}, - {file = "simsimd-5.0.0-cp39-cp39-win_arm64.whl", hash = "sha256:35b2fd3cb885d1669b33c65421f37308853e96e3abe1c459783bbd466ec1e921"}, - {file = "simsimd-5.0.0.tar.gz", hash = "sha256:c1d806cb27baa8b42b581cef75b6149de09a6a54116ca2026cb7ec2fda216d2d"}, + {file = "simsimd-5.2.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:c077d30656507812eb502b13da21d383f209729980e6f33775c005e54c834080"}, + {file = "simsimd-5.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8a6489fd3251295e40ea646aef9bfd68488eef67f29f10acda185eca65cda48a"}, + {file = "simsimd-5.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:881401ab4aac969cfb1ba0301590fdf40cc53149dc0baa0556823b032a9213b6"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f15689b58a79cd21d5975a4ce166d9fb01b59b8b509e76ef9f0eb77453cdaec"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2d249db978814a25a4c802c1eb24e82deca078d311da9952edd0e7cf28b8cb75"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:25cf244831e79ef4157fabf7e1390b7187f509850f3926fc7c49d16c0aa1a1f0"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:d7a146bc9271cef4a1543e9cdcabab0b0f5b8bccc3ef3d2277d5126ab285adca"}, + {file = "simsimd-5.2.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:8ce059db56c798f0647cd50fecac8f20f5ad609ad77ce644fc91373487dd3c37"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:face4052008d5c4b12dc6fc09d5ce0f39b81e6114c38b714695d52f4877e9953"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:cbc9774af40625033a5e6be90768154d1aef18f539b456e7691dc3576a31bcd5"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:6396ea925ae3fcaa6374684bff5049b87e76ad1888cf2e53d25767039144a360"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:9c802c21ca47072b7135ad5393af3231c6c15f27ee18fb7c9809f5251b5c478c"}, + {file = "simsimd-5.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:99f8e80d5758d1dba871d29adf9301e4d2d721902a8084e961247841fc4306a3"}, + {file = "simsimd-5.2.1-cp310-cp310-win32.whl", hash = "sha256:305ca88529a178dc2293337aa38ba733ad85f5e31e0c35111dabd77c45691718"}, + {file = "simsimd-5.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:305499b42baf559d0ddaaf5a8c14810ed9f11d248c19a16418ab88a6c7fb1c05"}, + {file = "simsimd-5.2.1-cp310-cp310-win_arm64.whl", hash = "sha256:a405c8bdaec9b9cd634a25e153994705fb22f4e2f674e0b3a1e349dd514d3b1e"}, + {file = "simsimd-5.2.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9f342914fd54b90939a053d6ec6dde0b47131d39c2b2c3bfcf10acb9feac62be"}, + {file = "simsimd-5.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:44287add557bb4e78d249e3b076a37272c8ff62df379f4f837bf7d66534eae5d"}, + {file = "simsimd-5.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3cece60f867d54b15342aa421d561f26860fe70b93e0f13b9499718de3bf791b"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f02d7520b5f794ed1d8b1177214f263a06e334750fc6b4d8ba7bccfc0ea30d1d"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e3a288d5eac00a15df181354822f5714278d3b4123a5d8f1dcfc62fd1d2ffa9d"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c16dfc66f54b2ab95f74e3b1d886351ad65a69ab75041e069355b89f18e3ea36"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:78080b55b213117648038a657ad1437f465065077e79762ce04990b7cc4645dd"}, + {file = "simsimd-5.2.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:b7fb76b585194f040807aa40928515610d19ef0fb7d8bbb316dde17a05597b77"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a9f042fe6b8102b9e301c862aa655b1181cc73ebf589448ee2525c8c7023fd59"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b5935ec1e4c62945972139f6ba6ca955e27d7781870fd89aab95c38e1614603c"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:07d77442a796b88ec984c2180f9c81ca912b11686f3e730a9648ff18644a136a"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e95dcbcd2931f51a449b664252746b1eba0dfc04715d14e9d79116000e13db3a"}, + {file = "simsimd-5.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:059c4b357d99757c8661d54141f4004fbb0ebbccf985cb39a1b630304af5fedf"}, + {file = "simsimd-5.2.1-cp311-cp311-win32.whl", hash = "sha256:0cf31a6fa6a62efd12d477f493411c1af1c64a7d61509ceebac593a83d1d4209"}, + {file = "simsimd-5.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:45d174f65ffe89020b01321a7f37404da8460c4800617fa5902ccc99b696ec9a"}, + {file = "simsimd-5.2.1-cp311-cp311-win_arm64.whl", hash = "sha256:6dc78085e112c0e36e6eeca546074cf8c56b2d80fba757bef8bebc444e61b72b"}, + {file = "simsimd-5.2.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:4936f92a6f25bf1b8cfd4069e850821e6ffe17addd997893d945994139cf1ec0"}, + {file = "simsimd-5.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e16167789eb54c81ffdd0c1e185dd61df9a2fec6044067a047698b0af67865c0"}, + {file = "simsimd-5.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b04ba0570d9e258fd059a5f3964039e2fe6298d57363a9a9bb4ae0c000cd65a7"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5d4228bc8be42f9c9b6d59399303e9682f2edc9f2cc1550a3658ba8a9f0519a7"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c3a80fdb3582d08f2da3d53daec73ea872fdac303529910aef71a774c1568bf"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5fbbc0068ef3daa85195508b25aa73562b07c3097fea1243aa2864e21dfd178d"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:3fe52c6b94f6777b0eca796a5751dbd4e55bae947d1906a00b31dd32f1a085f7"}, + {file = "simsimd-5.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:cdeda38843f4544e3cdc5687332ccd030ec9a3e10a47a7a63a9652ddc60f20ba"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8234b6a9308d5025a594413ca93b1e9dc4f9f9e2d4020af32529ed302570dacd"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:687725313925297aa36effac39013b1e31ed4d01764b5322bdc9eb0e73c51b6a"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:bb9aadd29b0def9d6d0811bd2e9fde1643e755aaf8d4010892c0e00f0e586477"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:1df8520eac767584677367c598bd3c90abe0fa9ff49924eb289fea5b6fb6b2b3"}, + {file = "simsimd-5.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f802b5435b9014fd2882641d45e279ff418c9bed83322957a99796fc6a9fae3d"}, + {file = "simsimd-5.2.1-cp312-cp312-win32.whl", hash = "sha256:271a5bb5daf3db37b4ca71c419ecc6c5c0d3a801cf4773907ae338aa34f18a1a"}, + {file = "simsimd-5.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:5d2a3ec2c3b90bd036823f16184d3fbfabc2a8fa9ba120f29cc3361ab3c68be8"}, + {file = "simsimd-5.2.1-cp312-cp312-win_arm64.whl", hash = "sha256:cf63293357013aa8d135d8f30443ce248223a53faf30e1e6d1464e559afd0b30"}, + {file = "simsimd-5.2.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f95a7b56803e2ce952aa2476b7ed4ed5b8fe0f2c40daf14d6100bcd923282b99"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01af17b95e1736f006177b3a84b6d25ec6068a2e0af97eed33f87c9d23684d0a"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bfef17e3a12f2c379d428bc4785637472b6a379e7122d3d227bbd5d9c20454ee"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef288a2f89fe4b00c65f16895519da78c443d2e75080a8067b9d83196e911592"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:82fe3f4a70e79eb7a17cfac8b129fe0e0ea63408513091618703b85a6c90db00"}, + {file = "simsimd-5.2.1-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:035487a05b923541c3c524af56472f4121f14cb9a6761ae0d0d9101da077fe7a"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:0b1fe4154cb9622a3640b81d05d07276c785ada6ac59512160624f4f2225b8cc"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:b55bc8fd307f7cb8fa2bd76ae0bdd4a196b7e92ae592d08bc151991357aa636e"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:d8e5075a8798b7641fd394dd7fbda5c7be349f5616780076d8a5cf826f29fc5f"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:c310dda98e8cc56fc856f369fe6a925bbde72ca33c735808037cc7300edad5c9"}, + {file = "simsimd-5.2.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:81c052de76ccc31df39ee6a2929495fa386fcc2f8bd96512de50f10365c1434a"}, + {file = "simsimd-5.2.1-cp37-cp37m-win32.whl", hash = "sha256:b2dd417556d22be66a1f8bb8fe2a8222655c97382d2736802100ec2b658bf179"}, + {file = "simsimd-5.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:309a6a29e8213d7af603cdd0a30e7500f3ef3f5caafa17d1cb131f9a45faafb6"}, + {file = "simsimd-5.2.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1500bf3e6728c98e01efd4e8b03ac27d5451a92c8cd00cd2c80314e0fef37f12"}, + {file = "simsimd-5.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e2124f8928be3e63e253d349e0063d2e2e9c2959143425f383f7302d46e3588c"}, + {file = "simsimd-5.2.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:614828d03eca528cf0aebaa7aec24e774256f806c1feb4353bdeedaad8eb8b12"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a983fef4c490c547babff1b99dbcc7ffac604157b5948b84532bbaf27e5359e"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:70eb039199b9c360ac7f081a1cccc34a1ef849653ea3dabe0c2a51cf014ae36e"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e77360121c0d3522d937c43a93ed5bc359ab05826c6b1443980536bf31966b90"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:72e7d2c04d8b66642558eaa09e36bbdcb2c818ad0b8116f318122635c0512493"}, + {file = "simsimd-5.2.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:510aa97c25ddae310a3ea6e818f161c5a9a178624a75f4d1c62d1898dba9537d"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:cf9d37d1dbd26e6e2c30d4410d007ecdb4a588ef316a50e257ada67fc1d7512b"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:9426ee74d6898f8cbd4ef6735216428c445367c2042a1573da9e0b327cbc0d7e"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ce298323cf4b35cf652a11a45889df277a1e4ef58bc298baf6cccec938de4827"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:beb76cdb6a5442be351a4dcbaf35bc51e6e815e37b7cda3c27886c9de0112ed8"}, + {file = "simsimd-5.2.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:d9ba0b406a658053b9e4cc989881e055dbe419bfd0ef626a2f2d2d48ff9db879"}, + {file = "simsimd-5.2.1-cp38-cp38-win32.whl", hash = "sha256:7d465e56848ff733725dbc6e2f4c79ee7073f695006013c9d0aff6daa6a750cf"}, + {file = "simsimd-5.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:c0f37b3c5963792925795f22ab90405df243e2738ec5b857ec5114a29facab38"}, + {file = "simsimd-5.2.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:095b143ff85fe57beec75783d48878a2c821fa249dd26c5f98521ecf6edfc77c"}, + {file = "simsimd-5.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b576df0679f5d92299f7b33ff28342cae154d46f3bfb0171253ad4cdcf8fc07a"}, + {file = "simsimd-5.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9ba17ad2fdf6543f5b4091b4d94413d60760e44b1ebbff9c661d44c6ce642296"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:53cbb3b5202a06a5ffaef5d2a006b0a4f345f630951b9b2b9abada3cc279a532"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5fb49bb7cab159a625f9c2c1b0a236ce2d0c0bb217a63e36d46d6122c44d1b2f"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8056abac0fd86e7d864bc59e75bd750e796e67aa55cb9a2f58b3f8ec3a71c6b"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:d02be0a65bbe5ead9fdfefd18f0babb27b4856ad02d3ff4b8b0126223288588a"}, + {file = "simsimd-5.2.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:2f1afeeedb6639628a94dcc4f7d01d670f43f4b10909c96876837c311b8f11d7"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6f9ed03113216707f74381324b57105afad8fbd12323f474830c0929750631d1"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:818f3bd2893be61a5484a981ec262162ef480f06bfffd9686ddeab4b59d75d3f"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c2cab5afce104f35cdb1b82c20b3c29e04f19d3ac73961316e6f065b7ef072e9"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:d20a5c7343e86daeb869ea5e2c9d5ca8c358bc7370288176ef04157fea5bad27"}, + {file = "simsimd-5.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b23ffe97bb938803bf367f2de25ca971033be00774fbbf09426147a89fcc5dc4"}, + {file = "simsimd-5.2.1-cp39-cp39-win32.whl", hash = "sha256:8e942cc946b813937ae99ca3ea3d20ec68aaddc173904c298d65eee75d7d08a3"}, + {file = "simsimd-5.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:8d290c7361d9c8a87f6408d4ff7799c7df8278ac28d41e9ed68d252040854ca4"}, + {file = "simsimd-5.2.1-cp39-cp39-win_arm64.whl", hash = "sha256:6159540ba7ed5b9e8e34d340943e31f7791b2c49436d299969014be9869da350"}, + {file = "simsimd-5.2.1.tar.gz", hash = "sha256:716f607e06c9570288db42f2bb9661dadd79188874dba1c7df71d8efec4ecbb8"}, ] [[package]] @@ -1543,13 +1592,13 @@ files = [ [[package]] name = "syrupy" -version = "4.6.1" +version = "4.7.1" description = "Pytest Snapshot Test Utility" optional = false -python-versions = ">=3.8.1,<4" +python-versions = ">=3.8.1" files = [ - {file = "syrupy-4.6.1-py3-none-any.whl", hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133"}, - {file = "syrupy-4.6.1.tar.gz", hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36"}, + {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, + {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, ] [package.dependencies] @@ -1635,13 +1684,13 @@ files = [ [[package]] name = "tqdm" -version = "4.66.4" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, - {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -1666,13 +1715,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1683,43 +1732,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.1" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:da2dfdaa8006eb6a71051795856bedd97e5b03e57da96f98e375682c48850645"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e93f451f2dfa433d97765ca2634628b789b49ba8b504fdde5837cdcf25fdb53b"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ef0107bbb6a55f5be727cfc2ef945d5676b97bffb8425650dadbb184be9f9a2b"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17e32f147d8bf9657e0922c0940bcde863b894cd871dbb694beb6704cfbd2fb5"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03e70d2df2258fb6cb0e95bbdbe06c16e608af94a3ffbd2b90c3f1e83eb10767"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:123587af84260c991dc5f62a6e7ef3d1c57dfddc99faacee508c71d287248459"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:093b23e6906a8b97051191a4a0c73a77ecc958121d42346274c6af6520dec175"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:611be3904f9843f0529c35a3ff3fd617449463cb4b73b1633950b3d97fa4bfb7"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:62c613ad689ddcb11707f030e722fa929f322ef7e4f18f5335d2b73c61a85c28"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d4925e4bf7b9bddd1c3de13c9b8a2cdb89a468f640e66fbfabaf735bd85b3e35"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cad0bbd66cd59fc474b4a4376bc5ac3fc698723510cbb64091c2a793b18654db"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a3c2c317a8fb53e5b3d25790553796105501a235343f5d2bf23bb8649c2c8709"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c9904904b6564d4ee8a1ed820db76185a3c96e05560c776c79a6ce5ab71888ba"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:667f3c579e813fcbad1b784db7a1aaa96524bed53437e119f6a2f5de4db04235"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d10a681c9a1d5a77e75c48a3b8e1a9f2ae2928eda463e8d33660437705659682"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0144c0ea9997b92615af1d94afc0c217e07ce2c14912c7b1a5731776329fcfc7"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:998d2be6976a0ee3a81fb8e2777900c28641fb5bfbd0c84717d89bca0addcdc5"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e7921319fe4430b11278d924ef66d4daa469fafb1da679a2e48c935fa27af193"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f0de0f284248ab40188f23380b03b59126d1479cd59940f2a34f8852db710625"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bca36be5707e81b9e6ce3208d92d95540d4ca244c006b61511753583c81c70dd"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ab998f567ebdf6b1da7dc1e5accfaa7c6992244629c0fdaef062f43249bd8dee"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dddba7ca1c807045323b6af4ff80f5ddc4d654c8bce8317dde1bd96b128ed253"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_armv7l.whl", hash = "sha256:4513ec234c68b14d4161440e07f995f231be21a09329051e67a2118a7a612d2d"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_i686.whl", hash = "sha256:4107ac5ab936a63952dea2a46a734a23230aa2f6f9db1291bf171dac3ebd53c6"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64.whl", hash = "sha256:6e8c70d2cd745daec2a08734d9f63092b793ad97612470a0ee4cbb8f5f705c57"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f27279d060e2ab24c0aa98363ff906d2386aa6c4dc2f1a374655d4e02a6c5e5e"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_s390x.whl", hash = "sha256:f8affdf3c0f0466e69f5b3917cdd042f89c8c63aebdb9f7c078996f607cdb0f5"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ac7041b385f04c047fcc2951dc001671dee1b7e0615cde772e84b01fbf68ee84"}, - {file = "watchdog-4.0.1-py3-none-win32.whl", hash = "sha256:206afc3d964f9a233e6ad34618ec60b9837d0582b500b63687e34011e15bb429"}, - {file = "watchdog-4.0.1-py3-none-win_amd64.whl", hash = "sha256:7577b3c43e5909623149f76b099ac49a1a01ca4e167d1785c76eb52fa585745a"}, - {file = "watchdog-4.0.1-py3-none-win_ia64.whl", hash = "sha256:d7b9f5f3299e8dd230880b6c55504a1f69cf1e4316275d1b215ebdd8187ec88d"}, - {file = "watchdog-4.0.1.tar.gz", hash = "sha256:eebaacf674fa25511e8867028d281e602ee6500045b57f43b08778082f7f8b44"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -1727,101 +1774,103 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "yarl" -version = "1.9.4" +version = "1.11.1" description = "Yet another URL library" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"}, - {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"}, - {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98"}, - {file = "yarl-1.9.4-cp311-cp311-win32.whl", hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31"}, - {file = "yarl-1.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10"}, - {file = "yarl-1.9.4-cp312-cp312-win32.whl", hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7"}, - {file = "yarl-1.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984"}, - {file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434"}, - {file = "yarl-1.9.4-cp37-cp37m-win32.whl", hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749"}, - {file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3"}, - {file = "yarl-1.9.4-cp38-cp38-win32.whl", hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece"}, - {file = "yarl-1.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0"}, - {file = "yarl-1.9.4-cp39-cp39-win32.whl", hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575"}, - {file = "yarl-1.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15"}, - {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"}, - {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:400cd42185f92de559d29eeb529e71d80dfbd2f45c36844914a4a34297ca6f00"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8258c86f47e080a258993eed877d579c71da7bda26af86ce6c2d2d072c11320d"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2164cd9725092761fed26f299e3f276bb4b537ca58e6ff6b252eae9631b5c96e"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08ea567c16f140af8ddc7cb58e27e9138a1386e3e6e53982abaa6f2377b38cc"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:768ecc550096b028754ea28bf90fde071c379c62c43afa574edc6f33ee5daaec"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2909fa3a7d249ef64eeb2faa04b7957e34fefb6ec9966506312349ed8a7e77bf"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01a8697ec24f17c349c4f655763c4db70eebc56a5f82995e5e26e837c6eb0e49"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e286580b6511aac7c3268a78cdb861ec739d3e5a2a53b4809faef6b49778eaff"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4179522dc0305c3fc9782549175c8e8849252fefeb077c92a73889ccbcd508ad"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:27fcb271a41b746bd0e2a92182df507e1c204759f460ff784ca614e12dd85145"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f61db3b7e870914dbd9434b560075e0366771eecbe6d2b5561f5bc7485f39efd"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:c92261eb2ad367629dc437536463dc934030c9e7caca861cc51990fe6c565f26"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d95b52fbef190ca87d8c42f49e314eace4fc52070f3dfa5f87a6594b0c1c6e46"}, + {file = "yarl-1.11.1-cp310-cp310-win32.whl", hash = "sha256:489fa8bde4f1244ad6c5f6d11bb33e09cf0d1d0367edb197619c3e3fc06f3d91"}, + {file = "yarl-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:476e20c433b356e16e9a141449f25161e6b69984fb4cdbd7cd4bd54c17844998"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:946eedc12895873891aaceb39bceb484b4977f70373e0122da483f6c38faaa68"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:21a7c12321436b066c11ec19c7e3cb9aec18884fe0d5b25d03d756a9e654edfe"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c35f493b867912f6fda721a59cc7c4766d382040bdf1ddaeeaa7fa4d072f4675"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25861303e0be76b60fddc1250ec5986c42f0a5c0c50ff57cc30b1be199c00e63"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4b53f73077e839b3f89c992223f15b1d2ab314bdbdf502afdc7bb18e95eae27"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:327c724b01b8641a1bf1ab3b232fb638706e50f76c0b5bf16051ab65c868fac5"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4307d9a3417eea87715c9736d050c83e8c1904e9b7aada6ce61b46361b733d92"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48a28bed68ab8fb7e380775f0029a079f08a17799cb3387a65d14ace16c12e2b"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:067b961853c8e62725ff2893226fef3d0da060656a9827f3f520fb1d19b2b68a"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8215f6f21394d1f46e222abeb06316e77ef328d628f593502d8fc2a9117bde83"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:498442e3af2a860a663baa14fbf23fb04b0dd758039c0e7c8f91cb9279799bff"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:69721b8effdb588cb055cc22f7c5105ca6fdaa5aeb3ea09021d517882c4a904c"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1e969fa4c1e0b1a391f3fcbcb9ec31e84440253325b534519be0d28f4b6b533e"}, + {file = "yarl-1.11.1-cp311-cp311-win32.whl", hash = "sha256:7d51324a04fc4b0e097ff8a153e9276c2593106a811704025bbc1d6916f45ca6"}, + {file = "yarl-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:15061ce6584ece023457fb8b7a7a69ec40bf7114d781a8c4f5dcd68e28b5c53b"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a4264515f9117be204935cd230fb2a052dd3792789cc94c101c535d349b3dab0"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f41fa79114a1d2eddb5eea7b912d6160508f57440bd302ce96eaa384914cd265"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02da8759b47d964f9173c8675710720b468aa1c1693be0c9c64abb9d8d9a4867"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9361628f28f48dcf8b2f528420d4d68102f593f9c2e592bfc842f5fb337e44fd"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b91044952da03b6f95fdba398d7993dd983b64d3c31c358a4c89e3c19b6f7aef"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:74db2ef03b442276d25951749a803ddb6e270d02dda1d1c556f6ae595a0d76a8"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e975a2211952a8a083d1b9d9ba26472981ae338e720b419eb50535de3c02870"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aef97ba1dd2138112890ef848e17d8526fe80b21f743b4ee65947ea184f07a2"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a7915ea49b0c113641dc4d9338efa9bd66b6a9a485ffe75b9907e8573ca94b84"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:504cf0d4c5e4579a51261d6091267f9fd997ef58558c4ffa7a3e1460bd2336fa"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3de5292f9f0ee285e6bd168b2a77b2a00d74cbcfa420ed078456d3023d2f6dff"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a34e1e30f1774fa35d37202bbeae62423e9a79d78d0874e5556a593479fdf239"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:66b63c504d2ca43bf7221a1f72fbe981ff56ecb39004c70a94485d13e37ebf45"}, + {file = "yarl-1.11.1-cp312-cp312-win32.whl", hash = "sha256:a28b70c9e2213de425d9cba5ab2e7f7a1c8ca23a99c4b5159bf77b9c31251447"}, + {file = "yarl-1.11.1-cp312-cp312-win_amd64.whl", hash = "sha256:17b5a386d0d36fb828e2fb3ef08c8829c1ebf977eef88e5367d1c8c94b454639"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1fa2e7a406fbd45b61b4433e3aa254a2c3e14c4b3186f6e952d08a730807fa0c"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:750f656832d7d3cb0c76be137ee79405cc17e792f31e0a01eee390e383b2936e"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0b8486f322d8f6a38539136a22c55f94d269addb24db5cb6f61adc61eabc9d93"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3fce4da3703ee6048ad4138fe74619c50874afe98b1ad87b2698ef95bf92c96d"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed653638ef669e0efc6fe2acb792275cb419bf9cb5c5049399f3556995f23c7"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18ac56c9dd70941ecad42b5a906820824ca72ff84ad6fa18db33c2537ae2e089"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:688654f8507464745ab563b041d1fb7dab5d9912ca6b06e61d1c4708366832f5"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4973eac1e2ff63cf187073cd4e1f1148dcd119314ab79b88e1b3fad74a18c9d5"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:964a428132227edff96d6f3cf261573cb0f1a60c9a764ce28cda9525f18f7786"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:6d23754b9939cbab02c63434776df1170e43b09c6a517585c7ce2b3d449b7318"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c2dc4250fe94d8cd864d66018f8344d4af50e3758e9d725e94fecfa27588ff82"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09696438cb43ea6f9492ef237761b043f9179f455f405279e609f2bc9100212a"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:999bfee0a5b7385a0af5ffb606393509cfde70ecca4f01c36985be6d33e336da"}, + {file = "yarl-1.11.1-cp313-cp313-win32.whl", hash = "sha256:ce928c9c6409c79e10f39604a7e214b3cb69552952fbda8d836c052832e6a979"}, + {file = "yarl-1.11.1-cp313-cp313-win_amd64.whl", hash = "sha256:501c503eed2bb306638ccb60c174f856cc3246c861829ff40eaa80e2f0330367"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dae7bd0daeb33aa3e79e72877d3d51052e8b19c9025ecf0374f542ea8ec120e4"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3ff6b1617aa39279fe18a76c8d165469c48b159931d9b48239065767ee455b2b"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3257978c870728a52dcce8c2902bf01f6c53b65094b457bf87b2644ee6238ddc"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f351fa31234699d6084ff98283cb1e852270fe9e250a3b3bf7804eb493bd937"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8aef1b64da41d18026632d99a06b3fefe1d08e85dd81d849fa7c96301ed22f1b"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7175a87ab8f7fbde37160a15e58e138ba3b2b0e05492d7351314a250d61b1591"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba444bdd4caa2a94456ef67a2f383710928820dd0117aae6650a4d17029fa25e"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ea9682124fc062e3d931c6911934a678cb28453f957ddccf51f568c2f2b5e05"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8418c053aeb236b20b0ab8fa6bacfc2feaaf7d4683dd96528610989c99723d5f"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:61a5f2c14d0a1adfdd82258f756b23a550c13ba4c86c84106be4c111a3a4e413"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f3a6d90cab0bdf07df8f176eae3a07127daafcf7457b997b2bf46776da2c7eb7"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:077da604852be488c9a05a524068cdae1e972b7dc02438161c32420fb4ec5e14"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:15439f3c5c72686b6c3ff235279630d08936ace67d0fe5c8d5bbc3ef06f5a420"}, + {file = "yarl-1.11.1-cp38-cp38-win32.whl", hash = "sha256:238a21849dd7554cb4d25a14ffbfa0ef380bb7ba201f45b144a14454a72ffa5a"}, + {file = "yarl-1.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:67459cf8cf31da0e2cbdb4b040507e535d25cfbb1604ca76396a3a66b8ba37a6"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:884eab2ce97cbaf89f264372eae58388862c33c4f551c15680dd80f53c89a269"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a336eaa7ee7e87cdece3cedb395c9657d227bfceb6781295cf56abcd3386a26"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87f020d010ba80a247c4abc335fc13421037800ca20b42af5ae40e5fd75e7909"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:637c7ddb585a62d4469f843dac221f23eec3cbad31693b23abbc2c366ad41ff4"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:48dfd117ab93f0129084577a07287376cc69c08138694396f305636e229caa1a"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75e0ae31fb5ccab6eda09ba1494e87eb226dcbd2372dae96b87800e1dcc98804"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f46f81501160c28d0c0b7333b4f7be8983dbbc161983b6fb814024d1b4952f79"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:04293941646647b3bfb1719d1d11ff1028e9c30199509a844da3c0f5919dc520"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:250e888fa62d73e721f3041e3a9abf427788a1934b426b45e1b92f62c1f68366"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e8f63904df26d1a66aabc141bfd258bf738b9bc7bc6bdef22713b4f5ef789a4c"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:aac44097d838dda26526cffb63bdd8737a2dbdf5f2c68efb72ad83aec6673c7e"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:267b24f891e74eccbdff42241c5fb4f974de2d6271dcc7d7e0c9ae1079a560d9"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6907daa4b9d7a688063ed098c472f96e8181733c525e03e866fb5db480a424df"}, + {file = "yarl-1.11.1-cp39-cp39-win32.whl", hash = "sha256:14438dfc5015661f75f85bc5adad0743678eefee266ff0c9a8e32969d5d69f74"}, + {file = "yarl-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:94d0caaa912bfcdc702a4204cd5e2bb01eb917fc4f5ea2315aa23962549561b0"}, + {file = "yarl-1.11.1-py3-none-any.whl", hash = "sha256:72bf26f66456baa0584eff63e44545c9f0eaed9b73cb6601b647c91f14c11f38"}, + {file = "yarl-1.11.1.tar.gz", hash = "sha256:1bb2d9e212fb7449b8fb73bc461b51eaa17cc8430b4a87d87be7b25052d92f53"}, ] [package.dependencies] @@ -1830,5 +1879,5 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<3.13" -content-hash = "5376bc1cee151a0de717ebdf09ce4ef0ed6ff25dc918ac1b1880e980089fda0c" +python-versions = ">=3.9,<3.13" +content-hash = "b2da87d5a4a4e29fa902614fa6502617f253f0d2c2097f306ac45b411fe403c6" diff --git a/libs/partners/pinecone/pyproject.toml b/libs/partners/pinecone/pyproject.toml index 41e89ec0e345a..6dbff9622571f 100644 --- a/libs/partners/pinecone/pyproject.toml +++ b/libs/partners/pinecone/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-pinecone" -version = "0.1.3" +version = "0.2.0" description = "An integration package connecting Pinecone and LangChain" authors = [] readme = "README.md" @@ -19,10 +19,10 @@ disallow_untyped_defs = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-pinecone%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<3.13" -langchain-core = ">=0.1.52,<0.3" +python = ">=3.9,<3.13" +langchain-core = "^0.3" pinecone-client = "^5.0.0" -aiohttp = "^3.9.5" +aiohttp = ">=3.9.5,<3.10" [[tool.poetry.dependencies.numpy]] version = "^1" @@ -33,14 +33,18 @@ version = "^1.26.0" python = ">=3.12" [tool.ruff.lint] -select = [ "E", "F", "I", "T201",] +select = ["E", "F", "I", "T201"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] diff --git a/libs/partners/pinecone/scripts/check_pydantic.sh b/libs/partners/pinecone/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/pinecone/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/pinecone/tests/integration_tests/test_vectorstores.py b/libs/partners/pinecone/tests/integration_tests/test_vectorstores.py index 0dcd7e192bbdc..184825a8174a8 100644 --- a/libs/partners/pinecone/tests/integration_tests/test_vectorstores.py +++ b/libs/partners/pinecone/tests/integration_tests/test_vectorstores.py @@ -91,6 +91,7 @@ def test_from_texts( ) time.sleep(DEFAULT_SLEEP) # prevent race condition output = docsearch.similarity_search(unique_id, k=1, namespace=NAMESPACE_NAME) + output[0].id = None # overwrite ID for ease of comparison assert output == [Document(page_content=needs)] def test_from_texts_with_metadatas( @@ -115,6 +116,7 @@ def test_from_texts_with_metadatas( time.sleep(DEFAULT_SLEEP) # prevent race condition output = docsearch.similarity_search(needs, k=1, namespace=namespace) + output[0].id = None # TODO: why metadata={"page": 0.0}) instead of {"page": 0}? assert output == [Document(page_content=needs, metadata={"page": 0.0})] @@ -140,6 +142,8 @@ def test_from_texts_with_scores(self, embedding_openai: OpenAIEmbeddings) -> Non sorted_documents = sorted(docs, key=lambda x: x.metadata["page"]) print(sorted_documents) # noqa: T201 + for document in sorted_documents: + document.id = None # overwrite IDs for ease of comparison # TODO: why metadata={"page": 0.0}) instead of {"page": 0}, etc??? assert sorted_documents == [ Document(page_content="foo", metadata={"page": 0.0}), diff --git a/libs/partners/prompty/poetry.lock b/libs/partners/prompty/poetry.lock index 73ebd1174e5de..5965576a6da19 100644 --- a/libs/partners/prompty/poetry.lock +++ b/libs/partners/prompty/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. [[package]] name = "aiohappyeyeballs" @@ -148,9 +148,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -205,13 +202,13 @@ tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -457,69 +454,77 @@ files = [ [[package]] name = "greenlet" -version = "3.0.3" +version = "3.1.0" description = "Lightweight in-process concurrent programming" optional = false python-versions = ">=3.7" files = [ - {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, - {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, - {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, - {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, - {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, - {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, - {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, - {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, - {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, - {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, - {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, - {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, - {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, - {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, - {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, - {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, + {file = "greenlet-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a814dc3100e8a046ff48faeaa909e80cdb358411a3d6dd5293158425c684eda8"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a771dc64fa44ebe58d65768d869fcfb9060169d203446c1d446e844b62bdfdca"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0e49a65d25d7350cca2da15aac31b6f67a43d867448babf997fe83c7505f57bc"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2cd8518eade968bc52262d8c46727cfc0826ff4d552cf0430b8d65aaf50bb91d"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:76dc19e660baea5c38e949455c1181bc018893f25372d10ffe24b3ed7341fb25"}, + {file = "greenlet-3.1.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c0a5b1c22c82831f56f2f7ad9bbe4948879762fe0d59833a4a71f16e5fa0f682"}, + {file = "greenlet-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:2651dfb006f391bcb240635079a68a261b227a10a08af6349cba834a2141efa1"}, + {file = "greenlet-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:3e7e6ef1737a819819b1163116ad4b48d06cfdd40352d813bb14436024fcda99"}, + {file = "greenlet-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:ffb08f2a1e59d38c7b8b9ac8083c9c8b9875f0955b1e9b9b9a965607a51f8e54"}, + {file = "greenlet-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9730929375021ec90f6447bff4f7f5508faef1c02f399a1953870cdb78e0c345"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:713d450cf8e61854de9420fb7eea8ad228df4e27e7d4ed465de98c955d2b3fa6"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c3446937be153718250fe421da548f973124189f18fe4575a0510b5c928f0cc"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ddc7bcedeb47187be74208bc652d63d6b20cb24f4e596bd356092d8000da6d6"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44151d7b81b9391ed759a2f2865bbe623ef00d648fed59363be2bbbd5154656f"}, + {file = "greenlet-3.1.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6cea1cca3be76c9483282dc7760ea1cc08a6ecec1f0b6ca0a94ea0d17432da19"}, + {file = "greenlet-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:619935a44f414274a2c08c9e74611965650b730eb4efe4b2270f91df5e4adf9a"}, + {file = "greenlet-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:221169d31cada333a0c7fd087b957c8f431c1dba202c3a58cf5a3583ed973e9b"}, + {file = "greenlet-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:01059afb9b178606b4b6e92c3e710ea1635597c3537e44da69f4531e111dd5e9"}, + {file = "greenlet-3.1.0-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:24fc216ec7c8be9becba8b64a98a78f9cd057fd2dc75ae952ca94ed8a893bf27"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d07c28b85b350564bdff9f51c1c5007dfb2f389385d1bc23288de51134ca303"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:243a223c96a4246f8a30ea470c440fe9db1f5e444941ee3c3cd79df119b8eebf"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26811df4dc81271033a7836bc20d12cd30938e6bd2e9437f56fa03da81b0f8fc"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9d86401550b09a55410f32ceb5fe7efcd998bd2dad9e82521713cb148a4a15f"}, + {file = "greenlet-3.1.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:26d9c1c4f1748ccac0bae1dbb465fb1a795a75aba8af8ca871503019f4285e2a"}, + {file = "greenlet-3.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:cd468ec62257bb4544989402b19d795d2305eccb06cde5da0eb739b63dc04665"}, + {file = "greenlet-3.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a53dfe8f82b715319e9953330fa5c8708b610d48b5c59f1316337302af5c0811"}, + {file = "greenlet-3.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:28fe80a3eb673b2d5cc3b12eea468a5e5f4603c26aa34d88bf61bba82ceb2f9b"}, + {file = "greenlet-3.1.0-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:76b3e3976d2a452cba7aa9e453498ac72240d43030fdc6d538a72b87eaff52fd"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655b21ffd37a96b1e78cc48bf254f5ea4b5b85efaf9e9e2a526b3c9309d660ca"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c6f4c2027689093775fd58ca2388d58789009116844432d920e9147f91acbe64"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76e5064fd8e94c3f74d9fd69b02d99e3cdb8fc286ed49a1f10b256e59d0d3a0b"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a4bf607f690f7987ab3291406e012cd8591a4f77aa54f29b890f9c331e84989"}, + {file = "greenlet-3.1.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:037d9ac99540ace9424cb9ea89f0accfaff4316f149520b4ae293eebc5bded17"}, + {file = "greenlet-3.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:90b5bbf05fe3d3ef697103850c2ce3374558f6fe40fd57c9fac1bf14903f50a5"}, + {file = "greenlet-3.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:726377bd60081172685c0ff46afbc600d064f01053190e4450857483c4d44484"}, + {file = "greenlet-3.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:d46d5069e2eeda111d6f71970e341f4bd9aeeee92074e649ae263b834286ecc0"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81eeec4403a7d7684b5812a8aaa626fa23b7d0848edb3a28d2eb3220daddcbd0"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4a3dae7492d16e85ea6045fd11cb8e782b63eac8c8d520c3a92c02ac4573b0a6"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b5ea3664eed571779403858d7cd0a9b0ebf50d57d2cdeafc7748e09ef8cd81a"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a22f4e26400f7f48faef2d69c20dc055a1f3043d330923f9abe08ea0aecc44df"}, + {file = "greenlet-3.1.0-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:13ff8c8e54a10472ce3b2a2da007f915175192f18e6495bad50486e87c7f6637"}, + {file = "greenlet-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f9671e7282d8c6fcabc32c0fb8d7c0ea8894ae85cee89c9aadc2d7129e1a9954"}, + {file = "greenlet-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:184258372ae9e1e9bddce6f187967f2e08ecd16906557c4320e3ba88a93438c3"}, + {file = "greenlet-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:a0409bc18a9f85321399c29baf93545152d74a49d92f2f55302f122007cfda00"}, + {file = "greenlet-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:9eb4a1d7399b9f3c7ac68ae6baa6be5f9195d1d08c9ddc45ad559aa6b556bce6"}, + {file = "greenlet-3.1.0-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:a8870983af660798dc1b529e1fd6f1cefd94e45135a32e58bd70edd694540f33"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfcfb73aed40f550a57ea904629bdaf2e562c68fa1164fa4588e752af6efdc3f"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f9482c2ed414781c0af0b35d9d575226da6b728bd1a720668fa05837184965b7"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d58ec349e0c2c0bc6669bf2cd4982d2f93bf067860d23a0ea1fe677b0f0b1e09"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd65695a8df1233309b701dec2539cc4b11e97d4fcc0f4185b4a12ce54db0491"}, + {file = "greenlet-3.1.0-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:665b21e95bc0fce5cab03b2e1d90ba9c66c510f1bb5fdc864f3a377d0f553f6b"}, + {file = "greenlet-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d3c59a06c2c28a81a026ff11fbf012081ea34fb9b7052f2ed0366e14896f0a1d"}, + {file = "greenlet-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5415b9494ff6240b09af06b91a375731febe0090218e2898d2b85f9b92abcda0"}, + {file = "greenlet-3.1.0-cp38-cp38-win32.whl", hash = "sha256:1544b8dd090b494c55e60c4ff46e238be44fdc472d2589e943c241e0169bcea2"}, + {file = "greenlet-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:7f346d24d74c00b6730440f5eb8ec3fe5774ca8d1c9574e8e57c8671bb51b910"}, + {file = "greenlet-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:db1b3ccb93488328c74e97ff888604a8b95ae4f35f4f56677ca57a4fc3a4220b"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44cd313629ded43bb3b98737bba2f3e2c2c8679b55ea29ed73daea6b755fe8e7"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fad7a051e07f64e297e6e8399b4d6a3bdcad3d7297409e9a06ef8cbccff4f501"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3967dcc1cd2ea61b08b0b276659242cbce5caca39e7cbc02408222fb9e6ff39"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d45b75b0f3fd8d99f62eb7908cfa6d727b7ed190737dec7fe46d993da550b81a"}, + {file = "greenlet-3.1.0-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2d004db911ed7b6218ec5c5bfe4cf70ae8aa2223dffbb5b3c69e342bb253cb28"}, + {file = "greenlet-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b9505a0c8579899057cbefd4ec34d865ab99852baf1ff33a9481eb3924e2da0b"}, + {file = "greenlet-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5fd6e94593f6f9714dbad1aaba734b5ec04593374fa6638df61592055868f8b8"}, + {file = "greenlet-3.1.0-cp39-cp39-win32.whl", hash = "sha256:d0dd943282231480aad5f50f89bdf26690c995e8ff555f26d8a5b9887b559bcc"}, + {file = "greenlet-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:ac0adfdb3a21dc2a24ed728b61e72440d297d0fd3a577389df566651fcd08f97"}, + {file = "greenlet-3.1.0.tar.gz", hash = "sha256:b395121e9bbe8d02a750886f108d540abe66075e61e22f7353d9acb0b81be0f0"}, ] [package.extras] @@ -632,24 +637,24 @@ files = [ [[package]] name = "langchain" -version = "0.2.15" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] aiohttp = "^3.8.3" async-timeout = {version = "^4.0.0", markers = "python_version < \"3.11\""} -langchain-core = "^0.2.35" -langchain-text-splitters = "^0.2.0" +langchain-core = "^0.3.0" +langchain-text-splitters = "^0.3.0" langsmith = "^0.1.17" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] -pydantic = ">=1,<3" +pydantic = "^2.7.4" PyYAML = ">=5.3" requests = "^2" SQLAlchemy = ">=1.4,<3" @@ -661,19 +666,19 @@ url = "../../langchain" [[package]] name = "langchain-core" -version = "0.2.36" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -686,15 +691,15 @@ url = "../../core" [[package]] name = "langchain-text-splitters" -version = "0.2.3" +version = "0.3.0" description = "LangChain text splitting utilities" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.10" +langchain-core = "^0.3.0" [package.source] type = "directory" @@ -702,13 +707,13 @@ url = "../../text-splitters" [[package]] name = "langsmith" -version = "0.1.106" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.106-py3-none-any.whl", hash = "sha256:a418161c98de72ee2c6eea6667c6217814b67db4b9a3a024788013384216ff35"}, - {file = "langsmith-0.1.106.tar.gz", hash = "sha256:64a890a05640d64692f5515ebb444b0457332a9cf9e7605c4651de6737a7d3a0"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] @@ -722,103 +727,108 @@ requests = ">=2,<3" [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" version = "0.991" @@ -880,43 +890,6 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -1056,18 +1029,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -1075,103 +1048,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1396,60 +1370,52 @@ files = [ [[package]] name = "sqlalchemy" -version = "2.0.32" +version = "2.0.34" description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ - {file = "SQLAlchemy-2.0.32-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0c9045ecc2e4db59bfc97b20516dfdf8e41d910ac6fb667ebd3a79ea54084619"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1467940318e4a860afd546ef61fefb98a14d935cd6817ed07a228c7f7c62f389"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5954463675cb15db8d4b521f3566a017c8789222b8316b1e6934c811018ee08b"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:167e7497035c303ae50651b351c28dc22a40bb98fbdb8468cdc971821b1ae533"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b27dfb676ac02529fb6e343b3a482303f16e6bc3a4d868b73935b8792edb52d0"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bf2360a5e0f7bd75fa80431bf8ebcfb920c9f885e7956c7efde89031695cafb8"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-win32.whl", hash = "sha256:306fe44e754a91cd9d600a6b070c1f2fadbb4a1a257b8781ccf33c7067fd3e4d"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-win_amd64.whl", hash = "sha256:99db65e6f3ab42e06c318f15c98f59a436f1c78179e6a6f40f529c8cc7100b22"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:21b053be28a8a414f2ddd401f1be8361e41032d2ef5884b2f31d31cb723e559f"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b178e875a7a25b5938b53b006598ee7645172fccafe1c291a706e93f48499ff5"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723a40ee2cc7ea653645bd4cf024326dea2076673fc9d3d33f20f6c81db83e1d"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:295ff8689544f7ee7e819529633d058bd458c1fd7f7e3eebd0f9268ebc56c2a0"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:49496b68cd190a147118af585173ee624114dfb2e0297558c460ad7495f9dfe2"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:acd9b73c5c15f0ec5ce18128b1fe9157ddd0044abc373e6ecd5ba376a7e5d961"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-win32.whl", hash = "sha256:9365a3da32dabd3e69e06b972b1ffb0c89668994c7e8e75ce21d3e5e69ddef28"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-win_amd64.whl", hash = "sha256:8bd63d051f4f313b102a2af1cbc8b80f061bf78f3d5bd0843ff70b5859e27924"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6bab3db192a0c35e3c9d1560eb8332463e29e5507dbd822e29a0a3c48c0a8d92"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:19d98f4f58b13900d8dec4ed09dd09ef292208ee44cc9c2fe01c1f0a2fe440e9"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd33c61513cb1b7371fd40cf221256456d26a56284e7d19d1f0b9f1eb7dd7e8"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6ba0497c1d066dd004e0f02a92426ca2df20fac08728d03f67f6960271feec"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2b6be53e4fde0065524f1a0a7929b10e9280987b320716c1509478b712a7688c"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:916a798f62f410c0b80b63683c8061f5ebe237b0f4ad778739304253353bc1cb"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-win32.whl", hash = "sha256:31983018b74908ebc6c996a16ad3690301a23befb643093fcfe85efd292e384d"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-win_amd64.whl", hash = "sha256:4363ed245a6231f2e2957cccdda3c776265a75851f4753c60f3004b90e69bfeb"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8afd5b26570bf41c35c0121801479958b4446751a3971fb9a480c1afd85558e"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c750987fc876813f27b60d619b987b057eb4896b81117f73bb8d9918c14f1cad"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ada0102afff4890f651ed91120c1120065663506b760da4e7823913ebd3258be"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:78c03d0f8a5ab4f3034c0e8482cfcc415a3ec6193491cfa1c643ed707d476f16"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:3bd1cae7519283ff525e64645ebd7a3e0283f3c038f461ecc1c7b040a0c932a1"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-win32.whl", hash = "sha256:01438ebcdc566d58c93af0171c74ec28efe6a29184b773e378a385e6215389da"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-win_amd64.whl", hash = "sha256:4979dc80fbbc9d2ef569e71e0896990bc94df2b9fdbd878290bd129b65ab579c"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c742be912f57586ac43af38b3848f7688863a403dfb220193a882ea60e1ec3a"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:62e23d0ac103bcf1c5555b6c88c114089587bc64d048fef5bbdb58dfd26f96da"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:251f0d1108aab8ea7b9aadbd07fb47fb8e3a5838dde34aa95a3349876b5a1f1d"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ef18a84e5116340e38eca3e7f9eeaaef62738891422e7c2a0b80feab165905f"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3eb6a97a1d39976f360b10ff208c73afb6a4de86dd2a6212ddf65c4a6a2347d5"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0c1c9b673d21477cec17ab10bc4decb1322843ba35b481585facd88203754fc5"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-win32.whl", hash = "sha256:c41a2b9ca80ee555decc605bd3c4520cc6fef9abde8fd66b1cf65126a6922d65"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-win_amd64.whl", hash = "sha256:8a37e4d265033c897892279e8adf505c8b6b4075f2b40d77afb31f7185cd6ecd"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:52fec964fba2ef46476312a03ec8c425956b05c20220a1a03703537824b5e8e1"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:328429aecaba2aee3d71e11f2477c14eec5990fb6d0e884107935f7fb6001632"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85a01b5599e790e76ac3fe3aa2f26e1feba56270023d6afd5550ed63c68552b3"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aaf04784797dcdf4c0aa952c8d234fa01974c4729db55c45732520ce12dd95b4"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4488120becf9b71b3ac718f4138269a6be99a42fe023ec457896ba4f80749525"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:14e09e083a5796d513918a66f3d6aedbc131e39e80875afe81d98a03312889e6"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-win32.whl", hash = "sha256:0d322cc9c9b2154ba7e82f7bf25ecc7c36fbe2d82e2933b3642fc095a52cfc78"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-win_amd64.whl", hash = "sha256:7dd8583df2f98dea28b5cd53a1beac963f4f9d087888d75f22fcc93a07cf8d84"}, - {file = "SQLAlchemy-2.0.32-py3-none-any.whl", hash = "sha256:e567a8793a692451f706b363ccf3c45e056b67d90ead58c3bc9471af5d212202"}, - {file = "SQLAlchemy-2.0.32.tar.gz", hash = "sha256:c1b88cc8b02b6a5f0efb0345a03672d4c897dc7d92585176f88c67346f565ea8"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:95d0b2cf8791ab5fb9e3aa3d9a79a0d5d51f55b6357eecf532a120ba3b5524db"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:243f92596f4fd4c8bd30ab8e8dd5965afe226363d75cab2468f2c707f64cd83b"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:173f5f122d2e1bff8fbd9f7811b7942bead1f5e9f371cdf9e670b327e6703ebd"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bd90c221ed4e60ac9d476db967f436cfcecbd4ef744537c0f2d5291439848768"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-win32.whl", hash = "sha256:3166dfff2d16fe9be3241ee60ece6fcb01cf8e74dd7c5e0b64f8e19fab44911b"}, + {file = "SQLAlchemy-2.0.34-cp310-cp310-win_amd64.whl", hash = "sha256:6831a78bbd3c40f909b3e5233f87341f12d0b34a58f14115c9e94b4cdaf726d3"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7db3db284a0edaebe87f8f6642c2b2c27ed85c3e70064b84d1c9e4ec06d5d84"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:430093fce0efc7941d911d34f75a70084f12f6ca5c15d19595c18753edb7c33b"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79cb400c360c7c210097b147c16a9e4c14688a6402445ac848f296ade6283bbc"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb1b30f31a36c7f3fee848391ff77eebdd3af5750bf95fbf9b8b5323edfdb4ec"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8fddde2368e777ea2a4891a3fb4341e910a056be0bb15303bf1b92f073b80c02"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:80bd73ea335203b125cf1d8e50fef06be709619eb6ab9e7b891ea34b5baa2287"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-win32.whl", hash = "sha256:6daeb8382d0df526372abd9cb795c992e18eed25ef2c43afe518c73f8cccb721"}, + {file = "SQLAlchemy-2.0.34-cp311-cp311-win_amd64.whl", hash = "sha256:5bc08e75ed11693ecb648b7a0a4ed80da6d10845e44be0c98c03f2f880b68ff4"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:53e68b091492c8ed2bd0141e00ad3089bcc6bf0e6ec4142ad6505b4afe64163e"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bcd18441a49499bf5528deaa9dee1f5c01ca491fc2791b13604e8f972877f812"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:165bbe0b376541092bf49542bd9827b048357f4623486096fc9aaa6d4e7c59a2"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3330415cd387d2b88600e8e26b510d0370db9b7eaf984354a43e19c40df2e2b"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:97b850f73f8abbffb66ccbab6e55a195a0eb655e5dc74624d15cff4bfb35bd74"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:7cee4c6917857fd6121ed84f56d1dc78eb1d0e87f845ab5a568aba73e78adf83"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-win32.whl", hash = "sha256:fbb034f565ecbe6c530dff948239377ba859420d146d5f62f0271407ffb8c580"}, + {file = "SQLAlchemy-2.0.34-cp312-cp312-win_amd64.whl", hash = "sha256:707c8f44931a4facd4149b52b75b80544a8d824162602b8cd2fe788207307f9a"}, + {file = "SQLAlchemy-2.0.34-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:24af3dc43568f3780b7e1e57c49b41d98b2d940c1fd2e62d65d3928b6f95f021"}, + {file = "SQLAlchemy-2.0.34-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:413c85cd0177c23e32dee6898c67a5f49296640041d98fddb2c40888fe4daa2e"}, + {file = "SQLAlchemy-2.0.34-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:526ce723265643dbc4c7efb54f56648cc30e7abe20f387d763364b3ce7506c82"}, + {file = "SQLAlchemy-2.0.34-cp37-cp37m-win32.whl", hash = "sha256:13be2cc683b76977a700948411a94c67ad8faf542fa7da2a4b167f2244781cf3"}, + {file = "SQLAlchemy-2.0.34-cp37-cp37m-win_amd64.whl", hash = "sha256:e54ef33ea80d464c3dcfe881eb00ad5921b60f8115ea1a30d781653edc2fd6a2"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:43f28005141165edd11fbbf1541c920bd29e167b8bbc1fb410d4fe2269c1667a"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b68094b165a9e930aedef90725a8fcfafe9ef95370cbb54abc0464062dbf808f"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:203d46bddeaa7982f9c3cc693e5bc93db476ab5de9d4b4640d5c99ff219bee8c"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9661268415f450c95f72f0ac1217cc6f10256f860eed85c2ae32e75b60278ad8"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-win32.whl", hash = "sha256:895184dfef8708e15f7516bd930bda7e50ead069280d2ce09ba11781b630a434"}, + {file = "SQLAlchemy-2.0.34-cp38-cp38-win_amd64.whl", hash = "sha256:6e7cde3a2221aa89247944cafb1b26616380e30c63e37ed19ff0bba5e968688d"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:dbcdf987f3aceef9763b6d7b1fd3e4ee210ddd26cac421d78b3c206d07b2700b"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ce119fc4ce0d64124d37f66a6f2a584fddc3c5001755f8a49f1ca0a177ef9796"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ebc11c54c6ecdd07bb4efbfa1554538982f5432dfb8456958b6d46b9f834bb7"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:220574e78ad986aea8e81ac68821e47ea9202b7e44f251b7ed8c66d9ae3f4278"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-win32.whl", hash = "sha256:b75b00083e7fe6621ce13cfce9d4469c4774e55e8e9d38c305b37f13cf1e874c"}, + {file = "SQLAlchemy-2.0.34-cp39-cp39-win_amd64.whl", hash = "sha256:c29d03e0adf3cc1a8c3ec62d176824972ae29b67a66cbb18daff3062acc6faa8"}, + {file = "SQLAlchemy-2.0.34-py3-none-any.whl", hash = "sha256:7286c353ee6475613d8beff83167374006c6b3e3f0e6491bfe8ca610eb1dec0f"}, + {file = "sqlalchemy-2.0.34.tar.gz", hash = "sha256:10d8f36990dd929690666679b0f42235c159a7051534adb135728ee52828dd22"}, ] [package.dependencies] @@ -1545,13 +1511,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1562,46 +1528,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -1609,101 +1570,103 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "yarl" -version = "1.9.4" +version = "1.11.1" description = "Yet another URL library" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"}, - {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"}, - {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98"}, - {file = "yarl-1.9.4-cp311-cp311-win32.whl", hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31"}, - {file = "yarl-1.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10"}, - {file = "yarl-1.9.4-cp312-cp312-win32.whl", hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7"}, - {file = "yarl-1.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984"}, - {file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434"}, - {file = "yarl-1.9.4-cp37-cp37m-win32.whl", hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749"}, - {file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3"}, - {file = "yarl-1.9.4-cp38-cp38-win32.whl", hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece"}, - {file = "yarl-1.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0"}, - {file = "yarl-1.9.4-cp39-cp39-win32.whl", hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575"}, - {file = "yarl-1.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15"}, - {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"}, - {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:400cd42185f92de559d29eeb529e71d80dfbd2f45c36844914a4a34297ca6f00"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8258c86f47e080a258993eed877d579c71da7bda26af86ce6c2d2d072c11320d"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2164cd9725092761fed26f299e3f276bb4b537ca58e6ff6b252eae9631b5c96e"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08ea567c16f140af8ddc7cb58e27e9138a1386e3e6e53982abaa6f2377b38cc"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:768ecc550096b028754ea28bf90fde071c379c62c43afa574edc6f33ee5daaec"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2909fa3a7d249ef64eeb2faa04b7957e34fefb6ec9966506312349ed8a7e77bf"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01a8697ec24f17c349c4f655763c4db70eebc56a5f82995e5e26e837c6eb0e49"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e286580b6511aac7c3268a78cdb861ec739d3e5a2a53b4809faef6b49778eaff"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4179522dc0305c3fc9782549175c8e8849252fefeb077c92a73889ccbcd508ad"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:27fcb271a41b746bd0e2a92182df507e1c204759f460ff784ca614e12dd85145"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f61db3b7e870914dbd9434b560075e0366771eecbe6d2b5561f5bc7485f39efd"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:c92261eb2ad367629dc437536463dc934030c9e7caca861cc51990fe6c565f26"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d95b52fbef190ca87d8c42f49e314eace4fc52070f3dfa5f87a6594b0c1c6e46"}, + {file = "yarl-1.11.1-cp310-cp310-win32.whl", hash = "sha256:489fa8bde4f1244ad6c5f6d11bb33e09cf0d1d0367edb197619c3e3fc06f3d91"}, + {file = "yarl-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:476e20c433b356e16e9a141449f25161e6b69984fb4cdbd7cd4bd54c17844998"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:946eedc12895873891aaceb39bceb484b4977f70373e0122da483f6c38faaa68"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:21a7c12321436b066c11ec19c7e3cb9aec18884fe0d5b25d03d756a9e654edfe"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c35f493b867912f6fda721a59cc7c4766d382040bdf1ddaeeaa7fa4d072f4675"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25861303e0be76b60fddc1250ec5986c42f0a5c0c50ff57cc30b1be199c00e63"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4b53f73077e839b3f89c992223f15b1d2ab314bdbdf502afdc7bb18e95eae27"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:327c724b01b8641a1bf1ab3b232fb638706e50f76c0b5bf16051ab65c868fac5"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4307d9a3417eea87715c9736d050c83e8c1904e9b7aada6ce61b46361b733d92"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48a28bed68ab8fb7e380775f0029a079f08a17799cb3387a65d14ace16c12e2b"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:067b961853c8e62725ff2893226fef3d0da060656a9827f3f520fb1d19b2b68a"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8215f6f21394d1f46e222abeb06316e77ef328d628f593502d8fc2a9117bde83"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:498442e3af2a860a663baa14fbf23fb04b0dd758039c0e7c8f91cb9279799bff"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:69721b8effdb588cb055cc22f7c5105ca6fdaa5aeb3ea09021d517882c4a904c"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1e969fa4c1e0b1a391f3fcbcb9ec31e84440253325b534519be0d28f4b6b533e"}, + {file = "yarl-1.11.1-cp311-cp311-win32.whl", hash = "sha256:7d51324a04fc4b0e097ff8a153e9276c2593106a811704025bbc1d6916f45ca6"}, + {file = "yarl-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:15061ce6584ece023457fb8b7a7a69ec40bf7114d781a8c4f5dcd68e28b5c53b"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a4264515f9117be204935cd230fb2a052dd3792789cc94c101c535d349b3dab0"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f41fa79114a1d2eddb5eea7b912d6160508f57440bd302ce96eaa384914cd265"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02da8759b47d964f9173c8675710720b468aa1c1693be0c9c64abb9d8d9a4867"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9361628f28f48dcf8b2f528420d4d68102f593f9c2e592bfc842f5fb337e44fd"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b91044952da03b6f95fdba398d7993dd983b64d3c31c358a4c89e3c19b6f7aef"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:74db2ef03b442276d25951749a803ddb6e270d02dda1d1c556f6ae595a0d76a8"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e975a2211952a8a083d1b9d9ba26472981ae338e720b419eb50535de3c02870"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aef97ba1dd2138112890ef848e17d8526fe80b21f743b4ee65947ea184f07a2"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a7915ea49b0c113641dc4d9338efa9bd66b6a9a485ffe75b9907e8573ca94b84"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:504cf0d4c5e4579a51261d6091267f9fd997ef58558c4ffa7a3e1460bd2336fa"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3de5292f9f0ee285e6bd168b2a77b2a00d74cbcfa420ed078456d3023d2f6dff"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a34e1e30f1774fa35d37202bbeae62423e9a79d78d0874e5556a593479fdf239"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:66b63c504d2ca43bf7221a1f72fbe981ff56ecb39004c70a94485d13e37ebf45"}, + {file = "yarl-1.11.1-cp312-cp312-win32.whl", hash = "sha256:a28b70c9e2213de425d9cba5ab2e7f7a1c8ca23a99c4b5159bf77b9c31251447"}, + {file = "yarl-1.11.1-cp312-cp312-win_amd64.whl", hash = "sha256:17b5a386d0d36fb828e2fb3ef08c8829c1ebf977eef88e5367d1c8c94b454639"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1fa2e7a406fbd45b61b4433e3aa254a2c3e14c4b3186f6e952d08a730807fa0c"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:750f656832d7d3cb0c76be137ee79405cc17e792f31e0a01eee390e383b2936e"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0b8486f322d8f6a38539136a22c55f94d269addb24db5cb6f61adc61eabc9d93"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3fce4da3703ee6048ad4138fe74619c50874afe98b1ad87b2698ef95bf92c96d"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed653638ef669e0efc6fe2acb792275cb419bf9cb5c5049399f3556995f23c7"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18ac56c9dd70941ecad42b5a906820824ca72ff84ad6fa18db33c2537ae2e089"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:688654f8507464745ab563b041d1fb7dab5d9912ca6b06e61d1c4708366832f5"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4973eac1e2ff63cf187073cd4e1f1148dcd119314ab79b88e1b3fad74a18c9d5"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:964a428132227edff96d6f3cf261573cb0f1a60c9a764ce28cda9525f18f7786"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:6d23754b9939cbab02c63434776df1170e43b09c6a517585c7ce2b3d449b7318"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c2dc4250fe94d8cd864d66018f8344d4af50e3758e9d725e94fecfa27588ff82"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09696438cb43ea6f9492ef237761b043f9179f455f405279e609f2bc9100212a"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:999bfee0a5b7385a0af5ffb606393509cfde70ecca4f01c36985be6d33e336da"}, + {file = "yarl-1.11.1-cp313-cp313-win32.whl", hash = "sha256:ce928c9c6409c79e10f39604a7e214b3cb69552952fbda8d836c052832e6a979"}, + {file = "yarl-1.11.1-cp313-cp313-win_amd64.whl", hash = "sha256:501c503eed2bb306638ccb60c174f856cc3246c861829ff40eaa80e2f0330367"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dae7bd0daeb33aa3e79e72877d3d51052e8b19c9025ecf0374f542ea8ec120e4"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3ff6b1617aa39279fe18a76c8d165469c48b159931d9b48239065767ee455b2b"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3257978c870728a52dcce8c2902bf01f6c53b65094b457bf87b2644ee6238ddc"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f351fa31234699d6084ff98283cb1e852270fe9e250a3b3bf7804eb493bd937"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8aef1b64da41d18026632d99a06b3fefe1d08e85dd81d849fa7c96301ed22f1b"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7175a87ab8f7fbde37160a15e58e138ba3b2b0e05492d7351314a250d61b1591"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba444bdd4caa2a94456ef67a2f383710928820dd0117aae6650a4d17029fa25e"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ea9682124fc062e3d931c6911934a678cb28453f957ddccf51f568c2f2b5e05"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8418c053aeb236b20b0ab8fa6bacfc2feaaf7d4683dd96528610989c99723d5f"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:61a5f2c14d0a1adfdd82258f756b23a550c13ba4c86c84106be4c111a3a4e413"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f3a6d90cab0bdf07df8f176eae3a07127daafcf7457b997b2bf46776da2c7eb7"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:077da604852be488c9a05a524068cdae1e972b7dc02438161c32420fb4ec5e14"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:15439f3c5c72686b6c3ff235279630d08936ace67d0fe5c8d5bbc3ef06f5a420"}, + {file = "yarl-1.11.1-cp38-cp38-win32.whl", hash = "sha256:238a21849dd7554cb4d25a14ffbfa0ef380bb7ba201f45b144a14454a72ffa5a"}, + {file = "yarl-1.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:67459cf8cf31da0e2cbdb4b040507e535d25cfbb1604ca76396a3a66b8ba37a6"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:884eab2ce97cbaf89f264372eae58388862c33c4f551c15680dd80f53c89a269"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a336eaa7ee7e87cdece3cedb395c9657d227bfceb6781295cf56abcd3386a26"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87f020d010ba80a247c4abc335fc13421037800ca20b42af5ae40e5fd75e7909"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:637c7ddb585a62d4469f843dac221f23eec3cbad31693b23abbc2c366ad41ff4"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:48dfd117ab93f0129084577a07287376cc69c08138694396f305636e229caa1a"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75e0ae31fb5ccab6eda09ba1494e87eb226dcbd2372dae96b87800e1dcc98804"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f46f81501160c28d0c0b7333b4f7be8983dbbc161983b6fb814024d1b4952f79"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:04293941646647b3bfb1719d1d11ff1028e9c30199509a844da3c0f5919dc520"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:250e888fa62d73e721f3041e3a9abf427788a1934b426b45e1b92f62c1f68366"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e8f63904df26d1a66aabc141bfd258bf738b9bc7bc6bdef22713b4f5ef789a4c"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:aac44097d838dda26526cffb63bdd8737a2dbdf5f2c68efb72ad83aec6673c7e"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:267b24f891e74eccbdff42241c5fb4f974de2d6271dcc7d7e0c9ae1079a560d9"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6907daa4b9d7a688063ed098c472f96e8181733c525e03e866fb5db480a424df"}, + {file = "yarl-1.11.1-cp39-cp39-win32.whl", hash = "sha256:14438dfc5015661f75f85bc5adad0743678eefee266ff0c9a8e32969d5d69f74"}, + {file = "yarl-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:94d0caaa912bfcdc702a4204cd5e2bb01eb917fc4f5ea2315aa23962549561b0"}, + {file = "yarl-1.11.1-py3-none-any.whl", hash = "sha256:72bf26f66456baa0584eff63e44545c9f0eaed9b73cb6601b647c91f14c11f38"}, + {file = "yarl-1.11.1.tar.gz", hash = "sha256:1bb2d9e212fb7449b8fb73bc461b51eaa17cc8430b4a87d87be7b25052d92f53"}, ] [package.dependencies] @@ -1712,5 +1675,5 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "a8ac2ae4de4a64bd1b7bc8a36af02073196a3261f663f6da52a2e82818931064" +python-versions = ">=3.9,<4.0" +content-hash = "9bd62fbfe5d3762f2810c0d73da3599166a7b3d49fe41bae9b35f158555df9e8" diff --git a/libs/partners/prompty/pyproject.toml b/libs/partners/prompty/pyproject.toml index 7ae1504e48cd1..32e34016c7d7d 100644 --- a/libs/partners/prompty/pyproject.toml +++ b/libs/partners/prompty/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "langchain-prompty" -version = "0.0.3" +version = "0.1.0" description = "An integration package connecting Prompty and LangChain" authors = [] readme = "README.md" @@ -12,10 +12,9 @@ license = "MIT" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-prompty%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.36" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" pyyaml = "^6.0.1" -types-pyyaml = "^6.0.12.20240311" [tool.poetry.group.test] optional = true @@ -50,6 +49,7 @@ ruff = "^0.1.5" [tool.poetry.group.typing.dependencies] mypy = "^0.991" +types-pyyaml = "^6.0.12.20240311" langchain-core = { path = "../../core", develop = true } [tool.poetry.group.dev] diff --git a/libs/partners/prompty/scripts/check_pydantic.sh b/libs/partners/prompty/scripts/check_pydantic.sh deleted file mode 100644 index 06b5bb81ae236..0000000000000 --- a/libs/partners/prompty/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/prompty/tests/unit_tests/fake_callback_handler.py b/libs/partners/prompty/tests/unit_tests/fake_callback_handler.py index fd68bebd2d9c5..cfbfa4f6f81b2 100644 --- a/libs/partners/prompty/tests/unit_tests/fake_callback_handler.py +++ b/libs/partners/prompty/tests/unit_tests/fake_callback_handler.py @@ -6,7 +6,7 @@ from langchain_core.callbacks import AsyncCallbackHandler, BaseCallbackHandler from langchain_core.messages import BaseMessage -from langchain_core.pydantic_v1 import BaseModel +from pydantic import BaseModel class BaseFakeCallbackHandler(BaseModel): @@ -259,7 +259,8 @@ def on_retriever_error( ) -> Any: self.on_retriever_error_common() - def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": + # Overriding since BaseModel has __deepcopy__ method as well + def __deepcopy__(self, memo: dict) -> "FakeCallbackHandler": # type: ignore return self @@ -391,5 +392,6 @@ async def on_text( ) -> None: self.on_text_common() - def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": + # Overriding since BaseModel has __deepcopy__ method as well + def __deepcopy__(self, memo: dict) -> "FakeAsyncCallbackHandler": # type: ignore return self diff --git a/libs/partners/prompty/tests/unit_tests/fake_chat_model.py b/libs/partners/prompty/tests/unit_tests/fake_chat_model.py index a39f401e64349..0bfc795f7c656 100644 --- a/libs/partners/prompty/tests/unit_tests/fake_chat_model.py +++ b/libs/partners/prompty/tests/unit_tests/fake_chat_model.py @@ -21,7 +21,7 @@ def _call( run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: - return json.dumps([message.dict() for message in messages]) + return json.dumps([message.model_dump() for message in messages]) async def _agenerate( self, diff --git a/libs/partners/prompty/tests/unit_tests/test_prompty_serialization.py b/libs/partners/prompty/tests/unit_tests/test_prompty_serialization.py index 23bf299ee56b5..9233de366538e 100644 --- a/libs/partners/prompty/tests/unit_tests/test_prompty_serialization.py +++ b/libs/partners/prompty/tests/unit_tests/test_prompty_serialization.py @@ -6,8 +6,8 @@ from langchain.tools import tool from langchain_core.language_models import FakeListLLM from langchain_core.messages import AIMessage, HumanMessage -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.utils.function_calling import convert_to_openai_function +from pydantic import BaseModel, Field import langchain_prompty diff --git a/libs/partners/qdrant/poetry.lock b/libs/partners/qdrant/poetry.lock index 0fee98a1e8025..f1fe800775219 100644 --- a/libs/partners/qdrant/poetry.lock +++ b/libs/partners/qdrant/poetry.lock @@ -2,13 +2,13 @@ [[package]] name = "annotated-types" -version = "0.6.0" +version = "0.7.0" description = "Reusable constraint types to use with typing.Annotated" optional = false python-versions = ">=3.8" files = [ - {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, - {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] [package.dependencies] @@ -16,13 +16,13 @@ typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} [[package]] name = "anyio" -version = "4.3.0" +version = "4.4.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false python-versions = ">=3.8" files = [ - {file = "anyio-4.3.0-py3-none-any.whl", hash = "sha256:048e05d0f6caeed70d731f3db756d35dcc1f35747c8c403364a8332c630441b8"}, - {file = "anyio-4.3.0.tar.gz", hash = "sha256:f75253795a87df48568485fd18cdd2a3fa5c4f7c5be8e5e36637733fce06fed6"}, + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, ] [package.dependencies] @@ -38,13 +38,13 @@ trio = ["trio (>=0.23)"] [[package]] name = "certifi" -version = "2024.2.2" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"}, - {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -148,13 +148,13 @@ files = [ [[package]] name = "codespell" -version = "2.2.6" +version = "2.3.0" description = "Codespell" optional = false python-versions = ">=3.8" files = [ - {file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"}, - {file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"}, + {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, + {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, ] [package.extras] @@ -193,13 +193,13 @@ cron = ["capturer (>=2.4)"] [[package]] name = "exceptiongroup" -version = "1.2.1" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, - {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -207,13 +207,13 @@ test = ["pytest (>=6)"] [[package]] name = "fastembed" -version = "0.3.3" +version = "0.3.6" description = "Fast, light, accurate library built for retrieval embedding generation" optional = true python-versions = "<3.13,>=3.8.0" files = [ - {file = "fastembed-0.3.3-py3-none-any.whl", hash = "sha256:1282a44dac187bbb0765b7e05a0612f1a7eb28c0c65ccb10b2b963467807fef6"}, - {file = "fastembed-0.3.3.tar.gz", hash = "sha256:2735777d8c4462a92ec289ad99534242deb2073cede7d4ad3b37d070994d767f"}, + {file = "fastembed-0.3.6-py3-none-any.whl", hash = "sha256:2bf70edae28bb4ccd9e01617098c2075b0ba35b88025a3d22b0e1e85b2c488ce"}, + {file = "fastembed-0.3.6.tar.gz", hash = "sha256:c93c8ec99b8c008c2d192d6297866b8d70ec7ac8f5696b34eb5ea91f85efd15f"}, ] [package.dependencies] @@ -276,13 +276,13 @@ python-dateutil = ">=2.7" [[package]] name = "fsspec" -version = "2024.6.1" +version = "2024.9.0" description = "File-system specification" optional = true python-versions = ">=3.8" files = [ - {file = "fsspec-2024.6.1-py3-none-any.whl", hash = "sha256:3cb443f8bcd2efb31295a5b9fdb02aee81d8452c80d28f97a6d0959e6cee101e"}, - {file = "fsspec-2024.6.1.tar.gz", hash = "sha256:fad7d7e209dd4c1208e3bbfda706620e0da5142bebbd9c384afb95b07e798e49"}, + {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, + {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, ] [package.extras] @@ -315,119 +315,119 @@ tqdm = ["tqdm"] [[package]] name = "grpcio" -version = "1.63.0" +version = "1.66.1" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.63.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:2e93aca840c29d4ab5db93f94ed0a0ca899e241f2e8aec6334ab3575dc46125c"}, - {file = "grpcio-1.63.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:91b73d3f1340fefa1e1716c8c1ec9930c676d6b10a3513ab6c26004cb02d8b3f"}, - {file = "grpcio-1.63.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:b3afbd9d6827fa6f475a4f91db55e441113f6d3eb9b7ebb8fb806e5bb6d6bd0d"}, - {file = "grpcio-1.63.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8f3f6883ce54a7a5f47db43289a0a4c776487912de1a0e2cc83fdaec9685cc9f"}, - {file = "grpcio-1.63.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf8dae9cc0412cb86c8de5a8f3be395c5119a370f3ce2e69c8b7d46bb9872c8d"}, - {file = "grpcio-1.63.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:08e1559fd3b3b4468486b26b0af64a3904a8dbc78d8d936af9c1cf9636eb3e8b"}, - {file = "grpcio-1.63.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:5c039ef01516039fa39da8a8a43a95b64e288f79f42a17e6c2904a02a319b357"}, - {file = "grpcio-1.63.0-cp310-cp310-win32.whl", hash = "sha256:ad2ac8903b2eae071055a927ef74121ed52d69468e91d9bcbd028bd0e554be6d"}, - {file = "grpcio-1.63.0-cp310-cp310-win_amd64.whl", hash = "sha256:b2e44f59316716532a993ca2966636df6fbe7be4ab6f099de6815570ebe4383a"}, - {file = "grpcio-1.63.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:f28f8b2db7b86c77916829d64ab21ff49a9d8289ea1564a2b2a3a8ed9ffcccd3"}, - {file = "grpcio-1.63.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:65bf975639a1f93bee63ca60d2e4951f1b543f498d581869922910a476ead2f5"}, - {file = "grpcio-1.63.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:b5194775fec7dc3dbd6a935102bb156cd2c35efe1685b0a46c67b927c74f0cfb"}, - {file = "grpcio-1.63.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4cbb2100ee46d024c45920d16e888ee5d3cf47c66e316210bc236d5bebc42b3"}, - {file = "grpcio-1.63.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ff737cf29b5b801619f10e59b581869e32f400159e8b12d7a97e7e3bdeee6a2"}, - {file = "grpcio-1.63.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cd1e68776262dd44dedd7381b1a0ad09d9930ffb405f737d64f505eb7f77d6c7"}, - {file = "grpcio-1.63.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:93f45f27f516548e23e4ec3fbab21b060416007dbe768a111fc4611464cc773f"}, - {file = "grpcio-1.63.0-cp311-cp311-win32.whl", hash = "sha256:878b1d88d0137df60e6b09b74cdb73db123f9579232c8456f53e9abc4f62eb3c"}, - {file = "grpcio-1.63.0-cp311-cp311-win_amd64.whl", hash = "sha256:756fed02dacd24e8f488f295a913f250b56b98fb793f41d5b2de6c44fb762434"}, - {file = "grpcio-1.63.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:93a46794cc96c3a674cdfb59ef9ce84d46185fe9421baf2268ccb556f8f81f57"}, - {file = "grpcio-1.63.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a7b19dfc74d0be7032ca1eda0ed545e582ee46cd65c162f9e9fc6b26ef827dc6"}, - {file = "grpcio-1.63.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:8064d986d3a64ba21e498b9a376cbc5d6ab2e8ab0e288d39f266f0fca169b90d"}, - {file = "grpcio-1.63.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:219bb1848cd2c90348c79ed0a6b0ea51866bc7e72fa6e205e459fedab5770172"}, - {file = "grpcio-1.63.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2d60cd1d58817bc5985fae6168d8b5655c4981d448d0f5b6194bbcc038090d2"}, - {file = "grpcio-1.63.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:9e350cb096e5c67832e9b6e018cf8a0d2a53b2a958f6251615173165269a91b0"}, - {file = "grpcio-1.63.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:56cdf96ff82e3cc90dbe8bac260352993f23e8e256e063c327b6cf9c88daf7a9"}, - {file = "grpcio-1.63.0-cp312-cp312-win32.whl", hash = "sha256:3a6d1f9ea965e750db7b4ee6f9fdef5fdf135abe8a249e75d84b0a3e0c668a1b"}, - {file = "grpcio-1.63.0-cp312-cp312-win_amd64.whl", hash = "sha256:d2497769895bb03efe3187fb1888fc20e98a5f18b3d14b606167dacda5789434"}, - {file = "grpcio-1.63.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:fdf348ae69c6ff484402cfdb14e18c1b0054ac2420079d575c53a60b9b2853ae"}, - {file = "grpcio-1.63.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:a3abfe0b0f6798dedd2e9e92e881d9acd0fdb62ae27dcbbfa7654a57e24060c0"}, - {file = "grpcio-1.63.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:6ef0ad92873672a2a3767cb827b64741c363ebaa27e7f21659e4e31f4d750280"}, - {file = "grpcio-1.63.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b416252ac5588d9dfb8a30a191451adbf534e9ce5f56bb02cd193f12d8845b7f"}, - {file = "grpcio-1.63.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3b77eaefc74d7eb861d3ffbdf91b50a1bb1639514ebe764c47773b833fa2d91"}, - {file = "grpcio-1.63.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b005292369d9c1f80bf70c1db1c17c6c342da7576f1c689e8eee4fb0c256af85"}, - {file = "grpcio-1.63.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cdcda1156dcc41e042d1e899ba1f5c2e9f3cd7625b3d6ebfa619806a4c1aadda"}, - {file = "grpcio-1.63.0-cp38-cp38-win32.whl", hash = "sha256:01799e8649f9e94ba7db1aeb3452188048b0019dc37696b0f5ce212c87c560c3"}, - {file = "grpcio-1.63.0-cp38-cp38-win_amd64.whl", hash = "sha256:6a1a3642d76f887aa4009d92f71eb37809abceb3b7b5a1eec9c554a246f20e3a"}, - {file = "grpcio-1.63.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:75f701ff645858a2b16bc8c9fc68af215a8bb2d5a9b647448129de6e85d52bce"}, - {file = "grpcio-1.63.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cacdef0348a08e475a721967f48206a2254a1b26ee7637638d9e081761a5ba86"}, - {file = "grpcio-1.63.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:0697563d1d84d6985e40ec5ec596ff41b52abb3fd91ec240e8cb44a63b895094"}, - {file = "grpcio-1.63.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6426e1fb92d006e47476d42b8f240c1d916a6d4423c5258ccc5b105e43438f61"}, - {file = "grpcio-1.63.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e48cee31bc5f5a31fb2f3b573764bd563aaa5472342860edcc7039525b53e46a"}, - {file = "grpcio-1.63.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:50344663068041b34a992c19c600236e7abb42d6ec32567916b87b4c8b8833b3"}, - {file = "grpcio-1.63.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:259e11932230d70ef24a21b9fb5bb947eb4703f57865a404054400ee92f42f5d"}, - {file = "grpcio-1.63.0-cp39-cp39-win32.whl", hash = "sha256:a44624aad77bf8ca198c55af811fd28f2b3eaf0a50ec5b57b06c034416ef2d0a"}, - {file = "grpcio-1.63.0-cp39-cp39-win_amd64.whl", hash = "sha256:166e5c460e5d7d4656ff9e63b13e1f6029b122104c1633d5f37eaea348d7356d"}, - {file = "grpcio-1.63.0.tar.gz", hash = "sha256:f3023e14805c61bc439fb40ca545ac3d5740ce66120a678a3c6c2c55b70343d1"}, + {file = "grpcio-1.66.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:4877ba180591acdf127afe21ec1c7ff8a5ecf0fe2600f0d3c50e8c4a1cbc6492"}, + {file = "grpcio-1.66.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3750c5a00bd644c75f4507f77a804d0189d97a107eb1481945a0cf3af3e7a5ac"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:a013c5fbb12bfb5f927444b477a26f1080755a931d5d362e6a9a720ca7dbae60"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1b24c23d51a1e8790b25514157d43f0a4dce1ac12b3f0b8e9f66a5e2c4c132f"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffb8ea674d68de4cac6f57d2498fef477cef582f1fa849e9f844863af50083"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:307b1d538140f19ccbd3aed7a93d8f71103c5d525f3c96f8616111614b14bf2a"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1c17ebcec157cfb8dd445890a03e20caf6209a5bd4ac5b040ae9dbc59eef091d"}, + {file = "grpcio-1.66.1-cp310-cp310-win32.whl", hash = "sha256:ef82d361ed5849d34cf09105d00b94b6728d289d6b9235513cb2fcc79f7c432c"}, + {file = "grpcio-1.66.1-cp310-cp310-win_amd64.whl", hash = "sha256:292a846b92cdcd40ecca46e694997dd6b9be6c4c01a94a0dfb3fcb75d20da858"}, + {file = "grpcio-1.66.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:c30aeceeaff11cd5ddbc348f37c58bcb96da8d5aa93fed78ab329de5f37a0d7a"}, + {file = "grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8a1e224ce6f740dbb6b24c58f885422deebd7eb724aff0671a847f8951857c26"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a66fe4dc35d2330c185cfbb42959f57ad36f257e0cc4557d11d9f0a3f14311df"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ba04659e4fce609de2658fe4dbf7d6ed21987a94460f5f92df7579fd5d0e22"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4573608e23f7e091acfbe3e84ac2045680b69751d8d67685ffa193a4429fedb1"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7e06aa1f764ec8265b19d8f00140b8c4b6ca179a6dc67aa9413867c47e1fb04e"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3885f037eb11f1cacc41f207b705f38a44b69478086f40608959bf5ad85826dd"}, + {file = "grpcio-1.66.1-cp311-cp311-win32.whl", hash = "sha256:97ae7edd3f3f91480e48ede5d3e7d431ad6005bfdbd65c1b56913799ec79e791"}, + {file = "grpcio-1.66.1-cp311-cp311-win_amd64.whl", hash = "sha256:cfd349de4158d797db2bd82d2020554a121674e98fbe6b15328456b3bf2495bb"}, + {file = "grpcio-1.66.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:a92c4f58c01c77205df6ff999faa008540475c39b835277fb8883b11cada127a"}, + {file = "grpcio-1.66.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fdb14bad0835914f325349ed34a51940bc2ad965142eb3090081593c6e347be9"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f03a5884c56256e08fd9e262e11b5cfacf1af96e2ce78dc095d2c41ccae2c80d"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2ca2559692d8e7e245d456877a85ee41525f3ed425aa97eb7a70fc9a79df91a0"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ca1be089fb4446490dd1135828bd42a7c7f8421e74fa581611f7afdf7ab761"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d639c939ad7c440c7b2819a28d559179a4508783f7e5b991166f8d7a34b52815"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b9feb4e5ec8dc2d15709f4d5fc367794d69277f5d680baf1910fc9915c633524"}, + {file = "grpcio-1.66.1-cp312-cp312-win32.whl", hash = "sha256:7101db1bd4cd9b880294dec41a93fcdce465bdbb602cd8dc5bd2d6362b618759"}, + {file = "grpcio-1.66.1-cp312-cp312-win_amd64.whl", hash = "sha256:b0aa03d240b5539648d996cc60438f128c7f46050989e35b25f5c18286c86734"}, + {file = "grpcio-1.66.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:ecfe735e7a59e5a98208447293ff8580e9db1e890e232b8b292dc8bd15afc0d2"}, + {file = "grpcio-1.66.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4825a3aa5648010842e1c9d35a082187746aa0cdbf1b7a2a930595a94fb10fce"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:f517fd7259fe823ef3bd21e508b653d5492e706e9f0ef82c16ce3347a8a5620c"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1fe60d0772831d96d263b53d83fb9a3d050a94b0e94b6d004a5ad111faa5b5b"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31a049daa428f928f21090403e5d18ea02670e3d5d172581670be006100db9ef"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f914386e52cbdeb5d2a7ce3bf1fdfacbe9d818dd81b6099a05b741aaf3848bb"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bff2096bdba686019fb32d2dde45b95981f0d1490e054400f70fc9a8af34b49d"}, + {file = "grpcio-1.66.1-cp38-cp38-win32.whl", hash = "sha256:aa8ba945c96e73de29d25331b26f3e416e0c0f621e984a3ebdb2d0d0b596a3b3"}, + {file = "grpcio-1.66.1-cp38-cp38-win_amd64.whl", hash = "sha256:161d5c535c2bdf61b95080e7f0f017a1dfcb812bf54093e71e5562b16225b4ce"}, + {file = "grpcio-1.66.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:d0cd7050397b3609ea51727b1811e663ffda8bda39c6a5bb69525ef12414b503"}, + {file = "grpcio-1.66.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0e6c9b42ded5d02b6b1fea3a25f036a2236eeb75d0579bfd43c0018c88bf0a3e"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c9f80f9fad93a8cf71c7f161778ba47fd730d13a343a46258065c4deb4b550c0"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5dd67ed9da78e5121efc5c510f0122a972216808d6de70953a740560c572eb44"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48b0d92d45ce3be2084b92fb5bae2f64c208fea8ceed7fccf6a7b524d3c4942e"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d813316d1a752be6f5c4360c49f55b06d4fe212d7df03253dfdae90c8a402bb"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c9bebc6627873ec27a70fc800f6083a13c70b23a5564788754b9ee52c5aef6c"}, + {file = "grpcio-1.66.1-cp39-cp39-win32.whl", hash = "sha256:30a1c2cf9390c894c90bbc70147f2372130ad189cffef161f0432d0157973f45"}, + {file = "grpcio-1.66.1-cp39-cp39-win_amd64.whl", hash = "sha256:17663598aadbedc3cacd7bbde432f541c8e07d2496564e22b214b22c7523dac8"}, + {file = "grpcio-1.66.1.tar.gz", hash = "sha256:35334f9c9745add3e357e3372756fd32d925bd52c41da97f4dfdafbde0bf0ee2"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.63.0)"] +protobuf = ["grpcio-tools (>=1.66.1)"] [[package]] name = "grpcio-tools" -version = "1.63.0" +version = "1.66.1" description = "Protobuf code generator for gRPC" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio_tools-1.63.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:1ab17460a2dfd3433af3120598bc18e705e3092d4d8396d3c06fe93deab19bbb"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:cb9a0f61cabff426eaf5c0a506de599c9f006b31947ba1159254cc291c1dbdd1"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:711d9f038c18c2f637b89af70c485018ae437dff5f7d2c631ca6a1eee7563038"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:847ca8d75090d66e787576049500eb7c230a9997146d5d433da7928baf914273"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49404876ec70bdae431eac5b1591c32c0bba4047dfd96dc6add03dbcdad5a5fc"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:376136b9bbd16304a2e550ea0bb2b3340b720a0f623856124987845ef071d479"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e197d5de49bb024f3d0b9e1ee1a0cce9e39955e17738bfbed72b0cc506a4824c"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-win32.whl", hash = "sha256:acb5cc845942dc0f020eefbe10ad8ac6fe2f96b99c035da738c5d3026d3a5324"}, - {file = "grpcio_tools-1.63.0-cp310-cp310-win_amd64.whl", hash = "sha256:f74a6da9db48296c3e7e34820e96744a0ea9cd58c3fa075ed206f7bb75229324"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:4374c8beefec84f682c799b8df5ac4b217c09de6d69038ce16fc12dcd862fff8"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d58a5aacee102858e49b1cc89b1ba1a020bb04f001df057e2b03fa11e6c636d1"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:744952a560fdb060a5f9d467d130fde6dbfee2abb07143c87e9b17aae3c19d5a"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c305274aa111412f5b8858242853e56c16ebcedc25d6a49ad615fd1b3ecd5971"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e952835e7b8f40204bceb2a96fc7bcb8b07ff45ca9d07266774bc429db1efead"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:409613bb694308a1945256d1d05c3ef3497f9fbf7fd68bd8bed86d80d97df334"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b2d246eee3b2a6afe65362c22a98b0e6d805c227c2569c5616ad3bec619621dd"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-win32.whl", hash = "sha256:bc0e6af05f66b36186ad3467d46ecc0f51dc9fa366005e095f4aa7739c7bfcba"}, - {file = "grpcio_tools-1.63.0-cp311-cp311-win_amd64.whl", hash = "sha256:3f138c822090e7c87ef6a5dce0a6c4fdf68a9472e6a936b70ac7be2371184abe"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:63a975d0457b2db1ee19fe99806091c71ad22f6f3664adc8f4c95943684dc0fd"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:517ed2b405793e55c527f332296ae92a3e17fdd83772f1569709f2c228acaf54"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:49af114fed0075025fe243cb3c8405c7a99f0b87f4eb7ccdaaf33ce1f55d8318"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ef50fa15689f46a2c903f1c9687aa40687d67dcb0469903fff37a63e55f11cd"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e68d9df9134906cbab1b225b625e11a368ab01b9ff24a4546bddec705ec7fd66"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7cbf570f7b9badd3bd27be5e057ca466d447c1047bf80c87a53d8bcb2e87bbbe"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f2cc0b3098ff48811ca821440e03763dcabd11158a11d9ea819c58938a9ea276"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-win32.whl", hash = "sha256:0ca6d5623dadce66fabbd8b04d0572e35fd63b31f1ae7ea1555d662864852d33"}, - {file = "grpcio_tools-1.63.0-cp312-cp312-win_amd64.whl", hash = "sha256:94b52c0dfb6026f69858a10ee3eadf15c343667647b5846cace82f61fe809c88"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:c759306c04e3d0b3da3bd576e3de8bcbccc31a243a85ad256fd46d3a3ed93402"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f305a5d61613e7ea3510eab62d65d47dff5206fcbe3b2347a7c1ebc9eff23dc6"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:b5d74a30409eda2a0cdaa700da23fe3cad5d7ac47ac2d52644abe13a84047aa0"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:632f78d8730d39363fc5afaf7cb5cf2f56b4e346ca11f550af74cff85e702f79"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54136ac94eabc45b1b72d5ca379e5a2753f21a654f562838c5a9b706482bc1f0"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b61682c06f0bcf2c576537819c42d5fb8eec1a0a9c05c905005200a57ff54c1f"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0f8ce3fc598886a5370f28c86f94d06ddb0d3a251101a5bb8ed9576d9f86a519"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-win32.whl", hash = "sha256:27684446c81bffcd4f20f13bf672ac7cbeaefbd270b3d867cdb58132e4b866bc"}, - {file = "grpcio_tools-1.63.0-cp38-cp38-win_amd64.whl", hash = "sha256:8341846604df00cf1c0a822476d27f4c481f678601a2f0b190e3b9936f857ded"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:2924747142ebcbbd62acf65936fbc9694afbdfc2c6ae721461015370e27b8d6f"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1b88be61eaa41eb4deb6b91a1e21d2a789d8567f0a973694fa27c09196f39a9a"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:b87750347cb024bb74d5139da01ffba9f099ad2e43ba45893dc627ec920d57ab"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:49435413548e019921e125b178f3fd30543aa348c70775669b5ed80f0b39b393"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df4dc9db9763594ae6ae04b42d6fcf7f163897a072f8fc946b864c9c3f0fbab1"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6bbf51f334452fcac422509979635f97e2c2c3e71f21480891f2ba280b4b6867"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c63a0f37b6b64dc31b2f1a0e5f889ae8b6bb7b7b20fe2406c1285321a7c54fdd"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-win32.whl", hash = "sha256:d7142b0162834d3a67df532744a733b0757b11056373bd489a70dc07a3f65829"}, - {file = "grpcio_tools-1.63.0-cp39-cp39-win_amd64.whl", hash = "sha256:32247ac2d575a633aea2536840fd232d56f309bd940081d772081bd71e0626c6"}, - {file = "grpcio_tools-1.63.0.tar.gz", hash = "sha256:2474cffbc8f29404f0e3a2109c0a0423211ba93fe048b144e734f601ff391fc7"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:e0c71405399ef59782600b1f0bdebc69ba12d7c9527cd268162a86273971d294"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:df1a174a6f9d3b4c380f005f33352d2e95464f33f021fb08084735a2eb6e23b1"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:7d789bfe53fce9e87aa80c3694a366258ce4c41b706258e9228ed4994832b780"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:95c44a265ff01fd05166edae9350bc2e7d1d9a95e8f53b8cd04d2ae0a588c583"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b962a8767c3c0f9afe92e0dd6bb0b2305d35195a1053f84d4d31f585b87557ed"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:d8616773126ec3cdf747b06a12e957b43ac15c34e4728def91fa67249a7c689a"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0067e79b6001560ac6acc78cca11fd3504fa27f8af46e3cdbac2f4998505e597"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-win32.whl", hash = "sha256:fa4f95a79a34afc3b5464895d091cd1911227fc3ab0441b9a37cd1817cf7db86"}, + {file = "grpcio_tools-1.66.1-cp310-cp310-win_amd64.whl", hash = "sha256:3acce426f5e643de63019311171f4d31131da8149de518716a95c29a2c12dd38"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:9a07e24feb7472419cf70ebbb38dd4299aea696f91f191b62a99b3ee9ff03f89"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:097a069e7c640043921ecaf3e88d7af78ccd40c25dbddc91db2a4a2adbd0393d"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:016fa273dc696c9d8045091ac50e000bce766183a6b150801f51c2946e33dbe3"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1ec9f4f964f8e8ed5e9cc13deb678c83d5597074c256805373220627833bc5ad"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3198815814cdd12bdb69b7580d7770a4ad4c8b2093e0bd6b987bc817618e3eec"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:796620fc41d3fbb566d9614ef22bc55df67fac1f1e19c1e0fb6ec48bc9b6a44b"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:222d8dc218560698e1abf652fb47e4015994ec7a265ef46e012fd9c9e77a4d6b"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-win32.whl", hash = "sha256:56e17a11f34df252b4c6fb8aa8cd7b44d162dba9f3333be87ddf7c8bf496622a"}, + {file = "grpcio_tools-1.66.1-cp311-cp311-win_amd64.whl", hash = "sha256:edd52d667f2aa3c73233be0a821596937f24536647c12d96bfc54aa4cb04747d"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:869b6960d5daffda0dac1a474b44144f0dace0d4336394e499c4f400c5e2f8d9"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:68d9390bf9ba863ac147fc722d6548caa587235e887cac1bc2438212e89d1de7"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:b8660401beca7e3af28722439e07b0bcdca80b4a68f5a5a1138ae7b7780a6abf"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb67b9aa9cd69468bceb933e8e0f89fd13695746c018c4d2e6b3b84e73f3ad97"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5daceb9716e31edc0e1ba0f93303785211438c43502edddad7a919fc4cb3d664"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:0a86398a4cd0665bc7f09fa90b89bac592c959d2c895bf3cf5d47a98c0f2d24c"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1b4acb53338072ab3023e418a5c7059cb15686abd1607516fa1453406dd5f69d"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-win32.whl", hash = "sha256:88e04b7546101bc79c868c941777efd5088063a9e4f03b4d7263dde796fbabf7"}, + {file = "grpcio_tools-1.66.1-cp312-cp312-win_amd64.whl", hash = "sha256:5b4fc56abeafae74140f5da29af1093e88ce64811d77f1a81c3146e9e996fb6a"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:d4dd2ff982c1aa328ef47ce34f07af82f1f13599912fb1618ebc5fe1e14dddb8"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:066648543f786cb74b1fef5652359952455dbba37e832642026fd9fd8a219b5f"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d19d47744c30e6bafa76b3113740e71f382d75ebb2918c1efd62ebe6ba7e20f9"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:739c53571130b359b738ac7d6d0a1f772e15779b66df7e6764bee4071cd38689"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2226ff8d3ecba83b7622946df19d6e8e15cb52f761b8d9e2f807b228db5f1b1e"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2f4b1498cb8b422fbae32a491c9154e8d47650caf5852fbe6b3b34253e824343"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:93d2d9e14e81affdc63d67c42eb16a8da1b6fecc16442a703ca60eb0e7591691"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-win32.whl", hash = "sha256:d761dfd97a10e4aae73628b5120c64e56f0cded88651d0003d2d80e678c3e7c9"}, + {file = "grpcio_tools-1.66.1-cp38-cp38-win_amd64.whl", hash = "sha256:e1c2ac0955f5fb87b8444316e475242d194c3f3cd0b7b6e54b889a7b6f05156f"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:5f1f04578b72c281e39274348a61d240c48d5321ba8d7a8838e194099ecbc322"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:da9b0c08dbbf07535ee1b75a22d0acc5675a808a3a3df9f9b21e0e73ddfbb3a9"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:e302b4e1fa856d74ff65c65888b3a37153287ce6ad5bad80b2fdf95130accec2"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7fc3f62494f238774755ff90f0e66a93ac7972ea1eb7180c45acf4fd53b25cca"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23cad65ff22459aa387f543d293f54834c9aac8f76fb7416a7046556df75b567"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:3d17a27c567a5e4d18f487368215cb51b43e2499059fd6113b92f7ae1fee48be"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4df167e67b083f96bc277032a526f6186e98662aaa49baea1dfb8ecfe26ce117"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-win32.whl", hash = "sha256:f94d5193b2f2a9595795b83e7978b2bee1c0399da66f2f24d179c388f81fb99c"}, + {file = "grpcio_tools-1.66.1-cp39-cp39-win_amd64.whl", hash = "sha256:66f527a1e3f063065e29cf6f3e55892434d13a5a51e3b22402e09da9521e98a3"}, + {file = "grpcio_tools-1.66.1.tar.gz", hash = "sha256:5055ffe840ea8f505c30378be02afb4dbecb33480e554debe10b63d6b2f641c3"}, ] [package.dependencies] -grpcio = ">=1.63.0" +grpcio = ">=1.66.1" protobuf = ">=5.26.1,<6.0dev" setuptools = "*" @@ -491,13 +491,13 @@ trio = ["trio (>=0.22.0,<0.26.0)"] [[package]] name = "httpx" -version = "0.27.0" +version = "0.27.2" description = "The next generation HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, - {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, ] [package.dependencies] @@ -513,16 +513,17 @@ brotli = ["brotli", "brotlicffi"] cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] [[package]] name = "huggingface-hub" -version = "0.23.4" +version = "0.24.6" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = true python-versions = ">=3.8.0" files = [ - {file = "huggingface_hub-0.23.4-py3-none-any.whl", hash = "sha256:3a0b957aa87150addf0cc7bd71b4d954b78e749850e1e7fb29ebbd2db64ca037"}, - {file = "huggingface_hub-0.23.4.tar.gz", hash = "sha256:35d99016433900e44ae7efe1c209164a5a81dbbcd53a52f99c281dcd7ce22431"}, + {file = "huggingface_hub-0.24.6-py3-none-any.whl", hash = "sha256:a990f3232aa985fe749bc9474060cbad75e8b2f115f6665a9fda5b9c97818970"}, + {file = "huggingface_hub-0.24.6.tar.gz", hash = "sha256:cc2579e761d070713eaa9c323e3debe39d5b464ae3a7261c39a9195b27bb8000"}, ] [package.dependencies] @@ -535,17 +536,17 @@ tqdm = ">=4.42.1" typing-extensions = ">=3.7.4.3" [package.extras] -all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] cli = ["InquirerPy (==0.3.4)"] -dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] hf-transfer = ["hf-transfer (>=0.1.4)"] inference = ["aiohttp", "minijinja (>=1.0)"] -quality = ["mypy (==1.5.1)", "ruff (>=0.3.0)"] +quality = ["mypy (==1.5.1)", "ruff (>=0.5.0)"] tensorflow = ["graphviz", "pydot", "tensorflow"] tensorflow-testing = ["keras (<3.0)", "tensorflow"] -testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] -torch = ["safetensors", "torch"] +testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] +torch = ["safetensors[torch]", "torch"] typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] [[package]] @@ -575,13 +576,13 @@ files = [ [[package]] name = "idna" -version = "3.7" +version = "3.8" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, + {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, ] [[package]] @@ -611,30 +612,50 @@ jsonpointer = ">=1.9" [[package]] name = "jsonpointer" -version = "2.4" +version = "3.0.0" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +python-versions = ">=3.7" files = [ - {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, - {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, ] [[package]] name = "langchain-core" -version = "0.2.26" +version = "0.2.40" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = "<4.0,>=3.8.1" +files = [ + {file = "langchain_core-0.2.40-py3-none-any.whl", hash = "sha256:71fff5cafa4b9c82a3a716e985f071383be452c35d8cc3169b3a393e6857fc99"}, + {file = "langchain_core-0.2.40.tar.gz", hash = "sha256:c838ea0c0b73475a8e58ced3e306b6d926ef063721abd164f237c8664916f502"}, +] + +[package.dependencies] +jsonpatch = ">=1.33,<2.0" +langsmith = ">=0.1.112,<0.2.0" +packaging = ">=23.2,<25" +pydantic = {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""} +PyYAML = ">=5.3" +tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0" +typing-extensions = ">=4.7" + +[[package]] +name = "langchain-core" +version = "0.3.0" +description = "Building applications with LLMs through composability" +optional = false +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -647,18 +668,22 @@ url = "../../core" [[package]] name = "langsmith" -version = "0.1.76" +version = "0.1.118" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.76-py3-none-any.whl", hash = "sha256:4b8cb14f2233d9673ce9e6e3d545359946d9690a2c1457ab01e7459ec97b964e"}, - {file = "langsmith-0.1.76.tar.gz", hash = "sha256:5829f997495c0f9a39f91fe0a57e0cb702e8642e6948945f5bb9f46337db7732"}, + {file = "langsmith-0.1.118-py3-none-any.whl", hash = "sha256:f017127b3efb037da5e46ff4f8583e8192e7955191737240c327f3eadc144d7c"}, + {file = "langsmith-0.1.118.tar.gz", hash = "sha256:ff1ca06c92c6081250244ebbce5d0bb347b9d898d2e9b60a13b11f0f0720f09f"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" -pydantic = ">=1,<3" +pydantic = [ + {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, +] requests = ">=2,<3" [[package]] @@ -790,44 +815,44 @@ tests = ["pytest (>=4.6)"] [[package]] name = "mypy" -version = "1.10.1" +version = "1.11.2" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e36f229acfe250dc660790840916eb49726c928e8ce10fbdf90715090fe4ae02"}, - {file = "mypy-1.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:51a46974340baaa4145363b9e051812a2446cf583dfaeba124af966fa44593f7"}, - {file = "mypy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:901c89c2d67bba57aaaca91ccdb659aa3a312de67f23b9dfb059727cce2e2e0a"}, - {file = "mypy-1.10.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0cd62192a4a32b77ceb31272d9e74d23cd88c8060c34d1d3622db3267679a5d9"}, - {file = "mypy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:a2cbc68cb9e943ac0814c13e2452d2046c2f2b23ff0278e26599224cf164e78d"}, - {file = "mypy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bd6f629b67bb43dc0d9211ee98b96d8dabc97b1ad38b9b25f5e4c4d7569a0c6a"}, - {file = "mypy-1.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a1bbb3a6f5ff319d2b9d40b4080d46cd639abe3516d5a62c070cf0114a457d84"}, - {file = "mypy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8edd4e9bbbc9d7b79502eb9592cab808585516ae1bcc1446eb9122656c6066f"}, - {file = "mypy-1.10.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6166a88b15f1759f94a46fa474c7b1b05d134b1b61fca627dd7335454cc9aa6b"}, - {file = "mypy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bb9cd11c01c8606a9d0b83ffa91d0b236a0e91bc4126d9ba9ce62906ada868e"}, - {file = "mypy-1.10.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d8681909f7b44d0b7b86e653ca152d6dff0eb5eb41694e163c6092124f8246d7"}, - {file = "mypy-1.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:378c03f53f10bbdd55ca94e46ec3ba255279706a6aacaecac52ad248f98205d3"}, - {file = "mypy-1.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bacf8f3a3d7d849f40ca6caea5c055122efe70e81480c8328ad29c55c69e93e"}, - {file = "mypy-1.10.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:701b5f71413f1e9855566a34d6e9d12624e9e0a8818a5704d74d6b0402e66c04"}, - {file = "mypy-1.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:3c4c2992f6ea46ff7fce0072642cfb62af7a2484efe69017ed8b095f7b39ef31"}, - {file = "mypy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:604282c886497645ffb87b8f35a57ec773a4a2721161e709a4422c1636ddde5c"}, - {file = "mypy-1.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37fd87cab83f09842653f08de066ee68f1182b9b5282e4634cdb4b407266bade"}, - {file = "mypy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8addf6313777dbb92e9564c5d32ec122bf2c6c39d683ea64de6a1fd98b90fe37"}, - {file = "mypy-1.10.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5cc3ca0a244eb9a5249c7c583ad9a7e881aa5d7b73c35652296ddcdb33b2b9c7"}, - {file = "mypy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:1b3a2ffce52cc4dbaeee4df762f20a2905aa171ef157b82192f2e2f368eec05d"}, - {file = "mypy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe85ed6836165d52ae8b88f99527d3d1b2362e0cb90b005409b8bed90e9059b3"}, - {file = "mypy-1.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c2ae450d60d7d020d67ab440c6e3fae375809988119817214440033f26ddf7bf"}, - {file = "mypy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6be84c06e6abd72f960ba9a71561c14137a583093ffcf9bbfaf5e613d63fa531"}, - {file = "mypy-1.10.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2189ff1e39db399f08205e22a797383613ce1cb0cb3b13d8bcf0170e45b96cc3"}, - {file = "mypy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:97a131ee36ac37ce9581f4220311247ab6cba896b4395b9c87af0675a13a755f"}, - {file = "mypy-1.10.1-py3-none-any.whl", hash = "sha256:71d8ac0b906354ebda8ef1673e5fde785936ac1f29ff6987c7483cfbd5a4235a"}, - {file = "mypy-1.10.1.tar.gz", hash = "sha256:1f8f492d7db9e3593ef42d4f115f04e556130f2819ad33ab84551403e97dd4c0"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, + {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, + {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, + {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, + {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, + {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, + {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, + {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, + {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, + {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, + {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, + {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, + {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, + {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, + {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, + {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, + {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, + {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, ] [package.dependencies] mypy-extensions = ">=1.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.1.0" +typing-extensions = ">=4.6.0" [package.extras] dmypy = ["psutil (>=4.0)"] @@ -930,37 +955,37 @@ files = [ [[package]] name = "onnx" -version = "1.16.1" +version = "1.16.2" description = "Open Neural Network Exchange" optional = true python-versions = ">=3.8" files = [ - {file = "onnx-1.16.1-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:bb2d392e5b7060082c2fb38eb5c44f67eb34ff5f0681bd6f45beff9abc6f7094"}, - {file = "onnx-1.16.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15abf94a7868eed6db15a8b5024ba570c891cae77ca4d0e7258dabdad76980df"}, - {file = "onnx-1.16.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6251910e554f811fdd070164b0bc76d76b067b95576cb9dad4d52ae64fe014b5"}, - {file = "onnx-1.16.1-cp310-cp310-win32.whl", hash = "sha256:c11e3b15eee46cd20767e505cc3ba97457ef5ac93c3e459cdfb77943ff8fe9a7"}, - {file = "onnx-1.16.1-cp310-cp310-win_amd64.whl", hash = "sha256:b3d10405706807ec2ef493b2a78519fa0264cf190363e89478585aac1179b596"}, - {file = "onnx-1.16.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:006ba5059c85ce43e89a1486cc0276d0f1a8ec9c6efd1a9334fd3fa0f6e33b64"}, - {file = "onnx-1.16.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1521ea7cd3497ecaf57d3b5e72d637ca5ebca632122a0806a9df99bedbeecdf8"}, - {file = "onnx-1.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45cf20421aeac03872bea5fd6ebf92abe15c4d1461a2572eb839add5059e2a09"}, - {file = "onnx-1.16.1-cp311-cp311-win32.whl", hash = "sha256:f98e275b4f46a617a9c527e60c02531eae03cf67a04c26db8a1c20acee539533"}, - {file = "onnx-1.16.1-cp311-cp311-win_amd64.whl", hash = "sha256:95aa20aa65a9035d7543e81713e8b0f611e213fc02171959ef4ee09311d1bf28"}, - {file = "onnx-1.16.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:32e11d39bee04f927fab09f74c46cf76584094462311bab1aca9ccdae6ed3366"}, - {file = "onnx-1.16.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8884bf53b552873c0c9b072cb8625e7d4e8f3cc0529191632d24e3de58a3b93a"}, - {file = "onnx-1.16.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:595b2830093f81361961295f7b0ebb6000423bcd04123d516d081c306002e387"}, - {file = "onnx-1.16.1-cp312-cp312-win32.whl", hash = "sha256:2fde4dd5bc278b3fc8148f460bce8807b2874c66f48529df9444cdbc9ecf456b"}, - {file = "onnx-1.16.1-cp312-cp312-win_amd64.whl", hash = "sha256:e69ad8c110d8c37d759cad019d498fdf3fd24e0bfaeb960e52fed0469a5d2974"}, - {file = "onnx-1.16.1-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:0fc189195a40b5862fb77d97410c89823197fe19c1088ce150444eec72f200c1"}, - {file = "onnx-1.16.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:496ba17b16a74711081772e1b03f3207959972e351298e51abdc600051027a22"}, - {file = "onnx-1.16.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f3faf239b48418b3ea6fe73bd4d86807b903d0b2ebd20b8b8c84f83741b0f18"}, - {file = "onnx-1.16.1-cp38-cp38-win32.whl", hash = "sha256:18b22143836838591f6551b089196e69f60c47fabce52b4b72b4cb37522645aa"}, - {file = "onnx-1.16.1-cp38-cp38-win_amd64.whl", hash = "sha256:8c2b70d602acfb90056fbdc60ef26f4658f964591212a4e9dbbda922ff43061b"}, - {file = "onnx-1.16.1-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:2bed6fe05905b073206cabbb4463c58050cf8d544192303c09927b229f93ac14"}, - {file = "onnx-1.16.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5798414332534a41404a7ff83677d49ced01d70160e1541484cce647f2295051"}, - {file = "onnx-1.16.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa7518d6d27f357261a4014079dec364cad6fef827d0b3fe1d3ff59939a68394"}, - {file = "onnx-1.16.1-cp39-cp39-win32.whl", hash = "sha256:67f372db4fe8fe61e00b762af5b0833aa72b5baa37e7e2f47d8668964ebff411"}, - {file = "onnx-1.16.1-cp39-cp39-win_amd64.whl", hash = "sha256:1c059fea6229c44d2d39c8f6e2f2f0d676d587c97f4c854c86f3e7bc97e0b31c"}, - {file = "onnx-1.16.1.tar.gz", hash = "sha256:8299193f0f2a3849bfc069641aa8e4f93696602da8d165632af8ee48ec7556b6"}, + {file = "onnx-1.16.2-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:ab0a1aa6b0470020ea3636afdce3e2a67f856fefe4be8c73b20371b07fcde69c"}, + {file = "onnx-1.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a449122a49534bb9c2b6f16c8493b606ef0accda6b9dbf0c513ca4b31ebe8b38"}, + {file = "onnx-1.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec6a425e59291fff430da4a884aa07a1d0cbb5dcd22cc78f6cf4ba5adb9f3367"}, + {file = "onnx-1.16.2-cp310-cp310-win32.whl", hash = "sha256:55fbaf38acd4cd8fdd0b4f36871fb596b075518d3e981acc893f2ab887d1891a"}, + {file = "onnx-1.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:4e496d301756e0a22fd2bdfac24b861c7b1ddbdd9ce7677b2a252c00c4c8f2a7"}, + {file = "onnx-1.16.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:859b41574243c9bfd0abce03c15c78a1f270cc03c7f99629b984daf7adfa5003"}, + {file = "onnx-1.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39a57d196fe5d73861e70d9625674e6caf8ca13c5e9c740462cf530a07cd2e1c"}, + {file = "onnx-1.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b98aa9733bd4b781eb931d33b4078ff2837e7d68062460726d6dd011f332bd4"}, + {file = "onnx-1.16.2-cp311-cp311-win32.whl", hash = "sha256:e9f018b2e172efeea8c2473a51a825652767726374145d7cfdebdc7a27446fdd"}, + {file = "onnx-1.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:e66e4512a30df8916db5cf84f47d47b3250b9ab9a98d9cffe142c98c54598ba0"}, + {file = "onnx-1.16.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:bfdb8c2eb4c92f55626376e00993db8fcc753da4b80babf28d99636af8dbae6b"}, + {file = "onnx-1.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b77a6c138f284dfc9b06fa370768aa4fd167efc49ff740e2158dd02eedde8d0"}, + {file = "onnx-1.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca12e47965e590b63f31681c8c563c75449a04178f27eac1ff64bad314314fb3"}, + {file = "onnx-1.16.2-cp312-cp312-win32.whl", hash = "sha256:324fe3551e91ffd74b43dbcf1d48e96579f4c1be2ff1224591ecd3ec6daa6139"}, + {file = "onnx-1.16.2-cp312-cp312-win_amd64.whl", hash = "sha256:080b19b0bd2b5536b4c61812464fe495758d6c9cfed3fdd3f20516e616212bee"}, + {file = "onnx-1.16.2-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:c42a5db2db36fc46d3a93ab6aeff0f11abe10a4a16a85f2aad8879a58a898ee5"}, + {file = "onnx-1.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9635437ffe51cc71343f3067bc548a068bd287ac690f65a9f6223ea9dca441bf"}, + {file = "onnx-1.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9e22be82c3447ba6d2fe851973a736a7013e97b398e8beb7a25fd2ad4df219e"}, + {file = "onnx-1.16.2-cp38-cp38-win32.whl", hash = "sha256:e16012431643c66124eba0089acdad0df71d5c9d4e6bec4721999f9eecab72b7"}, + {file = "onnx-1.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:42231a467e5be2974d426b410987073ed85bee34af7b50c93ab221a8696b0cfd"}, + {file = "onnx-1.16.2-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:e79edba750ae06059d82d8ff8129a6488a7e692cd23cd7fe010f7ec7d6a14bad"}, + {file = "onnx-1.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d192db8501103fede9c1725861e65ed41efb65da1ce915ba969aae40073eb94"}, + {file = "onnx-1.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01d4a3bd7a0d0ee5084f65441fc9ca38450fc18835b7f9d5da5b9e7ca8b85d"}, + {file = "onnx-1.16.2-cp39-cp39-win32.whl", hash = "sha256:0b765b09bdb01fa2338ea52483aa3d9c75e249f85446f0d9ad1dc5bd2b149082"}, + {file = "onnx-1.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:bfee781a59919e797f4dae380e63a0390ec01ce5c337a1459b992aac2f49a3c2"}, + {file = "onnx-1.16.2.tar.gz", hash = "sha256:b33a282b038813c4b69e73ea65c2909768e8dd6cc10619b70632335daf094646"}, ] [package.dependencies] @@ -968,114 +993,125 @@ numpy = ">=1.20" protobuf = ">=3.20.2" [package.extras] -reference = ["Pillow", "google-re2"] +reference = ["google-re2", "pillow"] [[package]] name = "onnxruntime" -version = "1.18.1" +version = "1.19.2" description = "ONNX Runtime is a runtime accelerator for Machine Learning models" optional = true python-versions = "*" files = [ - {file = "onnxruntime-1.18.1-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:29ef7683312393d4ba04252f1b287d964bd67d5e6048b94d2da3643986c74d80"}, - {file = "onnxruntime-1.18.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fc706eb1df06ddf55776e15a30519fb15dda7697f987a2bbda4962845e3cec05"}, - {file = "onnxruntime-1.18.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7de69f5ced2a263531923fa68bbec52a56e793b802fcd81a03487b5e292bc3a"}, - {file = "onnxruntime-1.18.1-cp310-cp310-win32.whl", hash = "sha256:221e5b16173926e6c7de2cd437764492aa12b6811f45abd37024e7cf2ae5d7e3"}, - {file = "onnxruntime-1.18.1-cp310-cp310-win_amd64.whl", hash = "sha256:75211b619275199c861ee94d317243b8a0fcde6032e5a80e1aa9ded8ab4c6060"}, - {file = "onnxruntime-1.18.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:f26582882f2dc581b809cfa41a125ba71ad9e715738ec6402418df356969774a"}, - {file = "onnxruntime-1.18.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ef36f3a8b768506d02be349ac303fd95d92813ba3ba70304d40c3cd5c25d6a4c"}, - {file = "onnxruntime-1.18.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:170e711393e0618efa8ed27b59b9de0ee2383bd2a1f93622a97006a5ad48e434"}, - {file = "onnxruntime-1.18.1-cp311-cp311-win32.whl", hash = "sha256:9b6a33419b6949ea34e0dc009bc4470e550155b6da644571ecace4b198b0d88f"}, - {file = "onnxruntime-1.18.1-cp311-cp311-win_amd64.whl", hash = "sha256:5c1380a9f1b7788da742c759b6a02ba771fe1ce620519b2b07309decbd1a2fe1"}, - {file = "onnxruntime-1.18.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:31bd57a55e3f983b598675dfc7e5d6f0877b70ec9864b3cc3c3e1923d0a01919"}, - {file = "onnxruntime-1.18.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b9e03c4ba9f734500691a4d7d5b381cd71ee2f3ce80a1154ac8f7aed99d1ecaa"}, - {file = "onnxruntime-1.18.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:781aa9873640f5df24524f96f6070b8c550c66cb6af35710fd9f92a20b4bfbf6"}, - {file = "onnxruntime-1.18.1-cp312-cp312-win32.whl", hash = "sha256:3a2d9ab6254ca62adbb448222e630dc6883210f718065063518c8f93a32432be"}, - {file = "onnxruntime-1.18.1-cp312-cp312-win_amd64.whl", hash = "sha256:ad93c560b1c38c27c0275ffd15cd7f45b3ad3fc96653c09ce2931179982ff204"}, - {file = "onnxruntime-1.18.1-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:3b55dc9d3c67626388958a3eb7ad87eb7c70f75cb0f7ff4908d27b8b42f2475c"}, - {file = "onnxruntime-1.18.1-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f80dbcfb6763cc0177a31168b29b4bd7662545b99a19e211de8c734b657e0669"}, - {file = "onnxruntime-1.18.1-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f1ff2c61a16d6c8631796c54139bafea41ee7736077a0fc64ee8ae59432f5c58"}, - {file = "onnxruntime-1.18.1-cp38-cp38-win32.whl", hash = "sha256:219855bd272fe0c667b850bf1a1a5a02499269a70d59c48e6f27f9c8bcb25d02"}, - {file = "onnxruntime-1.18.1-cp38-cp38-win_amd64.whl", hash = "sha256:afdf16aa607eb9a2c60d5ca2d5abf9f448e90c345b6b94c3ed14f4fb7e6a2d07"}, - {file = "onnxruntime-1.18.1-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:128df253ade673e60cea0955ec9d0e89617443a6d9ce47c2d79eb3f72a3be3de"}, - {file = "onnxruntime-1.18.1-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9839491e77e5c5a175cab3621e184d5a88925ee297ff4c311b68897197f4cde9"}, - {file = "onnxruntime-1.18.1-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ad3187c1faff3ac15f7f0e7373ef4788c582cafa655a80fdbb33eaec88976c66"}, - {file = "onnxruntime-1.18.1-cp39-cp39-win32.whl", hash = "sha256:34657c78aa4e0b5145f9188b550ded3af626651b15017bf43d280d7e23dbf195"}, - {file = "onnxruntime-1.18.1-cp39-cp39-win_amd64.whl", hash = "sha256:9c14fd97c3ddfa97da5feef595e2c73f14c2d0ec1d4ecbea99c8d96603c89589"}, + {file = "onnxruntime-1.19.2-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:84fa57369c06cadd3c2a538ae2a26d76d583e7c34bdecd5769d71ca5c0fc750e"}, + {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bdc471a66df0c1cdef774accef69e9f2ca168c851ab5e4f2f3341512c7ef4666"}, + {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e3a4ce906105d99ebbe817f536d50a91ed8a4d1592553f49b3c23c4be2560ae6"}, + {file = "onnxruntime-1.19.2-cp310-cp310-win32.whl", hash = "sha256:4b3d723cc154c8ddeb9f6d0a8c0d6243774c6b5930847cc83170bfe4678fafb3"}, + {file = "onnxruntime-1.19.2-cp310-cp310-win_amd64.whl", hash = "sha256:17ed7382d2c58d4b7354fb2b301ff30b9bf308a1c7eac9546449cd122d21cae5"}, + {file = "onnxruntime-1.19.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:d863e8acdc7232d705d49e41087e10b274c42f09e259016a46f32c34e06dc4fd"}, + {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c1dfe4f660a71b31caa81fc298a25f9612815215a47b286236e61d540350d7b6"}, + {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a36511dc07c5c964b916697e42e366fa43c48cdb3d3503578d78cef30417cb84"}, + {file = "onnxruntime-1.19.2-cp311-cp311-win32.whl", hash = "sha256:50cbb8dc69d6befad4746a69760e5b00cc3ff0a59c6c3fb27f8afa20e2cab7e7"}, + {file = "onnxruntime-1.19.2-cp311-cp311-win_amd64.whl", hash = "sha256:1c3e5d415b78337fa0b1b75291e9ea9fb2a4c1f148eb5811e7212fed02cfffa8"}, + {file = "onnxruntime-1.19.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:68e7051bef9cfefcbb858d2d2646536829894d72a4130c24019219442b1dd2ed"}, + {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d2d366fbcc205ce68a8a3bde2185fd15c604d9645888703785b61ef174265168"}, + {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:477b93df4db467e9cbf34051662a4b27c18e131fa1836e05974eae0d6e4cf29b"}, + {file = "onnxruntime-1.19.2-cp312-cp312-win32.whl", hash = "sha256:9a174073dc5608fad05f7cf7f320b52e8035e73d80b0a23c80f840e5a97c0147"}, + {file = "onnxruntime-1.19.2-cp312-cp312-win_amd64.whl", hash = "sha256:190103273ea4507638ffc31d66a980594b237874b65379e273125150eb044857"}, + {file = "onnxruntime-1.19.2-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:636bc1d4cc051d40bc52e1f9da87fbb9c57d9d47164695dfb1c41646ea51ea66"}, + {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5bd8b875757ea941cbcfe01582970cc299893d1b65bd56731e326a8333f638a3"}, + {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b2046fc9560f97947bbc1acbe4c6d48585ef0f12742744307d3364b131ac5778"}, + {file = "onnxruntime-1.19.2-cp38-cp38-win32.whl", hash = "sha256:31c12840b1cde4ac1f7d27d540c44e13e34f2345cf3642762d2a3333621abb6a"}, + {file = "onnxruntime-1.19.2-cp38-cp38-win_amd64.whl", hash = "sha256:016229660adea180e9a32ce218b95f8f84860a200f0f13b50070d7d90e92956c"}, + {file = "onnxruntime-1.19.2-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:006c8d326835c017a9e9f74c9c77ebb570a71174a1e89fe078b29a557d9c3848"}, + {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:df2a94179a42d530b936f154615b54748239c2908ee44f0d722cb4df10670f68"}, + {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fae4b4de45894b9ce7ae418c5484cbf0341db6813effec01bb2216091c52f7fb"}, + {file = "onnxruntime-1.19.2-cp39-cp39-win32.whl", hash = "sha256:dc5430f473e8706fff837ae01323be9dcfddd3ea471c900a91fa7c9b807ec5d3"}, + {file = "onnxruntime-1.19.2-cp39-cp39-win_amd64.whl", hash = "sha256:38475e29a95c5f6c62c2c603d69fc7d4c6ccbf4df602bd567b86ae1138881c49"}, ] [package.dependencies] coloredlogs = "*" flatbuffers = "*" -numpy = ">=1.21.6,<2.0" +numpy = ">=1.21.6" packaging = "*" protobuf = "*" sympy = "*" [[package]] name = "orjson" -version = "3.10.3" +version = "3.10.7" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = false python-versions = ">=3.8" files = [ - {file = "orjson-3.10.3-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9fb6c3f9f5490a3eb4ddd46fc1b6eadb0d6fc16fb3f07320149c3286a1409dd8"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:252124b198662eee80428f1af8c63f7ff077c88723fe206a25df8dc57a57b1fa"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9f3e87733823089a338ef9bbf363ef4de45e5c599a9bf50a7a9b82e86d0228da"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8334c0d87103bb9fbbe59b78129f1f40d1d1e8355bbed2ca71853af15fa4ed3"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1952c03439e4dce23482ac846e7961f9d4ec62086eb98ae76d97bd41d72644d7"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c0403ed9c706dcd2809f1600ed18f4aae50be263bd7112e54b50e2c2bc3ebd6d"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:382e52aa4270a037d41f325e7d1dfa395b7de0c367800b6f337d8157367bf3a7"}, - {file = "orjson-3.10.3-cp310-none-win32.whl", hash = "sha256:be2aab54313752c04f2cbaab4515291ef5af8c2256ce22abc007f89f42f49109"}, - {file = "orjson-3.10.3-cp310-none-win_amd64.whl", hash = "sha256:416b195f78ae461601893f482287cee1e3059ec49b4f99479aedf22a20b1098b"}, - {file = "orjson-3.10.3-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:73100d9abbbe730331f2242c1fc0bcb46a3ea3b4ae3348847e5a141265479700"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:544a12eee96e3ab828dbfcb4d5a0023aa971b27143a1d35dc214c176fdfb29b3"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:520de5e2ef0b4ae546bea25129d6c7c74edb43fc6cf5213f511a927f2b28148b"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ccaa0a401fc02e8828a5bedfd80f8cd389d24f65e5ca3954d72c6582495b4bcf"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a7bc9e8bc11bac40f905640acd41cbeaa87209e7e1f57ade386da658092dc16"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3582b34b70543a1ed6944aca75e219e1192661a63da4d039d088a09c67543b08"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1c23dfa91481de880890d17aa7b91d586a4746a4c2aa9a145bebdbaf233768d5"}, - {file = "orjson-3.10.3-cp311-none-win32.whl", hash = "sha256:1770e2a0eae728b050705206d84eda8b074b65ee835e7f85c919f5705b006c9b"}, - {file = "orjson-3.10.3-cp311-none-win_amd64.whl", hash = "sha256:93433b3c1f852660eb5abdc1f4dd0ced2be031ba30900433223b28ee0140cde5"}, - {file = "orjson-3.10.3-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a39aa73e53bec8d410875683bfa3a8edf61e5a1c7bb4014f65f81d36467ea098"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0943a96b3fa09bee1afdfccc2cb236c9c64715afa375b2af296c73d91c23eab2"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e852baafceff8da3c9defae29414cc8513a1586ad93e45f27b89a639c68e8176"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18566beb5acd76f3769c1d1a7ec06cdb81edc4d55d2765fb677e3eaa10fa99e0"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd2218d5a3aa43060efe649ec564ebedec8ce6ae0a43654b81376216d5ebd42"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cf20465e74c6e17a104ecf01bf8cd3b7b252565b4ccee4548f18b012ff2f8069"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ba7f67aa7f983c4345eeda16054a4677289011a478ca947cd69c0a86ea45e534"}, - {file = "orjson-3.10.3-cp312-none-win32.whl", hash = "sha256:17e0713fc159abc261eea0f4feda611d32eabc35708b74bef6ad44f6c78d5ea0"}, - {file = "orjson-3.10.3-cp312-none-win_amd64.whl", hash = "sha256:4c895383b1ec42b017dd2c75ae8a5b862fc489006afde06f14afbdd0309b2af0"}, - {file = "orjson-3.10.3-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:be2719e5041e9fb76c8c2c06b9600fe8e8584e6980061ff88dcbc2691a16d20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0175a5798bdc878956099f5c54b9837cb62cfbf5d0b86ba6d77e43861bcec2"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:978be58a68ade24f1af7758626806e13cff7748a677faf95fbb298359aa1e20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16bda83b5c61586f6f788333d3cf3ed19015e3b9019188c56983b5a299210eb5"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ad1f26bea425041e0a1adad34630c4825a9e3adec49079b1fb6ac8d36f8b754"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9e253498bee561fe85d6325ba55ff2ff08fb5e7184cd6a4d7754133bd19c9195"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0a62f9968bab8a676a164263e485f30a0b748255ee2f4ae49a0224be95f4532b"}, - {file = "orjson-3.10.3-cp38-none-win32.whl", hash = "sha256:8d0b84403d287d4bfa9bf7d1dc298d5c1c5d9f444f3737929a66f2fe4fb8f134"}, - {file = "orjson-3.10.3-cp38-none-win_amd64.whl", hash = "sha256:8bc7a4df90da5d535e18157220d7915780d07198b54f4de0110eca6b6c11e290"}, - {file = "orjson-3.10.3-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9059d15c30e675a58fdcd6f95465c1522b8426e092de9fff20edebfdc15e1cb0"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d40c7f7938c9c2b934b297412c067936d0b54e4b8ab916fd1a9eb8f54c02294"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4a654ec1de8fdaae1d80d55cee65893cb06494e124681ab335218be6a0691e7"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:831c6ef73f9aa53c5f40ae8f949ff7681b38eaddb6904aab89dca4d85099cb78"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99b880d7e34542db89f48d14ddecbd26f06838b12427d5a25d71baceb5ba119d"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e5e176c994ce4bd434d7aafb9ecc893c15f347d3d2bbd8e7ce0b63071c52e25"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b69a58a37dab856491bf2d3bbf259775fdce262b727f96aafbda359cb1d114d8"}, - {file = "orjson-3.10.3-cp39-none-win32.whl", hash = "sha256:b8d4d1a6868cde356f1402c8faeb50d62cee765a1f7ffcfd6de732ab0581e063"}, - {file = "orjson-3.10.3-cp39-none-win_amd64.whl", hash = "sha256:5102f50c5fc46d94f2033fe00d392588564378260d64377aec702f21a7a22912"}, - {file = "orjson-3.10.3.tar.gz", hash = "sha256:2b166507acae7ba2f7c315dcf185a9111ad5e992ac81f2d507aac39193c2c818"}, + {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, + {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, + {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, + {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, + {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, + {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, + {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, + {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, + {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, + {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, + {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, + {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, + {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, + {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, + {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, + {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, + {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, + {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, + {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, + {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, ] [[package]] name = "packaging" -version = "23.2" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] @@ -1192,13 +1228,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "portalocker" -version = "2.8.2" +version = "2.10.1" description = "Wraps the portalocker recipe for easy usage" optional = false python-versions = ">=3.8" files = [ - {file = "portalocker-2.8.2-py3-none-any.whl", hash = "sha256:cfb86acc09b9aa7c3b43594e19be1345b9d16af3feb08bf92f23d4dce513a28e"}, - {file = "portalocker-2.8.2.tar.gz", hash = "sha256:2b035aa7828e46c58e9b31390ee1f169b98e1066ab10b9a6a861fe7e25ee4f33"}, + {file = "portalocker-2.10.1-py3-none-any.whl", hash = "sha256:53a5984ebc86a025552264b459b46a2086e269b21823cb572f8f28ee759e45bf"}, + {file = "portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f"}, ] [package.dependencies] @@ -1211,129 +1247,143 @@ tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "p [[package]] name = "protobuf" -version = "5.26.1" +version = "5.28.0" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-5.26.1-cp310-abi3-win32.whl", hash = "sha256:3c388ea6ddfe735f8cf69e3f7dc7611e73107b60bdfcf5d0f024c3ccd3794e23"}, - {file = "protobuf-5.26.1-cp310-abi3-win_amd64.whl", hash = "sha256:e6039957449cb918f331d32ffafa8eb9255769c96aa0560d9a5bf0b4e00a2a33"}, - {file = "protobuf-5.26.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:38aa5f535721d5bb99861166c445c4105c4e285c765fbb2ac10f116e32dcd46d"}, - {file = "protobuf-5.26.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:fbfe61e7ee8c1860855696e3ac6cfd1b01af5498facc6834fcc345c9684fb2ca"}, - {file = "protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:f7417703f841167e5a27d48be13389d52ad705ec09eade63dfc3180a959215d7"}, - {file = "protobuf-5.26.1-cp38-cp38-win32.whl", hash = "sha256:d693d2504ca96750d92d9de8a103102dd648fda04540495535f0fec7577ed8fc"}, - {file = "protobuf-5.26.1-cp38-cp38-win_amd64.whl", hash = "sha256:9b557c317ebe6836835ec4ef74ec3e994ad0894ea424314ad3552bc6e8835b4e"}, - {file = "protobuf-5.26.1-cp39-cp39-win32.whl", hash = "sha256:b9ba3ca83c2e31219ffbeb9d76b63aad35a3eb1544170c55336993d7a18ae72c"}, - {file = "protobuf-5.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ee014c2c87582e101d6b54260af03b6596728505c79f17c8586e7523aaa8f8c"}, - {file = "protobuf-5.26.1-py3-none-any.whl", hash = "sha256:da612f2720c0183417194eeaa2523215c4fcc1a1949772dc65f05047e08d5932"}, - {file = "protobuf-5.26.1.tar.gz", hash = "sha256:8ca2a1d97c290ec7b16e4e5dff2e5ae150cc1582f55b5ab300d45cb0dfa90e51"}, + {file = "protobuf-5.28.0-cp310-abi3-win32.whl", hash = "sha256:66c3edeedb774a3508ae70d87b3a19786445fe9a068dd3585e0cefa8a77b83d0"}, + {file = "protobuf-5.28.0-cp310-abi3-win_amd64.whl", hash = "sha256:6d7cc9e60f976cf3e873acb9a40fed04afb5d224608ed5c1a105db4a3f09c5b6"}, + {file = "protobuf-5.28.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:532627e8fdd825cf8767a2d2b94d77e874d5ddb0adefb04b237f7cc296748681"}, + {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:018db9056b9d75eb93d12a9d35120f97a84d9a919bcab11ed56ad2d399d6e8dd"}, + {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:6206afcb2d90181ae8722798dcb56dc76675ab67458ac24c0dd7d75d632ac9bd"}, + {file = "protobuf-5.28.0-cp38-cp38-win32.whl", hash = "sha256:eef7a8a2f4318e2cb2dee8666d26e58eaf437c14788f3a2911d0c3da40405ae8"}, + {file = "protobuf-5.28.0-cp38-cp38-win_amd64.whl", hash = "sha256:d001a73c8bc2bf5b5c1360d59dd7573744e163b3607fa92788b7f3d5fefbd9a5"}, + {file = "protobuf-5.28.0-cp39-cp39-win32.whl", hash = "sha256:dde9fcaa24e7a9654f4baf2a55250b13a5ea701493d904c54069776b99a8216b"}, + {file = "protobuf-5.28.0-cp39-cp39-win_amd64.whl", hash = "sha256:853db610214e77ee817ecf0514e0d1d052dff7f63a0c157aa6eabae98db8a8de"}, + {file = "protobuf-5.28.0-py3-none-any.whl", hash = "sha256:510ed78cd0980f6d3218099e874714cdf0d8a95582e7b059b06cabad855ed0a0"}, + {file = "protobuf-5.28.0.tar.gz", hash = "sha256:dde74af0fa774fa98892209992295adbfb91da3fa98c8f67a88afe8f5a349add"}, ] [[package]] name = "pydantic" -version = "2.7.4" +version = "2.9.0" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"}, - {file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"}, + {file = "pydantic-2.9.0-py3-none-any.whl", hash = "sha256:f66a7073abd93214a20c5f7b32d56843137a7a2e70d02111f3be287035c45370"}, + {file = "pydantic-2.9.0.tar.gz", hash = "sha256:c7a8a9fdf7d100afa49647eae340e2d23efa382466a8d177efcd1381e9be5598"}, ] [package.dependencies] annotated-types = ">=0.4.0" -pydantic-core = "2.18.4" -typing-extensions = ">=4.6.1" +pydantic-core = "2.23.2" +typing-extensions = [ + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, + {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, +] +tzdata = {version = "*", markers = "python_version >= \"3.9\""} [package.extras] email = ["email-validator (>=2.0.0)"] [[package]] name = "pydantic-core" -version = "2.18.4" +version = "2.23.2" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"}, - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"}, - {file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"}, - {file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"}, - {file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"}, - {file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"}, - {file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"}, - {file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"}, - {file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"}, - {file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"}, - {file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"}, - {file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"}, - {file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"}, - {file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"}, - {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"}, + {file = "pydantic_core-2.23.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7d0324a35ab436c9d768753cbc3c47a865a2cbc0757066cb864747baa61f6ece"}, + {file = "pydantic_core-2.23.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:276ae78153a94b664e700ac362587c73b84399bd1145e135287513442e7dfbc7"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:964c7aa318da542cdcc60d4a648377ffe1a2ef0eb1e996026c7f74507b720a78"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1cf842265a3a820ebc6388b963ead065f5ce8f2068ac4e1c713ef77a67b71f7c"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae90b9e50fe1bd115b24785e962b51130340408156d34d67b5f8f3fa6540938e"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ae65fdfb8a841556b52935dfd4c3f79132dc5253b12c0061b96415208f4d622"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c8aa40f6ca803f95b1c1c5aeaee6237b9e879e4dfb46ad713229a63651a95fb"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c53100c8ee5a1e102766abde2158077d8c374bee0639201f11d3032e3555dfbc"}, + {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d6b9dd6aa03c812017411734e496c44fef29b43dba1e3dd1fa7361bbacfc1354"}, + {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b18cf68255a476b927910c6873d9ed00da692bb293c5b10b282bd48a0afe3ae2"}, + {file = "pydantic_core-2.23.2-cp310-none-win32.whl", hash = "sha256:e460475719721d59cd54a350c1f71c797c763212c836bf48585478c5514d2854"}, + {file = "pydantic_core-2.23.2-cp310-none-win_amd64.whl", hash = "sha256:5f3cf3721eaf8741cffaf092487f1ca80831202ce91672776b02b875580e174a"}, + {file = "pydantic_core-2.23.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:7ce8e26b86a91e305858e018afc7a6e932f17428b1eaa60154bd1f7ee888b5f8"}, + {file = "pydantic_core-2.23.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e9b24cca4037a561422bf5dc52b38d390fb61f7bfff64053ce1b72f6938e6b2"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:753294d42fb072aa1775bfe1a2ba1012427376718fa4c72de52005a3d2a22178"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:257d6a410a0d8aeb50b4283dea39bb79b14303e0fab0f2b9d617701331ed1515"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c8319e0bd6a7b45ad76166cc3d5d6a36c97d0c82a196f478c3ee5346566eebfd"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7a05c0240f6c711eb381ac392de987ee974fa9336071fb697768dfdb151345ce"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d5b0ff3218858859910295df6953d7bafac3a48d5cd18f4e3ed9999efd2245f"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:96ef39add33ff58cd4c112cbac076726b96b98bb8f1e7f7595288dcfb2f10b57"}, + {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0102e49ac7d2df3379ef8d658d3bc59d3d769b0bdb17da189b75efa861fc07b4"}, + {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a6612c2a844043e4d10a8324c54cdff0042c558eef30bd705770793d70b224aa"}, + {file = "pydantic_core-2.23.2-cp311-none-win32.whl", hash = "sha256:caffda619099cfd4f63d48462f6aadbecee3ad9603b4b88b60cb821c1b258576"}, + {file = "pydantic_core-2.23.2-cp311-none-win_amd64.whl", hash = "sha256:6f80fba4af0cb1d2344869d56430e304a51396b70d46b91a55ed4959993c0589"}, + {file = "pydantic_core-2.23.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c83c64d05ffbbe12d4e8498ab72bdb05bcc1026340a4a597dc647a13c1605ec"}, + {file = "pydantic_core-2.23.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6294907eaaccf71c076abdd1c7954e272efa39bb043161b4b8aa1cd76a16ce43"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a801c5e1e13272e0909c520708122496647d1279d252c9e6e07dac216accc41"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cc0c316fba3ce72ac3ab7902a888b9dc4979162d320823679da270c2d9ad0cad"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b06c5d4e8701ac2ba99a2ef835e4e1b187d41095a9c619c5b185c9068ed2a49"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82764c0bd697159fe9947ad59b6db6d7329e88505c8f98990eb07e84cc0a5d81"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b1a195efd347ede8bcf723e932300292eb13a9d2a3c1f84eb8f37cbbc905b7f"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7efb12e5071ad8d5b547487bdad489fbd4a5a35a0fc36a1941517a6ad7f23e0"}, + {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5dd0ec5f514ed40e49bf961d49cf1bc2c72e9b50f29a163b2cc9030c6742aa73"}, + {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:820f6ee5c06bc868335e3b6e42d7ef41f50dfb3ea32fbd523ab679d10d8741c0"}, + {file = "pydantic_core-2.23.2-cp312-none-win32.whl", hash = "sha256:3713dc093d5048bfaedbba7a8dbc53e74c44a140d45ede020dc347dda18daf3f"}, + {file = "pydantic_core-2.23.2-cp312-none-win_amd64.whl", hash = "sha256:e1895e949f8849bc2757c0dbac28422a04be031204df46a56ab34bcf98507342"}, + {file = "pydantic_core-2.23.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:da43cbe593e3c87d07108d0ebd73771dc414488f1f91ed2e204b0370b94b37ac"}, + {file = "pydantic_core-2.23.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:64d094ea1aa97c6ded4748d40886076a931a8bf6f61b6e43e4a1041769c39dd2"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084414ffe9a85a52940b49631321d636dadf3576c30259607b75516d131fecd0"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:043ef8469f72609c4c3a5e06a07a1f713d53df4d53112c6d49207c0bd3c3bd9b"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3649bd3ae6a8ebea7dc381afb7f3c6db237fc7cebd05c8ac36ca8a4187b03b30"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6db09153d8438425e98cdc9a289c5fade04a5d2128faff8f227c459da21b9703"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5668b3173bb0b2e65020b60d83f5910a7224027232c9f5dc05a71a1deac9f960"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c7b81beaf7c7ebde978377dc53679c6cba0e946426fc7ade54251dfe24a7604"}, + {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:ae579143826c6f05a361d9546446c432a165ecf1c0b720bbfd81152645cb897d"}, + {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:19f1352fe4b248cae22a89268720fc74e83f008057a652894f08fa931e77dced"}, + {file = "pydantic_core-2.23.2-cp313-none-win32.whl", hash = "sha256:e1a79ad49f346aa1a2921f31e8dbbab4d64484823e813a002679eaa46cba39e1"}, + {file = "pydantic_core-2.23.2-cp313-none-win_amd64.whl", hash = "sha256:582871902e1902b3c8e9b2c347f32a792a07094110c1bca6c2ea89b90150caac"}, + {file = "pydantic_core-2.23.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:743e5811b0c377eb830150d675b0847a74a44d4ad5ab8845923d5b3a756d8100"}, + {file = "pydantic_core-2.23.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6650a7bbe17a2717167e3e23c186849bae5cef35d38949549f1c116031b2b3aa"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56e6a12ec8d7679f41b3750ffa426d22b44ef97be226a9bab00a03365f217b2b"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:810ca06cca91de9107718dc83d9ac4d2e86efd6c02cba49a190abcaf33fb0472"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:785e7f517ebb9890813d31cb5d328fa5eda825bb205065cde760b3150e4de1f7"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ef71ec876fcc4d3bbf2ae81961959e8d62f8d74a83d116668409c224012e3af"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d50ac34835c6a4a0d456b5db559b82047403c4317b3bc73b3455fefdbdc54b0a"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:16b25a4a120a2bb7dab51b81e3d9f3cde4f9a4456566c403ed29ac81bf49744f"}, + {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:41ae8537ad371ec018e3c5da0eb3f3e40ee1011eb9be1da7f965357c4623c501"}, + {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:07049ec9306ec64e955b2e7c40c8d77dd78ea89adb97a2013d0b6e055c5ee4c5"}, + {file = "pydantic_core-2.23.2-cp38-none-win32.whl", hash = "sha256:086c5db95157dc84c63ff9d96ebb8856f47ce113c86b61065a066f8efbe80acf"}, + {file = "pydantic_core-2.23.2-cp38-none-win_amd64.whl", hash = "sha256:67b6655311b00581914aba481729971b88bb8bc7996206590700a3ac85e457b8"}, + {file = "pydantic_core-2.23.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:358331e21a897151e54d58e08d0219acf98ebb14c567267a87e971f3d2a3be59"}, + {file = "pydantic_core-2.23.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c4d9f15ffe68bcd3898b0ad7233af01b15c57d91cd1667f8d868e0eacbfe3f87"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0123655fedacf035ab10c23450163c2f65a4174f2bb034b188240a6cf06bb123"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e6e3ccebdbd6e53474b0bb7ab8b88e83c0cfe91484b25e058e581348ee5a01a5"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc535cb898ef88333cf317777ecdfe0faac1c2a3187ef7eb061b6f7ecf7e6bae"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aab9e522efff3993a9e98ab14263d4e20211e62da088298089a03056980a3e69"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05b366fb8fe3d8683b11ac35fa08947d7b92be78ec64e3277d03bd7f9b7cda79"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7568f682c06f10f30ef643a1e8eec4afeecdafde5c4af1b574c6df079e96f96c"}, + {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cdd02a08205dc90238669f082747612cb3c82bd2c717adc60f9b9ecadb540f80"}, + {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1a2ab4f410f4b886de53b6bddf5dd6f337915a29dd9f22f20f3099659536b2f6"}, + {file = "pydantic_core-2.23.2-cp39-none-win32.whl", hash = "sha256:0448b81c3dfcde439551bb04a9f41d7627f676b12701865c8a2574bcea034437"}, + {file = "pydantic_core-2.23.2-cp39-none-win_amd64.whl", hash = "sha256:4cebb9794f67266d65e7e4cbe5dcf063e29fc7b81c79dc9475bd476d9534150e"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e758d271ed0286d146cf7c04c539a5169a888dd0b57026be621547e756af55bc"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f477d26183e94eaafc60b983ab25af2a809a1b48ce4debb57b343f671b7a90b6"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da3131ef2b940b99106f29dfbc30d9505643f766704e14c5d5e504e6a480c35e"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329a721253c7e4cbd7aad4a377745fbcc0607f9d72a3cc2102dd40519be75ed2"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7706e15cdbf42f8fab1e6425247dfa98f4a6f8c63746c995d6a2017f78e619ae"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e64ffaf8f6e17ca15eb48344d86a7a741454526f3a3fa56bc493ad9d7ec63936"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dd59638025160056687d598b054b64a79183f8065eae0d3f5ca523cde9943940"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:12625e69b1199e94b0ae1c9a95d000484ce9f0182f9965a26572f054b1537e44"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d813fd871b3d5c3005157622ee102e8908ad6011ec915a18bd8fde673c4360e"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1eb37f7d6a8001c0f86dc8ff2ee8d08291a536d76e49e78cda8587bb54d8b329"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ce7eaf9a98680b4312b7cebcdd9352531c43db00fca586115845df388f3c465"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f087879f1ffde024dd2788a30d55acd67959dcf6c431e9d3682d1c491a0eb474"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ce883906810b4c3bd90e0ada1f9e808d9ecf1c5f0b60c6b8831d6100bcc7dd6"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a8031074a397a5925d06b590121f8339d34a5a74cfe6970f8a1124eb8b83f4ac"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:23af245b8f2f4ee9e2c99cb3f93d0e22fb5c16df3f2f643f5a8da5caff12a653"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c57e493a0faea1e4c38f860d6862ba6832723396c884fbf938ff5e9b224200e2"}, + {file = "pydantic_core-2.23.2.tar.gz", hash = "sha256:95d6bf449a1ac81de562d65d180af5d8c19672793c81877a2eda8fde5d08f2fd"}, ] [package.dependencies] @@ -1471,72 +1521,75 @@ files = [ [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "qdrant-client" -version = "1.10.1" +version = "1.11.1" description = "Client library for the Qdrant vector search engine" optional = false python-versions = ">=3.8" files = [ - {file = "qdrant_client-1.10.1-py3-none-any.whl", hash = "sha256:b9fb8fe50dd168d92b2998be7c6135d5a229b3a3258ad158cc69c8adf9ff1810"}, - {file = "qdrant_client-1.10.1.tar.gz", hash = "sha256:2284c8c5bb1defb0d9dbacb07d16f344972f395f4f2ed062318476a7951fd84c"}, + {file = "qdrant_client-1.11.1-py3-none-any.whl", hash = "sha256:1375fad77c825c957181ff53775fb900c4383e817f864ea30b2605314da92f07"}, + {file = "qdrant_client-1.11.1.tar.gz", hash = "sha256:bfc23239b027073352ad92152209ec50281519686b7da3041612faece0fcdfbd"}, ] [package.dependencies] @@ -1552,18 +1605,18 @@ pydantic = ">=1.10.8" urllib3 = ">=1.26.14,<3" [package.extras] -fastembed = ["fastembed (==0.2.7)"] -fastembed-gpu = ["fastembed-gpu (==0.2.7)"] +fastembed = ["fastembed (==0.3.6)"] +fastembed-gpu = ["fastembed-gpu (==0.3.6)"] [[package]] name = "requests" -version = "2.31.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -1578,160 +1631,164 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "ruff" -version = "0.5.0" +version = "0.5.7" description = "An extremely fast Python linter and code formatter, written in Rust." optional = false python-versions = ">=3.7" files = [ - {file = "ruff-0.5.0-py3-none-linux_armv6l.whl", hash = "sha256:ee770ea8ab38918f34e7560a597cc0a8c9a193aaa01bfbd879ef43cb06bd9c4c"}, - {file = "ruff-0.5.0-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:38f3b8327b3cb43474559d435f5fa65dacf723351c159ed0dc567f7ab735d1b6"}, - {file = "ruff-0.5.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:7594f8df5404a5c5c8f64b8311169879f6cf42142da644c7e0ba3c3f14130370"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:adc7012d6ec85032bc4e9065110df205752d64010bed5f958d25dbee9ce35de3"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d505fb93b0fabef974b168d9b27c3960714d2ecda24b6ffa6a87ac432905ea38"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dc5cfd3558f14513ed0d5b70ce531e28ea81a8a3b1b07f0f48421a3d9e7d80a"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:db3ca35265de239a1176d56a464b51557fce41095c37d6c406e658cf80bbb362"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b1a321c4f68809fddd9b282fab6a8d8db796b270fff44722589a8b946925a2a8"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c4dfcd8d34b143916994b3876b63d53f56724c03f8c1a33a253b7b1e6bf2a7d"}, - {file = "ruff-0.5.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81e5facfc9f4a674c6a78c64d38becfbd5e4f739c31fcd9ce44c849f1fad9e4c"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:e589e27971c2a3efff3fadafb16e5aef7ff93250f0134ec4b52052b673cf988d"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:d2ffbc3715a52b037bcb0f6ff524a9367f642cdc5817944f6af5479bbb2eb50e"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:cd096e23c6a4f9c819525a437fa0a99d1c67a1b6bb30948d46f33afbc53596cf"}, - {file = "ruff-0.5.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:46e193b36f2255729ad34a49c9a997d506e58f08555366b2108783b3064a0e1e"}, - {file = "ruff-0.5.0-py3-none-win32.whl", hash = "sha256:49141d267100f5ceff541b4e06552e98527870eafa1acc9dec9139c9ec5af64c"}, - {file = "ruff-0.5.0-py3-none-win_amd64.whl", hash = "sha256:e9118f60091047444c1b90952736ee7b1792910cab56e9b9a9ac20af94cd0440"}, - {file = "ruff-0.5.0-py3-none-win_arm64.whl", hash = "sha256:ed5c4df5c1fb4518abcb57725b576659542bdbe93366f4f329e8f398c4b71178"}, - {file = "ruff-0.5.0.tar.gz", hash = "sha256:eb641b5873492cf9bd45bc9c5ae5320648218e04386a5f0c264ad6ccce8226a1"}, + {file = "ruff-0.5.7-py3-none-linux_armv6l.whl", hash = "sha256:548992d342fc404ee2e15a242cdbea4f8e39a52f2e7752d0e4cbe88d2d2f416a"}, + {file = "ruff-0.5.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00cc8872331055ee017c4f1071a8a31ca0809ccc0657da1d154a1d2abac5c0be"}, + {file = "ruff-0.5.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eaf3d86a1fdac1aec8a3417a63587d93f906c678bb9ed0b796da7b59c1114a1e"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a01c34400097b06cf8a6e61b35d6d456d5bd1ae6961542de18ec81eaf33b4cb8"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcc8054f1a717e2213500edaddcf1dbb0abad40d98e1bd9d0ad364f75c763eea"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f70284e73f36558ef51602254451e50dd6cc479f8b6f8413a95fcb5db4a55fc"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:a78ad870ae3c460394fc95437d43deb5c04b5c29297815a2a1de028903f19692"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ccd078c66a8e419475174bfe60a69adb36ce04f8d4e91b006f1329d5cd44bcf"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e31c9bad4ebf8fdb77b59cae75814440731060a09a0e0077d559a556453acbb"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d796327eed8e168164346b769dd9a27a70e0298d667b4ecee6877ce8095ec8e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:4a09ea2c3f7778cc635e7f6edf57d566a8ee8f485f3c4454db7771efb692c499"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a36d8dcf55b3a3bc353270d544fb170d75d2dff41eba5df57b4e0b67a95bb64e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9369c218f789eefbd1b8d82a8cf25017b523ac47d96b2f531eba73770971c9e5"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b88ca3db7eb377eb24fb7c82840546fb7acef75af4a74bd36e9ceb37a890257e"}, + {file = "ruff-0.5.7-py3-none-win32.whl", hash = "sha256:33d61fc0e902198a3e55719f4be6b375b28f860b09c281e4bdbf783c0566576a"}, + {file = "ruff-0.5.7-py3-none-win_amd64.whl", hash = "sha256:083bbcbe6fadb93cd86709037acc510f86eed5a314203079df174c40bbbca6b3"}, + {file = "ruff-0.5.7-py3-none-win_arm64.whl", hash = "sha256:2dca26154ff9571995107221d0aeaad0e75a77b5a682d6236cf89a58c70b76f4"}, + {file = "ruff-0.5.7.tar.gz", hash = "sha256:8dfc0a458797f5d9fb622dd0efc52d796f23f0a1493a9527f4e49a550ae9a7e5"}, ] [[package]] name = "setuptools" -version = "69.5.1" +version = "74.1.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"}, - {file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"}, + {file = "setuptools-74.1.2-py3-none-any.whl", hash = "sha256:5f4c08aa4d3ebcb57a50c33b1b07e94315d7fc7230f7115e47fc99776c8ce308"}, + {file = "setuptools-74.1.2.tar.gz", hash = "sha256:95b40ed940a1c67eb70fc099094bd6e99c6ee7c23aa2306f4d2697ba7916f9c6"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "simsimd" -version = "5.0.0" +version = "5.1.0" description = "Fastest SIMD-Accelerated Vector Similarity Functions for x86 and Arm" optional = false python-versions = "*" files = [ - {file = "simsimd-5.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d088c06ea957df1943af64c826b15387e5020a23d8a9f712619c3ca273322d52"}, - {file = "simsimd-5.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0dfbe97d84d654a6ae30c109b961300708fd6bd5d2f47d87c1d2f69ad2de63c5"}, - {file = "simsimd-5.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:894789f67b5d8c16bb1766f89ecb4cf19e2f5d421a5c418457ef948a7db1b76a"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de83db500e77c26f7d05cfeba1f1e55ed2d050033ecda136637cc0b6fd39d1cc"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b5a4d7fd162450b8b94efb5145d9e41a567428729726a937cd74e83152f8cb5"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:efe7a4876e160dc52248b6177fc689caf2167c7897585eb965f865ae93f493b7"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:672d697ee251e51e1e03134c05df38962dfe242d98a8bf67aea560eec0202a03"}, - {file = "simsimd-5.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:11325929e47e1ab3fcb77e1be2a32cd4d5b704e466d16e4faed52652c0aa59f0"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d4266050dff25021362e94e11f977b063f4e86d2a913ca52291fd39cac5bcee3"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:6135b1eb5e08c126166ed1e1d5d33b02fa36ebb23f6781d08472c9af2e52fa9c"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:88313e4adc5503b474aa2013345dfeafd0450ab4fcbc679afaa2ebd7634953a9"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2ad530657a9f17ec87d7ee83a2cbae11c5046a9879f8f76052874bfaf0294f9c"}, - {file = "simsimd-5.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:afa5df2f316ec41131392c3a8591d431aff4f5c8380b29f466dcefe46d4f68ec"}, - {file = "simsimd-5.0.0-cp310-cp310-win32.whl", hash = "sha256:2b33461a133a022d7517e67a63c6f897581f103affaa621d59824a0588c0c9ad"}, - {file = "simsimd-5.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:111b955d4a91ce781e99d6f9ffe575d46b0096066c6f26f330448d6e97ddabcb"}, - {file = "simsimd-5.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:14a3c9af74b061eada78eb5de4978caa6f107829ccd02f2985bec42ce8e8b901"}, - {file = "simsimd-5.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f1dc34a031f15729387b8f9c3a44f4bf787eac3bd3405397674e522b4b15d5b1"}, - {file = "simsimd-5.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:00114a66a81854393fa2ccb70167ed35f3d1766cd4cd50d6da8fe3631b53e49c"}, - {file = "simsimd-5.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:15e78f67cadc80ca5cb8df35a3b654cbb5605349ce1430a7334a0677c620394e"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8ec8bfae72ec3a04e9e4d9352fbb75145fe90bd3f5e6129eebc3af141050224"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aad2c4bac0e06d07a5cfd3a0482a54904d3ad37a01e553698d188761d3747f80"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:207c36b452898933d69060815f3d70d5c4f4a1d8e6de110f8dfa2371af4a8cd9"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:f5b2ba3042de9b04dc86251dd54d7f36cce2f597270a2ff2428881d78514ff99"}, - {file = "simsimd-5.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:abda8d1a5172319827d27422ad3ce3d748ba698872d84e066393567adee386d8"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:eb5cb03183acebde5922d5034159e01bb495d2b653dd3d6abe4e6d1f40d978fa"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:c56f4d8544cadc6ed4e24d7c9fe5cf8708f92adeb68f47f2202356cb15f961e6"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:221179b77928ea651a3284980ae615feec8f2ee7f4d428504e24cb6b7df76792"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:92da3cc3223309b495bfb1069d79aa34a6e193d5a87c242f1431e9a257075457"}, - {file = "simsimd-5.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1602857f295c256b4ffe42660f7a847b686da24f3755cd231c0b0c2c5cb03d0f"}, - {file = "simsimd-5.0.0-cp311-cp311-win32.whl", hash = "sha256:c16535fe307d5725efa420d4de14f5cbc699b1da9fc2c8d6ced14cb29add96c5"}, - {file = "simsimd-5.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:bfe0efa287f259f55a16f114e6e99e85716647cdce8b50d0dfa3f3da83e404ef"}, - {file = "simsimd-5.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:880271ae438dfcaa4108ee9ebfc1a6ccad4eb1980a859b4df6c9be6371b0d3b8"}, - {file = "simsimd-5.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:25426a5172a35035b03726043f8c5cf8851e66c20697cec4b5f68f63453245b0"}, - {file = "simsimd-5.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5498cfd52153f32c4b6d00b43f8b168344e65a5ef108659d7447ff0e2c672bb2"}, - {file = "simsimd-5.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9cdffd5c5c73c2045c672a2097646b7af2aee7df7aa8e21b4dde37c19a60d4f4"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0b905a5d173acf7ec8b3f4cfa4844113c315d82927baac20f74b91b36cf3a7a8"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cc018cdf1fdad38d6fff764c99d9e00223a2c227a56ebd9310e184545f4187a9"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4d7a8fc7497931f608d317f0ebb7c453e6b0f5bccd2012dec29ff6f2f622e0fd"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:c823e4c70dd6c6d1cfe82c47af6073c573240a277bdd7cb60050eb046ba7ea0f"}, - {file = "simsimd-5.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d70c3630ea7c9a43bbbf3aa330713d455245024718ecab4fb946bb478af0107e"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ea1435a57ccbe2cb7ab63ff8a7334f6b4da3216ebf1f687d685e85adc1c78cdf"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:54ad123759b0bb008863717e0722641d5ad049201c24d6f4050b0e3abcde2dd5"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a247b8b5b63efe679f6ef7c35f3709a30f316d4745e585992b8d23f3b0137085"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d1e089714fea2323b4630cbc9fc0802f75e53bcd987e96bcccb9a58f0908fcfd"}, - {file = "simsimd-5.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d9a63568da4cdaa0abfe4d9577d00a9dd2cd46cc7d35f8247dc1ea30a91ec506"}, - {file = "simsimd-5.0.0-cp312-cp312-win32.whl", hash = "sha256:b3b4edf67faca966de12536590a4d232d3b36fce7c5c71a3f532925aa2329b63"}, - {file = "simsimd-5.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:82c352c17691e03a9cffd03ec9203107645b7c2a83ce920265fa69fe26e2d8de"}, - {file = "simsimd-5.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:cc431d328eceb74b175cc422b1056eb09db8ac06d410b23f2d6c4ff5c2bc63dc"}, - {file = "simsimd-5.0.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:992b4a60b080dcbeeaa90966f2396d514bc3cbc88f85ca0a8c0275a2d4000a12"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7955b350f7814e68e4072c57dcdcd066deee48295712dcd338ca4d5a8c281458"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2c4123560379f877771577dc4237f15b47c6e8c7743c2cedabedb1a1739b55fd"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d8a0b47cac924969822b0fc14f657e569e674a292314bbec7e6af43163912ba"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_28_aarch64.whl", hash = "sha256:f3d77b497bfeb32b1f32f53f4a11a213277d6d0d304c93803062bf77ec67264b"}, - {file = "simsimd-5.0.0-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:2ac607f15d0ca40ee9b883ef5d2f70a9d53b21ed0ed6c550516663ee1c711e35"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:76ffdfda6c4e87a25ed026a80e4fa56ec58d9a014aef862f3f8c76982755f614"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:b16a9f04a3450f03b5cc3d1d4fe9481067fd4470ae9554bb05bb8f9f4b0813b4"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:dbe5776d011671af5ed6be1e6cff4c76b9221f41d7ed32bf09f5091e07a469e4"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_s390x.whl", hash = "sha256:a8b6564c2f029c7aa18a4964436f29e8eb24528ae5f575c5f7b85017da1941a5"}, - {file = "simsimd-5.0.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:631096d42f049b1a32c462dd01675c527feaed95bf94bdca8ff8544bec79f374"}, - {file = "simsimd-5.0.0-cp36-cp36m-win32.whl", hash = "sha256:9987cdb3cc9c79a71d2d2dd0a9d9e7a472ed7e14c7fed7f7be2c72ba054b5f15"}, - {file = "simsimd-5.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:c236e579e13a11337b22caf4146877cd71ff589ffbb0fdd6aae9cd8ae7f79075"}, - {file = "simsimd-5.0.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:508c2eaa271fde9fe6d93c7cc2631b6905a5f5f348a3cf2c438122fa5f55430b"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b4257471cd39afb8ae2656e4c4bed59b5e6a42b3aa45868aa2249334753d8172"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a01df7e13fe961c8acbf0d8a43a53597bbc681241e3fdb8f4d10439d18f9912"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79ae3c1197d2cbdc504739d90927c11f08ffe49b2c40788072551e104cf4bb73"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:22d4faba90723bb96bafbe838ec6b7a3646b0c9d9436b699408815efced81322"}, - {file = "simsimd-5.0.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:c2b2a8ae55b3a43b21eadb21ea39b7f570d6c0d4855355c2ec311da0d13a975e"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:8af55a481d50583b9dd5dcb7775bb1503acc14fe6ac595fab7067e9db16a3d1f"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:04f46895b95732fb9dcbc4beba2d5f55a6fc343823f85ec4684ec1b87110527d"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:2f1d8717283c44d49eff049f1875dc3016148d2f39341401f262a100cafaf3fe"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:ad456b77f4c7c58347e96e53e7d35ef63f5c4f1c13ce4eedd5807613b51f5030"}, - {file = "simsimd-5.0.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:827b76db2527344aebb8142d2a41fe1dada9a1dae067d9ce543840e5d13db076"}, - {file = "simsimd-5.0.0-cp37-cp37m-win32.whl", hash = "sha256:1dbb0c7d145d7151f3342190000e97b805023651ff8589818934e407b56140cd"}, - {file = "simsimd-5.0.0-cp37-cp37m-win_amd64.whl", hash = "sha256:369fbe080ae18e850516c65b3670348adfad91eaed99e882c28a466dcc8c9c10"}, - {file = "simsimd-5.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c8ddb50c61fbcf1e96199f334862a49222234424e4b3903f1b49b6f2525ddfbb"}, - {file = "simsimd-5.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:effa3bd0fe7b1d8c45dfa10e742eb70f69ccf9a3191018924e8643bb67bf5624"}, - {file = "simsimd-5.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:85ee56bbeba90fd4f565edc138548740413ed5cf83723263ce9c0acc49728d57"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb472010b1ec8c663d3749f27085cc834056ea44c3eb47c62e38426df4a4267c"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84416a93d402a6b71cc375d4ce3954fc908ea89a03f649fa58f86786176e7d9f"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:58b5e955b13ee3231866d314a247c8e9e3892dc5bda88df214c552d65766b2e5"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:64e7af743438e9229620ddf2a553429ee8693b45a4e6d49d5bb105ff4f667983"}, - {file = "simsimd-5.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:e6c2830fd32dc47dd5d0946721dbe13c148c244015f05495bc68c1e5aa44c528"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:cbdda709a689d0ceac885ed537ebd433592892e0d00f457bdd2ee914dc484254"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:60e7ff26f95d6bffcb026e2b69f59520375928513283c4056966617d02b6a1c2"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:c496fccdaf4734f1fe9a782daf35d6b8e82c5491cc3002b2c03a3b6cc7c3c07f"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:d48f21674eaccaa721c8726a310a7324523f39eb8870ea9de5f3eead8b4699e2"}, - {file = "simsimd-5.0.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9fc290f381913b84f4e7d662f283d2cc9a7c37a8b6869871e984b3b6728db2dd"}, - {file = "simsimd-5.0.0-cp38-cp38-win32.whl", hash = "sha256:28cede34c79db68c5e1b4a35b62693579fbac810e253232734e73c3e57aaf4c8"}, - {file = "simsimd-5.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:1f13ce2a78fa78648108fa07562562b44d1b2c2366b28e30cfc121ea93e53442"}, - {file = "simsimd-5.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1c2398996a5de44e4b87689f1157e613e9021230c82b0da20853349075085c55"}, - {file = "simsimd-5.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb083111b2f866254cab406d8124d6885c2e7ae6267284f3107e4b5d0801ff2b"}, - {file = "simsimd-5.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:575a38f1fe035b33c7d83e7c71f89d01f484f6d180a3435cc26781a6c28b1ec5"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b80d4f0f17acee010ed6d93c347668ccac3696802aa1a881284c599f02a74b1"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa8408aec1e63e185b56e5096f4fb5af73855666bb76eb89efc623b18043f43d"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2f00a451f4978e180cd455055259260a304190fba814019f003b1f7c1ac89cf8"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c14a8de24ad765d7a346700f424700a624492a5b656c5338a776d71da67ae07e"}, - {file = "simsimd-5.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:10140148e1dc80c9265c527d742768b043875b27422b7e618ca73916346d7a1d"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4de255a4d602b1c349bf5a8519c774b080cce5e8c62a92d80bda424062b3bfd0"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:cde90376a42088fd662e7488e670ef006f5f641c57cb63a6da176ff7b001b1e9"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:59e39c568ce291d69eec175eca3c6152e174caf7f9c2aba6353849dcebf76d54"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:dfc16a8ec64d8dca8202942a434abbb0e39ba81349eb4fc345bb276cd5f5dfbb"}, - {file = "simsimd-5.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:eb8b437532e38f48be0e4767cdc6d7fc15b923d85790f2ecd7d6cc1326d24510"}, - {file = "simsimd-5.0.0-cp39-cp39-win32.whl", hash = "sha256:c3f5f9646223611ecd657c4ebebffe0dc2b7375b619c154a9ee9bf70b9959a89"}, - {file = "simsimd-5.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:4ded30eec3dd3a2cd2a2315a662d9fe3338cd35ff7d8b5c21c5ca3556d3ae03b"}, - {file = "simsimd-5.0.0-cp39-cp39-win_arm64.whl", hash = "sha256:35b2fd3cb885d1669b33c65421f37308853e96e3abe1c459783bbd466ec1e921"}, - {file = "simsimd-5.0.0.tar.gz", hash = "sha256:c1d806cb27baa8b42b581cef75b6149de09a6a54116ca2026cb7ec2fda216d2d"}, + {file = "simsimd-5.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:095d9997c88d086257a5f3a56cc573e63d61357a3beeb285c94024dd951354b3"}, + {file = "simsimd-5.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4520b40afb457d2a10a0792625996837950906aa4eb139ce20d4c036eaeb5fb5"}, + {file = "simsimd-5.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76b8762f66524cc2b8f73385f4270e4524f9f998643eae73ec88e236cb8d8e8c"}, + {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bcb6229185081df43508282ada3516c93cdf36df32b951011bf93b41c710e59a"}, + {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ddbd31e2f6ac6bb2636e50a4c7a9cce9013b6aa35ea53c4f3c6590fa310e611d"}, + {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27cbb09f17de124a0fbf23156a0e37c7f9886d57244b66cd373df89cdacc5a4"}, + {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:01925394129849f8ad0fe5b87c6eef384b18396132a9a2051e68120fc30c0811"}, + {file = "simsimd-5.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:5c9b73053e69daf952456c2a316d6e34a1d5138f5ef6bb24401cf5f0b798372b"}, + {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74a03238cff4bdc9ce0588a18ab26920cda0951cc1ed845198cd7611825ed5f1"}, + {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a94bc1e0821a3488c0946e5c3637d18b19e36310c362b19c88abaecea0b333e6"}, + {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:736479fdc690b71bfb6411538f4e677ae62e233fdf65872c1138bc933d9c710a"}, + {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:a2297f4576567b50be463986f46e38809359cafc16593847c40e798b49277efd"}, + {file = "simsimd-5.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:024672c0886a5aea86ab671aef7636b5eac2a7b83120c6608f37f3b64edf1fc6"}, + {file = "simsimd-5.1.0-cp310-cp310-win32.whl", hash = "sha256:8f97b5206a95ce94f9d4ce111c59aca2f7f3083d479febe3a61e6593e6e64d2e"}, + {file = "simsimd-5.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:dcb5cea8c024f4a25ba561a174a03788b17054192fb64221d0ec683fdae91c6b"}, + {file = "simsimd-5.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:fdf3cb415c6c841ff2ebfce247244b0479b6e23dab263d504124219ad835f19a"}, + {file = "simsimd-5.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bc5231889f3f7293ff5ea76ed620bd49ca4586133f3d278cc63df19aa84735e5"}, + {file = "simsimd-5.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2e092ed4e0868e88ef0a56e64998ef39e5cfb8284042faa81f29b84275e35cfd"}, + {file = "simsimd-5.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:53f6d8280d088ebd3505d734eb3324e49294511d56e43902bffca8e33a96942c"}, + {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b9b9e91266d4f2b6fa9638757b9c86e14dad96289817cc8bc12ca0042e841c13"}, + {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4493cda4f1bbb38017a178dc3709a1defbb1c1234adbc0793f307cf0554bb6b7"}, + {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c19d8266873c5d8aeb960c621d0e38ad171ad85ac4cb1199683cbfc79d9ad64"}, + {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:21f04e91c788be044ba7e560e360144aed7621502ac5c43932126ef2c3164114"}, + {file = "simsimd-5.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:520852d0bce9700fb40e46187a28cfd2aa144a60d5b4af4e982541416777c417"}, + {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a857826dd6a9c71611e9da83fb0d82ebf6e05c99400784b58a22ab69ee922a82"}, + {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:cf1e86dd66ee9796e435d020578f736386d672725eb0a0b8b8b18fcafaaea7a0"}, + {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:40c2033b9b84159b35d76a1cbfff4941403b6117e158a869999e27f7bae7d602"}, + {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:c337dfa79a62dc77a7ce458d332055c801d283cc78a0599a0da3aa6b8269d64e"}, + {file = "simsimd-5.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0793fb4581f5f477b893ea398652e0dbbd61fd250e018deae1f952e09b0e35f"}, + {file = "simsimd-5.1.0-cp311-cp311-win32.whl", hash = "sha256:33a6c62681e8021d9866fc469693fe98f1c62a098790c7d9931dd35294bedf6e"}, + {file = "simsimd-5.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:55bf321436dfc0aba6752c31e939824ea83b3dd247eb2a056bb7366545281ac4"}, + {file = "simsimd-5.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:96793125514a4113b0dc9e90ee4085ddb1f175416f598f16d9ade8967a8ae6cf"}, + {file = "simsimd-5.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:cfea5d05cd313bf32ebd6fd223db9e245f1dc1bf10d5012e4312d652335779ed"}, + {file = "simsimd-5.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bf378223eeb466f05a0140348df60b1dd8f1cc460a9118ab3dcf3f2201871a69"}, + {file = "simsimd-5.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c534e5f1957873c088a5162303df0117293b09b22cd4655ce195991c2c14f4ca"}, + {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3f1025aba3f4e4bcdddef49fd26e37a2da5f00df83a09fe8402ac13e8494f86d"}, + {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c032406bfd4e7fa9f1d5d40c8e2d1fd9bb27562cf308dd9a5e02c7a595635c05"}, + {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98ee4b3d5cf63c248df88f097390ec0d5c1568987b46437bf69077962bf0ecd0"}, + {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:2215ad6bbb6632682bd9836f18547c80be99f2e99be7964ddb88d4dfee56bb28"}, + {file = "simsimd-5.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:41cf61bb6a8ffbcdd5d7bad99023eebf78e30d4d80fbee0b710ac93096e69079"}, + {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:7c5022092753402961adb31485958a881c4cb954e0a0c48d6ac57aec2cccc8e3"}, + {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b38cb5650bb16faa4b8e3e263eacf9d0b2f78a7e72b7dfc69fd0e6a0b9bca5ba"}, + {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:93d7556369e99c0e17f5fa01977ea8ad96909f96673c95837da27f2614e748ce"}, + {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0585903053d2e6e2396be6a0a6ffae620c9e67309206c92ec336c87eb9c150e5"}, + {file = "simsimd-5.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:04bc3f7fcb24daa2d8000e5009c335e33ed7292a5a64197b92064a66d787f397"}, + {file = "simsimd-5.1.0-cp312-cp312-win32.whl", hash = "sha256:212ef28106d9d7c981b1c8f213654ca17fa994acaa8ed7dfd910102a8622cf8a"}, + {file = "simsimd-5.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:06899df2a4da6dd59db808ba72084edaddbb578916e2b8056be8fa224e853aa9"}, + {file = "simsimd-5.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:bc1bc1aab1ee522df36e7472b1a39589fc726b0957ed7570bdb39918121a287d"}, + {file = "simsimd-5.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b8b5226f0eaafd052bee81edc68226a8301adccd37e7af8aa007fdd2e27cbc71"}, + {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bebd17862e807bdc412727a29477830bb802782f9a6954c3a2d9a6bd26e9e968"}, + {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25840c2dbc4b9e8b44ed99fcdbb51ef058aa47b2c821f95fe4cea594971f6bfb"}, + {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8a1e93e6eb4ce730557130dd18fe147427aea15ec3ff49d0fcdc1250cd7f25fa"}, + {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_28_aarch64.whl", hash = "sha256:dd3f9d4d4a93b7f7a2d0f700c0c027432665d5befede4d7055cd84583aee1fe2"}, + {file = "simsimd-5.1.0-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:8f07cb70ed8d7a2bc1bd3e90bc8d6e639918401755212040618180546e378c26"}, + {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:f00d2337d13d0eef7c199c4318795f753fc3d8db077d0d1c0cf973a60d8c7b2b"}, + {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:016f3c39a44c2354968621d1b72a174ed9754539c310a6d4b408ce7a32693f05"}, + {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:7ad60696e8370ebdeea24983ef5e9a9822eb315dc58065ca34607c19a9df7e51"}, + {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_s390x.whl", hash = "sha256:fe518e8478bd38112b0a87872ab1fd726a1ca4e637df95b7ef12914b73722b3f"}, + {file = "simsimd-5.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:993b9baac0f5c2424d8d51a3f07b908bb0f89dfba012cd5256fe662c94a95c29"}, + {file = "simsimd-5.1.0-cp36-cp36m-win32.whl", hash = "sha256:7a02d53c23976c7ad954dd3df7ed1a98a9c6ca40c6e5345b8be9fb9125afa383"}, + {file = "simsimd-5.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:fd4fac86308d14beb8d2a77c35137aabcd4135e8286223957711912fc3a72c9c"}, + {file = "simsimd-5.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1650a2e3a1ccd34db2eb7407364bb5743462f2fd215777c6061e3f39b69cee5c"}, + {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b09d871cd51507163f246ad04b265e8f429794ca07de91cd49e4e8970cf2cb67"}, + {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0867fb73fbba1d570734b53ac91a7b102e7aaefb10086fac2b4a67d4cca47283"}, + {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6461a1a5151fb9e75ac92395c148373de48a7bcb2bd900260223b852e4f3ac9"}, + {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:08ad27ce96438c96a8dfe6e3a601619dad117aebd463fa85a80e83638a7278c9"}, + {file = "simsimd-5.1.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:08779163a25c164d2ceaeabc70f4ed10701e97e246734f247a2eaa776dcbc2ea"}, + {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:8a90e18143efc96c456be3c7007ce1a8ce2ef7f71fa23822839983d2c8eea855"}, + {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:ad6b46b5829b2c8b7a66a6290d83dbc4bab14d1e9813d3a609b004cf5d679d13"}, + {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:61bce0a3db93fc50d27ec65ba754b14d56bb1cf0a74e917b385d9b27b18b71bb"}, + {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:9c9744ee1612853daf94764f089bfc27933d9cfee55fc2709a0c93d9dcec42e6"}, + {file = "simsimd-5.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:25dd2d9936ef79d17e3682b48efe14f366cf16e8aceb31afccc47eff0755c806"}, + {file = "simsimd-5.1.0-cp37-cp37m-win32.whl", hash = "sha256:79545db80571d80550ad831ad2f5102fc4887af070b21078c523e530167c6d91"}, + {file = "simsimd-5.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2a6ea3d661f65a8084ed238a22f8f883b325c9341fd1cdfab8da336f87fbfcb3"}, + {file = "simsimd-5.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5a165cf087817f326332ed7f6cbe69b9453f2cd9f23a79758a443f1b98d294cc"}, + {file = "simsimd-5.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9059f509cefa04f70649e0fa8e1f97a45958f7318756110da9545ab061988287"}, + {file = "simsimd-5.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:9f12bbfab4085a14eb283ca34a399aaf43006815c9f04570817c1d128a1d2f2d"}, + {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:802f371a558c62970a1815112cd604ef964b5bc27fac535cb88d7f239f4b9766"}, + {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1a6ab35020fa136f91a56c16bc41999426aeeea7587b34f1b2aa0c4ab491161"}, + {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c45b985d81cbd70cb01690b5199ffffab2b78bd2e4995c4c4ca57f725173a92"}, + {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:2e1a31958df544ba34139df1457cbe3c90355cafd84a86fcba492174d57bba74"}, + {file = "simsimd-5.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:2b5519733dcc172d775adddf1df9e338c91aaf3881bb1220d283cc6fb7ff1748"}, + {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c3da661ee8489704dde34b8817b8b364fa9a9dcfbf0282692e39cc3e136372e0"}, + {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:45434d8fcb3c642fc7cf9d9b9265dfb9d008b5d343426de802334884f92caa94"}, + {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:3d7464fdceadd4711d1e884cea33436d61173d494c163cd0da643f34d560d6ba"}, + {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:419eefceaeddc75dc7e26e5ab24d5ac788ab13f62a828e67ed85e6170b24a619"}, + {file = "simsimd-5.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:fbf8405eade2166bdcae38365ab22276f48a55c90cf958ebeebc86adaa9034fc"}, + {file = "simsimd-5.1.0-cp38-cp38-win32.whl", hash = "sha256:a4b9b1faf91023c9d1625af789cf96df9b67c2e8cd62e01193811f57bb3098d8"}, + {file = "simsimd-5.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:d367316a21d4ed3189d1ee143a524269a26803f064e579bd3a8b801e96d91fba"}, + {file = "simsimd-5.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a6c6807f053c60476175c56233a95333b701e7fc2b75748b949bb924b1e07ce8"}, + {file = "simsimd-5.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:944bdccaa399c31e66ede88d3f0d2efe7e95eddae6a8012c256df6ba9c2218bb"}, + {file = "simsimd-5.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a229d08d7ad83c4a51095428f65978b3dfbf6606008422a62913794b5f5b6cb"}, + {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c0b908afa6d569947e77245d57fccef5aea771d1cd853ed2b2a323ccb82137df"}, + {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad1cd0b95fef58fc868826d31268867a2b200288ec8abd1fa15ab4fd54c5f29b"}, + {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:88b220652e9dd493a68dfeae0ec29e34f2a58ec820e3ec192c8f63e613aec41f"}, + {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:0dcac53f4a361e03fd78c8802621e6922bd909ac3883a1ba91e05f23b0b06953"}, + {file = "simsimd-5.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:49c6b49e4f4c9b64df433aad91e12838e54f95325b21ce64200b9cbbe8a93c68"}, + {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4c04f5d4e678f446d939a66f8d4f44164e47abaa9c19600fb17befc3f5685a09"}, + {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:0d70bfc6ecf8f17d351e7fc64b09c87c40e868f08094101b98b0cbc521412450"}, + {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:f606dfa094550a38567fe49534a063c1dd1c888c3098f715d29fe73ea4c07ebf"}, + {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:6078267deb0e710fef319c5c34c1d02f0a2c653945cd2c9ba39cfaa8328599f9"}, + {file = "simsimd-5.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:2849f7f7a7ef05335a22cb35f99e0977c2a15e6af6fe82d91230cc62a5ed4faa"}, + {file = "simsimd-5.1.0-cp39-cp39-win32.whl", hash = "sha256:60350e2a4191b052a06fdfe0f4bae81f8d45311955316165a2f32f02e8df0f8b"}, + {file = "simsimd-5.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:655e5e0e4514916aa8e4dc59b34461206b82d79d3e254668f9d148734baf3f08"}, + {file = "simsimd-5.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:abe0aa426140d86966e32b010feff5e2baa10f35bba09d1ba74adbf3fd02e2d5"}, + {file = "simsimd-5.1.0.tar.gz", hash = "sha256:08379ddbe04b2abfe0784ee42a76dbe6e3ffbc668fc0bfb717bb39727a79c39b"}, ] [[package]] @@ -1769,27 +1826,30 @@ files = [ [[package]] name = "sympy" -version = "1.12.1" +version = "1.13.2" description = "Computer algebra system (CAS) in Python" optional = true python-versions = ">=3.8" files = [ - {file = "sympy-1.12.1-py3-none-any.whl", hash = "sha256:9b2cbc7f1a640289430e13d2a56f02f867a1da0190f2f99d8968c2f74da0e515"}, - {file = "sympy-1.12.1.tar.gz", hash = "sha256:2877b03f998cd8c08f07cd0de5b767119cd3ef40d09f41c30d722f6686b0fb88"}, + {file = "sympy-1.13.2-py3-none-any.whl", hash = "sha256:c51d75517712f1aed280d4ce58506a4a88d635d6b5dd48b39102a7ae1f3fcfe9"}, + {file = "sympy-1.13.2.tar.gz", hash = "sha256:401449d84d07be9d0c7a46a64bd54fe097667d5e7181bfe67ec777be9e01cb13"}, ] [package.dependencies] -mpmath = ">=1.1.0,<1.4.0" +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] [[package]] name = "syrupy" -version = "4.6.1" +version = "4.7.1" description = "Pytest Snapshot Test Utility" optional = false -python-versions = ">=3.8.1,<4" +python-versions = ">=3.8.1" files = [ - {file = "syrupy-4.6.1-py3-none-any.whl", hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133"}, - {file = "syrupy-4.6.1.tar.gz", hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36"}, + {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, + {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, ] [package.dependencies] @@ -1797,13 +1857,13 @@ pytest = ">=7.0.0,<9.0.0" [[package]] name = "tenacity" -version = "8.3.0" +version = "8.5.0" description = "Retry code until it succeeds" optional = false python-versions = ">=3.8" files = [ - {file = "tenacity-8.3.0-py3-none-any.whl", hash = "sha256:3649f6443dbc0d9b01b9d8020a9c4ec7a1ff5f6f3c6c8a036ef371f573fe9185"}, - {file = "tenacity-8.3.0.tar.gz", hash = "sha256:953d4e6ad24357bceffbc9707bc74349aca9d245f68eb65419cf0c249a1949a2"}, + {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, + {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, ] [package.extras] @@ -1812,111 +1872,111 @@ test = ["pytest", "tornado (>=4.5)", "typeguard"] [[package]] name = "tokenizers" -version = "0.19.1" +version = "0.20.0" description = "" optional = true python-versions = ">=3.7" files = [ - {file = "tokenizers-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:952078130b3d101e05ecfc7fc3640282d74ed26bcf691400f872563fca15ac97"}, - {file = "tokenizers-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82c8b8063de6c0468f08e82c4e198763e7b97aabfe573fd4cf7b33930ca4df77"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f03727225feaf340ceeb7e00604825addef622d551cbd46b7b775ac834c1e1c4"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:453e4422efdfc9c6b6bf2eae00d5e323f263fff62b29a8c9cd526c5003f3f642"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02e81bf089ebf0e7f4df34fa0207519f07e66d8491d963618252f2e0729e0b46"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b07c538ba956843833fee1190cf769c60dc62e1cf934ed50d77d5502194d63b1"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28cab1582e0eec38b1f38c1c1fb2e56bce5dc180acb1724574fc5f47da2a4fe"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b01afb7193d47439f091cd8f070a1ced347ad0f9144952a30a41836902fe09e"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7fb297edec6c6841ab2e4e8f357209519188e4a59b557ea4fafcf4691d1b4c98"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e8a3dd055e515df7054378dc9d6fa8c8c34e1f32777fb9a01fea81496b3f9d3"}, - {file = "tokenizers-0.19.1-cp310-none-win32.whl", hash = "sha256:7ff898780a155ea053f5d934925f3902be2ed1f4d916461e1a93019cc7250837"}, - {file = "tokenizers-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:bea6f9947e9419c2fda21ae6c32871e3d398cba549b93f4a65a2d369662d9403"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5c88d1481f1882c2e53e6bb06491e474e420d9ac7bdff172610c4f9ad3898059"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddf672ed719b4ed82b51499100f5417d7d9f6fb05a65e232249268f35de5ed14"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dadc509cc8a9fe460bd274c0e16ac4184d0958117cf026e0ea8b32b438171594"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfedf31824ca4915b511b03441784ff640378191918264268e6923da48104acc"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac11016d0a04aa6487b1513a3a36e7bee7eec0e5d30057c9c0408067345c48d2"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:76951121890fea8330d3a0df9a954b3f2a37e3ec20e5b0530e9a0044ca2e11fe"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b342d2ce8fc8d00f376af068e3274e2e8649562e3bc6ae4a67784ded6b99428d"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d16ff18907f4909dca9b076b9c2d899114dd6abceeb074eca0c93e2353f943aa"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:706a37cc5332f85f26efbe2bdc9ef8a9b372b77e4645331a405073e4b3a8c1c6"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:16baac68651701364b0289979ecec728546133e8e8fe38f66fe48ad07996b88b"}, - {file = "tokenizers-0.19.1-cp311-none-win32.whl", hash = "sha256:9ed240c56b4403e22b9584ee37d87b8bfa14865134e3e1c3fb4b2c42fafd3256"}, - {file = "tokenizers-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:ad57d59341710b94a7d9dbea13f5c1e7d76fd8d9bcd944a7a6ab0b0da6e0cc66"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:621d670e1b1c281a1c9698ed89451395d318802ff88d1fc1accff0867a06f153"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d924204a3dbe50b75630bd16f821ebda6a5f729928df30f582fb5aade90c818a"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:4f3fefdc0446b1a1e6d81cd4c07088ac015665d2e812f6dbba4a06267d1a2c95"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9620b78e0b2d52ef07b0d428323fb34e8ea1219c5eac98c2596311f20f1f9266"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04ce49e82d100594715ac1b2ce87d1a36e61891a91de774755f743babcd0dd52"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5c2ff13d157afe413bf7e25789879dd463e5a4abfb529a2d8f8473d8042e28f"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3174c76efd9d08f836bfccaca7cfec3f4d1c0a4cf3acbc7236ad577cc423c840"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9d5b6c0e7a1e979bec10ff960fae925e947aab95619a6fdb4c1d8ff3708ce3"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a179856d1caee06577220ebcfa332af046d576fb73454b8f4d4b0ba8324423ea"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:952b80dac1a6492170f8c2429bd11fcaa14377e097d12a1dbe0ef2fb2241e16c"}, - {file = "tokenizers-0.19.1-cp312-none-win32.whl", hash = "sha256:01d62812454c188306755c94755465505836fd616f75067abcae529c35edeb57"}, - {file = "tokenizers-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:b70bfbe3a82d3e3fb2a5e9b22a39f8d1740c96c68b6ace0086b39074f08ab89a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:bb9dfe7dae85bc6119d705a76dc068c062b8b575abe3595e3c6276480e67e3f1"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:1f0360cbea28ea99944ac089c00de7b2e3e1c58f479fb8613b6d8d511ce98267"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:71e3ec71f0e78780851fef28c2a9babe20270404c921b756d7c532d280349214"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b82931fa619dbad979c0ee8e54dd5278acc418209cc897e42fac041f5366d626"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e8ff5b90eabdcdaa19af697885f70fe0b714ce16709cf43d4952f1f85299e73a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e742d76ad84acbdb1a8e4694f915fe59ff6edc381c97d6dfdd054954e3478ad4"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d8c5d59d7b59885eab559d5bc082b2985555a54cda04dda4c65528d90ad252ad"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b2da5c32ed869bebd990c9420df49813709e953674c0722ff471a116d97b22d"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:638e43936cc8b2cbb9f9d8dde0fe5e7e30766a3318d2342999ae27f68fdc9bd6"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:78e769eb3b2c79687d9cb0f89ef77223e8e279b75c0a968e637ca7043a84463f"}, - {file = "tokenizers-0.19.1-cp37-none-win32.whl", hash = "sha256:72791f9bb1ca78e3ae525d4782e85272c63faaef9940d92142aa3eb79f3407a3"}, - {file = "tokenizers-0.19.1-cp37-none-win_amd64.whl", hash = "sha256:f3bbb7a0c5fcb692950b041ae11067ac54826204318922da754f908d95619fbc"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:07f9295349bbbcedae8cefdbcfa7f686aa420be8aca5d4f7d1ae6016c128c0c5"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:10a707cc6c4b6b183ec5dbfc5c34f3064e18cf62b4a938cb41699e33a99e03c1"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6309271f57b397aa0aff0cbbe632ca9d70430839ca3178bf0f06f825924eca22"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ad23d37d68cf00d54af184586d79b84075ada495e7c5c0f601f051b162112dc"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:427c4f0f3df9109314d4f75b8d1f65d9477033e67ffaec4bca53293d3aca286d"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e83a31c9cf181a0a3ef0abad2b5f6b43399faf5da7e696196ddd110d332519ee"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27b99889bd58b7e301468c0838c5ed75e60c66df0d4db80c08f43462f82e0d3"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bac0b0eb952412b0b196ca7a40e7dce4ed6f6926489313414010f2e6b9ec2adf"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8a6298bde623725ca31c9035a04bf2ef63208d266acd2bed8c2cb7d2b7d53ce6"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:08a44864e42fa6d7d76d7be4bec62c9982f6f6248b4aa42f7302aa01e0abfd26"}, - {file = "tokenizers-0.19.1-cp38-none-win32.whl", hash = "sha256:1de5bc8652252d9357a666e609cb1453d4f8e160eb1fb2830ee369dd658e8975"}, - {file = "tokenizers-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:0bcce02bf1ad9882345b34d5bd25ed4949a480cf0e656bbd468f4d8986f7a3f1"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0b9394bd204842a2a1fd37fe29935353742be4a3460b6ccbaefa93f58a8df43d"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4692ab92f91b87769d950ca14dbb61f8a9ef36a62f94bad6c82cc84a51f76f6a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6258c2ef6f06259f70a682491c78561d492e885adeaf9f64f5389f78aa49a051"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c85cf76561fbd01e0d9ea2d1cbe711a65400092bc52b5242b16cfd22e51f0c58"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670b802d4d82bbbb832ddb0d41df7015b3e549714c0e77f9bed3e74d42400fbe"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:85aa3ab4b03d5e99fdd31660872249df5e855334b6c333e0bc13032ff4469c4a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbf001afbbed111a79ca47d75941e9e5361297a87d186cbfc11ed45e30b5daba"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c89aa46c269e4e70c4d4f9d6bc644fcc39bb409cb2a81227923404dd6f5227"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:39c1ec76ea1027438fafe16ecb0fb84795e62e9d643444c1090179e63808c69d"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c2a0d47a89b48d7daa241e004e71fb5a50533718897a4cd6235cb846d511a478"}, - {file = "tokenizers-0.19.1-cp39-none-win32.whl", hash = "sha256:61b7fe8886f2e104d4caf9218b157b106207e0f2a4905c9c7ac98890688aabeb"}, - {file = "tokenizers-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:f97660f6c43efd3e0bfd3f2e3e5615bf215680bad6ee3d469df6454b8c6e8256"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3b11853f17b54c2fe47742c56d8a33bf49ce31caf531e87ac0d7d13d327c9334"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d26194ef6c13302f446d39972aaa36a1dda6450bc8949f5eb4c27f51191375bd"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e8d1ed93beda54bbd6131a2cb363a576eac746d5c26ba5b7556bc6f964425594"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca407133536f19bdec44b3da117ef0d12e43f6d4b56ac4c765f37eca501c7bda"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce05fde79d2bc2e46ac08aacbc142bead21614d937aac950be88dc79f9db9022"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:35583cd46d16f07c054efd18b5d46af4a2f070a2dd0a47914e66f3ff5efb2b1e"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:43350270bfc16b06ad3f6f07eab21f089adb835544417afda0f83256a8bf8b75"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b4399b59d1af5645bcee2072a463318114c39b8547437a7c2d6a186a1b5a0e2d"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6852c5b2a853b8b0ddc5993cd4f33bfffdca4fcc5d52f89dd4b8eada99379285"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bcd266ae85c3d39df2f7e7d0e07f6c41a55e9a3123bb11f854412952deacd828"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecb2651956eea2aa0a2d099434134b1b68f1c31f9a5084d6d53f08ed43d45ff2"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b279ab506ec4445166ac476fb4d3cc383accde1ea152998509a94d82547c8e2a"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:89183e55fb86e61d848ff83753f64cded119f5d6e1f553d14ffee3700d0a4a49"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b2edbc75744235eea94d595a8b70fe279dd42f3296f76d5a86dde1d46e35f574"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:0e64bfde9a723274e9a71630c3e9494ed7b4c0f76a1faacf7fe294cd26f7ae7c"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0b5ca92bfa717759c052e345770792d02d1f43b06f9e790ca0a1db62838816f3"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f8a20266e695ec9d7a946a019c1d5ca4eddb6613d4f466888eee04f16eedb85"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c38f45d8f2a2ec0f3a20073cccb335b9f99f73b3c69483cd52ebc75369d8a1"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:dd26e3afe8a7b61422df3176e06664503d3f5973b94f45d5c45987e1cb711876"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:eddd5783a4a6309ce23432353cdb36220e25cbb779bfa9122320666508b44b88"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:56ae39d4036b753994476a1b935584071093b55c7a72e3b8288e68c313ca26e7"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9939ca7e58c2758c01b40324a59c034ce0cebad18e0d4563a9b1beab3018243"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6c330c0eb815d212893c67a032e9dc1b38a803eccb32f3e8172c19cc69fbb439"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec11802450a2487cdf0e634b750a04cbdc1c4d066b97d94ce7dd2cb51ebb325b"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b718f316b596f36e1dae097a7d5b91fc5b85e90bf08b01ff139bd8953b25af"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ed69af290c2b65169f0ba9034d1dc39a5db9459b32f1dd8b5f3f32a3fcf06eab"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f8a9c828277133af13f3859d1b6bf1c3cb6e9e1637df0e45312e6b7c2e622b1f"}, - {file = "tokenizers-0.19.1.tar.gz", hash = "sha256:ee59e6680ed0fdbe6b724cf38bd70400a0c1dd623b07ac729087270caeac88e3"}, + {file = "tokenizers-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6cff5c5e37c41bc5faa519d6f3df0679e4b37da54ea1f42121719c5e2b4905c0"}, + {file = "tokenizers-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:62a56bf75c27443432456f4ca5ca055befa95e25be8a28141cc495cac8ae4d6d"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68cc7de6a63f09c4a86909c2597b995aa66e19df852a23aea894929c74369929"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:053c37ecee482cc958fdee53af3c6534286a86f5d35aac476f7c246830e53ae5"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d7074aaabc151a6363fa03db5493fc95b423b2a1874456783989e96d541c7b6"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a11435780f2acd89e8fefe5e81cecf01776f6edb9b3ac95bcb76baee76b30b90"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9a81cd2712973b007d84268d45fc3f6f90a79c31dfe7f1925e6732f8d2959987"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7dfd796ab9d909f76fb93080e1c7c8309f196ecb316eb130718cd5e34231c69"}, + {file = "tokenizers-0.20.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8029ad2aa8cb00605c9374566034c1cc1b15130713e0eb5afcef6cface8255c9"}, + {file = "tokenizers-0.20.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ca4d54260ebe97d59dfa9a30baa20d0c4dd9137d99a8801700055c561145c24e"}, + {file = "tokenizers-0.20.0-cp310-none-win32.whl", hash = "sha256:95ee16b57cec11b86a7940174ec5197d506439b0f415ab3859f254b1dffe9df0"}, + {file = "tokenizers-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:0a61a11e93eeadbf02aea082ffc75241c4198e0608bbbac4f65a9026851dcf37"}, + {file = "tokenizers-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6636b798b3c4d6c9b1af1a918bd07c867808e5a21c64324e95318a237e6366c3"}, + {file = "tokenizers-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ec603e42eaf499ffd58b9258162add948717cf21372458132f14e13a6bc7172"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cce124264903a8ea6f8f48e1cc7669e5ef638c18bd4ab0a88769d5f92debdf7f"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07bbeba0231cf8de07aa6b9e33e9779ff103d47042eeeb859a8c432e3292fb98"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:06c0ca8397b35d38b83a44a9c6929790c1692957d88541df061cb34d82ebbf08"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ca6557ac3b83d912dfbb1f70ab56bd4b0594043916688e906ede09f42e192401"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a5ad94c9e80ac6098328bee2e3264dbced4c6faa34429994d473f795ec58ef4"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b5c7f906ee6bec30a9dc20268a8b80f3b9584de1c9f051671cb057dc6ce28f6"}, + {file = "tokenizers-0.20.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:31e087e9ee1b8f075b002bfee257e858dc695f955b43903e1bb4aa9f170e37fe"}, + {file = "tokenizers-0.20.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c3124fb6f3346cb3d8d775375d3b429bf4dcfc24f739822702009d20a4297990"}, + {file = "tokenizers-0.20.0-cp311-none-win32.whl", hash = "sha256:a4bb8b40ba9eefa621fdcabf04a74aa6038ae3be0c614c6458bd91a4697a452f"}, + {file = "tokenizers-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:2b709d371f1fe60a28ef0c5c67815952d455ca7f34dbe7197eaaed3cc54b658e"}, + {file = "tokenizers-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:15c81a17d0d66f4987c6ca16f4bea7ec253b8c7ed1bb00fdc5d038b1bb56e714"}, + {file = "tokenizers-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6a531cdf1fb6dc41c984c785a3b299cb0586de0b35683842a3afbb1e5207f910"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06caabeb4587f8404e0cd9d40f458e9cba3e815c8155a38e579a74ff3e2a4301"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8768f964f23f5b9f50546c0369c75ab3262de926983888bbe8b98be05392a79c"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:626403860152c816f97b649fd279bd622c3d417678c93b4b1a8909b6380b69a8"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c1b88fa9e5ff062326f4bf82681da5a96fca7104d921a6bd7b1e6fcf224af26"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7e559436a07dc547f22ce1101f26d8b2fad387e28ec8e7e1e3b11695d681d8"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e48afb75e50449848964e4a67b0da01261dd3aa8df8daecf10db8fd7f5b076eb"}, + {file = "tokenizers-0.20.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:baf5d0e1ff44710a95eefc196dd87666ffc609fd447c5e5b68272a7c3d342a1d"}, + {file = "tokenizers-0.20.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e5e56df0e8ed23ba60ae3848c3f069a0710c4b197218fe4f89e27eba38510768"}, + {file = "tokenizers-0.20.0-cp312-none-win32.whl", hash = "sha256:ec53e5ecc142a82432f9c6c677dbbe5a2bfee92b8abf409a9ecb0d425ee0ce75"}, + {file = "tokenizers-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:f18661ece72e39c0dfaa174d6223248a15b457dbd4b0fc07809b8e6d3ca1a234"}, + {file = "tokenizers-0.20.0-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:f7065b1084d8d1a03dc89d9aad69bcbc8415d4bc123c367063eb32958cd85054"}, + {file = "tokenizers-0.20.0-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:e5d4069e4714e3f7ba0a4d3d44f9d84a432cd4e4aa85c3d7dd1f51440f12e4a1"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:799b808529e54b7e1a36350bda2aeb470e8390e484d3e98c10395cee61d4e3c6"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f9baa027cc8a281ad5f7725a93c204d7a46986f88edbe8ef7357f40a23fb9c7"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:010ec7f3f7a96adc4c2a34a3ada41fa14b4b936b5628b4ff7b33791258646c6b"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98d88f06155335b14fd78e32ee28ca5b2eb30fced4614e06eb14ae5f7fba24ed"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e13eb000ef540c2280758d1b9cfa5fe424b0424ae4458f440e6340a4f18b2638"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fab3cf066ff426f7e6d70435dc28a9ff01b2747be83810e397cba106f39430b0"}, + {file = "tokenizers-0.20.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:39fa3761b30a89368f322e5daf4130dce8495b79ad831f370449cdacfb0c0d37"}, + {file = "tokenizers-0.20.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c8da0fba4d179ddf2607821575998df3c294aa59aa8df5a6646dc64bc7352bce"}, + {file = "tokenizers-0.20.0-cp37-none-win32.whl", hash = "sha256:fada996d6da8cf213f6e3c91c12297ad4f6cdf7a85c2fadcd05ec32fa6846fcd"}, + {file = "tokenizers-0.20.0-cp37-none-win_amd64.whl", hash = "sha256:7d29aad702279e0760c265fcae832e89349078e3418dd329732d4503259fd6bd"}, + {file = "tokenizers-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:099c68207f3ef0227ecb6f80ab98ea74de559f7b124adc7b17778af0250ee90a"}, + {file = "tokenizers-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:68012d8a8cddb2eab3880870d7e2086cb359c7f7a2b03f5795044f5abff4e850"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9253bdd209c6aee168deca7d0e780581bf303e0058f268f9bb06859379de19b6"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8f868600ddbcb0545905ed075eb7218a0756bf6c09dae7528ea2f8436ebd2c93"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a9643d9c8c5f99b6aba43fd10034f77cc6c22c31f496d2f0ee183047d948fa0"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c375c6a889aeab44734028bc65cc070acf93ccb0f9368be42b67a98e1063d3f6"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e359f852328e254f070bbd09a19a568421d23388f04aad9f2fb7da7704c7228d"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d98b01a309d4387f3b1c1dd68a8b8136af50376cf146c1b7e8d8ead217a5be4b"}, + {file = "tokenizers-0.20.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:459f7537119554c2899067dec1ac74a00d02beef6558f4ee2e99513bf6d568af"}, + {file = "tokenizers-0.20.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:392b87ec89452628c045c9f2a88bc2a827f4c79e7d84bc3b72752b74c2581f70"}, + {file = "tokenizers-0.20.0-cp38-none-win32.whl", hash = "sha256:55a393f893d2ed4dd95a1553c2e42d4d4086878266f437b03590d3f81984c4fe"}, + {file = "tokenizers-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:30ffe33c5c2f2aab8e9a3340d0110dd9f7ace7eec7362e20a697802306bd8068"}, + {file = "tokenizers-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:aa2d4a6fed2a7e3f860c7fc9d48764bb30f2649d83915d66150d6340e06742b8"}, + {file = "tokenizers-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b5ef0f814084a897e9071fc4a868595f018c5c92889197bdc4bf19018769b148"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc1e1b791e8c3bf4c4f265f180dadaff1c957bf27129e16fdd5e5d43c2d3762c"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b69e55e481459c07885263743a0d3c18d52db19bae8226a19bcca4aaa213fff"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4806b4d82e27a2512bc23057b2986bc8b85824914286975b84d8105ff40d03d9"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9859e9ef13adf5a473ccab39d31bff9c550606ae3c784bf772b40f615742a24f"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef703efedf4c20488a8eb17637b55973745b27997ff87bad88ed499b397d1144"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eec0061bab94b1841ab87d10831fdf1b48ebaed60e6d66d66dbe1d873f92bf5"}, + {file = "tokenizers-0.20.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:980f3d0d7e73f845b69087f29a63c11c7eb924c4ad6b358da60f3db4cf24bdb4"}, + {file = "tokenizers-0.20.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7c157550a2f3851b29d7fdc9dc059fcf81ff0c0fc49a1e5173a89d533ed043fa"}, + {file = "tokenizers-0.20.0-cp39-none-win32.whl", hash = "sha256:8a3d2f4d08608ec4f9895ec25b4b36a97f05812543190a5f2c3cd19e8f041e5a"}, + {file = "tokenizers-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:d90188d12afd0c75e537f9a1d92f9c7375650188ee4f48fdc76f9e38afbd2251"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d68e15f1815357b059ec266062340c343ea7f98f7f330602df81ffa3474b6122"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:23f9ecec637b9bc80da5f703808d29ed5329e56b5aa8d791d1088014f48afadc"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f830b318ee599e3d0665b3e325f85bc75ee2d2ca6285f52e439dc22b64691580"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3dc750def789cb1de1b5a37657919545e1d9ffa667658b3fa9cb7862407a1b8"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e26e6c755ae884c2ea6135cd215bdd0fccafe4ee62405014b8c3cd19954e3ab9"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a1158c7174f427182e08baa2a8ded2940f2b4a3e94969a85cc9cfd16004cbcea"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:6324826287a3fc198898d3dcf758fe4a8479e42d6039f4c59e2cedd3cf92f64e"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:7d8653149405bb0c16feaf9cfee327fdb6aaef9dc2998349fec686f35e81c4e2"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8a2dc1e402a155e97309287ca085c80eb1b7fab8ae91527d3b729181639fa51"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07bef67b20aa6e5f7868c42c7c5eae4d24f856274a464ae62e47a0f2cccec3da"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da06e397182ff53789c506c7833220c192952c57e1581a53f503d8d953e2d67e"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:302f7e11a14814028b7fc88c45a41f1bbe9b5b35fd76d6869558d1d1809baa43"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:055ec46e807b875589dfbe3d9259f9a6ee43394fb553b03b3d1e9541662dbf25"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e3144b8acebfa6ae062e8f45f7ed52e4b50fb6c62f93afc8871b525ab9fdcab3"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b52aa3fd14b2a07588c00a19f66511cff5cca8f7266ca3edcdd17f3512ad159f"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b8cf52779ffc5d4d63a0170fbeb512372bad0dd014ce92bbb9149756c831124"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:983a45dd11a876124378dae71d6d9761822199b68a4c73f32873d8cdaf326a5b"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6b819c9a19831ebec581e71a7686a54ab45d90faf3842269a10c11d746de0c"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e738cfd80795fcafcef89c5731c84b05638a4ab3f412f97d5ed7765466576eb1"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c8842c7be2fadb9c9edcee233b1b7fe7ade406c99b0973f07439985c1c1d0683"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e47a82355511c373a4a430c4909dc1e518e00031207b1fec536c49127388886b"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:9afbf359004551179a5db19424180c81276682773cff2c5d002f6eaaffe17230"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07eaa8799a92e6af6f472c21a75bf71575de2af3c0284120b7a09297c0de2f3"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0994b2e5fc53a301071806bc4303e4bc3bdc3f490e92a21338146a36746b0872"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b6466e0355b603d10e3cc3d282d350b646341b601e50969464a54939f9848d0"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:1e86594c2a433cb1ea09cfbe596454448c566e57ee8905bd557e489d93e89986"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:3e14cdef1efa96ecead6ea64a891828432c3ebba128bdc0596e3059fea104ef3"}, + {file = "tokenizers-0.20.0.tar.gz", hash = "sha256:39d7acc43f564c274085cafcd1dae9d36f332456de1a31970296a6b8da4eac8d"}, ] [package.dependencies] @@ -1940,13 +2000,13 @@ files = [ [[package]] name = "tqdm" -version = "4.66.4" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = true python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, - {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -1960,24 +2020,35 @@ telegram = ["requests"] [[package]] name = "typing-extensions" -version = "4.11.0" +version = "4.12.2" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"}, - {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"}, + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, ] [[package]] name = "urllib3" -version = "2.2.1" +version = "2.2.2" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"}, - {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"}, + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, ] [package.extras] @@ -1988,40 +2059,46 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.0" +version = "4.0.2" description = "Filesystem events monitoring" optional = false python-versions = ">=3.8" files = [ - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:39cb34b1f1afbf23e9562501673e7146777efe95da24fab5707b88f7fb11649b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c522392acc5e962bcac3b22b9592493ffd06d1fc5d755954e6be9f4990de932b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6c47bdd680009b11c9ac382163e05ca43baf4127954c5f6d0250e7d772d2b80c"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8350d4055505412a426b6ad8c521bc7d367d1637a762c70fdd93a3a0d595990b"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c17d98799f32e3f55f181f19dd2021d762eb38fdd381b4a748b9f5a36738e935"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4986db5e8880b0e6b7cd52ba36255d4793bf5cdc95bd6264806c233173b1ec0b"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:11e12fafb13372e18ca1bbf12d50f593e7280646687463dd47730fd4f4d5d257"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5369136a6474678e02426bd984466343924d1df8e2fd94a9b443cb7e3aa20d19"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76ad8484379695f3fe46228962017a7e1337e9acadafed67eb20aabb175df98b"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:45cc09cc4c3b43fb10b59ef4d07318d9a3ecdbff03abd2e36e77b6dd9f9a5c85"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eed82cdf79cd7f0232e2fdc1ad05b06a5e102a43e331f7d041e5f0e0a34a51c4"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba30a896166f0fee83183cec913298151b73164160d965af2e93a20bbd2ab605"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d18d7f18a47de6863cd480734613502904611730f8def45fc52a5d97503e5101"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2895bf0518361a9728773083908801a376743bcc37dfa252b801af8fd281b1ca"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87e9df830022488e235dd601478c15ad73a0389628588ba0b028cb74eb72fed8"}, - {file = "watchdog-4.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6e949a8a94186bced05b6508faa61b7adacc911115664ccb1923b9ad1f1ccf7b"}, - {file = "watchdog-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6a4db54edea37d1058b08947c789a2354ee02972ed5d1e0dca9b0b820f4c7f92"}, - {file = "watchdog-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d31481ccf4694a8416b681544c23bd271f5a123162ab603c7d7d2dd7dd901a07"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:8fec441f5adcf81dd240a5fe78e3d83767999771630b5ddfc5867827a34fa3d3"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:6a9c71a0b02985b4b0b6d14b875a6c86ddea2fdbebd0c9a720a806a8bbffc69f"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:557ba04c816d23ce98a06e70af6abaa0485f6d94994ec78a42b05d1c03dcbd50"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:d0f9bd1fd919134d459d8abf954f63886745f4660ef66480b9d753a7c9d40927"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f9b2fdca47dc855516b2d66eef3c39f2672cbf7e7a42e7e67ad2cbfcd6ba107d"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:73c7a935e62033bd5e8f0da33a4dcb763da2361921a69a5a95aaf6c93aa03a87"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6a80d5cae8c265842c7419c560b9961561556c4361b297b4c431903f8c33b269"}, - {file = "watchdog-4.0.0-py3-none-win32.whl", hash = "sha256:8f9a542c979df62098ae9c58b19e03ad3df1c9d8c6895d96c0d51da17b243b1c"}, - {file = "watchdog-4.0.0-py3-none-win_amd64.whl", hash = "sha256:f970663fa4f7e80401a7b0cbeec00fa801bf0287d93d48368fc3e6fa32716245"}, - {file = "watchdog-4.0.0-py3-none-win_ia64.whl", hash = "sha256:9a03e16e55465177d416699331b0f3564138f1807ecc5f2de9d55d8f188d08c7"}, - {file = "watchdog-4.0.0.tar.gz", hash = "sha256:e3e7065cbdabe6183ab82199d7a4f6b3ba0a438c5a512a68559846ccb76a78ec"}, + {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, + {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, + {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, + {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, + {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, + {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, + {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, + {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, + {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, + {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, + {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, + {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, + {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, + {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, + {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, + {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, + {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, + {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, + {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, + {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, + {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, + {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, + {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, + {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, + {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, + {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, + {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, + {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, + {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, + {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, + {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, + {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, + {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, + {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, + {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, ] [package.extras] @@ -2046,5 +2123,5 @@ fastembed = ["fastembed"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "3a8f68f953f14a1962040dabda2f2825e83c12c04ce42d3abf2eaf878b9d8d05" +python-versions = ">=3.8.1,<4" +content-hash = "e6e76142c4669b46c06e2a65813fbff4e6e0844953ec091eebcc8cc468943ad6" diff --git a/libs/partners/qdrant/pyproject.toml b/libs/partners/qdrant/pyproject.toml index 1dc66eddaeb38..da4162b7f1639 100644 --- a/libs/partners/qdrant/pyproject.toml +++ b/libs/partners/qdrant/pyproject.toml @@ -1,10 +1,10 @@ [build-system] -requires = [ "poetry-core>=1.0.0",] +requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-qdrant" -version = "0.1.3" +version = "0.1.4" description = "An integration package connecting Qdrant and LangChain" authors = [] readme = "README.md" @@ -12,7 +12,7 @@ repository = "https://github.com/langchain-ai/langchain" license = "MIT" [tool.ruff] -select = [ "E", "F", "I",] +select = ["E", "F", "I"] [tool.mypy] disallow_untyped_defs = true @@ -22,21 +22,31 @@ disallow_untyped_defs = true "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-qdrant%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.52,<0.3" +python = ">=3.8.1,<4" qdrant-client = "^1.10.1" +fastembed = { version = "^0.3.3", python = ">=3.9,<3.13", optional = true } pydantic = "^2.7.4" -fastembed = { version = "^0.3.3", python = ">=3.8.1,<3.13", optional = true} +[[tool.poetry.dependencies.langchain-core]] +version = ">=0.1.52,<0.4" +python = ">=3.9" + +[[tool.poetry.dependencies.langchain-core]] +version = ">=0.1.52,<0.3" +python = "<3.9" [tool.poetry.extras] -fastembed = [ "fastembed"] +fastembed = ["fastembed"] [tool.coverage.run] -omit = [ "tests/*",] +omit = ["tests/*"] [tool.pytest.ini_options] addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] +markers = [ + "requires: mark tests as requiring a specific library", + "asyncio: mark tests as requiring asyncio", + "compile: mark placeholder test used to compile integration tests without running them", +] asyncio_mode = "auto" [tool.poetry.group.test] @@ -62,6 +72,25 @@ syrupy = "^4.0.2" pytest-watcher = "^0.3.4" pytest-asyncio = "^0.21.1" requests = "^2.31.0" +[[tool.poetry.group.test.dependencies.langchain-core]] +path = "../../core" +develop = true +python = ">=3.9" + +[[tool.poetry.group.test.dependencies.langchain-core]] +version = ">=0.1.40,<0.3" +python = "<3.9" + + +[tool.poetry.group.dev.dependencies] +[[tool.poetry.group.dev.dependencies.langchain-core]] +path = "../../core" +develop = true +python = ">=3.9" + +[[tool.poetry.group.dev.dependencies.langchain-core]] +version = ">=0.1.52,<0.3" +python = "<3.9" [tool.poetry.group.codespell.dependencies] codespell = "^2.2.0" @@ -74,15 +103,11 @@ ruff = "^0.5" [tool.poetry.group.typing.dependencies] mypy = "^1.10" simsimd = "^5.0.0" - -[tool.poetry.group.test.dependencies.langchain-core] +[[tool.poetry.group.typing.dependencies.langchain-core]] path = "../../core" develop = true +python = ">=3.9" -[tool.poetry.group.dev.dependencies.langchain-core] -path = "../../core" -develop = true - -[tool.poetry.group.typing.dependencies.langchain-core] -path = "../../core" -develop = true +[[tool.poetry.group.typing.dependencies.langchain-core]] +version = ">=0.1.52,<0.3" +python = "<3.9" diff --git a/libs/partners/qdrant/scripts/check_pydantic.sh b/libs/partners/qdrant/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/qdrant/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/robocorp/.gitignore b/libs/partners/robocorp/.gitignore deleted file mode 100644 index bee8a64b79a99..0000000000000 --- a/libs/partners/robocorp/.gitignore +++ /dev/null @@ -1 +0,0 @@ -__pycache__ diff --git a/libs/partners/robocorp/LICENSE b/libs/partners/robocorp/LICENSE deleted file mode 100644 index 426b65090341f..0000000000000 --- a/libs/partners/robocorp/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2023 LangChain, Inc. - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/libs/partners/robocorp/Makefile b/libs/partners/robocorp/Makefile deleted file mode 100644 index 3153282b2994f..0000000000000 --- a/libs/partners/robocorp/Makefile +++ /dev/null @@ -1,59 +0,0 @@ -.PHONY: all format lint test tests integration_tests docker_tests help extended_tests - -# Default target executed when no arguments are given to make. -all: help - -# Define a variable for the test file path. -TEST_FILE ?= tests/unit_tests/ -integration_test integration_tests: TEST_FILE=tests/integration_tests/ - -test tests integration_test integration_tests: - poetry run pytest $(TEST_FILE) - -test_watch: - poetry run ptw --snapshot-update --now . -- -vv $(TEST_FILE) - - -###################### -# LINTING AND FORMATTING -###################### - -# Define a variable for Python and notebook files. -PYTHON_FILES=. -MYPY_CACHE=.mypy_cache -lint format: PYTHON_FILES=. -lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/partners/action-server --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$') -lint_package: PYTHON_FILES=langchain_robocorp -lint_tests: PYTHON_FILES=tests -lint_tests: MYPY_CACHE=.mypy_cache_test - -lint lint_diff lint_package lint_tests: - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check $(PYTHON_FILES) - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff - [ "$(PYTHON_FILES)" = "" ] || mkdir -p $(MYPY_CACHE) && poetry run mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE) - -format format_diff: - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) - [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check --select I --fix $(PYTHON_FILES) - -spell_check: - poetry run codespell --toml pyproject.toml - -spell_fix: - poetry run codespell --toml pyproject.toml -w - -check_imports: $(shell find langchain_robocorp -name '*.py') - poetry run python ./scripts/check_imports.py $^ - -###################### -# HELP -###################### - -help: - @echo '----' - @echo 'check_imports - check imports' - @echo 'format - run code formatters' - @echo 'lint - run linters' - @echo 'test - run unit tests' - @echo 'tests - run unit tests' - @echo 'test TEST_FILE=<test_file> - run all tests in file' diff --git a/libs/partners/robocorp/README.md b/libs/partners/robocorp/README.md deleted file mode 100644 index cf9486b6b17b7..0000000000000 --- a/libs/partners/robocorp/README.md +++ /dev/null @@ -1,17 +0,0 @@ -# langchain-robocorp - -| Note: this package is deprecated in favor of the renamed `langchain-sema4` package ([repo](https://github.com/langchain-ai/langchain-sema4), [package](https://pypi.org/project/langchain-sema4/)). | -|-| - -This package contains the LangChain integrations for [Robocorp Action Server](https://github.com/robocorp/robocorp). -Action Server enables an agent to execute actions in the real world. - -## Installation - -```bash -pip install -U langchain-robocorp -``` - -## Action Server Toolkit - -See [ActionServerToolkit](https://python.langchain.com/docs/integrations/tools/robocorp) for detailed documentation. diff --git a/libs/partners/robocorp/langchain_robocorp/__init__.py b/libs/partners/robocorp/langchain_robocorp/__init__.py deleted file mode 100644 index 0ad79d15d5126..0000000000000 --- a/libs/partners/robocorp/langchain_robocorp/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from langchain_robocorp.toolkits import ActionServerToolkit - -__all__ = [ - "ActionServerToolkit", -] diff --git a/libs/partners/robocorp/langchain_robocorp/_common.py b/libs/partners/robocorp/langchain_robocorp/_common.py deleted file mode 100644 index 6db05d1b5c224..0000000000000 --- a/libs/partners/robocorp/langchain_robocorp/_common.py +++ /dev/null @@ -1,175 +0,0 @@ -import time -from dataclasses import dataclass -from typing import Any, Dict, List, Set, Tuple, Union, cast - -from langchain_core.pydantic_v1 import ( - BaseModel, - Field, - create_model, -) -from langchain_core.utils.json_schema import dereference_refs -from langchain_core.utils.pydantic import is_basemodel_instance - - -@dataclass(frozen=True) -class ReducedOpenAPISpec: - """A reduced OpenAPI spec. - - This is reduced representation for OpenAPI specs. - - Attributes: - servers: The servers in the spec. - description: The description of the spec. - endpoints: The endpoints in the spec. - """ - - servers: List[dict] - description: str - endpoints: List[Tuple[str, dict]] - - -def reduce_openapi_spec(url: str, spec: dict) -> ReducedOpenAPISpec: - """Simplify OpenAPI spec to only required information for the agent""" - - # 1. Consider only GET and POST - endpoints = [ - (route, docs) - for route, operation in spec["paths"].items() - for operation_name, docs in operation.items() - if operation_name in ["get", "post"] - ] - - # 2. Replace any refs so that complete docs are retrieved. - # Note: probably want to do this post-retrieval, it blows up the size of the spec. - - # 3. Strip docs down to required request args + happy path response. - def reduce_endpoint_docs(docs: dict) -> dict: - out = {} - if docs.get("summary"): - out["summary"] = docs.get("summary") - if docs.get("operationId"): - out["operationId"] = docs.get("operationId") - if docs.get("description"): - out["description"] = docs.get("description") - if docs.get("parameters"): - out["parameters"] = [ - parameter - for parameter in docs.get("parameters", []) - if parameter.get("required") - ] - if "200" in docs["responses"]: - out["responses"] = docs["responses"]["200"] - if docs.get("requestBody"): - out["requestBody"] = docs.get("requestBody") - return out - - endpoints = [ - (name, reduce_endpoint_docs(dereference_refs(docs, full_schema=spec))) - for name, docs in endpoints - ] - - return ReducedOpenAPISpec( - servers=[ - { - "url": url, - } - ], - description=spec["info"].get("description", ""), - endpoints=endpoints, - ) - - -type_mapping = { - "string": str, - "integer": int, - "number": float, - "object": dict, - "array": list, - "boolean": bool, - "null": type(None), -} - - -def get_schema(endpoint_spec: dict) -> dict: - return ( - endpoint_spec.get("requestBody", {}) - .get("content", {}) - .get("application/json", {}) - .get("schema", {}) - ) - - -def create_field( - schema: dict, required: bool, created_model_names: Set[str] -) -> Tuple[Any, Any]: - """ - Creates a Pydantic field based on the schema definition. - """ - if "anyOf" in schema: - field_types = [ - create_field(sub_schema, required, created_model_names)[0] - for sub_schema in schema["anyOf"] - ] - if len(field_types) == 1: - field_type = field_types[0] # Simplified handling - else: - field_type = Union[tuple(field_types)] - else: - field_type = type_mapping.get(schema.get("type", "string"), str) - - description = schema.get("description", "") - - # Handle nested objects - if schema.get("type") == "object": - nested_fields = { - k: create_field(v, k in schema.get("required", []), created_model_names) - for k, v in schema.get("properties", {}).items() - } - model_name = schema.get("title", f"NestedModel{time.time()}") - if model_name in created_model_names: - # needs to be unique - model_name = model_name + str(time.time()) - nested_model = create_model(model_name, **nested_fields) # type: ignore - created_model_names.add(model_name) - return nested_model, Field(... if required else None, description=description) - - # Handle arrays - elif schema.get("type") == "array": - item_type, _ = create_field( - schema["items"], required=True, created_model_names=created_model_names - ) - return List[item_type], Field( # type: ignore - ... if required else None, description=description - ) - - # Other types - return field_type, Field(... if required else None, description=description) - - -def get_param_fields(endpoint_spec: dict) -> dict: - """Get an OpenAPI endpoint parameter details""" - schema = get_schema(endpoint_spec) - properties = schema.get("properties", {}) - required_fields = schema.get("required", []) - - fields = {} - created_model_names: Set[str] = set() - for key, value in properties.items(): - is_required = key in required_fields - field_info = create_field(value, is_required, created_model_names) - fields[key] = field_info - - return fields - - -def model_to_dict( - item: Union[BaseModel, List, Dict[str, Any]], -) -> Any: - if is_basemodel_instance(item): - return cast(BaseModel, item).dict() - elif isinstance(item, dict): - return {key: model_to_dict(value) for key, value in item.items()} - elif isinstance(item, list): - return [model_to_dict(element) for element in item] - else: - return item diff --git a/libs/partners/robocorp/langchain_robocorp/_prompts.py b/libs/partners/robocorp/langchain_robocorp/_prompts.py deleted file mode 100644 index fc1ea32303f87..0000000000000 --- a/libs/partners/robocorp/langchain_robocorp/_prompts.py +++ /dev/null @@ -1,18 +0,0 @@ -API_CONTROLLER_PROMPT = ( - "You are turning user input into a json query" - """ for an API request tool. - -The final output to the tool should be a json string with a single key "data". -The value of "data" should be a dictionary of key-value pairs you want """ - """to POST to the url. -Always use double quotes for strings in the json string. -Always respond only with the json object and nothing else. - -Here is documentation on the API: -Base url: {api_url} -Endpoint documentation: -{api_docs} - -User Input: {input} -""" -) diff --git a/libs/partners/robocorp/langchain_robocorp/py.typed b/libs/partners/robocorp/langchain_robocorp/py.typed deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/robocorp/langchain_robocorp/toolkits.py b/libs/partners/robocorp/langchain_robocorp/toolkits.py deleted file mode 100644 index aaf1863cfaf63..0000000000000 --- a/libs/partners/robocorp/langchain_robocorp/toolkits.py +++ /dev/null @@ -1,248 +0,0 @@ -"""Robocorp Action Server toolkit.""" - -from __future__ import annotations - -import json -from typing import Any, Callable, Dict, List, Optional, TypedDict -from urllib.parse import urljoin - -import requests -from langchain_core.callbacks import CallbackManagerForToolRun -from langchain_core.callbacks.base import BaseCallbackHandler -from langchain_core.callbacks.manager import CallbackManager -from langchain_core.language_models.chat_models import BaseChatModel -from langchain_core.output_parsers import StrOutputParser -from langchain_core.prompts import PromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field, PrivateAttr, create_model -from langchain_core.runnables import Runnable, RunnablePassthrough -from langchain_core.tools import BaseTool, StructuredTool, Tool -from langchain_core.tracers.context import _tracing_v2_is_enabled -from langsmith import Client - -from langchain_robocorp._common import ( - get_param_fields, - model_to_dict, - reduce_openapi_spec, -) -from langchain_robocorp._prompts import ( - API_CONTROLLER_PROMPT, -) - -LLM_TRACE_HEADER = "X-action-trace" - - -class RunDetailsCallbackHandler(BaseCallbackHandler): - """Callback handler to add run details to the run.""" - - def __init__(self, run_details: dict) -> None: - """Initialize the callback handler. - - Args: - run_details (dict): Run details. - """ - self.run_details = run_details - - def on_tool_start( - self, - serialized: Dict[str, Any], - input_str: str, - **kwargs: Any, - ) -> None: - if "parent_run_id" in kwargs: - self.run_details["run_id"] = kwargs["parent_run_id"] - else: - if "run_id" in self.run_details: - self.run_details.pop("run_id") - - -class ToolInputSchema(BaseModel): - """Tool input schema.""" - - question: str = Field(...) - - -class ToolArgs(TypedDict): - """Tool arguments.""" - - name: str - description: str - callback_manager: CallbackManager - - -class ActionServerRequestTool(BaseTool): - """Requests POST tool with LLM-instructed extraction of truncated responses.""" - - name: str = "action_server_request" - """Tool name.""" - description: str = "Useful to make requests to Action Server API" - """Tool description.""" - endpoint: str - """"Action API endpoint""" - action_request: Callable[[str], str] - """Action request execution""" - - def _run( - self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None - ) -> str: - try: - json_text = query[query.find("{") : query.rfind("}") + 1] - payload = json.loads(json_text) - - except json.JSONDecodeError as e: - raise e - - return self.action_request(self.endpoint, **payload["data"]) - - async def _arun(self, text: str) -> str: - raise NotImplementedError() - - -class ActionServerToolkit(BaseModel): - """Toolkit exposing Robocorp Action Server provided actions as individual tools.""" - - url: str = Field(exclude=True) - """Action Server URL""" - api_key: str = Field(exclude=True, default="") - """Action Server request API key""" - additional_headers: dict = Field(exclude=True, default_factory=dict) - """Additional headers to be passed to the Action Server""" - report_trace: bool = Field(exclude=True, default=False) - """Enable reporting Langsmith trace to Action Server runs""" - _run_details: dict = PrivateAttr({}) - - class Config: - arbitrary_types_allowed = True - - def get_tools( - self, - llm: Optional[BaseChatModel] = None, - callback_manager: Optional[CallbackManager] = None, - ) -> List[BaseTool]: - """ - Get Action Server actions as a toolkit - - :param llm: Optionally pass a model to return single input tools - :param callback_manager: Callback manager to be passed to tools - """ - - # Fetch and format the API spec - try: - spec_url = urljoin(self.url, "openapi.json") - response = requests.get(spec_url) - json_spec = response.json() - api_spec = reduce_openapi_spec(self.url, json_spec) - except Exception: - raise ValueError( - f"Failed to fetch OpenAPI schema from Action Server - {self.url}" - ) - - # Prepare request tools - self._run_details: dict = {} - - # Prepare callback manager - if callback_manager is None: - callback_manager = CallbackManager([]) - callbacks: List[BaseCallbackHandler] = [] - - if _tracing_v2_is_enabled(): - callbacks.append(RunDetailsCallbackHandler(self._run_details)) - - for callback in callbacks: - callback_manager.add_handler(callback) - - toolkit: List[BaseTool] = [] - - # Prepare tools - for endpoint, docs in api_spec.endpoints: - if not endpoint.startswith("/api/actions"): - continue - - tool_args: ToolArgs = { - "name": docs["operationId"], - "description": docs["description"], - "callback_manager": callback_manager, - } - - if llm: - tool = self._get_unstructured_tool(endpoint, docs, tool_args, llm) - else: - tool = self._get_structured_tool(endpoint, docs, tool_args) - - toolkit.append(tool) - - return toolkit - - def _get_unstructured_tool( - self, - endpoint: str, - docs: dict, - tool_args: ToolArgs, - llm: BaseChatModel, - ) -> BaseTool: - request_tool = ActionServerRequestTool( - action_request=self._action_request, endpoint=endpoint - ) - - prompt_variables = { - "api_url": self.url, - } - - tool_name = tool_args["name"] - tool_docs = json.dumps(docs, indent=4) - prompt_variables["api_docs"] = f"{tool_name}: \n{tool_docs}" - - prompt = PromptTemplate( - template=API_CONTROLLER_PROMPT, - input_variables=["input"], - partial_variables=prompt_variables, - ) - - chain: Runnable = ( - {"input": RunnablePassthrough()} - | prompt - | llm - | StrOutputParser() - | request_tool - ) - - return Tool(func=chain.invoke, args_schema=ToolInputSchema, **tool_args) - - def _get_structured_tool( - self, endpoint: str, docs: dict, tools_args: ToolArgs - ) -> BaseTool: - fields = get_param_fields(docs) - _DynamicToolInputSchema = create_model("DynamicToolInputSchema", **fields) - - def dynamic_func(**data: dict[str, Any]) -> str: - return self._action_request(endpoint, **model_to_dict(data)) - - dynamic_func.__name__ = tools_args["name"] - dynamic_func.__doc__ = tools_args["description"] - - return StructuredTool( - func=dynamic_func, - args_schema=_DynamicToolInputSchema, - **tools_args, - ) - - def _action_request(self, endpoint: str, **data: dict[str, Any]) -> str: - headers = { - "Authorization": f"Bearer {self.api_key}", - "Content-Type": "application/json", - **self.additional_headers, - } - - try: - if self.report_trace and "run_id" in self._run_details: - client = Client() - run = client.read_run(self._run_details["run_id"]) - if run.url: - headers[LLM_TRACE_HEADER] = run.url - except Exception: - pass - - url = urljoin(self.url, endpoint) - - response = requests.post(url, headers=headers, data=json.dumps(data)) - - return response.text diff --git a/libs/partners/robocorp/poetry.lock b/libs/partners/robocorp/poetry.lock deleted file mode 100644 index f12c3192e344c..0000000000000 --- a/libs/partners/robocorp/poetry.lock +++ /dev/null @@ -1,874 +0,0 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. - -[[package]] -name = "annotated-types" -version = "0.7.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" -files = [ - {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, - {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - -[[package]] -name = "certifi" -version = "2024.7.4" -description = "Python package for providing Mozilla's CA Bundle." -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, -] - -[[package]] -name = "charset-normalizer" -version = "3.3.2" -description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, -] - -[[package]] -name = "codespell" -version = "2.3.0" -description = "Codespell" -optional = false -python-versions = ">=3.8" -files = [ - {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, - {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, -] - -[package.extras] -dev = ["Pygments", "build", "chardet", "pre-commit", "pytest", "pytest-cov", "pytest-dependency", "ruff", "tomli", "twine"] -hard-encoding-detection = ["chardet"] -toml = ["tomli"] -types = ["chardet (>=5.1.0)", "mypy", "pytest", "pytest-cov", "pytest-dependency"] - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "exceptiongroup" -version = "1.2.2" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, - {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "freezegun" -version = "1.5.1" -description = "Let your Python tests travel through time" -optional = false -python-versions = ">=3.7" -files = [ - {file = "freezegun-1.5.1-py3-none-any.whl", hash = "sha256:bf111d7138a8abe55ab48a71755673dbaa4ab87f4cff5634a4442dfec34c15f1"}, - {file = "freezegun-1.5.1.tar.gz", hash = "sha256:b29dedfcda6d5e8e083ce71b2b542753ad48cfec44037b3fc79702e2980a89e9"}, -] - -[package.dependencies] -python-dateutil = ">=2.7" - -[[package]] -name = "idna" -version = "3.7" -description = "Internationalized Domain Names in Applications (IDNA)" -optional = false -python-versions = ">=3.5" -files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, -] - -[[package]] -name = "iniconfig" -version = "2.0.0" -description = "brain-dead simple config-ini parsing" -optional = false -python-versions = ">=3.7" -files = [ - {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, - {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, -] - -[[package]] -name = "jsonpatch" -version = "1.33" -description = "Apply JSON-Patches (RFC 6902)" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" -files = [ - {file = "jsonpatch-1.33-py2.py3-none-any.whl", hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade"}, - {file = "jsonpatch-1.33.tar.gz", hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c"}, -] - -[package.dependencies] -jsonpointer = ">=1.9" - -[[package]] -name = "jsonpointer" -version = "3.0.0" -description = "Identify specific nodes in a JSON document (RFC 6901)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, - {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, -] - -[[package]] -name = "langchain-core" -version = "0.2.24" -description = "Building applications with LLMs through composability" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -jsonpatch = "^1.33" -langsmith = "^0.1.75" -packaging = ">=23.2,<25" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -PyYAML = ">=5.3" -tenacity = "^8.1.0,!=8.4.0" - -[package.source] -type = "directory" -url = "../../core" - -[[package]] -name = "langsmith" -version = "0.1.93" -description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." -optional = false -python-versions = "<4.0,>=3.8.1" -files = [ - {file = "langsmith-0.1.93-py3-none-any.whl", hash = "sha256:811210b9d5f108f36431bd7b997eb9476a9ecf5a2abd7ddbb606c1cdcf0f43ce"}, - {file = "langsmith-0.1.93.tar.gz", hash = "sha256:285b6ad3a54f50fa8eb97b5f600acc57d0e37e139dd8cf2111a117d0435ba9b4"}, -] - -[package.dependencies] -orjson = ">=3.9.14,<4.0.0" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -requests = ">=2,<3" - -[[package]] -name = "mypy" -version = "1.11.0" -description = "Optional static typing for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "mypy-1.11.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3824187c99b893f90c845bab405a585d1ced4ff55421fdf5c84cb7710995229"}, - {file = "mypy-1.11.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:96f8dbc2c85046c81bcddc246232d500ad729cb720da4e20fce3b542cab91287"}, - {file = "mypy-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1a5d8d8dd8613a3e2be3eae829ee891b6b2de6302f24766ff06cb2875f5be9c6"}, - {file = "mypy-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:72596a79bbfb195fd41405cffa18210af3811beb91ff946dbcb7368240eed6be"}, - {file = "mypy-1.11.0-cp310-cp310-win_amd64.whl", hash = "sha256:35ce88b8ed3a759634cb4eb646d002c4cef0a38f20565ee82b5023558eb90c00"}, - {file = "mypy-1.11.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:98790025861cb2c3db8c2f5ad10fc8c336ed2a55f4daf1b8b3f877826b6ff2eb"}, - {file = "mypy-1.11.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:25bcfa75b9b5a5f8d67147a54ea97ed63a653995a82798221cca2a315c0238c1"}, - {file = "mypy-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0bea2a0e71c2a375c9fa0ede3d98324214d67b3cbbfcbd55ac8f750f85a414e3"}, - {file = "mypy-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d2b3d36baac48e40e3064d2901f2fbd2a2d6880ec6ce6358825c85031d7c0d4d"}, - {file = "mypy-1.11.0-cp311-cp311-win_amd64.whl", hash = "sha256:d8e2e43977f0e09f149ea69fd0556623919f816764e26d74da0c8a7b48f3e18a"}, - {file = "mypy-1.11.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1d44c1e44a8be986b54b09f15f2c1a66368eb43861b4e82573026e04c48a9e20"}, - {file = "mypy-1.11.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cea3d0fb69637944dd321f41bc896e11d0fb0b0aa531d887a6da70f6e7473aba"}, - {file = "mypy-1.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a83ec98ae12d51c252be61521aa5731f5512231d0b738b4cb2498344f0b840cd"}, - {file = "mypy-1.11.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c7b73a856522417beb78e0fb6d33ef89474e7a622db2653bc1285af36e2e3e3d"}, - {file = "mypy-1.11.0-cp312-cp312-win_amd64.whl", hash = "sha256:f2268d9fcd9686b61ab64f077be7ffbc6fbcdfb4103e5dd0cc5eaab53a8886c2"}, - {file = "mypy-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:940bfff7283c267ae6522ef926a7887305945f716a7704d3344d6d07f02df850"}, - {file = "mypy-1.11.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:14f9294528b5f5cf96c721f231c9f5b2733164e02c1c018ed1a0eff8a18005ac"}, - {file = "mypy-1.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7b54c27783991399046837df5c7c9d325d921394757d09dbcbf96aee4649fe9"}, - {file = "mypy-1.11.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:65f190a6349dec29c8d1a1cd4aa71284177aee5949e0502e6379b42873eddbe7"}, - {file = "mypy-1.11.0-cp38-cp38-win_amd64.whl", hash = "sha256:dbe286303241fea8c2ea5466f6e0e6a046a135a7e7609167b07fd4e7baf151bf"}, - {file = "mypy-1.11.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:104e9c1620c2675420abd1f6c44bab7dd33cc85aea751c985006e83dcd001095"}, - {file = "mypy-1.11.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f006e955718ecd8d159cee9932b64fba8f86ee6f7728ca3ac66c3a54b0062abe"}, - {file = "mypy-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:becc9111ca572b04e7e77131bc708480cc88a911adf3d0239f974c034b78085c"}, - {file = "mypy-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6801319fe76c3f3a3833f2b5af7bd2c17bb93c00026a2a1b924e6762f5b19e13"}, - {file = "mypy-1.11.0-cp39-cp39-win_amd64.whl", hash = "sha256:c1a184c64521dc549324ec6ef7cbaa6b351912be9cb5edb803c2808a0d7e85ac"}, - {file = "mypy-1.11.0-py3-none-any.whl", hash = "sha256:56913ec8c7638b0091ef4da6fcc9136896914a9d60d54670a75880c3e5b99ace"}, - {file = "mypy-1.11.0.tar.gz", hash = "sha256:93743608c7348772fdc717af4aeee1997293a1ad04bc0ea6efa15bf65385c538"}, -] - -[package.dependencies] -mypy-extensions = ">=1.0.0" -tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.6.0" - -[package.extras] -dmypy = ["psutil (>=4.0)"] -install-types = ["pip"] -mypyc = ["setuptools (>=50)"] -reports = ["lxml"] - -[[package]] -name = "mypy-extensions" -version = "1.0.0" -description = "Type system extensions for programs checked with the mypy type checker." -optional = false -python-versions = ">=3.5" -files = [ - {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, - {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, -] - -[[package]] -name = "orjson" -version = "3.10.6" -description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" -optional = false -python-versions = ">=3.8" -files = [ - {file = "orjson-3.10.6-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:fb0ee33124db6eaa517d00890fc1a55c3bfe1cf78ba4a8899d71a06f2d6ff5c7"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c1c4b53b24a4c06547ce43e5fee6ec4e0d8fe2d597f4647fc033fd205707365"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eadc8fd310edb4bdbd333374f2c8fec6794bbbae99b592f448d8214a5e4050c0"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:61272a5aec2b2661f4fa2b37c907ce9701e821b2c1285d5c3ab0207ebd358d38"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57985ee7e91d6214c837936dc1608f40f330a6b88bb13f5a57ce5257807da143"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:633a3b31d9d7c9f02d49c4ab4d0a86065c4a6f6adc297d63d272e043472acab5"}, - {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1c680b269d33ec444afe2bdc647c9eb73166fa47a16d9a75ee56a374f4a45f43"}, - {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f759503a97a6ace19e55461395ab0d618b5a117e8d0fbb20e70cfd68a47327f2"}, - {file = "orjson-3.10.6-cp310-none-win32.whl", hash = "sha256:95a0cce17f969fb5391762e5719575217bd10ac5a189d1979442ee54456393f3"}, - {file = "orjson-3.10.6-cp310-none-win_amd64.whl", hash = "sha256:df25d9271270ba2133cc88ee83c318372bdc0f2cd6f32e7a450809a111efc45c"}, - {file = "orjson-3.10.6-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:b1ec490e10d2a77c345def52599311849fc063ae0e67cf4f84528073152bb2ba"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55d43d3feb8f19d07e9f01e5b9be4f28801cf7c60d0fa0d279951b18fae1932b"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac3045267e98fe749408eee1593a142e02357c5c99be0802185ef2170086a863"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c27bc6a28ae95923350ab382c57113abd38f3928af3c80be6f2ba7eb8d8db0b0"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d27456491ca79532d11e507cadca37fb8c9324a3976294f68fb1eff2dc6ced5a"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05ac3d3916023745aa3b3b388e91b9166be1ca02b7c7e41045da6d12985685f0"}, - {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1335d4ef59ab85cab66fe73fd7a4e881c298ee7f63ede918b7faa1b27cbe5212"}, - {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4bbc6d0af24c1575edc79994c20e1b29e6fb3c6a570371306db0993ecf144dc5"}, - {file = "orjson-3.10.6-cp311-none-win32.whl", hash = "sha256:450e39ab1f7694465060a0550b3f6d328d20297bf2e06aa947b97c21e5241fbd"}, - {file = "orjson-3.10.6-cp311-none-win_amd64.whl", hash = "sha256:227df19441372610b20e05bdb906e1742ec2ad7a66ac8350dcfd29a63014a83b"}, - {file = "orjson-3.10.6-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:ea2977b21f8d5d9b758bb3f344a75e55ca78e3ff85595d248eee813ae23ecdfb"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6f3d167d13a16ed263b52dbfedff52c962bfd3d270b46b7518365bcc2121eed"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f710f346e4c44a4e8bdf23daa974faede58f83334289df80bc9cd12fe82573c7"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7275664f84e027dcb1ad5200b8b18373e9c669b2a9ec33d410c40f5ccf4b257e"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0943e4c701196b23c240b3d10ed8ecd674f03089198cf503105b474a4f77f21f"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:446dee5a491b5bc7d8f825d80d9637e7af43f86a331207b9c9610e2f93fee22a"}, - {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:64c81456d2a050d380786413786b057983892db105516639cb5d3ee3c7fd5148"}, - {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:960db0e31c4e52fa0fc3ecbaea5b2d3b58f379e32a95ae6b0ebeaa25b93dfd34"}, - {file = "orjson-3.10.6-cp312-none-win32.whl", hash = "sha256:a6ea7afb5b30b2317e0bee03c8d34c8181bc5a36f2afd4d0952f378972c4efd5"}, - {file = "orjson-3.10.6-cp312-none-win_amd64.whl", hash = "sha256:874ce88264b7e655dde4aeaacdc8fd772a7962faadfb41abe63e2a4861abc3dc"}, - {file = "orjson-3.10.6-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:66680eae4c4e7fc193d91cfc1353ad6d01b4801ae9b5314f17e11ba55e934183"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caff75b425db5ef8e8f23af93c80f072f97b4fb3afd4af44482905c9f588da28"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3722fddb821b6036fd2a3c814f6bd9b57a89dc6337b9924ecd614ebce3271394"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2c116072a8533f2fec435fde4d134610f806bdac20188c7bd2081f3e9e0133f"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6eeb13218c8cf34c61912e9df2de2853f1d009de0e46ea09ccdf3d757896af0a"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:965a916373382674e323c957d560b953d81d7a8603fbeee26f7b8248638bd48b"}, - {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03c95484d53ed8e479cade8628c9cea00fd9d67f5554764a1110e0d5aa2de96e"}, - {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:e060748a04cccf1e0a6f2358dffea9c080b849a4a68c28b1b907f272b5127e9b"}, - {file = "orjson-3.10.6-cp38-none-win32.whl", hash = "sha256:738dbe3ef909c4b019d69afc19caf6b5ed0e2f1c786b5d6215fbb7539246e4c6"}, - {file = "orjson-3.10.6-cp38-none-win_amd64.whl", hash = "sha256:d40f839dddf6a7d77114fe6b8a70218556408c71d4d6e29413bb5f150a692ff7"}, - {file = "orjson-3.10.6-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:697a35a083c4f834807a6232b3e62c8b280f7a44ad0b759fd4dce748951e70db"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd502f96bf5ea9a61cbc0b2b5900d0dd68aa0da197179042bdd2be67e51a1e4b"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f215789fb1667cdc874c1b8af6a84dc939fd802bf293a8334fce185c79cd359b"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2debd8ddce948a8c0938c8c93ade191d2f4ba4649a54302a7da905a81f00b56"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5410111d7b6681d4b0d65e0f58a13be588d01b473822483f77f513c7f93bd3b2"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb1f28a137337fdc18384079fa5726810681055b32b92253fa15ae5656e1dddb"}, - {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:bf2fbbce5fe7cd1aa177ea3eab2b8e6a6bc6e8592e4279ed3db2d62e57c0e1b2"}, - {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:79b9b9e33bd4c517445a62b90ca0cc279b0f1f3970655c3df9e608bc3f91741a"}, - {file = "orjson-3.10.6-cp39-none-win32.whl", hash = "sha256:30b0a09a2014e621b1adf66a4f705f0809358350a757508ee80209b2d8dae219"}, - {file = "orjson-3.10.6-cp39-none-win_amd64.whl", hash = "sha256:49e3bc615652617d463069f91b867a4458114c5b104e13b7ae6872e5f79d0844"}, - {file = "orjson-3.10.6.tar.gz", hash = "sha256:e54b63d0a7c6c54a5f5f726bc93a2078111ef060fec4ecbf34c5db800ca3b3a7"}, -] - -[[package]] -name = "packaging" -version = "24.1" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, -] - -[[package]] -name = "pluggy" -version = "1.5.0" -description = "plugin and hook calling mechanisms for python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, - {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, -] - -[package.extras] -dev = ["pre-commit", "tox"] -testing = ["pytest", "pytest-benchmark"] - -[[package]] -name = "pydantic" -version = "2.8.2" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, -] - -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" -typing-extensions = [ - {version = ">=4.6.1", markers = "python_version < \"3.13\""}, - {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, -] - -[package.extras] -email = ["email-validator (>=2.0.0)"] - -[[package]] -name = "pydantic-core" -version = "2.20.1" -description = "Core functionality for Pydantic validation and serialization" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pytest" -version = "7.4.4" -description = "pytest: simple powerful testing with Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-7.4.4-py3-none-any.whl", hash = "sha256:b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8"}, - {file = "pytest-7.4.4.tar.gz", hash = "sha256:2cf0005922c6ace4a3e2ec8b4080eb0d9753fdc93107415332f50ce9e7994280"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} -iniconfig = "*" -packaging = "*" -pluggy = ">=0.12,<2.0" -tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} - -[package.extras] -testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] - -[[package]] -name = "pytest-asyncio" -version = "0.21.2" -description = "Pytest support for asyncio" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest_asyncio-0.21.2-py3-none-any.whl", hash = "sha256:ab664c88bb7998f711d8039cacd4884da6430886ae8bbd4eded552ed2004f16b"}, - {file = "pytest_asyncio-0.21.2.tar.gz", hash = "sha256:d67738fc232b94b326b9d060750beb16e0074210b98dd8b58a5239fa2a154f45"}, -] - -[package.dependencies] -pytest = ">=7.0.0" - -[package.extras] -docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] -testing = ["coverage (>=6.2)", "flaky (>=3.5.0)", "hypothesis (>=5.7.1)", "mypy (>=0.931)", "pytest-trio (>=0.7.0)"] - -[[package]] -name = "pytest-mock" -version = "3.14.0" -description = "Thin-wrapper around the mock package for easier use with pytest" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pytest-mock-3.14.0.tar.gz", hash = "sha256:2719255a1efeceadbc056d6bf3df3d1c5015530fb40cf347c0f9afac88410bd0"}, - {file = "pytest_mock-3.14.0-py3-none-any.whl", hash = "sha256:0b72c38033392a5f4621342fe11e9219ac11ec9d375f8e2a0c164539e0d70f6f"}, -] - -[package.dependencies] -pytest = ">=6.2.5" - -[package.extras] -dev = ["pre-commit", "pytest-asyncio", "tox"] - -[[package]] -name = "pytest-watcher" -version = "0.3.5" -description = "Automatically rerun your tests on file modifications" -optional = false -python-versions = ">=3.7.0,<4.0.0" -files = [ - {file = "pytest_watcher-0.3.5-py3-none-any.whl", hash = "sha256:af00ca52c7be22dc34c0fd3d7ffef99057207a73b05dc5161fe3b2fe91f58130"}, - {file = "pytest_watcher-0.3.5.tar.gz", hash = "sha256:8896152460ba2b1a8200c12117c6611008ec96c8b2d811f0a05ab8a82b043ff8"}, -] - -[package.dependencies] -tomli = {version = ">=2.0.1,<3.0.0", markers = "python_version < \"3.11\""} -watchdog = ">=2.0.0" - -[[package]] -name = "python-dateutil" -version = "2.9.0.post0" -description = "Extensions to the standard Python datetime module" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" -files = [ - {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, - {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, -] - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "pyyaml" -version = "6.0.1" -description = "YAML parser and emitter for Python" -optional = false -python-versions = ">=3.6" -files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, -] - -[[package]] -name = "requests" -version = "2.32.3" -description = "Python HTTP for Humans." -optional = false -python-versions = ">=3.8" -files = [ - {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, - {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, -] - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<4" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<3" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "ruff" -version = "0.5.5" -description = "An extremely fast Python linter and code formatter, written in Rust." -optional = false -python-versions = ">=3.7" -files = [ - {file = "ruff-0.5.5-py3-none-linux_armv6l.whl", hash = "sha256:605d589ec35d1da9213a9d4d7e7a9c761d90bba78fc8790d1c5e65026c1b9eaf"}, - {file = "ruff-0.5.5-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00817603822a3e42b80f7c3298c8269e09f889ee94640cd1fc7f9329788d7bf8"}, - {file = "ruff-0.5.5-py3-none-macosx_11_0_arm64.whl", hash = "sha256:187a60f555e9f865a2ff2c6984b9afeffa7158ba6e1eab56cb830404c942b0f3"}, - {file = "ruff-0.5.5-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe26fc46fa8c6e0ae3f47ddccfbb136253c831c3289bba044befe68f467bfb16"}, - {file = "ruff-0.5.5-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4ad25dd9c5faac95c8e9efb13e15803cd8bbf7f4600645a60ffe17c73f60779b"}, - {file = "ruff-0.5.5-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f70737c157d7edf749bcb952d13854e8f745cec695a01bdc6e29c29c288fc36e"}, - {file = "ruff-0.5.5-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:cfd7de17cef6ab559e9f5ab859f0d3296393bc78f69030967ca4d87a541b97a0"}, - {file = "ruff-0.5.5-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a09b43e02f76ac0145f86a08e045e2ea452066f7ba064fd6b0cdccb486f7c3e7"}, - {file = "ruff-0.5.5-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0b856cb19c60cd40198be5d8d4b556228e3dcd545b4f423d1ad812bfdca5884"}, - {file = "ruff-0.5.5-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3687d002f911e8a5faf977e619a034d159a8373514a587249cc00f211c67a091"}, - {file = "ruff-0.5.5-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:ac9dc814e510436e30d0ba535f435a7f3dc97f895f844f5b3f347ec8c228a523"}, - {file = "ruff-0.5.5-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:af9bdf6c389b5add40d89b201425b531e0a5cceb3cfdcc69f04d3d531c6be74f"}, - {file = "ruff-0.5.5-py3-none-musllinux_1_2_i686.whl", hash = "sha256:d40a8533ed545390ef8315b8e25c4bb85739b90bd0f3fe1280a29ae364cc55d8"}, - {file = "ruff-0.5.5-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:cab904683bf9e2ecbbe9ff235bfe056f0eba754d0168ad5407832928d579e7ab"}, - {file = "ruff-0.5.5-py3-none-win32.whl", hash = "sha256:696f18463b47a94575db635ebb4c178188645636f05e934fdf361b74edf1bb2d"}, - {file = "ruff-0.5.5-py3-none-win_amd64.whl", hash = "sha256:50f36d77f52d4c9c2f1361ccbfbd09099a1b2ea5d2b2222c586ab08885cf3445"}, - {file = "ruff-0.5.5-py3-none-win_arm64.whl", hash = "sha256:3191317d967af701f1b73a31ed5788795936e423b7acce82a2b63e26eb3e89d6"}, - {file = "ruff-0.5.5.tar.gz", hash = "sha256:cc5516bdb4858d972fbc31d246bdb390eab8df1a26e2353be2dbc0c2d7f5421a"}, -] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] - -[[package]] -name = "syrupy" -version = "4.6.1" -description = "Pytest Snapshot Test Utility" -optional = false -python-versions = ">=3.8.1,<4" -files = [ - {file = "syrupy-4.6.1-py3-none-any.whl", hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133"}, - {file = "syrupy-4.6.1.tar.gz", hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36"}, -] - -[package.dependencies] -pytest = ">=7.0.0,<9.0.0" - -[[package]] -name = "tenacity" -version = "8.5.0" -description = "Retry code until it succeeds" -optional = false -python-versions = ">=3.8" -files = [ - {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, - {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, -] - -[package.extras] -doc = ["reno", "sphinx"] -test = ["pytest", "tornado (>=4.5)", "typeguard"] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] - -[[package]] -name = "types-requests" -version = "2.32.0.20240712" -description = "Typing stubs for requests" -optional = false -python-versions = ">=3.8" -files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, -] - -[package.dependencies] -urllib3 = ">=2" - -[[package]] -name = "typing-extensions" -version = "4.12.2" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, - {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, -] - -[[package]] -name = "urllib3" -version = "2.2.2" -description = "HTTP library with thread-safe connection pooling, file post, and more." -optional = false -python-versions = ">=3.8" -files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, -] - -[package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] -h2 = ["h2 (>=4,<5)"] -socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] -zstd = ["zstandard (>=0.18.0)"] - -[[package]] -name = "watchdog" -version = "4.0.1" -description = "Filesystem events monitoring" -optional = false -python-versions = ">=3.8" -files = [ - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:da2dfdaa8006eb6a71051795856bedd97e5b03e57da96f98e375682c48850645"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e93f451f2dfa433d97765ca2634628b789b49ba8b504fdde5837cdcf25fdb53b"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ef0107bbb6a55f5be727cfc2ef945d5676b97bffb8425650dadbb184be9f9a2b"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17e32f147d8bf9657e0922c0940bcde863b894cd871dbb694beb6704cfbd2fb5"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03e70d2df2258fb6cb0e95bbdbe06c16e608af94a3ffbd2b90c3f1e83eb10767"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:123587af84260c991dc5f62a6e7ef3d1c57dfddc99faacee508c71d287248459"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:093b23e6906a8b97051191a4a0c73a77ecc958121d42346274c6af6520dec175"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:611be3904f9843f0529c35a3ff3fd617449463cb4b73b1633950b3d97fa4bfb7"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:62c613ad689ddcb11707f030e722fa929f322ef7e4f18f5335d2b73c61a85c28"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d4925e4bf7b9bddd1c3de13c9b8a2cdb89a468f640e66fbfabaf735bd85b3e35"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cad0bbd66cd59fc474b4a4376bc5ac3fc698723510cbb64091c2a793b18654db"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a3c2c317a8fb53e5b3d25790553796105501a235343f5d2bf23bb8649c2c8709"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c9904904b6564d4ee8a1ed820db76185a3c96e05560c776c79a6ce5ab71888ba"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:667f3c579e813fcbad1b784db7a1aaa96524bed53437e119f6a2f5de4db04235"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d10a681c9a1d5a77e75c48a3b8e1a9f2ae2928eda463e8d33660437705659682"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0144c0ea9997b92615af1d94afc0c217e07ce2c14912c7b1a5731776329fcfc7"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:998d2be6976a0ee3a81fb8e2777900c28641fb5bfbd0c84717d89bca0addcdc5"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e7921319fe4430b11278d924ef66d4daa469fafb1da679a2e48c935fa27af193"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f0de0f284248ab40188f23380b03b59126d1479cd59940f2a34f8852db710625"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bca36be5707e81b9e6ce3208d92d95540d4ca244c006b61511753583c81c70dd"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ab998f567ebdf6b1da7dc1e5accfaa7c6992244629c0fdaef062f43249bd8dee"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dddba7ca1c807045323b6af4ff80f5ddc4d654c8bce8317dde1bd96b128ed253"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_armv7l.whl", hash = "sha256:4513ec234c68b14d4161440e07f995f231be21a09329051e67a2118a7a612d2d"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_i686.whl", hash = "sha256:4107ac5ab936a63952dea2a46a734a23230aa2f6f9db1291bf171dac3ebd53c6"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64.whl", hash = "sha256:6e8c70d2cd745daec2a08734d9f63092b793ad97612470a0ee4cbb8f5f705c57"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f27279d060e2ab24c0aa98363ff906d2386aa6c4dc2f1a374655d4e02a6c5e5e"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_s390x.whl", hash = "sha256:f8affdf3c0f0466e69f5b3917cdd042f89c8c63aebdb9f7c078996f607cdb0f5"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ac7041b385f04c047fcc2951dc001671dee1b7e0615cde772e84b01fbf68ee84"}, - {file = "watchdog-4.0.1-py3-none-win32.whl", hash = "sha256:206afc3d964f9a233e6ad34618ec60b9837d0582b500b63687e34011e15bb429"}, - {file = "watchdog-4.0.1-py3-none-win_amd64.whl", hash = "sha256:7577b3c43e5909623149f76b099ac49a1a01ca4e167d1785c76eb52fa585745a"}, - {file = "watchdog-4.0.1-py3-none-win_ia64.whl", hash = "sha256:d7b9f5f3299e8dd230880b6c55504a1f69cf1e4316275d1b215ebdd8187ec88d"}, - {file = "watchdog-4.0.1.tar.gz", hash = "sha256:eebaacf674fa25511e8867028d281e602ee6500045b57f43b08778082f7f8b44"}, -] - -[package.extras] -watchmedo = ["PyYAML (>=3.10)"] - -[metadata] -lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "6b4489fb9ed4fe0871e64ef8ad93a9122a801824811cfeeebb6a42f3d666d50e" diff --git a/libs/partners/robocorp/pyproject.toml b/libs/partners/robocorp/pyproject.toml deleted file mode 100644 index d10b336be27ad..0000000000000 --- a/libs/partners/robocorp/pyproject.toml +++ /dev/null @@ -1,81 +0,0 @@ -[build-system] -requires = [ "poetry-core>=1.0.0",] -build-backend = "poetry.core.masonry.api" - -[tool.poetry] -name = "langchain-robocorp" -version = "0.0.10" -description = "An integration package connecting Robocorp Action Server and LangChain" -authors = [] -readme = "README.md" -repository = "https://github.com/langchain-ai/langchain" -license = "MIT" - -[tool.mypy] -disallow_untyped_defs = "True" - -[tool.poetry.urls] -"Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/partners/robocorp" - -[tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.2.24,<0.3" -requests = "^2.31.0" -types-requests = "^2.31.0.6" - -[tool.ruff.lint] -select = [ "E", "F", "I", "T201",] - -[tool.coverage.run] -omit = [ "tests/*",] - -[tool.pytest.ini_options] -addopts = "--snapshot-warn-unused --strict-markers --strict-config --durations=5" -markers = [ "requires: mark tests as requiring a specific library", "asyncio: mark tests as requiring asyncio", "compile: mark placeholder test used to compile integration tests without running them",] -asyncio_mode = "auto" - -[tool.poetry.group.test] -optional = true - -[tool.poetry.group.codespell] -optional = true - -[tool.poetry.group.test_integration] -optional = true - -[tool.poetry.group.lint] -optional = true - -[tool.poetry.group.dev] -optional = true - -[tool.poetry.group.test.dependencies] -pytest = "^7.3.0" -freezegun = "^1.2.2" -pytest-mock = "^3.10.0" -syrupy = "^4.0.2" -pytest-watcher = "^0.3.4" -pytest-asyncio = "^0.21.1" - -[tool.poetry.group.codespell.dependencies] -codespell = "^2.2.0" - -[tool.poetry.group.test_integration.dependencies] - -[tool.poetry.group.lint.dependencies] -ruff = "^0.5" - -[tool.poetry.group.typing.dependencies] -mypy = "^1.10" - -[tool.poetry.group.test.dependencies.langchain-core] -path = "../../core" -develop = true - -[tool.poetry.group.dev.dependencies.langchain-core] -path = "../../core" -develop = true - -[tool.poetry.group.typing.dependencies.langchain-core] -path = "../../core" -develop = true diff --git a/libs/partners/robocorp/scripts/check_imports.py b/libs/partners/robocorp/scripts/check_imports.py deleted file mode 100644 index 58a460c149353..0000000000000 --- a/libs/partners/robocorp/scripts/check_imports.py +++ /dev/null @@ -1,17 +0,0 @@ -import sys -import traceback -from importlib.machinery import SourceFileLoader - -if __name__ == "__main__": - files = sys.argv[1:] - has_failure = False - for file in files: - try: - SourceFileLoader("x", file).load_module() - except Exception: - has_failure = True - print(file) # noqa: T201 - traceback.print_exc() - print() # noqa: T201 - - sys.exit(1 if has_failure else 0) diff --git a/libs/partners/robocorp/scripts/check_pydantic.sh b/libs/partners/robocorp/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/robocorp/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/robocorp/scripts/lint_imports.sh b/libs/partners/robocorp/scripts/lint_imports.sh deleted file mode 100755 index 695613c7ba8fd..0000000000000 --- a/libs/partners/robocorp/scripts/lint_imports.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/bin/bash - -set -eu - -# Initialize a variable to keep track of errors -errors=0 - -# make sure not importing from langchain or langchain_experimental -git --no-pager grep '^from langchain\.' . && errors=$((errors+1)) -git --no-pager grep '^from langchain_experimental\.' . && errors=$((errors+1)) - -# Decide on an exit status based on the errors -if [ "$errors" -gt 0 ]; then - exit 1 -else - exit 0 -fi diff --git a/libs/partners/robocorp/tests/__init__.py b/libs/partners/robocorp/tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/robocorp/tests/integration_tests/__init__.py b/libs/partners/robocorp/tests/integration_tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/robocorp/tests/integration_tests/test_compile.py b/libs/partners/robocorp/tests/integration_tests/test_compile.py deleted file mode 100644 index 33ecccdfa0fbd..0000000000000 --- a/libs/partners/robocorp/tests/integration_tests/test_compile.py +++ /dev/null @@ -1,7 +0,0 @@ -import pytest - - -@pytest.mark.compile -def test_placeholder() -> None: - """Used for compiling integration tests without running any real tests.""" - pass diff --git a/libs/partners/robocorp/tests/unit_tests/__init__.py b/libs/partners/robocorp/tests/unit_tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/robocorp/tests/unit_tests/_fixtures.py b/libs/partners/robocorp/tests/unit_tests/_fixtures.py deleted file mode 100644 index d48bf7bcc3adc..0000000000000 --- a/libs/partners/robocorp/tests/unit_tests/_fixtures.py +++ /dev/null @@ -1,73 +0,0 @@ -from typing import Any, List, Optional - -from langchain_core.callbacks.manager import CallbackManagerForLLMRun -from langchain_core.language_models.chat_models import BaseChatModel -from langchain_core.messages import AIMessage, BaseMessage -from langchain_core.outputs import ChatGeneration, ChatResult - - -class FakeChatLLMT(BaseChatModel): - @property - def _llm_type(self) -> str: - return "fake-openai-chat-model" - - def _generate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> ChatResult: - return ChatResult( - generations=[ - ChatGeneration( - message=AIMessage( - content="", - additional_kwargs={ - "function_call": { - "name": "accept", - "arguments": '{\n "draft": "turtles"\n}', - } - }, - ) - ) - ] - ) - - -openapi_endpoint_doc_mock = { - "summary": "Test Action", - "operationId": "test_action", - "description": "Greets an employee", - "responses": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "string", - "title": "Response Test Action", - "description": "The greeting", - } - } - }, - }, - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "name": { - "type": "string", - "title": "Name", - "description": "Name of the employee", - } - }, - "type": "object", - "required": ["name"], - "title": "TestActionInput", - } - } - }, - "required": True, - }, -} diff --git a/libs/partners/robocorp/tests/unit_tests/_openapi.fixture.json b/libs/partners/robocorp/tests/unit_tests/_openapi.fixture.json deleted file mode 100644 index 9278644f16cc3..0000000000000 --- a/libs/partners/robocorp/tests/unit_tests/_openapi.fixture.json +++ /dev/null @@ -1,411 +0,0 @@ -{ - "openapi": "3.1.0", - "info": { - "title": "Robocorp Actions Server", - "description": "Robocorp Actions Server", - "version": "0.1.0" - }, - "paths": { - "/api/actions/test/test-action/run": { - "post": { - "summary": "Test Action", - "description": "Greets an employee", - "operationId": "test_action", - "requestBody": { - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/TestActionInput" } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "string", - "title": "Response Test Action", - "description": "The greeting" - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/HTTPValidationError" } - } - } - } - } - } - }, - "/api/runs": { - "get": { - "summary": "List Runs", - "operationId": "list_runs_api_runs_get", - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "items": { "$ref": "#/components/schemas/Run" }, - "type": "array", - "title": "Response List Runs Api Runs Get" - } - } - } - } - } - } - }, - "/api/runs/{run_id}": { - "get": { - "summary": "Show Run", - "operationId": "show_run_api_runs__run_id__get", - "parameters": [ - { - "name": "run_id", - "in": "path", - "required": true, - "schema": { "type": "string", "title": "ID for run" } - } - ], - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/Run" } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/HTTPValidationError" } - } - } - } - } - } - }, - "/api/runs/{run_id}/artifacts": { - "get": { - "summary": "Get Run Artifacts", - "operationId": "get_run_artifacts_api_runs__run_id__artifacts_get", - "parameters": [ - { - "name": "run_id", - "in": "path", - "required": true, - "schema": { "type": "string", "title": "ID for run" } - } - ], - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "array", - "items": { "$ref": "#/components/schemas/ArtifactInfo" }, - "description": "Provides a list with the artifacts available\nfor a given run (i.e.: [{'name': '__action_server_output.txt', 'size_in_bytes': 22}])\n", - "title": "Response Get Run Artifacts Api Runs Run Id Artifacts Get" - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/HTTPValidationError" } - } - } - } - } - } - }, - "/api/runs/{run_id}/log.html": { - "get": { - "summary": "Get Run Log Html", - "operationId": "get_run_log_html_api_runs__run_id__log_html_get", - "parameters": [ - { - "name": "run_id", - "in": "path", - "required": true, - "schema": { "type": "string", "title": "ID for run" } - } - ], - "responses": { - "200": { - "description": "Successful Response", - "content": { "application/json": { "schema": {} } } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/HTTPValidationError" } - } - } - } - } - } - }, - "/api/runs/{run_id}/artifacts/text-content": { - "get": { - "summary": "Get Run Artifact Text", - "operationId": "get_run_artifact_text_api_runs__run_id__artifacts_text_content_get", - "parameters": [ - { - "name": "run_id", - "in": "path", - "required": true, - "schema": { "type": "string", "title": "ID for run" } - }, - { - "name": "artifact_names", - "in": "query", - "required": false, - "schema": { - "anyOf": [ - { "type": "array", "items": { "type": "string" } }, - { "type": "null" } - ], - "title": "Artifact names for which the content should be gotten." - } - }, - { - "name": "artifact_name_regexp", - "in": "query", - "required": false, - "schema": { - "anyOf": [{ "type": "string" }, { "type": "null" }], - "title": "A regexp to match artifact names." - } - } - ], - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "object", - "additionalProperties": { "type": "string" }, - "title": "Response Get Run Artifact Text Api Runs Run Id Artifacts Text Content Get" - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/HTTPValidationError" } - } - } - } - } - } - }, - "/api/runs/{run_id}/artifacts/binary-content": { - "get": { - "summary": "Get Run Artifact Binary", - "operationId": "get_run_artifact_binary_api_runs__run_id__artifacts_binary_content_get", - "parameters": [ - { - "name": "run_id", - "in": "path", - "required": true, - "schema": { "type": "string", "title": "ID for run" } - }, - { - "name": "artifact_name", - "in": "query", - "required": true, - "schema": { - "type": "string", - "title": "Artifact name for which the content should be gotten." - } - } - ], - "responses": { - "200": { "description": "Successful Response" }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { "$ref": "#/components/schemas/HTTPValidationError" } - } - } - } - } - } - }, - "/api/actionPackages": { - "get": { - "summary": "List Action Packages", - "operationId": "list_action_packages_api_actionPackages_get", - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "items": { "$ref": "#/components/schemas/ActionPackageApi" }, - "type": "array", - "title": "Response List Action Packages Api Actionpackages Get" - } - } - } - } - } - } - } - }, - "components": { - "schemas": { - "Action": { - "properties": { - "id": { "type": "string", "title": "Id" }, - "action_package_id": { - "type": "string", - "title": "Action Package Id" - }, - "name": { "type": "string", "title": "Name" }, - "docs": { "type": "string", "title": "Docs" }, - "file": { "type": "string", "title": "File" }, - "lineno": { "type": "integer", "title": "Lineno" }, - "input_schema": { "type": "string", "title": "Input Schema" }, - "output_schema": { "type": "string", "title": "Output Schema" }, - "enabled": { "type": "boolean", "title": "Enabled", "default": true }, - "is_consequential": { - "anyOf": [{ "type": "boolean" }, { "type": "null" }], - "title": "Is Consequential" - } - }, - "type": "object", - "required": [ - "id", - "action_package_id", - "name", - "docs", - "file", - "lineno", - "input_schema", - "output_schema" - ], - "title": "Action" - }, - "ActionPackageApi": { - "properties": { - "id": { "type": "string", "title": "Id" }, - "name": { "type": "string", "title": "Name" }, - "actions": { - "items": { "$ref": "#/components/schemas/Action" }, - "type": "array", - "title": "Actions" - } - }, - "type": "object", - "required": ["id", "name", "actions"], - "title": "ActionPackageApi" - }, - "ArtifactInfo": { - "properties": { - "name": { "type": "string", "title": "Name" }, - "size_in_bytes": { "type": "integer", "title": "Size In Bytes" } - }, - "type": "object", - "required": ["name", "size_in_bytes"], - "title": "ArtifactInfo" - }, - "HTTPValidationError": { - "properties": { - "errors": { - "items": { "$ref": "#/components/schemas/ValidationError" }, - "type": "array", - "title": "Errors" - } - }, - "type": "object", - "title": "HTTPValidationError" - }, - "Run": { - "properties": { - "id": { "type": "string", "title": "Id" }, - "status": { "type": "integer", "title": "Status" }, - "action_id": { "type": "string", "title": "Action Id" }, - "start_time": { "type": "string", "title": "Start Time" }, - "run_time": { - "anyOf": [{ "type": "number" }, { "type": "null" }], - "title": "Run Time" - }, - "inputs": { "type": "string", "title": "Inputs" }, - "result": { - "anyOf": [{ "type": "string" }, { "type": "null" }], - "title": "Result" - }, - "error_message": { - "anyOf": [{ "type": "string" }, { "type": "null" }], - "title": "Error Message" - }, - "relative_artifacts_dir": { - "type": "string", - "title": "Relative Artifacts Dir" - }, - "numbered_id": { "type": "integer", "title": "Numbered Id" } - }, - "type": "object", - "required": [ - "id", - "status", - "action_id", - "start_time", - "run_time", - "inputs", - "result", - "error_message", - "relative_artifacts_dir", - "numbered_id" - ], - "title": "Run" - }, - "TestActionInput": { - "properties": { - "name": { - "type": "string", - "title": "Name", - "description": "Name of the employee" - } - }, - "type": "object", - "required": ["name"], - "title": "TestActionInput" - }, - "ValidationError": { - "properties": { - "loc": { - "items": { "anyOf": [{ "type": "string" }, { "type": "integer" }] }, - "type": "array", - "title": "Location" - }, - "msg": { "type": "string", "title": "Message" }, - "type": { "type": "string", "title": "Error Type" } - }, - "type": "object", - "required": ["loc", "msg", "type"], - "title": "ValidationError" - } - } - } -} diff --git a/libs/partners/robocorp/tests/unit_tests/_openapi2.fixture.json b/libs/partners/robocorp/tests/unit_tests/_openapi2.fixture.json deleted file mode 100644 index f97c5c680df4b..0000000000000 --- a/libs/partners/robocorp/tests/unit_tests/_openapi2.fixture.json +++ /dev/null @@ -1,387 +0,0 @@ -{ - "openapi": "3.1.0", - "info": { - "title": "Robocorp Action Server", - "version": "0.1.0" - }, - "servers": [ - { - "url": "https://hosted-actions.onrender.com" - } - ], - "paths": { - "/api/actions/google-sheet-gmail/get-google-spreadsheet-schema/run": { - "post": { - "summary": "Get Google Spreadsheet Schema", - "description": "Action to get necessary information to be able to work with a Google Sheet Spreadsheets correctly.\nUse this action minimum once before anything else, to learn about the structure\nof the Spreadsheet. Method will return the first few rows of each Sheet as an example.", - "operationId": "get_google_spreadsheet_schema", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": {}, - "type": "object" - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "string", - "title": "Response Get Google Spreadsheet Schema", - "description": "Names of the sheets, and a couple of first rows from each sheet to explain the context." - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "security": [ - { - "HTTPBearer": [] - } - ] - } - }, - "/api/actions/google-sheet-gmail/create-new-google-sheet/run": { - "post": { - "summary": "Create New Google Sheet", - "description": "Creates a new empty Sheet in user's Google Spreadsheet.", - "operationId": "create_new_google_sheet", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "name": { - "type": "string", - "title": "Name", - "description": "Name of the Sheet. You must refer to this Sheet name later when adding or reading date from the Sheet." - } - }, - "type": "object", - "required": [ - "name" - ] - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "string", - "title": "Response Create New Google Sheet", - "description": "True if operation was success, and False if it failed." - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "security": [ - { - "HTTPBearer": [] - } - ] - } - }, - "/api/actions/google-sheet-gmail/add-sheet-rows/run": { - "post": { - "summary": "Add Sheet Rows", - "description": "Action to add multiple rows to the Google sheet. Get the sheets with get_google_spreadsheet_schema if you don't know\nthe names or data structure. Make sure the values are in correct columns (needs to be ordered the same as in the sample).\nStrictly adhere to the schema.", - "operationId": "add_sheet_rows", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "sheet": { - "type": "string", - "title": "Sheet", - "description": "Name of the sheet where the data is added to" - }, - "rows_to_add": { - "properties": { - "rows": { - "items": { - "properties": { - "columns": { - "items": { - "type": "string" - }, - "type": "array", - "title": "Columns", - "description": "The columns that make up the row" - } - }, - "type": "object", - "required": [ - "columns" - ], - "title": "Row" - }, - "type": "array", - "title": "Rows", - "description": "The rows that need to be added" - } - }, - "type": "object", - "required": [ - "rows" - ], - "title": "Rows To Add", - "description": "the rows to be added to the sheet" - } - }, - "type": "object", - "required": [ - "sheet", - "rows_to_add" - ] - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "string", - "title": "Response Add Sheet Rows", - "description": "The result of the operation." - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "security": [ - { - "HTTPBearer": [] - } - ] - } - }, - "/api/actions/google-sheet-gmail/get-sheet-contents/run": { - "post": { - "summary": "Get Sheet Contents", - "description": "Get all content from the chosen Google Spreadsheet Sheet.", - "operationId": "get_sheet_contents", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "sheet": { - "type": "string", - "title": "Sheet", - "description": "Name of the sheet from which to get the data" - } - }, - "type": "object", - "required": [ - "sheet" - ] - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "string", - "title": "Response Get Sheet Contents", - "description": "Sheet data as string, rows separated by newlines" - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "security": [ - { - "HTTPBearer": [] - } - ] - } - }, - "/api/actions/google-sheet-gmail/send-email-via-gmail/run": { - "post": { - "summary": "Send Email Via Gmail", - "description": "Sends an email using Gmail SMTP with an App Password for authentication.", - "operationId": "send_email_via_gmail", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "subject": { - "type": "string", - "title": "Subject", - "description": "Email subject" - }, - "body": { - "type": "string", - "title": "Body", - "description": "Email body content" - }, - "recipient": { - "type": "string", - "title": "Recipient", - "description": "Recipient email address" - } - }, - "type": "object", - "required": [ - "subject", - "body", - "recipient" - ] - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "type": "string", - "title": "Response Send Email Via Gmail", - "description": "Information if the send was successful or not" - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "security": [ - { - "HTTPBearer": [] - } - ], - "x-openai-isConsequential": true - } - } - }, - "components": { - "securitySchemes": { - "HTTPBearer": { - "type": "http", - "scheme": "bearer" - } - }, - "schemas": { - "HTTPValidationError": { - "properties": { - "errors": { - "items": { - "$ref": "#/components/schemas/ValidationError" - }, - "type": "array", - "title": "Errors" - } - }, - "type": "object", - "title": "HTTPValidationError" - }, - "ValidationError": { - "properties": { - "loc": { - "items": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "integer" - } - ] - }, - "type": "array", - "title": "Location" - }, - "msg": { - "type": "string", - "title": "Message" - }, - "type": { - "type": "string", - "title": "Error Type" - } - }, - "type": "object", - "required": [ - "loc", - "msg", - "type" - ], - "title": "ValidationError" - } - } - } -} \ No newline at end of file diff --git a/libs/partners/robocorp/tests/unit_tests/_openapi3.fixture.json b/libs/partners/robocorp/tests/unit_tests/_openapi3.fixture.json deleted file mode 100644 index 97f07b218769e..0000000000000 --- a/libs/partners/robocorp/tests/unit_tests/_openapi3.fixture.json +++ /dev/null @@ -1,1891 +0,0 @@ -{ - "openapi": "3.1.0", - "info": { - "title": "Sema4.ai Action Server", - "version": "0.11.0" - }, - "servers": [ - { - "url": "http://localhost:8806" - } - ], - "paths": { - "/api/actions/google-calendar/create-event/run": { - "post": { - "summary": "Create Event", - "description": "Creates a new event in the specified calendar.", - "operationId": "create_event", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "event": { - "properties": { - "id": { - "type": "string", - "title": "Id", - "description": "The id of the event." - }, - "summary": { - "type": "string", - "title": "Summary", - "description": "A short summary of the event's purpose." - }, - "location": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Location", - "description": "The physical location of the event." - }, - "description": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Description", - "description": "A more detailed description of the event." - }, - "start": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (inclusive) start time of the event." - }, - "end": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (exclusive) end time of the event." - }, - "recurrence": { - "anyOf": [ - { - "items": { - "type": "string" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Recurrence", - "description": "A list of RRULE, EXRULE, RDATE, and EXDATE lines for a recurring event." - }, - "attendees": { - "anyOf": [ - { - "items": { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - }, - "optional": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Optional", - "description": "Whether this is an optional attendee." - }, - "responseStatus": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Responsestatus", - "description": "The response status of the attendee." - }, - "organizer": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Organizer", - "description": "Whether the attendee is the organizer of the event." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Attendee" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Attendees", - "description": "A list of attendees." - }, - "reminders": { - "anyOf": [ - { - "properties": { - "useDefault": { - "type": "boolean", - "title": "Usedefault", - "description": "Indicates whether to use the default reminders." - }, - "overrides": { - "anyOf": [ - { - "items": { - "properties": { - "method": { - "type": "string", - "title": "Method", - "description": "The method of the reminder (email or popup)." - }, - "minutes": { - "type": "integer", - "title": "Minutes", - "description": "The number of minutes before the event when the reminder should occur." - } - }, - "type": "object", - "required": [ - "method", - "minutes" - ], - "title": "ReminderOverride" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Overrides", - "description": "A list of overrides for the reminders." - } - }, - "type": "object", - "required": [ - "useDefault" - ], - "title": "Reminder" - }, - { - "type": "null" - } - ], - "description": "Reminders settings for the event." - }, - "organizer": { - "allOf": [ - { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Identity" - } - ], - "description": "The organizer of the event." - } - }, - "type": "object", - "required": [ - "id", - "summary", - "start", - "end", - "organizer" - ], - "title": "Event", - "description": "JSON representation of the Google Calendar V3 event." - }, - "calendar_id": { - "type": "string", - "title": "Calendar Id", - "description": "Calendar identifier which can be found by listing all calendars action.\nDefault value is \"primary\" which indicates the calendar where the user is currently logged in.", - "default": "primary" - } - }, - "type": "object", - "required": [ - "event" - ] - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "properties": { - "id": { - "type": "string", - "title": "Id", - "description": "The id of the event." - }, - "summary": { - "type": "string", - "title": "Summary", - "description": "A short summary of the event's purpose." - }, - "location": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Location", - "description": "The physical location of the event." - }, - "description": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Description", - "description": "A more detailed description of the event." - }, - "start": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (inclusive) start time of the event." - }, - "end": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (exclusive) end time of the event." - }, - "recurrence": { - "anyOf": [ - { - "items": { - "type": "string" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Recurrence", - "description": "A list of RRULE, EXRULE, RDATE, and EXDATE lines for a recurring event." - }, - "attendees": { - "anyOf": [ - { - "items": { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - }, - "optional": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Optional", - "description": "Whether this is an optional attendee." - }, - "responseStatus": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Responsestatus", - "description": "The response status of the attendee." - }, - "organizer": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Organizer", - "description": "Whether the attendee is the organizer of the event." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Attendee" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Attendees", - "description": "A list of attendees." - }, - "reminders": { - "anyOf": [ - { - "properties": { - "useDefault": { - "type": "boolean", - "title": "Usedefault", - "description": "Indicates whether to use the default reminders." - }, - "overrides": { - "anyOf": [ - { - "items": { - "properties": { - "method": { - "type": "string", - "title": "Method", - "description": "The method of the reminder (email or popup)." - }, - "minutes": { - "type": "integer", - "title": "Minutes", - "description": "The number of minutes before the event when the reminder should occur." - } - }, - "type": "object", - "required": [ - "method", - "minutes" - ], - "title": "ReminderOverride" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Overrides", - "description": "A list of overrides for the reminders." - } - }, - "type": "object", - "required": [ - "useDefault" - ], - "title": "Reminder" - }, - { - "type": "null" - } - ], - "description": "Reminders settings for the event." - }, - "organizer": { - "allOf": [ - { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Identity" - } - ], - "description": "The organizer of the event." - } - }, - "type": "object", - "required": [ - "id", - "summary", - "start", - "end", - "organizer" - ], - "title": "Response for Create Event", - "description": "The newly created event." - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "x-openai-isConsequential": true - } - }, - "/api/actions/google-calendar/list-events/run": { - "post": { - "summary": "List Events", - "description": "List all events in the user's primary calendar between the given dates.\nTo aggregate all events across calendars, call this method for each calendar returned by list_calendars endpoint.", - "operationId": "list_events", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "calendar_id": { - "type": "string", - "title": "Calendar Id", - "description": "Calendar identifier which can be found by listing all calendars action.\nDefault value is \"primary\" which indicates the calendar where the user is currently logged in.", - "default": "primary" - }, - "query": { - "type": "string", - "title": "Query", - "description": "Free text search terms to find events that match these terms in summary, description, location,\nattendee's name / email or working location information.", - "default": "" - }, - "start_date": { - "type": "string", - "title": "Start Date", - "description": "Upper bound (exclusive) for an event's start time to filter by.\nMust be an RFC3339 timestamp with mandatory time zone offset.", - "default": "" - }, - "end_date": { - "type": "string", - "title": "End Date", - "description": "Lower bound (exclusive) for an event's end time to filter by.\nMust be an RFC3339 timestamp with mandatory time zone offset.", - "default": "" - } - }, - "type": "object" - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "properties": { - "result": { - "anyOf": [ - { - "properties": { - "events": { - "items": { - "properties": { - "id": { - "type": "string", - "title": "Id", - "description": "The id of the event." - }, - "summary": { - "type": "string", - "title": "Summary", - "description": "A short summary of the event's purpose." - }, - "location": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Location", - "description": "The physical location of the event." - }, - "description": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Description", - "description": "A more detailed description of the event." - }, - "start": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (inclusive) start time of the event." - }, - "end": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (exclusive) end time of the event." - }, - "recurrence": { - "anyOf": [ - { - "items": { - "type": "string" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Recurrence", - "description": "A list of RRULE, EXRULE, RDATE, and EXDATE lines for a recurring event." - }, - "attendees": { - "anyOf": [ - { - "items": { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - }, - "optional": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Optional", - "description": "Whether this is an optional attendee." - }, - "responseStatus": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Responsestatus", - "description": "The response status of the attendee." - }, - "organizer": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Organizer", - "description": "Whether the attendee is the organizer of the event." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Attendee" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Attendees", - "description": "A list of attendees." - }, - "reminders": { - "anyOf": [ - { - "properties": { - "useDefault": { - "type": "boolean", - "title": "Usedefault", - "description": "Indicates whether to use the default reminders." - }, - "overrides": { - "anyOf": [ - { - "items": { - "properties": { - "method": { - "type": "string", - "title": "Method", - "description": "The method of the reminder (email or popup)." - }, - "minutes": { - "type": "integer", - "title": "Minutes", - "description": "The number of minutes before the event when the reminder should occur." - } - }, - "type": "object", - "required": [ - "method", - "minutes" - ], - "title": "ReminderOverride" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Overrides", - "description": "A list of overrides for the reminders." - } - }, - "type": "object", - "required": [ - "useDefault" - ], - "title": "Reminder" - }, - { - "type": "null" - } - ], - "description": "Reminders settings for the event." - }, - "organizer": { - "allOf": [ - { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Identity" - } - ], - "description": "The organizer of the event." - } - }, - "type": "object", - "required": [ - "id", - "summary", - "start", - "end", - "organizer" - ], - "title": "Event" - }, - "type": "array", - "title": "Events" - } - }, - "type": "object", - "required": [ - "events" - ], - "title": "EventList" - }, - { - "type": "null" - } - ], - "description": "The result for the action if it ran successfully" - }, - "error": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Error", - "description": "The error message if the action failed for some reason" - } - }, - "type": "object", - "title": "Response for List Events", - "description": "A list of calendar events that match the query, if defined." - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "x-openai-isConsequential": false - } - }, - "/api/actions/google-calendar/list-calendars/run": { - "post": { - "summary": "List Calendars", - "description": "List all calendars that the user is subscribed to.", - "operationId": "list_calendars", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": {}, - "type": "object" - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "properties": { - "result": { - "anyOf": [ - { - "properties": { - "calendars": { - "items": { - "properties": { - "id": { - "type": "string", - "title": "Id", - "description": "The id of the calendar." - }, - "summary": { - "type": "string", - "title": "Summary", - "description": "The name or summary of the calendar." - }, - "timeZone": { - "type": "string", - "title": "Timezone", - "description": "The timezone the calendar is set to, such as 'Europe/Bucharest'." - }, - "selected": { - "type": "boolean", - "title": "Selected", - "description": "A boolean indicating if the calendar is selected by the user in their UI." - }, - "accessRole": { - "type": "string", - "title": "Accessrole", - "description": "The access role of the user with respect to the calendar, e.g., 'owner'." - } - }, - "type": "object", - "required": [ - "id", - "summary", - "timeZone", - "selected", - "accessRole" - ], - "title": "Calendar" - }, - "type": "array", - "title": "Calendars" - } - }, - "type": "object", - "required": [ - "calendars" - ], - "title": "CalendarList" - }, - { - "type": "null" - } - ], - "description": "The result for the action if it ran successfully" - }, - "error": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Error", - "description": "The error message if the action failed for some reason" - } - }, - "type": "object", - "title": "Response for List Calendars", - "description": "A list of calendars." - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "x-openai-isConsequential": false - } - }, - "/api/actions/google-calendar/update-event/run": { - "post": { - "summary": "Update Event", - "description": "Update an existing Google Calendar event with dynamic arguments.", - "operationId": "update_event", - "requestBody": { - "content": { - "application/json": { - "schema": { - "properties": { - "event_id": { - "type": "string", - "title": "Event Id", - "description": "Identifier of the event to update. Can be found by listing events in all calendars." - }, - "updates": { - "properties": { - "summary": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Summary", - "description": "A short summary of the event's purpose." - }, - "location": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Location", - "description": "The physical location of the event." - }, - "description": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Description", - "description": "A more detailed description of the event." - }, - "start": { - "anyOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - }, - { - "type": "null" - } - ], - "description": "The (inclusive) start time of the event." - }, - "end": { - "anyOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - }, - { - "type": "null" - } - ], - "description": "The (exclusive) end time of the event." - }, - "attendees": { - "anyOf": [ - { - "items": { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - }, - "optional": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Optional", - "description": "Whether this is an optional attendee." - }, - "responseStatus": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Responsestatus", - "description": "The response status of the attendee." - }, - "organizer": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Organizer", - "description": "Whether the attendee is the organizer of the event." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Attendee" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Attendees", - "description": "A list of attendees consisting in email and whether they are mandatory to participate or not." - } - }, - "type": "object", - "title": "Updates", - "description": "A dictionary containing the event attributes to update.\nPossible keys include 'summary', 'description', 'start', 'end', and 'attendees'." - }, - "calendar_id": { - "type": "string", - "title": "Calendar Id", - "description": "Identifier of the calendar where the event is.\nDefault value is \"primary\" which indicates the calendar where the user is currently logged in.", - "default": "primary" - } - }, - "type": "object", - "required": [ - "event_id", - "updates" - ] - } - } - }, - "required": true - }, - "responses": { - "200": { - "description": "Successful Response", - "content": { - "application/json": { - "schema": { - "properties": { - "result": { - "anyOf": [ - { - "properties": { - "id": { - "type": "string", - "title": "Id", - "description": "The id of the event." - }, - "summary": { - "type": "string", - "title": "Summary", - "description": "A short summary of the event's purpose." - }, - "location": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Location", - "description": "The physical location of the event." - }, - "description": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Description", - "description": "A more detailed description of the event." - }, - "start": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (inclusive) start time of the event." - }, - "end": { - "allOf": [ - { - "properties": { - "date": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Date", - "description": "The date, in the format 'yyyy-mm-dd', if this is an all-day event." - }, - "dateTime": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Datetime", - "description": "The start or end time of the event." - }, - "timeZone": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Timezone", - "description": "The time zone in which the time is specified, formatted as IANA Time Zone Database. For single events this field is optional." - } - }, - "type": "object", - "title": "EventDateTime" - } - ], - "description": "The (exclusive) end time of the event." - }, - "recurrence": { - "anyOf": [ - { - "items": { - "type": "string" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Recurrence", - "description": "A list of RRULE, EXRULE, RDATE, and EXDATE lines for a recurring event." - }, - "attendees": { - "anyOf": [ - { - "items": { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - }, - "optional": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Optional", - "description": "Whether this is an optional attendee." - }, - "responseStatus": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Responsestatus", - "description": "The response status of the attendee." - }, - "organizer": { - "anyOf": [ - { - "type": "boolean" - }, - { - "type": "null" - } - ], - "title": "Organizer", - "description": "Whether the attendee is the organizer of the event." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Attendee" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Attendees", - "description": "A list of attendees." - }, - "reminders": { - "anyOf": [ - { - "properties": { - "useDefault": { - "type": "boolean", - "title": "Usedefault", - "description": "Indicates whether to use the default reminders." - }, - "overrides": { - "anyOf": [ - { - "items": { - "properties": { - "method": { - "type": "string", - "title": "Method", - "description": "The method of the reminder (email or popup)." - }, - "minutes": { - "type": "integer", - "title": "Minutes", - "description": "The number of minutes before the event when the reminder should occur." - } - }, - "type": "object", - "required": [ - "method", - "minutes" - ], - "title": "ReminderOverride" - }, - "type": "array" - }, - { - "type": "null" - } - ], - "title": "Overrides", - "description": "A list of overrides for the reminders." - } - }, - "type": "object", - "required": [ - "useDefault" - ], - "title": "Reminder" - }, - { - "type": "null" - } - ], - "description": "Reminders settings for the event." - }, - "organizer": { - "allOf": [ - { - "properties": { - "email": { - "type": "string", - "title": "Email", - "description": "The email address of the identity." - }, - "displayName": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Displayname", - "description": "The display name of the identity." - } - }, - "type": "object", - "required": [ - "email" - ], - "title": "Identity" - } - ], - "description": "The organizer of the event." - } - }, - "type": "object", - "required": [ - "id", - "summary", - "start", - "end", - "organizer" - ], - "title": "Event" - }, - { - "type": "null" - } - ], - "description": "The result for the action if it ran successfully" - }, - "error": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "null" - } - ], - "title": "Error", - "description": "The error message if the action failed for some reason" - } - }, - "type": "object", - "title": "Response for Update Event", - "description": "Updated event details." - } - } - } - }, - "422": { - "description": "Validation Error", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/HTTPValidationError" - } - } - } - } - }, - "x-openai-isConsequential": true - } - } - }, - "components": { - "schemas": { - "HTTPValidationError": { - "properties": { - "errors": { - "items": { - "$ref": "#/components/schemas/ValidationError" - }, - "type": "array", - "title": "Errors" - } - }, - "type": "object", - "title": "HTTPValidationError" - }, - "ValidationError": { - "properties": { - "loc": { - "items": { - "anyOf": [ - { - "type": "string" - }, - { - "type": "integer" - } - ] - }, - "type": "array", - "title": "Location" - }, - "msg": { - "type": "string", - "title": "Message" - }, - "type": { - "type": "string", - "title": "Error Type" - } - }, - "type": "object", - "required": [ - "loc", - "msg", - "type" - ], - "title": "ValidationError" - } - } - } -} diff --git a/libs/partners/robocorp/tests/unit_tests/test_common.py b/libs/partners/robocorp/tests/unit_tests/test_common.py deleted file mode 100644 index 4da240c23c4ba..0000000000000 --- a/libs/partners/robocorp/tests/unit_tests/test_common.py +++ /dev/null @@ -1,25 +0,0 @@ -"""Test common functions.""" - -import json -import unittest -from pathlib import Path - -from langchain_robocorp._common import reduce_openapi_spec - -from ._fixtures import openapi_endpoint_doc_mock - - -class TestReduceOpenAPISpec(unittest.TestCase): - maxDiff = None - - def test_reduce_openapi_spec(self) -> None: - with Path(__file__).with_name("_openapi.fixture.json").open("r") as file: - original = json.load(file) - - output = reduce_openapi_spec("https://foo.bar", original) - - self.assertEqual(output.servers, [{"url": "https://foo.bar"}]) - self.assertEqual(output.description, "Robocorp Actions Server") - - self.assertEqual(len(output.endpoints), 8) - self.assertEqual(output.endpoints[0][1], openapi_endpoint_doc_mock) diff --git a/libs/partners/robocorp/tests/unit_tests/test_imports.py b/libs/partners/robocorp/tests/unit_tests/test_imports.py deleted file mode 100644 index d5662ea8f4b44..0000000000000 --- a/libs/partners/robocorp/tests/unit_tests/test_imports.py +++ /dev/null @@ -1,9 +0,0 @@ -from langchain_robocorp import __all__ - -EXPECTED_ALL = [ - "ActionServerToolkit", -] - - -def test_all_imports() -> None: - assert sorted(EXPECTED_ALL) == sorted(__all__) diff --git a/libs/partners/robocorp/tests/unit_tests/test_toolkits.py b/libs/partners/robocorp/tests/unit_tests/test_toolkits.py deleted file mode 100644 index cf8e63128f2de..0000000000000 --- a/libs/partners/robocorp/tests/unit_tests/test_toolkits.py +++ /dev/null @@ -1,187 +0,0 @@ -"""Test toolkit integration.""" - -import json -from pathlib import Path -from unittest.mock import MagicMock, patch - -from langchain_core.utils.function_calling import ( - convert_to_openai_function, - convert_to_openai_tool, -) - -from langchain_robocorp.toolkits import ActionServerToolkit - -from ._fixtures import FakeChatLLMT - - -def test_initialization() -> None: - """Test toolkit initialization.""" - ActionServerToolkit(url="http://localhost", llm=FakeChatLLMT()) # type: ignore[call-arg] - - -def test_get_tools_success() -> None: - # Setup - toolkit_instance = ActionServerToolkit( - url="http://example.com", api_key="dummy_key" - ) - - fixture_path = Path(__file__).with_name("_openapi2.fixture.json") - - with patch( - "langchain_robocorp.toolkits.requests.get" - ) as mocked_get, fixture_path.open("r") as f: - data = json.load(f) # Using json.load directly on the file object - mocked_response = MagicMock() - mocked_response.json.return_value = data - mocked_response.status_code = 200 - mocked_response.headers = {"Content-Type": "application/json"} - mocked_get.return_value = mocked_response - - # Execute - tools = toolkit_instance.get_tools() - - # Verify - assert len(tools) == 5 - - tool = tools[2] - assert tool.name == "add_sheet_rows" - assert tool.description == ( - "Action to add multiple rows to the Google sheet. " - "Get the sheets with get_google_spreadsheet_schema if you don't know" - "\nthe names or data structure. Make sure the values are in correct" - """ columns (needs to be ordered the same as in the sample). -Strictly adhere to the schema.""" - ) - - openai_func_spec = convert_to_openai_function(tool) - - assert isinstance( - openai_func_spec, dict - ), "openai_func_spec should be a dictionary." - assert set(openai_func_spec.keys()) == { - "description", - "name", - "parameters", - }, "Top-level keys mismatch." - - assert openai_func_spec["description"] == tool.description - assert openai_func_spec["name"] == tool.name - - assert isinstance( - openai_func_spec["parameters"], dict - ), "Parameters should be a dictionary." - - params = openai_func_spec["parameters"] - assert set(params.keys()) == { - "type", - "properties", - "required", - }, "Parameters keys mismatch." - assert params["type"] == "object", "`type` in parameters should be 'object'." - assert isinstance( - params["properties"], dict - ), "`properties` should be a dictionary." - assert isinstance(params["required"], list), "`required` should be a list." - - assert set(params["required"]) == { - "sheet", - "rows_to_add", - }, "Required fields mismatch." - - assert set(params["properties"].keys()) == {"sheet", "rows_to_add"} - - desc = "The columns that make up the row" - expected = { - "description": "the rows to be added to the sheet", - "allOf": [ - { - "title": "Rows To Add", - "type": "object", - "properties": { - "rows": { - "title": "Rows", - "description": "The rows that need to be added", - "type": "array", - "items": { - "title": "Row", - "type": "object", - "properties": { - "columns": { - "title": "Columns", - "description": desc, - "type": "array", - "items": {"type": "string"}, - } - }, - "required": ["columns"], - }, - } - }, - "required": ["rows"], - } - ], - } - assert params["properties"]["rows_to_add"] == expected - - -def test_get_tools_with_complex_inputs() -> None: - toolkit_instance = ActionServerToolkit( - url="http://example.com", api_key="dummy_key" - ) - - fixture_path = Path(__file__).with_name("_openapi3.fixture.json") - - with patch( - "langchain_robocorp.toolkits.requests.get" - ) as mocked_get, fixture_path.open("r") as f: - data = json.load(f) # Using json.load directly on the file object - mocked_response = MagicMock() - mocked_response.json.return_value = data - mocked_response.status_code = 200 - mocked_response.headers = {"Content-Type": "application/json"} - mocked_get.return_value = mocked_response - - # Execute - tools = toolkit_instance.get_tools() - assert len(tools) == 4 - - tool = tools[0] - assert tool.name == "create_event" - assert tool.description == "Creates a new event in the specified calendar." - - all_tools_as_openai_tools = [convert_to_openai_tool(t) for t in tools] - openai_tool_spec = all_tools_as_openai_tools[0]["function"] - - assert isinstance( - openai_tool_spec, dict - ), "openai_func_spec should be a dictionary." - assert set(openai_tool_spec.keys()) == { - "description", - "name", - "parameters", - }, "Top-level keys mismatch." - - assert openai_tool_spec["description"] == tool.description - assert openai_tool_spec["name"] == tool.name - - assert isinstance( - openai_tool_spec["parameters"], dict - ), "Parameters should be a dictionary." - - params = openai_tool_spec["parameters"] - assert set(params.keys()) == { - "type", - "properties", - "required", - }, "Parameters keys mismatch." - assert params["type"] == "object", "`type` in parameters should be 'object'." - assert isinstance( - params["properties"], dict - ), "`properties` should be a dictionary." - assert isinstance(params["required"], list), "`required` should be a list." - - assert set(params["required"]) == { - "event", - }, "Required fields mismatch." - - assert set(params["properties"].keys()) == {"calendar_id", "event"} diff --git a/libs/partners/unstructured/.gitignore b/libs/partners/unstructured/.gitignore deleted file mode 100644 index bee8a64b79a99..0000000000000 --- a/libs/partners/unstructured/.gitignore +++ /dev/null @@ -1 +0,0 @@ -__pycache__ diff --git a/libs/partners/unstructured/LICENSE b/libs/partners/unstructured/LICENSE deleted file mode 100644 index fc0602feecdd6..0000000000000 --- a/libs/partners/unstructured/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2024 LangChain, Inc. - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/libs/partners/unstructured/Makefile b/libs/partners/unstructured/Makefile deleted file mode 100644 index 84cfd5303814c..0000000000000 --- a/libs/partners/unstructured/Makefile +++ /dev/null @@ -1,69 +0,0 @@ -.PHONY: all format lint test tests integration_tests docker_tests help extended_tests - -# Default target executed when no arguments are given to make. -all: help - -# Define a variable for the test file path. -TEST_FILE ?= tests/unit_tests/ -integration_test integration_tests: TEST_FILE = tests/integration_tests/ - - -# unit tests are run with the --disable-socket flag to prevent network calls -test tests: - poetry run pytest --disable-socket --allow-unix-socket $(TEST_FILE) - -test_watch: - poetry run ptw --snapshot-update --now . -- -vv $(TEST_FILE) - -# integration tests are run without the --disable-socket flag to allow network calls -integration_test: - poetry run pytest $(TEST_FILE) - -# skip tests marked as local in CI -integration_tests: - poetry run pytest $(TEST_FILE) -m "not local" - -###################### -# LINTING AND FORMATTING -###################### - -# Define a variable for Python and notebook files. -PYTHON_FILES=. -MYPY_CACHE=.mypy_cache -lint format: PYTHON_FILES=. -lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/partners/unstructured --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$') -lint_package: PYTHON_FILES=langchain_unstructured -lint_tests: PYTHON_FILES=tests -lint_tests: MYPY_CACHE=.mypy_cache_test - -lint lint_diff lint_package lint_tests: - poetry run ruff check . - poetry run ruff format $(PYTHON_FILES) --diff - poetry run ruff check --select I $(PYTHON_FILES) - mkdir -p $(MYPY_CACHE); poetry run mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE) - -format format_diff: - poetry run ruff format $(PYTHON_FILES) - poetry run ruff check --select I --fix $(PYTHON_FILES) - -spell_check: - poetry run codespell --toml pyproject.toml - -spell_fix: - poetry run codespell --toml pyproject.toml -w - -check_imports: $(shell find langchain_unstructured -name '*.py') - poetry run python ./scripts/check_imports.py $^ - -###################### -# HELP -###################### - -help: - @echo '----' - @echo 'check_imports - check imports' - @echo 'format - run code formatters' - @echo 'lint - run linters' - @echo 'test - run unit tests' - @echo 'tests - run unit tests' - @echo 'test TEST_FILE=<test_file> - run all tests in file' diff --git a/libs/partners/unstructured/README.md b/libs/partners/unstructured/README.md index 05f41fbc11885..267869d262e7a 100644 --- a/libs/partners/unstructured/README.md +++ b/libs/partners/unstructured/README.md @@ -1,71 +1,3 @@ -# langchain-unstructured +This package has moved! -This package contains the LangChain integration with Unstructured - -## Installation - -```bash -pip install -U langchain-unstructured -``` - -And you should configure credentials by setting the following environment variables: - -```bash -export UNSTRUCTURED_API_KEY="your-api-key" -``` - -## Loaders - -Partition and load files using either the `unstructured-client` sdk and the -Unstructured API or locally using the `unstructured` library. - -API: -To partition via the Unstructured API `pip install unstructured-client` and set -`partition_via_api=True` and define `api_key`. If you are running the unstructured API -locally, you can change the API rule by defining `url` when you initialize the -loader. The hosted Unstructured API requires an API key. See the links below to -learn more about our API offerings and get an API key. - -Local: -By default the file loader uses the Unstructured `partition` function and will -automatically detect the file type. - -In addition to document specific partition parameters, Unstructured has a rich set -of "chunking" parameters for post-processing elements into more useful text segments -for uses cases such as Retrieval Augmented Generation (RAG). You can pass additional -Unstructured kwargs to the loader to configure different unstructured settings. - -Setup: -```bash - pip install -U langchain-unstructured - pip install -U unstructured-client - export UNSTRUCTURED_API_KEY="your-api-key" -``` - -Instantiate: -```python -from langchain_unstructured import UnstructuredLoader - -loader = UnstructuredLoader( - file_path = ["example.pdf", "fake.pdf"], - api_key=UNSTRUCTURED_API_KEY, - partition_via_api=True, - chunking_strategy="by_title", - strategy="fast", -) -``` - -Load: -```python -docs = loader.load() - -print(docs[0].page_content[:100]) -print(docs[0].metadata) -``` - -References ----------- -https://docs.unstructured.io/api-reference/api-services/sdk -https://docs.unstructured.io/api-reference/api-services/overview -https://docs.unstructured.io/open-source/core-functionality/partitioning -https://docs.unstructured.io/open-source/core-functionality/chunking +https://github.com/langchain-ai/langchain-unstructured/tree/main/libs/unstructured diff --git a/libs/partners/unstructured/langchain_unstructured/__init__.py b/libs/partners/unstructured/langchain_unstructured/__init__.py deleted file mode 100644 index 6bd3aabd523bf..0000000000000 --- a/libs/partners/unstructured/langchain_unstructured/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -from importlib import metadata - -from langchain_unstructured.document_loaders import UnstructuredLoader - -try: - __version__ = metadata.version(__package__) -except metadata.PackageNotFoundError: - # Case where package metadata is not available. - __version__ = "" -del metadata # optional, avoids polluting the results of dir(__package__) - -__all__ = [ - "UnstructuredLoader", - "__version__", -] diff --git a/libs/partners/unstructured/langchain_unstructured/document_loaders.py b/libs/partners/unstructured/langchain_unstructured/document_loaders.py deleted file mode 100644 index bd3bcd6dbbe63..0000000000000 --- a/libs/partners/unstructured/langchain_unstructured/document_loaders.py +++ /dev/null @@ -1,285 +0,0 @@ -"""Unstructured document loader.""" - -from __future__ import annotations - -import json -import logging -import os -from pathlib import Path -from typing import IO, Any, Callable, Iterator, Optional, cast - -from langchain_core.document_loaders.base import BaseLoader -from langchain_core.documents import Document -from typing_extensions import TypeAlias -from unstructured_client import UnstructuredClient # type: ignore -from unstructured_client.models import operations, shared # type: ignore - -Element: TypeAlias = Any - -logger = logging.getLogger(__file__) - -_DEFAULT_URL = "https://api.unstructuredapp.io/general/v0/general" - - -class UnstructuredLoader(BaseLoader): - """Unstructured document loader interface. - - Setup: - Install ``langchain-unstructured`` and set environment variable ``UNSTRUCTURED_API_KEY``. - - .. code-block:: bash - pip install -U langchain-unstructured - export UNSTRUCTURED_API_KEY="your-api-key" - - Instantiate: - .. code-block:: python - from langchain_unstructured import UnstructuredLoader - - loader = UnstructuredLoader( - file_path = ["example.pdf", "fake.pdf"], - api_key=UNSTRUCTURED_API_KEY, - partition_via_api=True, - chunking_strategy="by_title", - strategy="fast", - ) - - Lazy load: - .. code-block:: python - - docs = [] - docs_lazy = loader.lazy_load() - - # async variant: - # docs_lazy = await loader.alazy_load() - - for doc in docs_lazy: - docs.append(doc) - print(docs[0].page_content[:100]) - print(docs[0].metadata) - - .. code-block:: python - - 1 2 0 2 - {'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 213.36), (16.34, 253.36), (36.34, 253.36), (36.34, 213.36)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-07-25T21:28:58', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'd3ce55f220dfb75891b4394a18bcb973'} - - - Async load: - .. code-block:: python - - docs = await loader.aload() - print(docs[0].page_content[:100]) - print(docs[0].metadata) - - .. code-block:: python - - 1 2 0 2 - {'source': './example_data/layout-parser-paper.pdf', 'coordinates': {'points': ((16.34, 213.36), (16.34, 253.36), (36.34, 253.36), (36.34, 213.36)), 'system': 'PixelSpace', 'layout_width': 612, 'layout_height': 792}, 'file_directory': './example_data', 'filename': 'layout-parser-paper.pdf', 'languages': ['eng'], 'last_modified': '2024-07-25T21:28:58', 'page_number': 1, 'filetype': 'application/pdf', 'category': 'UncategorizedText', 'element_id': 'd3ce55f220dfb75891b4394a18bcb973'} - - - References - ---------- - https://docs.unstructured.io/api-reference/api-services/sdk - https://docs.unstructured.io/api-reference/api-services/overview - https://docs.unstructured.io/open-source/core-functionality/partitioning - https://docs.unstructured.io/open-source/core-functionality/chunking - """ # noqa: E501 - - def __init__( - self, - file_path: Optional[str | Path | list[str] | list[Path]] = None, - *, - file: Optional[IO[bytes] | list[IO[bytes]]] = None, - partition_via_api: bool = False, - post_processors: Optional[list[Callable[[str], str]]] = None, - # SDK parameters - api_key: Optional[str] = None, - client: Optional[UnstructuredClient] = None, - url: Optional[str] = None, - **kwargs: Any, - ): - """Initialize loader.""" - if file_path is not None and file is not None: - raise ValueError("file_path and file cannot be defined simultaneously.") - if client is not None: - disallowed_params = [("api_key", api_key), ("url", url)] - bad_params = [ - param for param, value in disallowed_params if value is not None - ] - - if bad_params: - raise ValueError( - "if you are passing a custom `client`, you cannot also pass these " - f"params: {', '.join(bad_params)}." - ) - - unstructured_api_key = api_key or os.getenv("UNSTRUCTURED_API_KEY") or "" - unstructured_url = url or os.getenv("UNSTRUCTURED_URL") or _DEFAULT_URL - - self.client = client or UnstructuredClient( - api_key_auth=unstructured_api_key, server_url=unstructured_url - ) - - self.file_path = file_path - self.file = file - self.partition_via_api = partition_via_api - self.post_processors = post_processors - self.unstructured_kwargs = kwargs - - def lazy_load(self) -> Iterator[Document]: - """Load file(s) to the _UnstructuredBaseLoader.""" - - def load_file( - f: Optional[IO[bytes]] = None, f_path: Optional[str | Path] = None - ) -> Iterator[Document]: - """Load an individual file to the _UnstructuredBaseLoader.""" - return _SingleDocumentLoader( - file=f, - file_path=f_path, - partition_via_api=self.partition_via_api, - post_processors=self.post_processors, - # SDK parameters - client=self.client, - **self.unstructured_kwargs, - ).lazy_load() - - if isinstance(self.file, list): - for f in self.file: - yield from load_file(f=f) - return - - if isinstance(self.file_path, list): - for f_path in self.file_path: - yield from load_file(f_path=f_path) - return - - # Call _UnstructuredBaseLoader normally since file and file_path are not lists - yield from load_file(f=self.file, f_path=self.file_path) - - -class _SingleDocumentLoader(BaseLoader): - """Provides loader functionality for individual document/file objects. - - Encapsulates partitioning individual file objects (file or file_path) either - locally or via the Unstructured API. - """ - - def __init__( - self, - file_path: Optional[str | Path] = None, - *, - client: UnstructuredClient, - file: Optional[IO[bytes]] = None, - partition_via_api: bool = False, - post_processors: Optional[list[Callable[[str], str]]] = None, - **kwargs: Any, - ): - """Initialize loader.""" - self.file_path = str(file_path) if isinstance(file_path, Path) else file_path - self.file = file - self.partition_via_api = partition_via_api - self.post_processors = post_processors - # SDK parameters - self.client = client - self.unstructured_kwargs = kwargs - - def lazy_load(self) -> Iterator[Document]: - """Load file.""" - elements_json = ( - self._post_process_elements_json(self._elements_json) - if self.post_processors - else self._elements_json - ) - for element in elements_json: - metadata = self._get_metadata() - metadata.update(element.get("metadata")) # type: ignore - metadata.update( - {"category": element.get("category") or element.get("type")} - ) - metadata.update({"element_id": element.get("element_id")}) - yield Document( - page_content=cast(str, element.get("text")), metadata=metadata - ) - - @property - def _elements_json(self) -> list[dict[str, Any]]: - """Get elements as a list of dictionaries from local partition or via API.""" - if self.partition_via_api: - return self._elements_via_api - - return self._convert_elements_to_dicts(self._elements_via_local) - - @property - def _elements_via_local(self) -> list[Element]: - try: - from unstructured.partition.auto import partition # type: ignore - except ImportError: - raise ImportError( - "unstructured package not found, please install it with " - "`pip install unstructured`" - ) - - if self.file and self.unstructured_kwargs.get("metadata_filename") is None: - raise ValueError( - "If partitioning a fileIO object, metadata_filename must be specified" - " as well.", - ) - - return partition( - file=self.file, filename=self.file_path, **self.unstructured_kwargs - ) # type: ignore - - @property - def _elements_via_api(self) -> list[dict[str, Any]]: - """Retrieve a list of element dicts from the API using the SDK client.""" - client = self.client - req = self._sdk_partition_request - response = client.general.partition(req) # type: ignore - if response.status_code == 200: - return json.loads(response.raw_response.text) - raise ValueError( - f"Receive unexpected status code {response.status_code} from the API.", - ) - - @property - def _file_content(self) -> bytes: - """Get content from either file or file_path.""" - if self.file is not None: - return self.file.read() - elif self.file_path: - with open(self.file_path, "rb") as f: - return f.read() - raise ValueError("file or file_path must be defined.") - - @property - def _sdk_partition_request(self) -> operations.PartitionRequest: - return operations.PartitionRequest( - partition_parameters=shared.PartitionParameters( - files=shared.Files( - content=self._file_content, file_name=str(self.file_path) - ), - **self.unstructured_kwargs, - ), - ) - - def _convert_elements_to_dicts( - self, elements: list[Element] - ) -> list[dict[str, Any]]: - return [element.to_dict() for element in elements] - - def _get_metadata(self) -> dict[str, Any]: - """Get file_path metadata if available.""" - return {"source": self.file_path} if self.file_path else {} - - def _post_process_elements_json( - self, elements_json: list[dict[str, Any]] - ) -> list[dict[str, Any]]: - """Apply post processing functions to extracted unstructured elements. - - Post processing functions are str -> str callables passed - in using the post_processors kwarg when the loader is instantiated. - """ - if self.post_processors: - for element in elements_json: - for post_processor in self.post_processors: - element["text"] = post_processor(str(element.get("text"))) - return elements_json diff --git a/libs/partners/unstructured/langchain_unstructured/py.typed b/libs/partners/unstructured/langchain_unstructured/py.typed deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/unstructured/poetry.lock b/libs/partners/unstructured/poetry.lock deleted file mode 100644 index 867f7ac62e7e3..0000000000000 --- a/libs/partners/unstructured/poetry.lock +++ /dev/null @@ -1,4528 +0,0 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. - -[[package]] -name = "annotated-types" -version = "0.7.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" -files = [ - {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, - {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, -] - -[[package]] -name = "antlr4-python3-runtime" -version = "4.9.3" -description = "ANTLR 4.9.3 runtime for Python 3.7" -optional = false -python-versions = "*" -files = [ - {file = "antlr4-python3-runtime-4.9.3.tar.gz", hash = "sha256:f224469b4168294902bb1efa80a8bf7855f24c99aef99cbefc1bcd3cce77881b"}, -] - -[[package]] -name = "anyio" -version = "4.4.0" -description = "High level compatibility layer for multiple asynchronous event loop implementations" -optional = false -python-versions = ">=3.8" -files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, -] - -[package.dependencies] -exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} -idna = ">=2.8" -sniffio = ">=1.1" -typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} - -[package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] - -[[package]] -name = "backoff" -version = "2.2.1" -description = "Function decoration for backoff and retry" -optional = false -python-versions = ">=3.7,<4.0" -files = [ - {file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"}, - {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"}, -] - -[[package]] -name = "beautifulsoup4" -version = "4.12.3" -description = "Screen-scraping library" -optional = false -python-versions = ">=3.6.0" -files = [ - {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, - {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, -] - -[package.dependencies] -soupsieve = ">1.2" - -[package.extras] -cchardet = ["cchardet"] -chardet = ["chardet"] -charset-normalizer = ["charset-normalizer"] -html5lib = ["html5lib"] -lxml = ["lxml"] - -[[package]] -name = "cachetools" -version = "5.5.0" -description = "Extensible memoizing collections and decorators" -optional = false -python-versions = ">=3.7" -files = [ - {file = "cachetools-5.5.0-py3-none-any.whl", hash = "sha256:02134e8439cdc2ffb62023ce1debca2944c3f289d66bb17ead3ab3dede74b292"}, - {file = "cachetools-5.5.0.tar.gz", hash = "sha256:2cc24fb4cbe39633fb7badd9db9ca6295d766d9c2995f245725a46715d050f2a"}, -] - -[[package]] -name = "certifi" -version = "2024.8.30" -description = "Python package for providing Mozilla's CA Bundle." -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, - {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, -] - -[[package]] -name = "cffi" -version = "1.17.1" -description = "Foreign Function Interface for Python calling C code." -optional = false -python-versions = ">=3.8" -files = [ - {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, - {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, - {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, - {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, - {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, - {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, - {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, - {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, - {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, - {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, - {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, - {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, - {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, - {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, - {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, - {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, - {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, - {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, - {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, - {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, - {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, - {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, - {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, - {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, - {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, - {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, - {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, - {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, - {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, - {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, - {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, - {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, - {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, - {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, - {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, - {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, - {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, -] - -[package.dependencies] -pycparser = "*" - -[[package]] -name = "chardet" -version = "5.2.0" -description = "Universal encoding detector for Python 3" -optional = false -python-versions = ">=3.7" -files = [ - {file = "chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970"}, - {file = "chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7"}, -] - -[[package]] -name = "charset-normalizer" -version = "3.3.2" -description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, -] - -[[package]] -name = "click" -version = "8.1.7" -description = "Composable command line interface toolkit" -optional = false -python-versions = ">=3.7" -files = [ - {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, - {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[[package]] -name = "codespell" -version = "2.3.0" -description = "Codespell" -optional = false -python-versions = ">=3.8" -files = [ - {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, - {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, -] - -[package.extras] -dev = ["Pygments", "build", "chardet", "pre-commit", "pytest", "pytest-cov", "pytest-dependency", "ruff", "tomli", "twine"] -hard-encoding-detection = ["chardet"] -toml = ["tomli"] -types = ["chardet (>=5.1.0)", "mypy", "pytest", "pytest-cov", "pytest-dependency"] - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "coloredlogs" -version = "15.0.1" -description = "Colored terminal output for Python's logging module" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "coloredlogs-15.0.1-py2.py3-none-any.whl", hash = "sha256:612ee75c546f53e92e70049c9dbfcc18c935a2b9a53b66085ce9ef6a6e5c0934"}, - {file = "coloredlogs-15.0.1.tar.gz", hash = "sha256:7c991aa71a4577af2f82600d8f8f3a89f936baeaf9b50a9c197da014e5bf16b0"}, -] - -[package.dependencies] -humanfriendly = ">=9.1" - -[package.extras] -cron = ["capturer (>=2.4)"] - -[[package]] -name = "contourpy" -version = "1.3.0" -description = "Python library for calculating contours of 2D quadrilateral grids" -optional = false -python-versions = ">=3.9" -files = [ - {file = "contourpy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:880ea32e5c774634f9fcd46504bf9f080a41ad855f4fef54f5380f5133d343c7"}, - {file = "contourpy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76c905ef940a4474a6289c71d53122a4f77766eef23c03cd57016ce19d0f7b42"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92f8557cbb07415a4d6fa191f20fd9d2d9eb9c0b61d1b2f52a8926e43c6e9af7"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36f965570cff02b874773c49bfe85562b47030805d7d8360748f3eca570f4cab"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cacd81e2d4b6f89c9f8a5b69b86490152ff39afc58a95af002a398273e5ce589"}, - {file = "contourpy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69375194457ad0fad3a839b9e29aa0b0ed53bb54db1bfb6c3ae43d111c31ce41"}, - {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a52040312b1a858b5e31ef28c2e865376a386c60c0e248370bbea2d3f3b760d"}, - {file = "contourpy-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3faeb2998e4fcb256542e8a926d08da08977f7f5e62cf733f3c211c2a5586223"}, - {file = "contourpy-1.3.0-cp310-cp310-win32.whl", hash = "sha256:36e0cff201bcb17a0a8ecc7f454fe078437fa6bda730e695a92f2d9932bd507f"}, - {file = "contourpy-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:87ddffef1dbe5e669b5c2440b643d3fdd8622a348fe1983fad7a0f0ccb1cd67b"}, - {file = "contourpy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fa4c02abe6c446ba70d96ece336e621efa4aecae43eaa9b030ae5fb92b309ad"}, - {file = "contourpy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:834e0cfe17ba12f79963861e0f908556b2cedd52e1f75e6578801febcc6a9f49"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbc4c3217eee163fa3984fd1567632b48d6dfd29216da3ded3d7b844a8014a66"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4865cd1d419e0c7a7bf6de1777b185eebdc51470800a9f42b9e9decf17762081"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:303c252947ab4b14c08afeb52375b26781ccd6a5ccd81abcdfc1fafd14cf93c1"}, - {file = "contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d"}, - {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:76a896b2f195b57db25d6b44e7e03f221d32fe318d03ede41f8b4d9ba1bff53c"}, - {file = "contourpy-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e1fd23e9d01591bab45546c089ae89d926917a66dceb3abcf01f6105d927e2cb"}, - {file = "contourpy-1.3.0-cp311-cp311-win32.whl", hash = "sha256:d402880b84df3bec6eab53cd0cf802cae6a2ef9537e70cf75e91618a3801c20c"}, - {file = "contourpy-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:6cb6cc968059db9c62cb35fbf70248f40994dfcd7aa10444bbf8b3faeb7c2d67"}, - {file = "contourpy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:570ef7cf892f0afbe5b2ee410c507ce12e15a5fa91017a0009f79f7d93a1268f"}, - {file = "contourpy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:da84c537cb8b97d153e9fb208c221c45605f73147bd4cadd23bdae915042aad6"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0be4d8425bfa755e0fd76ee1e019636ccc7c29f77a7c86b4328a9eb6a26d0639"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c0da700bf58f6e0b65312d0a5e695179a71d0163957fa381bb3c1f72972537c"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb8b141bb00fa977d9122636b16aa67d37fd40a3d8b52dd837e536d64b9a4d06"}, - {file = "contourpy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3634b5385c6716c258d0419c46d05c8aa7dc8cb70326c9a4fb66b69ad2b52e09"}, - {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0dce35502151b6bd35027ac39ba6e5a44be13a68f55735c3612c568cac3805fd"}, - {file = "contourpy-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea348f053c645100612b333adc5983d87be69acdc6d77d3169c090d3b01dc35"}, - {file = "contourpy-1.3.0-cp312-cp312-win32.whl", hash = "sha256:90f73a5116ad1ba7174341ef3ea5c3150ddf20b024b98fb0c3b29034752c8aeb"}, - {file = "contourpy-1.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:b11b39aea6be6764f84360fce6c82211a9db32a7c7de8fa6dd5397cf1d079c3b"}, - {file = "contourpy-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3e1c7fa44aaae40a2247e2e8e0627f4bea3dd257014764aa644f319a5f8600e3"}, - {file = "contourpy-1.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:364174c2a76057feef647c802652f00953b575723062560498dc7930fc9b1cb7"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32b238b3b3b649e09ce9aaf51f0c261d38644bdfa35cbaf7b263457850957a84"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d51fca85f9f7ad0b65b4b9fe800406d0d77017d7270d31ec3fb1cc07358fdea0"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:732896af21716b29ab3e988d4ce14bc5133733b85956316fb0c56355f398099b"}, - {file = "contourpy-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d73f659398a0904e125280836ae6f88ba9b178b2fed6884f3b1f95b989d2c8da"}, - {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c6c7c2408b7048082932cf4e641fa3b8ca848259212f51c8c59c45aa7ac18f14"}, - {file = "contourpy-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f317576606de89da6b7e0861cf6061f6146ead3528acabff9236458a6ba467f8"}, - {file = "contourpy-1.3.0-cp313-cp313-win32.whl", hash = "sha256:31cd3a85dbdf1fc002280c65caa7e2b5f65e4a973fcdf70dd2fdcb9868069294"}, - {file = "contourpy-1.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:4553c421929ec95fb07b3aaca0fae668b2eb5a5203d1217ca7c34c063c53d087"}, - {file = "contourpy-1.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:345af746d7766821d05d72cb8f3845dfd08dd137101a2cb9b24de277d716def8"}, - {file = "contourpy-1.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3bb3808858a9dc68f6f03d319acd5f1b8a337e6cdda197f02f4b8ff67ad2057b"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:420d39daa61aab1221567b42eecb01112908b2cab7f1b4106a52caaec8d36973"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d63ee447261e963af02642ffcb864e5a2ee4cbfd78080657a9880b8b1868e18"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:167d6c890815e1dac9536dca00828b445d5d0df4d6a8c6adb4a7ec3166812fa8"}, - {file = "contourpy-1.3.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:710a26b3dc80c0e4febf04555de66f5fd17e9cf7170a7b08000601a10570bda6"}, - {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:75ee7cb1a14c617f34a51d11fa7524173e56551646828353c4af859c56b766e2"}, - {file = "contourpy-1.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:33c92cdae89ec5135d036e7218e69b0bb2851206077251f04a6c4e0e21f03927"}, - {file = "contourpy-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a11077e395f67ffc2c44ec2418cfebed032cd6da3022a94fc227b6faf8e2acb8"}, - {file = "contourpy-1.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e8134301d7e204c88ed7ab50028ba06c683000040ede1d617298611f9dc6240c"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e12968fdfd5bb45ffdf6192a590bd8ddd3ba9e58360b29683c6bb71a7b41edca"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fd2a0fc506eccaaa7595b7e1418951f213cf8255be2600f1ea1b61e46a60c55f"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4cfb5c62ce023dfc410d6059c936dcf96442ba40814aefbfa575425a3a7f19dc"}, - {file = "contourpy-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68a32389b06b82c2fdd68276148d7b9275b5f5cf13e5417e4252f6d1a34f72a2"}, - {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:94e848a6b83da10898cbf1311a815f770acc9b6a3f2d646f330d57eb4e87592e"}, - {file = "contourpy-1.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d78ab28a03c854a873787a0a42254a0ccb3cb133c672f645c9f9c8f3ae9d0800"}, - {file = "contourpy-1.3.0-cp39-cp39-win32.whl", hash = "sha256:81cb5ed4952aae6014bc9d0421dec7c5835c9c8c31cdf51910b708f548cf58e5"}, - {file = "contourpy-1.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:14e262f67bd7e6eb6880bc564dcda30b15e351a594657e55b7eec94b6ef72843"}, - {file = "contourpy-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fe41b41505a5a33aeaed2a613dccaeaa74e0e3ead6dd6fd3a118fb471644fd6c"}, - {file = "contourpy-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca7e17a65f72a5133bdbec9ecf22401c62bcf4821361ef7811faee695799779"}, - {file = "contourpy-1.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ec4dc6bf570f5b22ed0d7efba0dfa9c5b9e0431aeea7581aa217542d9e809a4"}, - {file = "contourpy-1.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:00ccd0dbaad6d804ab259820fa7cb0b8036bda0686ef844d24125d8287178ce0"}, - {file = "contourpy-1.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca947601224119117f7c19c9cdf6b3ab54c5726ef1d906aa4a69dfb6dd58102"}, - {file = "contourpy-1.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6ec93afeb848a0845a18989da3beca3eec2c0f852322efe21af1931147d12cb"}, - {file = "contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4"}, -] - -[package.dependencies] -numpy = ">=1.23" - -[package.extras] -bokeh = ["bokeh", "selenium"] -docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] -mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.11.1)", "types-Pillow"] -test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] -test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist", "wurlitzer"] - -[[package]] -name = "cryptography" -version = "43.0.1" -description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." -optional = false -python-versions = ">=3.7" -files = [ - {file = "cryptography-43.0.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:8385d98f6a3bf8bb2d65a73e17ed87a3ba84f6991c155691c51112075f9ffc5d"}, - {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e613d7077ac613e399270253259d9d53872aaf657471473ebfc9a52935c062"}, - {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68aaecc4178e90719e95298515979814bda0cbada1256a4485414860bd7ab962"}, - {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:de41fd81a41e53267cb020bb3a7212861da53a7d39f863585d13ea11049cf277"}, - {file = "cryptography-43.0.1-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f98bf604c82c416bc829e490c700ca1553eafdf2912a91e23a79d97d9801372a"}, - {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:61ec41068b7b74268fa86e3e9e12b9f0c21fcf65434571dbb13d954bceb08042"}, - {file = "cryptography-43.0.1-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:014f58110f53237ace6a408b5beb6c427b64e084eb451ef25a28308270086494"}, - {file = "cryptography-43.0.1-cp37-abi3-win32.whl", hash = "sha256:2bd51274dcd59f09dd952afb696bf9c61a7a49dfc764c04dd33ef7a6b502a1e2"}, - {file = "cryptography-43.0.1-cp37-abi3-win_amd64.whl", hash = "sha256:666ae11966643886c2987b3b721899d250855718d6d9ce41b521252a17985f4d"}, - {file = "cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:ac119bb76b9faa00f48128b7f5679e1d8d437365c5d26f1c2c3f0da4ce1b553d"}, - {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bbcce1a551e262dfbafb6e6252f1ae36a248e615ca44ba302df077a846a8806"}, - {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58d4e9129985185a06d849aa6df265bdd5a74ca6e1b736a77959b498e0505b85"}, - {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:d03a475165f3134f773d1388aeb19c2d25ba88b6a9733c5c590b9ff7bbfa2e0c"}, - {file = "cryptography-43.0.1-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:511f4273808ab590912a93ddb4e3914dfd8a388fed883361b02dea3791f292e1"}, - {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:80eda8b3e173f0f247f711eef62be51b599b5d425c429b5d4ca6a05e9e856baa"}, - {file = "cryptography-43.0.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:38926c50cff6f533f8a2dae3d7f19541432610d114a70808f0926d5aaa7121e4"}, - {file = "cryptography-43.0.1-cp39-abi3-win32.whl", hash = "sha256:a575913fb06e05e6b4b814d7f7468c2c660e8bb16d8d5a1faf9b33ccc569dd47"}, - {file = "cryptography-43.0.1-cp39-abi3-win_amd64.whl", hash = "sha256:d75601ad10b059ec832e78823b348bfa1a59f6b8d545db3a24fd44362a1564cb"}, - {file = "cryptography-43.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ea25acb556320250756e53f9e20a4177515f012c9eaea17eb7587a8c4d8ae034"}, - {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c1332724be35d23a854994ff0b66530119500b6053d0bd3363265f7e5e77288d"}, - {file = "cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fba1007b3ef89946dbbb515aeeb41e30203b004f0b4b00e5e16078b518563289"}, - {file = "cryptography-43.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5b43d1ea6b378b54a1dc99dd8a2b5be47658fe9a7ce0a58ff0b55f4b43ef2b84"}, - {file = "cryptography-43.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:88cce104c36870d70c49c7c8fd22885875d950d9ee6ab54df2745f83ba0dc365"}, - {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d3cdb25fa98afdd3d0892d132b8d7139e2c087da1712041f6b762e4f807cc96"}, - {file = "cryptography-43.0.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e710bf40870f4db63c3d7d929aa9e09e4e7ee219e703f949ec4073b4294f6172"}, - {file = "cryptography-43.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7c05650fe8023c5ed0d46793d4b7d7e6cd9c04e68eabe5b0aeea836e37bdcec2"}, - {file = "cryptography-43.0.1.tar.gz", hash = "sha256:203e92a75716d8cfb491dc47c79e17d0d9207ccffcbcb35f598fbe463ae3444d"}, -] - -[package.dependencies] -cffi = {version = ">=1.12", markers = "platform_python_implementation != \"PyPy\""} - -[package.extras] -docs = ["sphinx (>=5.3.0)", "sphinx-rtd-theme (>=1.1.1)"] -docstest = ["pyenchant (>=1.6.11)", "readme-renderer", "sphinxcontrib-spelling (>=4.0.1)"] -nox = ["nox"] -pep8test = ["check-sdist", "click", "mypy", "ruff"] -sdist = ["build"] -ssh = ["bcrypt (>=3.1.5)"] -test = ["certifi", "cryptography-vectors (==43.0.1)", "pretend", "pytest (>=6.2.0)", "pytest-benchmark", "pytest-cov", "pytest-xdist"] -test-randomorder = ["pytest-randomly"] - -[[package]] -name = "cycler" -version = "0.12.1" -description = "Composable style cycles" -optional = false -python-versions = ">=3.8" -files = [ - {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, - {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, -] - -[package.extras] -docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] -tests = ["pytest", "pytest-cov", "pytest-xdist"] - -[[package]] -name = "dataclasses-json" -version = "0.6.7" -description = "Easily serialize dataclasses to and from JSON." -optional = false -python-versions = "<4.0,>=3.7" -files = [ - {file = "dataclasses_json-0.6.7-py3-none-any.whl", hash = "sha256:0dbf33f26c8d5305befd61b39d2b3414e8a407bedc2834dea9b8d642666fb40a"}, - {file = "dataclasses_json-0.6.7.tar.gz", hash = "sha256:b6b3e528266ea45b9535223bc53ca645f5208833c29229e847b3f26a1cc55fc0"}, -] - -[package.dependencies] -marshmallow = ">=3.18.0,<4.0.0" -typing-inspect = ">=0.4.0,<1" - -[[package]] -name = "deepdiff" -version = "8.0.1" -description = "Deep Difference and Search of any Python object/data. Recreate objects by adding adding deltas to each other." -optional = false -python-versions = ">=3.8" -files = [ - {file = "deepdiff-8.0.1-py3-none-any.whl", hash = "sha256:42e99004ce603f9a53934c634a57b04ad5900e0d8ed0abb15e635767489cbc05"}, - {file = "deepdiff-8.0.1.tar.gz", hash = "sha256:245599a4586ab59bb599ca3517a9c42f3318ff600ded5e80a3432693c8ec3c4b"}, -] - -[package.dependencies] -orderly-set = "5.2.2" - -[package.extras] -cli = ["click (==8.1.7)", "pyyaml (==6.0.1)"] -optimize = ["orjson"] - -[[package]] -name = "deprecated" -version = "1.2.14" -description = "Python @deprecated decorator to deprecate old python classes, functions or methods." -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "Deprecated-1.2.14-py2.py3-none-any.whl", hash = "sha256:6fac8b097794a90302bdbb17b9b815e732d3c4720583ff1b198499d78470466c"}, - {file = "Deprecated-1.2.14.tar.gz", hash = "sha256:e5323eb936458dccc2582dc6f9c322c852a775a27065ff2b0c4970b9d53d01b3"}, -] - -[package.dependencies] -wrapt = ">=1.10,<2" - -[package.extras] -dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"] - -[[package]] -name = "effdet" -version = "0.4.1" -description = "EfficientDet for PyTorch" -optional = false -python-versions = ">=3.7" -files = [ - {file = "effdet-0.4.1-py3-none-any.whl", hash = "sha256:10889a226228d515c948e3fcf811e64c0d78d7aa94823a300045653b9c284cb7"}, - {file = "effdet-0.4.1.tar.gz", hash = "sha256:ac5589fd304a5650c201986b2ef5f8e10c111093a71b1c49fa6b8817710812b5"}, -] - -[package.dependencies] -omegaconf = ">=2.0" -pycocotools = ">=2.0.2" -timm = ">=0.9.2" -torch = ">=1.12.1" -torchvision = "*" - -[[package]] -name = "emoji" -version = "2.12.1" -description = "Emoji for Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "emoji-2.12.1-py3-none-any.whl", hash = "sha256:a00d62173bdadc2510967a381810101624a2f0986145b8da0cffa42e29430235"}, - {file = "emoji-2.12.1.tar.gz", hash = "sha256:4aa0488817691aa58d83764b6c209f8a27c0b3ab3f89d1b8dceca1a62e4973eb"}, -] - -[package.dependencies] -typing-extensions = ">=4.7.0" - -[package.extras] -dev = ["coverage", "pytest (>=7.4.4)"] - -[[package]] -name = "et-xmlfile" -version = "1.1.0" -description = "An implementation of lxml.xmlfile for the standard library" -optional = false -python-versions = ">=3.6" -files = [ - {file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"}, - {file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"}, -] - -[[package]] -name = "exceptiongroup" -version = "1.2.2" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, - {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "filelock" -version = "3.16.0" -description = "A platform independent file lock." -optional = false -python-versions = ">=3.8" -files = [ - {file = "filelock-3.16.0-py3-none-any.whl", hash = "sha256:f6ed4c963184f4c84dd5557ce8fece759a3724b37b80c6c4f20a2f63a4dc6609"}, - {file = "filelock-3.16.0.tar.gz", hash = "sha256:81de9eb8453c769b63369f87f11131a7ab04e367f8d97ad39dc230daa07e3bec"}, -] - -[package.extras] -docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.1.1)", "pytest (>=8.3.2)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.3)"] -typing = ["typing-extensions (>=4.12.2)"] - -[[package]] -name = "filetype" -version = "1.2.0" -description = "Infer file type and MIME type of any file/buffer. No external dependencies." -optional = false -python-versions = "*" -files = [ - {file = "filetype-1.2.0-py2.py3-none-any.whl", hash = "sha256:7ce71b6880181241cf7ac8697a2f1eb6a8bd9b429f7ad6d27b8db9ba5f1c2d25"}, - {file = "filetype-1.2.0.tar.gz", hash = "sha256:66b56cd6474bf41d8c54660347d37afcc3f7d1970648de365c102ef77548aadb"}, -] - -[[package]] -name = "flatbuffers" -version = "24.3.25" -description = "The FlatBuffers serialization format for Python" -optional = false -python-versions = "*" -files = [ - {file = "flatbuffers-24.3.25-py2.py3-none-any.whl", hash = "sha256:8dbdec58f935f3765e4f7f3cf635ac3a77f83568138d6a2311f524ec96364812"}, - {file = "flatbuffers-24.3.25.tar.gz", hash = "sha256:de2ec5b203f21441716617f38443e0a8ebf3d25bf0d9c0bb0ce68fa00ad546a4"}, -] - -[[package]] -name = "fonttools" -version = "4.53.1" -description = "Tools to manipulate font files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fonttools-4.53.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0679a30b59d74b6242909945429dbddb08496935b82f91ea9bf6ad240ec23397"}, - {file = "fonttools-4.53.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8bf06b94694251861ba7fdeea15c8ec0967f84c3d4143ae9daf42bbc7717fe3"}, - {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b96cd370a61f4d083c9c0053bf634279b094308d52fdc2dd9a22d8372fdd590d"}, - {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c7c5aa18dd3b17995898b4a9b5929d69ef6ae2af5b96d585ff4005033d82f0"}, - {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e013aae589c1c12505da64a7d8d023e584987e51e62006e1bb30d72f26522c41"}, - {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9efd176f874cb6402e607e4cc9b4a9cd584d82fc34a4b0c811970b32ba62501f"}, - {file = "fonttools-4.53.1-cp310-cp310-win32.whl", hash = "sha256:c8696544c964500aa9439efb6761947393b70b17ef4e82d73277413f291260a4"}, - {file = "fonttools-4.53.1-cp310-cp310-win_amd64.whl", hash = "sha256:8959a59de5af6d2bec27489e98ef25a397cfa1774b375d5787509c06659b3671"}, - {file = "fonttools-4.53.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da33440b1413bad53a8674393c5d29ce64d8c1a15ef8a77c642ffd900d07bfe1"}, - {file = "fonttools-4.53.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ff7e5e9bad94e3a70c5cd2fa27f20b9bb9385e10cddab567b85ce5d306ea923"}, - {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6e7170d675d12eac12ad1a981d90f118c06cf680b42a2d74c6c931e54b50719"}, - {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee32ea8765e859670c4447b0817514ca79054463b6b79784b08a8df3a4d78e3"}, - {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6e08f572625a1ee682115223eabebc4c6a2035a6917eac6f60350aba297ccadb"}, - {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b21952c092ffd827504de7e66b62aba26fdb5f9d1e435c52477e6486e9d128b2"}, - {file = "fonttools-4.53.1-cp311-cp311-win32.whl", hash = "sha256:9dfdae43b7996af46ff9da520998a32b105c7f098aeea06b2226b30e74fbba88"}, - {file = "fonttools-4.53.1-cp311-cp311-win_amd64.whl", hash = "sha256:d4d0096cb1ac7a77b3b41cd78c9b6bc4a400550e21dc7a92f2b5ab53ed74eb02"}, - {file = "fonttools-4.53.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d92d3c2a1b39631a6131c2fa25b5406855f97969b068e7e08413325bc0afba58"}, - {file = "fonttools-4.53.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3b3c8ebafbee8d9002bd8f1195d09ed2bd9ff134ddec37ee8f6a6375e6a4f0e8"}, - {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f029c095ad66c425b0ee85553d0dc326d45d7059dbc227330fc29b43e8ba60"}, - {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f5e6c3510b79ea27bb1ebfcc67048cde9ec67afa87c7dd7efa5c700491ac7f"}, - {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f677ce218976496a587ab17140da141557beb91d2a5c1a14212c994093f2eae2"}, - {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9e6ceba2a01b448e36754983d376064730690401da1dd104ddb543519470a15f"}, - {file = "fonttools-4.53.1-cp312-cp312-win32.whl", hash = "sha256:791b31ebbc05197d7aa096bbc7bd76d591f05905d2fd908bf103af4488e60670"}, - {file = "fonttools-4.53.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ed170b5e17da0264b9f6fae86073be3db15fa1bd74061c8331022bca6d09bab"}, - {file = "fonttools-4.53.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c818c058404eb2bba05e728d38049438afd649e3c409796723dfc17cd3f08749"}, - {file = "fonttools-4.53.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:651390c3b26b0c7d1f4407cad281ee7a5a85a31a110cbac5269de72a51551ba2"}, - {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54f1bba2f655924c1138bbc7fa91abd61f45c68bd65ab5ed985942712864bbb"}, - {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9cd19cf4fe0595ebdd1d4915882b9440c3a6d30b008f3cc7587c1da7b95be5f"}, - {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2af40ae9cdcb204fc1d8f26b190aa16534fcd4f0df756268df674a270eab575d"}, - {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:35250099b0cfb32d799fb5d6c651220a642fe2e3c7d2560490e6f1d3f9ae9169"}, - {file = "fonttools-4.53.1-cp38-cp38-win32.whl", hash = "sha256:f08df60fbd8d289152079a65da4e66a447efc1d5d5a4d3f299cdd39e3b2e4a7d"}, - {file = "fonttools-4.53.1-cp38-cp38-win_amd64.whl", hash = "sha256:7b6b35e52ddc8fb0db562133894e6ef5b4e54e1283dff606fda3eed938c36fc8"}, - {file = "fonttools-4.53.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75a157d8d26c06e64ace9df037ee93a4938a4606a38cb7ffaf6635e60e253b7a"}, - {file = "fonttools-4.53.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4824c198f714ab5559c5be10fd1adf876712aa7989882a4ec887bf1ef3e00e31"}, - {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:becc5d7cb89c7b7afa8321b6bb3dbee0eec2b57855c90b3e9bf5fb816671fa7c"}, - {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ec3fb43befb54be490147b4a922b5314e16372a643004f182babee9f9c3407"}, - {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:73379d3ffdeecb376640cd8ed03e9d2d0e568c9d1a4e9b16504a834ebadc2dfb"}, - {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:02569e9a810f9d11f4ae82c391ebc6fb5730d95a0657d24d754ed7763fb2d122"}, - {file = "fonttools-4.53.1-cp39-cp39-win32.whl", hash = "sha256:aae7bd54187e8bf7fd69f8ab87b2885253d3575163ad4d669a262fe97f0136cb"}, - {file = "fonttools-4.53.1-cp39-cp39-win_amd64.whl", hash = "sha256:e5b708073ea3d684235648786f5f6153a48dc8762cdfe5563c57e80787c29fbb"}, - {file = "fonttools-4.53.1-py3-none-any.whl", hash = "sha256:f1f8758a2ad110bd6432203a344269f445a2907dc24ef6bccfd0ac4e14e0d71d"}, - {file = "fonttools-4.53.1.tar.gz", hash = "sha256:e128778a8e9bc11159ce5447f76766cefbd876f44bd79aff030287254e4752c4"}, -] - -[package.extras] -all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] -graphite = ["lz4 (>=1.7.4.2)"] -interpolatable = ["munkres", "pycairo", "scipy"] -lxml = ["lxml (>=4.0)"] -pathops = ["skia-pathops (>=0.5.0)"] -plot = ["matplotlib"] -repacker = ["uharfbuzz (>=0.23.0)"] -symfont = ["sympy"] -type1 = ["xattr"] -ufo = ["fs (>=2.2.0,<3)"] -unicode = ["unicodedata2 (>=15.1.0)"] -woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] - -[[package]] -name = "fsspec" -version = "2024.9.0" -description = "File-system specification" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b"}, - {file = "fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8"}, -] - -[package.extras] -abfs = ["adlfs"] -adl = ["adlfs"] -arrow = ["pyarrow (>=1)"] -dask = ["dask", "distributed"] -dev = ["pre-commit", "ruff"] -doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] -dropbox = ["dropbox", "dropboxdrivefs", "requests"] -full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] -fuse = ["fusepy"] -gcs = ["gcsfs"] -git = ["pygit2"] -github = ["requests"] -gs = ["gcsfs"] -gui = ["panel"] -hdfs = ["pyarrow (>=1)"] -http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] -libarchive = ["libarchive-c"] -oci = ["ocifs"] -s3 = ["s3fs"] -sftp = ["paramiko"] -smb = ["smbprotocol"] -ssh = ["paramiko"] -test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] -test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] -test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] -tqdm = ["tqdm"] - -[[package]] -name = "google-api-core" -version = "2.19.2" -description = "Google API client core library" -optional = false -python-versions = ">=3.7" -files = [ - {file = "google_api_core-2.19.2-py3-none-any.whl", hash = "sha256:53ec0258f2837dd53bbd3d3df50f5359281b3cc13f800c941dd15a9b5a415af4"}, - {file = "google_api_core-2.19.2.tar.gz", hash = "sha256:ca07de7e8aa1c98a8bfca9321890ad2340ef7f2eb136e558cee68f24b94b0a8f"}, -] - -[package.dependencies] -google-auth = ">=2.14.1,<3.0.dev0" -googleapis-common-protos = ">=1.56.2,<2.0.dev0" -grpcio = [ - {version = ">=1.33.2,<2.0dev", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""}, - {version = ">=1.49.1,<2.0dev", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""}, -] -grpcio-status = [ - {version = ">=1.33.2,<2.0.dev0", optional = true, markers = "python_version < \"3.11\" and extra == \"grpc\""}, - {version = ">=1.49.1,<2.0.dev0", optional = true, markers = "python_version >= \"3.11\" and extra == \"grpc\""}, -] -proto-plus = ">=1.22.3,<2.0.0dev" -protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0" -requests = ">=2.18.0,<3.0.0.dev0" - -[package.extras] -grpc = ["grpcio (>=1.33.2,<2.0dev)", "grpcio (>=1.49.1,<2.0dev)", "grpcio-status (>=1.33.2,<2.0.dev0)", "grpcio-status (>=1.49.1,<2.0.dev0)"] -grpcgcp = ["grpcio-gcp (>=0.2.2,<1.0.dev0)"] -grpcio-gcp = ["grpcio-gcp (>=0.2.2,<1.0.dev0)"] - -[[package]] -name = "google-auth" -version = "2.34.0" -description = "Google Authentication Library" -optional = false -python-versions = ">=3.7" -files = [ - {file = "google_auth-2.34.0-py2.py3-none-any.whl", hash = "sha256:72fd4733b80b6d777dcde515628a9eb4a577339437012874ea286bca7261ee65"}, - {file = "google_auth-2.34.0.tar.gz", hash = "sha256:8eb87396435c19b20d32abd2f984e31c191a15284af72eb922f10e5bde9c04cc"}, -] - -[package.dependencies] -cachetools = ">=2.0.0,<6.0" -pyasn1-modules = ">=0.2.1" -rsa = ">=3.1.4,<5" - -[package.extras] -aiohttp = ["aiohttp (>=3.6.2,<4.0.0.dev0)", "requests (>=2.20.0,<3.0.0.dev0)"] -enterprise-cert = ["cryptography", "pyopenssl"] -pyopenssl = ["cryptography (>=38.0.3)", "pyopenssl (>=20.0.0)"] -reauth = ["pyu2f (>=0.1.5)"] -requests = ["requests (>=2.20.0,<3.0.0.dev0)"] - -[[package]] -name = "google-cloud-vision" -version = "3.7.4" -description = "Google Cloud Vision API client library" -optional = false -python-versions = ">=3.7" -files = [ - {file = "google_cloud_vision-3.7.4-py2.py3-none-any.whl", hash = "sha256:0b956480002545ab8f13d2b4b8f316e9332cdeb6f65f92c0a20d72e9e0df3ad6"}, - {file = "google_cloud_vision-3.7.4.tar.gz", hash = "sha256:80b67f0a2dc587a31d7482d3d2692a773f25fbd09468fd9de45d00b671aad999"}, -] - -[package.dependencies] -google-api-core = {version = ">=1.34.1,<2.0.dev0 || >=2.11.dev0,<3.0.0dev", extras = ["grpc"]} -google-auth = ">=2.14.1,<2.24.0 || >2.24.0,<2.25.0 || >2.25.0,<3.0.0dev" -proto-plus = ">=1.22.3,<2.0.0dev" -protobuf = ">=3.20.2,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0dev" - -[[package]] -name = "googleapis-common-protos" -version = "1.65.0" -description = "Common protobufs used in Google APIs" -optional = false -python-versions = ">=3.7" -files = [ - {file = "googleapis_common_protos-1.65.0-py2.py3-none-any.whl", hash = "sha256:2972e6c496f435b92590fd54045060867f3fe9be2c82ab148fc8885035479a63"}, - {file = "googleapis_common_protos-1.65.0.tar.gz", hash = "sha256:334a29d07cddc3aa01dee4988f9afd9b2916ee2ff49d6b757155dc0d197852c0"}, -] - -[package.dependencies] -protobuf = ">=3.20.2,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0" - -[package.extras] -grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"] - -[[package]] -name = "grpcio" -version = "1.66.1" -description = "HTTP/2-based RPC framework" -optional = false -python-versions = ">=3.8" -files = [ - {file = "grpcio-1.66.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:4877ba180591acdf127afe21ec1c7ff8a5ecf0fe2600f0d3c50e8c4a1cbc6492"}, - {file = "grpcio-1.66.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3750c5a00bd644c75f4507f77a804d0189d97a107eb1481945a0cf3af3e7a5ac"}, - {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:a013c5fbb12bfb5f927444b477a26f1080755a931d5d362e6a9a720ca7dbae60"}, - {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1b24c23d51a1e8790b25514157d43f0a4dce1ac12b3f0b8e9f66a5e2c4c132f"}, - {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffb8ea674d68de4cac6f57d2498fef477cef582f1fa849e9f844863af50083"}, - {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:307b1d538140f19ccbd3aed7a93d8f71103c5d525f3c96f8616111614b14bf2a"}, - {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1c17ebcec157cfb8dd445890a03e20caf6209a5bd4ac5b040ae9dbc59eef091d"}, - {file = "grpcio-1.66.1-cp310-cp310-win32.whl", hash = "sha256:ef82d361ed5849d34cf09105d00b94b6728d289d6b9235513cb2fcc79f7c432c"}, - {file = "grpcio-1.66.1-cp310-cp310-win_amd64.whl", hash = "sha256:292a846b92cdcd40ecca46e694997dd6b9be6c4c01a94a0dfb3fcb75d20da858"}, - {file = "grpcio-1.66.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:c30aeceeaff11cd5ddbc348f37c58bcb96da8d5aa93fed78ab329de5f37a0d7a"}, - {file = "grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8a1e224ce6f740dbb6b24c58f885422deebd7eb724aff0671a847f8951857c26"}, - {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a66fe4dc35d2330c185cfbb42959f57ad36f257e0cc4557d11d9f0a3f14311df"}, - {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ba04659e4fce609de2658fe4dbf7d6ed21987a94460f5f92df7579fd5d0e22"}, - {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4573608e23f7e091acfbe3e84ac2045680b69751d8d67685ffa193a4429fedb1"}, - {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7e06aa1f764ec8265b19d8f00140b8c4b6ca179a6dc67aa9413867c47e1fb04e"}, - {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3885f037eb11f1cacc41f207b705f38a44b69478086f40608959bf5ad85826dd"}, - {file = "grpcio-1.66.1-cp311-cp311-win32.whl", hash = "sha256:97ae7edd3f3f91480e48ede5d3e7d431ad6005bfdbd65c1b56913799ec79e791"}, - {file = "grpcio-1.66.1-cp311-cp311-win_amd64.whl", hash = "sha256:cfd349de4158d797db2bd82d2020554a121674e98fbe6b15328456b3bf2495bb"}, - {file = "grpcio-1.66.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:a92c4f58c01c77205df6ff999faa008540475c39b835277fb8883b11cada127a"}, - {file = "grpcio-1.66.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fdb14bad0835914f325349ed34a51940bc2ad965142eb3090081593c6e347be9"}, - {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f03a5884c56256e08fd9e262e11b5cfacf1af96e2ce78dc095d2c41ccae2c80d"}, - {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2ca2559692d8e7e245d456877a85ee41525f3ed425aa97eb7a70fc9a79df91a0"}, - {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ca1be089fb4446490dd1135828bd42a7c7f8421e74fa581611f7afdf7ab761"}, - {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d639c939ad7c440c7b2819a28d559179a4508783f7e5b991166f8d7a34b52815"}, - {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b9feb4e5ec8dc2d15709f4d5fc367794d69277f5d680baf1910fc9915c633524"}, - {file = "grpcio-1.66.1-cp312-cp312-win32.whl", hash = "sha256:7101db1bd4cd9b880294dec41a93fcdce465bdbb602cd8dc5bd2d6362b618759"}, - {file = "grpcio-1.66.1-cp312-cp312-win_amd64.whl", hash = "sha256:b0aa03d240b5539648d996cc60438f128c7f46050989e35b25f5c18286c86734"}, - {file = "grpcio-1.66.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:ecfe735e7a59e5a98208447293ff8580e9db1e890e232b8b292dc8bd15afc0d2"}, - {file = "grpcio-1.66.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4825a3aa5648010842e1c9d35a082187746aa0cdbf1b7a2a930595a94fb10fce"}, - {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:f517fd7259fe823ef3bd21e508b653d5492e706e9f0ef82c16ce3347a8a5620c"}, - {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1fe60d0772831d96d263b53d83fb9a3d050a94b0e94b6d004a5ad111faa5b5b"}, - {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31a049daa428f928f21090403e5d18ea02670e3d5d172581670be006100db9ef"}, - {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f914386e52cbdeb5d2a7ce3bf1fdfacbe9d818dd81b6099a05b741aaf3848bb"}, - {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bff2096bdba686019fb32d2dde45b95981f0d1490e054400f70fc9a8af34b49d"}, - {file = "grpcio-1.66.1-cp38-cp38-win32.whl", hash = "sha256:aa8ba945c96e73de29d25331b26f3e416e0c0f621e984a3ebdb2d0d0b596a3b3"}, - {file = "grpcio-1.66.1-cp38-cp38-win_amd64.whl", hash = "sha256:161d5c535c2bdf61b95080e7f0f017a1dfcb812bf54093e71e5562b16225b4ce"}, - {file = "grpcio-1.66.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:d0cd7050397b3609ea51727b1811e663ffda8bda39c6a5bb69525ef12414b503"}, - {file = "grpcio-1.66.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0e6c9b42ded5d02b6b1fea3a25f036a2236eeb75d0579bfd43c0018c88bf0a3e"}, - {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c9f80f9fad93a8cf71c7f161778ba47fd730d13a343a46258065c4deb4b550c0"}, - {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5dd67ed9da78e5121efc5c510f0122a972216808d6de70953a740560c572eb44"}, - {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48b0d92d45ce3be2084b92fb5bae2f64c208fea8ceed7fccf6a7b524d3c4942e"}, - {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d813316d1a752be6f5c4360c49f55b06d4fe212d7df03253dfdae90c8a402bb"}, - {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c9bebc6627873ec27a70fc800f6083a13c70b23a5564788754b9ee52c5aef6c"}, - {file = "grpcio-1.66.1-cp39-cp39-win32.whl", hash = "sha256:30a1c2cf9390c894c90bbc70147f2372130ad189cffef161f0432d0157973f45"}, - {file = "grpcio-1.66.1-cp39-cp39-win_amd64.whl", hash = "sha256:17663598aadbedc3cacd7bbde432f541c8e07d2496564e22b214b22c7523dac8"}, - {file = "grpcio-1.66.1.tar.gz", hash = "sha256:35334f9c9745add3e357e3372756fd32d925bd52c41da97f4dfdafbde0bf0ee2"}, -] - -[package.extras] -protobuf = ["grpcio-tools (>=1.66.1)"] - -[[package]] -name = "grpcio-status" -version = "1.66.1" -description = "Status proto mapping for gRPC" -optional = false -python-versions = ">=3.8" -files = [ - {file = "grpcio_status-1.66.1-py3-none-any.whl", hash = "sha256:cf9ed0b4a83adbe9297211c95cb5488b0cd065707e812145b842c85c4782ff02"}, - {file = "grpcio_status-1.66.1.tar.gz", hash = "sha256:b3f7d34ccc46d83fea5261eea3786174459f763c31f6e34f1d24eba6d515d024"}, -] - -[package.dependencies] -googleapis-common-protos = ">=1.5.5" -grpcio = ">=1.66.1" -protobuf = ">=5.26.1,<6.0dev" - -[[package]] -name = "h11" -version = "0.14.0" -description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" -optional = false -python-versions = ">=3.7" -files = [ - {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, - {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, -] - -[[package]] -name = "httpcore" -version = "1.0.5" -description = "A minimal low-level HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, - {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, -] - -[package.dependencies] -certifi = "*" -h11 = ">=0.13,<0.15" - -[package.extras] -asyncio = ["anyio (>=4.0,<5.0)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.26.0)"] - -[[package]] -name = "httpx" -version = "0.27.2" -description = "The next generation HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, - {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, -] - -[package.dependencies] -anyio = "*" -certifi = "*" -httpcore = "==1.*" -idna = "*" -sniffio = "*" - -[package.extras] -brotli = ["brotli", "brotlicffi"] -cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -zstd = ["zstandard (>=0.18.0)"] - -[[package]] -name = "huggingface-hub" -version = "0.24.6" -description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "huggingface_hub-0.24.6-py3-none-any.whl", hash = "sha256:a990f3232aa985fe749bc9474060cbad75e8b2f115f6665a9fda5b9c97818970"}, - {file = "huggingface_hub-0.24.6.tar.gz", hash = "sha256:cc2579e761d070713eaa9c323e3debe39d5b464ae3a7261c39a9195b27bb8000"}, -] - -[package.dependencies] -filelock = "*" -fsspec = ">=2023.5.0" -packaging = ">=20.9" -pyyaml = ">=5.1" -requests = "*" -tqdm = ">=4.42.1" -typing-extensions = ">=3.7.4.3" - -[package.extras] -all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] -cli = ["InquirerPy (==0.3.4)"] -dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.5.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] -fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] -hf-transfer = ["hf-transfer (>=0.1.4)"] -inference = ["aiohttp", "minijinja (>=1.0)"] -quality = ["mypy (==1.5.1)", "ruff (>=0.5.0)"] -tensorflow = ["graphviz", "pydot", "tensorflow"] -tensorflow-testing = ["keras (<3.0)", "tensorflow"] -testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest (>=8.1.1,<8.2.2)", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-mock", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] -torch = ["safetensors[torch]", "torch"] -typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] - -[[package]] -name = "humanfriendly" -version = "10.0" -description = "Human friendly output for text interfaces using Python" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "humanfriendly-10.0-py2.py3-none-any.whl", hash = "sha256:1697e1a8a8f550fd43c2865cd84542fc175a61dcb779b6fee18cf6b6ccba1477"}, - {file = "humanfriendly-10.0.tar.gz", hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc"}, -] - -[package.dependencies] -pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_version >= \"3.8\""} - -[[package]] -name = "idna" -version = "3.8" -description = "Internationalized Domain Names in Applications (IDNA)" -optional = false -python-versions = ">=3.6" -files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, -] - -[[package]] -name = "importlib-metadata" -version = "8.4.0" -description = "Read metadata from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_metadata-8.4.0-py3-none-any.whl", hash = "sha256:66f342cc6ac9818fc6ff340576acd24d65ba0b3efabb2b4ac08b598965a4a2f1"}, - {file = "importlib_metadata-8.4.0.tar.gz", hash = "sha256:9a547d3bc3608b025f93d403fdd1aae741c24fbb8314df4b155675742ce303c5"}, -] - -[package.dependencies] -zipp = ">=0.5" - -[package.extras] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] - -[[package]] -name = "importlib-resources" -version = "6.4.4" -description = "Read resources from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_resources-6.4.4-py3-none-any.whl", hash = "sha256:dda242603d1c9cd836c3368b1174ed74cb4049ecd209e7a1a0104620c18c5c11"}, - {file = "importlib_resources-6.4.4.tar.gz", hash = "sha256:20600c8b7361938dc0bb2d5ec0297802e575df486f5a544fa414da65e13721f7"}, -] - -[package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] -type = ["pytest-mypy"] - -[[package]] -name = "iniconfig" -version = "2.0.0" -description = "brain-dead simple config-ini parsing" -optional = false -python-versions = ">=3.7" -files = [ - {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, - {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, -] - -[[package]] -name = "iopath" -version = "0.1.10" -description = "A library for providing I/O abstraction." -optional = false -python-versions = ">=3.6" -files = [ - {file = "iopath-0.1.10.tar.gz", hash = "sha256:3311c16a4d9137223e20f141655759933e1eda24f8bff166af834af3c645ef01"}, -] - -[package.dependencies] -portalocker = "*" -tqdm = "*" -typing_extensions = "*" - -[package.extras] -aws = ["boto3"] - -[[package]] -name = "jinja2" -version = "3.1.4" -description = "A very fast and expressive template engine." -optional = false -python-versions = ">=3.7" -files = [ - {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, - {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, -] - -[package.dependencies] -MarkupSafe = ">=2.0" - -[package.extras] -i18n = ["Babel (>=2.7)"] - -[[package]] -name = "joblib" -version = "1.4.2" -description = "Lightweight pipelining with Python functions" -optional = false -python-versions = ">=3.8" -files = [ - {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, - {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, -] - -[[package]] -name = "jsonpatch" -version = "1.33" -description = "Apply JSON-Patches (RFC 6902)" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" -files = [ - {file = "jsonpatch-1.33-py2.py3-none-any.whl", hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade"}, - {file = "jsonpatch-1.33.tar.gz", hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c"}, -] - -[package.dependencies] -jsonpointer = ">=1.9" - -[[package]] -name = "jsonpath-python" -version = "1.0.6" -description = "A more powerful JSONPath implementation in modern python" -optional = false -python-versions = ">=3.6" -files = [ - {file = "jsonpath-python-1.0.6.tar.gz", hash = "sha256:dd5be4a72d8a2995c3f583cf82bf3cd1a9544cfdabf2d22595b67aff07349666"}, - {file = "jsonpath_python-1.0.6-py3-none-any.whl", hash = "sha256:1e3b78df579f5efc23565293612decee04214609208a2335884b3ee3f786b575"}, -] - -[[package]] -name = "jsonpointer" -version = "3.0.0" -description = "Identify specific nodes in a JSON document (RFC 6901)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, - {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, -] - -[[package]] -name = "kiwisolver" -version = "1.4.7" -description = "A fast implementation of the Cassowary constraint solver" -optional = false -python-versions = ">=3.8" -files = [ - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6"}, - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17"}, - {file = "kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05"}, - {file = "kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895"}, - {file = "kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c"}, - {file = "kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95"}, - {file = "kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052"}, - {file = "kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3"}, - {file = "kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b"}, - {file = "kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a"}, - {file = "kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258"}, - {file = "kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383"}, - {file = "kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb"}, - {file = "kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6"}, - {file = "kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34"}, - {file = "kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a"}, - {file = "kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76"}, - {file = "kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:5d5abf8f8ec1f4e22882273c423e16cae834c36856cac348cfbfa68e01c40f3a"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:aeb3531b196ef6f11776c21674dba836aeea9d5bd1cf630f869e3d90b16cfade"}, - {file = "kiwisolver-1.4.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b7d755065e4e866a8086c9bdada157133ff466476a2ad7861828e17b6026e22c"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08471d4d86cbaec61f86b217dd938a83d85e03785f51121e791a6e6689a3be95"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7bbfcb7165ce3d54a3dfbe731e470f65739c4c1f85bb1018ee912bae139e263b"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d34eb8494bea691a1a450141ebb5385e4b69d38bb8403b5146ad279f4b30fa3"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9242795d174daa40105c1d86aba618e8eab7bf96ba8c3ee614da8302a9f95503"}, - {file = "kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:a0f64a48bb81af7450e641e3fe0b0394d7381e342805479178b3d335d60ca7cf"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8e045731a5416357638d1700927529e2b8ab304811671f665b225f8bf8d8f933"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4322872d5772cae7369f8351da1edf255a604ea7087fe295411397d0cfd9655e"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e1631290ee9271dffe3062d2634c3ecac02c83890ada077d225e081aca8aab89"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:edcfc407e4eb17e037bca59be0e85a2031a2ac87e4fed26d3e9df88b4165f92d"}, - {file = "kiwisolver-1.4.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4d05d81ecb47d11e7f8932bd8b61b720bf0b41199358f3f5e36d38e28f0532c5"}, - {file = "kiwisolver-1.4.7-cp38-cp38-win32.whl", hash = "sha256:b38ac83d5f04b15e515fd86f312479d950d05ce2368d5413d46c088dda7de90a"}, - {file = "kiwisolver-1.4.7-cp38-cp38-win_amd64.whl", hash = "sha256:d83db7cde68459fc803052a55ace60bea2bae361fc3b7a6d5da07e11954e4b09"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:3f9362ecfca44c863569d3d3c033dbe8ba452ff8eed6f6b5806382741a1334bd"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e8df2eb9b2bac43ef8b082e06f750350fbbaf2887534a5be97f6cf07b19d9583"}, - {file = "kiwisolver-1.4.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f32d6edbc638cde7652bd690c3e728b25332acbadd7cad670cc4a02558d9c417"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e2e6c39bd7b9372b0be21456caab138e8e69cc0fc1190a9dfa92bd45a1e6e904"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dda56c24d869b1193fcc763f1284b9126550eaf84b88bbc7256e15028f19188a"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79849239c39b5e1fd906556c474d9b0439ea6792b637511f3fe3a41158d89ca8"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e3bc157fed2a4c02ec468de4ecd12a6e22818d4f09cde2c31ee3226ffbefab2"}, - {file = "kiwisolver-1.4.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3da53da805b71e41053dc670f9a820d1157aae77b6b944e08024d17bcd51ef88"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:8705f17dfeb43139a692298cb6637ee2e59c0194538153e83e9ee0c75c2eddde"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:82a5c2f4b87c26bb1a0ef3d16b5c4753434633b83d365cc0ddf2770c93829e3c"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce8be0466f4c0d585cdb6c1e2ed07232221df101a4c6f28821d2aa754ca2d9e2"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:409afdfe1e2e90e6ee7fc896f3df9a7fec8e793e58bfa0d052c8a82f99c37abb"}, - {file = "kiwisolver-1.4.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5b9c3f4ee0b9a439d2415012bd1b1cc2df59e4d6a9939f4d669241d30b414327"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win32.whl", hash = "sha256:a79ae34384df2b615eefca647a2873842ac3b596418032bef9a7283675962644"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win_amd64.whl", hash = "sha256:cf0438b42121a66a3a667de17e779330fc0f20b0d97d59d2f2121e182b0505e4"}, - {file = "kiwisolver-1.4.7-cp39-cp39-win_arm64.whl", hash = "sha256:764202cc7e70f767dab49e8df52c7455e8de0df5d858fa801a11aa0d882ccf3f"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4"}, - {file = "kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bfa1acfa0c54932d5607e19a2c24646fb4c1ae2694437789129cf099789a3b00"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:eee3ea935c3d227d49b4eb85660ff631556841f6e567f0f7bda972df6c2c9935"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f3160309af4396e0ed04db259c3ccbfdc3621b5559b5453075e5de555e1f3a1b"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a17f6a29cf8935e587cc8a4dbfc8368c55edc645283db0ce9801016f83526c2d"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10849fb2c1ecbfae45a693c070e0320a91b35dd4bcf58172c023b994283a124d"}, - {file = "kiwisolver-1.4.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:ac542bf38a8a4be2dc6b15248d36315ccc65f0743f7b1a76688ffb6b5129a5c2"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8b01aac285f91ca889c800042c35ad3b239e704b150cfd3382adfc9dcc780e39"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:48be928f59a1f5c8207154f935334d374e79f2b5d212826307d072595ad76a2e"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f37cfe618a117e50d8c240555331160d73d0411422b59b5ee217843d7b693608"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:599b5c873c63a1f6ed7eead644a8a380cfbdf5db91dcb6f85707aaab213b1674"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801fa7802e5cfabe3ab0c81a34c323a319b097dfb5004be950482d882f3d7225"}, - {file = "kiwisolver-1.4.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0c6c43471bc764fad4bc99c5c2d6d16a676b1abf844ca7c8702bdae92df01ee0"}, - {file = "kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60"}, -] - -[[package]] -name = "langchain-core" -version = "0.2.38" -description = "Building applications with LLMs through composability" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -jsonpatch = "^1.33" -langsmith = "^0.1.112" -packaging = ">=23.2,<25" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -PyYAML = ">=5.3" -tenacity = "^8.1.0,!=8.4.0" -typing-extensions = ">=4.7" - -[package.source] -type = "directory" -url = "../../core" - -[[package]] -name = "langdetect" -version = "1.0.9" -description = "Language detection library ported from Google's language-detection." -optional = false -python-versions = "*" -files = [ - {file = "langdetect-1.0.9-py2-none-any.whl", hash = "sha256:7cbc0746252f19e76f77c0b1690aadf01963be835ef0cd4b56dddf2a8f1dfc2a"}, - {file = "langdetect-1.0.9.tar.gz", hash = "sha256:cbc1fef89f8d062739774bd51eda3da3274006b3661d199c2655f6b3f6d605a0"}, -] - -[package.dependencies] -six = "*" - -[[package]] -name = "langsmith" -version = "0.1.116" -description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." -optional = false -python-versions = "<4.0,>=3.8.1" -files = [ - {file = "langsmith-0.1.116-py3-none-any.whl", hash = "sha256:4b5ea64c81ba5ca309695c85dc3fb4617429a985129ed5d9eca00d1c9d6483f4"}, - {file = "langsmith-0.1.116.tar.gz", hash = "sha256:5ccd7f5c1840f7c507ab3ee56334a1391de28c8bf72669782e2d82cafeefffa7"}, -] - -[package.dependencies] -httpx = ">=0.23.0,<1" -orjson = ">=3.9.14,<4.0.0" -pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, - {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, -] -requests = ">=2,<3" - -[[package]] -name = "layoutparser" -version = "0.3.4" -description = "A unified toolkit for Deep Learning Based Document Image Analysis" -optional = false -python-versions = ">=3.6" -files = [ - {file = "layoutparser-0.3.4-py3-none-any.whl", hash = "sha256:269aedfab8a0caa50aef8d0fa62740fbee1f2964880daae3a0e6a0415363126a"}, - {file = "layoutparser-0.3.4.tar.gz", hash = "sha256:0dfb2194c36a5ad1075b8310f3cbc280c00306d1758cef127d20283f7ce085ea"}, -] - -[package.dependencies] -iopath = "*" -numpy = "*" -opencv-python = "*" -pandas = "*" -pdf2image = "*" -pdfplumber = "*" -pillow = "*" -pyyaml = ">=5.1" -scipy = "*" - -[package.extras] -effdet = ["effdet", "torch", "torchvision"] -gcv = ["google-cloud-vision (==1)"] -layoutmodels = ["effdet", "torch", "torchvision"] -ocr = ["google-cloud-vision (==1)", "pytesseract"] -paddledetection = ["paddlepaddle (==2.1.0)"] -tesseract = ["pytesseract"] - -[[package]] -name = "lxml" -version = "5.3.0" -description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API." -optional = false -python-versions = ">=3.6" -files = [ - {file = "lxml-5.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:dd36439be765e2dde7660212b5275641edbc813e7b24668831a5c8ac91180656"}, - {file = "lxml-5.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ae5fe5c4b525aa82b8076c1a59d642c17b6e8739ecf852522c6321852178119d"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:501d0d7e26b4d261fca8132854d845e4988097611ba2531408ec91cf3fd9d20a"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb66442c2546446944437df74379e9cf9e9db353e61301d1a0e26482f43f0dd8"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e41506fec7a7f9405b14aa2d5c8abbb4dbbd09d88f9496958b6d00cb4d45330"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f7d4a670107d75dfe5ad080bed6c341d18c4442f9378c9f58e5851e86eb79965"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41ce1f1e2c7755abfc7e759dc34d7d05fd221723ff822947132dc934d122fe22"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:44264ecae91b30e5633013fb66f6ddd05c006d3e0e884f75ce0b4755b3e3847b"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:3c174dc350d3ec52deb77f2faf05c439331d6ed5e702fc247ccb4e6b62d884b7"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:2dfab5fa6a28a0b60a20638dc48e6343c02ea9933e3279ccb132f555a62323d8"}, - {file = "lxml-5.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b1c8c20847b9f34e98080da785bb2336ea982e7f913eed5809e5a3c872900f32"}, - {file = "lxml-5.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:2c86bf781b12ba417f64f3422cfc302523ac9cd1d8ae8c0f92a1c66e56ef2e86"}, - {file = "lxml-5.3.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c162b216070f280fa7da844531169be0baf9ccb17263cf5a8bf876fcd3117fa5"}, - {file = "lxml-5.3.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:36aef61a1678cb778097b4a6eeae96a69875d51d1e8f4d4b491ab3cfb54b5a03"}, - {file = "lxml-5.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f65e5120863c2b266dbcc927b306c5b78e502c71edf3295dfcb9501ec96e5fc7"}, - {file = "lxml-5.3.0-cp310-cp310-win32.whl", hash = "sha256:ef0c1fe22171dd7c7c27147f2e9c3e86f8bdf473fed75f16b0c2e84a5030ce80"}, - {file = "lxml-5.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:052d99051e77a4f3e8482c65014cf6372e61b0a6f4fe9edb98503bb5364cfee3"}, - {file = "lxml-5.3.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:74bcb423462233bc5d6066e4e98b0264e7c1bed7541fff2f4e34fe6b21563c8b"}, - {file = "lxml-5.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a3d819eb6f9b8677f57f9664265d0a10dd6551d227afb4af2b9cd7bdc2ccbf18"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b8f5db71b28b8c404956ddf79575ea77aa8b1538e8b2ef9ec877945b3f46442"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3406b63232fc7e9b8783ab0b765d7c59e7c59ff96759d8ef9632fca27c7ee4"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2ecdd78ab768f844c7a1d4a03595038c166b609f6395e25af9b0f3f26ae1230f"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:168f2dfcfdedf611eb285efac1516c8454c8c99caf271dccda8943576b67552e"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa617107a410245b8660028a7483b68e7914304a6d4882b5ff3d2d3eb5948d8c"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:69959bd3167b993e6e710b99051265654133a98f20cec1d9b493b931942e9c16"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_28_ppc64le.whl", hash = "sha256:bd96517ef76c8654446fc3db9242d019a1bb5fe8b751ba414765d59f99210b79"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_28_s390x.whl", hash = "sha256:ab6dd83b970dc97c2d10bc71aa925b84788c7c05de30241b9e96f9b6d9ea3080"}, - {file = "lxml-5.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:eec1bb8cdbba2925bedc887bc0609a80e599c75b12d87ae42ac23fd199445654"}, - {file = "lxml-5.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6a7095eeec6f89111d03dabfe5883a1fd54da319c94e0fb104ee8f23616b572d"}, - {file = "lxml-5.3.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:6f651ebd0b21ec65dfca93aa629610a0dbc13dbc13554f19b0113da2e61a4763"}, - {file = "lxml-5.3.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:f422a209d2455c56849442ae42f25dbaaba1c6c3f501d58761c619c7836642ec"}, - {file = "lxml-5.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:62f7fdb0d1ed2065451f086519865b4c90aa19aed51081979ecd05a21eb4d1be"}, - {file = "lxml-5.3.0-cp311-cp311-win32.whl", hash = "sha256:c6379f35350b655fd817cd0d6cbeef7f265f3ae5fedb1caae2eb442bbeae9ab9"}, - {file = "lxml-5.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:9c52100e2c2dbb0649b90467935c4b0de5528833c76a35ea1a2691ec9f1ee7a1"}, - {file = "lxml-5.3.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e99f5507401436fdcc85036a2e7dc2e28d962550afe1cbfc07c40e454256a859"}, - {file = "lxml-5.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:384aacddf2e5813a36495233b64cb96b1949da72bef933918ba5c84e06af8f0e"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:874a216bf6afaf97c263b56371434e47e2c652d215788396f60477540298218f"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:65ab5685d56914b9a2a34d67dd5488b83213d680b0c5d10b47f81da5a16b0b0e"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aac0bbd3e8dd2d9c45ceb82249e8bdd3ac99131a32b4d35c8af3cc9db1657179"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b369d3db3c22ed14c75ccd5af429086f166a19627e84a8fdade3f8f31426e52a"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c24037349665434f375645fa9d1f5304800cec574d0310f618490c871fd902b3"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:62d172f358f33a26d6b41b28c170c63886742f5b6772a42b59b4f0fa10526cb1"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_28_ppc64le.whl", hash = "sha256:c1f794c02903c2824fccce5b20c339a1a14b114e83b306ff11b597c5f71a1c8d"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_28_s390x.whl", hash = "sha256:5d6a6972b93c426ace71e0be9a6f4b2cfae9b1baed2eed2006076a746692288c"}, - {file = "lxml-5.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:3879cc6ce938ff4eb4900d901ed63555c778731a96365e53fadb36437a131a99"}, - {file = "lxml-5.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:74068c601baff6ff021c70f0935b0c7bc528baa8ea210c202e03757c68c5a4ff"}, - {file = "lxml-5.3.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ecd4ad8453ac17bc7ba3868371bffb46f628161ad0eefbd0a855d2c8c32dd81a"}, - {file = "lxml-5.3.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:7e2f58095acc211eb9d8b5771bf04df9ff37d6b87618d1cbf85f92399c98dae8"}, - {file = "lxml-5.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e63601ad5cd8f860aa99d109889b5ac34de571c7ee902d6812d5d9ddcc77fa7d"}, - {file = "lxml-5.3.0-cp312-cp312-win32.whl", hash = "sha256:17e8d968d04a37c50ad9c456a286b525d78c4a1c15dd53aa46c1d8e06bf6fa30"}, - {file = "lxml-5.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:c1a69e58a6bb2de65902051d57fde951febad631a20a64572677a1052690482f"}, - {file = "lxml-5.3.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8c72e9563347c7395910de6a3100a4840a75a6f60e05af5e58566868d5eb2d6a"}, - {file = "lxml-5.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e92ce66cd919d18d14b3856906a61d3f6b6a8500e0794142338da644260595cd"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d04f064bebdfef9240478f7a779e8c5dc32b8b7b0b2fc6a62e39b928d428e51"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c2fb570d7823c2bbaf8b419ba6e5662137f8166e364a8b2b91051a1fb40ab8b"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0c120f43553ec759f8de1fee2f4794452b0946773299d44c36bfe18e83caf002"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:562e7494778a69086f0312ec9689f6b6ac1c6b65670ed7d0267e49f57ffa08c4"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:423b121f7e6fa514ba0c7918e56955a1d4470ed35faa03e3d9f0e3baa4c7e492"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:c00f323cc00576df6165cc9d21a4c21285fa6b9989c5c39830c3903dc4303ef3"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_28_ppc64le.whl", hash = "sha256:1fdc9fae8dd4c763e8a31e7630afef517eab9f5d5d31a278df087f307bf601f4"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_28_s390x.whl", hash = "sha256:658f2aa69d31e09699705949b5fc4719cbecbd4a97f9656a232e7d6c7be1a367"}, - {file = "lxml-5.3.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:1473427aff3d66a3fa2199004c3e601e6c4500ab86696edffdbc84954c72d832"}, - {file = "lxml-5.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a87de7dd873bf9a792bf1e58b1c3887b9264036629a5bf2d2e6579fe8e73edff"}, - {file = "lxml-5.3.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:0d7b36afa46c97875303a94e8f3ad932bf78bace9e18e603f2085b652422edcd"}, - {file = "lxml-5.3.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:cf120cce539453ae086eacc0130a324e7026113510efa83ab42ef3fcfccac7fb"}, - {file = "lxml-5.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:df5c7333167b9674aa8ae1d4008fa4bc17a313cc490b2cca27838bbdcc6bb15b"}, - {file = "lxml-5.3.0-cp313-cp313-win32.whl", hash = "sha256:c802e1c2ed9f0c06a65bc4ed0189d000ada8049312cfeab6ca635e39c9608957"}, - {file = "lxml-5.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:406246b96d552e0503e17a1006fd27edac678b3fcc9f1be71a2f94b4ff61528d"}, - {file = "lxml-5.3.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:8f0de2d390af441fe8b2c12626d103540b5d850d585b18fcada58d972b74a74e"}, - {file = "lxml-5.3.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1afe0a8c353746e610bd9031a630a95bcfb1a720684c3f2b36c4710a0a96528f"}, - {file = "lxml-5.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56b9861a71575f5795bde89256e7467ece3d339c9b43141dbdd54544566b3b94"}, - {file = "lxml-5.3.0-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:9fb81d2824dff4f2e297a276297e9031f46d2682cafc484f49de182aa5e5df99"}, - {file = "lxml-5.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:2c226a06ecb8cdef28845ae976da407917542c5e6e75dcac7cc33eb04aaeb237"}, - {file = "lxml-5.3.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:7d3d1ca42870cdb6d0d29939630dbe48fa511c203724820fc0fd507b2fb46577"}, - {file = "lxml-5.3.0-cp36-cp36m-win32.whl", hash = "sha256:094cb601ba9f55296774c2d57ad68730daa0b13dc260e1f941b4d13678239e70"}, - {file = "lxml-5.3.0-cp36-cp36m-win_amd64.whl", hash = "sha256:eafa2c8658f4e560b098fe9fc54539f86528651f61849b22111a9b107d18910c"}, - {file = "lxml-5.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:cb83f8a875b3d9b458cada4f880fa498646874ba4011dc974e071a0a84a1b033"}, - {file = "lxml-5.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:25f1b69d41656b05885aa185f5fdf822cb01a586d1b32739633679699f220391"}, - {file = "lxml-5.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23e0553b8055600b3bf4a00b255ec5c92e1e4aebf8c2c09334f8368e8bd174d6"}, - {file = "lxml-5.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ada35dd21dc6c039259596b358caab6b13f4db4d4a7f8665764d616daf9cc1d"}, - {file = "lxml-5.3.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:81b4e48da4c69313192d8c8d4311e5d818b8be1afe68ee20f6385d0e96fc9512"}, - {file = "lxml-5.3.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:2bc9fd5ca4729af796f9f59cd8ff160fe06a474da40aca03fcc79655ddee1a8b"}, - {file = "lxml-5.3.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:07da23d7ee08577760f0a71d67a861019103e4812c87e2fab26b039054594cc5"}, - {file = "lxml-5.3.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:ea2e2f6f801696ad7de8aec061044d6c8c0dd4037608c7cab38a9a4d316bfb11"}, - {file = "lxml-5.3.0-cp37-cp37m-win32.whl", hash = "sha256:5c54afdcbb0182d06836cc3d1be921e540be3ebdf8b8a51ee3ef987537455f84"}, - {file = "lxml-5.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:f2901429da1e645ce548bf9171784c0f74f0718c3f6150ce166be39e4dd66c3e"}, - {file = "lxml-5.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c56a1d43b2f9ee4786e4658c7903f05da35b923fb53c11025712562d5cc02753"}, - {file = "lxml-5.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ee8c39582d2652dcd516d1b879451500f8db3fe3607ce45d7c5957ab2596040"}, - {file = "lxml-5.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fdf3a3059611f7585a78ee10399a15566356116a4288380921a4b598d807a22"}, - {file = "lxml-5.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:146173654d79eb1fc97498b4280c1d3e1e5d58c398fa530905c9ea50ea849b22"}, - {file = "lxml-5.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:0a7056921edbdd7560746f4221dca89bb7a3fe457d3d74267995253f46343f15"}, - {file = "lxml-5.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:9e4b47ac0f5e749cfc618efdf4726269441014ae1d5583e047b452a32e221920"}, - {file = "lxml-5.3.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f914c03e6a31deb632e2daa881fe198461f4d06e57ac3d0e05bbcab8eae01945"}, - {file = "lxml-5.3.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:213261f168c5e1d9b7535a67e68b1f59f92398dd17a56d934550837143f79c42"}, - {file = "lxml-5.3.0-cp38-cp38-win32.whl", hash = "sha256:218c1b2e17a710e363855594230f44060e2025b05c80d1f0661258142b2add2e"}, - {file = "lxml-5.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:315f9542011b2c4e1d280e4a20ddcca1761993dda3afc7a73b01235f8641e903"}, - {file = "lxml-5.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1ffc23010330c2ab67fac02781df60998ca8fe759e8efde6f8b756a20599c5de"}, - {file = "lxml-5.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2b3778cb38212f52fac9fe913017deea2fdf4eb1a4f8e4cfc6b009a13a6d3fcc"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b0c7a688944891086ba192e21c5229dea54382f4836a209ff8d0a660fac06be"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:747a3d3e98e24597981ca0be0fd922aebd471fa99d0043a3842d00cdcad7ad6a"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86a6b24b19eaebc448dc56b87c4865527855145d851f9fc3891673ff97950540"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b11a5d918a6216e521c715b02749240fb07ae5a1fefd4b7bf12f833bc8b4fe70"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68b87753c784d6acb8a25b05cb526c3406913c9d988d51f80adecc2b0775d6aa"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:109fa6fede314cc50eed29e6e56c540075e63d922455346f11e4d7a036d2b8cf"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_28_ppc64le.whl", hash = "sha256:02ced472497b8362c8e902ade23e3300479f4f43e45f4105c85ef43b8db85229"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_28_s390x.whl", hash = "sha256:6b038cc86b285e4f9fea2ba5ee76e89f21ed1ea898e287dc277a25884f3a7dfe"}, - {file = "lxml-5.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:7437237c6a66b7ca341e868cda48be24b8701862757426852c9b3186de1da8a2"}, - {file = "lxml-5.3.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:7f41026c1d64043a36fda21d64c5026762d53a77043e73e94b71f0521939cc71"}, - {file = "lxml-5.3.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:482c2f67761868f0108b1743098640fbb2a28a8e15bf3f47ada9fa59d9fe08c3"}, - {file = "lxml-5.3.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:1483fd3358963cc5c1c9b122c80606a3a79ee0875bcac0204149fa09d6ff2727"}, - {file = "lxml-5.3.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:2dec2d1130a9cda5b904696cec33b2cfb451304ba9081eeda7f90f724097300a"}, - {file = "lxml-5.3.0-cp39-cp39-win32.whl", hash = "sha256:a0eabd0a81625049c5df745209dc7fcef6e2aea7793e5f003ba363610aa0a3ff"}, - {file = "lxml-5.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:89e043f1d9d341c52bf2af6d02e6adde62e0a46e6755d5eb60dc6e4f0b8aeca2"}, - {file = "lxml-5.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7b1cd427cb0d5f7393c31b7496419da594fe600e6fdc4b105a54f82405e6626c"}, - {file = "lxml-5.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51806cfe0279e06ed8500ce19479d757db42a30fd509940b1701be9c86a5ff9a"}, - {file = "lxml-5.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee70d08fd60c9565ba8190f41a46a54096afa0eeb8f76bd66f2c25d3b1b83005"}, - {file = "lxml-5.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:8dc2c0395bea8254d8daebc76dcf8eb3a95ec2a46fa6fae5eaccee366bfe02ce"}, - {file = "lxml-5.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6ba0d3dcac281aad8a0e5b14c7ed6f9fa89c8612b47939fc94f80b16e2e9bc83"}, - {file = "lxml-5.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:6e91cf736959057f7aac7adfc83481e03615a8e8dd5758aa1d95ea69e8931dba"}, - {file = "lxml-5.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:94d6c3782907b5e40e21cadf94b13b0842ac421192f26b84c45f13f3c9d5dc27"}, - {file = "lxml-5.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c300306673aa0f3ed5ed9372b21867690a17dba38c68c44b287437c362ce486b"}, - {file = "lxml-5.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78d9b952e07aed35fe2e1a7ad26e929595412db48535921c5013edc8aa4a35ce"}, - {file = "lxml-5.3.0-pp37-pypy37_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:01220dca0d066d1349bd6a1726856a78f7929f3878f7e2ee83c296c69495309e"}, - {file = "lxml-5.3.0-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:2d9b8d9177afaef80c53c0a9e30fa252ff3036fb1c6494d427c066a4ce6a282f"}, - {file = "lxml-5.3.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:20094fc3f21ea0a8669dc4c61ed7fa8263bd37d97d93b90f28fc613371e7a875"}, - {file = "lxml-5.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ace2c2326a319a0bb8a8b0e5b570c764962e95818de9f259ce814ee666603f19"}, - {file = "lxml-5.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92e67a0be1639c251d21e35fe74df6bcc40cba445c2cda7c4a967656733249e2"}, - {file = "lxml-5.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd5350b55f9fecddc51385463a4f67a5da829bc741e38cf689f38ec9023f54ab"}, - {file = "lxml-5.3.0-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c1fefd7e3d00921c44dc9ca80a775af49698bbfd92ea84498e56acffd4c5469"}, - {file = "lxml-5.3.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:71a8dd38fbd2f2319136d4ae855a7078c69c9a38ae06e0c17c73fd70fc6caad8"}, - {file = "lxml-5.3.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:97acf1e1fd66ab53dacd2c35b319d7e548380c2e9e8c54525c6e76d21b1ae3b1"}, - {file = "lxml-5.3.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:68934b242c51eb02907c5b81d138cb977b2129a0a75a8f8b60b01cb8586c7b21"}, - {file = "lxml-5.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b710bc2b8292966b23a6a0121f7a6c51d45d2347edcc75f016ac123b8054d3f2"}, - {file = "lxml-5.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18feb4b93302091b1541221196a2155aa296c363fd233814fa11e181adebc52f"}, - {file = "lxml-5.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:3eb44520c4724c2e1a57c0af33a379eee41792595023f367ba3952a2d96c2aab"}, - {file = "lxml-5.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:609251a0ca4770e5a8768ff902aa02bf636339c5a93f9349b48eb1f606f7f3e9"}, - {file = "lxml-5.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:516f491c834eb320d6c843156440fe7fc0d50b33e44387fcec5b02f0bc118a4c"}, - {file = "lxml-5.3.0.tar.gz", hash = "sha256:4e109ca30d1edec1ac60cdbe341905dc3b8f55b16855e03a54aaf59e51ec8c6f"}, -] - -[package.extras] -cssselect = ["cssselect (>=0.7)"] -html-clean = ["lxml-html-clean"] -html5 = ["html5lib"] -htmlsoup = ["BeautifulSoup4"] -source = ["Cython (>=3.0.11)"] - -[[package]] -name = "markdown" -version = "3.7" -description = "Python implementation of John Gruber's Markdown." -optional = false -python-versions = ">=3.8" -files = [ - {file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"}, - {file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"}, -] - -[package.dependencies] -importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} - -[package.extras] -docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"] -testing = ["coverage", "pyyaml"] - -[[package]] -name = "markupsafe" -version = "2.1.5" -description = "Safely add untrusted strings to HTML/XML markup." -optional = false -python-versions = ">=3.7" -files = [ - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, - {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, -] - -[[package]] -name = "marshmallow" -version = "3.22.0" -description = "A lightweight library for converting complex datatypes to and from native Python datatypes." -optional = false -python-versions = ">=3.8" -files = [ - {file = "marshmallow-3.22.0-py3-none-any.whl", hash = "sha256:71a2dce49ef901c3f97ed296ae5051135fd3febd2bf43afe0ae9a82143a494d9"}, - {file = "marshmallow-3.22.0.tar.gz", hash = "sha256:4972f529104a220bb8637d595aa4c9762afbe7f7a77d82dc58c1615d70c5823e"}, -] - -[package.dependencies] -packaging = ">=17.0" - -[package.extras] -dev = ["marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"] -docs = ["alabaster (==1.0.0)", "autodocsumm (==0.2.13)", "sphinx (==8.0.2)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"] -tests = ["pytest", "pytz", "simplejson"] - -[[package]] -name = "matplotlib" -version = "3.9.2" -description = "Python plotting package" -optional = false -python-versions = ">=3.9" -files = [ - {file = "matplotlib-3.9.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9d78bbc0cbc891ad55b4f39a48c22182e9bdaea7fc0e5dbd364f49f729ca1bbb"}, - {file = "matplotlib-3.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c375cc72229614632c87355366bdf2570c2dac01ac66b8ad048d2dabadf2d0d4"}, - {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d94ff717eb2bd0b58fe66380bd8b14ac35f48a98e7c6765117fe67fb7684e64"}, - {file = "matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab68d50c06938ef28681073327795c5db99bb4666214d2d5f880ed11aeaded66"}, - {file = "matplotlib-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:65aacf95b62272d568044531e41de26285d54aec8cb859031f511f84bd8b495a"}, - {file = "matplotlib-3.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:3fd595f34aa8a55b7fc8bf9ebea8aa665a84c82d275190a61118d33fbc82ccae"}, - {file = "matplotlib-3.9.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d8dd059447824eec055e829258ab092b56bb0579fc3164fa09c64f3acd478772"}, - {file = "matplotlib-3.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c797dac8bb9c7a3fd3382b16fe8f215b4cf0f22adccea36f1545a6d7be310b41"}, - {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d719465db13267bcef19ea8954a971db03b9f48b4647e3860e4bc8e6ed86610f"}, - {file = "matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447"}, - {file = "matplotlib-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7741f26a58a240f43bee74965c4882b6c93df3e7eb3de160126d8c8f53a6ae6e"}, - {file = "matplotlib-3.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:ae82a14dab96fbfad7965403c643cafe6515e386de723e498cf3eeb1e0b70cc7"}, - {file = "matplotlib-3.9.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac43031375a65c3196bee99f6001e7fa5bdfb00ddf43379d3c0609bdca042df9"}, - {file = "matplotlib-3.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be0fc24a5e4531ae4d8e858a1a548c1fe33b176bb13eff7f9d0d38ce5112a27d"}, - {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf81de2926c2db243c9b2cbc3917619a0fc85796c6ba4e58f541df814bbf83c7"}, - {file = "matplotlib-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ee45bc4245533111ced13f1f2cace1e7f89d1c793390392a80c139d6cf0e6c"}, - {file = "matplotlib-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:306c8dfc73239f0e72ac50e5a9cf19cc4e8e331dd0c54f5e69ca8758550f1e1e"}, - {file = "matplotlib-3.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:5413401594cfaff0052f9d8b1aafc6d305b4bd7c4331dccd18f561ff7e1d3bd3"}, - {file = "matplotlib-3.9.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:18128cc08f0d3cfff10b76baa2f296fc28c4607368a8402de61bb3f2eb33c7d9"}, - {file = "matplotlib-3.9.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4876d7d40219e8ae8bb70f9263bcbe5714415acfdf781086601211335e24f8aa"}, - {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d9f07a80deab4bb0b82858a9e9ad53d1382fd122be8cde11080f4e7dfedb38b"}, - {file = "matplotlib-3.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7c0410f181a531ec4e93bbc27692f2c71a15c2da16766f5ba9761e7ae518413"}, - {file = "matplotlib-3.9.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:909645cce2dc28b735674ce0931a4ac94e12f5b13f6bb0b5a5e65e7cea2c192b"}, - {file = "matplotlib-3.9.2-cp313-cp313-win_amd64.whl", hash = "sha256:f32c7410c7f246838a77d6d1eff0c0f87f3cb0e7c4247aebea71a6d5a68cab49"}, - {file = "matplotlib-3.9.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:37e51dd1c2db16ede9cfd7b5cabdfc818b2c6397c83f8b10e0e797501c963a03"}, - {file = "matplotlib-3.9.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b82c5045cebcecd8496a4d694d43f9cc84aeeb49fe2133e036b207abe73f4d30"}, - {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f053c40f94bc51bc03832a41b4f153d83f2062d88c72b5e79997072594e97e51"}, - {file = "matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbe196377a8248972f5cede786d4c5508ed5f5ca4a1e09b44bda889958b33f8c"}, - {file = "matplotlib-3.9.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5816b1e1fe8c192cbc013f8f3e3368ac56fbecf02fb41b8f8559303f24c5015e"}, - {file = "matplotlib-3.9.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cef2a73d06601437be399908cf13aee74e86932a5ccc6ccdf173408ebc5f6bb2"}, - {file = "matplotlib-3.9.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0830e188029c14e891fadd99702fd90d317df294c3298aad682739c5533721a"}, - {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ba9c1299c920964e8d3857ba27173b4dbb51ca4bab47ffc2c2ba0eb5e2cbc5"}, - {file = "matplotlib-3.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd93b91ab47a3616b4d3c42b52f8363b88ca021e340804c6ab2536344fad9ca"}, - {file = "matplotlib-3.9.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6d1ce5ed2aefcdce11904fc5bbea7d9c21fff3d5f543841edf3dea84451a09ea"}, - {file = "matplotlib-3.9.2-cp39-cp39-win_amd64.whl", hash = "sha256:b2696efdc08648536efd4e1601b5fd491fd47f4db97a5fbfd175549a7365c1b2"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:d52a3b618cb1cbb769ce2ee1dcdb333c3ab6e823944e9a2d36e37253815f9556"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:039082812cacd6c6bec8e17a9c1e6baca230d4116d522e81e1f63a74d01d2e21"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6758baae2ed64f2331d4fd19be38b7b4eae3ecec210049a26b6a4f3ae1c85dcc"}, - {file = "matplotlib-3.9.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:050598c2b29e0b9832cde72bcf97627bf00262adbc4a54e2b856426bb2ef0697"}, - {file = "matplotlib-3.9.2.tar.gz", hash = "sha256:96ab43906269ca64a6366934106fa01534454a69e471b7bf3d79083981aaab92"}, -] - -[package.dependencies] -contourpy = ">=1.0.1" -cycler = ">=0.10" -fonttools = ">=4.22.0" -importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""} -kiwisolver = ">=1.3.1" -numpy = ">=1.23" -packaging = ">=20.0" -pillow = ">=8" -pyparsing = ">=2.3.1" -python-dateutil = ">=2.7" - -[package.extras] -dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] - -[[package]] -name = "mpmath" -version = "1.3.0" -description = "Python library for arbitrary-precision floating-point arithmetic" -optional = false -python-versions = "*" -files = [ - {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, - {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, -] - -[package.extras] -develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] -docs = ["sphinx"] -gmpy = ["gmpy2 (>=2.1.0a4)"] -tests = ["pytest (>=4.6)"] - -[[package]] -name = "mypy" -version = "1.11.2" -description = "Optional static typing for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, - {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, - {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, - {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, - {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, - {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, - {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, - {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, - {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, - {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, - {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, - {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, - {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, - {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, - {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, - {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, - {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, - {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, - {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, - {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, - {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, - {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, - {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, - {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, - {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, - {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, - {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, -] - -[package.dependencies] -mypy-extensions = ">=1.0.0" -tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.6.0" - -[package.extras] -dmypy = ["psutil (>=4.0)"] -install-types = ["pip"] -mypyc = ["setuptools (>=50)"] -reports = ["lxml"] - -[[package]] -name = "mypy-extensions" -version = "1.0.0" -description = "Type system extensions for programs checked with the mypy type checker." -optional = false -python-versions = ">=3.5" -files = [ - {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, - {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, -] - -[[package]] -name = "nest-asyncio" -version = "1.6.0" -description = "Patch asyncio to allow nested event loops" -optional = false -python-versions = ">=3.5" -files = [ - {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, - {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, -] - -[[package]] -name = "networkx" -version = "3.2.1" -description = "Python package for creating and manipulating graphs and networks" -optional = false -python-versions = ">=3.9" -files = [ - {file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"}, - {file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"}, -] - -[package.extras] -default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] -developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] -doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] -test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] - -[[package]] -name = "nltk" -version = "3.9.1" -description = "Natural Language Toolkit" -optional = false -python-versions = ">=3.8" -files = [ - {file = "nltk-3.9.1-py3-none-any.whl", hash = "sha256:4fa26829c5b00715afe3061398a8989dc643b92ce7dd93fb4585a70930d168a1"}, - {file = "nltk-3.9.1.tar.gz", hash = "sha256:87d127bd3de4bd89a4f81265e5fa59cb1b199b27440175370f7417d2bc7ae868"}, -] - -[package.dependencies] -click = "*" -joblib = "*" -regex = ">=2021.8.3" -tqdm = "*" - -[package.extras] -all = ["matplotlib", "numpy", "pyparsing", "python-crfsuite", "requests", "scikit-learn", "scipy", "twython"] -corenlp = ["requests"] -machine-learning = ["numpy", "python-crfsuite", "scikit-learn", "scipy"] -plot = ["matplotlib"] -tgrep = ["pyparsing"] -twitter = ["twython"] - -[[package]] -name = "numpy" -version = "1.26.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"}, - {file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"}, - {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"}, - {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"}, - {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"}, - {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"}, - {file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"}, - {file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"}, - {file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"}, - {file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"}, - {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"}, - {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"}, - {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"}, - {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"}, - {file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"}, - {file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"}, - {file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"}, - {file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"}, - {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"}, - {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"}, - {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"}, - {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"}, - {file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"}, - {file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"}, - {file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"}, - {file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"}, - {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"}, - {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"}, - {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"}, - {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"}, - {file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"}, - {file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"}, - {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"}, - {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, -] - -[[package]] -name = "nvidia-cublas-cu12" -version = "12.1.3.1" -description = "CUBLAS native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, - {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, -] - -[[package]] -name = "nvidia-cuda-cupti-cu12" -version = "12.1.105" -description = "CUDA profiling tools runtime libs." -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, - {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, -] - -[[package]] -name = "nvidia-cuda-nvrtc-cu12" -version = "12.1.105" -description = "NVRTC native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, - {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, -] - -[[package]] -name = "nvidia-cuda-runtime-cu12" -version = "12.1.105" -description = "CUDA Runtime native Libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, - {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, -] - -[[package]] -name = "nvidia-cudnn-cu12" -version = "9.1.0.70" -description = "cuDNN runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f"}, - {file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-win_amd64.whl", hash = "sha256:6278562929433d68365a07a4a1546c237ba2849852c0d4b2262a486e805b977a"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" - -[[package]] -name = "nvidia-cufft-cu12" -version = "11.0.2.54" -description = "CUFFT native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, - {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, -] - -[[package]] -name = "nvidia-curand-cu12" -version = "10.3.2.106" -description = "CURAND native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, - {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, -] - -[[package]] -name = "nvidia-cusolver-cu12" -version = "11.4.5.107" -description = "CUDA solver native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, - {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, -] - -[package.dependencies] -nvidia-cublas-cu12 = "*" -nvidia-cusparse-cu12 = "*" -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-cusparse-cu12" -version = "12.1.0.106" -description = "CUSPARSE native runtime libraries" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, - {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, -] - -[package.dependencies] -nvidia-nvjitlink-cu12 = "*" - -[[package]] -name = "nvidia-nccl-cu12" -version = "2.20.5" -description = "NVIDIA Collective Communication Library (NCCL) Runtime" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01"}, - {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56"}, -] - -[[package]] -name = "nvidia-nvjitlink-cu12" -version = "12.6.68" -description = "Nvidia JIT LTO Library" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-manylinux2014_aarch64.whl", hash = "sha256:b3fd0779845f68b92063ab1393abab1ed0a23412fc520df79a8190d098b5cd6b"}, - {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-manylinux2014_x86_64.whl", hash = "sha256:125a6c2a44e96386dda634e13d944e60b07a0402d391a070e8fb4104b34ea1ab"}, - {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-win_amd64.whl", hash = "sha256:a55744c98d70317c5e23db14866a8cc2b733f7324509e941fc96276f9f37801d"}, -] - -[[package]] -name = "nvidia-nvtx-cu12" -version = "12.1.105" -description = "NVIDIA Tools Extension" -optional = false -python-versions = ">=3" -files = [ - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, - {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, -] - -[[package]] -name = "olefile" -version = "0.47" -description = "Python package to parse, read and write Microsoft OLE2 files (Structured Storage or Compound Document, Microsoft Office)" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "olefile-0.47-py2.py3-none-any.whl", hash = "sha256:543c7da2a7adadf21214938bb79c83ea12b473a4b6ee4ad4bf854e7715e13d1f"}, - {file = "olefile-0.47.zip", hash = "sha256:599383381a0bf3dfbd932ca0ca6515acd174ed48870cbf7fee123d698c192c1c"}, -] - -[package.extras] -tests = ["pytest", "pytest-cov"] - -[[package]] -name = "omegaconf" -version = "2.3.0" -description = "A flexible configuration library" -optional = false -python-versions = ">=3.6" -files = [ - {file = "omegaconf-2.3.0-py3-none-any.whl", hash = "sha256:7b4df175cdb08ba400f45cae3bdcae7ba8365db4d165fc65fd04b050ab63b46b"}, - {file = "omegaconf-2.3.0.tar.gz", hash = "sha256:d5d4b6d29955cc50ad50c46dc269bcd92c6e00f5f90d23ab5fee7bfca4ba4cc7"}, -] - -[package.dependencies] -antlr4-python3-runtime = "==4.9.*" -PyYAML = ">=5.1.0" - -[[package]] -name = "onnx" -version = "1.16.2" -description = "Open Neural Network Exchange" -optional = false -python-versions = ">=3.8" -files = [ - {file = "onnx-1.16.2-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:ab0a1aa6b0470020ea3636afdce3e2a67f856fefe4be8c73b20371b07fcde69c"}, - {file = "onnx-1.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a449122a49534bb9c2b6f16c8493b606ef0accda6b9dbf0c513ca4b31ebe8b38"}, - {file = "onnx-1.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec6a425e59291fff430da4a884aa07a1d0cbb5dcd22cc78f6cf4ba5adb9f3367"}, - {file = "onnx-1.16.2-cp310-cp310-win32.whl", hash = "sha256:55fbaf38acd4cd8fdd0b4f36871fb596b075518d3e981acc893f2ab887d1891a"}, - {file = "onnx-1.16.2-cp310-cp310-win_amd64.whl", hash = "sha256:4e496d301756e0a22fd2bdfac24b861c7b1ddbdd9ce7677b2a252c00c4c8f2a7"}, - {file = "onnx-1.16.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:859b41574243c9bfd0abce03c15c78a1f270cc03c7f99629b984daf7adfa5003"}, - {file = "onnx-1.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39a57d196fe5d73861e70d9625674e6caf8ca13c5e9c740462cf530a07cd2e1c"}, - {file = "onnx-1.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b98aa9733bd4b781eb931d33b4078ff2837e7d68062460726d6dd011f332bd4"}, - {file = "onnx-1.16.2-cp311-cp311-win32.whl", hash = "sha256:e9f018b2e172efeea8c2473a51a825652767726374145d7cfdebdc7a27446fdd"}, - {file = "onnx-1.16.2-cp311-cp311-win_amd64.whl", hash = "sha256:e66e4512a30df8916db5cf84f47d47b3250b9ab9a98d9cffe142c98c54598ba0"}, - {file = "onnx-1.16.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:bfdb8c2eb4c92f55626376e00993db8fcc753da4b80babf28d99636af8dbae6b"}, - {file = "onnx-1.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b77a6c138f284dfc9b06fa370768aa4fd167efc49ff740e2158dd02eedde8d0"}, - {file = "onnx-1.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca12e47965e590b63f31681c8c563c75449a04178f27eac1ff64bad314314fb3"}, - {file = "onnx-1.16.2-cp312-cp312-win32.whl", hash = "sha256:324fe3551e91ffd74b43dbcf1d48e96579f4c1be2ff1224591ecd3ec6daa6139"}, - {file = "onnx-1.16.2-cp312-cp312-win_amd64.whl", hash = "sha256:080b19b0bd2b5536b4c61812464fe495758d6c9cfed3fdd3f20516e616212bee"}, - {file = "onnx-1.16.2-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:c42a5db2db36fc46d3a93ab6aeff0f11abe10a4a16a85f2aad8879a58a898ee5"}, - {file = "onnx-1.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9635437ffe51cc71343f3067bc548a068bd287ac690f65a9f6223ea9dca441bf"}, - {file = "onnx-1.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9e22be82c3447ba6d2fe851973a736a7013e97b398e8beb7a25fd2ad4df219e"}, - {file = "onnx-1.16.2-cp38-cp38-win32.whl", hash = "sha256:e16012431643c66124eba0089acdad0df71d5c9d4e6bec4721999f9eecab72b7"}, - {file = "onnx-1.16.2-cp38-cp38-win_amd64.whl", hash = "sha256:42231a467e5be2974d426b410987073ed85bee34af7b50c93ab221a8696b0cfd"}, - {file = "onnx-1.16.2-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:e79edba750ae06059d82d8ff8129a6488a7e692cd23cd7fe010f7ec7d6a14bad"}, - {file = "onnx-1.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d192db8501103fede9c1725861e65ed41efb65da1ce915ba969aae40073eb94"}, - {file = "onnx-1.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da01d4a3bd7a0d0ee5084f65441fc9ca38450fc18835b7f9d5da5b9e7ca8b85d"}, - {file = "onnx-1.16.2-cp39-cp39-win32.whl", hash = "sha256:0b765b09bdb01fa2338ea52483aa3d9c75e249f85446f0d9ad1dc5bd2b149082"}, - {file = "onnx-1.16.2-cp39-cp39-win_amd64.whl", hash = "sha256:bfee781a59919e797f4dae380e63a0390ec01ce5c337a1459b992aac2f49a3c2"}, - {file = "onnx-1.16.2.tar.gz", hash = "sha256:b33a282b038813c4b69e73ea65c2909768e8dd6cc10619b70632335daf094646"}, -] - -[package.dependencies] -numpy = ">=1.20" -protobuf = ">=3.20.2" - -[package.extras] -reference = ["google-re2", "pillow"] - -[[package]] -name = "onnxruntime" -version = "1.19.2" -description = "ONNX Runtime is a runtime accelerator for Machine Learning models" -optional = false -python-versions = "*" -files = [ - {file = "onnxruntime-1.19.2-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:84fa57369c06cadd3c2a538ae2a26d76d583e7c34bdecd5769d71ca5c0fc750e"}, - {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bdc471a66df0c1cdef774accef69e9f2ca168c851ab5e4f2f3341512c7ef4666"}, - {file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e3a4ce906105d99ebbe817f536d50a91ed8a4d1592553f49b3c23c4be2560ae6"}, - {file = "onnxruntime-1.19.2-cp310-cp310-win32.whl", hash = "sha256:4b3d723cc154c8ddeb9f6d0a8c0d6243774c6b5930847cc83170bfe4678fafb3"}, - {file = "onnxruntime-1.19.2-cp310-cp310-win_amd64.whl", hash = "sha256:17ed7382d2c58d4b7354fb2b301ff30b9bf308a1c7eac9546449cd122d21cae5"}, - {file = "onnxruntime-1.19.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:d863e8acdc7232d705d49e41087e10b274c42f09e259016a46f32c34e06dc4fd"}, - {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c1dfe4f660a71b31caa81fc298a25f9612815215a47b286236e61d540350d7b6"}, - {file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a36511dc07c5c964b916697e42e366fa43c48cdb3d3503578d78cef30417cb84"}, - {file = "onnxruntime-1.19.2-cp311-cp311-win32.whl", hash = "sha256:50cbb8dc69d6befad4746a69760e5b00cc3ff0a59c6c3fb27f8afa20e2cab7e7"}, - {file = "onnxruntime-1.19.2-cp311-cp311-win_amd64.whl", hash = "sha256:1c3e5d415b78337fa0b1b75291e9ea9fb2a4c1f148eb5811e7212fed02cfffa8"}, - {file = "onnxruntime-1.19.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:68e7051bef9cfefcbb858d2d2646536829894d72a4130c24019219442b1dd2ed"}, - {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d2d366fbcc205ce68a8a3bde2185fd15c604d9645888703785b61ef174265168"}, - {file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:477b93df4db467e9cbf34051662a4b27c18e131fa1836e05974eae0d6e4cf29b"}, - {file = "onnxruntime-1.19.2-cp312-cp312-win32.whl", hash = "sha256:9a174073dc5608fad05f7cf7f320b52e8035e73d80b0a23c80f840e5a97c0147"}, - {file = "onnxruntime-1.19.2-cp312-cp312-win_amd64.whl", hash = "sha256:190103273ea4507638ffc31d66a980594b237874b65379e273125150eb044857"}, - {file = "onnxruntime-1.19.2-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:636bc1d4cc051d40bc52e1f9da87fbb9c57d9d47164695dfb1c41646ea51ea66"}, - {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5bd8b875757ea941cbcfe01582970cc299893d1b65bd56731e326a8333f638a3"}, - {file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b2046fc9560f97947bbc1acbe4c6d48585ef0f12742744307d3364b131ac5778"}, - {file = "onnxruntime-1.19.2-cp38-cp38-win32.whl", hash = "sha256:31c12840b1cde4ac1f7d27d540c44e13e34f2345cf3642762d2a3333621abb6a"}, - {file = "onnxruntime-1.19.2-cp38-cp38-win_amd64.whl", hash = "sha256:016229660adea180e9a32ce218b95f8f84860a200f0f13b50070d7d90e92956c"}, - {file = "onnxruntime-1.19.2-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:006c8d326835c017a9e9f74c9c77ebb570a71174a1e89fe078b29a557d9c3848"}, - {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:df2a94179a42d530b936f154615b54748239c2908ee44f0d722cb4df10670f68"}, - {file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fae4b4de45894b9ce7ae418c5484cbf0341db6813effec01bb2216091c52f7fb"}, - {file = "onnxruntime-1.19.2-cp39-cp39-win32.whl", hash = "sha256:dc5430f473e8706fff837ae01323be9dcfddd3ea471c900a91fa7c9b807ec5d3"}, - {file = "onnxruntime-1.19.2-cp39-cp39-win_amd64.whl", hash = "sha256:38475e29a95c5f6c62c2c603d69fc7d4c6ccbf4df602bd567b86ae1138881c49"}, -] - -[package.dependencies] -coloredlogs = "*" -flatbuffers = "*" -numpy = ">=1.21.6" -packaging = "*" -protobuf = "*" -sympy = "*" - -[[package]] -name = "opencv-python" -version = "4.10.0.84" -description = "Wrapper package for OpenCV python bindings." -optional = false -python-versions = ">=3.6" -files = [ - {file = "opencv-python-4.10.0.84.tar.gz", hash = "sha256:72d234e4582e9658ffea8e9cae5b63d488ad06994ef12d81dc303b17472f3526"}, - {file = "opencv_python-4.10.0.84-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:fc182f8f4cda51b45f01c64e4cbedfc2f00aff799debebc305d8d0210c43f251"}, - {file = "opencv_python-4.10.0.84-cp37-abi3-macosx_12_0_x86_64.whl", hash = "sha256:71e575744f1d23f79741450254660442785f45a0797212852ee5199ef12eed98"}, - {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09a332b50488e2dda866a6c5573ee192fe3583239fb26ff2f7f9ceb0bc119ea6"}, - {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ace140fc6d647fbe1c692bcb2abce768973491222c067c131d80957c595b71f"}, - {file = "opencv_python-4.10.0.84-cp37-abi3-win32.whl", hash = "sha256:2db02bb7e50b703f0a2d50c50ced72e95c574e1e5a0bb35a8a86d0b35c98c236"}, - {file = "opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl", hash = "sha256:32dbbd94c26f611dc5cc6979e6b7aa1f55a64d6b463cc1dcd3c95505a63e48fe"}, -] - -[package.dependencies] -numpy = [ - {version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""}, - {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, - {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, - {version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""}, - {version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""}, - {version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""}, -] - -[[package]] -name = "openpyxl" -version = "3.1.5" -description = "A Python library to read/write Excel 2010 xlsx/xlsm files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "openpyxl-3.1.5-py2.py3-none-any.whl", hash = "sha256:5282c12b107bffeef825f4617dc029afaf41d0ea60823bbb665ef3079dc79de2"}, - {file = "openpyxl-3.1.5.tar.gz", hash = "sha256:cf0e3cf56142039133628b5acffe8ef0c12bc902d2aadd3e0fe5878dc08d1050"}, -] - -[package.dependencies] -et-xmlfile = "*" - -[[package]] -name = "orderly-set" -version = "5.2.2" -description = "Orderly set" -optional = false -python-versions = ">=3.8" -files = [ - {file = "orderly_set-5.2.2-py3-none-any.whl", hash = "sha256:f7a37c95a38c01cdfe41c3ffb62925a318a2286ea0a41790c057fc802aec54da"}, - {file = "orderly_set-5.2.2.tar.gz", hash = "sha256:52a18b86aaf3f5d5a498bbdb27bf3253a4e5c57ab38e5b7a56fa00115cd28448"}, -] - -[[package]] -name = "orjson" -version = "3.10.7" -description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" -optional = false -python-versions = ">=3.8" -files = [ - {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, - {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, - {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, - {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, - {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, - {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, - {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, - {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, - {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, - {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, - {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, - {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, - {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, - {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, - {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, - {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, - {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, - {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, - {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, - {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, - {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, - {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, - {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, - {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, - {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, - {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, - {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, - {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, - {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, - {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, - {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, - {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, - {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, - {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, - {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, - {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, - {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, -] - -[[package]] -name = "packaging" -version = "24.1" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, -] - -[[package]] -name = "pandas" -version = "2.2.2" -description = "Powerful data structures for data analysis, time series, and statistics" -optional = false -python-versions = ">=3.9" -files = [ - {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, - {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, - {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, - {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, - {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, - {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, - {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, -] - -[package.dependencies] -numpy = [ - {version = ">=1.22.4", markers = "python_version < \"3.11\""}, - {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, - {version = ">=1.23.2", markers = "python_version == \"3.11\""}, -] -python-dateutil = ">=2.8.2" -pytz = ">=2020.1" -tzdata = ">=2022.7" - -[package.extras] -all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] -aws = ["s3fs (>=2022.11.0)"] -clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] -compression = ["zstandard (>=0.19.0)"] -computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] -consortium-standard = ["dataframe-api-compat (>=0.1.7)"] -excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] -feather = ["pyarrow (>=10.0.1)"] -fss = ["fsspec (>=2022.11.0)"] -gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] -hdf5 = ["tables (>=3.8.0)"] -html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] -mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] -output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] -parquet = ["pyarrow (>=10.0.1)"] -performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] -plot = ["matplotlib (>=3.6.3)"] -postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] -pyarrow = ["pyarrow (>=10.0.1)"] -spss = ["pyreadstat (>=1.2.0)"] -sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] -test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] -xml = ["lxml (>=4.9.2)"] - -[[package]] -name = "pdf2image" -version = "1.17.0" -description = "A wrapper around the pdftoppm and pdftocairo command line tools to convert PDF to a PIL Image list." -optional = false -python-versions = "*" -files = [ - {file = "pdf2image-1.17.0-py3-none-any.whl", hash = "sha256:ecdd58d7afb810dffe21ef2b1bbc057ef434dabbac6c33778a38a3f7744a27e2"}, - {file = "pdf2image-1.17.0.tar.gz", hash = "sha256:eaa959bc116b420dd7ec415fcae49b98100dda3dd18cd2fdfa86d09f112f6d57"}, -] - -[package.dependencies] -pillow = "*" - -[[package]] -name = "pdfminer-six" -version = "20231228" -description = "PDF parser and analyzer" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pdfminer.six-20231228-py3-none-any.whl", hash = "sha256:e8d3c3310e6fbc1fe414090123ab01351634b4ecb021232206c4c9a8ca3e3b8f"}, - {file = "pdfminer.six-20231228.tar.gz", hash = "sha256:6004da3ad1a7a4d45930cb950393df89b068e73be365a6ff64a838d37bcb08c4"}, -] - -[package.dependencies] -charset-normalizer = ">=2.0.0" -cryptography = ">=36.0.0" - -[package.extras] -dev = ["black", "mypy (==0.931)", "nox", "pytest"] -docs = ["sphinx", "sphinx-argparse"] -image = ["Pillow"] - -[[package]] -name = "pdfplumber" -version = "0.11.4" -description = "Plumb a PDF for detailed information about each char, rectangle, and line." -optional = false -python-versions = ">=3.8" -files = [ - {file = "pdfplumber-0.11.4-py3-none-any.whl", hash = "sha256:6150f0678c7aaba974ac09839c17475d6c0c4d126b5f92cb85154885f31c6d73"}, - {file = "pdfplumber-0.11.4.tar.gz", hash = "sha256:147b55cde2351fcb9523b46b09cc771eea3602faecfb60d463c6bf951694fbe8"}, -] - -[package.dependencies] -"pdfminer.six" = "20231228" -Pillow = ">=9.1" -pypdfium2 = ">=4.18.0" - -[[package]] -name = "pi-heif" -version = "0.18.0" -description = "Python interface for libheif library" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pi_heif-0.18.0-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:3c09d22ed75200372b8102debf4ba69d8f63c595870505b9188d6c9a9b48e1f2"}, - {file = "pi_heif-0.18.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:d7dc682acccd81857fd4b5849ebe7b9504e11eab493ffa0905ea25eaf5fb0f93"}, - {file = "pi_heif-0.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:573602d8c68f4ff93c4d35439d7566b3f2d4ab774925367aece20f9cd0ba243d"}, - {file = "pi_heif-0.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:886fbbda898559eba0843feca17e6c7e43c13336404817c6d07a01d4955c3d33"}, - {file = "pi_heif-0.18.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:34725b542bd2737be7e7909fff1fb6d39760d3d395a36ce6fae5280e88ba94a6"}, - {file = "pi_heif-0.18.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:aac4fc247139081b30581cadbea00bb4c4fb7274140eaa1147e22bcf7ece7525"}, - {file = "pi_heif-0.18.0-cp310-cp310-win_amd64.whl", hash = "sha256:5254dc3121d2a38036beae631aae620d0c942f03973ec134ae9827b60e7d5c0b"}, - {file = "pi_heif-0.18.0-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:e568a323548896848489035c5bb2e4de13df07fbdbd33831b165ff545066b97f"}, - {file = "pi_heif-0.18.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:a4b3690f03636944b13ab313d21ee90a46d5fa35a15d884563b0ff400b813042"}, - {file = "pi_heif-0.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e0c3286f106f2d22d394b844c0e015f132567d70b31fef6d3cc846b8fe9dbc6"}, - {file = "pi_heif-0.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74d4b07f0589df9fac138ecbcccd248217a12bbebd3443153158d7f54522e257"}, - {file = "pi_heif-0.18.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:cab6f7a00ccbcc3087d400a544e62ef30eff6339cf0d600588b92b1e7ca49d96"}, - {file = "pi_heif-0.18.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f1b7c4daeaffb235e73fc54132f4aa8bcb229dcb463ac0b4def9e1aee5793165"}, - {file = "pi_heif-0.18.0-cp311-cp311-win_amd64.whl", hash = "sha256:2b892ebc898ca32c1a1ec9e72658c0d14de5ac31c1bd61a8aa66dc645080e32f"}, - {file = "pi_heif-0.18.0-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:64ed341f91763e29096b0ddb38b50d13879d06039889d458fc7dac6d5c03dd80"}, - {file = "pi_heif-0.18.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:71309d2a632c0b8716ccbbb9e413ee28b8439967c45c92de68888fe4acf80244"}, - {file = "pi_heif-0.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83548aa70e44fef865c2b2575ed949f2e6eba756b114ca6ad525ef56b5449d57"}, - {file = "pi_heif-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ff516f9f5118a8f2e47531611324e6a07848e4f1f17c5df485de734e50dee7e"}, - {file = "pi_heif-0.18.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f792a278335c278d2c092a62aaad3a7362021f9341f988b1b8b3ca4783651e49"}, - {file = "pi_heif-0.18.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:571d69be0088336c4251d7301f3fdc0fecab45e38286e71a23e64814489c5a15"}, - {file = "pi_heif-0.18.0-cp312-cp312-win_amd64.whl", hash = "sha256:0d5dd431dbf7be88267fbfb08623bcf2d16628cdcbc898bcc0e05412dc43fd26"}, - {file = "pi_heif-0.18.0-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:286a5d2b5036cf3da8f1a2e1ad54044aaabe4d46b178057323f5a6ce19417741"}, - {file = "pi_heif-0.18.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:79969f90a5a01b9a82b18bb0667392da733790585531b3183b7f375b9e88dbcd"}, - {file = "pi_heif-0.18.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18d113c14fecadb90c3d8838240120e6f93671618eb96d776f994b314f1f858c"}, - {file = "pi_heif-0.18.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fae39eec07f4b477c582ddd75d38610553c1b6d19cd6ce4a3ded4c7e0ee029ac"}, - {file = "pi_heif-0.18.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:24ca403e556c84ce0e36ea1477530f7854e71c2523eb1a97c91d5d9ce8bbc548"}, - {file = "pi_heif-0.18.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:742560127423bd179605325a41322df800ca02df768e872bfe189fe371f61578"}, - {file = "pi_heif-0.18.0-cp313-cp313-win_amd64.whl", hash = "sha256:3529f904f51594a613759ab610799ce34b615339d67e642843eec1ac7868814d"}, - {file = "pi_heif-0.18.0-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:2c912219964dc864e1454ab4f43d97cbf6a88d065410a16936e7c59b1290a7da"}, - {file = "pi_heif-0.18.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2af8ac6bd93e5df02b9f292a10664524844f37b39079e55aa9ef5857a3b0a22"}, - {file = "pi_heif-0.18.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad3f54dcc54a4c2ed1c58a135375330fe7b2ba2c2a8a816d3296c12e9d8c284c"}, - {file = "pi_heif-0.18.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:00a6d72ba2cc1477c8a909bfbbac4f5d931a25a88979077b231b76e7b9c80ba6"}, - {file = "pi_heif-0.18.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:45d360c3a056d9c81b0480a546f291bbc53caf70705f3a49d082e728735ed4ae"}, - {file = "pi_heif-0.18.0-cp38-cp38-win_amd64.whl", hash = "sha256:4ecb9031ad1cb7eed1591cba95420964557cff8fc63bab9bdc204d53301e502f"}, - {file = "pi_heif-0.18.0-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:6541a05177c3d8f00e56f4cc8ee9c681eb25fcdc917065acbc426847eb8aea97"}, - {file = "pi_heif-0.18.0-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:054cd3544e421b342b15b5eb8db4de222a09ca3ae441f4fa5943f80d9e65c5d6"}, - {file = "pi_heif-0.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1159f54d76b860cc27753c9925e2923959d8b5277372db946cb1078fa11ed1ea"}, - {file = "pi_heif-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fa5366b2f555b6b3a56b09aa74f178a040edb174b29060d8d56c03eea154e43"}, - {file = "pi_heif-0.18.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:ccd611653581f39c77ab8222a660e471e724d8f7c6f4e50760b10ce06769d9d8"}, - {file = "pi_heif-0.18.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:cfa979043be0d4ad1b37f6794fdff010cf69e5ada1ef74eef4a5b3983d3b8881"}, - {file = "pi_heif-0.18.0-cp39-cp39-win_amd64.whl", hash = "sha256:7acdd41dc72c01c1f2cfd91624a1c102ecc324fff6a501ab981c6f803f673b1b"}, - {file = "pi_heif-0.18.0-pp310-pypy310_pp73-macosx_12_0_x86_64.whl", hash = "sha256:6c7a28547e3f1e2f43b395d2764f693fcfa4eb8a4da0d5815c7eb3eeda745fbb"}, - {file = "pi_heif-0.18.0-pp310-pypy310_pp73-macosx_14_0_arm64.whl", hash = "sha256:c5bded35d1cefb594f6ce9d775e3e6b750a32926779f7b496f0f8d4992db09e1"}, - {file = "pi_heif-0.18.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d88aba685051131f103a7afc428412abd7d09640719635f8880898b0e7aec97"}, - {file = "pi_heif-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a9a95f54cb3a473005572f7309666b71d03c1764134b2df0ed796744c7aa069"}, - {file = "pi_heif-0.18.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:f19d8cdffbc5e8e9f3676839c8632ffd161d17f84f614cad9b98a58e27ffd3a7"}, - {file = "pi_heif-0.18.0-pp39-pypy39_pp73-macosx_12_0_x86_64.whl", hash = "sha256:0962b4cd828ad1ae94f9cd8e95ed0741cddcd19082cb97d5b69bfe1ac6623eb9"}, - {file = "pi_heif-0.18.0-pp39-pypy39_pp73-macosx_14_0_arm64.whl", hash = "sha256:86f7aad733292fea8a2869814117caf11ed424731bd90fe1693b2ccbfcc6bfed"}, - {file = "pi_heif-0.18.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d0a7529225f1a25231d8f2cfd39f722c31e5396581eeeaa7a30793188e8b4f7"}, - {file = "pi_heif-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5424435551e606e1ac515de46a2b1c6d8e82c7a89473bb7cf9398368f051d675"}, - {file = "pi_heif-0.18.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe0e424d08d59c5a1d74dfa7239b40a935b5a526305ebecd2c27755aa3442225"}, - {file = "pi_heif-0.18.0.tar.gz", hash = "sha256:0a690159607beaa6712f2c8abaa5168a22314d18f00a617d691548f5acba8070"}, -] - -[package.dependencies] -pillow = ">=10.1.0" - -[package.extras] -tests = ["defusedxml", "numpy", "packaging", "pympler", "pytest"] -tests-min = ["defusedxml", "packaging", "pytest"] - -[[package]] -name = "pikepdf" -version = "9.2.1" -description = "Read and write PDFs with Python, powered by qpdf" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pikepdf-9.2.1-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:e863185d6abadab140a7c3e152d9227afe495cf97d4738efc280896660249180"}, - {file = "pikepdf-9.2.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:d37ce8a4ade0cddf3827e13867208ffc8c161d38fdb12250b31e1b8cfa58ab1b"}, - {file = "pikepdf-9.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b9e9416da42da43f386244b2bab2a236830ccb11598b73fcd43d32fd234aaff"}, - {file = "pikepdf-9.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1e47e80ecfd77dbfc6c7e807e78e5cce0c10d5bd7804c0d9064429d72af981c"}, - {file = "pikepdf-9.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9699fe058b44e59cdcd05bcadf9cfa8f5242b48e44f9a4772bb321cd74d8e339"}, - {file = "pikepdf-9.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c7e5c3a425de7db1fc13583883d2fa10119ce85071cc1d53344383498739254"}, - {file = "pikepdf-9.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:f3ecbc250254b61de2ca973e3d57acb07720e5a810ee0c81d33b051c76d22208"}, - {file = "pikepdf-9.2.1-cp311-cp311-macosx_12_0_x86_64.whl", hash = "sha256:6275467b7eacb6fb04f16727e90e6562c6bbf449ece4e57273956beb8f1cdacd"}, - {file = "pikepdf-9.2.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:d6f240b0c1da5b6656efa3daa087394ddce5b3ecc411b85efcfd7e7228a1bc26"}, - {file = "pikepdf-9.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:96ea92374d25481a2213403ae06c990ea41a1f35b0404dd072b7070dac76f41b"}, - {file = "pikepdf-9.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1a1314e4c4b2a28a1af1e700570b3c32c074cf363425768e8bc9f031438aee3"}, - {file = "pikepdf-9.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ceeac42bfb7227310e617e871d8f7ae6f304cf2783ca0131f3063c54ee1ecb73"}, - {file = "pikepdf-9.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8a50c58bee394f69561ab2861f77ce763f91cf7af6c8a1919109bb33fe8ca669"}, - {file = "pikepdf-9.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:d360e64c31f73b16b78ca1e10e9d96f758b4a3fac195cd35f88a5f213808852e"}, - {file = "pikepdf-9.2.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:e199833ef11a64f22945a9a98d56a98968e988e407cb20d9fa8b6081075c9604"}, - {file = "pikepdf-9.2.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:4c8bf24b8bf933f4022c6ace5ee757453e3dacb806a8e826461fd5f33ce15a70"}, - {file = "pikepdf-9.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a32ef219737e53b48754acb45ad7840aee8403d97fc79539c26501a2d9089c91"}, - {file = "pikepdf-9.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6b1ee86850fddaea15afdde394109332f7dc63a156e52fb131f9b647b16f920"}, - {file = "pikepdf-9.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fc0deac6dd356ef95fcf42db917cfe2c5375640295609924d4825052c2124509"}, - {file = "pikepdf-9.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f2e4d5632dc03a41d901e4feee474557145c4906d96cf6e7ae8106a85142d2eb"}, - {file = "pikepdf-9.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:c4eb22efae62b057a31ee4cb5574db8edfe15b185c8e89500eca8157fda15974"}, - {file = "pikepdf-9.2.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:01be001988ce0f6a5a89319f37fc14f27df75c4e332222ed8e993d14405acb02"}, - {file = "pikepdf-9.2.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:baaf78ed49e3cecfc4d30f2c7291d9b19bebe8a5f8e5940d7e7c93683b47a6f9"}, - {file = "pikepdf-9.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aefa94f8ea6371fc3cbf78f55f669efec6e28e317927e8dd8a237e19a7be50fb"}, - {file = "pikepdf-9.2.1-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3efff6ffda819d4193dd8e63c6f304bf85f9ae961c0247dc0b716b7c74fb7094"}, - {file = "pikepdf-9.2.1-cp38-cp38-macosx_14_0_arm64.whl", hash = "sha256:6e15689fd715e83ff555cbdb939a0453c6c94af9975ae9b3292dd68231014653"}, - {file = "pikepdf-9.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:755f559c206de5b3de0e35430ad28e50f37866d96a41b3ad41d7114660e1c58b"}, - {file = "pikepdf-9.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb65a84fff25295707250b49f9e2d1186e9f6b4b7f828a0d9e7e2b65a7af6311"}, - {file = "pikepdf-9.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:d209e4a9ba99a4460cf987f6cd8703a8723d8a62fc51451c4c1233eff07db02f"}, - {file = "pikepdf-9.2.1-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:7fa15e5ff3e17dc6295d676d673787c79fec67cca59261a22ccf7604914170b1"}, - {file = "pikepdf-9.2.1-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:127e94632eb1ccd5d4d859511f084a0a314555cba621595a135915fc9e1710c5"}, - {file = "pikepdf-9.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e6b3083ef2e3c29af33fcdb73a9a61a8e4dbe540edb474c19b9866194c6bf25"}, - {file = "pikepdf-9.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:163600dcd8d158e9287934b65a516b469b153859ab029e40fb3a0eff16c7dd7a"}, - {file = "pikepdf-9.2.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d9ba6c639faac47a85817854d002e2f57683ffe65388a746af580c4a6521646c"}, - {file = "pikepdf-9.2.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c1b883e1ebe28fbc318ce5c971b3dca9b30621bc2fe1642c99cda76cf442c4a2"}, - {file = "pikepdf-9.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:c6ea5f623629478abaf1e25b1d0edcaee3d0408fd9061fb4f7dc24fb78a25302"}, - {file = "pikepdf-9.2.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl", hash = "sha256:0759842e47369fe5fa0d61de2ac9ff073895c75567f3efbc4aebc6c1cafee17e"}, - {file = "pikepdf-9.2.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl", hash = "sha256:cd73d828799e41ee778606e30efd0c27be1e2420b1ed0c9cbc39299872ceed76"}, - {file = "pikepdf-9.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98ff348c97c7c641c2d2b741d60c8edf22e0fe76fa5c386cb351a3abd3f2a9b9"}, - {file = "pikepdf-9.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:4a5c5ccccb5812a5be5b5cb66c8c8a6f796910ab89932a3048a4e66e5436bd01"}, - {file = "pikepdf-9.2.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl", hash = "sha256:1dd707e6159af953f5560138f695b3a1ae2e1a0750535be70a3b75a720279330"}, - {file = "pikepdf-9.2.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl", hash = "sha256:61bb9dfe58ee3ee2a286ea4cd21af87e1853a2d1433b550e3f58faa005b6ea3a"}, - {file = "pikepdf-9.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:531b6685912eb630a7fe57c527c9b5636c50c543eb0cdb5807b139e0d7712696"}, - {file = "pikepdf-9.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c2c21c6a3d7ec96c7f9627ad61195eadff12659e3e00abe7156c34503189db47"}, - {file = "pikepdf-9.2.1.tar.gz", hash = "sha256:5e31aeb15ab21ba340a9013c1665e7ce85bd1f8167e6710c455d51f82c2e64e0"}, -] - -[package.dependencies] -Deprecated = "*" -lxml = ">=4.8" -packaging = "*" -Pillow = ">=10.0.1" - -[package.extras] -dev = ["pre-commit", "typer"] -docs = ["Sphinx (>=3)", "sphinx-autoapi", "sphinx-design", "sphinx-issues", "sphinx-rtd-theme", "tomli"] -mypy = ["lxml-stubs", "types-Pillow", "types-requests", "types-setuptools"] -test = ["attrs (>=20.2.0)", "coverage[toml]", "hypothesis (>=6.36)", "numpy (>=1.21.0)", "psutil (>=5.9)", "pybind11", "pytest (>=6.2.5)", "pytest-cov (>=3.0.0)", "pytest-timeout (>=2.1.0)", "pytest-xdist (>=2.5.0)", "python-dateutil (>=2.8.1)", "python-xmp-toolkit (>=2.0.1)", "tomli"] - -[[package]] -name = "pillow" -version = "10.4.0" -description = "Python Imaging Library (Fork)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, - {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, - {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, - {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, - {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, - {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, - {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, - {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, - {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, - {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, - {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, - {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, - {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, - {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, - {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, - {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, - {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, - {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, - {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, - {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, -] - -[package.extras] -docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] -fpx = ["olefile"] -mic = ["olefile"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] -typing = ["typing-extensions"] -xmp = ["defusedxml"] - -[[package]] -name = "pluggy" -version = "1.5.0" -description = "plugin and hook calling mechanisms for python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, - {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, -] - -[package.extras] -dev = ["pre-commit", "tox"] -testing = ["pytest", "pytest-benchmark"] - -[[package]] -name = "portalocker" -version = "2.10.1" -description = "Wraps the portalocker recipe for easy usage" -optional = false -python-versions = ">=3.8" -files = [ - {file = "portalocker-2.10.1-py3-none-any.whl", hash = "sha256:53a5984ebc86a025552264b459b46a2086e269b21823cb572f8f28ee759e45bf"}, - {file = "portalocker-2.10.1.tar.gz", hash = "sha256:ef1bf844e878ab08aee7e40184156e1151f228f103aa5c6bd0724cc330960f8f"}, -] - -[package.dependencies] -pywin32 = {version = ">=226", markers = "platform_system == \"Windows\""} - -[package.extras] -docs = ["sphinx (>=1.7.1)"] -redis = ["redis"] -tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "pytest-timeout (>=2.1.0)", "redis", "sphinx (>=6.0.0)", "types-redis"] - -[[package]] -name = "proto-plus" -version = "1.24.0" -description = "Beautiful, Pythonic protocol buffers." -optional = false -python-versions = ">=3.7" -files = [ - {file = "proto-plus-1.24.0.tar.gz", hash = "sha256:30b72a5ecafe4406b0d339db35b56c4059064e69227b8c3bda7462397f966445"}, - {file = "proto_plus-1.24.0-py3-none-any.whl", hash = "sha256:402576830425e5f6ce4c2a6702400ac79897dab0b4343821aa5188b0fab81a12"}, -] - -[package.dependencies] -protobuf = ">=3.19.0,<6.0.0dev" - -[package.extras] -testing = ["google-api-core (>=1.31.5)"] - -[[package]] -name = "protobuf" -version = "5.28.0" -description = "" -optional = false -python-versions = ">=3.8" -files = [ - {file = "protobuf-5.28.0-cp310-abi3-win32.whl", hash = "sha256:66c3edeedb774a3508ae70d87b3a19786445fe9a068dd3585e0cefa8a77b83d0"}, - {file = "protobuf-5.28.0-cp310-abi3-win_amd64.whl", hash = "sha256:6d7cc9e60f976cf3e873acb9a40fed04afb5d224608ed5c1a105db4a3f09c5b6"}, - {file = "protobuf-5.28.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:532627e8fdd825cf8767a2d2b94d77e874d5ddb0adefb04b237f7cc296748681"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:018db9056b9d75eb93d12a9d35120f97a84d9a919bcab11ed56ad2d399d6e8dd"}, - {file = "protobuf-5.28.0-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:6206afcb2d90181ae8722798dcb56dc76675ab67458ac24c0dd7d75d632ac9bd"}, - {file = "protobuf-5.28.0-cp38-cp38-win32.whl", hash = "sha256:eef7a8a2f4318e2cb2dee8666d26e58eaf437c14788f3a2911d0c3da40405ae8"}, - {file = "protobuf-5.28.0-cp38-cp38-win_amd64.whl", hash = "sha256:d001a73c8bc2bf5b5c1360d59dd7573744e163b3607fa92788b7f3d5fefbd9a5"}, - {file = "protobuf-5.28.0-cp39-cp39-win32.whl", hash = "sha256:dde9fcaa24e7a9654f4baf2a55250b13a5ea701493d904c54069776b99a8216b"}, - {file = "protobuf-5.28.0-cp39-cp39-win_amd64.whl", hash = "sha256:853db610214e77ee817ecf0514e0d1d052dff7f63a0c157aa6eabae98db8a8de"}, - {file = "protobuf-5.28.0-py3-none-any.whl", hash = "sha256:510ed78cd0980f6d3218099e874714cdf0d8a95582e7b059b06cabad855ed0a0"}, - {file = "protobuf-5.28.0.tar.gz", hash = "sha256:dde74af0fa774fa98892209992295adbfb91da3fa98c8f67a88afe8f5a349add"}, -] - -[[package]] -name = "psutil" -version = "6.0.0" -description = "Cross-platform lib for process and system monitoring in Python." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, - {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, - {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, - {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, - {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, - {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, - {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, - {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, - {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, - {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, -] - -[package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] - -[[package]] -name = "pyasn1" -version = "0.6.0" -description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pyasn1-0.6.0-py2.py3-none-any.whl", hash = "sha256:cca4bb0f2df5504f02f6f8a775b6e416ff9b0b3b16f7ee80b5a3153d9b804473"}, - {file = "pyasn1-0.6.0.tar.gz", hash = "sha256:3a35ab2c4b5ef98e17dfdec8ab074046fbda76e281c5a706ccd82328cfc8f64c"}, -] - -[[package]] -name = "pyasn1-modules" -version = "0.4.0" -description = "A collection of ASN.1-based protocols modules" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pyasn1_modules-0.4.0-py3-none-any.whl", hash = "sha256:be04f15b66c206eed667e0bb5ab27e2b1855ea54a842e5037738099e8ca4ae0b"}, - {file = "pyasn1_modules-0.4.0.tar.gz", hash = "sha256:831dbcea1b177b28c9baddf4c6d1013c24c3accd14a1873fffaa6a2e905f17b6"}, -] - -[package.dependencies] -pyasn1 = ">=0.4.6,<0.7.0" - -[[package]] -name = "pycocotools" -version = "2.0.8" -description = "Official APIs for the MS-COCO dataset" -optional = false -python-versions = ">=3.9" -files = [ - {file = "pycocotools-2.0.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:9a66886f45b04cee1ff0492e9f5e25d430d8aa3eb63e63c4ebc620945caa11b9"}, - {file = "pycocotools-2.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257130b65b7b0f122ce1ed62942867ca9789e56a68109682796cc85c9770c74a"}, - {file = "pycocotools-2.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:663c14cd471913aabecb17ddb52b3b254a65dcaba26ccfea408c52c75cc3862c"}, - {file = "pycocotools-2.0.8-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:35a6ef931448632efe1c83eb2ac3c37c53b3c080a5432bc6ff1858944a603a2d"}, - {file = "pycocotools-2.0.8-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e7b4ee8b15539d6f789857faefe7d3eef81755f7b17f60903798524e4f321a5c"}, - {file = "pycocotools-2.0.8-cp310-cp310-win_amd64.whl", hash = "sha256:889edd2dbf61f4d2fe77c2e8e5608476903d1911d2ed00f9911354eff23f2423"}, - {file = "pycocotools-2.0.8-cp310-cp310-win_arm64.whl", hash = "sha256:52e06a833fad735485cad5c1f8fe40e2b586261b2856806b5d6923b0b5a3c971"}, - {file = "pycocotools-2.0.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:92bf788e6936fc52b57ccaaa78ecdaeac81872eebbfc45b6fe16ae18b85709bd"}, - {file = "pycocotools-2.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a07f57f991e379959c0f4a1b9ea35d875876433b7f45c6d8fe6b718e58834bc"}, - {file = "pycocotools-2.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5968a1e5421719af9eb7ccee4c540bfb18b1fc95d30d9a48571d0aaeb159a1ae"}, - {file = "pycocotools-2.0.8-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:59eb7b1839f269262456347b6fe2bb88a8be56b32d87fab946483746e1f18a07"}, - {file = "pycocotools-2.0.8-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:05480f731fcd7c5d05389081f84198f3b8117f4560227185bc462cccb5c79181"}, - {file = "pycocotools-2.0.8-cp311-cp311-win_amd64.whl", hash = "sha256:e680e27e58b840c105fa09a3bb1d91706038c5c8d7b7bf09c2e5ecbd1b05ad7f"}, - {file = "pycocotools-2.0.8-cp311-cp311-win_arm64.whl", hash = "sha256:16c5a1d2c8726149b5a0e6fe95095ffc172d4012ece5dee9b5beeef708fc0284"}, - {file = "pycocotools-2.0.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:dd4616621d062882db677de5c64b1b0f6efbcaed9fd284b61e7ba4b16ab24d7a"}, - {file = "pycocotools-2.0.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5683ba2612c39094a2e8453d40349768a3da6673376786651481d6f553ff7b50"}, - {file = "pycocotools-2.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b89f399eb851d18f68dfa7f126380394ec0820915c7b3831dd37563bc58daa95"}, - {file = "pycocotools-2.0.8-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e6d528c4f35580347ee3cd57f92cf0926e9b6a688d0904b2ea8a814ae2e57a47"}, - {file = "pycocotools-2.0.8-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:56bbe8be608def61da0b4430562b8d5ff14525f509631a667cfd8405325193da"}, - {file = "pycocotools-2.0.8-cp312-cp312-win_amd64.whl", hash = "sha256:d004033e760a172b2ccbdf4a62d20d2bcf0c9b40dc3c0d1d724045b0a6944862"}, - {file = "pycocotools-2.0.8-cp312-cp312-win_arm64.whl", hash = "sha256:87853ca11e9b130e461d6b5284ea475efe35429060a915844e1998d206ba028e"}, - {file = "pycocotools-2.0.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:2b432353a20ce9dd44d85d093c4520fa941cd6cd8a5346443f2056eb0cbdae2b"}, - {file = "pycocotools-2.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b53d36452ec0f1069d94a311aea051a36e8c7f8f63411db372e0ac89e826149"}, - {file = "pycocotools-2.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7aba650cc2e0472cc773a994f196c24937c8da1be87e02e72c180c8144aea11f"}, - {file = "pycocotools-2.0.8-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a7029806ceea48379ee2f33cc33d79bbaf64b627df444641f123a00f70e8609a"}, - {file = "pycocotools-2.0.8-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fa750afead393671f6c6e40e22d8fd197157f9fa5ee1fa4aba325bbe86c0de1b"}, - {file = "pycocotools-2.0.8-cp39-cp39-win_amd64.whl", hash = "sha256:5ecb969dd07390b593893dbc45fc361d9b1f2cb3abd5dc7ff68afb0803f71b29"}, - {file = "pycocotools-2.0.8-cp39-cp39-win_arm64.whl", hash = "sha256:26b329c27e42e092f412faa5ff5bf6e1c4286a8e1709e474b640d356d1d0ae07"}, - {file = "pycocotools-2.0.8.tar.gz", hash = "sha256:8f2bcedb786ba26c367a3680f9c4eb5b2ad9dccb2b34eaeb205e0a021e1dfb8d"}, -] - -[package.dependencies] -matplotlib = ">=2.1.0" -numpy = "*" - -[[package]] -name = "pycparser" -version = "2.22" -description = "C parser in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, - {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, -] - -[[package]] -name = "pydantic" -version = "2.9.0" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.9.0-py3-none-any.whl", hash = "sha256:f66a7073abd93214a20c5f7b32d56843137a7a2e70d02111f3be287035c45370"}, - {file = "pydantic-2.9.0.tar.gz", hash = "sha256:c7a8a9fdf7d100afa49647eae340e2d23efa382466a8d177efcd1381e9be5598"}, -] - -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.23.2" -typing-extensions = [ - {version = ">=4.6.1", markers = "python_version < \"3.13\""}, - {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, -] -tzdata = {version = "*", markers = "python_version >= \"3.9\""} - -[package.extras] -email = ["email-validator (>=2.0.0)"] - -[[package]] -name = "pydantic-core" -version = "2.23.2" -description = "Core functionality for Pydantic validation and serialization" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.23.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7d0324a35ab436c9d768753cbc3c47a865a2cbc0757066cb864747baa61f6ece"}, - {file = "pydantic_core-2.23.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:276ae78153a94b664e700ac362587c73b84399bd1145e135287513442e7dfbc7"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:964c7aa318da542cdcc60d4a648377ffe1a2ef0eb1e996026c7f74507b720a78"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1cf842265a3a820ebc6388b963ead065f5ce8f2068ac4e1c713ef77a67b71f7c"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae90b9e50fe1bd115b24785e962b51130340408156d34d67b5f8f3fa6540938e"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ae65fdfb8a841556b52935dfd4c3f79132dc5253b12c0061b96415208f4d622"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c8aa40f6ca803f95b1c1c5aeaee6237b9e879e4dfb46ad713229a63651a95fb"}, - {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c53100c8ee5a1e102766abde2158077d8c374bee0639201f11d3032e3555dfbc"}, - {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d6b9dd6aa03c812017411734e496c44fef29b43dba1e3dd1fa7361bbacfc1354"}, - {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b18cf68255a476b927910c6873d9ed00da692bb293c5b10b282bd48a0afe3ae2"}, - {file = "pydantic_core-2.23.2-cp310-none-win32.whl", hash = "sha256:e460475719721d59cd54a350c1f71c797c763212c836bf48585478c5514d2854"}, - {file = "pydantic_core-2.23.2-cp310-none-win_amd64.whl", hash = "sha256:5f3cf3721eaf8741cffaf092487f1ca80831202ce91672776b02b875580e174a"}, - {file = "pydantic_core-2.23.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:7ce8e26b86a91e305858e018afc7a6e932f17428b1eaa60154bd1f7ee888b5f8"}, - {file = "pydantic_core-2.23.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e9b24cca4037a561422bf5dc52b38d390fb61f7bfff64053ce1b72f6938e6b2"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:753294d42fb072aa1775bfe1a2ba1012427376718fa4c72de52005a3d2a22178"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:257d6a410a0d8aeb50b4283dea39bb79b14303e0fab0f2b9d617701331ed1515"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c8319e0bd6a7b45ad76166cc3d5d6a36c97d0c82a196f478c3ee5346566eebfd"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7a05c0240f6c711eb381ac392de987ee974fa9336071fb697768dfdb151345ce"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d5b0ff3218858859910295df6953d7bafac3a48d5cd18f4e3ed9999efd2245f"}, - {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:96ef39add33ff58cd4c112cbac076726b96b98bb8f1e7f7595288dcfb2f10b57"}, - {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0102e49ac7d2df3379ef8d658d3bc59d3d769b0bdb17da189b75efa861fc07b4"}, - {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a6612c2a844043e4d10a8324c54cdff0042c558eef30bd705770793d70b224aa"}, - {file = "pydantic_core-2.23.2-cp311-none-win32.whl", hash = "sha256:caffda619099cfd4f63d48462f6aadbecee3ad9603b4b88b60cb821c1b258576"}, - {file = "pydantic_core-2.23.2-cp311-none-win_amd64.whl", hash = "sha256:6f80fba4af0cb1d2344869d56430e304a51396b70d46b91a55ed4959993c0589"}, - {file = "pydantic_core-2.23.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c83c64d05ffbbe12d4e8498ab72bdb05bcc1026340a4a597dc647a13c1605ec"}, - {file = "pydantic_core-2.23.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6294907eaaccf71c076abdd1c7954e272efa39bb043161b4b8aa1cd76a16ce43"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a801c5e1e13272e0909c520708122496647d1279d252c9e6e07dac216accc41"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cc0c316fba3ce72ac3ab7902a888b9dc4979162d320823679da270c2d9ad0cad"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b06c5d4e8701ac2ba99a2ef835e4e1b187d41095a9c619c5b185c9068ed2a49"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82764c0bd697159fe9947ad59b6db6d7329e88505c8f98990eb07e84cc0a5d81"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b1a195efd347ede8bcf723e932300292eb13a9d2a3c1f84eb8f37cbbc905b7f"}, - {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7efb12e5071ad8d5b547487bdad489fbd4a5a35a0fc36a1941517a6ad7f23e0"}, - {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5dd0ec5f514ed40e49bf961d49cf1bc2c72e9b50f29a163b2cc9030c6742aa73"}, - {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:820f6ee5c06bc868335e3b6e42d7ef41f50dfb3ea32fbd523ab679d10d8741c0"}, - {file = "pydantic_core-2.23.2-cp312-none-win32.whl", hash = "sha256:3713dc093d5048bfaedbba7a8dbc53e74c44a140d45ede020dc347dda18daf3f"}, - {file = "pydantic_core-2.23.2-cp312-none-win_amd64.whl", hash = "sha256:e1895e949f8849bc2757c0dbac28422a04be031204df46a56ab34bcf98507342"}, - {file = "pydantic_core-2.23.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:da43cbe593e3c87d07108d0ebd73771dc414488f1f91ed2e204b0370b94b37ac"}, - {file = "pydantic_core-2.23.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:64d094ea1aa97c6ded4748d40886076a931a8bf6f61b6e43e4a1041769c39dd2"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084414ffe9a85a52940b49631321d636dadf3576c30259607b75516d131fecd0"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:043ef8469f72609c4c3a5e06a07a1f713d53df4d53112c6d49207c0bd3c3bd9b"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3649bd3ae6a8ebea7dc381afb7f3c6db237fc7cebd05c8ac36ca8a4187b03b30"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6db09153d8438425e98cdc9a289c5fade04a5d2128faff8f227c459da21b9703"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5668b3173bb0b2e65020b60d83f5910a7224027232c9f5dc05a71a1deac9f960"}, - {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c7b81beaf7c7ebde978377dc53679c6cba0e946426fc7ade54251dfe24a7604"}, - {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:ae579143826c6f05a361d9546446c432a165ecf1c0b720bbfd81152645cb897d"}, - {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:19f1352fe4b248cae22a89268720fc74e83f008057a652894f08fa931e77dced"}, - {file = "pydantic_core-2.23.2-cp313-none-win32.whl", hash = "sha256:e1a79ad49f346aa1a2921f31e8dbbab4d64484823e813a002679eaa46cba39e1"}, - {file = "pydantic_core-2.23.2-cp313-none-win_amd64.whl", hash = "sha256:582871902e1902b3c8e9b2c347f32a792a07094110c1bca6c2ea89b90150caac"}, - {file = "pydantic_core-2.23.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:743e5811b0c377eb830150d675b0847a74a44d4ad5ab8845923d5b3a756d8100"}, - {file = "pydantic_core-2.23.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6650a7bbe17a2717167e3e23c186849bae5cef35d38949549f1c116031b2b3aa"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56e6a12ec8d7679f41b3750ffa426d22b44ef97be226a9bab00a03365f217b2b"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:810ca06cca91de9107718dc83d9ac4d2e86efd6c02cba49a190abcaf33fb0472"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:785e7f517ebb9890813d31cb5d328fa5eda825bb205065cde760b3150e4de1f7"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ef71ec876fcc4d3bbf2ae81961959e8d62f8d74a83d116668409c224012e3af"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d50ac34835c6a4a0d456b5db559b82047403c4317b3bc73b3455fefdbdc54b0a"}, - {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:16b25a4a120a2bb7dab51b81e3d9f3cde4f9a4456566c403ed29ac81bf49744f"}, - {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:41ae8537ad371ec018e3c5da0eb3f3e40ee1011eb9be1da7f965357c4623c501"}, - {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:07049ec9306ec64e955b2e7c40c8d77dd78ea89adb97a2013d0b6e055c5ee4c5"}, - {file = "pydantic_core-2.23.2-cp38-none-win32.whl", hash = "sha256:086c5db95157dc84c63ff9d96ebb8856f47ce113c86b61065a066f8efbe80acf"}, - {file = "pydantic_core-2.23.2-cp38-none-win_amd64.whl", hash = "sha256:67b6655311b00581914aba481729971b88bb8bc7996206590700a3ac85e457b8"}, - {file = "pydantic_core-2.23.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:358331e21a897151e54d58e08d0219acf98ebb14c567267a87e971f3d2a3be59"}, - {file = "pydantic_core-2.23.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c4d9f15ffe68bcd3898b0ad7233af01b15c57d91cd1667f8d868e0eacbfe3f87"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0123655fedacf035ab10c23450163c2f65a4174f2bb034b188240a6cf06bb123"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e6e3ccebdbd6e53474b0bb7ab8b88e83c0cfe91484b25e058e581348ee5a01a5"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc535cb898ef88333cf317777ecdfe0faac1c2a3187ef7eb061b6f7ecf7e6bae"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aab9e522efff3993a9e98ab14263d4e20211e62da088298089a03056980a3e69"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05b366fb8fe3d8683b11ac35fa08947d7b92be78ec64e3277d03bd7f9b7cda79"}, - {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7568f682c06f10f30ef643a1e8eec4afeecdafde5c4af1b574c6df079e96f96c"}, - {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cdd02a08205dc90238669f082747612cb3c82bd2c717adc60f9b9ecadb540f80"}, - {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1a2ab4f410f4b886de53b6bddf5dd6f337915a29dd9f22f20f3099659536b2f6"}, - {file = "pydantic_core-2.23.2-cp39-none-win32.whl", hash = "sha256:0448b81c3dfcde439551bb04a9f41d7627f676b12701865c8a2574bcea034437"}, - {file = "pydantic_core-2.23.2-cp39-none-win_amd64.whl", hash = "sha256:4cebb9794f67266d65e7e4cbe5dcf063e29fc7b81c79dc9475bd476d9534150e"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e758d271ed0286d146cf7c04c539a5169a888dd0b57026be621547e756af55bc"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f477d26183e94eaafc60b983ab25af2a809a1b48ce4debb57b343f671b7a90b6"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da3131ef2b940b99106f29dfbc30d9505643f766704e14c5d5e504e6a480c35e"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329a721253c7e4cbd7aad4a377745fbcc0607f9d72a3cc2102dd40519be75ed2"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7706e15cdbf42f8fab1e6425247dfa98f4a6f8c63746c995d6a2017f78e619ae"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e64ffaf8f6e17ca15eb48344d86a7a741454526f3a3fa56bc493ad9d7ec63936"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dd59638025160056687d598b054b64a79183f8065eae0d3f5ca523cde9943940"}, - {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:12625e69b1199e94b0ae1c9a95d000484ce9f0182f9965a26572f054b1537e44"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d813fd871b3d5c3005157622ee102e8908ad6011ec915a18bd8fde673c4360e"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1eb37f7d6a8001c0f86dc8ff2ee8d08291a536d76e49e78cda8587bb54d8b329"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ce7eaf9a98680b4312b7cebcdd9352531c43db00fca586115845df388f3c465"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f087879f1ffde024dd2788a30d55acd67959dcf6c431e9d3682d1c491a0eb474"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ce883906810b4c3bd90e0ada1f9e808d9ecf1c5f0b60c6b8831d6100bcc7dd6"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a8031074a397a5925d06b590121f8339d34a5a74cfe6970f8a1124eb8b83f4ac"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:23af245b8f2f4ee9e2c99cb3f93d0e22fb5c16df3f2f643f5a8da5caff12a653"}, - {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c57e493a0faea1e4c38f860d6862ba6832723396c884fbf938ff5e9b224200e2"}, - {file = "pydantic_core-2.23.2.tar.gz", hash = "sha256:95d6bf449a1ac81de562d65d180af5d8c19672793c81877a2eda8fde5d08f2fd"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pypandoc" -version = "1.13" -description = "Thin wrapper for pandoc." -optional = false -python-versions = ">=3.6" -files = [ - {file = "pypandoc-1.13-py3-none-any.whl", hash = "sha256:4c7d71bf2f1ed122aac287113b5c4d537a33bbc3c1df5aed11a7d4a7ac074681"}, - {file = "pypandoc-1.13.tar.gz", hash = "sha256:31652073c7960c2b03570bd1e94f602ca9bc3e70099df5ead4cea98ff5151c1e"}, -] - -[[package]] -name = "pyparsing" -version = "3.1.4" -description = "pyparsing module - Classes and methods to define and execute parsing grammars" -optional = false -python-versions = ">=3.6.8" -files = [ - {file = "pyparsing-3.1.4-py3-none-any.whl", hash = "sha256:a6a7ee4235a3f944aa1fa2249307708f893fe5717dc603503c6c7969c070fb7c"}, - {file = "pyparsing-3.1.4.tar.gz", hash = "sha256:f86ec8d1a83f11977c9a6ea7598e8c27fc5cddfa5b07ea2241edbbde1d7bc032"}, -] - -[package.extras] -diagrams = ["jinja2", "railroad-diagrams"] - -[[package]] -name = "pypdf" -version = "4.3.1" -description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pypdf-4.3.1-py3-none-any.whl", hash = "sha256:64b31da97eda0771ef22edb1bfecd5deee4b72c3d1736b7df2689805076d6418"}, - {file = "pypdf-4.3.1.tar.gz", hash = "sha256:b2f37fe9a3030aa97ca86067a56ba3f9d3565f9a791b305c7355d8392c30d91b"}, -] - -[package.dependencies] -typing_extensions = {version = ">=4.0", markers = "python_version < \"3.11\""} - -[package.extras] -crypto = ["PyCryptodome", "cryptography"] -dev = ["black", "flit", "pip-tools", "pre-commit (<2.18.0)", "pytest-cov", "pytest-socket", "pytest-timeout", "pytest-xdist", "wheel"] -docs = ["myst_parser", "sphinx", "sphinx_rtd_theme"] -full = ["Pillow (>=8.0.0)", "PyCryptodome", "cryptography"] -image = ["Pillow (>=8.0.0)"] - -[[package]] -name = "pypdfium2" -version = "4.30.0" -description = "Python bindings to PDFium" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pypdfium2-4.30.0-py3-none-macosx_10_13_x86_64.whl", hash = "sha256:b33ceded0b6ff5b2b93bc1fe0ad4b71aa6b7e7bd5875f1ca0cdfb6ba6ac01aab"}, - {file = "pypdfium2-4.30.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:4e55689f4b06e2d2406203e771f78789bd4f190731b5d57383d05cf611d829de"}, - {file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e6e50f5ce7f65a40a33d7c9edc39f23140c57e37144c2d6d9e9262a2a854854"}, - {file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3d0dd3ecaffd0b6dbda3da663220e705cb563918249bda26058c6036752ba3a2"}, - {file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cc3bf29b0db8c76cdfaac1ec1cde8edf211a7de7390fbf8934ad2aa9b4d6dfad"}, - {file = "pypdfium2-4.30.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1f78d2189e0ddf9ac2b7a9b9bd4f0c66f54d1389ff6c17e9fd9dc034d06eb3f"}, - {file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:5eda3641a2da7a7a0b2f4dbd71d706401a656fea521b6b6faa0675b15d31a163"}, - {file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_i686.whl", hash = "sha256:0dfa61421b5eb68e1188b0b2231e7ba35735aef2d867d86e48ee6cab6975195e"}, - {file = "pypdfium2-4.30.0-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:f33bd79e7a09d5f7acca3b0b69ff6c8a488869a7fab48fdf400fec6e20b9c8be"}, - {file = "pypdfium2-4.30.0-py3-none-win32.whl", hash = "sha256:ee2410f15d576d976c2ab2558c93d392a25fb9f6635e8dd0a8a3a5241b275e0e"}, - {file = "pypdfium2-4.30.0-py3-none-win_amd64.whl", hash = "sha256:90dbb2ac07be53219f56be09961eb95cf2473f834d01a42d901d13ccfad64b4c"}, - {file = "pypdfium2-4.30.0-py3-none-win_arm64.whl", hash = "sha256:119b2969a6d6b1e8d55e99caaf05290294f2d0fe49c12a3f17102d01c441bd29"}, - {file = "pypdfium2-4.30.0.tar.gz", hash = "sha256:48b5b7e5566665bc1015b9d69c1ebabe21f6aee468b509531c3c8318eeee2e16"}, -] - -[[package]] -name = "pyreadline3" -version = "3.4.1" -description = "A python implementation of GNU readline." -optional = false -python-versions = "*" -files = [ - {file = "pyreadline3-3.4.1-py3-none-any.whl", hash = "sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb"}, - {file = "pyreadline3-3.4.1.tar.gz", hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae"}, -] - -[[package]] -name = "pytest" -version = "7.4.4" -description = "pytest: simple powerful testing with Python" -optional = false -python-versions = ">=3.7" -files = [ - {file = "pytest-7.4.4-py3-none-any.whl", hash = "sha256:b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8"}, - {file = "pytest-7.4.4.tar.gz", hash = "sha256:2cf0005922c6ace4a3e2ec8b4080eb0d9753fdc93107415332f50ce9e7994280"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "sys_platform == \"win32\""} -exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} -iniconfig = "*" -packaging = "*" -pluggy = ">=0.12,<2.0" -tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} - -[package.extras] -testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] - -[[package]] -name = "pytest-asyncio" -version = "0.23.8" -description = "Pytest support for asyncio" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pytest_asyncio-0.23.8-py3-none-any.whl", hash = "sha256:50265d892689a5faefb84df80819d1ecef566eb3549cf915dfb33569359d1ce2"}, - {file = "pytest_asyncio-0.23.8.tar.gz", hash = "sha256:759b10b33a6dc61cce40a8bd5205e302978bbbcc00e279a8b61d9a6a3c82e4d3"}, -] - -[package.dependencies] -pytest = ">=7.0.0,<9" - -[package.extras] -docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1.0)"] -testing = ["coverage (>=6.2)", "hypothesis (>=5.7.1)"] - -[[package]] -name = "pytest-socket" -version = "0.7.0" -description = "Pytest Plugin to disable socket calls during tests" -optional = false -python-versions = ">=3.8,<4.0" -files = [ - {file = "pytest_socket-0.7.0-py3-none-any.whl", hash = "sha256:7e0f4642177d55d317bbd58fc68c6bd9048d6eadb2d46a89307fa9221336ce45"}, - {file = "pytest_socket-0.7.0.tar.gz", hash = "sha256:71ab048cbbcb085c15a4423b73b619a8b35d6a307f46f78ea46be51b1b7e11b3"}, -] - -[package.dependencies] -pytest = ">=6.2.5" - -[[package]] -name = "python-dateutil" -version = "2.9.0.post0" -description = "Extensions to the standard Python datetime module" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" -files = [ - {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, - {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, -] - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "python-docx" -version = "1.1.2" -description = "Create, read, and update Microsoft Word .docx files." -optional = false -python-versions = ">=3.7" -files = [ - {file = "python_docx-1.1.2-py3-none-any.whl", hash = "sha256:08c20d6058916fb19853fcf080f7f42b6270d89eac9fa5f8c15f691c0017fabe"}, - {file = "python_docx-1.1.2.tar.gz", hash = "sha256:0cf1f22e95b9002addca7948e16f2cd7acdfd498047f1941ca5d293db7762efd"}, -] - -[package.dependencies] -lxml = ">=3.1.0" -typing-extensions = ">=4.9.0" - -[[package]] -name = "python-iso639" -version = "2024.4.27" -description = "ISO 639 language codes, names, and other associated information" -optional = false -python-versions = ">=3.8" -files = [ - {file = "python_iso639-2024.4.27-py3-none-any.whl", hash = "sha256:27526a84cebc4c4d53fea9d1ebbc7209c8d279bebaa343e6765a1fc8780565ab"}, - {file = "python_iso639-2024.4.27.tar.gz", hash = "sha256:97e63b5603e085c6a56a12a95740010e75d9134e0aab767e0978b53fd8824f13"}, -] - -[package.extras] -dev = ["black (==24.4.2)", "build (==1.2.1)", "flake8 (==7.0.0)", "pytest (==8.1.2)", "requests (==2.31.0)", "twine (==5.0.0)"] - -[[package]] -name = "python-magic" -version = "0.4.27" -description = "File type identification using libmagic" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "python-magic-0.4.27.tar.gz", hash = "sha256:c1ba14b08e4a5f5c31a302b7721239695b2f0f058d125bd5ce1ee36b9d9d3c3b"}, - {file = "python_magic-0.4.27-py2.py3-none-any.whl", hash = "sha256:c212960ad306f700aa0d01e5d7a325d20548ff97eb9920dcd29513174f0294d3"}, -] - -[[package]] -name = "python-multipart" -version = "0.0.9" -description = "A streaming multipart parser for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "python_multipart-0.0.9-py3-none-any.whl", hash = "sha256:97ca7b8ea7b05f977dc3849c3ba99d51689822fab725c3703af7c866a0c2b215"}, - {file = "python_multipart-0.0.9.tar.gz", hash = "sha256:03f54688c663f1b7977105f021043b0793151e4cb1c1a9d4a11fc13d622c4026"}, -] - -[package.extras] -dev = ["atomicwrites (==1.4.1)", "attrs (==23.2.0)", "coverage (==7.4.1)", "hatch", "invoke (==2.2.0)", "more-itertools (==10.2.0)", "pbr (==6.0.0)", "pluggy (==1.4.0)", "py (==1.11.0)", "pytest (==8.0.0)", "pytest-cov (==4.1.0)", "pytest-timeout (==2.2.0)", "pyyaml (==6.0.1)", "ruff (==0.2.1)"] - -[[package]] -name = "python-oxmsg" -version = "0.0.1" -description = "Extract attachments from Outlook .msg files." -optional = false -python-versions = ">=3.9" -files = [ - {file = "python_oxmsg-0.0.1-py3-none-any.whl", hash = "sha256:8ea7d5dda1bc161a413213da9e18ed152927c1fda2feaf5d1f02192d8ad45eea"}, - {file = "python_oxmsg-0.0.1.tar.gz", hash = "sha256:b65c1f93d688b85a9410afa824192a1ddc39da359b04a0bd2cbd3874e84d4994"}, -] - -[package.dependencies] -click = "*" -olefile = "*" -typing-extensions = ">=4.9.0" - -[[package]] -name = "python-pptx" -version = "1.0.2" -description = "Create, read, and update PowerPoint 2007+ (.pptx) files." -optional = false -python-versions = ">=3.8" -files = [ - {file = "python_pptx-1.0.2-py3-none-any.whl", hash = "sha256:160838e0b8565a8b1f67947675886e9fea18aa5e795db7ae531606d68e785cba"}, - {file = "python_pptx-1.0.2.tar.gz", hash = "sha256:479a8af0eaf0f0d76b6f00b0887732874ad2e3188230315290cd1f9dd9cc7095"}, -] - -[package.dependencies] -lxml = ">=3.1.0" -Pillow = ">=3.3.2" -typing-extensions = ">=4.9.0" -XlsxWriter = ">=0.5.7" - -[[package]] -name = "pytz" -version = "2024.1" -description = "World timezone definitions, modern and historical" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, -] - -[[package]] -name = "pywin32" -version = "306" -description = "Python for Window Extensions" -optional = false -python-versions = "*" -files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, -] - -[[package]] -name = "pyyaml" -version = "6.0.2" -description = "YAML parser and emitter for Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, - {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, - {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, - {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, - {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, - {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, - {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, - {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, - {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, - {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, - {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, - {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, - {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, - {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, - {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, - {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, - {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, - {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, - {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, - {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, - {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, - {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, - {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, - {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, - {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, - {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, - {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, - {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, - {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, - {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, - {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, - {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, -] - -[[package]] -name = "rapidfuzz" -version = "3.9.7" -description = "rapid fuzzy string matching" -optional = false -python-versions = ">=3.8" -files = [ - {file = "rapidfuzz-3.9.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ccf68e30b80e903f2309f90a438dbd640dd98e878eeb5ad361a288051ee5b75c"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:696a79018ef989bf1c9abd9005841cee18005ccad4748bad8a4c274c47b6241a"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4eebf6c93af0ae866c22b403a84747580bb5c10f0d7b51c82a87f25405d4dcb"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e9125377fa3d21a8abd4fbdbcf1c27be73e8b1850f0b61b5b711364bf3b59db"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c12d180b17a22d107c8747de9c68d0b9c1d15dcda5445ff9bf9f4ccfb67c3e16"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c1318d42610c26dcd68bd3279a1bf9e3605377260867c9a8ed22eafc1bd93a7c"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd5fa6e3c6e0333051c1f3a49f0807b3366f4131c8d6ac8c3e05fd0d0ce3755c"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:fcf79b686962d7bec458a0babc904cb4fa319808805e036b9d5a531ee6b9b835"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:8b01153c7466d0bad48fba77a303d5a768e66f24b763853469f47220b3de4661"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:94baaeea0b4f8632a6da69348b1e741043eba18d4e3088d674d3f76586b6223d"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:6c5b32875646cb7f60c193ade99b2e4b124f19583492115293cd00f6fb198b17"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:110b6294396bc0a447648627479c9320f095c2034c0537f687592e0f58622638"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-win32.whl", hash = "sha256:3445a35c4c8d288f2b2011eb61bce1227c633ce85a3154e727170f37c0266bb2"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-win_amd64.whl", hash = "sha256:0d1415a732ee75e74a90af12020b77a0b396b36c60afae1bde3208a78cd2c9fc"}, - {file = "rapidfuzz-3.9.7-cp310-cp310-win_arm64.whl", hash = "sha256:836f4d88b8bd0fff2ebe815dcaab8aa6c8d07d1d566a7e21dd137cf6fe11ed5b"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d098ce6162eb5e48fceb0745455bc950af059df6113eec83e916c129fca11408"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:048d55d36c02c6685a2b2741688503c3d15149694506655b6169dcfd3b6c2585"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c33211cfff9aec425bb1bfedaf94afcf337063aa273754f22779d6dadebef4c2"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e6d9db2fa4e9be171e9bb31cf2d2575574774966b43f5b951062bb2e67885852"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4e049d5ad61448c9a020d1061eba20944c4887d720c4069724beb6ea1692507"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cfa74aac64c85898b93d9c80bb935a96bf64985e28d4ee0f1a3d1f3bf11a5106"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:965693c2e9efd425b0f059f5be50ef830129f82892fa1858e220e424d9d0160f"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8501000a5eb8037c4b56857724797fe5a8b01853c363de91c8d0d0ad56bef319"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8d92c552c6b7577402afdd547dcf5d31ea6c8ae31ad03f78226e055cfa37f3c6"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1ee2086f490cb501d86b7e386c1eb4e3a0ccbb0c99067089efaa8c79012c8952"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:1de91e7fd7f525e10ea79a6e62c559d1b0278ec097ad83d9da378b6fab65a265"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a4da514d13f4433e16960a17f05b67e0af30ac771719c9a9fb877e5004f74477"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-win32.whl", hash = "sha256:a40184c67db8252593ec518e17fb8a6e86d7259dc9f2d6c0bf4ff4db8cf1ad4b"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-win_amd64.whl", hash = "sha256:c4f28f1930b09a2c300357d8465b388cecb7e8b2f454a5d5425561710b7fd07f"}, - {file = "rapidfuzz-3.9.7-cp311-cp311-win_arm64.whl", hash = "sha256:675b75412a943bb83f1f53e2e54fd18c80ef15ed642dc6eb0382d1949419d904"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1ef6a1a8f0b12f8722f595f15c62950c9a02d5abc64742561299ffd49f6c6944"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:32532af1d70c6ec02ea5ac7ee2766dfff7c8ae8c761abfe8da9e527314e634e8"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1a38bade755aa9dd95a81cda949e1bf9cd92b79341ccc5e2189c9e7bdfc5ec"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d73ee2df41224c87336448d279b5b6a3a75f36e41dd3dcf538c0c9cce36360d8"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be3a1fc3e2ab3bdf93dc0c83c00acca8afd2a80602297d96cf4a0ba028333cdf"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:603f48f621272a448ff58bb556feb4371252a02156593303391f5c3281dfaeac"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:268f8e1ca50fc61c0736f3fe9d47891424adf62d96ed30196f30f4bd8216b41f"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5f8bf3f0d02935751d8660abda6044821a861f6229f7d359f98bcdcc7e66c39b"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b997ff3b39d4cee9fb025d6c46b0a24bd67595ce5a5b652a97fb3a9d60beb651"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ca66676c8ef6557f9b81c5b2b519097817a7c776a6599b8d6fcc3e16edd216fe"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:35d3044cb635ca6b1b2b7b67b3597bd19f34f1753b129eb6d2ae04cf98cd3945"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:5a93c9e60904cb76e7aefef67afffb8b37c4894f81415ed513db090f29d01101"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-win32.whl", hash = "sha256:579d107102c0725f7c79b4e79f16d3cf4d7c9208f29c66b064fa1fd4641d5155"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-win_amd64.whl", hash = "sha256:953b3780765c8846866faf891ee4290f6a41a6dacf4fbcd3926f78c9de412ca6"}, - {file = "rapidfuzz-3.9.7-cp312-cp312-win_arm64.whl", hash = "sha256:7c20c1474b068c4bd45bf2fd0ad548df284f74e9a14a68b06746c56e3aa8eb70"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:fde81b1da9a947f931711febe2e2bee694e891f6d3e6aa6bc02c1884702aea19"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:47e92c155a14f44511ea8ebcc6bc1535a1fe8d0a7d67ad3cc47ba61606df7bcf"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8772b745668260c5c4d069c678bbaa68812e6c69830f3771eaad521af7bc17f8"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:578302828dd97ee2ba507d2f71d62164e28d2fc7bc73aad0d2d1d2afc021a5d5"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc3e6081069eea61593f1d6839029da53d00c8c9b205c5534853eaa3f031085c"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0b1c2d504eddf97bc0f2eba422c8915576dbf025062ceaca2d68aecd66324ad9"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fb76e5a21034f0307c51c5a2fc08856f698c53a4c593b17d291f7d6e9d09ca3"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d4ba2318ef670ce505f42881a5d2af70f948124646947341a3c6ccb33cd70369"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:057bb03f39e285047d7e9412e01ecf31bb2d42b9466a5409d715d587460dd59b"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:a8feac9006d5c9758438906f093befffc4290de75663dbb2098461df7c7d28dd"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:95b8292383e717e10455f2c917df45032b611141e43d1adf70f71b1566136b11"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e9fbf659537d246086d0297628b3795dc3e4a384101ecc01e5791c827b8d7345"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-win32.whl", hash = "sha256:1dc516ac6d32027be2b0196bedf6d977ac26debd09ca182376322ad620460feb"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-win_amd64.whl", hash = "sha256:b4f86e09d3064dca0b014cd48688964036a904a2d28048f00c8f4640796d06a8"}, - {file = "rapidfuzz-3.9.7-cp313-cp313-win_arm64.whl", hash = "sha256:19c64d8ddb2940b42a4567b23f1681af77f50a5ff6c9b8e85daba079c210716e"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:fbda3dd68d8b28ccb20ffb6f756fefd9b5ba570a772bedd7643ed441f5793308"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2379e0b2578ad3ac7004f223251550f08bca873ff76c169b09410ec562ad78d8"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d1eff95362f993b0276fd3839aee48625b09aac8938bb0c23b40d219cba5dc5"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd9360e30041690912525a210e48a897b49b230768cc8af1c702e5395690464f"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a93cd834b3c315ab437f0565ee3a2f42dd33768dc885ccbabf9710b131cf70d2"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ff196996240db7075f62c7bc4506f40a3c80cd4ae3ab0e79ac6892283a90859"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:948dcee7aaa1cd14358b2a7ef08bf0be42bf89049c3a906669874a715fc2c937"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d95751f505a301af1aaf086c19f34536056d6c8efa91b2240de532a3db57b543"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:90db86fa196eecf96cb6db09f1083912ea945c50c57188039392d810d0b784e1"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:3171653212218a162540a3c8eb8ae7d3dcc8548540b69eaecaf3b47c14d89c90"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:36dd6e820379c37a1ffefc8a52b648758e867cd9d78ee5b5dc0c9a6a10145378"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:7b702de95666a1f7d5c6b47eacadfe2d2794af3742d63d2134767d13e5d1c713"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-win32.whl", hash = "sha256:9030e7238c0df51aed5c9c5ed8eee2bdd47a2ae788e562c1454af2851c3d1906"}, - {file = "rapidfuzz-3.9.7-cp38-cp38-win_amd64.whl", hash = "sha256:f847fb0fbfb72482b1c05c59cbb275c58a55b73708a7f77a83f8035ee3c86497"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:97f2ce529d2a70a60c290f6ab269a2bbf1d3b47b9724dccc84339b85f7afb044"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e2957fdad10bb83b1982b02deb3604a3f6911a5e545f518b59c741086f92d152"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d5262383634626eb45c536017204b8163a03bc43bda880cf1bdd7885db9a163"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:364587827d7cbd41afa0782adc2d2d19e3f07d355b0750a02a8e33ad27a9c368"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ecc24af7f905f3d6efb371a01680116ffea8d64e266618fb9ad1602a9b4f7934"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9dc86aa6b29d174713c5f4caac35ffb7f232e3e649113e8d13812b35ab078228"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3dcfbe7266e74a707173a12a7b355a531f2dcfbdb32f09468e664330da14874"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:b23806fbdd6b510ba9ac93bb72d503066263b0fba44b71b835be9f063a84025f"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:5551d68264c1bb6943f542da83a4dc8940ede52c5847ef158698799cc28d14f5"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:13d8675a1fa7e2b19650ca7ef9a6ec01391d4bb12ab9e0793e8eb024538b4a34"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9b6a5de507b9be6de688dae40143b656f7a93b10995fb8bd90deb555e7875c60"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:111a20a3c090cf244d9406e60500b6c34b2375ba3a5009e2b38fd806fe38e337"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-win32.whl", hash = "sha256:22589c0b8ccc6c391ce7f776c93a8c92c96ab8d34e1a19f1bd2b12a235332632"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-win_amd64.whl", hash = "sha256:6f83221db5755b8f34222e40607d87f1176a8d5d4dbda4a55a0f0b67d588a69c"}, - {file = "rapidfuzz-3.9.7-cp39-cp39-win_arm64.whl", hash = "sha256:3665b92e788578c3bb334bd5b5fa7ee1a84bafd68be438e3110861d1578c63a0"}, - {file = "rapidfuzz-3.9.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:d7df9c2194c7ec930b33c991c55dbd0c10951bd25800c0b7a7b571994ebbced5"}, - {file = "rapidfuzz-3.9.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:68bd888eafd07b09585dcc8bc2716c5ecdb7eed62827470664d25588982b2873"}, - {file = "rapidfuzz-3.9.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1230e0f9026851a6a432beaa0ce575dda7b39fe689b576f99a0704fbb81fc9c"}, - {file = "rapidfuzz-3.9.7-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3b36e1c61b796ae1777f3e9e11fd39898b09d351c9384baf6e3b7e6191d8ced"}, - {file = "rapidfuzz-3.9.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dba13d86806fcf3fe9c9919f58575e0090eadfb89c058bde02bcc7ab24e4548"}, - {file = "rapidfuzz-3.9.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1f1a33e84056b7892c721d84475d3bde49a145126bc4c6efe0d6d0d59cb31c29"}, - {file = "rapidfuzz-3.9.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3492c7a42b7fa9f0051d7fcce9893e95ed91c97c9ec7fb64346f3e070dd318ed"}, - {file = "rapidfuzz-3.9.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:ece45eb2af8b00f90d10f7419322e8804bd42fb1129026f9bfe712c37508b514"}, - {file = "rapidfuzz-3.9.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcd14cf4876f04b488f6e54a7abd3e9b31db5f5a6aba0ce90659917aaa8c088"}, - {file = "rapidfuzz-3.9.7-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:521c58c72ed8a612b25cda378ff10dee17e6deb4ee99a070b723519a345527b9"}, - {file = "rapidfuzz-3.9.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18669bb6cdf7d40738526d37e550df09ba065b5a7560f3d802287988b6cb63cf"}, - {file = "rapidfuzz-3.9.7-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:7abe2dbae81120a64bb4f8d3fcafe9122f328c9f86d7f327f174187a5af4ed86"}, - {file = "rapidfuzz-3.9.7-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a3c0783910911f4f24655826d007c9f4360f08107410952c01ee3df98c713eb2"}, - {file = "rapidfuzz-3.9.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:03126f9a040ff21d2a110610bfd6b93b79377ce8b4121edcb791d61b7df6eec5"}, - {file = "rapidfuzz-3.9.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:591908240f4085e2ade5b685c6e8346e2ed44932cffeaac2fb32ddac95b55c7f"}, - {file = "rapidfuzz-3.9.7-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e9012d86c6397edbc9da4ac0132de7f8ee9d6ce857f4194d5684c4ddbcdd1c5c"}, - {file = "rapidfuzz-3.9.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df596ddd3db38aa513d4c0995611267b3946e7cbe5a8761b50e9306dfec720ee"}, - {file = "rapidfuzz-3.9.7-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3ed5adb752f4308fcc8f4fb6f8eb7aa4082f9d12676fda0a74fa5564242a8107"}, - {file = "rapidfuzz-3.9.7.tar.gz", hash = "sha256:f1c7296534c1afb6f495aa95871f14ccdc197c6db42965854e483100df313030"}, -] - -[package.extras] -full = ["numpy"] - -[[package]] -name = "regex" -version = "2024.7.24" -description = "Alternative regular expression module, to replace re." -optional = false -python-versions = ">=3.8" -files = [ - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, - {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, - {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, - {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, - {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, - {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, - {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, - {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, - {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, - {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, - {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, - {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, -] - -[[package]] -name = "requests" -version = "2.32.3" -description = "Python HTTP for Humans." -optional = false -python-versions = ">=3.8" -files = [ - {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, - {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, -] - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<4" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<3" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "requests-toolbelt" -version = "1.0.0" -description = "A utility belt for advanced users of python-requests" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" -files = [ - {file = "requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6"}, - {file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06"}, -] - -[package.dependencies] -requests = ">=2.0.1,<3.0.0" - -[[package]] -name = "rsa" -version = "4.9" -description = "Pure-Python RSA implementation" -optional = false -python-versions = ">=3.6,<4" -files = [ - {file = "rsa-4.9-py3-none-any.whl", hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7"}, - {file = "rsa-4.9.tar.gz", hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"}, -] - -[package.dependencies] -pyasn1 = ">=0.1.3" - -[[package]] -name = "ruff" -version = "0.5.7" -description = "An extremely fast Python linter and code formatter, written in Rust." -optional = false -python-versions = ">=3.7" -files = [ - {file = "ruff-0.5.7-py3-none-linux_armv6l.whl", hash = "sha256:548992d342fc404ee2e15a242cdbea4f8e39a52f2e7752d0e4cbe88d2d2f416a"}, - {file = "ruff-0.5.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00cc8872331055ee017c4f1071a8a31ca0809ccc0657da1d154a1d2abac5c0be"}, - {file = "ruff-0.5.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eaf3d86a1fdac1aec8a3417a63587d93f906c678bb9ed0b796da7b59c1114a1e"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a01c34400097b06cf8a6e61b35d6d456d5bd1ae6961542de18ec81eaf33b4cb8"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcc8054f1a717e2213500edaddcf1dbb0abad40d98e1bd9d0ad364f75c763eea"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f70284e73f36558ef51602254451e50dd6cc479f8b6f8413a95fcb5db4a55fc"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:a78ad870ae3c460394fc95437d43deb5c04b5c29297815a2a1de028903f19692"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ccd078c66a8e419475174bfe60a69adb36ce04f8d4e91b006f1329d5cd44bcf"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e31c9bad4ebf8fdb77b59cae75814440731060a09a0e0077d559a556453acbb"}, - {file = "ruff-0.5.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d796327eed8e168164346b769dd9a27a70e0298d667b4ecee6877ce8095ec8e"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:4a09ea2c3f7778cc635e7f6edf57d566a8ee8f485f3c4454db7771efb692c499"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a36d8dcf55b3a3bc353270d544fb170d75d2dff41eba5df57b4e0b67a95bb64e"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9369c218f789eefbd1b8d82a8cf25017b523ac47d96b2f531eba73770971c9e5"}, - {file = "ruff-0.5.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b88ca3db7eb377eb24fb7c82840546fb7acef75af4a74bd36e9ceb37a890257e"}, - {file = "ruff-0.5.7-py3-none-win32.whl", hash = "sha256:33d61fc0e902198a3e55719f4be6b375b28f860b09c281e4bdbf783c0566576a"}, - {file = "ruff-0.5.7-py3-none-win_amd64.whl", hash = "sha256:083bbcbe6fadb93cd86709037acc510f86eed5a314203079df174c40bbbca6b3"}, - {file = "ruff-0.5.7-py3-none-win_arm64.whl", hash = "sha256:2dca26154ff9571995107221d0aeaad0e75a77b5a682d6236cf89a58c70b76f4"}, - {file = "ruff-0.5.7.tar.gz", hash = "sha256:8dfc0a458797f5d9fb622dd0efc52d796f23f0a1493a9527f4e49a550ae9a7e5"}, -] - -[[package]] -name = "safetensors" -version = "0.4.5" -description = "" -optional = false -python-versions = ">=3.7" -files = [ - {file = "safetensors-0.4.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a63eaccd22243c67e4f2b1c3e258b257effc4acd78f3b9d397edc8cf8f1298a7"}, - {file = "safetensors-0.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:23fc9b4ec7b602915cbb4ec1a7c1ad96d2743c322f20ab709e2c35d1b66dad27"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6885016f34bef80ea1085b7e99b3c1f92cb1be78a49839203060f67b40aee761"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:133620f443450429322f238fda74d512c4008621227fccf2f8cf4a76206fea7c"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4fb3e0609ec12d2a77e882f07cced530b8262027f64b75d399f1504ffec0ba56"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0f1dd769f064adc33831f5e97ad07babbd728427f98e3e1db6902e369122737"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6d156bdb26732feada84f9388a9f135528c1ef5b05fae153da365ad4319c4c5"}, - {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9e347d77e2c77eb7624400ccd09bed69d35c0332f417ce8c048d404a096c593b"}, - {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9f556eea3aec1d3d955403159fe2123ddd68e880f83954ee9b4a3f2e15e716b6"}, - {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9483f42be3b6bc8ff77dd67302de8ae411c4db39f7224dec66b0eb95822e4163"}, - {file = "safetensors-0.4.5-cp310-none-win32.whl", hash = "sha256:7389129c03fadd1ccc37fd1ebbc773f2b031483b04700923c3511d2a939252cc"}, - {file = "safetensors-0.4.5-cp310-none-win_amd64.whl", hash = "sha256:e98ef5524f8b6620c8cdef97220c0b6a5c1cef69852fcd2f174bb96c2bb316b1"}, - {file = "safetensors-0.4.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:21f848d7aebd5954f92538552d6d75f7c1b4500f51664078b5b49720d180e47c"}, - {file = "safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bb07000b19d41e35eecef9a454f31a8b4718a185293f0d0b1c4b61d6e4487971"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09dedf7c2fda934ee68143202acff6e9e8eb0ddeeb4cfc24182bef999efa9f42"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:59b77e4b7a708988d84f26de3ebead61ef1659c73dcbc9946c18f3b1786d2688"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d3bc83e14d67adc2e9387e511097f254bd1b43c3020440e708858c684cbac68"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39371fc551c1072976073ab258c3119395294cf49cdc1f8476794627de3130df"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6c19feda32b931cae0acd42748a670bdf56bee6476a046af20181ad3fee4090"}, - {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a659467495de201e2f282063808a41170448c78bada1e62707b07a27b05e6943"}, - {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bad5e4b2476949bcd638a89f71b6916fa9a5cae5c1ae7eede337aca2100435c0"}, - {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a3a315a6d0054bc6889a17f5668a73f94f7fe55121ff59e0a199e3519c08565f"}, - {file = "safetensors-0.4.5-cp311-none-win32.whl", hash = "sha256:a01e232e6d3d5cf8b1667bc3b657a77bdab73f0743c26c1d3c5dd7ce86bd3a92"}, - {file = "safetensors-0.4.5-cp311-none-win_amd64.whl", hash = "sha256:cbd39cae1ad3e3ef6f63a6f07296b080c951f24cec60188378e43d3713000c04"}, - {file = "safetensors-0.4.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:473300314e026bd1043cef391bb16a8689453363381561b8a3e443870937cc1e"}, - {file = "safetensors-0.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:801183a0f76dc647f51a2d9141ad341f9665602a7899a693207a82fb102cc53e"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1524b54246e422ad6fb6aea1ac71edeeb77666efa67230e1faf6999df9b2e27f"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b3139098e3e8b2ad7afbca96d30ad29157b50c90861084e69fcb80dec7430461"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65573dc35be9059770808e276b017256fa30058802c29e1038eb1c00028502ea"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd33da8e9407559f8779c82a0448e2133737f922d71f884da27184549416bfed"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3685ce7ed036f916316b567152482b7e959dc754fcc4a8342333d222e05f407c"}, - {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dde2bf390d25f67908278d6f5d59e46211ef98e44108727084d4637ee70ab4f1"}, - {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7469d70d3de970b1698d47c11ebbf296a308702cbaae7fcb993944751cf985f4"}, - {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a6ba28118636a130ccbb968bc33d4684c48678695dba2590169d5ab03a45646"}, - {file = "safetensors-0.4.5-cp312-none-win32.whl", hash = "sha256:c859c7ed90b0047f58ee27751c8e56951452ed36a67afee1b0a87847d065eec6"}, - {file = "safetensors-0.4.5-cp312-none-win_amd64.whl", hash = "sha256:b5a8810ad6a6f933fff6c276eae92c1da217b39b4d8b1bc1c0b8af2d270dc532"}, - {file = "safetensors-0.4.5-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:25e5f8e2e92a74f05b4ca55686234c32aac19927903792b30ee6d7bd5653d54e"}, - {file = "safetensors-0.4.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:81efb124b58af39fcd684254c645e35692fea81c51627259cdf6d67ff4458916"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:585f1703a518b437f5103aa9cf70e9bd437cb78eea9c51024329e4fb8a3e3679"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b99fbf72e3faf0b2f5f16e5e3458b93b7d0a83984fe8d5364c60aa169f2da89"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b17b299ca9966ca983ecda1c0791a3f07f9ca6ab5ded8ef3d283fff45f6bcd5f"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76ded72f69209c9780fdb23ea89e56d35c54ae6abcdec67ccb22af8e696e449a"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2783956926303dcfeb1de91a4d1204cd4089ab441e622e7caee0642281109db3"}, - {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d94581aab8c6b204def4d7320f07534d6ee34cd4855688004a4354e63b639a35"}, - {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:67e1e7cb8678bb1b37ac48ec0df04faf689e2f4e9e81e566b5c63d9f23748523"}, - {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:dbd280b07e6054ea68b0cb4b16ad9703e7d63cd6890f577cb98acc5354780142"}, - {file = "safetensors-0.4.5-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:77d9b228da8374c7262046a36c1f656ba32a93df6cc51cd4453af932011e77f1"}, - {file = "safetensors-0.4.5-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:500cac01d50b301ab7bb192353317035011c5ceeef0fca652f9f43c000bb7f8d"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75331c0c746f03158ded32465b7d0b0e24c5a22121743662a2393439c43a45cf"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670e95fe34e0d591d0529e5e59fd9d3d72bc77b1444fcaa14dccda4f36b5a38b"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:098923e2574ff237c517d6e840acada8e5b311cb1fa226019105ed82e9c3b62f"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13ca0902d2648775089fa6a0c8fc9e6390c5f8ee576517d33f9261656f851e3f"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f0032bedc869c56f8d26259fe39cd21c5199cd57f2228d817a0e23e8370af25"}, - {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4b15f51b4f8f2a512341d9ce3475cacc19c5fdfc5db1f0e19449e75f95c7dc8"}, - {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f6594d130d0ad933d885c6a7b75c5183cb0e8450f799b80a39eae2b8508955eb"}, - {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:60c828a27e852ded2c85fc0f87bf1ec20e464c5cd4d56ff0e0711855cc2e17f8"}, - {file = "safetensors-0.4.5-cp37-none-win32.whl", hash = "sha256:6d3de65718b86c3eeaa8b73a9c3d123f9307a96bbd7be9698e21e76a56443af5"}, - {file = "safetensors-0.4.5-cp37-none-win_amd64.whl", hash = "sha256:5a2d68a523a4cefd791156a4174189a4114cf0bf9c50ceb89f261600f3b2b81a"}, - {file = "safetensors-0.4.5-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:e7a97058f96340850da0601a3309f3d29d6191b0702b2da201e54c6e3e44ccf0"}, - {file = "safetensors-0.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:63bfd425e25f5c733f572e2246e08a1c38bd6f2e027d3f7c87e2e43f228d1345"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3664ac565d0e809b0b929dae7ccd74e4d3273cd0c6d1220c6430035befb678e"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:313514b0b9b73ff4ddfb4edd71860696dbe3c1c9dc4d5cc13dbd74da283d2cbf"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31fa33ee326f750a2f2134a6174773c281d9a266ccd000bd4686d8021f1f3dac"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:09566792588d77b68abe53754c9f1308fadd35c9f87be939e22c623eaacbed6b"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309aaec9b66cbf07ad3a2e5cb8a03205663324fea024ba391594423d0f00d9fe"}, - {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:53946c5813b8f9e26103c5efff4a931cc45d874f45229edd68557ffb35ffb9f8"}, - {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:868f9df9e99ad1e7f38c52194063a982bc88fedc7d05096f4f8160403aaf4bd6"}, - {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9cc9449bd0b0bc538bd5e268221f0c5590bc5c14c1934a6ae359d44410dc68c4"}, - {file = "safetensors-0.4.5-cp38-none-win32.whl", hash = "sha256:83c4f13a9e687335c3928f615cd63a37e3f8ef072a3f2a0599fa09f863fb06a2"}, - {file = "safetensors-0.4.5-cp38-none-win_amd64.whl", hash = "sha256:b98d40a2ffa560653f6274e15b27b3544e8e3713a44627ce268f419f35c49478"}, - {file = "safetensors-0.4.5-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cf727bb1281d66699bef5683b04d98c894a2803442c490a8d45cd365abfbdeb2"}, - {file = "safetensors-0.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:96f1d038c827cdc552d97e71f522e1049fef0542be575421f7684756a748e457"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:139fbee92570ecea774e6344fee908907db79646d00b12c535f66bc78bd5ea2c"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c36302c1c69eebb383775a89645a32b9d266878fab619819ce660309d6176c9b"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d641f5b8149ea98deb5ffcf604d764aad1de38a8285f86771ce1abf8e74c4891"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b4db6a61d968de73722b858038c616a1bebd4a86abe2688e46ca0cc2d17558f2"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b75a616e02f21b6f1d5785b20cecbab5e2bd3f6358a90e8925b813d557666ec1"}, - {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:788ee7d04cc0e0e7f944c52ff05f52a4415b312f5efd2ee66389fb7685ee030c"}, - {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:87bc42bd04fd9ca31396d3ca0433db0be1411b6b53ac5a32b7845a85d01ffc2e"}, - {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4037676c86365a721a8c9510323a51861d703b399b78a6b4486a54a65a975fca"}, - {file = "safetensors-0.4.5-cp39-none-win32.whl", hash = "sha256:1500418454529d0ed5c1564bda376c4ddff43f30fce9517d9bee7bcce5a8ef50"}, - {file = "safetensors-0.4.5-cp39-none-win_amd64.whl", hash = "sha256:9d1a94b9d793ed8fe35ab6d5cea28d540a46559bafc6aae98f30ee0867000cab"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fdadf66b5a22ceb645d5435a0be7a0292ce59648ca1d46b352f13cff3ea80410"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d42ffd4c2259f31832cb17ff866c111684c87bd930892a1ba53fed28370c918c"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd8a1f6d2063a92cd04145c7fd9e31a1c7d85fbec20113a14b487563fdbc0597"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951d2fcf1817f4fb0ef0b48f6696688a4e852a95922a042b3f96aaa67eedc920"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ac85d9a8c1af0e3132371d9f2d134695a06a96993c2e2f0bbe25debb9e3f67a"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e3cec4a29eb7fe8da0b1c7988bc3828183080439dd559f720414450de076fcab"}, - {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:21742b391b859e67b26c0b2ac37f52c9c0944a879a25ad2f9f9f3cd61e7fda8f"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7db3006a4915151ce1913652e907cdede299b974641a83fbc092102ac41b644"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68bf99ea970960a237f416ea394e266e0361895753df06e3e06e6ea7907d98b"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8158938cf3324172df024da511839d373c40fbfaa83e9abf467174b2910d7b4c"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:540ce6c4bf6b58cb0fd93fa5f143bc0ee341c93bb4f9287ccd92cf898cc1b0dd"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:bfeaa1a699c6b9ed514bd15e6a91e74738b71125a9292159e3d6b7f0a53d2cde"}, - {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:01c8f00da537af711979e1b42a69a8ec9e1d7112f208e0e9b8a35d2c381085ef"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a0dd565f83b30f2ca79b5d35748d0d99dd4b3454f80e03dfb41f0038e3bdf180"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:023b6e5facda76989f4cba95a861b7e656b87e225f61811065d5c501f78cdb3f"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9633b663393d5796f0b60249549371e392b75a0b955c07e9c6f8708a87fc841f"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78dd8adfb48716233c45f676d6e48534d34b4bceb50162c13d1f0bdf6f78590a"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e8deb16c4321d61ae72533b8451ec4a9af8656d1c61ff81aa49f966406e4b68"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:52452fa5999dc50c4decaf0c53aa28371f7f1e0fe5c2dd9129059fbe1e1599c7"}, - {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:d5f23198821e227cfc52d50fa989813513db381255c6d100927b012f0cfec63d"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f4beb84b6073b1247a773141a6331117e35d07134b3bb0383003f39971d414bb"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:68814d599d25ed2fdd045ed54d370d1d03cf35e02dce56de44c651f828fb9b7b"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0b6453c54c57c1781292c46593f8a37254b8b99004c68d6c3ce229688931a22"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adaa9c6dead67e2dd90d634f89131e43162012479d86e25618e821a03d1eb1dc"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73e7d408e9012cd17511b382b43547850969c7979efc2bc353f317abaf23c84c"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:775409ce0fcc58b10773fdb4221ed1eb007de10fe7adbdf8f5e8a56096b6f0bc"}, - {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:834001bed193e4440c4a3950a31059523ee5090605c907c66808664c932b549c"}, - {file = "safetensors-0.4.5.tar.gz", hash = "sha256:d73de19682deabb02524b3d5d1f8b3aaba94c72f1bbfc7911b9b9d5d391c0310"}, -] - -[package.extras] -all = ["safetensors[jax]", "safetensors[numpy]", "safetensors[paddlepaddle]", "safetensors[pinned-tf]", "safetensors[quality]", "safetensors[testing]", "safetensors[torch]"] -dev = ["safetensors[all]"] -jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "safetensors[numpy]"] -mlx = ["mlx (>=0.0.9)"] -numpy = ["numpy (>=1.21.6)"] -paddlepaddle = ["paddlepaddle (>=2.4.1)", "safetensors[numpy]"] -pinned-tf = ["safetensors[numpy]", "tensorflow (==2.11.0)"] -quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"] -tensorflow = ["safetensors[numpy]", "tensorflow (>=2.11.0)"] -testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "hypothesis (>=6.70.2)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "safetensors[numpy]", "setuptools-rust (>=1.5.2)"] -torch = ["safetensors[numpy]", "torch (>=1.10)"] - -[[package]] -name = "scipy" -version = "1.13.1" -description = "Fundamental algorithms for scientific computing in Python" -optional = false -python-versions = ">=3.9" -files = [ - {file = "scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:20335853b85e9a49ff7572ab453794298bcf0354d8068c5f6775a0eabf350aca"}, - {file = "scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d605e9c23906d1994f55ace80e0125c587f96c020037ea6aa98d01b4bd2e222f"}, - {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfa31f1def5c819b19ecc3a8b52d28ffdcc7ed52bb20c9a7589669dd3c250989"}, - {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26264b282b9da0952a024ae34710c2aff7d27480ee91a2e82b7b7073c24722f"}, - {file = "scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eccfa1906eacc02de42d70ef4aecea45415f5be17e72b61bafcfd329bdc52e94"}, - {file = "scipy-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:2831f0dc9c5ea9edd6e51e6e769b655f08ec6db6e2e10f86ef39bd32eb11da54"}, - {file = "scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:27e52b09c0d3a1d5b63e1105f24177e544a222b43611aaf5bc44d4a0979e32f9"}, - {file = "scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:54f430b00f0133e2224c3ba42b805bfd0086fe488835effa33fa291561932326"}, - {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e89369d27f9e7b0884ae559a3a956e77c02114cc60a6058b4e5011572eea9299"}, - {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a78b4b3345f1b6f68a763c6e25c0c9a23a9fd0f39f5f3d200efe8feda560a5fa"}, - {file = "scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45484bee6d65633752c490404513b9ef02475b4284c4cfab0ef946def50b3f59"}, - {file = "scipy-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:5713f62f781eebd8d597eb3f88b8bf9274e79eeabf63afb4a737abc6c84ad37b"}, - {file = "scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5d72782f39716b2b3509cd7c33cdc08c96f2f4d2b06d51e52fb45a19ca0c86a1"}, - {file = "scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:017367484ce5498445aade74b1d5ab377acdc65e27095155e448c88497755a5d"}, - {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:949ae67db5fa78a86e8fa644b9a6b07252f449dcf74247108c50e1d20d2b4627"}, - {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3ade0e53bc1f21358aa74ff4830235d716211d7d077e340c7349bc3542e884"}, - {file = "scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ac65fb503dad64218c228e2dc2d0a0193f7904747db43014645ae139c8fad16"}, - {file = "scipy-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:cdd7dacfb95fea358916410ec61bbc20440f7860333aee6d882bb8046264e949"}, - {file = "scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:436bbb42a94a8aeef855d755ce5a465479c721e9d684de76bf61a62e7c2b81d5"}, - {file = "scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8335549ebbca860c52bf3d02f80784e91a004b71b059e3eea9678ba994796a24"}, - {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d533654b7d221a6a97304ab63c41c96473ff04459e404b83275b60aa8f4b7004"}, - {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637e98dcf185ba7f8e663e122ebf908c4702420477ae52a04f9908707456ba4d"}, - {file = "scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a014c2b3697bde71724244f63de2476925596c24285c7a637364761f8710891c"}, - {file = "scipy-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:392e4ec766654852c25ebad4f64e4e584cf19820b980bc04960bca0b0cd6eaa2"}, - {file = "scipy-1.13.1.tar.gz", hash = "sha256:095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c"}, -] - -[package.dependencies] -numpy = ">=1.22.4,<2.3" - -[package.extras] -dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] -doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.12.0)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] -test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "setuptools" -version = "74.1.2" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "setuptools-74.1.2-py3-none-any.whl", hash = "sha256:5f4c08aa4d3ebcb57a50c33b1b07e94315d7fc7230f7115e47fc99776c8ce308"}, - {file = "setuptools-74.1.2.tar.gz", hash = "sha256:95b40ed940a1c67eb70fc099094bd6e99c6ee7c23aa2306f4d2697ba7916f9c6"}, -] - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] -type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" -files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] - -[[package]] -name = "sniffio" -version = "1.3.1" -description = "Sniff out which async library your code is running under" -optional = false -python-versions = ">=3.7" -files = [ - {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, - {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, -] - -[[package]] -name = "soupsieve" -version = "2.6" -description = "A modern CSS selector implementation for Beautiful Soup." -optional = false -python-versions = ">=3.8" -files = [ - {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, - {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, -] - -[[package]] -name = "sympy" -version = "1.13.2" -description = "Computer algebra system (CAS) in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "sympy-1.13.2-py3-none-any.whl", hash = "sha256:c51d75517712f1aed280d4ce58506a4a88d635d6b5dd48b39102a7ae1f3fcfe9"}, - {file = "sympy-1.13.2.tar.gz", hash = "sha256:401449d84d07be9d0c7a46a64bd54fe097667d5e7181bfe67ec777be9e01cb13"}, -] - -[package.dependencies] -mpmath = ">=1.1.0,<1.4" - -[package.extras] -dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] - -[[package]] -name = "tabulate" -version = "0.9.0" -description = "Pretty-print tabular data" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"}, - {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"}, -] - -[package.extras] -widechars = ["wcwidth"] - -[[package]] -name = "tenacity" -version = "8.5.0" -description = "Retry code until it succeeds" -optional = false -python-versions = ">=3.8" -files = [ - {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, - {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, -] - -[package.extras] -doc = ["reno", "sphinx"] -test = ["pytest", "tornado (>=4.5)", "typeguard"] - -[[package]] -name = "timm" -version = "1.0.9" -description = "PyTorch Image Models" -optional = false -python-versions = ">=3.8" -files = [ - {file = "timm-1.0.9-py3-none-any.whl", hash = "sha256:ce5a4bac57a6cbb2be4ee35dc4ce689eede10d647e48dd1836106e2cc199693b"}, - {file = "timm-1.0.9.tar.gz", hash = "sha256:69523aa2c34820cc6db37005302b5e42ddd60c30f476643f133ead4a8c5b5533"}, -] - -[package.dependencies] -huggingface_hub = "*" -pyyaml = "*" -safetensors = "*" -torch = "*" -torchvision = "*" - -[[package]] -name = "tokenizers" -version = "0.19.1" -description = "" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tokenizers-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:952078130b3d101e05ecfc7fc3640282d74ed26bcf691400f872563fca15ac97"}, - {file = "tokenizers-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82c8b8063de6c0468f08e82c4e198763e7b97aabfe573fd4cf7b33930ca4df77"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f03727225feaf340ceeb7e00604825addef622d551cbd46b7b775ac834c1e1c4"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:453e4422efdfc9c6b6bf2eae00d5e323f263fff62b29a8c9cd526c5003f3f642"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02e81bf089ebf0e7f4df34fa0207519f07e66d8491d963618252f2e0729e0b46"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b07c538ba956843833fee1190cf769c60dc62e1cf934ed50d77d5502194d63b1"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28cab1582e0eec38b1f38c1c1fb2e56bce5dc180acb1724574fc5f47da2a4fe"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b01afb7193d47439f091cd8f070a1ced347ad0f9144952a30a41836902fe09e"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7fb297edec6c6841ab2e4e8f357209519188e4a59b557ea4fafcf4691d1b4c98"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e8a3dd055e515df7054378dc9d6fa8c8c34e1f32777fb9a01fea81496b3f9d3"}, - {file = "tokenizers-0.19.1-cp310-none-win32.whl", hash = "sha256:7ff898780a155ea053f5d934925f3902be2ed1f4d916461e1a93019cc7250837"}, - {file = "tokenizers-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:bea6f9947e9419c2fda21ae6c32871e3d398cba549b93f4a65a2d369662d9403"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5c88d1481f1882c2e53e6bb06491e474e420d9ac7bdff172610c4f9ad3898059"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddf672ed719b4ed82b51499100f5417d7d9f6fb05a65e232249268f35de5ed14"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dadc509cc8a9fe460bd274c0e16ac4184d0958117cf026e0ea8b32b438171594"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfedf31824ca4915b511b03441784ff640378191918264268e6923da48104acc"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac11016d0a04aa6487b1513a3a36e7bee7eec0e5d30057c9c0408067345c48d2"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:76951121890fea8330d3a0df9a954b3f2a37e3ec20e5b0530e9a0044ca2e11fe"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b342d2ce8fc8d00f376af068e3274e2e8649562e3bc6ae4a67784ded6b99428d"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d16ff18907f4909dca9b076b9c2d899114dd6abceeb074eca0c93e2353f943aa"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:706a37cc5332f85f26efbe2bdc9ef8a9b372b77e4645331a405073e4b3a8c1c6"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:16baac68651701364b0289979ecec728546133e8e8fe38f66fe48ad07996b88b"}, - {file = "tokenizers-0.19.1-cp311-none-win32.whl", hash = "sha256:9ed240c56b4403e22b9584ee37d87b8bfa14865134e3e1c3fb4b2c42fafd3256"}, - {file = "tokenizers-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:ad57d59341710b94a7d9dbea13f5c1e7d76fd8d9bcd944a7a6ab0b0da6e0cc66"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:621d670e1b1c281a1c9698ed89451395d318802ff88d1fc1accff0867a06f153"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d924204a3dbe50b75630bd16f821ebda6a5f729928df30f582fb5aade90c818a"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:4f3fefdc0446b1a1e6d81cd4c07088ac015665d2e812f6dbba4a06267d1a2c95"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9620b78e0b2d52ef07b0d428323fb34e8ea1219c5eac98c2596311f20f1f9266"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04ce49e82d100594715ac1b2ce87d1a36e61891a91de774755f743babcd0dd52"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5c2ff13d157afe413bf7e25789879dd463e5a4abfb529a2d8f8473d8042e28f"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3174c76efd9d08f836bfccaca7cfec3f4d1c0a4cf3acbc7236ad577cc423c840"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9d5b6c0e7a1e979bec10ff960fae925e947aab95619a6fdb4c1d8ff3708ce3"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a179856d1caee06577220ebcfa332af046d576fb73454b8f4d4b0ba8324423ea"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:952b80dac1a6492170f8c2429bd11fcaa14377e097d12a1dbe0ef2fb2241e16c"}, - {file = "tokenizers-0.19.1-cp312-none-win32.whl", hash = "sha256:01d62812454c188306755c94755465505836fd616f75067abcae529c35edeb57"}, - {file = "tokenizers-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:b70bfbe3a82d3e3fb2a5e9b22a39f8d1740c96c68b6ace0086b39074f08ab89a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:bb9dfe7dae85bc6119d705a76dc068c062b8b575abe3595e3c6276480e67e3f1"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:1f0360cbea28ea99944ac089c00de7b2e3e1c58f479fb8613b6d8d511ce98267"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:71e3ec71f0e78780851fef28c2a9babe20270404c921b756d7c532d280349214"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b82931fa619dbad979c0ee8e54dd5278acc418209cc897e42fac041f5366d626"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e8ff5b90eabdcdaa19af697885f70fe0b714ce16709cf43d4952f1f85299e73a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e742d76ad84acbdb1a8e4694f915fe59ff6edc381c97d6dfdd054954e3478ad4"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d8c5d59d7b59885eab559d5bc082b2985555a54cda04dda4c65528d90ad252ad"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b2da5c32ed869bebd990c9420df49813709e953674c0722ff471a116d97b22d"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:638e43936cc8b2cbb9f9d8dde0fe5e7e30766a3318d2342999ae27f68fdc9bd6"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:78e769eb3b2c79687d9cb0f89ef77223e8e279b75c0a968e637ca7043a84463f"}, - {file = "tokenizers-0.19.1-cp37-none-win32.whl", hash = "sha256:72791f9bb1ca78e3ae525d4782e85272c63faaef9940d92142aa3eb79f3407a3"}, - {file = "tokenizers-0.19.1-cp37-none-win_amd64.whl", hash = "sha256:f3bbb7a0c5fcb692950b041ae11067ac54826204318922da754f908d95619fbc"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:07f9295349bbbcedae8cefdbcfa7f686aa420be8aca5d4f7d1ae6016c128c0c5"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:10a707cc6c4b6b183ec5dbfc5c34f3064e18cf62b4a938cb41699e33a99e03c1"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6309271f57b397aa0aff0cbbe632ca9d70430839ca3178bf0f06f825924eca22"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ad23d37d68cf00d54af184586d79b84075ada495e7c5c0f601f051b162112dc"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:427c4f0f3df9109314d4f75b8d1f65d9477033e67ffaec4bca53293d3aca286d"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e83a31c9cf181a0a3ef0abad2b5f6b43399faf5da7e696196ddd110d332519ee"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27b99889bd58b7e301468c0838c5ed75e60c66df0d4db80c08f43462f82e0d3"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bac0b0eb952412b0b196ca7a40e7dce4ed6f6926489313414010f2e6b9ec2adf"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8a6298bde623725ca31c9035a04bf2ef63208d266acd2bed8c2cb7d2b7d53ce6"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:08a44864e42fa6d7d76d7be4bec62c9982f6f6248b4aa42f7302aa01e0abfd26"}, - {file = "tokenizers-0.19.1-cp38-none-win32.whl", hash = "sha256:1de5bc8652252d9357a666e609cb1453d4f8e160eb1fb2830ee369dd658e8975"}, - {file = "tokenizers-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:0bcce02bf1ad9882345b34d5bd25ed4949a480cf0e656bbd468f4d8986f7a3f1"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0b9394bd204842a2a1fd37fe29935353742be4a3460b6ccbaefa93f58a8df43d"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4692ab92f91b87769d950ca14dbb61f8a9ef36a62f94bad6c82cc84a51f76f6a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6258c2ef6f06259f70a682491c78561d492e885adeaf9f64f5389f78aa49a051"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c85cf76561fbd01e0d9ea2d1cbe711a65400092bc52b5242b16cfd22e51f0c58"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670b802d4d82bbbb832ddb0d41df7015b3e549714c0e77f9bed3e74d42400fbe"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:85aa3ab4b03d5e99fdd31660872249df5e855334b6c333e0bc13032ff4469c4a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbf001afbbed111a79ca47d75941e9e5361297a87d186cbfc11ed45e30b5daba"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c89aa46c269e4e70c4d4f9d6bc644fcc39bb409cb2a81227923404dd6f5227"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:39c1ec76ea1027438fafe16ecb0fb84795e62e9d643444c1090179e63808c69d"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c2a0d47a89b48d7daa241e004e71fb5a50533718897a4cd6235cb846d511a478"}, - {file = "tokenizers-0.19.1-cp39-none-win32.whl", hash = "sha256:61b7fe8886f2e104d4caf9218b157b106207e0f2a4905c9c7ac98890688aabeb"}, - {file = "tokenizers-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:f97660f6c43efd3e0bfd3f2e3e5615bf215680bad6ee3d469df6454b8c6e8256"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3b11853f17b54c2fe47742c56d8a33bf49ce31caf531e87ac0d7d13d327c9334"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d26194ef6c13302f446d39972aaa36a1dda6450bc8949f5eb4c27f51191375bd"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e8d1ed93beda54bbd6131a2cb363a576eac746d5c26ba5b7556bc6f964425594"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca407133536f19bdec44b3da117ef0d12e43f6d4b56ac4c765f37eca501c7bda"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce05fde79d2bc2e46ac08aacbc142bead21614d937aac950be88dc79f9db9022"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:35583cd46d16f07c054efd18b5d46af4a2f070a2dd0a47914e66f3ff5efb2b1e"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:43350270bfc16b06ad3f6f07eab21f089adb835544417afda0f83256a8bf8b75"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b4399b59d1af5645bcee2072a463318114c39b8547437a7c2d6a186a1b5a0e2d"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6852c5b2a853b8b0ddc5993cd4f33bfffdca4fcc5d52f89dd4b8eada99379285"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bcd266ae85c3d39df2f7e7d0e07f6c41a55e9a3123bb11f854412952deacd828"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecb2651956eea2aa0a2d099434134b1b68f1c31f9a5084d6d53f08ed43d45ff2"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b279ab506ec4445166ac476fb4d3cc383accde1ea152998509a94d82547c8e2a"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:89183e55fb86e61d848ff83753f64cded119f5d6e1f553d14ffee3700d0a4a49"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b2edbc75744235eea94d595a8b70fe279dd42f3296f76d5a86dde1d46e35f574"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:0e64bfde9a723274e9a71630c3e9494ed7b4c0f76a1faacf7fe294cd26f7ae7c"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0b5ca92bfa717759c052e345770792d02d1f43b06f9e790ca0a1db62838816f3"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f8a20266e695ec9d7a946a019c1d5ca4eddb6613d4f466888eee04f16eedb85"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c38f45d8f2a2ec0f3a20073cccb335b9f99f73b3c69483cd52ebc75369d8a1"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:dd26e3afe8a7b61422df3176e06664503d3f5973b94f45d5c45987e1cb711876"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:eddd5783a4a6309ce23432353cdb36220e25cbb779bfa9122320666508b44b88"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:56ae39d4036b753994476a1b935584071093b55c7a72e3b8288e68c313ca26e7"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9939ca7e58c2758c01b40324a59c034ce0cebad18e0d4563a9b1beab3018243"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6c330c0eb815d212893c67a032e9dc1b38a803eccb32f3e8172c19cc69fbb439"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec11802450a2487cdf0e634b750a04cbdc1c4d066b97d94ce7dd2cb51ebb325b"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b718f316b596f36e1dae097a7d5b91fc5b85e90bf08b01ff139bd8953b25af"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ed69af290c2b65169f0ba9034d1dc39a5db9459b32f1dd8b5f3f32a3fcf06eab"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f8a9c828277133af13f3859d1b6bf1c3cb6e9e1637df0e45312e6b7c2e622b1f"}, - {file = "tokenizers-0.19.1.tar.gz", hash = "sha256:ee59e6680ed0fdbe6b724cf38bd70400a0c1dd623b07ac729087270caeac88e3"}, -] - -[package.dependencies] -huggingface-hub = ">=0.16.4,<1.0" - -[package.extras] -dev = ["tokenizers[testing]"] -docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"] -testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests", "ruff"] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] - -[[package]] -name = "torch" -version = "2.4.1" -description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "torch-2.4.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:362f82e23a4cd46341daabb76fba08f04cd646df9bfaf5da50af97cb60ca4971"}, - {file = "torch-2.4.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e8ac1985c3ff0f60d85b991954cfc2cc25f79c84545aead422763148ed2759e3"}, - {file = "torch-2.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:91e326e2ccfb1496e3bee58f70ef605aeb27bd26be07ba64f37dcaac3d070ada"}, - {file = "torch-2.4.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:d36a8ef100f5bff3e9c3cea934b9e0d7ea277cb8210c7152d34a9a6c5830eadd"}, - {file = "torch-2.4.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:0b5f88afdfa05a335d80351e3cea57d38e578c8689f751d35e0ff36bce872113"}, - {file = "torch-2.4.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ef503165f2341942bfdf2bd520152f19540d0c0e34961232f134dc59ad435be8"}, - {file = "torch-2.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:092e7c2280c860eff762ac08c4bdcd53d701677851670695e0c22d6d345b269c"}, - {file = "torch-2.4.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:ddddbd8b066e743934a4200b3d54267a46db02106876d21cf31f7da7a96f98ea"}, - {file = "torch-2.4.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:fdc4fe11db3eb93c1115d3e973a27ac7c1a8318af8934ffa36b0370efe28e042"}, - {file = "torch-2.4.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:18835374f599207a9e82c262153c20ddf42ea49bc76b6eadad8e5f49729f6e4d"}, - {file = "torch-2.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:ebea70ff30544fc021d441ce6b219a88b67524f01170b1c538d7d3ebb5e7f56c"}, - {file = "torch-2.4.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:72b484d5b6cec1a735bf3fa5a1c4883d01748698c5e9cfdbeb4ffab7c7987e0d"}, - {file = "torch-2.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c99e1db4bf0c5347107845d715b4aa1097e601bdc36343d758963055e9599d93"}, - {file = "torch-2.4.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b57f07e92858db78c5b72857b4f0b33a65b00dc5d68e7948a8494b0314efb880"}, - {file = "torch-2.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:f18197f3f7c15cde2115892b64f17c80dbf01ed72b008020e7da339902742cf6"}, - {file = "torch-2.4.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:5fc1d4d7ed265ef853579caf272686d1ed87cebdcd04f2a498f800ffc53dab71"}, - {file = "torch-2.4.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:40f6d3fe3bae74efcf08cb7f8295eaddd8a838ce89e9d26929d4edd6d5e4329d"}, - {file = "torch-2.4.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:c9299c16c9743001ecef515536ac45900247f4338ecdf70746f2461f9e4831db"}, - {file = "torch-2.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:6bce130f2cd2d52ba4e2c6ada461808de7e5eccbac692525337cfb4c19421846"}, - {file = "torch-2.4.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:a38de2803ee6050309aac032676536c3d3b6a9804248537e38e098d0e14817ec"}, -] - -[package.dependencies] -filelock = "*" -fsspec = "*" -jinja2 = "*" -networkx = "*" -nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cudnn-cu12 = {version = "9.1.0.70", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -setuptools = "*" -sympy = "*" -triton = {version = "3.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} -typing-extensions = ">=4.8.0" - -[package.extras] -opt-einsum = ["opt-einsum (>=3.3)"] -optree = ["optree (>=0.11.0)"] - -[[package]] -name = "torchvision" -version = "0.19.1" -description = "image and video datasets and models for torch deep learning" -optional = false -python-versions = ">=3.8" -files = [ - {file = "torchvision-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:54e8513099e6f586356c70f809d34f391af71ad182fe071cc328a28af2c40608"}, - {file = "torchvision-0.19.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:20a1f5e02bfdad7714e55fa3fa698347c11d829fa65e11e5a84df07d93350eed"}, - {file = "torchvision-0.19.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:7b063116164be52fc6deb4762de7f8c90bfa3a65f8d5caf17f8e2d5aadc75a04"}, - {file = "torchvision-0.19.1-cp310-cp310-win_amd64.whl", hash = "sha256:f40b6acabfa886da1bc3768f47679c61feee6bde90deb979d9f300df8c8a0145"}, - {file = "torchvision-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:40514282b4896d62765b8e26d7091c32e17c35817d00ec4be2362ea3ba3d1787"}, - {file = "torchvision-0.19.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:5a91be061ae5d6d5b95e833b93e57ca4d3c56c5a57444dd15da2e3e7fba96050"}, - {file = "torchvision-0.19.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d71a6a6fe3a5281ca3487d4c56ad4aad20ff70f82f1d7c79bcb6e7b0c2af00c8"}, - {file = "torchvision-0.19.1-cp311-cp311-win_amd64.whl", hash = "sha256:70dea324174f5e9981b68e4b7cd524512c106ba64aedef560a86a0bbf2fbf62c"}, - {file = "torchvision-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:27ece277ff0f6cdc7fed0627279c632dcb2e58187da771eca24b0fbcf3f8590d"}, - {file = "torchvision-0.19.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:c659ff92a61f188a1a7baef2850f3c0b6c85685447453c03d0e645ba8f1dcc1c"}, - {file = "torchvision-0.19.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:c07bf43c2a145d792ecd9d0503d6c73577147ece508d45600d8aac77e4cdfcf9"}, - {file = "torchvision-0.19.1-cp312-cp312-win_amd64.whl", hash = "sha256:b4283d283675556bb0eae31d29996f53861b17cbdcdf3509e6bc050414ac9289"}, - {file = "torchvision-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c4e4f5b24ea6b087b02ed492ab1e21bba3352c4577e2def14248cfc60732338"}, - {file = "torchvision-0.19.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:9281d63ead929bb19143731154cd1d8bf0b5e9873dff8578a40e90a6bec3c6fa"}, - {file = "torchvision-0.19.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:4d10bc9083c4d5fadd7edd7b729700a7be48dab4f62278df3bc73fa48e48a155"}, - {file = "torchvision-0.19.1-cp38-cp38-win_amd64.whl", hash = "sha256:ccf085ef1824fb9e16f1901285bf89c298c62dfd93267a39e8ee42c71255242f"}, - {file = "torchvision-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:731f434d91586769e255b5d70ed1a4457e0a1394a95f4aacf0e1e7e21f80c098"}, - {file = "torchvision-0.19.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:febe4f14d4afcb47cc861d8be7760ab6a123cd0817f97faf5771488cb6aa90f4"}, - {file = "torchvision-0.19.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e328309b8670a2e889b2fe76a1c2744a099c11c984da9a822357bd9debd699a5"}, - {file = "torchvision-0.19.1-cp39-cp39-win_amd64.whl", hash = "sha256:6616f12e00a22e7f3fedbd0fccb0804c05e8fe22871668f10eae65cf3f283614"}, -] - -[package.dependencies] -numpy = "*" -pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" -torch = "2.4.1" - -[package.extras] -gdown = ["gdown (>=4.7.3)"] -scipy = ["scipy"] - -[[package]] -name = "tqdm" -version = "4.66.5" -description = "Fast, Extensible Progress Meter" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, - {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "transformers" -version = "4.44.2" -description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" -optional = false -python-versions = ">=3.8.0" -files = [ - {file = "transformers-4.44.2-py3-none-any.whl", hash = "sha256:1c02c65e7bfa5e52a634aff3da52138b583fc6f263c1f28d547dc144ba3d412d"}, - {file = "transformers-4.44.2.tar.gz", hash = "sha256:36aa17cc92ee154058e426d951684a2dab48751b35b49437896f898931270826"}, -] - -[package.dependencies] -filelock = "*" -huggingface-hub = ">=0.23.2,<1.0" -numpy = ">=1.17" -packaging = ">=20.0" -pyyaml = ">=5.1" -regex = "!=2019.12.17" -requests = "*" -safetensors = ">=0.4.1" -tokenizers = ">=0.19,<0.20" -tqdm = ">=4.27" - -[package.extras] -accelerate = ["accelerate (>=0.21.0)"] -agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] -all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] -audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -benchmark = ["optimum-benchmark (>=0.2.0)"] -codecarbon = ["codecarbon (==1.2.0)"] -deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] -deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] -dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] -flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -ftfy = ["ftfy"] -integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"] -ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] -modelcreation = ["cookiecutter (==1.7.3)"] -natten = ["natten (>=0.14.6,<0.15.0)"] -onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] -onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] -optuna = ["optuna"] -quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "ruff (==0.5.1)", "urllib3 (<2.0.0)"] -ray = ["ray[tune] (>=2.7.0)"] -retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] -ruff = ["ruff (==0.5.1)"] -sagemaker = ["sagemaker (>=2.31.0)"] -sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] -serving = ["fastapi", "pydantic", "starlette", "uvicorn"] -sigopt = ["sigopt"] -sklearn = ["scikit-learn"] -speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -tf = ["keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] -tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<0.24)", "tensorflow-text (<2.16)", "tf2onnx"] -tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -timm = ["timm (<=0.9.16)"] -tokenizers = ["tokenizers (>=0.19,<0.20)"] -torch = ["accelerate (>=0.21.0)", "torch"] -torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] -torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] -video = ["av (==9.2.0)", "decord (==0.6.0)"] -vision = ["Pillow (>=10.0.1,<=15.0)"] - -[[package]] -name = "triton" -version = "3.0.0" -description = "A language and compiler for custom Deep Learning operations" -optional = false -python-versions = "*" -files = [ - {file = "triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a"}, - {file = "triton-3.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5ce8520437c602fb633f1324cc3871c47bee3b67acf9756c1a66309b60e3216c"}, - {file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"}, - {file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"}, - {file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"}, - {file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"}, - {file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"}, - {file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"}, - {file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"}, - {file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"}, -] - -[package.dependencies] -filelock = "*" - -[package.extras] -build = ["cmake (>=3.20)", "lit"] -tests = ["autopep8", "flake8", "isort", "llnl-hatchet", "numpy", "pytest", "scipy (>=1.7.1)"] -tutorials = ["matplotlib", "pandas", "tabulate"] - -[[package]] -name = "typing-extensions" -version = "4.12.2" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, - {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, -] - -[[package]] -name = "typing-inspect" -version = "0.9.0" -description = "Runtime inspection utilities for typing module." -optional = false -python-versions = "*" -files = [ - {file = "typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f"}, - {file = "typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78"}, -] - -[package.dependencies] -mypy-extensions = ">=0.3.0" -typing-extensions = ">=3.7.4" - -[[package]] -name = "tzdata" -version = "2024.1" -description = "Provider of IANA time zone data" -optional = false -python-versions = ">=2" -files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, -] - -[[package]] -name = "unstructured" -version = "0.15.9" -description = "A library that prepares raw documents for downstream ML tasks." -optional = false -python-versions = "<3.13,>=3.9.0" -files = [ - {file = "unstructured-0.15.9-py3-none-any.whl", hash = "sha256:ddbb043461cfb9efa1d48a18e62e3b43ff4e0cec25fbf0f28bf345589c1af4d2"}, - {file = "unstructured-0.15.9.tar.gz", hash = "sha256:de26d0e38bac4aa3ae2950f175d0c53a5ccae5c45806b67f55a4af8dea4c407a"}, -] - -[package.dependencies] -backoff = "*" -beautifulsoup4 = "*" -chardet = "*" -dataclasses-json = "*" -effdet = {version = "*", optional = true, markers = "extra == \"all-docs\""} -emoji = "*" -filetype = "*" -google-cloud-vision = {version = "*", optional = true, markers = "extra == \"all-docs\""} -langdetect = "*" -lxml = "*" -markdown = {version = "*", optional = true, markers = "extra == \"all-docs\""} -networkx = {version = "*", optional = true, markers = "extra == \"all-docs\""} -nltk = "*" -numpy = "<2" -onnx = {version = "*", optional = true, markers = "extra == \"all-docs\""} -openpyxl = {version = "*", optional = true, markers = "extra == \"all-docs\""} -pandas = {version = "*", optional = true, markers = "extra == \"all-docs\""} -pdf2image = {version = "*", optional = true, markers = "extra == \"all-docs\""} -"pdfminer.six" = {version = "*", optional = true, markers = "extra == \"all-docs\""} -pi-heif = {version = "*", optional = true, markers = "extra == \"all-docs\""} -pikepdf = {version = "*", optional = true, markers = "extra == \"all-docs\""} -psutil = "*" -pypandoc = {version = "*", optional = true, markers = "extra == \"all-docs\""} -pypdf = {version = "*", optional = true, markers = "extra == \"all-docs\""} -python-docx = {version = ">=1.1.2", optional = true, markers = "extra == \"all-docs\""} -python-iso639 = "*" -python-magic = "*" -python-oxmsg = "*" -python-pptx = {version = ">=1.0.1", optional = true, markers = "extra == \"all-docs\""} -rapidfuzz = "*" -requests = "*" -tabulate = "*" -tqdm = "*" -typing-extensions = "*" -unstructured-client = "*" -unstructured-inference = {version = "0.7.36", optional = true, markers = "extra == \"all-docs\""} -"unstructured.pytesseract" = {version = ">=0.3.12", optional = true, markers = "extra == \"all-docs\""} -wrapt = "*" -xlrd = {version = "*", optional = true, markers = "extra == \"all-docs\""} - -[package.extras] -airtable = ["pyairtable"] -all-docs = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (==0.7.36)", "unstructured.pytesseract (>=0.3.12)", "xlrd"] -astradb = ["astrapy"] -azure = ["adlfs", "fsspec"] -azure-cognitive-search = ["azure-search-documents"] -bedrock = ["boto3", "langchain-community"] -biomed = ["bs4"] -box = ["boxfs", "fsspec"] -chroma = ["chromadb", "importlib-metadata (>=8.2.0)", "tenacity (==8.5.0)", "typer (<=0.9.0)"] -clarifai = ["clarifai"] -confluence = ["atlassian-python-api"] -csv = ["pandas"] -databricks-volumes = ["databricks-sdk"] -delta-table = ["deltalake", "fsspec"] -discord = ["discord-py"] -doc = ["python-docx (>=1.1.2)"] -docx = ["python-docx (>=1.1.2)"] -dropbox = ["dropboxdrivefs", "fsspec"] -elasticsearch = ["elasticsearch[async]"] -embed-huggingface = ["langchain-huggingface"] -embed-mixedbreadai = ["mixedbread-ai"] -embed-octoai = ["openai", "tiktoken"] -embed-vertexai = ["langchain", "langchain-community", "langchain-google-vertexai"] -embed-voyageai = ["langchain", "langchain-voyageai"] -epub = ["pypandoc"] -gcs = ["bs4", "fsspec", "gcsfs"] -github = ["pygithub (>1.58.0)"] -gitlab = ["python-gitlab"] -google-drive = ["google-api-python-client"] -hubspot = ["hubspot-api-client", "urllib3"] -huggingface = ["langdetect", "sacremoses", "sentencepiece", "torch", "transformers"] -image = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (==0.7.36)", "unstructured.pytesseract (>=0.3.12)"] -jira = ["atlassian-python-api"] -kafka = ["confluent-kafka"] -local-inference = ["effdet", "google-cloud-vision", "markdown", "networkx", "onnx", "openpyxl", "pandas", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypandoc", "pypdf", "python-docx (>=1.1.2)", "python-pptx (>=1.0.1)", "unstructured-inference (==0.7.36)", "unstructured.pytesseract (>=0.3.12)", "xlrd"] -md = ["markdown"] -mongodb = ["pymongo"] -notion = ["htmlBuilder", "notion-client"] -odt = ["pypandoc", "python-docx (>=1.1.2)"] -onedrive = ["Office365-REST-Python-Client", "bs4", "msal"] -openai = ["langchain-openai"] -opensearch = ["opensearch-py"] -org = ["pypandoc"] -outlook = ["Office365-REST-Python-Client", "msal"] -paddleocr = ["paddlepaddle (==3.0.0b1)", "unstructured.paddleocr (==2.8.1.0)"] -pdf = ["effdet", "google-cloud-vision", "onnx", "pdf2image", "pdfminer.six", "pi-heif", "pikepdf", "pypdf", "unstructured-inference (==0.7.36)", "unstructured.pytesseract (>=0.3.12)"] -pinecone = ["pinecone-client (>=3.7.1)"] -postgres = ["psycopg2-binary"] -ppt = ["python-pptx (>=1.0.1)"] -pptx = ["python-pptx (>=1.0.1)"] -qdrant = ["qdrant-client"] -reddit = ["praw"] -rst = ["pypandoc"] -rtf = ["pypandoc"] -s3 = ["fsspec", "s3fs"] -salesforce = ["simple-salesforce"] -sftp = ["fsspec", "paramiko"] -sharepoint = ["Office365-REST-Python-Client", "msal"] -singlestore = ["singlestoredb"] -slack = ["slack-sdk"] -tsv = ["pandas"] -weaviate = ["weaviate-client"] -wikipedia = ["wikipedia"] -xlsx = ["networkx", "openpyxl", "pandas", "xlrd"] - -[[package]] -name = "unstructured-client" -version = "0.25.7" -description = "Python Client SDK for Unstructured API" -optional = false -python-versions = ">=3.8" -files = [ - {file = "unstructured-client-0.25.7.tar.gz", hash = "sha256:6dffe9439469b37e0f38efe9d85551cfec93e42c10d3b42256b0a6d8fb2c68ca"}, - {file = "unstructured_client-0.25.7-py3-none-any.whl", hash = "sha256:eedd90a562fe59bcd39f1cc917d6b25130bcdb2841299f7d70c6a00a1f6bc5bc"}, -] - -[package.dependencies] -certifi = ">=2023.7.22" -charset-normalizer = ">=3.2.0" -dataclasses-json = ">=0.6.4" -deepdiff = ">=6.0" -httpx = ">=0.27.0" -idna = ">=3.4" -jsonpath-python = ">=1.0.6" -marshmallow = ">=3.19.0" -mypy-extensions = ">=1.0.0" -nest-asyncio = ">=1.6.0" -packaging = ">=23.1" -pypdf = ">=4.0" -python-dateutil = ">=2.8.2" -requests = ">=2.31.0" -requests-toolbelt = ">=1.0.0" -six = ">=1.16.0" -typing-extensions = ">=4.7.1" -typing-inspect = ">=0.9.0" -urllib3 = ">=1.26.18" - -[package.extras] -dev = ["pylint (==3.1.0)"] - -[[package]] -name = "unstructured-inference" -version = "0.7.36" -description = "A library for performing inference using trained models." -optional = false -python-versions = ">=3.7.0" -files = [ - {file = "unstructured_inference-0.7.36-py3-none-any.whl", hash = "sha256:6e59c2226c0d049d8e78e102d95bba1a126e14ede4d40494a72ef82ecf7fb64f"}, - {file = "unstructured_inference-0.7.36.tar.gz", hash = "sha256:0b998b311c6156df021d309147b724de4f88f80ef17d8328dfc37eedab67d82a"}, -] - -[package.dependencies] -huggingface-hub = "*" -layoutparser = "*" -matplotlib = "*" -onnx = "*" -onnxruntime = ">=1.17.0" -opencv-python = "!=4.7.0.68" -python-multipart = "*" -rapidfuzz = "*" -timm = "*" -torch = "*" -transformers = ">=4.25.1" - -[[package]] -name = "unstructured-pytesseract" -version = "0.3.13" -description = "Python-tesseract is a python wrapper for Google's Tesseract-OCR" -optional = false -python-versions = ">=3.8" -files = [ - {file = "unstructured.pytesseract-0.3.13-py3-none-any.whl", hash = "sha256:8001bc860470d56185176eb3ceb4623e888eba058ca3b30af79003784bc40e19"}, - {file = "unstructured.pytesseract-0.3.13.tar.gz", hash = "sha256:ff2e6391496e457dbf4b4e327f4a4577cce18921ea6570dc74bd64381b10e963"}, -] - -[package.dependencies] -packaging = ">=21.3" -Pillow = ">=8.0.0" - -[[package]] -name = "urllib3" -version = "2.2.2" -description = "HTTP library with thread-safe connection pooling, file post, and more." -optional = false -python-versions = ">=3.8" -files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, -] - -[package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] -h2 = ["h2 (>=4,<5)"] -socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] -zstd = ["zstandard (>=0.18.0)"] - -[[package]] -name = "wrapt" -version = "1.16.0" -description = "Module for decorators, wrappers and monkey patching." -optional = false -python-versions = ">=3.6" -files = [ - {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"}, - {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"}, - {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"}, - {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"}, - {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"}, - {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"}, - {file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09"}, - {file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060"}, - {file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956"}, - {file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d"}, - {file = "wrapt-1.16.0-cp311-cp311-win32.whl", hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362"}, - {file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89"}, - {file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b"}, - {file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809"}, - {file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9"}, - {file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c"}, - {file = "wrapt-1.16.0-cp312-cp312-win32.whl", hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc"}, - {file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8"}, - {file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c"}, - {file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e"}, - {file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465"}, - {file = "wrapt-1.16.0-cp36-cp36m-win32.whl", hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e"}, - {file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl", hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966"}, - {file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5"}, - {file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f"}, - {file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c"}, - {file = "wrapt-1.16.0-cp37-cp37m-win32.whl", hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c"}, - {file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl", hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00"}, - {file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0"}, - {file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e"}, - {file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca"}, - {file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6"}, - {file = "wrapt-1.16.0-cp38-cp38-win32.whl", hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b"}, - {file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41"}, - {file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2"}, - {file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c"}, - {file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f"}, - {file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537"}, - {file = "wrapt-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3"}, - {file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35"}, - {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"}, - {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"}, -] - -[[package]] -name = "xlrd" -version = "2.0.1" -description = "Library for developers to extract data from Microsoft Excel (tm) .xls spreadsheet files" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" -files = [ - {file = "xlrd-2.0.1-py2.py3-none-any.whl", hash = "sha256:6a33ee89877bd9abc1158129f6e94be74e2679636b8a205b43b85206c3f0bbdd"}, - {file = "xlrd-2.0.1.tar.gz", hash = "sha256:f72f148f54442c6b056bf931dbc34f986fd0c3b0b6b5a58d013c9aef274d0c88"}, -] - -[package.extras] -build = ["twine", "wheel"] -docs = ["sphinx"] -test = ["pytest", "pytest-cov"] - -[[package]] -name = "xlsxwriter" -version = "3.2.0" -description = "A Python module for creating Excel XLSX files." -optional = false -python-versions = ">=3.6" -files = [ - {file = "XlsxWriter-3.2.0-py3-none-any.whl", hash = "sha256:ecfd5405b3e0e228219bcaf24c2ca0915e012ca9464a14048021d21a995d490e"}, - {file = "XlsxWriter-3.2.0.tar.gz", hash = "sha256:9977d0c661a72866a61f9f7a809e25ebbb0fb7036baa3b9fe74afcfca6b3cb8c"}, -] - -[[package]] -name = "zipp" -version = "3.20.1" -description = "Backport of pathlib-compatible object wrapper for zip files" -optional = false -python-versions = ">=3.8" -files = [ - {file = "zipp-3.20.1-py3-none-any.whl", hash = "sha256:9960cd8967c8f85a56f920d5d507274e74f9ff813a0ab8889a5b5be2daf44064"}, - {file = "zipp-3.20.1.tar.gz", hash = "sha256:c22b14cc4763c5a5b04134207736c107db42e9d3ef2d9779d465f5f1bcba572b"}, -] - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] -type = ["pytest-mypy"] - -[extras] -local = ["unstructured"] - -[metadata] -lock-version = "2.0" -python-versions = ">=3.9,<4.0" -content-hash = "aef99cb01bc916f945119cd14dc512ea259c5462448ab48a721de54c92a381be" diff --git a/libs/partners/unstructured/pyproject.toml b/libs/partners/unstructured/pyproject.toml deleted file mode 100644 index b7dc827b267a2..0000000000000 --- a/libs/partners/unstructured/pyproject.toml +++ /dev/null @@ -1,97 +0,0 @@ -[tool.poetry] -name = "langchain-unstructured" -version = "0.1.3" -description = "An integration package connecting Unstructured and LangChain" -authors = [] -readme = "README.md" -repository = "https://github.com/langchain-ai/langchain" -license = "MIT" - -[tool.poetry.urls] -"Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/partners/unstructured" -"Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-unstructured%3D%3D0%22&expanded=true" - -[tool.poetry.dependencies] -python = ">=3.9,<4.0" -unstructured-client = { version = ">=0.25.0,<1" } -langchain-core = "^0.2.38" -unstructured = { version = "^0.15.7", optional = true, python = "<3.13", extras = [ - "all-docs", -] } - -[tool.poetry.extras] -local = ["unstructured"] - -[tool.poetry.group.test] -optional = true - -[tool.poetry.group.test.dependencies] -pytest = "^7.4.3" -pytest-asyncio = "^0.23.2" -pytest-socket = "^0.7.0" -langchain-core = { path = "../../core", develop = true } - -[tool.poetry.group.codespell] -optional = true - -[tool.poetry.group.codespell.dependencies] -codespell = "^2.2.6" - -[tool.poetry.group.test_integration] -optional = true - -[tool.poetry.group.test_integration.dependencies] - -[tool.poetry.group.lint] -optional = true - -[tool.poetry.group.lint.dependencies] -ruff = "^0.5" - -[tool.poetry.group.typing.dependencies] -mypy = "^1.7.1" -unstructured = { version = "^0.15.7", python = "<3.13", extras = ["all-docs"] } -langchain-core = { path = "../../core", develop = true } - -[tool.poetry.group.dev] -optional = true - -[tool.poetry.group.dev.dependencies] -langchain-core = { path = "../../core", develop = true } - -[tool.ruff.lint] -select = [ - "E", # pycodestyle - "F", # pyflakes - "I", # isort - "T201", # print -] - -[tool.mypy] -disallow_untyped_defs = "True" - -[tool.coverage.run] -omit = ["tests/*"] - -[build-system] -requires = ["poetry-core>=1.0.0"] -build-backend = "poetry.core.masonry.api" - -[tool.pytest.ini_options] -# --strict-markers will raise errors on unknown marks. -# https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks -# -# https://docs.pytest.org/en/7.1.x/reference/reference.html -# --strict-config any warnings encountered while parsing the `pytest` -# section of the configuration file raise errors. -# -# https://github.com/tophat/syrupy -# --snapshot-warn-unused Prints a warning on unused snapshots rather than fail the test suite. -addopts = "--strict-markers --strict-config --durations=5" -# Registering custom markers. -# https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers -markers = [ - "compile: mark placeholder test used to compile integration tests without running them", - "local: mark tests as requiring a local install, which isn't compatible with CI currently", -] -asyncio_mode = "auto" diff --git a/libs/partners/unstructured/scripts/check_imports.py b/libs/partners/unstructured/scripts/check_imports.py deleted file mode 100644 index 365f5fa118da4..0000000000000 --- a/libs/partners/unstructured/scripts/check_imports.py +++ /dev/null @@ -1,17 +0,0 @@ -import sys -import traceback -from importlib.machinery import SourceFileLoader - -if __name__ == "__main__": - files = sys.argv[1:] - has_failure = False - for file in files: - try: - SourceFileLoader("x", file).load_module() - except Exception: - has_faillure = True - print(file) # noqa: T201 - traceback.print_exc() - print() # noqa: T201 - - sys.exit(1 if has_failure else 0) diff --git a/libs/partners/unstructured/scripts/check_pydantic.sh b/libs/partners/unstructured/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/unstructured/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/unstructured/scripts/lint_imports.sh b/libs/partners/unstructured/scripts/lint_imports.sh deleted file mode 100755 index 19ccec1480c01..0000000000000 --- a/libs/partners/unstructured/scripts/lint_imports.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash - -set -eu - -# Initialize a variable to keep track of errors -errors=0 - -# make sure not importing from langchain, langchain_experimental, or langchain_community -git --no-pager grep '^from langchain\.' . && errors=$((errors+1)) -git --no-pager grep '^from langchain_experimental\.' . && errors=$((errors+1)) -git --no-pager grep '^from langchain_community\.' . && errors=$((errors+1)) - -# Decide on an exit status based on the errors -if [ "$errors" -gt 0 ]; then - exit 1 -else - exit 0 -fi diff --git a/libs/partners/unstructured/tests/__init__.py b/libs/partners/unstructured/tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/unstructured/tests/integration_tests/__init__.py b/libs/partners/unstructured/tests/integration_tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/unstructured/tests/integration_tests/test_compile.py b/libs/partners/unstructured/tests/integration_tests/test_compile.py deleted file mode 100644 index 33ecccdfa0fbd..0000000000000 --- a/libs/partners/unstructured/tests/integration_tests/test_compile.py +++ /dev/null @@ -1,7 +0,0 @@ -import pytest - - -@pytest.mark.compile -def test_placeholder() -> None: - """Used for compiling integration tests without running any real tests.""" - pass diff --git a/libs/partners/unstructured/tests/integration_tests/test_document_loaders.py b/libs/partners/unstructured/tests/integration_tests/test_document_loaders.py deleted file mode 100644 index f4fa4e7f9aab8..0000000000000 --- a/libs/partners/unstructured/tests/integration_tests/test_document_loaders.py +++ /dev/null @@ -1,135 +0,0 @@ -import os -from pathlib import Path -from typing import Callable - -import pytest - -from langchain_unstructured import UnstructuredLoader - -EXAMPLE_DOCS_DIRECTORY = str( - Path(__file__).parent.parent.parent.parent.parent - / "community/tests/integration_tests/examples/" -) -UNSTRUCTURED_API_KEY = os.getenv("UNSTRUCTURED_API_KEY") - - -# -- Local partition -- - - -@pytest.mark.local -def test_loader_partitions_locally() -> None: - file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf") - - docs = UnstructuredLoader( - file_path=file_path, - # Unstructured kwargs - strategy="fast", - include_page_breaks=True, - ).load() - - assert all( - doc.metadata.get("filename") == "layout-parser-paper.pdf" for doc in docs - ) - assert any(doc.metadata.get("category") == "PageBreak" for doc in docs) - - -@pytest.mark.local -def test_loader_partition_ignores_invalid_arg() -> None: - file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf") - - docs = UnstructuredLoader( - file_path=file_path, - # Unstructured kwargs - strategy="fast", - # mode is no longer a valid argument and is ignored when partitioning locally - mode="single", - ).load() - - assert len(docs) > 1 - assert all( - doc.metadata.get("filename") == "layout-parser-paper.pdf" for doc in docs - ) - - -@pytest.mark.local -def test_loader_partitions_locally_and_applies_post_processors( - get_post_processor: Callable[[str], str], -) -> None: - file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf") - loader = UnstructuredLoader( - file_path=file_path, - post_processors=[get_post_processor], - strategy="fast", - ) - - docs = loader.load() - - assert len(docs) > 1 - assert docs[0].page_content.endswith("THE END!") - - -# -- API partition -- - - -def test_loader_partitions_via_api() -> None: - file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf") - loader = UnstructuredLoader( - file_path=file_path, - partition_via_api=True, - # Unstructured kwargs - strategy="fast", - include_page_breaks=True, - ) - - docs = loader.load() - - assert len(docs) > 1 - assert any(doc.metadata.get("category") == "PageBreak" for doc in docs) - assert all( - doc.metadata.get("filename") == "layout-parser-paper.pdf" for doc in docs - ) - assert docs[0].metadata.get("element_id") is not None - - -def test_loader_partitions_multiple_via_api() -> None: - file_paths = [ - os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf"), - os.path.join(EXAMPLE_DOCS_DIRECTORY, "fake-email-attachment.eml"), - ] - loader = UnstructuredLoader( - file_path=file_paths, - api_key=UNSTRUCTURED_API_KEY, - partition_via_api=True, - # Unstructured kwargs - strategy="fast", - ) - - docs = loader.load() - - assert len(docs) > 1 - assert docs[0].metadata.get("filename") == "layout-parser-paper.pdf" - assert docs[-1].metadata.get("filename") == "fake-email-attachment.eml" - - -def test_loader_partition_via_api_raises_TypeError_with_invalid_arg() -> None: - file_path = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper.pdf") - loader = UnstructuredLoader( - file_path=file_path, - api_key=UNSTRUCTURED_API_KEY, - partition_via_api=True, - mode="elements", - ) - - with pytest.raises(TypeError, match="unexpected keyword argument 'mode'"): - loader.load() - - -# -- fixtures --- - - -@pytest.fixture() -def get_post_processor() -> Callable[[str], str]: - def append_the_end(text: str) -> str: - return text + "THE END!" - - return append_the_end diff --git a/libs/partners/unstructured/tests/unit_tests/__init__.py b/libs/partners/unstructured/tests/unit_tests/__init__.py deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/libs/partners/unstructured/tests/unit_tests/test_document_loaders.py b/libs/partners/unstructured/tests/unit_tests/test_document_loaders.py deleted file mode 100644 index 45f798e751d6e..0000000000000 --- a/libs/partners/unstructured/tests/unit_tests/test_document_loaders.py +++ /dev/null @@ -1,218 +0,0 @@ -from pathlib import Path -from typing import Any, Callable -from unittest import mock -from unittest.mock import Mock, mock_open, patch - -import pytest -from unstructured.documents.elements import Text # type: ignore - -from langchain_unstructured.document_loaders import ( - UnstructuredLoader, - _SingleDocumentLoader, # type: ignore -) - -EXAMPLE_DOCS_DIRECTORY = str( - Path(__file__).parent.parent.parent.parent.parent - / "community/tests/integration_tests/examples/" -) - - -# --- UnstructuredLoader.__init__() --- - - -def test_it_initializes_with_file_path(monkeypatch: pytest.MonkeyPatch) -> None: - monkeypatch.delenv("UNSTRUCTURED_API_KEY", raising=False) - - loader = UnstructuredLoader(file_path="dummy_path") - - assert loader.file_path == "dummy_path" - assert loader.file is None - assert loader.partition_via_api is False - assert loader.post_processors is None - assert loader.unstructured_kwargs == {} - # A client is always created and passed to _SingleDocumentLoader, but it's not - # used unless partition_via_api=True - assert loader.client is not None - assert loader.client.sdk_configuration.security.api_key_auth == "" # type: ignore - assert ( - loader.client.sdk_configuration.server_url == "https://api.unstructuredapp.io" - ) - - -def test_it_initializes_with_env_api_key(monkeypatch: pytest.MonkeyPatch) -> None: - monkeypatch.setenv("UNSTRUCTURED_API_KEY", "FAKE_API_KEY") - - loader = UnstructuredLoader(file_path="dummy_path") - - assert loader.file_path == "dummy_path" - assert loader.file is None - assert loader.partition_via_api is False - assert loader.post_processors is None - assert loader.unstructured_kwargs == {} - assert loader.client is not None - assert loader.client.sdk_configuration.security.api_key_auth == "FAKE_API_KEY" # type: ignore - assert ( - loader.client.sdk_configuration.server_url == "https://api.unstructuredapp.io" - ) - - -# --- _SingleDocumentLoader._get_content() --- - - -def test_it_gets_content_from_file() -> None: - mock_file = Mock() - mock_file.read.return_value = b"content from file" - loader = _SingleDocumentLoader( - client=Mock(), file=mock_file, metadata_filename="fake.txt" - ) - - content = loader._file_content # type: ignore - - assert content == b"content from file" - mock_file.read.assert_called_once() - - -@patch("builtins.open", new_callable=mock_open, read_data=b"content from file_path") -def test_it_gets_content_from_file_path(mock_file: Mock) -> None: - loader = _SingleDocumentLoader(client=Mock(), file_path="dummy_path") - - content = loader._file_content # type: ignore - - assert content == b"content from file_path" - mock_file.assert_called_once_with("dummy_path", "rb") - handle = mock_file() - handle.read.assert_called_once() - - -def test_it_raises_value_error_without_file_or_file_path() -> None: - loader = _SingleDocumentLoader( - client=Mock(), - ) - - with pytest.raises(ValueError) as e: - loader._file_content # type: ignore - - assert str(e.value) == "file or file_path must be defined." - - -# --- _SingleDocumentLoader._elements_json --- - - -def test_it_calls_elements_via_api_with_valid_args() -> None: - with patch.object( - _SingleDocumentLoader, "_elements_via_api", new_callable=mock.PropertyMock - ) as mock_elements_via_api: - mock_elements_via_api.return_value = [{"element": "data"}] - loader = _SingleDocumentLoader( - client=Mock(), - # Minimum required args for self._elements_via_api to be called: - partition_via_api=True, - api_key="some_key", - ) - - result = loader._elements_json # type: ignore - - mock_elements_via_api.assert_called_once() - assert result == [{"element": "data"}] - - -@patch.object(_SingleDocumentLoader, "_convert_elements_to_dicts") -def test_it_partitions_locally_by_default(mock_convert_elements_to_dicts: Mock) -> None: - mock_convert_elements_to_dicts.return_value = [{}] - with patch.object( - _SingleDocumentLoader, "_elements_via_local", new_callable=mock.PropertyMock - ) as mock_elements_via_local: - mock_elements_via_local.return_value = [{}] - # Minimum required args for self._elements_via_api to be called: - loader = _SingleDocumentLoader( - client=Mock(), - ) - - result = loader._elements_json # type: ignore - - mock_elements_via_local.assert_called_once_with() - mock_convert_elements_to_dicts.assert_called_once_with([{}]) - assert result == [{}] - - -def test_it_partitions_locally_and_logs_warning_with_partition_via_api_False( - caplog: pytest.LogCaptureFixture, -) -> None: - with patch.object( - _SingleDocumentLoader, "_elements_via_local" - ) as mock_get_elements_locally: - mock_get_elements_locally.return_value = [Text("Mock text element.")] - loader = _SingleDocumentLoader( - client=Mock(), partition_via_api=False, api_key="some_key" - ) - - _ = loader._elements_json # type: ignore - - -# -- fixtures ------------------------------- - - -@pytest.fixture() -def get_post_processor() -> Callable[[str], str]: - def append_the_end(text: str) -> str: - return text + "THE END!" - - return append_the_end - - -@pytest.fixture() -def fake_json_response() -> list[dict[str, Any]]: - return [ - { - "type": "Title", - "element_id": "b7f58c2fd9c15949a55a62eb84e39575", - "text": "LayoutParser: A Unified Toolkit for Deep Learning Based Document" - "Image Analysis", - "metadata": { - "languages": ["eng"], - "page_number": 1, - "filename": "layout-parser-paper.pdf", - "filetype": "application/pdf", - }, - }, - { - "type": "UncategorizedText", - "element_id": "e1c4facddf1f2eb1d0db5be34ad0de18", - "text": "1 2 0 2", - "metadata": { - "languages": ["eng"], - "page_number": 1, - "parent_id": "b7f58c2fd9c15949a55a62eb84e39575", - "filename": "layout-parser-paper.pdf", - "filetype": "application/pdf", - }, - }, - ] - - -@pytest.fixture() -def fake_multiple_docs_json_response() -> list[dict[str, Any]]: - return [ - { - "type": "Title", - "element_id": "b7f58c2fd9c15949a55a62eb84e39575", - "text": "LayoutParser: A Unified Toolkit for Deep Learning Based Document" - " Image Analysis", - "metadata": { - "languages": ["eng"], - "page_number": 1, - "filename": "layout-parser-paper.pdf", - "filetype": "application/pdf", - }, - }, - { - "type": "NarrativeText", - "element_id": "3c4ac9e7f55f1e3dbd87d3a9364642fe", - "text": "6/29/23, 12:16\u202fam - User 4: This message was deleted", - "metadata": { - "filename": "whatsapp_chat.txt", - "languages": ["eng"], - "filetype": "text/plain", - }, - }, - ] diff --git a/libs/partners/unstructured/tests/unit_tests/test_imports.py b/libs/partners/unstructured/tests/unit_tests/test_imports.py deleted file mode 100644 index 0089ff7a203c9..0000000000000 --- a/libs/partners/unstructured/tests/unit_tests/test_imports.py +++ /dev/null @@ -1,10 +0,0 @@ -from langchain_unstructured import __all__ - -EXPECTED_ALL = [ - "UnstructuredLoader", - "__version__", -] - - -def test_all_imports() -> None: - assert sorted(EXPECTED_ALL) == sorted(__all__) diff --git a/libs/partners/voyageai/langchain_voyageai/embeddings.py b/libs/partners/voyageai/langchain_voyageai/embeddings.py index 3010a8dd6948e..725dc176ca1f7 100644 --- a/libs/partners/voyageai/langchain_voyageai/embeddings.py +++ b/libs/partners/voyageai/langchain_voyageai/embeddings.py @@ -1,18 +1,26 @@ import logging -from typing import Iterable, List, Optional +from typing import Any, Iterable, List, Optional import voyageai # type: ignore from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import ( +from langchain_core.utils import secret_from_env +from pydantic import ( BaseModel, + ConfigDict, Field, + PrivateAttr, SecretStr, - root_validator, + model_validator, ) -from langchain_core.utils import secret_from_env +from typing_extensions import Self logger = logging.getLogger(__name__) +DEFAULT_VOYAGE_2_BATCH_SIZE = 72 +DEFAULT_VOYAGE_3_LITE_BATCH_SIZE = 30 +DEFAULT_VOYAGE_3_BATCH_SIZE = 10 +DEFAULT_BATCH_SIZE = 7 + class VoyageAIEmbeddings(BaseModel, Embeddings): """VoyageAIEmbeddings embedding model. @@ -25,8 +33,8 @@ class VoyageAIEmbeddings(BaseModel, Embeddings): model = VoyageAIEmbeddings() """ - _client: voyageai.Client = Field(exclude=True) - _aclient: voyageai.client_async.AsyncClient = Field(exclude=True) + _client: voyageai.Client = PrivateAttr() + _aclient: voyageai.client_async.AsyncClient = PrivateAttr() model: str batch_size: int show_progress_bar: bool = False @@ -40,26 +48,40 @@ class VoyageAIEmbeddings(BaseModel, Embeddings): ), ) - class Config: - extra = "forbid" - allow_population_by_field_name = True + model_config = ConfigDict( + extra="forbid", + populate_by_name=True, + ) - @root_validator(pre=True) - def default_values(cls, values: dict) -> dict: + @model_validator(mode="before") + @classmethod + def default_values(cls, values: dict) -> Any: """Set default batch size based on model""" model = values.get("model") batch_size = values.get("batch_size") if batch_size is None: - values["batch_size"] = 72 if model in ["voyage-2", "voyage-02"] else 7 + values["batch_size"] = ( + DEFAULT_VOYAGE_2_BATCH_SIZE + if model in ["voyage-2", "voyage-02"] + else ( + DEFAULT_VOYAGE_3_LITE_BATCH_SIZE + if model == "voyage-3-lite" + else ( + DEFAULT_VOYAGE_3_BATCH_SIZE + if model == "voyage-3" + else DEFAULT_BATCH_SIZE + ) + ) + ) return values - @root_validator(pre=False, skip_on_failure=True) - def validate_environment(cls, values: dict) -> dict: + @model_validator(mode="after") + def validate_environment(self) -> Self: """Validate that VoyageAI credentials exist in environment.""" - api_key_str = values["voyage_api_key"].get_secret_value() - values["_client"] = voyageai.Client(api_key=api_key_str) - values["_aclient"] = voyageai.client_async.AsyncClient(api_key=api_key_str) - return values + api_key_str = self.voyage_api_key.get_secret_value() + self._client = voyageai.Client(api_key=api_key_str) + self._aclient = voyageai.client_async.AsyncClient(api_key=api_key_str) + return self def _get_batch_iterator(self, texts: List[str]) -> Iterable: if self.show_progress_bar: diff --git a/libs/partners/voyageai/langchain_voyageai/rerank.py b/libs/partners/voyageai/langchain_voyageai/rerank.py index 2213bfa043275..d0ee0122fa5d6 100644 --- a/libs/partners/voyageai/langchain_voyageai/rerank.py +++ b/libs/partners/voyageai/langchain_voyageai/rerank.py @@ -2,14 +2,14 @@ import os from copy import deepcopy -from typing import Dict, Optional, Sequence, Union +from typing import Any, Dict, Optional, Sequence, Union import voyageai # type: ignore from langchain_core.callbacks.manager import Callbacks from langchain_core.documents import Document from langchain_core.documents.compressor import BaseDocumentCompressor -from langchain_core.pydantic_v1 import SecretStr, root_validator from langchain_core.utils import convert_to_secret_str +from pydantic import ConfigDict, SecretStr, model_validator from voyageai.object import RerankingObject # type: ignore @@ -28,11 +28,13 @@ class VoyageAIRerank(BaseDocumentCompressor): """Number of documents to return.""" truncation: bool = True - class Config: - arbitrary_types_allowed = True + model_config = ConfigDict( + arbitrary_types_allowed=True, + ) - @root_validator(pre=True) - def validate_environment(cls, values: Dict) -> Dict: + @model_validator(mode="before") + @classmethod + def validate_environment(cls, values: Dict) -> Any: """Validate that api key exists in environment.""" voyage_api_key = values.get("voyage_api_key") or os.getenv( "VOYAGE_API_KEY", None diff --git a/libs/partners/voyageai/poetry.lock b/libs/partners/voyageai/poetry.lock index 26db73f4a0012..d807625792933 100644 --- a/libs/partners/voyageai/poetry.lock +++ b/libs/partners/voyageai/poetry.lock @@ -1,91 +1,118 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. + +[[package]] +name = "aiohappyeyeballs" +version = "2.4.0" +description = "Happy Eyeballs for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.0-py3-none-any.whl", hash = "sha256:7ce92076e249169a13c2f49320d1967425eaf1f407522d707d59cac7628d62bd"}, + {file = "aiohappyeyeballs-2.4.0.tar.gz", hash = "sha256:55a1714f084e63d49639800f95716da97a1f173d46a16dfcfda0016abb93b6b2"}, +] [[package]] name = "aiohttp" -version = "3.9.5" +version = "3.10.5" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.8" files = [ - {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:fcde4c397f673fdec23e6b05ebf8d4751314fa7c24f93334bf1f1364c1c69ac7"}, - {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d6b3f1fabe465e819aed2c421a6743d8debbde79b6a8600739300630a01bf2c"}, - {file = "aiohttp-3.9.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ae79c1bc12c34082d92bf9422764f799aee4746fd7a392db46b7fd357d4a17a"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d3ebb9e1316ec74277d19c5f482f98cc65a73ccd5430540d6d11682cd857430"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84dabd95154f43a2ea80deffec9cb44d2e301e38a0c9d331cc4aa0166fe28ae3"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8a02fbeca6f63cb1f0475c799679057fc9268b77075ab7cf3f1c600e81dd46b"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c26959ca7b75ff768e2776d8055bf9582a6267e24556bb7f7bd29e677932be72"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:714d4e5231fed4ba2762ed489b4aec07b2b9953cf4ee31e9871caac895a839c0"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7a6a8354f1b62e15d48e04350f13e726fa08b62c3d7b8401c0a1314f02e3558"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c413016880e03e69d166efb5a1a95d40f83d5a3a648d16486592c49ffb76d0db"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ff84aeb864e0fac81f676be9f4685f0527b660f1efdc40dcede3c251ef1e867f"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ad7f2919d7dac062f24d6f5fe95d401597fbb015a25771f85e692d043c9d7832"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:702e2c7c187c1a498a4e2b03155d52658fdd6fda882d3d7fbb891a5cf108bb10"}, - {file = "aiohttp-3.9.5-cp310-cp310-win32.whl", hash = "sha256:67c3119f5ddc7261d47163ed86d760ddf0e625cd6246b4ed852e82159617b5fb"}, - {file = "aiohttp-3.9.5-cp310-cp310-win_amd64.whl", hash = "sha256:471f0ef53ccedec9995287f02caf0c068732f026455f07db3f01a46e49d76bbb"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ae53e33ee7476dd3d1132f932eeb39bf6125083820049d06edcdca4381f342"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c088c4d70d21f8ca5c0b8b5403fe84a7bc8e024161febdd4ef04575ef35d474d"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:639d0042b7670222f33b0028de6b4e2fad6451462ce7df2af8aee37dcac55424"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f26383adb94da5e7fb388d441bf09c61e5e35f455a3217bfd790c6b6bc64b2ee"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:66331d00fb28dc90aa606d9a54304af76b335ae204d1836f65797d6fe27f1ca2"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ff550491f5492ab5ed3533e76b8567f4b37bd2995e780a1f46bca2024223233"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f22eb3a6c1080d862befa0a89c380b4dafce29dc6cd56083f630073d102eb595"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a81b1143d42b66ffc40a441379387076243ef7b51019204fd3ec36b9f69e77d6"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f64fd07515dad67f24b6ea4a66ae2876c01031de91c93075b8093f07c0a2d93d"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:93e22add827447d2e26d67c9ac0161756007f152fdc5210277d00a85f6c92323"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:55b39c8684a46e56ef8c8d24faf02de4a2b2ac60d26cee93bc595651ff545de9"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4715a9b778f4293b9f8ae7a0a7cef9829f02ff8d6277a39d7f40565c737d3771"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afc52b8d969eff14e069a710057d15ab9ac17cd4b6753042c407dcea0e40bf75"}, - {file = "aiohttp-3.9.5-cp311-cp311-win32.whl", hash = "sha256:b3df71da99c98534be076196791adca8819761f0bf6e08e07fd7da25127150d6"}, - {file = "aiohttp-3.9.5-cp311-cp311-win_amd64.whl", hash = "sha256:88e311d98cc0bf45b62fc46c66753a83445f5ab20038bcc1b8a1cc05666f428a"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:c7a4b7a6cf5b6eb11e109a9755fd4fda7d57395f8c575e166d363b9fc3ec4678"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0a158704edf0abcac8ac371fbb54044f3270bdbc93e254a82b6c82be1ef08f3c"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d153f652a687a8e95ad367a86a61e8d53d528b0530ef382ec5aaf533140ed00f"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82a6a97d9771cb48ae16979c3a3a9a18b600a8505b1115cfe354dfb2054468b4"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:60cdbd56f4cad9f69c35eaac0fbbdf1f77b0ff9456cebd4902f3dd1cf096464c"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8676e8fd73141ded15ea586de0b7cda1542960a7b9ad89b2b06428e97125d4fa"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da00da442a0e31f1c69d26d224e1efd3a1ca5bcbf210978a2ca7426dfcae9f58"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18f634d540dd099c262e9f887c8bbacc959847cfe5da7a0e2e1cf3f14dbf2daf"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:320e8618eda64e19d11bdb3bd04ccc0a816c17eaecb7e4945d01deee2a22f95f"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:2faa61a904b83142747fc6a6d7ad8fccff898c849123030f8e75d5d967fd4a81"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:8c64a6dc3fe5db7b1b4d2b5cb84c4f677768bdc340611eca673afb7cf416ef5a"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:393c7aba2b55559ef7ab791c94b44f7482a07bf7640d17b341b79081f5e5cd1a"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c671dc117c2c21a1ca10c116cfcd6e3e44da7fcde37bf83b2be485ab377b25da"}, - {file = "aiohttp-3.9.5-cp312-cp312-win32.whl", hash = "sha256:5a7ee16aab26e76add4afc45e8f8206c95d1d75540f1039b84a03c3b3800dd59"}, - {file = "aiohttp-3.9.5-cp312-cp312-win_amd64.whl", hash = "sha256:5ca51eadbd67045396bc92a4345d1790b7301c14d1848feaac1d6a6c9289e888"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:694d828b5c41255e54bc2dddb51a9f5150b4eefa9886e38b52605a05d96566e8"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0605cc2c0088fcaae79f01c913a38611ad09ba68ff482402d3410bf59039bfb8"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4558e5012ee03d2638c681e156461d37b7a113fe13970d438d95d10173d25f78"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dbc053ac75ccc63dc3a3cc547b98c7258ec35a215a92bd9f983e0aac95d3d5b"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4109adee842b90671f1b689901b948f347325045c15f46b39797ae1bf17019de"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6ea1a5b409a85477fd8e5ee6ad8f0e40bf2844c270955e09360418cfd09abac"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3c2890ca8c59ee683fd09adf32321a40fe1cf164e3387799efb2acebf090c11"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3916c8692dbd9d55c523374a3b8213e628424d19116ac4308e434dbf6d95bbdd"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8d1964eb7617907c792ca00b341b5ec3e01ae8c280825deadbbd678447b127e1"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d5ab8e1f6bee051a4bf6195e38a5c13e5e161cb7bad83d8854524798bd9fcd6e"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:52c27110f3862a1afbcb2af4281fc9fdc40327fa286c4625dfee247c3ba90156"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:7f64cbd44443e80094309875d4f9c71d0401e966d191c3d469cde4642bc2e031"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b4f72fbb66279624bfe83fd5eb6aea0022dad8eec62b71e7bf63ee1caadeafe"}, - {file = "aiohttp-3.9.5-cp38-cp38-win32.whl", hash = "sha256:6380c039ec52866c06d69b5c7aad5478b24ed11696f0e72f6b807cfb261453da"}, - {file = "aiohttp-3.9.5-cp38-cp38-win_amd64.whl", hash = "sha256:da22dab31d7180f8c3ac7c7635f3bcd53808f374f6aa333fe0b0b9e14b01f91a"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1732102949ff6087589408d76cd6dea656b93c896b011ecafff418c9661dc4ed"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c6021d296318cb6f9414b48e6a439a7f5d1f665464da507e8ff640848ee2a58a"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:239f975589a944eeb1bad26b8b140a59a3a320067fb3cd10b75c3092405a1372"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b7b30258348082826d274504fbc7c849959f1989d86c29bc355107accec6cfb"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd2adf5c87ff6d8b277814a28a535b59e20bfea40a101db6b3bdca7e9926bc24"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a3d838441bebcf5cf442700e3963f58b5c33f015341f9ea86dcd7d503c07e2"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3a1ae66e3d0c17cf65c08968a5ee3180c5a95920ec2731f53343fac9bad106"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c69e77370cce2d6df5d12b4e12bdcca60c47ba13d1cbbc8645dd005a20b738b"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0cbf56238f4bbf49dab8c2dc2e6b1b68502b1e88d335bea59b3f5b9f4c001475"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:d1469f228cd9ffddd396d9948b8c9cd8022b6d1bf1e40c6f25b0fb90b4f893ed"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:45731330e754f5811c314901cebdf19dd776a44b31927fa4b4dbecab9e457b0c"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:3fcb4046d2904378e3aeea1df51f697b0467f2aac55d232c87ba162709478c46"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8cf142aa6c1a751fcb364158fd710b8a9be874b81889c2bd13aa8893197455e2"}, - {file = "aiohttp-3.9.5-cp39-cp39-win32.whl", hash = "sha256:7b179eea70833c8dee51ec42f3b4097bd6370892fa93f510f76762105568cf09"}, - {file = "aiohttp-3.9.5-cp39-cp39-win_amd64.whl", hash = "sha256:38d80498e2e169bc61418ff36170e0aad0cd268da8b38a17c4cf29d254a8b3f1"}, - {file = "aiohttp-3.9.5.tar.gz", hash = "sha256:edea7d15772ceeb29db4aff55e482d4bcfb6ae160ce144f2682de02f6d693551"}, + {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:18a01eba2574fb9edd5f6e5fb25f66e6ce061da5dab5db75e13fe1558142e0a3"}, + {file = "aiohttp-3.10.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:94fac7c6e77ccb1ca91e9eb4cb0ac0270b9fb9b289738654120ba8cebb1189c6"}, + {file = "aiohttp-3.10.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2f1f1c75c395991ce9c94d3e4aa96e5c59c8356a15b1c9231e783865e2772699"}, + {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f7acae3cf1a2a2361ec4c8e787eaaa86a94171d2417aae53c0cca6ca3118ff6"}, + {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:94c4381ffba9cc508b37d2e536b418d5ea9cfdc2848b9a7fea6aebad4ec6aac1"}, + {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c31ad0c0c507894e3eaa843415841995bf8de4d6b2d24c6e33099f4bc9fc0d4f"}, + {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0912b8a8fadeb32ff67a3ed44249448c20148397c1ed905d5dac185b4ca547bb"}, + {file = "aiohttp-3.10.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d93400c18596b7dc4794d48a63fb361b01a0d8eb39f28800dc900c8fbdaca91"}, + {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d00f3c5e0d764a5c9aa5a62d99728c56d455310bcc288a79cab10157b3af426f"}, + {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d742c36ed44f2798c8d3f4bc511f479b9ceef2b93f348671184139e7d708042c"}, + {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:814375093edae5f1cb31e3407997cf3eacefb9010f96df10d64829362ae2df69"}, + {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8224f98be68a84b19f48e0bdc14224b5a71339aff3a27df69989fa47d01296f3"}, + {file = "aiohttp-3.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d9a487ef090aea982d748b1b0d74fe7c3950b109df967630a20584f9a99c0683"}, + {file = "aiohttp-3.10.5-cp310-cp310-win32.whl", hash = "sha256:d9ef084e3dc690ad50137cc05831c52b6ca428096e6deb3c43e95827f531d5ef"}, + {file = "aiohttp-3.10.5-cp310-cp310-win_amd64.whl", hash = "sha256:66bf9234e08fe561dccd62083bf67400bdbf1c67ba9efdc3dac03650e97c6088"}, + {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c6a4e5e40156d72a40241a25cc226051c0a8d816610097a8e8f517aeacd59a2"}, + {file = "aiohttp-3.10.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c634a3207a5445be65536d38c13791904fda0748b9eabf908d3fe86a52941cf"}, + {file = "aiohttp-3.10.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4aff049b5e629ef9b3e9e617fa6e2dfeda1bf87e01bcfecaf3949af9e210105e"}, + {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1942244f00baaacaa8155eca94dbd9e8cc7017deb69b75ef67c78e89fdad3c77"}, + {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e04a1f2a65ad2f93aa20f9ff9f1b672bf912413e5547f60749fa2ef8a644e061"}, + {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f2bfc0032a00405d4af2ba27f3c429e851d04fad1e5ceee4080a1c570476697"}, + {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:424ae21498790e12eb759040bbb504e5e280cab64693d14775c54269fd1d2bb7"}, + {file = "aiohttp-3.10.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:975218eee0e6d24eb336d0328c768ebc5d617609affaca5dbbd6dd1984f16ed0"}, + {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4120d7fefa1e2d8fb6f650b11489710091788de554e2b6f8347c7a20ceb003f5"}, + {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b90078989ef3fc45cf9221d3859acd1108af7560c52397ff4ace8ad7052a132e"}, + {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:ba5a8b74c2a8af7d862399cdedce1533642fa727def0b8c3e3e02fcb52dca1b1"}, + {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:02594361128f780eecc2a29939d9dfc870e17b45178a867bf61a11b2a4367277"}, + {file = "aiohttp-3.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:8fb4fc029e135859f533025bc82047334e24b0d489e75513144f25408ecaf058"}, + {file = "aiohttp-3.10.5-cp311-cp311-win32.whl", hash = "sha256:e1ca1ef5ba129718a8fc827b0867f6aa4e893c56eb00003b7367f8a733a9b072"}, + {file = "aiohttp-3.10.5-cp311-cp311-win_amd64.whl", hash = "sha256:349ef8a73a7c5665cca65c88ab24abe75447e28aa3bc4c93ea5093474dfdf0ff"}, + {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:305be5ff2081fa1d283a76113b8df7a14c10d75602a38d9f012935df20731487"}, + {file = "aiohttp-3.10.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3a1c32a19ee6bbde02f1cb189e13a71b321256cc1d431196a9f824050b160d5a"}, + {file = "aiohttp-3.10.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:61645818edd40cc6f455b851277a21bf420ce347baa0b86eaa41d51ef58ba23d"}, + {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c225286f2b13bab5987425558baa5cbdb2bc925b2998038fa028245ef421e75"}, + {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ba01ebc6175e1e6b7275c907a3a36be48a2d487549b656aa90c8a910d9f3178"}, + {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8eaf44ccbc4e35762683078b72bf293f476561d8b68ec8a64f98cf32811c323e"}, + {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c43eb1ab7cbf411b8e387dc169acb31f0ca0d8c09ba63f9eac67829585b44f"}, + {file = "aiohttp-3.10.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de7a5299827253023c55ea549444e058c0eb496931fa05d693b95140a947cb73"}, + {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4790f0e15f00058f7599dab2b206d3049d7ac464dc2e5eae0e93fa18aee9e7bf"}, + {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:44b324a6b8376a23e6ba25d368726ee3bc281e6ab306db80b5819999c737d820"}, + {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:0d277cfb304118079e7044aad0b76685d30ecb86f83a0711fc5fb257ffe832ca"}, + {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:54d9ddea424cd19d3ff6128601a4a4d23d54a421f9b4c0fff740505813739a91"}, + {file = "aiohttp-3.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4f1c9866ccf48a6df2b06823e6ae80573529f2af3a0992ec4fe75b1a510df8a6"}, + {file = "aiohttp-3.10.5-cp312-cp312-win32.whl", hash = "sha256:dc4826823121783dccc0871e3f405417ac116055bf184ac04c36f98b75aacd12"}, + {file = "aiohttp-3.10.5-cp312-cp312-win_amd64.whl", hash = "sha256:22c0a23a3b3138a6bf76fc553789cb1a703836da86b0f306b6f0dc1617398abc"}, + {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:7f6b639c36734eaa80a6c152a238242bedcee9b953f23bb887e9102976343092"}, + {file = "aiohttp-3.10.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f29930bc2921cef955ba39a3ff87d2c4398a0394ae217f41cb02d5c26c8b1b77"}, + {file = "aiohttp-3.10.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f489a2c9e6455d87eabf907ac0b7d230a9786be43fbe884ad184ddf9e9c1e385"}, + {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:123dd5b16b75b2962d0fff566effb7a065e33cd4538c1692fb31c3bda2bfb972"}, + {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b98e698dc34966e5976e10bbca6d26d6724e6bdea853c7c10162a3235aba6e16"}, + {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3b9162bab7e42f21243effc822652dc5bb5e8ff42a4eb62fe7782bcbcdfacf6"}, + {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1923a5c44061bffd5eebeef58cecf68096e35003907d8201a4d0d6f6e387ccaa"}, + {file = "aiohttp-3.10.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d55f011da0a843c3d3df2c2cf4e537b8070a419f891c930245f05d329c4b0689"}, + {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:afe16a84498441d05e9189a15900640a2d2b5e76cf4efe8cbb088ab4f112ee57"}, + {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8112fb501b1e0567a1251a2fd0747baae60a4ab325a871e975b7bb67e59221f"}, + {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:1e72589da4c90337837fdfe2026ae1952c0f4a6e793adbbfbdd40efed7c63599"}, + {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4d46c7b4173415d8e583045fbc4daa48b40e31b19ce595b8d92cf639396c15d5"}, + {file = "aiohttp-3.10.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:33e6bc4bab477c772a541f76cd91e11ccb6d2efa2b8d7d7883591dfb523e5987"}, + {file = "aiohttp-3.10.5-cp313-cp313-win32.whl", hash = "sha256:c58c6837a2c2a7cf3133983e64173aec11f9c2cd8e87ec2fdc16ce727bcf1a04"}, + {file = "aiohttp-3.10.5-cp313-cp313-win_amd64.whl", hash = "sha256:38172a70005252b6893088c0f5e8a47d173df7cc2b2bd88650957eb84fcf5022"}, + {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f6f18898ace4bcd2d41a122916475344a87f1dfdec626ecde9ee802a711bc569"}, + {file = "aiohttp-3.10.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5ede29d91a40ba22ac1b922ef510aab871652f6c88ef60b9dcdf773c6d32ad7a"}, + {file = "aiohttp-3.10.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:673f988370f5954df96cc31fd99c7312a3af0a97f09e407399f61583f30da9bc"}, + {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58718e181c56a3c02d25b09d4115eb02aafe1a732ce5714ab70326d9776457c3"}, + {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b38b1570242fbab8d86a84128fb5b5234a2f70c2e32f3070143a6d94bc854cf"}, + {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:074d1bff0163e107e97bd48cad9f928fa5a3eb4b9d33366137ffce08a63e37fe"}, + {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd31f176429cecbc1ba499d4aba31aaccfea488f418d60376b911269d3b883c5"}, + {file = "aiohttp-3.10.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7384d0b87d4635ec38db9263e6a3f1eb609e2e06087f0aa7f63b76833737b471"}, + {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8989f46f3d7ef79585e98fa991e6ded55d2f48ae56d2c9fa5e491a6e4effb589"}, + {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:c83f7a107abb89a227d6c454c613e7606c12a42b9a4ca9c5d7dad25d47c776ae"}, + {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:cde98f323d6bf161041e7627a5fd763f9fd829bcfcd089804a5fdce7bb6e1b7d"}, + {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:676f94c5480d8eefd97c0c7e3953315e4d8c2b71f3b49539beb2aa676c58272f"}, + {file = "aiohttp-3.10.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2d21ac12dc943c68135ff858c3a989f2194a709e6e10b4c8977d7fcd67dfd511"}, + {file = "aiohttp-3.10.5-cp38-cp38-win32.whl", hash = "sha256:17e997105bd1a260850272bfb50e2a328e029c941c2708170d9d978d5a30ad9a"}, + {file = "aiohttp-3.10.5-cp38-cp38-win_amd64.whl", hash = "sha256:1c19de68896747a2aa6257ae4cf6ef59d73917a36a35ee9d0a6f48cff0f94db8"}, + {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7e2fe37ac654032db1f3499fe56e77190282534810e2a8e833141a021faaab0e"}, + {file = "aiohttp-3.10.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f5bf3ead3cb66ab990ee2561373b009db5bc0e857549b6c9ba84b20bc462e172"}, + {file = "aiohttp-3.10.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1b2c16a919d936ca87a3c5f0e43af12a89a3ce7ccbce59a2d6784caba945b68b"}, + {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ad146dae5977c4dd435eb31373b3fe9b0b1bf26858c6fc452bf6af394067e10b"}, + {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c5c6fa16412b35999320f5c9690c0f554392dc222c04e559217e0f9ae244b92"}, + {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:95c4dc6f61d610bc0ee1edc6f29d993f10febfe5b76bb470b486d90bbece6b22"}, + {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da452c2c322e9ce0cfef392e469a26d63d42860f829026a63374fde6b5c5876f"}, + {file = "aiohttp-3.10.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:898715cf566ec2869d5cb4d5fb4be408964704c46c96b4be267442d265390f32"}, + {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:391cc3a9c1527e424c6865e087897e766a917f15dddb360174a70467572ac6ce"}, + {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:380f926b51b92d02a34119d072f178d80bbda334d1a7e10fa22d467a66e494db"}, + {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce91db90dbf37bb6fa0997f26574107e1b9d5ff939315247b7e615baa8ec313b"}, + {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9093a81e18c45227eebe4c16124ebf3e0d893830c6aca7cc310bfca8fe59d857"}, + {file = "aiohttp-3.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:ee40b40aa753d844162dcc80d0fe256b87cba48ca0054f64e68000453caead11"}, + {file = "aiohttp-3.10.5-cp39-cp39-win32.whl", hash = "sha256:03f2645adbe17f274444953bdea69f8327e9d278d961d85657cb0d06864814c1"}, + {file = "aiohttp-3.10.5-cp39-cp39-win_amd64.whl", hash = "sha256:d17920f18e6ee090bdd3d0bfffd769d9f2cb4c8ffde3eb203777a3895c128862"}, + {file = "aiohttp-3.10.5.tar.gz", hash = "sha256:f071854b47d39591ce9a17981c46790acb30518e2f83dfca8db2dfa091178691"}, ] [package.dependencies] +aiohappyeyeballs = ">=2.3.0" aiosignal = ">=1.1.2" async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" @@ -94,7 +121,7 @@ multidict = ">=4.5,<7.0" yarl = ">=1.0,<2.0" [package.extras] -speedups = ["Brotli", "aiodns", "brotlicffi"] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] [[package]] name = "aiolimiter" @@ -123,17 +150,36 @@ frozenlist = ">=1.1.0" [[package]] name = "annotated-types" -version = "0.6.0" +version = "0.7.0" description = "Reusable constraint types to use with typing.Annotated" optional = false python-versions = ">=3.8" files = [ - {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, - {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + +[[package]] +name = "anyio" +version = "4.4.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, ] [package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] [[package]] name = "async-timeout" @@ -148,32 +194,32 @@ files = [ [[package]] name = "attrs" -version = "23.2.0" +version = "24.2.0" description = "Classes Without Boilerplate" optional = false python-versions = ">=3.7" files = [ - {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, - {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, ] [package.extras] -cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[tests]", "pre-commit"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] -tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] -tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "certifi" -version = "2024.2.2" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"}, - {file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -277,13 +323,13 @@ files = [ [[package]] name = "codespell" -version = "2.2.6" +version = "2.3.0" description = "Codespell" optional = false python-versions = ">=3.8" files = [ - {file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"}, - {file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"}, + {file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"}, + {file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"}, ] [package.extras] @@ -305,13 +351,13 @@ files = [ [[package]] name = "exceptiongroup" -version = "1.2.1" +version = "1.2.2" description = "Backport of PEP 654 (exception groups)" optional = false python-versions = ">=3.7" files = [ - {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, - {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, ] [package.extras] @@ -417,17 +463,77 @@ files = [ {file = "frozenlist-1.4.1.tar.gz", hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b"}, ] +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.2" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -455,34 +561,35 @@ jsonpointer = ">=1.9" [[package]] name = "jsonpointer" -version = "2.4" +version = "3.0.0" description = "Identify specific nodes in a JSON document (RFC 6901)" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*" +python-versions = ">=3.7" files = [ - {file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"}, - {file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"}, + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, ] [[package]] name = "langchain-core" -version = "0.2.11" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" tenacity = "^8.1.0,!=8.4.0" +typing-extensions = ">=4.7" [package.source] type = "directory" @@ -490,16 +597,17 @@ url = "../../core" [[package]] name = "langsmith" -version = "0.1.83" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.83-py3-none-any.whl", hash = "sha256:f54d8cd8479b648b6339f3f735d19292c3516d080f680933ecdca3eab4b67ed3"}, - {file = "langsmith-0.1.83.tar.gz", hash = "sha256:5cdd947212c8ad19adb992c06471c860185a777daa6859bb47150f90daf64bf3"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, @@ -509,151 +617,153 @@ requests = ">=2,<3" [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "mypy" -version = "0.991" +version = "1.11.2" description = "Optional static typing for Python" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab"}, - {file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d"}, - {file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6"}, - {file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb"}, - {file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305"}, - {file = "mypy-0.991-cp310-cp310-win_amd64.whl", hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c"}, - {file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372"}, - {file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f"}, - {file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33"}, - {file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05"}, - {file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad"}, - {file = "mypy-0.991-cp311-cp311-win_amd64.whl", hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297"}, - {file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813"}, - {file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711"}, - {file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd"}, - {file = "mypy-0.991-cp37-cp37m-win_amd64.whl", hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef"}, - {file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a"}, - {file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93"}, - {file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf"}, - {file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135"}, - {file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70"}, - {file = "mypy-0.991-cp38-cp38-win_amd64.whl", hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243"}, - {file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d"}, - {file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5"}, - {file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3"}, - {file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648"}, - {file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476"}, - {file = "mypy-0.991-cp39-cp39-win_amd64.whl", hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461"}, - {file = "mypy-0.991-py3-none-any.whl", hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb"}, - {file = "mypy-0.991.tar.gz", hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d42a6dd818ffce7be66cce644f1dff482f1d97c53ca70908dff0b9ddc120b77a"}, + {file = "mypy-1.11.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:801780c56d1cdb896eacd5619a83e427ce436d86a3bdf9112527f24a66618fef"}, + {file = "mypy-1.11.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41ea707d036a5307ac674ea172875f40c9d55c5394f888b168033177fce47383"}, + {file = "mypy-1.11.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6e658bd2d20565ea86da7d91331b0eed6d2eee22dc031579e6297f3e12c758c8"}, + {file = "mypy-1.11.2-cp310-cp310-win_amd64.whl", hash = "sha256:478db5f5036817fe45adb7332d927daa62417159d49783041338921dcf646fc7"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75746e06d5fa1e91bfd5432448d00d34593b52e7e91a187d981d08d1f33d4385"}, + {file = "mypy-1.11.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a976775ab2256aadc6add633d44f100a2517d2388906ec4f13231fafbb0eccca"}, + {file = "mypy-1.11.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:cd953f221ac1379050a8a646585a29574488974f79d8082cedef62744f0a0104"}, + {file = "mypy-1.11.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:57555a7715c0a34421013144a33d280e73c08df70f3a18a552938587ce9274f4"}, + {file = "mypy-1.11.2-cp311-cp311-win_amd64.whl", hash = "sha256:36383a4fcbad95f2657642a07ba22ff797de26277158f1cc7bd234821468b1b6"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e8960dbbbf36906c5c0b7f4fbf2f0c7ffb20f4898e6a879fcf56a41a08b0d318"}, + {file = "mypy-1.11.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06d26c277962f3fb50e13044674aa10553981ae514288cb7d0a738f495550b36"}, + {file = "mypy-1.11.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e7184632d89d677973a14d00ae4d03214c8bc301ceefcdaf5c474866814c987"}, + {file = "mypy-1.11.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a66169b92452f72117e2da3a576087025449018afc2d8e9bfe5ffab865709ca"}, + {file = "mypy-1.11.2-cp312-cp312-win_amd64.whl", hash = "sha256:969ea3ef09617aff826885a22ece0ddef69d95852cdad2f60c8bb06bf1f71f70"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:37c7fa6121c1cdfcaac97ce3d3b5588e847aa79b580c1e922bb5d5d2902df19b"}, + {file = "mypy-1.11.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4a8a53bc3ffbd161b5b2a4fff2f0f1e23a33b0168f1c0778ec70e1a3d66deb86"}, + {file = "mypy-1.11.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ff93107f01968ed834f4256bc1fc4475e2fecf6c661260066a985b52741ddce"}, + {file = "mypy-1.11.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:edb91dded4df17eae4537668b23f0ff6baf3707683734b6a818d5b9d0c0c31a1"}, + {file = "mypy-1.11.2-cp38-cp38-win_amd64.whl", hash = "sha256:ee23de8530d99b6db0573c4ef4bd8f39a2a6f9b60655bf7a1357e585a3486f2b"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:801ca29f43d5acce85f8e999b1e431fb479cb02d0e11deb7d2abb56bdaf24fd6"}, + {file = "mypy-1.11.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af8d155170fcf87a2afb55b35dc1a0ac21df4431e7d96717621962e4b9192e70"}, + {file = "mypy-1.11.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f7821776e5c4286b6a13138cc935e2e9b6fde05e081bdebf5cdb2bb97c9df81d"}, + {file = "mypy-1.11.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:539c570477a96a4e6fb718b8d5c3e0c0eba1f485df13f86d2970c91f0673148d"}, + {file = "mypy-1.11.2-cp39-cp39-win_amd64.whl", hash = "sha256:3f14cd3d386ac4d05c5a39a51b84387403dadbd936e17cb35882134d4f8f0d24"}, + {file = "mypy-1.11.2-py3-none-any.whl", hash = "sha256:b499bc07dbdcd3de92b0a8b29fdf592c111276f6a12fe29c30f6c417dd546d12"}, + {file = "mypy-1.11.2.tar.gz", hash = "sha256:7f9993ad3e0ffdc95c2a14b66dee63729f021968bff8ad911867579c65d13a79"}, ] [package.dependencies] -mypy-extensions = ">=0.4.3" +mypy-extensions = ">=1.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=3.10" +typing-extensions = ">=4.6.0" [package.extras] dmypy = ["psutil (>=4.0)"] install-types = ["pip"] -python2 = ["typed-ast (>=1.4.0,<2)"] +mypyc = ["setuptools (>=50)"] reports = ["lxml"] [[package]] @@ -667,43 +777,6 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -751,68 +824,79 @@ files = [ [[package]] name = "orjson" -version = "3.10.3" +version = "3.10.7" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = false python-versions = ">=3.8" files = [ - {file = "orjson-3.10.3-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9fb6c3f9f5490a3eb4ddd46fc1b6eadb0d6fc16fb3f07320149c3286a1409dd8"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:252124b198662eee80428f1af8c63f7ff077c88723fe206a25df8dc57a57b1fa"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9f3e87733823089a338ef9bbf363ef4de45e5c599a9bf50a7a9b82e86d0228da"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8334c0d87103bb9fbbe59b78129f1f40d1d1e8355bbed2ca71853af15fa4ed3"}, - {file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1952c03439e4dce23482ac846e7961f9d4ec62086eb98ae76d97bd41d72644d7"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c0403ed9c706dcd2809f1600ed18f4aae50be263bd7112e54b50e2c2bc3ebd6d"}, - {file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:382e52aa4270a037d41f325e7d1dfa395b7de0c367800b6f337d8157367bf3a7"}, - {file = "orjson-3.10.3-cp310-none-win32.whl", hash = "sha256:be2aab54313752c04f2cbaab4515291ef5af8c2256ce22abc007f89f42f49109"}, - {file = "orjson-3.10.3-cp310-none-win_amd64.whl", hash = "sha256:416b195f78ae461601893f482287cee1e3059ec49b4f99479aedf22a20b1098b"}, - {file = "orjson-3.10.3-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:73100d9abbbe730331f2242c1fc0bcb46a3ea3b4ae3348847e5a141265479700"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:544a12eee96e3ab828dbfcb4d5a0023aa971b27143a1d35dc214c176fdfb29b3"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:520de5e2ef0b4ae546bea25129d6c7c74edb43fc6cf5213f511a927f2b28148b"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ccaa0a401fc02e8828a5bedfd80f8cd389d24f65e5ca3954d72c6582495b4bcf"}, - {file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a7bc9e8bc11bac40f905640acd41cbeaa87209e7e1f57ade386da658092dc16"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3582b34b70543a1ed6944aca75e219e1192661a63da4d039d088a09c67543b08"}, - {file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1c23dfa91481de880890d17aa7b91d586a4746a4c2aa9a145bebdbaf233768d5"}, - {file = "orjson-3.10.3-cp311-none-win32.whl", hash = "sha256:1770e2a0eae728b050705206d84eda8b074b65ee835e7f85c919f5705b006c9b"}, - {file = "orjson-3.10.3-cp311-none-win_amd64.whl", hash = "sha256:93433b3c1f852660eb5abdc1f4dd0ced2be031ba30900433223b28ee0140cde5"}, - {file = "orjson-3.10.3-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a39aa73e53bec8d410875683bfa3a8edf61e5a1c7bb4014f65f81d36467ea098"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0943a96b3fa09bee1afdfccc2cb236c9c64715afa375b2af296c73d91c23eab2"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e852baafceff8da3c9defae29414cc8513a1586ad93e45f27b89a639c68e8176"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18566beb5acd76f3769c1d1a7ec06cdb81edc4d55d2765fb677e3eaa10fa99e0"}, - {file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd2218d5a3aa43060efe649ec564ebedec8ce6ae0a43654b81376216d5ebd42"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cf20465e74c6e17a104ecf01bf8cd3b7b252565b4ccee4548f18b012ff2f8069"}, - {file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ba7f67aa7f983c4345eeda16054a4677289011a478ca947cd69c0a86ea45e534"}, - {file = "orjson-3.10.3-cp312-none-win32.whl", hash = "sha256:17e0713fc159abc261eea0f4feda611d32eabc35708b74bef6ad44f6c78d5ea0"}, - {file = "orjson-3.10.3-cp312-none-win_amd64.whl", hash = "sha256:4c895383b1ec42b017dd2c75ae8a5b862fc489006afde06f14afbdd0309b2af0"}, - {file = "orjson-3.10.3-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:be2719e5041e9fb76c8c2c06b9600fe8e8584e6980061ff88dcbc2691a16d20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0175a5798bdc878956099f5c54b9837cb62cfbf5d0b86ba6d77e43861bcec2"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:978be58a68ade24f1af7758626806e13cff7748a677faf95fbb298359aa1e20d"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16bda83b5c61586f6f788333d3cf3ed19015e3b9019188c56983b5a299210eb5"}, - {file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ad1f26bea425041e0a1adad34630c4825a9e3adec49079b1fb6ac8d36f8b754"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9e253498bee561fe85d6325ba55ff2ff08fb5e7184cd6a4d7754133bd19c9195"}, - {file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0a62f9968bab8a676a164263e485f30a0b748255ee2f4ae49a0224be95f4532b"}, - {file = "orjson-3.10.3-cp38-none-win32.whl", hash = "sha256:8d0b84403d287d4bfa9bf7d1dc298d5c1c5d9f444f3737929a66f2fe4fb8f134"}, - {file = "orjson-3.10.3-cp38-none-win_amd64.whl", hash = "sha256:8bc7a4df90da5d535e18157220d7915780d07198b54f4de0110eca6b6c11e290"}, - {file = "orjson-3.10.3-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9059d15c30e675a58fdcd6f95465c1522b8426e092de9fff20edebfdc15e1cb0"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d40c7f7938c9c2b934b297412c067936d0b54e4b8ab916fd1a9eb8f54c02294"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4a654ec1de8fdaae1d80d55cee65893cb06494e124681ab335218be6a0691e7"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:831c6ef73f9aa53c5f40ae8f949ff7681b38eaddb6904aab89dca4d85099cb78"}, - {file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99b880d7e34542db89f48d14ddecbd26f06838b12427d5a25d71baceb5ba119d"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e5e176c994ce4bd434d7aafb9ecc893c15f347d3d2bbd8e7ce0b63071c52e25"}, - {file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b69a58a37dab856491bf2d3bbf259775fdce262b727f96aafbda359cb1d114d8"}, - {file = "orjson-3.10.3-cp39-none-win32.whl", hash = "sha256:b8d4d1a6868cde356f1402c8faeb50d62cee765a1f7ffcfd6de732ab0581e063"}, - {file = "orjson-3.10.3-cp39-none-win_amd64.whl", hash = "sha256:5102f50c5fc46d94f2033fe00d392588564378260d64377aec702f21a7a22912"}, - {file = "orjson-3.10.3.tar.gz", hash = "sha256:2b166507acae7ba2f7c315dcf185a9111ad5e992ac81f2d507aac39193c2c818"}, + {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, + {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, + {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, + {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, + {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, + {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, + {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, + {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, + {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, + {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, + {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, + {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, + {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, + {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, + {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, + {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, + {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, + {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, + {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, + {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, ] [[package]] name = "packaging" -version = "23.2" +version = "24.1" description = "Core utilities for Python packages" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, ] [[package]] @@ -832,228 +916,123 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.7.4" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"}, - {file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.18.4" -typing-extensions = ">=4.6.1" - -[package.extras] -email = ["email-validator (>=2.0.0)"] - -[[package]] -name = "pydantic" -version = "2.8.0" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.8.0-py3-none-any.whl", hash = "sha256:ead4f3a1e92386a734ca1411cb25d94147cf8778ed5be6b56749047676d6364e"}, - {file = "pydantic-2.8.0.tar.gz", hash = "sha256:d970ffb9d030b710795878940bd0489842c638e7252fc4a19c3ae2f7da4d6141"}, +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" +typing-extensions = [ + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, + {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, ] -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.0" -typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} - [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.18.4" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"}, - {file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"}, - {file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"}, - {file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"}, - {file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"}, - {file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"}, - {file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"}, - {file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"}, - {file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"}, - {file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"}, - {file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"}, - {file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"}, - {file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"}, - {file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"}, - {file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"}, - {file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"}, - {file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"}, - {file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"}, - {file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"}, - {file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"}, - {file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"}, - {file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"}, - {file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"}, - {file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"}, - {file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"}, - {file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"}, - {file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"}, - {file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"}, - {file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"}, - {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "pydantic-core" -version = "2.20.0" -description = "Core functionality for Pydantic validation and serialization" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:e9dcd7fb34f7bfb239b5fa420033642fff0ad676b765559c3737b91f664d4fa9"}, - {file = "pydantic_core-2.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:649a764d9b0da29816889424697b2a3746963ad36d3e0968784ceed6e40c6355"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7701df088d0b05f3460f7ba15aec81ac8b0fb5690367dfd072a6c38cf5b7fdb5"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ab760f17c3e792225cdaef31ca23c0aea45c14ce80d8eff62503f86a5ab76bff"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cb1ad5b4d73cde784cf64580166568074f5ccd2548d765e690546cff3d80937d"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b81ec2efc04fc1dbf400647d4357d64fb25543bae38d2d19787d69360aad21c9"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4a9732a5cad764ba37f3aa873dccb41b584f69c347a57323eda0930deec8e10"}, - {file = "pydantic_core-2.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6dc85b9e10cc21d9c1055f15684f76fa4facadddcb6cd63abab702eb93c98943"}, - {file = "pydantic_core-2.20.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:21d9f7e24f63fdc7118e6cc49defaab8c1d27570782f7e5256169d77498cf7c7"}, - {file = "pydantic_core-2.20.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8b315685832ab9287e6124b5d74fc12dda31e6421d7f6b08525791452844bc2d"}, - {file = "pydantic_core-2.20.0-cp310-none-win32.whl", hash = "sha256:c3dc8ec8b87c7ad534c75b8855168a08a7036fdb9deeeed5705ba9410721c84d"}, - {file = "pydantic_core-2.20.0-cp310-none-win_amd64.whl", hash = "sha256:85770b4b37bb36ef93a6122601795231225641003e0318d23c6233c59b424279"}, - {file = "pydantic_core-2.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:58e251bb5a5998f7226dc90b0b753eeffa720bd66664eba51927c2a7a2d5f32c"}, - {file = "pydantic_core-2.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:78d584caac52c24240ef9ecd75de64c760bbd0e20dbf6973631815e3ef16ef8b"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5084ec9721f82bef5ff7c4d1ee65e1626783abb585f8c0993833490b63fe1792"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6d0f52684868db7c218437d260e14d37948b094493f2646f22d3dda7229bbe3f"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1def125d59a87fe451212a72ab9ed34c118ff771e5473fef4f2f95d8ede26d75"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b34480fd6778ab356abf1e9086a4ced95002a1e195e8d2fd182b0def9d944d11"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d42669d319db366cb567c3b444f43caa7ffb779bf9530692c6f244fc635a41eb"}, - {file = "pydantic_core-2.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:53b06aea7a48919a254b32107647be9128c066aaa6ee6d5d08222325f25ef175"}, - {file = "pydantic_core-2.20.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1f038156b696a1c39d763b2080aeefa87ddb4162c10aa9fabfefffc3dd8180fa"}, - {file = "pydantic_core-2.20.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3f0f3a4a23717280a5ee3ac4fb1f81d6fde604c9ec5100f7f6f987716bb8c137"}, - {file = "pydantic_core-2.20.0-cp311-none-win32.whl", hash = "sha256:316fe7c3fec017affd916a0c83d6f1ec697cbbbdf1124769fa73328e7907cc2e"}, - {file = "pydantic_core-2.20.0-cp311-none-win_amd64.whl", hash = "sha256:2d06a7fa437f93782e3f32d739c3ec189f82fca74336c08255f9e20cea1ed378"}, - {file = "pydantic_core-2.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:d6f8c49657f3eb7720ed4c9b26624063da14937fc94d1812f1e04a2204db3e17"}, - {file = "pydantic_core-2.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ad1bd2f377f56fec11d5cfd0977c30061cd19f4fa199bf138b200ec0d5e27eeb"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed741183719a5271f97d93bbcc45ed64619fa38068aaa6e90027d1d17e30dc8d"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d82e5ed3a05f2dcb89c6ead2fd0dbff7ac09bc02c1b4028ece2d3a3854d049ce"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b2ba34a099576234671f2e4274e5bc6813b22e28778c216d680eabd0db3f7dad"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:879ae6bb08a063b3e1b7ac8c860096d8fd6b48dd9b2690b7f2738b8c835e744b"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b0eefc7633a04c0694340aad91fbfd1986fe1a1e0c63a22793ba40a18fcbdc8"}, - {file = "pydantic_core-2.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73deadd6fd8a23e2f40b412b3ac617a112143c8989a4fe265050fd91ba5c0608"}, - {file = "pydantic_core-2.20.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:35681445dc85446fb105943d81ae7569aa7e89de80d1ca4ac3229e05c311bdb1"}, - {file = "pydantic_core-2.20.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0f6dd3612a3b9f91f2e63924ea18a4476656c6d01843ca20a4c09e00422195af"}, - {file = "pydantic_core-2.20.0-cp312-none-win32.whl", hash = "sha256:7e37b6bb6e90c2b8412b06373c6978d9d81e7199a40e24a6ef480e8acdeaf918"}, - {file = "pydantic_core-2.20.0-cp312-none-win_amd64.whl", hash = "sha256:7d4df13d1c55e84351fab51383520b84f490740a9f1fec905362aa64590b7a5d"}, - {file = "pydantic_core-2.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:d43e7ab3b65e4dc35a7612cfff7b0fd62dce5bc11a7cd198310b57f39847fd6c"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b6a24d7b5893392f2b8e3b7a0031ae3b14c6c1942a4615f0d8794fdeeefb08b"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b2f13c3e955a087c3ec86f97661d9f72a76e221281b2262956af381224cfc243"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:72432fd6e868c8d0a6849869e004b8bcae233a3c56383954c228316694920b38"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d70a8ff2d4953afb4cbe6211f17268ad29c0b47e73d3372f40e7775904bc28fc"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e49524917b8d3c2f42cd0d2df61178e08e50f5f029f9af1f402b3ee64574392"}, - {file = "pydantic_core-2.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a4f0f71653b1c1bad0350bc0b4cc057ab87b438ff18fa6392533811ebd01439c"}, - {file = "pydantic_core-2.20.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:16197e6f4fdecb9892ed2436e507e44f0a1aa2cff3b9306d1c879ea2f9200997"}, - {file = "pydantic_core-2.20.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:763602504bf640b3ded3bba3f8ed8a1cc2fc6a87b8d55c1c5689f428c49c947e"}, - {file = "pydantic_core-2.20.0-cp313-none-win32.whl", hash = "sha256:a3f243f318bd9523277fa123b3163f4c005a3e8619d4b867064de02f287a564d"}, - {file = "pydantic_core-2.20.0-cp313-none-win_amd64.whl", hash = "sha256:03aceaf6a5adaad3bec2233edc5a7905026553916615888e53154807e404545c"}, - {file = "pydantic_core-2.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d6f2d8b8da1f03f577243b07bbdd3412eee3d37d1f2fd71d1513cbc76a8c1239"}, - {file = "pydantic_core-2.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a272785a226869416c6b3c1b7e450506152d3844207331f02f27173562c917e0"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efbb412d55a4ffe73963fed95c09ccb83647ec63b711c4b3752be10a56f0090b"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1e4f46189d8740561b43655263a41aac75ff0388febcb2c9ec4f1b60a0ec12f3"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87d3df115f4a3c8c5e4d5acf067d399c6466d7e604fc9ee9acbe6f0c88a0c3cf"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a340d2bdebe819d08f605e9705ed551c3feb97e4fd71822d7147c1e4bdbb9508"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:616b9c2f882393d422ba11b40e72382fe975e806ad693095e9a3b67c59ea6150"}, - {file = "pydantic_core-2.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:25c46bb2ff6084859bbcfdf4f1a63004b98e88b6d04053e8bf324e115398e9e7"}, - {file = "pydantic_core-2.20.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:23425eccef8f2c342f78d3a238c824623836c6c874d93c726673dbf7e56c78c0"}, - {file = "pydantic_core-2.20.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:52527e8f223ba29608d999d65b204676398009725007c9336651c2ec2d93cffc"}, - {file = "pydantic_core-2.20.0-cp38-none-win32.whl", hash = "sha256:1c3c5b7f70dd19a6845292b0775295ea81c61540f68671ae06bfe4421b3222c2"}, - {file = "pydantic_core-2.20.0-cp38-none-win_amd64.whl", hash = "sha256:8093473d7b9e908af1cef30025609afc8f5fd2a16ff07f97440fd911421e4432"}, - {file = "pydantic_core-2.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:ee7785938e407418795e4399b2bf5b5f3cf6cf728077a7f26973220d58d885cf"}, - {file = "pydantic_core-2.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0e75794883d635071cf6b4ed2a5d7a1e50672ab7a051454c76446ef1ebcdcc91"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:344e352c96e53b4f56b53d24728217c69399b8129c16789f70236083c6ceb2ac"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:978d4123ad1e605daf1ba5e01d4f235bcf7b6e340ef07e7122e8e9cfe3eb61ab"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c05eaf6c863781eb834ab41f5963604ab92855822a2062897958089d1335dad"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bc7e43b4a528ffca8c9151b6a2ca34482c2fdc05e6aa24a84b7f475c896fc51d"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:658287a29351166510ebbe0a75c373600cc4367a3d9337b964dada8d38bcc0f4"}, - {file = "pydantic_core-2.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1dacf660d6de692fe351e8c806e7efccf09ee5184865893afbe8e59be4920b4a"}, - {file = "pydantic_core-2.20.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3e147fc6e27b9a487320d78515c5f29798b539179f7777018cedf51b7749e4f4"}, - {file = "pydantic_core-2.20.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c867230d715a3dd1d962c8d9bef0d3168994ed663e21bf748b6e3a529a129aab"}, - {file = "pydantic_core-2.20.0-cp39-none-win32.whl", hash = "sha256:22b813baf0dbf612752d8143a2dbf8e33ccb850656b7850e009bad2e101fc377"}, - {file = "pydantic_core-2.20.0-cp39-none-win_amd64.whl", hash = "sha256:3a7235b46c1bbe201f09b6f0f5e6c36b16bad3d0532a10493742f91fbdc8035f"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cafde15a6f7feaec2f570646e2ffc5b73412295d29134a29067e70740ec6ee20"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:2aec8eeea0b08fd6bc2213d8e86811a07491849fd3d79955b62d83e32fa2ad5f"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:840200827984f1c4e114008abc2f5ede362d6e11ed0b5931681884dd41852ff1"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8ea1d8b7df522e5ced34993c423c3bf3735c53df8b2a15688a2f03a7d678800"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d5b8376a867047bf08910573deb95d3c8dfb976eb014ee24f3b5a61ccc5bee1b"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d08264b4460326cefacc179fc1411304d5af388a79910832835e6f641512358b"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:7a3639011c2e8a9628466f616ed7fb413f30032b891898e10895a0a8b5857d6c"}, - {file = "pydantic_core-2.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:05e83ce2f7eba29e627dd8066aa6c4c0269b2d4f889c0eba157233a353053cea"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:603a843fea76a595c8f661cd4da4d2281dff1e38c4a836a928eac1a2f8fe88e4"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ac76f30d5d3454f4c28826d891fe74d25121a346c69523c9810ebba43f3b1cec"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e3b1d4b1b3f6082849f9b28427ef147a5b46a6132a3dbaf9ca1baa40c88609"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2761f71faed820e25ec62eacba670d1b5c2709bb131a19fcdbfbb09884593e5a"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a0586cddbf4380e24569b8a05f234e7305717cc8323f50114dfb2051fcbce2a3"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b8c46a8cf53e849eea7090f331ae2202cd0f1ceb090b00f5902c423bd1e11805"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b4a085bd04af7245e140d1b95619fe8abb445a3d7fdf219b3f80c940853268ef"}, - {file = "pydantic_core-2.20.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:116b326ac82c8b315e7348390f6d30bcfe6e688a7d3f1de50ff7bcc2042a23c2"}, - {file = "pydantic_core-2.20.0.tar.gz", hash = "sha256:366be8e64e0cb63d87cf79b4e1765c0703dd6313c729b22e7b9e378db6b96877"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -1147,73 +1126,75 @@ six = ">=1.5" [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] name = "requests" -version = "2.31.0" +version = "2.32.3" description = "Python HTTP for Humans." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"}, - {file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -1263,15 +1244,26 @@ files = [ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + [[package]] name = "syrupy" -version = "4.6.1" +version = "4.7.1" description = "Pytest Snapshot Test Utility" optional = false -python-versions = ">=3.8.1,<4" +python-versions = ">=3.8.1" files = [ - {file = "syrupy-4.6.1-py3-none-any.whl", hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133"}, - {file = "syrupy-4.6.1.tar.gz", hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36"}, + {file = "syrupy-4.7.1-py3-none-any.whl", hash = "sha256:be002267a512a4bedddfae2e026c93df1ea928ae10baadc09640516923376d41"}, + {file = "syrupy-4.7.1.tar.gz", hash = "sha256:f9d4485f3f27d0e5df6ed299cac6fa32eb40a441915d988e82be5a4bdda335c8"}, ] [package.dependencies] @@ -1279,13 +1271,13 @@ pytest = ">=7.0.0,<9.0.0" [[package]] name = "tenacity" -version = "8.3.0" +version = "8.5.0" description = "Retry code until it succeeds" optional = false python-versions = ">=3.8" files = [ - {file = "tenacity-8.3.0-py3-none-any.whl", hash = "sha256:3649f6443dbc0d9b01b9d8020a9c4ec7a1ff5f6f3c6c8a036ef371f573fe9185"}, - {file = "tenacity-8.3.0.tar.gz", hash = "sha256:953d4e6ad24357bceffbc9707bc74349aca9d245f68eb65419cf0c249a1949a2"}, + {file = "tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687"}, + {file = "tenacity-8.5.0.tar.gz", hash = "sha256:8bc6c0c8a09b31e6cad13c47afbed1a567518250a9a171418582ed8d9c20ca78"}, ] [package.extras] @@ -1305,24 +1297,24 @@ files = [ [[package]] name = "typing-extensions" -version = "4.11.0" +version = "4.12.2" description = "Backported and Experimental Type Hints for Python 3.8+" optional = false python-versions = ">=3.8" files = [ - {file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"}, - {file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"}, + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] [[package]] name = "urllib3" -version = "2.2.1" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"}, - {file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -1333,13 +1325,13 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "voyageai" -version = "0.2.2" +version = "0.2.3" description = "" optional = false python-versions = "<4.0.0,>=3.7.1" files = [ - {file = "voyageai-0.2.2-py3-none-any.whl", hash = "sha256:caba84fa448bb82eeb39a4c4479978dc08bff9e2473773fea9cdcdd737560e4d"}, - {file = "voyageai-0.2.2.tar.gz", hash = "sha256:e477ea2aa6d54580426c7a4a67ad45cfba5480db2bad4da3eb74007b3984f3a5"}, + {file = "voyageai-0.2.3-py3-none-any.whl", hash = "sha256:59c4958bd991e83cedb5a82d5e14ac698ce67e42713ea10467631a48ee272b15"}, + {file = "voyageai-0.2.3.tar.gz", hash = "sha256:28322aa7a64cdaa774be6fcf3e4fd6a08694ea25acd5fadd1eff1b8ef8dab68a"}, ] [package.dependencies] @@ -1351,40 +1343,41 @@ tenacity = ">=8.0.1" [[package]] name = "watchdog" -version = "4.0.0" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:39cb34b1f1afbf23e9562501673e7146777efe95da24fab5707b88f7fb11649b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c522392acc5e962bcac3b22b9592493ffd06d1fc5d755954e6be9f4990de932b"}, - {file = "watchdog-4.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6c47bdd680009b11c9ac382163e05ca43baf4127954c5f6d0250e7d772d2b80c"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8350d4055505412a426b6ad8c521bc7d367d1637a762c70fdd93a3a0d595990b"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c17d98799f32e3f55f181f19dd2021d762eb38fdd381b4a748b9f5a36738e935"}, - {file = "watchdog-4.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4986db5e8880b0e6b7cd52ba36255d4793bf5cdc95bd6264806c233173b1ec0b"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:11e12fafb13372e18ca1bbf12d50f593e7280646687463dd47730fd4f4d5d257"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5369136a6474678e02426bd984466343924d1df8e2fd94a9b443cb7e3aa20d19"}, - {file = "watchdog-4.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76ad8484379695f3fe46228962017a7e1337e9acadafed67eb20aabb175df98b"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:45cc09cc4c3b43fb10b59ef4d07318d9a3ecdbff03abd2e36e77b6dd9f9a5c85"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eed82cdf79cd7f0232e2fdc1ad05b06a5e102a43e331f7d041e5f0e0a34a51c4"}, - {file = "watchdog-4.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba30a896166f0fee83183cec913298151b73164160d965af2e93a20bbd2ab605"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d18d7f18a47de6863cd480734613502904611730f8def45fc52a5d97503e5101"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2895bf0518361a9728773083908801a376743bcc37dfa252b801af8fd281b1ca"}, - {file = "watchdog-4.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87e9df830022488e235dd601478c15ad73a0389628588ba0b028cb74eb72fed8"}, - {file = "watchdog-4.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6e949a8a94186bced05b6508faa61b7adacc911115664ccb1923b9ad1f1ccf7b"}, - {file = "watchdog-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6a4db54edea37d1058b08947c789a2354ee02972ed5d1e0dca9b0b820f4c7f92"}, - {file = "watchdog-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d31481ccf4694a8416b681544c23bd271f5a123162ab603c7d7d2dd7dd901a07"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:8fec441f5adcf81dd240a5fe78e3d83767999771630b5ddfc5867827a34fa3d3"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:6a9c71a0b02985b4b0b6d14b875a6c86ddea2fdbebd0c9a720a806a8bbffc69f"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:557ba04c816d23ce98a06e70af6abaa0485f6d94994ec78a42b05d1c03dcbd50"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:d0f9bd1fd919134d459d8abf954f63886745f4660ef66480b9d753a7c9d40927"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f9b2fdca47dc855516b2d66eef3c39f2672cbf7e7a42e7e67ad2cbfcd6ba107d"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:73c7a935e62033bd5e8f0da33a4dcb763da2361921a69a5a95aaf6c93aa03a87"}, - {file = "watchdog-4.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6a80d5cae8c265842c7419c560b9961561556c4361b297b4c431903f8c33b269"}, - {file = "watchdog-4.0.0-py3-none-win32.whl", hash = "sha256:8f9a542c979df62098ae9c58b19e03ad3df1c9d8c6895d96c0d51da17b243b1c"}, - {file = "watchdog-4.0.0-py3-none-win_amd64.whl", hash = "sha256:f970663fa4f7e80401a7b0cbeec00fa801bf0287d93d48368fc3e6fa32716245"}, - {file = "watchdog-4.0.0-py3-none-win_ia64.whl", hash = "sha256:9a03e16e55465177d416699331b0f3564138f1807ecc5f2de9d55d8f188d08c7"}, - {file = "watchdog-4.0.0.tar.gz", hash = "sha256:e3e7065cbdabe6183ab82199d7a4f6b3ba0a438c5a512a68559846ccb76a78ec"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -1392,101 +1385,103 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "yarl" -version = "1.9.4" +version = "1.11.1" description = "Yet another URL library" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"}, - {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"}, - {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98"}, - {file = "yarl-1.9.4-cp311-cp311-win32.whl", hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31"}, - {file = "yarl-1.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10"}, - {file = "yarl-1.9.4-cp312-cp312-win32.whl", hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7"}, - {file = "yarl-1.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984"}, - {file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434"}, - {file = "yarl-1.9.4-cp37-cp37m-win32.whl", hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749"}, - {file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3"}, - {file = "yarl-1.9.4-cp38-cp38-win32.whl", hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece"}, - {file = "yarl-1.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0"}, - {file = "yarl-1.9.4-cp39-cp39-win32.whl", hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575"}, - {file = "yarl-1.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15"}, - {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"}, - {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:400cd42185f92de559d29eeb529e71d80dfbd2f45c36844914a4a34297ca6f00"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8258c86f47e080a258993eed877d579c71da7bda26af86ce6c2d2d072c11320d"}, + {file = "yarl-1.11.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2164cd9725092761fed26f299e3f276bb4b537ca58e6ff6b252eae9631b5c96e"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08ea567c16f140af8ddc7cb58e27e9138a1386e3e6e53982abaa6f2377b38cc"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:768ecc550096b028754ea28bf90fde071c379c62c43afa574edc6f33ee5daaec"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2909fa3a7d249ef64eeb2faa04b7957e34fefb6ec9966506312349ed8a7e77bf"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01a8697ec24f17c349c4f655763c4db70eebc56a5f82995e5e26e837c6eb0e49"}, + {file = "yarl-1.11.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e286580b6511aac7c3268a78cdb861ec739d3e5a2a53b4809faef6b49778eaff"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4179522dc0305c3fc9782549175c8e8849252fefeb077c92a73889ccbcd508ad"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:27fcb271a41b746bd0e2a92182df507e1c204759f460ff784ca614e12dd85145"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f61db3b7e870914dbd9434b560075e0366771eecbe6d2b5561f5bc7485f39efd"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:c92261eb2ad367629dc437536463dc934030c9e7caca861cc51990fe6c565f26"}, + {file = "yarl-1.11.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d95b52fbef190ca87d8c42f49e314eace4fc52070f3dfa5f87a6594b0c1c6e46"}, + {file = "yarl-1.11.1-cp310-cp310-win32.whl", hash = "sha256:489fa8bde4f1244ad6c5f6d11bb33e09cf0d1d0367edb197619c3e3fc06f3d91"}, + {file = "yarl-1.11.1-cp310-cp310-win_amd64.whl", hash = "sha256:476e20c433b356e16e9a141449f25161e6b69984fb4cdbd7cd4bd54c17844998"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:946eedc12895873891aaceb39bceb484b4977f70373e0122da483f6c38faaa68"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:21a7c12321436b066c11ec19c7e3cb9aec18884fe0d5b25d03d756a9e654edfe"}, + {file = "yarl-1.11.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c35f493b867912f6fda721a59cc7c4766d382040bdf1ddaeeaa7fa4d072f4675"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25861303e0be76b60fddc1250ec5986c42f0a5c0c50ff57cc30b1be199c00e63"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4b53f73077e839b3f89c992223f15b1d2ab314bdbdf502afdc7bb18e95eae27"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:327c724b01b8641a1bf1ab3b232fb638706e50f76c0b5bf16051ab65c868fac5"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4307d9a3417eea87715c9736d050c83e8c1904e9b7aada6ce61b46361b733d92"}, + {file = "yarl-1.11.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48a28bed68ab8fb7e380775f0029a079f08a17799cb3387a65d14ace16c12e2b"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:067b961853c8e62725ff2893226fef3d0da060656a9827f3f520fb1d19b2b68a"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8215f6f21394d1f46e222abeb06316e77ef328d628f593502d8fc2a9117bde83"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:498442e3af2a860a663baa14fbf23fb04b0dd758039c0e7c8f91cb9279799bff"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:69721b8effdb588cb055cc22f7c5105ca6fdaa5aeb3ea09021d517882c4a904c"}, + {file = "yarl-1.11.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1e969fa4c1e0b1a391f3fcbcb9ec31e84440253325b534519be0d28f4b6b533e"}, + {file = "yarl-1.11.1-cp311-cp311-win32.whl", hash = "sha256:7d51324a04fc4b0e097ff8a153e9276c2593106a811704025bbc1d6916f45ca6"}, + {file = "yarl-1.11.1-cp311-cp311-win_amd64.whl", hash = "sha256:15061ce6584ece023457fb8b7a7a69ec40bf7114d781a8c4f5dcd68e28b5c53b"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a4264515f9117be204935cd230fb2a052dd3792789cc94c101c535d349b3dab0"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f41fa79114a1d2eddb5eea7b912d6160508f57440bd302ce96eaa384914cd265"}, + {file = "yarl-1.11.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02da8759b47d964f9173c8675710720b468aa1c1693be0c9c64abb9d8d9a4867"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9361628f28f48dcf8b2f528420d4d68102f593f9c2e592bfc842f5fb337e44fd"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b91044952da03b6f95fdba398d7993dd983b64d3c31c358a4c89e3c19b6f7aef"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:74db2ef03b442276d25951749a803ddb6e270d02dda1d1c556f6ae595a0d76a8"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e975a2211952a8a083d1b9d9ba26472981ae338e720b419eb50535de3c02870"}, + {file = "yarl-1.11.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8aef97ba1dd2138112890ef848e17d8526fe80b21f743b4ee65947ea184f07a2"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a7915ea49b0c113641dc4d9338efa9bd66b6a9a485ffe75b9907e8573ca94b84"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:504cf0d4c5e4579a51261d6091267f9fd997ef58558c4ffa7a3e1460bd2336fa"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3de5292f9f0ee285e6bd168b2a77b2a00d74cbcfa420ed078456d3023d2f6dff"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a34e1e30f1774fa35d37202bbeae62423e9a79d78d0874e5556a593479fdf239"}, + {file = "yarl-1.11.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:66b63c504d2ca43bf7221a1f72fbe981ff56ecb39004c70a94485d13e37ebf45"}, + {file = "yarl-1.11.1-cp312-cp312-win32.whl", hash = "sha256:a28b70c9e2213de425d9cba5ab2e7f7a1c8ca23a99c4b5159bf77b9c31251447"}, + {file = "yarl-1.11.1-cp312-cp312-win_amd64.whl", hash = "sha256:17b5a386d0d36fb828e2fb3ef08c8829c1ebf977eef88e5367d1c8c94b454639"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1fa2e7a406fbd45b61b4433e3aa254a2c3e14c4b3186f6e952d08a730807fa0c"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:750f656832d7d3cb0c76be137ee79405cc17e792f31e0a01eee390e383b2936e"}, + {file = "yarl-1.11.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0b8486f322d8f6a38539136a22c55f94d269addb24db5cb6f61adc61eabc9d93"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3fce4da3703ee6048ad4138fe74619c50874afe98b1ad87b2698ef95bf92c96d"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed653638ef669e0efc6fe2acb792275cb419bf9cb5c5049399f3556995f23c7"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18ac56c9dd70941ecad42b5a906820824ca72ff84ad6fa18db33c2537ae2e089"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:688654f8507464745ab563b041d1fb7dab5d9912ca6b06e61d1c4708366832f5"}, + {file = "yarl-1.11.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4973eac1e2ff63cf187073cd4e1f1148dcd119314ab79b88e1b3fad74a18c9d5"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:964a428132227edff96d6f3cf261573cb0f1a60c9a764ce28cda9525f18f7786"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:6d23754b9939cbab02c63434776df1170e43b09c6a517585c7ce2b3d449b7318"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c2dc4250fe94d8cd864d66018f8344d4af50e3758e9d725e94fecfa27588ff82"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09696438cb43ea6f9492ef237761b043f9179f455f405279e609f2bc9100212a"}, + {file = "yarl-1.11.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:999bfee0a5b7385a0af5ffb606393509cfde70ecca4f01c36985be6d33e336da"}, + {file = "yarl-1.11.1-cp313-cp313-win32.whl", hash = "sha256:ce928c9c6409c79e10f39604a7e214b3cb69552952fbda8d836c052832e6a979"}, + {file = "yarl-1.11.1-cp313-cp313-win_amd64.whl", hash = "sha256:501c503eed2bb306638ccb60c174f856cc3246c861829ff40eaa80e2f0330367"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:dae7bd0daeb33aa3e79e72877d3d51052e8b19c9025ecf0374f542ea8ec120e4"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3ff6b1617aa39279fe18a76c8d165469c48b159931d9b48239065767ee455b2b"}, + {file = "yarl-1.11.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:3257978c870728a52dcce8c2902bf01f6c53b65094b457bf87b2644ee6238ddc"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f351fa31234699d6084ff98283cb1e852270fe9e250a3b3bf7804eb493bd937"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8aef1b64da41d18026632d99a06b3fefe1d08e85dd81d849fa7c96301ed22f1b"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7175a87ab8f7fbde37160a15e58e138ba3b2b0e05492d7351314a250d61b1591"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba444bdd4caa2a94456ef67a2f383710928820dd0117aae6650a4d17029fa25e"}, + {file = "yarl-1.11.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0ea9682124fc062e3d931c6911934a678cb28453f957ddccf51f568c2f2b5e05"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:8418c053aeb236b20b0ab8fa6bacfc2feaaf7d4683dd96528610989c99723d5f"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:61a5f2c14d0a1adfdd82258f756b23a550c13ba4c86c84106be4c111a3a4e413"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:f3a6d90cab0bdf07df8f176eae3a07127daafcf7457b997b2bf46776da2c7eb7"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:077da604852be488c9a05a524068cdae1e972b7dc02438161c32420fb4ec5e14"}, + {file = "yarl-1.11.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:15439f3c5c72686b6c3ff235279630d08936ace67d0fe5c8d5bbc3ef06f5a420"}, + {file = "yarl-1.11.1-cp38-cp38-win32.whl", hash = "sha256:238a21849dd7554cb4d25a14ffbfa0ef380bb7ba201f45b144a14454a72ffa5a"}, + {file = "yarl-1.11.1-cp38-cp38-win_amd64.whl", hash = "sha256:67459cf8cf31da0e2cbdb4b040507e535d25cfbb1604ca76396a3a66b8ba37a6"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:884eab2ce97cbaf89f264372eae58388862c33c4f551c15680dd80f53c89a269"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a336eaa7ee7e87cdece3cedb395c9657d227bfceb6781295cf56abcd3386a26"}, + {file = "yarl-1.11.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87f020d010ba80a247c4abc335fc13421037800ca20b42af5ae40e5fd75e7909"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:637c7ddb585a62d4469f843dac221f23eec3cbad31693b23abbc2c366ad41ff4"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:48dfd117ab93f0129084577a07287376cc69c08138694396f305636e229caa1a"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75e0ae31fb5ccab6eda09ba1494e87eb226dcbd2372dae96b87800e1dcc98804"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f46f81501160c28d0c0b7333b4f7be8983dbbc161983b6fb814024d1b4952f79"}, + {file = "yarl-1.11.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:04293941646647b3bfb1719d1d11ff1028e9c30199509a844da3c0f5919dc520"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:250e888fa62d73e721f3041e3a9abf427788a1934b426b45e1b92f62c1f68366"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e8f63904df26d1a66aabc141bfd258bf738b9bc7bc6bdef22713b4f5ef789a4c"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:aac44097d838dda26526cffb63bdd8737a2dbdf5f2c68efb72ad83aec6673c7e"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:267b24f891e74eccbdff42241c5fb4f974de2d6271dcc7d7e0c9ae1079a560d9"}, + {file = "yarl-1.11.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6907daa4b9d7a688063ed098c472f96e8181733c525e03e866fb5db480a424df"}, + {file = "yarl-1.11.1-cp39-cp39-win32.whl", hash = "sha256:14438dfc5015661f75f85bc5adad0743678eefee266ff0c9a8e32969d5d69f74"}, + {file = "yarl-1.11.1-cp39-cp39-win_amd64.whl", hash = "sha256:94d0caaa912bfcdc702a4204cd5e2bb01eb917fc4f5ea2315aa23962549561b0"}, + {file = "yarl-1.11.1-py3-none-any.whl", hash = "sha256:72bf26f66456baa0584eff63e44545c9f0eaed9b73cb6601b647c91f14c11f38"}, + {file = "yarl-1.11.1.tar.gz", hash = "sha256:1bb2d9e212fb7449b8fb73bc461b51eaa17cc8430b4a87d87be7b25052d92f53"}, ] [package.dependencies] @@ -1495,5 +1490,5 @@ multidict = ">=4.0" [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "bd454bcd0b793b970d879a86f437e5b8beb4e6603c724d6590bbe3d8248b1f0a" +python-versions = ">=3.9,<4.0" +content-hash = "7743429cd1357000a4fe104cf06f7e7fd8207c318af580053965257bf858ab8e" diff --git a/libs/partners/voyageai/pyproject.toml b/libs/partners/voyageai/pyproject.toml index 8aacb1a3953ad..62c435a3c23ef 100644 --- a/libs/partners/voyageai/pyproject.toml +++ b/libs/partners/voyageai/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "langchain-voyageai" -version = "0.1.1" +version = "0.1.2" description = "An integration package connecting VoyageAI and LangChain" authors = [] readme = "README.md" @@ -12,9 +12,10 @@ license = "MIT" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-voyageai%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.52,<0.3" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" voyageai = ">=0.2.1,<1" +pydantic = ">=2,<3" [tool.poetry.group.test] optional = true @@ -54,7 +55,7 @@ optional = true ruff = "^0.1.5" [tool.poetry.group.typing.dependencies] -mypy = "^0.991" +mypy = "^1.10" langchain-core = { path = "../../core", develop = true } [tool.poetry.group.dev] diff --git a/libs/partners/voyageai/scripts/check_pydantic.sh b/libs/partners/voyageai/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/partners/voyageai/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/libs/partners/voyageai/tests/integration_tests/test_embeddings.py b/libs/partners/voyageai/tests/integration_tests/test_embeddings.py index 0a958ccc2de26..532ded1756ce4 100644 --- a/libs/partners/voyageai/tests/integration_tests/test_embeddings.py +++ b/libs/partners/voyageai/tests/integration_tests/test_embeddings.py @@ -9,7 +9,7 @@ def test_langchain_voyageai_embedding_documents() -> None: """Test voyage embeddings.""" documents = ["foo bar"] - embedding = VoyageAIEmbeddings(model=MODEL) + embedding = VoyageAIEmbeddings(model=MODEL) # type: ignore[call-arg] output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 1024 @@ -29,7 +29,7 @@ def test_langchain_voyageai_embedding_documents_multiple() -> None: def test_langchain_voyageai_embedding_query() -> None: """Test voyage embeddings.""" document = "foo bar" - embedding = VoyageAIEmbeddings(model=MODEL) + embedding = VoyageAIEmbeddings(model=MODEL) # type: ignore[call-arg] output = embedding.embed_query(document) assert len(output) == 1024 @@ -48,6 +48,6 @@ async def test_langchain_voyageai_async_embedding_documents_multiple() -> None: async def test_langchain_voyageai_async_embedding_query() -> None: """Test voyage embeddings.""" document = "foo bar" - embedding = VoyageAIEmbeddings(model=MODEL) + embedding = VoyageAIEmbeddings(model=MODEL) # type: ignore[call-arg] output = await embedding.aembed_query(document) assert len(output) == 1024 diff --git a/libs/partners/voyageai/tests/integration_tests/test_rerank.py b/libs/partners/voyageai/tests/integration_tests/test_rerank.py index e4c88f5adbcaf..3e18ca0366eb7 100644 --- a/libs/partners/voyageai/tests/integration_tests/test_rerank.py +++ b/libs/partners/voyageai/tests/integration_tests/test_rerank.py @@ -9,12 +9,12 @@ def test_voyageai_reranker_init() -> None: """Test the voyageai reranker initializes correctly.""" - VoyageAIRerank(voyage_api_key="foo", model="foo") + VoyageAIRerank(voyage_api_key="foo", model="foo") # type: ignore[arg-type] def test_sync() -> None: rerank = VoyageAIRerank( - voyage_api_key=os.environ["VOYAGE_API_KEY"], + voyage_api_key=os.environ["VOYAGE_API_KEY"], # type: ignore[arg-type] model="rerank-lite-1", ) doc_list = [ @@ -42,7 +42,7 @@ def test_sync() -> None: async def test_async() -> None: rerank = VoyageAIRerank( - voyage_api_key=os.environ["VOYAGE_API_KEY"], + voyage_api_key=os.environ["VOYAGE_API_KEY"], # type: ignore[arg-type] model="rerank-lite-1", ) doc_list = [ diff --git a/libs/partners/voyageai/tests/unit_tests/test_embeddings.py b/libs/partners/voyageai/tests/unit_tests/test_embeddings.py index 990ffeb5a97d3..354c2c6a32532 100644 --- a/libs/partners/voyageai/tests/unit_tests/test_embeddings.py +++ b/libs/partners/voyageai/tests/unit_tests/test_embeddings.py @@ -9,7 +9,7 @@ def test_initialization_voyage_2() -> None: """Test embedding model initialization.""" - emb = VoyageAIEmbeddings(api_key="NOT_A_VALID_KEY", model=MODEL) + emb = VoyageAIEmbeddings(api_key="NOT_A_VALID_KEY", model=MODEL) # type: ignore assert isinstance(emb, Embeddings) assert emb.batch_size == 72 assert emb.model == MODEL @@ -20,7 +20,7 @@ def test_initialization_voyage_2_with_full_api_key_name() -> None: """Test embedding model initialization.""" # Testing that we can initialize the model using `voyage_api_key` # instead of `api_key` - emb = VoyageAIEmbeddings(voyage_api_key="NOT_A_VALID_KEY", model=MODEL) + emb = VoyageAIEmbeddings(voyage_api_key="NOT_A_VALID_KEY", model=MODEL) # type: ignore assert isinstance(emb, Embeddings) assert emb.batch_size == 72 assert emb.model == MODEL @@ -29,7 +29,7 @@ def test_initialization_voyage_2_with_full_api_key_name() -> None: def test_initialization_voyage_1() -> None: """Test embedding model initialization.""" - emb = VoyageAIEmbeddings(api_key="NOT_A_VALID_KEY", model="voyage-01") + emb = VoyageAIEmbeddings(api_key="NOT_A_VALID_KEY", model="voyage-01") # type: ignore assert isinstance(emb, Embeddings) assert emb.batch_size == 7 assert emb.model == "voyage-01" @@ -39,7 +39,9 @@ def test_initialization_voyage_1() -> None: def test_initialization_voyage_1_batch_size() -> None: """Test embedding model initialization.""" emb = VoyageAIEmbeddings( - api_key="NOT_A_VALID_KEY", model="voyage-01", batch_size=15 + api_key="NOT_A_VALID_KEY", # type: ignore + model="voyage-01", + batch_size=15, ) assert isinstance(emb, Embeddings) assert emb.batch_size == 15 diff --git a/libs/partners/voyageai/tests/unit_tests/test_rerank.py b/libs/partners/voyageai/tests/unit_tests/test_rerank.py index d86b3c3d156e1..b12687dab855a 100644 --- a/libs/partners/voyageai/tests/unit_tests/test_rerank.py +++ b/libs/partners/voyageai/tests/unit_tests/test_rerank.py @@ -29,7 +29,7 @@ @pytest.mark.requires("voyageai") def test_init() -> None: VoyageAIRerank( - voyage_api_key="foo", + voyage_api_key="foo", # type: ignore[arg-type] model="rerank-lite-1", ) @@ -63,7 +63,7 @@ def test_rerank_unit_test(mocker: Any) -> None: ] rerank = VoyageAIRerank( - voyage_api_key="foo", + voyage_api_key="foo", # type: ignore[arg-type] model="rerank-lite-1", ) result = rerank.compress_documents( @@ -74,7 +74,7 @@ def test_rerank_unit_test(mocker: Any) -> None: def test_rerank_empty_input() -> None: rerank = VoyageAIRerank( - voyage_api_key="foo", + voyage_api_key="foo", # type: ignore[arg-type] model="rerank-lite-1", ) result = rerank.compress_documents( diff --git a/libs/standard-tests/langchain_standard_tests/integration_tests/chat_models.py b/libs/standard-tests/langchain_standard_tests/integration_tests/chat_models.py index ec7e81af1ed03..b5e0a9a0bd4df 100644 --- a/libs/standard-tests/langchain_standard_tests/integration_tests/chat_models.py +++ b/libs/standard-tests/langchain_standard_tests/integration_tests/chat_models.py @@ -16,10 +16,10 @@ ) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate -from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.tools import tool -from pydantic import BaseModel as RawBaseModel -from pydantic import Field as RawField +from pydantic import BaseModel, Field +from pydantic.v1 import BaseModel as BaseModelV1 +from pydantic.v1 import Field as FieldV1 from langchain_standard_tests.unit_tests.chat_models import ( ChatModelTests, @@ -28,8 +28,8 @@ from langchain_standard_tests.utils.pydantic import PYDANTIC_MAJOR_VERSION -class MagicFunctionSchema(RawBaseModel): - input: int = RawField(..., gt=-1000, lt=1000) +class MagicFunctionSchema(BaseModel): + input: int = Field(..., gt=-1000, lt=1000) @tool(args_schema=MagicFunctionSchema) @@ -44,6 +44,13 @@ def magic_function_no_args() -> int: return 5 +class Joke(BaseModel): + """Joke to tell user.""" + + setup: str = Field(description="question to set up a joke") + punchline: str = Field(description="answer to resolve the joke") + + def _validate_tool_call_message(message: BaseMessage) -> None: assert isinstance(message, AIMessage) assert len(message.tool_calls) == 1 @@ -144,6 +151,61 @@ def test_usage_metadata(self, model: BaseChatModel) -> None: assert isinstance(result.usage_metadata["output_tokens"], int) assert isinstance(result.usage_metadata["total_tokens"], int) + if "audio_input" in self.supported_usage_metadata_details["invoke"]: + msg = self.invoke_with_audio_input() + assert msg.usage_metadata is not None + assert msg.usage_metadata["input_token_details"] is not None + assert isinstance(msg.usage_metadata["input_token_details"]["audio"], int) + assert msg.usage_metadata["input_tokens"] >= sum( + (v or 0) # type: ignore[misc] + for v in msg.usage_metadata["input_token_details"].values() + ) + if "audio_output" in self.supported_usage_metadata_details["invoke"]: + msg = self.invoke_with_audio_output() + assert msg.usage_metadata is not None + assert msg.usage_metadata["output_token_details"] is not None + assert isinstance(msg.usage_metadata["output_token_details"]["audio"], int) + assert int(msg.usage_metadata["output_tokens"]) >= sum( + (v or 0) # type: ignore[misc] + for v in msg.usage_metadata["output_token_details"].values() + ) + if "reasoning_output" in self.supported_usage_metadata_details["invoke"]: + msg = self.invoke_with_reasoning_output() + assert msg.usage_metadata is not None + assert msg.usage_metadata["output_token_details"] is not None + assert isinstance( + msg.usage_metadata["output_token_details"]["reasoning"], + int, + ) + assert msg.usage_metadata["output_tokens"] >= sum( + (v or 0) # type: ignore[misc] + for v in msg.usage_metadata["output_token_details"].values() + ) + if "cache_read_input" in self.supported_usage_metadata_details["invoke"]: + msg = self.invoke_with_cache_read_input() + assert msg.usage_metadata is not None + assert msg.usage_metadata["input_token_details"] is not None + assert isinstance( + msg.usage_metadata["input_token_details"]["cache_read"], + int, + ) + assert msg.usage_metadata["input_tokens"] >= sum( + (v or 0) # type: ignore[misc] + for v in msg.usage_metadata["input_token_details"].values() + ) + if "cache_creation_input" in self.supported_usage_metadata_details["invoke"]: + msg = self.invoke_with_cache_creation_input() + assert msg.usage_metadata is not None + assert msg.usage_metadata["input_token_details"] is not None + assert isinstance( + msg.usage_metadata["input_token_details"]["cache_creation"], + int, + ) + assert msg.usage_metadata["input_tokens"] >= sum( + (v or 0) # type: ignore[misc] + for v in msg.usage_metadata["input_token_details"].values() + ) + def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: if not self.returns_usage_metadata: pytest.skip("Not implemented.") @@ -157,6 +219,31 @@ def test_usage_metadata_streaming(self, model: BaseChatModel) -> None: assert isinstance(full.usage_metadata["output_tokens"], int) assert isinstance(full.usage_metadata["total_tokens"], int) + if "audio_input" in self.supported_usage_metadata_details["stream"]: + msg = self.invoke_with_audio_input(stream=True) + assert isinstance(msg.usage_metadata["input_token_details"]["audio"], int) # type: ignore[index] + if "audio_output" in self.supported_usage_metadata_details["stream"]: + msg = self.invoke_with_audio_output(stream=True) + assert isinstance(msg.usage_metadata["output_token_details"]["audio"], int) # type: ignore[index] + if "reasoning_output" in self.supported_usage_metadata_details["stream"]: + msg = self.invoke_with_reasoning_output(stream=True) + assert isinstance( + msg.usage_metadata["output_token_details"]["reasoning"], # type: ignore[index] + int, + ) + if "cache_read_input" in self.supported_usage_metadata_details["stream"]: + msg = self.invoke_with_cache_read_input(stream=True) + assert isinstance( + msg.usage_metadata["input_token_details"]["cache_read"], # type: ignore[index] + int, + ) + if "cache_creation_input" in self.supported_usage_metadata_details["stream"]: + msg = self.invoke_with_cache_creation_input(stream=True) + assert isinstance( + msg.usage_metadata["input_token_details"]["cache_creation"], # type: ignore[index] + int, + ) + def test_stop_sequence(self, model: BaseChatModel) -> None: result = model.invoke("hi", stop=["you"]) assert isinstance(result, AIMessage) @@ -240,15 +327,6 @@ def test_structured_output(self, model: BaseChatModel) -> None: if not self.has_tool_calling: pytest.skip("Test requires tool calling.") - from pydantic import BaseModel as BaseModelProper - from pydantic import Field as FieldProper - - class Joke(BaseModelProper): - """Joke to tell user.""" - - setup: str = FieldProper(description="question to set up a joke") - punchline: str = FieldProper(description="answer to resolve the joke") - # Pydantic class # Type ignoring since the interface only officially supports pydantic 1 # or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2. @@ -271,6 +349,33 @@ class Joke(BaseModelProper): assert isinstance(chunk, dict) # for mypy assert set(chunk.keys()) == {"setup", "punchline"} + async def test_structured_output_async(self, model: BaseChatModel) -> None: + """Test to verify structured output with a Pydantic model.""" + if not self.has_tool_calling: + pytest.skip("Test requires tool calling.") + + # Pydantic class + # Type ignoring since the interface only officially supports pydantic 1 + # or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2. + # We'll need to do a pass updating the type signatures. + chat = model.with_structured_output(Joke) # type: ignore[arg-type] + result = await chat.ainvoke("Tell me a joke about cats.") + assert isinstance(result, Joke) + + async for chunk in chat.astream("Tell me a joke about cats."): + assert isinstance(chunk, Joke) + + # Schema + chat = model.with_structured_output(Joke.model_json_schema()) + result = await chat.ainvoke("Tell me a joke about cats.") + assert isinstance(result, dict) + assert set(result.keys()) == {"setup", "punchline"} + + async for chunk in chat.astream("Tell me a joke about cats."): + assert isinstance(chunk, dict) + assert isinstance(chunk, dict) # for mypy + assert set(chunk.keys()) == {"setup", "punchline"} + @pytest.mark.skipif(PYDANTIC_MAJOR_VERSION != 2, reason="Test requires pydantic 2.") def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: """Test to verify compatibility with pydantic.v1.BaseModel. @@ -280,11 +385,11 @@ def test_structured_output_pydantic_2_v1(self, model: BaseChatModel) -> None: if not self.has_tool_calling: pytest.skip("Test requires tool calling.") - class Joke(BaseModel): # Uses langchain_core.pydantic_v1.BaseModel + class Joke(BaseModelV1): # Uses langchain_core.pydantic_v1.BaseModel """Joke to tell user.""" - setup: str = Field(description="question to set up a joke") - punchline: str = Field(description="answer to resolve the joke") + setup: str = FieldV1(description="question to set up a joke") + punchline: str = FieldV1(description="answer to resolve the joke") # Pydantic class chat = model.with_structured_output(Joke) @@ -305,6 +410,28 @@ class Joke(BaseModel): # Uses langchain_core.pydantic_v1.BaseModel assert isinstance(chunk, dict) # for mypy assert set(chunk.keys()) == {"setup", "punchline"} + def test_structured_output_optional_param(self, model: BaseChatModel) -> None: + """Test to verify structured output with an optional param.""" + if not self.has_tool_calling: + pytest.skip("Test requires tool calling.") + + class Joke(BaseModel): + """Joke to tell user.""" + + setup: str = Field(description="question to set up a joke") + punchline: Optional[str] = Field( + default=None, description="answer to resolve the joke" + ) + + chat = model.with_structured_output(Joke) # type: ignore[arg-type] + setup_result = chat.invoke( + "Give me the setup to a joke about cats, no punchline." + ) + assert isinstance(setup_result, Joke) + + joke_result = chat.invoke("Give me a joke about cats, include the punchline.") + assert isinstance(joke_result, Joke) + def test_tool_message_histories_string_content(self, model: BaseChatModel) -> None: """ Test that message histories are compatible with string tool contents @@ -435,11 +562,42 @@ def test_image_inputs(self, model: BaseChatModel) -> None: ) model.invoke([message]) + def test_image_tool_message(self, model: BaseChatModel) -> None: + if not self.supports_image_tool_message: + return + image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" + image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8") + messages = [ + HumanMessage("get a random image using the tool and describe the weather"), + AIMessage( + [], + tool_calls=[ + {"type": "tool_call", "id": "1", "name": "random_image", "args": {}} + ], + ), + ToolMessage( + content=[ + { + "type": "image_url", + "image_url": {"url": f"data:image/jpeg;base64,{image_data}"}, + }, + ], + tool_call_id="1", + name="random_image", + ), + ] + + def random_image() -> str: + """Return a random image.""" + return "" + + model.bind_tools([random_image]).invoke(messages) + def test_anthropic_inputs(self, model: BaseChatModel) -> None: if not self.supports_anthropic_inputs: return - class color_picker(BaseModel): + class color_picker(BaseModelV1): """Input your fav color and get a random fact about it.""" fav_color: str @@ -530,3 +688,18 @@ def test_message_with_name(self, model: BaseChatModel) -> None: assert isinstance(result, AIMessage) assert isinstance(result.content, str) assert len(result.content) > 0 + + def invoke_with_audio_input(self, *, stream: bool = False) -> AIMessage: + raise NotImplementedError() + + def invoke_with_audio_output(self, *, stream: bool = False) -> AIMessage: + raise NotImplementedError() + + def invoke_with_reasoning_output(self, *, stream: bool = False) -> AIMessage: + raise NotImplementedError() + + def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: + raise NotImplementedError() + + def invoke_with_cache_creation_input(self, *, stream: bool = False) -> AIMessage: + raise NotImplementedError() diff --git a/libs/standard-tests/langchain_standard_tests/unit_tests/chat_models.py b/libs/standard-tests/langchain_standard_tests/unit_tests/chat_models.py index 1d7444ee4baf0..1321eb6215188 100644 --- a/libs/standard-tests/langchain_standard_tests/unit_tests/chat_models.py +++ b/libs/standard-tests/langchain_standard_tests/unit_tests/chat_models.py @@ -1,15 +1,25 @@ """Unit tests for chat models.""" + import os from abc import abstractmethod -from typing import Any, List, Literal, Optional, Tuple, Type +from typing import Any, Dict, List, Literal, Optional, Tuple, Type from unittest import mock import pytest from langchain_core.language_models import BaseChatModel from langchain_core.load import dumpd, load -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr from langchain_core.runnables import RunnableBinding from langchain_core.tools import tool +from pydantic import BaseModel, Field, SecretStr +from pydantic.v1 import ( + BaseModel as BaseModelV1, +) +from pydantic.v1 import ( + Field as FieldV1, +) +from pydantic.v1 import ( + ValidationError as ValidationErrorV1, +) from syrupy import SnapshotAssertion from langchain_standard_tests.base import BaseStandardTests @@ -27,27 +37,24 @@ def generate_schema_pydantic_v1_from_2() -> Any: """Use to generate a schema from v1 namespace in pydantic 2.""" if PYDANTIC_MAJOR_VERSION != 2: raise AssertionError("This function is only compatible with Pydantic v2.") - from pydantic.v1 import BaseModel, Field - class PersonB(BaseModel): + class PersonB(BaseModelV1): """Record attributes of a person.""" - name: str = Field(..., description="The name of the person.") - age: int = Field(..., description="The age of the person.") + name: str = FieldV1(..., description="The name of the person.") + age: int = FieldV1(..., description="The age of the person.") return PersonB def generate_schema_pydantic() -> Any: """Works with either pydantic 1 or 2""" - from pydantic import BaseModel as BaseModelProper - from pydantic import Field as FieldProper - class PersonA(BaseModelProper): + class PersonA(BaseModel): """Record attributes of a person.""" - name: str = FieldProper(..., description="The name of the person.") - age: int = FieldProper(..., description="The age of the person.") + name: str = Field(..., description="The name of the person.") + age: int = Field(..., description="The age of the person.") return PersonA @@ -127,6 +134,27 @@ def returns_usage_metadata(self) -> bool: def supports_anthropic_inputs(self) -> bool: return False + @property + def supports_image_tool_message(self) -> bool: + return False + + @property + def supported_usage_metadata_details( + self, + ) -> Dict[ + Literal["invoke", "stream"], + List[ + Literal[ + "audio_input", + "audio_output", + "reasoning_output", + "cache_read_input", + "cache_creation_input", + ] + ], + ]: + return {"invoke": [], "stream": []} + class ChatModelUnitTests(ChatModelTests): @property @@ -181,7 +209,12 @@ def test_bind_tool_pydantic( tools = [my_adder_tool, my_adder] for pydantic_model in TEST_PYDANTIC_MODELS: - tools.extend([pydantic_model, pydantic_model.schema()]) + model_schema = ( + pydantic_model.model_json_schema() + if hasattr(pydantic_model, "model_json_schema") + else pydantic_model.schema() + ) + tools.extend([pydantic_model, model_schema]) # Doing a mypy ignore here since some of the tools are from pydantic # BaseModel 2 which isn't typed properly yet. This will need to be fixed @@ -201,9 +234,7 @@ def test_with_structured_output( assert model.with_structured_output(schema) is not None def test_standard_params(self, model: BaseChatModel) -> None: - from langchain_core.pydantic_v1 import BaseModel, ValidationError - - class ExpectedParams(BaseModel): + class ExpectedParams(BaseModelV1): ls_provider: str ls_model_name: str ls_model_type: Literal["chat"] @@ -214,7 +245,7 @@ class ExpectedParams(BaseModel): ls_params = model._get_ls_params() try: ExpectedParams(**ls_params) - except ValidationError as e: + except ValidationErrorV1 as e: pytest.fail(f"Validation error: {e}") # Test optional params @@ -224,7 +255,7 @@ class ExpectedParams(BaseModel): ls_params = model._get_ls_params() try: ExpectedParams(**ls_params) - except ValidationError as e: + except ValidationErrorV1 as e: pytest.fail(f"Validation error: {e}") def test_serdes(self, model: BaseChatModel, snapshot: SnapshotAssertion) -> None: diff --git a/libs/standard-tests/langchain_standard_tests/unit_tests/embeddings.py b/libs/standard-tests/langchain_standard_tests/unit_tests/embeddings.py index 0a6e793c06327..4638af51745be 100644 --- a/libs/standard-tests/langchain_standard_tests/unit_tests/embeddings.py +++ b/libs/standard-tests/langchain_standard_tests/unit_tests/embeddings.py @@ -5,7 +5,7 @@ import pytest from langchain_core.embeddings import Embeddings -from langchain_core.pydantic_v1 import SecretStr +from pydantic import SecretStr from langchain_standard_tests.base import BaseStandardTests diff --git a/libs/standard-tests/poetry.lock b/libs/standard-tests/poetry.lock index bee65170c6c52..67b5fee2313cb 100644 --- a/libs/standard-tests/poetry.lock +++ b/libs/standard-tests/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "annotated-types" @@ -11,9 +11,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -247,15 +244,18 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.8" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false python-versions = ">=3.6" files = [ - {file = "idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac"}, - {file = "idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -294,19 +294,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -319,13 +319,13 @@ url = "../core" [[package]] name = "langsmith" -version = "0.1.111" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.111-py3-none-any.whl", hash = "sha256:e5c702764911193c9812fe55136ae01cd0b9ddf5dff0b068ce6fd60eeddbcb40"}, - {file = "langsmith-0.1.111.tar.gz", hash = "sha256:bab24fd6125685f588d682693c4a3253e163804242829b1ff902e1a3e984a94c"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] @@ -492,18 +492,18 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.1" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.1-py3-none-any.whl", hash = "sha256:7aff4db5fdf3cf573d4b3c30926a510a10e19a0774d38fc4967f78beb6deb612"}, + {file = "pydantic-2.9.1.tar.gz", hash = "sha256:1363c7d975c7036df0db2b4a61f2e062fbc0aa5ab5f2772e0ffc7191a4f4bce2"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.3" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -511,103 +511,104 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.3" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7f10a5d1b9281392f1bf507d16ac720e78285dfd635b05737c3911637601bae6"}, + {file = "pydantic_core-2.23.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c09a7885dd33ee8c65266e5aa7fb7e2f23d49d8043f089989726391dd7350c5"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6470b5a1ec4d1c2e9afe928c6cb37eb33381cab99292a708b8cb9aa89e62429b"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9172d2088e27d9a185ea0a6c8cebe227a9139fd90295221d7d495944d2367700"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86fc6c762ca7ac8fbbdff80d61b2c59fb6b7d144aa46e2d54d9e1b7b0e780e01"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0cb80fd5c2df4898693aa841425ea1727b1b6d2167448253077d2a49003e0ed"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03667cec5daf43ac4995cefa8aaf58f99de036204a37b889c24a80927b629cec"}, + {file = "pydantic_core-2.23.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:047531242f8e9c2db733599f1c612925de095e93c9cc0e599e96cf536aaf56ba"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5499798317fff7f25dbef9347f4451b91ac2a4330c6669821c8202fd354c7bee"}, + {file = "pydantic_core-2.23.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bbb5e45eab7624440516ee3722a3044b83fff4c0372efe183fd6ba678ff681fe"}, + {file = "pydantic_core-2.23.3-cp310-none-win32.whl", hash = "sha256:8b5b3ed73abb147704a6e9f556d8c5cb078f8c095be4588e669d315e0d11893b"}, + {file = "pydantic_core-2.23.3-cp310-none-win_amd64.whl", hash = "sha256:2b603cde285322758a0279995b5796d64b63060bfbe214b50a3ca23b5cee3e83"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:c889fd87e1f1bbeb877c2ee56b63bb297de4636661cc9bbfcf4b34e5e925bc27"}, + {file = "pydantic_core-2.23.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ea85bda3189fb27503af4c45273735bcde3dd31c1ab17d11f37b04877859ef45"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a7f7f72f721223f33d3dc98a791666ebc6a91fa023ce63733709f4894a7dc611"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b2b55b0448e9da68f56b696f313949cda1039e8ec7b5d294285335b53104b61"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c24574c7e92e2c56379706b9a3f07c1e0c7f2f87a41b6ee86653100c4ce343e5"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2b05e6ccbee333a8f4b8f4d7c244fdb7a979e90977ad9c51ea31261e2085ce0"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2c409ce1c219c091e47cb03feb3c4ed8c2b8e004efc940da0166aaee8f9d6c8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d965e8b325f443ed3196db890d85dfebbb09f7384486a77461347f4adb1fa7f8"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f56af3a420fb1ffaf43ece3ea09c2d27c444e7c40dcb7c6e7cf57aae764f2b48"}, + {file = "pydantic_core-2.23.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5b01a078dd4f9a52494370af21aa52964e0a96d4862ac64ff7cea06e0f12d2c5"}, + {file = "pydantic_core-2.23.3-cp311-none-win32.whl", hash = "sha256:560e32f0df04ac69b3dd818f71339983f6d1f70eb99d4d1f8e9705fb6c34a5c1"}, + {file = "pydantic_core-2.23.3-cp311-none-win_amd64.whl", hash = "sha256:c744fa100fdea0d000d8bcddee95213d2de2e95b9c12be083370b2072333a0fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e0ec50663feedf64d21bad0809f5857bac1ce91deded203efc4a84b31b2e4305"}, + {file = "pydantic_core-2.23.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:db6e6afcb95edbe6b357786684b71008499836e91f2a4a1e55b840955b341dbb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98ccd69edcf49f0875d86942f4418a4e83eb3047f20eb897bffa62a5d419c8fa"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a678c1ac5c5ec5685af0133262103defb427114e62eafeda12f1357a12140162"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01491d8b4d8db9f3391d93b0df60701e644ff0894352947f31fff3e52bd5c801"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fcf31facf2796a2d3b7fe338fe8640aa0166e4e55b4cb108dbfd1058049bf4cb"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7200fd561fb3be06827340da066df4311d0b6b8eb0c2116a110be5245dceb326"}, + {file = "pydantic_core-2.23.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dc1636770a809dee2bd44dd74b89cc80eb41172bcad8af75dd0bc182c2666d4c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67a5def279309f2e23014b608c4150b0c2d323bd7bccd27ff07b001c12c2415c"}, + {file = "pydantic_core-2.23.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:748bdf985014c6dd3e1e4cc3db90f1c3ecc7246ff5a3cd4ddab20c768b2f1dab"}, + {file = "pydantic_core-2.23.3-cp312-none-win32.whl", hash = "sha256:255ec6dcb899c115f1e2a64bc9ebc24cc0e3ab097775755244f77360d1f3c06c"}, + {file = "pydantic_core-2.23.3-cp312-none-win_amd64.whl", hash = "sha256:40b8441be16c1e940abebed83cd006ddb9e3737a279e339dbd6d31578b802f7b"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6daaf5b1ba1369a22c8b050b643250e3e5efc6a78366d323294aee54953a4d5f"}, + {file = "pydantic_core-2.23.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d015e63b985a78a3d4ccffd3bdf22b7c20b3bbd4b8227809b3e8e75bc37f9cb2"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3fc572d9b5b5cfe13f8e8a6e26271d5d13f80173724b738557a8c7f3a8a3791"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f6bd91345b5163ee7448bee201ed7dd601ca24f43f439109b0212e296eb5b423"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc379c73fd66606628b866f661e8785088afe2adaba78e6bbe80796baf708a63"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fbdce4b47592f9e296e19ac31667daed8753c8367ebb34b9a9bd89dacaa299c9"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc3cf31edf405a161a0adad83246568647c54404739b614b1ff43dad2b02e6d5"}, + {file = "pydantic_core-2.23.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e22b477bf90db71c156f89a55bfe4d25177b81fce4aa09294d9e805eec13855"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:0a0137ddf462575d9bce863c4c95bac3493ba8e22f8c28ca94634b4a1d3e2bb4"}, + {file = "pydantic_core-2.23.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:203171e48946c3164fe7691fc349c79241ff8f28306abd4cad5f4f75ed80bc8d"}, + {file = "pydantic_core-2.23.3-cp313-none-win32.whl", hash = "sha256:76bdab0de4acb3f119c2a4bff740e0c7dc2e6de7692774620f7452ce11ca76c8"}, + {file = "pydantic_core-2.23.3-cp313-none-win_amd64.whl", hash = "sha256:37ba321ac2a46100c578a92e9a6aa33afe9ec99ffa084424291d84e456f490c1"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d063c6b9fed7d992bcbebfc9133f4c24b7a7f215d6b102f3e082b1117cddb72c"}, + {file = "pydantic_core-2.23.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6cb968da9a0746a0cf521b2b5ef25fc5a0bee9b9a1a8214e0a1cfaea5be7e8a4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:edbefe079a520c5984e30e1f1f29325054b59534729c25b874a16a5048028d16"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cbaaf2ef20d282659093913da9d402108203f7cb5955020bd8d1ae5a2325d1c4"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fb539d7e5dc4aac345846f290cf504d2fd3c1be26ac4e8b5e4c2b688069ff4cf"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e6f33503c5495059148cc486867e1d24ca35df5fc064686e631e314d959ad5b"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04b07490bc2f6f2717b10c3969e1b830f5720b632f8ae2f3b8b1542394c47a8e"}, + {file = "pydantic_core-2.23.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:03795b9e8a5d7fda05f3873efc3f59105e2dcff14231680296b87b80bb327295"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:c483dab0f14b8d3f0df0c6c18d70b21b086f74c87ab03c59250dbf6d3c89baba"}, + {file = "pydantic_core-2.23.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b2682038e255e94baf2c473dca914a7460069171ff5cdd4080be18ab8a7fd6e"}, + {file = "pydantic_core-2.23.3-cp38-none-win32.whl", hash = "sha256:f4a57db8966b3a1d1a350012839c6a0099f0898c56512dfade8a1fe5fb278710"}, + {file = "pydantic_core-2.23.3-cp38-none-win_amd64.whl", hash = "sha256:13dd45ba2561603681a2676ca56006d6dee94493f03d5cadc055d2055615c3ea"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:82da2f4703894134a9f000e24965df73cc103e31e8c31906cc1ee89fde72cbd8"}, + {file = "pydantic_core-2.23.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dd9be0a42de08f4b58a3cc73a123f124f65c24698b95a54c1543065baca8cf0e"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89b731f25c80830c76fdb13705c68fef6a2b6dc494402987c7ea9584fe189f5d"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6de1ec30c4bb94f3a69c9f5f2182baeda5b809f806676675e9ef6b8dc936f28"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb68b41c3fa64587412b104294b9cbb027509dc2f6958446c502638d481525ef"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c3980f2843de5184656aab58698011b42763ccba11c4a8c35936c8dd6c7068c"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94f85614f2cba13f62c3c6481716e4adeae48e1eaa7e8bac379b9d177d93947a"}, + {file = "pydantic_core-2.23.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:510b7fb0a86dc8f10a8bb43bd2f97beb63cffad1203071dc434dac26453955cd"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:1eba2f7ce3e30ee2170410e2171867ea73dbd692433b81a93758ab2de6c64835"}, + {file = "pydantic_core-2.23.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4b259fd8409ab84b4041b7b3f24dcc41e4696f180b775961ca8142b5b21d0e70"}, + {file = "pydantic_core-2.23.3-cp39-none-win32.whl", hash = "sha256:40d9bd259538dba2f40963286009bf7caf18b5112b19d2b55b09c14dde6db6a7"}, + {file = "pydantic_core-2.23.3-cp39-none-win_amd64.whl", hash = "sha256:5a8cd3074a98ee70173a8633ad3c10e00dcb991ecec57263aacb4095c5efb958"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f399e8657c67313476a121a6944311fab377085ca7f490648c9af97fc732732d"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:6b5547d098c76e1694ba85f05b595720d7c60d342f24d5aad32c3049131fa5c4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0dda0290a6f608504882d9f7650975b4651ff91c85673341789a476b1159f211"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65b6e5da855e9c55a0c67f4db8a492bf13d8d3316a59999cfbaf98cc6e401961"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:09e926397f392059ce0afdcac920df29d9c833256354d0c55f1584b0b70cf07e"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:87cfa0ed6b8c5bd6ae8b66de941cece179281239d482f363814d2b986b79cedc"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e61328920154b6a44d98cabcb709f10e8b74276bc709c9a513a8c37a18786cc4"}, + {file = "pydantic_core-2.23.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ce3317d155628301d649fe5e16a99528d5680af4ec7aa70b90b8dacd2d725c9b"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e89513f014c6be0d17b00a9a7c81b1c426f4eb9224b15433f3d98c1a071f8433"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:4f62c1c953d7ee375df5eb2e44ad50ce2f5aff931723b398b8bc6f0ac159791a"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2718443bc671c7ac331de4eef9b673063b10af32a0bb385019ad61dcf2cc8f6c"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0d90e08b2727c5d01af1b5ef4121d2f0c99fbee692c762f4d9d0409c9da6541"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b676583fc459c64146debea14ba3af54e540b61762dfc0613dc4e98c3f66eeb"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:50e4661f3337977740fdbfbae084ae5693e505ca2b3130a6d4eb0f2281dc43b8"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:68f4cf373f0de6abfe599a38307f4417c1c867ca381c03df27c873a9069cda25"}, + {file = "pydantic_core-2.23.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:59d52cf01854cb26c46958552a21acb10dd78a52aa34c86f284e66b209db8cab"}, + {file = "pydantic_core-2.23.3.tar.gz", hash = "sha256:3cb0f65d8b4121c1b015c60104a685feb929a29d7cf204387c7f2688c7974690"}, ] [package.dependencies] @@ -615,13 +616,13 @@ typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" [[package]] name = "pytest" -version = "8.3.2" +version = "8.3.3" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.8" files = [ - {file = "pytest-8.3.2-py3-none-any.whl", hash = "sha256:4ba08f9ae7dcf84ded419494d229b48d0903ea6407b030eaec46df5e6a73bba5"}, - {file = "pytest-8.3.2.tar.gz", hash = "sha256:c132345d12ce551242c87269de812483f5bcc87cdbb4722e48487ba194f9fdce"}, + {file = "pytest-8.3.3-py3-none-any.whl", hash = "sha256:a6853c7375b2663155079443d2e45de913a911a11d669df02a50814944db57b2"}, + {file = "pytest-8.3.3.tar.gz", hash = "sha256:70b98107bd648308a7952b06e6ca9a50bc660be218d53c257cc1fc94fda10181"}, ] [package.dependencies] @@ -826,13 +827,13 @@ files = [ [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -843,5 +844,5 @@ zstd = ["zstandard (>=0.18.0)"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "116b117030bb7084399b2157a0b2b8fa5facffd53df8a5f7dea62263cd18349b" +python-versions = ">=3.9,<4.0" +content-hash = "ba5e8730ffc3c7a10aded2e9625abaa51299be5b5f499d946b1ccb8f78341eb7" diff --git a/libs/standard-tests/pyproject.toml b/libs/standard-tests/pyproject.toml index 9e9693d413e19..9c3201688a706 100644 --- a/libs/standard-tests/pyproject.toml +++ b/libs/standard-tests/pyproject.toml @@ -11,8 +11,8 @@ license = "MIT" "Source Code" = "https://github.com/langchain-ai/langchain/tree/master/libs/standard-tests" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = ">=0.1.40,<0.3" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" pytest = ">=7,<9" httpx = "^0.27.0" syrupy = "^4" @@ -47,10 +47,10 @@ langchain-core = { path = "../core", develop = true } [tool.ruff.lint] select = [ - "E", # pycodestyle - "F", # pyflakes - "I", # isort - "T201", # print + "E", # pycodestyle + "F", # pyflakes + "I", # isort + "T201", # print ] [tool.mypy] @@ -82,4 +82,3 @@ markers = [ "compile: mark placeholder test used to compile integration tests without running them", ] asyncio_mode = "auto" - diff --git a/libs/standard-tests/scripts/check_pydantic.sh b/libs/standard-tests/scripts/check_pydantic.sh deleted file mode 100755 index 941fa6b1f4d49..0000000000000 --- a/libs/standard-tests/scripts/check_pydantic.sh +++ /dev/null @@ -1,31 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$( - git -C "$repository_path" grep -E '^[[:space:]]*import pydantic|^[[:space:]]*from pydantic' \ - -- ':!langchain_core/pydantic_*' ':!langchain_core/utils' | grep -v 'pydantic: ignore' -) - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - echo "If this was intentional, you can add # pydantic: ignore after the import to ignore this error." - exit 1 -fi diff --git a/libs/text-splitters/Makefile b/libs/text-splitters/Makefile index f141777e3687a..53762e9121c96 100644 --- a/libs/text-splitters/Makefile +++ b/libs/text-splitters/Makefile @@ -39,7 +39,6 @@ lint_tests: PYTHON_FILES=tests lint_tests: MYPY_CACHE=.mypy_cache_test lint lint_diff lint_package lint_tests: - ./scripts/check_pydantic.sh . ./scripts/lint_imports.sh [ "$(PYTHON_FILES)" = "" ] || poetry run ruff check $(PYTHON_FILES) [ "$(PYTHON_FILES)" = "" ] || poetry run ruff format $(PYTHON_FILES) --diff diff --git a/libs/text-splitters/langchain_text_splitters/__init__.py b/libs/text-splitters/langchain_text_splitters/__init__.py index df147d7c667eb..58ad7b0e4c585 100644 --- a/libs/text-splitters/langchain_text_splitters/__init__.py +++ b/libs/text-splitters/langchain_text_splitters/__init__.py @@ -39,6 +39,7 @@ from langchain_text_splitters.konlpy import KonlpyTextSplitter from langchain_text_splitters.latex import LatexTextSplitter from langchain_text_splitters.markdown import ( + ExperimentalMarkdownSyntaxTextSplitter, HeaderType, LineType, MarkdownHeaderTextSplitter, @@ -73,4 +74,5 @@ "MarkdownHeaderTextSplitter", "MarkdownTextSplitter", "CharacterTextSplitter", + "ExperimentalMarkdownSyntaxTextSplitter", ] diff --git a/libs/text-splitters/poetry.lock b/libs/text-splitters/poetry.lock index 67fb7ab1fd652..07e01c0c3f216 100644 --- a/libs/text-splitters/poetry.lock +++ b/libs/text-splitters/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "annotated-types" @@ -11,9 +11,6 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" version = "4.4.0" @@ -185,23 +182,9 @@ files = [ {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, ] -[package.dependencies] -pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} - [package.extras] dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - [[package]] name = "beautifulsoup4" version = "4.12.3" @@ -285,10 +268,7 @@ files = [ ] [package.dependencies] -numpy = [ - {version = ">=1.15.0", markers = "python_version < \"3.9\""}, - {version = ">=1.19.0", markers = "python_version >= \"3.9\""}, -] +numpy = {version = ">=1.19.0", markers = "python_version >= \"3.9\""} [[package]] name = "catalogue" @@ -314,78 +294,78 @@ files = [ [[package]] name = "cffi" -version = "1.17.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -827,28 +807,6 @@ doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linke perf = ["ipython"] test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] -[[package]] -name = "importlib-resources" -version = "6.4.4" -description = "Read resources from Python packages" -optional = false -python-versions = ">=3.8" -files = [ - {file = "importlib_resources-6.4.4-py3-none-any.whl", hash = "sha256:dda242603d1c9cd836c3368b1174ed74cb4049ecd209e7a1a0104620c18c5c11"}, - {file = "importlib_resources-6.4.4.tar.gz", hash = "sha256:20600c8b7361938dc0bb2d5ec0297802e575df486f5a544fa414da65e13721f7"}, -] - -[package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} - -[package.extras] -check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] -cover = ["pytest-cov"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -enabler = ["pytest-enabler (>=2.2)"] -test = ["jaraco.test (>=5.4)", "pytest (>=6,!=8.1.*)", "zipp (>=3.17)"] -type = ["pytest-mypy"] - [[package]] name = "iniconfig" version = "2.0.0" @@ -895,42 +853,40 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.12.3" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "ipywidgets" @@ -1054,11 +1010,9 @@ files = [ attrs = ">=22.2.0" fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} jsonschema-specifications = ">=2023.03.6" -pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} referencing = ">=0.28.4" rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} @@ -1082,7 +1036,6 @@ files = [ ] [package.dependencies] -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} referencing = ">=0.31.0" [[package]] @@ -1281,7 +1234,6 @@ files = [ async-lru = ">=1.0.0" httpx = ">=0.25.0" importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} -importlib-resources = {version = ">=1.4", markers = "python_version < \"3.9\""} ipykernel = ">=6.5.0" jinja2 = ">=3.0.3" jupyter-core = "*" @@ -1352,19 +1304,19 @@ files = [ [[package]] name = "langchain-core" -version = "0.2.38" +version = "0.3.0" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.117" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -1395,13 +1347,13 @@ test = ["pytest", "pytest-cov"] [[package]] name = "langsmith" -version = "0.1.110" +version = "0.1.120" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.110-py3-none-any.whl", hash = "sha256:316d279e3853f5e90e462f9c035eeb468d042f2a21a269c1102d65f3dccdc334"}, - {file = "langsmith-0.1.110.tar.gz", hash = "sha256:9a619dfe22a67a05a05091f0677b9c842499faec5f051b31afcd901b6627d0a3"}, + {file = "langsmith-0.1.120-py3-none-any.whl", hash = "sha256:54d2785e301646c0988e0a69ebe4d976488c87b41928b358cb153b6ddd8db62b"}, + {file = "langsmith-0.1.120.tar.gz", hash = "sha256:25499ca187b41bd89d784b272b97a8d76f60e0e21bdf20336e8a2aa6a9b23ac9"}, ] [package.dependencies] @@ -1909,43 +1861,6 @@ jupyter-server = ">=1.8,<3" [package.extras] test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -2119,28 +2034,6 @@ files = [ [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - -[[package]] -name = "pkgutil-resolve-name" -version = "1.3.10" -description = "Resolve a name to an object." -optional = false -python-versions = ">=3.6" -files = [ - {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, - {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, -] - [[package]] name = "platformdirs" version = "4.2.2" @@ -2313,122 +2206,123 @@ files = [ [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.0" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.0-py3-none-any.whl", hash = "sha256:f66a7073abd93214a20c5f7b32d56843137a7a2e70d02111f3be287035c45370"}, + {file = "pydantic-2.9.0.tar.gz", hash = "sha256:c7a8a9fdf7d100afa49647eae340e2d23efa382466a8d177efcd1381e9be5598"}, ] [package.dependencies] annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +pydantic-core = "2.23.2" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, ] +tzdata = {version = "*", markers = "python_version >= \"3.9\""} [package.extras] email = ["email-validator (>=2.0.0)"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.2" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7d0324a35ab436c9d768753cbc3c47a865a2cbc0757066cb864747baa61f6ece"}, + {file = "pydantic_core-2.23.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:276ae78153a94b664e700ac362587c73b84399bd1145e135287513442e7dfbc7"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:964c7aa318da542cdcc60d4a648377ffe1a2ef0eb1e996026c7f74507b720a78"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1cf842265a3a820ebc6388b963ead065f5ce8f2068ac4e1c713ef77a67b71f7c"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae90b9e50fe1bd115b24785e962b51130340408156d34d67b5f8f3fa6540938e"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ae65fdfb8a841556b52935dfd4c3f79132dc5253b12c0061b96415208f4d622"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c8aa40f6ca803f95b1c1c5aeaee6237b9e879e4dfb46ad713229a63651a95fb"}, + {file = "pydantic_core-2.23.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c53100c8ee5a1e102766abde2158077d8c374bee0639201f11d3032e3555dfbc"}, + {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d6b9dd6aa03c812017411734e496c44fef29b43dba1e3dd1fa7361bbacfc1354"}, + {file = "pydantic_core-2.23.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b18cf68255a476b927910c6873d9ed00da692bb293c5b10b282bd48a0afe3ae2"}, + {file = "pydantic_core-2.23.2-cp310-none-win32.whl", hash = "sha256:e460475719721d59cd54a350c1f71c797c763212c836bf48585478c5514d2854"}, + {file = "pydantic_core-2.23.2-cp310-none-win_amd64.whl", hash = "sha256:5f3cf3721eaf8741cffaf092487f1ca80831202ce91672776b02b875580e174a"}, + {file = "pydantic_core-2.23.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:7ce8e26b86a91e305858e018afc7a6e932f17428b1eaa60154bd1f7ee888b5f8"}, + {file = "pydantic_core-2.23.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7e9b24cca4037a561422bf5dc52b38d390fb61f7bfff64053ce1b72f6938e6b2"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:753294d42fb072aa1775bfe1a2ba1012427376718fa4c72de52005a3d2a22178"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:257d6a410a0d8aeb50b4283dea39bb79b14303e0fab0f2b9d617701331ed1515"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c8319e0bd6a7b45ad76166cc3d5d6a36c97d0c82a196f478c3ee5346566eebfd"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7a05c0240f6c711eb381ac392de987ee974fa9336071fb697768dfdb151345ce"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d5b0ff3218858859910295df6953d7bafac3a48d5cd18f4e3ed9999efd2245f"}, + {file = "pydantic_core-2.23.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:96ef39add33ff58cd4c112cbac076726b96b98bb8f1e7f7595288dcfb2f10b57"}, + {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0102e49ac7d2df3379ef8d658d3bc59d3d769b0bdb17da189b75efa861fc07b4"}, + {file = "pydantic_core-2.23.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a6612c2a844043e4d10a8324c54cdff0042c558eef30bd705770793d70b224aa"}, + {file = "pydantic_core-2.23.2-cp311-none-win32.whl", hash = "sha256:caffda619099cfd4f63d48462f6aadbecee3ad9603b4b88b60cb821c1b258576"}, + {file = "pydantic_core-2.23.2-cp311-none-win_amd64.whl", hash = "sha256:6f80fba4af0cb1d2344869d56430e304a51396b70d46b91a55ed4959993c0589"}, + {file = "pydantic_core-2.23.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c83c64d05ffbbe12d4e8498ab72bdb05bcc1026340a4a597dc647a13c1605ec"}, + {file = "pydantic_core-2.23.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6294907eaaccf71c076abdd1c7954e272efa39bb043161b4b8aa1cd76a16ce43"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a801c5e1e13272e0909c520708122496647d1279d252c9e6e07dac216accc41"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cc0c316fba3ce72ac3ab7902a888b9dc4979162d320823679da270c2d9ad0cad"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b06c5d4e8701ac2ba99a2ef835e4e1b187d41095a9c619c5b185c9068ed2a49"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82764c0bd697159fe9947ad59b6db6d7329e88505c8f98990eb07e84cc0a5d81"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b1a195efd347ede8bcf723e932300292eb13a9d2a3c1f84eb8f37cbbc905b7f"}, + {file = "pydantic_core-2.23.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7efb12e5071ad8d5b547487bdad489fbd4a5a35a0fc36a1941517a6ad7f23e0"}, + {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5dd0ec5f514ed40e49bf961d49cf1bc2c72e9b50f29a163b2cc9030c6742aa73"}, + {file = "pydantic_core-2.23.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:820f6ee5c06bc868335e3b6e42d7ef41f50dfb3ea32fbd523ab679d10d8741c0"}, + {file = "pydantic_core-2.23.2-cp312-none-win32.whl", hash = "sha256:3713dc093d5048bfaedbba7a8dbc53e74c44a140d45ede020dc347dda18daf3f"}, + {file = "pydantic_core-2.23.2-cp312-none-win_amd64.whl", hash = "sha256:e1895e949f8849bc2757c0dbac28422a04be031204df46a56ab34bcf98507342"}, + {file = "pydantic_core-2.23.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:da43cbe593e3c87d07108d0ebd73771dc414488f1f91ed2e204b0370b94b37ac"}, + {file = "pydantic_core-2.23.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:64d094ea1aa97c6ded4748d40886076a931a8bf6f61b6e43e4a1041769c39dd2"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084414ffe9a85a52940b49631321d636dadf3576c30259607b75516d131fecd0"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:043ef8469f72609c4c3a5e06a07a1f713d53df4d53112c6d49207c0bd3c3bd9b"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3649bd3ae6a8ebea7dc381afb7f3c6db237fc7cebd05c8ac36ca8a4187b03b30"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6db09153d8438425e98cdc9a289c5fade04a5d2128faff8f227c459da21b9703"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5668b3173bb0b2e65020b60d83f5910a7224027232c9f5dc05a71a1deac9f960"}, + {file = "pydantic_core-2.23.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1c7b81beaf7c7ebde978377dc53679c6cba0e946426fc7ade54251dfe24a7604"}, + {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:ae579143826c6f05a361d9546446c432a165ecf1c0b720bbfd81152645cb897d"}, + {file = "pydantic_core-2.23.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:19f1352fe4b248cae22a89268720fc74e83f008057a652894f08fa931e77dced"}, + {file = "pydantic_core-2.23.2-cp313-none-win32.whl", hash = "sha256:e1a79ad49f346aa1a2921f31e8dbbab4d64484823e813a002679eaa46cba39e1"}, + {file = "pydantic_core-2.23.2-cp313-none-win_amd64.whl", hash = "sha256:582871902e1902b3c8e9b2c347f32a792a07094110c1bca6c2ea89b90150caac"}, + {file = "pydantic_core-2.23.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:743e5811b0c377eb830150d675b0847a74a44d4ad5ab8845923d5b3a756d8100"}, + {file = "pydantic_core-2.23.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6650a7bbe17a2717167e3e23c186849bae5cef35d38949549f1c116031b2b3aa"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56e6a12ec8d7679f41b3750ffa426d22b44ef97be226a9bab00a03365f217b2b"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:810ca06cca91de9107718dc83d9ac4d2e86efd6c02cba49a190abcaf33fb0472"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:785e7f517ebb9890813d31cb5d328fa5eda825bb205065cde760b3150e4de1f7"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ef71ec876fcc4d3bbf2ae81961959e8d62f8d74a83d116668409c224012e3af"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d50ac34835c6a4a0d456b5db559b82047403c4317b3bc73b3455fefdbdc54b0a"}, + {file = "pydantic_core-2.23.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:16b25a4a120a2bb7dab51b81e3d9f3cde4f9a4456566c403ed29ac81bf49744f"}, + {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:41ae8537ad371ec018e3c5da0eb3f3e40ee1011eb9be1da7f965357c4623c501"}, + {file = "pydantic_core-2.23.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:07049ec9306ec64e955b2e7c40c8d77dd78ea89adb97a2013d0b6e055c5ee4c5"}, + {file = "pydantic_core-2.23.2-cp38-none-win32.whl", hash = "sha256:086c5db95157dc84c63ff9d96ebb8856f47ce113c86b61065a066f8efbe80acf"}, + {file = "pydantic_core-2.23.2-cp38-none-win_amd64.whl", hash = "sha256:67b6655311b00581914aba481729971b88bb8bc7996206590700a3ac85e457b8"}, + {file = "pydantic_core-2.23.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:358331e21a897151e54d58e08d0219acf98ebb14c567267a87e971f3d2a3be59"}, + {file = "pydantic_core-2.23.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c4d9f15ffe68bcd3898b0ad7233af01b15c57d91cd1667f8d868e0eacbfe3f87"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0123655fedacf035ab10c23450163c2f65a4174f2bb034b188240a6cf06bb123"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e6e3ccebdbd6e53474b0bb7ab8b88e83c0cfe91484b25e058e581348ee5a01a5"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc535cb898ef88333cf317777ecdfe0faac1c2a3187ef7eb061b6f7ecf7e6bae"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aab9e522efff3993a9e98ab14263d4e20211e62da088298089a03056980a3e69"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05b366fb8fe3d8683b11ac35fa08947d7b92be78ec64e3277d03bd7f9b7cda79"}, + {file = "pydantic_core-2.23.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7568f682c06f10f30ef643a1e8eec4afeecdafde5c4af1b574c6df079e96f96c"}, + {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:cdd02a08205dc90238669f082747612cb3c82bd2c717adc60f9b9ecadb540f80"}, + {file = "pydantic_core-2.23.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:1a2ab4f410f4b886de53b6bddf5dd6f337915a29dd9f22f20f3099659536b2f6"}, + {file = "pydantic_core-2.23.2-cp39-none-win32.whl", hash = "sha256:0448b81c3dfcde439551bb04a9f41d7627f676b12701865c8a2574bcea034437"}, + {file = "pydantic_core-2.23.2-cp39-none-win_amd64.whl", hash = "sha256:4cebb9794f67266d65e7e4cbe5dcf063e29fc7b81c79dc9475bd476d9534150e"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e758d271ed0286d146cf7c04c539a5169a888dd0b57026be621547e756af55bc"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f477d26183e94eaafc60b983ab25af2a809a1b48ce4debb57b343f671b7a90b6"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da3131ef2b940b99106f29dfbc30d9505643f766704e14c5d5e504e6a480c35e"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329a721253c7e4cbd7aad4a377745fbcc0607f9d72a3cc2102dd40519be75ed2"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7706e15cdbf42f8fab1e6425247dfa98f4a6f8c63746c995d6a2017f78e619ae"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e64ffaf8f6e17ca15eb48344d86a7a741454526f3a3fa56bc493ad9d7ec63936"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:dd59638025160056687d598b054b64a79183f8065eae0d3f5ca523cde9943940"}, + {file = "pydantic_core-2.23.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:12625e69b1199e94b0ae1c9a95d000484ce9f0182f9965a26572f054b1537e44"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d813fd871b3d5c3005157622ee102e8908ad6011ec915a18bd8fde673c4360e"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1eb37f7d6a8001c0f86dc8ff2ee8d08291a536d76e49e78cda8587bb54d8b329"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ce7eaf9a98680b4312b7cebcdd9352531c43db00fca586115845df388f3c465"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f087879f1ffde024dd2788a30d55acd67959dcf6c431e9d3682d1c491a0eb474"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ce883906810b4c3bd90e0ada1f9e808d9ecf1c5f0b60c6b8831d6100bcc7dd6"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a8031074a397a5925d06b590121f8339d34a5a74cfe6970f8a1124eb8b83f4ac"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:23af245b8f2f4ee9e2c99cb3f93d0e22fb5c16df3f2f643f5a8da5caff12a653"}, + {file = "pydantic_core-2.23.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c57e493a0faea1e4c38f860d6862ba6832723396c884fbf938ff5e9b224200e2"}, + {file = "pydantic_core-2.23.2.tar.gz", hash = "sha256:95d6bf449a1ac81de562d65d180af5d8c19672793c81877a2eda8fde5d08f2fd"}, ] [package.dependencies] @@ -2564,17 +2458,6 @@ files = [ {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, ] -[[package]] -name = "pytz" -version = "2024.1" -description = "World timezone definitions, modern and historical" -optional = false -python-versions = "*" -files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, -] - [[package]] name = "pywin32" version = "306" @@ -2959,7 +2842,6 @@ files = [ [package.dependencies] markdown-it-py = ">=2.2.0" pygments = ">=2.13.0,<3.0.0" -typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""} [package.extras] jupyter = ["ipywidgets (>=7.5.1,<9)"] @@ -3121,13 +3003,13 @@ win32 = ["pywin32"] [[package]] name = "setuptools" -version = "74.1.1" +version = "74.1.2" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-74.1.1-py3-none-any.whl", hash = "sha256:fc91b5f89e392ef5b77fe143b17e32f65d3024744fba66dc3afe07201684d766"}, - {file = "setuptools-74.1.1.tar.gz", hash = "sha256:2353af060c06388be1cecbf5953dcdb1f38362f87a2356c480b6b4d5fcfc8847"}, + {file = "setuptools-74.1.2-py3-none-any.whl", hash = "sha256:5f4c08aa4d3ebcb57a50c33b1b07e94315d7fc7230f7115e47fc99776c8ce308"}, + {file = "setuptools-74.1.2.tar.gz", hash = "sha256:95b40ed940a1c67eb70fc099094bd6e99c6ee7c23aa2306f4d2697ba7916f9c6"}, ] [package.extras] @@ -3240,10 +3122,7 @@ cymem = ">=2.0.2,<2.1.0" jinja2 = "*" langcodes = ">=3.2.0,<4.0.0" murmurhash = ">=0.28.0,<1.1.0" -numpy = [ - {version = ">=1.15.0", markers = "python_version < \"3.9\""}, - {version = ">=1.19.0", markers = "python_version >= \"3.9\""}, -] +numpy = {version = ">=1.19.0", markers = "python_version >= \"3.9\""} packaging = ">=20.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<3.0.0" @@ -3444,10 +3323,7 @@ catalogue = ">=2.0.4,<2.1.0" confection = ">=0.0.1,<1.0.0" cymem = ">=2.0.2,<2.1.0" murmurhash = ">=1.0.2,<1.1.0" -numpy = [ - {version = ">=1.15.0,<2.0.0", markers = "python_version < \"3.9\""}, - {version = ">=1.19.0,<2.0.0", markers = "python_version >= \"3.9\""}, -] +numpy = {version = ">=1.19.0,<2.0.0", markers = "python_version >= \"3.9\""} packaging = ">=20.0" preshed = ">=3.0.2,<3.1.0" pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<3.0.0" @@ -3635,24 +3511,24 @@ typing-extensions = ">=3.7.4.3" [[package]] name = "types-python-dateutil" -version = "2.9.0.20240821" +version = "2.9.0.20240906" description = "Typing stubs for python-dateutil" optional = false python-versions = ">=3.8" files = [ - {file = "types-python-dateutil-2.9.0.20240821.tar.gz", hash = "sha256:9649d1dcb6fef1046fb18bebe9ea2aa0028b160918518c34589a46045f6ebd98"}, - {file = "types_python_dateutil-2.9.0.20240821-py3-none-any.whl", hash = "sha256:f5889fcb4e63ed4aaa379b44f93c32593d50b9a94c9a60a0c854d8cc3511cd57"}, + {file = "types-python-dateutil-2.9.0.20240906.tar.gz", hash = "sha256:9706c3b68284c25adffc47319ecc7947e5bb86b3773f843c73906fd598bc176e"}, + {file = "types_python_dateutil-2.9.0.20240906-py3-none-any.whl", hash = "sha256:27c8cc2d058ccb14946eebcaaa503088f4f6dbc4fb6093d3d456a49aef2753f6"}, ] [[package]] name = "types-requests" -version = "2.32.0.20240712" +version = "2.32.0.20240905" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240712.tar.gz", hash = "sha256:90c079ff05e549f6bf50e02e910210b98b8ff1ebdd18e19c873cd237737c1358"}, - {file = "types_requests-2.32.0.20240712-py3-none-any.whl", hash = "sha256:f754283e152c752e46e70942fa2a146b5bc70393522257bb85bd1ef7e019dcc3"}, + {file = "types-requests-2.32.0.20240905.tar.gz", hash = "sha256:e97fd015a5ed982c9ddcd14cc4afba9d111e0e06b797c8f776d14602735e9bd6"}, + {file = "types_requests-2.32.0.20240905-py3-none-any.whl", hash = "sha256:f46ecb55f5e1a37a58be684cf3f013f166da27552732ef2469a0cc8e62a72881"}, ] [package.dependencies] @@ -3669,6 +3545,17 @@ files = [ {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, ] +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, +] + [[package]] name = "uri-template" version = "1.3.0" @@ -3716,46 +3603,41 @@ colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\" and python [[package]] name = "watchdog" -version = "4.0.2" +version = "5.0.2" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:ede7f010f2239b97cc79e6cb3c249e72962404ae3865860855d5cbe708b0fd22"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a2cffa171445b0efa0726c561eca9a27d00a1f2b83846dbd5a4f639c4f8ca8e1"}, - {file = "watchdog-4.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50f148b31b03fbadd6d0b5980e38b558046b127dc483e5e4505fcef250f9503"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7c7d4bf585ad501c5f6c980e7be9c4f15604c7cc150e942d82083b31a7548930"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:914285126ad0b6eb2258bbbcb7b288d9dfd655ae88fa28945be05a7b475a800b"}, - {file = "watchdog-4.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:984306dc4720da5498b16fc037b36ac443816125a3705dfde4fd90652d8028ef"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:1cdcfd8142f604630deef34722d695fb455d04ab7cfe9963055df1fc69e6727a"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7ab624ff2f663f98cd03c8b7eedc09375a911794dfea6bf2a359fcc266bff29"}, - {file = "watchdog-4.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:132937547a716027bd5714383dfc40dc66c26769f1ce8a72a859d6a48f371f3a"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:cd67c7df93eb58f360c43802acc945fa8da70c675b6fa37a241e17ca698ca49b"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcfd02377be80ef3b6bc4ce481ef3959640458d6feaae0bd43dd90a43da90a7d"}, - {file = "watchdog-4.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:980b71510f59c884d684b3663d46e7a14b457c9611c481e5cef08f4dd022eed7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:aa160781cafff2719b663c8a506156e9289d111d80f3387cf3af49cedee1f040"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f6ee8dedd255087bc7fe82adf046f0b75479b989185fb0bdf9a98b612170eac7"}, - {file = "watchdog-4.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0b4359067d30d5b864e09c8597b112fe0a0a59321a0f331498b013fb097406b4"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:770eef5372f146997638d737c9a3c597a3b41037cfbc5c41538fc27c09c3a3f9"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:eeea812f38536a0aa859972d50c76e37f4456474b02bd93674d1947cf1e39578"}, - {file = "watchdog-4.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c45f6e1e57ebb4687690c05bc3a2c1fb6ab260550c4290b8abb1335e0fd08b"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:10b6683df70d340ac3279eff0b2766813f00f35a1d37515d2c99959ada8f05fa"}, - {file = "watchdog-4.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f7c739888c20f99824f7aa9d31ac8a97353e22d0c0e54703a547a218f6637eb3"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c100d09ac72a8a08ddbf0629ddfa0b8ee41740f9051429baa8e31bb903ad7508"}, - {file = "watchdog-4.0.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f5315a8c8dd6dd9425b974515081fc0aadca1d1d61e078d2246509fd756141ee"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2d468028a77b42cc685ed694a7a550a8d1771bb05193ba7b24006b8241a571a1"}, - {file = "watchdog-4.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f15edcae3830ff20e55d1f4e743e92970c847bcddc8b7509bcd172aa04de506e"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:936acba76d636f70db8f3c66e76aa6cb5136a936fc2a5088b9ce1c7a3508fc83"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:e252f8ca942a870f38cf785aef420285431311652d871409a64e2a0a52a2174c"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:0e83619a2d5d436a7e58a1aea957a3c1ccbf9782c43c0b4fed80580e5e4acd1a"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:88456d65f207b39f1981bf772e473799fcdc10801062c36fd5ad9f9d1d463a73"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:32be97f3b75693a93c683787a87a0dc8db98bb84701539954eef991fb35f5fbc"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:c82253cfc9be68e3e49282831afad2c1f6593af80c0daf1287f6a92657986757"}, - {file = "watchdog-4.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c0b14488bd336c5b1845cee83d3e631a1f8b4e9c5091ec539406e4a324f882d8"}, - {file = "watchdog-4.0.2-py3-none-win32.whl", hash = "sha256:0d8a7e523ef03757a5aa29f591437d64d0d894635f8a50f370fe37f913ce4e19"}, - {file = "watchdog-4.0.2-py3-none-win_amd64.whl", hash = "sha256:c344453ef3bf875a535b0488e3ad28e341adbd5a9ffb0f7d62cefacc8824ef2b"}, - {file = "watchdog-4.0.2-py3-none-win_ia64.whl", hash = "sha256:baececaa8edff42cd16558a639a9b0ddf425f93d892e8392a56bf904f5eff22c"}, - {file = "watchdog-4.0.2.tar.gz", hash = "sha256:b4dfbb6c49221be4535623ea4474a4d6ee0a9cef4a80b20c28db4d858b64e270"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d961f4123bb3c447d9fcdcb67e1530c366f10ab3a0c7d1c0c9943050936d4877"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72990192cb63872c47d5e5fefe230a401b87fd59d257ee577d61c9e5564c62e5"}, + {file = "watchdog-5.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6bec703ad90b35a848e05e1b40bf0050da7ca28ead7ac4be724ae5ac2653a1a0"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:dae7a1879918f6544201d33666909b040a46421054a50e0f773e0d870ed7438d"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c4a440f725f3b99133de610bfec93d570b13826f89616377715b9cd60424db6e"}, + {file = "watchdog-5.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8b2918c19e0d48f5f20df458c84692e2a054f02d9df25e6c3c930063eca64c1"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aa9cd6e24126d4afb3752a3e70fce39f92d0e1a58a236ddf6ee823ff7dba28ee"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f627c5bf5759fdd90195b0c0431f99cff4867d212a67b384442c51136a098ed7"}, + {file = "watchdog-5.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7594a6d32cda2b49df3fd9abf9b37c8d2f3eab5df45c24056b4a671ac661619"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba32efcccfe2c58f4d01115440d1672b4eb26cdd6fc5b5818f1fb41f7c3e1889"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:963f7c4c91e3f51c998eeff1b3fb24a52a8a34da4f956e470f4b068bb47b78ee"}, + {file = "watchdog-5.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:8c47150aa12f775e22efff1eee9f0f6beee542a7aa1a985c271b1997d340184f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:14dd4ed023d79d1f670aa659f449bcd2733c33a35c8ffd88689d9d243885198b"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b84bff0391ad4abe25c2740c7aec0e3de316fdf7764007f41e248422a7760a7f"}, + {file = "watchdog-5.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3e8d5ff39f0a9968952cce548e8e08f849141a4fcc1290b1c17c032ba697b9d7"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fb223456db6e5f7bd9bbd5cd969f05aae82ae21acc00643b60d81c770abd402b"}, + {file = "watchdog-5.0.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9814adb768c23727a27792c77812cf4e2fd9853cd280eafa2bcfa62a99e8bd6e"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:901ee48c23f70193d1a7bc2d9ee297df66081dd5f46f0ca011be4f70dec80dab"}, + {file = "watchdog-5.0.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:638bcca3d5b1885c6ec47be67bf712b00a9ab3d4b22ec0881f4889ad870bc7e8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5597c051587f8757798216f2485e85eac583c3b343e9aa09127a3a6f82c65ee8"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_armv7l.whl", hash = "sha256:53ed1bf71fcb8475dd0ef4912ab139c294c87b903724b6f4a8bd98e026862e6d"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_i686.whl", hash = "sha256:29e4a2607bd407d9552c502d38b45a05ec26a8e40cc7e94db9bb48f861fa5abc"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64.whl", hash = "sha256:b6dc8f1d770a8280997e4beae7b9a75a33b268c59e033e72c8a10990097e5fde"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:d2ab34adc9bf1489452965cdb16a924e97d4452fcf88a50b21859068b50b5c3b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:7d1aa7e4bb0f0c65a1a91ba37c10e19dabf7eaaa282c5787e51371f090748f4b"}, + {file = "watchdog-5.0.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:726eef8f8c634ac6584f86c9c53353a010d9f311f6c15a034f3800a7a891d941"}, + {file = "watchdog-5.0.2-py3-none-win32.whl", hash = "sha256:bda40c57115684d0216556671875e008279dea2dc00fcd3dde126ac8e0d7a2fb"}, + {file = "watchdog-5.0.2-py3-none-win_amd64.whl", hash = "sha256:d010be060c996db725fbce7e3ef14687cdcc76f4ca0e4339a68cc4532c382a73"}, + {file = "watchdog-5.0.2-py3-none-win_ia64.whl", hash = "sha256:3960136b2b619510569b90f0cd96408591d6c251a75c97690f4553ca88889769"}, + {file = "watchdog-5.0.2.tar.gz", hash = "sha256:dcebf7e475001d2cdeb020be630dc5b687e9acdd60d16fea6bb4508e7b94cf76"}, ] [package.extras] @@ -3947,5 +3829,5 @@ type = ["pytest-mypy"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "24740c1e1905b083ea4a58bcb38a15305fcc12e2864b61b0e3f93ebbbbc03149" +python-versions = ">=3.9,<4.0" +content-hash = "e68f3e7fd161d5982616fa33a1cfcdd79ee0ade42ab0012ba4402f3ad2256621" diff --git a/libs/text-splitters/pyproject.toml b/libs/text-splitters/pyproject.toml index 5440426047c62..8e74a32429c50 100644 --- a/libs/text-splitters/pyproject.toml +++ b/libs/text-splitters/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api" [tool.poetry] name = "langchain-text-splitters" -version = "0.2.4" +version = "0.3.0" description = "LangChain text splitting utilities" authors = [] license = "MIT" @@ -22,8 +22,8 @@ ignore_missing_imports = "True" "Release Notes" = "https://github.com/langchain-ai/langchain/releases?q=tag%3A%22langchain-text-splitters%3D%3D0%22&expanded=true" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" -langchain-core = "^0.2.38" +python = ">=3.9,<4.0" +langchain-core = "^0.3.0" [tool.ruff.lint] select = [ "E", "F", "I", "T201",] diff --git a/libs/text-splitters/scripts/check_pydantic.sh b/libs/text-splitters/scripts/check_pydantic.sh deleted file mode 100755 index 06b5bb81ae236..0000000000000 --- a/libs/text-splitters/scripts/check_pydantic.sh +++ /dev/null @@ -1,27 +0,0 @@ -#!/bin/bash -# -# This script searches for lines starting with "import pydantic" or "from pydantic" -# in tracked files within a Git repository. -# -# Usage: ./scripts/check_pydantic.sh /path/to/repository - -# Check if a path argument is provided -if [ $# -ne 1 ]; then - echo "Usage: $0 /path/to/repository" - exit 1 -fi - -repository_path="$1" - -# Search for lines matching the pattern within the specified repository -result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic') - -# Check if any matching lines were found -if [ -n "$result" ]; then - echo "ERROR: The following lines need to be updated:" - echo "$result" - echo "Please replace the code with an import from langchain_core.pydantic_v1." - echo "For example, replace 'from pydantic import BaseModel'" - echo "with 'from langchain_core.pydantic_v1 import BaseModel'" - exit 1 -fi diff --git a/poetry.lock b/poetry.lock index 96f2936c56f20..5071452ed9abf 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,113 +1,132 @@ -# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "accessible-pygments" -version = "0.0.4" +version = "0.0.5" description = "A collection of accessible pygments styles" optional = false -python-versions = "*" +python-versions = ">=3.9" files = [ - {file = "accessible-pygments-0.0.4.tar.gz", hash = "sha256:e7b57a9b15958e9601c7e9eb07a440c813283545a20973f2574a5f453d0e953e"}, - {file = "accessible_pygments-0.0.4-py2.py3-none-any.whl", hash = "sha256:416c6d8c1ea1c5ad8701903a20fcedf953c6e720d64f33dc47bfb2d3f2fa4e8d"}, + {file = "accessible_pygments-0.0.5-py3-none-any.whl", hash = "sha256:88ae3211e68a1d0b011504b2ffc1691feafce124b845bd072ab6f9f66f34d4b7"}, + {file = "accessible_pygments-0.0.5.tar.gz", hash = "sha256:40918d3e6a2b619ad424cb91e556bd3bd8865443d9f22f1dcdf79e33c8046872"}, ] [package.dependencies] pygments = ">=1.5" +[package.extras] +dev = ["pillow", "pkginfo (>=1.10)", "playwright", "pre-commit", "setuptools", "twine (>=5.0)"] +tests = ["hypothesis", "pytest"] + [[package]] name = "aiohappyeyeballs" -version = "2.3.5" +version = "2.4.0" description = "Happy Eyeballs for asyncio" optional = false python-versions = ">=3.8" files = [ - {file = "aiohappyeyeballs-2.3.5-py3-none-any.whl", hash = "sha256:4d6dea59215537dbc746e93e779caea8178c866856a721c9c660d7a5a7b8be03"}, - {file = "aiohappyeyeballs-2.3.5.tar.gz", hash = "sha256:6fa48b9f1317254f122a07a131a86b71ca6946ca989ce6326fff54a99a920105"}, + {file = "aiohappyeyeballs-2.4.0-py3-none-any.whl", hash = "sha256:7ce92076e249169a13c2f49320d1967425eaf1f407522d707d59cac7628d62bd"}, + {file = "aiohappyeyeballs-2.4.0.tar.gz", hash = "sha256:55a1714f084e63d49639800f95716da97a1f173d46a16dfcfda0016abb93b6b2"}, ] [[package]] name = "aiohttp" -version = "3.10.1" +version = "3.10.6" description = "Async http client/server framework (asyncio)" optional = false python-versions = ">=3.8" files = [ - {file = "aiohttp-3.10.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:47b4c2412960e64d97258f40616efddaebcb34ff664c8a972119ed38fac2a62c"}, - {file = "aiohttp-3.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7dbf637f87dd315fa1f36aaed8afa929ee2c607454fb7791e74c88a0d94da59"}, - {file = "aiohttp-3.10.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c8fb76214b5b739ce59e2236a6489d9dc3483649cfd6f563dbf5d8e40dbdd57d"}, - {file = "aiohttp-3.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c577cdcf8f92862363b3d598d971c6a84ed8f0bf824d4cc1ce70c2fb02acb4a"}, - {file = "aiohttp-3.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:777e23609899cb230ad2642b4bdf1008890f84968be78de29099a8a86f10b261"}, - {file = "aiohttp-3.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b07286a1090483799599a2f72f76ac396993da31f6e08efedb59f40876c144fa"}, - {file = "aiohttp-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9db600a86414a9a653e3c1c7f6a2f6a1894ab8f83d11505247bd1b90ad57157"}, - {file = "aiohttp-3.10.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01c3f1eb280008e51965a8d160a108c333136f4a39d46f516c64d2aa2e6a53f2"}, - {file = "aiohttp-3.10.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f5dd109a925fee4c9ac3f6a094900461a2712df41745f5d04782ebcbe6479ccb"}, - {file = "aiohttp-3.10.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:8c81ff4afffef9b1186639506d70ea90888218f5ddfff03870e74ec80bb59970"}, - {file = "aiohttp-3.10.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:2a384dfbe8bfebd203b778a30a712886d147c61943675f4719b56725a8bbe803"}, - {file = "aiohttp-3.10.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:b9fb6508893dc31cfcbb8191ef35abd79751db1d6871b3e2caee83959b4d91eb"}, - {file = "aiohttp-3.10.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:88596384c3bec644a96ae46287bb646d6a23fa6014afe3799156aef42669c6bd"}, - {file = "aiohttp-3.10.1-cp310-cp310-win32.whl", hash = "sha256:68164d43c580c2e8bf8e0eb4960142919d304052ccab92be10250a3a33b53268"}, - {file = "aiohttp-3.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:d6bbe2c90c10382ca96df33b56e2060404a4f0f88673e1e84b44c8952517e5f3"}, - {file = "aiohttp-3.10.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f6979b4f20d3e557a867da9d9227de4c156fcdcb348a5848e3e6190fd7feb972"}, - {file = "aiohttp-3.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03c0c380c83f8a8d4416224aafb88d378376d6f4cadebb56b060688251055cd4"}, - {file = "aiohttp-3.10.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1c2b104e81b3c3deba7e6f5bc1a9a0e9161c380530479970766a6655b8b77c7c"}, - {file = "aiohttp-3.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b023b68c61ab0cd48bd38416b421464a62c381e32b9dc7b4bdfa2905807452a4"}, - {file = "aiohttp-3.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a07c76a82390506ca0eabf57c0540cf5a60c993c442928fe4928472c4c6e5e6"}, - {file = "aiohttp-3.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:41d8dab8c64ded1edf117d2a64f353efa096c52b853ef461aebd49abae979f16"}, - {file = "aiohttp-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:615348fab1a9ef7d0960a905e83ad39051ae9cb0d2837da739b5d3a7671e497a"}, - {file = "aiohttp-3.10.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:256ee6044214ee9d66d531bb374f065ee94e60667d6bbeaa25ca111fc3997158"}, - {file = "aiohttp-3.10.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b7d5bb926805022508b7ddeaad957f1fce7a8d77532068d7bdb431056dc630cd"}, - {file = "aiohttp-3.10.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:028faf71b338f069077af6315ad54281612705d68889f5d914318cbc2aab0d50"}, - {file = "aiohttp-3.10.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:5c12310d153b27aa630750be44e79313acc4e864c421eb7d2bc6fa3429c41bf8"}, - {file = "aiohttp-3.10.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:de1a91d5faded9054957ed0a9e01b9d632109341942fc123947ced358c5d9009"}, - {file = "aiohttp-3.10.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9c186b270979fb1dee3ababe2d12fb243ed7da08b30abc83ebac3a928a4ddb15"}, - {file = "aiohttp-3.10.1-cp311-cp311-win32.whl", hash = "sha256:4a9ce70f5e00380377aac0e568abd075266ff992be2e271765f7b35d228a990c"}, - {file = "aiohttp-3.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:a77c79bac8d908d839d32c212aef2354d2246eb9deb3e2cb01ffa83fb7a6ea5d"}, - {file = "aiohttp-3.10.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2212296cdb63b092e295c3e4b4b442e7b7eb41e8a30d0f53c16d5962efed395d"}, - {file = "aiohttp-3.10.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4dcb127ca3eb0a61205818a606393cbb60d93b7afb9accd2fd1e9081cc533144"}, - {file = "aiohttp-3.10.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cb8b79a65332e1a426ccb6290ce0409e1dc16b4daac1cc5761e059127fa3d134"}, - {file = "aiohttp-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68cc24f707ed9cb961f6ee04020ca01de2c89b2811f3cf3361dc7c96a14bfbcc"}, - {file = "aiohttp-3.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9cb54f5725b4b37af12edf6c9e834df59258c82c15a244daa521a065fbb11717"}, - {file = "aiohttp-3.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:51d03e948e53b3639ce4d438f3d1d8202898ec6655cadcc09ec99229d4adc2a9"}, - {file = "aiohttp-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:786299d719eb5d868f161aeec56d589396b053925b7e0ce36e983d30d0a3e55c"}, - {file = "aiohttp-3.10.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abda4009a30d51d3f06f36bc7411a62b3e647fa6cc935ef667e3e3d3a7dd09b1"}, - {file = "aiohttp-3.10.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:67f7639424c313125213954e93a6229d3a1d386855d70c292a12628f600c7150"}, - {file = "aiohttp-3.10.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:8e5a26d7aac4c0d8414a347da162696eea0629fdce939ada6aedf951abb1d745"}, - {file = "aiohttp-3.10.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:120548d89f14b76a041088b582454d89389370632ee12bf39d919cc5c561d1ca"}, - {file = "aiohttp-3.10.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:f5293726943bdcea24715b121d8c4ae12581441d22623b0e6ab12d07ce85f9c4"}, - {file = "aiohttp-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1f8605e573ed6c44ec689d94544b2c4bb1390aaa723a8b5a2cc0a5a485987a68"}, - {file = "aiohttp-3.10.1-cp312-cp312-win32.whl", hash = "sha256:e7168782621be4448d90169a60c8b37e9b0926b3b79b6097bc180c0a8a119e73"}, - {file = "aiohttp-3.10.1-cp312-cp312-win_amd64.whl", hash = "sha256:8fbf8c0ded367c5c8eaf585f85ca8dd85ff4d5b73fb8fe1e6ac9e1b5e62e11f7"}, - {file = "aiohttp-3.10.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:54b7f4a20d7cc6bfa4438abbde069d417bb7a119f870975f78a2b99890226d55"}, - {file = "aiohttp-3.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2fa643ca990323db68911b92f3f7a0ca9ae300ae340d0235de87c523601e58d9"}, - {file = "aiohttp-3.10.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d8311d0d690487359fe2247ec5d2cac9946e70d50dced8c01ce9e72341c21151"}, - {file = "aiohttp-3.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222821c60b8f6a64c5908cb43d69c0ee978a1188f6a8433d4757d39231b42cdb"}, - {file = "aiohttp-3.10.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e7b55d9ede66af7feb6de87ff277e0ccf6d51c7db74cc39337fe3a0e31b5872d"}, - {file = "aiohttp-3.10.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a95151a5567b3b00368e99e9c5334a919514f60888a6b6d2054fea5e66e527e"}, - {file = "aiohttp-3.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e9e9171d2fe6bfd9d3838a6fe63b1e91b55e0bf726c16edf265536e4eafed19"}, - {file = "aiohttp-3.10.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a57e73f9523e980f6101dc9a83adcd7ac0006ea8bf7937ca3870391c7bb4f8ff"}, - {file = "aiohttp-3.10.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:0df51a3d70a2bfbb9c921619f68d6d02591f24f10e9c76de6f3388c89ed01de6"}, - {file = "aiohttp-3.10.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:b0de63ff0307eac3961b4af74382d30220d4813f36b7aaaf57f063a1243b4214"}, - {file = "aiohttp-3.10.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8db9b749f589b5af8e4993623dbda6716b2b7a5fcb0fa2277bf3ce4b278c7059"}, - {file = "aiohttp-3.10.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6b14c19172eb53b63931d3e62a9749d6519f7c121149493e6eefca055fcdb352"}, - {file = "aiohttp-3.10.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:5cd57ad998e3038aa87c38fe85c99ed728001bf5dde8eca121cadee06ee3f637"}, - {file = "aiohttp-3.10.1-cp38-cp38-win32.whl", hash = "sha256:df31641e3f02b77eb3c5fb63c0508bee0fc067cf153da0e002ebbb0db0b6d91a"}, - {file = "aiohttp-3.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:93094eba50bc2ad4c40ff4997ead1fdcd41536116f2e7d6cfec9596a8ecb3615"}, - {file = "aiohttp-3.10.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:440954ddc6b77257e67170d57b1026aa9545275c33312357472504eef7b4cc0b"}, - {file = "aiohttp-3.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f9f8beed277488a52ee2b459b23c4135e54d6a819eaba2e120e57311015b58e9"}, - {file = "aiohttp-3.10.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d8a8221a63602008550022aa3a4152ca357e1dde7ab3dd1da7e1925050b56863"}, - {file = "aiohttp-3.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a702bd3663b5cbf3916e84bf332400d24cdb18399f0877ca6b313ce6c08bfb43"}, - {file = "aiohttp-3.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1988b370536eb14f0ce7f3a4a5b422ab64c4e255b3f5d7752c5f583dc8c967fc"}, - {file = "aiohttp-3.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ccf1f0a304352c891d124ac1a9dea59b14b2abed1704aaa7689fc90ef9c5be1"}, - {file = "aiohttp-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc3ea6ef2a83edad84bbdb5d96e22f587b67c68922cd7b6f9d8f24865e655bcf"}, - {file = "aiohttp-3.10.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:89b47c125ab07f0831803b88aeb12b04c564d5f07a1c1a225d4eb4d2f26e8b5e"}, - {file = "aiohttp-3.10.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:21778552ef3d44aac3278cc6f6d13a6423504fa5f09f2df34bfe489ed9ded7f5"}, - {file = "aiohttp-3.10.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:bde0693073fd5e542e46ea100aa6c1a5d36282dbdbad85b1c3365d5421490a92"}, - {file = "aiohttp-3.10.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:bf66149bb348d8e713f3a8e0b4f5b952094c2948c408e1cfef03b49e86745d60"}, - {file = "aiohttp-3.10.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:587237571a85716d6f71f60d103416c9df7d5acb55d96d3d3ced65f39bff9c0c"}, - {file = "aiohttp-3.10.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:bfe33cba6e127d0b5b417623c9aa621f0a69f304742acdca929a9fdab4593693"}, - {file = "aiohttp-3.10.1-cp39-cp39-win32.whl", hash = "sha256:9fbff00646cf8211b330690eb2fd64b23e1ce5b63a342436c1d1d6951d53d8dd"}, - {file = "aiohttp-3.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:5951c328f9ac42d7bce7a6ded535879bc9ae13032818d036749631fa27777905"}, - {file = "aiohttp-3.10.1.tar.gz", hash = "sha256:8b0d058e4e425d3b45e8ec70d49b402f4d6b21041e674798b1f91ba027c73f28"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:682836fc672972cc3101cc9e30d49c5f7e8f1d010478d46119fe725a4545acfd"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:289fa8a20018d0d5aa9e4b35d899bd51bcb80f0d5f365d9a23e30dac3b79159b"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8617c96a20dd57e7e9d398ff9d04f3d11c4d28b1767273a5b1a018ada5a654d3"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bdbeff1b062751c2a2a55b171f7050fb7073633c699299d042e962aacdbe1a07"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ea35d849cdd4a9268f910bff4497baebbc1aa3f2f625fd8ccd9ac99c860c621"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:473961b3252f3b949bb84873d6e268fb6d8aa0ccc6eb7404fa58c76a326bb8e1"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d2665c5df629eb2f981dab244c01bfa6cdc185f4ffa026639286c4d56fafb54"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:25d92f794f1332f656e3765841fc2b7ad5c26c3f3d01e8949eeb3495691cf9f4"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9bd6b2033993d5ae80883bb29b83fb2b432270bbe067c2f53cc73bb57c46065f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d7f408c43f5e75ea1edc152fb375e8f46ef916f545fb66d4aebcbcfad05e2796"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:cf8b8560aa965f87bf9c13bf9fed7025993a155ca0ce8422da74bf46d18c2f5f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14477c4e52e2f17437b99893fd220ffe7d7ee41df5ebf931a92b8ca82e6fd094"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fb138fbf9f53928e779650f5ed26d0ea1ed8b2cab67f0ea5d63afa09fdc07593"}, + {file = "aiohttp-3.10.6-cp310-cp310-win32.whl", hash = "sha256:9843d683b8756971797be171ead21511d2215a2d6e3c899c6e3107fbbe826791"}, + {file = "aiohttp-3.10.6-cp310-cp310-win_amd64.whl", hash = "sha256:f8b8e49fe02f744d38352daca1dbef462c3874900bd8166516f6ea8e82b5aacf"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f52e54fd776ad0da1006708762213b079b154644db54bcfc62f06eaa5b896402"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:995ab1a238fd0d19dc65f2d222e5eb064e409665c6426a3e51d5101c1979ee84"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0749c4d5a08a802dd66ecdf59b2df4d76b900004017468a7bb736c3b5a3dd902"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e05b39158f2af0e2438cc2075cfc271f4ace0c3cc4a81ec95b27a0432e161951"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a9f196c970db2dcde4f24317e06615363349dc357cf4d7a3b0716c20ac6d7bcd"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47647c8af04a70e07a2462931b0eba63146a13affa697afb4ecbab9d03a480ce"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:669c0efe7e99f6d94d63274c06344bd0e9c8daf184ce5602a29bc39e00a18720"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9721cdd83a994225352ca84cd537760d41a9da3c0eacb3ff534747ab8fba6d0"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0b82c8ebed66ce182893e7c0b6b60ba2ace45b1df104feb52380edae266a4850"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b169f8e755e541b72e714b89a831b315bbe70db44e33fead28516c9e13d5f931"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:0be3115753baf8b4153e64f9aa7bf6c0c64af57979aa900c31f496301b374570"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e1f80cd17d81a404b6e70ef22bfe1870bafc511728397634ad5f5efc8698df56"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6419728b08fb6380c66a470d2319cafcec554c81780e2114b7e150329b9a9a7f"}, + {file = "aiohttp-3.10.6-cp311-cp311-win32.whl", hash = "sha256:bd294dcdc1afdc510bb51d35444003f14e327572877d016d576ac3b9a5888a27"}, + {file = "aiohttp-3.10.6-cp311-cp311-win_amd64.whl", hash = "sha256:bf861da9a43d282d6dd9dcd64c23a0fccf2c5aa5cd7c32024513c8c79fb69de3"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2708baccdc62f4b1251e59c2aac725936a900081f079b88843dabcab0feeeb27"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7475da7a5e2ccf1a1c86c8fee241e277f4874c96564d06f726d8df8e77683ef7"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02108326574ff60267b7b35b17ac5c0bbd0008ccb942ce4c48b657bb90f0b8aa"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:029a019627b37fa9eac5c75cc54a6bb722c4ebbf5a54d8c8c0fb4dd8facf2702"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a637d387db6fdad95e293fab5433b775fd104ae6348d2388beaaa60d08b38c4"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1a16f3fc1944c61290d33c88dc3f09ba62d159b284c38c5331868425aca426"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81b292f37969f9cc54f4643f0be7dacabf3612b3b4a65413661cf6c350226787"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0754690a3a26e819173a34093798c155bafb21c3c640bff13be1afa1e9d421f9"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:164ecd32e65467d86843dbb121a6666c3deb23b460e3f8aefdcaacae79eb718a"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438c5863feb761f7ca3270d48c292c334814459f61cc12bab5ba5b702d7c9e56"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ba18573bb1de1063d222f41de64a0d3741223982dcea863b3f74646faf618ec7"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:c82a94ddec996413a905f622f3da02c4359952aab8d817c01cf9915419525e95"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:92351aa5363fc3c1f872ca763f86730ced32b01607f0c9662b1fa711087968d0"}, + {file = "aiohttp-3.10.6-cp312-cp312-win32.whl", hash = "sha256:3e15e33bfc73fa97c228f72e05e8795e163a693fd5323549f49367c76a6e5883"}, + {file = "aiohttp-3.10.6-cp312-cp312-win_amd64.whl", hash = "sha256:fe517113fe4d35d9072b826c3e147d63c5f808ca8167d450b4f96c520c8a1d8d"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:482f74057ea13d387a7549d7a7ecb60e45146d15f3e58a2d93a0ad2d5a8457cd"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:03fa40d1450ee5196e843315ddf74a51afc7e83d489dbfc380eecefea74158b1"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1e52e59ed5f4cc3a3acfe2a610f8891f216f486de54d95d6600a2c9ba1581f4d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b3935a22c9e41a8000d90588bed96cf395ef572dbb409be44c6219c61d900d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bef1480ee50f75abcfcb4b11c12de1005968ca9d0172aec4a5057ba9f2b644f"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:671745ea7db19693ce867359d503772177f0b20fa8f6ee1e74e00449f4c4151d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50b367308ca8c12e0b50cba5773bc9abe64c428d3fd2bbf5cd25aab37c77bf"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a504d7cdb431a777d05a124fd0b21efb94498efa743103ea01b1e3136d2e4fb"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:66bc81361131763660b969132a22edce2c4d184978ba39614e8f8f95db5c95f8"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:27cf19a38506e2e9f12fc17e55f118f04897b0a78537055d93a9de4bf3022e3d"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3468b39f977a11271517c6925b226720e148311039a380cc9117b1e2258a721f"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:9d26da22a793dfd424be1050712a70c0afd96345245c29aced1e35dbace03413"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:844d48ff9173d0b941abed8b2ea6a412f82b56d9ab1edb918c74000c15839362"}, + {file = "aiohttp-3.10.6-cp313-cp313-win32.whl", hash = "sha256:2dd56e3c43660ed3bea67fd4c5025f1ac1f9ecf6f0b991a6e5efe2e678c490c5"}, + {file = "aiohttp-3.10.6-cp313-cp313-win_amd64.whl", hash = "sha256:c91781d969fbced1993537f45efe1213bd6fccb4b37bfae2a026e20d6fbed206"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4407a80bca3e694f2d2a523058e20e1f9f98a416619e04f6dc09dc910352ac8b"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1cb045ec5961f51af3e2c08cd6fe523f07cc6e345033adee711c49b7b91bb954"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4fabdcdc781a36b8fd7b2ca9dea8172f29a99e11d00ca0f83ffeb50958da84a1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79a9f42efcc2681790595ab3d03c0e52d01edc23a0973ea09f0dc8d295e12b8e"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cca776a440795db437d82c07455761c85bbcf3956221c3c23b8c93176c278ce7"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5582de171f0898139cf51dd9fcdc79b848e28d9abd68e837f0803fc9f30807b1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:370e2d47575c53c817ee42a18acc34aad8da4dbdaac0a6c836d58878955f1477"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:444d1704e2af6b30766debed9be8a795958029e552fe77551355badb1944012c"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40271a2a375812967401c9ca8077de9368e09a43a964f4dce0ff603301ec9358"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f3af26f86863fad12e25395805bb0babbd49d512806af91ec9708a272b696248"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4752df44df48fd42b80f51d6a97553b482cda1274d9dc5df214a3a1aa5d8f018"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2cd5290ab66cfca2f90045db2cc6434c1f4f9fbf97c9f1c316e785033782e7d2"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3427031064b0d5c95647e6369c4aa3c556402f324a3e18107cb09517abe5f962"}, + {file = "aiohttp-3.10.6-cp38-cp38-win32.whl", hash = "sha256:614fc21e86adc28e4165a6391f851a6da6e9cbd7bb232d0df7718b453a89ee98"}, + {file = "aiohttp-3.10.6-cp38-cp38-win_amd64.whl", hash = "sha256:58c5d7318a136a3874c78717dd6de57519bc64f6363c5827c2b1cb775bea71dd"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5db26bbca8e7968c4c977a0c640e0b9ce7224e1f4dcafa57870dc6ee28e27de6"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3fb4216e3ec0dbc01db5ba802f02ed78ad8f07121be54eb9e918448cc3f61b7c"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a976ef488f26e224079deb3d424f29144c6d5ba4ded313198169a8af8f47fb82"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a86610174de8a85a920e956e2d4f9945e7da89f29a00e95ac62a4a414c4ef4e"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:217791c6a399cc4f2e6577bb44344cba1f5714a2aebf6a0bea04cfa956658284"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ba3662d41abe2eab0eeec7ee56f33ef4e0b34858f38abf24377687f9e1fb00a5"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4dfa5ad4bce9ca30a76117fbaa1c1decf41ebb6c18a4e098df44298941566f9"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e0009258e97502936d3bd5bf2ced15769629097d0abb81e6495fba1047824fe0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0a75d5c9fb4f06c41d029ae70ad943c3a844c40c0a769d12be4b99b04f473d3d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:8198b7c002aae2b40b2d16bfe724b9a90bcbc9b78b2566fc96131ef4e382574d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4611db8c907f90fe86be112efdc2398cd7b4c8eeded5a4f0314b70fdea8feab0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ff99ae06eef85c7a565854826114ced72765832ee16c7e3e766c5e4c5b98d20e"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7641920bdcc7cd2d3ddfb8bb9133a6c9536b09dbd49490b79e125180b2d25b93"}, + {file = "aiohttp-3.10.6-cp39-cp39-win32.whl", hash = "sha256:e2e7d5591ea868d5ec82b90bbeb366a198715672841d46281b623e23079593db"}, + {file = "aiohttp-3.10.6-cp39-cp39-win_amd64.whl", hash = "sha256:b504c08c45623bf5c7ca41be380156d925f00199b3970efd758aef4a77645feb"}, + {file = "aiohttp-3.10.6.tar.gz", hash = "sha256:d2578ef941be0c2ba58f6f421a703527d08427237ed45ecb091fed6f83305336"}, ] [package.dependencies] @@ -117,7 +136,7 @@ async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" -yarl = ">=1.0,<2.0" +yarl = ">=1.12.0,<2.0" [package.extras] speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] @@ -138,13 +157,13 @@ frozenlist = ">=1.1.0" [[package]] name = "alabaster" -version = "0.7.13" -description = "A configurable sidebar-enabled Sphinx theme" +version = "0.7.16" +description = "A light, configurable Sphinx theme" optional = false -python-versions = ">=3.6" +python-versions = ">=3.9" files = [ - {file = "alabaster-0.7.13-py3-none-any.whl", hash = "sha256:1ee19aca801bbabb5ba3f5f258e4422dfa86f82f3e9cefb0859b283cdd7f62a3"}, - {file = "alabaster-0.7.13.tar.gz", hash = "sha256:a27a4a084d5e690e16e01e03ad2b2e552c61a65469419b907243193de1a84ae2"}, + {file = "alabaster-0.7.16-py3-none-any.whl", hash = "sha256:b46733c07dce03ae4e150330b975c75737fa60f0a7c591b6c8bf4928a28e2c92"}, + {file = "alabaster-0.7.16.tar.gz", hash = "sha256:75a8b99c28a5dad50dd7f8ccdd447a121ddb3892da9e53d1ca5cca3106d58d65"}, ] [[package]] @@ -158,18 +177,15 @@ files = [ {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, ] -[package.dependencies] -typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} - [[package]] name = "anyio" -version = "4.4.0" +version = "4.6.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, - {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, + {file = "anyio-4.6.0-py3-none-any.whl", hash = "sha256:c7d2e9d63e31599eeb636c8c5c03a7e108d73b345f064f1c19fdc87b79036a9a"}, + {file = "anyio-4.6.0.tar.gz", hash = "sha256:137b4559cbb034c477165047febb6ff83f390fc3b20bf181c1fc0a728cb8beeb"}, ] [package.dependencies] @@ -179,9 +195,9 @@ sniffio = ">=1.1" typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.21.0b1)"] +trio = ["trio (>=0.26.1)"] [[package]] name = "appnope" @@ -244,52 +260,41 @@ tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "autodoc-pydantic" -version = "1.8.0" +version = "2.2.0" description = "Seamlessly integrate pydantic models in your Sphinx documentation." optional = false -python-versions = ">=3.6,<4.0.0" +python-versions = "<4.0.0,>=3.8.1" files = [ - {file = "autodoc_pydantic-1.8.0-py3-none-any.whl", hash = "sha256:f1bf9318f37369fec906ab523ebe65c1894395a6fc859dbc6fd02ffd90d3242f"}, - {file = "autodoc_pydantic-1.8.0.tar.gz", hash = "sha256:77da1cbbe4434fa9963f85a1555c63afff9a4acec06b318dc4f54c4f28a04f2c"}, + {file = "autodoc_pydantic-2.2.0-py3-none-any.whl", hash = "sha256:8c6a36fbf6ed2700ea9c6d21ea76ad541b621fbdf16b5a80ee04673548af4d95"}, ] [package.dependencies] -pydantic = ">=1.5" -Sphinx = ">=3.4" +pydantic = ">=2.0,<3.0.0" +pydantic-settings = ">=2.0,<3.0.0" +Sphinx = ">=4.0" [package.extras] -dev = ["coverage (>=5,<6)", "flake8 (>=3,<4)", "pytest (>=6,<7)", "sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)", "tox (>=3,<4)"] -docs = ["sphinx-copybutton (>=0.4,<0.5)", "sphinx-rtd-theme (>=1.0,<2.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.7,<0.8)"] -test = ["coverage (>=5,<6)", "pytest (>=6,<7)"] +docs = ["myst-parser (>=3.0.0,<4.0.0)", "sphinx-copybutton (>=0.5.0,<0.6.0)", "sphinx-rtd-theme (>=2.0.0,<3.0.0)", "sphinx-tabs (>=3,<4)", "sphinxcontrib-mermaid (>=0.9.0,<0.10.0)"] +erdantic = ["erdantic (<2.0)"] +linting = ["ruff (>=0.4.0,<0.5.0)"] +security = ["pip-audit (>=2.7.2,<3.0.0)"] +test = ["coverage (>=7,<8)", "defusedxml (>=0.7.1)", "pytest (>=8.0.0,<9.0.0)", "pytest-sugar (>=1.0.0,<2.0.0)"] +type-checking = ["mypy (>=1.9,<2.0)", "types-docutils (>=0.20,<0.21)", "typing-extensions (>=4.11,<5.0)"] [[package]] name = "babel" -version = "2.15.0" +version = "2.16.0" description = "Internationalization utilities" optional = false python-versions = ">=3.8" files = [ - {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"}, - {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"}, + {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, + {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, ] -[package.dependencies] -pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} - [package.extras] dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] -[[package]] -name = "backcall" -version = "0.2.0" -description = "Specifications for callback functions passed in to an API" -optional = false -python-versions = "*" -files = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] - [[package]] name = "beautifulsoup4" version = "4.12.3" @@ -313,89 +318,89 @@ lxml = ["lxml"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] name = "cffi" -version = "1.17.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f9338cc05451f1942d0d8203ec2c346c830f8e86469903d5126c1f0a13a2bcbb"}, - {file = "cffi-1.17.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0ce71725cacc9ebf839630772b07eeec220cbb5f03be1399e0457a1464f8e1a"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c815270206f983309915a6844fe994b2fa47e5d05c4c4cef267c3b30e34dbe42"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d6bdcd415ba87846fd317bee0774e412e8792832e7805938987e4ede1d13046d"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a98748ed1a1df4ee1d6f927e151ed6c1a09d5ec21684de879c7ea6aa96f58f2"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0a048d4f6630113e54bb4b77e315e1ba32a5a31512c31a273807d0027a7e69ab"}, - {file = "cffi-1.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24aa705a5f5bd3a8bcfa4d123f03413de5d86e497435693b638cbffb7d5d8a1b"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:856bf0924d24e7f93b8aee12a3a1095c34085600aa805693fb7f5d1962393206"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4304d4416ff032ed50ad6bb87416d802e67139e31c0bde4628f36a47a3164bfa"}, - {file = "cffi-1.17.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:331ad15c39c9fe9186ceaf87203a9ecf5ae0ba2538c9e898e3a6967e8ad3db6f"}, - {file = "cffi-1.17.0-cp310-cp310-win32.whl", hash = "sha256:669b29a9eca6146465cc574659058ed949748f0809a2582d1f1a324eb91054dc"}, - {file = "cffi-1.17.0-cp310-cp310-win_amd64.whl", hash = "sha256:48b389b1fd5144603d61d752afd7167dfd205973a43151ae5045b35793232aa2"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c5d97162c196ce54af6700949ddf9409e9833ef1003b4741c2b39ef46f1d9720"}, - {file = "cffi-1.17.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ba5c243f4004c750836f81606a9fcb7841f8874ad8f3bf204ff5e56332b72b9"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bb9333f58fc3a2296fb1d54576138d4cf5d496a2cc118422bd77835e6ae0b9cb"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:435a22d00ec7d7ea533db494da8581b05977f9c37338c80bc86314bec2619424"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d1df34588123fcc88c872f5acb6f74ae59e9d182a2707097f9e28275ec26a12d"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df8bb0010fdd0a743b7542589223a2816bdde4d94bb5ad67884348fa2c1c67e8"}, - {file = "cffi-1.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b5b9712783415695663bd463990e2f00c6750562e6ad1d28e072a611c5f2a6"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ffef8fd58a36fb5f1196919638f73dd3ae0db1a878982b27a9a5a176ede4ba91"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e67d26532bfd8b7f7c05d5a766d6f437b362c1bf203a3a5ce3593a645e870b8"}, - {file = "cffi-1.17.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45f7cd36186db767d803b1473b3c659d57a23b5fa491ad83c6d40f2af58e4dbb"}, - {file = "cffi-1.17.0-cp311-cp311-win32.whl", hash = "sha256:a9015f5b8af1bb6837a3fcb0cdf3b874fe3385ff6274e8b7925d81ccaec3c5c9"}, - {file = "cffi-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:b50aaac7d05c2c26dfd50c3321199f019ba76bb650e346a6ef3616306eed67b0"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aec510255ce690d240f7cb23d7114f6b351c733a74c279a84def763660a2c3bc"}, - {file = "cffi-1.17.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2770bb0d5e3cc0e31e7318db06efcbcdb7b31bcb1a70086d3177692a02256f59"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:db9a30ec064129d605d0f1aedc93e00894b9334ec74ba9c6bdd08147434b33eb"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a47eef975d2b8b721775a0fa286f50eab535b9d56c70a6e62842134cf7841195"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f3e0992f23bbb0be00a921eae5363329253c3b86287db27092461c887b791e5e"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6107e445faf057c118d5050560695e46d272e5301feffda3c41849641222a828"}, - {file = "cffi-1.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb862356ee9391dc5a0b3cbc00f416b48c1b9a52d252d898e5b7696a5f9fe150"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c1c13185b90bbd3f8b5963cd8ce7ad4ff441924c31e23c975cb150e27c2bf67a"}, - {file = "cffi-1.17.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17c6d6d3260c7f2d94f657e6872591fe8733872a86ed1345bda872cfc8c74885"}, - {file = "cffi-1.17.0-cp312-cp312-win32.whl", hash = "sha256:c3b8bd3133cd50f6b637bb4322822c94c5ce4bf0d724ed5ae70afce62187c492"}, - {file = "cffi-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:dca802c8db0720ce1c49cce1149ff7b06e91ba15fa84b1d59144fef1a1bc7ac2"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6ce01337d23884b21c03869d2f68c5523d43174d4fc405490eb0091057943118"}, - {file = "cffi-1.17.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cab2eba3830bf4f6d91e2d6718e0e1c14a2f5ad1af68a89d24ace0c6b17cced7"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:14b9cbc8f7ac98a739558eb86fabc283d4d564dafed50216e7f7ee62d0d25377"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b00e7bcd71caa0282cbe3c90966f738e2db91e64092a877c3ff7f19a1628fdcb"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:41f4915e09218744d8bae14759f983e466ab69b178de38066f7579892ff2a555"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4760a68cab57bfaa628938e9c2971137e05ce48e762a9cb53b76c9b569f1204"}, - {file = "cffi-1.17.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:011aff3524d578a9412c8b3cfaa50f2c0bd78e03eb7af7aa5e0df59b158efb2f"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:a003ac9edc22d99ae1286b0875c460351f4e101f8c9d9d2576e78d7e048f64e0"}, - {file = "cffi-1.17.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ef9528915df81b8f4c7612b19b8628214c65c9b7f74db2e34a646a0a2a0da2d4"}, - {file = "cffi-1.17.0-cp313-cp313-win32.whl", hash = "sha256:70d2aa9fb00cf52034feac4b913181a6e10356019b18ef89bc7c12a283bf5f5a"}, - {file = "cffi-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:b7b6ea9e36d32582cda3465f54c4b454f62f23cb083ebc7a94e2ca6ef011c3a7"}, - {file = "cffi-1.17.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:964823b2fc77b55355999ade496c54dde161c621cb1f6eac61dc30ed1b63cd4c"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:516a405f174fd3b88829eabfe4bb296ac602d6a0f68e0d64d5ac9456194a5b7e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dec6b307ce928e8e112a6bb9921a1cb00a0e14979bf28b98e084a4b8a742bd9b"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e4094c7b464cf0a858e75cd14b03509e84789abf7b79f8537e6a72152109c76e"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2404f3de742f47cb62d023f0ba7c5a916c9c653d5b368cc966382ae4e57da401"}, - {file = "cffi-1.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3aa9d43b02a0c681f0bfbc12d476d47b2b2b6a3f9287f11ee42989a268a1833c"}, - {file = "cffi-1.17.0-cp38-cp38-win32.whl", hash = "sha256:0bb15e7acf8ab35ca8b24b90af52c8b391690ef5c4aec3d31f38f0d37d2cc499"}, - {file = "cffi-1.17.0-cp38-cp38-win_amd64.whl", hash = "sha256:93a7350f6706b31f457c1457d3a3259ff9071a66f312ae64dc024f049055f72c"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1a2ddbac59dc3716bc79f27906c010406155031a1c801410f1bafff17ea304d2"}, - {file = "cffi-1.17.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6327b572f5770293fc062a7ec04160e89741e8552bf1c358d1a23eba68166759"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbc183e7bef690c9abe5ea67b7b60fdbca81aa8da43468287dae7b5c046107d4"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bdc0f1f610d067c70aa3737ed06e2726fd9d6f7bfee4a351f4c40b6831f4e82"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6d872186c1617d143969defeadac5a904e6e374183e07977eedef9c07c8953bf"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d46ee4764b88b91f16661a8befc6bfb24806d885e27436fdc292ed7e6f6d058"}, - {file = "cffi-1.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f76a90c345796c01d85e6332e81cab6d70de83b829cf1d9762d0a3da59c7932"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e60821d312f99d3e1569202518dddf10ae547e799d75aef3bca3a2d9e8ee693"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:eb09b82377233b902d4c3fbeeb7ad731cdab579c6c6fda1f763cd779139e47c3"}, - {file = "cffi-1.17.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:24658baf6224d8f280e827f0a50c46ad819ec8ba380a42448e24459daf809cf4"}, - {file = "cffi-1.17.0-cp39-cp39-win32.whl", hash = "sha256:0fdacad9e0d9fc23e519efd5ea24a70348305e8d7d85ecbb1a5fa66dc834e7fb"}, - {file = "cffi-1.17.0-cp39-cp39-win_amd64.whl", hash = "sha256:7cbc78dc018596315d4e7841c8c3a7ae31cc4d638c9b627f87d52e8abaaf2d29"}, - {file = "cffi-1.17.0.tar.gz", hash = "sha256:f3157624b7558b914cb039fd1af735e5e8049a87c817cc215109ad1c8779df76"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -500,6 +505,20 @@ files = [ {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, ] +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + [[package]] name = "codespell" version = "2.3.0" @@ -562,33 +581,33 @@ typing-inspect = ">=0.4.0,<1" [[package]] name = "debugpy" -version = "1.8.5" +version = "1.8.6" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:7e4d594367d6407a120b76bdaa03886e9eb652c05ba7f87e37418426ad2079f7"}, - {file = "debugpy-1.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4413b7a3ede757dc33a273a17d685ea2b0c09dbd312cc03f5534a0fd4d40750a"}, - {file = "debugpy-1.8.5-cp310-cp310-win32.whl", hash = "sha256:dd3811bd63632bb25eda6bd73bea8e0521794cda02be41fa3160eb26fc29e7ed"}, - {file = "debugpy-1.8.5-cp310-cp310-win_amd64.whl", hash = "sha256:b78c1250441ce893cb5035dd6f5fc12db968cc07f91cc06996b2087f7cefdd8e"}, - {file = "debugpy-1.8.5-cp311-cp311-macosx_12_0_universal2.whl", hash = "sha256:606bccba19f7188b6ea9579c8a4f5a5364ecd0bf5a0659c8a5d0e10dcee3032a"}, - {file = "debugpy-1.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9fb642938a7a609a6c865c32ecd0d795d56c1aaa7a7a5722d77855d5e77f2b"}, - {file = "debugpy-1.8.5-cp311-cp311-win32.whl", hash = "sha256:4fbb3b39ae1aa3e5ad578f37a48a7a303dad9a3d018d369bc9ec629c1cfa7408"}, - {file = "debugpy-1.8.5-cp311-cp311-win_amd64.whl", hash = "sha256:345d6a0206e81eb68b1493ce2fbffd57c3088e2ce4b46592077a943d2b968ca3"}, - {file = "debugpy-1.8.5-cp312-cp312-macosx_12_0_universal2.whl", hash = "sha256:5b5c770977c8ec6c40c60d6f58cacc7f7fe5a45960363d6974ddb9b62dbee156"}, - {file = "debugpy-1.8.5-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a65b00b7cdd2ee0c2cf4c7335fef31e15f1b7056c7fdbce9e90193e1a8c8cb"}, - {file = "debugpy-1.8.5-cp312-cp312-win32.whl", hash = "sha256:c9f7c15ea1da18d2fcc2709e9f3d6de98b69a5b0fff1807fb80bc55f906691f7"}, - {file = "debugpy-1.8.5-cp312-cp312-win_amd64.whl", hash = "sha256:28ced650c974aaf179231668a293ecd5c63c0a671ae6d56b8795ecc5d2f48d3c"}, - {file = "debugpy-1.8.5-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:3df6692351172a42af7558daa5019651f898fc67450bf091335aa8a18fbf6f3a"}, - {file = "debugpy-1.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cd04a73eb2769eb0bfe43f5bfde1215c5923d6924b9b90f94d15f207a402226"}, - {file = "debugpy-1.8.5-cp38-cp38-win32.whl", hash = "sha256:8f913ee8e9fcf9d38a751f56e6de12a297ae7832749d35de26d960f14280750a"}, - {file = "debugpy-1.8.5-cp38-cp38-win_amd64.whl", hash = "sha256:a697beca97dad3780b89a7fb525d5e79f33821a8bc0c06faf1f1289e549743cf"}, - {file = "debugpy-1.8.5-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0a1029a2869d01cb777216af8c53cda0476875ef02a2b6ff8b2f2c9a4b04176c"}, - {file = "debugpy-1.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e84c276489e141ed0b93b0af648eef891546143d6a48f610945416453a8ad406"}, - {file = "debugpy-1.8.5-cp39-cp39-win32.whl", hash = "sha256:ad84b7cde7fd96cf6eea34ff6c4a1b7887e0fe2ea46e099e53234856f9d99a34"}, - {file = "debugpy-1.8.5-cp39-cp39-win_amd64.whl", hash = "sha256:7b0fe36ed9d26cb6836b0a51453653f8f2e347ba7348f2bbfe76bfeb670bfb1c"}, - {file = "debugpy-1.8.5-py2.py3-none-any.whl", hash = "sha256:55919dce65b471eff25901acf82d328bbd5b833526b6c1364bd5133754777a44"}, - {file = "debugpy-1.8.5.zip", hash = "sha256:b2112cfeb34b4507399d298fe7023a16656fc553ed5246536060ca7bd0e668d0"}, + {file = "debugpy-1.8.6-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:30f467c5345d9dfdcc0afdb10e018e47f092e383447500f125b4e013236bf14b"}, + {file = "debugpy-1.8.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d73d8c52614432f4215d0fe79a7e595d0dd162b5c15233762565be2f014803b"}, + {file = "debugpy-1.8.6-cp310-cp310-win32.whl", hash = "sha256:e3e182cd98eac20ee23a00653503315085b29ab44ed66269482349d307b08df9"}, + {file = "debugpy-1.8.6-cp310-cp310-win_amd64.whl", hash = "sha256:e3a82da039cfe717b6fb1886cbbe5c4a3f15d7df4765af857f4307585121c2dd"}, + {file = "debugpy-1.8.6-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:67479a94cf5fd2c2d88f9615e087fcb4fec169ec780464a3f2ba4a9a2bb79955"}, + {file = "debugpy-1.8.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb8653f6cbf1dd0a305ac1aa66ec246002145074ea57933978346ea5afdf70b"}, + {file = "debugpy-1.8.6-cp311-cp311-win32.whl", hash = "sha256:cdaf0b9691879da2d13fa39b61c01887c34558d1ff6e5c30e2eb698f5384cd43"}, + {file = "debugpy-1.8.6-cp311-cp311-win_amd64.whl", hash = "sha256:43996632bee7435583952155c06881074b9a742a86cee74e701d87ca532fe833"}, + {file = "debugpy-1.8.6-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:db891b141fc6ee4b5fc6d1cc8035ec329cabc64bdd2ae672b4550c87d4ecb128"}, + {file = "debugpy-1.8.6-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:567419081ff67da766c898ccf21e79f1adad0e321381b0dfc7a9c8f7a9347972"}, + {file = "debugpy-1.8.6-cp312-cp312-win32.whl", hash = "sha256:c9834dfd701a1f6bf0f7f0b8b1573970ae99ebbeee68314116e0ccc5c78eea3c"}, + {file = "debugpy-1.8.6-cp312-cp312-win_amd64.whl", hash = "sha256:e4ce0570aa4aca87137890d23b86faeadf184924ad892d20c54237bcaab75d8f"}, + {file = "debugpy-1.8.6-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:df5dc9eb4ca050273b8e374a4cd967c43be1327eeb42bfe2f58b3cdfe7c68dcb"}, + {file = "debugpy-1.8.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0a85707c6a84b0c5b3db92a2df685b5230dd8fb8c108298ba4f11dba157a615a"}, + {file = "debugpy-1.8.6-cp38-cp38-win32.whl", hash = "sha256:538c6cdcdcdad310bbefd96d7850be1cd46e703079cc9e67d42a9ca776cdc8a8"}, + {file = "debugpy-1.8.6-cp38-cp38-win_amd64.whl", hash = "sha256:22140bc02c66cda6053b6eb56dfe01bbe22a4447846581ba1dd6df2c9f97982d"}, + {file = "debugpy-1.8.6-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:c1cef65cffbc96e7b392d9178dbfd524ab0750da6c0023c027ddcac968fd1caa"}, + {file = "debugpy-1.8.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1e60bd06bb3cc5c0e957df748d1fab501e01416c43a7bdc756d2a992ea1b881"}, + {file = "debugpy-1.8.6-cp39-cp39-win32.whl", hash = "sha256:f7158252803d0752ed5398d291dee4c553bb12d14547c0e1843ab74ee9c31123"}, + {file = "debugpy-1.8.6-cp39-cp39-win_amd64.whl", hash = "sha256:3358aa619a073b620cd0d51d8a6176590af24abcc3fe2e479929a154bf591b51"}, + {file = "debugpy-1.8.6-py2.py3-none-any.whl", hash = "sha256:b48892df4d810eff21d3ef37274f4c60d32cdcafc462ad5647239036b0f0649f"}, + {file = "debugpy-1.8.6.zip", hash = "sha256:c931a9371a86784cee25dec8d65bc2dc7a21f3f1552e3833d9ef8f919d22280a"}, ] [[package]] @@ -615,11 +634,14 @@ files = [ [[package]] name = "docutils" -version = "0.20.1" +version = "0.21.2" description = "Docutils -- Python Documentation Utilities" optional = false -python-versions = "*" -files = [] +python-versions = ">=3.9" +files = [ + {file = "docutils-0.21.2-py3-none-any.whl", hash = "sha256:dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2"}, + {file = "docutils-0.21.2.tar.gz", hash = "sha256:3a6b18732edf182daa3cd12775bbb338cf5691468f91eeeb109deff6ebfa986f"}, +] [[package]] name = "exceptiongroup" @@ -637,13 +659,13 @@ test = ["pytest (>=6)"] [[package]] name = "executing" -version = "2.0.1" +version = "2.1.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, ] [package.extras] @@ -737,69 +759,84 @@ files = [ [[package]] name = "greenlet" -version = "3.0.3" +version = "3.1.1" description = "Lightweight in-process concurrent programming" optional = false python-versions = ">=3.7" files = [ - {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, - {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, - {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, - {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, - {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, - {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, - {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, - {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, - {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, - {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, - {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, - {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, - {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, - {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, - {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, - {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, - {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, - {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, - {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, - {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, - {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, - {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, - {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, - {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, - {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, - {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, - {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, - {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, + {file = "greenlet-3.1.1-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:0bbae94a29c9e5c7e4a2b7f0aae5c17e8e90acbfd3bf6270eeba60c39fce3563"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0fde093fb93f35ca72a556cf72c92ea3ebfda3d79fc35bb19fbe685853869a83"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36b89d13c49216cadb828db8dfa6ce86bbbc476a82d3a6c397f0efae0525bdd0"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94b6150a85e1b33b40b1464a3f9988dcc5251d6ed06842abff82e42632fac120"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93147c513fac16385d1036b7e5b102c7fbbdb163d556b791f0f11eada7ba65dc"}, + {file = "greenlet-3.1.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:da7a9bff22ce038e19bf62c4dd1ec8391062878710ded0a845bcf47cc0200617"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b2795058c23988728eec1f36a4e5e4ebad22f8320c85f3587b539b9ac84128d7"}, + {file = "greenlet-3.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ed10eac5830befbdd0c32f83e8aa6288361597550ba669b04c48f0f9a2c843c6"}, + {file = "greenlet-3.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:77c386de38a60d1dfb8e55b8c1101d68c79dfdd25c7095d51fec2dd800892b80"}, + {file = "greenlet-3.1.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:e4d333e558953648ca09d64f13e6d8f0523fa705f51cae3f03b5983489958c70"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fc016b73c94e98e29af67ab7b9a879c307c6731a2c9da0db5a7d9b7edd1159"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d5e975ca70269d66d17dd995dafc06f1b06e8cb1ec1e9ed54c1d1e4a7c4cf26e"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b2813dc3de8c1ee3f924e4d4227999285fd335d1bcc0d2be6dc3f1f6a318ec1"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e347b3bfcf985a05e8c0b7d462ba6f15b1ee1c909e2dcad795e49e91b152c383"}, + {file = "greenlet-3.1.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9e8f8c9cb53cdac7ba9793c276acd90168f416b9ce36799b9b885790f8ad6c0a"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:62ee94988d6b4722ce0028644418d93a52429e977d742ca2ccbe1c4f4a792511"}, + {file = "greenlet-3.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1776fd7f989fc6b8d8c8cb8da1f6b82c5814957264d1f6cf818d475ec2bf6395"}, + {file = "greenlet-3.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:48ca08c771c268a768087b408658e216133aecd835c0ded47ce955381105ba39"}, + {file = "greenlet-3.1.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:4afe7ea89de619adc868e087b4d2359282058479d7cfb94970adf4b55284574d"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f406b22b7c9a9b4f8aa9d2ab13d6ae0ac3e85c9a809bd590ad53fed2bf70dc79"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3a701fe5a9695b238503ce5bbe8218e03c3bcccf7e204e455e7462d770268aa"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2846930c65b47d70b9d178e89c7e1a69c95c1f68ea5aa0a58646b7a96df12441"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99cfaa2110534e2cf3ba31a7abcac9d328d1d9f1b95beede58294a60348fba36"}, + {file = "greenlet-3.1.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1443279c19fca463fc33e65ef2a935a5b09bb90f978beab37729e1c3c6c25fe9"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:b7cede291382a78f7bb5f04a529cb18e068dd29e0fb27376074b6d0317bf4dd0"}, + {file = "greenlet-3.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:23f20bb60ae298d7d8656c6ec6db134bca379ecefadb0b19ce6f19d1f232a942"}, + {file = "greenlet-3.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:7124e16b4c55d417577c2077be379514321916d5790fa287c9ed6f23bd2ffd01"}, + {file = "greenlet-3.1.1-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:05175c27cb459dcfc05d026c4232f9de8913ed006d42713cb8a5137bd49375f1"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:935e943ec47c4afab8965954bf49bfa639c05d4ccf9ef6e924188f762145c0ff"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:667a9706c970cb552ede35aee17339a18e8f2a87a51fba2ed39ceeeb1004798a"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b8a678974d1f3aa55f6cc34dc480169d58f2e6d8958895d68845fa4ab566509e"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efc0f674aa41b92da8c49e0346318c6075d734994c3c4e4430b1c3f853e498e4"}, + {file = "greenlet-3.1.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0153404a4bb921f0ff1abeb5ce8a5131da56b953eda6e14b88dc6bbc04d2049e"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:275f72decf9932639c1c6dd1013a1bc266438eb32710016a1c742df5da6e60a1"}, + {file = "greenlet-3.1.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c4aab7f6381f38a4b42f269057aee279ab0fc7bf2e929e3d4abfae97b682a12c"}, + {file = "greenlet-3.1.1-cp313-cp313-win_amd64.whl", hash = "sha256:b42703b1cf69f2aa1df7d1030b9d77d3e584a70755674d60e710f0af570f3761"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1695e76146579f8c06c1509c7ce4dfe0706f49c6831a817ac04eebb2fd02011"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7876452af029456b3f3549b696bb36a06db7c90747740c5302f74a9e9fa14b13"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ead44c85f8ab905852d3de8d86f6f8baf77109f9da589cb4fa142bd3b57b475"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8320f64b777d00dd7ccdade271eaf0cad6636343293a25074cc5566160e4de7b"}, + {file = "greenlet-3.1.1-cp313-cp313t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6510bf84a6b643dabba74d3049ead221257603a253d0a9873f55f6a59a65f822"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:04b013dc07c96f83134b1e99888e7a79979f1a247e2a9f59697fa14b5862ed01"}, + {file = "greenlet-3.1.1-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:411f015496fec93c1c8cd4e5238da364e1da7a124bcb293f085bf2860c32c6f6"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47da355d8687fd65240c364c90a31569a133b7b60de111c255ef5b606f2ae291"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98884ecf2ffb7d7fe6bd517e8eb99d31ff7855a840fa6d0d63cd07c037f6a981"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1d4aeb8891338e60d1ab6127af1fe45def5259def8094b9c7e34690c8858803"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db32b5348615a04b82240cc67983cb315309e88d444a288934ee6ceaebcad6cc"}, + {file = "greenlet-3.1.1-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dcc62f31eae24de7f8dce72134c8651c58000d3b1868e01392baea7c32c247de"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1d3755bcb2e02de341c55b4fca7a745a24a9e7212ac953f6b3a48d117d7257aa"}, + {file = "greenlet-3.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:b8da394b34370874b4572676f36acabac172602abf054cbc4ac910219f3340af"}, + {file = "greenlet-3.1.1-cp37-cp37m-win32.whl", hash = "sha256:a0dfc6c143b519113354e780a50381508139b07d2177cb6ad6a08278ec655798"}, + {file = "greenlet-3.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:54558ea205654b50c438029505def3834e80f0869a70fb15b871c29b4575ddef"}, + {file = "greenlet-3.1.1-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:346bed03fe47414091be4ad44786d1bd8bef0c3fcad6ed3dee074a032ab408a9"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfc59d69fc48664bc693842bd57acfdd490acafda1ab52c7836e3fc75c90a111"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21e10da6ec19b457b82636209cbe2331ff4306b54d06fa04b7c138ba18c8a81"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37b9de5a96111fc15418819ab4c4432e4f3c2ede61e660b1e33971eba26ef9ba"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ef9ea3f137e5711f0dbe5f9263e8c009b7069d8a1acea822bd5e9dae0ae49c8"}, + {file = "greenlet-3.1.1-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85f3ff71e2e60bd4b4932a043fbbe0f499e263c628390b285cb599154a3b03b1"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:95ffcf719966dd7c453f908e208e14cde192e09fde6c7186c8f1896ef778d8cd"}, + {file = "greenlet-3.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:03a088b9de532cbfe2ba2034b2b85e82df37874681e8c470d6fb2f8c04d7e4b7"}, + {file = "greenlet-3.1.1-cp38-cp38-win32.whl", hash = "sha256:8b8b36671f10ba80e159378df9c4f15c14098c4fd73a36b9ad715f057272fbef"}, + {file = "greenlet-3.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:7017b2be767b9d43cc31416aba48aab0d2309ee31b4dbf10a1d38fb7972bdf9d"}, + {file = "greenlet-3.1.1-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:396979749bd95f018296af156201d6211240e7a23090f50a8d5d18c370084dc3"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca9d0ff5ad43e785350894d97e13633a66e2b50000e8a183a50a88d834752d42"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f6ff3b14f2df4c41660a7dec01045a045653998784bf8cfcb5a525bdffffbc8f"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94ebba31df2aa506d7b14866fed00ac141a867e63143fe5bca82a8e503b36437"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73aaad12ac0ff500f62cebed98d8789198ea0e6f233421059fa68a5aa7220145"}, + {file = "greenlet-3.1.1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:63e4844797b975b9af3a3fb8f7866ff08775f5426925e1e0bbcfe7932059a12c"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7939aa3ca7d2a1593596e7ac6d59391ff30281ef280d8632fa03d81f7c5f955e"}, + {file = "greenlet-3.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d0028e725ee18175c6e422797c407874da24381ce0690d6b9396c204c7f7276e"}, + {file = "greenlet-3.1.1-cp39-cp39-win32.whl", hash = "sha256:5e06afd14cbaf9e00899fae69b24a32f2196c19de08fcb9f4779dd4f004e5e7c"}, + {file = "greenlet-3.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:3319aa75e0e0639bc15ff54ca327e8dc7a6fe404003496e3c6925cd3142e0e22"}, + {file = "greenlet-3.1.1.tar.gz", hash = "sha256:4ce3ac6cdb6adf7946475d7ef31777c26d94bccc377e070a7986bd2d5c515467"}, ] [package.extras] @@ -840,13 +877,13 @@ trio = ["trio (>=0.22.0,<0.26.0)"] [[package]] name = "httpx" -version = "0.27.0" +version = "0.27.2" description = "The next generation HTTP client." optional = false python-versions = ">=3.8" files = [ - {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, - {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, + {file = "httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0"}, + {file = "httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2"}, ] [package.dependencies] @@ -861,18 +898,22 @@ brotli = ["brotli", "brotlicffi"] cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] http2 = ["h2 (>=3,<5)"] socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "imagesize" version = "1.4.1" @@ -886,22 +927,26 @@ files = [ [[package]] name = "importlib-metadata" -version = "8.2.0" +version = "8.5.0" description = "Read metadata from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_metadata-8.2.0-py3-none-any.whl", hash = "sha256:11901fa0c2f97919b288679932bb64febaeacf289d18ac84dd68cb2e74213369"}, - {file = "importlib_metadata-8.2.0.tar.gz", hash = "sha256:72e8d4399996132204f9a16dcc751af254a48f8d1b20b9ff0f98d4a8f901e73d"}, + {file = "importlib_metadata-8.5.0-py3-none-any.whl", hash = "sha256:45e54197d28b7a7f1559e60b95e7c567032b602131fbd588f1497f47880aa68b"}, + {file = "importlib_metadata-8.5.0.tar.gz", hash = "sha256:71522656f0abace1d072b9e5481a48f07c138e00f079c38c8f883823f9c26bd7"}, ] [package.dependencies] -zipp = ">=0.5" +zipp = ">=3.20" [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +enabler = ["pytest-enabler (>=2.2)"] perf = ["ipython"] -test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-perf (>=0.9.2)"] +type = ["pytest-mypy"] [[package]] name = "ipykernel" @@ -938,42 +983,40 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.12.3" +version = "8.18.1" description = "IPython: Productive Interactive Computing" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, - {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, + {file = "ipython-8.18.1-py3-none-any.whl", hash = "sha256:e8267419d72d81955ec1177f8a29aaa90ac80ad647499201119e2f05e99aa397"}, + {file = "ipython-8.18.1.tar.gz", hash = "sha256:ca6f079bb33457c66e233e4580ebfc4128855b4cf6370dddd73842a9563e8a27"}, ] [package.dependencies] -appnope = {version = "*", markers = "sys_platform == \"darwin\""} -backcall = "*" colorama = {version = "*", markers = "sys_platform == \"win32\""} decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} -pickleshare = "*" -prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +prompt-toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" stack-data = "*" traitlets = ">=5" typing-extensions = {version = "*", markers = "python_version < \"3.10\""} [package.extras] -all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +all = ["black", "curio", "docrepr", "exceptiongroup", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] black = ["black"] -doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "ipykernel", "matplotlib", "pickleshare", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio (<0.22)", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] kernel = ["ipykernel"] nbconvert = ["nbconvert"] nbformat = ["nbformat"] notebook = ["ipywidgets", "notebook"] parallel = ["ipyparallel"] qtconsole = ["qtconsole"] -test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] -test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] +test = ["pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.22)", "pandas", "pickleshare", "pytest (<7.1)", "pytest-asyncio (<0.22)", "testpath", "trio"] [[package]] name = "jedi" @@ -1108,13 +1151,13 @@ files = [ [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -1151,24 +1194,24 @@ test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout" [[package]] name = "langchain" -version = "0.2.12" +version = "0.3.1" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] aiohttp = "^3.8.3" async-timeout = {version = "^4.0.0", markers = "python_version < \"3.11\""} -langchain-core = "^0.2.27" -langchain-text-splitters = "^0.2.0" +langchain-core = "^0.3.6" +langchain-text-splitters = "^0.3.0" langsmith = "^0.1.17" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] -pydantic = ">=1,<3" +pydantic = "^2.7.4" PyYAML = ">=5.3" requests = "^2" SQLAlchemy = ">=1.4,<3" @@ -1180,23 +1223,24 @@ url = "libs/langchain" [[package]] name = "langchain-community" -version = "0.2.11" +version = "0.3.1" description = "Community contributed LangChain integrations." optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] aiohttp = "^3.8.3" dataclasses-json = ">= 0.5.7, < 0.7" -langchain = "^0.2.12" -langchain-core = "^0.2.27" -langsmith = "^0.1.0" +langchain = "^0.3.1" +langchain-core = "^0.3.6" +langsmith = "^0.1.125" numpy = [ {version = ">=1,<2", markers = "python_version < \"3.12\""}, {version = ">=1.26.0,<2.0.0", markers = "python_version >= \"3.12\""}, ] +pydantic-settings = "^2.4.0" PyYAML = ">=5.3" requests = "^2" SQLAlchemy = ">=1.4,<3" @@ -1208,19 +1252,19 @@ url = "libs/community" [[package]] name = "langchain-core" -version = "0.2.29" +version = "0.3.6" description = "Building applications with LLMs through composability" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] jsonpatch = "^1.33" -langsmith = "^0.1.75" +langsmith = "^0.1.125" packaging = ">=23.2,<25" pydantic = [ - {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, + {version = ">=2.5.2,<3.0.0", markers = "python_full_version < \"3.12.4\""}, {version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""}, ] PyYAML = ">=5.3" @@ -1231,34 +1275,17 @@ typing-extensions = ">=4.7" type = "directory" url = "libs/core" -[[package]] -name = "langchain-experimental" -version = "0.0.64" -description = "Building applications with LLMs through composability" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [] -develop = true - -[package.dependencies] -langchain-community = "^0.2.10" -langchain-core = "^0.2.27" - -[package.source] -type = "directory" -url = "libs/experimental" - [[package]] name = "langchain-openai" -version = "0.1.21rc2" +version = "0.2.1" description = "An integration package connecting OpenAI and LangChain" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.29" +langchain-core = "^0.3" openai = "^1.40.0" tiktoken = ">=0.7,<1" @@ -1268,15 +1295,15 @@ url = "libs/partners/openai" [[package]] name = "langchain-text-splitters" -version = "0.2.3" +version = "0.3.0" description = "LangChain text splitting utilities" optional = false -python-versions = ">=3.8.1,<4.0" +python-versions = ">=3.9,<4.0" files = [] develop = true [package.dependencies] -langchain-core = "^0.2.10" +langchain-core = "^0.3.0" [package.source] type = "directory" @@ -1284,16 +1311,17 @@ url = "libs/text-splitters" [[package]] name = "langsmith" -version = "0.1.98" +version = "0.1.128" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.98-py3-none-any.whl", hash = "sha256:f79e8a128652bbcee4606d10acb6236973b5cd7dde76e3741186d3b97b5698e9"}, - {file = "langsmith-0.1.98.tar.gz", hash = "sha256:e07678219a0502e8f26d35294e72127a39d25e32fafd091af5a7bb661e9a6bd1"}, + {file = "langsmith-0.1.128-py3-none-any.whl", hash = "sha256:c1b59d947584be7487ac53dffb4e232704626964011b714fd3d9add4b3694cbc"}, + {file = "langsmith-0.1.128.tar.gz", hash = "sha256:3299e17a659f3c47725c97c47f4445fc34113ac668becce425919866fbcb6ec2"}, ] [package.dependencies] +httpx = ">=0.23.0,<1" orjson = ">=3.9.14,<4.0.0" pydantic = [ {version = ">=1,<3", markers = "python_full_version < \"3.12.4\""}, @@ -1301,44 +1329,6 @@ pydantic = [ ] requests = ">=2,<3" -[[package]] -name = "livereload" -version = "2.7.0" -description = "Python LiveReload is an awesome tool for web developers" -optional = false -python-versions = ">=3.7" -files = [ - {file = "livereload-2.7.0-py3-none-any.whl", hash = "sha256:19bee55aff51d5ade6ede0dc709189a0f904d3b906d3ea71641ed548acff3246"}, - {file = "livereload-2.7.0.tar.gz", hash = "sha256:f4ba199ef93248902841e298670eebfe1aa9e148e19b343bc57dbf1b74de0513"}, -] - -[package.dependencies] -tornado = "*" - -[[package]] -name = "markdown-it-py" -version = "3.0.0" -description = "Python port of markdown-it. Markdown parsing, done right!" -optional = false -python-versions = ">=3.8" -files = [ - {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, - {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, -] - -[package.dependencies] -mdurl = ">=0.1,<1.0" - -[package.extras] -benchmarking = ["psutil", "pytest", "pytest-benchmark"] -code-style = ["pre-commit (>=3.0,<4.0)"] -compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] -linkify = ["linkify-it-py (>=1,<3)"] -plugins = ["mdit-py-plugins"] -profiling = ["gprof2dot"] -rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] -testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] - [[package]] name = "markupsafe" version = "2.1.5" @@ -1410,13 +1400,13 @@ files = [ [[package]] name = "marshmallow" -version = "3.21.3" +version = "3.22.0" description = "A lightweight library for converting complex datatypes to and from native Python datatypes." optional = false python-versions = ">=3.8" files = [ - {file = "marshmallow-3.21.3-py3-none-any.whl", hash = "sha256:86ce7fb914aa865001a4b2092c4c2872d13bc347f3d42673272cabfdbad386f1"}, - {file = "marshmallow-3.21.3.tar.gz", hash = "sha256:4f57c5e050a54d66361e826f94fba213eb10b67b2fdb02c3e0343ce207ba1662"}, + {file = "marshmallow-3.22.0-py3-none-any.whl", hash = "sha256:71a2dce49ef901c3f97ed296ae5051135fd3febd2bf43afe0ae9a82143a494d9"}, + {file = "marshmallow-3.22.0.tar.gz", hash = "sha256:4972f529104a220bb8637d595aa4c9762afbe7f7a77d82dc58c1615d70c5823e"}, ] [package.dependencies] @@ -1424,7 +1414,7 @@ packaging = ">=17.0" [package.extras] dev = ["marshmallow[tests]", "pre-commit (>=3.5,<4.0)", "tox"] -docs = ["alabaster (==0.7.16)", "autodocsumm (==0.2.12)", "sphinx (==7.3.7)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"] +docs = ["alabaster (==1.0.0)", "autodocsumm (==0.2.13)", "sphinx (==8.0.2)", "sphinx-issues (==4.1.0)", "sphinx-version-warning (==1.1.2)"] tests = ["pytest", "pytz", "simplejson"] [[package]] @@ -1442,133 +1432,108 @@ files = [ traitlets = "*" [[package]] -name = "mdit-py-plugins" -version = "0.4.1" -description = "Collection of plugins for markdown-it-py" +name = "multidict" +version = "6.1.0" +description = "multidict implementation" optional = false python-versions = ">=3.8" files = [ - {file = "mdit_py_plugins-0.4.1-py3-none-any.whl", hash = "sha256:1020dfe4e6bfc2c79fb49ae4e3f5b297f5ccd20f010187acc52af2921e27dc6a"}, - {file = "mdit_py_plugins-0.4.1.tar.gz", hash = "sha256:834b8ac23d1cd60cec703646ffd22ae97b7955a6d596eb1d304be1e251ae499c"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] [package.dependencies] -markdown-it-py = ">=1.0.0,<4.0.0" - -[package.extras] -code-style = ["pre-commit"] -rtd = ["myst-parser", "sphinx-book-theme"] -testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] - -[[package]] -name = "mdurl" -version = "0.1.2" -description = "Markdown URL utilities" -optional = false -python-versions = ">=3.7" -files = [ - {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, - {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, -] - -[[package]] -name = "multidict" -version = "6.0.5" -description = "multidict implementation" -optional = false -python-versions = ">=3.7" -files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, -] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} [[package]] name = "mypy-extensions" @@ -1581,32 +1546,6 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] -[[package]] -name = "myst-parser" -version = "3.0.1" -description = "An extended [CommonMark](https://spec.commonmark.org/) compliant parser," -optional = false -python-versions = ">=3.8" -files = [ - {file = "myst_parser-3.0.1-py3-none-any.whl", hash = "sha256:6457aaa33a5d474aca678b8ead9b3dc298e89c68e67012e73146ea6fd54babf1"}, - {file = "myst_parser-3.0.1.tar.gz", hash = "sha256:88f0cb406cb363b077d176b51c476f62d60604d68a8dcdf4832e080441301a87"}, -] - -[package.dependencies] -docutils = ">=0.18,<0.22" -jinja2 = "*" -markdown-it-py = ">=3.0,<4.0" -mdit-py-plugins = ">=0.4,<1.0" -pyyaml = "*" -sphinx = ">=6,<8" - -[package.extras] -code-style = ["pre-commit (>=3.0,<4.0)"] -linkify = ["linkify-it-py (>=2.0,<3.0)"] -rtd = ["ipython", "sphinx (>=7)", "sphinx-autodoc2 (>=0.5.0,<0.6.0)", "sphinx-book-theme (>=1.1,<2.0)", "sphinx-copybutton", "sphinx-design", "sphinx-pyscript", "sphinx-tippy (>=0.4.3)", "sphinx-togglebutton", "sphinxext-opengraph (>=0.9.0,<0.10.0)", "sphinxext-rediraffe (>=0.2.7,<0.3.0)"] -testing = ["beautifulsoup4", "coverage[toml]", "defusedxml", "pytest (>=8,<9)", "pytest-cov", "pytest-param-files (>=0.6.0,<0.7.0)", "pytest-regressions", "sphinx-pytest"] -testing-docutils = ["pygments", "pytest (>=8,<9)", "pytest-param-files (>=0.6.0,<0.7.0)"] - [[package]] name = "nest-asyncio" version = "1.6.0" @@ -1618,43 +1557,6 @@ files = [ {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, ] -[[package]] -name = "numpy" -version = "1.24.4" -description = "Fundamental package for array computing in Python" -optional = false -python-versions = ">=3.8" -files = [ - {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, - {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, - {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, - {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, - {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, - {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, - {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, - {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, - {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, - {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, - {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, - {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, - {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, - {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, - {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, - {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, - {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, - {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, - {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, -] - [[package]] name = "numpy" version = "1.26.4" @@ -1702,13 +1604,13 @@ files = [ [[package]] name = "openai" -version = "1.40.1" +version = "1.48.0" description = "The official Python library for the openai API" optional = false python-versions = ">=3.7.1" files = [ - {file = "openai-1.40.1-py3-none-any.whl", hash = "sha256:cf5929076c6ca31c26f1ed207e9fd19eb05404cc9104f64c9d29bb0ac0c5bcd4"}, - {file = "openai-1.40.1.tar.gz", hash = "sha256:cb1294ac1f8c6a1acbb07e090698eb5ad74a7a88484e77126612a4f22579673d"}, + {file = "openai-1.48.0-py3-none-any.whl", hash = "sha256:7c4af223f0bf615ce4a12453729952c9a8b04ffe8c78aa77981b12fd970149cf"}, + {file = "openai-1.48.0.tar.gz", hash = "sha256:1d3b69ea62c287c4885a6f3ce840768564cd5f52c60ac5f890fef80d43cc4799"}, ] [package.dependencies] @@ -1726,62 +1628,68 @@ datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] [[package]] name = "orjson" -version = "3.10.6" +version = "3.10.7" description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy" optional = false python-versions = ">=3.8" files = [ - {file = "orjson-3.10.6-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:fb0ee33124db6eaa517d00890fc1a55c3bfe1cf78ba4a8899d71a06f2d6ff5c7"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c1c4b53b24a4c06547ce43e5fee6ec4e0d8fe2d597f4647fc033fd205707365"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eadc8fd310edb4bdbd333374f2c8fec6794bbbae99b592f448d8214a5e4050c0"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:61272a5aec2b2661f4fa2b37c907ce9701e821b2c1285d5c3ab0207ebd358d38"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57985ee7e91d6214c837936dc1608f40f330a6b88bb13f5a57ce5257807da143"}, - {file = "orjson-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:633a3b31d9d7c9f02d49c4ab4d0a86065c4a6f6adc297d63d272e043472acab5"}, - {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1c680b269d33ec444afe2bdc647c9eb73166fa47a16d9a75ee56a374f4a45f43"}, - {file = "orjson-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f759503a97a6ace19e55461395ab0d618b5a117e8d0fbb20e70cfd68a47327f2"}, - {file = "orjson-3.10.6-cp310-none-win32.whl", hash = "sha256:95a0cce17f969fb5391762e5719575217bd10ac5a189d1979442ee54456393f3"}, - {file = "orjson-3.10.6-cp310-none-win_amd64.whl", hash = "sha256:df25d9271270ba2133cc88ee83c318372bdc0f2cd6f32e7a450809a111efc45c"}, - {file = "orjson-3.10.6-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:b1ec490e10d2a77c345def52599311849fc063ae0e67cf4f84528073152bb2ba"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55d43d3feb8f19d07e9f01e5b9be4f28801cf7c60d0fa0d279951b18fae1932b"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac3045267e98fe749408eee1593a142e02357c5c99be0802185ef2170086a863"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c27bc6a28ae95923350ab382c57113abd38f3928af3c80be6f2ba7eb8d8db0b0"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d27456491ca79532d11e507cadca37fb8c9324a3976294f68fb1eff2dc6ced5a"}, - {file = "orjson-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05ac3d3916023745aa3b3b388e91b9166be1ca02b7c7e41045da6d12985685f0"}, - {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1335d4ef59ab85cab66fe73fd7a4e881c298ee7f63ede918b7faa1b27cbe5212"}, - {file = "orjson-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4bbc6d0af24c1575edc79994c20e1b29e6fb3c6a570371306db0993ecf144dc5"}, - {file = "orjson-3.10.6-cp311-none-win32.whl", hash = "sha256:450e39ab1f7694465060a0550b3f6d328d20297bf2e06aa947b97c21e5241fbd"}, - {file = "orjson-3.10.6-cp311-none-win_amd64.whl", hash = "sha256:227df19441372610b20e05bdb906e1742ec2ad7a66ac8350dcfd29a63014a83b"}, - {file = "orjson-3.10.6-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:ea2977b21f8d5d9b758bb3f344a75e55ca78e3ff85595d248eee813ae23ecdfb"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6f3d167d13a16ed263b52dbfedff52c962bfd3d270b46b7518365bcc2121eed"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f710f346e4c44a4e8bdf23daa974faede58f83334289df80bc9cd12fe82573c7"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7275664f84e027dcb1ad5200b8b18373e9c669b2a9ec33d410c40f5ccf4b257e"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0943e4c701196b23c240b3d10ed8ecd674f03089198cf503105b474a4f77f21f"}, - {file = "orjson-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:446dee5a491b5bc7d8f825d80d9637e7af43f86a331207b9c9610e2f93fee22a"}, - {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:64c81456d2a050d380786413786b057983892db105516639cb5d3ee3c7fd5148"}, - {file = "orjson-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:960db0e31c4e52fa0fc3ecbaea5b2d3b58f379e32a95ae6b0ebeaa25b93dfd34"}, - {file = "orjson-3.10.6-cp312-none-win32.whl", hash = "sha256:a6ea7afb5b30b2317e0bee03c8d34c8181bc5a36f2afd4d0952f378972c4efd5"}, - {file = "orjson-3.10.6-cp312-none-win_amd64.whl", hash = "sha256:874ce88264b7e655dde4aeaacdc8fd772a7962faadfb41abe63e2a4861abc3dc"}, - {file = "orjson-3.10.6-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:66680eae4c4e7fc193d91cfc1353ad6d01b4801ae9b5314f17e11ba55e934183"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caff75b425db5ef8e8f23af93c80f072f97b4fb3afd4af44482905c9f588da28"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3722fddb821b6036fd2a3c814f6bd9b57a89dc6337b9924ecd614ebce3271394"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2c116072a8533f2fec435fde4d134610f806bdac20188c7bd2081f3e9e0133f"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6eeb13218c8cf34c61912e9df2de2853f1d009de0e46ea09ccdf3d757896af0a"}, - {file = "orjson-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:965a916373382674e323c957d560b953d81d7a8603fbeee26f7b8248638bd48b"}, - {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:03c95484d53ed8e479cade8628c9cea00fd9d67f5554764a1110e0d5aa2de96e"}, - {file = "orjson-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:e060748a04cccf1e0a6f2358dffea9c080b849a4a68c28b1b907f272b5127e9b"}, - {file = "orjson-3.10.6-cp38-none-win32.whl", hash = "sha256:738dbe3ef909c4b019d69afc19caf6b5ed0e2f1c786b5d6215fbb7539246e4c6"}, - {file = "orjson-3.10.6-cp38-none-win_amd64.whl", hash = "sha256:d40f839dddf6a7d77114fe6b8a70218556408c71d4d6e29413bb5f150a692ff7"}, - {file = "orjson-3.10.6-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:697a35a083c4f834807a6232b3e62c8b280f7a44ad0b759fd4dce748951e70db"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fd502f96bf5ea9a61cbc0b2b5900d0dd68aa0da197179042bdd2be67e51a1e4b"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f215789fb1667cdc874c1b8af6a84dc939fd802bf293a8334fce185c79cd359b"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a2debd8ddce948a8c0938c8c93ade191d2f4ba4649a54302a7da905a81f00b56"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5410111d7b6681d4b0d65e0f58a13be588d01b473822483f77f513c7f93bd3b2"}, - {file = "orjson-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bb1f28a137337fdc18384079fa5726810681055b32b92253fa15ae5656e1dddb"}, - {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:bf2fbbce5fe7cd1aa177ea3eab2b8e6a6bc6e8592e4279ed3db2d62e57c0e1b2"}, - {file = "orjson-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:79b9b9e33bd4c517445a62b90ca0cc279b0f1f3970655c3df9e608bc3f91741a"}, - {file = "orjson-3.10.6-cp39-none-win32.whl", hash = "sha256:30b0a09a2014e621b1adf66a4f705f0809358350a757508ee80209b2d8dae219"}, - {file = "orjson-3.10.6-cp39-none-win_amd64.whl", hash = "sha256:49e3bc615652617d463069f91b867a4458114c5b104e13b7ae6872e5f79d0844"}, - {file = "orjson-3.10.6.tar.gz", hash = "sha256:e54b63d0a7c6c54a5f5f726bc93a2078111ef060fec4ecbf34c5db800ca3b3a7"}, + {file = "orjson-3.10.7-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:74f4544f5a6405b90da8ea724d15ac9c36da4d72a738c64685003337401f5c12"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:34a566f22c28222b08875b18b0dfbf8a947e69df21a9ed5c51a6bf91cfb944ac"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bf6ba8ebc8ef5792e2337fb0419f8009729335bb400ece005606336b7fd7bab7"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac7cf6222b29fbda9e3a472b41e6a5538b48f2c8f99261eecd60aafbdb60690c"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de817e2f5fc75a9e7dd350c4b0f54617b280e26d1631811a43e7e968fa71e3e9"}, + {file = "orjson-3.10.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:348bdd16b32556cf8d7257b17cf2bdb7ab7976af4af41ebe79f9796c218f7e91"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:479fd0844ddc3ca77e0fd99644c7fe2de8e8be1efcd57705b5c92e5186e8a250"}, + {file = "orjson-3.10.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fdf5197a21dd660cf19dfd2a3ce79574588f8f5e2dbf21bda9ee2d2b46924d84"}, + {file = "orjson-3.10.7-cp310-none-win32.whl", hash = "sha256:d374d36726746c81a49f3ff8daa2898dccab6596864ebe43d50733275c629175"}, + {file = "orjson-3.10.7-cp310-none-win_amd64.whl", hash = "sha256:cb61938aec8b0ffb6eef484d480188a1777e67b05d58e41b435c74b9d84e0b9c"}, + {file = "orjson-3.10.7-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:7db8539039698ddfb9a524b4dd19508256107568cdad24f3682d5773e60504a2"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:480f455222cb7a1dea35c57a67578848537d2602b46c464472c995297117fa09"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8a9c9b168b3a19e37fe2778c0003359f07822c90fdff8f98d9d2a91b3144d8e0"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8de062de550f63185e4c1c54151bdddfc5625e37daf0aa1e75d2a1293e3b7d9a"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b0dd04483499d1de9c8f6203f8975caf17a6000b9c0c54630cef02e44ee624e"}, + {file = "orjson-3.10.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b58d3795dafa334fc8fd46f7c5dc013e6ad06fd5b9a4cc98cb1456e7d3558bd6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:33cfb96c24034a878d83d1a9415799a73dc77480e6c40417e5dda0710d559ee6"}, + {file = "orjson-3.10.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e724cebe1fadc2b23c6f7415bad5ee6239e00a69f30ee423f319c6af70e2a5c0"}, + {file = "orjson-3.10.7-cp311-none-win32.whl", hash = "sha256:82763b46053727a7168d29c772ed5c870fdae2f61aa8a25994c7984a19b1021f"}, + {file = "orjson-3.10.7-cp311-none-win_amd64.whl", hash = "sha256:eb8d384a24778abf29afb8e41d68fdd9a156cf6e5390c04cc07bbc24b89e98b5"}, + {file = "orjson-3.10.7-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:44a96f2d4c3af51bfac6bc4ef7b182aa33f2f054fd7f34cc0ee9a320d051d41f"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ac14cd57df0572453543f8f2575e2d01ae9e790c21f57627803f5e79b0d3c3"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bdbb61dcc365dd9be94e8f7df91975edc9364d6a78c8f7adb69c1cdff318ec93"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b48b3db6bb6e0a08fa8c83b47bc169623f801e5cc4f24442ab2b6617da3b5313"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23820a1563a1d386414fef15c249040042b8e5d07b40ab3fe3efbfbbcbcb8864"}, + {file = "orjson-3.10.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0c6a008e91d10a2564edbb6ee5069a9e66df3fbe11c9a005cb411f441fd2c09"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d352ee8ac1926d6193f602cbe36b1643bbd1bbcb25e3c1a657a4390f3000c9a5"}, + {file = "orjson-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d2d9f990623f15c0ae7ac608103c33dfe1486d2ed974ac3f40b693bad1a22a7b"}, + {file = "orjson-3.10.7-cp312-none-win32.whl", hash = "sha256:7c4c17f8157bd520cdb7195f75ddbd31671997cbe10aee559c2d613592e7d7eb"}, + {file = "orjson-3.10.7-cp312-none-win_amd64.whl", hash = "sha256:1d9c0e733e02ada3ed6098a10a8ee0052dd55774de3d9110d29868d24b17faa1"}, + {file = "orjson-3.10.7-cp313-cp313-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:77d325ed866876c0fa6492598ec01fe30e803272a6e8b10e992288b009cbe149"}, + {file = "orjson-3.10.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ea2c232deedcb605e853ae1db2cc94f7390ac776743b699b50b071b02bea6fe"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:3dcfbede6737fdbef3ce9c37af3fb6142e8e1ebc10336daa05872bfb1d87839c"}, + {file = "orjson-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:11748c135f281203f4ee695b7f80bb1358a82a63905f9f0b794769483ea854ad"}, + {file = "orjson-3.10.7-cp313-none-win32.whl", hash = "sha256:a7e19150d215c7a13f39eb787d84db274298d3f83d85463e61d277bbd7f401d2"}, + {file = "orjson-3.10.7-cp313-none-win_amd64.whl", hash = "sha256:eef44224729e9525d5261cc8d28d6b11cafc90e6bd0be2157bde69a52ec83024"}, + {file = "orjson-3.10.7-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:6ea2b2258eff652c82652d5e0f02bd5e0463a6a52abb78e49ac288827aaa1469"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:430ee4d85841e1483d487e7b81401785a5dfd69db5de01314538f31f8fbf7ee1"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b6146e439af4c2472c56f8540d799a67a81226e11992008cb47e1267a9b3225"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:084e537806b458911137f76097e53ce7bf5806dda33ddf6aaa66a028f8d43a23"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4829cf2195838e3f93b70fd3b4292156fc5e097aac3739859ac0dcc722b27ac0"}, + {file = "orjson-3.10.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1193b2416cbad1a769f868b1749535d5da47626ac29445803dae7cc64b3f5c98"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:4e6c3da13e5a57e4b3dca2de059f243ebec705857522f188f0180ae88badd354"}, + {file = "orjson-3.10.7-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c31008598424dfbe52ce8c5b47e0752dca918a4fdc4a2a32004efd9fab41d866"}, + {file = "orjson-3.10.7-cp38-none-win32.whl", hash = "sha256:7122a99831f9e7fe977dc45784d3b2edc821c172d545e6420c375e5a935f5a1c"}, + {file = "orjson-3.10.7-cp38-none-win_amd64.whl", hash = "sha256:a763bc0e58504cc803739e7df040685816145a6f3c8a589787084b54ebc9f16e"}, + {file = "orjson-3.10.7-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:e76be12658a6fa376fcd331b1ea4e58f5a06fd0220653450f0d415b8fd0fbe20"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed350d6978d28b92939bfeb1a0570c523f6170efc3f0a0ef1f1df287cd4f4960"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:144888c76f8520e39bfa121b31fd637e18d4cc2f115727865fdf9fa325b10412"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09b2d92fd95ad2402188cf51573acde57eb269eddabaa60f69ea0d733e789fe9"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b24a579123fa884f3a3caadaed7b75eb5715ee2b17ab5c66ac97d29b18fe57f"}, + {file = "orjson-3.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591bcfe7512353bd609875ab38050efe3d55e18934e2f18950c108334b4ff"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:f4db56635b58cd1a200b0a23744ff44206ee6aa428185e2b6c4a65b3197abdcd"}, + {file = "orjson-3.10.7-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0fa5886854673222618638c6df7718ea7fe2f3f2384c452c9ccedc70b4a510a5"}, + {file = "orjson-3.10.7-cp39-none-win32.whl", hash = "sha256:8272527d08450ab16eb405f47e0f4ef0e5ff5981c3d82afe0efd25dcbef2bcd2"}, + {file = "orjson-3.10.7-cp39-none-win_amd64.whl", hash = "sha256:974683d4618c0c7dbf4f69c95a979734bf183d0658611760017f6e70a145af58"}, + {file = "orjson-3.10.7.tar.gz", hash = "sha256:75ef0640403f945f3a1f9f6400686560dbfb0fb5b16589ad62cd477043c4eee3"}, ] [[package]] @@ -1824,42 +1732,31 @@ files = [ [package.dependencies] ptyprocess = ">=0.5" -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -optional = false -python-versions = "*" -files = [ - {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, - {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, -] - [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.48" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, ] [package.dependencies] @@ -1932,18 +1829,18 @@ files = [ [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = [ {version = ">=4.6.1", markers = "python_version < \"3.13\""}, {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, @@ -1951,117 +1848,138 @@ typing-extensions = [ [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = false python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" +[[package]] +name = "pydantic-settings" +version = "2.5.2" +description = "Settings management using Pydantic" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_settings-2.5.2-py3-none-any.whl", hash = "sha256:2c912e55fd5794a59bf8c832b9de832dcfdf4778d79ff79b708744eed499a907"}, + {file = "pydantic_settings-2.5.2.tar.gz", hash = "sha256:f90b139682bee4d2065273d5185d71d37ea46cfe57e1b5ae184fc6a0b2484ca0"}, +] + +[package.dependencies] +pydantic = ">=2.7.0" +python-dotenv = ">=0.21.0" + +[package.extras] +azure-key-vault = ["azure-identity (>=1.16.0)", "azure-keyvault-secrets (>=4.8.0)"] +toml = ["tomli (>=2.0.1)"] +yaml = ["pyyaml (>=6.0.1)"] + [[package]] name = "pydata-sphinx-theme" -version = "0.14.4" +version = "0.15.4" description = "Bootstrap-based Sphinx theme from the PyData community" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pydata_sphinx_theme-0.14.4-py3-none-any.whl", hash = "sha256:ac15201f4c2e2e7042b0cad8b30251433c1f92be762ddcefdb4ae68811d918d9"}, - {file = "pydata_sphinx_theme-0.14.4.tar.gz", hash = "sha256:f5d7a2cb7a98e35b9b49d3b02cec373ad28958c2ed5c9b1ffe6aff6c56e9de5b"}, + {file = "pydata_sphinx_theme-0.15.4-py3-none-any.whl", hash = "sha256:2136ad0e9500d0949f96167e63f3e298620040aea8f9c74621959eda5d4cf8e6"}, + {file = "pydata_sphinx_theme-0.15.4.tar.gz", hash = "sha256:7762ec0ac59df3acecf49fd2f889e1b4565dbce8b88b2e29ee06fdd90645a06d"}, ] [package.dependencies] @@ -2071,14 +1989,15 @@ beautifulsoup4 = "*" docutils = "!=0.17.0" packaging = "*" pygments = ">=2.7" -sphinx = ">=5.0" +sphinx = ">=5" typing-extensions = "*" [package.extras] a11y = ["pytest-playwright"] -dev = ["nox", "pre-commit", "pydata-sphinx-theme[doc,test]", "pyyaml"] -doc = ["ablog (>=0.11.0rc2)", "colorama", "ipykernel", "ipyleaflet", "jupyter_sphinx", "jupyterlite-sphinx", "linkify-it-py", "matplotlib", "myst-parser", "nbsphinx", "numpy", "numpydoc", "pandas", "plotly", "rich", "sphinx-autoapi (>=3.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-favicon (>=1.0.1)", "sphinx-sitemap", "sphinx-togglebutton", "sphinxcontrib-youtube (<1.4)", "sphinxext-rediraffe", "xarray"] -test = ["pytest", "pytest-cov", "pytest-regressions"] +dev = ["pandoc", "pre-commit", "pydata-sphinx-theme[doc,test]", "pyyaml", "sphinx-theme-builder[cli]", "tox"] +doc = ["ablog (>=0.11.8)", "colorama", "graphviz", "ipykernel", "ipyleaflet", "ipywidgets", "jupyter_sphinx", "jupyterlite-sphinx", "linkify-it-py", "matplotlib", "myst-parser", "nbsphinx", "numpy", "numpydoc", "pandas", "plotly", "rich", "sphinx-autoapi (>=3.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-favicon (>=1.0.1)", "sphinx-sitemap", "sphinx-togglebutton", "sphinxcontrib-youtube (>=1.4.1)", "sphinxext-rediraffe", "xarray"] +i18n = ["Babel", "jinja2"] +test = ["pytest", "pytest-cov", "pytest-regressions", "sphinx[test]"] [[package]] name = "pygments" @@ -2109,16 +2028,19 @@ files = [ six = ">=1.5" [[package]] -name = "pytz" -version = "2024.1" -description = "World timezone definitions, modern and historical" +name = "python-dotenv" +version = "1.0.1" +description = "Read key-value pairs from a .env file and set them as environment variables" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "python-dotenv-1.0.1.tar.gz", hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca"}, + {file = "python_dotenv-1.0.1-py3-none-any.whl", hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a"}, ] +[package.extras] +cli = ["click (>=5.0)"] + [[package]] name = "pywin32" version = "306" @@ -2206,120 +2128,120 @@ files = [ [[package]] name = "pyzmq" -version = "26.1.0" +version = "26.2.0" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.7" files = [ - {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:263cf1e36862310bf5becfbc488e18d5d698941858860c5a8c079d1511b3b18e"}, - {file = "pyzmq-26.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d5c8b17f6e8f29138678834cf8518049e740385eb2dbf736e8f07fc6587ec682"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75a95c2358fcfdef3374cb8baf57f1064d73246d55e41683aaffb6cfe6862917"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f99de52b8fbdb2a8f5301ae5fc0f9e6b3ba30d1d5fc0421956967edcc6914242"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bcbfbab4e1895d58ab7da1b5ce9a327764f0366911ba5b95406c9104bceacb0"}, - {file = "pyzmq-26.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:77ce6a332c7e362cb59b63f5edf730e83590d0ab4e59c2aa5bd79419a42e3449"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:ba0a31d00e8616149a5ab440d058ec2da621e05d744914774c4dde6837e1f545"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8b88641384e84a258b740801cd4dbc45c75f148ee674bec3149999adda4a8598"}, - {file = "pyzmq-26.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2fa76ebcebe555cce90f16246edc3ad83ab65bb7b3d4ce408cf6bc67740c4f88"}, - {file = "pyzmq-26.1.0-cp310-cp310-win32.whl", hash = "sha256:fbf558551cf415586e91160d69ca6416f3fce0b86175b64e4293644a7416b81b"}, - {file = "pyzmq-26.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:a7b8aab50e5a288c9724d260feae25eda69582be84e97c012c80e1a5e7e03fb2"}, - {file = "pyzmq-26.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:08f74904cb066e1178c1ec706dfdb5c6c680cd7a8ed9efebeac923d84c1f13b1"}, - {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:46d6800b45015f96b9d92ece229d92f2aef137d82906577d55fadeb9cf5fcb71"}, - {file = "pyzmq-26.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5bc2431167adc50ba42ea3e5e5f5cd70d93e18ab7b2f95e724dd8e1bd2c38120"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3bb34bebaa1b78e562931a1687ff663d298013f78f972a534f36c523311a84d"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3f6329340cef1c7ba9611bd038f2d523cea79f09f9c8f6b0553caba59ec562"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:471880c4c14e5a056a96cd224f5e71211997d40b4bf5e9fdded55dafab1f98f2"}, - {file = "pyzmq-26.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ce6f2b66799971cbae5d6547acefa7231458289e0ad481d0be0740535da38d8b"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0a1f6ea5b1d6cdbb8cfa0536f0d470f12b4b41ad83625012e575f0e3ecfe97f0"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:b45e6445ac95ecb7d728604bae6538f40ccf4449b132b5428c09918523abc96d"}, - {file = "pyzmq-26.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:94c4262626424683feea0f3c34951d39d49d354722db2745c42aa6bb50ecd93b"}, - {file = "pyzmq-26.1.0-cp311-cp311-win32.whl", hash = "sha256:a0f0ab9df66eb34d58205913f4540e2ad17a175b05d81b0b7197bc57d000e829"}, - {file = "pyzmq-26.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:8efb782f5a6c450589dbab4cb0f66f3a9026286333fe8f3a084399149af52f29"}, - {file = "pyzmq-26.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f133d05aaf623519f45e16ab77526e1e70d4e1308e084c2fb4cedb1a0c764bbb"}, - {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:3d3146b1c3dcc8a1539e7cc094700b2be1e605a76f7c8f0979b6d3bde5ad4072"}, - {file = "pyzmq-26.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d9270fbf038bf34ffca4855bcda6e082e2c7f906b9eb8d9a8ce82691166060f7"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:995301f6740a421afc863a713fe62c0aaf564708d4aa057dfdf0f0f56525294b"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7eca8b89e56fb8c6c26dd3e09bd41b24789022acf1cf13358e96f1cafd8cae3"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d4feb2e83dfe9ace6374a847e98ee9d1246ebadcc0cb765482e272c34e5820"}, - {file = "pyzmq-26.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d4fafc2eb5d83f4647331267808c7e0c5722c25a729a614dc2b90479cafa78bd"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:58c33dc0e185dd97a9ac0288b3188d1be12b756eda67490e6ed6a75cf9491d79"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:68a0a1d83d33d8367ddddb3e6bb4afbb0f92bd1dac2c72cd5e5ddc86bdafd3eb"}, - {file = "pyzmq-26.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ae7c57e22ad881af78075e0cea10a4c778e67234adc65c404391b417a4dda83"}, - {file = "pyzmq-26.1.0-cp312-cp312-win32.whl", hash = "sha256:347e84fc88cc4cb646597f6d3a7ea0998f887ee8dc31c08587e9c3fd7b5ccef3"}, - {file = "pyzmq-26.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:9f136a6e964830230912f75b5a116a21fe8e34128dcfd82285aa0ef07cb2c7bd"}, - {file = "pyzmq-26.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:a4b7a989c8f5a72ab1b2bbfa58105578753ae77b71ba33e7383a31ff75a504c4"}, - {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d416f2088ac8f12daacffbc2e8918ef4d6be8568e9d7155c83b7cebed49d2322"}, - {file = "pyzmq-26.1.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:ecb6c88d7946166d783a635efc89f9a1ff11c33d680a20df9657b6902a1d133b"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:471312a7375571857a089342beccc1a63584315188560c7c0da7e0a23afd8a5c"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e6cea102ffa16b737d11932c426f1dc14b5938cf7bc12e17269559c458ac334"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec7248673ffc7104b54e4957cee38b2f3075a13442348c8d651777bf41aa45ee"}, - {file = "pyzmq-26.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:0614aed6f87d550b5cecb03d795f4ddbb1544b78d02a4bd5eecf644ec98a39f6"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:e8746ce968be22a8a1801bf4a23e565f9687088580c3ed07af5846580dd97f76"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:7688653574392d2eaeef75ddcd0b2de5b232d8730af29af56c5adf1df9ef8d6f"}, - {file = "pyzmq-26.1.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:8d4dac7d97f15c653a5fedcafa82626bd6cee1450ccdaf84ffed7ea14f2b07a4"}, - {file = "pyzmq-26.1.0-cp313-cp313-win32.whl", hash = "sha256:ccb42ca0a4a46232d716779421bbebbcad23c08d37c980f02cc3a6bd115ad277"}, - {file = "pyzmq-26.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e1e5d0a25aea8b691a00d6b54b28ac514c8cc0d8646d05f7ca6cb64b97358250"}, - {file = "pyzmq-26.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:fc82269d24860cfa859b676d18850cbb8e312dcd7eada09e7d5b007e2f3d9eb1"}, - {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:416ac51cabd54f587995c2b05421324700b22e98d3d0aa2cfaec985524d16f1d"}, - {file = "pyzmq-26.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:ff832cce719edd11266ca32bc74a626b814fff236824aa1aeaad399b69fe6eae"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:393daac1bcf81b2a23e696b7b638eedc965e9e3d2112961a072b6cd8179ad2eb"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9869fa984c8670c8ab899a719eb7b516860a29bc26300a84d24d8c1b71eae3ec"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b3b8e36fd4c32c0825b4461372949ecd1585d326802b1321f8b6dc1d7e9318c"}, - {file = "pyzmq-26.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:3ee647d84b83509b7271457bb428cc347037f437ead4b0b6e43b5eba35fec0aa"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:45cb1a70eb00405ce3893041099655265fabcd9c4e1e50c330026e82257892c1"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:5cca7b4adb86d7470e0fc96037771981d740f0b4cb99776d5cb59cd0e6684a73"}, - {file = "pyzmq-26.1.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:91d1a20bdaf3b25f3173ff44e54b1cfbc05f94c9e8133314eb2962a89e05d6e3"}, - {file = "pyzmq-26.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c0665d85535192098420428c779361b8823d3d7ec4848c6af3abb93bc5c915bf"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:96d7c1d35ee4a495df56c50c83df7af1c9688cce2e9e0edffdbf50889c167595"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b281b5ff5fcc9dcbfe941ac5c7fcd4b6c065adad12d850f95c9d6f23c2652384"}, - {file = "pyzmq-26.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5384c527a9a004445c5074f1e20db83086c8ff1682a626676229aafd9cf9f7d1"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:754c99a9840839375ee251b38ac5964c0f369306eddb56804a073b6efdc0cd88"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9bdfcb74b469b592972ed881bad57d22e2c0acc89f5e8c146782d0d90fb9f4bf"}, - {file = "pyzmq-26.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:bd13f0231f4788db619347b971ca5f319c5b7ebee151afc7c14632068c6261d3"}, - {file = "pyzmq-26.1.0-cp37-cp37m-win32.whl", hash = "sha256:c5668dac86a869349828db5fc928ee3f58d450dce2c85607067d581f745e4fb1"}, - {file = "pyzmq-26.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ad875277844cfaeca7fe299ddf8c8d8bfe271c3dc1caf14d454faa5cdbf2fa7a"}, - {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:65c6e03cc0222eaf6aad57ff4ecc0a070451e23232bb48db4322cc45602cede0"}, - {file = "pyzmq-26.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:038ae4ffb63e3991f386e7fda85a9baab7d6617fe85b74a8f9cab190d73adb2b"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:bdeb2c61611293f64ac1073f4bf6723b67d291905308a7de9bb2ca87464e3273"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:61dfa5ee9d7df297c859ac82b1226d8fefaf9c5113dc25c2c00ecad6feeeb04f"}, - {file = "pyzmq-26.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3292d384537b9918010769b82ab3e79fca8b23d74f56fc69a679106a3e2c2cf"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f9499c70c19ff0fbe1007043acb5ad15c1dec7d8e84ab429bca8c87138e8f85c"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d3dd5523ed258ad58fed7e364c92a9360d1af8a9371e0822bd0146bdf017ef4c"}, - {file = "pyzmq-26.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baba2fd199b098c5544ef2536b2499d2e2155392973ad32687024bd8572a7d1c"}, - {file = "pyzmq-26.1.0-cp38-cp38-win32.whl", hash = "sha256:ddbb2b386128d8eca92bd9ca74e80f73fe263bcca7aa419f5b4cbc1661e19741"}, - {file = "pyzmq-26.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:79e45a4096ec8388cdeb04a9fa5e9371583bcb826964d55b8b66cbffe7b33c86"}, - {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:add52c78a12196bc0fda2de087ba6c876ea677cbda2e3eba63546b26e8bf177b"}, - {file = "pyzmq-26.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:98c03bd7f3339ff47de7ea9ac94a2b34580a8d4df69b50128bb6669e1191a895"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dcc37d9d708784726fafc9c5e1232de655a009dbf97946f117aefa38d5985a0f"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:5a6ed52f0b9bf8dcc64cc82cce0607a3dfed1dbb7e8c6f282adfccc7be9781de"}, - {file = "pyzmq-26.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:451e16ae8bea3d95649317b463c9f95cd9022641ec884e3d63fc67841ae86dfe"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:906e532c814e1d579138177a00ae835cd6becbf104d45ed9093a3aaf658f6a6a"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:05bacc4f94af468cc82808ae3293390278d5f3375bb20fef21e2034bb9a505b6"}, - {file = "pyzmq-26.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:57bb2acba798dc3740e913ffadd56b1fcef96f111e66f09e2a8db3050f1f12c8"}, - {file = "pyzmq-26.1.0-cp39-cp39-win32.whl", hash = "sha256:f774841bb0e8588505002962c02da420bcfb4c5056e87a139c6e45e745c0e2e2"}, - {file = "pyzmq-26.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:359c533bedc62c56415a1f5fcfd8279bc93453afdb0803307375ecf81c962402"}, - {file = "pyzmq-26.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:7907419d150b19962138ecec81a17d4892ea440c184949dc29b358bc730caf69"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b24079a14c9596846bf7516fe75d1e2188d4a528364494859106a33d8b48be38"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59d0acd2976e1064f1b398a00e2c3e77ed0a157529779e23087d4c2fb8aaa416"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:911c43a4117915203c4cc8755e0f888e16c4676a82f61caee2f21b0c00e5b894"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b10163e586cc609f5f85c9b233195554d77b1e9a0801388907441aaeb22841c5"}, - {file = "pyzmq-26.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:28a8b2abb76042f5fd7bd720f7fea48c0fd3e82e9de0a1bf2c0de3812ce44a42"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bef24d3e4ae2c985034439f449e3f9e06bf579974ce0e53d8a507a1577d5b2ab"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:2cd0f4d314f4a2518e8970b6f299ae18cff7c44d4a1fc06fc713f791c3a9e3ea"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fa25a620eed2a419acc2cf10135b995f8f0ce78ad00534d729aa761e4adcef8a"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef3b048822dca6d231d8a8ba21069844ae38f5d83889b9b690bf17d2acc7d099"}, - {file = "pyzmq-26.1.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:9a6847c92d9851b59b9f33f968c68e9e441f9a0f8fc972c5580c5cd7cbc6ee24"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c9b9305004d7e4e6a824f4f19b6d8f32b3578aad6f19fc1122aaf320cbe3dc83"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:63c1d3a65acb2f9c92dce03c4e1758cc552f1ae5c78d79a44e3bb88d2fa71f3a"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d36b8fffe8b248a1b961c86fbdfa0129dfce878731d169ede7fa2631447331be"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67976d12ebfd61a3bc7d77b71a9589b4d61d0422282596cf58c62c3866916544"}, - {file = "pyzmq-26.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:998444debc8816b5d8d15f966e42751032d0f4c55300c48cc337f2b3e4f17d03"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e5c88b2f13bcf55fee78ea83567b9fe079ba1a4bef8b35c376043440040f7edb"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d906d43e1592be4b25a587b7d96527cb67277542a5611e8ea9e996182fae410"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80b0c9942430d731c786545da6be96d824a41a51742e3e374fedd9018ea43106"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:314d11564c00b77f6224d12eb3ddebe926c301e86b648a1835c5b28176c83eab"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:093a1a3cae2496233f14b57f4b485da01b4ff764582c854c0f42c6dd2be37f3d"}, - {file = "pyzmq-26.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3c397b1b450f749a7e974d74c06d69bd22dd362142f370ef2bd32a684d6b480c"}, - {file = "pyzmq-26.1.0.tar.gz", hash = "sha256:6c5aeea71f018ebd3b9115c7cb13863dd850e98ca6b9258509de1246461a7e7f"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, ] [package.dependencies] @@ -2327,90 +2249,105 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "regex" -version = "2024.7.24" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b0d3f567fafa0633aee87f08b9276c7062da9616931382993c03808bb68ce"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3426de3b91d1bc73249042742f45c2148803c111d1175b283270177fdf669024"}, - {file = "regex-2024.7.24-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f273674b445bcb6e4409bf8d1be67bc4b58e8b46fd0d560055d515b8830063cd"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23acc72f0f4e1a9e6e9843d6328177ae3074b4182167e34119ec7233dfeccf53"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65fd3d2e228cae024c411c5ccdffae4c315271eee4a8b839291f84f796b34eca"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c414cbda77dbf13c3bc88b073a1a9f375c7b0cb5e115e15d4b73ec3a2fbc6f59"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf7a89eef64b5455835f5ed30254ec19bf41f7541cd94f266ab7cbd463f00c41"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:19c65b00d42804e3fbea9708f0937d157e53429a39b7c61253ff15670ff62cb5"}, - {file = "regex-2024.7.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7a5486ca56c8869070a966321d5ab416ff0f83f30e0e2da1ab48815c8d165d46"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6f51f9556785e5a203713f5efd9c085b4a45aecd2a42573e2b5041881b588d1f"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:a4997716674d36a82eab3e86f8fa77080a5d8d96a389a61ea1d0e3a94a582cf7"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:c0abb5e4e8ce71a61d9446040c1e86d4e6d23f9097275c5bd49ed978755ff0fe"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:18300a1d78cf1290fa583cd8b7cde26ecb73e9f5916690cf9d42de569c89b1ce"}, - {file = "regex-2024.7.24-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:416c0e4f56308f34cdb18c3f59849479dde5b19febdcd6e6fa4d04b6c31c9faa"}, - {file = "regex-2024.7.24-cp310-cp310-win32.whl", hash = "sha256:fb168b5924bef397b5ba13aabd8cf5df7d3d93f10218d7b925e360d436863f66"}, - {file = "regex-2024.7.24-cp310-cp310-win_amd64.whl", hash = "sha256:6b9fc7e9cc983e75e2518496ba1afc524227c163e43d706688a6bb9eca41617e"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:382281306e3adaaa7b8b9ebbb3ffb43358a7bbf585fa93821300a418bb975281"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fdd1384619f406ad9037fe6b6eaa3de2749e2e12084abc80169e8e075377d3b"}, - {file = "regex-2024.7.24-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3d974d24edb231446f708c455fd08f94c41c1ff4f04bcf06e5f36df5ef50b95a"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2ec4419a3fe6cf8a4795752596dfe0adb4aea40d3683a132bae9c30b81e8d73"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb563dd3aea54c797adf513eeec819c4213d7dbfc311874eb4fd28d10f2ff0f2"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45104baae8b9f67569f0f1dca5e1f1ed77a54ae1cd8b0b07aba89272710db61e"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:994448ee01864501912abf2bad9203bffc34158e80fe8bfb5b031f4f8e16da51"}, - {file = "regex-2024.7.24-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3fac296f99283ac232d8125be932c5cd7644084a30748fda013028c815ba3364"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:7e37e809b9303ec3a179085415cb5f418ecf65ec98cdfe34f6a078b46ef823ee"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:01b689e887f612610c869421241e075c02f2e3d1ae93a037cb14f88ab6a8934c"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f6442f0f0ff81775eaa5b05af8a0ffa1dda36e9cf6ec1e0d3d245e8564b684ce"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:871e3ab2838fbcb4e0865a6e01233975df3a15e6fce93b6f99d75cacbd9862d1"}, - {file = "regex-2024.7.24-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c918b7a1e26b4ab40409820ddccc5d49871a82329640f5005f73572d5eaa9b5e"}, - {file = "regex-2024.7.24-cp311-cp311-win32.whl", hash = "sha256:2dfbb8baf8ba2c2b9aa2807f44ed272f0913eeeba002478c4577b8d29cde215c"}, - {file = "regex-2024.7.24-cp311-cp311-win_amd64.whl", hash = "sha256:538d30cd96ed7d1416d3956f94d54e426a8daf7c14527f6e0d6d425fcb4cca52"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fe4ebef608553aff8deb845c7f4f1d0740ff76fa672c011cc0bacb2a00fbde86"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:74007a5b25b7a678459f06559504f1eec2f0f17bca218c9d56f6a0a12bfffdad"}, - {file = "regex-2024.7.24-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7df9ea48641da022c2a3c9c641650cd09f0cd15e8908bf931ad538f5ca7919c9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a1141a1dcc32904c47f6846b040275c6e5de0bf73f17d7a409035d55b76f289"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80c811cfcb5c331237d9bad3bea2c391114588cf4131707e84d9493064d267f9"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7214477bf9bd195894cf24005b1e7b496f46833337b5dedb7b2a6e33f66d962c"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d55588cba7553f0b6ec33130bc3e114b355570b45785cebdc9daed8c637dd440"}, - {file = "regex-2024.7.24-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:558a57cfc32adcf19d3f791f62b5ff564922942e389e3cfdb538a23d65a6b610"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a512eed9dfd4117110b1881ba9a59b31433caed0c4101b361f768e7bcbaf93c5"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:86b17ba823ea76256b1885652e3a141a99a5c4422f4a869189db328321b73799"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5eefee9bfe23f6df09ffb6dfb23809f4d74a78acef004aa904dc7c88b9944b05"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:731fcd76bbdbf225e2eb85b7c38da9633ad3073822f5ab32379381e8c3c12e94"}, - {file = "regex-2024.7.24-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:eaef80eac3b4cfbdd6de53c6e108b4c534c21ae055d1dbea2de6b3b8ff3def38"}, - {file = "regex-2024.7.24-cp312-cp312-win32.whl", hash = "sha256:185e029368d6f89f36e526764cf12bf8d6f0e3a2a7737da625a76f594bdfcbfc"}, - {file = "regex-2024.7.24-cp312-cp312-win_amd64.whl", hash = "sha256:2f1baff13cc2521bea83ab2528e7a80cbe0ebb2c6f0bfad15be7da3aed443908"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:66b4c0731a5c81921e938dcf1a88e978264e26e6ac4ec96a4d21ae0354581ae0"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:88ecc3afd7e776967fa16c80f974cb79399ee8dc6c96423321d6f7d4b881c92b"}, - {file = "regex-2024.7.24-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:64bd50cf16bcc54b274e20235bf8edbb64184a30e1e53873ff8d444e7ac656b2"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb462f0e346fcf41a901a126b50f8781e9a474d3927930f3490f38a6e73b6950"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a82465ebbc9b1c5c50738536fdfa7cab639a261a99b469c9d4c7dcbb2b3f1e57"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:68a8f8c046c6466ac61a36b65bb2395c74451df2ffb8458492ef49900efed293"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dac8e84fff5d27420f3c1e879ce9929108e873667ec87e0c8eeb413a5311adfe"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ba2537ef2163db9e6ccdbeb6f6424282ae4dea43177402152c67ef869cf3978b"}, - {file = "regex-2024.7.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:43affe33137fcd679bdae93fb25924979517e011f9dea99163f80b82eadc7e53"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c9bb87fdf2ab2370f21e4d5636e5317775e5d51ff32ebff2cf389f71b9b13750"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:945352286a541406f99b2655c973852da7911b3f4264e010218bbc1cc73168f2"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:8bc593dcce679206b60a538c302d03c29b18e3d862609317cb560e18b66d10cf"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:3f3b6ca8eae6d6c75a6cff525c8530c60e909a71a15e1b731723233331de4169"}, - {file = "regex-2024.7.24-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c51edc3541e11fbe83f0c4d9412ef6c79f664a3745fab261457e84465ec9d5a8"}, - {file = "regex-2024.7.24-cp38-cp38-win32.whl", hash = "sha256:d0a07763776188b4db4c9c7fb1b8c494049f84659bb387b71c73bbc07f189e96"}, - {file = "regex-2024.7.24-cp38-cp38-win_amd64.whl", hash = "sha256:8fd5afd101dcf86a270d254364e0e8dddedebe6bd1ab9d5f732f274fa00499a5"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0ffe3f9d430cd37d8fa5632ff6fb36d5b24818c5c986893063b4e5bdb84cdf24"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:25419b70ba00a16abc90ee5fce061228206173231f004437730b67ac77323f0d"}, - {file = "regex-2024.7.24-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:33e2614a7ce627f0cdf2ad104797d1f68342d967de3695678c0cb84f530709f8"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d33a0021893ede5969876052796165bab6006559ab845fd7b515a30abdd990dc"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04ce29e2c5fedf296b1a1b0acc1724ba93a36fb14031f3abfb7abda2806c1535"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b16582783f44fbca6fcf46f61347340c787d7530d88b4d590a397a47583f31dd"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:836d3cc225b3e8a943d0b02633fb2f28a66e281290302a79df0e1eaa984ff7c1"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:438d9f0f4bc64e8dea78274caa5af971ceff0f8771e1a2333620969936ba10be"}, - {file = "regex-2024.7.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:973335b1624859cb0e52f96062a28aa18f3a5fc77a96e4a3d6d76e29811a0e6e"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c5e69fd3eb0b409432b537fe3c6f44ac089c458ab6b78dcec14478422879ec5f"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fbf8c2f00904eaf63ff37718eb13acf8e178cb940520e47b2f05027f5bb34ce3"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2757ace61bc4061b69af19e4689fa4416e1a04840f33b441034202b5cd02d4"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:44fc61b99035fd9b3b9453f1713234e5a7c92a04f3577252b45feefe1b327759"}, - {file = "regex-2024.7.24-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:84c312cdf839e8b579f504afcd7b65f35d60b6285d892b19adea16355e8343c9"}, - {file = "regex-2024.7.24-cp39-cp39-win32.whl", hash = "sha256:ca5b2028c2f7af4e13fb9fc29b28d0ce767c38c7facdf64f6c2cd040413055f1"}, - {file = "regex-2024.7.24-cp39-cp39-win_amd64.whl", hash = "sha256:7c479f5ae937ec9985ecaf42e2e10631551d909f203e31308c12d703922742f9"}, - {file = "regex-2024.7.24.tar.gz", hash = "sha256:9cfd009eed1a46b27c14039ad5bbc5e71b6367c5b2e6d5f5da0ea91600817506"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -2436,29 +2373,29 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "ruff" -version = "0.5.6" +version = "0.5.7" description = "An extremely fast Python linter and code formatter, written in Rust." optional = false python-versions = ">=3.7" files = [ - {file = "ruff-0.5.6-py3-none-linux_armv6l.whl", hash = "sha256:a0ef5930799a05522985b9cec8290b185952f3fcd86c1772c3bdbd732667fdcd"}, - {file = "ruff-0.5.6-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b652dc14f6ef5d1552821e006f747802cc32d98d5509349e168f6bf0ee9f8f42"}, - {file = "ruff-0.5.6-py3-none-macosx_11_0_arm64.whl", hash = "sha256:80521b88d26a45e871f31e4b88938fd87db7011bb961d8afd2664982dfc3641a"}, - {file = "ruff-0.5.6-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9bc8f328a9f1309ae80e4d392836e7dbc77303b38ed4a7112699e63d3b066ab"}, - {file = "ruff-0.5.6-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d394940f61f7720ad371ddedf14722ee1d6250fd8d020f5ea5a86e7be217daf"}, - {file = "ruff-0.5.6-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111a99cdb02f69ddb2571e2756e017a1496c2c3a2aeefe7b988ddab38b416d36"}, - {file = "ruff-0.5.6-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:e395daba77a79f6dc0d07311f94cc0560375ca20c06f354c7c99af3bf4560c5d"}, - {file = "ruff-0.5.6-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c476acb43c3c51e3c614a2e878ee1589655fa02dab19fe2db0423a06d6a5b1b6"}, - {file = "ruff-0.5.6-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2ff8003f5252fd68425fd53d27c1f08b201d7ed714bb31a55c9ac1d4c13e2eb"}, - {file = "ruff-0.5.6-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c94e084ba3eaa80c2172918c2ca2eb2230c3f15925f4ed8b6297260c6ef179ad"}, - {file = "ruff-0.5.6-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:1f77c1c3aa0669fb230b06fb24ffa3e879391a3ba3f15e3d633a752da5a3e670"}, - {file = "ruff-0.5.6-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:f908148c93c02873210a52cad75a6eda856b2cbb72250370ce3afef6fb99b1ed"}, - {file = "ruff-0.5.6-py3-none-musllinux_1_2_i686.whl", hash = "sha256:563a7ae61ad284187d3071d9041c08019975693ff655438d8d4be26e492760bd"}, - {file = "ruff-0.5.6-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:94fe60869bfbf0521e04fd62b74cbca21cbc5beb67cbb75ab33fe8c174f54414"}, - {file = "ruff-0.5.6-py3-none-win32.whl", hash = "sha256:e6a584c1de6f8591c2570e171cc7ce482bb983d49c70ddf014393cd39e9dfaed"}, - {file = "ruff-0.5.6-py3-none-win_amd64.whl", hash = "sha256:d7fe7dccb1a89dc66785d7aa0ac283b2269712d8ed19c63af908fdccca5ccc1a"}, - {file = "ruff-0.5.6-py3-none-win_arm64.whl", hash = "sha256:57c6c0dd997b31b536bff49b9eee5ed3194d60605a4427f735eeb1f9c1b8d264"}, - {file = "ruff-0.5.6.tar.gz", hash = "sha256:07c9e3c2a8e1fe377dd460371c3462671a728c981c3205a5217291422209f642"}, + {file = "ruff-0.5.7-py3-none-linux_armv6l.whl", hash = "sha256:548992d342fc404ee2e15a242cdbea4f8e39a52f2e7752d0e4cbe88d2d2f416a"}, + {file = "ruff-0.5.7-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:00cc8872331055ee017c4f1071a8a31ca0809ccc0657da1d154a1d2abac5c0be"}, + {file = "ruff-0.5.7-py3-none-macosx_11_0_arm64.whl", hash = "sha256:eaf3d86a1fdac1aec8a3417a63587d93f906c678bb9ed0b796da7b59c1114a1e"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a01c34400097b06cf8a6e61b35d6d456d5bd1ae6961542de18ec81eaf33b4cb8"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcc8054f1a717e2213500edaddcf1dbb0abad40d98e1bd9d0ad364f75c763eea"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f70284e73f36558ef51602254451e50dd6cc479f8b6f8413a95fcb5db4a55fc"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:a78ad870ae3c460394fc95437d43deb5c04b5c29297815a2a1de028903f19692"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ccd078c66a8e419475174bfe60a69adb36ce04f8d4e91b006f1329d5cd44bcf"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e31c9bad4ebf8fdb77b59cae75814440731060a09a0e0077d559a556453acbb"}, + {file = "ruff-0.5.7-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d796327eed8e168164346b769dd9a27a70e0298d667b4ecee6877ce8095ec8e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:4a09ea2c3f7778cc635e7f6edf57d566a8ee8f485f3c4454db7771efb692c499"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a36d8dcf55b3a3bc353270d544fb170d75d2dff41eba5df57b4e0b67a95bb64e"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_i686.whl", hash = "sha256:9369c218f789eefbd1b8d82a8cf25017b523ac47d96b2f531eba73770971c9e5"}, + {file = "ruff-0.5.7-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b88ca3db7eb377eb24fb7c82840546fb7acef75af4a74bd36e9ceb37a890257e"}, + {file = "ruff-0.5.7-py3-none-win32.whl", hash = "sha256:33d61fc0e902198a3e55719f4be6b375b28f860b09c281e4bdbf783c0566576a"}, + {file = "ruff-0.5.7-py3-none-win_amd64.whl", hash = "sha256:083bbcbe6fadb93cd86709037acc510f86eed5a314203079df174c40bbbca6b3"}, + {file = "ruff-0.5.7-py3-none-win_arm64.whl", hash = "sha256:2dca26154ff9571995107221d0aeaad0e75a77b5a682d6236cf89a58c70b76f4"}, + {file = "ruff-0.5.7.tar.gz", hash = "sha256:8dfc0a458797f5d9fb622dd0efc52d796f23f0a1493a9527f4e49a550ae9a7e5"}, ] [[package]] @@ -2496,112 +2433,119 @@ files = [ [[package]] name = "soupsieve" -version = "2.5" +version = "2.6" description = "A modern CSS selector implementation for Beautiful Soup." optional = false python-versions = ">=3.8" files = [ - {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"}, - {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"}, + {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, + {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, ] [[package]] name = "sphinx" -version = "7.1.2" +version = "7.4.7" description = "Python documentation generator" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "sphinx-7.1.2-py3-none-any.whl", hash = "sha256:d170a81825b2fcacb6dfd5a0d7f578a053e45d3f2b153fecc948c37344eb4cbe"}, - {file = "sphinx-7.1.2.tar.gz", hash = "sha256:780f4d32f1d7d1126576e0e5ecc19dc32ab76cd24e950228dcf7b1f6d3d9e22f"}, + {file = "sphinx-7.4.7-py3-none-any.whl", hash = "sha256:c2419e2135d11f1951cd994d6eb18a1835bd8fdd8429f9ca375dc1f3281bd239"}, + {file = "sphinx-7.4.7.tar.gz", hash = "sha256:242f92a7ea7e6c5b406fdc2615413890ba9f699114a9c09192d7dfead2ee9cfe"}, ] [package.dependencies] -alabaster = ">=0.7,<0.8" -babel = ">=2.9" -colorama = {version = ">=0.4.5", markers = "sys_platform == \"win32\""} -docutils = ">=0.18.1,<0.21" +alabaster = ">=0.7.14,<0.8.0" +babel = ">=2.13" +colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\""} +docutils = ">=0.20,<0.22" imagesize = ">=1.3" -importlib-metadata = {version = ">=4.8", markers = "python_version < \"3.10\""} -Jinja2 = ">=3.0" -packaging = ">=21.0" -Pygments = ">=2.13" -requests = ">=2.25.0" -snowballstemmer = ">=2.0" +importlib-metadata = {version = ">=6.0", markers = "python_version < \"3.10\""} +Jinja2 = ">=3.1" +packaging = ">=23.0" +Pygments = ">=2.17" +requests = ">=2.30.0" +snowballstemmer = ">=2.2" sphinxcontrib-applehelp = "*" sphinxcontrib-devhelp = "*" sphinxcontrib-htmlhelp = ">=2.0.0" sphinxcontrib-jsmath = "*" sphinxcontrib-qthelp = "*" -sphinxcontrib-serializinghtml = ">=1.1.5" +sphinxcontrib-serializinghtml = ">=1.1.9" +tomli = {version = ">=2", markers = "python_version < \"3.11\""} [package.extras] docs = ["sphinxcontrib-websupport"] -lint = ["docutils-stubs", "flake8 (>=3.5.0)", "flake8-simplify", "isort", "mypy (>=0.990)", "ruff", "sphinx-lint", "types-requests"] -test = ["cython", "filelock", "html5lib", "pytest (>=4.6)"] +lint = ["flake8 (>=6.0)", "importlib-metadata (>=6.0)", "mypy (==1.10.1)", "pytest (>=6.0)", "ruff (==0.5.2)", "sphinx-lint (>=0.9)", "tomli (>=2)", "types-docutils (==0.21.0.20240711)", "types-requests (>=2.30.0)"] +test = ["cython (>=3.0)", "defusedxml (>=0.7.1)", "pytest (>=8.0)", "setuptools (>=70.0)", "typing_extensions (>=4.9)"] [[package]] name = "sphinx-autobuild" -version = "2021.3.14" -description = "Rebuild Sphinx documentation on changes, with live-reload in the browser." +version = "2024.9.19" +description = "Rebuild Sphinx documentation on changes, with hot reloading in the browser." optional = false -python-versions = ">=3.6" +python-versions = ">=3.9" files = [ - {file = "sphinx-autobuild-2021.3.14.tar.gz", hash = "sha256:de1ca3b66e271d2b5b5140c35034c89e47f263f2cd5db302c9217065f7443f05"}, - {file = "sphinx_autobuild-2021.3.14-py3-none-any.whl", hash = "sha256:8fe8cbfdb75db04475232f05187c776f46f6e9e04cacf1e49ce81bdac649ccac"}, + {file = "sphinx_autobuild-2024.9.19-py3-none-any.whl", hash = "sha256:57d974eebfc6461ff0fd136e78bf7a9c057d543d5166d318a45599898019b82c"}, + {file = "sphinx_autobuild-2024.9.19.tar.gz", hash = "sha256:2dd4863d174e533c1cd075eb5dfc90ad9a21734af7efd25569bf228b405e08ef"}, ] [package.dependencies] -colorama = "*" -livereload = "*" +colorama = ">=0.4.6" sphinx = "*" +starlette = ">=0.35" +uvicorn = ">=0.25" +watchfiles = ">=0.20" +websockets = ">=11" [package.extras] -test = ["pytest", "pytest-cov"] +test = ["httpx", "pytest (>=6)"] [[package]] name = "sphinxcontrib-applehelp" -version = "1.0.4" +version = "2.0.0" description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-applehelp-1.0.4.tar.gz", hash = "sha256:828f867945bbe39817c210a1abfd1bc4895c8b73fcaade56d45357a348a07d7e"}, - {file = "sphinxcontrib_applehelp-1.0.4-py3-none-any.whl", hash = "sha256:29d341f67fb0f6f586b23ad80e072c8e6ad0b48417db2bde114a4c9746feb228"}, + {file = "sphinxcontrib_applehelp-2.0.0-py3-none-any.whl", hash = "sha256:4cd3f0ec4ac5dd9c17ec65e9ab272c9b867ea77425228e68ecf08d6b28ddbdb5"}, + {file = "sphinxcontrib_applehelp-2.0.0.tar.gz", hash = "sha256:2f29ef331735ce958efa4734873f084941970894c6090408b079c61b2e1c06d1"}, ] [package.extras] -lint = ["docutils-stubs", "flake8", "mypy"] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] test = ["pytest"] [[package]] name = "sphinxcontrib-devhelp" -version = "1.0.2" -description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." +version = "2.0.0" +description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp documents" optional = false -python-versions = ">=3.5" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-devhelp-1.0.2.tar.gz", hash = "sha256:ff7f1afa7b9642e7060379360a67e9c41e8f3121f2ce9164266f61b9f4b338e4"}, - {file = "sphinxcontrib_devhelp-1.0.2-py2.py3-none-any.whl", hash = "sha256:8165223f9a335cc1af7ffe1ed31d2871f325254c0423bc0c4c7cd1c1e4734a2e"}, + {file = "sphinxcontrib_devhelp-2.0.0-py3-none-any.whl", hash = "sha256:aefb8b83854e4b0998877524d1029fd3e6879210422ee3780459e28a1f03a8a2"}, + {file = "sphinxcontrib_devhelp-2.0.0.tar.gz", hash = "sha256:411f5d96d445d1d73bb5d52133377b4248ec79db5c793ce7dbe59e074b4dd1ad"}, ] [package.extras] -lint = ["docutils-stubs", "flake8", "mypy"] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] test = ["pytest"] [[package]] name = "sphinxcontrib-htmlhelp" -version = "2.0.1" +version = "2.1.0" description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-htmlhelp-2.0.1.tar.gz", hash = "sha256:0cbdd302815330058422b98a113195c9249825d681e18f11e8b1f78a2f11efff"}, - {file = "sphinxcontrib_htmlhelp-2.0.1-py3-none-any.whl", hash = "sha256:c38cb46dccf316c79de6e5515e1770414b797162b23cd3d06e67020e1d2a6903"}, + {file = "sphinxcontrib_htmlhelp-2.1.0-py3-none-any.whl", hash = "sha256:166759820b47002d22914d64a075ce08f4c46818e17cfc9470a9786b759b19f8"}, + {file = "sphinxcontrib_htmlhelp-2.1.0.tar.gz", hash = "sha256:c9e2916ace8aad64cc13a0d233ee22317f2b9025b9cf3295249fa985cc7082e9"}, ] [package.extras] -lint = ["docutils-stubs", "flake8", "mypy"] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] test = ["html5lib", "pytest"] [[package]] @@ -2620,90 +2564,92 @@ test = ["flake8", "mypy", "pytest"] [[package]] name = "sphinxcontrib-qthelp" -version = "1.0.3" -description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." +version = "2.0.0" +description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp documents" optional = false -python-versions = ">=3.5" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-qthelp-1.0.3.tar.gz", hash = "sha256:4c33767ee058b70dba89a6fc5c1892c0d57a54be67ddd3e7875a18d14cba5a72"}, - {file = "sphinxcontrib_qthelp-1.0.3-py2.py3-none-any.whl", hash = "sha256:bd9fc24bcb748a8d51fd4ecaade681350aa63009a347a8c14e637895444dfab6"}, + {file = "sphinxcontrib_qthelp-2.0.0-py3-none-any.whl", hash = "sha256:b18a828cdba941ccd6ee8445dbe72ffa3ef8cbe7505d8cd1fa0d42d3f2d5f3eb"}, + {file = "sphinxcontrib_qthelp-2.0.0.tar.gz", hash = "sha256:4fe7d0ac8fc171045be623aba3e2a8f613f8682731f9153bb2e40ece16b9bbab"}, ] [package.extras] -lint = ["docutils-stubs", "flake8", "mypy"] -test = ["pytest"] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["defusedxml (>=0.7.1)", "pytest"] [[package]] name = "sphinxcontrib-serializinghtml" -version = "1.1.5" -description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." +version = "2.0.0" +description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.9" files = [ - {file = "sphinxcontrib-serializinghtml-1.1.5.tar.gz", hash = "sha256:aa5f6de5dfdf809ef505c4895e51ef5c9eac17d0f287933eb49ec495280b6952"}, - {file = "sphinxcontrib_serializinghtml-1.1.5-py2.py3-none-any.whl", hash = "sha256:352a9a00ae864471d3a7ead8d7d79f5fc0b57e8b3f95e9867eb9eb28999b92fd"}, + {file = "sphinxcontrib_serializinghtml-2.0.0-py3-none-any.whl", hash = "sha256:6e2cb0eef194e10c27ec0023bfeb25badbbb5868244cf5bc5bdc04e4464bf331"}, + {file = "sphinxcontrib_serializinghtml-2.0.0.tar.gz", hash = "sha256:e9d912827f872c029017a53f0ef2180b327c3f7fd23c87229f7a8e8b70031d4d"}, ] [package.extras] -lint = ["docutils-stubs", "flake8", "mypy"] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] test = ["pytest"] [[package]] name = "sqlalchemy" -version = "2.0.32" +version = "2.0.35" description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ - {file = "SQLAlchemy-2.0.32-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0c9045ecc2e4db59bfc97b20516dfdf8e41d910ac6fb667ebd3a79ea54084619"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1467940318e4a860afd546ef61fefb98a14d935cd6817ed07a228c7f7c62f389"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5954463675cb15db8d4b521f3566a017c8789222b8316b1e6934c811018ee08b"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:167e7497035c303ae50651b351c28dc22a40bb98fbdb8468cdc971821b1ae533"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b27dfb676ac02529fb6e343b3a482303f16e6bc3a4d868b73935b8792edb52d0"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bf2360a5e0f7bd75fa80431bf8ebcfb920c9f885e7956c7efde89031695cafb8"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-win32.whl", hash = "sha256:306fe44e754a91cd9d600a6b070c1f2fadbb4a1a257b8781ccf33c7067fd3e4d"}, - {file = "SQLAlchemy-2.0.32-cp310-cp310-win_amd64.whl", hash = "sha256:99db65e6f3ab42e06c318f15c98f59a436f1c78179e6a6f40f529c8cc7100b22"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:21b053be28a8a414f2ddd401f1be8361e41032d2ef5884b2f31d31cb723e559f"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b178e875a7a25b5938b53b006598ee7645172fccafe1c291a706e93f48499ff5"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723a40ee2cc7ea653645bd4cf024326dea2076673fc9d3d33f20f6c81db83e1d"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:295ff8689544f7ee7e819529633d058bd458c1fd7f7e3eebd0f9268ebc56c2a0"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:49496b68cd190a147118af585173ee624114dfb2e0297558c460ad7495f9dfe2"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:acd9b73c5c15f0ec5ce18128b1fe9157ddd0044abc373e6ecd5ba376a7e5d961"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-win32.whl", hash = "sha256:9365a3da32dabd3e69e06b972b1ffb0c89668994c7e8e75ce21d3e5e69ddef28"}, - {file = "SQLAlchemy-2.0.32-cp311-cp311-win_amd64.whl", hash = "sha256:8bd63d051f4f313b102a2af1cbc8b80f061bf78f3d5bd0843ff70b5859e27924"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6bab3db192a0c35e3c9d1560eb8332463e29e5507dbd822e29a0a3c48c0a8d92"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:19d98f4f58b13900d8dec4ed09dd09ef292208ee44cc9c2fe01c1f0a2fe440e9"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd33c61513cb1b7371fd40cf221256456d26a56284e7d19d1f0b9f1eb7dd7e8"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7d6ba0497c1d066dd004e0f02a92426ca2df20fac08728d03f67f6960271feec"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2b6be53e4fde0065524f1a0a7929b10e9280987b320716c1509478b712a7688c"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:916a798f62f410c0b80b63683c8061f5ebe237b0f4ad778739304253353bc1cb"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-win32.whl", hash = "sha256:31983018b74908ebc6c996a16ad3690301a23befb643093fcfe85efd292e384d"}, - {file = "SQLAlchemy-2.0.32-cp312-cp312-win_amd64.whl", hash = "sha256:4363ed245a6231f2e2957cccdda3c776265a75851f4753c60f3004b90e69bfeb"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b8afd5b26570bf41c35c0121801479958b4446751a3971fb9a480c1afd85558e"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c750987fc876813f27b60d619b987b057eb4896b81117f73bb8d9918c14f1cad"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ada0102afff4890f651ed91120c1120065663506b760da4e7823913ebd3258be"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:78c03d0f8a5ab4f3034c0e8482cfcc415a3ec6193491cfa1c643ed707d476f16"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:3bd1cae7519283ff525e64645ebd7a3e0283f3c038f461ecc1c7b040a0c932a1"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-win32.whl", hash = "sha256:01438ebcdc566d58c93af0171c74ec28efe6a29184b773e378a385e6215389da"}, - {file = "SQLAlchemy-2.0.32-cp37-cp37m-win_amd64.whl", hash = "sha256:4979dc80fbbc9d2ef569e71e0896990bc94df2b9fdbd878290bd129b65ab579c"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c742be912f57586ac43af38b3848f7688863a403dfb220193a882ea60e1ec3a"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:62e23d0ac103bcf1c5555b6c88c114089587bc64d048fef5bbdb58dfd26f96da"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:251f0d1108aab8ea7b9aadbd07fb47fb8e3a5838dde34aa95a3349876b5a1f1d"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ef18a84e5116340e38eca3e7f9eeaaef62738891422e7c2a0b80feab165905f"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3eb6a97a1d39976f360b10ff208c73afb6a4de86dd2a6212ddf65c4a6a2347d5"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0c1c9b673d21477cec17ab10bc4decb1322843ba35b481585facd88203754fc5"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-win32.whl", hash = "sha256:c41a2b9ca80ee555decc605bd3c4520cc6fef9abde8fd66b1cf65126a6922d65"}, - {file = "SQLAlchemy-2.0.32-cp38-cp38-win_amd64.whl", hash = "sha256:8a37e4d265033c897892279e8adf505c8b6b4075f2b40d77afb31f7185cd6ecd"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:52fec964fba2ef46476312a03ec8c425956b05c20220a1a03703537824b5e8e1"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:328429aecaba2aee3d71e11f2477c14eec5990fb6d0e884107935f7fb6001632"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85a01b5599e790e76ac3fe3aa2f26e1feba56270023d6afd5550ed63c68552b3"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aaf04784797dcdf4c0aa952c8d234fa01974c4729db55c45732520ce12dd95b4"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4488120becf9b71b3ac718f4138269a6be99a42fe023ec457896ba4f80749525"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:14e09e083a5796d513918a66f3d6aedbc131e39e80875afe81d98a03312889e6"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-win32.whl", hash = "sha256:0d322cc9c9b2154ba7e82f7bf25ecc7c36fbe2d82e2933b3642fc095a52cfc78"}, - {file = "SQLAlchemy-2.0.32-cp39-cp39-win_amd64.whl", hash = "sha256:7dd8583df2f98dea28b5cd53a1beac963f4f9d087888d75f22fcc93a07cf8d84"}, - {file = "SQLAlchemy-2.0.32-py3-none-any.whl", hash = "sha256:e567a8793a692451f706b363ccf3c45e056b67d90ead58c3bc9471af5d212202"}, - {file = "SQLAlchemy-2.0.32.tar.gz", hash = "sha256:c1b88cc8b02b6a5f0efb0345a03672d4c897dc7d92585176f88c67346f565ea8"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:67219632be22f14750f0d1c70e62f204ba69d28f62fd6432ba05ab295853de9b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4668bd8faf7e5b71c0319407b608f278f279668f358857dbfd10ef1954ac9f90"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb8bea573863762bbf45d1e13f87c2d2fd32cee2dbd50d050f83f87429c9e1ea"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f552023710d4b93d8fb29a91fadf97de89c5926c6bd758897875435f2a939f33"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:016b2e665f778f13d3c438651dd4de244214b527a275e0acf1d44c05bc6026a9"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7befc148de64b6060937231cbff8d01ccf0bfd75aa26383ffdf8d82b12ec04ff"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win32.whl", hash = "sha256:22b83aed390e3099584b839b93f80a0f4a95ee7f48270c97c90acd40ee646f0b"}, + {file = "SQLAlchemy-2.0.35-cp310-cp310-win_amd64.whl", hash = "sha256:a29762cd3d116585278ffb2e5b8cc311fb095ea278b96feef28d0b423154858e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e21f66748ab725ade40fa7af8ec8b5019c68ab00b929f6643e1b1af461eddb60"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8a6219108a15fc6d24de499d0d515c7235c617b2540d97116b663dade1a54d62"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:042622a5306c23b972192283f4e22372da3b8ddf5f7aac1cc5d9c9b222ab3ff6"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:627dee0c280eea91aed87b20a1f849e9ae2fe719d52cbf847c0e0ea34464b3f7"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4fdcd72a789c1c31ed242fd8c1bcd9ea186a98ee8e5408a50e610edfef980d71"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:89b64cd8898a3a6f642db4eb7b26d1b28a497d4022eccd7717ca066823e9fb01"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win32.whl", hash = "sha256:6a93c5a0dfe8d34951e8a6f499a9479ffb9258123551fa007fc708ae2ac2bc5e"}, + {file = "SQLAlchemy-2.0.35-cp311-cp311-win_amd64.whl", hash = "sha256:c68fe3fcde03920c46697585620135b4ecfdfc1ed23e75cc2c2ae9f8502c10b8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:eb60b026d8ad0c97917cb81d3662d0b39b8ff1335e3fabb24984c6acd0c900a2"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6921ee01caf375363be5e9ae70d08ce7ca9d7e0e8983183080211a062d299468"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8cdf1a0dbe5ced887a9b127da4ffd7354e9c1a3b9bb330dce84df6b70ccb3a8d"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93a71c8601e823236ac0e5d087e4f397874a421017b3318fd92c0b14acf2b6db"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e04b622bb8a88f10e439084486f2f6349bf4d50605ac3e445869c7ea5cf0fa8c"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1b56961e2d31389aaadf4906d453859f35302b4eb818d34a26fab72596076bb8"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win32.whl", hash = "sha256:0f9f3f9a3763b9c4deb8c5d09c4cc52ffe49f9876af41cc1b2ad0138878453cf"}, + {file = "SQLAlchemy-2.0.35-cp312-cp312-win_amd64.whl", hash = "sha256:25b0f63e7fcc2a6290cb5f7f5b4fc4047843504983a28856ce9b35d8f7de03cc"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f021d334f2ca692523aaf7bbf7592ceff70c8594fad853416a81d66b35e3abf9"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05c3f58cf91683102f2f0265c0db3bd3892e9eedabe059720492dbaa4f922da1"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:032d979ce77a6c2432653322ba4cbeabf5a6837f704d16fa38b5a05d8e21fa00"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:2e795c2f7d7249b75bb5f479b432a51b59041580d20599d4e112b5f2046437a3"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:cc32b2990fc34380ec2f6195f33a76b6cdaa9eecf09f0c9404b74fc120aef36f"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win32.whl", hash = "sha256:9509c4123491d0e63fb5e16199e09f8e262066e58903e84615c301dde8fa2e87"}, + {file = "SQLAlchemy-2.0.35-cp37-cp37m-win_amd64.whl", hash = "sha256:3655af10ebcc0f1e4e06c5900bb33e080d6a1fa4228f502121f28a3b1753cde5"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4c31943b61ed8fdd63dfd12ccc919f2bf95eefca133767db6fbbd15da62078ec"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a62dd5d7cc8626a3634208df458c5fe4f21200d96a74d122c83bc2015b333bc1"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0630774b0977804fba4b6bbea6852ab56c14965a2b0c7fc7282c5f7d90a1ae72"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d625eddf7efeba2abfd9c014a22c0f6b3796e0ffb48f5d5ab106568ef01ff5a"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ada603db10bb865bbe591939de854faf2c60f43c9b763e90f653224138f910d9"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:c41411e192f8d3ea39ea70e0fae48762cd11a2244e03751a98bd3c0ca9a4e936"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win32.whl", hash = "sha256:d299797d75cd747e7797b1b41817111406b8b10a4f88b6e8fe5b5e59598b43b0"}, + {file = "SQLAlchemy-2.0.35-cp38-cp38-win_amd64.whl", hash = "sha256:0375a141e1c0878103eb3d719eb6d5aa444b490c96f3fedab8471c7f6ffe70ee"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ccae5de2a0140d8be6838c331604f91d6fafd0735dbdcee1ac78fc8fbaba76b4"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2a275a806f73e849e1c309ac11108ea1a14cd7058577aba962cd7190e27c9e3c"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:732e026240cdd1c1b2e3ac515c7a23820430ed94292ce33806a95869c46bd139"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:890da8cd1941fa3dab28c5bac3b9da8502e7e366f895b3b8e500896f12f94d11"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c0d8326269dbf944b9201911b0d9f3dc524d64779a07518199a58384c3d37a44"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b76d63495b0508ab9fc23f8152bac63205d2a704cd009a2b0722f4c8e0cba8e0"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win32.whl", hash = "sha256:69683e02e8a9de37f17985905a5eca18ad651bf592314b4d3d799029797d0eb3"}, + {file = "SQLAlchemy-2.0.35-cp39-cp39-win_amd64.whl", hash = "sha256:aee110e4ef3c528f3abbc3c2018c121e708938adeeff9006428dd7c8555e9b3f"}, + {file = "SQLAlchemy-2.0.35-py3-none-any.whl", hash = "sha256:2ab3f0336c0387662ce6221ad30ab3a5e6499aab01b9790879b6578fd9b8faa1"}, + {file = "sqlalchemy-2.0.35.tar.gz", hash = "sha256:e11d7ea4d24f0a262bccf9a7cd6284c976c5369dac21db237cff59586045ab9f"}, ] [package.dependencies] @@ -2754,6 +2700,24 @@ pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] +[[package]] +name = "starlette" +version = "0.39.1" +description = "The little ASGI library that shines." +optional = false +python-versions = ">=3.8" +files = [ + {file = "starlette-0.39.1-py3-none-any.whl", hash = "sha256:0d31c90dacae588734e91b98cb4469fd37848ef23d2dd34355c5542bc827c02a"}, + {file = "starlette-0.39.1.tar.gz", hash = "sha256:33c5a94f64d3ab2c799b2715b45f254a3752f229d334f1562a3aaf78c23eab95"}, +] + +[package.dependencies] +anyio = ">=3.4.0,<5" +typing-extensions = {version = ">=3.10.0", markers = "python_version < \"3.10\""} + +[package.extras] +full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart (>=0.0.7)", "pyyaml"] + [[package]] name = "tenacity" version = "8.5.0" @@ -2832,6 +2796,17 @@ files = [ {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, ] +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, + {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, +] + [[package]] name = "tornado" version = "6.4.1" @@ -2915,13 +2890,13 @@ typing-extensions = ">=3.7.4" [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -2930,6 +2905,120 @@ h2 = ["h2 (>=4,<5)"] socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] zstd = ["zstandard (>=0.18.0)"] +[[package]] +name = "uvicorn" +version = "0.30.6" +description = "The lightning-fast ASGI server." +optional = false +python-versions = ">=3.8" +files = [ + {file = "uvicorn-0.30.6-py3-none-any.whl", hash = "sha256:65fd46fe3fda5bdc1b03b94eb634923ff18cd35b2f084813ea79d1f103f711b5"}, + {file = "uvicorn-0.30.6.tar.gz", hash = "sha256:4b15decdda1e72be08209e860a1e10e92439ad5b97cf44cc945fcbee66fc5788"}, +] + +[package.dependencies] +click = ">=7.0" +h11 = ">=0.8" +typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""} + +[package.extras] +standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"] + +[[package]] +name = "watchfiles" +version = "0.24.0" +description = "Simple, modern and high performance file watching and code reload in python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "watchfiles-0.24.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:083dc77dbdeef09fa44bb0f4d1df571d2e12d8a8f985dccde71ac3ac9ac067a0"}, + {file = "watchfiles-0.24.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e94e98c7cb94cfa6e071d401ea3342767f28eb5a06a58fafdc0d2a4974f4f35c"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82ae557a8c037c42a6ef26c494d0631cacca040934b101d001100ed93d43f361"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:acbfa31e315a8f14fe33e3542cbcafc55703b8f5dcbb7c1eecd30f141df50db3"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b74fdffce9dfcf2dc296dec8743e5b0332d15df19ae464f0e249aa871fc1c571"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:449f43f49c8ddca87c6b3980c9284cab6bd1f5c9d9a2b00012adaaccd5e7decd"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4abf4ad269856618f82dee296ac66b0cd1d71450fc3c98532d93798e73399b7a"}, + {file = "watchfiles-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f895d785eb6164678ff4bb5cc60c5996b3ee6df3edb28dcdeba86a13ea0465e"}, + {file = "watchfiles-0.24.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7ae3e208b31be8ce7f4c2c0034f33406dd24fbce3467f77223d10cd86778471c"}, + {file = "watchfiles-0.24.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2efec17819b0046dde35d13fb8ac7a3ad877af41ae4640f4109d9154ed30a188"}, + {file = "watchfiles-0.24.0-cp310-none-win32.whl", hash = "sha256:6bdcfa3cd6fdbdd1a068a52820f46a815401cbc2cb187dd006cb076675e7b735"}, + {file = "watchfiles-0.24.0-cp310-none-win_amd64.whl", hash = "sha256:54ca90a9ae6597ae6dc00e7ed0a040ef723f84ec517d3e7ce13e63e4bc82fa04"}, + {file = "watchfiles-0.24.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:bdcd5538e27f188dd3c804b4a8d5f52a7fc7f87e7fd6b374b8e36a4ca03db428"}, + {file = "watchfiles-0.24.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2dadf8a8014fde6addfd3c379e6ed1a981c8f0a48292d662e27cabfe4239c83c"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6509ed3f467b79d95fc62a98229f79b1a60d1b93f101e1c61d10c95a46a84f43"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8360f7314a070c30e4c976b183d1d8d1585a4a50c5cb603f431cebcbb4f66327"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:316449aefacf40147a9efaf3bd7c9bdd35aaba9ac5d708bd1eb5763c9a02bef5"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:73bde715f940bea845a95247ea3e5eb17769ba1010efdc938ffcb967c634fa61"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3770e260b18e7f4e576edca4c0a639f704088602e0bc921c5c2e721e3acb8d15"}, + {file = "watchfiles-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa0fd7248cf533c259e59dc593a60973a73e881162b1a2f73360547132742823"}, + {file = "watchfiles-0.24.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d7a2e3b7f5703ffbd500dabdefcbc9eafeff4b9444bbdd5d83d79eedf8428fab"}, + {file = "watchfiles-0.24.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d831ee0a50946d24a53821819b2327d5751b0c938b12c0653ea5be7dea9c82ec"}, + {file = "watchfiles-0.24.0-cp311-none-win32.whl", hash = "sha256:49d617df841a63b4445790a254013aea2120357ccacbed00253f9c2b5dc24e2d"}, + {file = "watchfiles-0.24.0-cp311-none-win_amd64.whl", hash = "sha256:d3dcb774e3568477275cc76554b5a565024b8ba3a0322f77c246bc7111c5bb9c"}, + {file = "watchfiles-0.24.0-cp311-none-win_arm64.whl", hash = "sha256:9301c689051a4857d5b10777da23fafb8e8e921bcf3abe6448a058d27fb67633"}, + {file = "watchfiles-0.24.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:7211b463695d1e995ca3feb38b69227e46dbd03947172585ecb0588f19b0d87a"}, + {file = "watchfiles-0.24.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4b8693502d1967b00f2fb82fc1e744df128ba22f530e15b763c8d82baee15370"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cdab9555053399318b953a1fe1f586e945bc8d635ce9d05e617fd9fe3a4687d6"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:34e19e56d68b0dad5cff62273107cf5d9fbaf9d75c46277aa5d803b3ef8a9e9b"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:41face41f036fee09eba33a5b53a73e9a43d5cb2c53dad8e61fa6c9f91b5a51e"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5148c2f1ea043db13ce9b0c28456e18ecc8f14f41325aa624314095b6aa2e9ea"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7e4bd963a935aaf40b625c2499f3f4f6bbd0c3776f6d3bc7c853d04824ff1c9f"}, + {file = "watchfiles-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c79d7719d027b7a42817c5d96461a99b6a49979c143839fc37aa5748c322f234"}, + {file = "watchfiles-0.24.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:32aa53a9a63b7f01ed32e316e354e81e9da0e6267435c7243bf8ae0f10b428ef"}, + {file = "watchfiles-0.24.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce72dba6a20e39a0c628258b5c308779b8697f7676c254a845715e2a1039b968"}, + {file = "watchfiles-0.24.0-cp312-none-win32.whl", hash = "sha256:d9018153cf57fc302a2a34cb7564870b859ed9a732d16b41a9b5cb2ebed2d444"}, + {file = "watchfiles-0.24.0-cp312-none-win_amd64.whl", hash = "sha256:551ec3ee2a3ac9cbcf48a4ec76e42c2ef938a7e905a35b42a1267fa4b1645896"}, + {file = "watchfiles-0.24.0-cp312-none-win_arm64.whl", hash = "sha256:b52a65e4ea43c6d149c5f8ddb0bef8d4a1e779b77591a458a893eb416624a418"}, + {file = "watchfiles-0.24.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:3d2e3ab79a1771c530233cadfd277fcc762656d50836c77abb2e5e72b88e3a48"}, + {file = "watchfiles-0.24.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:327763da824817b38ad125dcd97595f942d720d32d879f6c4ddf843e3da3fe90"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd82010f8ab451dabe36054a1622870166a67cf3fce894f68895db6f74bbdc94"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d64ba08db72e5dfd5c33be1e1e687d5e4fcce09219e8aee893a4862034081d4e"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1cf1f6dd7825053f3d98f6d33f6464ebdd9ee95acd74ba2c34e183086900a827"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:43e3e37c15a8b6fe00c1bce2473cfa8eb3484bbeecf3aefbf259227e487a03df"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:88bcd4d0fe1d8ff43675360a72def210ebad3f3f72cabfeac08d825d2639b4ab"}, + {file = "watchfiles-0.24.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:999928c6434372fde16c8f27143d3e97201160b48a614071261701615a2a156f"}, + {file = "watchfiles-0.24.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:30bbd525c3262fd9f4b1865cb8d88e21161366561cd7c9e1194819e0a33ea86b"}, + {file = "watchfiles-0.24.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:edf71b01dec9f766fb285b73930f95f730bb0943500ba0566ae234b5c1618c18"}, + {file = "watchfiles-0.24.0-cp313-none-win32.whl", hash = "sha256:f4c96283fca3ee09fb044f02156d9570d156698bc3734252175a38f0e8975f07"}, + {file = "watchfiles-0.24.0-cp313-none-win_amd64.whl", hash = "sha256:a974231b4fdd1bb7f62064a0565a6b107d27d21d9acb50c484d2cdba515b9366"}, + {file = "watchfiles-0.24.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:ee82c98bed9d97cd2f53bdb035e619309a098ea53ce525833e26b93f673bc318"}, + {file = "watchfiles-0.24.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:fd92bbaa2ecdb7864b7600dcdb6f2f1db6e0346ed425fbd01085be04c63f0b05"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f83df90191d67af5a831da3a33dd7628b02a95450e168785586ed51e6d28943c"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fca9433a45f18b7c779d2bae7beeec4f740d28b788b117a48368d95a3233ed83"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b995bfa6bf01a9e09b884077a6d37070464b529d8682d7691c2d3b540d357a0c"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ed9aba6e01ff6f2e8285e5aa4154e2970068fe0fc0998c4380d0e6278222269b"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e5171ef898299c657685306d8e1478a45e9303ddcd8ac5fed5bd52ad4ae0b69b"}, + {file = "watchfiles-0.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4933a508d2f78099162da473841c652ad0de892719043d3f07cc83b33dfd9d91"}, + {file = "watchfiles-0.24.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:95cf3b95ea665ab03f5a54765fa41abf0529dbaf372c3b83d91ad2cfa695779b"}, + {file = "watchfiles-0.24.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:01def80eb62bd5db99a798d5e1f5f940ca0a05986dcfae21d833af7a46f7ee22"}, + {file = "watchfiles-0.24.0-cp38-none-win32.whl", hash = "sha256:4d28cea3c976499475f5b7a2fec6b3a36208656963c1a856d328aeae056fc5c1"}, + {file = "watchfiles-0.24.0-cp38-none-win_amd64.whl", hash = "sha256:21ab23fdc1208086d99ad3f69c231ba265628014d4aed31d4e8746bd59e88cd1"}, + {file = "watchfiles-0.24.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b665caeeda58625c3946ad7308fbd88a086ee51ccb706307e5b1fa91556ac886"}, + {file = "watchfiles-0.24.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5c51749f3e4e269231510da426ce4a44beb98db2dce9097225c338f815b05d4f"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82b2509f08761f29a0fdad35f7e1638b8ab1adfa2666d41b794090361fb8b855"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9a60e2bf9dc6afe7f743e7c9b149d1fdd6dbf35153c78fe3a14ae1a9aee3d98b"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7d9b87c4c55e3ea8881dfcbf6d61ea6775fffed1fedffaa60bd047d3c08c430"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:78470906a6be5199524641f538bd2c56bb809cd4bf29a566a75051610bc982c3"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:07cdef0c84c03375f4e24642ef8d8178e533596b229d32d2bbd69e5128ede02a"}, + {file = "watchfiles-0.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d337193bbf3e45171c8025e291530fb7548a93c45253897cd764a6a71c937ed9"}, + {file = "watchfiles-0.24.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ec39698c45b11d9694a1b635a70946a5bad066b593af863460a8e600f0dff1ca"}, + {file = "watchfiles-0.24.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2e28d91ef48eab0afb939fa446d8ebe77e2f7593f5f463fd2bb2b14132f95b6e"}, + {file = "watchfiles-0.24.0-cp39-none-win32.whl", hash = "sha256:7138eff8baa883aeaa074359daabb8b6c1e73ffe69d5accdc907d62e50b1c0da"}, + {file = "watchfiles-0.24.0-cp39-none-win_amd64.whl", hash = "sha256:b3ef2c69c655db63deb96b3c3e587084612f9b1fa983df5e0c3379d41307467f"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:632676574429bee8c26be8af52af20e0c718cc7f5f67f3fb658c71928ccd4f7f"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a2a9891723a735d3e2540651184be6fd5b96880c08ffe1a98bae5017e65b544b"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a7fa2bc0efef3e209a8199fd111b8969fe9db9c711acc46636686331eda7dd4"}, + {file = "watchfiles-0.24.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01550ccf1d0aed6ea375ef259706af76ad009ef5b0203a3a4cce0f6024f9b68a"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:96619302d4374de5e2345b2b622dc481257a99431277662c30f606f3e22f42be"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:85d5f0c7771dcc7a26c7a27145059b6bb0ce06e4e751ed76cdf123d7039b60b5"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:951088d12d339690a92cef2ec5d3cfd957692834c72ffd570ea76a6790222777"}, + {file = "watchfiles-0.24.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49fb58bcaa343fedc6a9e91f90195b20ccb3135447dc9e4e2570c3a39565853e"}, + {file = "watchfiles-0.24.0.tar.gz", hash = "sha256:afb72325b74fa7a428c009c1b8be4b4d7c2afedafb2982827ef2156646df2fe1"}, +] + +[package.dependencies] +anyio = ">=3.0.0" + [[package]] name = "wcwidth" version = "0.2.13" @@ -2941,103 +3030,200 @@ files = [ {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, ] +[[package]] +name = "websockets" +version = "13.1" +description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "websockets-13.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:f48c749857f8fb598fb890a75f540e3221d0976ed0bf879cf3c7eef34151acee"}, + {file = "websockets-13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c7e72ce6bda6fb9409cc1e8164dd41d7c91466fb599eb047cfda72fe758a34a7"}, + {file = "websockets-13.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f779498eeec470295a2b1a5d97aa1bc9814ecd25e1eb637bd9d1c73a327387f6"}, + {file = "websockets-13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4676df3fe46956fbb0437d8800cd5f2b6d41143b6e7e842e60554398432cf29b"}, + {file = "websockets-13.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a7affedeb43a70351bb811dadf49493c9cfd1ed94c9c70095fd177e9cc1541fa"}, + {file = "websockets-13.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1971e62d2caa443e57588e1d82d15f663b29ff9dfe7446d9964a4b6f12c1e700"}, + {file = "websockets-13.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:5f2e75431f8dc4a47f31565a6e1355fb4f2ecaa99d6b89737527ea917066e26c"}, + {file = "websockets-13.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:58cf7e75dbf7e566088b07e36ea2e3e2bd5676e22216e4cad108d4df4a7402a0"}, + {file = "websockets-13.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c90d6dec6be2c7d03378a574de87af9b1efea77d0c52a8301dd831ece938452f"}, + {file = "websockets-13.1-cp310-cp310-win32.whl", hash = "sha256:730f42125ccb14602f455155084f978bd9e8e57e89b569b4d7f0f0c17a448ffe"}, + {file = "websockets-13.1-cp310-cp310-win_amd64.whl", hash = "sha256:5993260f483d05a9737073be197371940c01b257cc45ae3f1d5d7adb371b266a"}, + {file = "websockets-13.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:61fc0dfcda609cda0fc9fe7977694c0c59cf9d749fbb17f4e9483929e3c48a19"}, + {file = "websockets-13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ceec59f59d092c5007e815def4ebb80c2de330e9588e101cf8bd94c143ec78a5"}, + {file = "websockets-13.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c1dca61c6db1166c48b95198c0b7d9c990b30c756fc2923cc66f68d17dc558fd"}, + {file = "websockets-13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:308e20f22c2c77f3f39caca508e765f8725020b84aa963474e18c59accbf4c02"}, + {file = "websockets-13.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62d516c325e6540e8a57b94abefc3459d7dab8ce52ac75c96cad5549e187e3a7"}, + {file = "websockets-13.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87c6e35319b46b99e168eb98472d6c7d8634ee37750d7693656dc766395df096"}, + {file = "websockets-13.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5f9fee94ebafbc3117c30be1844ed01a3b177bb6e39088bc6b2fa1dc15572084"}, + {file = "websockets-13.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:7c1e90228c2f5cdde263253fa5db63e6653f1c00e7ec64108065a0b9713fa1b3"}, + {file = "websockets-13.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6548f29b0e401eea2b967b2fdc1c7c7b5ebb3eeb470ed23a54cd45ef078a0db9"}, + {file = "websockets-13.1-cp311-cp311-win32.whl", hash = "sha256:c11d4d16e133f6df8916cc5b7e3e96ee4c44c936717d684a94f48f82edb7c92f"}, + {file = "websockets-13.1-cp311-cp311-win_amd64.whl", hash = "sha256:d04f13a1d75cb2b8382bdc16ae6fa58c97337253826dfe136195b7f89f661557"}, + {file = "websockets-13.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:9d75baf00138f80b48f1eac72ad1535aac0b6461265a0bcad391fc5aba875cfc"}, + {file = "websockets-13.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9b6f347deb3dcfbfde1c20baa21c2ac0751afaa73e64e5b693bb2b848efeaa49"}, + {file = "websockets-13.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:de58647e3f9c42f13f90ac7e5f58900c80a39019848c5547bc691693098ae1bd"}, + {file = "websockets-13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1b54689e38d1279a51d11e3467dd2f3a50f5f2e879012ce8f2d6943f00e83f0"}, + {file = "websockets-13.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf1781ef73c073e6b0f90af841aaf98501f975d306bbf6221683dd594ccc52b6"}, + {file = "websockets-13.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d23b88b9388ed85c6faf0e74d8dec4f4d3baf3ecf20a65a47b836d56260d4b9"}, + {file = "websockets-13.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3c78383585f47ccb0fcf186dcb8a43f5438bd7d8f47d69e0b56f71bf431a0a68"}, + {file = "websockets-13.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:d6d300f8ec35c24025ceb9b9019ae9040c1ab2f01cddc2bcc0b518af31c75c14"}, + {file = "websockets-13.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a9dcaf8b0cc72a392760bb8755922c03e17a5a54e08cca58e8b74f6902b433cf"}, + {file = "websockets-13.1-cp312-cp312-win32.whl", hash = "sha256:2f85cf4f2a1ba8f602298a853cec8526c2ca42a9a4b947ec236eaedb8f2dc80c"}, + {file = "websockets-13.1-cp312-cp312-win_amd64.whl", hash = "sha256:38377f8b0cdeee97c552d20cf1865695fcd56aba155ad1b4ca8779a5b6ef4ac3"}, + {file = "websockets-13.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a9ab1e71d3d2e54a0aa646ab6d4eebfaa5f416fe78dfe4da2839525dc5d765c6"}, + {file = "websockets-13.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b9d7439d7fab4dce00570bb906875734df13d9faa4b48e261c440a5fec6d9708"}, + {file = "websockets-13.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:327b74e915cf13c5931334c61e1a41040e365d380f812513a255aa804b183418"}, + {file = "websockets-13.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:325b1ccdbf5e5725fdcb1b0e9ad4d2545056479d0eee392c291c1bf76206435a"}, + {file = "websockets-13.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:346bee67a65f189e0e33f520f253d5147ab76ae42493804319b5716e46dddf0f"}, + {file = "websockets-13.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91a0fa841646320ec0d3accdff5b757b06e2e5c86ba32af2e0815c96c7a603c5"}, + {file = "websockets-13.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:18503d2c5f3943e93819238bf20df71982d193f73dcecd26c94514f417f6b135"}, + {file = "websockets-13.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:a9cd1af7e18e5221d2878378fbc287a14cd527fdd5939ed56a18df8a31136bb2"}, + {file = "websockets-13.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:70c5be9f416aa72aab7a2a76c90ae0a4fe2755c1816c153c1a2bcc3333ce4ce6"}, + {file = "websockets-13.1-cp313-cp313-win32.whl", hash = "sha256:624459daabeb310d3815b276c1adef475b3e6804abaf2d9d2c061c319f7f187d"}, + {file = "websockets-13.1-cp313-cp313-win_amd64.whl", hash = "sha256:c518e84bb59c2baae725accd355c8dc517b4a3ed8db88b4bc93c78dae2974bf2"}, + {file = "websockets-13.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c7934fd0e920e70468e676fe7f1b7261c1efa0d6c037c6722278ca0228ad9d0d"}, + {file = "websockets-13.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:149e622dc48c10ccc3d2760e5f36753db9cacf3ad7bc7bbbfd7d9c819e286f23"}, + {file = "websockets-13.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a569eb1b05d72f9bce2ebd28a1ce2054311b66677fcd46cf36204ad23acead8c"}, + {file = "websockets-13.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95df24ca1e1bd93bbca51d94dd049a984609687cb2fb08a7f2c56ac84e9816ea"}, + {file = "websockets-13.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8dbb1bf0c0a4ae8b40bdc9be7f644e2f3fb4e8a9aca7145bfa510d4a374eeb7"}, + {file = "websockets-13.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:035233b7531fb92a76beefcbf479504db8c72eb3bff41da55aecce3a0f729e54"}, + {file = "websockets-13.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:e4450fc83a3df53dec45922b576e91e94f5578d06436871dce3a6be38e40f5db"}, + {file = "websockets-13.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:463e1c6ec853202dd3657f156123d6b4dad0c546ea2e2e38be2b3f7c5b8e7295"}, + {file = "websockets-13.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:6d6855bbe70119872c05107e38fbc7f96b1d8cb047d95c2c50869a46c65a8e96"}, + {file = "websockets-13.1-cp38-cp38-win32.whl", hash = "sha256:204e5107f43095012b00f1451374693267adbb832d29966a01ecc4ce1db26faf"}, + {file = "websockets-13.1-cp38-cp38-win_amd64.whl", hash = "sha256:485307243237328c022bc908b90e4457d0daa8b5cf4b3723fd3c4a8012fce4c6"}, + {file = "websockets-13.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9b37c184f8b976f0c0a231a5f3d6efe10807d41ccbe4488df8c74174805eea7d"}, + {file = "websockets-13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:163e7277e1a0bd9fb3c8842a71661ad19c6aa7bb3d6678dc7f89b17fbcc4aeb7"}, + {file = "websockets-13.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4b889dbd1342820cc210ba44307cf75ae5f2f96226c0038094455a96e64fb07a"}, + {file = "websockets-13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:586a356928692c1fed0eca68b4d1c2cbbd1ca2acf2ac7e7ebd3b9052582deefa"}, + {file = "websockets-13.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7bd6abf1e070a6b72bfeb71049d6ad286852e285f146682bf30d0296f5fbadfa"}, + {file = "websockets-13.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2aad13a200e5934f5a6767492fb07151e1de1d6079c003ab31e1823733ae79"}, + {file = "websockets-13.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:df01aea34b6e9e33572c35cd16bae5a47785e7d5c8cb2b54b2acdb9678315a17"}, + {file = "websockets-13.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e54affdeb21026329fb0744ad187cf812f7d3c2aa702a5edb562b325191fcab6"}, + {file = "websockets-13.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:9ef8aa8bdbac47f4968a5d66462a2a0935d044bf35c0e5a8af152d58516dbeb5"}, + {file = "websockets-13.1-cp39-cp39-win32.whl", hash = "sha256:deeb929efe52bed518f6eb2ddc00cc496366a14c726005726ad62c2dd9017a3c"}, + {file = "websockets-13.1-cp39-cp39-win_amd64.whl", hash = "sha256:7c65ffa900e7cc958cd088b9a9157a8141c991f8c53d11087e6fb7277a03f81d"}, + {file = "websockets-13.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5dd6da9bec02735931fccec99d97c29f47cc61f644264eb995ad6c0c27667238"}, + {file = "websockets-13.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:2510c09d8e8df777177ee3d40cd35450dc169a81e747455cc4197e63f7e7bfe5"}, + {file = "websockets-13.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1c3cf67185543730888b20682fb186fc8d0fa6f07ccc3ef4390831ab4b388d9"}, + {file = "websockets-13.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bcc03c8b72267e97b49149e4863d57c2d77f13fae12066622dc78fe322490fe6"}, + {file = "websockets-13.1-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:004280a140f220c812e65f36944a9ca92d766b6cc4560be652a0a3883a79ed8a"}, + {file = "websockets-13.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e2620453c075abeb0daa949a292e19f56de518988e079c36478bacf9546ced23"}, + {file = "websockets-13.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9156c45750b37337f7b0b00e6248991a047be4aa44554c9886fe6bdd605aab3b"}, + {file = "websockets-13.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:80c421e07973a89fbdd93e6f2003c17d20b69010458d3a8e37fb47874bd67d51"}, + {file = "websockets-13.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82d0ba76371769d6a4e56f7e83bb8e81846d17a6190971e38b5de108bde9b0d7"}, + {file = "websockets-13.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e9875a0143f07d74dc5e1ded1c4581f0d9f7ab86c78994e2ed9e95050073c94d"}, + {file = "websockets-13.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a11e38ad8922c7961447f35c7b17bffa15de4d17c70abd07bfbe12d6faa3e027"}, + {file = "websockets-13.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:4059f790b6ae8768471cddb65d3c4fe4792b0ab48e154c9f0a04cefaabcd5978"}, + {file = "websockets-13.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:25c35bf84bf7c7369d247f0b8cfa157f989862c49104c5cf85cb5436a641d93e"}, + {file = "websockets-13.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:83f91d8a9bb404b8c2c41a707ac7f7f75b9442a0a876df295de27251a856ad09"}, + {file = "websockets-13.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a43cfdcddd07f4ca2b1afb459824dd3c6d53a51410636a2c7fc97b9a8cf4842"}, + {file = "websockets-13.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48a2ef1381632a2f0cb4efeff34efa97901c9fbc118e01951ad7cfc10601a9bb"}, + {file = "websockets-13.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:459bf774c754c35dbb487360b12c5727adab887f1622b8aed5755880a21c4a20"}, + {file = "websockets-13.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:95858ca14a9f6fa8413d29e0a585b31b278388aa775b8a81fa24830123874678"}, + {file = "websockets-13.1-py3-none-any.whl", hash = "sha256:a9a396a6ad26130cdae92ae10c36af09d9bfe6cafe69670fd3b6da9b07b4044f"}, + {file = "websockets-13.1.tar.gz", hash = "sha256:a3b3366087c1bc0a2795111edcadddb8b3b59509d5db5d7ea3fdd69f954a8878"}, +] + [[package]] name = "yarl" -version = "1.9.4" +version = "1.12.1" description = "Yet another URL library" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"}, - {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"}, - {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98"}, - {file = "yarl-1.9.4-cp311-cp311-win32.whl", hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31"}, - {file = "yarl-1.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10"}, - {file = "yarl-1.9.4-cp312-cp312-win32.whl", hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7"}, - {file = "yarl-1.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984"}, - {file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434"}, - {file = "yarl-1.9.4-cp37-cp37m-win32.whl", hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749"}, - {file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3"}, - {file = "yarl-1.9.4-cp38-cp38-win32.whl", hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece"}, - {file = "yarl-1.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0"}, - {file = "yarl-1.9.4-cp39-cp39-win32.whl", hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575"}, - {file = "yarl-1.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15"}, - {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"}, - {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:64c5b0f2b937fe40d0967516eee5504b23cb247b8b7ffeba7213a467d9646fdc"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2e430ac432f969ef21770645743611c1618362309e3ad7cab45acd1ad1a540ff"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3e26e64f42bce5ddf9002092b2c37b13071c2e6413d5c05f9fa9de58ed2f7749"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0103c52f8dfe5d573c856322149ddcd6d28f51b4d4a3ee5c4b3c1b0a05c3d034"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b63465b53baeaf2122a337d4ab57d6bbdd09fcadceb17a974cfa8a0300ad9c67"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17d4dc4ff47893a06737b8788ed2ba2f5ac4e8bb40281c8603920f7d011d5bdd"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b54949267bd5704324397efe9fbb6aa306466dee067550964e994d309db5f1"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10b690cd78cbaca2f96a7462f303fdd2b596d3978b49892e4b05a7567c591572"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c85ab016e96a975afbdb9d49ca90f3bca9920ef27c64300843fe91c3d59d8d20"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c1caa5763d1770216596e0a71b5567f27aac28c95992110212c108ec74589a48"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:595bbcdbfc4a9c6989d7489dca8510cba053ff46b16c84ffd95ac8e90711d419"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e64f0421892a207d3780903085c1b04efeb53b16803b23d947de5a7261b71355"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:319c206e83e46ec2421b25b300c8482b6fe8a018baca246be308c736d9dab267"}, + {file = "yarl-1.12.1-cp310-cp310-win32.whl", hash = "sha256:da045bd1147d12bd43fb032296640a7cc17a7f2eaba67495988362e99db24fd2"}, + {file = "yarl-1.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:aebbd47df77190ada603157f0b3670d578c110c31746ecc5875c394fdcc59a99"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:28389a68981676bf74e2e199fe42f35d1aa27a9c98e3a03e6f58d2d3d054afe1"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f736f54565f8dd7e3ab664fef2bc461d7593a389a7f28d4904af8d55a91bd55f"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dee0496d5f1a8f57f0f28a16f81a2033fc057a2cf9cd710742d11828f8c80e2"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8981a94a27ac520a398302afb74ae2c0be1c3d2d215c75c582186a006c9e7b0"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ff54340fc1129e8e181827e2234af3ff659b4f17d9bbe77f43bc19e6577fadec"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:54c8cee662b5f8c30ad7eedfc26123f845f007798e4ff1001d9528fe959fd23c"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e97a29b37830ba1262d8dfd48ddb5b28ad4d3ebecc5d93a9c7591d98641ec737"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c89894cc6f6ddd993813e79244b36b215c14f65f9e4f1660b1f2ba9e5594b95"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:712ba8722c0699daf186de089ddc4677651eb9875ed7447b2ad50697522cbdd9"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6e9a9f50892153bad5046c2a6df153224aa6f0573a5a8ab44fc54a1e886f6e21"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1d4017e78fb22bc797c089b746230ad78ecd3cdb215bc0bd61cb72b5867da57e"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:f494c01b28645c431239863cb17af8b8d15b93b0d697a0320d5dd34cd9d7c2fa"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:de4544b1fb29cf14870c4e2b8a897c0242449f5dcebd3e0366aa0aa3cf58a23a"}, + {file = "yarl-1.12.1-cp311-cp311-win32.whl", hash = "sha256:7564525a4673fde53dee7d4c307a961c0951918f0b8c7f09b2c9e02067cf6504"}, + {file = "yarl-1.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:f23bb1a7a6e8e8b612a164fdd08e683bcc16c76f928d6dbb7bdbee2374fbfee6"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:a3e2aff8b822ab0e0bdbed9f50494b3a35629c4b9488ae391659973a37a9f53f"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:22dda2799c8d39041d731e02bf7690f0ef34f1691d9ac9dfcb98dd1e94c8b058"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:18c2a7757561f05439c243f517dbbb174cadfae3a72dee4ae7c693f5b336570f"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:835010cc17d0020e7931d39e487d72c8e01c98e669b6896a8b8c9aa8ca69a949"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2254fe137c4a360b0a13173a56444f756252c9283ba4d267ca8e9081cd140ea"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6a071d2c3d39b4104f94fc08ab349e9b19b951ad4b8e3b6d7ea92d6ef7ccaf8"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73a183042ae0918c82ce2df38c3db2409b0eeae88e3afdfc80fb67471a95b33b"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:326b8a079a9afcac0575971e56dabdf7abb2ea89a893e6949b77adfeb058b50e"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:126309c0f52a2219b3d1048aca00766429a1346596b186d51d9fa5d2070b7b13"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ba1c779b45a399cc25f511c681016626f69e51e45b9d350d7581998722825af9"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:af1107299cef049ad00a93df4809517be432283a0847bcae48343ebe5ea340dc"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:20d817c0893191b2ab0ba30b45b77761e8dfec30a029b7c7063055ca71157f84"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d4f818f6371970d6a5d1e42878389bbfb69dcde631e4bbac5ec1cb11158565ca"}, + {file = "yarl-1.12.1-cp312-cp312-win32.whl", hash = "sha256:0ac33d22b2604b020569a82d5f8a03ba637ba42cc1adf31f616af70baf81710b"}, + {file = "yarl-1.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:fd24996e12e1ba7c397c44be75ca299da14cde34d74bc5508cce233676cc68d0"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dea360778e0668a7ad25d7727d03364de8a45bfd5d808f81253516b9f2217765"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1f50a37aeeb5179d293465e522fd686080928c4d89e0ff215e1f963405ec4def"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0274b1b7a9c9c32b7bf250583e673ff99fb9fccb389215841e2652d9982de740"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4f3ab9eb8ab2d585ece959c48d234f7b39ac0ca1954a34d8b8e58a52064bdb3"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8d31dd0245d88cf7239e96e8f2a99f815b06e458a5854150f8e6f0e61618d41b"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a96198d5d26f40557d986c1253bfe0e02d18c9d9b93cf389daf1a3c9f7c755fa"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddae504cfb556fe220efae65e35be63cd11e3c314b202723fc2119ce19f0ca2e"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bce00f3b1f7f644faae89677ca68645ed5365f1c7f874fdd5ebf730a69640d38"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:eee5ff934b0c9f4537ff9596169d56cab1890918004791a7a06b879b3ba2a7ef"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4ea99e64b2ad2635e0f0597b63f5ea6c374791ff2fa81cdd4bad8ed9f047f56f"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:5c667b383529520b8dd6bd496fc318678320cb2a6062fdfe6d3618da6b8790f6"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d920401941cb898ef089422e889759dd403309eb370d0e54f1bdf6ca07fef603"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:501a1576716032cc6d48c7c47bcdc42d682273415a8f2908e7e72cb4625801f3"}, + {file = "yarl-1.12.1-cp313-cp313-win32.whl", hash = "sha256:24416bb5e221e29ddf8aac5b97e94e635ca2c5be44a1617ad6fe32556df44294"}, + {file = "yarl-1.12.1-cp313-cp313-win_amd64.whl", hash = "sha256:71af3766bb46738d12cc288d9b8de7ef6f79c31fd62757e2b8a505fe3680b27f"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c924deab8105f86980983eced740433fb7554a7f66db73991affa4eda99d5402"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5fb475a4cdde582c9528bb412b98f899680492daaba318231e96f1a0a1bb0d53"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:36ee0115b9edca904153a66bb74a9ff1ce38caff015de94eadfb9ba8e6ecd317"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2631c9d7386bd2d4ce24ecc6ebf9ae90b3efd713d588d90504eaa77fec4dba01"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2376d8cf506dffd0e5f2391025ae8675b09711016656590cb03b55894161fcfa"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:24197ba3114cc85ddd4091e19b2ddc62650f2e4a899e51b074dfd52d56cf8c72"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfdf419bf5d3644f94cd7052954fc233522f5a1b371fc0b00219ebd9c14d5798"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8112f640a4f7e7bf59f7cabf0d47a29b8977528c521d73a64d5cc9e99e48a174"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:607d12f0901f6419a8adceb139847c42c83864b85371f58270e42753f9780fa6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:664380c7ed524a280b6a2d5d9126389c3e96cd6e88986cdb42ca72baa27421d6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:0d0a5e87bc48d76dfcfc16295201e9812d5f33d55b4a0b7cad1025b92bf8b91b"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:eff6bac402719c14e17efe845d6b98593c56c843aca6def72080fbede755fd1f"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:22839d1d1eab9e4b427828a88a22beb86f67c14d8ff81175505f1cc8493f3500"}, + {file = "yarl-1.12.1-cp38-cp38-win32.whl", hash = "sha256:717f185086bb9d817d4537dd18d5df5d657598cd00e6fc22e4d54d84de266c1d"}, + {file = "yarl-1.12.1-cp38-cp38-win_amd64.whl", hash = "sha256:71978ba778948760cff528235c951ea0ef7a4f9c84ac5a49975f8540f76c3f73"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:30ffc046ebddccb3c4cac72c1a3e1bc343492336f3ca86d24672e90ccc5e788a"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f10954b233d4df5cc3137ffa5ced97f8894152df817e5d149bf05a0ef2ab8134"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2e912b282466444023610e4498e3795c10e7cfd641744524876239fcf01d538d"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6af871f70cfd5b528bd322c65793b5fd5659858cdfaa35fbe563fb99b667ed1f"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3e4e1f7b08d1ec6b685ccd3e2d762219c550164fbf524498532e39f9413436e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9a7ee79183f0b17dcede8b6723e7da2ded529cf159a878214be9a5d3098f5b1e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96c8ff1e1dd680e38af0887927cab407a4e51d84a5f02ae3d6eb87233036c763"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e9905fc2dc1319e4c39837b906a024cf71b1261cc66b0cd89678f779c0c61f5"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:01549468858b87d36f967c97d02e6e54106f444aeb947ed76f8f71f85ed07cec"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:96b34830bd6825ca0220bf005ea99ac83eb9ce51301ddb882dcf613ae6cd95fb"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:2aee7594d2c2221c717a8e394bbed4740029df4c0211ceb0f04815686e99c795"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:15871130439ad10abb25a4631120d60391aa762b85fcab971411e556247210a0"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:838dde2cb570cfbb4cab8a876a0974e8b90973ea40b3ac27a79b8a74c8a2db15"}, + {file = "yarl-1.12.1-cp39-cp39-win32.whl", hash = "sha256:eacbcf30efaca7dc5cb264228ffecdb95fdb1e715b1ec937c0ce6b734161e0c8"}, + {file = "yarl-1.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:76a59d1b63de859398bc7764c860a769499511463c1232155061fe0147f13e01"}, + {file = "yarl-1.12.1-py3-none-any.whl", hash = "sha256:dc3192a81ecd5ff954cecd690327badd5a84d00b877e1573f7c9097ce13e5bfb"}, + {file = "yarl-1.12.1.tar.gz", hash = "sha256:5b860055199aec8d6fe4dcee3c5196ce506ca198a50aab0059ffd26e8e815828"}, ] [package.dependencies] @@ -3046,20 +3232,24 @@ multidict = ">=4.0" [[package]] name = "zipp" -version = "3.19.2" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, - {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [metadata] lock-version = "2.0" -python-versions = ">=3.8.1,<4.0" -content-hash = "554e91ae90b2306b46bdb37c4a4ff08c257eea199161cc99206de4b3603ce54c" +python-versions = ">=3.9,<4.0" +content-hash = "4017dc40f5e58304aff484656ff103fc1fa0072af0c915f2aa2e598be3c7e983" diff --git a/pyproject.toml b/pyproject.toml index d4d4f0bf115d2..1afa0437c5010 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -9,14 +9,13 @@ repository = "https://www.github.com/langchain-ai/langchain" [tool.poetry.dependencies] -python = ">=3.8.1,<4.0" +python = ">=3.9,<4.0" [tool.poetry.group.docs.dependencies] -autodoc_pydantic = "^1" -sphinx = "^7" -myst-parser = "^3" -sphinx-autobuild = "^2021" -pydata-sphinx-theme = "^0.14" +autodoc_pydantic = "^2" +sphinx = ">=7" +sphinx-autobuild = ">=2024" +pydata-sphinx-theme = ">=0.15" toml = "^0.10.2" [tool.poetry.group.lint.dependencies] @@ -25,7 +24,6 @@ langchain-core = { path = "libs/core/", develop = true } langchain-text-splitters = { path = "libs/text-splitters", develop = true } langchain-community = { path = "libs/community/", develop = true } langchain = { path = "libs/langchain/", develop = true } -langchain-experimental = { path = "libs/experimental/", develop = true } langchain-openai = { path = "libs/partners/openai", develop = true } [tool.poetry.group.codespell.dependencies] @@ -37,7 +35,6 @@ langchain-core = { path = "libs/core/", develop = true } langchain-text-splitters = { path = "libs/text-splitters", develop = true } langchain-community = { path = "libs/community/", develop = true } langchain = { path = "libs/langchain/", develop = true } -langchain-experimental = { path = "libs/experimental/", develop = true } langchain-openai = { path = "libs/partners/openai", develop = true } ipykernel = "^6.29.2"